2010 级本科班概率统计期末试卷参考答案

一. (30分)

1. (10 分)记 $_A$ 为事件"利率下调",那么 $_{\overline{A}}$ 即为"利率不变",记 $_{\overline{B}}$ 为事件"股票价格上涨".则 $_{\overline{A}}$ $_{\overline$

(1)
$$P(B) = P(A)P(B|A) + P(\overline{A})P(B|\overline{A}) = 60\% \times 80\% + 40\% \times 40\% = 64\%.$$

(2)
$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{3}{4}$$

2. (10分)解: (1)

X	0	1	2	Y	-1	0	2
Р	0.3	0. 45	0. 25	Р	0. 55	0. 25	0. 2

 $p_{11} \neq p_{1.} \cdot p_{.1}$,所以不独立

(2)

XY	-2	-1	0	2	4
 Р	0. 15	0.3	0.35	0. 1	0. 1

(3)
$$E(X+2Y) = EX + 2EY = 0.95 - 0.3 = 0.65$$

3. (10 分) 解:
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 其它 \end{cases}$$

(1)
$$F_X(x) = \int_{-\infty}^x f(x)dx = \begin{cases} 0, & x < 0 \\ x, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

(2)
$$y = e^x \Rightarrow x = \ln y \Rightarrow x' = \frac{1}{y}, \quad f_Y(y) = \begin{cases} \frac{1}{y}, & 1 < y < e \\ 0, & \cancel{x} \in Y \end{cases}$$

二. (20分)

1. (12 分) 解: (1) 区域 D 的面积为 $|D| = \int_{-1}^{1} (1-x^2) dx = \frac{4}{3}$

$$f(x,y) = \begin{cases} \frac{3}{4}, & 0 \le y \le 1 - x^2 \\ 0, & \text{ 其它} \end{cases}$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^{1-x^2} \frac{3}{4} dy, & -1 < x < 1 \\ 0, & \sharp \dot{\Xi} \end{cases} = \begin{cases} \frac{3}{4} (1 - x^2), & -1 < x < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} \frac{3}{4} dx, & 0 < y < 1 \\ 0, & \sharp \dot{\Xi} \end{cases} = \begin{cases} \frac{3}{2} \sqrt{1-y}, & 0 < y < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

 $f(x,y) \neq f_X(x) \cdot f_Y(y)$, 所以 X,Y 不独立.

(3)
$$p{Y \ge X^2} = \frac{\sqrt{2}}{2}$$

2. (8分)解:

Y	0	1	2
0	. 25	0	. 25
1	0	1/3	0
2	1/12	0	1/12

三. (20分)

1. (10 分)解:似然函数
$$L(x_1,x_2,\cdots,x_n;\lambda) = \begin{cases} \lambda^n e^{-\lambda \sum_{i=1}^n x_i}, & x_i > 0 \\ 0, & 其它 \end{cases}$$

对数似然函数

$$\ln L_1(x_1, x_2, \dots, x_n; \lambda) = n \ln \lambda - \lambda \sum_{i=1}^n x_i$$

$$\frac{d \ln L_1(x_1, x_2, \dots, x_n; \lambda)}{d \lambda} = \frac{n}{\lambda} - \sum_{i=1}^n x_i = 0$$

解得:

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\overline{x}}$$

2. $(10 \ \beta)$ μ : $H_0: \mu = 50, H_1: \mu \neq 50$.

取检验统计量
$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1).$$

域
$$|t| = \frac{|\overline{X} - 50|}{\sqrt[S]{n}} > t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(8) = 2.306$$

由样本观测值算得,
$$|t| = \frac{|\overline{x} - 50|}{s\sqrt{n}} = 0.56 < 2.306$$

故接受原假设 H_0 ,即认为包装机正常工作.

四. (每空3分)

1~6. DBCBDD; 7. 0.6; 8. 1, 16; 9. $\Phi(2)$.