蓝牙 AT 协议介绍

Rev 0.0.1 —— 2020年06月02日

This translated version is for reference only, and the English version shall prevail in case of any discrepancy between the translated and English versions.

版权所有 2020 杰理科技有限公司未经许可,禁止转载

Chapter 1 蓝牙 AT 协议	5
1.1UART 默认配置	5
1.2 协议说明	6
1.3 包格式	7
1.4 CMD 命令	8
1.4.1 CMD_SET_BT_ADDR	9
1.4.2 CMD_SET_BLE_ADDR	9
1.4.3 CMD_SET_BLE_VISIBILITY	
1.4.4 CMD_SET_BT_NAME	10
1.4.5 CMD_SET_BLE_NAME	11
1.4.6 CMD_SEND_SPP_DATA	
1.4.7 CMD_SEND_BLE_DATA	12
1.4.8 CMD_SEND_DATA	12
1.4.9 CMD_STATUS_REQUEST	13
1.4.10 CMD_VERSION_REQUEST	13
1.4.11 CMD_BT_DISCONNECT	14
1.4.12 CMD_BLE_DISCONNECT	14
1.4.13 CMD_SET_COD	14
1.4.14 CMD_ENTER_SLEEP_MODE	15
1.4.15 CMD_SET_ADV_DATA	15
1.4.16 CMD_SET_SCAN_DATA	15
1.4.17 CMD_SET_DCDC	16
1.4.18 CMD_GET_BT_ADDR	16
1.4.19 CMD_GET_BLE_ADDR	16
1.4.20 CMD_GET_BT_NAME	17
1.4.21 CMD_GET_BLE_NAME	17
1,5 EVENT 命令	18
1.5.1 EVENT_BT_CONNECTED	18
1.5.2 EVENT_BLE_CONNECTED	19
1.5.3 EVENT_BT_DISCONNECTED	
1.5.4 EVENT_BLE_DISCONNECTED	
1.5.5 EVENT CMD COMPLETE	

1.5.6 EVENT_SPP_DATA_RECEIVED	20
1.5.7 EVENT_BLE_DATA_RECEIVED	21
1.5.8 EVENT_SYSTEM_READY	21
1.5.9 EVENT_STATUS_RESPONSE	22
1.5.10 EVENT_INDICATE_COMPLETE	22
1.5.11 EVENT_UART_EXCEPTION	23

修改日志

版本	日期	描述	
0.0.1	2020/06/02		
更新:	● 建立初始版本		
	● 定义文档格		
	● 描述协议		

Chapter 1 蓝牙 AT 协议

1.1UART 默认配置

类别	说明	备注
波特率	115200	
数据位	8	
停止位	1	
校验位	无	
流控	无	
PIN	PC02 (TX), PC03 (RX)	TX 为芯片 UART 输出, RX 为芯片 UART 输入。可以通过固
		件修改

1.2 协议说明

- (1) MCU 发给芯片的数据包称为 CMD (命令), MCU 通过发送 CMD 来完成配置蓝牙,控制蓝牙连接,发送数据等操作。
- (2) 芯片发给 MCU 的数据包称为 EVENT (事件), 芯片通过发送 EVENT 来通知 MCU 蓝牙状态的变化以及上报数据等行为。
- (3) MCU 每发送一个 CMD, 都需要等待芯片应答一个 EVENT; 遵循一去一回的原则; 此机制作为软件流控处理。
- (4) 芯片的状态变化和上报数据 EVENT 为实时发送给 MCU,不需要等待 MCU 的查询。
- (5) CMD 和 EVENT 包均为小端传输,即低字节先传输。
- (6) 用户有固件程序,可以自己添加 CMD 和 EVENT 扩展。

User manual 6of23

1.3 包格式

Byte offset	Name	名称
0	Packet type	包类型,0x01CMD 包,0x02EVENT 包
1	Ор	操作码,根据包类型指示不同的 CMD 和 EVENT 指令
2	length	内容长度
3~ (length + 3)	payload	内容

User manual 7of23

1.4 CMD 命令

CMD 是 MCU 发送给蓝牙芯片的指令,用于配置蓝牙,控制蓝牙连接和发送数据等。 芯片收到每个 CMD 后都会回复一个对应的 EVENT 作为应答(通常为 EVENT_CMD_COMPLETE)。即 MCU 发送 CMD 后应等待一个与之对应的 EVENT,收到此 EVENT 后再发送新的 CMD。 已定义的 CMD 如下:

L足文的 CIVID 如下:		
CMD	OP 操作码	描述
CMD_SET_BT_ADDR	0x00	设置蓝牙 EDR 地址
CMD_SET_BLE_ADDR	0x01	设置蓝牙 BLE 地址
CMD_SET_VISIBILITY	0x02	设置蓝牙可发现和广播
CMD_SET_BT_NAME	0x03	设置蓝牙 EDR 名称
CMD_SET_BLE_NAME	0x04	设置蓝牙 BLE 名称
CMD_SEND_SPP_DATA	0x05	发送蓝牙 EDR(SPP)数据
CMD_SEND_BLE_DATA	0x09	发送蓝牙 BLE(ATT)数据
CMD_SEND_DATA	0x0A	发送数据(自动选择通道 SPP 或 BLE)
CMD_STATUS_REQUEST	ОхОВ	请求蓝牙状态
CMD_VERSION_REQUEST	0x10	获取固件版本
CMD_BT_DISCONNECT	0x11	断开蓝牙 EDR 连接
CMD_BLE_DISCONNECT	0x12	断开蓝牙 BLE 连接
CMD_SED_COD	0x15	设置蓝牙的 Class of Device
CMD_ENTER_SLEEP_MODE	0x27	进入软关机睡眠(需要 IO 唤醒功能)
CMD_SET_ADV_DATA	0x2D	设置蓝牙 BLE 广播包数据
CMD_SET_SCAN_DATA	0x2E	设置蓝牙 BLE 响应包数据
CMD_SET_DCDC	0x31	设置电源 DCDC 使能
CMD_GET_BT_ADDR	0x34	获取蓝牙 EDR 地址
CMD_GET_BLE_ADDR	0x35	获取蓝牙 BLE 地址
CMD_GET_BT_NAME	0x36	获取蓝牙 EDR 名称
CMD_GET_BLE_NAME	0x37	获取蓝牙 BLE 名称
·		

1.4.1 CMD_SET_BT_ADDR

设置芯片的 EDR 地址。

收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

注:该命令需要先关闭蓝牙可见性,即用命令 CMD_SET_VISIBILITY,设置可见为 0。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	ОР	0x00
2	length	0x06
3~8	Payload	地址
		(例如内容: 66 55 44 33 22 11,显示格式: 11:22:33:44:55:66)

1.4.2 CMD_SET_BLE_ADDR

设置芯片的 BLE 地址。

收到该命令后,会回复 EVENT_CMD_COMPLETE,回复内容长度为 0x00。

注:该命令需要先关闭蓝牙可见性,即用命令 CMD_SET_VISIBILITY,设置可见为 0。

Byte offset	描述	取值
0	CMD	0x01
1	OP O	0x01
2	length	0x06
3~8	Payload	地址
		(例如内容: 66 55 44 33 22 11,显示格式: 11:22:33:44:55:66)

1.4.3 CMD_SET_BLE_VISIBILITY

设置芯片蓝牙的可发现和广播状态。

收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

注:该命令需要先关闭蓝牙可见性,即用命令 $CMD_SET_VISIBILITY$,设置可见为 0。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x02
2	length	0x01
3	Payload	Bit0: edr 可发现
		Bit1: edr 可连接
		Bit2: ble 可发现(adv 广播)
		其他 Bit 未用,默认 0

1.4.4 CMD_SET_BT_NAME

设置芯片的 EDR 名称。

收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

注:该命令需要先关闭蓝牙可见性,即用命令 CMD_SET_VISIBILITY,设置可见为 0。

命令格式: <

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x03
2	length	0x01~0x20, 最大长度为 32 bytes
3~N	Payload	蓝牙名称(ASCII 编码的字符串)

1.4.5 CMD_SET_BLE_NAME

设置芯片的 BLE 名称。

收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

注:该命令需要先关闭蓝牙可见性,即用命令 CMD_SET_VISIBILITY,设置可见为 0。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x04
2	length	0x01~0x18,最大长度为 24bytes
3~N	Payload	蓝牙名称(ASCII 编码的字符串)

1.4.6 CMD_SEND_SPP_DATA

发送 EDR 数据包(SPP 协议)。

收到该命令后,会回复 EVENT_CMD_COMPLETE,回复内容长度为 0x00。

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x05
2	length	0x01~0xFF,最大长度为 255bytes, 推荐值 128
3~N	Payload	数据

1.4.7 CMD_SEND_BLE_DATA

发送 BLE 数据(ATT 协议)。

收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x09
2	length	0x01~0xFF,最大长度为 255bytes, 推荐值 128
3~4	Payload	Profile_data 定义的 notify handle;可用有 0x0008,0x000d,
		0x0010
5~N	Payload	数据

