Contents

1																	
	math																
•																	
	1.1	公式 .															
	1.2	矩陣快速罩	幕.														
		質數與因數	th the														
	1.3	只 3 2 2 2 2 2 3		٠.	•	٠	•	•	•	•	•	•	•	•	•	•	
	1.4	Pisano F	eri	od													
	1.5	歐拉函數															
	1 6	乘法逆元	、 4 日 -	小虫													
	1.0	米広芝儿	, wH t	コ妥ス	•		•	•		•	•	•	•	•	•	•	
	1.7	大步小步															
2	字串																
-			, —,	+-													
		最長迴文-							•	•				•			
	2.2	KMP															
	2 3	Z Algori	i thm														
	2.5	Z AIGOII	LCIIII	•	•	•	٠	•	٠	٠	٠	٠	•	•		•	
	_																
3	algo	rithm															
	3 1	三分搜 .															
		a4 /3									٠				•		
									•	•				•	•		
	3.3	greedy															
		dinic .															
						•	•	•	•	•	•	•	•	•	•	•	
	3.5	SCC Targ	jan														
	3.6	SCC Kosa	arai	u													
		Articula															
	3.1	AI LICUIA	1010	IIIFC	TII	LS	ıa	ıJ	all		٠	•	•	•	•	•	
	3.8	最小樹狀的	<u>.</u>														
	3.9	最小樹狀區 二分圖最之	$+\pi$	52													
	2 10	Dlasses.	41~		46.		•					•			•	•	
	3.10	Blossom	AIR	01.1	. Crii	П	•			•		•	•	•	•	•	
	3.11	Astar .															
		Josephus															
	2.12	Josephas		DIC		•	•									•	
	3.13	KM															
	3.14	KM LCA 倍增	法 .														
	2 15	LCA 樹壓	亚口	мо													
	3.13	LCA 切座	T 1	Jily	•	•	٠	٠	•	٠	•	•	•	٠	•		
	3.16	LCA 樹錬	剖分														
	3.17	MCMF .															
	2 10	莫隊 .															1
	3.10	关例 .					•		•	٠		•	•		•		
	3.19	Dancing	Lin	ks													1
4	Data	Structur	_														1
•																	1
	4.1					•				•				•			
		BIT															1
	4.2	Chtholly	Tre	е													
		Chtholly			٠	•		•		•	•	٠		•			1
	4.3	Chtholly 線段樹 10	Ď.														1
	4.3 4.4	Chtholly 線段樹 11 線段樹 21	D .														1
	4.3 4.4	Chtholly 線段樹 11 線段樹 21	D .				:										
	4.3 4.4 4.5	Chtholly 線段樹 11 線段樹 21 權值線段板	D . D . 尌 .		•												
	4.3 4.4 4.5 4.6	Chtholly 線段樹 1 線段樹 2 權值線段板 Trie .	D D 鼓				:										1
	4.3 4.4 4.5 4.6	Chtholly 線段樹 11 線段樹 21 權值線段板	D D 動		•												
	4.3 4.4 4.5 4.6 4.7	Chtholly 線段樹 10 線段樹 20 權值線段板 Trie . AC Trie	D D 動														1
	4.3 4.4 4.5 4.6 4.7	Chtholly 線段樹 1 線段樹 2 權值線段板 Trie .	D D 動														1
_	4.3 4.4 4.5 4.6 4.7 4.8	Chtholly 線段樹 1 線段樹 2 權值線段村 Trie . AC Trie 單調隊列	D D 動														1
5	4.3 4.4 4.5 4.6 4.7 4.8	Chtholly 線段樹 1E 線段樹 2E 權值線段村 Trie . AC Trie 單調隊列 etry	D D 動														1
5	4.3 4.4 4.5 4.6 4.7 4.8	Chtholly 線段樹 1 線段樹 2 權值線段村 Trie . AC Trie 單調隊列	D D 動												•		1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1	Chtholly 線段樹 1 線段樹 2 權值線段析 Trie . AC Trie 單關隊列 etry 公式 .	D D 封														1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2	Chtholly 線段樹 1 線段樹 2 權值線段樹 Trie . AC Trie 單調隊列 etry 公式 . Template	D														1 1 1 1 1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2	Chtholly 線段樹 1 線段樹 2 權值線段析 Trie . AC Trie 單關隊列 etry 公式 .	D														1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3	Chtholly 線段樹 11 線段樹 21 權值線段樹 Trie . AC Trie 單調隊列 etry 公式 . Template Polygon	D														1 1 1 1 1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4	Chtholly 線段樹 16 線段樹 26 權值線段 Trie . AC Trie 單調隊列 etry 公式 . Template Polygon Intersec	D 動														11111111
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5	Chtholly 線段樹 15 線段樹 25 權值線段析 Trie - AC Trie 單調隊列 etry 公式 - Template Polygon Intersed 最小圓覆蓋	D D d d e ctio														1 1 1 1 1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5	Chtholly 線段樹 16 線段樹 26 權值線段 Trie . AC Trie 單調隊列 etry 公式 . Template Polygon Intersec	D D d d e ctio														11111111
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6	Chtholly 線段樹 11 線段樹 21 權值線段林 AC Trie 車式調隊列 etry 公式 . Template Polygon Intersec 最小團等尺	D D 動 ctio														11111111
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Chtholly ket by the control of the	D D 動 ctio														1 1 1 1 1 1 1 1 1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Chtholly 線段樹 11 線段樹 21 權值線段林 AC Trie 車式調隊列 etry 公式 . Template Polygon Intersec 最小團等尺	D D 動 ctio														11111111
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Chtholly ket by the control of the	D D 動 ctio														1 1 1 1 1 1 1 1 1
5	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Chtholly ket by the control of the	D D 動 ctio														1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Chtholly Chtholly Chtholly Red 11	D D D d d ctio														1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP	Chtholly 線段樹樹 11 線線權值線 Trie AC III Y CAC III	D D d c ctio c ctio	· · · · · · · · · · · · · · · · · · ·													11111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.2	Chtholly Ch	D D d d d d d d d d d d d d d d d d d d	· · · · · · · · · · · · · · · · · · ·													1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.2	Chtholly Ch	D D d d d d d d d d d d d d d d d d d d	· · · · · · · · · · · · · · · · · · ·													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.2	Chtholly Ch	D D d d d d d d d d d d d d d d d d d d	· · · · · · · · · · · · · · · · · · ·													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.5 5.2 5.3 5.4 5.5 5.6 6.7 5.8 DP 6.1 6.2 6.3 6.4	Chtholly Chtholly Chtholly Repair AC I Find A	D D D D D D D D D D D D D D D D D D D														111111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.5 5.6 5.7 5.8 DP 6.1 6.2 6.3 6.4 6.5	Chtholly Chtholly Remains a specific product of the specific product	D D D D D D D D D D D D D D D D D D D	· · · · · · · · · · · · · · · · · · ·													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.3 6.4 6.5 6.6	Chtholly Chtholly Chtholly Remains a specific property of the polygon Intersection	D D D D D D D D D D D D D D D D D D D														111111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.3 6.4 6.5 6.6	Chtholly Chtholly Chtholly Remains a specific property of the polygon Intersection	D D D D D D D D D D D D D D D D D D D														11111111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 DP 6.1 6.2 6.3 6.4 6.6 6.6 6.6	Chtholly Chtholly Chtholly Edward Trie AC Tik Chtholly C	DDD DDD DDDD DDDDDDDDDDDDDDDDDDDDDDDD	· · · · · · · · · · · · · · · · · · ·													1111111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.5 5.5 5.7 5.8 DP 6.1 6.3 6.4 6.7 6.6 6.7 6.6	Chtholly 11	DDD射 · · · · · · · · · · · · · · · · · ·	·····································		・・・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・											11111111111111
	4.3 4.4 4.5 4.6 4.7 4.8 Geom 5.1 5.2 5.3 5.5 5.5 5.7 5.8 DP 6.1 6.3 6.4 6.7 6.6 6.7 6.6	Chtholly Chtholly Chtholly Remains a specific property of the polygon Intersection	DDD射 · · · · · · · · · · · · · · · · · ·	·····································		・・・・・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・											11111111111111

6.10 WeightedLIS

1 math

1.1 公式

1. Most Divisor Number

Range	最多因數數	因數個數
109	735134400	1344
2^{31}	2095133040	1600
10^{18}	897612484786617600	103680
2^{64}	9200527969062830400	161280

2. Catlan Number

$$C_n = \frac{1}{n} {2n \choose n}, C_{n+1} = \frac{2(2n+1)}{n+2} C_n$$

C=1,1,2,5,14,42,132,429,1430,4862,...

3. Faulhaber's formula

$$\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{r=0}^{p} \binom{p+1}{r} B_{r} n^{p-r+1}$$

where
$$B_0=1$$
, $B_r=1-\sum\limits_{i=0}^{r-1} {r\choose i} \frac{B_i}{r-i+1}$

也可用高斯消去法找 deg(p+1) 的多項式,例:

$$\sum_{k=1}^{n} k^2 = a_3 n^3 + a_2 n^2 + a_1 n + a_0$$

$$\begin{bmatrix} 0^3 & 0^2 & 0^1 & 0^0 \\ 1^3 & 1^2 & 1^1 & 1^0 \\ 2^3 & 2^2 & 2^1 & 2^0 \\ 3^3 & 3^2 & 3^1 & 3^0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0^2 \\ 0^2 + 1^2 \\ 2^2 + 1^2 + 2^2 \\ 0^2 + 1^2 + 2^2 + 3^2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 & 5 \\ 27 & 9 & 3 & 1 & 14 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 4 & 6 & 7 & 3 \\ 0 & 0 & 6 & 11 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix}, \sum_{k=1}^{n} k^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

4. Lagrange Polynomial

拉格朗日插值法:找出 n 次多項函數 f(x) 的點 $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$

$$L(x) = \sum_{j=0}^{n} y_j l_j(x)$$

$$l_j(x) = \prod_{i=0, i \neq j}^n \frac{x - x_i}{x_i - x_i}$$

5. SG Function

$$SG(x) = mex\{SG(y)|x \to y\}$$

$$mex(S) = min\{n|n \in \mathbb{N}, n \notin S\}$$

6. Fibonacci

$$\begin{bmatrix} f_{n-1} & f_n \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} f_n & f_{n+1} \end{bmatrix} & 7 \\ \begin{bmatrix} f_n & f_{n+1} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^p = \begin{bmatrix} f_{n+p} & f_{n+p+1} \end{bmatrix}, p \in \mathbb{N} & 9 \\ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] & 11$$

7. Pick's Theorem

給定頂點座標均是整點(或正方形格子點)的簡單多邊形, 其面積 A 和內部格點數目 i、邊上格點數目 b 的關係為

$$A = i + \frac{b}{2} - 1$$

8. Euler's Formula

對於有 V 個點、E 條邊、F 個面 (含外部) 的連通平面圖

$$F + V - E = 2$$

(1)、(2)○;(3)×, AC 與 BD 相交;(4)×,非連通圖

9. Simpson Integral

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

1.2 矩陣快速冪

```
using 11 = long long;
   using mat = vector<vector<ll>>;
   const int mod = 1e9 + 7;
   mat operator*(mat A, mat B) {
    mat res(A.size(), vector<ll>(B[0].size()));
    for(int i=0; i<A.size(); i++) {</pre>
      for(int j=0; j<B[0].size(); j++) {</pre>
        for(int k=0; k<B.size(); k++) {</pre>
          res[i][j] += A[i][k] * B[k][j] % mod;
          res[i][j] %= mod;
12
13
15
    return res;
17
18
   mat I = ;
   // compute matrix M^n
   // 需先 init I 矩陣
   mat mpow(mat& M, int n) {
   if(n <= 1) return n ? M : I;
    mat v = mpow(M, n>>1);
    return (n & 1) ? v*v*M : v*v;
27
   // 迴圈版本
28
   mat mpow(mat M, int n) {
    mat res(M.size(), vector<ll>(M[0].size()));
    for(int i=0; i<res.size(); i++)</pre>
      res[i][i] = 1;
    for(; n; n>>=1) {
      if(n & 1) res = res * M;
      M = M * M;
35
36
    return res;
```

1.3 質數與因數

```
歐拉篩O(n)
   #define MAXN 47000 //sqrt(2^31)=46,340...
   bool isPrime[MAXN];
   int p[MAXN];
   int pSize=0;
    void getPrimes(){
     memset(isPrime, true, sizeof(isPrime));
     isPrime[0]=isPrime[1]=false;
     for(int i=2;i<MAXN;i++){</pre>
       if(isPrime[i]) p[pSize++]=i;
10
       for(int j=0;j<pSize&&i*p[j]<=MAXN;++j){</pre>
12
         isPrime[i*p[j]]=false;
13
         if(i%p[j]==0) break;
14
15
16
17
   最大公因數 O(log(min(a,b)))
   int GCD(int a, int b){
     if(b == 0) return a;
     return GCD(b, a%b);
22 }
   質因數分解
   void primeFactorization(int n){
25
     for(int i=0; i<p.size(); ++i) {</pre>
       if(p[i]*p[i] > n) break;
       if(n % p[i]) continue;
       cout << p[i] << ' ';\\
       while(n%p[i] == 0) n /= p[i];
31
     if(n != 1) cout << n << ' ';
     cout << ' \ n';
```

```
且週期的結束判斷會在fib[i - 1] == 0 &&
35
                                                                                                       82 }
   擴展歐幾里得算法 ax + by = GCD(a, b)
                                                               fib[i] == 1時,
36
   int ext_euc(int a, int b, int &x, int &y) {
                                                          此時循環週期長度是i-1
37
                                                   10
    if(b == 0){
                                                   11
                                                                                                          1.5 歐拉函數
39
      x = 1, y = 0;
                                                   12
                                                      所以 這 題 是 在 找 出 循 環 调 期 後 ,
                                                      用快速冪並mod(循環週期長度)即可AC(快速冪記得mod),
      return a;
                                                   13
                                                      此外fib要mod n,也要找週期,所以用預處理的方式列表
41
                                                   14
                                                                                                       1 //計算閉區間 [1,n] 中有幾個正整數與 n 互質
42
    int d = ext_euc(b, a%b, y, x);
                                                   15
43
    y -= a/b*x;
                                                   16
                                                                                                         int phi(){
44
    return d;
                                                      #define maxn 1005
                                                   17
                                                                                                             int ans=n;
45
   }
                                                   18
                                                                                                             for(int i=2;i*i<=n;i++)</pre>
   int main(){
46
                                                   19
                                                                                                                 if(n%i==0){
47
    int a, b, x, y;
                                                   20 Pisano period可證—個週期的長度會在[n, n ^ n]之間
                                                                                                                    ans=ans-ans/i;
     cin >> a >> b;
48
                                                   21
                                                      */
                                                                                                                    while(n%i==0) n/=i;
    ext_euc(a, b, x, y);
cout << x << ' ' << y << endl;
49
                                                   22
                                                                                                       9
                                                   23
                                                      // int fib[maxn][maxn * maxn];
                                                                                                       10
                                                                                                             if(n>1) ans=ans-ans/n;
                                                   24 //改用 vector
51
    return 0;
                                                                                                       11
                                                                                                             return ans;
                                                   25 vector<int> fib[maxn];
52
                                                                                                       12 }
53
                                                      int period[maxn];
                                                   26
54
                                                   27
55
                                                   28
                                                      int qpow(int a, unsigned long long b, int
                                                                                                          1.6 乘法逆元、組合數
56
                                                           mod)
   解: 把偶數 N (6≤N≤10<sup>6</sup>) 寫成兩個質數的和。
                                                   29
                                                                                                           x^{-1} mod m
                                                        if (b == 0)
   #define N 20000000
                                                   30
                                                                                                                       1.
   int ox[N], p[N], pr;
                                                                                                                                             (mod \ m)
59
                                                   31
                                                         return a;
                                                                                                                -\left\lfloor \frac{m}{x}\right\rfloor (m \ mod \ x)^{-1}, otherwise
   void PrimeTable(){
                                                   32
                                                        long long res = 1;
                                                                                                                        1,
                                                                                                                                      if x = 1
                                                                                                               (m-\left|\frac{m}{x}\right|)(m \ mod \ x)^{-1}, otherwise
                                                                                                                                                (mod\ m)
    ox[0] = ox[1] = 1;
                                                        while (b)
61
                                                   33
    pr = 0;
                                                   34
                                                                                                          若 p \in prime, 根據費馬小定理, 則
63
    for(int i=2;i<N;i++){</pre>
                                                   35
                                                          if (b & 1)
                                                                                                           64
      if(!ox[i]) p[pr++] = i;
                                                   36
                                                           res = ((a % mod) * (res % mod)) % mod;
                                                          a = ((a % mod) * (a % mod)) % mod;
      for(int j=0; i*p[j]<N&&j<pr; j++)</pre>
65
                                                   37
        ox[i*p[j]] = 1;
66
                                                   38
                                                          b >>= 1:
                                                                                                          using ll = long long;
67
                                                   39
                                                        }
68
  }
                                                   40
                                                        return res:
                                                                                                          const int maxn = 2e5 + 10;
   int main(){
                                                   41
                                                                                                          const int mod = 1e9 + 7;
69
    PrimeTable():
                                                   42
70
71
    int n;
                                                   43
                                                      int main()
                                                                                                          int fact[maxn] = {1, 1}; // x! % mod
72
     while(cin>>n, n){
                                                   44
                                                                                                          int inv[maxn] = \{1, 1\}; // x^{(-1)} % mod
73
                                                                                                          int invFact[maxn] = {1, 1};// (x!)^(-1) % mod
      int x:
                                                   45
                                                        int t:
74
      for(x=1;; x+=2)
                                                        unsigned long long a, b;
                                                   46
75
        if(!ox[x] && !ox[n-x]) break;
                                                        int n;
                                                                                                          void build() {
                                                   47
                                                                                                       9
      printf("%d = %d + %d\n", n, x, n-x);
76
                                                                                                          for(int x=2; x<maxn; x++) {</pre>
                                                                                                       10
77
                                                        //注意: 這裡沒算mod 1的循環長度,
                                                                                                             fact[x] = (11)x * fact[x-1] % mod;
    }
                                                   49
                                                                                                       11
78
   }
                                                   50
                                                        //因為mod 1都等於 0,沒有週期
                                                                                                             inv[x] = (11)(mod-mod/x)*inv[mod%x]%mod;
                                                                                                       12
79
                                                   51
                                                        for (int i = 2; i < maxn; ++i)</pre>
                                                                                                       13
                                                                                                             invFact[x] = (ll)invFact[x-1]*inv[x]%mod;
   problem :
80
                                                   52
                                                                                                       14
   給定整數 N,求N最少可以拆成多少個質數的和。
                                                          fib[i].emplace_back(0);
                                                                                                         }
                                                   53
                                                                                                       15
   如果N是質數,則答案為 1。
                                                   54
                                                          fib[i].emplace_back(1);
                                                                                                       16
83
   如果N是偶數(N!=2),則答案為2(強歌德巴赫猜想)。
                                                   55
                                                          for (int j = 2; j < maxn * maxn; ++j)</pre>
                                                                                                       17
                                                                                                          // 前提: mod 為質數
84
   如果N是奇數且N-2是質數,則答案為2(2+質數)。
                                                   56
                                                                                                          void build() {
   其他狀況答案為 3 (弱歌德巴赫猜想)。
                                                            fib[i].emplace_back(
85
                                                   57
                                                                                                           auto gpow = [&](11 a, int b) {
                                                                                                       19
86
                                                              (fib[i][j-1]%i+fib[i][j-2]%i)%i
                                                                                                             11 \text{ res} = 1;
                                                   58
87
   bool isPrime(int n){
                                                   59
                                                                                                       21
                                                                                                             for(; b; b>>=1) {
88
     for(int i=2;i<n;++i){</pre>
                                                   60
                                                            if (fib[i][j-1]==0&&fib[i][j]==1)
                                                                                                       22
                                                                                                               if(b & 1) res = res * a % mod;
89
      if(i*i>n) return true;
                                                   61
                                                                                                       23
                                                                                                               a = a * a % mod;
90
      if(n%i==0) return false;
                                                             period[i] = j - 1;
                                                   62
                                                                                                       24
91
                                                   63
                                                             break;
                                                                                                       25
                                                                                                             return res;
                                                   64
92
    return true;
                                                                                                       26
                                                                                                           };
93
                                                   65
                                                                                                       27
   int main(){
                                                                                                           for(int x=2; x<maxn; x++) {</pre>
94
                                                   66
                                                                                                       28
95
    int n:
                                                   67
                                                                                                       29
                                                                                                             fact[x] = (11)x * fact[x-1] % mod;
                                                        scanf("%d", &t);
                                                                                                       30
                                                                                                             invFact[x] = qpow(fact[x], mod-2);
    if(isPrime(n)) cout<<"1\n":</pre>
97
                                                                                                       31
                                                   69
     else if(n%2==0||isPrime(n-2)) cout<<"2\n";</pre>
                                                                                                       32
                                                   70
    else cout<<"3\n";</pre>
99
                                                   71
                                                                                                       33
                                                   72
                                                          scanf("%11u %11u %d", &a, &b, &n);
                                                                                                       34
                                                                                                          // C(a, b) % mod
                                                          if (a == 0)
                                                   73
                                                                                                         int comb(int a, int b) {
                                                   74
                                                           puts("0");
                                                                                                           if(a < b) return 0;</pre>
                                                                                                       36
                                                   75
                                                          else if (n == 1) //當mod 1時任何數都是\theta,
                                                                                                           11 x = fact[a];
                                                                                                       37
   1.4 Pisano Period
                                                   76
                                                            puts("0");
                                                                                                       38
                                                                                                           11 y = (11)invFact[b] * invFact[a-b] % mod;
                                                                //所以直接輸出0,避免我們沒算
                                                                                                           return x * y % mod;
                                                                                                       39
 1 | #include <cstdio>
                                                   77
                                                                          //fib[1][i]的問題(Runtime
   #include <vector>
                                                               error)
   using namespace std;
                                                   78
                                                            printf("%d\n",
                                                              fib[n][qpow(a % period[n], b,
                                                   79
                                                                                                          1.7 大步小步
```

