Gyakorló feladatok 1.

(Görbék)

Programtervező matematikus

szakos hallgatóknak az

Analízis 7.

nevű tárgyhoz

1. Görbék megadásának módjai és szemléltetésük

- **F1.** A paraméter kiküszöbölésével adja meg az alábbi síkgörbéket F(x,y)=0 implicit alakban, majd ábrázolja mindegyiket:
 - (a) $\varphi(t) := (\sin^2 t, \cos^2 t)$ $(t \in \mathbb{R});$
 - (b) $\varphi(t) := (\cos t, \cos 2t)$ $(t \in \mathbb{R});$
 - (c) $\varphi(t) := (t^2 2t, t + 1)$ $(t \in \mathbb{R});$
 - (d) $\varphi(t) := (\ln t, \sqrt{t}) \qquad (t \in \mathbb{R});$
 - (e) $\varphi(t) := (\operatorname{ch} t, \operatorname{sh} t) \qquad (t \in \mathbb{R}).$
- F2. Vázolja az alábbi, polárkoordinátákban megadott görbéket:
 - (a) $r(\varphi) := a\varphi \ (\varphi \ge 0, \ a > 0)$ (az archimédeszi spirális);
 - (b) $r(\varphi) := \frac{a}{\varphi} \ (\varphi > 0, \ a > 0)$ (a hiperbolikus spirális);
 - (c) $r(\varphi) := ae^{k\varphi} \quad (\varphi \ge 0, \ a > 0, \ k > 0)$ (a logaritmikus spirális);
 - (d) $r(\varphi) := \cos \varphi \ \left(\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right);$
 - (e) $r(\varphi) := \cos 2\varphi \ \left(\varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\right);$
 - (f) $r(\varphi) := |\cos 2\varphi| \ (\varphi \in \mathbb{R});$
 - (g) $r(\varphi) := a(1 + \cos \varphi) \quad (\varphi \in [0, 2\pi], \ a > 0)$ (a kardiodid);
 - (h) $r(\varphi) := a\sqrt{2\cos 2\varphi} \ \left(\varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]\right)$ (a Bermoulli-féle lemniszkáta).
- F3. Szemléltesse az alábbi síkgörbéket:
 - (a) $y^2 2x^3 = 0$;
 - (b) $x^3 + y^3 = 3\alpha xy$ ($\alpha > 0$) (a Descartes-féle levél);
 - (c) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = \alpha^{\frac{2}{3}}$ ($\alpha > 0$) (az asztrois).

2. Görbék ívhossza, természetes paraméterezése

- F4. Vázolja az alábbi térgörbéket és határozza meg az ívhosszukat:
 - (a) $\varphi(t) := (a\cos t, a\sin t, bt) \quad (t \in [0, 2\pi], a > 0, b > 0),$ (az origó középpontú a sugarú hengerre írt csavarvonal, $2\pi b$ a menet magassága);
 - (b) $\varphi(t) := \left(e^{4t}\cos t, e^{4t}\sin t, \sqrt{2}e^{4t}\right) \quad (t \in [0, 1]),$ (egy kúpra írt csavarvonal).

F5. Mutassa meg, hogy az

$$f(x)$$
 $(x \in [a, b])$ explicit-,

illetve az

$$r(\varphi)$$
 $(\varphi \in [\varphi_1, \varphi_2])$ polárkoordinátás

alakban megadott egyszerű sima görbe rektifikálható és az ívhossza az

$$l = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx,$$

illetve az

$$l = \int_{\varphi_1}^{\varphi_2} \sqrt{r^2(\varphi) + \left[r'(\varphi)\right]^2} \, d\varphi$$

képlettel számítható ki.

F6. Számítsa ki az alábbi görbék ívhosszát:

(a)
$$f(x) := \sqrt{x^3}$$
 $(x \in [0, 4]);$

(b) az archimédeszi spirális első menete.

F7. Adja meg az alábbi görbék természetes (ívhossz szerinti) paraméterezését:

- (a) az (1,2) pontból a (3,4) pontba vezető szakasz;
- (b) az origó középpontú 4 sugarú kör;

(c)
$$\varphi(t) := (a\cos t, a\sin t, bt)$$
 $(t \in \mathbb{R}, a > 0, b > 0).$

F8. Bizonyítsa be, hogy ha egy $\varphi : [\alpha, \beta] \to \mathbb{R}^3$ függvénnyel megadott térgörbe érintővektorainak hossza azonosan egy, akkor a t paraméter a görbe valamely pontjától mért ívhossz vagy attól csak egy additív állandóban különbözik.

3. Görbék érintője

F9. Írja fel a megadott pontokban az alábbi görbék érintőjének az egyenletét, és adja meg az egyenletrendszerét is:

3

(a)
$$\varphi(t) := \left(\frac{t^2}{2}, \frac{2t^3}{3}, \frac{t^4}{2}\right) (t \in \mathbb{R}); \ t_0 := 1;$$

(b)
$$\varphi(t) := \left(\frac{t}{1+t}, 2\ln(1+t), \frac{1}{\cos t}\right) (t > -1); \ t_0 := 0;$$

(c)
$$\varphi(t) := (e^t \cos t, e^t \sin t, e^t) \ (t \in \mathbb{R}); \ t_0 := 0.$$

- **F10.** Határozza meg az alábbi térgörbék megadott tulajdonságú érintőinek egyenletrendszerét és egyenletük paraméteres alakját, ha
 - (a) $\varphi(t) := \left(\frac{t^4}{4}, \frac{t^3}{3}, \frac{t^2}{2}\right)$ $(t \in \mathbb{R})$; az érintő párhuzamos az x + 3y + 2z = 0 egyenletű síkkal;
 - (b) $\varphi(t) := (3t t^3, 3t^2, 3t + t^3)$ $(t \in \mathbb{R})$; az érintő párhuzamos a 3x + y + z + 2 = 0 egyenletű síkkal;
 - (c) $\varphi(t) := (\sin t t \cos t, t \sin t + \cos t, \sin t)$ $(t \in \mathbb{R})$; az érintő párhuzamos az yz-koordinátasíkkal.
- F11. Írja fel a

$$\varphi(t) := (a(t - \sin t), \ a(1 - \cos t)) \qquad (t \in \mathbb{R}, \ a > 0)$$

egyenletű ciklois érintőjének az egyenletét a $t_0 := \frac{\pi}{3}$ pontban. Mely pontokban vízszintes az érintő, és melyekben függőleges? Számolja ki az egy cikloisív alatti területet.

F12. Tekintse a

$$\varphi(t) := (t^2, \ t^3 - 3t) \qquad (t \in \mathbb{R})$$

egyenletű görbét.

- (a) Mutassa meg, hogy a görbének a (3,0) pontban két érintője van.
- (b) Keresse meg azokat a pontokat, amelyekben az érintő vízszintes, illetve függőleges.
- (c) Ábrázolja a görbét.
- **F13.** Határozza meg az $r(\varphi) := 1 + \cos \varphi \ (\varphi \in [0, 2\pi])$ kardiodid érintőjének az egyenletét a $\varphi_0 := \pi/3$ pontban. Keresse meg azokat a pontokat, amelyekben az érintő vízszintes, illetve függőleges.
- **F14.** Legyen a Γ görbe polárkoordinátákban adott egyenlete $r = r(\varphi)$ ($\varphi \in I$). Tegyük fel, hogy az $r(\varphi)$ függvény deriválható és $0 \notin \mathcal{R}_{r'}$. Ekkor a Γ görbének tetszőleges $P_0 = (r(\varphi_0), \varphi_0)$ pontjában van érintője. Az érintőegyenesnek és az OP_0 félegyenesnek az ω hajlásszögére a

$$\operatorname{tg}\omega = \frac{r(\varphi_0)}{r'(\varphi_0)}$$

képlet érvényes.

F15. Mutassa meg, hogy a logaritmikus spirális olyan görbe, amelyik a koordinátarendszer O kezdőpontjából kiinduló minden félegyenest azonos ω szög alatt metsz. Ez azt jelenti, hogy a görbe minden M pontjában az M-beli érintőnek és az OM félegyenesnek a szöge ugyanannyi (ω) .

4. Görbület, simulósík, kísérő triéder, simulókör, torzió, Frenet-formulák

- A természetes paraméterezés alapvető tulajdonságai
- **F16.** Tegyük fel, hogy $\Phi:[0,L]\to\mathbb{R}^3$ a $\Gamma\subset\mathbb{R}^3$ egyszerű sima görbe egy kétszer folytonosan deriválható természetes paraméterezése. Bizonyítsa be, hogy
 - (a) $|\Phi'(s)| = 1$ minden $s \in [0, L]$ esetén;
 - (b) a $\Phi'(s)$ és $\Phi''(s)$ vektorok merőlegesek egymásra, azaz

$$\langle \Phi'(s), \Phi''(s) \rangle = 0$$
 $(s \in [0, L]).$

• Görbület

- **D1.** Legyen $\Gamma \subset \mathbb{R}^n$ egy egyszerű sima görbe. Tegyük fel, hogy $\Phi : [0, L] \to \Gamma$ ennek az ívhossz szerinti, kétszer folytonosan deriválható paraméterezése (L a Γ ívhossza.) Az $s \in [0, L]$ -ben (azaz a $\Phi(s)$ pontban) a Γ görbe görbületén a $\kappa(s) := |\Phi''(s)|$ számot értjük.
- **F17.** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima (tér)görbe, és tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ ennek egy tetszőleges, kétszer folytonosan deriválható paraméterezése. Mutassa meg, hogy a görbének minden $t_0 \in (\alpha, \beta)$ paraméterű $\varphi(t_0) = P_0 \in \Gamma$ pontjában van görbülete és ez a

$$\kappa(t_0) = \frac{\left| \varphi'(t_0) \times \varphi''(t_0) \right|}{|\varphi'(t_0)|^3}$$

képlettel számítható ki. Mi a görbület szemléletes jelentése?

Útmutatás. Legyen $\Phi:[0,L]\to\Gamma$ a görbe természetes paraméterezése (L a Γ ívhossza). Jelölje $S(t):=L_{\Gamma_t}$ ($t\in[\alpha,\beta]$) a $\Gamma_t:=\{\varphi(u)\mid\alpha\leq u\leq t\}$ görbe ívhosszát és T ennek a függvénynek az inverzét: $T:=S^{-1}$. Ekkor $\Phi=\varphi\circ T$. A tett feltételekből következik, hogy $\Phi\in C^2$, ezért a göbének minden pontban van görbülete.

A $\Phi = \varphi \circ T$ függvényre az összetett függvény deriválási szabályát alkalmazzuk:

$$\Phi' = \varphi' \circ T \cdot T'$$

$$\Phi'' = \varphi'' \circ T \cdot [T']^2 + \varphi' \circ T \cdot T'' = [T']^2 \cdot \varphi'' \circ T + \frac{T''}{T'} \cdot \Phi'.$$
(1)

 $(\Phi''$ tehát a $\varphi''\circ T$ és a Φ' vektorok lineáris kombinációja.)

Legyen $s_0 := S(t_0), T(s_0) = t_0, \varphi(t_0) = \varphi(T(s_0)) = \Phi(s_0).$

A $\kappa(s_0) := |\Phi''(s_0)|$ görbület kiszámolásához felhasznájuk azt, hogy $\Phi'(s_0)$ egységvektor és $\Phi'(s_0) \perp \Phi''(s_0)$. Ez alapján (egy kis "cselt" is alkalmazva!!)

$$\kappa(s_0) = |\Phi''(s_0)| = |\Phi'(s_0) \times \Phi''(s_0)|.$$

Ebbe (1)-et behelyettesítve, és felhasználva a vektoriális szorzat tulajdonságait (linearitás; egy vektor önmagával vett vektoriális szorzata nulla) azt kapjuk, hogy

$$\kappa(t_0) = \kappa(s_0) = |\Phi''(s_0)| = [T'(s_0)]^2 \cdot |\Phi'(s_0) \times \varphi''(T(s_0))| =$$

$$= [T'(s_0)]^2 \cdot |\Phi'(s_0) \times \varphi''(t_0)| = [T'(s_0)]^3 \cdot |\varphi'(T(s_0)) \times \varphi''(t_0)| =$$

$$= [T'(s_0)]^3 \cdot |\varphi'(t_0) \times \varphi''(t_0)|.$$

Mivel

$$S(t) = \int_{0}^{t} |\varphi'(u)| du \qquad (t \in (\alpha, \beta)),$$

ezért

$$S'(t) = |\varphi'(t)| \qquad (t \in (\alpha, \beta)),$$

és $T:=S^{-1}$ miatt az inverz függvény deriválási szabálya alapján

$$T'(s) = \frac{1}{S'(T(s))} = \frac{1}{|\varphi'(T(s))|} = \frac{1}{|\varphi'(t)|}$$
$$(s \in (0, L), \ t \in (\alpha, \beta)),$$

következésképpen fennáll a

$$\kappa(t_0) = \frac{\left| \varphi'(t_0) \times \varphi''(t_0) \right|}{|\varphi'(t_0)|^3} \qquad \left(t_0 \in (\alpha, \beta) \right)$$

egyenlőség.

A görbület szemléletes jelentése: Egy görbe P pontbeli görbületével az egyenestől való eltérését mérjük. Ezt a görbe érintőjének átlagos irányváltozási sebességével jellemezhetjük: Ha a görbe P,Q pontjaiban vett érintők hajlásszöge $\triangle\alpha$, $\triangle s$ pedig a P és Q közötti ívhossz, akkor a görbület "természetes" értelmezése a $\triangle\alpha/\triangle s$ hányados határértéke, midőn a Q pont a görbén a P ponthoz tart. Ennek "alkalmas" átalakítása volt számunkra a görbület definíciójának a motivációja.

F18. Mutassa meg, hogy az y = f(x) $(x \in [a,b])$ egyenlettel *explicit alakban* megadott síkbeli görbe görbülete az $(x_0, f(x_0))$ $(x_0 \in (a,b))$ pontban a

$$\kappa = \frac{|f''(x_0)|}{(1 + [f'(x)]^2)^{3/2}}$$

képlettel számítható ki, ha $f:[a,b]\to\mathbb{R}$ legalább kétszer folytonosan deriválható.

