

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

	Date	19.01.2023	Maximum Mar	ks	10 +	-50
Co	ourse Code	21ES14D	Duration		110 N	Ains
	Sem	1 st Semester	Cl	E-I		
		Basics of Electrical E	ngineering		_	1
Q.No		Part A – Quiz Questions		Marks	COs	BT
1.	-	consumed by the network shown by the total current I and the voltage Ω and Ω and Ω and Ω and Ω and Ω are Ω and Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω are Ω are Ω are Ω and Ω are Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω and Ω are Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω and Ω are Ω are Ω are Ω are Ω are Ω and Ω are		2		1
2.		ven below, find the magnitude is using KCL. Given $i_1 = 10A$, $i_2 = 10A$, $i_3 = 10A$, $i_4 = 10A$, $i_5 = 10A$, $i_6 = 10A$, $i_8 =$		1	1	1
3.	series. Across A	flows through two ammeters A as the potential difference is 0.2 V as same will be divided between A as allel.	nd across B it is 0.3	2	1	2
4.	Draw the network equations. $3i_1-2i_2-i_3=5$ $-2i_1+5i_2-3i_3=-10$ $-i_1-3i_2+8i_3=0$	x showing each element for the fo	llowing mesh	1	2	2
5.	Thevenin resis	tance is found bya	and	1	1	1

Go, change the world

Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

6.	The Maximum Power drawn by the load R_L in the above Circuit will be? $\begin{array}{c} 5\Omega \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1	2	2
7.	A 50Hz sinusoidal current has peak factor 1.4 and form factor 1.1. Its average value is 20A. The instantaneous value of current is 15A at t=0. Write the equation of current.	1	2	2
8.	A sine wave has frequency of 50Hz. Its angular frequency is radian per second.	1	1	1

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

Q.No	University, Belagavi PART – B Test Questions	Marks	COs	BT
1. a)	In the circuit shown below, determine V_{AB} and voltage across 8 ohms resistor such that voltage drop across 15 ohms resistor is 45V, when switch S is open.	5	1	2
	$\begin{array}{c} A & 35 \Omega \\ 8 \Omega & \\ 15 \Omega \\ 22 \Omega \end{array}$		2	2
b)	Find v by mesh method such that the current through the 5V source is zero.	5	2	2
	$ \begin{array}{c c} 1\Omega & i_{2} & I\Omega \\ \hline 1\Omega & i_{3} & I\Omega \\ \hline 1\Omega & i_{3} & I\Omega \\ \hline 1\Omega & I\Omega & I\Omega \\ \hline 1\Omega & I\Omega & I\Omega \\ \hline 1\Omega & I\Omega & I\Omega \end{array} $			
2. a)	A Piece of Silver wire has a resistance of 1 ohm. Wat will be the resistance of a manganin wire half the length and half the diameter, if the specific resistance of manganin is 30 times that of silver?	5	1	2
b)	In figure given below, find voltage drop across x-y terminals.	5	2	2
	BAT1 R2 4 10V R3 2 P4 5			
3. a)	What resistance should be connected across x-y in the circuit shown in figure below such that maximum power is developed across this load resistance? What is the amount of this maximum power? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	3	3
b)	Calculate the current through the resistor of resistance 6 Ω by Thevenin's	5	3	3
	Theorem. 4Ω 6Ω			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

4. a	a)	An alternating current varying sinusoidally has an RMS value of 20A, 50Hz	5	3	3
		Frequency. Write the			
		i. instantaneous value equation			
		ii. current 2.5ms and 12.5ms after passing through first positive maximum value.			
		At what time will the instantaneous value be 14.14A measured from first			
		positive maximum.			
	b)	Derive an expression for Effective value and Average Value of an alternating quantity.	5	3	3
5.	a)	Prove that Power consumed by an ideal Inductor is zero and derive the phase relation between voltage and current in an ideal inductor with appropriate waveforms.	5	2	2
	b)	Prove that Maximum Power Transferred to the load is $P_{\text{max}} = V_g^2/4R_L$.	5	3	3

Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partio	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	17	18	25	1	5	30	25	-	-	-

Approved by AICTE, New Delhi

Academic year 2022-2023 (ODD Sem)

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

Date	23 Feb 2023	Maximum Marks	10 +50	
Course Code	22ES14D	Duration	110 Mins	
Sem	I Semester	CIE-II		
	Basics of Electrical E	Engineering		

Q.No	Part A – Quiz Questions	Marks	COs	BT
1.	Define apparent power, active power and reactive power.	2	1	1
2.	In a three phase power measurement by two watt-meter method, the power factor of the load is unity then the readings of the watt-meters are	1	2	2
3.	A single-phase load of 30 kW at 0.6 power factor lagging is fed from 200 V A.C. supply. Calculate the kVA and kVAr of the load.	2	2	2
4.	The readings of two wattmeters in a balanced three-phase load are 836W and 224W, the latter reading taken after the current coil connection reversal. Calculate the power consumed by the load and the load power factor.	2	3	2
5.	A 25 kVA transformer has 500 turns on the primary and 40 turns on the secondary windings. The Primary winding is connected to a 3 kV, 50 Hz ac source. The maximum flux in the core is	1	3	2
6.	If the active and apparent powers of an A.C. circuit are equal in magnitude, the power factor is	1	2	2
7.	Three equal impedances are first connected in Delta across a 3-phase balanced supply. If the same impedances are connected in Star across the same supply, then the power consumed will be	1	3	2

