CHAPTER 2

Unsupervised Learning (Introduction and K-means)

Content

- Introduction to Unsupervised Learning
- K-means clustering
- Probabilistic clustering via EM algorithm
- Hierarchical clustering
- Unsupervised Learning with Python
- Determine Number of Clusters with Python

INTRODUCTION TO UNSUPERVISED LEARNING

Unsupervised Learning

- Definition of Unsupervised Learning:
 Learning useful structure without labeled classes,
 optimization criterion, feedback signal, or any other information beyond the raw data
- Methods
 - Clustering (n-link, k-means, GAC,...)
 - Taxonomy creation (hierarchical clustering)
 - Novelty detection ("meaningful"outliers)
 - Trend detection (extrapolation from multivariate partial derivatives)

Clustering

- Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 - In fact, association rule mining is also unsupervised
- This chapter focuses on clustering.

An illustration

The data set has three natural groups of data points,
 i.e., 3 natural clusters.

What is clustering for?

- Let us see some real-life examples
- Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts.
 - Tailor-made for each person: too expensive
 - One-size-fits-all: does not fit all.
- Example 2: In marketing, segment customers according to their similarities
 - To do targeted marketing.

What is clustering for? (cont...)

- Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
 - To produce a topic hierarchy
- In fact, clustering is one of the most utilized data mining techniques.
 - It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 - In recent years, due to the rapid increase of online documents, text clustering becomes important.

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
 - ...
- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance ⇒ maximized
 - Intra-clusters distance ⇒ minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

K-MEANS CLUSTERING

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

$$\{\mathbf{x}_1, \, \mathbf{x}_2, \, \dots, \, \mathbf{x}_n\},\$$

where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- The k-means algorithm partitions the given data into k clusters.
 - Each cluster has a cluster center c, called centroid.
 - k is specified by the user

 The goal of K-means clustering is to minimize the following objective function

$$\min_{I_{ik}, c_k} J(I_{ik}, c_k), where J(I_{ik}, c_k) = \sum_{i=1}^n \sum_{k=1}^c I_{ik} ||x_i - c_k||^2$$

where $I_{ik} = \{0, 1\}$ are binary variables and c_k are the cluster centers.

If there are three clusters, the above problem becomes

$$\min_{I_{ik},c_k} \sum_{i=1}^n \left[I_{i1} || x_i - c_1 ||^2 + I_{i2} || x_i - c_2 ||^2 + I_{i3} || x_i - c_3 ||^2 \right]$$

• That is, we want to find centers c_1 , c_2 and c_3 that are closest to the data samples x_i in three different regions.

Graphically illustration of K-means clustering

How to find a local optimal solution for the k-means clustering problem?

By the following alternating updating scheme

Step 1: Updating Assignment

Step 2: Updating Centroid

Step 1: Updating Assignment

- Assign each sample to the closest centroid
- That is,

$$I_{ik} = 1 \text{ if } \left| |x_i - c_k| \right|^2 \le \left| |x_i - c_j| \right|^2, \text{ for j=1,...c}$$
 $I_{ik} = 0 \text{ otherwise}$

Step 2: Updating Centroid

Compute the centroids by the following formula

$$\boldsymbol{c}_k = \frac{\sum_{i=1}^n I_{ik} \boldsymbol{x}_i}{\sum_{i=1}^n I_{ik}}$$

- Why the above two steps?
- Step 1: The update can further minimize the objective function $J(I_{ik}, c_k)$

$$J(I_{ik}, c_k) = \sum_{i=1}^{n} \sum_{k=1}^{c} I_{ik} ||x_i - c_k||^2$$

• Step 2: The formula is obtained by taking first derivative of the objective function $J(I_{ik}, c_k)$ with respect to c_k .

$$\frac{\partial J(I_{ik}, \boldsymbol{c}_k)}{\partial \boldsymbol{c}_k} = 2 \sum_{i=1}^n \sum_{k=1}^c I_{ik} (\boldsymbol{c}_k - \boldsymbol{x}_i)$$

By taking $\frac{\partial J(I_{ik},c_k)}{\partial c_k}=0$, we have

$$\boldsymbol{c}_k = \frac{\sum_{i=1}^n I_{ik} \boldsymbol{x}_i}{\sum_{i=1}^n I_{ik}}$$

- This implies that the updated centroids can further minimize the objective function $J(I_{ik}, c_k)$.
- So, by alternating updating the two steps, the objective function can be minimized.
- · Because of this, we have the following pseudo code.

