

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

1 Convert between Logarithmic and Exponential Forms

Equation

$$5^{x} = 5$$

$$5^{x} = 15$$

$$5^{x} = 25$$

$$5^{x} = 75$$

$$5^x = 125$$

Solution

$$x = 1$$

$$x = ?$$

$$x = 2$$

$$x = ?$$

$$x = 3$$

Definition of a Logarithmic Function:

If x and b are positive real numbers such that $b \neq 1$, then $y = \log_b x$ is called the logarithmic function base b, where:

$$y = \log_b x$$
 is equivalent to $b^y = x$

Notes:

- The value y is called the logarithm, b is called the base, and x is called the argument.
- The expression $y = \log_b x$ is called the logarithmic form, and $b^y = x$ is called the exponential form.

Example 1:

Write each equation in exponential form.

a)
$$\log_2 16 = 4$$

b)
$$\log_{10}\left(\frac{1}{100}\right) = -2$$

c)
$$\log_7 1 = 0$$

Example 2:

Write each equation in logarithmic form.

a)
$$3^4 = 81$$

a)
$$3^4 = 81$$
 b) $10^6 = 1000000$

c)
$$\left(\frac{1}{5}\right)^{-1} = 5$$

2 Evaluate Logarithmic Expressions

Equivalence Property of Exponential Expressions:

If b, x, and y are real numbers with b > 0 and $b \ne 1$, then:

$$b^x = b^y$$
 implies that $x = y$

Example 3:

Evaluate the following logarithmic expressions.

a) log₄ 16

b) log₉ 3

c) $\log_{1/2} 8$

Definition of Common and Natural Logarithmic Functions

The logarithmic function base 10 is called the common logarithmic function, denoted as:

$$y = \log_{10} x = \log x$$

The logarithmic function base e is called the natural logarithmic function, denoted as:

$$y = \log_e x = \ln x$$

Example 4:

Evaluate the following logarithmic expressions.

a) log **100000**

- **b**) $\log 0.001$ **c**) $\ln e^4$

(3) Apply Basic Properties of Logarithms

Property

Reason

1.
$$\log_h 1 = 0$$

$$b^0 = 1$$

2.
$$\log_b b = 1$$

$$b^1 = b$$

3.
$$\log_b b^x = x$$

$$b^x = b^x$$

4.
$$b^{\log_b x} = x$$

$$\log_b x = \log_b x$$

Example 6:

Simplify:

- a) $\log_3 3^{10}$
- **b**) $\ln e^3$
- c) $\log_{11} 121$ d) $\log 1000$

- e) $\log_{\sqrt{7}} \mathbf{1}$
 - **f**) ln 1
- g) $5^{\log_5(a^2+1)}$ h) $10^{\log(b^2)}$

4 Graphs of Logarithmic Functions

Graphs of Exponential and Logarithmic Functions

Exponential Functions

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Horizontal asymptote: y = 0

Passes through (0, 1)

If b > 1, the function is increasing.

If 0 < b < 1, the function is

decreasing.

Logarithmic Functions

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Vertical asymptote: x = 0

Passes through (1, 0)

If b > 1, the function is increasing.

If 0 < b < 1, the function is

decreasing.

Example 7:

Graph:

a)
$$y = \log_2 x$$

b)
$$y = \log_{1/2} x$$

Example 8:

Identify the domain in interval notation:

a)
$$f(x) = \log_2(2x + 4)$$
 b) $g(x) = \ln(5 - x)$ c) $h(x) = \log(x^2 - 9)$

$$\mathbf{o}) \ \boldsymbol{g}(\boldsymbol{x}) = \ln(\mathbf{5} - \boldsymbol{x})$$

c)
$$h(x) = \log(x^2 - 9)$$

1 Apply the Product, Quotient, and Power Properties of Logarithms

Product Property of Logarithms

• Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$\log_b(xy) = \log_b x + \log_b y$$

Example 1:

Write the logarithm as a sum and simplify if possible. Assume *x* and *y* are positive real numbers.

a) $\log_2(8x)$

- b) $ln(ye^3)$
 - c) $\log(10xy)$

Quotient Property of Logarithms

• Let b, x, and y be positive real numbers where $b \neq 1$. Then

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

Example 2:

Write the logarithm as a difference and simplify if possible.

Assume x and y are positive real numbers.

a)
$$\log_3\left(\frac{x}{9}\right)$$

b)
$$\log \frac{y}{1000}$$

c)
$$\ln \frac{xe}{y}$$

Power Property of Logarithms

• Let b and x be positive real numbers where $b \neq 1$. Let p be any real number. Then

$$\log_b x^p = p \log_b x$$

Example 3:

Simplify the logarithms. Assume x and y are positive real numbers.

a)
$$\ln \sqrt[5]{x^2}$$

b)
$$\log(100y^2)$$

c)
$$\log_3(27x^3y^2)$$

2 Write a Logarithmic Expression in Expanded Form

$$\log(abc) = \log a + \log b + \log c$$

$$\ln\left(\frac{ab}{c}\right) = \ln a + \ln b - \ln c$$

Example 4:

Expand the logarithms. All variables are positive real numbers.

a)
$$\log_2\left(\frac{z^3}{xy^5}\right)$$

b)
$$\log \sqrt[3]{\frac{(x+y)^2}{10}}$$

3 Write a Logarithmic Expression in Condensed Form

$$\log a + \log b + \log c = \log(abc)$$

$$\ln a + \ln b - \ln c = \ln \left(\frac{ab}{c}\right)$$

Example 5:

Expand the logarithms. All variables are positive real numbers.

a)
$$\log_2 560 - \log_2 7 - \log_2 5$$

b)
$$3 \log a + 2 \log b - \frac{1}{2} \log c$$

4 Apply the Change-of-Base Formula

Change-of-Base Formula

• Let a and b be positive real numbers where $a \ne 1$ and $b \ne 1$. Then for any positive real number x:

$$\log_{\boldsymbol{b}} \boldsymbol{x} = \frac{\log_{\boldsymbol{a}} \boldsymbol{x}}{\log_{\boldsymbol{a}} \boldsymbol{b}}$$

$$\Rightarrow \log_b x = \frac{\log x}{\log b}$$

and

$$\log_b x = \frac{\ln x}{\ln b}$$

Example 6:

Use the change-of-base formula to simplify: