DIGITAL FINANCE

This project has received funding from the Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101119635

What do you think?

Intelligence that cannot explain itself may still compute — but cannot convince.

Explainability as a feature of intelligence?

From minds and machines to organizations

October 9th 2025 – Explainable Al Training Week @ BFH, Bern

Why Explainability Matters Today?

Basic examples:

- Algorithms perform reasoning tasks once reserved for humans
- Opaque models create trust, governance, and learning gaps

Explainability might restore interpretive sovereignty.

Overview

- Intelligence across disciplines
- 2. Explainability as a relational feature of intelligence
- 3. Case study of added value of explainability for ECOINT
- 4. Short role-play if time permits

PART I — Intelligence across disciplines

Educational Sciences: Intelligence as Learnability & Plasticity

- Intelligence
 ← Education: mutual dependence (Mayer)
- From singular, innate ability (Binet, Spearman)→ modular, improvable skills (Hunt, Sternberg)
- Plasticity: intelligence can grow through explanation (Collins et al.)
- Emotional intelligence bridges emotion and reason (Humphrey et al.)

Psychological Sciences: Intelligence as Adaptation & Problem-Solving

- g factor (Spearman): a single general intelligence
- s factors & multiple intelligences (Gardner, Sternberg)
- Fluid vs. crystallized intelligence (Horn & Cattell) Age factor
- Measurement: IQ as ratio of mental age / biological age

Intelligence in Nature: Distributed and Collective Forms

Intelligence in Nature: Distributed and Collective Forms

- Animals: adaptive behavior for survival
- Swarm intelligence: group problem-solving
- Plants: distributed decision systems
- Blobs: maze-solving

Intelligence doesn't require centralization but requires coordination.

Artificial Intelligence: Computation & Optimization

- LLMs as simulation of adaptive reasoning
- Machine Learning: experience-based generalization
- Deep Learning: various levels of abstraction and depth through neural architectures and layers

The same reflexivity humans use in thought ("why did I decide this?") must now exist in machines to **translate computation back into understanding**.

Intelligence in Security & Strategic Studies

Intelligence, operationally follows the intelligence cycle model:

- Direction: identifying what to know and who should know which part
- Collection: gathering raw information (human, signal, imagery, open source).
- Processing: cleaning, translating, structuring.
- Analysis: making meaning, testing hypotheses.
- Dissemination: delivering conclusions to decision-makers.
- Feedback: updating priorities for the next loop.

Purpose: reduce uncertainty for decision-makers

This mirrors the logic of explainability: traceable reasoning from date \rightarrow interpretation \rightarrow decision \rightarrow review.

Synthesis Across Disciplines

Domain	Core View of Intelligence	Key Lesson	Implicit Need for Explainability
Education	Learnability & plasticity	Intelligence can be taught	Teaching = explaining
Psychology	Adaptation & problem-solving	Contextual reasoning	Contextual explanations
Nature	Distributed adaptation	Collective coordination	Shared understanding
Al	Computation & optimization	Externalized cognition	Transparency of process
Security	Directed sense- making	Reliable decision loops	Traceable reasoning

PART II — Explainability as a Feature of Intelligence

From Capability to Feature

Intelligence used to mean "being good at reasoning."

Now, being intelligent also means being able to explain one's reasoning to others.

Explainability can thus be considered a **meta-feature of intelligence**: converting knowledge into communicable understanding, **enabling learning and correction**, which **depends on the scale of the** explanation **relation** (micro, meso, macro, meta).

Added value of Explainability

- One insight → many audiences
- Explainability = Relationship between
 - the explainer (model / analyst)
 - the explanation (message / representation)
 - the explainee (decision-maker / user)

The "right" explanation depends on **who** asks, **why**, and in **which context**. What else does it depend on?

Explainability could thus be considered as relational.

PART III — Implementing XAI in the case of ECOINT

Recap of ECOINT

Henri Martre (1994)

"Economic Intelligence is the coordinated **research**, **processing**, and **dissemination** of <u>useful information</u> for economic actors, with the aim of exploiting it for competitiveness and security."

