Problema 6.1

6.1 Consider the following problem.

Maximize
$$-x_1 + 2x_2$$

Subject to $3x_1 + 4x_2 \le 12$
 $2x_1 - x_2 \ge 2$
 $x_1, x_2 \ge 0$

- a. Solve the problem graphically.
- b. State the dual and solve it graphically. Utilize the theorems of duality to obtain the values of all the primal variables from the optimal dual solution.

Phase II: Goal: get ß >= 0.

		Tableau	1			
	b ¹	x ¹ 1	x ¹ ₂	s ¹ 1	s ¹ 2	row sum
$L^{1}_{1} = L^{0}_{1} / (4)$	3	0.75	1	0.25	0	5
$L_{2}^{1} = L_{2}^{0} - (1) * L_{1}^{1}$	-5	-2.75	0	-0.25	1	-7
$P^1 = P^0 - (-2) * L^1_1$	6	2.5	0	0.5	0	9
-P ¹ / L ¹ ₂	0	0.909	0	2	0	0

Basis for Tableau¹: $[x_2, s_2,]$. Value of Objective Function = 6.

Proceed to the next tableau as follows:

Phase 0: Complete.
Phase I: Complete.

Phase II: Goal: get ß >= 0.

A. In Tableau1:

1. Select a pivot row, row, with $b_{row}^1 < 0$: row = 2 associated with $b_2^1 = -5$.

2. Compute the ratios -0 / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 1 associated with 0.909. Thus $\hat{\bf U}_{2,1}$ = -2.75 is the **pivot**; variable s₂ will leave the basis; variable x₁ will enter the basis.

B. To create Tableau²:

- **3.** Compute row $L_2^2 = L_2^1 / (-2.75)$.
- 4. Subtract multiples of row L^2 from all other rows of Tableau¹ so that $x_1 = e_2$ in Tableau².

	1	ableau	2			
	b ²	x ² 1	x ² 2	s ² 1	s ² 2	row sum
$L^2_1 = L^1_1 - (0.75) * L^2_2$	1.636	0	1	0.182	0.273	3.091
$L^2_2 = L^1_2 / (-2.75)$	1.818	1	-0	0.091	-0.364	2.545
$P^2 = P^1 - (2.5) * L^2_2$	1.455	0	0	0.273	0.909	2.636
.P ² / L ² ₋₁	0	0	0	0	0	0

Basis for Tableau²: $[x_2, x_1,]$. Value of Objective Function = 1.45.

Phase 0: Complete.
Phase II: Complete.
Phase III: Complete.

Primal Solution: $[x_2, x_1,] = [1.636, 1.818,]; P = 1.455.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0.273, 0.909,]; D = 1.455.$

Problema 6.2

6.2 Consider the following problem.

Minimize
$$2x_1+3x_2+5x_3+6x_4$$

Subject to $x_1+2x_2+3x_3+x_4 \ge 2$
 $-2x_1+x_2-x_3+3x_4 \le -3$
 $x_1, x_2, x_3, x_4 \ge 0$

Phase I: Goal: get Ø >= 0.

	Tableau ⁰											
	p ₀	x ⁰ 1	x ⁰ 2	x ⁰ 3	x ⁰ ₄	s ⁰ 1	s ⁰ 2	row sum				
L ⁰ 1	-3	-2	1	-1	3	1	0	-1				
L ⁰ 2	-2	-1	-2	-3	-1	0	1	-8				
P ⁰	0	-2	-3	0	0	0	0	-5				
-P ⁰ / L ⁰ 1	0	0	3	0	0	0	0	0				

Basis for Tableau 0 : [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁰:

- 1. Select a target column, tcol, with $\emptyset_{tcol} < 0$: $\emptyset^0_2 = -3$, tcol = 2.
- 2. Select any row, r, with a positive entry in tcol = 2 as the **pivot row**: row = 1 associated with $\hat{U}_{1,2}$ = 1 and constraint L_1 .
- 3. Compute the ratios $-\emptyset$ / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 3 associated with 0. Thus $\hat{\bf U}_{1,3}$ = -1 is the **pivot**; variable s_1 will leave the basis; variable x_3 will enter the basis.
- B. To create Tableau1:
- **4.** Compute row $L_1^1 = L_1^0 / (-1)$.
- 5. Subtract multiples of row L_1^1 from all other rows of Tableau⁰ so that $x_3 = e_1$ in Tableau¹.

Tableau ¹									
	b ¹	x ¹ 1	x ¹ 2	x ¹ 3	x ¹ ₄	s ¹ 1	s ¹ 2	row sum	
L ¹ ₁ = L ⁰ ₁ / (-1)	3	2	-1	1	-3	-1	0	1	
$L_{2}^{1} = L_{2}^{0} - (-3) * L_{1}^{1}$	7	5	-5	0	-10	-3	1	-5	
P ¹ = P ⁰ - (0) * L ¹ ₁	0	-2	-3	0	0	0	0	-5	
-P ¹ / L ¹ 2	0	0.4	0	0	0	0	0	0	

Basis for Tableau¹: $[x_3, s_2,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau¹:

1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^1_1 = -2$, tcol = 1.

2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 2 associated with $\hat{U}_{2,1}$ = 5 and constraint L_2 .

3. Compute the ratios -0 / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 4 associated with 0. Thus $\hat{\mathbf{U}}_{2,4}$ = -10 is the **pivot**; variable \mathbf{s}_2 will leave the basis; variable \mathbf{x}_4 will enter the basis.

