

Introduction to Statistics

Overview

- Basic concepts
- Continuous distributions
- Estimation
- Significance tests
- Regression
- ANOVA

Population vs sample

From a set of data, \bar{y} and $s=\sum_N \frac{(x_i-\eta)^2}{N-1}$ form **estimates** of the <u>population</u> mean, μ and standard deviation, σ

Degrees of Freedom

- How many choices?
- Degrees of freedom relate to the number of 'observations' that are free to vary when estimating statistical parameters

$$mean = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

In calculating the mean only n-1 observations are 'free to vary'

Making measurements – location and spread

Mean,
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \sum_N \frac{x_i}{N}$$

Also known as the expectation of x i.e. E(x).

Standard deviation, s, variance, s^2

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{N} - \bar{x})^{2}}{N - 1} = \sum_{N} \frac{(x_{i} - \bar{x})^{2}}{N - 1}$$

Why N-1?

Probability distributions

Central limit effect

Average scores of (100 rolls)

One die

Two die

Three die

Five die

1 2 3 4 5 6

Ten die

In many experiments the error is an aggregate of a number of component errors and the distribution will tend to be "normal"

F-distribution

Can obtain ratio of two sample variances;

F statistic is s_1^2/s_2^2

F depends on the estimates and the dof of the variance estimates

Degrees of freedom of population variances;

$$v_1 = n_1 - 1$$
$$v_2 = n_2 - 1$$

So F test statistic is designated

$$F_{\nu_1,\nu_2}$$

Probability

 η and σ^2 fully characterise a distribution, $N(\eta, \sigma^2)$

Probability density is given by a point on the line p(y)

$$p(y > \eta + \sigma) = \frac{1}{6}$$
 i.e. the area under the curve.

Often it is easier to express probability in terms of the standard deviate;

$$z = \frac{y - \eta}{\sigma}$$

$$= p(y > \eta + \sigma)$$

$$= p(y - \eta > \sigma)$$

$$= p\left(\frac{y - \eta}{\sigma} > 1\right)$$

$$= p(z > 1)$$

Standard Error of the Mean

- Take n random samples from a distribution with mean, η and standard deviation σ . Repeat.
- The sample means will form a distribution with the same mean, η but a smaller standard deviation σ/\sqrt{n} (the standard error of the sample mean).

For a sample of size n the sample mean is \bar{x}

The standard error is an estimate of the standard deviation of the sample means for sample size n

$$SE_m = \frac{\sigma}{\sqrt{n}}$$

Intuitively it is a measure of how sample size affects the likely accuracy of the sample mean relative to the population mean.

Bias and efficiency

- Bias an estimator is said to be biased if the mean of its sampling distribution is not equal to the value it is estimating.
- **Efficiency** an efficient unbiased estimator is the minimum variance unbiased estimator (MVUE).

biased

unbiased

If σ is unknown (which is normally the case)

A substitution can be made for σ using s, the sample standard deviation;

$$z = \frac{y - \eta}{\sigma}$$

i.e.

$$t = \frac{y - \eta}{s}$$

the 'student' or 't' distribution depends on degrees of freedom available for estimation of s.

Fatter tail compared with normal distribution

Significance testing

Testing a theory about the population

Null hypothesis H_0 What we are testing

Alternative hypothesis H_1 An alternative

- Test statistic
- Level of significance
- One tailed and two tailed tests

How to know if a treatment is significant?

An example - composition of a chemical compound

- The iron content of a compound should be 12.1%. Tests on nine different samples are being used to examine this assumption.
- Null hypothesis i.e. there is no difference in the sample (n = 9) mean
 - H_0 : $\mu = 12.1\%$

- Alternative hypothesis
 - H_1 : $\mu \neq 12.1\%$

Example (continued)

The analysis of nine samples gave the following values for % content of iron.

$$\bar{y} = 11.43$$
 $s^2 = 0.24$
 $s = 0.49$

$$t = \frac{(y - \eta)}{s/\sqrt{n}}$$

$$= \frac{(11.43 - 12.1)}{0.49/\sqrt{9}} = -4.1$$

Standard deviation of the mean (estimate)

Degrees of freedom: eight because nine samples and one DoF used for population mean, \bar{x}

Example (continued)

- 1. Two tailed test
- 2. 5% level of significance
- 3. Eight degrees of freedom (from tables)

Test statistic is designated: $t_{0.025,8} = 2.31$ (from tables)

In fact, $t_{0.005,8} = 3.36$ (from tables)

So even at the 1% level, the result is significant.

Regression

Fitting a line or curve to the data in order to predict the mean value of the dependent variable for a given value of the controlled variable

Analysing variance (ANOVA) For comparing more than two entities

	Α	В	С	D
	62	63	68	56
	60	67	66	62
	63	71	71	60
	59	64	67	61
	63	65	68	63
	59	66	68	64
Treatment avg	61	66	68	61
Overall avg	64	64	64	64

				Deviation from overall average		_	Deviations between treatments		deviations within treatments	
				overall average		. age			-	
		Α	В	C	D	$y_{ti} - \overline{y}$	$\overline{y}_t - \overline{y}$	$y_{ti} - \overline{y}_t$	_	
${y_{ti}}$		62	63	68	56	-2 -1 4 -8	-3 2 4 -3	1 -3 0 -5	y _{ti} individu	
		60	67	66	62	-4 3 2 -2	-3 2 4 -3	-1 1 -2 1	\bar{y}_t marviac \bar{y}_t treatmen	
		63	71	71	60	-1 7 7 -4	-3 2 4 -3	2 5 3 -1	\bar{y} overall a	
		59	64	67	61	-5 0 3 -3	-3 2 4 -3	-2 -2 -1 0		
		63	65	68	63	-1 1 4 -1	-3 2 4 -3	2 -1 0 2		
		59	66	68	64	5 2 4 0	-3 2 4 -3	-2 0 0 3		
	Sum of squares					340	228	112		
	Degrees of freedom			23	3	20				
									-	

 v_{ti} individual coagulation results \bar{v}_t treatment average \bar{y} overall average

ANOVA

Table

Source of variation	Sum of squares	d.f.	$\frac{\chi^2}{\nu}$
Between treatments	$\sum (\bar{y}_t - \bar{y})^2 = 228$	n - 1 = 3	$\frac{\sum (\bar{y}_t - \bar{y})^2}{n - 1} = 76$
Within treatments	$\sum (y_{ti} - \overline{y}_t)^2 = 112$	n - 1 = 20	$\frac{\sum (y_{ti} - \bar{y}_t)^2}{n - 1} = 5.6$
Total about the overall average	340	23	

$$\left(\frac{s_1^2 / \sigma_1^2}{s_1^2 / \sigma_1^2} \right) = \frac{\sum (\bar{y}_t - \bar{y})^2}{n - 1} / \frac{\sum (y_{ti} - \bar{y}_t)^2}{n - 1} \sim F_{\nu_1, \nu_2}$$

$$F_{3,20} = 13.6$$

Significant at 0.001 i.e. we can be confident that treatments do result in different means, we can reject H_0