period[n])]);

80

return 0;

5 /*

Pisano Period + 快速冪 + mod

費氏數列在mod n的情況下會有循環週期,

Pisano Period:

```
給定 B,N,P,求出 L 滿足 B^L N(mod P)。
2
3
   題解
   餘數的循環節長度必定為 P 的因數,因此
        B^0 B^P,B^1 B^(P+1),...,
   也就是說如果有解則 L<N,枚舉0,1,2,L-1
        能得到結果,但會超時。
   將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
 7
   設 m=√P 能保證最多枚舉 2√P 次。
  B^(mx+y) N(mod P)
8
  B^(mx)B^y N(mod P)
10 B^y N(B^(-m))^x (mod P)
   先求出 B^0,B^1,B^2,...,B^(m-1),
   再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的
   這種算法稱為大步小步演算法,
   大步指的是枚舉 x (一次跨 m 步),
14
   小步指的是枚舉 y (一次跨 1 步)。
16
    複雜度分析
   利用 map/unorder_map 存放
17
       B^0,B^1,B^2,...,B^(m-1),
  枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
18
   存放和查詢最多 2√P 次,時間複雜度為
        0(\sqrt{P\log\sqrt{P}})/0(\sqrt{P}) \circ
20
  using LL = long long;
21
  LL B, N, P;
22
23
  LL fpow(LL a,LL b,LL c){
24
      LL res=1:
25
      for(;b;b >>=1){
26
          if(b&1)
27
             res=(res*a)%c;
28
          a=(a*a)%c;
29
      }
30
      return res;
  }
31
32
  LL BSGS(LL a,LL b,LL p){
33
      a%=p,b%=p;
      if(a==0)
34
35
          return b==0?1:-1;
      if(b==1)
36
37
         return 0;
38
      map<LL, LL> tb;
39
      LL sq=ceil(sqrt(p-1));
40
      LL inv=fpow(a,p-sq-1,p);
      tb[1]=sq;
41
42
      for(LL i=1,tmp=1;i<sq;++i){</pre>
43
          tmp=(tmp*a)%p;
44
          if(!tb.count(tmp))
45
             tb[tmp]=i;
46
47
      for(LL i=0;i<sq;++i){</pre>
48
          if(tb.count(b)){
49
             LL res=tb[b];
50
             return i*sq+(res==sq?0:res);
51
52
          b=(b*inv)%p;
53
54
      return -1;
  }
55
  int main(){
56
57
      IOS; //輸入優化
      while(cin>>P>>B>>N){
58
59
          LL ans=BSGS(B,N,P);
          if(ans==-1)
60
61
             cout<<"no solution\n";</pre>
62
          else
63
             cout<<ans<<'\n';
64
      }
65 }
```

2 字串

2.1 最長迴文子字串

```
1 #include < bits/stdc++.h>
   #define T(x) ((x)%2 ? s[(x)/2] : '.')
   using namespace std;
   string s;
   int n:
 6
   int ex(int 1,int r){
     while(l-i>=0&&r+i<n&&T(l-i)==T(r+i)) i++;</pre>
10
11
     return i;
12
13
   int main(){
15
     cin>>s:
     n=2*s.size()+1;
16
17
     int mx=0;
     int center=0;
18
     vector<int> r(n);
19
     int ans=1;
20
21
     for(int i=1;i<n;i++){</pre>
22
       int ii=center-(i-center);
23
24
       int len=mx-i+1;
25
       if(i>mx){
26
         r[i]=ex(i,i);
27
         center=i;
28
         mx=i+r[i]-1;
29
       else if(r[ii]==len){
30
31
         r[i]=len+ex(i-len,i+len);
32
         center=i:
33
         mx=i+r[i]-1;
34
35
       else r[i]=min(r[ii],len);
36
       ans=max(ans,r[i]);
37
38
     cout<<ans-1<<"\n";
39
     return 0;
```

2.2 KMP

```
const int maxn = 1e6 + 10;
                          // len(a), len(b)
 3 int n, m;
                          // failure function
   int f[maxn];
   char a[maxn], b[maxn];
   void failureFuntion() { // f[0] = 0
       for(int i=1, j=0; i<m; ) {</pre>
 8
           if(b[i] == b[j]) f[i++] = ++j;
 9
10
           else if(j) j = f[j-1];
11
           else f[i++] = 0;
      }
12
13 }
14
15
   int kmp() {
       int i = 0, j = 0, res = 0;
16
17
       while(i < n) {</pre>
           if(a[i] == b[j]) i++, j++;
18
19
           else if(j) j = f[j-1];
20
           else i++:
21
           if(j == m) {
              res++; // 找到答案
22
23
              j = 0; // non-overlapping
24
          }
25
26
       return res;
27 }
28
```

2.3 Z Algorithm

```
1 const int maxn = 1e6 + 10;
   int z[maxn]; // s[0:z[i]) = s[i:i+z[i])
   string s;
   void makeZ() { // z[0] = 0
     for(int i=1, l=0, r=0; i<s.length(); i++) {</pre>
       if(i<=r && z[i-l]<r-i+1) z[i] = z[i-l];</pre>
       else {
         z[i] = max(0, r-i+1);
         while(i+z[i]<s.length() &&</pre>
11
              s[z[i]]==s[i+z[i]]) z[i]++;
12
       if(i+z[i]-1 > r) l = i, r = i+z[i]-1;
13
    }
14
15 }
```

algorithm

三分搜 3.1

```
題意
   給定兩射線方向和速度, 問兩射線最近距離。
     題 解
   假設 F(t) 為兩射線在時間 t 的距離,F(t)
        為二次函數,
   可用三分搜找二次函數最小值。
   struct Point{
      double x, y, z;
 7
       Point() {}
       Point(double _x,double _y,double _z):
9
10
          x(_x),y(_y),z(_z){}
11
       friend istream& operator>>(istream& is,
            Point& p) {
          is >> p.x >> p.y >> p.z;
13
          return is;
14
15
       Point operator+(const Point &rhs) const{
          return Point(x+rhs.x,y+rhs.y,z+rhs.z);
16
17
       Point operator-(const Point &rhs) const{
18
19
          return Point(x-rhs.x,y-rhs.y,z-rhs.z);
20
21
       Point operator*(const double &d) const{
22
          return Point(x*d,y*d,z*d);
23
       Point operator/(const double &d) const{
24
          return Point(x/d,y/d,z/d);
25
26
       double dist(const Point &rhs) const{
27
28
          double res = 0;
29
          res+=(x-rhs.x)*(x-rhs.x);
          res+=(y-rhs.y)*(y-rhs.y);
30
          res+=(z-rhs.z)*(z-rhs.z);
31
32
          return res:
33
      }
34
   };
   int main(){
35
36
       IOS;
               //輸入優化
37
       int T;
38
       cin>>T;
       for(int ti=1;ti<=T;++ti){</pre>
39
40
          double time;
41
          Point x1,y1,d1,x2,y2,d2;
          cin>>time>>x1>>y1>>x2>>y2;
42
          d1=(y1-x1)/time;
43
          d2=(y2-x2)/time;
44
45
          double L=0,R=1e8,m1,m2,f1,f2;
46
          double ans = x1.dist(x2);
47
          while(abs(L-R)>1e-10){
              m1=(L+R)/2;
48
              m2=(m1+R)/2;
49
50
              f1=((d1*m1)+x1).dist((d2*m1)+x2);
51
              f2=((d1*m2)+x1).dist((d2*m2)+x2);
52
              ans = min(ans, min(f1, f2));
53
              if(f1<f2) R=m2;
              else L=m1;
54
55
56
          cout<<"Case "<<ti<<": ";
57
          cout << fixed << setprecision(4) <<</pre>
               sqrt(ans) << '\n';</pre>
58
59 }
```

3.2 差分

```
1 用途:在區間 [1, r] 加上一個數字v。
2 b[1] += v; (b[0~1] 加上v)
3 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v) )
 給的 a[] 是前綴和數列,建構 b[],
5 因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
6 所以 b[i] = a[i] - a[i-1]。
```

int i=1,ans=0;

int R=min(i+r-1,n),L=max(i-r+1,0)

while(i<=n){</pre>

51

52

```
7 在 b[1] 加上 v,b[r+1] 減去 v,
                                                          int nextR=-1;
   最後再從 0 跑到 n 使 b[i] += b[i-1]。
                                                55
                                                          for(int j=R; j>=L; -- j){
   這樣一來, b[] 是一個在某區間加上v的前綴和。
                                                56
                                                              if(a[j]){
  int a[1000], b[1000];
                                                                 nextR=j;
                                                57
   // a: 前綴和數列, b: 差分數列
11
                                                58
                                                                 break:
   int main(){
                                                             }
12
                                                59
13
      int n, 1, r, v;
                                                60
                                                          if(nextR==-1){
      cin >> n;
                                                61
14
15
      for(int i=1; i<=n; i++){</pre>
                                                62
                                                              ans=-1:
         cin >> a[i];
16
                                                             break:
                                                63
17
          b[i] = a[i] - a[i-1]; //建構差分數列
                                                64
                                                          }
                                                65
                                                          ++ans;
18
19
      cin >> 1 >> r >> v:
                                                66
                                                          i=nextR+r;
20
      b[1] += v;
                                                67
21
      b[r+1] -= v;
                                                68
                                                       cout<<ans<<'\n';
22
      for(int i=1; i<=n; i++){</pre>
                                                69
         b[i] += b[i-1];
                                                   最多不重疊區間
                                                70
23
          cout << b[i] << ' ';
                                                   給你 n 條線段區間為 [Li,Ri],
25
                                                72
26 }
                                                   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
                                                73
                                                74
                                                75
                                                   依照右界由小到大排序,
                                                   每次取到一個不重疊的線段,答案 +1。
   3.3
          greedy
                                                77
                                                   //code
                                                78
                                                   struct Line{
1 刪數字問題
                                                79
                                                      int L.R:
   //problem
                                                       bool operator<(const Line &rhs)const{</pre>
                                                80
   給定一個數字 N(≤10<sup>1</sup>00),需要刪除 K 個數字,
                                                81
                                                           return R<rhs.R;</pre>
   請問刪除 K 個數字後最小的數字為何?
                                                82
   //solution
                                                83
                                                   };
   刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i
                                                   int main(){
                                                84
       位數,
                                                85
                                                      int t;
   扣除高位數的影響較扣除低位數的大。
                                                86
                                                       cin>>t;
   //code
                                                87
                                                       Line a[30]:
   int main(){
                                                       while(t--){
                                                88
10
      string s;
                                                89
11
      int k:
                                                90
                                                          while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
      cin>>s>>k;
12
                                                91
                                                             ++n;
13
      for(int i=0;i<k;++i){</pre>
                                                          sort(a,a+n);
                                                92
          if((int)s.size()==0) break;
14
                                                          int ans=1,R=a[0].R;
                                                93
          int pos =(int)s.size()-1;
15
                                                          for(int i=1;i<n;i++){</pre>
                                                94
16
          for(int j=0;j<(int)s.size()-1;++j){</pre>
                                                              if(a[i].L>=R){
17
             if(s[j]>s[j+1]){
                                                96
                                                                 ++ans;
18
                 pos=j;
                                                97
                                                                 R=a[i].R;
                 break:
19
                                                98
20
             }
                                                          }
                                                99
         }
21
                                                          cout<<ans<<'\n';
                                               100
22
         s.erase(pos,1);
                                                      }
                                               101
23
                                               102
24
      while((int)s.size()>0&&s[0]=='0')
                                               103
                                                   最小化最大延遲問題
25
          s.erase(0,1);
                                               104
                                                   //problem
      if((int)s.size()) cout<<s<'\n';</pre>
26
                                                   給定 N 項工作,每項工作的需要處理時長為 Ti,
      else cout<<0<<'\n';
                                                   期限是 Di,第 i 項工作延遲的時間為
27
                                               106
28 }
                                                        Li=max(0,Fi-Di),
29 最小區間覆蓋長度
                                               107
                                                   原本Fi 為第 i 項工作的完成時間,
30 //problem
                                                   求一種工作排序使 maxLi 最小。
                                               108
   給定 n 條線段區間為 [Li,Ri],
                                               109
                                                   //solution
   請問最少要選幾個區間才能完全覆蓋 [0,S]?
                                                   按照到期時間從早到晚處理。
                                               110
   //solution
                                               111
   先將所有區間依照左界由小到大排序,
                                                   struct Work{
                                               112
   對於當前區間 [Li,Ri],要從左界 >Ri 的所有區間中,
                                                       int t, d;
                                               113
   找到有著最大的右界的區間,連接當前區間。
36
                                               114
                                                       bool operator<(const Work &rhs)const{</pre>
                                               115
                                                          return d<rhs.d:
   //problem
38
                                               116
   長度 n 的直線中有數個加熱器,
                                               117
                                                   };
   在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
                                               118
                                                   int main(){
41
   問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
                                               119
                                                       int n;
   //solution
                                                       Work a[10000];
                                               120
43
   對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,
                                                       cin>>n:
                                               121
   更新已加熱範圍,重複上述動作繼續尋找加熱器。
                                               122
                                                       for(int i=0;i<n;++i)</pre>
45
   //code
                                                          cin>>a[i].t>>a[i].d;
                                               123
46
   int main(){
                                               124
                                                       sort(a,a+n);
47
      int n, r;
                                               125
                                                       int maxL=0,sumT=0;
      int a[1005];
48
                                               126
                                                       for(int i=0;i<n;++i){</pre>
      cin>>n>>r;
49
                                               127
                                                          sumT+=aΓil.t:
      for(int i=1;i<=n;++i) cin>>a[i];
50
                                               128
                                                          maxL=max(maxL,sumT-a[i].d);
```

129

cout<<maxL<<'\n';</pre>

```
131 }
                                                                                                       int dinic() {// O((V^2)E)
                                                 206
                                                             ok.reset();
                                                                                                    54
                                                             for(int i=0;i<n;++i)</pre>
                                                                                                          int result = 0;
132
   最少延遲數量問題
                                                 207
                                                                                                    55
                                                                cin>>a[i].d>>a[i].p;
                                                 208
                                                                                                           while(bfs()) {
133
   //problem
                                                                                                    56
134 給定 N 個工作,每個工作的需要處理時長為 Ti,
                                                 209
                                                             sort(a,a+n);
                                                                                                    57
                                                                                                              memset(dfs_idx, 0, sizeof(dfs_idx));
   期限是 Di,求一種工作排序使得逾期工作數量最小。
                                                                                                              result += dfs(S, inf);
                                                 210
                                                             int ans=0:
                                                                                                    58
   //solution
                                                             for(int i=0;i<n;++i){</pre>
                                                                                                    59
                                                 211
   期限越早到期的工作越先做。
                                                                int j=a[i].d;
137
                                                 212
                                                                                                    60
                                                                                                           return result;
   將 工 作 依 照 到 期 時 間 從 早 到 晚 排 序,
                                                 213
                                                                while(j--)
                                                                                                    61 }
138
   依序放入工作列表中,如果發現有工作預期,
                                                 214
                                                                    if(!ok[j]){
   就從目前選擇的工作中,移除耗時最長的工作。
                                                 215
                                                                       ans+=aΓil.p:
140
141
   上述方法為 Moore-Hodgson s Algorithm。
                                                 216
                                                                       ok[j]=true;
                                                                                                       3.5 SCC Tarjan
142
                                                 217
                                                                       break:
143
                                                                                                     1 //單純考SCC,每個SCC中找成本最小的蓋,如果有多個一樣小
   給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
144
                                                 219
                                                            }
                                                                                                       //的要數出來,因為題目要方法數
145
   //solution
                                                 220
                                                            cout<<ans<<'\n';
                                                                                                       //注意以下程式有縮點,但沒存起來,
   和最少延遲數量問題是相同的問題,只要將題敘做轉換。
                                                 221
                                                                                                       //存法就是開一個array -> ID[u] = SCCID
   工作處裡時長 → 烏龜重量
                                                 222 }
147
                                                                                                       #define maxn 100005
   工作期限 → 烏龜可承受重量
                                                                                                       #define MOD 1000000007
   多少工作不延期 → 可以疊幾隻烏龜
                                                                                                       long long cost[maxn];
   //code
150
                                                     3.4 dinic
                                                                                                       vector<vector<int>>> G;
151
   struct Work{
                                                                                                       int SCC = 0;
       int t. d:
152
                                                                                                       stack<int> sk;
                                                   1 const int maxn = 1e5 + 10;
                                                                                                    10
153
       bool operator<(const Work &rhs)const{</pre>
                                                     const int inf = 0x3f3f3f3f;
                                                                                                       int dfn[maxn];
           return d<rhs.d;</pre>
                                                                                                    11
154
                                                     struct Edge {
                                                                                                    12
                                                                                                       int low[maxn];
155
                                                         int s, t, cap, flow;
                                                                                                       bool inStack[maxn];
   };
                                                                                                    13
156
                                                   5 };
                                                                                                       int dfsTime = 1;
   int main(){
157
                                                                                                       long long totalCost = 0;
                                                   6 int n, m, S, T;
                                                                                                    15
158
       int n=0;
                                                     int level[maxn], dfs_idx[maxn];
                                                                                                       long long ways = 1;
       Work a[10000];
159
                                                                                                       void dfs(int u) {
                                                   8 vector<Edge> E;
160
       priority_queue<int> pq;
                                                                                                    17
                                                     vector<vector<int>> G;
                                                                                                          dfn[u] = low[u] = dfsTime;
       while(cin>>a[n].t>>a[n].d)
                                                                                                    18
161
                                                  10 void init() {
                                                                                                           ++dfsTime;
                                                                                                    19
162
           ++n:
                                                        S = 0;
                                                                                                    20
                                                                                                           sk.push(u);
                                                  11
163
       sort(a,a+n);
                                                  12
                                                        T = n + m;
                                                                                                           inStack[u] = true;
164
       int sumT=0,ans=n;
                                                                                                    21
                                                        E.clear();
                                                                                                           for (int v: G[u]) {
                                                  13
                                                                                                    22
       for(int i=0;i<n;++i){</pre>
165
                                                                                                              if (dfn[v] == 0) {
                                                  14
                                                         G.assign(maxn, vector<int>());
                                                                                                    23
           pq.push(a[i].t);
166
                                                  15 }
167
           sumT+=a[i].t;
                                                                                                    24
                                                                                                                 dfs(v):
                                                     void addEdge(int s, int t, int cap) {
                                                                                                    25
                                                                                                                 low[u] = min(low[u], low[v]);
                                                  16
168
           if(a[i].d<sumT){</pre>
                                                         E.push_back({s, t, cap, 0});
                                                  17
                                                                                                    26
169
              int x=pq.top();
                                                         E.push_back({t, s, 0, 0});
170
                                                  18
                                                                                                    27
                                                                                                              else if (inStack[v]) {
              pq.pop();
                                                         G[s].push_back(E.size()-2);
                                                                                                                  //屬於同個SCC且是我的back edge
                                                  19
171
              sumT-=x;
                                                  20
                                                         G[t].push_back(E.size()-1);
                                                                                                    29
                                                                                                                  low[u] = min(low[u], dfn[v]);
172
               --ans;
                                                                                                              }
                                                  21
                                                                                                    30
173
           }
174
                                                  22 bool bfs() {
                                                                                                    31
                                                         queue<int> q({S});
                                                                                                           //如果是SCC
                                                  23
                                                                                                    32
175
       cout<<ans<<'\n';
                                                         memset(level, -1, sizeof(level));
                                                                                                           if (dfn[u] == low[u]) {
   }
176
                                                                                                              long long minCost = 0x3f3f3f3f;
                                                         level[S] = 0;
                                                  25
                                                                                                    34
177
                                                  26
                                                         while(!q.empty()) {
                                                                                                    35
                                                                                                              int currWays = 0;
   任務調度問題
178
                                                            int cur = q.front();
                                                  27
                                                                                                    36
                                                                                                              ++SCC;
179
   //problem
                                                  28
                                                            q.pop();
                                                                                                    37
                                                                                                              while (1) {
   給定 N 項工作,每項工作的需要處理時長為 Ti,
180
   期限是 Di,如果第 i 項工作延遲需要受到 pi
                                                  29
                                                            for(int i : G[cur]) {
                                                                                                    38
                                                                                                                 int v = sk.top();
181
                                                                Edge e = E[i];
                                                                                                                  inStack[v] = 0;
                                                  30
                                                                                                    39
        單位懲罰,
                                                                if(level[e.t]==-1 &&
                                                                                                                  sk.pop();
                                                  31
                                                                                                    40
   請問最少會受到多少單位懲罰。
182
                                                                     e.cap>e.flow) {
                                                                                                                  if (minCost > cost[v]) {
                                                                                                    41
183
   //solution
                                                                    level[e.t] = level[e.s] + 1;
                                                                                                                     minCost = cost[v];
184
   依照 懲罰由大到小排序,
                                                  32
                                                                                                    42
                                                  33
                                                                    q.push(e.t);
                                                                                                    43
                                                                                                                     currWays = 1;
   每項工作依序嘗試可不可以放在
185
                                                  34
        Di-Ti+1,Di-Ti,...,1,0,
                                                                                                    44
                                                  35
                                                            }
                                                                                                    45
                                                                                                                  else if (minCost == cost[v]) {
   如果有空閒就放進去,否則延後執行。
186
                                                        }
                                                  36
                                                                                                    46
                                                                                                                     ++currWays;
187
                                                  37
                                                         return ~level[T];
                                                                                                    47
188
   //problem
                                                                                                                  if (v == u)
   給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                  38 }
                                                                                                    48
189
                                                     int dfs(int cur, int lim) {
                                                                                                                     break:
                                                  39
                                                                                                    49
   期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
        單位獎 勵,
                                                  40
                                                         if(cur==T || lim==0) return lim;
                                                                                                    50
                                                         int result = 0;
                                                                                                              totalCost += minCost;
   請問最多會獲得多少單位獎勵。
                                                  41
                                                                                                    51
                                                  42
                                                         for(int& i=dfs_idx[cur]; i<G[cur].size()</pre>
                                                                                                    52
                                                                                                              ways = (ways * currWays) % MOD;
   //solution
192
                                                                                                          }
                                                              && lim; i++) {
                                                                                                    53
193
   和上題相似,這題變成依照獎勵由大到小排序。
                                                  43
                                                             Edge\& e = E[G[cur][i]];
                                                                                                    54
                                                                                                       }
194
   //code
                                                             if(level[e.s]+1 != level[e.t])
                                                                                                    55
                                                                                                       int main() {
195
   struct Work{
                                                  44
                                                                 continue:
                                                                                                    56
                                                                                                          int n:
196
                                                                                                           scanf("%d", &n);
                                                             int flow = dfs(e.t, min(lim,
197
       bool operator<(const Work &rhs)const{</pre>
                                                                 e.cap-e.flow));
                                                                                                    58
                                                                                                          for (int i = 1; i <= n; ++i)</pre>
           return p>rhs.p;
198
                                                             if(flow <= 0) continue;</pre>
                                                                                                    59
                                                                                                              scanf("%11d", &cost[i]);
                                                  46
199
                                                             e.flow += flow;
                                                  47
                                                                                                    60
                                                                                                          G.assign(n + 5, vector<int>());
200
   };
                                                             result += flow;
                                                                                                          int m;
                                                  48
                                                                                                    61
201
   int main(){
                                                  49
                                                            E[G[cur][i]^1].flow -= flow;
                                                                                                           scanf("%d", &m);
       int n:
202
                                                  50
                                                            lim -= flow;
                                                                                                           int u, v;
203
       Work a[100005];
                                                                                                    63
                                                         }
                                                                                                           for (int i = 0; i < m; ++i) {
       bitset<100005> ok;
                                                  51
                                                                                                    64
204
                                                                                                              scanf("%d %d", &u, &v);
205
       while(cin>>n){
                                                  52
                                                         return result;
                                                                                                    65
                                                                                                              G[u].emplace_back(v);
```

```
Jc11
67
      for (int i = 1; i <= n; ++i) {</pre>
68
          if (dfn[i] == 0)
69
70
              dfs(i);
71
      printf("%11d %11d\n", totalCost, ways %
72
           MOD):
73
      return 0;
74 }
   3.6 SCC Kosaraju
 1 //做兩次dfs, O(V + E)
   //g 是原圖, g2 是反圖
   //s是dfs離開的節點
   void dfs1(int u) {
      vis[u] = true;
 6
      for (int v : g[u])
7
          if (!vis[v]) dfs1(v);
 8
      s.push_back(u);
   }
9
10
   void dfs2(int u) {
11
```

```
12
       group[u] = sccCnt;
13
       for (int v : g2[u])
           if (!group[v]) dfs2(v);
14
15
   }
16
   void kosaraju() {
17
       sccCnt = 0;
18
       for (int i = 1; i <= n; ++i)
19
20
           if (!vis[i]) dfs1(i);
21
       for (int i = n; i >= 1; --i)
           if (!group[s[i]]) {
22
23
              ++sccCnt:
24
              dfs2(s[i]);
25
           }
26 }
```

3.7 ArticulationPoints Tarjan

```
1 vector<vector<int>>> G;
   int N, timer;
   bool visited[105];
   int dfn[105]; // 第一次visit的時間
   int low[105];
   //最小能回到的父節點
   //(不能是自己的parent)的visTime
   int res:
   void tarjan(int u, int parent) {
10
11
      int child = 0;
      bool isCut = false;
12
      visited[u] = true;
13
      dfn[u] = low[u] = ++timer;
14
      for (int v: G[u]) {
15
          if (!visited[v]) {
16
17
              ++child;
18
              tarjan(v, u);
19
              low[u] = min(low[u], low[v]);
              if (parent != -1 && low[v] >=
20
                   dfn[u])
21
                 isCut = true;
22
23
          else if (v != parent)
              low[u] = min(low[u], dfn[v]);
24
25
      //If u is root of DFS
26
           tree->有兩個以上的children
      if (parent == -1 && child >= 2)
27
          isCut = true:
28
       if (isCut) ++res;
29
30 }
31 int main() {
```

```
char input[105];
32
       char* token:
33
       while (scanf("%d", &N) != EOF && N) {
34
35
           G.assign(105, vector<int>());
           memset(visited, false,
36
                sizeof(visited));
           memset(low, 0, sizeof(low));
           memset(dfn, 0, sizeof(visited));
38
           timer = 0;
40
           res = 0;
           getchar(); // for \n
           while (fgets(input, 105, stdin)) {
               if (input[0] == '0')
44
                  break;
45
               int size = strlen(input);
46
               input[size - 1] = ' \setminus \emptyset';
               --size:
               token = strtok(input, " ");
49
               int u = atoi(token);
50
               int v;
               while (token = strtok(NULL, " "))
                   {
                   v = atoi(token);
                  G[u].emplace_back(v);
                  G[v].emplace_back(u);
              }
56
           tarjan(1, -1);
          printf("%d \ n", res);
58
60
       return 0;
```

3.8 最小樹狀圖

37

39

41

42

43

47

48

51

52

53

54

55

57

59

```
1 const int maxn = 60 + 10;
   const int inf = 0x3f3f3f3f;
  struct Edge {
     int s, t, cap, cost;
 5 }; // cap 為頻寬 (optional)
 6 int n, m, c;
7 int inEdge[maxn], idx[maxn], pre[maxn],
        vis[maxn]:
   // 對於每個點,選擇對它入度最小的那條邊
   // 找環,如果沒有則 return;
   // 進行縮環並更新其他點到環的距離。
int dirMST(vector<Edge> edges, int low) {
12
      int result = 0, root = 0, N = n;
13
       while(true) {
          memset(inEdge, 0x3f, sizeof(inEdge));
14
          // 找所有點的 in edge 放進 inEdge
15
          // optional: low 為最小 cap 限制
16
17
          for(const Edge& e : edges) {
18
              if(e.cap < low) continue;</pre>
              if(e.s!=e.t &&
19
                  e.cost<inEdge[e.t]) {</pre>
20
                 inEdge[e.t] = e.cost;
21
                 pre[e.t] = e.s;
22
23
24
          for(int i=0; i<N; i++) {</pre>
              if(i!=root && inEdge[i]==inf)
25
                 return -1;//除了root 還有點沒有in
                      edge
27
28
          int seq = inEdge[root] = 0;
29
          memset(idx, -1, sizeof(idx));
          memset(vis, -1, sizeof(vis));
          // 找所有的 cycle,一起編號為 seq
31
32
          for(int i=0; i<N; i++) {</pre>
33
              result += inEdge[i];
              int cur = i;
34
35
              while(vis[cur]!=i &&
                   idx[cur]==-1) {
                 if(cur == root) break;
36
                 vis[cur] = i;
37
                 cur = pre[cur];
38
```

```
39
              if(cur!=root && idx[cur]==-1) {
40
                  for(int j=pre[cur]; j!=cur;
41
                       j=pre[j])
42
                      idx[j] = seq;
                  idx[cur] = seq++;
43
              }
44
45
46
          if(seq == 0) return result; // 沒有
               cycle
47
          for(int i=0; i<N; i++)</pre>
              // 沒有被縮點的點
48
49
              if(idx[i] == -1) idx[i] = seq++;
50
          // 縮點並重新編號
51
          for(Edge& e : edges) {
52
              if(idx[e.s] != idx[e.t])
                  e.cost -= inEdge[e.t];
53
              e.s = idx[e.s];
55
              e.t = idx[e.t];
          }
56
57
          N = seq;
          root = idx[root];
58
59
      }
60 }
```

3.9 二分圖最大匹配

```
1 /* 核心: 最大點獨立集 = /V/ -
        /最大匹配數/,用匈牙利演算法找出最大匹配數 */
  vector<Student> boys;
3 vector<Student> girls;
  vector<vector<int>>> G;
  bool used[505];
   int p[505];
   bool match(int i) {
      for (int j: G[i]) {
9
          if (!used[j]) {
10
             used[j] = true;
11
              if (p[j] == -1 || match(p[j])) {
                 p[j] = i;
12
                 return true;
13
14
             }
15
          }
16
17
      return false;
18
   void maxMatch(int n) {
19
20
      memset(p, -1, sizeof(p));
21
      int res = 0;
      for (int i = 0; i < boys.size(); ++i) {</pre>
22
          memset(used, false, sizeof(used));
23
          if (match(i))
24
25
              ++res;
26
      cout << n - res << '\n';
27
28 }
```

