

APSSDC

Andhra Pradesh State Skill Development Corporation SI

1. Linear Regression with Single Variable

In [2]:	H
<pre>import pandas as pd</pre>	

Step1: Define Business Use Case

Our Use case is to predict the salary of a person based on Years of Experience

```
In [3]:

df = pd.read_csv("https://raw.githubusercontent.com/AP-State-Skill-Development-Corporation/
```

Step2: Data Exploration

```
In [4]:
df.head()
```

Out[4]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

In [5]: ▶

df.shape

Out[5]:

(30, 2)

```
In [6]:
```

```
df.info()
```

In [7]: ▶

```
import matplotlib.pyplot as plt
plt.scatter(df['YearsExperience'], df['Salary'])
plt.show()
```


In [8]: ▶

df

Out[8]:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
In [9]:

df.corr()
```

Out[9]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

Step3: Select Algorithm

Based on the data exploration we have found that YearsExperience is Positively Linearly Coreleated with the salary so we have selected the linear regression

```
Salary = M * YearExperience + C
```

Predict the output values based on the input values

```
In [27]:
                                                                                    H
df['YearsExperience'].values
Out[27]:
array([ 1.1, 1.3, 1.5, 2., 2.2, 2.9, 3., 3.2, 3.2, 3.7, 3.9,
       4., 4., 4.1, 4.5, 4.9, 5.1, 5.3, 5.9, 6., 6.8, 7.1,
       7.9, 8.2, 8.7, 9., 9.5, 9.6, 10.3, 10.5
In [16]:
                                                                                    H
x = df['YearsExperience'].values.reshape(-1, 1)
y = df['Salary']
In [28]:
                                                                                    H
x.shape
Out[28]:
(30, 1)
In [12]:
                                                                                    H
from sklearn.linear_model import LinearRegression
```

Step4: Build the model

```
H
In [13]:
model = LinearRegression()
In [17]:
                                                                                                H
model.fit(x, y)
Out[17]:
LinearRegression()
In [18]:
                                                                                                H
model.coef_
Out[18]:
array([9449.96232146])
                                                                                                H
In [19]:
model.intercept_
Out[19]:
25792.20019866871
                                        Y = M * X + C
so by building the model we have calculated the coefficient/slope and intercept as in the above cells
                               salary = 9449.962 * X + 25792.200
In [20]:
                                                                                                H
model.predict([[11]])
Out[20]:
array([129741.78573467])
                                                                                                H
In [21]:
model.predict([[12]])
Out[21]:
array([139191.74805613])
```

```
import numpy as np
new = np.arange(1, 25).reshape(-1, 1)
plt.scatter(df['YearsExperience'], df['Salary'])
plt.plot(new, model.predict(new))
plt.show()
```


Step6: Evaluate

```
In [32]:
model.score(x, y)
```

Out[32]:

0.9569566641435086

Linear Regression with Multiple Variables

Step1: Define Business Use Case

Our Use case is to predict the CO2Emissions of a person based on few features

```
In [33]:

co2 = pd.read_csv('https://raw.githubusercontent.com/AP-State-Skill-Development-Corporation
```

Step2: Data Exploration

```
H
In [34]:
co2.head()
Out[34]:
   MODELYEAR
                MAKE MODEL VEHICLECLASS ENGINESIZE CYLINDERS TRANSMISSION
                                                                              AS5
0
          2014 ACURA
                           ILX
                                   COMPACT
                                                     2.0
                                                                  4
1
          2014 ACURA
                           ILX
                                   COMPACT
                                                     2.4
                                                                  4
                                                                               M6
                           ILX
2
          2014 ACURA
                                   COMPACT
                                                                              AV7
                                                     1.5
                                                                  4
                       HYBRID
                          \mathsf{MDX}
                                 SUV - SMALL
3
          2014 ACURA
                                                     3.5
                                                                  6
                                                                              AS6
                         4WD
                          RDX
4
          2014 ACURA
                                 SUV - SMALL
                                                     3.5
                                                                  6
                                                                              AS6
                         AWD
                                                                                •
                                                                                              H
In [35]:
co2.columns
Out[35]:
Index(['MODELYEAR', 'MAKE', 'MODEL', 'VEHICLECLASS', 'ENGINESIZE', 'CYLINDER
S',
       'TRANSMISSION', 'FUELTYPE', 'FUELCONSUMPTION_CITY',
       'FUELCONSUMPTION_HWY', 'FUELCONSUMPTION_COMB',
       'FUELCONSUMPTION_COMB_MPG', 'CO2EMISSIONS'],
      dtype='object')
In [36]:
                                                                                              H
co2.shape
Out[36]:
(1067, 13)
                                                                                              H
In [38]:
co2['MAKE'].value counts().shape
```

Out[38]:

(39,)

In [39]: ▶

