Color in Scientific Visualization

"The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so difficult and subtle that avoiding catastrophe becomes the first principle in bringing color to information.

Above all, do no harm."

-- Edward Tufte

What's Wrong with this Color Scale?

Source:
Scientific American,
June 2000

niversity aphics

Not a bad choice of color scale, but the Dynamic Range needs some work

Let's start with the most important component in a visualization system – You!

How Many Shades of Different Colors
Are We Able to Detect?

Sensors in Your Retina

Rods

- ~115,000,000
- Concentrated on the periphery of the retina
- Sensitive to intensity
- Most sensitive at 500 nm (~green)

Cones

- ~7,000,000
- Concentrated near the center of the retina
- Sensitive to color
- Three types of cones: long(~red), medium (~green), and short (~blue) wavelengths

Sidebar: How Many Pixels Do You Need?

A person with 20/20 vision has a visual acuity of: 1 arc-minute = 1/60°

Monitors: Additive Colors

Additive Color (RGB)

OpenGL: ______ glColor3f(r, g, b);

 $0. \le r, g, b \le 1.$

Plasma Displays use Additive Color

Gas cell

Phosphor

· Grid of electrodes

http://electronics.howstuffworks.com

LCD Displays use Additive Color

Digital Film Recorders also use Additive Color

Hue-Saturation-Value: For many vis applications, a simpler way to specify additive color

Hue-Saturation-Value: For many vis applications, a simpler way to specify additive color

Notice that blue-green-red in HSV space corresponds to the visible portion of the electromagnetic spectrum

Blue: 380 nm Green: 520 nm Red: 780 nm

Turning a scalar value into a hue when using the Rainbow Color Scale

Hue-Saturation-Value: The ColorPicker Program

The OpenDX Visualization Software Allows you to Sculpt the Transfer Function in HSV

Subtractive Colors (CMYK)

Subtractive Color (CMYK)

Color Printing

- Uses subtractive colors
- Uses 3 (CMY) or 4 (CMYK) passes
- CMYK printers usually have a better-looking black
- There is a considerable variation in color gamut between products

How Do Color Separations Work in Color Printing?

Source: R. Daniel Overheim and David Wagner, *Light and Color*, John Wiley & Sons, 1982.

Getting the CMYK Colors

Wax

Toner

Toner

Sheets

Oregon State University Computer Graphics

CIE Chromaticity Diagram

CIE Chromaticity Diagram

Color Gamut for a Workstation Monitor

Color Gamut for a Monitor and Color Slides

Color Gamut for a Monitor and Color Printer

The Perceptually Uniform L-a-b Color Space

Color Meters Are Able to Measure L-a-b Coordinates

Some Good Rules of Thumb When Using Color for Scientific Visualization

What Makes a Good Contrast?

- Many people think simply adding color onto another color makes a good contrast
- In fact, a better measure is the Δ Luminance
- Using this also helps if someone makes a grayscale photocopy of your color hardcopy

Color Alone Doesn't Cut It!

I sure hope that my life does not depend on being able to read this quickly and accurately!

Luminance Contrast is Crucial!

I would prefer that my life depend on being able to read this quickly and accurately!

The Luminance Equation

$$Y = .30*Red + .59*Green + .11*Blue$$

Luminance Table

	R	G	В	Y
Black	0.0	0.0	0.0	0.00
White	1.0	1.0	1.0	1.00
Red	1.0	0.0	0.0	0.30
Green	0.0	1.0	0.0	0.59
Blue	0.0	0.0	1.0	0.11
Cyan	0.0	1.0	1.0	0.70
Magenta	1.0	0.0	1.0	0.41
Orange	1.0	0.5	0.0	0.60
Yellow	1.0	1.0	0.0	0.89

≈ Contrast Table

(I Use a ΔL^* of about 0.40)

	Black	White	Red	Green	Blue	Cyan	Magenta	Orange	Yellow
Black	0.00	1.00	0.30	0.59	0.11	0.70	0.41	0.60	0.89
White	1.00	0.00	0.70	0.41	0.89	0.30	0.59	0.41	0.11
Red	0.30	0.70	0.00	0.29	0.19	0.40	0.11	0.30	0.59
Green	0.59	0.41	0.29	0.00	0.48	0.11	0.18	0.01	0.30
Blue	0.11	0.89	0.19	0.48	0.00	0.59	0.30	0.49	0.78
Cyan	0.70	0.30	0.40	0.11	0.59	0.00	0.29	0.11	0.19
Magenta	0.41	0.59	0.11	0.18	0.30	0.29	0.00	0.19	0.48
Orange	0.60	0.41	0.30	0.01	0.49	0.11	0.19	0.00	0.30
Yellow	0.89	0.11	0.59	0.30	0.78	0.19	0.48	0.30	0.00

White	Black	Black White						
Red	Red		Red	Red	Red	Red	Red	Red
Yellow	Yellow	Yellow		Yellow	Yellow	Yellow	Yellow	Yellow
Green	Green	Green	Green	Green		Green	Green	Green
Blue	Blue	Blue	Blue	Blue	Blue	Blue		Blue

Do Not Attempt to Fight Pre-Established Color Meanings

Pre-Established Color Meanings

Red: **Green: Blue:**

Stop On Cool On

Plants Safe Off Carbon

Deep **Dangerous**

Moving Nitrogen

Hot Money

Oxygen

High stress

Shallow

Money loss

In Visualization, we Use the Concept of a *Transfer Function* to set Color as a Function of Scalar Value

