

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 September 2002 (26.09.2002)

PCT

(10) International Publication Number
WO 02/075507 A2

(51) International Patent Classification⁷:

G06F 1/00

(21) International Application Number:

PCT/US02/01971

(22) International Filing Date:

17 January 2002 (17.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/809,665

15 March 2001 (15.03.2001) US

(71) Applicant (*for all designated States except US*): **PHARMACIA & UPJOHN COMPANY [US/US]**; 301 Henrietta Street, Kalamazoo, MI 49007 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **LOWERY, David, E.** [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). **FULLER, Troy, E.** [US/US]; 111 Dreamfield Drive, Battle Creek, MI 49014 (US). **KENNEDY, Michael, J.** [US/US]; 2364 Quincy Avenue, Portage, MI 49024 (US).

(74) Agent: **WILLIAMS, Joseph, A., Jr.**; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PII, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/075507 A2

(54) Title: ANTI-BACTERIAL VACCINE COMPOSITIONS

(57) Abstract: Gram negative bacterial virulence genes are identified, thereby allowing the identification of novel anti-bacterial agents that target these virulence genes and their products, and the provision of novel gram negative bacterial mutants useful in vaccines.

ANTI-BACTERIAL VACCINE COMPOSITIONS

This application is a continuation-in-part of U.S. Patent Application Serial No: 09/545,199, filed April 6, 2000, which claims benefit of U.S. Provisional Patent Application Serial Nos. 60/153,453, filed September 10, 1999 and 60/128,689, filed April 9, 1999.

FIELD OF THE INVENTION

The present invention relates generally to the identification of genes responsible for virulence of *Pasteurellaceae* bacteria, thereby allowing for production of novel attenuated mutant strains useful in vaccines and identification of new anti-bacterial agents that target the virulence genes and their products.

BACKGROUND OF THE INVENTION

The family *Pasteurellaceae* encompasses several significant pathogens that infect a wide variety of animals. In addition to *P. multocida*, prominent members of the family include *Pasteurella (Mannheimia) haemolytica*, *Actinobacillus pleuropneumoniae* and *Haemophilus somnus*. *P. multocida* is a gram-negative, nonmotile coccobacillus which is found in the normal flora of many wild and domestic animals and is known to cause disease in numerous animal species worldwide [Biberstein, In M. Kilian, W. Frederickson, and E. L. Biberstein (ed.), *Haemophilus, Pasteurella, and Actinobacillus*. Academic Press, London, p. 61-73 (1981)]. The disease manifestations following infection include septicemias, bronchopneumonias, rhinitis, and wound infections [Reviewed in Shewen, *et al.*, In C. L. Gyles and C. O. Thoen (ed.), Pathogenesis of Bacterial Infections in Animals. Iowa State University Press, Ames, p. 216-225 (1993), incorporated herein by reference].

Infection by *P. multocida* generally results from invasion during periods of stress, but transmission may also occur by aerosol or contact exposure, or via flea and tick vectors. In fowl, *P. multocida* infection gives rise to acute to peracute septicemia, particularly prevalent in domestic turkeys and wild waterfowl under stress conditions associated with overcrowding, laying, molting, or severe

climatic change. In cattle, a similar hemorrhagic septicemia follows infection and manifests conditions including high fever and depression, generally followed by quick death. Transmission is most likely through aerosol contact, but infection can also arise during periods of significant climatic change. In rabbits, infection gives rise to recurring purulent rhinitis, generally followed by conjunctivitis, otitis media, sinusitis, subcutaneous abscesses, and chronic bronchopneumonia. In severe infections, rabbit mortality arises from acute fibrinous bronchopneumonia, septicemia, or endotoxemia. Disease states normally arise during periods of stress. In pigs, common *P. multocida* disease states include atrophic rhinitis and bacterial pneumonia. Similar pneumonia conditions are also detected in dogs, cats, goats, and sheep. *P. multocida* is commonly detected in oral flora of many animals and is therefore a common contaminant in bite and scratch wounds.

P. multocida strains are normally designated by capsular serogroup and somatic serotype. Five capsular serogroups (A, B, D, E, and F) and 16 somatic serotypes are distinguished by expression of characteristic heat-stable antigens. Most strains are host specific and rarely infect more than one or two animals. The existence of different serotypes presents a problem for vaccination because traditional killed whole cell bacteria normally provide only serotype-specific protection. However, it has been demonstrated that natural infection with one serotype can lead to immunological protection against multiple serotypes [Shewen, *et al.*, *In C. L. Gyles and C. O. Thoen (Ed.), Pathogenesis of Bacterial Infections in Animals*. Iowa State University Press, Ames, p. 216-225 (1993)] and cross protection can also be stimulated by using inactivated bacteria grown *in vivo* [Rimler, *et al.*, *Am J Vet Res.* 42:2117-2121 (1981)]. One live spontaneous mutant *P. multocida* strain has been utilized as a vaccine and has been shown to stimulate a strong immune response [Davis, *Poultry Digest.* 20:430-434 (1987), Schlink, *et al.*, *Avian Dis.* 31(1):13-21 (1987)]. This attenuated strain, however, has been shown to revert to a virulent state or cause mortality if the vaccine recipient is stressed [Davis, *Poultry Digest.* 20:430-434 (1987), Schlink, *et al.*, *Avian Dis.* 31(1):13-21 (1987)].

Another member of the *Pasteurella* family, *A. pleuropneumoniae* exhibits strict host specificity for swine and is the causative agent of highly contagious porcine pleuropneumonia. Infection normally arises in intensive breeding conditions, and is believed to occur by a direct mode of transmission. The disease is often fatal and, as a result, leads to severe economic loss in the swine producing industry. *A. pleuropneumoniae* infection may be chronic or acute, and infection is characterized by a hemorrhagic, necrotic bronchopneumonia with accompanying fibrinous pleuritis. To date, bacterial virulence has been attributed to structural proteins, including serotype-specific capsular polysaccharides, lipopolysaccharides, and surface proteins, as well as extracellular cytolytic toxins. Despite purification and, in some instances cloning, of these virulence factors, the exact role of these virulence factors in *A. pleuropneumoniae* infection is poorly understood.

Twelve serotypes of *A. pleuropneumoniae* have been identified based on antigenic differences in capsular polysaccharides and production of extracellular toxins. Serotypes 1, 5, and 7 are most relevant to *A. pleuropneumoniae* infection in the United States, while serotypes 1, 2, 5, 7, and 9 are predominant in Europe. There are at least three significant extracellular toxins of *A. pleuropneumoniae* that are members of the haemolysin family and are referred to as RTX toxins. RTX toxins are produced by many Gram negative bacteria, including *E. coli*, *Proteus vulgarisa*, and *Pasteurella haemolytica*, and the proteins generally share structural and functional characteristics. Toxins from the various serotypes differ, however, in host specificity, target cells, and biological activities.

The major *A. pleuropneumoniae* RTX toxins include ApxI, ApxII, and ApxIII. ApxI and ApxII have haemolytic activity, with ApxI being more potent. ApxIII shows no haemolytic activity, but is cytotoxic for alveolar macrophages and neutrophils. Most *A. pleuropneumoniae* serotypes produce two of these three toxins. For example, serotypes 1, 5, 9, and 11 express ApxI and ApxII, and serotypes 2, 3, 4, 6, and 8 express ApxII and ApxIII. Serotype 10, however, produces only ApxI, and serotypes 7 and 12 express only ApxII. Those *A. pleuropneumoniae* serotypes that produce both ApxI and ApxII are the most virulent strains of the bacteria.

The Apx toxins were demonstrated to be virulence factors in murine models and swine infection using randomly mutated wild type bacteria [Tascon, *et al.*, *Mol. Microbiol.* 14:207-216 (1994)]. Other *A. pleuropneumoniae* mutants have also been generated with targeted mutagenesis to inactivate the gene encoding the AopA outer membrane virulence protein [Mulks and Buysee, *Gene* 165:61-66 (1995)].

At least eleven serotypes (1, 2, 5-9, 12-14 and 16) have been demonstrated within *Mannheimia* [*Pasteurella*] *haemolytica* [Angen, *et al.*, *Vet Microbiol* 65(4):283-90 (1999)], a *Pasteurellaceae* species which is responsible for serious outbreaks of acute pneumonia in neonatal, weaned, growing and adult lambs, calves, and goats [Ackermann, *et al.*, *Microbes Infect* 2(9):1079-88 (2000)]. Transportation, viral infections, overcrowding, and other stressful conditions predispose animals to *M. haemolytica* infection [Ackermann, *et al.*, *supra*.] The leukotoxin (Lkt) of *M. haemolytica* is believed to play a significant role in pathogenesis, causing cell lysis and apoptosis that lead to the lung pathology characteristic of bovine shipping fever [Highlander, *et al.*, *Infect Immun* 68(7):3916-22 (2000)] as well as lung injury in bovine pneumonic pasteurellosis [Jeyaseelan, *et al.*, *Microb Pathog* 30(2):59-69 (2001)]. Lkt is a pore-forming exotoxin that has the unique property of inducing cytolysis only in ruminant leukocytes and platelets [Jeyaseelan, *et al.*, (2001), *supra*.]. Cytolysis of many cell types is mediated by arachidonic acid (AA) and its generation by phospholipases is regulated by G-protein-coupled receptors [Jeyaseelan, *et al.*, (2001) *supra*.] Recent studies indicate that *M. haemolytica* Lkt binds to bovine CD18, the common subunit of all beta2 integrins [Jeyaseelan, *et al.*, *Infect Immun* 68(1):72-9 (2000)]. It has also been shown that LFA-1 is a Lkt receptor, Lkt binding to LFA-1 is not target cell specific, Lkt binding to bovine LFA-1 correlates with calcium elevation and cytolysis, and bovine LFA-1 expression correlates with the magnitude of Lkt-induced target cell cytolysis [Jeyaseelan, *et al.*, *Infect Immun* 68(1):72-9 (2000)].

In attempts to produce vaccine compositions, traditional killed whole cell bacteria have provided only serotype-specific protection [MacInnes and Smart, *supra*], however, it has been demonstrated that natural infection with a highly virulent

serotype can stimulate strong protective immunity against multiple serotypes [Nielsen, *Nord Vet Med.* 31:407-13 (1979), Nielsen, *Nord Vet Med.* 36:221-234 (1984), Nielsen, *Can J Vet Res.* 29:580-582 (1988), Nielsen, *ACTA Vet Scand.* 15:80-89 (1994)]. One defined live-attenuated vaccine strain producing an inactive form of the ApxII toxin has shown promise for cross protection in swine [Prideaux, *et al.*, *Infection & Immunity* 67:1962-1966 (1999)], while other undefined live-attenuated mutants have also shown promise [Inzana, *et al.*, *Infect Immun.* 61:1682-6, (1993), Paltineanu, *et al.*, *In International Pig Veterinary Society*, 1992, p. 214, Utrera, *et al.*, *In International Pig Veterinary Society*, 1992, p. 213].

Because of the problems associated with vaccine formulations comprising bacterial strains with undefined, spontaneous mutations, there exists a need in the art for rational construction of live attenuated bacterial strains for use in vaccines that will safely stimulate protective immunity against homologous and heterologous *Pasteurellaceae* serotypes. There further exists a need to identify attenuated bacterial strains and genes required for bacterial virulence, thereby facilitating development of methods to identify anti-bacterial agents.

SUMMARY OF THE INVENTION

In general, the present invention provides materials and methods for production and use of vaccine compositions comprising attenuated gram negative bacteria. In one aspect, vaccine compositions of the invention comprise attenuated species in the *Pasteurellaceae* family of bacteria, which is known in the art and described, in part, in Dewhirst, *et al.*, *J. Bacteriol.* 174:2002-2013 (1992), incorporated herein by reference in its entirety. Species in the family include, but are not limited to, *A. actinomycetemcomitans*, *A. capsulatus*, *A. equuli*, *A. lignieresii*, *A. pleuropneumoniae* (*H. pleuropneumoniae*), *A. seminis*, *A. suis* (*H. suis*), *A. ureae* (*p. ureae*), *A. capsulatus*, Bisgaard taxon 11, *H. aegyptius*, *H. aphrophilus*, *H. aphrophilus* (*H. parainfluenzae*), *H. ducreyi*, *H. haemoglobinophilus*, *H. haemolyticus*, *H. influenzae*, *H. paracuniculus*, *H. paragallinarum*, *H. parahaemolyticus*, *H. parainfluenzae*, (*H. paraphrophilus*), *H.*

paraphrohaemolyticus, *H. paraphrophilus*, *H. parasuis*, *H. parasuis* type 5, *H. segnis*, *H. somnus*, *Haemophilus* minor group, *Haemophilus* taxon C, *P. aerogenes*, *P. anatis*, *P. avium* (*H. avium*), *P. canis*, *P. dagmatis*, *P. gallinarum*, *P. (Mannheimia) haemolytica*, *P. trehalosi* (*P. haemolytica* biotype T), *P. langaa*, *P. multocida*, *P. pneumotropica*, *P. stomatis*, *P. volantium* (*H. parainfluenzae*), *P. volantium*, *Pasteurella* species A, *Pasteurella* species B, and *Haemophilus paraphrohaemolyticus*. Preferably, vaccine compositions comprise attenuated *Pasteurella (Mannheimia) haemolytica*, *Actinobacillus pleuropneumoniae*, *Haemophilus somnus*, or *Pasteurella multocida* bacteria. In a most preferred embodiment, vaccine compositions of the invention comprise attenuated *Pasteurella multocida* and *A. pleuropneumoniae* bacterial strains.

One aspect of the invention provides gram negative bacterial organisms containing a functional mutation in a gene sequence represented by any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof, wherein the mutation inhibits or abolishes expression and/or biological activity of an encoded gene product (*i.e.*, the polypeptide encoded by a gene); said functional mutation resulting in attenuated virulence of the bacterial strain. Functional mutations that modulate (*i.e.*, increase or decrease) expression and/or biological activity of a gene product include insertions or deletions in the protein coding region of the gene itself or in sequences responsible for, or involved in, control of gene expression. Deletion mutants include those wherein all or part of a specific gene sequence is deleted. Also contemplated are compositions, and preferably vaccine compositions, comprising mutated and attenuated gram negative bacterial organisms, optionally comprising a suitable adjuvant and/or a pharmaceutically acceptable diluent or carrier. In order for a modified strain to be effective in a vaccine formulation, the attenuation must be significant enough to

prevent the pathogen from evoking severe clinical symptoms, but also insignificant enough to allow limited replication and growth of the bacteria in the host.

The invention also provides polynucleotides encoding gene products that are required for virulence in gram negative bacteria. Polynucleotides of the invention include DNA, such as complementary DNA, genomic DNA including complementary or anti-sense DNA, and wholly or partially synthesized DNA; RNA, including sense and antisense strands; and peptide nucleic acids as described, for example in Corey, *TIBTECH* 15:224-229 (1997). Virulence gene polynucleotides of the invention include those set forth in SEQ ID NOs:1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof, polynucleotides encoding a virulence gene product encoded by a polynucleotide of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or a species homolog thereof, and polynucleotide that hybridize, under moderately to highly stringent conditions, to the noncoding strand (or complement) of any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof. The invention therefore comprehends gene sequences from *Pasteurellaceae* set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, as well as related gene sequences from other

gram negative bacterial organisms, including naturally occurring (*i.e.*, species homologs) and artificially induced variants thereof. The invention also comprehends polynucleotides which encode polypeptides deduced from any one of the polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174, and species homologs thereof. Knowledge of the sequence of a polynucleotide of the invention makes readily available every possible fragment of that polynucleotide. The invention therefore provides fragments of a polynucleotide of the invention.

The invention further embraces expression constructs comprising polynucleotides of the invention. Host cells transformed, transfected or electroporated with a polynucleotide of the invention are also contemplated. The invention provides methods to produce a polypeptide encoded by a polynucleotide of the invention comprising the steps of growing a host cell of the invention under conditions that permit, and preferably promote, expression of a gene product encoded by the polynucleotide, and isolating the gene product from the host cell or the medium of its growth.

Identification of polynucleotides of the invention makes available the encoded polypeptides. Polypeptides of the invention include full length and fragment, or truncated, proteins; variants thereof; fusion, or chimeric proteins; and analogs, including those wherein conservative amino acid substitutions have been introduced into wild-type polypeptides. Antibodies that specifically recognize polypeptides of the invention are also provided, and include monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, as well as compounds that include CDR sequences which specifically recognize a polypeptide of the invention. The invention also provides anti-idiotype antibodies immunospecific for antibodies of the invention.

According to another aspect of the invention, methods are provided for identifying novel anti-bacterial agents that modulate the function of gram negative bacteria virulence genes or gene products. Methods of the invention include screening potential agents for the ability to interfere with expression of virulence gene products encoded by the DNA sequences set forth in any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, or species homologs thereof, or screening potential agents for the ability to interfere with biological function of a bacterial gene product encoded in whole or in part by a DNA sequence set forth in any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, species homologs thereof, or the complementary strand thereof, followed by identifying agents that provide positive results in such screening assays. In particular, agents that interfere with the expression of virulence gene products include anti-sense polynucleotides and ribozymes that are complementary to the virulence gene sequences. The invention further embraces methods to modulate transcription of gene products of the invention through use of oligonucleotide-directed triplet helix formation.

Agents that interfere with the function of virulence gene products include variants of virulence gene products, binding partners of the virulence gene products and variants of such binding partners, and enzyme inhibitors (where the product is an enzyme).

Novel anti-bacterial agents identified by the methods described herein are provided, as well as methods for treating a subject suffering from infection with gram negative bacteria involving administration of such novel anti-bacterial agents in an amount effective to reduce bacterial presence.

Numerous additional aspects and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the invention which describes presently prepared embodiments thereof.

5

DETAILED DESCRIPTION OF THE INVENTION

"Virulence genes," as used herein, are genes whose function or products are required for successful establishment and/or maintenance of bacterial infection in a host animal. Thus, virulence genes and/or the proteins encoded thereby 10 are involved in pathogenesis in the host organism, but may not be necessary for growth.

"Signature-tagged mutagenesis (STM)," as used herein, is a method generally described in International Patent Publication No. WO 96/17951, incorporated herein by reference, and includes, for example, a method for identifying 15 bacterial genes required for virulence in a murine model of bacteremia. In this method, bacterial strains that each have a random mutation in the genome are produced using transposon integration; each insertional mutation carries a different DNA signature tag which allows mutants to be differentiated from each other. The tags comprise 40 bp variable central regions flanked by invariant "arms" of 20 bp 20 which allow the central portions to be co-amplified by polymerase chain reaction (PCR). Tagged mutant strains are assembled in microtiter dishes, then combined to form the "inoculum pool" for infection studies. At an appropriate time after inoculation, bacteria are isolated from the animal and pooled to form the "recovered pool." The tags in the recovered pool and the tags in the inoculum pool are separately 25 amplified, labeled, and then used to probe filters arrayed with all of the different tags representing the mutants in the inoculum. Mutant strains with attenuated virulence are those which cannot be recovered from the infected animal, *i.e.*, strains with tags that give hybridization signals when probed with tags from the inoculum pool but not when probed with tags from the recovered pool. In a variation of this method, non- 30 radioactive detection methods such as chemiluminescence can be used

Signature-tagged mutagenesis allows a large number of insertional mutant strains to be screened simultaneously in a single animal for loss of virulence. Screening nineteen pools of mutant *P. multocida* strains resulted in the identification of more than 60 strains with reduced virulence, many of which were confirmed to be attenuated in virulence by subsequent determination of an approximate LD₅₀ for the individual mutants. Screening of *A. pleuropneumoniae* mutants resulted in identification of more than 100 strains having mutations in 35 different genes. Of these, mutations in 22 genes results in significantly attenuated *A. pleuropneumoniae* strains. The nucleotide sequence of the open reading frame disrupted by the transposon insertion was determined by sequencing both strands and an encoded amino acid sequence was deduced. Novelty of both the polynucleotide and amino acid sequences was determined by comparison of the sequences with DNA and protein database sequences. Knowledge of the virulence genes in these species permitted identification of species homologs in *P. (Mannheimia) haemolytica*.

The identification of bacterial, and more particularly *P. multocida* *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* virulence genes provides for microorganisms exhibiting reduced virulence (i.e., attenuated strains), which are useful in vaccines. Such microorganisms include *Pasteurellaceae* mutants containing at least one functional mutation inactivating a gene represented by any one of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174. The worker of ordinary skill in the art will realize that a "functional mutation" may occur in protein coding regions of a gene of the invention, as well as in regulatory regions that modulate transcription of the virulence gene RNA.

The worker of ordinary skill will also appreciate that attenuated *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* strains of the invention include those bearing more than one functional mutation. More than one mutation may result in additive or synergistic degrees of attenuation. Multiple

mutations can be prepared by design or may fortuitously arise from a deletion event originally intended to introduce a single mutation. An example of an attenuated strain with multiple deletions is a *Salmonella typhimurium* strain wherein the *cya* and *crp* genes are functionally deleted. This mutant *S. typhimurium* strain has shown promise as a live vaccine.

Identification of virulence genes in *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* can provide information regarding similar genes in other pathogenic species. As an example, identification of the *aroA* gene led to identification of conserved genes in a diverse number of pathogens, including *Aeromonas hydrophila*, *Aeromonas salmonicida*, *Salmonella typhimurium*, *Salmonella enteritidis*, *Salmonella dublin*, *Salmonella gallanerum*, *Bordetella pertussis*, *Yersinia enterocolitica*, *Neisseria gonorrhoeae*, and *Bacillus anthracis*. In many of these species, attenuated bacterial strains bearing mutations in the *aroA* gene have proven to be effective in vaccine formulations. Using the virulence genes sequences identified in *P. multocida*, similar or homologous genes can be identified in other organisms, particularly within the *Pasteurella* family, as well as *A. pleuropneumoniae*, *P. (Mannheimia) haemolytica*, and *Haemophilus somnus*. Likewise, identification of *A. pleuropneumoniae* virulence genes can permit identification of related genes in other organisms. Southern hybridization using the *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* genes as probes can identify these related genes in chromosomal libraries derived from other organisms. Alternatively, PCR can be equally effective in gene identification across species boundaries. As still another alternative, complementation of, for example, a *P. multocida* mutant with a chromosomal library from other species can also be used to identify genes having the same or related virulence activity. Identification of related virulence genes can therefore lead to production of an attenuated strain of the other organism which can be useful as still another vaccine formulation. Examples of *P. multocida* genes that have been demonstrated to exist in other species (e.g. *P. (Mannheimia) haemolytica*, *A. pleuropneumoniae* and *H. somnus*) include genes *exbB*, *atpG*, *pnp*, *guaB* and *yigF*.

Attenuated *P. multocida* strains identified using STM are insertional mutants wherein a virulence gene has been rendered non-functional through insertion of transposon sequences in either the open reading frame or regulatory DNA sequences. These insertional mutants still contain all of the genetic information required for bacterial virulence and can possibly revert to a pathogenic state by deletion of the inserted transposon. Therefore, in preparing a vaccine formulation, it is desirable to take the information gleaned from the attenuated strain and create a deletion mutant strain wherein some, most, or all of the virulence gene sequence is removed, thereby precluding the possibility that the bacteria will revert to a virulent state.

The vaccine properties of an attenuated insertional mutant identified using STM are expected to be the same or similar to those of a bacteria bearing a deletion in the same gene. However, it is possible that an insertion mutation may exert "polar" effects on adjoining gene sequences, and as a result, the insertion mutant may possess characteristic distinct from a mutant strain with a deletion in the same gene sequence. Deletion mutants can be constructed using any of a number of techniques well known and routinely practiced in the art.

In one example, a strategy using counterselectable markers can be employed which has commonly been utilized to delete genes in many bacteria. For a review, see, for example, Reyrat, *et al.*, *Infection and Immunity* 66:4011-4017 (1998), incorporated herein by reference. In this technique, a double selection strategy is often employed wherein a plasmid is constructed encoding both a selectable and counterselectable marker, with flanking DNA sequences derived from both sides of the desired deletion. The selectable marker is used to select for bacteria in which the plasmid has integrated into the genome in the appropriate location and manner. The counterselectable marker is used to select for the very small percentage of bacteria that have spontaneously eliminated the integrated plasmid. A fraction of these bacteria will then contain only the desired deletion with no other foreign DNA present. The key to the use of this technique is the availability of a suitable counterselectable marker.

In another technique, the *cre-lox* system is used for site specific recombination of DNA. The system consists of 34 base pair *lox* sequences that are recognized by the bacterial *cre* recombinase gene. If the *lox* sites are present in the DNA in an appropriate orientation, DNA flanked by the *lox* sites will be excised by the *cre* recombinase, resulting in the deletion of all sequences except for one remaining copy of the *lox* sequence. Using standard recombination techniques, it is possible to delete the targeted gene of interest in the *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica* genome and to replace it with a selectable marker (e.g., a gene coding for kanamycin resistance) that is flanked by the *lox* sites. Transient expression (by electroporation of a suicide plasmid containing the *cre* gene under control of a promoter that functions in *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica*) of the *cre* recombinase should result in efficient elimination of the *lox* flanked marker. This process would result in a mutant containing the desired deletion mutation and one copy of the *lox* sequences.

In another approach, it is possible to directly replace a desired deleted sequence in the *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica* genome with a marker gene, such as green fluorescent protein (GFP), β -galactosidase, or luciferase. In this technique, DNA segments flanking a desired deletion are prepared by PCR and cloned into a suicide (non-replicating) vector for *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica*. An expression cassette, containing a promoter active in *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica* and the appropriate marker gene, is cloned between the flanking sequences. The plasmid is introduced into wild-type *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica*. Bacteria that incorporate and express the marker gene (probably at a very low frequency) are isolated and examined for the appropriate recombination event (i.e., replacement of the wild type gene with the marker gene).

The reduced virulence of these organisms and their immunogenicity may be confirmed by administration to a subject animal. While it is possible for an avirulent microorganism of the invention to be administered alone, one or more of

such mutant microorganisms are preferably administered in a vaccine composition containing suitable adjuvant(s) and pharmaceutically acceptable diluent(s) or carrier(s). The carrier(s) must be "acceptable" in the sense of being compatible with the avirulent microorganism of the invention and not deleterious to the subject to be immunized. Typically, the carriers will be water or saline which will be sterile and pyrogen free. The subject to be immunized is a subject needing protection from a disease caused by a virulent form of *P. multocida*, *A. pleuropneumoniae*, *P. (Mannheimia) haemolytica* or other pathogenic microorganisms.

It will be appreciated that the vaccine of the invention may be useful in the fields of human medicine and veterinary medicine. Thus, the subject to be immunized may be a human or other animal, for example, farm animals including cows, sheep, pigs, horses, goats and poultry (e.g., chickens, turkeys, ducks and geese) companion animals such as dogs and cats; exotic and/or zoo animals; and laboratory animals including mice, rats, rabbits, guinea pigs, and hamsters.

The invention also provides polypeptides and corresponding polynucleotides required for *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica* virulence. The invention includes both naturally occurring and non-naturally occurring polynucleotides and polypeptide products thereof. Naturally occurring virulence products include distinct gene and polypeptide species as well as corresponding species homologs expressed in organisms other than *P. multocida*, *A. pleuropneumoniae*, or *P. (Mannheimia) haemolytica* strains. Non-naturally occurring virulence products include variants of the naturally occurring products such as analogs and virulence products which include covalent modifications. In a preferred embodiment, the invention provides virulence polynucleotides comprising the sequences set forth in SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof, and polypeptides having amino acids sequences encoded by the polynucleotides.

The present invention provides novel purified and isolated *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary antisense strands) encoding the bacterial virulence gene products. DNA sequences of the invention include genomic and cDNA sequences as well as wholly or partially chemically synthesized DNA sequences. Genomic DNA of the invention comprises the protein coding region for a polypeptide of the invention and includes variants that may be found in other bacterial strains of the same species. "Synthesized," as used herein and is understood in the art, refers to purely chemical, as opposed to enzymatic, methods for producing polynucleotides. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means. Preferred DNA sequences encoding *P. multocida* virulence gene products are set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, and 120, and species homologs thereof. Preferred *A. pleuropneumoniae* DNA sequences encoding virulence gene products are set out in SEQ ID NOs: 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, and 164, and species homologs thereof. Preferred *P. (Mannheimia) haemolytica* virulence gene products are set out in SEQ ID NOs: 166, 168, 170, 172 and 174, and species homologs thereof. The worker of skill in the art will readily appreciate that the preferred DNA of the invention comprises a double stranded molecule, for example, molecules having the sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs thereof, along with the complementary molecule (the "non-coding strand" or "complement") having a sequence deducible from the sequence of SEQ ID NO: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53,

55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144,
146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174,
according to Watson-Crick base pairing rules for DNA. Also preferred are
5 polynucleotides encoding the gene products encoded by any one of the
polynucleotides set out in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29,
31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135,
136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166,
10 168, 170, 172, and 174 and species homologs thereof. The invention further embraces
species, preferably bacterial, homologs of the *P. multocida*, *A. pleuropneumoniae* and
P. (Mannheimia) haemolytica DNA.

The polynucleotide sequence information provided by the invention
makes possible the identification and isolation of polynucleotides encoding related
15 bacterial virulence molecules by well known techniques including Southern and/or
Northern hybridization, and polymerase chain reaction (PCR). Examples of related
polynucleotides include polynucleotides encoding polypeptides homologous to a
virulence gene product encoded by any one of the polynucleotides set out in SEQ ID
NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57,
20 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116,
118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148,
150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174, and species
homologs thereof, and structurally related polypeptides sharing one or more biological
and/or physical properties of a virulence gene product of the invention.

25 The invention also embraces DNA sequences encoding bacterial gene
products which hybridize under moderately to highly stringent conditions to the
non-coding strand, or complement, of any one of the polynucleotides set out in SEQ
ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57,
58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116,
30 118, and 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146,

148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174, and
species homologs thereof. DNA sequences encoding virulence polypeptides which
would hybridize thereto but for the degeneracy of the genetic code are contemplated
by the invention. Exemplary high stringency conditions include a final wash in buffer
5 comprising 0.2X SSC/0.1% SDS, at 65°C to 75°C, while exemplary moderate
stringency conditions include a final wash in buffer comprising 2X SSC/0.1% SDS, at
35°C to 45°C. It is understood in the art that conditions of equivalent stringency can
be achieved through variation of temperature and buffer, or salt concentration as
described in Ausubel, *et al.* (Eds.), Protocols in Molecular Biology, John Wiley &
10 Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be
empirically determined or precisely calculated based on the length and the percentage
of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions
can be calculated as described in Sambrook, *et al.*, (Eds.), Molecular Cloning: A
15 Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New
York (1989), pp. 9.47 to 9.51.

Autonomously replicating recombinant expression constructions such
as plasmid and viral DNA vectors incorporating virulence gene sequences are also
provided. Expression constructs wherein virulence polypeptide-encoding
polynucleotides are operatively linked to an endogenous or exogenous expression
20 control DNA sequence and a transcription terminator are also provided. The
virulence genes may be cloned by PCR, using *P. multocida* genomic DNA as the
template. For ease of inserting the gene into expression vectors, PCR primers are
chosen so that the PCR-amplified gene has a restriction enzyme site at the 5' end
preceding the initiation codon ATG, and a restriction enzyme site at the 3' end after
25 the termination codon TAG, TGA or TAA. If desirable, the codons in the gene are
changed, without changing the amino acids, according to *E. coli* codon preference
described by Grosjean and Fiers, *Gene*, 18:199-209 (1982), and Konigsberg and
Godson, *Proc. Natl. Acad. Sci. (USA)*, 80:687-691 (1983). Optimization of codon
usage may lead to an increase in the expression of the gene product when produced in
30 *E. coli*. If the gene product is to be produced extracellularly, either in the periplasm of

E. coli or other bacteria, or into the cell culture medium, the gene is cloned without its initiation codon and placed into an expression vector behind a signal sequence.

According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, either stably or transiently transformed, 5 transfected, or electroporated with polynucleotide sequences of the invention in a manner which permits expression of virulence polypeptides of the invention. Expression systems of the invention include bacterial, yeast, fungal, viral, invertebrate, and mammalian cells systems. Host cells of the invention are a valuable 10 source of immunogen for development of antibodies specifically immunoreactive with the virulence gene product. Host cells of the invention are conspicuously useful in methods for large scale production of virulence polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by, for example, immunoaffinity purification or any of the multitude of purification techniques well 15 known and routinely practiced in the art. Any suitable host cell may be used for expression of the gene product, such as *E. coli*, other bacteria, including *P. multocida*, *Bacillus* and *S. aureus*, yeast, including *Pichia pastoris* and *Saccharomyces cerevisiae*, insect cells, or mammalian cells, including CHO cells, utilizing suitable 20 vectors known in the art. Proteins may be produced directly or fused to a peptide or polypeptide, and either intracellularly or extracellularly by secretion into the periplasmic space of a bacterial cell or into the cell culture medium. Secretion of a protein requires a signal peptide (also known as pre-sequence); a number of signal 25 sequences from prokaryotes and eukaryotes are known to function for the secretion of recombinant proteins. During the protein secretion process, the signal peptide is removed by signal peptidase to yield the mature protein.

To simplify the protein purification process, a purification tag may be added either at the 5' or 3' end of the gene coding sequence. Commonly used purification tags include a stretch of six histidine residues (U.S. Patent Nos. 5,284,933 and 5,310,663), a streptavidin-affinity tag described by Schmidt and Skerra, *Protein Engineering*, 6:109-122 (1993), a FLAG peptide [Hopp *et al.*, *Biotechnology*, 6:1205- 30

1210 (1988)], glutathione S-transferase [Smith and Johnson, *Gene*, 67:31-40 (1988)], and thioredoxin [LaVallie *et al.*, *Bio/Technology*, 11:187-193 (1993)]. To remove these peptide or polypeptides, a proteolytic cleavage recognition site may be inserted at the fusion junction. Commonly used proteases are factor Xa, thrombin, and enterokinase.

The invention also provides purified and isolated *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* virulence polypeptides encoded by a polynucleotide of the invention. Presently preferred are polypeptides comprising the amino acid sequences encoded by any one of the polynucleotides set out in SEQ ID NOs : 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172 and 174, and species homologs thereof. The invention embraces virulence polypeptides encoded by a DNA selected from the group consisting of : a) the DNA sequence set out in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174 and species homologs thereof; b) DNA molecules encoding *P. multocida*, *A. pleuropneumoniae* or *P. (Mannheimia) haemolytica*. polypeptides encoded by any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 164, 166, 168, 170, 172, and 174, and species homologs thereof; and c) a DNA molecule, encoding a virulence gene product, that hybridizes under moderately stringent conditions to the DNA of (a) or (b).

The invention also embraces polypeptides that have at least about 99%, at least about 95%, at least about 90%, at least about 85%, at least about 80%, at least about 75%, at least about 70%, at least about 65%, at least about 60%, at least

about 55%, and at least about 50% identity and/or homology to the preferred polypeptides of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptides of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in the virulence gene product sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptides of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in one of the virulence polypeptide sequences after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity. Conservative substitutions can be defined as set out in Tables A and B.

15

Table A
Conservative Substitutions I

	SIDE CHAIN CHARACTERISTIC		AMINO ACID
20	Aliphatic	Non-polar	G A P I L V
		Polar - uncharged	C S T M N Q
		Polar - charged	D E K R
25	Aromatic		H F W Y
	Other		N Q D E

Polypeptides of the invention may be isolated from natural bacterial cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Virulence gene products of the invention may be full length polypeptides, biologically active fragments, or variants thereof which retain specific biological or immunological activity. Variants may comprise virulence polypeptide analogs wherein one or more

of the specified (*i.e.*, naturally encoded) amino acids is deleted or replaced or wherein one or more non-specified amino acids are added: (1) without loss of one or more of the biological activities or immunological characteristics specific for the virulence gene product; or (2) with specific disablement of a particular biological activity of the virulence gene product. Deletion variants contemplated also include fragments lacking portions of the polypeptide not essential for biological activity, and insertion variants include fusion polypeptides in which the wild-type polypeptide or fragment thereof have been fused to another polypeptide.

Variant virulence polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Conservative substitutions are recognized in the art to classify amino acids according to their related physical properties and can be defined as set out in Table A (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96). Alternatively, conservative amino acids can be grouped as defined in Lehninger, [Biochemistry], Second Edition; Worth Publishers, Inc. NY:NY (1975), pp.71-77] as set out in Table B.

**Table B
Conservative Substitutions II**

	<u>SIDE CHAIN CHARACTERISTIC</u>	<u>AMINO ACID</u>
	Non-polar (hydrophobic)	
25	A. Aliphatic:	A L I V P
	B. Aromatic:	F W
	C. Sulfur-containing:	M
	D. Borderline:	G
	Uncharged-polar	
30	A. Hydroxyl:	S T Y
	B. Amides:	N Q
	C. Sulfhydryl:	C
	D. Borderline:	G
	Positively Charged (Basic):	K R H
35	Negatively Charged (Acidic):	DE

Variant virulence products of the invention include mature virulence gene products, *i.e.*, wherein leader or signal sequences are removed, having additional amino terminal residues. Virulence gene products having an additional methionine residue at position -1 are contemplated, as are virulence products having additional methionine and lysine residues at positions -2 and -1. Variants of these types are particularly useful for recombinant protein production in bacterial cell types. Variants of the invention also include gene products wherein amino terminal sequences derived from other proteins have been introduced, as well as variants comprising amino terminal sequences that are not found in naturally occurring proteins.

10 The invention also embraces variant polypeptides having additional amino acid residues which result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as a fusion protein with glutathione-S-transferase (GST) provide the desired polypeptide having an additional glycine residue at position -1 following cleavage of the GST component from the desired polypeptide. Variants which result from expression using other vector systems are also contemplated.

15 Also comprehended by the present invention are antibodies (*e.g.*, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, humanized, human, and CDR-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) and other binding proteins specific for virulence gene products or fragments thereof. The term “specific for” indicates that the variable regions of the antibodies of the invention recognize and bind a virulence polypeptide exclusively (*i.e.*, are able to distinguish a single virulence polypeptides from related virulence polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides), but may also interact with other proteins (for example, *S. aureus* protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see

Harlow *et al.* (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor , NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the virulence polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific for, as defined above, a virulence polypeptide of the invention from which the fragment was derived.

The DNA and amino acid sequence information provided by the present invention also makes possible the systematic analysis of the structure and function of the virulence genes and their encoded gene products. Knowledge of a polynucleotide encoding a virulence gene product of the invention also makes available anti-sense polynucleotides which recognize and hybridize to polynucleotides encoding a virulence polypeptide of the invention. Full length and fragment anti-sense polynucleotides are provided. The worker of ordinary skill will appreciate that fragment anti-sense molecules of the invention include (i) those which specifically recognize and hybridize to a specific RNA (as determined by sequence comparison of DNA encoding a virulence polypeptide of the invention to DNA encoding other known molecules) as well as (ii) those which recognize and hybridize to RNA encoding variants of the family of virulence proteins. Antisense polynucleotides that hybridize to RNA encoding other members of the virulence family of proteins are also identifiable through sequence comparison to identify characteristic, or signature, sequences for the family of molecules.

The invention further contemplates methods to modulate gene expression through use of ribozymes. For a review, see Gibson and Shillitoe, *Mol. Biotech.* 7:125-137 (1997). Ribozyme technology can be utilized to inhibit translation of mRNA in a sequence specific manner through (i) the hybridization of a complementary RNA to a target mRNA and (ii) cleavage of the hybridized mRNA through nuclease activity inherent to the complementary strand. Ribozymes can be identified by empirical methods but more preferably are specifically designed based on accessible sites on the target mRNA [Bramlage, *et al.*, *Trends in Biotech* 16:434-438 (1998)]. Delivery of ribozymes to target cells can be accomplished using either

exogenous or endogenous delivery techniques well known and routinely practiced in the art. Exogenous delivery methods can include use of targeting liposomes or direct local injection. Endogenous methods include use of viral vectors and non-viral plasmids.

5 Ribozymes can specifically modulate expression of virulence genes when designed to be complementary to regions unique to a polynucleotide encoding a virulence gene product. "Specifically modulate" therefore is intended to mean that ribozymes of the invention recognizes only a single polynucleotide. Similarly, ribozymes can be designed to modulate expression of all or some of a family of proteins. 10 Ribozymes of this type are designed to recognize polynucleotide sequences conserved in all or some of the polynucleotides which encode the family of proteins.

The invention further embraces methods to modulate transcription of a virulence gene of the invention through use of oligonucleotide-directed triplet helix formation. For a review, see Lavrovsky, *et al.*, *Biochem. Mol. Med.* 62:11-22 (1997).

15 Triplet helix formation is accomplished using sequence specific oligonucleotides which hybridize to double stranded DNA in the major groove as defined in the Watson-Crick model. Hybridization of a sequence specific oligonucleotide can thereafter modulate activity of DNA-binding proteins, including, for example, transcription factors and polymerases. Preferred target sequences for hybridization 20 include transcriptional regulatory regions that modulate virulence gene product expression. Oligonucleotides which are capable of triplet helix formation are also useful for site-specific covalent modification of target DNA sequences. Oligonucleotides useful for covalent modification are coupled to various DNA damaging agents as described in Lavrovsky, *et al.* [*supra*].

25 The identification of *P. multocida*, *A. pleuropneumoniae* and *P. (Mannheimia) haemolytica* virulence genes renders the genes and gene products useful in methods for identifying anti-bacterial agents. Such methods include assaying potential agents for the ability to interfere with expression of virulence gene products represented by the DNA sequences set forth in any one of SEQ ID NOS: 1, 30 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68,

70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120,
122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152,
154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 and species homologs
thereof (*i.e.*, the genes represented by DNA sequences of SEQ ID NOS: 1, 3, 7, 9, 11,
5 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74,
76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156,
158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 encode the virulence gene
product, or the DNA sequences of SEQ ID NOS: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23,
10 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84,
100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163,
164, 166, 168, 170, 172, and 174 are adjacent the gene encoding the virulence gene
product, or are involved in regulation of expression of the virulence gene product), or
15 assaying potential agents for the ability to interfere with the function of a bacterial
gene product encoded in whole or in part by a DNA sequence set forth in any one of
SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53,
55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144,
20 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174,
species homologs thereof, or the complementary strand thereof, followed by
identifying agents that are positive in such assays. Polynucleotides and polypeptides
useful in these assays include not only the genes and encoded polypeptides as
disclosed herein, but also variants thereof that have substantially the same activity as
25 the wild-type genes and polypeptides.

The virulence gene products produced by the methods described above
are used in high throughput assays to screen for inhibitory agents. The sources for
potential agents to be screened are chemical compound libraries, fermentation media
of *Streptomyces*, other bacteria and fungi, and cell extracts of plants and other
30 vegetations. For proteins with known enzymatic activity, assays are established based

on the activity, and a large number of potential agents are screened for ability to inhibit the activity. For proteins that interact with another protein or nucleic acid, binding assays are established to measure such interaction directly, and the potential agents are screened for ability to inhibit the binding interaction.

5 The use of different assays known in the art is contemplated according to this aspect of the invention. When the function of the virulence gene product is known or predicted by sequence similarity to a known gene product, potential inhibitors can be screened in enzymatic or other types of biological and/or biochemical assays keyed to the function and/or properties of the gene product. When
10 the virulence gene product is known or predicted by sequence similarity to a known gene product to interact with another protein or nucleic acid, inhibitors of the interaction can be screened directly in binding assays. The invention contemplates a multitude of assays to screen and identify inhibitors of binding by the virulence gene product. In one example, the virulence gene product is immobilized and interaction with a binding partner is assessed in the presence and absence of a putative inhibitor compound. In another example, interaction between the virulence gene product and its binding partner is assessed in a solution assay, both in the presence and absence of a putative inhibitor compound. In both assays, an inhibitor is identified as a compound that decreases binding between the virulence gene product and its binding
15 partner. Other assays are also contemplated in those instances wherein the virulence gene product binding partner is a protein. For example, variations of the di-hybrid assay are contemplated wherein an inhibitor of protein/protein interactions is identified by detection of a positive signal in a transformed or transfected host cell as described in PCT publication number WO 95/20652, published August 3, 1995.
20

25 Candidate inhibitors contemplated by the invention include compounds selected from libraries of potential inhibitors. There are a number of different libraries used for the identification of small molecule modulators, including: (1) chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules. Chemical
30 libraries consist of structural analogs of known compounds or compounds that are

identified as "hits" or "leads" via natural product screening. Natural product libraries are collections of microorganisms, animals, plants, or marine organisms which are used to create mixtures for screening by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of plants or marine organisms. Natural product libraries include polyketides, non-ribosomal peptides, and variants (non-naturally occurring) thereof. For a review, see *Science* 282:63-68 (1998). Combinatorial libraries are composed of large numbers of peptides, oligonucleotides, or organic compounds as a mixture. They are relatively easy to prepare by traditional automated synthesis methods, PCR, cloning, or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to modulate activity.

Still other candidate inhibitors contemplated by the invention can be designed and include soluble forms of binding partners, as well as binding partners as chimeric, or fusion, proteins. Binding partners as used herein broadly encompasses antibodies, antibody fragments, and modified compounds comprising antibody domains that are immunospecific for the expression product of the identified virulence gene.

Other assays may be used when a binding partner (*i.e.*, ligand) for the virulence gene product is not known, including assays that identify binding partners of the target protein through measuring direct binding of test binding partner to the target protein, and assays that identify binding partners of target proteins through affinity ultrafiltration with ion spray mass spectroscopy/HPLC methods or other physical and analytical methods. Alternatively, such binding interactions are evaluated indirectly using the yeast two-hybrid system described in Fields and Song, *Nature*, 340:245-246 (1989), and Fields and Sternglanz, *Trends in Genetics*, 10:286-292 (1994), both of

which are incorporated herein by reference. The two-hybrid system is a genetic assay for detecting interactions between two proteins or polypeptides. It can be used to identify proteins that bind to a known protein of interest, or to delineate domains or residues critical for an interaction. Variations on this methodology have been developed to clone genes that encode DNA-binding proteins, to identify peptides that bind to a protein, and to screen for drugs. The two-hybrid system exploits the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNA-binding domain that binds to an upstream activation sequence (UAS) of a reporter gene, and is generally performed in yeast. The assay requires the construction of two hybrid genes encoding (1) a DNA-binding domain that is fused to a first protein and (2) an activation domain fused to a second protein. The DNA-binding domain targets the first hybrid protein to the UAS of the reporter gene; however, because most proteins lack an activation domain, this DNA-binding hybrid protein does not activate transcription of the reporter gene. The second hybrid protein, which contains the activation domain, cannot by itself activate expression of the reporter gene because it does not bind the UAS. However, when both hybrid proteins are present, the noncovalent interaction of the first and second proteins tethers the activation domain to the UAS, activating transcription of the reporter gene. When the virulence gene product (the first protein, for example) is already known to interact with another protein or nucleic acid, this assay can be used to detect agents that interfere with the binding interaction. Expression of the reporter gene is monitored as different test agents are added to the system; the presence of an inhibitory agent results in lack of a reporter signal.

When the function of the virulence gene product is unknown and no ligands are known to bind the gene product, the yeast two-hybrid assay can also be used to identify proteins that bind to the gene product. In an assay to identify proteins that bind to the first protein (the target protein), a large number of hybrid genes each encoding different second proteins are produced and screened in the assay. Typically, the second protein is encoded by a pool of plasmids in which total cDNA or genomic DNA is ligated to the activation domain. This system is applicable to a wide variety

of proteins, and it is not even necessary to know the identity or function of the second binding protein. The system is highly sensitive and can detect interactions not revealed by other methods; even transient interactions may trigger transcription to produce a stable mRNA that can be repeatedly translated to yield the reporter protein.

5 Other assays may be used to search for agents that bind to the target protein. One such screening method to identify direct binding of test ligands to a target protein is described in U.S. Patent No. 5,585,277, incorporated herein by reference. This method relies on the principle that proteins generally exist as a mixture of folded and unfolded states, and continually alternate between the two states. When a test ligand binds to the folded form of a target protein (i.e., when the test ligand is a ligand of the target protein), the target protein molecule bound by the ligand remains in its folded state. Thus, the folded target protein is present to a greater extent in the presence of a test ligand which binds the target protein, than in the absence of a ligand. Binding of the ligand to the target protein can be determined
10 by any method which distinguishes between the folded and unfolded states of the target protein. The function of the target protein need not be known in order for this assay to be performed. Virtually any agent can be assessed by this method as a test ligand, including, but not limited to, metals, polypeptides, proteins, lipids, polysaccharides, polynucleotides and small organic molecules.
15

20 Another method for identifying ligands for a target protein is described in Wieboldt *et al.*, *Anal. Chem.*, 69:1683-1691 (1997), incorporated herein by reference. This technique screens combinatorial libraries of 20-30 agents at a time in solution phase for binding to the target protein. Agents that bind to the target protein are separated from other library components by centrifugal ultrafiltration. The
25 specifically selected molecules that are retained on the filter are subsequently liberated from the target protein and analyzed by HPLC and pneumatically assisted electrospray (ion spray) ionization mass spectroscopy. This procedure selects library components with the greatest affinity for the target protein, and is particularly useful for small molecule libraries.

The inhibitors/binders identified by the initial screens are evaluated for their effect on virulence in *in vivo* mouse models of *P. multocida* infections. Models of bacteremia, endocarditis, septic arthritis, soft tissue abscess, or pneumonia may be utilized. Models involving use of other animals are also comprehended by the invention. For example, rabbits can be challenged with a wild type *P. multocida* strain before or after administration of varying amounts of a putative inhibitor/binder compound. Control animals, administered only saline instead of putative inhibitor/binder compound provide a standard by which deterioration of the test animal can be determined. Other animal models include those described in the Animal and Plant Health Inspection Service, USDA, January 1, 1994 Edition, §§113.69-113.70; Panciera and Corstvet, *Am. J. Vet. Res.* 45:2532-2537; Ames, *et al.*, *Can. J. Comp. Med.* 49:395-400 (1984); and Mukkur, *Infection and Immunity* 18:583-585 (1977). Inhibitors/binders that interfere with bacterial virulence are can prevent the establishment of an infection or reverse the outcome of an infection once it is established.

Any adjuvant known in the art may be used in the vaccine composition, including oil-based adjuvants such as Freund's Complete Adjuvant and Freund's Incomplete Adjuvant, mycolate-based adjuvants (*e.g.*, trehalose dimycolate), bacterial lipopolysaccharide (LPS), peptidoglycans (*i.e.*, mureins, mucopeptides, or glycoproteins such as N-Opaca, muramyl dipeptide [MDP], or MDP analogs), proteoglycans (*e.g.*, extracted from *Klebsiella pneumoniae*), streptococcal preparations (*e.g.*, OK432), Biostim™ (*e.g.*, 01K2), the "Iscoms" of EP 109 942, EP 180 564 and EP 231 039, aluminum hydroxide, saponin, DEAE-dextran, neutral oils (such as miglyol), vegetable oils (such as arachis oil), liposomes, Pluronic® polyols, the Ribi adjuvant system (see, for example GB-A-2 189 141), or interleukins, particularly those that stimulate cell mediated immunity. An alternative adjuvant consisting of extracts of *Amycolata*, a bacterial genus in the order Actinomycetales, has been described in U.S. Patent No. 4,877,612. Additionally, proprietary adjuvant mixtures are commercially available. The adjuvant used will depend, in part, on the

recipient organism. The amount of adjuvant to administer will depend on the type and size of animal. Optimal dosages may be readily determined by routine methods.

The vaccine compositions optionally may include vaccine-compatible pharmaceutically acceptable (*i.e.*, sterile and non-toxic) liquid, semisolid, or solid diluents that serve as pharmaceutical vehicles, excipients, or media. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, gum acacia, calcium phosphate, mineral oil, cocoa butter, and oil of theobroma.

The vaccine compositions can be packaged in forms convenient for delivery. The compositions can be enclosed within a capsule, caplet, sachet, cachet, gelatin, paper, or other container. These delivery forms are preferred when compatible with entry of the immunogenic composition into the recipient organism and, particularly, when the immunogenic composition is being delivered in unit dose form. The dosage units can be packaged, *e.g.*, in tablets, capsules, suppositories or cachets.

The vaccine compositions may be introduced into the subject to be immunized by any conventional method including, *e.g.*, by intravenous, intradermal, intramuscular, intramammary, intraperitoneal, or subcutaneous injection; by oral, sublingual, nasal, anal, or vaginal, delivery. The treatment may consist of a single dose or a plurality of doses over a period of time.

The invention also comprehends use of an attenuated bacterial strain of the invention for manufacture of a vaccine medicament to prevent or alleviate bacterial infection and/or symptoms associated therewith. The invention also provides use of inhibitors of the invention for manufacture of a medicament to prevent or alleviate bacterial infection and/or symptoms associated therewith.

The present invention is illustrated by the following examples. Example 1 describes constructions of *P. multocida* mutants. Example 2 relates to screening for *P. multocida* mutants. Example 3 addresses methods to determine

virulence of the *P. multocida* mutants. Example 4 describes cloning of *P. multocida* virulence genes. Example 5 addresses identification of genes in other species related to *P. multocida* virulence genes. Example 6 describes construction of *A. pleuropneumoniae* mutants. Example 7 addresses screening for attenuated *A. pleuropneumoniae* mutants. Example 8 relates to identification of *A. pleuropneumoniae* virulence genes. Example 9 describes competition challenge of *A. pleuropneumoniae* mutants and wild type bacteria. Example 10 characterizes *A. pleuropneumoniae* genes identified. Example 11 addresses efficacy of *A. pleuropneumoniae* mutant to protect against wild type bacterial challenge. Example 12 describes identification of species homolog virulence genes in *P. (Mannheimia) haemolytica*.

Example 1

Construction of a Library of Tagged-Transposon *P. multocida* Mutants

A library of tagged-transposon mutants was constructed in parental vector pLOF/Km [Herrero, et al., *J Bacteriol.* 172:6557-67 (1990)] which has previously been demonstrated to be functional and random in *P. multocida* [Lee, et al., *Vet Microbiol.* 50:143-8 (1996)]. Plasmid pLOF/Km was constructed as a modification of suicide vector pGP704 and included a transposase gene under control of the *Tac* promoter as well as the mini-Tn10 transposable element encoding kanamycin resistance. Plasmid pTEF-1 was constructed as described below by modifying pLOF/Km to accept sequence tags which contained a semi-random [NK]₃₅ sequence.

Plasmid pLOF/Km was first modified to eliminate the unique *KpnI* restriction site in the multiple cloning region and then to introduce a new *KpnI* site in the mini-Tn10 region. The plasmid was digested with *KpnI* and the resulting overhanging ends were filled in with Klenow polymerase according to manufacturer's suggested protocol. Restriction digests and ligations described herein were performed according to manufacturer's suggested protocols (Gibco BRL, Gaithersburg, MD and Boehringer Mannheim, Indianapolis, IN). The blunt end product was self-ligated to

produce a plasmid designated pLOF/Km--*KpnI* which was transformed into *E.coli* DH5 α :: λ pir for amplification. *E.coli* DH5 α : (λ pir ϕ 80dlacZ Δ M15, recA1, endA1, gyrA96, thi-1, hsdR17(r_k, m_k, supE44, relA1, deoR, Δ (lacZYA-argF)U169, was propagated at 37°C in Luria-Bertani (LB) medium. Plasmids were prepared using
5 QIAGEN SpinPreps from QIAGEN Inc. (Santa Clarita, CA) and digested with *Sfi*I which cuts at a unique site within the mini-Tn10 transposable element. A *Sfi*I-*KpnI*-*Sfi*I adaptor was prepared by annealing oligonucleotides TEF1 (SEQ ID NO: 86) and TEF3 (SEQ ID NO: 87) and the resulting double-stranded adapter was ligated into the
10 *Sfi*I site to create plasmid pTEF-1. Oligonucleotides TEF1 and TEF3 (as well as all other oligonucleotides described herein) were synthesized by Genosys Biotechnologies (The Woodlands, TX).

TEF1 5'-AGGCCGGTACCGGCCGCCT SEQ ID NO: 86

15 TEF3 5'-CGGCCGGTACCGGCCTAGG SEQ ID NO: 87

Unique sequence tags for insertion into the *KpnI* site of pTEF-1 were prepared as follows. PCR was carried out to generate double stranded DNA tags using a GeneAmp XL PCR Kit (PE Applied Biosystems, Foster City, CA) under conditions including 250 μ M each dNTP, 1.5 mM Mg(OAc)₂, 100 pmol each primer
20 TEF14 (SEQ ID NO: 88) and TEF15 (SEQ ID NO: 89), 1 ng TEF26 (SEQ ID NO: 90) as template DNA and 2.5 units recombinant *Tth* DNA Polymerase XL.

TEF14 5'-CATGGTACCCATTCTAAC SEQ ID NO: 88

25

TEF15 5'-CTAGGTACCTACAACCTC SEQ ID NO: 89

TEF26 SEQ ID NO: 90

5'-CTAGGTACCTACAACCTCAAGCTT-[NK]₃₅-

30

AAGCTTGGTTAGAATGGGTACCATG

Reaction conditions included an initial incubation at 95°C for one minute, followed by thirty cycles of 30 seconds at 95°C, 45 seconds at 45°C, and 15 seconds at 72°C, followed by a final incubation at 72°C for two minutes. The PCR products were digested with *Kpn*I and purified using a QIAGEN Nucleotide Removal Kit (QIAGEN, Inc., Chatsworth, GA) according to the manufacturer's suggested protocol. The unique tag sequences were ligated into the mini-Tn10 element of linearized pTEF-1, previously digested with *Kpn*I and dephosphorylated with calf intestinal alkaline phosphatase (Boehringer Mannheim) using standard procedures. The resulting plasmid library was transformed into *E.coli* DH5 α : λ pir. Colony blot analysis was performed according to the DIG User's Guide (Boehringer-Mannheim) with hybridization and detection performed as follows.

Hybridizations were essentially performed according to the Genius Non-Radioactive User's Guide (Boehringer Mannheim Biochemicals), the product sheet for the DIG-PCR labeling kit (Boehringer Mannheim Biochemicals), and the product sheet for CSPD (Boehringer Mannheim Biochemicals). For preparation of probes, a 100 μ l primary PCR reaction was set up using Amplitaq PCR buffer (PE Applied Biosystems), 200 μ M dNTPs, 140 pmol each of primers TEF5 (SEQ ID NO: 91) and TEF6 (SEQ ID NO: 92), 2 mM MgCl₂, 2.5 units Amplitaq (PE Applied Biosystems) and 1 ng of plasmid DNA.

20

TEF5 5'-TACCTACAACCTCAAGCT SEQ ID NO: 91

TEF6 5'-TACCCATTCTAACCAAGC SEQ ID NO: 92

25 Cycle conditions included an initial incubation at 95°C for two minutes, followed by 35 cycles of 95°C for 30 seconds, 50°C for 45 seconds, 72°C for 15 seconds and a final incubation at 72°C for three minutes. The amplification products were separated using electrophoresis on a 2% - 3:1 NuSieve GTG (FMC BioProducts, Rockland, ME, USA):Agarose gel and the 109 bp product was excised and purified. Gel 30 extractions were carried out using a QIAGEN Gel Extraction kit (QIAGEN).

Approximately 15 ng of the primary product was labeled in a 50 µl PCR reaction using the DIG PCR Kit, 50 pmol each of primers TEF24 and TEF25, and a 1:1 mix of DIG Probe Synthesis Mix with 2 mM dNTP stock solution.

5 TEF24 5'-TACCTACAACCTCAAGCTT SEQ ID NO: 93

TEF25 5'-TACCCATTCTAACCAAGCTT SEQ ID NO: 94

PCR conditions included an initial incubation at 95°C for four minutes, followed by
10 25 cycles of 95°C for 30 seconds, 50°C for 45 seconds, 72°C for 15 seconds and a final incubation at 72°C for three minutes. The labeled PCR product was digested with *Hind*III in a total reaction volume of 90 µl and purified from the constant primer arms using a 2% - 3:1 NuSieve GTG (FMC BioProducts):Agarose gel. The region containing the labeled variable tag was excised and the entire gel slice was dissolved
15 and denatured in 10 ml of DIG EasyHyb at 95°C for ten minutes.

Dot blots were prepared using a Hybond[®]-N⁺ membrane (Amersham-
Pharmacia Biotech). Target DNA for each tag was prepared in 96 well plates using approximately 30 ng of PCR product. An equal volume of 0.1 N NaOH was added to denature the sample and each sample was applied to the membrane with minimal
20 vacuum using a Minifold ITM Dot-Blot Apparatus from Schleicher and Schuell (Keene, NH, USA). Each well was washed with 150 µl of Neutralization Solution (0.5 M Tris /3 M NaCl, pH 7.5) and 150 µl of 2X SSC. Membranes were UV-crosslinked in a Stratalinker (Stratagene, La Jolla, CA, USA) and prehybridized for one hour in 20 mls DIG EasyHyb Buffer at 42°C. The denatured probe was added and
25 hybridization carried out overnight at 42°C. The membrane was washed two times in 2X SSC containing 0.1% SDS for five minutes each wash. Two high stringency washes were performed in 50 ml of pre-warmed 0.1X SSC buffer containing 0.1% SDS at 68°C for 15 minutes before proceeding with standard Genius Detection protocols (Genius Manual).

It is desirable to use a non-radioactive detection system for safety, lower cost, ease of use, and reduction of hazardous materials. In initial experiments using similar procedures previously described [Mei, *et al.*, *Mol Microbiol.* 26:399-407 (1997)], unacceptable background levels of hybridization were obtained in negative controls. In order to decrease background, tag length was increased by 30 bp to a total of 70, amplification primers were lengthened to include all sequence flanking the variable region, a lower concentration of dig-dUTP was used, and the conserved sequences flanking the sequence tag region were removed by gel purification. Most significantly, PCR was used to generate [NK]₃₅ sequence tags as the target DNA in dot blots rather than the entire plasmids containing the tagged transposons after detecting background hybridization from the transposon itself. Using these modifications background was eliminated making chemiluminescent/non-radioactive screening more effective.

Approximately four hundred different transformants resulting from the ligation of pTEF-1 with the PCR generated sequence tags were screened by colony blot and the 96 strongest hybridizing colonies were assembled into microtiter plates for further use. Even though the likelihood of duplicated tags was very low, half of the plate of master tags was probed against the other to confirm that no tags were duplicated. The plasmids containing these tags were purified and transformed into *E.coli* S17-1:λpir (*pir, recA, thi, pro, hsd, (r-m+)*), RP4-2, (Tc::Mu), (Km::Tn7), [TmpR], [SmR]), and the transformed bacteria propagated at 37°C in Luria-Bertani (LB) medium. Each of the 96 *E.coli* S17-1:λpir transformants containing the tagged plasmid pTEF-1 was used in conjugative matings to generate transposon mutants of *P. multocida*. *P. multocida* strain TF5 is a spontaneous nalidixic acid resistant mutant derived from UC6731, a bovine clinical isolate. *P. multocida* strains were grown on brain heart infusion (BHI) media (Disco Laboratories, Detroit, MI, USA) at 37°C and in 5% CO₂ when grown on plates. Matings were set up by growing each *E.coli* S17-1:λpir /pTEF1:[NK]₃₅ clone and the TF5 strain to late log phase. Fifty μl of culture for each tagged-pTEF-1 clone was mixed with 200 μl of the TF5 culture and 50 μl of each mating mixture was spotted onto 0.22 TM filters previously placed on BHI plates

containing 100 mM IPTG and 10 mM MgSO₄. Following overnight incubation at 37°C with 5% CO₂, mating mixtures were washed off of each filter into 3 ml of PBS and 25 µl of each was plated onto BHIN⁵⁰K¹⁰⁰ plates. Following selective overnight growth, colonies were assembled into microtiter plates by toothpick transfer into 200 5 µl BHIN⁵⁰K⁵⁰ making sure that each well in a microtiter plate always contained a transposon mutant with the same sequence tag. Following overnight growth, 50 µl of 75% glycerol was added to each well and plates were stored frozen at -80°C.

10 Nineteen pools were assembled by transferring the transposon mutants to microtiter plates making sure that each well contained a transposon mutant with the appropriate tag for that well. In other words, a specific well in each microtiter plate always contained a transposon mutant with the same sequence tag even though the location of the transposon within those mutants may be different.

15 **Example 2**
Murine Screening for Attenuated *P. multocida* Mutants

Nineteen pools of *Pasteurella multocida* transposon mutants were screened using a murine model of septicemia. Frozen plates of pooled *P. multocida* transposon mutants were removed from -80°C storage and subcultured by transferring 10 µl from each well to a new 96 well round bottom plate (Corning Costar, 20 Cambridge, MA, USA) containing 200 µl of brain heart infusion (DIFCO) with 50 µg/ml nalidixic acid (Sigma) and 50 µg/ml kanamycin (Sigma) (BHIN⁵⁰K⁵⁰). Plates were incubated without shaking overnight at 37°C in 5% CO₂. Overnight plates were subcultured by transferring 10 µl from each well to a new flat bottomed 96-well plate (Corning Costar) containing 100 µl of BHI per well and incubating at 37°C with 25 shaking at approximately 150 rpm. The OD₅₄₀ was monitored using a micro-titer plate reader. At an OD₅₄₀ of approximately 0.2 to 0.25, each plate was pooled to form the “input pool” by combining 100 µl from each of the wells of the micro-titer plate. The culture was diluted appropriately in BHI to doses of approximately 10⁴, 10⁵, 10⁶ CFU/ml and 0.2 ml of each dilution was used to infect female 14-16 g BALB/c mice 30 by intraperitoneal administration. At two days post-infection, one or two surviving mice were euthanized and the spleens harvested. The entire spleen was homogenized

in 1.0 ml sterile 0.9 % saline. Dilutions of the homogenate from 10^{-2} to 10^{-5} were prepared and plated onto BHIN⁵⁰K⁵⁰ plates. Following overnight growth, at least 20,000 colonies were pooled in 10 mls BHI broth to form the "recovered pool" and 0.5 ml of the recovered pool was centrifuged at 3,500 X g and the pellet used to 5 prepare genomic DNA according to a previously described protocol [Wilson, *In F. M. Ausubel, et al., (ed.), Current Protocols in Molecular Biology*, vol. 1. John Wiley and Sons, New York, p. 2.4.1-2.4.5. (1997)].

Initial experiments with virulent wild-type *P. multocida* indicated that 10 organisms could be recovered from the spleen, lungs, kidneys, and liver indicating a truly septicemic model of infection. Dot blots for both the "input" and "recovered" pools were performed as described in Example 1 and evaluated both by visual inspection and by semi-quantitative analysis. Hybridization was carried out as described in Example 1 except that 5 µg of genomic DNA from input and recovered pools was used as template. Semi-quantitative analysis indicates whether a significant 15 reduction in a single clone has occurred. If a mutant is unable to survive within the host, then the recovered signal should be very low compared to the input signal yielding a high input/recovered ratio. Most mutants will grow as well *in vivo* as *in vitro* and therefore a ratio of their signals should be approximately equal to 1. Clones selected by quantitative analysis as being highly reduced in the recovered pool were 20 selected for further study. Additional clones with questionable input/recovered ratios were also selected after visually evaluating films made from the dot blots.

Example 3 Determination of Virulence for *P. multocida* Candidate Mutants

Each potential mutant which exhibited reduced recovery from splenic 25 tissue was isolated from the original pool plate and used individually in a challenge experiment to verify and roughly estimate the attenuation caused by the transposon mutation. Individual candidate mutants from *in vivo* screens were grown on Sheep Blood Agar plates overnight in 5% CO₂ at 37°C. Approximately six colonies of each 30 mutant were inoculated into BHI broth and allowed to grow for six hours. Dilutions were prepared and five mice each were infected as described above with 10^2 , 10^3 , 10^4

and 10^5 CFU each. Attenuation was determined by comparing mortality after six days relative to the wild type. Surviving mice were presumed to be protected and then challenged with a dose of wild type *P. multocida* at a concentration approximately 200-fold greater than the LD₅₀ for the wild type strain. Survival rate was then determined for each challenged group of mice.

Results indicated that 62 of 120 potential transposon mutants were attenuated, having an approximate LD₅₀ of at least 10 fold higher than the wild type strain. The clones and their approximate LD₅₀ values are listed in Table 1. A control experiment with the wild type strain was run in parallel with each set of challenges and in all cases mortality in wild type-challenged groups was 100%.

In addition to LD₅₀ values, Table 1 also provides data from vaccination and challenge experiments. Briefly, groups of mice (n = 5 to 10) were vaccinated by intraperitoneal injection with the individual *P. multocida* strains shown in Table 1 at a dose that was approximately 200 times greater than the LD₅₀ of the virulent, wild type strain. Animals were observed for 28 days after which mortality figures were calculated.

Table 1
P. multocida Virulence Genes

Nucleotide SEQ ID NO:	Representative Isolate	PossibleGene Function	Vaccination # survivors/total	Challenge # survivors/total	LD ₅₀
—	wild type	—	0/10	—	<10
23	PM1B1	guaB	10/10, 10/10, 10/10	9/10, 9/10	4.3 x 106
11	PM1D1	dsbB	10/10, 5/10	10/10, 5/5	8.4 x 104
3	PM1BD7	atpG	5/5, 10/10	10/10	>3 x 105
74	PM1BE11	yhcJ (HI0145)	10/10	5/10	>2 x 105
70	PM1BF6	yabK (HI020)	3/5, 8/10	9/9	>2 x 105
19	PM2G8	fhaC	4/5, 9/10	9/9	>4 x 105
76	PM3C9	yiaO (HI0146)	3/5	—	>6 x 105
118	PM3G11	UnkO	4/5, 10/10	10/10	>3 x 105
31	PM7B4	iroA (UnkB)	0/5	—	—
17	PM4C6	fhaB (fhaB2)	2/5, 10/10, 9/10	10/10, 9/9	>3 x 106
9	PM4G10-T9	dnaA	4/5	—	>5 x 105
1	PM4D5-T5	atpB	5/5	—	>4 x 105
53	PM4D5-T1	UnkC2	5/5	—	>4 x 105
15	PM4F2	fhaB (fhaB1)	3/5, 6/10, 10/10	6/6, 10/10	>3 x 105
41	PM5F7	mreB	4/5	—	1 x 103
7	PM5E2	devB	0/5, 3/10	2/3	ND
68	PM6H5-T1	xylA	5/5	—	>3 x 105
78	PM6H8	yigF (HI0719)	5/5, 9/10	9/9	>3 x 105
108	PM7D12	pnp	5/5, 9/10	9/9	—
51	PM8C1R1-T2	UnkC1	5/5	—	~6 x 105

Nucleotide SEQ ID NO:	Representative Isolate	PossibleGene Function	Vaccination # survivors/total	Challenge # survivors/total	LD ₅₀
5	37 PM8C1-T3	mgIB	5/5		-6 x 105
	58 PM8C1R1-T6	UnkD1	5/5		-6 x 105
	45 PM10H7	purF (HI1207)	3/5, 8/10, 8/10	8/8, 8/8	>3 x 105
	25 PM10H10-T2	HI1501	5/5		>1 x 104
	72 PM11G8-T2	ygiK	5/5		>2.4 x 103
	21 PM11G8-T4	greA	5/5		>2.4 x 103
	84 PM12H6	yyam (HI0687)	3/5, 0/10		-2.2 x 103
	33 PM15G8-T2	kdtB	5/5		>1.2 x 105
10	116 PM15G8-T1	UnkK	5/5		>1.2 x 105
	104 PM16G11-T1	hmbR	3/5		>1.9 x 105
	29 PM16G11-T2	hxuC	3/5		>1.9 x 105
	35 PM16H8	lgtC	5/5, 10/10	10/10	>2.4 x 105
15	80 PM16H3	yleA (HI0019)	5/5, 10/10		> 2.0 x 105
	49 PM17H6-T1	sopE	4/5		-6 x 105
	120 PM17H6	UnkP	4/5		-6 x 105
	5 PM18F5-T8	capSE	5/5		>2.4 x 105
20	82 PM18F5-T10	yojB (HI0345)	5/5		>2.4 x 105
	13 PM19A1	exbB	5/5, 10/10	10/10	>1.2 x 105
	112 PM19D4	rci	5/5, 8/10	8/8	-1.6 x 105
	39 PM20A12	mioC (HI0669)	3/5, 8/10	8/8	-2 x 104
	60 PM20C2	UnkD2	5/5, 10/10	10/10	>8.2 x 106

Example 4
Cloning and Identification of Genes Required for *P. multocida* Virulence

25 Each transposon mutant which was verified to be attenuated was analyzed further to determine the identity of the disrupted open reading frame. DNA from each mutant was amplified, purified, and digested with restriction enzymes that were known not to cut within the transposon and generally produced 4-8 kb fragments that hybridized with the transposon. Using selection for kanamycin resistance
30 encoded by the transposon, at least one fragment for each transposon mutant was cloned.

35 Southern hybridization with multiple restriction enzymes was performed for each attenuated mutant using a labeled 1.8 kb *Mlu*I fragment from pLOF/Km as a probe to identify a suitably sized fragment for cloning. The mini-Tn10 element and flanking DNA from each mutant was cloned into pUC19 and the flanking sequence determined using internal primers TEF32 and TEF40, primer walking and in some cases universal pUC-19 primers.

TEF-32	GGCAGAGCATTACGCTGAC	SEQ ID NO: 95
TEF-40	GTACCGGCCAGGCAGCCACGCGTATT	SEQ ID NO:96

Sequencing reactions were performed using the BigDye™ Dye Terminator Chemistry
5 kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377
DNA Sequencer. Double stranded sequence for putative interrupted open reading
frames was obtained for each clone. Sequencer 3.0 software (Genecodes, Corp., Ann
Arbor, MI) was used to assemble and analyze sequence data. GCG programs
[Devereux, *et al.*, 1997. Wisconsin Package Version 9.0, 9.0 ed. Genetics Computer
10 Group, Inc., Madison] were used to search for homologous sequences in currently
available databases.

In 37% of the clones that were identified as being attenuated, there
were multiple insertions of the mini-Tn10 transposable element. Each insertion
including its flanking sequence was cloned individually into pGP704 and mated into
15 the wild-type strain to produce new mutants of *P. multocida*, each carrying only one
of the multiple original insertions. Individual mutants were retested individually to
determine the insertion responsible for the attenuated phenotype. The nucleotide
sequence of the disrupted, predicted open reading frame was determined by
sequencing both strands, and the predicted amino acid sequence was used to search
20 currently available databases for similar sequences. Sequences either matched known
genes, unknown genes, and hypothetical open reading frames previously sequenced or
did not match any previously identified sequence. For those genes having homology
to previously identified sequences, potential functions were assigned as set out in
Table 1.

25

Example 5
Identification of Related Genes in Other Species

In separate experiments, STM was also performed using *Actinobacillus pleuropneumoniae* (App). One of the App strains contained an insertion in a gene that
30 was sequenced (SEQ ID NO: 97) and identified as a species homolog of the *P. multocida* *atpG* gene. This result suggested the presence in other bacterial species of

homologs to previously unknown *P. multocida* genes that can also be mutated to produce attenuated strains of the other bacterial species for use in vaccine compositions. In order to determine if homologs of other *P. multocida* genes exists in other bacterial species, Southern hybridization was performed on genomic DNA from other species using the *A. pleuropneumoniae* *atgG* gene as a probe.

5 *Actinobacillus pleuropneumoniae*, *Pasteurella haemolytica* (Ph), *P. multocida*, and *Haemophilus somnis* (Hs) genomic DNA was isolated using the CTAB method and digested with *Eco*RI and *Hind*III for two hours at 37°C. Digested DNA was separated on a 0.7% agarose gel at 40V in TAE buffer overnight. The gel
10 was immersed sequentially in 0.1 M HCl for 30 minutes, twice in 0.5 M NaOH/1.5 M NaCl for 15 minutes each, and twice in 2.5 M NaCl/1 M Tris, pH 7.5. The DNA was transferred to nitrocellulose membranes (Amersham Hybond N⁺) overnight using 20X SSC buffer (3 M NaCl/0.3 M sodium citrate). The DNA was crosslinked to the membrane using a UV Stratalinker on autocrosslink setting (120 millijoules). The
15 membrane was prehybridized in 5X SSC/ 1% blocking solution/0.1% sodium lauroyl sarcosine/0.02% SDS at 50°C for approximately seven hours and hybridized overnight at 50°C in the same solution containing a PCR generated *atgG* probe.