- F19. Számítsa ki az alábbi görbék görbületét a megadott pontokban:
 - (a) $\varphi(t) := (2\sin t, 2\cos t, 4t) \ (t \in \mathbb{R}); \ t_0 := \frac{\pi}{4};$
 - (b) $\varphi(t) := (e^{-2t}, 2t, 4) \ (t \in \mathbb{R}); \ t_0 := 0;$
 - (c) $\varphi(t) := (2, \sin \pi t, \ln t) \ (t > 0); \ t_0 := 1;$
 - (d) $\varphi(t) := (t, \sin(2t), 3t) \ (t \in \mathbb{R}); \ t_0 := 0;$
 - (e) $\varphi(t) := (t, t^2 + t 1, t) \ (t \in \mathbb{R}); \ t_0 := 0;$
 - (f) $f(x) := x^3 1 \ (x \in \mathbb{R}); \quad x_0 := 1;$
 - (g) $f(x) := \sin x \ (x \in \mathbb{R}); \quad x_0 := \frac{\pi}{2};$
 - (h) $f(x) := e^{-3x} \ (x \in \mathbb{R}); \quad x_0 := 0.$
- **F20.** Mi lesz $x \to +\infty$ esetén a görbület határértéke az alábbi egyenletekkel explicit alakban megadott görbéknél:
 - (a) $y = ax^2 + bx + x$ (a, b, c valós paraméterek);
 - (b) $y = e^{2x}$;
 - (c) $y = x^3$;
 - (d) $y = \sqrt{x}$?
- **F21.** Határozza meg az alábbi, polárkoordinátás alakban megadott görbék görbületét a kijelölt pontokban:
 - (a) $r(\varphi) := |\sin 3\varphi| \ (\varphi \in \mathbb{R}), \quad \varphi_0 = 0, \ \frac{\pi}{6};$
 - (b) $r(\varphi) := 3 + 2\cos(3\varphi) \ (\varphi \in \mathbb{R}), \quad \varphi_0 = 0, \ \frac{\pi}{2};$
 - (c) $r(\varphi) := 3e^{2\varphi} (\varphi \in \mathbb{R}), \quad \varphi_0 = 0, 1.$
- F22. Keresse meg a következő görbék maximális és minimális görbületű pontjait:
 - (a) $\varphi(t) := (2\cos t, 3\sin t);$
 - (b) $y = 4x^2 3$;
 - (c) $y = \sin x$.
- F23. Számítsa ki az

$$F(x,y) = 0$$

implicit egyenlettel adott görbe görbületét.

Útmutatás.

$$\kappa = \frac{\left| \det \begin{bmatrix} F''_{xx} & F''_{xy} & F'_x \\ F''_{yx} & F''_{yy} & F'_y \\ F'_x & F'_y & 0 \end{bmatrix} \right|}{\left(F'^2_x + F'^2_y \right)^{3/2}}$$

- A kísérő triéder élei és síkjai
- **D2.** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi:[0,L] \to \Gamma$, $\Phi \in C^2$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$ (L a Γ ívhossza). Legyen $s \in [0,L]$ esetén

$$\mathbf{e}(s) := \Phi'(s) \qquad \text{(ez az ún. \'erintő egységvektor)},$$

$$\mathbf{n}(s) := \frac{\Phi''(s)}{|\Phi''(s)|} \qquad \text{(ez az ún. \'erintő egységvektor)},$$

$$\mathbf{b}(s) := \mathbf{e}(s) \times \mathbf{n}(s) \qquad \text{(ez az ún. binormális egységvektor)}.$$

A páronként egymásra merőleges $\mathbf{e}(s)$, $\mathbf{n}(s)$, $\mathbf{b}(s)$ egységvektorokból álló rendszert a **görbe kisérő triéderének** nevezzük.

Az $\mathbf{e}(s)$ és $\mathbf{n}(s)$ vektorok által kifeszített sík a **simulósík**,

az $\mathbf{n}(s)$ és $\mathbf{b}(s)$ vektorok által kifeszített sík a **normálsík**,

az $\mathbf{e}(s)$ és $\mathbf{b}(s)$ vektorok által kifeszített sík a **rektifikálósík**.

- **F24.** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima (tér)görbe, és tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ ennek egy tetszőleges, kétszer folytonosan deriválható paraméterezése; $t_0 \in (\alpha, \beta)$ és $\varphi(t_0) = P_0 \in \Gamma$. A görbe P_0 pontjához tartozó kísérő triéder **éleire** vonatkozóan mutassa meg a következőket:
 - (a) Az **érintő** irányába mutató vektor

$$\varphi'(t_0)$$
.

(b) A **főnormális** irányába mutató vektor

$$(\varphi'(t_0) \times \varphi''(t_0)) \times \varphi'(t_0).$$

(c) A binormális irányába mutató vektor

$$\varphi'(t_0) \times \varphi''(t_0).$$

Útmutatás. Legyen $\Phi:[0,L]\to\Gamma$ a görbe természetes paraméterezése (L a Γ ívhossza). Az állítás *egyszerű* következménye a $\Phi=\varphi\circ T$ alapvető képletünk deriváltjaira vonatkozó

$$\Phi' = \varphi' \circ T \cdot T'$$

$$\Phi'' = \varphi'' \circ T \cdot [T']^2 + \varphi' \circ T \cdot T'' = [T']^2 \cdot \varphi'' \circ T + \frac{T''}{T'} \cdot \Phi'.$$
(2)

összefüggéseknek.

- (a) Görbe érintőjének irányvektora **definíció szerint** a $\varphi'(t_0)$ vektor. (A fentiek alapján a $\varphi'(t_0)$ és a $\Phi'(s_0)$ ($t_0 = T(s_0)$) vektorok párhuzamosak. Ezért neveztük érintő egységvektornak a kísérő triéder $\mathbf{e}(s_0) := \Phi'(s_0)$ vektorát.)
- (c) igazolása: Tekintsük a $\mathbf{b} := \mathbf{b}(s_0) = \mathbf{b}(t_0)$ binormális egységvektorral párhuzamos és egyirányú $\Phi'(s_0) \times \Phi''(s_0)$ vektort. (2) alapján

$$\Phi'(s_0) \times \Phi''(s_0) = \lambda \varphi'(t_0) \times \varphi''(t_0),$$

ahol λ egy alkalmas pozitív szám (miért?), ezért $\varphi'(t_0) \times \varphi''(t_0)$ valóban egy, a binormális irányába mutató vektor.

(b) igazolása: Az e, n és b vektorok definíciójából következik (miért?), hogy

$$\mathbf{n} = \mathbf{b} \times \mathbf{e}$$

és ez a (b) állításunkat bizonyítja.

F25. Határozza meg az alábbi görbék t_0 paraméterű pontjában a kísérő triéder vektorait és az élegyeneseinek az egyenletét:

(a)
$$\varphi(t) := (t^3 - 1, 2t^2 + 1, 3t - 2) \ (t \in \mathbb{R}), \quad t_0 := 1;$$

(b)
$$\varphi(t) := (1 + t^2, \frac{2}{1 - t^2}, t - t^3) \ (t \in \mathbb{R}), \quad t_0 := 1;$$

(c)
$$\varphi(t) := \left(\sin^2 t, \cos(2t), -\frac{1}{\sin t}\right) (t \in (0, \pi)), \quad t_0 := \frac{\pi}{4}.$$

Útmutatás. (a) A szóban forgó pont: $P_0 = \varphi(t_0) = \varphi(1) = (0, 3, 1)$.

A szükséges deriváltak és a helyettesítési értékek:

$$\varphi'(t) = (3t^2, 4t, 3),$$

$$\varphi'(1) = (3, 4, 3);$$

$$\varphi''(t) = (6t, 4, 0),$$

$$\varphi''(1) = (6, 4, 0).$$

A kísérő triédert kifeszítő három egységvektor:

Az érintő egységvektor:

$$\mathbf{e}(1) = \frac{\varphi'(1)}{|\varphi'(1)|} = \frac{3}{\sqrt{34}}\mathbf{i} + \frac{4}{\sqrt{34}}\mathbf{j} + \frac{3}{\sqrt{34}}\mathbf{k}.$$

Mivel

$$\varphi'(1) \times \varphi''(1) = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 4 & 3 \\ 6 & 4 & 0 \end{bmatrix} = -12\mathbf{i} + 18\mathbf{j} - 12\mathbf{k},$$

ezért a binormális egységvektor:

$$\mathbf{b}(1) = \frac{\varphi'(1) \times \varphi''(1)}{|\varphi'(1) \times \varphi''(1)|} = -\frac{12}{\sqrt{612}}\mathbf{i} + \frac{18}{\sqrt{612}}\mathbf{j} - \frac{12}{\sqrt{612}}\mathbf{k}.$$

Végül a főnormális egységvektor:

$$\mathbf{n}(1) = \mathbf{b}(1) \times \mathbf{e}(1) = \frac{6}{\sqrt{34}\sqrt{612}} \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & -2 \\ 3 & 4 & 3 \end{bmatrix}$$
$$= \frac{1}{17\sqrt{2}} (17\mathbf{i} - 17\mathbf{k}) = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{k}.$$

Az **érintő** egy irányvektora $\varphi'(1) = (3,4,3)$, ezért az *érintőegyenes* egyenleteinek különböző alakjai:

a vektoregyenlete

$$\mathbf{W}(t) = \varphi(1) + t\varphi'(1) = 3t\mathbf{i} + (3+4t)\mathbf{j} + (1+3t)\mathbf{k}$$
 $(t \in \mathbb{R}),$

a paraméteres egyenletrendszere

$$x = 3t$$

$$y = 3 + 4t \qquad (t \in \mathbb{R}),$$

$$z = 1 + 3t$$

az egyenletrendszere

$$\frac{x}{3} = \frac{y-3}{4} = \frac{z-1}{3}$$
.

A binormális egyenes egy irányvektora $\varphi'(1) \times \varphi''(1)$, azaz

$$\varphi'(1) \times \varphi''(1) = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 4 & 3 \\ 6 & 4 & 0 \end{bmatrix} = -12\mathbf{i} + 18\mathbf{j} - 12\mathbf{k},$$

ezért az irányvektor a $\mathbf{b}_1=(2,-3,2)$ vektor is lehet. A binormális egyenesnek (például) a vektoregyenlete:

$$\mathbf{W}(t) = \varphi(1) + t\mathbf{b}_1 = 2t\mathbf{i} + (3 - 3t)\mathbf{j} + (1 + 2t)\mathbf{k}$$
 $(t \in \mathbb{R}).$

A főnormális egyenes egy irányvektora $(\varphi'(1) \times \varphi''(1)) \times \varphi'(1)$. Esetünkben

$$(\varphi'(1) \times \varphi''(1)) \times \varphi'(1) = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -12 & 18 & -12 \\ 3 & 4 & 3 \end{bmatrix} = 102\mathbf{i} - 102\mathbf{k},$$

ezért az irányvektor a $\mathbf{n}_1=(1,0,-1)$ vektor is lehet. A főnormális egyenesnek (például) a vektoregyenlete:

$$\mathbf{W}(t) = \varphi(1) + t\mathbf{n}_1 = t\mathbf{i} + 3\mathbf{j} + (1 - t)\mathbf{k} \qquad (t \in \mathbb{R}).$$

- **F26.** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima (tér)görbe, és tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ ennek egy tetszőleges, kétszer folytonosan deriválható paraméterezése; $t_0 \in (\alpha, \beta)$ és $\varphi(t_0) = P_0 \in \Gamma$. A görbe P_0 pontjához tartozó kísérő triéder **síkjaira** vonatkozóan mutassa meg a következőket:
 - (a) A simulósík egy normálvektora

$$\varphi'(t_0) \times \varphi''(t_0).$$

(b) A **normálsík** egy normálvektora

$$\varphi'(t_0)$$
.

(c) A rektifikálósík egy normálvektora

$$(\varphi'(t_0) \times \varphi''(t_0)) \times \varphi'(t_0).$$

Útmutatás. Az F24. feladatból rögtön következik. ■

F27. Határozza meg az alábbi görbék t_0 paraméterű pontjában a kísérő triéder síkjainak az egyenletét:

(a)
$$\varphi(t) := (t^3 - 1, 2t^2 + 1, 3t - 2) \ (t \in \mathbb{R}), \quad t_0 := 1;$$

(b)
$$\varphi(t) := \left(1 + t^2, \frac{2}{1 - t^2}, t - t^3\right) (t \in \mathbb{R}), \quad t_0 := 1;$$

(c)
$$\varphi(t) := \left(\sin^2 t, \cos(2t), -\frac{1}{\sin t}\right) (t \in (0, \pi)), \quad t_0 := \frac{\pi}{4}.$$

Útmutatás. (a) Az F25. feladat eredményeit használjuk.

A simulósík egy normálvektora a $\varphi'(1) \times \varphi''(1) = (-12, 18, -12)$ vektor, egy pontja $P_0 = \varphi(1) = (0, 3, 1)$, ezért az egyenlete

$$-12(x-0) + 18(y-3) - 12(z-1) = 0,$$

illetve rendezés után

$$2x - 3y + 2z + 7 = 0.$$

A normálsík egy normálvektora a $\varphi'(1)=(3,4,3)$ vektor, egy pontja $P_0=\varphi(1)=(0,3,1)$, ezért az egyenlete

$$3(x-0) + 4(y-3) + 3(z-1) = 0,$$

illetve

$$3x + 4y + 3z - 15 = 0.$$

A rektifikáló sík egy normálvektora a $(\varphi'(t_0) \times \varphi''(t_0)) \times \varphi'(t_0)$ vektorral párhuzamos $\mathbf{n}_1 = (1,0,-1)$ vektor, egy pontja $P_0 = \varphi(1) = (0,3,1)$, ezért az egyenlete

$$x - z + 1 = 0.$$

F28. Bizonyítsa be, hogy a

$$\varphi(t) := (e^t \cos t, e^t \sin t, e^t) \qquad (t \in \mathbb{R})$$

térgörbe kísérő triéderének élei állandó szöget zárnak be a z-tengellyel.

Útmutatás. A $\varphi'(t) = (e^t(\cos t - \sin t), e^t(\sin t + \cos t), e^t)$ és a $\mathbf{k} = (0, 0, 1)$ vektor hajlásszöge minden $t \in \mathbb{R}$ pontban

$$\cos(\varphi'(t), \mathbf{k}) = \frac{e^t}{e^t \sqrt{3}} = \frac{\sqrt{3}}{3},$$

tehát állandó.

A $\varphi'(t) \times \varphi''(t) = (e^{2t}(\sin t - \cos t), -e^{2t}(\sin t + \cos t), 2e^{2t})$ és a $\mathbf{k} = (0, 0, 1)$ vektor hajlásszöge minden $t \in \mathbb{R}$ pontban

$$\cos(\varphi'(t) \times \varphi''(t), \mathbf{k}) = \frac{2e^{2t}}{e^{2t}\sqrt{6}} = \frac{\sqrt{6}}{3},$$

ez is állandó.

A $(\varphi'(t) \times \varphi''(t)) \times \varphi'(t) = (-3e^{3t}(\sin t + \cos t), -3e^{3t}(\sin t - \cos t), 0)$ és a $\mathbf{k} = (0, 0, 1)$ vektorok esetében pedig

$$(\varphi'(t) \times \varphi''(t)) \times \varphi'(t) \perp \mathbf{k}$$

teljesül minden $t \in \mathbb{R}$ számra.

