

RESEARCH AND DEVELOPMENT - PUMPS

In following sectors

NUCLEAR SECTOR
OIL&GAS SECTOR
INDUSTRY
WATER SUPPLY
IRRIGATION

SPECIAL PUMPS PRODUCTION

ENERGY SAVING

OPTIMIZATION

REFURBISHMENT

SOFTWARE

TRAINING COURSES

R&D OF HEAVY DUTY PROCESS PUMPS

NUCLEAR POWER PLANTS OIL & GAS SECTOR INDUSTRY AND WATER SUPPLY

Design criteria could be selected according to the application

- Nuclear power plant
- Petroleum, petrochemical and natural gas industry.
- Other application

Requirements for pumps for nuclear power plants are very high and very specific. Design criteria should provide high reliability and high performance of the pumps.

API 610, ISO 13709 international standards specifies requirements for pumps for petroleum, petrochemical and natural gas industry.

Requirements for pumps for other application usually consider basic design requirements with some additional requirements.

SM PUMPS – DESIGN CRITERIA Nuclear and Oil & Gas sector

Design Criteria for nuclear Codes and Oil & Gas sector

International Atomic Energy Agency

National Nuclear Energy Commission

US Nuclear Regultory Commission

ASME Code, ANSI Code, ASTM Code

ANSI Code

Hydraulic Insitute Standards

Military standards

American Petroleum Institute Standards

Design Criteria

Basic Hydraulic requirements and conditions for normal operation

Stress limits

Normal operating conditions

Abnormal operating conditions

Emergency conditions

Faulted operating conditions

Pressure - temperature limits

Stress, thermal and fatigue analyze

Relibility characteristcs

Failure Mode and Effects Nanalyzes

Mechanical shock

Seismic Requirements

Flow reate - vibration mode

Flow rate - stability mode

Noise and Acoustic Quieting

Hydraulic Instabilities

Rotor and Rotor Shaft characteristics

Important criteria analyzes

NPSH – Recirculation free range

Very important criteria to prevent cavitation at partial flow

FLOW ANALYZE

FATIGUE ANALYSIS

Loading conditions:

Pressure: 10 MPa

Temperature: 400 °C (50 °C/h)

Material properties:

Young's modulus: 200 GPa

Poisson's ratio: 0.3

S-N curve for mean stress equal to 0 MPa (without other influences):

STRESS ANALYZE

Alternating stress from S-N curve for Infinity-Life
Design: 4 MPa

Roughness analyzes - influence to efficiency and NPSH

April 2019 9

PUMPS FOR NUCLEAR AND OIL&GAS APPLICATION DESIGN, REFURBISHMENT AND MAINTENANCE

1. Improving the pumps characteristics

Optimization of the pumps in the systems and energy saving Efficiency
Cavitation characteristics
Abrasion characteristics
Rotor dynamic characteristics

2. Pumps refurbishment

Rehabilitation of existing pumps
Improving the life time of hydraulic parts
Improving the shaft characteristics, vibration, critical speed

3. Customized pump manufacturing

Manufacture pump with same or better characteristics and dimension as existing pumps

– no need pipelines and foundation modification

Machined impellers from forged solid part Improving Life time, efficiency, NPSH

Rotor dynamic shaft analyze

PUMPS FOR NUCLEAR AND OIL&GAS APPLICATION DESIGN, REFURBISHMENT AND MAINTENANCE

4. Optimization the maintenance expenses

Optimized the maintenances expenses and improving life time of the pumps consider as follows: pump type Q —H stability and inclination, flow analyze NPSH analyze Structural analyze Thermal analyze Fatigue analyze

Machined diffuser

Cavitation analyze

Structural analyze

Thermal analyze

Flow analyze

Optimal pump design for system application

Optimal pump design		High reliability
	=	High hydraulic performance (η, NPSH, Q-H stability, wide operating range
		Weight / productional price
		Operating cost, easy maintenance

April 2019 12

Optimal pump design for system application

PROPER DESIGN PROCEDURE

Analyze n-NPSHr- η
Analyze operating range and operating conditions
Analyze of required design criteria
Preliminary mechanical design
Preliminary stress and other calculaiton
Choose the hydraulic

MODEL TESTING

Proving the characteristics of any bigger pump or turbine is possible with model testing. Size of the model depends of the characteristics, but usualy model machine has impeller diamter 300 mm.

