# TODO j'ai pas du tout mentionné les constructeurs. Après le code est commenté, toute les infos sont dedans

## **Sommaire**

| I - Installation                               | p.2  |
|------------------------------------------------|------|
| II - Contenu                                   | p.3  |
| III - Structure général                        |      |
| 1 - Articulation du code                       | p.4  |
| .ini file                                      | p.5  |
| 2 - Les trois classes de Pycoffee              | p.5  |
| Class Custom_TestBed                           | p.6  |
| Class data_simulator                           | p.7  |
| Class Estimator                                | p.10 |
| Diagram UML de sequence de la methode estimate | p.11 |
| 3 - Criètre.py                                 | p.12 |
| IV - Outils spécifique                         | p.13 |

#### I - Installation

### **INSTALATIONS NECESSAIRE A PYCOFFEE:**

| ASTERIX  → setup.py install | Necessite astropy et ConfigObj                                                      |
|-----------------------------|-------------------------------------------------------------------------------------|
| OPTIMIZE                    | Module pour minimisation                                                            |
| PIL                         | (Python Imagaing Library) pour la sauvgarder du dérouler de la simulation as a gif. |

### Manuel d'installation :

#### **Installation Package:**

Attention, installé implique une copie des fichiers sur le système. Vous devrez re-installé à chaque fois si vous changez le code. Installation uniquement pour les utilisateurs.

#### Etape 1 : Vérifié que on a bien installé toute les dépendances

NB : Si j'avais bien fait mon setup.py comme il faut, ça n'aurai pas été la peine. Mais je ne l'ai pas fait.

### Etape 2: setup.py install

Le package installé, il s'utilise comme n'importe quel module. Il peux être importé depuis n'importe quel emplacement.

#### **Installation développeur :**

#### **Etape 1** : Vérifié que on a bien installé toute les dépendances

NB : Si j'avais bien fait mon setup.py comme il faut, ça n'aurai pas été la peine. Mais je ne l'ai pas fait.

Tant que le package n'est pas installé, <u>Import CoffeeLibs</u> n'est reconnu que a la racine de l'arborescence. On peux l'utiliser en définissant le working directory a cette endroit. (emplacement du <u>init</u>.py)

#### (Etape 2 optionnel mais conseillé): Exécuter le fichier \_\_init\_\_.py.

moi c'est comme ça que j'aime bien faire, c'est personnel donc c'est comme vous voulez. Ca permet de ranger les fichiers qui utilise coffee où on veux et pas de tous les avoir au même endroit avec le \_\_ini\_\_ et le setup. Moins de question de path et de working directory a se poser.

<u>Résultat</u>: La console sur laquelle vous travaillez enregistrera le chemin de CoffeeLibs. Ca fonctionnera comme un package installé: reconnu partout, pas de question d'emplacement à ce posé. Et ça ne créera pas de copie donc toutes les modifications seront prisent en compte a chque nouvelle execution (sans avior a re executer le \_ini\_\_.py)

<u>Inconvénient :</u> Fonctionne uniquement sur la consol en cours d'utilisation. Il faudra exécuter le \_\_init\_\_ a chaque nouvelle console démarré.

