S

I

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය - 2021 (නව විෂය නිර්දේශය) General Certificate (Adv. Level) Examination - 2021 (New Syllabus)

සංයුක්ත ගණිතය - I

Combined Mathematics - I

අවසාන වාර පරීකෂණය - 2021

පැය **03** 03 hours

(අමතර කියවීම් කාලය මිනිත්තු 10)

විභාග අංකය					ශුේණිය	
නම						

අයදුම්කරුවන් සඳහා උපදෙස් :-

★ මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ **B** කොටස (පුශ්න 11 - 17)

⋆ A කොටස :

සියලුම පුශ්න සඳහා පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා ඓ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

* Bකොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාරදෙන්න.
- \star මෙම පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරිකෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) 202220 0 2020 1						
කොටස	පුශ්න අංකය	ලකුණු				
	1					
	2					
	3					
	4					
A	5					
A	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
В	14					
	15					
	16					
	17					
	එකතුව පුතිශතය					
	පුතිශතය					

(10) සංයක්ත ගණිතය I

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු					
ඉලක්කමෙන්					
අකුරින්					

සංකේත අං	කය
උත්තර පතු පරීඤක	
පරීකෂා කළේ	1.
	2.
අධීකෘණය කලේ	

	A කොටස
01.	$n \in z^{^+}$ සඳහා ගණිත අභපුහන මූලධර්මයෙන් $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ බව
	සාධනය කරන්න.
02.	එකම රූපයේ $y\!=\!4$ - $ x\!+\!1 $ හා $y\!=\! x\!-\!2 $ ශුිතවල දළ පුස්ථාර අඳින්න.
	එනයින් හෝ අන්අයුරකින් $ x+1 + x-2 \le 4$ අසමානතාව තෘප්ත කරන x හි සියළු තාත්වික අගයන් සොයන්න.

03.	ආගන්ඩ් සටහනේ $\left \frac{Z+1}{Z-1} \right = 2$ සපුරාලන Z නිරූපණය කරන ලක්ෂාවල පථයේ දළ සටහනක් අඳින්න.
	එනයින් ${ m Arg}(Z)$ හි වැඩිතම හා අඩුතම අගයන් ලබාගන්න. (${ m Arg}(Z)$ මගින් Z හි පුධාන විස්තාරය දක්වයි.)
04.	සංගුණක සරලතම ආකාරයට දක්වමින් $(1+3x)^5$ හි ද්විපද පුසාරණය සොයන්න.
	එනයින් $(1+3x)^5+(1-3x)^5=A+Bx^2+Cx^4$ බව පෙන්වන්න. මෙහි A,B හා C නිර්ණය කළයුතු නියත වේ.
	1.03 ⁵ + 0.97 ⁵ හි අගය අපෝහනය කරන්න.

07.	C ඉලිප්සය පරාමිතිකව $x=3\cos heta$, $\mathrm{y}=2\sin heta$, $\mathrm{\theta}\in[0,2\pi]$ මගින් දෙනු ලබයි.
	\mathbb{C} ඉලිප්සයට $\mathbb{P}\equiv(3\cos\theta,2\sin\theta),\;\theta=\sin^{-1}\frac{3}{5}$ ලක්ෂායේදී අඳිනු ලැබූ අභිලම්භයේ සමීකරණය $9x$ - $8y$ - $12=0$
	මගින් දෙනු ලබන බව පෙන්වන්න. මෙම අභිලම්භය නැවත C ඉලිප්සය $Q\equiv \{3\cos\phi, 2\sin\phi\}$ ලක්ෂායේදී
	හමුවේ නම් $27\cos\phi$ - $16\sin\phi=12$ බව පෙන්වන්න.
08.	පාදවල සමීකරණ $3x$ - $2y$ - 1 = 0 , $4x$ - $5y$ - 6 = 0 , $3x$ - $2y$ - 2 = 0 හා $4x$ - $5y$ - 3 = 0 වන සමාන්තරාසුයේ
	විකර්ණ වල සමීකරණ සොයන්න.

09.	$S_1 \equiv x^2 + y^2 - 4x - 6y + 8 = 0$ හා $S_2 \equiv x^2 + y^2 - 6x - 4y + 8 = 0$ වෘත්තවල පොදු ජපායේ දිග ඒකක $3\sqrt{2}$ ක් ග	බව
	පෙන්වන්න.	
		•••••
		•••••
		•••••
10.	$2\sin 3x \sin x = 1$ සමීකරණයේ සාධාරණ විසඳුම සොයන්න.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
ದ್ಯಂಚಿ	ක්ත ගණිතය - දකුණු පළාත 6 පිටුව	

