Геометрия и топология. Неофициальный конспект

Лектор: Лебедева Нина Дмитриевна Конспектировал Леонид Данилевич

I семестр, осень 2022 г.

Оглавление

1	База	а топологии 3
	1.1	Метрические пространства
		1.1.1 Примеры метрических пространств
	1.2	Топологические пространства
		1.2.1 Примеры топологических пространств
		1.2.2 Примеры замкнутых множеств
	1.3	Метрики и топологии
	1.4	Сравнение метрик и топологий
	1.5	Специальные точки множеств в топологии
		1.5.1 Внутренность множества. Внутренние точки
		1.5.2 Замыкание множества. Точки прикосновения
		1.5.3 Граница множества, граничные точки
		1.5.4 Предельные, изолированные точки
	1.6	База топологии
	1.7	Подпространства
		1.7.1 Свойства подпространства
	1.8	Произведение метрических пространств
		1.8.1 Тихоновская топология прямого произведения бесконечного числа пространств 13
2	Неп	рерывные отображения 15
	2.1	Свойства образа и прообраза
	2.2	Непрерывность отображения
	2.3	Локальная непрерывность
	2.4	Гомеоморфизмы
	2.5	Фундаментальные покрытия
	2.6	Непрерывность и произведение пространств
	2.7	Арифметические операции над непрерывными функциями
	2.8	Топологические свойства
		2.8.1 Аксиомы счётности
		2.8.2 Сепарабельные пространства
		2.8.3 Аксиомы отделимости
		2.8.4 Связность
		2.8.5 Линейная связность
		2.8.6 Связность и линейная связность
		2.8.7 Негомеоморфность
		2.8.8 Компактные пространства и множества
	2.9	Полные метрические пространства
		2.9.1 Нигде не плотные множества
	2.10	Секвенциальная компактность
		Вполне ограниченные метрические пространства
		Факторпространства
		2.12.1 Свойства
		2.12.2 Частные случаи факторизации
	2 13	Миогообразия 40

		2.13.1 Модельные поверхности	
3	Геом	етрия	1 6
	3.1	Евклидово пространство	46
	3.2	Ортогональные векторы	48
		Ортогональные преобразования	
		3.3.1 Ориентация векторного пространства	
		3.3.2 Формула в координатах	
		Матрицы Грама	
4			53
	4.1	Аффинные отображения	56

Глава 1

База топологии

Лекция I

8 ноября 2022 г.

1.1 Метрические пространства

Рассмотрим произвольное множество X. Введём на нём метрику $d: X \times X \to \mathbb{R}_{\geqslant 0}$, удовлетворяющую некоторым тождествам:

$$\forall x, y \in X : ad(x, y) = 0 \iff x = y \tag{1.1}$$

Симметричность:

$$\forall x, y \in X : d(x, y) = d(y, x) \tag{1.2}$$

Неравенство треугольника:

$$\forall x, y, z \in X : d(x, y) + d(y, z) \geqslant d(x, z) \tag{1.3}$$

Определение 1.1.1 (Метрическое пространство). Пара (X, d), где d удовлетворяет трём вышеперечисленным аксиомам.

При проверке, что некая функция действительно является метрикой, сложности чаще всего вызывает проверка третьей аксиомы, неравенства треугольника. Скорее всего, проверки остальных двух аксиом я буду опускать.

1.1.1 Примеры метрических пространств

- Дискретная метрика может быть введена на любом множестве $X:d(x,y)= egin{cases} 0, & x=y \\ 1, & x
 eq y \end{cases}$
- Для $X=\mathbb{R}^n$ манхеттенская метрика $d(x,y)=\sum\limits_{i=1}^n|x_i-y_i|.$
- Для $X=\mathbb{R}^n$ шахматная метрика (метрика Чебышёва) $d(x,y)=\max_{i=1}^n|x_i-y_i|.$
- Для X=C[0;1] множества непрерывных функций $[0;1] \to \mathbb{R}$ можно задать метрику $d(x,y)=\max_{t\in [0;1]}|x(t)-y(t)|$. Данная метрика вместе с C[0;1] образуют пространство непрерывных функций (X,d).

• Для $X = \mathbb{R}^n$ евклидова метрика $d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$. Проверим, что для евклидовой метрики выполняется неравенство треугольника:

Теорема 1.1.1 (Прямое произведение метрических пространств). Пусть (X_1,d_1) и (X_2,d_2) — метрические пространства. Тогда функция $d:(X_1\times X_2)\times (X_1\times X_2)\to \mathbb{R}_{\geqslant 0}$, определённая $d((A_1,A_2),(B_1,B_2))=\sqrt{d_1(A_1,B_1),d_2(A_2,B_2)}$, задаёт метрику на $X_1\times X_2$.

Доказательство.

Проверим неравенство треугольника: рассмотрим $(A_1, A_2), (B_1, B_2), (C_1, C_2) \in X_1 \times X_2$.

Обозначим $a_i = d_i(B_i, C_i), b_i = d_i(A_i, C_i), c_i = d_i(A_i, B_i).$

Используя свойства неравенств треугольника для d_1 и d_2 , получаем

$$\sqrt{c_1^2 + c_2^2} \leqslant \sqrt{(a_1 + b_1)^2 + (a_2 + b_2)^2}$$

Рассмотрим на плоскости треугольник с координатами вершин $(0,0),(b_1,b_2),(a_1+a_2,b_1+b_2)$. Неравенство треугольника для него выглядит

$$\sqrt{(a_1+b_1)^2+(a_2+b_2)^2} \leqslant \sqrt{a_1^2+a_2^2} + \sqrt{b_1^2+b_2^2}$$

Дальше, по транзитивности, получаем $\sqrt{c_1^2+c_2^2}\leqslant \sqrt{a_1^2+a_2^2}+\sqrt{b_1^2+b_2^2}$, откуда в самом деле d является метрикой.

Следствие 1.1.1. На произведении n пространств $X_1 \times \cdots \times X_n$ аналогичная функция

$$d((a_1, \dots, a_n), (b_1, \dots, b_n)) = \sqrt{\sum_{i=1}^n d_i(a_i, b_i)}$$

также является метрикой.

Замечание. Также иногда рассматривают метрику на прямом произведении пространств $d((a_1,a_2),(b_1,b_2))=\max\{d_1(a_1,b_1),d_2(a_2,b_2)\}$. Проверить, что данная функция тоже является метрикой, довольно просто.

• Определение 1.1.2 (Сужение метрического пространства). Метрическое пространство (X,d) можно сузить на $Y\subset X$, метрикой будет $d\big|_{Y\times Y}$.

Определение 1.1.3 (Открытый шар в метрическом пространстве (X,d) с центром в $a \in X$ и радиусом r > 0). $B_r(a) = \{x \in X | d(a,x) < r\}$.

Определение 1.1.4 (Замкнутый шар в пространстве (X,d) с центром в $a \in X$ и радиусом r > 0). $\overline{B_r}(a) = \{x \in X | d(a,x) \le r\}.$

По умолчанию все шары открыты.

Определение 1.1.5 (Сфера в метрическом пространстве (X,d) с центром в $a \in X$ и радиусом r > 0). $S_r(a) = \{x \in X | d(a,x) = r\}.$

Определение 1.1.6 (Расстояние от точки $a \in X$ до подмножества $A \subset X$). inf $\{d(x,a)|x \in A\}$

Определение 1.1.7 (Окрестность множества $A \subset X$ с радиусом r). $U_r(A) = \{x \in X | d(x, A) < r\}$.

Определение 1.1.8 (Диаметр множества $A \subset X$). diam $(A) = \sup \{d(x,y) | x, y \in X\}$.

Если $\operatorname{diam}(A) < \infty$, то множество называют ограниченным.

Несложно проверить, что условие ограниченности эквивалентно тому, что множество лежит в некотором (открытом) шаре.

Определение 1.1.9 (Множество $A \subset X$ открыто). Любая точка $a \in A$ содержится в A вместе с некоторым своим шаром:

$$\forall a \in A : \exists r > 0 : B_r(a) \subset A$$

Факт 1.1.1. Множество A открыто, если оно представимо, как объединение множества открытых шаров. $A = \bigcup_{\alpha \in A} B_{r_{\alpha}}(x_{\alpha}).$

Доказательство.

- ⇒. Возьмём для каждой точки шар, с которым она содержится в множестве, и объединим их всех.
- \Leftarrow . Для каждой точки x из шара S подойдёт шар радиусом r(S)-d(x,c(S)), проверяется неравенством треугольника. \Box

Следствие 1.1.2. Открытый шар открыт.

3амечание. В метрике (X,d) X и \varnothing открыты.

В дискретной метрике (все расстояния целые) (X,d) любое одноэлементное множество открыто. Достаточно рассмотреть шар радиусом $^{1}\!/_{2}$.

Теорема 1.1.2. Объединение открытых множеств открыто. Пересечение **конечного** числа открытых множеств открыто.

Доказательство.

- Очевидно из определения через объединение шаров
- Всякая точка $a \in A$ лежит вместе с шаром радиуса $\min(r_1, \dots, r_n)$, где r_i радиус открытого шара с центром в a, содержащегося в A_i .

Замечание. $[0;1] = \bigcap \left(-\frac{1}{n};1+\frac{1}{n}\right)$ — пересечение бесконечного числа открытых множеств может не быть открыто.

Предложение 1.1.1. Все открытые множества на прямой — дизъюнктные объединения интервалов.

Доказательство.

Заметим, что $B_r(x) = (x - r; x + r)$.

Для каждой точки можно найти максимальный по включению интервал, содержащийся в множестве, и содержащий данную точку.

Любые два таких интервала либо уж не пересекаются, либо уж совпадают.

1.2 Топологические пространства

Пусть X — произвольное множество. Рассмотрим $\Omega \subset 2^X$, такое, что

$$\varnothing \in \Omega; \quad X \in \Omega$$

$$\forall U \subset \Omega : \bigcup U \in \Omega$$

$$\forall U \subset \Omega : (|U| < \infty \Rightarrow \bigcap U \in \Omega)$$

Тогда будем говорить, что Ω — топологическая структура (топология) на множестве X.

Определение 1.2.1 (Топологическое пространство (X,Ω)). Множество X с заданной на нём топологией Ω .

В топологических пространствах элементы Ω называют открытыми множествами.

1.2.1 Примеры топологических пространств

• Для метрического пространства (X,d) определяют индуцированное метрикой d топологическое пространство (X,Ω_d) где Ω_d — множество подмножеств X, метрически открытых в X.

Так, на прямой $\mathbb R$ при рассмотрении дискретной метрики $d(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$, или стандартной метрики d(x,y) = |x-y|, получаются различные топологические пространства.

Дискретную метрику можно определить на любом множестве, породится дискретная топология $\Omega = 2^X$.

- Антидискретная топология $\Omega = \{\varnothing, X\}.$
- Определение 1.2.2 (Топология стрелки). : (\mathbb{R},Ω) , где $\Omega=\left\{(a;+\infty)\Big|a\in\mathbb{R}\right\}\cup\{\varnothing,\mathbb{R}\}$. Замечание. Пространство при $\Omega=\left\{[a;+\infty)\Big|a\in\mathbb{R}\right\}\cup\{\varnothing,\mathbb{R}\}$ не удовлетворяет второй аксиоме
- Топология конечных дополнений: для произвольного $X:\Omega = \Big\{A\subset X\Big||X\backslash A|<\infty\Big\}.$
- На двухточечном множестве $\{0,1\}$ есть 4 различные топологии, из них интересна (может быть?) топология $\Omega = \{\varnothing, \{0\}, \{0,1\}\}$ (или $\{\varnothing, \{1\}, \{0,1\}\}$, неважно).

Определение 1.2.3 (Замнкутое множество). Множество с открытым дополнением

Теорема 1.2.1. Для топологического пространства (X,Ω)

 \emptyset, X замкнуты

пересечение замкнутых множеств замкнуто объединение конечного числа замкнутых множеств замкнуто

Доказательство. Следует из формулы двойственности де Моргана.

1.2.2 Примеры замкнутых множеств

- В дискретной метрике все множества замкнуты, так как все (их дополнения) открыты.
- На прямой \mathbb{R} со стандартной метрикой отрезки [a,b] и точки $\{a\}$ замкнуты.
- Хорошего вида у замкнутых множеств нет: так, Канторово множество замкнуто.

Определение 1.2.4 (Канторов множество). Строится итеративно:

- 1. Берём отрезок [0; 1].
- 2. Вырезаем из него средний интервал, равный трети длины (1/3; 2/3).
- 3. Осталось два отрезка, $[0; \frac{1}{3}]$ и $[\frac{2}{3}; 1]$. Опять вырезаем из каждого средний интервал, равные трети длины.
- 4. И так далее: можно доказать по индукции, что на очередном шагу будет некоторое конечное множество непересекающихся отрезков.

Канторово множество замкнуто, так как можно взять последовательность надмножеств Канторова множества, появляющихся в определении (каждое замкнуто) и взять их пересечение.

• Точка и вообще замкнутый шар замкнуты в любом метрическом пространстве.

Доказательство. Несложно проверить.

Факт 1.2.1. Для топологического пространства (x,Ω) $U \backslash F = U \cap \overline{F}$ открыто, где U — открыто, F — замкнуто.

Факт 1.2.2. Для топологического пространства (x,Ω) $F \setminus U = F \cap \overline{U}$ замкнуто, где U — открыто, F — замкнуто.

1.3 Метрики и топологии

Определение 1.3.1 (Метризуемое топологическое пространство (X,Ω)). Существует метрика $d: X \times X \to \mathbb{R}$, такая, что $\Omega = \Omega_d$.

Дискретная топология метризуема, порождается дискретной метрикой.

Факт 1.3.1. Для X:|X|>1 антидискретная топология не является метризуемой.

Доказательство. Так как |X|>1, то $\exists x,y\in X: B_{\frac{d(x,y)}{2}}(x)$ содержит x, но не содержит y.

Факт 1.3.2. Стрелка (определение 1.2.2) тоже не метризуема.

 $\ensuremath{\mathcal{L}\xspace}$ оказательство. Найдётся два непустых непересекающихся шара, но в стрелке любе два непустых открытых множества пересекаются.

Факт 1.3.3. Топология конечных дополнений метризуема \iff множество X конечно.

Доказательство. $|X| < \infty$ — топология дискретна.

 $|X|\geqslant \infty$ — неметризуема по той же причине, что и стрелка, любые два открытых пересекаются $\ \Box$

1.4 Сравнение метрик и топологий

Пусть на множестве X заданы две различные топологии Ω_1 и Ω_2 , причём $\Omega_1 \subseteq \Omega_2$. Говорят, что Ω_1 слабее (грубее) Ω_2 , или же Ω_2 сильнее (точнее) Ω_1 .

Из определения видно, что дискретная топология — самая сильная, а антидискретная — самая

Теорема 1.4.1. Для множества X с двумя метриками d_1 и d_2 топология Ω_{d_1} слабее Ω_{d_2} , если и только если

$$\forall B_{r_1}^{d_1}(a) : \exists r_2 : B_{r_1}^{d_1}(a) \supseteq B_{r_2}^{d_2}(a)$$

Доказательство.

- \Rightarrow . Рассмотрим шар $B^{d_1}_{r_1}(a)$. Он открыт в первой топологии, но первая слабее, значит, открыт во второй. Значит, $\exists r_2: B^{d_1}_{r_1}(a) \supseteq B^{d_2}_{r_2}(a)$
- \Leftarrow . Для множества U, открытого в первой топологии, найдётся объединению шаров в первой топологии, равное ему.

Из условия теоремы каждый такой шар содержит шар во второй метрике. Объединив их все, получим, что U открыто во второй топологии.

Лекция II

15 ноября 2022 г.

Следствие 1.4.1. Для двух метрик d_1 и d_2 , определённых на одном и том же множестве X, условие $\forall x,y \in X: d_1(x,y) \leqslant d_2(x,y)$ влечёт условие: топология (X,d_1) грубее топологии (X,d_2) .

Определение 1.4.1 ((Топологически) эквивалентные метрики). Метрики, порождающие одно и то же топологическое пространство.

Замечание. Для $C \in \mathbb{R}_{>0}$ и метрики $d_1: X \times X \to \mathbb{R}_{\geqslant 0}$ функция Cd_1 — тоже метрика, причём эквивалентная d_1 .

Доказательство. Рассмотреть шары.

Замечание. Метрика d_1 грубее метрики d_2 , если $\exists C>0: \forall x,y: d_1(x,y)\leqslant C\cdot d_2(x,y).$

Доказательство. Cd_2 эквивалентна d_2 и точнее d_1 .

Определение 1.4.2 (Липшицево эквивалентные метрики d_1 и d_2). Такие метрики, что $\exists c, C > 0$: $\forall x, y \in X : c \cdot d_2(x, y) \leqslant d_1(x, y) \leqslant C \cdot d_2(x, y)$.

Замечание. Липшицева эквивалентность влечёт топологическую эквивалентность. Обратное в общем случае неверно: метрики |x-y| и $\sqrt{|x-y|}$ на $\mathbb R$ эквивалентны лишь топологически.

Так, на прямом произведении множеств метрики

$$d((A_1, A_2), (B_1, B_2)) = \sqrt{d_1(A_1, B_1)^2 + d_2(A_2, B_2)^2} \cdot \widetilde{d}((A_1, A_2), (B_1, B_2)) = \max d_1(A_1, B_1)^2, d_2(A_2, B_2)^2.$$

билипшицево эквивалентны (что такое билипшицево эквивалентны? Тем не менее, просто липшицева эквивалентность понятна). Более точно, $\forall x,y:\widetilde{d}(x,y)\leqslant d(x,y)\leqslant\sqrt{2}\widetilde{d}(x,y).$

На обычной плоскости \mathbb{R}^2 метрики

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\max\{|x_1 - x_2|, |y_1 - y_2|\}$$

$$|x_1 - x_2| + |y_1 - y_2|$$

липшицево эквивалентны. Коэффициенты не превосходят 2.

1.5 Специальные точки множеств в топологии

Рассмотрим произвольную топологию (X, Ω) .

1.5.1 Внутренность множества. Внутренние точки

Определение 1.5.1 (Внутренность множества A). Наибольшее по включению открытое множество, содержащееся в A, как подмножество.

Замечание. Существование следует из того, что объединение любого количества открытых множеств открыто.

Свойства внутренности

- Int $A \subset A$
- Для открытого $B:B\subset A\Rightarrow B\subset {\rm Int}\,A.$
- $A = \operatorname{Int} A \iff A$ открыто.
- Int(Int A) = Int A.
- $A \subset B \Rightarrow \operatorname{Int} A \subset \operatorname{Int} B$.
- $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$.

Доказательство.

$$\subseteq A \cap B \subseteq A \Rightarrow \operatorname{Int}(A \cap B) \subseteq \operatorname{Int} A.$$

$$\supseteq \left. \begin{array}{l} \operatorname{Int} A \subseteq A \\ \operatorname{Int} B \subseteq B \end{array} \right\} \Rightarrow \operatorname{Int} A \cap \operatorname{Int} B \subseteq A \cap B \stackrel{\operatorname{Int} \cap \operatorname{Int}}{\Rightarrow} \operatorname{OTKPDITO} \operatorname{Int} A \cap \operatorname{Int} B \subseteq \operatorname{Int}(A \cap B).$$

• $\operatorname{Int}(A \cup B) \supset \operatorname{Int} A \cup \operatorname{Int} B$

Доказательство.

$$\supseteq \left. \begin{array}{l} \operatorname{Int} A \subseteq A \\ \operatorname{Int} B \subseteq B \end{array} \right\} \Rightarrow \operatorname{Int} A \cup \operatorname{Int} B \subseteq A \cup B \stackrel{\operatorname{Int} \cup \operatorname{Int} \text{ открыто}}{\Rightarrow} \operatorname{Int} A \cup \operatorname{Int} B \subseteq \operatorname{Int}(A \cup B).$$

$$\neq$$
 в общем случае: Для $A=\mathbb{Q}$ и $B=\mathbb{I}$ $\mathrm{Int}(A\cup B)=\mathbb{R}$, но $\mathrm{Int}\,A\cup\mathrm{Int}\,B=\varnothing$.

Определение 1.5.2 (Окрестность точки $x \in (X, \Omega)$). Любое открытое множество, содержащее x.

Определение 1.5.3 (Внутренняя точка). Содержится с некой своей окрестностью.