B. To create Tableau²:

4. Compute row $L^2_2 = L^1_2 / (-10)$.

5. Subtract multiples of row L_2^2 from all other rows of Tableau¹ so that $x_4 = e_2$ in Tableau².

Tableau ²										
	b ²	x ² 1	x ² 2	x ² 3	x ² ₄	s ² 1	s ² ₂	row sum		
$L^{2}_{1} = L^{1}_{1} - (-3) * L^{2}_{2}$	0.9	0.5	0.5	1	0	-0.1	-0.3	2.5		
L ² ₂ = L ¹ ₂ / (-10)	-0.7	-0.5	0.5	0	1	0.3	-0.1	0.5		
P ² = P ¹ - (0) * L ² ₂	0	-2	-3	0	0	0	0	-5		
-P ² / L ² 1	0	4	6	0	0	0.001	0	0		

Basis for Tableau²: $[x_3, x_4,]$. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau²:

1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^2_1 = -2$, tcol = 1.

2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 0.5 and constraint L₁.

3. Compute the ratios $-\emptyset$ / L₁ as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 6 associated with 0. Thus $\hat{U}_{1,6}$ = -0.3 is the **pivot**; variable x₃ will leave the basis; variable s₂ will enter the basis.

B. To create Tableau³:

4. Compute row $L^{3}_{1} = L^{2}_{1} / (-0.3)$.

5. Subtract multiples of row L_1^3 from all other rows of Tableau² so that $s_2 = e_1$ in Tableau³.

			Tableau	3				
	b ³	x ³ 1	x ³ 2	x ³ 3	x ³ ₄	s ³ 1	s ³ 2	row sum
$L^{3}_{1} = L^{2}_{1} / (-0.3)$	-3	-1.667	-1.667	-3.333	-0	0.333	1	-8.333
$L^{3}_{2} = L^{2}_{2} - (-0.1) * L^{3}_{1}$	-1	-0.667	0.333	-0.333	1	0.333	0	-0.333
$P^3 = P^2 - (0) * L^3_1$	0	-2	-3	0	0	0	0	-5
-P ³ / L ³ ₂	0	0	9	0	0	0	0	0

Basis for Tableau³: $[s_2, x_4,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau³:

1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^3_2 = -3$, tcol = 2.

2. Select any row, r, with a positive entry in tcol = 2 as the **pivot row**: row = 2 associated with $\hat{U}_{2,2}$ = 0.333 and constraint L_2 .

3. Compute the ratios -0 / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 3 associated with 0. Thus $\hat{\bf U}_{2,3}$ = -0.333 is the **pivot**; variable x_4 will leave the basis; variable x_3 will enter the basis.

B. To create Tableau4:

4. Compute row $L_2^4 = L_2^3 / (-0.333)$.

5. Subtract multiples of row L^4_2 from all other rows of Tableau³ so that $x_3 = e_2$ in Tableau⁴.

	Tableau ⁴										
	b ⁴	x ⁴ 1	x ⁴ ₂	x ⁴ ₃	x4 ₄	s ⁴ 1	s ⁴ 2	row sum			
$L^4_1 = L^3_1 - (-3.333) * L^4_2$	7	5	-5	0	-10	-3	1	-5			
$L^4_2 = L^3_2 / (-0.333)$	3	2	-1	1	-3	-1	-0	1			
P ⁴ = P ³ - (0) * L ⁴ ₂	0	-2	-3	0	0	0	0	-5			
-P ⁴ / L ⁴ ₁	0	0.4	0	0	0	0	0	0			

Basis for Tableau⁴: $[s_2, x_3,]$. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau4:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^4_1 = -2$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 5 and constraint L_1 .
- 3. Compute the ratios $-\emptyset$ / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 4 associated with 0. Thus $\hat{\bf U}_{1,4}$ = -10 is the **pivot**; variable s_2 will leave the basis; variable x_4 will enter the basis.

B. To create Tableau⁵:

- **4.** Compute row $L_{1}^{5} = L_{1}^{4} / (-10)$.
- 5. Subtract multiples of row L^{5}_{1} from all other rows of Tableau⁴ so that $x_{4} = e_{1}$ in Tableau⁵.

Tableau ⁵									
	b ⁵	x ⁵ 1	x ⁵ 2	x ⁵ 3	x ⁵ ₄	s ⁵ 1	s ⁵ 2	row sum	
L ⁵ ₁ = L ⁴ ₁ / (-10)	-0.7	-0.5	0.5	-0	1	0.3	-0.1	0.5	
$L^{5}_{2} = L^{4}_{2} - (-3) * L^{5}_{1}$	0.9	0.5	0.5	1	0	-0.1	-0.3	2.5	
P ⁵ = P ⁴ - (0) * L ⁵ ₁	0	-2	-3	0	0	0	0	-5	
_P ⁵ / L ⁵ 2	0	4	6	0	0	0.001	0	0	

Basis for Tableau 5 : [x4, x3,]. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁵:

- 1. Select a target column, tcol, with $\emptyset_{tcol} < 0$: $\emptyset^5_1 = -2$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 2 associated with $\hat{U}_{2,1}$ = 0.5 and constraint L_2 .
- 3. Compute the ratios -0 / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 6 associated with 0. Thus $\hat{\mathbf{U}}_{2,6}$ = -0.3 is the **pivot**, variable \mathbf{x}_3 will leave the basis; variable \mathbf{s}_2 will enter the basis.
- B. To create Tableau6:
- **4.** Compute row $L_2^6 = L_2^5 / (-0.3)$.
- 5. Subtract multiples of row L_2^6 from all other rows of Tableau⁵ so that $s_2 = e_2$ in Tableau⁶.

