WBLE-SL ► UECM3463-	202206-EZZ ▶ Quizzes ▶ 202206UECN	M3463OE2b ▶ Attempt 1	Update this Quiz	
		Info Results Preview Edit		
Preview 202206UECM34630E2b				
Start again				
	E US LETNO II I II I			
1 🔽 Marks: 1	For a zero-modified ETNB distributio	on, you are given: (i) $p_1 = 0.669946$, (ii) $p_2 = 0.034765$ and $p_3 = 0.004961$. Determine the probability of 0		
	Answer:			
2 ፟	Suppose S is a compound frequency	distribution with primary		
Marks: 1	and secondary distributions N_1 and N_2 are Poisson with parameter	N_2 , respectively.		
	$\lambda_1 = 6.5$ and $\lambda_2 = 2.3$, respectively. Find 1000P(S = 2).			
Time Remaining 1:28:13	a 1000. (5 2)			
	Answer:			
3 ™ Marks: 1	Suppose the probability generating f	function (pgf) of the primary distribution is		
	$P(z) = e^{3.0(z-1)}$			
	and the pgf of the secondary distribu	ution is		
	$P(z) = [1 - \beta(z-1)]^{-1},$			
	and the probability of no claims equa	als 0.6900000000001. Calculate 1000β		
	Answer:			
4 👺 Marks: 1	Let losses occur following a frequency	cy distribution with		
nancs. 1	 P(N = 1) = 0.76 and P(N = 2) = 0.24. 			
	Suppose a deductible is imposed suc a payment resulting from a loss is not betermine the probability that the n [i.e. $1000P(N^P = 1)$].			
	Answer:			
5 🔽 Marks: 1	The number of losses follows a Binor N	mial distribution with m = 36 and q = 0.36. Loss sizes follow and inverse exponentila distribution with θ = 200. Let N be the number of losses for amount less than 400. Determine the standard devia	tion of	

	Answer:				
6 ☑ Marks: 1	Let losses occur following a zero modified binomial distribution with q = 0.84, m = 5 and p ₀ ^M = 0.65. Suppose a deductible is imposed such that the probability of a payment resulting from a loss is now 0.79 rather than 1. Determine the variance of the number of payments made				
	Answer:				
7	15 individuals follows a negative bind Loss size has an exponential distribu The group expands to 70 individuals	n frequency for an employee dental coverage covering follows a negative binomial distribution with mean 7 and variance 14. n exponential distribution with mean 340. ands to 70 individuals and a deductible of 102 is imposed. robability of 2 or more claims from the group after these revisions times 1000			
	Answer:				
8 Marks: 1		pplication of deductibles, follows a distribution with probability generating function(pgf) $P_N(z) = 0.35 + 0.65[1 + 0.14(z - 1)]^8/(1 - 0.86^8)$ on of deductibles, follows a distribution with pgf $P_X(z) = [1 - 8(z - 1)]^{0.3} - 9^{0.3}]/[1 - 9^{0.3}]$ are independent. oss.			
9 🗑 Marks: 2	Click the following link to answer the Then answer 1 here after submitting [Note: In order to enter the google f	https://docs.google.com/forms/d/e/1FAIpQLSfRUvV1wYI20DIcNLV8ceGzZ3KhxUlOBODMYAuqigllzVCYPA/viewform?usp=sf_link			
		Save without submitting Submit all and finish			
(i) Moodle Docs for this page					
You are logged in as Yong Chin Khian (Logout)					

UECM3463-202206-EZZ