第3章 需求分析

需求分析的任务 与用户沟通获取需求的方法 分析建模与规格说明 实体-联系图 状态转换图

第3章 需求分析

- 需求分析是软件定义时期的最后一个阶段,它的基本任务是准确地回答"系统必须做什么?"这个问题。
- 确定系统必须完成哪些工作,也就是对目标 系统提出完整、准确、清晰、具体的要求。
- 系统分析员应该写出软件需求规格说明书, 以书面形式准确地描述软件需求。

需求管理的困难性

What the user asked for

How the analyst saw it

How the system was designed

As the programmer wrote it

What the user really wanted

How it actually works

3.1 需求分析的任务

- ■确定对系统的综合要求
- 分析系统的数据要求
- ■导出系统的逻辑模型
- 修正系统开发计划

3.1.1 确定对系统的综合要求

- 1. 功能需求
- 2. 性能需求
- 3. 可靠性和可用性需求
- 4. 出错处理需求
- 5. 接口需求
- 6. 约束
- 7. 逆向需求
- 8. 将来可能提出的要求

3.1.2 分析系统的数据要求

- 建立数据模型——ER图
- 描绘数据结构——层次方框图和Warnier图
- 数据结构规范化

3.1.3 导出系统的逻辑模型

综合上述两项分析的结果可以导出系统的详细的逻辑模型,通常用数据流图、实体-联系图、状态转换图、数据字典和主要的处理算法描述这个逻辑模型。

3.1.4 修正系统开发计划

根据在分析过程中获得的对系统的更深入更具体的了解,可以比较准确地估计系统的成本和进度,修正以前制定的开发计划。

需求获取的来源

- 1) 用户访谈与会议;
- 2) 把对目前的或竞争产品的描述写成文档;
 - 3) 系统需求规格说明;
 - 4) 对当前系统的问题报告和增强要求;
 - 5) 市场调查和用户问卷调查;
 - 6)观察用户工作流程;
 - 7) 用户任务内容分析;
 - 8) 用户与开发人员共同组成联合小组

3.3 分析建模与规格说明 3.3.1 分析建模

- 模型:就是为了理解事物而对事物做出的一种抽象,是对事物的一种无歧义的书面描述。通常,模型由一组图形符号和组织这些符号的规则组成。
- 结构化分析过程:实质上是一种创建模型的活动。系统分析员从不同角度抽象出目标系统的特性,使用精确的表示方法构造系统的模型,验证模型是否满足用户对目标系统的需求,并在设计过程中逐渐把和实现有关的细节加进模型中,直至最终用程序实现模型。

- 需求分析过程 应该建立3种模 型,分别是:
 - □数据模型
 - □功能模型
 - □行为模型

分析模型的结构

3.3.2 软件需求规格说明

- 通过需求分析除了创建分析模型之外,还应该写出软件需求规格说明书,它是需求分析阶段得出的最主要的文档。
- 通常用自然语言完整、准确、具体地描述系统的数据要求、功能需求、性能需求、可靠性和可用性要求、出错处理需求、接口需求、约束、逆向需求以及将来可能提出的要求。

我国定义了GB856D-1988国家标准,给出了需求规格说 □ 明的内容框架: □

- 1引言
 - 1.1 编写目的
- 1.2 项目背景(单位和其他系统的关系)
 - 1.3 定义(专门术语和缩写词)
 - 2 任务概述
 - 2.1 目标
 - 2.2 运行环境
 - 2.3 条件限制
 - 3 数据描述
 - 3.1 静态数据
 - 3.2 动态数据
 - 3.3 数据库描述
 - 3.4 数据字典
 - 3.5 数据采集

- 4功能需求
 - 4.1 功能划分
 - 4.2 功能描述
- 5 性能需求
 - 5.1 数据精确度
 - 5.2 时间特性
 - 5.3 适应性
- 6运行需求
 - 6.1 用户界面
 - 6.2 硬件接口
 - 6.3 软件接口
 - 6.4 故障处理
- 7其他需求
- (检测或验收标准、可用性、可维护性、可移植性、安全保密性)

3.4 实体-联系图

- 概念性数据模型是一种面向问题的数据模型, 是按照用户的观点对数据建立的模型。它描述了从用户角度看到的数据,它反映了用户的现实环境,且与在软件系统中的实现方法无关。
- 数据模型中包含3种相互关联的信息:
 - □数据对象
 - □数据对象的属性
 - □数据对象彼此间相互连接的关系

实体-联系图的符号

ER图中包含:

■ 实体(即数据对象),用矩形框表示;

■ 关系,用连接相关实体的菱形框表示;

属性,用椭圆形或圆角矩形表示,并用直线 把实体(或关系)与其属性连接起来。

例1: 某校教学管理系统的ER图

状态转换图

- 状态转换图:通过描绘系统的状态及引起系统状态转换的事件,来表示系统的行为。
- 状态图还指明了作为特定事件的结果系统将 做哪些动作(例如,处理数据)。

3.6.1 状态

状态:是任何可以被观察到的系统行为模式,一个 状态代表系统的一种行为模式。状态规定了系统对 事件的响应方式。

■ 状态主要有:

- □ 初态(即初始状态),只能有1个
- □ 终态(即最终状态),可以有0至多个
- □ 中间状态

■ 状态图分类:

- □表示系统循环运行过程,通常不关心循环是怎样启动的。
- □ 表示系统单程生命期,需要标明初始状态和最终状态。

3.6.3 符号

- 初态: 用实心圆表示;
- ▶ 终态:用一对同心圆(内圆为实心圆)表示;
- 中间状态:用圆角矩形表示,分成上、中、下 3部分。
 - □上面部分-----为状态的名称;
 - □中间部分-----为状态变量的名字和值;
 - □下面部分-----是活动表。
 - 带箭头的连线: 称为状态转换,箭头指明了转换方向。

状态图中使用的主要符号

活动表的语法格式:

事件名(参数表)/动作表达式

- "事件名"可以是任何事件的名称。
- 常用的3种标准事件:
 - □ entry事件指定进入该状态的动作;
 - □ exit事件指定退出该状态的动作;
 - □ do事件则指定在该状态下的动作。
- 需要时可以为事件指定参数表。活动表中的 动作表达式描述应做的具体动作。

事件表达式的语法:

事件说明[守卫条件]/动作表达式

- 事件说明的语法为: 事件名(参数表)。
- 守卫条件是一个布尔表达式。如果同时使用事件说明和守卫条件,则当且仅当事件发生且布尔表达式为真时,状态转换才发生。如果只有守卫条件没有事件说明,则只要守卫条件为真状态转换就发生。
- 动作表达式是一个过程表达式,当状态转换 开始时执行该表达式。

3.6.4 例子

列1: 电话系统

状态图练习题:

复印机的工作过程大致如下:

- 未接到复印命令时处于闲置状态,一旦接到复印命令则进入复印状态,完成一个复印命令规定的工作后又回到闲置状态,等待下一个复印命令;
- 如果执行复印命令时发现没纸,则进入缺纸状态, 发出警告,等待装纸,装满纸后进入闲置状态,准 备接收复印命令;
- 如果复印时发生卡纸故障,则进入卡纸状态,发出 警告等待维修人员来排除故障,故障排除后回到闲 置状态。

小结

- > 需求分析的任务
- > 与用户沟通获取需求的方法
- > 分析建模与规格说明
- > 实体-联系图
- > 状态转换图

