$$f(x,y) = x^2y + \sin(y)$$
$$\frac{\partial f}{\partial x} = 2xy$$

$$\frac{\partial f}{\partial y} = x^2 + \cos(y)$$

 Gradient puts these two partial derivatives together in a vector as follows:

$$\nabla f(x,y) = \nabla x^2 y + \sin(y) = \begin{bmatrix} 2xy \\ x^2 + \cos(y) \end{bmatrix}$$

Cost Function Linear Regression

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

Gradient Descent for Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \quad \text{simultaneous for } j = 0 \dots d$$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{m{ heta}}\left(m{x}^{(i)}
 ight)$
 - Use this stored value in the update step loop
- Assume convergence when $\|oldsymbol{ heta}_{new} oldsymbol{ heta}_{old}\|_2 < \epsilon$

$$\mathbf{L_2 \ norm:} \qquad \| \boldsymbol{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

• optimization objective is to minimize $J(\theta_1)$

$$\theta_{1} = \theta_{1} - \alpha \frac{d J(\theta_{1})}{d \theta_{j}}$$

$$= \theta_{1} - \alpha (Positive Number)$$

Decrease θ_1 by a certain value

Positive Derivative

The Impact of Partial Derviative

• optimization objective is to minimize $J(\theta_1)$

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - \alpha \text{ (Positive Number)}$$

Decrease θ_1 by a certain value

The Impact of Partial Derviative

• optimization objective is to minimize $J(\theta_1)$

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

innovate

Increase θ_1 by a certain value

The Impact of Partial Derviative

• optimization objective is to minimize $J(\theta_1)$

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - \alpha (Negative Number)$$

Increase θ_1 by a certain value

• optimization objective is to minimize $J(\theta_1)$

$$\theta_1 = \theta_1 - \alpha \frac{d J(\theta_1)}{d \theta_j}$$
$$= \theta_1 - \alpha (Zero)$$

 θ_1 remains the same, hence, gradient descent *converges*

innovate

The Impact of Learning Rate

• optimization objective is to minimize $J(\theta_1)$

$$\theta_1 = \theta_1 - \alpha \frac{dJ(\theta_1)}{d\theta_j}$$
Learing Rate

What happens if α is too small?

Credit: Prof. Mohammad Hammoud

BITS Pilani, Pilani Campus

The Impact of Learning Rate

• optimization objective is to minimize $J(\theta_1)$

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - (Too Small Number) \frac{dJ(\theta_{1})}{d\theta_{j}}$$

 θ_1 changes only a tiny bit on each step, hence, gradient descent will render slow (will take more time to converge)

innovate

The Impact of Learning Rate

• optimization objective is to \min_{θ_0,θ_1}

$$\theta_{1} = \theta_{1} - \alpha \frac{dJ(\theta_{1})}{d\theta_{j}}$$

$$= \theta_{1} - (Too Large Number) \frac{dJ(\theta_{1})}{d\theta_{j}}$$

 θ_1 changes a lot (and probably faster) on each step, hence, gradient descent will potentially overshoot the minimum and, accordingly, fail to converge (or even diverge)

The Impact of Learning Rate

• optimization objective is to \min_{θ_0,θ_1}

$$\theta_1 = \theta_1 - \alpha \, \frac{d J(\theta_1)}{d \, \theta_j}$$

We can also $fix \alpha$ because as we approach the (global) minimum, gradient descent will automatically start taking smaller steps (i.e., θ_1 will start changing at a slower pace because the derivative will become less steep)

Linear Regression Example

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $\,x\in\mathbb{R}\,$ so $\,oldsymbol{ heta}=[heta_0, heta_1]$

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x) $h_{\theta}(x)$ У

 $J(\theta_1)$

(function of the parameter $heta_1$)

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta} = [\theta_0, \theta_1]$

BITS Pilani, Pilani Campus

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

For insight on J(), let's assume $\,x\in\mathbb{R}\,$ so $\,oldsymbol{ heta}=[heta_0, heta_1]$

 $h_{\theta}(x)$ (for fixed θ_1 , this is a function of x) \mathbf{X} $h_{\theta}(x)$ X $\theta_1 = 0$ 0

(function of the parameter θ_1)

Slide by Andrew Ng 9 S Pilani, Pilani Campus

Slide by Andrew Ng 23 **S** Pilani, Pilani Campus

Slide by Andrew Ng

S Pilani, Pilani Campus

Slide by Andrew Ng 25 S Pilani, Pilani Campus

Slide by Andrew Ng ²⁶ S Pilani, Pilani Campus

Slide by Andrew Ng 27 **S** Pilani, Pilani Campus

Slide by Andrew Ng 5 Pilani, Pilani Campus

Slide by Andrew Ng S Pilani, Pilani Campus

Slide by Andrew Ng ³⁰ **S** Pilani, Pilani Campus

Slide by Andrew Ng 31 S Pilani, Pilani Campus

Basic Search Procedure

- Choose initial value for heta
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Figure by Andrew Ng

S Pilani, Pilani Campus

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Figure by Andrew Ng

S Pilani, Pilani Campus

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

Since the least squares objective function is convex (concave), we don't need to worry about local minima

Figure by Andrew Ng ¹⁶ S Pilani, Pilani Campus