Q.No	Part B – Test Questions	Marks	COs	BT
1a.	What is an impedance triangle? Draw the impedance triangle for a series <i>RL</i> circuit and series <i>RC</i> circuit.	05	2	2
1b.	A resistance of 12 Ω , an inductance of 0.15 H and a capacitance of 130 μF are connected in series across a 100 V, 50 Hz supply. Calculate the impedance, current, phase angle and the power factor.	05	2	2
2a.	Derive an expression for the resonant frequency of a series RLC a.c. circuit. A coil having a resistance of 5 Ω and an inductance of 0.1 H is connected in series with a 50 μF capacitor across a 200 V, variable frequency supply. Determine the frequency at which the current will be a maximum.	05	3	3

Approved by AICTE, New Delhi

Academic year 2022-2023 (ODD Sem)

	` '			
2b.	A coil having a resistance of 15 Ω and Inductance of 0.2 H is connected in series with another coil having a resistance of 25 Ω and Inductance of 0.04 H to a 230V, 50 Hz Supply. Determine, i. The voltage across each coil ii. The power dissipated in each coil iii. The power factor of the whole circuit.	05	3	3
3a.	With the aid of a phasor diagram, obtain the relationship between the line and phase voltages of a three-phase star-connected System.	05	3	3
3b.	A delta-connected load draws a current of 15 A at a lagging power factor of 0.85 from a 400 V, 3-phase, 50 Hz supply. Find the resistance and inductance of each phase.	05	3	2
4a.	With appropriate phasors, show that only two wattmeters are sufficient to measure power in a three-phase star-connected balanced load.	05	3	3
4b.	Each of the two-wattmeter connected to measure the input to a 3-phase circuit reads 10kW on a balanced load when the power factor is unity. What does each instrument read when the power factor falls to i. 0.866 lagging ii. 0.5 lagging, The total 3-phase power remaining unchanged.	05	3	3
5a.	State the differences between a core-type and a shell-type transformer.	05	2	2
5b.	A Transformer installed in commercial complex has following specifications: 1100/230V, 50Hz, single-phase step-down transformer. The net cross sectional area =50 sq.cms. The maximum flux density in the core =1Tesla. Design the number of primary and secondary turns for the above specifications.	05	2	2

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partio	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	2	24	34	-	2	33	25			

Approved by AICTE, New Delhi

Academic year 2022-2023 (ODD Sem)

DEPARTMENT OF

ELECTRICAL AND ELECTRONICS ENGINEERING

Q.No		Part A – Quiz Questions		Marks	COs	BT
	Date	21 Mar 2023	Maximum Mar	ks	s 10 +50	
Co	ourse Code	22ES14D	Duration		110	Mins
	Sem	I Semester	IMPROVE	MENT	CIE	
		Basics of Electrical E	Engineering			
1. The core of a transformer is assembled with laminated sheets so as to 1 3 1 reduce					1	
2.	2. The copper loss of certain transformer at half full-load is measured as 200 W. Then the iron loss and copper loss at full load will be and respectively.				3	2
3.	What is the volta	ge regulation of a transformer?		1	2	1
4.	-	50 Hz, three-phase induction rpm. The number of pole in the m		2	2	1
5.	What is 'slip' in a	n induction motor?		1	2	1
6.	Draw the torque	Praw the torque slip curve for a three-phase induction motor.				2
7.	11 *	Iz is given to a 3 phase induction notor runs at 1440 rpm, the slip is	O 1	2	4	2

Q.No	Part B – Test Questions	Marks	COs	BT
1a.	Derive the condition for maximum efficiency of a transformer.	4	3	3
1b.	A 10 kVA, 400/200 V, 50 Hz, single phase transformer has a full load copper loss of 200 W and has a full-load efficiency of 96% at 0.8 p.f. lagging. Determine the iron loss. What would be the efficiency at half of the full load and unity p.f.?	6	3	3
2a.	Explain the different losses present in the transformer.	4	2	3
2b.	A 10 kVA, 400/200 V, single phase transformer has a maximum efficiency of 98 % at 90 % of the full load at 0.8 p.f. Find its efficiency at full load and 0.6 p.f.	6	3	3
3a.	Listify the Following:	<u>-</u>	1	2
sa.	Justify the Following: (i) DC supply should not be given to the transformers. (ii) The rotor slots in a three-phase induction motor are purposely given a slight skew.	5	4	3
3b.	A 600 kVA transformer has an efficiency of 92 % at full-load, unity p.f. and half full load, 0.9 p.f. Determine its efficiency at 75 % of full load and 0.9 p.f?	5	3	3

Approved by AICTE, New Delhi

Academic year 2022-2023 (ODD Sem)

