NLA and Subspace Embeddings

Lecture 24 April 23, 2019

Some topics today

We have seen fast "approximation" algorithms for matrix multiplication

- random sampling
- Using JL

Today:

- Subspace embeddings for faster linear least squares and low-rank approximation
- Frequent directions algorithms for one/two pass approximate SVD
- Compressed Sensing

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for every $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if k < d.
- Possible if $k = \ell$. Pick Π to be an orthonormal basis for E. **Disadvantage:** This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times d}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|\frac{1}{\sqrt{k}}\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Part I

Faster algorithms via subspace embeddings

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$.

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to b is the projection of b into the column space of A so it is "obvious" geometrically. How do we find it?

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$.

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of \boldsymbol{A} . Compute projection \boldsymbol{c} as $\boldsymbol{c} = \sum_{i=1}^r \langle \boldsymbol{b}, z_i \rangle z_i$ and output answer as $\|\boldsymbol{b} - \boldsymbol{c}\|_2$.

Linear least squares via Subspace embeddings

Let a_1, a_2, \ldots, a_d be the columns of A and let E be the subspace spanned by $\{a_1, a_2, \ldots, a_d, b\}$

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix Π with $k = O(\frac{d}{\epsilon^2})$ rows we reduce a_1, a_2, \ldots, a_d, b to $a'_1, a'_2, \ldots, a'_d, b'$ which are vectors in \mathbb{R}^k .

Solve $\min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2$

Claim: With probability $(1 - \delta)$, $\min_{x' \in \mathbb{R}^d} ||A'x' - b'||_2$ is $(1 \pm \epsilon) \min_{x \in \mathbb{R}^d} ||Ax - b||_2$

Claim: With probability $(1-\delta)$, $\min_{x'\in\mathbb{R}^d}\|A'x'-b'\|_2$ is $(1\pm\epsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2$

Suppose x^* is an optimum solution to $\min_x \|Ax - b\|_2$. Let $z = Ax^* - b$. We have $\|\Pi z\|_2 \le (1 + \epsilon)\|z\|_2$. Since x^* is a feasible solution to $\min_{x'} \|A'x' - b'\|$,

$$\min_{x'} \|A'x' - b'\|_2 \le \|A'x^* - b'\|_2 = \|\Pi(Ax^* - b)\|_2 \le (1 + \epsilon)\|Ax^* - b\|_2$$

Claim: With probability $(1-\delta)$, $\min_{x'\in\mathbb{R}^d}\|A'x'-b'\|_2$ is $(1\pm\epsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2$

Suppose x^* is an optimum solution to $\min_x \|Ax - b\|_2$. Let $z = Ax^* - b$. We have $\|\Pi z\|_2 \le (1 + \epsilon)\|z\|_2$. Since x^* is a feasible solution to $\min_{x'} \|A'x' - b'\|$,

$$\min_{x'} ||A'x'-b'||_2 \leq ||A'x^*-b'||_2 = ||\Pi(Ax^*-b)||_2 \leq (1+\epsilon)||Ax^*-b||_2$$

For any $y \in \mathbb{R}^d$, $\|\Pi Ay - \Pi b\|_2 \ge (1 - \epsilon)\|Ay - b\|_2$ because Ay - b is a vector in E and Π preserves all of them. Let y^* be optimum solution to $\min_{x'} \|A'x' - b'\|_2$. Then $\|\Pi (Ay^* - b)\|_2 \ge (1 - \epsilon)\|Ay^* - b\|_2 \ge (1 - \epsilon)\|Ax^* - b\|_2$

Chandra (UIUC) CS498ABD 8 Spring 2019

8 / 30

Running time

Reduce problem for d vectors in \mathbb{R}^n to d vectors in \mathbb{R}^k where $k = O(d/\epsilon^2)$.

Computing ΠA , Πb can be done in nnz(A) via sparse/fast JL (input sparsity time).

Need to solve least squares on A', b' which can be done in poly (d/ϵ) time.

Further improvement

Reduced dimension of vectors from \mathbb{R}^n to \mathbb{R}^k where $k = O(d/\epsilon^2)$.

For small ϵ a dependence of $1/\epsilon^2$ is not so good. Can we improve?

Can use Π with $k = O(d/\epsilon)$.

- Suffices if Π has 1/10-approximate subspace embedding property and property of preserving matrix multiplication
- Use Π that has 1/10-approximate subspace embedding property and then use gradient descent.

Low-rank approximation

Recall: Given $A \in \mathbb{R}^{n \times d}$ and integer k want to find best rank matrix B to minimize $\|A - B\|_F$

- SVD gives optimum for all k. If $A = UDV^T = \sum_{i=1}^d \sigma_i u_i v_i^T$ then $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ is optimum for every k.
- $||A A_k||_F^2 = \sum_{i>k} \sigma_i^2$.
- v_1, v_2, \ldots, v_k are k orthogonal unit vectors from \mathbb{R}^d and maximize the sum of squares of the projection of the rows of A onto the space spanned by them
- u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Chandra (UIUC) CS498ABD 11 Spring 2019 11 / 30

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. $\dim(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. $\dim(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why?

If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. $\dim(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why?

If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. $\dim(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why?

If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why?

Let Π be an ϵ -approximate subspace preserving embedding for E

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Claim:
$$\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$$

Proof sketch

Let a'_1, \ldots, a'_d be columns of ΠA and let u'_1, \ldots, u'_k be $\Pi u_1, \ldots, \Pi u_k$.

Claim:
$$\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$$

Proof sketch

Let a'_1, \ldots, a'_d be columns of ΠA and let u'_1, \ldots, u'_k be $\Pi u_1, \ldots, \Pi u_k$.

$$||A - A_k||_F^2 = \sum_{i=1}^d ||a_i - \sum_{j=1}^k v_j(i)u_j||_2^2$$

Claim:
$$\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$$

Proof sketch

Let a'_1, \ldots, a'_d be columns of ΠA and let u'_1, \ldots, u'_k be $\Pi u_1, \ldots, \Pi u_k$.

$$||A - A_k||_F^2 = \sum_{i=1}^d ||a_i - \sum_{j=1}^k v_j(i)u_j||_2^2$$

From subspace embedding property of Π ,

$$\|\Pi(a_i - \sum_{j=1}^k v_j(i)u_j)\|_2 \le (1+\epsilon)\|a_i - \sum_{j=1}^k v_j(i)u_j\|_2$$

Hence u'_1, u'_2, \ldots, u'_k is a feasible solution for best k-rank approximation to ΠA .

Chandra (UIUC) CS498ABD 13 Spring 2019 13 / 30

Part II

Frequent Directions Algorithm

Low-rank approximation

Faster low-rank approximation algorithms based on randomized algorithm: sampling and subspace embeddings

- Can we find a deterministic algorithm?
- Streaming algorithm?

Low-rank approximation and SVD

Given matrix $A \in \mathbb{R}^{n \times d}$ and (small) integer k

Row view of SVD: v_1, v_2, \ldots, v_k are k orthogonal unit vectors from \mathbb{R}^d that maximize the sum of squares of the projections of the rows A onto the space spanned

Let a_1, a_2, \ldots, a_n be the rows of A (treated as vectors in \mathbb{R}^d)

$$\sigma_j^2 = \sum_{i=1}^n \langle a_i, v_j
angle^2$$
 and $\|A - A_k\|_F^2 = \sum_{j>k} \sigma_j^2$

Low-rank approximation and SVD

Given matrix $A \in \mathbb{R}^{n \times d}$ and (small) integer k

Row view of SVD: v_1, v_2, \ldots, v_k are k orthogonal unit vectors from \mathbb{R}^d that maximize the sum of squares of the projections of the rows A onto the space spanned

Let a_1, a_2, \ldots, a_n be the rows of A (treated as vectors in \mathbb{R}^d)

$$\sigma_j^2 = \sum_{i=1}^n \langle a_i, v_j
angle^2$$
 and $\|A - A_k\|_F^2 = \sum_{j>k} \sigma_j^2$

Consider matrix $D_k V_k^T$ whose rows are $\sigma_1 v_1, \sigma_2 v_2, \dots, \sigma_k v_k$. $\|D_k V_k^T\|_F^2 = \sum_{j=1}^k \sigma_j^2 = \|A_k\|_F^2$

Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by [Ghashami-Phillips]
Liberty inspired by Misra-Gresi frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix $Q \in \mathbb{R}^{\ell \times d}$ where $\ell = k(1+1/\epsilon)$. Hence memory is $O(kd/\epsilon)$

At end of algorithm let Q_k be best rank k-approximation for Q. Then $\|A - \text{Proj}_{Q_k}(A)\|_F \leq (1+\epsilon)\|A - A_k\|_F$.

