Superficies de Willmore en el espacio euclídeo Trabajo de Fin de Grado

Jose A. Lorencio Abril Dirigido por Luis J. Alías Linares

Universidad de Murcia

Junio de 2022

J. A. Lorencio Abril (UM) TFG Junio de 2022 1/43

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- Sel funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 5 La primera fórmula de variación
- 6 Conclusión

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Abstract

• A bit of history of the Willmore functional

$$W(S)=\int_S H^2 dS.$$

Abstract

A bit of history of the Willmore functional

$$W(S)=\int_S H^2 dS.$$

• Objectives of this work.

4□ > 4□ > 4 = > 4 = > = 90

Abstract

A bit of history of the Willmore functional

$$W(S)=\int_S H^2 dS.$$

- Objectives of this work.
- Structure:
 - Notation and previous results.
 - The Willmore functional and his conjecture.
 - Conformal invariance.
 - Euler-Lagrange equations.

- Abstract
- 2 Notation and previous results

Differential operators on surfaces Integration on surfaces

- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Notation and previous results

Given a surface $S \subset \mathbb{R}^3$, with Gauss map N, Weingarten endomorphism A_p , coefficients of the first fundamental form E, G, F and coefficients for the second fundamental form e, g, f, we can define the Gauss curvature and mean curvature by

$$K(p) = \det A_p = k_1(p) \cdot k_2(p) = \frac{eg - f^2}{EG - F^2}(u, v),$$

$$H(p) = \frac{1}{2} \operatorname{tr} A_p = \frac{k_1(p) + k_2(p)}{2} = \frac{1}{2} \frac{eG + gE - 2fF}{EG - F^2}(u, v),$$

where $k_1(p)$, $k_2(p)$ are the principal curvatures of S at p.

Characterization of totally umbilical surfaces

An umbilical point of a surface is a point such that $k_1(p) = k_2(p)$ and a surface S is said to be totally umbilical if all of its points are umbilical. The curvatures of a surface always verify the relationship

$$H^2(p)-K(p)\geq 0,$$

for all $p \in S$, and the equality holds if and only if p is an umbilical point. Totally umbilical surfaces are restricted to a very narrow set of surfaces, as the following theorem states:

Theorem

Let S be a regular surface which is orientable, connected and totally umbilical. Then, S is a piece of either a sphere or a plane.

J. A. Lorencio Abril (UM)

TFG

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- SEI funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Differential operators on surfaces

The gradient of a smooth function $\phi: S \longrightarrow \mathbb{R}^3$ is $\nabla \phi: S \to \mathbb{R}^3$, which, for $p \in S$, it returns the unique vector $\nabla \phi(p) \in T_pS$ that verifies

$$\langle \nabla \phi(\mathbf{p}), \vec{\mathbf{v}} \rangle = d\phi_{\mathbf{p}}(\vec{\mathbf{v}}),$$

for all $\vec{v} \in T_p S$.

The divergence of a smooth tangent vector field of S, $F \in \mathcal{X}(S)$, is the trace of the linear map

$$\begin{array}{cccc} DF\left(p\right): & T_{p}S & \rightarrow & T_{p}S \\ & \vec{v} & \rightarrow & D_{\vec{v}}F_{p} \end{array},$$

being $D_{\vec{v}}F_p$ the covariant derivative of F at point p evaluated at \vec{v} . Finally, the Laplacian of $\phi: S \to \mathbb{R}$ at $p \in S$ is

$$\Delta\phi\left(\rho\right)=\operatorname{div}\left(\nabla\phi\left(\rho\right)\right).$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ り Q ○