B කොටස

- ★ පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11. (a) $f(x) = 2ax^2 + bx + c$ හා $g(x) = 2cx^2 + bx + a$ යැයි ගනිමු. මෙහි a, b හා c නිශ්ශුනා, අසමාන තාත්වික සංඛාන වේ.
 - f(x) = 0 හා g(x) = 0 සමීකරණවලට පොදු මූලයක් තිබෙන්නේ $b^2 = 2(a+c)^2$ නම් හා එසේ නම්ම පමණක් බව පෙන්වන්න.
 - f(x)=0 හා g(x)=0 සමීකරණවල අනෙක් මූල පිළිවෙලින් λ හා μ යැයි දී තිබේ. $\lambda^2=\frac{c^2}{2a^2}$ හා $\mu^2=\frac{a^2}{2c^2}$ බව පෙන්වන්න.
 - f(x) + g(x) = 0 සමීකරණයේ මූල තාත්වික හා සමපාත බව පෙන්වන්න.
 - (b) f(x), x හි හතරවැනි මානුයේ බහුපද පුකාශනයක් බවත් f(x) හි $(x-2)^2$ සාධකයක් බවත් f(o)=12 බවත් දී තිබේ. f(x) බහුපද පුකාශනය (x^2+1) න් බෙදුවිට ශේෂය (6-8x) වේ. f(x) සොයන්න.
- 12. (a) ළමුන් 25 දෙනෙකුගෙන්,
 - i) ඔවුන්ගෙන් 6 දෙනෙකු ඇතුළත් නොවන පරිදි
 - ii) ඔවුන්ගෙන් 5 දෙනෙකු ඇතුළත් වන පරිදි
 - iii) ඔවුන්ගෙන් 6 දෙනෙකු ඇතුළත් නොවන පරිදි හා 5 දෙනෙකු ඇතුළත් වන පරිදි
 - 11 දෙනෙකු තෝරාගත හැකි වෙනස් ආකාර කොපමණද ? (සුළු කිරීම අවශා නොවේ.)
 - (b) 1, 2, 3, 4, 5, 6, 7, 8, 9 සංඛාහාංක වලින් සැමවිටම එක් අංකයක් එක් වතාවක් පමණක් ඇතුළත් වන පරිදි සංඛාහාංක 9 ම භාවිතා කරමින්, හා දෙකෙළවර අංක ඉරට්ටේ වන පරිදි ද, සංඛාහව වමේ සිට දකුණට කියවීමේ දී ඔත්තේ සංඛාහාංක විශාලත්වයෙන් ආරෝහණ පිළිවෙලට තිබෙන පරිදි ද, ලිවිය හැකි වෙනස් සංඛාහ ගණන 504 ක් බව පෙන්වන්න.
 - (c) $U_r = \frac{4r^2 + 1}{4r^2 1}$, $r \in z^+$ යැයි ගනිමු.

 $\mathbf{U}_{\mathbf{r}} \equiv \mathbf{1} + f(\mathbf{r})$ - $f(\mathbf{r}+1)$ වන පරිදි $f(\mathbf{r})$ ශුිතය සොයන්න.

එනයින් $\sum_{r=1}^n U_r = n+1-rac{1}{(2n+1)}$ බව පෙන්වන්න. $\sum_{r=1}^\infty U_r$ ශේණිය අභිසාරී නොවන බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} \left(\mathbf{U}_{\mathbf{r}} - \mathbf{1}
ight)$ ශේණිය අභිසාරී වේද ?

13. (a) $\mathbf{A} = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 1 & 0 \end{pmatrix}$ හා $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$ ලෙස ගනිමු.

 $\mathbf{A}\mathbf{B}$ ගුණිතය වන \mathbf{C} සොයන්න.

 ${f C}$ නාහසයේ පුතිලෝම නාහසය $egin{bmatrix} -3 & -2 \ 1 & 1 \end{bmatrix}$ බව පෙන්වන්න.

 $\mathbf{C} \mathbf{D} \mathbf{C}^{-1} = 2\mathbf{C}^2 + 3\mathbf{C}$ වන පරිදි \mathbf{D} නාහසය සොයන්න.

 ${f B}\cdot{f A}$ ගුණිත නාහසය වන ${f P}$ සොයන්න.

$$\mathbf{P} \begin{bmatrix} x \\ 2 \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}$$
 වන පරිදි x හා y මසායන්න.

(b) $Z_1 = r_1 \{\cos \theta_1 + i \sin \theta_1\}$ හා $Z_2 = r_2 \{\cos \theta_2 + i \sin \theta_2\}$ ලෙස ගනිමු. $|Z_1 - Z_2|$ හි අගය r_1, r_2, θ_1 හා θ_2 පද ඇසුරෙන් සොයන්න.

Z හි සංකීර්ණ පුතිබද්ධය \overline{Z} යැයි දී තිබේ.

$$|1-\overline{Z}_2Z_1|^2-|Z_1-Z_2|^2=(1-|Z_1|^2)\,(1-|Z_2|^2)$$
 බව පෙන්වන්න.

$$\mathbf{n} \in \mathbf{Z}^+$$
 හා $\mathbf{\theta} \neq (4\mathbf{n} + 3) \frac{\pi}{2}$ විට $\left[\frac{1 + \sin \mathbf{\theta} + i \cos \mathbf{\theta}}{1 + \sin \mathbf{\theta} - i \cos \mathbf{\theta}} \right] = \sin \mathbf{\theta} + i \cos \mathbf{\theta}$ බව පෙන්වන්න.

