### Bellabeat Analysis

2022-06-27

#### **Bellabeat**

### Company Background

Bellabeat is a small manufacturer of smart health devices marketed for women. Cofounder and Chief Creative Officer, Urška Sršen, would like an analysis of Bellabeat device data. Urška Sršen, along with cofounder Sando Mur and the Bellabeat marketing analytics team, hope to gain insight into an effective marketing strategy as a result of this analysis.

### The Task at Hand

I hope to identify trends for both Bellabeat and other similar products and help develop marketing based on these trends.

#### The Data

The data that I used is a CSV formatted Kaggle data set titled: FitBit Fitness Tracker Data (CC0: Public Domain, dataset made available through Mobius): It can be located at this website https://www.kaggle.c om/datasets/arashnic/fitbit. The data set contains personal fitness tracker from thirty FitBit users that consented to the submission of their data. Their data includes minute-level output for physical activity, heart rate, and sleep monitoring. It also includes information about daily activity, steps, and heart rate. There are some limitations in this data due to only thirty users submitting their data.

### Processing and Analyzing

I first started by installing the cleaning and analysis packages I needed and loaded their libraries.

```
install.packages("tidyverse")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'

## (as 'lib' is unspecified)

install.packages("lubridate")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'

## (as 'lib' is unspecified)

install.packages("here")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'

## (as 'lib' is unspecified)

install.packages("skimr")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'

## (as 'lib' is unspecified)
```

```
install.packages("janitor")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
library("tidyverse")
## -- Attaching packages ------ tidyverse 1.3.1 --
                    v purrr
## v ggplot2 3.3.6
                                0.3.4
## v tibble 3.1.7
                    v dplyr
                               1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr
           2.1.2
                      v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library("lubridate")
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
library("here")
## here() starts at /cloud/project
library("skimr")
library("janitor")
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
##
      chisq.test, fisher.test
Then, I loaded the CSV files.
daily_activity <- read.csv("dailyActivity_merged.csv")</pre>
daily_calories <- read.csv("dailyCalories_merged.csv")</pre>
daily_intensities <- read.csv("dailyIntensities_merged.csv")</pre>
daily_steps <- read.csv("dailySteps_merged.csv")</pre>
sleep_day <- read.csv("sleepDay_merged.csv")</pre>
weight_log <- read.csv("weightLogInfo_merged.csv")</pre>
Then, I took a look at the data frames.
glimpse(daily_activity)
## Rows: 940
## Columns: 15
## $ Id
                             <dbl> 1503960366, 1503960366, 1503960366, 150396036~
                             <chr> "4/12/2016", "4/13/2016", "4/14/2016", "4/15/~
## $ ActivityDate
## $ TotalSteps
                            <int> 13162, 10735, 10460, 9762, 12669, 9705, 13019~
## $ TotalDistance
                           <dbl> 8.50, 6.97, 6.74, 6.28, 8.16, 6.48, 8.59, 9.8~
## $ TrackerDistance
                             <dbl> 8.50, 6.97, 6.74, 6.28, 8.16, 6.48, 8.59, 9.8~
```

```
## $ VeryActiveDistance
                          <dbl> 1.88, 1.57, 2.44, 2.14, 2.71, 3.19, 3.25, 3.5~
## $ ModeratelyActiveDistance <dbl> 0.55, 0.69, 0.40, 1.26, 0.41, 0.78, 0.64, 1.3~
                          <dbl> 6.06, 4.71, 3.91, 2.83, 5.04, 2.51, 4.71, 5.0~
## $ LightActiveDistance
## $ VeryActiveMinutes
                          <int> 25, 21, 30, 29, 36, 38, 42, 50, 28, 19, 66, 4~
## $ FairlyActiveMinutes
                          <int> 13, 19, 11, 34, 10, 20, 16, 31, 12, 8, 27, 21~
                          <int> 328, 217, 181, 209, 221, 164, 233, 264, 205, ~
## $ LightlyActiveMinutes
## $ SedentaryMinutes
                          <int> 728, 776, 1218, 726, 773, 539, 1149, 775, 818~
## $ Calories
                          <int> 1985, 1797, 1776, 1745, 1863, 1728, 1921, 203~
glimpse(daily_calories)
## Rows: 940
## Columns: 3
## $ Id
               <dbl> 1503960366, 1503960366, 1503960366, 1503960366, 1503960366~
## $ ActivityDay <chr> "4/12/2016", "4/13/2016", "4/14/2016", "4/15/2016", "4/16/~
## $ Calories
               <int> 1985, 1797, 1776, 1745, 1863, 1728, 1921, 2035, 1786, 1775~
glimpse(daily_intensities)
## Rows: 940
## Columns: 10
## $ Id
                          <dbl> 1503960366, 1503960366, 1503960366, 150396036~
## $ ActivityDay
                          <chr> "4/12/2016", "4/13/2016", "4/14/2016", "4/15/~
## $ SedentaryMinutes
                          <int> 728, 776, 1218, 726, 773, 539, 1149, 775, 818~
## $ LightlyActiveMinutes
                          <int> 328, 217, 181, 209, 221, 164, 233, 264, 205, ~
## $ FairlyActiveMinutes
                          <int> 13, 19, 11, 34, 10, 20, 16, 31, 12, 8, 27, 21~
## $ VeryActiveMinutes
                          <int> 25, 21, 30, 29, 36, 38, 42, 50, 28, 19, 66, 4~
<dbl> 6.06, 4.71, 3.91, 2.83, 5.04, 2.51, 4.71, 5.0~
## $ LightActiveDistance
## $ ModeratelyActiveDistance <dbl> 0.55, 0.69, 0.40, 1.26, 0.41, 0.78, 0.64, 1.3~
## $ VeryActiveDistance
                          <dbl> 1.88, 1.57, 2.44, 2.14, 2.71, 3.19, 3.25, 3.5~
glimpse(daily_steps)
## Rows: 940
## Columns: 3
               <dbl> 1503960366, 1503960366, 1503960366, 1503960366~
## $ ActivityDay <chr> "4/12/2016", "4/13/2016", "4/14/2016", "4/15/2016", "4/16/~
## $ StepTotal
               <int> 13162, 10735, 10460, 9762, 12669, 9705, 13019, 15506, 1054~
glimpse(sleep_day)
## Rows: 413
## Columns: 5
## $ Id
                     <dbl> 1503960366, 1503960366, 1503960366, 1503960366, 150~
                     <chr> "4/12/2016 12:00:00 AM", "4/13/2016 12:00:00 AM", "~
## $ SleepDay
## $ TotalMinutesAsleep <int> 327, 384, 412, 340, 700, 304, 360, 325, 361, 430, 2~
## $ TotalTimeInBed
                     <int> 346, 407, 442, 367, 712, 320, 377, 364, 384, 449, 3~
glimpse(weight_log)
## Rows: 67
## Columns: 8
## $ Id
                 <dbl> 1503960366, 1503960366, 1927972279, 2873212765, 2873212~
## $ Date
                 <chr> "5/2/2016 11:59:59 PM", "5/3/2016 11:59:59 PM", "4/13/2~
```

