### CNRS Audition, Zeinab Galal



### General setting



# General setting



#### General setting



#### general dynamic more constructs on programs

finer invariants

cost, resource consumption probability of termination,...

> reason directly on execution steps

$$P \xrightarrow{\text{execution}} Q$$

#### richer models

- quantitative semantics graded, differential probabilistic models, ...
- 2-dimensional semantics.



### An important model from combinatorics

Joyal: species of structures set of structures

$$\{1,2,3,4,5\}$$



count the number of structures

generating series 
$$f : x \mapsto 1 + x + 2x^2 + 5x^3 + 14x^4 + ...$$

$$f+g=g+f$$
  $(f\circ g)\circ h=f\circ (g\circ h)$ 

### An important model from combinatorics

Joyal: species of structures



count the number of structures + relabelling action

generating functor  $X \mapsto 1 + X + 2X^2 + 5X^3 + 14X^4 + \dots$ 

$$F + G \xrightarrow{\text{rewriting}} G + F$$
  $(F \circ G) \circ H \xrightarrow{\text{rewriting}} F \circ (G \circ H)$ 

### An important model from combinatorics

Joyal: species of structures



▶ Fiore et al: 2-dimensional model of generalized species



#### PhD thesis

My thesis: generalize linear logic duality methods to dimension 2 for the species model where we need to take into account the reductions.



### First postdoc



**Main question:** what is the equational theory of term fixpoint reductions?

fixpoint unfolding  $\mathbf{fix}_x f(x) \longrightarrow f(\mathbf{fix}_x f(x))$ 

**Main question:** what is the equational theory of term fixpoint reductions?

fixpoint unfolding

$$fix_x f(x) \longrightarrow f(fix_x f(x))$$

variable elimination

$$fix_x fix_y f(x,y) \longrightarrow fix_x f(x,x)$$

**Main question:** what is the equational theory of term fixpoint reductions?

#### system of equations

$$\mathbf{fix}_{x} f(x) \longrightarrow f(\mathbf{fix}_{x} f(x))$$

# $\begin{array}{c} \operatorname{fix}_{x,y}(f(x,y), \\ g(x,y)) \longrightarrow & (\operatorname{fix}_{x} f(x, \operatorname{fix}_{y} . g(x,y)), \\ \operatorname{fix}_{y} . g(\operatorname{fix}_{x} . f(x,y), y)) \end{array}$

#### variable elimination

$$\mathbf{fix}_{x}\,\mathbf{fix}_{y}\,f(x,y)\longrightarrow\mathbf{fix}_{x}\,f(x,x)$$

**Main question:** what is the equational theory of term fixpoint reductions?

#### system of equations

fixpoint unfolding  

$$\mathbf{fix}_x f(x) \longrightarrow f(\mathbf{fix}_x f(x))$$

$$\begin{array}{c}
\operatorname{fix}_{x,y}(f(x,y), \\
g(x,y)) \longrightarrow & (\operatorname{fix}_{x} f(x, \operatorname{fix}_{y} . g(x,y)), \\
\operatorname{fix}_{y} . g(\operatorname{fix}_{x} . f(x,y), y))
\end{array}$$

#### variable elimination

$$\operatorname{fix}_{x} \operatorname{fix}_{y} f(x, y) \longrightarrow \operatorname{fix}_{x} f(x, x)$$

Fixpoint operator in dimension 1:

$$fix(f) = f(fix f)$$
  
 $fix fix(f) = fix(f \circ \Delta)$ 

**Main question:** what is the equational theory of term fixpoint reductions?

#### system of equations

fixpoint unfolding 
$$\begin{aligned} & \text{fix}_{x,y}(f(x,y), \\ & g(x,y)) \end{aligned} \longrightarrow \begin{aligned} & \text{(fix}_x \, f(x, \text{fix}_y \, . g(x,y)), \\ & \text{fix}_y \, . g(\text{fix}_x \, . f(x,y), y)) \end{aligned}$$

#### variable elimination

$$\operatorname{fix}_{x} \operatorname{fix}_{y} f(x, y) \longrightarrow \operatorname{fix}_{x} f(x, x)$$

Fixpoint operator in dimension 2:

$$\begin{array}{ccc} \operatorname{fix} f & \stackrel{\mathrm{unfold}}{\Longrightarrow} & f(\operatorname{fix} f) \\ \\ \operatorname{fix} \operatorname{fix}(f) & \stackrel{\operatorname{diag}}{\Longrightarrow} & \operatorname{fix}(f \circ \Delta) \end{array}$$