• Simulósík, simulókör, görbületi sugár, görbületi középpont

T1. Legyen $\Gamma \subset \mathbb{R}^3$ egyszerű sima görbe. Tegyük fel, hogy ennek $\varphi : [\alpha, \beta] \to \Gamma$ egy kétszer folytonosan deriválható paraméterezése. Ha a görbe P_1, P_2 és P_3 pontja a

$$P_0 = \varphi(t_0) = (x_0, y_0, z_0)$$
 $(t_0 \in (\alpha, \beta))$

ponthoz tart, és e pontban $\varphi'(t_0) \times \varphi''(t_0) \neq 0$ (azaz $\varphi'(t_0) \not\parallel \varphi''(t_0)$), akkor a P_1, P_2 és P_3 pontokon átfektetett síkok egy olyan síkhoz tartanak, amelynek egy normálvektora a

$$\varphi'(t_0) \times \varphi''(t_0)$$

vektor. Ezt (a korábbi definíciónkkal összhangban) a görbe P_0 pontbeli **simuló-**síkjának nevezzük.

A simulósík egyenlete:

$$<\mathbf{r} - \varphi(t_0), \ \varphi'(t_0) \times \varphi''(t_0) > =$$

$$= \det \begin{bmatrix} x - x_0 & y - y_0 & z - z_0 \\ \varphi'_1(t_0) & \varphi'_2(t_0) & \varphi'_3(t_0) \\ \varphi''_1(t_0) & \varphi''_2(t_0) & \varphi''_3(t_0) \end{bmatrix} = 0.$$

(Itt
$$\varphi = (\varphi_1, \varphi_2, \varphi_3)$$
).

- **D3.** Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi : [0, L] \to \Gamma$, $\Phi \in C^2$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$. A görbének a $\Phi(s)$ $(s \in [0, L])$ pontban a
 - (a) görbülete: $\kappa(s) := |\Phi''(s)|$,
 - (b) görbületi sugara: $\varrho(s) := \frac{1}{\kappa(s)}$,
 - (c) görbületi középpontja: $\Psi(s) := \Phi(s) + \frac{\Phi''(s)}{|\Phi''(s)|^2}$.
- **F29.** Írja fel a *simulósík* egyenletét a megadott pontokban:
 - (a) $\varphi(t) := (t, 2t, t^2) \ (t \in \mathbb{R}), \quad t_0 := 0, t_0 := 1;$
 - (b) $\varphi(t) := (t^3 2, t + 1, \frac{t^3}{3}) \ (t \in \mathbb{R}), \quad t_0 := 1;$
 - (c) $\varphi(t) := (4\cos(\pi t), 4\sin(\pi t), t) \ (t \in \mathbb{R}), \quad t_0 := 0, t_0 := 1;$
 - (d) $\varphi(t) := (3\cos(2\pi t), t, \sin(2\pi t)) \ (t \in \mathbb{R}), \quad t_0 := 0, t_0 := 1.$
- F30. Írja fel a

$$\varphi(t) := (t, t^2, t^3) \qquad (t \in \mathbb{R})$$

térgörbe $P(2, -\frac{1}{3}, -6)$ ponton átmenő simulósíkjának az egyenletét.

 $\acute{U}tmutat\'{a}s.~$ A görbe nem tartalmazza a megadott Ppontot. A t_0 paraméterű pontban a simulósík egyenlete:

$$3t_0^2 x - 3t_0 y + z - t_0^3 = 0.$$

Mivel ez a sík tartalmazza a P pontot, ezért a koordinátáinak behelyettesítése után

$$t_0^3 - 6t_0^2 - t_0 - 6 = (t_0 - 1)(t_0 - 6)(t_0 + 1) = 0$$

adódik. A keresett simulósíkok egyenletei rendre

$$3x - 3y + z - 1 = 0,$$

$$108x - 18y + z - 216 = 0,$$

$$3x + 3y + z + 1 = 0.$$

F31. Igazolja, hogy a

$$\varphi(t) := (t^2 - 2t, 3t - 5, -t^2 - 2) \qquad (t \in \mathbb{R})$$

síkgörbe, és írja fel a görbe síkjának az egyenletetét.

- F32. Írja fel a simulókör egyenletét a megadott pontokban:
 - (a) $\varphi(t) := (t, t^2) \ (t \in \mathbb{R}), \quad t_0 := 0;$
 - (b) $\varphi(t) := (t^3 2t^2, 3t + 2, t^2 5) \ (t \in \mathbb{R}), \quad t_0 := 1;$
 - (c) $\varphi(t) := (\cos(2t), \sin(2t)) \ (t \in \mathbb{R}), \quad t_0 := \frac{\pi}{4};$
 - (d) $\varphi(t) := (2\cos t, 3\sin t) \ (t \in \mathbb{R}), \quad t_0 := \frac{\pi}{4}.$
- **F33.** Határozza meg az alábbi térgörbék pontjaihoz tartozó simulókörök középpontjainak mértani helyét:
 - (a) $\varphi(t) := (a\cos t, a\sin t, bt) \quad (t \in \mathbb{R}, a > 0, b > 0);$
 - (b) $\varphi(t) := (e^t, e^{-t}, \sqrt{2}t) \quad (t \in \mathbb{R});$
 - (c) $\varphi(t) := (\operatorname{ch} t, \operatorname{sh} t, t) \ (t \in \mathbb{R}).$
- **F34.** Bizonyítsa be, hogy a $\varphi(t) := (\varphi_1(t), \varphi_2(t))$ $(t \in [\alpha, \beta])$ síkgörbe esetében a t_0 paraméterű ponthoz tartozó simulókör középpontjának ξ, η koordinátáira a következő képletek érvényesek:

$$\xi = \varphi_1(t_0) - \varphi_2'(t_0) \frac{[\varphi_1'(t_0)]^2 + [\varphi_2'(t_0)]^2}{\varphi_1'(t_0)\varphi_2''(t_0) - \varphi_1''(t_0)\varphi_2'(t_0)}$$

$$\eta = \varphi_2(t_0) + \varphi_1'(t_0) \frac{[\varphi_1'(t_0)]^2 + [\varphi_2'(t_0)]^2}{\varphi_1'(t_0)\varphi_2''(t_0) - \varphi_1''(t_0)\varphi_2'(t_0)},$$

ha
$$\varphi_1'(t_0)\varphi_2''(t_0) - \varphi_1''(t_0)\varphi_2'(t_0) \neq 0.$$

F35. Mutassa meg, hogy az y=f(x) egyenletű síkgörbe esetében a simulókörök középpontjának ξ, η koordinátáit a

$$\xi = x - \frac{y'(1 + (y')^2)}{y''},$$

$$\eta = y + \frac{1 + (y')^2}{y''}$$

képletekkel lehet kiszámolni, ha $y'' \neq 0$.

- **F36.** Határozza meg a következő síkgörbék azon pontjait, amelyekben a simulókör sugara szélsőértéket vesz fel:
 - (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$
 - (b) $y = e^x$;
 - (c) $y = \ln x$;
 - (d) $x = a(t \sin t), y = a(1 \cos t) \quad (a > 0).$

• Torzió, Frenet-formulák

D4. Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, $\Phi : [0, L] \to \Gamma$, $\Phi \in C^3$ a természetes paraméterezése, és tegyük fel, hogy $\Phi''(s) \neq 0$ (L a Γ ívhossza). A Γ görbe $\Phi(s)$ ($s \in [0, L]$) pontbeli **torzióját** így értelmezzük:

$$\tau(s) := <\mathbf{n}'(s), \mathbf{b}(s) > .$$

Megjegyzés. Emlékeztetünk arra, hogy egy görbe görbülete arról tájékoztat minket, hogy a görbe mennyire tér el az egyenestől. A görbe egy másik fontos tulajdonsága az, hogy mennyire tér el egy síkgörbétől. Ezt jellemzi a görbe **torziója**. Ha a görbe síkgörbe, akkor az a sík, amelyben a görbe elhelyezkedik, a görbe simulósíkja; ha a görbe nem síkgörbe, akkor a simulósíkja pontról pontra változhat, és ezt a csavarodást a simulósík normálvektorának, azaz a görbe binormálisának a változásával lehet mérni. A torzió lényegében a binormális egységvektor ívhossz szerinti szögsebessége. Részletesebben: ha a térgörbe P_0 és Q pontjában vett simulósíkok hajlásszöge $\Delta\beta$, és Δs a PQ ív hossza, akkor a változás sebességét nyilván a

$$\tau = \lim_{Q \to P_0} \frac{\triangle \beta}{\triangle s}$$

szám méri. Ezt "alkalmas" módon célszerű átalakítani; hasonlóan ahhoz, ahogy ezt a görbületnél megmutattuk. A részleteket itt nem ismertetjük, az érdeklők ezt megtalálják Szőkefalvi-Nagy~Gyula,~...~tankönyvének 26. oldalán. Itt csupán azt emeljük ki, hogy kiderül, ez a szám minden esetben nemnegatív. További érdekesség az, hogy τ -nak előjelet is célszerű tulajdonítani; és ennek érdekes geometriai jelentése is van. (A görbét – pl. egy csavar menetének az élét – jobb- vagy balcsavarodásúnak szokás nevezni aszerint, amint a torzió pozitív vagy negatív; sőt éppen ez a geometriai motivációja a torzió előjelezésének.) A számolások azt mutatnák, hogy

$$\kappa = \kappa(P_0) = \kappa(s_0) = -\langle \mathbf{b}'(s_0), \mathbf{n}(s_0) \rangle$$

(itt **b** a binormális-, **n** pedig a főnormális egységvektorok.)

Ezután a 2. és a 3. Frenet-formulákból adódik az, hogy az fenti "természetes" módon megközelített torzió valóban az általunk definiált torzióval egyezik meg.

T2. Frenet-formulák: Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima görbe, L az ívhossza, $\kappa(s)$ a görbülete és $\tau(s)$ a torziója $(s \in [0, L])$. Tegyük fel, hogy Γ-nak van háromszor folytonosan deriválható paraméterezése. Ekkor a kísérő triédert megadó $\mathbf{e}, \mathbf{n}, \mathbf{b} : [0, L] \to \mathbb{R}^3$ folytonosan deriválható függvények az alábbi lineáris differenciálegyenlet-rendszernek tesznek eleget:

$$\mathbf{e}'(s) = \kappa(s) \cdot \mathbf{n}(s),$$

$$\mathbf{n}'(s) = -\kappa(s) \cdot \mathbf{e}(s) + \tau(s) \cdot \mathbf{b}(s),$$

$$\mathbf{b}'(s) = -\tau(s) \cdot \mathbf{n}(s).$$

F37. Legyen $\Gamma \subset \mathbb{R}^3$ egy egyszerű sima (tér)görbe, és tegyük fel, hogy $\varphi : [\alpha, \beta] \to \Gamma$ ennek egy tetszőleges, kétszer folytonosan deriválható paraméterezése; $t_0 \in (\alpha, \beta)$ és $\varphi(t_0) = P_0 \in \Gamma$. Igazolja, hogy a görbe P_0 pontjában a torzióra a

$$\tau(P_0) = \frac{\varphi'(t_0) \varphi''(t_0) \varphi'''(t_0)}{\left| \varphi'(t_0) \times \varphi''(t_0) \right|^2}$$

képlet érvényes. (Itt a számlálóban a három vektor vegyesszorzata áll.)

Megjegyzés. Ennek az állításnak a bizonyítását – ami megtalálható Szőkefalvi-Nagy Gyula, ... tankönyvének 27. oldalán – nem kérjük, a megjegyzését azonban elvárjuk.

- F38. Számítsa ki az alábbi görbék torzióját a megadott pontokban:
 - (a) $\varphi(t) := (a\cos t, a\sin t, bt) \ (t \in \mathbb{R}, a, b > 0), \quad t_0 := 3;$
 - (b) $\varphi(t) := (t^3 2t^2, 3t + 2, t^2 5) \ (t \in \mathbb{R}), \quad t_0 := 1;$
 - (c) $\varphi(t) := (e^t, e^{-t}, \sqrt{2}t) \ (t \in \mathbb{R}), \quad t_0 := 1;$
 - (d) $\varphi(t) := (2t \sin(2t), \cos(2t), 4\sin t) \ (t \in \mathbb{R}), \quad t_0 := \frac{\pi}{4};$
 - (e) $\varphi(t) := (2abt, a^2 \ln t, b^2 t^2) \ (t > 0, \ a, b > 0), \quad t_0 := 1;$
 - (f) $\varphi(t) := (3t^2 2t, t^3, 1 t) \ (t \in \mathbb{R}), \quad P_0 := (8, 8, -1);$
 - (g) $\varphi(t) := (3t^2, 2t + 3, 3t^3) \ (t \in \mathbb{R}), \quad P_0 := (3, 1, -3);$
 - (h) $\varphi(t) := \left(t, \frac{t^3}{3a^2}, \frac{a^2}{2t}\right) (t > 0, \ a > 0), \quad P_0 := \left(1, \frac{1}{3a^2}, \frac{a^2}{2}\right).$
- **F39.** Bizonyítsa be, hogy egy térgörbe akkor és csak akkor síkgörbe, ha a torziója minden pontban nulla.

 $\acute{U}tmutat$ ás. Ha a görbe síkgörbe, akkor bármely két pontjához tartozó simulósíkok hajlásszögére $\triangle\beta=0$, ezért a görbe minden pontjában a torzió nulla.

Ha viszont a görbe minden pontjában a torzió nulla, akkor az $\mathbf{b}'(s) = -\tau(s)\mathbf{n}(s)$ 3. Frenetformula miatt $\mathbf{b}' \equiv 0$, azaz $\mathbf{b}(s) \equiv \mathbf{b}_0$, ahol \mathbf{b}_0 egy állandó vektor. Ha a görbét ívhossz szerint paraméterezzük, akkor a görbeív minden \mathbf{r} pontjában

$$(\langle \mathbf{r}, \mathbf{b}_0 \rangle)' = \langle \mathbf{r}', \mathbf{b}_0 \rangle = \langle \mathbf{e}, \mathbf{b}_0 \rangle,$$

azaz $\langle \mathbf{r}, \mathbf{b}_0 \rangle = \langle \mathbf{r}_0, \mathbf{b}_0 \rangle$, ahol \mathbf{r}_0 szintén egy állandó vektor. Mivel $\langle \mathbf{r} - \mathbf{r}_0, \mathbf{b}_0 \rangle = 0$, ezért a görbeív minden pontja benne van a \mathbf{b}_0 normálvektorú, \mathbf{r}_0 helyvektorú P_0 ponton átmenő síkban.

