# Diachrony of Spectra

Ikhan Choi

Postech - Unist - Kaist Joint Seminar

July 28, 2019

#### Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

#### Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

#### Example

$$\mathsf{Spec}(\mathbb{Z}) = \{ \, 2\mathbb{Z}, \, 3\mathbb{Z}, \, 5\mathbb{Z}, \, 7\mathbb{Z}, \, 11\mathbb{Z}, \, \cdots \}.$$

#### Definition

Let R be a commutative ring. The spectrum of R is the set of prime ideals of R.

#### Example

$$\mathsf{Spec}(\mathbb{Z}) = \{ \, 2\mathbb{Z}, \, 3\mathbb{Z}, \, 5\mathbb{Z}, \, 7\mathbb{Z}, \, 11\mathbb{Z}, \, \cdots \}.$$

#### Question

Why is it defined like this?

#### Contents

#### Hydrogen atom

Spectral theory on Hilbert spaces

Gelfand theory

Algebraic geometry

# Hydrogen spectral series



# Hydrogen spectral series



### Hydrogen spectral series



#### Question

434.0nm

How can we explain and compute this phenomenon?

Bohr's postulates:

#### Bohr's postulates:

▶ The electrons are on certian stable orbits.

#### Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

 $mvr = n\hbar$ .

#### Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

$$mvr = n\hbar$$
.

► An electron absorbs or emits light frequency f when they jump from an orbit to another, satisfying

$$\Delta E = hf$$
.

#### Bohr's postulates:

- ▶ The electrons are on certian stable orbits.
- ► The stationary orbits are computed by the old quantization assumption for angular momenta:

$$mvr = n\hbar$$
.

An electron absorbs or emits light frequency f when they jump from an orbit to another, satisfying

$$\Delta E = hf$$
.

The constant h is called the Planck constant and  $\hbar := \frac{h}{2\pi}$ .



From the three relations

$$\label{eq:mur} \text{mvr} = \text{nh}, \quad \frac{\text{mv}^2}{\text{r}} = -k\frac{(+e)(-e)}{\text{r}^2}, \quad \text{E} = \text{K} + \text{V} = \frac{1}{2}\text{mv}^2 - k\frac{e^2}{\text{r}},$$

From the three relations

$$mvr = n\hbar$$
,  $\frac{mv^2}{r} = -k\frac{(+e)(-e)}{r^2}$ ,  $E = K + V = \frac{1}{2}mv^2 - k\frac{e^2}{r}$ ,

we deduce

$$E = -\frac{k^2 e^4 m}{2 \hbar^2} \frac{1}{n^2} \approx -13.6 \frac{1}{n^2} \ (eV).$$

From the three relations

$$\label{eq:mur} m \nu r = n \hbar, \quad \frac{m \nu^2}{r} = -k \frac{(+e)(-e)}{r^2}, \quad E = K + V = \frac{1}{2} m \nu^2 - k \frac{e^2}{r},$$

we deduce

$$E = -\frac{k^2 e^4 m}{2\hbar^2} \frac{1}{n^2} \approx -13.6 \frac{1}{n^2} \text{ (eV)}.$$

#### Proposition (Rydberg formula)

The wavelengths  $\lambda$  of absorbed or emitted photons from a hydrogen atom is estimated by the following formula:

$$rac{1}{\lambda}=R\left(rac{1}{\mathfrak{n}_1^2}-rac{1}{\mathfrak{n}_2^2}
ight),\quad ext{for}\quad \mathfrak{n}_1,\mathfrak{n}_2\in\mathbb{N},$$

where  $R := \frac{k^2 e^4 m}{4\pi \hbar^3 c}$  is the Rydberg constant.



More mathematically!

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t,x)\in\mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t, \chi) \in \mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

energy kinetic energy potential energy

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t, \chi) \in \mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

energy

kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{2}{|x|}.$$

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t, \chi) \in \mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

energy

kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{2}{|x|}.$$

By solving it, we obtain the probability distribution  $|\Psi(t,x)|^2$  of the electron at time t,

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t,x)\in\mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

energy kinetic ener

kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{2}{|x|}.$$

By solving it, we obtain the probability distribution  $|\Psi(t,x)|^2$  of the electron at time t, hence the assumption  $\forall t,\ \int |\Psi(t,x)|^2 \, dx < \infty.$ 

More mathematically!

In quantum mechanics, an electron around a hydrogen atom is described by the Schrödinger equation: for  $(t, \chi) \in \mathbb{R}^{1+3}$ 

$$i\hbar \frac{\partial}{\partial t} \Psi(t, x) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t, x) + V(x) \Psi(t, x),$$

energy

kinetic energy potential energy

where V is given by the Coulomb potential

$$V(x) = -\frac{2}{|x|}.$$

By solving it, we obtain the probability distribution  $|\Psi(t,x)|^2$  of the electron at time t, hence the assumption  $\forall t$ ,  $\int |\Psi(t,x)|^2 dx < \infty$ . Let's solve.

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x).$$

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x).$$

"Mathematization":

$$i\partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

$$i\hbar\frac{\partial\Psi(t,x)}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi(t,x)+V(x)\Psi(t,x).$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$i\hbar\frac{\partial\Psi(t,x)}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi(t,x)+V(x)\Psi(t,x).$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$\frac{i\vartheta_t\varphi(t)}{\varphi(t)} = \frac{(-\Delta + V(x))\psi(x)}{\psi(x)}$$

$$i\hbar\frac{\partial\Psi(t,x)}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi(t,x)+V(x)\Psi(t,x).$$

"Mathematization":

$$i \partial_t \Psi(t,x) = (-\Delta + V(x)) \Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$\frac{i\partial_t \varphi(t)}{\varphi(t)} = \frac{(-\Delta + V(x))\psi(x)}{\psi(x)} = E.$$

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x).$$

"Mathematization":

$$i\partial_t \Psi(t,x) = (-\Delta + V(x))\Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$\frac{i \partial_t \varphi(t)}{\varphi(t)} = \frac{(-\Delta + V(x)) \psi(x)}{\psi(x)} = E.$$

The constant E is interpreted as the energy of electrons.

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x).$$

"Mathematization":

$$i\partial_t \Psi(t,x) = (-\Delta + V(x))\Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$\frac{i \partial_t \varphi(t)}{\varphi(t)} = \frac{(-\Delta + V(x)) \psi(x)}{\psi(x)} = E.$$

The constant E is interpreted as the energy of electrons. We have two *eigenvalue problems* with *shared eigenvalue* E:

$$i\hbar \frac{\partial \Psi(t,x)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(t,x) + V(x) \Psi(t,x).$$

"Mathematization":

$$i\partial_t \Psi(t,x) = (-\Delta + V(x))\Psi(t,x).$$

**Ansatz:** if the solutions has the form  $\Psi(t,x)=\varphi(t)\psi(x)$ , then

$$\frac{i \partial_t \varphi(t)}{\varphi(t)} = \frac{(-\Delta + V(x)) \psi(x)}{\psi(x)} = E.$$

The constant E is interpreted as the energy of electrons. We have two *eigenvalue problems* with *shared eigenvalue* E:

$$i\frac{d}{dt}\varphi(t)=\mathsf{E}\varphi(t),\qquad (-\Delta+V(x))\psi(x)=\mathsf{E}\psi(x).$$

Suppose we already have found the solutions  $\phi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E.

Suppose we already have found the solutions  $\varphi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E. Some facts:

Suppose we already have found the solutions  $\phi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E. Some facts:

► For a given E,  $\phi_E$  and  $\psi_E$  are of course not unique. In fact they form a vector space which is called the eigenspace.

Suppose we already have found the solutions  $\phi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E. Some facts:

- ► For a given E,  $\phi_E$  and  $\psi_E$  are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution  $\psi_E(x)$  that satisfies  $\int |\psi_E(x)|^2 dx = 1$ : the eigenspace is trivial.

Suppose we already have found the solutions  $\phi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E. Some facts:

- ► For a given E,  $\phi_E$  and  $\psi_E$  are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution  $\psi_E(x)$  that satisfies  $\int |\psi_E(x)|^2 dx = 1$ : the eigenspace is trivial.
- All functions that look like

$$\Phi(t,x) = \sum_{E} c_{E} \psi_{E}(t) \phi_{E}(x)$$

are solutions of the original Schrödinger equation and *all* solutions are found in this way(think physically!).

Suppose we already have found the solutions  $\phi_E(t)$ ,  $\psi_E(x)$  of the eigenvalue problems for each complex number E. Some facts:

- ► For a given E,  $\phi_E$  and  $\psi_E$  are of course not unique. In fact they form a vector space which is called the eigenspace.
- Note that for some E we probably cannot find the solution  $\psi_E(x)$  that satisfies  $\int |\psi_E(x)|^2 dx = 1$ : the eigenspace is trivial.
- All functions that look like

$$\Phi(t,x) = \sum_{E} c_{E} \psi_{E}(t) \phi_{E}(x)$$

are solutions of the original Schrödinger equation and *all* solutions are found in this way(think physically!).

▶ Since  $\phi_E(t) \propto e^{-iEt}$  is easily solved, the main difficulty is  $\psi_E$ .



So, here are what we need to investigate seriously:

So, here are what we need to investigate seriously: what are the eigenvalues and eigenvectors of the linear operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(x) := (-\Delta - 2|x|^{-1})\psi(x)?$$

Also, how can we compute them?

So, here are what we need to investigate seriously: what are the eigenvalues and eigenvectors of the linear operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(x) := (-\Delta - 2|x|^{-1})\psi(x)?$$

Also, how can we compute them?

