Level 2 Stars

David Alexander

Problem Set S.3

(1) Estimate the temperature at the core of the star of pure Hydrogen using $P_c = \frac{3}{8\pi} \frac{GM^2}{R^4}$. You should assume a constant mass density and also assume that the contribution from radiation pressure is negligible. Comment on whether nuclear fusion of Hydrogen is possible assuming classical mechanics?

[6 marks]

(2) Calculate the temperature at which radiation pressure exceeds the gas pressure, assuming a particle density of $n=10^{32}$ m⁻³?

[4 marks]

[star mass = 5 x
$$10^{30}$$
 kg; star radius = 9 x 10^8 m; $M_H = 1.67$ x 10^{-27} kg; $k = 1.38 \times 10^{-23} JK^{-1}$; $a = 7.57 \times 10^{-16} Jm^{-3}K^{-4}$; $G = 6.67$ x 10^{-11} N m² kg⁻²]