Example of model testing:

Project: Conrete water pump Q = 50.000 m3/h, impeller diameter D2 = 2200 mm Model pump impeller diameter D2 = 350 mm

Impeller Ø 350 mm

Model pump test rig in Aturia plant in Gessate Italy

Model pump and impeller

PUMPS INTAKES CFD ANALYZE – MODEL TEST

Physical hydraulic model

In many different cases <u>physical hydraulic model</u> is necessary, if the disposition of the inlet piping requires special arrangements, deviating from the guidelines.

Even in the case when the pump-sump design follows the recommendations, model test should be executed if the flow rate per pump is greater than 2,5 m³/s, or the total flow rate per pumping station is grater than 6,3 m³/s.

The target of a model investigation is to obtain a sump configuration that can satisfy all the different operating conditions of the plant.

The model has to be geometrically similar to the larger version.

Based on model testing, the local meridional velocity should not deviate from mean velocity for more than ±10%.

Dimension of the model bell should be $D \ge 80$ mm.

For similarity of flow patterns, the <u>Froude number</u> shall be equal in model and prototype:

$$\frac{F_m}{F_p} = 1$$

In modelling a pump intake to study the potential formation of vortices, it is important to select a reasonably large geometric scale to minimize viscous and surface tension scale effect.

Also, the model shall be large enough to <u>allow visual observation</u> of flow patterns and accurate measurement of swirl and velocity distribution.

Help to <u>define the dimensions</u> of the intake to minimize viscous and surface tension scale effect.

Viscous effects – Reynolds number (R_e)

 $R_e \ge 6 \cdot 10^4$

$$R_e = uD/v$$

Surface tension effects – Weber number (W_e)

W_e ≥ 240

$$W_e = u^2 D/(\sigma/\rho)$$

v – kinematic viscosity of the liquid

 σ – surface tension of the liquid/air interface

ρ – liquid density

Acceptance criteria

- Type of vortex and occurrence time
 - Dye core vortices may be acceptable only if they occur for less than 10% of the time.
- Swirl angles (swirl meter)
 - Average swirl angles (short term 10 to 30 seconds and long term 10 minutes) must be less than 5 degrees. Maximum short term swirl angles up to 7 degrees may be acceptable.

Velocities

 Time varying fluctuations in the throat of the bell shall have a standard deviation from time averaged signal of less than 10%.

Test plan

- Operating conditions
 - Minimum, intermediate and maximum liquid levels and flows
- For multiple pumps all possible combinations
- Vortex observations and swirl measurements for all tests
- Axial velocity measurements at the bell throat or suction inlet for each pump
- Take photographs or videos
- Report preparation

Physical model – initial geometry Simple model test case for study of the flow around the open pump sump.

Sample of suction sump CFD analyze

Because of very low min level design of suction sump, CFD analyze is extremely important. Danger of vortexes is very big and it is necessary to make very careful calculation of intake and suction sump.

<u>Prelinimary CFD calculation of suction sump and pump intake</u>

This calculation is done as example – 3 pumps in operation with flow rate of 6 m3/s for each pump

This calculation shows possible intake problems which could caused lower Q-H curve, lower efficiency, higher vibration, worse NPSH characteristics.

Similar intake problems appear often. Recommendation from literature for sump design are not reliable and additional CFD analyze and model test even for small project is highly recommended.

Comparison between experimental an numerical results

Source CFD: (Škerlavaj, Škerget, Ravnik, Lipej, 2011); Source of experiment: (Tokyay and Constantinescu, 2006)

REFERENCES

We have references in 25 countries

NUCLEAR APPLICATION

R & D

FRANCE - Reactor cooling pumps
SWITZERLAND - Reactor cooling pumps

RUSSIA - II and IV security class cooling pumps

BRASIL - Model cooling pump

PUMPS

RUSSIA - II and IV security class cooling pumps

OIL & GAS

R & D

ITALY - API pumps for Refineries
 CANADA - API pumps for Refineries
 BULGARIA - API pumps for Refineries

PUMPS

RUSSIA - GIDRMAS GERM, ROSSNEFT, GAZPROM

INDUSTRY, WATER SUPPLY, IRRIGATION

GERMANY

AUSTRIA

INDIA

ITALY

ITALY

KAZAKHSTAN

SOUTH AFRICA

SAUDI ARABIA

SERBIA

SLOVENIA

EGYPT

IRAQ

JORDAN

CYPRUS

RUSSIA

UAE

UKRAINE

- Pumps for Industry

- Pumps for Industry

- Pumps for water application

- Pumps for Industry

- Pumps for irrigation

- Pumps for industry

- Pumps for Mine industry

- Pumps for wells

- Pumps for water application

- Water hammer systems

- Pumps for water application

- Pumps for water application

- Pumps for water application

- Pumps for irrigation

- Pumps for industry

- Pumps for water application

- Pumps for industry

	RUNNING PROJECTS				
1	1 Sewage pump Hydraulic and mechanical development		AOI, Ament - Egypt		
2	Vertical VS4 API 610	Hydraulical and mechanical development	DHM Russia		
3	API 610 BB1 Split casing pump	Hydraluc development	Aturia Italy		
4	Vertical Split casing pump	NPSH improving	Aturia Italy		
5	Horizontal split casing pump	Hydraluc development	Aturia Italy		
6	API 610 OH3 vertical inline pump	Hydraulic and mechanical development	Aturia Italy		
	PROJECTS 2021				
1	Submersinle 8* pumps	Hydraluc development	Aturia Italy		
2	Optimization of pumping station	Energy saving	Rotana Jumeirah Dubai		
3	Pump intake CFD analyze	Flow-vortex analyze	Aturia Italy		
4	OH 3 8 vertical inline pumps	Hydraulic development	Aturia Italy		
5	Split casing pump Q=2800 m3/h	Hydraulic and mechanical development	Aturia Italy		
6	API pump type OH 2 nq 12	Hydraulic and mechanical development	DHM Russia		
7	Axial vertical pump Q=12000 m3/h	Hydraulic development	Aturia Italy		
8	API pump type OH 2 nq 18	Hydraulic and mechanical development	DHM Russia		
9	API pump type VS 4 H=410 m	Hydraulic and mechanical development	DHM Russia		
10	API pump type OH 2 nq 23	Hydraulic and mechanical development	DHM Russia		

PROJECTS 2020				
1	API BB1 Split casing pump nq 38	Hydraulic development	Aturia Italy	
2	Reversible pump-turbine 2500 kW	Hydralic development	Rutschi - France	
3	Pump-turbine intake sump analyze	CFD hydraulic development	Rutschi - France	
4	High pressure multistage pump nq16	Efficiency improvement	DHM Russia	
5	Hydro p0wer plant 3 x 12 MW	3D Model	Hydroing Slovenia	
6	Split casing pump nq 33	Hydraulic development	Aturia Italy	
7	Split casing pump nq 64	Hydraulic development	Aturia Italy	
		PROJECTS 2018 - 2019		
1	Pump - turbine 125 MW	Hydraulic development	BHEL India	
2	Axial pump Q = 25.000 m3/h	Hydraulic development	Aturia Italy	
3	Fire fighting Split casing 250-300	Hydraulic development	Aturia Italy	
4	Analyze concrete model pump test procedure		Aturia Italy	
5	Submersible 8" pumps	Computational Fluid Dynamic Analyze	Aturia Italy	
6	Submersible 6" pumps	Compitational Fluid Dynamic Analyze	Aturia Italy	
7	Multistage pump 900 m3/h P = 1.200 kW	Hydraulic and mechanical design	KKR Kazakhstan	
8	FM fire fighting vertical pump nq 48	Hydraulic development	Aturia Italy	
9	FM fire fighting vertical pump nq64	Hydraulic development	Aturia Italy	
10	Multistage horizontal pump nq 28	Hydraulic and mechanical design	CRI India	
11	Vertical pump hollow shaft design	Mechanical design	CRI India	
12	Fire Fighting Slpit casing pump nq 38	Hydraulic development	Aturia Italy	

	PROJECTS 2017				
1	Submersible pumps 10"	Hydraulic and mechanical development	Aturia - Italy		
2	Vertical pump nq=85, 50.000 m3/h, P=4,8 MW	Hydraulic design	WPIL - India		
3	8 Horizontal high pressure pumps range up to 800 m3/h	Hydraulic and mechanical design	CRI - India		
4	Training course	Design of heavy duty process pumps	Rutschi -Switzerland		
5	Vertical pumps range up to 10.000 m3/h 15 pumps in range	Hydraulic and mechanical design	CRI - India		
6	API pump type OH2 nq 12	Improving hydraulic and mechanical design	Aturia - Italy		
7	Test rig design for pumps ISO 9906	Hydraulic and mechanical design	Hidroing - Slovenia		
8	Axial pump 28.000 m3/h	Hydraulic design	WPIL India		
9	Firefighting split casing pump 2500 GPM	Hydraulic and mechanical design	Aturia - Italy		
10	Vertical pump nq=46	Improving the hydraulic characteristics	Aturia - Italy		
11	Vertical pump nq=38	Improving the hydraulic characteristics	Aturia - Italy		
12	Split casing pumps	Mechanical design of 18 split casing pumps	Aturia - Italy		
13	Split casing pumps	Re-design of traditional mechanical design	Aturia - Italy		
14	Submersible pumps Caprari & Rovatti	Computational Fluid Dynamic Analyze	Aturia - Italy		

