Data Models

Import Libraries

```
In [86]: import numpy as np
         import pandas as pd
         import matplotlib
         import matplotlib.pyplot as plt
         from sklearn.metrics import r2 score
         import statsmodels.api as sm
         from statsmodels.api import OLS
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.linear_model import Ridge
         from sklearn.linear model import Lasso
         from sklearn.linear_model import RidgeCV
         from sklearn.linear model import LassoCV
         from sklearn.linear model import LinearRegression
         from sklearn.model_selection import KFold
         from sklearn.decomposition import PCA
         #import pydotplus
         #import io
         from sklearn.tree import export graphviz
         from IPython.display import Image
         from IPython.display import display
         import seaborn as sns
         %matplotlib inline
```

Define Functions

```
In [87]: def despine():
             sns.despine(left=True, bottom=True)
         def get axs(rows, columns, fig size width, fig size height):
             dims = (fig_size_width, fig_size_height)
             fig, axs = plt.subplots(rows, columns, figsize=dims)
             if(rows*columns>1):
                   axs = axs.ravel()
             return axs
         def get_accuracy_model(X, Y, model):
             Y_pred = model.predict(X)
             misclassification_rate = np.mean([int(x) for x in Y_pred != Y])
             return 1 - misclassification_rate
         def get_accuracy_pred(Y, Y_pred):
             misclassification_rate = np.mean([int(x) for x in Y_pred != Y])
             return 1 - misclassification_rate
         def split dataset(data, train size pc, y col):
             np.random.seed(9001)
             msk = np.random.rand(len(data)) < train_size_pc</pre>
             data train = data[msk]
             data_test = data[~msk]
             x train = data train.iloc[:,0:y col]
             y_train = data_train.iloc[:,y_col]
             x test = data test.iloc[:,0:y col]
             y_test = data_test.iloc[:,y_col]
             return x_train, y_train, x_test, y_test
         def set title xlabel ylabel(ax, title, xlabel, ylabel):
             ax.set_title(title)
             ax.set_xlabel(xlabel)
             ax.set ylabel(ylabel)
         sns.set(rc={'axes.facecolor':'white', 'figure.facecolor':'white'})
In [88]:
         sns.set_style("whitegrid")
         sns.set(font scale=1.3)
```

Import Dataset

```
In [89]: census_data = pd.read_csv("crime_data.csv", index_col=0)
    results = pd.DataFrame([], columns = ["model", "train_score", "test_score"])
```

Dropping all rows with missing values

```
In [90]: census_data = census_data.dropna(how='any')
```

Hot One Encoding Categorical Variables

```
In [91]: #categorical
    cat_vars = ['year']

split = {}
    split_test = {}

def hot_one_encoding(data, cat_vars):
    for var in cat_vars:
        s_var = pd.Series(data[var])
        split[var] = pd.get_dummies(s_var)

    func = lambda x: var + '_'+ str(x)

    cols = list(map(func, list(split[var].columns)[1:]))
    split[var] = split[var].drop(split[var].columns[0], axis=1)
    split[var].columns = cols

    data = data.join(split[var])

    del data[var]
    return data
```

Normalizing all quantitative variables

Train and Test Split

```
In [94]: np.random.seed(9001)
    msk = np.random.rand(len(census_data)) < 0.75
    census_train = census_data[msk]
    census_test = census_data.columns)
    features = list(census_data.columns)
    features.remove('murder_rate')
    end = len(census_data.columns)
    x_train = census_train[features]
    y_train = census_train['murder_rate']

    x_test = census_test[features]
    y_test = census_test['murder_rate']</pre>
```

Baseline Model

```
In [95]: #LINEAR REGRESSION
    lin_reg = LinearRegression()
    lin_reg.fit(x_train, y_train)
    y_pred_train = lin_reg.predict(x_train)
    y_pred_test = lin_reg.predict(x_test)

In [96]: train_score = r2_score(y_train, y_pred_train)
    test_score = r2_score(y_test, y_pred_test)
    results = results.append({"model":"Linear Regression", "train_score":train_score, "test_score":test_score}, ignore_index=True)
```

```
In [97]: x_train_with_constants = sm.add_constant(x_train)
    est = sm.OLS(y_train, x_train_with_constants)
    est = est.fit()
    print(est.summary())
```

.=========	
murder_rate	R-squared: 0.
OLS	Adj. R-squared: 0.
Least Squares	F-statistic: 9
Thu, 07 Dec 2017	Prob (F-statistic):
20:21:27	Log-Likelihood: -635
2642	AIC: 1.278e
2611	BIC: 1.296e
30	
	Least Squares Thu, 07 Dec 2017 20:21:27 2642 2611

Covariance Type: nonrobust

P>|t| coef std err t [0.025 0.975] 7.2141 4.847 1.488 0.137 -2.290 1 const 6.718 2.3092 1.743 1.325 0.185 -1.109 r1 5.727 20.6499 1.731 11.928 0.000 17.255 2 r2 4.045 6.0993 2.646 2.305 0.021 r3 0.911 1 1.287 3.724 0.444 0.657 r4 1.6527 -5.649 8.955 r5 -96.1706 12.809 -7.508 0.000 -121.288 -7 1.054 9.416 0.000 2 19.7812 2.101 15.662 r6 3.901 0.000 44.860 r7 52.8924 4.096 12.913 0.924 0.095 165.8571 99.448 1.668 -29.147 36 m1 0.861 m2 205.8156 99.645 2.065 0.039 10.424 40 1.207 m3 198.8532 99.550 1.998 0.046 3.648 39 4.058 35 158.9648 99.878 1.592 0.112 -36.883 m4 4.812 m5 185.9452 99.524 1.868 0.062 -9.208 38 1.099 4.084 5.515 0.001 e1 13.5237 3.311 1.532 e2 -4.8460 5.232 -0.926 0.354 -15.106

5.414						
e3	6.4311	3.362	1.913	0.056	-0.162	1
3.025						
e4	15.9294	4.698	3.391	0.001	6.718	2
5.141						
e5	2.3189	1.673	1.386	0.166	-0.961	
5.599						
a1	-203.0996	100.051	-2.030	0.042	-399.288	-
6.912						
a2	-216.1023	99.691	-2.168	0.030	-411.584	-2
0.620						
a3	-168.8144	100.089	-1.687	0.092	-365.076	2
7.447						
a4	-214.3905	100.235	-2.139	0.033	-410.938	-1
7.843						
a5	-183.7737	99.897	-1.840	0.066	-379.658	1
2.111						
a6	-192.4230	99.743	-1.929	0.054	-388.007	
3.161	404 5045	00 500		0.054	204 725	
a7	-191.6246	99.502	-1.926	0.054	-386.735	
3.486	4 6722	2.260	0.406	0.620	0 270	
e6	-1.6722	3.369	-0.496	0.620	-8.278	
4.934	2 2000	1 105	2 010	0 044	0.000	
vr 4 714	2.3909	1.185	2.018	0.044	0.068	
4.714 mtof	1 1052	1.708	-0.694	0.488	4 524	
2.163	-1.1853	1.700	-0.094	0.400	-4.534	
pop_std	-0.1005	0.070	-1.435	0.151	-0.238	
0.037	-0.1003	0.070	-1.433	0.131	-0.238	
i1_std	-0.7292	0.338	-2.157	0.031	-1.392	_
0.066	0.7232	0.550	2.137	0.031	1.332	
i2_std	-0.0210	0.373	-0.056	0.955	-0.753	
0.711	0.0220	0.373	0.050	0.555	0.,55	
firearms_std	-0.0931	0.060	-1.559	0.119	-0.210	
0.024						
	========	========	======	========	.=======	
===						
Omnibus:		1131.306	Durbin-	Watson:		2.
000						
<pre>Prob(Omnibus)</pre>	:	0.000	Jarque-	Bera (JB):		12808.
311						
Skew:		1.712	Prob(JB):		
0.00						
Kurtosis:		13.229	Cond. N	ο.		5.74e
+15						
=========	=======	========	======	=======		
===						

Warnings:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.54e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Multiple Models - Ridge, Lasso and Polynomial

Ridge with Cross Validation

```
In [98]: ridge = RidgeCV()
    ridge.fit(x_train, y_train)
    y_pred_train = ridge.predict(x_train)
    y_pred_test = ridge.predict(x_test)
    train_score = r2_score(y_train, y_pred_train)
    test_score = r2_score(y_test, y_pred_test)
    results = results.append({"model":"Ridge Cross Validated", "train_score":train_score, "test_score":test_score}, ignore_index=True)
```

Out[99]:

		I	
	Value	Sign	Coef
0	31.491006	1.0	r7
1	26.751318	-1.0	r5
2	20.278714	-1.0	m1
3	20.041086	-1.0	a2
4	14.669455	-1.0	r4
5	12.645540	1.0	e1
6	12.203959	1.0	e4
7	11.208201	1.0	r6
8	10.548848	1.0	m3
9	10.152961	1.0	r2
10	9.419112	1.0	а3
11	7.982711	-1.0	r1
12	7.676144	1.0	m2
13	7.096209	-1.0	m4
14	7.065352	-1.0	a1
15	5.859527	-1.0	e2
16	4.330672	1.0	а5
17	4.271342	1.0	e3
18	3.448684	-1.0	r3
19	3.047561	-1.0	e6
20	2.819151	-1.0	a4
21	2.429502	1.0	а6
22	2.334499	-1.0	m5
23	2.183503	1.0	e5
24	1.573345	1.0	vr
25	1.434026	-1.0	mtof
26	0.873549	-1.0	i1_std
27	0.719188	1.0	а7
28	0.143997	1.0	i2_std
29	0.111040	-1.0	firearms_std
		•	

Lasso with Cross Validation

```
In [100]: lasso = LassoCV()
    lasso.fit(x_train, y_train)
    y_pred_train = lasso.predict(x_train)
    y_pred_test = lasso.predict(x_test)
    train_score = r2_score(y_train, y_pred_train)
    test_score = r2_score(y_test, y_pred_test)
    results = results.append({"model":"Lasso Cross Validated", "train_score":train_score, "test_score":test_score}, ignore_index=True)
```

C:\Software\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: RuntimeWarni
ng: invalid value encountered in double_scalars
 """Entry point for launching an IPython kernel.

Out[101]: ___

	Value	Sign	Coef
0	35.319289	1.0	r7
1	26.304059	-1.0	a2
2	19.096901	-1.0	m1
3	15.198220	1.0	r6
4	14.014587	1.0	r2
5	10.903004	-1.0	r4
6	8.586073	1.0	e4
7	7.662272	1.0	e1
8	4.758945	1.0	m3
9	4.409728	-1.0	r5
10	4.341127	-1.0	e6
11	3.418771	-1.0	r1
12	1.292123	1.0	vr
13	1.289610	-1.0	i1_std
14	0.569240	1.0	i2_std
15	0.568501	1.0	e5
16	0.439553	1.0	e3
17	0.263765	-1.0	mtof
18	0.126567	-1.0	firearms_std

```
x_train_poly = poly.fit_transform(x_train)
x_test_poly = poly.transform(x_test)
lin reg = LinearRegression()
ridge = RidgeCV()
lasso = LassoCV()
lin_reg.fit(x_train_poly, y_train)
y_pred_train = lin_reg.predict(x_train_poly)
y_pred_test = lin_reg.predict(x_test_poly)
train_score = r2_score(y_train, y_pred_train)
test_score = r2_score(y_test, y_pred_test)
results = results.append({"model":"Linear Regression with Polynomial Features"
, "train_score":train_score, "test_score":test_score}, ignore_index=True)
ridge.fit(x_train_poly, y_train)
y_pred_train = ridge.predict(x_train_poly)
y_pred_test = ridge.predict(x_test_poly)
train_score = r2_score(y_train, y_pred_train)
test_score = r2_score(y_test, y_pred_test)
results = results.append({"model":"Lasso Cross Validated with Polynomial Featu
res", "train score":train score, "test score":test score}, ignore index=True)
lasso.fit(x_train_poly, y_train)
y pred train = lasso.predict(x train poly)
y_pred_test = lasso.predict(x_test_poly)
train_score = r2_score(y_train, y_pred_train)
test score = r2 score(y test, y pred test)
results = results.append({"model":"Ridge Cross Validated with Polynomial Featu
res", "train_score":train_score, "test_score":test_score}, ignore_index=True)
C:\Software\Anaconda3\lib\site-packages\sklearn\linear_model\coordinate_desce
nt.py:491: ConvergenceWarning: Objective did not converge. You might want to
increase the number of iterations. Fitting data with very small alpha may cau
se precision problems.
 ConvergenceWarning)
C:\Software\Anaconda3\lib\site-packages\sklearn\linear model\coordinate desce
```

