PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-320420

(43) Date of publication of application: 16.11.2001

(51)Int.CI.

H04L 12/56

(21)Application number: 2000-376615

(71)Applicant: FUJITSU LTD

(22)Date of filing:

11.12.2000 (72)lr

(72)Inventor: SOMIYA TOSHIO

NAKAMICHI KOJI

TAKASHIMA KIYONARI

(30)Priority

Priority number: 2000056254

Priority date: 01.03.2000

Priority country: JP

(54) TRANSMISSION PATH CONTROL APPARATUS AND TRANSMISSION PATH CONTROL METHOD, AND MEDIUM WITH RECORDED TRANSMISSION PATH CONTROL PROGRAM

(57) Abstract:

PROBLEM TO BE SOLVED: To distribute a load between set routes by setting plural routes between from a communication unit at a starting point and a communication unit at an end point in communication units in a network.

SOLUTION: A transmission path controller provided for a communication unit 1 constituting an Internet protocol network, is provided with a traffic characteristic collection section 3 that collects a traffic characteristic of transmission paths connected to the communication unit 1, a traffic characteristic notice section 4 that informs other communication units about the collected traffic characteristic, a load arithmetic section 5 that calculates a load on the basis of the collected traffic characteristic, a discrimination section 6 that discriminates whether the transmission path is to be added or deleted on the basis of the obtained load information, and a load uniformizing section 7 that unitformizes the obtained load for the transmission paths.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-320420 (P2001-320420A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H04L 12/56

H04L 11/20

102D 5K030

102E

審査請求 未請求 請求項の数10 〇L (全 26 頁)

(21)出願番号	特願2000-376615(P2000-376615)	(71)出願人	000005223
(22)出顧日	平成12年12月11日(2000.12.11)		富士通株式会社 神奈川県川崎市中原区上小田中4丁目1番 1号
(31)優先権主張番号	特願2000-56254(P2000-56254)	(72)発明者	宗宮 利夫
(32)優先日	平成12年3月1日(2000.3.1)		神奈川県川崎市中原区上小田中4丁目1番
(33)優先権主張国	日本 (JP)		1号 富士通株式会社内
		(72)発明者	仲道 耕二
			神奈川県川崎市中原区上小田中4丁目1番
			1号 富士通株式会社内
		(74)代理人	100092978
			弁理士 真田 有

最終頁に続く

(54) 【発明の名称】 伝送経路制御装置及び伝送経路制御方法並びに伝送経路制御プログラムを記録した媒体

(57)【要約】

【課題】 ネットワーク内の通信装置において、起点となる通信装置から終点となる通信装置までに複数のルートを設定し、設定されたルート間で負荷の分散を行なえるようにする。

【解決手段】 インターネットプロトコルネットワーク を構成する通信装置 1 に設けられる装置であって、通信 装置 1 に接続された伝送経路のトラヒック特性を収集するトラヒック特性収集部 3 と、収集されたトラヒック特性を他の通信装置に通知するトラヒック特性通知部 4 と、収集されたトラヒック特性に基づいて負荷を演算する負荷演算部 5 と、求められた負荷情報に基づいて伝送経路を追加するか削除するかの判定を行なう判定部 6 と、求められた負荷を複数の伝送経路間で均等化する負荷均等化部 7 とをそなえるように構成する。

【特許請求の範囲】

【請求項1】 発信元通信装置と、着信先通信装置と、 上記の発信元通信装置と着信先通信装置との間に設定可 能な複数の伝送経路と、上記伝送経路のいずれかに介装 される中継通信装置とをそなえてなるインターネットプ ロトコルネットワークを構成する上記通信装置に設けら れる装置であって、

1

該通信装置又は他の通信装置に接続された伝送経路のト ラヒック特性を収集するトラヒック特性収集部と、

該トラヒック特性収集部で収集されたトラヒック特性を 他の通信装置に通知するトラヒック特性通知部と、

該トラヒック特性収集部で収集されたトラヒック特性に 基づいて負荷を演算する負荷演算部と、

該負荷演算部で求められた負荷情報に基づいて、伝送経 路を追加するか削除するかの判定を行なう判定部と、

該負荷演算部で求められた負荷を複数の伝送経路間で均 等化する負荷均等化部とをそなえて構成されたことを特 徴とする、伝送経路制御装置。

【請求項2】 発信元通信装置と、着信先通信装置と、 上記の発信元通信装置と着信先通信装置との間に設定可 能な複数の伝送経路と、上記伝送経路のいずれかに介装 される中継通信装置とをそなえてなるインターネットプ ロトコルネットワークを構成する上記発信元通信装置に 設けられる装置であって、

該発信元通信装置又は他の通信装置に接続された伝送経 路のトラヒック特性を収集するトラヒック特性収集部 と、

該トラヒック特性収集部で収集されたトラヒック特性に 基づいて負荷を演算する負荷演算部と、

該負荷演算部で求められた負荷情報に基づいて、伝送経 路の追加・削除判定を行なう判定部と、

該負荷演算部で求められた負荷を複数の伝送経路間で均 等化する負荷均等化部とをそなえて構成されたことを特 徴とする、伝送経路制御装置。

【請求項3】 発信元通信装置と、着信先通信装置と、 上記の発信元通信装置と着信先通信装置との間に設定可 能な複数の伝送経路と、上記伝送経路のいずれかに介装 される中継通信装置とをそなえてなるインターネットプ ロトコルネットワークを構成する上記発信元通信装置以 外の通信装置に設けられる装置であって、

該通信装置に接続された伝送経路のトラヒック特性を収 集するトラヒック特性収集部と、

該トラヒック特性収集部で収集された該トラヒック特性 を該発信元に通知するトラヒック特性通知部とをそなえ て構成されたことを特徴とする、伝送経路制御装置。

【請求項4】 該トラヒック特性収集部が、収集したト ラヒック特性に関する情報を平滑化する手段を有じてい ることを特徴とする、請求項1~3のいずれか一項に記 載の伝送経路制御装置。

【請求項5】 該発信元通信装置に設けられる該トラヒ

ック特性収集部が、該発信元通信装置に接続された各伝 送経路の使用率を、該中継通信装置から収集した該中継 通信装置に接続されている伝送経路の使用率に関する情 報を基に判定する手段を有していることを特徴とする、 請求項1又は請求項2に記載の伝送経路制御装置。

【請求項6】 該発信元通信装置に設けられる該負荷演 算部が、該中継通信装置において発生したパケット廃棄 数を考慮して、実効的な負荷を演算する手段を有し、且 つ、

10 該発信元通信装置に設けられる該判定部が、

> 該実効的負荷演算手段で得られた実効的な負荷から実効 帯域を演算し、全ての伝送経路を一つの仮想的なパイプ とみなして、その使用率に関する情報を求める演算手段 を有するとともに、

> 該演算手段で得られたパイプ使用率に関する情報に基づ き、伝送経路を追加するか削除するかの判定を行なうよ うに構成されていることを特徴とする、請求項1又は請 求項2に記載の伝送経路制御装置。

【請求項7】 該発信元通信装置に設けられる該判定部 が、 20

該負荷演算部で求められた負荷情報に基づいて、削除対 象となる伝送経路の候補を選択する手段と、

該削除候補選択手段により選択された該削除候補の伝送 経路を削除した場合における他の伝送経路の負荷を予測 する手段と、

該負荷予測手段により予測された他の伝送経路の負荷を 所定の基準値と比較し、該比較結果に応じて、該削除候 補の伝送経路を削除するか否かを決定する手段とをそな えて構成されていることを特徴とする、請求項1又は請 求項2に記載の伝送経路制御装置。

【請求項8】 該発信元通信装置に設けられる該負荷均 等化部が、該中継通信装置において発生したパケット廃 棄数を考慮して得られる実効的な負荷から得られる実効 帯域に基づいて全伝送経路について求められた平均実効 帯域から、各伝送経路での移動すべき実効帯域を求める 移動実効帯域演算手段を有していることを特徴とする、 請求項1又は請求項2に記載の伝送経路制御装置。

発信元通信装置と、着信先通信装置と、 【請求項9】 上記の発信元通信装置と着信先との間に設定可能な複数 の伝送経路と、上記伝送経路のいずれかに介装される中 40 継通信装置とをそなえてなるインターネットプロトコル ネットワークを構成する上記発信元通信装置以外の他の 通信装置において、

該他の通信装置に接続された伝送経路のトラヒック特性 を収集するトラヒック特性収集ステップと、

該トラヒック特性収集ステップで収集された該トラヒッ ク特性を該発信元通信装置に通知するトラヒック特性通 知ステップとをそなえるとともに、

50 該発信元通信装置に接続された伝送経路のトラヒック特

上記発信元通信装置において、

3

性を収集するトラヒック特性収集ステップと、

該トラヒック特性収集ステップで収集されたトラヒック 特性及び該他の通信装置から得られたトラヒック特性の 一方又は両方に基づいて負荷を演算する負荷演算ステッ プと、

該負荷演算ステップで求められた負荷情報に基づいて伝 送経路を追加するか削除するかの判定を行なう判定ステップと.

該負荷演算ステップで求められた負荷を複数の伝送経路間で均等化する負荷均等化ステップとをそなえて構成されたことを特徴とする、伝送経路制御方法。

【請求項10】 発信元通信装置と、着信先通信装置と、上記の発信元通信装置と着信先通信装置との間に設定可能な複数の伝送経路と、上記伝送経路のいずれかに介装される中継通信装置とをそなえてなるインターネットプロトコルネットワークを構成する上記通信装置で使用すべく、

該通信装置又と他の通信装置に接続された伝送経路のトラヒック特性を収集するトラヒック特性収集手段と、 該トラヒック特性収集手段で収集された該トラヒック特性を他の通信装置に通知するトラヒック特性通知手段 と、

該トラヒック特性収集手段で収集された該トラヒック特性に基づいて負荷を演算する負荷演算手段と、

該負荷演算手段で求められた負荷情報に基づいて伝送経路を追加するか削除するかの判定を行なう判定手段と、 該負荷演算手段で求められた負荷を複数の伝送経路間で 均等化する負荷均等化手段として、上記通信装置を機能 させるための伝送経路制御プログラムを記録した媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インターネットプロトコルネットワーク(以下、インターネットプロトコルをIPと略称する場合がある。従って、インターネットプロトコルネットワークはIPネットワークと略称される)を構成する通信装置(例えば、ルータ)に設けられる伝送経路制御装置に関し、更には同装置にて実行される伝送経路制御方法並びに同装置で使用される伝送経路制御プログラムを記録した媒体に関する。

[0002]

【従来の技術】インターネットは、現在全ての通信アプリケーションをインターネットプロトコル上で扱うことを意図し、急速に普及しつつある。更にインターネットは、元来、コネクションを確立しないコネクションレスなネットワークアーキテクチャを持ち、且つ、IPパケット内に記述されている宛先アドレスを基に、出方路へとルーティングされるようになっている。つまり、かかる機能を持つ通信装置内では、IPパケットが装置に到着した時点で、そのIPアドレスに該当する出方路へとIPパケットを転送するだけである。

【0003】このようなネットワークアーキテクチャを持つインターネットでは、どのIPアドレスをどの出方路へ転送するかを決定するために、ルーティングプロトコルと呼ばれる経路決定用のプロトコルが通信装置間で取り扱われている。現在、ルーティングプロトコル用のアルゴリズムとして、ダイクストラ(Dijkstra)のアルゴリズムを用いた方式が一般的である。しかしながら、かかるルーティングプロトコルでは、着信先までの複数のルートを選択することができなかったり、ネットワークトポロジーが変化したときしか、ルーティングプロトコルが実行されなかったりするという課題がある。

【0004】つまり、上記のような技術では、いったんルートが確定してしまうと、そのルートしかIPパケットは転送されないことになり、その結果、慢性的な輻輳が発生してしまうおそれがある。また、上記のような技術では、複数のルートを設定することができないため、あるルートが輻輳していても、別のルートが空いているにもかかわらず、そのルートを使用することができないという課題もある。

20 【0005】そこで、次のような技術が提案されている。

(1-1) OSPF(Open Shortest Path First)における等コストマルチパス(EqualCost Multipath) 技術

(1-2) IBGP(Internal Border Gateway Protocol)におけるマルチパス(Multipath) 技術

すなわち、(1-1)の技術による手法は、OSPFの機能を用いた手法であり、起点となる通信装置から終点となる通信装置までに、コストが等価なパスを複数本張ることができる機能を用いて、この複数本のパス(マルチパス)間で負荷の分散を行なうようにしているのである。

【0006】また、(1-2)の技術による手法は、IB GPの機能を用いて、パスを複数本張り、この複数本のパス(マルチパス)間で負荷の分散を行なうようにしているのである。

[0007]

【発明が解決しようとする課題】しかしながら、このような上記(1-1)によるOSPFの機能を用いた手法では次のような課題がある。すなわち、マルチパスはコストが等価でなければならないという制限があり、パス選択40 の自由度が低く、更にOSPFを使用しているため、リアルタイムでのネットワーク負荷の変動に対処できない。

【0008】また、上記(1-2)によるIBGPの機能を用いた手法でも、OSPFの機能を用いた手法での課題と同様、マルチパスはコストが等価でなければならないという制限があり、パス選択の自由度が低いという課題を有する。なお、ネットワークを相互に接続するデータ処理装置間で、レイヤ3でパスを設定し、レイヤ3でのルート単位で負荷を分散することにより、動的にトラヒック平衡を与えて、ネットワーク性能を改善する技術も提案50 されているが(特開平10-224400 号公報参照)、かかる

技術では、ネットワーク間でのトラヒック平衡を与える ことはできても、ネットワーク内での負荷分散を行なう ことはできず、更にレイヤ3で且つルート単位での負荷 分散しか考慮しておらず、負荷分散制御が複雑になるお それがある。

