Chapter15. Dynamic Programming

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: minimizing or maximizing.
- Like divide and conquer, Dynamic Programming solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
 - Subproblems may share subsubproblems,
- Dynamic Programming reduces computation by
 - Solving subproblems in a bottom-up fashion.
 - Storing solution to a subproblem the first time it is solved.
 - Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Dynamic Programming

- Dynamic programming is a way of improving on inefficient divide-and-conquer algorithms.
- By "inefficient", we mean that the same recursive call is made over and over.
- If same subproblem is solved several times, we can use table to store result of a subproblem the first time it is computed and thus never have to recompute it again.
- Dynamic programming is applicable when the subproblems are dependent, that is, when subproblems share subproblems.
- "Programming" refers to a tabular method

Difference between Dynamic Programming and Divide-and-Conquer

• Using Divide-and-Conquer to solve these problems is inefficient because the same common subproblems have to be solved many times.

• Dynamic Programming will solve each of them once and their answers are stored in a table for future use.

Elements of Dynamic Programming

DP is used to solve problems with the following characteristics:

- Simple subproblems
 - We should be able to break the original problem to smaller subproblems that have the same structure
- Optimal substructure of the problems
 - The optimal solution to the problem contains within optimal solutions to its subproblems.
- Overlapping subproblems
 - there exist some places where we solve the same subproblem more than once.

Steps in Dynamic Programming

- 1. Characterize structure of an optimal solution.
- 2. **Define** value of optimal solution recursively.
- 3. Compute optimal solution values either top-down with caching or bottom-up in a table.
- **4. Construct** an optimal solution from computed values. (not always necessary)

Dynamic Programming Example

Fibonacci Numbers

$$-Fn = Fn-1+Fn-2 \qquad n \ge 2$$

- $-0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$
- Straightforward recursive procedure is slow!

• We keep calculating the same value over and over!

Dynamic Programming Example

- We can calculate *Fn* in *linear* time by remembering solutions to the solved subproblems : *dynamic programming*
- Compute solution in a bottom-up fashion
- In this case, only two values need to be remembered at any time

```
Fibonacci(n)
F_0 \leftarrow 0
F_1 \leftarrow 1
for i \leftarrow 2 to n do
F_i \leftarrow F_{i-1} + F_{i-2}
```

Assembly Line Scheduling

- Automobile factory with two assembly lines
 - Each line has *n* stations: $S_{1,1}, \ldots, S_{1,n}$ and $S_{2,1}, \ldots, S_{2,n}$
 - Corresponding stations $S_{1,j}$ and $S_{2,j}$ perform the same function but can take different amounts of time $a_{1,j}$ and $a_{2,j}$
 - Entry times are: e_1 and e_2 ; exit times are: x_1 and x_2

Assembly Line Scheduling

- After going through a station, can either:
 - stay on same line at no cost, or
 - transfer to other line: cost after $S_{i,j}$ is $t_{i,j}$, j = 1, ..., n-1

Assembly Line Scheduling

• Problem:

what stations should be chosen from line 1 and which from line 2 in order to minimize the total time through the factory for one car?

One Solution

- Brute force
 - Enumerate all possibilities of selecting stations
 - Compute how long it takes in each case and choose the best one
- Solution:

0 if choosing line 2 at step j (= 3)

1 if choosing line 1 at step j = n

- There are 2^n possible ways to choose stations
- Infeasible when *n* is large!!

1. Structure of the Optimal Solution

• How do we compute the minimum time of going through a station?

1. Structure of the Optimal Solution

- Let's consider all possible ways to get from the starting point through station $S_{1,i}$
 - We have two choices of how to get to $S_{1,i}$:
 - Through $S_{1, j-1}$, then directly to $S_{1, j}$
 - Through $S_{2, i-1}$, then transfer over to $S_{1, i}$

1. Structure of the Optimal Solution

- Suppose that the fastest way through $S_{1,j}$ is through $S_{1,j-1}$
 - We must have taken a fastest way from entry through $S_{1, j-1}$
 - If there were a faster way through $S_{1,\,j-1}$, we would use it instead
- Similarly for S_{2, j-1}

Optimal Substructure

- **Generalization**: an optimal solution to the problem "find the fastest way through $S_{1,j}$ " contains within it an optimal solution to subproblems: "find the fastest way through $S_{1,j-1}$ or $S_{2,j-1}$ ".
- This is referred to as the optimal substructure property
- We use this property to construct an optimal solution to a problem from optimal solutions to subproblems