දමුවාවර් පුමේයය භාවිතයෙන්,
$$\left(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5}\right)^5+i\left(1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5}\right)^5=0$$
 බව පෙන්වන්න.

14. (a)
$$y = f(x) = \frac{x}{(x-1)^2}$$
 , $x \in \mathbb{R}$, $x \neq 1$ ලෙස ගනිමු.
$$\frac{dy}{dx}$$
 හා $\frac{d^2y}{dx^2}$ මසායන්න.

ඒනයින් f ශුිතය x සමග වැඩිවන පුාන්තර හා $x \in \mathbb{R}$ සඳහා ශුිතයේ වකුයේ අවකලතාව සාකච්ඡා කරන්න. ශුිතයේ පුස්තාරයේ හැරුම් ලක්ෂායේ සහ නතිවර්තන ලක්ෂායේ ඛණ්ඩාංක සොයන්න. ශුිතයේ පුස්ථාරයේ ස්පර්ශෝන්මුඛ වල සමීකරණ ලියන්න.

 $x\in \mathrm{IR}$ සඳහා $\mathrm{y}=f(x)$ වකුයේ දළ පුස්ථාරය අඳින්න. ඒනයින් $x\in \mathrm{IR}$ සඳහා $\mathrm{y}=\frac{1}{\mathrm{f}(x)}$ වකුයේ දළ පුස්ථාරය අපෝහනය කරන්න.

(b) A, B, C ලක්ෂාය D ලක්ෂායකට පිළිවෙලින් 9 km බටහිරින්, 9 km නැගෙනහිරින්, $15 \, \mathrm{km}$ දකුණින් පිහිටයි. C ට උතුරින් පිහිටි P ලක්ෂායක සිට අතුරු මාර්ග දෙකක් A හා B දක්වා වැටී තිබේ. $\mathrm{DP} = x$ ලෙස ගනිමින් මාර්ගවල මුළුදුර $\mathrm{L}(x) = \mathrm{CP} + \mathrm{PA} + \mathrm{PB}$ සඳහා පුකාශනයක් ලබාගන්න. එනයින් $\mathrm{L}(x)$ හි අඩුතම අගය $(15 + 9\sqrt{3}) \, \mathrm{km}$ බව පෙන්වන්න.

15. (a)
$$x^2 = u$$
 ආදේශයෙන් හෝ අන්අයුරකින් $\int \frac{x \, \mathrm{d}x}{x^4 + x^2 + 1} = \frac{1}{\sqrt{3}} \tan^{-1} \frac{(2x^2 + 1)}{\sqrt{3}} + C$ බව පෙන්වන්න. C අභිමත නියතයකි.

(b)
$$x = \tan \theta$$
 යෙදීමෙන්, $\int \frac{\ln |1+x|}{1+x^2} \, \mathrm{d}x = \int \ln |1+\tan \theta| \, \mathrm{d}\theta$ බව පෙන්වන්න.
 ඒනයින් සහ $\int\limits_0^a f(x) \, \mathrm{d}x = \int\limits_0^a f(a-x) \, \mathrm{d}x$ යොදාගනිමින් $\int\limits_0^1 \frac{\ln |1+x|}{1+x^2} \, \mathrm{d}x = \frac{\pi}{8} \ln 2$ බව පෙන්වන්න.

(c) කොටස් වශයෙන් අනුකලනය යෙදීමෙන්
$$\int\limits_0^{\pi/3} \sec^3 \theta \ d\theta = \sqrt{3} + \frac{1}{2} \, \ln{(2+\sqrt{3}\,)}$$
 බව ලබාගන්න.

- 16. (a) AB = AC වන ABC සමද්විපාද තිකෝණයේ AB හා BC පාද වල සමීකරණ පිළිවෙලින් 2x y 1 = 0 හා x 2y + 1 = 0 වේ. AC පාදය 2x + 11y = 0 රේඛාවට සමාන්තර බව පෙන්වන්න.
 - (b) S වෘත්තය $S_1 = x^2 + y^2 16 = 0$ හා l = 6y 4x + 9 = 0 රේඛාවේ ඡේදන ලක්ෂාය හරහා ගමන් කරයි. S වෘත්තයේ සමීකරණයේ සාධාරණ ආකාරය සලකමින් එහි කේන්දුය 2x + 3y + 5 = 0 රේඛාව මත පිහිටන්නා වූ S හි සමීකරණය සොයන්න.

 ${f S}_2$ වෘත්තයක්, $(3\ ,0)$ ලක්ෂාය හරහා ගමන් කරමින් හා x අක්ෂය ස්පර්ශ කරමින් ${f S}$ වෘත්තය පුලම්භව ඡේදනය කරයි. ${f S}_2$ හි සමීකරණය සොයන්න.

17. (a) $\operatorname{Tan}\left(A+B\right)=\frac{\operatorname{Tan}A+\operatorname{Tan}B}{1-\operatorname{Tan}A\operatorname{Tan}B}$ භාවිතා කර $\operatorname{Tan}\frac{5\pi}{12}$ හි අගය සොයන්න.

 $\operatorname{Tan} \frac{\pi}{12}$ හි අගය අපෝහනය කරන්න.