K-means algorithm

- Given k, the k-means algorithm works as follows:
- Pseudo code:
 - 1)Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
 - 2) Assign each data point to the closest centroid
 - 3)Re-compute the centroids using the current cluster memberships.
 - 4) If a convergence criterion is not met, go to 2).

Stopping/convergence criterion

- 1. No re-assignments of data points to different clusters
 - That is, there is no change of the variables I_{ik} between two iterations
- 2. No change of centroids
 - That is, there is no change of the variables c_k between two iterations.

Animation of K-means Clustering

 You may visit the following link for an illustrative animation of K-means clustering:

http://shabal.in/visuals/kmeans/1.html

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

 Consider the following data set consisting of the scores of two variables on each of seven individuals:

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- Objective: Divide the data into two groups with initial centroids, subject 1 and subject 4.
- [From http://mnemstudio.org/clustering-k-means-example-1.htm]

Answer: The initial centroids are

	Individual	centroid
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

 Compute the distances between each of the samples and the above two centroids by the following formula:

$$d(x, y) = (x_1 - y_1)^2 + \cdots (x_D - y_D)^2$$

where D is the dimension of the samples. In our case, D=2.

- Step 1:Updating Assignment
- Distance table

$$(1-1.5)^2 + (2-1)^2 = 1.25$$

$$(5-1.5)^2 + (7-2)^2 = 37.25$$

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	52
2	1.25	37.25 ¥
3	13	13
4	52	0
5	22.25	6.25
6	28.25	4.25
7	18.5	8.5

- The first three subjects are assigned to centroid 1.
- The last four subjects are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	52
2	1.25	37.25
3	13	13
4	52	0
5	22.25	6.25
6	28.25	4.25
7	18.5	8.5

It can group to centroid 2

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

$$A = \frac{1+1.5+3}{3} = 1.833;$$

$$B = \frac{1+2+4}{3} = 2.333$$

Centroid 2:

$$A = \frac{5+3.5+4.5+3.5}{4} = 4.125$$

$$B = \frac{7+5+5+4.5}{4} = 5.3750$$

- The above steps finish a single iteration.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

- Step 1:Updating Assignment
- Distance table

$$(1.833 - 1.5)^2 + (2.33 - 2)^2 = 0.2222$$

(4.125 -	$-1.5)^2 +$	(5.375 –	$(2)^2$	= 18.2813

Subject	Distance to Centroid 1	Distance to Centroid 2
1	2.4722	28.9063
2	0.2222	18.2813
3	4.1389	3.1563
4	31.8056	3.4063
5	9.8889	0.5313
6	14.2222	0.2813
7	7.4722	1.1563

- The first two subjects are assigned to centroid 1.
- The last five subjects are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
1	2.4722	28.9063
2	0.2222	18.2813
3	4.1389	3.1563
4	31.8056	3.4063
5	9.8889	0.5313
6	14.2222	0.2813
7	7.4722	1.1563

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

$$A = \frac{1+1.5}{2} = 1.25;$$

$$B = \frac{1+2}{2} = 1.5$$

Centroid 2:

$$A = \frac{3+5+3.5+4.5+3.5}{5} = 3.9$$

$$B = \frac{4+7+5+5+4.5}{5} = 5.1$$

- The above steps finish the second iteration.
- However, the current centroids are different from the previous centroids.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

Current
Centroid 1:

$$A = \frac{1+1.5}{2} = 1.25;$$

$$B = \frac{1+2}{2} = 1.5$$
Current Centroid 2:

$$A = \frac{3+5+3.5+4.5+3.5}{5} = 3.9$$

$$B = \frac{4+7+5+5+4.5}{5} = 5.1$$

Previous
Centroid 1:

$$A = \frac{1+1.5+3}{3} = 1.833;$$

$$B = \frac{1+2+4}{3} = 2.333$$
Previous Centroid 2:

$$A = \frac{5+3.5+4.5+3.5}{4} = 4.5$$

$$B = \frac{7+5+5+4.5}{4} = 5.3750$$

- Step 1:Updating Assignment
- Distance table

$$(1.25 - 1.5)^2 + (1.5 - 2)^2 = 0.3125$$

(3.9 -	$1.5)^2 +$	(5.1 -	$(2)^2$	= 15.37
--------	------------	--------	---------	---------

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0.3125	25.2200
2	0.3125	15.3700
3	9.3125	2.0200
4	44.3125	4.8200
5	17.3125	0.1700
6	22.8125	0.3700
7	14.0625	0.5200

- The first two subjects are assigned to centroid 1.
- The last five subjects are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0.3125	25.2200
2	0.3125	15.3700
3	9.3125	2.0200
4	44.3125	4.8200
5	17.3125	0.1700
6	22.8125	0.3700
7	14.0625	0.5200

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

$$A = \frac{1+1.5}{2} = 1.25;$$

$$B = \frac{1+2}{2} = 1.5$$

Centroid 2:

$$A = \frac{3+5+3.5+4.5+3.5}{5} = 3.9$$

$$B = \frac{4+7+5+5+4.5}{5} = 5.1$$

- The above steps finish the second iteration.
- However, the current centroids are the same as previous centroids.
- We stop here and output the solutions.

Current
Centroid 1:

$$A = \frac{1+1.5}{2} = 1.25;$$

$$B = \frac{1+2}{2} = 1.5$$
Current Centroid 2:

$$A = \frac{3+5+3.5+4.5+3.5}{5} = 3.9$$

$$B = \frac{4+7+5+5+4.5}{5} = 5.1$$

Previous
Centroid 1:

$$A = \frac{1+1.5}{2} = 1.25;$$

$$B = \frac{1+2}{2} = 1.5$$
Current Centroid 2:

$$A = \frac{3+5+3.5+4.5+3.5}{5} = 3.9$$

$$B = \frac{4+7+5+5+4.5}{5} = 5.1$$

 Consider the following data set consisting of the scores of two variables on each of five individuals:

Subject	А	В
1	7.0	10.0
2	1.0	10.0
3	6.0	9.0
4	3.0	5.0
5	3.0	2.0

 Objective: Divide the data into two groups with initial centroids, subject 1 and subject 5.

Answer: The initial centroids are

	Individual	centroid
Group 1	1	(7.0, 10.0)
Group 2	5	(3.0, 2.0)

 Compute the distances between each of the samples and the above two centroids by the following formula:

$$d(x,y) = (x_1 - y_1)^2 + \cdots (x_D - y_D)^2$$

where D is the dimension of the samples. In our case, D=2.

- Step 1:Updating Assignment
- Distance table

$$(7-1)^2 + (10-10)^2 = 36$$

$$(3-1)^2 + (2-10)^2 = 68$$

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	80
2	36	68 ★
3	2	58
4	41	9
5	80	0

- The subjects 1, 2 & 4 are assigned to centroid 1.
- The subjects 3 & 5 are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	80
2	36	68
3	2	58
4	41	9
5	80	0,

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	7.0	10.0
2	1.0	10.0
3	6.0	9.0
4	3.0	5.0
5	3.0	2.0

Centroid 1:

$$A = \frac{7+1+6}{3} = 4.667;$$

$$B = \frac{10+10+9}{3} = 9.6667$$

Centroid 2:

$$A = \frac{3+3}{2} = 3$$

$$B = \frac{5+2}{2} = 3.5$$

- The above steps finish a single iteration.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

- Step 1:Updating Assignment
- Distance table
- The subjects 1,2 & 4 are assigned to centroid 1.
- The subjects 3 & 5 are assigned to centroid 2.

Subject	Distance to Centroid 1	Distance to Centroid 2
1	5.55378	58.25
2	13.55578	46.25
3	2.222178	39.25
4	24.55598	2.25
5	61.55618	2.25

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	7.0	10.0
2	1.0	10.0
3	6.0	9.0
4	3.0	5.0
5	3.0	2.0

Centroid 1:

$$A = \frac{7+1+6}{3} = 4.667;$$

$$B = \frac{10+10+9}{3} = 9.6667$$

Centroid 2:

$$A = \frac{3+3}{2} = 3$$

$$B = \frac{5+2}{2} = 3.5$$

- The above steps finish the second iteration.
- However, the current centroids are the same as previous centroids.
- We stop here and output the solutions.

Current
Centroid 1:

$$A = \frac{7+1+6}{3} = 4.667;$$

$$B = \frac{10+10+9}{3} = 9.6667$$
Centroid 2:

$$A = \frac{3+3}{2} = 3$$

$$B = \frac{5+2}{2} = 3.5$$

Previous
Centroid 1:

$$A = \frac{7+1+6}{3} = 4.667;$$

$$B = \frac{10+10+9}{3} = 9.6667$$
Centroid 2:

$$A = \frac{3+3}{2} = 3$$

$$B = \frac{5+2}{2} = 3.5$$

Strengths of k-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn),
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if the sum of square error is used. The global optimum is hard to find due to complexity.

Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, *k*-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

Weaknesses of k-means: To deal with outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Another method is to perform random sampling.
 Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Weaknesses of k-means (cont ...)

The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

(C). Iteration 2

Weaknesses of k-means (cont ...)