15 The probe was prepared using primers DEL-1389 (SEQ ID NO: 98) and TEF-46 (SEQ ID NO: 99) in a with a GeneAmp XL PCR kit in a GeneAmp PCR System 2400. Template was genomic *A. pleuropneumoniae* DNA.

DEL-1389	TCTCCATTCCCTTGCTGCGGCAGGG	SEQ ID NO: 98
TEF-46	GGAATTACAGCCGGATCCGGG	SEQ ID NO: 99

25 The PCR was performed with an initial heating step at 94°C for five minutes, 30 cycles of denaturation t 94°C for 30 sec, annealing at 50°C for 30 sec, and elongation at 72°C for three minutes, and a final extension step at 72°C for five minutes. The amplification products were separated on an agarose gel, purified using a QIAquick gel purification kit (QIAGEN), and labeled using a DIG-High Primer kit (Boehringer
30 Mannheim). The blot was removed from the hybridization solution and rinsed in 2X

SSC and washed two times for five minutes each wash in the same buffer. The blot was then washed two times for 15 minutes each in 0.5X SSC at 60°C. Homologous bands were visualized using a DIG Nucleic Acid Detection Kit (Boehringer Mannheim).

5 Single bands were detected in *Pasteurella haemolytica*, *Haemophilus somnus* and *A. pleuropneumoniae* using EcoRI digested DNA. Two bands were detected using EcoRI digested DNA from *Pasteurella multocida*.

10 **Example 6**
Construction of a Library of Tagged-Transposon *P. multocida* Mutants

Transposon mutagenesis using pLOF/Km has previously been reported to be functional and random in *A. pleuropneumoniae* [Tascon, et al., *J Bacteriol.* 175:5717-22 (1993)]. To construct tagged transposon mutants of *A. pleuropneumoniae*, each of 96 *E. coli* S17-1:λpir transformants containing pre-selected tagged plasmids (pTEF-1:[NK]₃₅) was used in conjugative matings to generate transposon mutants of *A. pleuropneumoniae* strain AP225, a serotype 1 spontaneous nalidixic acid resistant mutant derived from an in vivo passaged ATCC 27088 strain. *A. pleuropneumoniae* strains were grown on Brain Heart Infusion (BHI) (Difco Laboratories, Detroit, MI) media with 10 µg/ml B-nicotinamide adenine dinucleotide (V¹⁰), (Sigma, St. Louis, Missouri) at 37°C and in 5% CO₂ when grown on plates. *E. coli* S17-1:λpir (λpir, *recA*, *thi*, *pro*, *hsdR(r_k-,m_k+)*, RP4-2, (Tc^R::Mu), (Km^R::Tn7), [Tmp^R], [Sm^R]) was propagated at 37°C in Luria-Bertani (LB) medium. Antibiotics when necessary were used at 100 µg/ml ampicillin (Sigma), 50 µg/ml nalidixic acid (N⁵⁰)(Sigma), and 50 (K⁵⁰) or 100 (K¹⁰⁰) µg/ml of kanamycin (Sigma).
20
25 Matings were set up by growing each *E. coli* S17-1:λpir/pTEF1:[NK]₃₅ clone and the AP225 strain to late log phase. A 50 µl aliquot of culture for each tagged-pTEF-1 clone was mixed with 150 µl of the APP225 culture, and then 50 µl of each mating mixture was spotted onto 0.22 µM filters previously placed onto BHIV¹⁰ plates containing 100 µM IPTG and 10 mM MgSO₄. Following overnight incubation at 37°C with 5% CO₂, mating mixtures were washed off of each filter into 2 ml of PBS and 200 µl of each was plated onto BHIV¹⁰N⁵⁰K¹⁰⁰ plates. After selective
30

overnight growth, colonies were assembled into microtiter plates by toothpick transfer into 200 μ l BHIV¹⁰N⁵⁰K⁵⁰ making sure that each well in a microtiter plate always contained a transposon mutant with the same sequence tag. Following overnight growth, 50 μ l of 75% glycerol was added to each well and plates were stored frozen at 5 -80°C.

APP does not appear to have as much bias towards multiple insertions of the mini-Tn10 element as did *P. multocida*. Only approximately 3% of the mutants were determined to contain multiple insertions, which is in agreement with the 4% previously reported [Tascon, *et al.*, *J Bacteriol.* 175:5717-22 (1993)]. A problem in 10 APP consisted of identifying numerous mutants (discussed below) containing insertions into 23S RNA regions: 28 total mutants with insertions into 13 unique sites. This may indicate that 23S RNA contains preferential insertion sites and that the growth of APP is affected by these insertions enough to result in differential survival within the host. Southern blot analysis using an APP 23S RNA probe suggests that 15 APP may contain only three ribosomal operons as compared to five in *H. influenzae* [Fleischmann, *et al.*, *Science* 269:496-512 (1995)] and seven complete operons in *E. coli* [Blattner, *et al.*, *Science* 277:1453-1474 (1997)]. This site preference and its effect on growth rate may be a significant barrier to "saturation mutagenesis" since a significant number of clones will contain insertions into these rRNAs and large 20 volume screening will be necessary to obtain additional unique attenuating mutations.

Example 7 Porcine Screening for Attenuated *A. pleuropneumoniae* Mutants

Twenty pools of *A. pleuropneumoniae* transposon mutants, containing 25 a total of approximately 800 mutants, were screened using a porcine intratracheal infection model. Each pool was screened in two separate animals.

Frozen plates of pooled *A. pleuropneumoniae* transposon mutants were removed from -80°C storage and subcultured by transferring 20 μ l from each well to a new 96 well round bottom plate (Corning Costar, Cambridge, MA, USA) containing 30 180 μ l of BHIV¹⁰N⁵⁰K⁵⁰. Plates were incubated without shaking overnight at 37°C in

5% CO₂. Overnight plates were then subcultured by transferring 10 µl from each well to a new flat bottomed 96 well plate (Corning Costar) containing 100 µl of BHIV¹⁰ per well and incubating at 37°C with shaking at 150 rpm. The OD₅₆₂ was monitored using a microtiter plate reader. At an OD₅₆₂ of approximately 0.2 to 0.25, each plate
5 was pooled to form the "input pool" by combining 100 µl from each of the wells of the microtiter plate. The culture was diluted appropriately in BHI to approximately 2 X 10⁶ CFU/ml. For each diluted pool, 4.0 ml was used to infect 10-20 kg SPF pigs (Whiteshire-Hamroc, Albion, IN) by intratracheal administration using a tracheal tube. At approximately 20 hours post-infection, all surviving animals were euthanized and
10 the lungs removed. Lavage was performed to recover surviving bacteria by infusing 150 mls of sterile PBS into the lungs, which were then massaged to distribute the fluid. The lavage fluid was recovered, and the process was repeated a second time. The lavage fluid was centrifuged at 450 x g for 10 minutes to separate out large debris. Supernatants were then centrifuged at 2,800 x g to pellet the bacteria. Pellets
15 were resuspended in 5 mls BHI and plated in dilutions ranging from 10² to 10⁻⁵ onto BHIV¹⁰N⁵⁰K⁵⁰ plates. Following overnight growth, at least 100,000 colonies were pooled in 10 mls BHI broth to form the "recovered pools". A 0.7 ml portion of each recovered pool was used to prepare genomic DNA by the CTAB method [Wilson, *In*
Ausubel, *et al.*, (eds.), Current Protocols in Molecular Biology, vol. 1. John Wiley and Sons, New York, p. 2.4.1-2.4.5 (1997)].
20

Recovery from the animals routinely was in the 10⁸ CFU range from lung lavage.

Dot blots were performed and evaluated both by visual inspection and by semi-quantitative analysis as described previously. All hybridizations and
25 detections were performed as described. Briefly, probes were prepared by a primary PCR amplification, followed by agarose gel purification of the desired product and secondary PCR amplification incorporating dig-dUTP. Oligonucleotides including TEF5, TEF6, TEF24, TEF25, TEF48 and TEF62, were synthesized by Genosys Biotechnologies (The Woodlands, TX). Primers TEF69, TEF65, and TEF66 were also
30 used for inverse PCR reactions and sequencing.

TEF69	GACGTTCCCGTTGAATATGGCTC	SEQ ID NO: 166
TEF65	GCCGGATCCGGGATCATATGACAAGA	SEQ ID NO: 167
TEF66	GACAAGATGTGTATCCACCTAAC	SEQ ID NO: 168

5

The labeled PCR product was then digested with *Hind*III to separate the constant primer arms from the unique tag region. The region containing the labeled variable tag was excised and the entire gel slice was then dissolved and denatured in DIG EasyHyb. Dot blots were prepared and detected using the standard 10 CSPD detection protocol. Film exposures were made for visual evaluation, and luminescent counts per second (LCPS) were determined for each dot blot sample. The LCPS_{input} / LCPS_{recovered} ratio for each mutant was used to determine mutants likely to be attenuated.

Clones selected as being present in the input pool but highly reduced in 15 the recovered pool were selected for further study. Additional clones with questionable input/recovered ratios were also selected after visually evaluating films made from the dot blots. A total of 110 clones were selected.

20

Example 8 Identification of *A. pleuropneumoniae* Virulence Genes

A partial flanking sequence was determined for each of the 110 25 mutants by inverse PCR and direct product sequencing. Inverse PCR was used to generate flanking DNA products for direct sequencing as described above. Sequencing reactions were performed using the BigDye™ Dye Terminator Chemistry kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377 30 DNA Sequencer. Sequencher 3.0 software (Genecodes, Corp., Ann Arbor, MI) was used to assemble and analyze sequence data. GCG programs [Devereux and Haeberli, Wisconsin Package Version 9.0, 9.0 ed. Genetics Computer Group, Inc., Madison (1997)] were used to search for homologous sequences in currently available databases.

Table 2 shows the *A. pleuropneumoniae* genes identified and extent to which open reading frames were determinable. Sequence identification numbers are provided for nucleotide sequences as well as deduced amino acid sequences where located.

5

Table 2
***A. pleuropneumoniae* Open Reading Frames**

<u>Complete Open Reading Frame</u>		<u>NO Start Codon - Stop Codon</u>	
10	atpH	SEQ ID NO: 134	dksA
	aptG	SEQ ID NO: 132	dnaK
	exbB	SEQ ID NO: 140	HI0379
	OmpP5	SEQ ID NO: 152	
15	OmpP5-2	SEQ ID NO: 150	<u>NO Start Codon - NO Stop Codon</u>
	tig	SEQ ID NO: 160	pnp
	fkpA	SEQ ID NO: 142	apvA-or 1
	hupA	SEQ ID NO: 146	apvA-or 2
	rpmF	SEQ ID NO: 158	apvB apvD
<u>Start Codon - NO Stop Codon</u>		<u>RNA or Noncoding Sequences</u>	
20	lpdA	SEQ ID NO: 148	tRNA-leu
	potD	SEQ ID NO: 156	SEQ ID NO: 162
	yaeE	SEQ ID NO: 164	tRNA-glu
	apvC	SEQ ID NO: 128	SEQ ID NO: 163

25

The putative identities listed in Table 3 (below, Example 9) were assigned by comparison with bacterial databases. The 110 mutants represented 35 groups of unique transposon insertions. The number of different mutations per loci varied, with some clones always containing an insertion at a single site within an ORF to clones containing insertions within different sites of the same ORF. Three multiple insertions were detected in the 110 mutants screened as determined by production of multiple PCR bands and generation of multiple sequence electropherograms.

30

Example 9
Competition Challenge of *A. pleuropneumoniae*
Mutants with Wild Type APP225

A representative clone from each of the unique attenuated mutant

5 groups identified above that was absent or highly reduced in the recovered population
was isolated from the original pool plate and used in a competition challenge
experiment with the wild type strain (AP225) to verify the relative attenuation caused
by the transposon mutation. Mutant and wild type strains were grown in BHIV¹⁰ to an
OD₅₉₀ of 0.6 – 0.9. Approximately 5.0 x 10⁶ CFU each of the wild type and mutant
10 strains were added to 4 mls BHI. The total 4 ml dose was used infect a 10-20 kg SPF
pig by intratracheal administration with a tracheal tube. At approximately 20 hours
post-infection, all surviving animals were euthanized and the lungs removed. Lung
lavages were performed as described above. Plate counts were carried out on
BHIV¹⁰N⁵⁰ and BHIV¹⁰N⁵⁰K¹⁰⁰ to determine the relative numbers of wild type to
15 mutant in both the input cultures and in the lung lavage samples. A Competitive
Index (CI) was calculated as the [mutant CFU / wild type CFU]_{input} / [mutant CFU /
wild type CFU]_{recovered}.

20 Of the 35 potential transposon mutants, 22 were significantly
attenuated, having a competitive index (CI) of less than 0.2. A transposon mutant that
did not seem to be attenuated based on the STM screening results was chosen from
one of the pools as a positive control. This mutant had a CI in vivo of approximately
0.6. An in vitro competition was also done for this mutant resulting in a CI of 0.8.
The mutant was subsequently determined to contain an insertion between 2
phenylalanine tRNA's.

25 Competitive indices for unique attenuated single-insertion mutants are
listed in Table 3. Competitive indices for *atpG*, *pnp*, and *exbB* App mutants indicated
that the mutants were unable to compete effectively with the wild type strains and
were therefore attenuated.

Table 3
Virulence and Proposed Function of *A. pleuropneumoniae* Mutants

	Mutant	Similarity	Putative or Known Functions	C.I.
5	AP20A6	<i>atpH</i>	ATP synthase	.009
	AP7F10	<i>atpG</i>	ATP synthase	.013
	AP17C6	<i>lpdA</i>	dihydrolipoamide dehydrogenase	.039
10	AP11E7	<i>exbB</i>	transport of iron compounds	.003,.003,.006
	AP3H7	<i>potD</i>	Spermidine/putrescine transport	.308
	AP8H6	<i>OmpP5</i>	Adhesin / OmpA homolog	.184
	AP18H8	<i>OmpP5-2</i>	Adhesin / OmpA homolog	.552
	AP13E9	<i>tig</i>	Peptidyl-prolyl isomerase	.050
	AP13C2	<i>fkpA</i>	Peptidyl-prolyl isomerase	<.001
15	AP15C11	<i>pnp</i>	Polynucleotide phosphorylase	.032
	AP18F12	<i>hupA</i>	Histone – like protein	.001
	AP20F8	<i>dksA</i>	Dosage dependent suppressor of dnaK mutations	.075
	AP5G4	<i>dnaK</i>	Heat shock protein – molecular chaperone	.376
20	AP17C9	<i>tRNA-leu</i>	Protein Synthesis	.059
	AP5D6	<i>tRNA-glu</i>	Protein Synthesis	.055
	AP18B2	<i>rpmF</i>	Protein Synthesis	.112
25	AP10E7	<i>yaeA</i>	Unknown	.001
	AP19A5	HI0379	Unknown	.061
	AP10C10	<i>apvA</i>	Unknown	.157
	AP18F5	<i>apvB</i>	Unknown	.103
	AP2A6	<i>apvC</i>	Unknown	.091
30	AP2C11	<i>apvD</i>	Unknown	.014

Accuracy of the CI appeared to be very good as the *exbB* mutant was competed within three different animals yielding CI's of 0.003, 0.003 and 0.006. The use of a Competitive Index number to assign attenuation based upon one competition in a large animal study was further confirmed based on preliminary vaccination results in pigs with 7 mutants (n=8) described below in Example 11.

Example 10
Characterization of Attenuated *A. pleuropneumoniae* Virulence Genes

The *A. pleuropneumoniae* genes identified represent four broad functional classes: biosynthetic enzymes, cellular transport components, cellular regulation components and unknowns.

The *atpG* gene, encoding the F₁-γ subunit of the F₀F₁ H⁺-ATPase complex, can function in production of ATP or in the transport of protons by hydrolyzing ATP. A related *atpG* attenuated mutant was also identified in *P. multocida*. Another *atp* gene, *atpH*, that encodes the F₁ δ subunit was also identified. Phenotypes of *atp* mutants include non-adaptable acid-sensitivity phenotype [Foster, *J Bacteriol.* 173:6896-6902 (1991)], loss of virulence in *Salmonella typhimurium* [Garcia del Portillo, *et al.*, *Infect Immun.* 61:4489-4492 (1993)] and *P. multocida* (above) and a reduction in both transformation frequencies and induction of competence regulatory genes in *Haemophilus influenzae* Rd [Gwinn, *et al.*, *J Bacteriol.* 179:7315-20 (1997)].

LpdA is a dihydrolipoamide dehydrogenase that is a component of two enzymatic complexes: pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. While the relationship to virulence is unknown, production of LpdA is induced in *Salmonella typhimurium* when exposed to a bactericidal protein from human which may suggest that this induction may be involved in attempts to repair the outer membrane [Qi, *et al.*, *Mol Microbiol.* 17:523-31 (1995)].

Transport of scarce compounds necessary for growth and survival are critical in vivo. ExbB is a part of the TonB transport complex [Hantke, and Zimmerman, *Microbiology Letters.* 49:31-35 (1981)], interacting with TonB in at least two distinct ways [Karlsson, *et al.*, *Mol Microbiol.* 8:389-96 (1993), Karlsson, *et al.*, *Mol Microbiol.* 8:379-88 (1993)]. Iron acquisition is essential for pathogens. In this work, attenuated *exbB* mutants in both APP and *P. multocida* have been identified. Several TonB-dependent iron receptors have been identified in other bacteria [Biswas, *et al.*, *Mol. Microbiol.* 24:169-179 (1997), Braun, *FEMS Microbiol Rev.* 16:295-307 (1995), Elkins, *et al.*, *Infect Immun.* 66:151-160 (1998), Occhino, *et*

al., Mol Microbiol. 29:1493-507 (1998), Stojilkovic and Srinivasan, *J Bacteriol.* 179:805-12 (1997)]. *A. pleuropneumoniae* produces 2 transferrin-binding proteins, which likely depend on the ExbB/ExbD/TonB system, for acquisition of iron. PotD is a periplasmic binding protein that is required for spermidine (a polyamine) transport [Kashiwagi, *et al.*, *J Biol Chem.* 268:19358-63 (1993)]. Another member of the *Pasteurellaceae* family, *Pasteurella haemolytica*, contains a homologue of *potD* (Lpp38) that is a major immunogen in convalescent or outer membrane protein vaccinated calves [Pandher and Murphy, *Vet Microbiol.* 51:331-41 (1996)]. In *P. haemolytica*, PotD appeared to be associated with both the inner and outer membranes. The role of PotD in virulence or in relationship to protective antibodies is unknown although previous work has shown *potD* mutants of *Streptococcus pneumoniae* to be attenuated [Polissi, *et al.*, *Infect. Immun.* 66:5620-9 (1998)].

Relatively few "classical virulence factors," such as adhesins or toxins with the exception of homologues to OMP P5 of *Haemophilus influenzae*, were identified. *H. influenzae* OMP P5 is a major outer membrane protein that is related to the OmpA porin family of proteins [Munson, *et al.*, *M Infect Immun.* 61:4017-20 (1993)]. OMP P5 in nontypeable *Haemophilus influenzae* has been shown to encode a fimbrial subunit protein expressed as a filamentous structure [Sirakova, *et al.*, *Infect Immun.* 62:2002-20 (1994)] that contributes to virulence and binding of both mucin and epithelial cells [Miyamoto and Bakaletz, *Microb Pathog.* 21:343-56 (1996), Reddy, *et al.*, *Infect Immun.* 64:1477-9 (1996), Sirakova, *et al.*, *Infect Immun.* 62:2002-20 (1994)]. A significant finding was identification of two distinct ORF's that appear to encode OMP P5 homologues. This is also the case with two very similar proteins, MOMP and OmpA2 from *Haemophilus ducreyi*. It remains to be determined whether both are functionally involved in the production of fimbriae and whether the presence of two such ORFs represents a divergent duplication with redundant or complementing functions. Interestingly, the two OMP P5 mutants seem to have disparate CI values, suggesting a difference in essentiality or functionality for only one copy. OMP P5 has been shown to undergo molecular variation during chronic infections [Duim, *et al.*, *Infect Immun.* 65:1351-1356 (1997)], however, this

appears to be restricted to a single gene undergoing point mutations resulting in amino acid changes rather than "type switching" due to differential expression of multiple genes.

Protein folding enzymes are important accessories for the efficient folding of periplasmic and extracellular proteins, and two genes were identified whose products have peptidyl-prolyl isomerase activity: *fkpA* and *tig* (trigger factor). FkpA is a periplasmic protein that is a member of the FK506-binding protein family [Horne and Young, *Arch Microbiol.* 163:357-65 (1995); Missiakas, *et al.*, *Mol Microbiol.* 21:871-84 (1996)]. FkpA has been shown to contribute to intracellular survival of *Salmonella typhimurium* [Horne, *et al.*, *Infect Immun.* 65:806-10 (1997)] and a *Legionella pneumophila* homolog, *mip* [Engleberg, *et al.*; *Infect Immun.* 57:1263-1270 (1989)], is responsible for virulence and infection of macrophages [Cianciotto, *et al.*, *J. Infect. Dis.* 162:121-6 (1990); Cianciotto, *et al.*, *Infect. Immun.* 57:1255-1262 (1989)]. Tig, or trigger factor [Crooke and Wickner, *Proc. Natl. Acad. Sci. USA.* 84:5216-20 (1987), Guthrie, and Wickner, *J Bacteriol.* 172:5555-62 (1990), reviewed in Hesterkamp, and Bukau., *FEBS Lett.* 389:32-4 (1996)], is a peptidyl prolyl isomerase containing a typical FKBP region [Callebaut and Mornon, *FEBS Lett.* 374:211-215 (1995)], but is unaffected by FK506 [Stoller, *et al.*, *EMBO J.* 14:4939-48 (1995)]. Tig has been shown to associate with the ribosomes and nascent polypeptide chains [Hesterkamp, *et al.*, *Proc Natl Acad Sci USA* 93:4437-41 (1996), Stoller, *et al.*, *EMBO J.* 14:4939-48 (1995)]. Possible roles include an unknown influence on cell division [Guthrie, and Wickner, *J Bacteriol.* 172:5555-62 (1990)] in *E. coli*, a role in the secretion and activation of the *Streptococcus pyogenes* cysteine proteinase [Lyon, *et al.*, *EMBO J.* 17:6263-75 (1998)] and survival under starvation conditions in *Bacillus subtilis* [Gothel, *et al.*, *Biochemistry* 37:13392-9 (1998)].

Bacterial pathogens employ many mechanisms to coordinately regulate gene expression in order to survive a wide variety of environmental conditions within the host. Differences in mRNA stability can modulate gene expression in prokaryotes [Belasco and Higgins, *Gene* 72:15-23 (1988)]. For example, *rnr* (*vacB*) is required for expression of plasmid borne virulence genes in *Shigella flexneri* [Tobe, *et al.*, *J*

Bacteriol. 174:6359-67 (1992)] and encodes the RnaseR ribonuclease [Cheng, *et al.*, *J. Biol. Chem.* 273:14077-14080 (1998)]. PNP is a polynucleotide phosphorylase that is involved in the degradation of mRNA. Null *pnp / rnr* mutants are lethal, suggesting a probable overlap of function. It therefore is possible that both *rnr* and *pnp* are involved in the regulation of virulence gene expression. A *pnp* mutant of *P. multocida* is avirulent in a mouse septicemic model (Example 2)]. Other *pnp*-associated phenotypes include competence deficiency and cold sensitivity in *Bacillus subtilis* [Wang and Bechhofer, *J Bacteriol.* 178:2375-82 (1996)].

HupA is a bacterial histone-like protein, which in combination with HupB constitute the HU protein in *E. coli*. Reports have suggested that *hupA* and *hupB* single mutants do not demonstrate any observable phenotype [Huisman, *et al.*, *J Bacteriol.* 171:3704-12 (1989), Wada, *et al.*, *J Mol Biol.* 204:581-91 (1988)], however, *hupA-hupB* double mutants have been shown to be cold sensitive, sensitive to heat shock and blocked in many forms of site-specific DNA recombination [Wada, *et al.*, *J Mol Biol.* 204:581-91 (1988), Wada, *et al.*, *Gene.* 76:345-52 (1989)]. One limited data previously indicated that *hupA* is directly involved in virulence [Turner, *et al.*, *Infect Immun.* 66:2099-106 (1998)]. The mechanism of *hupA* attenuation remains unknown.

DnaK is a well known and highly conserved heat shock protein involved in regulatory responses to various stressful environmental changes [reviewed in Lindquist and Craig, *Annu Rev Genet.* 22:631-77 (1988)]. DnaK is also one of the most significantly induced stress proteins in *Yersinia enterocolitica* after being phagocytosed by macrophages [Yamamoto, *et al.*, *Microbiol Immunol.* 38:295-300 (1994)] and a *Brucella suis dnaK* mutant failed to multiply within human macrophage-like cells [Kohler, *et al.*, *Mol Microbiol.* 20:701-12 (1996)]. In contrast, another intracellular pathogen, *Listeria monocytogenes*, did not show induction of *dnaK* after phagocytosis [Hanawa, *et al.*, *Infect Immun.* 63:4595-9 (1995)]. A *dnaK* mutant of *Vibrio cholera* affected the production of ToxR and its regulated virulence factors in vitro but similar results were not obtained from in vivo grown cells [Chakrabarti, *et al.*, *Infect Immun.* 67:1025-1033 (1999)]. The CI of *A.*

pleuropneumonia dnaK mutant was higher than most of the attenuated mutants although still approximately half of the positive control strain.

DksA is a dosage dependent suppressor of filamentous and temperature-sensitive growth in a *dnaK* mutant of *E. coli* [Kang and Craig, *J Bacteriol.* 172:2055-64 (1990)]. There is currently no defined molecular function for DksA, but the gene has been identified as being critical for the virulence of *Salmonella typhimurium* in chickens and newly hatched chicks [Turner, *et al.*, *Infect Immun.* 66:2099-106 (1998)]. In that work, it was noted that the *dksA* mutant did not grow well with glucose or histidine but did grow well with glutamine or glutamate as the sole carbon source. This observation may indicate that the *dksA* mutant is somehow impaired in the biosynthesis of glutamate [Turner, *et al.*, *Infect Immun.* 66:2099-106 (1998)].

Three genes were identified that have roles in protein synthesis: tRNA-leu, tRNA-glu and *rpmF*. Excluding protein synthesis, tRNA's also have a wide variety of functional roles in peptidoglycan synthesis [Stewart, *et al.*, *Nature* 230:36-38 (1971)], porphyrin ring synthesis [Jahn, *et al.*, *Trends Biochem Sci.* 17:215-8 (1992)], targeting of proteins for degradation [Tobias, *et al.*, *Science* 254:1374-7 (1991)], post-translational addition of amino acids to proteins [Leibowitz and Soffer, *B.B.R.C.* 36:47-53 (1969)] and mediation of bacterial-eukaryotic interactions [Gray, *et al.*, *J Bacteriol.* 174:1086-98 (1992), Hromockyj, *et al.*, *Mol Microbiol.* 6:2113-24 (1992)]. More specifically, tRNA-leu is implicated in transcription attenuation [Carter, *et al.*, *Proc. Natl. Acad. Sci. USA* 83:8127-8131 (1986)], lesion formation by *Pseudomonas syringae* [Rich and Willis, *J Bacteriol.* 179:2247-58 (1997)] and virulence of uropathogenic *E. coli* [Dobrindt, *et al.*, *FEMS Microbiol Lett.* 162:135-141 (1998), Ritter, *et al.*, *Mol Microbiol.* 17:109-21 (1995)]. It is unknown whether the tRNA that we have identified represents a minor species of tRNA-leu in *A. pleuropneumoniae*. Regardless, it is possible that tRNA-leu may have any one of a wide range of functions. RpmF is a ribosomal protein whose gene is also part of an operon containing fatty acid biosynthesis enzymes in *E. coli*. Further work will be required to indicate if this is the case in *A. pleuropneumoniae*, although the same

clustering of *fab* genes and *rpmF* occurs in *Haemophilus influenzae* [Fleischmann, *et al.*, *Science* 269:496-512 (1995)]. The expression of the *fab* genes is not necessarily dependent on transcripts originating upstream of *rpmF* as there has been a secondary promoter identified within *rpinF* [Zhang and Cronan, Jr., *J Bacteriol.* 180:3295-303 (1998)].

The final class of attenuated mutants includes mutations within genes of unknown function or genes that have not been previously identified. Homologs of *yaeA* and HI0379 have previously been identified in *Escherichia coli* [Blattner, *et al.*, *Science* 277:1453-1474 (1997)] and *Haemophilus influenzae* [Fleischmann, *et al.*, *Science* 269:496-512 (1995)], respectively. The remaining unknowns have been designated *Actinobacillus pleuropneumoniae* virulence genes (*apv*). The *apvC* gene shows significant similarity to HI0893, however, the proposed similarity of HI0893 as a transcriptional repressor similar to the fatty acid response regulator Bm3R1 [Palmer, *J Biol Chem.* 273:18109-16 (1998)] is doubtful. The *apvD* gene is also most similar to a putative membrane protein (b0878) with unknown function from *E. coli* [Blattner, *et al.*, *Science* 277:1453-1474 (1997)]. Two other unknowns, *apvA* and *apvB* had no significant matches in the public databases.

Example 11
Safety and Efficacy of *A. pleuropneumoniae* Mutants

Nine groups (n=8) of SPF pigs (4-5 weeks old, 3-10 kg) were used to determine the safety and efficacy of seven *A. pleuropneumoniae* mutants as live attenuated vaccine strains. Seven groups were infected intranasally with 10^{10} CFU of each mutant on day 1. One group was vaccinated on days 1 and 15 with the commercially available vaccine Pleuromune (Bayer), and one naive group was not vaccinated. On day 29, all groups were challenged intranasally with $1-5 \times 10^5$ CFU per pig of wild type APP225. All surviving animals were euthanized and necropsied on day 42 of the study. Results are shown in Table 4.

Table 4
Efficacy of *A. pleuropneumoniae* Mutants

	<u>Vaccine</u>	% Mortality following intranasal challenge	
		<u>Vaccination</u>	<u>Challenge</u>
5	Pleuromune	0	37.5
	exbB	0	0
	tig	12.5	0
	fkpA	12.5	0
	HI0385	50.0	0
10	pnp	0	0
	yaeE	0	0
	atpG	0	0
	None	N/A	50.0

15 The *exbB*, *atpG*, *pnp*, and *yaeA* mutants caused no mortality when administered at a dosage of 10^{10} CFU intranasally. The *fkpA* and *tig* mutant groups had one death each and the HI0379 group (highest CI of the 7 mutants tested shown in Example 9) had four deaths. Wildtype LD₅₀ using this model was generally 1×10^7 CFU, indicating that each of these mutants is at least 100 fold attenuated and that there is a reasonable correlation between CI and attenuation.

20

Example 12
Identification of *P.(Mannheimia) haemolytica* Species Homologs

25 Based on the sequences of virulence genes identified in *P. multocida* and *A. pleuropneumoniae*, attempt were made to identify related genes, i.e., species homologs, in *P. (Mannheimia) haemolytica*. PCR was utilized with the degenerate primers shown below to attempt amplification of the *P. (Mannheimia) haemolytica* genes as indicated. Primer sequences, synthesized by Sigma-Genosys (The Woodlands, TX), include standard single letter designations, wherein B indicates

either (C,G or T), D indicates either (G,A or T), H indicates either (A,C or T), K indicates either (G or T), M indicates either (A or C), N indicates either (A,G,C or T), R indicates either (A or G), S indicates either (G or C), V indicates either (G, A, or C), W indicates either (A or T), and Y indicates either (C or T).

5

	atpG	TEF146	ATG GCN GGN GCN AAR GAR AT	SEQ ID NO: 176
		TEF148	GCN GCY TTC ATN GCN ACC AT	SEQ ID NO: 177
10	guaB	TEF240	GGN TTG ATY CAY AAA AAY ATG	SEQ ID NO: 178
		TEF243	TCT TTN GTR ATN GTN ACA TCR TG	SEQ ID NO: 179
	pnp	TEF141	GCS GGY AAA CCR CGT TGG GAT TGG	SEQ ID NO: 180
		TEF142	CRC CTA ARA TRT CTG AAA GCA CCA C	SEQ ID NO: 181
15	purF	TEF244	ATG TGY GGN ATY GTN GGN AT	SEQ ID NO: 182
		TEF247	CAT ATC AAT ACC ATA CAC ATT	SEQ ID NO: 183
20	yjgF	TEF162	GGN CCN TAY GTN CAR G	SEQ ID NO: 184
		TEF163	NGC NAC YTC NAC RCA	SEQ ID NO: 185

For amplification of initial degenerate PCR products, a 50 µl reaction was set up using 3.3X XL buffer II (PE Applied Biosystems), 200 µM dNTPs, 25 pmol each of the appropriate primers, 0.8 mM MgCl₂, 0.5 U rTth DNA polymerase, XL (PE Applied Biosystems) and approximately 1 µg of TF1 DNA.

25

Cycle conditions were 94°C for 1.5 min; followed by 35 cycles of 94°C for 15 s, 40-60°C for 60 s, 72°C for 1.5 min; and a final hold at 72°C for 5 min. Each PCR product was band purified from an agarose gel using the QIAGEN Gel Extraction Kit (QIAGEN, Valencia CA).

30

Sequencing reactions were performed using the BigDye™ Dye Terminator Chemistry kit from PE Applied Biosystems (Foster City, CA) and run on an ABI Prism 377 DNA Sequencer. Double stranded sequence for the open reading frame (ORF) for each clone was obtained. Sequencher 3.0 software (Genecodes, Corp., Ann Arbor, MI) was used to assemble and analyze sequence data. GCG programs were used to confirm the identity of the ORF by searching for homologous sequences in currently available databases.

35

The Vectorette Kit (Genosys Biotechnologies, The Woodlands, TX) was used to obtain additional flanking sequence for each of the genes. Vectorette libraries were prepared according to the manufacturer's suggested protocol. Perkin Elmer Applied Biosystems GeneAmp XL PCR Kit components were used to create the Vectorette PCR products with the following reaction conditions. A 50 µl reaction was set up using 3.3X XL buffer II (PE Applied Biosystems), 200 µM dNTPs, 25 pmol each of the appropriate primers(shown below), 0.8 mM MgCl₂, 0.5 U rTth DNA polymerase, XL (PE Applied Biosystems) and 1 µl of the appropriate vectorette library. Cycle conditions were 94°C for 1.5 min; followed by 35 cycles of 94°C for 20 s, 60°C for 45s, 72°C for 4 min; and a final hold of 72°C for 7 min. The second primer for each library was the manufacturer's vectorette primer.

Table 5

Gene	Vectorette library	Primer(s)
atpG	BglII, HindIII	TEF217 GAAGCCGCCATACGCTCTGGG SEQ ID NO: 186
	ClaI	TEF218 GTTGCTTCCTTGCCTGCACTGG SEQ ID NO: 187
5 guAB	EcoRI	TEF265 GGCTCAGAAACAATACCACTTCA SEQ ID NO: 188
	HindIII, TaqI	TEF268 GCACCAAAGCAGAATTGTCC SEQ ID NO: 189
10 pnp	ClaI, HincII	TEF219 GGTGATGATGTCGATGATAGTCCC SEQ ID NO: 190
	TaqI,	TEF220 GGC GTATTAGCCGTGATGCCAAC SEQ ID NO: 191
	BamHI	TEF286 GACCACTAGGCGATATGGACTT SEQ ID NO: 192
15 purF	TaqI	TEF271 ACCATCATAAATCGCCTGATT SEQ ID NO: 193 TEF292 ACCTGCGGCATCTTGTCC SEQ ID NO: 194
	HincII	TEF274 ACGGGTTTATTTCGCCTCTG SEQ ID NO: 195
	ClaI	TEF221 CGCCGGTTTCAGGATTACGGG SEQ ID NO: 196
yjgF	EcorV	TEF281 CTGAACAAACGTGAAAGCCAT SEQ ID NO: 197

Vectorette PCR products were band purified and sequenced as described above.

20 Polynucleotide sequences for the atpG, guAB, pnp, purF, and yjgF genes are set out in SEQ ID NOS: 166, 168, 170, 172 and 174, respectively. Polypeptides encoded by these genes are set out in SEQ ID NOS: 167, 169, 171, 173, and 175, respectively.

Numerous modifications and variations in the invention as set forth in the above illustrative examples are expected to occur to those skilled in the art. Consequently only such limitations as appear in the appended claims should be placed on the invention.

WHAT IS CLAIMED IS:

1. A gram-negative bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 21, 25, 27, 29, 39, 41, 51, 53, 55, 57, 58, 60, 68, 72, 74, 76, 78, 80, 82, 84, 104, 108, 112, 116, 118, 120 122, 124, 126, 128, and 130, or species homologs thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
2. The gram-negative bacteria of claim 1 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
3. The gram-negative bacteria of claim 1 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
4. The gram-negative bacteria of claim 1 wherein said mutation results in deletion of all or part of said gene.
5. An attenuated *Pasteurellaceae* bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
6. The *Pasteurellaceae* bacteria of claim 5 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
7. The *Pasteurellaceae* bacteria of claim 5 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.

8. The *Pasteurellaceae* bacteria of claim 5 wherein said mutation results in deletion of all or part of said gene.

9. The *Pasteurellaceae* bacteria of claim 5 selected from the group consisting of *Pasteurella (Mannheimia) haemolytica*, *Pasteurella multocida*, *Actinobacillus pleuropneumoniae* and *Haemophilus somnus*.

10. The *Pasteurellaceae* bacteria of claim 9 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.

11. The *Pasteurellaceae* bacteria of claim 9 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.

12. The *Pasteurellaceae* bacteria of claim 9 wherein said mutation results in deletion of all or part of said gene.

13. The attenuated *Pasteurellaceae* bacteria of claim 9 that is a *P. multocida* bacteria.

14. The *Pasteurellaceae* bacteria of claim 13 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.

15. The *Pasteurellaceae* bacteria of claim 13 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.

16. The *Pasteurellaceae* bacteria of claim 13 wherein said mutation results in deletion of all or part of said gene.

17. The attenuated *Pasteurellaceae* bacteria of claim 9 that is a *A. pleuropneumoniae* bacteria.

18. The *Pasteurellaceae* bacteria of claim 17 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.

19. The *Pasteurellaceae* bacteria of claim 17 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.

20. The *Pasteurellaceae* bacteria of claim 17 wherein said mutation results in deletion of all or part of said gene.

21. An immunogenic composition comprising the bacteria according to any one of claims 1 through 20.

22. A vaccine composition comprising the immunogenic composition according to claim 21 and a pharmaceutically acceptable carrier.

23. The vaccine composition according to claim 22 further comprising an adjuvant.

24. A method for producing a gram-negative bacteria mutant comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

25. A method for producing an attenuated *Pasteurellaceae* bacteria comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29,

31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

26. A purified and isolated *Pasteurellaceae* polynucleotide comprising a nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 51, 53, 55, 57, 58, 60, 68, 70, 72, 74, 76, 78, 80, 82, 84, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 135, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 163, 164, 166, 168, 170, 172 and 174.

27. A purified and isolated *Pasteurellaceae* polynucleotide comprising a nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEQ ID NOs: 1, 3, 7, 9, 21, 25, 27, 29, 39, 41, 51, 53, 55, 57, 58, 60, 68, 72, 74, 76, 78, 80, 82, 84, 104, 108, 112, 116, 118, 120, 122, 124, 126, 128, and 130.

28. A purified and isolated polynucleotide encoding a *Pasteurellaceae* virulence gene product, or species homolog thereof, selected from the group consisting of:

- the polynucleotide according to claim 27,
- polynucleotides encoding a polypeptide encoded by the polynucleotide of (a), and
- polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderate stringency conditions.

29. A purified and isolated *Pasteurellaceae* polynucleotide encoding a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOs: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109,

111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175.

30. The polynucleotide of claim 29 which is a DNA.

31. A vector comprising the DNA of claim 30.

32. The vector of claim 31 that is an expression vector, wherein the DNA is operatively linked to an expression control DNA sequence.

33. A host cell stably transformed or transfected with the DNA of claim 30 in a manner allowing the expression of the encoded polypeptide in said host cell.

34. A method for producing a recombinant polypeptide comprising culturing the host cell of claim 33 in a nutrient medium and isolating the encoded polypeptide from said host cell or said nutrient medium.

35. A purified polypeptide produced by the method of claim 34.

36. A purified polypeptide comprising a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOs: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175.

37. An antibody that is specifically reactive with the polypeptide of claim 36.

38. The antibody of claim 33 that is a monoclonal antibody.

39. A method of using the monoclonal antibody of claim 39 for identifying a bacteria of claim 1, 5, 9, or 13 comprising the step of contacting an extract of bacteria with said monoclonal antibody and detecting the absence of binding of said monoclonal antibody.

40. A method of identifying an anti-bacterial agent comprising the steps of assaying potential agents for the ability to interfere with expression or activity of gene products represented by the amino acid sequences set forth in any one of SEQ ID NOS: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175 and identifying an agent that interferes with expression or activity of said gene products.

41. A method of identifying an anti-bacterial agent comprising the steps of:

- a) measuring expression or activity of a gene product as set out in SEQ ID NOS: 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 42, 52, 54, 56, 59, 61, 69, 71, 73, 75, 77, 79, 81, 83, 85, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 167, 169, 171, 173, and 175;
- b) contacting the gene product in (a) with a test compound
- c) measuring expression or activity of the gene product in the presence of the test compound; and
- d) identifying the test compound as an antibacterial agent when expression or activity of the gene product is decreased in the presence of the test compound as compared to expression or activity in the presence of the test compound.

SEQUENCE LISTING

<110> Lowery E., David, et al.

<120> Anti-Bacterial Vaccine Compositions

<130> 28341/00435

<140> 09/809,665

<141> 2001-03-15

<150> 60/153,453

<151> 1999-09-10

<150> 60/128,689

<151> 1999-04-09

<150> 09/545,199

<151> 2000-04-06

<160> 197

<170> PatentIn Ver. 2.0

<210> 1

<211> 1112

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (210)..(1001)

<220>

<223> atpB

<220>

<221> misc_feature

<222> 1099

<223> n = A or T or G or C

<220>

<221> misc_feature

<222> 1104

<223> n = A or T or G or C

<400> 1

gtcaacaaca ttttatggtg gagaggccgt taaatttata tccacaattt ttttGattgt 60

acttgctttt aaactgttca attcaatgca ttttattgca ttttttgtg gatattttat 120

aacaatagtt ttaaacaata ttcttccatt ttttataagt aagtacttaa atataaagca 180

ttttcataaaa tatcaataaaa ggatttagtt atg gca gca gag ctt aca aca gcg 233

Met Ala Ala Glu Leu Thr Thr Ala

1

5

gga tat att ggg cac cat tta gca ttc ttg aaa aca ggg gat tct ttc 281
Gly Tyr Ile Gly His His Leu Ala Phe Leu Lys Thr Gly Asp Ser Phe

10

15

20

tgg cat gtt cat tta gat acc ctt cta ttt tca att att tca ggt gca Trp His Val His Leu Asp Thr Leu Leu Phe Ser Ile Ile Ser Gly Ala 25	30	35	40	329
att ttt ctt ttt gtt ttt tca aaa gtt gca aaa aaa gca acg ccg ggt Ile Phe Leu Phe Val Phe Ser Lys Val Ala Lys Lys Ala Thr Pro Gly 45	50		55	377
gtg cct agc aag atg caa tgt ttt gag ata atg gtt gat tgg att Val Pro Ser Lys Met Gln Cys Phe Val Glu Ile Met Val Asp Trp Ile 60	65		70	425
gat ggg atc gta aaa gaa aat ttc cat ggt cct cgt cat gct gtt gga Asp Gly Ile Val Lys Glu Asn Phe His Gly Pro Arg His Ala Val Gly 75	80		85	473
cca tta gca tta act att ttc tgc tgg gta ttc att atg aat gct atc Pro Leu Ala Leu Thr Ile Phe Cys Trp Val Phe Ile Met Asn Ala Ile 90	95		100	521
gat ttg atc cca gta gat ttc cta cct caa tta gcc cat tta ttt ggt Asp Leu Ile Pro Val Asp Phe Leu Pro Gln Leu Ala His Leu Phe Gly 105	110	115	120	569
att gaa tac tta aga gct gtt cca aca gca gat atc agt gga aca tta Ile Glu Tyr Leu Arg Ala Val Pro Thr Ala Asp Ile Ser Gly Thr Leu 125	130		135	617
ggc tta tca att ggt gtc ttc ttc tta att att ttc tat aca atc aaa Gly Leu Ser Ile Gly Val Phe Phe Leu Ile Ile Phe Tyr Thr Ile Lys 140	145		150	665
tca aaa ggt atg agt ggc ttt gtt aaa gaa tat acg ctt cat cct ttt Ser Lys Gly Met Ser Gly Phe Val Lys Glu Tyr Thr Leu His Pro Phe 155	160		165	713
aat cat cct ttg tta att ccg gtt aac tta gcg ctt gaa tca gtc aca Asn His Pro Leu Leu Ile Pro Val Asn Leu Ala Leu Glu Ser Val Thr 170	175		180	761
tta tta gca aaa cct gtt tct ttg gcg ttc cgt ctt ttc ggg aat atg Leu Leu Ala Lys Pro Val Ser Leu Ala Phe Arg Leu Phe Gly Asn Met 185	190	195	200	809
tat gca ggt gaa ctt atc ttt att ctt att gca gtg atg tac atg gca Tyr Ala Gly Glu Leu Ile Phe Ile Leu Ile Ala Val Met Tyr Met Ala 205	210		215	857
aat aat ttt gca ctt aat tca atg ggt att ttc atg cat ttg gct tgg Asn Asn Phe Ala Leu Asn Ser Met Gly Ile Phe Met His Leu Ala Trp 220	225		230	905
gct att ttc cat att ctt gtg att acc tta caa gca ttt att ttt atg Ala Ile Phe His Ile Leu Val Ile Thr Leu Gln Ala Phe Ile Phe Met 235	240		245	953
atg ctt aca gtg gtt tat ttg agt atg ggt tat aac aaa gca gaa cac Met Leu Thr Val Val Tyr Leu Ser Met Gly Tyr Asn Lys Ala Glu His 250	255		260	1001
taattttta taaaacaaaac cagacccttgg gtctaaattt caatcttatg gagaacatta	1061			
tgaaacactg taattactac aacaatcatc gcatctgnaa ttnttcttgc t			1112	

<210> 2
<211> 264
<212> PRT
<213> Pasteurella multocida

<400> 2
Met Ala Ala Glu Leu Thr Thr Ala Gly Tyr Ile Gly His His Leu Ala
1 5 10 15
Phe Leu Lys Thr Gly Asp Ser Phe Trp His Val His Leu Asp Thr Leu
20 25 30
Leu Phe Ser Ile Ile Ser Gly Ala Ile Phe Leu Phe Val Phe Ser Lys
35 40 45
Val Ala Lys Lys Ala Thr Pro Gly Val Pro Ser Lys Met Gln Cys Phe
50 55 60
Val Glu Ile Met Val Asp Trp Ile Asp Gly Ile Val Lys Glu Asn Phe
65 70 75 80
His Gly Pro Arg His Ala Val Gly Pro Leu Ala Leu Thr Ile Phe Cys
85 90 95
Trp Val Phe Ile Met Asn Ala Ile Asp Leu Ile Pro Val Asp Phe Leu
100 105 110
Pro Gln Leu Ala His Leu Phe Gly Ile Glu Tyr Leu Arg Ala Val Pro
115 120 125
Thr Ala Asp Ile Ser Gly Thr Leu Gly Leu Ser Ile Gly Val Phe Phe
130 135 140
Leu Ile Ile Phe Tyr Thr Ile Lys Ser Lys Gly Met Ser Gly Phe Val
145 150 155 160
Lys Glu Tyr Thr Leu His Pro Phe Asn His Pro Leu Leu Ile Pro Val
165 170 175
Asn Leu Ala Leu Glu Ser Val Thr Leu Leu Ala Lys Pro Val Ser Leu
180 185 190
Ala Phe Arg Leu Phe Gly Asn Met Tyr Ala Gly Glu Leu Ile Phe Ile
195 200 205
Leu Ile Ala Val Met Tyr Met Ala Asn Asn Phe Ala Leu Asn Ser Met
210 215 220
Gly Ile Phe Met His Leu Ala Trp Ala Ile Phe His Ile Leu Val Ile
225 230 235 240
Thr Leu Gln Ala Phe Ile Phe Met Met Leu Thr Val Val Tyr Leu Ser
245 250 255
Met Gly Tyr Asn Lys Ala Glu His
260

<210> 3
<211> 1972
<212> DNA
<213> Pasteurella multocida

```

<220>
<221> CDS
<222> (364)..(1230)

<220>
<223> atpG

<400> 3
agcgggccat ttggctcagt tcggcttcgg attcttatga tgcacacgta agcaattatc 60
acatggtaaa aatatttgc acaaaaaccaa tactctccgt tatctgtac 120
acaacaagca ttagtgttat ttgcagtaga gtttggttac ttagaagaag tggacttaga 180
tcgtatttgt tcatttgaat cagcactttt agagttatgtt aaccataact atgctgattt 240
tatgcgtgag ttaacccaat ctggcaatta caatgtatgaa attaaagagt cattaaaagg 300
cattttggat agcttcaaaag caaacatgtgc gtggtaagtt aacactttaa atggagagac 360
aaa atg gca ggt gct aaa gag ata aga acc aaa atc gcg agt gta aaa 408
Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys
    1          5           10          15

agt aca caa aaa att act aaa gcg atg gaa atg gtt gct gcc tcg aaa 456
Ser Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Ala Ser Lys
    20          25           30

atg cgt aaa acg caa gaa cgc atg tct tct tca cgc cct tat tca gaa 504
Met Arg Lys Thr Gln Glu Arg Met Ser Ser Ser Arg Pro Tyr Ser Glu
    35          40           45

aca ata cgt aac gtg att agc cac gtt tcc aaa gca acg att ggt tac 552
Thr Ile Arg Asn Val Ile Ser His Val Ser Lys Ala Thr Ile Gly Tyr
    50          55           60

aag cat cca ttt tta gtg gat cgc gaa gta aaa aaa gtg ggc atg att 600
Lys His Pro Phe Leu Val Asp Arg Glu Val Lys Lys Val Gly Met Ile
    65          70           75

gtt gtg tcc aca gat cgt ggt ctt tgt ggt ggc tta aac gtg aac ttg 648
Val Val Ser Thr Asp Arg Gly Leu Cys Gly Leu Asn Val Asn Leu
    80          85           90           95

ttt aaa act gta tta aat gaa atg aaa gaa tgg aaa gaa aaa gat gtt 696
Phe Lys Thr Val Leu Asn Glu Met Lys Glu Trp Lys Glu Lys Asp Val
    100         105          110

tcc gtt caa ttg agt tta atc ggt tct aaa tct atc aac ttt ttc caa 744
Ser Val Gln Leu Ser Leu Ile Gly Ser Lys Ser Ile Asn Phe Phe Gln
    115         120          125

tct ttg gga att aaa att tta acc caa gat tca ggt att ggt gat act 792
Ser Leu Gly Ile Lys Ile Leu Thr Gln Asp Ser Gly Ile Gly Asp Thr
    130         135          140

ccc tct gtt gag cag tta att ggt tca gtc aat tct atg att gat gct 840
Pro Ser Val Glu Gln Leu Ile Gly Ser Val Asn Ser Met Ile Asp Ala
    145         150          155

tat aaa aaa ggg gaa gta gat gtt gtg tat tta gtt tat aac aaa ttt 888
Tyr Lys Lys Gly Glu Val Asp Val Val Tyr Leu Val Tyr Asn Lys Phe
    160         165          170          175

```

att aac acg atg tcg caa aag cca gta ttg gaa aaa tta att cca tta Ile Asn Thr Met Ser Gln Lys Pro Val Leu Glu Lys Leu Ile Pro Leu 180 185 190	936
cca gaa tta gat aat gat gaa tta ggc gaa aga aaa caa gtt tgg gat Pro Glu Leu Asp Asn Asp Glu Leu Gly Glu Arg Lys Gln Val Trp Asp 195 200 205	984
tat att tac gaa cct gat gcg aaa gta tta gat aat tta ttg gtt Tyr Ile Tyr Glu Pro Asp Ala Lys Val Leu Leu Asp Asn Leu Leu Val 210 215 220	1032
cgt tat tta gaa tct cag gtt tat caa gca gca gtt gaa aac ctt gct Arg Tyr Leu Glu Ser Gln Val Tyr Gln Ala Ala Val Glu Asn Leu Ala 225 230 235	1080
tct gag caa gcc gct cga atg gtc gcc atg aaa gca gca aca gat aac Ser Glu Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn 240 245 250 255	1128
gca ggt aac tta att aat gag tta cag tta gtc tat aac aaa gct cgt Ala Gly Asn Leu Ile Asn Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg 260 265 270	1176
caa gca agt att aca aat gaa tta aat gaa att gtt gcc ggt gca gca Gln Ala Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala 275 280 285	1224
gca att taacaaatag aggatcggtta atggcaactg gaaaaattgt acaaatcatc Ala Ile	1280
ggtgccgtta ttgacgttga attcccacaa gatgcgtac caaaaagtata tgatgcctta aatgttggaaa cagggttagt acttgaagtt caacaacaat taggtgggtgg tgtagttcgc tgtatcgaa tgggatcatc tgatggatta aaacgcgggtt taagcgtaac aaatacgaat aacccaattt ctgttccagt gggAACGAAA acattgggtc gtatcatgaa cgtattgggt gaaccaatcg atgagcaagg tgaaatcggt gcagaagaga attggcttat tcaccgtgcg ccaccaagtt atgaagaaca atctaacagt actgaacttt tagaaacggg aattaaagtt atcgacttag tttgtccgtt tgcgaaaggg ggtaaagtag gtttattcgg tggtgccgggt gtcggtaaaa ccgtcaatat gatggattaa atccgtaaaca tcgcaattga gcactcaggt tactctgtct ttgcgggggt aggtgagcgt acgcgtgaag gtaacgactt ctatcatgag atgaaagact ctaacgtatt agataaaagtg tctcttgcgtt atggtaaat gaacgagcca ccaggttaacc gtttacgtgt ggcatthaaca ggcttaacta tggcgaaaa attccgtgat gaaggtcgtg atgtcttatt cttcgttgat aa	1340 1400 1460 1520 1580 1640 1700 1760 1820 1880 1940 1972

<210> 4
<211> 289
<212> PRT
<213> Pasteurella multocida

<400> 4
Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys Ser

1	5	10	15
Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Ala Ser Lys Met			
20	25	30	
Arg Lys Thr Gln Glu Arg Met Ser Ser Ser Arg Pro Tyr Ser Glu Thr			
35	40	45	
Ile Arg Asn Val Ile Ser His Val Ser Lys Ala Thr Ile Gly Tyr Lys			
50	55	60	
His Pro Phe Leu Val Asp Arg Glu Val Lys Lys Val Gly Met Ile Val			
65	70	75	80
Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Val Asn Leu Phe			
85	90	95	
Lys Thr Val Leu Asn Glu Met Lys Glu Trp Lys Glu Lys Asp Val Ser			
100	105	110	
Val Gln Leu Ser Leu Ile Gly Ser Lys Ser Ile Asn Phe Phe Gln Ser			
115	120	125	
Leu Gly Ile Lys Ile Leu Thr Gln Asp Ser Gly Ile Gly Asp Thr Pro			
130	135	140	
Ser Val Glu Gln Leu Ile Gly Ser Val Asn Ser Met Ile Asp Ala Tyr			
145	150	155	160
Lys Lys Gly Glu Val Asp Val Val Tyr Leu Val Tyr Asn Lys Phe Ile			
165	170	175	
Asn Thr Met Ser Gln Lys Pro Val Leu Glu Lys Leu Ile Pro Leu Pro			
180	185	190	
Glu Leu Asp Asn Asp Glu Leu Gly Glu Arg Lys Gln Val Trp Asp Tyr			
195	200	205	
Ile Tyr Glu Pro Asp Ala Lys Val Leu Leu Asp Asn Leu Leu Val Arg			
210	215	220	
Tyr Leu Glu Ser Gln Val Tyr Gln Ala Ala Val Glu Asn Leu Ala Ser			
225	230	235	240
Glu Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala			
245	250	255	
Gly Asn Leu Ile Asn Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln			
260	265	270	
Ala Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala			
275	280	285	
Ile			

<210> 5
 <211> 1357
 <212> DNA
 <213> Pasteurella multocida
 <220>

<221> CDS
 <222> (1)...(813)

<220>
 <223> cap5E

<400> 5

gtc gac tat att tat cat gct gcc gca tta aag caa gtg cct tca tgc 48
 Val Asp Tyr Ile Tyr His Ala Ala Ala Leu Lys Gln Val Pro Ser Cys
 1 5 10 15

gag ttt tat ccg tta gag gca gtg aaa acc aat att tta ggt acg gca 96
 Glu Phe Tyr Pro Leu Glu Ala Val Lys Thr Asn Ile Leu Gly Thr Ala
 20 25 30

aat gtc tta gaa gcc gcc atc caa aac cag ata aaa cgc gtc gtc tgt 144
 Asn Val Leu Glu Ala Ala Ile Gln Asn Gln Ile Lys Arg Val Val Cys
 35 40 45

ctt agc aca gat aaa gcg gtg tac cca att aat gcg atg ggc att tct 192
 Leu Ser Thr Asp Lys Ala Val Tyr Pro Ile Asn Ala Met Gly Ile Ser
 50 55 60

aaa gca atg atg gaa aaa gtc atc atc gca aaa tcg cgt aac cta gaa 240
 Lys Ala Met Met Glu Lys Val Ile Ile Ala Lys Ser Arg Asn Leu Glu
 65 70 75 80

ggc aca cca acg aca atc tgt tgt act cgc tat ggc aat gtc atg gca 288
 Gly Thr Pro Thr Ile Cys Cys Thr Arg Tyr Gly Asn Val Met Ala
 85 90 95

tcg cgt ggt tcg gtt atc cca tta ttt gtc gat caa ata cgt caa ggc 336
 Ser Arg Gly Ser Val Ile Pro Leu Phe Val Asp Gln Ile Arg Gln Gly
 100 105 110

aag cct ttt act att act gat cct gag atg aca cgc ttt atg atg aca 384
 Lys Pro Phe Thr Ile Thr Asp Pro Glu Met Thr Arg Phe Met Met Thr
 115 120 125

ttg gaa gat gct gtg gat tta gtc cta tat gca ttt aaa aat ggt caa 432
 Leu Glu Asp Ala Val Asp Leu Val Leu Tyr Ala Phe Lys Asn Gly Gln
 130 135 140

aat ggt gat gtt ttt gta caa aaa gcc ccc gca gca acc att ggt acc 480
 Asn Gly Asp Val Phe Val Gln Lys Ala Pro Ala Ala Thr Ile Gly Thr
 145 150 155 160

ctt gcc aaa gca att acc gaa tta tta tct gtc cca aat cac cct att 528
 Leu Ala Lys Ala Ile Thr Glu Leu Ser Val Pro Asn His Pro Ile
 165 170 175

tcc att ata ggt acg cgt cat gga gag aaa gca ttc gaa gct tta tta 576
 Ser Ile Ile Gly Thr Arg His Gly Glu Lys Ala Phe Glu Ala Leu Leu
 180 185 190

agc cgt gaa gaa atg gtt cat gca att aat gaa ggt aat tat tat cgc 624
 Ser Arg Glu Glu Met Val His Ala Ile Asn Glu Gly Asn Tyr Tyr Arg
 195 200 205

atc cca gcc gat caa cgc agt tta aat tac agt aaa tat gtc gaa aaa 672
 Ile Pro Ala Asp Gln Arg Ser Leu Asn Tyr Ser Lys Tyr Val Glu Lys
 210 215 220

ggg gaa cca aaa att acc gaa gtc acc gac tac aac tca cat aat act		720
Gly Glu Pro Lys Ile Thr Glu Val Thr Asp Tyr Asn Ser His Asn Thr		
225	230	235
235		240
gag cgt ttg act gtc aag gaa atg aag cag tta ctg ctt aaa ctt gaa		768
Glu Arg Leu Thr Val Lys Glu Met Lys Gln Leu Leu Lys Leu Glu		
245	250	255
ttc ata cag aaa atg att gag ggt gaa tac atc tca ccg gag gta		813
Phe Ile Gln Lys Met Ile Glu Gly Glu Tyr Ile Ser Pro Glu Val		
260	265	270
taaaaaatgaa agtcttagta actggttcaa atgggttatc tgcgaaaaat ctgattcagt		873
ctttatctga ggaacaagat attgagattt tatgttatca ccgtcaatcc tctgagaaaa		933
cgcttattca tcatgtattt agtgctgatt ggattattca tcttgcgggt gcgaaatcgtc		993
cacctgaaga acaagaattt atgacatcaa atacacaatt gacggaaaaa atttgcgtt		1053
ttttacagcg tcatacgaaaa aaaacgcctt tgttatattc ctctagcatt caagtagaaa		1113
gtccccaaat aagtacttat tcgcaaacca aatttagaaag tgaatatcat gttcatcaat		1173
tacataaaga aaatggtaat ccgatttata tctgcgtt agctaatgtc tttggcaaata		1233
ggtcacgacc tcactataac tcggtagtcg ccacatttt ccataactta attcatgatt		1293
tacccatcga aattcatgat catactgcag aaataaggct catttatatt gatgatgtcg		1353
ttga		1357

<210> 6
<211> 271
<212> PRT
<213> Pasteurella multocida

<400> 6			
Val Asp Tyr Ile Tyr His Ala Ala Ala Leu Lys Gln Val Pro Ser Cys			
1	5	10	15
Glu Phe Tyr Pro Leu Glu Ala Val Lys Thr Asn Ile Leu Gly Thr Ala			
20	25	30	
Asn Val Leu Glu Ala Ala Ile Gln Asn Gln Ile Lys Arg Val Val Cys			
35	40	45	
Leu Ser Thr Asp Lys Ala Val Tyr Pro Ile Asn Ala Met Gly Ile Ser			
50	55	60	
Lys Ala Met Met Glu Lys Val Ile Ile Ala Lys Ser Arg Asn Leu Glu			
65	70	75	80
Gly Thr Pro Thr Thr Ile Cys Cys Thr Arg Tyr Gly Asn Val Met Ala			
85	90	95	
Ser Arg Gly Ser Val Ile Pro Leu Phe Val Asp Gln Ile Arg Gln Gly			
100	105	110	
Lys Pro Phe Thr Ile Thr Asp Pro Glu Met Thr Arg Phe Met Met Thr			
115	120	125	

Leu Glu Asp Ala Val Asp Leu Val Leu Tyr Ala Phe Lys Asn Gly Gln
 130 135 140
 Asn Gly Asp Val Phe Val Gln Lys Ala Pro Ala Ala Thr Ile Gly Thr
 145 150 155 160
 Leu Ala Lys Ala Ile Thr Glu Leu Leu Ser Val Pro Asn His Pro Ile
 165 170 175
 Ser Ile Ile Gly Thr Arg His Gly Glu Lys Ala Phe Glu Ala Leu Leu
 180 185 190
 Ser Arg Glu Glu Met Val His Ala Ile Asn Glu Gly Asn Tyr Tyr Arg
 195 200 205
 Ile Pro Ala Asp Gln Arg Ser Leu Asn Tyr Ser Lys Tyr Val Glu Lys
 210 215 220
 Gly Glu Pro Lys Ile Thr Glu Val Thr Asp Tyr Asn Ser His Asn Thr
 225 230 235 240
 Glu Arg Leu Thr Val Lys Glu Met Lys Gln Leu Leu Leu Lys Leu Glu
 245 250 255
 Phe Ile Gln Lys Met Ile Glu Gly Glu Tyr Ile Ser Pro Glu Val
 260 265 270

<210> 7
 <211> 6132
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (4032)..(4727)

<220>
 <223> devB

<400> 7
 gtcaacaatt accgcacttt agtggagtaa ataacaatgg cgaaaaagaa taacgggcat 60
 gaaaaagagg atgatgttcg cctagataaa tggcttgaaa ctgcccgttt ttataaaaca 120
 cgtacttttag caaaagacat gattgatggc ggtaaagtgc attataatgg gcagcgcacg 180
 aaacccaata aaacggttga aattgggttgt gtgatcaaac ttcgtcaagg taatgacgaa 240
 aaagaagtgg aagtgcgttgc gctttctacg caacgtcggt gggcgccaga agcacaattg 300
 ttgttatcaag aaacagaaaa aagccttggaa caacgtgcga aaatggcgat tgcacgtaaag 360
 attaatgcattttaacgatgcc gcattcctgat cgtcgccccga ataaaaaaaaa gccggcgttat 420
 ttattgaaat ttaaacatca agatagctt tcatcttgcattt gatgtgattt acctactttt 480
 cttattaaag aaaggaatat ggggaagctg tgtgcgttgcctttaacctga ataaaggctt 540
 tttatgacag acaacacaga caatgacaaa ctgttatcgctt acctttcca agatcgccg 600
 gtgcgcgggtg aatgggtacg gttaaacccaa acgtttactg atacgttaaa tacacatcaa 660

tatccgaaag tcatccaaaa cttgctcggt gaaatgatgg tggcgaccag tttattgacg 720
gcgacgttaa aatttgaagg ggatattact gttcaagtac aaggtgatgg accattaaaa 780
ttagcattag ttaatggcaa tcatcagcag caaattcgcg cattagcgcg tttacaagcg 840
gatgtcagtg atgatatgag tttggcgcaa ttagtcggga aaggggtatt agtgattacg 900
attgcaccga cagaaggcga gcgttaccaa ggcgtgattt cgttagataa gccaaaccatt 960
actgcctgtc ttgaagatta ttttgtcggt tcagaacaat tgcaaaacca gcttattttt 1020
cgtgctggcg aatttgaagg acaacctgtg gcagccggtt tggttaca aattatgccg 1080
gacggttcag gttctccaga ggattttgaa cacttagcaa cattggcagc gacggtgaaa 1140
gaggaagaac tatttggttt aacagcagaa gaattattgt accgtttata tcataaagag 1200
cgtgttggaaa tttcccttc acagccgatc tcatttttct gtggctgctc acaagaacgt 1260
tctggtgccg cattgttgtt gatttctgtt gaagaattgg atgaatgtt ggcagagcat 1320
aacggtagcca ttgatatgca gtgtgaatgt tgtggacgc attatttctt caataaagca 1380
gcgattatgc aattgaaagt agaaaaataa gtcttggtat tatggatttt gttgcaggct 1440
atcaagatat ttgatagcct gttttccctt tgcagcaaac gattttatga gaaaaacgcc 1500
gtcttcac acagtagttt aggtatttgc tagcatgaag cggaaaacta tggttggcgc 1560
ttgtctgttt aaaaaggta tctatgttag cactttcacc atcattactt gaaaaaacac 1620
ttgaaatcgc gnatcaagca ggagattttt taacgcgatt ttataccgac tcagggcaaa 1680
atgcgttagc aattcaaacc aaacaagata acacgcagt gactgcgtg gattttttt 1740
tgagtcaatt ttaattgaa aaattgaccg cactgacacc tgaggtcccc attcttccg 1800
aagagagttg taaaatcccc ttacaagatc gtgcacattt ggcagaatat tggtaattt 1860
accacactcga tggaaacccaa caatttatta atcgcaccga tcaattttcc attttgatta 1920
cacttgcacca acacaatcaa cccgtctaa gcattaccca tgcccattt ttacaaacga 1980
cctattatgc tatgcagggc tttggtgctt acagaaggca gggcaatcaa caagaaaagc 2040
taaacaacca agcgcgacct gagcagcgaa aaatcaaatt tgctgtggga gtcggggcg 2100
ttgaacggaa aattcagccc ttgttaatc cagcttatac atatgaattt ttggttatg 2160
gttcaagtgg cttaaaaggc ggcttagtgg ccgatggcac ttgtgattgc tatattcag 2220
tagaaaaac gggtaatgg gatacggggg cggctgaaat cctcttacgt gaaatggag 2280
gtgctgtgtt tgactttgtt tttcaaccgc ttagctataa tcagagagaa agtttttatta 2340
atcccaattt tgtgatggta gcgaatacag aatttggattt gcagaaaatt tttcaatttc 2400
attcgcacta ggcatttattt attataagat gcgatattttt atgacctcta ttttaacaa 2460
acggatttca ggaaaaaaat gaaaattgaa gcagacaaca attgtattgt aatttttgg 2520
gcatcaggtg atttaactta tcgtaaattt gtcctgcac tgtataactt atataaaatc 2580

ggtcggttgc ctgagcattt ctccgttta ggtgtggcaa gaacggaatt aagtatgtag 2640
 ggttccgtg aaaaaatgcg ccaagcgtt atcaaaagtg aaaaagcgaa tggcgaaaca 2700
 ctcgatcat tttagccca ccttattat caggcattaa ataccgcgg tgctgccat 2760
 tatggcaagt taattccctcg tcttgatgac ttacatgata aatatcaaac ttgtggtaac 2820
 acacttact atttatctac gccgcgaagc ctttatggcg tgattccaga atgccttgcg 2880
 gcacatgggt taaatactga agagtttggc tggaagcggt taattgtgga aaaaccgttt 2940
 ggttatgata tacgcacggc aaaagaactc gatattcaaa ttcaccgtt ctttgatgaa 3000
 caccaaattt atcgatttga ccactatctt ggtaaagaaaa cggttcaaaa tctgcttgt 3060
 ttgcgtttt ctaatggatg gtttgaacca ctctggacc gtaatttcat tgattatatt 3120
 gaaatcacgg gcgcagaatc tatcggtgta gaagagcgtg gtggttatta cgtatgattct 3180
 ggcgcaatgc gtgatatgtt ccaaaaccat ttgttgcag tgtagccat gttgcgtat 3240
 gagccaccag caattattaa tgccgactca atgcgtgatg aagtggcaaa agtcttgtat 3300
 tgtttacatc cattaagtga ggtgactta gaaaatcatt tagtcttagg gcaatatacg 3360
 gcagggcacag ttgaaggtga agcggttaag ggctacttac aggaaaaagg tgtgccggca 3420
 gagtctaata cgaaaactta catggcatta cgttgcgaaa ttgacaactg gcgttggcgc 3480
 ggtgtccat tttatgtgcg tactggaaaa cggttaccaa gtcgagtgcg cgaattgtg 3540
 attcatttca aaaccacacc acatccgta tttagccaaa aagcaccaga aaacaattt 3600
 attatccgta ttcaacccga tgaagcgatt tcgatcggtt ttggtttgcgaaa aaaaccggga 3660
 gcaggttttgcgaaa aagcaaaaga agtgcgtatg gattccgtt atgcggatct tgcctcacca 3720
 agcttactga ccgcttatga gcgttatttttgcgaaa aagcaccaga aaacaattt 3780
 ttgcgcgttgcgaaa atgggcgtgt ttatgagtttgcgaaa aagcaccaga aaacaattt 3840
 aaagcacaata atgggcgtgt ttatgagtttgcgaaa aagcaccaga aaacaattt 3900
 gacaaactga tcgcgaaaac gggcgttgcgaaa aagcaccaga aaacaattt 3960
 aaagtgtat gtccgcctct ttcgtaaagaa atgcgaggccc ctaatgtgag cagattgagt 4020
 aaggaaagat c atg aat aca atc att ttt gac agt gca cag cat gcc gta 4070
 Met Asn Thr Ile Ile Phe Asp Ser Ala Gln His Ala Val
 1 5 10

 gag aaa att gca caa gaa ttg tta gcg tat agc tta gaa ggt cgc cct 4118
 Glu Lys Ile Ala Gln Glu Leu Leu Ala Tyr Ser Ile Glu Gly Arg Pro
 15 20 25

 gtg cat att tcc tta tcc gga ggc tca acg ccg aaa ttg tta ttt aaa 4166
 Val His Ile Ser Leu Ser Gly Gly Ser Thr Pro Lys Leu Leu Phe Lys
 30 35 40 45

 act tta gct caa gca ccg tat aac acc gag att caa tgg aaa aat ttg 4214
 Thr Leu Ala Gln Ala Pro Tyr Asn Thr Glu Ile Gln Trp Lys Asn Leu
 50 55 60

cat ttt tgg tgg ggc gat gat cgt atg gtg cca cca acc gat cca gaa			4262
His Phe Trp Trp Gly Asp Asp Arg Met Val Pro Pro Thr Asp Pro Glu			
65 . 70 . 75			
agt aat tac ggc gag gtg caa aaa ttg tta ttc gat cat att cag atc			4310
Ser Asn Tyr Gly Glu Val Gln Lys Leu Leu Phe Asp His Ile Gln Ile			
80 85 90			
cct gca gaa aat att cac cgc att cgt ggt gaa gcc ccc gtt gag agt			4358
Pro Ala Glu Asn Ile His Arg Ile Arg Gly Glu Ala Pro Val Glu Ser			
95 100 105			
gaa ctt cac cgt ttt gaa caa gcg cta agt gcg gtc att cct ggg caa			4406
Glu Leu His Arg Phe Glu Gln Ala Leu Ser Ala Val Ile Pro Gly Gln			
110 115 120 125			
gtt ttt gat tgg att att ttg ggc atg gga acg gac ggg cac acg gcc			4454
Val Phe Asp Trp Ile Ile Leu Gly Met Gly Thr Asp Gly His Thr Ala			
130 135 140			
tca tta ttc ccg cat caa acc gat ttt gac gat cct cat ttc gcc gtg			4502
Ser Leu Phe Pro His Gln Thr Asp Phe Asp Asp Pro His Phe Ala Val			
145 150 155			
atc gcg aaa cac cct gaa aca ggg caa att cgt att tca aaa aca gcg			4550
Ile Ala Lys His Pro Glu Thr Gly Gln Ile Arg Ile Ser Lys Thr Ala			
160 165 170			
aaa ttg att gaa caa gca aag cgg gtg acc tat ttg gtg aca ggt agc			4598
Lys Leu Ile Glu Gln Ala Lys Arg Val Thr Tyr Leu Val Thr Gly Ser			
175 180 185			
agt aaa gcc gag atc tta aaa gaa att caa act act ccg gca gaa caa			4646
Ser Lys Ala Glu Ile Leu Lys Glu Ile Gln Thr Thr Pro Ala Glu Gln			
190 195 200 205			
ctg cct tat cct gct gcg aaa atc aaa gcg aag cat ggg gtg acg gaa			4694
Leu Pro Tyr Pro Ala Ala Lys Ile Lys Ala Lys His Gly Val Thr Glu			
210 215 220			
tgg tat ttg gat aag gat gcg gca aaa tta ctg taatgcgtcg tgagatttt 4747			
Trp Tyr Leu Asp Lys Asp Ala Ala Lys Leu Leu			
225 230			
caacatttt gcaaagagac ttgaaacaaa atagaccata gcgttcgttt tcaacgagtg 4807			
ctgaaaaatga aggctctcggt tgaaaaatggc gccattttagt gggtaagctt aaggttcgct 4867			
cagacagcgc tatcaaaaagg gtaaaagaat gtatcaactc tattttaaatc caccaaaatc 4927			
ttcatggtca ttacgcgttt gggtgttatt gaaagaactg gcaattcctt ttgagcctaa 4987			
aattgtacgt tatttggatg atttaagtga acaacgccaa caatttaagg cgttttcgcc 5047			
gacttcaaaa atccccagtat tgcatgctga tgggttgtc atttgggaca gtttagcgat 5107			
tatcgagttt ttggcagaaa gttatccgca cgtgtggcgc caagataagg cgacaagagc 5167			
gtggtcacgt tctgcttgtg ctgaaatgca ctctggcttt gaaaatttgc gtgaaatgtg 5227			
tgatttcgcc ccttagctc gcaaaccgtt acaagaaaatg cccgctgtgt taagccaaga 5287			
gctaacaagg cttaatcaat tattagaaga aqqqtaaca aatcacactq qqcqatttaa 5347			

tgcaaaccctc cagtgccttt ggtcgagtag aatcctcggt gtctttttc cgtaattcct 5407
 atgatgactt tgccgcttat cgtgcggtgt taaatcggtt aactggctt catagcgcga 5467
 taaaaggcgc taatcgccca agcaaattag tgctcacaga aagtcgtcat gatattgggtt 5527
 ttcatgatct caacgttagag accccgcaag gaaaaacctt aattgacaag ctcaacctac 5587
 aatttcctct cggtacatgg ttattaattc aaggacattc tggtgtaggg aaaacaacct 5647
 tgttaagaac cattgcggga ctatggcctt atgctagtgg gacaattcaa cgtccacaac 5707
 aagatactct gtttctttct caaaaacctt atttgccaca aggtgcgccta cttgatgccc 5767
 tattttatcc tgaactggcg cctgaagacg tgaatgagca acaagttata gacataactcg 5827
 cggaaagtaca actcgggcat ttaagcgata aactagaaca agaaaatgtat tggacacggg 5887
 tactctctt aggtgaacaa caacgtctgt cgtttgcgtc cattttattt cataaaccta 5947
 ctgttggttt cttagatgaa gccactgcca gcatggatga aggactggaa gatgcgatgt 6007
 accgcttaact gaaagatgaa ctgcctcaga ttactgtgat cagtgttggaa caccgttcga 6067
 cgttaattcc gcaccattca cagcaattac acattcaata acaagacagg gcgttggaa 6127
 gtcga 6132