Теорема: внутренность множества — множество его внутренних точек. Доказательство: Докажем два включения. $\forall b \in B$ рассмотрим окрестность U(b), как внутренней точки A. Это открытое подмножество A, значит, $U(b) \subset \operatorname{Int} A$. Отсюда $B \subset \operatorname{Int} A$. С другой стороны, для любой точки из $\operatorname{Int} A$ верно, что она внутренняя — подходящей окрестностью является сама $\operatorname{Int} A$.

Следствие: А открыто - все его точки внутренние.

1.5.2 Замыкание множества. Точки прикосновения

Определение 1.5.4 (Замыкание множества A). Пересечение всех замкнутых множеств, его содержащих.

Обозначается $\operatorname{Cl} A$ или $\operatorname{Clos} A$.

3амечание. Замыкание — наименьшее замкнутое множество, содержащее данное. СІ $A = \bigcap_{X \setminus \mathcal{F} \in \Omega \land \mathcal{F} \supset A} \mathcal{F}$

Свойства замыкания

- Замыкание замкнуто
- $A \subset \operatorname{Cl} A$.
- Для замкнутого $B: B \supset A \Rightarrow B \supset \operatorname{Cl} A$.
- $A = \operatorname{Cl} A \iff A \operatorname{замкнуто}.$
- $A \subset B \Rightarrow \operatorname{Cl} A \subset \operatorname{Cl} B$.
- $Cl(A \cup B) = Cl A \cup Cl B$
- $Cl(A \cap B) \subset ClA \cap ClB$
- $\operatorname{Cl} A = \operatorname{Int} \overline{A}$

Определение 1.5.5 (Точка x — точка прикосновения A). $\forall U(x): U(x) \cap A \neq \emptyset$.

Теорема 1.5.1. Для произвольного $A: \operatorname{Cl} A = \{x \in X | x - \text{точка прикосновения } A\}.$

Доказательство. $\operatorname{Cl} A = X \backslash \operatorname{Int}(X \backslash A)$, откуда, видно, что $\operatorname{Cl} A$ — действительно, множество точек, не содержащих окрестности, которая не пересекается с A.

Следствие 1.5.1. Множество замкнуто \iff оно совпадает со множеством точек прикосновения.

1.5.3 Граница множества, граничные точки

Определение 1.5.6 (Граница множества). Точки, лежащие в замыкании, но не во внутренности: $\operatorname{Fr} A = \operatorname{Cl} A \backslash \operatorname{Int} A$.

Замечание. Точка x — граничная для A, если любая окрестность точки x пересекается и с A, и с \overline{A} .

Теорема 1.5.2. Граница множества совпадает со множеством граничных точек.

Доказательство.

$$(x \in \operatorname{Fr} A) \iff (x \in \operatorname{Cl} A \land x \notin \operatorname{Int} A) \iff (\forall U(b) : U(b) \cap A \neq \varnothing \land U(b) \cap \overline{A} \neq \varnothing) \iff x \in \operatorname{Fr} A$$

Свойства

- Граница замкнутое множество (как пересечение $\operatorname{Cl} A$ и $\overline{\operatorname{Int} A}$).
- $\operatorname{Fr} A = \operatorname{Fr}(X \backslash A)$
- A замкнуто $\iff A \supset \operatorname{Fr} A$.
- A открыто $\iff A \cap \operatorname{Fr} A \neq \emptyset$.

1.5.4 Предельные, изолированные точки

Определение 1.5.7 (x — предельная точка A). Любая проколотая окрестность пересекается с A.

$$\forall U(x) \ni x : (U(x)\backslash x) \cap A \neq \emptyset$$

Определение 1.5.8 (x — изолированная точка A). Существует проколотая окрестность, не пересекающаяся с A.

$$\exists U(x) \ni x : (U(x) \setminus x) \cap A = \emptyset$$

Свойства

- Предельные точки включают точки прикосновения.
- $\operatorname{Cl} A = \operatorname{Int} A \sqcup \operatorname{Fr} A = \{$ предельные точки $A\} \sqcup \{$ изолированные точки $A\}.$

1.6 База топологии

Определение 1.6.1 (Для (X,Ω) $\Sigma\subset\Omega$ — база топологии). $\forall U\in\Omega:\exists\Gamma_U\subset U:U=\bigcup_{w\in\Gamma_U}w=\bigcup\Gamma_U.$

 $\ensuremath{\mathit{\Pi}pedocmepe}$ еение. База не единственна; в качестве Σ всегда можно рассмотреть Ω , но хочется поменьше.

Так, для метризуемой топологии в качестве базы можно рассмотреть множество всех открытых шаров; Для топологии на прямой можно рассмотреть множество всех шаров с рациональным радиусом, или даже радиусом 1/n.

Определение 1.6.2 ($\Gamma \subset 2^X$ — покрытие X). $\bigcup \Gamma = X$.

В частности, любая база топологии — покрытие X, так как X — открыто в любой топологии.

Теорема 1.6.1. Для (X,Ω) Σ — база топологии $\Omega \iff \forall U \in \Omega, \forall a \in U: \exists w \in \Sigma: a \in w \subset U.$

Доказательство.

 \Rightarrow . Пусть $U = \bigcup_{w \in \Gamma} w$.

Тогда для любого $a \in U$: a содержится в каком-то $w \in \Gamma$, и, действительно, $a \in w \subset U$.

 \Leftarrow . Построим для открытого $U\in\Omega$ множество Γ_U из определения базы. Согласно посылке теоремы $\forall a\in U:\exists w_a\in\Sigma:a\in w_a\subset U.$

Рассмотрим в качестве $\Gamma = \{w_a\}_{a \in U}$.

Определение 1.6.3 (Σ_a — база топологии в точке $a \in X$ (база окрестностей)). $\forall w \in \Sigma_a : w \ni a$ и $\forall U(a) : \exists w \in \Sigma_a : w \in U(a)$.

Замечание. Для Σ — базы Ω : $\Sigma_a = \{w \in \Sigma | a \in w\}$ — база топологии в точке a.

Замечание. Обратно: $\bigcup \{\Sigma_a\}$ — база топологии.

В метризуемой топологии базой точки является, например, совокупность шаров с центром в данной точке.

Теорема 1.6.2 (Критерий базы). Рассмотрим $\Sigma = \{B_{\alpha}\}_{{\alpha} \in \Lambda}$ — некоторое покрытие.

 Σ — база некоторой топологии $\iff \forall \alpha_1, \alpha_2: B_{\alpha_1} \cap B_{\alpha_2}$ представимо, как объединение некоторого подмножества B.

Доказательство.

- ⇒. По определению базы топологии (пересечение открытых множеств открыто)
- \Leftarrow . Построим топологию Ω над базой Σ и проверим, что это топология.

$$\Omega := \left\{ \bigcup_{\alpha \in S} B_{\alpha} \middle| S \subset \Lambda \right\}.$$

- 1. \varnothing, X принадлежат Ω (последнее так как Σ покрытие X).
- 2. Объединение двух множеств из Ω очевидно принадлежит Ω .
- 3. Проверим, что пересечение двух множеств из Ω принадлежит Ω .

Пусть
$$U_1=\bigcup_{\alpha\in S_1}B_\alpha$$
, $U_2=\bigcup_{\alpha\in S_2}B_\alpha$. Несложно видеть, что $U_1\cap U_2=\bigcup_{\alpha_1\in S_1,\alpha_2\in S_2}(B_{\alpha_1}\cap B_{\alpha_2})$.

Но согласно свойству, что пересечение элементов Σ является объединением некоторого его подмножества, автоматически получаем, что $U_1 \cap U_2$ — объединение некоторого подмножества Σ .

Для покрытия Σ , удовлетворяющему условию теоремы, обозначим топологию, задаваемую Σ следующим образом: $\Omega(\Sigma)$.

3амечание. $\Omega(\Sigma)$ — наименьшая по включению топология, содержащая Σ . (Наименьшая по включению топология существует, так как пересечение топологий — топология).

Построим топологию из произвольного набора подмножеств $\Delta \subset 2^X$. Тогда построим $\Sigma(\Delta)$, как все конечные пересечения элементов Δ (и само множество X).

$$\Sigma(\Delta) = \{X\} \cup \left\{ \bigcap_{i=1}^{k} \middle| k_i \in \mathbb{N}, w_i \in \Delta \right\}$$

Такая база топологии $\Sigma(\Delta)$ удовлетворяет критерию базы, на ней можно построить топологию $\Omega(\Sigma(\Delta))$.

Такая Δ называется npedbasa — множество подмножеств такое, что база — объединение конечных пересечений его элементов.

3амечание. Δ — предбаза топологии Ω , если Ω — наименьшая по включению топология, содержащая Δ .

1.7 Подпространства

Рассмотрим $A\subset X$ для топологического пространства (X,Ω) . Обозначим $\Omega_A=\{U\cap A|U\in\Omega\}$. Такая Ω_A — топология, индуцированная на подпространстве A.

Несложно убедиться, проверив три аксиомы, что Ω_A — топология на множестве A.

Лекция III 22 ноября 2022 г.

1.7.1 Свойства подпространства

- Множество, открытое в подпространстве, необязательно открыто. Так, подпространство всегда открыто в себе.
- Тем не менее, в открытом подпространстве открытые подмножества исходно открыты.
- Для Σ базы исходной топологии можно определить базу для подпространства A, как $\Sigma_A = \{A \cap U | U \in \Sigma\}.$
- Пусть $B \subset A \subset X$. Тогда топологии Ω_B и $(\Omega_A)_B$ совпадают.

Пусть $A \subset X$, где на X определена метрика d.

На A можно ввести топологию двумя способами:

- 1. Топология, индуцированная на метрике-сужении $d\big|_A$, называется Ω_{d_A}
- 2. Подпространство топологии (X,Ω_d) . Для данной теоремы назовём её Ω^X_A .

Теорема 1.7.1. Эти топологии совпадают.

Доказательство. Проверим, что для всякой пары {точка; открытое множество, её содержащее} из первой топологии, точка содержится в меньшем по включении открытом множестве из второй топологии. И наоборот.

Так как про обе конструкции понятно, что они являются топологиями, то этой проверки будет достаточно.

• $\Omega_{d_A} \subseteq \Omega_A^X$.

Зафиксируем точку $a \in A$ и открытое множество $U \in \Omega_{d_A}$ $(a \in U)$. Так как Ω_{d_A} — индуцирована на метрике, то a содержится с неким открытым шаром радиуса r внутри U.

Этот же шар содержится в исходной топологии Ω

• $\Omega_{d_A} \subseteq \Omega_A^X$.

Зафиксируем точку $a \in A$ и открытое множество $U \in \Omega_A^X$ $(a \in U)$.

 $U=V\cap A$ для некоего $V\in\Omega.$ В множестве V:a содержится вместе с неким шаром радиуса r.

В топологии Ω_A^X есть как раз пересечение этого шара и множества A (так как этот шар был в Ω).

Вроде бы доказательство правильное, на лекции было что-то странное, я, к сожалению, как раз отвлёкся, поэтому вышенаписанное — частично моя импровизация. Тем не менее, не понимаю, почему на доске была разность каких-то радиусов.

1.8 Произведение метрических пространств

Пусть даны метрически пространства (X,Ω_X) и (Y,Ω_Y) .

Положим $\Sigma := \{U \times V | U \in \Omega_X, V \in \Omega_Y\}.$

Теорема 1.8.1. Σ — база некой топологии.

Доказательство. Проверим критерий базы.

$$\forall (u_1 \times v_1), (u_2 \times v_2) \in \Sigma : (u_1 \times v_1) \cap (u_2 \times v_2) = (u_1 \cap u_2) \times (v_1 \cap v_2).$$

Данная формула красиво обосновывается через пересечение прямоугольников.

Из свойства топологии $u1 \cap u_2 \in \Omega_X$ и $v_1 \cap v_2 \in \Omega_Y$.

Определение 1.8.1 (Стандартная топология на произведении пространств). Топология, построенная на базе Σ , определённой выше.

Пример. Пусть Ω — множество метрически открытых множеств в \mathbb{R} .

Тогда стандартная топология на $(R,\Omega) \times (\mathbb{R},\Omega)$ — стандартная топология плоскости.

Доказательство. В базе Σ содержится «открытый квадрат» с данным центром и сколь угодно малым радиусом

Замечание. Перемножать можно не сами топологии, а их базы Σ_X и Σ_Y , всё равно будет база стандартной топологии произведения $\Sigma = \{u \times v | u \in \Sigma_X, v \in \Sigma_Y\}.$

Рассмотрим два метрических пространства (X,d_x) и (Y,d_y) . На их произведении $X \times Y$ топологию можно ввести двумя способами:

- 1. Индуцировать топологию на стандартной метрике произведения пространств $d((x_1,y_1),(x_2,y_2)) = \sqrt{d_x(x_1,x_2)^2 + d_y(y_1,y_2)^2}$.
- 2. Перемножить, как топологические пространства (X,Ω_{d_x}) и (Y,Ω_{d_y}) .

Теорема 1.8.2. Эти топологии совпадают.

Доказательство.

Вместо $d=\sqrt{d_x^2+d_y^2}$ будем рассматривать ей липшицево эквивалентную (определение 1.4.2) метрику $\widetilde{d}=\max\{d_1,d_2\}$. Она индуцирует ту же топологию.

Заметим, что эта топология порождаются базой $\Sigma = \Big\{B_r^{\widetilde{d}}((x,y)) \Big| x \in X, y \in Y, r \in \mathbb{R}_{>0}\Big\}.$

$$\text{Ho }\Sigma=\Big\{B^{\widetilde{d}}_r((x,y))\Big|x\in X,y\in Y,r\in\mathbb{R}_{>0}\Big\}=\Big\{B^{d_x}_r(x)\times B^{d_y}_r(y)\Big|x\in X,y\in Y,r\in\mathbb{R}_{>0}\Big\}.$$

Теперь видно, что Σ является базой $(X,\Omega_{d_x}) \times (Y,\Omega_{d_y})$ тоже. В самом деле, если перемножить базы — открытые шары в d_x и d_y , то получится база $\Sigma' = \left\{B^{d_x}_{r_1}(x) \times B^{d_y}_{r_2}(y) \middle| x \in X, y \in Y, r_1, r_2 \in \mathbb{R}_{>0}\right\}$. Но — так как можно взять из радиусов наименьший — мы поймём, что $\Omega_{\Sigma'} = \Omega_{\Sigma}$.

1.8.1 Тихоновская топология прямого произведения бесконечного числа пространств

Рассмотрим множество пространств, проиндексированное Λ : $\{(X_{\alpha}, \Omega_{\alpha})\}_{\alpha \in \Lambda}$.

Определение 1.8.2 (Прямое произведение множеств $\{X_{\alpha}\}_{\alpha\in\Lambda}$).

Множество функций
$$X = \left\{ x \in \left(\bigcup_{\alpha \in \Lambda} X_{\alpha}\right)^{\Lambda} \middle| \forall \alpha \in \Lambda : x(\alpha) \in X_{\alpha} \right\}.$$

Определение 1.8.3 (Координатная проекция). Функция $p_{\alpha}: X \to X_{\alpha}: p_{\alpha}(x) = x(\alpha).$

Определение 1.8.4 (Цилиндр). Подмножество произведения, открытое в одном сомножителе, и совпадающее с другими. Формально, $p_{\alpha}^{-1}(U)$ для некоего $\alpha \in \Lambda$ и $U \in \Omega_{\alpha}$.

Определение 1.8.5 (Тихоновская топология произведения пространств $\{(X_{\alpha},\Omega_{\alpha})\}_{\alpha\in\Lambda}$). Топология строится с помощью предбазы $\Delta:=\left\{p_{\alpha}^{-1}(U)\middle|\alpha\in\Lambda,U\in\Omega_{\alpha}\right\}$.

 $\mathit{Замечаниe}.$ Для $|\Lambda| < \infty$ топология совпадает с ранее определённой.

Глава 2

Непрерывные отображения

2.1 Свойства образа и прообраза

Задана функция $f: X \to Y$.

Определение 2.1.1 (Образ $A \subset X$). $f(A) \stackrel{def}{=} \{ f(a) | a \in A \}$.

Определение 2.1.2 (Прообраз $B \subset Y$). $f^{-1}(B) \stackrel{def}{=} \{a \in A | f(a) \in B\}$.

- 1. Прообраз объединения объединение прообразов $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- 2. Прообраз пересечения пересечение прообразов $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 3. Прообраз дополнения дополнение прообраза $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$.
- 4. Образ объединения объединение образов $f(A \cup B) = f(A) \cup f(B)$.
- 5. Образ пересечения **содержится в** пересечении образов $f(A \cap B) \subseteq f(A) \cap f(B)$. Контрпример. $f: x \mapsto x \pmod 2$.

$$\{1\} = f(\{0,1\} \cap \{1,2\}) \subseteq f(\{0,1\}) \cap f(\{1,2\}) = \{0,1\}$$

Определение 2.1.3 (Тождественное отображение). $id_X : X \to X; \quad x \mapsto x.$

Определение 2.1.4 (Вложение $A \subset X$ в X). $in_{A \to X} : A \to X; \quad x \mapsto x.$

2.2 Непрерывность отображения

Пусть X, Y — топологические пространства.

Определение 2.2.1 (Непрерывное отображение $f: X \to Y$). Отображение, в открытые множества переводящее только открытые множества. $\forall U \in \Omega_Y: f^{-1}(U) \in \Omega_X$.

Замечание. Применив дополнение, очевидно, что альтернативным определением является то же про замкнутые множества: $\forall V \notin \Omega_Y : f^{-1}(V) \notin \Omega_X$

 Π ример. id_X непрерывно: прообраз всякое открытого множества открыт.

Пример. f(x) = c — постоянное отображение — непрерывно: прообраз всякое множества открыт (либо X, либо \varnothing).

Пример. Если в X много открытых множеств, или в Y мало, то $f:X\to Y$ непрерывна. Так, непрерывны функции, определённые на дискретном X и/или действующие в антидискретное Y.

3амечание. Если X_2 тоньше X_1 , а Y_2 грубее Y_1 , то $f:X_1\to Y_1$ непрерывна $\Rightarrow f:X_2\to Y_2$ непрерывна.

Теорема 2.2.1. Композиция непрерывных функций непрерывна.

Так, пусть $f: X \to Y$ и $g: W \to X$.

Доказательство.
$$\forall U \in \Omega_W : g^{-1}(U) \in \Omega_X \Rightarrow (f \circ g)^{-1}(U) = f^{-1}(g^{-1}(U)) \in \Omega_Y.$$

Следствие 2.2.1. Если f непрерывна, то её сужение $f\big|_W$ непрерывно.

Доказательство. Рассмотреть $g = in_{W \to X}$.

Пусть $f: X \to Y$, а множество Z таково, что $f(x) \subset Z \subset Y$.

Положим $\widetilde{f}: X \to Z$, $\widetilde{f}(x) = f(x)$.

Теорема 2.2.2. f непрерывна $\iff \widetilde{f}$ непрерывна.

Доказательство.

- \Rightarrow . $f = \operatorname{in}_{Z} \circ \widetilde{f}$
- \Leftarrow . Всякое открытое множество в Z имеет вид $w=u\cap Z$ для некоего $U\in\Omega_Y.$

$$f^{-1}(w) = f^{-1}(u) \cap f^{-1}(Z) = f^{-1}(u)$$

2.3 Локальная непрерывность

Определение 2.3.1 $(f: X \to Y \text{ непрерывна в } a \in X)$. $\forall U \ni f(a): \exists V \ni a: f(V) \subseteq U$.

Теорема 2.3.1. Функция f непрерывна \iff во всякой точки области определения функция непрерывна.

Доказательство.

- ⇒. Очевидно из определений.
- \Leftarrow . Рассмотрим $U \in \Omega_Y$. Проверим, что $f^{-1}(U)$ открыто. $f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} V(x)$, где V(x) 0 окрестность точки x, содержащая образ в U. Объединение открытых открыто. \Box

Замечание. Условие локальной непрерывности можно проверять не на всех открытых множествах, а только на базах окрестностей Σ_a и $\Sigma_{f(a)}.$

Следствие 2.3.1. Для метрических пространств X, Y удобно рассмотреть в качестве базы множество открытых шаров. Определение непрерывности в таком случае переписывается так:

f непрерывна в точке $a:\iff \forall arepsilon>0:\exists \delta>0:f(B^{d_X}_\delta(a))\subset B^{d_Y}_arepsilon(f(a)).$

f непрерывна в точке $a:\iff \forall arepsilon>0:\exists \delta>0:d_X(x-a)<\delta\Rightarrow d_Y(f(x)-f(a))<arepsilon.$

Узнали? Согласны?

Определение 2.3.2 (Липшицево отображение между метрическими пространствами). Такое отображение $f: X \to Y$, что $\exists C \in \mathbb{R}_{>0}: \forall a,b \in X: d_Y(f(a),f(b)) \leqslant C \cdot d_X(a,b)$.

Константа C из определения — константа Липшица. Отображение, липшицевое с константой c называется c-липшицевым.

Теорема 2.3.2. Липшицево отображение непрерывно.

Доказательство. Легко проверить, что оно непрерывно в любой точке.

Примеры.

- Пусть $x_0 \in X$. Положим $d_{x_0}(y) \stackrel{def}{=} d(x_0, y)$. Утверждается, что $d_{x_0} 1$ -липшицево.
- Более общий случай: пусть $A \subset X$. Положим $d_A(y) \stackrel{def}{=} d(A,y) \stackrel{def}{=} \inf_{a \in A} d(a,y)$. Утверждается, что $d_A 1$ -липшицево.

Доказательство. По определению инфимума $\forall \tau > 0: \exists a_y \in A: d(y, a_y) < d(y, A) + \tau.$

Тогда $d(x,A) \leqslant d(x,a_y) \leqslant d(x,y) + d(y,a_y) \leqslant d(x,y) + d(y,A) + \tau$ — дважды применили неравенство треугольника.

Используя $\forall \tau > 0: d(x,A) \leqslant d(x,y) + d(y,A) + \tau$, получаем $d(x,A) \leqslant d(x,y) + d(y,A)$.

Аналогично-симметрично $d(y,A) \leqslant d(x,y) + d(x,A)$, то есть $|d_A(x) - d_A(y)| \leqslant d(x,y)$.

• Пусть d — произвольная метрика на X. $d: X \times X \to R.$ Утверждается, что d — липшицево отображение.

Коэффициент зависит от того, как определена метрика на произведении. Для $d=\sqrt{d_X^2+d_Y^2}$ этот коэффициент равен $\sqrt{2}$.

Доказательство.

Рассмотрим две произвольные точки из области определения: $(a,b),(x,y) \in X \times X$.

Без потери общности предположим, что $d(x,y)\geqslant d(a,b)$. В таком случае |d(x,y)-d(a,b)|=d(x,y)-d(a,b).

 $d(x,y) - d(a,b) \leqslant d(x,a) + d(a,y) - d(a,b) \leqslant d(x,a) + d(y,b) \leqslant \sqrt{2} \sqrt{d(x,a)^2 + d(y,b)^2}$, что по определению равно $\sqrt{2} \cdot d((x,y),(a,b))$.

Здесь мы воспользовались двумя неравенствами треугольника, а также тем, что $s+t\leqslant \sqrt{2}\sqrt{s^2+t^2}$, что очевидно после возведения в квадрат.

Лекция IV 26 ноября 2022 г.

2.4 Гомеоморфизмы

Определение 2.4.1 (Гомеоморфизм). Непрерывное отображение $f:(X,\Omega_X)\to (Y,\Omega_Y)$, такое, что f — биекция, причём f^{-1} — тоже непрерывно.

Если между (X, Ω_X) и (Y, Ω_Y) существует гомеоморфизм, то говорят, что (X, Ω_X) гомеоморфно (Y, Ω_Y) , пишут $(X, \Omega_X) \sim (Y, \Omega_Y)$.

Теорема 2.4.1. Гомеоморфность — отношение эквивалентности на множестве топологических пространств.

Доказательство.

- id гомеоморфизм.
- Если f гомеоморфизм, то f^{-1} гомеоморфизм.
- Композиция гомеоморфизмов гомеоморфизм.

Примеры.

• $X=\{a,b\}$. Для топологий $\Omega_1=\{\varnothing,X,\{a\}\}$ и $\Omega_2=\{\varnothing,X,\{b\}\}$ $(X,\Omega_1)\sim (X,\Omega_2)$. Гомеоморфизм — функция $f(x)=\begin{cases} a,&x=b\\b,&x=a \end{cases}$.

- Всякие два отрезка с одинаковым типом концом гомеоморфны: $[a,b] \sim [c,d]$. Можно построить непрерывное линейное отображение.
- $(-\frac{\pi}{2}; \frac{\pi}{2}) \sim \mathbb{R}$. В качестве непрерывного отображения может выступать функция $y = \tan(x)$.
- ullet На плоскости \mathbb{R}^2 всякие два шара (два открытых, или два замкнутых) гомеоморфны.
- Квадрат гомеоморфен кругу: можно рассмотреть отображение, линейно переводящее «радиусы» в радиусы.
- Интересный факт. Более того, всякие два выпуклых непустых замкнутых множества гомеоморфны друг другу.
- $S^n \setminus \{$ точка $\} \sim \mathbb{R}^n$. S^n стандартная сфера в пространстве \mathbb{R}^{n+1} , так, S^1 окружность.

Доказательство. Рассмотрим сферу, а на ней — два полюса A и B. Проведём касательную плоскость α через точку B; всякой точке $C \in S^n$ сопоставим пересечение луча AC и плоскости α .

Проверить, что это гомеоморфизм, можно с помощью инверсии с центром в точке O (центр сферы) и радиусом R (радиус сферы).

Применив инверсию к плоскости α , получим сферу, построенную на BO, как на диаметре.

Таким образом, после сужения инверсии, получается отображение из плоскости в сферу без точки.

Доказательство того, что инверсия непрерывна, будет чуть позже.

- Круг без точки гомеморфен кольцу кругу без круга. Опять же, отображение линейно переводит радиусы в радиусы.
- Если из пространства выкинуть окружность, то это будет то же самое, что и выкниуть прямую и точку.

$$\mathbb{R}^3 \setminus S^1 \sim \mathbb{R}^3 \setminus (R^1 \cup \{\text{точка вне прямой}\})$$

• Пример непрерывной биекции, не являющейся гомеоморфизма: $f:[0;2\pi)\to S_1$, такая, что $f(x)=(\cos(x),\sin(x)).$

Обратное отображение не является непрерывным, так как [0;1) открыто в $[0;2\pi)$, но f([0;1)) — отнюдь не открытое подмножество окружности.

2.5 Фундаментальные покрытия

Определение 2.5.1 (Фундаментальное покрытие пространства X). Такое покрытие $\Gamma = \{A_{\alpha}\}_{{\alpha} \in \Lambda}$ топологического пространства (X,Ω) , что

$$\forall u \subset X : (u \in \Omega \iff \forall \alpha \in \Lambda : u \cap A_{\alpha} \in \Omega_{A_{\alpha}})$$

Замечание. Аналогично можно рассмотреть не открытые, а замкнутые множества: F замкнуто в $X \iff \forall \alpha: F \cap A_\alpha$ замкнуто в A_α .

Теорема 2.5.1. Пусть $\{A_{\alpha}\}_{{\alpha}\in{\Lambda}}$ — фундаментальное покрытие X.

Если $f:X \to Y$ таково, что $\forall \alpha:f\big|_{A_+}$ — непрерывно, то само f — непрерывно.

Доказательство. Рассмотрим произвольное открытое множество $u\in\Omega_Y$. Докажем, что $f^{-1}(u)\in\Omega_X$.

Для произвольного $\alpha \in \Lambda$:

$$(f|_{A_{\alpha}})^{-1}(u) \in \Omega_{A_{\alpha}} \Rightarrow f^{-1}(u) \cap A_{\alpha} \in \Omega_{A_{\alpha}}$$

откуда по определению фундаментального покрытия $f^{-1}(u) \in \Omega_X$.

Контример. Для X=[0;1) можно рассмотреть покрытие $[0;1)=\left[0;\frac{1}{2}\right)\cup\left[\frac{1}{2};1\right)$. Оно не является фундаментальным, так как $f(x)=\{x\}$ — взятие дробной части — не непрерывно, хотя непрерывно на каждом полуинтервале из покрытия.

В то же время покрытие $[0;1)=\left[0;\frac{1}{2}\right]\cup\left[\frac{1}{2};1\right)$ — фундаментально (например, см. (теорема 2.5.2)).

Определение 2.5.2 (Открытое покрытие). Такое покрытие, что все его элементы открыты в X.

Определение 2.5.3 (Замкнутое покрытие). Такое покрытие, что все его элементы замкнуты в X.

Определение 2.5.4 (Локально конечное покрытие). $\forall x \in X : \exists V_x \in \Omega_X : x \in V_x$ такая, что она пересекает конечное число элементов покрытия: $\{\alpha \in \Lambda | V_x \cap A_\alpha \neq \emptyset\}$ конечно.

Теорема 2.5.2.

- 1. Открытое покрытие фундаментально.
- 2. Конечное замкнутое покрытие фундаментально.
- 3. Локально конечное замкнутое покрытие фундаментально.

Доказательство.

- 1. Рассмотрим произвольное множество $U\subset X$. Если $\forall \alpha\in \Lambda: A_{\alpha}\cap U\in \Omega_{A_{\alpha}}$, то по тривиальному свойству топологии, индуцированной на открытом множестве $\forall \alpha\in \Lambda: A_{\alpha}\cap U\in \Omega_{X}$. В таком случае U можно представить, как объединение всех таких частей.
- 2. Рассмотрим произвольное множество $U\subset X$. Если $\forall \alpha\in \Lambda: A_{\alpha}\cap U\in \Omega_{A_{\alpha}}$, то дополнение $A_{\alpha}\cap (X\setminus U)$ замкнуто в A_{α} . По тривиальному свойству замкнутой индуцированной топологии получаем, что $X\setminus U$ замкнуто во всех A_{α} .
 - В таком случае $X \setminus U$ можно представить, как объединение всех таких частей (объединение конечного числа замкнутых замкнуто). Значит, U открыто.
- 3. Зафиксируем для каждой точки окрестность V_x , пересекающую конечное число элементов покрытия из определения локальной конечности.

Рассмотрим произвольное множество $U\subset X$. Несложно видеть, что $U=\bigcup_{x\in U}(U\cap V_x).$

Если все эти части открыты в V_x , где — после сужения — конечные замкнутые покрытия, то, объединив их все, получаем, что и само U открыто.

2.6 Непрерывность и произведение пространств

Рассмотрим $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ — произведение топологических пространств.

Теорема 2.6.1. Координатные проекции $p_{\alpha}: X \to X_{\alpha}$ (определение 1.8.3) непрерывны.

Доказательство. Всякое множество $U \in \Omega_{X_{\alpha}}$ такого, что $p^{-1}(U)$ открыто — по определению, как элемент предбазы $\prod X_{\alpha}$.

Определение 2.6.1 (Координатная компонента f). Пусть $f:Z\to\prod_{\alpha\in\Lambda}X_\alpha$. Тогда компонентой f по координате α называется $f_\alpha=p_\alpha\circ f$.

Теорема 2.6.2. $f:Z \to \prod_{\alpha \in \Lambda} X_{\alpha}$ непрерывно $\iff \forall \alpha:f_{\alpha}$ непрерывно.

Доказательство.

 \Rightarrow . Композиция $p_{\alpha} \circ f$ непрерывна.

 \Leftarrow . Проверим, что f непрерывна на элементах предбазы: прообразы $\forall U$ — открытом в произведении — : $p^{-1}(U) \in \Omega_{X_{\alpha}}$.

Воспользуемся тем, что $p_{\alpha}^{-1}(U)$ открыт (по определению топологии произведения). Кроме этого, $f^{-1}\left(p_{\alpha}^{-1}\left(U\right)\right)$ тоже открыто, как прообраз открытого в f.

Значит,
$$f^{-1}\left(p_{\alpha}^{-1}\left(U\right)\right)=\left(p_{\alpha}\circ f\right)^{-1}\left(U\right)$$
 — открыто, откуда $p_{\alpha}\circ f$ непрерывно.

Контример. «Обратное» неверно: не факт, что если $f:\prod_{\alpha\in\Lambda}X_{\alpha}\to Y$ непрерывно на всех проекциях, то оно непрерывно.

Так, можно рассмотреть
$$f:\mathbb{R}^2 \to \mathbb{R}; \quad (x,y) \mapsto \begin{cases} \frac{xy^2}{x^2y^4}, & (x,y) \neq (0,0) \\ 0, & x=y=0 \end{cases}.$$

Такая функция непрерывна в сужении на любую прямую (в том числе и координатную), но не непрерывна:

Доказательство.

- — Для всякой прямой, не проходящей через 0 (y = kx + b или x = b, где $b \neq 0$) сужение функции на эту прямую имеет определённую формулу частное многочленов, где знаменатель строго положителен. Она непрерывна.
 - Сужение на прямую x = 0 даёт f(0, x) = 0.
 - Наконец, для прямых y=kx сужение даёт функцию $f(x,kx)=\dfrac{k^2x^3}{x^2+k^4x^4}=\dfrac{k^2x}{1+k^4x^2}$ при $x\neq 0$. Не в нуле функция понятно, что непрерывна; в нуле $\dfrac{kx}{1+k^4x^2} \underset{x\to 0}{\longrightarrow} 0$
- Несмотря на всё это, если сузить функцию на параболу $x=y^2$, то окажется, что $f(y^2,y)=1/2$ при $y\neq 0$, однако y=0 при y=0. Эта функция непрерывной уже не является.

2.7 Арифметические операции над непрерывными функциями

Теорема 2.7.1. Функции $f: \mathbb{R}^2 \to \mathbb{R}$ непрерывны, где f(x,y) = x + y или f(x,y) = x - y, или может быть $f(x,y) = x \cdot y$. (Доказываем для трёх функций)

Доказательство.

• f(x,y)=x+y. Проверим непрерывность в точке: рассмотрим открытый шар $B_{\varepsilon}(x_0+y_0)$. Докажем, что в его прообразе есть окрестность (x_0,y_0) .

Для этого возьмём $\delta=\frac{\varepsilon}{2}$. Несложно видеть, что $f\left(B_{\delta}(x_0),B_{\delta}(y_0)\right)\subset B_{\varepsilon}(x_0+y_0)$:

$$\forall x \in B_{\delta}(x_0), y \in B_{\delta}(y_0) : |x_0 + y_0 - x - y| \leq |x_0 - x| + |y_0 - y| \leq \delta + \delta = \varepsilon$$

- Аналогично.
- $f(x,y) = x \cdot y$. Проверим непрерывность в точке: рассмотрим открытый шар $B_{\varepsilon}(x_0 \cdot y_0)$. Докажем, что в его прообразе есть окрестность (x_0,y_0) .

Пусть $c = \max\{|x_0|, |y_0|\}.$

Для этого возьмём $\delta = \min\{\frac{\varepsilon}{3c}, \sqrt{\frac{\varepsilon}{3}}\}.$

$$\forall x \in B_{\delta}(x_0), y \in B_{\delta}(y_0) : |x \cdot y - x_0 \cdot y_0| \leqslant |(x \pm \delta)(y \pm \delta) - x_0 \cdot y_0| \leqslant |x_0\delta| + |y_0\delta| + |\delta^2| \leqslant \varepsilon$$

Следствие 2.7.1. В топологическом пространстве (X,Ω) для непрерывных функции $f,g:X\to\mathbb{R}$ верно, что f+g,f-g и $f\cdot g$ — тоже непрерывны.

Доказательство.

Пусть функция $(f,g): X \to \mathbb{R} \times \mathbb{R}$ определена так: (f,g)(x) = (f(x),g(x)). Она непрерывна, так как проекции непрерывны;

тогда

$$f + g = (x + y) \circ (f, g)$$

$$f - g = (x - y) \circ (f, g)$$

$$f \cdot g = (x \cdot y) \circ (f, g)$$

непрерывны, как композиции.

Следствие 2.7.2. В топологическом пространстве (X,Ω) для непрерывных функции $f,g:X\to\mathbb{R}$ верно, что $\frac{f}{g}$ — тоже непрерывна на своей области определения (где g не обращается в θ).

Доказательство.

Рассмотрим $h: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}; \quad h(x) = \frac{1}{x}$. Как известно из матанализа, она непрерывна.

Тогда
$$\frac{1}{g} = h \circ g$$
 и $\frac{f}{g} = f \cdot (h \circ g)$.

2.8 Топологические свойства

Как доказать, что два топологических пространства не являются гомеоморфными?

При гомеоморфизме сохраняются некоторые свойства. Если эти свойства различны, то пространства заведомо не гомеоморфны.

Определение 2.8.1 (Топологическое свойство). Свойство, которое пространства сохраняют при гомеоморфизме.

Пространство может обладать или не обладать некоторым свойством.

Определение 2.8.2 (Топологический инвариант). Характеристика, которую пространства сохраняют при гомеоморфизме.

Какое-то число, например.

2.8.1 Аксиомы счётности

Ниже для краткости будем называть счётными не более, чем счётные множества.

Определение 2.8.3 (Первая аксиома счётности, AC1). Топологическое пространство X удовлетворяет первой аксиоме счётности, если у любой точки существует счётная база.

Любое метрическое пространство удовлетворяет первой аксиоме счётности: можно взять у всякой точки открытые шары с центром в ней и радиусом $\frac{1}{n}$.

Определение 2.8.4 (Вторая аксиома счётности, AC2). Топологическое пространство X удовлетворяет второй аксиоме счётности, если у него существует счётная база.

Теорема 2.8.1. Из второй аксиомы счётности следует первая: в качестве базы точки можно взять все открытые множества, содержащие её: $\Sigma_a = \{U \in \Sigma | a \in U\}$.

Определение 2.8.5 (Наследственное топологическое свойство). Если всё пространство X обладает свойством, то всегда любое его подпространство обладает этим же свойством.

Определение 2.8.6 (Наследование свойства для произведения). Если два пространства X и Y обладают свойством, то всегда $X \times Y$ тоже этим свойством обладает.

Факт 2.8.1. Вторая аксиома счётности — наследственное свойство. Вторая аксиома счётности наследуется подпространством: если Σ — счётная база, то

$$\Sigma_A \stackrel{def}{=} \{ U \cap A | U \in \Sigma \}$$

тоже счётна.

Вторая аксиома счётности наследуется и для произведения: для базы в точке (x,y) достаточно взять базу $\Sigma_{(x,y)} = \Sigma_x \times \Sigma_Y$

Лекция V

29 ноября 2022 г.

Замечание. \mathbb{R} удовлетворяет второй аксиоме счётности: можно рассмотреть в качестве базы шары радиусом $\frac{1}{n}$ с рациональными центрами.

Отсюда следует, что второй аксиоме счётности удовлетворяют и все подпространства \mathbb{R}^n .

Теорема 2.8.2 (Линделёф). Если X удовлетворяет второй аксиоме счётности, то из любого покрытия можно выделить счётное подпокрытие.

Доказательство.

Рассмотрим покрытие $U:\bigcup_{\alpha\in\Lambda}U_{\alpha}=X.$

Обозначим в качестве $S := \{v \in \Sigma | \exists \alpha \in \Lambda : v \subset U_{\alpha} \}.$

S — покрытие, так как всякая точка лежит в U_{α} вместе с неким множеством из базы.

Теперь для каждого $s \in S$ сопоставим один любой элемент из U, содержащий s. Таким образом мы выделим счётное подпокрытие.

2.8.2 Сепарабельные пространства

Определение 2.8.7 ($A \subset X$ всюду плотно). Cl A = X

Замечание. Это значит, что всякая точка пространства — точка прикосновения A, то есть $\forall U \in \Omega_X \setminus \{\varnothing\}: U \cap A \neq \varnothing$.

Определение 2.8.8 (Сепарабельное пространство). Пространство, в котором есть всюду плотное счётное множество.

 Π ример. $\mathbb R$ сепарабельно: $\mathbb Q$ — всюду плотное счётное подмножество.

Теорема 2.8.3. 1. Из второй аксиомы счётности следует сепарабельность.

2. В метрических пространствах из сепарабельности следует вторая аксиома счётности.

Доказательство.

- 1. Сопоставим всякой $v \in \Sigma$ одну из её точек. Это всюду плотное множество.
- 2. Рассмотрим $\Sigma = \left\{ B_{\frac{1}{n}}(x) \middle| x \in A; n \in \mathbb{N} \right\}$, где A всюду плотное счётное множество.