If we use different seeds: good results

There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)

(C). Iteration 2

Weaknesses of k-means (cont ...)

• The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

Variants of K-means clustering

K-means clustering employs the following objective function

$$J(I_{ik}, c_k) = \sum_{i=1}^{n} \sum_{k=1}^{c} I_{ik} ||x_i - c_k||^2$$

- The term $||x||^2$ is also known as squared l_2 distance.
- Variants of K-means clustering were developed based on the use of different types of distance.

Distance functions

- Most commonly used functions are
 - Euclidean distance and
 - Manhattan (city block) distance
- We denote distance with: $dist(\mathbf{x}_i, \mathbf{x}_j)$, where \mathbf{x}_i and \mathbf{x}_j are data points (vectors)
- They are special cases of Minkowski distance. h is positive integer.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = ((x_{i1} - x_{j1})^{h} + (x_{i2} - x_{j2})^{h} + \dots + (x_{ir} - x_{jr})^{h})^{\frac{1}{h}}$$

Euclidean distance and Manhattan distance

• If h = 2, it is the Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

• If h = 1, it is the Manhattan distance

$$dist(\mathbf{x}_i, \mathbf{x}_j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ir} - x_{jr}|$$

Weighted Euclidean distance

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{w_1(x_{i1} - x_{j1})^2 + w_2(x_{i2} - x_{j2})^2 + \dots + w_r(x_{ir} - x_{jr})^2}$$

Squared distance and Chebychev distance

• Squared Euclidean distance: to place progressively greater weight on data points that are further apart. $dist(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + ... + (x_{ir} - x_{jr})^2$

 Chebychev distance: one wants to define two data points as "different" if they are different on any one of the attributes.

 $dist(\mathbf{x}_i, \mathbf{x}_j) = \max(|x_{i1} - x_{j1}|, |x_{i2} - x_{j2}|, ..., |x_{ir} - x_{jr}|)$

Manhattan distance based *K – means Clustering*

- Illustrate the use of Manhattan distance in K-means clustering.
- Replacing the squared l_2 distance in K-means objective function by Manhattan distance, we have

$$J(I_{ik}, c_k) = \sum_{i=1}^{n} \sum_{k=1}^{c} I_{ik} ||x_i - c_k||_1$$

where $||x||_1$ is the Manhattan distance.

Manhattan distance based *K – means Clustering*

- Strategy in solving this type of K-means clustering algorithm is similar to that of the classical K-means clustering.
- It employs the alternative updating scheme:
- 1. Updating the assignment
- 2. Updating the centroids

 Consider the following data set consisting of the scores of two variables on each of seven individuals:

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

- Objective: Divide the data into two groups with initial centroids, subject 1 and subject 4 using Manhattan distance based K-means Clustering.
- [From http://mnemstudio.org/clustering-k-means-example-1.htm]

Answer: The initial centroids are

	Individual	centroid
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

 Compute the distances between each of the samples and the above two centroids by the following formula:

$$d(x, y) = |x_1 - y_1| + \cdots |x_D - y_D|$$

where D is the dimension of the samples. In our case, D=2.

- Step 1:Updating Assignment
- Distance table

$$|1 - 1.5| + |2 - 1| = 1.5$$

$$|5 - 1.5| + |7 - 2| = 8.5$$

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	10
2	1.5	8.5
3	5	5
4	10	0
5	6.5	3.5
6	7.5	2.5
7	6	4

- The first three subjects are assigned to centroid 1.
- The last four subjects are assigned to centroid 2.

Closer to Centroid 1

<u> </u>		
Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	10
2	1.5	8.5
3	5	5
4	10	0
5	6.5	3.5
6	7.5	2.5
7	6	4

It can group to centroid 2

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

A = median(1,1.5,3) = 1.5;

B = median(1,2,4) = 2

Centroid 2:

A = median(3.5, 3.5, 4.5, 5) = 4

B = median(4.5,5,5,7) = 5

Why median here? Will explain later

- The above steps finish a single iteration.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

- Step 1:Updating Assignment
- Distance table

$$|1.5 - 1.5| + |2 - 2| = 0$$

$$|4 - 1.5| + |5 - 2| = 5.5$$

Subject	Distance to Centroid 1	Distance to Centroid 2
1	1.5	7
2	0	* 5.5
3	3.5	2
4	8.5	3
5	5	0.5
6	6	0.5
7	4	1

- The first two subjects are assigned to centroid 1.
- The last five subjects are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
1	1.5	7
2	0	5.5
3	3.5	2
4	8.5	3
5	5	0.5
6	6	0.5
7	4	1

