

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Original) A cross-linked polyether which is obtained by polymerization of at least one monomer selected from the group consisting of

a) (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG, or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG or poly (THF);

b) a monomer which is polymerizable with a PEG, PPG or poly (THF) cross-linker having at least one (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG, or poly (THF);

c) a PEG, PPG, or poly (THF) cross-linker having at least an acrylamide or a methacrylamide end group; and

d) mixtures thereof.

2. (Original) Cross-linked polyether according to claim 1, wherein said monomer is copolymerized with styrene.

3. (Original) Cross-linked polyether according to claim 2, wherein said styrene is present in an amount of about 0.01 to about 99.99 %.

4. (Original) Cross-linked polyether according to claim 2, wherein said styrene is present in an amount of about 10 to about 90 %.

5. (Original) Cross-linked polyether according to claim 1, wherein said monomer is copolymerized with divinylbenzene.

6. (Original) Cross-linked polyether according to claim 5, wherein said divinylbenzene is present in an amount of about 0.01 to about 99.99 %.

7. (Original) Cross-linked polyether according to claim 5, wherein said divinylbenzene is present in an amount of about 0.2 to about 50 %.

8. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8~~ claim 1, wherein said monomer is a polymerizable compound having the general formula

wherein

A represents H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, PEG, PPG, poly(THF), hydroxyl, C₁-C₃₀ alkyloxy, C₁-C₃₀ hydroxyalkyl, amino, C₁-C₃₀, alkylamine, C₁-C₃₀ aminoalkyl, formyl, C₁-C₃₀ alkylaldehyde, thiol, C₁-C₃₀ alkylthiol, halogen or an C₁-C₃₀ halogenoalkyl; and

B represents an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl.

9. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8~~ claim 1, wherein said monomer is copolymerized with a PEG, PPG, or a poly(THF) based cross-linker.

10. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8~~ claim 1, wherein said monomer is copolymerized with a secondary cross-linker of the general formula

wherein

D represents a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF); and

C and E represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl.

11. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8 claim 1~~, wherein said monomer is copolymerized with a secondary cross-linker selected from the group consisting of a PEG, PPG, poly (THF), and a secondary cross-linker having at least an acrylamide or an methacrylamide) end group.

12. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8 claim 1~~, wherein said monomer is copolymerized with a tertiary cross-linker of the general formula

wherein

F, G and H represent independently a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF);

I, J and K represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl; and

L represents H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an alcohol protecting group.

13. (Currently Amended) Cross-linked polyether according to ~~any one of claims 1 to 8~~ claim 1, wherein said monomer is copolymerized with a comb-like or a star-shaped cross-linker derivatized with a (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG, or poly (THF); derivatives selected from the group consisting of acrylates, acrylamides, acrylonitriles, acroleins, vinyl ketones, vinyl chlorides, vinyl bromides, and styrenes; or a PEG, PPG, or poly (THF) having at least an acrylamide or a methacrylamide end group.

14. (Currently Amended) Cross-linked polyether according ~~any to one of claims 8, 10, 11, and 12 to claim 8~~ to claim 8, wherein said monomer is produced by the Baylis-Hillman reaction or by an acid catalysis from an alcohol and a vinyl derivative, in a dehydration process.

15. (Original) Cross-linked polyether according to claim 14, wherein said vinyl derivative is vinyl-EWG, vinyl-ERG or vinyl-aryl.

16. (Original) A cross-linked polyether which is obtained by polymerization of at least one monomer selected from the group consisting of

a) an α,α' -X-Y-epoxide, or an α,α' -X-Y-oxetane, where X is oxygen, sulfur, PEG, PPG, or poly (THF) and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, C₁ to C₃₀ substituted or unsubstituted aryls;

b) a monomer which is polymerizable with a PEG, PPG or poly (THF) cross-linker having at least one α,α' -X-Y-epoxide or α,α' -X-Y-oxetane, where X is oxygen, sulfur, PEG, PPG or poly (THF), and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, C₁ to C₃₀ substituted or unsubstituted aryls; and

c) mixtures thereof.

17. (Original) Cross-linked polyether according to claim 16, wherein said monomer is a polymerizable compound having the general formula

wherein

$$n = 0 \text{ or } 1$$

A₁ H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, PEG, PPG, poly (THF), hydroxyl, C₁-C₃₀ alkyloxy, C₁-C₃₀ hydroxyalkyl, amino, C₁-C₃₀, alkylamine, C₁-C₃₀ aminoalkyl, formyl, C₁-C₃₀ alkylaldehyde, thiol, C₁-C₃₀ alkylthiol, halogen or an C₁-C₃₀ halogenoalkyl; and

B₁ is selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls.

