Contonto	a Committee
Contents	8 Geometry 18 8.1 Default Code
	8.2 Convex hull*
1 Basic	8.3 External bisector
1.1 Shell script	1 8.4 Heart
1.2 Default code	1 8.6 Polar Angle Sort*
1.3 vimrc	1 8.7 Intersection of two circles*
1.4 readchar	1 8.8 Intersection of polygon and circle
1.5 Black Magic	2 8.9 Intersection of line and circle
2 Graph	2 8.11Half plane intersection
2.1 BCC Vertex*	2 8.12CircleCover*
2.2 Bridge*	2 8.133Dpoint*
2.3 2SAT (SCC)*	2 8.14Convexhull3D*
2.5 Virtual Tree*	3 8.16Triangulation Vonoroi*
2.6 Maximum Clique Dyn*	8.17Tangent line of two circles
2.7 Minimum Steiner Tree*	8.18minMaxEnclosingRectangle
2.8 Dominator Tree*	8.19minDistOfTwoConvex
2.9 Minimum Arborescence*	8 21RotatingSweenline 24
2.10Vizing's theorem	5 0 51co
2.12NumberofMaximalClique*	, E15e
4	9.1 Mo's Alogrithm(With modification)
3 Data Structure	5 9.3 DynamicConvexTrick*
3.1 Leftist Tree	5 9.4 DLX*
3.2 Heavy light Decomposition	6 9.5 Matroid Intersection
3.4 Link cut tree*	6 9.6 AdaptiveSimpson
3.5 KDTree	7
4 Flow/Matching	⁷ 1 Basic
4.1 Kuhn Munkres	7
4.2 MincostMaxflow 4.3 Maximum Simple Graph Matching*	8 1 1 Shell scrint
4.4 Minimum Weight Matching (Clique version)*	§ 1.1 Shell script
4.5 SW-mincut	9
4.6 BoundedFlow(Dinic*)	9 \mid g++ -O2 -std=c++17 -Dbbq -Wall -Wextra -Wshadow -o \$1
	10 \$1.cpp
4.8 Flow Models	10 chmod +x compile.sh
5 String	10
5.1 KMP	10
	1.2 Default code
5.4 Suffix Array	11
	#include <bits stdc++.h=""></bits>
5.7 Smallest Rotation	using namespace std;
5.8 De Bruijn sequence*	typedef long long ll;
5.9 SAM	typedef painell llv pll:
5.10PalTree	#dofing V finct
5.11cyclicLCS	#define Y second
6 Math	<pre>#define SZ(a) ((int)a.size())</pre>
6.1 ax+by=gcd*	
	#define pb push_back
6.3 Miller Rabin*	
6.4 Fraction	
6.5 Simultaneous Equations	4 - •
6.7 Simplex Algorithm	
6.7.1 Construction	
6.8 Schreier-Sims Algorithm*	15 "This file should be placed at ~/.vimrc"
6.9 chineseRemainder	
6.10QuadraticResidue*	15
6.11PiCount	3yircax on
6.13Theorem	in cursor the cterm-none ctermbg-69
6.13.1Kirchhoff's Theorem	set bg-uark
6.13.2Tutte's Matrix	INDITED A TENTER A A CELEFIA TENTER A CENTER A COPACIADA
6.13.3Cayley's Formula	
6.13.4Erdős-Gallai theorem	16
6.13.5Gale-Ryser theorem	
6.14Euclidean Algorithms	
6.15General Purpose Numbers	16
6.15.1Bernoulli numbers	16 Iniine char readchar() {
6.15.2Stirling numbers of the second kind	static const size_t bufsize = 65536; static char buf[bufsize];
7 Delynomial	static chan *n - buf *and - buf.
	if (p == end) end = buf + fread_unlocked(buf, 1,
/.Z Number meory mansform	bufsize, stdin), p = buf;
7.3 Fast Walsh Transform*	bufsize, stdin), p = buf; return *p++;
	<pre>bufsize, stdin), p = buf; return *p++; }</pre>

1.5 Black Magic

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> //rb_tree
using namespace __gnu_pbds;
typedef __gnu_pbds::priority_queue<int> heap;
int main() {
  heap h1, h2;
  h1.push(1), h1.push(3);
  h2.push(2), h2.push(4);
  h1.join(h2);
  cout << h1.size() << h2.size() << h1.top() << endl;</pre>
       //404
  tree<11, null_type, less<11>, rb_tree_tag,
       tree_order_statistics_node_update> st;
  tree<11, 11, less<11>, rb_tree_tag,
  tree_order_statistics_node_update> mp;
for (int x : {0, 2, 3, 4}) st.insert(x);
  cout << *st.find_by_order(2) << st.order_of_key(1) <<</pre>
        endl; //31
//__int128_t,__float128_t
```

2 Graph

2.1 BCC Vertex*

```
vector<int> G[N]; // 1-base
vector<int> nG[N], bcc[N];
int low[N], dfn[N], Time;
int bcc_id[N], bcc_cnt; // 1-base
bool is_cut[N]; // whether is av
bool cir[N];
int st[N], top;
void dfs(int u, int pa = -1) {
  int child = 0;
  low[u] = dfn[u] = ++Time;
  st[top++] = u;
  for (int v : G[u])
    if (!dfn[v]) {
      dfs(v, u), ++child;
      low[u] = min(low[u], low[v]);
      if (dfn[u] <= low[v]) {</pre>
        is_cut[u] = 1;
        bcc[++bcc_cnt].clear();
        int t;
        do {
          bcc_id[t = st[--top]] = bcc_cnt;
          bcc[bcc_cnt].push_back(t);
         } while (t != v);
        bcc_id[u] = bcc_cnt;
        bcc[bcc_cnt].pb(u);
    } else if (dfn[v] < dfn[u] && v != pa)</pre>
      low[u] = min(low[u], dfn[v]);
  if (pa == -1 && child < 2) is_cut[u] = 0;</pre>
void bcc_init(int n) {
  Time = bcc_cnt = top = 0;
for (int i = 1; i <= n; ++i)
    G[i].clear(), dfn[i] = bcc_id[i] = is_cut[i] = 0;
void bcc_solve(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i);
  // block-cut tree
  for (int i = 1; i <= n; ++i)</pre>
    if (is_cut[i])
      bcc_id[i] = ++bcc_cnt, cir[bcc_cnt] = 1;
  for (int i = 1; i <= bcc_cnt && !cir[i]; ++i)</pre>
    for (int j : bcc[i])
      if (is_cut[j])
        nG[i].pb(bcc_id[j]), nG[bcc_id[j]].pb(i);
}
```

2.2 Bridge*

```
int low[N], dfn[N], Time; // 1-base
vector<pii> G[N], edge;
vector<bool> is_bridge;
void init(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), low[i] = dfn[i] = 0;
void add_edge(int a, int b) {
 G[a].pb(pii(b, SZ(edge))), G[b].pb(pii(a, SZ(edge)));
  edge.pb(pii(a, b));
void dfs(int u, int f) {
  dfn[u] = low[u] = ++Time;
  for (auto i : G[u])
    if (!dfn[i.X])
    dfs(i.X, i.Y), low[u] = min(low[u], low[i.X]);
else if (i.Y != f) low[u] = min(low[u], dfn[i.X]);
  if (low[u] == dfn[u] && f != -1) is_bridge[f] = 1;
void solve(int n) {
  is_bridge.resize(SZ(edge));
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i, -1);
```

2.3 2SAT (SCC)*

```
struct SAT { // 0-base
  int low[N], dfn[N], bln[N], n, Time, nScc;
  bool instack[N], istrue[N];
  stack<int> st;
  vector<int> G[N], SCC[N];
  void init(int _n) {
    n = _n; // assert(n * 2 <= N);</pre>
    for (int i = 0; i < n + n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b) { G[a].pb(b); }
  int rv(int a) {
    if (a >= n) return a - n;
    return a + n;
  void add_clause(int a, int b) {
    add_edge(rv(a), b), add_edge(rv(b), a);
  void dfs(int u) {
    dfn[u] = low[u] = ++Time;
    instack[u] = 1, st.push(u);
    for (int i : G[u])
      if (!dfn[i])
        dfs(i), low[u] = min(low[i], low[u]);
      else if (instack[i] && dfn[i] < dfn[u])</pre>
    low[u] = min(low[u], dfn[i]);
if (low[u] == dfn[u]) {
      int tmp;
      do {
        tmp = st.top(), st.pop();
        instack[tmp] = 0, bln[tmp] = nScc;
      } while (tmp != u);
      ++nScc;
    }
  }
  bool solve() {
    Time = nScc = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      SCC[i].clear(), low[i] = dfn[i] = bln[i] = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      if (!dfn[i]) dfs(i);
    for (int i = 0; i < n + n; ++i) SCC[bln[i]].pb(i);</pre>
    for (int i = 0; i < n; ++i) {</pre>
      if (bln[i] == bln[i + n]) return false;
      istrue[i] = bln[i] < bln[i + n];</pre>
      istrue[i + n] = !istrue[i];
```

```
}
    return true;
}
};
```

2.4 MinimumMeanCycle*

```
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
   pll solve() {
     ll a = -1, b = -1, L = n + 1;
     for (int i = 2; i <= L; ++i)</pre>
       for (int k = 0; k < n; ++k)
         for (int j = 0; j < n; ++j)</pre>
           dp[i][j] =
              min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {</pre>
       if (dp[L][i] >= INF) continue;
       11 ta = 0, tb = 1;
       for (int j = 1; j < n; ++j)
         \quad \textbf{if} \ (\texttt{dp[j][i]} \ < \ \mathsf{INF} \ \&\&
           ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
           ta = dp[L][i] - dp[j][i], tb = L - j;
       if (ta == 0) continue;
       if (a == -1 || a * tb > ta * b) a = ta, b = tb;
     if (a != -1) {
       ll g = \_gcd(a, b);
       return pll(a / g, b / g);
     return pll(-1LL, -1LL);
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
       for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
| }:
```

2.5 Virtual Tree*

```
vector<int> vG[N]:
int top, st[N];
void insert(int u) {
 if (top == -1) return st[++top] = u, void();
 int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 && dep[st[top - 1]] >= dep[p])
   vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
   vG[p].pb(st[top]), --top, st[++top] = p;
 st[++top] = u;
}
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
 top = -1;
 sort(ALL(v),
    [&](int a, int b) { return dfn[a] < dfn[b]; });
  for (int i : v) insert(i);
 while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
 reset(v[0]);
```

2.6 Maximum Clique Dyn*

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
```

```
int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
     for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
         m = r.size();
     cs[1].reset(), cs[2].reset();
     for (int i = 0; i < m; i++) {</pre>
       int p = r[i], k = 1;
       while ((cs[k] & a[p]).count()) k++;
       if (k > mx) mx++, cs[mx + 1].reset();
       cs[k][p] = 1;
       if (k < km) r[t++] = p;
     c.resize(m);
     if (t) c[t - 1] = 0;
     for (int k = km; k <= mx; k++)</pre>
       for (int p = cs[k]._Find_first(); p < N;</pre>
           p = cs[k]._Find_next(p))
         r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
     bitset<N> mask) {
     while (!r.empty()) {
       int p = r.back();
       r.pop_back(), mask[p] = 0;
       if (q + c.back() <= ans) return;</pre>
       cur[q++] = p;
       vector<int> nr, nc;
       bitset<N> nmask = mask & a[p];
       for (int i : r)
         if (a[p][i]) nr.push_back(i);
       if (!nr.empty()) {
         if (1 < 4) {
           for (int i : nr)
             d[i] = (a[i] \& nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
         csort(nr, nc), dfs(nr, nc, l + 1, nmask);
       } else if (q > ans) ans = q, copy_n(cur, q, sol);
       c.pop_back(), q--;
  int solve(bitset<N> mask = bitset<N>(
               string(N, '1'))) { // vertex mask
     vector<int> r, c;
     ans = q = 0;
     for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
     for (int i = 0; i < n; i++)</pre>
       d[i] = (a[i] \& mask).count();
     sort(r.begin(), r.end(),
       [&](int i, int j) { return d[i] > d[j]; });
     csort(r, c), dfs(r, c, 1, mask);
     return ans; // sol[0 ~ ans-1]
  }
} graph;
```

2.7 Minimum Steiner Tree*

```
void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)</pre>
           dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)</pre>
      for (int j = 0; j < n; ++j) dp[i][j] = INF;</pre>
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
         for (int i = 0; i < n; ++i)</pre>
           dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)</pre>
        for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) & msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
      for (int i = 0; i < n; ++i) {</pre>
        tdst[i] = INF;
        for (int j = 0; j < n; ++j)
           tdst[i] =
             min(tdst[i], dp[msk][j] + dst[j][i]);
      for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)</pre>
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans;
  }
};
```

2.8 Dominator Tree*

```
struct dominator_tree { // 1-base
 vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
 int semi[N], idom[N], best[N];
 vector<int> tree[N]; // dominator_tree
 void init(int _n) {
   n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
   G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
   if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
   Time = 0;
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
```

```
find(v, i);
    semi[i] = min(semi[i], semi[best[v]]);
}
tree[semi[i]].pb(i);
for (auto v : tree[pa[i]]) {
    find(v, pa[i]);
    idom[v] =
        semi[best[v]] == pa[i] ? pa[i] : best[v];
}
tree[pa[i]].clear();
}
for (int i = 2; i <= Time; ++i) {
    if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
    tree[id[idom[i]]].pb(id[i]);
}
}
};</pre>
```