```
co2['MAKE'].value_counts()
```

Out[39]:

FORD	90
CHEVROLET	86
BMW	64
MERCEDES-BEN	
TOYOTA	49
AUDI	49
GMC	49
PORSCHE	44
VOLKSWAGEN	42
DODGE	39
MINI	36
NISSAN	33
KIA	33
CADILLAC	32
JEEP	31
MAZDA	27
HYUNDAI	24
SUBARU	23
LEXUS	22
JAGUAR	22
HONDA	21
INFINITI	21
CHRYSLER	19
LAND ROVER	19
MITSUBISHI	16
BUICK	16
RAM	13
ACURA	12
VOLVO	11
LINCOLN	11
FIAT	10
SCION	9
BENTLEY	8
ASTON MARTIN	7
ROLLS-ROYCE	7
MASERATI	6
LAMBORGHINI	3
SMART	2
SRT	2
	dtype: int64

In [40]: ▶

co2['VEHICLECLASS'].value_counts()

Out[40]:

MID-SIZE	178
COMPACT	172
SUV - SMALL	154
SUV - STANDARD	110
FULL-SIZE	86
TWO-SEATER	71
SUBCOMPACT	65
PICKUP TRUCK - STANDARD	62
MINICOMPACT	47
STATION WAGON - SMALL	36
VAN - PASSENGER	25
VAN - CARGO	22
MINIVAN	14
PICKUP TRUCK - SMALL	12
SPECIAL PURPOSE VEHICLE	7
STATION WAGON - MID-SIZE	6
Name: VEHICLECLASS, dtype:	int64

In [7]: ▶

import seaborn as sns
sns.pairplot(df)

Out[7]:
 <seaborn.axisgrid.PairGrid at 0x1ed68702550>

Step3: Select Algorithm

Based on the data exploration we have found that CO2Emissions is Positively Linearly Coreleated with the FUELCONSUMPTION_CITY, FUELCONSUMPTION_HWY, FUELCONSUMPTION_COMB so we have selected the linear regression with multiple variables

Equation for Linear Regression with Multiple Variables

$$y = m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_n x_n + c$$

splitting the entire data in to two parts

- 1. Training Part
- 2. Testing Part

```
In [46]:

from sklearn.model_selection import train_test_split

x_tr, x_tt, y_tr, y_tt = train_test_split(x, y, test_size = 0.3, random_state = 42)
```

In [61]:

```
train_test_split(x, y, test_size = 0.3, random_state = 42)
```

Out[61]:

[820 902 350 5 310 330 466 121 1044 860	FUELCONSUMPTION_CITY 14.0 13.1 20.6 11.9 18.3 14.2 11.5 16.2 10.0 19.7	FUELCONSUMPTION_HWY 10.3 8.7 15.5 7.7 12.6 9.4 8.2 10.9 6.9 14.3	FUELCONSUMPTION_COMB 12.3 11.1 18.3 10.0 15.7 12.0 10.0 13.8 8.6 17.3
_	rows x 3 columns], FUELCONSUMPTION_CITY 15.4 11.3 15.1 11.4 10.5 10.4 23.5 16.3 8.3 9.1	FUELCONSUMPTION_HWY 10.4 7.6 9.9 7.3 7.1 6.7 17.7 11.4 6.9 8.5	FUELCONSUMPTION_COMB 13.2 9.6 12.8 9.6 9.0 8.7 20.9 14.1 7.7 8.8
820 902 350 5 310 330 466 121 1044 860 Name: 732 657 168 86 411 82 436 457 497 853	rows x 3 columns], 283 255 421 230 251 276 230 317 198 398 CO2EMISSIONS, Length 304 221 294 221 207 200 334 324 177 202 CO2EMISSIONS, Length		

```
In [48]:
                                                                                            H
x_tr.shape, x_tt.shape
Out[48]:
((746, 3), (321, 3))
Step4: Build the model
In [50]:
                                                                                            H
from sklearn.linear_model import LinearRegression
model.fit(x_tr, y_tr)
Out[50]:
LinearRegression()
                                                                                            H
In [53]:
y_pred = model.predict(x_tt)
In [54]:
x_tt.head(1)
Out[54]:
     FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY FUELCONSUMPTION_COMB
732
                       15.4
                                              10.4
                                                                     13.2
In [55]:
                                                                                            H
y_{tt.head(1)}
Out[55]:
732
       304
Name: CO2EMISSIONS, dtype: int64
In [56]:
                                                                                            H
y_pred[0]
Out[56]:
```

286.82307123945753

Step6: Evaluate

```
In [57]:
    model.score(x_tt, y_tt)

Out[57]:
    0.8113937336428083

In [58]:
    M

model.intercept_

Out[58]:
    73.5306782666596

In [60]:
    M

model.coef_
```

array([10.01652918, -6.39753184, 9.51304353])