Проверим, что Σ — база. Для этого рассмотрим любую точку и любое открытое множество, её содержащее $b \in U \in \Omega$.

Проверим, что существует шар B из базы, такой, что $b \in B \subset U$. Пространство метрическое, есть достаточно большое $k \in \mathbb{N}$: шар $B_{\frac{1}{k}}(b)$, содержащийся в U.

Тогда $\exists a \in B_{\frac{1}{k}} \cap A : d(a,b) < \frac{1}{2k}$, так как A — всюду плотно.

Теперь понятно, что шар $b \in B_{\frac{1}{2k}}(a)$, и что этот шар — из базы.

2.8.3 Аксиомы отделимости

Первая аксиома отделимости

Определение 2.8.9 (Пространство удовлетворяет первой аксиоме отделимости, T1). $\forall x, y \in X : \exists U_x \in \Omega : x \in U_x \not\ni y$.

Теорема 2.8.4. Пространство удовлетворяет первой аксиоме отделимости \iff все одноточечные множества замкнуты.

Доказательство.

- \Rightarrow . Рассмотрим $x \in X$. Проверим, что $X \setminus \{x\}$ открыто. Рассмотрим $\forall y \in X \setminus \{x\}$. Для всякого y он лежит в $X \setminus \{x\}$ вместе с некоторой окрестностью по отделимости от x. Значит, $\{x\}$ замкнуто.
- \Leftarrow . В качестве отделяющего множества для x и y можно взять $X\setminus\{y\}$.

Вторая аксиома отделимости

Определение 2.8.10 (Пространство удовлетворяет второй аксиоме отделимости, Т2). $\forall x,y \in X: \exists U_x \ni x, U_u \ni y: U_x \cap U_y = \varnothing.$ Разумеется, $U_x, U_y \in \Omega.$

По-другому такие пространства называются хаусдорфовыми.

Факт 2.8.2. Любое метрическое пространство Хаусдорфово — для точек x и y можно рассмотреть шары радиусом d(x,y)/2.

Теорема 2.8.5. Пространство Хаусдорфово \iff диагональ $\{(a,a)|a\in X\}$ замкнута в $X\times X$.

Доказательство.

- \Rightarrow . Пусть Δ диагональ. Докажем, что дополнение к Δ открыто. Рассмотрим $(a,b) \in (X \times X) \backslash \Delta$. Из определения Хаусдорфовости $\exists U_a, U_b \in \Omega$, отделяющие a и b. Но тогда $U_a \times U_b$ с одной стороны открыто, а с другой не пересекается с диагональю.
- \Leftarrow . Диагональ замкнута, значит, $(X \times X) \setminus \Delta$ открыто. Рассмотрим $a,b \in X$. $(X \times X) \setminus \delta$ открыто, значит, $\exists U_a \times U_b$, открытое в произведении элемент базы произведения, содержащий (a,b). Получается, U_a и U_b отделяют a и b.

Третья аксиома отделимости

Определение 2.8.11 (X удовлетворяет третьей аксиоме отделимости, Т3). $\forall \mathcal{F}$ — замкнутого множества, и $\forall x \notin \mathcal{F}$: существуют окрестности $U_x \ni x$ и $U_{\mathcal{F}} \supset \mathcal{F}$, их отделяющие.

Теорема 2.8.6. Пространство удовлетворяет Т3 $\iff \forall x \in X, \forall U_x \in \Omega: \exists V_x \in \Omega -$ подокрестность, такая, что $\operatorname{Cl} V_x \subset U_x$.

Доказательство.

 \Rightarrow . Найдём для точки x и окрестности $U_x \ni x$ подходящую V_x . Для этого применим третью аксиому отделимости для $\{x\}$ и $X \setminus U_x$.

Пусть нашлись окрестности V_x и $W \supset X \setminus U_x$. Таким образом, $\operatorname{Cl} V_x \subset X \setminus W \Rightarrow \operatorname{Cl} V_x \subset U_x$.

 \Leftarrow . Пусть $x \in X$ и $\mathcal{F} \subset X$ — точка из замкнутого множества. Рассмотрим $U = X \setminus \mathcal{F}$. Согласно посылке теоремы, существует $V_x \subset U : \operatorname{Cl} V_x \subset U$.

Легко проверить, что Т3 выполняется, можно рассмотреть $V_x \ni x$ и $X \setminus \operatorname{Cl} V_x \supset \mathcal{F}$.

Определение 2.8.12 (Пространство регулярно). Удовлетворяет Т1 и Т3.

Четвёртая аксиома отделимости

Определение 2.8.13 (X удовлетворяет четвёртой аксиоме отделимости T4). $\forall \mathcal{F}_1, \mathcal{F}_2$ — замкнутые — $\exists U_1 \supset \mathcal{F}_1$ и $U_2 \supset \mathcal{F}_2$ — непересекающиеся открытые множества.

Определение 2.8.14 (Пространство нормально). Удовлетворяет Т1 и Т4.

Теорема 2.8.7. Верна цепочка следствий:

$$\{$$
нормальность $=T1+T4\} \Rightarrow \{$ регулярность $=T1+T3\} \Rightarrow \{$ Хаусдорфовость $=T2\} \Rightarrow T1$

Доказательство. Оставляется, как упражнение читателю.

Теорема 2.8.8. Метрическое пространство нормально.

Доказательство.

Проверим Т4 (Т2 проверено выше (факт 2.8.2)).

Заметим, что расстояние от точки до замкнутого множества (не содержащего её) больше нуля: $d(x, \mathcal{F}) > 0$. В случае расстояния — нуля — точка бы принадлежала множестве из-за замкнутости.

Пусть $\mathcal{F}_1, \mathcal{F}_2$ — два замкнутых непересекающихся множества. В качестве U_1 и U_2 рассмотрим точки, находящиеся ближе к одному множеству, нежели к другому.

$$U_1 = \left\{ x \in X \middle| d(x, \mathcal{F}_1) < d(x, \mathcal{F}_2) \right\} \quad U_2 = \left\{ x \in X \middle| d(x, \mathcal{F}_2) < d(x, \mathcal{F}_1) \right\}$$

Эти множества открыты, так как функция расстояния 1-липшицева: всякая точка $x \in U_1$ содержится в U_1 вместе с шаром радиуса $\frac{1}{2}(d(x,\mathcal{F}_2)-d(x,\mathcal{F}_1))$.

Лемма и теорема Урысона

Определение 2.8.15 (Функция Урысона). Пусть A,B — два замкнутых непересекающихся множества. Всякая функция $\phi: X \to [0;1]$, такая. что $\phi\big|_A \equiv 0$ и $\phi\big|_B \equiv 0$.

Замечание. Такую функцию легко построить в метрическом пространстве:

$$f(x) = \min\left(1, \frac{d(x, A)}{d(x, B)}\right)$$

 $\it Интересный факт$ (Лемма Урысона). Топологическое пространство нормально \iff для любых двух замкнутых непересекающихся множеств существует функция Урысона.

Замечание. Обратно это очевидно: в качестве открытых множеств, содержащих A и B можно взять $\phi^{-1}([0;1/3))$ и $\phi^{-1}((2/3;1])$.

Интересный факт (Теорема Урысона о метризации). Всякое нормальное пространство со счётной базой метризуемо.

2.8.4 Связность

Определение 2.8.16 (Топологическое пространство связно). Его нельзя разбить на два непустых открытых множества.

Примеры.

- Антидискретное пространства связно
- Дискретное пространство мощности хотя бы 2 не связно.
- $\mathbb{R} \setminus \{0\}$ не связна.
- $[a, b] \cup [c, d]$ не связно (a < b < c < d).

Теорема 2.8.9. Следующие условия эквивалентны:

- 1. X связно.
- $2. \ X$ нельзя разбить на 2 непересекающихся замкнутых множеств.
- 3. $A\subset X$ одновременно и открытое, и замкнутое $\Rightarrow A=\varnothing$ или A=X.
- 4. $\nexists f: X \to \{0,1\}$, где f сюръективное непрерывное отображение, а на $\{0;1\}$ введена дискретная топология.

Доказательство.

- (1) \iff (2). Дополнение открытого замкнуто и наоборот.
- (1) \iff (3). $\exists A \neq \varnothing, X$, одновременно открытое и замкнутое $\iff A \sqcup (X \setminus A) = X$, где оба открыты.

• (1)
$$\iff$$
 (4). $\exists f \iff f^{-1}(\{0\})$ и $f^{-1}(\{1\})$ открыты.

Теорема 2.8.10. Отрезок [0;1] связен в стандартной топологии.

Доказательство.

Предположим противное: $[0;1] = U \sqcup V$, где $U,V \in \Omega_{[0;1]}$.

Без потери общности считаем, что $0 \in U$. Из открытости $\exists \varepsilon > 0 : [0; \varepsilon) \subset U$.

Пусть
$$a = \sup \left\{ \varepsilon \in [0;1] \middle| [0;\varepsilon) \subset U \right\}$$
.

Если $a \in V$, то из открытости V получаем, что a — не точная верхняя грань (в районе некоторой $\delta: (a-\delta; a+\delta) \subset V$ все точки в V, грань можно уменьшить).

Если $a \in U$, то из открытости U получаем, что a — не точная верхняя грань (есть больше). Здесь может так случиться, что a=1, но в таком случае U=[0;1] и $V=\varnothing$, опять же противоречие. \square

Теорема 2.8.11. Для подмножества прямой $X \subset \mathbb{R}$ следующие условия эквивалентны:

- 1. X связно.
- 2. X выпукло ($\forall a, b \in X : (a, b) \subset X$).
- 3. X интервал в обобщённом смысле ($\langle a,b\rangle$, где $a\leqslant b,\ a\in [-\infty;+\infty),b\in (-\infty;+\infty]$).

Доказательство.

- (1) \Rightarrow (2). Предположим, что это не так: возьмём отрезок (a,b) такой, что точка x внутри не принадлежит отрезку. Тогда нашлось разбиение $X = (X \cap (-\infty; x)) \sqcup (X \cap (x; +\infty))$.
- $(2) \Rightarrow (1)$. Предположим, что это не так: $X = U \sqcup V$. Но тогда возьмём две точки $a \in U$, $b \in V$, без потери общности a < b, тогда из выпуклости X: $[a,b] = (U \cap [a,b]) \sqcup (V \cap [a,b])$ противоречие со связностью отрезка.
- $(2) \Rightarrow (3)$. $X = \langle \inf X, \sup X \rangle$.

•
$$(3) \Rightarrow (2)$$
. Очевидно.

Связность и непрерывность

Теорема 2.8.12. Непрерывный образ связного пространства связен: $\forall f: X \to Y \colon f$ — непрерывно и X — связно, значит, Y связно.

Доказательство. Пусть $U \sqcup V = f(X)$, где $U, V \in \Omega_{f(X)}$.

Тогда
$$f^{-1}(U) \sqcup f^{-1}(V) = X$$
, противоречие со связностью X .

Следствие 2.8.1. Связность — топологическое свойство.

Теорема 2.8.13 (О промежуточном значении). Пусть $f: X \to \mathbb{R}$ — непрерывное отображение.

Если X связно, то $\forall a,b \in f(X): f(X) \supset [a,b]$.

Доказательство. X связно $\Rightarrow f(X)$ связно $\Rightarrow f(X)$ выпукло.

Определение 2.8.17 (Компонента связности пространства X). Связное подмножество, не содержащееся ни в каком, строго большем по включению, связном подмножестве.

Лекция VI 3 декабря 2022 г.

Лемма 2.8.1. Объединение любого семейства попарно пересекающихся связных множеств связно.

Доказательство.

Пусть данное семейство $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$. $\forall {\alpha}\in\Lambda:A_{\alpha}$ связно и $\forall {\alpha},{\beta}\in\Lambda:A_{\alpha}\cap A_{\beta}\neq\varnothing$.

Положим
$$Y = \bigcup_{\alpha \in \Lambda} A_{\alpha}$$
.

От противного: пусть $Y = U \sqcup V$, где U, V — открыты. Рассмотрим произвольное A_{α_0} . Так как оно связно, то он содержится либо полностью в U, либо полностью в V. Не умаляя общности, в U.

Так как $\forall \beta \in \Lambda : A_{\beta} \cap A_{\alpha_0} \neq \emptyset$, то $\forall \beta \in \Lambda : A_{\beta} \subset U$.

Но тогда из-за связности все $A_{\beta} \subset U$, откуда $V = \emptyset$.

Теорема 2.8.14.

- Всякая точка лежит в некоторой компоненте связности.
- Причём различные компоненты связности не пересекаются.

Доказательство. Всякая точка $x \in X$ содержится в объединении всех связных множеств, её содержащих (эти множества есть, например, $\{x\}$ связно). Нетрудно видеть, что эти объединения связны, максимальны по включению и дизъюнктны.

Следствие 2.8.2. Компоненты связности дают разбиения топологического пространства.

Свойства связности

- 1. Любое связное подмножество подпространства содержится в некоторой компоненте связности
- 2. Пространство несвязно \iff в нём есть хотя бы две компоненты связности.
- 3. Замыкание связного множества связно.

Доказательство. Пусть замыкание несвязно. Тогда оно представимо в виде объединения двух замкнутых множеств $\operatorname{Cl} A = \mathcal{F}_1 \sqcup \mathcal{F}_2$. Так как исходное множество A связно, то оно содержится полностью в одном из них, пусть в \mathcal{F}_1 .

Согласно свойству замыкания, $\operatorname{Cl} A \subset \mathcal{F}_1$, значит, $\mathcal{F}_2 = \varnothing$.

Следствие 2.8.3. Компоненты связности замкнуты.

Замечание. Число компонент связности — топологический инвариант.

2.8.5 Линейная связность

Пусть X — топологическое пространство.

Определение 2.8.18 (Путь в X). Непрерывное отображение $\alpha: [0;1] \to X$.

 $\alpha(0)$ называют началом пути, а $\alpha(1)$ — концом пути.

Определение 2.8.19 (Линейно связное топологическое пространство X). Любые две точки X можно соединить путём.

Говорят, что $A \subset X$ линейно связно, если A связно в индуцированной топологии; это значит, что между всякой парой точек $a,b \in A$ существует путь, полностью лежащий в A.

Пример. Отрезок евклидового пространства — путь. Таким образом, \mathbb{R}^n линейно связно, как и его выпуклые подмножества.

Линейная связность и непрерывность

Пусть X, Y — топологические пространства, причём X — линейно связно.

Теорема 2.8.15. Если есть непрерывная функция $f: X \to Y$, то f(X) линейно связно.

Доказательство. Пусть $x,y\in f(X)$. Тогда есть путь, соединяющий a,b — какие-то два прообраза x и y соответственно, между ними есть путь α .

Композиция непрерывных функций непрерывна, значит, $f \circ \alpha$ — путь между x и y.

Лемма 2.8.2. Способность быть соединёнными путём — отношение эквивалетности.

Доказательство.

- Рефлексивность. Постоянное отображение непрерывно.
- Симметричность. Если $\alpha:[0;1] \to X$ путь, то $\alpha \circ (1-x)$ тоже путь.
- ullet Транзитивность. Если lpha путь между x,y, а eta путь между y,z, то $\gamma:[0;1] o X$

$$\gamma(t) = \begin{cases} \alpha(2t), & t \in [0; \frac{1}{2}] \\ \beta(2t-1), & t \in [\frac{1}{2}; 1] \end{cases}$$

 γ непрерывна, так как $\alpha([0;1])$ и $\beta([0;1])$ — фундаментальное покрытие $\gamma([0;1])$ (определение 2.5.1).

Определение 2.8.20 (Компоненты линейной связности). Классы эквивалентности по отношению способности быть соединёнными путём.

Замечание. Число компонент линейной связности — топологический инвариант.

2.8.6 Связность и линейная связность

Теорема 2.8.16. Из линейной связности следует связность.

Доказательство. $\forall x,y \in X: \exists \alpha$ — путь между x и y. Так как отрезок связен, то образ пути $\alpha([0;1])$ тоже связен.

Таким образом, $\alpha([0;1]) \subset C$, где C — компонента связности точки x.

Получаем, что $\forall y \in X : y \in \mathcal{C}$, откуда $\mathcal{C} = X$

Следствие 2.8.4. Компоненты линейной связности содержатся в компонентах связности.

Контрпример (Связное, но не линейно связное множество).

• Рассмотрим пространство \mathbb{R}^2 .

B нём график $y = \cos\left(\frac{1}{x}\right)$

$$A := \left\{ (x, y) \in \mathbb{R}^2 \middle| y = \cos\left(\frac{1}{x}\right), x > 0 \right\}$$

линейно связен, значит, связен.

Рассмотрим $X:=A\cup\{(0,0)\}$. Так как $\operatorname{Cl}_{\mathbb{R}^2}A=A\cup\{(0,y)|y\in[-1;1]\}$, то $\operatorname{Cl}_XA=X$, то есть X связно

- В то же время точка (0,0) образуют одноточечную компоненту линейной связности. От противного: пусть есть путь $\alpha:[0,1]\to X$ с началом в (0,0). Обозначим $T=\alpha^{-1}((0,0))$.
 - Докажем, что T открыто. Пусть $t_0 \in T$ произвольный элемент. Рассмотрим единичный шар $B_1((0,0))$. Из непрерывности пути $\exists \delta > 0 : \alpha(B_\delta(t_0)) \subset B_1((0,0))$.

Пусть $\exists t_1 \in B_\delta(t_0) : \alpha(t_1) \neq (0,0)$. Запишем путь покомпонентно: $\alpha(t) = (x(t),y(t))$. Оба отображения x,y непрерывны, по теореме о промежуточном значении все значения из $(x(t_0),x(t_1))$ достигаются.

В частности, достигается $\frac{1}{2\pi n_*}=x(t_*)$ для достаточно большого n_* и t_* между t_0 и t_1 . Тогда заключаем, что $y(t_*)=1$ и приходим к противоречию $-\alpha(t_*)\notin B_1((0,0))$.

Таким образом $\forall t_1 \in B_{\delta}((0,0))$: $\alpha(t_1) = (0,0)$ и T открыто.

— T замкнуто, как прообраз замкнутого. Значит, T и замкнуто, и открыто, но так как это — непустое подмножество [0,1], то T=[0,1], откуда все пути с началом в (0,0) постоянны.

Пространства, в которых всякая точка имеет некоторую линейно связную окрестность

Примеры.

- Какое-то открытое евклидово подмножество $U \subset \mathbb{R}^n$.
- Определение 2.8.21 (Топологическое многообразие размерности n). Хаусдорфовое пространство X со счётной базой, такое, что $\forall x \in X : \exists U_x \in \Omega_X : U_x \sim \mathbb{R}^n$.

Так, примером многообразия размерности n является S^n — стандартная сфера в \mathbb{R}^{n+1} .

Теорема 2.8.17. Для пространств, в которых всякая точка имеет некоторую линейно связную окрестность, линейная связность совпадает со связностью, причём компоненты связности открыты.

Доказательство. Пусть W — компонента линейной связности. Рассмотрим произвольную $a \in W$ и её линейно связную окрестность U_a . Из-за линейной связности $U_a \subset W$, значит, W открыто.

Если какая-то компонента связности состоит из некоторых компонент линейной связности, то она бъётся на некоторые открытые множества, противоречие.

2.8.7 Негомеоморфность

Теорема 2.8.18. Следующие множества попарно негомеоморфны:

$$[0;1]$$
 $[0;1)$ \mathbb{R} S^1 \mathbb{R}^2

Доказательство.

- В [0;1] есть две точки (0 и 1), такие, что $[0;1]\setminus\{0,1\}$ по-прежнему связно.
- В [0;1) есть одна точка (0), но нету двух, таких, что при выкидывании их вместе пространство останется связным.

- ullet В ${\mathbb R}$ нет ни одной точки, при выкидывании которой пространство останется связным.
- В S^1 есть одна точка, при выкидывании которой пространство останется связным, причём это любая точка, а в полуинтервале не любая.
- В \mathbb{R}^2 есть как минимум 3 точки, при выкидывании которых пространство не потеряет связность например, (0,0),(0,1),(0,2).

Замечание. \mathbb{R}^2 не потеряет связность при выкидывании конечного числа точек, так как оно останется линейно связным.

2.8.8 Компактные пространства и множества

Определение 2.8.22 (Компактное топологическое пространство). Из любого открытого покрытия пространства можно выделить конечное подпокрытие.

Примеры.

- Конечное пространство компактно.
- Бесконечное дискретное пространство некомпактно из покрытия одноточечными множествами не выделить конечное подпокрытие.
- Полуинтервал (0,1] некомпактен можно рассмотреть бесконечное покрытие $(0;1] = \bigcup_{n=1}^{\infty} (\frac{1}{n};1]$.
- Пусть $A \subset X$.

Замечание. Следующие условия равносильны:

- А компактно в индуцированной топологии.
- Для любого $\Gamma\subset\Omega_X$, такого, что $\bigcup\Gamma\supset A$ можно выделить конечное подмножество Γ с тем же свойством.
- **Лемма** 2.8.3 (Лемма Гейне Бореля). *Отрезок* [0,1] компактен.

 $\ \ \, \mathcal{L}$ оказательство. От противного. Зафиксируем покрытие отрезка [0,1], из которого не выделить конечное подпокрытие.

Положим $[a_0, b_0] := [0, 1].$

Построим по индукцию систему вложенных отрезков со сколь угодно малыми длинами $[a_i,b_i]$, такую, что из покрытия $[a_i,b_i]$ не выделить конечное. В самом деле, если из покрытия $[a_i,b_i]$ не выделить конечное, то это же верно и либо для $\left[a_i,\frac{a_i+b_i}{2}\right]$, либо для $\left[\frac{a_i+b_i}{2},b_i\right]$.

Рассмотрим $\{c\} = \bigcap_{i=1}^n [a_i,b_i]$. По определению покрытия найдётся открытое множество $U_c \ni c$, значит, есть открытый шар $B_r(c) \subset U_c$.

Значит, найдётся отрезок, лежащий внутри данного шара. Для него получилось неверно, что из его покрытия не выделить конечное, противоречие.

Теорема 2.8.19. *X* компактно, $A \subset X$ замкнуто $\Rightarrow A$ компактно.

Доказательство. Рассмотрим произвольное открытое покрытие A, назовём его Γ . Заметим, что $\Gamma \cup (X \setminus A)$ — открытое покрытие X, получается, из него можно выделить конечное подпокрытие $\widetilde{\Gamma}$.

Значит,
$$\widetilde{\Gamma}\setminus (X\setminus A)$$
 — конечное подпокрытие A , так как $A\cap (X\setminus A)=\varnothing$.

Теорема 2.8.20. Произведение двух компактов — компакт.

Доказательство.

Лемма 2.8.4. Заметим, что для проверки на компактность достаточно проверять только покрытия элементами из базы $\Sigma = \{V_{\beta_1}, \ldots, V_{\beta_n}\}.$

Доказательство леммы.

Рассмотрим произвольное покрытие Γ , $\forall U \in \Gamma: U = \bigcup_{\text{какие-то }\beta} V_{\beta}$, где $V_{\beta} \in \Sigma$.

Из покрытия всеми такими V_{β} можно выделить конечное подпокрытие $\widetilde{\Sigma}$. Тогда сопоставим всякому $V_{\beta} \in \widetilde{\Sigma}$ одно любое $U \in \Gamma : V_{\beta} \subset U$. Это искомое конечное подпокрытие. \square

Рассмотрим произвольное Γ — покрытие $X \times Y$ множествами из базы — они имеют вид $U_{\alpha} \times V_{\beta}$, где $U_{\alpha} \in \Omega_X, U_{\beta} \in \Omega_Y$.

Посмотрим на произвольный $x \in X$. Множество $\{x\} \times Y$ компактно, так как оно гомеоморфно Y. Значит, можно выделить конечное подпокрытие, покрывающее $\{x\} \times Y$, назовём это покрытие $\{U_i^x \times V_i^x\}_{i=1..N_x} \subset \Gamma$.

Сопоставим всякому $x:W_x=\bigcap_{i=1}^{N_x}U_i^x$. Это пересечение конечного числа открытых множеств, оно открыто.

Так как X компактно, то можно выбрать некоторое конечное множество $\widetilde{X}\subset X$, такое, что $\bigcup_{\widetilde{x}\in\widetilde{X}}W_{\widetilde{x}}=X.$

Получаем конечное подпокрытие $X \times Y$, оно равно

$$\bigcup_{\widetilde{x} \in \widetilde{X}} \left\{ U_i^{\widetilde{x}} \times V_i^{\widetilde{x}} \right\}_{i=1..N_{\widetilde{x}}}$$

Интересный факт (Теорема Тихонова). Тихоновское произведение любого числа компактных пространств компактно.

Теорема 2.8.21. Пусть X — хаусдорфово пространство, а $A \subset X$ — компактно. Тогда A замкнуто.

Доказательство. Докажем, что $X \setminus A$ открыто. Рассмотрим $y \in X \setminus A$.

Согласно хаусдорфовости, $\forall a \in A : \exists U_a \ni a, U_y \ni y : U_a \cap U_y = \emptyset$.

Получили покрытие множества A открытыми множествами; выделим из них конечное подпокрытие $\{U_{a_i}\}_{i=1..N}$.

Каждой такой окрестности U_{a_i} соответствует своя окрестность точки y. Пересечение конечного числа открытых множеств открыто, получили, что y содержится в $X\setminus A$ вместе с некоторой своей окрестностью.

Лекция VII 6 декабря 2022 г.

Теорема 2.8.22. X — хаусдорфово и компактно $\Rightarrow X$ — нормально.

Доказательство.

• Т1. Очевидно из хаусдорфовости.

• Т4. Рассмотрим $A, B \subset X$ — замкнутые множества. Они компактны, как замкнутые подмножества компакта.

Зафиксируем $a \in A$.

Из хаусдорфовости $\forall b \in B$ найдутся непересекающиеся окрестности $\exists V_{a,b} \ni a, U_{a,b} \ni b,$ обозначим $\mathcal{U}_a \coloneqq \bigcup_{b \in B} U_{a,b}.$

 $\mathcal{U}_a\supset B$, значит, можно выделить конечное подпокрытие $\widetilde{\mathcal{U}}_a\coloneqq igcup_{i=1}^N U_{a,b_i}\supset B.$

Обозначим
$$\mathcal{V}_a \coloneqq \bigcap_{i=1}^N V_{a,b_i}$$
. Заметим, что $a \in \mathcal{V}$, причём $\mathcal{V}_a \cap \mathcal{U}_a = \varnothing$, а $\mathcal{V}_a \cap \widetilde{\mathcal{U}}_a = \varnothing$ и подавно.

Теперь аналогично переберём все $a\in A.$ Здесь уже из покрытия $A\subset\bigcup_{a\in A}\mathcal{V}_a$ выберем конечное

подпокрытие
$$A\subset \bigcup\limits_{j=1}^{M}\mathcal{V}_{a_{j}}.$$
 Соответствующее пересечение $B\subset \bigcap\limits_{j=1}^{M}\widetilde{\mathcal{U}}_{a_{j}}$ открыто. \square

Теорема 2.8.23. Компактное метрическое пространство (X, d) ограничено.

$$\mathcal{A}$$
оказательство. Пусть $a\in X$ — произвольная точка. Так как $\forall x\in X: d(a,x)\in \mathbb{R}$, то $\bigcup_{n=1}^\infty B_n(a)=X$.

Выделив из покрытия конечное подпокрытие, найдём такое $n \in \mathbb{N} : B_n(a) = X$. Тогда, согласно неравенству треугольника, расстояние между любыми двумя точками не превышает 2n.

Следствие 2.8.5. Компактное множество в метрическом пространстве замкнуто и ограничено.

Доказательство. Из (теорема
$$2.8.23$$
) ограничено, из (теорема $2.8.21$) — замкнуто.

Теорема 2.8.24. $A \subset \mathbb{R}$ — компактно $\iff A$ замкнуто и ограничено.

Доказательство.

- ⇒. См. следствие.
- \Leftarrow . Так как A ограничено, то $\exists R \in \mathbb{R}: A \subset [-R;R]^n$. Заметим, что $[-R;R]^n$ компактно, как произведение компактов. Тогда A замкнутое подмножество компакта, откуда A компактно.

Компактность на языке замкнутых множеств:

Определение 2.8.23 (Центрированный набор подмножеств $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$). Такой набор, что любое его конечное подмножество имеет непустое пересечение.

Пример. $A_1 \supset A_2 \supset A_3 \dots$ центрирован.

Теорема 2.8.25. X компактно \iff любой центрированный набор замкнутых подмножеств X имеет непустое пересечение.

Доказательство.

Факт 2.8.3.
$$\{X \setminus B_{\alpha}\}_{\alpha \in \Lambda}$$
 — покрытие $\iff \bigcap_{\alpha \in \Lambda} B_{\alpha} = \emptyset$.

 \Rightarrow . От противного: пусть есть центрированный набор замкнутых множеств с пустым пересечением. Тогда $\{X \setminus A_{\alpha}\}$ — открытое покрытие, из него можно выделить конечное подпокрытие. Тогда мы нашли конечное подмножество с пустым пересечением \Rightarrow набор не центрирован.

 \Leftarrow . От противного: пусть U_{α} — открытое покрытие, из которого не выделить конечное подпокрытие. Это значит, что $\bigcap (X \setminus U_{\alpha_i}) \neq \emptyset$ для любого конечного подмножества индексов $\{\alpha_i\}$.

Но тогда получается, что $\{X \setminus U_{\alpha}\}_{{\alpha} \in \Lambda}$ центрирован по определению, значит, U_{α} — не покрытие. Противоречие.

Следствие 2.8.6. Пусть $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$ — центрированный набор замкнутых множеств.

Если $\exists \alpha_0 \in \Lambda$: A_{α_0} компактно, то $\bigcap_{\alpha \in \Lambda} A_{\alpha} \neq \varnothing$.

Доказательство. Сузим набор на A_{α_0} : рассмотрим $\{B_{\alpha}\}_{\alpha\in\Lambda}=\{A_{\alpha}\cap A_{\alpha_0}|\alpha\in\Lambda\}$. Получили центрированный набор замкнутых подмножеств компакта A_{α_0} . Значит, пересечение непусто.

Теорема 2.8.26. Непрерывный образ компакта — компакт.

Доказательство. Рассмотрим непрерывное отображение $f: X \to Y$, где X — компакт. Докажем, что f(X) — компакт. Рассмотрим произвольное открытое покрытие $f(X) = \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Но $\forall \alpha \in \Lambda : U_{\alpha}$ открыто в f(X), значит, $f^{-1}(U_{\alpha})$ открыто в X. Объединение прообразов — прообраз объединения, значит, $\{f^{-1}(U_{\alpha})\}$ — покрытие X. Из него можно выделить открытое подпокрытие.

Следствие 2.8.7. Компактность — топологическое свойство.

Теорема 2.8.27 (Вейерштрасс). Непрерывная функция $f: X \to \mathbb{R}$ на компакте достигает свои наибольшее и наименьшее значения.

Доказательство. f(X) — образ компакта — компакт, значит, содержит свои предельные точки. $f(X) \ni \inf f, \sup f$.

Теорема 2.8.28. Пусть $f: X \to Y$ — непрерывная биекция, где X — компактно, а Y — хаусдорфово. Тогда f — гомеоморфизм.

Доказательство. Фактически, достаточно доказать, что f^{-1} непрерывно.

Пусть $\mathcal{F} \subset X$ — произвольное замкнутое подмножество X (откуда \mathcal{F} — компакт).

 $f(\mathcal{F})$ — образ компакта, компакт, в хаусдорфовом пространстве компакт замкнут $\Rightarrow f(\mathcal{F})$ — замкнут.

Определение 2.8.24 (Топологическое вложение). Такое отображение $f: X \to Y$, что f — гомеоморфизм между X и f(X).

Контример (Пример инъективного неперывного отображения — не вложения). Улитка — открытый интервал сворачивается в букву ρ . Обратное не непрерывно, так как интервал не компактен.

Следствие 2.8.8. Непрерывная инъекция $f: \underbrace{X}_{\kappa o m n a \kappa m} \to \underbrace{Y}_{xacydop \phi o so}$ — непременно вложение.

Теорема 2.8.29 (Лемма Лебега). Пусть X — компактное метрическое пространство, $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ — открытое покрытие.

Тогда $\exists r > 0 : \forall a \in X : \exists U_{\alpha} : B_r(a) \subset U_{\alpha}$.

Определение 2.8.25 (Число Лебега). Такой радиус r.

Доказательство. Сопоставим каждой точке $a\in X$ радиус r(a), такой, что $\exists U_{\alpha}: B_{r(a)}(a)\subset U_{\alpha}.$

Тогда $\{B_{\frac{1}{2}r(a)}(a)\}$ — тоже открытое покрытие, выделим из него конечное подпокрытие $\{B_{\frac{1}{2}r(a_i)}(a_i)\}_{i=1}^n$. Тогда числом Лебега является, например, $r\coloneqq \min_{i=1}^n \frac{1}{2}r(a_i)$.

B самом деле, $\forall a \in X: \exists B_{\frac{1}{2}r(a_i)}(a_i) \ni a \Rightarrow |a-a_i| < \frac{1}{2}r(a_i) \Rightarrow B_r(a) \subset U_{\alpha_a}.$

Следствие 2.8.9 (Лемма Лебега для отображений). Пусть (X,d) — компактно, дано открытое покрытие $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$. Для непрерывного отображения $f:X\to Y$ найдётся радиус $r>0: \forall x\in X: \exists U_{\alpha}: f(B_r(x))\subset U_{\alpha}$.

Доказательство. Рассмотреть $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Lambda}$.

Пусть (X,d_x) и (Y,d_y) — два метрических пространства.

Определение 2.8.26 (Равномерно неперрывное отображение). Такое отображение $f: X \to Y$, такое, что $\forall \varepsilon > 0: \exists \delta > 0: \forall x,y \in X: d_x(x,y) < \delta \Rightarrow d_y(f(x),f(y)) < \varepsilon$.

Теорема 2.8.30. Любое непрерывное отображение $f:\underbrace{X}_{\text{компакт}} o Y$ — равномерно непрерывно.

Доказательство. Рассмотрим покрытие $\{B_{\frac{1}{2}\varepsilon}(y)\}_{y\in Y}$. В качестве δ подойдёт число Лебега для покрытия $\{f^{-1}\left(B_{\frac{1}{2}\varepsilon}\right)\}$.

Определение 2.8.27 (Предел последовательности $\{a_i\}_{i\in\mathbb{N}}\subset X$). Такая точка $b\in X$, что

$$\forall U_b \in \Omega_X : \exists M \in \mathbb{N} : \forall n > M : a_n \in U_b$$

Примеры.

- Постоянная последовательность всегда сходится к своему образу.
- Если последовательность сходится к пределу b, то любая подпоследовательность тоже сходится к b.
- В антидискретном пространстве любая последовательность сходится к любому пределу.
- В дискретном пространстве последовательность сходится \iff стабилизируется.

Теорема 2.8.31. В хаусдорфовом пространстве всякая последовательность имеет не более одного предела.

Доказательство. От противного.

Определение 2.8.28 (Секвенциальное замыкание $A \subset X$). Совокупность пределов последовательностей, имеющих все точки в A. Обозначается SClA.

Контример. Не всегда секвенциальное замыкание — множество предельных точек. Можно рассмотреть прямую с топологией не более, чем счётных дополнений:

$$SCl(0,1) = (0,1)$$
, в то время как $Cl(0,1) = \mathbb{R}$

Теорема 2.8.32. $SClA \subset ClA$.

Теорема 2.8.33. В пространстве X, удовлетворяющем первой аксиоме счётности, $\forall A\subset X: \mathrm{SCl} A=\mathrm{Cl}\, A.$

Доказательство. Пусть $b\in\operatorname{Cl} A$. Рассмотрим счётную базу $\Sigma_b=\{V_i\}_{i\in\mathbb{N}}$. Построим убывающую счётную базу $\left\{U_i=\bigcap\limits_{j=1}^iV_j\right\}_{i\in\mathbb{N}}$

Построим последовательность $\{a_i\}_{i\in\mathbb{N}}$ так, чтобы выполнялось $a_i\in U_i\cap A$. Она сходится к b.

2.9 Полные метрические пространства

Пусть (X, d) — метрическое пространство.

Определение 2.9.1 (Фундаментальная последовательность). $\{a_i\}_{i\in\mathbb{N}}$. Для любого $\varepsilon>0:\exists M\in\mathbb{N}:\forall n,m>M:d_x(a_n,a_m)<\varepsilon$. Их также называют последовательность Коши или сходящаяся в себе последовательность.

Свойства:

- Сходится \Rightarrow фундаментальна.
- Фундаментальна \Rightarrow ограничена (лежит в неком шаре).
- Фундаментальна, и содержит сходящуюся подпоследовательность \Rightarrow сходится туда же.

Определение 2.9.2 (Полное метрическое пространство). В нём всякая фундаментальная последовательность имеет предел.

Примеры.

- Полно.
- $\mathbb{R} \setminus \{0\}$ не полно.
- **Теорема** 2.9.1. \mathbb{R}^n полно.

Доказательство. Рассмотрим фундаментальную последовательность $\{a_k\}_{k\in\mathbb{N}}=\{(a_k^1,a_k^2,\ldots,a_k^n)\}_{k\in\mathbb{N}}.$ По каждой координате последовательность фундаментальна, из полноты \mathbb{R} всякая имеет предел b^i , значит, вся последовательность сходится к (b^1,\ldots,b^n) .

Теорема 2.9.2. Замкнутое подмножество Y полного пространства X полно.

 $\begin{cal}{l}$ Доказательство. $a_n \xrightarrow[n \to \infty]{} b \in X, \ b$ — точка прикосновения для Y, значит, $b \in Y$.

Примеры.

- Отрезок замкнутое подмножество прямой.
- Интервал не является полным, так как не замкнут, хотя и подмножество прямой.

Предостережение. Полнота — не топологическое свойство, например, $(0,1) \sim \mathbb{R}$.

Теорема 2.9.3 (О вложенных шарах). Метрическое пространство полно \iff любая последовательность вложенных замкнутых шаров с радиусом, стремящимся к 0, обладает непустым пересечением.

Замечание. Более общая формулировка говорит о последовательности вложенных замкнутых множеств, с диаметрами, стремящимися к 0. Доказательство не меняется.

Доказательство.

 \Rightarrow . $D_{r_1}(a_1)\supset D_{r_2}(a_2)\supset\dots$ выберем в каждом шаре по точке. Последовательность фундаментальна, $\exists a$ — предел. Покажем, что $\forall i\in\mathbb{N}: a\in D_{r_i}(a_i)$:

Например, от противного: $\exists i: d(a_i,a) > r_i$, значит, для $\varepsilon \coloneqq d(a_i,a) - r_i$, согласно неравенству треугольника, $\forall j > i: B_{\varepsilon}(a) \cap D_{r_i}(a_i) = \varnothing$.

 \Leftarrow . Используя данное свойство, построим точку, являющуюся пределом последовательности $\{a_i\}_{i\in\mathbb{N}}$. Для этого рассмотрим последовательность шаров радиусами $1/2^n$.

Согласно фундаментальности, для $\varepsilon=1/2^n$ найдётся $M_n: \forall n,m\geqslant M_n: d(a_n,a_m)<\varepsilon.$

Определим последовательность вложенных шаров $D_{\frac{1}{2^{n-1}}}(a_{M_n})$. Несложно проверить, что шары вложены, а точка в их пересечении является пределом некоторой подпоследовательности $\{a_i\}$.

2.9.1 Нигде не плотные множества

Определение 2.9.3 (Нигде не плотное множество A). Множество, внутренность замыкания которого пуста.

Определение 2.9.4 (Внешность A). Внутренность дополнения. Обозначается $\overset{\circ}{A}$ или $\operatorname{Ext}(A)$.

 $X = \operatorname{Int} A \sqcup \operatorname{Fr} A \sqcup \overset{\circ}{A}.$

Лекция VIII

13 декабря 2022 г.

Теорема 2.9.4. Следующие условия равносильны:

- 1. Множество A нигде не плотно.
- $2. \operatorname{Ext}(A)$ всюду плотно.
- 3. $\forall U \in \Omega : \exists V \ni \Omega : V \subset U \land V \cap A = \varnothing$.

Доказательство.

- (1) \iff (2). Int $\operatorname{Cl} A = \varnothing \iff \forall x \in X : \forall U_x \in \Omega : U_x \cap (X \setminus \operatorname{Cl} A) \neq \varnothing \iff U_x \cap \operatorname{Ext} A \neq \varnothing \iff \operatorname{Ext} A$ всюду плотно.
- (2) \iff (3). $V \cap A = \emptyset \iff V \subset \operatorname{Ext}(A)$.

Теорема 2.9.5 (Бэр). Полное метрическое пространство нельзя покрыть счётным набором нигде не плотных множеств.

Доказательство. От противного: пусть $\{A_i\}_{i\in\mathbb{N}}$ покрывают полное пространство X.

Рассмотрим произвольный открытый шар B_0 . Будем поддерживать инвариант: $B_n \cap \bigcup_{i=1}^n A_i = \emptyset$, причём радиус шара B_n меньше $\frac{1}{n}$.

При переходе от B_n к B_{n+1} заметим, что так как $B_n \cap \bigcup_{i=1}^n A_i = \varnothing$, то $B_n \cap \bigcup_{i=1}^{n+1} A_i = B_n \cap A_{n+1}$. Так как A_{n+1} нигде не плотно, то найдётся внутри B_n открытое множество U, такое, что $U \cap A_{n+1} = \varnothing$. Внутри U найдётся шар достаточно маленького радиуса, положим его за B_{n+1} .

Внутри каждого шара B_i возьмём замкнутый шар меньшего радиуса D_i , так, чтобы последовательность получилась вложенной. Из полноты пространства у них есть общая точка; эта точка не покрыта последовательностью $\{A_i\}_{i\in\mathbb{N}}$.

Контрпример (Неполное метрическое пространство, которое можно покрыть счётным набором нигде не плотных множеств). $\mathbb{Q} = \bigcup_{r \in \mathbb{O}} \{r\}.$

Следствие 2.9.1. Полное (метрическое) пространство без изолированных точек несчётно.

 $(b \in X - u$ золированная точка пространства $X \iff \{b\}$ открыто в X.)

Доказательство. От противного: множество счётно. Так как внутренность замыкания $\{b\}$ пуста, то $\{b\}$ нигде не плотно. Отсюда множество покрывается одноточечными множествами, противоречие.

Определение 2.9.5 (Пополнение метрического пространства X). Метрическое пространство \overline{X} , такое, что

- \overline{X} полное.
- $X \subset \overline{X}$.

 \bullet X всюду плотно в \overline{X} .

Интересный факт. У любого метрического пространства есть пополнение.

План доказательства: Сказать, что последовательности Коши u и v эквивалентны $u\sim v$, если $\lim_{n\to\infty}d(u_n,v_n)=0$. Ввести $\overline{X}=\{$ последовательности Коши $\}/\sim$. Доказать, что \overline{X} всюду плотно, и распространить на него метрику из X.

2.10 Секвенциальная компактность

Определение 2.10.1 (X секвенциально компактно). Любая последовательность содержит сходящуюся подпоследовательность.

Определение 2.10.2 (*b* — точка накопления для *A*). $\forall U_b \in \Omega : |U_b \cap A| = \infty$.

Теорема 2.10.1. В компактном пространстве любое бесконечное множество содержит точку накопления.

Доказательство. От противного: всякая точка x имеет окрестность U(x), пересекающуюся с A лишь по конечному множеству точек. Тогда $X = \bigcup_{x \in X} U(x)$. Выберем конечное подпокрытие, получим противоречие с бесконечностью A.

Теорема 2.10.2. Метрическое пространство X компактно $\Rightarrow X$ секвенциально компактно.

Доказательство. Рассмотрим произвольную последовательность $\{u_i\}_{i\in\mathbb{N}}$, выберем в ней сходящуюся подпоследовательность.

Если множество $\{u_i|i\in\mathbb{N}\}$ конечно, то $\exists v:u_i=v$ бесконечно часто. Тогда выделим постоянную подпоследовательность, сходящуюся к v.

Иначе $\{u_i|i\in\mathbb{N}\}$ бесконечно. Рассмотрим в X b — точку накопления для $\{u_i|i\in\mathbb{N}\}$.

Введём последовательность шаров $B_{1/n}(b)$, в шаре $B_{1/n}$ выберем n-ю точку для подпоследовательности. Так как внутри всякого шара бесконечно много точек, то процесс обречён на успех.

2.11 Вполне ограниченные метрические пространства

Пусть X — метрическое пространство.

Определение 2.11.1 (ε -сеть). Такое $A \subset X$, что $\forall x \in X : \exists a \in A : d(x,a) < \varepsilon$.

Определение 2.11.2 (*X* вполне ограничено). $\forall \varepsilon > 0$ существует конечная ε -сеть.

Пример (Не компактное, но вполне ограниченное пространство). Интервал, например, (0,1).

Теорема 2.11.1. Если X — метрическое пространство, то следующие условия эквивалентны:

- X компактно.
- X секвенциально компактно.
- Х полно и вполне ограничено.

Доказательство.

- $(1) \Rightarrow (2)$. (теорема 2.10.2)
- $(2) \Rightarrow (3)$.

— Вполне ограниченность. От противного: $\exists \varepsilon > 0$, такое, что нет конечной ε -сети. Построим последовательность без сходящейся подпоследовательности. Пусть на очередном шаге последовательность $\{a_i\}_{i=1..n}$. Это не ε -сеть (так как конечна), возьмём a_{n+1} так, чтобы выполнялось $\min_{i=1..n} d(a_{n+1}, a_i) \geqslant \varepsilon$.

Попарное расстояние между любой парой точек не меньше ε .

- <u>Полнота.</u> Во всякой фундаментальной последовательности есть подпоследовательность, сходящаяся к v. Тогда вся последовательность тоже сходится к v.
- (3) \Rightarrow (1). От противного: пусть $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ покрытие, из которого не выделить конечное подпокрытие. Построим последовательность вложенных замкнутых множеств $\{C_i\}_{i\in\mathbb{N}}$.
 - Рассмотрим конечную 1-сеть A_1 . Шары $\{D_1(a)|a\in A_1\}$ покрывают всё пространство; из отсутствия конечного подпокрытия найдётся шар $C_1\coloneqq D_i$, который не покрыть конечным числом элементов из U_{α} .
 - На n-м шаге возьмём $\frac{1}{n}$ -сеть для шара D_{n-1} . Найдётся шар D_j радиуса $\frac{1}{n}$, такой, что его не покрыть конечным числом элементов $\{U_{\alpha}\}$. Положим $C_n\coloneqq C_{n-1}\cap D_j$.

Согласно теореме о вложенных шарах (точнее замечания к ней), пересечение $\bigcap_{i=1}^n C_i$ состоит из одной точки, назовём её c.

 $c\in U_{\alpha}$ для некоего $\alpha\in\Lambda$, причём лежит вместе с некоторым шаром. Тогда начиная с некоторого места $C_n\subset U_{\alpha}$, откуда противоречие с тем, что шары C_n нельзя покрыть конечным числом элементов покрытия.

Теорема 2.11.2. Метрическое пространство X компактно \Rightarrow выполняется вторая аксиома счётности.

Доказательство.

Лемма 2.11.1. Метрическое пространство X вполне ограничено \Rightarrow выполняется вторая аксиома счётности.

Доказательство леммы.

Возьмём A — объединение по $n \in \mathbb{N}$ всех $\frac{1}{n}$ -сетей.

A всюду плотно, так как пересекается с любым шаром — с шаром радиуса r A имеет общую точку в $\left\lceil \frac{1}{r} \right\rceil$ сети.

Отсюда X сепарабельно (A счётно).

Теорема 2.11.3. В пространстве со второй аксиомой счётности компактность равносильна секвенциальной компактности.

Доказательство.

- ⇒. Из компактности и первой аксиомы счётности (следует из второй) следует секвенциальная компактность. Доказательство аналогично частному случаю (теорема 2.10.2).
- \Leftarrow . Выделим из покрытия (Ј $U_{\alpha}=X$ конечное подпокрытие.

По теореме Линделёфа (теорема 2.8.2) в пространстве с 2AC найдётся счётное подпокрытие $\bigcup_{i=1}^{\infty}U_i=X$. Положим $\mathcal{F}_i\coloneqq X\setminus U_i$, обозначим $W_n=\bigcap_{i=1}^n\mathcal{F}_i$.

От противного: для всякого конечного $n \in \mathbb{N}$: $W_n \neq \varnothing$. Тогда выберем в последовательности множеств $W_1 \supset W_2 \ldots$ последовательность точек $a_i \in W_i$. В ней есть подпоследовательность, которая сходится к некой точке $b \in \bigcap_{i=1}^{\infty} W_i$. $(b \in \mathrm{SCl}W_i \Rightarrow b \in \mathrm{Cl}\,W_i)$

Получаем, что $\forall i \in \mathbb{N} : b \notin U_i$, то есть, противоречие, U_i — не покрытие.

2.12 Факторпространства

Пусть (X,Ω) — топологическое пространство, \sim — отношение эквивалентности на X.

Определение 2.12.1 (Факторпространство X по отношению \sim). Множество $X/_{\sim}$, такое, что $U \subset X/_{\sim}$ открыто $\iff p^{-1}(U)$ открыто в X. Здесь $p: X \to X/_{\sim}$ — (каноническая) проекция, $x \mapsto \overline{x}$.

Факт 2.12.1. Проекция р непрерывна.

2.12.1 Свойства

- Факторпространство связного пространства связно.
- Факторпространство линейно связного пространство линейно связно.
- Факторпространство сепарабельного пространства сепарабельно.
- Факторпространство компактного пространства компактно.

Примеры (Без доказательства).

- Отрезок со склеенными концами окружность. $[0,1]/_{0\sim 1}\sim S^1$.
- Квадрат со склеенными противоположными сторонами тор $T^2 = S^1 \times S^1$.
- Восьмиугольник, склеенный по формуле $aba^{-1}b^{-1}cdc^{-1}d^{-1}$ сфера с двумя ручками; два склеенных через дырку тора.
- Если склеим квадрат вот так, получим цилиндр.
- Если склеим квадрат по-другому, получим лист Мёбиуса.

2.12.2 Частные случаи факторизации

- Стягивание подпространства $A\subset X$ в точку. $x\sim y\iff \begin{bmatrix} x=y\\x,y\in A \end{bmatrix}$. Так, в отрезке [0,1] при стягивании подпространства $\{0,1\}$ в точку опять же получим окружность.
- В замкнутом круге $D_1(0)$ при стягивании окружности $S_1(0)$ получим S^2 .
- Проективная плоскость отождествление диаметрально противоположных точек на окружности круга.
- Определение 2.12.2 (Дизъюнктное объединение топологических пространств). U открыто в $X \sqcup Y \iff U \cap X$ открыто в X и $U \cap Y$ открыто в Y.

Теперь можно, например, склеить из двух отрезков AB и CD окружность, отождествив $A \sim C$ и $B \sim D$.

X,Y — топологические пространства. Пусть $A \subset X, f: A \to Y$.

Определение 2.12.3 (Склейка X и Y по отображению f). Факторпространство $X \sqcup Y/_{\sim}$, где \sim наименьшее по включению отображение эквивалентности, такое, что $x \sim f(x)$.

Обозначается $X \sqcup_f Y$.

Свойства.

- Фактортопология является топологией (проверить).
- Факторпространство связного пространства связно.
- Факторпространство линейно связного пространства связно.
- Факторпространство компактного пространства компактно.

Лекция IX 20 декабря 2022 г.

Теорема 2.12.1. $Y \to X \sqcup_f Y$ — топологическое вложение.

Доказательство. Проекция $X \sqcup Y \to X \sqcup_f Y$ непрерывна по определению фактортопологии. Значит, сужение проекции $Y \to X \sqcup_f Y$ непрерывно.

Обратно: рассмотрим любое открытое $U\subset Y$. Докажем, что его образ в p(U) открыт в $X\sqcup_f Y$. По определению склейки по отображению $p(U)=p(U\sqcup f^{-1}(U))$. Это множество открыто по определению фактортопологии, и из-за непрерывности f.

Теорема 2.12.2. Пусть X,Y — топологические пространства, X склеивают по \sim , $f:X/\sim \to Y$. Утверждается, что условие непрерывности f равносильно условию непрерывности $f\circ p$.

Доказательство.

- ⇒. Композиция непрерывных непрерывна.
- \Leftarrow . Проверим по определению непрерывность f. Рассмотрим открытое $U \subset Y$. Так как $f \circ p$ непрерывна, то $p^{-1}(f^{-1}(U))$ открыто. Но p можно «отменить»: $p(p^{-1}(f^{-1}(U)))$ открыто по определению фактортопологии.

Теорема 2.12.3 (О пропускании через фактор). Пусть X,Y — топологические пространства, \sim — отношение эквивалентности на X. Рассмотрим $g:X\to Y$, такое, что оно уважает \sim , то есть $x_1\sim x_2\Rightarrow f(x_1)=f(x_2)$.

Утверждается, что найдётся **непрерывная** $f: X/\sim \to Y$, такое, ч то $g=f\circ p$, где p — каноническая проекция.

П

Доказательство. $f(\overline{x}) = g(x)$. Определение корректно, так как g уважает \sim .

Заметим, что f непрерывна, так как $f \circ p$ непрерывна.

Теорема 2.12.4. Пусть $f: X \to Y$ — непрерывное сюръективное отображение.

Рассмотрим отношение эквивалентности на X: $x \sim y \iff f(x) = f(y)$.

Утверждается, что X/\sim гомеоморфно Y.

Доказательство. Гомеоморфизм $f:X/\sim \to Y$ существует и непрерывен согласно предыдущей теореме.

Он очевидно инъективен и сюръективен из-за сюръективности f.

 f^{-1} непрерывно, так как f(U) открыто для открытого U

Лекция X 16 февраля 2022 г.

2.13 Многообразия

Определение 2.13.1 (m-мерное многообразие). Хаусдорфово топологическое пространство со счётной базой, любая точка которого имеет окрестность, гомеоморфную \mathbb{R}^m .

Контрпример. Две прямые, склеенные везде, кроме пары точек. Не хаусдорфово.

Интересный факт (Теорема об инварианте размерности). Никакие два непустые открытые подмножества $U \subset \mathbb{R}^n$ и $V \subset \mathbb{R}^n$ не совпадают.

Примеры.

- \mathbb{R}^n и всякое его открытое подмножество.
- Для $n=0:\mathbb{R}^0=\{\mathrm{pt}\}$. Многообразием является всякое счётное дискретное топологическое пространство.
- S^n сфера размерности n. В качестве окрестности точки x рассмотрим $S^n \setminus \{y\}$, где y произвольная точка сферы, $y \neq x$.
- $\mathbb{R}p^n$. Рассмотрим $S^n \subset \mathbb{R}^n$. Введём на сфере отношение эквивалентности: x = -x, где x -точки сферы. $\mathbb{R}p^n \cong S^n/_\sim$. Образы координат при проекции на «координатную полусферу». В частности $\mathbb{R}p^1 \cong \mathbb{R}p$.

Определение 2.13.2 (m-мерное многообразие с краем). Хаусдорфово топологическое пространство со счётной базой, любая точка которого имеет окрестность, гомеоморфную \mathbb{R}^m или $\mathbb{R}^m_+ := \{(x_1,\ldots,x_m)|x_1\geqslant 0\}\subset \mathbb{R}^m$.

Определение 2.13.3 (Край многообразия). Множество точек, для которых не существует окрестности, гомеоморфной \mathbb{R}^m .

Интересный факт. \mathbb{R}^m_+ негомеоморфно никакому открытому подмножеству \mathbb{R}^n для любого n.

Интересный факт. Край многообразия размерности n — многообразие размерности n-1.

Определение 2.13.4 (Замкнутое многообразие). Компактное многообразие без края.

Пример. Например, сфера S^n .

Контрпример. Полупространство.

 $\mathit{Интересный}\ \phi \mathit{акт}.$ Всякое замкнутое связное многообразие размерности 1 гомеоморфно окружности $S^1.$

Примеры (Примеры двумерных многообразий).

•

Примеры (Двумерные многообразия).

- Лента Мёбиуса: двумерное многообразие с краем. Склейка прямоугольника по формуле axay или треугольника по формуле aax. Край ленты Мёбиуса окружность
- Тор: склейка прямоугольника по формуле $aba^{-1}b^{-1}$.
- Бутылка Клейна: склейка прямоугольника по формуле $aba^{-1}b$.
- $\mathbb{R}p^2\cong S^2/_\sim$ эквивалентно склейке aa. (теорема 2.12.4)

2.13.1 Модельные поверхности

- Сфера с n (открытыми) дырками.
- Сфера с р ручками: к сфере с р дырками приклеить по ручке (тор с дыркой) каждой дырке.
- Сфера с q плёнками к сфере с q дырками приклеить по плёнке (ленте Мёбиуса) каждой дырке.

Утверждается, что если у дырки отождествить противоположные точки, то получится заклеивание дырки плёнкой.

• Сфера с n дырками, p ручками и q плёнками. Утверждается, что если есть хотя бы одна плёнка, то p ручек и q плёнок гомеоморфны 2p+q

Определение 2.13.5 (Развёртка). Конечное множество непересекающихся многоугольников плоскости, у которых стороны разбиты на паре, и выбран линейный гомеоморфизм между сторонами одной пары. Соответствующее факторпространство называется замкнутой 2-мерная поверхность.

Факт 2.13.1. Замкнутая 2-мерная поверхность является замкнутым двумерным многообразием.

Доказательство. Компактность очевидна; проверим, что у каждой точки (внутренности многоугольника, середины ребра, вершины) есть окрестность, гомеоморфная \mathbb{R}^2 .

Замечание. Если поверхность связна, то у неё есть развёртка, состоящая из одного многоугольника.

Определение 2.13.6 (Ориентируемая развёртка). Всегда ребро a склеивается с ребром a^{-1} .

Определение 2.13.7 (Каноническая развёртка первого типа). 4p-угольник, в котором стороны склеены по правилу $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\dots$ Для данного p каноническая развёртка фиксирована. Для p=1 это тор; для p=2 поверхность развёртки называется *крендель*. В общем случае это сфера с p ручками.

Определение 2.13.8 (Каноническая развёртка второго типа). 2q-угольник, в котором стороны склеены по правилу $a_1a_1a_2a_2\dots$ Для q=1 поверхность развёртки — $\mathbb{R}p^1$. В общем виде — сфера с q плёнками.

После хитрого склеивания видно, что бутылка Клейна имеет формулу $a^{-1}a^{-1}cc$, то есть изоморфна развёртке второго типа для q=2.

Факт 2.13.2. Развёртка первого типа для фиксированного р изоморфна сфере с р ручками.

Доказательство. Будем приклеивать ручки по индукции. Заметим, что склейка пятиугольника по формуле $aba^{-1}b^{-1}x$ даёт тор с дыркой. Ну, дальше как-нибудь приклеим.

Факт 2.13.3. Аналогично доказываем, что развёртка второго типа изоморфна сфере c q плёнками.

Теорема 2.13.1. • Любая связная замкнутая двумерная поверхность с ориентируемой развёрткой изоморфна сфере с p ручками для некоего p.

• Любая связная замкнутая двумерная поверхность с неориентируемой развёрткой изоморфна сфере с q плёнками для некоего q.

Лекция XI _{2 марта 2022 г.}

Пусть \mathcal{F} — замкнутое двумерное многообразие

плёнкам.

Определение 2.13.9 (Топологический треугольник). Пара (T,ϕ) , где $T\subset \mathcal{F}$ — подпространство, а $\phi: \triangle \to T$ — гомеоморфизм из произвольного треугольника плоскости (треугольник берётся вместе со внутренностью) на T. Образы рёбер треугольника называются pебрами топологического треугольника, образы вершин — вершинами.

Определение 2.13.10 (Триангуляция замкнутого двумерного многообразия). Конечный набор топологических треугольников $K = \{T_i, \phi_i\}_{i=1..n}$, такой, что выполняются условия:

- Треугольники покрывают всё пространство: $\bigcup_{i=1}^n T_i = \mathcal{F}$.
- Пересечение любых двух треугольников их общее ребро, общая вершина, либо пустое.

Определение 2.13.11 (Триангулируемая поверхность). Поверхность, у которой существует триангуляция.

Интересный факт. У любого замкнутого компактного двумерного многообразия есть триангуляшия.

Hint: доказательство использует сильный вариант теоремы Жордана: замкнутая несамопересекающаяся кривая бьёт плоскость на две компоненты, такие, что одна из них — диск.