2.9 Minimum Arborescence*

```
struct zhu_liu { // O(VE)
  struct edge {
     int u, v;
    11 w;
  };
  vector<edge> E; // 0-base
  int pe[N], id[N], vis[N];
  11 in[N];
  void init() { E.clear(); }
  void add_edge(int u, int v, ll w) {
    if (u != v) E.pb(edge{u, v, w});
  11 build(int root, int n) {
     11 \text{ ans} = 0;
     for (;;) {
       fill_n(in, n, INF);
       for (int i = 0; i < SZ(E); ++i)</pre>
         if (E[i].u != E[i].v && E[i].w < in[E[i].v])</pre>
           pe[E[i].v] = i, in[E[i].v] = E[i].w;
       for (int u = 0; u < n; ++u) // no solution</pre>
         if (u != root && in[u] == INF) return -INF;
       int cntnode = 0;
       fill_n(id, n, -1), fill_n(vis, n, -1);
       for (int u = 0; u < n; ++u) {
        if (u != root) ans += in[u];
         int v = u;
         while (vis[v] != u && !~id[v] && v != root)
           vis[v] = u, v = E[pe[v]].u;
         if (v != root && !~id[v]) {
           for (int x = E[pe[v]].u; x != v;
                x = E[pe[x]].u)
             id[x] = cntnode;
           id[v] = cntnode++;
       if (!cntnode) break; // no cycle
       for (int u = 0; u < n; ++u)
        if (!~id[u]) id[u] = cntnode++;
       for (int i = 0; i < SZ(E); ++i) {</pre>
         int v = E[i].v;
         E[i].u = id[E[i].u], E[i].v = id[E[i].v];
         if (E[i].u != E[i].v) E[i].w -= in[v];
       n = cntnode, root = id[root];
    }
     return ans:
};
```

2.10 Vizing's theorem

```
void solve(vector<pair<int, int>> &E, int N, int M) {
 int X[kN] = {}, a;
  auto update = [&](int u) {
    for (X[u] = 1; C[u][X[u]]; X[u]++)
  auto color = [&](int u, int v, int c) {
    int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
 auto flip = [&](int u, int c1, int c2) {
  int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  for (int i = 1; i <= N; i++) X[i] = 1;</pre>
  for (int t = 0; t < E.size(); t++) {</pre>
    int u = E[t].first, v0 = E[t].second, v = v0,
        c0 = X[u], c = c0, d;
    vector<pair<int, int>> L;
    int vst[kN] = {};
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c])
        for (a = (int)L.size() - 1; a >= 0; a--)
          c = color(u, L[a].first, c);
      else if (!C[u][d])
        for (a = (int)L.size() - 1; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
    if (!G[u][v0]) {
      for (; v; v = flip(v, c, d), swap(c, d))
      if (C[u][c0]) {
        for (a = (int)L.size() - 2;
             a >= 0 && L[a].second != c; a--)
        for (; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      } else t--;
    }
 }
} // namespace vizing
```

2.11 Minimum Clique Cover*

```
struct Clique_Cover { // 0-base, O(n2^n)
  int co[1 << N], n, E[N];</pre>
  int dp[1 << N];</pre>
  void init(int _n) {
    n = _n, fill_n(dp, 1 << n, 0);
    fill_n(E, n, 0), fill_n(co, 1 << n, 0);
  void add_edge(int u, int v) {
    E[u] |= 1 << v, E[v] |= 1 << u;
  int solve() {
    for (int i = 0; i < n; ++i)</pre>
      co[1 << i] = E[i] | (1 << i);
    co[0] = (1 << n) - 1;

dp[0] = (n & 1) * 2 - 1;
    for (int i = 1; i < (1 << n); ++i) {</pre>
      int t = i & -i;
      dp[i] = -dp[i ^ t];
      co[i] = co[i ^ t] & co[t];
    for (int i = 0; i < (1 << n); ++i)</pre>
      co[i] = (co[i] \& i) == i;
```

```
fwt(co, 1 << n);
for (int ans = 1; ans < n; ++ans) {
   int sum = 0;
   for (int i = 0; i < (1 << n); ++i)
      sum += (dp[i] *= co[i]);
   if (sum) return ans;
   }
  return n;
}
</pre>
```

2.12 NumberofMaximalClique*

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
  int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    for (int i = 1; i <= n; ++i)</pre>
      for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
  void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
    if (S > 1000) return; // pruning
    if (sn == 0 && nn == 0) ++S;
    int u = some[d][0];
    for (int i = 0; i < sn; ++i) {</pre>
      int v = some[d][i];
      if (g[u][v]) continue;
      int tsn = 0, tnn = 0;
      copy_n(all[d], an, all[d + 1]);
      all[d + 1][an] = v;
      for (int j = 0; j < sn; ++j)</pre>
        if (g[v][some[d][j]])
          some[d + 1][tsn++] = some[d][j];
      for (int j = 0; j < nn; ++j)</pre>
        if (g[v][none[d][j]])
          none[d + 1][tnn++] = none[d][j];
      dfs(d + 1, an + 1, tsn, tnn);
      some[d][i] = 0, none[d][nn++] = v;
  int solve() {
    iota(some[0], some[0] + n, 1);
    S = 0, dfs(0, 0, n, 0);
    return S;
};
```

3 Data Structure

3.1 Leftist Tree

```
struct node {
  11 v, data, sz, sum;
  node *1, *r;
  node(11 k)
     : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 V(node *p) { return p ? p->v : -1; ]
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->1)) swap(a->r, a->1);
  a \rightarrow v = V(a \rightarrow r) + 1, a \rightarrow sz = sz(a \rightarrow l) + sz(a \rightarrow r) + 1;
  a \rightarrow sum = sum(a \rightarrow 1) + sum(a \rightarrow r) + a \rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
```

Heavy light Decomposition

```
, j
```

delete tmp:

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[10005], deep[10005], mxson[10005],
     w[10005], pa[10005];
   int t, pl[10005], data[10005], dt[10005], bln[10005],
     edge[10005], et;
   vector<pii> G[10005];
  void init(int _n) {
     n = _n, t = 0, et = 1;
     for (int i = 1; i <= n; ++i)</pre>
       G[i].clear(), mxson[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].pb(pii(b, et)), G[b].pb(pii(a, et)),
       edge[et++] = w;
  void dfs(int u, int f, int d) {
  w[u] = 1, pa[u] = f, deep[u] = d++;
     for (auto &i : G[u])
       if (i.X != f) {
         dfs(i.X, u, d), w[u] += w[i.X];
         if (w[mxson[u]] < w[i.X]) mxson[u] = i.X;</pre>
       } else bln[i.Y] = u, dt[u] = edge[i.Y];
  void cut(int u, int link) {
     data[pl[u] = t++] = dt[u], ulink[u] = link;
     if (!mxson[u]) return;
     cut(mxson[u], link);
     for (auto i : G[u])
       if (i.X != pa[u] && i.X != mxson[u])
         cut(i.X, i.X);
   void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
   int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], re = 0;
    while (ta != tb)
       if (deep[ta] < deep[tb])</pre>
         /*query*/, tb = ulink[b = pa[tb]];
       else /*query*/ , ta = ulink[a = pa[ta]];
     if (a == b) return re;
     if (pl[a] > pl[b]) swap(a, b);
     /*query*/
     return re:
};
```

3.3 Centroid Decomposition*

```
struct Cent_Dec { // 1-base
 vector<pll> G[N];
  pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
  int n, pa[N], layer[N], sz[N], done[N];
 ll dis[__lg(N) + 1][N];
  void init(int _n) {
    n = _n, layer[0] = -1;
    fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
 void add_edge(int a, int b, int w) {
   G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
    int u, int f, int &mx, int &c, int num) {
    int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
     if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
    if (mx > max(mxsz, num - sz[u]))
     mx = max(mxsz, num - sz[u]), c = u;
```

```
void dfs(int u, int f, ll d, int org) {
     // if required, add self info or climbing info
    dis[layer[org]][u] = d;
    for (pll e : G[u])
       if (!done[e.X] && e.X != f)
         dfs(e.X, u, d + e.Y, org);
  int cut(int u, int f, int num) {
    int mx = 1e9, c = 0, lc;
    get_cent(u, f, mx, c, num);
    done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
for (pll e : G[c])
       if (!done[e.X]) {
         if (sz[e.X] > sz[c])
          lc = cut(e.X, c, num - sz[c]);
         else lc = cut(e.X, c, sz[e.X]);
        upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
    return done[c] = 0, c;
  }
  void build() { cut(1, 0, n); }
  void modify(int u) {
    for (int a = u, ly = layer[a]; a;
          a = pa[a], --ly) {
       info[a].X += dis[ly][u], ++info[a].Y;
      if (pa[a])
         upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
  11 query(int u) {
    11 \text{ rt} = 0;
     for (int a = u, ly = layer[a]; a;
         a = pa[a], --ly) {
       rt += info[a].X + info[a].Y * dis[ly][u];
       if (pa[a])
        rt -=
           upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
    return rt;
}:
```

3.4 Link cut tree*

```
struct Splay { // xor-sum
  static Splay nil;
  Splay *ch[2], *f;
  int val, sum, rev, size;
  Splay(int _val = 0)
    : val(_val), sum(_val), rev(0), size(1) {
    f = ch[0] = ch[1] = &nil;
  bool isr() {
    return f->ch[0] != this && f->ch[1] != this;
  int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0] -> size + ch[1] -> size + 1;
    sum = ch[0] -> sum ^ ch[1] -> sum ^ val;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x \rightarrow f;
  int d = x->dir();
```

```
if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
 p->setCh(x->ch[!d], d);
 x->setCh(p, !d);
 p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q->f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(ALL(splayVec));
  for (auto it : splayVec) it->push();
 while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
 }
Splay *access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f)
   splay(x), x \rightarrow setCh(q, 1), q = x;
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
 root_path(x), x->rev ^= 1;
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
 chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  root_path(x), chroot(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
 split(x, y);
  if (y->size != 5) return;
 y->push();
 y->ch[0] = y->ch[0]->f = nil;
Splay *get_root(Splay *x) {
 for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splay(x);
 return x;
bool conn(Splay *x, Splay *y) {
 return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
int query(Splay *x, Splay *y) {
  split(x, y);
  return y->sum;
```

3.5 KDTree

```
namespace kdt {
int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
  yl[maxn], yr[maxn];
point p[maxn];
int build(int l, int r, int dep = 0) {
  if (l == r) return -1;
  function<bool(const point &, const point &)> f =
    [dep](const point &a, const point &b) {
    if (dep & 1) return a.x < b.x;
    else return a.y < b.y;
  };</pre>
```

```
int m = (1 + r) >> 1;
  nth_element(p + 1, p + m, p + r, f);
  x1[m] = xr[m] = p[m].x;
  y1[m] = yr[m] = p[m].y;
  lc[m] = build(1, m, dep + 1);
  if (~lc[m]) {
    xl[m] = min(xl[m], xl[lc[m]]);
     xr[m] = max(xr[m], xr[lc[m]]);
    yl[m] = min(yl[m], yl[lc[m]]);
    yr[m] = max(yr[m], yr[lc[m]]);
  rc[m] = build(m + 1, r, dep + 1);
  if (~rc[m]) {
    xl[m] = min(xl[m], xl[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
    yr[m] = max(yr[m], yr[rc[m]]);
  return m:
bool bound(const point &q, int o, long long d) {
  double ds = sqrt(d + 1.0);
  if (q.x < x1[o] - ds || q.x > xr[o] + ds ||
     q.y < y1[o] - ds || q.y > yr[o] + ds
    return false;
  return true;
long long dist(const point &a, const point &b) {
  return (a.x - b.x) * 111 * (a.x - b.x) +
    (a.y - b.y) * 111 * (a.y - b.y);
void dfs(
  const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
  long long cd = dist(p[o], q);
  if (cd != 0) d = min(d, cd);
  if ((dep & 1) && q.x < p[o].x ||
    !(dep & 1) && q.y < p[o].y) {
     if (~lc[o]) dfs(q, d, lc[o], dep + 1);
     if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
    if (~rc[o]) dfs(q, d, rc[o], dep + 1);
if (~lc[o]) dfs(q, d, lc[o], dep + 1);
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
  long long res = 1e18;
  dfs(q, res, root);
  return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Kuhn Munkres

```
struct KM { // 0-base
   int w[MAXN][MAXN], h1[MAXN], hr[MAXN], s1k[MAXN], n;
   int f1[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], q1, qr;
   bool v1[MAXN], vr[MAXN];
   void init(int _n) {
      n = _n;
      for (int i = 0; i < n; ++i)
            for (int j = 0; j < n; ++j) w[i][j] = -INF;
   }
   void add_edge(int a, int b, int wei) {
      w[a][b] = wei;
   }
   bool Check(int x) {
      if (v1[x] = 1, ~f1[x])
            return vr[qu[qr++] = f1[x]] = 1;
      while (~x) swap(x, fr[f1[x] = pre[x]]);
      return 0;
   }
}</pre>
```

```
void Bfs(int s) {
    fill(slk, slk + n, INF);
    fill(vl, vl + n, 0), fill(vr, vr + n, 0);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    while (1) {
      int d;
      while (ql < qr)</pre>
        for (int x = 0, y = qu[ql++]; x < n; ++x)
           if (!v1[x] &&
             slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
        if (!vl[x] && d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {
        if (v1[x]) h1[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !s1k[x] && !Check(x)) return;
    }
  int Solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1),
      fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)</pre>
      hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) Bfs(i);</pre>
    int res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res:
};
```

4.2 MincostMaxflow

```
struct MCMF { // 0-base
  struct edge {
    11 from, to, cap, flow, cost, rev;
  } * past[MAXN];
  vector<edge> G[MAXN];
  bitset<MAXN> inq;
  11 dis[MAXN], up[MAXN], s, t, mx, n;
  bool BellmanFord(ll &flow, ll &cost) {
    fill(dis, dis + n, INF);
    queue<11> q;
    q.push(s), inq.reset(), inq[s] = 1;
    up[s] = mx - flow, past[s] = 0, dis[s] = 0;
    while (!q.empty()) {
     11 u = q.front();
q.pop(), inq[u] = 0;
      if (!up[u]) continue;
      for (auto &e : G[u])
        if (e.flow != e.cap &&
          dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
    if (dis[t] == INF) return 0;
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    return 1:
  11 MinCostMaxFlow(ll _s, ll _t, ll &cost) {
    s = _s, t = _t, cost = 0;
    11 \text{ flow = 0};
    while (BellmanFord(flow, cost))
    return flow;
  }
  void init(ll _n, ll _mx) {
    n = n, mx = mx;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
```

```
}
void add_edge(l1 a, l1 b, l1 cap, l1 cost) {
   G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
   G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
}
};
```

4.3 Maximum Simple Graph Matching*

```
struct GenMatch { // 1-base
  int V, pr[N];
  bool el[N][N], inq[N], inp[N], inb[N];
int st, ed, nb, bk[N], djs[N], ans;
  void init(int _V) {
    V = _V;
for (int i = 0; i <= V; ++i) {</pre>
      for (int j = 0; j <= V; ++j) el[i][j] = 0;</pre>
      pr[i] = bk[i] = djs[i] = 0;
      inq[i] = inp[i] = inb[i] = 0;
    }
  void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, 0);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
      else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
      else v = bk[pr[v]];
    return v;
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if (djs[u] != nb) bk[u] = v;
  }
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)</pre>
      if (inb[djs[tu]])
        if (djs[tu] = nb, !inq[tu])
           qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue<int> qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
      qe.pop();
      for (int v = 1; v <= V; ++v)
  if (el[u][v] && djs[u] != djs[v] &&</pre>
           pr[u] != v) {
           if ((v == st) ||
             (pr[v] > 0 \&\& bk[pr[v]] > 0))
             blo(u, v, qe);
           else if (!bk[v]) {
             if (bk[v] = u, pr[v] > 0) {
               if (!inq[pr[v]]) qe.push(pr[v]);
             } else return ed = v, void();
          }
        }
    }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
      u = w:
  int solve() {
    fill_n(pr, V + 1, 0), ans = 0;
```

```
for (int u = 1; u <= V; ++u)
    if (!pr[u])
    if (st = u, flow(), ed > 0) aug(), ++ans;
    return ans;
}
```

4.4 Minimum Weight Matching (Clique version)*

```
struct Graph { // 0-base (Perfect Match), n is even
  int n, match[N], onstk[N], stk[N], tp;
  11 edge[N][N], dis[N];
  void init(int _n) {
    n = _n, tp = 0;
    for (int i = 0; i < n; ++i) fill_n(edge[i], n, 0);</pre>
  void add_edge(int u, int v, ll w) {
    edge[u][v] = edge[v][u] = w;
  bool SPFA(int u) {
    stk[tp++] = u, onstk[u] = 1;
     for (int v = 0; v < n; ++v)
      if (!onstk[v] && match[u] != v) {
         int m = match[v];
         if (dis[m] >
           \texttt{dis[u] - edge[v][m] + edge[u][v]) } \{
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1, stk[tp++] = v;
if (onstk[m] || SPFA(m)) return 1;
           --tp, onstk[v] = 0;
      }
    onstk[u] = 0, --tp;
    return 0:
  11 solve() { // find a match
    for (int i = 0; i < n; ++i) match[i] = i ^ 1;</pre>
    while (1) {
      int found = 0;
      fill_n(dis, n, 0);
       fill_n(onstk, n, 0);
      for (int i = 0; i < n; ++i)</pre>
         if (tp = 0, !onstk[i] \&\& SPFA(i))
           for (found = 1; tp >= 2;) {
             int u = stk[--tp];
             int v = stk[--tp];
             match[u] = v, match[v] = u;
      if (!found) break;
    11 \text{ ret} = 0;
     for (int i = 0; i < n; ++i)</pre>
      ret += edge[i][match[i]];
     return ret >> 1;
  }
};
```

4.5 SW-mincut

```
cur = i, mx = wei[i];
  if (mx == -1) break;
  vst[cur] = 1, s = t, t = cur;
  for (int i = 0; i < n; ++i)
      if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
  }
}
int solve() {
  int res = INF;
  for (int i = 0, x, y; i < n - 1; ++i) {
    search(x, y), res = min(res, wei[y]), del[y] = 1;
    for (int j = 0; j < n; ++j)
      edge[x][j] = (edge[j][x] += edge[y][j]);
  }
  return res;
}
};</pre>
```

4.6 BoundedFlow(Dinic*)

```
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
    n = _n;
for (int i = 0; i < n + 2; ++i)</pre>
      G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
    G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
         int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
           e.flow += df, G[e.to][e.rev].flow -= df;
           return df;
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (edge &e : G[u])
        if (!~dis[e.to] && e.flow != e.cap)
           q.push(e.to), dis[e.to] = dis[u] + 1;
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
         _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n + 3, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow;
  bool solve() {
    int sum = 0;
    for (int i = 0; i < n; ++i)</pre>
```

```
if (cnt[i] > 0)
        add_edge(n + 1, i, cnt[i]), sum += cnt[i];
       else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
    if (sum != maxflow(n + 1, n + 2)) sum = -1;
    for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
        G[n + 1].pop_back(), G[i].pop_back();
       else if (cnt[i] < 0)</pre>
        G[i].pop_back(), G[n + 2].pop_back();
    return sum != -1;
  int solve(int _s, int _t) {
    add_edge(_t, _s, INF);
if (!solve()) return -1; // invalid flow
    int x = G[_t].back().flow;
    return G[_t].pop_back(), G[_s].pop_back(), x;
  }
};
```

4.7 Gomory Hu tree

```
struct Gomory_Hu_tree { // 0-base
 MaxFlow Dinic;
 int n;
  vector<pii> G[MAXN];
  void init(int _n) {
   n = _n;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void solve(vector<int> &v) {
    if (v.size() <= 1) return;</pre>
    int s = rand() % SZ(v);
    swap(v.back(), v[s]), s = v.back();
    int t = v[rand() % (SZ(v) - 1)];
    vector<int> L, R;
    int x = (Dinic.reset(), Dinic.maxflow(s, t));
    G[s].pb(pii(t, x)), G[t].pb(pii(s, x));
    for (int i : v)
      if (~Dinic.dis[i]) L.pb(i);
      else R.pb(i);
    solve(L), solve(R);
  void build() {
    vector<int> v(n);
    for (int i = 0; i < n; ++i) v[i] = i;</pre>
    solve(v);
} ght; // test by BZOJ 4519
MaxFlow &Dinic = ght.Dinic;
```

4.8 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect t o s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f^\prime is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise.

 - 2. DFS from unmatched vertices in X. 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect x o y with (cost,cap)=(c,1)if c>0, otherwise connect $y\to x$ with (cost,cap)=(-c,1)

- 3. For each edge with c < 0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
- 4. For each vertex v with d(v)>0, connect $S\to v$ with (cost, cap) = (0, d(v))
- 5. For each vertex v with d(v) < 0, connect v o T with (cost, cap) = (0, -d(v))
- 6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer \boldsymbol{T}
 - 2. Construct a max flow model, let \boldsymbol{K} be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect u o v and v o u with capacity \boldsymbol{w}
 - 5. For $v\in G$, connect it with sink $v\to t$ with capacity $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow $f < K \vert V \vert$
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight w(u,v).
 - 2. Connect v o v' with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to \boldsymbol{v} .
 - 3. Find the minimum weight perfect matching on G^{\prime} .
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge $\left(v,t\right)$ with capacity $-p_{v}$.
 - 2. Create edge $\left(u,v\right)$ with capacity w with w being the cost of
 - choosing u without choosing v. 3. The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y .
- 2. Create edge (x,y) with capacity c_{xy}
- 3. Create edge (x,y) and edge (x^\prime,y^\prime) with capacity $c_{xyx^\prime y^\prime}$.

String

5.1 KMP

```
int F[MAXN];
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
  if (B[i] == B[j]) F[i] = F[j]; // optimize</pre>
     while (j != -1 && B[i] != B[j]) j = F[j];
  for (int i = 0, j = 0; i < SZ(A); ++i) {
     while (j != -1 && A[i] != B[j]) j = F[j];
     if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
   return ans:
```

5.2 Z-value*

```
int z[MAXn];
void make_z(const string &s) {
  int 1 = 0, r = 0;
for (int i = 1; i < SZ(s); ++i) {
  for (z[i] = max(0, min(r - i + 1, z[i - 1]));</pre>
            i + z[i] < SZ(s) && s[i + z[i]] == s[z[i]];
     if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
```

5.3 Manacher*

```
int z[MAXN];
int Manacher(string tmp) {
    string s = "&";
    int l = 0, r = 0, x, ans;
    for (char c : tmp) s.pb(c), s.pb('%');
    ans = 0, x = 0;
    for (int i = 1; i < SZ(s); ++i) {
        z[i] = r > i ? min(z[2 * l - i], r - i) : 1;
        while (s[i + z[i]] == s[i - z[i]]) ++z[i];
        if (z[i] + i > r) r = z[i] + i, l = i;
    }
    for (int i = 1; i < SZ(s); ++i)
        if (s[i] == '%') x = max(x, z[i]);
    ans = x / 2 * 2, x = 0;
    for (int i = 1; i < SZ(s); ++i)
        if (s[i] != '%') x = max(x, z[i]);
    return max(ans, (x - 1) / 2 * 2 + 1);
}</pre>
```

5.4 Suffix Array

```
struct suffix_array {
   int box[MAXN], tp[MAXN], m;
   bool not_equ(int a, int b, int k, int n) {
  return ra[a] != ra[b] || a + k >= n ||
       b + k >= n \mid \mid ra[a + k] != ra[b + k];
   void radix(int *key, int *it, int *ot, int n) {
     fill_n(box, m, 0);
     for (int i = 0; i < n; ++i) ++box[key[i]];</pre>
     partial_sum(box, box + m, box);
for (int i = n - 1; i >= 0; --i)
       ot[--box[key[it[i]]]] = it[i];
   void make_sa(const string &s, int n) {
     int k = 1;
     for (int i = 0; i < n; ++i) ra[i] = s[i];</pre>
     do {
       iota(tp, tp + k, n - k), iota(sa + k, sa + n, 0);
       radix(ra + k, sa + k, tp + k, n - k);
       radix(ra, tp, sa, n);
       tp[sa[0]] = 0, m = 1;
       for (int i = 1; i < n; ++i) {</pre>
         m += not_equ(sa[i], sa[i - 1], k, n);
         tp[sa[i]] = m - 1;
       copy_n(tp, n, ra);
       k *= 2;
     } while (k < n && m != n);</pre>
   void make_he(const string &s, int n) {
     for (int j = 0, k = 0; j < n; ++j) {
       if (ra[j])
         for (; s[j + k] == s[sa[ra[j] - 1] + k]; ++k)
       he[ra[j]] = k, k = max(0, k - 1);
     }
   int sa[MAXN], ra[MAXN], he[MAXN];
  void build(const string &s) {
     int n = SZ(s);
     fill_n(sa, n, 0), fill_n(ra, n, 0),
     fill_n(he, n, 0);
fill_n(box, n, 0), fill_n(tp, n, 0), m = 256;
     make_sa(s, n), make_he(s, n);
};
```

5.5 SAIS

```
class SAIS {
public:
  int *SA, *H;
  // zero based, string content MUST > 0
  // result height H[i] is LCP(SA[i - 1], SA[i])
```

```
h[0] = s[n++] = 0;
     sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
    SA = _sa + 1;
    H = _h + 1;
  bool _t[N * 2];
  int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2],
   r[N], _sa[N * 2], _h[N];
  void mkhei(int n) {
    for (int i = 0; i < n; i++) r[_sa[i]] = i;</pre>
     for (int i = 0; i < n; i++)</pre>
       if (r[i]) {
         int ans = i > 0? max([r[i - 1]] - 1, 0) : 0;
         while (\_s[i + ans] == \_s[\_sa[r[i] - 1] + ans])
           ans++;
         _h[r[i]] = ans;
  void sais(int *s, int *sa, int *p, int *q, bool *t,
    int *c, int n, int z) {
     bool uniq = t[n - 1] = 1, neq;
     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
         lst = -1;
#define MAGIC(XD)
  fill_n(sa, n, 0);
  copy_n(c, z, x);
  XD:
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; i++)
     if (sa[i] && !t[sa[i] - 1])
      sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy_n(c, z, x);
for (int i = n - 1; i >= 0; i--)
     if (sa[i] && t[sa[i] - 1])
       sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
     fill_n(c, z, 0);
     for (int i = 0; i < n; i++) uniq &= ++c[s[i]] < 2;</pre>
     partial_sum(c, c + z, c);
     if (uniq) {
       for (int i = 0; i < n; i++) sa[--c[s[i]]] = i;</pre>
       return:
     for (int i = n - 2; i >= 0; i--)
       t[i] = (s[i] == s[i + 1] ? t[i + 1]
                                 : s[i] < s[i + 1]);
     MAGIC(for (int i = 1; i <= n - 1;
                i++) if (t[i] && !t[i - 1])
             sa[--x[s[i]]] = p[q[i] = nn++] = i);
     for (int i = 0; i < n; i++)</pre>
       if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
         neq = (1st < 0) \mid \mid
           !equal(s + 1st,
             s + lst + p[q[sa[i]] + 1] - sa[i],
             s + sa[i]);
         ns[q[1st = sa[i]]] = nmxz += neq;
     sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
      nmxz + 1);
     MAGIC(for (int i = nn - 1; i >= 0; i--)
             sa[--x[s[p[nsa[i]]]] = p[nsa[i]]);
  }
} sa;
```

5.6 Aho-Corasick Automatan

