Last time

Rotate, compute, rotate

- Given "data" $F: \{0,1\}^n \to \{0,1\}$ and "pattern vectors" $|\chi_s\rangle, s \in \{0,1\}^n$
- Step 1: Load the data

$$|f\rangle = \frac{1}{\sqrt{N}} \sum_{x} (-1)^{F(x)} |x\rangle$$

• Step 2: Apply the Fourier transform w.r.t. $|\chi_s\rangle$, $(\chi$ -basis to standard basis)

$$\sum_{s} \langle \chi_{s} | f \rangle | s \rangle$$

• Step 3: Measure in the standard basis. Readout is $|s\rangle$ with probability $|\langle \chi_s \mid f \rangle|^2$

Two quantum algorithms so far

- Bernstein-Vazirani
 - Mystery Boolean function $F(x) = XOR_s(x) = x \cdot s \mod 2$
 - Use quantum circuit Q_F implementing F once to find secret s
- Deutsch-Jozsa
 - ullet F is constantly zero or balanced

Simon's algorithm

- Key difference
 - Need more than 1 application of \mathcal{Q}_F
 - F will be a Boolean function with multiple output bits
 - $F: \{0,1\}^n \to \{0,1\}^m$
- Think of F as a labeling of $\{0,1\}^n$; each label encoded by some m-bit string

Example

Periodic labeling

- Special promise on F: it is L -periodic for $L \in \{0,1\}^n$ and $L \neq 0...0$ if F(x+L) = F(x) for every x, where x+L is bitwise addition mod 2
- In other words, F gives same label to all x, x + L pairs
- Example: L = ?

Simon's problem

- Given L-periodic F for some secret $L \in \{0,1\}^n$
- Also promised that F gives different labels to different pairs x, x + L
- In other words, F(x) = F(y) if and only if x = y or x + L = y
- As a consequence F uses exactly 2^{n-1} different labels
- Given "black-box access" to \mathcal{Q}_F implementing F, determine L
- Classical solution?
 - Need at least $\sqrt{N} = \sqrt{2^n}$ classical applications of F. Why?

Quantumly, can do it with at most 4n applications of Q_F

Probability of failure is small Need 50n applications so that probability of failure $\leq 10^{-6}$ 4n vs $\sqrt{2^n}$, exponential improvement

Loading data

- Joint state at (1)?
- Joint state at (2)?
- New idea: measure the answer qubits!
- State collapses to ...?
- Discard the answer qubits
- End of "data loading"

Rotate, compute, rotate

Apply the Boolean Fourier transform

$$H^{\otimes n}\left(\frac{1}{\sqrt{2}}|x^*\rangle + |x^* + L\rangle\right)$$

- What's the resulting state?
- Now measure, ...

- Now repeat the above process.
- Each repetition uses 2n H gates, 1 Q_F and m+n measurements
- Get a random equation $s \cdot L = 0$ from all 2^{n-1} possible s
- Repeat n-1 times. Obtain $s_i \cdot L = 0$ for $i=1,\ldots,4n$
- ullet Solve for L using classical Gaussian elimination
- ullet What's the probability that L cannot be determined?

Fourier transform for \mathbb{F}_2^n

- Pattern vectors $|\chi_s\rangle$, where $\chi_s(x)=(-1)^{s\cdot x}$ and $s\cdot x$ is dot product in \mathbb{F}_2^n
- Key feature: $\chi_S(x + y) = \chi_S(x)\chi_S(y)$
- Decompose $f: \{0,1\}^n \to \{\pm 1\}$ into strengths of χ_S :

$$|f\rangle = \sum \langle \chi_S | f \rangle | \chi_S \rangle$$

Quantum circuit

Fourier transform for $\mathbb{Z}/N\mathbb{Z}$

- $\mathbb{Z}/N\mathbb{Z}$ integers modulo N
- Pattern vectors $\chi_0, ..., \chi_{N-1} \colon \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ defined by

$$\chi_{S}(x) = \omega^{SX}$$
, where ω is the N -th root of unity

- Quantum circuit uses about n^2 1-qubit & 2-qubit gates when $N=2^n$
- Remark: Can compute the strengths $\langle \chi_s \mid f \rangle$ to high accuracy with $O(n \log n)$ gates. Also works when N is not a power of 2.

• Again associate $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$ to vector

$$|f\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x)|x\rangle$$

- $|f\rangle$ is a quantum state if and only if ...?
- Want N pattern vectors $\chi_0, \ldots, \chi_{N-1}$ such that $|\chi_0\rangle, \ldots, |\chi_{N-1}\rangle$ are orthonormal basis vectors
- Want the same key feature for $\chi_s \colon \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$
 - Need $\chi_s(x) = \chi_s(x+0) = \chi_s(x)\chi_s(0)$, and so $\chi_s(0) = 1$ (otherwise $\chi_s = 0$)
 - Need $\chi_s(x) = \chi_s(1)^x$
 - Need $1 = \chi_s(0) = \chi_s(N) = \chi_s(1)^N$, and so $\chi_s(1)$ is N-th root of unity

• Definition: For $s\in \mathbb{Z}/N\mathbb{Z}$, define $\chi_s\colon \mathbb{Z}/N\mathbb{Z}\to \mathbb{C}$ by $\chi_s(x)=\omega^{sx}, \text{ where } \omega \text{ is the N-th root of unity}$

- Example: $\chi_0(x), \chi_1(x), \chi_2(x)$
- Properties:
 - $\chi_0(x) = 1$
 - $\bullet \ \chi_{\scriptscriptstyle S}(x)^* = \chi_{-\scriptscriptstyle S}(x)$
 - $\bullet \ \chi_{\scriptscriptstyle S}(x) = \chi_{\scriptscriptstyle X}(s)$
- Theorem: $|\chi_0\rangle, |\chi_1\rangle, \ldots, |\chi_{N-1}\rangle$ form an orthonormal basis.