Thus a $(1 + \epsilon)$ -approximate k-dimensional subspace for rows of A be identified by storing $O(k/\epsilon)$ rows.

FD Algorithm

Frequent-Directions Initialize Q^0 as an all zeroes $\ell \times d$ matrix For each row $a_i \in A$ do Set $Q_+ \leftarrow Q^{i-1}$ with last row replaced by a_i Compute SVD of Q_+ as UDV^T $C^i = DV^T$ (for analysis)

 $\delta_i = \sigma_\ell^2 \text{ (for analysis)}$ $D' = \operatorname{diag}(\sqrt{\sigma_1^2 - \delta_i}, \sqrt{\sigma_2^2 - \delta_i}, \dots, \sqrt{\sigma_{\ell-1}^2 - \delta_i}, 0)$ $Q' = D'V^T$

EndFor

Return $Q = Q^n$

If $\ell = \lceil k(1+1/\epsilon)
ceil$ and Q_k is the rank k approximation to output Q then

$$\|A - \operatorname{Proj}_{Q_k}(A)\|_F \le (1 + \epsilon)\|A - A_k\|_F$$

Running time

- One pass algorithm but requires second pass to compute actual singular values etc
- Space $O(kd/\epsilon)$
- Run time: **n** computations of SVD on $k/\epsilon \times d$ matrix.

Interesting even when k = 1. Alternative to power method to find top singular value/vector. Deterministic.

Part III

Compressed Sensing

Sparse recovery

Recall:

- Vector $x \in \mathbb{R}^n$ and integer k
- x updated in streaming setting one coordinate at a time (can be positive or negative changes)
- Want to find best k-sparse vector \tilde{x} that approximates x. $\min_{y,||y||_0 \le k} ||y-x||_2$. Optimum solution is clear: take y to be the largest k coordinates of x in absolute value.
- Using Count-Sketch: $O(\frac{k}{\epsilon^2} \operatorname{polylog}(n))$ space one can find k-sparse z such that $||z x||_2 \le (1 + \epsilon)||y^* x||_2$ with high probability.
- Count-Sketch can be seen as Πx for some $\Pi \in \mathbb{R}^{m \times n}$ where $m = O(\frac{k}{\epsilon^2} \operatorname{polylog}(n))$. randomly with

Compressed Sensing

Compressed sensing: we want to create projection matrix Π such that for any x we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(k \log(n/k))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.

Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix $\Pi \in \mathbb{R}^{m \times n}$ with $m = O(k \log(n/k))$ and a polytime algorithm such that for any $x \in \mathbb{R}^n$, the algorithm given Πx outputs a k-sparse vector \tilde{x} such that $\|\tilde{x} - x\|_2 \leq O(\frac{1}{\sqrt{k}}) \|x_{tail(k)}\|_1$. In particular it recovers x exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices (restricted isometry property)

Closely connected to JL matrices

Understanding RIP matrices

Suppose x, x' are two distinct k-sparse vectors in \mathbb{R}^n

Basic requirement: $\Pi x \neq \Pi x'$

Let S, S' be the indices in the support of x, x' respectively. Πx is in the span of columns of Π_S and $\Pi x'$ is in the span of columnbs of $\Pi_{S'}$

Thus we need columns of $\Pi_{S \cup S'}$ to be linearly independent for any S, S' with $S \neq S'$ and $|S| \leq k$ and $|S'| \leq k$. Any 2k columns of Π should be linearly independent.

Understanding RIP matrices

Suppose x, x' are two distinct k-sparse vectors in \mathbb{R}^n

Basic requirement: $\Pi x \neq \Pi x'$

Let S, S' be the indices in the support of x, x' respectively. Πx is in the span of columns of Π_S and $\Pi x'$ is in the span of columnbs of $\Pi_{S'}$

Thus we need columns of $\Pi_{S \cup S'}$ to be linearly independent for any S, S' with $S \neq S'$ and $|S| \leq k$ and $|S'| \leq k$. Any 2k columns of Π should be linearly independent.