# II - Contenu

|  | CoffeeLibs           | Coffee li                                         | brary                      |                                                                                              |  |  |
|--|----------------------|---------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|--|--|
|  |                      | coffee.py                                         | Contient                   | les trois classes de Pycoffee                                                                |  |  |
|  |                      | critère.py                                        | Fonction                   | s de critère appelé par le minimseur                                                         |  |  |
|  |                      | file_manager.py                                   | utilitaire                 | de fichier (pas très utile)                                                                  |  |  |
|  |                      | pzernike.py                                       | polynon                    | ne de zernike (copie conforme de IDL)                                                        |  |  |
|  |                      | tools.py                                          | Fonction<br>(opération     | pour opération souvant répété<br>n sur les matrices, template plots,)                        |  |  |
|  | Demos Test           | Démos et                                          | tests                      |                                                                                              |  |  |
|  |                      | TestPhaseDiv.py                                   |                            | Exemple d'utilisation de Pycoffe sur données simulé                                          |  |  |
|  |                      | noCorono_donne_reel.py                            |                            |                                                                                              |  |  |
|  |                      | test_fonctionelles.py test Pycoffe avec Unit_test |                            |                                                                                              |  |  |
|  |                      | my_param_file.ini                                 |                            | le fichier ini que j'utilise pour toutes les démo-<br>et tests                               |  |  |
|  |                      | imgs                                              |                            | ement de mes images<br>expérimental<br>.fits                                                 |  |  |
|  |                      | save                                              | Emplace                    | ment des sauvgarde de<br>simulation                                                          |  |  |
|  | lmg_                 | Pré-traitement:                                   | s des imag                 | es                                                                                           |  |  |
|  | processing_<br>tools | my_scipt.py                                       | Désole<br>Script           | pour le nom pas consistant<br>pour traité les images, qui apelle les<br>on de process_img.py |  |  |
|  |                      | process_img.py                                    | Fonct                      | ion de prétraitement des<br>images                                                           |  |  |
|  | initpy               |                                                   |                            |                                                                                              |  |  |
|  | setup.py             | Necessaire a tant qu                              | l'installation<br>e module | on en                                                                                        |  |  |

# III - Structure général

#### 1 - Articulation du code

Le schéma ci-dessous présente le concept général d'une estimation de phase par minimisation d'un critère de maximum a posteriori.Les trois classes de pycoffee représentes les trois région de code encadré en rouge vert et bleu.

Rappel du concept général du programme mis en place de minimisation du critère de maximum a posteriori



Le diagramme UML de class de PyCoffee est représenté ci-dessous, en reprenant le même code couleurs. La liste des propriété et des méthodes est exhaustivement développé dans la section suivante.



# III - Structure général

#### .INI FILE:

Le fichier ini permet de définir les paramètres de construction des différent object (opitcal system, estimator ..) .

Un fichier ini "template" se trouve dans le package asterix.

Pour voir les clefs et les valeurs possible regarder les exemples et le fichier tempate.

<u>Fonctionnement</u>: ConfigObj et Validator permet de vérifié que votre fichier ini match bien les spécification du fichier template.

→ Dans CoffeeLibs.file\_manager, j'ai défini une fonction get\_ini(path) qui va chercher le path du tempate dans Asterix, et appelle ConfigObj et Validator.

Elle renvoie un dictionnaire, cette objet peu ensuit être utilisé par les constructeurs.

### 2 - Les trois grande class PyCoffee.

Cette parti fait office de manuel. Elle décrit toute les méthodes et propriétés des classe le plus exhaustivement possible.

Je ne décrirais pas ici les fonctions dans tools, pzernike ... mais vous pouvez jetter un coup d'oeil, c'est commenté et c'est des opération assez "élémentaire".

Critère.py en revanche contient des fonction assez complexe qui méritent d'être expliquées. Elles le sont dans la section suivante.

## **CLASS CUSTOM\_BENCH**

Instance de **OPTICAL SYSTEM**: Super class d'Asterix

<u>Si mode gradient automatique :</u> Interchangeable avec n'importe quel autre instance de **OPTICAL SYSTEM** a condition que la propagation du champ soit défini linéaire.

<u>Si mode gradient analytique :</u> Non interchangeable, ou il faut adapter le gradient du critère au modèle de propagation.

# Definition:

Classe qui représente le système optique du coronographe. On peux y propager un champs électromagnétique.

Custom\_tested a aussi une méthode introspection pour suivre plan par plan la traversé du champ.

# Propriété:

| Nom                                                | type  | description                                                                               |
|----------------------------------------------------|-------|-------------------------------------------------------------------------------------------|
| Propriétés hérité de la super class Optical System |       | Ce référé à la documentation d'Asterix                                                    |
| pup                                                | array | Carte pupille                                                                             |
| corono                                             | array | Carte coronographe                                                                        |
| offset                                             | dict  | Paramètre d'offset pour que les mft soit centré sur 4 pixels. Utilisé chaque appel de mft |
| zbiais                                             | bool  | Si True, ajoutera la correction zbais dans le modèle de propagation                       |