 $\operatorname{Tan}\left(\mathrm{A-B}\right)$ සඳහා පුකාශනය අපෝහනය කර එනයින් $\operatorname{Tan}\frac{\pi}{12}$ හි අගය සොයන්න.

(b) ABC ඕනෑම තිුකෝණයක් සඳහා කෝසයින් නීතිය සුපුරුදු අංකනයෙන් පුකාශ කරන්න. එනයින් $a^2 = (b-c)^2 + 4bc \sin^2 \frac{A}{2}$ බව පෙන්වන්න.

 $a = (b - c) \sec \phi$ නම් $Tan \phi = \frac{2\sqrt{bc}}{(b - c)} \sin \frac{A}{2}$ බව පෙන්වන්න.

(c) $\operatorname{Tan}^{-1}(2x+1)+\operatorname{Tan}^{-1}(2x-1)=\operatorname{Tan}^{-1}2$ සමීකරණය සපුරාලන එකම එක අගයක් පමණක් x සඳහා පවතින බව පෙන්වන්න.

AL/ 2021/10/S-I

10

S

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව தென் மாகாணக் கல்வித் திணைக்களம் Southern Provincial Department of Education

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය - 2021 (නව විෂය නිර්දේශය) General Certificate (Adv. Level) Examination - 2021 (New Syllabus)

සංයුක්ත ගණිතය - II Combined Mathematics - II

අවසාන වාර පරීකෂණය - 2021

පැය **03** 03 hours

විභාග අංකය					ශේණිය	
නම						

අයදුම්කරුවන් සඳහා උපදෙස් :-

★ මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

Aකොටස (පුශ්න 1 - 10) සහ **B** කොටස (පුශ්න 11 - 17)

* Aකොටස:

සියලුම පුශ්න සඳහා පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

* Bකොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාරදෙන්න.
- \star මෙම පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- ⋆ මෙම පුශ්න පතුයේ g මගින් ගුරුත්වජ ත්වරණය දැක්වෙන අතර $g=10\,{\rm ms}^{-2}=10\,{\rm Nkg}^{-1}$ වේ.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) യാമ്പ്യാ ക്രാറ്റന് 1						
කොටස	පුශ්න අංකය	ලකුණු				
	1					
	2					
	3					
	4					
${f A}$	5					
A	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
В	14					
	15					
	16					
	17					
	එකතුව පුතිශතය					
	පුතිශතය					

(10) සංයක්ත ගණිතය I

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු	
ඉලක්කමෙන්	
අකුරින්	

සංකේත අං	කය
උත්තර පතු පරීඤක	
පරිකෂා කළේ	1.
අධීකෘණය කළේ	2.

Δ	ഞോറക
$\overline{}$	

01.	m ස්කන්ධයෙන් යුතු A සුමට බෝලයක් සුමට තිරස් මේසයක චලනය වෙමින් ස්කන්ධය m වූ B සර්වසම ගෝලය හා ගැටේ. B මේසය මත වූ සිරස් බාධකයකට A B C
	A
02.	දිග $2l$ වන AB අවිතනා තන්තුව A අවල ලක්ෂායකදී සුමට තිරස් මේසයකට සවිකර ආරම්භයේ දී තන්තුව A සිට l දුරකදී B කෙළවර තිබෙන පරිදි ස්කන්ධය m වන අංශුවක් B ට අමුණා තිබේ. AC ට ලම්බක වන පරිදි අංශුවට u තිරස් පුවේගයක් දෙනු ලැබේ. තන්තුව තදවන මොහොතේ දී තන්තුවේ ආවේගී ආතතිය හා තන්තුව තද වී මොහොතකට පසු අංශුවේ පුවේගය $C \longrightarrow u$
	eසායන්න. B
—	ක්ත ගණිතය - දකුණු පළාත 2 පිටුව

03.	$ m O$ ලක්ෂායකින්, ආරම්භක වේගය $ m 30~ms^{-1}$ හා $ m heta$ ආරෝහණ කෝණයෙන් අංශුවක් පුක්ෂේපණය කරයි. අංශුව $ m O$
	සිට තිරස්ව $40\mathrm{m}$ දුරින් හා සිරස්ව $10\mathrm{m}$ උසින් වන ලක්ෂාය හරහා යයි.
	$8 an^2 heta$ - $36 an heta+17=0$ බව පෙන්වන්න. මෙය සිදුවිය හැකි ආරෝහන කෝණ දෙකක් තිබෙන බව පෙන්වා
	මෙම කෝණ $ heta_1$ හා $ heta_2$ නම්, $ an(heta_1\!+ heta_2)=$ -4 බව පෙන්වන්න.
	400 kg
04.	ස්කන්ධය 2000 kg වන මෝටර් රථයක් ස්කන්ධය 400 kg වන 2000 kg කැරවනයක් තිරස් පාරක ඇදගෙන යයි. මෝටර් රථයේ හා
	කැරවනයේ චලිතයට පුතිරෝධය පිළිවෙලින් 1000 N සහ 100 N සහ 100 N සහ 100 N වේ.
	කැරවනයත්, මෝටර් රථයත් 40 kmh ⁻¹ වේගයෙන් ගමන් කරන විට, මෝටර් රථයේ එන්ජිමේ ජව පුතිදානය
	100 kW නම්, ත්වරණය සොයන්න.
	මේ අවස්ථාවේදී මෝටර් රථයත්, කැරවනයත් අතර ඇදීමේ ආතතිය සොයන්න.