J. A. Lorencio Abril (UM)

TFG

Coordinate expressions of $\nabla \phi$ and $\Delta \phi$

We will make use of the coordinate expressions of $\nabla \phi$ and $\Delta \phi$, given a parameterization (U, X) of S and $\varphi = \phi \circ X$, which are:

$$\nabla \phi \circ X = \left(\frac{\varphi_u G - \varphi_v F}{EG - F^2}\right) \frac{\partial X}{\partial u} + \left(\frac{\varphi_v E - \varphi_u F}{EG - F^2}\right) \frac{\partial X}{\partial v},$$

and

$$\Delta \phi \circ X = \frac{G}{EG - F^2} \left[\frac{\partial^2 \varphi}{\partial u^2} - \left(\Gamma_{11}^1 \frac{\partial \varphi}{\partial u} + \Gamma_{11}^2 \frac{\partial \varphi}{\partial v} \right) \right]$$

$$- \frac{2F}{EG - F^2} \left[\frac{\partial^2 \varphi}{\partial u \partial v} - \left(\Gamma_{12}^1 \frac{\partial \varphi}{\partial u} + \Gamma_{12}^2 \frac{\partial \varphi}{\partial v} \right) \right]$$

$$+ \frac{E}{EG - F^2} \left[\frac{\partial^2 \varphi}{\partial v^2} - \left(\Gamma_{22}^1 \frac{\partial \varphi}{\partial u} + \Gamma_{22}^2 \frac{\partial \varphi}{\partial v} \right) \right].$$

4 U > 4 🗗 > 4 E > 4 E > E 990

Maps between surfaces

The following theorem will be important to prove the conformal invariance of W:

Theorem

Let $V_1, V_2 \subset \mathbb{R}^3$ open sets and $\phi: V_1 \longrightarrow V_2$ a diffeomorphism. Then, if $S_1 \subset V_1$ is a regular surface, $S_2 = \phi(S_1)$ is also a regular surface. In that case, it is said that S_1 and S_2 are diffeomorphic, $S_1 \approx S_2$. Also

$$T_{\phi(p)}S_2=d\phi_p(T_pS_1).$$

J. A. Lorencio Abril (UM)

TFG

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- Sel funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Integration on surfaces

The area of a region $R \subset S$ is

$$A(R) = \iint_{X^{-1}(R)} \sqrt{(EG - F^2)} du dv.$$

And, similarly, we can define the integral on a region R of a real-valued function defined on a surface as

$$\int_{S} f dS = \iint_{U} (f \circ X)(u, v) \sqrt{(EG - F^{2})} du dv.$$

J. A. Lorencio Abril (UM)

TFG

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore

Definición y primeros resultados La conjetura de Willmore

- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Definición de W

Si $S \subset \mathbb{R}^3$ es una superficie regular, orientable y compacta, podemos definir su funcional de Willmore como el valor

$$W(S)=\int_S H^2 dS,$$

siendo H la curvatura media y dS el elemento de área.

De esta forma, podemos ahora definir una superficie de Willmore como aquella que es un punto crítico de W.

Primer resultado importante

Si denotamos por $SCO(\mathbb{R}^3)$ al conjunto de las superficies regulares, compactas y orientables, se puede probar el siguiente resultado:

Teorema

Dada $S \in SCO(\mathbb{R}^3)$, entonces se verifica

$$W(S) \geq 4\pi$$

y se da la igualdad si, y solo si, $S = \mathbb{S}^2(r)$.

Así obtenemos el mínimo del funcional de Willmore entre todas las superficies compactas, y en particular entre las superficies de género 0. Podemos plantearnos, como hizo Willmore, ver qué sucede al restringirnos a la familia de superficies con género 1.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ト り へ ○

El funcional de Willmore de los toros de revolución

Como ejemplo, obtenemos el valor del funcional de Willmore de la familia de los toros de revolución. Tras algunos cálculos, obtenemos:

$$W(\mathbb{T}(r,R)) = \frac{\pi}{2r} \int_0^{2\pi} \frac{\frac{1}{R^2} (R + 2r\cos\theta)^2}{\frac{1}{R^2} (R + r\cos\theta)} d\theta$$
$$= \frac{\pi}{2r} \int_0^{2\pi} \frac{(1 + 2a\cos\theta)^2}{\frac{1}{R} (1 + a\cos\theta)} d\theta = \frac{\pi}{2a} \int_0^{2\pi} \frac{(1 + 2a\cos\theta)^2}{1 + a\cos\theta} d\theta,$$

siendo $a = \frac{r}{R}$, 0 < a < 1. Operando aquí, sacamos finalmente

$$W\left(\mathbb{T}\left(r,R\right)\right) = \frac{\pi^2}{a\sqrt{1-a^2}}.$$

→□▷ →□▷ → □▷ → □▷ → □○

Toro de revolución minimizante

Como vemos, W, el funcional de Willmore del toro de revolución $\mathbb{T}(r, R)$, depende de a, el factor de proporción entre r y R. Podemos minimizar esta función respecto de a, obteniendo el siguiente resultado:

Teorema

De entre los toros de revolución, $\mathbb{T}(r,R)$, $0 < r < R \in \mathbb{R}$, aquellos que minimizan el funcional de Willmore son los que verifican $\frac{r}{R} = \frac{1}{\sqrt{2}}$. Además, el valor de este mínimo es $2\pi^2$.

Este es el resultado que llevó a Willmore a establecer su conjetura, que establecía que este valor es el mínimo entre los toros topológicos.

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- S El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

El funcional W para los toros generalizados

Un toro generalizado es la superficie obtenida de la siguiente forma: disponemos de una curva regular y cerrada $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ y tomamos el tubo formado tomando, para cada $t\in I$, una circunferencia en el plano normal a $\alpha(t)$, con centro $\alpha(t)$ y radio $\varepsilon>0$ suficientemente pequeño como para que el tubo obtenido sea una superficie regular.

Figure: Toro generalizado generado por C(t) y radio del tubo $\varepsilon = 0.2$.

◆ロト ◆御 ト ◆恵 ト ・恵 ・ 夕へで

El funcional W para los toros generalizados

Para el cálculo del funcional de Willmore del toro generalizado, hacemos

$$W(S_{\alpha,\varepsilon}) = \int_{S_{\alpha,\varepsilon}} H^2 dS = \int_0^\ell \int_0^{2\pi} \frac{(2\varepsilon k(s)\cos\theta - 1)^2}{4\varepsilon(1 - \varepsilon k(s)\cos\theta)} ds d\theta$$
$$= \int_0^\ell \left(\int_0^{2\pi} \frac{(2\varepsilon k(s)\cos\theta - 1)^2}{4\varepsilon(1 - \varepsilon k(s)\cos\theta)} d\theta \right) ds.$$

La integral interior es como la que hicimos para el toro de revolución, teniendo $-\varepsilon k(s)$ donde teníamos antes a, por lo que finalmente lo que tenemos es

$$W\left(S_{\alpha,arepsilon}
ight)=\int_{0}^{\ell}rac{\pi}{2arepsilon\sqrt{1-arepsilon^{2}k^{2}\left(s
ight)}}ds=rac{\pi}{2}\int_{0}^{\ell}rac{1}{arepsilon\sqrt{1-arepsilon^{2}k^{2}\left(s
ight)}}ds.$$

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q C

J. A. Lorencio Abril (UM) TFG Junio de 2022

El funcional W para los toros generalizados

Esto podemos acotarlo inferiormente por

$$W\left(S_{\alpha,\varepsilon}\right)\geq\pi\int_{0}^{\ell}\left|k\left(s\right)\right|ds.$$

En este punto, podemos utilizar el teorema de Fenchel para volver a acotar esta integral, ahora ya mediante una constante:

$$W\left(S_{\alpha,\varepsilon}\right) \geq \pi \int_{0}^{\ell} |k\left(s\right)| ds \geq 2\pi^{2},$$

que casualmente es el valor de W para el toro de revolución, lo que refuerza la certeza de la conjetura de Willmore.