```
const int len = 400000, sigma = 26;
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], pri[len], top;
  int newnode() {
    fill(nx[top], nx[top] + sigma, -1);
    return top++;
  }
```

```
void init() { top = 1, newnode(); }
  int input(
     string &s) { // return the end_node of string
     int X = 1;
     for (char c : s) {
  if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
       X = nx[X][c - 'a'];
     return X:
  void make_fl() {
     queue<int> q;
     q.push(1), fl[1] = 0;
     for (int t = 0; !q.empty();) {
      int R = q.front();
       q.pop(), pri[t++] = R;
for (int i = 0; i < sigma; ++i)</pre>
         if (~nx[R][i]) {
           int X = nx[R][i], Z = f1[R];
           for (; Z && !~nx[Z][i];) Z = f1[Z];
           fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
  void get_v(string &s) {
    int X = 1;
     fill(cnt, cnt + top, 0);
     for (char c : s) {
       while (X \&\& !\sim nx[X][c - 'a']) X = fl[X];
       X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
     for (int i = top - 2; i > 0; --i)
       cnt[fl[pri[i]]] += cnt[pri[i]];
  }
};
```

5.7 Smallest Rotation

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.8 De Bruijn sequence*

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K <= C^N
void dfs(int *out, int t, int p, int &ptr) {</pre>
     if (ptr >= L) return;
     if (t > N) {
       if (N % p) return;
        for (int i = 1; i <= p && ptr < L; ++i)</pre>
          out[ptr++] = buf[i];
     } else {
       buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
       for (int j = buf[t - p] + 1; j < C; ++j)</pre>
          buf[t] = j, dfs(out, t + 1, t, ptr);
    }
  }
  void solve(int _c, int _n, int _k, int *out) {
    int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

5.9 SAM

```
const int MAXM = 1000010;
struct SAM {
  int tot, root, lst, mom[MAXM], mx[MAXM];
  int acc[MAXM], nxt[MAXM][33];
  int newNode() {
    int res = ++tot;
    fill(nxt[res], nxt[res] + 33, 0);
    mom[res] = mx[res] = acc[res] = 0;
    return res:
  }
  void init() {
    tot = 0;
    root = newNode();
    mom[root] = 0, mx[root] = 0;
    lst = root;
  void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = mom[p])
     nxt[p][c] = np;
    if (p == 0) mom[np] = root;
    else {
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) mom[np] = q;
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)</pre>
          nxt[nq][i] = nxt[q][i];
        mom[nq] = mom[q];
        mom[q] = nq;
        mom[np] = nq;
        for (; p && nxt[p][c] == q; p = mom[p])
          nxt[p][c] = nq;
      }
    lst = np;
  void push(char *str) {
    for (int i = 0; str[i]; i++)
      push(str[i] - 'a' + 1);
} sam;
```

5.10 PalTree

```
struct palindromic_tree { // Check by APIO 2014
                            // palindrome
  struct node {
    int next[26], fail, len;
    int cnt, num; // cnt: appear times, num: number of
                   // pal. suf.
    node(int 1 = 0) : fail(0), len(1), cnt(0), num(0) {
      for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  };
  vector<node> St;
  vector<char> s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
  while (s[n - St[x].len - 1] != s[n])
      x = St[x].fail;
    return x;
  inline void add(int c) {
    s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
```

```
if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
     St[i->fail].cnt += i->cnt;
    }
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
};
```

5.11 cyclicLCS

```
#define L 0
#define LU 1
#define U 2
const int mov[3][2] = {0, -1, -1, -1, 0};
int al, bl;
char a[MAXL * 2], b[MAXL * 2]; // 0-indexed
int dp[MAXL * 2][MAXL];
char pred[MAXL * 2][MAXL];
inline int lcs_length(int r) {
 int i = r + al, j = bl, l = 0;
 while (i > r) {
    char dir = pred[i][j];
   if (dir == LU) 1++;
   i += mov[dir][0];
   j += mov[dir][1];
 }
 return 1;
inline void reroot(int r) { // r = new base row
 int i = r, j = 1;
  while (j <= bl && pred[i][j] != LU) j++;</pre>
 if (j > bl) return;
 pred[i][j] = L;
 while (i < 2 * al && j <= bl) {
    if (pred[i + 1][j] == U) {
      pred[i][j] = L;
    } else if (j < bl && pred[i + 1][j + 1] == LU) {</pre>
      i++;
      j++;
      pred[i][j] = L;
   } else {
      j++;
   }
 }
int cyclic_lcs() {
 // a, b, al, bl should be properly filled
 // note: a WILL be altered in process
            -- concatenated after itself
 char tmp[MAXL];
 if (al > bl) {
   swap(al, bl);
    strcpy(tmp, a);
    strcpy(a, b);
    strcpy(b, tmp);
 strcpy(tmp, a);
 strcat(a, tmp);
 // basic lcs
 for (int i = 0; i <= 2 * al; i++) {</pre>
   dp[i][0] = 0;
   pred[i][0] = U;
  for (int j = 0; j <= bl; j++) {</pre>
   dp[0][j] = 0;
    pred[0][j] = L;
```

```
for (int i = 1; i <= 2 * al; i++) {
  for (int j = 1; j <= bl; j++) {</pre>
    if (a[i - 1] == b[j - 1])
     dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    if (dp[i][j - 1] == dp[i][j]) pred[i][j] = L;
else if (a[i - 1] == b[j - 1]) pred[i][j] = LU;
     else pred[i][j] = U;
  }
}
// do cyclic lcs
int clcs = 0;
for (int i = 0; i < al; i++) {</pre>
 clcs = max(clcs, lcs_length(i));
  reroot(i + 1);
// recover a
a[al] = ' \setminus \theta';
return clcs;
```

6 Math

6.1 ax+by=gcd*

```
pll exgcd(ll a, ll b) {
   if (b == 0) return pll(1, 0);
   else {
      ll p = a / b;
      pll q = exgcd(b, a % b);
      return pll(q.Y, q.X - q.Y * p);
   }
}
```

6.2 floor and ceil

```
int floor(int a, int b) {
  return a / b - (a % b && a < 0 ^ b < 0);
}
int ceil(int a, int b) {
  return a / b + (a % b && a<0 ^ b> 0);
}
```

6.3 Miller Rabin*

```
// n < 4,759,123,141 3 : 2, 7, 61
// n < 1,122,004,669,633 4 : 2, 13, 23, 1662803
// n < 3,474,749,660,383 6 : pirmes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
bool Miller_Rabin(ll a, ll n) {
  if ((a = a % n) == 0) return 1;
  if ((n & 1) ^ 1) return n == 2;
  11 \text{ tmp} = (n - 1) / ((n - 1) & (1 - n));
  11 t = 
          for (; tmp; tmp >>= 1, a = mul(a, a, n))
    if (tmp & 1) x = mul(x, a, n);
  if (x == 1 || x == n - 1) return 1;
  while (--t)
    if ((x = mul(x, x, n)) == n - 1) return 1;
  return 0:
}
```

6.4 Fraction

```
struct fraction {
    11 n, d;
    fraction(const l1 &_n = 0, const l1 &_d = 1)
        : n(_n), d(_d) {
        11 t = __gcd(n, d);
        n /= t, d /= t;
}
```

```
if (d < 0) n = -n, d = -d;
}
fraction operator-() const {
    return fraction(-n, d);
}
fraction operator+(const fraction &b) const {
    return fraction(n * b.d + b.n * d, d * b.d);
}
fraction operator-(const fraction &b) const {
    return fraction(n * b.d - b.n * d, d * b.d);
}
fraction operator*(const fraction &b) const {
    return fraction(n * b.n, d * b.d);
}
fraction operator/(const fraction &b) const {
    return fraction(n * b.d, d * b.n);
}
void print() {
    cout << n;
    if (d != 1) cout << "/" << d;
}
};</pre>
```

6.5 Simultaneous Equations

```
struct matrix { // m variables, n equations
  int n, m;
  fraction M[MAXN][MAXN + 1], sol[MAXN];
  int solve() { //-1: inconsistent, >= 0: rank
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m) continue;
      for (int j = 0; j < n; ++j) {
        if (i == j) continue;
        fraction tmp = -M[j][piv] / M[i][piv];
        for (int k = 0; k <= m; ++k)</pre>
          M[j][k] = tmp * M[i][k] + M[j][k];
      }
    }
    int rank = 0;
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m && M[i][m].n) return -1;
      else if (piv < m)</pre>
        ++rank, sol[piv] = M[i][m] / M[i][piv];
    return rank;
  }
};
```

6.6 Pollard Rho*

```
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n % 2 == 0)
    return PollardRho(n / 2), ++cnt[2], void();
  11 \times 2, y = 2, d = 1, p = 1;
#define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
      PollardRho(n / d);
      PollardRho(d);
      return;
    if (d == n) ++p;
    x = f(x, n, p);
    y = f(f(y, n, p), n, p);
    d = \_gcd(abs(x - y), n);
  }
}
```

6.7 Simplex Algorithm

```
const int MAXN = 111;
  const int MAXM = 111;
  const double eps = 1E-10;
 double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
  double x[MAXM];
 int ix[MAXN + MAXM]; // !!! array all indexed from 0
 // max{cx} subject to {Ax<=b,x>=0}
 // n: constraints, m: vars !!!
 \label{eq:continuous} \parbox{$<$} \parbox{$<$} \parbox{$<$$} \parbox{
 // usage :
 // value = simplex(a, b, c, N, M);
 double simplex(double a[MAXN][MAXM], double b[MAXN],
      double c[MAXM], int n, int m) {
      ++m;
      int r = n, s = m - 1;
      memset(d, 0, sizeof(d));
      for (int i = 0; i < n + m; ++i) ix[i] = i;</pre>
      for (int i = 0; i < n; ++i) {</pre>
           for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];</pre>
           d[i][m - 1] = 1;
           d[i][m] = b[i];
           if (d[r][m] > d[i][m]) r = i;
      for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];</pre>
      d[n + 1][m - 1] = -1;
      for (double dd;;) {
           if (r < n) {
               int t = ix[s];
               ix[s] = ix[r + m];
               ix[r + m] = t;
                d[r][s] = 1.0 / d[r][s];
               for (int j = 0; j <= m; ++j)</pre>
                   if (j != s) d[r][j] *= -d[r][s];
                for (int i = 0; i <= n + 1; ++i)</pre>
                    if (i != r) {
                         for (int j = 0; j <= m; ++j)</pre>
                            if (j != s) d[i][j] += d[r][j] * d[i][s];
                         d[i][s] *= d[r][s];
                    }
          }
          r = -1:
           s = -1;
          for (int j = 0; j < m; ++j)
  if (s < 0 || ix[s] > ix[j]) {
                    if (d[n + 1][j] > eps ||
                         (d[n + 1][j] > -eps && d[n][j] > eps))
                         s = j;
           if (s < 0) break;</pre>
           for (int i = 0; i < n; ++i)</pre>
               if (d[i][s] < -eps) {</pre>
                    if (r < 0 ||
                         (dd = d[r][m] / d[r][s] -
                                 d[i][m] / d[i][s]) < -eps ||
                         (dd < eps && ix[r + m] > ix[i + m]))
                         r = i:
           if (r < 0) return -1; // not bounded</pre>
      if (d[n + 1][m] < -eps) return -1; // not executable</pre>
      double ans = 0;
      for (int i = 0; i < m; i++) x[i] = 0;</pre>
      for (int i = m; i < n + m;</pre>
                  ++i) { // the missing enumerated x[i] = 0
          if (ix[i] < m - 1) {
  ans += d[i - m][m] * c[ix[i]];</pre>
               x[ix[i]] = d[i - m][m];
      return ans:
}
```

6.7.1 Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq 0$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$ holds.

