

Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data

Presented by Yian Wang 10/27

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
- Future work

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
- Future work

IID v.s. Localized training data

- IID assumption
- Biased training data
 - Spam and abuse detection problem
 - Human annotations
 - Sparse
 - Biased (< 1% positive)

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
- Future work

GNN

- Given:
 - A graph $G = \{V, E\}$
 - Feature matrix $X \in \mathbb{R}^{|V| \times F}$
 - Adjacency matrix $A \in \mathbb{R}^{|V| \times |V|}$
- Output:
 - Node representations Z
 - Node labels $\{y_i\}$

• GNN

- A general GNN layer, final representation $Z = H^k$

$$H^k = \sigma(\tilde{A}H^{k-1}\theta^k)$$

For node classification, a cross-entropy loss function is used

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} l(y_i, z_i)$$

Distribution shifts in GNN

$$-P_{train}(X,Y) \neq P_{test}(X,Y)$$

- In a neural network, only care about shift in the last hidden activated layer Z, i.e. $P_{train}(Z,Y) \neq P_{test}(Z,Y)$
- Assume $P_{train}(Y|Z) = P_{test}(Y|Z)$, s.t.

$$P_{train}(Z) \neq P_{test}(Z)$$

- General solutions to distribution shift
 - Importance weighting

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{M} \sum_{i=1}^{M} l(y_i, \widehat{y}_i)$$

$$\rightarrow \hat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{M} \sum_{i=1}^{M} \frac{P_{test}(x_i)}{P_{train}(x_i)} l(y_i, \widehat{y}_i)$$

- Regularizations using discrepancy measures
 - Maximum mean discrepancy (MMD)

$$MMD = || E_p \phi(X) - E_q \phi(Y) ||_{H_k}^2, k(X,Y) = \langle \phi(X), \phi(Y) \rangle$$

Central moment discrepancy (CMD)

$$CMD = \frac{1}{|b - a|} \| E(p) - E(q) \|_{2} + \sum_{k=2}^{\infty} \frac{1}{|b - a|^{k}} \| c_{k}(p) - c_{k}(q) \|_{2}$$

Effect of distribution shifts

The effect of distribution shift on different datasets.

Y-axis: F1 score

X-axis: CMD

- Motivation
- Preliminaries
- Shift-Robust GNN
 - Standard GNN models
 - Linearized GNN models
- Experiments
- Future work

Standard & Linearized GNN

Traditional GNN

Linearized GNN

Standard GNN

$$\Phi = F(\Theta, A)$$

• Sample an IID data of the same size of training data and minimize the distribution between Z_{train} and Z_{IID}

$$\begin{split} &-\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} l(y_i, z_i) + \lambda d(Z_{train}, Z_{IID}) \\ &- d = \frac{1}{|b-a|} \parallel E(Z_{train}) - E(Z_{IID}) \parallel_2 + \sum_{k=2}^{\infty} \frac{1}{|b-a|^k} \parallel c_k(Z_{train}) - c_k(Z_{IID}) \parallel_2 \end{split}$$

Linearized GNN

$$\Phi = F_2(F_1(A), \Theta, X)$$

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} \beta_i l(y_i, \Phi(h_i))$$

$$SGC: F_1(A) = A^k X$$

$$APPNP: F_1(A) = \alpha \left(I - (1 - \alpha)\tilde{A} \right)^{-1}$$

$$H^0 = Z^0 = f_\theta(X)$$

$$H^{k+1} = (1 - \alpha)\tilde{A}H^k + \alpha H^0$$

$$H^k = softmax((1 - \alpha)\tilde{A}H^k + \alpha H^0)$$

Linearized GNN

 Use importance sampling and calculate the instance weight via kernel mean matching (KMM):

$$\min_{\beta_i} \| \frac{1}{M} \sum_{i=1}^{M} \beta_i \psi(h_i) - \frac{1}{M'} \sum_{i=1}^{M'} \psi(h_i') \|^2 \ s.t. B_l \le \beta \le B_u$$