3 පිටුව

සංයුක්ත ගණිතය - දකුණු පළාත

05.	සමාන m ස්කන්ධ සහිත අංශු දෙකක් සැහැල්ලු අවිතනෳ තන්තුවකින් සම්බන්ධ කර
	තිබේ. ඉන් එක අංශුවක් වූ A , සුමට තිරසට 30° කින් ආනත අචල තලයක් මත A
	නිශ්චලව තිබේ. තන්තුව තලයේ ඉහළ පිහිටන සුමට කප්පියක් හරහා ගමන් කරන $igwedge A_1$
	අතර, අනෙක් අංශුව වන B සිරස්ව එල්ලෙමින් පවතී. 30°
	ආරම්භයේ A අංශුව $A_{_{\mathrm{I}}}$ නම් ලක්ෂායක තිබේ. පද්ධතිය චලිතයට නිදහස් කළ විට, ආනත තලය දිගේ A අංශුව
	${f A}_1$ හි සිට l දුරක් ගමන් කර ඇති විට, අංශුවල වේග සොයන්න.
06.	O මූල ලක්ෂායක් අනුබද්ධව A හා B ලක්ෂා වල පිහිටුම් දෙශික පිළිවෙලින් $\mathbf a$ හා $\mathbf b$ වේ. P ලක්ෂාය OB මත $\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. OP , OQ හා OM සොයන්න. OP 0 හා OM 0 සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.
06.	$\frac{OP}{PB} = \frac{3}{1}$ වනසේත්, Q ලක්ෂාය AP මත $\frac{AQ}{QP} = \frac{4}{1}$ වනසේත් පිහිටයි. M යනු OA හි මධා ලක්ෂායයි. \overrightarrow{OP} , \overrightarrow{OQ} හා \overrightarrow{OM} සොයන්න.

4 පිටුව

සංයුක්ත ගණිතය - දකුණු පළාත

07.	අරය a වන සුමට අර්ධගෝලාකාර බඳුනක වෘත්තදාරය ඉහළින්ම හා තිරස්ව තිබෙන සේ සවිකර තිබේ. දිග $2a$
	වන ඒකාකාර දණ්ඩක එක් කෙළවරක් බඳුනේ අභාଃන්තර පෘෂ්ඨය හා ගැටෙමින්ද, දණ්ඩේ ලක්ෂායක් වෘත්තදාරය
	මත වන පරිදි දණ්ඩේ අනෙක් කෙළවර බඳුනෙන් ඉවත තිබෙන සේ සමතුලිතතාවයේ පවතී. බඳුනෙන් පිටත
	පිහිටි දණ්ඩේ දිග පුමාණය සොයන්න.
08.	බර W වන ඒකාකාර AB දණ්ඩේ B කෙළවරට w බරැති අංශුවක් අමුණා තිබේ. අංශුවත්, දණ්ඩත් අවල O
08.	•
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත්
08.	
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත්
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත්
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.
08.	ලක්ෂායකින් සැහැල්ලු OA , OB තන්තු දෙකකින් එල්ලී සමතුලිතතාවේ තිබේ. තන්තුවල දිගත්, දණ්ඩේ දිගත් සමානවේ. සමතුලිතතාවේදී OA හා OB තන්තුවල ආතති T හා T' නම් $\frac{T}{W} = \frac{T'}{W+2w}$ බව පෙන්වන්න.

09.	නොනැඹුරු කාසි දෙකක් හා සිරස ලැබීම, අගය ලැබීම මෙන් තුන් ගුණයක් වන සේ නැඹුරු කර ඇති කාසියක්
	තිබේ. කාසි තුන එක් වරක් උඩදමූ විට, ලැබෙන නියැදි අවකාශය රුක් සටහනකින් දක්වන්න.
	සිරස දෙකක් හා අගයක් ලැබීමේ සම්භාවිතාව සොයන්න.
10	6, 7, 8, 9, 10 යන සංඛ්‍යාවල මධ්‍යන්‍ය හා සම්මත අපගමනය සොයන්න.
10.	5, 7, 6, 5, 10 des de

