

Practice Task 2 Parametric linear voltage regulator

Nikolai Poliakov Arina Arbuzina (polyakov_n_a@itmo.ru) (arbyzina99@gmail.com)

Summary

- 1. Parametric linear voltage regulator
- 2. Control test

Practice 2 iTMO

https://clck.ru/32cCpP

https://forms.yandex.com/cloud/6364aa9c5056902467fc8160/\

1st deadline: 28.10.2024 23:59 (GMT +8)

Please, be very careful with your HDU/ITMO numbers: some elements of the task will be checked automatically, and wrong ID or variant data will cause a wrong (sometimes-zero score) for your task

The accuracy of the answer should be at least **2 digits** after 0 or **2 meaning digits** (Examples: 0.**20**, 153.**99**, **1.00** but 0.000<u>19</u>, 0.000000<u>60</u>)

Pay attentions to the units [V], [A], [mA], [mV] – answer should be in units, provided in the question

Parametric linear voltage regulator

$$R_{V} = \frac{V_{in_{min}} - V_{Z}}{(1.5 \dots 2)I_{Z_min} + \frac{V_{out}}{R_{L}(1 + h_{FE})}}$$

Where

 $V_{in} = V_S \pm \Delta V_S$ is the source voltage with ripples

 $oldsymbol{V_{in_{min}}} - oldsymbol{V_Z}$ is the minimum voltage to be maintained across $oldsymbol{R_V}$,

 $(1.5 \dots 2)I_{z min}$ is the minimum current to be maintained through the Zener diode,

 V_{out} is the voltage on load resistor R_L ,

h_{FF} is the forward current gain of the transistor.

$$h_{FE} = \frac{I_{C}}{I_{B}} = \frac{I_{E} - I_{B}}{I_{B}} = \frac{I_{L} - I_{B}}{I_{B}}$$

Parametric linear voltage regulator

Calculate load current

$$I_L = \frac{V_{out}}{R_L} =$$

Define required stabilized voltage

$$V_Z = V_{out} + V_{BE} =$$

Chose the transistor according to the requirements:

$$V_{CE_max} = (1.5 ... 2)V_{in_max} = I_{C_max} > 2I_L =$$

- 4. Choose R_{yy} is selected based on the condition that current $(1.5 \dots 2)I_{z min}$ should flow through the transistor at a minimum input
- voltage:

$$R_{v} = \frac{V_{in_{min}} - V_{Z}}{(1.5 \dots 2)I_{z_min} + \frac{V_{out}}{R_{L}(1 + h_{FE})}} = \frac{V_{Rv_{min}}}{(1.5 \dots 2)I_{z_min} + \frac{I_{L}}{(1 + h_{FE})}} = \frac{V_{Rv_{min}}}{(1.5 \dots 2)I_{z_min} + \frac{I_{L}}{(1 + h_{FE})}}$$

$$I_B = \frac{1}{(1 + h_{FE})}$$

$$V_{Rv_{min}} = V_{in_{min}} - V_Z = ((1.5 ... 2)I_{z_{min}} + I_B) R_v$$

[A]

Parametric linear voltage regulator

Calculate load current

$$I_L = \frac{V_{out}}{R_L} =$$

Define required stabilized voltage

$$V_Z = V_{out} + V_{BE} =$$

Chose the transistor according to the requirements:

$$V_{CE_max} = (1.5 \dots 2)V_{in_max} = I_{C_max} > 2I_L =$$

- 4. Choose R_n is selected based on the condition that current $(1.5 \dots 2)I_{z \ min}$ should flow through the transistor at a minimum input
- voltage

$$R_{v} = \frac{V_{in_{min}} - V_{Z}}{(1.5 \dots 2)I_{z_min} + \frac{V_{out}}{R_{L}(1 + h_{FE})}} = \frac{V_{Rv_{min}}}{(1.5 \dots 2)I_{z_min} + \frac{I_{L}}{(1 + h_{FE})}} = I_{B} = \frac{I_{L}}{(1 + h_{FE})}$$

E24 1.0	Nominal values of resistances							
	0.01 Ω	0.1 Ω	1Ω	10 Ω	100 Ω	1 kΩ	10 kΩ	100 kg
1.1	0.011 Ω	0.11 Ω	1.1 Ω	11 Ω	110 Ω	1.1 kΩ	11 kΩ	
1.2	0.012 Ω	0.12 Ω	1.2 Ω	12 Ω	120 Ω	1.2 kΩ	12 kΩ	
1.3	0.013 Ω	0.13 Ω	1.3 Ω	13 Ω	130 Ω	1.3 kΩ	13 kΩ	
1.5	0.015 Ω	0.15 Ω	1.5 Ω	15 Ω	150 Ω	1.5 kΩ	15 kΩ	
1.6	0.016 Ω	0.16 Ω	1.6 Ω	16 Ω	160 Ω	1.6 kΩ	16 kΩ	
1.8	0.018 Ω	0.18 Ω	1.8 Ω	18 Ω	180 Ω	1.8 kΩ	18 kΩ	
2.0	0.02 Ω	0.2 Ω	2.0 Ω	20 Ω	200 Ω	2.0 kΩ	20 kΩ	
2.2	0.022 Ω	0.22 Ω	2.2 Ω	22 Ω	220 Ω	2.2 kΩ	22 kΩ	
2.4	0.024 Ω	0.24 Ω	2.4 Ω	24 Ω	240 Ω	2.4 kΩ	24 kΩ	
2.7	0.027 Ω	0.27 Ω	2.7 Ω	27 Ω	270 Ω	2.7 kΩ	27 kΩ	
3.0	0.03 Ω	0.3 Ω	3.0 Ω	30 Ω	300 Ω	3.0 kΩ	30 kΩ	
3.3	0.033 Ω	0.33 Ω	3.3 Ω	33 Ω	330 Ω	3.3 kΩ	33 kΩ	
3.6	0.036 Ω	0.36 Ω	3.6 Ω	36 Ω	360 Ω	3.6 kΩ	36 kΩ	
3.9	0.039 Ω	0.39 Ω	3.9 Ω	39 Ω	390 Ω	3.9 kΩ	39 kΩ	
4.3	0.043 Ω	0.43 Ω	4.3 Ω	43 Ω	430 Ω	4.3 kΩ	43 kΩ	
4.7	0.047 Ω	0.47 Ω	4.7 Ω	47 Ω	470 Ω	4.7 kΩ	47 kΩ	
5.1	0.051 Ω	0.51 Ω	5.1 Ω	51 Ω	510 Ω	5.1 kΩ	51 kΩ	
5.6	0.056 Ω	0.56 Ω	5.6 Ω	56 Ω	560 Ω	5.6 kΩ	56 kΩ	
6.2	0.062 Ω	0.62 Ω	6.2 Ω	62 Ω	620 Ω	6.2 kΩ	62 kΩ	
6.8	0.068 Ω	0.68 Ω	6.8 Ω	68 Ω	680 Ω	6.8 kΩ	68 kΩ	
7.5	0.075 Ω	0.75 Ω	7.5 Ω	75 Ω	750 Ω	7.5 kΩ	75 kΩ	
8.2	0.082 Ω	0.82 Ω	8.2 Ω	82 Ω	820 Ω	8.2 kΩ	82 kΩ	
	0.004.0	0.01.0			0100		0110	

[A]

[V]

[V]

[A]

$$R_{vmin} < R_{vE24} = < R_{vmax}$$
 [\Omega]

$$V_{Rv_{min}} = V_{in_{min}} - V_Z = ((1.5 ... 2)I_{z_{min}} + I_B) R_v$$

