

Business Analytics and Machine Learning Regression Analysis

Prof. Dr. Martin Bichler

Decision Sciences & Systems

Department of Informatics

Technical University of Munich

Course Content

- Introduction
- Regression Analysis
- Regression Diagnostics
- Logistic and Poisson Regression
- Naive Bayes and Bayesian Networks
- Decision Tree Classifiers
- Data Preparation and Causal Inference
- Model Selection and Learning Theory
- Ensemble Methods and Clustering
- High-Dimensional Problems
- Association Rules and Recommenders
- Neural Networks

Recommended Literature

Introduction to Econometrics

- Stock, James H., and Mark W. Watson
- Chapter 2 7, 17, 18

The Elements of Statistical Learning

- Trevor Hastie, Robert Tibshirani, Jerome Friedman
- http://web.stanford.edu/~hastie/Papers/ESLII.pdf
- Section 3.1-3.2: Linear Methods for Regression

Any Introduction to Statistics

(e.g.: Statistical Inference by George Casella, Roger L. Berger or online course http://onlinestatbook.com/)

Today we revisit three important elements of <u>statistical inference</u>:

Estimation, testing, regression

Question

What is the probability that a sample of 100 randomly selected elements with a mean of 300 or more gets selected if the true population mean is 288 and the population standard deviation is 60?

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Question

- What is the probability that a sample of 100 randomly selected elements with a mean of 300 or more get selected if the true population mean is 288 and the population standard deviation is 60?
 - The sample was randomly selected and we draw on the Central Limit Theorem.
 - We need to take the standard dev. of the sample mean.

$$Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{300 - 288}{60 / \sqrt{100}} = 2$$

- Check out the table of the standard normal distribution.
- There is a 2.28% chance of selecting a sample with a mean > 300.

Statistical Estimation

Statistical Estimation

Point estimate is always within the interval estimate

Confidence Interval

Confidence Interval (CI)

Suppose the samples are drawn from a normal distribution. The CI provide us with a range of values that we believe, with a given level of confidence, contains a population parameter:

$$\Pr\left(\overline{X} - z_{(1 - \frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{(1 - \frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}\right)$$

There is a 95% chance that your interval contains μ .

$$Pr(\bar{X} - 1.96 SD < \mu < \bar{X} + 1.96 SD) = 0.95$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Example

Suppose we have a sample of n=100 persons mean = 215, standard deviation = 20 95% CI = $\bar{X} \pm 1.96 * \sigma/\sqrt{n}$

Lower Limit: 215 - 1.96*20/10 = (211, 219)

Upper Limit: 215 + 1.96*20/10

"We are 95% confident that the interval 211-219 contains μ ."

If the population standard deviation σ is unknown, use the sample standard deviation s and the t-distribution. If n is large enough, you might also use s and the standard Normal distribution.

Effect of Sample Size

Suppose we had only 10 observations What happens to the confidence interval?

$$\bar{X} \pm 1.96 * \frac{\sigma}{\sqrt{n}}$$

For
$$n = 100$$
, $215 \pm 1.96 * (20)/\sqrt{100} \approx (211,219)$
For $n = 10$, $215 \pm 1.96 * (20)/\sqrt{10} \approx (203,227)$

Larger sample size = smaller interval

Effect of Confidence Level

Suppose we use a 90% confidence level What happens to the confidence interval?

$$\overline{X} \pm 1.645 * s / \sqrt{n}$$

90%:
$$215 \pm 1.645 * (20) / \sqrt{100} \approx (212,218)$$

Lower confidence level = smaller interval (A 99% interval would use 2.58 as multiplier and the interval would be larger)

Effect of Standard Deviation

Suppose we had a *s* of 40 (instead of 20) What happens to the confidence interval?

$$\bar{X} \pm 1.96 * \frac{\sigma}{\sqrt{n}}$$

$$215 \pm 1.96 * (40) / \sqrt{100} \approx (207,223)$$

More variation = larger interval

Estimation for Population Mean μ

Point estimate:

$$\bar{X} = \frac{\sum X}{n}$$

Estimate of variability in population

$$s = \sqrt{\frac{1}{n-1}\sum_{i}(X_i - \bar{X})^2}$$

(if σ is unknown, use s)

True standard deviation of sample mean Standard error of sample mean

$$SD = \sigma/\sqrt{n}$$
$$SE = s/\sqrt{n}$$

95% confidence interval

$$\bar{X} \pm 1.96 SD$$

, or

$$\bar{X} \pm 1.96 SE$$

How does the size of the random sample impact the size of a confindence interval?