Traits: Both a process and a governance system

Cycle: Collection → Processing → Analysis → Dissemination → Protection

All and ECOINT: each step of the cycle will likely involve use of All tools, thus decision making is threatened by unknown opacities

Recap of ECOINT

Recap on ECOINT

Decision making & risk

Recap on the ECOINT cycle

Knowledge Management: This involves collecting and analyzing information about the actor's environment, including competitors, customers, markets, and technologies.

<u>Information protection</u>: This involves protecting the actor's information from unauthorized access, use, disclosure, disruption, modification, or destruction.

<u>Influence</u>: This involves using information to influence the actor's environment, such as by lobbying for favorable laws and regulations or by shaping public opinion.

ECOINT Phase	Traditional Objective	How Al enhances it	Explainability Feature Needed	Strategic Value
Collection	Gather reliable info	 Automated webscraping, OSINT Entity & sentiment detection Data deduplication 	Source transparency & data lineage — know where data originated, how it was selected	Builds trust in inputs → reliable situational awareness
Processing	Structure & transform	Pre-processing pipelinesFeature engineering by ML	Model interpretability — document transformations & algorithmic criteria	Ensures control of pipelines → defensible analytics
Analysis	Derive meaning	 Predictive & prescriptive models Topic modeling, anomaly detection Simulation dashboards 	Causal reasoning & counterfactuals — explain why variables drive outcomes	Increases decision confidence & scenario credibility
Dissemination	Share insights	LLMs (auto-report writing, briefings)Adaptive visualization	Narrative explainability — tailor explanation to user type & cognitive load	Promotes collective understanding & faster alignment
Protection	Safeguard assets	Threat-detection for data leaksPolicy-compliance monitoring	Explainable governance — traceable alerts, interpretable risk rules	Enhances accountability & resilience of El systems

ECOINT Phase	Key Stakeholders	Core Question They Ask	Type of Explanation Needed	Relational Rationale
Collection	Field analysts, data engineers, domain experts	"Why are these sources and indicators selected?"	Methodological / provenance (source reliability, bias, legality)	They need to trust and replicate input choices.
Processing	IT teams, data scientists, quality officers	"How was data transformed and filtered?"	Technical / procedural (algorithms used, cleaning logic)	They ensure reproducibility and identify errors.
Analysis	Intelligence officers, economists	"Why does the model or analysis point to this conclusion?"	Causal / counterfactual (drivers, variable influence)	They need interpretability to defend recommendations.
Dissemination	Managers, executives, communicators	"What does this mean for our decisions or strategy?"	Narrative / visual (storyline, dashboard, scenario framing)	They need clarity and contextual sense-making.
Protection	Compliance, legal, audit, ethics boards	"Can we prove that the process was fair and accountable?"	Governance / ethical (audit trail, documentation)	They require traceability to ensure legitimacy.

PART IV — Quick poll

Roleplay

An Al-assisted Economic Intelligence monitor raises an **alert**: "Risk of disruption to our critical component supply from Country X next quarter."

Do you trigger a Procurement Contingency Plan today?

No / Wait for confirmation

Explanations

Collection (Provenance): Alert is based on open-source reports + satellite night-light data showing a 12% month-over-month drop in the industrial zone that hosts your suppliers.

Processing (Pipeline): Data were deduplicated, translated, and geolocated; older reports from advocacy blogs were downweighted by credibility scoring.

Analysis (Causal Driver): A new export licensing rule was enacted in Country X; historically, similar rules reduced actual shipments by ~15% within 6–8 weeks for comparable sectors.

Protection (Governance/Risk): The model's false-positive rate on disruption alerts is ≈ 20%; however, regulatory scrutiny is rising on vendor concentration—waiting might expose board-level risk if disruption hits.

What do you think?

Intelligence that cannot explain itself may still compute — but cannot convince.

Explainability as a feature of intelligence?

Thank you for your attention!