	Tableau ⁶										
	b ⁶	x ⁶ 1	x ⁶ 2	x ⁶ 3	x ⁶ 4	s ⁶ 1	s ⁶ 2	row sum			
$L_{1}^{6} = L_{1}^{5} - (-0.1) * L_{2}^{6}$	-1	-0.667	0.333	-0.333	1	0.333	0	-0.333			
$L^{6}_{2} = L^{5}_{2} / (-0.3)$	-3	-1.667	-1.667	-3.333	-0	0.333	1	-8.333			
P ⁶ = P ⁵ - (0) * L ⁶ ₂	0	-2	-3	0	0	0	0	-5			
-P ⁶ / L ⁶ 1	0	0	9	0	0	0	0	0			

Basis for Tableau 6 : [x₄, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁶:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^6_2 = -3$, tcol = 2.
- 2. Select any row, r, with a positive entry in tcol = 2 as the **pivot row:** row = 1 associated with $\hat{U}_{1,2}$ = 0.333 and constraint L_1 .
- 3. Compute the ratios - \emptyset / L₁ as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 3 associated with 0. Thus $\hat{\bf U}_{1,3}$ = -0.333 is the **pivot**; variable x₄ will leave the basis; variable x₃ will enter the basis.
- B. To create Tableau⁷:
- **4.** Compute row $L^7_1 = L^6_1 / (-0.333)$.
- 5. Subtract multiples of row L_1^7 from all other rows of Tableau⁶ so that $x_3 = e_1$ in Tableau⁷.

Tableau ⁷									
	b ⁷	x ⁷ 1	x ⁷ 2	x ⁷ 3	x ⁷ ₄	s ⁷ 1	s ⁷ 2	row sum	
$L^{7}_{1} = L^{6}_{1} / (-0.333)$	3	2	-1	1	-3	-1	-0	1	
$L^{7}_{2} = L^{6}_{2} - (-3.333) * L^{7}_{1}$	7	5	-5	0	-10	-3	1	-5	
$P^7 = P^6 - (0) * L^7_1$	0	-2	-3	0	0	0	0	-5	
.P ⁷ / L ⁷ 2	0	0.4	0	0	0	0	0	0	

Basis for Tableau 7 : [x $_3$, s $_2$,]. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁷:

- 1. Select a target column, tcol, with $\emptyset_{tcol} < 0$: $\emptyset^7_1 = -2$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 2 associated with $\hat{U}_{2,1}$ = 5 and constraint L₂.
- 3. Compute the ratios -0 / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 4 associated with 0. Thus $\hat{\mathbf{U}}_{2,4}$ = -10 is the **pivot**; variable \mathbf{s}_2 will leave the basis; variable \mathbf{x}_4 will enter the basis.
- B. To create Tableau8:
- **4.** Compute row $L^{8}_{2} = L^{7}_{2} / (-10)$.
- 5. Subtract multiples of row L^{8}_{2} from all other rows of Tableau⁷ so that $x_{4} = e_{2}$ in Tableau⁸.

Tableau ⁸										
	p ₈	x ⁸ 1	x82	x83	x84	s ⁸ 1	s ⁸ 2	row sum		
$L^{8}_{1} = L^{7}_{1} - (-3) * L^{8}_{2}$	0.9	0.5	0.5	1	0	-0.1	-0.3	2.5		
L ⁸ ₂ = L ⁷ ₂ / (-10)	-0.7	-0.5	0.5	-0	1	0.3	-0.1	0.5		
P ⁸ = P ⁷ - (0) * L ⁸ ₂	0	-2	-3	0	0	0	0	-5		
-P ⁸ / L ⁸ 1	0	4	6	0	0	0.001	0	0		

Basis for Tableau⁸: $[x_3, x_4,]$. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau8:

- 1. Select a target column, tcol, with $\varnothing_{\text{tcol}} < 0$: $\varnothing^8_1 = -2$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 0.5 and constraint L_1 .
- 3. Compute the ratios $-\emptyset$ / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 6 associated with 0. Thus $\hat{\bf U}_{1,6}$ = -0.3 is the **pivot**; variable x_3 will leave the basis; variable x_2 will enter the basis.
- B. To create Tableau9:
- **4.** Compute row $L_{1}^{9} = L_{1}^{8} / (-0.3)$.
- 5. Subtract multiples of row L_1^9 from all other rows of Tableau⁸ so that $s_2 = e_1$ in Tableau⁹.

Tableau ⁹										
	b ⁹	x ⁹ 1	x ⁹ 2	x ⁹ 3	x ⁹ ₄	s ⁹ 1	s ⁹ 2	row sum		
$L_{1}^{9} = L_{1}^{8} / (-0.3)$	-3	-1.667	-1.667	-3.333	-0	0.333	1	-8.333		
$L^{9}_{2} = L^{8}_{2} - (-0.1) * L^{9}_{1}$	-1	-0.667	0.333	-0.333	1	0.333	0	-0.333		
P ⁹ = P ⁸ - (0) * L ⁹ ₁	0	-2	-3	0	0	0	0	-5		
-P ⁹ / L ⁹ 2	0	0	9	0	0	0	0	0		

Basis for Tableau 9 : [s₂, x₄,]. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Goal: get $\emptyset >= 0$.

A. In Tableau9:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^9_2 = -3$, tcol = 2.
- 2. Select any row, r, with a positive entry in tcol = 2 as the **pivot row**: row = 2 associated with $\hat{U}_{2,2}$ = 0.333 and constraint L₂.
- 3. Compute the ratios - \mathcal{O} / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 3 associated with 0. Thus $\hat{\bf U}_{2,3}$ = -0.333 is the **pivot**; variable x_4 will leave the basis; variable x_3 will enter the basis.

B. To create Tableau¹⁰:

- **4.** Compute row $L^{10}_2 = L^9_2 / (-0.333)$.
- 5. Subtract multiples of row L^{10}_2 from all other rows of Tableau⁹ so that $x_3 = e_2$ in Tableau¹⁰.