【0009】本発明は、このような課題に鑑み創案され たもので、ネットワーク内の通信装置において、起点と なる通信装置 (発信元通信装置) から終点となる通信装 置(着信先通信装置)までに複数のルート(伝送経路) を設定し、設定されたルート間で負荷の分散を行なえる ようにして、ネットワークトポロジーに関係なく、また 伝送経路の種類によらないで、インターネット等のネッ トワーク内でトラヒックエンジニアリングを可能にし た、伝送経路制御装置及び伝送経路制御方法並びに伝送 経路制御プログラムを記録した媒体を提供することを目 的とする。

[0010]

【課題を解決するための手段】図l(a),(b)は本 発明の原理説明図であるが、まず、本発明にかかる伝送 経路制御装置は、図1(a) に示すような I Pネットワー ク(このIPネットワークは、発信元通信装置1Sと、 着信先通信装置1Dと、発信元通信装置1Sと着信先通 信装置1Dとの間に設定可能な複数の伝送経路2-i $(i=1\sim N:N$ は自然数)と、上記伝送経路2-iの いずれかに介装される中継通信装置1Rとをそなえてい る)を構成する通信装置1S又は1D又は1R(以下、 発信元通信装置1S, 着信先通信装置1D, 中継通信装 置1Rを特に区別しないで表記する場合は、単に通信装 置1という) に設けられる装置である。

【0011】そして、本発明にかかる伝送経路制御装置 は、図1(b)に示すように、トラヒック特性収集部 3, トラヒック特性通知部4, 負荷演算部5, 判定部6 及び負荷均等化部7をそなえている。ここで、トラヒッ ク特性収集部3は、通信装置1又は他の通信装置に接続 された伝送経路2-iのトラヒック特性を収集するもの であり、自己の通信装置1でのトラヒック特性を収集す るトラヒック特性収集部3Aと、他の通信装置から通知 されるトラヒック特性を受信するトラヒック特性受信部 3 Bとで構成されている。

【0012】トラヒック特性通知部4は、トラヒック特 性収集部3(特に3A)で収集されたトラヒック特性を 他の通信装置に通知するものである。また、負荷演算部 5は、トラヒック特性収集部3で収集されたトラヒック 特性に基づいて負荷を演算するものである。判定部6 は、負荷演算部5で求められた負荷情報に基づいて、伝 送経路を追加するか削除するかの判定を行なうもので、 負荷均等化部7は、負荷演算部5で求められた負荷を複 数の伝送経路間で均等化するものである(請求項1)。 【0013】なお、発信元通信装置15,着信先通信装

置ID、中継通信装置IRのそれぞれに設けられる伝送

特開2001-320420

6

経路制御装置に、上記のようなトラヒック特性収集部 3, トラヒック特性通知部4, 負荷演算部5, 判定部6 及び負荷均等化部7を設けることは勿論可能であるが、 発信元通信装置1 S に設けられる伝送経路制御装置に、 トラヒック特性収集部3,トラヒック特性通知部4,負 荷演算部5,判定部6及び負荷均等化部7を設け、発信 元通信装置1S以外の着信先通信装置1D, 中継通信装 置1Rのそれぞれに設けられる伝送経路制御装置には、 トラヒック特性収集部3,トラヒック特性通知部4だけ を設けることは原理上可能である(請求項1~3)。 【0014】なお、トラヒック特性収集部3が、収集し たトラヒック特性値を平滑化する手段を有していてもよ い(請求項4)。さらに、発信元通信装置15に設けら れるトラヒック特性収集部3が、発信元通信装置1Sに 接続された各伝送経路2-iの使用率を、中継通信装置 1 Rから収集した中継通信装置 1 Rに接続されている伝

【0015】また、発信元通信装置1Sに設けられる負 荷演算部5が、中継通信装置1Rにおいて発生したパケ ット廃棄数を考慮して、実効的な負荷を演算する手段を 有し、且つ、発信元通信装置18に設けられる判定部6 が、実効的負荷演算手段で得られた実効的な負荷から実 効帯域を演算し、全ての伝送経路を一つの仮想的なパイ プとみなして、その使用率に関する情報を求める演算手 段を有するとともに、この演算手段で得られたパイプ使 用率に関する情報に基づき、伝送経路を追加するか削除 するかの判定を行なうように構成してもよい (請求項 6)。

送経路2-iの使用率に関する情報を基に判定する手段

を有していてもよい (請求項5)。

【0016】さらに、発信元通信装置18に設けられる 判定部6が、負荷演算部5で求められた負荷情報に基づ いて、削除対象となる伝送経路の候補を選択する手段 と、この削除候補選択手段により選択された削除候補の 伝送経路を削除した場合における他の伝送経路の負荷を 予測する手段と、この負荷予測手段により予測された他 の伝送経路の負荷を所定の基準値と比較し、この比較結 果に応じて、この削除候補の伝送経路を削除するか否か を決定する手段とをそなえて構成してもよい (請求項 7)。

【0017】また、発信元通信装置18に設けられる負 荷均等化部7が、中継通信装置1 R において発生したパ ケット廃棄数を考慮して得られる実効的な負荷から得ら れる実効帯域に基づいて全伝送経路について求められた 平均実効帯域から、各伝送経路での移動すべき実効帯域 を求める移動実効帯域演算手段を有するように構成して もよい(請求項8)。

【0018】そして、本発明では、発信元通信装置15 と、着信先通信装置1Dと、発信元通信装置1Sと着信 先通信装置 1 Dとの間に設定可能な複数の伝送経路 2 iと、伝送経路2-iのいずれかに介装される中継通信

50

装置1RとをそなえてなるIPネットワークを構成する 発信元通信装置以外の他の通信装置において、(A1) 他の通信装置に接続された伝送経路のトラヒック特性を 収集するトラヒック特性収集ステップと、(A2)トラ ヒック特性収集ステップで収集された該トラヒック特性 を該発信元通信装置に通知するトラヒック特性通知ステ ップとが実行されるとともに、上記発信元通信装置 1 S において、(B1)発信元通信装置1Sに接続された伝 送経路のトラヒック特性を収集するトラヒック特性収集 ステップと、(B2)トラヒック特性収集ステップで収 集されたトラヒック特性及び他の通信装置から得られた トラヒック特性の一方又は両方に基づいて負荷を演算す る負荷演算ステップと、(B3)負荷演算ステップで求 められた負荷情報に基づいて伝送経路を追加するか削除 するかの判定を行なう判定ステップと、(B4)負荷演 算ステップで求められた負荷を複数の伝送経路間で均等 化する負荷均等化ステップとが実行される(請求項 9)。

【0019】また、上記図1 (a)に示すIPネットワークを構成する1で使用すべく、通信装置又は他の通信装置に接続された伝送経路のトラヒック特性を収集するトラヒック特性収集手段と、トラヒック特性収集手段で収集された該トラヒック特性を他の通信装置に通知するトラヒック特性通知手段と、トラヒック特性収集手段で収集された該トラヒック特性に基づいて負荷を演算する負荷演算手段と、負荷演算手段で求められた負荷情報に基づいて伝送経路を追加するか削除するかの判定を行なう判定手段と、負荷演算手段で求められた負荷を複数の伝送経路間で均等化する負荷均等化手段として、上記通信装置を機能させるための伝送経路制御プログラムを記録した媒体も用意されている(請求項10)。

[0020]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を説明する。本発明の実施の形態として、ラベルスイッチ型ルータ(通信装置)としてのMPLSルータに本伝送経路制御装置を装備して、MPLS(Multi-Protocol Label Switching)を用い、MPLSのラベル機能を用いて、ルーテイングプロトコルとは異なるルートを設定し、負荷分散を行なう場合について説明する。ここで、MPLSとは、レイヤ2のラベルをIPに特化して使用することにより、現在のルータでは実現困難なサービスを簡易にかつ効果的に行なうことが可能な方式をいう。

【0021】以下においては、MPLSの概要を説明した上で、MPLSにおける負荷分散手法ないし負荷分散 アルゴリズム(作用説明を含む)について説明する。

(2-1) MPLSの概要説明

まず、MPLSの概要を説明する。図2(a),(b)に、MPLSのネットワーク構成および基本パケット転送要領を示す。MPLSネットワークは、エッジ・ラベ 50

ル・スイッチング・ルータ(Edge Label Switching Router 、以下、エッジLSRという)11Eやコア・ラベル・スイッチング・ルータ(Core LabelSwitching Router 、以下、コアLSRという)11Cで構成される。これをMPLSドメインと呼ぶ。

【0022】ここで、エッジLSR11Eは、図2 (a),(b)に示すように、既存インターネットワークとの境界に位置し、パケットにラベルを付加することによって、高性能、高付加価値のネットワークレイヤサービスを実現するルータであり、このエッジLSRは、ラベル付けされていないフレームベース(Frame Base)のLAN インターフェースを終端するものである。

【0023】また、コアLSR11Cは、ラベルが付加されたパケットやセルをラベル交換するルータであり、このコアLSR11Cは、ラベル交換ばかりでなく、レイヤ3ルーティングやレイヤ2スイッチングをサポートするように構成することもできる。また、標準のネットワークレイヤのルーティングプロトコルと連携し、ラベル・スイッチングによるインターネットワーク上のデバイス間でラベル情報を交換しあう際に用いられるプロトコルは、ラベル・ディストリビューション・プロトコル [Label Distribution Protoco1 (LDP)]である。

【0024】なお、図2(a)の符号9S,9Dはパソコン等の端末を示している。図2(a)に示すようなMPLSネットワークでは、MPLSドメイン内に到着したIPパケットに、着信端末へと通じるパスに対応づけられたラベルが、エッジLSR11Eにより付与される。図2(b)では、ラベルAが付与され、コアLSR11Cでは、そのラベルのみを見て、ラベルAに対応する出力方路へと交換する。交換された出方路にパケットを送出するときには、新たにラベルBが付与される。これをラベルスワッピングと呼ぶ。このようにMPLSドメイン内では、ラベルスワッピングを行ないながら、ラベルに従い順次目指す着信端末9Dへと転送されていく。MPLSドメインの出口のエッジLSR11Eではラベルは取り除かれ、MPLSドメインへと転送される。

【0025】次に、MPLSで用いるラベルについて説明する。まず、MPLSを実現するには以下の2つの手40 法がある。

①既存スイッチを流用する手法

②新ラベルを定義する手法

①による既存スイッチを流用する手法は、非同期転送モード(ATM: Asynchronous Transfer Mode))やフレームリレー(Frame Relay , FRとも表記する)といった既存スイッチを用いる手法であり、ATMでは仮想パス識別子(VPI)と仮想チャネル識別子(VCI)との領域をラベルとして用い、フレームリレーではDLCIをラベルとして用いる。

【0026】②による新ラベルを定義する手法では、シ

【0027】なお、ラベルは、ATM/FR以外に、PPP over SONET用や、イーサフレーム(LAN)用にも定義されている(図3の右側に示されているPPPやLANを参照)。また、ラベルは、例えば4オクテット長で図4のように示される。そして、このラベルは階層構造を持つことが可能であり、その構造をラベル・スタック(Labelstack)と呼ぶ。図4に示すラベルおよびその他の付加情報は、MBLSで定義したMPLSへッダに表示されるか、またはL2ヘッダやATM ヘッダにも表示される場合がある。

【0028】図4に示す S (Bottom of Stack)は、ラベル・スタックの最下位に位置する最終エントリである場合に、1 にセットされるもので、その他のエントリは全て0にセットされるものである。また、図4に示す ITL (Time-to-Live) は、ITL をエンコードするために使用されるフィールドを表しており、ラベルドパケット (1a beled packet) がフォワードされる前に1 ずつ減算されるようになっている。減算されて0 になったパケットはそれ以上フォワードしてはならず、この場合、このパケットはそのまま廃棄されるか、ラベル・スタックを取り除かれて、ネットワークレイヤの処理に渡される。そして、ネットワークレイヤの処理に移行した後も決してこのパケットをフォワードしてはならないようになっている。

【0029】次に、ラベル・スイッチド・パス(Label S witched Path: LSP) について説明する。LSPとは、図5からもわかるように、入り口のLSRから中間のLSRを経て出口のLSRまでのパスのことをいうが、LSPに対応づけられて、各LSRでのラベルが決定されるようになっている。本発明では、後述するが、トラヒック特性の収集を、LSPごとに行なうようになっている。

【0030】さらに、LSPを確立する手法について説明する。まず、LSPを確立する手法として、以下の2方式がIETFで提案されている。

①LDP(Label Distribution Protoco1)を用いた手法②RSVP-トンネル(RSVP-Tunne1)を用いた手法以下は、②のRSVP-Tunne1 を用いた手法について説明する

【0031】LSP-tunnel は、従来のRSVPを拡張して

実行されるもので、この方式の背景は、MPLSがRSVPを搭載している場合、それらを合体させることによりフローをより柔軟に管理可能であるであろうということから来ている。LSP-tunnel はRSVPに対して以下の5 つの新オブジェクト[LABEL REQUEST(パスメッセージ(PATHメッセージ)中で使用するもの),LABEL(Resvメッセージ中で使用するもの),EXPLICIT ROUTE(PATHメッセージ中で使用するもの),RECORD ROUTE(PATHメッセージ・Resvメッセージ中で使用するもの)及びSESSION ATTRIB UTE(PATHメッセージ中で使用するもの)〕を定義している。

