A Finite Element-Volume Method for the Serre Equations

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

November 19, 2018

Outline

Results 00000000 0000000000

Outline

Motivation

Outline

- Motivation
- Method

Outline

- Motivation
- Method
- Results

Method O 000000000000000000 0000000 00 Results 00000000 000000000

Motivation

Ocean Wave Hazards

Results 00000000 0000000000

Motivation

Ocean Wave Hazards

Tsunamis

Motivation

Sulawesi 2018 Tsunami

Figure: Sulawesi Tsunami (Indonesia, 2018).

Method o ooooooooooooo oooooo oo Results 00000000 0000000000

Motivation

Ocean Wave Hazards

- ▶ Tsunamis
- Storm Surges

Motivation

Storm Surge of Hurricane Florence and Michael

(a) Florence (U.S.A, 2018)

(b) Michael (U.S.A, 2018)

Two Dimensional Scenario

Navier-Stokes

Model Simplification: Serre Equations

0000000 000000000

vvater ivious

Assumptions

Assumptions

Quantity	Serre Equations
Particle: $\tilde{u}(x, z, t)$	u(x,t)

Assumptions

Quantity	Serre Equations
Particle: $\tilde{u}(x,z,t)$	u(x,t)
Particle: $\tilde{v}(x,z,t)$	$u\frac{\partial b}{\partial x}-(z-b)\frac{\partial b}{\partial x}$

Assumptions

Quantity	Serre Equations
Particle: $\tilde{u}(x,z,t)$	u(x,t)
Particle: $\tilde{v}(x,z,t)$	$u\frac{\partial b}{\partial x}-(z-b)\frac{\partial b}{\partial x}$
Particle: $\tilde{p}(x, z, t)$	$g\rho[h+b-z]+\rho[h+b-z]\Psi$
	$+\frac{1}{2}\rho\left(h^2-[z-b]^2\right)\Phi$

where

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Equations

Mass:
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum:
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Introduction

Method

▶ When $\Phi = \Psi = 0$ we have the Shallow Water Wave Equations

Introduction

Method

- When $\Phi = \Psi = 0$ we have the Shallow Water Wave Equations
- Demonstrated utility of Finite Volume Methods for these equations (ANUGA)

Introduction

Method

- When $\Phi = \Psi = 0$ we have the Shallow Water Wave Equations
- Demonstrated utility of Finite Volume Methods for these equations (ANUGA)

Goal: Adapt Finite Volume Methods for the Serre Equations

Finite Volume Method

Conservation law form

Finite Volume Method

Finite Volume Method

- ► Conservation law form
- ► Finite volume update

Finite Volume Method

Conservation law form

Conservation Law Form

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[f\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) \right] + s\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^m q}{\partial x^m}\right) = 0$$

Equations

Mass:
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum:
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Equations

Mass:
$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

Momentum:
$$\frac{\partial(uh)}{\partial t} + \frac{\partial}{\partial x} \left(u^2 h + \frac{gh^2}{2} + \frac{h^2}{2} \Psi + \frac{h^3}{3} \Phi \right)$$

$$+\frac{\partial b}{\partial x}\left(gh+h\Psi+\frac{h^2}{2}\Phi\right)=0.$$

$$\Psi = \frac{\partial b}{\partial x} \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + u^2 \frac{\partial^2 b}{\partial x^2}, \quad \Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x \partial t}.$$

Conservation Law Form

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

Conservation Law Form

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

with

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

Finite Volume Method

- Conservation law form
- Finite volume update

Conservation Law Form

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left[f\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^n q}{\partial x^n}\right) \right] + s\left(q, \frac{\partial q}{\partial x}, \frac{\partial^2 q}{\partial x^2}, \dots, \frac{\partial^m q}{\partial x^m}\right) = 0$$

Finite Volume Method

Discretisation

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

Update

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

Finite Volume Method

 Results 00000000 0000000000

Finite Volume Method

Require velocity to calculate flux and source

However to calculate the flux and source terms we require u

Finite Volume Method

Require velocity to calculate flux and source

However to calculate the flux and source terms we require u

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0,$$

$$\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}h^3 \left[\frac{\partial u}{\partial x} \right]^2 + h^2 u \frac{\partial u}{\partial x} \frac{\partial b}{\partial x} \right)$$
$$+ \frac{1}{2}h^2 u \frac{\partial u}{\partial x} \frac{\partial^2 b}{\partial x^2} - hu^2 \frac{\partial b}{\partial x} \frac{\partial^2 b}{\partial x^2} + gh \frac{\partial b}{\partial x} = 0.$$

