

EO4EU Platform 2024 IEEE International Geoscience and Remote Sensing Symposium July 7, 2024

Speakers: Dr. Vasileios A. Baousis(ECMWF)

Challenges for exploiting EO data

Diverse sources of information

Data fragmentation

Difficulty to find and retrieve relevant data

Lack of tools to download and process EO data

EO4EU - brief intro

- EO4EU provides improved access to the EU EO data offered by a variety of platforms and data repositories.
- Data sources include Copernicus services and associate platforms like the DIAS, but also upcoming initiatives like Destination Earth (DestinE)
- Users interact through:
 - A multi-layered user interface (GUI) for visual analytics coupled with a Workflow Editor,
 - A Command Line Interface (CLI), and a respective Application Programming Interface (API),
 - An extended reality (XR) interface

EO4EU Partners

EO4EU architectural bird's-eye view

EO4EU applications

- Dashboards
- API
- Data processing workflows
- XR

EO4EU processing infrastructure

- Fusion
- Semantic annotation
- Compression
- Knowledge management

EO sources

- Copernicus: CAMS-CDS-CLMS,CMEMS
- ADAM: Sentinel Satellite Missions, Copernicus Data space
- Other services & use cases :Istat.it, INSPIRE,CMCC,ECMWF NOAA

EO4EU Platform

The EO4EU Platform* allows for searching, discovering processing and analyzing EO data and is based on a series of innovative technologies which allow to:

- Access** EO data from different sources (e.g., Copernicus, Galileo, ECMWF)
- Support a sophisticated representation of data through a semantic-enhanced **Knowledge Graph**
- Use Machine Learning from marketplace to EO data processing
- Visualize EO data through easy-to-use graphical interfaces and **Extended Reality** applications

^{*} https://www.eo4eu.eu/platform

^{**} Public user access: May 2024

EO4EU Multi-cloud infrastructure

CINECA HPC Infrastructure

Key results

EO Data Ecosystem

Semantic Enhanced Knowledge Graphs

Data Fusion Techniques

Dynamic Semantic Annotation and Learned Compression

Augmented/ Extended Reality

Data Analytics Visualisations

Who benefits?

Researchers and Academia: Supports research institutions with more accessible EO data

Policy-Makers: Supports evidence-based policy-making and climate action

EO data providers:Promotes further usage of EO data through value added tools

Private sector:
Encourages innovation through more
accessible EO data for non-technical users

Citizens and scientists: Enables new actions to reduce and monitor the impact of climate change

Standards Development Organisations: Contributes to the revision of standards related to EO data

EO4EU Use Cases

EO for Personalised Health care Services: expand mobile allergy and airborne hazards forecasting

Food Security: improve adaptability of food production using EO4EU for live climate data tracking and analysis

Soil Erosion: Integrate rainfall datasets through EO4EU to assess soil susceptibility to water erosion

Civil Protection: Improve disaster and calamity prevention and response using EO datasets

Ocean Monitoring: optimise shipping industry travel time across different oceans considering live weather data

Forest Ecosystems: Improve forest productivity using EO4EU to simulate water, anergy and carbon fluxes

Environmental Pests: Locust plague impact assessment and prediction

Visit https://eo4eu.eu/use-cases

EO4EU Components – Data visualization

EO4EU Components – Knowledge Graph

EO4EU knowledge graph enables users to access and explore EO data and derive valuable insights.

- integrates disparate datasets so that users can explore interconnected data points
- enables users to locate specific information effortlessly using natural language queries

XR

EO4EU Components – Workflow Editor

- Canvas with all the available tasks represented as blocks in the left column.
- User can drag & drop the block on the central canvas and connect the block using the links
- Blocks can also be configured by opening the configuration form available by clicking on the menu on the top right of the block

XR

- Creates pipelines for
 - Spatiotemporal processing
 - Cleaning and preparation of data
- Based on Kubeflow and Python
- Messaging through Kafka
- Connection with Marketplace

Self Supervised Learning for EO Data

- We used contrastive learning
 - to learn representations that bring close instances that should be similar
 - using ConvNets and MLPs
 - With EO specific augmentations,
- We evaluate the learnt representations in downstream supervised tasks, land coverage.

EO4EU Components – OpenEO API

- External user access to the EO4EU platform using their own dashboard, using compatible OpenEO API can:
 - Connect with KG
 - Create/start/select aWF workflow
 - Communicate with CFS components
 - Access S3 bucket
 - Visualize Data

Data Tier

A set of data sources is the input of the platform. Heterogeneous data that need pre-processing with the help of a Knowledge Graph.

Data Sources

- •Interlink heterogeneous data sources (different type formats) with the EO4EU ecosystem through Open APIs (e.g. Climate Data Store API for historical occurrence of extreme weather events).
- Access to historical and daily EO datasets.
- Access to real time data collections streamlines (for live connections with devices and applications).
- •Access to open access cohorts of the EC through cloud-based platforms established to provide centralized access to Copernicus data, as well as to GEOSS, INSPIRE, DestinE, Galileo/ EGNOS programmes.
- •Access to open datasets and services provided by ECMWF.

Data Tier

Knowledge Graph-based Decision Making

- A Graph-Based Text Representation is introduced.
- This approach enables the extraction of informative features, structural or textual, for each entity related to the whole knowledge graph.
- For structure-related features, graph measures or indices such as common neighbors, preferential attachment and Adamic Adar indexing will be used.
- For text-related features, graph similarity techniques including graph neural networks and graph kernels will be used.
- By establishing a link prediction pipeline, EO4EU focuses on predicting possible relationship types between nodes of a knowledge graph.

Front-end Tier - Dashboard - Data Analytics Visualization

Provides multi-dimensional User Interface-UI (Web, XR, CLI, API) that enables the user to interact and control the platform.

- Decision-making and policy-maker
- Real-time data analytics and interpretation of environment observations
- Real-time mapping and interactions
- Smart Search Engine based on Text or Annotation Select Data - Smart Category-Type-Parameters Search Engine of the searched item
- Dashboard creation
- Web XR/VR Visualization methods
- Data Analytics based on statistical metrics

Front-end Tier - AI/ML Marketplace

- AI/ML Models-Algorithms-Techniques
- Metadata
- Data Models for Processing and Communication from Block to Block
- Programming Code
- Configuration Files
- Documentation

Building processing workflows

Building processing workflows

Workflow

https://xr.dev.wekeo.apps.eo4eu.eu/VRviewer

Prepare the EO data

- Download the data from S3 bucket
- Reproject the data to EPSG:4326

Prepare the 3D model

- Get the Digital Elevation Model
- Get the texture for the context
- Create a 3D model integrating the EO data, the context data and the DEM

Export and Display

- Export the 3D model to GLTF
- Create 3D tiles from the exported model
- Display on a Webpage

EO4EU Platform 2024 IEEE International Geoscience and Remote Sensing Symposium July 7, 2024

Speakers: Dr. Vasileios A. Baousis(ECMWF)