【0032】ここで、LABEL REQUEST オブジェクトは、PATHメッセージ中で使用するものであり、中間ルータと受信ノードで、そのパスに関するラベルを決定するために使用される。パス(=LSP-tunne1)を確立するために、送信元LSRはLABEL REQUEST を持つPATHメッセージを生成し、更にLABEL REQUEST を送信したノードは、そのPATHメッセージに対応するResvメッセージを受信する準備をしておかなければならない。もしLABEL REQUEST を含んでいないPATHメッセージを受け取ったならば、それにLABEL REQUEST オブジェクトを書き込んではならないようになっている。

【0033】LABEL オブジェクトは、Resv メッセージ中で使用するものであるが、LSP-tunnel では、ラベルはResvメッセージ中に入れて送信元へと返されるようになっている。そして、Resvメッセージは、PATHメッセージの経路に沿って送信元へ向かって返信される。さらに、LABEL オブジェクトを持つResvメッセージを受信した各ノードは、そのラベルをLSP-tunnel の出力側のラベルとして使用し、もしそのノードがLABEL REQUESTの送信者でなかったならば、新たなラベルを割り当て、その新ラベルをResvメッセージのLABEL オブジェクトに置くという処理を実行するようになっている。そして、上流に送信したラベルは、そのLSP-tunnel の入力側ラベルとして使用される。

【0034】EXPLICIT ROUTE オブジェクト(ERO) は、PATHメッセージ中で使用するものであるが、もしこのオブジェクトがPATHメッセージ中に現れたならば、そのPATHメッセージは、ERO によって明記されたパスに沿ってそのメッセージを転送しなければならない。ERO は明示的ルーティングに用いることを意図したものである。RECORD ROUTE オブジェクトは、PATHメッセージ、Resvメッセージ中で使用するものであるが、これにより送信ノードがLSP-tunnel の実際の経路についての情報を受け取ることが可能となる。これはパスベクトル(path vector) と似ていて、ループ検出にも使用できるもののである。

【0035】SESSION ATTRIBUTE オブジェクトは、PATH メッセージ中で使用するものであるが、このSESSION AT 50 TRIBUTE オブジェクトは、PATHメッセージに付与され

て、セッションの識別と診断に使用できる。更に、このオブジェクトは、プレエミッション(preemption). 優先権. ローカルプロテクションなどを持っている。図6に、RSVPを用いたLSP-tunnelのメッセージの流れを示す。RSVP-tunnelは、下流からラベルを割り当てていくため、ダウンストリーム・オン・デマンド(Downstream-on-demand)方式である。図6からもわかるように、まず、MPLSドメイン内の最初のMPLSルータ(LSR1)が、RSVPのPATHメッセージ中にLABEL REQUESTオブジェクトを入れて下流へと送信する。その後、着信先のノード(LSR4)のそのPATHメッセージが到達したならば、着信先ノード(LSR4)はResvメッセージ中にLABEL オブジェクトを入れて、その上流へと返す。ラベルの割り当て方は上述した通りである。

11

【0036】本発明では、このRSVPメッセージ中にトラヒック特性値を埋め込んで転送している。

(2-2) MPLSにおける負荷分散手法の説明 負荷分散をMPLSを用いて行なう場合、図7に示すように、上記LSPを用いて、発信元 (source) MPLS ルータ11Sと着信先 (destination) MPLSルータ 11Dの間に複数の伝送経路 (パス (path)) すなわちLSP;本実施形態ではパス (path) とLSPとは同義で使用する(path) とLSPとは同義で使用する(path) とLSPとは同義でする。この場合、LSPはMPLSのラベルを用いて設定する。LSPの設定にはRSVP-LSP-Tunne1のようなLSP設定プロトコルを用いる。なお、図7において、11Rは中継MPLSルータを示す。

【0037】また、伝送経路のルータ間の部分をリンクといい、例えば図7において伝送経路12-1はM個のリンク(linkl~linkM)で構成されている。この図7に示すMPLSのネットワーク構成も、発信元MPLSルータ11Dと、発信元MPLSルータ11Sと着信先MPLSルータ11Dとの間に設定可能な複数の伝送経路12-i(i=1~N:Nは自然数)と、上記伝送経路12-iのいずれかに介装される中継MPLSルータ11RとをそなえたIPネットワークであることがわかる。なお、この実施形態においても、発信元MPLSルータ11 S、着信先MPLSルータ11D、中継MPLSルータ11 Rを特に区別しないで表記する場合は、単にMPLSルータ11という。

【0038】図8にIPネットワークを構成するMPLSルータの機能ブロック図を示すが、この図8に示すように、MPLSルータ11は、IPパケット転送部111,ルーティングプロトコル部112,パス選択部113,LSP選択部114,LSP設定部115及びトラヒックエンジニアリング部116をそなえて構成されている。

【0039】ここで、IPパケット転送部111は入力パケットにIPパケット転送処理等の所望の処理を施し

て他のルータへパケットを転送する機能を有し、ルーティングプロトコル部 1 1 2 は他のルータへのトラヒック特性の通知又は他のルータからのトラヒック特性の収集を仲介するものである。なお、このルーティングプロトコル部 1 1 2 は、MPLSルータがネットワークに接続されると、ルーティングプロトコルを動作させて、ネットワークに接続されている他のMPLSルータの発見を

行なう機能も有している。この発見には一般的にハロー

(Hello) パケットが用いられる。

12

【0040】パス選択部113は、ルーティングプロトコルにより、ネットワークのトポロジーが判明すると、パス選択のために、リンク状態データベース(Link State Database) 113Aを作成する機能を有している。このリンク状態データベース113Aは、LSP選択部114を経てLSP設定部115により他MPLSルータとの間でLSPを設定する。

【0041】LSP選択部114は、パス選択部113のリンク状態データベース113Aと連携し、LSP選択のために、代替経路情報データベース114Aを作成する機能を有している。このとき、従来のルーティングプロトコルに無い、MPLS独自のルーティングテーブルが作成される。そして、この代替経路情報データベース114Aは、トラヒックエンジニアリング部116と連携し、必要に応じて代替経路をLSPを用いて設定するようになっている。つまり、終点のMPLSルータとの間に複数のLSPを設定することにより、そのLSP間で負荷のバランスを行なうようにするためである。

【0042】LSP設定部115は、LSP選択部114でのLSP選択結果に応じて終点のMPLSルータとの間に複数のLSPを設定する機能を有するもので、このLSP設定部115でのLSP設定結果がIPパケット転送部111へ伝達され、IPパケット転送部111でIPパケットの転送態様が設定されるようになっている。

【0043】トラヒックエンジニアリング部116は、本発明にかかる負荷バランスに関する一連の機能を有するもので、図9に示すように、負荷観測部116A,トラヒック特性値計算部116B,トラヒックエンジニアリング計算部116C,負荷調整部116Dをそなえて構成されている。負荷観測部116Aは、パケット転送部111から送られてくる使用率やパケット損失数といったトラヒック特性値をトラヒック特性値計算部116Bへ送る機能を有するもので、トラヒック特性値計算部116Bは、トラヒック特性値のスムージング化や最大値化を行なって、他のMPLSルータへ送信したり、他MPLSルータより送られてきたトラヒック特性値を収集して、トラヒックエンジニアリング計算部116Cへと送る機能を有する。

【0044】トラヒックエンジニアリング計算部116 Cは、実効的な負荷 (Effective Load) や実効帯域 (Ef

10 なわれる。

20

13

fective Bandwidth)等の計算を行ない、各LSPの帯域に応じた負荷の調整を行なう機能を有するもので、トラヒックエンジニアリング計算部 1 1 6 C で得られた計算(演算) 結果は、負荷調整部 1 1 6 Dへと送信されるようになっている。

【0045】負荷調整部116Dは、トラヒックエンジニアリング計算部116Cからの情報に基づいて、トラヒックシェアー(Traffic Share)の幅を決めて、その結果をLSP選択部114を介してLSP設定部115 へ送る機能を有するもので、LSP設定部115では、その後、トラヒックシェアー幅をIPパケット転送部111で設定するようになっている。

【0046】すなわち、トラヒックエンジニアリング部 116は、自MPLSルータ又は他のMPLSルータに接続されたLSP(伝送経路)のトラヒック特性を収集するトラヒック特性収集部と、このトラヒック特性収集部で収集されたトラヒック特性を他のMPLSルータに通知するトラヒック特性通知部と、トラヒック特性収集部で収集されたトラヒック特性に基づいて負荷を演算する負荷演算部と、この負荷演算部で求められた負荷を演算する負荷演算部と、この負荷演算部で求められた負荷を複数のLSPi(iは自然数)間で均等化する負荷均等化部との各機能をそなえていることになり、このトラヒックエンジニアリング部116が本発明の伝送経路制御装置の主要部をなすことになる。

【0047】なお、負荷観測部116Aやトラヒック特 性値計算部116 Bがトラヒック特性収集部の機能を、 トラヒック特性値計算部116Bが、トラヒック特性通 知部の機能を、トラヒックエンジニアリング計算部11 6 C が負荷演算部, 判定部, 負荷均等化部の機能を主と して発揮する。また、上記のトラヒック特性収集部、ト ラヒック特性通知部, 負荷演算部, 判定部及び負荷均等 化部の機能をMPLSルータに持たせるために、通常は 上記のトラヒック特性収集部として機能させるためのト ラヒック特性収集手段(このトラヒック特性収集手段は このMPLSルータ又は他のMPLSルータに接続され た伝送経路のトラヒック特性を収集する機能を有する) と、トラヒック特性通知部として機能させるためのトラ ヒック特性通知手段(このトラヒック特性通知手段は、 トラヒック特性収集手段で収集されたトラヒック特性を 他のMPLSルータに通知する機能を有する)と、負荷 演算部として機能させるための負荷演算部手段(この負 荷演算部手段はトラヒック特性収集手段で収集されたト ラヒック特性に基づいて負荷を演算する機能を有する) *

CUTY=出カポートからの出力パケット量/出カポートの論理帯域・・(1)

これにより、トラヒック特性収集部が、収集したトラヒック特性値を基に、上記ルータに接続された各伝送経路の使用率を判定する手段を有していることになる。その結果、各伝送経路の使用状態を詳細に把握することが可

*と、判定部として機能させるための判定手段(この判定手段は負荷演算手段で求められた負荷情報に基づいて伝送経路を追加するか削除するかの判定を行なう機能を有する)と、負荷均等化部として機能させるための負荷均等化手段(この負荷均等化手段は負荷演算手段で求められた負荷を複数の伝送経路間で均等化する機能を有する)として、ルータを機能させるための伝送経路制御プログラムを記録した媒体から、各MPLSルータに上記の伝送経路制御プログラムをインストールすることが行

14

【0048】このインストールは、ルータ若しくはルー タに接続のコンピュータにフロッピー(登録商標)ディ スクやMOディスク等の記録媒体をセットして行なうほ か、IPネットワークを通じて配信された伝送経路制御 プログラムを使用して行なってもよい。なお、実際の I Pネットワークは、MPLSルータをノードとして蜘蛛 の巣状に構成されているので、いずれのMPLSルータ も、発信元MPLSルータ、着信先MPLSルータ、中 継MPLSルータと成りうるので、本実施形態では、図 7に示す発信元MPLSルータ11S, 着信先MPLS ルータ11D, 中継MPLSルータ11Rのそれぞれの トラヒックエンジニアリング部116に、上記のような トラヒック特性収集部、トラヒック特性通知部、負荷演 算部、判定部及び負荷均等化部の機能を全て有する例を 示しているが、発信元MPLSルータ11Sのトラヒッ クエンジニアリング部に、トラヒック特性収集部. トラ ヒック特性受信部、負荷演算部、判定部及び負荷均等化 部の機能を持たせ、発信元MPLSルータ11S以外の 着信先MPLSルータ11D, 中継MPLSルータ11 Rのそれぞれに設けられるトラヒックエンジニアリング 部に、トラヒック特性収集部、トラヒック特性通知部の 機能だけを持たせることは原理上可能である。

【0049】以下、トラヒックエンジニアリング部116で行なわれる負荷分散アルゴリズムについて詳述する。

(2-3) 各MPLSルータ11で行なわれる負荷分散 アルゴリズムについて

まず、時間 t1 [秒(sec)]毎にトラヒック特性値としての所要のトラヒック項目(出力ポートからの出力パケット量,出力ポートでの廃棄パケット数(NLOSS),出力ポートの論理帯域(LBW)など)について、ポート毎にトラヒック収集を行なう(手順S1)。

【0050】次に、得られたトラヒック特性値から現在の伝送路使用率CUTYを次式(1)に基づいて算出する(手順S2)。

能となる。 【0051】このとき、得られたトラヒック特性値に関する情報(伝送路使用率CUTY)の加工処理も行なう。その処理態様は以下のとおりである。

-8-

①平滑化(スムージング)処理を行なう。かかる平滑化処理は、観測値を得る毎に次式(2)を計算することにより、値MUTYを得ることにより行なう。

[0052]

 $MUTY = \alpha \times CUTY + (1 - \alpha) \times MUTY \cdot \cdot (2)$

ここで、 α は平滑化(スムージング) 係数である。これにより、トラヒック特性収集部が、収集したトラヒック特性値に関する情報を平滑化する手段を有していることになり、更に具体的には、MPLSルータに接続された伝送経路のトラヒック特性を収集した後、その統計値をExponential Moving Average法によって平滑化する手段を有していることになる。その結果、急激なトラヒック変動による影響を少なくできる。

【0053】また、上記の様に、得られたトラヒック特性値から求めた現在の伝送路使用率CUTYに対して平滑化を行なうことにより、平滑化手段が、使用率判定手段により判定された使用率を平滑化するように構成されていることになる。これにより、トラヒック変動による影響を排して各伝送経路の使用状態を正確に把握することができる。

【0054】②最大値抽出処理を行なう。かかる最大値抽出処理は、観測値の最大値を算出することにより行なう。すなわち、観測値の最大値を加工値MUTYと置くのである。これを式で表現すれば、下式(3)の通りである。