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 Q @

La conjetura de Willmore

Conjetura (Conjetura de Willmore)

Si $S \in SCO\left(\mathbb{R}^3\right)$ (o sea, S es una superficie compacta y orientable) tiene género 1, $g\left(S\right)=1$, entonces

$$W(S) \geq 2\pi^2$$
,

y se da la igualdad si, y solo si, la superficie S es el toro de revolución $\mathbb{T}\left(r,\sqrt{2}r\right)$.

La conjetura fue propuesta por Willmore en 1965, y no fue hasta 2014 que se publicó la demostración. Es una prueba muy compleja, recogida en un texto de casi 100 páginas, realizada por los matemáticos Marques y Neves.

4□▶ 4□▶ 4 亘 ▶ 4 亘 ▶ 9 Q @

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Invarianza conforme de W

Esta sección se basa en la demostración del siguiente teorema:

Teorema

Sea $S \in SCO\left(\mathbb{R}^3\right)$, y sea Φ una aplicación conforme e inyectiva. Entonces, $S' = \Phi\left(S\right)$ está en $SCO\left(\mathbb{R}^3\right)$ y $W\left(S\right) = W\left(S'\right)$.

Siendo una aplicación conforme aquella que cumple la siguiente definición:

Definición

Sean $W_1,W_2\subset\mathbb{R}^3$ abiertos y conexos. Una aplicación $\Phi:W_1\to W_2$ de clase C^∞ es una aplicación conforme si, para todo $p\in W_1$, se tiene que $d\Phi_p:\mathbb{R}^3\to\mathbb{R}^3$ es una aplicación lineal conforme entre espacios vectoriales. Esto es, existe una función diferenciable $\lambda:W_1\to\mathbb{R}\setminus\{0\}$, tal que

$$\langle d\Phi_{p}(\vec{v}), d\Phi_{p}(\vec{w}) \rangle = \lambda (p)^{2} \langle \vec{v}, \vec{w} \rangle$$

para cualesquiera $\vec{v}, \vec{w} \in \mathbb{R}^3$. La función λ se denomina factor conforme.

Para la primera parte, utilizamos los teoremas que vimos al inicio sobre difeomorfismos, ya que las aplicaciones conformes son difeomorfismos locales, y la inyectividad nos da la difeomorfía global.

Para la segunda parte, recurrimos al siguiente teorema de Liouville sobre aplicaciones conformes, que simplifica mucho la demostración:

Teorema (Teorema de Liouville)

Toda aplicación conforme e inyectiva $\Phi:W_1\to W_2$, siendo $W_1,W_2\subset\mathbb{R}^3$ abiertos, es composición de movimientos rígidos, inversiones y homotecias.

Así, basta demostrar que ${\it W}$ es conservado por movimientos rígidos, inversiones y homotecias.

27 / 43

J. A. Lorencio Abril (UM) TFG Junio de 2022

Definición

Una aplicación $M: \mathbb{R}^3 \to \mathbb{R}^3$ de clase C^{∞} es un **movimiento rígido** si es de la forma

$$M(p) = Ap + b$$

donde $A \in \mathcal{M}_{3\times 3}\left(\mathbb{R}\right)$ es una matriz ortogonal y $b \in \mathbb{R}^3$ es el vector de traslación. Es decir, un movimiento rígido consiste en rotar y desplazar el espacio, sin aplicar ningún tipo de deformación.

Usando esta definición, comprobamos que

$$H^2dS=H'^2dS',$$

por lo que

$$W(S) = \int_{S} H^{2} dS = \int_{S'} H'^{2} dS' = W(S').$$

TFG

Definición

Una aplicación $H: \mathbb{R}^3 \to \mathbb{R}^3$ de clase C^{∞} es una **homotecia** de razón $\lambda \in \mathbb{R} \setminus \{0\}$ si puede escribirse como

$$H(p) = \lambda p$$
,

para todo $p \in \mathbb{R}^3$.

