Introduction

Generative Adversarial Networks (GANs) have been successful in image generation and semi-supervised learning (SSL). However, existing GANs for SSL face two critical challenges:

1. Conflict in Roles:

- The discriminator in traditional GANs must identify fake samples and classify real samples into correct labels. These tasks are incompatible and often conflict.
- For example, a discriminator trying to classify a fake sample may fail to identify its label correctly.

2. Lack of Semantic Control:

- Existing generators cannot explicitly control the class of the generated samples.
- Label information is ignored during generation, leading to the inability to disentangle class-specific features or styles.

Proposed Solution: Triple-GAN

The **Triple-GAN** framework resolves these issues by introducing a three-player game:

- 1. **Generator (G)**: Models the conditional distribution p(x|y)p(x|y), generating data samples based on labels.
- 2. Classifier (C): Models p(y|x)p(y|x)p(y|x), predicting labels given input data.
- 3. **Discriminator (D)**: Distinguishes whether a pair (x,y)(x,y)(x,y) is from the real data distribution or generated by GGG or CCC.

Key Contributions

- 1. **Novel Framework**: Triple-GAN separates roles between generator, classifier, and discriminator, ensuring each focuses on its primary task.
- 2. **Compatible Utilities**: Carefully designed loss functions ensure that the classifier and generator converge to the true data distribution independently.
- 3. **Improved Performance**: Empirically, Triple-GAN achieves state-of-the-art results in SSL while generating semantically meaningful and class-conditional samples.

Methodology

Factorizing the Joint Distribution

The true joint distribution p(x,y)p(x,y)p(x,y) can be factorized in two ways:

- 1. p(x,y)=p(x)p(y|x)p(x, y) = p(x)p(y|x)p(x,y)=p(x)p(y|x), where p(y|x)p(y|x)p(y|x) is the conditional probability modeled by the classifier CCC.
- 2. p(x,y)=p(y)p(x|y)p(x,y)=p(y)p(x|y)p(x|y)=p(y)p(x|y), where p(x|y)p(x|y)p(x|y) is the conditional probability modeled by the generator GGG.

Three Players

Triple-GAN defines a three-player game:

1. Generator GGG:

- Takes a class yyy and noise zzz as input and generates samples $x \sim G(y,z)x \setminus G(y,z)x \sim G(y,z)$.
- o Goal: Model p(x|y)p(x|y), producing realistic samples that match the data distribution for the given label.

2. Classifier CCC:

- Takes input data xxx and predicts its label yyy.
- o Goal: Model p(y|x)p(y|x), accurately predicting labels for both real and generated samples.

3. **Discriminator DDD**:

- o Distinguishes between real and generated (x,y)(x,y)(x,y) pairs:
 - Real pairs come from the true data distribution p(x,y)p(x,y)p(x,y).
 - Fake pairs come from either GGG (pseudo-data) or CCC (pseudo-labels).

Loss Functions (Utilities)

The loss functions for each player are designed to achieve equilibrium, where GGG and CCC approximate the data distribution p(x,y)p(x,y).

1. Discriminator Loss:

 $U(D) = E(x,y) \sim p(x,y) [\log D(x,y)] + \alpha E(x,y) \sim pC(x,y) [\log D(x,y)] + (1-\alpha)E(x,y) \sim pG(x,y) [\log D(x,y)] + (1-\alpha)E(x,y) \sim pG(x,y) [\log D(x,y)] + \alpha E(x,y) \sim pC(x,y) [\log D(x,y)] + \alpha E(x,y) \sim pC(x,y) [\log D(x,y)] + (1-\alpha)E(x,y) = (1-\alpha)E(x,y) =$

where:

- o $pC(x,y)=p(x)pC(y|x)p_C(x,y)=p(x)p_C(y|x)pC(x,y)=p(x)pC(y|x)$ represents pseudo-labels generated by CCC.
- o $pG(x,y)=p(y)pG(x|y)p_G(x,y) = p(y)p_G(x|y)pG(x,y)=p(y)pG(x|y)$ represents samples generated by GGG.