```
1. In case of minimization, let c_i' = -c_i
2. \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq -b_j
3. \sum_{1 \leq i \leq n} A_{ji} x_i = b_j
4. If x_i has no lower bound, replace x_i with x_i - x_i'
```

6.8 Schreier-Sims Algorithm*

```
namespace schreier {
int n;
vector<vector<int>>> bkts, binv;
vector<vector<int>> lk;
vector<int> operator*(
  const vector<int> &a, const vector<int> &b) {
  vector<int> res(SZ(a));
  for (int i = 0; i < SZ(a); ++i) res[i] = b[a[i]];</pre>
vector<int> inv(const vector<int> &a) {
  vector<int> res(SZ(a));
  for (int i = 0; i < SZ(a); ++i) res[a[i]] = i;</pre>
 return res;
int filter(const vector<int> &g, bool add = true) {
 n = SZ(bkts);
  vector<int> p = g;
  for (int i = 0; i < n; ++i) {</pre>
    assert(p[i] >= 0 && p[i] < SZ(lk[i]));
    if (lk[i][p[i]] == -1) {
      if (add) {
        bkts[i].pb(p);
        binv[i].pb(inv(p));
        lk[i][p[i]] = SZ(bkts[i]) - 1;
      return i;
    }
   p = p * binv[i][lk[i][p[i]]];
  return -1;
bool inside(const vector<int> &g) {
  return filter(g, false) == -1;
void solve(const vector<vector<int>> &gen, int n) {
 n = _n;
  bkts.clear(), bkts.resize(n);
  binv.clear(), binv.resize(n);
  lk.clear(), lk.resize(n);
  vector<int> iden(n);
  iota(iden.begin(), iden.end(), 0);
  for (int i = 0; i < n; ++i) {</pre>
    lk[i].resize(n, -1);
    bkts[i].pb(iden);
    binv[i].pb(iden);
    lk[i][i] = 0;
  for (int i = 0; i < SZ(gen); ++i) filter(gen[i]);</pre>
  queue<pair<pii, pii>> upd;
  for (int i = 0; i < n; ++i)
    for (int j = i; j < n; ++j)</pre>
      for (int k = 0; k < SZ(bkts[i]); ++k)</pre>
        for (int 1 = 0; 1 < SZ(bkts[j]); ++1)</pre>
          upd.emplace(pii(i, k), pii(j, l));
  while (!upd.empty()) {
    auto a = upd.front().X;
    auto b = upd.front().Y;
    upd.pop();
    int res = filter(bkts[a.X][a.Y] * bkts[b.X][b.Y]);
    if (res == -1) continue;
    pii pr = pii(res, SZ(bkts[res]) - 1);
    for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < SZ(bkts[i]); ++j) {</pre>
        if (i <= res) upd.emplace(pii(i, j), pr);</pre>
        if (res <= i) upd.emplace(pr, pii(i, j));</pre>
 }
long long size() {
 long long res = 1;
```

```
for (int i = 0; i < n; ++i) res = res * SZ(bkts[i]);
  return res;
}
} // namespace schreier</pre>
```

6.9 chineseRemainder

```
LL solve(LL x1, LL m1, LL x2, LL m2) {
   LL g = __gcd(m1, m2);
   if ((x2 - x1) % g) return -1; // no sol
   m1 /= g;
   m2 /= g;
   pair<LL, LL> p = gcd(m1, m2);
   LL lcm = m1 * m2 * g;
   LL res = p.first * (x2 - x1) * m1 + x1;
   return (res % lcm + lcm) % lcm;
}
```

6.10 QuadraticResidue*

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1;) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
if ((r & 1) && ((m + 2) & 4)) s = -s;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  }
  return s;
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
    b = rand() % p;
d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 +
               1LL * d * (1LL * g1 * f1 % p)) %
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp =
      (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) %
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return g0;
```

6.11 PiCount

```
int64_t PrimeCount(int64_t n) {
   if (n <= 1) return 0;
   const int v = sqrt(n);
   vector<int> smalls(v + 1);
   for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;
   int s = (v + 1) / 2;
   vector<int> roughs(s);
   for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;
   vector<int64_t> larges(s);
   for (int i = 0; i < s; ++i)
        larges[i] = (n / (2 * i + 1) + 1) / 2;</pre>
```

```
vector<bool> skip(v + 1);
int pc = 0;
for (int p = 3; p <= v; ++p) {</pre>
 if (smalls[p] > smalls[p - 1]) {
  int q = p * p;
    pc++;
    if (1LL * q * q > n) break;
    skip[p] = true;
    for (int i = q; i <= v; i += 2 * p)</pre>
      skip[i] = true;
    for (int k = 0; k < s; ++k) {
      int i = roughs[k];
      if (skip[i]) continue;
      int64_t d = 1LL * i * p;
      larges[ns] = larges[k] -
        (d <= v ? larges[smalls[d] - pc]</pre>
                 : smalls[n / d]) +
      roughs[ns++] = i;
    }
    for (int j = v / p; j >= p; --j) {
      int c = smalls[j] - pc;
      for (int i = j * p, e = min(i + p, v + 1);
           i < e; ++i)
        smalls[i] -= c;
    }
 }
for (int k = 1; k < s; ++k) {
  const int64_t m = n / roughs[k];
  int64_t = larges[k] - (pc + k - 1);
  for (int 1 = 1; 1 < k; ++1) {
    int p = roughs[1];
    if (1LL * p * p > m) break;
    s -= smalls[m / p] - (pc + l - 1);
  larges[0] -= s;
return larges[0];
```

6.12 Primes

```
/* 12721 13331 14341 75577 123457 222557 556679 999983

* 1097774749 1076767633 100102021 999997771 1001010013

* 1000512343 987654361 999991231 999888733 98789101

* 987777733 999991921 1010101333 1010102101

* 100000000039 100000000000037 2305843009213693951

* 4611686018427387847 9223372036854775783

* 18446744073709551557 */
```

6.13 Theorem

6.13.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|$.

6.13.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

6.13.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of *labeled* forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

6.13.4 Erdős-Gallai theorem

A sequence of nonnegative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + \cdots + d_n$ is even and $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$ holds for every $1 \leq k \leq n$.

6.13.5 Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1 \ge \cdots \ge a_n$ and b_1, \ldots, b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \le \sum_{i=1}^n \min(b_i, k)$ holds for every $1 \le k \le n$.

6.13.6 Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1\geq\cdots\geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i\leq\sum_{i=1}^k \min(b_i,k-1)+\sum_{i=k+1}^n \min(b_i,k)$ holds for every $1\leq k\leq n$.

6.14 Euclidean Algorithms

- $m = \lfloor \frac{an+b}{c} \rfloor$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ +f(a \mod c, b \mod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c-b-1, a, m-1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \bmod c, b \bmod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \end{cases} \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ &+ \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ &+ h(a \bmod c, b \bmod c, c, n) \\ &+ 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ &+ 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c-b-1, a, m-1) \\ &- 2f(c, c-b-1, a, m-1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.15 General Purpose Numbers

6.15.1 Bernoulli numbers

$$\begin{split} B_0 &-1, B_1^{\pm} = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0 \\ &\sum_{j=0}^m {m+1 \choose j} B_j = 0 \text{, EGF is } B(x) = \frac{x}{e^x - 1} = \sum_{n=0}^\infty B_n \frac{x^n}{n!} \text{.} \\ S_m(n) &= \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k^+ n^{m+1-k} \end{split}$$

6.15.2 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

7 Polynomial

7.1 Fast Fourier Transform

```
template <int MAXN> struct FFT {
   using val_t = complex <double >;
   const double PI = acos(-1);
   val_t w[MAXN];
   FFT() {
      for (int i = 0; i < MAXN; ++i) {
           double arg = 2 * PI * i / MAXN;
           w[i] = val_t(cos(arg), sin(arg));
      }
   }
   void bitrev(val_t *a, int n); // see NTT
   void trans(
      val_t *a, int n, bool inv = false); // see NTT;
   // remember to replace LL with val_t
};</pre>
```

7.2 Number Theory Transform*

```
//(2^16)+1, 65537, 3
// 7*17*(2^23)+1, 998244353, 3
// 1255*(2^20)+1, 1315962881, 3
// 51*(2^25)+1, 1711276033, 29
template <int MAXN, 11 P, 11 RT> // MAXN must be 2^k
struct NTT {
  11 w[MAXN];
  11 mpow(11 a, 11 n);
  11 minv(ll a) { return mpow(a, P - 2); }
  NTT() {
     ll dw = mpow(RT, (P - 1) / MAXN);
     w[0] = 1;
     for (int i = 1; i < MAXN; ++i)</pre>
      w[i] = w[i - 1] * dw % P;
  void bitrev(ll *a, int n) {
    int i = 0;
     for (int j = 1; j < n - 1; ++j) {
       for (int k = n >> 1; (i ^= k) < k; k >>= 1)
       if (j < i) swap(a[i], a[j]);</pre>
    }
  }
   void operator()(
    ll *a, int n, bool inv = false) { // 0 <= a[i] < P
     bitrev(a, n);
     for (int L = 2; L <= n; L <<= 1) {
       int dx = MAXN / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
         for (int j = i, x = 0; j < i + d1;
              ++j, x += dx) {
           ll tmp = a[j + dl] * w[x] % P;
           if ((a[j + d1] = a[j] - tmp) < 0)
             a[j + dl] += P;
           if ((a[j] += tmp) >= P) a[j] -= P;
         }
      }
     if (inv) {
       reverse(a + 1, a + n);
       11 invn = minv(n);
       for (int i = 0; i < n; ++i)
a[i] = a[i] * invn % P;</pre>
  }
};
```

7.3 Fast Walsh Transform*

```
/* x: a[j], y: a[j + (L >> 1)]

or: (y += x * op), and: (x += y * op)

xor: (x, y = (x + y) * op, (x - y) * op)

invop: or, and, xor = -1, -1, 1/2 */

void fwt(int *a, int n, int op) { // or
```

```
for (int L = 2; L <= n; L <<= 1)
    for (int i = 0; i < n; i += L)</pre>
       for (int j = i; j < i + (L >> 1); ++j)
         a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N],
  ct[1 << N];
void subset_convolution(
  int *a, int *b, int *c, int L) {
  // c_k = \sum_{i=0}^{n} \{i \mid j = k, i \& j = 0\} a_i * b_j
  int n = 1 << L;
  for (int i = 1; i < n; ++i)</pre>
    ct[i] = ct[i & (i - 1)] + 1;
  for (int i = 0; i < n; ++i)</pre>
    f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
  for (int i = 0; i <= L; ++i)</pre>
    fwt(f[i], n, 1), fwt(g[i], n, 1);
  for (int i = 0; i <= L; ++i)</pre>
    for (int j = 0; j <= i; ++j)</pre>
       for (int x = 0; x < n; ++x)
h[i][x] += f[j][x] * g[i - j][x];</pre>
  for (int i = 0; i <= L; ++i) fwt(h[i], n, -1);</pre>
  for (int i = 0; i < n; ++i) c[i] = h[ct[i]][i];</pre>
```

7.4 Polynomial Operation

```
#define fi(s, n)
  for (int i = (int)(s); i < (int)(n); ++i)</pre>
template <int MAXN, LL P, LL RT> // MAXN = 2^k
struct Poly : vector<LL> { // coefficients in [0, P)
  using vector<LL>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
  Poly(const Poly &p, int _n) : vector<LL>(_n) {
    copy_n(p.data(), min(p.n(), _n), data());
  Poly &irev() {
    return reverse(data(), data() + n()), *this;
  Poly &isz(int _n) { return resize(_n), *this; }
  Poly &iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P)(
      *this)[i] -= P;
    return *this;
  Poly &imul(LL k) {
    fi(0, n())(*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    int _n = 1;
    while (_n < n() + rhs.n() - 1) _n <<= 1;</pre>
    Poly X(*this, _n), Y(rhs, _n);
    ntt(X.data(), _n), ntt(Y.data(),
    fi(0, _n) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), _n, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0
    if (n() == 1) return {ntt.minv((*this)[0])};
    int _n = 1;
    while (_n < n() * 2) _n <<= 1;</pre>
    Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(_n);
    Poly Y(*this, _n);
    ntt(Xi.data(), _n), ntt(Y.data(), _n);
    if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    ntt(Xi.data(), _n, true);
    return Xi.isz(n());
  Poly Sqrt() const { // Jacobi((*this)[0], P) = 1
    if (n() == 1)
     return {QuadraticResidue((*this)[0], P)};
      Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
    return X.iadd(Mul(X.Inv()).isz(n()))
```

```
.imul(P / 2 + 1):
pair<Poly, Poly> DivMod(
  const Poly &rhs) const { // (rhs.)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int _n = n() - rhs.n() + 1;
  Poly X(rhs);
  X.irev().isz(_n);
  Poly Y(*this);
  Y.irev().isz(_n);
  Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
  return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
 Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] =
    (i + 1) * (*this)[i + 1] % P;
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] =
   ntt.minv(i + 1) * (*this)[i] % P;
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<LL> _eval(const vector<LL> &x,
  const vector<Poly> &up) const {
  const int _n = (int)x.size();
  if (!_n) return {};
  vector<Poly> down(_n * 2);
  down[1] = DivMod(up[1]).second;
  fi(2, _n * 2) down[i] =
    down[i / 2].DivMod(up[i]).second;
  /* down[1] =
 Poly(up[1]).irev().isz(n()).Inv().irev()._tmul(_n, *this); fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() - 1, down[i / 2]); */
  vector<LL> y(_n);
  fi(0, _n) y[i] = down[_n + i][0];
  return y;
static vector<Poly> _tree1(const vector<LL> &x) {
  const int _n = (int)x.size();
  vector<Poly> up(_n * 2);
  fi(0, _n) up[_n + i] = {(x[i] ? P - x[i] : 0), 1};
  for (int i = _n - 1; i > 0; --i)
    up[i] = up[i * 2].Mul(up[i * 2 + 1]);
}
vector<LL> Eval(const vector<LL> &x) const {
  auto up = _tree1(x);
  return _eval(x, up);
static Poly Interpolate(
  const vector<LL> &x, const vector<LL> &y) {
  const int _n = (int)x.size();
  vector<Poly> up = _tree1(x), down(_n * 2);
  vector<LL> z = up[1].Dx()._eval(x, up);
  fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
  fi(0, _n) down[_n + i] = {z[i]};
  for (int i = _n - 1; i > 0; --i)
    down[i] =
      down[i * 2]
        .Mul(up[i * 2 + 1])
        .iadd(down[i * 2 + 1].Mul(up[i * 2]));
  return down[1];
Poly Ln() const { // (*this)[0] == 1
  return Dx().Mul(Inv()).Sx().isz(n());
Poly Exp() const { // (*this)[0] == 0
  if (n() == 1) return {1};
  Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
  Poly Y = X.Ln();
  Y[0] = P - 1;
  fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0)
```

```
Y[i] += P;
    return X.Mul(Y).isz(n());
  Poly Pow(const string &K) const {
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    LL nk = 0, nk2 = 0;
    for (char c : K) {
      nk = (nk * 10 + c - '0') % P;
      nk2 = nk2 * 10 + c - '0';
      if (nk2 * nz >= n()) return Poly(n());
      nk2 %= P - 1;
    if (!nk && !nk2) return Poly(Poly{1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * nk2);
    LL x0 = X[0];
    return X.imul(ntt.minv(x0))
      .Ln()
      .imul(nk)
      .Exp()
      .imul(ntt.mpow(x0, nk2))
      .irev()
      .isz(n())
      .irev();
  static LL LinearRecursion(const vector<LL> &a,
    const vector<LL> &coef,
    LL n) { // a_n = \sum_{j=1}^{n} a_{j}(n-j)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly{1}, k), M = {0, 1};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    LL ret = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
 }
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template <> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

7.5 Newton's Method

Given F(x) where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0$ (mod x^{2^k}), then

$$Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code