Then, I previewed the column names.

#### head(daily\_activity)

| ##   | Id           | ActivityDate   | TotalSteps   | TotalDistance  | TrackerDist  | ance     |
|------|--------------|----------------|--------------|----------------|--------------|----------|
| ## : | 1 1503960366 | 4/12/2016      | 13162        | 8.50           |              | 8.50     |
| ## 2 | 2 1503960366 | 4/13/2016      | 10735        | 6.97           |              | 6.97     |
| ## 3 | 3 1503960366 | 4/14/2016      | 10460        | 6.74           | i.           | 6.74     |
| ## 4 | 1503960366   | 4/15/2016      | 9762         | 6.28           |              | 6.28     |
| ## 5 | 5 1503960366 | 4/16/2016      | 12669        | 8.16           |              | 8.16     |
| ## 6 | 5 1503960366 | 4/17/2016      | 9705         | 6.48           | 1            | 6.48     |
| ##   | LoggedActiv  | vitiesDistance | e VeryActive | eDistance Mode | ratelyActive | Distance |
| ## : | 1            | C              | )            | 1.88           |              | 0.55     |
| ## 2 | 2            | C              | )            | 1.57           |              | 0.69     |
| ## 3 | 3            | C              | )            | 2.44           |              | 0.40     |
| ## 4 | 1            | C              | )            | 2.14           |              | 1.26     |
| ## 5 | 5            | C              | )            | 2.71           |              | 0.41     |
| ## 6 | 5            | C              | )            | 3.19           |              | 0.78     |
| ##   | LightActive  | eDistance Sede | entaryActive | eDistance Very | ActiveMinute | S        |
| ## : | 1            | 6.06           |              | 0              | 2            | 5        |
| ## 2 | 2            | 4.71           |              | 0              | 2            | 1        |
| ## 3 | 3            | 3.91           |              | 0              | 3            | 0        |
| ## 4 | 1            | 2.83           |              | 0              | 2            | _        |
| ## 5 |              | 5.04           |              | 0              | 3            | _        |
| ## 6 |              | 2.51           |              | 0              | 3            |          |
| ##   | •            | _              | ntlyActiveMi | inutes Sedenta | •            |          |
| ## : | =            | 13             |              | 328            | 728          | 1985     |
| ## 2 | =            | 19             |              | 217            | 776          | 1797     |
| ## 3 | -            | 11             |              | 181            | 1218         | 1776     |
| ## 4 | -            | 34             |              | 209            | 726          | 1745     |
| ## 5 | -            | 10             |              | 221            | 773          | 1863     |
| ## 6 | 5            | 20             |              | 164            | 539          | 1728     |

#### head(daily\_calories)

| ## |   | Id         | ActivityDay | Calories |
|----|---|------------|-------------|----------|
| ## | 1 | 1503960366 | 4/12/2016   | 1985     |
| ## | 2 | 1503960366 | 4/13/2016   | 1797     |
| ## | 3 | 1503960366 | 4/14/2016   | 1776     |
| ## | 4 | 1503960366 | 4/15/2016   | 1745     |
| ## | 5 | 1503960366 | 4/16/2016   | 1863     |
| ## | 6 | 1503960366 | 4/17/2016   | 1728     |

### head(daily\_intensities)

| ## |   | Id         | ActivityDay | SedentaryMinutes | LightlyActiveMinutes |
|----|---|------------|-------------|------------------|----------------------|
| ## | 1 | 1503960366 | 4/12/2016   | 728              | 328                  |
| ## | 2 | 1503960366 | 4/13/2016   | 776              | 217                  |
| ## | 3 | 1503960366 | 4/14/2016   | 1218             | 181                  |
| ## | 4 | 1503960366 | 4/15/2016   | 726              | 209                  |

```
221
## 5 1503960366
                  4/16/2016
                                          773
## 6 1503960366
                  4/17/2016
                                          539
                                                                164
     FairlyActiveMinutes VeryActiveMinutes SedentaryActiveDistance
## 1
                                         25
                       13
## 2
                       19
                                         21
                                                                    0
## 3
                                         30
                                                                    0
                       11
## 4
                                         29
                                                                    0
## 5
                                                                    0
                      10
                                         36
## 6
                       20
                                         38
                                                                    0
     LightActiveDistance ModeratelyActiveDistance VeryActiveDistance
                    6.06
                                               0.55
                    4.71
                                              0.69
## 2
                                                                  1.57
## 3
                    3.91
                                              0.40
                                                                  2.44
## 4
                    2.83
                                               1.26
                                                                  2.14
## 5
                    5.04
                                              0.41
                                                                  2.71
## 6
                    2.51
                                              0.78
                                                                  3.19
head(daily_steps)
##
             Id ActivityDay StepTotal
                  4/12/2016
## 1 1503960366
                                 13162
## 2 1503960366
                  4/13/2016
                                 10735
## 3 1503960366
                  4/14/2016
                                 10460
## 4 1503960366
                  4/15/2016
                                  9762
## 5 1503960366
                  4/16/2016
                                 12669
## 6 1503960366
                  4/17/2016
                                  9705
head(sleep_day)
##
             Τd
                              SleepDay TotalSleepRecords TotalMinutesAsleep
## 1 1503960366 4/12/2016 12:00:00 AM
                                                                          327
## 2 1503960366 4/13/2016 12:00:00 AM
                                                                          384
## 3 1503960366 4/15/2016 12:00:00 AM
                                                        1
                                                                          412
                                                        2
## 4 1503960366 4/16/2016 12:00:00 AM
                                                                          340
## 5 1503960366 4/17/2016 12:00:00 AM
                                                        1
                                                                          700
## 6 1503960366 4/19/2016 12:00:00 AM
                                                                          304
                                                        1
     TotalTimeInBed
## 1
                346
## 2
                407
## 3
                442
## 4
                367
## 5
                712
## 6
                320
head(weight_log)
             Ιd
                                  Date WeightKg WeightPounds Fat
                                                                    BMI
## 1 1503960366 5/2/2016 11:59:59 PM
                                           52.6
                                                     115.9631 22 22.65
## 2 1503960366 5/3/2016 11:59:59 PM
                                           52.6
                                                     115.9631 NA 22.65
## 3 1927972279 4/13/2016 1:08:52 AM
                                          133.5
                                                     294.3171
                                                               NA 47.54
## 4 2873212765 4/21/2016 11:59:59 PM
                                           56.7
                                                     125.0021
                                                               NA 21.45
## 5 2873212765 5/12/2016 11:59:59 PM
                                           57.3
                                                     126.3249
                                                               NA 21.69
## 6 4319703577 4/17/2016 11:59:59 PM
                                           72.4
                                                     159.6147
                                                               25 27.45
     IsManualReport
                            LogId
## 1
               True 1.462234e+12
## 2
               True 1.462320e+12
```

```
## 3
              False 1.460510e+12
## 4
               True 1.461283e+12
## 5
               True 1.463098e+12
## 6
               True 1.460938e+12
I took another look at the column names for summary statistics and merging purposes.
colnames(daily_activity)
   [1] "Id"
                                    "ActivityDate"
   [3] "TotalSteps"
                                    "TotalDistance"
##
   [5] "TrackerDistance"
                                    "LoggedActivitiesDistance"
##
##
  [7] "VeryActiveDistance"
                                    "ModeratelyActiveDistance"
  [9] "LightActiveDistance"
                                    "SedentaryActiveDistance"
## [11] "VeryActiveMinutes"
                                    "FairlyActiveMinutes"
## [13] "LightlyActiveMinutes"
                                    "SedentaryMinutes"
## [15] "Calories"
colnames(daily calories)
## [1] "Id"
                     "ActivityDay" "Calories"
colnames(daily_intensities)
##
   [1] "Id"
                                    "ActivityDay"
   [3] "SedentaryMinutes"
##
                                    "LightlyActiveMinutes"
  [5] "FairlyActiveMinutes"
                                    "VeryActiveMinutes"
   [7] "SedentaryActiveDistance"
                                    "LightActiveDistance"
   [9] "ModeratelyActiveDistance" "VeryActiveDistance"
colnames(daily_steps)
## [1] "Id"
                     "ActivityDay" "StepTotal"
colnames(sleep_day)
## [1] "Id"
                             "SleepDay"
                                                  "TotalSleepRecords"
## [4] "TotalMinutesAsleep" "TotalTimeInBed"
colnames(weight_log)
## [1] "Id"
                        "Date"
                                          "WeightKg"
                                                           "WeightPounds"
                        "BMI"
## [5] "Fat"
                                          "IsManualReport" "LogId"
Then, I did calculations for a summary.
daily_activity %>%
  select(TotalSteps, TotalDistance, SedentaryMinutes, Calories) %>%
  summary()
##
      TotalSteps
                    TotalDistance
                                      SedentaryMinutes
                                                          Calories
                    Min.
                           : 0.000
                                           : 0.0
                                                       Min.
  1st Qu.: 3790
                    1st Qu.: 2.620
                                      1st Qu.: 729.8
                                                       1st Qu.:1828
##
## Median : 7406
                    Median : 5.245
                                     Median :1057.5
                                                       Median:2134
## Mean
          : 7638
                    Mean
                          : 5.490
                                     Mean : 991.2
                                                       Mean
                                                             :2304
## 3rd Qu.:10727
                    3rd Qu.: 7.713
                                      3rd Qu.:1229.5
                                                       3rd Qu.:2793
           :36019
                           :28.030
                                             :1440.0
                                                              :4900
## Max.
                    Max.
                                      Max.
                                                       Max.
daily_calories %>%
 select(Calories) %>%
```

```
summary()
      Calories
##
  \mathtt{Min.} :
## 1st Qu.:1828
## Median :2134
## Mean :2304
## 3rd Qu.:2793
## Max.
          :4900
daily_intensities %>%
  select(SedentaryMinutes, LightlyActiveMinutes, FairlyActiveMinutes, VeryActiveMinutes) %>%
  summary()
## SedentaryMinutes LightlyActiveMinutes FairlyActiveMinutes VeryActiveMinutes
## Min. : 0.0 Min.
                         : 0.0
                                        Min.
                                             : 0.00
                                                           Min. : 0.00
                                        1st Qu.: 0.00
## 1st Qu.: 729.8
                   1st Qu.:127.0
                                                           1st Qu.: 0.00
## Median :1057.5
                   Median :199.0
                                        Median: 6.00
                                                           Median: 4.00
         : 991.2
## Mean
                    Mean
                         :192.8
                                        Mean : 13.56
                                                           Mean : 21.16
## 3rd Qu.:1229.5
                                                           3rd Qu.: 32.00
                    3rd Qu.:264.0
                                        3rd Qu.: 19.00
## Max.
         :1440.0
                    Max. :518.0
                                        Max. :143.00
                                                           Max. :210.00
daily_steps %>%
  select(StepTotal) %>%
  summary()
##
     StepTotal
## Min. :
## 1st Qu.: 3790
## Median: 7406
## Mean
         : 7638
## 3rd Qu.:10727
## Max.
          :36019
sleep_day %>%
  select(TotalMinutesAsleep, TotalTimeInBed) %>%
  summary()
## TotalMinutesAsleep TotalTimeInBed
## Min. : 58.0
                    Min.
                            : 61.0
## 1st Qu.:361.0
                      1st Qu.:403.0
## Median :433.0
                     Median :463.0
## Mean :419.5
                     Mean
                           :458.6
## 3rd Qu.:490.0
                      3rd Qu.:526.0
## Max.
          :796.0
                     Max.
                            :961.0
weight_log %>%
  select(WeightPounds) %>%
  summary()
   WeightPounds
## Min.
          :116.0
## 1st Qu.:135.4
## Median :137.8
## Mean
         :158.8
## 3rd Qu.:187.5
## Max. :294.3
```