Tableau ¹⁰										
	b ¹⁰	x ¹⁰ 1	x ¹⁰ 2	x ¹⁰ 3	x ¹⁰ ₄	s ¹⁰ 1	s ¹⁰ 2	row sum		
$L^{10}_1 = L^9_1 - (-3.333) * L^{10}_2$	7	5	-5	0	-10	-3	1	-5		
L ¹⁰ ₂ = L ⁹ ₂ / (-0.333)	3	2	-1	1	-3	-1	-0	1		
P ¹⁰ = P ⁹ - (0) * L ¹⁰ ₂	0	-2	-3	0	0	0	0	-5		
_P10 / L10 ₁	0	0.4	0	0	0	0	0	0		

Basis for Tableau¹⁰: [s_2 , x_3 ,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau¹⁰:

- 1. Select a target column, tcol, with \varnothing_{tcol} < 0: \varnothing^{10}_1 = -2, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 5 and constraint L_1 .
- 3. Compute the ratios $-\emptyset$ / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 4 associated with 0. Thus $\hat{U}_{1,4}$ = -10 is the **pivot**; variable s_2 will leave the basis; variable x_4 will enter the basis.
- B. To create Tableau¹¹:
- 4. Compute row $L^{11}_1 = L^{10}_1 / (-10)$.
- 5. Subtract multiples of row L^{11}_1 from all other rows of Tableau¹⁰ so that $x_4 = e_1$ in Tableau¹¹.

Possible cycling in Phase 1. Results may be in error!

Possible cycling in Phase 1. Results may be in error!

Phase II: Goal: get ß >= 0.

Tableau ¹¹										
	b ¹¹	x ¹¹ 1	x ¹¹ 2	x ¹¹ 3	x ¹¹ ₄	s ¹¹ 1	s ¹¹ 2	row sum		
L ¹¹ ₁ = L ¹⁰ ₁ / (-10)	-0.7	-0.5	0.5	-0	1	0.3	-0.1	0.5		
$L^{11}_2 = L^{10}_2 - (-3) * L^{11}_1$	0.9	0.5	0.5	1	0	-0.1	-0.3	2.5		
P ¹¹ = P ¹⁰ - (0) * L ¹¹ ₁	0	-2	-3	0	0	0	0	-5		
-P ¹¹ / L ¹¹ 1	0	0	0	0	0	0	0.001	0		

Basis for Tableau¹¹: $[x_4, x_3,]$. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get ß >= 0.

A. In Tableau¹¹:

- 1. Select a pivot row, row, with $b^{11}_{row} < 0$: row = 1 associated with $b^{11}_{1} = -0.7$.
- 2. Compute the ratios $-\frac{30}{L_1}$ as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 6 associated with 0.001. Thus $\hat{\mathbf{U}}_{1,6}$ = -0.1 is the **pivot**; variable \mathbf{x}_4 will leave the basis; variable \mathbf{x}_2 will enter the basis.
- B. To create Tableau¹²:
- 3. Compute row $L^{12}_1 = L^{11}_1 / (-0.1)$.
- 4. Subtract multiples of row L^{12}_1 from all other rows of Tableau¹¹ so that $s_2 = e_1$ in Tableau¹².

Tableau ¹²										
	b ¹² x ¹² 1 x ¹² 2 x ¹² 3 x ¹² 4 s ¹² 1 s ¹² 2 row sum									
L ¹² ₁ = L ¹¹ ₁ / (-0.1)	7	5	-5	0	-10	-3	1	-5		
$L^{12}_2 = L^{11}_2 - (-0.3) * L^{12}_1$	3	2	-1	1	-3	-1	0	1		
P ¹² = P ¹¹ - (0) * L ¹² ₁	0	-2	-3	0	0	0	0	-5		
-P ¹² / L ¹² -1	0	0	0	0	0	0	0	0		

Basis for Tableau¹²: $[s_2, x_3,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[s_2, x_3,] = [7, 3,]; P = 0.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0, 0,]; D = 0.$

6.3 Solve the following linear program by a graphical method.

Maximize
$$3x_1 + x_2 + 4x_3$$

Subject to $6x_1 + 3x_2 + 5x_3 \le 25$
 $3x_1 + 4x_2 + 5x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

(Hint. Utilize the dual problem.)

			Tableau	u ⁰			
	b ⁰	x ⁰ 1	x ⁰ 2	x ⁰ 3	s ⁰ 1	s ⁰ 2	row sum
L ⁰ 1	25	6	3	5	1	0	40
L ⁰ 2	20	3	4	5	0	1	33

Phase I: Goal: get Ø >= 0.

P⁰ 0 -3 -1 0 0 0 4

-P⁰ / L⁰₁ 0 0.5 0.333 0 0 0 0

Basis for Tableau⁰: [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁰:

- 1. Select a target column, tcol, with $\emptyset_{tcol} < 0$: $\emptyset^0_1 = -3$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 6 and constraint L₁.
- 3. Compute the ratios -0 / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 2 associated with 0.333. Thus $\hat{\mathbf{U}}_{1,2} = 3$ is the **pivot**; variable \mathbf{x}_1 will leave the basis; variable \mathbf{x}_2 will enter the basis.
- B. To create Tableau1:
- 4. Compute row $L_1^1 = L_1^0 / (3)$.
- 5. Subtract multiples of row L_1^1 from all other rows of Tableau so that $x_2 = e_1$ in Tableau.

Tableau ¹										
	b ¹	b ¹								
L ¹ ₁ = L ⁰ ₁ / (3)	8.333	2	1	1.667	0.333	0	13.333			
$L_{2}^{1} = L_{2}^{0} - (4) * L_{1}^{1}$	-13.333	-5	0	-1.667	-1.333	1	-20.333			
P ¹ = P ⁰ - (-1) * L ¹ ₁	8.333	-1	0	1.667	0.333	0	9.333			
-P ¹ / L ¹ 1	0	0.5	0	0	0	0	0			

Basis for Tableau¹: [x₂, s₂,]. Value of Objective Function = 8.33.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau¹:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^1_1 = -1$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 1 associated with $\hat{U}_{1,1}$ = 2 and constraint L_1 .
- 3. Compute the ratios -0 / L_1 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 1 associated with 0.5. Thus $\hat{U}_{1,1} = 2$ is the **pivot**; variable x_2 will leave the basis; variable x_1 will enter the basis.
- B. To create Tableau²:
- **4.** Compute row $L^2_1 = L^1_1 / (2)$.
- 5. Subtract multiples of row L^2_1 from all other rows of Tableau¹ so that $x_1 = e_1$ in Tableau².