Statistical Tests

Random error (chance) can be controlled by statistical significance or by confidence interval

Hypothesis Testing

- State null and alternative hypothesis (H₀ and H₁)
 - -H₀ usually a statement no difference between groups
- Choose α level (related to confidence level)
 - -Probability of falsely rejecting H_0 (Type I error), typically 0.05 or 0.01
- Calculate test statistic, find p-value (p)
 - Measures how far data are from what you expect under null hypothesis
- State conclusion:

 $p \le \alpha$, reject H₀ $p > \alpha$, insufficient evidence to reject H₀

Hypothesis Testing

<u>Hypothesis:</u> A statement about parameters of population or of a model ($\mu = 200$?)

<u>Test:</u> Does the data agree with the hypothesis? (sample mean 220) Simple random sample from a normal population (or n large enough for CLT)

$$H_o$$
: $\mu = \mu_o$

$$H_1: \mu \neq \mu_o$$
, pick α

Z-Test

Problem of interest:

• Population mean μ and population standard deviation σ are known

Z-confidence interval:

$$\bar{X} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$$

Z-test:

$$z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

<u>H</u>₁

Rejection region

$$\mu \neq \mu_0$$

$$|\mathbf{z}| \ge \mathbf{z}_{1-\alpha/2}$$

$$\mu > \mu_0$$

$$z \geq z_{1-\alpha}$$

$$\mu < \mu_0$$

$$z \le z_{\alpha} = -z_{1-\alpha}$$

Student t-Distribution: Test Statistic for a mean μ with unknown σ

$$t(df = n - 1) = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

When the population is normally distributed, the statistic *t* is *Student t* distributed.

The "degrees of freedom (df)", a function of the sample size, determines how spread the distribution is (compared to the normal distribution)

The *t* distribution is bell-shaped, and symmetric around zero.

CI and 2-Sided Tests

- A level α 2-sided test rejects H_0 : $\mu = \mu_0$ exactly when the value μ_0 falls outside a level 1α confidence interval for μ .
- Calculate 1α level confidence interval, then
 - -if μ_0 within the interval, do not reject the null hypothesis,

$$|t| < t_{1-\alpha/2}$$

-otherwise, $|t| \ge t_{1-\alpha/2} =$ reject the null hypothesis.

Student t-Distribution for α =0.05

Degrees of Freedom		t _{.9}	t _{.95}	(t _{.975}	t _{.99}	t _{.995}
П	1	3.078	6.314	12.706	31.821	63.657
ш	2	1.886	2.92	4.303	6.965	9.925
ш	•	•	•	•	•	•
	•	•	•	•	•	•
	24	•	1.711	2.064	2.492	
						-
	•					
	200	1.286	1.653	1.972	2.345	2.601
	∞	1.282	1.645	1.96	2.326	2.576

t-distribution critical values

Possible Results of Tests

Type I error - You reject the null hypothesis when the null hypothesis is actually true.

Type II error - You fail to reject the null hypothesis when the alternative hypothesis is true.

t-Tests

Formula is slightly different for each:

- Single sample:
 - tests whether a sample mean is significantly different from a preexisting value
- Paired samples:
 - -tests the relationship between 2 linked samples, e.g. means obtained in 2 conditions by a single group of participants
- Independent samples:
 - -tests the relationship between 2 independent populations

The Paired t -Test with 2 Paired Samples

Null hypothesis:
$$H_0$$
: $\mu_d = \mu_1 - \mu_2 = \Delta_0$

Test statistic:
$$t = \frac{\bar{d} - \Delta_0}{s / \sqrt{n}}$$

$$H_1$$

$$\mu_d \neq \Delta_0$$

$$\mu_d > \Delta_0$$

$$\mu_d < \Delta_0$$

Rejection region

$$|t| \ge t_{1-\alpha/2, n-1}$$

 $t \ge t_{1-\alpha, n-1}$
 $t \le t_{\alpha, n-1} = -t_{1-\alpha, n-1}$

Observations are dependent, e.g., pre and post test, left and right eyes, brother-sister pairs

The Paired t -Test with 2 Paired Samples

Subjects: random sample of 25 students from TUM Mean grades of the students on two subsequent exams A and B Is there a significant difference between the two exams?

