Solution Section 1.8 – Applications

Exercise

The flow of traffic, in vehicles per hour, through a network of streets as is shown below

- a) Solve this system for x_i , i = 1, 2, 3, 4.
- b) Find the traffic flow when $x_4 = 0$.
- c) Find the traffic flow when $x_4 = 100$.
- d) Find the traffic flow when $x_1 = 2x_2$.

a)
$$\begin{cases} x_1 + 100 = x_3 \\ x_2 + 200 = x_1 \\ x_2 + 100 = x_4 \\ x_4 + 200 = x_3 \end{cases}$$

$$\begin{cases} -x_1 + x_3 = 100 \\ x_1 - x_2 = 200 \\ -x_2 + x_4 = 100 \\ x_3 - x_4 = 200 \end{cases}$$

$$\begin{pmatrix} -1 & 0 & 1 & 0 & | & 100 \\ 1 & -1 & 0 & 0 & | & 200 \\ 0 & -1 & 0 & 1 & | & 100 \\ 0 & 0 & 1 & -1 & | & 200 \end{pmatrix} \qquad R_2 + R_1$$

$$\begin{pmatrix} -1 & 0 & 1 & 0 & | & 100 \\ 1 & -1 & 0 & 0 & | & 200 \\ 0 & -1 & 0 & 1 & | & 100 \\ 0 & 0 & 1 & -1 & | & 200 \end{pmatrix} \qquad R_2 + R_1 \qquad \qquad \begin{vmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = -1 \begin{vmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} -1 \begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix}$$

Let x_4 be the free variable

$$\begin{cases} x_3 = x_4 + 200 \\ \hline x_2 = x_4 - 100 \\ x_1 = 200 + x_2 = x_4 + 100 \end{bmatrix}$$

Solution:
$$\left(x_4 + 100, x_4 - 100, x_4 + 200, x_4\right)$$

OR

$$\begin{vmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{vmatrix} = -1 \begin{vmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix}$$
$$= -1(1) - 1(-1)$$
$$= -1 + 1$$
$$= 0$$

$$\begin{cases} -x_1 + x_3 = 100 & \to x_1 = x_3 - 100 = x_4 + 100 \\ x_1 - x_2 = 200 \\ -x_2 + x_4 = 100 & \to x_2 = x_4 - 100 \\ x_3 - x_4 = 200 & \to x_3 = x_4 + 200 \end{cases}$$

b) The traffic flow when $x_4 = 0$ is:

c) The traffic flow when $x_4 = 100$ is:

d) The traffic flow when $x_1 = 2x_2$:

$$x_4 + 100 = 2(x_4 - 100)$$

$$x_4 + 100 = 2x_4 - 200$$

$$x_4 = 300$$

$$(400, 200, 500, 300)$$

Exercise

Through a network, Express x_n 's in terms of the parameters s and t.

$$\begin{cases} x_1 = x_2 + 400 \\ x_1 + x_3 = x_4 + 600 \\ x_4 + x_5 = 100 \\ x_2 + x_3 + x_5 = 300 \end{cases}$$

$$\begin{cases} x_1 - x_2 = 400 \\ x_2 + x_3 - x_4 = 600 \\ x_4 + x_5 = 100 \\ x_2 + x_3 + x_5 = 300 \end{cases}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & | & 400 \\ 1 & 0 & 1 & -1 & 0 & | & 600 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 1 & 1 & 0 & 1 & | & 300 \end{pmatrix} \quad R_3 \leftrightarrow R_4$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & | & 400 \\ 0 & 1 & 1 & -1 & 0 & | & 200 \\ 0 & 1 & 1 & 0 & 1 & | & 300 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 1 & 1 & -1 & 0 & | & 200 \\ 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 1 & | & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & 1 & | & 1 & | & 100 \\ 0 & 0 & 0 & 0 & 0 & | & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 0 & | & 1$$

Let
$$x_5 = t$$
 & $x_3 = s$
 $x_2 = 200 - s + 100 - t = 300 - s - t$
 $x_1 = 400 + 300 - s - t = 700 - s - t$

Water is flowing through a network of pipes. Express x_n 's in terms of the parameters s and t.