3.10 Blossom Algorithm

```
const int maxn = 500 + 10;
   struct Edge { int s, t; };
   int base[maxn], match[maxn], p[maxn], inq[maxn];
   bool vis[maxn], flower[maxn];
   vector<Edge> G[maxn];
   queue<int> q;
10
11
   int lca(int a, int b) {
    memset(vis, 0, sizeof(vis));
12
    while(1) {
13
      a = base[a];
14
      vis[a] = true;
```

```
if(match[a] == -1) break;
                                                   94 }
                                                                                                                  for (Edge& edge: G[curr.u]) {
16
                                                                                                       60
       a = p[match[a]];
                                                                                                                     if (cnt[edge.v] < k) {</pre>
17
                                                   95
                                                                                                       61
    }
                                                   96 int maxMatch() {
                                                                                                       62
                                                                                                                         pq.push({edge.v, curr.g +
18
19
     while(1) {
                                                   97
                                                        int res = 0;
                                                                                                                              edge.w, curr.g + edge.w
      b = baseΓb1:
                                                        memset(match, -1, sizeof(match));
                                                                                                                              + h[edge.v]});
20
                                                   98
21
       if(vis[b]) return b;
                                                   99
                                                        for(int i=1; i<=n; i++) {</pre>
                                                                                                       63
                                                          if(match[i]==-1 && bfs(i)) res++;
                                                                                                                 }
                                                  100
22
      b = p[match[b]];
                                                                                                       64
23
                                                  101
                                                                                                       65
                                                                                                              }
24
     return -1;
                                                  102
                                                        return res;
                                                                                                       66
                                                                                                              return -1;
25
   }
                                                  103 }
                                                                                                       67
26
                                                                                                       68
                                                                                                          int main() {
27
   void set_path(int x, int father) {
                                                                                                              int n, m;
                                                                                                       69
28
     int tmp;
                                                                                                       70
                                                                                                              while (scanf("%d %d", &n, &m) && (n != 0
                                                       3.11
                                                               Astar
     while(x != father) {
                                                                                                                   && m != 0)) {
29
30
       tmp = match[x];
                                                                                                       71
                                                                                                                  G.assign(n + 5, vector<Edge>());
                                                    1 /*A*求k短路
31
       flower[base[x]]=flower[base[tmp]]=1;
                                                                                                       72
                                                                                                                  invertG.assign(n + 5, vector<Edge>());
                                                        f(x) = g(x) + h(x)
       tmp = p[tmp]:
                                                                                                                  int s, t, k;
32
                                                                                                       73
                                                        g(x) 是實際 cost, h(x) 是估計 cost
       if(base[tmp]!=father) p[tmp] = match[x];
                                                                                                                  scanf("%d %d %d", &s, &t, &k);
33
                                                        在此h(x)用所有點到終點的最短距離,則當用Astar找點 75
                                                                                                                  int u, v, w;
34
                                                        當該點cnt[u] == k時即得到該點的第k短路
                                                    5
35
    }
                                                                                                       76
                                                                                                                  for (int i = 0; i < m; ++i) {
                                                       */
   }
                                                    6
                                                                                                                     scanf("%d %d %d", &u, &v, &w);
36
                                                                                                       77
                                                    7
                                                      #define maxn 105
                                                                                                                     G[u].emplace_back(Edge{u, v, w});
37
                                                                                                       78
                                                       struct Edge {
38
   void blossom(int x, int y) {
                                                                                                       79
                                                                                                                     invertG[v].emplace_back(Edge{v,
    memset(flower, 0, sizeof(flower));
                                                    9
                                                          int u, v, w;
39
                                                                                                                          u, w});
     int father = lca(x, y);
                                                   10 };
                                                                                                                 }
40
                                                                                                       80
                                                   11 struct Item_pqH {
     set_path(x, father);
                                                                                                                 memset(h, 0x3f, sizeof(h));
41
                                                                                                       81
                                                   12
                                                          int u, w;
42
     set_path(y, father);
                                                                                                       82
                                                                                                                  dijkstra(t, s);
                                                          bool operator <(const Item_pqH& other)</pre>
                                                   13
43
     if(base[x] != father) p[x] = y;
                                                                                                       83
                                                                                                                  printf("%d\n", Astar(s, t, k));
     if(base[y] != father) p[y] = x;
                                                               const {
                                                                                                              }
44
                                                                                                       84
                                                              return this->w > other.w;
45
     for(int i=1; i<=n; i++) {</pre>
                                                   14
                                                                                                       85
                                                                                                              return 0;
                                                   15
      if(!flower[base[i]]) continue;
                                                                                                       86 }
46
       base[i] = father;
                                                   16 };
47
                                                      struct Item_astar {
                                                   17
48
       if(!inq[i]) {
                                                          int u, g, f;
49
        q.push(i):
                                                   18
                                                                                                          3.12 JosephusProblem
                                                          bool operator <(const Item_astar& other)</pre>
         inq[i] = true;
                                                   19
50
                                                               const {
51
                                                              return this->f > other.f:
52
    }
                                                   20
                                                                                                        1 //JosephusProblem, 只是規定要先 砍 1號
                                                   21
53
   }
                                                                                                          //所以當作有n - 1個人,目標的13順移成12
                                                   22 };
54
                                                                                                          //再者從0開始比較好算,所以目標12順移成11
55
   bool bfs(int root) {
                                                   23 vector<vector<Edge>> G;
                                                   24 //反向圖,用於建h(u)
     int cur, y, nxt;
56
     q = queue<int>();
                                                   25 vector<vector<Edge>> invertG;
57
                                                                                                          int getWinner(int n, int k) {
                                                       int h[maxn];
                                                   26
     q.push(root);
58
                                                                                                              int winner = 0;
59
     memset(inq, 0, sizeof(inq));
                                                   27
                                                      bool visited[maxn];
                                                                                                              for (int i = 1; i <= n; ++i)</pre>
                                                   28 int cnt[maxn];
60
     memset(p, -1, sizeof(p));
                                                                                                                  winner = (winner + k) % i;
                                                       //用反向圖去求出每一點到終點的最短距離,並以此當作h(+a)
     for(int i=1; i<=n; i++) base[i] = i;</pre>
61
                                                                                                              return winner;
                                                      void dijkstra(int s, int t) {
                                                   30
62
                                                                                                       11 }
                                                   31
                                                          memset(visited, 0, sizeof(visited));
63
     while(!q.empty()) {
                                                                                                       12
                                                          priority_queue<Item_pqH> pq;
      cur = q.front();
                                                   32
64
                                                                                                       13
                                                                                                          int main() {
                                                   33
                                                          pq.push({s, 0});
65
       q.pop();
                                                                                                       14
                                                                                                              int n;
       inq[cur] = false;
                                                   34
                                                          h[s] = 0;
66
                                                                                                              while (scanf("%d", &n) != EOF && n){
                                                                                                       15
                                                   35
                                                          while (!pq.empty()) {
67
                                                                                                       16
                                                              Item_pqH curr = pq.top();
                                                   36
68
       for(auto e : G[cur]) {
                                                                                                                  for (int k = 1; k \le n; ++k){
                                                                                                       17
                                                   37
                                                              pq.pop();
         if(base[e.s] == base[e.t]) continue;
69
                                                                                                                     if (getWinner(n, k) == 11){
                                                                                                       18
        if(match[e.s] == e.t) continue;
                                                              visited[curr.u] = true;
70
                                                   38
                                                                                                                         printf("%d\n", k);
                                                                                                       19
                                                   39
                                                              for (Edge& edge: invertG[curr.u]) {
71
        if(e.t == root ||
                                                                                                       20
                                                                                                                         break;
                                                                  if (!visited[edge.v]) {
                                                   40
72
           (~match[e.t] && ~p[match[e.t]])) {
                                                                                                       21
          blossom(cur, e.t);
                                                   41
                                                                      if (h[edge.v] > h[curr.u] +
73
                                                                                                       22
                                                                                                                 }
        } else if(p[e.t] == -1) {
                                                                          edge.w) {
74
                                                                                                              }
                                                                                                       23
                                                                         h[edge.v] = h[curr.u] +
                                                    42
75
          p[e.t] = cur;
                                                                                                       24
                                                                                                              return 0;
76
          if(match[e.t] == -1) {
                                                                              edge.w;
                                                                                                       25
                                                                         pq.push({edge.v,
                                                   43
77
            cur = e.t;
                                                                                                       26
            while(cur != -1) {
                                                                              h[edge.v]});
78
                                                                                                       27
                                                                                                          // O(k \log(n))
                                                                     }
79
              y = p[cur];
                                                   44
                                                                                                          int josephus(int n, int k) {
                                                                                                       28
              nxt = match[y];
                                                   45
                                                                 }
80
                                                                                                            if (n == 1) return 0;
                                                                                                       29
                                                              }
                                                   46
81
              match[cur] = y;
                                                                                                            if (k == 1) return n - 1;
                                                                                                       30
                                                   47
82
              match[y] = cur;
                                                                                                            if (k > n) return (josephus(n-1,k)+k)%n;
                                                   48 }
83
              cur = nxt;
                                                                                                            int res = josephus(n - n / k, k);
            }
                                                   49 int Astar(int s, int t, int k) {
84
                                                                                                            res -= n % k;
                                                                                                       33
                                                          memset(cnt, 0, sizeof(cnt));
85
            return true:
                                                                                                            if (res < 0)
                                                                                                       34
                                                          priority_queue<Item_astar> pq;
                                                   51
86
          } else {
                                                                                                              res += n; // \mod n
                                                                                                       35
                                                   52
                                                          pq.push({s, 0, h[s]});
87
            q.push(match[e.t]);
                                                                                                       36
                                                   53
                                                          while (!pq.empty()) {
88
            inq[match[e.t]] = true;
                                                                                                              res += res / (k - 1); // 还原位置
                                                                                                       37
                                                              Item_astar curr = pq.top();
                                                   54
89
                                                                                                       38
                                                                                                            return res;
                                                   55
                                                              pq.pop();
90
                                                                                                       39 }
                                                              ++cnt[curr.u];
                                                   56
91
      }
                                                              //終點出現k次,此時即可得k短路
                                                   57
92
                                                              if (cnt[t] == k)
     return false;
                                                   58
                                                                  return curr.g;
```

```
KM
   3.13
                                                                    printf(" %d", Lx[i]);
                                                  74
                                                                                                     52
                                                                                                            return res;
                                                                                                     53 }
                                                  75
                                                                else
                                                                    printf("%d", Lx[i]);
                                                  76
                                                                                                     54 int main() {
 1 #define maxn 505
                                                  77
                                                                                                     55
                                                                res += Lx[i];
                                                                                                          int n, q;
   int W[maxn][maxn];
                                                  78
                                                            }
                                                                                                     56
                                                                                                          while (~scanf("%d", &n) && n) {
   int Lx[maxn], Ly[maxn];
                                                             puts("");
                                                   79
                                                                                                     57
   bool S[maxn], T[maxn];
                                                             for (int i = 0; i < n; ++i) {</pre>
                                                  80
                                                                                                     58
                                                                                                            G.assign(n + 5, vector<Edge>());
   //L[i] = j -> S_i配給T_j, -1 for 還沒匹配
                                                  81
                                                                if (i != 0)
                                                                                                     59
                                                                                                               for (int i = 1; i \le n - 1; ++i) {
   int L[maxn];
                                                  82
                                                                    printf(" %d", Ly[i]);
                                                                                                     60
                                                                                                              scanf("%d %d", &v, &w);
7
   int n;
                                                                                                             G[i + 1].push_back({i + 1, v + 1, w});
                                                  83
                                                                                                     61
   bool match(int i) {
8
                                                  84
                                                                    printf("%d", Ly[i]);
                                                                                                     62
                                                                                                             G[v + 1].push_back({v + 1, i + 1, w});
      S[i] = true;
                                                  85
                                                                res += Ly[i];
                                                                                                     63
      for (int j = 0; j < n; ++j) {
10
                                                  86
                                                                                                     64
                                                                                                               dfs(1, 0);
11
          // KM重點
                                                             puts("");
                                                  87
                                                                                                     65
                                                                                                               scanf("%d", &q);
12
          // Lx + Ly >= selected_edge(x, y)
                                                  88
                                                            printf("%d \setminus n", res);
                                                                                                     66
                                                                                                               int u;
13
          // 要想辦法降低Lx + Ly
                                                  89
                                                                                                     67
                                                                                                               while (q--) {
14
          // 所以選Lx + Ly == selected_edge(x, y)
                                                                                                                   scanf("%d %d", &u, &v);
                                                  90
                                                         return 0;
                                                                                                     68
          if (Lx[i] + Ly[j] == W[i][j] &&
15
                                                                                                                   !T[j]) {
              T[j] = true;
16
                                                                                                     70
17
              if ((L[j] == -1) || match(L[j])) {
                                                     3.14 LCA 倍增法
                                                                                                     71
                                                                                                         }
18
                                                                                                     72
                                                                                                         return 0;
19
                 return true;
20
              }
                                                     //倍增法預處理O(nlogn),查詢O(logn),
21
          }
                                                      //利用1ca找樹上任兩點距離
22
      }
                                                     #define maxn 100005
                                                                                                        3.15 LCA 樹壓平 RMO
23
      return false;
                                                     struct Edge {
24
  }
                                                      int u, v, w;
   //修改二分圖上的交錯路徑上點的權重
                                                     };
                                                                                                      1 //樹壓平求LCA RMQ(sparse table
26
   //此舉是在通過調整vertex labeling看看
                                                                                                             0(nlogn)建立,0(1)查詢),求任意兩點距離,
                                                     vector<vector<Edge>> G; // tree
   //能不能產生出新的增廣路
                                                   8 int fa[maxn][31]; //fa[u][i] -> u的第2<sup>i</sup>個祖先
                                                                                                        //如果用笛卡兒樹可以壓到0(n)建立,0(1)查詢
   //(KM的增廣路要求Lx[i] + Ly[j] == W[i][j])
                                                     long long dis[maxn][31];
                                                                                                        //理論上可以過,但遇到直鏈的case dfs深度會stack
   //在這裡優先從最小的diff調調看,才能保證最大權重匹配<sub>10</sub>
29
                                                     int dep[maxn];//深度
                                                                                                             overflow
   void update()
                                                      void dfs(int u, int p) {//預處理fa
                                                                                                        #define maxn 100005
31
   {
                                                         fa[u][0] = p; //因為u的第2^0 = 1的祖先就是p
                                                                                                        struct Edge {
                                                  12
32
      int diff = 0x3f3f3f3f;
                                                         dep[u] = dep[p] + 1;
                                                                                                      6
                                                                                                         int u, v, w;
                                                  13
      for (int i = 0; i < n; ++i) {</pre>
33
                                                  14
                                                         //第2^{i}的祖先是(第2^{i}(i - 1)個祖先)的
                                                                                                     7
                                                                                                       }:
34
          if (S[i]) {
                                                         //第2<sup>^</sup>(i - 1)的祖先
                                                                                                        int dep[maxn], pos[maxn];
                                                  15
                                                                                                      8
35
              for (int j = 0; j < n; ++j) {
                                                         //ex: 第8個祖先是 (第4個祖先)的第4個祖先
                                                                                                        long long dis[maxn];
                                                   16
36
                 if (!T[j])
                                                  17
                                                         for (int i = 1; i < 31; ++i) {
                                                                                                     10 int st[maxn * 2][32]; //sparse table
37
                     diff = min(diff, Lx[i] +
                                                             fa[u][i] = fa[fa[u][i - 1]][i - 1];
                                                                                                        int realLCA[maxn * 2][32];
                                                   18
                          Ly[j] - W[i][j]);
                                                  19
                                                             dis[u][i] = dis[fa[u][i - 1]][i - 1]
                                                                                                             //最小深度對應的節點,及真正的LCA
38
              }
                                                                  + dis[u][i - 1];
                                                                                                        int Log[maxn]; //取代std::log2
          }
39
                                                  20
                                                                                                     13
                                                                                                        int tp; // timestamp
40
                                                                                                        vector<vector<Edge>> G; // tree
                                                         //遍歷子節點
                                                  21
41
      for (int i = 0; i < n; ++i) {
                                                         for (Edge& edge: G[u]) {
                                                                                                        void calLog() {
          if (S[i]) Lx[i] -= diff;
42
                                                             if (edge.v == p)
                                                  23
                                                                                                     16
                                                                                                         Log[1] = 0;
          if (T[i]) Ly[i] += diff;
43
                                                  24
                                                                continue;
                                                                                                     17
                                                                                                          Log[2] = 1;
44
      }
                                                             dis[edge.v][0] = edge.w;
                                                  25
                                                                                                     18
                                                                                                          for (int i = 3; i < maxn; ++i)</pre>
45
   }
                                                  26
                                                             dfs(edge.v, u);
                                                                                                     19
                                                                                                           Log[i] = Log[i / 2] + 1;
46
   void KM()
                                                  27
                                                                                                     20 }
47
   {
                                                  28 }
                                                                                                     21
                                                                                                        void buildST() {
48
      for (int i = 0; i < n; ++i) {
                                                                                                         for (int j = 0; Log[tp]; ++j) {
                                                  29
                                                     long long lca(int x, int y) {
                                                                                                     22
49
          L[i] = -1;
                                                         //此函數是找lca同時計算x \cdot y的距離 -> dis(x,
                                                                                                            for (int i = 0; i + (1 << j) - 1 < tp;
                                                  30
50
          Lx[i] = Ly[i] = 0;
                                                              lca) + dis(lca, v)
                                                                                                                 ++i) {
51
          for (int j = 0; j < n; ++j)
                                                         //讓y比x深
                                                                                                              if (st[i - 1][j] < st[i - 1][j + (1 <<
                                                  31
                                                                                                     24
52
              Lx[i] = max(Lx[i], W[i][j]);
                                                         if (dep[x] > dep[y])
                                                                                                                  i - 1)]) {
                                                  32
53
                                                  33
                                                             swap(x, y);
                                                                                                     25
                                                                                                               st[i][j] = st[i - 1][j];
      for (int i = 0; i < n; ++i) {
54
                                                  34
                                                         int deltaDep = dep[y] - dep[x];
                                                                                                     26
                                                                                                               realLCA[i][j] = realLCA[i - 1][j];
55
          while(1) {
                                                         long long res = 0;
                                                                                                     27
                                                  35
              memset(S, false, sizeof(S));
56
                                                  36
                                                         //讓y與x在同一個深度
                                                                                                     28
                                                                                                              else {
57
              memset(T, false, sizeof(T));
                                                  37
                                                         for (int i = 0; deltaDep != 0; ++i,
                                                                                                               st[i][j] = st[i - 1][j + (1 << i -
58
              if (match(i))
                                                              deltaDep >>= 1)
59
                 break:
                                                                                                               realLCA[i][j] = realLCA[i - 1][j + (1)]
                                                  38
                                                             if (deltaDep & 1)
                                                                                                     30
60
                                                  39
                                                                res += dis[y][i], y = fa[y][i];
                                                                                                                    << i - 1)1:
                 update(); //去調整vertex
61
                                                         if (y == x) //x = y -> x \cdot y彼此是彼此的祖先
                                                                                                             }
                                                  40
                                                                                                     31
                      labeling以增加增廣路徑
                                                  41
                                                                                                     32
                                                                                                           }
                                                            return res:
62
          }
                                                          //往上找,一起跳,但x \times y不能重疊
                                                  42
                                                                                                         }
                                                                                                     33
      }
63
                                                         for (int i = 30; i >= 0 && y != x; --i) {
                                                                                                     34 } // O(nlogn)
                                                  43
64
   }
                                                             if (fa[x][i] != fa[y][i]) {
                                                                                                        int query(int 1, int r) {// [1, r] min
65
   int main() {
                                                  45
                                                                res += dis[x][i] + dis[y][i];
                                                                                                             depth即為1ca的深度
      while (scanf("%d", &n) != EOF) {
66
                                                  46
                                                                x = fa[x][i];
                                                                                                          int k = Log[r - 1 + 1];
                                                                                                     36
67
          for (int i = 0; i < n; ++i)
                                                  47
                                                                y = fa[y][i];
                                                                                                     37
                                                                                                          if (st[1][k] < st[r - (1 << k) + 1][k])
68
              for (int j = 0; j < n; ++j)
                                                                                                           return realLCA[1][k];
                                                                                                     38
                                                  48
69
                 scanf("%d", &W[i][j]);
                                                                                                     39
                                                  49
70
          KM():
                                                         //最後發現不能跳了,此時x的第2<sup>0</sup>0 =
                                                                                                            return realLCA[r - (1 << k) + 1][k];</pre>
                                                  50
                                                                                                     40
71
          int res = 0:
                                                              1個祖先(或說y的第2^0 =
                                                                                                     41
72
          for (int i = 0; i < n; ++i) {</pre>
                                                              1的祖先)即為x \times v的lca
                                                                                                     42
                                                                                                        void dfs(int u, int p) {//euler tour
73
              if (i != 0)
                                                         res += dis[x][0] + dis[y][0];
                                                                                                         pos[u] = tp;
```

```
st[tp][0] = dep[u];
                                                                                                                          int y = getK_parent(v, dis
                                                  30
                                                                                                    102
                                                             }
                                                                                                                               / 2);
     realLCA[tp][0] = dep[u];
45
                                                  31
                                                                                                                          if (x > y)
                                                         }
46
                                                  32
                                                                                                    103
     for (int i = 0; i < G[u].size(); ++i) {</pre>
47
                                                   33 }
                                                                                                                              swap(x, y);
                                                                                                    104
      Edge& edge = G[u][i];
                                                      //實際剖分 <- 參數 t是 top的意思
                                                                                                                          printf("The fleas jump
48
                                                                                                    105
      if (edge.v == p) continue;
                                                      //t初始應為root本身
                                                                                                                               forever between %d
49
      dep[edge.v] = dep[u] + 1;
                                                     void dfs2(int u, int t) {
                                                                                                                               and %d.\n", x, y);
50
                                                  36
      dis[edge.v] = dis[edge.u] + edge.w;
51
                                                  37
                                                         top[u] = t;
                                                                                                    106
52
      dfs(edge.v, u);
                                                  38
                                                         dfn[u] = dfsTime;
                                                                                                    107
                                                                                                                       else {
53
      st[tp++][0] = dep[u];
                                                         dfnToNode[dfsTime] = u;
                                                                                                                          //技巧: 讓深的點v往上dis /
                                                  39
                                                                                                    108
54
                                                  40
                                                         ++dfsTime;
                                                                                                                               2步 = y,
55
   }
                                                  41
                                                         //葉子點 -> 沒有重兒子
                                                                                                                          //這個點的parent設為x
                                                                                                    109
56
   long long getDis(int u, int v) {
                                                         if (hson[u] == -1)
                                                                                                                          //此時的x、y就是答案要的中點兩點
    if (pos[u] > pos[v])
                                                                                                                          //主要是往下不好找,所以改用深的點戶
57
                                                  43
                                                             return:
                                                                                                    111
58
      swap(u, v);
                                                  44
                                                         //優先對重兒子dfs,才能保證同一重鍊dfn連續
                                                                                                                          int y = getK_parent(v, dis
59
     int lca = query(pos[u], pos[v]);
                                                  45
                                                         dfs2(hson[u], t);
                                                                                                                               / 2);
     return dis[u] + dis[v] - 2 *
                                                         for (int v: G[u]) {
                                                                                                                          int x = getK_parent(y, 1);
60
                                                  46
                                                                                                    113
          dis[query(pos[u], pos[v])];
                                                   47
                                                             if (v != parent[u] && v != hson[u])
                                                                                                                          if (x > y)
                                                                                                    114
  }
                                                  48
                                                                dfs2(v, v);
61
                                                                                                    115
                                                                                                                              swap(x, y);
   int main() {
                                                  49
                                                                                                    116
                                                                                                                          printf("The fleas jump
62
                                                  50 }
                                                                                                                               forever between %d
63
    int n, q;
      calLog();
                                                  51 //不斷跳鍊,當跳到同一條鍊時,深度小的即為LCA
                                                                                                                               and %d.\n", x, y);
64
     while (~scanf("%d", &n) && n) {
                                                     //跳鍊時優先鍊頂深度大的跳
                                                                                                    117
                                                                                                                      }
                                                     int LCA(int u, int v) {
66
      int v, w;
                                                                                                    118
                                                                                                                   }
      G.assign(n + 5, vector<Edge>());
                                                         while (top[u] != top[v]) {
67
                                                  54
                                                                                                    119
                                                             if (depth[top[u]] > depth[top[v]])
68
                                                  55
                                                                                                    120
          for (int i = 1; i \le n - 1; ++i) {
                                                                u = parent[top[u]];
                                                                                                    121
69
                                                  56
                                                                                                            return 0;
        scanf("%d %d", &v, &w);
70
                                                  57
                                                             else
                                                                                                    122 }
71
        G[i].push_back({i, v, w});
                                                  58
                                                                v = parent[top[v]];
72
        G[v].push_back({v, i, w});
                                                  59
73
                                                         return (depth[u] > depth[v]) ? v : u;
                                                  60
                                                                                                        3.17 MCMF
          dfs(0, -1);
74
                                                  61 }
75
          buildST();
                                                     int getK_parent(int u, int k) {
                                                         while (k-- && (u != -1))
76
          scanf("%d", &q);
                                                  63
                                                                                                      1 #define maxn 225
          int u;
77
                                                             u = parent[u];
                                                  64
                                                                                                        #define INF 0x3f3f3f3f
          while (q--) {
78
                                                  65
                                                         return u:
                                                                                                        struct Edge {
                                                  66 }
79
              scanf("%d %d", &u, &v);
                                                                                                            int u, v, cap, flow, cost;
              printf("%11d%c", getDis(u, v),
                                                  67 int main() {
80
                   (q) ? ' ' : '\n');
                                                  68
                                                         int n:
                                                                                                        //node size, edge size, source, target
                                                  69
                                                         while (scanf("%d", &n) && n) {
81
                                                                                                        int n, m, s, t;
                                                             dfsTime = 1;
    }
                                                  70
82
                                                                                                        vector<vector<int>>> G;
                                                             G.assign(n + 5, vector<int>());
83
    return 0;
                                                  71
                                                                                                        vector<Edge> edges;
                                                  72
                                                                                                        bool inqueue[maxn];
                                                  73
                                                             for (int i = 1; i < n; ++i) {
                                                                                                        long long dis[maxn];
                                                                                                     11
                                                                 scanf("%d %d", &u, &v);
                                                  74
                                                                                                     12
                                                                                                        int parent[maxn];
                                                                 G[u].emplace_back(v);
                                                  75
   3.16 LCA 樹鍊剖分
                                                                                                     13
                                                                                                        long long outFlow[maxn];
                                                  76
                                                                 G[v].emplace_back(u);
                                                                                                        void addEdge(int u, int v, int cap, int
                                                  77
 1 #define maxn 5005
                                                             dfs1(1, -1);
                                                  78
                                                                                                     15
                                                                                                            edges.emplace_back(Edge{u, v, cap, 0,
   //LCA,用來練習樹鍊剖分
                                                             dfs2(1, 1);
                                                  79
                                                                                                                 cost});
   //題意: 給定樹,找任兩點的中點,
                                                             int q;
                                                  80
                                                                                                            edges.emplace_back(Edge{v, u, 0, 0,
                                                                                                     16
   //若中點不存在(路徑為even),就是中間的兩個點
                                                             scanf("%d", &q);
                                                  81
                                                                                                                 -cost}):
   int dfn[maxn];
                                                             for (int i = 0; i < q; ++i) {</pre>
                                                  82
                                                                                                            m = edges.size();
                                                                                                     17
   int parent[maxn];
                                                                 scanf("%d %d", &u, &v);
                                                  83
                                                                                                            G[u].emplace_back(m - 2);
                                                                                                     18
   int depth[maxn];
                                                  84
                                                                 //先得到LCA
                                                                                                            G[v].emplace_back(m - 1);
                                                                                                     19
   int subtreeSize[maxn];
                                                  85
                                                                int lca = LCA(u, v);
                                                                                                     20 }
   //樹鍊的頂點
                                                  86
                                                                 //計算路徑長(經過的邊)
                                                                                                        //一邊求最短路的同時一邊MaxFLow
                                                                                                     21
   int top[maxn];
                                                  87
                                                                 int dis = depth[u] + depth[v] - 2
                                                                                                        bool SPFA(long long& maxFlow, long long&
   //將dfn轉成node編碼
                                                                     * depth[lca];
                                                                                                             minCost) {
  int dfnToNode[maxn];
                                                                 //讓v比.u深或等於
                                                  88
                                                                                                     23
                                                                                                            // memset(outFlow, 0x3f,
   //重兒子
                                                  89
                                                                 if (depth[u] > depth[v])
                                                                                                                 sizeof(outFlow));
   int hson[maxn];
                                                  90
                                                                    swap(u, v);
                                                                                                            memset(dis, 0x3f, sizeof(dis));
                                                                                                     24
   int dfsTime = 1;
                                                  91
                                                                 if (u == v) {
                                                                                                     25
                                                                                                            memset(inqueue, false, sizeof(inqueue));
   //tree
                                                                    printf("The fleas meet at
                                                  92
                                                                                                            queue<int> q;
                                                                                                     26
   vector<vector<int>> G;
                                                                         %d.\n", u);
                                                                                                            q.push(s);
                                                                                                     27
   //處理parent \cdot depth \cdot subtreeSize \cdot dfnToNode
                                                                                                            dis[s] = 0;
                                                                                                     28
   void dfs1(int u, int p) {
19
                                                                else if (dis % 2 == 0) {
                                                  94
                                                                                                            inqueue[s] = true;
                                                                                                     29
      parent[u] = p;
20
                                                  95
                                                                    //路徑長是 even -> 有中點
                                                                                                     30
                                                                                                            outFlow[s] = INF;
21
      hson[u] = -1;
                                                  96
                                                                    printf("The fleas meet at
                                                                                                            while (!q.empty()) {
                                                                                                     31
      subtreeSize[u] = 1;
                                                                         %d.\n", getK_parent(v,
                                                                                                     32
                                                                                                               int u = q.front();
23
      for (int v: G[u]) {
                                                                         dis / 2));
                                                                                                     33
                                                                                                               q.pop();
24
          if (v != p) {
                                                  97
                                                                                                               inqueue[u] = false;
                                                                                                     34
              depth[v] = depth[u] + 1;
25
                                                  98
                                                                                                               for (const int edgeIndex: G[u]) {
                                                                                                     35
              dfs1(v, u);
26
                                                  99
                                                                    //路徑長是odd -> 沒有中點
                                                                                                     36
                                                                                                                   const Edge& edge =
```