I took a look at comprehensive data frames.

# skim\_without\_charts(daily\_activity) %>% summary()

Table 1: Data summary

| Name                   | daily_activity |
|------------------------|----------------|
| Number of rows         | 940            |
| Number of columns      | 15             |
| Column type frequency: |                |
| character              | 1              |
| numeric                | 14             |
| Group variables        | None           |

## skim\_without\_charts(daily\_calories) %>% summary()

Table 2: Data summary

| Name                   | daily_calories |
|------------------------|----------------|
| Number of rows         | 940            |
| Number of columns      | 3              |
| Column type frequency: | <br>1          |
| numeric                | $\frac{1}{2}$  |
| Group variables        | None           |

## skim\_without\_charts(daily\_intensities) %>% summary()

Table 3: Data summary

| Name                   | daily_intensities |
|------------------------|-------------------|
| Number of rows         | 940               |
| Number of columns      | 10                |
| Column type frequency: |                   |
| character              | 1                 |
| numeric                | 9                 |
| Group variables        | None              |

## skim\_without\_charts(daily\_steps) %>% summary()

Table 4: Data summary

| Name Number of rows    | daily_steps |
|------------------------|-------------|
| Number of columns      | 3           |
| Column type frequency: |             |
| character              | 1           |
| numeric                | 2           |
| Group variables        | None        |

## skim\_without\_charts(sleep\_day) %>% summary()

Table 5: Data summary

| Name<br>Number of rows<br>Number of columns | sleep_day<br>413<br>5 |
|---------------------------------------------|-----------------------|
| Column type frequency: character numeric    | 1<br>4                |
| Group variables                             | None                  |

# skim\_without\_charts(weight\_log) %>% summary()

Table 6: Data summary

| Name                   | weight_log |
|------------------------|------------|
| Number of rows         | 67         |
| Number of columns      | 8          |
| Column type frequency: |            |
| character              | 2          |
| numeric                | 6          |
| Group variables        | None       |

I wanted to see how many unique participants there were to get some conclusions.

### n\_distinct(daily\_activity\$Id)

## [1] 33

n\_distinct(daily\_calories\$Id)

## [1] 33

```
n_distinct(daily_intensities$Id)
## [1] 33
n_distinct(daily_steps$Id)
## [1] 33
n_distinct(sleep_day$Id)
## [1] 24
n_distinct(weight_log$Id)
## [1] 8
Then I wanted to see the number of observations.
nrow(daily_activity)
## [1] 940
nrow(daily_calories)
## [1] 940
nrow(daily_intensities)
## [1] 940
nrow(daily_steps)
## [1] 940
nrow(sleep_day)
## [1] 413
nrow(weight_log)
## [1] 67
I separated the date and time columns in the sleep and weight logs to more easily merge the data sets.
sleep_day_sep <- separate(sleep_day,SleepDay,into=c('date','time'), sep=' ')</pre>
## Warning: Expected 2 pieces. Additional pieces discarded in 413 rows [1, 2, 3, 4,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
weight_log_sep <- separate(weight_log,Date,into=c('date','time'), sep=' ')</pre>
## Warning: Expected 2 pieces. Additional pieces discarded in 67 rows [1, 2, 3, 4,
## 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
I renamed the "ActivityDay" column to "date" in the daily_activity table to make merging easier.
colnames(daily_activity)[2] <- "date"</pre>
I then merged the sleep activity table with daily activity and weight activity with daily activity.
sleep_activity <- merge(daily_activity, sleep_day_sep, by=c("Id", "date"))</pre>
weight_activity <- merge(daily_activity, weight_log_sep, by=c("Id", "date"))</pre>
```

I wanted to see if any of the participants were dropped as a result of the merge.

```
n_distinct(sleep_activity$Id)
## [1] 24
n_distinct(weight_activity$Id)
```

## [1] 8

It ends up being the same number of participants as the sleep and weight logs, which makes sense.

### Analysis with Visualizations

First, I installed the visualization package and loaded the library.

```
install.packages("ggplot2")

## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'

## (as 'lib' is unspecified)

library("ggplot2")
```

I plotted the daily activities and calories burned to make sure that the data made sense. I knew that the more activity, especially "Very Active" activity, should result in more calories burned. I also did one plot comparing the "Very Active Minutes" with "Total Steps".





ggplot(data=daily\_activity, aes(x=FairlyActiveMinutes, y=Calories)) + geom\_point()



 ${\tt ggplot(data=daily\_activity,\ aes(x=LightlyActiveMinutes,\ y=Calories))\ +\ geom\_point()}$ 



ggplot(data=daily\_activity, aes(x=SedentaryMinutes, y=Calories)) + geom\_point()



ggplot(data=daily\_activity, aes(x=VeryActiveMinutes, y=TotalSteps)) + geom\_point() + geom\_smooth()
## `geom\_smooth()` using method = 'loess' and formula 'y ~ x'



As you can see, the results are what one might expect.

Since the activity minutes and sleep minutes had the most participants, I decided to see if there was some relationship between the two to help Bellabeat get an idea on how they might want to market their products.

```
ggplot(data = sleep_activity, aes(x = TotalMinutesAsleep, y = VeryActiveMinutes)) +
  geom_point() + geom_smooth() + xlim(0,800) +
  ylim(0,1000) + labs(title = "Total Minutes Asleep vs VeryActiveMinutes")
```

```
## geom_smooth() using method = 'loess' and formula 'y ~ x'
```

## Warning: Removed 2 rows containing missing values (geom\_smooth).

### Total Minutes Asleep vs VeryActiveMinutes



```
ggplot(data = sleep_activity) + (mapping=aes(x = TotalMinutesAsleep, y = LightlyActiveMinutes)) +
geom_point() + geom_smooth() + xlim(0,800) +
ylim(0,1000) + labs(title = "Total Minutes Asleep vs Lightly Active Minutes")
```

## `geom\_smooth()` using method = 'loess' and formula 'y ~ x'





```
ggplot(data = sleep_activity, aes(x = TotalMinutesAsleep, y = SedentaryMinutes)) +
  geom_point() + geom_smooth() + labs(title = "Total Minutes Asleep vs Sedentary Minutes")
```

<sup>##</sup>  $geom_smooth()$  using method = 'loess' and formula 'y ~ x'





It seems in general that there is a negative correlation with sleep and activity. However, the increase in activity didn't lead to a positive correlation. Instead it appeared to level out where the more active someone was didn't necessarily mean the more time someone spent asleep.

### Conclusion and Recommendations

The analysis indicates that the participants used their devices most commonly for tracking activity, steps, and sleep. I would encourage Bellabeat to focus their marketing on activity because that appeared to be the primary use case. In addition, it would help promote a positive image for women to focus on their health and fitness and general well-being as opposed to things like weight and diet. To extend the analysis, I would like to be able to examine data sets that focus on the demographics of the users (gender, age groups, etc.) and the usage of Bellabeat's products themselves, rather than data from a competitor's product.