MI - Hold 7

2. øvelsestime - ons d. 19/11-2014

3.3, 3.4 + Hurtigopgaven

- 3.3: H kaldes en Dynkin klasse (DK), hvis:
- D1) $\mathcal{X} \in \mathbb{H}$
- D2) Alle $A,B\in\mathbb{H}$ opfylder $A\subset B\Rightarrow B\backslash A\in\mathbb{H}$
- D3) Alle $(A_n) \subset \mathbb{H} \text{ med } i \leq j \Rightarrow A_i \subset A_j \text{ opfylder:}$

$$\bigcup_{i=1}^{\infty} A_n \in \mathbb{H}.$$

Lad $A, B \subset \mathcal{X}$ opfylde

$$A \not\subset B$$
 , $B \not\subset A$, $A \cap B \neq \emptyset$ og $A \cup B \neq \mathcal{X}$ (1)

Definer

$$\mathbb{H} = \{\emptyset, A, A^c, B, B^c, \mathcal{X}\}.$$

- a) Vis at \mathbb{H} er en dynkinklasse.
- b) Vis at \mathbb{H} ikke er en σ -algebra.
- c) Kan a) og b) vises uden antagelse (1)?

a)

- D1) Triviel.
- **D2**) Bemærk at:

$$A \not\subset B$$

$$A \not\subset A^{c} \Leftarrow A \neq \emptyset \Leftarrow A \cap B \neq \emptyset$$

$$A^{c} \not\subset A \Leftarrow A^{c} \neq \emptyset \Leftarrow A^{c} \cap B^{c} \neq \emptyset \Leftarrow (A^{c} \cap B^{c})^{c} \neq \mathcal{X} \Leftarrow A \cup B \neq \mathcal{X}$$

$$A \not\subset B^{c} \Leftarrow A \cap B \neq \emptyset$$

$$A^{c} \not\subset B \Leftarrow A^{c} \cap B^{c} \neq \emptyset \Leftarrow (A^{c} \cap B^{c})^{c} \neq \mathcal{X} \Leftarrow A \cup B \neq \mathcal{X}$$

$$A^{c} \not\subset B \Leftarrow A^{c} \cap B^{c} \neq \emptyset \Leftarrow (A^{c} \cap B^{c})^{c} \neq \mathcal{X} \Leftarrow A \cup B \neq \mathcal{X}$$

$$A^{c} \not\subset B^{c} \Leftarrow B \not\subset A$$

$$(2)$$

Ved symmetri fås:

$$B \neq A, B \not\subset B^c, B^c \not\subset B, B \neq A^c, B^c \neq A, B^c \neq A^c$$

Lad $F, G \in \mathbb{H}$ opfylde $F \subset G$. Det følger af (2), at enten:

$$F = \emptyset$$
 , $G = \mathcal{X}$ eller $F = G$.

Hvis $F = \emptyset$ har vi

$$G \backslash F = G \in \mathbb{H}.$$

Hvis $G = \mathcal{X}$ har vi

$$G \backslash F = F^c \in \mathbb{H}$$
,

da H tydeligvis er stabil mht. komplementer.

Hvis F = G har vi:

$$G \backslash F = \emptyset \in \mathbb{H}.$$

D3) Lad (A_n) være en voksende følge i \mathbb{H} . Sæt:

$$k_1 = A_1$$
 , $k_{n+1} = \inf\{k > k_n, A_k \neq A_n\}$ for $n \in \mathbb{N}$ og $k = \sup\{k_n : n \in \mathbb{N}, k_n < \infty\}$

Bemærk at $k < \infty$, da \mathbb{H} er endelig, og at $A_n = A_k$ for $n \geq A_k$. Da (A_n) endvidere er voksende, fås:

$$A_n \subset A_k$$
 for alle $n \in \mathbb{N}$.

Det følger at:

$$\bigcup_{n=1}^{\infty} A_n = A_k \in \mathbb{H}.$$

Det konkluderes at H er en dynkinklasse.

b)

Hvis H var en σ -algebra fulgte det af lemma 1.8, at

$$F, G \in \mathbb{H} \Rightarrow F \cap G$$
.

Men

$$\begin{split} A \cap B &\neq \emptyset \\ A \cap B &\neq A \Leftarrow A \not\subset B \\ A \cap B &\neq A^c \\ A \cap B &\neq \mathcal{X} \Leftarrow A \cup B \neq \mathcal{X} \end{split}$$

De øvrige \mathbb{H} -mængder elimineres ved symmetri, og vi får $A \cap B \notin \mathbb{H}$. Det konkluderes at \mathbb{H} ikke er en σ -algebra.

c)

Hvis $\emptyset \subsetneq A \subset B$ ville 2. antagelse for dynkinklasser ikke være opfyldt, da $B \backslash A \not\in \mathbb{H}$.

Hvis $A, B = \emptyset$ ville $\mathbb{H} = \{\emptyset, \mathcal{X}\}$ som er en σ -algebra. Betingelse om generel position er dermed nødvendigt i begge tilfælde.

3.4: Lad $\mathbb{H} \subset \mathbb{P}(\mathcal{X})$.

H kaldes en Serpinsky klasse (SK), hvis:

- S1) $\mathcal{X} \in \mathbb{H}$
- S2) $A \in \mathbb{H} \Rightarrow A^c \in \mathbb{H}$
- S3) Alle $(A_n) \subset \mathbb{H} \text{ med } i \neq j \Rightarrow A_i \cap A_j = \emptyset \text{ opfylder:}$

$$\bigcup_{i=1}^{\infty} A_n \in \mathbb{H}.$$

Vis at:

- a) $A \cup B = (B^c \backslash A)^c$.
- b) Vis at enhver SK er en DK.
- c) Vis at enhver DK er en SK.

a)

$$(B^c \backslash A)^c = (B^c \cap A^c)^c$$
 (def. A.4)
= $B \cup A$ (de Morgan)

b)

Lad \mathbb{H} være en SK.