 $\{h_i\}_{i=1}^M$: Biased training sample

 $\{h'_i\}_{i=1}^M$: IID sample

 $\psi \colon \mathbb{R}^n \to \mathcal{H}$: Feature map to the reproducing kernel Hilbert space

Shift Robust GNN Framework

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} \beta_i l(y_i, \Phi(h_i)) + \lambda d(Z_{train}, Z_{IID})$$

• Where for Φ , choose APPNP as a concrete instance.

$$\Phi_{APPNP} = ((1 - \alpha)^k \tilde{A}^k + \alpha \sum_{i=0}^{k-1} (1 - \alpha)^i \tilde{A}^i) F(\Theta, X)$$

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
 - main result
 - Parameter sensitivity
- Future work

- Biased Training Set Creation
 - Need an efficient method for finding 'nearby' nodes in the graph for a particular seed node.

Algorithm 1: Biased Training Set Creation PPR-S(γ, ϵ, α)

```
Given a class c, label ratio \tau, graph size N;

Initialize the biased training set X = \{\};

while len(X) < N \cdot \tau do

Sample node i of class c, compute its top-\gamma entries in \pi_i^{\text{ppr}}(\epsilon) via [2];

if \pi_i^{ppr}(\epsilon) has \gamma non-zero entries then

|X.\text{add}(\pi_i^{\text{ppr}}(\epsilon))|;

end

8 end
```


Figure 5: A biased sample on Cora dataset for one class, <u>orange</u> indicates the training data, <u>red</u> indicates the initial seed used in our PPR-S sampler. The PPR-score is presented in figure (c).

Datasets

Table 5: Overall Dataset Statistics

Dataset	# Nodes	# Edges	# Features	# Classes
Cora	2,708	5,278	1,433	7
Citeseer	3,327	4,614	3,703	6
PubMed	19,717	44,325	500	3
ogb-arxiv	169,343	1,166,243	128	40
Reddit	232,965	114,615,892	602	41

Experimental results on small benchmarks

Table 1: Semi-supervised classification on three different citation networks using biased training samples. Our proposed framework (SR-GNN) outperforms all baselines on biased training input.

Method	 Micro-F1↑	Cora Macro-F1↑	ΔF1↓	Micro-F1↑	Citeseer Macro-F1↑	ΔF1↓	Micro-F1↑	PubMed Macro-F1↑	ΔF1↓
GCN (IID)	80.8 ± 1.6	80.1 ± 1.3	0	70.3 ± 1.9	66.8 ± 1.3	0	79.8 ± 1.4	78.8 ± 1.4	0
Feat.+MLP Emb.+MLP DGI GCN	49.7 ± 2.5 57.6 ± 3.0 71.7 ± 4.2 67.6 ± 3.5	$ \begin{vmatrix} 48.3 \pm 2.2 \\ 56.2 \pm 3.0 \\ 69.2 \pm 3.7 \\ 66.4 \pm 3.0 \end{vmatrix} $	31.1 23.2 9.1 13.2			25.2 31.8 7.6 7.6	51.3 ± 2.8 60.4 ± 2.1 58.0 ± 5.3 60.6 ± 3.8	$\begin{array}{c} 41.8 \pm 6.2 \\ 56.6 \pm 2.0 \\ 52.4 \pm 8.3 \\ \hline 56.0 \pm 6.0 \end{array}$	28.5 19.4 21.8 19.2
GAT SGC APPNP	58.4 ± 5.7 70.2 ± 3.0 71.3 ± 4.1	58.5 ± 5.0 68.0 ± 3.8 69.2 ± 3.4	22.4 10.6 9.5	58.0 ± 3.5 65.4 ± 0.8 63.4 ± 1.8	55.0 ± 2.7 62.5 ± 0.8 61.2 ± 1.6	12.3 4.9 6.9	55.2 ± 3.7 61.8 ± 4.5 63.4 ± 4.2	46.0 ± 6.4 57.4 ± 7.2 58.7 ± 7.0	14.6 18.0 16.4
SR-GNN w.o. IR SR-GNN w.o. Reg. SR-GNN (Ours)	72.1 ± 4.4 72.0 ± 3.2 73.5 ± 3.3	$ \begin{vmatrix} 69.8 \pm 3.7 \\ 69.5 \pm 3.7 \\ \textbf{71.4} \pm \textbf{3.5} \end{vmatrix} $	8.7 8.8 7.3	$ \begin{vmatrix} 63.9 \pm 0.7 \\ 66.1 \pm 0.9 \\ 67.1 \pm 0.9 \end{vmatrix} $	$ \begin{vmatrix} 61.8 \pm 0.6 \\ 63.4 \pm 0.9 \\ 64.0 \pm 0.9 \end{vmatrix} $	6.4 4.2 3.2		67.6 ± 4.0 64.0 ± 5.5 70.2 ± 2.4	10.4 13.4 8.5

