Lenara Sitshayeva

Project: IRIS dataset

Petal Sepal

Dataset load and create dataframe

Measure of centre

MEAN

MEDIAN

MODE

Measure of spread

VARIANCE

STANDARD DEVIATION

RANGE

QUARTILES AND IQR

SKEWNESS

KURTOSIS

Correlation

CORRELATION COEFFICIENTS

CORRELATION MATRIX

Dataset load and create dataframe

```
In [1]:
           import pandas as pd
           import matplotlib as plt
           import seaborn as sns
           import numpy as np
In [2]:
          df = pd.read csv("iris.csv")
          df = df.iloc[:,1:]
In [3]:
           df
                sepal_length sepal_width petal_length petal_width
Out[3]:
                                                                             Species
             0
                          5.1
                                        3.5
                                                       1.4
                                                                    0.2
                                                                           Iris-setosa
                                        3.0
                                                       1.4
                                                                    0.2
                                                                           Iris-setosa
             1
                          4.9
             2
                          4.7
                                        3.2
                                                       1.3
                                                                    0.2
                                                                           Iris-setosa
                          4.6
                                         3.1
                                                       1.5
                                                                    0.2
                                                                           Iris-setosa
             4
                          5.0
                                        3.6
                                                       1.4
                                                                    0.2
                                                                           Iris-setosa
                           ...
                                         ...
           145
                                                       5.2
                                                                    2.3 Iris-virginica
                          6.7
                                        3.0
           146
                          6.3
                                        2.5
                                                       5.0
                                                                        Iris-virginica
           147
                          6.5
                                        3.0
                                                       5.2
                                                                    2.0 Iris-virginica
           148
                          6.2
                                        3.4
                                                       5.4
                                                                    2.3 Iris-virginica
           149
                          5.9
                                        3.0
                                                       5.1
                                                                    1.8 Iris-virginica
```

150 rows × 5 columns

```
In [4]:
          df.iloc[:, :-1].head(4)
Out[4]:
             sepal_length sepal_width petal_length petal_width
          0
                                                                0.2
                       5.1
                                     3.5
                                                   1.4
                                     3.0
                                                   1.4
                                                                0.2
          2
                       4.7
                                     3.2
                                                   1.3
                                                                0.2
          3
                       4.6
                                     3.1
                                                   1.5
                                                                0.2
```

In [5]: df.describe()

Out[5]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

Measure of centre

Measures of central tendancy of middle values of dataset: mean, median, mode

MEAN

```
In [6]:
        df['sepal length'].mean()
        5.843333333333335
Out[6]:
In [7]:
        df['sepal_width'].mean()
        3.0540000000000007
Out[7]:
In [8]:
        df['petal length'].mean()
        3.758666666666693
Out[8]:
In [9]:
        df['petal_width'].mean()
        1.198666666666672
Out[9]:
```

MEDIAN

```
In [10]: df['sepal_length'].median()
Out[10]: 5.8

In [11]: df['sepal_width'].median()
Out[11]: 3.0

In [12]: df['petal_length'].median()
Out[12]: 4.35

In [13]: df['petal_width'].median()
Out[13]: 1.3
```

MODE

```
In [14]:
         df['sepal_length'].mode()
Out[14]:
         Name: sepal_length, dtype: float64
In [15]:
         df['sepal_width'].mode()
              3.0
Out[15]:
         Name: sepal width, dtype: float64
In [16]:
         df['petal_length'].mode()
              1.5
Out[16]:
         Name: petal length, dtype: float64
In [17]:
         df['petal width'].mode()
               0.2
Out[17]:
         Name: petal_width, dtype: float64
```

Measure of spread

Measures of spread include the range, quartiles and the interquartile range, variance and standard deviation, skewness.

VARIANCE

```
In [18]: df['sepal_length'].var()
Out[18]: 0.6856935123042505
In [19]: df['sepal_width'].var()
```

```
Out[19]: 0.18800402684563763

In [20]: df['petal_length'].var()
Out[20]: 3.1131794183445156

In [21]: df['petal_width'].var()
Out[21]: 0.5824143176733784
```

STANDARD DEVIATION

```
In [22]:
         df['sepal length'].std()
         0.8280661279778629
Out[22]:
In [23]:
          df['sepal width'].std()
         0.4335943113621737
Out[23]:
In [24]:
         df['petal length'].std()
         1.7644204199522617
Out[24]:
In [25]:
         df['petal_width'].std()
         0.7631607417008414
Out[25]:
```

RANGE

```
In [26]:
         r_sepal_width = df['sepal_length'].max() - df['sepal_length'].min()
         r sepal width
         3.6000000000000005
Out[26]:
In [27]:
         r_sepal_width = df['sepal_width'].max() - df['sepal_width'].min()
          r sepal width
         2.4000000000000004
Out[27]:
In [28]:
         r_petal_length = df['petal_length'].max() - df['petal_length'].min()
         r_petal_length
         5.9
Out[28]:
In [29]:
         r_petal_width = df['petal_width'].max() - df['petal_width'].min()
         r petal width
Out[29]:
```

