SUSECON.²⁰

HPC + Al for everyone – with Microsoft Azure

Karl Podesta

EMEA HPC Technical Specialist, Microsoft

@karlpodesta

kapodest@microsoft.com

Agenda

1. Why HPC on Azure?

- Why High Performance Computing?
- Why Microsoft Azure?
- Industry, Customer, and Partner Ecosystem

2. How could you do it?

- Architectures & Orchestration Tools
- Compute, Storage, Networking
- More Information

Why HPC on Azure?

Microsoft mission:

To enable every person & organisation on the planet to achieve more.

- Enabling Scientists, Engineers, Researchers
- Faster Simulations
- Cheaper Simulations
- More Simulations

Microsoft mission:

To enable every person & organisation on the planet to achieve more.

- Enabling Scientists, Engineers, Researchers
- Faster Simulations
- Cheaper Simulations
- More Simulations

Why Cloud for HPC?

Transformation requires a new level of compute power

Total autonomy will only be 100% accident-free by testing a minimum of 8.8 billion miles.1

An animated film might render as much as **65 million hours** of footage to come up with 90 minutes of worthwhile materials.⁴

Autonomous vehicles will generate and consume roughly **4,000 gigabytes of data** a day by 2020.²

NASA's Earth Observing
System Data and
Information System
(EODSIS) distributes almost
28 terabytes of data a day.⁵

20.4 billion things will be connected by 2020.³

An airplane will generate 40 terabytes of data a day by 2020.⁶

Why Microsoft Azure for HPC?

On-demand

Access on-demand compute resources that enable you to run large parallel and batch compute jobs in the cloud, right when you need to

Extensible

Extend on-premises HPC cluster to the cloud when you need more capacity, or choose to run simulations entirely in the cloud

Scalable

Scale up and down easily, and take advantage of advanced networking features such as RDMA to run true HPC applications using MPI

Native Linux & Windows support

RDMA support

VPN & Express Route (MPLS) networking

Broad partner ecosystem

Azure HPC Attributes

Microsoft Azure: Built for scale

Microsoft Azure: Built for trust

Global	S	ISO 27001:2013 ISO 27017:2015 ISO 27018:2014	N N	ISO 22301:2012 ISO 9001:2015 ISO 20000-1:2011	\checkmark	SOC 1 Type 2 SOC 2 Type 2 SOC 3	S S	CSA STAR Attestation CSA STAR Self-Assessment
US Gov	N N	FedRAMP High FedRAMP Moderate EAR	S	DoD DISA SRG Level 5 DoD DISA SRG Level 4 DoD DISA SRG Level 2 DFARS	☑	DoE 10 CFR Part 810 NIST SP 800-171 NIST CSF Section 508 VPATs	S S	FIPS 140-2 ITAR CJIS IRS 1075
Industry		PCI DSS Level 1 GLBA FFIEC Shared Assessments FISC (Japan) APRA (Australia) OSFI (Canada		FCA + PRA (UK) MAS + ABS (Singapore) 23 NYCRR 500 SEC 17a-4 CFTC 1.31 FINRA 4511		SOX HIPAA BAA HITRUST 21 CFR Part 11 (GxP) MARS-E NHS IG Toolkit (UK)		NEN 7510:2011 (Netherlands) FERPA CDSA MPAA FACT (UK) DPP (UK)
Regional		Argentina PDPA Australia IRAP Unclassified Australia IRAP Protected Canada Privacy Laws China GB 18030:2005 China DJCP (MLPS) Level 3		China TRUCS / CCCPPF EN 301 549 EU ENISA IAF EU Model Clauses EU – US Privacy Shield GDPR Germany C5		Germany IT-Grundschutz workbook India MeitY Japan CS Mark Gold Japan My Number Act Netherlands BIR 2012 New Zealand Gov CIO Fwk		Spain ENS Spain DPA UK Cyber Essentials Plus UK G-Cloud

Microsoft Azure: Built for HPC Performance

ANSYS Fluent on Azure HB VMs

Computational Fluid Dynamics (CFD) Scaled to 12,960 cores in a single job

CP2K on Azure HC VMs

Quantum Chemistry & Solid State Physics Scaled to 22,528 cores in a single job

Broad HPC Partner Ecosystem

How could you do it?

