תרגיל מס.5

עפיף חלומה 302323001

1 בדצמבר 2009

שאלה 1 1

X 1.1

רים: $\sin\left(k_2L\right)=0$ כלומר T=1 פותרים. פותרים:

$$k_2 L = n\pi$$

$$L = n\frac{\pi}{k_2}$$

, אפשר לחומר אין עובי אז אין בחור בn=0 בחור אפשר $n\in\{0,1,2,3\ldots\}$ אזי n=1 אזי מתקבל עבור n=1 אזי המינימום

$$L = \frac{\pi}{k_2}$$

$$= \frac{\left(\sqrt{\frac{y_2}{\rho_2}}\right)}{2\nu}$$

$$= \frac{\sqrt{\frac{2 \cdot 10^{10}}{2 \cdot 7 \cdot 10^{-3}}}}{2 \cdot 10^4}$$

$$\approx 0.25 \text{m}$$

□ 1.2

 $n\in\{1,3\ldots\}$ עבור $k_2L=nrac{\pi}{2}$ כלומר כלומר $\sin{(k_2L)}=1$ עבור $\nu_2=rac{3}{2}$ עבור $\nu_2=rac{3}{2}$ אזי $\nu_2=rac{3}{2}$ איזי $\nu_2=rac{3}{2}$ אזי $\nu_2=rac{3}{2}$ אזי $\nu_2=rac{1}{2}$ בכל מקרה ההפרש הוא $\nu_2=5$ אזי $\nu_2=rac{1}{2}$ בכל מקרה ההפרש הוא $\nu_2=\frac{\pi}{2}$

שאלה 2

n=1.6 : מאוויר ליהלום: $n=\frac{1.6}{1.33}=1.2$ ממים ליהלום: $r=\left(\frac{1.6-1}{1.6+1}\right)^2=0.053$ נחשב מקדם ההתזרה כאשר הגל עובר מאוויר ליהלום: $r=\left(\frac{1.2-1}{1.2+1}\right)^2=8.3\cdot 10^{-3}$ נחשב מקדם ההתזרה כאשר הגל עובר ממים ליהלום: $r=\left(\frac{1.2-1}{1.2+1}\right)^2=8.3\cdot 10^{-3}$

3 שאלה

$$\psi(z,t) = Ae^{i(kz-\omega t)} + Be^{i(-kz-\omega t)}$$

X 3.1

1 3.1.1

צריכים שתי איברים בשביל לקבוע תנאי התחלה. המשמעות הפיזית היא שגל נע בכיוון בריכים אוגל אחר בכיוון -kוגל אחר בכיוון k

2 3.1.2

$$\psi(z = 0, t) = 0$$

$$Ae^{-i\omega t} + Be^{-i\omega t} = 0$$

$$A = -B$$

ניתן עכשיו לפשט את הגל:

$$\psi(z,t) = Ae^{-i\omega t} \left(e^{ikz} - e^{-ikz} \right)$$
$$= 2iAe^{-i\omega t} \sin(kz)$$

עבור תנאי התחלה השני:

$$\begin{array}{rcl} \psi\left(z=L,t\right) & = & 0 \\ 2iAe^{-i\omega t}\sin\left(kL\right) & = & 0 \\ \sin\left(kL\right) & = & 0 \\ kL & = & n\pi \\ k & = & \frac{n\pi}{L} \end{array}$$

 $n=\pm 1,\pm 2\dots$ כאשר אזי הפתרונות המותרות הם:

$$\psi = \Re \left(2iAe^{-i\omega t} \sin (k_n z) \right)$$

$$= \Re \left(2iA \sin (kz) \left[\cos (\omega_n t) - i \sin (\omega_n t) \right] \right)$$

$$= 2A \sin (k_n z) \sin (\omega_n t)$$

3 3.1.3

גל עומד הוא על שלו נראה כמו גל נע בציר המקום, אבל עבור כל נקודה בציר המקום ניתן לקבל גל מתנדנד בציר הזמן. אזי אם מסתכלים על זה רואים גל \sin או \cos שעומד במקום ומשתנה האמפליטודה שלווכאשר השינוי הזה הוא גם גל)

□ 3.2

n=1 עבור

$$k = \frac{n\pi}{L}$$

$$\frac{\omega}{\sqrt{\frac{T_0}{\rho_0}}} = \frac{n\pi}{L}$$

$$2\pi\nu\sqrt{\frac{\rho_0}{T_0}} = \frac{n\pi}{L}$$

$$2\pi\nu\sqrt{\frac{\rho_0}{T_0}} = \frac{\pi}{L}$$

$$T_0 = 4\nu^2L^2\rho_0$$

$$\rho_0 = \rho \cdot \pi \left(\frac{d}{2}\right)^2$$

$$= 7.8 \cdot 10^3 \cdot \pi \cdot \left(\frac{10^{-3}}{2}\right)^2$$

$$= 6.12 \cdot 10^{-3} \frac{kg}{m}$$

$$T_0 = 4740N$$

4 שאלה 4

$$k_n = \frac{N\pi}{L}$$

$$\lambda_n = \frac{2\pi}{k_n}$$

$$\omega_n = \nu k_n$$

$$= \sqrt{\frac{1}{k\rho_0}} k_n$$

 $u_{he}>
u_{air}$ ש ישתנה כיוון של הקשור לפרמטרים ע הקשור ב v-z הקשור כיוון הזדר הערה האר יעלה ערה כלומר עדר הקול הדיבור הקול הדיבור הקול הדיבור או