Final Assignment (Section28_520193)

Problem1.

(a)

Decision Variables:

x_i: Associates

- binary variable
- i= 1,2,3,4,5,6,7,8

Objective Function:

 $E(x_i)$ = the total experience of the team

- maximize $E(x_1) = 2^*x_1 + 3^*x_2 + 4^*x_3 + 2^*x_4 + 1^*x_5 + 3^*x_6 + 1^*x_7 + 4^*x_8$

Constraints(assumptions):

- 1. the sum of males: $x_3 + x_4 + x_6 + x_7 = 2$
- 2. the sum of females: $x_1 + x_2 + x_5 + x_8 = 2$
- 3. the sum of US citizens: $x_1 + x_3 + x_6 + x_7 = 2$
- 4. the sum of non-US citizens: $x_2 + x_4 + x_5 + x_8 = 2$

Optimal Solution:

- Total experience of the team: 14
- Team members: x_2 , x_3 , x_6 , x_8

(b)

Additional constraints (assumptions)

#1) If Associate 1 is chosen, then Associate 3 cannot be chosen.

$$x1 + x3 <= 1$$

#2) If Associate 2 is chosen, then Associates 6 and 7 need to be chosen.

 $x2 - x6 \le 0$

 $x2 - x7 \le 0$

#3) Associates 5 and 8 dislike each other and should not be chosen together.

$$x5 + x8 <= 1$$

Optimal Solution:

- Total experience of the team: 11
- Team members: x₁, x₄, x₆, x₈