Neural Networks

Vamsikrishna Gopikrishna

Neuron Architecture

Transfer Function

Name	Input/Output Relation	Icon	MATLAB Function
Hard Limit	$a = 0 n < 0$ $a = 1 n \ge 0$		hardlim
Symmetrical Hard Limit	$a = -1 \qquad n < 0$ $a = +1 \qquad n \ge 0$	\Box	hardlims
Linear	a = n		purelin
Saturating Linear	$a = 0 n < 0$ $a = n 0 \le n \le 1$ $a = 1 n > 1$		satlin
Symmetric Saturating Linear	$a = -1 n < -1$ $a = n -1 \le n \le 1$ $a = 1 n > 1$	\neq	satlins
Log-Sigmoid	$a = \frac{1}{1 + e^{-n}}$		logsig
Hyperbolic Tangent Sigmoid	$a = \frac{e^n - e^{-n}}{e^n + e^{-n}}$	F	tansig
Positive Linear	$a = 0 n < 0$ $a = n 0 \le n$		poslin
Competitive	a = 1 neuron with max $na = 0$ all other neurons	C	compet

Multi-Layer Network

Sample Problem

Sample Problem

$$\mathbf{p} = \begin{bmatrix} shape \\ texture \\ weight \end{bmatrix}.$$

$$\mathbf{p}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

Sample Problem

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right].$$

