

Probability and Random Process

Aimin Tang

The University of Michigan- Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University

Nov. 12 2020

4. Random Process

- Introduction to Random Processes ✓
- Brownian Motion/Wiener Process ✓
- − Poisson Process √
- Complex RV and RP X not covered
- Stationarity √
- PSD, QAM, White Noise No problem about "show red volue"
- Response of Systems No problem above { Non-linear " skully differential equation"
- LTI Systems and RPs

 - · Input WSS => Output WSS
 · how to find meen and correlation *R+*
 - · PSD 8 Ry/Sy

Need of transform * Example.

Brownian Motion/Wiener Process

In 1857, R. Brown observed that small particles immersed in a liquid exhibit ceaseless irregular motions.

Einstein described the phenomenon mathematically from the laws of physics.

The first concise mathematical formulation was given by Wiener in 1918; the process is also called the "Wiener Process."

Elastic collisions of gas particles

Defining Properties

properties defined

The one-dimensional Brownian Motion, X(t), has

- a) Independent increments continuous but not differential
- b) Stationary increments
- The increment X(s+t) X(s) is normally distributed with mean zero and variance αt
- d) X(0) = 0 and X(t) is continuous for $t \ge 0$

If $\alpha = 1$, X(t) is a Standard Brownian Motion.

The Brownian Motion is the limit of the continuous-time random walk (CTRW)

Definition of CTRW:

Let {B_i} be the same iid sequence used to define the

discrete-time random walk.

Let c(t) be the unit step function.

Then the CTRW is:

$$W(t) = \begin{cases} 0 & t < 0 \\ \sum_{i=1}^{\infty} \sqrt{\alpha \delta} B_i c(t - i\delta) & t \ge 0 \\ 0 = \sqrt{\alpha} \delta & \text{boundly} \Rightarrow t = \delta \end{cases}$$

Statistics of the CTRW

$$W(t) = \begin{cases} 0 & t < 0 \\ \sum_{i=1}^{\infty} \sqrt{\alpha \delta} B_i c(t - i\delta) & t \ge 0 \end{cases}$$

$$E[W(t)] = 0 \qquad \text{at}$$

$$Var[W(t)] = \begin{cases} \alpha \delta m & m\delta \le t \le (m+1)\delta, m > 0 \\ 0 & t < 0 \end{cases}$$

Now let $\delta \to 0$. Both distance-step and time-step shrink together in a certain way: $\delta m \to t$

$$X(t) = \lim_{\delta \to 0} W(t) \text{ and } Var(X(t)) = \sigma_X^2(t) = \alpha t$$

$$\text{Mix}(x) = 0 \quad \text{set} M.$$

Limit of the CTRW: Wiener Process

X(t) is the Wiener Process, or one-dimensional Brownian motion

Now any interval [0,t], t>0, has an infinite number of steps in it

By the Central Limit Theorem, X(t) is Gaussian: $\mathcal{N}(0, \alpha t)$ α is called the diffusion constant

X(t) is continuous everywhere, but nowhere differentiable

Wiener Process Autocorrelation

Suppose
$$0 < t_1 < t_2$$

$$R_X(t_1, t_2) = E\{X(t_1)X(t_2)\}$$

$$= E\{X(t_1)[X(t_1) + (X(t_2) - X(t_1))]\}$$

$$= E\{X^2(t_1)\} + E\{X(t_1)[(X(t_2) - X(t_1))]\}$$

$$= C_X^2(t_1)$$

$$= C_X^2$$

Example: Derivative of Wiener Process

Extended Derivetive

Let X(t) be a Wiener process such that

$$R_X(t_1, t_2) = \sigma^2 \min(t_1, t_2), \quad \begin{array}{l} t_1 > 0 \\ t_2 > 0 \end{array}$$

Observations: E[X(t)] = 0, X(t) = 0, for $t \le 0$

and X(t) is Normal for t>0.

