

Surface mount high linearity wideband silicon NPN RF bipolar transistor

Order now

Product description

The BFP450 is a low noise device based on a grounded emitter (SIEGET $^{\text{TM}}$) that is part of Infineon's established fourth generation RF bipolar transistor family. Its transition frequency f_{T} of 24 GHz, collector design and high linearity characteristics make the device suitable for energy efficiency applications up to 3 GHz. It remains cost competitive without compromising on ease of use.

Feature list

- Minimum noise figure NF_{min} = 1.7 dB at 1.9 GHz, 3 V, 50 mA
- High gain G_{ma} = 15.5 dB at 1.9 GHz, 3 V, 90 mA
- OIP₃ = 31 dBm at 1.9 GHz, 3 V, 90 mA

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC JESD47, JESD22, and J-STD-020. Qualified for industrial applications according to the relevant tests of AEC-Q 101.

Potential applications

- Broadband amplifiers
- Low noise, high linearity amplifiers for sub-1 GHz ISM band applications

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin co	nfigura	tion		Marking	Pieces / Reel
BFP450 / BFP450H6327XTSA1	SOT343	1 = B	2 = E	3 = C	4 = E	ANs	3000
BFP450 / BFP450H6433XTMA1							10000

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Surface mount high linearity wideband silicon NPN RF bipolar transistor

Table of contents

Table of contents

	Product description	. 1
	Feature list	1
	Product validation	. 1
	Potential applications	. 1
	Device information	. 1
	Table of contents	. 2
1	Absolute maximum ratings	. 3
2	Thermal characteristics	4
3	Electrical characteristics	5
3.1	DC characteristics	. 5
3.2	General AC characteristics	5
3.3	Frequency dependent AC characteristics	. 6
3.4	Characteristic DC diagrams	.9
3.5	Characteristic AC diagrams	12
4	Package information SOT343	19
	Revision history	20
	Disclaimer	21

Absolute maximum ratings

1 Absolute maximum ratings

Table 2 Absolute maximum ratings at $T_A = 25$ °C (unless otherwise specified)

Parameter	Symbol	Symbol Values			Note or test condition	
		Min.	Max.			
Collector emitter voltage	V_{CEO}	_	4.5	٧	Open base	
			4.1		T_A = -55 °C, open base	
Collector emitter voltage	V_{CES}		15		E-B short circuited	
Collector base voltage	V_{CBO}		15		Open emitter	
Emitter base voltage	V_{EBO}		1.5		Open collector	
Base current	I _B		10	mA	_	
Collector current	I _C		170			
Total power dissipation ¹⁾	P _{tot}		500	mW	<i>T</i> _S ≤ 90 °C	
Junction temperature	TJ		150	°C	-	
Storage temperature	T_{Stg}	-55				

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the integrated circuit.

 Datasheet
 3
 Revision 3.0

 2024-07-01
 2024-07-01

 T_S is the soldering point temperature. T_S is measured on the emitter lead at the soldering point of the PCB.

Thermal characteristics

2 Thermal characteristics

Table 3 Thermal resistance

Parameter	Symbol	Values			Values U		Values		Values		Note or test condition
		Min.	Тур.	Max.							
Junction - soldering point	R _{thJS}	_	120	_	K/W	-					

Figure 1 Total power dissipation $P_{\text{tot}} = f(T_S)$

Electrical characteristics

3 Electrical characteristics

3.1 DC characteristics

Table 4 DC characteristics at $T_A = 25$ °C

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Collector emitter breakdown voltage	$V_{(BR)CEO}$	4.5	5	_	V	$I_C = 1 \text{ mA}, I_B = 0,$ open base
Collector emitter leakage current	I _{CES}	_	1	1 ²⁾ 30 ²⁾	μA nA	$V_{CE} = 15 \text{ V}, V_{BE} = 0,$ $V_{CE} = 3 \text{ V}, V_{BE} = 0,$ E-B short circuited
Collector base leakage current	I _{CBO}		1	30 ²⁾	nA	$V_{\rm CB} = 3 \text{ V}, I_{\rm E} = 0,$ open emitter
Emitter base leakage current	I _{EBO}		0.05	3 ²⁾	μΑ	$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0, open collector
DC current gain	h _{FE}	60 50	95 85	130 120		$V_{CE} = 4 \text{ V}, I_C = 50 \text{ mA},$ $V_{CE} = 3 \text{ V}, I_C = 90 \text{ mA},$ pulse measured

3.2 General AC characteristics

Table 5 General AC characteristics at $T_A = 25 \,^{\circ}\text{C}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Transition frequency	f_{T}	18	24	_	GHz	$V_{CE} = 3 \text{ V}, I_{C} = 90 \text{ mA},$ f = 1 GHz
Collector base capacitance	C _{CB}	_	0.48	0.8	pF	$V_{CB} = 3 \text{ V}, V_{BE} = 0,$ f = 1 MHz, emitter grounded
Collector emitter capacitance	C _{CE}		1.2	_		$V_{CE} = 3 \text{ V}, V_{BE} = 0,$ f = 1 MHz, base grounded
Emitter base capacitance	C _{EB}		1.7			$V_{\rm EB}$ = 0.5 V, $V_{\rm CB}$ = 0, f = 1 MHz, collector grounded

Maximum values not limited by the device but by the short cycle time of the 100% test.

3.3 Frequency dependent AC characteristics

Measurement setup is a test fixture with Bias-T's in a 50 Ω system, T_A = 25 °C.

Figure 2 Testing circuit

Table 6 AC characteristics, $V_{CE} = 3 \text{ V}, f = 150 \text{ MHz}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
Maximum power gain	G _{ms}		35.5			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		33.5			
Noise figure						
Minimum noise figure	NF _{min}		1.55			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G_{ass}		32			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		30.5			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm mA}$
• 1 dB gain compression point at output	OP _{1dB}		19			

Table 7 AC characteristics, $V_{CE} = 3 \text{ V}$, f = 450 MHz

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
 Maximum power gain 	G _{ms}		29			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		25			
Noise figure						
Minimum noise figure	NF _{min}		1.55			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G _{ass}		27.5			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		30			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm m}$
• 1 dB gain compression point at output	OP _{1dB}		19			

Surface mount high linearity wideband silicon NPN RF bipolar transistor

Electrical characteristics

Table 8 AC characteristics, $V_{CE} = 3 \text{ V}, f = 900 \text{ MHz}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
Maximum power gain	G _{ms}		23.5			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		19			
Noise figure						
Minimum noise figure	NF _{min}		1.6			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G_{ass}		23			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		30.5			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm mA}$
• 1 dB gain compression point at output	OP _{1dB}		19			

Table 9 AC characteristics, $V_{CE} = 3 \text{ V}, f = 1.5 \text{ GHz}$

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
 Maximum power gain 	G _{ma}		18			$I_{\rm C} = 90 \text{ mA}$
Transducer gain	$ S_{21} ^2$		14			
Noise figure						
 Minimum noise figure 	NF _{min}		1.65			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G_{ass}		17			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		31			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm mA}$
• 1 dB gain compression point at output	OP _{1dB}		19			

Table 10 AC characteristics, $V_{CE} = 3 \text{ V}$, f = 1.9 GHz

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
 Maximum power gain 	G _{ma}		15.5			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		11.5			
Noise figure						
 Minimum noise figure 	<i>NF</i> _{min}		1.7			$I_{\rm C} = 50 {\rm mA}$
 Associated gain 	G _{ass}		14			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		31			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm m}$
• 1 dB gain compression point at output	OP _{1dB}		19			

Surface mount high linearity wideband silicon NPN RF bipolar transistor

Electrical characteristics

AC characteristics, $V_{CE} = 3 \text{ V}$, f = 2.4 GHzTable 11

Parameter	Symbol		Values			Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
 Maximum power gain 	G _{ma}		13.5			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		9.5			
Noise figure						
Minimum noise figure	NF _{min}		1.8			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G_{ass}		12			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		30			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm m}$
• 1 dB gain compression point at output	OP _{1dB}		19			

