Guided Discovery: Proof of the Boundedness Theorem

Boundedness Theorem:

Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f is bounded. "A **continuous** function on a **closed bounded** interval is bounded."

1. Proof (by contradiction):

Let $f:[a,b] \rightarrow \mathbb{R}$ be continuous.

First, suppose f is not bounded above.

Then, for every $n \in \mathbb{N}$, there exists $x_n \in [a,b]$ such that $f(x_n) > n$.

• Sketch a diagram showing possible locations of x_n and $f(x_n)$ for n = 10, 50, 100, 200.

Since [a,b] is bounded, the sequence (x_n) is bounded. By the Bolzano-Weierstrass theorem,

... (x_n) has a convergent subsequence, (x_{n_k}) .

Let $\lim(x_{n_{k}}) = L$.

• What can we say about the possible location of L in the diagram?

Since $x_{n_k} \in [a,b] \ \forall k$, we know that $L \in [a,b]$.

• Do we know whether the sequence $(f(x_{n_k}))$ is bounded or not?

Since $f(x_{n_k}) > n_k \ \forall \ k \in \mathbb{N}$ (why?) $(f(x_{n_k}))$ is unbounded.

Q.E.D.

We now have the following:

 $f:[a,b] \to \mathbb{R}$ is continuous at $L \in [a,b]$ and $x_{n_{k}} \in [a,b] \ \forall k$ and $\lim(x_{n_{k}}) = L$.

- What major theorem can now be invoked?
- What conclusion does this theorem give us?

(The proof where f is not bounded below is similar.)

By the Sequential Criterion for Continuity (an "if and only if" theorem), we conclude that $\lim (f(x_{n_k})) = f(L)$.

This result contradicts the fact that $_$... $(f(x_{n_k}))$ is unbounded.

Thus, the assumption that $_$ is false.

We conclude that f is bounded above.

- **2.** We have just shown that a **continuous** function on a **closed, bounded** interval is bounded."
- Where does the proof use the hypothesis that the interval is **bounded**?

Solution:

Boundedness of the interval guarantees that (x_n) is bounded so that the Bolzano-Weierstrass Theorem can be invoked to obtain a convergent subsequence.

• Where does the proof use the hypothesis that the interval is **closed**?

Solution:

Closure of the interval guarantees that the limit of the subsequence is contained in the domain, where the function is continuous.

• Where does the proof use the hypothesis that the function is **continuous**?

Solution:

Continuity of f at L is required by the Sequential Criterion to guarantee that the sequence $(f(x_{n_i}))$ converges. This convergence is incompatible with the fact that $(f(x_{n_i}))$ is unbounded, yielding the contradiction.