- **F40.** Igazolja, hogy az alábbi görbék mindegyike síkgörbe, és írja fel a görbe síkjának az egyenletetét:
 - (a) $\varphi(t) := (t^2 2t, 3t 5, -t^2 2)$ $(t \in \mathbb{R});$
 - (b) $\varphi(t) := (5\cos t, 5\sin t, \cos t)$ $(t \in \mathbb{R});$
 - (c) $\varphi(t) := (e^t \cos t, e^t \sin t, e^t (\cos t + \sin t))$ $(t \in \mathbb{R});$
 - (d) $\varphi(t) := \left(\frac{1+t}{1-t}, \frac{1}{1-t^2}, \frac{t}{1+t}\right) \qquad (t \in (-1,1)).$

Gyakorló feladatok 2.

(Felületek)

Programtervező matematikus

szakos hallgatóknak az

Analízis 7.

nevű tárgyhoz

0. Jelölések

1. Vektor-skalár (azaz $\mathbb{R} \to \mathbb{R}^n$ típusú) függvény **deriváltjaira**:

Ha $\varphi: [\alpha, \beta] \to \mathbb{R}^n \text{ (vagy } \varphi(t) = (\varphi_1(t), \dots, \varphi_n(t)) \in \mathbb{R}^n, \ t \in [\alpha, \beta]), \text{ akkor}$

$$\dot{\varphi}(t_0) := \frac{d\,\varphi}{d\,t}(t_0) = \lim_{t \to t_0} \frac{\varphi(t) - \varphi(t_0)}{t - t_0} \in \mathbb{R}^n \qquad (t_0 \in (\alpha, \beta)).$$

A másod- és a harmadrendű deriváltakat így jelöljük:

$$\ddot{\varphi}(t_0), \quad \dddot{\varphi}(t_0).$$

2. $\mathbb{R}^2 \to \mathbb{R}^3$ típusú függvényekre:

Ha $I_1, I_2 \subset \mathbb{R}$ tetszőleges (nyít, zárt, stb.) intervallum, akkor

 $\mathbb{I}^2 := I_1 \times I_2$ \mathbb{R}^2 -beli téglalap (intervallum) és $w = (u, v) \in \mathbb{I}^2$ a pontjai.

A felületeknél $v\acute{e}gig\ F$ egy $\mathbb{R}^2 \to \mathbb{R}^3$ típusú függvényt fog jelölni:

 $F: \mathbb{I}^2 \to \mathbb{R}^3; \qquad F = (F_1, F_2, F_3), \quad F_i (\in \mathbb{R}^2 \to \mathbb{R}) \text{ a koordinátafüggvények.}$

 $C^r(\mathbb{I}^2, \mathbb{R}^3)$ az \mathbb{I}^2 téglalapon értelmezett, \mathbb{R}^3 -ba képező, r-szer $(r=1,2,\ldots)$ folytonosan deriválható függvények halmaza.

Ha $F \in C^1(\mathbb{I}^2, \mathbb{R}^3)$ és $w = (u, v) \in \mathbb{I}^2$, akkor F derivált mátrixa (vagy Jacobimátrixa) a w pontban:

$$F'(u,v) = F'(w) = \begin{bmatrix} \frac{\partial F_1}{\partial u}(w) & \frac{\partial F_1}{\partial v}(w) \\ \frac{\partial F_2}{\partial u}(w) & \frac{\partial F_2}{\partial v}(w) \\ \frac{\partial F_3}{\partial u}(w) & \frac{\partial F_3}{\partial v}(w) \end{bmatrix}.$$

Ennek az első oszlopvektorát $\partial_u F$ -fel, a másodikat pedig $\partial_v F$ -fel fogjuk jelölni:

$$\partial_u F(w) := \begin{bmatrix} \frac{\partial F_1}{\partial u}(w) \\ \frac{\partial F_2}{\partial u}(w) \\ \frac{\partial F_3}{\partial u}(w) \end{bmatrix}, \qquad \partial_v F(w) := \begin{bmatrix} \frac{\partial F_1}{\partial v}(w) \\ \frac{\partial F_2}{\partial v}(w) \\ \frac{\partial F_3}{\partial v}(w) \end{bmatrix}.$$

3. Skaláris szorzatra: Az $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ vektorok skaláris szorzatának jelölésére az alábbi szimbólumok valamelyikét használjuk:

$$\langle \mathbf{a}, \mathbf{b} \rangle$$
, $\mathbf{a} \cdot \mathbf{b}$.

4. Mátrixokra: Az $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{n \times n}$ négyzetes mátrix főátlójában álló elemek összegét a mátrix nyomának nevezzük, és a tr (\mathbf{A}) szimbólummal (trace = nyom) jelöljük:

$$\operatorname{tr}\left(\mathbf{A}\right) := \sum_{k=1}^{n} a_{kk}.$$

1. Felület értelmezése és megadásának módjai

Mj1. Megadási módok:

1. Explicit- (vagy Euler-Monge)-féle: Ha $g \in \mathbb{R}^2 \to \mathbb{R}$ egy folytonosan differenciálható függvény, akkor ennek képe (grafikonja) a háromdimenziós térben egy \mathcal{F} felület:

$$\mathcal{F} = \{(x, y, g(x, y)) \in \mathbb{R}^3 \mid (x, y) \in \mathcal{D}_g\} \subset \mathbb{R}^3.$$

Ilyenkor a z = g(x, y) egyenletű felületről is szokás beszélni.

2. Implicit megadási mód: G(x, y, z) = 0.

Ekkor $G \in \mathbb{R}^3 \to \mathbb{R}$ egy adott "alkalmas" függvény. Ha például egy \mathbb{R}^3 -beli (x_0, y_0, z_0) pontban $G(x_0, y_0, z_0) = 0$ és z_0 egy környezetében a G(x, y, z) = 0 egyenletből z kifejezhető az x és y függvényeként (ez igaz, ha $\frac{\partial G}{\partial z}(x_0, y_0, z_0) \neq 0$; l. az implicit függvény t ételt), akkor van olyan $g \in \mathbb{R}^2 \to \mathbb{R}$ függvény, amelyikre G(x, y, g(x, y)) = 0 $((x, y) \in \mathcal{D}_g)$ teljesül. Ennek a g függvénynek a képe, azaz az

$$\{(x, y, g(x, y)) \in \mathbb{R}^3 \mid G(x, y, g(x, y)) = 0\}$$

halmaz egy \mathbb{R}^3 -beli felület. Általában adott "jó" $G \in \mathbb{R}^3 \to \mathbb{R}$ függvény esetén az

$$\left\{ \left(x,y,z\right) \in \mathbb{R}^{3}\mid G(x,y,z)=0\right\} \subset \mathbb{R}^{3}$$

halmaz egy felület. Gondoljunk a térben az origó középpontú R-sugarú gömbfelületre:

$$\mathcal{F} = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 - R^2 = 0 \} \subset \mathbb{R}^3.$$

3. A Gauss-féle vagy (két)paraméteres megadási mód:

A görbék paraméteres megadásához hasonló. A felület azonban nem egyparaméteres ponthalmaz a térben, mint a görbe, hanem térbeli pontok kétparaméteres halmaza. Gondoljuk meg például azt, hogy egy gömbfelületet vagy egy hengerfelületet hogyan lehet két alkalmas paraméterrel jellemezni. (A pontos fogalmat illetően l. a következő definíciót.)

- **D1.** Azt mondjuk, hogy az $\mathcal{F} \subset \mathbb{R}^3$ halmaz egy **egyszerű sima felületdarab** (röviden: ESF), ha létezik olyan $F \in C^1(\mathbb{I}^2, \mathbb{R}^3)$ leképezés, hogy
 - (i) $F: \mathbb{I}^2 \to \mathcal{F}$ bijekció és
 - (ii) rang F'(w) = 2 minden $w \in \mathbb{I}^2$ pontban.

Ekkor a F függvényt az \mathcal{F} egy **paraméterezésének** nevezzük.

Mj2. A felületek elméletének *általános* tárgyalása igen messzire vezetne, ezért itt csak azt a felületfogalmat adtuk meg, amely a differenciálgeometriában szükséges. Ezt némiképp általánosítva a továbbiakban **felületen** olyan térbeli ponthalmazt értünk, amelyek "összerakhatók" egyszerű sima felületdarabokból.

- **F1.** Az $f(x) \ge 0$ $(x \in [a,b])$ függvénnyel megadott görbét forgassuk meg az xtengely körül. Adja meg az így kapott forgásfelületet implicit alakban és paraméteres alakban is.
- **F2.** Az xz-koordinátasíkban elhelyezkedő A(a,0,0) középpontú, b sugarú körívet forgassuk meg a z-tengely körül (a>b>0). Határozza meg az így kapott **tóruszfelület** egy paraméteres alakját.
- F3. Másodrendű felületek.

Szemléltesse az alábbi, implicit alakban megadott felületeket. Milyen a,b,c paraméterek esetén kapunk forgásfelületet?

(a) ellipszoidok:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1;$$

(b) hiperboloidok:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{egyköpenyű hiperboloid};$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \quad \text{kétköpenyű hiperboloid};$$

(c) $k\acute{u}pok$: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0;$

(d) paraboloidok:

$$z=\frac{x^2}{a^2}+\frac{y^2}{b^2} \ \ \text{elliptikus paraboloid},$$

$$z=\frac{x^2}{a^2}-\frac{y^2}{b^2} \ \ \text{hiperbolikus paraboloid};$$

(e) hengerek:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad \text{elliptikus henger},$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{hiperbolikus henger},$$

$$y^2 = 2px \quad \text{parabolikus henger}.$$

Keressen paraméteres előállítást.

2. Paramétervonalak és felületi görbék

- F4. Állapítsa meg, hogy az
 - (a) $F(u, v) := (u \cos v, u \sin v, v),$
 - (b) $F(u,v) := \left(\frac{a}{2}(u+v), \frac{b}{2}(u-v), \frac{uv}{2}\right),$
 - (c) $F(u, v) := (\cos u \operatorname{ch} v, \sin u \operatorname{sh} v, u)$

függvénnyel megadott felületek paramétervonalai milyen görbék.

3. Érintősík, felületi normális

- **T1.** Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F : \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése, $(u_0, v_0) \in \mathbb{I}^2$ egy rögzített pont a paramétertartományban és $P_0 := F(u_0, v_0) = (x_0, y_0, z_0) \in \mathcal{F}$ a megfelelő felületi pont. Ekkor
 - 1^o Minden P_0 -on átmenő reguláris felületi görbe érintői valamennyien egy síkban vannak. Ezt a síkot a felület P_0 **pontbeli érintősíkjának** nevezzük.
 - 2^{o} A felület P_{0} pontbeli érintősíkjának
 - (a) egy **bázisa** az \mathbb{R}^3 -beli $\partial_u F(u_0, v_0)$ és $\partial_v F(u_0, v_0)$ vektorok;
 - (b) egy **normálvektora** az

$$\mathbf{m}(u_0, v_0) := \frac{\partial_u F(u_0, v_0) \times \partial_v F(u_0, v_0)}{|\partial_u F(u_0, v_0) \times \partial_v F(u_0, v_0)|}$$

felületi normális egységvektor;

(c) egyenlete (az $\mathbf{x} := (x, y, z)$ jelöléssel):

$$0 = \langle \mathbf{x} - F(u_0, v_0), \mathbf{m}(u_0, v_0) \rangle = (\mathbf{x} - F(u_0, v_0)) \cdot \partial_u F(u_0, v_0) \cdot \partial_v F(u_0, v_0) =$$

$$= \det \begin{bmatrix} x - x_0 & y - y_0 & z - z_0 \\ \frac{\partial F_1}{\partial u}(u_0, v_0) & \frac{\partial F_2}{\partial u}(u_0, v_0) & \frac{\partial F_3}{\partial u}(u_0, v_0) \\ \frac{\partial F_1}{\partial v}(u_0, v_0) & \frac{\partial F_2}{\partial v}(u_0, v_0) & \frac{\partial F_3}{\partial v}(u_0, v_0) \end{bmatrix} = 0.$$

T2. A z = g(x,y) $(g \in \mathbb{R}^2 \to \mathbb{R}, g \in C^1)$ explicit alakban, illetve a G(x,y,z) = 0 $(G \in \mathbb{R}^3 \to \mathbb{R}, G \in C^1)$ implicit alakban megadott \mathcal{F} egyszerű sima felületdarab $P_0 = (x_0, y_0, z_0) \in \mathcal{F}$ pontjában az érintősík $\mathbf{m}(P_0)$ normálvektora, valamint az egyenlete:

$$\mathbf{m}(P_0) = (g'_x(x_0, y_0), g'_y(x_0, y_0), -1), \text{ valamint}$$

$$z - z_0 = g'_x(x_0, y_0)(x - x_0) + g'_y(x_0, y_0)(y - y_0);$$

illetve

$$\mathbf{m}(P_0) = (G'_x(P_0), G'_y(P_0), G'_z(P_0)), \text{ valamint}$$

$$= G'_x(P_0)(x - x_0) + G'_y(P_0)(y - y_0) + G'_z(P_0)(z - z_0) = 0.$$

- **F5.** Vannak-e az alábbi függvénnyel megadott felületnek olyan P_0 pontjai, amelyben nem teljesül a rang $F'(u_0, v_0) = 2$ feltétel (azaz a $\partial_u F(u_0, v_0)$ és $\partial_v F(u_0, v_0)$ vektorok párhuzamosak):
 - (a) $F(u, v) := (u^2 + v^2, uv, \cos u \cos v);$
 - (b) $F(u, v) := (u^2 v^2, uv, -1 + \cos u, v e^v).$
- **F6.** Írja fel az alábbi függvények által megadott felületek kijelölt pontjában az érintősík egyenletét és a felületi merőleges egyenes egyenletrendszerét:
 - (a) $F(u,v) := (u^2 v^2, 2uv, u^2 + v^2), (u_0, v_0) := (1, 2);$
 - (b) $F(u, v) := (\cos u v \sin u, \sin u + v \cos u, v), P_0 := (1, 1, 1);$
 - (c) $F(u,v) := (u,(1+u)\cos v,(1+u)\sin v), (u_0,v_0) := (1,\frac{\pi}{3});$
 - (d) $z = x^2 y^2$, $P_0 := (2, 1, 3)$;
 - (e) $z = 4x^2y 2xy^2$, $P_0 := (-1, 1, 6)$;
 - (f) $x^2 + y^2 + z^2 = 169$, $P_0 := (x_0, y_0, z_0)$;
 - (g) $x^2 2y^2 3z^2 4 = 0$, $P_0 := (3, 1, -1)$.
- **F7.** Írja fel a $t \acute{o} r u s z \left(\frac{\pi}{3}, \frac{\pi}{4}\right)$ paraméterű pontjához tartozó érintősík egyenletét. Mutassa meg, hogy a tórusz minden pontjában a paramétervonalak merőlegesen metszik egymást.
- **F8.** Határozza meg az $x^2+y^2-2z=18$ egyenletű felület x+2y+z+1=0 egyenletű síkkal párhuzamos érintősíkjának az egyenletét.
- **F9.** Az $y = 8x^2$, z = 0 egyenletű parabolát forgassuk meg az x-tengely körül. A kapott forgásfelület $P(1, 4, 4\sqrt{3})$ pontjában írja fel az érintősík egyenletét és a felületi merőleges egyenes egyenletrendszerét.

