

Data Structure and Algorithms

Session-29

Dr. Subhra Rani Patra SCOPE, VIT Chennai

What we will learn in 'All Pair Shortest Path'?

What is All Pair Shortest Path problem

- ✓ What is Floyd Warshall Algorithm
- √ How it works
- √ Why it works
- √ Why Negative Cycle does not works with it

What is 'Single Source Shortest Path'?

✓ Definition:

✓ Single source shortest path problem is about finding a path between a given vertex (called 'Source') to all other Vertices in a graph such that, the total distance between them (source & Destination) is minimum.

√ Example

- ✓ Let's say we have office in 5 different cities and we need to travel from Head office to all other offices.
- ✓ Flight charges between cities are known (as given in below diagram).
- ✓ What is the cheapest way to reach each office from HQ ?

Dijkstra approach

Source Vertex - 'E'	Path	
А	E >D>B>A	
В	E>D>B	
С	E >D>C	
D	E	
E	-	

Source Vertex - 'D'	Path
А	D>B>A
В	D>B
С	D>C
D	-
Е	N/A

Source Vertex - 'C'	Path
А	C>D>B>A
В	C>D>B
С	-
D	C>D
E	N/A

Source Vertex - 'B'	Path
А	B>A
В	-
С	B>A>C
D	A>D
Е	N/A

Source Vertex - 'A'	Path
А	-
В	A>D>B
С	A>D>C
D	A>D
Е	N/A

$$D = 1 \begin{bmatrix} 2 & 3 & 7 \\ 0 & 9 & -9 & 8 \end{bmatrix}$$

$$2 \begin{bmatrix} 8 & 8 & 8 \\ 8 & 8 & 8 \end{bmatrix}$$

D, as have marke

D'[1,3] = D'[1,2] + D'[2,3] D'[1,3] = D'[1,2] + D'[2,3] D'[1,1] = D'[1,2] + D'[2,1] D'[3,1] D'[3,2] + D'[2,1] D'[3,1] + D'[2,1]

$$D' = \begin{bmatrix} 0 & 1 & -43 \\ 0 & 1 & -43 \\ 0 & 2 & 2 \\ 17 & 5 & 0 \\ 17 & 6 & 1 & 6 \end{bmatrix}$$

$$D_{(i,j)}^{(i,j)} = \min \{D_{(i,j)}^{(i,j)}, D_{(i,k)}^{(i,k)} + D_{(k,j)}^{(i,k)} \}$$

$$\sum_{j=1}^{3} K = M$$

$$D_{(i,2)}^{(i,j)} = D_{(i,j)}^{(i,k)} + D_{(k,j)}^{(i,k)} \}$$

$$1 < 3 + 6 = 9$$

For Each Edge if D[u][v] > D[u]['via X'] + D['via X'][v]

	Given					
	A	В	C	D		
Α	0	8	∞	1		
В	00	0	1	00		
С	4	00	0	00		
D	00	2	9	0		

Į			Iteration #1		
	Via 'A'	A	8	C	D
	A	0	8	00	1
	В	00	0	1	00
	c	4	8+4 = 12	0	4+1 = 5
	D	oa	2	9	0

Iteration #2					
Via 'B'	A	В	С	D	
A	0	8	8+1 = 9	1	
В	8	0	1	∞	
С	4	12	0	5	
D	00	2	2+1 = 3	0	

Iteration #3					
Via 'C'	A	В	C	D	
A	0	8	9	1	
В	4+1 = 5	0	1	5+1 = 6	
C	4	12	0	5	
D	4+3 = 7	2	3	0	

		Iteration #	4	
Via 'D'	A	В	C	D
A	0	1+2 = 3	3+1 = 4	1
8	5	0	1	6
С	4	5+2 = 7	0	5
D	7	2	3	0

	Final Result					
	A	В	C	D		
A	0	3	4	1		
В	5	0	1	6		
С	4	7	0	5		
D	7	2	3	0		

Floyd Warshall Algorithm:

return D

```
initialize a table of size VxV: D with ∞

copy D from G

for k = 0 to n-1 // run the loop as many time as number of vertices

for i = 0 to n-1 // run the loop such that we visit each cell in 2D array in row wise fashion

for j = 0 to n-1

if D[i][j] > D[i][k] + D[k][j] then

D[i][j] = D[i][k] + D[k][j]
```


Time & Space complexity of 'Floyd Warshall' Algorithm:

Time Complexity =
$$O(V^2) + O(V^2) + O(V^3) + O(1)$$

= $O(V^3)$
Space Complexity = $O(V^2)$

Why 'Floyd Warshall' Algorithm works?

√ With any given 2 nodes(Source, destination) there can be only 3 probabilities to find distance between them:

- √ They are not reachable:
 - ✓ Not possible as it is given in the problem statement.
- √ They are directly connected:
 - ✓ We keep this data initially in our 'Distance' matrix. We can have 2 more cases under it:
 - √ If this is best solution then we keep it for final answer (Ex-: A -> D)
 - √ If this can be improvised via some other vertex (Ex-: A -> B)
- √ They are reachable via some other node(s):
 - √ Nodes that are not reachable directly but are accessible via other nodes. (Ex: C > B)

For Each Edge if D[u][v] > D[u]['via X'] + D['via X'][v]

	Given					
	A	В	C	D		
Α	0	8	∞	1		
В	00	0	1	00		
С	4	00	0	00		
D	00	2	9	0		

Į	Iteration #1					
	Via 'A'	A	8	C	D	
	A	0	8	00	1	
	В	00	0	1	00	
	c	4	8+4 = 12	0	4+1 = 5	
	D	oa	2	9	0	

Iteration #2					
Via 'B'	A	В	C	D	
A	0	8	8+1 = 9	1	
В	8	0	1	∞	
С	4	12	0	5	
D	00	2	2+1 = 3	0	

Iteration #3					
Via 'C'	A	В	C	D	
A	0	8	9	1	
В	4+1 = 5	0	1	5+1 = 6	
C	4	12	0	5	
D	4+3 = 7	2	3	0	

Iteration #4					
Via 'D'	A	В	C	D	
A	0	1+2 = 3	3+1 = 4	1	
В	5	0	1	6	
C	4	5+2 = 7	0	5	
D	7	2	3	0	

	Final Result					
	A	В	C	D		
A	0	3	4	1		
В	5	0	1	6		
C	4	7	0	5		
D	7	2	3	0		

Why 'Negative Cycle' does not work with 'Floyd Warshall'?

✓ We already know that, to go through a cycle, we need to go via 'negative cycle participating vertex' atleast twice.

√ We never run the loop twice 'via same vertex'.

Thank,