Protein Structure Prediction with Language Models

Shentong Mo

Dec 1, 2022

Recap AlphaFold2

- Multiple Sequence Alignment (MSA) + Templates of Similar Protein Structures
- Evoformer
- Structure Module

Follow-up Papers

- ESMFold (Meta AI)
 - Lin et al, Language models of protein sequences at the scale of evolution enable accurate structure prediction
- Omega-Fold
- Helix-Fold

Presentation Line

- What they claim
- Model structure
- Training data
- Downstream performance
- Training/Inference time
- Ablation study
- Experimental takeaways

What they claim

- introduce ESM-2, in variants up to 15 billion parameters, the largest language model of protein sequences to date
- introduce ESMFold, which uses the information and representations learned by ESM-2 to perform end-to-end 3D structure prediction
- find that as the size of the language model increases, we also observe consistent improvements in structure prediction accuracy

Model Structure

- ESM-2 (Replace MSA and templates in AlphaFold2)
- Folding Block (Change evoformer block in AlphaFold2)
- Structure Module

ESM-2

- Architecture: BERT-style encoder with transformers
- Modifications:
 - number of layers
 - number of attention heads
 - hidden size
 - feed-forward hidden size
 - sinusoidal positional encoding > learnable positional embedding
 - RoPE: rotary positional embedding (good for small models, bad for large models)
- Training Objective: unsupervised contact prediction with logistic regression

Unsupervised Contact Prediction

- Let c_{ij} be a boolean random variable which is true if amino acids i, j are in contact
- Suppose our transformer has L layers and K attention heads per layer.
- Let A_{kl} be the symmetrized and Average Product Correction (APC)-corrected attention map for the k-th attention head in the l-th layer of the transformer,
- and α_{ij}^{kl} be the value of that attention map at position i, j.

$$p(c_{ij}) = (1 + \exp(-\beta_0 - \sum_{l=1}^{L} \sum_{k=1}^{K} \beta_{kl} \alpha^{kl}_{ij}))^{-1}$$

TI . A C. ' 'I'. I ' IA I' II ' .' ' ' ' ' I A A A

Perplexity Estimation

- To measure a language model' s uncertainty of a sequence and defined as the exponential of the negative log-likelihood of the sequence
- the perplexity over a large dataset (non-deterministic)

$$Perplexity(x) = \exp \left\{ -\log p(x_{i \in M} | x_{j \notin M} \cup \hat{x}_{i \in M}) \right\}$$

where the mask M be a random variable denoting a set of tokens from input sequence x

the pseudo-perplexity over a single sequence (deterministic)

PseudoPerplexity(x) =
$$\exp\left\{-\frac{1}{L}\sum_{i=1}^{L}\log p(x_i|x_{j\neq i})\right\}$$

where *L* is the length of the sequence

ESM-2 Parameters

	8M	35M	150M	650M	3B	15B
Dataset	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D	UR50/D
Number of layers	6	12	30	33	36	48
Embedding dim	320	480	640	1280	2560	5120
Attention heads	20	20	20	20	40	40
Training steps	500K	500K	500K	500K	500K	270K
Learning rate	4e-4	4e-4	4e-4	4e-4	4e-4	1.6e-4
Weight decay	0.01	0.01	0.01	0.01	0.01	0.1
Clip norm	0	0	0	0	1.0	1.0
Distributed backend	DDP	DDP	DDP	DDP	FSDP	FSDP

Table S1: ESM-2 model parameters at different scales

Training data

- Data source: UniRef50 & UniRef90 (60M protein sequences for training, 250K for validation)
 - MMseqs search to remove all train sequences matching a validation sequence with 50% identity.

Filtering de-novo designed proteins:

- remove any sequence in UniRef50 and UniRef90 that was annotated as "artificial sequence" by a taxonomy search on the UniProt website
- use jackhmmer to remove all hits around a manually curated set of 81 de-novo proteins

Amount and diversity:

- sampled a minibatch of UniRef50 sequences for each training update
- replaced each sequence with a sequence sampled uniformly from the corresponding UniRef90 cluster

Training details

- Effective batch size: 3.2M tokens for 15B model and 2M tokens for else
- BOS and EOS tokens: to signal the beginning and end of a real protein
- Cropping: cropped long proteins to random 1024 tokens
- DDP for models up to 650M parameters, and FSDP for the 2.8B and 15B parameter models

Folding Block vs Evoformer Block

Two main changes

- use **standard attention** over this feature space, as the language model features are one dimensional
 - Evoformer block: employs axial attention over the columns and rows of the MSA, as MSAs are two-dimensional.
- input the attention maps from the language model for structure information
 - Evoformer block: pass template information to the model as pairwise distances, input to the residue-pairwise embedding

