

Text Classification and Naïve Bayes

Naïve Bayes: Relationship to Language Modeling

Dan Jurafsky

Generative Model for Multinomial Naïve Bayes

Dan Jurafsky

Naïve Bayes and Language Modeling

- Naïve bayes classifiers can use any sort of feature
 - URL, email address, dictionaries, network features
- But if, as in the previous slides
 - We use **only** word features
 - we use all of the words in the text (not a subset)
- Then

39

 Naïve bayes has an important similarity to language modeling. Dan Jurafsky

Each class = a unigram language model

- Assigning each word: P(word | c)
- Assigning each sentence: $P(s|c)=\Pi P(word|c)$

Class pos

	F					
0.1	I	1	love	this	fun	film
0.1	love					
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film			P(s	pos)	= 0.000005

Naïve Bayes as a Language Model

• Which class assigns the higher probability to s?

Model pos 0.1 I 0.1 love 0.01 this 0.05 fun 0.1 film

Model neg						
0.2	1					
0.001	love					
0.01	this					
0.005	fun					
0.1	film					

<u> </u>	love	this_	fun	fi <u>lm</u>
0.1 0.2	0.1 0.001	0.01 0.01	0.05 0.005	0.1 0.1
	P(s po	s) > P(s neg)	

Text Classification and Naïve Bayes

Naïve Bayes: Relationship to Language Modeling