```
typedef pair<double, double> pdd;
typedef pair<pdd, pdd> Line;
struct Cir {
  pdd O;
    double R;
};
const double eps = 1e-8;
pdd operator+(const pdd &a, const pdd &b) {
    return pdd(a.X + b.X, a.Y + b.Y);
}
pdd operator-(const pdd &a, const pdd &b) {
    return pdd(a.X - b.X, a.Y - b.Y);
}
pdd operator*(const pdd &a, const double &b) {
```

```
return pdd(a.X * b, a.Y * b);
pdd operator/(const pdd &a, const double &b) {
 return pdd(a.X / b, a.Y / b);
double dot(const pdd &a, const pdd &b) {
 return a.X * b.X + a.Y * b.Y;
double cross(const pdd &a, const pdd &b) {
 return a.X * b.Y - a.Y * b.X;
double abs2(const pdd &a) { return dot(a, a); }
double abs(const pdd &a) { return sqrt(dot(a, a)); }
int sign(const double &a) {
 return fabs(a) < eps ? 0 : a > 0 ? 1 : -1;
int ori(const pdd &a, const pdd &b, const pdd &c) {
 return sign(cross(b - a, c - a));
bool collinearity(
 const pdd &p1, const pdd &p2, const pdd &p3) {
  return fabs(cross(p1 - p3, p2 - p3)) < eps;</pre>
bool btw(const pdd &p1, const pdd &p2, const pdd &p3) {
 if (!collinearity(p1, p2, p3)) return 0;
  return dot(p1 - p3, p2 - p3) < eps;</pre>
bool seg_intersect(const pdd &p1, const pdd &p2,
  const pdd &p3, const pdd &p4) {
  int a123 = ori(p1, p2, p3);
 int a124 = ori(p1, p2, p4);
 int a341 = ori(p3, p4, p1);
 int a342 = ori(p3, p4, p2);
 if (a123 == 0 && a124 == 0)
    return btw(p1, p2, p3) || btw(p1, p2, p4) ||
     btw(p3, p4, p1) || btw(p3, p4, p2);
 return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(const pdd &p1, const pdd &p2,
  const pdd &p3, const pdd &p4) {
 double a123 = cross(p2 - p1, p3 - p1);
  double a124 = cross(p2 - p1, p4 - p1);
 return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(const pdd &p1) { return pdd(-p1.Y, p1.X); }
pdd foot(const pdd &p1, const pdd &p2, const pdd &p3) {
 return intersect(p1, p2, p3, p3 + perp(p2 - p1));
```

8.2 Convex hull*

8.3 External bisector

```
pdd external_bisector(pdd p1, pdd p2, pdd p3) { // 213
   pdd L1 = p2 - p1, L2 = p3 - p1;
   L2 = L2 * abs(L1) / abs(L2);
   return L1 + L2;
}
```

8.4 Heart

```
pdd excenter(pdd p0, pdd p1, pdd p2, double &radius) {
  p1 = p1 - p0, p2 = p2 - p0;
  double x1 = p1.X, y1 = p1.Y, x2 = p2.X, y2 = p2.Y;
  double m = 2. * (x1 * y2 - y1 * x2);
  center.X = (x1 * x1 * y2 - x2 * x2 * y1 +
              y1 * y2 * (y1 - y2)) /
  center.Y = (x1 * x2 * (x2 - x1) - y1 * y1 * x2 +
              x1 * y2 * y2) /
   m;
  return radius = abs(center), center + p0;
pdd incenter(pdd p1, pdd p2, pdd p3, double &radius) {
  double a = abs(p2 - p1), b = abs(p3 - p1),
        c = abs(p3 - p2);
 pdd L1 = external_bisector(p1, p2, p3),
     L2 = external_bisector(p2, p1, p3);
  return radius = area / s,
        intersect(p1, p1 + L1, p2, p2 + L2),
pdd escenter(pdd p1, pdd p2, pdd p3) { // 213
  pdd L1 = external_bisector(p1, p2, p3),
     L2 = external_bisector(p2, p2 + p2 - p1, p3);
  return intersect(p1, p1 + L1, p2, p2 + L2);
pdd barycenter(pdd p1, pdd p2, pdd p3) {
  return (p1 + p2 + p3) / 3;
pdd orthocenter(pdd p1, pdd p2, pdd p3) {
 pdd L1 = p3 - p2, L2 = p3 - p1;
  swap(L1.X, L1.Y), L1.X *= -1;
  swap(L2, X, L2.Y), L2.X *= -1;
  return intersect(p1, p1 + L1, p2, p2 + L2);
```

8.5 Minimum Enclosing Circle*

```
pdd Minimum_Enclosing_Circle(
  vector<pdd> dots, double &r) {
  pdd cent;
  random shuffle(ALL(dots));
  cent = dots[0], r = 0;
  for (int i = 1; i < SZ(dots); ++i)</pre>
    if (abs(dots[i] - cent) > r) {
      cent = dots[i], r = 0;
      for (int j = 0; j < i; ++j)</pre>
        if (abs(dots[j] - cent) > r) {
           cent = (dots[i] + dots[j]) / 2;
          r = abs(dots[i] - cent);
          for (int k = 0; k < j; ++k)
            if (abs(dots[k] - cent) > r)
               cent =
                 excenter(dots[i], dots[j], dots[k], r);
        }
  return cent;
}
```

8.6 Polar Angle Sort*

```
pdd center; // sort base
int Quadrant(pdd a) {
   if (a.X > 0 && a.Y >= 0) return 1;
   if (a.X <= 0 && a.Y >= 0) return 2;
   if (a.X < 0 && a.Y <= 0) return 3;
   if (a.X >= 0 && a.Y <= 0) return 4;
}
bool cmp(pll a, pll b) {
   a = a - center, b = b - center;
   if (Quadrant(a) != Quadrant(b))
      return Quadrant(a) < Quadrant(b);
   if (cross(b, a) == 0) return abs2(a) < abs2(b);</pre>
```

```
return cross(a, b) > 0;
}
bool cmp(pdd a, pdd b) {
    a = a - center, b = b - center;
    if (fabs(atan2(a.Y, a.X) - atan2(b.Y, b.X)) > eps)
        return atan2(a.Y, a.X) < atan2(b.Y, b.X);
    return abs(a) < abs(b);
}</pre>
```

8.7 Intersection of two circles*

8.8 Intersection of polygon and circle

```
// Divides into multiple triangle, and sum up
// test by HDU2892
const double PI = acos(-1);
double _area(pdd pa, pdd pb, double r) {
 if (abs(pa) < abs(pb)) swap(pa, pb);</pre>
  if (abs(pb) < eps) return 0;</pre>
  double S, h, theta;
  double a = abs(pb), b = abs(pa), c = abs(pb - pa);
  double cosB = dot(pb, pb - pa) / a / c,
        B = acos(cosB);
  double cosC = dot(pa, pb) / a / b, C = acos(cosC);
 if (a > r) {
   S = (C / 2) * r * r;
   h = a * b * sin(C) / c;
    if (h < r && B < PI / 2)
      S -= (acos(h / r) * r * r -
        h * sqrt(r * r - h * h));
 } else if (b > r) {
    theta = PI - B - asin(sin(B) / r * a);
    S = .5 * a * r * sin(theta) +
      (C - theta) / 2 * r * r;
  } else S = .5 * sin(C) * a * b;
  return S:
double area_poly_circle(const vector<pdd> poly,
  const pdd &0, const double r) {
  double S = 0;
  for (int i = 0; i < SZ(poly); ++i)</pre>
    S += _area(poly[i] - 0,
           poly[(i + 1) % SZ(poly)] - 0, r) *
      ori(0, poly[i], poly[(i + 1) % SZ(poly)]);
  return fabs(S);
```

8.9 Intersection of line and circle

```
vector<pdd> line_interCircle(const pdd &p1,
  const pdd &p2, const pdd &c, const double r) {
  pdd ft = foot(p1, p2, c), vec = p2 - p1;
  double dis = abs(c - ft);
  if (fabs(dis - r) < eps) return vector<pdd>{ft};
  if (dis > r) return {};
  vec = vec * sqrt(r * r - dis * dis) / abs(vec);
  return vector<pdd>{ft + vec, ft - vec};
}
```

}

8.10 point in circle

```
// return p4 is strictly in circumcircle of
// tri(p1,p2,p3)
long long sqr(long long x) { return x * x; }
bool in_cc(const pll &p1, const pll &p2, const pll &p3,
  const pll &p4) {
  long long u11 = p1.X - p4.X;
  long long u12 = p1.Y - p4.Y;
  long long u21 = p2.X - p4.X;
  long long u22 = p2.Y - p4.Y;
  long long u31 = p3.X - p4.X;
  long long u32 = p3.Y - p4.Y;
  long long u13 =
    sqr(p1.X) - sqr(p4.X) + sqr(p1.Y) - sqr(p4.Y);
  long long u23 =
    sqr(p2.X) - sqr(p4.X) + sqr(p2.Y) - sqr(p4.Y);
  long long u33 =
    sqr(p3.X) - sqr(p4.X) + sqr(p3.Y) - sqr(p4.Y);
  __int128 det = (__int128)-u13 * u22 * u31 + (__int128)u12 * u23 * u31 +
    (__int128)u13 * u21 * u32 -
    (__int128)u11 * u23 * u32 -
       -
int128)u12 * u21 * u33 +
     (__int128)u11 * u22 * u33;
  return det > eps;
}
```

8.11 Half plane intersection

```
bool isin(Line 10, Line 11, Line 12) {
  // Check inter(l1, l2) in l0
  pdd p = intersect(11.X, 11.Y, 12.X, 12.Y);
  return cross(10.Y - 10.X, p - 10.X) > eps;
/* If no solution, check: 1. ret.size() < 3</pre>
* Or more precisely, 2. interPnt(ret[0], ret[1])
 * in all the lines. (use (l.Y - l.X) ^ (p - l.X) > 0
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> lines) {
  int sz = lines.size();
  vector<double> ata(sz), ord(sz);
  for (int i = 0; i < sz; ++i) {</pre>
    ord[i] = i;
    pdd d = lines[i].Y - lines[i].X;
    ata[i] = atan2(d.Y, d.X);
  sort(ord.begin(), ord.end(), [&](int i, int j) {
  if (fabs(ata[i] - ata[j]) < eps)</pre>
      return (cross(lines[i].Y - lines[i].X,
                lines[j].Y - lines[i].X)) < 0;
    return ata[i] < ata[j];</pre>
  });
  vector<Line> fin;
  for (int i = 0; i < sz; ++i)</pre>
    if (!i ||
      fabs(ata[ord[i]] - ata[ord[i - 1]]) > eps)
      fin.pb(lines[ord[i]]);
  deque<Line> dq;
  for (int i = 0; i < SZ(fin); i++) {</pre>
    while (SZ(dq) >= 2 \&\&
      !isin(fin[i], dq[SZ(dq) - 2], dq.back()))
      dq.pop_back();
    while (SZ(dq) >= 2 \&\& !isin(fin[i], dq[0], dq[1]))
      dq.pop_front();
    dq.push_back(fin[i]);
  while (SZ(dq) >= 3 \&\&
    !isin(dq[0], dq[SZ(dq) - 2], dq.back()))
    dq.pop_back();
  while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  vector<Line> res(ALL(dq));
  return res;
```

8.12 CircleCover*

```
const int N = 1021;
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  double Area[N];
  void init(int _C) { C = _C; }
  struct Teve {
    pdd p;
    double ang;
    int add;
    Teve() {}
    Teve(pdd _a, double _b, int _c)
      : p(_a), ang(_b), add(_c) {}
    bool operator<(const Teve &a) const {</pre>
      return ang < a.ang;</pre>
  } eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct(Cir &a, Cir &b, int x) {
    return sign(abs(a.0 - b.0) - a.R - b.R) > x;
  bool contain(Cir &a, Cir &b, int x) {
    return sign(a.R - b.R - abs(a.0 - b.0)) > x;
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. *,
    return (sign(c[i].R - c[j].R) > 0 ||
              (sign(c[i].R - c[j].R) == 0 \&\& i < j)) \&\&
       contain(c[i], c[j], -1);
  void solve() {
    fill_n(Area, C + 2, 0);
    for (int i = 0; i < C; ++i)</pre>
      for (int j = 0; j < C; ++j)
        overlap[i][j] = contain(i, j);
    for (int i = 0; i < C; ++i)</pre>
       for (int j = 0; j < C; ++j)</pre>
         g[i][j] = !(overlap[i][j] || overlap[j][i] ||
           disjuct(c[i], c[j], -1));
    for (int i = 0; i < C; ++i) {</pre>
      int E = 0, cnt = 1;
       for (int j = 0; j < C; ++j)</pre>
         if (j != i && overlap[j][i]) ++cnt;
       for (int j = 0; j < C; ++j)</pre>
         if (i != j && g[i][j]) {
           pdd aa, bb;
           CCinter(c[i], c[j], aa, bb);
           double A =
             atan2(aa.Y - c[i].O.Y, aa.X - c[i].O.X);
           double B =
             atan2(bb.Y - c[i].O.Y, bb.X - c[i].O.X);
           eve[E++] = Teve(bb, B, 1),
           eve[E++] = Teve(aa, A, -1);
           if (B > A) ++cnt;
      if (E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else {
         sort(eve, eve + E);
         eve[E] = eve[0];
         for (int j = 0; j < E; ++j) {</pre>
           cnt += eve[j].add;
           Area[cnt] +=
             cross(eve[j].p, eve[j + 1].p) * .5;
           double theta = eve[j + 1].ang - eve[j].ang;
           if (theta < 0) theta += 2. * pi;</pre>
           Area[cnt] += (theta - sin(theta)) * c[i].R *
             c[i].R * .5;
        }
      }
    }
  }
};
```

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0)
    : x(_x), y(_y), z(_z) {}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2) {
  return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);
Point cross(const Point &p1, const Point &p2) {
  return Point(p1.y * p2.z - p1.z * p2.y,
    p1.z * p2.x - p1.x * p2.z,
    p1.x * p2.y - p1.y * p2.x);
double dot(const Point &p1, const Point &p2) {
  return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z;
double abs(const Point &a) { return sqrt(dot(a, a)); }
Point cross3(
  const Point &a, const Point &b, const Point &c) {
  return cross(b - a, c - a);
double area(Point a, Point b, Point c) {
  return abs(cross3(a, b, c));
double volume(Point a, Point b, Point c, Point d) {
  return dot(cross3(a, b, c), d - a);
pdd proj(Point a, Point b, Point c, Point u) {
  // proj. u to the plane of a, b, and c
  Point e1 = b - a;
  Point e2 = c - a;
  e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
  e2 = e2 / abs(e2);
  Point p = u - a;
  return pdd(dot(p, e1), dot(p, e2));
}
```

