Discrete Mathematics

2019~2020 (第一学期)

Department of Computer Science, East China Normal University

September 10, 2019

Chapter 2 NUMBER THEORY

- 2.1 最大公因数和最小公倍数
- 2.2 素数
- 2.3 一次同余方程
- 2.4 RSA公钥密码体制*

Definition (素数)

素数 (prime number): i) 整数, ii) 大于1, iii) 只有1和自身两个正因数; 合数: i) 整数, ii) 大于1, iii) 非素数.

Example

- 素数: 2.3.5.7.11....:
- 合数: 4,6,8,9,10,...;
- 非素数且非合数: 1.0.-1.-2.-3.....

QUIZ: 求方程 xy + 2y - 3x = 25 的所有整数解.

Theorem

设n是大于1的整数,它除1外的最小正因数q必为素数; 并且当 n 是合数时, $q ≤ \sqrt{n}$.

用筛选法构造不超过 $n \in \mathbb{N}$ 的素数表:

从2到 n 的列表中, 依次删去素数 2.3.5.7.11.... 的倍数, 其中所需考虑 的素数不大于 \sqrt{n} .

Theorem

设 p 是素数, $n_1, n_2, \ldots, n_k \in \mathbb{N}$.

若 $p \mid n_1 \cdot n_2 \cdot \cdots \cdot n_k$, 则 $p \mid n_1, p \mid n_2, \cdots, p \mid n_k$ 其中必有一个成立.

Theorem (算术基本定理)

对于每一个正整数 n > 1 都可唯一地分解为素数的幂之积 (正整数的标准 分解式):

$$n = p_1^{\varepsilon_1} \cdot p_2^{\varepsilon_2} \cdot \cdots \cdot p_k^{\varepsilon_k},$$

其中 D_1, D_2, \ldots, D_k 是互异的素数, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k \in \mathbb{N}$.

Theorem

素数有无穷多个.

欧拉函数

Definition (Euler's function)

欧拉函数 $\varphi(n): n \in \mathbb{N}$ 是记录小于n并与n互素的正整数个数.

Theorem

设 $n \in \mathbb{N}$ 有标准分解式: $n = p_1^{\varepsilon_1} \cdot p_2^{\varepsilon_2} \cdot \dots \cdot p_k^{\varepsilon_k}$, 则

$$\varphi(n)=n\cdot (1-\tfrac{1}{p_1})\cdot (1-\tfrac{1}{p_2})\cdot \cdots \cdot (1-\tfrac{1}{p_k}).$$

TIP: Prove it by the principle of inclusion—exclusion.

欧拉定理

Theorem (Euler's theorem)

若
$$n \in \mathbb{N}$$
, $a \in \mathbb{Z}$, $(a, n) = 1$, 则有 $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Corollary (Fermat's little theorem)

设
$$p$$
为素数, $a \in \mathbb{Z}$, 且 $(a,p) = 1$, 则有 $a^{p-1} \equiv 1 \pmod{p}$.

Proof.

It follows immediately from Euler's theorem by choosing n = p.

二次探测定理

Theorem (二次探测定理)

若 p 是素数, 则
$$x^2 \equiv 1 \pmod{p}$$
 的解为 $x \equiv 1 \pmod{p}$ 或 $x \equiv p-1 \pmod{p}$.

Proof.

$$x^{2} \equiv 1 \pmod{p}$$

$$\iff (x-1)(x+1) \equiv 0 \pmod{p}$$

$$\iff p \mid (x-1)(x+1)$$

$$\iff x \equiv 1 \pmod{p} \stackrel{\text{if}}{\otimes} x \equiv p-1 \pmod{p}.$$

素性探测

Testing whether a natural number is a prime number is a fundamental problem, with application to the Rivest–Shamir–Adleman public-key cryptosystem.

Theorem (Wilson's theorem)

对于任意 $n \in \mathbb{N}$, n是素数的充分必要条件是 $(n-1)! \equiv -1 \pmod{n}$.

充分条件和必要条件.

Wilson 定理和筛法都不适用于检测大整数的素性, 尚没有高效的确定性的 (deterministic) 素性测试算法, 仅有一些非确定性的 (nondeterministic) 随机算法.

Miller-Rabin 测试

Miller-Rabin 测试

注: 判定一个正整数n(n > 1) 是不是素数? 没有有效的基于充分条件的算法. 可考虑借助于必要条件设计算法.

检测多个必要条件以提高可靠性,

费马小定理+二次探测定理,

已证明算法出错的概率小于等于1/4,

若反复测试 k 次, 则错误概率可降低为 $(\frac{1}{4})^k$.

Miller-Rabin 测试

GOAL: 测试 n 是 不 是 素 数.

- 0 由费马小定理, 可得: $a^{n-1} = a^{m \cdot 2^q} \equiv 1 \pmod{n}$, 其中 1 < a < n − 1 是 随机洗取的自然粉
- 1 由二次探测定理. 可得: $a^{m \cdot 2^{q-1}} \equiv 1 \pmod{n}$ $\not \equiv a^{m \cdot 2^{q-1}} \equiv n-1 \pmod{n}$.
- 2 若 $a^{m \cdot 2^{q-1}} \equiv 1 \pmod{n}$, 则再由二次探测定理, 可得: $a^{m \cdot 2^{q-2}} \equiv 1 \pmod{n}$ $\not \equiv a^{m \cdot 2^{q-2}} \equiv n-1 \pmod{n}$.
- r 依次向前递推, 即对任意的 $r(0 \le r < q 1)$, 若 $a^{2^r m} \equiv 1 \pmod{n}$. 则 有 $a^{2^{r-1}m} \equiv 1 \pmod{n}$, 如发生后者, 终止二 次探测.

 $\exists n$ 是素数时, 必有 $a^m(modn) = 1$, 或上述测试序列中某一步的余数 为n-1.

Miller-Rabin 测试

Miller 序列: $a^{m\cdot 2^0} \mod n$, $a^{m\cdot 2^1} \mod n$, ..., $a^{m\cdot 2^q} \mod n$. 测试它们的值是否为:

- **1**,...,1,
- ② *, n − 1, 1, ..., 1, 1, 其中 * 表示任意前缀情况.

只有在这两种情况下, n才可能是素数. (必要条件)

Homework

令 M = 100000, N = 1000000007, 设你的学号为 x, 求解以下问题:

- ② 求最小的素数 r₂ 使其满足, r₂ ≥ r₁。

写作业时依次给出 X, r₁, r₂ 的值。

例如你们助教的学号是 x = 51164500057, 则该题的答案是

51164500057 193157841 193157863

Hint

- 取前7个素数做 Miller-Rabin 测试,能够保证在输入小于3.4×10¹⁴
 时,结果是完全正确的。
- 根据孪生素数猜想的最新研究成果,相邻两个素数之差不超过 246.

4 D > 4 A > 4 B > 4 B > B = 900