Multiomics data integration with DIABLO

Andrej Blejec

andrej.blejec@nib.si

National Institute of Biology

January 11, 2023

Situation

Four omics datasets

- metabolomics
- hormonomics
- proteomics
- qPCR

Several treatments: C, H, D, W and combination HD

Several time points: 1, 7, 8, 14, ...

Dimensionality issue: lots of variables, few samples

Goal

Integration across different omics datasets

- Search for connections between datasets
- Compare and find differences between treatments and control

Approach

regularized CCA

Finds maximally correlated canonical variates/components (combinations of original variables) for two datasets.

DIABLO

Data Integration Analysis for Biomarker discovery using Latent variable approaches for Omics studies

Can combine more than two datasets using PLS (Partial Least Squares, which is similar to CCA).

- seeks for linear combinations of the variables from each dataset in order to reduce the overall dimensionality
- can handle correlated variables
- it is efficient in 'low number of samples-high number of variates' situation

Both approaches are available in R package **mixOmics**

A. Blejec DIABLO January 11, 2023

mixOmics

DIABLO

Integrate multiple datasets while explaining their relationship with a categorical outcome variable.

It can also be referred as Multi block Sparse Partial Least Squares Discriminant Analysis, implemented as (block.splsda()).

- Four blocks $(X_i, \text{ our datasets})$.
- Days of exposure to stress as status Y
 (H_D_W_R: 0_0_0_0, 7_0_0_0, ...).
- Analysis of pairs of stress combinations, e.g. C and H
- Needs the same samples in all datasets (within days and treatment pairs).

A. Blejec DIABLO Janua

Presentation of results

Variable plots

- Plot variables (loadings)
- Correlation Circle Plot

Sample plots

- Correlation of components in blocks
- Scatterplots, overall and by block

Networks

- Circos plot
- Relevance networks
- Bi- and Multipartite networks
- Differential networks

Loadings - contribution to components

Outcome

0 0 0 0 (

1000

14 0 0

8 / 22

plotLoadings()

A. Blejec DIABLO January 11, 2023

Correlation Circle Plot

Correlation Circle Plots

Block: proteomics

Block: hormonomics

Block: metabolomics

Block: qPCR

DIABLO

Correlation of components in blocks

plotDiablo()

Scatterplots by block

plotIndiv()

Overall scatterplot

plotArrow()

Circos plot

circosPlot()

Bipartite network

14 / 22

network()

Multipartite network

Cutoff = 0

Multipartite network

Cutoff = 0.8

Differential networks (Bipartite)

To compare treatment and control, we try to discover edges that are present only in treatment (or control).

Heatmap of used correlation matrix

Block: hormonomics

Block: qPCR

Heatmap of used correlation matrix

Networks for single condition (treatment)

Unique edges

Control, absent in Treatment

Treatment, absent in Control

Parallel network plots

A. Blejec DIABLO January 11, 2023 22 / 22