<210> 8
 <211> 232
 <212> PRT
 <213> Pasteurella multocida

<400> 8
Met Asn Thr Ile Ile Phe Asp Ser Ala Gln His Ala Val Glu Lys Ile
1 5 10 15
Ala Gln Glu Leu Leu Ala Tyr Ser Leu Glu Gly Arg Pro Val His Ile
20 25 30
Ser Leu Ser Gly Gly Ser Thr Pro Lys Leu Leu Phe Lys Thr Leu Ala
35 40 45
Gln Ala Pro Tyr Asn Thr Glu Ile Gln Trp Lys Asn Leu His Phe Trp
50 55 60
Trp Gly Asp Asp Arg Met Val Pro Pro Thr Asp Pro Glu Ser Asn Tyr
65 70 75 80
Gly Glu Val Gln Lys Leu Leu Phe Asp His Ile Gln Ile Pro Ala Glu
85 90 95
Asn Ile His Arg Ile Arg Gly Glu Ala Pro Val Glu Ser Glu Leu His
100 105 110
Arg Phe Glu Gln Ala Leu Ser Ala Val Ile Pro Gly Gln Val Phe Asp
115 120 125
Trp Ile Ile Leu Gly Met Gly Thr Asp Gly His Thr Ala Ser Leu Phe
130 135 140
Pro His Gln Thr Asp Phe Asp Asp Pro His Phe Ala Val Ile Ala Lys

145	150	155	160
His Pro Glu Thr Gly Gln Ile Arg Ile Ser Lys Thr Ala Lys Leu Ile			
165 170 175			
Glu Gln Ala Lys Arg Val Thr Tyr Leu Val Thr Gly Ser Ser Lys Ala			
180 185 190			
Glu Ile Leu Lys Glu Ile Gln Thr Thr Pro Ala Glu Gln Leu Pro Tyr			
195 200 205			
Pro Ala Ala Lys Ile Lys Ala Lys His Gly Val Thr Glu Trp Tyr Leu			
210 215 220			
Asp Lys Asp Ala Ala Lys Leu Leu			
225 230			

<210> 9
 <211> 2438
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (1635)..(2396)

 <220>
 <223> dnaA

<400> 9
 gaccaatgc ttgccaccgg cggctctatg attgcgacaa tcgatcttct aaaagcgaaa 60
 ggctgtaaac acattaaagt gctcgtgtta gtcgcgcgc ctgaaggcat taaaggcatta 120
 gaagctgcgc accctgatat cgaattatac accgcatacg ttgatagtca cttaaatgaa 180
 caaggctata ttattccagg tcttggtgat gccggtgata aaattttgg cactaaataa 240
 tcccaacaca agcggcatct tatgccgtt tttccgttc aatttatagc gcttacaatc 300
 ttaacagctt gaacactata aaatgaaaag ttaattcaga cagagagttg aaacttaaca 360
 tgacaaatca aaatccccct gttttcttag aacaaaatca cgcaaaacaa gccttcgtt 420
 ggctacaaat gctttttgtt gccttcggtg cttagtcct tgttccctg attacgggtt 480
 taaatgcca tactgccta ttgaccgcag ggattggac actcttattc caactttgt 540
 ctggacgcca agtccccatt ttcttagcct cttcccccgc ttttattgca ccaattcaat 600
 atggcgtggc aacatggggc attgctacta ctagggggg gctgggttt actggactgg 660
 tttatggc cctcagtagc tttagtcaaaa ttaaagggtgc tggtgcttta caaaaagtct 720
 ttccgcccagt agttgttggc cccgttatta tcatcatcg ttttattgca ccaattcaat 780
 ccgtggacat ggcatttaggt aaaaacagca cttatcaata taacgatgcc gtattcggtt 840
 cgatggcaac attattgaca acgttaggtg ttgcgggttt tgctaaaggc atgatgaaat 900
 taattcctat catgttttgtt attgtcgtcg gctatatcct ctgcttattc ttaggcttaa 960

ttaatttcca acctgtcatt gatgcacctt ggtttagtgt gccagaaatt actacccctg 1020
 aatttaaatt agaagctatt ctttatttat taccgattgc tatcgccccca gcagttgagc 1080
 atgtcggtgg gatcatggca atcagttcgg tgacagggaa agacttccta caaaaaccag 1140
 gattacatcg cactttatta gggatggta ttgcaacgag tgccgcctca ttcttaggag 1200
 gaccaccaa tacaacttat gctgaagtca ctggtgctgt catgcttacg cgcaacttta 1260
 accctaaaat catgacatgg gcagccgtt gggcaattgc gatttccttc tgtggtaaag 1320
 tcggggctt cctcttacc attccaacta ttgtcatggg tggcattatg atgttagtgt 1380
 ttggctctat cgccgtagtc ggtatgagta cactgatccg tggtaaagtg gatgtaacag 1440
 aagcgcgtaa tctgtgtatt atttccgtt tgatgacgtt tggcatcggt ggtatgtttg 1500
 tgaactttgg agaagtctcc taaaaaggaa ttagttatg cgccgttgc gcgatttac 1560
 tcaacttaat cttacccaaa gccaaaaaca ccccaataga agaaaatcga taagagaaaa 1620
 ttaagggtta agtc ttg ctt aac cct tca ttt ttc gtt tat cct tat tct 1670
 Leu Leu Asn Pro Ser Phe Phe Val Tyr Pro Tyr Ser
 1 5 10
 cct ttt ttc gat ttt gta ggt tgc ttt ttg tta gaa aat ttc caa tta 1718
 Pro Phe Phe Asp Phe Val Gly Cys Phe Leu Leu Glu Asn Phe Gln Leu
 15 20 25
 cct ttg cct att cat caa ctc gat gat gaa acg ctg gat aat ttc tat 1766
 Pro Leu Pro Ile His Gln Leu Asp Asp Glu Thr Leu Asp Asn Phe Tyr
 30 35 40
 ccc gac aat aat tta ttg ttg ctc aat tcg cta cgc aaa aat ttt act 1814
 Pro Asp Asn Asn Leu Leu Leu Asn Ser Leu Arg Lys Asn Phe Thr
 45 50 55 60
 tgt cta aca caa caa ttt ttt tat att tgg ggc gag caa agc agt ggt 1862
 Cys Leu Thr Gln Gln Phe Phe Tyr Ile Trp Gly Glu Gln Ser Ser Gly
 65 70 75
 aaa agt cac ctc tta aaa ggc att act cat cat ttt ttc ctt tta cag 1910
 Lys Ser His Leu Leu Lys Gly Ile Thr His His Phe Phe Leu Leu Gln
 80 85 90
 cgc ccc gct atc tat gtg ccc tta gaa aaa tcc caa tat ttc tca ccg 1958
 Arg Pro Ala Ile Tyr Val Pro Leu Glu Lys Ser Gln Tyr Phe Ser Pro
 95 100 105
 gcg gta ctc gaa aac tta gaa caa caa ttg gtt tgt tta gat aat 2006
 Ala Val Leu Glu Asn Leu Glu Gln Gln Leu Val Cys Leu Asp Asn
 110 115 120
 tta cag gca att ata ggc aat act gaa tgg gaa tta gcg att ttt gat 2054
 Leu Gln Ala Ile Ile Gly Asn Thr Glu Trp Glu Leu Ala Ile Phe Asp
 125 130 135 140
 tta ttt aat cgc ata aaa tct gtt gaa aat aca ctg ctt gtg atc agt 2102
 Leu Phe Asn Arg Ile Lys Ser Val Glu Asn Thr Leu Leu Val Ile Ser
 145 150 155
 gca aat caa tcc cca act gca tta cct gta agt tta cct gac tta gct 2150

Ala Asn Gln Ser Pro Thr Ala Leu Pro Val Ser Leu Pro Asp Leu Ala			
160	165	170	
tca cgt tta cgc tgg gga gaa agc tat cag ctg gtc ccc tta aat gat			2198
Ser Arg Leu Arg Trp Gly Glu Ser Tyr Gln Leu Val Pro Leu Asn Asp			
175	180	185	
caa caa aaa atc cat gta ttg caa aaa aat gca cat caa cgt ggt atc			2246
Gln Gln Lys Ile His Val Leu Gln Lys Asn Ala His Gln Arg Gly Ile			
190	195	200	
gaa ctc ccc gat gaa gta gct aat ttt ctt ttg aaa cgc tta gag cgc			2294
Glu Leu Pro Asp Glu Val Ala Asn Phe Leu Leu Lys Arg Leu Glu Arg			
205	210	215	220
gat atg aaa acg tta ttt gaa gca cta agt aaa tta gat aaa gca tca			2342
Asp Met Lys Thr Leu Phe Glu Ala Leu Ser Lys Leu Asp Lys Ala Ser			
225	230	235	
tta caa gcc caa cgt aaa tta acg att ccc ttt gta aaa gaa att tta			2390
Leu Gln Ala Gln Arg Lys Leu Thr Ile Pro Phe Val Lys Glu Ile Leu			
240	245	250	
aag cta taaaaaaaaga ccacaccttt atcaggtgat ctttcttgat ga			2438
Lys Leu			
<210> 10			
<211> 254			
<212> PRT			
<213> Pasteurella multocida			
<400> 10			
Leu Leu Asn Pro Ser Phe Phe Val Tyr Pro Tyr Ser Pro Phe Phe Asp			
1	5	10	15
Phe Val Gly Cys Phe Leu Leu Glu Asn Phe Gln Leu Pro Leu Pro Ile			
20	25	30	
His Gln Leu Asp Asp Glu Thr Leu Asp Asn Phe Tyr Pro Asp Asn Asn			
35	40	45	
Leu Leu Leu Leu Asn Ser Leu Arg Lys Asn Phe Thr Cys Leu Thr Gln			
50	55	60	
Gln Phe Phe Tyr Ile Trp Gly Glu Gln Ser Ser Gly Lys Ser His Leu			
65	70	75	80
Leu Lys Gly Ile Thr His His Phe Phe Leu Leu Gln Arg Pro Ala Ile			
85	90	95	
Tyr Val Pro Leu Glu Lys Ser Gln Tyr Phe Ser Pro Ala Val Leu Glu			
100	105	110	
Asn Leu Glu Gln Gln Leu Val Cys Leu Asp Asn Leu Gln Ala Ile			
115	120	125	
Ile Gly Asn Thr Glu Trp Glu Leu Ala Ile Phe Asp Leu Phe Asn Arg			
130	135	140	
Ile Lys Ser Val Glu Asn Thr Leu Leu Val Ile Ser Ala Asn Gln Ser			
145	150	155	160

Pro Thr Ala Leu Pro Val Ser Leu Pro Asp Leu Ala Ser Arg Leu Arg
165 170 175

Trp Gly Glu Ser Tyr Gln Leu Val Pro Leu Asn Asp Gln Gln Lys Ile
180 185 190

His Val Leu Gln Lys Asn Ala His Gln Arg Gly Ile Glu Leu Pro Asp
195 200 205

Glu Val Ala Asn Phe Leu Leu Lys Arg Leu Glu Arg Asp Met Lys Thr
210 215 220

Leu Phe Glu Ala Leu Ser Lys Leu Asp Lys Ala Ser Leu Gln Ala Gln
225 230 235 240

Arg Lys Leu Thr Ile Pro Phe Val Lys Glu Ile Leu Lys Leu
245 250

```
<210> 11
<211> 2060
<212> DNA
<213> Pasteurella multocida
```

<220>
<221> CDS
<222> (856) .. (1389)

<220>
<223> dsbB

```

<400> 11
gaattcttct tacgtatgct cccagtcacg ttgccagttc tcatttgtgg ttttagtgacc 60
tgcttcttag tggaaaaatt tggtgtattt ggctatggcg ccaaattgcc acgtaaagta 120
tgggcacatct tggcaaagtt tgatcgcaat aatcaacaaa aaatgtcacg acaagatcgt 180
ttgaaacttt ttgtgcaagc tttattggg atttgggttgg ttgttggact cgcatccat 240
ctcgccgccc tcggtatcat tggtttaacg gtgattattt tggctacttc attttgtgg 300
gtcaccagcg agcatgctat tggtaaagcc tttcaggaat ctttaccctt cacagcattg 360
ttagtggtgt tcttctcggt tggccgtc atcattgacc aacatctgtt tgcgccaatt 420
attcagtttgc tgctggctgc cagtgaacat actcagcttgc ctctttcta tatttttaac 480
ggtttggat ccgcatttc agataatgtg tttgtggcca cagtttatataat caatgaaacc 540
aaagcggcat tagaggctgg cttaattgct caaccacaat atgaattact ggcagtagca 600
attaataccg gtaccaatct tccttctgtt gcaacccaa atggtcaagc cgcatctta 660
tttttattga cctcatcaact ggcaccattt attcgtcttt cttatggtag aatggtttat 720
atggcattgc cttataccat cgtattatcc tgtattgggtt tattgactgt ggaatatatt 780
ttgcctggcg caaccaatgt gtcattcaa attggtttat taaaaccaat gtaatgacaa 840
gtaaaaggag gaaac atg cta agc ttt ttt aag aca ctc tca aca aaa cga 891
Met Leu Ser Phe Phe Lys Thr Leu Ser Thr Lys Arg

```

agt gca tgg ttt cta ttg ttt agc tca gct tta cta tta gag gct atc Ser Ala Trp Phe Leu Leu Phe Ser Ser Ala Leu Leu Leu Glu Ala Ile 15 20 25	939
gct ctt tat ttt caa cat ggc atg ggg ctc gcc cct tgt gtc atg tgt Ala Leu Tyr Phe Gln His Gly Met Gly Leu Ala Pro Cys Val Met Cys 30 35 40	987
att tac gag agg gta gct att ctt ggc att gct ttc tcc ggt tta ttg Ile Tyr Glu Arg Val Ala Ile Leu Gly Ile Ala Phe Ser Gly Leu Leu 45 50 55 60	1035
ggg tta ctc tac ccg agt tcg atg ctt ttg cgc ctt gtg gcg tta tta Gly Leu Leu Tyr Pro Ser Ser Met Leu Leu Arg Leu Val Ala Leu Leu 65 70 75	1083
att ggt tta agc agt gca atc aaa ggc tta atg att agc atc acc cat Ile Gly Leu Ser Ser Ala Ile Lys Gly Leu Met Ile Ser Ile Thr His 80 85 90	1131
tta gat cta caa ctt tac cct gca cct tgg aaa caa tgt tca gcg gtg Leu Asp Leu Gln Leu Tyr Pro Ala Pro Trp Lys Gln Cys Ser Ala Val 95 100 105	1179
gca gaa ttt ccc gag act tta ccc tta gat cag tgg ttt cct gca ctc Ala Glu Phe Pro Glu Thr Leu Pro Leu Asp Gln Trp Phe Pro Ala Leu 110 115 120	1227
ttc ctc cct tca ggc tca tgc agt gaa gta aca tgg caa ttt ctc ggc Phe Leu Pro Ser Gly Ser Cys Ser Glu Val Thr Trp Gln Phe Leu Gly 125 130 135 140	1275
ttt tct atg gtg caa tgg atc gtc gtc att ttt gca ctc tat acc tta Phe Ser Met Val Gln Trp Ile Val Val Ile Phe Ala Leu Tyr Thr Leu 145 150 155	1323
tta ctt gct ctc att ttc atc agc caa gtc aaa cgt cta aaa ccc aag Leu Leu Ala Leu Ile Phe Ile Ser Gln Val Lys Arg Leu Lys Pro Lys 160 165 170	1371
cag cgc aga ctc ttt cat taagtataa aaaatggcata gataaaggcac Gln Arg Arg Leu Phe His 175	1419
catttttcat ttctcggtcg gtatacgat aattttttgc acgacaaaact gcaggaaatg tcttgcta atatcttgctt tacgtgtttt taagcggtttt aaacgtaatg cgctgtccttg tgataaacga tataattttt ttgtcggtttt caaaaaagctt ttacgtctcg ccataactctt cctcttatttgc tgctcggttacg gttgtcgctt acgtatccgt ttcttttttttgcatttgc tgttttctat ttccggcggtt tttgttatcta atgttttttttgcatttgcatttgc gataataatg cacaatgttgc ttcatataac gacggatatt ttccacatag tgatatgtt catagcctcg cgcatccccg tatttttaacc ccgtgtataa gcgttttttgcatttgc gcaatttttttctt ctccacatctt aaccaattat cgggatcacc acctaggctc ttggtaaac ggcgccatc taacaaatgc cctaatccca tattatacgc cgcttaaggca aaccaaatac gctcatcttc tttaatcgta tcaggcattt gcgtataataag ccaatgtaaa tattctgaac	1479 1539 1599 1659 1719 1779 1839 1899 1959 2019

cggcttaat actttgttcc ggatccgttc tgtcttgaat t 2060

<210> 12
<211> 178
<212> PRT
<213> Pasteurella multocida

<400> 12
Met Leu Ser Phe Phe Lys Thr Leu Ser Thr Lys Arg Ser Ala Trp Phe
1 5 10 15

Leu Leu Phe Ser Ser Ala Leu Leu Leu Glu Ala Ile Ala Leu Tyr Phe
20 25 30

Gln His Gly Met Gly Leu Ala Pro Cys Val Met Cys Ile Tyr Glu Arg
35 40 45

Val Ala Ile Leu Gly Ile Ala Phe Ser Gly Leu Leu Gly Leu Leu Tyr
50 55 60

Pro Ser Ser Met Leu Leu Arg Leu Val Ala Leu Ile Gly Leu Ser
65 70 75 80

Ser Ala Ile Lys Gly Leu Met Ile Ser Ile Thr His Leu Asp Leu Gln
85 90 95

Leu Tyr Pro Ala Pro Trp Lys Gln Cys Ser Ala Val Ala Glu Phe Pro
100 105 110

Glu Thr Leu Pro Leu Asp Gln Trp Phe Pro Ala Leu Phe Leu Pro Ser
115 120 125

Gly Ser Cys Ser Glu Val Thr Trp Gln Phe Leu Gly Phe Ser Met Val
130 135 140

Gln Trp Ile Val Val Ile Phe Ala Leu Tyr Thr Leu Leu Ala Leu
145 150 155 160

Ile Phe Ile Ser Gln Val Lys Arg Leu Lys Pro Lys Gln Arg Arg Leu
165 170 175

Phe His

<210> 13
<211> 4426
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (2756)..(3211)

<220>
<223> exbB

<400> 13
gaattcttga cctgggtgtga ggcttttatt gacttccacc ccaattgcgc gtttttcac 60
tttattaata aagtcacgta ccactggtaa cgccacatcc gcttctaata atgccatgcg 120

gacttcacgt agcgttcct taatattgtc atcagttaaa cgtccacgtc cactaatgtt 180
acgttagcggtt tttgacaagc gatccgacaa attctcaaac atgcaatctt cctatTTAAT 240
ctcgaaaaaa ttgcctaat tatactgaaa tcccatagat tttcatcctt tgtaataaaat 300
ttatagcgat ttcacagtga gaaagttaga atggacggag aacaaaggta aggaaatttc 360
aatgtggctt tcaattttt ccgtgtttt ttatctattt agtgtcttac tcattacccc 420
tatgttgtt aaaaattcaag cggcgaacc cgcatcggtt cccaatAGGA tgccTTTTT 480
aacggcagca ttactcgcca ttcttctgca ctTTatcaat ctTATTcTC ttttaccga 540
tttaaccagc ggtcaaaatt tctcggttat cgaaatcagt tccttaatca gtgttatgac 600
agcaacgatc gccacattag cgTTTTTATT tcgcatacac acTTTatGGT ttttattacc 660
gattatttt tcttcgcca tcattaatct ggtcctcagt accttaatgc cggcgcattt 720
tttatatcat cttaatcaag atatggcTTT atttattcat gtaggcTTT cactgttgac 780
ttattcggtc tgTTcgattt gcgcgttata ttccattcag tttagTTTGA tcgatcgCGC 840
cttaaaaaat aaaaaactgc ctTTTcacc aatgattcca ccgttaatga ccgtagagcg 900
ccatTTTTT cgttaatgc tgataggtga aatattactc acgattgtcc tcatttcagg 960
gagctaccat ttatcgaaaaa cctttcccc acaagacatc cagaaagctg tttttcttt 1020
cttggcttgg atagtctttg ggagtgcact ggTTggcatt tggaagctcc attggcgtgg 1080
aaaaaaaaagtg gtgtattatg cgcttttagg tatcattctc ctgactatcg cctatTTGG 1140
tagtcgtgta atgcttgaaa tataaacaag atttatttt gctacGCCat agaaaaagtg 1200
cggttcaaaa aacgaaaaaa tgaccgcact ttgcatttt tgattaactc gcaaaaggat 1260
gcattttggc cagtattccc cttagtaccc tctttattac actcatcatc ttattgatca 1320
tctctgctta ttTTcagGC tctgaaaccc gtttggcgtc tgccaatcgt tatcgactac 1380
gccatTTAGC cgaaaaaggG catagaggtg cgaaaaaAGC ggaaaaatttA ctgaaaaaaaa 1440
cagatgtttt gcttagcctg attttaattt gtaataactt agtcaatatt actgcttctg 1500
ccattaccac gattatcgGC atgcgTTTAT atggcgatgc gggagtcGCC attgcaactg 1560
gggcattAAC ctttgtgatg ctTATTTTG ccgaaatTTT gccgaaaact atcgccGCC 1620
gttatccaga aaaagtggca ttacgtcca gtcattgtt gtccgtTTT ctgcgacttt 1680
ttaccccgct ggtctattta atgaatttaa ttattcaggg gatTTggca ctattacgtc 1740
taaaatcaga taataaatacA acctcattAA gcccagAGGA attacgttcc atcgtaaatg 1800
aatcaggtAA atttattcct tccgcccacc aagaaatgct gttatctatt ttggatttag 1860
aaggggtcac cgtagatgac attatggtgc cacgtaatga cattgggggt attgatattg 1920
acgatgattt gaaagccatt atgcgtcaac ttaaccatgc agcgcacGGG cgtgttgac 1980
tgtataaagg aaatatggat gaaaatTTT tggggatgtt acgtgtacgt gaagcctatc 2040

gcttaatgct cgataaaaat gaatttaaca aagaaacttt aatccgtgcc gccgatgaag 2100
 tgtatttat tcctgaaggc acgccactga atagccaatt attaaatttc cgcaacaata 2160
 aagaaaggat tggtttagtt gtagatgaat atggtgatat taaaggctt gtcaccttag 2220
 aagatatctt agaagagatt gtcggtaat ttaccacttc aacagccccca tcaattaacg 2280
 atgaagttat cccacaatca gacgggtcgc ttatcattga gggatccgccc aatttacgtg 2340
 atttgaataa attatggac tggaatctcg ataccgaaga tgcacgtacc ttcaacggct 2400
 taattttaga gcatttagaa gaaattccag aagaaggaac ggtatgtgaa attaatgggc 2460
 tacaaatcac gattctagaa gtgaatgaca acatgattaa acaagccaaa gtcattaaac 2520
 ttttaattcaa catctggcta agcgatgtca tcaagacatc gctttttat tccgtacatg 2580
 aatgtttgat ccaacacaac atttattcaa cattggataa ataatcatcc taaatcgac 2640
 gaatttctta tttacccgt ttttggctt tgctagaatc ttgcaattga aattaattct 2700
 caataccgta taatgttcaa cattatggcgatacaat taaaggatta ttaaa atg 2758
 Met
 1

cca caa tta ttc caa ttc tta caa caa tat att gat tac att att cta 2806
 Pro Gln Leu Phe Gln Phe Leu Gln Gln Tyr Ile Asp Tyr Ile Ile Leu
 5 10 15

ggc tta ctt gcc ttc atg agc ttt att atg gtt tgg ctt gtg att gaa 2854
 Gly Leu Leu Ala Phe Met Ser Phe Ile Met Val Trp Leu Val Ile Glu
 20 25 30

cgc ttt ctt ttc tta agt cgc gtc aac gtg gca tct tat gaa agc ata 2902
 Arg Phe Leu Phe Leu Ser Arg Val Asn Val Ala Ser Tyr Glu Ser Ile
 35 40 45

cat gaa tta gac att gac tta caa cgc cac ctc aca gct atc tct aca 2950
 His Glu Leu Asp Ile Asp Leu Gln Arg His Leu Thr Ala Ile Ser Thr
 50 55 60 65

atc ggt tct aat gca cct tat gta ggt ttg ctt ggt acc gtc att ggt 2998
 Ile Gly Ser Asn Ala Pro Tyr Val Gly Leu Leu Gly Thr Val Ile Gly
 70 75 80

att ctc tta act ttc tat gaa tta ggt cac tcc ggt ggc gat att gat 3046
 Ile Leu Leu Thr Phe Tyr Glu Leu Gly His Ser Gly Gly Asp Ile Asp
 85 90 95

gcg gcg gcc att atg gtg cac tta tca tta gcc tta aaa gcc aca gca 3094
 Ala Ala Ala Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr Ala
 100 105 110

gta ggt att tta gtc gcc att cct gca atg gtg tgc tac aac ggt tta 3142
 Val Gly Ile Leu Val Ala Ile Pro Ala Met Val Cys Tyr Asn Gly Leu
 115 120 125

gga cgt aaa gtc gaa gtt aat cgt ttg aaa tgg ttt gcc tta aat gag 3190
 Gly Arg Lys Val Glu Val Asn Arg Leu Lys Trp Phe Ala Leu Asn Glu
 130 135 140 145

aaa aaa gcc aaa caa caa gca tagggagccg tcatgaaaaa gtttgatgaa 3241

Lys Lys Ala Lys Gln Gln Ala
150

atcaaacatta tccctttat tgacatcatg ttggtaactat tggctatcg tctgattaca 3301
gcctcttta tttcacaagg taaaatccaa gtgaatgtac caaaagcaag ttcaacagtt 3361
gcgtttcggt cagatgattt agccaaattt ctgactatta cgaaaagcgg taaaattttt 3421
tatcacgata aaccgattac gatagaggc ttggaacaag aaatcagtaa ttggaaaaaa 3481
gatcaaaaag tcaccttcaa ggttagatgca aaatccagtt tccaagattt cgtttctatc 3541
actgatatta tggctaaaaa tgaaattaaa aatgtcgcta tcgtgacggt taaagaaaag 3601
gcatctcaat gatagataaa agtcgttctt gcatcggtt tgcaatttca ttgcttttc 3661
acgcaagttt tgtcttttc ctgtatttggaa ttgtacaaaaa agacgatgac agcgcgaatg 3721
gatttgtgc cgatatcatc tcaactcata tttccatggaa aatgctggcg gctaccgttt 3781
tagaagaacc agagccggaa ccagagccgg cgccctccgggt agtagaacct gaactgccaa 3841
aagaagttagt cgccagatccg acggtaaaac ctgagccacc aaaagaaccc gaaaaaccaa 3901
aagagcctga aaagccaaaaa gagaaaccga aagaaaaacc aaaagaaaag ccgaaaaaac 3961
cgaagaaaaga acaacgtgat ttaccaaagt cagatcgcca aattgattct aattcatcga 4021
tcaatcaaca agcgaccaca acaggcaaca tcacaaccaa taatccgaat ctggtcggta 4081
aaggtaatag cacagatgaa gtcaatgctt atcgctcgcc tttacgcaga gaaattgaaa 4141
aacataaaacg ctatccaaac cgtgcacgca ttagtcgca acaagggtgtg gtaacaatca 4201
cgttccatct taataatgcc ggcgttaatta gtaatgcgcg aatcagcaaa tcttccggct 4261
cagaagaatt agataacgct gcactggtag ctgtcaataa tgcccgcca attggccac 4321
tgccctgttgg tatgccaaat gaagtgagcg ttccctgtcag tttcagaatc acaaattaaa 4381
aaagtgcgggt aaaatttacc gcactttttt ctctcttatttta gaatt 4426

<210> 14
<211> 152
<212> PRT
<213> Pasteurella multocida

<400> 14
Met Pro Gln Leu Phe Gln Phe Leu Gln Gln Tyr Ile Asp Tyr Ile Ile
1 5 10 15

Leu Gly Leu Leu Ala Phe Met Ser Phe Ile Met Val Trp Leu Val Ile
20 25 30

Glu Arg Phe Leu Phe Leu Ser Arg Val Asn Val Ala Ser Tyr Glu Ser
35 40 45

Ile His Glu Leu Asp Ile Asp Leu Gln Arg His Leu Thr Ala Ile Ser
50 55 60

Thr Ile Gly Ser Asn Ala Pro Tyr Val Gly Leu Leu Gly Thr Val Ile

65	70	75	80
Gly Ile Leu Leu Thr Phe Tyr Glu Leu Gly His Ser Gly Gly Asp Ile			
85		90	95
Asp Ala Ala Ala Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr			
100		105	110
Ala Val Gly Ile Leu Val Ala Ile Pro Ala Met Val Cys Tyr Asn Gly			
115	120	125	
Leu Gly Arg Lys Val Glu Val Asn Arg Leu Lys Trp Phe Ala Leu Asn			
130	135	140	
Glu Lys Lys Ala Lys Gln Gln Ala			
145	150		

<210> 15
 <211> 6876
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (534)..(6863)

<220>
 <223> fhaB1

<400> 15
 agatgcgtga tctgatccctt caactcagca aaagttcgat ttattcaaca aagccggcgt 60
 cccgtcaagt cagcgtaatg tctgccagtg ttacaccaat taaccaattc tgatttagaaa 120
 aactcatcga gcatcaaatg aaactgcaat ttattcataat caggattatc aataccatat 180
 ttttgaaaaaa gccgtttctg taatgaagga gaaaactcac cgaggcagtt ccataggatg 240
 gcaagatcct ggtatcggtc tgcgattccg actcgtccaa catcaataca acctattaat 300
 ttcccctcgt caaaaataag gttatcaagt gagaaatcac catgagtgac gactgaatcc 360
 ggtgagaatg gcaaaagctt atgcatttct ttccagactt gttcaacagg ccagccatta 420
 cgctcgtcat caaaatcact cgcatcaacc aaaccgttat tcattcgtga ttgcgcctga 480
 gcgagacgaa atacgcgatc gctgtaaaaa ggacaattac aaacaggaat cga atg 536
 Met
 1

caa ccg gcg cag gaa cac tgc cag cgc atc aac aat att gtt aac caa 584
 Gln Pro Ala Gln Glu His Cys Gln Arg Ile Asn Asn Ile Val Asn Gln
 5 10 15

gaa aac ggt tta ttc cat aca ctc ggt aat atg atg tta gaa gca gag 632
 Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu
 20 25 30

cgt tct gtt tat aat att ggc gat att tat gcg agt aaa aaa tta aca 680
 Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr
 35 40 45

gtt cat act cat aat ttg att aat gat gtg cgt tta tct ggc aat gtg Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn Val 50 55 60 65	728
agt tat aag cct atc ggt tca agt cgt gat tat gat atc agt cgt gtt Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg Val 70 75 80	776
gcg gta cat ggt tgg cac aat aat gtt tat aag ctc aac tta aat ctg Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn Leu 85 90 95	824
caa gaa caa gat aaa acc gat att aat gtt gtg aaa atg ggg gct atc Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala Ile 100 105 110	872
cgt tct gat ggt gat ttt gac ttt aag gga ata aat gtc aca tca tca Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser Ser 115 120 125	920
gaa tca aaa ccg cag tta att aat cat gga tta att aat gtc aaa gga Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys Gly 130 135 140 145	968
aca ttt aat gcg gaa gct gat caa gtg gtg aac caa atg aaa gcg ttt Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala Phe 150 155 160	1016
aac caa aat gca tta gca agc gtg ttt aag aat cca gcg aaa atc acg Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile Thr 165 170 175	1064
atg tac tat caa cca ctt act cgt tat att tgg aca cca tta tcg ggt Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser Gly 180 185 190	1112
aat gca tcg cgt gaa ttt aac aat tta gag tct ttc ctc gat gcc ttg Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala Leu 195 200 205	1160
ttt ggc tca aca aca atc tta aaa tca agt ttc tat agt acg gaa aat Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu Asn 210 215 220 225	1208
ttt agt gct tat cag ctt cta tct cat att cag cat tca cca atg tac Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met Tyr 230 235 240	1256
caa aaa gcg atg gca caa gtg ttt ggt gca gag tgg cat agt aaa tcc Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys Ser 245 250 255	1304
tat gat gag atg cga aac aaa tgg aaa agc ttt aaa gaa aat cca aca Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro Thr 260 265 270	1352
gat ttc att tat tac cca tca gaa aaa gca aaa atc cta gcg gga aaa Asp Phe Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly Lys 275 280 285	1400
cta gaa ggt aag ctt aca acg cta caa aat ggt gaa tat gcc gaa cgt Leu Glu Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu Arg 290 295 300 305	1448

ggt aag ttt gat gag agt atc caa att ggt aaa cac caa tta tcg cta Gly Lys Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser Leu 310 315 320	1496
cca tca gta gag ctt aaa gcg gag ttt agt gat aaa gaa cgt ttg gaa Pro Ser Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu Glu 325 330 335	1544
gag gac ggg gta gat tta tcc tcg atc gcc gaa ctc tta gaa atg cca Glu Asp Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met Pro 340 345 350	1592
aac tta ttt att gat aat agt atc caa tta gaa aag aaa aag ttg tct Asn Leu Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Lys Leu Ser 355 360 365	1640
cct att gag gat cta gat gaa gaa cca cgt aaa aat ctg gat ata gaa Pro Ile Glu Asp Leu Asp Glu Pro Arg Lys Asn Leu Asp Ile Glu 370 375 380 385	1688
gaa agc cat tct aat tca tcg gat gac gtg ctt agc atg aat gat gat Glu Ser His Ser Asn Ser Asp Asp Val Leu Ser Met Asn Asp Asp 390 395 400	1736
gag tct gat aca gac gat agc aag tgg agt atg ggc aat gat gag aaa Glu Ser Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu Lys 405 410 415	1784
gag atg ccc gat gat aag ctg ggt ata agt cgt gat gat cgt gga aat Glu Met Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn 420 425 430	1832
aaa cca cct cgt act gat cct aca gtt gat tat ctt aac cct gat gaa Lys Pro Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu 435 440 445	1880
ttc ttt gaa aat ggt tat ctc ttg aat gag cta cta cag gag ctt gga Phe Phe Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly 450 455 460 465	1928
gaa gag ccg tta cta aaa gaa ggg gaa gat cat ttt aaa cgt tct acc Glu Glu Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr 470 475 480	1976
aat cta gtc cgt cta ggc gag aga gat agg caa aat aga gaa aag aga Asn Leu Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys Arg 485 490 495	2024
gaa aaa gag ggg tat ttt gat ctg cct ggt aca tta gat atg aaa ctg Glu Lys Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys Leu 500 505 510	2072
cag gag tta ttc gaa aaa aga aaa caa aaa cac gaa gca gaa cag aaa Gln Glu Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys 515 520 525	2120
gca aga ata gaa aaa gca ctt cta caa aaa tca gaa caa caa gaa aaa Ala Arg Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu Lys 530 535 540 545	2168
cgt gtt gaa gaa cgt aag caa gag gaa aaa cgt caa gcg caa gat aaa Arg Val Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys 550 555 560	2216

att gct aag caa gta gaa att gca aaa gaa atg caa cg ^g gta gaa gaa Ile Ala Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu 565 570 575	2264
att cgc cag aga gaa aaa caa ctt gc ^g atc caa ctg caa gaa gaa gag Ile Arg Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu Glu 580 585 590	2312
aag aaa caa caa gaa gaa aaa cat tta tcc gag gag aaa aaa caa gct Lys Lys Gln Gln Glu Lys His Leu Ser Glu Glu Lys Lys Gln Ala 595 600 605	2360
gaa cag aaa caa aaa gct gag gag aaa gtt gca caa gaa aga tta gac Glu Gln Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Asp 610 615 620 625	2408
att gaa caa cag aaa gc ^g tat gaa gaa atg gc ^g aag cga gag gca gag Ile Glu Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu 630 635 640	2456
gca tca aaa aat gtt tta ttg aaa gc ^g att gat gaa gaa cgt cca aaa Ala Ser Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro Lys 645 650 655	2504
gtg gaa act gat cca ctt ttc cgt aca aaa ttg aaa tat atc aat caa Val Glu Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn Gln 660 665 670	2552
gat gac tat gct ggt gca aat tat ttc ttc aat aaa gtt ggt tta aat Asp Asp Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu Asn 675 680 685	2600
aca aaa ggt cat caa aaa gta aat gtg tta ggg gat aac tat ttt gat Thr Lys Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe Asp 690 695 700 705	2648
cat caa gtg att act gc ^g tcg att gag aaa aaa gta gat aac cac ctt His Gln Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His Leu 710 715 720	2696
aac caa aaa tac aat ctc agc gat gtg gaa tta gtt aaa cag ctg atg Asn Gln Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu Met 725 730 735	2744
gac aat tcc aca aca caa gc ^g cag gag ttg gat ttg aaa cta ggt gc ^g Asp Asn Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly Ala 740 745 750	2792
gca tta act aaa gaa caa caa gct aac ttg acc caa gat atc gtt tgg Ala Leu Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val Trp 755 760 765	2840
tat gtc aaa acg aag gta aag gg ^c aaa gat gtg ttt gtt cca aag gtt Tyr Val Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys Val 770 775 780 785	2888
tat ttc gct tct gaa acg ctc gta gaa gc ^c caa aaa tta caa ggt tta Tyr Phe Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly Leu 790 795 800	2936
ggc act ggg act atc aga gtt ggt gaa gct aag att aaa gc ^c aaa gat Gly Thr Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys Asp 805 810 815	2984

gtg gtg aat acc ggg aca tta gct ggg aga aaa ctc aat gtt gaa gcg Val Val Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu Ala 820 825 830	3032
agt aat aaa atc aaa aat caa ggg agt atc tta agt act caa gaa aca Ser Asn Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu Thr 835 840 845	3080
cgt tta gtc ggg cgt aaa ggt att gaa aac gta tct cgt tca ttt gca Arg Leu Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe Ala 850 855 860 865	3128
aat gat gaa tta gga gtc act gca caa cgc tca gaa atc aaa acg gaa Asn Asp Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr Glu 870 875 880	3176
ggt cat tta cat ctt gaa aca gat aag gat tca act att gat gta caa Gly His Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val Gln 885 890 895	3224
gca tcg gat att aaa gca aaa aca agc ttt gtg aag act ggt gat gtg Ala Ser Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp Val 900 905 910	3272
aat ctc aaa aat aca tac aat act aaa cat gcc tac cgt gag aaa ttc Asn Leu Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu Lys Phe 915 920 925	3320
tcg ccg agt gca cta caa gtt gca gaa ctt gat gtg gca ggg ctt aaa Ser Pro Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu Lys 930 935 940 945	3368
gtc cca ctt tta ggc gtg tcg tct cca tcc agt tat tca gag cat act Val Pro Leu Leu Gly Val Ser Ser Pro Ser Ser Tyr Ser Glu His Thr 950 955 960	3416
agt gag gca act tca gag gga tca atc ttc gaa gta ggg cac tta cat Ser Glu Ala Thr Ser Glu Gly Ser Ile Phe Glu Val Gly His Leu His 965 970 975	3464
ctt gcg gta gac aga gat gtg aac caa gcg ggg agt aaa att aag gct Leu Ala Val Asp Arg Asp Val Asn Gln Ala Gly Ser Lys Ile Lys Ala 980 985 990	3512
aag tat acc act ggt gtt gtg aaa ggg aac ttt aat act gaa gcg ggc Lys Tyr Thr Gly Val Val Lys Gly Asn Phe Asn Thr Glu Ala Gly 995 1000 1005	3560
aag aat att aaa cat gtc gaa aaa gaa gaa tat agt tca cag cta ttt Lys Asn Ile Lys His Val Glu Lys Glu Tyr Ser Ser Gln Leu Phe 1010 1015 1020 1025	3608
gct tca gca cac gcg agt ggt ggt ggc acc tca gtt cgt tat gac tat Ala Ser Ala His Ala Ser Gly Gly Thr Ser Val Arg Tyr Asp Tyr 1030 1035 1040	3656
aac agc caa gat ggt ggc aat gcc tct gtt ggt gtt ccg aca aac cat Asn Ser Gln Asp Gly Gly Asn Ala Ser Val Gly Val Pro Thr Asn His 1045 1050 1055	3704
act gga gtt ggg gca gag gca gga atg tca ttc acc cat acc aaa gac Thr Gly Val Gly Ala Glu Ala Gly Met Ser Phe Thr His Thr Lys Asp 1060 1065 1070	3752

aaa gaa aca ctg ctc act cac acc aat agt gaa tta caa gtc aaa cat		3800
Lys Glu Thr Leu Leu Thr His Thr Asn Ser Glu Leu Gln Val Lys His		
1075	1080	1085
ggg aaa tta cat gtg ctt ggt tat gcc gat att ggt gga gta gat att		3848
Gly Lys Leu His Val Leu Gly Tyr Ala Asp Ile Gly Gly Val Asp Ile		
1090	1095	1100
1105		
aat act aaa cta cca gaa gat gca caa agc aaa gca cag aaa gag ata		3896
Asn Thr Lys Leu Pro Glu Asp Ala Gln Ser Lys Ala Gln Lys Glu Ile		
1110	1115	1120
gcg gct agc aag cca gag aag acc gag caa tct gca cag gat gtg gct		3944
Ala Ala Ser Lys Pro Glu Lys Thr Glu Gln Ser Ala Gln Asp Val Ala		
1125	1130	1135
caa gct caa tca aat gcc aat aag gat aag gaa aat aaa gcc cca gaa		3992
Gln Ala Gln Ser Asn Ala Asn Lys Asp Lys Glu Asn Lys Ala Pro Glu		
1140	1145	1150
ata aaa gaa tta tca gag gct gaa atc gcg gat ctc atg tca gaa aaa		4040
Ile Lys Glu Leu Ser Glu Ala Glu Ile Ala Asp Leu Met Ser Glu Lys		
1155	1160	1165
tca aaa gcg tat ttt gat gat ttt gca gag caa gcg aaa aaa gca cct		4088
Ser Lys Ala Tyr Phe Asp Asp Phe Ala Glu Gln Ala Lys Lys Ala Pro		
1170	1175	1180
1185		
gaa aac aat cga ttt gaa ttg tct gcg aaa gaa att aag tcg agc aaa		4136
Glu Asn Asn Arg Phe Glu Leu Ser Ala Lys Glu Ile Lys Ser Ser Lys		
1190	1195	1200
caa aaa gac caa tat gat cat gag tct gaa cgg acg act ttt aaa gtt		4184
Gln Lys Asp Gln Tyr Asp His Glu Ser Glu Arg Thr Thr Phe Lys Val		
1205	1210	1215
gga cct gaa gcg gag gct cat tct gcg gtt gcc gat atg gtg agc cat		4232
Gly Pro Glu Ala Glu Ala His Ser Ala Val Ala Asp Met Val Ser His		
1220	1225	1230
ttt gtg aaa gaa tat aga gat gca caa aat ggg act aaa caa gac ggt		4280
Leu Val Lys Glu Tyr Arg Asp Ala Gln Asn Gly Thr Lys Gln Asp Gly		
1235	1240	1245
aca gta gca tta caa cat gct agt gat gtc tta aat att gtg acg ggg		4328
Thr Val Ala Leu Gln His Ala Ser Asp Val Leu Asn Ile Val Thr Gly		
1250	1255	1260
1265		
gat tta gcg ggg agt tca gct aaa ttg tct gtt gaa aga aca cat gag		4376
Asp Leu Ala Gly Ser Ser Ala Lys Leu Ser Val Glu Arg Thr His Glu		
1270	1275	1280
aca aaa cga acg aca gaa acg ggg gat att gtt act aag att ggt ggc		4424
Thr Lys Arg Thr Thr Glu Thr Gly Asp Ile Val Thr Lys Ile Gly Gly		
1285	1290	1295
aat gtc aca ctg tca gca cgc agt ggt agt gtg aac ctt aaa aat gta		4472
Asn Val Thr Leu Ser Ala Arg Ser Gly Ser Val Asn Leu Lys Asn Val		
1300	1305	1310
caa agt gat gaa caa gct aat ttg acc tta aga gca aaa gaa gat gtg		4520
Gln Ser Asp Glu Gln Ala Asn Leu Thr Leu Arg Ala Lys Glu Asp Val		
1315	1320	1325

aat gtg ctg tct ggt gaa aaa aca cga gaa acc aca gaa aca gta tca Asn Val Leu Ser Gly Glu Lys Thr Arg Glu Thr Thr Glu Thr Val Ser 1330 1335 1340 1345	4568
aga cag aaa ctt tct cat ggt gtg aac gca ggt tgc agt atg atg agt Arg Gln Lys Leu Ser His Gly Val Asn Ala Gly Cys Ser Met Met Ser 1350 1355 1360	4616
ggc gcc tgt act gcc ggt gtt agc aca tca ctt gaa gga aat gaa agc Gly Ala Cys Thr Ala Gly Val Ser Thr Ser Leu Glu Gly Asn Glu Ser 1365 1370 1375	4664
tat acg tca gaa cgt gaa acg gct caa aat aac agt ttc tta aaa gca Tyr Thr Ser Glu Arg Glu Thr Ala Gln Asn Asn Ser Phe Leu Lys Ala 1380 1385 1390	4712
cgc aac atg aaa gtt gaa gca ggt cgcc gat ttt aat gtt gtc agt tcg Arg Asn Met Lys Val Glu Ala Gly Arg Asp Phe Asn Val Val Ser Ser 1395 1400 1405	4760
aat att gat gca gat aag ctc gat ctc cac gtt aaa gga aaa acg aat Asn Ile Asp Ala Asp Lys Leu Asp Leu His Val Lys Gly Lys Thr Asn 1410 1415 1420 1425	4808
gtg gta tcc aaa caa gat acg tta caa aaa gtc acg cat gga gtt gac Val Val Ser Lys Gln Asp Thr Leu Gln Lys Val Thr His Gly Val Asp 1430 1435 1440	4856
tat aat ctt tcc gct ggc gtt gca ctt tct agt gca aca att gct acc Tyr Asn Leu Ser Ala Gly Val Ala Leu Ser Ser Ala Thr Ile Ala Thr 1445 1450 1455	4904
cca acc ggt aat gtt ggt ttc ggt tat acc aat gag acc gaa agc aag Pro Thr Gly Asn Val Gly Phe Gly Tyr Thr Asn Glu Thr Glu Ser Lys 1460 1465 1470	4952
cgg acg gtt aat caa caa gca ggg att aaa gcg aat aaa att aca ggg Arg Thr Val Asn Gln Gln Ala Gly Ile Lys Ala Asn Lys Ile Thr Gly 1475 1480 1485	5000
caa acg cat gac tta aat ctt gag ggg gga tat ctt gtc agc aac gat Gln Thr His Asp Leu Asn Leu Glu Gly Tyr Leu Val Ser Asn Asp 1490 1495 1500 1505	5048
aag gat aat cag ctg aaa gtt acc ggc gat gtc aca act aaa gcc ctt Lys Asp Asn Gln Leu Lys Val Thr Gly Asp Val Thr Thr Lys Ala Leu 1510 1515 1520	5096
cac gat caa cat gat aaa gat ggt gga aca ttt ggt tta tct gtc ggt His Asp Gln His Asp Lys Asp Gly Gly Thr Phe Gly Leu Ser Val Gly 1525 1530 1535	5144
atc agt gaa cgt ggt act acc gcc ttt aat gta cga ggt ggg cga gct Ile Ser Glu Arg Gly Thr Thr Ala Phe Asn Val Arg Gly Arg Ala 1540 1545 1550	5192
gaa cag aaa cac tat aat gca acg cag aaa tcc act ctt tct ggc gtg Glu Gln Lys His Tyr Asn Ala Thr Gln Lys Ser Thr Leu Ser Gly Val 1555 1560 1565	5240
gat acc tct caa gcg aat gta tca ggt caa gtg aat aca gat tta acc Asp Thr Ser Gln Ala Asn Val Ser Gly Gln Val Asn Thr Asp Leu Thr 1570 1575 1580 1585	5288

aag gca aaa gct gtc aca cgt gat gat act tac gca agt acg caa ttt Lys Ala Lys Ala Val Thr Arg Asp Asp Thr Tyr Ala Ser Thr Gln Phe 1590 1595 1600	5336
agt ttt gaa gtg gca gat att gtg gaa tta gga cag aga gcg aaa aac Ser Phe Glu Val Ala Asp Ile Val Glu Leu Gly Gln Arg Ala Lys Asn 1605 1610 1615	5384
aag ctg tca gca cca aac aat gac acc gat atg gcg tca ggc tcc aca Lys Leu Ser Ala Pro Asn Asn Asp Thr Asp Met Ala Ser Gly Ser Thr 1620 1625 1630	5432
tta cgc tcg cgt tct act aca gaa gaa gca gat gta cca aca aca aga Leu Arg Ser Arg Ser Thr Thr Glu Glu Ala Asp Val Pro Thr Thr Arg 1635 1640 1645	5480
tcg cgt gta acg gat gag gcg gat tct gta tcc gtg aaa aat ccg att Ser Arg Val Thr Asp Glu Ala Asp Ser Val Ser Val Lys Asn Pro Ile 1650 1655 1660 1665	5528
tat gaa agt gca gat gct gtt gta cca aca cca cgt agt aga aat gtg Tyr Glu Ser Ala Asp Ala Val Val Pro Thr Pro Arg Ser Arg Asn Val 1670 1675 1680	5576
gac agt acc gat ctt gtg gac aat cca ctg tat gct agt gcc act aca Asp Ser Thr Asp Leu Val Asp Asn Pro Leu Tyr Ala Ser Ala Thr Thr 1685 1690 1695	5624
aaa gca aac atc cat gat tat gaa gaa att cca gcc gtt tat agc aaa Lys Ala Asn Ile His Asp Tyr Glu Glu Ile Pro Ala Val Tyr Ser Lys 1700 1705 1710	5672
gtc ggt gat aac aat gct gat ctt gtt cgt cat aaa acg gca act agt Val Gly Asp Asn Asn Ala Asp Leu Val Arg His Lys Thr Ala Thr Ser 1715 1720 1725	5720
gat gag cat ctt tat gca gag att aat gaa cca aca tat agc cgt gtt Asp Glu His Leu Tyr Ala Glu Ile Asn Glu Pro Thr Tyr Ser Arg Val 1730 1735 1740 1745	5768
ggg gat aaa aat gca gat atg aga cgt cat aac gcg gca ggt aca aca Gly Asp Lys Asn Ala Asp Met Arg Arg His Asn Ala Ala Gly Thr Thr 1750 1755 1760	5816
gac tat gcc gat gtc gtg caa gca cat aca aga aag gca gat gat cca Asp Tyr Ala Asp Val Val Gln Ala His Thr Arg Lys Ala Asp Asp Pro 1765 1770 1775	5864
cta cca gca tta ccg aat cag ggt aaa gca aga acg gta aac gac ggt Leu Pro Ala Leu Pro Asn Gln Gly Lys Ala Arg Thr Val Asn Asp Gly 1780 1785 1790	5912
tca gag cat att tat act gat att agc gac gtg ggc act caa act aaa Ser Glu His Ile Tyr Thr Asp Ile Ser Asp Val Gly Thr Gln Thr Lys 1795 1800 1805	5960
gct att gat agt act tat gca aca gta ggc atg ccg aaa gcg aat gcc Ala Ile Asp Ser Thr Tyr Ala Thr Val Gly Met Pro Lys Ala Asn Ala 1810 1815 1820 1825	6008
gtt aac ttg ata ggg caa aat ggc tta ggc agc att tat cac agc cca Val Asn Leu Ile Gly Gln Asn Gly Leu Gly Ser Ile Tyr His Ser Pro 1830 1835 1840	6056

gac agt gct tat aaa aca tgg caa ttg ctt gat caa ttt gcc aac aaa Asp Ser Ala Tyr Lys Thr Trp Gln Leu Leu Asp Gln Phe Ala Asn Lys 1845 1850 1855	6104
ggc gga gat gcg gtc ttc tta cgc cct gca aca gaa atg aaa tgt gca Gly Gly Asp Ala Val Phe Leu Arg Pro Ala Thr Glu Met Lys Cys Ala 1860 1865 1870	6152
ggt gca cct tta aaa tat acc ttt atc gtg cgt gat tat ttg ctc aga Gly Ala Pro Leu Lys Tyr Thr Phe Ile Val Arg Asp Tyr Leu Leu Arg 1875 1880 1885	6200
cgc cat acc tta gat aaa tca aga tta ttt tat aac gca cat aat aaa Arg His Thr Leu Asp Lys Ser Arg Leu Phe Tyr Asn Ala His Asn Lys 1890 1895 1900 1905	6248
acc tta ttt agc gtg cct atc gtt gat gca aaa gtc aaa atg ctg ttt Thr Leu Phe Ser Val Pro Ile Val Asp Ala Lys Val Lys Met Leu Phe 1910 1915 1920	6296
gct gaa aaa aat atc caa gtc aat tac gat cgt agc ctt aca gcc att Ala Glu Lys Asn Ile Gln Val Asn Tyr Asp Arg Ser Leu Thr Ala Ile 1925 1930 1935	6344
gat ctg agt aaa cgt att gcg acc ttt aat agc cca gaa gga gtt gta Asp Leu Ser Lys Arg Ile Ala Thr Phe Asn Ser Pro Glu Gly Val Val 1940 1945 1950	6392
gaa gtc cct tat gat ttt att aat gtg gta cct cca atg cga gca cct Glu Val Pro Tyr Asp Phe Ile Asn Val Val Pro Pro Met Arg Ala Pro 1955 1960 1965	6440
gat gcc gtt cgt caa tca gca ctc gcg tgg caa gaa gga aaa tgg gct Asp Ala Val Arg Gln Ser Ala Leu Ala Trp Gln Glu Gly Lys Trp Ala 1970 1975 1980 1985	6488
aac gat ggt tgg gtt gaa gta gaa aaa cat acc ttg cgt cac cgt cgt Asn Asp Gly Trp Val Glu Val Glu Lys His Thr Leu Arg His Arg Arg 1990 1995 2000	6536
tat gcc aat gtg ttt gct gtg ggt gat gtg gca ggg gtc cca aaa ggc Tyr Ala Asn Val Phe Ala Val Gly Asp Val Ala Gly Val Pro Lys Gly 2005 2010 2015	6584
aaa acg gct gcc agt gtc aaa tgg caa gtt cct gtt gca gtg gca cat Lys Thr Ala Ala Ser Val Lys Trp Gln Val Pro Val Ala Val Ala His 2020 2025 2030	6632
tta ctc gca gaa tta gag ggc aaa cct tgt gat gaa att tac aac ggt Leu Leu Ala Glu Leu Glu Gly Lys Pro Cys Asp Glu Ile Tyr Asn Gly 2035 2040 2045	6680
tat aca tct tgt cca tta att act caa tta gga aag ggg atg cta gta Tyr Thr Ser Cys Pro Leu Ile Thr Gln Leu Gly Lys Gly Met Leu Val 2050 2055 2060 2065	6728
gaa ttt gat tat aac aac cac tta aca cct tct ttc ccc ggt gta ata . Glu Phe Asp Tyr Asn Asn His Leu Thr Pro Ser Phe Pro Gly Val Ile 2070 2075 2080	6776
gcg cca tta gaa gaa ctg tgg gca aca tgg gca att aaa aca tta ggt Ala Pro Leu Glu Glu Leu Trp Ala Thr Trp Ala Ile Lys Thr Leu Gly 2085 2090 2095	6824

tta aaa ccc act tat tta ggt atg tta cgt gga tta gct taaggagcgt	6873																																																																																																																				
Leu Lys Pro Thr Tyr Leu Gly Met Leu Arg Gly Leu Ala																																																																																																																					
2100	2105	2110		 tga	6876	 <210> 16		<211> 2110		<212> PRT		<213> Pasteurella multocida		 <400> 16		Met Gln Pro Ala Gln Glu His Cys Gln Arg Ile Asn Asn Ile Val Asn	6876	1	5	10		 Gln Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala		20	25	30		 Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu		35	40	45		 Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn		50	55	60		 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg		65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270	
2110																																																																																																																					
 tga	6876																																																																																																																				
 <210> 16																																																																																																																					
<211> 2110																																																																																																																					
<212> PRT																																																																																																																					
<213> Pasteurella multocida																																																																																																																					
 <400> 16																																																																																																																					
Met Gln Pro Ala Gln Glu His Cys Gln Arg Ile Asn Asn Ile Val Asn	6876																																																																																																																				
1	5	10		 Gln Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala		20	25	30		 Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu		35	40	45		 Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn		50	55	60		 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg		65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																			
10																																																																																																																					
 Gln Glu Asn Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala																																																																																																																					
20	25	30		 Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu		35	40	45		 Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn		50	55	60		 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg		65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																									
30																																																																																																																					
 Glu Arg Ser Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu																																																																																																																					
35	40	45		 Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn		50	55	60		 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg		65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																															
45																																																																																																																					
 Thr Val His Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn																																																																																																																					
50	55	60		 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg		65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																					
60																																																																																																																					
 Val Ser Tyr Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg																																																																																																																					
65	70	75	80	 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn		85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																											
75	80																																																																																																																				
 Val Ala Val His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn																																																																																																																					
85	90	95		 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala		100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																	
95																																																																																																																					
 Leu Gln Glu Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala																																																																																																																					
100	105	110		 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser		115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																							
110																																																																																																																					
 Ile Arg Ser Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser																																																																																																																					
115	120	125		 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys		130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																													
125																																																																																																																					
 Ser Glu Ser Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys																																																																																																																					
130	135	140		 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala		145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																			
140																																																																																																																					
 Gly Thr Phe Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala																																																																																																																					
145	150	155	160	 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile		165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																									
155	160																																																																																																																				
 Phe Asn Gln Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile																																																																																																																					
165	170	175		 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser		180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																															
175																																																																																																																					
 Thr Met Tyr Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser																																																																																																																					
180	185	190		 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala		195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																																					
190																																																																																																																					
 Gly Asn Ala Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala																																																																																																																					
195	200	205		 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu		210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																																											
205																																																																																																																					
 Leu Phe Gly Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu																																																																																																																					
210	215	220		 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met		225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																																																	
220																																																																																																																					
 Asn Phe Ser Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met																																																																																																																					
225	230	235	240	 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys		245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																																																							
235	240																																																																																																																				
 Tyr Gln Lys Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys																																																																																																																					
245	250	255		 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro		260	265	270																																																																																																													
255																																																																																																																					
 Ser Tyr Asp Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro																																																																																																																					
260	265	270																																																																																																																			
270																																																																																																																					

Thr Asp Phe Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly
 275 280 285
 Lys Leu Glu Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu
 290 295 300
 Arg Gly Lys Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser
 305 310 315 320
 Leu Pro Ser Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu
 325 330 335
 Glu Glu Asp Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met
 340 345 350
 Pro Asn Leu Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Lys Leu
 355 360 365
 Ser Pro Ile Glu Asp Leu Asp Glu Glu Pro Arg Lys Asn Leu Asp Ile
 370 375 380
 Glu Glu Ser His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp
 385 390 395 400
 Asp Glu Ser Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu
 405 410 415
 Lys Glu Met Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly
 420 425 430
 Asn Lys Pro Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp
 435 440 445
 Glu Phe Phe Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu
 450 455 460
 Gly Glu Glu Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser
 465 470 475 480
 Thr Asn Leu Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys
 485 490 495
 Arg Glu Lys Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys
 500 505 510
 Leu Gln Glu Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln
 515 520 525
 Lys Ala Arg Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu
 530 535 540
 Lys Arg Val Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp
 545 550 555 560
 Lys Ile Ala Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu
 565 570 575
 Glu Ile Arg Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu
 580 585 590
 Glu Lys Lys Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln
 595 600 605

Ala Glu Gln Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu
 610 615 620
 Asp Ile Glu Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala
 625 630 635 640
 Glu Ala Ser Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro
 645 650 655
 Lys Val Glu Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn
 660 665 670
 Gln Asp Asp Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu
 675 680 685
 Asn Thr Lys Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe
 690 695 700
 Asp His Gln Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His
 705 710 715 720
 Leu Asn Gln Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu
 725 730 735
 Met Asp Asn Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly
 740 745 750
 Ala Ala Leu Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val
 755 760 765
 Trp Tyr Val Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys
 770 775 780
 Val Tyr Phe Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly
 785 790 795 800
 Leu Gly Thr Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys
 805 810 815
 Asp Val Val Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu
 820 825 830
 Ala Ser Asn Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu
 835 840 845
 Thr Arg Leu Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe
 850 855 860
 Ala Asn Asp Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr
 865 870 875 880
 Glu Gly His Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val
 885 890 895
 Gln Ala Ser Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp
 900 905 910
 Val Asn Leu Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu Lys
 915 920 925
 Phe Ser Pro Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu
 930 935 940

Lys Val Pro Leu Leu Gly Val Ser Ser Pro Ser Ser Tyr Ser Glu His
 945 950 955 960
 Thr Ser Glu Ala Thr Ser Glu Gly Ser Ile Phe Glu Val Gly His Leu
 965 970 975
 His Leu Ala Val Asp Arg Asp Val Asn Gln Ala Gly Ser Lys Ile Lys
 980 985 990
 Ala Lys Tyr Thr Thr Gly Val Val Lys Gly Asn Phe Asn Thr Glu Ala
 995 1000 1005
 Gly Lys Asn Ile Lys His Val Glu Lys Glu Glu Tyr Ser Ser Gln Leu
 1010 1015 1020
 Phe Ala Ser Ala His Ala Ser Gly Gly Thr Ser Val Arg Tyr Asp
 1025 1030 1035 1040
 Tyr Asn Ser Gln Asp Gly Gly Asn Ala Ser Val Gly Val Pro Thr Asn
 1045 1050 1055
 His Thr Gly Val Gly Ala Glu Ala Gly Met Ser Phe Thr His Thr Lys
 1060 1065 1070
 Asp Lys Glu Thr Leu Leu Thr His Thr Asn Ser Glu Leu Gln Val Lys
 1075 1080 1085
 His Gly Lys Leu His Val Leu Gly Tyr Ala Asp Ile Gly Gly Val Asp
 1090 1095 1100
 Ile Asn Thr Lys Leu Pro Glu Asp Ala Gln Ser Lys Ala Gln Lys Glu
 1105 1110 1115 1120
 Ile Ala Ala Ser Lys Pro Glu Lys Thr Glu Gln Ser Ala Gln Asp Val
 1125 1130 1135
 Ala Gln Ala Gln Ser Asn Ala Asn Lys Asp Lys Glu Asn Lys Ala Pro
 1140 1145 1150
 Glu Ile Lys Glu Leu Ser Glu Ala Glu Ile Ala Asp Leu Met Ser Glu
 1155 1160 1165
 Lys Ser Lys Ala Tyr Phe Asp Asp Phe Ala Glu Gln Ala Lys Lys Ala
 1170 1175 1180
 Pro Glu Asn Asn Arg Phe Glu Leu Ser Ala Lys Glu Ile Lys Ser Ser
 1185 1190 1195 1200
 Lys Gln Lys Asp Gln Tyr Asp His Glu Ser Glu Arg Thr Thr Phe Lys
 1205 1210 1215
 Val Gly Pro Glu Ala Glu Ala His Ser Ala Val Ala Asp Met Val Ser
 1220 1225 1230
 His Leu Val Lys Glu Tyr Arg Asp Ala Gln Asn Gly Thr Lys Gln Asp
 1235 1240 1245
 Gly Thr Val Ala Leu Gln His Ala Ser Asp Val Leu Asn Ile Val Thr
 1250 1255 1260
 Gly Asp Leu Ala Gly Ser Ser Ala Lys Leu Ser Val Glu Arg Thr His
 1265 1270 1275 1280

Glu Thr Lys Arg Thr Thr Glu Thr Gly Asp Ile Val Thr Lys Ile Gly
 1285 1290 1295
 Gly Asn Val Thr Leu Ser Ala Arg Ser Gly Ser Val Asn Leu Lys Asn
 1300 1305 1310
 Val Gln Ser Asp Glu Gln Ala Asn Leu Thr Leu Arg Ala Lys Glu Asp
 1315 1320 1325
 Val Asn Val Leu Ser Gly Glu Lys Thr Arg Glu Thr Thr Glu Thr Val
 1330 1335 1340
 Ser Arg Gln Lys Leu Ser His Gly Val Asn Ala Gly Cys Ser Met Met
 1345 1350 1355 1360
 Ser Gly Ala Cys Thr Ala Gly Val Ser Thr Ser Leu Glu Gly Asn Glu
 1365 1370 1375
 Ser Tyr Thr Ser Glu Arg Glu Thr Ala Gln Asn Asn Ser Phe Leu Lys
 1380 1385 1390
 Ala Arg Asn Met Lys Val Glu Ala Gly Arg Asp Phe Asn Val Val Ser
 1395 1400 1405
 Ser Asn Ile Asp Ala Asp Lys Leu Asp Leu His Val Lys Gly Lys Thr
 1410 1415 1420
 Asn Val Val Ser Lys Gln Asp Thr Leu Gln Lys Val Thr His Gly Val
 1425 1430 1435 1440
 Asp Tyr Asn Leu Ser Ala Gly Val Ala Leu Ser Ser Ala Thr Ile Ala
 1445 1450 1455
 Thr Pro Thr Gly Asn Val Gly Phe Gly Tyr Thr Asn Glu Thr Glu Ser
 1460 1465 1470
 Lys Arg Thr Val Asn Gln Gln Ala Gly Ile Lys Ala Asn Lys Ile Thr
 1475 1480 1485
 Gly Gln Thr His Asp Leu Asn Leu Glu Gly Tyr Leu Val Ser Asn
 1490 1495 1500
 Asp Lys Asp Asn Gln Leu Lys Val Thr Gly Asp Val Thr Thr Lys Ala
 1505 1510 1515 1520
 Leu His Asp Gln His Asp Lys Asp Gly Gly Thr Phe Gly Leu Ser Val
 1525 1530 1535
 Gly Ile Ser Glu Arg Gly Thr Thr Ala Phe Asn Val Arg Gly Gly Arg
 1540 1545 1550
 Ala Glu Gln Lys His Tyr Asn Ala Thr Gln Lys Ser Thr Leu Ser Gly
 1555 1560 1565
 Val Asp Thr Ser Gln Ala Asn Val Ser Gly Gln Val Asn Thr Asp Leu
 1570 1575 1580
 Thr Lys Ala Lys Ala Val Thr Arg Asp Asp Thr Tyr Ala Ser Thr Gln
 1585 1590 1595 1600
 Phe Ser Phe Glu Val Ala Asp Ile Val Glu Leu Gly Gln Arg Ala Lys
 1605 1610 1615

Asn Lys Leu Ser Ala Pro Asn Asn Asp Thr Asp Met Ala Ser Gly Ser
 1620 1625 1630
 Thr Leu Arg Ser Arg Ser Thr Thr Glu Glu Ala Asp Val Pro Thr Thr
 1635 1640 1645
 Arg Ser Arg Val Thr Asp Glu Ala Asp Ser Val Ser Val Lys Asn Pro
 1650 1655 1660
 Ile Tyr Glu Ser Ala Asp Ala Val Val Pro Thr Pro Arg Ser Arg Asn
 1665 1670 1675 1680
 Val Asp Ser Thr Asp Leu Val Asp Asn Pro Leu Tyr Ala Ser Ala Thr
 1685 1690 1695
 Thr Lys Ala Asn Ile His Asp Tyr Glu Glu Ile Pro Ala Val Tyr Ser
 1700 1705 1710
 Lys Val Gly Asp Asn Asn Ala Asp Leu Val Arg His Lys Thr Ala Thr
 1715 1720 1725
 Ser Asp Glu His Leu Tyr Ala Glu Ile Asn Glu Pro Thr Tyr Ser Arg
 1730 1735 1740
 Val Gly Asp Lys Asn Ala Asp Met Arg Arg His Asn Ala Ala Gly Thr
 1745 1750 1755 1760
 Thr Asp Tyr Ala Asp Val Val Gln Ala His Thr Arg Lys Ala Asp Asp
 1765 1770 1775
 Pro Leu Pro Ala Leu Pro Asn Gln Gly Lys Ala Arg Thr Val Asn Asp
 1780 1785 1790
 Gly Ser Glu His Ile Tyr Thr Asp Ile Ser Asp Val Gly Thr Gln Thr
 1795 1800 1805
 Lys Ala Ile Asp Ser Thr Tyr Ala Thr Val Gly Met Pro Lys Ala Asn
 1810 1815 1820
 Ala Val Asn Leu Ile Gly Gln Asn Gly Leu Gly Ser Ile Tyr His Ser
 1825 1830 1835 1840
 Pro Asp Ser Ala Tyr Lys Thr Trp Gln Leu Leu Asp Gln Phe Ala Asn
 1845 1850 1855
 Lys Gly Gly Asp Ala Val Phe Leu Arg Pro Ala Thr Glu Met Lys Cys
 1860 1865 1870
 Ala Gly Ala Pro Leu Lys Tyr Thr Phe Ile Val Arg Asp Tyr Leu Leu
 1875 1880 1885
 Arg Arg His Thr Leu Asp Lys Ser Arg Leu Phe Tyr Asn Ala His Asn
 1890 1895 1900
 Lys Thr Leu Phe Ser Val Pro Ile Val Asp Ala Lys Val Lys Met Leu
 1905 1910 1915 1920
 Phe Ala Glu Lys Asn Ile Gln Val Asn Tyr Asp Arg Ser Leu Thr Ala
 1925 1930 1935
 Ile Asp Leu Ser Lys Arg Ile Ala Thr Phe Asn Ser Pro Glu Gly Val
 1940 1945 1950

Val Glu Val Pro Tyr Asp Phe Ile Asn Val Val Pro Pro Met Arg Ala
 1955 1960 1965
 Pro Asp Ala Val Arg Gln Ser Ala Leu Ala Trp Gln Glu Gly Lys Trp
 1970 1975 1980
 Ala Asn Asp Gly Trp Val Glu Val Glu Lys His Thr Leu Arg His Arg
 1985 1990 1995 2000
 Arg Tyr Ala Asn Val Phe Ala Val Gly Asp Val Ala Gly Val Pro Lys
 2005 2010 2015
 Gly Lys Thr Ala Ala Ser Val Lys Trp Gln Val Pro Val Ala Val Ala
 2020 2025 2030
 His Leu Leu Ala Glu Leu Glu Gly Lys Pro Cys Asp Glu Ile Tyr Asn
 2035 2040 2045
 Gly Tyr Thr Ser Cys Pro Leu Ile Thr Gln Leu Gly Lys Gly Met Leu
 2050 2055 2060
 Val Glu Phe Asp Tyr Asn Asn His Leu Thr Pro Ser Phe Pro Gly Val
 2065 2070 2075 2080
 Ile Ala Pro Leu Glu Glu Leu Trp Ala Thr Trp Ala Ile Lys Thr Leu
 2085 2090 2095
 Gly Leu Lys Pro Thr Tyr Leu Gly Met Leu Arg Gly Leu Ala
 2100 2105 2110

<210> 17
 <211> 3247
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (1479)..(3245)