$$x_{1} + x_{3} = 900$$

$$x_{1} = x_{2} + x_{4} \rightarrow x_{1} - x_{2} - x_{4} = 0$$

$$x_{2} + x_{5} = 800$$

$$x_{5} + x_{7} = 800$$

$$x_{6} = x_{4} + x_{7} \rightarrow x_{4} - x_{6} + x_{7} = 0$$

$$x_{3} + x_{6} = 900$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & | & 900 \\ 1 & -1 & 0 & -1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & | & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & | & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & | & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & | & 900 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & -900 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 900 \end{bmatrix} \quad \begin{matrix} R_3 + R_2 \\ R_6 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & -1 & -1 & -1 & 0 & 0 & 0 & -900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 900 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ \end{bmatrix} \quad \begin{matrix} -R_2 \\ R_4 + R_3 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 800 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \end{bmatrix} \quad R_5 + R_4$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 800 \end{bmatrix} \quad R_6 - R_5$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & | & 900 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & | & 900 \\ 0 & 0 & -1 & -1 & 1 & 0 & 0 & | & -100 \\ 0 & 0 & 0 & -1 & 1 & 1 & 0 & | & 800 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & | & 800 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} x_2 = 900 - x_3 & (5) \\ x_2 = 900 - x_3 - x_4 & (4) \\ x_3 = 100 - x_4 + x_5 & (3) \\ -x_4 = 800 - x_5 - x_6 & (2) \\ x_5 = 800 - x_7 & (1) \end{matrix}$$

Let
$$x_6 = s$$
 & $x_7 = t$

$$(1) \rightarrow x_5 = 800 - t$$

$$(2) \rightarrow x_4 = s - t$$

$$(3) \rightarrow x_3 = 900 - s$$

$$(2) \rightarrow x_2 = t$$

$$(1) \rightarrow x_2 = s$$

Solution: (s, t, 900-s, s-t, 800-t, s, t)

Determine the currents I_1 , I_2 , and I_3 for the electrical network shown below

$$I_2 = I_1 + I_3$$
$$3I_1 + 2I_2 = 7$$

$$2I_2 + 4I_3 = 8$$

$$\begin{cases} I_1 - I_2 + I_3 = 0 \\ 3I_1 + 2I_2 = 7 \\ I_2 + 2I_3 = 4 \end{cases}$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{vmatrix} = 13$$

$$D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 7 & 2 & 0 \\ 4 & 1 & 2 \end{vmatrix} = 13$$

$$D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 7 & 0 \\ 0 & 4 & 2 \end{vmatrix} = 26$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{vmatrix} = 13 \qquad D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 7 & 2 & 0 \\ 4 & 1 & 2 \end{vmatrix} = 13 \qquad D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 3 & 7 & 0 \\ 0 & 4 & 2 \end{vmatrix} = 26 \qquad D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 2 & 7 \\ 0 & 1 & 4 \end{vmatrix} = 13$$

$$I_1 = 1 A$$
 $I_2 = 2 A$ $I_3 = 1 A$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 3 & 2 & 0 & 7 \\ 0 & 1 & 2 & 4 \end{pmatrix} \quad R_2 - 3R_1$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -3 & 7 \\ 0 & 1 & 2 & 4 \end{pmatrix} \quad -5R_3 + R_2$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -3 & 7 \\ 0 & 0 & -13 & -13 \end{pmatrix} \begin{array}{c} I_1 = I_2 - I_3 \\ 5I_2 = 3I_3 + 7 \\ I_3 = 1 \\ \end{array}$$

$$\underline{I_2} = 2$$
 $\underline{I_1} = 1$

Determine the currents I_1 , I_2 , and I_3 for the electrical network shown below

Solution

$$\begin{split} I_2 &= I_1 + I_3 \\ 4I_1 + 3I_2 &= 3 \\ 3I_2 + I_3 &= 4 \\ \begin{cases} I_1 - I_2 + I_3 &= 0 \\ 4I_1 + 3I_2 &= 3 \\ 3I_2 + I_3 &= 4 \end{cases} \end{split}$$

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 4 & 3 & 0 \\ 0 & 3 & 1 \end{vmatrix} = 19 \qquad D_1 = \begin{vmatrix} 0 & -1 & 1 \\ 3 & 3 & 0 \\ 4 & 3 & 1 \end{vmatrix} = 0 \qquad D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 0 \\ 0 & 4 & 1 \end{vmatrix} = 19 \qquad D_3 = \begin{vmatrix} 1 & -1 & 0 \\ 4 & 3 & 3 \\ 0 & 3 & 4 \end{vmatrix} = 19$$

$$D_2 = \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 0 \\ 0 & 4 & 1 \end{vmatrix} = 19 \qquad D_3 = \begin{vmatrix} 1 & -1 \\ 4 & 3 \\ 0 & 3 \end{vmatrix}$$