Предложение 2.13.1. Всякое компактное двумерное многообразие можно представить, как факторпространство некоторой развёртки.

Совместим два треугольника в один, если их два ребра — общий прообраз какого-то ребра топологического треугольника многообразия.

Надо аккуратно проследить за тем, чтобы гомеоморфизм был линейным, и, видимо, всё получится.

Утверждение: факторпространство объединения треугольников по условию развёртки — исходное многообразие.

В общем, я не понимаю, какого уровня строгости ожидать, и не очень въезжаю вообще в то, что рассказывается. \Box

Интересный факт. Пространства, задаваемые различными каноническими развёртками негомеоморфны. Доказательство в конце семестра будет использовать фундаментальную группу.

Теорема 2.13.2. Если развёртка ориентируемая, то она гомеоморфна поверхности, задаваемой развёрткой I типа. Если развёртка неориентируемая, то она гомеоморфна поверхности, задаваемой развёрткой II типа.

Доказательство. Приведём произвольную развёртку к каноническому виду, используя следующие операции над развёртками:

- 1. Подразделение многоугольника на два. Плюс один многоугольник, плюс одно правило склей-ки.
- 2. Обратная предыдущей: склеивание.
- 3. Свёртывание aa^{-1} = ничего (свёртка разрешается, если в многоугольнике хотя бы 3 ребра).

Займёмся комбинаторикой.

- 1. Так как факторпространство развёртки поверхность связна, то можно считать, что развёртка один многоугольник (склеим, если их несколько). Теперь все правила склейки одно циклическое слово типа $abca^{-1}deb^{-1}d^{-1}c^{-1}\dots$
- 2. Убираем вхождения подстрок типа aa^{-1} . Если в какой-то момент осталась строка aa^{-1} , то наша поверхность сфера.
- 3. Приводим к развёртке, в которой все вершины эквивалентны. Как? Пусть есть две неэквивалентные вершины $A \not\sim B$. Если такие нашлись, то можно считать, что они соседние.

Пусть A-a-B-b-C, где a,b — правила склейки. Заметим, что $b \neq a^{-1}$, иначе бы мы свернули B, а ещё $b \neq a$, так как $B \not\sim A$. Проведём ребро d = AC, разрежем по нему, склеим по b.

Заметим, что вершин, эквивалентных A стало на одну меньше, эквивалентных B — на одну меньше, остальных количество не поменялось.

Иначе говоря, отрезали треугольник ABC, и приклеили его в другое место. Видимо, так всегда можно сделать, хотя у меня это вызывает не очень много доверия.

Такими действиями можно переклеиваниями все вершины сделать эквивалентными.

4. Выделение лент Мёбиуса. Если где-то есть два вхождения символа c одного направления, то есть слово имеет вид $c\omega_1 c\omega_2$, то разрежем по диагонали d, склеим, получим $dd\omega_1(\omega_2)^{-1}$.

Повторим этот шаг столько, сколько можно, теперь все правила склейки одного направления идут подряд.

5. Выделение ручек. Если предыдущий шаг не привёл к канонической развёртки, то найдётся две буквы c и c^{-1} .

Утверждается, что найдутся ещё два символа d, d^{-1} , такие, что в циклическом порядке d идёт между c и c^{-1} , а d^{-1} — нет. Это следует из того, что все вершины эквивалентны: если бы таких d, d^{-1} не нашлось бы, то между вершинами от c до c^{-1} и между вершинами от c^{-1} до c не было бы связки эквивалентности.

Итак, слово развёртки имеет вид $c\omega_1 d\omega_2 c^{-1}\omega_3 d^{-1}\omega_4$.

Разрежем по диагонали a, соединяющей соответствующие концы c и c^{-1} и склеим по d. Получим слово $c\omega_1\omega_4a\omega_3\omega_2c^{-1}a^{-1}$. Не, ну это нереально понять без картинок (я ещё наверняка везде набагал при записи слов)...

Теперь проведём диагональ b между соответствующими концами a и a^{-1} , разрежем по нему и склеим по c.

Получим слово $\omega_1\omega_4a^{-1}bab^{-1}a^{-1}\omega_3\omega_2$. Выделили ручку. Повторяем это тоже, пока можно.

6. Замена ручек лентами Мёбиуса. Пусть есть хотя бы одна ручка и хотя бы одна плёнка. Слово имеет вид $cc\omega_1 aba^{-1}\omega_2$. Разрежем по центральной диагонали d (соединяющей середины ручки и плёнки), склеим по c, получим слово $abd(\omega_2)^{-1}bad\omega_1$. Из a,b,d склеим три плёнки, повторяем, пока можно.

2.13.2 Клеточные пространства

«Сейчас мы определим способ построения более страшных пространств, но всё ещё не очень плохих» По-другому клеточные пространства называют СW-комплексы. С значит closure finiteness, W значит Weak?? Возможно, раньше определение сильной и слабой топологии было противоположным.

Определение 2.13.12 (Клеточное пространство размерности 0). Дискретное пространство — любой (возможно, несчётный) набор точек, каждая из которых — открытое множество.

Эти точки называют (нульмерными) клетками.

Определение 2.13.13 (Диск размерности k). Замкнутый шар в \mathbb{R}^k . Его граница δD^k — сфера S^{k-1} .

Определение 2.13.14 (Клеточное пространство размерности $n \in \mathbb{N}$). Топологическое пространство, полученное из клеточного пространства размерности n-1, в него вклеили множество дисков $\{D^n_\alpha\}_{\alpha\in\Lambda}$, приклеивая по их границам: по отображению $\phi_\alpha=\delta D^n_\alpha\to X^{n-1}$, где X^{n-1} — предыдущее клеточное пространство размерности n-1.

Внутренности вклеенных дисков называют клетками.

Промежуточные клеточные пространства называются к-мерными остовами (скелетами)

Дополнительным условием является то, что $\phi_{\alpha}(\delta D_{\alpha})$ содержится в конечном числе клеток соответствующего многообразия размерности n-1.

«Не запрещается что-то плохое», например, всю границу диска D^2 вклеить в среднюю точку одного из отрезков D^1 .

Определение 2.13.15 (Клеточное разбиение топологического пространства). Конкретное представление топологического пространства в виде клеточного пространства.

Так, сфера S^2 является клеточным пространством «точка + ничего + приклеиваем диск по точке» = «точка + экватор + приклеиваем два диска по экватору».

Определение 2.13.16 (Клеточное пространство размерности ω). Рассмотрим цепочку клеточных пространств

$$X^0 \subset X^1 \subset \cdots \subset X^n \subset X^{n+1} \subset \cdots$$

Можно проверить, что включение — включение подпространств в топологическом смысле, открыте множества сохраняются.

Тогда определим предельное клеточное пространство размерности ω на множестве $\bigcup_{i=0}^{\infty} X^i$.

Топологию на данном объединении определим следующим образом: U открыто в $X \iff \forall n: U \cap X^n$ открыто в X^n .

Имеют место следующие два утверждения:

- Можно показать, что определённая выше топология самая сильная, такая, что in : $X^n \hookrightarrow X$ непрерывное отображение.
- Можно показать, что определённая выше топология самая сильная, такая, что in : $X^n \hookrightarrow X$ вложение.

Пусть X — конечное (состоит из конечного числа клеток) клеточное пространство.

Определение 2.13.17 (Эйлерова характеристика клеточного пространства X). $\chi(X) \stackrel{def}{=} \sum_{k=0}^{n} (-1)^k |I_k|$, где $|I_k|$ — число k-мерных клеток.

Используя гомологии, можно доказать, что эйлерова характеристика не зависит от разбиения пространства на клетки.

Определение 2.13.18 (Род двумерной поверхности). Наибольшее число дизъюнктных окружностей, которые можно вырезать так, чтобы она оставалась связной.

Факт 2.13.4. Род сферы с p ручками и без плёнок: $pod(S_{p,0}) = p$. Род сферы с q плёнками и без ручек: $pod(S_{0,q}) = q$.

B частности, род сферы 0, род тора -1.

Вырезание дырки не меняет род.

Посчитаем эйлерову характеристику сферы с p ручками.

Рассмотрим каноническую развёртку, ей соответствует естественное клеточное разбиение из одной нульмерной клетки (общая вершина), одной двумерной (поверхность) и 2p одномерных (так как в развёртке 4p вершин и столько же рёбер, но каждая пара рёбер отождествлена). $\chi(S_{p,0})=2-2p$.

Аналогично эйлерова характеристика сферы с q плёнками равна $\chi(S_{0,q}) = 2 - q$.

«Если считать, что всё, что мы сформулировали, мы знаем, то можно получить следующую теорему»

Теорема 2.13.3. Двумерная компактная поверхность (возможно, с краем) однозначно задаётся тройкой параметров: число компонент края, ориентируемость (наличие хотя бы одной плёнки), эйлеровой характеристикой.

Доказательство. Сведение к случаю поверхности без края очевидно — заклеить все дырки дисками.

В	зависимости	ОТ	ориентируемости	определяем,	поверхность	c	ручками	ИЛИ	плёнками,	a	потом
эй.	лерова характ	гері	истика показывает	, сколько их.							

Отсюда видно, что всякая такая поверхность имеет развёртку в виде многоугольника, у которого каждая сторона либо сама по себе, либо склеена ровно с одной другой.

Глава 3

Геометрия

Лекция XII

9 марта 2022 г.

3.1 Евклидово пространство

Пусть X — векторное пространство над \mathbb{R} .

Определение 3.1.1 (Скалярное произведение). Отображение $\langle \cdot, \cdot \rangle \to \mathbb{R}$ со следующими свойствами

- 1. Симметричное: $\forall x, y \in X : \langle x, y \rangle = \langle y, x \rangle$.
- 2. Билинейное:

$$\forall x,y,z \in X: \langle x,y+z \rangle = \langle x,y \rangle + \langle x,z \rangle \\ \forall x,y \in X, \lambda \in \mathbb{R}: \langle x,\lambda y \rangle = \lambda \\ \langle x,y \rangle$$

3. Положительная определённость: $\langle x, x \rangle \geqslant 0$. $\langle x, x \rangle = 0 \iff x = 0$.

Определение 3.1.2 (Евклидово пространство). Векторное пространство с заданным на нём скалярным произведением.

Пример. \mathbb{R}^n со стандартным скалярным произведением.

Определение 3.1.3 (Норма или длина вектора $x \in X$). $|x| = \sqrt{\langle x, x \rangle}$.

Определение 3.1.4 (Расстояние между $x, y \in X$). d(x, y) = |x - y|

Свойства нормы и расстояния:

- $|x + y|^2 = |x|^2 + 2\langle x, y \rangle + |y|^2$.
- |x| > 0 для $x \neq 0$.
- $|\lambda x| = |\lambda||x|$, в частности, |-x| = |x|.
- d(x,y) = d(x+z, y+z).
- Неравенство Коши Буняковского Шварца (далее КБШ):

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

причём равенство достигается тогда и только тогда, когда x и y линейно зависимы.

Доказательство. Если x=0 или y=0, то доказывать нечего. Пусть оба не равны нулю.

$$\forall \lambda \in \mathbb{R} : 0 \leq |x - \lambda y| = \lambda^2 |y|^2 - 2\lambda \langle x, y \rangle + |x|^2$$

Выбрав $\lambda = \frac{\langle x,y \rangle}{|y|^2}$ — при нём правая часть принимает наименьшее значение — получаем $\langle x,y \rangle^2 \leqslant |x|^2 \cdot |y|^2$ (и равенство достигается при $|x-\lambda y|=0$), что и требовалось доказать. \square

Следствие 3.1.1 (Неравенство треугольника для нормы). $|x+y| \le |x| + |y|$.

Доказательство. Возвести в квадрат обе части и применить КБШ.

Следствие 3.1.2 (Неравенство треугольника для расстояний). $d(x,z) \le d(x,y) + d(y,z)$.

Доказательство.

$$d(x,z) = |x-z| = |(x-y) + (y-z)| \le |x-y| + |y-z| = d(x,y) + d(y,z)$$

Определение 3.1.5 (Угол между векторами $x,y \neq 0$). $\angle(x,y) = \arccos\left(\frac{\langle x,y \rangle}{|x|\cdot|y|}\right)$

Свойства:

- $\angle \in [0, \pi]$.
- Для $\lambda \neq 0$: $\angle(x, \lambda y) = \angle(x, y) \cdot \operatorname{sgn}(\lambda)$.
- **Теорема 3.1.1** (Теорема косинусов). $|x-y|^2 = |x|^2 + |y|^2 2|x| \cdot |y| \cos \angle (x,y)$.

Доказательство. Мы так определили угол.

• **Теорема 3.1.2** (Неравенство треугольника для углов). $\angle(x,z) \le \angle(x,y) + \angle(y,z)$.

Доказательство. Положим $\alpha = \angle(x,y), \beta = \angle(y,z)$. Если $\alpha + \beta \geqslant \pi$, то доказывать нечего.

Построим на плоскости треугольник со сторонами-векторами x', z', такими, что |x'| = |x|, |z'| = |z| и угол между ними равен $\alpha + \beta$. Пусть чевиана u' в треугольнике составляет угол α со стороной x' и имеет длину |u|.

Отложим вектор u длины |u| сонаправлено вектору y.

По теореме косинусов |x-u|=|x'-u'|, |u-z|=|u'-z'|, согласно неравенству треугольника для x и z $|x-z|\leqslant |x-u|+|u-z|=|x'-u'|+|u'-z'|=|x'-z'|$.

Отсюда получаем
$$\cos \angle(x,z) = \frac{|x|^2 + |z|^2 - |x-z|^2}{|x| \cdot |z|} \geqslant \frac{|x'|^2 + |z'|^2 - |x'-z'|^2}{|x'| \cdot |z'|} = \cos \angle(x',z').$$

Таким образом,
$$\angle(x,z) \leqslant \angle(x',z') = \angle(x,y) + \angle(y,z)$$
.

Следствие 3.1.3 (Угловой метод на сфере). Пусть $S = \left\{ x \in X \middle| |x| = 1 \right\}$. На сфере есть метрика $d_S(x,y) = \angle(x,y)$.

Следствие 3.1.4. $\angle(x,y) + \angle(y,z) + \angle(x,z) \leq 2\pi$.

Доказательство.

$$\angle(x,z) \leqslant \underbrace{\angle(x,-y)}_{\pi-\angle(x,y)} + \underbrace{\angle(-y,z)}_{\pi-\angle(y,z)}$$

3.2 Ортогональные векторы

Пусть $(X, \langle \cdot, \cdot \rangle)$ — евклидово пространство.

Определение 3.2.1 (Вектора $x, y \in X$ ортогональны). $\langle x, y \rangle = 0$. Записывают $x \perp y$.

Свойства ортогональности:

- \bullet $0 \perp x$.
- $y \perp x_1, \ldots, y \perp x_n \Rightarrow y \perp (\alpha_1 x_1 + \cdots + \alpha_n x_n).$
- **Теорема 3.2.1** (Пифагор).

$$x \perp y \quad \Rightarrow \quad |x+y|^2 = |x|^2 + |y|^2$$

Определение 3.2.2 (Ортонормированный набор векторов). Множество единичных векторов $\{v_1, \ldots, v_n\}$, попарно ортогональных.

Пусть v_1, \ldots, v_n — ортонормированный набор векторов.

Свойства:

 $\left\langle \sum_{i=1}^{n} \alpha_i v_i, \sum_{i=1}^{n} \beta_i v_i \right\rangle = \sum_{i=1}^{n} \alpha_i \beta_i$

• Ортонормированный набор векторов линейно независим.

Доказательство.
$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0$$
 \iff $\alpha_1^2 + \dots + \alpha_n^2 = 0.$

Теорема 3.2.2 (Ортогонализация по Граму — Шмидту). Для любого линейно независимого набора векторов $v_1, \ldots, v_n \in X \exists ! \{e_1, \ldots, e_n\} \subset X$ — ортонормированный набор векторов, такой, что

$$\forall k = 1..n:$$
 $\operatorname{Lin}(v_1, \dots, v_k) = \operatorname{Lin}(e_1, \dots, e_k)$ $\forall k = 1..n:$

Доказательство. Докажем и существование, и единственность по индукции.

<u>База:</u> n=1, можно принять $e_1=\frac{v_1}{|v_1|}$. Очевидно, других вариантов нет.

<u>Переход:</u> пусть для $\{v_1, \ldots, v_{n-1}\}$ выбран набор векторов $\{e_1, \ldots, e_{n-1}\}$ с необходимыми свойствами.

Выберем $w_n = v_n - \sum_{j=1}^{n-1} \langle v_n, e_j \rangle \cdot e_j$. Это *ортогональная проекция* v_n на линейное пространство $\mathrm{Lin}(e_1, \dots, e_{n-1})$.

Заметим, что
$$\forall 1 \leqslant i < n : \langle w_n, e_i \rangle = \langle v_n, e_i \rangle - \sum\limits_{i=1}^n \langle v_n, e_j \rangle \cdot \langle e_j, e_i \rangle = \langle v_n, e_i \rangle - \langle v_n, e_i \rangle = 0.$$

Таким образом, $e_n=rac{w_n}{|w_n|}$ подойдёт.

Единственность: пусть в качестве e_k был выбран другой вектор, $\widetilde{e_k}$. По условию теоремы $\widetilde{e_k} \in \mathrm{Lin}(e_1,\ldots,e_k)$. Но тогда есть всего два варината. Либо $\exists i \neq k : \langle \widetilde{e_k},e_i \rangle \neq 0$, это запрещено отроусловием.. Либо $\widetilde{e_k} = \lambda e_k$ для некоего λ (откуда из нормированности следует $|\lambda| = 1$ и знак равен 1: определяется исходя из $\langle \widetilde{e_k},v_k \rangle$).

X — конечномерное пространство. Тогда в X

- Есть ортонормированный базис.
- Любой ортонормированный набор можно дополнить до базиса.

Определение 3.2.3 (Изоморфизм евклидовых пространств X и Y). Существует изоморфизм f: линейное отображение $f: X \to Y$, такое, что $f: X \to Y$ — биекция, сохраняющая скалярное произведение.

Теорема 3.2.3. Любые два евклидовых пространства одной размерности изоморфны.

 $\ \ \, \mathcal{L}$ оказательство. Определим изоморфизм на ортонормированных базисах и продолжим по линейности. $\ \ \, \Box$

Ниже X всегда конечномерно.

Определение 3.2.4 (Ортонормированное дополнение $A \subset X$). $A^{\perp} \stackrel{def}{=} \{x \in X | \langle x, a \rangle = 0, a \in A\}.$

Свойства ортонормированного дополнения:

- A^{\perp} линейное пространство.
- $A \subset B \Rightarrow A^{\perp} \supset B^{\perp}$.
- $A^{\perp} = \operatorname{Lin}(A)^{\perp}$.

Теорема 3.2.4. Пусть $V\subset X$ — линейное подпространство. Тогда $X=V\oplus V^{\perp}$.

Теорема 3.2.5. Пусть $V \subset X$ — линейное подпространство. Тогда верны следующие условия:

- 1. $X = V \oplus V^{\perp}$.
- 2. $(V^{\perp})^{\perp} = V$.

Доказательство. Выберем $\{e_1, \dots, e_k\}$ — ортонормированный базис V.

Дополним его до $\{e_1,\ldots,e_k,e_{k+1},\ldots,e_n\}$ — ортонормированного базиса X.

Проверим, что $Lin(e_{k+1},...,e_n) = V^{\perp}$. Здесь верно включение в обе стороны.

Лекция XIII

16 марта 2023 г.

Свойства (Ортогональное подпространство).

- Можно определить ортогональную проекцию $\Pr_V: X \to V$ ведь раз $V \oplus V^\perp = X$, то всякий вектор раскладывается в сумму элементов V и V^\perp . \Pr_V по определению тот вектор из прямой суммы, который лежит в V.
- \bullet \Pr_V непрерывна.
- $\forall x \in X : \Pr_V(x)$ ближайшая к x точка в V. Доказательство применение теоремы Пифагора.
- Пусть $H \leq X$ подпространство размерности $\div X 1$, то есть гиперплоскость.

Определение 3.2.5 (Нормаль к гиперплоскости H). Вектор, перпендикулярный всем векторам гиперплоскости H.

Нормаль существует и единственна с точностью до домножения на скаляр: это вектор, порождающий H^{\perp} . $\langle n \rangle = H^{\perp}$.

