Protocols d'Internet<

Preguntes Topic 6. VPN

Pregunta 1. Explica cual es el propósito de contratar una VPN.

L'objectiu principal d'una VPN és el de connectar un o diversos llocs remots amb la seu on hi ha els serveis principals i aconseguir l'accés com si s'estés dins la mateixa xarxa privada. Pot ser site-to-site o remote access. Té altres utilitats com pugui ser aconseguir l'anonimitat a través d'Internet.

Pregunta 2. Define y explica los principales parámetros de tráfico. Idem para los parámetros de calidad de servicio.

Paràmetres de tràfic:

- CIR (Committed Information Rate): Ràtio mitjana de dades (b/s) associada a un servei (no és una ràtio instantània).
- EIR (Excess Information Rate): Ràtio mitjana de dades (b/s) d'excés respecte el CIR (EIR≥CIR). A vegades s'especifica un PIR (Peak Information Rate) i PIR =CIR+EIR EIR=PIR-CIR (an excess !!!).
- CBS (Committed Burst Size): Mida en bytes d'informació transmesa. Quantitat de bytes que es poden enviar durant un període de temps T quan hi ha congestió. Normalment és la mida del paquet.
- EBS (Excess Burst Size): Excés de bytes d'informació transmesa. Quanitat extra de bytes que poden ser enviats per un router al llarg d'un temps T quan no hi ha congestió. Llavors, si EBS>0 pots enviar tràfic superior al que marca el CIR.

Paràmetres de qualitat:

- Packet Delay: Demora en segons d'un paquet des del moment que surt des d'un punt fins que arriba a l'altre. És important en aplicacions de temps real.
- Jitter: Variació de la demora d'un paquet. És important en aplicacions en temps real. Es calcula com la diferència entre la demora mitjana i el temps mínim dels paquets.
- Paquets perduts: Percentatge de paquets perduts respecte del total. És important en aplicacions com Veu IP (el 3% dels paquets perduts és una xifra inacceptable en un servei com aquest).

Pregunta 3. ¿Cómo funciona el enrutamiento por MPLS? ¿Qué funcionalidades tiene la etiqueta MPLS?

L'MPLS permet QoS, serveis VPN, enginyeria de tràfic i té suport per múltiples protocols.

L'enrutament per MPLS funciona amb l'etiquetament de paquets. S'estableix una comunicació bidireccional entre dos routers MPLS (LSR) a sobre d'un camí preestablert (generalment per BGP). Aquestes etiquetes tenen significat només a nivell local i gràcies al Label Distribution Protocol (LDP) cada LSR assigna a una taula pròpia les interfícies de sortida dels paquets en funció de l'etiqueta que porta. Aleshores l'LSR li canvia l'etiqueta i l'envia al següent router.

Les etiquetes tenen 20 bits per definir la mateixa etiqueta, 3 bits per definir QoS, 1 de flag (bottom of stack) i 8 bits pel TTL.

Pregunta 4. Explica en qué consiste el servicio EtherLAN de MetroEthernet y las diferencias entre un servicio EPLan (Ethernet Private LAN) y uno EVPLan (Ethernet Virtual Private LAN).

MetroEthernet: Ethernet a l'Àrea Metropolitana de Metro. S'interconnecten els switchos i routers a través de l'ISP utilitzant VPN. Aquest servei ofereix punt a punt, multipunt a multipunt i punt a multipunt. Cada entitat lògica s'anomena UNI.

EPLan: Connectivitat multipunt a multipunt entre dos o més UNI. Cada UNI només està associat a un EVC (Ethernet Virtual Connection). L'usuari no pot veure el tag de la VLAN.

EVPLan: Connectivitat multipunt a multipunt entre dos o més UNI amb suport múltiple de EVC. L'usuari ha de posar tag als paquets per cada EVC.

Pregunta 5. Explica en qué consiste el servicio EtherLine de MetroEthernet y las diferencias entre un servicio EPL (Ethernet Private Line) y uno EVPL (Ethernet Virtual Private Line).