4a.	Explain the principle of operation of a three phase induction motors?	5	3	3
4b.	A 4 pole, 50 Hz induction motor has a slip of 1% at no load. When operated at full load, the slip is 2.5%. Find the change in speed from no load to full load.	5	4	3
5a.	Elaborate the phenomenon of production of rotating field by a three-phase supply.	5	2	3
5b.	A 3-phase, 12-pole alternator is driven by an engine running at 500 rpm. The alternator supplies an induction motor which has a full-load speed of 1455 rpm. Find the slip and the number of poles of the motor.	5	4	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partio	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	-	13	29	18	5	5	50	-	-	-

USN							
	THE RESERVE AND ADDRESS.	a constitution de la constitución	a management and				

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

I Semester B. E. Examinations May-2023

Common to A1 / AS/ BT / CH / CS / CY / CD / EC/EI/ET/ IM / IS / ME / CV

BASICS OF ELECTRICAL ENGINEERING (ELECTIVE)

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. Question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

- 1			
	1 1.1	Define Kirchhoff's laws with illustrative example.	02
	1.2	A heater is given a current of 10A from a 250V source for 15hours.	02
		Determine the energy consumed by the heater in kWh	02
1	1.3	Define RMS and average value.	02
	1.4	A series circuit with $R = 10\Omega$, $L = 50mH$ and $C = 100\mu F$ is supplied	02
		With 2007, 50Hz. Find impedance value in the circuit	02
	1.5	Write the relation between phase and line values of voltage and	02
-		currents in star and delta connected loads.	02
	1.6	Define efficiency and regulation of a transformer.	02
	1.7	A 3 -phase, 4 -pole, 400V, 50H. Induction motor runs with a speed of	02
		1440 <i>rpm</i> . Calculate its slip.	02
	1.8	List the types of single-phase induction motor.	02
	1.9	Define fuse and miniature circuit breaker.	02
	1.10	Write any four safety precaution to avoid electric shock.	
		The state of a void electric Shock.	02

PART-B

2	а	State and prove Thevenin's theorem.	08
	b	Using KCL and KVL, determine the currents l_x and l_y in the network	
ris .		shown in Fig 2b.	
		10-2 50V 22 50V 100V 152 122 32 TIOOV 152 VIy	
		Fig 2b	08
3	a	Show that the power consumed in an RC series circuit is $VI\cos\phi$.	
111		Draw the waveform for voltage, current and power.	06

b	Define:
	i) Instantaneous value ii) Amplitude iii) Cycle
	iv) Period
	With respect to sinusoidally varying quantities.
С	For the series RL circuit shown in Fig $3c$,
	i) Calculate rms value of current and its angle ii) Expression for current
	Expression for current
	ii) Average power dissipated in the circuit iv) Determine pf
	v) Draw the phasor diagram.
	3-2 0·0127H
	v = 141 sin 100tt + V
,	Fig 3c
	OR
4 a	An alternating current of frequency 60Hz has a maximum value of 12A.
	i) Write down the equation of the second in
-	down the equation for its instantant
**	iii) Find the time to 1
b	iii) Find the time taken to reach 9.6A for the first time. i) The impedance of the first time.
	i inpedance
	ii) The current iii) Phase angle
	Voltage across each along vit
	, zowei iactor
	vii) The average
	Also, draw the phasor diagram for the circuit.
	12 2 0.15H 100MF
	12-2 0.15H 100H
	(2)
	100 10° V, 50Hz
a	Fig 4b
a	Obtain the relationship between line current and phase current in a What are the advantages of 3.4
	balanced 3ϕ delta connected system. What are the advantages of 3ϕ systems over a single phase system? 06 04
b	what are the od-

	c	Two-wattmeter method was used to determine the input power to 3φ motor. The reading were 5.2kW and -1.7kW and the line voltage was 415V. Calculate: i) Total power ii) Power factor iii) Line current.	06
		OR	
6	a	Explain the principle of operation of a single phase transformer and derive its EMF equation. A 600kVA transformer has an efficiency of 92% both at full load unity	80
	b	pf and half load $0.9pf$. Determine its efficiency at 75% of full load and $0.9pf$.	80
7	a	Describe the constructional differences between a squirrel cage rotor	
	b	and wound rotor of an induction motor. Discuss their relative advantages and disadvantages. Define slip. Derive an expression for the slip and frequency of the	06
	С	rotor current.	05
	C	A 6-pole induction motor is supplied by a 10-pole alternator which is driven at 600rpm. If the motor is running at 970rpm, determine the percentage slip.	05
		OR	05
8	a b	Explain the concept of rotating magnetic field of an induction motor. Explain and draw torque-slip characteristics of a 3ϕ induction motor. Describe the construction of a single phase induction motor with the aid of diagram.	10
9	_		06
J	a b	With the help of a block diagram, explain the concept of power transmission and power distribution. Explain with an example, how the electricity bill be generated for domestic consumers.	08
			08
10		OR	
10	a b c	Explain the working principle of fuse and <i>MCB</i> and also explain the merits and demerits of each one. What is earthing and explain with diagram pipe earthing. What are the safety precautions to be taken to avoid electric shock?	06
		to be taken to avoid electric shock?	04