

Customer Ratings Prediction

By Robert D. Driesch Todd Miller Parastoo Karacic Shraddha Mandhale Suraj Jois Princewill Eneh

• YELP• Sentiment Analysis •

Project Overview

Objective: To build a model to help predict the star ratings a business is likely to receive based upon previous customer written reviews while taking into account differences observed within the data corpus for different geographies.

Workflow

Tools

• YELP• Sentiment Analysis •

Preliminary Analysis

Data Profiling

Distribution of Star ratings based on All reviews

CLUSTER	ONE_STAR	TWO_STAR	THREE_STAR	FOUR_STAR	FIVE_STAR
URBANA-CHAMPAIGN	0.07%	0.08%	0.12%	0.23%	0.27%
KARLSRUHE	0.01%	0.02%	0.03%	0.05%	0.06%
EDINBURGH	0.05%	0.11%	0.31%	0.64%	0.41%
LAS VEGAS	4.62%	3.97%	6.37%	12.51%	15.83%
MONTREAL	0.20%	0.25%	0.51%	1.16%	1.04%
WATERLOO	0.02%	0.02%	0.03%	0.06%	0.05%
CHARLOTTE	0.54%	0.58%	1.04%	2.14%	1.969
PHOENIX	4.13%	3.27%	4.69%	10.68%	14.91%
MADISON	0.22%	0.27%	0.42%	0.91%	0.96%
PITTSBURGH	0.32%	0.40%	0.67%	1.37%	1.459

Subset for Training and Test Data we used

Yelp ERD

Yelp Review Table

Review _ id	ld	Use <u>r</u> id	Business _id	Review data	Text	Stars
ae3udsjd	1	ejfjdsfs	widsjfqak	21-MAY-11	Awesome Place to Eat	5
djeualdda	2	fswowew	sjfajqwhaa	1-JAN-10	Good Service	4
eienfįsįs	3	ssdsdsfa	qjqdooma	21-JUN-11	l like it	3
eeeerwr4	4	sdqdqdq	ifnafuqdqd	8-FEB-14	Not good	2
ddfoejd	5	seqeqr	dadkanda	17-AUG-13	Worst place ever	1

Sentiment Analysis

Sentiment Analysis

Transposed And Counted

Training & Test Dataset

Training Data

Test Data

Subset for Training and Test Data we used

Algorithms

NAÏVE BAYES NEURAL NETWORK

Application Function Modeler (AFM)

Separate AFM models for each Algorithm.

• YELP • Sentiment Analysis •

Result Analysis

Confusion Matrix , Roc Curve & Percent Off Diagonal

Results

Naïve Bayes

Neural Network

Decision Tree

Results All Cities

Naïve Bayes

Neural Network

Decision Tree

Average AUC

All Naïve Bayes

All Neural Network

All Decision Tree

All Cities and All Samples Tested.

Challenges

- Pre-processing the data before importing into SAP.
- Handling the Skew of the data
- Tool learning curve (AFM, Python, XLSTAT)
- Focusing on a specific problem.

Conclusion

- Naïve Bayes performed best because it allows each attribute to contribute equally towards the final decision.
- Predication accuracy for different geographic location were consistent because we used the same configuration file /dictionary to perform our text analysis.
- Binning the predictions 1-2, 3 ,4-5 gave us the best result.

Thanks and Ouestions