Como antes, obtenemos que

$$H^2dS = H'^2dS'$$

y tenemos el resultado

$$W(S) = \int_{S} H^{2} dS = \int_{S'} H'^{2} dS' = W(S').$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からぐ

Finalmente, queda solo verlo para las inversiones.

Definición

Una aplicación $I: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3 \setminus \{0\}$ de clase C^{∞} es una **inversión** de centro 0 y radio r si se escribe como

$$I(p) = r^2 \frac{p}{\|p\|^2}.$$

En este caso, $H^2dS \neq H'^2dS'$, pero podemos ver que

$$(H^2 - K)dS = (H'^2 - K')dS',$$

por lo que el teorema de Gauss-Bonnet asegura que

$$W(S) - 2\pi \mathcal{X}(S) = \int_{S} (H^2 - K) dS$$

= $\int_{S'} (H'^2 - K') dS' = W(S') - 2\pi \mathcal{X}(S').$

En este caso, $H^2dS \neq H'^2dS'$, pero podemos ver que

$$(H^2 - K)dS = (H'^2 - K')dS',$$

por lo que el teorema de Gauss-Bonnet asegura que

$$W(S) - 2\pi \mathcal{X}(S) = \int_{S} (H^{2} - K) dS$$
$$= \int_{S'} (H'^{2} - K') dS' = W(S') - 2\pi \mathcal{X}(S').$$

Como $\mathcal{X}(S)$ es un invariante topológico y S pprox S', entonces se deduce que

$$W(S)=W(S'),$$

lo que termina la demostración.

→ロト → 部 ト → 注 → り へ ○

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 5 La primera fórmula de variación
- 6 Conclusión

Análisis variacional de W

Se demuestra el siguiente teorema:

En esta última sección estudiamos la primera fórmula de variación de W, para obtener la ecuación de Euler-Lagrange que caracteriza a las superficies de Willmore y que permite extender su definición a superficies no necesariamente compactas ni orientables.

Teorema

Sea $S \subset \mathbb{R}^3$ una superficie regular, no necesariamente compacta, y sea (U,X) una parametrización de S. Dada $\varphi:U\to\mathbb{R}$ una función diferenciable con soporte compacto definida sobre U, se considera Φ la variación normal de X determinada por φ . Entonces la función $w(t)=W(R_t)$ es diferenciable en un entorno de t=0 y se tiene que

$$w'(0) = \int_{R} \phi(\Delta H + 2H(H^2 - 2K))dS,$$

donde $R = X(\operatorname{sop}\varphi) \subset S$ y $\phi \circ X = \varphi$.

Análisis variacional de W

Comenzamos por

$$w\left(t\right)=\int_{R_{t}}H_{t}^{2}dS_{t}=\iint_{V\subset\mathbb{R}^{2}}\left(H_{t}\circ\Phi_{t}\right)^{2}\left(u,v\right)\cdot\sqrt{E_{t}G_{t}-F_{t}}\left(u,v\right)dudv,$$

expresión que derivamos y evaluamos en t=0, para obtener

$$w'(0) = \iint_{V} 2(H \circ X)(u, v) \cdot \left(\frac{\partial}{\partial t}\Big|_{t=0} (H_{t} \circ \Phi_{t})(u, v)\right) \sqrt{EG - F} du dv$$
$$+ \iint_{V} (H \circ X)^{2}(u, v) \left(\frac{\partial}{\partial t}\Big|_{t=0} \sqrt{\det B_{t}(u, v)}\right) du dv.$$

El segundo sumando es similar al que se obtiene en el análisis variacional del funcional del área. El primer sumando es más complejo, pues involucra derivar la segunda forma fundamental.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q ()