B කොටස

- 11. (a) නිශ්චලතාවයෙන් ගමන් අරඹන දුම්රියක් සිය ගමනේ පළමු කොටස ඒකාකාර a ත්වරණයෙන් ද, දෙවැනි කොටස ඒකාකාර v වේගයෙන් ද, අවසාන කොටස ඒකාකාර a මන්දනයෙන් ද, ගමන් කර නිශ්චලතාවයට පත්වේ. මුළු ගමන සඳහා මධා3යක වේගය $\frac{7v}{8}$ වේ. දුම්රියේ ගමන සඳහා වේග කාල පුස්ථාරය අඳින්න. දුම්රිය නියත වේගයෙන් ගමන් කළ කාලය මුළු කාලයෙන් $\frac{3}{4}$ ක් බව පෙන්වන්න. දුම්රිය නියත වේගයෙන් ගමන් කරන දුර, මුළු දුරෙන් කොපමණද ?
 - (b) නිසල කාලගුණයක අහස්යානයක වේගය v වේ. උතුරින් θ නැගෙනහිරට w වේගයෙන් සුළඟක් හමන දිනයෙක A හි සිට දකුණින් පිහිටි B නගරයකට ගමන් කිරීමට අහස්යානය ගන්නා කාලය, $\frac{a}{v^2-w^2}\left[\sqrt{v^2-w^2\sin^2\theta}+w\cos\theta\right]$ බව පෙන්වන්න. මෙහි AB=a වේ. අහස්යානය තිරස් ABCD සමචතුරසුයක සම්පූර්ණ ගමනක් සඳහා ගන්නා කාලය, $\frac{2a}{v^2-w^2}\left[\sqrt{v^2-w^2\sin^2\theta}\,+\,\sqrt{v^2-w^2\cos^2\theta}\,\right]$ බව පෙන්වන්න. (සුළඟ වෙනස් නොවන බවත්, සමචතුරසුයේ ශීර්ෂවලදි කාල හානියක් නොවන බවත් උපකල්පනය කරන්න.)
- 12. (a) දී ඇති රූපයේ ABCD තුැපීසියම ස්කන්ධය M වූ ඒකාකාර සුමට කුඤ්ඤයක ගුරුත්ව කේන්දුය ඔස්සේ යන සිරස් හරස්කඩක් නිරූපණය කරයි. $BAD = 60^\circ, ABC = 30^\circ$ AB අඩංගු මුහුණත, තිරස් සුමට තලයක් මත තිබේ. AD හා BC රේඛා ඒවා අඩංගු තලවල වැඩිතම බෑවුම් රේඛා ඔස්සේ වේ.

- C හා D හිදී සැහැල්ලු සුමට අචල කප්පි දෙක මත ගමන් කරන තන්තු දෙකකින් P,Q,X හා Y වූ සමාන m ස්කන්ධ රූපයේ දක්වෙන පරිදි සම්බන්ධ කර තිබේ. තන්තු සැහැල්ලු හා අවිතනා වේ. පද්ධතිය නිශ්චලතාවයෙන් මුදාහරී. අංශු මත හා කුඤ්ඤය මත කියාකරන සියළු බල ලකුණු කරන්න. කුඤ්ඤයට සාපේඎව X අංශුවේ ත්වරණය BA දිශාවට f_1 ද, Q අංශුවේ ත්වරණය AB දිශාවට f_2 ද, කුඤ්ඤයේ ත්වරණය AB දිශාවට F ලෙස ද සැලකීමෙන් පද්ධතියේ චලිතයට සමීකරණ ලබාගන්න. ඒනයින්, $F=\dfrac{(\sqrt{3}-1)\ mg}{4M+2m\ (4-\sqrt{3})}$ බව පෙන්වන්න.
- (b) ස්කන්ධය m වන A අංශුවක් a දිගැති අවිතනා තන්තුවකින් O ලක්ෂායකින් එල්ලා තිබේ. ආරම්භයේ දී තන්තුව සිරස්ව තිබෙන අතර අංශුවට තිරස් \sqrt{nga} පුවේගයක් දෙනු ලබයි. OA සිරසට θ ($0 \le \theta \le \pi$) කෝණයකින් ආනතව පිහිටන විට අංශුවේ පුවේගය හා තන්තුවේ ආතති සඳහා පුකාශන ලබාගන්න. ඒනයින්, $n \ge 5$ නම්, අංශුව පූර්ණ වෘත්තයක චලනය වන බව පෙන්වන්න. තන්තුව තිරස් වන විට, A අංශුව, නිශ්චලතාවේ තිබෙන සර්වසම අංශුවක් හා ගැටී එකට හා වේ. සංයුක්ත අංශුව පූර්ණ වෘත්තයක චලනය වීමට n හි අඩුතම අගය සොයන්න.
- 13. OP හා PQ දුනු දෙකකි. OP දුන්නේ පුතාස්ථතා මාපාංකය හා ස්වභාවික දිග පිළිවෙලින් 2 mg හා 2l ය. PQ දුන්නේ පුතාස්ථතා මාපාංකය හා ස්වභාවික දිග පිළිවෙලින් mg හා l වේ. O, P, Q සිරස් සරල රේඛාවක පිහිටන්නේ OQ = 5l හා O හා Q අවල ලක්ෂායන් වන සේය. P හි ස්කන්ධය m වූ අංශුවක් අමුණා තිබේ.

 P අංශුවේ සමතුලිතතා පිහිටීම E ලක්ෂාය බවදී තිබේ. $OE = \frac{7l}{2}$ බව පෙන්වන්න.

