Nick LaFarge

Astrodynamics Researcher | Software Engineer

CONTACT

- □ nick.lafarge@gmail.com
- in nick-lafarge
- Nicholas-Lafarge
- nicklafarge
- +1 303-514-4220
- www.nicklafarge.space

SUMMARY

- Diverse skills in astrodynamics, autonomy, trajectory design, machine learning, and GN&C.
- Experienced software engineer, passion for numerical methods.
- PhD candidate in aeronautical and astronautical engineering.

DISTINCTIONS

NASA Space Technology Research Fellowship (NSTRF/NSTGRO)

2019 - 2023

For "graduate students who show significant potential to contribute to NASA's goal of creating innovative new space technologies."

NASA Pathways Intern Award Fall 2018

Awarded for outstanding work at NASA Johnson Space Center on LIDAR retroreflector identification and pattern generation for Orion.

PROGRAMMING

Python	Expert
Matlab	Advanced
Java	Advanced
C++	Intermediate
Julia	Intermediate

EDUCATION

Ph.D. - Aeronautics & Astronautics Engineering Purdue University - West Lafayette (IN)

Exp. May 2023

GPA: 4.0/4.0

- · NASA Space Technology Research Fellow (NSTRF/NSTGRO).
- Major area: Astrodynamics, Advisor: Prof. Kathleen Howell.

Research title: "Reinforcement Learning Approaches for Autonomous Guidance and Control in a Low-Thrust, Multi-Body Dynamical Environment."

M.S. - Aeronautics & Astronautics Engineering Purdue University - West Lafayette (IN)

May 2020 GPA: 3.74/4.0

May 2014

· Major area: Astrodynamics, Advisor: Prof. Kathleen Howell.

B.A. - Mathematics (Computational) and Japanese University of Colorado Boulder - Boulder (CO)

· Minor in computer science, academic year (2011-12) in Osaka, Japan.

WORK EXPERIENCE

Graduate Pathways Intern

2018 - Present

NASA Johnson Space Center, Houston (TX)

3x returning intern: GN&C Autonomous Flight Systems Branch

- Collaborated with flight software team in investigating anomalous **trajectory targeting** behavior for Orion.
- Implemented prototype **flight software** for state estimation *Summer 2019* for Orion. Integrated component into docking simulation.
- Built a distributed **optimization** library in Julia for lidar Fall 2018 retroreflector pattern generation for Orion prox. ops.
- Devised a novel reflector identification algorithm: now a Fall 2018 baseline component for Orion's onboard **relative navigation**.

Flight Path Control Intern

Summer 2017

NASA Jet Propulsion Laboratory, Pasadena (CA)

- Developed prototype for an interactive multi-body trajectory design tool in Monte to connect orbits in three-body systems.
- Formulated an automated method to identify orbit transfers using high-dimensional tree structures in conjunction with Poincaré maps.

Founder / Software Engineer TookTech LLC. Boulder (CO)

2015 - 2017

- Led Android app development for OpenSnow meteorologist team, helping client surpass **20,000 active** Android users.
- Supported client business growth via creative custom software solutions within an allocated budget.

Software Engineer

2014 - 2016

- Amadeus Consulting, Boulder (CO)
- Built custom software for numerous stakeholders in Java and Python.
 Engineered data science solutions for Google and VidVita, supporting cloud computing, web scraping, and data analytics tools.

FOREIGN LANGUAGE

EnglishNativeJapaneseIntermediateSpanishBeginnerLatvianBeginner

Activities

Journal Peer Reviewer

2020, 2022

Acta Astronautica and the Journal of Spacecraft and Rockets.

Conference Session Chair at the AIAA SciTech Forum

Jan. 2022

<u>Session</u>: Al and Machine Learning for Astrodynamics.

Private Pilot License

July 2013

Airplane single engine land license.

Speech Contest: 1st place

2013, Colorado/Wyoming

Japanese speech contest: entered top non-native category.

CAMPUS INVOLVEMENT

Multi-body Dynamics Research Group member

2017 - Present

<u>Activities</u>: weekly presentations, providing feedback to peers on multi-body dynamics research, mentorship to graduate students.

Graduate teaching assistant

Spring 2019

Managed virtual lab development with the Purdue innovation center (AAE 204, AAE 352).

Grader (Graduate aerospace)

Fall 2017, Spring 2018

Graded student homework for graduate orbital mechanics and attitude dynamics courses.

RESEARCH EXPERIENCE

Graduate Researcher 2016 - Present Purdue University, West Lafayette (IN)

- Introduced novel onboard guidance and control techniques for low-thrust spacecraft under **multi-body dynamics** via machine learning.
- Managed inter-university project for 3 years between Purdue & MIT.
- Implemented research on MIT's high-performance computing cluster.
- Created a C++ package for rapid trajectory propagation in Python/Matlab.
- Presented research at four international conferences.

Visiting Technologist (NSTRF/NSTGRO) NASA Goddard Space Flight Center, Greenbelt (MD)

3x returning technologist: Navigation and Mission Design Branch

2020 - 2022

- Collaborated with mission design engineers to implement research in a higher-fidelity maneuver planning simulation applied to the NRHO segment of the Lunar IceCube mission.
- Spearheaded investigation into autonomous low-thrust Winter 2021 maneuver planning for multi-body orbit **stationkeeping**.
- **Led research team** in evaluating reinforcement learning Summer 2020 efficacy for low-thrust guidance in cislunar space.

TECHNICAL SKILLS

- · Specialties: High-performance scientific computing, data visualization.
- · Software engineering: Agile development, code review, debugging.
- · Programming: Object-oriented design, parallel processing.
- Communication: Technical presenting & writing, LaTeX (expert).
- · Tools & Platforms: Version control (git), Linux, SQL, Android development.

PUBLICATIONS

JOURNAL PUBLICATIONS

• LaFarge, N. B., Miller, D., Howell, K. C., & Linares, R., "Autonomous Closed-Loop Guidance using Reinforcement Learning in a Low-Thrust, Multi-Body Dynamical Environment". *Acta Astronautica*, vol. 186, 1–23, 2021.

CONFERENCE PUBLICATIONS

- LaFarge, N. B., Howell, K. C., and Folta, D. C., "Adaptive Closed-Loop Maneuver Planning for Low-Thrust Spacecraft using Reinforcement Learning", International Astronautical Congress, Paris, France, 2022.
- LaFarge, N. B., Howell, K. C., and Folta, D. C., "An Autonomous Stationkeeping Strategy for Multi-Body Orbits Leveraging Reinforcement Learning," AIAA SciTech Forum, San Diego, CA, 2022.
- LaFarge, N. B., Howell, K. C., and Linares, R., "A Hybrid Closed-Loop Guidance Strategy for Low-Thrust Spacecraft Enabled by Neural Networks," *AAS Spaceflight Mechanics Meeting*, Charlotte, NC (Virtual), 2021.
- LaFarge, N. B., Miller, D., Howell, K. C., and Linares, R., "Guidance for Closed-Loop Transfers using Reinforcement Learning with Application to Libration Point Orbits," *AIAA SciTech Forum*, Orlando, FL, 2020.