8.14 Convexhull3D*

```
struct CH3D {
  struct face {
    int a, b, c;
    bool ok;
  } F[8 * N];
  double dblcmp(Point &p, face &f) {
    return dot(
      cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a]);
  int g[N][N], num, n;
  Point P[N];
  void deal(int p, int a, int b) {
    int f = g[a][b];
    face add;
    if (F[f].ok) {
      if (dblcmp(P[p], F[f]) > eps) dfs(p, f);
      else
        add.a = b, add.b = a, add.c = p, add.ok = 1,
        g[p][b] = g[a][p] = g[b][a] = num,
        F[num++] = add;
    }
  }
  void dfs(int p, int now) {
    F[now].ok = 0;
    deal(p, F[now].b, F[now].a),
      deal(p, F[now].c, F[now].b)
      deal(p, F[now].a, F[now].c);
  bool same(int s, int t) {
    Point &a = P[F[s].a];
    Point &b = P[F[s].b];
    Point &c = P[F[s].c];
    return fabs(volume(a, b, c, P[F[t].a])) < eps &&</pre>
      fabs(volume(a, b, c, P[F[t].b])) < eps &&
      fabs(volume(a, b, c, P[F[t].c])) < eps;</pre>
  void init(int _n) { n = _n, num = 0; }
  void solve() {
    face add;
```

```
num = 0;
  if (n < 4) return;</pre>
  if ([&]() {
        for (int i = 1; i < n; ++i)
  if (abs(P[0] - P[i]) > eps)
            return swap(P[1], P[i]), 0;
        return 1;
      }() ||
    [&]() {
      for (int i = 2; i < n; ++i)</pre>
        if (abs(cross3(P[i], P[0], P[1])) > eps)
          return swap(P[2], P[i]), 0;
      return 1;
    }() ||
    [&]() {
      for (int i = 3; i < n; ++i)</pre>
        if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]),
               P[0] - P[i])) > eps)
          return swap(P[3], P[i]), 0;
      return 1;
    }())
    return;
  for (int i = 0; i < 4; ++i) {</pre>
    add.a = (i + 1) % 4, add.b = (i + 2) % 4,
    add.c = (i + 3) % 4, add.ok = true;
    if (dblcmp(P[i], add) > 0) swap(add.b, add.c);
    g[add.a][add.b] = g[add.b][add.c] =
      g[add.c][add.a] = num;
    F[num++] = add;
  for (int i = 4; i < n; ++i)</pre>
    for (int j = 0; j < num; ++j)
      if (F[j].ok \&\& dblcmp(P[i], F[j]) > eps) {
        dfs(i, j);
        break;
  for (int tmp = num, i = (num = 0); i < tmp; ++i)
    if (F[i].ok) F[num++] = F[i];
double get_area() {
  double res = 0.0;
  if (n == 3)
    return abs(cross3(P[0], P[1], P[2])) / 2.0;
  for (int i = 0; i < num; ++i)</pre>
    res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
  return res / 2.0;
double get_volume() {
  double res = 0.0;
  for (int i = 0; i < num; ++i)</pre>
    res += volume(Point(0, 0, 0), P[F[i].a],
      P[F[i].b], P[F[i].c]);
  return fabs(res / 6.0);
int triangle() { return num; }
int polygon() {
 int res = 0;
  for (int i = 0, flag = 1; i < num;</pre>
       ++i, res += flag, flag = 1)
    for (int j = 0; j < i && flag; ++j)</pre>
      flag &= !same(i, j);
  return res;
Point getcent() {
  Point ans(0, 0, 0), temp = P[F[0].a];
  double v = 0.0, t2;
  for (int i = 0; i < num; ++i)</pre>
    if (F[i].ok == true) {
      Point p1 = P[F[i].a], p2 = P[F[i].b],
            p3 = P[F[i].c];
      t2 = volume(temp, p1, p2, p3) / 6.0;
      if (t2 > 0)
        ans.x += (p1.x + p2.x + p3.x + temp.x) * t2,
          ans.y +=
           (p1.y + p2.y + p3.y + temp.y) * t2,
          ans.z +=
          (p1.z + p2.z + p3.z + temp.z) * t2,
          v += t2:
    }
  ans.x /= (4 * v), ans.y /= (4 * v),
    ans.z /= (4 * v);
  return ans;
```

```
double pointmindis(Point p) {
     double rt = 99999999;
     for (int i = 0; i < num; ++i)</pre>
       if (F[i].ok == true) {
          Point p1 = P[F[i].a], p2 = P[F[i].b],
                 p3 = P[F[i].c];
          double a = (p2.y - p1.y) * (p3.z - p1.z) -
            (p2.z - p1.z) * (p3.y - p1.y);
          double b = (p2.z - p1.z) * (p3.x - p1.x) -
          (p2.x - p1.x) * (p3.z - p1.z);

double c = (p2.x - p1.x) * (p3.y - p1.y) -
            (p2.y - p1.y) * (p3.x - p1.x);
          double d =
            0 - (a * p1.x + b * p1.y + c * p1.z);
          double temp =
            fabs(a * p.x + b * p.y + c * p.z + d) / sqrt(a * a + b * b + c * c);
          rt = min(rt, temp);
       }
     return rt;
   }
};
```

8.15 DelaunayTriangulation*

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
 */
const 11 inf =
  MAXC * MAXC * 100; // Lower_bound unknown
struct Tri;
struct Edge {
  Tri *tri;
  int side;
  Edge() : tri(0), side(0) {}
Edge(Tri *_tri, int _side)
    : tri(_tri), side(_side) {}
};
struct Tri {
  pll p[3];
  Edge edge[3];
  Tri *chd[3];
  Tri() {}
  Tri(const pll &p0, const pll &p1, const pll &p2) {
    p[0] = p0;
    p[1] = p1;
    p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(pll const &q) const {
    for (int i = 0; i < 3; ++i)
      if (ori(p[i], p[(i + 1) % 3], q) < 0) return 0;</pre>
    return 1;
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
  if (a.tri) a.tri->edge[a.side] = b;
  if (b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the_root = // Tri should at least contain all
               // points
      new (tris++) Tri(pll(-inf, -inf),
        pll(inf + inf, -inf), pll(-inf, inf + inf));
```

```
Tri *find(pll p) { return find(the_root, p); }
  void add_point(const pll &p) {
    add_point(find(the_root, p), p);
  Tri *the_root;
  static Tri *find(Tri *root, const pll &p) {
    while (1) {
      if (!root->has_chd()) return root;
      for (int i = 0; i < 3 && root->chd[i]; ++i)
        if (root->chd[i]->contains(p)) {
          root = root->chd[i];
           break;
    }
    assert(0); // "point not found"
  void add_point(Tri *root, pll const &p) {
    Tri *t[3];
    /* split it into three triangles */
    for (int i = 0; i < 3; ++i)</pre>
      t[i] = new (tris++)
        Tri(root->p[i], root->p[(i + 1) % 3], p);
    for (int i = 0; i < 3; ++i)</pre>
      edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
    for (int i = 0; i < 3; ++i) root->chd[i] = t[i];
    for (int i = 0; i < 3; ++i) flip(t[i], 2);</pre>
  void flip(Tri *tri, int pi) {
    Tri *trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
    if (!trj) return;
    if (!in_cc(
           tri->p[0], tri->p[1], tri->p[2], trj->p[pj]))
      return;
     /* flip edge between tri,trj */
    Tri *trk = new (tris++) Tri(
      tri->p[(pi + 1) % 3], trj->p[pj], tri->p[pi]);
    Tri *trl = new (tris++) Tri(
      trj->p[(pj + 1) % 3], tri->p[pi], trj->p[pj]);
    edge(Edge(trk, 0), Edge(trl, 0));
    edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
    edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
    tri->chd[0] = trk;
    tri->chd[1] = trl;
    tri->chd[2] = 0;
    trj->chd[0] = trk;
    trj->chd[1] = trl;
    trj->chd[2] = 0;
    flip(trk, 1);
    flip(trk, 2);
    flip(trl, 1);
    flip(trl, 2);
  }
};
vector<Tri *> triang; // vector of all triangle
set<Tri *> vst;
void go(Tri *now) { // store all tri into triang
  if (vst.find(now) != vst.end()) return;
  vst.insert(now);
  if (!now->has_chd()) return triang.push_back(now);
  for (int i = 0; i < now->num_chd(); ++i)
    go(now->chd[i]);
void build(int n, pll *ps) { // build triangulation
  tris = pool;
  triang.clear();
  vst.clear();
  random_shuffle(ps, ps + n);
  Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i) tri.add_point(ps[i]);</pre>
  go(tri.the_root);
}
```

8.16 Triangulation Vonoroi*

```
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line l) {
  pdd d = 1.Y - 1.X;
  d = perp(d);
  pdd m = (1.X + 1.Y) / 2;
  l = Line(m, m + d);
  if (ori(1.X, 1.Y, p) < 0) 1 = Line(m + d, m);
  return 1:
double calc_area(int id) {
  // use to calculate the area of point "strictly in
  // the convex hull"
  vector<Line> hpi = halfPlaneInter(ls[id]);
  vector<pdd> ps;
  for (int i = 0; i < SZ(hpi); ++i)</pre>
     ps.pb(intersect(hpi[i].X, hpi[i].Y,
       hpi[(i + 1) % SZ(hpi)].X,
       hpi[(i + 1) % SZ(hpi)].Y));
  double rt = 0;
  for (int i = 0; i < SZ(ps); ++i)</pre>
    rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
  return fabs(rt) / 2;
void solve(int n, pii *oarr) {
  map<pll, int> mp;
  for (int i = 0; i < n; ++i)
    arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]] = i;
  build(n, arr); // Triangulation
  for (auto *t : triang) {
     vector<int> p;
     for (int i = 0; i < 3; ++i)
       if (mp.find(t->p[i]) != mp.end())
         p.pb(mp[t->p[i]]);
     for (int i = 0; i < SZ(p); ++i)</pre>
       for (int j = i + 1; j < SZ(p); ++j) {
         Line l(oarr[p[i]], oarr[p[j]]);
         ls[p[i]].pb(make_line(oarr[p[i]], 1));
         ls[p[j]].pb(make_line(oarr[p[j]], 1));
  }
1
```

8.17 Tangent line of two circles

```
vector<Line> go(
  const Cir &c1, const Cir &c2, int sign1) {
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_{sq} = norm2(c1.0 - c2.0);
  if (d_sq < eps) return ret;</pre>
  double d = sqrt(d_sq);
  Pt v = (c2.0 - c1.0) / d;
  double c = (c1.R - sign1 * c2.R) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
    Pt n = \{v.X * c - sign2 * h * v.Y,
      v.Y * c + sign2 * h * v.X};
    Pt p1 = c1.0 + n * c1.R;
    Pt p2 = c2.0 + n * (c2.R * sign1);
    if (fabs(p1.X - p2.X) < eps and</pre>
      fabs(p1.Y - p2.Y) < eps)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.push_back({p1, p2});
  return ret;
```

8.18 minMaxEnclosingRectangle

```
pdd solve(vector<pll> &dots) {
  vector<pll> hull;
  const double INF = 1e18, qi = acos(-1) / 2 * 3;
  cv.dots = dots;
  hull = cv.hull();
  double Max = 0, Min = INF, deg;
  ll n = hull.size();
```

```
hull.pb(hull[0]);
for (int i = 0, u = 1, r = 1, l; i < n; ++i) {</pre>
  pll nw = hull[i + 1] - hull[i];
  while (cross(nw, hull[u + 1] - hull[i]) >
    cross(nw, hull[u] - hull[i]))
    u = (u + 1) \% n;
  while (dot(nw, hull[r + 1] - hull[i]) >
    dot(nw, hull[r] - hull[i]))
  r = (r + 1) \% n;
if (!i) 1 = (r + 1) \% n;
  while (dot(nw, hull[l + 1] - hull[i]) <</pre>
    dot(nw, hull[1] - hull[i]))
    1 = (1 + 1) \% n;
 Min = min(Min,
    (double)(dot(nw, hull[r] - hull[i]) -
      dot(nw, hull[1] - hull[i])) *
      cross(nw, hull[u] - hull[i]) / abs2(nw));
  deg = acos((double)dot(hull[r] - hull[1],
                hull[u] - hull[i]) /
    abs(hull[r] \ - \ hull[l]) \ / \ abs(hull[u] \ - \ hull[i])); \\
  deg = (qi - deg) / 2;
 Max = max(Max)
    (double)abs(hull[r] - hull[l]) *
      abs(hull[u] - hull[i]) * sin(deg) * sin(deg));
return pdd(Min, Max);
```

8.19 minDistOfTwoConvex