### Méthodes: \*méthode de la super class, redéfini spécifiquement a Custom\_Bench

| Nom                        | argument                              | return                    | description                                                                                                                                                      |
|----------------------------|---------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * EF_through               | entrance_EF=1, EF_aberrations_LS=1    | EF_out                    | Prend en argument une carte de champ upstream et downstream. Renvoie la propagation du champ a travers le système optique <u>avant l'arrivé sur le detecteur</u> |
| * todetector               | entrance_EF=1, EF_aberrations_LS=1    | mft(EF_out)               | Prend en argument une carte de champ upstream et downstream. Renvoie la propagation du champ a travers le système optique jusqu'au detecteur. sans module carre  |
| * todetector_<br>intensity | entrance_EF=1,<br>EF_aberrations_LS=1 | mft(EF_out)  <sup>2</sup> | Comme en haut mais avec le module carre -> on renvoie l'intensité recu sur le detecteur                                                                          |
| z_biais                    | aucun                                 | zbiais                    | Revoie l'ajustement z_biais. Utilisé dans EF_through pour corrrigé le champ avec un 4q si la propriété zbais=True                                                |
| introspect                 | entrance_EF=1,<br>EF_aberrations_LS=1 | void                      | Ouvre une fenêtre matplotlib "Introspection" qui affiche la propagation du champ électromagnétique a travers le banc, plan par plan.                             |

## **CLASS DATA\_SIMULATOR**

# **Definition**:

Simulateur de donnée.

Ces propriété sont les valeurs d'entrées de la simulation et le système optique. Se souviens aussi des variables qui sont supposé connues et celles qui sont supposé inconnu, même si on leurs assigne une valeur a posteriori.

Outil multitâche pour contenir tout les différent paramètre d'une simulation qui ne sont pas propre au système optique en lui même.

Contient des outils pour facilité son utilisation avec l'estimateur

<u>Propriété</u>: \*Accessible autrement mais défini comme ça car utilisé fréquemment.

| Nom       | type             | description                                                         |
|-----------|------------------|---------------------------------------------------------------------|
| tbed      | Optical system   | Systeme optique                                                     |
| cplx      | bool             | <u>True</u> : phase upstream est un complexe                        |
|           |                  | $\underline{False}$ : phase upstream est un réel                    |
| phi_foc   | 2D array         | Carte de phase focalisé                                             |
| *EF_foc   | 2D               | Carte de champ focalisé.                                            |
|           |                  | Mis a jour si phi_foc est modifié. ATTENTION seulement dans ce      |
|           |                  | sense.                                                              |
| Knwon_var | dict             | Clefs possible:                                                     |
|           |                  | <u>Downstream_EF</u> : carte de CHAMP d'aberration downstream. Peut |
|           |                  | être defini comme un float si phase constante.                      |
|           |                  | <u>flux</u> : liste des flux pour chaque image de diversité         |
|           |                  | <u>fond</u> : liste des fond pour chaque image de diversité         |
| Div_map   | List of 2D array | List des carte de phase de diversité.                               |
|           |                  | Genere a partir d'une liste div_factor en argument lors de la       |
|           |                  | construction de l'object.                                           |
|           |                  | <u>Si div_factor float</u> : diversité défini comme a*defoc         |
|           |                  | Si div factor array: carte de diversité tel quel.                   |
| * Nb_div  | int              | Nombre d'images de diversité                                        |
| * N       | int              | Dimension (largeur) de la carte de phase                            |

## Méthodes:

Cette class contient BEAUCOUP de méthode car :

<u>1</u> - On va exploiter les propriétés de mutabilité des classes en python.

C-a-d lorsque l'on va modifié l'object à l'intérieur d'une fonction, on veux qu'elle soit modifié partout. (expliquation un peu grossière, ce référé une doc)

<u>2-</u> On veux être sur que quand on change quelquechose, tous les propriétés qui doivent être modifié avec le soit.

Du coup, on va préféré -> sim.set\_phi\_foc( my\_phi) plutôt que -> sim.phi\_foc = my phi

<u>3-</u> on veux définir des méthode pratique, par exemple une méthode qui permet de définir phi foc directement a partir de zernike.

Conclusion : Beaucoup de méthode pour une classe flexible, mutable et pratique.