MUTY= max(観測値) ・・ (3)

これにより、トラヒック特性収集部が、収集したトラヒック特性値の最大値をトラヒック特性値の代表値とする 手段を有していることになる。その結果、伝送経路選択 制御を確実に行なうことができる。

【0055】なお、上記の平滑化処理,最大値抽出処理については、平滑化処理及び最大値抽出処理の両処理を施してもよいし、平滑化処理及び最大値抽出処理のうちの一方のみを施してもよい。

③パケット廃棄数の合計TLOSS を次式(4)に従って算出する。

 $TLOSS(n) = TLOSS(n-1) + NLOSS \cdot \cdot (4)$

ここで、TLOSS(n)は更新後のパケット廃棄数の合計,TLOSS(n-1)は更新前のパケット廃棄数の合計,NLOSSは新たに生じたパケット廃棄数である。

【0056】その後は、ルーティングプロトコルのフラッディング(flooding)を利用して、時間t2[sec] 毎に、上記のトラヒック特性値(MUTYやTLOSS など)の配布を行なう。なお、flooding完了毎にTLOSS はリセット(即ち0 に)する。また、MUTYとして最大値を採用した場合も、MUTYはリセット(即ち0 に)する。

【0057】これにより、トラヒック特性通知部が、トラヒック特性に関する情報をルーティングプロトコルが装備するパケットを利用して通知する手段を有していることになるが、更に具体的には、MPLSルータに接続 50

された伝送経路のトラヒック特性を収集した後、その特性値をOSPFやIBGPなどのルーティングプロトコルが装備するパケットを利用して配布し、他のMPLSルータに情報を伝達する手段を有していることになる。その結果、既存のプロトコルを活用でき、これにより新規に専用のルーティングプロトコルを用意する必要がなく、コスト等の低減に寄与しうる。

16

【0058】また、トラヒック特性通知部が、トラヒック特性に関する情報を一定周期t2[sec]毎に通知する手10段を有していることにもなる。その結果、演算等を実行するCPU等の演算装置にかかる演算負荷を軽減できる。そして、この実施形態では、トラヒック特性通知部が、トラヒック特性に関する情報をRSVPのメッセージを拡張して通知する手段を有していることになり、更に具体的には、MPLSルータに接続された伝送経路のトラヒック特性を収集した後、その特性値をRSVPのメッセージを拡張して配布し、他のMPLSルータに情報を伝達する手段をそなえていることになる。その結果、既存のプロトコルを活用することができ、これにより新規に専1のルーティングプロトコルを用意する必要がなく、コスト等の低減に寄与しうる。

【0059】また、トラヒック特性収集部が、トラヒッ ク特性を収集するフローの束の単位を、MPLSで使用 するラベル単位で収集する手段を有していることにな る。その結果、細かいトラヒック特性の収集が可能にな り、収集精度の向上に寄与する。なお、収集したトラヒ ック特性値に対して、上記の平滑化処理、最大値抽出処 理. パケット廃棄数合計算出処理のうちいずれか若しく は全ての処理を行なってから、現在の伝送路使用率の算 出を行なうように構成しても、同様の効果を得ることが できる。一方、伝送路使用率の算出処理を負荷分散の起 点となるMPLSルータ11Sに委ねることにより、中 継MPLSルータおよび着信先ルータを、伝送路使用率 の算出処理以外の各処理(平滑化処理、最大値抽出処 理,パケット廃棄数合計算出処理,トラヒック特性値の 通知処理) のみを行なうように構成することも可能であ る。

【0060】このように構成した中継MPLSルータ1 1R'および着信先ルータ11D'(以下、これらのル 40 ータを総称して11'で表す)のトラヒックエンジニア リング部116'で行なわれる負荷分散アルゴリズム を、以下に詳述する。まず、上述したトラヒックエンジ ニアリング部116と同様に、本MPLSルータ11' のトラヒックエンジニアリング部116'も、時間 t1 [秒(sec)]毎にトラヒック特性値としての所要のトラヒ ック項目〔出カポートからの出力パケット量(L),出カ ポートでの廃棄パケット数(NLOSS),出カポートの論理 帯域(LBW)など〕について、ポート毎にトラヒック収集 を行なう。

0 【0061】続いて、得られた出力パケット量の平滑化

18

(スムージング)処理を行なう。かかる平滑化処理は、 観測値を得る毎に次式(5)を計算することにより、値 MLを得ることにより行なう。

17

 $ML = \alpha \times L + (1 - \alpha) \times ML' \cdot \cdot (5)$

ここで、 α は平滑化(スムージング)係数、ML'は前回 算出されたMLである。

【0062】次に、最大化抽出処理を行なう。これは、 上述したトラヒックエンジニアリング部116と同様 に、観測値の最大値を加工値MLと置くことにより行な われる。なお、この最大化抽出処理については、省略す ることも可能である。さらに、上述したトラヒックエン ジニアリング部116と同様に、パケット廃棄数の合計 TLOSS を、(4)式に従って算出する。

【0063】その後は、ルーティングプロトコルのFloo dingを利用して、時間t2[sec] 毎に、上記のトラヒック 特性値(MLやTLOSS など) の配布を行なう。なお、flo oding完了毎に、TLOSS をリセット(即ち0 に) する 点、MLとして最大値を採用した場合にはMLもリセット (即ち0 に) する点も、上述したトラヒックエンジニ アリング部116と同様である。

【0064】これにより、本変形例のMPLSルータ1 1'も、上述のMPLSルータ11と同様に、平滑化処 理、最大値抽出処理、パケット廃棄数合計算出処理、ト ラヒック特性値の通知処理の各々に伴う効果を得ること ができる上に、トラヒック特性に関する情報の平滑化処 理を負荷分散の起点となるMPLSルータ11Sに委ね ているので、上述のMPLSルータ11よりもトラヒッ ク特性の加工に要する時間が短くて済むとともに、構成 を簡素なものとすることができ、コストの低減に寄与す

【0065】(2-4)負荷分散の起点となるMPLS ルータ11Sで行なわれる負荷分散アルゴリズムについ

まず、負荷分散の起点となるMPLSルータ11Sで通 知を受ける flooding情報は、前記したように、平均リ ンク使用率(又は観測値の最大値) MUTY (又は平均出 カパケット量ML), 廃棄パケット数 TLOSS, 出カポート 論理帯域 LBWなどである。

【0066】ここで、このMPLSルータ11Sが平均 出力パケット量MLを受信する場合には、併せて受信する 出力ポート論理帯域LBW 等を使用して、各ルータのリン ク使用率MUTYを算出することになる。他の中継ルータが 平均リンク使用率算出機能を有し、算出した平均リンク 使用率MUTYを通知する場合には、このMPLSルータ1 1 S 側にはリンク使用率算出機能を設ける必要はない。 【0067】そして、この負荷分散の起点となるMPL Sルータ11Sでは、パス状態チェック、実効負荷(E ffective Load)の算出,負荷調整(Load Adjusting)が行なわれる。パス状態チェックについては、一定 周期t3[sec] 毎に発信元MPLSルータ(起点ルータ)

115から着信先ルータ(終点ルータ)11Dまでの各 ルートの輻輳状態チェックを以下の要領で実施する。

【0068】負荷分散制御の起点となるMPLSルータ 118において、このMPLSルータ118には負荷分 散制御を終点とするMPLSルータ11D間に複数のパ スが張られていて、各パスは複数の中継MPLSルータ 11Rを経由していることを前提にして、各ルートの輻 輳状態チェックは、各パスの使用率を、各中継MPLS ルータ11Rから収集したものであって、その中継MP LSルータ11Rに接続されている伝送経路(リンク) の平均使用率を基に判定する[この輻輳状態チェック態 様をパスi (path i) における各リンクj(1ink j) の平 均を取る場合の輻輳状態チェック態様という]。

【0069】これを数式で示すと下式(6)のようにな る。

 ρ path i=Average (MUTY(link j, path i) • • (6) これにより、この場合は、発信元MPLSルータ11S に設けられるトラヒック特性収集部が、発信元MPLS ルータに接続された各伝送経路の使用率を、中継MPL Sルータから収集した中継MPLSルータに接続されて いる伝送経路の平均使用率を基に判定する手段を有して いることになる。その結果、ネットワークの使用効率の 向上に寄与しうる。

【0070】さらに、上記のpath iにおける各 1ink の 平均を取る場合の輻輳状態チェック態様と同様の前提 で、各ルートの輻輳状態チェックを、各パスの使用率 を、各中継MPLSルータから収集したものであって、 その中継MPLSルータに接続されている伝送経路(リ ンク)の最大使用率を基に判定するような輻輳状態チェ ックも考えられる(このような輻輳状態チェック態様を path i における全ての 1ink の最大を取る場合の輻輳 状態チェック態様という)。

【0071】これを数式で示すと下式(7)のようにな る。

path $i = Max(MUTY(1ink j, path i) \cdot \cdot (7)$ これにより、この場合は、発信元MPLSルータに設け られるトラヒック特性収集部が、発信元MPLSルータ に接続された各伝送経路の使用率を、中継MPLSルー タから収集した中継MPLSルータに接続されている伝 送経路の最大使用率を基に判定する手段を有しているこ とになる。その結果、伝送経路選択制御を確実に行なう ことができる。なお、path iにおけるパケット廃棄数の 合計TLOSS path i は次式(8)で求める。

TLOSS path $i = \Sigma TLOSS link j \cdot \cdot (8)$

[0072]

なお、上記でi はpath (LSP) の番号、j は1ink番号 である。そして、発信元MPLSルータに設けられるト ラヒック特性収集部は、各伝送経路が輻輳しているかど うかを一定周期t3[sec] 毎に判定する手段を有している ことにもなる。このようにすることにより、演算等を実

行するCPU等の演算装置にかかる演算負荷を軽減でき

19

【 $0\ 0\ 7\ 3$ 】実効負荷($Effective\ Load$) ho effective path iの算出については以下の要領で行なわれる。こ こで、実効負荷は、リンクの使用率とこのリンクでのパ ケット損失数とから計算される、実効的な使用率である と定義される。本来ならば、当該リンクにかかる実際の 負荷を計測すればよいが、実際ルータ内部は多段スイッ チ構成になっており、直接的に負荷を計測することは困 難である。従って、本実施形態では、リンクの使用率と パケット損失数のみを用いて負荷を推定するもので、こ*

> ρ effective path $i = \rho$ path $i \times f(TLOSS path i) \cdot \cdot (9)$ ρ effective path i=Min(ρ effective path i, ρ ceiling) \cdot · (10)

ここで、f(TLOSS path i) はTLOSS path iに関する関数 であり、ρceiling は上限負荷、即ち実効負荷ρeffect ive path iの上限値である。この機能は、発信元MPL Sルータに設けられる負荷演算部中の、中継MPLSル ータにおいて発生したパケット廃棄数を考慮して、実効 的な負荷を演算する手段が発揮する。これにより、負荷 分散制御の起点となるMPLSルータにおいて、当該M PLSルータには負荷分散制御を終点とするMPLSル ータ間に複数のパスが張られていて、各パスは複数の中 継MPLSルータを経由している状況下で、通知された トラヒック特性を基に負荷を計算する場合に、各中継M PLSルータにおいて発生したパケット廃棄数TLOSS pa th iを考慮して、実効的な負荷ρeffective path iを、 i番目のパスの実効的な負荷=i 番目のパスの負荷×f (パケット廃棄数)

で計算することができるようになっている。なお、f(パ ケット廃棄数)はパケット廃棄数を変数とする関数であ る。

【0076】その結果、直接的に負荷を計測しなくて ※

ここで、ρeffective path iはパスi の実効負荷、LBW path i はパスi の論理帯域である。

【0079】これにより、不必要に新しい伝送経路を追 加することを防止できるほか、ネットワークの有効利用 にも寄与しうる。次に、マルチパスの有効性を検証す る。すなわち、式(11)で得られた使用率と設定され た経路追加用基準値 p offer1とを比較し、得られた使用 率の値が経路追加用基準値を超えていた場合に、新伝送 経路を追加するとともに、同じく式 (11) で得られた 使用率と設定された経路削除用基準値とを比較し、得ら れた使用率の値が経路削除用基準値ρoffer2を下回って いた場合に負荷が少ないパスを削除するのである。即 ち、上記で算出された負荷が多ければ新パスを追加し、 少なければ既存パスを削除するのである。

【0080】これを論理表現すれば、以下のようにな

If ρ effective all $\geq \rho$ offer1 then

*の推定負荷を実効負荷と言っている。

【0074】図10を用いて、実効負荷を説明する。実 効負荷の意味は次のとおりである。即ち、図10の特性 を見れば明らかなように、もしパケット損失が無けれ ば、リンクでの負荷 ρ path iと実効負荷とは一致する が、パケット損失が発生すれば、高めに負荷を計算する ように、所定の関数f(TLOSS path i)で修正をかけてこ れを実効負荷としている。なお、実効負荷には、上限ρ ceiling を設けている。これを式で表現すると、下式 (9), (10) のようになる。

[0075]

- ※も、簡素な手法で、実効的な負荷を推定できる。また、 上記の実効的負荷演算手段が、実効的な負荷を演算する 際に、実効的な負荷の上限値を設定するように構成され ていることになる。これにより、過剰な量の負荷推定を 避けることができ、その結果、適切な伝送経路選択制御 を行なえる。
- 20 【0077】負荷調整については以下の要領で行なわれ る。負荷調整は、時間t4[sec] 毎に実施するが、上記の ように各パス(LSP) の実効負荷(effective load)を算出 できれば、次に全パス(LSP) での使用率を求めることに なる。本実施形態では、全パスを一つの仮想的なパイプ とみなし、そのパイプの負荷を算出する。