nt.py:491: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cau

In [102]: poly = PolynomialFeatures(degree = 2)

Interaction Terms

se precision problems.
ConvergenceWarning)

From our EDA we hypothesized that multi-ethnic communnities might have higher murder rates. To test this hypothesis we will use a interaction term that multiplies all the race proportions and add to our train and test models

```
In [103]: x_train['multi_ethnic'] = x_train['r1'] * x_train['r2'] * x_train['r3'] * x_train['r4'] * x_train['r5'] * x_train['r6'] * x_train['r7']
x_test['multi_ethnic'] = x_test['r1'] * x_test['r2'] * x_test['r3'] * x_test['r4'] * x_test['r5'] * x_test['r6'] * x_test['r7']
```

Normalizing

Modeling

```
In [105]: lin_reg.fit(x_train, y_train)
          y_pred_train = lin_reg.predict(x_train)
          y_pred_test = lin_reg.predict(x_test)
          train_score = r2_score(y_train, y_pred_train)
          test score = r2 score(y test, y pred test)
          results = results.append({"model":"Linear Regression with Interaction", "train
          _score":train_score, "test_score":test_score}, ignore_index=True)
          ridge.fit(x_train, y_train)
          y_pred_train = ridge.predict(x_train)
          y_pred_test = ridge.predict(x_test)
          train_score = r2_score(y_train, y_pred_train)
          test_score = r2_score(y_test, y_pred_test)
          results = results.append({"model":"Lasso Cross Validated with Interaction", "t
          rain_score":train_score, "test_score":test_score}, ignore_index=True)
          lasso.fit(x_train, y_train)
          y_pred_train = lasso.predict(x_train)
          y_pred_test = lasso.predict(x_test)
          train_score = r2_score(y_train, y_pred_train)
          test_score = r2_score(y_test, y_pred_test)
          results = results.append({"model":"Ridge Cross Validated with Interaction", "t
          rain_score":train_score, "test_score":test_score}, ignore_index=True)
```

Checking for Significance

```
In [106]: x_train_with_constants = sm.add_constant(x_train)
    est = sm.OLS(y_train, x_train_with_constants)
    est = est.fit()
    print(est.summary())
```

=======================================			========
===			
Dep. Variable:	murder_rate	R-squared:	0.
517	_	•	
Model:	OLS	Adj. R-squared:	0.
512			
Method:	Least Squares	F-statistic:	9
0.20			
Date:	Thu, 07 Dec 2017	<pre>Prob (F-statistic):</pre>	
0.00			
Time:	20:21:32	Log-Likelihood:	-635
6.8			
No. Observations:	2642	AIC:	1.278e
+04			
Df Residuals:	2610	BIC:	1.297e
+04			
Df Model:	31		
Covariance Type:	nonrobust		