Null Hypothesis: E(A) = E(B)Answer can be given based on significance testing

$\bar{d} = 0.093$
s = 0.150
n = 25
$s/\sqrt{n} = 0.03$
$t_{0.975;24} = 2.064$

$$t = \frac{\overline{d}}{s/\sqrt{n}} = \frac{0.093}{0.03} = 3.1$$
$$p = \Pr\{|t| > 3.1 | DF = 24\} = 0.005$$

The p-Value

The p-value describes the probability of having t=3.1 (or larger), given the null hypothesis. The smaller the p-value, the more unlikely it is to observe the corresponding sample value (or more extreme) by chance under H_0 .

Independent Samples

2 independent samples (possibly different size and variance):

Does the amount of credit card debt differ between households in rural areas compared to households in urban areas?

Population 1 All Rural Households m_1

Population 2 All Urban Households m_2

Null Hypothesis:

 $H_0: m_1 = m_2$

Alternate Hypothesis:

 $H_1: m_1 \neq m_2$

Independent Two-Sample t -Test (Welch's t -Test)

Two-sample unpaired t-test with (un)equal sample sizes, assuming unequal variance

Under H₀ *t* follows a t-distribution with $\frac{(s_1^2/n_1+s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1-1)+(s_2^2/n_2)^2/(n_2-1)}$ degrees of freedom (df)

Independent Two-Sample t –Test: Example

Group 1	Group 2
21	22
19	25
18	27
18	24
23	26
17	24
19	28
16	26
21	30
18	28
$\bar{x}_1 = 19$	$\bar{x}_2 = 26$
$s_1 = \sqrt{40/9}$	$s_2 = \sqrt{50/9}$

$$df = 18$$
 (rounded to integer)

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_{\bar{x}_1 - \bar{x}_2}} = \frac{19 - 26}{1} = -7$$

$$s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{40/9}{10} + \frac{50/9}{10}}$$
$$= 1$$

$$t_{(0.975,18)} = 2.101$$

$$|t| \ge t_{(0.975,18)}$$

$$\rightarrow$$
 Reject H₀ $(\mu_1 - \mu_2 = 0)$

Selected Statistical Tests

Parametric Tests

- The family of t-tests
 - Compares two sample means or tests a single sample mean
- F-test
 - Compares the equivalence of variances of two samples

Non-parametric Tests

- Wilcoxon signed-rank test for 2 paired i.i.d samples.
- Mann-Whitney-U test is used for 2 *independent* i.i.d samples
- Kruskal-Wallis-Test for several i.i.d non-normally distributed samples

Tests of the Probability Distribution

- Kolmogorov-Smirnov and Chi-square test
 - used to determine whether two underlying probability distributions differ, or whether an underlying probability distribution differs from a hypothesized distribution

Please explain the role of confidence intervals in a single-sample t-test.

Linear Regression

- Regressions identify relationships between dependent and independent variables
 - Is there an association between the two variables
 - -Estimation of impact of an independent variable
 - Formulation of the relation in a functional form
 - -Used for numerical prediction and time series forecasting
- Regression as an established statistical technique:
 - Sir Francis Galton (1822-1911) studied the relationship between a father's height and the son's height

Terminology

- Data streams X and Y, forming the measurement tuples $(x_1, y_1), \dots, (x_n, y_n)$
- x_i is the predictor (regressor, covariate, feature, independent variable)
- y_i is the response (dependent variable, outcome)
- Denote the *regression function* by: $\eta(x) = E(Y|x)$
- The linear regression model assumes a specific linear form

The Simple Linear Regression Model

- Linear regression is a statistical tool for numerical predictions
- The first order linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Y = response variable

X =predictor variable

 β_0 = y-axis intercept

 β_1 = slope of the line

 ε = random error term (residual)

 β_0 and β_1 are unknown, therefore, are estimated from the data

Estimating the Coefficients

- Coefficients are random variables
- (Ordinary Least Squares) estimates are determined by
 - drawing a sample from the population of interest
 - -calculating sample statistics
 - -producing a straight line that cuts into the data

The question is: Which straight line fits best?

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

OLS Estimators

- Ordinary Least Squares (OLS) approach:
 - -Minimize the sum of squared residuals (aka. loss function)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\min \sum_{i} e_i^2 = \min \sum_{i} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} = \frac{Cov(x, y)}{Var(x)}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Example

- A car dealer wants to find the relationship between the odometer reading and the selling price of used cars.
- A random sample of 100 cars is selected, and the data recorded.
- Find the regression line.