【0078】すなわち、この場合、発信元MPLSルー タに設けられる判定部が、実効的負荷演算手段で得られ た実効的な負荷から実効帯域を演算し、全ての伝送経路 を一つの仮想的なパイプとみなして、その使用率を求め る手段を有していることになるが、この場合の使用率は 次式(11)で求められる。全パスを一つの仮想的なパ イプとみなしたときの使用率ρeffective all =

 Σ (ρ effective path i×LBW path i) $\angle \Sigma$ LBW path i \cdot · (1 1)

if timer1 was expired then (左の部分は、「タイマー が既にexpireされていたならば」の意味である。) search new path and add new path (左の部分は、「代 替経路探索処理へ」の意味である。)

endif

elseif ρ effective all $< \rho$ offer2 then if timer2 was expired then (左の部分は、「タイマー が既に expire されていたならば」の意味である。) delete path(左の部分は、「代替経路削除処理へ」の 意味である。)

endif

endif

これにより、発信元MPLSルータに設けられる判定部 が、パイプ使用率演算手段で得られたパイプ使用率と設 定された基準値とを比較し、比較結果に応じて、伝送経 路を追加するか削除するかの判定を行なう手段を有して 50 いることになり、パイプ使用率演算手段で得られたパイ

21

プ使用率が経路追加用基準値を超えていた場合に、新伝送経路を追加したり、パイプ使用率演算手段で得られたパイプ使用率が経路削除用基準値を下回っていた場合に、負荷が少ない伝送経路を削除したりするようになっている。その結果、アップツーデートに最適な経路選択を実施できる。

【0081】なお、上述したマルチパスの有効性の検証 手順の変形例として、式(11)で得られたパイプ使用*

ここで、 ρ effective all(t)は時間tにおける全パス合計の使用率であり、 ρ effective all(t-1)は時間tの1つ前の計測時間t-1における全パス合計の使用率である。なお、式(11)で得られたパイプ使用率の経時的変化を時間関数として表した上で、ある時点におけるパイプ使用率の微分値を算出し、これをパイプ使用率の時間当たりの変化率としてもよい。これにより、パイプ使用率のより正確な変化率を把握することができる。

【0083】次に、式(11)で得られた使用率と設定された経路追加用基準値 ρ offer1とを比較するとともに、式(12)で得られた変化率と設定された経路追加 20 用基準値 ρ offerd1とを比較し、得られた使用率及び変化率の値がともに対応する経路追加用基準値を超えていた場合に、新伝送経路を追加する。また、式(11)で得られた使用率と設定された経路削除用基準値 ρ offer2とを比較するとともに、式(12)で得られた変化率と設定された経路削除用基準値 ρ offerd2とを比較し、得られた使用率又は変化率の値が対応する経路削除用基準値を下回っていた場合に、負荷が少ないパスを削除する。即ち、この場合も、上記で算出された負荷が多ければ新パスを追加し、少なければ既存パスを削除すること 30 になる。

【0084】これを論理表現すれば、以下のようになる。

If $(\rho \text{ effective all} \ge \rho \text{ offer1 or } \triangle U(t) \ge \rho \text{ offerd}$ 1) then

if timer1 was expired then (左の部分は、「タイマーが既に expire されていたならば」の意味である。) search new path and add new path (左の部分は、「代替経路探索処理へ」の意味である。)

endif

elseif(ρ effective all< ρ offer2 and \triangle U(t)< ρ offerd2) then

if timer2 was expired then (左の部分は、「タイマーが既に expire されていたならば」の意味である。) delete path (左の部分は、「代替経路削除処理へ」の意味である。)

endif

endif

以上の構成により、パイプ使用率の経時的変化を考慮しながらパスの追加・削除の判定がなされるため、パイプ

*率(全パス合計の使用率)に加え、パイプ使用率の時間当たりの変化率を算出し、このパイプ使用率の変化量に基づき、伝送経路の追加・削除の判定を行なってもよい。この場合の手順について以下に詳述する。まず、パイプ使用率の時間当たりの変化率として、微小間隔t4を挟んで得られた2つのパイプ使用率の差分値 ΔU(t)を、以下の式(12)により算出する。

[0082]

 $\triangle U(t) = [\rho \text{ effective all}(t-1) - \rho \text{ effective all}(t)] / t4 \cdot \cdot (12)$

10 使用率のみに基づく場合よりも効果的にパスの追加・削除を行なうことができる。

【0085】なお、上述の構成では、パスの追加の判定には各比較結果の論理積(and)、パスの削除の判定には各比較結果の論理和(or)を用いているが、パスの追加・削除の判定基準はこの組み合わせに限定されるものではなく、ネットワークの構成や状態に応じて、これらの判定基準(論理積,論理和)を別の組み合わせで用いてもよいし、他の判定基準を用いても構わない。これにより、ネットワークの構成や状態に応じて適切にパイプ20使用率の積算量を把握することができる。

【0086】また、上述の変化率のみを基準値と比較してパスの追加・削除の判定を行なってもよい。これにより、簡素な構成でパスの追加・削除の判定を行なうことができる。一方、マルチパスの有効性検証手順の別の変形例として、式(10)で得られたパイプ使用率(全パス合計の使用率)に加え、パイプ使用率の一定時間における積分量を算出し、これらのパイプ使用率の変化量に基づき、伝送経路の追加・削除の判定を行なってもよい。

0 【0087】この場合、まず、パイプ使用率の一定時間における積算量として、パイプ使用率の一定時間t4における積分値∫MU(t)を、以下の式(13)により算出する。

[0088]

【数1】

$$\int MU(t) = \int_{t}^{t+t/4} MU(t)dt \cdot \cdot \cdot (1/3)$$

【0089】すなわち、「MU(t)は、一定時間t~t+t4 40 におけるパイプ使用率MUの積分値ということになる。なお、パイプ使用率が一定時間内にある基準値を超えた回数を算出し、これをパイプ使用率の一定時間における積算量としてもよい。これにより、簡素な構成でパイプ使用率の積算量を把握することができる。

【0090】次に、式(11)で得られた使用率と設定された経路追加用基準値ρoffer1とを比較するとともに、式(13)で得られた積算量と設定された経路追加用基準値ρofferi1とを比較し、これらの比較結果に基づき新伝送経路を追加する。また、式(11)で得られた使用率と設定された経路削除用基準値ρoffer2とを比

20

23

較するとともに、式(13)で得られた積算量と設定された経路削除用基準値 ρ offer i2とを比較し、これらの比較結果に基づき負荷が少ないパスを削除する。

【0091】この場合も、パスの追加・削除の判定に際しては、ネットワークの構成や状態に応じて、各比較結果の論理和、論理積など、様々な判定基準を任意の組み合わせで用いることにより、適切にパイプ使用率の積算量を把握することができる。また、使用率を用いずに積算量のみに基づいて判定を行なうことにより、簡素な構成でパスの追加・削除の判定を行なうことができる。

【0092】以上の構成により、発信元ルータに設けられる判定部が、実効的負荷演算手段で得られた実効的な負荷から実効帯域を演算し、全ての伝送経路を一つの仮想的なパイプとみなして、その使用率に関する情報(パイプ使用率,パイプ使用率の変化率,パイプ使用率の積算量)を求める演算手段を有するとともに、この使用率(パイプ使用率,パイプ使用率の変化率,パイプ使用率の積算量の少なくともいずれか一つ)に関する情報に基づき、伝送経路を追加するか削除するかの判定を行なうように構成されていることになる。これにより、現在の伝送経路の負荷を考慮して適切に伝送経路の追加及び削除を行なうことが可能となり、効率的に負荷の分散を図ることができるともに、ネットワークの環境やハードウェアの性能に応じて適切な経路選択が可能となる。

【0093】また、同じく以上の構成により、発信元ル ータに設けられる判定部が、演算手段で得られたパイプ 使用率と第1の基準値(poffer1, poffer2)、演算手 段で得られた変化率と第2の基準値(ρ offerd1, ρ off erd2)、演算手段で得られた積算量と第3の基準値(p offeri1, ρofferi2) のうちの少なくともいずれか一組 の比較を行ない、この比較結果に応じて、伝送経路を追 加するか削除するかの判定を行なうように構成されてい ることになる。より詳しくは、この使用率、変化率及び 積算量のうちの少なくともいずれか一つが対応する経路 追加用基準値を超えていた場合に、新たな伝送経路を追 加する旨の判定をするとともに、少なくともいずれか一 つが対応する経路削除用基準値を下回っていた場合に、 負荷が少ない伝送経路を削除する旨の判定をすることに なる。これにより、ネットワークの環境やハードウェア の性能に応じて、アップツーデートに最適な経路選択を 実施できる。

【0094】ところで、上述したマルチパスの有効性の検証の際に、伝送経路を削除する旨の判定がされた場合には、幾つかの条件に基づいて削除候補となるパスを選択し、この削除候補となるパスを削除した場合における全パスの使用率(他の伝送経路の負荷)を予測してこれを所定の基準値と比較し、この比較結果に基づいて実際に削除するパスを決定する。

【0095】具体的には、以下のアルゴリズムに従ってマルチパスの削除が行なわれる。

① 全パスのうち最初に張られたパスは削除の対象外と する。

24

② 全パスのうち使用可能帯域が最小のパスを選択する。

② ②の条件を満たすパス(使用可能帯域が最小のパス)が複数ある場合は、その中で実行負荷が最低のパスを選択する。

② ② ③ の条件を満たすパス(使用可能帯域が最小且つ 実行負荷が最低のパス)が複数ある場合は、ホップ数が 最大のパスを選択する。

⑤ ②③④の条件を満たすパス(使用可能帯域が最小, 実行負荷が最低,ホップ数が最大のパス)が複数ある場合は、最後に追加されたパスを選択する。

⑥ ①−⑤で選択されたパスを削除候補として、このパスを仮想的に削除した場合におけるマルチパス全体の使用率を算出する。

⑦ ⑥で算出した削除候補パスの削除後におけるマルチパス全体の使用率を、設定した輻輳判定閾値と比較する。削除後のマルチパス全体の使用率がこの閾値以上の場合には、この削除候補パス以外のパスを対象として、再び①一⑤で新たな削除候補パスを選択する。

❸ ⑦の比較により、削除後のマルチパス全体の使用率が輻輳判定閾値を下回っていた場合には、その削除候補パスを実際に削除する。

【0096】以上のようなアルゴリズムに従ってパスの削除を行なうことにより、発信元ルータに設けられる判定部が、負荷演算部で求められた負荷情報に基づいて削除対象となる伝送経路の候補を選択する手段と、この削除候補選択手段により選択された削除候補の伝送経路を削除した場合における他の伝送経路の負荷を予測する手段と、この負荷予測手段により予測された他の伝送経路の負荷を所定の基準値とを比較した結果に応じてこの削除候補の伝送経路を削除するか否かを決定する手段とをそなえて構成されることになる。これにより、各伝送経路を削除した場合の影響を考慮して、削除する伝送経路を適切に選択することが可能となる。

【0097】なお、先述したパイプ使用率(全パス合計の使用率)に関する情報(使用率、変化率、積算量)と基準値との比較結果が、伝送経路を削除する旨の判定に繋がるものである場合(例えば、パイプ使用率に関する情報のいずれかが対応する基準値を下回った場合)には、この比較結果をトリガとして上述のパス削除アルゴリズムが実行され、実際のパスの削除が行なわれる。

【0098】こうした構成によって、発信元ルータに設けられる判定部が、演算手段で得られたパイプ使用率に関する情報に基づき、上記の選択手段、予測手段及び決定手段の動作トリガをかけるトリガ手段をさらにそなえて構成されていることになる。これにより、ネットワーク全体の状況に応じてアップツーデートに伝送経路を削

50 除できる。

* て負荷を配分するために、実効帯域 (Effective Bandwid th) を式 (14) により計算して、負荷分散を行なう。 【 0 1 0 0 】

26

【0099】このようにして、マルチパスの有効性を検証した後は、移動する実効的な帯域[Effective Bandwid th (EBW)]を算出する。即ち、追加された複数の伝送経路間で負荷を均等化する場合、パスの論理帯域に比例し*

i番目のパスの移動する実効帯域=

(全パスの実効帯域の平均値-i 番目のパスの実効帯域)

×i 番目のパスの論理帯域 ・・ (14)

その結果、各パス間で負荷のバランシングを行なうことができるが、図11に実効帯域を説明するための概念図を示す。この図11において、△EBW i は移動すべき実※10

※効帯域を示しており、この実効帯域は 実効負荷に論理 帯域LBW を乗算して得られる。結果的に、△EBW は式 (15)を使用して計算できる。

 \triangle EBW path i = (ρ effective all $-\rho$ effective path i) \times LBW path i

· · (15)

★帯域に比例して、流入する I Pパケットを複数のパスに

振り分けるのであるが、この流入するIPパケットを複

数のパスに振り分ける場合に、IPアドレスを基にハッ

シュ関数による演算を行ない、この演算結果を基にして

ランダムにIPトラヒックフローを振り分けるのである。ここでハッシュ関数とは、ある入力値から所定範囲

内のランダムな整数値を作成して出力する関数である。

【0102】具体的に、ハッシュ関数としてCRC(cycli

c redundancy check) 演算を用いた場合について、以下

これにより、発信元MPLSルータに設けられる負荷均等化部が、中継MPLSルータにおいて発生したパケット廃棄数を考慮して得られる実効的な負荷から得られる実効帯域に基づいて全伝送経路について求められた平均実効帯域から、各伝送経路での移動すべき実効帯域を求める移動実効帯域演算手段を有していることになる。これによって、伝送経路の帯域を考慮に入れた負荷の均等化を実施できる。

