1

25th February, 2021 Shift-2

EE24BTECH11063 - Y.Harsha Vardhan Reddy

SINGLE CORRECT

by performing the operation $R_2 \rightarrow 2R_2 + 5R_3$ on 2A, then det(B) is equal to:

1) Let A be a 3×3 matrix with det(A) = 4. Let R_i denote the i^{th} row of A. If a matrix B is obtained

	a) 04	b) 10	c) 80	u) 128	
2)	2) The shortest distance between the line $x - y = 1$ and the curve $x^2 = 2y$ is :				
	a) $\frac{1}{2}$	b) 0	c) $\frac{1}{2\sqrt{2}}$	d) $\frac{1}{\sqrt{2}}$	
3) Let A be a set of all 4-digit natural numbers whose exactly one digit is 7. Then the probability that a randomly chosen element of A leaves remainder 2 when divided by 5 is:					
	a) $\frac{1}{5}$	b) ² / ₉	c) $\frac{97}{297}$	d) 122/297	
4) $\csc \left[2 \cot^{-1} (5) + \cos^{-1} \left(\frac{4}{5} \right) \right]$ is equal to:					
	a) $\frac{75}{56}$	b) $\frac{65}{56}$	c) $\frac{56}{33}$	d) $\frac{65}{33}$	
5) If $0 < x, y < \pi$ and $\cos x + \cos y - \cos (x + y) = \frac{3}{2}$, then $\sin x + \cos y$ is equal to:					
	a) $\frac{(1+\sqrt{3})}{2}$	b) $\frac{(1-\sqrt{3})}{2}$	c) $\frac{\sqrt{3}}{2}$	d) $\frac{1}{2}$	