AC characteristics, $V_{CE} = 3 \text{ V}$, f = 3.5 GHzTable 12

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Power gain		_		_	dB	
Maximum power gain	G _{ma}		10			$I_{\rm C} = 90 {\rm mA}$
Transducer gain	$ S_{21} ^2$		6			
Noise figure						
Minimum noise figure	NF _{min}		2.05			$I_{\rm C} = 50 {\rm mA}$
Associated gain	G _{ass}		9			
Linearity					dBm	
3rd order intercept point at output	OIP ₃		29.5			$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega, I_{\rm C} = 90 \ {\rm m}$
• 1 dB gain compression point at output	OP _{1dB}		18.5			

Note:

 $G_{\rm ms}$ = $IS_{21}/S_{12}I$ for k < 1; $G_{\rm ma}$ = $IS_{21}/S_{12}I$ (k-(k^2 -1) $^{1/2}$) for k > 1. In order to get the NF_{min} values stated in this chapter, the test fixture losses have been subtracted from all measured results. OIP₃ value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz.

3.4 Characteristic DC diagrams

Figure 3 Collector current vs. collector emitter voltage $I_C = f(V_{CE})$, $I_B = parameter$

Figure 4 DC current gain $h_{FE} = f(I_C)$, $V_{CE} = 3 \text{ V}$

Figure 5 Collector current vs. base emitter forward voltage $I_C = f(V_{BE})$, $V_{CE} = 2 \text{ V}$

Figure 6 Base current vs. base emitter forward voltage $I_B = f(V_{BE})$, $V_{CE} = 2 \text{ V}$

Figure 7 Base current vs. base emitter reverse voltage $I_B = f(V_{EB})$, $V_{CE} = 2 \text{ V}$

3.5 Characteristic AC diagrams

Figure 8 Transition frequency $f_T = f(I_C)$, f = 1 GHz, $V_{CE} =$ parameter

Figure 9 3rd order intercept point $OIP_3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , f = parameters

Collector base capacitance $C_{CB} = f(V_{CB}), f = 1 \text{ MHz}$ Figure 10

Gain G_{ma} , G_{ms} , $IS_{21}I^2 = f(f)$, $V_{\text{CE}} = 3 \text{ V}$, $I_{\text{C}} = 90 \text{ mA}$ Figure 11

Figure 12 Maximum power gain $G_{\text{max}} = f(I_{\text{C}})$, $V_{\text{CE}} = 3 \text{ V}$, f = parameter in GHz

Figure 13 Maximum power gain $G_{\text{max}} = f(V_{\text{CE}})$, $I_{\text{C}} = 90 \text{ mA}$, f = parameter in GHz

Input reflection coefficient $S_{11} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 50 / 90 \text{ mA}$ Figure 14

Source impedance for minimum noise figure $Z_{S,opt} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_C = 50 \text{ / } 90 \text{ mA}$ Figure 15

Figure 16 Output reflection coefficient $S_{22} = f(f)$, $V_{CE} = 3 \text{ V}$, $I_{C} = 50 / 90 \text{ mA}$

Figure 17 Noise figure $NF_{min} = f(f)$, $Z_S = Z_{S,opt}$, $V_{CE} = 3 \text{ V}$, $I_C = 50 / 90 \text{ mA}$

Figure 18 Noise figure $NF_{min} = f(I_C)$, $Z_S = Z_{S,opt}$, $V_{CE} = 3 \text{ V}$, f = parameter in GHz

Figure 19 Noise figure $NF_{50} = f(I_C)$, $Z_S = 50 \Omega$, $V_{CE} = 3 V$, f = parameter in GHz

Electrical characteristics

Figure 20 Noise figure $NF_{50} = f(I_C)$, $Z_S = 50 \Omega$, $NF_{min} = f(I_C)$, $Z_S = Z_{S,opt}$, $V_{CE} = 3 V$, f = 1.9 GHz

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves. $T_A = 25 \, ^{\circ}\text{C}$.

Package information SOT343

4 Package information SOT343

Figure 21 SOT343 package

Note: For package information including footprint, packing and assembly recommendation refer to:

https://www.infineon.com/cms/en/product/packages/PG-SOT343/PG-SOT343-4-1

Surface mount high linearity wideband silicon NPN RF bipolar transistor

Revision history

Revision history

Document version	Date of release	Description of changes
Revision 2.0	2019-01-25	New datasheet layout.
Revision 3.0	2024-07-01	Updated product validation

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-07-01 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-ehy1521536352893

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.