DATA SHEET

数据手册

GM7123C

3 通道高清视频编码电路

2017.12

成都振芯科技股份有限公司

GM7123C

GM7123C		
 版本记录: 1.1		当前版本时间: 2017 年 12 月
新旧版本改动比	七较:	
旧版	当前版本	主题(和旧版本相比的主要变化)
文档页数	文档页数	主题(和山放平相比的主安文化)

如果您有技术、交付或价格方面的任何问题,请联系成都振芯科技股份有限公司的相关办公室或当地的代理商,或访问我们的网站: www.corpro.com 谢谢!

编制时间: 2017年12月

由成都振芯科技股份有限公司发布

发布地点:成都

成都振芯科技股份有限公司版权所有

GM7123C

1 概述

GM7123C 是一款频率 330MHz 的 3 通道 10 位高速视频 DAC 芯片,兼容 RS-343A/RS-170 标准差分输出,输出电流范围是 $2mA\sim26mA$ 。输入兼容 TTL 电平,内部 基准 1.23V,单电源 3.3V 供电,采用 LQFP48 封装。

该芯片可应用于:数字视频系统(1600×1200@100Hz);高分辨率彩色图像;数字射频调制;图像处理;仪器和视频信号重建等。

2 特征

GM7123C 自带 3 个分离的 10 位数据输入端口,有视频控制信号 \overline{SYNC} 和 \overline{BLANK} 分别控制同步和消隐。芯片带有省电模式,采用 CMOS 工艺制造。

- a) 最高 330MSPS 转换速率
- b) 3个10位DAC
- c) 输入兼容 TTL 电平
- d) DAC 输出电流范围 2mA~26mA
- e) 集成带隙基准电压源
- f) LQFP48 封装

3 封装及引脚功能说明

产品采用 48 引线的四边引线扁平外壳封装,实体尺寸 7mm×7mm。

图1 GM7123C 引脚排布图

该芯片的各引脚功能描述见表 1:

表1. 芯片引脚功能说明

引脚号	引脚名	方向	说明
1	G0	输入	绿色通道输入数据
2	G1	输入	绿色通道输入数据
3	G2	输入	绿色通道输入数据
4	G3	输入	绿色通道输入数据
5	G4	输入	绿色通道输入数据
6	G5	输入	绿色通道输入数据

GM7123C

7	G6	输入	绿色通道输入数据
8	G7	输入	绿色通道输入数据
9	G8	输入	绿色通道输入数据
10	G9	输入	绿色通道输入数据
11	BLANK	输入	消隐信号控制输入
12	SYNC	输入	同步信号控制输入
13	VDD	电源	电源电压
14	В0	输入	蓝色通道输入数据
15	B1	输入	蓝色通道输入数据
16	B2	输入	蓝色通道输入数据
17	В3	输入	蓝色通道输入数据
18	B4	输入	蓝色通道输入数据
19	В5	输入	蓝色通道输入数据
20	В6	输入	蓝色通道输入数据
21	В7	输入	蓝色通道输入数据
22	В8	输入	蓝色通道输入数据
23	В9	输入	蓝色通道输入数据
24	CLOCK	输入	时钟输入
25	GND	地	地
26	GND	地	地
27	ĪOB	输出	蓝色通道差分输出
28	IOB	输出	蓝色通道输出
29	VDD	电源	电源电压
30	VDD	电源	电源电压
31	\overline{IOG}	输出	绿色通道差分输出
32	IOG	输出	绿色通道输出
33	ĪOR	输出	红色通道差分输出
34	IOR	输出	红色通道输出
35	COMP	输出	电容补偿端
36	VREF	输出	参考电压
37	RSET	输出	输出幅度控制电阻
38	PSAVE	输入	省电模式控制端
39	R0	输入	红色通道输入数据
40	R1	输入	红色通道输入数据
41	R2	输入	红色通道输入数据
42	R3	输入	红色通道输入数据
43	R4	输入	红色通道输入数据
44	R5	输入	红色通道输入数据
45	R6	输入	红色通道输入数据
46	R7	输入	红色通道输入数据
47	R8	输入	红色通道输入数据