if (depth[u] == depth[v]) {

/ 2);

int x = getK_parent(u, dis

37

edges[edgeIndex];

edge.cost)) {

if ((edge.cap > edge.flow) &&

(dis[edge.v] > dis[u] +

27

28

subtreeSize[u] += subtreeSize[v];

subtreeSize[hson[u]] <</pre>

subtreeSize[v]) {

if (hson[u] == -1 ||

hson[u] = v;

```
dis[edge.v] = dis[u] +
38
                       edge.cost;
                  parent[edge.v] = edgeIndex;
39
                  outFlow[edge.v] =
40
                       min(outFlow[u], (long
                       long)(edge.cap -
                       edge.flow));
                  if (!inqueue[edge.v]) {
42
                      q.push(edge.v);
43
                      inqueue[edge.v] = true;
44
45
              }
46
47
48
       //如果dis[t] > 0代表根本不賺還倒賠
49
       if (dis[t] > 0)
          return false;
50
       maxFlow += outFlow[t];
51
       minCost += dis[t] * outFlow[t];
52
53
       //一路更新回去這次最短路流完後要維護的
54
       //MaxFlow演算法相關(如反向邊等)
55
       int curr = t:
56
       while (curr != s) {
          edges[parent[curr]].flow +=
57
                outFlow[t];
          edges[parent[curr] ^ 1].flow -=
58
               outFlow[t];
59
          curr = edges[parent[curr]].u;
60
61
       return true;
   }
62
   long long MCMF() {
63
       long long maxFlow = 0;
64
65
       long long minCost = 0;
       while (SPFA(maxFlow, minCost))
66
67
68
       return minCost;
69 }
   int main() {
70
71
       int T;
       scanf("%d", &T);
72
73
       for (int Case = 1; Case <= T; ++Case){</pre>
74
           //總共幾個月, 囤貨成本
75
          int M. I:
76
          scanf("%d %d", &M, &I);
77
          //node size
          n = M + M + 2;
78
79
          G.assign(n + 5, vector<int>());
80
          edges.clear();
81
          s = 0;
          t = M + M + 1;
82
          for (int i = 1; i <= M; ++i) {
83
84
              int produceCost, produceMax,
                   sellPrice, sellMax,
                   inventoryMonth;
              scanf("%d %d %d %d %d",
85
                   &produceCost, &produceMax,
                   &sellPrice, &sellMax,
                   &inventoryMonth);
86
              addEdge(s, i, produceMax,
                   produceCost);
              addEdge(M + i, t, sellMax,
87
                    -sellPrice);
              for (int j = 0; j <=</pre>
88
                   inventoryMonth; ++j) {
89
                  if (i + j \le M)
90
                      addEdge(i, M + i + j, INF,
                           I * i):
              }
91
92
          }
          printf("Case %d: %11d\n", Case,
93
                -MCMF());
94
95
       return 0;
96 }
```

3.18 莫隊

18

19

21

22

23

24

25

26

31

32

33

34

36

37

38

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

```
/*利用prefix前綴XOR和
     如果要求[x, y]的XOR和只要回答prefix[y] ^
          prefix[x - 1]即可在0(1)回答
     同時維護cnt[i]代表[x, y]XOR和 == i的個數
     如此我們知道[1, r]可以快速知道[1 - 1, r], [1
          + 1, r], [1, r - 1], [1, r + 1]的答案
     就符合Mo's algorithm的思維O(N * sqrt(n))
     每次轉移為O(1),具體轉移方法在下面*/
   #define maxn 100005
   //在此prefix[i]是[1, i]的XOR和
  int prefix[maxn];
10 //log_2(1000000) =
        19.931568569324174087221916576937...
   //所以開到1 << 20
12 //cnt[i]代表的是有符合nums[x, y] such that
        nums[x] ^ nums[x + 1] ^ .. ^ nums[y] ==
   //的個數
13
  long long cnt[1 << 20];</pre>
14
   //塊大小 -> sqrt(n)
15
16 int sqrtQ;
17
  struct Query {
      int 1, r, id;
      bool operator < (const Query& other)</pre>
           const {
          if (this->l / sqrtQ != other.l /
               sqrtQ)
              return this->l < other.l;</pre>
          //奇偶排序(優化)
          if (this->1 / sqrtQ & 1)
              return this->r < other.r;</pre>
          return this->r > other.r;
27 };
28 Query querys[maxn];
  long long ans[maxn];
  long long res = 0;
30
   int k;
   void add(int x) {
      res += cnt[k ^ prefix[x]];
       ++cnt[prefix[x]];
35
   void sub(int x) {
      --cnt[prefix[x]];
       res -= cnt[k ^ prefix[x]];
39 }
  int main() {
40
      int n, m;
      scanf("%d %d %d", &n, &m, &k);
       sqrtQ = sqrt(n);
      for (int i = 1; i <= n; ++i) {</pre>
          scanf("%d", &prefix[i]);
          prefix[i] ^= prefix[i - 1];
       for (int i = 1; i <= m; ++i) {</pre>
          scanf("%d %d", &querys[i].1,
               &querys[i].r);
          //減1是因為prefix[i]是[1,
               i]的前綴XOR和,所以題目問[1,
               r]我們要回答[1 - 1, r]的答案
          --querys[i].1;
          querys[i].id = i;
      }
      sort(querys + 1, querys + m + 1);
      int 1 = 1, r = 0;
       for (int i = 1; i <= m; ++i) {</pre>
          while (1 < querys[i].1) {</pre>
              sub(1);
              ++1;
          while (1 > querys[i].1) {
              --1;
              add(1);
          }
          while (r < querys[i].r) {</pre>
66
```

```
add(r);
67
          }
68
           while (r > querys[i].r) {
69
70
               sub(r);
71
               --r;
72
73
           ans[querys[i].id] = res;
74
75
       for (int i = 1; i <= m; ++i){
76
          printf("%11d\n", ans[i]);
77
78
       return 0;
```

