Computerstøttet beregning

Lektion 7. Repetition

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår Aalborg Universitet

7. april 2009

people.math.aau.dk/~qvist/teaching/csb-09

Numerisk integration

Problem:

For integrabel funktion f på [a,b] ønsker vi at beregne

$$\int_{a}^{b} f(x)dx.$$

Numerisk integration

Problem:

For integrabel funktion f på [a, b] ønsker vi at beregne

$$\int_{a}^{b} f(x)dx.$$

Udfra punkter $x_0,x_1,\ldots,x_N\in[a,b]$ findes interpolerende Lagrange-polynomium $p(x)=\sum_{k=0}^N f(x_k)l_k(x)$ for f, og vi beregner approksimationen

$$I = \int_a^b f(x) \, dx \approx \int_a^b p(x) \, dx = \sum_{k=0}^N c_k f(x_k)$$
 hvor $c_k = \int_a^b l_k(x) dx$.

Præcisionsgrad

En sådan metode til numerisk intgration kaldes en interpolerende kvadraturregel.

Definition:

En interpolerende kvadraturregel siges at have præcisionsgrad n hvis approksimationen er eksakt for $f(x) = 1, x, \dots, x^n$ men ikke for $f(x) = x^{n+1}$.

Tre væsentlige metoder

Midtpunkt regel: (præcisionsgrad: 1)

$$I \approx M = (b-a)f(m), \qquad m = \frac{a+b}{2}.$$

Trapez regel: (præcisionsgrad: 1)

$$I \approx T = \frac{b-a}{2} [f(a) + f(b)].$$

Simpsons regel: (præcisionsgrad: 3)

$$I \approx S = \frac{b-a}{6} [f(a) + 4f(m) + f(b)], \qquad m = \frac{a+b}{2}.$$

Fejlvurderinger

Det kan vises at der findes $\xi_M, \xi_T, \xi_S \in [a, b]$ så

$$I - M = \frac{(b-a)^3}{24} f''(\xi_M)$$

$$I - T = -\frac{(b-a)^3}{12} f''(\xi_T)$$

$$I - S = -\frac{(b-a)^5}{180 \cdot 2^4} f^{(4)}(\xi_S)$$