【0101】そして、上記のようにして実効帯域△EBW が求まると、最後に、トラヒックシェアの調整を行な う。すなわち、式(14)で計算された移動すべき実効★

に詳述する。 効★

i番目のパスの移動すべきトラヒックの量△ts path i

=i 番目のパスの移動する実効帯域 \times Gr \times TS/((i 番目のパスの実効負荷 \times i 番目のパスの論理帯域) の全パスの合計)

20

= \triangle EBW path i×Gr×Ts/ Σ (ρ effective path i×LBW path i)

· · (16)

ここで、Grは負荷調整係数(1/ρceiling ≦Gr≦1/10 0)、TSはCRC 演算の計算結果の幅(CRC16の場合、TSの幅 は0-65535)である。

【0103】Gr: 負荷調整係数

TS: traffic share の幅 = CRC16 の結果の範囲=655 35

上記の式により、負荷調整を行なった場合、負荷調整前 と負荷調整後との間の負荷調整分布は図12のようにな る。この実施形態で、負荷調整の意義を有するトラヒッ クシェアとは、負荷分散を行なうために用いるパラメー タで、トラヒックシェアの合計が全パスを通過する実際 のトラヒックの合計値となる。トラヒックシェアの幅は CRC (cyclic redundancy check) 16を用いた場合、前述 のごとく、0 から65535 までの整数となる。 I Pパケッ トがルータに到着したとき、負荷調整装置では、そのⅠ Pパケットの I Pアドレス (ホストアドレス, 宛先アド レス)を基にCRC 演算を行なうことができ、その結果、 0 から65535 の間のある値がその I P フローに割り当て られる。つまり本負荷調整機構は、IPアドレスをある 整数の幅に縮退させる機能を持つ。言い換えれば、ルー タに到着したIPフローはランダムに各パスに収容され ることとなる。

【0104】これにより、発信元MPLSルータに設けられる負荷均等化部が、移動実効帯域演算手段で求められた移動すべき実効帯域に比例して、発信元MPLSルータに流入するパケットを複数の伝送経路に振り分ける手段を有し、更にこのとき、アドレスを基にハッシュ関数を用いた演算を行ない、この演算結果に基づいて、ランダムにトラヒックフローを振り分けるように構成されていることになる。その結果、簡素な計算によって、的確にトラヒックフローを振り分けることができる。

【0105】なお、より簡素で高速なハッシュ関数として、入力値の各ビット値に対して位置の入れ替え及び論理演算を行なうことにより、ランダムな整数値を作成してもよい。例えば、図13に示すように、まずIPパケットに含まれる32bitの宛先IPアドレスを、8bitずつ4つのエリアに分割する。次に、隣接した2つの8bitの数値を交互に入れ替えた上で、上位16bitと下位16bitの排他的論理和を求める。最後に、こうして作成された16bitの数値を整数に変換し、これをハッシュ値(ハッシュ関数の出力値)とする。

【0106】なお、入力値の各ビット値に対する位置の 入れ替え及び論理演算は、これに限定されるものではな 50 く、様々な手法を任意の組み合わせで用いることができ

28

る。以上から、発信元ルータに設けられる負荷均等化部が、ハッシュ関数による演算として、入力値の各ビット値に対して位置の入れ替え及び論理演算の少なくとも一方を行なうことにより、ランダムな整数値を作成するように構成されていることになる。これによって、ハッシュ演算を簡略化することができ、トラヒックフローの振り分けを高速に行なうことができる。

27

【0107】なお、上述したハッシュ演算の効率を向上させるために、ハッシュ関数の入力値として、パケットに含まれるアドレス(ホストアドレス、宛先アドレス)に併せて、パケットに含まれるアドレス以外の制御値(例えばプロトコルID、ポート番号など)などを用いてもよい。すなわち、発信元ルータに設けられる負荷均等化部を、ハッシュ関数の入力値として、パケットに含まれるアドレス以外の制御値を併せて用いるように構成するのである。これにより、ハッシュ演算による出力値の攪乱度が増し、効率的且つ効果的なトラヒックフローの振り分けを行なうことができる。

【0108】以下に本アルゴリズムの負荷分散例を示す。

(A) 計算例 1

パス 1, 2, 3 の各論理帯域LBW[bit/s]をそれぞれ 1 0 M, 8 M, 2 Mとし、実効負荷 ρ effective をそれぞれ 0.5, 0.2, 0.3 とすると、パス 1, 2, 3 の実トラヒック[bit/s] は、それぞれ10M × 0.5 = 5M, 8M× 0.2 = 1.6M, 2M× 0.3 = 0.6M となる。

【0109】さらに、この場合の全パスを仮想的な一つのパイプとみなし、平均的な使用率 ρ ave effective を求めると、以下のようになる。

 ρ ave effective = (5M+ 1.6M + 0.6M) / (10M + 8 30 M + 2M) = 0.36

そして、移動する実効帯域(EBW) [bit/s] をパス1, 2,3のそれぞれについて算出すると、以下のようになる。

【0.1.1.0】すなわち、パス1.0移動する実効帯域 \triangle EB W PATH1 は (0.36-0.5) \times 10M=-1.4 M となり、パス2.0移動する実効帯域 \triangle EBW PATH2 は (0.36-0.2) \times 8M=+1.28M となり、パス3.07を動する実効帯域 \triangle EB W PATH3 は (0.36-0.3) \times 2M=+0.12M となる。そして、各パス07移動する実効帯域08総和を計算すると、-1.4M+ 1.28M+ 0.12M= 0.280 となる。

【0111】 この計算結果を基に、トラヒックシェアの 調整を行なう。すなわち、パス1については、 5 M-1.4 M=3.6 M、パス2については、 1.6 M+1.28M=2.88M、パス3については、 0.6 M+0.12M=0.72Mと なり、パス1, 2, 3について、 3.6× Gr : 2.88× Gr : 1.2× Gr の比でトラヒックシェアを変更すればよい。

(B) 計算例 2

パス1.2,3,4の各論理帯域LBW[bit/s]をそれぞれ 50

150M, 45M, 150M, 600Mとし、パス1, 2, 3, 4の実 効負荷 ρ effective をそれぞれ1, 2, 1, 5, 1, 1, 0, 8とすると、パス1, 2, 3, 4の実トラヒック[bit/s] は、それぞれ $150M\times1$, 2=180M, $45M\times1$, 5=67, 5M, $150M\times1$, 1=165M, $150M\times0$, $150M\times0$

【0112】また、全パスを仮想的な一つのパイプとみなし、平均的な使用率 ρ ave effective を求めると、次のようになる。

 ρ ave effective = (180M+ 67.5M+ 165M + 480M) / (150M+ 45M+ 150M +

600M) = 892. 5/945 = 0. 94

そして、各パス1~4について、移動する実効帯域 (EBW)を算出すると次のようになる。

【 0 1 1 3】すなわち、パス1の移動する実効帯域△EB W PATH1 は (0.94 −1.2)×150M=−39M となり、パス2の移動する実効帯域△EBW PATH2 は (0.94 −1.5)× 45M =−25.2M となり、パス3の移動する実効帯域△EBW PA TH3 は (0.94 −1.1)×150M=−24M となり、パス4の移動する実効帯域△EBW PATH4 は (0.94 −0.8)×600M=84 20 M となる。

【0114】この計算結果を基に、トラヒックシェアの調整を行なう。すなわち、パス1については、180M-39 M=141 Mとなり、パス2については、67.5M-25.2 M= 42.3Mとなり、パス3については、165M-24 M=141 Mとなり、パス4については、480M+84 M=564 Mとなる。従って、パス1、2、3、4について、141× Gr: 42.3× Gr: 141× Gr: 564× Grの比でトラヒックシェアを変更すればよい。

【0115】(2-5)作用説明

このような構成により、まず、MPLSルータ11がネ ットワークに接続されると、ルーティングプロトコルが 動作し、ネットワークに接続されている他のMPLSル ータの発見を行なう。かかる発見には一般的にハローパ ケットが用いられる。ルーティングプロトコルにより、 ネットワークのトポロジーが判明すると、パス選択部1 13においてリンク状態データベース113Aが作成さ れる。リンク状態データベース113Aを用いて、LS P選択部114を経てLSP設定部115により他MP LSルータとの間でLSPが設定される。さらに、パス 選択部113のリンク状態データベース113Aと連携 し、LSP選択部114では代替経路情報データベース 114Aが作成され、従来のルーティングプロトコルに 無い、MPLS独自のルーティングテーブルが作成され る。代替経路情報データベース114Aは、トラヒック エンジニアリング部116と連携し、必要に応じて代替 経路をLSPを用いて設定する。つまり、終点のMPL Sルータとの間に複数のLSPを設定することにより、 そのLSP間で負荷のバランスを行なうことができるの

【0116】なお、負荷のバランスに関する一連の機能

20

30

はトラヒックエンジニアリング部116の機能であるが、かかるトラヒックエンジニアリング部116においては、パケット転送部111から、使用率やパケット損失数といったトラヒック特性値が負荷観測部116Aへ送られてくる。負荷観測部116Aはそれらの値をトラヒック特性値計算部116Bでは、トラヒック特性値のスムージング化や最大値化を行ない、他MPLSルータへと送信する。また他MPLSルータより送られてきたトラヒック特性値はトラヒック特性値計算部116Bで収集され、トラヒックエンジニアリング計算部116Cでは、実効負荷や実効帯域の計算が行なわれ、各LSPの帯域に応じた負荷の調整がなされる。

29

【0117】その結果は、負荷調整部116Dへと送信 され、トラヒックシェアの幅が決められる。そして、そ の結果はLSP設定部115を経て、IPパケット転送 部111で設定される。このように、発信元ルータ11 S以外の他のルータ11R, 11Dにおいて、他のルー タに接続された伝送経路のトラヒック特性を収集すると ともに、収集されたトラヒック特性を発信元ルータに通 知する一方、発信元ルータ118においては、この発信 元ルータに接続された伝送経路のトラヒック特性を収集 しながら、収集されたトラヒック特性及び他のルータか ら得られたトラヒック特性の一方又は両方に基づいて実 効負荷を演算し、実効負荷情報に基づいて伝送経路を追 加するか削除するかの判定を行ない、更に得られた実効 負荷を複数の伝送経路間で均等化することが行なわれる ので、各ルータにおいてトラヒック特性の観測機能およ びその特性値の通知機能を持たせて、負荷分散の起点と なるルータ(発信元ルータ)において、終点となるルー タ(着信先ルータ)までの複数のパスの帯域管理をダイ ナミックに行なうことができ、その結果、空き帯域に合 わせた負荷分散が可能となる。すなわち、IPネットワ ーク内のルータにおいて、起点となるルータ(発信元ル ータ)から終点となるルータ(着信先ルータ)までに複 数のルート(伝送経路)を設定し、設定されたルート間 で負荷の分散を行なえるので、ネットワークトポロジー に関係なく、また伝送経路の種類によらないで、インタ ーネット等のネットワーク内でトラヒックエンジニアリ ングを可能にできるのである。

(2-6) 実験例

図14に示す実験用ネットワーク構成を用いて、本発明の負荷分散装置による負荷分散性能の評価を行なった。なお、図14において、120R-1~120R-5は本発明の負荷分散装置を備えたLSRで、発信元LSRであるLSR120R-1には負荷発生装置121が、負荷着信先LSRであるLSR120R-5には負荷受信装置122が、それぞれ接続されている。また、LSR120R-1~120R-5の間には、複数のリンク

1 i n k $1 \sim 1$ i n k 5 が張られており、これによって 複数の伝送経路 1 2 3 -1 , 1 2 3 -2 が形成されてい る。すなわち、この図 1 4 に示す実験用ネットワーク構成も、図 7 に示したMPLSのネットワーク構成の一例 として考えることができる。

【0118】各LSR120R-1~120R-5による経路検索機能の動作を確認するために、この図14に示す実験用ネットワーク構成を用いて負荷分散を行ない、発信元LSR120R-1に接続されたリンク1ink1,link3(それぞれ複数の伝送経路123-1,123-2の入り口に相当する)について、トラヒック移動量とトラヒックの収束時間との関係を、本発明の負荷分散装置による負荷分散性能として評価した。その評価結果を図15及び図16に示す。

【0119】図15では、入力トラヒック(input traffic) 50 Mbit/sec (93 flows), OSPF によるflooding インターバル (OSPF flooding interval) 10 sec, 輻輳判定閾値(congestion threshold) 30 Mbit/sec, ハッシュ粒状度(Hash granularity) 100 %という条件で負荷分散を行ない、10秒毎に算出したリンク1 in k 1 および 1 in k 3 におけるリンク使用率の時間的変化をグラフに示している。

【0120】実験開始直後はlinklのリンク使用率 (グラフ中の白抜きの丸) が50 Mbit/sec 弱で、輻輳判 定閾値である 30 Mbit/sec を超えており、輻輳が生じている。一方、link3のリンク使用率 (白抜きの三角) はほぼ0 Mbit/sec であり、これらの2つのリンク link1, link3の間に負荷の偏りが生じているのが分かる。

【0121】実験開始40秒後から本発明の負荷分散装置による負荷分散を開始したところ、linklのリンク使用率が急速に減少するとともに、link3のリンク使用率が急速に増加しており、これら2つのリンクlinkl,link3の間で負荷の分散が計られているのが分かる。その後、負荷分散開始20秒後(実験開始70秒後)には2つのリンクlinkl,link3のトラヒックが逆転し、いったんは過制御の状態になるものの、振動を繰り返す間にその差は非常に小さくなり、次第に2つのリンクlinkl,link3のトラヒックの差が収束していった。トラヒックの収束時間(convergencetime)は負荷分散開始から120秒であった。