- D1) Triviel.
- **D2)** Lad $A, B \in \mathbb{H} \mod A \subset B$. Vis: $B \setminus A \in \mathbb{H}$.

$$B \backslash A = B \cap A^{c}$$

$$= (B^{c} \cup A)^{c}.$$
(def. A.4)

Da $B^c \cap A = A \backslash B = \emptyset$, følger det af S2 og S3, at $B \backslash A \in \mathbb{H}$.

D3) Lad $(A_n) \subset \mathbb{H}$ opfylde $i \leq j \Rightarrow A_i \subset A_j$. Vis: $\bigcup_{n=1}^{\infty} A_n \in \mathbb{H}$. Bemærk:

$$B_n \stackrel{\text{def}}{=} A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$$
$$= A_n \setminus A_{n-1}.$$

Det følger nu af D2, at $B_n \in \mathbb{H}$.

Da (B_n) opfylder $i \leq j \Rightarrow B_i \cap B_j = \emptyset$ (opg. A.9 a), fås:

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n \qquad (\text{opg A.9 c})$$

$$\in \mathbb{H} \qquad (S3)$$

Det konkluderes at \mathbb{H} er en DK.

c)

Lad \mathbb{H} være en DK.

- S1) Triviel
- S2) Lad $A \in \mathbb{H}$. Vis: $A^c \in \mathbb{H}$. Af D1 $\mathcal{X} \in \mathbb{H}$ og da $A \subset \mathcal{X}$ giver D2:

$$A^c = \mathcal{X} \backslash A \in \mathbb{H}$$

S3) Lad $(A_n) \subset \mathbb{H}$ opfylde $i \neq j \Rightarrow A_i \cap A_j = \emptyset$. Vis: $\bigcup_{n=1}^{\infty} A_n \in \mathbb{H}$. Definer:

$$C_n = \bigcup_{i=1}^n A_i$$
 for alle $n \in \mathbb{N}$.

Det følger D2, D3 samt spm. a), at $(C_n) \subset \mathbb{H}$. (C_n) opfylder

$$i \le j \Rightarrow C_i \subset C_j \quad \text{og} \quad \bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} A_n.$$

Vi får:

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} C_n \\
\in \mathbb{H}.$$
(D3)

Hurtigopgave:

a)

Lad $A \in \mathbb{P}(\mathcal{X})$. Hvis $A = \emptyset$ har vi

$$A \in \mathbb{D} \subset \sigma(\mathbb{D}).$$

Hvis $A \neq \emptyset$ gælder

$$A = \{k_1, ..., k_m\}$$
 hvor $1 \le m \le n$ og $k_1, ..., k_m \in \mathcal{X}$.

Vi har da

$$A = \{k_1, ..., k_m\} = \bigcup_{j=1}^m \{k_j\} \in \sigma(\mathbb{D}).$$

Hvor vi har brugt

$$\mathbb{D} = \{\{k\} : k \in \mathcal{X}\} \cup \{\emptyset\}.$$

b)

Lad ν endnu et mål på $(\mathcal{X}, \mathbb{P}(\mathcal{X}))$ med:

$$\nu(\{i\}) = p_i$$
 for $i = 1, ..., n$.

Da også $\mu(\emptyset) = 0 = \nu(\emptyset)$, har vi:

$$\nu(D) = \mu(D)$$
 for alle $D \in \mathbb{D}$.

 \mathbb{D} er \cap -stabil da:

$$\{i\} \cap \{j\} = \begin{cases} \emptyset & , & i \neq j \\ & & \text{og} \quad \emptyset \cap D = \emptyset \quad \text{for} \quad D \in \mathbb{D}. \end{cases}$$

Da envidere $\sigma(\mathbb{D}) = \mathbb{P}(\mathcal{X})$ (spg. a) følger det af thm. 3.7 at

$$\mu = \nu$$

c)

Lad H være $m \times n$ matricen givet ved:

$$H_{ij} = 1_{A_i}(j)$$
.

For i = 1, ..., n fås:

$$q_{i} = \mu(\{A_{i}\}) = \mu(\bigcup_{j:H_{ij}=1}\{j\})$$

$$= \sum_{j:H_{ij}=1} \mu(\{j\})$$

$$= \sum_{j=1}^{n} H_{ij}\mu(\{j\})$$

$$= \sum_{j=1}^{n} H_{ij}p_{j}$$

$$= (Hp)_{i}.$$

Det sluttes at q = Hp.

d)

Set:

$$A_i = \{1, 2, ..., i\}$$
 for $i = 1, ..., n$.

Bemærk at $j \in A_i$, hvis og kun hvis, $j \leq i$. Ergo:

$$H_{ij} = 1_{\{j < i\}}.$$

I tilfældet n=3 fås:

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

e)

Hvis de n søjler i H er lineært uafhængige (dvs. Rang(H) = n), har ligningen:

$$p = Hq$$
,

netop én løsning. μ er da entydigt bestemt på \mathbb{D} , og dermed på $\mathbb{P}(\mathcal{X})$ (spm. b).

Danvektorerer i \mathbb{R}^m ikke kan være lineært uafhængige hvis m < nkræves $m \geq n.$