Treinamento no desenvolvimento de aplicações GIS

Banco de dados espacial PostGIS

www.serpro.gov.br

Autor: Rodrigo Hjort (CETEC/Brasília)

Licença

Esta obra está licenciada sob uma licença Creative Commons

http://creativecommons.org/licenses/by/2.5/br/

Ficha técnica

Autoria

Rodrigo Hjort Coordenação Estratégica de Tecnologia – Brasília

Revisão

José Ronaldo Agra de Souza Filho Coordenação Estratégica de Tecnologia – Brasília

Alisson Coelho de Morais Superintendência de Desenvolvimento – Curitiba

Agenda

- Conceito de banco de dados espacial
- A extensão PostGIS
 - Instalação e configuração
- Carga de dados espaciais
 - Criação de tabelas georreferenciadas
 - Importação e exportação de shapefiles
- Funções e operadores espaciais
- Questões de performance
 - Índices espaciais

O que é um banco de dados espacial?

Banco de dados convencional

Tipos de dados texto, número, data/hora Índices b-tree, hash Funções e operadores length(), now(), +, >=

Banco de dados espacial

Tipos de dados espaciais geometry, geography Índices espaciais r-tree, quad-tree, kd-tree Funções e operadores espaciais ST_Length(), ST_X(), &&, @

Um banco de dados espacial...

armazena e manipula objetos espaciais como qualquer outro objeto do banco de dados

A modelagem espacial

O que é o ESRI Shapefile?

- formato popular de arquivo contendo dados
 geoespacials em forma de vetor usado em GIS
- desenvolvido e regulamentado pela ESRI como um especificação aberta para interoperabilidade entre diversos fornecedores
- carregam geometrias (pontos, linhas, polígonos) acompanhadas de atributos que as descrevem

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Evolução das arquiteturas GIS

First-Generation GIS:

Geometry, indexes, and attributes stored in file system

Second-Generation GIS:

Geometry, indexes, and attributes stored in file system (may also be stored in BLOBs in RDBMS)

Attributes stored in RDBMS tables

Third-Generation GIS:

Geometry stored in ADTs in RDBMS tables with related business data

O que é o PostgreSQL?

- SGBD objeto-relacional de código aberto
- inicialmente desenvolvido na UC Berkeley em 1986
- segue padrões SQL ANSI
- altamente extensível
- licença BSD
- "The world's most advanced open source database"

O que é o PostGIS?

PostGIS "spatially enables" the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information systems (GIS)

Por que não usar shapefiles?

Porque usar SGBD é muito melhor!

Instalando o PostGIS e utilitários

```
# apt-get install
•postgresql-9.2-postgis-2.1
•pgadmin3
•qgis python-qgis qgis-plugin-grass
•Repositórios (ver repositorios.txt)
•Aceitar a não verificação de autenticidade
```


Criando o banco modelo

```
# su postgres
$ createuser -P -s sa_gis
$ createdb -0 sa gis template postgis
$ cd /usr/share/postgresql/9.2/contrib/postgis-2.1
$ psql template postgis -f postgis.sql
$ psql template postgis -f postgis comments.sql
$ psql template_postgis -f spatial_ref_sys.sql
```


Criando o banco "curso"

```
# su postgres

# createdb curso -0 sa_gis \
   -T template_postgis

$ psql -h localhost -U sa_gis curso
```

Verificando as versões

```
SELECT version();
PostgreSQL 9.2 on ...
SELECT postgis_version();
2.1 USE GEOS=1 USE PROJ=1 USE STATS=1
SELECT postgis full version();
POSTGIS="2.0.1 r9979" GEOS="3.3.3-CAPI-1.7.4"
PROJ="Rel. 4.7.1, 23 September 2009" LIBXML="2.7.6"
```


Analisando o banco "curso"

```
curso
🗞 Catálogos (2)
  Esquemas (1)
 public
   Openion (0)
   FTS Configurations (0)
   FTS Dictionaries (0)
   FTS Parsers (0)
   FTS Templates (0)
Sequências (0)
   Tabelas (1)
     spatial ref sys
   Funções de Gatilho (2)
     Visões (2)
       geography columns
     geometry columns
```

Criando geometrias no PostGIS

```
CREATE TABLE geometrias (
  nome varchar,
  geom geometry
CREATE TABLE geometrias (
  nome varchar
SELECT AddGeometryColumn(
  'geometrias', 'geom', 0, 'GEOMETRY', 2);
```


Populando geometrias no PostGIS

```
INSERT INTO geometrias VALUES
('Ponto 1', 'POINT(0 0)'),
('Linha 1', 'LINESTRING(0 0, 1 1, 2 1, 2 2)'),
('Polígono 1', 'POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))'),
('Polígono 2', 'POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),
 (1 1, 1 2, 2 2, 2 1, 1 1))'),
('Coleção 1', 'GEOMETRYCOLLECTION(POINT(2 0),
POLYGON((0 0, 1 0, 1 1, 0 1, 0 0)))');
SELECT * FROM geometrias;
SELECT nome, GeometryType(geom), ST NPoints(geom),
 ST Length(geom), ST_Perimeter(geom),
  ST Area(geom), ST_Summary(geom)
FROM geometrias;
```


Visualizando no Quantum GIS

A hierarquia da geometria

Projeções e sistemas de coordenadas

http://spatialreference.org/ref/epsg/4326/

O tipo de dados geográfico

geography datatype

Modelo Esférico

geometry datatype

Modelo Plano (Cartesiano)

Usar geometria ou geografia?

A que distância da Islândia passa um voo de Los Angeles a Paris?

A tabela de sistemas de referências

A tabela de colunas geométricas

```
geometry_columns
                             feature table
oid
f table catalog
                             f_table_schema
                             <geometry_column>
f_table_name
                             <attributes>
f_geometry_column
coord dimension
                             spatial_ref_sys
type
                             srid
                             auth name
                             auth sid
                             srtext
                             proj4text
```

SELECT * FROM geometry_columns;

Criando tabela de edifícios

```
CREATE TABLE edificios (
  id serial NOT NULL PRIMARY KEY,
  tipo char(1) NOT NULL,
  nome varchar(30) NOT NULL,
  sigla char(4) NOT NULL
SELECT AddGeometryColumn(
  'edificios', 'local', 4326, 'POINT', 2);
GRANT ALL ON edificios TO public;
SELECT * FROM geometry_columns;
```


Populando dados geolocalizados

```
INSERT INTO edificios (tipo, nome, sigla, local) VALUES
('S', 'Sede', 'SEDE',
ST GeomFromText('POINT(-47.869905 -15.784105)', 4326)),
('R', 'Regional Brasília', 'BSA',
ST GeomFromText('POINT(-47.872472 -15.78744)', 4326)),
('R', 'Regional Curitiba', 'CTA',
ST GeomFromText('POINT(-49.272849 -25.411505)', 4326)),
('R', 'Regional Fortaleza', 'FLA',
ST GeomFromText('POINT(-38.513370 -3.753282)', 4326)),
('R', 'Reg. Rio de Janeiro - Horto', 'RJO',
ST GeomFromText('POINT(-43.234656 -22.968657)', 4326)),
('E', 'Escritório Manaus', 'MNS',
ST GeomFromText('POINT(-60.013399 -3.124259)', 4326));
                        Longitude
                                      Latitude
                                                 WGS 84
```


Visualizando os pontos no mapa

Conversão de ESRI Shapefiles

Shapefiles de exemplo

Importando divisões do Brasil

Verificando a estrutura importada

Importando rodovias e aeroportos

Analisando o conteúdo importado

```
SELECT GeometryType(geom) AS type, ST_SRID(geom) AS srid,
  count(1), avg(ST NPoints(geom)) AS npoints,
  avg(ST Length(geom)) AS length, avg(ST Area(geom)) AS area
FROM brasil
GROUP BY GeometryType(geom), ST SRID(geom);
SELECT GeometryType(geom) AS type, ST SRID(geom) AS srid,
  count(1), avg(ST NPoints(geom)) AS npoints,
  avg(ST_Length(geom)) AS length, avg(ST_Area(geom)) AS area
FROM rodovias
GROUP BY GeometryType(geom), ST SRID(geom);
SELECT GeometryType(geom) AS type, ST_SRID(geom) AS srid,
  count(1), avg(ST_NPoints(geom)) AS npoints,
  avg(ST Length(geom)) AS length, avg(ST Area(geom)) AS area
FROM <u>aeroportos</u>
GROUP BY GeometryType(geom), ST SRID(geom);
```


Visualizando as camadas no mapa

Exportando os edifícios do Serpro

shp2pgsql-gui pgsql2shp

 Attribute table - edificios :: 0 / 6 feature(s) se 				
	ID A	TIPO	NOME	SIGLA
0	12	S	Sede	SEDE
1	13	R	Regional Brasília	BSA
2	14	R	Regional Curitiba	CTA
3	15	R	Regional Fortaleza	FLA
4	16	R	Regional Rio - Horto	RJO
5	17	E	Escritório Manaus	MNS

As mais de 300 funções espaciais

- Construção: conversão textual (WKT e WKB)
- Saída: WKT, WKB, GML, SVG, KML, GeoJSON
- Atributos: recuperação e alteração de valores
- **Decomposição**: extração de geometrias
- Composição: criação de geometrias
- Medidas: cálculos geométricos (distância, área)
- Simplificação: uso de resoluções menores
- Operadores: intersecta, contém, próximo a

Funções sobre pontos

- Extraindo as coordenadas de um ponto SELECT ST_X(local) AS lon, ST_Y(local) AS lat FROM edificios;
- Calculando as distâncias entre dois pontos
 SELECT ST_Distance(a.local, b.local), a.sigla
 FROM edificios a, edificios b
 WHERE b.sigla = 'SEDE' AND b.id != a.id
 ORDER BY 1;
- Exportando para o formato KML
 SELECT ST_AsKML(local), sigla FROM edificios;

Funções sobre linhas

Selecionando os maiores trechos de rodovias

```
SELECT ST_Length(geom::geography)/1e3 AS km, rodovia1
FROM rodovias
ORDER BY 1 DESC LIMIT 10;
```

Listando as rodovias mais extensas

```
SELECT sum(ST_Length(geom::geography)/1e3), rodovia1
FROM rodovias
GROUP BY rodovia1
ORDER BY 1 DESC LIMIT 5;
```

Obtendo o número de pontos por trecho

```
SELECT ST_NPoints(geom), rodovia1, gid
FROM rodovias;
```


Funções sobre polígonos

Calculando a área dos maiores estados do país

```
SELECT ST_Area(
   ST_Transform(geom, 29100))/1e6 AS km_2, uf
FROM brasil
ORDER BY 1 DESC LIMIT 5;
```

- Obtendo o ponto centróide de cada estado
 SELECT ST AsText(ST Centroid(geom)), uf
 - SELECT ST_AsText(ST_Centroid(geom)), u1
 FROM brasil;
- Obtendo a quantidade de anéis

```
SELECT ST_NRings(geom), uf
FROM brasil
ORDER BY 1 DESC;
```

http://pt.wikipedia.org/wiki/Anexo:Lista de unidades federativas do Brasil por %C3%A1rea

As relações espaciais: intersecção

ST_Intersects(A, B)

Multipoint & Multipoint

Linestring & Polygon

Linestring & Multipolygon

Exemplo de intersecção

Por quais estados do Brasil passa a BR-153?

As relações espaciais: contém

ST_Contains(A, B)
ST_Within(A, B)

Point & Multipoint

Multipoint & Multipoint

Multipoint & Polygon

Exemplo de contém / está contido

Quais são os aeroportos internacionais da região

Norte do país?

As relações espaciais: proximidade

ST_DWithin(A, B, r)

Exemplo de proximidade

 Quais são as rodovias distantes de no máximo 20 km do aeroporto de Viracopos?

```
SELECT DISTINCT rodovia1
FROM rodovias r, aeroportos a
WHERE a.nm_nome = 'Viracopos'
   AND ST_DWithin(
    r.geom::geography,
    a.geom::geography, 20000);
```


Busca por retângulos (bounding box)

```
SELECT nm_nome, geom FROM aeroportos WHERE geom && ST_MakeEnvelope( -47.75, -22.39, -44.96, -24.87, 4326);
```


Os índices espaciais

Exercícios

- Criar banco de dados com suporte a GIS
- Importar shapefile de municípios (IBGE)
- Importar shapefile de mamíferos (IBAMA)
- Importar dados do Censo 2010 (IBGE)
- Responder as questões geoespaciais

Bibliografia

PostgreSQL

http://www.postgresql.org/

PostGIS

http://postgis.net/

Comunidade Planet PostGIS

http://planet.postgis.net/

Comunidade PostGIS US

http://www.postgis.us/