==========	==========	========	========	========	========
=======					
	coef	std err	t	P> t	[0.025
0.975]					
const	8.4276	4.871	1.730	0.084	-1.123
17.978					
r1	2.5337	1.744	1.453	0.146	-0.886
5.954 r2	20.8673	1.732	12.046	0.000	17.470
24.264	20.0073	1.752	12.040	0.000	17.470
r3	5.9533	2.644	2.251	0.024	0.768
11.138					
r4 7.189	-0.2868	3.813	-0.075	0.940	-7.763
7.109 r5	-92.6253	12.888	-7.187	0.000	-117.898
-67.353					
r6	19.8190	2.099	9.442	0.000	15.703
23.935	F2 1664	4 105	12 700	0.000	44 110
r7 60.215	52.1664	4.105	12.709	0.000	44.118
m1	168.1788	99.368	1.692	0.091	-26.670
363.028					
m2	208.1425	99.566	2.090	0.037	12.906
403.379 m3	200.5634	99.469	2.016	0.044	5.518
395.609	200.3034	JJ. 4 0J	2.010	0.044	9.910
m4	159.7407	99.794	1.601	0.110	-35.942
355.423					
m5	188.2398	99.444	1.893	0.058	-6.758
383.238 e1	12.5317	4.103	3.054	0.002	4.487
20.577	,_,	03			
e2	-5.6044	5.238	-1.070	0.285	-15.876

4.667 e3	5.2656	3.397	1.550	0.121	-1.395
11.926 e4	14.9219	4.714	3.166	0.002	5.679
24.165 e5	2.3612	1.671	1.413	0.158	-0.916
5.639 a1	-206.4531	99.977	-2.065	0.039	-402.495
-10.411 a2	-218.8110	99.614	-2.197	0.028	-414.141
-23.481 a3	-172.0718	100.014	-1.720	0.085	-368.187
24.043 a4	-217.1128	100.157	-2.168	0.030	-413.507
-20.718 a5	-186.4847	99.819	-1.868	0.062	-382.217
9.248 a6	-195.0243	99.665	-1.957	0.050	-390.455
0.406 a7	-193.8795	99.422	-1.950	0.051	-388.834
1.075 e6	-3.0429	3.417	-0.890	0.373	-9.744
3.658					
vr 4.555	2.2302	1.186	1.881	0.060	-0.095
mtof 2.257	-1.0897	1.707	-0.638	0.523	-4.437
pop_std 0.048	-0.0894	0.070	-1.275	0.202	-0.227
i1_std -0.096	-0.7584	0.338	-2.244	0.025	-1.421
i2_std 0.710	-0.0205	0.373	-0.055	0.956	-0.751
firearms_std	-0.0881	0.060	-1.477	0.140	-0.205
0.029 multi_ethnic_std 0.280	0.1518	0.065	2.329	0.020	0.024
=======================================		=======	=======	=======	========
=== Omnibus:		1140.844	Durbin-Wats	on:	1.
992 Prob(Omnibus):		0.000	Jarque-Bera	(JB):	13053.
873 Skew:		1.727	Prob(JB):		
0.00 Kurtosis:		13.327			4.50e
+15 =========	========	========	========	=======	========
===					

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.14e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Modelling Results

```
In [107]: results.index = results.model
In [108]: results.drop(['model'], axis=1)
```

Out[108]:

	train_score	test_score
model		
Linear Regression	0.516235	0.506611
Ridge Cross Validated	0.507715	0.491949
Lasso Cross Validated	0.500520	0.485036
Linear Regression with Polynomial Features	0.773114	0.546192
Lasso Cross Validated with Polynomial Features	0.662992	0.647014
Ridge Cross Validated with Polynomial Features	0.626490	0.618030
Linear Regression with Interaction	0.517228	0.507337
Lasso Cross Validated with Interaction	0.509099	0.493297
Ridge Cross Validated with Interaction	0.504211	0.489468