F10. Bizonyítsa be, hogy ha a > 0 állandó, akkor a

$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$$

egyenletű felület érintősíkjai a koordináta-tengelyekből állandó összegű darabokat vágnak le.

4. A Gauss-féle első alapmennyiségek Felületi görbék ívhossza, hajlásszöge. Felületek felszíne

- A Gauss-féle első alapmennyiségek értelmezése
- **D2.** Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F : \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. A $w_0 = (u_0, v_0) \in \mathbb{I}^2$ pontban az első Gauss-féle alapmennyiségeket így értelmezzük:

$$\mathbb{E}(w_0) := \mathbb{E}(u_0, v_0) := \langle \partial_u F(u_0, v_0), \partial_u F(u_0, v_0) \rangle,$$

$$\mathbb{F}(w_0) := \mathbb{F}(u_0, v_0) := \langle \partial_u F(u_0, v_0), \partial_v F(u_0, v_0) \rangle,$$

$$\mathbb{G}(w_0) := \mathbb{G}(u_0, v_0) := \langle \partial_v F(u_0, v_0), \partial_v F(u_0, v_0) \rangle.$$

Α

$$G(w) := \begin{bmatrix} \mathbb{E}(w) & \mathbb{F}(w) \\ \mathbb{F}(w) & \mathbb{G}(w) \end{bmatrix} \qquad (w \in \mathbb{I}^2)$$

szimmetrikus mátrixszal képzett

$$Q(\mathbf{x}) := Q(x_1, x_2) := \langle G(w)\mathbf{x}, \mathbf{x} \rangle =$$

$$= \mathbb{E}(w) x_1^2 + 2 \mathbb{F}(w) x_1 x_2 + \mathbb{G}(w) x_2^2 \qquad (\mathbf{x} \in \mathbb{R}^2)$$

kvadratikus alakot a felület első alapformájának nevezzük.

- Felületi görbék ívhossza
- **T3.** Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F : \mathbb{I}^2 \to \mathbb{R}^3$ egy folytonosan deriválható paraméterezése. Tegyük fel, hogy $\Gamma \subset \mathcal{F}$ egy sima felületi görbe

és $\varphi = F \circ \gamma : [\alpha, \beta] \to \mathcal{F}$ ennek egy parméterezése. Ekkor Γ rektifikálható és az ívhossza az alábbi képletek valamelyikével számolható ki:

$$\begin{split} \ell_{\Gamma} &= \int_{\alpha}^{\beta} \left| \dot{\varphi}(t) \right| dt = \int_{\alpha}^{\beta} \sqrt{\dot{\varphi}_{1}^{2}(t) + \dot{\varphi}_{2}^{2}(t) + \dot{\varphi}_{3}^{2}(t)} \, dt = \\ &= \int_{\alpha}^{\beta} \sqrt{\left\langle G\left(\gamma(t)\right) \dot{\gamma}(t), \, \dot{\gamma}(t) \right\rangle} \, dt = \\ &= \int_{\alpha}^{\beta} \sqrt{\left\langle E(t) \dot{\gamma}_{1}^{2}(t) + 2\mathbb{F}(t) \dot{\gamma}_{1}(t) \, \dot{\gamma}_{2}(t) + \mathbb{G}(t) \, \dot{\gamma}_{2}^{2}(t)} \, dt = \\ &\left(= \int_{\alpha}^{\beta} \sqrt{\left\langle E(t) \dot{\gamma}_{1}^{2}(t) + 2\mathbb{F}(t) \dot{\gamma}_{1}(t) \, \dot{\gamma}_{2}(t) + \mathbb{G}(t) \, \dot{\gamma}_{2}^{2}(t)} \, dt \right. \end{split}$$

• Felületek felszíne

D3. Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: T \to \mathbb{R}^3$ $(T \subset \mathbb{I}^2)$ ennek egy folytonosan deriválható paraméterezése. Ekkor \mathcal{F} felszínén az

$$\mathcal{S} := \iint_{T} |\partial_{u} F(u, v) \times \partial_{v} F(u, v)| \ du \ dv \left(=: \iint_{T} |\partial_{u} F \times \partial_{v} F| \ du \ dv \right)$$

számot értjük.

- **T4.** Egyszerű sima felületdarab felszíne független a paraméterezéstől, megengedett paramétertranszformációval szemben invariáns.
- **T5.** Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab.

 1^o Ha $F:T\to\mathbb{R}^3$ $(T\subset\mathbb{I}^2)$ az $\mathcal F$ felület egy folytonosan deriválható paraméterezése, akkor van felszíne és az a

$$\mathcal{S} = \iint_T \sqrt{\mathbb{E}(u,v) \, \mathbb{G}(u,v) - \mathbb{F}^2(u,v)} \, du \, dv \left(=: \iint_T \sqrt{\mathbb{E} \cdot \mathbb{G} - \mathbb{F}^2} du \, dv \right)$$

képlettel is meghatározható.

 2^o Ha az $\mathcal F$ felület a z=g(x,y) ((x,y) $\in T$) explicit alakban van megadva, akkor a felszíne:

$$S = \iint_{T} \sqrt{1 + g_x^2(x, y) + g_y^2(x, y)} \, dx \, dy \left(=: \iint_{T} \sqrt{1 + g_x^2 + g_y^2} \, dx \, dy \right),$$

feltéve, hogy a $g:T\to\mathbb{R}$ függvény folytonosan deriválható.

 3^o A G(x,y,z)=0implicit alakban megadott felület felszíne pedig az

$$S = \iint_{T} \frac{\sqrt{G_x^2 + G_y^2 + G_z^2}}{|G_z|} dx dy$$

képlettel számítható ki.

- **F11.** Írja fel az alábbi felületek megadott pontjában a Gauss-féle első alapmennyiségeket és az első alapformát
 - (a) $F(u,v) := (u^2 v^2, uv v^3, u^4 2v), \quad w_0 = (u_0, v_0) = (-1, 1);$
 - (b) $F(u, v) := \left(\operatorname{ch} u \cos v, \operatorname{sh} u \sin v, \operatorname{th} (uv) \right), \quad w_0 = \left(u_0, v_0 \right) = \left(0, \frac{\pi}{2} \right);$
 - (c) $F(u,v) := (e^u, e^v, u v), \quad w_0 = (u_0, v_0) = (0,1);$
 - (d) $F(u, v) := ((a + b \cos v) \cos u, (a + b \cos v) \sin u, b \sin v)$ $w_0 = (u_0, v_0) \quad (a > b > 0);$
 - (e) $z = 4x^2y + 2xy^2$, $P_0(-1, 2, 0)$;
 - (f) $z = \sqrt{2xy}$, $P_0(2, 2, 4)$.
- F12. Számítsa ki a megadott felületre illeszkedő felületi görbék ívhosszát:
 - (a) $F(u, v) := (v \cos u, v \sin u, v); \quad u = t, v = e^t; 0 \le t \le t_0;$
 - (b) $F(u, v) := (u^2 v^2, 2uv, u^2 + v^2); \quad u = \sin t, v = \sin t; 0 \le t \le \frac{\pi}{2};$
 - (c) $F(u,v) := (e^u \cos v, e^u \sin v, e^u); \quad u = -t, v = 2t; 0 \le t \le t_0.$
- F13. Keressen képletet felületi görbék hajlásszögének a kiszámolására.
- **F14.** Forgassuk meg az y = f(x) $(x \in [a, b])$ egyenlettel megadott görbét $(f \in C^1)$ az x-tengely körül. Mutassa meg, hogy az így kapott forgásfelület felszíne

$$2\pi \int_{a}^{b} f(x)\sqrt{1+\left[f'(x)\right]^{2}} dx.$$

- F15. Számítsa ki az alábbi felületek felszínét:
 - (a) $F(u,v) := (u\cos v, u\sin v, v)$ $(0 \le u \le 1, 0 \le v \le 2\pi)$ (csavarfelület);
 - (b) $F(u, v) := (\cos u v \sin u, (\sin u + v \cos u), (u + v))$ $(0 \le u \le \pi, 0 \le v \le 1);$
 - (c) $z = \frac{x^2}{2y}$, $0 \le x \le 1$, $1 \le y \le 2$.;
 - (d) $z = x^2 y^2$ és a T taromámy az $x^2 + y^2 \le 1$ körlap.
- F16. Számítsa ki a tóruszfelület felszínét.
- **F17.** Tekintsük az xy-síkon a

$$\gamma(t) := (\gamma_1(t), \gamma_2(t)) \in \mathbb{R}^2 \qquad (t \in [\alpha, \beta])$$

paraméteres alakban megadott görbét. Tegyük fel, hogy $\gamma \in C^1([\alpha,\beta],R^2)$ és

$$\gamma_1(t) \neq 0$$
 és $\dot{\gamma}_1^2(t) + \dot{\gamma}_2^2(t) \neq 0$ $(t \in [\alpha, \beta]).$

Forgassuk meg a görbét a x tengely körül. Mutassa meg, hogy az így kapott forgásfelület felszíne

$$S = 2\pi \int_{\alpha}^{\beta} |\gamma_1(t)| \sqrt{\dot{\gamma}_1^2(t) + \dot{\gamma}_2^2(t)} dt.$$

- **F18.** Forgassukmeg a következő görbéket az x tengely körül, és számítsuk ki az így kapott forgásfelület felszínét:
 - (a) $\gamma(t) := (t \sin t, 1 \cos t)$ $(t \in [0, 2\pi]);$
 - (b) $\gamma(t) := (2\cos t \cos(2t), 2\sin t \sin(2t)) \qquad (t \in [0, \pi]);$
 - (c) $f(x) := \operatorname{ch} x$ $(x \in [0, 2]);$
 - (d) $f(x) := \sqrt{x}$ $(x \in [1, 5]).$

5. A Gauss-féle második alapmennyiségek

D4. Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése. Jelölje $\mathbf{m}(w_0)$ a felület $w_0 = (u_0, v_0) \in \mathbb{I}^2$ paraméterű pontjában a felületi normális egységvektort (azaz az érintősík egy normálvektorát). Ekkor a felület w_0 paraméterű $P_0 := F(w_0) = F(u_0, v_0)$ pontjában a **Gauss-féle második alapmennyiségeket** így értelmezzük:

$$\mathbb{L}(w_0) := \mathbb{L}(u_0, v_0) := \langle \partial_{uu} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{uu} F(w_0) \cdot \mathbf{m}(w_0),$$

$$\mathbb{M}(w_0) := \mathbb{M}(u_0, v_0) := \langle \partial_{uv} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{uv} F(w_0) \cdot \mathbf{m}(w_0),$$

$$\mathbb{N}(w_0) := \mathbb{N}(u_0, v_0) := \langle \partial_{vv} F(w_0), \mathbf{m}(w_0) \rangle = \partial_{vv} F(w_0) \cdot \mathbf{m}(w_0).$$

Α

$$H(w) := \begin{bmatrix} \mathbb{L}(w) & \mathbb{M}(w) \\ \mathbb{M}(w) & \mathbb{N}(w) \end{bmatrix} \qquad (w \in \mathbb{I}^2)$$

szimmetrikus mátrixszal képzett

$$Q(\mathbf{x}) := Q(x_1, x_2) := \langle H(w)\mathbf{x}, \mathbf{x} \rangle =$$

$$= \mathbb{L}(w) x_1^2 + 2 \mathbb{M}(w) x_1 x_2 + \mathbb{N}(w) x_2^2 \qquad (\mathbf{x} \in \mathbb{R}^2)$$

kvadratikus alakot a felület második alapformájának nevezzük.

F19. Írja fel az alábbi felületek megadott pontjában a Gauss-féle második alapmennyiségeket és a második alapformát

(a)
$$F(u,v) := (u^2 - v^2, uv - v^3, u^4 - 2v), \quad w_0 = (u_0, v_0) = (-1, 1);$$

(b)
$$F(u,v) := (e^u, e^v, u - v), \quad w_0 = (u_0, v_0) = (0,1);$$

(c)
$$F(u, v) := ((a + b \cos v) \cos u, (a + b \cos v) \sin u, b \sin v)$$

 $w_0 = (u_0, v_0) \quad (a > b > 0);$

(d)
$$z = 4x^2y + 2xy^2$$
, $P_0(-1, 2, 0)$;

(e)
$$z = x^3 - y^3$$
, $P_0(2, -1, 9)$;

(f)
$$z = \sqrt{2xy}$$
, $P_0(2, 2, 4)$.

6. Felületi görbék görbülete. Felületi pontok osztályozása

(Meusnier-tétel, normálgörbületek, főgörbületek, főirányok, Euler-tétel)

T6. Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab és $F: \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy folytonosan deriválható paraméterezése. Tegyük fel, hogy $\Gamma \subset \mathcal{F}$ egy sima felületi görbe és $\varphi = F \circ \gamma : [\alpha, \beta] \to \mathcal{F}$ ennek egy parméterezése. Tekintsük a felületnek egy olyan P_0 pontját, amelyen ez a görbe átmegy:

$$\mathcal{F} \ni P_0 = \varphi(t_0) = F(\gamma(t_0)) = F(u_0, v_0) = F(w_0).$$

Tegyük fel még azt is, hogy a felület P_0 pontbeli érintősíkja (ennek normálvektora az $\mathbf{m}(w_0)$ felületi normális egységvektor) nem egyezik meg a görbe P_0 pontbeli simulósíkjával, azaz $\mathbf{n}(P_0) \cdot \mathbf{m}(w_0) \neq 0$, ahol $\mathbf{n}(P_0)$ a görbe főnormális egységvektora. Ekkor a görbe P_0 pontjában a görbületre a következő képlet érvényes:

$$\kappa(P_0) = \frac{1}{\mathbf{n}(P_0) \cdot \mathbf{m}(w_0)} \cdot \frac{\langle H(w_0) \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle}{\langle G(w_0) \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle} =$$

$$= \frac{1}{\mathbf{n}(P_0) \cdot \mathbf{m}(w_0)} \cdot \frac{\mathbb{L} \dot{\gamma}_1^2(t_0) + 2\mathbb{M} \dot{\gamma}_1(t_0) \dot{\gamma}_2(t_0) + \mathbb{N} \dot{\gamma}_2^2(t_0)}{\mathbb{E} \dot{\gamma}_1^2(t_0) + 2\mathbb{F} \dot{\gamma}_1(t_0) \dot{\gamma}_2(t_0) + \mathbb{G} \dot{\gamma}_2^2(t_0)}.$$

Megjegyzés. Gondoljuk meg, hogy konkrét esetekben a tétel alkalmazásához elég sok számolásra lenne szükség. A képletnek nem gyakorlati, inkább *elméleti* jelentősége van. A belőle levonható alábbi egyszerű észrevételek igen érdekesek:

Egy felületi görbe görbületét a pontbeli érintőjének az iránya – a $\dot{\gamma}_1(t_0)/\dot{\gamma}_2(t_0)$ hányados – és a görbe $\mathbf{n}(P_0)$ főnormálisa már egyértelműen meghatározza. Ez azt jelenti, hogy a közös irányú érintővel és főnormálissal rendelkező görbék görbülete azonos. Ha még azt is figyelembe vesszük, hogy a görbe simulósíkját az érintője és a főnormálisa határoza meg, akkor a fenti tételből rögtön megkapjuk az alábbi következményt:

- **T7.** Egy tetszőleges Γ felületi görbe P_0 pontbeli görbülete megegyezik a görbe P_0 pontjához tartozó simulósíkja által a felületből kimetszett felületi síkgörbe P_0 pontbeli görbületével. Ezért a felület P_0 pontján áthaladó görbék görbületének vizsgálatánál **elegendő a síkmetszetek görbületét** tekinteni.
- D5. A felület valamely pontjabeli érintősíkra e pontban merőleges síkokat normálsíkoknak, a normálsík által kimetszett görbét normálmetszetnek, a normálmetszet görbületét pedig normálgörbületnek nevezzük. Minden más síkmetszetet ferdemetszetnek hívunk.

