南昌大学物理实验报告

课程名称:	<u>大学物理实验</u>	
实验名称:	光的等厚干涉	
学院: <u>信息工</u>	<u>程学院</u> 专业班级: <u>电气 153</u>	
学生姓名:	<u>寥俊智</u> 学号: <u>6101215073</u>	
实验地点: _ 基	<u> </u>	
实验时间:	第十三周星期四上午九点四十五开始	

一、实验目的:

- 1.观察牛顿环和劈尖的干涉现象
- 2.了解形成等厚干涉现象的条件及特点
- 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度

二、实验原理:

光的等厚干涉,是利用透明薄膜的上下两表面对入射光依次反射,反射光相遇时发生的物理现象,干涉条件取决于光程差,光程差又取决于产生反射光的薄膜厚度,同一干涉条纹所对应的薄膜厚度相等,所以叫做等厚干涉。

当一个曲率半径很大的平凸透镜的凸面放在一片平玻璃上时,两者之间就形成类似劈尖的劈形空气薄层,当平行 光垂直地射向平凸面镜时,由于透镜下表面所反射的光和平玻璃片上表面所反射的光互相干涉,结果形成干涉条纹。 如果光束是单束光,我们将观察到明暗相间的同心环形条纹;如果是白色光,将观察到彩色条纹,这种同心的环形干 涉条纹称为牛顿环。

本实验用牛顿环来测定透镜的曲率半径,其公式为 $R = \frac{d^2_m - d^2_n}{4\lambda(m-n)}$ 。

劈尖干涉也是一种等厚干涉,其同一条纹是由劈尖相同厚度处的反射光相干产生的,其形状决定于劈尖等厚点的

轨迹,所以是直条纹。设薄片厚度 d,从劈尖尖端到薄片距离为 $\mid \mathbf{x}_{\mathbb{R}}^{-}\mathbf{x}_{0}\mid$,相邻条纹间距 Δl ,则有 $d=\frac{\left|x0-x\mathbf{\mathcal{E}}\right|}{\Delta l}$ \bullet $\frac{\lambda}{2}$

三、实验仪器:

牛顿环装置、钠光灯、读数显微镜、劈尖等

四、实验内容和步骤:

- 1.利用牛顿环测定透镜的曲率半径
- ①启动钠光灯电源,几分钟后,灯管发光稳定后,就可以开始实验了,注意不要反复拨弄开关。
- ②利用自然光或灯光调节牛顿装置,均匀且很快地调节装置上的三个螺丝,使牛顿环条纹出现在透镜正中,无畸变,且为最小,然后放在显微镜物镜下方。
- ③前后左右移动读数显微镜,也可轻轻转动物镜筒上的 45 度反光玻璃,使钠光灯正对 45 度玻璃。直至眼睛看到显微镜视场较亮,呈黄色。
- ④用显微镜观察干涉条纹: 先将显微镜筒放至最低, 然后慢慢升高镜筒, 看到条纹后, 来回轻轻微调, 直到在显微镜整个视场都能看到非常清晰的干涉条纹, 观察并解释干涉条纹的分布特征。
 - ⑤测量牛顿环的直径。
 - ⑥已知钠光波长 5.893×10-5 cm , 利用公式求出五个相应的透镜曲率半径值,并求出算术平均值。
 - 2.利用劈尖干涉测定头发丝直径
 - ①将被测薄片或细丝夹于两玻璃片之间,用读数显微镜进行观察,描绘劈尖干涉的图像。
 - ②测量劈尖的两块玻璃板交线到待测薄片间距 $l=\left|x_0-x_{\mathcal{L}}\right|$
 - ③测量 10 个暗纹间距,进而得出一个条纹间距 Δl 。

五、实验数据与处理:

m	n	x ₁ /cm	x ₂ /cm	$d_i(= x_1-x_2) /cm$	d ² i/cm ²	$(d^2_m - d^2_n)/cm^2$	R/cm
30		4.2019	3.3379	0.8640	0.746496	0.108415	91.98625
	25	4.1687	3.3699	0.7988	0.638081		
29		4.1940	3.3442	0.8498	0.722160	0.100270	85.07551
	24	4.1618	3.3732	0.7886	0.621890		
28		4.1888	3.3505	0.8383	0.702747	0.128941	109.40183
	23	4.1474	3.3899	0.7575	0.573806		
27		4.1825	3.3566	0.8259	0.682111	0.108305	91.89292
	22	4.1474	3.3899	0.7575	0.573806		
26		4.1762	3.3632	0.8130	0.660969	0.110702	93.92669
	21	4.1393	3.3975	0.7418	0.550267		
平均值					0.1113266	94.45664	