【0122】一方、図16においては、ハッシュ粒状度 (Hash granularity) を20%に変更した以外は、図15と同じ条件で実験を行なった。その結果、トラヒックの収束時間 (convergence time) は負荷分散開始から200秒と、図15に示した結果よりも長くなったものの、トラヒックが逆転して過制御に陥ることはなく、2つのリンクlinkl,link3のトラヒックの差は漸近的に収束しており、安定した状態で負荷の分散が図られたことが分かる。

20

30

32

31

【0123】すなわち、ハッシュ粒状度 (Hash granula rity)を高めに設定すれば、過制御によってトラヒックが不安定化するものの、短時間で負荷分散を図ることができる。これに対して、ハッシュ粒状度 (Hash granula rity)を低めに設定すれば、負荷分散に要する時間は長くなるものの、過制御によるトラヒックの不安定化を防ぎながら、安定した状態で負荷分散を図ることができる。すなわち、ネットワークの状態やハードウェアの性能に合わせて適切にハッシュ粒状度 (Hash granularity)を設定することにより、効率的な負荷分散が可能となる。

【0124】 (2-7) その他

なお、上記の実施形態では、MPLS (Multi-Protocol Label Switching)を用い、MPLSのラベル機能を用 いて、ルーテイングプロトコルとは異なるルートを設定 し、負荷分散を行なうものについて説明したが、その 他、 ATM (Asynchronous Transfer Mode) や FR (Frame Relay)などを用い、レイヤ2独自のプロトコルを用い て、レイヤ3(IP)とは異なるルートを設定し、負荷 分散を行なったり、IPでのソースルーティングを用い て、ルーティングプロトコルの経路とは異なるルートを 設定し、負荷分散を行なったりする手法を用いても、本 発明を適用できることはいうまでもない。また、上記の 実施形態では、通信装置の一例としてルータを用い、こ れに本発明を適用した場合について説明したが、本発明 はこれに限定されるものではなく、他の通信装置 (例え ば、ゲートウェイなど) に適用することも可能である。 【0125】また、本発明は、上述した実施形態に限定 されるものではなく、本発明の趣旨を逸脱しない範囲で

(2-8)付記

種々変形して実施することができる。

[付記1] 発信元通信装置と、着信先通信装置と、上 記の発信元通信装置と着信先通信装置との間に設定可能 な複数の伝送経路と、上記伝送経路のいずれかに介装さ れる中継通信装置とをそなえてなるインターネットプロ トコルネットワークを構成する上記通信装置に設けられ る装置であって、該通信装置又は他の通信装置に接続さ れた伝送経路のトラヒック特性を収集するトラヒック特 性収集部と、該トラヒック特性収集部で収集されたトラ ヒック特性を他の通信装置に通知するトラヒック特性通 知部と、該トラヒック特性収集部で収集されたトラヒッ ク特性に基づいて負荷を演算する負荷演算部と、該負荷 演算部で求められた負荷情報に基づいて、伝送経路を追 加するか削除するかの判定を行なう判定部と、該負荷演 算部で求められた負荷を複数の伝送経路間で均等化する 負荷均等化部とをそなえて構成されたことを特徴とす る、伝送経路制御装置。

【0126】[付記2] 発信元通信装置と、着信先通信装置と、上記の発信元通信装置と着信先通信装置との間に設定可能な複数の伝送経路と、上記伝送経路のいず

れかに介装される中継通信装置とをそなえてなるインターネットプロトコルネットワークを構成する上記発信元通信装置に設けられる装置であって、該発信元通信装置又は他の通信装置に接続された伝送経路のトラヒック特性を収集するトラヒック特性収集部と、該トラヒック特性収集部で収集されたトラヒック特性に基づいて負荷を演算する負荷演算部と、該負荷演算部で求められた負荷情報に基づいて、伝送経路の追加・削除判定を行なう判定部と、該負荷演算部で求められた負荷を複数の伝送経路間で均等化する負荷均等化部とをそなえて構成されたことを特徴とする、伝送経路制御装置。

【0127】[付記3] 発信元通信装置と、着信先通信装置と、上記の発信元通信装置と着信先通信装置との間に設定可能な複数の伝送経路と、上記伝送経路のいずれかに介装される中継通信装置とをそなえてなるインターネットプロトコルネットワークを構成する上記発信元通信装置以外の通信装置に設けられる装置であって、該通信装置に接続された伝送経路のトラヒック特性を収集するトラヒック特性収集部と、該トラヒック特性収集部で収集された該トラヒック特性を該発信元通信装置に通知するトラヒック特性通知部とをそなえて構成されたことを特徴とする、伝送経路制御装置。

【0128】 [付記4] 該トラヒック特性収集部が、 収集したトラヒック特性に関する情報を平滑化する手段 を有していることを特徴とする、付記1~3のいずれか 一項に記載の伝送経路制御装置。

[付記 5] 該トラヒック特性収集部が、収集したトラヒック特性値を基に、該通信装置に接続された各伝送経路の使用率を判定する手段を有していることを特徴とする、付記 4 記載の伝送経路制御装置。

【0129】[付記6] 該トラヒック特性収集部における該平滑化手段が、該使用率判定手段により判定された該使用率を平滑化するように構成されていることを特徴とする、付記5記載の伝送経路制御装置。

[付記7] 該トラヒック特性収集部における該平滑化手段が、収集したトラヒック特性値を平滑化するように構成されるとともに、該トラヒック特性収集部が、該平滑化手段により平滑化されたトラヒック特性値を基に、該通信装置に接続された各伝送経路の使用率を判定する手段を有していることを特徴とする、付記4記載の伝送経路制御装置。

【0130】 [付記8] 該トラヒック特性収集部が、 収集したトラヒック特性値の最大値をトラヒック特性値 の代表値とする手段を有していることを特徴とする、付 記1~3のいずれか一項に記載の伝送経路制御装置。

[付記9] 該トラヒック特性通知部が、トラヒック特性に関する情報をルーティングプロトコルが装備するパケットを利用して通知する手段を有していることを特徴とする、付記1又は付記3に記載の伝送経路制御装置。

50 【0131】 [付記10] 該トラヒック特性通知部

34

が、トラヒック特性に関する情報を一定周期毎に通知する手段を有していることを特徴とする、付記1,3,9 のいずれか一項に記載の伝送経路制御装置。

[付記11] 該トラヒック特性通知部が、トラヒック特性に関する情報をRSVPのメッセージを拡張して通知する手段を有していることを特徴とする、付記1又は付記3に記載の伝送経路制御装置。

【0132】 [付記12] 該トラヒック特性収集部が、トラヒック特性を収集するフローの束の単位を、ラベルスイッチ型通信装置で使用するラベル単位で収集する手段を有していることを特徴とする、付記1~3のいずれか一項に記載の伝送経路制御装置。

[付記13] 該発信元通信装置に設けられる該トラヒック特性収集部が、該発信元通信装置に接続された各伝送経路の使用率を、該中継通信装置から収集した該中継通信装置に接続されている伝送経路の使用率に関する情報を基に判定する手段を有していることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

【0133】[付記14] 該発信元通信装置に設けられる該トラヒック特性収集部が、該発信元通信装置に接続された各伝送経路の使用率を、該中継通信装置から収集した該中継通信装置に接続されている伝送経路の平均使用率及び最大使用率の少なくとも一方を基に判定するように構成されていることを特徴とする、付記13記載の伝送経路制御装置。

【0134】[付記15] 該発信元通信装置に設けられる該トラヒック特性収集部が、各伝送経路が輻輳しているかどうかを一定周期毎に判定する手段を有していることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

[付記16] 該発信元通信装置に設けられる該負荷演算部が、該中継通信装置において発生したパケット廃棄数を考慮して、実効的な負荷を演算する手段を有していることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

【0135】 [付記17] 該実効的負荷演算手段が、 該実効的な負荷を演算する際に、該実効的な負荷の上限 値を設定するように構成されていることを特徴とする、 付記16記載の伝送経路制御装置。

[付記18] 該発信元通信装置に設けられる該負荷演算部が、該中継通信装置において発生したパケット廃棄数を考慮して、実効的な負荷を演算する手段を有するとともに、該発信元通信装置に設けられる該判定部が、該実効的負荷演算手段で得られた実効的な負荷から実効帯域を演算し、全ての伝送経路を一つの仮想的なパイプとみなして、その使用率を求める手段を有していることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

【0136】[付記19] 該発信元通信装置に設けられる該負荷演算部が、該中継通信装置において発生した

パケット廃棄数を考慮して、実効的な負荷を演算する手段を有し、且つ、該発信元通信装置に設けられる該判定部が、該実効的負荷演算手段で得られた実効的な負荷から実効帯域を演算し、全ての伝送経路を一つの仮想的なパイプとみなして、その使用率に関する情報を求める演算手段を有するとともに、該演算手段で得られたパイプ使用率に関する情報に基づき、伝送経路を追加するか削除するかの判定を行なうように構成されていることを特徴とする、付記1又は付記2に記載の伝送経路制御装置

【0137】[付記20] 該判定部における該演算手段が、該パイプ使用率,該パイプ使用率の時間当たりの変化率,該パイプ使用率の一定時間における積算量のうちの少なくとも一つを求めるように構成されるとともに、該伝送経路追加・削除判定手段が、該演算手段で得られた上記のパイプ使用率,変化率及び積算量のうちの少なくとも一つに基づいて、伝送経路を追加するか削除するかの判定を行なうように構成されていることを特徴とする、付記19記載の伝送経路制御装置。

20 【0138】 [付記21] 該発信元通信装置に設けられる該判定部が、該演算手段で得られたパイプ使用率と第1の基準値、該演算手段で得られた変化率と第2の基準値、該演算手段で得られた該積算量と第3の基準値のうちの少なくともいずれか一組の比較を行ない、この比較結果に応じて、伝送経路を追加するか削除するかの判定を行なうように構成されていることを特徴とする、付記20記載の伝送経路制御装置。

【0139】[付記22] 該発信元通信装置に設けられる該判定部が、該演算手段で得られた上記のパイプ使用率,変化率及び積算量のうちの少なくともいずれか一つが対応する経路追加用基準値を超えていた場合に、新たな伝送経路を追加する旨の判定をするように構成されていることを特徴とする、付記21記載の伝送経路制御装置。

【0140】[付記23] 該発信元通信装置に設けられる該判定部が、該演算手段で得られた上記のパイプ使用率,変化率及び積算量のうちの少なくともいずれか一つが対応する経路削除用基準値を下回っていた場合に、負荷が少ない伝送経路を削除する旨の判定をするように40 構成されていることを特徴とする、付記21記載の伝送経路制御装置。

【0141】 [付記24] 該演算手段が、微小間隔をおいて得られた2つのパイプ使用率の差分値、及び、ある時点における該パイプ使用率の微分値の少なくともいずれか一方を、該パイプ使用率の時間当たりの該変化率として求めるように構成されていることを特徴とする、付記19~23のいずれか一項に記載の伝送経路制御装置。

【0142】[付記25] 該演算手段が、該パイプ使 用率が一定時間内にある基準値を超えた回数、及び、該

30

40

35

パイプ使用率の一定時間における積分値の少なくともいずれか一方を、該パイプ使用率の一定時間における該積算量として求めるように構成されていることを特徴とする、付記19~23のいずれか一項に記載の伝送経路制御装置。

【0143】[付記26] 該発信元通信装置に設けられる該判定部が、該負荷演算部で求められた負荷情報に基づいて、削除対象となる伝送経路の候補を選択する手段と、該削除候補選択手段により選択された該削除候補の伝送経路を削除した場合における他の伝送経路の負荷を予測する手段と、該負荷予測手段により予測された他の伝送経路の負荷を所定の基準値と比較し、該比較結果に応じて、該削除候補の伝送経路を削除するか否かを決定する手段とをそなえて構成されていることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

【0144】[付記27] 該発信元通信装置に設けられる該負荷演算部が、該中継通信装置において発生したパケット廃棄数を考慮して、実効的な負荷を演算する手段を有し、且つ、該発信元通信装置に設けられる該判定部が、該実効的負荷演算手段で得られた実効的な負荷から実効帯域を演算し、全ての伝送経路を一つの仮想的なパイプとみなして、その使用率に関する情報を求める演算手段と、該演算手段で得られたパイプ使用率に関する情報に基づき、上記の選択手段、予測手段及び決定手段の動作トリガをかけるトリガ手段とをさらにそなえて構成されていることを特徴とする、付記26記載の伝送経路制御装置。

【0145】[付記28] 該発信元通信装置に設けられる該負荷均等化部が、該中継通信装置において発生したパケット廃棄数を考慮して得られる実効的な負荷から得られる実効帯域に基づいて全伝送経路について求められた平均実効帯域から、各伝送経路での移動すべき実効帯域を求める移動実効帯域演算手段を有していることを特徴とする、付記1又は付記2に記載の伝送経路制御装置。

【0146】[付記29] 該発信元通信装置に設けられる該負荷均等化部が、該移動実効帯域演算手段で求められた移動すべき実効帯域に比例して、該発信元通信装置に流入するパケットを複数の伝送経路に振り分ける手段を有していることを特徴とする、付記28記載の伝送経路制御装置。

[付記30] 該発信元通信装置に設けられる該負荷均等化部が、各パケットに含まれるアドレスを基にハッシュ関数を用いた演算を行ない、この演算結果に基づいて、ランダムにトラヒックフローを振り分けるように構成されていることを特徴とする、付記29記載の伝送経路制御装置。

【0147】 [付記31] 該発信元通信装置に設けられる該負荷均等化部が、該ハッシュ関数としてCRC (cyclic redundancy check) を用いた演算を行なうこ

