Raphael Gaedtke, Paul Neumann

University of Bonn

January 10, 2025

Outline

- 1 Representation Theory
- 2 Finite abelian groups
- 3 Formalization
- Mathlib
- 5 Future work

Definition

Representation Theory

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho : G \to \operatorname{GL}(V)$ is an action of G on V.

Representations of finite groups

Definition

Representation Theory

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho : G \to \operatorname{GL}(V)$ is an action of G on V.

Convention: V has finite dimension, unless explicitly stated otherwise.

Definition

 $\dim(V)$ is the **dimension** or **degree** of (V, ρ) .

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Representation $\rho: D_{2n} \to \mathsf{GL}(\mathbb{R}^3)$ with

- $\rho(a)$ as rotation about the Z-axis
- lacksquare ho(b) as a rotation about a suitable axis in the XY-plane

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Invariant subspaces, Irreducibility

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

Definition

Representation Theory

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

The XY-Plane is an invariant subspace.

<u>Definition</u>

Representation Theory

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

Irreducibility, Representation Homomorphisms

Definition

Representation Theory

A representation V is irreducible provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Definition

For representations V and W, a **homomorphism** is a linear map $\theta: V \to W$ with $\theta(gv) = g\theta(v)$ for $\forall g \in G, v \in V$.

- \blacksquare Im(θ) and Ker(θ) are invariant subspaces
- If V and W are irreducible, then $\theta: V \to W$ is 0 or bijective.

Main theorem formalized in this project

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Main theorem formalized in this project

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Theorem

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let $\rho: G \to GL(V)$ be a representation.

Finite abelian groups

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Theorem

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let ho: G o GL(V) be a representation.

Then ρ is irreducible if and only if $\dim_k(V) = 1$.

Theorem

Representation Theory

 ρ is irreducible if and only if $\dim_k(V) = 1$.

"⇐" is trivial

For "⇒", we use the following two lemmas:

Lemma

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

Lemma

Every Representation Endomorphism is given by multiplication with a scalar.

With these two lemmas, we can prove the following fact:

Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

Now, we can use proof by contradiction:

 \blacksquare Assume dim(V) > 1.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Finite abelian groups

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- $\mathbf{2}$ Then, V has a proper subspace with dimension 1.

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- $\mathbf{2}$ Then, V has a proper subspace with dimension 1.
- f 3 So V has a proper invariant subspace.

Mathlib

Proof of the theorem

With these two lemmas, we can prove the following fact:

Lemma

Every one-dimensional subspace of V is an invariant subspace.

- $\mathbf{2}$ Then, V has a proper subspace with dimension 1.
- f 3 So V has a proper invariant subspace.
- \blacksquare This is a contradiction to the irreducibility of V.

Formalization

00000

Representations are already defined in Mathlib:

abbrev Representation :=
$$G \rightarrow * V \rightarrow_1 [k] V$$

end

Formalization

00000

Representations are already defined in Mathlib:

abbrev Representation :=
$$G \rightarrow * V \rightarrow_1[k] V$$

end

Representation Theory

Apart from that, the definitions introduced in the beginning of this presentation are missing in Mathlib.


```
/-- A predicate for a subspace being invariant -/
def IsInvariantSubspace {k G V : Type*} [CommSemiring k]
    [Monoid G] [AddCommMonoid V] [Module k V]
  (U : Submodule k V) (\rho : Representation k G V) :=
  \forall g : G, \forall u : U, \rho g u \in U
/-- defines degree of a representation as rank of its
    module -/
def degree {k G V : Type*} [CommSemiring k] [Monoid G]
    [AddCommMonoid V] [Module k V]
  (\rho : Representation k G V) : Cardinal := (Module.rank k
    V)
```

Representation Homomorphisms

```
/-- Definition of Homomorhpisms between Representations -/ @[ext] class RepresentationHom {k G V W : Type*} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] (\rho : Representation k G V) (\psi : Representation k G W) extends LinearMap (RingHom.id k) V W where reprStructure : \forall g : G, \forall v : V, toLinearMap (\rho g v) = \psi g (toLinearMap v)
```

```
/-- Coercions of RepresentationHom to Function and Linear Map-/ instance {k G V W : Type*} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] {\rho : Representation k G V} {\psi : Representation k G W} : CoeFun (RepresentationHom \rho \psi ) (fun _ \mapsto V \rightarrow_1[k] W) where coe := by intro \theta use \langle \theta.toFun, ?_\rangle simp; intro x y; simp
```

Lemma

Representation Theory

For all $g \in G$, $\rho(g)$ is a Representation Endomorphism.

```
instance repr_yields_reprHom_commMonoid {k G V : Type*}
    [CommSemiring k] [CommMonoid G] [AddCommMonoid V]
    [Module k V]
    (ρ : Representation k G V) (g : G) : (RepresentationHom ρ ρ) where
    toFun := ρ g
    map_add' := by intro x y; simp
    map_smul' := by intro m x; simp
    reprStructure := sorry
```

Mathlib

Future work