CIS 635 - Knowledge Discovery & Data Mining

- Linear to Polynomial Regression
- Model Regularization

Plan

- LR to Polynomial Regression
- Regularization
 - Theory
 - o Practical Notebook presentation

- Does this data points seem familiar matching a known function?

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

- Does this data points seem familiar matching a known function?
 - A Sinusoidal function

$$y(t) = A\sin(\omega t + arphi) = A\sin(2\pi f t + arphi)$$

Clearly this is not a linear function; right?

- Does this data points seem familiar matching a known function?
- Can we approximate this function using LR?

$$\hat{y} = \beta_0 + \beta_1 x$$

LR will not work; right?

- Can you recall any nonlinear function you learned at your high school/colleges?

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)

$$f(x) = x^2$$
, $f(x) = 2x^2$, $f(x) = 5x^2$.

What is the impact of changing the coefficient of x^2 as we have done in these examples? One way to find out is to sketch the graphs of the functions.

- Can you recall any nonlinear function you learned at your high school/colleges?
- Cubic (x³)

- Can you recall any nonlinear function you learned at your high school/colleges?
- Quadratic (x²)
- Cubic (x³)

_

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..
 - Where to stop? What is the best M?

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order/degree of polynomial ..
 - Where to stop? What is the best M?

Good news is our gradient descent (iterative learning) remains the same!

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

- Polynomial function
 - M is the order ..
 - Where to stop? What is the best M?
- Good news is our gradient descent (iterative learning) remains the same!
- You only need to change your objective function (from LR to Polynomial LR)

$$\hat{y} = \beta_0 + \beta_1 x
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

Model

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model yesterday

Our model got a little bigger: 2 params to M param

I know one of your tricks; get you soon!!

Our model today

So, essentially we are fitting a function; right?

Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

$$\epsilon = |\hat{y} - y|$$

Essentially, the same formulation

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Generally ML vs Math conventions

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1,\dots,N}$$

Model

x: scalar

 \boldsymbol{x} , \mathbf{x} : vector

X: Matrix

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\Theta = \{\beta_0, \beta_1\}$$

 $\epsilon = |\hat{y} - y|$

Optimization function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

 $\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$

Essentially, the same formulation

Generally ML vs Math conventions

$$W^* = \operatorname{argmin}_W E\{(x_i, t_i)\}_{i=1, \cdots, N}$$

Table 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

Table 1.1 Table of the coefficients w* for polynomials of various order.

Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
$w_3^\star \ w_4^\star \ w_5^\star$			1, 5	231639.30
w_5^{\star}			',	640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18,
$\dot{w_8^{\star}}$				-557682.99
w_9^\star				125201.43
J		values	cing	1
	· Vpz	values Sincrea	ر. ر	- · · · · /
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	values e increa		`,,
	\ \	_,-,-,		•
	```	'		



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Regularizer

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^\star$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^\star$			, ,	231639.30
$w_5^\star$			`,	640042.26
$w_6^\star$				-1061800.52
$w_7^\star$				1042400.18,
$w_8^{\star}$				-557682.99
$w_9^\star$		es		125201.43
0		values	cing	
	: Vpz	values sincrea	ر. الحلا	- 1 / / ·
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	values e increa		`,,
	\ <b>\</b> \			
	```			
	• •			

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

I.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
$w_4^\star \ w_5^\star$, ,	231639.30
w_5^{\star}			`;	640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18,
w_8^{\star}				-557682.99
w_9^\star	_,_,_,	65		125201.43
Ü		values	cing	/
	: Vpz	values Sincrea	ر. ر	- 1 / / / ·
	\ \ \r(values e increa		`,,
	\ \'			ů.
	``	'		

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$\bar{w_3^{\star}}$			17.37	48568.31
w_4^\star			, ,	~-231639.30
w_5^{\star}			`;	640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18,
w_8^\star				-557682.99
w_9^\star		es		125201.43
J		values	cing	
	: Vpz	values e increa	ر. الحلا	- · · · · · · · · · · · · · · · · · · ·
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 luc.		`,,
	\ \ \			
	```			

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$



$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

e 1.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^\star$		-1.27	7.99	232.37
$w_2^\star$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^{\star}$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^{\star}$				-557682.99
$w_9^\star$				125201.43
-				

How to control this?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$
Table 1.1 Table of the coefficients  $\mathbf{w}^*$  for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases. 
$$w_1^* = w_2^* = w_3^* = w_3^*$$

M = 0

0.19

M = 1 M = 6

0.31

7.99

-25.43

17.37

0.82

-1.27

M = 9

232.37

-5321.83

48568.31

-231639.30 640042.26 -1061800.52 1042400.18 -557682.99

125201.43

0.35

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \sum_{n=1}^{N} \|\mathbf{w}\|^2$$

.1 Table of the coefficients w* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	M = 0	M = 1	M = 6	M = 9
$w_0^{\star}$	0.19	0.82	0.31	0.35
$w_1^\star$		-1.27	7.99	232.37
$w_2^{\star}$			-25.43	-5321.83
$w_3^{\star}$			17.37	48568.31
$w_4^{\star}$				-231639.30
$w_5^{\star}$				640042.26
$w_6^\star$				-1061800.52
$w_7^{\star}$				1042400.18
$w_8^\star$				-557682.99
$w_{0}^{\star}$				125201.43

#### Who to control this?

Lamda is called the **Hyper Parameter** of this model



$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Table 1.2 Table of the coefficients  $\mathbf{w}^*$  for M=9 polynomials with various values for the regularization parameter  $\lambda$ . Note that  $\ln \lambda = -\infty$  corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of  $\lambda$  increases, the typical magnitude of the coefficients gets smaller.

3	log ₂ (x)	log_(x)
2		log _n (x)
1+ /	/	10 9 10 013
1	1 1 1 1 1 1 1 2 e	10 x
1		
2		
3		

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$w_0^{\star}$	0.35	0.35	0.13
$w_1^{\star}$	232.37	4.74	-0.05
$w_2^{\star}$	-5321.83	-0.77	-0.06
$w_3^{\star}$	48568.31	-31.97	-0.05
$w_4^{\star}$	-231639.30	-3.89	-0.03
$w_5^{\star}$	640042.26	55.28	-0.02
$w_6^{\star}$	-1061800.52	41.32	-0.01
$w_7^{\star}$	1042400.18	-45.95	-0.00
$w_8^{\star}$	-557682.99	-91.53	0.00
$w_9^{\star}$	125201.43	72.68	0.01

# Linear to Polynomial Regression + Regularization



$$\hat{y} = \beta_0 
\hat{y} = \beta_0 + \beta_1 x 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

## Linear to Polynomial Regression + Regularization



Learned function is **nonlinear** 

$$\hat{y} = \beta_0 
\hat{y} = \beta_0 + \beta_1 x 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 
\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_2 x^3 + \dots$$

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Model (still) linear