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

A = median(1,1.5) = 1.25;

B = median(1,2) = 1.5

Centroid 2:

A = median(3,3.5,3.5,4.5,5) = 3.5

B = median(4.0,4.5,5,5,7) = 5

- The above steps finish the second iteration.
- However, the current centroids are different from the previous centroids.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

Current

A = median(1,1.5) = 1.25;

B = median(1,2) = 1.5

Centroid 2:

A = median(3,3.5,3.5,4.5,5) = 3.5

B = median(4.0,4.5,5,5,7) = 5

Previous

A = median(1,1.5,3) = 1.5;

B = median(1,2,4) = 2

Centroid 2:

A = median(3.5, 3.5, 4.5, 5) = 4

B = median(4.5,5,5,7) = 5

- Step 1:Updating Assignment
- Distance table

$$|1.25 - 1.5| + |1.5 - 2| = 0.75$$

$$|3.5 - 1.5| + |5.0 - 2| = 5$$

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0.75	6.5
2	0.75	5
3	4.25	1.5
4	9.25	3.5
5	5.75	0
6	6.75	1
7	5.25	0.5

- The first two subjects are assigned to centroid 1.
- The last five subjects are assigned to centroid 2.

Closer to Centroid 1

Subject	Distance to Centroid 1	Distance to Centroid 2
Ť	0.75	6.5
2	0.75	5
3	4.25	1.5
4	9.25	3.5
5	5.75	Ŏ\
6	6.75	1
7	5.25	0.5

- Step 2: Updating Centroid
- Go back to the original data table
- Select the closest elements of each group and compute the mean

Subject	А	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Centroid 1:

A = median(1,1.5) = 1.25;

B = median(1,2) = 1.5

Centroid 2:

A = median(3,3.5,3.5,4.5,5) = 3.5

B = median(4.0,4.5,5,5,7) = 5

- The above steps finish the third iteration.
- However, the current centroids are the same as the previous centroids.
- We have to repeat the above steps until there is no change about the centroids or the assignments.

```
Current
Centroid 1:
A = median(1,1.5) = 1.25;
B= median(1,2) = 1.5
Centroid 2:
A= median(3,3.5,3.5,4.5,5) = 3.5
B = median(4.0,4.5,5,5,7) = 5
```

```
Previous
Centroid 1:
A = median(1,1.5) = 1.25;
B = median(1,2) = 1.5
Centroid 2:
A = median(3,3.5,3.5,4.5,5) = 3.5
B = median(4.0,4.5,5,5,7) = 5
```

Updating the Centroids for the Manhattan distance based *K* – means Clustering [Reference]

- Now, we explain why the updating equation for the centroids are the median of the data.
- In the classical K-means clustering algorithm, the updating formula is obtained by taking the first derivative of the objective function with respect to the cluster centers c_k .
- It is basically the same for the case of Mahnhattan distance clustering.

Updating the Centroids for the Manhattan distance based *K* – means Clustering [Reference]

Recall that the objective function is

$$J(I_{ik}, c_k) = \sum_{i=1}^{n} \sum_{k=1}^{c} I_{ik} ||x_i - c_k||_1$$

It is noted that the minimum of

$$\sum_{i=1}^{n} |x_i - c|$$

Is attained at

$$c = median\{x_i\}$$

 Consider the following data set consisting of the scores of two variables on each of five individuals:

Subject	А	В
1	7.0	10.0
2	1.0	10.0
3	6.0	9.0
4	3.0	5.0
5	3.0	2.0

 Objective: Divide the data into two groups with initial centroids, subject 1 and subject 5 using Manhattan distance based K-means Clustering.

- Answer: We can follow exactly the same procedure as in Example 1 to obtain the solution.
- At first, we have the following distance table

Subject	Distance to Centroid 1	Distance to Centroid 2
1	0	12
2	6	10
3	2	10
4	9	3
5	12	0

• The new cluster centers are (6,10) and (3,3.5).

Next, the distance table is updated as below

Subject	Distance to Centroid 1	Distance to Centroid 2
1	1	10.5
2	5	8.5
3	1	8.5
4	8	1.5
5	11	1.5

- The new cluster centers are (6,10) and (3,3.5).
- There is no change in cluster centers. So, it converges.
 We can output the solutions.

K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity, efficiency and
 - other clustering algorithms have their own lists of weaknesses.
- No clear evidence that any other clustering algorithm performs better in general
 - although they may be more suitable for some specific types of data or applications.
- Comparing different clustering algorithms is a difficult task.
 No one knows the correct clusters!