Painel / Meus cursos / SC26EL / 1-Projeto de Controlador de Avanço pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador de Avanço por Lugar das Raízes

Iniciado em	domingo, 7 mar 2021, 20:56
Estado	Finalizada
Concluída em	domingo, 7 mar 2021, 20:59
Tempo empregado	2 minutos 45 segundos
Notas	6,0/6,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1**

Atingiu 1,0 de 1,0

Marque a(s) alternativa(s) correta(s):

- 🛮 a. O controlador de avanço é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema.
- □ b. O controlador de avanço não altera o lugar das raízes do sistema compensado. Ao invés disso, ele insere o polo de malha fechada desejado para atender as especificações de desempenho.
- c. O polo do controlador de avanço está a direita do zero deste controlador no plano complexo.
- d. Para o projeto do controlador de avanço, requisitos de desempenho transitório são utilizados para a definição dos polos de
 malha fechada dominantes que o sistema compensado deve possuir.
- e. O controlador de avanço faz com que o sistema compensado tenha os polos dominantes onde desejado sem alterar o comportamento transitório do sistema compensado em malha fechada.

As respostas corretas são:

O controlador de avanço é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema., Para o projeto do controlador de avanço, requisitos de desempenho transitório são utilizados para a definição dos polos de malha fechada dominantes que o sistema compensado deve possuir.

Questão 2	
Correto	
Atingiu 1,0 de 1,0	

Considere um sistema descrito por $G(s)=\frac{1}{s(s+1)}$. Deseja-se projetar um controlador de avanço pelo método do lugar das raízes para que o sistema compensado tenha, em malha fechada com realimentação unitária, polos dominantes $s_{1,2}=-1\pm j1$. Considerando o polo dominante com parte imaginária positiva e o sistema mencionado responda considerando 3 algarismos significativos:

A condição de ângulo do lugar das raízes para esse polo é um valor negativo e vale $\angle G(s)|_{s=-1+j1}=$

-225

graus.

Para calculadoras ou softwares que fornecem o resultado no intervalo -180° a 180° , a condição de ângulo do lugar das raízes para esse polo é um valor positivo e vale $\angle G(s)|_{s=-1+i1} =$

135

graus.

Assim, o controlador de avanço devem ser responsável por inserir no lugar das raízes uma contribuição angular $\Phi=$

✓ graus.

45

Questão **3**

Correto

Atingiu 1,0 de 1,0

Considere um sistema descrito por $G(s)=\frac{2}{s(s+1)(s+2)}$. Deseja-se projetar um controlador de avanço pelo método do lugar das raízes para que o sistema compensado tenha, em malha fechada com realimentação unitária, polos dominantes $s_{1,2}=-1\pm j1$. Considerando o polo dominante com parte imaginária positiva e o sistema mencionado responda considerando 3 algarismos significativos:

A condição de ângulo do lugar das raízes para esse polo é um valor negativo e vale $\angle G(s)|_{s=-1+j1} =$

-270

graus.

Para calculadoras ou softwares que fornecem o resultado no intervalo -180° a 180° , a condição de ângulo do lugar das raízes para esse polo é um valor positivo e vale $\angle G(s)|_{s=-1+j1}=$

90

✓ graus.

Assim, o controlador de avanço devem ser responsável por inserir no lugar das raízes uma contribuição angular $\Phi =$

90

✓ graus.

Questão 4	
Correto	
Atingiu 1,0 de 1,0	

Deseja-se realizar o projeto de um controlador de avanço para que o sistema a ser compensado tenha, em malha fechada com realimentação unitária, um sobressinal de 10% e tempo de acomodação de 2 segundos para o critério de 2%. Responda as questões abaixo considerando 3 algarismos significativos.

Para atender a estas especificações, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0,591

✓ .

A frequência natural dos polos dominantes de malha fechada deve ser ω_{-}

3,384

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada do sistema compensado devem ser $s_{1,2}=$

-2

✓ ±*j*

2,730

✓ .

Questão **5**

Correto

Atingiu 1,0 de 1,0

Deseja-se realizar o projeto de um compensador de avanço para que o sistema a ser compensado tenha, em malha fechada com realimentação unitária, um sobressinal de 15% e tempo de acomodação de 0,5 segundos para o critério de 2%. Responda as questões abaixo considerando 3 algarismos significativos.

Para atender a estas especificações o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser ζ =

0,517

✓ .

A frequência natural dos polos dominantes de malha fechada deve ser $\omega_{=}$

15,474

✔ .

A partir destes valores, os polos dominantes de malha fechada do sistema compensado devem ser $s_{1,2} =$

-8

✓ ±j

13,246

~ .

https://moodle.utfpr.edu.br/mod/quiz/review.php?attempt=582008&cmid=671029