Megjegyzés. Vegyük észre, hogy adott érintőjű síkmetszetek közül a normálmetszet a legkisebb görbületű az adott pontban. Ebben az esetben ui. az \mathbf{m} és az \mathbf{n} vektorok párhuzamosak, tehát $\mathbf{n} \cdot \mathbf{m} = \pm 1$.

Most megállapodunk abban, hogy a normálgörbületnek előjelet is adunk; az előjel pozitív (illetve negatív), ha görbe főnormális egységvektora a felület egységnyi normálvektorával megegyező (illetve ellentétes irányú). Ezt az $\mathbf{n}(P) \cdot \mathbf{m}(w_0)$ skaláris szorzat mutatja, amely az első esetben +1, a másodikban pedig -1. A korábbi jelöléseinket használva vegyünk fel a felület P_0 pontbeli érintősíkjában egy e egyenest (ez jelöli ki az adott érintő irányát). Jelöljük $\kappa_e(P_0)$ -lal a megfelelő előjelezett normálgörbületet. Ekkor a T6. tétel képletéből azonnal adódik, hogy

$$\kappa_e(P_0) = \frac{\langle H(w_0) \, \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle}{\langle G(w_0) \, \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle} = \frac{\mathbb{L} \, \dot{\gamma}_1^2(t_0) + 2\mathbb{M} \, \dot{\gamma}_1(t_0) \, \dot{\gamma}_2(t_0) + \mathbb{N} \, \dot{\gamma}_2^2(t_0)}{\mathbb{E} \, \dot{\gamma}_1^2(t_0) + 2\mathbb{F} \, \dot{\gamma}_1(t_0) \, \dot{\gamma}_2(t_0) + \mathbb{G} \, \dot{\gamma}_2^2(t_0)}.$$

T8. Meusnier – olv. Mönié – tétele: Tekintsük a reguláris $\mathcal{F} \subset \mathbb{R}$ felület P_0 pontjára és az ehhez tartozó érintősík egy e egyenesére illeszkedő tetszőleges (de az érintősíktől különböző) σ síkot. Legyen $\kappa(P_0)$ a σ sík által kimetszett felületi görbe görbülete és $\kappa_e(P_0)$ az e irányhoz tartozó normálmetszet előjeles görbülete. Ekkor

$$\kappa(P_0) = \frac{\kappa_e(P_0)}{\cos \alpha},$$

ahol α ($\alpha \in (0, \pi) \setminus \{\frac{\pi}{2}\}$) a felület P_0 pontjában felületi normális egységvektora és a felületi görbe fönormális egységvektora által bezárt szög.

Megjegyzés. A tétel tehát azt állítja, hogy adott felületen elegendő a normálmetszetek görbületét ismerni, mert egy adott érintőirányú felületi görbék esetében a ferdemetszetek görbülete kifejezhető a normálmetszet görbületével. ■

Megjegyzés. Az eddigieket összefoglalva egyelőre (!!!) itt tartunk: Ha egy sima felület adott P_0 pontján átmenő tetszőleges görbéket vizsgálunk – pl. a görbület szempontjából –, akkor elegendő a P_0 -on átmenő és az érintősíkra merőleges síkmetszeteket (azaz a normálmetszeteket) tekintenünk.

A további fontos és alapvető eredmény "dallama" az, hogy az érintősíkban van olyan, két egymásra merőleges irány – ezeket fogjuk majd **főirányoknak** nevezni –, amelyekben vett normálgörbületekkel (azaz a normálmetszetek görbületeivel) már *tetszőleges* irányú normálmetszetek görbülete kifejezhető. Ezt fejezi ki **Euler tétetele**.

A kiindulópontunk az előjelezett normálgörbületekre vonatkozó

$$\kappa_e(P_0) = \frac{\langle H(w_0) \, \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle}{\langle G(w_0) \, \dot{\gamma}(t_0), \dot{\gamma}(t_0) \rangle} = \frac{\mathbb{L} \, \dot{\gamma}_1^2(t_0) + 2\mathbb{M} \, \dot{\gamma}_1(t_0) \, \dot{\gamma}_2(t_0) + \mathbb{N} \, \dot{\gamma}_2^2(t_0)}{\mathbb{E} \, \dot{\gamma}_1^2(t_0) + 2\mathbb{F} \, \dot{\gamma}_1(t_0) \, \dot{\gamma}_2(t_0) + \mathbb{G} \, \dot{\gamma}_2^2(t_0)}.$$

korábbi képletünk, amelyet két kvadratikus alak hányadosának is tekinthetünk. Azt fogjuk megvizsgálni közelebbről, hogy miképpen változik a normálgörbület az érintőiránnyal. Ez a kifejezés az érintőirányokat meghatározó $\dot{\varphi}_1$ és $\dot{\varphi}_2$ racionális törtfüggvénye. Azt tudjuk, hogy a nevező pozitív defint kvadratikus alak. A fentit tehát a $\dot{\varphi}_1\dot{\varphi}_2=0$ pont kivételével a $\dot{\varphi}_1$ és $\dot{\varphi}_2$ változó folytonos függvényének tekinthetjük. Ha még azt is figyelembe vesszük, hogy ez a kifejezés $\dot{\varphi}_1$ -nak és $\dot{\varphi}_2$ -nak homogén függvénye (azaz az értéke nem változik akkor,

ha $\dot{\varphi}_1$ és $\dot{\varphi}_2$ helyébe a $\lambda \dot{\varphi}_1$ és $\lambda \dot{\varphi}_2$ számokat írjuk), akkor azt kapjuk $\kappa_e(P_0)$ tetszőleges sugarú körvonalon felveszi minden értékét. Mivel a körvonalon folytonos is, ezért létezik mind maximuma, mind minimuma. A továbbiak *első* lépéseként ezeket az értékeket fogjuk megkeresni. Jóval általánosabb keretek között fogjuk tekinteni a következő – önmagában is érdekes – **szélsőérték-feladatot.**

T9. Legyen

$$f(x) := \frac{\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{B}\mathbf{x}, \mathbf{x} \rangle} \qquad (\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}),$$

ahol $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixok és \mathbf{B} pozitív definit. Tekintsük az $\mathbf{A}\mathbf{B}^{-1}$ szimmetrikus (!!!) mátrixot, és jelölje

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
 ennek a sajátértékeit,
 $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n$ pedig a megfelelő sajátvektorokat.

Ekkor

(a) az f függvénynek létezik abszolút maximuma és minimuma;

(b)
$$\min f = \lambda_1 = f(\mathbf{B}^{-1}\mathbf{r}_1), \qquad \max f = \lambda_n = f(\mathbf{B}^{-1}\mathbf{r}_n).$$

Megjegyzés. Alkalmazzuk ezt az állítást az előjelezett normálgörbületre, azaz tekintsük az

$$f(\mathbf{x}) := \kappa_e(P_0) := \frac{\langle H(w_0)\mathbf{x}, \mathbf{x} \rangle}{\langle G(w_0)\mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbb{L}(w_0)x_1^2 + 2\mathbb{M}(w_0)x_1x_2 + \mathbb{N}(w_0)x_2^2}{\mathbb{E}(w_0)x_1^2 + 2\mathbb{F}(w_0)x_1x_2 + \mathbb{G}(w_0)x_2^2}$$
$$(\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \setminus \{\mathbf{0}\})$$

függvényt, ahol az (x_1, x_2) (paramétertartománybeli) pont az érintősíkon az

$$\mathbf{e} = x_1 \partial_u F(w_0) + x_2 \partial_v F(w_0)$$

érintőirányt határozza meg. Az alábbi állítás a fentinek szinte nyilvávaló következménye. \blacksquare

T10. Főgörbületek: Legyen $\mathcal{F} \subset \mathbb{R}^3$ egy egyszerű sima felületdarab, $F : \mathbb{I}^2 \to \mathbb{R}^3$ ennek egy kétszer folytonosan deriválható paraméterezése és $P_0 = F(w_0)$ a felület egy pontja.

1° Ekkor az

$$f(\mathbf{x}) := \kappa_e(P_0) := \frac{\langle H(w_0)\mathbf{x}, \mathbf{x} \rangle}{\langle G(w_0)\mathbf{x}, \mathbf{x} \rangle} = \frac{\mathbb{L}(w_0)x_1^2 + 2\mathbb{M}(w_0)x_1x_2 + \mathbb{N}(w_0)x_2^2}{\mathbb{E}(w_0)x_1^2 + 2\mathbb{F}(w_0)x_1x_2 + \mathbb{G}(w_0)x_2^2}$$
$$\left(\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \setminus \{\mathbf{0}\}\right)$$

függvénynek van abszolút minimuma (κ_1) és maximuma (κ_2). Ezeket a számokat **fő(normál)görbületeknek** nevezzük.

 2^{o} A κ_1 és κ_2 **főgörbületek** a $H(w_0)G^{-1}(w_0)$ mátrix sajátértékei, ezért összegükre és szorzatukra a következők teljesülnek:

$$\kappa_1 + \kappa_2 = \operatorname{tr} \left(H(w_0) G^{-1}(w_0) \right) =: \mathcal{H}$$

(ez az ún. összeggörbület)

$$\kappa_1 \cdot \kappa_2 = \det(H(w_0)G^{-1}(w_0)) =: \mathcal{K}$$

(ez az ún. szorzat- vagy Gauss-féle görbület).

A főgörbületeket tehát a

$$\lambda^{2} - \operatorname{tr}\left(H(w_{0})G^{-1}(w_{0})\right)\lambda + \operatorname{det}\left(H(w_{0})G^{-1}(w_{0})\right) = 0 \tag{1}$$

sajátérték-egyenlet megoldásával határozhatjuk meg. Ennek csak valós gyökei vannak.

T11. Főirányok. Az előző tételben értelmezett f függvény szélsőérték-helyei (ezek tehát a paramétertartományban vannak) az érintősíkban (ξ, η) koordinátájú irányokat határoznak meg a

$$\xi \partial_u F(w_0) + \eta \partial_v F(w_0)$$

képlet alapján, ezeket **főirányoknak** (vagy **főgörbületi irányoknak**) nevezzük. Ha a (1) egyenlet gyökei különbözők, akkor két főirány van, és ezek merőlegesek egymásra. Ha $\kappa_1 = \kappa_2$, akkor minden irány főirány, tehát tetszőlegesen kijelölhető két egymásra merőleges főirány. A főirányokat adó (ξ, η) értékek a

$$\det \begin{bmatrix} \eta^2 & \xi \eta & \xi^2 \\ \mathbb{E}(w_0) & \mathbb{F}(w_0) & \mathbb{G}(w_0) \\ \mathbb{L}(w_0) & \mathbb{M}(w_0) & \mathbb{N}(w_0) \end{bmatrix} = 0$$

másodfokú egyenlet gyökei.

T12. Euler tétele: Tetszőleges felületi pontban bármely normálmetszet κ görbülete kifejezhető a főnormális-görbületekkel; az összefüggés:

$$\kappa = \kappa_1 \cos^2 \vartheta + \kappa_2 \sin^2 \vartheta,$$

ahol ϑ a görbeérintő és a κ_1 -nek megfelő főgörbületi irány bezárta szög.

D6. Ha a felület egy pontjában a \mathcal{K} szorzatgörbület pozitív, negatív, illetve zérus, akkor azt mondjuk, hogy ez a pont a felületnek **elliptikus**, **hiperbolikus**, illetve **parabolikus** pontja. Ha $\kappa_1 = \kappa_2 \neq 0$, akkor a pont (amely nyilván elliptikus) **szférikus pont**; ha $\kappa_1 = \kappa_2 = 0$, akkor a pontot (amely nyilván parabolikus) **planáris pontnak** nevezzük.

- **F20.** Számítsa ki az alábbi függvénnyel megadott felület kijelölt pontjában a megadott **e** érintővektorú normálmetszet előjeles görbületét:
 - (a) $F(u,v) := (u^2 + v^2, u^2 v^2, uv), (u_0, v_0) = (1,1), \mathbf{e} := (2,6,z);$
 - (b) $F(u, v) := (u^2 2uv, u^2v^2 v^3, u^4 2v^2), \quad (u_0, v_0) = (1, -1),$ $\mathbf{e} := (2, -11, z);$
 - (c) $F(u,v) := (u, (1+u)\cos v, (1+u)\sin v), \quad (u_0, v_0) = (1,0),$ $\mathbf{e} := (3,3,z);$
 - (d) $F(u, v) := (u \cos v, u \sin v, u^2), \quad (u_0, v_0) = (\sqrt{2}, \frac{\pi}{4}), \quad \mathbf{e} := (-2, 4, z).$
- **F21.** Határozza meg a következő felületek megadott pontjában a κ_1 és κ_2 főgörbületeket és főirányokat:
 - (a) $F(u,v) := (u^2 + v^2, 2uv, u v), \quad w_0 = (u_0, v_0) := (-1, -1);$
 - (b) $F(u, v) := (u \cos v, u \sin v, v), \quad w_0 = (u_0, v_0) := (1, \frac{\pi}{4});$
 - (c) a gömbfelület egy tetszőleges pontja;
 - (d) z = xy, $P_0 := (2, 2, 4)$;
 - (e) $z = \sqrt{xy}$, $P_0 := (1, 1, 1)$;
 - (f) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$, $P_0 := (0, 0, 0)$;
 - (g) $4x^2 + 4y^2 + z^2 = 9$, $P_0 := (1, -1, 1)$;
 - (h) $z^2 = x^2y$, $P_0 := (2, 1, 2)$.
- **F22.** Mutassa meg, hogy a $z = \ln(\cos x) \ln(\cos y)$ egyenletű felület minden pontjában az összeggörbület nulla.
- F23. Határozza meg az

$$F(u,v) := e^{u}\mathbf{i} + e^{v}\mathbf{j} + (u-v)\mathbf{k}$$

felület $(u_0, v_0) := (0, 0)$ paraméterű pontjában az $\dot{u}/\dot{v} = 2$ feltétellel megadott normálsíkjával $\vartheta = 30^o$ -os szöget bezáró ferdemetszet görbületét.

