Learning Accurate and Parsimonious Point Cloud Representations from Images

Contents

Introduction

Motivation

Methods

Experimentation

Results & Future work

Conclusion

Introduction

Problem Statement (How far is 3D?)

Earliest cave painting (45,500 years old)
Sulawesi, Indonesia

Monet's Cathedral series: study of light 1893-1894

Google Earth 2016~

Motivation

Nerf & point cloud diffusion

1. Neural Volumetric3D Scene Representation

2. Differentiable Volumetric Rendering Function

3. **Optimization** via Analysis-by-Synthesis Objective: Synthesize all training views

4. Voxel guided synthesis with LION. Trained with **diffusion**-denoise

NeRF[B. Mildenhall et al., ACM 2021] LION [X. Zheng et al., CVPR 2022]

Methods

Intermediate Neural point cloud

(a) Neural Generation using Point Cloud

- Our model takes into account multi-view images and creates depth for every perspective by harnessing the capability of 3D CNNs Gp that employs a cost-volume approach.
- Extracts 2D characteristics from the provided images utilizing a specific 2D CNN, Gf.
- Following the consolidation of the depth map, our model yields a radiance field based on points.
- In this field, each respective point is uniquely identified by its spatial position *pi*, an associated confidence factor (i), and features from the image that have not been projected *fi*.

Methods

Rendering and Optimization

(b) Novel View Synthesis

- Perform differentiable ray marching, computing shading in close proximity to the neural point cloud (for instance xa, xb, xc).
- At each specific shading location, our method utilize to aggregate features from its K closest neural point neighbors, with the subsequent computation of the radiance 'r' and volume density.
- The radiance 'r' is then successively accumulated using the volume density.
- This entire operation is seamlessly trainable from end-to-end, and the point-based radiance field can be fine-tuned in alignment
 with the rendering loss.

Experimentation

For this project, I started with the base code as a point-nerf.

- 1. Part of this was to train it on various datasets.
 - > Typical datasets I used are the nerf synthetic dataset.
- 2. More options to enhance the learning
 - > Fine-tuning hyperparameters
 - > Improving preprocessing operations
 - ➤ Effectively utilizing the Great Lakes GPU in combination with various datasets

	Chair	Drums	Lego	Mic	Materials	Ship	Hotdog	Ficus	Avg
PSNR	35.60	26.04	35.27	35.91	29.65	30.61	37.34	35.61	33.25
SSIM	0.991	0.954	0.989	0.994	0.971	0.938	0.991	0.992	0.978
LPIPSVgg	0.023	0.078	0.021	0.014	0.071	0.129	0.036	0.025	0.050
LPIPSAlex	0.010	0.055	0.010	0.007	0.041	0.076	0.016	0.011	0.028

Images from Point-NeRF directory

Results & Future work

Conclusion

· Combining two of the state-of-art ideas to create something new was quite difficult.

Along the way, various CNN networks appeared that needed to be trained separately.

• The optimization we learned in class also comes into play in the rendering process, which converts a 2D image into 3D.

• In the end, 3D reconstruction is all about how you find the missing information.