\* -----

\* NAME: Ran Shi, Siwen Sun

\* STUDENT NUMBER: 7814643, 7898970 \* COURSE: COMP 4190, SECTION: A01

\* INSTRUCTOR: Cuneyt Akcora

\* ASSIGNMENT: Assignment 2 - Bayesian networks, Q2

\* -----

\*/

## 2-a:



| P(OC) |     |  |
|-------|-----|--|
| +oc   | 0.7 |  |
| -oc   | 0.3 |  |

| P(Trav) |      |  |
|---------|------|--|
| +t      | 0.05 |  |
| -t      | 0.95 |  |

| P ( CRP   OC ) |      |      |  |
|----------------|------|------|--|
| OC             | CRP  |      |  |
| +oc            | +crp | 0.1  |  |
| +oc            | -crp | 0.9  |  |
| -oc            | +crp | 0.01 |  |
| -oc            | -crp | 0.99 |  |

| P ( Fraud   Trav ) |       |       |  |
|--------------------|-------|-------|--|
| Trav               | Fraud |       |  |
| +t                 | +f    | 0.01  |  |
| +t                 | -f    | 0.99  |  |
| -t                 | +f    | 0.004 |  |
| -t                 | -f    | 0.996 |  |

| P ( IP   OC, Fraud ) |          |    |       |
|----------------------|----------|----|-------|
| OC                   | is Fraud | IP |       |
| +oc                  | +f       | +  | 0.02  |
| +oc                  | +f       | -  | 0.98  |
| +oc                  | -f       | +  | 0.01  |
| +oc                  | -f       | -  | 0.99  |
| -oc                  | +f       | +  | 0.011 |
| -oc                  | +f       | -  | 0.989 |
| -oc                  | -f       | +  | 0.001 |
| -oc                  | -f       | -  | 0.999 |
|                      |          |    |       |

| P ( FP   Trav, Fraud ) |          |     |      |
|------------------------|----------|-----|------|
| Trav                   | is Fraud | FP  |      |
| +t                     | +f       | +fp | 0.9  |
| +t                     | +f       | -fp | 0.1  |
| +t                     | -f       | +fp | 0.9  |
| +t                     | -f       | -fp | 0.1  |
| -t                     | +f       | +fp | 0.1  |
| -t                     | +f       | -fp | 0.9  |
| -t                     | -f       | +fp | 0.01 |
| -t                     | -f       | -fp | 0.99 |

## 2-b:

Output:

Q1:

$$P(+fraud, Trav) = P(Trav) * P(+|fraud Trav)$$

\*\*\*\*\*\*\*\*\*\*\*\*

After the elimination, the program output P(+fraud) = 0.0043 as the prior probability.

$$\begin{split} P\left(FRAUD\mid +fp,-ip,+crp\right) & \alpha \ P(FRAUD,+fp,-ip,+crp) \\ & = \ P(FRAUD,+fp,-ip,+crp,TRAV,OC) \\ & = \sum_{Trav,oc} P(TRAV) \ P(OC) P(FRAUD\mid TRAV) \ P(+crp\mid OC) \ P(+fp\mid TRAV,FRAUD) P(-ip\mid OC,FRAUD) \\ & = \sum_{OC} P(OC) \ P(+crp\mid OC) \ P(-ip\mid OC,FRAUD) \sum_{TRAV} P(TRAV) \ P(FRAUD\mid TRAV) P(+fp\mid TRAV,FRAUD) \\ & = \sum_{OC} P(OC) \ P(+crp\mid OC) \ P(-ip\mid OC,FRAUD) \ f1(+fp,FRAUD) \\ & = f1(+fp,FRAUD) \sum_{OC} P(OC) \ P(+crp\mid OC) \ P(-ip\mid OC,FRAUD) \\ & = f1(+fp,FRAUD) \ f2(+crp,-ip\mid FRAUD) \end{split}$$

The program took the factor FRAUD as variable, and +fp, -ip, +crp as evidence to process the inference.

After the normalization, the result is  $P(+fraud \mid +fp,-ip,+crp) = 0.01498$