- **F24.** Meusnier és Euler tételének felhasználásával határozza meg a 2a nagytengelyű és a 2b kistengelyű ellipszis tengelypontjaiban a görbületet.
- F25. Mutassa meg, hogy
 - (a) egy gömb minden pontja szférikus pont;
 - (b) egy sík minden pontja planáris pont.

- F26. Határozza meg az alábbi felületek megadott pontjának típusát:
 - (a) $F(u,v) := (u^2 + v^2, 2uv, u v), \quad w_0 = (u_0, v_0) := (-1, -1);$
 - (b) $F(u,v) := (u, \sin u \cos v, \sin u \cos v), \quad w_0 = (u_0, v_0) := (\frac{\pi}{6}, \frac{\pi}{4});$
 - (c) z = xy, P(2, 2, 4);
 - (d) $z = 4x^2y 2xy^2$, P(1,0,0).
- **F27.** Forgassuk meg az l tengely körül egy sehol el nem tűnő görbületű L görbét. Bizonyítsa be, hogy ha az L görbe a forgástengely felől nézve konkáv, akkor a keletkező felület pontjai elliptikus pontok, ha konvex, akkor hiperbolikus pontok; annak a paralell körnek a pontjai, amelyet a görbe inflexiós pontja söpör végig, parabolikus pontok.
- F28. Határozza meg az

$$F(u,v) := \begin{bmatrix} (a+b\cos u)\cos v \\ (a+b\cos u)\sin v \\ b\sin u \end{bmatrix} \qquad (a>b>0)$$

tóruszfelület elliptikus, parabolikus és hiperbolikus pontjait.

Gyakorló feladatok 3.

(Vektoranalízis)

Programtervező matematikus

szakos hallgatóknak az

Analízis 7.

nevű tárgyhoz

1. Jelölések, elnevezések

• Skalármezők

D1. Lerögzítjük a közönséges térben az O origót és a pontokat helyvektoraikkal azonosítjuk. Legyen D a közönséges tér pontjainak (helyvektorainak) egy részhalmaza. Az $U(\mathbf{r})$ ($\mathbf{r} \in D$) függvényt **skalármezőnek** (vagy *skalár-vektor függvénynek*) nevezzük, ha minden $\mathbf{r} \in D$ vektorhoz pontosan egy $U(\mathbf{r})$ valós számot rendel hozzá. (Ilyen függvények írják le például rögzített időpontban a hőmérséklet, a nyomás vagy a "potenciál" eloszlását a tér egy részében.)

Megjegyzés. Ha a térben az O origó mellett lerögzítjük az $\mathbf{i}, \mathbf{j}, \mathbf{k}$ bázist, és az ezen alapuló Descartes-féle derékszögű koordinátarendszert, akkor minden helyvektor egyértelműen előállítható az $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ alakban, és a helyvektorok halmaza és a rendezett számhármasok között bijekció létesíthető. Ilyenkor az $U(\mathbf{r})$ ($\mathbf{r} \in D$) skalármező azal a háromváltozós $f \in \mathbb{R}^3 \to \mathbb{R}$ függvénnyel reprezentálható, amelyet az

$$f(x, y, z) := U(\mathbf{r}) \qquad (\mathbf{r} \in D)$$

összefüggés definiál, ha $\mathbf{r} := x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Azt is mondhatjuk, hogy **rögzített koordinátarendszerben** egy skalármező megadása ekvivalens egy háromváltozós függvény megadásával. A skalármező és a háromváltozós függvény fogalma között azonban *lényeges elvi különbség* van. Ha ugyanis egy helytől függő fizikai mennyiséget skalármezővel adunk meg, akkor e függvény kizárólag az adott mennyiség térbeli eloszlását (és az origó megválasztását), vagyis a *fizikai lényeget* tükrözi. (Az origó megválasztása ugyan önkényes, de ez az "önkény" matematikailag könnyen felismerhetően és egyszerűen tükröződik: az origó megváltoztatása egy állandó vektornak a független vektorhoz való hozzáadásával történik.) Ezzel szemben, ha a fizikai mennyiséget koordinátarendszer bevezetése után, háromváltozós függvénnyel adjuk meg, akkor e függvény nemcsak a fizikai lényeget, hanem a koordinátarendszer esetlegességét is tükrözi. Ugyanazon skalármező különböző koordinátarendszerben különböző háromváltozós függvénnyel ekvivalens. A továbbiakban az egyszerűség végett a skalármezőket azonosítani fogjuk az őket leíró háromváltozós függvénnyel (amit a rögzített, "szokásos" Descartes-féle koordinátarendszerben tekintünk), és jelölésükre is ugyanazt a szimbólumot fogjuk használni: $U(\mathbf{r}) \equiv U(x,y,z)$.

Skalármező szemléltetése. Skalármezőket *szintfelületekkel* lehet szemléltetni a háromdimenziós térben, azaz

rögzített $c \in \mathbb{R}$ esetén ábrázoljuk az $\{\mathbf{r} \in \mathbb{R}^3 \mid U(\mathbf{r}) = c\} \subset \mathbb{R}^3$ halmazt.

D2. Tekintsünk egy

$$U \in \mathbb{R}^3 \to \mathbb{R}$$
, $U(\mathbf{r}) = U(x, y, z)$, $\mathbf{r} = (x, y, z)$.

skalármezőt. Ha $\mathbf{r}_0 \in \operatorname{int} \mathcal{D}_U$ és $U \in D\{\mathbf{r}_0\}$, akkor

$$U'(\mathbf{r}_0) = (\partial_1 U(\mathbf{r}_0), \partial_2 U(\mathbf{r}_0), \partial_3 U(\mathbf{r}_0)) =: \operatorname{grad} U(\mathbf{r}_0)$$

az U skalármező gradiensvektora az \mathbf{r}_0 pontban.

• Vektormezők

D3. Lerögzítjük a közönséges térben az O origót és a pontokat helyvektoraikkal azonosítjuk. Legyen D a közönséges tér pontjainak (helyvektorainak) egy részhalmaza. A $\mathbf{V}(\mathbf{r})$ ($\mathbf{r} \in D$) függvényt **vektormezőnek** (vagy *vektor-vektor függvénynek*) nevezzük, ha minden $\mathbf{r} \in D$ vektorhoz pontosan egy $\mathbf{V}(\mathbf{r})$ vektort rendel hozzá. (Ilyen függvények írják le például rögzített időpontban a folyadékok, gázok áramlás-viszonyait, az elektromos, mágneses, gravitációs erőtereket.)

Megjegyzés. A skalármezőkhöz hasonlóan rögzített koordinátarendszerben egy vektormezőt három darab háromváltozós függvénnyel adhatunk meg. A továbbiakban nekünk ez a koordinátarendszer a "szokásos" Descartes-féle koordinátarendszer lesz, és a vektormezőt, valamint az őt leíró háromváltozós függvényeket ugyanazzal a szimbólummal fogjuk jelölni:

$$\mathbf{V} = (V_1, V_2, V_3) \in \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{V}(\mathbf{r}) = (V_1(\mathbf{r}), V_2(\mathbf{r}), V_3(\mathbf{r})) \quad \mathbf{r} = (x, y, z).$$

Azt is mondjuk, hogy vektormezőn $\mathbb{R}^3 \to \mathbb{R}^3$ típusú függvényt értünk.

Vektormező szemléltetése. A vektormezők szemléltetésére azok a görbék a legalkalmasabbak, amelyek érintői a tér minden pontjában párhuzamosak a görbeponthoz rendelt vektorral. Ezeket a görbéket vektorvonalaknak nevezzük. A vektorvonalak csupán a vektormező irányáról adnak szemléletes képet. A vektormezőnek nemcsak az irányáról, hanem a nagyságáról is szemléletes képet adnak az ún. **erővonalak** (vagy *áramvonalak*). Ezekhez a következőképpen juthatunk el: a vektorvonalak közül csak néhányat "rajzolunk meg" olyan módon, hogy a megmaradó vektorvonalak (erővonalak, áramvonalak) sűrűsége arányos legyen a vektormező nagyságával. Ezen azt értjük, hogy ha az \mathbf{r}_0 ponthoz rendelt vektor $\mathbf{V}(\mathbf{r}_0)$, akkor erre merőleges egységnyi területű felületdarabon $|\mathbf{V}(\mathbf{r}_0)|$ számú erővonal halad át.

D4. Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ egy vektormező. Ha $\mathbf{r}_0 \in \operatorname{int} \mathcal{D}_{\mathbf{V}}$ és $\mathbf{V} \in D\{\mathbf{r}_0\}$, akkor az \mathbf{r}_0 pontbeli **deriváltmátrix** (vagy Jacobi-mátrix):

$$\mathbf{V}'(\mathbf{r}_0) = \begin{bmatrix} \partial_1 V_1(\mathbf{r}_0) & \partial_2 V_1(\mathbf{r}_0) & \partial_3 V_1(\mathbf{r}_0) \\ \partial_1 V_2(\mathbf{r}_0) & \partial_2 V_2(\mathbf{r}_0) & \partial_3 V_2(\mathbf{r}_0) \\ \partial_1 V_3(\mathbf{r}_0) & \partial_2 V_3(\mathbf{r}_0) & \partial_3 V_3(\mathbf{r}_0) \end{bmatrix}.$$

Megjegyzés. A derváltmátrix elemei függenek a vektormezőt megadó függvény leírásához használt koordinátarendszer megválasztásától. Kiderült, hogy a deriváltmátrix elemeiből képzett bizonyos kifejezések függetlenek a koordinátarendszer megválasztásától, és csak a vektormezőtől függenek, ezért ezek a vektormezőt közvetlenül jellemző mennyiségek. Két ilyen invariáns jellemző van: az egyik a divergencia (ez egy szám, ezért ezt skalárinvariánsnak szokás nevezni), a másik egy vektor, ezt rotációnak szokás nevezni; ez a deriváltmátrix vektorinvariánsa.

D5. A $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) \mathbf{V}' deriváltmátrixának főátlójában álló elemeinek összegét a \mathbf{V} vektor-vektor függvény (vektormező) **divergenciájának** nevezzük és a div \mathbf{V} szimbólummal jelöljük:

$$\operatorname{div} \mathbf{V} := \partial_1 V_1 + \partial_2 V_2 + \partial_3 V_3 = \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}.$$

Megjegyzés. A divergencia fizikai tartalma: az erőtér forrása. A $\mathbf V$ vektormező az adott pontban forrásmentes, ha ott a div $\mathbf V=0$, ha div $\mathbf V>0$, akkor forrása van, és nyelője van, ha div $\mathbf V<0$.

D6. A $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) **rotációjának** a

$$rot \mathbf{V} := (\partial_2 V_3 - \partial_3 V_2, \partial_3 V_1 - \partial_1 V_3, \partial_1 V_2 - \partial_2 V_1)$$

függvényt nevezzük.

Megjegyzés. Kiderült, hogy a rotációvektorral a vektortér *örvényeit* vagy másképp fogalmazva az erővonalrendszerének a *csavarodását* lehet jellemezni. Sőt némi ügyeskedéssel nemcsak a csavarodás mértékét, hanem a csavarodás tengelyének az irányát is meg lehet adni.

• A "nabla szimbolika"

Megjegyzés. Skalármezők gradiensének, vektormezők divergenciájának és rotációjának felírását, az ezekkel a mennyiségekkel végzett számításokat megkönnyíti az ún. "nablaszimbolika" használata. ■

D7. Azt a "(vektor)differenciál-operátort", amelyet az **i**, **j**, **k** bázisban a

$$\nabla := (\partial_1, \partial_2, \partial_3) = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial y}$$

szimbólum jelöl, **nabla-operátornak** (vagy **Hamilton-féle differenciál-operátornak** nevezzük (ezt "virtuális vektornak" is tekinthetjük).

Ezzel a jelöléssel az $U \in \mathbb{R}^3 \to \mathbb{R}$ skalármező esetén

$$\operatorname{grad} U = \nabla U = (\partial_1 U, \partial_2 U, \partial_3 U);$$

a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}$ vektormező esetén:

$$\operatorname{div} \mathbf{V} = \langle \nabla, \mathbf{V} \rangle = \nabla \cdot \mathbf{V} = \partial_1 V_1 + \partial_2 V_2 + \partial_3 V_3,$$

$$\operatorname{rot} \mathbf{V} = \nabla \times \mathbf{V} = \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_1 & \partial_2 & \partial_3 \\ V_1 & V_2 & V_3 \end{bmatrix}.$$

D8. A nabla vektor önmagával vett skaláris szorzatát **Laplace-operátornak** nevezik, és a \triangle szimbólummal jelölik:

$$\triangle := \langle \nabla, \nabla \rangle = \nabla \cdot \nabla = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right).$$

Ha egy skalármezőt a Descates-féle derékszögű koordinátarendszerben az $U\in\mathbb{R}^3\to\mathbb{R}$ háromváltozós függvény reprezentál, akkor

$$\triangle U = \operatorname{div} \operatorname{grad} U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}.$$

Megjegyzés. A nabla vektor többszöri alkalmazása lehetséges, de nem történhet "vaktában". Például a $\nabla \times (\nabla \times \mathbf{V}) = \operatorname{rot} \operatorname{rot} \mathbf{V}$ értelmezhető, de a $\nabla \times (\nabla \cdot \mathbf{V}) = \operatorname{rot} \operatorname{div} \mathbf{V}$ nem, mert div \mathbf{V} skalár és ennek nem értelmezhető a rotációja.

• Reguláris tartományok

D9. Az $\Omega \subset \mathbb{R}^3$ halmaznak $\mathbf{a} \in \mathbb{R}^3$ egy **határpontja**, ha **a** minden környezetében van Ω -hoz tartozó és Ω -hoz nem tartozó pont is, azaz

$$\forall r > 0$$
 esetén $k_r(\mathbf{a}) \cap \Omega \neq \emptyset$ és $k_r(\mathbf{a}) \cap (\mathbb{R}^3 \setminus \Omega) \neq \emptyset$.