<220>
 <223> fhaB2

<400> 17
 gtcgacccgggtgaaaa ggtatctcta aattttggcg atatcattca tgcttaccaa 60
 aaccagcccc tatcaacaaa agttttttt caattagtga aagatttgac ggaagttta 120
 taccgttctg gctacgtgac aagtgcatt gttttaaaaa attcaaaaat cagcaatggc 180
 gatcttgaat ttattgtact gtggggaga actcgcgatc tgtttgaa tggggagaaaa 240
 ccaacccgtt ttagagataa aacaatgtta tcagtcctac ccaatttaat cgaaaatcgc 300
 ttaagtattc acgacattga ccagttgatc gaaatcttaa atactacgaa taaaaaagcc 360
 acagtgaatg tggttgcaag tgaagaaaaa ggcagctcaa atctaaatat tggaaagacaa 420
 tatgtatgttt ttccgcaagt gagtgctgaa ttcaataatt caggtgctgg caataatgcc 480
 aatgggcgtatcaagctac attgaatatt gcttggagtg atctattagg cacgaatgat 540
 cgttggagtt tctcgagtag ttaccgttataaaaaatc atcatgctaa ccagcaacgc 600

aattatactt tgtcttacag tcagcctata ggctttcta cagtagaaat taaagcatcg 660
 gaatctacgt atgaaaaaga acttcgcgtt ataaatactc attcttctca tggaaaacc 720
 caaagcttag ctgtcaagct gatgcatttg ttattgcgtt ataaggagag tattttatct 780
 acatataccg agttcgagtt taaaaaacgg attagttatt tttctgatat tttgattggg 840
 aaatatcaca ataataaaagt gagcgttaggg ttatcttaca tgactaattt tgcttacggg 900
 aagctttaca gcgacattgc ttacgcgaat gggttgagat ggtttgggc gaattattca 960
 gcatatgtt caaatcgtga aaaaaccta aaattattgt caggaagtat taattggcag 1020
 cgtccaatat ccctgtttga acgtgcgtt aattatcaat tacgtattgg tgcccaatat 1080
 ggttttgata gtttgtattc tgaaaatcaa tttcaattt gtgatgaata tacagtaaga 1140
 ggatttaaag gtggtgcgtt ttctgggtat agtggtgcgtt atttatcaca aacactgacg 1200
 gttcctttt atccacaaaa agcatattt ttcaggtat cccctttt tggatttgat 1260
 atggtaaag tacatattaa atcaaagcat aaaacaacca ctttagtcgg tttgcccta 1320
 ggcttgaaaaa cgcaaataaa gttatttca ttatcattaa cctatgcaca accaatgaat 1380
 ggtgtgagtg gtgttacgca acatcgtcaa aaaccgattt attatttctc aggatcactt 1440
 tcttttaat ctcttttaag tttaaggatt aacttaat atg aac aaa aat cgt tac 1496
 Met Asn Lys Asn Arg Tyr
 1 5

aaa ctc att ttt agt caa gtc aaa ggt tgt ctc gtt cct gtg gca gaa	1544
Lys Leu Ile Phe Ser Gln Val Lys Gly Cys Leu Val Pro Val Ala Glu	
10 15 20	
tgt att aac tca gct att agc aat ggt tca tct gat tca aca tcc aca	1592
Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser Ser Asp Ser Thr Ser Thr	
25 30 35	
tca gaa caa gtt gaa gag gaa cct ttc ctt cta gaa caa tat tca ctt	1640
Ser Glu Gln Val Glu Glu Pro Phe Leu Leu Glu Gln Tyr Ser Leu	
40 45 50	
tcc tcc gtg tct tta tta gta aaa agc acg ttc aat cct gtt tcg tat	1688
Ser Ser Val Ser Leu Leu Val Lys Ser Thr Phe Asn Pro Val Ser Tyr	
55 60 65 70	
gca atg caa ttg act tgg aaa cag ctt tct att tta ttt tta act gtg	1736
Ala Met Gln Leu Thr Trp Lys Gln Leu Ser Ile Leu Phe Leu Thr Val	
75 80 85	
att tct gtt cct gtt ttg gct gag gga aaa ggg gat gaa aga aat caa	1784
Ile Ser Val Pro Val Leu Ala Glu Gly Lys Gly Asp Glu Arg Asn Gln	
90 95 100	
tta aca gtg att gat aat agc gat cat att aaa tta gat gca tct aat	1832
Leu Thr Val Ile Asp Asn Ser Asp His Ile Lys Leu Asp Ala Ser Asn	
105 110 115	
ctt gct ggt aat gat aaa aca aaa atc tat caa gca gaa aat aaa gtt	1880
Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr Gln Ala Glu Asn Lys Val	
120 125 130	

ctg gtt att gat att gct aaa cca aat ggg aaa ggg att tca gat aac Leu Val Ile Asp Ile Ala Lys Pro Asn Gly Lys Gly Ile Ser Asp Asn 135 140 145 150	1928
cgt ttt gaa aaa ttt aat att cca aat acg gcg gtg ttt aat aat aat Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser Ala Val Phe Asn Asn Asn 155 160 165	1976
ggg act gaa gcg cag gca aga tca aca tta att ggt tac att ccg caa Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu Ile Gly Tyr Ile Pro Gln 170 175 180	2024
aat caa aat tta agg gga ggg aaa gaa gct gat gtt ata tta aat caa Asn Gln Asn Leu Arg Gly Gly Glu Ala Asp Val Ile Leu Asn Gln 185 190 195	2072
gtg aca ggt cct caa gaa agt aaa att gtt ggc gcg ctt gaa gta tta Val Thr Gly Pro Gln Glu Ser Lys Ile Val Gly Ala Leu Glu Val Leu 200 205 210	2120
ggt aaa aaa gct gat atc gtc att gca aac caa aat ggt att acc tta Gly Lys Lys Ala Asp Ile Val Ile Ala Asn Gln Asn Gly Ile Thr Leu 215 220 225 230	2168
aat ggt gta aga aca ata aat tca gat cgt ttt gtt gcc act acg agt Asn Gly Val Arg Thr Ile Asn Ser Asp Arg Phe Val Ala Thr Thr Ser 235 240 245	2216
gag ctt ata gat ccg aat cag atg atg tta aag gtt aca aaa gga aat Glu Leu Ile Asp Pro Asn Gln Met Met Leu Lys Val Thr Lys Gly Asn 250 255 260	2264
gtg atc att gat att gat ggt ttt tcg aca gat gga tta aag tat tta Val Ile Ile Asp Ile Asp Gly Phe Ser Thr Asp Gly Leu Lys Tyr Leu 265 270 275	2312
gat att att gct aaa aaa att gaa caa aag caa tca att aca tca ggg Asp Ile Ile Ala Lys Lys Ile Glu Gln Lys Gln Ser Ile Thr Ser Gly 280 285 290	2360
gat aat tca gaa gca aaa aca gat gtc act ctt att gcg ggt tcc agt Asp Asn Ser Glu Ala Lys Thr Asp Val Thr Leu Ile Ala Gly Ser Ser 295 300 305 310	2408
gaa tat gat tta agc aaa cat gag ctg aaa aaa acg acg ggt gaa aat Glu Tyr Asp Leu Ser Lys His Glu Leu Lys Lys Thr Ser Gly Glu Asn 315 320 325	2456
gta tct aat gat gtt att gct atc acg gga tct agt aca ggc gca atg Val Ser Asn Asp Val Ile Ala Ile Thr Gly Ser Ser Thr Gly Ala Met 330 335 340	2504
cat ggt aaa aat att aag ttg att gtg aca gat aaa ggt gca ggc gta His Gly Lys Asn Ile Lys Leu Ile Val Thr Asp Lys Gly Ala Gly Val 345 350 355	2552
aaa cat gat gga att att ttg tct gaa aat gat att cag att gaa atg Lys His Asp Gly Ile Ile Leu Ser Glu Asn Asp Ile Gln Ile Glu Met 360 365 370	2600
aat gaa ggt gac tta gaa ctt ggc aat acg att cag caa aca gtg gta Asn Glu Gly Asp Leu Glu Leu Gly Asn Thr Ile Gln Gln Thr Val Val 375 380 385 390	2648

aaa aaa gac cga aat att cga gcc aag aaa aaa att gaa gtg aaa aac Lys Lys Asp Arg Asn Ile Arg Ala Lys Lys Ile Glu Val Lys Asn 395 400 405	2696
gct aat cgt gtt ttt gtt ggt agt caa acg aaa tca gat gaa att tcg Ala Asn Arg Val Phe Val Gly Ser Gln Thr Lys Ser Asp Glu Ile Ser 410 415 420	2744
tta gag gcg aaa caa gtt aaa atc aga aaa aac gca gag att agg agt Leu Glu Ala Lys Gln Val Lys Ile Arg Lys Asn Ala Glu Ile Arg Ser 425 430 435	2792
acg aca caa gcc aaa atc gta gca aag ggt gcc ctg tct att gag caa Thr Thr Gln Ala Lys Ile Val Ala Lys Gly Ala Leu Ser Ile Glu Gln 440 445 450	2840
aat gcg aag ctc gtc gct aaa aag ata gat gtg gca aca gaa act cta Asn Ala Lys Leu Val Ala Lys Ile Asp Val Ala Thr Glu Thr Leu 455 460 465 470	2888
act aat gct ggg cgt att tat ggt cga gag gtt aag ctt gac act aat Thr Asn Ala Gly Arg Ile Tyr Gly Arg Glu Val Lys Leu Asp Thr Asn 475 480 485	2936
aat ttg att aat gat aaa gaa att tat gct gaa cgg aaa ttg agt att Asn Leu Ile Asn Asp Lys Glu Ile Tyr Ala Glu Arg Lys Leu Ser Ile 490 495 500	2984
ttg acg aaa gga aaa gat ctt gaa att att caa gat aga tat ttg tct Leu Thr Lys Gly Lys Asp Leu Glu Ile Ile Gln Asp Arg Tyr Leu Ser 505 510 515	3032
cca ctg atg cgc gta aaa agt agt gtc cgc ttt tta ggc tct ccg ttt Pro Leu Met Arg Val Lys Ser Ser Val Arg Phe Leu Gly Ser Pro Phe 520 525 530	3080
ttc tca ata tct ccg tcg atg ctc gca agc ctt agt gca cag ttt aag Phe Ser Ile Ser Pro Ser Met Leu Ala Ser Leu Ser Ala Gln Phe Lys 535 540 545 550	3128
cct ggt ttt gtg aat aag gga ctc att gaa agt gcg ggg agt gca gaa Pro Gly Phe Val Asn Lys Gly Leu Ile Glu Ser Ala Gly Ser Ala Glu 555 560 565	3176
tta act ttt aaa gaa aaa acc agt ttt tta aca gag ggc aat aat ttt Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu Thr Glu Gly Asn Asn Phe 570 575 580	3224
att aga gct aaa gat gcg tta ac Ile Arg Ala Lys Asp Ala Leu 585	3247
<210> 18	
<211> 589	
<212> PRT	
<213> Pasteurella multocida	
<400> 18	
Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys 1 5 10 15	

Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser
 20 25 30
 Ser Asp Ser Thr Ser Thr Ser Glu Gln Val Glu Glu Glu Pro Phe Leu
 35 40 45
 Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr
 50 55 60
 Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser
 65 70 75 80
 Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys
 85 90 95
 Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile
 100 105 110
 Lys Leu Asp Ala Ser Asn Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr
 115 120 125
 Gln Ala Glu Asn Lys Val Leu Val Ile Asp Ile Ala Lys Pro Asn Gly
 130 135 140
 Lys Gly Ile Ser Asp Asn Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser
 145 150 155 160
 Ala Val Phe Asn Asn Asn Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu
 165 170 175
 Ile Gly Tyr Ile Pro Gln Asn Gln Asn Leu Arg Gly Gly Lys Glu Ala
 180 185 190
 Asp Val Ile Leu Asn Gln Val Thr Gly Pro Gln Glu Ser Lys Ile Val
 195 200 205
 Gly Ala Leu Glu Val Leu Gly Lys Lys Ala Asp Ile Val Ile Ala Asn
 210 215 220
 Gln Asn Gly Ile Thr Leu Asn Gly Val Arg Thr Ile Asn Ser Asp Arg
 225 230 235 240
 Phe Val Ala Thr Thr Ser Glu Leu Ile Asp Pro Asn Gln Met Met Leu
 245 250 255
 Lys Val Thr Lys Gly Asn Val Ile Ile Asp Ile Asp Gly Phe Ser Thr
 260 265 270
 Asp Gly Leu Lys Tyr Leu Asp Ile Ile Ala Lys Lys Ile Glu Gln Lys
 275 280 285
 Gln Ser Ile Thr Ser Gly Asp Asn Ser Glu Ala Lys Thr Asp Val Thr
 290 295 300
 Leu Ile Ala Gly Ser Ser Glu Tyr Asp Leu Ser Lys His Glu Leu Lys
 305 310 315 320
 Lys Thr Ser Gly Glu Asn Val Ser Asn Asp Val Ile Ala Ile Thr Gly
 325 330 335
 Ser Ser Thr Gly Ala Met His Gly Lys Asn Ile Lys Leu Ile Val Thr
 340 345 350

Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser Glu Asn
 355 360 365
 Asp Ile Gln Ile Glu Met Asn Glu Gly Asp Leu Glu Leu Gly Asn Thr
 370 375 380
 Ile Gln Gln Thr Val Val Lys Lys Asp Arg Asn Ile Arg Ala Lys Lys
 385 390 395 400
 Lys Ile Glu Val Lys Asn Ala Asn Arg Val Phe Val Gly Ser Gln Thr
 405 410 415
 Lys Ser Asp Glu Ile Ser Leu Glu Ala Lys Gln Val Lys Ile Arg Lys
 420 425 430
 Asn Ala Glu Ile Arg Ser Thr Thr Gln Ala Lys Ile Val Ala Lys Gly
 435 440 445
 Ala Leu Ser Ile Glu Gln Asn Ala Lys Leu Val Ala Lys Lys Ile Asp
 450 455 460
 Val Ala Thr Glu Thr Leu Thr Asn Ala Gly Arg Ile Tyr Gly Arg Glu
 465 470 475 480
 Val Lys Leu Asp Thr Asn Asn Leu Ile Asn Asp Lys Glu Ile Tyr Ala
 485 490 495
 Glu Arg Lys Leu Ser Ile Leu Thr Lys Gly Lys Asp Leu Glu Ile Ile
 500 505 510
 Gln Asp Arg Tyr Leu Ser Pro Leu Met Arg Val Lys Ser Ser Val Arg
 515 520 525
 Phe Leu Gly Ser Pro Phe Phe Ser Ile Ser Pro Ser Met Leu Ala Ser
 530 535 540
 Leu Ser Ala Gln Phe Lys Pro Gly Phe Val Asn Lys Gly Leu Ile Glu
 545 550 555 560
 Ser Ala Gly Ser Ala Glu Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu
 565 570 575
 Thr Glu Gly Asn Asn Phe Ile Arg Ala Lys Asp Ala Leu
 580 585

<210> 19
 <211> 3247
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (1)..(1446)

<220>
 <223> fhaC

<400> 19
 gtc gac ctt gcg ggt gaa aag gta tct cta aat ttt ggc gat atc att 48
 Val Asp Leu Ala Gly Glu Lys Val Ser Leu Asn Phe Gly Asp Ile Ile
 1 5 10 15

cat gct tac caa aac cag ccc cta tca aca aaa gtt gtt ttt caa tta His Ala Tyr Gln Asn Gln Pro Leu Ser Thr Lys Val Val Phe Gln Leu	96
20 25 30	
gtg aaa gat ttg acg gaa gtt tta tac cgt tct ggc tac gtg aca agt Val Lys Asp Leu Thr Glu Val Leu Tyr Arg Ser Gly Tyr Val Thr Ser	144
35 40 45	
gca att ggt tta aaa aat tca aaa atc agc aat ggc gat ctt gaa ttt Ala Ile Gly Leu Lys Asn Ser Lys Ile Ser Asn Gly Asp Leu Glu Phe	192
50 55 60	
att gta ctg tgg gga aga act cgc gat ctg ttt gtg aat ggg gag aaa Ile Val Leu Trp Gly Arg Thr Arg Asp Leu Phe Val Asn Gly Glu Lys	240
65 70 75 80	
cca acc cgt ttt aga gat aaa aca atg tta tca gtc cta ccc aat tta Pro Thr Arg Phe Arg Asp Lys Thr Met Leu Ser Val Leu Pro Asn Leu	288
85 90 95	
atc gga aat cgc tta agt att cac gac att gac cag ttg atc gaa atc Ile Gly Asn Arg Leu Ser Ile His Asp Ile Asp Gln Leu Ile Glu Ile	336
100 105 110	
tta aat act acg aat aaa aaa gcc aca gtg aat gtg gtt gca agt gaa Leu Asn Thr Asn Lys Lys Ala Thr Val Asn Val Ala Ser Glu	384
115 120 125	
† gaa aaa ggc agc tca aat cta aat att gaa aga caa tat gat gtt ttt Glu Lys Gly Ser Ser Asn Leu Asn Ile Glu Arg Gln Tyr Asp Val Phe	432
130 135 140	
ccg caa gtg agt gtc gga ttc aat aat tca ggt gct ggc aat aat gcc Pro Gln Val Ser Val Gly Phe Asn Asn Ser Gly Ala Gly Asn Asn Ala	480
145 150 155 160	
aat ggg cgt aat caa gct aca ttg aat att gct tgg agt gat cta tta Asn Gly Arg Asn Gln Ala Thr Leu Asn Ile Ala Trp Ser Asp Leu Leu	528
165 170 175	
ggc acg aat gat cgt tgg agt ttc tcg agt agt tac cgt tta tat aaa Gly Thr Asn Asp Arg Trp Ser Phe Ser Ser Ser Tyr Arg Leu Tyr Lys	576
180 185 190	
aat cat cat gct aac cag caa cgc aat tat act ttg tct tac agt cag Asn His His Ala Asn Gln Gln Arg Asn Tyr Thr Leu Ser Tyr Ser Gln	624
195 200 205	
cct ata ggc ttt tct aca gta gaa att aaa gca tcg gaa tct acg tat Pro Ile Gly Phe Ser Thr Val Glu Ile Lys Ala Ser Glu Ser Thr Tyr	672
210 215 220	
gaa aaa gaa ctt cgc ggt ata aat act cat tct tct cat ggg aaa acc Glu Lys Glu Leu Arg Gly Ile Asn Thr His Ser Ser His Gly Lys Thr	720
225 230 235 240	
caa agc tta gct gtc aag ctg atg cat gtg tta ttg cgt aat aag gag Gln Ser Leu Ala Val Lys Leu Met His Val Leu Leu Arg Asn Lys Glu	768
245 250 255	
agt att tta tct aca tat acc gag ttc gag ttt aaa aaa cgg att agt Ser Ile Leu Ser Thr Tyr Thr Glu Phe Glu Phe Lys Lys Arg Ile Ser	816
260 265 270	

tat ttt tct gat att ttg att ggg aaa tat cac aat aat aaa gtg agc Tyr Phe Ser Asp Ile Leu Ile Gly Lys Tyr His Asn Asn Lys Val Ser 275 280 285	864
gta ggg tta tct tac atg act aat ttt gct tac ggg aag ctt tac agc Val Gly Leu Ser Tyr Met Thr Asn Phe Ala Tyr Gly Lys Leu Tyr Ser 290 295 300	912
gac att gct tac gcg aat ggg ttg aga tgg ttt ggg gcg aat tat tca Asp Ile Ala Tyr Ala Asn Gly Leu Arg Trp Phe Gly Ala Asn Tyr Ser 305 310 315 320	960
gca tat gat gca aat cgt gaa aaa acc tta aaa tta ttg tca gga agt Ala Tyr Asp Ala Asn Arg Glu Lys Thr Leu Lys Leu Ser Gly Ser 325 330 335	1008
att aat tgg cag cgt cca ata tcc ctg ttt gaa cgt gcg atg aat tat Ile Asn Trp Gln Arg Pro Ile Ser Leu Phe Glu Arg Ala Met Asn Tyr 340 345 350	1056
caa tta cgt att ggt gcc caa tat ggt ttt gat agt ttg tat tct gaa Gln Leu Arg Ile Gly Ala Gln Tyr Gly Phe Asp Ser Leu Tyr Ser Glu 355 360 365	1104
aat caa ttt tca att ggt gat gaa tat aca gta aga gga ttt aaa ggt Asn Gln Phe Ser Ile Gly Asp Glu Tyr Thr Val Arg Gly Phe Lys Gly 370 375 380	1152
ggg gcg gtt tct ggt gat agt ggt gcg tat tta tca caa aca ctg acg Gly Ala Val Ser Gly Asp Ser Gly Ala Tyr Leu Ser Gln Thr Leu Thr 385 390 395 400	1200
gtt cct ttt tat cca caa aaa gca tat tta tct cag gta tcc cct ttt Val Pro Phe Tyr Pro Gln Lys Ala Tyr Leu Ser Gln Val Ser Pro Phe 405 410 415	1248
att gga ttt gat atg ggt aaa gta cat att aaa tca aag cat aaa aca Ile Gly Phe Asp Met Gly Lys Val His Ile Lys Ser Lys His Lys Thr 420 425 430	1296
acc act tta gtc ggt ttt gcc cta ggc ttg aaa acg caa ata aag tta Thr Thr Leu Val Gly Phe Ala Leu Gly Leu Lys Thr Gln Ile Lys Leu 435 440 445	1344
ttt tca tta tca tta acc tat gca caa cca atg aat ggt gtg agt ggt Phe Ser Leu Ser Leu Thr Tyr Ala Gln Pro Met Asn Gly Val Ser Gly 450 455 460	1392
gtt acg caa cat cgt caa aaa ccg att tat tat ttc tca gga tca ctt Val Thr Gln His Arg Gln Lys Pro Ile Tyr Tyr Phe Ser Gly Ser Leu 465 470 475 480	1440
tct ttt taatctcttt taagttaag gattaactta atatgaacaa aaatcgttac Ser Phe	1496
aaactcattt ttagtcaagt caaagggttgt ctcgttcctg tggcagaatg tattaaactca	1556
gctattagca atggttcatc tgattcaaca tccacatcg aacaaggtaa agaggaacct	1616
ttccttctag aacaatattc actttctcc gtgtctttat tagaaaaag cacgttaat	1676
cctgtttcgt atgcaatgca attgacttgg aaacagctt ctatttatt tttaactgtg	1736

<210> 20
<211> 482
<212> PRT
<213> Pasteurella multocida

<400> 20
Val Asp Leu Ala Gly Glu Lys Val Ser Leu Asn Phe Gly Asp Ile Ile
1 5 10 15

His Ala Tyr Gln Asn Gln Pro Leu Ser Thr Lys Val Val Phe Gln Leu
 20 25 30

Val Lys Asp Leu Thr Glu Val Leu Tyr Arg Ser Gly Tyr Val Thr Ser
 35 40 45

Ala Ile Gly Leu Lys Asn Ser Lys Ile Ser Asn Gly Asp Leu Glu Phe
 50 55 60

Ile Val Leu Trp Gly Arg Thr Arg Asp Leu Phe Val Asn Gly Glu Lys
 65 70 75 80

Pro Thr Arg Phe Arg Asp Lys Thr Met Leu Ser Val Leu Pro Asn Leu
 85 90 95

Ile Gly Asn Arg Leu Ser Ile His Asp Ile Asp Gln Leu Ile Glu Ile
 100 105 110

Leu Asn Thr Thr Asn Lys Lys Ala Thr Val Asn Val Val Ala Ser Glu
 115 120 125

Glu Lys Gly Ser Ser Asn Leu Asn Ile Glu Arg Gln Tyr Asp Val Phe
 130 135 140

Pro Gln Val Ser Val Gly Phe Asn Asn Ser Gly Ala Gly Asn Asn Ala
 145 150 155 160

Asn Gly Arg Asn Gln Ala Thr Leu Asn Ile Ala Trp Ser Asp Leu Leu
 165 170 175

Gly Thr Asn Asp Arg Trp Ser Phe Ser Ser Ser Tyr Arg Leu Tyr Lys
 180 185 190

Asn His His Ala Asn Gln Gln Arg Asn Tyr Thr Leu Ser Tyr Ser Gln
 195 200 205

Pro Ile Gly Phe Ser Thr Val Glu Ile Lys Ala Ser Glu Ser Thr Tyr
 210 215 220

Glu Lys Glu Leu Arg Gly Ile Asn Thr His Ser Ser His Gly Lys Thr
 225 230 235 240

Gln Ser Leu Ala Val Lys Leu Met His Val Leu Leu Arg Asn Lys Glu
 245 250 255

Ser Ile Leu Ser Thr Tyr Thr Glu Phe Glu Phe Lys Lys Arg Ile Ser
 260 265 270

Tyr Phe Ser Asp Ile Leu Ile Gly Lys Tyr His Asn Asn Lys Val Ser
 275 280 285

Val Gly Leu Ser Tyr Met Thr Asn Phe Ala Tyr Gly Lys Leu Tyr Ser
 290 295 300

Asp Ile Ala Tyr Ala Asn Gly Leu Arg Trp Phe Gly Ala Asn Tyr Ser
 305 310 315 320

Ala Tyr Asp Ala Asn Arg Glu Lys Thr Leu Lys Leu Leu Ser Gly Ser
 325 330 335

Ile Asn Trp Gln Arg Pro Ile Ser Leu Phe Glu Arg Ala Met Asn Tyr
 340 345 350

Gln Leu Arg Ile Gly Ala Gln Tyr Gly Phe Asp Ser Leu Tyr Ser Glu
 355 360 365
 Asn Gln Phe Ser Ile Gly Asp Glu Tyr Thr Val Arg Gly Phe Lys Gly
 370 375 380
 Gly Ala Val Ser Gly Asp Ser Gly Ala Tyr Leu Ser Gln Thr Leu Thr
 385 390 395 400
 Val Pro Phe Tyr Pro Gln Lys Ala Tyr Leu Ser Gln Val Ser Pro Phe
 405 410 415
 Ile Gly Phe Asp Met Gly Lys Val His Ile Lys Ser Lys His Lys Thr
 420 425 430
 Thr Thr Leu Val Gly Phe Ala Leu Gly Leu Lys Thr Gln Ile Lys Leu
 435 440 445
 Phe Ser Leu Ser Leu Thr Tyr Ala Gln Pro Met Asn Gly Val Ser Gly
 450 455 460
 Val Thr Gln His Arg Gln Lys Pro Ile Tyr Tyr Phe Ser Gly Ser Leu
 465 470 475 480
 Ser Phe

```
<210> 21
<211> 1170
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (639)..(1022)

<220>
<223> greA

<400> 21
gtcaacaaac ggcaaccact tcggcaaaaa gcgattgcgc ttgtgttctg ctctaagctc 60
aagcgttggg atcgcgcgaa ttgcgttgac cactggtagatcgggtca cctgtaaaac 120
gtacgataag atcgccatgc atttcattgt ttttatTTT tccattgggt aatagactgg 180
tttcaaattt aattggtca cttagtagtacga gtttggcggt taaggcggtg agcacttttt 240
gtgtactggc gggtaacata aaggtactgg cttggtgccgc tacaatttt tcattacgt 300
ttaagttttt agccacaaaaa cctaggctgg tcccttcggg taaatgagcg ttgatttcag 360
caagatcaat ctcagcataa ctgaaatgac tgacgagtaa actacatata agtatcggtc 420
gtttgaaaag gcgtaaaaagc gtggcagtaa aaaaagaaga tattttatac ataattggct 480
cgagcagttt ctatTTTTT attgtcgaac aataatagta tttgaaccct cgagagtaaa 540
tccttttctc gttaaacact tatttttta ttcaactacg qcattgtttt tacaatgttq 600
```

tggtttgtt tttatctaaa aaggaagaaa aaacgatt atg aaa cag att cca atg 656
 Met Lys Gln Ile Pro Met
 1 5

act ata cgt ggt gcg gaa caa tta aga caa gaa ctc gat ttt ttg aaa 704
 Thr Ile Arg Gly Ala Glu Gln Leu Arg Gln Glu Leu Asp Phe Leu Lys
 10 15 20

aac act cgt cgc cca gaa att att aat gct atc gca gaa gct cgt gaa 752
 Asn Thr Arg Arg Pro Glu Ile Ile Asn Ala Ile Ala Glu Ala Arg Glu
 25 30 35

cat ggc gat cta aaa gaa aat gca gaa tac cat gct gcg cgt gaa cag 800
 His Gly Asp Leu Lys Glu Asn Ala Glu Tyr His Ala Ala Arg Glu Gln
 40 45 50

caa gga ttt tgt gaa gga cga atc caa gaa att gaa ggg aaa tta gcg 848
 Gln Gly Phe Cys Glu Gly Arg Ile Gln Glu Ile Glu Gly Lys Leu Ala
 55 60 65 70

aat agt caa att att gat gtc aca aag atc cca aat aat ggc aaa gtg 896
 Asn Ser Gln Ile Ile Asp Val Thr Lys Ile Pro Asn Asn Gly Lys Val
 75 80 85

att ttt ggt gcc aca att ttg tta ctg aat att gac acg gaa gaa gaa 944
 Ile Phe Gly Ala Thr Ile Leu Leu Asn Ile Asp Thr Glu Glu Glu
 90 95 100

gtc tcg tac caa att gta ggc gat gat gaa gcc aat att aaa gca ggg 992
 Val Ser Tyr Gln Ile Val Gly Asp Asp Glu Ala Asn Ile Lys Ala Gly
 105 110 115

cta att tca gtt aac gcc acg cga ttg aat tagagaaagc taaatggatt 1042
 Leu Ile Ser Val Asn Ala Thr Arg Leu Asn
 120 125

gccaagatc ttggcgtcaa acaaacgtta attgacactt ccgtcattaa agcgattacg 1102
 caaaaatgcct taatggacga acaggcaaga attgagcaac atggcagtac accgaatact 1162
 ttcggtga 1170

<210> 22
 <211> 128
 <212> PRT
 <213> Pasteurella multocida

<400> 22
 Met Lys Gln Ile Pro Met Thr Ile Arg Gly Ala Glu Gln Leu Arg Gln
 1 5 10 15

Glu Leu Asp Phe Leu Lys Asn Thr Arg Arg Pro Glu Ile Ile Asn Ala
 20 25 30

Ile Ala Glu Ala Arg Glu His Gly Asp Leu Lys Glu Asn Ala Glu Tyr
 35 40 45

His Ala Ala Arg Glu Gln Gln Gly Phe Cys Glu Gly Arg Ile Gln Glu
 50 55 60

Ile Glu Gly Lys Leu Ala Asn Ser Gln Ile Ile Asp Val Thr Lys Ile
 65 70 75 80

Pro Asn Asn Gly Lys Val Ile Phe Gly Ala Thr Ile Leu Leu Leu Asn
 85 90 95

Ile Asp Thr Glu Glu Glu Val Ser Tyr Gln Ile Val Gly Asp Asp Glu
 100 105 110

Ala Asn Ile Lys Ala Gly Leu Ile Ser Val Asn Ala Thr Arg Leu Asn
 115 120 125

<210> 23

<211> 4666

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (980)..(2440)

<220>

<223> guaB

<400> 23

aacacatgaa cctcttcccc aaaatacgca tccatatctc gccaatcttg gcgaaatgct 60
 tcatacaattc ctgcttgttc aaaatgttgtt aaacgtgcaa tcaactttttt acctaattct 120
 gcatcaattt tattccgatc aatcggttgtt aataacttcaa tcagctctgc ccaagggttga 180
 tcaattttgtt gtgtttgttt tgggaaaagac aaattaatgc caaagccaat cacgagattta 240
 tgttgattat tctgacgattt ggcgatttcg accaaaaatcc ctgcttaattt ggcgcctatgt 300
 aatagcacat catttggcca ttttaatcca atgttcaaag cacctgcttg cttagcggtt 360
 tctgcgattt ccataccac tactaaactc aagccttcta aattgacattt ttggtcacat 420
 gccaataaca aactcataat cacttgcata gcaaaaggag aaagccattt acgaccacgt 480
 cgtccacgtc ccgcagttt atattctgtt aagcaaatag cgccttttc caaatgtgca 540
 atattgtcaa gcaagaattt attggtcgag ttaataatcg gcttaatata aagtgggtaa 600
 ggtgctaacg cttgcgtcaa ataagattca tttaaagcgac ttaatttggg tatgagacga 660
 aatgttggaa cttgctgttc tattttgttcc cttgttgtt tcaatttttc gatattgtgt 720
 aagatatctt gttctgaata acctaaaagt gcagtcaattt ctgctaaaga aagttgttga 780
 tagcttagcga gtaatgcataa tacgtttgc ataaaaatcc ttattttat aaccaaagag 840
 aggcaactta ttatagacaa tgatttttc gaaaatcgat aaaaaaatcc atttcaaac 900
 agcaacgaaa tctgtataat ggcacccgaa tattttttac ctttttattt ttcatataaa 960
 cctaagagag aatattgca atg tta cga gta ata aaa gaa gca tta acc ttc 1012
 Met Leu Arg Val Ile Lys Glu Ala Leu Thr Phe
 1 5 10

gat gat gtt ttg ctt gtc cca gca cat tct act gtg ctc cca aat acc 1060
 Asp Asp Val Leu Leu Val Pro Ala His Ser Thr Val Leu Pro Asn Thr
 15 20 25

gca gac ctt tcc actcaa ctc acc aaa act atc cgc ctc aat atc cca Ala Asp Leu Ser Thr Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro 30 35 40	1108
atg tta tcc gcc gcc atg gat acc gtg aca gaa act aaa ctg gca atc Met Leu Ser Ala Ala Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile 45 50 55	1156
tct ctt gca caa gaa ggt ggc atc ggg ttt att cat aaa aat atg tct Ser Leu Ala Gln Glu Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser 60 65 70 75	1204
att gag cgt caa gcg gaa cgt gtc cgc aaa gtg aaa aaa ttt gag agc Ile Glu Arg Gln Ala Glu Arg Val Arg Lys Val Lys Lys Phe Glu Ser 80 85 90	1252
ggt att gta tcc gat cct gtc acc gtt tca cca acc tta tct tta gca Gly Ile Val Ser Asp Pro Val Thr Val Ser Pro Thr Leu Ser Leu Ala 95 100 105	1300
gaa tta agt gaa tta gtg aag aaa aat ggt ttt gcg agt ttc cct gtt Glu Leu Ser Glu Leu Val Lys Lys Asn Gly Phe Ala Ser Phe Pro Val 110 115 120	1348
gtt gat gat gaa aaa aat ctt gtc ggt atc att act ggt cgt gat aca Val Asp Asp Glu Lys Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr 125 130 135	1396
cgc ttt gtc acg gat tta aat aaa aca gtg gcg gac ttt atg acc cct Arg Phe Val Thr Asp Leu Asn Lys Thr Val Ala Asp Phe Met Thr Pro 140 145 150 155	1444
aaa gct cgt ctt gtc acg gtg aaa cgc aat gca agt cgc gat gaa att Lys Ala Arg Leu Val Thr Val Lys Arg Asn Ala Ser Arg Asp Glu Ile 160 165 170	1492
ttt ggt cta atg cat aca cac cgt gta gaa aaa gtc ctt gtt gtc agc Phe Gly Leu Met His Thr His Arg Val Glu Lys Val Leu Val Val Ser 175 180 185	1540
gac gat ttc aaa tta aaa ggc atg atc acc tta aaa gac tac caa aaa Asp Asp Phe Lys Leu Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys 190 195 200	1588
tcc gag caa aaa cca caa gcc tgt aaa gat gaa ttt ggt cgt tta cgt Ser Glu Gln Lys Pro Gln Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg 205 210 215	1636
gtc ggt gct gca gta gga gca gga cct ggt aat gaa gaa cgt att gat Val Gly Ala Ala Val Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp 220 225 230 235	1684
gca tta gtg aaa gca ggg gtc gat gtg tta ttg att gac tca tca cac Ala Leu Val Lys Ala Gly Val Asp Val Leu Leu Ile Asp Ser Ser His 240 245 250	1732
ggt cat tca gaa ggt gtg tta caa cgt gtg cgt gaa act cgt gcg aaa Gly His Ser Glu Gly Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys 255 260 265	1780
tac cca gat ttg cca att gtt gca ggt aat gtg gca acc gct gaa ggc Tyr Pro Asp Leu Pro Ile Val Ala Gly Asn Val Ala Thr Ala Glu Gly 270 275 280	1828

gca att gcg ttg gct gat gca ggg gca agt gca gtg aaa gtg ggg att Ala Ile Ala Leu Ala Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile 285 290 295	1876
ggt cct ggt tca att tgt aca aca cgt att gtc aca ggc gtg ggc gtt Gly Pro Gly Ser Ile Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val 300 305 310 315	1924
cca caa att aca gcg att gcc gat gcg gca gaa gca cta aaa gat cgg Pro Gln Ile Thr Ala Ile Ala Asp Ala Ala Glu Ala Leu Lys Asp Arg 320 325 330	1972
ggt att cct gtg att gca gat ggc ggt atc cgt ttc tct ggt gat att Gly Ile Pro Val Ile Ala Asp Gly Gly Ile Arg Phe Ser Gly Asp Ile 335 340 345	2020
tcg aaa gcc att gcg gcg ggc gcc tct tgt gtt atg gtg ggt tcc atg Ser Lys Ala Ile Ala Ala Gly Ala Ser Cys Val Met Val Gly Ser Met 350 355 360	2068
ttt gca ggt aca gaa gaa gca cca ggt gaa atc gaa ott tat caa ggt Phe Ala Gly Thr Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly 365 370 375	2116
cgt gcc ttt aaa tct tat cga ggt atg gga tcg tta ggt gcg atg agc Arg Ala Phe Lys Ser Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser 380 385 390 395	2164
aaa ggc tca agc gac cgc tat ttc cag tcc gat aat gca gct gac aaa Lys Gly Ser Ser Asp Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys 400 405 410	2212
tta gta cca gaa ggt att gaa gga cgt att cca tat aaa gga ttc tta Leu Val Pro Glu Gly Ile Glu Gly Arg Ile Pro Tyr Lys Gly Phe Leu 415 420 425	2260
aaa gaa att atc cat caa caa atg ggt gga ttg cgt tct tgt atg ggc Lys Glu Ile Ile His Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly 430 435 440	2308
tta acg ggt tgt gca acc att gat gaa ctc cgt acc aaa gcg cag ttt Leu Thr Gly Cys Ala Thr Ile Asp Glu Leu Arg Thr Lys Ala Gln Phe 445 450 455	2356
gtg cgc att agt ggt gca ggg atc caa gaa agc cat gtg cat gat gtg Val Arg Ile Ser Gly Ala Gly Ile Gln Glu Ser His Val His Asp Val 460 465 470 475	2404
act atc aca aaa gaa gcc cct aat tat cgt atg ggt taaacattgc Thr Ile Thr Lys Glu Ala Pro Asn Tyr Arg Met Gly 480 485	2450
tttagtgaaaa attatccccca cctaagttta ttttaataaa caacgttaat agagaagctt 2510	
attttatgt atggcattaa aattaaaaat gttttaaac tttttctatt aaagttttta 2570	
agaaaataat atcgatataa aatcaatatt caacatcatc tcatttagtat tgaaggaaaa 2630	
tgcgtgagt ttgatttaag ccagctaaac tatgtttatt tggtgaaaga tcctgagata 2690	
agaaaataatc gactgacact gtacttgaat gatTTTca aaattgggtt aaatttatcat 2750	
ggatttactc aaatgtatca gacactatca tccaaagtatg gtttgatga cgcaacgttt 2810	

tttgaatatac tttgtaaagaa agggccttt tctattcaaa tttggcgtaa aaaacaaaact 2870
caaaattatg tgattcttga tgaaggctat actgactata cacaaggttt tgaaattcaa 2930
tctcctgaaa aaatatttat tccttggggg actacttatg aagccttatt tcagcagaca 2990
caattnaaag aaaaaggaat ctcttatgac tttatcttcc ctattcggat agggcggtta 3050
ttactcaagg atgtgtggat cacaccaagt gtccgaaaag atgtaccgat tttagcggtta 3110
tacactgagt gctatcatga atccgcgaca gaaaaaagt atcaggaatt aaccgcccga 3170
ttacgtgaga accaacagtt aatcagatca tgtgttgaag aacgagccga tccgaaatta 3230
tataagtctg ttttacgcct taacgcgaca gaatttgaat tgcgttatta tcgacatata 3290
cgagacgatt ttgatagggg atacactaaa ttcagcatta gagatacgac agactattta 3350
gattatgtga tcaacgagcc ttatgaaaat caatttgta taacggatta tttagtgatt 3410
gagggcgcaaa atttaataaa aatggattat accgataatt ccattattaa acgcccacca 3470
ccaaaaataa aagaaaagtt tcgtgatgca caaagcctga tttggacaga tgcgtcaat 3530
cataaaatcg gttttaccag tgatgaccgc gctatcgtct ttgataaagc ggacattgaa 3590
tcctttactc tggcaaatat agagacaacc cgaagacata atcgcagttc actcagcattc 3650
tgttttgtgg ataaaaataa ggaagccatc actgtatttc tagctgaaca tcattttctg 3710
ataccctatg tggataaaat aaaaacactg acacaaaaag aggtgttgc tcttgaagaa 3770
tatataagg atgtttaaaa aaccgataac atcttgatgt catcgaaat tcaaactcct 3830
tttacacaat atattnaaac tttaacccga ttatattt acgtaaaaac aactaagaga 3890
actttaaatga acaacattca caaccataaa attttaattt tggacttcgg ttacacat 3950
acccagttga ttgcccgcgg tgcgtgaa attggcgtgt actgcgaact ttggcatgg 4010
gatgtatccg aagccgatcatc tcgtgatgtt aatccaactg ggattattct ttctgggtgg 4070
cctgaaagta ccactgaaga aaacagcccc cgagctcccg aatacgtatt caacgcccgt 4130
gtacccgtat tagggatctg ttatggatg caaaccatgg cgatgcaact aggtggttta 4190
actgaaactt ctactcaccc agaatttggt tatgcacatc tgaatctaaa agccgcggac 4250
gcgttatttg ctcaattaaa tgatgatgtc gcaagttcac agcccaaatt agacgtttgg 4310
atgagccatg gcgataaaagt gacgcgtttg ccagatcatt tccaaatgcac cgcaatgacc 4370
tcaacctgtc caatcgccgc tatgtcgat gaaacgtcgat gttttatgg tgcgttcaattc 4430
caccagaag tgactcatac aaaaagcgggg cttgaattat taacgaattt tgcgttgc 4490
atctgtgggtt gtgaacgtaa ctggacacca gaaaatatac ttgaagatgc cggtgcgt 4550
cttaaagcac aagtggcga tgatgaagtg attttaggct tatctgggttgc cgtaactgc 4610
cgtataggca gcttagaaaa agtgcgcgcg ctcacgttac tccccgtaaag cggttgc 4666

<210> 24
<211> 487
<212> PRT
<213> Pasteurella multocida

<400> 24
Met Leu Arg Val Ile Lys Glu Ala Leu Thr Phe Asp Asp Val Leu Leu
1 5 10 15
Val Pro Ala His Ser Thr Val Leu Pro Asn Thr Ala Asp Leu Ser Thr
20 25 30
Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro Met Leu Ser Ala Ala
35 40 45
Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile Ser Leu Ala Gln Glu
50 55 60
Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser Ile Glu Arg Gln Ala
65 70 75 80
Glu Arg Val Arg Lys Val Lys Lys Phe Glu Ser Gly Ile Val Ser Asp
85 90 95
Pro Val Thr Val Ser Pro Thr Leu Ser Leu Ala Glu Leu Ser Glu Leu
100 105 110
Val Lys Lys Asn Gly Phe Ala Ser Phe Pro Val Val Asp Asp Glu Lys
115 120 125
Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr Arg Phe Val Thr Asp
130 135 140
Leu Asn Lys Thr Val Ala Asp Phe Met Thr Pro Lys Ala Arg Leu Val
145 150 155 160
Thr Val Lys Arg Asn Ala Ser Arg Asp Glu Ile Phe Gly Leu Met His
165 170 175
Thr His Arg Val Glu Lys Val Leu Val Val Ser Asp Asp Phe Lys Leu
180 185 190
Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys Ser Glu Gln Lys Pro
195 200 205
Gln Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg Val Gly Ala Ala Val
210 215 220
Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp Ala Leu Val Lys Ala
225 230 235 240
Gly Val Asp Val Leu Leu Ile Asp Ser Ser His Gly His Ser Glu Gly
245 250 255
Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys Tyr Pro Asp Leu Pro
260 265 270
Ile Val Ala Gly Asn Val Ala Thr Ala Glu Gly Ala Ile Ala Leu Ala
275 280 285
Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile Gly Pro Gly Ser Ile
290 295 300

Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val Pro Gln Ile Thr Ala
 305 310 315 320

Ile Ala Asp Ala Ala Glu Ala Leu Lys Asp Arg Gly Ile Pro Val Ile
 325 330 335

Ala Asp Gly Gly Ile Arg Phe Ser Gly Asp Ile Ser Lys Ala Ile Ala
 340 345 350

Ala Gly Ala Ser Cys Val Met Val Gly Ser Met Phe Ala Gly Thr Glu
 355 360 365

Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly Arg Ala Phe Lys Ser
 370 375 380

Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser Lys Gly Ser Ser Asp
 385 390 395 400

Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys Leu Val Pro Glu Gly
 405 410 415

Ile Glu Gly Arg Ile Pro Tyr Lys Gly Phe Leu Lys Glu Ile Ile His
 420 425 430

Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly Leu Thr Gly Cys Ala
 435 440 445

Thr Ile Asp Glu Leu Arg Thr Lys Ala Gln Phe Val Arg Ile Ser Gly
 450 455 460

Ala Gly Ile Gln Glu Ser His Val His Asp Val Thr Ile Thr Lys Glu
 465 470 475 480

Ala Pro Asn Tyr Arg Met Gly
 485

<210> 25
 <211> 2364
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (191)..(1828)

<220>
 <223> Hi1501

<400> 25
 gtcaaacactc atgcacagc tgaggcattt cccgaaagct gatcatgtg atggacctga 60
 tgcgctagag atgctgtgga aaaatgcggt aagcagctct gccccgattt agttcatgac 120
 aattgacggc gattttagggc gtgatgaatt tggatgacggc gatttataaca gtatggcg 180
 gagataaaaa atg gcg aag aaa aag aaa tta caa caa gcg aaa aaa 229
 Met Ala Lys Lys Lys Lys Leu Gln Gln Ala Lys Lys
 1 5 10

gta caa gtt ggc tta gat aca caa aca aat gag gcg cgt gtc acg gag 277
 Val Gln Val Gly Leu Asp Thr Gln Thr Asn Glu Ala Arg Val Thr Glu
 15 20 25

aca gga aga att att tct gat cac cca agc aat aaa att acc ccc gca		325
Thr Gly Arg Ile Ile Ser Asp His Pro Ser Asn Lys Ile Thr Pro Ala		
30	35	40
		45
aag tta aaa ggg att tta gaa gat gct gaa ggt ggt gat att acc gcg		373
Lys Leu Lys Gly Ile Leu Glu Asp Ala Glu Gly Gly Asp Ile Thr Ala		
50	55	60
caa cat gag ctt ttc atg gat att gaa gaa cgc gac agt tgc atc ggg		421
Gln His Glu Leu Phe Met Asp Ile Glu Glu Arg Asp Ser Cys Ile Gly		
65	70	75
gca aat att caa acc cgt aag cgt gcg att tta acc ctt gac tgg cgc		469
Ala Asn Ile Gln Thr Arg Lys Arg Ala Ile Leu Thr Leu Asp Trp Arg		
80	85	90
att gca gag cca cgt aat gcc aca ccg caa gaa gaa aaa ctg caa gtc		517
Ile Ala Glu Pro Arg Asn Ala Thr Pro Gln Glu Lys Leu Gln Val		
95	100	105
gaa att gac gag ctt ttc tat caa ttc cca atg cta gaa gat tta atg		565
Glu Ile Asp Glu Leu Phe Tyr Gln Phe Pro Met Leu Glu Asp Leu Met		
110	115	120
		125
gtg gat atg atg gat gcg gta gga cat ggt ttt tcg gcg tta gaa att		613
Val Asp Met Met Asp Ala Val Gly His Gly Phe Ser Ala Leu Glu Ile		
130	135	140
gaa tgg aag caa gct gaa agt aaa tgg att cca gtt aat ttt atc gca		661
Glu Trp Lys Gln Ala Glu Ser Lys Trp Ile Pro Val Asn Phe Ile Ala		
145	150	155
cgt ccg cag tcg tgg ttt aaa cta gac aag gat gat aat tta ctg ctt		709
Arg Pro Gln Ser Trp Phe Lys Leu Asp Lys Asp Asp Asn Leu Leu Leu		
160	165	170
aaa acg cca gat aat caa gac ggt gag ccg ttg aga caa tat ggc tgg		757
Lys Thr Pro Asp Asn Gln Asp Gly Glu Pro Leu Arg Gln Tyr Gly Trp		
175	180	185
gta gtg cat acc cac aaa tca aga aca gta cag ctt gct cgt atg ggt		805
Val Val His Thr His Lys Ser Arg Thr Val Gln Leu Ala Arg Met Gly		
190	195	200
		205
tta ttt aga acg ctc gca tgg ctt tat atg ttt aaa cac tac tcg gtg		853
Leu Phe Arg Thr Leu Ala Trp Leu Tyr Met Phe Lys His Tyr Ser Val		
210	215	220
cat gat ttt gcc gaa ttt cta gag ctt tat ggt atg ccg att cgt att		901
His Asp Phe Ala Glu Phe Leu Glu Leu Tyr Gly Met Pro Ile Arg Ile		
225	230	235
ggt aaa tac cca ttt ggg gca acg aat gac gaa aag cgc aca tta ttg		949
Gly Lys Tyr Pro Phe Gly Ala Thr Asn Asp Glu Lys Arg Thr Leu Leu		
240	245	250
cgt gca ctt gct caa atc gga cat aac gca gca ggg att atg cca gaa		997
Arg Ala Leu Ala Gln Ile Gly His Asn Ala Ala Gly Ile Met Pro Glu		
255	260	265
gga atg aat gtt gag ttg cat aat gtg aca aac act act ggc tcg gct		1045
Gly Met Asn Val Glu Leu His Asn Val Thr Asn Thr Thr Gly Ser Ala		
270	275	280
		285

gga aac aac ccg ttt ttg caa atg gtg gac tgg tgt gaa aag tcc gcc Gly Ser Asn Pro Phe Leu Gln Met Val Asp Trp Cys Glu Lys Ser Ala 290 295 300	1093
gca cgt ttg att cta ggg caa aca aca agc ggt gca gat ggt aaa Ala Arg Leu Ile Leu Gly Gln Thr Leu Thr Ser Gly Ala Asp Gly Lys 305 310 315	1141
act tca act aat gcc ctt gga caa gtg cat aat gaa gtc aga cgt gac Thr Ser Thr Asn Ala Leu Gly Gln Val His Asn Glu Val Arg Arg Asp 320 325 330	1189
ttg ctt gtg tct gat gct aaa cag att gca caa act att aca caa cag Leu Leu Val Ser Asp Ala Lys Gln Ile Ala Gln Thr Ile Thr Gln Gln 335 340 345	1237
att att ctg cca tat ctt caa att aac att gat ccg aat att ttg cct Ile Ile Leu Pro Tyr Leu Gln Ile Asn Ile Asp Pro Asn Ile Leu Pro 350 355 360 365	1285
tct cgt gtg ccg tat ttc gag ttt gac acg aaa gaa tat gct gat tta Ser Arg Val Pro Tyr Phe Glu Phe Asp Thr Lys Glu Tyr Ala Asp Leu 370 375 380	1333
agt gtc cta gcg gat gct att cct aag ctt gtg agc gta gga gtg cgc Ser Val Leu Ala Asp Ala Ile Pro Lys Leu Val Ser Val Gly Val Arg 385 390 395	1381
att cct gaa aat tgg gtg cgt gat aaa gcg ggc att cca gaa ccg cag Ile Pro Glu Asn Trp Val Arg Asp Lys Ala Gly Ile Pro Glu Pro Gln 400 405 410	1429
gaa aat gaa acg att tta agt gcg gtt caa cat gat ttt aaa aca gat Glu Asn Glu Thr Ile Leu Ser Ala Val Gln His Asp Phe Lys Thr Asp 415 420 425	1477
tta aac gat gtt gaa aat ccg aaa aaa cag acc gca ctt tct gta caa Leu Asn Asp Val Glu Asn Pro Lys Lys Gln Thr Ala Leu Ser Val Gln 430 435 440 445	1525
aat cac gtg aca ggt tgt cag tgt gat ggc tgt cgt ggt gtt gca tta Asn His Val Thr Gly Cys Gln Cys Asp Gly Cys Arg Gly Val Ala Leu 450 455 460	1573
tct gcg aat aat aac agt tct act gcg cag ggc gtg cta gat ggt gga Ser Ala Asn Asn Ser Ser Thr Ala Gln Gly Val Leu Asp Gly Gly 465 470 475	1621
ctt gcg caa gca ttt aat gag cct gat ttt aat aaa caa tta aat cca Leu Ala Gln Ala Phe Asn Glu Pro Asp Phe Asn Lys Gln Leu Asn Pro 480 485 490	1669
atg gta aag aaa gct gtt gcg gta ctc atg gca tgt gac tct tac gat Met Val Lys Lys Ala Val Ala Val Leu Met Ala Cys Asp Ser Tyr Asp 495 500 505	1717
gag gcg gca gaa aaa ctc gct gaa gca tac cca gaa att tca agt cac Glu Ala Ala Glu Lys Leu Ala Glu Ala Tyr Pro Glu Ile Ser Ser His 510 515 520 525	1765
gaa cac gaa cag tat ctc tca aat gcg ctg ttt tta gct gat tta ctt Glu His Glu Gln Tyr Leu Ser Asn Ala Leu Phe Leu Ala Asp Leu Leu 530 535 540	1813

gga gga act aat gtc taaaccgctt agttttctat tcggacttga accaacgcaa 1868
 Gly Gly Thr Asn Val
 545

 gccattgagt tttacataa taaaaaatta cttgcaacga aagtgttaa aaaatcactg 1928
 catgatagtg ccatcgcaag agctacaaca atcgcgagat tatcttagtct tgagatgacg 1988
 aatgatattt ataaatcaat ggaagttgcc aaaaaagagg gtaagagctt tacacaatgg 2048
 aaaaaagact tggtaagtga gtttgagaaa aaaggctggg tattcggca tgataaatct 2108
 atcagtcgcg gtatcgacgg aaaactgttg gctgatccga aaacaggcga atattttgt 2168
 acaccgcgtc ggctgaatac aatttatcgt acaaacgtgc aagccgcata ttctgcggcg 2228
 cgctatcagc gcatgatgga taatattgat catcgcccct attggcaata ttccgctgtc 2288
 agcgatgagc gtacacgacc ctctcatctt gcactaaacg gtcgaattta tcgctatgat 2348
 gaccgcgtttt ggtcga 2364

<210> 26

<211> 546

<212> PRT

<213> Pasteurella multocida

<400> 26

Met	Ala	Lys	Lys	Lys	Lys	Leu	Gln	Gln	Ala	Lys	Lys	Val	Gln	Val
1		5				10						15		

Gly	Leu	Asp	Thr	Gln	Thr	Asn	Glu	Ala	Arg	Val	Thr	Glu	Thr	Gly	Arg
	20					25						30			

Ile	Ile	Ser	Asp	His	Pro	Ser	Asn	Lys	Ile	Thr	Pro	Ala	Lys	Leu	Lys
	35					40						45			

Gly	Ile	Leu	Glu	Asp	Ala	Glu	Gly	Asp	Ile	Thr	Ala	Gln	His	Glu
	50				55				60					

Leu	Phe	Met	Asp	Ile	Glu	Glu	Arg	Asp	Ser	Cys	Ile	Gly	Ala	Asn	Ile
	65				70				75					80	

Gln	Thr	Arg	Lys	Arg	Ala	Ile	Leu	Thr	Leu	Asp	Trp	Arg	Ile	Ala	Glu
	85					90						95			

Pro	Arg	Asn	Ala	Thr	Pro	Gln	Glu	Glu	Lys	Leu	Gln	Val	Glu	Ile	Asp
	100					105				110					

Glu	Leu	Phe	Tyr	Gln	Phe	Pro	Met	Leu	Glu	Asp	Leu	Met	Val	Asp	Met
	115					120					125				

Met	Asp	Ala	Val	Gly	His	Gly	Phe	Ser	Ala	Leu	Glu	Ile	Glu	Trp	Lys
	130				135						140				

Gln	Ala	Glu	Ser	Lys	Trp	Ile	Pro	Val	Asn	Phe	Ile	Ala	Arg	Pro	Gln
	145					150			155				160		

Ser	Trp	Phe	Lys	Leu	Asp	Lys	Asp	Asp	Asn	Leu	Leu	Leu	Lys	Thr	Pro
	165					170				175					

Asp Asn Gln Asp Gly Glu Pro Leu Arg Gln Tyr Gly Trp Val Val His
 180 185 190
 Thr His Lys Ser Arg Thr Val Gln Leu Ala Arg Met Gly Leu Phe Arg
 195 200 205
 Thr Leu Ala Trp Leu Tyr Met Phe Lys His Tyr Ser Val His Asp Phe
 210 215 220
 Ala Glu Phe Leu Glu Leu Tyr Gly Met Pro Ile Arg Ile Gly Lys Tyr
 225 230 235 240
 Pro Phe Gly Ala Thr Asn Asp Glu Lys Arg Thr Leu Leu Arg Ala Leu
 245 250 255
 Ala Gln Ile Gly His Asn Ala Ala Gly Ile Met Pro Glu Gly Met Asn
 260 265 270
 Val Glu Leu His Asn Val Thr Asn Thr Thr Gly Ser Ala Gly Ser Asn
 275 280 285
 Pro Phe Leu Gln Met Val Asp Trp Cys Glu Lys Ser Ala Ala Arg Leu
 290 295 300
 Ile Leu Gly Gln Thr Leu Thr Ser Gly Ala Asp Gly Lys Thr Ser Thr
 305 310 315 320
 Asn Ala Leu Gly Gln Val His Asn Glu Val Arg Arg Asp Leu Leu Val
 325 330 335
 Ser Asp Ala Lys Gln Ile Ala Gln Thr Ile Thr Gln Gln Ile Ile Leu
 340 345 350
 Pro Tyr Leu Gln Ile Asn Ile Asp Pro Asn Ile Leu Pro Ser Arg Val
 355 360 365
 Pro Tyr Phe Glu Phe Asp Thr Lys Glu Tyr Ala Asp Leu Ser Val Leu
 370 375 380
 Ala Asp Ala Ile Pro Lys Leu Val Ser Val Gly Val Arg Ile Pro Glu
 385 390 395 400
 Asn Trp Val Arg Asp Lys Ala Gly Ile Pro Glu Pro Gln Glu Asn Glu
 405 410 415
 Thr Ile Leu Ser Ala Val Gln His Asp Phe Lys Thr Asp Leu Asn Asp
 420 425 430
 Val Glu Asn Pro Lys Lys Gln Thr Ala Leu Ser Val Gln Asn His Val
 435 440 445
 Thr Gly Cys Gln Cys Asp Gly Cys Arg Gly Val Ala Leu Ser Ala Asn
 450 455 460
 Asn Asn Ser Ser Thr Ala Gln Gly Val Leu Asp Gly Gly Leu Ala Gln
 465 470 475 480
 Ala Phe Asn Glu Pro Asp Phe Asn Lys Gln Leu Asn Pro Met Val Lys
 485 490 495
 Lys Ala Val Ala Val Leu Met Ala Cys Asp Ser Tyr Asp Glu Ala Ala
 500 505 510

Glu Lys Leu Ala Glu Ala Tyr Pro Glu Ile Ser Ser His Glu His Glu
 515 520 525

Gln Tyr Leu Ser Asn Ala Leu Phe Leu Ala Asp Leu Leu Gly Gly Thr
 530 535 540

Asn Val
 545

<210> 27
 <211> 1353
 <212> DNA
 <213> Pasteurella multocida

<220>
 <223> hmbR

<220>
 <221> CDS
 <222> (2)..(1351)

<220>
 <221> misc_feature
 <222> 125
 <223> Xaa = any or unknown amino acid

<220>
 <221> misc_feature
 <222> 133
 <223> Xaa = any or unknown amino acid

<220>
 <221> misc_feature
 <222> 141
 <223> Xaa = any or unknown amino acid

<220>
 <221> misc_feature
 <222> 151
 <223> Xaa = any or unknown amino acid

<400> 27
 g tca acg aaa gtc ggt tac gat att aat aac act cat cgt ttt aca ctg 49
 Ser Thr Lys Val Gly Tyr Asp Ile Asn Asn Thr His Arg Phe Thr Leu
 1 5 10 15

ttt tta gaa gat cgc cgt gaa aag ctt acc gaa gaa aaa aca tta 97
 Phe Leu Glu Asp Arg Arg Glu Lys Lys Leu Thr Glu Lys Thr Leu
 20 25 30

ggg ctt agt gat gca gtg cgt ttt gct aat gat caa acc cct tat ctc 145
 Gly Leu Ser Asp Ala Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu
 35 40 45

cgt tat ggt att gaa tat cga tat aac ggc ttg tct tgg ttg gaa acg 193
 Arg Tyr Gly Ile Glu Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr
 50 55 60

gta aag ctt ttt ttg gca aag cag aaa atc gaa caa cgt tct gct ctc 241
 Val Lys Leu Phe Leu Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu
 65 70 75 80

caa gag ttt gat att aat aat agg aat aaa ttg gat tcg act atg tcg Gln Glu Phe Asp Ile Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser 85 90 95	289
ttt gta tat tta caa aga cag aat ata gct cgg gga gaa ttt tca acg Phe Val Tyr Leu Gln Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr 100 105 110	337
agt cct tta tat tgg ggg ccg agt cgc cat cgt tta tnt gcg aaa ttc Ser Pro Leu Tyr Trp Gly Pro Ser Arg His Arg Leu Xaa Ala Lys Phe 115 120 125	385
gaa ttt cgt gat ang ttt tta gaa aat atg aat aag cnt ttt acg ttt Glu Phe Arg Asp Xaa Phe Leu Glu Asn Met Asn Lys Xaa Phe Thr Phe 130 135 140	433
cg ^g ccg tgg caa atc aat ana ttc aga caa caa ggt cga aat aac tat Arg Pro Trp Gln Ile Asn Xaa Phe Arg Gln Gln Gly Arg Asn Asn Tyr 145 150 155 160	481
aca gaa gtg ttt ccc gtt aaa tcc cga gag ttt tct ttt tct ctt atg Thr Glu Val Phe Pro Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met 165 170 175	529
gac gac att aag att ggc gaa ttg cta cat ctc gga ttg ggc ggt cgg Asp Asp Ile Lys Ile Gly Glu Leu Leu His Leu Gly Leu Gly Arg 180 185 190	577
tgg gat cac tat aac tat aag cca tta tta aat tct cag cat aat atc Trp Asp His Tyr Asn Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile 195 200 205	625
aac agg aca cag aga tta cct tat cca aaa aca tca tcc aaa ttt tcg Asn Arg Thr Gln Arg Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser 210 215 220	673
tat caa ttg agt tta gag tat caa tta cat cca tca cat caa att gca Tyr Gln Leu Ser Leu Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala 225 230 235 240	721
tac cgt tta agt acc ggt ttt agg gtt ccc cgt gtt gaa gat ctt tat Tyr Arg Leu Ser Thr Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr 245 250 255	769
ttt gaa gac cga gga aaa agt tct tca caa ttt ctt cct aac ccc gat Phe Glu Asp Arg Gly Lys Ser Ser Gln Phe Leu Pro Asn Pro Asp 260 265 270	817
cta caa ccg gaa act gca ctg aat cat gaa ata agt tac cgt ttc caa Leu Gln Pro Glu Thr Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln 275 280 285	865
aat caa tat gcc cat ttc agc gtc ggg ctt ttc cgt aca cgt tat cat Asn Gln Tyr Ala His Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His 290 295 300	913
aac ttt att caa gaa cgt gag atg acc tgt gat aaa att cca tat gag Asn Phe Ile Gln Glu Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu 305 310 315 320	961
tat aat agg act tat gga tat tgc acg cat aat act tat gta atg ttt Tyr Asn Arg Thr Tyr Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe 325 330 335	1009

gtt aat gaa cct gaa gcc gtg att aaa ggg gtt gaa gta agc ggt gct	1057
Val Asn Glu Pro Glu Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala	
340	345
350	
tta aat ggg tcg gca ttc gga ctt tcc gac ggt tta act ttc cgt ctc	1105
Leu Asn Gly Ser Ala Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu	
355	360
365	
aaa ggg agc tac agc aaa ggt caa aat cat gac ggc gat ccg tta aaa	1153
Lys Gly Ser Tyr Ser Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys	
370	375
380	
tct att caa cca tgg aca gtg gta acc ggt att gat tac gaa act gaa	1201
Ser Ile Gln Pro Trp Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu	
385	390
395	400
ggg tgg agc gtg agt ttg agc ggg cgt tat agt gcg gct aaa aaa gcc	1249
Gly Trp Ser Val Ser Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala	
405	410
415	
aaa gat gcg ata gaa acg gaa tac aca cat gat aaa aag gtt gtc aaa	1297
Lys Asp Ala Ile Glu Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys	
420	425
430	
caa tgg ccg cat tta agt cca tcc tac ttt gtt gtt gat ttt acg ggg	1345
Gln Trp Pro His Leu Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly	
435	440
445	
caa gtt ga	1353
Gln Val	
450	
<210> 28	
<211> 450	
<212> PRT	
<213> Pasteurella multocida	
<220>	
<221> misc_feature	
<222> 125	
<223> Xaa = any or unknown amino acid	
<220>	
<221> misc_feature	
<222> 133	
<223> Xaa = any or unknown amino acid	
<220>	
<221> misc_feature	
<222> 141	
<223> Xaa = any or unknown amino acid	
<220>	
<221> misc_feature	
<222> 151	
<223> Xaa = any or unknown amino acid	
<400> 28	
Ser Thr Lys Val Gly Tyr Asp Ile Asn Asn Thr His Arg Phe Thr Leu	
1	5
10	
15	

Phe Leu Glu Asp Arg Arg Glu Lys Lys Leu Thr Glu Glu Lys Thr Leu
 20 25 30

Gly Leu Ser Asp Ala Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu
 35 40 45

Arg Tyr Gly Ile Glu Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr
 50 55 60

Val Lys Leu Phe Leu Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu
 65 70 75 80

Gln Glu Phe Asp Ile Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser
 85 90 95

Phe Val Tyr Leu Gln Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr
 100 105 110

Ser Pro Leu Tyr Trp Gly Pro Ser Arg His Arg Leu Xaa Ala Lys Phe
 115 120 125

Glu Phe Arg Asp Xaa Phe Leu Glu Asn Met Asn Lys Xaa Phe Thr Phe
 130 135 140

Arg Pro Trp Gln Ile Asn Xaa Phe Arg Gln Gln Gly Arg Asn Asn Tyr
 145 150 155 160

Thr Glu Val Phe Pro Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met
 165 170 175

Asp Asp Ile Lys Ile Gly Glu Leu Leu His Leu Gly Leu Gly Arg
 180 185 190

Trp Asp His Tyr Asn Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile
 195 200 205

Asn Arg Thr Gln Arg Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser
 210 215 220

Tyr Gln Leu Ser Leu Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala
 225 230 235 240

Tyr Arg Leu Ser Thr Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr
 245 250 255

Phe Glu Asp Arg Gly Lys Ser Ser Ser Gln Phe Leu Pro Asn Pro Asp
 260 265 270

Leu Gln Pro Glu Thr Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln
 275 280 285

Asn Gln Tyr Ala His Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His
 290 295 300

Asn Phe Ile Gln Glu Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu
 305 310 315 320

Tyr Asn Arg Thr Tyr Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe
 325 330 335

Val Asn Glu Pro Glu Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala
 340 345 350

Leu Asn Gly Ser Ala Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu
355 360 365

Lys Gly Ser Tyr Ser Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys
370 375 380

Ser Ile Gln Pro Trp Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu
385 390 395 400

Gly Trp Ser Val Ser Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala
405 410 415

Lys Asp Ala Ile Glu Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys
420 425 430

Gln Trp Pro His Leu Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly
435 440 445

Gln Val
450

<210> 29
<211> 4936
<212> DNA
<213> *Pasteurella multocida*

<220>
<221> CDS
<222> (1078) .. (2769)

<220>
<223> hxuC

<400> 29
gtcaacaaca aagcgcacag gcattacttc atgccacaca catcatacag aaagtacgta 60
ccgatttaac gcaaattaat gccgtcaaca ttcatcttt cctatcataa agcgtttcat 120
catggcttagc attctagcaa aaatttagttg aggaaaatag cggtcttgtt ttgcttaaaa 180
aacaaccac cccgtagggc acggctgtt cttttgaga aattacgctt cttcatcttg 240
atcttttgc aagatctcat ctgcatttgc tttaaaaaga cgggcaatcg cattgcggta 300
ggagatttca aggctttctc gacttagtgc aatgacacct tgatcgatta agaaaccgtc 360
attgacatca taaacccaac catgtaatga gagtttttc ccattttcc acgcggattt 420
aatgattgac gagcgaccta agttataaac ttgctctgcg acgttaattt tcgtcagcat 480
atcagcccg tttcaggcg gtaaattgcc aagtaaatga ctatgcttat accaaatatac 540
gcgttaagtgg agtaaccagt tattaattaa acctaaatct tgatccgcca ttgcggctt 600
aattccacca cagtttgtat gtccacaaat aataatgtgt tcaatattta agacctcaac 660
ggcatattgc acaacagata aacagttaa atcgggtgtga atgacttgat ttgcaacatt 720
acgatgcaca aacagctcac ccggtcctaa atttgttaat tttctgcag gaacacggct 780
atccgagcaa ccaatccaaa gatagctcgg qatgtatga tcagccaaatt ctttaaaqta 840

agaggagttt tccttttca tccgtaacgc ccagctataa ttattggcaa aaagttgttc 900
 aatttttttc attagagtga ttcctatacc gcaaaaataa gggggctagt atagcttaga 960
 aatagacagt gggtaaagaa aggcaaaaaa ttgtatagga taacttgtt tttattgcca 1020
 tttattnaga attagaatct ttaataataa aaataattat cattaaggtt aatagtt 1077
 atg gat aaa aat tta atg aag gga tgt gta ttc tta tca ata gtc ggt 1125
 Met Asp Lys Asn Leu Met Lys Gly Cys Val Phe Leu Ser Ile Val Gly
 1 5 10 15
 tgc ggt atc caa ata ggg cta gca tca aat cca aat cct cca gat gtg 1173
 Cys Gly Ile Gln Ile Gly Leu Ala Ser Asn Pro Asn Pro Asp Val
 20 25 30
 gat gag tta tta cct att att gtg aat gct gat gaa gat aat aaa tta 1221
 Asp Glu Leu Leu Pro Ile Ile Val Asn Ala Asp Glu Asp Asn Lys Leu
 35 40 45
 cca ggt cgt tct gta tta aaa cag aaa aat atc gat caa caa caa gca 1269
 Pro Gly Arg Ser Val Leu Lys Gln Lys Asn Ile Asp Gln Gln Gln Ala
 50 55 60
 gat aat gcc gct gac tta ata aat att tta cct ggg gta aat atg gcg 1317
 Asp Asn Ala Ala Asp Leu Ile Asn Ile Leu Pro Gly Val Asn Met Ala
 65 70 75 80
 gga gga ttt cgc cct ggt ggt caa aca tta aat att aat gga atg ggt 1365
 Gly Gly Phe Arg Pro Gly Gly Gln Thr Leu Asn Ile Asn Gly Met Gly
 85 90 95
 gat gct gaa gat gtt aga gtt caa cta gac ggc gca aca aaa agt ttc 1413
 Asp Ala Glu Asp Val Arg Val Gln Leu Asp Gly Ala Thr Lys Ser Phe
 100 105 110
 gaa aaa tat caa caa ggc tct att ttt att gaa cct gag tta tta aga 1461
 Glu Lys Tyr Gln Gln Gly Ser Ile Phe Ile Glu Pro Glu Leu Leu Arg
 115 120 125
 aag gtg aca gta gac aaa gga aat tat tct cct caa tat ggc aat ggt 1509
 Lys Val Thr Val Asp Lys Gly Asn Tyr Ser Pro Gln Tyr Gly Asn Gly
 130 135 140
 ggc ttt gct ggt act gta aaa ttt gaa aca aaa gat gca act gat ttt 1557
 Gly Phe Ala Gly Thr Val Lys Phe Glu Thr Lys Asp Ala Thr Asp Phe
 145 150 155 160
 ttg aaa gaa aat cag aaa ata ggt gga tta ttt aaa tat gga aat aat 1605
 Leu Lys Glu Asn Gln Lys Ile Gly Gly Leu Phe Lys Tyr Gly Asn Asn
 165 170 175
 agc aat aat aac caa aaa act tat agt aca gcc cta gtt tta cag aat 1653
 Ser Asn Asn Asn Gln Lys Thr Tyr Ser Thr Ala Leu Val Leu Gln Asn
 180 185 190
 gaa caa aaa aat att gat ttg tta ttt ggt tct gta aga aat gca 1701
 Glu Gln Lys Asn Ile Asp Leu Leu Phe Gly Ser Val Arg Asn Ala
 195 200 205
 agc aat tat aca aga cct gat aaa agt aaa att ctt ttt tca aaa aac 1749
 Ser Asn Tyr Thr Arg Pro Asp Lys Ser Lys Ile Leu Phe Ser Lys Asn
 210 215 220

aat caa aaa agt gga tta ata aaa gta aat tgg caa att act cct gaa Asn Gln Lys Ser Gly Leu Ile Lys Val Asn Trp Gln Ile Thr Pro Glu 225 230 235 240	1797
cat tta tta act tta tcc agt gtt tat ggc att cat aaa ggg tgg gaa His Leu Leu Thr Leu Ser Ser Val Tyr Gly Ile His Lys Gly Trp Glu 245 250 255	1845
cct tgg gca gca aaa aga gat gtg atg tcg aga cca aca gaa aca gaa Pro Trp Ala Ala Lys Arg Asp Val Met Ser Arg Pro Thr Glu Thr Glu 260 265 270	1893
ata aaa cac tat ggg att gat gtt gcg tgg aaa cgt aaa ctt gtt tat Ile Lys His Tyr Gly Ile Asp Val Ala Trp Lys Arg Lys Leu Val Tyr 275 280 285	1941
cga gat caa aaa gat gaa agt tat tca ttg aaa tat cgc tat tta cct Arg Asp Gln Lys Asp Glu Ser Tyr Ser Leu Lys Tyr Arg Tyr Leu Pro 290 295 300	1989
gaa aat aat aag tgg att aat ttg tct gtt cag ctg agt tat agt aaa Glu Asn Asn Lys Trp Ile Asn Leu Ser Val Gln Leu Ser Tyr Ser Lys 305 310 315 320	2037
aca gag cag aat gat act cgc cat gag aaa gtc act tct tca ttc cta Thr Glu Gln Asn Asp Thr Arg His Glu Lys Val Thr Ser Ser Phe Leu 325 330 335	2085
ggc aca tta gga aat aaa agt tgg ata act tat tca gat ctt act ttt Gly Thr Leu Gly Asn Lys Ser Trp Ile Thr Tyr Ser Asp Leu Thr Phe 340 345 350	2133
gat ata agt aac aca agt act cta aat att ggg cgt gct gag cat gaa Asp Ile Ser Asn Thr Ser Thr Leu Asn Ile Gly Arg Ala Glu His Glu 355 360 365	2181
cta cta ttt ggt tta cag tgg tta aaa aat aaa aga aat acc ctt atg Leu Leu Phe Gly Leu Gln Trp Leu Lys Asn Lys Arg Asn Thr Leu Met 370 375 380	2229
tat cat aaa ggg gga gtc aag aag gca gac tat aat tat ggc tat ttt Tyr His Lys Gly Gly Val Lys Lys Ala Asp Tyr Asn Tyr Gly Tyr Phe 385 390 395 400	2277
cag cct tat tat atg cct tct gga cgc cag tat aca caa gca ttt tat Gln Pro Tyr Tyr Met Pro Ser Gly Arg Gln Tyr Thr Gln Ala Phe Tyr 405 410 415	2325
tta caa gat caa ata aaa tgg cag aat ttc ctc ttt aca gga ggg ata Leu Gln Asp Gln Ile Lys Trp Gln Asn Phe Leu Phe Thr Gly Gly Ile 420 425 430	2373
aga tat gac cat atc aat aat ata ggg cag aaa aat tta gcg cca cga Arg Tyr Asp His Ile Asn Asn Ile Gly Gln Lys Asn Leu Ala Pro Arg 435 440 445	2421
tat aat gat atc tct gca gga cat gat tat agc cag aaa aat tat aat Tyr Asn Asp Ile Ser Ala Gly His Asp Tyr Ser Gln Lys Asn Tyr Asn 450 455 460	2469
ggc tgg tct tat tat tta ggt ctt aag tat gat gta aat cat tat tta Gly Trp Ser Tyr Tyr Leu Gly Leu Lys Tyr Asp Val Asn His Tyr Leu 465 470 475 480	2517

agt tta ttt acg aat ttt agt aaa act tgg cga gcc cct gtt att gat	2565
Ser Leu Phe Thr Asn Phe Ser Lys Thr Trp Arg Ala Pro Val Ile Asp	
485	490
	495
gaa cag tat gag aca caa tat agt caa gct tct gta tct gcg act tct	2613
Glu Gln Tyr Glu Thr Gln Tyr Ser Gln Ala Ser Val Ser Ala Thr Ser	
500	505
	510
tta aat tta gaa aaa gaa atg att aat caa acc aga gtg ggt gga att	2661
Leu Asn Leu Glu Lys Glu Met Ile Asn Gln Thr Arg Val Gly Gly Ile	
515	520
	525
att act ctc aat cat cta ttt cag gaa aat gat gct ttt caa ttt aga	2709
Ile Thr Leu Asn His Leu Phe Gln Glu Asn Asp Ala Phe Gln Phe Arg	
530	535
	540
act act tat ttt tac aat cgc ggc aag aat gaa atc ttc aaa acg aga	2757
Thr Thr Tyr Phe Tyr Asn Arg Gly Lys Asn Glu Ile Phe Lys Thr Arg	
545	550
	555
	560
ggg gtt aac cgt tagagtttgt tgaaatgact gaaaaattag acctatacgt	2809
Gly Val Asn Arg	
tactgttaaa ggtggcggtta tttctggta agcgggtgca atccgtcacg gtatcactcg	2869
tgcattaatc gaatatgatg agagtttacg ctctgttatta cgcgcatcg gtttcgttac	2929
tcgcgatgca cgtcaagttt aacgtaaaaa agtgggttta cgcaaagcgc gtcgtcgcc	2989
acaattctca aaacgttaat ttttcttttta cgttttatata tcagattgca agcccaaag	3049
gttttcaatt ttttatctc aataaaaattt acgataatct ttggaaatca gtgggcgatt	3109
tgtggtagaa taaacgccc a tttttatataaaaatcatgc cagaatcagg caaagttaa	3169
taaattttaa ttcatttttag agctgtcgg a ggaatagatg acaagcgtc caaataaaacg	3229
ttcaataatg acactttttt cagataaaaac agatattttat tgccaccaag taaggattgt	3289
tttggctgaa aagggtgttg cttatgaaac ggaagttgta gatcctcaag tcgtatcaga	3349
agatttaatg gaattaaatc cgtatggcac gttgccgaca ttagttgate gtgatttatgt	3409
gttatttaat tcacgttatta ttatgaaata tcttgatgag cgttccctc atccaccttt	3469
gatgcctgtt tatccagtgg cacgtggaa aagccgttta ttaatgttac gtattgagca	3529
agattggtag ccagtattag caaaagctga aaaaggcacg gacgcagaac gtgctgtcgc	3589
attaaaacaa ttaagagaag agattttac gattgcgcct atttcacgc agatgcctta	3649
ttttatgagc gaagagtttta gtttagtatac ttgttatatac gccccattat tatggcgtat	3709
gcaagaactg ggtgtggatt tcagtgggc gggtagcaaa gcaattaaag cttacatggc	3769
acgtgtttttt gaacgcgatt cattatgca atctttaggc gtgtcggtc cgaaaaactt	3829
aatggatgag aaataatcag tatgtacat aaatcatcac caaagcgtcc ttacttgttta	3889
agagcgtatt atgattgggtt agtggataat gatttcaccc cttattttatgtt ggtggacgcg	3949
acttatgtt gttgttggaaatgttgcataa gatggcaat tgcctcaat	4009

ttatctgcga atgcgacagg taatctggta ctaagcaatg aaagtattca gtttagcg 4069
 cgtttgcgtg gtatccaca agatattttt attcctatgg gggctgcgtt agccatttat 4129
 gctcgtaaaa atggtgatgg tgtactgttt gaacctgaag cgatttatga tgagctcgca 4189
 acacaaaata ttggtattga gcagccactg agcttgcgtt aggctgtcgaa taaacccaaa 4249
 accagtgaga atactcaaaa aagcacaaac aaagacaaaaa cgacggaaaaa aaaagcgact 4309
 tctcatttaa gaattattaa ataaaaagagg ttttcttct tcataaaaaa acacgctttt 4369
 acgcgtgttt ttttgcgtcg gacagtttat tgtgccattt ttttgcggc ttttagaag 4429
 ccttcgcac tcgttagat gtcacttta ttctgtgccg ctaaaatcat atccgacatt 4489
 tcacgaaagg ccccttgcac accttcagg cttagtacgt gatcagcgtg cattttgata 4549
 taagcggcgc atcttgtact gcaaaggcaa caccacagcg gcaaaagcag gcagatcaac 4609
 gctgtcatca ccaatataag ccgttcttg cgcacagaca ttggctgtt gtatcaattc 4669
 aagacaggcg ctttctttt ccaatttgcc gaggaaaaag tggatgc cttagatctgc 4729
 aatacgttg cgtagaatcg gggaatctcg ccccgagagt accgcgactt gaatgccaga 4789
 ttccattaac attctgatcc ccaagccatc acgaacatga aagttttga aagtttacc 4849
 atgggcatcg taatgcaaag agccgtcggt cagtacacccg tcgatatctg taatcacaaa 4909
 tttaattttt tttagttttt ccgttga 4936