Experimental results on large benchmarks

Table 2: Semi-supervised classification on ogb-arxiv and reddit varying label ratio.

	ogb-arxiv				reddit				
label(%)	1 %		5 %		1 %		5 %		
Method	Accuracy	$\mid \Delta \downarrow$	Accuracy	$\mid \Delta \downarrow$	Accuracy	$\mid \Delta \downarrow$	Accuracy	$\mid \Delta \downarrow$	
GCN (IID)	$ 66.0 \pm 0.6 $	0	69.1± 0.6	0	93.8 ± 0.3	0	94.0 ± 0.1	0	
Feat.+MLP	45.5± 0.6	21.5	43.7± 0.3	25.4	46.6±0.6	47.2	57.2±0.2	36.8	
Emb.+MLP	51.1 ± 1.3	14.9	56.9 ± 0.8	13.2	89.6 ± 0.8	4.2	90.9 ± 0.3	3.1	
DGI	44.8 ± 3.0	21.2	49.7 ± 3.3	19.4	83.7±1.2	10.1	85.4±0.6	8.6	
GCN	59.3 ± 1.2	6.7	65.3 ± 0.6	3.8	89.7±1.0	4.1	90.9 ± 0.3	3.1	
GAT	58.6 ± 1.0	7.4	63.4 ± 1.0	5.7	80.5±5.4	13.3	82.0±3.6	12.0	
SGC	59.0 ± 0.7	7.0	64.2 ± 1.3	4.9	88.6±1.0	5.2	90.6±0.2	3.4	
APPNP	59.8 ± 1.1	6.2	65.1 ± 2.6	4.0	88.4±1.0	5.4	88.9±0.8	5.1	
SR-GNN w.o. IR	60.6 ± 0.2	5.4	65.1±1.8	4.0	90.4 ± 0.6	3.4	91.2± 0.2	2.8	
SR-GNN w.o. Reg.	61.0 ± 0.3	5.0	$65.8{\pm}2.0$	3.3	89.4 ± 0.8	4.4	91.9 ± 0.1	2.1	
SR-GNN (Ours)	61.6±0.6	4.4	66.5±0.6	2.6	91.5± 0.5	2.3	92.1± 0.3	1.9	

 Comparison with other domain invariant learning methods (DANN)

 Comparison with other domain invariant learning methods (DANN)

Table 4: Comparison of Domain-Adversarial Neural Network (DANN) and CMD regularizer used in SR-GNN with biased training data.

	Co	ora	Cite	eseer	PubMed		
Method	Micro-F1↑	Macro-F1↑	Micro-F1↑	Macro-F1↑	Micro-F1↑	Macro-F1↑	
GCN	68.3	67.2	62.4	60.2	59.2	53.8	
DANN	69.8	68.5	63.8	61.0	64.8	61.8	
CMD (Ours)	71.0	69.4	65.0	62.3	67.5	66.2	
APPNP	71.3	69.2	63.9	61.6	64.8	60.4	
DANN	71.6	69.5	64.3	61.8	67.8	65.4	
CMD (Ours)	72.4	70.1	65.0	62.4	70.4	68.7	

 Comparison with other domain invariant learning methods (DANN)

Table 3: Comparison of baseline and our SR(Shift-Robust) version ($\Delta(\%)$ -relative loss with biased sample).

