Álgebra_Lineal

Jose Rodriguez Villarreal

2/14/2022

Temario

Los temas del curso principales son los siguientes:

- 1- Sistemas de ecuaciones lineales
- 2- Espacios vectoriales
- 3- Transformaciones lineales
- 4- Valores y vectores propios
- 5- Diagonalización

Objetivos

Los objetivos formativos en esta materia:

- Desarrollo de habilidades de pensamiento abstracto, lógico-matemático, reflexico y crítico para la solución de problemas en la ingeniería.
- Fomenta las habilidades transversales de trabajo en equipo, comunicación efectiva, disciplina y creatividad.
- Capacidad de resolver problemas.
- ► Capacidad de abstracción y aplicar conocimiento adquirido.
- Capacidad de usar matrices y transformaciones lineales en la solución de problemas

Evaluación

Se evaluará el curso de la siguiente forma: - 3 exámenes parciales: 60% - Desarrollo de proyecto: 15% - Tareas y prácticas: 25%

Classroom:

https://classroom.google.com/c/NDY5OTU3MTU10DM3, code: eteopbf. Foro de Slack Darse de alta en slack y buscar grupo $AL_ESCOM_2CD_VI$. Se mandará la invitación por correo.

Bibliografía

Las principales referencias del curso son los siguientes libros

- Poole, D. Álgebra lineal.
- ► Strang G. Álgebra lineal y sus aplicaciones.

Algunos otros libros de referencia y apoyo son los siguientes:

- ► Kolman, B. Álgebra lineal: Fundamentos y aplicaciones
- Larsson R. Fundamentos de Álgebra lineal.
- Anton H. Introducción al álgebra lineal.
- Kurosh. Curso de Álgebra Superior.

Tareas y Prácticas

Consisten en :

- Ejercicios de reforzamiento en clase.
- Listas de ejercicios

Horarios

Grupo 2BV1 de Ingeniería en Inteligencia Artificial Horario: lunes, miércoles y jueves: 20:00 a 21:30 hrs

Aplicaciones

El álgebra lineal tiene una enorme importancia en otras ciencias. Algunos ejemplos en donde se aplica de manera indirecta son los siguientes:

En otras áreas de la ingeniería: Como en el análisis matricial de estructuras

$$\begin{bmatrix} \frac{1}{2}P \\ -\frac{1}{2}P \\ -\frac{1}{2}PL \\ \frac{1}{\sqrt{2}} & \frac{1}{2}P \\ -\frac{1}{12}PL \\ \frac{1}{2}\frac{1}{12}qL^2 \end{bmatrix} + \begin{pmatrix} R_{21} \\ +\frac{1}{13}qL \\ 0 \\ 0 \\ -\frac{1}{13}qL \end{bmatrix} + \begin{pmatrix} R_{21} \\ R_{21} \\ R_{21} \\ 0 \\ 0 \\ R_{22} \\ 0 \end{bmatrix} + \begin{pmatrix} \frac{1}{4} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12E}{L^2} & \frac{12E}{L^2} & 0 & 0 \\ 0 & 0 & \frac{12E}{L^2} & 0 & 0 \\ 0 & 0 & \frac{12E}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & -\frac{EA}{L^2} & 0 & 0 \\ 0 & 0 & 0 & -\frac{EA}{L^2}$$

Aplicaciones II

En física y circuitos eléctricos. En física varias transformaciones se expresan sucintamente por medio de transformaciones lineales.

Aplicaciones III

Las leyes de Kichoff tienen una enunciación en términos de sistemas de ecuaciones

La teoría de redes y grafos usa de manera natural a las matrices

Aplicaciones IV

En otras áreas de las matemáticas, los problemas de aproximación numérica que involucran una discretización también se expresan en términos de sistemas de ecuaciones.

$$\frac{\partial^{2} u}{\partial r^{2}} \approx \frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{(\Delta r)^{2}}$$

$$\frac{\partial u}{\partial r} \approx \frac{U_{i+1,j} - U_{i-1,j}}{2 \Delta r}$$

$$\frac{\partial^{2} u}{\partial \theta^{2}} \approx \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{(\Delta \theta)^{2}}$$

$$\frac{\partial u}{\partial \theta} \approx \frac{U_{i,j+1} - U_{i,j-1}}{2 \Delta \theta}$$

$$(3)$$