```
// p, q is convex
double TwoConvexHullMinDist(
  Point P[], Point Q[], int n, int m) {
  int YMinP = 0, YMaxQ = 0;
  double tmp, ans = 999999999;
  for (i = 0; i < n; ++i)
   if (P[i].y < P[YMinP].y) YMinP = i;</pre>
  for (i = 0; i < m; ++i)
    if (Q[i].y > Q[YMaxQ].y) YMaxQ = i;
  P[n] = P[0], Q[m] = Q[0];
  for (int i = 0; i < n; ++i) {</pre>
    while (tmp = Cross(Q[YMaxQ + 1] - P[YMinP + 1],
                   P[YMinP] - P[YMinP + 1]) >
        Cross(Q[YMaxQ] - P[YMinP + 1],
          P[YMinP] - P[YMinP + 1]))
      YMaxQ = (YMaxQ + 1) % m;
    if (tmp < 0)
      ans = min(ans,
        PointToSegDist(
          P[YMinP], P[YMinP + 1], Q[YMaxQ]));
      ans = min(ans.
        TwoSegMinDist(P[YMinP], P[YMinP + 1], Q[YMaxQ],
          Q[YMaxQ + 1]);
    YMinP = (YMinP + 1) \% n;
  return ans;
```

8.20 Minkowski Sum*

```
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
  hull(A), hull(B);
  vector<pll> C(1, A[0] + B[0]), s1, s2;
  for (int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) % SZ(A)] - A[i]);
  for (int i = 0; i < SZ(B); i++)
    s2.pb(B[(i + 1) % SZ(B)] - B[i]);
  for (int p1 = 0, p2 = 0; p1 < SZ(A) || p2 < SZ(B);)
   if (p2 >= SZ(B) ||
      (p1 < SZ(A) && cross(s1[p1], s2[p2]) >= 0))
      C.pb(C.back() + s1[p1++]);
   else C.pb(C.back() + S2[p2++]);
  return hull(C), C;
}
```

8.21 RotatingSweepLine

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps);
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1) / 2);
  int m = 0:
  for (int i = 0; i < n; ++i)</pre>
    for (int j = i + 1; j < n; ++j)</pre>
      line[m++] = pii(i, j);
  sort(ALL(line),
    [&](const pii &a, const pii &b) -> bool {
      if (ps[a.X].X == ps[a.Y].X) return 0;
      if (ps[b.X].X == ps[b.Y].X) return 1;
      return (double)(ps[a.X].Y - ps[a.Y].Y) /
         (ps[a.X].X - ps[a.Y].X) <
         (double)(ps[b.X].Y - ps[b.Y].Y) /
         (ps[b.X].X - ps[b.Y].X);
    });
  iota(id, id + n, 0);
  sort(ALL(id), [&](const int &a, const int &b) {
    return ps[a] < ps[b];</pre>
  });
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
  for (int i = 0; i < m; ++i) {</pre>
    auto 1 = line[i];
    // meow
    tie(
      pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y]]) =
      make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X);
}
```

9 Else

9.1 Mo's Alogrithm(With modification)

```
struct QUERY { // BLOCK=N^{2/3}}
  int L, R, id, LBid, RBid, T;
  QUERY(int 1, int r, int id, int lb, int rb, int t)
    : L(1), R(r), id(id), LBid(lb), RBid(rb), T(t) {}
  bool operator<(const QUERY &b) const {</pre>
    if (LBid != b.LBid) return LBid < b.LBid;</pre>
    if (RBid != b.RBid) return RBid < b.RBid;</pre>
    return T < b.T;</pre>
  }
};
vector<QUERY> query;
int cur_ans, arr[MAXN], ans[MAXN];
void addTime(int L, int R, int T) {}
void subTime(int L, int R, int T) {}
void add(int x) {}
void sub(int x) {}
void solve() {
  sort(ALL(query));
  int L = 0, R = 0, T = -1;
  for (auto q : query) {
    while (T < q.T) addTime(L, R, ++T);</pre>
    while (T > q.T) subTime(L, R, T--);
    while (R < q.R) add(arr[++R]);</pre>
    while (L > q.L) add(arr[--L]);
    while (R > q.R) sub(arr[R--]);
    while (L < q.L) sub(arr[L++]);</pre>
    ans[q.id] = cur_ans;
}
```

9.2 Mo's Alogrithm On Tree

```
const int MAXN = 40005;
vector<int> G[MAXN]; // 1-base
int n, B, arr[MAXN], ans[100005], cur_ans;
int in[MAXN], out[MAXN], dfn[MAXN * 2], dft;
int deep[MAXN], sp[__lg(MAXN * 2) + 1][MAXN * 2],
  bln[MAXN], spt;
bitset<MAXN> inset;
```

```
struct QUERY {
  int L, R, Lid, id, lca;
  QUERY(int 1, int r, int _id)
    : L(1), R(r), lca(0), id(_id) {}
  bool operator<(const QUERY &b) {</pre>
    if (Lid != b.Lid) return Lid < b.Lid;</pre>
    return R < b.R;</pre>
  }
};
vector<QUERY> query;
void dfs(int u, int f, int d) {
  deep[u] = d, sp[0][spt] = u, bln[u] = spt++;
  dfn[dft] = u, in[u] = dft++;
  for (int v : G[u])
    if (v != f)
      dfs(v, u, d + 1), sp[0][spt] = u, bln[u] = spt++;
  dfn[dft] = u, out[u] = dft++;
int lca(int u, int v) {
  if (bln[u] > bln[v]) swap(u, v);
int t = __lg(bln[v] - bln[u] + 1);
  int a = sp[t][bln[u]],
    b = sp[t][bln[v] - (1 << t) + 1];</pre>
  if (deep[a] < deep[b]) return a;</pre>
  return b:
void sub(int x) {}
void add(int x) {}
void flip(int x) {
  if (inset[x]) sub(arr[x]);
  else add(arr[x]);
  inset[x] = ~inset[x];
void solve() {
    B = sqrt(2 * n), dft = spt = cur_ans = 0,
  dfs(1, 1, 0);
  for (int i = 1, x = 2; x < 2 * n; ++i, x <<= 1)
    for (int j = 0; j + x <= 2 * n; ++j)
       if (deep[sp[i - 1][j]] <</pre>
         deep[sp[i - 1][j + x / 2]])
         sp[i][j] = sp[i - 1][j];
       else sp[i][j] = sp[i - 1][j + x / 2];
  for (auto &q : query) {
    int c = lca(q.L, q.R);
    if (c == q.L || c == q.R)
      q.L = out[c == q.L ? q.R : q.L], q.R = out[c];
    else if (out[q.L] < in[q.R])</pre>
      q.lca = c, q.L = out[q.L], q.R = in[q.R];
    else
      q.lca = c, c = in[q.L], q.L = out[q.R], q.R = c;
    q.Lid = q.L / B;
  }
  sort(ALL(query));
  int L = 0, R = -1;
  for (auto q : query) {
    while (R < q.R) flip(dfn[++R]);</pre>
    while (L > q.L) flip(dfn[--L]);
    while (R > q.R) flip(dfn[R--]);
    while (L < q.L) flip(dfn[L++]);</pre>
    if (q.lca) add(arr[q.lca]);
    ans[q.id] = cur_ans;
    if (q.lca) sub(arr[q.lca]);
  }
}
```

9.3 DynamicConvexTrick*

```
// only works for integer coordinates!!
struct Line {
   mutable ll a, b, p;
   bool operator<(const Line &rhs) const {
     return a < rhs.a;
   }
   bool operator<(ll x) const { return p < x; }
};
struct DynamicHull : multiset<Line, less<>>> {
   static const ll kInf = 1e18;
   ll Div(ll a, ll b) {
     return a / b - ((a ^ b) < 0 && a % b);
   }
}</pre>
```

```
bool isect(iterator x, iterator y) {
     if (y == end()) {
       x \rightarrow p = kInf;
       return 0:
     if (x->a == y->a)
      x->p = x->b > y->b ? kInf : -kInf;
     else x->p = Div(y->b - x->b, x->a - y->a);
    return x->p >= y->p;
  void addline(ll a, ll b) {
     auto z = insert({a, b, 0}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
     if (x != begin() && isect(--x, y))
       isect(x, y = erase(y));
     while ((y = x) != begin() \&\& (--x)->p >= y->p)
       isect(x, erase(y));
  11 query(ll x) {
     auto 1 = *lower_bound(x);
     return 1.a * x + 1.b;
};
9.4 DLX*
```

```
#define TRAV(i, link, start)
  for (int i = link[start]; i != start; i = link[i])
template <bool A, bool B = !A> // A: Exact
struct DLX {
  int lt[NN], rg[NN], up[NN], dn[NN], cl[NN], rw[NN],
    bt[NN], s[NN], head, sz, ans;
  int columns;
  bool vis[NN];
  void remove(int c) {
     if (A) lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
     TRAV(i, dn, c) {
      if (A) {
         TRAV(j, rg, i)
         up[dn[j]] = up[j], dn[up[j]] = dn[j],
         --s[cl[j]];
      } else {
        lt[rg[i]] = lt[i], rg[lt[i]] = rg[i];
      }
    }
  void restore(int c) {
    TRAV(i, up, c) {
      if (A) {
         TRAV(j, lt, i)
         ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
      } else {
        lt[rg[i]] = rg[lt[i]] = i;
    if (A) lt[rg[c]] = c, rg[lt[c]] = c;
  void init(int c) {
     columns = c;
     for (int i = 0; i < c; ++i) {</pre>
      up[i] = dn[i] = bt[i] = i;
      lt[i] = i == 0 ? c : i - 1;
      rg[i] = i == c - 1 ? c : i + 1;
      s[i] = 0;
    rg[c] = 0, lt[c] = c - 1;
    up[c] = dn[c] = -1;
    head = c, sz = c + 1;
  void insert(int r, const vector<int> &col) {
    if (col.empty()) return;
     int f = sz;
     for (int i = 0; i < (int)col.size(); ++i) {</pre>
      int c = col[i], v = sz++;
       dn[bt[c]] = v;
      up[v] = bt[c], bt[c] = v;
      rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
      rw[v] = r, cl[v] = c;
      ++s[c];
      if (i > 0) lt[v] = v - 1;
```

```
double h = (r - 1) / 7122, s = 0;
for (int i = 0; i < 7122; ++i, l += h)</pre>
    lt[f] = sz - 1;
                                                                   s += simpson_ada(f, 1, 1 + h);
  int h() {
                                                                 return s:
    int ret = 0;
                                                               }
    memset(vis, 0, sizeof(bool) * sz);
    TRAV(x, rg, head) {
      if (vis[x]) continue;
      vis[x] = true, ++ret;
      TRAV(i, dn, x) TRAV(j, rg, i) vis[cl[j]] = true;
    return ret;
  void dfs(int dep) {
    if (dep + (A ? 0 : h()) >= ans) return;
    if (rg[head] == head) return ans = dep, void();
    if (dn[rg[head]] == rg[head]) return;
    int w = rg[head];
    TRAV(x, rg, head) if (s[x] < s[w]) w = x;
    if (A) remove(w);
    TRAV(i, dn, w) {
      if (B) remove(i);
      TRAV(j, rg, i) remove(A ? cl[j] : j);
      dfs(dep + 1);
      TRAV(j, lt, i) restore(A ? cl[j] : j);
      if (B) restore(i);
    if (A) restore(w);
  int solve() {
    for (int i = 0; i < columns; ++i)</pre>
      dn[bt[i]] = i, up[i] = bt[i];
    ans = 1e9, dfs(0);
    return ans;
};
```

9.5 Matroid Intersection

```
Start from S=\emptyset . In each iteration, let
```

```
• Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}
• Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}
```

If there exists $x\in Y_1\cap Y_2$, insert x into S. Otherwise for each $x\in S,y\not\in S$, create edges

```
• x \to y if S - \{x\} \cup \{y\} \in I_1.
• y \to x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \not\in S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.

9.6 AdaptiveSimpson

```
using F_t = function<double(double)>;
pdd simpson(const F_t &f, double 1, double r,
 double f1, double fr, double fm = nan("")) {
if (isnan(fm)) fm = f((1 + r) / 2);
  return {fm, (r - 1) / 6 * (fl + 4 * fm + fr)};
double simpson_ada(const F_t &f, double 1, double r,
 double f1, double fm, double fr, double eps) {
  double m = (1 + r) / 2,
 s = simpson(f, 1, r, f1, fr, fm).second;
auto [f1m, s1] = simpson(f, 1, m, f1, fm);
  auto [fmr, sr] = simpson(f, m, r, fm, fr);
  double delta = sl + sr - s;
 if (abs(delta) <= 15 * eps)</pre>
    return sl + sr + delta / 15;
  return simpson_ada(f, 1, m, f1, f1m, fm, eps / 2) +
    simpson_ada(f, m, r, fm, fmr, fr, eps / 2);
double simpson_ada(const F_t &f, double 1, double r) {
 return simpson_ada(
    f, l, r, f(1), f((1 + r) / 2), f(r), 1e-9 / 7122);
double simpson_ada2(const F_t &f, double 1, double r) {
```