Parmis ces méthode on va retrouver :

- Les setters and getters et checkers
- Les generators
- Les optimizes wrappers
- Les Tbed wrappers
- ( les internal tools, comme genre set\_default\_value() )

# <u>Setters & getters</u>: \* utile pour l'estimateur

| Nom                                         | argument                                                                                                       | return                     | description                                                                                                                                                                                                                                |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setters<br>set_ <propreties>()</propreties> | Truc que on veux set                                                                                           | rien                       | Set la propriété voulu. Regarder spécifiquement le setters voulu si paramètre particulier. La plus part n'on pas de paramètre particulier ATTENTION Il manque des setters pour certain variable que je n'ai jamais eu besoin de changer.   |
| Getters get_ <propreties>()</propreties>    | Rien <u>généralement</u> div_id quand il s'agit de récupéré une carte de phase/champ de diversité particulière | Le truc que<br>on veux get | Get la propriété voulu.  Regarder spécifiquement le setters voulu si paramètre particulier. La plus part n'on pas de paramètre particulier  ATTENTION II manque des setters pour certain variable que je n'ai jamais eu besoin de changer. |
| * Ckeckers<br>Truc_is_know                  | rien                                                                                                           | bool                       | Va chercher si le propriété est défini comme connu ou incconu. A saoir est que il faut l'estimé ou pas.                                                                                                                                    |

# <u>Generators</u>: -> Fontion pratique utilisé souvent a l'extérieur de la classe

| Gen_zernike_phi_foc | Coeff : list des coeff<br>du polynome de | rien     | Genere un polynome de zernike à partir des coeff en entrée et défini phi_foc comme tel. |
|---------------------|------------------------------------------|----------|-----------------------------------------------------------------------------------------|
|                     | zernike                                  |          | · <u>-</u>                                                                              |
| Gen_zernike_phi_do  | Coeff : list des coeff                   | rien     | Genere un polynome de zernike à partir des coeff en                                     |
|                     | du polynome de                           |          | entrée et défini phi_do comme tel.                                                      |
|                     | zernike                                  |          |                                                                                         |
| Gen_zernike_phi     | Coeff : list des coeff                   | carte du | Renvoie l'array 2D qui du zernike genere a partir des                                   |
|                     | du polynome de                           | zernike  | coeff en entrée                                                                         |
|                     | zernike                                  |          |                                                                                         |
| Gen_div_phi         | rien                                     | 3D array | Renvoie l'array 3D de toute les carte de phase de                                       |
|                     |                                          |          | diversité                                                                               |
| Gen_img_div         | RSB: None -> pas de                      | 3D array | Renvoie l'array 3D de toute les image de diversité.                                     |
|                     | bruit                                    |          | Avec ou sans bruit (RSB = rapport signal/bruit)                                         |

# <u>Optimize wrappers</u>: -> permet d'adapter les variables a la syntaxe d'optimize

| Opti_unpack | Pack : 1D array         | (optionel) revoie<br>les varaible<br>unpacké | Prend en argument la list 1D des inconnus de la simulation (tel que la syntax d'optimize nous l'oblige) Unpack les variables, les sépares si il y en a plusieurs (phi_up,phi_d,flux,fond) les remet sous forme de tableau 2D (eventuellement sous forme de complexe). |
|-------------|-------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opti_pack   | rien                    | Pack : 1D array                              | Prend en argument la list 1D des inconnus de la simulation (tel que la syntax d'optimize nous l'oblige) c-a-d en concatenant en array 1D toute les inconnu de la simulation                                                                                           |
| Opti_uptade | Pack : 1D array<br>imgs | Rien                                         | Similaire a opti_unpack MAIS <u>estime flux est fond en plus</u> (si besoin de les estimé uniquement)                                                                                                                                                                 |

# <u>Tbed wrapper</u>: -> appelle les méthodes du Testbed avec les propriétés de la simulation

| EF_trough To_detector To_detecor intensité psf | /         | /        | Appelle ces fonctions avec les propriétés de la simu<br>Pour plus de détail, regardé les fonctions spécifique,<br>code commenté.                            |
|------------------------------------------------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To_detector_loop                               |           | 3D array | Genere toute les images de diversité (en appelant to_detecor_intensité bouclé sur le nombre de diversité).  Renvoie un array 3D des images (N x N x Nb_div) |
| Phi_to_img                                     | 3D arrays | 3D array | Prend en argument la carte des phase de diversité<br>Renvoie les images                                                                                     |