Tableau ²										
	b ²	x ² 1	x ² ₂	x ² 3	s ² 1	s ² ₂	row sum			
$L^{2}_{1} = L^{1}_{1} / (2)$	4.167	1	0.5	0.833	0.167	0	6.667			
$L^{2}_{2} = L^{1}_{2} - (-5) * L^{2}_{1}$	7.5	0	2.5	2.5	-0.5	1	13			
$P^2 = P^1 - (-1) * L^2_1$	12.5	0	0.5	2.5	0.5	0	16			
-P ² / L ² -1	0	0	0	0	0	0	0			

Basis for Tableau²: $[x_1, s_2,]$. Value of Objective Function = 12.5.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[x_1, s_2,] = [4.167, 7.5,]; P = 12.5.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0.5, 0,]; D = 12.5.$

	Tableau ⁰											
	P ₀	x ⁰ 1	x ⁰ 2	x ⁰ 3	x ⁰ ₄	x ⁰ 5	s ⁰ 1	s ⁰ 2	row sum			
L ⁰ 1	19	1	1	2	3	5	1	0	32			
L ⁰ 2	57	2	4	3	2	1	0	1	70			
P ⁰	0	-10	-24	0	0	0	0	0	-34			
-P ⁰ / L ⁰ ₂	0	5	6	0	0	0	0	0	0			

Basis for Tableau⁰: [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁰:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^0_1 = -10$, tcol = 1.
- 2. Select any row, r, with a positive entry in tcol = 1 as the **pivot row**: row = 2 associated with $\hat{U}_{2,1}$ = 2 and constraint L₂.
- 3. Compute the ratios $-\emptyset$ / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 1 associated with 5. Thus $\hat{\mathbf{U}}_{2,1} = 2$ is the **pivot**; variable \mathbf{s}_2 will leave the basis; variable \mathbf{x}_1 will enter the basis.
- B. To create Tableau1:
- **4.** Compute row $L_2^1 = L_2^0 / (2)$.
- 5. Subtract multiples of row L_2^1 from all other rows of Tableau⁰ so that $x_1 = e_2$ in Tableau¹.

Tableau ¹										
	b ¹	x ¹ 1	x ¹ ₂	x ¹ ₃	x ¹ ₄	x ¹ 5	s ¹ 1	s ¹ 2	row sum	
$L_{1}^{1} = L_{1}^{0} - (1) * L_{2}^{1}$	-9.5	0	-1	0.5	2	4.5	1	-0.5	-3	
$L_{2}^{1} = L_{2}^{0} / (2)$	28.5	1	2	1.5	1	0.5	0	0.5	35	
$P^1 = P^0 - (-10) * L^1_2$	285	0	-4	15	10	5	0	5	316	
-P ¹ / L ¹ ₂	0	0	2	0	0	0	0	0	0	

Basis for Tableau¹: $[s_1, x_1,]$. Value of Objective Function = 285.

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau1:

- 1. Select a target column, tcol, with $\varnothing_{tcol} < 0$: $\varnothing^1_2 = -4$, tcol = 2.
- 2. Select any row, r, with a positive entry in tcol = 2 as the **pivot row**: row = 2 associated with $\hat{U}_{2,2}$ = 2 and constraint L_2 .
- 3. Compute the ratios $-\emptyset$ / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column:** col = 2 associated with 2. Thus $\hat{\bf U}_{2,2}$ = 2 is the **pivot**; variable ${\bf x}_1$ will leave the basis; variable ${\bf x}_2$ will enter the basis.
- B. To create Tableau²:
- **4.** Compute row $L^2_2 = L^1_2 / (2)$.
- 5. Subtract multiples of row L^2 from all other rows of Tableau¹ so that $x_2 = e_2$ in Tableau².

Tableau ²										
	b ²	x ² 1	x ² 2	x ² ₃	x ² ₄	x ² 5	s ² 1	s ² ₂	row sum	
$L^{2}_{1} = L^{1}_{1} - (-1) * L^{2}_{2}$	4.75	0.5	0	1.25	2.5	4.75	1	-0.25	14.5	
$L^{2}_{2} = L^{1}_{2} / (2)$	14.25	0.5	1	0.75	0.5	0.25	0	0.25	17.5	
$P^2 = P^1 - (-4) * L^2_2$	342	2	0	18	12	6	0	6	386	
-P ² / L ² -1	0	0	0	0	0	0	0	0	0	

Basis for Tableau²: $[s_1, x_2,]$. Value of Objective Function = 342.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[s_1, x_2,] = [4.75, 14.25,]; P = 342.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0, 6,]; D = 342.$

6.7 Consider the following linear program.

P: Minimize
$$6x_1+2x_2$$

Subject to $x_1+2x_2 \ge 3$
 $x_2 \ge 0$
 x_1 unrestricted

The "three-phase method" of the dual simplex algorithm:

Phase 0 - drive all artificial variables (associated with = constraints) to zero, i.e. eliminate them from the basis;

Phase I - find a tableau with $\emptyset >= 0$, i.e. a feasible dual program;

Phase II - generate tableaux that decrease the value of μ turning $\beta >= 0$, without dropping back into Phase 0 or I, i.e. find a feasible basic dual program that minimizes the objective function D.

Warning: A non-numeric value encountered in /services/webpages/e/g/egwald.ca/public/operationsresearch/functions/dualsimplex.php on line 171

Phase I: Goal: get Ø >= 0.