QUARTILES AND IQR

sepal_length

sepal_width

petal_length

petal_width

SKEWNESS

```
In [38]:
          df['sepal length'].skew()
          0.3149109566369728
Out[38]:
In [39]:
          df['sepal length'].hist(bins =10,figsize = (6,4))
          <AxesSubplot:>
Out[39]:
           25
           20
           15
           10
            5
            0
                 4.5
                       5.0
                              5.5
                                    6.0
                                          6.5
                                                7.0
                                                      7.5
                                                             8.0
In [40]:
          df['sepal length'].plot(kind='density', figsize = (6,4), title = 'Positive r
          <AxesSubplot:title={'center':'Positive right-skewed distribution, Mean - Med</pre>
Out[40]:
          ian > 0'}, ylabel='Density'>
                  Positive right-skewed distribution, Mean - Median > 0
             0.40
             0.35
             0.30
             0.25
             0.20
             0.15
             0.10
             0.05
             0.00
                      s<sup>'</sup>
                                  Ś
                                                           ġ
                                                                 10
In [41]:
          df['sepal_width'].skew()
          0.3340526621720866
Out[41]:
In [42]:
          df['sepal width'].hist(bins =10, figsize = (6,4))
          <AxesSubplot:>
Out[42]:
```


In [43]: df['sepal_width'].plot(kind='density', figsize = (6,4), title = 'Positive ri

Out[43]: <AxesSubplot:title={'center':'Positive right-skewed distribution, Mean - Med
 ian > 0'}, ylabel='Density'>


```
In [44]: df['petal_length'].skew()
```

Out[44]: -0.27446425247378287

```
In [45]: df['petal_length'].hist(bins =10,figsize = (6,4))
```

Out[45]: <AxesSubplot:>


```
In [46]: df['petal_length'].plot(kind='density', figsize = (6,4), title = 'Negative 1
```



```
In [47]: df['petal_width'].skew()
```

Out[47]: -0.10499656214412734

```
In [48]: df['petal_width'].hist(bins =10,figsize = (6,4))
```

Out[48]: <AxesSubplot:>


```
In [49]: df['petal_width'].plot(kind='density', figsize = (6,4), title = 'Negative le
```


KURTOSIS

```
In [50]:
         df['sepal length'].kurt()
         -0.5520640413156395
Out[50]:
In [51]:
          df['sepal width'].kurt()
         0.2907810623654279
Out[51]:
In [52]:
         df['petal length'].kurt()
         -1.4019208006454036
Out[52]:
In [53]:
         df['petal width'].kurt()
         -1.3397541711393433
Out[53]:
```

Correlation

CORRELATION COEFFICIENTS

```
In [54]:
           # Pearson's r
           df.corr()
Out[54]:
                         sepal_length sepal_width
                                                    petal_length
                                                                 petal_width
                             1.000000
                                                                    0.817954
           sepal_length
                                         -0.109369
                                                        0.871754
            sepal_width
                            -0.109369
                                          1.000000
                                                       -0.420516
                                                                   -0.356544
           petal_length
                             0.871754
                                         -0.420516
                                                       1.000000
                                                                    0.962757
            petal_width
                             0.817954
                                                                    1.000000
                                         -0.356544
                                                       0.962757
In [55]:
           # Spearman's rho
           df.corr(method='spearman')
Out [55]:
                         sepal_length sepal_width
                                                    petal_length
                                                                 petal_width
           sepal_length
                             1.000000
                                         -0.159457
                                                       0.881386
                                                                    0.834421
            sepal_width
                            -0.159457
                                          1.000000
                                                       -0.303421
                                                                    -0.277511
           petal_length
                             0.881386
                                         -0.303421
                                                       1.000000
                                                                    0.936003
            petal_width
                             0.834421
                                                       0.936003
                                                                    1.000000
                                          -0.277511
In [56]:
           # Kendall's tau
           df.corr(method='kendall')
```

Out [56]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.072112	0.717624	0.654960
sepal_width	-0.072112	1.000000	-0.182391	-0.146988
petal_length	0.717624	-0.182391	1.000000	0.803014
petal_width	0.654960	-0.146988	0.803014	1.000000

CORRELATION MATRIX

```
In [57]: heatmap = sns.heatmap(df.corr(), annot=True, vmin=-1, vmax=1)
heatmap.set_title('Correlation Heatmap',fontdict={'fontsize':18}, pad=16)
```

Out[57]: Text(0.5, 1.0, 'Correlation Heatmap')

Correlation Heatmap

In [58]: # define the mask to set the values in the upper triangle to True
 mask = np.triu(np.ones_like(df.corr(), dtype=bool))
 heatmap = sns.heatmap(df.corr(), mask=mask, vmin=-1, vmax=1, annot=True, cma
 heatmap.set_title('Triangle Correlation Heatmap', fontdict={'fontsize':18},

Triangle Correlation Heatmap

Variables Correlating with sepal_length


```
In [60]: df.plot.scatter(x = 'sepal_length', y = 'petal_length', s = 100, color='gree
Out[60]: <AxesSubplot:xlabel='sepal_length', ylabel='petal_length'>
```


Variables Correlating with sepal_width

In [62]: df.plot.scatter(x = 'sepal_width', y = 'petal_length', s = 100, color='green

Out[62]: <AxesSubplot:xlabel='sepal_width', ylabel='petal_length'>

Variables Correlating with petal_length


```
In [64]: df.plot.scatter(x = 'petal_length', y = 'petal_width', s = 100, color='green
Out[64]: <AxesSubplot:xlabel='petal_length', ylabel='petal_width'>
```


heatmap.set_title('Variables Correlating with petal_width', fontdict={'fonts

Variables Correlating with petal_width

In [66]: df.plot.scatter(x = 'petal_width', y = 'sepal_length', s = 100, color='green
Out[66]: <AxesSubplot:xlabel='petal_width', ylabel='sepal_length'>

In [67]: sns.pairplot(df)

Out[67]: <seaborn.axisgrid.PairGrid at 0x7ff31bd0e7f0>

In [68]: sns.pairplot(df, hue='Species')

Out[68]: <seaborn.axisgrid.PairGrid at 0x7ff339651850>