Лемма 3.2.1 (Конечномерная лемма Рисса). Пусть $L: X \to \mathbb{R}$ — линейное отображение, где X — евклидово пространство. $\exists ! v \in V: L(u) \equiv \langle u, v \rangle$.

Доказательство. Выберем базис $(e_1, \dots, e_n) \subset X$. Тогда линейное отображение однозначно задаётся вот так:

$$L(u := e_1 u_1 + \dots + e_n u_n) = L(e_1) u_1 + \dots + L(e_n) u_n$$

$$L(u) = \langle (L(e_1) \dots L(e_n)), u \rangle$$

П

Факт 3.2.1. Для любого линейное отображение $L: X \to \mathbb{R}$, не равное нулю $\not\equiv 0$: $\operatorname{Ker}(L)$ – гиперплоскость. Любая гиперплоскость — ядро некой скалярной функции.

Доказательство.

- Теорема о размерности ядра и образа.
- ullet Для v нормали к гиперплоскости $L(x) \equiv \langle v, x \rangle$ подойдёт.

Факт 3.2.2. Расстояние от точки $x \in X$ до гиперплоскости $H \leqslant X$ равно $\frac{\langle x,v \rangle}{|v|} \equiv \left\langle x, \frac{v}{|v|} \right\rangle$, где $\langle v \rangle = H^{\perp}$.

B самом деле, x раскладывается в сумму $x=x^\perp+x^\parallel$, $a\ \mathrm{d}(x,H)=\left\langle x^\perp+x^\parallel,\frac{v}{|v|}\right\rangle=|x^\perp|.$

3.3 Ортогональные преобразования

Пусть X, Y — евклидовые пространства (не обязательно одной размерности).

Определение 3.3.1 (Изометричное отображение). Такое линейное отображение $f: X \to Y$, что $\langle x_1, x_2 \rangle = \langle f(x_1), f(x_2) \rangle$. В случае равенства пространств X = Y f называется ортогональным преобразованием X.

Свойства (Изометричные преобразования).

- Для всякого линейного отображения f: изометричность равносильна тому, что f сохраняет длины векторов.
- Изометричные преобразования инъективны (если f(x) = f(y), то ||f(x) f(y)|| = 0, то есть ||x y|| = 0).

Группа ортогональных преобразований для пространства \mathbb{R}^n называется $\mathcal{O}(n)$.

Доказательство.

Задача 3.3.1. Как выглядят ортогональные преобразования в \mathbb{R}^2 ?

Посмотрим, куда перешёл один из ортогональных векторов: матрица перехода имеет вид $\begin{pmatrix} \cos \alpha & * \\ \sin \alpha & * \end{pmatrix}$. Второй столбец должен быть нормирован и ортогонален первому, поэтому

матрица перехода имеет вид $\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$ (поворот на угол α), либо $\begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$ (какие-то поворот и отражение; главное, что раскладывается в прямую сумму id и — id).

Положим $X_+ \coloneqq \{x \in X | f(x) = x\}, \; X_- \coloneqq \{x \in X | f(x) = -x\}.$ Очевидно, $X_+ \cap X_- = \{0\}.$

Найдём в $(X_+ \oplus X_-)^{\perp}$ плоскость поворота; тогда по индукции всё получится.

Формальнее, положим изначально $V = X_+ \oplus X_-$ Рассмотрим единичную сферу S в подпространстве V^\perp , проверим, что происходит при отображении f с точками сферы.

f ортогонально, поэтому f(S)=S, откуда для всякой точки $x_0\in S$ можно рассмотреть $\angle(x_0,f(x_0))$. Это функция от x_0 , она достигает минимума на компактной сфере. Пусть $z_0\in S$ — точка минимума $\angle(x_0,f(x_0))$.

Так как $S \cap X_+ = \{0\}$, то $\angle(z_0, f(z_0)) > 0$. Проверим, что вектора z_0 и $f(z_0)$ действительно образуют плоскость, которая f-инвариантна. Это достаточно проверить на базовых векторах z_0 и $f(z_0)$.

От противного: $f(f(z_0)) \notin \langle z_0, f(z_0) \rangle$. Рассмотрим середины сторон $z_0 - f(z_0)$ и $f(z_0) - f(f(z_0))$, если $f(f(z_0))$ не лежит в плоскости $\langle z_0, f(z_0) \rangle$, то угол между серединами строго меньше угла $\angle(z_0, f(z_0)) = \angle(f(z_0), f(f(z_0)))$.

Таким образом, плоскость f инвариантна, она не бьётся на рямую сумму id и -id, значит, в ней поворот, её можно прямо приплюсовать к V и продолжить по индукции.

3.3.1 Ориентация векторного пространства

Определение 3.3.2 (Два базиса одинаково ориентированы). Матрица перехода между ними имеет положительный определитель.

Теорема 3.3.1. Одинаковая ориентируемость базисов — отношение эквивалентности на множестве базисов данного пространства.

Доказательство. Детерминант мультипликативен.

Определение 3.3.3 (Ориентированное векторное пространство). Векторное пространство, в котором один выделен один из классов эквивалентности ориентации базисов.

В таком случае базисы из данного класса эквивалентности называются положительно ориентированными, остальные — отрицательно ориентированными.

В пространстве \mathbb{R}^n стандартная ориентация базиса совпадает с ориентацией стандартного базиса $(1 \ 0 \ \dots \ 0), \dots, (0 \ 0 \ \dots \ 1)$

Определение 3.3.4 (Смешанное произведение). Пусть $(X, \langle \cdot, \cdot \rangle)$ — ориентируемое векторное пространство размерности n. Рассмотрим вектора $v_1, \ldots, v_n \in X$.

Смешанное произведение $[v_1, v_2, \dots, v_n] \stackrel{def}{=} \det A$, где A — матрица разложения векторов v_1, \dots, v_n по произвольному ортонормированному базису.

Так как определитель матрицы перехода между двумя ортонормированными базисами равен 1, то определение корректно. Из свойств определителя сразу получаем следующее:

Свойства (Смешанное произведение).

- Линейность по каждому аргументу.
- Кососимметричность (транспозиция меняет знак).
- Равенство нулю эквивалентно линейной зависимости.
- $[v_1,\ldots,v_n]>0 \iff (v_1,\ldots,v_n)$ положительный базис.

Определение 3.3.5 (Векторное произведение). Пусть $(X, \langle \cdot, \cdot \rangle)$ — **трёхмерное** ориентируемое векторное пространство. Рассмотрим вектора $u, v \in X$.

Их векторное произведение $u \times v$ — такой вектор $h \in X$, что $\forall x \in X : \langle h, x \rangle = [u, v, x]$.

Существование и единственность такого h следует из леммы Рисса.

Свойства (Векторное произведение).

- По определению $\langle u \times v, w \rangle = [u, v, w].$
- Из кососимметричности смешанного произведения $u \times v = -v \times u$.
- Билинейность.
- $u \times v = 0 \iff u$ и v линейно зависимы.

Доказательство. u и v линейно зависимы $\iff [u, v, x] = 0$ всегда.

• Для положительного ортонормированного базиса (e_1, e_2, e_3) :

$$e_1 \times e_2 = e_3$$

$$e_2 \times e_3 = e_1$$

$$e_3 \times e_1 = e_2$$

Теорема 3.3.2 (Геометрический смысл векторного произведения).

- Векторное произведение $w \coloneqq u \times v$ ортогонально каждому из векторов u, v.
- (u, v, w) образуют положительный базис.
- |w| площадь параллелограмма, натянутого на u и v.

Доказательство.

- По определению $\langle u \times v, v \rangle = [u, v, v] = 0.$
- Применим ортогонализацию Грама Шмидта для u,v, получим вектора $e_1=a\cdot u,e_2=b\cdot u+c\cdot v$, где a,c>0. Введём e_3 так, что (e_1,e_2,e_3) положительный ортонормированный базис. По определению $u\times v=ace_3$, откуда

Лекция XIV

23 марта 2023 г.

3.3.2 Формула в координатах

Пусть (e_1,e_2,e_3) — положительный ортонормированный базис, разложим по базису $x=x_1e_1+x_2e_2+x_3e_3$ и $y=y_1e_1+y_2e_2+y_3e_3$. Тогда

$$x \times y = \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} e_1 - \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix} e_2 + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} e_3$$

Иногда формально пишут

$$x \times y = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ e_1 & e_2 & e_3 \end{vmatrix}$$

3.4 Матрицы Грама

Пусть $(V, \langle \cdot, \cdot \rangle)$ — евклидово пространство.

Матрица Грама $G(v_1,\ldots,v_k)$ — это матрица $(\langle v_i,v_j\rangle)_{i,j=1}^n.$

Свойства.

- $x_i x_j g_{i,j}$ это что?
- \bullet $\det G = [v_1, \ldots, v_k]$ или что-то типа
- $\det G = 0 \iff v_1, \dots, v_k$ линейно зависимы.

Глава 4

Аффинные пространства

Определение 4.0.1 (Аффинное пространство). Тройка $(X, \to, +)$, где X — непустое множество, \overrightarrow{X} — векторное пространство (его называют ассоциированное или присоединённое), а операция откладывания вектора $+: X \times \overrightarrow{X} \to X$, удовлетворяет свойствам:

- $\forall x,y \in X: \exists ! u \in \overrightarrow{X}: y = x + u$. Такой u обозначают \overrightarrow{xy} .
- Выполнена следующая ассоциативность: $\forall x \in X, u, v \in \overrightarrow{X}: (x+u)+v=x+(u+v)$

Пример (Основной, и в некотором смысле единственный). Пусть X — векторное пространство. Выберем $\overrightarrow{X} = X$, операция сложения наследуется из X.

На самом деле всё сводится к этому примеру, в дальнейшем будем аффинные пространства $(X, \overrightarrow{X}, +)$ обозначать X.

Свойства.

- $x + \overrightarrow{xy} = y$ по определению.
- Правило треугольника: $\overrightarrow{xy} + \overrightarrow{yz} = \overrightarrow{xz}$.
- $\overrightarrow{xx} = \overrightarrow{0}$: в самом деле, $\overrightarrow{xx} + \overrightarrow{xx} = \overrightarrow{xx}$.
- $x + \overrightarrow{0} = x$: в самом деле, $x + \overrightarrow{xx} = x$.
- $\bullet \ \overrightarrow{yx} = -\overrightarrow{xy}.$
- ullet Если так получилось, что $x+\overrightarrow{u}=y+\overrightarrow{u}$, то $(x+\overrightarrow{u})-\overrightarrow{u}=(y+\overrightarrow{u})-\overrightarrow{u}\Rightarrow x=y.$
- Если так получилось, что $\overrightarrow{xy} = \overrightarrow{0}$, то $y = x + \overrightarrow{xy} = x + \overrightarrow{0} = x$.

Рассмотрим аффинное пространство $(X, \overrightarrow{X}, +)$, выберем произвольный элемент $O \in X$ — начало отсчёта. Утверждается, что начало отсчёта создаёт биекцию между X и \overrightarrow{X} .

$$\phi_O: X \leftrightarrow \overrightarrow{X} \qquad x \leftrightarrow \overrightarrow{Ox}$$

Проверка инъективности и сюръективности остаются, как упражнение читателю.

Отображение $\phi_O: X \to \overrightarrow{X}$ называется векторизацией аффинного пространства X.

Определение 4.0.2 (Линейная комбинация относительно начала отсчёта O). Для коэффициентов $t_i \in \mathbb{R}, \overrightarrow{p_i} \in X$ — вектор $\overrightarrow{v} = \sum_i t_i \overrightarrow{p_i}$ или точка $O + \overrightarrow{v}$.

- ullet Барицентрические (аффинные) линейные комбинации такие комбинации, что $\sum_i t_i = 1.$
- Сбалансированные такие комбинации, что $\sum\limits_{i}t_{i}=1.$

Теорема 4.0.1. Барицентрическая линейная комбинация точек — точка, не зависящая от начала отсчёта.

Сбалансированная линейная комбинация векторов — вектор, не зависящий от начала отсчёта.

Доказательство. Запишем две барицентрические координаты с началами отсчёта в O и в O':

$$\overrightarrow{v} = \sum_{i} t_{i} \cdot \overrightarrow{Op_{i}}; \qquad \overrightarrow{v'} = \sum_{i} t_{i} \cdot \overrightarrow{O'p_{i}} = \sum_{i} t_{i} \cdot \left(\overrightarrow{O'O} + \overrightarrow{Op_{i}}\right) = \underbrace{\left(\sum_{i} t_{i}\right)\overrightarrow{O'O}}_{\text{0 для сбалансированной}} + \sum_{i} t_{i}\overrightarrow{Op_{i}}$$

$$O + \overrightarrow{v} = O' + \overrightarrow{v'} = \underbrace{C' + \overrightarrow{V'O'}}_{\text{для барицентрической}} = \underbrace{C' + \overrightarrow{O'O}}_{\text{0}} + \overrightarrow{v'} = O + \overrightarrow{v'}$$

Пусть X — аффинное пространство.

Определение 4.0.3 ($Y \subset X$ — аффинное подпространство). $\exists V \leqslant \overrightarrow{X}, p \in Y : Y = p + V$. Подпространство V называется направление Y.

Свойства.

- Если Y = p + V аффинное подпространство X, то $\forall q \in Y : Y = q + V$.
- Y аффинное пространство с ассоциированным V.
- $\forall q \in Y$: для отображения векторизации $\phi_q:\phi_q(Y)=V.$

Определение 4.0.4 (Размерность ассоциированного пространства). Размерность соответствующего ассоциированного векторного пространства. $\dim X \stackrel{def}{=} \dim \overrightarrow{X}$.

Определение 4.0.5 (Параллельный перенос на вектор $v \in \overrightarrow{X}$). Отображение $T_{\overrightarrow{v}}: X \to X; \quad x \mapsto z + \overrightarrow{v}$.

Свойства.

- $T_{\overrightarrow{y}} + \overrightarrow{y} = T_{\overrightarrow{y}} + T_{\overrightarrow{y}}$.
- $T_{\overrightarrow{0}} = id$.
- $T_{\left(-\overrightarrow{v}\right)} = \left(T_{\overrightarrow{v}}\right)^{-1}$

Следствие 4.0.1. Параллельные переносы — подгруппа группы биекций множества X.

Определение 4.0.6 (Аффинные подпространства параллельны). Их направления совпадают.

Определение 4.0.7 (Прямая). Аффинное подпространство размерности 1.

Определение 4.0.8 (Гиперплоскость в конечномерном пространстве X). Аффинное подпространство размерности $\dim X - 1$.

Теорема 4.0.2. Пересечение любого множества аффинных подпространств — либо пустое множество, либо аффинное подпространство.

Доказательство. Обозначим пересекаемые подпространства за $(Y_i, \overrightarrow{V_i}, +)$.

Пусть пересечение непусто, рассмотрим $p\in\bigcap_i Y_i$. Всякое подпространство Y_i имеет вид $Y_i=p+\overrightarrow{V_i}$.

Пересечение имеет вид
$$p+\bigcap\limits_{i}\overrightarrow{V_{i}}.$$

Определение 4.0.9 (Аффинная оболочка точек $A \subset X$). Пересечение всех аффинных подпространств, содержащих A. Иначе говоря, наименьшее аффинное подпространство, содержащее A. Обозначается $\mathrm{Aff}(A)$.

Обозначим за $B_p(A)$ образ A при векторизации с началом отсчёта в произвольной точке $p \in A$:

$$B_p(A) := \phi_p(A) = \{ \overrightarrow{pa} | a \in A \}$$

Предложение 4.0.1. $A \subset Y$ для некоего аффинного подпространства $Y = p + V \iff B_p(A) \subset V$. **Предложение 4.0.2.** $\phi_p(\text{Aff }A) = \text{Lin}(B_p(A))$.

Замечание. Мне откровенно лень писать доказательства здесь.

Теорема 4.0.3. Аффинная оболочка множества A совпадает с множеством барицентрических комбинаций точек множества A.

Доказательство. //todo

Определение 4.0.10 (Множество точек $\{p_1,\dots,p_n\}\subset X$ аффинно независимо). Существует нетривиальная сбалансированная комбинация: $\sum_i t_i = 0$, причём $\sum_i t_i \overrightarrow{p_i'} = \overrightarrow{0}$. Ранее было по-

казано, что начало отсчёта можно выбрать произвольно.

Теорема 4.0.4. Для множества точек $A \subset X$ следующие условия равносильны:

- Аффинно независимы
- Векторы $p_1 p_k$ независимы
- $\dim Aff = n 1$.
- Всякая точка из Aff представима в барицентрическом виде единственным образом.

Лекция XV 30 марта 2023 г.

Доказательство.

$$1 \iff 2 \sum_{i} t_i p_i = 0 \iff \sum_{i} t_i \overrightarrow{p_1 p_i}$$

 $2 \iff 3 \dots$

 $1\Rightarrow 4$ От противного: две барицентрические комбинации быть не могут, ноль — тоже по предыдущей теореме.

 $4\Rightarrow 1$ Пусть аффинно зависимы, найдём два барицентрических представления какой-то точки. \qed

Рассмотрим аффинное пространство $(X, \overrightarrow{X}, +)$ размерности n.

Определение 4.0.11 (Аффинный точечный базис). Линейно независимое множество $\{p_1,\dots,p_{n+1}\}\in X$

Определение 4.0.12 (Аффинный базис). Фиксированный нуль $O \in X$, линейно независимое множество векторов $e_1, \ldots, e_n \in \overrightarrow{X}$.

В аффинном точечном базисе любая точка представима единственным образом, как барицентрическая комбинация базиса. Коэффициенты в разложении точки по этому базису называют барицентрическими координатами.

Если же рассматривается разложение по аффинному базису, то коэффициенты — aффинные коор-dunamu.

4.1 Аффинные отображения

 $(X, \overrightarrow{X}, +), (Y, \overrightarrow{Y}, +)$ — аффинные пространства.

 $orall \mathcal{F}: X o Y$ определим соответствующее отображение $\widetilde{\mathcal{F}}_p: \overrightarrow{X} o \overrightarrow{Y}; \quad \widetilde{\mathcal{F}}_p(\overrightarrow{v}) = \overline{\mathcal{F}(p)\mathcal{F}(p+\overrightarrow{v})}.$

Определение 4.1.1 (Аффинное отображение $\mathcal{F}: X \to Y$). Для некоторой точки $p \in X$: отображение $\widetilde{\mathcal{F}}_p$ линейно.

Лемма 4.1.1. Если для некоторой точки $p:\widetilde{\mathcal{F}}_p$ аддитивно, то $\forall q\in X:\widetilde{\mathcal{F}}_q\equiv\widetilde{\mathcal{F}}_p.$

Замечание. Получили переформулировку: \mathcal{F} аффинное, если $\exists L: \overrightarrow{X} \to \overrightarrow{Y}$, такое, что $\overline{\mathcal{F}(p)\mathcal{F}(q)} = L(\overrightarrow{pq})$.

Факт 4.1.1. Для фиксированных точек $x\in X,y\in Y$ и линейного отображения $L:\overrightarrow{X}\to\overrightarrow{Y}$ существует и линейное аффинное отображение $\mathcal{F}:X\to Y$, такое, что $\mathcal{F}(x)=y,\widetilde{\mathcal{F}}=L.$

Определение 4.1.2 (Коллинеарные точки). Точки, лежащие на одной прямой; аффинное зависимые точки.

Теорема 4.1.1. Пусть X, Y — аффинные пространства, \mathcal{F} — инъективное отображение, переводящее прямые $l \subset X$ в прямые $\mathcal{F}(l) \subset Y$.

Доказательство. Назовём отображение $\mathbb{R}^2 \to \mathbb{R}^2$ хорошим, если это биекция, переводящая прямые в прямые.

Лемма 4.1.2. *Хорошее f переводит неколлинеарные точки в неколлинеарные.*

Доказательство. От противного: три неколлинеарные точки A,B,C перешли в прямую l. Тогда AB,BC,AC как прямые, тоже перешли в l.

Дальше любая прямая плоскости пересекает хотя бы 2 из трёх прямых среди AB,BC,AC, значит, вся плоскость перешла в l. Противоречие с биективностью.

Лемма 4.1.3. Хорошее отображение переводит параллельные прямые в параллельные прямые.

Доказательство. Параллельные \equiv непересекающиеся. \Box