1강

What is an optimization problem?

최적화 문제가 무엇인가?

볼록최적화 이전에 최적화 문제가 무엇이냐는 말이냐?

To minimize an objective function under certain constraints.

어떤 함수, 목적 함수(**objective function**)를 특정 조건(constraints) 아래에서 최소화 (minimize)시키는 것이 최적화 문제이다.

최대화는 안 되냐? 이런건 나중에 자세히 설명하자.

Optimization Problems

Example:

minimize $x^2 - 2x + 4$ \Leftarrow Objective function subject to $0 \le x \le 5$ \Leftarrow Constraint

제약조건이 무엇인가? 특별한 구간을 주는 것과 같은 것이다.

그 구간 안에서만 최소화를 시킬 수가 있는 것이다.

x가 0과 5사이에서만 최소화를 시켜보라는 것이다.

Constraint가 달라지만 그 답이 달라질 수도 있다.

subject to $-1 \le x \le 0$ 이면 그 답이 달라진다.

그 해답은 목적함수와 제약조건에 의해 답이 달라질 수 있다.

- A synonym for optimization problem is programming.
- ex) linear programming, dynamic programming, convex programming...

동의어로써, 최적화 방법으로써 최적화 문제와 프로그래밍이 동의어이다.

Potentially, every problem you want to solve is some sort of an optimization problem.

세상에서의 모든 공학자들이 풀고 싶어하는 문제들은 다 최적화 문제이다. 라고 주장하는 것이다.

제한된 리소스 안에서 특정 성능을 보이는 시스템을 만들고 싶어한다.

제한된 리소스 = Constraint

특정 성능 = 비용 최소화 = objective function

효율성을 찾는 것. 이것이 최적화 문제이다.

최적화 문제 중에 풀기 쉬운게 있고 아닌게 있다. NP, P NPC 등의 문제들이 있다.

문제들의 크기가 exponential하게 풀리는 것들도 있다.

모든 문제들은 최적화 문제라고해서 전부 쉽게 풀리는 것이 아니다.

그럼 왜 많고 많은 최적화 문제들 중에서 풀 수 있는 문제들 중 가장 큰 카테고리가 되는 문제가 볼록최적화 문제이다.

Optimization problems around us...

볼록 최적화 문제를 어디에 적용이 가능한가?

- → (machine learning) Training neural networks for classification
 - \rightarrow Objective: minimize the "loss" function 문제를 틀리면 손실이 커지고 맞으면 작아지는 것이다. 이 loss는 나쁜 건데, 이것을 최소화시키는 것이다. 오답을 최소화시키는 것이다.
 - → Constraints: number of weights, number of layers, input dimensions, number of output classes 이 경우 특정한 NN의 제약조건이 있다. 프로그램 모듈의 제약 조건이 있다는 것이다. 특히 모델의 size등이 그렇다. 훈련이 잘 된다 = 최적화가 잘 된다.
- \rightarrow (resource planning) Civil planning of construction, e.g., buildings, bridges, highways
 - 도시 계획이다.
 - → Objective: Minimize the total cost 시의 예산 같은 것이다.

2

- → Constraints: Unit cost for materials, transportation costs, time deadlin 아무것도 안하면 cost가 0이 되지만, 그러면 의미가 없다. 공사기간 자재가 무한정하면 말이 안 된다.
- \rightarrow (physics) Second law of thermodynamics, e.g., gas particles contained in a box and its temperature
 - → Objectives: Maximize the entropy of the system
 - → Constraints: initial temperature, conservation of energy, dimensions of the container

열역학 제 2법칙도 최적화 문제이다. 시스템의 무질서도를 최대화하는 것이다. 이 엔트로 피 함수에 의해, 그 함수가 최대화되는 방향으로 움직인다는 것이다.

Constraints: 에너지 보존 법칙, 초기 온도, 컨테이너의 사이즈 등이다.