GM7123C

48	R9	输入	红色通道输入数据
-	_	1,54	

4 功能描述

GM7123C 包含 3 个 10 位 DAC, 带有 3 个输入通道,每个通道都有 10 位数据寄存器。 片内集成带隙基准电压源,并且整合了 CRT 控制功能的 SYNC 和 BLANK 两个信号。

4.1 数字输入

30 位象素数据(色彩信息) R0-R9, G0-G9, B0-B9 在每个时钟周期的上升沿被锁存。这些数据经过 3 个 10 位 DAC,被转换成 3 个模拟输出波形(RGB)。如下图所示。

图2 视频数据输入/输出

芯片中增加了两个额外的控制信号 \overline{SYNC} 和 \overline{BLANK} 。这两个信号分别在时钟的上升沿锁存,以便与象素数据流进行同步。

当输出 RGB 视频格式时,可以使用 \overline{SYNC} 和 \overline{BLANK} 功能编码视频同步信号或者消隐信号。当调整 \overline{SYNC} 和 \overline{BLANK} 信号的逻辑电平时,可控制模拟输出的电流源权重。下图表示出了模拟输出和 RGB 视频波形的关系。

1.输出连接到两个75欧姆的电阻负载

2.VREF=1.235V, RSET=530欧姆

图3 RGB 视频输出波形

下表列出了 \overline{SYNC} 和 \overline{BLANK} 信号对模拟输出的影响。所有数字输入均兼容 TTL 逻辑电平。

表2. 视频输出真值表 $(R_{SET}=530\Omega, R_{LOAD}=37.5\Omega)$

GM7123C

描述	IOG (mA)	<i>IOG</i> (mA)	IOR/IOB	$\overline{IOR}/\overline{IOB}$	SYNC	BLANK	DAC 输入 数据
白电平	26.67	0	18.62	0	1	1	3FFH
视频	Video+8.05	18.62—Video	Video	18.62-Video	1	1	Data
视频到 BLANK	Video	18.62—Video	Video	18.62—Video	0	1	Data
黑电平	8.05	18.62	0	18.62	1	1	000H
黑电平到 BLANK	0	18.62	0	18.62	0	1	000Н
BLANK 电平	8.05	18.62	0	18.62	1	0	xxxH
SYNC 电 平	0	18.62	0	18.62	0	0	xxxH

4.2 时钟输入

芯片输入时钟频率等于系统的象素时钟速率,即为点频(Dot rate)。时钟频率由屏幕的分辨率决定,如下方程所示。

 $Dot \ Rate = \ (Hoirz \ Res) \ \times \ (Vert \ Res) \ \times \ (Refresh \ Rate) \ / \ (Retrace \ factor)$

其中,Horiz Res 是象素/行数量。Vert Res 是行/场数量。Refresh Rate 是刷新率;该速率表征 屏幕刷新的速率,通常逐行扫描系统是 60Hz,而隔行扫描系统是 30Hz。Retrace Factor 是总 消隐时间因子;该因子代表了一场画面中消隐时间与总持续时间的比例(例如 0.8)。

因此,如果一个画面系统分辨率是 1024×1024,逐行扫描频率是 60Hz 刷新率,总消 隐时间因子是 0.8,则有:

Dot Rate = $1024 \times 1024 \times 60/0.8 = 78.6$ MHz

根据上式所得,所需的时钟频率是 78.6MHz。

所有的视频数据和控制输入信号都在时钟的上升沿进行锁存,推荐时钟输入外接 TTL 缓冲器。

4.3 视频同步与控制

芯片只有一个混合 sync(\overline{SYNC})输入控制信号。许多图像处理器和 CRT 控制器能够产生水平 sync(HSYNC)信号,垂直 sync(VSYNC)信号和混合 \overline{SYNC} 信号。

图像处理系统并不自动生成混合 SYNC 信号,而是由其中的逻辑电路来产生。

Sync 电流在芯片内部直接连到 IOG 输出,因此可将视频同步信息编码到绿色视频通道中。如果不需将 sync 信息进行编码,则需将 \(\overline{\text{SYNC}}\) 输入信号接到逻辑低。