Use the Right Transfer Function Color Scale to Represent a Range of Scalar Values

- Gray scale
- Intensity Interpolation
- Saturation interpolation
- Two-color interpolation
- Rainbow scale
- Heated object interpolation
- Blue-White-Red

Gray Scale

Intensity and Saturation Color Scales

Two-Color Interpolation

Rainbow Color Scale

Heated Object Color Scale

Blue-White-Red Color Scale

Color Scale Contours

A Gallery of Color Scales

Something Different: A Gallery of Add-One-Component-at-a-Time Color Scales

Something Different – The Haxby Color Scale

But, Here's What's Really Important:

Given any 2 colors, make it *intuitively obvious* which represents "higher" and which represents "lower"

What in the World was *The Oregonian* Thinking When They Chose This Color Scale?

Source: *The Oregonian*, January 11, 2006

Shouldn't lush-green colors represent wet and sand-colors represent dry?

Fortunately, They Got Better At It ...

Source:

The Oregonian, October 31, 2006

Oregon State University Computer Graphics

And, one more

iversity phics

Limit the Total Number of Colors if Viewers are to Discern Information Quickly

Instructions:

- 1. Press red to logoff normally
- 2. Press light red to delete all your files, change your password to something random, and logoff

You have 2 seconds • • •

Color Rules

In visualization applications, we must be aware that our perception of color changes with:

- The surrounding color
- How close two objects are
- How long you have been staring at the color
- Sudden changes in the color intensity

The Ability to Discriminate Colors Changes with Surrounding Color: "Simultaneous Contrast"

The Ability to Discriminate Colors Changes with Surrounding Color: "Simultaneous Contrast"

Oregon State University Computer Graphics

Afterimages

Afterimages

Beware of Mach Banding

Oregon State University Computer Graphics

Beware of Mach Banding

Beware of Mach Banding

Oregon State University Computer Graphics

Beware of Mach Banding

Think of the Mach Banding problem as being similar to trying to round second base at a 90° angle.

The Ability to Discriminate Colors Changes with Size of the Colored Area

The Ability to Discriminate Colors Changes with Ambient Light

The Ability to Discriminate Colors Changes with the Age of the Viewer

Be Aware of Color Vision Deficiencies (CVD)

- There is actually no such thing as "color blindness"
- CVD affects ~10% of Caucasian men
- CVD affects ~4% of non-Caucasian men
- CVD affects ~0.5% of women
- The most common type of CVD is red-green
- Blue-yellow also exists

Why are more men affected by CVD than women?

It's because the CVD defect is carried on the X Chromosome

http://www.bio.miami.edu/~cmallery/150/mendel/c7.15.X.Y.jpg

A woman with the defective gene on one X chromosome probably has a dominant non-defective gene on the other. A man with a defect gene on his one X chromosome has no other gene to "fix" it.

Computer Graphics

Be Aware of CVD: Code Information Redundantly

Four score and seven years ago, our forefathers brought forth upon this continent a new nation...

Four score and seven years ago, our forefathers brought forth upon this continent a new nation...

Four score and seven years ago, our forefathers brought forth upon this continent a new nation...

Be Aware of CVD: Code Information Redundantly: Color + ...

- Different fonts
- Symbols
- Fill pattern
- Outline pattern
- Outline thickness

This also helps if someone makes a grayscale photocopy of your color hardcopy

Use a Black or White Line as the Boundary Between Colored Regions

Do Not Display Fast-moving or High-detail Items in Color, Especially Blue

Watch the Use of Saturated Reds and Blues Together

Be Aware of the Differences Between Color Gamuts –

Adapt by Deciding What is Most Important for Your Visualization

Color Gamut for a Monitor and a Color Printer

Color-Preserving vs. Contrast-Preserving Gamut Mappings

Some Basic Rules for Using NTSC (Analog) Video

Understand the Limitations of going from Workstations to NTSC Video

- Use less saturated colors due to color gamut considerations
- Expect an effective resolution of (at best) ~640x480
- Do not use single-pixel thick lines
- Stay away from the edges of the screen
- Some colors have better video resolution than others

NTSC Cycles-of-Encoding per Scanline

What:	Cycles/Scanline:
Intensity	267
Orange-Blue	96
Purple-Green	35

Beware of Gratuitous Color Pollution

Just because you have millions of colors to choose from,

doesn't mean you must use them all •••

Beware of Lots of Other Stuff

Good Color and Perception References

- Maureen Stone, A Field Guide to Digital Color, AK Peters, 2003.
- Roy Hall, *Illumination and Color in Computer Generated Imagery*, Springer-Verlag, 1989.
- R. Daniel Overheim and David Wagner, Light and Color, John Wiley & Sons, 1982.
- David Travis, Effective Color Displays, Academic Press, 1991.
- L.G. Thorell and W.J. Smith, *Using Computer Color Effectively*, Prentice Hall, 1990.
- Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.
- Edward Tufte, Envisioning Information, Graphics Press, 1990.
- Edward Tufte, Visual Explanations, Graphics Press, 1997.
- Howard Resnikoff, The Illusion of Reality, Springer-Verlag, 1989.