**Main question:** what is the equational theory of term fixpoint reductions?

#### system of equations

$$\begin{array}{ccc} \text{fixpoint unfolding} & & & \text{fix}_{x,y}(f(x,y), \\ g(x,y)) & \longrightarrow & \text{(fix}_x f(x, \text{fix}_y . g(x,y)), \\ \text{fix}_y . g(\text{fix}_x . f(x,y), y)) \end{array}$$

#### variable elimination

$$\operatorname{fix}_{x} \operatorname{fix}_{y} f(x, y) \longrightarrow \operatorname{fix}_{x} f(x, x)$$

Fixpoint operator in dimension 2:

$$\begin{array}{ccc} \operatorname{fix} f & \stackrel{\mathrm{unfold}}{\Longrightarrow} & f(\operatorname{fix} f) \\ \\ \operatorname{fix} \operatorname{fix}(f) & \stackrel{\operatorname{diag}}{\Longrightarrow} & \operatorname{fix}(f \circ \Delta) \end{array}$$

**Main difficulty:** how to come up with the right equations and ensure that we have them all?



LICS 2023, G. Fixpoint operators for 2-categorical structures.

#### Current postdoc



# Current postdoc: coinduction and behavioral metrics



#### behavioral equivalence

$$s_1 \sim s_2$$

 $\sim \subseteq$  States  $\times$  States

### Current postdoc: coinduction and behavioral metrics



behavioral equivalence

**∼** behavioral distance

$$d(s_1, s_2) = \varepsilon$$

 $\sim \subseteq$  States  $\times$  States

 $d: \mathrm{States} \times \mathrm{States} \to \left[0,1\right]$ 

probabilistic systems, cost analysis, differential privacy, sensitivity,  $\dots$ 

#### Current postdoc: coinduction and behavioral metrics



behavioral equivalence

→ behavioral distance

#### Current postdoc: joint work with Ugo dal Lago

- Bisimulation metric for computational indistinguishability
   family of distances dependent on the security parameter
- Higher order behavioral metrics
   main difficulty higher order programs can arbitrarily amplify
   distances

### Current postdoc





with Jean-Simon Pacaud Lemay. "Combining fixpoint and differentiation theory." *Submitted*.

**Syntax:** differential  $\lambda$ -calculus

$$\frac{\partial P}{\partial x} \cdot Q$$

linear substitution

Taylor expansion

**Main question:** what is the meaning of  $\operatorname{fix} \frac{\partial M}{\partial x}$  or  $\frac{\partial \operatorname{fix} M}{\partial x}$ ?



with Jean-Simon Pacaud Lemay. "Combining fixpoint and differentiation theory." *Submitted*.

**Syntax:** differential  $\lambda$ -calculus

$$\frac{\partial P}{\partial x} \cdot Q$$

linear substitution

Taylor expansion

**Main question:** what is the meaning of  $\operatorname{fix} \frac{\partial M}{\partial x}$  or  $\frac{\partial \operatorname{fix} M}{\partial x}$ ?



with Jean-Simon Pacaud Lemay. "Combining fixpoint and differentiation theory." *Submitted*.

**Syntax:** differential  $\lambda$ -calculus

$$\frac{\partial P}{\partial x} \cdot Q$$

linear substitution

Taylor expansion

**Main question:** what is the meaning of  $\operatorname{fix} \frac{\partial M}{\partial x}$  or  $\frac{\partial \operatorname{fix} M}{\partial x}$ ?

Semantics: Cartesian (closed) differential categories

differentiation smooth functions

operator **D** power series

**Main question:** what is the meaning of  $\mathbf{fix} \, \mathbf{D} \, f$  or  $\mathbf{D} \, \mathbf{fix} \, f$ ?

$$\frac{f:X\to Y}{\mathbf{D}(f):X\times X\to Y}$$

Directional derivative

$$(x,a) \longmapsto f'(x) \cdot a$$

$$\frac{f: X \to Y}{\mathbf{D}(f): X \times X \to Y} \qquad \qquad \frac{f: X \to Y}{\mathbf{T}(f): X \times X \to Y \times Y}$$
Directional derivative
$$(x, a) \longmapsto f'(x) \cdot a \qquad (x, a) \longmapsto (f(x), f'(x) \cdot a)$$

$$\frac{f: X \to Y}{\mathbf{D}(f): X \times X \to Y} \qquad \underbrace{\qquad \qquad} \qquad \frac{f: X \to Y}{\mathbf{T}(f): X \times X \to Y \times Y}$$
 Directional derivative 
$$\qquad \qquad \mathsf{Tangent bundle}$$