<210> 30
 <211> 564
 <212> PRT
 <213> Pasteurella multocida

<400> 30
Met Asp Lys Asn Leu Met Lys Gly Cys Val Phe Leu Ser Ile Val Gly
1 5 10 15
Cys Gly Ile Gln Ile Gly Leu Ala Ser Asn Pro Asn Pro Pro Asp Val
20 25 30
Asp Glu Leu Leu Pro Ile Ile Val Asn Ala Asp Glu Asp Asn Lys Leu
35 40 45
Pro Gly Arg Ser Val Leu Lys Gln Lys Asn Ile Asp Gln Gln Gln Ala
50 55 60
Asp Asn Ala Ala Asp Leu Ile Asn Ile Leu Pro Gly Val Asn Met Ala
65 70 75 80
Gly Gly Phe Arg Pro Gly Gly Gln Thr Leu Asn Ile Asn Gly Met Gly
85 90 95
Asp Ala Glu Asp Val Arg Val Gln Leu Asp Gly Ala Thr Lys Ser Phe
100 105 110
Glu Lys Tyr Gln Gln Gly Ser Ile Phe Ile Glu Pro Glu Leu Leu Arg
115 120 125

Lys Val Thr Val Asp Lys Gly Asn Tyr Ser Pro Gln Tyr Gly Asn Gly
 130 135 140
 Gly Phe Ala Gly Thr Val Lys Phe Glu Thr Lys Asp Ala Thr Asp Phe
 145 150 155 160
 Leu Lys Glu Asn Gln Lys Ile Gly Gly Leu Phe Lys Tyr Gly Asn Asn
 165 170 175
 Ser Asn Asn Asn Gln Lys Thr Tyr Ser Thr Ala Leu Val Leu Gln Asn
 180 185 190
 Glu Gln Lys Asn Ile Asp Leu Leu Leu Phe Gly Ser Val Arg Asn Ala
 195 200 205
 Ser Asn Tyr Thr Arg Pro Asp Lys Ser Lys Ile Leu Phe Ser Lys Asn
 210 215 220
 Asn Gln Lys Ser Gly Leu Ile Lys Val Asn Trp Gln Ile Thr Pro Glu
 225 230 235 240
 His Leu Leu Thr Leu Ser Ser Val Tyr Gly Ile His Lys Gly Trp Glu
 245 250 255
 Pro Trp Ala Ala Lys Arg Asp Val Met Ser Arg Pro Thr Glu Thr Glu
 260 265 270
 Ile Lys His Tyr Gly Ile Asp Val Ala Trp Lys Arg Lys Leu Val Tyr
 275 280 285
 Arg Asp Gln Lys Asp Glu Ser Tyr Ser Leu Lys Tyr Arg Tyr Leu Pro
 290 295 300
 Glu Asn Asn Lys Trp Ile Asn Leu Ser Val Gln Leu Ser Tyr Ser Lys
 305 310 315 320
 Thr Glu Gln Asn Asp Thr Arg His Glu Lys Val Thr Ser Ser Phe Leu
 325 330 335
 Gly Thr Leu Gly Asn Lys Ser Trp Ile Thr Tyr Ser Asp Leu Thr Phe
 340 345 350
 Asp Ile Ser Asn Thr Ser Thr Leu Asn Ile Gly Arg Ala Glu His Glu
 355 360 365
 Leu Leu Phe Gly Leu Gln Trp Leu Lys Asn Lys Arg Asn Thr Leu Met
 370 375 380
 Tyr His Lys Gly Gly Val Lys Lys Ala Asp Tyr Asn Tyr Gly Tyr Phe
 385 390 395 400
 Gln Pro Tyr Tyr Met Pro Ser Gly Arg Gln Tyr Thr Gln Ala Phe Tyr
 405 410 415
 Leu Gln Asp Gln Ile Lys Trp Gln Asn Phe Leu Phe Thr Gly Gly Ile
 420 425 430
 Arg Tyr Asp His Ile Asn Asn Ile Gly Gln Lys Asn Leu Ala Pro Arg
 435 440 445
 Tyr Asn Asp Ile Ser Ala Gly His Asp Tyr Ser Gln Lys Asn Tyr Asn
 450 455 460

Gly Trp Ser Tyr Tyr Leu Gly Leu Lys Tyr Asp Val Asn His Tyr Leu
 465 470 475 480

Ser Leu Phe Thr Asn Phe Ser Lys Thr Trp Arg Ala Pro Val Ile Asp
 485 490 495

Glu Gln Tyr Glu Thr Gln Tyr Ser Gln Ala Ser Val Ser Ala Thr Ser
 500 505 510

Leu Asn Leu Glu Lys Glu Met Ile Asn Gln Thr Arg Val Gly Gly Ile
 515 520 525

Ile Thr Leu Asn His Leu Phe Gln Glu Asn Asp Ala Phe Gln Phe Arg
 530 535 540

Thr Thr Tyr Phe Tyr Asn Arg Gly Lys Asn Glu Ile Phe Lys Thr Arg
 545 550 555 560

Gly Val Asn Arg

<210> 31
<211> 9814
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (4762) .. (7662)

<220>
<223> iroA

<400> 31
gtcgacctgc agcagacaat gtccactgtg taatagtcca acgactgtta taaaaatctt 60
ccgctgcttt ttctaatgtt tgtacacggt gttttcaaa ttcttccaaa ttcttggttg 120
gttggactaa aagttgttca gccgcgcct taaaattggc gacaaaatcc gattgttga 180
ttaaaccata ggattttgct tggatttgcg cggccgcgtc ttcacccaaat ttatcgaaaa 240
attcaggcgt ataagtcacg tttggatcg taggcgcgtat gatctgatta acaccagcct 300
gtttaatgc tccccattgc tgtgcattcg tttgtgccat ggttttaata ctggctaaca 360
cgtaggcttgc ttctctttca ggtgttgtct tcgttactgc tggtgtcaat actgtcgcca 420
aatcattacc acctgcggcat agaatatgt aagcttcttt tttgactggc gcatgtaaat 480
actcggtat ctgttttct agtgctaaat gaggttggc tgctgttcta gtattatgt 540
caccaacaat cacccacccg ctgtacgcgt agttcaacc accctgtta gaaggtatta 600
atttttccc aaatgcttga gctaaatatt catcataaag gtgatgatag tttccatcag 660
cctttaaata agaggcttcc ttattccaaac ctgtttgccc catactactt aaactatcac 720
caaacacgac aacatcttgc gccagagcag ccgaacttag tgaacaaaat aatgcgaatg 780
aaagtgtatt aatttcaca ataatgtcct tcaattattc atcgctagtc aaaaatttgc 840

gtcatcatac gttgattata ggaagatacc tagccagacc actactggta tgaacagaag 900
tcaatgttta atcacataaa aaagcctctg tgcttcaca cagaggctt tatgtccatt 960
cacctactca aattacatcg cttgagtaaa ggtacgcgta atcacgtctt gttgtgttc 1020
tttggtaac gagtaaagc gtactgcata acccgaaaaca cgaatggta attgtggata 1080
tttctccgga tttccattt catctaaca catttcacgg ttcacgttc acgtttaa 1140
gtgttgtccg cttcaatcg ttgcttcatg gtggaaatcc ccttccatgg gacgtcaag 1200
gttacgtttt tgtgcttcgt aatcttacc taaggcattt ggtacgattt agaaggata 1260
agaaatacca tcttcgcac aagcaatgg caatttcgca acagaagttt acgtatgtac 1320
tgcacccccc tggtcacgac cgtgcattgg gttcgacccc ggtccaaatg gtgcaccaga 1380
acgacgacca tctgggtgt tacctgtttt cttaccataa accacgttag atgtaatagt 1440
aagtacagat tgtgtcggtg tcgcattacg ataagtaccc aatttttggaa ttttcttcat 1500
aaagcggtca actaaatcac aagcgatttc atcaacacgg ttatcggtt taccgaattt 1560
tggatattcg cttcaattt caaagtgcgt tgccacatct tttgcaatac caaccacttc 1620
acccgcttta ttttgattt cgatatcacc acgaactggt ttcactttcg catatttat 1680
ggcagataaa gagtccgctg cgacagaaag ccctgcgata ccacaagcca tagtacggaa 1740
tacatcacga tcatgaagtgc ccattagtgc ggcttcatac gcgtattttat cgtgcataaa 1800
gtgaatgatg ttcaatgcag taacatattt ttcgcttaac caatccataa agctgtctaa 1860
gcgcgtcatg acatcatcat aatctaagta ttcgctggta attggatcgg ttttcggtcc 1920
tacttggta cctgattttt catccacacc gccatttgatt gcgtataaca aggttttcgc 1980
taagttggca cgtgcaccga agaattgcattt cattttaccc acgtcatttgc ggcatacaca 2040
gcattgcattt gcattgcattt cttttggaa gtcaggacgc attaagtcat ctttttcata 2100
ctgaacagaa gacgtatcgta tagacacttt tgccgcataa cttttggaaac cttctggtaa 2160
tttttcagac caaagaatcg ttaagttgg ctctggtgac ggtcccatcg tataaagggt 2220
gtgtaaatcgat cggaaatcgat ttttggttac taaagtgatcgat ccatctaaatccatccgc 2280
taaggtttcc gttgcccaca ttgggtcgcc cgagaataat tgatcgatct ctggggatcg 2340
taagaaacgc accatacgta atttcatgac taagtggta attaattctt gtgtttcttgc 2400
ttctgtatattt ttgcctgtttt ttaaatcacc cttcaatataa atatctaaga aagtcgatac 2460
acgaccaaat gacatggcag caccgtttt tgatttcact gcagcggatc gactttgcac 2520
agttatcgga agataattga aatcataacc agcaacaaat gtcagccgtt ctatcttc 2580
tgaagaatcgat cggcgattgc gttctggcgaaatggctggat ttttccat tcttgagatg 2640
attttcttc aagtatttcc attctgtatcgat tgcgtgcgtataatgtgcg aaagagtatt 2700
ccattctcta agcacacttg ccgcactaac ttgtgaaatcgat cttcatcactccac 2760

agtgagctt gttcaacttgg ttgaaggaca ccaagaataa attttgtcaa ctttttaggg 4740
 tatttacttg aggttaggaa a atg cgt aca aca aca ata aaa ttt tct gca 4791
 Met Arg Thr Thr Thr Ile Lys Phe Ser Ala
 1 5 10
 att aca ttg gca tta ttg agt tat tgt ggg acc att ttg gcg gat agt 4839
 Ile Thr Leu Ala Leu Leu Ser Tyr Cys Gly Thr Ile Leu Ala Asp Ser
 15 20 25
 cat caa gag gcg act gaa ctt gat acg att acc gtt tct tct caa caa 4887
 His Gln Glu Ala Thr Glu Leu Asp Thr Ile Thr Val Ser Ser Gln Gln
 30 35 40
 gat gag atg aat att aaa gag aaa aaa atc ggt gaa act gtg aaa acg 4935
 Asp Glu Met Asn Ile Lys Glu Lys Ile Gly Glu Thr Val Lys Thr
 45 50 55
 gcg agt caa ttg aaa cgc cag caa gta cag gat agt cgt gat ctt gtg 4983
 Ala Ser Gln Leu Lys Arg Gln Gln Val Gln Asp Ser Arg Asp Leu Val
 60 65 70
 cgc tat gaa acc ggt gtg act gtg gta gaa gct gga cgt ttt ggt tcg 5031
 Arg Tyr Glu Thr Gly Val Thr Val Val Glu Ala Gly Arg Phe Gly Ser
 75 80 85 90
 agc ggt tat gcc att cgt ggt gtg gat gag aac cga gta gca att aca 5079
 Ser Gly Tyr Ala Ile Arg Gly Val Asp Glu Asn Arg Val Ala Ile Thr
 95 100 105
 gta gat ggc tta cat caa gca gaa acc ctt tct tct caa ggc ttt aaa 5127
 Val Asp Gly Leu His Gln Ala Glu Thr Leu Ser Ser Gln Gly Phe Lys
 110 115 120
 gaa tta ttc gaa ggt tac ggc aat ttt aac aat acc cga aat agt gtg 5175
 Glu Leu Phe Glu Gly Tyr Asn Phe Asn Asn Thr Arg Asn Ser Val
 125 130 135
 gaa att gag acg ttg aaa gtc gct aaa atc gcg aaa ggt gct gat tct 5223
 Glu Ile Glu Thr Leu Lys Val Ala Lys Ile Ala Lys Gly Ala Asp Ser
 140 145 150
 gta aaa gtg ggt agt ggt tct ttg gga ggc gct gta ctt ttt gaa aca 5271
 Val Lys Val Gly Ser Gly Ser Leu Gly Gly Ala Val Leu Phe Glu Thr
 155 160 165 170
 aaa gat gcc aga gat ttc ctg act gaa aaa gat tgg cat atc ggc tat 5319
 Lys Asp Ala Arg Asp Phe Leu Thr Glu Lys Asp Trp His Ile Gly Tyr
 175 180 185
 aaa gcg ggc tac tca acg gca gat aat cag gga tta aat gca gtg act 5367
 Lys Ala Gly Tyr Ser Thr Ala Asp Asn Gln Gly Leu Asn Ala Val Thr
 190 195 200
 ctt gca ggt cgc tat caa atg ttt gat gca ttg att atg cat tct aag 5415
 Leu Ala Gly Arg Tyr Gln Met Phe Asp Ala Leu Ile Met His Ser Lys
 205 210 215
 cga cat gga cat gaa tta gaa aat tat gac tat aaa aat ggc aga gat 5463
 Arg His Gly His Glu Leu Glu Asn Tyr Asp Tyr Lys Asn Gly Arg Asp
 220 225 230

att caa ggg aaa gaa aga gag aaa gcg gat cct tat acg att acg aaa Ile Gln Gly Lys Glu Arg Glu Lys Ala Asp Pro Tyr Thr Ile Thr Lys 235 240 245 250	5511
gaa agt aca tta gtg aaa ttc tct ttt tcg cca aca gaa aat cat cgt Glu Ser Thr Leu Val Lys Phe Ser Phe Ser Pro Thr Glu Asn His Arg 255 260 265	5559
ttt aca gtc gct tct gat act tat ctt cag cat tcc cgc gga cat gat Phe Thr Val Ala Ser Asp Thr Tyr Leu Gln His Ser Arg Gly His Asp 270 275 280	5607
ctt tca tat aat ctt gtt gca aca aca cat att cag tta gat gag aaa Leu Ser Tyr Asn Leu Val Ala Thr Thr His Ile Gln Leu Asp Glu Lys 285 290 295	5655
gaa tct cgt cat gca aat gat ttg aca aaa cgt aaa aat gtt tcc ttt Glu Ser Arg His Ala Asn Asp Leu Thr Lys Arg Lys Asn Val Ser Phe 300 305 310	5703
act tat gaa aat tat act gtt acg cca ttt tgg gat acg ctc aag tta Thr Tyr Glu Asn Tyr Thr Val Pro Phe Trp Asp Thr Leu Lys Leu 315 320 325 330	5751
agc tat tca caa caa aga att aca aca aga gca aga aca gaa gat tat Ser Tyr Ser Gln Gln Arg Ile Thr Thr Arg Ala Arg Thr Glu Asp Tyr 335 340 345	5799
tgt gat gga aat gag tta tgt gat tct tat aaa aat cca tta ggt ctc Cys Asp Gly Asn Glu Leu Cys Asp Ser Tyr Lys Asn Pro Leu Gly Leu 350 355 360	5847
caa ttt aaa gat ggt cag att ctt gat cct gca ggg aat aaa att aaa Gln Phe Lys Asp Gly Gln Ile Leu Asp Pro Ala Gly Asn Lys Ile Lys 365 370 375	5895
cta cag ggg tct gga ttg agc act cag att gta gat gaa aat gga aaa Leu Gln Gly Ser Gly Leu Ser Thr Gln Ile Val Asp Glu Asn Gly Lys 380 385 390	5943
cca ttt cct aca aca aca ggt act aat aat gct gct ttt agt aat aat Pro Phe Pro Thr Thr Gly Thr Asn Asn Ala Ala Phe Ser Asn Asn 395 400 405 410	5991
tta cga ctc agg cct aca ggt ttt tgg tta gat tgc tcg gtt ttt gac Leu Arg Leu Arg Pro Thr Gly Phe Trp Leu Asp Cys Ser Val Phe Asp 415 420 425	6039
tgt aat aaa cca ttc act gtt tat aat att agt aat gga aca tat caa Cys Asn Lys Pro Phe Thr Val Tyr Asn Ile Ser Asn Gly Thr Tyr Gln 430 435 440	6087
gca aga gag gtt cta ctg tct gaa gag ata act gtg gat ggt aaa tta Ala Arg Glu Val Leu Leu Ser Glu Glu Ile Thr Val Asp Gly Lys Leu 445 450 455	6135
tac aaa aca gct aag gaa gaa gga ggg ctt cca aat tat ttg att tta Tyr Lys Thr Ala Lys Glu Glu Gly Leu Pro Asn Tyr Leu Ile Leu 460 465 470	6183
cct aat tct aaa ggt tat ctt cct tat gat tat aaa gaa agg gat ctt Pro Asn Ser Lys Gly Tyr Leu Pro Tyr Asp Tyr Lys Glu Arg Asp Leu 475 480 485 490	6231

aat acg aat aca aaa caa att aat tta gat tta act aaa aca ttt tta		6279
Asn Thr Asn Thr Lys Gln Ile Asn Leu Asp Leu Thr Lys Thr Phe Leu		
495	500	505
act ttc aac atc gaa aat aat ctg tca tat ggt gga gtt tat tct cgg		6327
Thr Phe Asn Ile Glu Asn Asn Leu Ser Tyr Gly Gly Val Tyr Ser Arg		
510	515	520
ata gag aaa gaa atg att aat aaa gct ggt tat gag ggg aga aat cct		6375
Ile Glu Lys Glu Met Ile Asn Lys Ala Gly Tyr Glu Gly Arg Asn Pro		
525	530	535
act tgg tgg gct gat aga att tta ggg caa agt agt tac tgt ggt tat		6423
Thr Trp Trp Ala Asp Arg Ile Leu Gly Gln Ser Ser Tyr Cys Gly Tyr		
540	545	550
aat gca ttg aag tgt ccg aaa cat gag cca tta acg tca ttt tta att		6471
Asn Ala Leu Lys Cys Pro Lys His Glu Pro Leu Thr Ser Phe Leu Ile		
555	560	565
570		
cca gtt gaa gca acg aca cag tca tta tat ttt gca aat att ctt aag		6519
Pro Val Glu Ala Thr Thr Gln Ser Leu Tyr Phe Ala Asn Ile Leu Lys		
575	580	585
gta cat aat atg att agc ata gat tta gga tat cgt tat gat cat att		6567
Val His Asn Met Ile Ser Ile Asp Leu Gly Tyr Arg Tyr Asp His Ile		
590	595	600
aaa tat aac cct gaa tac act cca gga gta act cca aaa att cca gat		6615
Lys Tyr Asn Pro Glu Tyr Thr Pro Gly Val Thr Pro Lys Ile Pro Asp		
605	610	615
gat atg gta aaa ggt ttg ttt att cct atg cca aaa gag cca cag cta		6663
Asp Met Val Lys Gly Leu Phe Ile Pro Met Pro Lys Glu Pro Gln Leu		
620	625	630
aag gat ttt gat tat aac tat gct aaa ttt ggt gag gcc tat aaa aaa		6711
Lys Asp Phe Asp Tyr Asn Tyr Ala Lys Phe Gly Glu Ala Tyr Lys Lys		
635	640	645
650		
tgg aaa gaa tat ctg cca aaa aat gcg gaa gaa aat att gct tac att		6759
Trp Lys Glu Tyr Leu Pro Lys Asn Ala Glu Glu Asn Ile Ala Tyr Ile		
655	660	665
gctcaa gat aag aca ttt aaa aaa cat tct tat tct ctt ggt gca act		6807
Ala Gln Asp Lys Thr Phe Lys Lys His Ser Tyr Ser Leu Gly Ala Thr		
670	675	680
ttc gat cct ctg aat ttt tta cga gta caa gta aaa tat tca aaa ggg		6855
Phe Asp Pro Leu Asn Phe Leu Arg Val Gln Val Lys Tyr Ser Lys Gly		
685	690	695
ttt aga gcc ccg act tcg gat gaa ctt tat ttt acc ttt aag cat cca		6903
Phe Arg Ala Pro Thr Ser Asp Glu Leu Tyr Phe Thr Phe Lys His Pro		
700	705	710
gat ttt acg att tta ccg aac ccc gtg ttg aaa cca gag gaa gca aaa		6951
Asp Phe Thr Ile Leu Pro Asn Pro Val Leu Lys Pro Glu Glu Ala Lys		
715	720	725
730		
aat caa gag att gca tta aca gtg cac gat aat tgg gga ttt gtt agc		6999
Asn Gln Glu Ile Ala Leu Thr Val His Asp Asn Trp Gly Phe Val Ser		
735	740	745

aca agt gtt ttc caa aca aag tat cgt cat ttt att gat tta gcg tat	7047
Thr Ser Val Phe Gln Thr Lys Tyr Arg His Phe Ile Asp Leu Ala Tyr	
750	755
	760
tta ggt tca aga aat tta tcg aat tcc gtg gga ggg cag gca caa gca	7095
Leu Gly Ser Arg Asn Leu Ser Asn Ser Val Gly Gly Gln Ala Gln Ala	
765	770
	775
aga gat ttc caa gtt tat caa aat gtc aat gtc gat aat gcc aaa gtt	7143
Arg Asp Phe Gln Val Tyr Gln Asn Val Asn Val Asp Asn Ala Lys Val	
780	785
	790
aaa gga ctt gaa att aat gca cgt ttg aat ttg gga tat ttt tgg cat	7191
Lys Gly Leu Glu Ile Asn Ala Arg Leu Asn Leu Gly Tyr Phe Trp His	
795	800
	805
	810
gtg ttg gat gga ttt aat acg agc tat aaa ttc act tac caa cgt ggt	7239
Val Leu Asp Gly Phe Asn Thr Ser Tyr Lys Phe Thr Tyr Gln Arg Gly	
815	820
	825
cgt ttg gat ggc gat cgt cca atg aat gcg att cag cct aaa gct tct	7287
Arg Leu Asp Gly Asp Arg Pro Met Asn Ala Ile Gln Pro Lys Ala Ser	
830	835
	840
gtt ttt ggt ttg ggc tac gat cat aaa gaa aat aaa ttt ggc gct gat	7335
Val Phe Gly Leu Gly Tyr Asp His Lys Glu Asn Lys Phe Gly Ala Asp	
845	850
	855
tta tat att aca cgt gtg agt gag aaa aaa gcg aaa gac act tat aat	7383
Leu Tyr Ile Thr Arg Val Ser Glu Lys Lys Ala Lys Asp Thr Tyr Asn	
860	865
	870
atg ttc tat aaa gaa cag gga tat aaa gat agt gct gtt cgt tgg aga	7431
Met Phe Tyr Lys Glu Gln Gly Tyr Lys Asp Ser Ala Val Arg Trp Arg	
875	880
	885
	890
agt gat gac tat acg cta gtt gat gcg gtt ggt tat att aaa ccg att	7479
Ser Asp Asp Tyr Thr Leu Val Asp Ala Val Gly Tyr Ile Lys Pro Ile	
895	900
	905
aag aat tta acg tta cag ttt ggc gtt tat aat ttg aca gac cgt aaa	7527
Lys Asn Leu Thr Leu Gln Phe Gly Val Tyr Asn Leu Thr Asp Arg Lys	
910	915
	920
tac ttg aca tgg gaa tct gct cgt tcg att aaa cca ttt ggt aca agt	7575
Tyr Leu Thr Trp Glu Ser Ala Arg Ser Ile Lys Pro Phe Gly Thr Ser	
925	930
	935
aat tta att aat caa aaa aca ggc gca gga att aat cgt ttt tac tca	7623
Asn Leu Ile Asn Gln Lys Thr Gly Ala Gly Ile Asn Arg Phe Tyr Ser	
940	945
	950
cca ggt cgt aac ttt aaa ctc agt gcc gaa atc acc ttc taatcctaag	7672
Pro Gly Arg Asn Phe Lys Leu Ser Ala Glu Ile Thr Phe	
955	960
	965
cctgcgtatg caggcttct ttttagggaa agtgccgtgg atttgacaaa gatttattgc	7732
ttttctgtaa atcaatgcta aaattcacac tcctttgtcg tagctggatt agagatcggc	7792
tagcgatgta ttttaactt aacttttagg agttatcaaa tgtctctaag tacagaaaaa	7852
aaagcagcaa ttgttgctga atttggtcgt gatgcaaaag ataccggttc ttcagaagtg	7912

caaatcgcat tattaactgc acaaatcaac cacttacaat ctcactttgc aacgcacaaa 7972
 aaagaccacc acggtcgtcg tggtttattg cgtatggttt ctcgtcgtcg taaactttta 8032
 gattacttaa aacgtactaa tcttgagctt tacacttcaa ctatcgctcg ttttaggttta 8092
 cgctgctaatttgcgtcg ttgttatttgcgtcg atttatttcca aacaaaaaaac ccttgataat tttatcaagg 8152
 gttttctttt ttctgcatac taggcatttgcgtcg taaattatcg caaaacacac cgcacatttc 8212
 gtggaaaagt gcggtcattt ttttatttta ttttacttctt ttaaacatga tctcacttgg 8272
 gattactgaa ctttgcaggtaa agctcaggtaa agcgactttt tcagcttaattt gcataaaacga 8332
 ttggcaatg tcgctttcag gtgcggcgac aacgggttggg atacctttgt ctaaatcttc 8392
 acgtaagcga atatgtaatg cctgttgtcc taaaacttttgcgtcg acattatattt tttgtgcaat 8452
 ggcgtcagca ccgcctgttc cgaaaaatcgat tttttgtatga ccacaatttgc tacaatatg 8512
 catcgacata ttttcgataa tgcctaaaac gggtacagaa acacgctcaa acatcgccac 8572
 acctttaatc gcatccagta aagcaatatc ttgtgggtt gtcaccacga ccgccccctgt 8632
 cactggaatt tggttggaaa gggtcagctg gatatcccctt gtacccgggtt gcatatcaat 8692
 gactaaataa tctaaatcag gccataaggtaa ttcttgcaaa agctgactta aggcactgt 8752
 tgccatttggaa ccgcgc当地 tcgttagcattt gtcgggttcc attaagaac caatggaaattt 8812
 ggcaaaaata tgatgtgctt gaattgggtt aatgtgctgg ttatctggcg aagttggcg 8872
 ttgtatcagca acccctaaca tgtgtggaaat agatggacca taaatatcgat tttttttttt 8932
 tccaaacacga gcacccgttc ttgttaaggc aagagcaaga ttgacggaaa tagtagattt 8992
 tcctacacca cctttacccatgtcgttgcgc aataatattt tttttttttt ttacggctgg 9052
 gtggctttaa ggcgtttta atgtcgat ttgtataattt aatttgcattt tgatgtcttt 9112
 gcattctgtt aatgtgagaa gttctgtggaa gagagcgctc ttgagttgtt cgaatgcaggta 9172
 attccaaagca aacggcatgc tgatttcaat acgttaacgtc tcaccgcctt tttttttttt 9232
 tttgtatcgtt tttttttttt ttgtggcttgcgtt aatgttggaa attgttggaa 9292
 tgtgtttttgg atagcttggttt tttgtactgtc cgtttaacttgcgtt tcaactatata 9352
 tgattttataccgttattttt ttgtggcttgcgtt aatgttggaa atgttggaa 9412
 ttaaccacga agctgttagaa ctgttaagca gaaatgtggaa aacggcggtt taaatgttagaa 9472
 aaaatactgc gaataaggta acataagcgc caatttttttgcgtt aatgttggaa 9532
 catggcaat tcggcacgcg atattttggt cacttgcgc ttaccttgcgtt tcaactatata 9592
 aatttcaatttta gggcatttat tagaacatata tcaagcagat atttgggtgc gttccaaacgt 9652
 atgcgtggcataaaggtaa ttgttattttgtt gcaatgttgcgtt cccatggcac accaattatcgt 9712
 ttaaatgcgtt aatgttggaa attacaccaaa agcatttataattt gtcctcgaa agcagaacat 9772
 gtggcggtt gcaaggcttta atattgttgcgtt tcaactatata 9814

<210> 32
 <211> 967
 <212> PRT
 <213> *Pasteurella multocida*

<400> 32
 Met Arg Thr Thr Thr Ile Lys Phe Ser Ala Ile Thr Leu Ala Leu Leu
 1 5 10 15

Ser Tyr Cys Gly Thr Ile Leu Ala Asp Ser His Gln Glu Ala Thr Glu
 20 25 30

Leu Asp Thr Ile Thr Val Ser Ser Gln Gln Asp Glu Met Asn Ile Lys
 35 40 45

Glu Lys Lys Ile Gly Glu Thr Val Lys Thr Ala Ser Gln Leu Lys Arg
 50 55 60

Gln Gln Val Gln Asp Ser Arg Asp Leu Val Arg Tyr Glu Thr Gly Val
 65 70 75 80

Thr Val Val Glu Ala Gly Arg Phe Gly Ser Ser Gly Tyr Ala Ile Arg
 85 90 95

Gly Val Asp Glu Asn Arg Val Ala Ile Thr Val Asp Gly Leu His Gln
 100 105 110

Ala Glu Thr Leu Ser Ser Gln Gly Phe Lys Glu Leu Phe Glu Gly Tyr
 115 120 125

Gly Asn Phe Asn Asn Thr Arg Asn Ser Val Glu Ile Glu Thr Leu Lys
 130 135 140

Val Ala Lys Ile Ala Lys Gly Ala Asp Ser Val Lys Val Gly Ser Gly
 145 150 155 160

Ser Leu Gly Gly Ala Val Leu Phe Glu Thr Lys Asp Ala Arg Asp Phe
 165 170 175

Leu Thr Glu Lys Asp Trp His Ile Gly Tyr Lys Ala Gly Tyr Ser Thr
 180 185 190

Ala Asp Asn Gln Gly Leu Asn Ala Val Thr Leu Ala Gly Arg Tyr Gln
 195 200 205

Met Phe Asp Ala Leu Ile Met His Ser Lys Arg His Gly His Glu Leu
 210 215 220

Glu Asn Tyr Asp Tyr Lys Asn Gly Arg Asp Ile Gln Gly Lys Glu Arg
 225 230 235 240

Glu Lys Ala Asp Pro Tyr Thr Ile Thr Lys Glu Ser Thr Leu Val Lys
 245 250 255

Phe Ser Phe Ser Pro Thr Glu Asn His Arg Phe Thr Val Ala Ser Asp
 260 265 270

Thr Tyr Leu Gln His Ser Arg Gly His Asp Leu Ser Tyr Asn Leu Val
 275 280 285

Ala Thr Thr His Ile Gln Leu Asp Glu Lys Glu Ser Arg His Ala Asn
 290 295 300

Asp Leu Thr Lys Arg Lys Asn Val Ser Phe Thr Tyr Glu Asn Tyr Thr
 305 310 315 320
 Val Thr Pro Phe Trp Asp Thr Leu Lys Leu Ser Tyr Ser Gln Gln Arg
 325 330 335
 Ile Thr Thr Arg Ala Arg Thr Glu Asp Tyr Cys Asp Gly Asn Glu Leu
 340 345 350
 Cys Asp Ser Tyr Lys Asn Pro Leu Gly Leu Gln Phe Lys Asp Gly Gln
 355 360 365
 Ile Leu Asp Pro Ala Gly Asn Lys Ile Lys Leu Gln Gly Ser Gly Leu
 370 375 380
 Ser Thr Gln Ile Val Asp Glu Asn Gly Lys Pro Phe Pro Thr Thr Thr
 385 390 395 400
 Gly Thr Asn Asn Ala Ala Phe Ser Asn Asn Leu Arg Leu Arg Pro Thr
 405 410 415
 Gly Phe Trp Leu Asp Cys Ser Val Phe Asp Cys Asn Lys Pro Phe Thr
 420 425 430
 Val Tyr Asn Ile Ser Asn Gly Thr Tyr Gln Ala Arg Glu Val Leu Leu
 435 440 445
 Ser Glu Glu Ile Thr Val Asp Gly Lys Leu Tyr Lys Thr Ala Lys Glu
 450 455 460
 Glu Gly Gly Leu Pro Asn Tyr Leu Ile Leu Pro Asn Ser Lys Gly Tyr
 465 470 475 480
 Leu Pro Tyr Asp Tyr Lys Glu Arg Asp Leu Asn Thr Asn Thr Lys Gln
 485 490 495
 Ile Asn Leu Asp Leu Thr Lys Thr Phe Leu Thr Phe Asn Ile Glu Asn
 500 505 510
 Asn Leu Ser Tyr Gly Val Tyr Ser Arg Ile Glu Lys Glu Met Ile
 515 520 525
 Asn Lys Ala Gly Tyr Glu Gly Arg Asn Pro Thr Trp Trp Ala Asp Arg
 530 535 540
 Ile Leu Gly Gln Ser Ser Tyr Cys Gly Tyr Asn Ala Leu Lys Cys Pro
 545 550 555 560
 Lys His Glu Pro Leu Thr Ser Phe Leu Ile Pro Val Glu Ala Thr Thr
 565 570 575
 Gln Ser Leu Tyr Phe Ala Asn Ile Leu Lys Val His Asn Met Ile Ser
 580 585 590
 Ile Asp Leu Gly Tyr Arg Tyr Asp His Ile Lys Tyr Asn Pro Glu Tyr
 595 600 605
 Thr Pro Gly Val Thr Pro Lys Ile Pro Asp Asp Met Val Lys Gly Leu
 610 615 620
 Phe Ile Pro Met Pro Lys Glu Pro Gln Leu Lys Asp Phe Asp Tyr Asn
 625 630 635 640

Tyr Ala Lys Phe Gly Glu Ala Tyr Lys Lys Trp Lys Glu Tyr Leu Pro
 645 650 655
 Lys Asn Ala Glu Glu Asn Ile Ala Tyr Ile Ala Gln Asp Lys Thr Phe
 660 665 670
 Lys Lys His Ser Tyr Ser Leu Gly Ala Thr Phe Asp Pro Leu Asn Phe
 675 680 685
 Leu Arg Val Gln Val Lys Tyr Ser Lys Gly Phe Arg Ala Pro Thr Ser
 690 695 700
 Asp Glu Leu Tyr Phe Thr Phe Lys His Pro Asp Phe Thr Ile Leu Pro
 705 710 715 720
 Asn Pro Val Leu Lys Pro Glu Glu Ala Lys Asn Gln Glu Ile Ala Leu
 725 730 735
 Thr Val His Asp Asn Trp Gly Phe Val Ser Thr Ser Val Phe Gln Thr
 740 745 750
 Lys Tyr Arg His Phe Ile Asp Leu Ala Tyr Leu Gly Ser Arg Asn Leu
 755 760 765
 Ser Asn Ser Val Gly Gly Gln Ala Gln Ala Arg Asp Phe Gln Val Tyr
 770 775 780
 Gln Asn Val Asn Val Asp Asn Ala Lys Val Lys Gly Leu Glu Ile Asn
 785 790 795 800
 Ala Arg Leu Asn Leu Gly Tyr Phe Trp His Val Leu Asp Gly Phe Asn
 805 810 815
 Thr Ser Tyr Lys Phe Thr Tyr Gln Arg Gly Arg Leu Asp Gly Asp Arg
 820 825 830
 Pro Met Asn Ala Ile Gln Pro Lys Ala Ser Val Phe Gly Leu Gly Tyr
 835 840 845
 Asp His Lys Glu Asn Lys Phe Gly Ala Asp Leu Tyr Ile Thr Arg Val
 850 855 860
 Ser Glu Lys Lys Ala Lys Asp Thr Tyr Asn Met Phe Tyr Lys Glu Gln
 865 870 875 880
 Gly Tyr Lys Asp Ser Ala Val Arg Trp Arg Ser Asp Asp Tyr Thr Leu
 885 890 895
 Val Asp Ala Val Gly Tyr Ile Lys Pro Ile Lys Asn Leu Thr Leu Gln
 900 905 910
 Phe Gly Val Tyr Asn Leu Thr Asp Arg Lys Tyr Leu Thr Trp Glu Ser
 915 920 925
 Ala Arg Ser Ile Lys Pro Phe Gly Thr Ser Asn Leu Ile Asn Gln Lys
 930 935 940
 Thr Gly Ala Gly Ile Asn Arg Phe Tyr Ser Pro Gly Arg Asn Phe Lys
 945 950 955 960
 Leu Ser Ala Glu Ile Thr Phe
 965

acaaatgggc ttaacccgca tgatcttatac ccgtgagctt tcgcttgatg aaattgccga 2704
 aattcgtag caagtccag aaatggaaat tgaagtgttc gtgcattgggg cattatgcat 2764
 ggcttattct ggacgttgtt tattatcagg ctatattaat aaacgtgatc caaatcaagg 2824
 cacctgtacc aatgcgtgcc gttggaaata cagtgtacc gaagccaaag aagatgagat 2884
 cggcaacatt gtgaatgtgg gtgaagaaat tccagtgaaa aatgtacac cgacacttgg 2944
 cgaaggcgc accaccagta aagtattttt attagcagaa agtcga 2990

<210> 34
 <211> 153
 <212> PRT
 <213> Pasteurella multocida

<400> 34
 Met Thr Glu Glu Asn Lys Gly Lys Arg Tyr Phe Leu Trp Phe Ile Leu
 1 5 10 15

Phe Ile Leu Ser Ile Tyr Leu Phe Ile Thr Ile Gln Glu Arg Arg Gly
 20 25 30

Tyr Cys Phe Asp Lys Arg Ala Tyr Ile His Glu Leu Tyr Thr Glu Gln
 35 40 45

Glu Leu Ile Asp Arg Gly Ile Glu Tyr Val Val Ser Thr Met Pro Ser
 50 55 60

Gly Val Ile Lys Pro Asp Gly Thr Ile Lys Glu Val Lys Arg Tyr Thr
 65 70 75 80

Ser Val Glu Glu Phe Lys Gln Met Asn Pro Ala Cys Cys Thr Leu Thr
 85 90 95

Thr Phe Ile Asp Glu Gly Asp Gly Tyr Pro Asp Asp Asp Gly Tyr
 100 105 110

Gly Tyr Val Arg Ile Glu Tyr Leu Arg His Tyr Val Glu Asn Leu Lys
 115 120 125

Pro Tyr His Arg Val Ile Tyr Leu Glu Tyr Thr Pro Cys Gly Glu Leu
 130 135 140

Arg Glu Glu Ala Ala Phe Ser Lys Asn
 145 150

<210> 35
 <211> 1683
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (325)..(1230)

<220>
 <223> lgtC

```

<220>
<221> misc_feature
<222> 219
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 226
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 269
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 270
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 274
<223> Xaa = any or unknown amino acid

<400> 35
atataaagt ctcatggcaa gaaaattaga aaagagcgat caattattat ttgcaagatt 60
tgggtattat tcataaggcta ggtgaaagat atattttcc atgatattaa aacgattcag 120
gcagaactgg cttagcttac accttttagat aattgttatta ttaaaaagaag ctgtatgatt 180
gttattctat cattagtggta taataaatat tccttatttt ttgagagata aaaacaattc 240
atattcaat agaaaaacaga aaataaaagat tatcaaaaga attatccgtc cttataaata 300
tgagtctgtat ttgtgagatg atat atg aat att tta ttt gtt tct gat gat 351
Met Asn Ile Leu Phe Val Ser Asp Asp
      1           5

gtt tat gct aaa cat ctg gtg gtt gcg att aaa agc att ata aat cat 399
Val Tyr Ala Lys His Leu Val Val Ala Ile Lys Ser Ile Ile Asn His
      10          15           20           25
                           25

aat gaa aaa ggt att tca ttt tat att ttt gat ttg ggt ata aag gat 447
Asn Glu Lys Gly Ile Ser Phe Tyr Ile Phe Asp Leu Gly Ile Lys Asp
      30          35           40
                           40

gaa aat aag aga aat att aat gat att gtt tct tct tat gga agt gaa 495
Glu Asn Lys Arg Asn Ile Asn Asp Ile Val Ser Ser Tyr Gly Ser Glu
      45          50           55
                           55

gtc aac ttt att gct gtg aat gag aaa gaa ttt gag agt ttt cct gtt 543
Val Asn Phe Ile Ala Val Asn Glu Lys Glu Phe Glu Ser Phe Pro Val
      60          65           70
                           70

caa att agt tat att tct tta gca aca tat gca agg cta aaa gcg gca 591
Gln Ile Ser Tyr Ile Ser Leu Ala Thr Tyr Ala Arg Leu Lys Ala Ala
      75          80           85
                           85

gag tat ttg ccg gat aat tta aat aaa att att tat tta gat gtt gat 639
Glu Tyr Leu Pro Asp Asn Leu Asn Lys Ile Ile Tyr Leu Asp Val Asp
      90          95           100          105
                           105

```

gtt ttg gtt ttt aac tca tta gaa atg tta tgg aat gtt gat gtt aat	687																																																																																																												
Val Leu Val Phe Asn Ser Leu Glu Met Leu Trp Asn Val Asp Val Asn																																																																																																													
110	115	120		aat ttt ctt acc gca gcc tgt tat gat tct ttc atc gaa aat gaa aag	735	Asn Phe Leu Thr Ala Ala Cys Tyr Asp Ser Phe Ile Glu Asn Glu Lys		125	130	135		tct gag cat aaa aaa tcg att tca atg tca gat aag gaa tat tat ttt	783	Ser Glu His Lys Lys Ser Ile Ser Met Ser Asp Lys Glu Tyr Tyr Phe		140	145	150		aat gca gga gta atg cta ttt aat tta gat gaa tgg cgg aag atg gat	831	Asn Ala Gly Val Met Leu Phe Asn Leu Asp Glu Trp Arg Lys Met Asp		155	160	165		gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg	879	Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met		170	175	180	185	att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927	Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val		190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630
120																																																																																																													
aat ttt ctt acc gca gcc tgt tat gat tct ttc atc gaa aat gaa aag	735																																																																																																												
Asn Phe Leu Thr Ala Ala Cys Tyr Asp Ser Phe Ile Glu Asn Glu Lys																																																																																																													
125	130	135		tct gag cat aaa aaa tcg att tca atg tca gat aag gaa tat tat ttt	783	Ser Glu His Lys Lys Ser Ile Ser Met Ser Asp Lys Glu Tyr Tyr Phe		140	145	150		aat gca gga gta atg cta ttt aat tta gat gaa tgg cgg aag atg gat	831	Asn Ala Gly Val Met Leu Phe Asn Leu Asp Glu Trp Arg Lys Met Asp		155	160	165		gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg	879	Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met		170	175	180	185	att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927	Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val		190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630								
135																																																																																																													
tct gag cat aaa aaa tcg att tca atg tca gat aag gaa tat tat ttt	783																																																																																																												
Ser Glu His Lys Lys Ser Ile Ser Met Ser Asp Lys Glu Tyr Tyr Phe																																																																																																													
140	145	150		aat gca gga gta atg cta ttt aat tta gat gaa tgg cgg aag atg gat	831	Asn Ala Gly Val Met Leu Phe Asn Leu Asp Glu Trp Arg Lys Met Asp		155	160	165		gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg	879	Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met		170	175	180	185	att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927	Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val		190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																
150																																																																																																													
aat gca gga gta atg cta ttt aat tta gat gaa tgg cgg aag atg gat	831																																																																																																												
Asn Ala Gly Val Met Leu Phe Asn Leu Asp Glu Trp Arg Lys Met Asp																																																																																																													
155	160	165		gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg	879	Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met		170	175	180	185	att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927	Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val		190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																								
165																																																																																																													
gta ttc tca aga gct tta gac ctg tta gct atg tat cct aat caa atg	879																																																																																																												
Val Phe Ser Arg Ala Leu Asp Leu Leu Ala Met Tyr Pro Asn Gln Met																																																																																																													
170	175	180	185	att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927	Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val		190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																
180	185																																																																																																												
att tat cag gat caa gat ata ttg aat atc ctt ttt agg aat aaa gtc	927																																																																																																												
Ile Tyr Gln Asp Gln Asp Ile Leu Asn Ile Leu Phe Arg Asn Lys Val																																																																																																													
190	195	200		tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975	Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg		205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																								
200																																																																																																													
tgt tat tta gat tgc aga ttt aat ttc atg cca aat caa ctt gaa aga	975																																																																																																												
Cys Tyr Leu Asp Cys Arg Phe Asn Phe Met Pro Asn Gln Leu Glu Arg																																																																																																													
205	210	215		ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023	Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu		220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																
215																																																																																																													
ata aan caa tac cat aaa gga aaa ntg agc aac tta cat tct tta gaa	1023																																																																																																												
Ile Xaa Gln Tyr His Lys Gly Lys Xaa Ser Asn Leu His Ser Leu Glu																																																																																																													
220	225	230		aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071	Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys		235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																								
230																																																																																																													
aaa aca acg atg cct gtc gtt att tca cat tat tgt ggt cca gaa aaa	1071																																																																																																												
Lys Thr Thr Met Pro Val Val Ile Ser His Tyr Cys Gly Pro Glu Lys																																																																																																													
235	240	245		gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119	Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys		250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																																
245																																																																																																													
gcg tgg cat gcg gat tgt aaa cat ttt aat gta tat ttc tat cag aaa	1119																																																																																																												
Ala Trp His Ala Asp Cys Lys His Phe Asn Val Tyr Phe Tyr Gln Lys																																																																																																													
250	255	260	265	ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167	Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser		270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																																								
260	265																																																																																																												
ata tta gca naa atn tcg aga ggc ncg gat aaa gaa cgc gta tta tct	1167																																																																																																												
Ile Leu Ala Xaa Xaa Ser Arg Gly Xaa Asp Lys Glu Arg Val Leu Ser																																																																																																													
270	275	280		ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215	Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe		285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																																																
280																																																																																																													
ata aaa act tat ctc aag gcc ttg att aga agg att aga tat aaa ttc	1215																																																																																																												
Ile Lys Thr Tyr Leu Lys Ala Leu Ile Arg Arg Ile Arg Tyr Lys Phe																																																																																																													
285	290	295		aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270	Lys Tyr Gln Val Tyr		300		tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330	tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390	aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450	tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510	tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570	ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																																																								
295																																																																																																													
aaa tat caa gtc tat taactattga attttgcaa atgagataag agtatagtgc	1270																																																																																																												
Lys Tyr Gln Val Tyr																																																																																																													
300																																																																																																													
tgatttcttc aaagcgaaaa ggagggaaata gcttggttcta atttattaca ataatggttg	1330																																																																																																												
tattcatctt gattttgaag gaaagagagt gtttttgta taaaaggcatt ttgcgtcacct	1390																																																																																																												
aaatttacta atcctccaaa ttctcctcct cgnagaattt ctttcggacc ggtagggcag	1450																																																																																																												
tccatggata ttacaggtgt accgcaagcc atgctttcta ggataactgt cggttaacccc	1510																																																																																																												
tctttcaaag aggtgtgtaa aaatagctta gcattttta ttaatggata cggttattatct	1570																																																																																																												
ttatttccta aaagaaaaca atcttcttgt agattgagtg attcttatttg ttctctaat	1630																																																																																																												

ttttctcgac actcaccatc ccaaacaata tatancntt cttggatacc tcc 1683

 <210> 36
 <211> 302
 <212> PRT
 <213> Pasteurella multocida

 <220>
 <221> misc_feature
 <222> 219
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 226
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 269
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 270
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 274
 <223> Xaa = any or unknown amino acid

<400> 36
Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
1 5 10 15
Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
20 25 30
Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
35 40 45
Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
50 55 60
Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
65 70 75 80
Ala Thr Tyr Ala Arg Leu Lys Ala Ala Glu Tyr Leu Pro Asp Asn Leu
85 90 95
Asn Lys Ile Ile Tyr Leu Asp Val Asp Val Leu Val Phe Asn Ser Leu
100 105 110
Glu Met Leu Trp Asn Val Asp Val Asn Asn Phe Leu Thr Ala Ala Cys
115 120 125
Tyr Asp Ser Phe Ile Glu Asn Glu Lys Ser Glu His Lys Lys Ser Ile
130 135 140

Ser Met Ser Asp Lys Glu Tyr Tyr Phe Asn Ala Gly Val Met Leu Phe
 145 150 155 160
 Asn Leu Asp Glu Trp Arg Lys Met Asp Val Phe Ser Arg Ala Leu Asp
 165 170 175
 Leu Leu Ala Met Tyr Pro Asn Gln Met Ile Tyr Gln Asp Gln Asp Ile
 180 185 190
 Leu Asn Ile Leu Phe Arg Asn Lys Val Cys Tyr Leu Asp Cys Arg Phe
 195 200 205
 Asn Phe Met Pro Asn Gln Leu Glu Arg Ile Xaa Gln Tyr His Lys Gly
 210 215 220
 Lys Xaa Ser Asn Leu His Ser Leu Glu Lys Thr Thr Met Pro Val Val
 225 230 235 240
 Ile Ser His Tyr Cys Gly Pro Glu Lys Ala Trp His Ala Asp Cys Lys
 245 250 255
 His Phe Asn Val Tyr Phe Tyr Gln Lys Ile Leu Ala Xaa Xaa Ser Arg
 260 265 270
 Gly Xaa Asp Lys Glu Arg Val Leu Ser Ile Lys Thr Tyr Leu Lys Ala
 275 280 285
 Leu Ile Arg Arg Ile Arg Tyr Lys Phe Lys Tyr Gln Val Tyr
 290 295 300

<210> 37
 <211> 2029
 <212> DNA
 <213> Pasteurella multocida

 <220>
 <221> CDS
 <222> (2) .. (499)

 <220>
 <223> mglB

 <220>
 <221> misc_feature
 <222> 33
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 99
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 101
 <223> Xaa = any or unknown amino acid

 <220>
 <221> misc_feature
 <222> 928
 <223> n = A or T or G or C

```

<220>
<221> misc_feature
<222> 1007
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 1740
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 1808
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 1816
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 1820
<223> n = A or T or G or C

<400> 37
c tta aat aaa gcc ggt aaa att caa tac gtt tta tta aaa ggt aac caa 49
  Leu Asn Lys Ala Gly Lys Ile Gln Tyr Val Leu Leu Lys Gly Asn Gln
    1           5           10          15

gga cac cca gat gca gaa gct cgt aca aaa ttc gtc att aaa gaa tta  97
  Gly His Pro Asp Ala Glu Ala Arg Thr Lys Phe Val Ile Lys Glu Leu
    20          25          30

nat aat aaa ggc att caa gat gag caa tta ttc atc gac acg ggg atg 145
  Xaa Asn Lys Gly Ile Gln Asp Glu Gln Leu Phe Ile Asp Thr Gly Met
    35          40          45

tgg gat gcc gct tta gcg aaa gat aaa atg gat gca tgg tta tct agc 193
  Trp Asp Ala Ala Leu Ala Lys Asp Lys Met Asp Ala Trp Leu Ser Ser
    50          55          60

tct aaa gca aat caa att gaa gtg atc atc gct aac aac gat ggt atg 241
  Ser Lys Ala Asn Gln Ile Glu Val Ile Ile Ala Asn Asn Asp Gly Met
    65          70          75          80

gcg atg ggg gca ttg gaa gcc acg aaa gca cat ggt aaa aaa tta cca 289
  Ala Met Gly Ala Leu Glu Ala Thr Lys Ala His Gly Lys Lys Leu Pro
    85          90          95

atc ttc ngt gta nat gcg tta cca gaa gtc ctc caa tta atc aaa aaa 337
  Ile Phe Xaa Val Xaa Ala Leu Pro Glu Val Leu Gln Leu Ile Lys Lys
    100         105         110

ggg gaa att gca ggt acg gtg tta aat gac ggt gtg aac caa ggt aaa 385
  Gly Glu Ile Ala Gly Thr Val Leu Asn Asp Gly Val Asn Gln Gly Lys
    115         120         125

gcc gtt gtt caa tta agt aat aat ctt gca aaa gga aaa cct gcc act 433
  Ala Val Val Gln Leu Ser Asn Asn Leu Ala Lys Gly Lys Pro Ala Thr
    130         135         140

```

gaa ggc aca aaa tgg cag tta aaa cga tcg tgt cct acg tat ccc tta	481		
Glu Gly Thr Lys Trp Gln Leu Lys Arg Ser Cys Pro Thr Tyr Pro Leu			
145	150	155	160
tgt tgg tgt gga tgc gga taacttaaac gagttcctaa aataataaac	529		
Cys Trp Cys Gly Cys Gly			
165			
tataacaaaa caagamgttg taattctcg ggaggtatac cctccccctt tttatgtgag	589		
gttggatatg acaactcaa ttccaaatca agacagtcaa atactgctca caatgaccaa	649		
cgtctgtaaa tcctttcccg gtgttaaagc gttagacaat gcaaaccctaa ctgtgcgcctc	709		
gcattctgtc catgccttaa tggcgaaaa tggggcgggc aaatcgacct tattaaaatg	769		
cttatttggt atttacagta aagatgaagg tgacatcctt ttcttaggca agccagtc当地	829		
cttaaaacg tcgaaagaag ccttagagaa cgggattttc atgggtgcacc aagaacttaa	889		
cttggtaaa caatgtactg taatggataa tcctttggnt aggacgttat ccattaaaag	949		
caggcttgt cgatcacggc aaaatgtatc gtgataccaa agcagattt tgaagaanta	1009		
gatatcgata tcgatccaaa agaaaaagtg gccaaattgt cagtgtcaca aatgcaaatg	1069		
atcgagatcg caaaggcctt ttcatacaat gccaaaatcg taatcatgga cgaaccgact	1129		
tcttcgctt cagaaaaaga agttgaacac ctataaaa ttatcgcaa gctaaaacaa	1189		
cgtggctgtg gcattattta tatttcgcac aaaatggacg aaatctcaa aatttgc当地	1249		
gaaattacga ttttacgcga tggtaaatgg atcaatacgg tcgctttaa aggaccaca	1309		
atggatcaga ttgtatccat gatgggggg cgtgaactca cgcaacgttt cccacaaaa	1369		
accaataccccc caaaagaaac catcttaacg gtggaaaatc tgaccgact taatcagcca	1429		
tctattcaag atgttagttt tgaattacgc aaaggcgaag tgctcggcat tgcggactg	1489		
gttggggcaa aacggtaccc atattgtgga aacgatctt ggggtgcgtg aacgtaaatc	1549		
tggtgtgatt aaactacacg ataaggaaat gaaaaaccgg aatgcgttcg aagccattaa	1609		
caatggtttt gccttggtca cggagaacg tcgctctaca gggatttatg cgaatctcag	1669		
tattgagttt aactcattaa ttcttaacat gaagaaatcc tatatcagca agttagttt	1729		
attgagtaac ncaaaaatga aaagcgacac gcaatgggt cattgattcc atgaatgtga	1789		
aaacgccatc acaaaaccna tattggntca ntatctgggg tggtaaccaa caaaaagtgg	1849		
tcattggtcg ttggttatta acccaccctg aaatcttgcgat gtttagacgaa ccaacacgtg	1909		
gtatcgacat tggcgaaa tatgaaattt atcagctgat tatggagttt gccaacaaaag	1969		
ataaaggat catcatgatt tcatctaaag gccagagttt ttaggggtac tgaccgaatt	2029		

<210> 38

<211> 166

<212> PRT

<213> Pasteurella multocida

```

<220>
<221> misc_feature
<222> 33
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 99
<223> Xaa = any or unknown amino acid

<220>
<221> misc_feature
<222> 101
<223> Xaa = any or unknown amino acid

<400> 38
Leu Asn Lys Ala Gly Lys Ile Gln Tyr Val Leu Leu Lys Gly Asn Gln
      1           5           10          15

Gly His Pro Asp Ala Glu Ala Arg Thr Lys Phe Val Ile Lys Glu Leu
      20          25           30

Xaa Asn Lys Gly Ile Gln Asp Glu Gln Leu Phe Ile Asp Thr Gly Met
      35          40           45

Trp Asp Ala Ala Leu Ala Lys Asp Lys Met Asp Ala Trp Leu Ser Ser
      50          55           60

Ser Lys Ala Asn Gln Ile Glu Val Ile Ile Ala Asn Asn Asp Gly Met
      65          70           75           80

Ala Met Gly Ala Leu Glu Ala Thr Lys Ala His Gly Lys Lys Leu Pro
      85          90           95

Ile Phe Xaa Val Xaa Ala Leu Pro Glu Val Leu Gln Leu Ile Lys Lys
     100         105          110

Gly Glu Ile Ala Gly Thr Val Leu Asn Asp Gly Val Asn Gln Gly Lys
     115         120          125

Ala Val Val Gln Leu Ser Asn Asn Leu Ala Lys Gly Lys Pro Ala Thr
     130         135          140

Glu Gly Thr Lys Trp Gln Leu Lys Arg Ser Cys Pro Thr Tyr Pro Leu
     145         150          155          160

Cys Trp Cys Gly Cys Gly
     165

```

<210> 39
<211> 2628
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (326)..(766)

<220>
<223> mioC

<400> 39

gtcaactaga gtaaaataga cacacttaat tacattgttag aggaatcctt ttatgtcttt 60
 agaaaattta gatcagttag aagaaaaat taaacaagcg gttgaaacta tccaattact 120
 tcaattggaa attgatgaat taaaagaaaa aaataaccaa tctcaacaag caaatgacgc 180
 attacgcagt gaaaatgaac aactaaagag tgagcaccaa aactggcaag aacgtttacg 240
 ctcattatta ggcaaaaattg ataacgtata attcacttct tattaaggct tagttttct 300
 aagccttatt ttttaggaga aatta atg aaa aca aaa att tgt att atc act 352
 Met Lys Thr Lys Ile Cys Ile Ile Thr
 1 5

ggc agt acg ctt ggt gca gaa tat gtt gca gaa cat att gct gaa 400
 Gly Ser Thr Leu Gly Gly Ala Glu Tyr Val Ala Glu His Ile Ala Glu
 10 15 20 25

ata tta gaa caa caa gat tat cct gta cgt tta gaa cat gga cca aat 448
 Ile Leu Glu Gln Gln Asp Tyr Pro Val Arg Leu Glu His Gly Pro Asn
 30 35 40

ttt gaa gaa gtg atc gat gaa aaa tgt tgg ctt gtt gtc acc tct acc 496
 Phe Glu Glu Val Ile Asp Glu Lys Cys Trp Leu Val Val Thr Ser Thr
 45 50 55

cat ggt gca ggt gaa tta ccg gat aat att aaa cct ctg ttt gaa aaa 544
 His Gly Ala Gly Glu Leu Pro Asp Asn Ile Lys Pro Leu Phe Glu Lys
 60 65 70

tta gca ttt cac cca aaa cag tta gct gac tta cgc ttt gcg gtg atc 592
 Leu Ala Phe His Pro Lys Gln Leu Ala Asp Leu Arg Phe Ala Val Ile
 75 80 85

ggg tta ggt aat tcg gat tat gat acc ttc tgt cac gca gtg gat cat 640
 Gly Leu Gly Asn Ser Asp Tyr Asp Thr Phe Cys His Ala Val Asp His
 90 95 100 105

gtg gaa caa tta ctg cta agc aaa gat gct tta caa ctg tgt gaa tcg 688
 Val Glu Gln Leu Leu Ser Lys Asp Ala Leu Gln Leu Cys Glu Ser
 110 115 120

cta aga atg gat atg cta acc att act gat cct gaa cac acg gcc gaa 736
 Leu Arg Met Asp Met Leu Thr Ile Thr Asp Pro Glu His Thr Ala Glu
 125 130 135

caa tgg ctc cca caa ttt ctc agt caa tta taatatttat tccctataca 786
 Gln Trp Leu Pro Gln Phe Leu Ser Gln Leu
 140 145

atggcatatg taaatcaa atgcccatttt tcatctcgat caagcataat atttaaccaa 846
 tcaaataat attttctctg tggataacta agatcaaaac tgtataaaag ctgttttat 906
 tccctgaata agattgaatg tttttattc tgtggataac taaagaagtt attcacagtt 966
 tttctggtg ccaaattgag atcttaacaa cttaaaaat gatctaagtt attcattaa 1026
 aaaaagaaaa ggtatcta atcagcacta taggatccta ataatcataa taataagatc 1086
 tctttatata aaaagatcct atctttatta actcacgatc ttttcacga tcacgtaca 1146
 gtcttgcataaaaatgttca tttcatggat ccataaattt cagtagaata gccaaccagc 1206

aaaaaggatc aaaagatcca taaaatccga gataaattaa caaggtaact atgtttata 1266
ctgaaaatta tgatgttatt gtgatcggtg gtggacacgc aggtactgaa gctgcacttg 1326
cacccggcacg catgggactc aagaccctat tattaaccca taatgttgat acacttagggc 1386
aatagtcttg taatcctgcg attggtggga ttggtaaagg ccathtagtc cgagaaaattg 1446
atgcgatggg cgggttaatg gcaactgctg cggaccaagc aggaatccaa tttcgtaacct 1506
taaacagcag caaaggaccg gcggtacgtg ctacacgtgc gcaagctgac cgcgttttat 1566
atcgccaagc agtacgttatt gcatttagaaa atcaagaaaa tttagatatt tttcaacaag 1626
aagtgaccga tattatTTTt gatcaggatc gtgtctgcgg tggtgttact aaaatgggtt 1686
taaaatttca cgcaaaagca gtgatTTTaa cagccggtaac ttccctttctt ggtaagatcc 1746
acattggttt agaaaattat acaggtggac gcgcgggtga tcctgcttca gtgatgttag 1806
ccgatcgTTT aagagaactg aatttacgtg tanatcgTTT aaaaacgggt acaccgcccc 1866
gtattgatgc acgtactatt gatttctcaa tactggctaa acaacatggc gatgaaaaat 1926
tacctgttTT ttccTTcatg ggatctgttg atcaacaccc acgtcaaattt ccatgtttta 1986
ttacccatac aaatgaacaa acgcatgaag tgatccgtaa taacttacat cgcagccaa 2046
tgtatgctgg gatcattgaa gggatcggtc cacgttattt cccttcttattt gaagataaaag 2106
taatgcgttt ttctgagcgt aatttctcatc aaatctacct tgaacctgaa gggttgacaa 2166
acaaaacaaa gaaattgcgg atttacaaa acaagtgcAA gcactgcAA cagatttaAG 2226
cgyaaatggca aagaaaaacc gcaatcaagc gttgattgca ggtggatttgc gcggtggcat 2286
tgttgcagtc ggtattgagc tcattcgctt gcaatttggg ggctaactga tggcatttga 2346
tggaaaaaca cgtgcgctgg ttcgtcgcta ctatgttattt gagttttat cgcttgagca 2406
atcagcaagt aaagctaaag tctcatttAA caccgcgcgA cgctggaaAG aagaggcggc 2466
aagcaagggc gatgactggg ataaagtgcg tgatgtacAA gtaatggcgg gcaatgagct 2526
gactgatatc acaaaaggat tgTTatcgGG ctttatttattt caatatcgCG caaccatggA 2586
tgagattcaa aactcggtt taaaagcaca agataaaagtc ga 2628

<210> 40
<211> 147
<212> PRT
<213> Pasteurella multocida

```

<400> 40
Met Lys Thr Lys Ile Cys Ile Ile Thr Gly Ser Thr Leu Gly Gly Ala
      1           5           10          15

Glu Tyr Val Ala Glu His Ile Ala Glu Ile Leu Glu Gln Gln Asp Tyr
      20          25          30

Pro Val Arg Leu Glu His Gly Pro Asn Phe Glu Glu Val Ile Asp Glu
      35          40          45

```

Lys Cys Trp Leu Val Val Thr Ser Thr His Gly Ala Gly Glu Leu Pro
 50 55 60

Asp Asn Ile Lys Pro Leu Phe Glu Lys Leu Ala Phe His Pro Lys Gln
 65 70 75 80

Leu Ala Asp Leu Arg Phe Ala Val Ile Gly Leu Gly Asn Ser Asp Tyr
 85 90 95

Asp Thr Phe Cys His Ala Val Asp His Val Glu Gln Leu Leu Ser
 100 105 110

Lys Asp Ala Leu Gln Leu Cys Glu Ser Leu Arg Met Asp Met Leu Thr
 115 120 125

Ile Thr Asp Pro Glu His Thr Ala Glu Gln Trp Leu Pro Gln Phe Leu
 130 135 140

Ser Gln Leu
 145

<210> 41

<211> 5191

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (3203)..(4255)

<220>

<223> mreB

<400> 41

ctgcagtacc aaccacccaa atgttgtgct tctgctgtaa ttcacgcaaa gtgcgcgcga 60

ggttggttac acggattaat ggcacgactt cagcggcacc acaagctact ttacgtgcga 120

tagcggttaa ttggggcagat ttatctttg gtactatcac agcacacacg cccgctgcat 180

ccgcagtacg caaacaaggca cctaagttat gtggatcagt cacaccatct aacactaata 240

gcaacggatt ggactgattt tgtaaaaagcg tatctaaatc tgcttcattc aattcttcg 300

ctggctgaac acgtgccatg atgccttggt gtacttcgccc ctctgctttt ttatcaaggg 360

tttggcgatt aacaaattgg atagtaatac ccaaccgatg aagttcattt agcaaagggtt 420

gtaaacgttt atcgctcgcc cctttgagtg cataaaacttc aattaaacgc tctggcgct 480

tgtttaaaaa ggcacttact gcatgaatgc cataaatatt ttcactcattc tacttctct 540

tttagctga ttcttactg gctttttcg tggttgtga tggttaaca acgcttggtt 600

ttcttaccgc acttttactg gtgcttggtt tacgtttatg gcgttggtt tcgagacttt 660

cagcgtacg tgcatttttc ttgagcttgc cttggctgt tttgccttct cgtaatgggt 720

tacgctcact cgacactaaa gaaaaatcca cttggcggtt ttcaaggcta actgcttcca 780

cacggatttt taccttatcg ccaatgcggt agatcatacc actatttca ccgattaaac 840

gttgcgagc gagatcaa at tggtagtagt cgttatctaa ggtagaaatg tggactaagc 900
catcaataaa gaggtcatct aagcggacaa ataagccaaa acctgtcaca gatgaaatca 960
cacctgtaaa ttcttcgcct acatgatctt gcataatttc gcattttgc cagtctgcaa 1020
catcacgagt ggcatcatcg gcccgtcggt ctgtcatgga gcagtggcg cctaatacat 1080
ccatgtcatc aagtgtatag tgataccctc ccgtatcagt gggtctccgt ttcgagcctt 1140
ttagttggc taacaaggat ttaatcccac gatgcaaagt caaatcagga taacggcgaa 1200
ttggcgaagt aaaatgcgca tattttcga gtgcaagccc aaagtgcaca atattgtcag 1260
gatgataaac ggcttgactt aacgaacgta atacatggtt tgcaataact catgatctgg 1320
acgttcgca atttgctcca ataatttagc gtgtctgcg gtacttgggt tactgccacc 1380
ttcaaggctt aaaccacatt cactgaggaa ttggcggaaag cccgtcaattt tttttcgct 1440
tggacccgca tgaatacggaa aaagggtgg ctcttgatgt ttttcataa agtttgcgc 1500
cgcaatattg gcgaggatca tacattttc aatgattttt tgccatcat tacgaaataac 1560
aggctcaatc cgttgcattt gccccatttc attaaacaca aacttacttt caatggtttc 1620
aaagtcaatg gcccacgtt gatgacgggc ttccactaag gcttggtaca ttacatggag 1680
ttctttaaa tggggAACCA gtgcttgata acgagttacaa agttttcat cgtcctctaa 1740
aatacgagca actttggat aggttaagcg agcatgagag ttcatgaccg cttcataaaaa 1800
ttcatagcct gtgattttac cttttgctga aacattcagc tcacagacca tacataagcg 1860
atcgacttgt gggtttaatg aacaaagtcc attggagagg atttccggta gcatagggAAC 1920
aacgcgattt gggaaatata ccgagtttcc acgcgcattt gcttggat caagggcagt 1980
acgtaaacga acatagtagc tgacatcgcc aatggcaacc cacagtttcc aaccgcctcc 2040
acgtttttc tggcaaaaaaa ccgcatttgc aaaaatcgca gcatttcac catcaatgg 2100
gactaacggaa agatggcgta aatcaatacg tcctgatttgc gcttctccg gtacttcttc 2160
actcagtttta gaaacttggt tgaggaccgc gtctggaaaa acatggggaa tatcatgatt 2220
acggatagca atttccacctt ccatttttt tgccatattt tcaccgagaa ttccgctaat 2280
cattccaaaca ggttggctaa atgttgcgtt acgtggttt aattcaacta caaccactt 2340
tcccatacga gcccggcattt ggtgttcatt ccgtttttt aatgtcgat taattcgact 2400
atcgctaggat actacataaac caataccatc ttcttaagaaa aaacgaccaa caatctgttt 2460
tttacgctgt tgtaagacgc ggacaatccg cacttcttgg cgaccacgac ggtcaaaacc 2520
gcttaggtgg gcgaggacat agtcaccgtg cattactcgc tgcatttggc tggtggat 2580
aaaccaatcg ctgtcttac ttgcacttg taaaaaacca taaccatcac gatgacctaa 2640
tacggtccct ttaataaaat ccagtttcc cggtaaagcg tagcgtttac gtttagtggaa 2700
aaccatgtt ccgtcattttt ccattcgctt taagcgacgg cgcatggcattt cttgttggc 2760

ttcattttga atagcaaatg tggtcagtaa ttcttctttt gagataggtg cattatgttg 2820
 acgaatttgcatacagaataaa attcgact tggatcggtt ttctcatatt ttgcgagtcc 2880
 ttcttgatag tttggatctt gcaaatgtgg attgttttg attttgcca taatgactcc 2940
 ctttggaaat ggaaatacgc attcgtaa tgacctaag tttgacactc tgatttgtg 3000
 aaagcaagta aaaaacctgt tcgtgactga aacaatctgt actcgccggaa tttgtcgtgc 3060
 atgaaagcgt aaagacaag caaatttgcga caatttacag aaaattctct gtataaaagg 3120
 tacatTTTt gatacatttgcacaatTTTtcaataactca aatcagagtg tccattatTTTt 3180
 aatttagttc agcggaaattc tt atg tta ttt aaa aaa att cga ggc tta ttt 3232
 Met Leu Phe Lys Lys Ile Arg Gly Leu Phe
 1 5 10

tca aat gat ctg tcc atc gat ctt ggc aca gcg aat acc tta att tat 3280
 Ser Asn Asp Leu Ser Ile Asp Leu Gly Thr Ala Asn Thr Leu Ile Tyr
 15 20 25

gtc aaa gga caa ggg att gtt tta gat gaa cct tct gtt gtg gcg att 3328
 Val Lys Gly Gln Gly Ile Val Leu Asp Glu Pro Ser Val Val Ala Ile
 30 35 40

cgc caa gaa cgt tca ggt gca tta aaa agc att gct gcg gtt ggt cgt 3376
 Arg Gln Glu Arg Ser Gly Ala Leu Lys Ser Ile Ala Ala Val Gly Arg
 45 50 55

gat gcc aaa tta atg tta ggc cgt aca ccg aaa agc att gca gcg att 3424
 Asp Ala Lys Leu Met Leu Gly Arg Thr Pro Lys Ser Ile Ala Ala Ile
 60 65 70

cgt cct atg aaa gat ggg gtg atc gca gat ttc ttt gtg aca gaa aaa 3472
 Arg Pro Met Lys Asp Gly Val Ile Ala Asp Phe Val Thr Glu Lys
 75 80 85 90

atg ttg caa tat ttt att aaa caa gtg cac agc agc aat ttt atg cgt 3520
 Met Leu Gln Tyr Phe Ile Lys Gln Val His Ser Ser Asn Phe Met Arg
 95 100 105

cca agt cca cgt gtc tta gtt tgt gta cct gcg gga gct acg caa gtc 3568
 Pro Ser Pro Arg Val Leu Val Cys Val Pro Ala Gly Ala Thr Gln Val
 110 115 120

gaa cga cgt gca atc aaa gaa tct gcc att ggt gct ggg gca cgc gag 3616
 Glu Arg Arg Ala Ile Lys Glu Ser Ala Ile Gly Ala Gly Ala Arg Glu
 125 130 135

gtg tac ttg att gag gaa ccg atg gcg gca gcg att ggt gct aaa tta 3664
 Val Tyr Leu Ile Glu Glu Pro Met Ala Ala Ala Ile Gly Ala Lys Leu
 140 145 150

cct gtt tcg act gcc aca ggt tcg atg gtg atc gat atc ggt ggt ggt 3712
 Pro Val Ser Thr Ala Thr Gly Ser Met Val Ile Asp Ile Gly Gly Gly
 155 160 165 170

acg acg gaa gtt gcg gtg att tct tta aat ggc att gtg tat tcc tct 3760
 Thr Thr Glu Val Ala Val Ile Ser Leu Asn Gly Ile Val Tyr Ser Ser
 175 180 185

tca gtc cgc att ggt ggt gat cgt ttt gat gag gcg att att tct tat 3808

Ser Val Arg Ile Gly Gly Asp Arg Phe Asp Glu Ala Ile Ile Ser Tyr			
190	195	200	
gta cgc aag acg ttc ggt tca att att ggg gaa ccg aca gca gag cgt	3856		
Val Arg Lys Thr Phe Gly Ser Ile Ile Gly Glu Pro Thr Ala Glu Arg			
205	210	215	
atc aaa caa gag att ggt agt gcg ttt att caa gaa ggc gat gaa gtc	3904		
Ile Lys Gln Glu Ile Gly Ser Ala Phe Ile Gln Glu Gly Asp Glu Val			
220	225	230	
cgt gaa att gaa gtg cat ggt cat aac tta gca gaa ggt gcg ccg cgt	3952		
Arg Glu Ile Glu Val His Gly His Asn Leu Ala Glu Gly Ala Pro Arg			
235	240	245	250
tct ttc aaa ctc acc tca cgt gat gtg tta gaa gct att caa gcc ccg	4000		
Ser Phe Lys Leu Thr Ser Arg Asp Val Leu Glu Ala Ile Gln Ala Pro			
255	260	265	
tta aat ggc att gtt gcg gca gtg cgc acg gcc ttg gaa gag tgt caa	4048		
Leu Asn Gly Ile Val Ala Ala Val Arg Thr Ala Leu Glu Glu Cys Gln			
270	275	280	
cca gaa cat gct gcg gat att ttt gaa cgt ggc atg gtc tta act ggt	4096		
Pro Glu His Ala Ala Asp Ile Phe Glu Arg Gly Met Val Leu Thr Gly			
285	290	295	
ggc ggt gcc ctt att cgt aat att gat gtt tta ctg tca aaa gaa acc	4144		
Gly Gly Ala Leu Ile Arg Asn Ile Asp Val Leu Leu Ser Lys Glu Thr			
300	305	310	
ggt ggt ggc gag gca tta gag atg atc gat atg cac ggt ggt gat att	4192		
Gly Gly Glu Ala Leu Glu Met Ile Asp Met His Gly Gly Asp Ile			
335	340	345	
ttt agt gac gat atc taatatgatt taaaagtgcg gtgatattag accgcacttt	4240		
Phe Ser Asp Asp Ile			
350			
tacttctt ttattgctga caaggcttagc ctaattcgta tatgaaacct attttgaa	4355		
aagcacctcc ttttaggtctt cgcttaattc tggcgatttt agcatccatt gcattgattt	4415		
tttcggacgg tcaatccaat gcgatgatta aagcacgcag tattatggaa accgcagtag	4475		
gcgggctgta ttatcttgcc aatacaccga gaacggattt ggatgggtt tcagataatt	4535		
tggttgatac caataaattt caaattgaaa accgagtttt gcgtgatcaa ctgcgtgaaa	4595		
aaaatgcaga tttattgtt ttagatcaac tcaaagttaga aaatcaacgc ctgcgttat	4655		
tgcttaattc ccctctacgt acagatgagt ataaaaaaat tgctgaagtt ttaacggcag	4715		
aaactgatgt gtatcgtaag caagtcgtga ttaaccaagg acaacgtgac ggtgctttag	4775		
tcgggcagcc gattattgtat gaaaagggtt ttgttggca acttatctcc gtttgtgaaa	4835		
atacgagtcg cgttcttcta ttgacagatg tgactcattc tattccagta caagtactac	4895		

245	250	255
Arg Asp Val Leu Glu Ala Ile Gln Ala Pro Leu Asn Gly Ile Val Ala		
260	265	270

Ala Val Arg Thr Ala Leu Glu Glu Cys Gln Pro Glu His Ala Ala Asp		
275	280	285

Ile Phe Glu Arg Gly Met Val Leu Thr Gly Gly Ala Leu Ile Arg		
290	295	300

Asn Ile Asp Val Leu Leu Ser Lys Glu Thr Gly Val Pro Val Ile Ile		
305	310	315
		320

Ala Asp Asp Pro Leu Thr Cys Val Ala Arg Gly Gly Glu Ala Leu		
325	330	335

Glu Met Ile Asp Met His Gly Gly Asp Ile Phe Ser Asp Asp Ile		
340	345	350

<210> 43

<211> 2172

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)...(1464)

<220>

<223> pnp

<400> 43

acc cgc gtt ggg att ggg tgg cac ctg aac cca aat acc gcg tta att		48
Thr Arg Val Gly Ile Gly Trp His Leu Asn Pro Asn Thr Ala Leu Ile		
1	5	10
		15

gaa aaa gtg aaa gcg att gca gaa gcg cgt tta ggc gaa gca tac cgt		96
Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly Glu Ala Tyr Arg		
20	25	30

atc act gaa aac aag cac gtt atg aac aaa att gat gcg att aaa gct		144
Ile Thr Glu Asn Lys His Val Met Asn Lys Ile Asp Ala Ile Lys Ala		
35	40	45

gat gtg att gca caa atc aca gct gaa gta gca gaa ggc gaa gac atc		192
Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu Gly Glu Asp Ile		
50	55	60

agt gaa ggg aaa att gtc gat att ttc acc gca ctt gaa agc caa atc		240
Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu Glu Ser Gln Ile		
65	70	75
		80

gta cgt agc cgt atc att gct ggt gaa cca cgt att gat ggt cgt aca		288
Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr		
85	90	95

gtg gat act gtt cgt gca tta gat att tgt act ggt gtt tta cca cgt		336
Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly Val Leu Pro Arg		
100	105	110

aca cac ggt tct gcg att ttc acc cgt ggt gaa aca cag gcg tta gct		384
---	--	-----

Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala			
115	120	125	
gtc gcg aca tta ggt aca gaa cgt gat gca caa att att gat gaa tta	432		
Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu			
130	135	140	
aca ggt gag cgt tca gat cac ttc tta ttc cac tac aac ttc ccg cca	480		
Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr Asn Phe Pro Pro			
145	150	155	160
tat tct gtg ggt gaa acc ggt atg att ggt tca cca aaa cgt cgt gaa	528		
Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro Lys Arg Arg Glu			
165	170	175	
att ggt cat ggt tta gcg aaa cgc ggt gta gct gca gtg atg cca	576		
Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Ala Ala Val Met Pro			
180	185	190	
aca ctt gcc gag ttc ccg tat gtg gta cgt gtt gtc tct gaa atc aca	624		
Thr Leu Ala Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr			
195	200	205	
gaa tca aat ggt tct tct atg gca tcg gtt tgt ggt gcg tct tta	672		
Glu Ser Asn Gly Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu			
210	215	220	
gca tta atg gat gcg ggt gta cca att aaa gcg gcg gtt gca ggt att	720		
Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile			
225	230	235	240
gca atg ggc tta gtc aaa gaa gac gaa aaa ttt gtg gtg ctt tca gac	768		
Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp			
245	250	255	
atc tta ggt gat gaa gat cac tta ggt gac atg gac ttc aaa gtc gcg	816		
Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala			
260	265	270	
ggt aca cgt acg ggt gtg acg gca tta caa atg gat atc aaa atc gaa	864		
Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu			
275	280	285	
ggt atc aca gca gaa atc atg caa att gcg tta aac caa gcg aaa agc	912		
Gly Ile Thr Ala Glu Ile Met Gln Ile Ala Leu Asn Gln Ala Lys Ser			
290	295	300	
gca cgt tta cac att tta ggt gtg atg gag caa gcg atc cca gcg cca	960		
Ala Arg Leu His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro			
305	310	315	320
cgt gcg gat att tct gat ttt gca ccg cgt att tac act atg aaa att	1008		
Arg Ala Asp Ile Ser Asp Phe Ala Pro Arg Ile Tyr Thr Met Lys Ile			
325	330	335	
gat ccg aag aaa atc aaa gat gtg atc ggt aaa ggt ggt gca acc att	1056		
Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Ala Thr Ile			
340	345	350	
cgt gcc tta aca gaa gaa aca ggt acc tca att gat atc gat gat gat	1104		
Arg Ala Leu Thr Glu Glu Thr Gly Thr Ser Ile Asp Ile Asp Asp Asp			
355	360	365	

ggt acg gtg aag att gct gcg gtt gat ggc aat tca gca aaa gag gtg 1152
 Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser Ala Lys Glu Val
 370 375 380

 atg gcg cgt att gaa gat att act gca gaa gtt gaa gcg ggt gca gtg 1200
 Met Ala Arg Ile Glu Asp Ile Thr Ala Glu Val Glu Ala Gly Ala Val
 385 390 395 400

 tat aaa ggt aaa gtt act cgt tta gct gat ttt ggt gcc ttc gtt tct 1248
 Tyr Lys Gly Lys Val Thr Arg Leu Ala Asp Phe Gly Ala Phe Val Ser
 405 410 415

 atc gta ggt aac aaa gaa ggc tta gtg cat att tct caa atc gcg gaa 1296
 Ile Val Gly Asn Lys Glu Gly Leu Val His Ile Ser Gln Ile Ala Glu
 420 425 430

 gag cgt gtt gag aaa gtg agt gat tat ctt gca gtg ggg caa gaa gtg 1344
 Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val Gly Gln Glu Val
 435 440 445

 act gtt aaa gtg gtt gag att gat cgt caa ggt cgt att cgt tta acc 1392
 Thr Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr
 450 455 460

 atg aaa gaa gtt gca cca aag caa gaa cac gtt gat tct gtt gtc gca 1440
 Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp Ser Val Val Ala
 465 470 475 480

 gac gtt gcc gca gaa gaa aac gca taagcaataa acacccaacgc ctttcgttat 1494
 Asp Val Ala Ala Glu Glu Asn Ala
 485

 aaagggcgtt ggtgtcatg ttgataagta caatttgtgc ttttaaggcga agcgaaatga 1554
 agcaatttca tccgtggta aagtgcctgc taattttccc attttgggta tggtgtttaa 1614
 cagottgtgt taatcatgaa caagttttc tttcaaaaaga gaaattaatg tttagcagagc 1674
 aacatccgaa tgatcatctt gagcatgagg tgatggttgc gcaaatttagc gaattgttac 1734
 ttgttaaagg gttaaaaaaaaa gaagaacgtg cgattttaca ttttgagcga ggctgtgt 1794
 acgatagctt aggattgtgg gcattggcgc gttatgattt tgaccaaaca ttagcgttgt 1854
 atccaaagtt ggcagcagcg tttaattatt taggtttata tttattgtta gaggaagatt 1914
 acagcgcata tctagatatac tttaatgtgt tgtttgaact tgatcctcaa tatgagtatg 1974
 cattcctaaa tagagggcta aattttatt acgtcggacg ttatgaatta gctcagcggg 2034
 attttcttca attttatcaa gccgataaat cagatccata ccgcacttta tggctttatt 2094
 taaatgaatt aaagcataat cctcaggatg cttctaaaaa tcttgctcaa cgagcaatgg 2154
 ggctttctga tgaatatt 2172

<210> 44
 <211> 488
 <212> PRT
 <213> Pasteurella multocida

<400> 44

Thr Arg Val Gly Ile Gly Trp His Leu Asn Pro Asn Thr Ala Leu Ile
 1 5 10 15

Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly Glu Ala Tyr Arg
 20 25 30

Ile Thr Glu Asn Lys His Val Met Asn Lys Ile Asp Ala Ile Lys Ala
 35 40 45

Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu Gly Glu Asp Ile
 50 55 60

Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu Glu Ser Gln Ile
 65 70 75 80

Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr
 85 90 95

Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly Val Leu Pro Arg
 100 105 110

Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala
 115 120 125

Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu
 130 135 140

Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr Asn Phe Pro Pro
 145 150 155 160

Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro Lys Arg Arg Glu
 165 170 175

Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Ala Ala Val Met Pro
 180 185 190

Thr Leu Ala Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr
 195 200 205

Glu Ser Asn Gly Ser Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu
 210 215 220

Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile
 225 230 235 240

Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp
 245 250 255

Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala
 260 265 270

Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu
 275 280 285

Gly Ile Thr Ala Glu Ile Met Gln Ile Ala Leu Asn Gln Ala Lys Ser
 290 295 300

Ala Arg Leu His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro
 305 310 315 320

Arg Ala Asp Ile Ser Asp Phe Ala Pro Arg Ile Tyr Thr Met Lys Ile
 325 330 335

Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile
 340 345 350

Arg Ala Leu Thr Glu Glu Thr Gly Thr Ser Ile Asp Ile Asp Asp Asp
 355 360 365

Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser Ala Lys Glu Val
 370 375 380

Met Ala Arg Ile Glu Asp Ile Thr Ala Glu Val Glu Ala Gly Ala Val
 385 390 395 400

Tyr Lys Gly Lys Val Thr Arg Leu Ala Asp Phe Gly Ala Phe Val Ser
 405 410 415

Ile Val Gly Asn Lys Glu Gly Leu Val His Ile Ser Gln Ile Ala Glu
 420 425 430

Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val Gly Gln Glu Val
 435 440 445

Thr Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr
 450 455 460

Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp Ser Val Val Ala
 465 470 475 480

Asp Val Ala Ala Glu Glu Asn Ala
 485

<210> 45

<211> 633

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (2)..(631)

<220>

<223> purF

<400> 45

c gat ggg gtt tct tat gct gcc cgt gtt cat atg gga caa cgt tta 49
 Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu
 1 5 10 15

ggt gaa aaa att gca cgg gaa tgg gcg gat gtg gat gat att gat gtg 97
 Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val
 20 25 30

gtc att cct gtg cct gaa acc tct aac gat att gct tta cgt att gcg 145
 Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala
 35 40 45

cgc gtg tta aat aaa ccg tat cgt caa ggt ttt gtg aaa aat cgc tat 193
 Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr
 50 55 60

gta gga cgt acg ttt att atg ccg ggg cag gca ttg cga gtc agt tct 241
 Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser
 65 70 75 80

gtt aga cgt aaa ctc aat acc att gct tca gaa ttt aaa gat aag aat	289																																																																																																																										
Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn																																																																																																																											
85	90		95	gtg tta tta gtt gac gac tcg att gta cgt ggt acc acg tct gaa caa	337	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110	att gtc gaa atg gcg aga gcg gca ggt gcg aag aaa att tat ttt gcc	385	Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lvs Lys Ile Tyr Phe Ala		115	120		125	tct gct gca cca gaa att cgt tat cca aat gtg tat ggt att gat atg	433	Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met		130	135		140	cca acc aaa aat gaa ttg atc gct tat ggt cgt gat gta gat gaa att	481	Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile		145	150		155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110
	95																																																																																																																										
gtg tta tta gtt gac gac tcg att gta cgt ggt acc acg tct gaa caa	337																																																																																																																										
Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln																																																																																																																											
100	105		110	att gtc gaa atg gcg aga gcg gca ggt gcg aag aaa att tat ttt gcc	385	Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lvs Lys Ile Tyr Phe Ala		115	120		125	tct gct gca cca gaa att cgt tat cca aat gtg tat ggt att gat atg	433	Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met		130	135		140	cca acc aaa aat gaa ttg atc gct tat ggt cgt gat gta gat gaa att	481	Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile		145	150		155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110								
	110																																																																																																																										
att gtc gaa atg gcg aga gcg gca ggt gcg aag aaa att tat ttt gcc	385																																																																																																																										
Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lvs Lys Ile Tyr Phe Ala																																																																																																																											
115	120		125	tct gct gca cca gaa att cgt tat cca aat gtg tat ggt att gat atg	433	Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met		130	135		140	cca acc aaa aat gaa ttg atc gct tat ggt cgt gat gta gat gaa att	481	Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile		145	150		155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																
	125																																																																																																																										
tct gct gca cca gaa att cgt tat cca aat gtg tat ggt att gat atg	433																																																																																																																										
Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met																																																																																																																											
130	135		140	cca acc aaa aat gaa ttg atc gct tat ggt cgt gat gta gat gaa att	481	Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile		145	150		155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																								
	140																																																																																																																										
cca acc aaa aat gaa ttg atc gct tat ggt cgt gat gta gat gaa att	481																																																																																																																										
Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile																																																																																																																											
145	150		155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																
	155		160	gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529	Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala		165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																		
	160																																																																																																																										
gct aac tta att ggt gtg gat aaa ttg att ttc caa gat ttg gat gcg	529																																																																																																																										
Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala																																																																																																																											
165	170		175	tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577	Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp		180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																										
	175																																																																																																																										
tta act ggt tct gtg caa caa gaa aat cca agt att caa gac ttt gat	577																																																																																																																										
Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp																																																																																																																											
180	185		190	tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625	Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu		195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																		
	190																																																																																																																										
tgt tcg gtg ttt aca ggg gtt tat gtg acg ggc gat att aca cct gaa	625																																																																																																																										
Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu																																																																																																																											
195	200		205	tat ctg ga	633	Tyr Leu		210		<210> 46		<211> 210		<212> PRT		<213> Pasteurella multocida		<400> 46		Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu		1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																										
	205																																																																																																																										
tat ctg ga	633																																																																																																																										
Tyr Leu																																																																																																																											
210																																																																																																																											
<210> 46																																																																																																																											
<211> 210																																																																																																																											
<212> PRT																																																																																																																											
<213> Pasteurella multocida																																																																																																																											
<400> 46																																																																																																																											
Asp Gly Val Ser Val Tyr Ala Ala Arg Val His Met Gly Gln Arg Leu																																																																																																																											
1	5		10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																
	10		15	Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val		20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																		
	15																																																																																																																										
Gly Glu Lys Ile Ala Arg Glu Trp Ala Asp Val Asp Asp Ile Asp Val																																																																																																																											
20	25		30	Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala		35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																								
	30																																																																																																																										
Val Ile Pro Val Pro Glu Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala																																																																																																																											
35	40		45	Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr		50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																														
	45																																																																																																																										
Arg Val Leu Asn Lys Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr																																																																																																																											
50	55		60	Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser		65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																																				
	60																																																																																																																										
Val Gly Arg Thr Phe Ile Met Pro Gly Gln Ala Leu Arg Val Ser Ser																																																																																																																											
65	70		75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																																										
	75		80	Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn		85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																																												
	80																																																																																																																										
Val Arg Arg Lys Leu Asn Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn																																																																																																																											
85	90		95	Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln		100	105		110																																																																																																																		
	95																																																																																																																										
Val Leu Leu Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln																																																																																																																											
100	105		110																																																																																																																								
	110																																																																																																																										

Ile Val Glu Met Ala Arg Ala Ala Gly Ala Lys Lys Ile Tyr Phe Ala
 115 120 125

Ser Ala Ala Pro Glu Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met
 130 135 140

Pro Thr Lys Asn Glu Leu Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile
 145 150 155 160

Ala Asn Leu Ile Gly Val Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala
 165 170 175

Leu Thr Gly Ser Val Gln Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp
 180 185 190

Cys Ser Val Phe Thr Gly Val Tyr Val Thr Gly Asp Ile Thr Pro Glu
 195 200 205

Tyr Leu
 210

<210> 47

<211> 4788

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)...(876)

<220>

<223> rci

<220>

<223> Nucleotide at position 3084 is A, T, G, or C.

<400> 47

gac	gag	gag	aga	aaa	tta	gct	gat	ttg	gca	aaa	ggg	atc	gct	cca	gat		48
Asp	Glu	Glu	Arg	Lys	Leu	Ala	Asp	Leu	Ala	Lys	Gly	Ile	Ala	Pro	Asp		
1					5				10				15				

att	att	ttt	aga	aat	gat	gta	ata	gaa	cgc	tat	caa	aat	gaa	gtg	tct	ata	96
Ile	Ile	Phe	Arg	Asp	Val	Ile	Glu	Arg	Tyr	Gln	Asn	Glu	Val	Ser	Ile		
20					25					30							

act	aaa	aaa	ggc	gcg	cga	aat	gaa	att	ata	aga	tta	aac	cgc	ttt	tta		144
Thr	Lys	Gly	Ala	Arg	Asn	Glu	Ile	Ile	Arg	Leu	Asn	Arg	Phe	Leu			
35					40					45							

aga	tat	gat	att	tct	aat	ctg	tat	att	cgt	gat	tta	aga	aaa	gaa	gat		192
Arg	Tyr	Asp	Ile	Ser	Asn	Leu	Tyr	Ile	Arg	Asp	Leu	Arg	Lys	Glu	Asp		
50					55					60							

ttt	gag	gag	tgg	atc	aga	att	cgc	cta	acc	gaa	gta	tcg	gat	gct	agc		240
Phe	Glu	Glu	Trp	Ile	Arg	Ile	Arg	Leu	Thr	Glu	Val	Ser	Asp	Ala	Ser		
65				70					75			80					

gtt	aga	cgt	gag	ctt	gtt	act	ata	tcg	tca	gtg	ctg	aca	aca	gca	ata		288
Val	Arg	Arg	Glu	Leu	Val	Thr	Ile	Ser	Ser	Val	Leu	Thr	Thr	Ala	Ile		
85					90					95							

aat	aag	tgg	gga	tat	att	tca	agg	cat	cca	atg	act	ggt	att	gaa	aaa		336
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--	-----

Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met Thr Gly Ile Glu Lys			
100	105	110	
cca aaa aac tcg gca gaa aga aaa gaa cga tat tca gaa cag gac att	384		
Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr Ser Glu Gln Asp Ile			
115	120	125	
aaa aca ata tta gaa aca gct aga tat tgt gaa gat aaa cta ccc ata	432		
Lys Thr Ile Leu Glu Thr Ala Arg Tyr Cys Glu Asp Lys Leu Pro Ile			
130	135	140	
aca ctc aaa caa aga gta gca att gca atg tta ttt gct att gaa acc	480		
Thr Leu Lys Gln Arg Val Ala Ile Ala Met Leu Phe Ala Ile Glu Thr			
145	150	155	160
gct atg cgt gct ggt gag att gct agt ata aaa tgg gat aat gtt ttt	528		
Ala Met Arg Ala Gly Glu Ile Ala Ser Ile Lys Trp Asp Asn Val Phe			
165	170	175	
ctt gaa aag aga ata gta cat tta ccg aca act aaa aac ggg cac tct	576		
Leu Glu Lys Arg Ile Val His Leu Pro Thr Thr Lys Asn Gly His Ser			
180	185	190	
aga gat gtg ccg ctt tcg caa aga gct gtt gcg cta att tta aaa atg	624		
Arg Asp Val Pro Leu Ser Gln Arg Ala Val Ala Leu Ile Leu Lys Met			
195	200	205	
aaa gag gta gaa aat gga gat ctt gtg ttt cag acc acg cct gaa tca	672		
Lys Glu Val Glu Asn Gly Asp Leu Val Phe Gln Thr Thr Pro Glu Ser			
210	215	220	
tta agc acc acg ttt aga gtg tta aag aaa gag tgt gga ctt gaa cat	720		
Leu Ser Thr Thr Phe Arg Val Leu Lys Lys Glu Cys Gly Leu Glu His			
225	230	235	240
ctc cat ttt cat gat acg aga agg gaa gcg ttg acg aga tta tct aag	768		
Leu His Phe His Asp Thr Arg Arg Glu Ala Leu Thr Arg Leu Ser Lys			
245	250	255	
aaa gta gat gta atg act cta gcc aaa att agc gga cat aga gat tta	816		
Lys Val Asp Val Met Thr Leu Ala Lys Ile Ser Gly His Arg Asp Leu			
260	265	270	
aga att tta caa aac aca tat tac gca ccg aat atg agt gaa gtg gca	864		
Arg Ile Leu Gln Asn Thr Tyr Tyr Ala Pro Asn Met Ser Glu Val Ala			
275	280	285	
aac ttg ttg gat taattcactc ttcttaata cgcctttgc cacttgatta	916		
Asn Leu Leu Asp			
290			
catgcccagc cttatatctt ttactttcat tacttccttt ttctaatgaa actggggatg	976		
gaaagtcttg gcgggtaata atatgacgag atgtgttaatt gtaagaacga ttaatcatga	1036		
tagaaatgtc ttcaatacta agaagaactg gactatctc tttaagttga gctaaggctc	1096		
caaacctcac agagcgttagc acttcatctt gttgtttctt tgtagagaa atatccc	1156		
tttttacctc acttaaataa aaaagccgtc atggacggct taataaagca ttgcgtata	1216		
cagttttt gaggtgtacc caatatcgaa ctgttgcatttga ttgtttgtt ttgcgtttc	1276		

cagtgc ttccatcaa caaatctcc gaagttggta ataacaccct gtttcttacc 1336
aattagcgga tattgtgtac cgttctcaat agatttaatt tgtttacgca taaacatgtc 1396
atagtgttc gcgccagtc ctaaatgaag ttctttgtt gtgtaatctt caagctcgca 1456
cgcagcgcag acgattaatt ctggacgatc tcccatttc ctatctccga gcattttca 1516
tagcctcaaa ccaagcttgt gcgtctcctt cactgtaaaa taatgaaccg cttctagca 1576
tttttctgtg cttatctcta ttagcatcaa aatagaatct aataattgtt gagttacctc 1636
ttttaaagac ctcttgattt tggtgtgctg ttttgattgg agcgggcaaa gtaagcgtta 1696
ctgttgggcg tgggtcttcc cacattccga ctatatcaaa tggattttctt aaatgcggat 1756
atttgttatg ttcaaaaaaaaaa gaagatccat caatcgccca agaatttctc tcaaattgtg 1816
tcttgctctt gccaatttga aatacacctt gatataagaa agtgttgaac ggaaagaact 1876
ttgaataatc agcagttaca tatcctttac ttccatttctt aagcacaact ggctcaccgg 1936
ttaatgcttt ttctaagtca aatgcttca tttttactc tccagcttgc tcataataaa 1996
gctcatcaat ccattctcgaa atttcagatt ggaaatttcc taacgaatttta ttttcattaa 2056
aataatctgc ttcttttaac ttactcacccg ctgtttactt aaagcattta taaaaaagac 2116
gctttcttc aaacaaatca tctttgaga ttgcgcatac ttttcctacg ccctctatac 2176
ttttgtcttg aataaaaacta taaaaaagaa cctcttcttg ctgcttgc tctactaaaa 2236
tagaaatcgat atatttttt ggatattcca ttttaatcc tttcttttag ataacaaaaaa 2296
accgcatttc tgcggttatt ctgtgtatTTT attttaaaata ttacttatacg tttcagcatac 2356
ttctaattgtt aatttagaat agcttgaggt cattttctt ttaacggcaa tcctcaattc 2416
ttccagcttt aagctataca agtagtctt tttatcttta taaatacgac cgtacaccat 2476
tccggataat ttaccttctt cataccattt agataaattt atctttctat ctgcaccgg 2536
cactctaattt gttaaatatt ttcttccat ttttaagact tcagcctcat gttcaatgtt 2596
tgagcgcattt agtgtttctt aaaaatatac ggtatcgccca acttttaagat ttttaatcca 2656
atctttatcc ataaatacccc ttatactttc ggtggcagtg gaagtgggtt ccaatgagtt 2716
actgaagata gatggtaagt acgaagagac ataaagaaaa catcatctcg ccacgcgatt 2776
tttattttccc ctctatctgt ataaatcaga atatcctctc tctcactggg caatctatct 2836
tttacactaa tccagccatc atcttgcgaa aattccacaa tttctggctt ttcaagcacc 2896
aaatcagagc cgtaatcttc ttttcctct tcgctcaact gctttccctt gcagtcagcc 2956
ttgccaagga cgacaccgta cacggcataa ggttaatcat tcaacgcaaa atcctcatga 3016
tcacacatcatctt catctgcgaa ctcatgagct tctactgcac catctaaaca actttgctt 3076
gcttgatnta atgtttcggtt taagttaacg atatgtatgt cattagatac atctactgag 3136
aaaaattttt tttctgtttc tatcatagtt aaattcctta ttcttttattt aatqqqcqaaq 3196

gaatcggttg ccagtgtgta acgttaatag ctagatcata aattggacca ttctgattta 3256
 tagctaccca aaaatattca ccatcagcaa tttcttgc tgcaattgcg taatgctgc 3316
 catattcacc ttcacaaaaa gcaatgactg gtgttcaac ttctgtaac ttgtcatcaa 3376
 cactaatcca gttgctatac tcccaatgaa aattaagctt ctcatalogca ttgatgactt 3436
 gatctaacgc aggtcttaat tgggttctc caacaataat atgtgttgc atcttaatct 3496
 ctgggattcc atcttattact tcacaccagt tttttcaat aaagtccat cttttttat 3556
 ctgctaaaag actttcatat tctgctttg tgattgttac tgtttctgtc atagttaaat 3616
 tcctcatgt aaattccatg tttatttacc tttttctgg cacaaaaaaa cacgctattg 3676
 cgtgctgtct tgattgatat aatcaattaa tctaagccc atccattca taactggaac 3736
 agccatactg tttccaatg ctttgtatcg tggagaatca gggcattcat ctattgattt 3796
 gttgcgatat gggatttttag tgtaatcgac tgaaatccc tgtaatctt cacactcacg 3856
 cggcgttagt tttctaacaa ctgattctac tgataaagca acgcaaggaa cattattacc 3916
 accagttccc attcttgctt ttaagggtgg tgaaatatca tcgtgaatac gacaagcttc 3976
 ttcaccctta acctcaaata gaatatttc caatcctcca tttcttccaa tgcaatgcgc 4036
 tgtatTTTA gaaatgattt gatcttgta accgtgaaca acaaaagttt cactaccgac 4096
 agcaagaact ccaccgcttg ctcttaatgt tcccccaaca tcggatttgc gatattgago 4156
 aaagcttgc tcaataaaagg cggcaatatac tttgcctgc gttccgctct gttcaatatt 4216
 ccctcgacg ctttggact caatgagttat ttgtgcaaca ctgcgtttc tagcacttgc 4276
 cacaagaaac actctttac gacggtggc aactccgaag tattgagcat cgagaactcg 4336
 ccagcagatt gttcggattt aatgcacata accagcgttc gtccatcttcc tccctgtgtg 4396
 ctgcaatggc tcacacttta gaaccagtcc agccagaagg tgcggatgcg cgttgcgc 4456
 ggtggatagc acacccggaa cgtttccca cacgagaatg cacgggtggtt tgggtcatt 4516
 gaatctaaca tagtcgatcg cttctaaaat ttaattttt actaacgtga gatttcctcg 4576
 ctcatcgctt aaactttgac gattgccagc aactgaaaaa gattgacaag gaggaccacc 4636
 aactaaaacg tctggtgccg gaatttcacg atctaataatt ttctgttgc attcagtcatt 4696
 atcaccaaga ttgggaacgt tagggtaatg gtaagctaactgcgc ttggc 4756
 aatttcagaa aaccagatg gctctgcgaa tt 4788

<210> 48
 <211> 292
 <212> PRT
 <213> Pasteurella multocida

<400> 48
 Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys Gly Ile Ala Pro Asp
 1 5 10 15

Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Gln Asn Glu Val Ser Ile
 20 25 30

Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg Leu Asn Arg Phe Leu
 35 40 45

Arg Tyr Asp Ile Ser Asn Leu Tyr Ile Arg Asp Leu Arg Lys Glu Asp
 50 55 60

Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu Val Ser Asp Ala Ser
 65 70 75 80

Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val Leu Thr Thr Ala Ile
 85 90 95

Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met Thr Gly Ile Glu Lys
 100 105 110

Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr Ser Glu Gln Asp Ile
 115 120 125

Lys Thr Ile Leu Glu Thr Ala Arg Tyr Cys Glu Asp Lys Leu Pro Ile
 130 135 140

Thr Leu Lys Gln Arg Val Ala Ile Ala Met Leu Phe Ala Ile Glu Thr
 145 150 155 160

Ala Met Arg Ala Gly Glu Ile Ala Ser Ile Lys Trp Asp Asn Val Phe
 165 170 175

Leu Glu Lys Arg Ile Val His Leu Pro Thr Thr Lys Asn Gly His Ser
 180 185 190

Arg Asp Val Pro Leu Ser Gln Arg Ala Val Ala Leu Ile Leu Lys Met
 195 200 205

Lys Glu Val Glu Asn Gly Asp Leu Val Phe Gln Thr Thr Pro Glu Ser
 210 215 220

Leu Ser Thr Thr Phe Arg Val Leu Lys Glu Cys Gly Leu Glu His
 225 230 235 240

Leu His Phe His Asp Thr Arg Arg Glu Ala Leu Thr Arg Leu Ser Lys
 245 250 255

Lys Val Asp Val Met Thr Leu Ala Lys Ile Ser Gly His Arg Asp Leu
 260 265 270

Arg Ile Leu Gln Asn Thr Tyr Tyr Ala Pro Asn Met Ser Glu Val Ala
 275 280 285

Asn Leu Leu Asp
 290

<210> 49
<211> 1618
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (2)..(1195)

<220>
<223> sopE

<400> 49

g ggc gat cta tgt ctg aaa ata tct aca tgg tgt caa agt cac aga atc 49
 Gly Asp Leu Cys Leu Lys Ile Ser Thr Trp Cys Gln Ser His Arg Ile
 1 5 10 15

aat caa gca att cgc aca att caa agt cta tca acc gca gtc atc ggt 97
 Asn Gln Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly
 20 25 30

att gtc tgt act gca aat gac gca gac aat gaa aca ttc cca ctc aat 145
 Ile Val Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn
 35 40 45

gaa ccc gtt ctc atc aca aac gtg gca gcg gca att ggc aag gct gga 193
 Glu Pro Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly
 50 55 60

aaa caa ggc acg ctt tca cgt gcg ctt gac ggg att tct gat gta gtc 241
 Lys Gln Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val
 65 70 75 80

aat tgc aaa gtg att gtt gtg cga gtg caa gaa agt gcg caa gaa gac 289
 Asn Cys Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp
 85 90 95

gaa gaa aca aaa gca agt gaa atg aac acg gca att att ggc aca atc 337
 Glu Glu Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile
 100 105 110

aca gaa gaa ggg cag tac aca ggc ttg aag gcg tta ttg att gcg aaa 385
 Thr Glu Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys
 115 120 125

aac aaa ttc ggt atc aaa cca cgt att tta tgt gtg cca aaa ttc gac 433
 Asn Lys Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp
 130 135 140

aca aaa gaa gtc gcc aca gag ctt gca agt atc gcc gcc aaa ctc aac 481
 Thr Lys Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Ala Lys Leu Asn
 145 150 155 160

gca ttt gct tac att tca tgt caa ggg tgt aaa acg aaa gaa caa gcg 529
 Ala Phe Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala
 165 170 175

gtg caa tat aaa cgc aac ttc tca caa cgt gaa gtc atg ctg atc atg 577
 Val Gln Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met
 180 185 190

ggc gat ttt ctg tca ttt aat gtc aac aca tca aaa gtt gag att gac 625
 Gly Asp Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp
 195 200 205

tat gcc gtc act cgt gcg gca atg cgt gca tat ctt gat aaa gaa 673
 Tyr Ala Val Thr Arg Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu
 210 215 220

cag ggc tgg cat acg tct att tca aat aaa ggc att aat ggc gtg agc 721
 Gln Gly Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser
 225 230 235 240

ggt gtc aca caa cca ctc tat ttt gac att aac gac agc tcg act gat	769
Gly Val Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp	
245	250
255	
gtg aac tat ctc aat gaa caa ggc atc acg tgt tgc gtg aat cat aat	817
Val Asn Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn	
260	265
270	
ggc ttt cgt ttt tgg ggc tta cgc acg act gca gaa gat cca tta ttc	865
Gly Phe Arg Phe Trp Gly Leu Arg Thr Ala Glu Asp Pro Leu Phe	
275	280
285	
aag ttt gaa gtg tac acc cgc act gca caa atc tta aaa gat acg att	913
Lys Phe Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile	
290	295
300	
gca ggg gcg ttt gat tgg gca gtg gat aaa gat att tct gtc acg cta	961
Ala Gly Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu	
305	310
315	320
gtg aaa gat att att gaa gca atc aat gcg aag tgg cgt gat tac acc	1009
Val Lys Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr	
325	330
335	
aca aaa ggc tac tta att ggc ggt aaa gcg tgg ctt aat aaa gag ctt	1057
Thr Lys Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu	
340	345
350	
aac agt gca acg aat tta aaa gat gcg aag ttg ttg atc tct tat gat	1105
Asn Ser Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp	
355	360
365	
tat cac cca gta cca ccg ctc gaa cag cta ggc ttt aat cag tac att	1153
Tyr His Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile	
370	375
380	
tct gat gaa tac ctt gtt gat ttt tca aat cgt tta gca tcg	1195
Ser Asp Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser	
385	390
395	
taagggttag aaaatggctt taccacgcaa acttaaatgg atgaatttaa tcatcgacgg	1255
taacaaatat ctcggcgaag tcacggaagt gactcaacca aaattagcaa tgaaaatcga	1315
agaatttcgc gcgggcggta tgattggttc ggtggatgtc aatctcgcc ttgaaaagct	1375
cgaagcggaa tttaaagccg gtggctacat ggtcgaatta attaaaaat tcggcgggtc	1435
aatcaacggc attccattgc gtttcttgg ctcatatcag cgtgatgaca cagaagaagt	1495
cacatctgtt gagcttgta tgcaaggctcg atttactgaa attgacagcgt gaaacagcaa	1555
agtggcgtat gacactgaac aaacattcaa agtgccctta acgtattaca aaatcattgt	1615
tga	1618

<210> 50
<211> 398
<212> PRT
<213> Pasteurella multocida

<400> 50

Gly Asp Leu Cys Leu Lys Ile Ser Thr Trp Cys Gln Ser His Arg Ile
 1 5 10 15
 Asn Gln Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly
 20 25 30
 Ile Val Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn
 35 40 45
 Glu Pro Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly
 50 55 60
 Lys Gln Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val
 65 70 75 80
 Asn Cys Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp
 85 90 95
 Glu Glu Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile
 100 105 110
 Thr Glu Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys
 115 120 125
 Asn Lys Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp
 130 135 140
 Thr Lys Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Ala Lys Leu Asn
 145 150 155 160
 Ala Phe Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala
 165 170 175
 Val Gln Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met
 180 185 190
 Gly Asp Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp
 195 200 205
 Tyr Ala Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu
 210 215 220
 Gln Gly Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser
 225 230 235 240
 Gly Val Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp
 245 250 255
 Val Asn Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn
 260 265 270
 Gly Phe Arg Phe Trp Gly Leu Arg Thr Thr Ala Glu Asp Pro Leu Phe
 275 280 285
 Lys Phe Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile
 290 295 300
 Ala Gly Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu
 305 310 315 320
 Val Lys Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr
 325 330 335

Thr Lys Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu
 340 345 350

Asn Ser Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp
 355 360 365

Tyr His Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile
 370 375 380

Ser Asp Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser
 385 390 395

<210> 51

<211> 353

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)..(351)

<220>

<223> unknown C1

<400> 51

atg aca tta ttt gat gaa tgt aaa tta gct ctt aga gac gat ttt aat 48
 Met Thr Leu Phe Asp Glu Cys Lys Leu Ala Leu Arg Asp Asp Phe Asn
 1 5 10 15

cta att tgt gat gaa gag aag gat tgt gta atg gat aag ttt tat ttc 96
 Leu Ile Cys Asp Glu Glu Lys Asp Cys Val Met Asp Lys Phe Tyr Phe
 20 25 30

tat ttc ttg gaa aag aaa gag gaa ttt aat ttt caa gat tat tca ttt 144
 Tyr Phe Leu Glu Lys Glu Phe Asn Phe Gln Asp Tyr Ser Phe
 35 40 45

gaa gaa atg tat ata ttt tca aaa atg gaa cct gtg tat gtt tta tgt 192
 Glu Glu Met Tyr Ile Phe Ser Lys Met Glu Pro Val Tyr Val Leu Cys
 50 55 60

gat agc tct aat ata cct ttg ttt agg agt aat tgg gaa ttg att atc 240
 Asp Ser Ser Asn Ile Pro Leu Phe Arg Ser Asn Trp Glu Leu Ile Ile
 65 70 75 80

aat aat ata tat gat gtt gtc tgt tta tct aca aaa gta ttt ttt cta 288
 Asn Asn Ile Tyr Asp Val Val Cys Leu Ser Thr Lys Val Phe Phe Leu
 85 90 95

gat gat gaa aag tta atg atg gaa tta ttt cct gaa gat aaa gta aga 336
 Asp Asp Glu Lys Leu Met Met Glu Leu Phe Pro Glu Asp Lys Val Arg
 100 105 110

gtc atc tat aaa aga ta 353
 Val Ile Tyr Lys Arg
 115

<210> 52

<211> 117

<212> PRT

<213> Pasteurella multocida

<400> 52
Met Thr Leu Phe Asp Glu Cys Lys Leu Ala Leu Arg Asp Asp Phe Asn
1 5 10 15
Leu Ile Cys Asp Glu Glu Lys Asp Cys Val Met Asp Lys Phe Tyr Phe
20 25 30
Tyr Phe Leu Glu Lys Glu Glu Phe Asn Phe Gln Asp Tyr Ser Phe
35 40 45
Glu Glu Met Tyr Ile Phe Ser Lys Met Glu Pro Val Tyr Val Leu Cys
50 55 60
Asp Ser Ser Asn Ile Pro Leu Phe Arg Ser Asn Trp Glu Leu Ile Ile
65 70 75 80
Asn Asn Ile Tyr Asp Val Val Cys Leu Ser Thr Lys Val Phe Phe Leu
85 90 95
Asp Asp Glu Lys Leu Met Met Glu Leu Phe Pro Glu Asp Lys Val Arg
100 105 110
Val Ile Tyr Lys Arg
115

<210> 53
<211> 509
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (1)..(507)

<220>
<223> unknown C2

<400> 53
atg aaa aat ttt agg aat ata aat att tat agt gat tat gga aag gtt 48
Met Lys Asn Phe Arg Asn Ile Asn Ile Tyr Ser Asp Tyr Gly Lys Val
1 5 10 15
gat aag gaa att ata tta gaa ttc gaa aat gaa ttt aat ata aag ctt 96
Asp Lys Glu Ile Ile Leu Glu Phe Glu Asn Glu Phe Asn Ile Lys Leu
20 25 30
cct tct tta tac ata gat tta att acg gcg cat aat gct ccg aag agt 144
Pro Ser Leu Tyr Ile Asp Leu Ile Thr Ala His Asn Ala Pro Lys Ser
35 40 45
gaa gag aat tgc ttt gaa tat tac aat gag cgt aat gag ccc acg ttt 192
Glu Glu Asn Cys Phe Glu Tyr Tyr Asn Glu Arg Asn Glu Pro Thr Phe
50 55 60
tct tcc ttt gga ttt gaa ggg ttt gag aca gag cgg tct agc gcc tct 240
Ser Ser Phe Gly Phe Glu Gly Phe Glu Thr Glu Arg Ser Ser Ala Ser
65 70 75 80
ctt gaa aat ata tat gct cag tat att tat gat gat cca atc tat ggt 288
Leu Glu Asn Ile Tyr Ala Gln Tyr Ile Tyr Asp Asp Pro Ile Tyr Gly
85 90 95

tat gaa cat gtg tat tct ttt ggt agt act ggc gag gga cat ttt atc 336
 Tyr Glu His Val Tyr Ser Phe Gly Ser Thr Gly Glu Gly His Phe Ile
 100 105 110

tgt ttt gat tat cgt gat gat cca aaa ggt gat gaa ccc aaa atc tgt 384
 Cys Phe Asp Tyr Arg Asp Asp Pro Lys Gly Asp Glu Pro Lys Ile Cys
 115 120 125

atc gtg att cac gat gaa tat gat gaa aaa aca ggg aaa atg cga ctg 432
 Ile Val Ile His Asp Glu Tyr Asp Glu Lys Thr Gly Lys Met Arg Leu
 130 135 140

ttt cct ata gca gag aat ttt gaa gcg ttt tta gat agt ttg aaa tca 480
 Phe Pro Ile Ala Glu Asn Phe Glu Ala Phe Leu Asp Ser Leu Lys Ser
 145 150 155 160

ttt gat gaa atg ata gag aag tat tcg ta 509
 Phe Asp Glu Met Ile Glu Lys Tyr Ser
 165

<210> 54

<211> 169

<212> PRT

<213> Pasteurella multocida

<400> 54

Met Lys Asn Phe Arg Asn Ile Asn Ile Tyr Ser Asp Tyr Gly Lys Val
 1 5 10 15

Asp Lys Glu Ile Ile Leu Glu Phe Glu Asn Glu Phe Asn Ile Lys Leu
 20 25 30

Pro Ser Leu Tyr Ile Asp Leu Ile Thr Ala His Asn Ala Pro Lys Ser
 35 40 45

Glu Glu Asn Cys Phe Glu Tyr Tyr Asn Glu Arg Asn Glu Pro Thr Phe
 50 55 60

Ser Ser Phe Gly Phe Glu Gly Phe Glu Thr Glu Arg Ser Ser Ala Ser
 65 70 75 80

Leu Glu Asn Ile Tyr Ala Gln Tyr Ile Tyr Asp Asp Pro Ile Tyr Gly
 85 90 95

Tyr Glu His Val Tyr Ser Phe Gly Ser Thr Gly Glu Gly His Phe Ile
 100 105 110

Cys Phe Asp Tyr Arg Asp Asp Pro Lys Gly Asp Glu Pro Lys Ile Cys
 115 120 125

Ile Val Ile His Asp Glu Tyr Asp Glu Lys Thr Gly Lys Met Arg Leu
 130 135 140

Phe Pro Ile Ala Glu Asn Phe Glu Ala Phe Leu Asp Ser Leu Lys Ser
 145 150 155 160

Phe Asp Glu Met Ile Glu Lys Tyr Ser
 165

<210> 55

<211> 443

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)...(441)

<220>

<223> unknown C3

<400> 55

atg	ata	aaa	tat	tta	gag	gga	aat	att	aac	tcg	ttt	ata	tcg	gca	tta	48
Met	Ile	Lys	Tyr	Leu	Glu	Gly	Asn	Ile	Asn	Ser	Phe	Ile	Ser	Ala	Leu	
1	5				10				15							

ggt	aaa	aac	gaa	agt	aat	aaa	gat	att	tta	aaa	tta	gta	gaa	ata	gtt	96
Gly	Lys	Asn	Glu	Ser	Asn	Lys	Lys	Asp	Ile	Leu	Lys	Leu	Val	Glu	Ile	Val
20	25				30											

tct	tca	gat	ttt	gaa	gtg	gat	gaa	cta	agt	cat	aaa	gat	gaa	cac	gag	144
Ser	Ser	Asp	Phe	Glu	Val	Asp	Glu	Leu	Ser	His	Lys	Asp	Glu	His	Glu	
35		40		45												

ata	tat	tat	ttg	ttt	tat	aag	agg	ggg	gtt	gaa	ttt	tgt	ttt	aaa	aga	192
Ile	Tyr	Tyr	Leu	Phe	Tyr	Lys	Arg	Gly	Val	Glu	Phe	Cys	Phe	Lys	Arg	
50		55		60												

ata	gat	gaa	gag	tat	gtc	tta	tat	tcg	gtt	tcc	ttt	ttg	gta	gag	240
Ile	Asp	Glu	Tyr	Val	Leu	Tyr	Ser	Val	Phe	Phe	Phe	Leu	Val	Glu	
65		70		75				80							

gtt	gat	aat	tat	ttt	tca	tgc	cca	ttt	att	cat	gaa	tta	ata	tgt	gat	288
Val	Asp	Asn	Tyr	Phe	Ser	Cys	Pro	Phe	Ile	His	Glu	Leu	Ile	Cys	Asp	
85		90		95												

ctt	aaa	cac	gga	ttc	tca	ata	gag	gat	att	ata	agg	ttt	tta	ggg	gag	336
Leu	Lys	His	Gly	Phe	Ser	Ile	Glu	Asp	Ile	Ile	Arg	Phe	Leu	Gly	Glu	
100		105		110												

cca	aat	ttt	aaa	ggg	agt	ggc	tgg	gta	aga	tat	tct	tat	aat	gga	aga	384
Pro	Asn	Phe	Lys	Gly	Ser	Gly	Trp	Val	Arg	Tyr	Ser	Tyr	Asn	Gly	Arg	
115		120		125												

aat	att	cat	ttc	gaa	ttt	aat	gaa	tct	aat	gaa	tta	tcc	cag	att	agc	432
Asn	Ile	His	Phe	Glu	Asn	Glu	Ser	Asn	Glu	Leu	Ser	Gln	Ile	Ser		
130		135		140												

att	ttt	att	ta													443
Ile	Phe	Ile														
145																

<210> 56

<211> 147

<212> PRT

<213> Pasteurella multocida

<400> 56

Met	Ile	Lys	Tyr	Leu	Glu	Gly	Asn	Ile	Asn	Ser	Phe	Ile	Ser	Ala	Leu	48
1	5				10			15								

Gly	Lys	Asn	Glu	Ser	Asn	Lys	Asp	Ile	Leu	Lys	Leu	Val	Glu	Ile	Val	96
20	25				30											

Ser Ser Asp Phe Glu Val Asp Glu Leu Ser His Lys Asp Glu His Glu
 35 40 45
 Ile Tyr Tyr Leu Phe Tyr Lys Arg Gly Val Glu Phe Cys Phe Lys Arg
 50 55 60
 Ile Asp Glu Glu Tyr Val Leu Tyr Ser Val Phe Phe Leu Val Glu
 65 70 75 80
 Val Asp Asn Tyr Phe Ser Cys Pro Phe Ile His Glu Leu Ile Cys Asp
 85 90 95
 Leu Lys His Gly Phe Ser Ile Glu Asp Ile Ile Arg Phe Leu Gly Glu
 100 105 110
 Pro Asn Phe Lys Gly Ser Gly Trp Val Arg Tyr Ser Tyr Asn Gly Arg
 115 120 125
 Asn Ile His Phe Glu Phe Asn Glu Ser Asn Glu Leu Ser Gln Ile Ser
 130 135 140
 Ile Phe Ile
 145

<210> 57
 <211> 8498
 <212> DNA
 <213> Pasteurella multocida

<220>
 <223> unknown C

<400> 57
 gaattcgaat taagcgagaa aattgctgaa acactagaac aaagtcaatt aaatattagt 60
 caattatcaa ttgttgcataat ttatcctttc aatgaagaac aaggatacg ttttcataat 120
 aaaagtgtgg tacaacttaa accagaagag gtggaatggt catcaatcca ttatcctttc 180
 tttgtggcg atattcagca agtcgctcat ctcgcgaaag ccgcagaaat gggttgcgtg 240
 gtgattgata tgaaaggat ttgtgccagc ttgcaagacg tccctgtggt gataccggga 300
 gtaaatcagg aaaaatttgtt agatttacgt cagcgtataa ttgtgtcctt agccgatcca 360
 caagtgacac aacttgcatt agtcatcgcc tcgttgatgt caaatcacga aatcaaagac 420
 attgccgtaa cctcgttatt acctgcattct tatactaacg gagaaacggt aggtaaatta 480
 gcgggacaaa cagcgcgatt gttaaatggc attccacttg atgaaggcga acaacgtta 540
 gctttgatg tttccctac gcctgcattcg catttaataa tgcaaattca caagatctt 600
 ccacaattag ataatgtcgt atttcattct atccaagtgc ctgtttctt cgggatgggg 660
 caaatggta gcgtattatc ggattatgca ttagatcctc aatcttgctt agcgagctgg 720
 actgacaatc cggtgatgac ttatcatgca gaaaaatatt gcacccagt gacgaatggc 780
 gaacagggaaa tggcagaaga gcaaggcagca aaattacata taagtgggtt aagtgcgggtg 840
 gaaaatggtc tacaatttg gtcgggtgca gatgaacagc gcttaatct tgctttattg 900

agtgttacgc ttgcagagtt aatttactcg caaggttatt aatttaaatg tgaaaaatggca 960
cgatattttt atcttgaact ttgagagcgc actcgaaaa gacgagtgcg tttttgttaa 1020
aacattcgaa tgaaagacag tgaatgaata gcggagttat tgataagaat caatttatac 1080
aaaagcaact gaatgttatt aatcgaggca ataaacctat tgatagttt agttggcgcc 1140
ataatacata aactgtactt aataatatgc aatcaataacc tagaaatatt catgacgtaa 1200
tccaaacatat cggggagggg attttaagtg atggtagaaa aaacattttag aaatctaaaa 1260
atatatgatg attatggttc tgtctctcag gaaatttattt ttaatttga aaaagagttt 1320
gatataaaac tccctttatc ctatactca ctgtgaaaa agtataatgg cgtttggttt 1380
aaggaaagtg attttgaata tttatctcaa aatgggaaaa gaataataag ctcattgagt 1440
tttgatagtt ttgagacaaa agataatatac gaaccaatga ataataatatt aagacaatat 1500
atttatgatg atgaaattta tggatataag aatgtttattt cctttggtaa cactggaaat 1560
ggtgactttt tctgttttga ttatcgttat gacccaaaag gtgtgagcc caaaatctgt 1620
atcgtgattc atgatgaata tgatggaaaa acaggcaagc gtttggattt gcctgtggca 1680
gaaaattttt aggcattttt agatatgctt tacgattttt atgaacgcta tccgaatgg 1740
tatgaatagg tatttggtaa aataatgtgt tgtatTTTTT aagcatttatt tacaactaac 1800
attttaaagtg cggtaattt tgaaaaagtt ttggggctttt agaattgggc gcattttttt 1860
tgaaatattc ttcaatgatg agcactaattt atggattaga taatggaaat tatcgagata 1920
tggatggtaa taaaggatgg aggctagatt ttgatcctga gaaagttgtt catgtaaata 1980
ttttgactt tactaaaggt aaaggactag gtaaagcagt taaaaagtca ttcttttga 2040
tagtactgaa caagagttt aaaaattttt aagcaattaa ataaggaaga taaaatgaca 2100
ttatttggatg aatgtaaattt agctttttaga gacgatttttta atctaatttgg tcatgttgg 2160
aaggatttgtt taatggataa gttttatttc tatttttttgg aaaaagaaaga ggaatttaat 2220
tttcaagattt attcatttga agaaatgtat atattttcaaa aaatggaaacc tttgtatgtt 2280
ttatgtgata gctctaataat accttttttgg aggagtaattt gggaaattttagt tatcaataat 2340
atatatgatg ttgtctgtttt atctacaaaaa gtatttttttgc tagatgtatgaa aagttttaatg 2400
atggaatttat ttccctgaaga taaagtaaga gtcatctataa aaagataattt accccttgat 2460
cgcgcctcggt tcagcacgag ttcccttca ttaaagctct cgttaaagac tagcaactggc 2520
agtggggttt atcgtaatca atttactgaa gaacagttaa ttaaaaattaa taagaggctt 2580
gataaaaatag agggattttac atggcatcat aactcacaaaa gtagtccccca aaatatgttag 2640
ttaataccta caccaattca taaggctgtt cagcatatag gtgaaggcgc tttaagtgaa 2700
ggaaagtgtat aaaaatgaaaaa atttttaggaa tataaatattt tataatgttattt atgaaaggtt 2760
tgataaggaa attatatttag aattcgaaaaa tgaatttaat ataaagcttc cttctttata 2820

catagattta attacggcgc ataatgctcc gaagagtcaa gagaattgtt ttgaatatta 2880
caatgagcgt aatgagccca cgttttcttc ctttgattt gaagggttt agacagagcg 2940
gtcttagcgcc tctcttgaaa atatatatgc tcagtatatt tatgatgatc caatctatgg 3000
ttatgaacat gtgtattctt ttggtagtac tggcgaggga cattttatct gttttgatta 3060
tcgtgatgat cccaaagggtg atgaacccaa aatctgtatc gtgattcacg atgaatatga 3120
tgaaaaaaca gggaaaatgc gactgttcc tatagcagag aattttgaag cgttttttaga 3180
tagtttgaaa tcatttgatg aaatgataga gaagtattcg taatgtctcc gttcatatct 3240
catagcgatg ctctctcccc tgattttatg gaaattttgt ttaaatttagg agggcactaa 3300
aatgaaaaaaaaa ttttatttaa ttttttattt attcctaagt ggatgtttt atcatgatgg 3360
atgtatctat actcctcaga tggtaaattt ttttggat aaaggagata tatttccatc 3420
aatatctcg tataaaaagc cttatagtc agggaaaaacc aattcagaac agcgttggaa 3480
ggatgtttagt ttttggag gtaaatatgg tgattataaa ttagagaata taaaaacagt 3540
ggaacaatcg gataaattac atcattgtat gacccaaaaa gggtatatcc atttaactcc 3600
cgccagaatgt ggataccaaa atcctaaatg ggataaaggc gtttgaatt tataagtgtt 3660
ttggatttta cttacgaat ttttttggaa aaaagttacc gcaggtatgt ttttataatcaa 3720
agcccaggtg ggcgttggat gatgtttat tcgcataatgt gtttattatgc ggaagtgcata 3780
aatgaattca ttataaaaaa tggattaaa gagcgttaatt agcaccgttt gcccgtgatgt 3840
attnaatttc tcctgatgtt atggaaatat tatttaagtt aggaggtatg taggatgaaa 3900
aagttgttat tggatgtttt attattactt ttaaatggat gcctatattc ttttgaagag 3960
gagttttta gaccgttaat tcaggtgggg tcatctgtt gtcataagaa taaaggagat 4020
atattccat caatagcacg tttccaaaaa gtagagaaca tcggaaaaac tgatgccaaag 4080
caacgttggaa aagatgcggt tgattgtgga agtaagtatg gcgatgaaga ttaatataat 4140
ataaatgata ataatttata tagcatttt cactcctgtt tggttaaaaa aggatataaa 4200
aagtttcattc ccgcagaatg tggataccaa aatcctaaat gggataaggg tatttgcata 4260
ttataagtgt tttgaatttt actttacaaa cttttttgtt aaaaatgttac cgctggatgt 4320
tctgtttta gggataaaga ttcgttcatc ttctttaat ttaggcacgg tataaaaagag 4380
cttgattatc aaataataat atcgtgttcg tgtccacacg agtagggttt gattaaagta 4440
ctcctcaaaaa gcgagtgcata gctgtgggtt aaacgggtggg aaagaaaagta aagagtat 4500
aaaccaattt accgcataac gtgcggtcaa tttcttaagat ttatgagttc cagaaaaata 4560
gaccgaaaag tgcggtaaag gggtaacgaa acacaaaaaaa taaaaatatg acagcaagct 4620
gtgtcatataa accccagaaa aaaacttgac cgattgttgc actgctgaaa atggcaaaaa 4680
gtaagccgat ttcataagggt agcattgcaaa taaaccagat taatccactt ggatgatcac 4740

ttttcattac ggactcctta tttatggctg ataacttaac acttgtattg aaaattaag 4800
cagatttaaa caatgcgtt agcgattta aagcgcttaa aacggaattt caacgcgcag 4860
gcgtggagtc tatcagtaag taactcgcca gttttgcaa tcatttatca tattcacaaa 4920
gccgtaatgc atattggaga aggttaagtg taagtgaagg aagataaaat gaaattttaga 4980
catttggca tttattatga ttatggcgtt gtttcccaag agattattt agatttttag 5040
gaaacgtttt gtattaaatt accaaaattt tatattgagt tgatcacaaa acataattcc 5100
ccaagattga atagagatca tttcaattat tatgatttct ctacgagtga ggaagaagga 5160
acggaattta tattcaaagg atttgaaca gaaagtaata ggcatgcgc gccagaaaat 5220
atttatgcac aatatctta tgatgatgaa atatatggtt atgaacatgt gtattcttt 5280
ggcagtaccg ctatgggtga ctttgctgt tttgattacc gagataatcc gaaaggcagt 5340
gaacctaaaa tttgtcttgtt gattcatgat gaatatgatg aagaaacagg caagcattta 5400
ttgtttcctg tggcagaaaa ttttgaggtt ttttagata tgcttacga ttttgatgaa 5460
cgctatccga atggttatga ataggattt aaataatgta ttgtatttt taagcgttat 5520
ttaataacgt ttaagtgcg gtcaatttca aaaaagttt gcttgagga attgaccgtt 5580
tttgatcat gnatatgatg tgagcaattt atatectgtt tgtgttaact ggcatgtggt 5640
aaagcattcg tcaaagacga gctctagtgg tgagggacta atcatgaatg aactattgga 5700
ctttataga aatataactt ttttgaga atatgatgaa aactcattca taggaagatg 5760
gcttgattac tcggaatgga atgataaaga atattggaa ttagagaag atttactgaa 5820
aattgctcaa atgtatgaa ctactaatga agttttcca gatattttaa taggggttat 5880
gcgtatcatt gaattattaa tgatacctaa ctggaatagt tttataatat ctaattcaga 5940
aagtgttcat atttatgata gatatgaacg atttaaatat ataatttcaa tactttcaa 6000
taataaagat gtttagacttag atggctttc atatacagaa aagaatgatg atgtatttt 6060
taatgaatag aaaaattaaa agtaagctaa ttgttagaaa taataaaaatg ctcgcttgta 6120
ttttttctt gagatcgtgc ttgagtccac acgagtgcata gctgttaggca gagtgcttg 6180
gtgattataa aaagtttaagg atagtattgt tgatatgaaa gaaaagacta aatattcaat 6240
gggaaatcaa agtgataaaa aataaatttt atatttctt gttaggattt tcaatatcat 6300
tatatgttt gctttatgt agagattgt tttattctct ttatatgttt tttattatga 6360
tgtatggtc taaaatttt ctttaagga ggcgtttttt actatctta tttttattgt 6420
gctatgtttc attattcatt attcatttatt cattattcat tattcattat tcattatttt 6480
atataataat atggtaaaag gtctgaatgc ccaaaaaaga aaccattaag tgaaaatgta 6540
acatacaata aaaggttagt ggaataaaata aaatattagg aataacagaa tgataaaata 6600
tttagaggaa aatattaact cgtttatatc ggcatttagt aaaaacgaaa gtaataaaga 6660

tatTTaaaa ttagtagaaa tagttcttc agatTTgaa gtggatgaac taagtataa 6720
agatgaacac gagatatatt atttgttta taagaggggt gttgaatttt gtttAAAAG 6780
aatagatgaa gagtatgtct tatattcggt tttcttttc ttggtagagg ttgataatta 6840
ttttcatgc ccatttattc atgaattaat atgtgatctt aaacacggat tctcaataga 6900
ggatattata aggttttag gggagccaaa ttttaaggt agtggctggg taagatattc 6960
ttataatgga agaaatattc atttcaattt taatgaatct aatgaattat cccagattag 7020
catTTTatt taataattt ggattggaa cgctctcggt ttcacacaag tgcggTTGA 7080
ttaaagcact tgtcaaaggc gagatccagc tgtggagat ttgatagaga aatggcttc 7140
aggattgacg ttagtagagg gacataat caagaaaaaa cattttAAAT aggaacatta 7200
ggtgtgagt aatggaaatc actcgTTTA aaatcctact tattgcTTG attatattag 7260
gtaatggta tgtgttctt ggtggaccag ctaaaaaaca attcgctata gaagcagaaa 7320
caaggcggat ttatcgact ttaacgaaag aaatttttt tatgaatgga gaatataaac 7380
aatttggagg gcgagttatt caaggattt cttagtcat ttcttttctt cattcaagta 7440
cagaaaaaccg cattaagatt ttagaaaaaa ttaaagagat gggatttgat tcaaaaaata 7500
aaacatcaaa accgagtctt catctttttt gtcaaggaga aagtggTTT ttgatcgCAG 7560
aaaaacctga atttagaata gattatgaga aaaagatgac ttattgttTg gagtagcaaa 7620
ggaaggcaat gataagtgtt tttctaattc agatTTatt taagtattaa agtgcggTCA 7680
atTTGAAAAA CGTTTACTT tgaaaaattt accgTTTTT tacatgagag agtggaaagta 7740
caccacCTTA ggcaatgtgg ttgtggataa ggtgattaag gaataccaa atgggggtta 7800
tgaagcgagg gtgctgatcc ctaacccgaa agcgaaaaacc gatcctgatg cgccgaaatt 7860
tttggagaaa aggGGAAATG aaggtgtatc cacaatgttt ccaagaacat ggacagagga 7920
taggtgaaa gtggagttag agcatgcgtt taataataga gtaccaatgg aaaagtggta 7980
aaataatgg gaaggatataa caaaatcagg cgtgaaagta gaatgggttc tggatagaaa 8040
tggtaaagtg ttgactctat tttgttattt ttctgtgtct tttgtaaaa aataagttgt 8100
tgaaataaca ttttctcta taatcaaattc ttaatgataa ttaatatcat taaaataagaa 8160
tggatactta gatgaggatt atatgaaaga tttatcaaaa atgacctgcc ttgaagactt 8220
acgcccgtgtt ggcacacgtt aagtgcAAA aatgttttat gactatgttag ttccaggatc 8280
ttggagcgaa agcacattgc atgccaaccg taatgatttt caagcaatta agctacgtcg 8340
acctgtggcg attttgccccca tttctgcatt cagctctgca attcgctcgct tggctgttc 8400
tggcgccgc gcaagctctc ttgtcgactt gcctttcttta attgggcttg ttgctccaa 8460
taacgtgagg tcGCCACATC cactttacgt agtggta 8498

<210> 58
<211> 5798
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (2686) .. (4446)

<220>
<223> unknown D1

<400> 58
gtcgacaaga ataaaacgaa acagcaaata gaattagaat tactacttat taacaataat 60
cctttttaa agattctagc tgtttagat aaaaatatac gtgtgaagct tttggtcaca 120
ttattattat caggcctata ttatttatgcagtaaaaa acgattcaaa ttttgtcata 180
ggtttatcta ttatTTAGT ttttattatt gtcattccag ggattttgac aaatgctatt 240
ttgaaagcta aggtgaaaaa aatcatggta gatttaccag gtttattga cttagttgca 300
gtaaatgttc aaacagggat tagtattgat gcggctttaa aacaagtggc aatcgattt 360
aagaaaactta atccagatct tacttatgtg atgttaagga ttattagaaa atctgaactt 420
acgggattat cacaagcgat acaggatctt tcgatctcat tgccaaac agaaataaga 480
atgttttgc ctgttttaca acagagtttta aattttggtt cttcaattta ttctcactta 540
attcagttgt ctgcagatat cagggagata caattattaa tcattgagga aaagtttaggt 600
acattatcag ctaaaatgag tatcccattt atttgttta ttatgtcccc aataatcatt 660
ttaattctag caccaggtat aatgagggta tttccaaatg tttttaaat ttaccaagaa 720
aatcgaaaaat gtttagtttag ctttatctgt cgttgggtgt tctaccatt ctcagcaagg 780
catgacacag aaaagtatgt catctgaaac aataacggca aaagagactt tatatgaaag 840
tacgcaaaat tattcggcac tcatttcaact gtatcgcgat gtgtgaaag ccaaagaaga 900
tccttcaata cgctataaaat tagcgaagac atactatcag cgaggtgaca gcaaatttc 960
tttactttat ttaacgccat tactgaatga taatacgaag cttgctacac aagcgaaaaat 1020
attacagata aaaaatctaa ttcaattaaa taatttccaa gaagcaattt ctgtcgcaaa 1080
tgaactctta ttaaaatcac ctaatgaagg agaagtatata aatttaagag gtatcgctta 1140
tgccgaaaaat gggatTTGG tgaatgcccgg aatgatatac aataaagcaa gagagttctt 1200
tattaatgat aatgttgctt ttaataattt agccatgcta aatatttata atggcgattt 1260
taataatgct gtttcttac tgTTGCCACA atattttaaat ggcgttaaga attctcgatt 1320
gattcataat cttgttttg ctttagttaa aatggtgat cttgattatg caaaagatata 1380
cattgttaaa gagcgtttaa atacttcacc agatgattta attaatgcat tgaaaaaaac 1440
tacacatgta tcaaaagggtg taactcggttta acactaagggta tttgatata 1500

atcaaataa aaaggaacct cgtcaattga atttgctttg acgatagcgt tctatttatt 1560
 tgggtgatg tttatTTTg aatttgcg attagcggtt ggcacagctt attgggattt 1620
 agctataacg gaaagtgtca gaattgcgaa gaatgaacaa gcaattctg gaaattatga 1680
 agaagcattt aggaaagctc ttacaaagca aaaaaattc catgatgaat cgacaattgg 1740
 atattggcg ttgttagaag ataataaatt tgatgtaaaa gtccaatatg tggattgtga 1800
 taaagaaacg gaatgtatta aaaatctct gctaataaa ttgcaccaac cacaaaaaaaa 1860
 tcataaagga gaggtaatct ctccacggg gagtcgcgcg actttacac aatattctt 1920
 aacttataaa tataagtta tggtgccgtt agtattttt cctgagtctt ggtctcaagt 1980
 agtgctgaac cgtgaatttgg ttgttgtaca ggaattttag ggttctcaat ttatgttagg 2040
 agcaaaacca agttctcttgg acgaaatcc atagaaaatt tactcattat ttgcagctat 2100
 atatgaaaga gtcagggtta gttaaattca agcatttttgg gaaaaataaaa aaggcgccag 2160
 tgacgataga gttcctttt atgtcaatgt ttctgattgt gctatttgc tttctttcg 2220
 atttagtaat gttacgttct acattaggca agttagataa tgcctcatat acattagtt 2280
 gtattctccg tgaacgtaca cagttgtacg atagagttgc acaaattaat attgatgatc 2340
 ataagcaatt tgaaaagctt gctaagaaac tgatttatgg tgatcagaat agtaataaaa 2400
 ggatcgatgt tgtttttagaa tattggcac aagacgggttc tggacggagg attccaaata 2460
 tcattggcga ttgtacgcct tacaaaaaac tttctgattt atcctattta tctcctcgct 2520
 cagaactcaa taatgaaaga aaaataccgc tttatcaaatt tactctttgt gttgaaactc 2580
 agggcttggtt tgaaacaata ttactggata agtctgagcg ttcaacgggg ctgatttagat 2640
 catcgtaat gtcagttatca cgataaattt tcgttagggaa actttt atg aaa aaa ctt 2697
 Met Lys Lys Leu

1

tat tta att cgt tct tgc tat gat tca gtc aga aaa ttt tat gag aat	2745
Tyr Leu Ile Arg Ser Cys Tyr Asp Ser Val Arg Lys Phe Tyr Glu Asn	
5 10 15 20	
gag cta ggt gtt tat aca gta atg act gca tta cta gca ttt cca tta	2793
Glu Leu Gly Val Tyr Thr Val Met Thr Ala Leu Leu Ala Phe Pro Leu	
25 30 35	
tta gtt ttg att gga ttt acg gtt gat gga act ggg gtt gtg ctt gat	2841
Leu Val Leu Ile Gly Phe Thr Val Asp Gly Thr Gly Val Val Leu Asp	
40 45 50	
aaa gca cgt tta gct caa gga atg gat caa gct gct tta gct ttg gtt	2889
Lys Ala Arg Leu Ala Gln Gly Met Asp Gln Ala Ala Leu Ala Leu Val	
55 60 65	
gct gaa aac aat gac tac cga gaa aat aaa aaa cat ggt gat gtt aat	2937
Ala Glu Asn Asn Asp Tyr Arg Glu Asn Lys Lys His Gly Asp Val Asn	
70 75 80	
cgg caa gta gta tcg cct caa gac aaa gca aaa ttt ggt ggt aat gaa	2985

Arg Gln Val Val Ser Pro Gln Asp Lys Ala Lys Phe Gly Gly Asn Glu			
85	90	95	100
ttt atg gcg aaa caa gaa aag cgt aat caa gag ctt atc cag ggt att			3033
Phe Met Ala Lys Gln Glu Lys Arg Asn Gln Glu Leu Ile' Gln Gly Ile			
105	110	115	
gcc aaa ctt tat tta cgt tca gaa aat gcg aat gct tca tct gat gca			3081
Ala Lys Leu Tyr Leu Arg Ser Glu Asn Ala Asn Ala Ser Ser Asp Ala			
120	125	130	
cca atc act att gat aaa cct ttt cat tat tca tgt gag gag tta gat			3129
Pro Ile Thr Ile Asp Lys Pro Phe His Tyr Ser Cys Glu Glu Leu Asp			
135	140	145	
tta cct aca gct aat gag tat gca cgt cgt aaa cct att gtt tgt gaa			3177
Leu Pro Thr Ala Asn Glu Tyr Ala Arg Arg Lys Pro Ile Val Cys Glu			
150	155	160	
gtg caa ggt ggc gtc aat cgt aaa ttt tgg ctt cct gtc agt gaa tcg			3225
Val Gln Gly Val Asn Arg Lys Phe Trp Leu Pro Val Ser Glu Ser			
165	170	175	180
tta gtt agt gaa gat aaa ctg aaa aaa gat cga gtt aga ctg gaa tcc			3273
Leu Val Ser Glu Asp Lys Leu Lys Asp Arg Val Arg Leu Glu Ser			
185	190	195	
gat acc agt tat gcg att aaa gaa aaa ggc atc gtg att cct gtg gag			3321
Asp Thr Ser Tyr Ala Ile Lys Glu Lys Gly Ile Val Ile Pro Val Glu			
200	205	210	
cta atg ctt gtt tcg gat tat tct ggt tcg atg aat agt cat tta cag			3369
Leu Met Leu Val Ser Asp Tyr Ser Gly Ser Met Asn Ser His Leu Gln			
215	220	225	
gat aaa aac ggt aga tct cta gga aaa gct aaa att act att tta aga			3417
Asp Lys Asn Gly Arg Ser Leu Gly Lys Ala Lys Ile Thr Ile Leu Arg			
230	235	240	
gaa gtg gtt agt gaa att tcg aaa att tta ttg cca gaa gat gtt agc			3465
Glu Val Val Ser Glu Ile Ser Lys Ile Leu Leu Pro Glu Asp Val Ser			
245	250	255	260
gaa ggt gtg agc cct ttc aac cgt att ggc ttt acg act ttt tct ggc			3513
Glu Gly Val Ser Pro Phe Asn Arg Ile Gly Phe Thr Thr Phe Ser Gly			
265	270	275	
ggt gtt aga caa cgg gat gtc act gaa ggc tgt gtg ctt cca tat gaa			3561
Gly Val Arg Gln Arg Asp Val Thr Glu Gly Cys Val Leu Pro Tyr Glu			
280	285	290	
gga aaa ata tca caa act tct cga aaa tta act att cgt tat tgg att			3609
Gly Lys Ile Ser Gln Thr Ser Arg Lys Leu Thr Ile Arg Tyr Trp Ile			
295	300	305	
acg ggt aat aat aca cct tgg aaa ttt aat gct ggg aga tgg gag aga			3657
Thr Gly Asn Asn Thr Pro Trp Lys Phe Asn Ala Gly Arg Trp Glu Arg			
310	315	320	
agt aca gtg tct ttc cag gag cat tat aaa ggc tat tat gac aaa ttc			3705
Ser Thr Val Ser Phe Gln Glu His Tyr Lys Gly Tyr Tyr Asp Lys Phe			
325	330	335	340

cat tct tca act tgt aga ggc tca ggg agc tct aga act tgt caa att His Ser Ser Thr Cys Arg Gly Ser Gly Ser Ser Arg Thr Cys Gln Ile	3753
345 350 355	
gat gca aat cct aag aaa att atg gat tat gca cta aaa att aat gac Asp Ala Asn Pro Lys Lys Ile Met Asp Tyr Ala Leu Lys Ile Asn Asp	3801
360 365 370	
tgg acg aca att aga gaa tta ttt aat act tat ata gat gta agt ggg Trp Thr Thr Ile Arg Glu Leu Phe Asn Thr Tyr Ile Asp Val Ser Gly	3849
375 380 385	
acg att gac caa att tcc cag ttt gat ggt tca aac aga cgt tat gat Thr Ile Asp Gln Ile Ser Gln Phe Asp Gly Ser Asn Arg Arg Tyr Asp	3897
390 395 400	
atg gtg ttt act gat gaa gaa cgg tgt ctt ggc gga aat att ggt aga Met Val Phe Thr Asp Glu Glu Arg Cys Leu Gly Gly Asn Ile Gly Arg	3945
405 410 415 420	
aga aca act cga gct tgg ttt gat caa aaa aat aaa gat att aca aga Arg Thr Thr Arg Ala Trp Phe Asp Gln Lys Asn Lys Asp Ile Thr Arg	3993
425 430 435	
gag ttg aat att gtt cgt cct tct ggt tgg act tct gca tct tcg ggg Glu Leu Asn Ile Val Arg Pro Ser Gly Trp Thr Ser Ala Ser Ser Gly	4041
440 445 450	
ctt ctt gtt gga gct aat atc atg atg gac gag aat aag aat cct gat Leu Leu Val Gly Ala Asn Ile Met Met Asp Glu Asn Lys Asn Pro Asp	4089
455 460 465	
gcg caa cct tcg aaa ctc ggg aca aat att caa cgt gtt atc tta gta Ala Gln Pro Ser Lys Leu Gly Thr Asn Ile Gln Arg Val Ile Leu Val	4137
470 475 480	
tta tct gat ggt gaa gat aac tgg cca act tat agt aca tta acg act Leu Ser Asp Gly Glu Asp Asn Trp Pro Thr Tyr Ser Thr Leu Thr Thr	4185
485 490 495 500	
ctt tta aac aat ggt atg tgt gac aaa att cga gaa caa ttg ggc aag Leu Leu Asn Asn Gly Met Cys Asp Lys Ile Arg Glu Gln Leu Gly Lys	4233
505 510 515	
tta caa gat cca aat tta cga gag tta cca gga aga att gcg ttt gtt Leu Gln Asp Pro Asn Leu Arg Glu Leu Pro Gly Arg Ile Ala Phe Val	4281
520 525 530	
gcg ttt ggc tat agt cca cca gca aac caa gtt gcc gct tgg aaa aaa Ala Phe Gly Tyr Ser Pro Pro Ala Asn Gln Val Ala Ala Trp Lys Lys	4329
535 540 545	
tgt gta ggt gat caa tat tat acg gct tat tcg aaa gaa gag ttg tta Cys Val Gly Asp Gln Tyr Tyr Ala Tyr Ser Lys Glu Glu Leu Leu	4377
550 555 560	
gat agt ttc aaa caa att att gga ttt gaa gaa gag gtg ggg cgt tct Asp Ser Phe Lys Gln Ile Ile Gly Phe Glu Glu Val Gly Arg Ser	4425
565 570 575 580	
tca tct cat aaa ccg aaa ttt taagattgtc caaggataac gctaaaaaat Ser Ser His Lys Pro Lys Phe	4476
585	

ctcttagcac aggctaagag attttttat gtgttttca aatttatct actggtgatt 4536
 ttaattcatt acataacata acttttcgt gaataataca gaatagacaa caataagaat 4596
 taaaacgctc aaggcataga ggcttagtcg aacaaactaa gctatttgc gcgattgatt 4656
 gggatataga tgttatttca aataagcaat aaccatggta ctgagaaaga agatgagtgc 4716
 cgtataaaag tagaagcgat ttttctttg gctgaaaggt ggtgttagcc ttttcggct 4776
 aaagaaaata gtagcaacgg caatataaag ggcgataaaag agcattttgt aaatgaacca 4836
 tgttgttaca ttttgctgaa aaagaagaaa tagcccaatt cccgaacaga acaacagcgt 4896
 atcacttaag tgcggtaaga ttttaatac ttttctgtct cgccaatttt tgctgttaa 4956
 ttgcacatcg ccacggataa taaatagact gaggctgaga aaggcacagg caatgtgtag 5016
 ataaataaga taatatgcc a tcgattttt tcctaagata aagaaagcag tagcgaggct 5076
 actgccttaa aataatatcg tathtagtga atgaatttaa ctttctgcgc tttcgaccgc 5136
 acttcgctc gcatcactct caatgtcttc ttcatcgaca tcacaaacga gttgtaatcc 5196
 aaccagtgtt tcactttcac ttgttcggat gagacgtact ctttgttat ttgcaccgat 5256
 aatattgatt tcgtttacgc gagtacgtac tagcgtaccg gcatcagtaa tgacataat 5316
 ttgatcgctt tcctcaactt gtgttgctgc aacgacttta ccgttacgct cactcacttt 5376
 aatcgagatc acgccttgg tgtagtgc tttagttggg tattccgcta attcagtagc 5436
 tttaccataa ccgtttgtg tggcggttaa aatggcgccct tcatttttg gaataacaag 5496
 tgacacact ttatcaatat tgagatccaa ggcacatcatta gtattctcat cagagatctc 5556
 ttccatatcg accgcacttt catcatccga caaatcattc gttaacgcca gtttaatacc 5616
 gcgtacacct gttgctgcac gccccatggc acgcacagca ttttactaa agcgaactac 5676
 acgtccttgc gcccggagaaga gcatgatttc atttgacca tcggtgatcc acacaccgat 5736
 aagttcgtct tcacacgca agttgagtgc aataatgcct gttgaacgag gacgactgaa 5796
 tt 5798