18. (Currently Amended) Cross-linked polyether according to claim 16 or 17, wherein said monomer is copolymerized with a PEG, PPG or poly (THF) based cross-linker.

19. (Currently Amended) Cross-linked polyether according to claim 16 or 17, wherein said monomer is copolymerized with a secondary cross-linker of the general formula

wherein

m and o are independently 0 or 1;

D_1 represents a C_1-C_{30} alkyl, C_1-C_{30} aryl, C_3-C_{30} aralkyl, oxygen, sulphur, PEG, PPG or poly (THF); and

C_1 and E_1 are independently selected from the group consisting of electron withdrawing groups, C_3 to C_{50} unsubstituted linear or branched alkanes, C_1 to C_{50} substituted linear or branched alkanes, C_3 to C_{50} unsubstituted linear or branched arylalkanes, C_2 to C_{50} substituted linear or branched arylalkanes, and C_1 to C_{30} substituted or unsubstituted aryls.

20. (Currently Amended) Cross-linked polyether according to claim 16 or 17, wherein said monomer is copolymerized with a tertiary cross-linker of the general formula

wherein

p, **q** and **r** are independently 0 or 1;

F₁, **G₁** and **H₁** represent independently a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF);

I₁, **J₁** and **K₁** are independently selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls; and

L₁ represents H, C₁-C₃₀ alkyl, C₂-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an alcohol protecting group.

21. (Currently Amended) Cross-linked polyether according to claim 16 or 17, wherein said monomer is copolymerized with a comb-like or a star-shaped cross-linker derivatized with an α,α'-X-Y-epoxide or an α,α'-X-Y-oxetane, where X is selected from the group consisting of oxygen, sulfur, PEG, PPG and poly (THF));

and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls.

22. (Currently Amended) Cross-linked polyether according to ~~any one of claims 8, 10, 12, 17, 19 and 20~~ claim 8, wherein functional groups A, A₁, B, B₁, C, C₁, E, E₁, I, I₁, J, J₁, K, K₁ and L, L₁ are chemically modified to provide linkers for organic, peptide, protein, nucleotide and saccharide synthesis, for the immobilisation of proteins and reagents, for chromatographic and scavenging purposes, as reverse phase packing and chromatographic devices, in ion exchange and normal phase chromatography.

23. (Original) Cross-linked polyether according to claim 22, wherein said linkers are selected from alcohol, C₁-C₃₀ alkylalcohols, halogens, C₁-C₃₀ halogenoalkyls, C₁-C₃₀ hydroxyalkyls, amines, C₁-C₃₀ alkylamines, C₁-C₃₀ alkylaminoalkyls, C₁-C₃₀ aryls, C₁-C₃₀ alkyls, C₃-C₃₀ aralkyls, nitrile, C₁-C₃₀ alkynitriles, carboxylic acids, C₁-C₃₀ carboxyalkyls, esters, C₁-C₃₀ alkylesters, thiols, C₁-C₃₀ alkylthiols, sulfos, C₁-C₃₀ alkylsulfos, sulfinos, C₁-C₃₀ alkylsulfinos, sulfenos, C₁-C₃₀ alkylsulfenos, and derivatives thereof.

24. (Original) A method for the preparation of a cross-linked polyether, said method comprising the step of polymerizing of at least one monomer selected from the group consisting of

- a) (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG, or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG or poly (THF);
- b) a monomer which is polymerizable with a PEG, PPG or poly (THF) cross-linker having at least one (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG, or poly (THF);
- c) a PEG, PPG, or poly (THF) cross-linker having at least an acrylamide or a methacrylamide end group; and
- d) mixtures thereof.