$$I_1 = 0 A \qquad I_2 = 1 A \qquad I_3 = 1 A$$

OR

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 4 & 3 & 0 & 3 \\ 0 & 3 & 1 & 4 \end{pmatrix} R_2 - 4R_1$$

$$\begin{pmatrix}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 3 & 1 & 4
\end{pmatrix}$$

$$7R_3 - 3R_2$$

$$\begin{pmatrix}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 0 & 19 & 19
\end{pmatrix}
\rightarrow
\begin{matrix}
I_1 = I_2 - I_3 & (2) \\
7I_2 = 4I_3 + 3 & (1) \\
I_3 = 1
\end{matrix}$$

$$I_2 = 1 \mid I_1 = 0$$

Determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 for the electrical network shown below

$$\begin{split} I_1 + I_3 &= I_2 & \rightarrow & I_1 - I_2 + I_3 = 0 \\ I_1 + I_4 &= I_2 & \rightarrow & I_1 - I_2 + I_4 = 0 \\ I_3 + I_6 &= I_5 & \rightarrow & I_3 - I_5 + I_6 = 0 \end{split}$$

$$\begin{cases} 3I_1 + 2I_2 = 14 \\ 2I_2 + 4I_3 + I_5 + 2I_4 = 25 \\ I_5 + I_6 = 8 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 3 & 2 & 0 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 25 \\ 0 & 0 & 0 & 0 & 1 & 1 & 8 \end{bmatrix} \quad \begin{matrix} R_2 - R_1 \\ R_4 - 3R_1 \\ \end{matrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 25 \\ 0 & 0 & 0 & 0 & 1 & 1 & 8 \end{bmatrix} \quad \begin{matrix} R_4 \\ R_2 \\ R_3 \\ \end{matrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 0 & 14 \\ 0 & 2 & 4 & 2 & 1 & 0 & 0 & 25 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 8 \end{bmatrix} \quad 26R_4 + R_3$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 & 0 & 0 & 14 \\ 0 & 0 & 26 & 10 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 36 & 5 & 0 & 97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & -41 & 36 & -97 \\ 0 & 0 & 0 & 0 & 0 & -77 & 231 \end{bmatrix}$$

77 | 231 |

$$36I_{4} = 97 - 5(5) \rightarrow I_{4} = 2$$

$$-41I_{5} = -97 - 36(3) \rightarrow I_{5} = 5$$

$$77I_{6} = 231 \rightarrow I_{6} = 3$$

Determine the currents I_1 , I_2 , I_3 , I_4 , I_5 , and I_6 for the electrical network shown below

$$1 \rightarrow I_1 + I_3 = I_2$$

$$2 \rightarrow I_1 + I_4 = I_2$$

$$3 \rightarrow I_3 + I_6 = I_5$$

$$4 \rightarrow I_4 + I_6 = I_5$$

$$\begin{cases} I_{1} - I_{2} + I_{3} = 0 \\ I_{1} - I_{2} + I_{4} = 0 \\ I_{3} - I_{5} + I_{6} = 0 \\ I_{4} - I_{5} + I_{6} = 0 \\ 2I_{1} + 4I_{2} = 10 \\ 4I_{2} + I_{3} + 2I_{4} + 2I_{5} = 17 \\ 2I_{5} + 4I_{6} = 14 \end{cases}$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 5 \\ 0 & 4 & 1 & 2 & 2 & 0 & 17 \\ 0 & 0 & 0 & 0 & 1 & 2 & 7 \end{pmatrix} \quad \begin{matrix} R_2 - R_1 \\ R_5 - R_1 \\ \end{matrix}$$

$$I_5 = 3$$

$$(1) \rightarrow \left[I_4 = I_5 - I_6 = 1\right]$$

$$(2) \rightarrow [I_3 = I_4 = 1]$$

$$(3) \rightarrow \left[I_2 = \frac{1}{3}\left(I_3 + 5\right) = 2\right]$$

$$(4) \rightarrow [I_1 = I_2 - I_3 = 1]$$

Consider the invertible matrix: $A = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{pmatrix}$

The message: ICEBERG DEAD AHEAD

- a) Write the uncoded row matrices 1×3 for the message.
- b) Use the matrix A to encode the message.
- c) Decode a message from part b) given the matrix A.