 $\mathbf{fix}(f): \Gamma \to X$  $\mathbf{fixpoint}$ 

$$\frac{f: X \to Y}{\mathbf{D}(f): X \times X \to Y}$$

$$\frac{f: X \to Y}{\mathbf{T}(f): X \times X \to Y \times Y}$$
Directional derivative
$$\frac{f: \Gamma \times X \to X}{\mathbf{T}(f): X \times X \to Y \times Y}$$

$$\frac{\overline{\mathsf{fix}}(f):\Gamma\to X}{\mathsf{fixpoint}}$$

Computing the **derivative of the fixpoint** is equivalent to computing the **fixpoint of the tangent**.

$$\mathbf{D}\operatorname{fix}(f) = \operatorname{fix}(\mathbf{T}(f)c)$$

$$\frac{f: X \to Y}{\mathbf{D}(f): X \times X \to Y} \longrightarrow \frac{f: X \to Y}{\mathbf{T}(f): X \times X \to Y \times Y}$$
Directional derivative
$$f: \Gamma \times X \to X$$

$$\frac{f: \Gamma \times X \to X}{\mathsf{fix}(f): \Gamma \to X}$$
fixpoint

Computing the **derivative of the fixpoint** is equivalent to computing the **fixpoint of the tangent**.

$$\mathbf{D}\operatorname{fix}(f) = \operatorname{fix}(\mathbf{T}(f)c)$$

#### Main result:

- Axiomatize Cartesian (closed) differential fixpoint categories
- Canonical models of Cartesian (closed) differential categories where we can compute fixpoints are examples

#### Fast computation of fixpoints using derivatives



 $K_0 = 0$  $K_{i+1} = f(K_i)$ 



Newton iteration

$$N_{i+1} = \frac{N_0 = 0}{1 - f'(N_i)} (f(N_i) - f'(N_i) \cdot N_i)$$

► Combinatorial species Labelle, Lacoste, Pivoteau, Salvy, Soria, ...

► Combinatorial species BinTree(A) = fix $_X$ (1 +  $AX^2$ )



► Combinatorial species BinTree(A) = fix $_X$ (1 +  $AX^2$ )



▶ Power series over a continuous semi-ring Etessami, Yannakakis, Esparza, Kiefer, Luttenberger, Schlund, ...

► Combinatorial species BinTree(A) = fix $_X$ (1 +  $AX^2$ )

species fast computation
defined Strahler
implicitly using trees + species
derivative

▶ Power series over a continuous semi-ring  $G: X \to \epsilon \mid AXX$ 

language fast computation regular grammars + Brzozowski derivative

► Combinatorial species BinTree(A) = fix $_X$ (1 +  $AX^2$ )

▶ Power series over a continuous semi-ring  $G: X \to \epsilon \mid AXX$ 

#### Main questions:

- Can we do the same in an arbitrary Cartesian differential fixpoint category?
- How do we measure convergence rates at this level of generality?





#### We assume that:

- the fixpoint-differentiation axiom holds
- it is a Taylor category

#### Detailed result 4: Newton-Raphson iteration

We assume that:

- the fixpoint-differentiation axiom holds
- ▶ it is a Taylor category

$$ightharpoonup$$
 Taylor expansion: for  $f: X \to Y$ ,  $f(a+b) = f(a) + \frac{\partial f}{\partial x}(a) \cdot b + \dots$ 

 $\sim$  canonical metric for  $f, g: X \to Y$ ,

$$d(f,g) = \frac{1}{2^k} \qquad \Leftrightarrow \qquad \text{``fx} - gx = o(x^k) \text{''}$$

#### Detailed result 4: Newton-Raphson iteration

#### We assume that:

- the fixpoint-differentiation axiom holds
- ▶ it is a **Taylor category**

Kleene-Scott fixpoint
$$\mathbf{K}_0 = 0$$

$$\mathbf{K}_{0} = 0$$

$$\mathbf{K}_{i+1} = f(\mathbf{K}_i)$$

$$\mathbf{N}_{i+1} = \mathbf{fixlin}(\frac{\partial f}{\partial x}(\mathbf{N}_i)) \cdot (f(\mathbf{N}_i) \ominus \frac{\partial f}{\partial x}(\mathbf{N}_i) \cdot \mathbf{N}_i)$$

$$d(\mathbf{fix} f, \mathbf{K}_{i+1}) = \frac{1}{2}d(\mathbf{fix} f, \mathbf{K}_i)$$

$$d(\mathbf{fix} f, \mathbf{N}_{i+1}) = \frac{1}{2}(d(\mathbf{fix} f, \mathbf{N}_i))^2$$

What does it mean for a program to be a solution of a differential equation?

What does it mean for a program to be a solution of a differential equation?

**Long term:** use semantics as a guideline to design languages with differentiation and recursion

- More general iterative schemes: solve or approximate solutions of differential equations
- Generalize existing methods from combinatorics
- Computational meaning in terms of resource usage
- Feedback into the syntax

What does it mean for a program to be a solution of a differential equation?

**Long term:** use semantics as a guideline to design languages with differentiation and recursion

- More general iterative schemes: solve or approximate solutions of differential equations
- Generalize existing methods from combinatorics
- Computational meaning in terms of resource usage
- Feedback into the syntax

| LIP (Plume)         | LIPN (Lo         | Ve)           | LIS (LSC)   |        |
|---------------------|------------------|---------------|-------------|--------|
| Doumane, Kuperberg, | Pous Kerjean, M  | azza          | Santocanale |        |
| Pagani, Pistone     | Breuvar          | t ANF         | R LamdaComb |        |
| ARIC team: Salv     | CALIN team: Band | erier, Bodini | I2M team    |        |
| Pagani              | Mazza            |               | 19          | 5 / 18 |

What does it mean for a program to be a solution of a differential equation?

**Long term:** use semantics as a guideline to design languages with differentiation and recursion

- More general iterative schemes: solve or approximate solutions of differential equations
- Generalize existing methods from combinatorics
- Computational meaning in terms of resource usage
- Feedback into the syntax

#### Short term:

- develop a notion of local fixpoints to combine it with reverse differentiation
- potential application: AD for functions defined implicitly

Solving/approximating systems of least and greatest fixpoint equations is important for concurrency, static analysis, program analysis, games, etc.

existing methods: mainly for lattices, systems weighted over reals

Solving/approximating systems of least and greatest fixpoint equations is important for concurrency, static analysis, program analysis, games, etc.

existing methods: mainly for lattices, systems weighted over reals

General goal: fixpoint approximation and optimization in dimension 2

• finer notions of approximation: more complex quantitative systems

Solving/approximating systems of least and greatest fixpoint equations is important for concurrency, static analysis, program analysis, games, etc.

existing methods: mainly for lattices, systems weighted over reals

General goal: fixpoint approximation and optimization in dimension 2

- finer notions of approximation: more complex quantitative systems
- generalize and transport proof methods by duality



Solving/approximating systems of least and greatest fixpoint equations is important for concurrency, static analysis, program analysis, games, etc.

existing methods: mainly for lattices, systems weighted over reals

General goal: fixpoint approximation and optimization in dimension 2

• finer notions of approximation: more complex quantitative systems

generalize and transport proof methods by duality

| LIP (Plume)              | LIPN (LoVe)       | LIS (LSC)    |  |
|--------------------------|-------------------|--------------|--|
| Pous, Vignudelli         | Mazza             | Santocanale  |  |
| Mio, Pistone, Vignudelli | Kerjean, Mazza    | Clairambault |  |
| Laurent, Riba            | Seiller, Breuvart | Crubillé     |  |

Solving/approximating systems of least and greatest fixpoint equations is important for concurrency, static analysis, program analysis, games, etc.

existing methods: mainly for lattices, systems weighted over reals

General goal: fixpoint approximation and optimization in dimension 2

- finer notions of approximation: more complex quantitative systems
- generalize and transport proof methods by duality

#### Ongoing work:

- guarded fixpoints (ensure progress, safety)
- systems of fixpoint equations combining least and greatest fixpoint reductions in dimension 2

# Project 3: generalized metrics and convergence



## Project 3: generalized metrics and convergence

#### **Program analysis** Categorical **Combinatorics** semantics Numerical methods reasoning principles proof methods e.g. universal properties wide range of optimization approximation methods connect and unify higher order viewpoint e.g. Newton approximant is different areas a term $\mathbf{N}: A \Rightarrow A \rightarrow A \Rightarrow A$ advanced complexity and feedback into design richer notions of metrics asymptotic analysis and convergence finer invariants LIP (Plume) LIPN (LoVe) LIS (LSC) Pagani, Pous Kerjean, Mazza Clairambault Mio, Pistone, Vignudelli **Breuvart** Crubillé ARIC: Salvy CALIN: Banderier, Bodini

# Thank you