2. A Recursive Solution

• Define the value of an optimal solution in terms of the optimal solution to subproblems

• Definitions:

- f^* : the fastest time to get through the entire factory
- $f_i[j]$: the fastest time to get from the starting point through station $S_{i,i}$

$$f^* = \min (f_1[n] + x_1, f_2[n] + x_2)$$

• Base case: j = 1, i=1,2 (getting through station 1)

$$f_1[1] = e_1 + a_{1,1}$$

$$f_2[1] = e_2 + a_{2,1}$$

- General Case: j = 2, 3, ..., n, and i = 1, 2
- Fastest way through $S_{1,i}$ is either:
 - the way through $S_{1,i-1}$ then directly through $S_{1,i}$, or $f_1[j-1] + a_{1i}$
 - the way through $S_{2,i-1}$, transfer from line 2 to line 1, then through $S_{1,i}$

$$f_2[j-1] + t_{2,j-1} + a_{1,j}$$

$$\begin{split} f_1[j] &= \begin{cases} e_1 + a_{1,1} & \text{if } j = 1 \\ & \min(f_1[j-1] + a_{1,j} \,, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases} \\ f_2[j] &= \begin{cases} e_2 + a_{2,1} & \text{if } j = 1 \\ & \min(f_2[j-1] + a_{2,j} \,, f_1[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases} \end{split}$$

3. Computing the Optimal Solution

$$f^* = \min (f_1[n] + x_1, f_2[n] + x_2)$$

$$f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$$

$$f_2[j] = \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$$

$$f_1[j] = f_1(1) = f_1(2) = f_1(3) + f_1(4) + f_1(5)$$

$$f_2[j] = f_2(1) = f_2(2) = f_2(3) + f_2(4) + f_2(5)$$
4 times 2 times

Solving top-down would result in exponential running time

3. Computing the Optimal Solution

- For j ≥ 2, each value f_i[j] depends only on the values of f₁[j 1] and f₂[j 1]
- Idea: compute the values of $f_i[j]$ as follows:

	in increasing order of j								
	1	2	3	4	5				
$f_1[j]$									
$f_2[j]$									

- Bottom-up approach
 - First find optimal solutions to subproblems
 - Find an optimal solution to the problem from the subproblems

FASTEST-WAY(a, t, e, x, n)

1.
$$f_1[1] \leftarrow e_1 + a_{1,1}$$

2.
$$f_2[1] \leftarrow e_2 + a_{2,1}$$

Compute initial values of f₁ and f₂

3. for
$$j \leftarrow 2$$
 to n

4. do if
$$f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}$$

5. then
$$f_1[j] \leftarrow f_1[j-1] + a_{1,j}$$

6.
$$l_1[i] \leftarrow 1$$

7. **else**
$$f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}$$

8.
$$l_1[j] \leftarrow 2$$

9. if
$$f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}$$

10. then
$$f_2[j] \leftarrow f_2[j-1] + a_{2,j}$$

11.
$$l_2[j] \leftarrow 2$$

12. else
$$f_2[j] \leftarrow f_1[j-1] + t_{1, j-1} + a_{2, j}$$

13.
$$l_2[j] \leftarrow 1$$

O(N)

Compute the values of $f_1[j]$ and $l_1[j]$

Compute the values of $f_2[j]$ and $l_2[j]$

FASTEST-WAY(a, t, e, x, n)

14. if
$$f_1[n] + x_1 \le f_2[n] + x_2$$

15. then
$$f^* = f_1[n] + x_1$$

16.
$$l* = 1$$

17. else
$$f^* = f_2[n] + x_2$$

18.
$$1* = 2$$

Compute the values of the fastest time through the entire factory

4. Construct an Optimal Solution

Alg.: PRINT-STATIONS(1, n)

```
i \leftarrow 1*
print "line" i ", station" n
for j \leftarrow n downto 2
    do i \leftarrow l_i[j]
```

print "line" i ", station" j - 1

	1	2	3	4	5	
$f_1[j]/l_1[j]$	9	18[1]	20[2]	24[1]	- 32[1]	
$f_2[j]/l_2[j]$	12	16(1)	$22^{[2]}$	25[1]	30 ^[2]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \