Problème du rectangle inscrit

Emanuel Morille

17 Mai 2025

Table des matières

1.	Bases de théorie des catégories	2
	1.1. Catégories · · · · · · · · · · · · · · · · · · ·	2
	1.2. Foncteurs · · · · · · · · · · · · · · · · · · ·	
	1.3. Transformations naturelles · · · · · · · · · · · · · · · · · · ·	3
2.	Catégorie Comp des complexes de chaînes	4
	2.1. Complexes de chaînes · · · · · · · · · · · · · · · · · · ·	
	2.2. Morphismes de chaînes · · · · · · · · · · · · · · · · · · ·	4
	2.3. La catégorie Comp · · · · · · · · · · · · · · · · · · ·	5
	Homologie singulière	6
	3.1. Simplexes · · · · · · · · · · · · · · · · · · ·	
	3.2. Chaînes singulières · · · · · · · · · · · · · · · · · · ·	7
	3.3. Définitions de l'homologie singulière · · · · · · · · · · · · · · · · · · ·	9
	3.3.1. D'un espace topologique · · · · · · · · · · · · · · · · · · ·	9
	3.3.2. D'une paire d'espace topologique · · · · · · · · · · · · · · · · · · ·	9
	3.4. Paires d'espaces topologiques · · · · · · · · · · · · · · · · · · ·	9
Bi	bliographie	12
1 4		

1. Bases de théorie des catégories

1.1. Catégories

Définition 1.1. Une *catégorie* \mathcal{C} est la donnée de :

- Une classe $ob(\mathcal{C})$ dont les éléments sont appelés les *objets de* \mathcal{C} .
- Une classe hom(*C*) dont les éléments sont appelés les *morphismes de C*.
 Un morphisme *f* ∈ hom(*C*) a un *domaine X* ∈ ob(*C*) et un *codomaine Y* ∈ ob(*C*). On note alors ce morphisme *f* : *X* → *Y* et hom(*X*, *Y*) l'ensemble des morphismes de *X* dans *Y*.
- Pour tout objets $X, Y, Z \in ob(\mathcal{C})$, une *composition*:

$$\circ$$
: hom $(Y, Z) \times \text{hom}(X, Y) \rightarrow \text{hom}(X, Z)$.

• Pour tout objet $X \in ob(\mathcal{C})$, un morphisme *identité* :

$$id_X: X \to X$$
.

Vérifiant les propriétés suivantes pour tout objets X, Y, Z, T ∈ ob(\mathcal{C}):

• Associativité: Pour tout morphismes $f: X \to Y, g: Y \to Z$ et $h: Z \to T$, on a:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

• *Identité* : Pour tout morphisme $f: X \to Y$, on a :

$$id_Y \circ f = f = f \circ id_X$$
.

Exemple 1.2. La catégorie Ab des groupes abéliens :

- Les objets de Ab sont les groupes abéliens.
- Les morphismes de Ab sont les morphismes de groupes.

Exemple 1.3. Un groupe gradué est un groupe G muni d'une famille de sous-groupes $(G_i)_{i \in I}$ telle que $G = \bigoplus_{i \in I} G_i$. Pour tout $i \in I$, un élément non-nul de G_i est dit homogène de degré i.

Soit $G \coloneqq (G_i)_{i \in I}$ et $H \coloneqq (H_i)_{i \in I}$ deux groupes gradués. Un morphisme de groupes gradués est un morphisme de groupes $\varphi : G \to H$ tel que pour tout $i \in I$, on a $\varphi(G_i) \subset H_i$.

On définit ainsi la catégorie GrAb des groupes abéliens gradués :

- Les objets de GrAb sont les groupes abéliens gradués.
- Les morphismes de GrAb sont les morphismes de groupes gradués.

Exemple 1.4. La catégorie Top des espaces topologiques :

- Les objets de Top sont les espaces topologiques.
- Les morphismes de Top sont les applications continues.

Exemple 1.5. Une paire d'espaces topologiques est un espace topologique X muni d'une partie A de lui-même. On la note (X,A).

Soit (X, A) et (Y, B) deux paires d'espaces topologiques. Un *morphisme de paires* est une application continue $f: X \to Y$ telle que $f(A) \subset B$. On le note $f: (X, A) \to (Y, B)$.

On définit ainsi catégorie Top₂ des paires d'espaces topologiques :

- Les objets de Top₂ sont les paires d'espaces topologiques.
- Les morphismes de Top₂ sont les morphismes de paires.

Exemple 1.6. Soit (X, \leq) un ensemble partiellement ordonné. On définit la catégorie $\mathcal{C}(X, \leq)$:

- Les objets de $\mathcal{C}(X, \leq)$ sont les éléments de X.
- Pour tout $x, y \in X$, si $x \le y$, on a un morphisme $f_{x,y} : x \to y$.
- Pour tout $x, y, z \in X$, si $x \le y$ et $y \le z$, on a bien $x \le z$ et une composition $f_{y,z} \circ f_{x,y} = f_{x,z}$.
- Pour tout $x \in X$, on a bien $x \le x$ et un morphisme identité $f_{x,x}$.

Définition 1.7. Soit \mathcal{C} une catégorie. La *catégorie opposée* (ou duale) de \mathcal{C} , notée \mathcal{C}^{op} , est la catégorie dont les objets sont les objets \mathcal{C} et dont les morphismes sont les morphismes de \mathcal{C} dont le domaine et le codomaine sont inversés.

Exemple 1.8. Soit (X, \leq) un ensemble partiellement ordonné. Alors on a $\mathcal{C}(X, \leq)^{\mathsf{op}} = \mathcal{C}(X, \leq)$ où pour tout $x, y \in X$, on a $x \leq y$ si et seulement si $y \leq x$.

1.2. Foncteurs

Définition 1.9. Soit $\mathcal C$ et $\mathcal D$ deux catégories. Un *foncteur (covariant) F de* $\mathcal C$ *vers* $\mathcal D$ est la donnée :

- Pour tout objet $X \in ob(\mathcal{C})$, d'un objet $F(X) \in ob(\mathcal{D})$.
- Pour tout objets $X, Y \in ob(C)$ et morphisme $f: X \to Y$, d'un morphisme $F(f): F(X) \to F(Y)$.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z \in ob(\mathcal{C})$:

• Composition : Pour tout morphismes $f: X \to Y$ et $g: Y \to Z$, on a :

$$F(g \circ f) = F(g) \circ F(f)$$
.

• Identité : On a :

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$
.

Exemple 1.10. Soit \mathcal{C} et \mathcal{D} deux catégories. On définit le foncteur covariant constant $\mathcal{C}:\mathcal{C}\to\mathcal{D}$:

- On prend $D \in \mathcal{D}$, pour tout objet $X \in ob(\mathcal{C})$, on a C(X) := D.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $C(f) := id_D$.

Exemple 1.11. Soit \mathcal{C} une catégorie. On définit le foncteur covariant identité $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}:$

- Pour tout objet $X \in ob(\mathcal{C})$, on a $id_{\mathcal{C}}(X) := X$.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $id_{\mathcal{C}}(f) := f$.

Définition 1.12. Soit \mathcal{C} et \mathcal{D} deux catégories. Un *foncteur contravariant* est un foncteur covariant de la catégorie opposée \mathcal{C}^{op} vers \mathcal{D} .

Exemple 1.13. Soit \mathbb{K} un corps et Vect la catégorie des \mathbb{K} -espaces vectoriels. On définit un foncteur contravariant $F: \mathsf{Vect}^\mathsf{op} \to \mathsf{Vect}:$

- Pour tout \mathbb{K} -espace vectoriel $E \in \text{Vect}$, on a $F(E) := E^*$.
- Pour tout \mathbb{K} -espaces vectoriels $E, F \in \mathsf{Vect}$ et application linéaire $u : E \to F$, on a :

$$F(u) := u^{\mathrm{T}} : F^* \to E^*.$$

1.3. Transformations naturelles

Définition 1.14. Soit \mathcal{C} et \mathcal{D} deux catégories, $F:\mathcal{C}\to\mathcal{D}$ et $G:\mathcal{C}\to\mathcal{D}$ deux foncteurs covariants. Une *transformation naturelle* ∂ *de* F *vers* G est la donnée pour tout objet $X\in \mathrm{ob}(\mathcal{C})$, d'un morphisme $\partial_X:F(X)\to G(X)$, vérifiant la propriété suivante pour tout objet $Y\in \mathrm{ob}(\mathcal{C})$ et pour tout morphisme $f:X\to Y$, on a :

$$\partial_Y \circ F(f) = G(f) \circ \partial_X$$

c'est-à-dire que le diagramme suivant est commutatif :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\partial_X \downarrow \qquad \qquad \downarrow \partial_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

2. Catégorie Comp des complexes de chaînes

2.1. Complexes de chaînes

Définition 2.1. On appelle *complexe de chaînes*, noté C_{\bullet} , une suite de groupes abéliens $(C_n)_{n\in\mathbb{Z}}$ munie de morphismes de groupes $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ tels que pour tout $n\in\mathbb{Z}$, on a $d_nd_{n+1}=0$.

Définition 2.2. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle *n-cycle* un élément de $Z_n(C_{\bullet}) := \ker(d_n)$.
- On appelle *n-bord* un élément de $B_n(C_{\bullet}) := \operatorname{im}(d_{n+1})$.

Proposition 2.3. Soit C_{\bullet} un complexe de chaînes. Alors pour tout $n \in \mathbb{Z}$, on a $B_n(C_{\bullet}) \subset Z_n(C_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$. Alors $d_n d_{n+1} = 0$, donc $B_n(C_{\bullet}) = \operatorname{im}(d_{n+1}) \subset \ker(d_n) = Z_n(C_{\bullet})$.
□

Définition 2.4. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle n^e groupe d'homologie le groupe quotient $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$.
- On appelle *homologie* la suite des groupes $H_{\bullet}(C_{\bullet}) := (H_n(C_{\bullet}))_{n \in \mathbb{Z}}$.