A Cloud HPC Adoption Lifecycle

Existing apps

Clone to cloud

Start using the benefits of a cloud platform without rewriting or rearchitecting your application

Hybrid workflows

Optimize your application workflows to benefit from both on and off premises resources

Cloud workflows

Port your entire application environment and resources to the cloud

Cloud-native apps

Create new differentiating services and modernize your missing critical applications

HPC Architectures: Classic, & Cloud Enabled

Classic HPC architecture & workflow

- 1. Connect to the Azure CycleCloud server to configure the cluster.
- 2. Configure and create the cluster head node, using RDMA enabled machines for MPI.
- 3. Add and configure the on-premises head node.
- 4. If there are insufficient resources, Azure CycleCloud will scale up (or down) compute resources in Azure. A predetermined limit can be defined to prevent over allocation.
- 5. Tasks allocated to the execute nodes.
- 6. Data cached in Azure from on-premises NFS server.
- 7. Data read in from the Avere vFXT for Azure cache.
- 8. Job and task information relayed to the Azure CycleCloud server.

HPC Architectures: Classic, & Cloud Embedded

Wider Cloud Workflow: e.g. Autonomous Driving

Simulation Platform (HPC cluster) sits in the middle of wider workflow:

- 1. Ingest Data
- 2. Store Data
- 3. Simulate
- 4. Model/Learn/Analyse
- 5. Test
- 6. Deploy & Reiterate

Azure Machine Learning

Sophisticated pretrained models To simplify solution development	Vision	<u> </u>	A ^艺 Language	Search
Popular frameworks To build advanced deep learning solutions	C Pytorch	TensorFlow	K Keras	Onnx
Productive services To empower data science and development teams	Azure Databricks	Azure Machir	ne Learning	Machine Learning VMs
Powerful infrastructure To accelerate deep learning	CPU	GPI		FPGA
Flexible deployment To deploy, manage models on intelligent cloud & edge	On-premises	Clou	id	Mo Edge

Azure Orchestration & Tools for HPC

Azure CycleCloud

- Lift & Shift HPC cluster workloads
- Empower users, IT, business & manage whole lifecycle: provision, config, monitor, optimize
- Great for: IT admins, End users, Linux HPC clusters, auto-scale

Azure Batch

- "HPC as a Service" abstract to pools, jobs, tasks
- Autoscale workloads (10s to 1000s of VMs) and auto-recover from failures
- Great for: Developers & end users, auto-scaled and managed workloads

Cloud Native HPC

- Choose from 100s of Azure Services (laaS, PaaS, SaaS), including IoT, AI, ML, Data
- Best Practice
 Architectures, docs, and templates available online
- Great for: "Next Generation" HPC apps and app development

Partner Solutions

- Third-party, Partner/ISV solutions for every industry/scenario
- Integrated or available through Marketplace
- Great for: integrated & managed solutions from trusted names

SLES HPC in Azure Portal

Azure Compute for HPC, AI, and Vizualisation

CPU VMs

HB—Memory bandwidth

HC—Dense compute

GPU & FPGA-enabled VMs

NV—Graphics applications

NC—GP-GPU compute

ND—Deep Learning

NP—Programmable FPGA

Cray in Azure

Managed, Custom bare-metal Large to extreme-scale HPC

Azure Network integration

>80.000 IOPs **Premium Storage**

Low latency, high throughput apps

Burstable VMs

General Purpose VMs

F—Compute-optimized

D—Standard workloads

E—Higher Memory

Storage & Highest Memory VMs

M—Extreme memory

L—High SSD & IOPS

Azure Compute for HPC, AI, and Vizualisation

	HBv2	НВ	HC	<u> </u>
Workload Optimized	Memory Bandwidth	Memory Bandwidth	Dense Compute	Large-Memory HPC
CPU	AMD EPYC 2 nd Gen "Rome"	AMD EPYC 1 st Gen "Naples"	Intel Xeon Platinum 1 st Gen "Skylake"	Intel Xeon E5 v3 "Haswell"
Cores/VM	120	60	44	16
TeraFLOPS/VM (FP64)	4 TF	0.9 TF	2.6 TF	0.7 TF
Memory Bandwidth	353 GB/s	263 GB/sec	191 GB/sec	82 GB/s
Memory	4 GB/core, 480 total	4 GB/core, 240 total	8 GB/core, 352 GB	14 GB/core, 224 GB
Local Disk	900 GB NVMe	700 G	B NVMe	2 TB SATA
InfiniBand	200 Gb HDR	100 G	56 Gb FDR	
Network	32 GbE	32	16 GbE	

