Définition 1.32 - sous-groupe engendré par une partie

Soit (G, \star) , un groupe, L'intersection de tous les sous-groupes de G contenant A est un sous-groupe de G, appelé sous-groupe engendré par A et noté $\langle A \rangle$.

$$\langle A \rangle = \bigcap_{\substack{H \text{ sg de } G \\ A \subset H}} H$$

Proposition 1.33 - caractérisation du sous-groupe engendré par A

Soit (G, \star) un groupe et A une partie de G. Alors $\langle A \rangle$ est, au sens de l'inclusion, le plus petit sous-groupe de G contenant A.

Définition 1.35: groupe monogène 1. Un groupe (G,) est monogène lorsqu'il est engendré par un seul de ses éléments. En d'autres termes, il existe g G tel que G = hgi. On note souvent G = hgi. Dans ce cas tout élément g G tel que G = hgi est appelé générateur de G. 2. Un groupe est dit cyclique lorsqu'il est monogène et fini.

Définition 1.35 - groupe monogène

Un groupe (G, \star) est monogène lorsqu'il est engendré par un seul de ses éléments. En d'autres termes, s'il existe $g \in G$ tel que $G = \langle \{g\} \rangle$ (ou $\langle g \rangle$).

Dans ce cas tout élément $g \in G$ tel que $G = \langle g \rangle$ est appelé générateur de G.

Définition 1.35 bis - groupe cyclique

Un groupe est dit cyclique s'il est fini et monogène.