4.4参考电压输入

基准分为片内和片外两种。通常 V_{REF} 脚外接 $0.1\mu F$ 电容。另外,也可外接 1.23V 参考电压。

电阻 R_{SET}连接 R_{SET}脚到地,该电阻决定了输出视频电平的幅度,如下式所示。

IOG (mA) = $11445 \times V_{REF}$ (V) $/R_{SET}$ (Ω)

IOR, IOB (mA) =7989.6 \times V_{REF} (V) /R_{SET} (Ω)

其中第一个公式应用于当 \overline{sync} 信号被使用的时候。当 \overline{sync} 信号没有被编码到绿色通道中,则两个公式相同。

当 R_{SET} 阻值变化时,可精确调整模拟输出视频电平。

GM7123C

4.5 模拟输出

芯片有 3 个模拟输出,分别对应红、绿、蓝 3 种视频信号。这 3 种视频信号的模拟输出是高阻电流源。3 个输出中的任意一个都可驱动 37.5Ω 的负载电阻。

图4 RS-343A 模拟输出

上图表示 RGB 输出连接到电缆,而电缆双端都连接到 75 Ω 的电阻。该配置方法能够 给 75 Ω 负载的显示器提供 RS-343A 模拟输出信号。

图5 RS-170 模拟输出

上图表示 RS-170 模拟输出配置方法, 电缆一端连接到 75 Ω 的电阻, 另一端连接 150 Ω 的电阻。

4.6 灰度工作方式

芯片可工作于待机、灰度(单色)或者混合视频信号等3种方式。红、绿、蓝3个通道中的任意一个可输入数字视频信号,而其余两个通道输入逻辑零,芯片3个模拟输出端应保持相同的配置方式。

4.7 带隙基准源

DAC 是电流舵结构,因此需要有带隙基准源来产生与温度无关的电压,并利用 V-I 转换电路将该电压转换成稳定的偏置电流,以便将电流复制到电流源中。

GM7123C

图6 带隙基准源及 V-I 转换电路

带隙基准源为三路 DAC 提供对温度不敏感的 Cascode 偏置电流。

对绿色通道 DAC 输出来说(假设 I_{SYNC} 连接到 IOG), R_{SET} 和满刻度输出电流的关系有

 $R_{SET} = 11445 \times V_{REF}/IOG$

而处于 RGB 模式时, 关系又变成

IOG=11445×V_{REF}/R_{SET} (*SYNC* 已确定)

IOR, IOB=7989.6 \times V_{REF}/R_{SET}

当 $\overline{\mathit{SYNC}}$ 无输入信号时,连接到低,此时 $\overline{\mathit{IOG}}$ 的方程等于 $\overline{\mathit{IOR}}$ 和 $\overline{\mathit{IOB}}$ 。

4.810 位 330MHz DAC

图7 分段式电流舵 DAC 框图

DAC 采用分段式电流舵结构,分辨率是 10 位。

芯片中有 3 个通道, 分别使用 1 个 DAC, 最高转换频率 330MHz。

5 参数指标

5.1 极限工作条件

5.2 推荐工作条件

表3. 推荐工作条件

符号	参数	最小	最大	单 位	
$V_{ m DD}$	电源电压	3	3.6	V	
Vı	输入电压	0	3.3	V	
TA	工作温度	-40	85	$^{\circ}$	

GM7123C

5.3 静态参数

表4. 静态特性参数(V_{DD} =3.3V, R_{SET} =560 Ω)

参数符号	最小值	典型值	最大值	单位	测试条件
数字电源电流 I_{DDD}	_	3.5	5	mA	f _{CLK} =50MHz
模拟电源电流 I _{DDA}	_	62	72	mA	
输入电流 $I_{\rm IN}$	-1	_	1	μΑ	V _I =0V 或者 V _{DD}
PSAVE 引脚上拉 电流 I _{SAVE}	I	50	_	μΑ	
	I	26	_	mA	$\overline{SYNC} = 3.3 \text{V}, \text{ V}_{\text{I}} =$ $3.3 \text{V}, \text{ R}_{\text{SET}} = 530 \Omega$
模拟输出电流 Io	_	18	_	mA	$\overline{SYNC} = 0V$, $V_I = 3.3V$, $R_{SET} = 530\Omega$
	_	2	_	mA	$\overline{SYNC} = 0V$, $V_I = 3.3V$, $R_{SET} = 4933\Omega$
DAC 间匹配误差 <i>∆e</i> _m	ı	2	_	%	
失调误差 $e_{ m offset}$	1	0	_	%FSR	V_I =0 V
增益误差 e_{gain}		-1	_	%FSR	$V_I=3.3V$
基准电压范围 V _{REF}	1.12	1.25	1.35	V	
待机电源电流 I _{PD}	_	0.1	_	mA	$\overline{PSAVE} = 0V,$ $\overline{BLANK} = \overline{SYNC} =$ $CLOCK = V_1 = 3.3V$

6 机械尺寸

GM7123C

注1: 为引出端识别标志区。

单位为毫米

				1 1
尺寸符号		各 庄 (o)		
八寸何亏	最小	公 称	最大	角度(°)
A	1.3	_	1.6	
A_1	0.1	_	0.2	
b	0.2	_	0.25	
С	0.1	_	0.2	
e	_	0.50	_	
$L_{ m p}$	0.5	_	0.8	
L	0.8	_	1.2	_
Z	1.55	_	1.95	
D	6.8	_	7.2	
Е	6.8	_	7.2	
$H_{ m D}$	8.8	_	9.2	
H_{E}	8.8	_	9.2	
θ				0~8

图8 外壳外形

7 产品应用信息

7.1 典型应用图

GM7123C

图9 应用电路

上图为 GM7123C 的典型应用电路,每组电源都分别接退耦电容。电阻 R_{SET} 可调整输出电流大小,负载电阻可根据具体的应用来设置。

7.2 应用说明

- 1.输出延时(t₆)从时钟上升沿的50%开始到输出满刻度的50%
- 2.输出上升/下降时间从满刻度的10%开始到90%
- 3.输出传输时间从满刻度的50%开始到2%为止

图10 系统时序图

上图为 GM7123C 应用时的时序关系,输入时序应按照该图所描述的顺序来施加,其 关系如下表所示。

GM7123C

表5. 电源 3.3V 时序关系

模拟输出延时	t_6		_	11.5	ns
模拟输出上升/下降时间	t_7		_	4	ns
模拟输出传输时间	t_8		_	25	ns
模拟输出斜率	<i>t</i> ₉		_	2	ns
	$f_{ m CLK}$	50MHz 级	_	50	MHz
时钟控制	$f_{ m CLK}$	140MHz 级	_	140	MHz
47 大牛4三中1	$f_{ m CLK}$	240MHz 级	_	240	MHz
	$f_{ m CLK}$	330MHz 级	_	330	MHz
数据与控制建立时间	t_1		0.2	_	ns
数据与控制保持时间	t_2		1.5	_	ns
时钟高电平脉冲宽度	t_4	$f_{CLK^-MAX} = 330MHz$	1.4	_	ns
时钟低电平脉冲宽度	t_5	$f_{CLK-MAX} = 330MHz$	1.4	_	ns
时钟高电平脉冲宽度	t_4	$f_{CLK-MAX} = 240MHz$	1.875	_	ns
时钟低电平脉冲宽度	t_5	$f_{CLK-MAX} = 240MHz$	1.875	_	ns
时钟高电平脉冲宽度	t_4	$f_{CLK-MAX} = 140MHz$	2.85	_	ns
时钟低电平脉冲宽度	t_5	$f_{CLK-MAX} = 140MHz$	2.85	_	ns
时钟高电平脉冲宽度	t_4	$f_{CLK^-MAX} = 50MHz$	8	_	ns
时钟低电平脉冲宽度	t_5	$f_{CLK^-MAX} = 50MHz$	8	_	ns
流水线延时	4			1	时钟
机小线型引	$t_{ m PD}$			1	周期
PSAVE 上升时间	t ₁₀		_	10	ns