Dancing Links

11

```
struct DLX {
       int seq, resSize;
       int col[maxn], row[maxn];
       int U[maxn], D[maxn], R[maxn], L[maxn];
       int rowHead[maxn], colSize[maxn];
       int result[maxn];
       DLX(int r, int c) {
          for(int i=0; i<=c; i++) {</pre>
              L[i] = i-1, R[i] = i+1;
9
10
              U[i] = D[i] = i;
          L[R[seq=c]=0]=c;
12
          resSize = -1;
13
14
          memset(rowHead, 0, sizeof(rowHead));
15
          memset(colSize, 0, sizeof(colSize));
16
       void insert(int r, int c) {
17
18
          row[++seq]=r, col[seq]=c,
                ++colSize[c];
          U[seq]=c, D[seq]=D[c], U[D[c]]=seq,
19
                D[c]=seq;
          if(rowHead[r]) {
20
              L[seq]=rowHead[r],
                    R[seq]=R[rowHead[r]];
22
              L[R[rowHead[r]]]=seq,
                    R[rowHead[r]]=seq;
          } else {
23
24
              rowHead[r] = L[seq] = R[seq] =
25
26
27
       void remove(int c) {
28
          L[R[c]] = L[c], R[L[c]] = R[c];
29
          for(int i=D[c]; i!=c; i=D[i]) {
30
              for(int j=R[i]; j!=i; j=R[j]) {
                  U[D[j]] = U[j];
31
                  D[U[i]] = D[i];
32
33
                  --colSize[col[j]];
              }
34
          }
35
36
      }
37
       void recover(int c) {
38
          for(int i=U[c]; i!=c; i=U[i]) {
              for(int j=L[i]; j!=i; j=L[j]) {
39
40
                  U[D[j]] = D[U[j]] = j;
41
                  ++colSize[col[j]];
42
              }
          }
43
          L[R[c]] = R[L[c]] = c;
44
45
       bool dfs(int idx=0) { // 判斷其中一解版
46
          if(R[0] == 0) {
47
48
              resSize = idx;
49
              return true:
50
51
          int c = R[0]:
           for(int i=R[0]; i; i=R[i]) {
52
              if(colSize[i] < colSize[c]) c = i;</pre>
53
54
55
           remove(c);
          for(int i=D[c]; i!=c; i=D[i]) {
```

```
result[idx] = row[i];
57
              for(int j=R[i]; j!=i; j=R[j])
58
                  remove(col[j]);
59
               if(dfs(idx+1)) return true;
60
61
              for(int j=L[i]; j!=i; j=L[j])
62
                  recover(col[j]);
63
           recover(c);
64
65
           return false;
66
67
       void dfs(int idx=0) { // 判斷最小 dfs
            depth 版
           if(R[0] == 0) {
68
              resSize = min(resSize, idx); //
69
                    注意init值
70
              return:
           }
71
72
           int c = R[0];
73
           for(int i=R[0]; i; i=R[i]) {
74
              if(colSize[i] < colSize[c]) c = i;</pre>
75
76
           remove(c):
77
           for(int i=D[c]; i!=c; i=D[i]) {
78
              for(int j=R[i]; j!=i; j=R[j])
                  remove(col[j]);
79
80
              dfs(idx+1);
              for(int j=L[i]; j!=i; j=L[j])
81
82
                  recover(col[j]);
83
84
           recover(c);
85
86 };
```

4 DataStructure

4.1 BIT

```
1 template <class T> class BIT {
   private:
     int size:
     vector<T> bit;
     vector<T> arr;
 6
 7
   public:
     BIT(int sz=0): size(sz), bit(sz+1),
          arr(sz) {}
     /** Sets the value at index idx to val. */
10
     void set(int idx, T val) {
11
           add(idx, val - arr[idx]);
12
13
14
15
     /** Adds val to the element at index idx.
     void add(int idx, T val) {
      arr[idx] += val:
17
       for (++idx; idx<=size; idx+=(idx & -idx))</pre>
18
              bit[idx] += val;
19
20
21
     /** @return The sum of all values in [0,
22
     T pre_sum(int idx) {
23
24
       T total = 0;
       for (++idx; idx>0; idx-=(idx & -idx))
25
               total += bit[idx];
26
27
       return total;
    }
28
29 };
```

4.2 ChthollyTree

```
1 //重點:要求輸入資料隨機,否則可能被卡時間
2
   struct Node {
      long long l, r;
      mutable long long val;
      Node(long long 1, long long r, long long
          : 1(1), r(r), val(val){}
      bool operator < (const Node& other)</pre>
8
          return this->l < other.l;</pre>
9
10 };
11 set<Node> chthollyTree;
12 //將[1, r] 拆成 [1, pos - 1], [pos, r]
  set<Node>::iterator split(long long pos) {
13
14
      //找第一個左端點大於等於pos的區間
      set<Node>::iterator it =
15
           chthollyTree.lower_bound(Node(pos,
           0, 0));
      //運氣很好直接找到左端點是pos的區間
16
17
      if (it != chthollyTree.end() && it->l ==
           pos)
18
          return it:
      //到這邊代表找到的是第一個左端點大於pos的區間
19
20
      //it - 1即可找到左端點等於pos的區間
21
      //(不會是別的,因為沒有重疊的區間)
      --it;
22
      long long l = it->l, r = it->r;
23
      long long val = it->val;
24
25
      chthollyTree.erase(it);
26
      chthollyTree.insert(Node(1, pos - 1,
           val)):
      //回傳左端點是pos的區間iterator
      return chthollyTree.insert(Node(pos, r,
28
           val)).first;
29 }
30 //區間賦值
```

```
//<注意>
32
      //end與begin的順序不能調換,因為end的split可能會改變
33
34
      //因為end可以在原本begin的區間中
      set<Node>::iterator end = split(r + 1),
35
           begin = split(1);
       //begin到end全部刪掉
36
37
      chthollyTree.erase(begin, end);
38
      //填回去[1. r]的區間
39
      chthollyTree.insert(Node(1, r, val));
40 }
41
   //區間加值(直接一個個區間去加)
42
   void add(long long 1, long long r, long long
        val) {
43
       set<Node>::iterator end = split(r + 1);
      set<Node>::iterator begin = split(1);
44
      for (set<Node>::iterator it = begin; it
           != end; ++it)
          it->val += val;
46
47 }
   //查詢區間第k小 -> 直接把每個區間丟去vector排序
48
49 long long getKthSmallest(long long 1, long
        long r, long long k) {
      set<Node>::iterator end = split(r + 1);
50
      set<Node>::iterator begin = split(1);
51
      //pair -> first: val, second: 區間長度
52
      vector<pair<long long, long long>> vec;
      for (set<Node>::iterator it = begin; it
54
           != end; ++it) {
55
          vec.push_back({it->val, it->r - it->l
               + 1});
56
      sort(vec.begin(), vec.end());
57
58
      for (const pair<long long, long long>&
           p: vec) {
59
          k -= p.second;
          if (k \ll 0)
60
             return p.first;
61
62
      //不應該跑到這
63
64
      return -1;
65 }
66
   //快速冪
   long long qpow(long long x, long long n,
        long long mod) {
      long long res = 1;
      x \% = mod;
69
70
      while (n)
71
72
          if (n & 1)
73
             res = res * x % mod;
74
          n >>= 1;
75
          x = x * x % mod;
76
77
      return res;
78 }
   //區間n次方和
79
   long long sumOfPow(long long 1, long long r,
80
        long long n, long long mod) {
81
       long long total = 0;
      set<Node>::iterator end = split(r + 1);
      set<Node>::iterator begin = split(1);
83
      for (set<Node>::iterator it = begin; it
84
           != end; ++it)
85
86
          total = (total + qpow(it->val, n,
               mod) * (it->r - it->l + 1)) %
               mod;
87
      }
88
      return total;
89 }
   4.3
          線段樹 1D
```

void assign(long long l, long long r, long

long val) {

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
```

```
int st[4 * MAXN]; //線段樹
                                                                 maxST[xIndex][index] =
                                                                                                                     queryX(index * 2, 1, mid, xql,
                                                    8
                                                                                                       59
   int tag[4 * MAXN]; //懶標
                                                                      minST[xIndex][index] = val;
                                                                                                                          xqr, yql, yqr, vmax, vmin);
   inline int pull(int 1, int r) {
                                                                                                                 if (mid < xqr)</pre>
                                                                  return:
                                                                                                       60
                                                                                                                     queryX(index * 2 + 1, mid + 1, r,
   // 隨題目改變 sum、max、min
                                                   10
                                                              }
 7
   // 1、r是左右樹的 index
                                                   11
                                                              maxST[xIndex][index] =
                                                                                                                          xql, xqr, yql, yqr, vmax,
       return st[l] + st[r];
                                                                   max(maxST[xIndex * 2][index],
                                                                                                                          vmin);
  }
                                                                   maxST[xIndex * 2 + 1][index]);
                                                                                                             }
9
                                                                                                       62
                                                                                                       63 }
   void build(int 1, int r, int i) {
                                                   12
                                                              minST[xIndex][index] =
10
   // 在[1, r]區間建樹,目前根的index為i
                                                                   min(minST[xIndex * 2][index],
                                                                                                          int main() {
      if (1 == r) {
                                                                   minST[xIndex * 2 + 1][index]);
                                                                                                             while (scanf("%d", &N) != EOF) {
12
                                                                                                       65
13
          st[i] = data[l];
                                                   13
                                                                                                       66
                                                                                                                 int val;
                                                                                                                 for (int i = 1; i <= N; ++i) {</pre>
14
                                                          else {
                                                                                                       67
          return:
                                                   14
15
                                                   15
                                                              int mid = (1 + r) / 2;
                                                                                                       68
                                                                                                                     for (int j = 1; j \le N; ++j) {
                                                                                                                         scanf("%d", &val);
                                                              if (yPos <= mid)</pre>
       int mid = 1 + ((r - 1) >> 1);
16
                                                   16
                                                                                                       69
17
       build(1, mid, i * 2);
                                                   17
                                                                 modifyY(index * 2, 1, mid, val,
                                                                                                       70
                                                                                                                         modifyX(1, 1, N, val, i, j);
18
       build(mid + 1, r, i * 2 + 1);
                                                                      yPos, xIndex, xIsLeaf);
                                                                                                       71
       st[i] = pull(i * 2, i * 2 + 1);
                                                              else
                                                                                                                 }
19
                                                                                                       72
                                                   18
                                                                 modifyY(index * 2 + 1, mid + 1,
                                                                                                       73
                                                                                                                 int q;
   int qry(int ql, int qr, int l, int r, int i){
                                                                                                                 int vmax, vmin;
21
                                                                      r, val, yPos, xIndex,
                                                                                                       74
                                                                                                                 int xql, xqr, yql, yqr;
   // [q1,qr]是查詢區間, [1,r]是當前節點包含的區間
                                                                      xIsLeaf);
                                                                                                       75
22
23
       if (ql <= 1 && r <= qr)
                                                   20
                                                                                                       76
                                                                                                                 char op;
                                                                                                                 scanf("%d", &q);
                                                              maxST[xIndex][index] =
24
          return st[i];
                                                                                                       77
                                                   21
25
       int mid = 1 + ((r - 1) >> 1);
                                                                   max(maxST[xIndex][index * 2],
                                                                                                       78
                                                                                                                 while (q--) {
                                                                                                                     getchar(); //for \n
26
       if (tag[i]) {
                                                                   maxST[xIndex][index * 2 + 1]);
                                                                                                       79
                                                                                                                     scanf("%c", &op);
if (op == 'q') {
27
          //如果當前懶標有值則更新左右節點
                                                              minST[xIndex][index] =
                                                                                                       80
                                                   22
          st[i * 2] += tag[i] * (mid - 1 + 1);
28
                                                                   min(minST[xIndex][index * 2],
                                                                                                       81
                                                                                                                         scanf("%d %d %d %d", &xql,
29
          st[i * 2 + 1] += tag[i] * (r - mid);
                                                                   minST[xIndex][index * 2 + 1]);
                                                                                                       82
30
          tag[i * 2] += tag[i];
                                                   23
                                                          }
                                                                                                                              &yql, &xqr, &yqr);
31
          tag[i*2+1] += tag[i];
                                                   24 }
                                                                                                                         vmax = -0x3f3f3f3f;
                                                                                                       83
32
          tag[i] = 0;
                                                   25
                                                      void modifyX(int index, int 1, int r, int
                                                                                                       84
                                                                                                                         vmin = 0x3f3f3f3f;
      }
                                                           val, int xPos, int yPos) {
                                                                                                                         queryX(1, 1, N, xql, xqr,
33
                                                                                                       85
                                                          if (1 == r) {
                                                                                                                              yql, yqr, vmax, vmin);
34
       int sum = 0;
                                                   26
35
       if (ql <= mid)</pre>
                                                              modifyY(1, 1, N, val, yPos, index,
                                                                                                                         printf("%d %d\n", vmax, vmin);
                                                   27
                                                                                                       86
36
          sum+=query(ql, qr, l, mid, i * 2);
                                                                   true):
                                                                                                       87
                                                                                                                     }
37
       if (qr > mid)
                                                   28
                                                                                                       88
                                                                                                                         scanf("%d %d %d", &xql, &yql,
38
          sum+=query(q1, qr, mid+1, r, i*2+1);
                                                          else {
                                                   29
                                                                                                       89
39
                                                              int mid = (1 + r) / 2;
                                                                                                                              &val);
       return sum:
                                                   30
40
  }
                                                   31
                                                              if (xPos <= mid)</pre>
                                                                                                                         modifyX(1, 1, N, val, xql,
                                                                                                       90
   void update(
                                                                 modifyX(index * 2, 1, mid, val,
                                                                                                                              yql);
41
                                                   32
       int ql,int qr,int l,int r,int i,int c) {
                                                                      xPos, yPos);
                                                                                                       91
                                                                                                                     }
42
   // [q1,qr]是查詢區間, [1,r]是當前節點包含的區間
                                                              else
                                                                                                                 }
43
                                                   33
                                                                                                       92
                                                                                                             }
44
   // c是變化量
                                                   34
                                                                 modifyX(index * 2 + 1, mid + 1,
                                                                                                       93
       if (ql <= 1 && r <= qr) {</pre>
                                                                      r, val, xPos, yPos);
45
                                                                                                       94
                                                                                                              return 0;
46
          st[i] += (r - l + 1) * c;
                                                              modifyY(1, 1, N, val, yPos, index,
                                                                                                       95 }
                                                   35
                //求和,此需乘上區間長度
                                                                   false):
47
          tag[i] += c;
                                                   36
          return;
                                                   37 }
48
                                                                                                          4.5 權值線段樹
49
                                                      void queryY(int index, int 1, int r, int
                                                   38
50
       int mid = 1 + ((r - 1) >> 1);
                                                           yql, int yqr, int xIndex, int& vmax,
                                                                                                        1 //權值線段樹 + 離散化 解決區間第k小問題
51
       if (tag[i] && 1 != r) {
                                                           int &vmin) {
                                                          if (yql <= 1 && r <= yqr) {</pre>
          //如果當前懶標有值則更新左右節點
                                                                                                        2 //其他網路上的解法: 2個heap, Treap, AVL tree
52
                                                   39
                                                                                                          #define maxn 30005
53
          st[i * 2] += tag[i] * (mid - 1 + 1);
                                                              vmax = max(vmax,
                                                                                                          int nums[maxn];
54
          st[i * 2 + 1] += tag[i] * (r - mid);
                                                                   maxST[xIndex][index]);
                                                                                                          int getArr[maxn];
55
          tag[i * 2] += tag[i]; //下傳懶標至左節點
                                                   41
                                                              vmin = min(vmin,
                                                                                                          int id[maxn];
56
          tag[i*2+1] += tag[i];//下傳懶標至右節點
                                                                   minST[xIndex][index]);
          tag[i] = 0;
                                                                                                          int st[maxn << 2];</pre>
57
                                                          }
                                                   42
                                                                                                          void update(int index, int 1, int r, int qx)
58
                                                   43
                                                          else
       if (ql <= mid) update(ql, qr, l, mid, i</pre>
59
                                                   44
                                                          {
                                                              int mid = (1 + r) / 2;
                                                                                                       9
                                                                                                             if (1 == r)
            * 2, c);
                                                   45
                                                                                                       10
                                                                                                             {
       if (qr > mid) update(ql, qr, mid+1, r,
                                                              if (yql <= mid)</pre>
60
                                                   46
            i*2+1, c);
                                                                  queryY(index * 2, 1, mid, yql,
                                                                                                       11
                                                                                                                 ++st[index];
                                                                                                       12
                                                                                                                 return;
       st[i] = pull(i * 2, i * 2 + 1);
                                                                      yqr, xIndex, vmax, vmin);
61
                                                              if (mid < yqr)</pre>
                                                                                                       13
62 }
                                                                  queryY(index * 2 + 1, mid + 1, r,
   //如果是直接改值而不是加值,query與update中的tag與sten
                                                                                                       14
                                                                      yql, yqr, xIndex, vmax,
                                                                                                       15
                                                                                                              int mid = (1 + r) / 2;
64 //改值 從 +=改成 =
                                                                                                              if (qx <= mid)</pre>
                                                                                                       16
                                                                      vmin);
                                                                                                       17
                                                                                                                 update(index * 2, 1, mid, qx);
                                                   50
                                                          }
                                                                                                       18
   4.4 線段樹 2D
                                                   51
                                                                                                       19
                                                                                                                 update(index * 2 + 1, mid + 1, r, qx);
                                                      void queryX(int index, int 1, int r, int
                                                                                                              st[index] = st[index * 2] + st[index * 2]
                                                                                                       20
                                                           xql, int xqr, int yql, int yqr, int&
 1 //純2D segment tree 區間查詢單點修改最大最小值
                                                                                                                  + 1];
                                                            vmax, int& vmin) {
   #define maxn 2005 //500 * 4 + 5
                                                                                                       21
                                                          if (xql <= 1 && r <= xqr) {</pre>
 3
   int maxST[maxn][maxn], minST[maxn][maxn];
                                                                                                          //找區間第k個小的
                                                   54
                                                              queryY(1, 1, N, yql, yqr, index,
                                                                                                       22
                                                                                                          int query(int index, int 1, int r, int k) {
 4 int N:
                                                                   vmax, vmin);
   void modifyY(int index, int 1, int r, int
                                                                                                              if (1 == r)
                                                   55
        val, int yPos, int xIndex, bool
                                                                                                       25
                                                                                                                 return id[1];
                                                          else {
```

int mid = (1 + r) / 2;

if (xql <= mid)</pre>

57

58

int mid = (1 + r) / 2;

if (k <= st[index * 2])

//k比左子樹小

26

27

xIsLeaf) {

if (1 == r) {

if (xIsLeaf) {

40

41

42

30

31

32

33

34

35

int head=0,tail=0;

q[++tail]=i;

for(int i=1;i<k;i++) {</pre>

for(int i=k;i<=n;i++) {</pre>

while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>

int p = q.front();

for(int i=0; i<maxc; i++) {</pre>

q.pop();

TrieNode* cur = root;

for(auto& ch : word) {

int c = ch - minc;

29

30

31

struct Trie {

TrieNode* root;

Trie() { root = new TrieNode(); }

void insert(string word) {

16

17

18

19

20

return query(index * 2, 1, mid, k);

return query(index * 2 + 1, mid + 1,

22

23

24

34

35

36

37

38

cnt[p]++;

void build() {

queue<int> q({root});

while(!q.empty()) {