Az Ω halmaz határpontjainak a halmazát a $\partial\Omega$ szimbólummal fogjuk jelölni.

- **D10.** A reguláris $\mathcal{F} \subset \mathbb{R}^3$ felületet **egyszerű zárt felületnek** nevezzük, ha a teret két részre V_1 -re és V_2 -re bontja úgy, hogy
 - (a) $V_1 \cup \mathcal{F} \cup V_2 = \mathbb{R}^3$,
 - (b) $V_1 \cap \mathcal{F} = \emptyset$, $V_2 \cap \mathcal{F} = \emptyset$ és $V_1 \cap V_2 = \emptyset$;
 - (c) $V_1 \cup V_2$ nem összefüggő halmaz;
 - (d) V_1 és V_2 is összefüggő halmaz;
 - (e) közülük az egyik, pl. V_1 korlátos halmaz.

Megjegyzés. A továbbiakban olyan korlátos $\Omega\subset\mathbb{R}^3$ tartományokat fogunk tekinteni, amelyeknek a $\partial\Omega$ határa egyszerű zárt felület. Megengedjük azt is, hogy a határhalmaz "élekben cstalakozó" reguláris felületdarabokból álljon. Az ilyen tartományokat röviden "jó" tartományoknak fogjuk majd nevezni.

• Feladatok

F1. Állapítsa meg, hogy mik lesznek az alábbi skalármezők szintfelületei:

5

(a)
$$U(\mathbf{r}) := z - x^2 - y^2, x, y, z \in \mathbb{R};$$

(b)
$$U(\mathbf{r}) := \mathbf{r}^2, \ \mathbf{r} \in \mathbb{R}^3$$
.

- F2. Számítsa ki az alábbi vektomezők gradiensét a megadott pontokban:
 - (a) $U(\mathbf{r}) := z x^2 y^2$, $P_0(-1, 2, -3)$;
 - (b) $U(\mathbf{r}) := \mathbf{r}^2, \mathbf{r}_0(1, 2, 3).$
- F3. Szemléltesse az alábbi vektor-vektor függvényeket (vektormezőket):
 - (a) $\mathbf{V}(\mathbf{r}) := \mathbf{r} \ (\mathbf{r} \in \mathbb{R}^3);$
 - (b) $\mathbf{V}(\mathbf{r}) := \frac{\mathbf{r}}{|\mathbf{r}|} (\mathbf{r} \in \mathbb{R}^3 \setminus \{\mathbf{0}\});$
 - (c) $\mathbf{V}(\mathbf{r}) := -\mathbf{r} \ (\mathbf{r} \in \mathbb{R}^3).$
- **F4.** Számítsa ki az alábbi vektormezők divergenciáját és rotációját a megadott pontokban:
 - (a) $\mathbf{V}(\mathbf{r}) := \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \ (\mathbf{r} \in \mathbb{R}^3), \mathbf{r}_0 \text{ tetszőleges};$
 - (b) $\mathbf{V}(\mathbf{r}) := (3x 4y^2)\mathbf{i} + (x 4y + z^2)\mathbf{j} (3y + 5z)\mathbf{k} \ ((x, y, z) \in \mathbb{R}^3),$ $\mathbf{r}_0 = (1, 2, -3).$
- **F5.** (a) Határozza meg div grad U értékét az $\mathbf{r}_0(-1,0,2)$ helyvektorú pontban, ha

$$U(x, y, z) := xe^y + x^2z^2 - y^3x$$
 $(x, y, z \in \mathbb{R}).$

(b) Határozza meg a rot rot V vektort a $P_0(1,2,3)$ pontban, ha

$$\mathbf{V}(\mathbf{r}) := x^2 y z \mathbf{i} + x y^2 z \mathbf{j} + x y z^2 \mathbf{k} \quad ((x, y, z) \in \mathbb{R}^3).$$

F6. (a) Írja át az

$$\frac{\partial^2 U(x,y)}{\partial x^2} + \frac{\partial^2 U(x,y)}{\partial y^2} = 0$$

kétdimenziós Laplace-féle differenciálegyenletet polárkoordinátákba.

(b) Írja fel térbeli polárkoordinátákban a (háromdimenziós) Laplace-operátort.

2. Skalármezők térfogati integrálja. Vektormezők vonal- és felületi integrálja

• Skalármező térfogati integrálja

Legyen $\Omega \subset \mathbb{R}^3$ korlátos, "jó" tartomány, és tegyük fel, hogy az

$$U \in \mathbb{R}^3 \to \mathbb{R}$$

skalármező folytonos az $\Omega \cup \partial \Omega$ halmazon. Az U skalármező térfogati integráljának nevezzük és

$$\iiint\limits_{\Omega} U(\mathbf{r}) d\mathbf{r}$$

szimbólummal jelöljük az U(x, y, z) függvény Ω -n vett hármas integrálját.

- Vektormező vonalintegrálja
- **D11.** Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ folytonosan differenciálható vektormező. Tegyük fel, hogy a szakaszonként sima $\Gamma \subset \mathbb{R}^3$ görbének $\gamma : [\alpha, \beta] \to \Gamma$ egy paraméterezése. A \mathbf{V} vektormező Γ görbén vett **vonalintegrálján** a

$$\int_{\Gamma} \mathbf{V}(\mathbf{r}) d\mathbf{r} := \int_{\alpha}^{\beta} \mathbf{V}(\gamma(t)) \cdot \dot{\gamma}(t) dt$$

számot értjük.

Megjegyzés. A vonalintegrál fizikai jelentése: az erőtér által végzett munka. ■

Ismételni: primitív függvény; a vonalintegrál úttól való függetlensége. ■

• Vektormező felületi integrálja

Motiváció:

D12. Legyen $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ egy folytonos vektormező. Tegyük fel, hogy az $\mathcal{F} \subset \mathbb{R}^3$ egyszerű sima felületdarab és $F: T \to \mathcal{F}$ $(T \subset \mathbb{I}^2)$ ennek egy paraméterezése. A \mathbf{V} vektormező \mathcal{F} felületre vett **felületi integrálján** az

$$\iint_{\mathcal{F}} \mathbf{V}(\mathbf{r}) d\sigma := \iint_{T} \mathbf{V}(F(u, v)) \cdot \partial_{u} F(u, v) \cdot \partial_{v} F(u, v) du dv$$

számot értjük.

Fizikai tartalom: fluxus. Áramlásoknál: $\mathbf{V}(\mathbf{r})$ a sebesség, az integrál a folyadékmennyiség. Az erőtereknél a normális irányában áthaladó erővonalak száma.

Feladatok

F7. Számítsa ki az

$$U(\mathbf{r}) := \mathbf{r}^2 = x^2 + y^2 + z^2$$
 $((x, y, z) \in \mathbb{R}^3)$

függvény térfogati integrálját arra az egységnyi élhosszúságú kockára, amelynek egyik csúcsa az origóban van, az ebből a csúcsból kiinduló élei pedig a koordinátatengelyek pozitív felére illeszkednek.

F8. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (xy - z)\mathbf{i} + (yz - x)\mathbf{j} + (zx - y)\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektor-vektor függvény vonalintegrálját a

$$\gamma(t) := (t^2 + 1)\mathbf{i} + (1 - t)\mathbf{j} + (t^3 - t)\mathbf{k}$$
 $(t \in \mathbb{R})$

egyenletű görbe A(1,1,0) pontjától a görbe B(5,-1,6) pontjáig terjedő íve mentén.

F9. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (2xy + z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} + (2xz + y^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvény vonalintegrálját a $P_1(2,1,3)$ pontot a $P_2(-1,3,-2)$ ponttal összekötő egyenesszakasz mentén P_1 -től P_2 felé haladva.

F10. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := (z^2 - y)\mathbf{i} + (z^3 + x)\mathbf{j} + (xy)\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektor-vektor függvény vonalintegrálját az x, y síkkal párhuzamos síkban elhelyezkedő C(2,3,4) középpontú 5 sugarú körvonal mentén.

- **F11.** Mutassa meg, hogy a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvénynek (vektormezőnek) egy (csillagszerű) tartományban pontosan akkor van primitív függvénye (potenciálja), ha a vektormező ott rotációmentes.
- F12. (a) Bizonyítsa be, hogy a

$$\mathbf{V}(\mathbf{r}) := (2xy + z^2)\mathbf{i} + (2yz + x^2)\mathbf{j} + (2xz + y^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvénynek van potenciálja. Határozza meg a potenciált.

(b) Számítsa ki a vektormező vonalintegrálját tetszőleges görbe mentén az A(2,1,3) és B(-1,3,-2) pontok között.

F13. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektor-vektor függvény felületi integrálját az

$$F(u,v) := [(3+\cos u)\cos v]\mathbf{i} + [(3+\cos u)\sin v]\mathbf{j} + (\sin u)\mathbf{k}$$

egyenletű tórusz x,y sík feletti darabja mentén "felfelé mutató" normális mellett.

3. Integrálátalakító tételek

T1. Gauss–Osztrogradszkij-tétel. Legyen $\Omega \subset \mathbb{R}^3$ egy olyan korlátos, mérhető térfogatú tartomány, amelynek $\partial\Omega$ határa olyan egyszerű zárt felület, amely "élekben csatlakozó" reguláris felületdarabokból áll. Tegyük fel továbbá azt, hogy a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektor-vektor függvény (vektormező) folytonosan deriválható a $\Omega \cup \partial\Omega$ halmazon. A $\partial\Omega$ felület minden pontjában a felületi merőlegeseket a térrészből kifelé irányítjuk. Ekkor

$$\iint_{\partial\Omega} \mathbf{V}(\mathbf{r}) \, d\sigma = \iiint_{\Omega} \operatorname{div} \mathbf{V}(\mathbf{r}) \, d\mathbf{r},$$

vagyis a V függvénynek a $\partial\Omega$ felületen vett felületi integrálja egyenlő divergenciájának V-re vonatkozó hármas integráljával.

T2. Stokes tétele. Legyen \mathcal{F}_1 reguláris felületdarab, Γ pedig egy egyszerű, reguláris, zárt felületi görbe \mathcal{F}_1 -en. \mathcal{F}_1 normálvektorát irányítsuk úgy, hogy annak irányából nézve a Γ-n kijelölt haladási irány pozitív (az óramutató járásával ellenkező) legyen. \mathcal{F}_1 -nek Γ által határolt darabját \mathcal{F} -fel jelöljük. Legyen továbbá a $\mathbf{V} \in \mathbb{R}^3 \to \mathbb{R}^3$ vektormező folytonosan deriválható az $\mathcal{F} \cup \Gamma$ halmazon. Ekkor **V**-nek Γ-ra vonatkozó vonalintegrálja egyenlő **V** rotációjának \mathcal{F} -re vett felületi integráljával:

$$\int_{\Gamma} \mathbf{V}(\mathbf{r}) d\mathbf{r} = \iint_{\mathcal{F}} \operatorname{rot} \mathbf{V}(\mathbf{r}) d\sigma.$$

T3. "Szimmetrikus Green-tétel". Legyen $\Omega \subset \mathbb{R}^3$ egy olyan korlátos, mérhető térfogatú tartomány, amelynek $\partial\Omega$ határa egyszerű zárt, reguláris felület kifelé irányított normálvektorral. Legyenek továbbá az $U_1, U_2 \in \mathbb{R}^3 \to \mathbb{R}$ skalármezők az $\Omega \cup \partial\Omega$ halmazon folytonosan deriválhatók. Ekkor

$$\iint_{\partial\Omega} (U_1 \operatorname{grad} U_2 - U_2 \operatorname{grad} U_1) d\sigma = \iiint_{\Omega} (U_1 \triangle U_2 - U_2 \triangle_1 U_1) d\mathbf{r}.$$

• Feladatok

F14. Legyen a

$$V(\mathbf{r}) := (-x^2 + y + z)\mathbf{i} + (x - y^2 + z)\mathbf{j} + (x + y - z^2)\mathbf{k}$$

vektormező a $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$ feltételekkel megadott kockán értelmezve. Igazolja a Gauss-Osztrogradszkij-tétel helyességét erre az alakzatra úgy, hogy egymástól függetlenül kiszámolja a tétel két oldalán álló integrálokat, belátja ezek egyenlőségét.

- **F15.** Szemléltesse az alábbi feladatokon a Gauss-Osztrogradszkij-tételt úgy, hogy mind a felületi, mind a térfogati integrált kiszámolja:
 - (a) $V(\mathbf{r}) := y\mathbf{i} + z\mathbf{j} + x\mathbf{k};$ a térrész: $x^2 + y^2 + z^2 \le 1, y \ge 0, z \ge 0;$
 - (b) $\mathbf{V}(\mathbf{r}) := (x 2z)\mathbf{i} + (2x + y)\mathbf{j} + (x y + z)\mathbf{k};$ a térrész: $x^2 + y^2 + z^2 < 4.$
- F16. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektormező felületi integrálját az $x^2 + y^2 = 4$, z = -2, z = 3 egyenletekkel megadott körhenger felületére, kifelé mutató normálisok mellett.

F17. Tekintsük a

$$\mathbf{V}(\mathbf{r}) := (-x^2 + y + z)\mathbf{i} + (x - y^2 + z)\mathbf{j} + (x + y - z^2)\mathbf{k}$$
 $((x, y, z) \in \mathbb{R}^3)$

vektormezőt és azt a felületet, amelyet az A(2,0,0), B(0,2,0) és C(0,0,2) csúcspontú háromszöglap és az a két háromszöglap határol, amit az ABC sík az xz és az yz síkból kivág. (Az OAB háromszöglap tehát nem tartozik a felülethez.) Igazolja az alakzatra Stokes tételét.

- **F18.** Szemléltesse az alábbi feladatokon a Stokes-tételt úgy, hogy mind a felületi, mind a vonalintegrált kiszámolja:
 - (a) $\mathbf{V}(\mathbf{r}) := (x+z)\mathbf{i} + (3y-2z)\mathbf{j} + (5x-3y)\mathbf{k};$ a felület: $x^2+y^2=1, z=0$ alapkörű és (0,0,5) csúcspontú kúppalást;
 - (b) $\mathbf{V}(\mathbf{r}) := xz^2\mathbf{i} + zy^2\mathbf{j} + x^2y\mathbf{k}$; a felület a $z = x^2 + y^2$ forgásparaboloid azon része, amelyre $x^2 + y^2 \le 4$.
- F19. Számítsa ki a

$$\mathbf{V}(\mathbf{r}) := x^2 y z \mathbf{i} + x y^2 z \mathbf{j} - 2x y z^2 \mathbf{k} \qquad ((x, y, z) \in \mathbb{R}^3)$$

vektormező felületi integrálját az $x^2+y^2=4,\,z=0,\,z=6$ zárt hengerfelületre, kifele mutató normális mellett.