NO. DATE

Rewards Rainnand P. Montage school home Discount = y=0.9 +5 -5 Sunny doudy +3 +1 Pschool = [0.8 0.2 -Rschool = [3] Rhome = [-5] Step 1 1. Firsunny = 0.5.5+ 0.5.(-5)= 0 2 rachoudy = 0.5.3 + 0.5.1 = 2 3 G matrix = [2] Step 2 Compute the policy transformation matrix Row 1 (Sunny) · Pach = 0.5.0.8 + 0.5.0.9 = 0.85 · Pp(1,2) = 0.5°0.2 + 0.5°0.1 = 0.15 Row 2 (cloudy) · Pa (21) = 0.5 · 0.4 + 0.5 · 0.5 = 0.45 ·Pr (22) = 0.5.0% + 0.5.0.7 Pn = [0.45 0.15 -Step 3 Write the Bellman expectation equation W VIT SUMMY = V, = 0+0.900.85v, +0.15,2) V, = 0+ 0.765v, + 0.135v2 Vii sunny = Q.23 S- 0.135 = 0 Vir cloud = Vz = 2+ 0.9 (0.45 v, + 0.65 vz) V2 = 2+ 0.405v, + 0.585V2 Vaclout - 0.405 v, + 0.415 = 2

	NO.: DATE:
Step 4 Write the Bellman expectation equation	
Vii cloudy	
V,= 0.5744680 V2	
Un cloudy = 0405v, + 0.415v2 = 2	
= -0,2326595745 +0.415vz=2	
V1 cloudy = V2 = 5,37990 25892	
Vπ sunny = 0.5744680 (5.3799025892) = 3.09058	518806
Step 5 Write the Bellman optimality equations	
· For Sunny (V.) using School	
V*(sunny) = St 0.9(0.8v, t0.2v2) = 5+	0.724, + 0.1842
· For Cloudy (Uz) using School	-
V* (cloudy) = 3 + 09(04, +06/2) = 3+	0.36V, + 0.54V2
· Sunny	
V= S+0.720, t0.18v2 => 0.28v, -0.18v2= S	
· Cloudy	
V2= 3+0.36v, +0.54v2 => 0.46v2-0.36v1=3	a Alexander
Step 6.	
Cusa.	
$0.28v_1^{-} 5+0.18v_2 = 7 V_1 = \frac{5+0.18v_2}{0.28}$	
using it on cloudy	
$= 0.4601 - 0.36 \left(\frac{s + 0.18 v_x}{0.36} \right) = 3$	
= 004000 6600003 0.46v2 - 0.23142857v2 = 3	7
= V2= 41.25 = Ux Cloudy	
using it on sunny. 41.25.	
= V. = S+0.18 (0,400)	V- SUNN-
V = 0000 15 15 15 15 15 15 15 15 15 15 15 15 15	V. 3
STEP 7:	2, school) = 3 + 0.9(0.4v, to.6vx) = 0
2(1 shall = 5+ 09(0.8v, +0.2v) = 19000001 400	stay)= 1+09(0.50, +0.702) = -7.2961
9(1, Stay) = -5+ (0.9(0.9v, +0.1vx) = 4.216 9(2,	Stay 1 1 United
VICTORY	


```
Step 5.2 Write the Bellman Optimality equations
     * For Sunny (VI) using Stay home
    V* (sunny) = -S + 0.9(0.9 v, + 0.1 vz) = 0.19 v, -0.9 vz = -S
      · For Cloudy (V2) using stayhome -
        V* (cloudy) = 1 + 0.9 (0.5V, + 0.7V) = 0.37V, -0.45v, = 1
 46
Step 6.2
    sunny !
          V_1 = \frac{-S - 0.9V_2}{0.19}
Using it on cloudy
 = 0.37 \sqrt{2} - \left(0.45 \left(\frac{-5-0.9 \sqrt{2}}{0.19}\right) = 1
= 0.37 \sqrt{2} - \left(\frac{-2.25-0.405 \sqrt{2}}{0.19}\right) = 1
  = -2.25-0,405Vz = 0.19 -0.0703Vz
  = - 0.3397Vz = 2.44
  < V2 = 1-7.2901105468 = Vx cloudy
Using it on sunny
    V, = -5-0.9 (-7.2901105468)
      = (8.216313 0 11 = Ux sunny
```