Secure Camera Capture System

Christian Coffield Matthew Dekoning Nathan Lea Kevin Seitz Advisor – Dr. Stine

The Team

- Christian Coffield
- Matthew Dekoning
- Nathan Lea
- Kevin Seitz

The Project

"A system that snaps a picture and stores the picture in memory securely. A good system will enable a security protocol, hopefully with military-grade encryption, so that any system cannot possibly be compromised by a user or thief. The picture should also be able to be recalled at a later time."

The Goal

To create a secure camera system that is capable of taking pictures and securely storing them offsite to a secondary location for later retrieval.

Hardware Specifications

- Take and upload a picture every minute
- Take picture of at least 640x480 px
- Tamper protection if stolen, the system will not retain any sensitive data
- Store the picture securely on the remote server
- Store a year's worth of pictures on the server

Software Specifications

- A method for the user to retrieve the pictures remotely
- Use AES-128 or AES-256 as the standard for encryption
- Securely store the AES key
- A set up process to generate a unique key for the system
- Store images named with time and date stamp
- Images accessible from any standard Windows computer

Block Diagram

Development Plan

Three phases

- Photography/Encryption
- Off-Site Storage
- Retrieval/Decryption

Phase I: Photography/Encryption

- Raspberry Pi Zero captures a photo using a USB connected camera
- Images encrypted
 - AES-128 or AES-256
- No on-board images, server storage
- Will erase all records on device if opened

Phase II: Off-Site Storage

- Raspberry Pi 2 server safely stores and serves encrypted images
- Secured through:

Firewall, fail2Ban, pre-encrypted data

Technologies Used:

RAID, ginx, PHP, HTML

Phase III: Retrieval/Encryption

- Software client running on any windows system to retrieve and decrypt images from the server
- Will allow the server to be reconfigured with a new password and encryption key
- Clean, user-friendly GUI

The Schedule

Management/Organization

Weekly advisor meetings, transcribed

Google Drive, GitHub

Group compilation on documentation

Managing Roadblocks

- Camera interface, openCV
 - fswebcam

Motion sensing versus timer

- Microcontroller power
 - BeagleBone Black

Necessary Resources

Resource	Cost
Google Drive/GitHub	Free
Raspberry Pi 2	\$35
Raspberry Pi Zero	\$5
Webcam/Camera	\$15
PIR Motion Sensor	\$3
USB Hard drive/flash memory storage	\$60

In closing...

- Three Part System
 - Camera device, storage server, remote application
- AES encryption
- Tamper- and theft-resistant

Questions?