	Cora			Citeseer			PubMed		
Method	Micro-F1↑	Macro-F1↑	$\Delta(\%)$	Micro-F1↑	Macro-F1↑	$\mid \Delta(\%)$	Micro-F1↑	Macro-F1↑	$\mid \Delta(\%)$
GCN (IID)	80.8	80.1	0%	70.3	66.8	0%	79.8	78.8	0%
GCN	67.6	66.4	-12%	62.7	60.4	-8%	60.6	56.0	-19%
SR-GCN	69.6	68.2	-10%	64.7	62.0	-6%	67.0	65.2	-13%
DGI (IID)	80.6	79.3	0%	70.8	66.7	0%	77.6	77.0	0%
DGI	71.7	69.2	-9%	62.6	60.0	-8%	58.0	52.4	-20%
SR-DGI	74.3	72.6	-6%	65.8	62.6	-6%	62.0	57.8	-16%

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
 - main result
 - Parameter sensitivity
- Future work

• Performance with different α in PPR-S

Figure 3: Varying α of biased sampler on three benchmarks.

• Performance with different B_l , λ in SR-GNN

(a) Varying λ, k in regularization

(b) Varying B_l in instance weighting

Figure 4: Parameter sensitivity of SR-GNN.

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} \beta_i l(y_i, \Phi(h_i)) + \lambda d(Z_{train}, Z_{IID})$$

- Motivation
- Preliminaries
- Shift-Robust GNN
- Experiments
- Future work

Future works

- Develop Shift-Robust GNNs on specific domains
 - Maximize the performance when dealing with specific shift in spam and abuse detection
- Theoretical guarantee towards shift-robust requirement
 - Generalization error in terms of distributional shift
 - Fairness of training data

$$P_{train}(X,Y,A) \neq P_{test}(X,Y,A)$$

$$\rightarrow P_{train}(X,A) \neq P_{test}(X,A)$$

References

- [1] Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., & Song, L. (2018, October). Heterogeneous graph neural networks for malicious account detection. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management* (pp. 2077-2085).
- [2] Halcrow, J., Mosoi, A., Ruth, S., & Perozzi, B. (2020, August). Grale: Designing networks for graph learning. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (pp. 2523-2532).
- [3] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*.
- [4] Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (Eds.). (2008). *Dataset shift in machine learning*. Mit Press.
- [5] Sugiyama, M., Krauledat, M., & Müller, K. R. (2007). Covariate shift adaptation by importance weighted cross validation. *Journal of Machine Learning Research*, 8(5).
- [6] Long, M., Cao, Y., Wang, J., & Jordan, M. (2015, June). Learning transferable features with deep adaptation networks. In *International conference on machine learning* (pp. 97-105). PMLR.

References

- [7] Zellinger, W., Moser, B. A., Grubinger, T., Lughofer, E., Natschläger, T., & Saminger-Platz, S. (2019). Robust unsupervised domain adaptation for neural networks via moment alignment. *Information Sciences*, 483, 174-191.
- [8] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph convolutional networks. In *International conference on machine learning* (pp. 6861-6871). PMLR.
- [9] Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: Graph neural networks meet personalized pagerank. *arXiv preprint arXiv:1810.05997*.
- [10] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., & Schölkopf, B. (2009). Covariate shift by kernel mean matching. *Dataset shift in machine learning*, *3*(4), 5.
- [11] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016). Domain-adversarial training of neural networks. *The journal of machine learning research*, 17(1), 2096-2030.
- [12] Andersen, R., Chung, F., & Lang, K. (2006, October). Local graph partitioning using pagerank vectors. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06) (pp. 475-486). IEEE.

Thank you for listening! Q&A

Presented by Yian Wang 10/27