<210> 59
 <211> 587
 <212> PRT
 <213> Pasteurella multocida

<400> 59
 Met Lys Lys Leu Tyr Leu Ile Arg Ser Cys Tyr Asp Ser Val Arg Lys
 1 5 10 15

Phe Tyr Glu Asn Glu Leu Gly Val Tyr Thr Val Met Thr Ala Leu Leu
 20 25 30

Ala Phe Pro Leu Leu Val Leu Ile Gly Phe Thr Val Asp Gly Thr Gly
 35 40 45

Val Val Leu Asp Lys Ala Arg Leu Ala Gln Gly Met Asp Gln Ala Ala

50	55	60
Leu Ala Leu Val Ala Glu Asn Asn Asp Tyr Arg Glu Asn Lys Lys His		
65	70	75
Gly Asp Val Asn Arg Gln Val Val Ser Pro Gln Asp Lys Ala Lys Phe		
85	90	95
Gly Gly Asn Glu Phe Met Ala Lys Gln Glu Lys Arg Asn Gln Glu Leu		
100	105	110
Ile Gln Gly Ile Ala Lys Leu Tyr Leu Arg Ser Glu Asn Ala Asn Ala		
115	120	125
Ser Ser Asp Ala Pro Ile Thr Ile Asp Lys Pro Phe His Tyr Ser Cys		
130	135	140
Glu Glu Leu Asp Leu Pro Thr Ala Asn Glu Tyr Ala Arg Arg Lys Pro		
145	150	155
Ile Val Cys Glu Val Gln Gly Gly Val Asn Arg Lys Phe Trp Leu Pro		
165	170	175
Val Ser Glu Ser Leu Val Ser Glu Asp Lys Leu Lys Lys Asp Arg Val		
180	185	190
Arg Leu Glu Ser Asp Thr Ser Tyr Ala Ile Lys Glu Lys Gly Ile Val		
195	200	205
Ile Pro Val Glu Leu Met Leu Val Ser Asp Tyr Ser Gly Ser Met Asn		
210	215	220
Ser His Leu Gln Asp Lys Asn Gly Arg Ser Leu Gly Lys Ala Lys Ile		
225	230	235
Thr Ile Leu Arg Glu Val Val Ser Glu Ile Ser Lys Ile Leu Leu Pro		
245	250	255
Glu Asp Val Ser Glu Gly Val Ser Pro Phe Asn Arg Ile Gly Phe Thr		
260	265	270
Thr Phe Ser Gly Gly Val Arg Gln Arg Asp Val Thr Glu Gly Cys Val		
275	280	285
Leu Pro Tyr Glu Gly Lys Ile Ser Gln Thr Ser Arg Lys Leu Thr Ile		
290	295	300
Arg Tyr Trp Ile Thr Gly Asn Asn Thr Pro Trp Lys Phe Asn Ala Gly		
305	310	315
Arg Trp Glu Arg Ser Thr Val Ser Phe Gln Glu His Tyr Lys Gly Tyr		
325	330	335
Tyr Asp Lys Phe His Ser Ser Thr Cys Arg Gly Ser Gly Ser Ser Arg		
340	345	350
Thr Cys Gln Ile Asp Ala Asn Pro Lys Lys Ile Met Asp Tyr Ala Leu		
355	360	365
Lys Ile Asn Asp Trp Thr Thr Ile Arg Glu Leu Phe Asn Thr Tyr Ile		
370	375	380
Asp Val Ser Gly Thr Ile Asp Gln Ile Ser Gln Phe Asp Gly Ser Asn		

385	390	395	400
Arg Arg Tyr Asp Met Val Phe Thr Asp Glu Glu Arg Cys Leu Gly Gly			
405		410	415
Asn Ile Gly Arg Arg Thr Thr Arg Ala Trp Phe Asp Gln Lys Asn Lys			
420		425	430
Asp Ile Thr Arg Glu Leu Asn Ile Val Arg Pro Ser Gly Trp Thr Ser			
435		440	445
Ala Ser Ser Gly Leu Leu Val Gly Ala Asn Ile Met Met Asp Glu Asn			
450		455	460
Lys Asn Pro Asp Ala Gln Pro Ser Lys Leu Gly Thr Asn Ile Gln Arg			
465		470	475
Val Ile Leu Val Leu Ser Asp Gly Glu Asp Asn Trp Pro Thr Tyr Ser			
485		490	495
Thr Leu Thr Thr Leu Leu Asn Asn Gly Met Cys Asp Lys Ile Arg Glu			
500		505	510
Gln Leu Gly Lys Leu Gln Asp Pro Asn Leu Arg Glu Leu Pro Gly Arg			
515		520	525
Ile Ala Phe Val Ala Phe Gly Tyr Ser Pro Pro Ala Asn Gln Val Ala			
530		535	540
Ala Trp Lys Lys Cys Val Gly Asp Gln Tyr Tyr Thr Ala Tyr Ser Lys			
545		550	555
Glu Glu Leu Leu Asp Ser Phe Lys Gln Ile Ile Gly Phe Glu Glu Glu			
565		570	575
Val Gly Arg Ser Ser Ser His Lys Pro Lys Phe			
580		585	

<210> 60
<211> 5798
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (698)..(1468)

<220>
<223> unknown D2

<400> 60
gtcgacaga ataaaacgaa acagcaaata gaatttagat tactacttat taacaataat 60
ccttttttaa agattctagc tgtttttagat aaaaatatac gtgtgaagct tttggtcaca 120
ttattattat caggcctata ttatttatat gcagtaaaaa acgattcaaa ttttgtcata 180
ggtttatcta ttattttagt ttttattatt gtcattccag ggattttgac aaatgctatt 240
ttgaaagcta aggtgaaaaa aatcatggta gatttaccag gttttattga cttagttgca 300
gttaaatgttc aaacagggat tagtattgat gcggcttaa aacaagtggc aatcgatttt 360

aagaaaactta atccagatct tacttatgtg atgttaagga ttatttagaaa atctgaacctt 420
 acgggattat cacaagcgtt acaggatctt tcgatctcat tgccaacaac agaaaataaga 480
 atgtttgttaca ctgtttaca acagagtttta aattttggtt cttcaattta ttctcactta 540
 attcagttgt ctgcagatat cagggagata caattattaa tcattgagga aaagtttaggt 600
 acattatcag ctaaaatgag tatcccatttga attttgttta ttatgttccc aataatcatt 660
 ttaattctag caccaggtat aatgagggtt tttccaa atg ttt aaa ttt acc 715
 Met Phe Phe Lys Phe Thr
 1 5

aag aaa atc gtt ttt gtt agt tta gct tta tct gtc gtt ggt ttt tct 763
 Lys Lys Ile Val Phe Val Ser Ala Leu Ser Val Val Gly Cys Ser
 10 15 20

acc cat tct cag caa ggc atg aca cag aaa agt atg tca tct gaa aca 811
 Thr His Ser Gln Gln Gly Met Thr Gln Lys Ser Met Ser Ser Glu Thr
 25 30 35

ata acg gca aaa gag act tta tat gaa agt acg caa aat tat tcg gca 859
 Ile Thr Ala Lys Glu Thr Leu Tyr Glu Ser Thr Gln Asn Tyr Ser Ala
 40 45 50

ctc att tca ctg tat cgc gat gtg ttg aaa gcc aaa gaa gat cct tca 907
 Leu Ile Ser Leu Tyr Arg Asp Val Leu Lys Ala Lys Glu Asp Pro Ser
 55 60 65 70

ata cgc tat aaa tta gcg aag aca tac tat cag cga ggt gac agc aaa 955
 Ile Arg Tyr Lys Leu Ala Lys Thr Tyr Tyr Gln Arg Gly Asp Ser Lys
 75 80 85

tct tct tta ctt tat tta acg cca tta ctg aat gat aat acg aag ctt 1003
 Ser Ser Leu Leu Tyr Leu Thr Pro Leu Leu Asn Asp Asn Thr Lys Leu
 90 95 100

gct aca caa gcg aaa ata tta cag ata aaa aat cta att caa tta aat 1051
 Ala Thr Gln Ala Lys Ile Leu Gln Ile Lys Asn Leu Ile Gln Leu Asn
 105 110 115

aat ttc caa gaa gca att tct gtc gca aat gaa ctc tta tta aaa tca 1099
 Asn Phe Gln Glu Ala Ile Ser Val Ala Asn Glu Leu Leu Lys Ser
 120 125 130

cct aat gaa gga gaa gta tat aat tta aga ggt atc gct tat gcg caa 1147
 Pro Asn Glu Gly Glu Val Tyr Asn Leu Arg Gly Ile Ala Tyr Ala Gln
 135 140 145 150

aat ggg aat ttg gtg aat gcc cga aat gat atc aat aaa gca aga gag 1195
 Asn Gly Asn Leu Val Asn Ala Arg Asn Asp Ile Asn Lys Ala Arg Glu
 155 160 165

ttc ttt att aat gat aat gtt gct att aat aat tta gcc atg cta aat 1243
 Phe Phe Ile Asn Asp Asn Val Ala Ile Asn Asn Leu Ala Met Leu Asn
 170 175 180

att att aat ggc gat ttt aat aat gct gtt tct tta ctg ttg cca caa 1291
 Ile Ile Asn Gly Asp Phe Asn Asn Ala Val Ser Leu Leu Pro Gln
 185 190 195

tat tta aat ggc gtt aag aat tct cga ttg att cat aat ctt gtt ttt 1339

Tyr Leu Asn Gly Val Lys Asn Ser Arg Leu Ile His Asn Leu Val Phe
 200 205 210

gct tta gtt aaa aat ggt gat ctt gat tat gca aaa gat atc att gtt 1387
 Ala Leu Val Lys Asn' Gly Asp Leu Asp Tyr Ala Lys Asp Ile Ile Val
 215 220 225 230

aaa gag cgt tta aat act tca cca gat gat tta att aat gca ttg aaa 1435
 Lys Glu Arg Leu Asn Thr Ser Pro Asp Asp Leu Ile Asn Ala Leu Lys
 235 240 245

aaa act aca cat gta tca aaa ggt gta act cg^g taacactaag gatttgat 1488
 Lys Thr Thr His Val Ser Lys Gly Val Thr Arg
 250 255

aaaaaaagttt ctatcaaata taaaaggaac ctcgtcaatt gaatttgctt tgacgatagc 1548
 gttctattta ttttgtgtga tggattttt tgaattttgt cgattagcg^g ttgcgacagc 1608
 ttattggat ttagctataa cggaaagtgt cagaattgc^g aagaatgaac aagcaattc 1668
 tggaaattat gaagaagcat ttaggaaagc tcttacaaag caaaaaaaaaat tccatgatga 1728
 atcgacaatt ggatatttg^g cggttgtaga agataataaa ttgatgtaa aagtccaata 1788
 tgtggattgt gataaagaaa cggaaatgtat taaaaatctt ctgcttaata aatttcgcca 1848
 accacaaaaa aatcataaaag gagagtaat ctctcctacg gggagtcgc^g cgactttagc 1908
 acaatattct ttaacttata aatataagtt tatggtgccg ttagtattta ttccctgagtc 1968
 ttggctcaa gtatgtctga accgtgaatt tgggttgta caggaatttg agcgttctca 2028
 atttatgtta ggagcaaaac caagttctct tgggacgaat ccatagaaaa tttactcatt 2088
 atttcgagct atatatgaaa gagtcagg^t tagttaaatt caagcattt tggaaaaata 2148
 aaaagggcgc agtgacgata gagttcc^t ttatgtcaat gtttctgatt gtgttat^t 2208
 catttctctt cgat^t tagt^t atgttacgtt ctacattagg caagttagat aatgcctcat 2268
 atacatttagt tagtattctc cgtgaacgta cacagttgt^a cgatagagtt gcacaaatta 2328
 atattgatga tcataagcaa ttgaaaagc ttgctaagaa actgattt^t ggtgatcaga 2388
 atagtaataa aaggatcgat gttgttttag aatattggc acaagacggt tctggacgga 2448
 ggattccaaa tatttgc^t gattgtacgc cttacaaaaa actttctgtat ttatcctatt 2508
 tatctcctcg ctcagaactc aataatgaaa gaaaaatacc gctttatcaa attactctt 2568
 gtgttcaa^t tcagg^t tttgaaacaa tattactgga taagtctgag cgtcaacgg 2628
 ggctgattag atcatcgta atgtcagtt cacgataat tattcgtt^a gaaactttat^t 2688
 aaaaaacttt atttaattcg ttcttgctat gattcagtca gaaaatttt^a tgagaatgag 2748
 ctaggtgttt atacagtaat gactgcatta ctgcatttc cattattag^t ttgattgga 2808
 tttacggttg atgaaactgg gtttgtgtt gataaagcac gtttagctca aggaatggat 2868
 caagctgctt tagtttgg^t tgctgaaaac aatgactacc gagaaaataa aaaacatgg^t 2928

gatgttaatc ggcaagtagt atcgccctcaa gacaaagcaa aatttggtgg taatgaattt 2988
atggcgaaac aagaaaagcg taatcaagag cttatccagg gtattgccaa actttatcta 3048
cgttcagaaa atgcgaatgc ttcatctgat gcaccaatca ctattgataa acctttcat 3108
tattcatgtg aggagttaga tttacctaca gctaattgagt atgcacgtcg taaacctatt 3168
gtttgtgaag tgcaagggtgg cgtcaatcgt aaattttggc ttccctgtcag tgaatcgta 3228
gttagtgaag ataaaactgaa aaaagatcga gtagactgg aatccgatac cagttatgcg 3288
attaaagaaa aaggcatcgt gattcctgtg gagctaattgc ttgtttcgga ttattctggt 3348
tcgatgaata gtcatttaca ggataaaaac ggttagatctc tagaaaaagc taaaattact 3408
attttaagag aagtggtag tgaaatttcg aaaattttat tgccagaaga tgtagcgaa 3468
ggtgtgagcc ctttcaaccg tattggcttt acgactttt ctggcggtgt tagacaacgg 3528
gatgtcaactg aaggctgtgt gcttccatat gaaggaaaaa tatkacaaac ttctcgaaaa 3588
ttaactattc gttattggat tacggtaat aatacacctt ggaaatttaa tgctgggaga 3648
tgggagagaa gtacagtgtc tttccaggag cattataaag gctattatga caaattccat 3708
tcttcaactt gtagaggctc agggagctct agaacttgtc aaattgatgc aaatcctaag 3768
aaaattatgg attatgcact aaaaattaat gactggacga caattagaga attatttaat 3828
acttatatag atgtaagtgg gacgattgac caaatttccc agttttaggg ttcaaacaga 3888
cgttatgata tgggtttac tgatgaagaa cggtgtcttgc gggaaatat tggtagaaga 3948
acaactcgag ctgggttga tcaaaaaat aaagatatta caagagagtt gaatattgtt 4008
cgtccttctg gttggacttc tgcatttcg gggcttcttgc ttggagctaa tatcatgtat 4068
gacgagaata agaatcctga tgcgcacact tcgaaactcg ggacaaatat tcaacgtgtt 4128
atcttagtat tatctgatgg tgaagataac tggccaactt atagtagcatt aacgactctt 4188
ttaaacaatg gtatgtgtga caaaattcga gaacaattgg gcaagttaca agatccaaat 4248
ttacgagagt taccaggaag aattgcgtt gttgcgttt gctatagtcc accagcaaac 4308
caagttgccg ctggaaaaaa atgtgttagt gatcaatatt atacggctta ttggaaagaa 4368
gagttgttag atagttcaa acaaattatt ggatttgaag aagaggtgg gcgttcttca 4428
tctcataaac cgaaatttttta agattgtcca aggataacgc taaaaaatct cttagcacag 4488
gctaagagat tttttatgt gttttcaaa ttttatctac tggtagttt aattcattac 4548
ataacataac ttttcgtga ataatacaga atagacaaca ataagaatta aaacgctcaa 4608
ggcatagagg cttagtcgaa caaactaagc tattttgcgc gattgattgg gatatagtg 4668
ttatttcaaa taagcaataa ccatggact gagaagaag atgagtgcgg taataaaagta 4728
gaagcgattt ttctttggc tgaaagggtgg tggtagcatt ttccggctaa agaaaatagt 4788
agcaacggca atataaaggcgataaagag cattttgtaa atgaaccatg ttgttacatt 4848

ttgctgaaaa agaagaaata gcccaattcc cgaacagaac aacagcgat cacttaagt 4908
 cggttaagatt ttaataactt ttctgtctcg ccaatttttgc cctgttaatt gcatcatgcc 4968
 acggataata aatagactga ggctgagaaa ggcacaggca atgtgttagat aaataagata 5028
 atatgccatc gatTTTTTC ctaagataaa gaaagcagta gcgaggctac tgctttaaaa 5088
 taatatcgta tttagtgaat gaatttaact ttctgcgcTT tcgaccgcac ttgcgcgc 5148
 atcactctca atgtcttctt catcgacatc acaaacgagt tgtaatccaa ccagtgttc 5208
 actttcactt gttcggatga gacgtactcc ttgtgtatTT cgaccgataa tattgatttc 5268
 gtttacgcga gtacgtacta gcgtaccggc atcagtaatg agcataatTT gatcgcttc 5328
 ctcaacttgt gttgctgcaa cgactttacc gttacgctca ctcacttAA tcgagatcac 5388
 gccttgggtg ttacgtgatt tagttggta ttccgctaAT tcagtgatTT taccataacc 5448
 gttttgtgtg gcggttaaaa tggcgccTTC atttttgga ataacaagtg acacgacttt 5508
 atcaatattg agatccaagg catcattAGT attctcatca gagatctttt ccataatcgac 5568
 cgcactttca tcatccgaca aatcattcgt taacgccagt ttaataccgc gtacacctgt 5628
 tgctgcacgc cccatggcac gcacagcatt ttcaactaaag cgaactacac gtccttgc 5688
 ggagaagagc atgatttcat tttgaccatc ggtgatatcc acaccgataa gttcgtcttc 5748
 atcacgcaag ttgagtgcaa taatgcctgt tgaacgagga cgactgaatt 5798

<210> 61

<211> 257

<212> PRT

<213> Pasteurella multocida

<400> 61

Met	Phe	Phe	Lys	Phe	Thr	Lys	Lys	Ile	Val	Phe	Val	Ser	Leu	Ala	Leu
1															15

Ser	Val	Val	Gly	Cys	Ser	Thr	His	Ser	Gln	Gln	Gly	Met	Thr	Gln	Lys
															30
									20	25					

Ser	Met	Ser	Ser	Glu	Thr	Ile	Thr	Ala	Lys	Glu	Thr	Leu	Tyr	Glu	Ser
															45
									35	40					

Thr	Gln	Asn	Tyr	Ser	Ala	Leu	Ile	Ser	Leu	Tyr	Arg	Asp	Val	Leu	Lys
															60
									50	55					

Ala	Lys	Glu	Asp	Pro	Ser	Ile	Arg	Tyr	Lys	Leu	Ala	Lys	Thr	Tyr	Tyr
															80
									65	70	75				

Gln	Arg	Gly	Asp	Ser	Lys	Ser	Ser	Leu	Leu	Tyr	Leu	Thr	Pro	Leu	Leu
															95
									85	90					

Asn	Asp	Asn	Thr	Lys	Leu	Ala	Thr	Gln	Ala	Lys	Ile	Leu	Gln	Ile	Lys
															110
									100	105					

Asn	Leu	Ile	Gln	Leu	Asn	Asn	Phe	Gln	Glu	Ala	Ile	Ser	Val	Ala	Asn
															125
									115	120					

Glu Leu Leu Leu Lys Ser Pro Asn Glu Gly Glu Val Tyr Asn Leu Arg
 130 135 140

Gly Ile Ala Tyr Ala Gln Asn Gly Asn Leu Val Asn Ala Arg Asn Asp
 145 150 155 160

Ile Asn Lys Ala Arg Glu Phe Phe Ile Asn Asp Asn Val Ala Ile Asn
 165 170 175

Asn Leu Ala Met Leu Asn Ile Ile Asn Gly Asp Phe Asn Asn Ala Val
 180 185 190

Ser Leu Leu Leu Pro Gln Tyr Leu Asn Gly Val Lys Asn Ser Arg Leu
 195 200 205

Ile His Asn Leu Val Phe Ala Leu Val Lys Asn Gly Asp Leu Asp Tyr
 210 215 220

Ala Lys Asp Ile Ile Val Lys Glu Arg Leu Asn Thr Ser Pro Asp Asp
 225 230 235 240

Leu Ile Asn Ala Leu Lys Lys Thr Thr His Val Ser Lys Gly Val Thr
 245 250 255

Arg

<210> 62

<211> 1788

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)..(600)

<220>

<223> unknown K

<400> 62

gtc aac act ggg cta att cac agt aac ggt aat gcc aag ctc act ttt 48
 Val Asn Thr Gly Leu Ile His Ser Asn Gly Asn Ala Lys Leu Thr Phe
 1 5 10 15

aaa gat gac acc agt ttt gtg act gaa gga aat aac ttt atc aca gca 96
 Lys Asp Asp Thr Ser Phe Val Thr Glu Gly Asn Asn Phe Ile Thr Ala
 20 25 30

aaa gac aac tta gaa atc acg gca aaa aat gtt caa att gat caa gcg 144
 Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn Val Gln Ile Asp Gln Ala
 35 40 45

aaa aat att caa tta aac gcg aat atc acg atc aat acc aag tct ggt 192
 Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr Ile Asn Thr Lys Ser Gly
 50 55 60

ttt gtg aat tac ggt acc tta gca agt gct caa aat tta acg att aat 240
 Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala Gln Asn Leu Thr Ile Asn
 65 70 75 80

acc gaa caa ggc agc att tat aac ata ggc ggt atc ttg ggg gcg ggt 288
 Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly Gly Ile Leu Gly Ala Gly

85	90	95	
aaa agt ttg aat ctg agc gcg aaa aga gga gaa aac caa gga gga tat Lys Ser Leu Asn Leu Ser Ala Lys Arg Gly Glu Asn Gln Gly Gly Tyr 100	105	110	336
ctt att aat caa ggt aag agt cta ctc cat tct gaa ggc gcc atg aac Leu Ile Asn Gln Gly Lys Ser Leu Leu His Ser Glu Gly Ala Met Asn 115	120	125	384
ctc aca gcg gat cgc acg gty tac aat tta ggg aat att ttt gct aaa Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu Gly Asn Ile Phe Ala Lys 130	135	140	432
ggt gac gcg acg atc aat gca aac gcg tta att aat gat gtt act ctc Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu Ile Asn Asp Val Thr Leu 145	150	155	480
aca ggt cgt ctt gag tat caa gat ctg aaa aaa gat tat acg cgt tat Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys Lys Asp Tyr Thr Arg Tyr 165	170	175	528
tat cgt atc aat gaa acg gca aaa cat ggt tgg cat aat aac ttc tat Tyr Arg Ile Asn Glu Thr Ala Lys His Gly Trp His Asn Asn Phe Tyr 180	185	190	576
gaa tta aac gtc gac aga gtt tct tgatttgtc atcaattttg taaccaccgg Glu Leu Asn Val Asp Arg Val Ser 195	200		630
ttaataaaac accagcaatt tcaacgccat tcatggcaga taatgccgct gcgacgatca catcaggacg atccgcggaa gtgacaagta aacttccaac gcggaaatgt tccaccatat tggtaaaatt acgtgcacag aaagtgtatgc cacgaatgcg acgttcattt atcgccctt catgaataat ggcagcacct aaatgtttgg ctaaatcaat ggcacgagtc gcaattaatt ctgcgctcca aggaatacat gccaagattt taattggct tttctcaat aaatgataaa tctcagatac ttgattttgt gtgtgttgga aagaatcaaa aatttctgcc aagtcaggc gagttacgacc agattcatca atcggcgcat taaatttatt gatcacaaca ccaagtaaat tagggttatt tttgctgcca aataatgagg ctgcggcttt gatgcgttct ttgagttctg ccgggttttc cgtegcgggt gctgcaacaa gaatgatttc cgcatcaagt gcttgagca tttcatagtt aatgctattt gcataagaat gcttacgcgt agggattaaa cttccacca cgacaatttc attgtttttg gcgagttgtt gatgattttc aacaattttt tctagtagcca catcagattt atttgaccg atgagtgatt cagctacact taacataaaat ggttcactgg tttcaatggt ggtactggtg cgaataattt atgttgcgt atcaatcata tcttcaccc agttcggctg agaaatttggt ttcataaaagc cgactttcgc cccttttgc tccagtgcat gtgttaaacc taagctgaca ctggtaaagc ctacaccagc actaatcggg ataaggataa ttgtacgtga cataataaaac cctaatttgc tgataatttata tacaaaaaga aactgccc gaatcggcag ttaatttgc tttacgcgt qcaaaaggcgc qcggtatctt qtqcaataac 1650			

aagttcttca ttcgttggga tcaccatggc aacaggcgta ttgtctgctg taatcacccc 1710
 ttcatgacca aagcgagccg ctttgtttt atctgaatcc acttgataac cgaacagttt 1770
 taaatggttt aaggttga 1788

<210> 63
 <211> 200
 <212> PRT
 <213> Pasteurella multocida

<400> 63
 Val Asn Thr Gly Leu Ile His Ser Asn Gly Asn Ala Lys Leu Thr Phe
 1 5 10 15

Lys Asp Asp Thr Ser Phe Val Thr Glu Gly Asn Asn Phe Ile Thr Ala
 20 25 30

Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn Val Gln Ile Asp Gln Ala
 35 40 45

Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr Ile Asn Thr Lys Ser Gly
 50 55 60

Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala Gln Asn Leu Thr Ile Asn
 65 70 75 80

Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly Gly Ile Leu Gly Ala Gly
 85 90 95

Lys Ser Leu Asn Leu Ser Ala Lys Arg Gly Glu Asn Gln Gly Gly Tyr
 100 105 110

Leu Ile Asn Gln Gly Lys Ser Leu Leu His Ser Glu Gly Ala Met Asn
 115 120 125

Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu Gly Asn Ile Phe Ala Lys
 130 135 140

Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu Ile Asn Asp Val Thr Leu
 145 150 155 160

Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys Lys Asp Tyr Thr Arg Tyr
 165 170 175

Tyr Arg Ile Asn Glu Thr Ala Lys His Gly Trp His Asn Asn Phe Tyr
 180 185 190

Glu Leu Asn Val Asp Arg Val Ser
 195 200

<210> 64
 <211> 278
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (108) .. (278)

<220>

<223> unknown O

<400> 64

gaattccaac caaatctcac accagagcaa gaacgctaca tagtggaaatg gttggcagaa 60

cattacccaa atggaaataa accttaacca tagcaagaga gaagaaa atg aaa att 116
Met Lys Ile
1

act att aca cga aat cat cca gaa gta ttt caa gaa tcc gct cgt tta 164
Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser Ala Arg Leu
5 10 15

gta gcc gaa aag ttc att aaa gcc caa tgt gta gaa gca tta aca ttg 212
Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala Leu Thr Leu
20 25 30 35

gct ttg att gag ggt gtc gag cac ttt gtg ctg gaa ggt gag gag gaa 260
Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly Glu Glu Glu
40 45 50

agc aaa agg gga cat agt 278
Ser Lys Arg Gly His Ser
55

<210> 65

<211> 57

<212> PRT

<213> Pasteurella multocida

<400> 65

Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser
1 5 10 15

Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala
20 25 30

Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly
35 40 45

Glu Glu Glu Ser Lys Arg Gly His Ser
50 55

<210> 66

<211> 1020

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (1)...(597)

<220>

<223> unknown P

<400> 66

gtc aac aca tca aaa gtt gag att gac tat gcc gtc act cgt gcg gcg 48
Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala Val Thr Arg Ala Ala
1 5 10 15

gca atg cgt gca tat ctt gat aaa gaa cag ggc tgg cat acg tct att 96

Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile			
20	25	30	
tca aat aaa ggc att aat ggc gtg agc ggt gtc aca caa cca ctc tat		144	
Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr			
35	40	45	
ttt gac att aac gac agc tcg act gat gtg aac tat ctc aat gaa caa		192	
Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln			
50	55	60	
ggc atc acg tgt tgc gtg aat cat aat ggc ttt cgt ttt tgg ggc tta		240	
Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu			
65	70	75	80
cgc acg act gca gaa gat cca tta ttc aag ttt gaa gtg tac acc cgc		288	
Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg			
85	90	95	
act gca caa atc tta aaa gat acg att gca ggg gcg ttt gat tgg gca		336	
Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala			
100	105	110	
gtg gat aaa gat att tct gtc acg cta gtg aaa gat att att gaa gca		384	
Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala			
115	120	125	
atc aat gcg aag tgg cgt gat tac acc aca aaa ggc tac tta att ggc		432	
Ile Asn Ala Lys Trp Arg Asp Tyr Thr Lys Gly Tyr Leu Ile Gly			
130	135	140	
ggt aaa gcg tgg ctt aat aaa gag ctt aac agt gca acg aat tta aaa		480	
Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys			
145	150	155	160
gat gcg aag ttg ttg atc tct tat gat tat cac cca gta cca ccg ctc		528	
Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu			
165	170	175	
gaa cag cta ggc ttt aat cag tac att tct gat gaa tac ctt gtt gat		576	
Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp			
180	185	190	
ttt tca aat cgt tta gca tcg taagggtag aaaaatggctt taccacgcaa		627	
Phe Ser Asn Arg Leu Ala Ser			
195			
acttaaatttg atgaatttaa tcatcgacgg taacaaatat ctccggcgaag tcacggaagt		687	
gactcaacca aaatttagcaa tgaaaatcga agaatttcgc gcggggcgta tgatgggttc		747	
ggtgatgtc aatctcggtc ttgaaaagct cgaagcggaa tttaagccg gtggctacat		807	
ggtcgaatta attaaaaat tcggcggtc aatcaacggc attccattgc gttttcttgg		867	
ctcatatcag cgtgatgaca cagaagaagt cacatctgtt gagcttgtga tgcaaggcgt		927	
atttactgaa attgacagcg gaaacagcaa agtgggcgtat gacactgaac aaacattcaa		987	
agtgccttta acgtattaca aaatcattgt tga		1020	

<211> 199
<212> PRT
<213> Pasteurella multocida

<400> 67
Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala Val Thr Arg Ala Ala
1 5 10 15
Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile
20 25 30
Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr
35 40 45
Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln
50 55 60
Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu
65 70 75 80
Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg
85 90 95
Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala
100 105 110
Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala
115 120 125
Ile Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly
130 135 140
Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys
145 150 155 160
Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu
165 170 175
Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp
180 185 190
Phe Ser Asn Arg Leu Ala Ser
195

<210> 68
<211> 2584
<212> DNA
<213> Pasteurella multocida

<220>
<221> CDS
<222> (1042)..(2286)

<220>
<223> xylA

<400> 68
gtcgaccagc ttagattttg cgacgggtt aatttcttct atcgttcaa tcattgcgtt 60
taccattatt ttatggaatc tctctggacc gatgaccatt gccaatattg aaattcctca 120
cgcgatggtc ttttggctt ttatcacgt gctgttttagc agtattgtgg catttaaaat 180

cggtcgcccc ttaattcagc tcaattttgc caatgaacgc ttaaacgcc aactaccgtta 240
 ttcacttatac cgtctgaaag aatatgctga aagcattgct ttttatcggt gtgaaaaaat 300
 ggaaaaacgt ctattgacca cacaatttaa tcaggtgatt gataacgttt ggcaagtaat 360
 ctaccgcacc ttgaaattat ccggttttaa cttaatcatt acgcagattt cggtggttt 420
 tccgctggtg attcaagtga cacgttattt tcgtcgacaa taggtgcata tgagggtgtt 480
 agaatagcga tactttctgt tggaaaagta aactctttaa tataaataga aatcgcttga 540
 atgattctcg ggcaaaaaat aatgtactca tttgcgatct catactgata atggcgaagt 600
 aaatatcttc ttacaatattt atggtaattt tcaggttaata ccgtatagcc atagattcca 660
 gttctatttt gtttgctaa ataattgatg agcattttag ggcgcaggtaa atccatatct 720
 gcaacagaca ttgaaatcat atccttgcgg tatttacgag taattgccc tttagcacta 780
 tgacaatctg atctatcagt aaaaacatca aacaaattat ccgtcataca tgttctccaa 840
 tattggattt atataaaactt tagaacttga ggttagattgt tggaaattgtt aaatctggta 900
 tttcttattac gtttttctt ttttggtata taagccacaa taaccaataa tcttaattgt 960
 taagtgaaat aacgtaattt atcctccat tggttacta aattatgtct ctgaaactta 1020
 tttgttcagg agaaatcatt t atg tcc act tac ttc gac aaa att gaa aaa 1071
 Met Ser Thr Tyr Phe Asp Lys Ile Glu Lys
 1 5 10

 gta aat tat gaa ggt gta act tca tct aat ccg ttt gca tat aag cat 1119
 Val Asn Tyr Glu Gly Val Thr Ser Ser Asn Pro Phe Ala Tyr Lys His
 15 20 25

 tat gat gct aat caa gtt att tta ggt aag acg atg gct gaa cac tta 1167
 Tyr Asp Ala Asn Gln Val Ile Leu Gly Lys Thr Met Ala Glu His Leu
 30 35 40

 cgt tta gcc gtc tgt tat tgg cac act ttc tgt tgg aca ggg aat gat 1215
 Arg Leu Ala Val Cys Tyr Trp His Thr Phe Cys Trp Thr Gly Asn Asp
 45 50 55

 atg ttc ggt gtc ggt tct ttc gat cgt tgt tgg cag aag gcg agt gat 1263
 Met Phe Gly Val Gly Ser Phe Asp Arg Cys Trp Gln Lys Ala Ser Asp
 60 65 70

 tca tta gca ggt gca aaa caa aaa gca gat atc gct ttt gaa ttt ttc 1311
 Ser Leu Ala Gly Ala Lys Gln Lys Ala Asp Ile Ala Phe Glu Phe Phe
 75 80 85 90

 agt aaa tta ggc ata cct tat tat tgt ttt cat gat gtt gat gtt gcg 1359
 Ser Lys Leu Gly Ile Pro Tyr Tyr Cys Phe His Asp Val Asp Val Ala
 95 100 105

 cca gaa ggt cat tca ttt aaa gaa tat ttg tcg aac ttt aat aca atg 1407
 Pro Glu Gly His Ser Phe Lys Glu Tyr Leu Ser Asn Phe Asn Thr Met
 110 115 120

 atc gat gtt tta gcg cag aaa caa gaa gaa aca ggc gtc aaa ttg ttg 1455
 Ile Asp Val Leu Ala Gln Lys Gln Glu Glu Thr Gly Val Lys Leu Leu
 125 130 135

tgg	ggg	act	gca	aat	tgt	ttt	aca	cac	cct	cgt	tat	atg	tct	ggg	gct	1503
Trp	Gly	Thr	Ala	Asn	Cys	Phe	Thr	His	Pro	Arg	Tyr	Met	Ser	Gly	Ala	
140												150				
gca	aca	aat	ccg	aat	cca	gaa	att	ttt	gct	tgg	gct	gct	gca	caa	gta	1551
Ala	Thr	Asn	Pro	Asn	Pro	Glu	Ile	Phe	Ala	Trp	Ala	Ala	Ala	Gln	Val	
155												165			170	
ttt	act	gcc	atg	ggg	gca	act	cag	cgt	tta	ggt	ggt	gaa	aat	tat	gtt	1599
Phe	Thr	Ala	Met	Gly	Ala	Thr	Gln	Arg	Leu	Gly	Gly	Asn	Tyr	Val		
175												180		185		
ttg	tgg	gga	gga	cgt	gaa	gga	tat	gaa	acg	tta	tta	aat	acc	aat	tta	1647
Leu	Trp	Gly	Gly	Arg	Glu	Gly	Tyr	Glu	Thr	Leu	Leu	Asn	Thr	Asn	Leu	
190											195		200			
aaa	cag	gag	cga	gag	caa	att	gga	cgt	ttc	atg	caa	atg	gtg	gtt	gag	1695
Lys	Gln	Glu	Arg	Glu	Gln	Ile	Gly	Arg	Phe	Met	Gln	Met	Val	Val	Glu	
205											210		215			
cat	aaa	tat	aaa	atc	ggt	ttt	aac	ggg	act	ttg	ctg	att	gaa	cca	aag	1743
His	Lys	Tyr	Lys	Ile	Gly	Phe	Asn	Gly	Thr	Leu	Leu	Ile	Glu	Pro	Lys	
220											225		230			
cca	caa	gag	cca	acg	aaa	cat	caa	tat	gac	tat	gat	gtg	gcg	acc	gtt	1791
Pro	Gln	Glu	Pro	Thr	Lys	His	Gln	Tyr	Asp	Tyr	Asp	Val	Ala	Thr	Val	
235											240		245		250	
tat	ggc	ttt	tta	aag	cag	ttt	ggt	tta	gaa	aaa	gaa	att	aaa	gtg	aat	1839
Tyr	Gly	Phe	Leu	Lys	Gln	Phe	Gly	Leu	Glu	Lys	Glu	Ile	Lys	Val	Asn	
255											260		265			
att	gaa	gct	aat	cac	gca	aca	tta	gct	gga	cac	act	ttc	cag	cat	gaa	1887
Ile	Glu	Ala	Asn	His	Ala	Thr	Leu	Ala	Gly	His	Thr	Phe	Gln	His	Glu	
270											275		280			
gtc	gcc	atg	gct	aca	gcg	tta	gat	att	ttt	ggt	tct	att	gat	gca	aat	1935
Val	Ala	Met	Ala	Thr	Ala	Leu	Asp	Ile	Phe	Gly	Ser	Ile	Asp	Ala	Asn	
285											290		295			
cgt	ggt	gat	cca	caa	tta	ggt	tgg	gat	acc	gat	caa	ttc	cct	aat	agc	1983
Arg	Gly	Asp	Pro	Gln	Leu	Gly	Trp	Asp	Thr	Asp	Gln	Phe	Pro	Asn	Ser	
300											305		310			
gta	gaa	gaa	aat	act	ttg	gtc	ata	tat	gaa	att	ctc	aaa	gca	ggg	ggc	2031
Val	Glu	Glu	Asn	Thr	Leu	Val	Ile	Tyr	Glu	Ile	Leu	Lys	Ala	Gly	Gly	
315											320		325		330	
ttt	aca	acc	ggt	ttt	aat	ttt	gat	gct	aaa	atc	cgt	cg	cag	agt	2079	
Phe	Thr	Thr	Gly	Gly	Phe	Asn	Phe	Asp	Ala	Lys	Ile	Arg	Arg	Gln	Ser	
335											340		345			
acg	gat	cct	tac	gat	tta	ttt	cat	gga	cat	att	ggc	gcg	att	gat	gta	2127
Thr	Asp	Pro	Tyr	Asp	Leu	Phe	His	Gly	His	Ile	Gly	Ala	Ile	Asp	Val	
350											355		360			
ctt	gcc	tta	tca	cta	aaa	tgt	gcg	gcg	aaa	atg	ctt	gaa	gag	caa	gct	2175
Leu	Ala	Leu	Ser	Leu	Lys	Cys	Ala	Ala	Lys	Met	Leu	Glu	Gln	Ala		
365											370		375			
tta	caa	aaa	gtc	gtc	aat	caa	cgt	tat	gct	ggt	tgg	aca	tca	tca	ctt	2223
Leu	Gln	Lys	Val	Val	Asn	Gln	Arg	Tyr	Ala	Gly	Trp	Thr	Ser	Ser	Leu	
380											385		390			

ggt caa ctt gtt caa atc cgg tcc tac cac gcg tgt ctg caa tac aga 2271
 Gly Gln Leu Val Gln Ile Arg Ser Tyr His Ala Cys Leu Gln Tyr Arg
 395 400 405 410

cta aca aaa gtg ctt taaaacgttc cggttacgc cagacatcta gacgattgaa 2326
 Leu Thr Lys Val Leu
 415

taatttcaat attgtctccg cacgttaattc aaaggcttg tgtatgtgcg aatgatattc 2386
 acaacaaaagt tctgaaaaat cttgaattgc gtgaggtaat ttaaagcgct gacataagcg 2446
 tcttgcggc atgacaccag cttttcatg tccataatga tgtggcaata tttctttgg 2506
 tgttaaggct tttcctaaat catgacaaaat tgtagcaaaa cgtaccgcac ttttgtcact 2566
 gtccgtgttt tctgtcga 2584

<210> 69
<211> 415
<212> PRT
<213> Pasteurella multocida

<400> 69
Met Ser Thr Tyr Phe Asp Lys Ile Glu Lys Val Asn Tyr Glu Gly Val
1 5 10 15

Thr Ser Ser Asn Pro Phe Ala Tyr Lys His Tyr Asp Ala Asn Gln Val
20 25 30

Ile Leu Gly Lys Thr Met Ala Glu His Leu Arg Leu Ala Val Cys Tyr
35 40 45

Trp His Thr Phe Cys Trp Thr Gly Asn Asp Met Phe Gly Val Gly Ser
50 55 60

Phe Asp Arg Cys Trp Gln Lys Ala Ser Asp Ser Leu Ala Gly Ala Lys
65 70 75 80

Gln Lys Ala Asp Ile Ala Phe Glu Phe Phe Ser Lys Leu Gly Ile Pro
85 90 95

Tyr Tyr Cys Phe His Asp Val Asp Val Ala Pro Glu Gly His Ser Phe
100 105 110

Lys Glu Tyr Leu Ser Asn Phe Asn Thr Met Ile Asp Val Leu Ala Gln
115 120 125

Lys Gln Glu Glu Thr Gly Val Lys Leu Leu Trp Gly Thr Ala Asn Cys
130 135 140

Phe Thr His Pro Arg Tyr Met Ser Gly Ala Ala Thr Asn Pro Asn Pro
145 150 155 160

Glu Ile Phe Ala Trp Ala Ala Ala Gln Val Phe Thr Ala Met Gly Ala
165 170 175

Thr Gln Arg Leu Gly Gly Glu Asn Tyr Val Leu Trp Gly Gly Arg Glu
180 185 190

Gly Tyr Glu Thr Leu Leu Asn Thr Asn Leu Lys Gln Glu Arg Glu Gln
195 200 205

Ile Gly Arg Phe Met Gln Met Val Val Glu His Lys Tyr Lys Ile Gly
 210 215 220

Phe Asn Gly Thr Leu Leu Ile Glu Pro Lys Pro Gln Glu Pro Thr Lys
 225 230 235 240

His Gln Tyr Asp Tyr Asp Val Ala Thr Val Tyr Gly Phe Leu Lys Gln
 245 250 255

Phe Gly Leu Glu Lys Glu Ile Lys Val Asn Ile Glu Ala Asn His Ala
 260 265 270

Thr Leu Ala Gly His Thr Phe Gln His Glu Val Ala Met Ala Thr Ala
 275 280 285

Leu Asp Ile Phe Gly Ser Ile Asp Ala Asn Arg Gly Asp Pro Gln Leu
 290 295 300

Gly Trp Asp Thr Asp Gln Phe Pro Asn Ser Val Glu Glu Asn Thr Leu
 305 310 315 320

Val Ile Tyr Glu Ile Leu Lys Ala Gly Gly Phe Thr Thr Gly Gly Phe
 325 330 335

Asn Phe Asp Ala Lys Ile Arg Arg Gln Ser Thr Asp Pro Tyr Asp Leu
 340 345 350

Phe His Gly His Ile Gly Ala Ile Asp Val Leu Ala Leu Ser Leu Lys
 355 360 365

Cys Ala Ala Lys Met Leu Glu Glu Gln Ala Leu Gln Lys Val Val Asn
 370 375 380

Gln Arg Tyr Ala Gly Trp Thr Ser Ser Leu Gly Gln Leu Val Gln Ile
 385 390 395 400

Arg Ser Tyr His Ala Cys Leu Gln Tyr Arg Leu Thr Lys Val Leu
 405 410 415

<210> 70

<211> 3501

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (298)...(1905)

<220>

<223> yabk

<400> 70

gaattcgagg aagggggcgtt attacaaatt gaaacggctg cacgtgtac acaacatgtat 60

aatgcctgtg cggatcattt cttgccttt ttacttcatc cagaagcaca agggcattta 120

gtcaagaata atgtgatgtt accggtgatt aataccaata ttgaaccgca ctttgatgcc 180

ctttagagcca cccaaatgaa cacgaaagtg ctcgataacct caaaaagtgaa tgccgaacaa 240

gtcaaaaaat ggattgctgt ttggcaaacg accctaacc aataattgtt tgtcttg 297

atg ttt aag cga ttt cgt gca ttc aca tac cgt ccc gcc agt tat ctt	345
Met Phe Lys Arg Phe Arg Ala Phe Thr Tyr Arg Pro Ala Ser Tyr Leu	
1 5 10 15	
ggc ggg atg ttg gtg att gtt ttt ctg agc gct ttt tat gcg ttc gcc	393
Gly Gly Met Leu Val Ile Val Phe Leu Ser Ala Phe Tyr Ala Phe Ala	
20 25 30	
tta ggg gcg gtt ttt tcg ctc cct ttt gcg cgc agt tgg aca gcg ttg	441
Leu Gly Ala Val Phe Ser Leu Pro Phe Ala Arg Ser Trp Thr Ala Leu	
35 40 45	
ttg agt gat cag tat tta caa cac gtg atc atc ttt agc ttt tgg caa	489
Leu Ser Asp Gln Tyr Leu Gln His Val Ile Ile Phe Ser Phe Trp Gln	
50 55 60	
gcc ttt ctg tcg gcg gta ctt gcg gtc ctc ttt ggt ggc att gta gca	537
Ala Phe Leu Ser Ala Val Leu Ala Val Phe Gly Gly Ile Val Ala	
65 70 75 80	
cga gcc ttt ttt tat caa ccg ttt gtg ggc aag aaa ctg atc ctc aaa	585
Arg Ala Phe Phe Tyr Gln Pro Phe Val Gly Lys Lys Leu Ile Leu Lys	
85 90 95	
tta ttt tca ctg act ttt gtg tta cct gcc tta gtg gcg att ttt ggt	633
Leu Phe Ser Leu Thr Phe Val Leu Pro Ala Leu Val Ala Ile Phe Gly	
100 105 110	
tta tta ggc gtg tat ggc gct tct ggc tgg tta gcg atg tta agc cag	681
Leu Leu Gly Val Tyr Gly Ala Ser Gly Trp Leu Ala Met Leu Ser Gln	
115 120 125	
ttt ttc gct tgg gat tgg act cct aat att tac ggc tta aca ggt att	729
Phe Phe Ala Trp Asp Trp Thr Pro Asn Ile Tyr Gly Leu Thr Gly Ile	
130 135 140	
tta ctg gcg cat ctt ttt aat gtc cca tta gct tgt cgc ctg ttt	777
Leu Leu Ala His Leu Phe Phe Asn Val Pro Leu Ala Cys Arg Leu Phe	
145 150 155 160	
tta caa ggt ttg caa gca att ccg gtg caa caa cgt cag ctc gcg gca	825
Leu Gln Gly Leu Gln Ala Ile Pro Val Gln Gln Arg Gln Leu Ala Ala	
165 170 175	
caa ctc aat tta cgt ggt tgg cat ttt ata cgt ctg att gag tgg ccc	873
Gln Leu Asn Leu Arg Gly Trp His Phe Ile Arg Leu Ile Glu Trp Pro	
180 185 190	
tat tta cgc cag caa ttg tta cct gca ttt act ttg att ttc atg ctg	921
Tyr Leu Arg Gln Gln Leu Leu Pro Ala Phe Thr Leu Ile Phe Met Leu	
195 200 205	
tgt ttt acc agt ttt gcg att gtg ctc act tta ggt ggc gga ccg aaa	969
Cys Phe Thr Ser Phe Ala Ile Val Leu Thr Leu Gly Gly Gly Pro Lys	
210 215 220	
tat acc acg ttg gaa gtg gct atc tat caa gcg att tta ttt gag ttt	1017
Tyr Thr Thr Leu Glu Val Ala Ile Tyr Gln Ala Ile Leu Phe Glu Phe	
225 230 235 240	
gat gta ccg aaa gcc ggc tta ttt gcg tta tta caa ttt gtt ttt tgt	1065
Asp Val Pro Lys Ala Gly Leu Phe Ala Leu Leu Gln Phe Val Phe Cys	
245 250 255	

ttt ctg tta ttc acg ctg agt agc ttt ttc cca gcc ccc gcc acg Phe Leu Leu Phe Thr Leu Ser Ser Phe Phe Ser Pro Ala Pro Ala Thr 260 265 270	1113
aca tta cac agtcaa cct act tgg ttt gcg ccc caa tcg tat tgg gtt Thr Leu His Ser Gln Pro Thr Trp Phe Ala Pro Gln Ser Tyr Trp Val 275 280 285	1161
aaa tta tgg caa cgt atg atc att gtg tgt gcg aca gta ttt atc tta Lys Leu Trp Gln Arg Met Ile Ile Val Cys Ala Thr Val Phe Ile Leu 290 295 300	1209
tta ccg cta ctc aat acg cta gtt tct gct ttg ctt tcg tct cag ttt Leu Pro Leu Leu Asn Thr Leu Val Ser Ala Leu Leu Ser Ser Gln Phe 305 310 315 320	1257
ttt acc ttg tgg tta caa cct caa tta tgg aaa gca tta ggt tac tcg Phe Thr Leu Trp Leu Gln Pro Gln Leu Trp Lys Ala Leu Gly Tyr Ser 325 330 335	1305
ctc acc atc gcc ccc act tct gca ttg ctc gct tta gta ctg tct ttt Leu Thr Ile Ala Pro Thr Ser Ala Leu Leu Ala Leu Val Leu Ser Phe 340 345 350	1353
gcc tta tta ttg ctt gcc aga gaa tta cat tgg cga cat tat cgc agc Ala Leu Leu Leu Ala Arg Glu Leu His Trp Arg His Tyr Arg Ser 355 360 365	1401
tta tcc cat gtg att tta aat atc ggt gcg acc att tta gcc att cca Leu Ser His Val Ile Leu Asn Ile Gly Ala Thr Ile Leu Ala Ile Pro 370 375 380	1449
acg tta gtg tta gct att ggt tta ttc att tta tta cgt gag atc gat Thr Leu Val Leu Ala Ile Gly Leu Phe Ile Leu Leu Arg Glu Ile Asp 385 390 395 400	1497
ttt tct cca tac cat ctt ttt ggg gtt gtg gta tgc tgt aac gcg tta Phe Ser Pro Tyr His Leu Phe Gly Val Val Val Cys Cys Asn Ala Leu 405 410 415	1545
gct gct atg cct ttt gtg ttg cgt att ttg gct tta ccg atg cat aac Ala Ala Met Pro Phe Val Leu Arg Ile Leu Ala Leu Pro Met His Asn 420 425 430	1593
aat atg att tat tat gaa aaa tta tgc caa tca ctt aac ctg cgt ggt Asn Met Ile Tyr Tyr Glu Lys Leu Cys Gln Ser Leu Asn Leu Arg Gly 435 440 445	1641
tgg caa cgt ttt cga ttg att gaa tgg cac aag ctt cgt gcg cca atg Trp Gln Arg Phe Arg Leu Ile Glu Trp His Lys Leu Arg Ala Pro Met 450 455 460	1689
aaa tac gcc ttt gca ctg gct tgt gcg tta tca tta ggc gat ttc acc Lys Tyr Ala Phe Ala Leu Ala Cys Ala Leu Ser Leu Gly Asp Phe Thr 465 470 475 480	1737
gca atc gcg tta ttt ggt cag gct gac ttc aca tcg tta ccg cat ttg Ala Ile Ala Leu Phe Gly Gln Ala Asp Phe Thr Ser Leu Pro His Leu 485 490 495	1785
ttg tat caa caa ttg ggg cat tat cgt agt cag gaa gca gtc aca Leu Tyr Gln Gln Leu Gly His Tyr Arg Ser Gln Glu Ala Ala Val Thr 500 505 510	1833

<210> 71
<211> 536
<212> PRT
<213> Pasteurella multocida

<400> 71
Met Phe Lys Arg Phe Arg Ala Phe Thr Tyr Arg Pro Ala Ser Tyr Leu
1 5 10 15
Gly Gly Met Leu Val Ile Val Phe Leu Ser Ala Phe Tyr Ala Phe Ala
20 25 30
Leu Gly Ala Val Phe Ser Leu Pro Phe Ala Arg Ser Trp Thr Ala Leu
35 40 45
Leu Ser Asp Gln Tyr Leu Gln His Val Ile Ile Phe Ser Phe Trp Gln
50 55 60
Ala Phe Leu Ser Ala Val Leu Ala Val Leu Phe Gly Gly Ile Val Ala
65 70 75 80
Arg Ala Phe Phe Tyr Gln Pro Phe Val Gly Lys Lys Leu Ile Leu Lys
85 90 95
Leu Phe Ser Leu Thr Phe Val Leu Pro Ala Leu Val Ala Ile Phe Gly
100 105 110
Leu Leu Gly Val Tyr Gly Ala Ser Gly Trp Leu Ala Met Leu Ser Gln
115 120 125
Phe Phe Ala Trp Asp Trp Thr Pro Asn Ile Tyr Gly Leu Thr Gly Ile
130 135 140
Leu Leu Ala His Leu Phe Phe Asn Val Pro Leu Ala Cys Arg Leu Phe
145 150 155 160
Leu Gln Gly Leu Gln Ala Ile Pro Val Gln Gln Arg Gln Leu Ala Ala
165 170 175
Gln Leu Asn Leu Arg Gly Trp His Phe Ile Arg Leu Ile Glu Trp Pro
180 185 190
Tyr Leu Arg Gln Gln Leu Leu Pro Ala Phe Thr Leu Ile Phe Met Leu
195 200 205
Cys Phe Thr Ser Phe Ala Ile Val Leu Thr Leu Gly Gly Pro Lys
210 215 220
Tyr Thr Thr Leu Glu Val Ala Ile Tyr Gln Ala Ile Leu Phe Glu Phe
225 230 235 240
Asp Val Pro Lys Ala Gly Leu Phe Ala Leu Leu Gln Phe Val Phe Cys
245 250 255
Phe Leu Leu Phe Thr Leu Ser Ser Phe Phe Ser Pro Ala Pro Ala Thr
260 265 270
Thr Leu His Ser Gln Pro Thr Trp Phe Ala Pro Gln Ser Tyr Trp Val
275 280 285
Lys Leu Trp Gln Arg Met Ile Ile Val Cys Ala Thr Val Phe Ile Leu
290 295 300

Leu Pro Leu Leu Asn Thr Leu Val Ser Ala Leu Leu Ser Ser Gln Phe
 305 310 315 320
 Phe Thr Leu Trp Leu Gln Pro Gln Leu Trp Lys Ala Leu Gly Tyr Ser
 325 330 335
 Leu Thr Ile Ala Pro Thr Ser Ala Leu Leu Ala Leu Val Leu Ser Phe
 340 345 350
 Ala Leu Leu Leu Leu Ala Arg Glu Leu His Trp Arg His Tyr Arg Ser
 355 360 365
 Leu Ser His Val Ile Leu Asn Ile Gly Ala Thr Ile Leu Ala Ile Pro
 370 375 380
 Thr Leu Val Leu Ala Ile Gly Leu Phe Ile Leu Leu Arg Glu Ile Asp
 385 390 395 400
 Phe Ser Pro Tyr His Leu Phe Gly Val Val Val Cys Cys Asn Ala Leu
 405 410 415
 Ala Ala Met Pro Phe Val Leu Arg Ile Leu Ala Leu Pro Met His Asn
 420 425 430
 Asn Met Ile Tyr Tyr Glu Lys Leu Cys Gln Ser Leu Asn Leu Arg Gly
 435 440 445
 Trp Gln Arg Phe Arg Leu Ile Glu Trp His Lys Leu Arg Ala Pro Met
 450 455 460
 Lys Tyr Ala Phe Ala Leu Ala Cys Ala Leu Ser Leu Gly Asp Phe Thr
 465 470 475 480
 Ala Ile Ala Leu Phe Gly Gln Ala Asp Phe Thr Ser Leu Pro His Leu
 485 490 495
 Leu Tyr Gln Gln Leu Gly His Tyr Arg Ser Gln Glu Ala Ala Val Thr
 500 505 510
 Ala Phe Ile Leu Leu Val Phe Cys Leu Ser Val Phe Met Ile Ile Glu
 515 520 525
 Arg His Gln Glu Pro Arg Asp Asp
 530 535

<210> 72
 <211> 3182
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (1544)..(2809)

<220>
 <223> ygiK

<220>
 <221> misc_feature
 <222> 452
 <223> N = A or T or G or C

<400> 72
aactactaag gagttatgta tgaatattag aaaatcatta ctattaatat ccctagcaag 60
cttcatgtca ctttcagttt cagctgcaga aattaatttg aaatttggaaa gttcgaattt 120
tgcaggagaa aaagtttatg aaatccaaaa agaatggact gacaatattg aaaaagcttc 180
caatggaga ataagtatacg agttattacc tctcgactca gtcttaaat ctagtgacat 240
gctttctggt gttcgaaata aaattattga tggagcgggtt gcaacagcgg caatgtatgc 300
aggcactgac cctggattcg gattaattgg tgatactatt tctgcttgga accatgacga 360
agatatttta aattttact ataatggagg tggtttgaa gttgttgata atatttcca 420
acaatatggt gccaaactca ttggtgtatc anttacggga gcagaatcat taccatcgaa 480
agtaaaaaata gctaatactg aagattttaa aggtataaaaa attcgggctc cctctgggcc 540
tatccaaaaaa ttgtttgcaa gattaggagc cgctcctgtt ggtcttcctg gttcagaaat 600
ctatactagt ttagaaaaag gtattattga tgctgcccgt ttctcaacgt ttgcaaataa 660
tcaagcacaa ggagtccatg atattgcaaa atatccaatc tatccggaa ttcattcttc 720
accagccgtt catatgatta tgaatcataa aacttggagt agcttaactc catcgatca 780
agcattctta attgcttaact ttaaagggtt ggctctcgat actctgactc gtgctcattt 840
tgaagataaa ctagcatata aagaagcact tgagaaagga gtacaaccag tttcttgaa 900
tcaacaagaa attacaaaag ttcgttctat cgctaaagaa atttggcaag agatagctca 960
acaatctgaa ataggtatc aagtattatc aagtattaaat gaaattccat gaatctcaag 1020
gaatgctgca ataatcgatc agatggataa gacgatatcg tcttatccat taaggagttt 1080
aacatgctta ttctaaata ttattatgg ctctgtataa agcttagatca aatattcatt 1140
aaagtaggtt attacgttcc ttatattttt ctattagttt tttatcattgg ttttacgagg 1200
ttgttgctcg gtatatttc tctagccaa cacttgggt tcatgaagta acaacatttt 1260
taataagtct atcattactt tatggtgagg tagcttgta cgccagtaat aaacatattg 1320
ccatgacatt tattagacaa aaattaccta ataagatcaa atggttacta gaactcttag 1380
ttgaaatact tattttatc ttctttatcc ttcttagtta cggagcatac ttatcagcta 1440
gagaagcatt atttactcca tcaggaaaat tcaaaaatgca aacttcttgaa agtgttattag 1500
acatgccatt tccagcaatt gaaaaaagtt tcttctttat ttc atg cct cat cat 1555
Met Pro His His

tgt tgt tct ttc agt act aca tat att ccg tca cat cta tac aaa ata	1603
Cys Cys Ser Phe Ser Thr Thr Tyr Ile Pro Ser His Leu Tyr Lys Ile	
5 10 15 20	
tca gga gga att atc atg ata agt gca ttt ggg ata ggt att gga act	1651
Ser Gly Gly Ile Ile Met Ile Ser Ala Phe Gly Ile Gly Ile Gly Thr	
25 30 35	

gca gca ttc tat cga aaa gaa tta aat ttc aaa ata gta caa gaa tca Ala Ala Phe Tyr Arg Lys Glu Leu Asn Phe Lys Ile Val Gln Glu Ser 295 300 305	2467
cta aaa cat aca atc aat act gtt ggt atg ata atc tgg gtc ggc att Leu Lys His Thr Ile Asn Thr Val Gly Met Ile Ile Trp Val Gly Ile 310 315 320	2515
ggc gca aca atg att ata ggt att tat aat cta atg ggt ggg gac cga Gly Ala Thr Met Ile Ile Gly Ile Tyr Asn Leu Met Gly Gly Asp Arg 325 330 335 340	2563
ttt ata gct aac tta ttc gct agc tta gat gcc tct cca att tat act Phe Ile Ala Asn Leu Phe Ala Ser Leu Asp Ala Ser Pro Ile Tyr Thr 345 350 355	2611
atc att att atg atg gtt att tta tta ata ctt ggt atg ttc tta gat Ile Ile Ile Met Met Val Ile Leu Ile Leu Gly Met Phe Leu Asp 360 365 370	2659
tgg att ggt gtt gcc atg ttg act ttc ctc aag aca agt aaa gcg aca Trp Ile Gly Val Ala Met Leu Thr Phe Leu Lys Thr Ser Lys Ala Thr 375 380 385	2707
atc aat ttg tgt ttt gac ata gtc agg tac agt att tgg cgt ggt ccc Ile Asn Leu Cys Phe Asp Ile Val Arg Tyr Ser Ile Trp Arg Gly Pro 390 395 400	2755
tcc ttc cac agt acc aat gtt cat cgt ggt acc ttt gtc ggg cgc ggt Ser Phe His Ser Thr Asn Val His Arg Gly Thr Phe Val Gly Arg Gly 405 410 415 420	2803
act ttt tagtaaatct tgcgcgatac gaataaacgc attgatggca tttgctccgt Thr Phe	2859
tttgtggatc gactgccgca tgagcagatt tgccaaaaaaaa ttcaattaca tacttcccaa tccctttct ttcgttaacg ttccactta gattgccag aagccgatct gtctgaatgg gaacaagtgt tataccaaga agcgaatcca acaggtgaag tggtgatcgg tatggtggt aaatacactg aattaccgga tgcctacaaa tcggttaatg aagccttgaa acacgcaggc ttaaaaaacc gtcttagcgt gcaaatcaa tatattgatt cacaagatgt ggaaaccaa ggcacagaag tgtagaagg cgt	2919 2979 3039 3099 3159 3182
<210> 73 <211> 422 <212> PRT <213> Pasteurella multocida	
<400> 73 Met Pro His His Cys Cys Ser Phe Ser Thr Thr Tyr Ile Pro Ser His 1 5 10 15	
Leu Tyr Lys Ile Ser Gly Gly Ile Ile Met Ile Ser Ala Phe Gly Ile 20 25 30	
Gly Ile Gly Thr Leu Ile Ile Phe Leu Met Met Ile Ser Leu Leu Phe 35 40 45	

Ile Gly Met Pro Leu Gly Phe Leu Thr Gly Leu Ile Ala Leu Val Ile
 50 55 60
 Ser Tyr Leu Trp Phe Asp Thr Thr Ala Ile Met Gln Met Ile Ala Ser
 65 70 75 80
 Arg Val Thr Asp Phe Thr Ser Ser Tyr Thr Phe Val Ala Val Pro Met
 85 90 95
 Phe Val Leu Met Ala Thr Leu Leu Asp Lys Thr Gly Ile Ala Arg Asp
 100 105 110
 Leu Tyr Asn Ala Met Arg Val Ile Gly Gly Arg Leu Arg Gly Gly Ile
 115 120 125
 Ala Ile Gln Ser Met Phe Val Ala Val Leu Leu Ala Thr Met Ser Gly
 130 135 140
 Ile Ile Gly Gly Glu Thr Val Leu Leu Gly Met Leu Ala Leu Pro Gln
 145 150 155 160
 Met Leu Arg Leu Gly Tyr Asn Lys Asn Leu Ala Ile Gly Thr Val Val
 165 170 175
 Ala Gly Gly Ala Leu Gly Thr Met Val Pro Pro Ser Ile Val Leu Ile
 180 185 190
 Ile Tyr Gly Met Thr Ala Asn Val Ser Ile Gly Glu Leu Phe Leu Ala
 195 200 205
 Ala Ile Pro Ala Ser Leu Leu Ser Thr Phe Tyr Ile Leu Tyr Ile
 210 215 220
 Leu Val Leu Cys Tyr Phe Lys Pro Ser Tyr Gly Pro Ala Met Pro Ser
 225 230 235 240
 Ser Glu Asn His Thr Leu Thr Lys Glu Asp Ile Lys Lys Ile Ile His
 245 250 255
 Asp Ile Ala Ile Pro Val Ala Ile Ala Thr Trp Ile Leu Gly Ser Ile
 260 265 270
 Tyr Gly Gly Ile Ala Ser Ile Thr Glu Ser Ala Cys Val Gly Val Val
 275 280 285
 Gly Val Ile Leu Ala Ala Phe Tyr Arg Lys Glu Leu Asn Phe Lys Ile
 290 295 300
 Val Gln Glu Ser Leu Lys His Thr Ile Asn Thr Val Gly Met Ile Ile
 305 310 315 320
 Trp Val Gly Ile Gly Ala Thr Met Ile Ile Gly Ile Tyr Asn Leu Met
 325 330 335
 Gly Gly Asp Arg Phe Ile Ala Asn Leu Phe Ala Ser Leu Asp Ala Ser
 340 345 350
 Pro Ile Tyr Thr Ile Ile Ile Met Met Val Ile Leu Leu Ile Leu Gly
 355 360 365
 Met Phe Leu Asp Trp Ile Gly Val Ala Met Leu Thr Phe Leu Lys Thr
 370 375 380

Ser Lys Ala Thr Ile Asn Leu Cys Phe Asp Ile Val Arg Tyr Ser Ile
 385 390 395 400

Trp Arg Gly Pro Ser Phe His Ser Thr Asn Val His Arg Gly Thr Phe
 405 410 415

Val Gly Arg Gly Thr Phe
 420

<?10> 74

<211> 2787

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (463)..(936)

<220>

<223> yhcJ

<400> 74

gttaacacac catgattaat gatgccgtt gaagccactg caacgtaatc gaattgtccg 60

gcatacaaag caagaatgtt ggccagtgtg tcatgcacg cattggcagc atcagcttgt 120

ggcggttgc aa tctgttggcg ttgttctatt ttgccgtctg ttacaatacg cgaggcaatt 180

tttgttccac caatatctaa tgctaaacag cgcataggct ctccctctgt gatgacttat 240

tttggcatt tgacggcattt ggcaaacccat cttacgatat gttcgaggcg agtcagcgca 300

gatcctacgg tgacagagta agcaccaatc tcaattgcgg ttttcgc aa ttctgggtg 360

ttatacgccc cttctgccat cactcggcag ccagcagcat tcaaacttt gactaactga 420

taatccgtt cagctggaaat ttcaccgcca gtataaccag ac atg gtg cta cca 474
 Met Val Leu Pro

1

ata att tct acc cct aag ttg tgg caa tac atc cct tct tca aaa tta 522
 Ile Ile Ser Thr Pro Lys Leu Trp Gln Tyr Ile Pro Ser Ser Lys Leu
 5 10 15 20

gaa caa tcc gcc atg gct aaa caa cct aat tct ttg att cgt tta ata 570
 Glu Gln Ser Ala Met Ala Lys Gln Pro Asn Ser Leu Ile Arg Leu Ile
 25 30 35

atg gct tca cgt gta gtt gga cgg acg cga tcg gta cca tca aaa gca 618
 Met Ala Ser Arg Val Val Gly Arg Thr Arg Ser Val Pro Ser Lys Ala
 40 45 50

ata ata tcg gcg cct gct gcg gct aac tct tca atg tct tgt aaa aat 666
 Ile Ile Ser Ala Pro Ala Ala Asn Ser Ser Met Ser Cys Lys Asn
 55 60 65

ggg cta ata cga acg gga ctg tca ggt aaa tcg cgt tta acg ata cca 714
 Gly Leu Ile Arg Thr Gly Leu Ser Gly Lys Ser Arg Leu Thr Ile Pro
 70 75 80

ata atc ggt aca ttg acg acg tta cgc gtg gct ttt aaa ttt tcg atc 762
 Ile Ile Gly Thr Leu Thr Leu Arg Val Ala Phe Lys Phe Ser Ile

| 85 | 90 | 95 | 100 | |
|---|-------------------------|----|-----|------|
| cct tca ata cgt aac ccg gca gca cca ccg | ata acg gat gct tgc gcc | | | 810 |
| Pro Ser Ile Arg Asn Pro Ala Ala Pro Pro | Ile Thr Asp Ala Cys Ala | | | |
| 105 | 110 | | 115 | |
| atg gcg gca aca att tct ggc gag tcc att ggc cca tta tct acg ggc | | | | 858 |
| Met Ala Ala Thr Ile Ser Gly Glu Ser Ile Gly Pro Leu Ser Thr Gly | | | | |
| 120 | 125 | | 130 | |
| tgg caa gat gcg att aag cca tat tta att tgt tct aaa act tgc gga | | | | 906 |
| Trp Gln Asp Ala Ile Lys Pro Tyr Leu Ile Cys Ser Lys Thr Cys Gly | | | | |
| 135 | 140 | | 145 | |
| tgt gat agt ttt gac ata tta act cca gtc taaaatttac aaaagaagat | | | | 956 |
| Cys Asp Ser Phe Asp Ile Leu Thr Pro Val | | | | |
| 150 | 155 | | | |
| tgactccaat ttgcataaggta taatcttaga attaaaaat aacaacccaa ataataaaaa | | | | 1016 |
| ttttagatct ttgtcgata tttattcata ggaaatagac agcttaattt tagttatgat | | | | 1076 |
| ttgtcaatcc ttgttatattt ttgtgtttgc tgggttgcga tacactgttc taatattgct | | | | 1136 |
| ttgagcactt gataacccttg ctcattaaaa tgtaatccgt cggtacaaag gctgtaaatcc | | | | 1196 |
| atttcaccgt tagaattcaca aaagtatttt tgggtttcaa cgtaagtcac gtctgacgga | | | | 1256 |
| caatgttgtt taaaataggt attgagcctg tgaatttgcg cgtagtgac cgtattaatc | | | | 1316 |
| tgattgaccg gtgtggcttc taataaaaaag tagtggacg taggagaaat ggtgtgttagg | | | | 1376 |
| tgagtcagaa tgtcatttaa ctatcgcatg acttgcgccg gtgaatacgt ttcttcctta | | | | 1436 |
| caaatatcat tgacgcctaa aaaaagaaaa acagattgtc caagttgttgc aatccgttta | | | | 1496 |
| ggtttaacga taacatccaa atattgtcgc gtactgacgc cagaaagtcc taaaattggcg | | | | 1556 |
| acggtttgcg ccgctaattt aggtgtgcct gctacctgtt cgccccacat gtcaaaaagt | | | | 1616 |
| gaatgaccaa ttaagctgat attggcaggt ttggaaaatt ccgcattttt gctctgatag | | | | 1676 |
| cgttgataaa tattcctgatc acttagcatg tggaccttc tattttgaaa taaaacgcta | | | | 1736 |
| agtattataat aaaaacctgat atgcccgtaa acagtaaact tatctccgt agggtaaat | | | | 1796 |
| attcaattttt gtgacgaacc tattcattat gaaataaaac ttcattttct atataaaaaaa | | | | 1856 |
| tagtttttc actttagaat gccaacgtg tgaaattttt ttcatcatca tttaacgta | | | | 1916 |
| atcccaacgt aaccaataga ggagaactca taatgaaatt taaaaacta ctacttgcatt | | | | 1976 |
| ctttatgttt aggtgtttca gttctgtat ttgcagcaga ttacgatctt aaattcggtt | | | | 2036 |
| tgggtgcggg tccaagctca aacgaatata aagcagtaga attcttgcg aaagaagtga | | | | 2096 |
| aagaaaaatc caatggcaaa attgatgtgg tattttccc tagtcacag ttaggtgatg | | | | 2156 |
| accgtgtat gattaaacaa taaaagacg gtgcattaga ctttacgtta ggtgaatcag | | | | 2216 |
| cacgtttcca aatttacttc ccagaagcag aagtattgc gttgcctt atgattccta | | | | 2276 |
| attttgaaac ctctaaaaaa gcgttgctcg acacaaaatt tggtcaaggt ttattgaaaa | | | | 2336 |

aaattgataa agagttaaac gtacaagtgt tatctgtggc gtataacggt acacgtcaaa 2396
 caacttctaa ccgtgcaatc aacagcattg aagacatgaa agggtaaaaa ttacgtgtac 2456
 ctaacgcggc aaccaacctt gcttatgcaa aatacgtggg tgcagcgcca acaccaatgg 2516
 cattctctga agtttacctt gcgcctcaaa caaactctgt ggatggtaa gaaaacccat 2576
 taccgacaat ccaaggacaaa aaattctatg aagtacaaaa atacttagcg ttaactaacc 2636
 acatcttaaa tgaccaactt tacttaatca gtaacgatac gttggcagat ttaccagaag 2696
 atttacaaaa agtggtaaa gatgcagcag cgaaagccgc tgaatatcac actaaactct 2756
 tcgttgacgg tgagaacagc tttagttaat t 2787

