Universidade Federal de São Carlos — Departamento de Computação Estruturas Discretas — Profa. Helena Caseli

Sétima Lista de Exercícios – Estruturas Algébricas

- 1) Prove que $[M_2(Z), *]$ não é um monóide comutativo.
- 2) Prove que $[M_2(Z), *]$ não é um grupo.
- 3) Cada item a seguir define uma operação binária denotada por * em um conjunto dado.

a. Em Z:
$$x^*y = \begin{cases} x & \text{se } x & \text{\'e} & \text{par} \\ x+1 & \text{se } x & \text{\'e} & \text{impar} \end{cases}$$

Prove que * é associativa.

b. Em N:
$$x * y = (x + y)^2$$

Prove que * é comutativa e não é associativa.

4) A tabela a seguir define uma operação binária * no conjunto {a, b, c, d}. Essa operação é associativa? Essa operação é comutativa?

5) Seja S={p, q, r, s}. A tabela a seguir define parcialmente uma operação * em S. Complete a tabela de modo que * seja associativa. Essa operação é comutativa?

- 6) Defina se as estruturas [S, *] a seguir formam semigrupos, monóides, grupos ou nenhum desses. Identifique o elemento identidade em qualquer monóide ou grupo.
 - a. S=N; x*y=min(x,y)
 - b. S=R; $x*y=(x+y)^2$
 - c. $S = \{a + b\sqrt{2} \mid a, b \in Z\}$; multiplicação tradicional
- 7) Em cada um dos casos a seguir, decida se a primeira estrutura forma um subgrupo do grupo representado pela segunda estrutura. Se não, diga por quê. Observação: S° denota S-{0}.
 - a. $[Z_5^{\bullet}, *_5]; [Z_5, +_5]$
 - b. $[Z^{\bullet}, *]; [Q^{\bullet}, *]$

- 8) Em cada item a seguir, decida se a função dada é um homomorfismo do grupo à esquerda no grupo à direita. Algum desses homomorfismos é também um isomorfismo?
 - a. [Z, +], [Z, +]; f(x)=2
 - b. [R, +], [R, +]; f(x)=|x|
 - c. $[R^{\bullet}, *], [R^{\bullet}, *]; f(x)=|x|$ (onde R^{\bullet} denota o conjunto dos números reais não nulos e * a multiplicação).
- 9) Ache todos os subgrupos de $[Z_6, +_6]$.
- 10) Ache todos os subgrupos de $[Z_9, +_9]$.
- 11) Seja * uma operação definida em um conjunto A. Então, mostre que * pode ter no máximo um elemento identidade.
- 12) Seja (G, *) um grupo. Mostre que todo elemento de G tem um inverso único em G.
- 13) Considerando-se o conjunto $Z_4 = \{0, 1, 2, 3\}$, complete as tabelas a seguir para as operações * indicadas e diga se o par $[Z_4, *]$ é um monóide ou um grupo. Verifique também se trata-se de uma estrutura com a propriedade comutativa.

a) + ₄				
$+_4$	0	1	2	3
0				
1				
2		3		
3			1	

b)

.4	0	1	2	3
0	0			
1			2	
2				
3		3		