Análisis variacional de W

Se tiene que

$$\left. \frac{\partial}{\partial t} \right|_{t=0} H_t = \frac{1}{2} \frac{\frac{\partial}{\partial t} \Big|_{t=0} \left(e_t G_t + g_t E_t - 2 f_t F_t \right)}{EG - F^2} + 4 \varphi (H \circ X)^2.$$

Derivamos entonces el numerador, obteniendo

$$\frac{\partial}{\partial t}\Big|_{t=0} (e_t G_t + g_t E_t - 2f_t F_t) = \frac{\partial}{\partial t}\Big|_{t=0} (e_t) G + e \frac{\partial}{\partial t}\Big|_{t=0} (G_t)
+ \frac{\partial}{\partial t}\Big|_{t=0} (g_t) E + g \frac{\partial}{\partial t}\Big|_{t=0} (E_t) - 2 \frac{\partial}{\partial t}\Big|_{t=0} (f_t) F - 2f \frac{\partial}{\partial t}\Big|_{t=0} (F_t).$$

Al calcular esto, agrupar los resultados y teniendo en cuenta la expresión en coordenadas del laplaciano, se tiene

$$w'(0) = \int_{R} H\Delta\phi dS + \int_{R} \phi \cdot 2H(H^{2} - 2K)dS$$
$$= \int_{R} \phi \cdot (\Delta H + 2H(H^{2} - 2K)) dS$$

Junio de 2022

Fórmula de Euler-Lagrange

De aquí se deduce el siguiente resultado:

Teorema

Sea $S \subset \mathbb{R}^3$ una superficie regular, no necesariamente compacta. S es una superficie de Willmore, en el sentido de que S es un punto crítico del funcional de Willmore, si y solo verifica la ecuación

$$\Delta H + 2H\left(H^2 - K\right) = 0.$$

Esta es la ecuación de Euler-Lagrange de W, que podemos tomar, a partir de ahora, como la propiedad que redefine a las superficies de Willmore. Usando esta nueva definición, no necesitamos exigir que la superficie sea compacta, o ni siquiera orientable.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Últimas observaciones

- Obsérvese que los planos son superficies de Willmore en esta nueva definición, pero no con la definición original, pues no son compactos.
- Aún más, toda superficie minimal de \mathbb{R}^3 , y por lo tanto necesariamente no compacta, es una superficie de Willmore, ya que al ser $H \equiv 0$ se tiene trivialmente que $\Delta H + 2H(H^2 K) = 0$.
- Por otra parte, los trozos abiertos de esferas se pueden caracterizar como las únicas superficies de Willmore en \mathbb{R}^3 con curvatura media constante $H \neq 0$.
 - En efecto, si S es una superficie de Willmore con curvatura media constante $H \neq 0$, se tiene que $\Delta H = 0$ y por lo tanto la ecuación de Euler-Lagrange se reduce a $H(H^2 K) = 0$. Pero como H es una constante no nula, debe ser entonces $H^2 K \equiv 0$ y S es, por tanto, totalmente umbilical. Finalmente, no pudiendo ser H = 0, S debe ser un trozo de una esfera.

◆□▶◆□▶◆■▶◆■▶ ■ 900

- Abstract
- Notation and previous results Differential operators on surfaces Integration on surfaces
- 3 El funcional de Willmore Definición y primeros resultados La conjetura de Willmore
- 4 Invarianza conforme del funcional de Willmore
- 6 La primera fórmula de variación
- 6 Conclusión

Conclusión

- Hemos podido derivar todos los resultados que nos propusimos al inicio del trabajo.
- Los hemos derivado utilizando la notación de las asignaturas de geometría del grado y apoyándonos en pocos resultados externos.
 Además, estos resultados no son extremadamente complejos.
- Por tanto, creo que hemos logrado satisfactoriamente el objetivo de hacer accesible el tema del funcional de Willmore a graduados en matemáticas.