	Tableau ⁰									
	b ⁰	x ⁰ 1	x ⁰ 2	s ⁰ 1	s ⁰ 2	row sum				
L ⁰ 1	-3	-1	-2	1	0	-5				
L ⁰ 2	0	0	-1	0	1	0				
P ₀	0	-6	-2	0	0	-8				
-P ⁰ / L ⁰ -1	0	0	0	0	0	0				

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get Ø >= 0.

A. In Tableau⁰:

- 1. Select a target column, tcol, with $\emptyset_{tcol} < 0$: $\emptyset^0_2 = -2$, tcol = 2.
- 2. Select any row, r, with a positive entry in tcol = 2 as the pivot row: No positive entry exists in the target column = 2, so no pivot exists.

No feasible pivot in Phase I - Dual problem is unfeasible!

6.27 Solve the following problem by the dual simplex method.

Maximize
$$-4x_1-6x_2-18x_3$$

Subject to $x_1 + 3x_3 \ge 3$
 $x_2 + 2x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

Give the optimal values of all the primal and dual variables. Demonstrate that complementary slackness holds.

Phase II: Goal: get ß >= 0.

Tableau ⁰										
	b ⁰	x ⁰ 1	x ⁰ 2	x ⁰ 3	s ⁰ 1	s ⁰ 2	row sum			
L ⁰ 1	-3	-1	0	-3	1	0	-6			
L ⁰ 2	-5	0	-1	-2	0	1	-7			
P ₀	0	4	6	0	0	0	10			
-P ⁰ / L ⁰ ₂	0	0	6	0	0	0	0			

Basis for Tableau 0 : [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get ß >= 0.

A. In Tableau⁰:

- 1. Select a **pivot row**, **row**, with $b^0_{row} < 0$: row = 2 associated with $b^0_2 = -5$.
- 2. Compute the ratios $-\emptyset$ / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 3 associated with 0. Thus $\hat{\mathbf{U}}_{2,3}$ = -2 is the **pivot**; variable \mathbf{s}_2 will leave the basis; variable \mathbf{x}_3 will enter the basis.
- B. To create Tableau¹:
- 3. Compute row $L_2^1 = L_2^0 / (-2)$.
- 4. Subtract multiples of row L_2^1 from all other rows of Tableau⁰ so that $x_3 = e_2$ in Tableau¹.

Tableau ¹										
b ¹ x ¹ ₁ x ¹ ₂ x ¹ ₃ s ¹ ₁ s ¹ ₂ row sum										
$L^{1}_{1} = L^{0}_{1} - (-3) * L^{1}_{2}$	4.5	-1	1.5	0	1	-1.5	4.5			
$L_2^1 = L_2^0 / (-2)$	2.5	0	0.5	1	0	-0.5	3.5			
$P^1 = P^0 - (0) * L^1_2$	0	4	6	0	0	0	10			
_P ¹ / L ¹ 1	0	0	0	0	0	0	0			

Basis for Tableau¹: $[s_1, x_3,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[s_1, x_3,] = [4.5, 2.5,]; P = 0.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0, 0,]; D = 0.$

End of the Linear Programming Dual Simplex Method

6.29

6.29 Solve the following linear program by the dual simplex method.

Minimize
$$2x_1 + 3x_2 + 5x_3 + 6x_4$$

Subject to
$$x_1 + 2x_2 + 3x_3 + x_4 \ge 2$$

- $2x_1 + x_2 - x_3 + 3x_4 \le -3$
 $x_1, x_2, x_3, x_4 \ge 0$

Phase II: Goal: get ß >= 0.

	Tableau ⁰											
	b ⁰	x ⁰ 1	x ⁰ 2	x ⁰ 3	x ⁰ ₄	s ⁰ 1	s ⁰ 2	row sum				
L ⁰ 1	-2	-1	-2	-3	-1	1	0	-8				
L ⁰ 2	-3	-2	1	-1	3	0	1	-1				
P ₀	0	2	3	0	0	0	0	5				
-P ⁰ / L ⁰ ₂	0	1	0	0	0	0	0	0				

Basis for Tableau 0 : [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get ß >= 0.

A. In Tableau⁰:

1. Select a **pivot row, row,** with $b^0_{row} < 0$: row = 2 associated with $b^0_2 = -3$.

2. Compute the ratios $-\emptyset$ / L_2 as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 3 associated with 0. Thus $\hat{\bf U}_{2,3}$ = -1 is the **pivot**; variable s₂ will leave the basis; variable x₃ will enter the basis.

B. To create Tableau¹:

3. Compute row $L^{1}_{2} = L^{0}_{2} / (-1)$.

4. Subtract multiples of row L_2^1 from all other rows of Tableau⁰ so that $x_3 = e_2$ in Tableau¹.

Tableau ¹											
	b ¹	x ¹ 1	x ¹ ₂	x ¹ ₃	x ¹ ₄	s ¹ 1	s ¹ 2	row sum			
$L^{1}_{1} = L^{0}_{1} - (-3) * L^{1}_{2}$	7	5	-5	0	-10	1	-3	-5			
$L^{1}_{2} = L^{0}_{2} / (-1)$	3	2	-1	1	-3	0	-1	1			
$P^1 = P^0 - (0) * L^1_2$	0	2	3	0	0	0	0	5			
-P ¹ / L ¹ -1	0	0	0	0	0	0	0	0			

Basis for Tableau¹: $[s_1, x_3,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[s_1, x_3,] = [7, 3,]; P = 0.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0, 0,]; D = 0.$

6.30 Consider the following problem.

Minimize
$$3x_1+5x_2-x_3+2x_4-4x_5$$

Subject to $x_1+x_2+x_3+3x_4+x_5 \le 6$
. $-x_1-x_2+2x_3+x_4-x_5 \ge 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Phase II: Goal: get ß >= 0.

