

- o Introduction
- o Methodology
- o Design
- o Results
- o Challenges
- o Conclusion

Intrusion Detection System (IDS)

- An intrusion detection system investigates the connections in a network and analyze the data based on pretrained models to detect and classify malicious activities.
- Connections can be of TCP/UDP, ICMP protocol and more. Other features also such as duration, protocol type and the data volume (bytes) are important to consider when there is a malicious activity in a network.
- The objective of this project is to develop an IDS by using several ML models to improve the accuracy of detecting a malicious behavior by choosing the most optimum ML algorithm.

Methodology

A Comparative Analysis of ML Models

Machine Learning Approach in IDS

Machine Learning Models are powerful tools to analyze and classify the captured data from a Real or Simulated Environments. Some of those were applied to analyze the performance of and IDS.

- Logistic Regression (LR)
- Naive Bayes (NB)
- Support Vector Machine (SVM)
- Principal Component Analysis (PCA):
 Dimensionality Reduction

Data preprocessing techniques helps us to clean and prepare a dataset for the ML model. Having a well-designed dataset can help the ML model to perform better and classify more accurately. Some of the preprocessing techniques are:

- Correlation Analysis
- Normalization and Standardization
- Feature Selection (Removing the unnecessary features)
- Cross Validation (75%-25% with random selection)

Results

- Logistic Regression: 95.04% Accuracy
- Support Vector Machine (SVM):
 - Linear Kernel Accuracy 95.5%
 - Sigmoid kernel Accuracy 90.34%
 - Polynomial kernel Accuracy 98.06 %
- Naïve Bayes: 92.1% Accuracy

Model	Accuracy	Precision	Recall	F1-score
Logistic Regression (LR)	95.04%	95.67%	93.58%	94.61%
SVM with polynomial kernel	98.06%	99.05%	96.75%	97.89%
SVM with linear kernel	95.42%	97.17%	92.86%	94.97%
SVM with sigmoid	90.34%	89.30%	90.03%	89.66%
Gaussian Naïve Bayes	92.12%	88.70%	95.18%	91.83%

Results

After applying PCA combined with the Supervised Model:

- Logistic Regression: 95.04%
 Accuracy (K=18)
- Support Vector Machine (SVM)
 - Linear kernel: 95.2%
 Accuracy
 - Sigmoid kernel: 86.4% Accuracy (K=18)
 - Polynomial kernel: 98.8%
- Naïve Bayes: 92.1% Accuracy (K=21)

Model with PCA	Accuracy	Precision	Recall	F1-score
Logistic Regression (LR)	95.04%	95.67%	93.58%	94.61%
SVM with polynomial kernel	98.80%	98.80%	98.62%	98.71%
SVM with linear kernel	95.20%	96.70%	92.78%	94.70%
SVM with sigmoid	86.44%	85.06%	85.70%	85.38%
Gaussian Naïve Bayes	92.12%	88.70%	95.18%	91.83%

Conclusion

- SVM performed the best classification to detect anomalies in the IDS dataset.
- Logistic Regression has demonstrated consistent results before and after applying the PCA
- Gaussian NB has the lowest accuracy among all three models
- PCA does not improve the classification accuracy

Behnam Sobhani Nadri bsobhani@charlotte.edu <u>github.com/behnamsn/IntroML</u>