Azure Compute for HPC, AI, and Vizualisation

- Variable configuration for GPU workstations for content consumption
- Modern workspace for interactive collaboration

- Scale out using IB for multimode HPC and ML workloads on any MPI stack
- Scale-up multi GPU VMs with fast NVLINK interconnect for highdensity single box training and HPC workloads

Scalable Storage Options

Azure has the global capacity for petabyte scale data sets common in many industries such as Energy, Media, and Life Sciences

Object Storage

Azure Blobs

Data Lake Storage

Azure Data Lake Storage Gen 2

File Storage

Azure Files Avere vFXT for Azure

Azure NetApp Files

Hybrid Storage

Azure StorSimple Azure File Sync

Disk Storage

Azure Disk Storage

160 trillion

200 trillion

storage transactions / month

objects currently in storage

Data Transport

Azure Import/Export Azure Data Box

Scalable Storage Options for Azure HPC

VM + Disk

Disk Storage

RAID partitions

SATA/SSD/NVMe

Small Scale

Blob

Object Storage Filesystem Interfaces Hot/Cool/Archive Tiers Persistent/Staging

Parallel FS

Disk Storage Lustre/BeeGFS/OND SATA/SSD/NVMe Med/Large Scale

Avere vFXT

Cache Storage Great for NFS reads Hybrid capability Med/Large Scale

Netapp Files

Filesystem Storage NFS/SMB Familiar Filer 'aaS' Med/Large Scale

Cray ClusterStor

Filesystem Storage Large Parallel FS Dedicated Hardware Large Scale

101010 101010 101010 101010 010101 010101 010101 010101 101010 101010 101010 101010

Data Transfer

Native tools: AzCopy Acceleration & Managed Aspera/Signiant/FileCatalyst

Offline Data Transfer

Online Data Transfer

Data Box

- · Capacity: 100 TB
- Weight -50 lbs.
- Secure, ruggedized appliance
- GA September 2018

Data Box Disk

- + Capacity: 8TB ea; 40TB/order
- Secure, ruggedized USB drives orderable in packs of 5 (up to
- . Currently in Preview

Data Box Heavy

- Capacity: 1000TB
- Weight 500+ lbs
- Secure, ruggedized
- Preview September 2018

Data Box Gateway

- Virtual device provisioned in your hypervisor
- Supports storage gateway, SMB. NFS. Azure blob. files
- Preview: September 2018

Data Box Edge

- Local Cache Capacity: -12 TB. Includes Data Box Gateway
- and Azure IoT Edge.
- Preview: September 2018

Microsoft Azure + SUSE : Built for HPC

Comprehensive portfolio

Only cloud vendor to offer laaS, PaaS, hybrid and supercomputer solutions for HPC

Easy to Transition

Tools for hybrid infrastructure, cloud clusters, data staging, and cloud apps

Intelligent Cloud

Join HPC with Al and IOT for Digital Twins and building next generation models

Extensive partner ecosystem

Unique programs & industry leaders ready to collaborate with your business

Investment In HPC

Dedicated HPC engineering and customer engagement teams

More Information on Azure HPC

Azure HPC:

https://azure.microsoft.com/en-us/solutions/high-performance-computing/

Azure HPC Reference Architectures:

https://docs.microsoft.com/en-us/azure/architecture/topics/high-performance-computing

AZHPC (Azure Engineering Tool for easy HPC deployments):

https://github.com/Azure/azurehpc

Unpublished Work of SUSE LLC. All Rights Reserved.

This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer

This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.