EtherLine és una tecnologia punt a punt. Poden ser:

- Ethernet Private Line: És un EVC punt a punt on l'usuari defineix el CIR, CBS, EIR, EBS,... Es pot concebre com un punt a punt pur on l'EPL suporta un únic EVC entre dos UNI. Com que només hi ha un EVC, l'usuari no pot veure el tag VLAN.
- Ethernet Virtual Private Line: Permet multiplexar, per tant, el punt a punt suporta diversos EVC entre dos UNI. És molt similar al Frame Relay o ATM. Com que hi ha diversos EVC, l'usuari ha d'indicar el tag VLAN a cada paquet per EVC.

Pregunta 6. Explica la diferencia entre un servicio EPL (Ether Private Line) y uno EVPL (Ether Virtual Private Line).

Idem que pregunta anterior.

Pregunta 7. Explica cómo se usan las comunidades extendidas en una VPN MPLS-BGP.

S'utilitzen per filtrar i associar el tràfic BGP a una Virtual Routing and Forwarding (VRF). És una tecnologia que permet la coexistència de múltiples instàncies d'una taula d'encaminament al mateix router i al mateix temps. Així, els camins de la xarxa poden ser segmentats sense necessitat de més routers.

Pregunta 8. Explica para que se estructuran las direcciones VPN-IPv4, explicando las distintos tipos de direcciones que se pueden generar.

S'estructuren les adreces VPN-IPv4 per poder crear comunitats exteses i associar les adreçes VPN amb les adreces IP en funció del seu ús. Hi ha 3 tipus que es poden generar. El tipus 0 està estructurada en: 2B(Type Field) + 2B (Admin Field) + 4B(Assigned # field). Aquest tipus usa un nombre d'un AS en l'admin field i el nombre assignat per l'ISP al assigned field. El tipus 1 i 2 està estructurats segons 2B(Type field) + 4B(Admin field) +

2B(Assigned # field). El tipus 1, l'admin field conté una adreça IP pública i el assigned field, el nombre assignat per l'ISP. El tipus 2 conté a 4-octet AS number a l'admin field i el mateix nombre assignat al assigned field.

Pregunta 9. Explica cómo se crea una VPN MPLS-BGP entre las sedes Site-1 y Site-2. Explica también el proceso de envío de un paquete IP entre el Site-1 y el Site-2.

Site 1 i Site 2 comparteixen la VRF verda.

CE1 anuncia la xarxa 10.1/16 via eBGP a PE1.

PE1 afegeix 10.1/16 a la VRF verda usant un identificador RD.

PE1 determina que 10.1/16 s'ha d'adjuntar a la VRF verda usant port físic d'entrada.

PE1 exporta via iBGP la ruta:

- Selecciona una etiqueta MPLS com a site-id i l'afegeix a la ruta (per exemple, label 353).
- Selecciona la seva adreça IP de loopback com a next-hop.
- Associa la ruta a la VRF verda utilitzant comunitats exteses.

PE2 reb la ruta per 10.1/16 des de PE1. Les comunitats exteses de BGP determinen si la ruta pertany a una VRF coneguda.

PE2 accepta la ruta perquè pertany a la VRF verda. PE2 guarda l'etiqueta 353 per utilitzar-la per els paquets destinats a site 1.

PE2 també anuncia la VRF verda local cap a PE1.

S'utilitza MPLS per enviar tràfic. S'ha d'establir per cada router MPLS que hi hagi pel camí.

El host 10.2.1.1 de Site 2 es comunica amb el host 10.1.1.1 de Site 1.

PE2 determina la VRF basant-se en el port d'entrada i n'obté: L'etiqueta MPLS associada per arribar a PE1, el next-hop de ruta 10.1/16: Adreça PE1 de loopback i el tag MPLS asociat a PE1 (979).

L'etiqueta LSP usada per enviar paquets a través de l'LSP apropiada.

Ell tag del Site usat pel PE remot per enviar paquets al port apropiat.