```
r, k - st[index * 2]);
                                                           if(!cur->child[c])
                                                                                                                int& t = trie[p][i];
                                                   25
                                                                                                      43
                                                             cur->child[c] = new TrieNode();
32 }
                                                   26
                                                                                                      44
                                                                                                                if(t) {
   int main() {
                                                           cur = cur->child[c];
                                                                                                                  fail[t] = p?trie[fail[p]][i]:root;
33
                                                   27
                                                                                                      45
34
      int t:
                                                   28
                                                                                                      46
                                                                                                                  q.push(t);
35
      cin >> t;
                                                   29
                                                         cur->cnt++;
                                                                                                      47
                                                                                                                } else {
36
      bool first = true;
                                                   30
                                                       }
                                                                                                      48
                                                                                                                  t = trie[fail[p]][i];
37
      while (t--) {
                                                   31
                                                                                                      49
38
          if (first)
                                                   32
                                                        void remove(string word) {
                                                                                                      50
             first = false;
                                                         TrieNode* cur = root;
                                                                                                      51
39
                                                   33
                                                                                                            }
40
          else
                                                          for(auto& ch : word) {
                                                                                                      52
                                                   34
              puts("");
                                                           int c = ch - minc;
41
                                                   35
                                                                                                      53
42
          memset(st, 0, sizeof(st));
                                                   36
                                                           if(!cur->child[c]) return;
                                                                                                      54
                                                                                                           // 要存 wordId 才要 vec
43
          int m. n:
                                                   37
                                                           cur = cur->child[c];
                                                                                                           // 同單字重複match要把所有vis取消掉
                                                                                                           int match(char* s, vector<int>& vec) {
44
          cin >> m >> n;
                                                   38
                                                                                                      56
45
          for (int i = 1; i <= m; ++i) {</pre>
                                                   39
                                                         cur->cnt--;
                                                                                                            int res = 0:
                                                       }
                                                                                                            memset(vis, 0, sizeof(vis));
46
              cin >> nums[i];
                                                   40
                                                                                                      58
47
              id[i] = nums[i];
                                                                                                            for(int p=root; *s; s++) {
                                                   41
                                                                                                      59
48
                                                   42
                                                        // 字典裡有出現 word
                                                                                                              p = trie[p][*s-minc];
          for (int i = 0; i < n; ++i)
                                                                                                              for(int k=p; k && !vis[k]; k=fail[k]) {
49
                                                        bool search(string word, bool prefix=0) {
                                                   43
                                                                                                      61
50
              cin >> getArr[i];
                                                   44
                                                         TrieNode* cur = root;
                                                                                                      62
                                                                                                                vis[k] = true;
51
          //離散化
                                                   45
                                                         for(auto& ch : word) {
                                                                                                      63
                                                                                                                res += cnt[k];
                                                           int c = ch - minc;
52
          //防止m == 0
                                                   46
                                                                                                      64
                                                                                                                if(cnt[k]) vec.push_back(val[k]);
53
          if (m)
                                                   47
                                                           if(!(cur=cur->child[c])) return false;
                                                                                                      65
              sort(id + 1, id + m + 1);
54
                                                   48
                                                                                                      66
55
          int stSize = unique(id + 1, id + m +
                                                   49
                                                         return cur->cnt || prefix;
                                                                                                      67
                                                                                                             return res; // 匹配到的單字量
               1) - (id + 1);
                                                                                                      68
                                                   50
56
          for (int i = 1; i <= m; ++i) {</pre>
                                                   51
                                                                                                      69
                                                                                                         };
              nums[i] = lower_bound(id + 1, id)
                                                        // 字典裡有 word 的前綴為 prefix
57
                                                   52
                                                                                                      70
                   + stSize + 1, nums[i]) - id;
                                                   53
                                                        bool startsWith(string prefix) {
                                                                                                      71
                                                                                                         ACTrie ac;
                                                                                                                       // 建構,初始化
                                                         return search(prefix, true);
                                                                                                      72
                                                                                                         ac.insert(s); // 加字典單字
59
          int addCount = 0:
                                                   55
                                                                                                      73 // 加完字典後
          int getCount = 0;
                                                   56 };
                                                                                                         ac.build();
                                                                                                                       // !!! 建 failure link !!!
60
                                                                                                      75 ac.match(s); // 多模式匹配 (加 vec 存編號)
          int k = 1;
61
          while (getCount < n) {</pre>
62
63
              if (getArr[getCount] == addCount)
                                                      4.7 AC Trie
                   {
                                                                                                                單調隊列
                                                                                                         4.8
                 printf("%d \setminus n", query(1, 1,
                                                    1 const int maxn = 1e4 + 10; // 單字字數
                      stSize, k));
                                                      const int maxl = 50 + 10; // 單字字長
                                                                                                         //單調隊列
65
                                                      const int maxc = 128;
                                                                               // 單字字符數
                                                                                                         "如果一個選手比你小還比你強,你就可以退役了。"
66
                 ++getCount;
                                                      const char minc = ' ';
67
              }
                                                                              // 首個 ASCII
                                                                                                         example
68
              else {
                 update(1, 1, stSize,
                                                      int trie[maxn*maxl][maxc]; // 原字典樹
69
                                                                              // 結尾(單字編號)
                                                      int val[maxn*maxl];
                                                                                                         給出一個長度為 n 的數組,
                      nums[addCount + 1]);
                                                      int cnt[maxn*max1];
                                                                               // 結尾(重複個數)
                                                                                                         輸出每 k 個連續的數中的最大值和最小值。
                  ++addCount:
70
                                                                               // failure link
                                                     int fail[maxn*maxl];
71
              }
                                                   10 bool vis[maxn*maxl];
                                                                               // 同單字不重複
                                                                                                         #include <bits/stdc++.h>
72
          }
      }
                                                   11
                                                                                                         #define maxn 1000100
73
                                                      struct ACTrie {
                                                                                                         using namespace std;
                                                   12
74
      return 0;
75 }
                                                   13
                                                       int seq, root;
                                                                                                         int q[maxn], a[maxn];
                                                   14
                                                                                                      13
                                                                                                         int n, k;
                                                        ACTrie() {
                                                                                                         //得到這個隊列裡的最小值,直接找到最後的就行了
                                                   15
                                                                                                      14
                                                   16
                                                                                                      15
                                                                                                         void getmin() {
                                                         seq = 0;
   4.6
         Trie
                                                         root = newNode();
                                                   17
                                                                                                             int head=0,tail=0;
                                                                                                      16
                                                   18
                                                                                                      17
                                                                                                             for(int i=1;i<k;i++) {</pre>
   const int maxc = 26;
                            // 單字字符數
                                                   19
                                                                                                      18
                                                                                                                while(head<=tail&&a[q[tail]]>=a[i])
   const char minc = 'a'; // 首個 ASCII
                                                   20
                                                        int newNode() {
                                                                                                                     tail--;
                                                         for(int i=0; i<maxc; i++) trie[seq][i]=0;</pre>
 3
                                                   21
                                                                                                      19
                                                                                                                q[++tail]=i;
   struct TrieNode {
                                                   22
                                                          val[seq] = cnt[seq] = fail[seq] = 0;
                                                                                                      20
     int cnt;
                                                   23
                                                                                                      21
                                                                                                             for(int i=k; i<=n;i++) {</pre>
    TrieNode* child[maxc];
                                                                                                                while(head<=tail&&a[q[tail]]>=a[i])
                                                   24
                                                                                                      22
                                                   25
                                                                                                                     tail--:
                                                                                                                q[++tail]=i;
 8
    TrieNode() {
                                                   26
                                                        void insert(char* s, int wordId=0) {
                                                                                                      23
9
      cnt = 0;
                                                   27
                                                         int p = root:
                                                                                                      24
                                                                                                                while(q[head]<=i-k) head++;</pre>
10
      for(auto& node : child) {
                                                   28
                                                          for(; *s; s++) {
                                                                                                      25
                                                                                                                cout<<a[q[head]]<<" ";
11
        node = nullptr;
                                                   29
                                                           int c = *s - minc:
                                                                                                      26
                                                                                                            }
                                                                                                            cout<<endl;</pre>
                                                           if(!trie[p][c]) trie[p][c] = newNode();
12
                                                                                                      27
13
    }
                                                   31
                                                           p = trie[p][c];
                                                                                                      28 }
14
                                                   32
                                                                                                      29
                                                                                                         // 和上面同理
   }:
15
                                                   33
                                                         val[p] = wordId;
                                                                                                         void getmax() {
```

```
while(head<=tail&&a[q[tail]]<=a[i])tail--; 5</pre>
37
38
           α[++tail]=i:
           while(q[head]<=i-k) head++;</pre>
39
40
           cout<<a[q[head]]<<" ";
41
42
       cout<<endl;
   }
43
44
45
   int main(){
       cin>>n>>k; //每k個連續的數
46
47
       for(int i=1;i<=n;i++) cin>>a[i];
48
       getmin():
49
       getmax();
50
       return 0;
51
```

5 Geometry

5.1 公式

1. Circle and Line

點 $P(x_0, y_0)$ 到直線 L: ax + by + c = 0 的距離

2. Triangle

```
設三角形頂點為 A(x_1,y_1), B(x_2,y_2), C(x_3,y_3) 點 A,B,C 的對邊長分別為 a,b,c 三角形面積為 \Delta 重心為 (G_x,G_y),內心為 (I_x,I_y),
外心為 (O_x,O_y) 和垂心為 (H_x,H_y)
\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
G_x = \frac{x_1+x_2+x_3}{3}, G_y = \frac{y_1+y_2+y_3}{3}
I_x = \frac{ax_1+bx_2+cx_3}{a+b+c}, I_y = \frac{ay_1+by_2+cy_3}{a+b+c}
O_x = \frac{\begin{vmatrix} x_1^2+y_1^2 & y_1 & 1 \\ x_2^2+y_2^2 & y_2 & 1 \\ x_3^2+y_2^2 & y_2 & 1 \\ x_3^2+y_2^2 & y_3 & 1 \end{vmatrix}}{4\Delta}, O_y = \frac{\begin{vmatrix} x_1 & x_1^2+y_1^2 \\ x_2 & x_2^2+y_2^2 \\ x_3 & x_3^2+y_3^2 \\ 4\Delta \end{vmatrix}}{4\Delta}
H_x = -\frac{\begin{vmatrix} x_2x_3+y_2y_3 & y_1 & 1 \\ x_1x_3+y_1y_3 & y_2 & 1 \\ x_1x_2+y_1y_2 & y_3 & 1 \\ x_1x_2+y_1y_2 & 1 \\ 2\Delta \end{vmatrix}}{2\Delta}
任意三角形,重心、外心、垂心共線
G_x = \frac{2}{3}O_x + \frac{1}{3}H_x, G_y = \frac{2}{3}O_y + \frac{1}{3}H_y
```

5.2 Template

```
1 using DBL = double;
2 using TP = DBL; // 存點的型態
 4 const DBL pi = acos(-1);
 5 const DBL eps = 1e-8;
   const TP inf = 1e30;
  const int maxn = 5e4 + 10;
9 struct Vector {
10
    TP x, y;
    Vector(TP x=0, TP y=0): x(x), y(y) {}
11
   DBL length();
12
13 };
14 using Point = Vector;
  using Polygon = vector<Point>;
15
16
17 | Vector operator+(Vector a, Vector b) {
   return Vector(a.x+b.x, a.y+b.y); }
19 Vector operator-(Vector a, Vector b) {
   return Vector(a.x-b.x, a.y-b.y); }
20
21 Vector operator*(Vector a, DBL b) {
22
   return Vector(a.x*b, a.y*b); }
23 Vector operator/(Vector a, DBL b) {
24
   return Vector(a.x/b, a.y/b); }
26 TP dot(Vector a, Vector b) {
27
   return a.x*b.x + a.y*b.y;
28 }
29 TP cross(Vector a, Vector b) {
```

```
30
     return a.x*b.y - a.y*b.x;
 31 }
 32 DBL Vector::length() {
     return sqrt(dot(*this, *this));
 34 }
 35
    DBL dis(Point a, Point b) {
 36
     return sqrt(dot(a-b, a-b));
 37
 38
    Vector unit_normal_vector(Vector v) {
     DBL len = v.length();
 39
 40
     return Vector(-v.y/len, v.x/len);
 41
 42
 43
    struct Line {
 44
     Point p;
 45
      Vector v;
      DBL ang;
 46
      Line(Point _p={}, Vector _v={}) {
 48
        p = _p;
       v = _v;
 49
 50
       ang = atan2(v.y, v.x);
 51
 52
      bool operator<(const Line& 1) const {</pre>
        return ang < 1.ang;</pre>
 53
 54
 55
    };
 56
 57
    struct Segment {
       Point s, e;
 58
 59
        Segment(): s({0, 0}), e({0, 0}) {}
        Segment(Point s, Point e): s(s), e(e) {}
 60
1 61
        DBL length() { return dis(s, e); }
<sup>1</sup>62
63
    struct Circle {
 64
     Point o:
 65
 66
      Circle(): o({0, 0}), r(0) {}
      Circle(Point o, DBL r=0): o(o), r(r) {}
 68
      Circle(Point a, Point b) { // ab 直徑
       o = (a + b) / 2;
 70
        r = dis(o, a);
 71
 72
     }
      Circle(Point a, Point b, Point c) {
 73
        Vector u = b-a, v = c-a;
        DBL c1=dot(u, a+b)/2, c2=dot(v, a+c)/2;
 75
        DBL dx=c1*v.y-c2*u.y, dy=u.x*c2-v.x*c1;
 77
        o = Point(dx, dy) / cross(u, v);
 78
        r = dis(o, a);
 79
     bool cover(Point p) {
 80
 81
        return dis(o, p) <= r;</pre>
 82
 83 };
```

5.3 Polygon

```
1 // 判斷點 (point) 是否在凸包 (p) 內
  bool pointInConvex(Polygon& p, Point point) {
    // 根據 TP 型態來寫,沒浮點數不用 dblcmp
    auto dblcmp=[](DBL v){return (v>0)-(v<0);};</pre>
    // 不包含線上,改 '>=' 為 '>'
    auto test = [&](Point& p0, Point& p1) {
      return dblcmp(cross(p1-p0, point-p0))>=0;
8
    }:
    p.push_back(p[0]);
9
10
    for(int i=1; i<p.size(); i++) {</pre>
      if(!test(p[i-1], p[i])) {
12
        p.pop_back();
13
        return false;
14
15
16
    p.pop_back();
17
    return true:
18 }
19
20 // 計算簡單多邊形的面積
```

for(;test(1,p[j],p[(j+1)%n]);j=(j+1)%n);

dot(p[(i+1)%n]-p[j], p[(i+1)%n]-p[j]),

Line l(p[i], p[(i+1)%n] - p[i]);

dot(p[i]-p[j], p[i]-p[j])

5.4 Intersection