Bibliografía I

- [1] Luis J. Alías. Análisis geométrico y geometría global de superficies: Una introducción elemental. IMPA, Río de Janeiro, 2006. ISBN: 85-244-0247-4.
- [2] Wilhelm J. Blaschke. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III.
 Springer, Berlin, Heidelberg, 1929. 488 pp. ISBN: 3642505139.
- [3] Bang-yen Chen. "An invariant of conformal mappings". In: *Proc. Amer. Math. Soc.* 40.2 (1973), pp. 563–564. DOI: 10.1090/s0002-9939-1973-0320956-9.
- [4] Luis Gestoso Muñoz. Algunas aplicaciones del cálculo intrínseco al estudio de la geometría global de superficies. Trabajo Fin de Grado, Universidad de Murcia, 2020.

Bibliografía II

- [5] María de los Ángeles Hernández Cifre and Jose Antonio Pastor González. Un curso de geometría diferencial. CSIC. Ediciones Doce Calles, Madrid, 2019. ISBN: 978-84-00-10545-7.
- [6] Roger A. Horn. "On Fenchel's theorem". In: *Amer. Math. Monthly* 78.4 (1971), pp. 380–381. DOI: 10.2307/2316904.
- [7] Thomas Koerber. "The area preserving Willmore flow and local maximizers of the Hawking mass in asymptotically Schwarzschild manifolds". In: *J. Geom. Anal.* 31.4 (2021), pp. 3455–3497. DOI: 10.1007/s12220-020-00401-6.
- [8] N.J. Lott and D.I. Pullin. "Method for fairing B-spline surfaces". In: Computer-Aided Design 20.10 (1988), pp. 597-600. ISSN: 0010-4485. DOI: https://doi.org/10.1016/0010-4485(88)90206-0.

J. A. Lorencio Abril (UM) TFG Junio de 2022 41 / 43

Bibliografía III

- [9] Jan R. Magnus and Heinz Neudecker. *Matrix differential calculus with applications in statistics and econometrics*. John Wiley & Sons, Ltd., Chichester, 2019. xviii+479 págs. ISBN: 9781119541202.
- [10] Fernando C. Marques and André Neves. "Min-Max theory and the Willmore conjecture". In: Ann. of Math. (2) 179.2 (2014), pp. 683–782.
- [11] Fernando C. Marques and André Neves. "The Willmore conjecture". In: *Jahresber. Dtsch. Math.-Ver.* 116.4 (2014), pp. 201–222. DOI: 10.1365/s13291-014-0104-8.
- [12] Margarita Martínez Gallardo. *El funcional de Willmore*. Trabajo Fin de Grado, Universidad de Murcia, 2016.
- [13] Sebastián Montiel and Antonio Ros. *Curvas y superficies*. Proyecto Sur, Granada, 1998. ISBN: 978-84-8254-991-0.

Bibliografía IV

- [14] Barrett O'Neill. Semi-Riemannian geometry: with applications to relativity. Pure and applied mathematics 103. New York: Academic Press, 1983. ISBN: 978-0-12-526740-3.
- [15] Joel Persson. *Willmore surfaces*. Master's Thesis, Lund University, 2003.
- [16] Mirjam Soeten. *Conformal maps and the theorem of Liouville*. Bachelor's Thesis, Rijksuniversiteit Groningen, 2011.
- [17] Magdalena Toda and Bhagya Athukorallage. "Geometry of biological membranes and Willmore energy". In: AIP Conference Proceedings. Vol. 1558. 2013, pp. 883–886. DOI: 10.1063/1.4825638.
- [18] Thomas J. Willmore. "Note on embedded surfaces". In: An. Sti. Univ. Al. I. Cuza lasi Sect. I a Mat. (N.S.) 11B (1965), pp. 493–496.
- [19] Thomas J. Willmore. *Riemannian geometry*. Oxford University Press, New York, 1996. ISBN: 0198514921.

J. A. Lorencio Abril (UM)

TFG

Junio de 2022

43/43