### **CLASS ESTIMATEUR**

## Definition:

Réalise une estimation des paramètre d'entree du systeme par critère de MAP. Minimisation L-BFGS-B avec optimize.minimize

!! ATTENTION option grad auto. Une fonction permet de calculer L a partir d'un systeme optique. Pour l'instant j'apelle la fonction a l'interieur de la classe. mais il sera plus judicieux de passé une L deja consruit au minimiseur a l'initialisation ou a l'appelle de la méthode estimate!!

## Propriété:

| type  | description                                                                               |
|-------|-------------------------------------------------------------------------------------------|
|       | Ce référé à la documentation de optimize.minimize                                         |
|       | Clefs: disp, gtol,eps,maxiter.                                                            |
| float | Variance a pripori de la phase. Fait office d'hyper paramètre pour la                     |
|       | regularisation                                                                            |
| bool  | $\underline{\mathrm{True}}$ : gradient automatique -> appelle des fonctions gradient auto |
|       | pour la minimisation                                                                      |
|       | $\underline{False}$ : gradient analytique -> appelle des fonctions gradient               |
|       | analytique pour la minimisation                                                           |
| bool  | <u>True</u> : estime la phase complexe                                                    |
|       | $\underline{False}$ : estime la phase réel                                                |
|       | float                                                                                     |

# Méthode unique:

| estimate | Tbed: optical system Systeme optique                                                                                                         | e_sim : objection data_simulate                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|          | Imgs: 3D ndarray (N,N,nb_div) Image reel                                                                                                     | Cet object<br>contiendra to<br>le resultat de                     |
|          | Div_factor : list<br>Liste de diversité connu                                                                                                | l'estimation (sim.get_phi).                                       |
|          | <u>Si liste de float</u> : diversité défini comme a*defoc<br><u>Si liste de array</u> : carte de diversité a ajouter a la phase<br>focalisé. | + les propriéte<br>info, info_gra<br>et info_div<br>seront ajouté |
|          | Knwo_var : dict Dictionnaire des entrée connu. Si une clef s n'est pas rempli, elle sera considéré comme inconnu et sera estimé.             | l'objets                                                          |
|          | Clefs possible:                                                                                                                              |                                                                   |

<u>Downstream EF</u>: carte de **CHAMP** d'aberration

flux : liste des flux pour chaque image de diversité fond : liste des fond pour chaque image de diversité

downstream. Peut être defini comme un float si phase

| sim : object<br>ta_simulator                                          | Réalise l'estimation MAP.  Etape 1: cree un objet simulation avec tout les                                                                                     |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| et object                                                             | paramèter a 0.                                                                                                                                                 |
| ntiendra tous<br>resultat de<br>stimation<br>m.get_phi).              | Etape 2 : défini les paramètres de l'estimation                                                                                                                |
| 0                                                                     | Etape 3 : Appel                                                                                                                                                |
| es propriétés<br>fo, info_grad,<br>info_div<br>ront ajouté à<br>bjets | Optimize.minimize -> Prend en argument deux fonctions: une pour calculer le critère, une pour calculer le gradient.                                            |
|                                                                       | -> A chaque passage de ces<br>fonction, la simulation vide est<br>mise a jour avec la current<br>estimation des paramètre a<br>estimé. (cf. opti_update et les |

fonction préfixé par 'V\_' dans

Renvoie l'objet data simulator

critère.py)

# DIAGRAMME UML DE SEQUENCE D'UNE ESTIMATION.

<u>Conseil</u> le code est commenté, le mieux pour comprendre, c'est d'aller voir dans la méthode estimate d'estimator. Le shéma ne vous donnera qu'un aperçu global.



## 3 - Critere.py

Bibliothèque de fonctions qui permet de calculer le critères.

Calcule de critère, du gradient, estimation flux/fond, gradient par différence fini

Les fonctions préfixé par 'V\_' sont les fonctions destiné a etre appelé par le minimiseur.