	PROJECTS 2016			
1	Production of prototype of barrel pump for nuclear application	Model pump for testing	Rutschi - Switzerland	
2	Development of split casing pumps range of 18 pumps	Hydraulic development, mechanical design	Aturia - Italy	
3	Development of split casing firefighting pump nq 34	Hydraulic development	Aturia - Italy	
4	Submersible pumps 8"	Hydraulic and mechanical development	Aturia - Italy	
5	Development of high pressure barrel pump for nuclear power plants	Mechanical design	Rutschi - Switzerland	
6	Split casing pump 150-500	Hydraulic and mechanical development	Aturia - Italy	
7	Submersible 6" pumps rage	Hydraulic development and mechanical design	Aturia - Italy	
8	Development of split casing pump 200-470	Hydraulic development and mechanical design	Aturia - Italy	

PROJECTS 2015			
1	Development of high pressure barrel pump for nuclear power plants	Hydraulic development	Rutschi - Switzerland
2	Development of high pressure pump for electrical motor cooling system integrated in the motor	Hydraulic development	Rutschi - Switzerland
4	Vertical pump design	Hydraulic development	Gidromas Germ - Russia
5	Submersible high pressure pumps	Hydraulic and mechanical design	Intechleader - Canada
		PROJECTS 2014	
1	Optimization and energy saving of Water Supply System Velika Plana	New pumps and new operating regimes	Velika Plana - Serbia
2	Thermal calculation of pump casing for nuclear power plant	Heat transfer calculations	Rutschi - Switzerland
3	Submersible pump for nuclear power plants	Improving the hydraulic characteristics	Aturia - Italy
4	Test rig for pumps Q max 5.000 m3/h	Design	NWWC - Saudi Arabia
6	End suction pumps	New pumps $Q = 1400 \text{ m}3/\text{h} \text{ H}=20 \text{ m}$	Godent - Serbia
7	Horizontal pumps	Production of impellers and diffusers	Rutschi - Switzerland
8	Electrical motor cooling pump	Hydraulic development	Rutschi - Switzerland
9	Water turbines test rig design	3D and 2D design	Hidroing - Slovenia

PUMPS PRODUCTION 2018-2022

	Item, Customer	Quantity	Description
1	Model pump Nuclear Power Plant, Rutschi – Switzerland	1	Development and production
2	Vertical turbine pumps TSVA-1200-55, Rosenergoatom, Kalininskaya Nuclear power plant – Russia	4	Development and production Q = 1200 m ³ /h, H = 55 m, P = 250 kW IV Safety class
3	End suction pumps TSNA 100/50 Rosenergoatom, Kalininskaya Nuclear power plant – Russia	3	Development and production Q = 100 m ³ /h, H = 50 m, P = 22 kW III Safety class
4	High pressure multistage pumps Rosneft refinery – Russia	2	Development and production $Q = 180 \text{ m}^3/\text{h}, H = 425 \text{ m},$ P = 315 kW
5	Split casing pumps Rosenergoatom, Leningradskaya Nuclear Power plant – Russia	6	Development and production Q = 1250 m ³ /h, H = 125 m, P = 550 kW II Safety class
6	Twin screw pumps for masut Transneft, Novorossiysk – Russia	2	Q = 28 m3/h p= 50 bar P = 75 kW
7	Condensate vertical pump ELEM - Macedonia	1	Q =540 m3/h, H = 75 m
8	Sewage submersible pumps Waste Water Treatment Plant Dojran Macedonia	3	Q = 750 m3/h, H=16 n
9	Vertical pumps GODENT – Serbia	2	Q = 540 m3/h, H=75 m