Solution

b) Let encode the message ICEBERG DEAD AHEAD

$$\begin{bmatrix} 9 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 29 & 80 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 5 & 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -37 & 3 & 175 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -5 & 6 & 42 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -21 & -5 & 65 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{bmatrix} = \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

The sequence of coded row matrices is

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \ \begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \ \begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \ \begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \ \begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \ \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

The cryptogram:

$$3\ 29\ 80\ -37\ 3\ 175\ -5\ 6\ 42\ -4\ 9\ 47\ -21\ -9\ 65\ -4\ 9\ 47$$

c) To decode a message given the matrix A.

$$|A| = \begin{vmatrix} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -3 & -2 & 7 \end{vmatrix} = 1$$

$$A^{-1} = \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \begin{bmatrix} -4 & 9 & 47 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 29 & 80 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -37 & 3 & 175 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 18 \end{bmatrix}$$

$$\begin{bmatrix} -5 & 6 & 42 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} -21 & -9 & 65 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 8 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 9 & 47 \end{bmatrix} \begin{bmatrix} 67 & -18 & 4 \\ -48 & 13 & -3 \\ 15 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 4 \end{bmatrix}$$

The message is:

Exercise

You want to send the message: **LINEAR ALGEBRA** with a key word **MATH**

- a) Write the matrix A.
- b) Write the uncoded row matrices 1×2 for the message.
- c) Use the matrix A to encode the message.
- d) Decode a message from part b) given the matrix A.

Solution

 a)

 0 = ___
 4 = D
 8 = H
 12 = L
 16 = P
 20 = T
 24 = X

 1 = A
 5 = E
 9 = I
 13 = M
 17 = Q
 21 = U
 25 = Y

 2 = B
 6 = F
 10 = J
 14 = N
 18 = R
 22 = V
 26 = Z

 3 = C
 7 = G
 11 = K
 15 = O
 19 = S
 23 = W

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

c) Encoding the message

$$\begin{bmatrix} 12 & 9 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 336 & 84 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 5 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 282 & 54 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 18 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 373 & 145 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 20 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 12 & 7 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 296 & 68 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 105 & 21 \end{bmatrix}$$

$$\begin{bmatrix} 18 & 1 \end{bmatrix} \begin{bmatrix} 13 & 1 \\ 20 & 8 \end{bmatrix} = \begin{bmatrix} 254 & 26 \end{bmatrix}$$

The cryptogram:

d) To decode a message given the matrix A.

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{pmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 336 & 84 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 12 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 282 & 54 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 14 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 373 & 145 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 1 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 8 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
296 & 68
\end{bmatrix} \begin{vmatrix}
\frac{2}{21} & -\frac{1}{84} \\
-\frac{5}{21} & \frac{13}{84}
\end{vmatrix} = \begin{bmatrix} 12 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 105 & 21 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 254 & 26 \end{bmatrix} \begin{bmatrix} \frac{2}{21} & -\frac{1}{84} \\ -\frac{5}{21} & \frac{13}{84} \end{bmatrix} = \begin{bmatrix} 18 & 1 \end{bmatrix}$$

The message is: Linear Algebra

Exercise

Write the matrix A with a key word **MATH**, then decode the cryptogram

$$M A T H$$
13 1 20 8

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$
$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

With the cryptogram:
$$[117 9] [456 132] [386 62] [260 104] [413 161] [104 8]$$

$$\frac{1}{84}[117 9] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[756 0]$$

$$= [9 0]$$

$$\frac{1}{84}[456 132] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[1,008 1,260]$$

$$= [12 15]$$

$$\frac{1}{84}[386 62] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[1,848 420]$$

$$= [22 5]$$

$$\frac{1}{84}[260 104] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[0 1,092]$$

$$= [0 13]$$

$$\frac{1}{84}[413 161] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[84 1,680]$$

$$= [1 20]$$

$$\frac{1}{84}[104 8] \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84}[672 0]$$

$$= [8 0]$$

The message is: I love math

Write the matrix A with a key word **MATH**, then decode the cryptogram

Solution

$$A = \begin{pmatrix} 13 & 1 \\ 20 & 8 \end{pmatrix}$$

$$A^{-1} = \frac{1}{84} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix}$$

