

Abolfazl Meyarian @mlghost

Abolfazl Meyarian @mlghost

Convolutional Neural Network

when we can use CNNs?

- high dimmensional Data
- Grid like Data

· widely used for image processing

What is ConvNet?

useful links:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

http://cs231n.github.io/convolutional-networks/

ConvNet Architecture and Operations

- 1.Convolution Layer
- 2.Pooling Layer
- 3. Fully Connected

Convolution Layer

Convolution:

Summary. To summarize, the Conv Layer:

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - the amount of zero padding P.
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - \circ $H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - ∘ D₂ = K

Activation:

Pooling Layer

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires two hyperparameters:
 - \circ their spatial extent F ,
 - \circ the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$\circ \ H_2=(H_1-F)/S+1$$

$$\circ D_2 = D_1$$

Trainable Layers:

- Convolution
- Fully Connected

Optimization Method:

Backpropagation

Popular ConvNets

- LeNet
- VGGNet
- AlexNet
- GoogLeNet
- ResNet

Generative Adversarial Networks

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

Abolfazl Meyarian @mlghost

