# of Nodes	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000
Execution Time	e 1.905	3.209	4.850	6.272	8.102	9.826	11.371	13.248	15.462	17.084

Table 1: The efficiency analysis of the GTMP model, measured in seconds, examines the relationship between the number of nodes in the trees, ranging from 1,000 to 10,000, and the execution time. The latter reflects the training time for one epoch of 1,000 trees, averaged over 100 runs. The Pearson correlation coefficient between the number of nodes and the execution time is 0.999, and the p-value is 1.76×10^{-11} . These results indicate a strong linear time complexity of our proposed method with respect to the number of nodes, demonstrating its efficiency and scalability.

	Neuron - Classification (↑)						River - Regression (↓)			
	lps-glia	lps-inter	lps-pc	5xfad-glia	5xfad-pc	μ	D	r		
$ \{\alpha\}_1$	0.9836	0.9996	0.9872	0.9011	0.9992	0.0041	76.7699	33.0287		
$\{\alpha\}_2$	0.9779	0.9999	0.9764	0.8890	0.9985	0.0038	77.3823	32.0424		
$lr=1 \times 10^{-3}$	0.9836	0.9996	0.9804	0.8984	0.9991	0.0042	76.7699	33.0287		
$lr=5 \times 10^{-4}$	0.9810	0.9958	0.9872	0.9011	0.9992	0.0041	76.9832	33.8315		
bs=16	0.9836	0.9996	0.9804	0.9003	0.9991	0.0045	76.7699	33.0287		
bs=64	0.9849	0.9996	0.9751	0.9011	0.9991	0.0041	77.5353	34.1242		

Table 2: Here is the parameter sensitivity analysis for the GTMP model, focusing on the impact of three types of hyperparameters across eight datasets. Initially, we explore the effect of the hyperparameter set $\{\alpha\} = \{\alpha_1, \alpha_2, \alpha_3\}$, which modulates the influence of each ancestor in Equation 4. The notation $\{\alpha\}_1$ signifies uniform weighting, achieved by setting each α value to 1, thereby distributing equal influence among ancestors. Conversely, $\{\alpha\}_2$ represents a decreasing weighting scheme, with $\alpha_1 = 1$ maintaining full influence, $\alpha_2 = 0.8$ indicating moderately reduced influence, and $\alpha_3 = 0.5$ depicting significantly diminished influence. Subsequently, we evaluate the model's sensitivity to the initial learning rate, comparing the effects of setting it to 1×10^{-3} and 5×10^{-4} . Lastly, we assess the impact of selecting different batch sizes, as 16 and 64, on the model's performance.