- α \alpha α balances the importance of classification and generation tasks.
- 2. **Generator Loss**: The generator GGG minimizes the adversarial loss:

 $LG=E(x,y)\sim pG(x,y)[log^{(1-D(x,y))}].L_G = \mathbb{E}_{(x,y)}\sim pG(x,y)[log(1-D(x,y))].L_G = \mathbb{E}_{(x,y)}\sim pG(x,y)[log(1-D(x,y))].$

- 3. Classifier Loss: The classifier CCC minimizes two losses:
 - o A **supervised loss** on labeled data (cross-entropy loss): Lsup= $E(x,y)\sim p(x,y)[-log p_C(y|x)].L_{\text{sup}} = \mathbb{E}[x,y) \sim p(x,y)[-log p_C(y|x)].$
 - o An adversarial loss for pseudo-labeled data: Ladv= $E(x,y)\sim pC(x,y)[log!!!(1-D(x,y))].L_{\text{adv}} = \mathbb{E}[(x,y) \sim pC(x,y)][log(1-D(x,y))].Ladv=<math>E(x,y)\sim pC(x,y)[log(1-D(x,y))].$

Training Algorithm

Triple-GAN is trained iteratively:

- 1. Sample batches of real labeled data, pseudo-labeled data from CCC, and generated data from GGG.
- 2. Update DDD using the discriminator loss U(D)U(D)U(D).
- 3. Update CCC using the supervised loss LsupL_{\text{sup}}Lsup and adversarial loss LadvL_{\text{adv}}Ladv.
- 4. Update GGG using its adversarial loss LGL GLG.

Theoretical Guarantees

- 1. **Equilibrium**: The loss functions are designed so that:
 - CCC approximates p(y|x)p(y|x)p(y|x), while GGG approximates p(x|y)p(x|y)p(x|y).
 - At equilibrium, both the generator and classifier converge to the true data distribution.
- 2. **Non-Competing Roles**: Unlike two-player GANs, where the generator and discriminator compete, Triple-GAN ensures cooperation between CCC and GGG.
- 3. **Pseudo Discriminative Loss**: Additional regularization ensures that CCC benefits from pseudo-labeled data, improving its performance.

Experiments

Datasets

The authors evaluate Triple-GAN on three datasets:

- 1. MNIST (handwritten digits): 50,000 training samples, 10,000 test samples.
- 2. **SVHN** (street view house numbers): 73,257 training samples, 26,032 test samples.
- 3. **CIFAR-10** (natural images): 50,000 training samples, 10,000 test samples across 10 classes.

Classification Results

- 1. Triple-GAN achieves state-of-the-art error rates for semi-supervised classification:
 - o MNIST with 100 labeled samples: **0.91% error**.
 - SVHN with 1,000 labeled samples: 5.77% error.
 - o CIFAR-10 with 4,000 labeled samples: **16.99% error**.
- 2. Outperforms competitors like Improved-GAN and CatGAN.

Generation Results

- 1. Image Quality:
 - o Triple-GAN generates clearer and more diverse images than baselines.
 - o On CIFAR-10, the **inception score** improves significantly (from 3.87 to 5.08).

2. Class-Conditional Generation:

 Generates samples that match the label semantics, even with limited supervision.

Latent Space Interpolation

 Demonstrates smooth transitions between images of different classes in the latent space, preserving semantic consistency.

Conclusion

Triple-GAN offers a unified framework that achieves:

- 1. **State-of-the-art classification performance** in semi-supervised settings.
- 2. **Semantically controlled generation**, enabling class-specific image synthesis.
- 3. **Disentanglement of class and style**, allowing better latent space interpolation.

By addressing the fundamental issues of two-player GANs, Triple-GAN advances the field of semi-supervised learning and generative modeling.