P අංශුවේ සමතුලිතතා පිහිටීම E ලක්ෂාය බවදී තිබේ. $OE=rac{7l}{2}$ බව පෙන්වන්න. P අංශුව E ලක්ෂායේ සිට EP=x වන පරිදි අදිනු ලැබේ.

i)
$$-\frac{3l}{2} \le x \le \frac{l}{2}$$
 විට, $\ddot{x} + \frac{2gx}{l} = 0$ බව පෙන්වන්න.

ii) $\frac{l}{2} < x \le \frac{3l}{2}$ විට, $\ddot{x} + \omega^2 x = 0$ බව පෙන්වන්න. මෙහි ω^2 යනු නිර්ණය කළයුතු නියතයකි.

එනයින් $-rac{3l}{2} \leq x \leq rac{3l}{2}$ සඳහා ${
m P}$ අංශුවේ චලිතය විස්තර කරන්න.

P අංශුව Q^{2} තෙක් ඇදී නිශ්චලතාවෙන් මුදාහරින බව දී තිබේ. $\dot{x}^{2}=\omega^{2}(a^{2}-x^{2})$ සමීකරණය භාවිතයෙන් මෙම සරල අනුවර්තී චලිතයේ විස්තාරය සොයන්න.

එනයින්, P අංශුව E හි තිබෙන විට පුවේගය සොයන්න. ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන් P අංශුව E හි තිබෙන විට එහි පුවේගය සඳහා ඔබේ පිළිතුර සනාථ කරන්න.

P අංශුව Q හි සිට නගින ඉහළම ලක්ෂාය F වේ. OF දුර සොයන්න.

P අංශුවට Q හි සිට F කරා චලිතයට ගන්නා කාලය $\pi \overline{\Big| \frac{I}{2g}}$ බව පෙන්වන්න.

- 14. (a) \mathbf{a} හා \mathbf{b} ඒකක දෙශික දෙකක් වන අතර $\mathbf{a} \cdot \mathbf{b} = -\frac{11}{24}$ වේ. $\overrightarrow{OA} = 2\mathbf{a} + 3\mathbf{b}$, $\overrightarrow{OB} = 4\mathbf{a} 3\mathbf{b}$ හා $\overrightarrow{OC} = 10\mathbf{a} + 6\mathbf{b}$ යැයි දී තිබේ. AX, OA ට ලම්බ වන පරිදි හා BX, AC ට සමාන්තර වන පරිදි X ලක්ෂාය පිහිටයි. $\overrightarrow{OX} = \lambda \mathbf{a} + \mu \mathbf{b}$, λ හා μ අදිශ වේ.
 - i) OA
 - ii) λ හා μ හි අගයන් සොයන්න.
 - iii) OACB තුැපීසියමක් බව පෙන්වා $\dfrac{BC}{OA}$ අනුපාතය සොයන්න.
 - iv) ABXC රොම්බසයක් බව පෙන්වන්න.
 - (b) ABC පැත්තක දිග $2a\ m$ වන වාමාවර්තව ශීර්ෂ ගත් සමපාද තිකෝණයකි. BC හි මධා ලක්ෂාය M වේ. විශාලත්වයන් නිව්ටන් $5\sqrt{3}$, $3\sqrt{3}$, $3\sqrt{3}$ හා 2 වූ බල පිළිවෙලින් \overline{BC} , \overline{CA} , \overline{AB} හා \overline{MA} ඔස්සේ කියාකරයි. එමෙන්ම සූර්ණය $2a\ Nm$ වූ දක්ෂිණාවර්ත බල යුග්මයක් කියාකරයි. බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව සොයන්න. සම්පුයුක්ත බලයේ කියාරේඛාව BC පාදය N හිදී හමුවේ නම් CN සොයන්න.
- 15. (a) AB, BC ඒකාකාර සර්වසම W බරැති දඬු දෙකකි. දඬු B හි දී සුමටව සන්ධි කර ඇත්තේ $ABC = 90^\circ$ වන පරිදිය. A හා C දෙකෙළවර රළු තිරස් තලයක් මත තබා දඬු සිරස් තලයක සමතුලිතව තිබේ. BC දණ්ඩේ මධා ලඎයේදී AC දිශාවට කුමයෙන් වැඩිවන P විචලා බලයක් යොදනු ලැබේ. P < 2W නම් හා පද්ධතිය සමතුලිතතාවේ තිබේ නම්, A හා C දෙකෙළවරදී ඝර්ෂණ බලයට, අභිලම්භ පුතිකිුයාව දරන අනුපාත පිළිවෙලින් $\frac{2W-P}{4W-P}$ සහ $\frac{2W+3P}{4W+P}$ බව පෙන්වන්න. P බලය 2W ට අඩුවන විට සමතුලිතතාව බිඳේ නම්, A නිශ්චලව පවතින සේ C අත්තයෙන් ලිස්සීම සිදුවන බවත්, A හා C දෙකෙළවරදීම ඝර්ෂණ සංගුණකය μ යැයි උපකල්පනය කරන විට, $\mu < \frac{4}{3}$ බවත් පෙන්වන්න.
 - (b) රූපයේ දක්වෙන රාමු සැකිල්ලේ AB හා CD දඬු තිරස්ය. AD = DC = BC වේ. A හා B හිදී රාමු සැකිල්ල ආධාරක මත තබා තිබෙන අතර C ලක්ෂායෙන් 1000 N ක භාරයක් එල්ලා ඇත. A හා B හි සිරස් පුතිකියා සොයන්න. පුතාහබල සටහනක් ඇඳ දඬුවල පුතාහබල හා කවරක් තෙරපුම් ද, ආතති ද යන බව සඳහන් කරමින් සොයන්න.

