(a) Danishefsky's diene, BF₃/Et₂O (b) BF₃/Et₂O, NaCNBH₃/THF (c) CH₃SO₂CI, Et₃N/CH₂CI₂ (d) NaN₃/DMF (e) H₂/Pd-C/MeOH (f) 4-Fluorobenzaldehyde, AcOH, NaCNBH₃/CICH₂CH₂CI

(a) 4-bromo-1-butene, Mg, Et₂O (b) Ethyl vinyl ether, Hg(OCOCF₃)₂ (c) Grubb's catalyst, Benzene (d) 9-BBN/THF, NaOH, H₂O₂

(a) oxalyl chloride, DMSO, Et₃N/CH₂Cl₂ (b) 4-fluorobenzylamine, AcOH, NaCNBH₃/CICH₂CH₂Cl

WO 2005/105075 PCT/US2005/012748

16p S 160

(a) SnCl₂·2H₂O/EtOH/EtOAc (b) 4-fluorophenylacetyl chloride, Et₃N/CH₂Cl₂ (d) NaBH₄, BF₃·Et₂O/THF

6/14

(R,R)-(-)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt

a) methyldiphenylphosphonium bromide/BuLi/THF b) mCPBA/CH2Cl2

c) Jacobsen's catalyst/H₂O d) TPP/DEAD/benzene

7/14

$$(\cdot) 29a R = - - \cos \theta_{3}$$

a) vinyl magnesium bromide/CuI/THF b) NaH/allyl bromide/DMF c) Grubbs' catalyst/benzene d) mCPBA/CH2Cl2 e) amine/ethanol

8/14

$$(+) 29h R = - - 0 CH3$$

$$(+) 29h R = - 0 CH$$

Cul/THF b) NaH/allyl bromide/DMF c) Grubbs' 28d catalyst/benzene d) mCPBA/CH₂Cl₂ e) amine/ethanol a) vinyl magnesium bromide/

WO 2005/105075 PCT/US2005/012748

Scheme 4

a) NaN₃/NH₄Cl/THF-H₂O (8:1), 80°C, overnight. b) H₂/Pd-C, MeOH, 4 hr. c) aldehyde/AcOH/NaCNBH₃, CICH₂CH₂CI, room temperature, 4 hr

a) LiAlH₄/dry pentane, room temperature, 20 h b) MeSO₂CI/Et₃N/CH₂Cl₂, room temperature, overnight c) NaN₃/DMF, 100°C, overnight d) H₂/Pd-C, MeOH, 4 h e) Aldehyde/AcOH/NaCNBH₃, 4 h

11/14

(+)-37b, R= -(+) 37a, R= E, N ပ (R) 39 (R) 34b OMs 0 Ω, 33b 38 (R) (S), (Q O UII 28c **28**d

a) LiAlH₄/pentane, rt, 20h b) i. MeSO₂Cl/Et₃N/CH₂Cl₂, rt, overnight ii. NaN₃/DMF, 100°C, overnight iii. H₂/Pd-

c) Aldehyde/AcOH/NaCNBH₃; d) LiAlH₄/12-crown-4/pentane, rt, 15h

e) $\mathrm{MeSO_2Cl/Et_3N/CH_2Cl_2}$, rt, 4 h f) $\mathrm{KO_2/18}$ -crown-6/DMSO-DMF (iii) $\mathrm{HCl/H_2O}$

13/14

Scheme 9