Sufficient information theoretically. Computationally?

Recovery

Suppose we have Π such that any 2k columns are linearly independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

$$\min ||z||_0$$
 such that $\prod z = \prod x$

Recovery

Suppose we have Π such that any 2k columns are linearly independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

$$\min ||z||_0$$
 such that $\prod z = \prod x$

Guaranteed to recover **x** by uniqueness but NP-Hard!

Recovery

Instead of solving

$$\min ||z||_0$$
 such that $\prod z = \prod x$

solve

$$\min \|z\|_1$$
 such that $\prod z = \prod x$

which is a linear/convex programming problem and hence can be solved in polynomial-time.

If Π satisfies additional properties then one can show that above recovers x.

Chandra (UIUC) CS498ABD 26 Spring 2019 26 / 30

RIP Property

Definition

A $m \times n$ matrix Π has the (ϵ, k) -RIP property if for every k-sparse $x \in \mathbb{R}^n$,

$$(1 - \epsilon) \|x\|_2^2 \le \|\Pi x\|_2^2 \le (1 + \epsilon) \|x\|_2^2$$

Equivalent, whenever $|S| \leq k$ we have

$$\|\mathbf{\Pi}_{S}^{T}\mathbf{\Pi}_{S}-I_{k}\|_{2}\leq\epsilon$$

which is equivalent to saying that if σ_1 and σ_k are the largest and smallest singular value of Π_S then $\frac{\sigma_1^2}{\sigma_\ell^2} \leq (1+\epsilon)$

Every k columns of Π are approximately orthonormal.

Recovery theorem

Suppose Π is $(\epsilon,2k)$ -RIP with $\epsilon<\sqrt{2}-1$ and let \widetilde{x} be optimum solution to the following LP

$$\min ||z||_1$$
 such that $\prod z = \prod x$

Then
$$\|\tilde{x} - x\|_2 \le O(\frac{1}{\sqrt{k}}) \|x_{\text{tail}(k)}\|_1$$
.

Called ℓ_2/ℓ_1 guarantee. Proof is somewhat similar to the one for sparse recovery with Count-Sketch.

More efficient "combinatorial" algorithms that avoid solving LP.

RIP matrices and subspace embeddings

Definition

A $m \times n$ matrix Π has the (ϵ, k) -RIP property if for every k-sparse $x \in \mathbb{R}^n$,

$$(1 - \epsilon) \|x\|_2^2 \le \|\Pi x\|_2^2 \le (1 + \epsilon) \|x\|_2^2$$

Fix $S \subset [n]$ with |S| = k. S defines a subspace of k-sparse vectors.

Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Fix $S \subset [n]$ with |S| = k. S defines a subspace of k-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix with $m = O(d/\epsilon^2)$ rows we have the property that for every $x \in W$: $\|\Pi x\|_2^2 \simeq (1 \pm \epsilon) \|x\|_2^2$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{n}{k}$ different subspaces need to preserve nets of all subspaces

Hence via union bound we get $m = O(\frac{1}{\epsilon^2} \log(e^{O(k)} \binom{n}{k}))$ which is $O(\frac{k}{\epsilon^2} \log n)$.

 Fix $S \subset [n]$ with |S| = k. S defines a subspace of k-sparse vectors. Total of $\binom{n}{k}$ different subspaces. Want to preserve the length of vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix with $m = O(d/\epsilon^2)$ rows we have the property that for every $x \in W$: $\|\Pi x\|_2^2 \simeq (1 \pm \epsilon) \|x\|_2^2$. Via a net argument where net size is $e^{O(k)}$.

If we want to preserve $\binom{n}{k}$ different subspaces need to preserve nets of all subspaces

Hence via union bound we get $m = O(\frac{1}{\epsilon^2} \log(e^{O(k)} \binom{n}{k}))$ which is $O(\frac{k}{\epsilon^2} \log n)$.

Other techniques give $m = O(k^2/\epsilon^2)$.

Chandra (UIUC) CS498ABD 30 Spring 2019 30 / 30