\*\*\* The Beginning of Spectral Theory \*\*\*



So, here are what we need to investigate seriously: what are the eigenvalues and eigenvectors of the linear operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(x) := (-\Delta - 2|x|^{-1})\psi(x)?$$

Also, how can we compute them?

 $\star\star\star$  The Beginning of Spectral Theory  $\star\star\star$ 

#### Remark

Simply,  $L^2(\mathbb{R}^3)$  is the space of  $f:\mathbb{R}^3\to\mathbb{R}$  such that  $\int |f|^2<\infty.$ 



So, here are what we need to investigate seriously: what are the eigenvalues and eigenvectors of the linear operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(x):=(-\Delta-2|x|^{-1})\psi(x)?$$

Also, how can we compute them?

 $\star\star\star$  The Beginning of Spectral Theory  $\star\star\star$ 

#### Remark

Simply,  $L^2(\mathbb{R}^3)$  is the space of  $f:\mathbb{R}^3\to\mathbb{R}$  such that  $\int |f|^2<\infty.$ 

#### Remark

In fact, there are many technical issues to formalize this problem, for example,  $L^2$  function is in general not differentiable.



So, here are what we need to investigate seriously: what are the eigenvalues and eigenvectors of the linear operator

$$\mathcal{H}:L^2(\mathbb{R}^3)\to L^2(\mathbb{R}^3)$$

defined by

$$\mathcal{H}\psi(x) := (-\Delta - 2|x|^{-1})\psi(x)$$
?

Also, how can we compute them?

\*\*\* The Beginning of Spectral Theory \*\*\*

#### Remark

Simply,  $L^2(\mathbb{R}^3)$  is the space of  $f:\mathbb{R}^3\to\mathbb{R}$  such that  $\int |f|^2<\infty.$ 

#### Remark

In fact, there are many technical issues to formalize this problem, for example,  $L^2$  function is in general not differentiable. Don't be so pedantic in doing physics.



With long long calculations and hard hard mathematics, experts have found the following result:

With long long calculations and hard hard mathematics, experts have found the following result:

### Proposition

The eigenvalues of the operator  $\mathcal{H} = -\Delta - 2|x|^{-1}$  are

With long long calculations and hard hard mathematics, experts have found the following result:

### Proposition

The eigenvalues of the operator  $\mathfrak{H} = -\Delta - 2|x|^{-1}$  are

$$-1, -\frac{1}{4}, -\frac{1}{9}, -\frac{1}{16}, \cdots$$

With long long calculations and hard hard mathematics, experts have found the following result:

### Proposition

The eigenvalues of the operator  $\mathfrak{H} = -\Delta - 2|x|^{-1}$  are

$$-1, -\frac{1}{4}, -\frac{1}{9}, -\frac{1}{16}, \cdots$$

with multiplicity 1, 4, 9, 16 and so on.

► Eigenvalues embody the possible energies of an electron, so we can give the Rydberg formula a reasonable explanation.



With long long calculations and hard hard mathematics, experts have found the following result:

### Proposition

The eigenvalues of the operator  $\mathfrak{H} = -\Delta - 2|x|^{-1}$  are

$$-1, -\frac{1}{4}, -\frac{1}{9}, -\frac{1}{16}, \cdots$$

with multiplicity 1, 4, 9, 16 and so on.

- ► Eigenvalues embody the possible energies of an electron, so we can give the Rydberg formula a reasonable explanation.
- ► This result explains not only the discretized energy spectrum but also the number of each orbitals!

#### Conclusion of Section 1

### Contents

Hydrogen atom

Spectral theory on Hilbert spaces

Gelfand theory

Algebraic geometry

### Spectral theory?

So far, we have seen that spectral theory refers to the theory about eigenvalues and eigenvectors,

### Spectral theory?

So far, we have seen that spectral theory refers to the theory about eigenvalues and eigenvectors, especially for INFINITE dimensional linear operators.

### Spectral theory?

So far, we have seen that spectral theory refers to the theory about eigenvalues and eigenvectors, especially for INFINITE dimensional linear operators.

In this section,

- we review the spectral theory on finite dimensional vector spaces
- ▶ and introduce Hilbert spaces a typical example of infinite dimensional vector spaces — to state some results which extend the spectral theory to infinite dimensional spaces.

## Spectral theorem of normal matrices

# Hilbert space

## Spectral theorem of compact operators

# Spectral theorem of elliptic operators (Skipped)

#### Contents

Hydrogen atom

Spectral theory on Hilbert spaces

Gelfand theory

Algebraic geometry

### Banach algebras and C\*-algebras

## Example 1 : Bounded operators

## Example 2 : Continuous functions

## Spectra, multiplicative homomorphisms, maximal ideals

### Gelfand-Naimark theorem

# Algebraic variety

# Coordinate ring

## Maximal ideal is a point

### Problem of unified codomains

# Functoriality