1.4.8 CMD_SEND_DATA

发送蓝牙数据,自动判断当前连接是 EDR 还是 BLE,并从当前连接通道将数据发出。当选择 BLE 通道时,默认使用 notify handle 值 0x0008 发送。若两个通道都连上,默认值选择 EDR 发送。当收到该命令后,会回复 EVENT_CMD_COMPLETE,回复内容长度为 0x00。

Byte offset	描述	取值
0	CMD	0x01
1	ОР	0x0a
2	length	0x01~0xFF,最大长度为 255bytes, 推荐值 128
5~N	Payload	数据

1.4.9 CMD_STATUS_REQUEST

请求芯片的蓝牙状态。

收到该命令后,会回复 EVENT_STATUS_REPONSE。

命令格式:

Byte offset	描述	取值	
0	CMD	0x01	
1	ОР	0x0B	
2	length	0x00	

1.4.10 CMD_VERSION_REQUEST

请求芯片的固件版本。

当收到该命令后,会回复 EVENT CMD COMPLETE,回复内容长度为 0x04。

回复内容为固件版本好: 1~65535

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x10
2	length	0x00

1.4.11 CMD_BT_DISCONNECT

设置芯片断开蓝牙 EDR 的连接。

当收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值	
0	CMD	0x01	Y
1	OP	0x11	
2	length	0x00	•

1.4.12 CMD_BLE_DISCONNECT

设置芯片断开蓝牙 BLE 的连接。

当收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x12
2	length	0x00

1.4.13 CMD_SET_COD

设置芯片蓝牙 EDR 的 Class of Device。

当收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

Byte offset	描述	取值
0	CMD	0x01
1	ОР	0x15
2	length	0x03
3~5	Payload	Class of Device

1.4.14 CMD_ENTER_SLEEP_MODE

用于无蓝牙连接的情况下,让芯片进入 deep sleep 模式(软关机),功耗降低几微安级别。 进入 deep sleep 模式后,可以通过 UART 发送字节唤醒芯片开机工作(推荐发送 3 个全 0 的字节) 等待芯片 EVENT_SYSTEM_READY 事件后,就可以正常工作。

当收到该命令后,不会有回复芯片直接进入 deepsleep 模式。

命令格式:

Byte offset	描述	取值	9
0	CMD	0x01	
1	ОР	0x27	
2	length	0x00	

1.4.15 CMD_SET_ADV_DATA

设置 BLE 的广播包数据。

当收到该命令后,会回复 EVENT CMD COMPLETE,回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x2d
2	length	0x01~0x1F
3~N	payload	广播数据

1.4.16 CMD_SET_SCAN_DATA

设置 BLE 的扫描响应包数据。

当收到该命令后,会回复 EVENT CMD COMPLETE,回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	ОР	0x2e

All information provided in this document is subject to legal disclaimers © JL.V. 2020. All rights reserved.

User manual 15of23

2	length	0x01~0x1F
3~N	payload	响应包数据

1.4.17 CMD_SET_DCDC

设置电源模式 DCDC 使能; 0x01 为打开 DCDC, 0x00 为关闭 DCDC。

当收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

命令格式:

Byte offset	描述	取值	
0	CMD	0x01	
1	ОР	0x31	1
2	length	0x01	
3~N	payload	0x00/0x01	U)

1.4.18 CMD_GET_BT_ADDR

获取蓝牙 EDR 的地址。

当收到该命令后,会回复 EVENT_CMD_COMPLETE, 回复内容长度为 0x08。

命令格式:

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x34
2	length	0x00

1.4.19 CMD_GET_BLE_ADDR

获取蓝牙 BLE 的地址。

当收到该命令后,会回复 EVENT_CMD_COMPLETE,回复内容长度为 0x08。

Byte offset	描述	取值
0	CMD	0x01

珠海市杰理科技有限公司 ZHUHAI JIELI TECHNOLOGY CO.,LTD

1	ОР	0x35
2	length	0x00

1.4.20 CMD_GET_BT_NAME

获取蓝牙 EDR 的名称。

当收到该命令后,会回复 EVENT_CMD_COMPLETE。

命令格式:

Byte offset	描述	取值	
0	CMD	0x01	
1	OP	0x36	
2	length	0x00	

1.4.21 CMD_GET_BLE_NAME

获取蓝牙 BLE 的名称。

当收到该命令后,会回复 EVENT_CMD_COMPLETE。

Byte offset	描述	取值
0	CMD	0x01
1	OP	0x37
2	length	0x00

1.5 EVENT 命令

已定义的 EVENT 如下:

EVENT 事件名称	OP 操作码	描述
EVENT_BT_CONNECTED	0x00	蓝牙 EDR 连接建立
EVENT_BLE_CONNECTED	0x02	蓝牙 BLE 连接建立
EVENT_BT_DISCONNECTED	0x03	蓝牙 EDR 连接已经断开
EVENT_BLE_DISCONNECTED	0x05	蓝牙 BLE 连接已经断开
EVENT_CMD_COMPLETE	0x06	命令已完成
EVENT_SPP_DATA_RECEIVED	0x07	接收到蓝牙 EDR(SPP)数据
EVENT_BLE_DATA_RECEIVED	0x08	接收到蓝牙 BLE(ATT)数据
EVENT_SYSTEM_READY	0x09	芯片已准备好
EVENT_STAUS_RESPONSE	0x0A	状态回复
EVENT_INDICATE_COMPLETE	0x0C	收到 BLE 的 indicate response
EVENT_UART_EXCEPTION	0x0F	UART 传输包格式错误

1.5.1 EVENT_BT_CONNECTED

表示蓝牙 EDR 连接建立。

Byte offset	描述	取值
0	EVENT	0x02
1	ОР	0x00
2	Length	0x00

1.5.2 EVENT_BLE_CONNECTED

表示蓝牙 BLE 连接建立。

事件格式:

Byte offset	描述	取值	
0	EVENT	0x02	
1	OP	0x02	
2	Length	0x00	3

1.5.3 EVENT_BT_DISCONNECTED

表示蓝牙 EDR 连接已经断开。

事件格式:

Byte offset	描述	取值
0	EVENT	0x02
1	OP	0x03
2	Length	0x00

1.5.4 EVENT_BLE_DISCONNECTED

表示蓝牙 BLE 连接已经断开。

Byte offset	描述	取值
0	EVENT	0x02
1	ОР	0x05
2	Length	0x00

1.5.5 EVENT_CMD_COMPLETE

芯片完成每一条命令 CMD 后都会回复事件 EVENT_CMD_COPLETE。

事件格式:

Byte offset	描述	取值
0	EVENT	0x02
1	OP	0x06
2	Length	Payload 的长度
3	Payload	完成命令操作码 OP
4	Payload	命令完成状态: 0x00-成功, 0x01-失败
5~N	Payload	回复内容,根据不同的命令 CMD,内容不一样

1.5.6 EVENT_SPP_DATA_RECEIVED

芯片收到蓝牙 EDR 数据(SPP 协议)后会通过此事件发送给 MCU。

Byte offset	描述	取值
0	EVENT	0x02
1	OP	0x07
2	Length	Payload 的长度,0x01~0xFF
3~N	Payload	数据

1.5.7 EVENT_BLE_DATA_RECEIVED

芯片收到蓝牙 EDR 数据(ATT 协议)后会通过此事件发送给 MCU。

事件格式:

Byte offset	描述	取值	
0	EVENT	0x02	
1	ОР	0x08	
2	Length	Payload 的长度,0x01~0xFF	
3~4	Payload	Attribute handle,write 或 write_no_response handle	
5~N	Payload	数据	

1.5.8 EVENT_SYSTEM_READY

芯片上电/复位初始化完成后,会发送该事件通知 MCU 自己已经准备好了,可以开始工作。而 MCU 需要收到此 EVENT 后方可发送第一个 CMD。

Byte offset	描述	取值
0	EVENT	0x02
1	OP	0x09
2	Length	0x00

1.5.9 EVENT_STATUS_RESPONSE

回复 CMD_STAUS_REQUEST。

事件格式:

Byte offset	描述	取值
0	EVENT	0x02
1	ОР	0x0a
2	Length	0x01
3	Payload	芯片状态:
		Bit0edr 可发现
		Bit1edr 可连接
		Bit2ble 可发现(执行广播)
		Bit3edr 的 spp 协议已经连接上
		Bit4ble 已连接
		其他 Bit 保留未用,默认值为 0

1.5.10 EVENT_INDICATE_COMPLETE

芯片收到蓝牙 BLE 的 indiacte response 后会通知该事件发送给 MCU。

Byte offset	描述	取值
0	EVENT	0x02
1	OP	0x0C
2	Length	0x00

1.5.11 EVENT_UART_EXCEPTION

芯片收到无法处理的 CMD 时,会通过该命令回复。

Byte offset	描述	取值	
0	EVENT	0x02	
1	OP	0x0F	
2	Length	0x00	3