Mein Titel

Tim Jaschik

May 19, 2025

Abstract. – Kurze Beschreibung ...

Contents

1	Test		
	1.1	Test	2
	Test		3
	9.1	Substact	9

1 Test

1.1 Test

Definition A-1-03-03 (Kommutativer Ring). Sei $\Omega \subset \mathbb{R}^N$ ein beschränktes Gebiet, $q \in L^{\infty}(\Omega)$ nichtnegativ und $f \in L^2(\Omega)$. Dann hat das Dirichletproblem

$$-\Delta u + q(x)u = f$$
 in Ω , $u = 0$ auf $\partial \Omega$

eine eindeutig bestimmte schwache Lösung $u \in H_0^1(\Omega)$. Ist ferner $f \in L^{\infty}(\Omega)$, so gilt:

- (i) $u \in C^1(\Omega) \cap L^{\infty}(\Omega)$.
- (ii) Ist $\Omega' \subset\subset \Omega$, so existiert eine nur von $\|q\|_{\infty}$ und Ω' abhängige Konstante $C_1 > 0$ mit

$$||u||_{C^1(\overline{\Omega'})} \le C_1 \left(||u||_{L^{\infty}(\Omega)} + ||f||_{L^{\infty}(\Omega)}\right)$$

(iii) Erfüllt Ω eine gleichmäßige äußere Sphärenbedingung, so gilt $u \in C_0(\Omega)$, und es existiert eine nur von $\|f\|_{L^{\infty}(\Omega)}$ abhängige Konstante C_2 mit

$$|u(x)| \le C_2 \operatorname{dist}(x, \partial \Omega)$$
 für $x \in \Omega$.

Erinnerung: $u \in H_0^1(\Omega)$ heißt schwache Lösung von (1.1), falls

$$a_L(u,\varphi) := \int_{\Omega} (\nabla u \nabla \varphi + q(x) u \varphi) dx = \int_{\Omega} f u dx$$
 für alle $\varphi \in H_0^1(\Omega)$.

Wir testen auf Veränderung.

Example A-1-03-04 (Körper sind Ringe).

Example A-1-03-05 $((\mathbb{Z}, +, *)$ kommutaiver Ring).

Example A-1-03-06 (Ring der Funktionen).

Example A-1-03-07 (Matrizenringe über Körper).

Example A-1-03-08 (($End_k(V), +, \circ$) Ring).

Example A-1-03-09 (Matrizenring über Ring).

Example A-1-03-10 (Nullring).

Example A-1-03-11 (Produktring).

Example A-1-03-12 (Gruppenring mit Koeffizienten aus Körper).

Remark A-1-03-13 (Eins eines Ringes mit Eins ist eindeutig).

Lemma A-1-03-14 (Rechenregeln für Ringe mit Eins).

Lemma A-1-03-15 (Wenn Ring mit 0 = 1, dann Nullring).

Definition A-1-03-16 (Ringhomomorphismus).

Remark A-1-03-17 (Ringhomomorphismen induzieren Gruppenhomomorphismen zwischen abelschen Gruppen).

Example A-1-03-18 (Pullback-Ringhomomorphismus).

Example A-1-03-19 (Einschränkung als Pullback der Inklusion).

Example A-1-03-20 (Auswertungshomomorphismus für Punkt-Inklusion).

Definition A-1-03-21 (R-Linearkombination in Ringen).

Definition A-1-03-22 (Unterring eines Ringes).

Example A-1-03-23 (Bild von Ringhomomorphismen ist ein Unterring).

Definition A-1-03-24 (Einheiten in Ringen).

Proposition A-1-03-25 (Einheitsgruppe: Menge der Einheiten in Ringen sind Gruppe bzgl. Multiplikation in R).

Example A-1-03-26 (Einheitengruppe von ganzen Zahlen).

Example A-1-03-27 (Einheitengruppe von Gruppenringe).

Example A-1-03-28 (Einheiten von Matrizenringe mit Koeffizienten in Körper).

Proposition A-1-03-29 (Ringhomomorphismen bilden Einheiten auf Einheiten ab und induzieren G-Hom auf Einheitsgruppen).

Definition A-1-03-30 (Schiefkörper als Ring mit Einheitsgruppe = R ohne 0).

Definition A-1-03-31 (Körper als abelscher Schiefkörper).

Example A-1-03-32 (Quaternionen als nichtkommutativer Schiefkörper).

2 Test

2.1 Subntest

Theorem GPDE-1-09-02 (Parabolisches Vergleichsprinzip).

Definition A-1-03-01 (Ring mit Eins).

Definition A-1-03-02 (Ring ohne Eins).

Theorem GPDE-1-09-01 (Elliptisches Vergleichsprinzip).