Sprawozdanie

Geostatystyka ćw 8

Wstęp do Geostatystyki. Estymacja wariogramu.

Natalia Gadocha 304165 Geoinformatyka II

names([1] "ID [10] "Mn [19] "Ba	" "Elev" "Fe"	"рн" "мо" "V"	"Zn" "U" "Bi"	"Cu" "W" "Cr"	"Pb" "Sn" "LOI"	"Ni" "Hg" "F"	"Co" "As" "Au"	"Ag" "sb"
> summar	y(ca_geos	Брн)	50.555	9,53,50	X6 (50)	N.C.C.	1661	
	1st Qu.		Mean	3rd Qu	I. M	ax.	NA'S	
3.900	6.100	6,600	6.531	7.00	0 0	700	22	

1 hist(ca_geo\$pH)

Histogram of ca_geo\$pH

na <- is.na(ca_geo\$pH)
 table(na)
spplot(ca_geo[!na,], "pH")</pre>

I Dopasowanie powierzchni trendu. Interpolacja.

```
3
coordnames(ca_geo)
m_lin <- lm(pH ~ x + y, as.data.frame(ca_geo))
summary(m_lin)
```

```
> coordnames(ca_geo)
[1] "x" "y"
> |
```

prawd <- 1 - pnorm(7, mean = Predict\$fit, sd = predictions\$se.fit)</pre>

16	44	4.5	258	360
8.978975e-01	9.979506e-01	9.597152e-01	1.583942e-01	0.000000e+00
381	487	507	508	523
0.000000e+00	1.398312e-03	0.000000e+00	0.000000e+00	3.330669e-15
534	541	554	647	664
5.107026e-15	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
684	686	740	744	755
1.204135e-05	0.000000e+00	6.220570e-04	0.000000e+00	4.953997e-03
759	813	820	821	824
0.000000e+00	8.332408e-07	0.000000e+00	2.220446e-16	0.000000e+00
851	859	864	867	877
4.440892e-16	0.000000e+00	0.000000e+00	0.000000e+00	2.087948e-03
890	1055	1196		
0.000000e+00 >	0.000000e+00	0.000000e+00		

II. Estymacja wariogramu

 $7 \\ pH_variog <- \ variogram(pH \sim x + y, \ ca_geo[!miss,]) \\ plot(pH_variog) \\ \\$