25. (Original) Method according to claim 24, which comprises

- a) copolymerizing a polymerizable monomer having the general formula

wherein

A represents H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, PEG, PPG, poly (THF), hydroxyl, C₁-C₃₀ alkyloxy, C₁-C₃₀ hydroxyalkyl, amino, C₁-C₃₀, alkylamine, C₁-

C₃₀ aminoalkyl, formyl, C₁-C₃₀ alkylaldehyde, thiol, C₁-C₃₀ alkylthiol, halogen or an C₁-C₃₀ halogenoalkyl; and

B represents an electron withdrawing group, an electron releasing group or an aryl;

together with

- i) a secondary cross-linker of the general formula

wherein

D represents a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF);

C and E represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl;

ii) a PEG, PPG, or poly (THF) cross-linker having at least an acrylamide or a methacrylamide end group;

- iii) a tertiary cross-linker of the general formula

wherein

F, G and H represent independently a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF);

I, J and K represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl; and

L represents H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an alcohol protecting group;

iv) a comb-like or a star-shaped cross-linker derivatized with a (α -X-methyl) vinyl-EWG, (α -X-methyl) vinyl-ERG or (α -X-methyl) vinyl-aryl, where X is oxygen, sulfur, PEG, PPG, or poly (THF); derivatives selected from the group consisting of acrylates, acrylamides, acrylonitriles, acroleins, vinyl ketones, vinyl chlorides, vinyl bromides, and styrenes; or a PEG, PPG, or poly (THF) having at least an acrylamide or a methacrylamide end group; or

v) divinylbenzene,

so as to obtain said polyether; and

b) chemically modifying said polyether so as to obtain a polyether derivative selected from the group consisting of aldehyde, amine, ketone, halogen, carboxylic acid, thiol, amide and or ester resin.

26. (Original) Method according to claim 25, wherein said cross-linked polyether is obtained by suspension radical polymerization.

27. (Original) Method according to claim 25, which comprises carrying said copolymerization in the presence of additional polymerizable monomers selected from the group consisting of styrene, acrylates, acrylamides, acrylonitriles, acroleins (and their methacrylic derivatives), vinyl ketones, vinyl chlorides or vinyl bromides.

28. (Original) Method according to claim 25, which comprises functionalizing said monomer with groups capable of anchoring linkers.

29. (Original) Method according to claim 24, which comprises functionalizing said acrylamide or methacrylamide monomer with groups capable of anchoring linkers.

30. (Original) Method according to claim 25, which comprises functionalizing said acrylamide or methacrylamide cross-linker with groups capable of anchoring linkers.

31. (Original) A method for the preparation of a cross-linked polyether, said method comprising the step of polymerizing of at least one monomer selected from the group consisting of

a) an α,α' -X-Y-epoxide, or an α,α' -X-Y-oxetane, where X is oxygen, sulfur, PEG, PPG, or poly (THF) and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, C₁ to C₃₀ substituted or unsubstituted aryls;

b) a monomer which is polymerizable with a PEG, PPG or poly (THF) cross-linker having at least one α,α' -X-Y-epoxide or α,α' -X-Y-oxetane, where X is oxygen, sulfur, PEG, PPG or poly (THF), and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, C₁ to C₃₀ substituted or unsubstituted aryls; and

c) mixtures thereof.

32. (Original) Method according to claim 31, which comprises

a) copolymerizing a polymerizable monomer having the general formula

wherein

$$n = 0 \text{ or } 1$$

A₁ H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, PEG, PPG, poly (THF), hydroxyl, C₁-C₃₀ alkyloxy, C₁-C₃₀ hydroxyalkyl, amino, C₁-C₃₀, alkylamine, C₁-C₃₀ aminoalkyl, formyl, C₁-C₃₀ alkylaldehyde, thiol, C₁-C₃₀ alkylthiol, halogen or an C₁-C₃₀ halogenoalkyl; and

B₁ is selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls;

together with

i) a secondary cross-linker of the general formula

wherein

m and **o** are independently 0 or 1;

D₁ represents a C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF); and

C₁ and **E₁** are independently selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls;

ii) a tertiary cross-linker of the general formula

wherein

p, **q** and **r** are independently 0 or 1;

F₁, **G₁** and **H₁** represent independently a C₁-C₃₀ alkyl, C₂-C₃₀ aryl, C₃-C₃₀ aralkyl, oxygen, sulphur, PEG, PPG or poly (THF);

I₁, J₁ and K₁ are independently selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls; and

L₁ represents H, C₁-C₃₀ alkyl, C₂-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an C₁-C₃₀ alkylol protecting group; or

iii) a comb-like or a star-shaped cross-linker derivatized with an α,α'-X-Y-epoxide or an α,α'-X-Y-oxetane, where X is selected from the group consisting of oxygen, sulfur, PEG, PPG and poly (THF)), and Y is selected from the group consisting of C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls; and

b) chemically modifying said polyether so as to obtain a polyether derivative selected from the group consisting of aldehyde, amine, ketone, halogen, carboxylic acid, thiol, amide and or ester resin.