	Tableau ⁰												
	b ⁰	x ⁰ 1	x ⁰ 2	x ⁰ 3	x ⁰ ₄	x ⁰ 5	s ⁰ 1	s ⁰ 2	row sum				
L ⁰ 1	-3	1	1	-2	-1	1	1	0	-2				
L ⁰ 2	6	1	1	1	3	1	0	1	14				
P ⁰	0	3	5	0	0	0	0	0	8				
-P ⁰ / L ⁰ ₁	0	0	0	0	0	0	0	0	0				

Basis for Tableau 0 : [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get ß >= 0.

A. In Tableau⁰

- 1. Select a pivot row, row, with $b^0_{row} < 0$: row = 1 associated with $b^0_1 = -3$.
- 2. Compute the ratios - \emptyset / L₁ as per the last row. Discard ratios which are not positive and ratios associated with artificial variables. Select the column with the least positive ratio as the **pivot column**: col = 3 associated with 0. Thus $\hat{\bf U}_{1,3}$ = -2 is the **pivot**; variable s₁ will leave the basis; variable x₃ will enter the basis.
- B. To create Tableau¹:
- 3. Compute row $L_1^1 = L_1^0 / (-2)$.
- 4. Subtract multiples of row L_1^1 from all other rows of Tableau⁰ so that $x_3 = e_1$ in Tableau¹.

Tableau ¹											
	b ¹	x ¹ 1	x ¹ 2	x ¹ 3	x ¹ ₄	x ¹ 5	s ¹ 1	s ¹ 2	row sum		
$L_{1}^{1} = L_{1}^{0} / (-2)$	1.5	-0.5	-0.5	1	0.5	-0.5	-0.5	0	1		
$L_{2}^{1} = L_{2}^{0} - (1) * L_{1}^{1}$	4.5	1.5	1.5	0	2.5	1.5	0.5	1	13		
$P^1 = P^0 - (0) * L^1_1$	0	3	5	0	0	0	0	0	8		
.P ¹ / L ¹ .1	0	0	0	0	0	0	0	0	0		

Basis for Tableau¹: $[x_3, s_2,]$. Value of Objective Function = 0.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[x_3, s_2,] = [1.5, 4.5,]; P = 0.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [0, 0,]; D = 0.$

End of the Linear Programming Dual Simplex Method

6.44

6.44 Solve the following problem by the primal-dual algorithm.

Minimize
$$x_1 + 2x_3 - x_4$$

Subject to
$$x_1 + x_2 + x_3 + x_4 \le 6$$

$$2x_1 - x_2 + 3x_3 - 3x_4 \ge 5$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Phase I: Goal: get ß >= 0.

				Tableau	10				
	b ⁰	x ⁰ 1	x ⁰ 2	x ⁰ 3	x ⁰ ₄	s ⁰ 1	s ⁰ 2	row sum	b / Û _k
L ⁰ 1	6	1	1	1	1	1	0	11	6
L ⁰ ₂	-5	-2	1	-3	3	0	1	-5	1.667
P0	0	-1	0	0	0	0	0	-1	

Basis for Tableau⁰: [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Goal: get ß >= 0.

A. In Tableau⁰:

1. Select a target row, r, with $b_r < 0$: $b_2^0 = -5$, r = 2.

2. Select any column, col, with a negative entry in row = 2 as the **pivot column:** col = 3 associated with $\hat{U}_{2,3}$ = -3 and constraint L_2 .

3. Compute the ratios $b_i/\hat{U}_{i,3}$ as per the last column. Select the row with the least positive ratio as the **pivot row:** row = 2 associated with constraint L_2 . Thus $\hat{U}_{2,3} = -3$ is the **pivot**; variable s_2 will leave the basis; variable s_1 will enter the basis.

B. To create Tableau1:

4. Compute row $L_2^1 = L_2^0 / (-3)$.

Subtract multiples of row L¹₂ from all other rows of Tableau⁰ so that x¹₃ = e₂ in Tableau¹.

Phase II: Goal: get Ø >= 0.

Tableau ¹										
	b ¹	x ¹ 1	x ¹ 2	x ¹ 3	x ¹ ₄	s ¹ 1	s ¹ 2	row sum	b / Û _k	
$L_{1}^{1} = L_{1}^{0} - (1) * L_{2}^{1}$	4.333	0.333	1.333	0	2	1	0.333	9.333	13	
$L_{2}^{1} = L_{2}^{0} / (-3)$	1.667	0.667	-0.333	1	-1	0	-0.333	1.667	2.5	
P ¹ = P ⁰ - (0) * L ¹ ₂	0	-1	0	0	0	0	0	-1		

Basis for Tableau¹: $[s_1, x_3,]$. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get Ø >= 0.

A. In Tableau¹:

1. Select the **pivot column, col,** with the most negative value in \emptyset : col = 1, \emptyset_1 = -1: x^2_1 will enter the basis.

2. Compute the ratios b_i / $\hat{U}_{i,1}$ as per the last column. Select the row with the least positive ratio as the **pivot row:** row = 2 associated with constraint L_2 . Thus $\hat{U}_{2,1}$ = 0.667 is the **pivot**; variable x_3 will leave the basis; variable x_2^2 will enter the basis.

B. To create Tableau²:

3. Compute row $L_2^2 = L_2^1 / (0.667)$.

4. Subtract multiples of row L^2 from all other rows of Tableau¹ so that x^2 = e₂ in Tableau².

Tableau ²										
	b ²	x ² 1	x ² 2	x ² 3	x ² ₄	s ² 1	s ² 2	row sum	b/Û _k	
$L^{2}_{1} = L^{1}_{1} - (0.333) * L^{2}_{2}$	3.5	0	1.5	-0.5	2.5	1	0.5	8.5	1.4	
$L^2_2 = L^1_2 / (0.667)$	2.5	1	-0.5	1.5	-1.5	0	-0.5	2.5	0	
P ² = P ¹ - (-1) * L ² ₂	2.5	0	-0.5	1.5	-1.5	0	-0.5	1.5		

Basis for Tableau²: $[s_1, x_1,]$. Value of Objective Function = 2.5.

