Universidade Lista I de Exercícios - Atividade Remota Estadual de Londrina Curso: Estatística Matemática I — PGMAC – 07/05/2020

ALUNO(a): ______Turma: 1000

- 1) Sejam A, B e C conjuntos não-vazios. Mostre que
 - (a) $(A \cup B)^c = A^c \cap B^c$
 - (b) $(A \cap B)^c = A^c \cup B^c$

(c)
$$\left(\bigcup_{k=1}^{\infty} B_k\right)^c = \bigcap_{k=1}^{\infty} B_k^c$$

(d)
$$\left(\bigcap_{k=1}^{\infty} B_k\right)^c = \bigcup_{k=1}^{\infty} B_k^c$$

- 2) Para $\Omega = [0,1] \cap \mathbb{R}$ e \mathcal{F}_1 e \mathcal{F}_2 duas sigma-álgebras em Ω . Prove que $\mathcal{F} = \{A : A \in \mathcal{F}_1 \cap \mathcal{F}_2\}$ é uma sigma-álgebra.
- 3) Se P_1 e P_2 são medidas de probabilidade em (Ω, \mathcal{F}) e $0 \le \alpha \le 1$, mostre que $\alpha P_1 + (1 \alpha)P_2$ é uma medida de probabilidade em (Ω, \mathcal{F}) .
- 4) Mostre que:
 - (a) $P(A \cup B) \leq P(A) + P(B)$ para quaisquer A, B $\in \mathcal{F}$.
 - (b) $P(A \cap B) \ge P(A) + P(B) 1$.
- 5) Seja (Ω, \mathcal{F}, P) um espaço de probabilidade e sejam A, B $\in \mathcal{F}$. A probabilidade condicional de A dado B é definida por:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0.$$

Mostre que para todo $B \in \mathcal{F}$, não-vazio, o trio $(\Omega, \mathcal{F}, P(\cdot|B))$ define um espaço de probabilidade.

6) Teorema da Probabilidade Total: Seja (Ω, \mathcal{F}, P) um espaço de probabilidade, e seja A_1, A_2, \ldots uma partição de Ω tal que cada elemento da partição é um evento aleatório com probabilidade estritamente positiva. Mostre que para qualquer evento $B \in \mathcal{F}$,

$$P(B) = \sum_{n=1}^{\infty} P(B|A_n) P(A_n).$$

7) **Teorema de Bayes**: Seja (Ω, \mathcal{F}, P) um espaço de probabilidade, e seja A_1, A_2, \ldots uma partição de Ω tal que cada elemento da partição é um evento aleatório com probabilidade estritamente positiva. Mostre que para qualquer evento B tal que P(B) > 0, e para qualquer $m \ge 1$, fixo,

$$P(A_m|B) = \frac{P(B|A_m) P(A_m)}{\sum_{n=1}^{\infty} P(B|A_n) P(A_n)}.$$