33. (Original) Method according to claim 32, wherein said cross-linked polyether is obtained by suspension cationic polymerization.

34. (Original) Method according to claim 32, which comprises carrying said copolymerization in the presence of additional polymerizable monomers selected from the group consisting of epoxides, oxetanes, vinyl and allyl ethers.

35. (Currently Amended) Method according to claim 25 [~~or 32~~], which comprises synthesizing the cross-linked polyether into beaded form.

36. (Original) Method according to claim 31, which comprises functionalizing said α,α' -X-Y-epoxide or α,α' -X-Y-oxetane monomer with groups capable of anchoring linkers.

37. (Original) Method according to claim 32, which comprises functionalizing said α,α' -X-Y-epoxide or α,α' -X-Y-oxetane cross-linker with groups capable of anchoring linkers.

38. (Currently Amended) Method according to ~~any one of claims 29, 30, 36 and 37~~ claim 29, wherein said groups are selected from aldehydes, alcohols, halogens, ketones, amino, and phenyl groups which can be derivatized into said anchoring linkers.

39. (Original) Method according to claim 35, which comprises forming, said beads by normal or inverse suspension.

40. (Original) Method according to claim 32, which comprises carrying said copolymerization in the presence of additional polymerizable monomers selected from the group consisting of epoxides, oxetanes, vinyl and allyl ethers.

41. (Currently Amended) Monomers or cross-linkers as defined in ~~any one of claims 1 to 23~~ claim 1.

42. (Original) A compound of formula

wherein

A is PEG, PPG, poly (THF), hydroxyl, C₁-C₃₀ alkyloxy, C₁-C₃₀ hydroxyalkyl, amino, C₁-C₃₀, alkylamine, C₁-C₃₀ aminoalkyl, formyl, C₁-C₃₀ alkylaldehyde, thiol, C₁-C₃₀ alkylthiol, halogen or C₁-C₃₀ halogenoalkyl; and

B represents an electron withdrawing group, an electron releasing group or an aryl.

43. (Original) A compound of formula

wherein

D is PEG, PPG or poly (THF); and

C and **E** represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl.

44. (Original) A compound of formula

wherein

F, **G** and **H** represent independently PEG, PPG or poly (THF);

I, **J** and **K** represent independently an electron withdrawing group, an electron releasing group or a C₁-C₃₀ aryl; and

L represents H, C₁-C₃₀ alkyl, C₁-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an alcohol protecting group.

45. (Original) A compound of formula

wherein

$$n = 0 \text{ or } 1$$

A₁ represents PEG, PPG, poly (THF); and

B₁ is selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls.

46. (Original) A compound of formula

wherein

m and **o** are independently 0 or 1;

D₁ represents PEG, PPG or poly (THF); and

C₁ and **E₁** are independently selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls.

47. (Original) A compound of formula

wherein

p, **q** and **r** are independently 0 or 1;

F₁, **G₁** and **H₁** represent independently PEG, PPG or poly(THF);

I₁, **J₁** and **K₁** are independently selected from the group consisting of electron withdrawing groups, C₃ to C₅₀ unsubstituted linear or branched alkanes, C₁ to C₅₀ substituted linear or branched alkanes, C₃ to C₅₀ unsubstituted linear or branched arylalkanes, and C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls.

arylalkanes, C₂ to C₅₀ substituted linear or branched arylalkanes, and C₁ to C₃₀ substituted or unsubstituted aryls; and

L₁ represents H, C₁-C₃₀ alkyl, C₂-C₃₀ aryl, C₃-C₃₀ aralkyl, glycidyl, C₁-C₃₀ alkylglycidyl, hydroxyl or an alcohol protecting group.

48. (Currently Amended) Use of a compound as defined in ~~any one of claims 42 to 47~~ claim 42 for preparing a polyether polymer.

49. (Currently Amended) Use of a compound as defined in ~~any one of claims 42 to 47~~ claim 42, for preparing a cross-linked polyether resin.

50. (Currently Amended) Use of a compound as defined in ~~[any one of claims 42 to 47]~~ claim 42, for preparing a polymeric support for use in bioorganic or organic chemistry.

51. (Currently Amended) Use of a compound as defined in ~~any one of claims 43 to 47~~ claim 43, as a cross-linker.

51. (Currently Amended) Use of a compound as defined in ~~any one of claims 43 to 47~~ claim 43, as a cross-linker.

52. (Original) A cross-linked polyether resin comprising a unit of formula

wherein n has a value of 1 to 100.