Car	Odomet	er Price	Price	
1	37388	5318		
2	44758	5061		
3	45833	5008		
4	30862	5795		
5	31705	5784		
6	34010	5359		

Independent/predictor variable x

Dependent/respond variable y

Solving a Simple Regression

• To calculate β_0 and β_1 we can calculate several statistics first:

$$\overline{x} = 36009.45;$$
 $s_x^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1} = 43,528,688$ $\overline{y} = 5411.41;$ $cov(X, Y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1} = -1,356,256$

where n = 100:

$$\hat{\beta}_1 = \frac{\text{cov}(X,Y)}{s_x^2} = \frac{-1,356,256}{43,528,688} = -.0312$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 5411.41 - (-.0312)(36,009.45) = 6,533$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 6,533 - 0.0312x$$

Residual Sum of Squares (RSS)

- This is the sum of squared differences between the points and the regression line
- It can serve as a measure of how well the line fits the data (fits well, if statistic is small)
- An unbiased estimator of the RSS of the population is given by

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Total Deviation

 The Total Sum of Squares (TSS) is the sum of the Explained Sum of Squares (ESS) and the RSS.

$$\sum (y - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y - \hat{y})^2$$

TSS = ESS + RSS

Total deviation = explained deviation + unexplained deviation

Coefficient of Determination

 R² measures the proportion of the variation in y that is explained by the variation in x

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
, $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = ESS + RSS$

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$$

- R² takes on any value between zero and one
 - $-R^2$ = 1: Perfect match between the line and data points
 - $-R^2 = 0$: There is no linear relationship between x and y

Testing the Coefficients

Test the significance of the linear relationship

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

$$\begin{array}{ll} \text{H}_0. \ \beta_1 &= 0 \\ \text{H}_1: \ \beta_1 \neq 0 \\ \bullet \text{ The test statistic is} \end{array} \qquad t = \frac{\hat{\beta}_1}{\frac{\text{RSS}}{\sum_{i=1}^n (x_i - \bar{x})^2} \cdot \frac{1}{n-2}} \\ \text{Variance of } \hat{\beta}_1 \end{array}$$

- If $SE(\hat{\beta}_1)$ is large, then $\hat{\beta}_1$ must be large to reject H_0
- $SE(\hat{\beta}_1)$ is smaller, if the x_i are more spread out
- If the error variable is normally distributed, the statistic is a Student t —distribution with n-2 degrees of freedom (if n is large, draw on the CLT)
- Reject H₀, if: $t < t_{\alpha/2}$ or $t > t_{1-\alpha/2}$

The Multiple Linear Regression Model

- A p-variable regression model can be expressed as a series of equations
- Equations condensed into a matrix form, give the general linear model
- β coefficients are known as partial regression coefficients
- X_1, X_2 , for example,
 - $-X_1$ ='years of experience'
 - $-X_2$ ='age'
 - -Y='salary'
- Estimated equation:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 = \mathbf{X} \hat{\beta}$$

Matrix Notation

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1^{x_{11}} x_{12} \dots x_{1p} \\ 1^{x_{21}} x_{22} \dots x_{2p} \\ \vdots & \vdots & \vdots \\ 1^{x_{n1}} x_{n2} \dots x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

у	X	β	+ ε
$(n \times 1)$	$(n \times (p+1))$	$((p+1) \times 1)$	(n × 1)

OLS Estimation

Sample-based counter part to population regression model:

$$y = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$
$$y = \mathbf{X}\hat{\boldsymbol{\beta}} + e$$

 OLS requires choosing values of the estimated coefficients, such that Residual Sum of Squares (RSS) is as small as possible for the sample

$$RSS = e^T e = (y - \mathbf{X}\hat{\beta})^T (y - \mathbf{X}\hat{\beta})$$

Need to differentiate with respect to the unknown coefficients

Least Squares Estimation

X is $n \times (p + 1)$, y is the vector of outputs $RSS(\beta) = (y - \mathbf{X}\beta)^T (y - \mathbf{X}\beta)$

If X is full rank, then X^TX is positive definite

$$RSS = (y^{T}y - 2\beta^{T} \mathbf{X}^{T}y + \beta^{T}\mathbf{X}^{T}\mathbf{X}\beta)$$

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^{T}y + 2\mathbf{X}^{T}\mathbf{X}\beta = 0 \quad \text{First-order condition}$$

$$\beta = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}y$$

$$\hat{y} = \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}y$$

"Hat" or projection matrix H

Geometrical Representation

- Least square estimates in \mathbb{R}^n
- Minimize RSS(β)= $||y X\beta||^2$, s.t. residual vector $y \hat{y}$ is orthogonal to this subspace.