Définition 2.5. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On dit que C_{\bullet} est exact en C_n si $H_n(C_{\bullet})$ est trivial, c'est-à-dire, im $(d_{n+1}) = \ker(d_n)$.
- On dit que C_{\bullet} est *exact* si pour tout $n \in \mathbb{Z}$, il est exact en C_n .
- On dit que C_{\bullet} est acyclique si pour tout $n \in \mathbb{Z} \setminus \{0\}$, il est exact en C_n .

2.2. Morphismes de chaînes

Définition 2.6. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes. On appelle *morphisme de chaînes*, noté $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$, une suite de morphismes de groupes $(\varphi_n: C_n \to D_n)_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $d_n \varphi_n = \varphi_{n-1} d_n$.

Proposition 2.7. Soit C_{\bullet} , D_{\bullet} et E_{\bullet} trois complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: D_{\bullet} \to E_{\bullet}$ deux morphismes de chaînes. Alors la composition $\psi_{\bullet} \circ \varphi_{\bullet}: C_{\bullet} \to E_{\bullet}$ est un morphisme de chaînes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$d_n(\psi_n \circ \varphi_n) = \psi_{n-1} d_n \varphi_n = (\psi_{n-1} \circ \varphi_{n-1}) d_n.$$

Donc $(\psi_n \circ \varphi_n)_{n \in \mathbb{Z}}$ est bien un morphisme de chaînes.

Proposition 2.8. Soit C_{\bullet} un complexe de chaînes. Alors le morphisme identité $\mathrm{id}_{C_{\bullet}}: C_{\bullet} \to C_{\bullet}$ est un morphisme de chaînes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$d_n id_n = d_n = id_{n-1} d_n$$
.

Donc $(id_{C_n})_{n\in\mathbb{Z}}$ est bien un morphisme de chaînes.

Proposition 2.9. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de chaînes. Alors pour tout $n \in \mathbb{Z}$, φ_n induit un morphisme de groupes de $H_n(C_{\bullet})$ dans $H_n(D_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $z \in Z_n(C_{\bullet})$. Alors on a $d_n \varphi_n(z) = \varphi_{n-1}(d_n z) = \varphi_{n-1}(0) = 0$, donc $\varphi_n(z) \in Z_n(D_{\bullet})$.

Soit $b \in B_n(C_{\bullet})$. Alors il existe $c \in C_{n+1}$ tel que $b = d_{n+1}c$, et on a :

$$\varphi_n(b) = \varphi_n(\mathbf{d}_{n+1}c) = \mathbf{d}_{n+1}\varphi_{n+1}(c)$$

donc $\varphi_n(b) \in B_n(D_{\bullet})$.

On considère $\overline{\varphi_n}: Z_n(C_{\bullet}) \to H_n(D_{\bullet})$, alors $B_n(C_{\bullet}) \subset \ker(\overline{\varphi_n})$ et d'après la propriété universelle du groupe quotient le morphisme $\overline{\varphi_n}$ induit bien un morphisme de $H_n(C_{\bullet})$ dans $H_n(D_{\bullet})$.

Définition 2.10. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de chaînes. Pour tout $n \in \mathbb{Z}$, on note $H_n(\varphi): H_n(C_{\bullet}) \to H_n(D_{\bullet})$ le morphisme de groupes induit par φ_n .

2.3. La catégorie Comp

Définition 2.11. On appelle Comp la catégorie des complexes de chaînes :

- Les objets de Comp sont les complexes de chaînes.
- Les morphismes de Comp sont les morphismes de chaînes.
- La composition de Comp découle de la Proposition 2.7.
- Le morphisme identité de Comp découle de Proposition 2.8.

Théorème 2.12. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie H_n est un foncteur de Comp vers Ab.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors le n^e groupe d'homologie $H_n(C_{\bullet})$ est bien un groupe abélien.
- Soit $C_{\bullet}, D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de chaînes. Alors le morphisme induit $H_n(\varphi) : H_n(C_{\bullet}) \to H_n(D_{\bullet})$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 2.7 et la propriété d'identité découle de la Proposition 2.8, donc H_n est bien un foncteur de Comp vers Ab.

Corollaire 2.13. L'homologie H_{\bullet} est un foncteur de Comp vers GrAb.

Démonstration.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors l'homologie $H_{\bullet}(C_{\bullet}) \coloneqq (H_n(C_{\bullet}))_{n \in \mathbb{Z}}$ définit bien un groupe abélien gradué.
- Soit $C_{\bullet}, D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de chaînes. Alors la suite des morphismes induits $H_{\bullet}(\varphi) \coloneqq (H_n(\varphi))_{n \in \mathbb{Z}}$ définit bien un morphisme de groupes abéliens gradués.

Les propriétés de composition et d'identité découlent du Théorème 2.12, donc H_{\bullet} est bien un foncteur de Comp vers GrAb.

3. Homologie singulière

3.1. Simplexes

Définition 3.1. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 3.2. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison linéaire de la forme $t_0p_0 + \cdots + t_np_n$ où $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 3.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Si A est convexe, alors toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose :

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 3.4. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée $\operatorname{Conv}(A)$, l'ensemble des combinaisons convexes d'éléments de A.

Proposition 3.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in \text{Conv}(A)$ et $t \in [0, 1]$. Puisque p et q sont des combinaisons convexes d'éléments de A, d'après la Proposition 3.3 on a $(1 - t)p + tq \in \text{Conv}(A)$. Donc l'ensemble Conv(A) est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in \text{Conv}(A)$. Puisque x est une combinaison convexe d'éléments de $A \subset B$, d'après la Proposition 3.3 on a $x \in B$. Donc $\text{Conv}(A) \subset B$. \square

Définition 3.6. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F0 et que F1 est la dimension de F2.

Définition 3.7. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Proposition 3.8. Soit E un \mathbb{R} -espace vectoriel et $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E. Alors l'application :

$$\langle f_0, ..., f_n \rangle : \Delta^n \to \operatorname{Conv}(F); (t_0, ..., t_n) \mapsto t_0 f_0 + ... + t_n f_n$$

est un homéomorphisme.

Démonstration. Soit $(s_0,...,s_n), (t_0,...,t_n) \in \Delta^n$ tels que $s_0f_0 + ... + s_nf_n = t_0f_0 + ... + t_nf_n$. En particulier on a $(s_0 - t_0)f_0 + ... + (s_n - t_n)f_n = 0$, et puisque la famille $(f_0,...,f_n)$ est libre, on obtient $s_0 - t_0 = ... = s_n - t_n = 0$, c'est-à-dire $(s_0,...,s_n) = (t_0,...,t_n)$. Donc $\langle f_0,...,f_n \rangle$ est injective. Soit $x \in \text{Conv}(F)$. Alors il existe $(t_0,...,t_n) \in \Delta^n$ tels que $x := t_0f_0 + ... + t_nf_n$. Donc $\langle f_0,...,f_n \rangle$ est surjective. Puisque $\langle f_0,...,f_n \rangle$ est une application linéaire et que Δ^n est de dimension finie, $\langle f_0,...,f_n \rangle$ est continue. De plus Δ^n est compact et Conv(F) est séparé, donc $\langle f_0,...,f_n \rangle$ est un homéomorphisme.

Définition 3.9. Soit E un \mathbb{R} -espace vectoriel, $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E et $x := t_0 f_0 + ... + t_n f_n$ un élément de $\operatorname{Conv}(F)$. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n \in [0, 1]$.

Définition 3.10. Soit E un \mathbb{R} -espace vectoriel, F une famille libre de n+1 éléments de E et G une famille non-vide d'éléments de m+1 éléments de F. On dit que $\operatorname{Conv}(G)$ est une m-face de $\operatorname{Conv}(F)$.

Exemple 3.11. Un 2-simplexe standard, il s'agit d'un triangle, les arêtes en vert sont des 1-faces du triangle, les sommets en rouge sont des 0-faces du triangle et des arêtes :

3.2. Chaînes singulières

Définition 3.12. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Exemple 3.13. L'application $\langle e_0, ..., e_n \rangle$ de la Proposition 3.8, où $(e_0, ..., e_n)$ est la base canonique de \mathbb{R}^{n+1} , est un *n*-simplexe singulier sur \mathbb{R}^{n+1} .

Proposition 3.14. Soit X et Y deux espaces topologiques, $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe singulier sur Y.

Définition 3.15. Soit X un espace topologique. Pour tout $n \in \mathbb{Z}$, on appelle *groupe des n-chaînes singulières*, noté $C_n(X)$, le groupe abélien libre engendré par les n-simplexes singuliers sur X.

Démonstration. Puisque f est continue sur X et σ est continue sur Δ^n , par composition $f \circ \sigma$ est continue de Δ^n dans Y. Donc $f \circ \sigma$ est un n-simplexe singulier sur X.

Définition 3.16. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{N}$, on appelle *application induite par* f, notée $C_n(f)$, le morphisme de groupes :

$$C_n(f): C_n(X) \to C_n(Y); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k (f \circ \sigma_k).$$

Proposition 3.17. Soit X, Y et Z trois espaces topologiques, $f: X \to Y$ et $g: Y \to Z$ deux applications continues. Alors pour tout $n \in \mathbb{N}$, on a $C_n(g \circ f) = C_n(g) \circ C_n(f)$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$C_n(g\circ f)(\sigma)=(g\circ f)\circ\sigma=g\circ(f\circ\sigma)=g\circ C_n(f)(\sigma)=C_n(g)(C_n(f)(\sigma))$$

Proposition 3.18. Pour tout $n \in \mathbb{N}$, le groupe des n-chaînes singulières C_n est un foncteur de Top vers Ab.

Démonstration. Soit $n \in \mathbb{N}$.

- Soit X un espace topologique. Alors le groupe des n-chaînes singulières $C_n(X)$ est bien un groupe abélien.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors l'application induite $C_n(f): C_n(X) \to C_n(Y)$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 3.17 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Ab.

Définition 3.19. Soit X un espace topologique et $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X. On appelle *bord de* σ , noté $d_n\sigma$, la (n-1)-chaîne singulière sur X définie par :

$$\mathbf{d}_n \sigma := \sum_{k=0}^n (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ... e_n \right\rangle \right).$$

où le symbole - signifie que l'élément est enlevé.

Définition 3.20. Soit X un espace topologique et $n \in \mathbb{N}$. On appelle *morphisme de bord*, noté d_n , le morphisme de groupes induit :

$$d_n: C_n(X) \to C_{n-1}(X); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k d_n \sigma_k.$$

Proposition 3.21. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Alors pour tout $n \in \mathbb{N}$, on a $d_n C_n(f) = C_{n-1}(f) d_n$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les *n*-chaînes singulières sont engendrées par les *n*-simplexes singuliers, il suffit de montrer le résultat pour un *n*-simplexe singulier $\sigma: \Delta^n \to X$. Alors on a :

$$d_n C_n(f)(\sigma) = \sum_{k=0}^n (-1)^k \left((f \circ \sigma) \circ \left\langle e_0, ..., \overrightarrow{e_k}, ..., e_n \right\rangle \right)$$
$$= \sum_{k=0}^n (-1)^k \left(f \circ \left(\sigma \circ \left\langle e_0, ..., \overrightarrow{e_k}, ..., e_n \right\rangle \right) \right)$$
$$= C_{n-1}(f)(d_n \sigma).$$

Proposition 3.22. Soit *X* un espace topologique. Alors pour tout $n \in \mathbb{N}$, on a $d_n d_{n+1} = 0$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$\mathbf{d}_{n+1}(\sigma) = \sum_{k=0}^{n+1} (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., e_n \right\rangle \right)$$

donc en appliquant d_n , on obtient :

$$(\mathbf{d}_{n}\mathbf{d}_{n+1})(\sigma) = \mathbf{d}_{n}\left(\sum_{k=0}^{n+1} (-1)^{k} \left(\sigma \circ \left\langle e_{0}, ..., \overline{e_{k}}, ..., e_{n} \right\rangle \right)\right)$$
$$= \sum_{k=0}^{n+1} (-1)^{k} \mathbf{d}_{n} \left(\sigma \circ \left\langle e_{0}, ..., \overline{e_{k}}, ..., e_{n} \right\rangle \right)$$

on sépare la somme en deux selon les éléments enlevés :

$$\begin{split} (\mathrm{d}n\mathrm{d}_{n+1})(\sigma) &= \sum_{0 \leq k < l \leq n+1} (-1)^{k+l} \Big(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., \overline{e_l}, ..., e_n \right\rangle \Big) \\ &+ \sum_{0 \leq l < k \leq n+1} (-1)^{k+l-1} \Big(\sigma \circ \left\langle e_0, ..., \overline{e_l}, ..., \overline{e_k}, ..., e_n \right\rangle \Big) \\ &= \sum_{0 \leq k < l \leq n+1} \Big((-1)^{k+l} + (-1)^{k+l+1} \Big) \Big(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., \overline{e_l}, ..., \overline{e_l}, ..., e_n \right\rangle \Big) \\ &= 0 \end{split}$$

car les puissances de −1 s'annulent.

Proposition 3.23. La suite $(C_n)_{n\in\mathbb{Z}}$ où pour tout n<0, on pose $C_n:=0$, munie des morphismes des bords $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ est un foncteur de Top vers Comp.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit X un espace topologique. Alors la suite $(C_n(X))_{n\in\mathbb{Z}}$ munie des morphismes de bords $(d_n:C_n(X)\to C_{n-1}(X))_{n\in\mathbb{Z}}$ est bien un complexe de chaînes d'après la Proposition 3.22.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors la suite des applications induites $(C_n(f): C_n(X) \to C_n(Y))_{n \in \mathbb{Z}}$ est bien un morphisme de chaînes d'après la Proposition 3.21.

La propriété de composition découle de la Proposition 3.17 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Ab.

3.3. Définitions de l'homologie singulière

3.3.1. D'un espace topologique

Définition 3.24. Soit X un espace topologique. On appelle *complexe de chaînes singulières de* X, noté $C_{\bullet}(X)$, le complexe de chaînes déterminé par la suite $(C_n(X))_{n \in \mathbb{N}}$ munie des morphismes de bords $(d_n : C_n(X) \to C_{n-1}(X))_{n \in \mathbb{N}}$.

Définition 3.25. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n-cycle singulier* un élément de $Z_n(X) := Z_n(C_{\bullet}(X))$.
- On appelle *n*-bord singulier un élément de $B_n(X) := B_n(C_{\bullet}(X))$.
- On appelle n^e groupe d'homologie singulière de X le groupe $H_n(X) := H_n(C_{\bullet}(X))$.
- On appelle homologie singulière de X la suite des groupes $H_{\bullet}(X) := (H_n(X))_{n \in \mathbb{Z}}$.

Théorème 3.26. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière est un foncteur de Top vers Ab

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 3.23 C_{\bullet} est un foncteur de Top vers Comp et d'après le Théorème 2.12 H_{\bullet} est un foncteur de Comp vers Ab, par composition des foncteurs $H_{\bullet} = H_{\bullet}(C_{\bullet})$ est bien un foncteur de Top vers Ab. □

TODO

3.3.2. D'une paire d'espace topologique

Définition 3.27. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{Z}$, on note $H_n(f): H_n(X) \to H_n(Y)$ le morphisme de groupes induit par $C_n(f)$.

