03.12.2007.

PRVA SKUPINA ZADATAKA

- 1. Za sklop ispravljača s filtrom treba odrediti srednju vrijednost napona na izlazu (1 bod).
 - a) U_{IZ} ovisno o iznosu kondenzatora
 - \mathbf{b}) $\mathbf{U}_{\mathrm{IZ}} = 0$
 - c) $U_{IZ} < 0$
 - d) U_{IZ} ovisno o frekvenciji
 - e) $U_{IZ}>0$

2. Na slici su prikazane prijenosne karakteristike 2 različita MOSFET-a, A i B. Za napon praga U_{GS0} i strujni koeficijent K prikazanih MOSFET-a vrijedi (1 bod):

a)
$$U_{GS0A} > U_{GS0B}$$
 i $K_A > K_B$,

b)
$$U_{GS0A} > U_{GS0B} \text{ i } K_A > K_B,$$

c)
$$U_{GS0A} < U_{GS0B}$$
 i $K_A > K_B$,

d)
$$U_{GS0A} > U_{GS0B}$$
 i $K_A < K_B$,

3. Ako usporedimo strmine MOSFET-a A i B na istoj struji u području zasićenja (slika iz prethodnog zadatka), te napone U_{DS} karakteristika B1 i B2 MOSFET-a B, vrijedi (1 bod):

a)
$$g_{mA} < g_{mB} \text{ i } U_{DS,BI} < U_{DS,B2}$$
,

b)
$$g_{mA} = g_{mB} i U_{DS,BI} < U_{DS,B2}$$

c)
$$g_{mA} > g_{mB}$$
 i $U_{DS,BI} < U_{DS,B2}$,

d)
$$g_{mA} > g_{mB}$$
 i $U_{DS,BI} > U_{DS,B2}$,

e)
$$g_{mA} < g_{mB} i U_{DS,BI} > U_{DS,B2}$$
.

4. Izlazne karakteristike JFET-a prikazane su na slici. Uz kakav napon U_{GS} se postiže točka C? U kojem su odnosu efektivne duljine kanala u točkama A, B i C (1 bod)?

a)
$$|U_{GS}| \ge |U_P|$$
, $L_A > L_B > L_C$

b)
$$U_{GS} = 0$$
, $L_A > L_B > L_C$

c)
$$|U_{GS}| < |U_P|, L_A > L_B > L_C$$

d)
$$|U_{GS}| \ge |U_P|, L_A < L_B < L_C$$

e)
$$|U_{GS}| \ge |U_P|$$
, $L_A = L_B = L_C$

5. Izlazni otpor pojačala s FET-om u spoju zajedničkog odvoda ima iznos reda (1 bod):

- a) $1 \text{ M}\Omega$
- **b)** $10 \text{ k}\Omega$
- c) 100Ω
- d) $100 \text{ k}\Omega$
- **e**) 1 Ω

6. Koju logičku funkciju ostvaruje CMOS sklop na slici (1 bod)?

- a) niti jedan od odgovora
- **b)** $Y = \overline{A(BD + CE)}$
- $Y = \overline{A + (B + D)(C + E)}$
- **d)** Y = A + (B + D)(C + E)
- e) Y = A(BD + CE)

7. Na slici je prikazana koncentracija manjinskih nosilaca u emiteru i kolektoru. O kojem tipu tranzistora se radi i u kojem je području rada (1 bod):

- a) *npn* tranzistor u normalnom aktivnom području,
- b) niti jedno od navedenog,
- c) pnp tranzistor u inverznom aktivnom području,
- **d)** *npn* tranzistor u inverznom aktivnom području,
- e) pnp tranzistor u normalnom aktivnom području.

8. U kojem području radi tranzistor na slici (1 bod)?

- a) u inverznom aktivnom području,
- b) u području zapiranja,
- c) u normalnom aktivnom području,
- d) u području zasićenja,
- e) na granici normalnog aktivnog područja i područja zasićenja.

DRUGA SKUPINA ZADATAKA

ZADATAK 1. Prijenosna karakteristika nekog MOSFET-a uz $U_{DS} = -2$ V prikazana je na slici. Pretpostaviti da je $\lambda = 0$. Odrediti:

1.1. tip MOSFET-a (1 bod),

1.2. napon praga (1 bod),

1.3. strminu u točki A (1 bod),

1.4. struju u točki B (1 bod),

1.5. strminu i dinamički otpor u točki B (1 bod).