Ces fonctions appelles les autres fonction opur calculer J, dJ, R.. Elles s'occupe de mettre a jour la simulation avec les nouvelles valeurs, calculer les trucs dont en a besoin, de géré la pondération et de renvoyé le resultas mis en forme corresctement pour optimize.

| Nom                                         | argument                                               | return                 | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|--------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| meanSquare                                  | Hx y : arrays                                          | float                  | Renvoie la distance mean square entre Hx et y (==> calcule du maximum de vraisemblance J )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| regul                                       | Phi : 2D array                                         | float                  | Renvoie le gradient spatial de l'entré                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DJmv_up                                     | Div_id<br>Img<br>Sim : data_simulator                  | 2Darray                | Renvoie le gradient du maximum de vraisemblance<br>A partir des donne de l'object sim donné en entré et<br>pour un indice de diversité donné (aka un entier !!),<br>l'image de diversité correspondante                                                                                                                                                                                                                                                                                                                                                                                                   |
| DJmv_dp                                     | Div_id<br>Img<br>Sim : data_simulator                  | 2Darray                | Meme chose que DJmv_up mais gradient par rapport a phase downstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dregul                                      | Phi : s2Darray                                         | 2Darray                | Renvoie la laplacien spacial (derivé 2nd) de l'entré                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Estime_fluxfond                             | Sim : data_simulator<br>Imgs : 3D array<br>images reel | 2D array :<br>2xNb_div | Renvoie l'estimation du flux et du fond a partir des paramètre actuel de la simulation et des images <u>Appelé dans sim.opti uptadte</u> Renvoie 2D array : 2xNb_div pour flux et fond associé a chaque diversité                                                                                                                                                                                                                                                                                                                                                                                         |
| V_map_J V_grad_J V_map_J_auto V_grad_J_auto | Var Sim Imgs Hypp Simfig L (pour auto)                 | 1D array               | Fonction appelé par optimize.minimize dans la methode estimate de Estimator.  Etape 1: uptate la simulation sim avec var (la sortie donnée par minimize 1D array)  Etape 2: Calculer critère/gradient du critère pour chaque diversité, terme d'attache au donnée et regularisation  Etape 3: la ponderation  Etape 4: Enregister les infos pour le suivie de la simu -> ajoute les propriété info,info_gra,info_div a l'object sim  Etape 5 (optionel): sauvergarde les gradients pour suivi de la simu en affichant le dérouler (simGif)  Etape 6: return (en adaptant a la syntax optimize si besion.) |
| Grad_diff_ <truc></truc>                    | /                                                      | grad                   | Gradient par différance fini. Cf commentaires et compar_grad.py dans demo_test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# IV - Outils spécifique

J'ai fait quelques "Outils" qui peuvent être pratique.

#### **TEST FONCTIONELLS.PY:**

Dans demo\_test: test\_fonctionells.py

Avec unit test de python, permet de tester différent cas de figure de simulation.

Le scipt est séparé en section.

Section 1-2-3: Initialisation des choses dont on aura besoin

Section 4 : Fonctions qui seront appelé dans les test unitaire.

do\_a\_test, rest\_estimator sont pour genere une simulation

fontchoice, init\_worksheet et new\_row sont pour la generation du fichier exels

Section 5: definition des tests

Section 6: main qui lance les tests.

#### PROCESS IMG:

*Dans le dossier img\_processing\_tools* se trouve deux fichiers.py. Process\_img.py contient des fonction pour moyenné, cropé, centré les fits qui se trouvent dans un dossier.

Script.py les utilisent

### **TEMPLATE PLOTS:**

**Dans CoffeeLibs.tools**: Les fonctions template plots permet d'afficher les resultats de la minimisation.

Ces fonctions vont chercher les données a affiché, les infos, bref tous les resultat de la minimisation et les met en forme.

<u>Avantage</u>: Vous avez un affichage complet que vous pouvez réutilisés. Plusieurs template plots en fonction de se que vous voulez voir.

### **COMPARE TRUC:**

*Dans demo\_test*: compare\_grad.py, comparSimu, grad auto\_test.

Script pour comparé des trucs. peut-être réutilisé.

En particulier compare\_grad, qui compare un gradient par rapport au gradient par différence fini pourrai peut-être servir dans le future ?