3.4. Paires d'espaces topologiques

Proposition 3.28. Soit (X,A) une paire d'espaces topologiques. Alors pour tout $n \in \mathbb{Z}$, d_n induit un morphisme \overline{d}_n de $C_n(X)/C_n(A)$ dans $C_{n-1}(X)/C_{n-1}(A)$ tel que $\overline{d}_n\overline{d}_{n+1}=0$.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a $C_n(A) \subset C_n(X)$, on peut donc former le quotient $C_n(X)/C_n(A)$.

On pose $\delta_n \coloneqq \overline{\operatorname{d}_n} : C_n(X) \to C_{n-1}(X)/C_{n-1}(A)$, alors $C_n(A) \subset \ker(\delta_n)$ et d'après la propriété universelle du groupe quotient δ_n induit bien un morphisme $\overline{\operatorname{d}}_n$ de $C_n(X)/C_n(A)$ dans $C_{n-1}(X)/C_{n-1}(A)$. Enfin puisque $\operatorname{d}_n\operatorname{d}_{n+1} = 0$, on a $\overline{\operatorname{d}}_n\overline{\operatorname{d}}_{n+1} = \overline{\operatorname{d}}_n\operatorname{d}_{n+1} = 0$.

Remarque 3.29. Soit (X,A) une paire d'espaces topologiques. La suite $(C_n(X)/C_n(A))_{n\in\mathbb{Z}}$ munie des morphismes de bords induits $\left(\overline{\operatorname{d}}_n:C_n(X)/C_n(A)\to C_{n-1}(X)/C_{n-1}(A)\right)_{n\in\mathbb{Z}}$ forme un complexe de chaînes singulières.

Définition 3.30. Soit (X,A) une paire d'espaces topologiques. On appelle *complexe de chaînes* singulières de la paire (X,A) le complexe de chaînes singulières quotient $C_{\bullet}(X,A) := C_{\bullet}(X)/C_{\bullet}(A)$.

Remarque 3.31. Dans le cas de la paire d'espaces topologiques (X, \emptyset) , on trouve $C_{\bullet}(X, \emptyset) \simeq C_{\bullet}(X)$ et $H_{\bullet}(X, \emptyset) \simeq H_{\bullet}(X)$.

Proposition 3.32. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, et $f:(X,A) \to (Y,B)$ un morphisme de paires. Alors l'application induite $f_*:C_n(X) \to C_n(Y)$ détermine un morphisme de chaînes.

Démonstration. Pour tout $n \in \mathbb{Z}$, on pose $\varphi_n := \overline{f_*} : C_n(X) \to C_n(Y,B)$, alors puisque $f(A) \subset B$, on en déduit $f_*(C_n(A)) \subset \ker(\varphi_n)$ et d'après la propriété universelle du groupe quotient φ_n induit un morphisme $\overline{\varphi_n}$ de $C_n(X,A)$ dans $C_n(Y,B)$.

Soit $n \in \mathbb{Z}$. Alors d'après la Proposition 3.21 puisque $\mathrm{d}_n f_* = f_* \mathrm{d}_n$, on a $\overline{\mathrm{d}_n \varphi_n} = \overline{\varphi_{n-1} \mathrm{d}_n}$. Donc φ_n est bien un morphisme de chaînes.

Définition 3.33. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières, et $f:(X,A)\to (Y,B)$ un morphisme de paires. Pour tout $n\in\mathbb{Z}$, on note $H_n(f):H_n(X,A)\to H_n(Y,B)$ le morphisme induit par le morphisme de chaînes déterminé par f_* .

Théorème 3.34. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière des paires d'espaces topologiques $H_n : \mathsf{Top}_2 \to \mathsf{Ab}$ est un foncteur.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit (X,A) une paire d'espaces topologiques. Alors le n^e groupe d'homologie singulière $H_n(X,A)$ est bien un groupe abélien libre.
- Soit (X,A) et (Y,B) deux paires d'espaces topologiques, et $f:(X,A)\to (Y,B)$ un morphisme de paires. Alors l'application $H_n(f):H_n(X,A)\to H_n(Y,B)$ est un bien morphisme de groupes.

Soit (X,A), (Y,B) et (Z,C) trois paires d'espaces topologiques.

• Soit $f:(X,A) \to (Y,B)$ et $g:(Y,B) \to (Z,C)$ deux morphismes de paires. Alors la composition $g \circ f:(X,A) \to (Z,C)$ est un morphisme de paires qui passe au quotient et vérifie :

$$H_n(g \circ f) = H_n(g) \circ H_n(f).$$

• On considère $\mathrm{id}_{(X,A)}$. Soit $\sigma:\Delta^n\to (X,A)$ un n-simplexe singulier, alors :

$$id_{(X,A)*}(\sigma) = id_{(X,A)} \circ \sigma = \sigma$$

puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, on en déduit que $\mathrm{id}_{(X,A)*}=\mathrm{id}_{C_n(X,A)}$, par passage au quotient on a :

$$H_n(\mathrm{id}_{(X,A)}) = \mathrm{id}_{H_n(X,A)}$$
.

Donc H_n est un foncteur.

Proposition 3.35. Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, les groupes $H_n(X,A)$ et $d_n^{-1}(C_{n-1}(A))/(d_{n+1}(C_{n+1}(X)) + C_n(A))$ sont isomorphes.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$, il existe $\sigma_1 \in C_{n+1}(X)$ et $\sigma_2 \in C_n(A)$ tels que $\tau = d_{n+1}\sigma_1 + \sigma_2$. Alors d'après la Proposition 3.22 on a :

$$d_n \tau = d_n (d_{n+1} \sigma_1 + \sigma_2) = (d_n d_{n+1}) \sigma_1 + d_n \sigma_2 = d_n \sigma_2$$

donc $\tau \in \mathrm{d}_n^{-1}(C_{n-1}(A))$, on peut donc former le quotient $\mathrm{d}_n^{-1}(C_{n-1}(A))/(\mathrm{d}_{n+1}(C_{n+1}(X)) + C_n(A))$.

On pose $\varphi: d_n^{-1}(C_{n-1}(A)) \to H_n(X,A); \sigma \mapsto \overline{\sigma}$, qui est bien un morphisme de groupes.

- Soit $\eta \in \underline{H_n}(X,A)$, il existe $\zeta \in Z_n(X,A)$ et $z \in C_n(X)$ tels que $\eta = \overline{\zeta}$ et $\zeta = \overline{z}$. Puisque $\overline{d_n z} = \overline{d_n \zeta} = 0 \in C_n(X,A)$, il existe $\sigma \in C_{n-1}(A)$ tel que $d_n z = \sigma$, d'où $z \in d_n^{-1}(C_{n-1}(A))$. Donc $\varphi(z) = \eta$ et φ est surjectif.
- Soit $\sigma \in \ker(\varphi)$. Puisque $\overline{\tau} = 0 \in H_n(X,A)$, il existe $b \in B_n(X,A)$ tel que $\overline{\tau} = \overline{b}$. C'est-à-dire qu'il existe $c \in C_{n+1}(X,A)$ et $\sigma \in C_{n+1}(X)$ tels que $b = \overline{d}_{n+1}c$ et $c = \overline{\sigma}$. On peut écrire $\overline{\tau} = \overline{d}_{n+1}\overline{\sigma} = \overline{d}_{n+1}\overline{\sigma} \in C_n(X,A)$, donc $\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$.

Soit
$$\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$$
, il existe $\sigma_1 \in C_{n+1}(X)$ et $\sigma_2 \in C_n(A)$ tels que $\tau = d_{n+1}\sigma_1 + \sigma_2$.
Alors $\overline{\tau} = \overline{d_{n+1}\sigma_1} = \overline{d_{n+1}\overline{\sigma}} \in C_n(X,A)$, d'où $\overline{\tau} \in B_n(X,A)$ et $\overline{\tau} = 0 \in H_n(X,A)$, donc $\tau \in \ker(\varphi)$.

D'après le premier théorème d'isomorphisme φ induit un isomorphisme entre les groupes $H_n(X,A)$ et $d_n^{-1}(C_{n-1}(A))/(d_{n+1}(C_{n+1}(X)) + C_n(A))$.

Proposition 3.36. Soit $C_{\bullet}(X,A)$ un complexe de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, d_n induit un morphisme ∂_n de $H_n(X,A)$ dans $H_{n-1}(A)$.

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 3.35 il existe un isomorphisme :

$$\psi: H_n(X,A) \to d_n^{-1}(C_{n-1}(A))/(d_{n+1}(C_{n+1}(X)) + C_n(A)).$$

Pour tout $\eta \in H_n(X, A)$, il existe $\tau \in d_n^{-1}(C_{n-1}(A))$ tel que $\overline{\tau} = \psi(\eta)$. Alors d'après la Proposition 3.22 on a $d_{n-1}d_n\tau = 0$, donc $d_n\tau \in Z_{n-1}(A)$. On pose $\partial_n\eta := \overline{d_n\tau} \in H_{n-1}(A)$.

Supposons que $\eta = 0$, c'est-à-dire $\tau \in d_{n+1}(C_{n+1}(X)) + C_n(A)$, alors $d_n \tau \in B_n(A)$, d'où $\partial_n \eta = 0$. Donc ∂_n est un morphisme bien défini.

Théorème 3.37. Soit $C_{\bullet}(X,A)$ et $C_{\bullet}(Y,B)$ deux complexes de chaînes singulières. Alors pour tout $n \in \mathbb{Z}$, le morphisme ∂_n est une transformation naturelle, c'est-à-dire, pour tout morphisme de paires $f:(X,A) \to (Y,B)$, on a :

$$\partial_n H_n(f) = H_{n-1}(f)\partial_n$$
.