计算残差:

$$V_1 = R_1 - \overline{R} = -2.47039$$

$$v_2 = R_2 - \overline{R} = -9.38113$$

$$V_3 = R_3 - \overline{R} = 14.94519$$

$$v_4 = R_4 - \overline{R} = -2.56372$$

$$v_5 = R_5 - \overline{R} = -0.52995$$

$$\sigma_{\rm R} = \Delta {\rm R} = \sqrt{\frac{\sum\limits_{\rm i=1}^{5} (R_i - R)^2}{5 - 1}} = 0.900445$$

$$R = \overline{R} \pm \Delta R = 94.45664 \pm 0.900445$$

$$E = \frac{\Delta R}{R} = 0.95329\%$$

用劈尖测头发直径

X ₀	x ₁	x ₂	X3	X4	Χ _尾
3.4578cm	3.7710cm	4.0653cm	4.2585cm	4.4594cm	5.0918cm

$$\Delta x_1 = x_2 - x_1 = 0.2943cm$$

 $\Delta x_2 = x_3 - x_2 = 0.1932cm$

$$\Delta x_3 = x_4 - x_3 = 0.2009 cm$$

$$\Delta \overline{x} = \frac{\Delta x_1 + \Delta x_2 + \Delta x_3}{3} = 0.2295cm$$

$$\Delta l = \frac{\Delta \overline{x}}{10} = 0.02295cm$$

$$d = \frac{\left|x_0 - x_{\cancel{E}}\right|}{\Delta l} \bullet \frac{\lambda}{2} = 2.0979 \times 10-3cm$$

六、误差分析:

- 1.调节读数显微镜时玻璃片与牛顿环、劈尖等元件相撞。
- 2.由于聚焦不准造成视场模糊。
- 3.游标盘读数不精准。

七、思考题:

1.牛顿环的中心在什么情况下是暗的?在什么情况下是亮的?

答:牛顿环是光的干涉现象,干涉光为上下两个表面的反射光。暗是振动减弱区域,波峰与波谷或者波谷与波峰叠加。亮是振动加强区域,波峰与波峰或者波谷与波谷叠加。明暗与光程差有关,也就是与中心厚度有关.如果厚度为四分之一波长,光程差为二分之一波长,为振动减弱情况,是暗的;如果厚度为二分之一波长,光程差为一个波长,为振动加强情况,是亮的。

- 2.在本实验中若遇到下列情况,对实验结果是否有影响?为什么?
 - (1) 牛顿环中心是亮斑而不是暗斑。
 - (2) 侧各个直径时, 十字刻线焦点未通过圆环中心, 因而测量的是弦而不是真正的直径。
- 答: (1)环中心出现亮斑是因为球面和平面之间没有紧密接触(接触处有尘埃,或有破损或磨毛),从而产生了附加光程差。这对测量结果并无影响。
- (2)没有影响.可能的附加光程差会导致中心不是暗点而是亮斑,但在整个测量过程中附加光程差是恒定的,因此可以采用不同暗环逐差的方式消除。

八、附上原始数据:	

南昌大学实验报告

学生姓名:_		学号:	专业	·班级:		
实验类型: □验证 □综合			实验日期:	实验成绩	责:	
不数	Filmm)	Tiz(mm) 33.37	吸水数	友(my)	Tos (mm)	
30	42.019	77.478		41.687	73.699	
29	\$ 940	有 量 量])	1400 24	41.618	73.732	
28	41.888	₱ 31.5°5	23	41.543	33.828	
27	41.825	37,566	22	41.474	33.899	
26	41.762	33,632	21	41.393	33.975	
時失	D(mm) -					
γ.	34. 578		顏俊	Ro Bin	1613 HZ	
Υ,	37.710	J			31_	
V~	40.353					
V3	42.585			ab	/128 .	
Xu	44.594			11	1100	
XE	50.918					