Folding Block Algorithm


```
Algorithm 1:
                                                      Folding Block
FoldingBlock(s, z)
b = Linear(z)
s = s + MultiHeadSelfAttention(s, bias=b)
 = s + MLP(s)
  = z + Linear(Concat([OuterProduct(s), OuterDifference(s)]))
  = z + TriangularMultiplicativeUpdateOutgoing(z)
  = z + TriangularMultiplicativeUpdateIncoming(z)
  = z + TriangularSelfAttentionOutgoing(z)
  = z + TriangularSelfAttentionIncoming(z)
z = z = MLP(z)
return s, z
```

ESMFold Algorithm

```
Algorithm 2:
esm c s: number of channels in ESM hidden representation
c s = 1024
c z = 128
ESMFold(sequence)
s = ESM hiddens(sequence) # num layers x Length x esm c s
s = (softmax(layer weights) * s).sum(0)
s = MLP(s)
z = PairwiseRelativePositionalEncoding(Length)
for b in folding blocks:
    s, z = b(s, z)
return StructureModule(s, z)
```

ESMFold output

- The IDDT head is output from the hidden representation of the StructureModule.
- The TM head uses the pairwise representation z.
- The distogram is predicted from the pairwise representation z.

ESMFold training loss

AlphaFold2:

$$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} & training \\ 0.5\mathcal{L}_{FAPE} + 0.5\mathcal{L}_{aux} + 0.3\mathcal{L}_{dist} + 2.0\mathcal{L}_{msa} + 0.01\mathcal{L}_{conf} + 0.01\mathcal{L}_{exp \, resolved} + 1.0\mathcal{L}_{viol} & fine-tuning \end{cases},$$

• ESMFold:

$$\mathcal{L} = \mathcal{L}_{FAPE} + \mathcal{L}_{dist}$$

Training structure data

Real Structure:

- all PDB chains until 2020-05-01 with resolution greater than or equal to 9Å and length greater than 20
- cluster resulting in sequences at 40% sequence identity

• Sampling:

- sampling cluster evenly
- Rejection sampling to train longer proteins more frequently

Predicted Structure:

- 13,477,259 structures predicted using AlphaFold2 on MSAs (predicted IDDT greater than 70)
- 75% predicted structures and 25% real structures during training

Validation & Test structure data

- Validation
 - Continuous Automated Model EvaluatiOn (CAMEO) (August 2021 to January 2022)
- Test:
 - CAMEO (194 test proteins from April 01, 2022 through June 25, 2022)
 - CASP14 competition (51 targets)
 - No filtering is performed on these test sets, even included length-2166 target T1044.

Metrics

- Validation Perplexity: exponential of the negative log-likelihood over the validation set or a single sequence (lower is better)
- **P@L**: long-range precision @ L for unsupervised contact prediction performance (higher is better)
- **RMSD**: Root Mean Square Deviation (smaller is better)
- TM-score: Template Modeling score (higher is better)
- **pLDDT**: Model confidence prediction (higher is better)

Scaling up to 15B parameters

- Larger models perform better at all levels
- 150M parameter ESM-2 model performs comparably with the 650M parameter ESM-1b model.
- The largest improvement is seen for sequences with O(10⁴) MMseqs hits

Scaling up to 15B parameters (cont.)

D: Left-to-right shows models from 8M to 15B parameters, consecutively comparing the smaller model (x-axis) against the next larger model (y-axis) in terms of unsupervised contact precision.

 Sequences with large changes in contact prediction performance exhibit large changes in language model understanding measured by pseudo-perplexity.

TM-score on combined CASP14 and CAMEO test sets

structure predictions on CAMEO structure 7QQA and CASP target 1056

More comparisons

Model	# Params	Validation Perplexity	LR P@L	CASP14	CAMEO
ESM-2	8M	10.33	0.17	0.37	0.48
	35M	8.95	0.30	0.41	0.56
	150M	7.75	0.44	0.49	0.65
	650M	6.95	0.52	0.51	0.70
	3B	6.49	0.54	0.52	0.72
	15B	6.37	0.54	0.55	0.72
ESM-1b ¹	650M	_	0.41	0.42	0.64
Prot-T5-XL-UR50 (19)	3B	_	0.48	0.50	0.69
Prot-T5-XL-BFD (19)	3B	_	0.36	0.46	0.63
CARP (44)	640M	_	_	0.42	0.59

Comparison with AlphaFold2

Structure prediction comparison

CASP14 T1076 (6XN8) TM-score ESMFold: 0.98 TM-score Alphafold: 0.99

CASP14 T1057 (7M6B) TM-score ESMFold: 0.98 TM-score Alphafold: 0.97

Imine Reductase (7A3W) TM-score ESMFold: 0.956

L-asparaginase (6QQ8) TM-score ESMFold: 0.985

Ablation Study on ESM-2

	LR P@L	LR P@L/5	Validation Perplexity
Baseline	0.381	0.626	8.42
No RoPE	0.365	0.599	8.62
Older UniRef Data	0.368	0.599	7.98
No UR90 Sampling	0.387	0.631	8.40

Ablation Studies on ESMFold

Inference Time