Démonstration. Soit $n \in \mathbb{Z}$. Puisque ∂_n est induit par d_n , d'après la Proposition 3.21 on a bien :

$$\partial_n H_n(f) = \overline{\mathrm{d}_n f_*} = \overline{f_* \mathrm{d}_n} = H_{n-1}(f) \partial_n.$$

Donc ∂_n est bien une transformation naturelle. TODO.

Définition 3.38. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$. On appelle n^e nombre de Betti de X le rang de $H_n(X)$ s'il est fini.

Définition 3.39. Une *théorie de l'homologie* sur la catégorie des paires d'espaces topologiques Top_2 dans la catégorie des groupes abéliens Ab est une suite de foncteurs $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie de transformations naturelles $(\partial_n : H_n(X,A) \to H_{n-1}(A) \coloneqq H_{n-1}(A,\emptyset))_{n \in \mathbb{Z}}$ vérifiant les *axiomes d'Eilenberg-Steenrod* pour toutes paires d'espaces topologiques (X,A), (Y,B) et $n \in \mathbb{Z}$:

- *Dimension*: Soit P un espace constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement si n = 0.
- *Exactitude*: En notant $i: A \to X$ et $j: X \to (X,A)$ les inclusions canoniques, alors la suite suivante est exacte:

$$\cdots \to H_{n+1}(X,A) \overset{\partial_{n+1}}{\to} H_n(A) \overset{H_n(i)}{\to} H_n(X) \overset{H_n(j)}{\to} H_n(X,A) \overset{\partial_n}{\to} H_{n-1}(A) \to \cdots$$

- *Homotopie*: Soit $f_0, f_1: (X,A) \to (Y,B)$ deux morphismes de paires homotopes. Alors les applications induites en homologie $H_n(f_0), H_n(f_1): H_n(X,A) \to H_n(Y,B)$ sont égales.
- Excision: Soit *U* un sous-ensemble de *A* tel que l'adhérence de *U* est contenue dans l'intérieur de *A*. En notant *i*: (*X* \ *U*, *A* \ *U*) → (*X*, *A*) l'inclusion canonique. Alors l'application induite en homologie *H_n(i)*: *H_n(X* \ *U*, *A* \ *U*) → *H_n(X*, *A*) est un isomorphisme.

Théorème 3.40. La suite des n^e groupe d'homologie singulière des paires d'espaces topologiques $(H_n : \mathsf{Top}_2 \to \mathsf{Ab})_{n \in \mathbb{Z}}$ munie des morphismes $(\partial_n : H_n(X,A) \to H_{n-1}(A))_{n \in \mathbb{Z}}$ est une théorie de l'homogie vérifiant les axiomes d'Eilenberg-Steenrod.

Démonstration de l'axiome de dimension. Si n < 0, on a clairement $H_n(P) \simeq \{0\}$. Si $n \ge 0$, il existe un unique n-simplexe singulier $\sigma_n : \Delta^n \to P$, alors on a :

$$\partial_n \sigma_n = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

dans le cas n = 0, alors $H_0(P) = \langle \sigma_0 \rangle / \{0\} \simeq \mathbb{Z}$, dans le cas $n \neq 0$ et n est impair, alors $H_n(P) = \langle \sigma_n \rangle / \langle \sigma_n \rangle \simeq \{0\}$, dans le cas $n \neq 0$ et n est pair, alors $H_n(P) = \{0\} / \{0\} \simeq \{0\}$.

Démonstration de l'axiome d'exactitude. Soit $n \in \mathbb{Z}$.

- Soit $\alpha \in \ker(H_n(i))$, il existe $\tau \in C_n(A)$ tel que $\alpha = \overline{\tau}$. Puisque $\alpha \in \ker(H_n(i))$, on a $\tau \in B_n(X)$, il existe $\sigma \in C_{n+1}(X)$ tel que $\tau = \mathrm{d}_{n+1}\sigma$. Puisque $\overline{d}_{n+1}\overline{\sigma} = \overline{\mathrm{d}}_{n+1}\overline{\sigma} = \overline{\tau} = 0 \in C_n(X,A)$, on a $\overline{\sigma} \in Z_n(X,A)$. Alors d'après la définition de ∂_{n+1} , on a $\partial_{n+1}(\overline{\sigma}) = \alpha$.
- TODO.
- TODO.

Démonstration de l'axiome d'homotopie. TODO. □

Démonstration de l'axiome d'excision. TODO. □

Théorème 3.41 (Théorème de Mayer-Vietoris). Soit U et V deux ouverts d'un espace topologique. En notant $i_U: U\cap V\to U,\ i_V: U\cap V\to V,\ j_U: U\to U\cup V$ et $j_V: V\to U\cup V$ les inclusions canoniques, alors la suite suivante est exacte :

$$\dots \to H_{n+1}(U \cup V) \overset{\partial_{n+1}}{\to} H_n(U \cap V) \overset{(-i_{U*}, i_{V*})}{\to} H_n(U) \oplus H_n(V) \overset{j_{U*} + j_{V*}}{\to} H_n(U \cup V) \to \dots$$
 Démonstration. TODO.

Bibliographie

[1] Eduard Looijenga, Algebraic Topology - an introduction. 2010.