

- Várias grandezas físicas são representadas não apenas em valores (magnitude), mas, também em direção e sentido
- Se faz necessário uma linguagem matemática especial para representar estas grandezas

- Um vetor tem:
 - Módulo (magnitude)
 - Direção
 - Sentido

• Uma grandeza vetorial é aquela que é expressa através de um vetor

- Grandezas físicas que são descritas apenas pela quantidade são chamadas de grandezas <u>escalares</u>
 - Exemplo: temperatura, pressão, energia, massa e tempo

• Grandeza vetorial mais simples: Deslocamento

• Soma de vetores (Resultante)

$$\vec{s} = \vec{a} + \vec{b}$$

• Soma de Vetores

• Comutativa:
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

• Associativa:
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

• Soma com o inverso:
$$\vec{b} + (-\vec{b}) = 0$$
.

• Soma de Vetores

• Subtração:
$$\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

- Componentes do vetor
 - Pode-se escrever um vetor de acordo com o um sistema de coordenadas retangular (por exemplo!)
 - A componente de um vetor é a projeção do vetor sobre cada eixo

- Componentes de um vetor
 - Projeção sobre os eixos
 - Θ é o ângulo entre o vetor e o eixo horizontal na direção positiva

• Componentes de um vetor

• Módulo do vetor em função das suas componentes: $a = \sqrt{\sum a_i^2}$

• Ex:
$$a = \sqrt{a_x^2 + a_y^2}$$

• Ângulo
$$\Theta$$
 : $tan(\theta) = \frac{a_y}{a_x}$

• Exemplo:

Um avião anda 215 km, fazendo um ângulo de 22º com o norte.

Quanto o avião deslocou para o norte e para o leste?

- Vetores Unitários
 - Seu módulo é igual a 1
 - Aponta para uma direção específica
 - i, j, k

$$\vec{a} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$$
$$\vec{b} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}}.$$

- Vetores unitários
 - Soma vetorial através da soma das componentes:

$$\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{b},$$
 $r_x = a_x + b_x$ $r_y = a_y + b_y$ $r_z = a_z + b_z.$

- Vetores unitários
 - Qual a soma dos vetores?

• Produto escalar:

• Resulta em um valor escalar

$$\vec{a} \cdot \vec{b} = ab \cos \phi,$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
.

$$\vec{a} \cdot \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \cdot (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})$$

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$