### ECE4144: Intro to Embedded Systems

NYU TANDON SCHOOL OF ENGINEERING Spring 2025

### EE4144: Intro to Embedded Systems

- Instructor:
  - Professor Matthew Campisi
    - Office: 370 Jay, 8<sup>th</sup> floor
    - Email: mcampisi@nyu.edu
  - Teaching Assistant:
    - TBD

# Logistics

- Class Meeting Times and Locations:
  - T/Th 10:00PM 11:20PM (2MTC, RM:801)
- Textbook No required Text, but lots of reference materials
  - Quizzes:
    - 2 In Class Quizzes
  - Embedded Challenge Spring 2025
    - TBD

## Some Policies

- Grading Policy
  - 2 Quizzes 40% (20% each)
  - Homework/Labs 20%
  - Embedded Challenge S2025 40%

## EMBEDDED SYSTEMS



#### 7

## EMBEDDED SYSTEMS







## What are Embedded Systems?

- Anything that uses a microprocessor but isn't a general-purpose computer
  - Smartphones
  - Set-top boxes
  - Televisions
  - Video Games
  - Refrigerators
  - Cars
  - Planes
  - Elevators
  - Remote Controls
  - Alarm Systems
- The user "sees" a smart (special-purpose) system as opposed to the computer inside the systems
  - "how does it do that?"
  - "it has a computer inside of it"
  - "oh, BTW, it does not or cannot run Windows or MacOS"
- The end-user typically does not or cannot modify or upgrade the internals

### What about this course?

#### Hardware

 I/O, peripherals: sensors/actuators, memory, busses, devices, control logic, interfacing hardware to software

#### Software

- Lots of C and assembly, device drivers, low-level real-time issues, scheduling
- Interrupts

#### Software/Hardware interactions

- Where is the best place to put functionality hardware or software?
- What are the costs:
  - Performance
  - Memory requirements (RAM and/or FLASH ROM)

#### Integration of hardware and software

- Programming, logic design, architecture
- Algorithms, mathematics and common sense

#### Careers in Embedded?

- Automotive systems
  - Perhaps designing and developing "drive-by-wire" systems
  - Self-driving vehicles
- Telecommunications
- Medical Devices
- Consumer electronics
  - Cellular phones, MP3 devices, integrated cellular/tablet
  - Set-top box and HDTV
  - Home and Internet appliances/ IOT
    - Your refrigerator will be on the internet more than you are!
- Defense and weapons systems
- Process control
  - Gasoline processing, chemical refinement
- Automated manufacturing
  - Supervisory Control and Data Acquisition (SCADA)
- Space communications
  - Satellite communications

#### Goals of the Course

- High-level Goals
  - Understand the scientific principles and concepts behind embedded systems
  - Obtain hands-on experience in programming embedded systems

#### By the end of the course, you should be able to

- Understand the "big ideas" in embedded systems
- Obtain direct hands-on experience on both hardware and software elements commonly used in embedded systems design
- Understand the basics of embedded system application concepts such as signal processing and feedback control
- Understand and be able to discuss and communicate intelligently about:
  - Embedded processor architecture and programming

### The Big Ideas

- HW/SW Boundary
- Non processor centric view of architecture
- Bowels of the operating software
  - Specifically, basic real-time operation with interrupts
  - Concurrency
- Real-world design
  - Performance vs. cost tradeoffs
- Analyzability
  - How do you "know" that your drive-by-wire system will function correctly?
- Application-level techniques
  - Signal processing, control theory

#### What is an Embedded system?

- An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints. It is embedded part of a complete device often including hardware and mechanical parts. Embedded systems control many devices in common use today.
- Typically dedicated software (may be user customizable)
  - Often replaces previously electromechanical components
  - Often no "real" keyboard
  - Often limited display or no general purpose display device

However, every system is unique – there are always exceptions











### CPU: An All-Too-Common View of Computing

- Measured by:
  - Performance

CPU

### An Advanced Computer Engineer's View

- Measured by: Performance
  - Compilers matter too...



### An Enlightened Computer Engineer's View

- Measured by: Performance, Cost
  - Compilers & OS matters



### An Embedded Computer Designer's View

 Measured by: Cost, I/O connections, Memory Size, Performance



### An Embedded Control System Designer's View

Measured by: Cost, Time to Market, Cost, Functionality, Cost
& Cost



#### A Customer's View

- Reduced Cost
- Increased Functionality
- Improved Performance
- Increased Overall Dependability





## Why are Embedded Systems Different?

#### Four General Categories of Embedded Systems

#### 1. General Computing

- Applications similar to desktop computing, but in an embedded package
- Video games, set-top boxes, wearable computers, automatic tellers
- Tablets, Phablets



#### 2. Control Systems

- Closed loop feedback control of real-time system
- Vehicle engines, chemical processes, nuclear power, flight control

#### 3. Signal Processing

- Computations involving large data streams
- Radar, Sonar, Video compression

#### 4. Communication & Networking

- Switching and information transmission
- Telephone system, Internet
- Wireless everything



## Typical Embedded System Constraints

- Small Size, Low Weight
  - Handheld electronics
  - Transportation applications weight costs money



- Battery power for 8+ hours (laptops often last only 2 hours)
- Limited cooling may limit power even if AC power available



- Heat, vibration, shock
- Power fluctuations, RF interference, lightning
- Water, corrosion, physical abuse
- Safety critical operation
  - Must function correctly
  - Must not function incorrectly
- Extreme cost sensitivity
  - \$0.05 adds up over 1,000,000 units







### Embedded System Design World-View

#### A complex set of tradeoffs:

- Optimize for more than just speed
- Consider more than just the computer
- Take into account more than just initial product design

#### **Multi-Discipline** Multi-Phase **Multi-Objective Electronic Hardware** Requirements Dependability Software Design Affordability Mechanical Hardware Manufacturing Safety **Control Algorithms** Deployment Security **Humans** Logistics Scalability Society/Institutions Retirement **Timeliness**

## Embedded System Designer Skill Set

- Appreciation for multidisciplinary nature of design
  - Both hardware & software skills
  - Understanding of engineering beyond digital logic
  - Ability to take project from specification through production
- Communication and Teamwork skills
  - Work with other disciplines, manufacturing, marketing
  - Work with customers to understand the real problem being solved
  - Make a good presentation; even better write "trade rag" articles
- And, by the way, technical skills too.....
  - Low-level: Microcontrollers, FPGA/ASIC, assembly language, A/D, D/A
  - High-Level: Object oriented design, C/C++, Real Time Operating Systems
  - Meta-level: Creative solutions to highly constrained problems
  - Likely in the future: Unified Modeling Language, embedded networks