Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

Четвёртая неделя. Непрерывный случай	2
Определённый интеграл	2
Неопределённый интеграл	3
Функция распределения	4
Плотность вероятности	4
Математическое ожидание	4
Лисперсия	4

Четвёртая неделя. Непрерывный случай

Определённый интеграл

Пусть дана неотрицательная функция f со значениями в \mathbb{R} , определённая на отрезке [a,b].

Давайте строго определим площадь фигуры, заключённой между графиком функции f, осью OX и вертикальными линиями x=a, x=b :

Выберем на отрезке [a,b] несколько точек: $a = x_0 < x_1 < x_2 < \cdots < x_k = b$. Будем называть это разбиением отрезка [a,b].

Для каждого i на отрезке $[x_i, x_{i+1}]$ выберем произвольную точку c_i .

Интегральной суммой для такого разбиения и выбора точек c_i называется сумма $\sum_{i=0}^{i=k-1} f(c_i)(x_{i+1}-x_i)$. Рангом разбиения называется длина самого длинного из отрезков $[x_i, x_{i+1}]$, то есть $\max_{0 \le i < k} (x_{i+1}-x_i)$. Пусть для любой последовательности разбисний и руборах $\sum_{i=0}^{n} f(c_i)(x_{i+1}-x_i)$.

Пусть для любой последовательности разбиений и выборов точек, такой что соответствующая последовательность рангов стремится к нулю, соответствующая последовательность интегральных сумм тоже имеет предел равный l.

Тогда l называется $onpeden\ddot{e}$ нным интегралом функции f на отрезке [a,b] и обозначается так: $\int\limits_a^b f(x)\,dx.$

Если определённый интеграл $\int\limits_a^b f(x)\,dx$ существует, то говорят, что f интегрируема по Риману на отрезке [a,b].

Если же функция f не является неотрицательной, то определение интеграла никак не отличается. Но определённый интеграл функции f на отрезке [a,b] будет равен площади фигуры, заключённой между графиком функции f, осью OX и вертикальными линиями x=a, x=b, где площадь фигур, расположенных ниже оси OX, считается со знаком минус:

Теорема. Для любой непрерывной функции f и любых [a,b] определённый интеграл $\int\limits_{0}^{b}f(x)\,dx$ существует.

Следствие. Пусть у нас есть непрерывная функция f, определённая на отрезке [a,b], и какая-то последовательность разбиений (и выборов c_i) с рангом, стремящемся к нулю. Тогда предел интегральных сумм этой последовательности существует и равен $\int\limits_{-\infty}^{\infty} f(x) \, dx$.

Неопределённый интеграл

Heonpedeлённым интегралом функции f(x) называется любая функция F(x), такая что производная F(x)равна f(x). То есть F'(x) = f(x).

Эта функция F(x) ещё называется первообразной функции f(x).

Теорема (формула Ньютона-Лейбница). Пусть f – непрерывная функция, определённая на отрезке [a,b]. Пусть F – какая-то первообразная функции f. Тогда выполнено:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Обозначение. Часто выражение F(b)-F(a) обозначают так: F(x)

Линейность интеграла:

1.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
 для любого $c \in \mathbb{R}$.

2.
$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx = \int_{a}^{b} f(x) + g(x) dx$$
.

Несобственные итегралы первого рода

Если f это непрерывная функция на луче $[a,+\infty)$, то $\int\limits_a^{+\infty} f(x)\,dx:=\lim\limits_{b\to +\infty}\int\limits_a^b f(x)\,dx.$ Запись $\lim\limits_{b\to +\infty}$ в правой части означает, что мы берём пределы для всевозможных последовательностей . . .

 $b_0, b_1, b_2 \dots$, стремящихся к $+\infty$, и все эти пределы совпадают. Если пределы не совпадают или их нет, то $\int_{0}^{\infty} f(x) dx$ не определён. В этом случае мы говорим, что интеграл расходится.

Если f это непрерывная функция на луче $(-\infty,b]$, то $\int\limits_{-\infty}^b f(x)\,dx:=\lim\limits_{a\to -\infty}\int\limits_a^b f(x)\,dx$. Если f это непрерывная функция на прямой $(-\infty,+\infty)$, то $\int\limits_{-\infty}^{+\infty} f(x)\,dx:=\int\limits_{-\infty}^c f(x)\,dx+\int\limits_{-c}^{+\infty} f(x)\,dx$, где cэто любое число.

Функция распределения

Для случайной величины ξ функция $F_{\xi}(x) := P(\xi \leqslant x)$ называется функцией распределения. Функция F_{ξ} называется функцией распределения, если выполнены такие свойства:

- F_{ξ} не убывает, то есть для любых $a_1 < a_2$ выполнено $F_{\xi}(a_1) \le F_{\xi}(a_2)$
- $\lim_{a \to +\infty} F_{\xi}(a) = 1$
- $\bullet \lim_{a \to -\infty} F_{\xi}(a) = 0$

Случайная величина называется непрерывной, если её функция распределения непрерывна в каждой точке.

Плотность вероятности

Гистограмма строится так:

- 1. Промежуток значений, которое может принимать измеряемая величина, разбивается на несколько интервалов по-английски их называют bins, по-русски карманы / корзины. Чаще всего эти интервалы берут одинаковыми.
- 2. Отложим полученные интервалы на горизонтальной оси. Над каждым карманом изобразим прямоугольник с высотой равной количеству участников, чей рост попал в данный карман.

Случайная величина ξ с функцией распределения F_{ξ} называется абсолютно непрерывной, если существует функция $p_{\xi}: \mathbb{R} \to \mathbb{R}_{\geqslant 0}$ такая, что для всех $x \in \mathbb{R}$ выполнено $F_{\xi}(x) = \int\limits_{-\infty}^{x} p_{\xi}(x) dx$. В этом случае функция p_{ξ} называется плотностью вероятности.

Кроме того верны формулы

- $F'_{\xi}(a) = p_{\xi}(a)$
- $P(\xi \in [a,b]) = \int_a^b p_{\xi}(x)dx$.

Математическое ожидание

Пусть ξ — абсолютно непрерывная случайная величина с плотностью $p(\xi)$. Если интеграл $\int_{-\infty}^{+\infty} x p_{\xi}(x) dx$ сходится, то его значение называют математическим ожиданием ξ . В противном случае говорят, что математическое ожидание не определено.

В случае абсолютно непрерывной случайной величины свойство линейности математического ожидания сохраняется, то есть соотношение $\forall a,b \in \mathbb{R}: E[a\xi+b\eta] = aE[\xi]+bE[\eta]$ выполнено, с оговоркой, что математическое ожидание случайных величин ξ и η должно быть определено.

Дисперсия

Пусть ξ — абсолютно непрерывная случайная величина с плотностью p_{ξ} . Если определено математическое ожидание ξ и интеграл $\int\limits_{-\infty}^{+\infty} x^2 \ p_{\xi}(x) dx$ сходится, то дисперсия $Var(\xi)$ определена и равняется $\int\limits_{-\infty}^{+\infty} x^2 \ p_{\xi}(x) dx - (E\xi)^2$.