pyPLNmodels: getting started.

Bastien Batardière, Joon Kwon and Julien Chiquet

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay

June 9, 2023

Modelling

- Dataset:
 - $ightharpoonup Y: n \times p \text{ count matrix}$
 - \triangleright **X** : $n \times d$ covariates
- Parameter $\theta = (\beta, \Sigma)$
 - $\beta \in \mathbb{R}^{d \times p}$ regression parameter
 - $\Sigma = CC^{\top}, C \in \mathbb{R}^{p \times q}$ covariance matrix.
- Model:

$$egin{aligned} W_i \sim & \mathcal{N}\left(0, I_q
ight) \ Z_i = & eta^ op X_i + CW_i \ (Y_{ij} \mid Z_{ij}) \sim & \mathcal{P}\left(\exp\left(Z_{ij}
ight)
ight) \end{aligned}$$

- ▶ When p = q: unrestricted model: Pln class in pyPLNmodels
- ▶ When p >> q: Σ has low rank: PlnPCA class in pyPLNmodels

► Model:

$$W_i \sim \mathcal{N}\left(0, I_q
ight) \ Z_i = eta^ op X_i + CW_i \ (Y_{ij} \mid Z_{ij}) \sim \mathcal{P}\left(\exp\left(Z_{ij}
ight)
ight)$$

- ▶ Goal of the package: retrieve back the latent representation Z_i:
 - \triangleright $W_i|Y_i$ is enough for PInPCA
 - \triangleright $Z_i | Y_i$ for PIn
- ▶ Problem: both $W_i|Y_i$ and $Z_i|Y_i$ have unknown distribution.
- gaussian variational approximation.
 - ▶ PInPCA: $W_i|Y_i \sim \mathcal{N}\left(M_i, \operatorname{diag}(S_i)\right), M_i, S_i \in \mathbb{R}^q$
 - ▶ Pln: $Z_i|Y_i \sim \mathcal{N}\left(M_i, \operatorname{diag}(S_i)\right), M_i, S_i \in \mathbb{R}^p$

First dimension against second dimension in dimension p = 5