With the cryptogram:

$$\frac{1}{84} \begin{bmatrix} 438 & 150 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 504 & 1,512 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & 18 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 145 & 37 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 420 & 336 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 4 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 240 & 96 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 0 & 1,008 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 12 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 635 & 191 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 1,260 & 1,848 \end{bmatrix}$$
$$= \begin{bmatrix} 15 & 22 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 445 & 157 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 420 & 1,596 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 19 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 260 & 104 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 0 & 1,092 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 13 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 413 & 161 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 84 & 1,680 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 20 \end{bmatrix}$$
$$\frac{1}{84} \begin{bmatrix} 104 & 8 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 672 & 0 \end{bmatrix}$$

$$\frac{1}{84} \begin{bmatrix} 104 & 8 \end{bmatrix} \begin{pmatrix} 8 & -1 \\ -20 & 13 \end{pmatrix} = \frac{1}{84} \begin{bmatrix} 672 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 0 \end{bmatrix}$$

The message is: Fred loves math

Exercise

Consider the invertible matrix:
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 1 & 3 \\ 1 & -1 & -4 \end{pmatrix}$$

Decode the cryptogram

Solution

$$|A| = 1$$

$$A^{-1} = \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix}$$

With the cryptogram:

$$\begin{bmatrix} 1 & -5 & 11 \end{bmatrix} \begin{bmatrix} 19 & -25 & -45 \end{bmatrix} \begin{bmatrix} 11 & -16 & -28 \end{bmatrix} \begin{bmatrix} 20 & -29 & -27 \end{bmatrix}$$
$$\begin{bmatrix} 12 & -12 & -53 \end{bmatrix} \begin{bmatrix} 40 & -61 & -35 \end{bmatrix} \begin{bmatrix} 8 & -17 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -5 & 11 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 4 & 9 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 19 & -25 & -45 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 6 & 5 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 11 & -16 & -28 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 5 & 14 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 20 & -29 & -27 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 9 & 1 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 12 & -12 & -53 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 0 & 5 & 17 \end{bmatrix}$$

$$\begin{bmatrix} 40 & -61 & -35 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 21 & 1 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 8 & -17 & 7 \end{bmatrix} \begin{pmatrix} -1 & -10 & -8 \\ -1 & -6 & -5 \\ 0 & -1 & -1 \end{pmatrix} = \begin{bmatrix} 9 & 15 & 14 \end{bmatrix}$$

The message is: **Differential Equation**.

Exercise

Determine the key word, then decode the given cryptogram

Hint: First row is the key

Solution

The key word from the first row is

Since it has 9 numbers, then the matrix is $9 = 3^2$ which is 3×3

$$A = \begin{pmatrix} 6 & 18 & 5 \\ 4 & 15 & 13 \\ 1 & 20 & 8 \end{pmatrix}$$

$$|A| = -857$$

$$A^{-1} = -\frac{1}{857} \begin{pmatrix} -140 & -44 & 159 \\ -19 & 43 & -58 \\ 65 & -102 & 18 \end{pmatrix}$$

$$= \frac{1}{857} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix}$$

With the cryptogram:

$$\frac{1}{857} \begin{bmatrix} 102 & 649 & 238 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 11,141 & 857 & 17,140 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 1 & 20 \end{bmatrix}$$

$$\frac{1}{857} \begin{bmatrix} 57 & 324 & 112 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 6,856 & 0 & 7,713 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 0 & 9 \end{bmatrix}$$

$$\frac{1}{857} \begin{bmatrix} 128 & 622 & 207 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 16,283 & 0 & 11,998 \end{bmatrix}$$
$$= \begin{bmatrix} 19 & 0 & 14 \end{bmatrix}$$

$$\frac{1}{857} \begin{bmatrix} 180 & 613 & 290 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 17,997 & 11,141 & 1,714 \end{bmatrix}$$
$$= \begin{bmatrix} 21 & 13 & 2 \end{bmatrix}$$

$$\frac{1}{857} \begin{bmatrix} 102 & 360 & 259 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 4,285 & 15,426 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 18 & 0 \end{bmatrix}$$

$$\frac{1}{857} \begin{bmatrix} 151 & 580 & 297 \end{bmatrix} \begin{pmatrix} 140 & 44 & -159 \\ 19 & -43 & 58 \\ -65 & 102 & -18 \end{pmatrix} = \frac{1}{857} \begin{bmatrix} 12,855 & 11,998 & 4,285 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 14 & 5 \end{bmatrix}$$

$$13 & 1 & 20 & 8 & 0 & 9 & 19 & 0 & 14 & 21 & 13 & 2 & 5 & 18 & 0 & 15 & 14 & 5 \\ M & A & T & H & - & I & S & - & N & U & M & B & E & R & - & O & N & E \end{bmatrix}$$

The message is: math is number one