Odgovori:

1.1. a) nMOS, obogaćenoosiromašeni tip

b) pMOS, obogaćeni tip

c) pMOS, osiromašeni tip

d) nMOS, osiromašeni tip

e) nMOS, obogaćeni tip

1.2. **a)** $U_{GS0} = -0.5 \text{ V}$ **b)** $U_{GS0} = -0.25 \text{ V}$

c) $U_{GS0} = -0.75 \text{ V}$

1.3.

a) $g_{mA} = 0.33 \text{ mA/V}$

b) $g_{mA} = 0.67 \text{ mA/V}$ **c)** $g_{mA} = 1.33 \text{ mA/V}$

d) $g_{mA} = 0.89 \text{ mA/V}$

d) $U_{GS0} = 0.75 \text{ V}$ **e)** $U_{GS0} = 0.5 \text{ V}$

e) $g_{mA} = 1.78 \text{ mA/V}$

1.4. a) $I_{DB} = -4 \text{ mA*}$

b) $I_{DB} = 2,22 \text{ mA}$

c) $I_{DB} = 4.7 \text{ mA}$

d) $I_{DB} = -2,22 \text{ mA}$

e) $I_{DB} = 3.1 \text{ mA}$

a) $g_{mB} = 2.89 \text{ mA/V}, r_{dB} = 900 \Omega$

b) $g_{mB} = 1.78 \text{ mA/V}, r_{dB} = \infty$

c) $g_{mB} = 1.78 \text{ mA/V}, r_{dB} = 0.9 \text{ k}\Omega$

d) $g_{mB} = 2.89 \text{ mA/V}, r_{dB} = \infty$

e) $g_{mB} = 2.89 \text{ mA/V}, r_{dB} = 4.5 \text{ k}\Omega$

ZADATAK 2. Za bipolarni tranzistor emiter je homogeno dopiran s $N_D = 10^{19}$ cm⁻³, a baza s $N_{\rm A}=10^{17}~{\rm cm}^{-3}$. U nekoj radnoj točki u normalnom aktivnom području napon $U_{\rm BE}=0,55~{\rm V}$. U toj radnoj točki širine neutralnih baze i emitera iznose 250 nm. Pokretljivosti manjinskih nosilaca iznose $\mu_n = 400 \text{ cm}^2/\text{Vs}$ i $\mu_p = 200 \text{ cm}^2/\text{Vs}$, a vrijeme života manjinskih elektrona u bazi iznosi $\tau_n = 0.5 \ \mu\text{s}$. Površina spoja baza-emiter iznosi 1 mm². Pretpostaviti $U_T = 25 \text{ mV}$. Izračunati:

2.1. rubne koncentracije manjinskih nosilaca u bazi i emiteru (1 bod),

2.2. komponente struja emitera (1 bod),

2.3. rekombinacijsku struju baze (1 bod),

2.4. istosmjerni faktor strujnog pojačanja u spoju zajedničkog emitera (1 bod).

2.5. Ako je $\gamma = 0.99$ i $\beta^* = 0.99$ koliki je faktor β (1 bod)? (nije vezano uz prethodne podzadatke)

Odgovori:

2.1.

a) $p_{e0} = 7.54 \cdot 10^{16} \text{ cm}^{-3}, n_{b0} = 7.54 \cdot 10^{18} \text{ cm}^{-3}$

b) $p_{e0} = 7.54 \cdot 10^{10} \text{ cm}^{-3}, n_{b0} = 7.54 \cdot 10^{12} \text{ cm}^{-3}$

c) $p_{e0} = 5.2 \text{ cm}^{-3}$, $n_{h0} = 5.2 \cdot 10^2 \text{ cm}^{-3}$

d) $p_{e0} = 7.54 \cdot 10^{12} \text{ cm}^{-3}, n_{b0} = 7.54 \cdot 10^{10} \text{ cm}^{-3}$

e) $p_{e0} = 3.58 \cdot 10^{19} \text{ cm}^{-3}, n_{b0} = 3.58 \cdot 10^{17} \text{ cm}^{-3}$

a) $I_{nE} = 4.8 \text{ mA}, I_{pE} = 24.1 \mu\text{A}$

b) $I_{nE} = 2.4 \text{ mA}, I_{pE} = 48.2 \mu\text{A}$

c) $I_{nE} = 1 \text{ mA}, I_{pE} = 0.5 \mu \text{A}$

d) $I_{nE} = 48 \ \mu \text{A}, I_{pE} = 2,4 \ m\text{A}$

e) $I_{nE} = 9.6 \text{ mA}, I_{pE} = 0.274 \mu\text{A}$

2.3.