- 16. i) අරය r හා උස h වන ඒකාකාර සෘජුවෘත්ත කේතුවක ස්කන්ධ කේන්දුය කේතුවේ ආධාරකයේ කේන්දුයේ සිට $\frac{h}{4}$ දුරකින් පිහිටන බවත්,
 - \dot{a} ii) අරය \dot{a} වන ඒකාකාර අර්ධ ගෝලයක ස්කන්ධ කේන්දය එහි තල පෘෂ්ඨයේ කේන්දයේ සිට $\frac{3a}{8}$ දුරකින් පිහිටන බවත්, පෙන්වන්න.

ඉහත අර්ධගෝලයේ තල ආධාරකය, උස a හා අරය a වන සෘජු වෘත්ත කේතුවක ආධාරකය එකට තැබීමෙන්, සංයුක්ත වස්තුවක් තනා තිබේ. අර්ධගෝලයේ ඝනත්වය 3
ho හා කේතුවේ ඝනත්වය 2
ho වේ.

සංයුක්ත වස්තුවේ ස්කන්ධ කේන්දුය, කේතු ශීර්ෂයේ සිට $\frac{39a}{32}$ දුරකින් තිබෙන බව පෙන්වන්න.

W බරැති සංයුක්ත වස්තුව, එහි වකු පෘෂ්ඨය සුමට තිරස් තලයක් මත ගැටෙමින් සමතුලිතව ඇත්තේ සමමිතික අක්ෂය සිරසට heta කෝණයක් සාදමින් වස්තුව මත සිරස් තලයේ යෙදෙන බල යුග්මයක් මගිනි. මෙම බල යුග්මයේ විශාලත්වය W,a හා heta ඇසුරෙන් සොයා එහි අත රූපයේ දක්වන්න.

සංයුක්ත වස්තුව, රළු ආනත තලයක් මත එහි වකු පෘෂ්ඨය ගැටෙන සේ තබා ඇත්තේ වස්තුවේ පොදු ආධාරකය තිරසට ϕ කෝණයක් ආනත වන පරිදිය.

සංයුක්ත වස්තුවත්, ආනත තලයත් අතර ඝර්ෂණ සංගුණකය ϕ කෝණය ඇසුරෙන් සොයන්න.

17. (a) කර්මාන්තශාලාවක සේවකයින් සෂණික පුතිදේහ පරීසෂණය (R.A.T.) සඳහා භාජනය කළ විට සේවකයින්ගෙන් 35% R.A.T. සඳහා ධන පුතිචාර දක්වයි. R.A.T. සඳහා සෘණ පුතිචාර දක්වන අය P.C.R. පරීසෂණයට මුහුණදීමේදී P.C.R. පරීසෂණයෙන් ඔවුන් ගෙන් 10% ක් කොවිඩ් 19 ආසාදිතයින් බව නිවැරදිව පෙන්වයි.

එමෙන්ම R.A.T. හි ධන පුතිචාර දක්වන අය ද P.C.R. පරීකෳණයකට යොමු කළ විට ඔවුන්ගෙන් 90% ක් කොවිඩ් 19 ආසාදිතයින් බව නිවැරදිව දක්වයි.

- i) කර්මාන්තශාලාවෙන් පුද්ගලයකු අහඹු ලෙස තෝරාගත් විට මෙම පුද්ගලයා කොවිඩ් 19 ආසාදිතයින් බවට P.C.R. පරීක්ෂණ මගින් තී්රණය වීමේ සම්භාවිතාව සොයන්න.
- ii) කර්මාන්තශාලාවෙන් අහඹු ලෙස තෝරාගත් පුද්ගලයා P.C.R. පුතිඵල මත කොවිඩ් 19 ආසාදිතයෙක් බව දන්නේ නම් එම පුද්ගලයා R.A.T. සඳහා ඍණ පුතිචාර ලැබූ අයෙක් වීමේ සම්භාවිතාව සොයන්න.
- (b) මෙම වගුවෙන් සතියක කාලයක් තුල කොවිඩ් 19 ආසාදිතව මියගිය පුද්ගලයින්ගේ වයස් පිළිබඳ වාාප්තියක් දක්වයි.

වයස (අවුරුදු)	මියගිය ගණන
25 - 40	30
40 - 55	f_1
55 - 70	120
70 - 85	f_2
85 - 100	90

40 - 55 හා 70 - 85 කාණ්ඩවල සංඛ්‍යාත අත්හැරී ඇත. කෙසේ වෙතත් මෙම ව්‍යාප්තියේ මාතය හා මධ්‍යාස්ථය පිළිවෙලින් 77 හා 75 බව දනී. අත්හැරී ඇති සංඛ්‍යාතයන් සොයා සතිය තුල මියගිය මුළු ගණන සොයන්න.

මෙම වාාප්තියේ මධානාය හා සම්මත අපගමනය ද සොයන්න.