RESEARCH & DEVELOPMENT REVERSIBLE PUMP-TURBINES TURBINES

REVERSIBLE PUMP-TURBINE REFERENCE

BHEL Bhopal – INDIA

Reversible pump-turbine
Design of hydraulic
Preliminary mechanical design

Q = 45 m3/s, (162.000 m3/h)

H = 236 m,

P = 125 MW

REVERSIBLE PUMP-TURBINE REFERENCE

GIDROMASH – RUSSIA

Reversible pump-turbine
Design of hydraulic and mechnical design

Q = 12.000 m3/h

H = 8 m

P = 360 kW

Small Hydro Power Plants			
Power Plant Country Power [MW]			
Mesici Nova	Bosnia and Hercegovina	3 x 1700 kW	
Godent	Serbia	1 x 250 kW	
Lipkovo	Macedonia	1 x 900 kW	

Runner HE LIPKOVO 900 kW

MHE Mesici Nova 3 x 1700 kW

SM PUMPS references				
Pos.	Projects	P MW	Company	Country
1	Pump - turbine	125	BHEL	INDIA
2	Pump - turbine	0,36	Gidromas	RUSSIA
3	Concrete cooling pumps	4,245	Aturia - WPIL	Italia - India
4	Hydro power plant Mesici Nova	5,1	Hidroing	Slovenia - BIH
5	Hydro power plant Lipkovo	0,9	Vodostopanstvo	Macedonia

April 2019 37

KEY PERSONNEL

	Name and surname	Experience	Specific professional experience
	B.Sc. DUŠKO MITRUŠEVSKI	38	Specialized for hydraulic and mechanical design for special pumps and water turbines, Energy efficiency analyzes in pumping systems and processes
Ā	Ph.D. ANDREJ LIPEJ	33	Specialized for computational fluid dynamic, heat transfer calculation, fatigues calculation
	Ph.D. BOŠTJAN ZAFOŠNIK	23	Specialized for FEM analysis, structural analysis, stresses, displacement, fatigue and fracture mechanics.
	Ph.D. IVANA LUKEC	16	Specialized for application of mathematical modeling and simulation in process industry, specially refining, with the process optimization as the main objective
	Ph.D. ZORAN SPIROVSKI	25	Specialized in computational fluid dynamic, stress calculation
	M.Sc. HORYMIR ONDRACKA	34	Specialized for hydraulic design in turbine regime, CFD analyze expert
C. C.	B.Sc. SREČKO MITRUŠEVSKI	12	Specialized for hydraulic and mechanical design for special pumps and water turbines, computation fluid dynamic
	B.Sc. SAŠO MITRUŠEVSKI	10	Marketing project manager, marketing research analyzes
	B.Sc. FILIP DIMČEVSKI	12	Head of software engineering. Innovative engineer with over 10 years' experience. Specialized for software engineering, data structure design and complex digital projects.

THE INTERNATIONAL CERTIFICATION NETWORK

CERTIFICATE

Cro Cert has issued an IQNet recognized certificate that the organization:

SM PUMPS development and production of hydraulic machines Srećko Mitruševski s.p.
Ul. Milana Majcna 18
1000 Ljubljana, Slovenia

has implemented and maintains a

Quality Management System

for the following scope:

Mechanical Engineering: development, construction and production of diferent types of pumps,

which fulfils the requirements of the following standard

ISO 9001:2015

Issued on : 2019 - 12 - 19 Expires on : 2022 - 12 - 18

This attestation is directly linked to the IQNet Partner's original certificate and shall not be used as a stand-alone document.

Registration Number: HR - 611

| Net

Statte

Daws Sucil

Cro Cert

Alex Stoichitoiu President of IQNet

General Manager of Cro Cert

IQNG, Persurent
GOC China CON China COS Casch Severe In Present AVIOL Copper Class Severe In Color China COS Casch Severe In Present AVIOL Copper Class COS Casch Severe In Present Color China Cos Casch Severe In Color China Cos Casch Severe In Color China Copper Casch Severe In Color China Copper Casch Severe In Color China Casch Color Casch Severe In Color China Casch Casch Severe In Color Casch Ca

10Met in represented in the 193 by: AFVOR Describerion, 1730, DOS Helding Grahf and 1834 in a
"This statements of decide balance to the Oppint have 5 rejoinal extra discuss and shall not 50 took as a years above, decreases
"The for its NPA partners or which all the farms of water to the construction that the internation is worthed to the construction."

12 months afforthe issuing date, validby of this conflictive should be verified by soneing written inculty to be configure and he