36 とを特徴とする、付記30記載の伝送経路制御装置。

[付記32] 該発信元通信装置に設けられる該負荷均等化部が、該ハッシュ関数による演算として、入力値の各ビット値に対して位置の入れ替え及び論理演算の少なくとも一方を行なうことにより、ランダムな整数値を作成することを特徴とする、付記30記載の伝送経路制御装置。

【0148】 [付記33] 該発信元通信装置に設けられる該負荷均等化部が、該ハッシュ関数の入力値として、パケットに含まれるアドレス以外の制御値を併せて用いることを特徴とする、付記30記載の伝送経路制御装置。

[付記34] 発信元通信装置と、着信先通信装置と、 上記の発信元通信装置と着信先通信装置との間に設定可 能な複数の伝送経路と、上記伝送経路のいずれかに介装 される中継通信装置とをそなえてなるインターネットプ ロトコルネットワークを構成する上記発信元通信装置以 外の他の通信装置において、該他の通信装置に接続され た伝送経路のトラヒック特性を収集するトラヒック特性 収集ステップと、該トラヒック特性収集ステップで収集 された該トラヒック特性を該発信元通信装置に通知する トラヒック特性通知ステップとをそなえるとともに、上 記発信元通信装置において、該発信元通信装置に接続さ れた伝送経路のトラヒック特性を収集するトラヒック特 性収集ステップと、該トラヒック特性収集ステップで収 集されたトラヒック特性及び該他の通信装置から得られ たトラヒック特性の一方又は両方に基づいて負荷を演算 する負荷演算ステップと、該負荷演算ステップで求めら れた負荷情報に基づいて伝送経路を追加するか削除する かの判定を行なう判定ステップと、該負荷演算ステップ で求められた負荷を複数の伝送経路間で均等化する負荷 均等化ステップとをそなえて構成されたことを特徴とす る、伝送経路制御方法。

【0149】[付記35] 発信元通信装置と、着信先 通信装置と、上記の発信元通信装置と着信先通信装置と の間に設定可能な複数の伝送経路と、上記伝送経路のい ずれかに介装される中継通信装置とをそなえてなるイン ターネットプロトコルネットワークを構成する上記通信 装置で使用すべく、該通信装置又と他の通信装置に接続 された伝送経路のトラヒック特性を収集するトラヒック 特性収集手段と、該トラヒック特性収集手段で収集され た該トラヒック特性を他の通信装置に通知するトラヒッ ク特性通知手段と、該トラヒック特性収集手段で収集さ れた該トラヒック特性に基づいて負荷を演算する負荷演 算手段と、該負荷演算手段で求められた負荷情報に基づ いて伝送経路を追加するか削除するかの判定を行なう判 定手段と、該負荷演算手段で求められた負荷を複数の伝 送経路間で均等化する負荷均等化手段として、上記通信 装置を機能させるための伝送経路制御プログラムを記録 した媒体。

37

[0150]

【発明の効果】以上詳述したように、本発明(請求項1~3,9,10)によれば、各通信装置においてトラヒック特性の観測機能およびその特性値の通知機能を持たせて、負荷分散の起点となる通信装置(発信元通信装置)において、終点となる通信装置(着信先通信装置)までの複数のパスの帯域管理をダイナミックに行なうことができ、その結果、空き帯域に合わせた負荷分散が可能となる。すなわち、IPネットワーク内の通信装置において、起点となる通信装置(発信元通信装置)から終点となる通信装置(着信先通信装置)までに複数のルート(伝送経路)を設定し、設定されたルート間で負荷の分散を行なえるので、ネットワークトポロジーに関係なく、また伝送経路の種類によらないで、インターネット等のネットワーク内でトラヒックエンジニアリングを可能にできるのである。

【0151】また、トラヒック特性収集部に、収集した トラヒック特性に関する情報を平滑化する手段を設ける ことができ、このようにすれば、急激なトラヒック変動 による影響を少なくすることができる(請求項4)。さ らに、トラヒック特性収集部に、収集したトラヒック特 性値を基に、通信装置に接続された各伝送経路の使用率 を判定する手段を設けることができ、このようにすれ ば、各伝送経路の使用状態を詳細に把握することが可能 となる。この場合、平滑化手段が、使用率判定手段によ り判定された使用率を平滑化するように構成すれば、ト ラヒック変動による影響を排して各伝送経路の使用状態 を正確に把握することができる。また、トラヒック特性 収集部に、平滑化手段により平滑化されたトラヒック特 性値を基に、通信装置に接続された各伝送経路の使用率 を判定する手段を設けても、同様の効果を得ることがで きる。

【0152】更に、トラヒック特性収集部に、収集したトラヒック特性値の最大値をトラヒック特性値の代表値とする手段を設ければ、伝送経路選択制御を確実に行なうことができる。また、トラヒック特性通知部に、トラヒック特性に関する情報をルーティングプロトコルが装備するパケットを利用して通知する手段を設けることもでき、このようにすれば、既存のプロトコルを活用でき、これにより新規に専用のルーティングプロトコルを用意する必要がなく、コスト等の低減に寄与しうる。

【0153】さらに、トラヒック特性通知部に、トラヒック特性に関する情報を一定周期毎に通知する手段を設けることができ、このようにすれば、演算等を実行する CPU等の演算装置にかかる演算負荷を軽減できる。また、トラヒック特性通知部に、トラヒック特性に関する情報をRSVPのメッセージを拡張して通知する手段を設けることができ、このようにすれば、既存のプロトコルを活用でき、これにより新規に専用のルーティングプロトコルを用意する必要がなく、コスト等の低減に寄与しう

る。

【0154】さらに、トラヒック特性収集部に、トラヒック特性を収集するフローの束の単位を、ラベルスイッチ型通信装置で使用するラベル単位で収集する手段を設けることができ、このようにすれば、きめ細かくトラヒック特性を収集することが可能になり、収集精度の向上に寄与する。また、発信元通信装置に設けられるトラヒック特性収集部に、伝送経路の使用率を伝送経路の平均使用率を基に判定する手段を設けることができ、このようにすれば、ネットワークの使用効率の向上に寄与しうる(請求項5)。

【0155】さらに、発信元通信装置に設けられるトラヒック特性収集部に、伝送経路の使用率を伝送経路の最大使用率を基に判定する手段を設けることができ、このようにすれば、伝送経路選択制御を確実に行なうことができる。また、発信元通信装置に設けられるトラヒック特性収集部に、各伝送経路が輻輳しているかどうかを一定周期毎に判定する手段を設けることができ、このようにすれば、演算等を実行するCPU等の演算装置にかかる演算負荷を軽減できる。

【0156】さらに、発信元通信装置に設けられる負荷 演算部に、中継通信装置において発生したパケット廃棄 数を考慮して、実効的な負荷を演算する手段を設けるこ とができ、このようにすれば、直接的に負荷を計測しな くても、簡素な手法で、実効的な負荷を推定できる。そ の際、実効的な負荷の上限値を設定することもでき、こ のようにすれば、過剰な量の負荷推定を避けることがで き、これにより適切な伝送経路選択制御を行なえる。

【0157】また、発信元通信装置に設けられる判定部に、実効的負荷演算手段で得られた実効的な負荷から実効帯域を演算し、全ての伝送経路を一つの仮想的なパイプとみなして、その使用率を求める手段を設けることもでき、このようにすれば、不必要に新しい伝送経路を追加することを防止できるほか、ネットワークの有効利用にも寄与しうる。

【0158】さらに、演算手段で得られたパイプ使用率に関する情報に基づき、伝送経路を追加するか削除するかの判定を行なうように構成することができ、このようにすれば、現在の伝送経路の負荷を考慮して適切に伝送経路の追加及び削除を行なうことが可能となり、効率的に負荷の分散を図ることができる(請求項6)。この場合、伝送経路追加・削除判定手段が、演算手段で得られたパイプ使用率、変化率及び積算量のうちの少なくとも一つに基づいて、伝送経路を追加するか削除するかの判定を行なうように構成することにより、ネットワークの環境やハードウェアの性能に応じて適切な経路選択が可能となる。

【0159】また、演算手段で得られたこれらのパイプ 使用率、変化率及び積算量を基準値と比較し、この比較 50 結果に応じて伝送経路を追加するか削除するかの判定を

行なうように構成することができ、このようにすれば、アップツーデートに最適な経路選択を実施できる。さらに、演算手段が、上記のパイプ使用率の変化率として、パイプ使用率の差分値や微分値を求めるように構成したり、上記のパイプ使用率の積算量として、パイプ使用率が基準値を超えた回数やパイプ使用率の積分値を求めたりするように構成してもよく、このようにすれば、ネットワークの環境やハードウェアの性能に応じて計算量を

変えることができ、効率的な経路選択が可能となる。

39

【0160】また、判定部が、負荷演算部で求められた 負荷情報に基づいて、削除対象となる伝送経路の候補を 選択する手段と、選択された削除候補の伝送経路を削除 した場合における他の伝送経路の負荷を予測する手段 と、予測された他の伝送経路の負荷を所定の基準値と比 較し、この比較結果に応じて、削除候補の伝送経路を削 除するか否かを決定する手段とをそなえてもよく、この ようにすれば、各伝送経路を削除した場合の影響を考慮 して、削除する伝送経路を適切に選択することが可能と なる(請求項7)。この場合、演算手段で得られたパイ プ使用率に関する情報を動作トリガとして用いることに より、ネットワーク全体の状況に応じて効率的に伝送経 路を削除できる。

【0161】また、発信元通信装置に設けられる負荷均等化部に、中継通信装置において発生したパケット廃棄数を考慮して得られる実効的な負荷から得られる実効帯域に基づいて全伝送経路について求められた平均実効帯域から、各伝送経路での移動すべき実効帯域を求める移動実効帯域演算手段を設けることができ、このようにすれば、伝送経路の帯域を考慮に入れた負荷の均等化を実施できる(請求項8)。

【0162】さらに、発信元通信装置に設けられる負荷 均等化部に、移動実効帯域演算手段で求められた移動す べき実効帯域に比例して、発信元通信装置に流入するパ ケットを複数の伝送経路に振り分ける手段を設けること ができ、このようにすれば、的確な負荷の均等化を実施 できる。また、発信元通信装置に設けられる負荷均等化 部を、アドレスを基にハッシュ関数を用いた演算を行な い、この演算結果に基づいて、ランダムにトラヒックフ ローを振り分けるように構成することもでき、このよう にすれば、簡素な計算によって、的確にトラヒックフロ ーを振り分けることができる。この場合、負荷均等化部 がハッシュ関数として、CRC (cyclic redundancy ch eck)を用いた演算や、入力値のビット位置の入れ替え によりランダムな整数値を作成する演算を行なうように 構成したり、ハッシュ関数の入力値として、パケットに 含まれるアドレス以外の制御値を併せて用いるように構 成したりすることにより、効率的且つ効果的なトラヒッ クフローの振り分けを行なうことができる。

【図面の簡単な説明】

【図1】(a), (b) は本発明の原理説明図である。

【図2】 (a), (b) はMPLSネットワークを説明する図である。

【図3】 MPLSで用いるラベルを説明する図である。

【図4】MPLSで用いるラベルを説明する図である。

【図5】LSPを説明する図である。

【図6】RSVP-LSP-Tunnelのメッセージ の流れを説明する図である。

【図7】本発明の一実施形態に適用されるMPLSネットワークを説明する図である。

10 【図8】本発明の一実施形態としてのMPLSルータの機能ブロック図である。

【図9】本発明の一実施形態としてのMPLSルータのトラヒックエンジニアリング部の詳細を示す機能ブロック図である。

【図10】 実効負荷を説明する図である。

【図11】移動する実効帯域を説明する図である。

【図12】負荷調整要領を説明する図である。

【図13】ハッシュ関数の一例を説明する図である。

【図14】負荷調整実験ネットワークを説明する図であ 20 る。

【図15】負荷調整性能評価結果の一例を説明する図である。

【図16】負荷調整性能評価結果の他の例を説明する図である。

【符号の説明】

1 通信装置

1 S 発信元通信装置

1 D 着信先通信装置

1 R 中継通信装置

30 2-i 伝送経路

3,3A トラヒック特性収集部

3 B トラヒック特性受信部

4 トラヒック特性通知部

5 負荷演算部

6 判定部

7 負荷均等化部

11, 11' MPLSルータ (通信装置)

118 発信元MPLSルータ(発信元通信装置)

11D, 11D' 着信先MPLSルータ(着信先通信 装置)

11R, 11R' 中継MPLSルータ (中継通信装置)

12-i 伝送経路

111 IPパケット転送部

112 ルーティングプロトコル部

113 パス選択部

113A リンク状態データベース

1 1 4 L S P 選択部

1 1 4 A 代替経路情報データベース 1 1 4 A

50 115 LSP設定部

116 トラヒックエンジニアリング部

116A 負荷観測部

116B トラヒック特性値計算部

116C トラヒックエンジニアリング計算部

41

116D 負荷調整部

 $120R-1\sim120R-5$ LSR

121 負荷発生装置

122 負荷受信装置

【図1】

【図10】

【図11】

(b)

【図2】

【図3】

[図4]

【図5】

【図6】

【図7】

【図12】

-24-

【図14】 120R-3 120R-4 oc3 link4 load IP flows balancing link3 120R-2 link5 link2 100base-T ос3 120R-1 120R-5 【図15】 【図16】 ----- link1 O - - ∏ink1 - link3 ilink3 rate [Mbit/sec] rate [Mbit/sec] 30 20 20 10 100 100 200 300 time [sec] time [sec]

フロントページの続き

(72) 発明者 高島 研也 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

Fターム(参考) 5K030 GA13 HA08 HB06 HC01 HD03 KX30 LB06 LC11 MC09