a) $I_R = 3 \, \mu A$

a) $\beta = 100$

b) $\beta = 298$

2.5. **a)** $\beta = 100$ **b)** $\beta = 198$

c) $\beta = 50$

d) $\beta = 298$

e) $\beta = 148$

b) $I_R = 0.026 \ \mu A$

c) $I_R = 0.3 \ \mu A$ **d)** $I_R = 30 \ \mu A$

d) $\beta = 148$

e) $\beta = 50$

c) $\beta = 198$

e) $I_R = 0.03 \ \mu A$

ZADATAK 3. Za pojačalu sa slike zadano je: U_{DD} = 15 V , R_g = 500 Ω , R_1 = 7,8 M Ω , R_2 = 3,3 M Ω , $R_D = 4.7 \text{ k}\Omega$ i $R_T = 6.8 \text{ k}\Omega$. Parametri *n*-kanalnog MOSFET-a su $K = 1.52 \text{ mA/V}^2$, $U_{GSO} = 2 \text{ V}$ i $\lambda = 0.0021 \text{ V}^{-1}$.

Odrediti:

- **3.1.** vrijednost otpornika R_S , ako su izlazne karakteristike MOSFET-a s ucrtanim statičkim radnim pravcem i statičkom radnom točkom prikazane na slici (1 bod),
- **3.2.** dinamičke parametre g_m i r_d , ako je poznato $I_{DQ}=2,07$ mA, $U_{DSQ}=4,45$ V, $U_{GSQ}=3,65$ V i $R_S = 390 \ \Omega \ (1 \ \text{bod}),$
- **3.3.** naponsko pojačanje $A_V = \frac{u_{iz}}{u}$, ako su poznati dinamički parametri $g_m = 2,19 \text{ mA/V i}$ $r_d = 311 \text{ k}\Omega$, te $R_S = 680 \Omega$ (1 bod),
- 3.4. ulazni otpor R_{ul} , ako su poznati dinamički parametri $g_m = 2,19 \text{ mA/V i } r_d = 311 \text{ k}\Omega$, te $R_{\rm S} = 680 \ \Omega \ (1 \ {\rm bod}),$
- 3.5. izlazni otpor R_{iz} , ako su poznati dinamički parametri $g_m = 2,19 \text{ mA/V i } r_d = 311 \text{ k}\Omega$, te $R_S = 680 \ \Omega \ (1 \ \text{bod}).$

Odgovori:

- 3.1. a) R_S =560 Ω
 - **b)** $R_s = 820 \Omega$
 - c) R_S =470 Ω

 - d) R_s =680 Ω
 - e) R_S =390 Ω

 - **b)** R_{ul} =3,3 M Ω

 - **d)** R_{ul} =500 Ω
 - e) R_{ul} =7,8 M Ω

- 3.2. a) g_m =2,53 mA/V, r_d =230 kΩ
 - **b)** g_m =2,53 mA/V, r_d =285 k Ω
 - **c)** $g_m = 4.63 \text{ mA/V}, r_d = 285 \text{ k}\Omega$
 - **d)** g_m =1,49 mA/V, r_d =190 kΩ
 - **e)** g_m =4,63 mA/V, r_d =230 kΩ
- 3.3.
- **a)** $A_V = 2.43$
 - **b)** $A_V = 0.89$
 - c) $A_V = -2.43$
 - **d)** $A_V = 6.03$
 - **e)** $A_V = -6.03$

- 3.4. **a)** R_{ul} =2,32 M Ω
 - c) $R_{ul}=11,1 \text{ M}\Omega$
- 3.5. **a)** R_{iz} =4672 Ω
 - **b)** $R_{iz} = 311 \text{ k}\Omega$
 - **c)** R_{iz} =4700 Ω
 - **d)** R_{iz} =774,76 kΩ
 - **e)** R_{iz} =4630 Ω