Let

Gransian White Notse
$$Y(t) = L_t \left[X(t) \right] = \frac{dX(t)}{dt}$$

$$m_Y(t) = L_t \left[m_X(t) \right] = 0$$

$$R_{XY}(t_1, t_2) = L_t \left[R_X(t_1, t_2) \right]$$
New definition of the property of th

View $R_X(t_1,t_2)$ as a function of t_2 with t_1 fixed.

$$R_{XY}(t_1, t_2) = \frac{dR_X(t_1, t_2)}{dt_2} = \begin{cases} \sigma^2 & t_2 < t_1 \\ 0 & ow \end{cases}$$

Derivative of Wiener Process

$$R_{YY}(t_1, t_2) = \frac{d}{dt_1} R_{XY}(t_1, t_2)$$

 $R_{YY}(t_1,t_2) = \frac{d}{dt_1} R_{XY}(t_1,t_2)$ Now view $R_{XY}(t_1,t_2)$ as a function of t_1 with t_2 fixed.

$$R_{YY}(t_1,t_2) = \sigma^2 \delta(t_1 - t_2)$$

- The Wiener Process is one of the most fundamental RPs
- The derivative of a Wiener process

$$Y(t) = \frac{dX(t)}{dt}$$
 is white noise with $E[Y(t)] = 0$ $R_{YY}(t_1, t_2) = \sigma^2 \delta(t_1 - t_2), \quad 0 < t_1, \quad 0 < t_2$

 It can be shown that any integral of Y(t) is Gaussian, therefore we call Y(t) Gaussian White Noise (GWN)

Poisson Process

The Poisson Counting Process

The Poisson counting process, N(t), counts the number of times a specified event occurs during the time from 0 to t. Thus, each sample function is a non-decreasing step function.

Ex:

 $\{t_1, t_2, ...\}$ are called the Poisson Points

Karlin and Taylor, A First Course in Stochastic Processes

The following postulates define the process:

- 1. N(t) has independent increments.
- 2. N(t) has stationary increments.

3.
$$P(N(h) \ge 1) = \lambda h + o(h)$$
 of h is small of the property of the small of the property of t

4.
$$P(N(h) \ge 2) = o(h)$$

Interpretation: the probability of two or more changes in a sufficiently small interval is essentially 0

$$g(t) = o(t), t \rightarrow 0$$

 $\lim_{t\to 0}\frac{g(t)}{t}=0$ is the usual way of writing

4.
$$P(N(h) \ge 2) = o(h)$$

Postulate 4 implies that the events do not happen simultaneously

This is reasonable for:

- 1. Breakdowns of a machine
- 2. Customer arrivals
- 3. Photoelectron generation in an optical detector

Based on these postulates, one can show that

$$P(N(t+\Delta)-N(t)=m)=\frac{\Lambda^m}{m!}e^{-\Lambda}$$

That is, the increments are Poisson-distributed with parameter $\Lambda = \lambda \Delta$, where

 λ is the average rate of occurrence Δ the length of the interval of observation

 λ being not a function of t makes N(t) a homogenous Poisson Process

A cheges, v.e. non-hamo,

A homogenous Poisson Process may also describe random points in space, for example, locations of stars in the galaxy, or point defects in a solid material.

For example, let V be a volume in \mathcal{R}^3 , and N(V) = the number of points in V

$$P(N(V)=m)=\frac{(\lambda V)^m}{m!}e^{-\lambda V}, \quad \lambda>0$$

A Standard Poisson Process allows the rate, /(t), to vary with time

$$P(N(t+\Delta)-N(t)=m) = \frac{\int_{t}^{t+\Delta} \lambda(u)du}{m!} e^{\int_{t}^{t+\Delta} \lambda(u)du}$$

This process has independent but not stationary increments

\(\lambda \text{ charges as t} \)