```
1 // 除 intersection(Line a, Line b) 之外,
   // 皆尚未丢 online judge
2
3
 4
   int dcmp(DBL a, DBL b=0.0) {
 5
    return (a > b) - (a < b);
6
   }
   bool hasIntersection(Point p, Segment s) {
    return dcmp(cross(p-s.s, s.s-s.e))==0&&
9
10
           dcmp(dot(p.x-s.s.x, p.x-s.e.x)) \le 0\&\&
11
           dcmp(dot(p.y-s.s.y, p.y-s.e.y)) \le 0;
12
13
   bool hasIntersection(Point p, Line 1) {
14
15
     return dcmp(cross(p-1.p, 1.v)) == 0;
   }
16
17
   DBL dis(Line 1, Point p) {
18
19
    DBL t = cross(p, l.v) + cross(l.v, l.p);
20
    return abs(t) / sqrt(dot(1.v, 1.v));
  }
21
22
23
   Point intersection(Line a, Line b) {
24
     Vector u = a.p - b.p;
25
    DBL t = 1.0*cross(b.v, u)/cross(a.v, b.v);
26
    return a.p + a.v*t:
27
  }
28
   // 返回 p 在 1 上的垂足(投影點)
  Point getPedal(Line 1, Point p) {
30
    DBL len = dot(p-1.p, 1.v) / dot(1.v, 1.v);
32
    return 1.p + 1.v * len;
33 }
```

5.5 最小圓覆蓋

```
vector<Point> p(3); // 在圓上的點
   Circle MEC(vector<Point>& v, int n, int d=0){
    Circle mec;
    if(d == 1) mec = Circle(p[0]);
    if(d == 2) mec = Circle(p[0], p[1]);
    if(d == 3) return Circle(p[0], p[1], p[2]);
 7
     for(int i=0; i<n; i++) {</pre>
      if(mec.cover(v[i])) continue;
 8
      p[d] = v[i];
10
      mec = MEC(v, i, d+1);
11
12
     return mec;
13 }
```

5.6 旋轉卡尺

```
1 // 回傳凸包內最遠南點的距離
2 int longest_distance(Polygon& p) {
3 auto test = [&](Line l, Point a, Point b) {
4 return cross(l.v,a-l.p)<=cross(l.v,b-l.p);
5 };
6 if(p.size() <= 2) {
7 return cross(p[0]-p[1], p[0]-p[1]);
8 }
9 int mx = 0;
10 for(int i=0, j=1, n=p.size(); i<n; i++) {
```

```
5.7 凸包
```

return mx;

});

 $mx = max({$

11

12

13

15

16

17

18 }

19

20 }

```
・ TP 為 Point 裡 x 和 y 的型態
```

- struct Point 需要加入並另外計算的 variables:
 1. ang, 該點與基準點的 atan2 值
 2. d2, 該點與基準點的 (距離)²
- · 注意計算 d2 的型態範圍限制

```
1 using TP = long long;
   using Polygon = vector<Point>;
   const TP inf = 1e9; // 座標點最大值
   Polygon convex_hull(Point* p, int n) {
     auto dblcmp = [](DBL a, DBL b=0.0) {
       return (a>b) - (a<b);
     auto rmv = [&](Point a, Point b, Point c) {
10
      return cross(b-a, c-b) <= 0; // 非浮點數
11
12
       return dblcmp(cross(b-a, c-b)) <= 0;</pre>
13
     // 選最下裡最左的當基準點,可在輸入時計算
15
     TP lx = inf, ly = inf;
16
17
     for(int i=0; i<n; i++) {</pre>
18
       if(p[i].y<ly || (p[i].y==ly&&p[i].x<lx)){</pre>
19
         lx = p[i].x, ly = p[i].y;
20
     }
22
23
     for(int i=0; i<n; i++) {</pre>
24
       p[i].ang=atan2(p[i].y-ly,p[i].x-lx);
       p[i].d2 = (p[i].x-lx)*(p[i].x-lx) +
25
26
                (p[i].y-ly)*(p[i].y-ly);
27
     sort(p, p+n, [&](Point& a, Point& b) {
       if(dblcmp(a.ang, b.ang))
         return a.ang < b.ang;</pre>
31
       return a.d2 < b.d2;</pre>
     int m = 1; // stack size
34
     Point st[n] = \{p[n]=p[0]\};
35
36
     for(int i=1; i<=n; i++) {</pre>
37
       for(;m>1&&rmv(st[m-2],st[m-1],p[i]);m--);
       st[m++] = p[i];
38
39
     return Polygon(st, st+m-1);
```

5.8 半平面相交

```
1 using DBL = double;
2 using TP = DBL; // 存點的型態
3 using Polygon = vector<Point>;
4
5 const int maxn = 5e4 + 10;
6
7 // Return: 能形成半平面交的凸包邊界點
8 Polygon halfplaneIntersect(vector<Line>&nar){
9 sort(nar.begin(), nar.end());
10 DBL 跟 0 比較,沒符點數不用
```

```
auto dblcmp=[](DBL v){return (v>0)-(v<0);};</pre>
     // p 是否在 1 的左半平面
12
     auto lft = [&](Point p, Line 1) {
13
       return dblcmp(cross(1.v, p-1.p)) > 0;
15
16
     int q1 = 0, qr = 0;
17
     Line L[maxn] = {nar[0]};
18
19
     Point P[maxn];
20
21
     for(int i=1; i<nar.size(); i++) {</pre>
       for(; ql<qr&&!lft(P[qr-1],nar[i]); qr--);</pre>
22
       for(; ql<qr&!lft(P[ql],nar[i]); ql++);</pre>
23
       L[++qr] = nar[i];
24
25
       if(dblcmp(cross(L[qr].v,L[qr-1].v))==0) {
26
         if(lft(nar[i].p,L[--qr])) L[qr]=nar[i];
27
       if(ql < qr)
28
         P[qr-1] = intersection(L[qr-1], L[qr]);
29
30
31
     for(; ql<qr && !lft(P[qr-1], L[ql]); qr--);</pre>
     if(qr-ql <= 1) return {};</pre>
32
     P[qr] = intersection(L[qr], L[ql]);
     return Polygon(P+q1, P+qr+1);
34
35 }
```

6 DP

6.1 以價值為主的背包

```
/*w 變得太大所以一般的01背包解法變得不可能
     觀察題目w變成10^9
     而 v_i變成 10^3
    N不變 10^2
    試著湊湊看dp狀態
    dp[maxn][maxv]是可接受的複雜度
     剩下的是轉移式,轉移式變成
    dp[i][j] = w \rightarrow
         當目前只考慮到第i個商品時,達到獲利j時最少的we1g }
     所以答案是dp[n][1 \sim maxv]找價值最大且裝的下的*/
   #define maxn 105
   #define maxv 100005
   long long dp[maxn][maxv];
   long long weight[maxn];
   long long v[maxn];
15
   int main() {
      int n;
16
17
      long long w;
      scanf("%d %11d", &n, &w);
18
19
      for (int i = 1; i <= n; ++i) {</pre>
          scanf("%11d %11d", &weight[i], &v[i]);
20
21
22
      memset(dp, 0x3f, sizeof(dp));
23
      dp[0][0] = 0;
      for (int i = 1; i <= n; ++i) {</pre>
24
          for (int j = 0; j <= maxv; ++j) {</pre>
25
             if (j - v[i] >= 0)
26
                 dp[i][j] = dp[i - 1][j -
27
                      v[i]] + weight[i];
             dp[i][j] = min(dp[i - 1][j],
                  dp[i][j]);
          }
29
30
      }
31
      long long res = 0;
      for (int j = maxv - 1; j >= 0; --j) {
32
          if (dp[n][j] <= w) {</pre>
33
34
             res = j;
35
             break;
36
37
```

```
5 // m -> 1 bar最多多少units
6 long long dfs(int n, int k) {
      if (k == 1) {
          return (n <= M);</pre>
      }
       if (dp[n][k] != -1)
11
          return dp[n][k];
       long long result = 0;
12
       for (int i = 1; i < min(M + 1, n); ++i)</pre>
           { // < min(M + 1, n)是因為n不能==0
           result += dfs(n - i, k - 1);
15
16
       return dp[n][k] = result;
18 int main() {
       while (scanf("%d %d %d", &N, &K, &M) !=
           memset(dp, -1, sizeof(dp));
          printf("%11d\n", dfs(N, K));
21
22
23
       return 0;
```

6.4 Deque 最大差距

```
1 /*定義 dp[1][r]是1 ~ r時與先手最大差異值
    轉移式: dp[1][r] = max{a[1] - solve(1 + 1,
         r), a[r] - solve(l, r - 1)}
    裡面用減的主要是因為求的是相減且會一直換手,
    所以正負正負...*/
 5 #define maxn 3005
  bool vis[maxn][maxn];
   long long dp[maxn][maxn];
  long long a[maxn];
9 long long solve(int 1, int r) {
      if (1 > r) return 0;
11
      if (vis[l][r]) return dp[l][r];
      vis[l][r] = true;
12
13
      long long res = a[1] - solve(1 + 1, r);
      res = max(res, a[r] - solve(1, r - 1));
14
15
      return dp[1][r] = res;
16 }
17 int main() {
18
      printf("%l1d\n", solve(1, n));
19
```

6.2 抽屜

printf("%11d\n", res);

return 0:

38

39

40 }

```
1 long long dp[70][70][2];
   // 初始條件
  dp[1][0][0] = dp[1][1][1] = 1;
  for (int i = 2; i <= 66; ++i){</pre>
      // i個抽屜 Ø個安全且上方 Ø =
      // (底下i - 1個抽屜且1個安全且最上面L) +
      // (底下n - 1個抽屜0個安全且最上方為0)
      dp[i][0][0]=dp[i-1][1][1]+dp[i-1][0][0];
      for (int j = 1; j <= i; ++j) {</pre>
10
          dp[i][j][0] =
           dp[i-1][j+1][1]+dp[i-1][j][0];
11
12
          dp[i][j][1] =
13
           dp[i-1][j-1][1]+dp[i-1][j-1][0];
15 } //答案在 dp[n][s][0] + dp[n][s][1]);
```

6.3 Barcode

```
1 int N, K, M;
2 long long dp[55][55];
3 // n -> 目前剩多少units
4 // k -> 目前剩多少bars
```

6.5 LCS 和 LIS

6.6 RangeDP

```
if (i = j - 1)
          return dp[i][j] = 0;
10
       int cost = 0x3f3f3f3f;
11
       for (int m = i + 1; m < j; ++m) {
12
13
          //枚舉區間中間切點
          cost = min(cost, solve(i, m) +
14
            solve(m, j) + cuts[j] - cuts[i]);
15
16
17
       return dp[i][j] = cost;
18 }
19
   int main() {
      int 1,n;
20
21
       while (scanf("%d", &1) != EOF && 1){
          scanf("%d", &n);
22
          for (int i = 1; i <= n; ++i)
23
              scanf("%d", &cuts[i]);
24
          cuts[0] = 0:
25
          cuts[n + 1] = 1;
          memset(dp, -1, sizeof(dp));
27
28
          printf("ans = %d.\n", solve(0,n+1));
29
30
      return 0;
31 }
```

6.7 stringDP

Edit distance S_1 最少需要經過幾次增、刪或換字變成 S_2

```
dp[i,j] = \left\{ \begin{array}{ccc} i+1, & \text{if } j=-1 \\ j+1, & \text{if } i=-1 \\ dp[i-1,j-1], & \text{if } S_1[i] = S_2[j] \\ dp[i,j-1] \\ dp[i-1,j] \\ dp[i-1,j-1] \end{array} \right\} + 1, & \text{if } S_1[i] \neq S_2[j]
```

Longest Palindromic Subsequence

```
dp[l,r] = \left\{ \begin{array}{ccc} 1 & \text{if} & l = r \\ dp[l+1,r-1] & \text{if} & S[l] = S[r] \\ \max\{dp[l+1,r], dp[l,r-1]\} & \text{if} & S[l] \neq S[r] \end{array} \right.
```

6.8 樹 DP 有幾個 path 長度為 k

```
1 #define maxn 50005
 2 #define maxk 505
 3 //dp[u][u的child且距離u長度k的數量]
   long long dp[maxn][maxk];
   vector<vector<int>>> G;
   int n, k;
   long long res = 0;
   void dfs(int u, int p) {
      //u自己
       dp[u][0] = 1;
10
      for (int v: G[u]) {
11
12
          if (v == p)
13
              continue;
          dfs(v, u);
14
15
          for (int i = 1; i <= k; ++i) {
              //子樹v距離i - 1的等於對於u來說距離i的
16
              dp[u][i] += dp[v][i - 1];
17
          }
18
19
20
       //統計在u子樹中距離u為k的數量
       res += dp[u][k];
21
22
       long long cnt = 0;
       for (int v: G[u]) {
23
        if (v == p)
24
25
          continue; //重點算法
        for (int x = 0; x \le k - 2; ++x) {
26
27
28
            dp[v][x]*(dp[u][k-x-1]-dp[v][k-x-2]);
29
      }
30
31
      res += cnt / 2:
32 }
33 int main() {
```

3 long long height[maxn];

```
dfs(1, -1);
                                                     4 long long B[maxn];
35
       printf("%11d\n", res);
                                                      5 long long st[maxn << 2];</pre>
36
37
                                                        void update(int p, int index, int 1, int r,
       return 0;
38 }
                                                             long long v) {
                                                            if (1 == r) {
                                                               st[index] = v;
                                                               return:
          TreeDP reroot
                                                     10
                                                            int mid = (1 + r) >> 1;
                                                     11
                                                     12
                                                            if (p <= mid)</pre>
   /*re-root\ dp\ on\ tree\ O(n+n+n)\ ->\ O(n)*/
                                                               update(p, (index << 1), 1, mid, v);
   class Solution {
                                                     13
   public:
                                                     14
3
                                                     15
                                                                update(p, (index << 1)+1, mid+1, r, v);
       vector<int> sumOfDistancesInTree(int n,
                                                     16
                                                            st[index] =
            vector<vector<int>>& edges) {
          this->res.assign(n, 0);
                                                     17
                                                             max(st[index<<1],st[(index<<1)+1]);
 5
                                                     18 }
 6
          G.assign(n + 5, vector<int>());
                                                     19 long long query(int index, int 1, int r, int
7
          for (vector<int>& edge: edges) {
                                                             ql, int qr) {
              G[edge[0]].emplace_back(edge[1]);
                                                            if (ql <= 1 && r <= qr)</pre>
9
              G[edge[1]].emplace_back(edge[0]);
                                                     20
                                                     21
                                                               return st[index];
10
                                                            int mid = (1 + r) >> 1;
          memset(this->visited, 0,
                                                     22
11
                                                            long long res = -1;
                sizeof(this->visited));
          this->dfs(0);
                                                    24
                                                            if (ql <= mid)
12
                                                     25
                                                                res =
13
          memset(this->visited, 0,
                sizeof(this->visited));
                                                    26
                                                                 max(res,query(index<<1,1,mid,q1,qr));</pre>
                                                            if (mid < qr)</pre>
                                                    27
          this->res[0] = this->dfs2(0, 0);
          memset(this->visited. 0.
                                                     28
                                                                res =
15
                                                     29
                                                                 max(res,query((index<<1)+1,mid+1,r,ql,qr));</pre>
                sizeof(this->visited));
          this->dfs3(0, n);
                                                     30
                                                            return res;
16
                                                    31 }
17
           return this->res;
                                                    32 int main() {
      }
18
   private:
                                                     33
19
                                                            scanf("%d", &n);
                                                    34
20
       vector<vector<int>> G;
                                                            for (int i = 1; i <= n; ++i)
                                                     35
21
       bool visited[30005];
                                                               scanf("%11d", &height[i]);
                                                    36
22
       int subtreeSize[30005];
                                                    37
                                                            for (int i = 1; i <= n; ++i)
23
       vector<int> res;
                                                               scanf("%11d", &B[i]);
                                                     38
24
       //求subtreeSize
                                                    39
                                                            long long res = B[1];
25
       int dfs(int u) {
                                                            update(height[1], 1, 1, n, B[1]);
                                                     40
          this->visited[u] = true;
26
                                                            for (int i = 2; i <= n; ++i) {</pre>
27
          for (int v: this->G[u])
                                                    41
                                                     42
                                                               long long temp;
28
              if (!this->visited[v])
29
                  this->subtreeSize[u] +=
                                                     43
                                                                if (height[i] - 1 >= 1)
                                                     44
                                                                   temp =
                       this->dfs(v);
           //自己
                                                     45
                                                                     B[i]+query(1,1,n,1,height[i]-1);
30
31
          this->subtreeSize[u] += 1;
                                                     46
                                                                   temp = B[i];
          return this->subtreeSize[u];
32
                                                                update(height[i], 1, 1, n, temp);
                                                     48
33
                                                     49
                                                                res = max(res, temp);
34
       //求res[0], 0到所有點的距離
                                                     50
35
       int dfs2(int u, int dis) {
                                                           printf("%11d\n", res);
                                                    51
36
          this->visited[u] = true;
                                                            return 0;
          int sum = 0;
37
          for (int v: this->G[u])
38
39
              if (!visited[v])
40
                  sum += this->dfs2(v, dis + 1);
41
           //要加上自己的距離
          return sum + dis;
42
43
       //算出所有的res
44
45
       void dfs3(int u, int n) {
46
           this->visited[u] = true;
47
          for (int v: this->G[u]) {
48
              if (!visited[v]) {
                  this->res[v] = this->res[u] +
49
                       this->subtreeSize[v];
50
                  this->dfs3(v, n);
51
              }
          }
52
53
54 };
```

6.10 WeightedLIS

```
1 #define maxn 200005
2 long long dp[maxn];
```