EE 503: Homework 4

Due: 09/28/2023, Thursday before class

1. Let X_1 and X_2 be two random variables. Find

$$G = E \left[\max (X_1, X_2) \right] + E \left[\min (X_1, X_2) \right]$$

2. A point is uniformly distributed within the disk of radius 1, i.e., its density is

$$f(u,v) = C, \quad 0 \le u^2 + v^2 \le 1$$

Find the probability that its distance from the origin is less than $x, 0 \le x \le 1$.

3. Two continuous random variables X and Y are described by the pdf

$$f_{XY}(x,y) = \begin{cases} k, & \text{if } 0 \le |x| \le |y|, \ 0 \le |y| \le 1\\ 0, & \text{otherwise} \end{cases}$$

where k is a constant.

- a) Find k.
- b) Are X and Y independent?
- c) Are X and Y uncorrelated?

(Reminder: Two random variables X and Y are uncorrelated if E(XY) = E(X)E(Y))

4. Cauchy-Schwartz Inequality: Prove the following inequality:

$$[E(XY)]^2 \le E(X^2)E(Y^2)$$

(Hint: Use the fact that for any real $a, E((X + aY)^2) \ge 0.$)

5. X and Y are two i.i.d Gaussian random variables with mean 0 and variance σ^2 . Find the pdf of

- a) $R = \sqrt{X^2 + Y^2}$
- b) $\theta = \arctan(Y/X)$

Hint: $X = R\cos\theta$, $Y = R\sin\theta$

- 6. Let X_1 , X_2 , X_3 and X_4 be independent continuous random variables with a common density function f and let $p = P(X_1 < X_2 > X_3 < X_4)$
 - a) Argue that the value of p is the same for all continuous density functions f. (Hint: Remember the inverse transformation method of generating random variables)

- b) Find p by integrating the joint density function over the appropriate region.
- c) Find p by using the fact that all 4! possible orderings of X_1, \dots, X_4 are equally likely.
- 7. **Simulation Problem**: Let $x_1, x_2, x_3, \dots, x_n$ be independent random variables having a common distribution X. We can use $\frac{\sum_{i=1}^n x_i}{n}$ as an estimation for the expected value of X. Let $N_0 = 1000$, and S = 1000.
 - a) Use $np.random.pareto(\alpha, n)$ from the Numpy library to create n instances of a Pareto distribution with parameters $\alpha = 2$ and m = 1.
 - b) Choose a value $N_1 > N_0 + 50S$. Vary n from N_0 to N_1 by steps of size S, and estimate the expected value of the Pareto distribution for each n. Plot your estimation for each value of n.
 - c) By observing the plot of part b, find (by trial and error) the value N_1 for which your estimation lies within 2% of the expected value of the Pareto distribution for 50 consecutive steps before N_1 , i.e., your estimation must lie within 2% of the expected value for $n = N_1 50S, N_1 49S, N_1 48S, \dots, N_1$.
 - d) Repeat parts a c for an exponential distribution with parameter $\lambda = 2$. You can use $np.random.exponential(\lambda, n)$ from the Numpy library.
 - e) Compare N_1 derived in part c for the Pareto and exponential distributions. What is your observation?