A homogenous Poisson Process is a special case of the Standard Poisson Process

Consider the joint PMF of the homogenous Poisson Process. Let $t_1 < t_2, i \le j$

$$p_{N(t_1)N(t_2)}(i,j) = P\{N(t_1) = i \cap N(t_2) = j\}$$

Write $N(t_2)$ as a sum of independent increments

$$N(t_2) = [N(t_2) - N(t_1)] + N(t_1)$$

Then, we can write

$$\{N(t_1) = i \cap N(t_2) = j\}$$

$$= \{N(t_1) = i\} \cap \{[N(t_2) - N(t_1)] = j - i\}$$

$$\{N(t_1) = i \cap N(t_2) = j\}$$

$$= \{N(t_1) = i\} \cap \{[N(t_2) - N(t_1)] = j - i\}$$

Now exploit the independent increments

$$p_{N(t_1)N(t_2)}(i,j) = P\{N(t_1) = i\} P\{N(t_2) - N(t_1) = j - i\}$$

And finally exploit the stationary increments

$$p_{N(t_1)N(t_2)}(i,j) = P\{N(t_1) = i\} P\{N(t_2 - t_1) = j - i\}$$

Joint PMF, Final Expression

$$\therefore p_{N(t_1)N(t_2)}(i,j) = \left[\frac{(\lambda t_1)^i}{i!}e^{-\lambda t_1}\right] \frac{(\lambda [t_2 - t_1])^{(j-i)}}{(j-i)!}e^{-\lambda [t_2 - t_1]}$$

Mean, Correlation, and Covariance

$$E[N_t] = \lambda t \text{ and } var(N_t) = \lambda t.$$

$$E[N_t N_s] = (\lambda t)(\lambda s) + \lambda t$$
 for $t < s$

$$cov(N_t, N_s) = E[(N_t - \lambda t)(N_s - \lambda s)]$$

$$= E[N_t N_s] - (\lambda t)(\lambda s)$$

$$= \lambda t.$$

Suppose fish bite with a Poisson distribution, with an average rate of one per 20 min. What is the probability that at least one fish will bite in the next 5 min given that no fish has bitten in the last 20 min?

$$P(N(t+5)-N(t) \ge 1 \mid N(t)-N(t-20)=0)$$

$$= P(N(t+5)-N(t) \ge 1) = 1 - \frac{(5/20)^0}{0!} e^{-5/20} = 0.22$$

Because of independent increments, there is "No premium for waiting"

Let $T = t_2 - t_1$, where t_1 and t_2 are two consecutive event times. Characterize T.

$$CDP : PCT = t)$$

$$= 1 - P(N(t_1 + t) - N(t_1) = 0)$$

$$= 1 - P(N(t) = 0)$$

$$= 1 - e^{-\lambda t} t > 0 t > 0$$

$$f_{T}(t) = d F_{T}(t) = 0$$

$$2 t \leq 0$$

Random Points Interpretation

Given N(t) = k, the k event times are equivalent to k independent RVs that are uniformly distributed over [0, t], given that they are ordered.

In other words, let $u_1, u_2, ..., u_k$ be k independent trials of a RV uniformly distributed over [0, t].

Ex:
$$k = 5$$

Then, define $s_1, s_2,...,s_k$ to be the ordered version of the u'S.

Suppose two customers arrive at a shop during a twominute period. Find the probability that one arrived in the first minute and the other arrived in the second minute.

Potson approach:
$$P(N(1)=1 \mid N(2)=2) = P(N(1)=1 \land N(2)=2) = P(N(2)=2)$$

$$P(N(1)=1 \mid N(2)=2) = P(N(2)=2)$$

Definition of Poisson Process

Postulates

Homogeneous

Standard

Inter-arrival Times are Exponential

Random Points

Similarities of Wiener and Poisson processes:

Stationary and independent increments Variance are scalar of time Initial is 0

Differences between Wiener and Poisson processes:

Continuous and discrete

Gaussian and Poisson

Mean: 0 and λt

Thank You!

Ve501 2020-2021 Fall 32