

CAREER SUCCESS STARTS AT CTU

Faculty of Information Technology									
	SUBJECT NAME: ANALYSING AND VISUALISING DATA WITH PYTHON SUBJECT CODE: AVP632								
I declare that I am familiar with, and will abide to the Examination rules of CTU	Dura Date Total	ıtion:		ment 2			Mr. Isa		
	Student number								
Signature	7	2	9	9					
	Surname:			Initials:					
	Van Straaten			R			/	%	

AVP632_FA2

Ruan van Straaten ICAS:7299

Contents

Question 1	2
Question 2	
Question 3	
3A	
3B	4
3C	5
Code	5
Output	6
Ouestion 4	7

```
#Question 1
 1
  import pandas as pd
2
 3
4 #insert all the data in a list
5 data = {'month': ['Jan ','Feb ','Mar ','Apr ','May ','Jun '],
           'Jon commission': [7000,5500,6000,4500,8000,6000],
6
           'Maria commission': [10000,7500,6500,6000,9000,8500],
7
8
           'Olivia commission': [3000,6000,4500,4500,4000,5500]
9
10 #convert the list to data frame
11 df = pd.DataFrame(data)
12 print(df)
```

	month	Jon commission	Maria commission	Olivia commission
0	Jan	7000	10000	3000
1	Feb	5500	7500	6000
2	Mar	6000	6500	4500
3	Apr	4500	6000	4500
4	May	8000	9000	4000
5	Jun	6000	8500	5500

```
#Question 2
#Calculates the Avreage of each Column
AVG = df.mean(axis=0)
print (AVG)
```

 Jon commission
 6166.666667

 Maria commission
 7916.666667

 Olivia commission
 4583.333333

3A

```
1 #Question 3 A
2 import pandas as pd
4 #Dict Created with all the Values
5 Dict = {'Computer':1500,'Monitor':300,'Printer':150,'Desk':250}
6 print(Dict)
7
```

{'Computer': 1500, 'Monitor': 300, 'Printer': 150, 'Desk': 250}

3B

```
1 #Question 3 B
2 #Convert the DICT to a dataframe
3 df = pd.DataFrame(list(Dict.items()),columns = ['Products','Prices'])
4
5 print (df)
```

```
Products Prices
0 Computer
             1500
1
  Monitor
              300
2
  Printer
              150
3
      Desk
              250
```

Code

```
1 #Question 3 C
 2 import tkinter as tk
3 import ast
4 import pandas as pd
 6 root= tk.Tk()
 8 #Creates the blank canvas
 9 canvas1 = tk.Canvas(root, width = 400, height = 400, relief = 'raised')
10 canvas1.pack()
12 #Label 1 that displays the main heading
13  label1 = tk.Label(root, text='Convert Dictonary to DataFrame')
14  label1.config(font=('helvetica', 14))
15  canvas1.create_window(200, 25, window=label1)
17 #Label 2 that displays sub heading
18 label2 = tk.Label(root, text='INPUT YOUR DICTONARY :')
19 label2.config(font=('helvetica', 10))
20 canvas1.create_window(200, 100, window=label2)
22 entry1 = tk.Entry (root)
23 canvas1.create_window(200, 140, window=entry1)
25 #created function that does the conversion and displays it on the GUI
26 def getDataframe ():
28
        #Input = X1
29
        x1 = entry1.get()
        #Converts the String Input to a Dict using ast Lib
30
        my_dict = ast.literal_eval(x1)
# converts the dict to a dataframe using the pandas Lib
31
32
       df = pd.DataFrame(list(my_dict.items()))
33
        #Label 3 to show the users original input
label3 = tk.Label(root, text="your Dict is: " + x1,font=('helvetica', 10))
35
36
37
        canvas1.create_window(200, 210, window=label3)
38
        #Label4 displays where the dataframe is converted
39
        label4 = tk.Label(root, text= "DataFrame:",font=('helvetica', 10, 'bold'))
40
41
        canvas1.create_window(200, 240, window=label4)
42
43
        #Label 5 to show the converted user input dictonary to a dataframe
44
        #displays the dataframe on the GUI
45
        label5 = tk.Label(root, text= df,font=('helvetica', 10, 'bold'))
46
        canvas1.create_window(200, 290, window=label5)
47
#button the call the getDataframe function
button1 = tk.Button(text='Get Dataframe', command=getDataframe, bg='brown', fg='white', font=('helvetica', 9, 'bold'))
50 canvas1.create_window(200, 180, window=button1)
52 root.mainloop()
```

Output

Data frame in the console

	0	1
0	Computer	1500
1	Monitor	300
2	Printer	150
3	Desk	258

```
#Question 4
import numpy as np
import seaborn as sn
import matplotlib.pyplot as plt

#inputs the data to plot the matrix visual
A = [45,37,42,35,39]
B = [38,31,26,28,33]
C = [10,15,17,21,12]

#convert to array
data = np.array([A,B,C])

#plot the visual
covMatrix = np.cov(data,bias=True)
sn.heatmap(covMatrix, annot=True, fmt='g')
plt.show()
```


CAREER SUCCESS STARTS AT CTU

Completed Declaration of Authenticity

Ruan van straaten	hereby	
(FULL NAME) declare that the contents of this assignment own work except for the following documents: (List the do this portfolio that were generated in a group)	AVP632_FA2	
Activity		Date
Signature: Date:	9	