Definition (Projection):

The set $\mathcal{C} \subset \mathbb{R}^n$ is non-empty, closed and convex. For a fixed $y \in \mathbb{R}^n$ we search a point $\hat{y} \in C$, with the smallest distance to y (wrt. the Euclidean norm), i.e. we solve the minimization problem

$$P_C(y) = \min_{\hat{y} \in C} ||y - \hat{y}||^2$$

Example

$$y = \mathbf{X}\hat{\beta} + e$$

$$\begin{pmatrix}
2.6 \\
1.6 \\
4.0 \\
3.0 \\
4.9
\end{pmatrix} = \begin{pmatrix}
1 & 1.2 \\
1 & 3.0 \\
1 & 4.5 \\
1 & 5.8 \\
1 & 7.2
\end{pmatrix} \begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1
\end{pmatrix} + \begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5
\end{pmatrix}$$

$$\widehat{\beta} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1.2 & 3.0 & 4.5 & 5.8 & 7.2
\end{pmatrix}
\begin{pmatrix}
1 & 1.2 \\
1 & 3.0 \\
1 & 4.5 \\
1 & 5.8 \\
1 & 7.2
\end{pmatrix}
-1
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1.2 & 3.0 & 4.5 & 5.8 & 7.2
\end{pmatrix}
\begin{pmatrix}
2.6 \\
1.6 \\
4.0 \\
3.0 \\
4.9
\end{pmatrix} =$$

Check Results in R

```
> y < -c(2.6, 1.6, 4.0, 3.0, 4.9)
> x < -c(1.2, 3.0, 4.5, 5.8, 7.2)
> mod <- lm(y \sim x)
> summary(mod)
Call:
lm(formula = y \sim x)
Residuals:
                                                                 1. check coefficients
 0.6259 - 1.0883 \quad 0.7165 - 0.7993 \quad 0.5452
                                                                 2. check significance
                                                                 3. check coefficient of
Coefficients:
                                                                   determination
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4980
                          1.0322
                                    1.451
                                              0.243
                          0.2142
                                    1.853
              0.3968
                                              0.161
X
Residual standard error: 1.004 on 3 degrees of freedom
Multiple R-Squared: 0.5336, Adjusted R-squared: 0.3782
F-statistic: 3.433 on 1 and 3 DF, p-value: 0.1610
```


Selected Statistics

Adjusted R²

It represents the proportion of variability of y explained by X
 R² is adjusted so that models with a different number of variables can be compared

$$\bar{R}^2 = 1 - \frac{RSS/(n-p-1)}{TSS/(n-1)}$$

The F-test

• Significant F indicates a linear relationship between y and at least one of the xs: H_0 : $\beta_1 = \beta_2 \dots \beta_p = 0$

The t-test of each partial regression coefficient

 Significant t indicates that the variable in question influences the response variable while controlling for other explanatory variables

Model Specification

In regression analysis the <u>specification</u> is the process of developing a regression model.

- This process consists of selecting an <u>appropriate functional form</u> for the model and choosing <u>which variables to include</u>.
- The model might include irrelevant variables or omit relevant variables

Non-linear models are challenging, but some nonlinear regression problems can be <u>linearized</u>.

- Dummy variables for discrete variables (e.g. 0/1 for gender)
- Quadratic models: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2^2 + \epsilon$ use $z_2 = x_2^2$
- Models with interaction terms $y = \beta_0 + \beta_1 x_1 x_2$ use $z_1 = x_1 x_2$
- Exponential terms $y = \alpha x^{\beta} \varepsilon$ can be transformed using the logarithm to $\ln(y) = \ln(\alpha) + \beta \ln(x) + \ln(\varepsilon)$

Subset Selection

- Setting: Possibly a large set of predictor variables, some irrelevant
- Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors
 - Aka. subset selection or feature selection problem
- Automated procedures:
 - Best subset (among all exponentially many, computationally expensive)
 - Backward elimination (top down approach)
 - Forward selection (bottom up approach)
 - Stepwise regression (combines forward/backward)
- More in the context of the class on dimensionality reduction
 - Subset selection vs. shrinkage methods

Example: Backward Elimination

- Select a significance level to stay in the model (generally 0.05 is too low, causing too many variables to be removed)
- Fit the full model with all possible predictors
- Consider the predictor with lowest *t*-statistic (highest *p*-value).
 - -If p > sign. level, remove the predictor and fit model without this variable (must re-fit model here because partial regression coefficients change)
 - -If $p \le$ sign. level, stop and keep current model
- Continue until all predictors have p-values below sign. level
- Forward selection is similar: predictors with lowest p-value are added until none is left with p > sign. level.

Please explain the term "ordinary least squares" estimator and how it solves a convex optimization problem.