Finite Volume Method

Method

Reconstruction

▶ Determines spatial order of accuracy

 Results 00000000 0000000000

Reconstruction

Reconstruction

Determines spatial order of accuracy

Goal: Second-order accuracy

Reconstruction Spaces

Quantity Number of		Reconstructe	
	spatial derivatives	functions	

Reconstruction Spaces

Quantity	Number of	Reconstructed	
	spatial derivatives	functions	
h	zero	linear over cell, discontinuous at edges	
G	zero	linear over cell, discontinuous at edges	

$$\hat{h}, \hat{G}$$

Reconstruction Spaces

Quantity	Number of	Reconstructed	
	spatial derivatives	functions	
h	zero	linear over cell, discontinuous at edges	
G	zero	linear over cell, discontinuous at edges	
и	one	quadratic over cell, continuous at edges	

Reconstruction Spaces

Quantity	Number of	Reconstructed	
	spatial derivatives	functions	
h	zero	linear over cell, discontinuous at edges	
G	zero	linear over cell, discontinuous at edges	
и	one	quadratic over cell, continuous at edges	
b	two	cubic over cell, continuous at edges	

ĥ

Calculation of Velocity

Finite Element Calculation of Velocity

Finite Element Method to solve:

$$G = hu\left(1 + \frac{\partial h}{\partial x}\frac{\partial b}{\partial x} + \frac{1}{2}h\frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x}\right]^2\right) - \frac{\partial}{\partial x}\left(\frac{1}{3}h^3\frac{\partial u}{\partial x}\right).$$

for u given h, G and b

Calculation of Velocity

Finite Element Calculation of Velocity

Finite Element Method to solve:

$$G = hu \left(1 + \frac{\partial h}{\partial x} \frac{\partial b}{\partial x} + \frac{1}{2} h \frac{\partial^2 b}{\partial x^2} + \left[\frac{\partial b}{\partial x} \right]^2 \right) - \frac{\partial}{\partial x} \left(\frac{1}{3} h^3 \frac{\partial u}{\partial x} \right).$$

for u given h, G and b

Solves the weak form replacing all quantities with their reconstructions \hat{h} , \hat{G} and \hat{b} to get \hat{u}

Calculation of Velocity

Method

Validation

► Analytic Solution

Validation

- ► Analytic Solution
- ► Experimental Results

Validation

► Analytic Solution

Soliton Example

Soliton Equations

$$h(x, t) = a_0 + a_1 \operatorname{sech} (\kappa (x - ct)),$$

$$u(x,t) = c\left(1 - \frac{a_0}{h(x,t)}\right),\,$$

$$b(x)=0$$

Soliton Equations

$$h(x,t) = a_0 + a_1 \operatorname{sech} (\kappa (x - ct)),$$

$$u(x,t)=c\left(1-\frac{a_0}{h(x,t)}\right),\,$$

$$b(x)=0$$

$$\kappa = \frac{\sqrt{3a_1}}{2a_0\sqrt{(a_0+a_1)}},$$

$$c=\sqrt{g(a_0+a_1)}.$$

Numerical Solution $a_0 = 1$, $a_1 = 0.7$

Convergence

Conservation

Validation

- ► Analytic Solution
- ► Experimental Results

Synolakis Experiment

Numerical Solution

Comparison t' = 30

Comparison t' = 40

Comparison t' = 50

Comparison t' = 60

Comparison t' = 70

Conclusion

Finite Element Volume Method for The Serre Equations

Second-order accurate

Conclusion

Finite Element Volume Method for The Serre Equations

- Second-order accurate
- Conservative

Conclusion

Finite Element Volume Method for The Serre Equations

- Second-order accurate
- Conservative
- Reproduces analytic solutions

Conclusion

Finite Element Volume Method for The Serre Equations

- Second-order accurate
- Conservative
- Reproduces analytic solutions
- Reproduces experimental results

Results 0000000 000000000

Experimental Comparison

Thanks!