ЛАБОРАТОРНАЯ РАБОТА 4.1.1

ИЗУЧЕНИЕ ЦЕНТРИРОВАННЫХ ОПТИЧЕСКИХ СИСТЕМ

Цель работы: изучить методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической системы, составленной из тонких линз; изучить недостатки реальных линз – сферическую и хроматическую аберрации.

Оборудование: оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, освветитель с ирисовой диафрагмой, зрительная труба, светофильтры, кольцевые диафрагми, линейка.

ТЕОРИЯ

Измерение фокусного расстояние можно производить с помощью методоа Аббе и следующей установки

Рис. 1. Измерение фокусного расстояния оптической системы по методу Аббе

Тогда,

$$f = \frac{\Delta x}{\Delta(y/y')} = -\frac{\Delta x'}{\Delta(y'/y)} \tag{1}$$

Также, фокусное расстояние можно измерить с помощья метода Бесселя

Рис. 2. Измерение фокусного расстояния оптической системы по методу Бесселя

$$f = \frac{L^2 - l^2}{4L} \tag{2}$$

$$-\frac{1}{s_1} + \frac{1}{s_1'} = \frac{1}{f} \tag{3}$$

ХОД РАБОТЫ

ОПРЕДЕЛЕНИЕ ФОКУСНЫХ РАССТОЯНИЙ ТОНКИХ ЛИНЗ И ХАРАКТЕРИСТИК СЛОЖНОЙ ОПТИЧЕСКОЙ СИСТЕМЫ

Отберем собирающие линзы, соберем и настроим установку. Проведем центрировку. Измерим фокусное расстояние линзы №1 с помощью метода Бесселя. Для этого установим линзу межуд осветителем и экраном. С помощья линейки измерим указанные расстояния несколько раз.

Между осветителем и экраном L = 48 см

№ измерения	a_1 , см	$\pmb{a_1'}$, см	a_2 , см	$oldsymbol{a_2'}$, см	l , см	f, см (Формула (2))	f, см (Формула (3))
1	14.0	34.0	34.0	14.0	20.0	9.9	9.9
2	13.5	34.5	33.5	14.5	20.0	9.9	9.7
3	14.5	33.5	34.0	14.0	19.5	10.0	10.1
4	14.0	34.0	34.5	13.5	20.5	9.8	9.9
$oldsymbol{\sigma}_{ ext{otd}}$						0.10	0.15

ОПРЕДЕЛЕНИЕ ФОКУСНЫХ РАССТОЯНИЙ ТОНКИХ ЛИНЗ С ПОМОЩЬЮ ЗРИТЕЛЬНОЙ ТРУБЫ

Настроим зрительную трубу на бесконечность. Установим первую линзу перед предметом на примерно фокусном расстоянии. За ней установим зрительную трубу. Измерим фокусное расстояние, добившись четкого изображения в окуляре. Для первой линзы $f=10.0\,\mathrm{cm}$, для второй линзы $f=12.5\,\mathrm{cm}$. Повернув линзы другой стороной повторим измерения. Расстояния совпали и можно считать эти линзы тонкими. Для третьей, рассеивающей линзы используем схему как на рисунке

Рис. 3. Измерение фокусного расстояния рассеивающей линзы

За рассеивающей линзой поместим зрительную трубу. Тогда, в окуляре будет резкое изображение, когда мнимый источник S_1 будет находиться на фокусном расстоянии от линзы и

$$a = f = a_0 - l \tag{4}$$

Расстояние $a_0 = 44.0$ см, l = 36.0 см, $l_{\rm nep} = 37.0$ см. Тогда, фокусное расстояние f = -8.0 см, $l_{\rm nep} = -7.0$ см. Результаты расходятся, линзу нельзя считать тонкой.

Запишем в таблицу все результаты:

№ линзы	Метод Бесселя, формула (2)	Метод Бесселя, формула (3)	Зрительная труба	Зрительная труба, повернутые линзы
1	9.9 ± 0.1	9.9 ± 0.2	10.0 ± 0.5	10.0 ± 0.5
2	-	-	12.5 ± 0.5	12.5 ± 0.5
4	-	-	-8.0 ± 0.5	-7.0 ± 0.5

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ И ПОЛОЖЕНИЯ ГЛАВНЫХ И ФОКАЛЬНЫХ ПЛОСКОСТЕЙ СЛОЖНОЙ ОПТИЧЕСКОЙ СИСТЕМЫ

Установим линзы с номерами 1 и 2 на минимальном расстоянии $l_{12}=7.5$ см. Определим фокусное расстояние методом Аббе. Расстояние от предмета до первой линзы $l_{\rm пл}=4$ см. $\frac{y_1'}{y_1}=10.4$ см, $\frac{y_2'}{y_2}=1.5$ см, $\Delta x=4.5$ см, $\Delta x'=74$ см. Тогда, согласно формуле (1) и формуле для сложной оптической системы

$$f_{2\Sigma} = \frac{\Delta x}{y_1/y_1' - y_2/y_2'} = -\frac{\Delta x'}{y_1'/y_1 - y_2'/y_2}$$
 (5)

$$-\frac{1}{f_{2\Sigma}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{|l_{12}|}{f_1 f_2} \tag{6}$$

По формуле (5) $f_{2\Sigma} = -7.9$ см, по формуле (6) $f_{2\Sigma} = -8.3$ см.

Уберем экран, закрепим зрительную трубу за второй линзой, отцентрируем систему. Расстояние $x_1=3.5~{\rm cm}$. Поменяв линзы местами, расстояние $x_2<3~{\rm cm}$ - его не удалось измерить, т.к. это минимальное расстояние до предмета.

СФЕРИЧЕСКАЯ АБЕРРАЦИЯ

Расположим осветитель и экран на дальних концах скамьи. Установим плосковыпуклую линзу №3 на расстоянии $a_1=64~{\rm cm}$ от предмета, с маской минимального размера и четким изображением на экране. Для маски максимального диаметра это расстояние заметно изменилось. $a'=23~{\rm cm}$.

Рис. 4. Сферическая аберрация

Рис. 5. Хроматическая аберрация