0.1. FIELDS

0.1 Fields

Definition 0.1.1. A division ring R is a nonzero ring such that $\mathbb{F}^{\times} = \mathbb{F} - \{0\}$ A field \mathbb{F} is a nonzero commutative ring such that $\mathbb{F}^{\times} = \mathbb{F} - \{0\}$

Definition 0.1.2. A character is of G is a group homomorphism $G \to \mathbb{F}^{\times}$, and a cocharacter is a group homomorphism $\mathbb{F}^{\times} \to G$

Lemma 0.1.3. Characters of G, denoted as ch(G) are linear independent on $\mathbb{F}[G]$

Proof. Suppose not, we can find $c_1\chi_1 + \cdots + c_m\chi_m = 0$, $c_i \in \mathbb{F}^{\times}$, with minimal terms, since $\chi_1 \neq \chi_m$, there exists $g_0 \in G$ such that $\chi_1(g_0) \neq \chi_m(g_0)$, on the other hand we have $0 = c_1\chi_1(g) + \cdots + c_m\chi_m(g) = c_1\chi_1(g)\chi_m(g_0) + \cdots + c_m\chi_m(g)\chi_m(g_0)$, $\forall g \in G$ and $0 = c_1\chi_1(gg_0) + \cdots + c_m\chi_m(gg_0) = c_1\chi_1(g)\chi_1(g_0) + \cdots + c_m\chi_m(g)\chi_m(g_0)$, $\forall g \in G$, subtract to get $0 = c_1(\chi_m(g_0) - \chi_1(g_0))\chi_1(g) + \cdots + c_m\chi_m(g_0) - \chi_m(g_0)\chi_m(g_0)$ with fewer terms which is a contradiction

Definition 0.1.4. E/F is a field extension, $\alpha \in E$ induces an F-linear automorphism $T_{\alpha} : E \to E$ by multiplication, then the field trace is $\text{Tr}_{E/F}(\alpha) = \text{Tr}\,T_{\alpha}$. The field norm is $N_{E/F}(\alpha) = \det T_{\alpha}$. Suppose

$$f(x) = \prod (x - \sigma_i(lpha)) = x^n + a_1 x^{n-1} + \cdots + a_n$$

is the minimal monic polynomial, use $1, \alpha, \dots, \alpha^{n-1}$ as a basis for $F(\alpha)$, then T_{α} has the matrix form

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ & 1 & \cdots & 0 & -a_{n-2} \\ & & \ddots & \vdots & \vdots \\ & & 1 & -a_1 \end{bmatrix}$$

Hence $\operatorname{Tr}_{F(\alpha)/F}(\alpha) = -a_1 = \sum \sigma_i(\alpha), \ N_{F(\alpha)/F}(\alpha) = (-1)^n a_n = \prod \sigma_i(\alpha)$

Definition 0.1.5. \mathbb{F} is a perfect field if $\mathbb{F}^p = \mathbb{F}$ if $\operatorname{char} \mathbb{F} = p \neq 0$ or $\operatorname{char} \mathbb{F} = 0$

Definition 0.1.6. E/F is a field extension, $\alpha \in E$ is algebraic over F if α is a zero of some polynomial in F[x]. The **algebraic closure** of F in E are the algebraic elements of E

Theorem 0.1.7 (Emil Artin). Any field F has an algebraically closed extension

0.2 Number field

Lemma 0.2.1. $K = \mathbb{Q}[\alpha]$ is number field, f is the minimal polynomial of α . Suppose $\sigma : K \hookrightarrow \mathbb{C}$ is an embedding, then $\sigma(\alpha)$ is a root of f, and any such choice gives an embedding

Definition 0.2.2. E, F are algebraic number fields of finite degree, E/F is finite separable, A, B are corresponding ring of integers, $\{\beta_1, \dots, \beta_n\}$ is an integral basis of B over A. The discriminant of E/F with respect to $\{\beta_1, \dots, \beta_n\}$ is $D_{E/F}(\beta_1, \dots, \beta_n) = \det(Tr(\beta_i\beta_i))$

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longleftarrow & F
\end{array}$$

Lemma 0.2.3. D_K is well defined in $\frac{A}{(A^{\times})^2}$

Definition 0.2.4. E, F are algebraic number fields of finite degree, E/F is finite separable, A, B are corresponding ring of integers which are Dedekind domains

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longleftarrow & F
\end{array}$$

 $pB = q_1^{e_1} \cdots q_r^{e_r}$ with $e_i > 0$. p is **ramified** if $e_i > 1$ for some i, otherwise unramified. p is **inert** if r = e = 1. p **totally split** if $e_i = f_i = 1$

 $B/pB\cong \prod_{i=1}^r B/q_i^{e_i},\, f_i=[k_{q_i}:k_p],\, [E:F]=\dim_{k_p}(B/pB)=\sum_{i=1}^r e_if_i$ If E/F is Galois, G=Aut(E/F) acts transitively on $\{q_1,\cdots,q_r\},$ then $n=\sum_{i=1}^r e_if_i=ref$

Proof.
$$B \cong A^n$$
, $B/pB \cong A^n/pA^n \cong (A/p)^n \cong k_p^n$

Example 0.2.5. $2\mathbb{Z}[i] = (1+i)^2$ is ramified, $3\mathbb{Z}[i]$ is inert, $5\mathbb{Z}[i] = (2+i)(2-i)$ totally split

$$\mathbb{Z}[i] \longrightarrow \mathbb{Q}[i]$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{Z} \longleftrightarrow \mathbb{Q}$$

Theorem 0.2.6. p ramifies in $O_K \Leftrightarrow p \mid \operatorname{disc}(O_K/\mathbb{Z})$

$$\begin{array}{ccc}
O_K & \longrightarrow & K \\
\uparrow & & \uparrow \\
\mathbb{Z} & \longleftarrow & \mathbb{Q}
\end{array}$$

Proof. $pO_K = \beta_1^{e_1} \cdots \beta_r^{e_r}, O_K/pO_K \cong O_K/\beta_i^{e_i}$ is an isomorphism of \mathbb{F}_p algebras. $d_i = \operatorname{disc}((O_K/\beta_i^{e_i})/\mathbb{F}_p)), d = \operatorname{disc}((O_K/pO_K)/\mathbb{F}_p)), \text{ thus } d = d_1 \cdots d_r, \text{ since discriminant is functorial, } D = \det(Tr_{O_K/\mathbb{Z}}()) \mapsto d, p|D \Leftrightarrow d = 0 \Leftrightarrow d_i = 0 \text{ for some } i$