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get Ø >= 0.

A. In Tableau²:

1. Select the **pivot column, col,** with the most negative value in \emptyset : col = 4, \emptyset_4 = -1.5: x_4^3 will enter the basis.

2. Compute the ratios $b_i / \hat{U}_{i,4}$ as per the last column. Select the row with the least positive ratio as the **pivot row:** row = 1 associated with constraint L₁. Thus $\hat{U}_{1,4} = 2.5$ is the **pivot**; variable s_1 will leave the basis; variable x_4^3 will enter the basis.

B. To create Tableau³:

3. Compute row $L^3_1 = L^2_1 / (2.5)$.

4. Subtract multiples of row L^{3}_{1} from all other rows of Tableau² so that $x^{3}_{4} = e_{1}$ in Tableau³.

Tableau ³										
	b ³	x ³ 1	x ³ 2	x ³ 3	x ³ ₄	s ³ 1	s ³ 2	row sum	b/Û _k	
$L^{3}_{1} = L^{2}_{1} / (2.5)$	1.4	0	0.6	-0.2	1	0.4	0.2	3.4	7	
$L^{3}_{2} = L^{2}_{2} - (-1.5) * L^{3}_{1}$	4.6	1	0.4	1.2	0	0.6	-0.2	7.6	0	
$P^3 = P^2 - (-1.5) * L^3_1$	4.6	0	0.4	1.2	0	0.6	-0.2	6.6		

Basis for Tableau³: $[x_4, x_1,]$. Value of Objective Function = 4.6.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get Ø >= 0.

A. In Tableau³:

1. Select the **pivot column, col,** with the most negative value in \emptyset : col = 6, \emptyset_6 = -0.2: s⁴₂ will enter the basis.

2. Compute the ratios $b_i / \hat{U}_{i,6}$ as per the last column. Select the row with the least positive ratio as the **pivot row**: row = 1 associated with constraint L_1 . Thus $\hat{U}_{1,6} = 0.2$ is the **pivot**; variable x_4 will leave the basis; variable x_4^4 will enter the basis.

B. To create Tableau4:

3. Compute row $L_1^4 = L_1^3 / (0.2)$.

Subtract multiples of row L⁴₁ from all other rows of Tableau³ so that s⁴₂ = e₁ in Tableau⁴.

Tableau ⁴										
	b ⁴	x ⁴ 1	x ⁴ ₂	x ⁴ ₃	x ⁴ ₄	s ⁴ 1	s ⁴ 2	row sum	b / Û _k	
$L^4_1 = L^3_1 / (0.2)$	7	0	3	-1	5	2	1	17	0	
$L^4_2 = L^3_2 - (-0.2) * L^4_1$	6	1	1	1	1	1	0	11	0	
$P^4 = P^3 - (-0.2) * L^4_1$	6	0	1	1	1	1	0	10		

Basis for Tableau⁴: $[s_2, x_1,]$. Value of Objective Function = 6.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[s_2, x_1,] = [7, 6,]; P = 6.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [1, 0,]; D = 6.$

End of the Linear Programming Primal Simplex Method

6.49 Consider the following linear programming problem and its optimal final tableau shown below.

Maximize
$$2x_1 + x_2 - x_3$$

Subject to
$$x_1 + 2x_2 + x_3 \le 8$$

$$-x_1 + x_2 - 2x_3 \le 4$$

$$x_1, \quad x_2, \quad x_3 \geqslant 0$$

Final Tableau

	Z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	0	3	3	2	0	16
x_1	0	1	2	1	1	0	8
x_5	0	0	3	- 1	1	1	12

Phase II: Goal: get Ø >= 0.

	Tableau ⁰											
	p ₀	x ⁰ 1	x ⁰ 2	x ⁰ 3	s ⁰ 1	s ⁰ 2	row sum	b / Û _k				
L ⁰ 1	8	1	2	1	1	0	13	8				
L ⁰ ₂	4	-1	1	-2	0	1	3	0				
P0	0	-2	-1	0	0	0	-3					

Basis for Tableau 0 : [s₁, s₂,]. Value of Objective Function = 0.

Proceed to the next tableau as follows:

Phase 0: Complete.

Phase I: Complete.

Phase II: Goal: get Ø >= 0.

A. In Tableau⁰:

- 1. Select the **pivot column, col,** with the most negative value in \emptyset : col = 1, \emptyset ₁ = -2: x¹₁ will enter the basis.
- 2. Compute the ratios $b_i / \hat{U}_{i,1}$ as per the last column. Select the row with the least positive ratio as the **pivot row:** row = 1 associated with constraint L_1 . Thus $\hat{U}_{1,1} = 1$ is the **pivot**; variable s_1 will leave the basis; variable x_1^1 will enter the basis.
- B. To create Tableau¹:
- 3. Compute row $L_1^1 = L_1^0 / (1)$.
- 4. Subtract multiples of row L_1^1 from all other rows of Tableau⁰ so that $x_1^1 = e_1$ in Tableau¹.

		Table	eau ¹					
	b ¹	x ¹ ₁	x ¹ 2	x ¹ 3	s ¹ 1	s ¹ 2	row sum	b/Û _k
L ¹ ₁ = L ⁰ ₁ / (1)	8	1	2	1	1	0	13	0
$L^{1}_{2} = L^{0}_{2} - (-1) * L^{1}_{1}$	12	0	3	-1	1	1	16	0
P ¹ = P ⁰ - (-2) * L ¹ ₁	16	0	3	2	2	0	23	

Basis for Tableau¹: $[x_1, s_2,]$. Value of Objective Function = 16.

Phase 0: Complete.

Phase I: Complete.

Phase II: Complete.

Primal Solution: $[x_1, s_2,] = [8, 12,]; P = 16.$

(Primal x variables not in the basis have a value of 0).

Dual Solution: $[y_1, y_2,] = [2, 0,]; D = 16.$