REGULÄRE FLÄCHEN

Definition 3.1.1. Sei $S \subset \mathbb{R}^3$ eine Teilmenge. Wir nennen S eine *reguläre Fläche*, falls es zu jedem Punkt $p \in S$ eine offene Umgebung V von p im \mathbb{R}^3 gibt, sowie eine offene Teilmenge $U \subset \mathbb{R}^2$ und eine glatte Abbildung $F: U \to \mathbb{R}^3$, derart dass gilt

- (i) $F(U) = S \cap V$ und $F: U \to S \cap V$ ist ein Homöomorphismus.
- (ii) Die Jacobimatrix $D_u F$ hat für jeden Punkt $u \in U$ Rang 2.

Proposition 3.1.6. Sei $V_0 \subset \mathbb{R}^3$ offen, sei $f: V_0 \to \mathbb{R}$ eine glatte Funktion. Wir setzen $S := \{(x, y, z)^\top \in V \mid f(x, y, z) = 0\}$. Falls für alle $p \in S$ gilt

grad
$$f(p) \neq (0, 0, 0)^{\mathsf{T}}$$
,

dann ist S eine reguläre Fläche.

Proposition 3.1.9. Sei $S \subset \mathbb{R}^3$ eine reguläre Fläche. Sei (U, F, V) eine lokale Parametrisierung von S. Sei $W \subset \mathbb{R}^n$ eine offene Menge, und $\varphi : W \to \mathbb{R}^3$ eine Abbildung mit $\varphi(W) \subset S \cap V$. Dann ist φ als Abbildung von W nach \mathbb{R}^3 glatt genau dann, wenn $F^{-1} \circ \varphi : W \to U \subset \mathbb{R}^2$ glatt ist.

Korollar 3.1.10. Sei S eine reguläre Fläche, seien (U_1, F_1, V_1) und (U_2, F_2, V_2) lokale Parametrisierungen. Dann ist

$$F_2^{-1} \circ F_1 : F_1^{-1}(V_1 \cap V_2) \to F_2^{-1}(V_1 \cap V_2)$$

glatt.

Proposition 3.1.11. Sei $S \subset \mathbb{R}^3$ eine reguläre Fläche, $p \in S$, und $f : S \to \mathbb{R}^n$ eine Abbildung. Dann sind äquivalent:

- 1.) Es gibt eine offene Umgebung V von p in \mathbb{R}^3 und eine Fortsetzung \tilde{f} von $f|_{S\cap V}$ auf V, die um p glatt ist.
- 2.) Es gibt eine lokale Parametrisierung (U, F, V) mit $p \in V$, so dass $f \circ F : U \to \mathbb{R}^n$ um $F^{-1}(p)$ glatt ist.
- 3.) Für alle lokalen Parametrisierungen (U, F, V) mit $p \in V$ ist $f \circ F : U \to \mathbb{R}^n$ glatt um $F^{-1}(p)$.

Definition 3.1.15. Seien $S_1, S_2 \subset \mathbb{R}^3$ reguläre Flächen. Eine Abbildung $f: S_1 \to S_2$ heißt *Diffeomorphismus*, falls f bijektiv ist und sowohl f als auch f^{-1} glatt sind. Existiert ein solcher Diffeomorphismus $f: S_1 \to S_2$, dann heißen die Flächen S_1 und S_2 diffeomorph.

Veranschaulichung von Proposition 3.1.9.:

