BCI Protocol V2.0

1, Bluetooth Service Information (UUIDs):

 Comm Service:
 49535343-FE7D-4AE5-8FA9-9FAFD205E455

 Send Characteristic:
 49535343-1E4D-4BD9-BA61-23C647249616

 Receive Characteristic:
 49535343-8841-43F4-A8D4-ECBE34729BB3

 Rename Characteristic:
 00005343-0000-1000-8000-00805F9B34FB

 MAC Address Characteristic:
 00005344-0000-1000-8000-00805F9B34FB

PS: Host application should use the notification of the 'Send Characteristic' for package

fetching.

2. USB-Com Port Settings:

Baud Rate: 115200, Bits: 8, Stop bits: 1, Parity bit: none

3. Package Format (Device to Host):

Package Length: 7 bytes Package Rate: 100 Hz

Package Content:

Byte	Bit	Description	
1	0~3	Bits 0-3 of Byte1 are the lower 4 bits of the Perfusion Index $(1\sim200, invalid value = 0)$	
	4	1=no signal, 0=OK	
	5	1=probe unplugged, 0=OK	
	6	1=pulse beep (Pulse beat found)	
	7	Sync bit = 1 (Package header)	
2	0~6	Pleth (1-100, invalid value = 0)	
	7	Sync bit = 0	
3	0~3	Bits 0-3 of Byte3 are the higher 4 bits of the Perfusion Index $(1\sim200, invalid value = 0)$	
	4	1=No finger, 0=OK	
	5	1=Searching for pulse, 0=OK	
	6	Bit 6 of Byte 3 is bit 7 of the Pulse Rate $(25\sim350 \text{ bpm}, \text{invalid value} = 0)$	
	7	Sync bit = 0	

4	0~6	Bits 0-6 of Byte 4 are bits 0-6 of the Pulse Rate $(25\sim350 \text{ bpm}, \text{invalid value} = 0)$	
	7	Sync bit = 0	
5	0~6	SpO2 (35-100%, invalid value = 0x7F)	
	7	Sync bit = 0	
6	0~6	Battery Percentage (0-100%)	
	7	Sync bit = 0	
7	0	Bit 0 of Byte 7 is bit 8 of the Pulse Rate $(25\sim350 \text{ bpm}, \text{invalid value} = 0)$	
	1~6	Reserved	
	7	Sync bit = 0	

Tips:

Invalid Perfusion Index = 0,

Invalid Pleth = 0,

Invalid Pulse Rate = 0,

Invalid Spo2 = 0x7F

4, Host Command (Host to Device):

Command length: 1 byte

Command type:

0xff ----- Get Software Version 0xfe ----- Get Hardware Version

For example:

(1). Assuming the software version string is "V1.00.00.00", the device will return three consecutive 5 bytes response packets after a single byte command 0xff is sent by the host.

The 1st 5 bytes response packet: 0xff 0x56 0x31 0x2e 0x30 (ASCII string for "V1.0")
The 2nd 5 bytes response packet: 0xff 0x30 0x2e 0x30 0x30 (ASCII string for "0.00")
The 3rd 5 bytes response packet: 0xff 0x2e 0x30 0x30 0x00 (ASCII string for ".00")

(2). Assuming the hardware version string is "V1.0", the device will return only one 5 byte response packet after a single byte command 0xfe is sent by the host.

The 5 bytes response packet: 0xfe 0x56 0x31 0x2e 0x30 (ASCII string for "V1.0")

Demo Source Code:

Android:

BLE demo: https://github.com/zh2x/SpO2-BLE-for-Android *

Classic Bluetooth demo: https://github.com/zh2x/SpO2-Bluetooth-for-Android *

IOS:

Swift demo: https://github.com/zhuchengji-berry/BluetoothDemo *

Objective-C demo: https://github.com/zh2x/SpO2-BLE-for-iOS *

Change Log:

history	content	date
V2.0	Support PI:0%~20%, PR:0-350bpm, add battery;	2023-02-17