<210> 75
 <211> 158
 <212> PRT
 <213> *Pasteurella multocida*

<400> 75
 Met Val Leu Pro Ile Ile Ser Thr Pro Lys Leu Trp Gln Tyr Ile Pro
 1 5 10 15
 Ser Ser Lys Leu Glu Gln Ser Ala Met Ala Lys Gln Pro Asn Ser Leu
 20 25 30
 Ile Arg Leu Ile Met Ala Ser Arg Val Val Gly Arg Thr Arg Ser Val
 35 40 45
 Pro Ser Lys Ala Ile Ile Ser Ala Pro Ala Ala Asn Ser Ser Met
 50 55 60
 Ser Cys Lys Asn Gly Leu Ile Arg Thr Gly Leu Ser Gly Lys Ser Arg
 65 70 75 80
 Leu Thr Ile Pro Ile Ile Gly Thr Leu Thr Thr Leu Arg Val Ala Phe
 85 90 95
 Lys Phe Ser Ile Pro Ser Ile Arg Asn Pro Ala Ala Pro Pro Ile Thr
 100 105 110
 Asp Ala Cys Ala Met Ala Ala Thr Ile Ser Gly Glu Ser Ile Gly Pro
 115 120 125
 Leu Ser Thr Gly Trp Gln Asp Ala Ile Lys Pro Tyr Leu Ile Cys Ser
 130 135 140
 Lys Thr Cys Gly Cys Asp Ser Phe Asp Ile Leu Thr Pro Val
 145 150 155

<210> 76
 <211> 2787
 <212> DNA
 <213> *Pasteurella multocida*
 <220>
 <221> CDS
 <222> (1949)..(2785)

<220>
<223> yiaO
<400> 76
gttaacacac catgattaat gatgccgggtt gaagccactg caacgtaatc gaattgtccg 60
gcatacaaag caagaatgtt ggccagtgtg tcatgcatcg cattggcagc atcagcttgt 120
ggcgttgc当地 tctgttgccg ttgttctatt ttgccgtctg ttacaatagc cgaggcaatt 180
tttggccac caatatctaa tgctaaacag cgcataggct ctccttctgt gatgacttat 240
tttggccatt tgacggcattt ggc当地 accag cttacgatat gttcgaggcg agtcagcgca 300
gatcctacgg tgacagagta agcaccaatc tcaattgcgg tttcgccaa ttctgggtg 360
tttagcgc当地 cttctgccc当地 cactcggcag ccagcagcat tcaaattttt gactaactga 420
taatccgggtt cagctggaaat ttcaccgcca gtataaccag acatgggtctt accaataatt 480
tctaccctta agttgtggca atacatccct tcttccaaat tagaacaatc cgccatggct 540
aaacaaccta attctttgat tcgaaaaata atggcttcac gtgttagttgg acggacgc当地 600
tcggtaccat caaaaagcaat aatatcggc当地 cctgctgcgg ctaactctt当地 aatgtcttgt 660
aaaaatgggc taatacgaac gggactgtca ggttaatcgc gtttaacgat accaataatc 720
ggtacattga cgacgatc当地 cgtggctttt aaattttcga tcccttcaat acgtaacccg 780
gcagcaccac cgataaacgg当地 tgcttgc当地 atggcggcaa caatttctgg cgagtccatt 840
ggccccattat ctacgggctg gcaagatgc当地 attaagccat atttaattt当地 ttctaaaact 900
tgcggatgtg atagttt当地 cataattact ccagtc当地 tttatccaaat gaagattgac 960
tccaatttgc ataggttaat cttagaattt当地 aaaaataaca accaaaataaa taaaaattt当地 1020
agatcttgtt当地 cgcatattt当地 ttcataggg当地 atagacagct taatttttagt tatgattt当地 1080
caatccttgc tattttt当地 gtttgc当地 ttgc当地 atgc当地 tttt当地 attgctt当地 1140
gcactt当地 gata acctgctca ttaaaatgta atccgtcggt acaaaggcgt aaatccagtt 1200
caccgttaga atcaca当地 aaaaag tatttt当地 tttcaacgta agtc当地 acgtct gacggacaat 1260
gttggattt当地 ataggtattt当地 agcctgtgaa tttgtcgctt agtgaccgta ttaatctgat 1320
tgaccgggtt当地 ggctt当地 ttaatggtagt gggacgttagg agaaatgggtg tgttaggtgag 1380
tcagaatgtc atttaactat cgcatgactt ggc当地 cgggtt当地 gtaatc当地 tttt当地 tccctt当地 1440
tatcattt当地 gagc gcctt当地 aaaaacag attgtccaaat ttgtt当地 gaaatc当地 cgtt当地 taggtt当地 1500
taacgataac atccaaatat tgctcgctt当地 tgacggc当地 aagtccctaaat ttggc当地 gaggg 1560
tttgc当地 cccgc taattt当地 gaggt gtgc当地 cctt当地 cgtt当地 ccacatgtca aaaatgtgaat 1620
gaccaattaa gctgatattt当地 gcagggtt当地 ggaaaatccgc cattttgctc tgatagcgat 1680
gataaaatatc ctgatcactt agcatgtgtg gacctt当地 tttt当地 ttgaaataaa acgctaaatgta 1740
tttataaaaa cctgatatgc cggtt当地 aaaaacag taaaactt当地 tttccgtt当地 qtaaaatattc 1800

aattttgtga cgaacctatc atttatgaaa taaaacttca tttctatat aaaaaatagt 1860
 ttttcactt tagaatgcc aacgtgtgaa atttatttca tcacatctt aacgtaatcc 1920
 caacgtaacc aatagaggag aactcata atg aaa ttt aaa aaa cta cta ctt 1972
 Met Lys Phe Lys Lys Leu Leu Leu
 1 5

gca tct tta tgt tta ggt gtt tca gct tct gta ttt gca gca gat tac 2020
 Ala Ser Leu Cys Leu Gly Val Ser Ala Ser Val Phe Ala Ala Asp Tyr
 10 15 20

gat ctt aaa ttc ggt atg gtt gcg ggt cca agc tca aac gaa tat aaa 2068
 Asp Leu Lys Phe Gly Met Val Ala Gly Pro Ser Ser Asn Glu Tyr Lys
 25 30 35 40

gca gta gaa ttc ttt gcg aaa gaa gtg aaa gaa aaa tcc aat ggc aaa 2116
 Ala Val Glu Phe Phe Ala Lys Glu Val Lys Glu Lys Ser Asn Gly Lys
 45 50 55

att gat gtg gct att ttc cct agc tca cag tta ggt gat gac cgt gtg 2164
 Ile Asp Val Ala Ile Phe Pro Ser Ser Gln Leu Gly Asp Asp Arg Val
 60 65 70

atg att aaa caa tta aaa gac ggt gca tta gac ttt acg tta ggt gaa 2212
 Met Ile Lys Gln Leu Lys Asp Gly Ala Leu Asp Phe Thr Leu Gly Glu
 75 80 85

tca gca cgt ttc caa att tac ttc cca gaa gca gaa gta ttt gcg ttg 2260
 Ser Ala Arg Phe Gln Ile Tyr Phe Pro Glu Ala Glu Val Phe Ala Leu
 90 95 100

cct tat atg att cct aat ttt gaa acc tct aaa aaa gcg ttg ctc gac 2308
 Pro Tyr Met Ile Pro Asn Phe Glu Thr Ser Lys Lys Ala Leu Leu Asp
 105 110 115 120

aca aaa ttt ggt caa ggt tta ttg aaa aaa att gat aaa gag tta aac 2356
 Thr Lys Phe Gly Gln Gly Leu Leu Lys Lys Ile Asp Lys Glu Leu Asn
 125 130 135

gta caa gtg tta tct gtg gcg tat aac ggt aca cgt caa aca act tct 2404
 Val Gln Val Leu Ser Val Ala Tyr Asn Gly Thr Arg Gln Thr Thr Ser
 140 145 150

aac cgt gca atc aac agc att gaa gac atg aaa ggg tta aaa tta cgt 2452
 Asn Arg Ala Ile Asn Ser Ile Glu Asp Met Lys Gly Leu Lys Leu Arg
 155 160 165

gta cct aac gcg gca acc aac ctt gct tat gca aaa tac gtg ggt gca 2500
 Val Pro Asn Ala Ala Thr Asn Leu Ala Tyr Ala Lys Tyr Val Gly Ala
 170 175 180

gcg cca aca cca atg gca ttc tct gaa gtt tac ctt gcg ctt caa aca 2548
 Ala Pro Thr Pro Met Ala Phe Ser Glu Val Tyr Leu Ala Leu Gln Thr
 185 190 195 200

aac tct gtg gat ggt caa gaa aac cca tta ccg aca atc caa gca caa 2596
 Asn Ser Val Asp Gly Gln Glu Asn Pro Leu Pro Thr Ile Gln Ala Gln
 205 210 215

aaa ttc tat gaa gta caa aaa tac tta gcg tta act aac cac atc tta 2644
 Lys Phe Tyr Glu Val Gln Lys Tyr Leu Ala Leu Thr Asn His Ile Leu
 220 225 230

| | |
|---|------|
| aat gac caa ctt tac tta atc agt aac gat acg ttg gca gat tta cca | 2692 |
| Asn Asp Gln Leu Tyr Leu Ile Ser Asn Asp Thr Leu Ala Asp Leu Pro | |
| 235 | 240 |
| | 245 |
| gaa gat tta caa aaa gtg gtt aaa gat gca gca gcg aaa gcc gct gaa | 2740 |
| Glu Asp Leu Gln Lys Val Val Lys Asp Ala Ala Lys Ala Ala Glu | |
| 250 | 255 |
| | 260 |
| tat cac act aaa ctc ttc gtt gac ggt gag aac agc tta gtt gaa tt | 2787 |
| Tyr His Thr Lys Leu Phe Val Asp Gly Glu Asn Ser Leu Val Glu | |
| 265 | 270 |
| | 275 |
|
 | |
| <210> 77 | |
| <211> 279 | |
| <212> PRT | |
| <213> Pasteurella multocida | |
|
 | |
| <400> 77 | |
| Met Lys Phe Lys Lys Leu Leu Leu Ala Ser Leu Cys Leu Gly Val Ser | |
| 1 | 5 |
| | 10 |
| | 15 |
| Ala Ser Val Phe Ala Ala Asp Tyr Asp Leu Lys Phe Gly Met Val Ala | |
| 20 | 25 |
| | 30 |
| Gly Pro Ser Ser Asn Glu Tyr Lys Ala Val Glu Phe Phe Ala Lys Glu | |
| 35 | 40 |
| | 45 |
| Val Lys Glu Lys Ser Asn Gly Lys Ile Asp Val Ala Ile Phe Pro Ser | |
| 50 | 55 |
| | 60 |
| Ser Gln Leu Gly Asp Asp Arg Val Met Ile Lys Gln Leu Lys Asp Gly | |
| 65 | 70 |
| | 75 |
| | 80 |
| Ala Leu Asp Phe Thr Leu Gly Glu Ser Ala Arg Phe Gln Ile Tyr Phe | |
| 85 | 90 |
| | 95 |
| Pro Glu Ala Glu Val Phe Ala Leu Pro Tyr Met Ile Pro Asn Phe Glu | |
| 100 | 105 |
| | 110 |
| Thr Ser Lys Lys Ala Leu Leu Asp Thr Lys Phe Gly Gln Gly Leu Leu | |
| 115 | 120 |
| | 125 |
| Lys Lys Ile Asp Lys Glu Leu Asn Val Gln Val Leu Ser Val Ala Tyr | |
| 130 | 135 |
| | 140 |
| Asn Gly Thr Arg Gln Thr Thr Ser Asn Arg Ala Ile Asn Ser Ile Glu | |
| 145 | 150 |
| | 155 |
| | 160 |
| Asp Met Lys Gly Leu Lys Leu Arg Val Pro Asn Ala Ala Thr Asn Leu | |
| 165 | 170 |
| | 175 |
| Ala Tyr Ala Lys Tyr Val Gly Ala Ala Pro Thr Pro Met Ala Phe Ser | |
| 180 | 185 |
| | 190 |
| Glu Val Tyr Leu Ala Leu Gln Thr Asn Ser Val Asp Gly Gln Glu Asn | |
| 195 | 200 |
| | 205 |
| Pro Leu Pro Thr Ile Gln Ala Gln Lys Phe Tyr Glu Val Gln Lys Tyr | |
| 210 | 215 |
| | 220 |
| Leu Ala Leu Thr Asn His Ile Leu Asn Asp Gln Leu Tyr Leu Ile Ser | |
| 225 | 230 |
| | 235 |
| | 240 |

Asn Asp Thr Leu Ala Asp Leu Pro Glu Asp Leu Gln Lys Val Val Lys
 245 250 255

Asp Ala Ala Ala Lys Ala Ala Glu Tyr His Thr Lys Leu Phe Val Asp
 260 265 270

Gly Glu Asn Ser Leu Val Glu
 275

<210> 78

<211> 2590

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (908) .. (1294)

<220>

<223> yjgF

<400> 78

ctgcaggctc gattagtgg gcaccgaaag aaaaaaccgt gcaaattatt cacgcccag 60

aacagcagcc acgcggttat tacacgggaa tttttggctt gttcgatggt gagtcgttac 120

aaagtgcgggt ggcaattcgt tttattgagc aagtggacga gaaatttgatt ttccgcagcg 180

gtggcgggat tacgatctta agcgagctag aagacgagta ccaagaattt atccaaaaag 240

tgtatgtacc agtaggataa gcgatgacat ttcccttatt tgagacgatc gctattgtga 300

acggtaaat tcagcacctt gccctgcattt aacaacgtta tgcggcaagt ttggcgacct 360

tttacggcga gaaaggagcg aaagtacagg atcttgcgaa aattatttcg attccgaccg 420

cacttgaaca cactcaacat gcgcgcataa tccgttgtcg gattgattac aatcagcaag 480

actgtgacgt gcattatttt ccctatcaac gcaaaaattta ccgcactttt cagcctgtca 540

tttgcgatga aattaactat gatctgaaat atgctgatcg ggcatttata aatcagttat 600

ttgctcagcg tagggattgt gatgagatta tgattatcaa acacggcaag gtgacggatt 660

gcagtttgg taatctggtg tttcgccaag gtgagcaatg gttcacgcca gatagccgt 720

tatTTTACGG cacacaacga gcctggattt tacaacaagg caaaattcaa gcccgttcca 780

tcttatttgcg agagatcgcg caatttgcgaa aaatttgcgtt aattaatgcg ctaaatccgc 840

tgtaaatTTT CCTTGAACAG CGTAAATAA AACAACTTT TCAGTCAGAT AAAAGGAGAT 900

aaacgac atg acg aaa gta att cat act gac aat gca cca gcc gcc att 949
 Met Thr Lys Val Ile His Thr Asp Asn Ala Pro Ala Ala Ile

1

5

10

ggt cct tat gta caa gcg gta gat tta ggt aat atg ctg tta acc tct 997
 Gly Pro Tyr Val Gln Ala Val Asp Leu Gly Asn Met Leu Leu Thr Ser
 15 20 25 30

ggg caa att cca gtg aat cca aaa acc ggt gaa gtg cca gcg gat atc 1045
 Gly Gln Ile Pro Val Asn Pro Lys Thr Gly Glu Val Pro Ala Asp Ile

35

40

45

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|---|------|-----|-----|---|------|---|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|--|------|---|------|---|------|--|------|--|------|--|------|---|------|---|------|--|------|--|------|--|------|---|------|---|------|---|------|--|------|---|------|---|------|---|------|--|------|---|------|---|------|---|------|---|------|
| gta gca caa gca cgt caa tcg tta gaa aac gtg aaa gcg att gtg gaa | 1093 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Val Ala Gln Ala Arg Gln Ser Leu Glu Asn Val Lys Ala Ile Val Glu | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 50 | 55 | 55 | 60 | caa gcg gga tta caa gtc gca aat atc gtg aaa acc acg gtg ttt gtg | 1141 | Gln Ala Gly Leu Gln Val Ala Asn Ile Val Lys Thr Thr Val Phe Val | | 65 | 70 | 70 | 75 | aaa gat tta aat gac ttt gca g.g gtc aat gcg gag tat gaa cgt ttc | 1189 | Lys Asp Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe | | 80 | 85 | 85 | 90 | ttt aaa gag aac aat cac cct agc ttc cct gct cgt tca tgt gtg gaa | 1237 | Phe Lys Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu | | 95 | 100 | 100 | 105 | 105 | 110 | gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 |
| 55 | 60 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| caa gcg gga tta caa gtc gca aat atc gtg aaa acc acg gtg ttt gtg | 1141 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Gln Ala Gly Leu Gln Val Ala Asn Ile Val Lys Thr Thr Val Phe Val | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 65 | 70 | 70 | 75 | aaa gat tta aat gac ttt gca g.g gtc aat gcg gag tat gaa cgt ttc | 1189 | Lys Asp Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe | | 80 | 85 | 85 | 90 | ttt aaa gag aac aat cac cct agc ttc cct gct cgt tca tgt gtg gaa | 1237 | Phe Lys Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu | | 95 | 100 | 100 | 105 | 105 | 110 | gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | |
| 70 | 75 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| aaa gat tta aat gac ttt gca g.g gtc aat gcg gag tat gaa cgt ttc | 1189 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Lys Asp Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 80 | 85 | 85 | 90 | ttt aaa gag aac aat cac cct agc ttc cct gct cgt tca tgt gtg gaa | 1237 | Phe Lys Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu | | 95 | 100 | 100 | 105 | 105 | 110 | gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | |
| 85 | 90 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ttt aaa gag aac aat cac cct agc ttc cct gct cgt tca tgt gtg gaa | 1237 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Phe Lys Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 95 | 100 | 100 | 105 | 105 | 110 | gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | | | | | | | | | |
| 100 | 105 | 105 | 110 | gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 105 | 110 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gtg gca cgt ttg ccg aaa gat gtg ggg att gaa atc gag gca atc gct | 1285 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Val Ala Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 115 | 120 | 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 120 | 125 | 125 | | gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | Val Lys Ala | | tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 125 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gta aaa gcc taatgaatacg cttgcattta tcttagtcgt agcaaaaacaa | 1334 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Val Lys Ala | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| tctctttca cttgctctct ccaaagcaag ttgataagtg atttttattt ggcgtttttc | 1394 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| tattgatacg caaaaaacgcc cttaactgat agagaataaa ctatgcaaaa tcaagtcatc | 1454 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gagattctac aataccgttt aaaaccacaa tcaggacaaa cgtttccacca aattatgcgt | 1514 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gagatcagtg ttccactcca taaacaacat gggattgatg tcattgcgtt tgaaattca | 1574 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ttacatgata ttgacagcta ttatattaatc cgtgcatttg agacagaaac caaattgcaa | 1634 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| cagcagctcg atgctttta tgccagtgtat gattggcgtg atggaccaag agaaaagtatc | 1694 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| attcgccctga ttgaaaggcag tttaaaatcg gtgatcatgc tcccacaca ggcaatccat | 1754 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gcactacgca accattatcc tcaataaaaat caacaaccgc acccaatcag tgcgttcatt | 1814 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ttttcttact ttttcagtgc taagggaaaa acaacgtatg tggacgttgt ttaatcaatt | 1874 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| tccaaacaca ttgcgcgata tcacaccaac tctcaatttc tgtttctaaa gaacgcagcg | 1934 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| caaccataaa cgcgataaaag aaactgacaa tcaaattcac cataccaatc aataacacga | 1994 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| acactaaacc ttgttataaac acatgccaag taaacgcgc actgatcgcc atatagcccc | 2054 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| aattcgcaga agaaaacgcc acatggcga tatctaacgg taaattaagc aaatacccgaa | 2114 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ctaaccctgt taaaccaagc aataaaccac aacacagatt tcccataatc gaaccgtaat | 2174 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| tatcatgcca gtattctgca aattttgtatc gcatattacg ggtcaacaga cggcgtaaaa | 2234 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| tagggtgatt tcttagtcgc attttttaagt tcaaataatt actacgatata tcaaataaac | 2294 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| cagaaataat cccagaaaag aataaccaga aacccgcaat ggccggaaac cataaggacc | 2354 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ctttcatcggt atcaaggat ttttgggtt aggcaatctc cgcgtcactc aataaagggtg | 2414 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| taccaacata atgttatacg ccttagcgca gcaaacaagc cacagaaatc gctaaagtga | 2474 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

cattacccaa gactgccact gtttgcgagc gaaaacacatc gatcagcagt tgagctaatt 2534
 gcagattaac ggatttgctt tgtccattat ccaccgttc tgcaaaacgt gctgca 2590

<210> 79
 <211> 129
 <212> PRT
 <213> Pasteurella multocida

<400> 79
 Met Thr Lys Val Ile His Thr Asp Asn Ala Pro Ala Ala Ile Gly Pro
 1 5 10 15

Tyr Val Gln Ala Val Asp Leu Gly Asn Met Leu Leu Thr Ser Gly Gln
 20 25 30

Ile Pro Val Asn Pro Lys Thr Gly Glu Val Pro Ala Asp Ile Val Ala
 35 40 45

Gln Ala Arg Gln Ser Leu Glu Asn Val Lys Ala Ile Val Glu Gln Ala
 50 55 60

Gly Leu Gln Val Ala Asn Ile Val Lys Thr Thr Val Phe Val Lys Asp
 65 70 75 80

Leu Asn Asp Phe Ala Ala Val Asn Ala Glu Tyr Glu Arg Phe Phe Lys
 85 90 95

Glu Asn Asn His Pro Ser Phe Pro Ala Arg Ser Cys Val Glu Val Ala
 100 105 110

Arg Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Lys
 115 120 125

Ala

<210> 80
 <211> 6642
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (463)..(1884)

<220>
 <223> yleA

<400> 80
 aaccaggctc agataagttt aattctggct atggaaagtg gaccaaattcc ttcatctcc 60
 caggtttcta aggcgcgata cgggcaaata cgagtatttt cgatatactg ccaagcacct 120
 agttgtttta agagattaac ggaagcaaca ctgatcgtag aaatgcgaag atcgtaaggc 180
 gaatttaggtt gaaactgtgg gagtggggcg tggatcgataa gctggacttg atgtccttgt 240
 ttacgtaagc caagcgacca ggctgcacca accatgccac cgccaaccac gatcatgtct 300
 ttttgatga cgtccatagg atttcccttt tctttttgtt acgtattcta ccgtcaatga 360

| | | | |
|---|-----|-----|------|
| Asp Gly Ile Asp Arg Leu Arg Phe Thr Thr Ser His Pro Ile Glu Phe | | | |
| 230 | 235 | 240 | |
| act gat gac att att gat gtg tac cgt gat acg cca gag ttg gtc agt | | | 1242 |
| Thr Asp Asp Ile Ile Asp Val Tyr Arg Asp Thr Pro Glu Leu Val Ser | | | |
| 245 | 250 | 255 | 260 |
| ttc tta cac tta cct gta caa agt ggt tct gat cgt gtg tta tct atg | | | 1290 |
| Phe Leu His Leu Pro Val Gln Ser Gly Ser Asp Arg Val Leu Ser Met | | | |
| 265 | 270 | 275 | |
| atg aaa cgc aat cat acg gca tta gaa tat aaa tcg att att cgg aag | | | 1338 |
| Met Lys Arg Asn His Thr Ala Leu Glu Tyr Lys Ser Ile Ile Arg Lys | | | |
| 280 | 285 | 290 | |
| tta aga gcg gtg cgt cca gag att caa att agc tca gat ttt att gtc | | | 1386 |
| Leu Arg Ala Val Arg Pro Glu Ile Gln Ile Ser Ser Asp Phe Ile Val | | | |
| 295 | 300 | 305 | |
| ggc ttc ccg ggc gaa aca gca gaa gat ttc gag caa acc atg aat tta | | | 1434 |
| Gly Phe Pro Gly Glu Thr Ala Glu Asp Phe Glu Gln Thr Met Asn Leu | | | |
| 310 | 315 | 320 | |
| att gca caa gta aat ttt gat atg agt ttc agc ttc att tat tca gca | | | 1482 |
| Ile Ala Gln Val Asn Phe Asp Met Ser Phe Ser Phe Ile Tyr Ser Ala | | | |
| 325 | 330 | 335 | 340 |
| cgt cca ggc acg cca gca gca gat atg cct gat gat gtg aca gaa gaa | | | 1530 |
| Arg Pro Gly Thr Pro Ala Ala Asp Met Pro Asp Asp Val Thr Glu Glu | | | |
| 345 | 350 | 355 | |
| gag aag aaa caa cgt tta tat gtg ttg caa caa cgc att aac aat caa | | | 1578 |
| Glu Lys Lys Gln Arg Leu Tyr Val Leu Gln Gln Arg Ile Asn Asn Gln | | | |
| 360 | 365 | 370 | |
| gcc gcg caa ttt agt cga gca atg tta ggc aca gaa cag cgc gtg tta | | | 1626 |
| Ala Ala Gln Phe Ser Arg Ala Met Leu Glu Thr Glu Gln Arg Val Leu | | | |
| 375 | 380 | 385 | |
| gtg gaa gga ccc tcg aaa aaa gat tta atg gaa ctc aca ggg cgt aca | | | 1674 |
| Val Glu Gly Pro Ser Lys Lys Asp Leu Met Glu Leu Thr Gly Arg Thr | | | |
| 390 | 395 | 400 | |
| gaa act aat cgt atc gtc aat ttt gtg ggc acg cct gat atg att ggg | | | 1722 |
| Glu Thr Asn Arg Ile Val Asn Phe Val Gly Thr Pro Asp Met Ile Gly | | | |
| 405 | 410 | 415 | 420 |
| aag ttt gtt gat atc aag atc acg gat gtg ttt act aac tca ctg cgt | | | 1770 |
| Lys Phe Val Asp Ile Lys Ile Thr Asp Val Phe Thr Asn Ser Leu Arg | | | |
| 425 | 430 | 435 | |
| ggc gaa gtc gtt aga act gaa gaa caa atg gga ctt cgc gtt gtt caa | | | 1818 |
| Gly Glu Val Val Arg Thr Glu Glu Gln Met Gly Leu Arg Val Val Gln | | | |
| 440 | 445 | 450 | |
| tcg cca caa atg gtg att aat cgt act cgt aaa gaa gat gaa ctc ggc | | | 1866 |
| Ser Pro Gln Met Val Ile Asn Arg Thr Arg Lys Glu Asp Glu Leu Gly | | | |
| 455 | 460 | 465 | |
| gtg gga cgt tat cac gcg tagtcgtgct atcccttcaa atatccaacc | | | 1914 |
| Val Gly Arg Tyr His Ala | | | |
| 470 | | | |

gctctcgagt ttctcaagag cggttatttt ttagaaaaa ttttgataa attgaccgct 1974
cttttattg ctcattta tgatagacag cgttttct gttattcatc gtatttctt 2034
ttatttcaact tcattaataa attattaaat ttcaattgct tatcaaattt gttttttt 2094
gcttttttc tatttatagc atggttattt tttatacaca catggcgat ttctccatat 2154
ttttacaaaa aactgtgact tcactctaac tattgttctc tcgtgcttta ctccattta 2214
taaggcggtt agtttagatc atgttgggg tacaacatat tttgagggtt tttgaagggtt 2274
gagtttattt tatagttgag gtatgtatc aaaaatttaa tcctagtata ttggcggtt 2334
ccatatcaag tctgctactc acatccacat tgaccttgg tcaaattccag caacaagata 2394
aagcactctt tgggtgtaaa gaacatcaag aaagcctact ctttcatcag agcttagtag 2454
aacaaggtt tgataatgtt ccaatttggc gcattccgtc tttattaaga aaaaaagacg 2514
gtgttataat tgccgccc gataagcggtt ggcaacacccg tgggtactgg ggcgatattt 2574
ataccgcaat ccgaatttagt catgatgtatc ggaaaacatc gggaaatattt acaacgattt 2634
tggatttgcc atcaaagaat gggaaaaat ccccatcagc accagatcct gtaacattca 2694
acgcgtgggg agatagacaa aattgtacaa cttactgtaa ttctgctttt ttgatcgatg 2754
ctcagatggt acaagataaa cgtaatggta gaattttttt agcagtttatc atgtttgccg 2814
atggagcagg ttttttttgtt gtaaaagaca gtggtaatgg gcgcattat attgatggta 2874
aacagtatcc tattttaaat gaaaagcaat cgggtcgaca ttgaaccctg ttttcttaac 2934
tctttcaattt gctcaacgtt caccggaaatc acgcggtaaa taaaagtcgg tttccagttt 2994
aaacccgggtt gaacaatagc gtgtattca ccaaaacgca tcaccacgcc acgttctgtt 3054
tctttgacag tataaaaacc gctaacgccc cagacaattt caccaatcac cgctgcaattt 3114
ggcaataattt taccaagattt taacgatcca ccagaatgct agttattgct tttaccgcca 3174
ttccctgaac cgcctaattt tttcagcaga ttattttttt tctttcaat attcagggtt 3234
gattgtctt gattgttttgc cttacgaccc gactggtttattt cattccaattt cggctgaccg 3294
ccttcattat caggacgctg actctcaggt tttttctgtc cgggtttgcc ccaaggatct 3354
tgatctgaac cggtcaatga cattacgttc tccatttgc taaaattttt tacttgcattt 3414
aacaattcc cacagtctaa acaaaatgtt ggattaagtc taacgaaact cgttactaaa 3474
tggggatattt ttttatgtattt taaagtgcgg ccaataaaaaa cgcacaatgg tctcattttt 3534
acggcttactt acctgactttt tgcctatcg ctttgcggcgtt catgtttttt cattcacctt 3594
ataataatgcgtgtgtt aggtgggttcc cgctaatattt cccctctgcc aagtaaaata 3654
gtgcacatct aagcactgtt tttgggttattt aaaaaaaagcc aagtaaaacg gcaagcggtt 3714
actaaagagg agttaactaa gtttctgtat gctagcgtac tattgactct tcttgcactt 3774
tgtttgggtt ttattgcggt gaatgaaacc ctacgtgttta tttctttgtt attgttggct 3834

tatttaagcg ttagccgagt attatggcg ctcgcgttgt tgggcgtgat catgaatttg 3894
agctattact attatcttctt gagtatccct ttattacata aatcttctt actcatggga 3954
gtaggcatcg ttctggcact agttacgttt gtttatcac gttataacaa ggcaccgcag 4014
gcaacattac aagctgaatc gcacaatacg tttcaaccac aaacaatgtt acgtaaaaaaa 4074
ctaggattca ctttggcact gacatgtttt attgcctttt ccacgaatta tactattcat 4134
aaatatgaag atatTTAAC gaatggtgag tcaattatTT taaaaacggc acccggtgat 4194
ccgcgttcct tgatgcaagg ggattatatg acgttgaact atgaaatctt ggcagacatt 4254
agtgaggaat ggggaaaaaaa tttagaagag gaaaaaacac agtattttgt ttatgcgttg 4314
ttaaaacgag acagcctagg gattgctacc ttgtgtcgcc ttgaaaccaa agcacctaca 4374
acatttgcg ggtgtacacc aaatatttac ttaccggta atgtcgat gtggtggccg 4434
cgTTTACCAA gtcaagacta ctttttgcc gagggaaaag gtgaatatta tgcacaagct 4494
gaatatgccg aatatcgctt taaaggggaa aaagcggtgt tgttccgctt actagataaa 4554
aatttAAAAG cattataaaa caaaaggccgg tagtgaaccg cctttatgtt gtatgcact 4614
tacttcaccg caatcattga gccaaaattt aagcattgaa accataattc cacttggta 4674
aaaccgactt cagctaaacg catTTATGG gcttgaatgc tgtctgtacg catcacattt 4734
tcaagtgcgg tgcgttttg gctgacttca agttcactgt atccattcgc gcgtttaat 4794
tgatgatgta aatcaatcaa caaggcattc atgTTTGTAT CTTCAAAATG aaatttctcg 4854
gatagtagcca agatcccatt cggtttaag ctttggtaaa tcttacttaa taaggctcga 4914
cgatTTTCAG gtggcagaaa ttgcaaagtg aaatttAAAAA ttaccatgaa ggcattttcg 4974
atTTcgatAT ggcgtatATC atcacaaaata atgtccacag gtattgtact ttgataggca 5034
ctaacatgct ggcgacaacg atcgaccatg ggttgcgttatg tatcaacacc aatgatctt 5094
acGCCGGGTT gattaatatg acgacgtgca gataatgtt ccgcaccgcg cgagcacccc 5154
agatcataga cgTTGCTATT CGCGTAACA aagcgtgatg ccaacatccc aatagcggta 5214
atgatgttgg catagccggg aatagagcgt tggatcatgt cgggaaagac ttcaagctacg 5274
ctttcatcaa aagtAAAATC ccccaatttA gcaatggggA gtcggaaataa gagtatctt 5334
tgtcataatg tattaaagac cgagaaaaAG tgcggcattt tttagaagaag ttgcaccta 5394
tcacaaaataa attatgattt cgggaaataaa tgcggcatgg cactttctt ttgtttaata 5454
cgcacgccta ggataagcaa ataaatgggt aatccaatca atgcggata ttttgcttgg 5514
cagaaaAGCG ataaaccaat taactcgggA ataatgtttA agaaataatt cgggtgacgt 5574
acgtatTTAA acaagaaaAGA gcggtaatg tgatgttccg gtaaaatgtt aagtttact 5634
gtccaaatct ctTTCAGTTC ataaatcaccg taaaatagca tggcgatcgc aaagactaaa 5694
atcgccagcc ctatTTGTGA ggtgcttattt aatgctgtgt tttgggttattt agcttcaatg 5754

atcgcggcga gataaaatac aacatggca atggataaca gcgtagaatt gcgtttacca 5814
 tattgtatttgc cacctttgc aatcaatgct ttttcatggc ggattgaaat agacagacta 5874
 taaaaacgga tcgctaaaat acaggaaaa gtgatattga taaataacat gtggttatcc 5934
 ttaacataat ttattccaa taaagtggcg taatataaca aaaaatccga tgatatggca 5994
 tggaaatacg cctttatccc gaacgttcat cgctttctt tttcttatt ggttgatttg 6054
 taagcataaaa taacctttt atctctctt gtttccgct ataattgagt gaatttttga 6114
 gcataattaa gagtacaaag gattttgaaa tgatgcgtac acattattgc ggtgcattaa 6174
 accgtgacaa tatcggacaa gaagtaacat tgagtggttt ggtgcacgt cgccgtgatt 6234
 taggtgggtt aatttttatt gatatgcgtg atcgtgaagg gattgtacaa gtgtgttcg 6294
 atccaatata tcaagaagca ctcaccacag cagcaagttt acgtaatgag tttgttattc 6354
 aaattaaagg cgaagtgatt gcccccccg ataatcaaat caacaaaaat atggcaacag 6414
 gcgaagtgga agtgttagca aaatccctgt ctatttataa cagcgcagag ccattacctc 6474
 tcgactttaa caaaaataat acggaagaac agcgtttaaa ataccgttat ttagacttac 6534
 gtcgcccaga aatggcgcaa cgttaaaaa cacgagccaa aattaccagc tttgtgegtc 6594
 gctttatgga cgaacatggt ttcttagata ttgaaacacc gatgttga 6642

<210> 81

<211> 474

<212> PRT

<213> Pasteurella multocida

<400> 81

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Thr | Gln | Lys | Leu | His | Ile | Lys | Thr | Trp | Gly | Cys | Gln | Met | Asn | Glu |
| 1 | | | | 5 | | | | | 10 | | | | 15 | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Asp | Ser | Ser | Lys | Met | Ala | Asp | Leu | Leu | Asn | Ser | Thr | His | Gly | Leu |
| | | | | | 20 | | | 25 | | | | 30 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Leu | Thr | Glu | Ile | Pro | Glu | Glu | Ala | Asp | Val | Leu | Leu | Leu | Asn | Thr |
| | | | | | 35 | | | 40 | | | | 45 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cys | Ser | Ile | Arg | Glu | Lys | Ala | Gln | Glu | Lys | Val | Phe | His | Gln | Leu | Gly |
| | | | | | 50 | | | 55 | | | 60 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Trp | Lys | Glu | Leu | Lys | Lys | His | Lys | Pro | Gly | Leu | Val | Ile | Gly | Val |
| 65 | | | | | 70 | | | | 75 | | | 80 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Gly | Cys | Val | Ala | Ser | Gln | Glu | Gly | Glu | His | Ile | Arg | Thr | Arg | Ala |
| | | | | | 85 | | | 90 | | | 95 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Tyr | Val | Asp | Ile | Ile | Phe | Gly | Pro | Gln | Thr | Leu | His | Arg | Leu | Pro |
| | | | | | 100 | | | 105 | | | 110 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Met | Ile | Asn | Gln | Ile | Arg | Gly | Gly | Lys | Ser | Ser | Val | Val | Asp | Val |
| | | | | | 115 | | | 120 | | | 125 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Phe | Pro | Glu | Ile | Glu | Lys | Phe | Asp | Arg | Leu | Pro | Glu | Pro | Arg | Ala |
| | | | | | 130 | | | 135 | | | 140 | | | | |

Glu Gly Pro Thr Ala Phe Val Ser Ile Met Glu Gly Cys Asn Lys Tyr
 145 150 155 160
 Cys Ser Phe Cys Val Val Pro Tyr Thr Arg Gly Glu Glu Val Ser Arg
 165 170 175
 Pro Val Asp Asp Val Leu Phe Glu Ile Ala Gln Leu Ala Glu Gln Gly
 180 185 190
 Val Arg Glu Val Asn Leu Leu Gly Gln Asn Val Asn Ala Tyr Arg Gly
 195 200 205
 Ala Thr His Asp Asp Gly Ile Cys Thr Phe Ala Glu Leu Leu Arg Leu
 210 215 220
 Val Ala Ala Ile Asp Gly Ile Asp Arg Leu Arg Phe Thr Thr Ser His
 225 230 235 240
 Pro Ile Glu Phe Thr Asp Asp Ile Ile Asp Val Tyr Arg Asp Thr Pro
 245 250 255
 Glu Leu Val Ser Phe Leu His Leu Pro Val Gln Ser Gly Ser Asp Arg
 260 265 270
 Val Leu Ser Met Met Lys Arg Asn His Thr Ala Leu Glu Tyr Lys Ser
 275 280 285
 Ile Ile Arg Lys Leu Arg Ala Val Arg Pro Glu Ile Gln Ile Ser Ser
 290 295 300
 Asp Phe Ile Val Gly Phe Pro Gly Glu Thr Ala Glu Asp Phe Glu Gln
 305 310 315 320
 Thr Met Asn Leu Ile Ala Gln Val Asn Phe Asp Met Ser Phe Ser Phe
 325 330 335
 Ile Tyr Ser Ala Arg Pro Gly Thr Pro Ala Ala Asp Met Pro Asp Asp
 340 345 350
 Val Thr Glu Glu Lys Lys Gln Arg Leu Tyr Val Leu Gln Gln Arg
 355 360 365
 Ile Asn Asn Gln Ala Ala Gln Phe Ser Arg Ala Met Leu Gly Thr Glu
 370 375 380
 Gln Arg Val Leu Val Glu Gly Pro Ser Lys Lys Asp Leu Met Glu Leu
 385 390 395 400
 Thr Gly Arg Thr Glu Thr Asn Arg Ile Val Asn Phe Val Gly Thr Pro
 405 410 415
 Asp Met Ile Gly Lys Phe Val Asp Ile Lys Ile Thr Asp Val Phe Thr
 420 425 430
 Asn Ser Leu Arg Gly Glu Val Val Arg Thr Glu Glu Gln Met Gly Leu
 435 440 445
 Arg Val Val Gln Ser Pro Gln Met Val Ile Asn Arg Thr Arg Lys Glu
 450 455 460
 Asp Glu Leu Gly Val Gly Arg Tyr His Ala
 465 470

<210> 82
 <211> 4835
 <212> DNA
 <213> Pasteurella multocida

<220>
 <221> CDS
 <222> (407) .. (1156)

<220>
 <223> yojB

<400> 82
 gtcaacgacg gggcggtct tagaacattg gcatacgggt acgatgacac gccgtgtccc 60
 agagctccat cgctccttcc caaataactt ggtttggatg caccattag atgcgaaaaaa 120
 acgtggttta cgtcatggcg ataaagtcaa gatcagctca cgtcgtggcg aaatgatttc 180
 tcacttagat acccgtggac gtaataaagt cccacaaggc ttagttaca ccactttctt 240
 ttagatgcaggc cagtttagcaa actatctcac tttagatgcg acagacccaa tttcaaaaaga 300
 aacggacttc aaaaaatgtg cggtaaaagt ggaaaaagcg taacacgtta aatttaatga 360
 ggaacgaccg cactttgctt tcagtaaaagt gcgggttggaa agtcga atg aaa aza 415
 Met Lys Lys
 1

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aca | gtt | gtg | aat | cct | gaa | cgt | cgt | cga | ttt | ttt | aaa | gag | gct | acg | cgc | 463 |
| Thr | Val | Val | Asn | Pro | Glu | Arg | Arg | Arg | Phe | Phe | Lys | Glu | Ala | Thr | Arg | |
| 5 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | 15 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| act | gca | ggc | ggg | ttg | gca | ggg | gtg | act | ttg | ctc | ctt | ggt | ttg | caa | caa | 511 |
| Thr | Ala | Gly | Gly | Leu | Ala | Gly | Val | Thr | Leu | Leu | Leu | Gly | Leu | Gln | Gln | |
| 20 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | 35 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aag | cag | agt | ctt | gct | cgc | gaa | ggc | gtg | gct | tta | cgc | cca | cct | ttt | gcc | 559 |
| Lys | Gln | Ser | Leu | Ala | Arg | Glu | Gly | Val | Ala | Leu | Arg | Pro | Pro | Phe | Ala | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | 40 | |
| | | | | | | | | | | | | | | | 45 | |
| | | | | | | | | | | | | | | | 50 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ctt | gag | aat | gag | aaa | gct | ttt | tct | gct | gct | tgc | att | cgt | tgt | ggt | cag | 607 |
| Leu | Glu | Asn | Glu | Lys | Ala | Phe | Ser | Ala | Ala | Cys | Ile | Arg | Cys | Gly | Gln | |
| 55 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | 60 | |
| | | | | | | | | | | | | | | | 65 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tgt | gta | caa | gcc | tgt | cca | cat | gag | atg | ttg | cat | ctt | gcc | tca | ctg | att | 655 |
| Cys | Val | Gln | Ala | Cys | Pro | His | Glu | Met | Leu | His | Leu | Ala | Ser | Leu | Ile | |
| | | | | | | | | | | | | | | | 70 | |
| | | | | | | | | | | | | | | | 75 | |
| | | | | | | | | | | | | | | | 80 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tca | ccg | atg | gaa | gca | ggt | aca | ccg | tat | ttc | att | gct | cgc | gat | aag | ccc | 703 |
| Ser | Pro | Met | Glu | Ala | Gly | Thr | Pro | Tyr | Phe | Ile | Ala | Arg | Asp | Lys | Pro | |
| | | | | | | | | | | | | | | | 85 | |
| | | | | | | | | | | | | | | | 90 | |
| | | | | | | | | | | | | | | | 95 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tgt | gaa | atg | tgt | gtg | gat | att | cct | tgt | gca | aaa | gcc | tgc | cca | acc | ggt | 751 |
| Cys | Glu | Met | Cys | Val | Asp | Ile | Pro | Cys | Ala | Lys | Ala | Cys | Pro | Thr | Gly | |
| 100 | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | 105 | |
| | | | | | | | | | | | | | | | 110 | |
| | | | | | | | | | | | | | | | 115 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gca | ttg | gat | aat | caa | gca | aca | gaa | atc | gat | gat | gct | cgt | atg | ggg | tta | 799 |
| Ala | Leu | Asp | Asn | Gln | Ala | Thr | Glu | Ile | Asp | Asp | Ala | Arg | Met | Gly | Leu | |
| | | | | | | | | | | | | | | | 120 | |
| | | | | | | | | | | | | | | | 125 | |
| | | | | | | | | | | | | | | | 130 | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gct | gtc | ctg | cta | gat | cat | gaa | act | tgt | ctg | aac | tgg | caa | ggt | tta | cgc | 847 |
| Ala | Val | Leu | Asp | His | Glu | Thr | Cys | Leu | Asn | Trp | Gln | Gly | Leu | Arg | | |

accgatggtg ccacacgcga cgaaaaacta tcaggtgacg aaaaatatca accaatgttt 2266
aacttgcata gccccagaag cctcacgtgt tactggtgca acacgcatac gtccaaaccca 2326
ctttatggat cgtatggta acattgtcg aggacacctca cctcgccgtt acttctgttt 2386
acaatgccat gtctctcaat ctgatgtga gccgattatt caaaatgaat taaaaccgat 2446
ggctggtttt gtaaataaag ttaaggacgg aactatgtt aacttaatta aacgctttt 2506
gaaatggttt cgctcgccca gtcgtattgc cgttggtacc ttgattaccc ttgctttat 2566
tgcaggtatt gtctcttggg ttgggtttaa ttatggctta gagcaaacca atacagagga 2626
attctgtgtt agttgtcaca gtaatgatgt gtatccagaa tatttacata cggcgcatta 2686
tttaaatcgc agtggagtaa aagccacttg tcctgattgc catgtaccgc acgaatttat 2746
tccaaaaatg atccgtaaag tccaagccag tcgagaagtg tatgcgcata ttatgggtta 2806
tacggatacc attgataaaat ttaactcccg tcgtttgcata atggcagaac gtgaatgggc 2866
acgattaaaa gccaataact cgcaggaatg ccgttaactgc cataactttg agaatatgga 2926
tttagtcag caaaaaacgg tggcgaaaaa aatgcatacata cttgctataa aagaagaaaa 2986
aacctgtatt gactgtcaca aaggattgc gcaccaatta ccggatatac gcggtgttga 3046
gtcgggtttt agtacggaac aaaaataaca ctttcttgc tctcccacag gaaatctgca 3106
tcgtattcag gtgcagattt ttttattttt acgatcatcc tcacaacctt ttgcgtata 3166
aataggatac aacgcttagct acacgcatac ttgctgttt ttgtgtgtt gtgagggatt 3226
atgtcatctt atctgcctct tttattacgt ttgttacaaa ttccgcgtt gggttcgctg 3286
gcgatccagc gtttatttgc gcacatcagt ccagcgaaat taatggata tgataaaaa 3346
gccttcaac agataggctg gacggcacag cagattcago gttggtttac gcctgagaac 3406
cgttatattg atccgcgtt agcctggta aacgaacaac aacatattgt ggattggttt 3466
gatcctcatt atcctccctt gttaaagcaa acagaagagg caccactgt cttgtttgt 3526
aaagggaaag tggctacgct atctgcacag caagtggcga tcgtggcag tcgtcattgt 3586
tcacgttatg gggataactg ggcaattat ttgcactc aactggctta tgccatatt 3646
gtgggtgacca gtggtttagc gttaggtatt gatggtttct cacatcaagc ggtagtggat 3706
atccacggga agacgattgc agtatttaggc agtggtttag aggtcattta tccaaaaaaa 3766
caccgaggta tagccaaaaa aattattgaa catcaaggtg cgtagtgc tgaattttta 3826
cccttccaac cccctgtggc agaaaatttt ccacgtcgta atcgcattat tagtggttta 3886
tctttggga cattagtcata tgaagccata gaaaacagtg gttcttaat tactgcccgc 3946
tatgcatttag agcaaaatcg agatgtttt gcgttaccgg ggcagattca gcatggattt 4006
agccaaaggta gtcataaact gattaaacag gggcaatat tagtcgaaag tattcaggat 4066
attttagaaac atctctcgcc ttattcgcata tgcgttgc cagcgttgc tcgtacggag 4126

aacgcctttt ctcaacaagt aacagacaca tcaaccatca atactgcgca gataacgcc 4186
gaacatccgg aattatatgc caaaaattggc tatatgcccc tcagtattga tgtattagcc 4246
caacaagtca atctacctat tgataacctta ttagtacagc ttttaacctt ggaattgcaa 4306
gacttgattg ttgctgaaaa tggattatat cagcgcaaat aacggaaaga gtaaccacaa 4366
atgagaaaagg actgtgttga aacggctatc aacatcagtc cttgcagttt attatctcat 4426
atgacacgag acggcagttt catgagatta atagagacta aacgcttgc aatacggtag 4486
tttgcctcgt tgttagcattt tctcaatatt gcctttgtga tcatacagac ctaagcctcg 4546
tagctcaata ttgataccaa tactttgtc ataaaaaaatt tgattgcgg tttggtttcc 4606
tttgcgtggc acactacgac gggcaccaac attaatcgcc caacagcaag tgctgtattc 4666
tagtccccaaa tattgctcaa caggcttct caacgcaaga tcttgataat gacgtgctac 4726
caccgcccatt tgatccgtga gtgcggatgc cacagttaga ccaagctgtt ttatgtcttgc 4786
tccgttagccgg ttccggcgctg aggtgagggtt ttggctcaata tattgttgc 4835

Val Phe Ile Pro Thr Val His Ser Glu Ala Cys Thr Gly Cys Gly Lys
 180 185 190

Cys Glu Glu Ala Cys Val Leu Glu Glu Ala Ala Ile Lys Val Leu Pro
 195 200 205

Met Ala Leu Ala Lys Gly Met Leu Gly Lys His Tyr Arg Leu Gly Trp
 210 215 220

Glu Glu Lys Glu Lys Ala Gly His Ser Leu Ala Pro Glu Gly Ile Ile
 225 230 235 240

Ser Leu Pro Thr Arg Leu Pro Glu Ser Leu
 245 250

<210> 84

<211> 3494

<212> DNA

<213> Pasteurella multocida

<220>

<221> CDS

<222> (2411)..(2719)

<220>

<223> yyAM

<400> 84

gtcaacgatc cgaatacgac ggaagaaaac tatatgcaga tcatttatgg caagactgcg 60

cgtctattcg aagctgcgac gcattgcgcc gcgatacttg ctcatgcgac ggaagccaa 120

aaaaatgctt tacgcgataa tggttttat cttaggcacag ctttcaatt agtcgatgtat 180

attttagatt atagtgcaga tgcaaaagca ctccggaaaa atattggta tgattnagcg 240

gaaggtaaac caacattacc gttattacac gccatgcac acggcaatcc agcacaagca 300

aaattgattc gcgaagcgat tgagcaaggg ggtaagcgat atattttaga ggatgtactg 360

acaattatga cagaacataa atccctcgac tatgcgatga tgcgcgctaa acaagaagca 420

caaaaagccg ttgatgcgat tgcattatttgc cctgaaaatg aatataaaca agcgtaatt 480

tcattagctt acttatccgt cgatcgct tatattacc ttaataaggc gagacatgtt 540

agcgtaacga ccgcctaaag tgcggcatt tatattgaa ttttaaacac gacaatgaca 600

gaacaaaaca tccctacgaa aaaaacacgc aaaggcaaag atccctcacgc gcctttgtt 660

cgcgaaaaat tatccctacc aaatggcat aacaaattgt tattgcatttgc ttgttgtgc 720

ccttgctcg gagaagtaat ggaggcaatt catgcttcag gtattgaatt tactatttac 780

ttctacaacc caaacattca cccattaaaa gaatatctca ttcgtaaaga agaaaatatt 840

cgtttgcgg aaaaatgggg cattccgttt attgatgcgcg attatgatcg tcaagaatgg 900

tttgaccgtg ccaaaggcat ggaagatgag ccagagcgtg gtattcgatgc cactatgtgc 960

tttgatatgc gttttgaaaa agccgcagaa tatgcacaca acaatggttt ccccgatattt 1020

actagctgct taggtatttc acgttgaaa gacatgaacc aaatcaacgg ttgtggacac 1080
 cgtgccgcg aaaaatatga tcatgttagt tattggatt ataactggcg taaaggttgt 1140
 ggctcacaac gtatgattga aatcagtaag cgtgaacgtt tttaccagca agaatattgc 1200
 ggttgtgtt attcttgcg tgacacgaat aaatggcgtg aagcaaacgg acgccaaaaa 1260
 attgaaattg gcaaattgta ttattccgc gattaaaaca accaagtaaa ccatcgtgcc 1320
 gtcataaac atggcggcac ttttttaggc ttttatatgc caacgtttc gccaatctt 1380
 cgaacacctaa tgctaacgcc ttttcaactaa tatttatgc tggggcaaaa cgcaatacat 1440
 taggaccgc cactaaaatc attaagccat tatctgctgc tttttgaca aattcgtcg 1500
 ctcttcgtg atattgctcg ataagttctg caccaattaa caaaccttcg ccacggattt 1560
 cttaaataa gccacattgc tgattaattt ctgcagctt ttgcataaat ttttcagaag 1620
 tgcgctgaat ttttgcaag aatgggttgt ctgaaatgtat atcaatcact tttctgcca 1680
 cggcacaagc gagaggattt ccaccaaagg tggtccatg cagccaggt gaaaaacttt 1740
 tggcgatctc atgcgttgc aacgaatgag aaaattgtga cagattggc tccaacggga 1800
 cgtgcggatg agattgggaa tacgcaagta cgttatgaaa ttgagcaggt gagttctagc 1860
 aattatagt cactgtttgt ctccattta cagatgaaac gtaatgaggt ggtatttagt 1920
 ccacatttag cggataaaca acgttatagt tctgatcgct tgaaccaact tgggtgtcaa 1980
 ttagatgcgt cttatcgtaa acaagtccgt gatttgaata acagcggatt gatgccaatt 2040
 cagtctgtat tcggtacgga cagtaatggg cgtactgctc tcgtgtttagg cgcaccctt 2100
 aatcatgcgt ggacaaaact aggacaagtt ttaccgcgc ttgaatttga tattaaagat 2160
 gaaattatttgcgtt gtcgtgggtt aaggagttt aataaccgtc cagctggagc aaaaagttgg 2220
 tggtggccat ttggtcgtgc tgaaggcagt agcggactga aaacaggtac ctatttatg 2280
 cagttaaagcg ctttagggaa gcaaagtgcg gtggtgatga ccgatgatga tggcaatgcg 2340
 ttatctgggg agcaagctca ggcgttttat caagcattttt aaaaatctttt agcggaaataa 2400
 tacagtcaag atg act aaa ctc agt atc cag cga gat aac ttg att tgt 2449
 Met Thr Lys Leu Ser Ile Gln Arg Asp Asn Leu Ile Cys
 1 5 10

 ttg agt tat gtc gca tta atg gga ttc ggc ttt ccc att atg cgt tat 2497
 Leu Ser Tyr Val Ala Leu Met Gly Phe Gly Phe Pro Ile Met Arg Tyr
 15 20 25

 atg agt att cat ttt gat aca tta aat aat aac gct gtt cgc ttt ctc 2545
 Met Ser Ile His Phe Asp Thr Leu Asn Asn Ala Val Arg Phe Leu
 30 35 40 45

 tca ggg ggc agc gtt ttt att tta gcc tgt ttt tat tat cgc gct 2593
 Ser Gly Gly Ser Val Phe Ile Leu Ala Cys Phe Phe Tyr Tyr Arg Ala
 50 55 60

 gag tta aca tct tcg ggg gct ggc gtc cag tcc gtt gcg atg ttg ccg 2641

| | | | | | | | | | | | | | | | | |
|------------|-----------------------|-------------|-------------|------------|------------|-----------|------|-----|-----|----------|------------|-----|-----|-----|-----|------|
| Glu | Leu | Thr | Ser | Ser | Gly | Ala | Gly | Val | Gln | Ser | Val | Ala | Met | Leu | Pro | |
| 65 | | | | | | | | | | | | | 75 | | | |
| agt | tca | agt | tta | ggt | ttc | tta | ata | ttg | aaa | act | gta | cca | tct | ttt | tca | 2689 |
| Ser | Ser | Ser | Leu | Gly | Phe | Leu | Ile | Leu | Lys | Thr | Val | Pro | Ser | Phe | Ser | |
| 80 | | | | | | | | | | | | | 90 | | | |
| tac | gtt | aca | atc | tca | aca | ctt | aat | cgc | gtt | tgaccccg | atttttgata | | | | | 2739 |
| Tyr | Val | Thr | Ile | Ser | Thr | Leu | Asn | Arg | Val | | | | | | | |
| 95 | | | | | | | | | | | | | 100 | | | |
| gtcaaagact | actgagtaac | gctttagtc | gcgtgaatcg | actgttacat | aagccgat | at | 2799 | | | | | | | | | |
| gtcagaataa | gtactgccgg | tatatacgct | taatctaaga | ttaagcttgc | cactttgtt | | 2859 | | | | | | | | | |
| cgataaagcg | tcaaacgaaa | gcacgacttt | accgtccttgc | acttccacct | gatcttcaat | | 2919 | | | | | | | | | |
| gagcaattga | cttagtgcg | ccaatcgacc | gttggcagtc | agtgtcgaa | tgccgtgatc | | 2979 | | | | | | | | | |
| cgtatcaage | tttacaccgc | tat | tttcc | ccagtttta | ttgagcttt | cactatgtt | 3039 | | | | | | | | | |
| cagtaagttt | ctgccaccaa | tctgcaactg | attaaactta | gcttcaagcg | tttcaactt | | 3099 | | | | | | | | | |
| gactgcaagc | gacttgtttt | cattgtaac | cgtctgctca | agtgtgtga | ttttggatgt | | 3159 | | | | | | | | | |
| taaatctaac | ttagttgcat | tgacttcatc | agtccattct | gactttaact | ctttctcgc | | 3219 | | | | | | | | | |
| aagtgacgcc | acttcatctt | tgctagctt | cgtttttttt | aagtcagaaa | tgccactagt | | 3279 | | | | | | | | | |
| at | tttgcgc | actttagaat | cgagcgttc | tagtttgt | gagaaagatt | tgtctttt | 3339 | | | | | | | | | |
| gctagccgtt | tttgaatta | gctgtatttgc | actttcgctc | aatccaactc | tagcagttag | | 3399 | | | | | | | | | |
| actgtctagc | ttgtcagcag | tagatttatt | cacagtcgt | tgtgattgct | tgtgttgaat | | 3459 | | | | | | | | | |
| aatatccgcg | tttacttccg | agatagccac | gtcga | | | | 3494 | | | | | | | | | |
| <210> | 85 | | | | | | | | | | | | | | | |
| <211> | 103 | | | | | | | | | | | | | | | |
| <212> | PRT | | | | | | | | | | | | | | | |
| <213> | Pasteurella multocida | | | | | | | | | | | | | | | |
| <400> | 85 | | | | | | | | | | | | | | | |
| Met | Thr | Lys | Leu | Ser | Ile | Gln | Arg | Asp | Asn | Leu | Ile | Cys | Leu | Ser | Tyr | |
| 1 | | | | | | | | | | | | | | | 15 | |
| Val | Ala | Leu | Met | Gly | Phe | Gly | Phe | Pro | Ile | Met | Arg | Tyr | Met | Ser | Ile | |
| | | | | | | | | | | | | | | | | |
| 20 | | | | | | | | | | | | | | | 30 | |
| His | Phe | Asp | Thr | Leu | Asn | Asn | Ala | Val | Arg | Phe | Leu | Ser | Gly | Gly | | |
| | | | | | | | | | | | | | | | | |
| 35 | | | | | | | | | | | | | | 45 | | |
| Ser | Val | Phe | Ile | Leu | Ala | Cys | Phe | Phe | Tyr | Tyr | Arg | Ala | Glu | Leu | Thr | |
| | | | | | | | | | | | | | | | | |
| 50 | | | | | | | | | | | | | | 60 | | |
| Ser | Ser | Gly | Ala | Gly | Val | Gln | Ser | Val | Ala | Met | Leu | Pro | Ser | Ser | Ser | |
| | | | | | | | | | | | | | | | | |
| 65 | | | | | | | | | | | | | | 80 | | |
| Leu | Gly | Phe | Leu | Ile | Leu | Lys | Thr | Val | Pro | Ser | Phe | Ser | Tyr | Val | Thr | |
| | | | | | | | | | | | | | | | | |
| 85 | | | | | | | | | | | | | | 95 | | |
| Ile | Ser | Thr | Leu | Asn | Arg | Val | | | | | | | | | | |

100

<210> 86
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 86
aggccggta cggccgcct

19

<210> 87
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 87
cggccggta cggcctagg

19

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 88
catggtaccc attctaac

18

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 89
ctaggtacct acaacctc

18

<210> 90
<211> 119
<212> DNA
<213> Artificial Sequence

<220>
<221>
<222>
<223> Description of Artificial Sequence: transposon
insert

<220>

```
<221> misc_feature
<222> 25
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 27
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 29
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 31
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 33
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 35
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 37
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 39
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 41
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 43
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 45
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 47
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 49
<223> N = A or T or G or C
```

```
<220>
<221> misc_feature
<222> 51
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 53
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 55
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 57
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 59
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 61
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 63
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 65
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 67
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 69
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 71
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 73
<223> N = A or T or G or C
```

```
<220>
<221> misc_feature
<222> 75
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 77
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 79
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 81
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 83
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 85
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 87
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 89
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 91
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 93
<223> N = A or T or G or C

<400> 90
ctaggtacct acaacacctaa gcttnknknk nknknknknk nknknknknk nknknknknk 60
nknknknknk nknknknknk nknknknknk nknkaagctt ggtagaatg ggtaccatg 119

<210> 91
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
```

<400> 91
tacctacaac ctcaagct 18

<210> 92
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 92
taccatttct aaccaagc 18

<210> 93
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 93
tacctacaac ctcaagctt 19

<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 94
taccatttct aaccaagctt 20

<210> 95
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 95
ggcagagcat tacgctgac 19

<210> 96
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 96
gtaccggcca ggcggccacg cgtattc 27

<210> 97
<211> 531
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> atpG

<400> 97
tggtagttt ggttagtag ggtaacagg cgttagctt tacaaaatc taggctaaa 60
cgttagatct caagtaacgg gattaggcga taatccggaa atggAACGTA tcgtgggcgc 120
atgttatgaa atgatatacg cgtccgaaa cggagaagtg gatcggttt acgtcgctt 180
caaccgtttt gaaaatacga tgcacaaaa acctgttac gcacagttac ttccgttacc 240
taaactatgat gacgatgaat tagatacgaa aggttcatgg gattatattt atgaaccgaa 300
tccacaagtt ttattggata gtttacttgt tcgttattta gaaactcagg tataccaagc 360
agttgtatgat aaccttagctt ctgaaacaagc cgctcgatg gtacgtatg aagccgcaac 420
agataatgctt ggtacattaa tcgatgaatt acaatttagtg tataacaaag ctcgccaagc 480
aagcattaca aatgaattaa acgaaattgt tgccgtgcc gcagcaattt a 531

<210> 98
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
<400> 98
tctccattcc cttgctgcgg caccc 25

<210> 99
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer
<400> 99
ggattacagc cggatccggg 20

<210> 100
<211> 1034
<212> DNA
<213> *Pasteurella multocida*

<220>
<223> cap5E

<220>
<221> CDS
<222> (1)..(1032)

| | | | | |
|---|-----|-----|-----|-----|
| <400> | 100 | | | |
| atg ttt aaa aat aaa aca ctt tta att aca ggt gga acg ggt tct ttt | | | | 48 |
| Met Phe Lys Asn Lys Thr Leu Leu Ile Thr Gly Gly Thr Gly Ser Phe | | | | |
| 1 | 5 | 10 | 15 | |
| ggt aat gct gta ctc aaa cgt ttc tta gaa aca gat att cga gaa att | | | | 96 |
| Gly Asn Ala Val Leu Lys Arg Phe Leu Glu Thr Asp Ile Arg Glu Ile | | | | |
| 20 | 25 | 30 | | |
| cgt gtt ttt tcg cgt gat gag aag aaa caa gat gac atg cgg aaa aaa | | | | 144 |
| Arg Val Phe Ser Arg Asp Glu Lys Lys Gln Asp Asp Met Arg Lys Lys | | | | |
| 35 | 40 | 45 | | |
| tat aat gat gca aaa tta aaa ttt tat att ggc gat gtt cgt gac tac | | | | 192 |
| Tyr Asn Asp Ala Lys Leu Lys Phe Tyr Ile Gly Asp Val Arg Asp Tyr | | | | |
| 50 | 55 | 60 | | |
| gat agt att tta aat gcc tcg cga ggt gtt gac tat att tat cat gct | | | | 240 |
| Asp Ser Ile Leu Asn Ala Ser Arg Gly Val Asp Tyr Ile Tyr His Ala | | | | |
| 65 | 70 | 75 | 80 | |
| gcc gca tta aag caa gtg cct tca tgc gag ttt tat ccg tta gag gca | | | | 288 |
| Ala Ala Leu Lys Gln Val Pro Ser Cys Glu Phe Tyr Pro Leu Glu Ala | | | | |
| 85 | 90 | 95 | | |
| gtg aaa acc aat att tta ggt acg gca aat gtc tta gaa gcc gcc atc | | | | 336 |
| Val Lys Thr Asn Ile Leu Gly Thr Ala Asn Val Leu Glu Ala Ala Ile | | | | |
| 100 | 105 | 110 | | |
| caa aac cag ata aaa cgc gtc gtc tgt ctt agc aca gat aaa gcg gtg | | | | 384 |
| Gln Asn Gln Ile Lys Arg Val Val Cys Leu Ser Thr Asp Lys Ala Val | | | | |
| 115 | 120 | 125 | | |
| tac cca att aat gcg atg ggc att tct aaa gca atg atg gaa aaa gtc | | | | 432 |
| Tyr Pro Ile Asn Ala Met Gly Ile Ser Lys Ala Met Met Glu Lys Val | | | | |
| 130 | 135 | 140 | | |
| atc atc gca aaa tcg cgt aac cta gaa ggc aca cca acg aca atc tgt | | | | 480 |
| Ile Ile Ala Lys Ser Arg Asn Leu Glu Gly Thr Pro Thr Thr Ile Cys | | | | |
| 145 | 150 | 155 | 160 | |
| tgt act cgc tat ggc aat gtc atg gca tcg cgt ggt tcg gtt atc cca | | | | 528 |
| Cys Thr Arg Tyr Gly Asn Val Met Ala Ser Arg Gly Ser Val Ile Pro | | | | |
| 165 | 170 | 175 | | |
| tta ttt gtc gat caa ata cgt caa ggc aag cct ttt act att act gat | | | | 576 |
| Leu Phe Val Asp Gln Ile Arg Gln Gly Lys Pro Phe Thr Ile Thr Asp | | | | |
| 180 | 185 | 190 | | |
| cct gag atg aca cgc ttt atg atg aca ttg gaa gat gct gtg gat tta | | | | 624 |
| Pro Glu Met Thr Arg Phe Met Met Thr Leu Glu Asp Ala Val Asp Leu | | | | |
| 195 | 200 | 205 | | |
| gtc cta tat gca ttt aaa aat ggt caa aat ggt gat gtt ttt gta caa | | | | 672 |
| Val Leu Tyr Ala Phe Lys Asn Gly Gln Asn Gly Asp Val Phe Val Gln | | | | |
| 210 | 215 | 220 | | |
| aaa gcc ccc gca gca acc att ggt acc ctt gcc aaa gca att acc gaa | | | | 720 |
| Lys Ala Pro Ala Ala Thr Ile Gly Thr Leu Ala Lys Ala Ile Thr Glu | | | | |
| 225 | 230 | 235 | 240 | |
| tta tta tct gtc cca aat cac cct att tcc att ata ggt acg cgt cat | | | | 768 |
| Leu Leu Ser Val Pro Asn His Pro Ile Ser Ile Ile Gly Thr Arg His | | | | |

| 245 | 250 | 255 | |
|---|-----|-----|-----|
| gga gag aaa gca ttc gaa gct tta agc cgt gaa gaa atg gtt cat 816 | | | |
| Gly Glu Lys Ala Phe Glu Ala Leu Leu Ser Arg Glu Glu Met Val His | | | |
| 260 | 265 | 270 | |
| gca att aat gaa ggt aat tat tat cgc atc cca gcc gat caa cgc agt 864 | | | |
| Ala Ile Asn Glu Gly Asn Tyr Tyr Arg Ile Pro Ala Asp Gln Arg Ser | | | |
| 275 | 280 | 285 | |
| tta aat tac agt aaa tat gtc gaa aaa ggg gaa cca aaa att acc gaa 912 | | | |
| Leu Asn Tyr Ser Lys Tyr Val Glu Lys Gly Glu Pro Lys Ile Thr Glu | | | |
| 290 | 295 | 300 | |
| gtc acc gac tac aac tca cat aat act gag cgt ttg act gtc aag gaa 960 | | | |
| Val Thr Asp Tyr Asn Ser His Asn Thr Glu Arg Leu Thr Val Lys Glu | | | |
| 305 | 310 | 315 | 320 |
| atg aag cag tta ctg ctt aaa ctt gaa ttc ata cag aaa atg att gag 1008 | | | |
| Met Lys Gln Leu Leu Lys Leu Glu Phe Ile Gln Lys Met Ile Glu | | | |
| 325 | 330 | 335 | |
| ggt gaa tac atc tca ccg gag gta ta 1034 | | | |
| Gly Glu Tyr Ile Ser Pro Glu Val | | | |
| 340 | | | |
| <210> 101 | | | |
| <211> 344 | | | |
| <212> PRT | | | |
| <213> Pasteurella multocida | | | |
| <400> 101 | | | |
| Met Phe Lys Asn Lys Thr Leu Leu Ile Thr Gly Gly Thr Gly Ser Phe | | | |
| 1 | 5 | 10 | 15 |
| Gly Asn Ala Val Leu Lys Arg Phe Leu Glu Thr Asp Ile Arg Glu Ile | | | |
| 20 | 25 | 30 | |
| Arg Val Phe Ser Arg Asp Glu Lys Lys Gln Asp Asp Met Arg Lys Lys | | | |
| 35 | 40 | 45 | |
| Tyr Asn Asp Ala Lys Leu Lys Phe Tyr Ile Gly Asp Val Arg Asp Tyr | | | |
| 50 | 55 | 60 | |
| Asp Ser Ile Leu Asn Ala Ser Arg Gly Val Asp Tyr Ile Tyr His Ala | | | |
| 65 | 70 | 75 | 80 |
| Ala Ala Leu Lys Gln Val Pro Ser Cys Glu Phe Tyr Pro Leu Glu Ala | | | |
| 85 | 90 | 95 | |
| Val Lys Thr Asn Ile Leu Gly Thr Ala Asn Val Leu Glu Ala Ala Ile | | | |
| 100 | 105 | 110 | |
| Gln Asn Gln Ile Lys Arg Val Val Cys Leu Ser Thr Asp Lys Ala Val | | | |
| 115 | 120 | 125 | |
| Tyr Pro Ile Asn Ala Met Gly Ile Ser Lys Ala Met Met Glu Lys Val | | | |
| 130 | 135 | 140 | |
| Ile Ile Ala Lys Ser Arg Asn Leu Glu Gly Thr Pro Thr Thr Ile Cys | | | |
| 145 | 150 | 155 | 160 |

Cys Thr Arg Tyr Gly Asn Val Met Ala Ser Arg Gly Ser Val Ile Pro
 165 170 175
 Leu Phe Val Asp Gln Ile Arg Gln Gly Lys Pro Phe Thr Ile Thr Asp
 180 185 190
 Pro Glu Met Thr Arg Phe Met Met Thr Leu Glu Asp Ala Val Asp Leu
 195 200 205
 Val Leu Tyr Ala Phe Lys Asn Gly Gln Asn Gly Asp Val Phe Val Gln
 210 215 220
 Lys Ala Pro Ala Ala Thr Ile Gly Thr Leu Ala Lys Ala Ile Thr Glu
 225 230 235 240
 Leu Leu Ser Val Pro Asn His Pro Ile Ser Ile Ile Gly Thr Arg His
 245 250 255
 Gly Glu Lys Ala Phe Glu Ala Leu Leu Ser Arg Glu Glu Met Val His
 260 265 270
 Ala Ile Asn Glu Gly Asn Tyr Tyr Arg Ile Pro Ala Asp Gln Arg Ser
 275 280 285
 Leu Asn Tyr Ser Lys Tyr Val Glu Lys Gly Glu Pro Lys Ile Thr Glu
 290 295 300
 Val Thr Asp Tyr Asn Ser His Asn Thr Glu Arg Leu Thr Val Lys Glu
 305 310 315 320
 Met Lys Gln Leu Leu Lys Leu Glu Phe Ile Gln Lys Met Ile Glu
 325 330 335
 Gly Glu Tyr Ile Ser Pro Glu Val
 340

<210> 102
 <211> 4931
 <212> DNA
 <213> Pasteurella multocida

<220>
 <223> fhaB2

<220>
 <221> CDS
 <222> (1) .. (4929)

<220>
 <221> misc_feature
 <222> 1632
 <223> Xaa = any or unknown amino acid

<400> 102
 atg aac aaa aat cgt tac aaa ctc att ttt agt caa gtc aaa ggt tgt 48
 Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys
 1 5 10 15

ctc gtt cct gtg gca gaa tgt att aac tca gct att agc aat ggt tca 96
 Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser

| 20 | 25 | 30 | |
|--|------------|------------|-----|
| tct gat tca aca tcc aca tca gaa caa gtt gaa gag gaa cct ttc ctt
Ser Asp Ser Thr Ser Thr Ser Glu Gln Val Glu Glu Glu Pro Phe Leu | 35
40 | 45 | 144 |
| cta gaa caa tat tca ctt tcc tcc gtg tct tta tta gta aaa agc acg
Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr | 50
55 | 60 | 192 |
| ttc aat cct gtt tcg tat gca atg caa ttg act tgg aaa cag ctt tct
Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser | 65
70 | 75
80 | 240 |
| att tta ttt tta act gtg att tct gtt cct gtt ttg gct gag gga aaa
Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys | 85
90 | 95 | 288 |
| ggg gat gaa aga aat caa tta aca gtg att gat aat agc gat cat att
Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile | 100
105 | 110 | 336 |
| aaa tta gat gca tct aat ctt gct ggt aat gat aaa aca aaa atc tat
Lys Leu Asp Ala Ser Asn Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr | 115
120 | 125 | 384 |
| caa gca gaa aat aaa gtt ctg gtt att gat att gct aaa cca aat ggg
Gln Ala Glu Asn Lys Val Leu Val Ile Asp Ile Ala Lys Pro Asn Gly | 130
135 | 140 | 432 |
| aaa ggg att tca gat aac cgt ttt gaa aaa ttt aat att cca aat agc
Lys Gly Ile Ser Asp Asn Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser | 145
150 | 155
160 | 480 |
| gcg gtg ttt aat aat aat ggg act gaa gca cag gca aga tca aca tta
Ala Val Phe Asn Asn Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu | 165
170 | 175 | 528 |
| att ggt tac att ccg caa aat caa aat tta agg gga ggg aaa gaa gct
Ile Gly Tyr Ile Pro Gln Asn Gln Asn Leu Arg Gly Gly Lys Glu Ala | 180
185 | 190 | 576 |
| gat gtt ata tta aat caa gtg aca ggt cct caa gaa agt aaa att gtt
Asp Val Ile Leu Asn Gln Val Thr Gly Pro Gln Glu Ser Lys Ile Val | 195
200 | 205 | 624 |
| ggc gcg ctt gaa gta tta ggt aaa aaa gct gat atc gtc att gca aac
Gly Ala Leu Glu Val Leu Gly Lys Lys Ala Asp Ile Val Ile Ala Asn | 210
215 | 220 | 672 |
| caa aat ggt att acc tta aat ggt gta aga aca ata aat tca gat cgt
Gln Asn Gly Ile Thr Leu Asn Gly Val Arg Thr Ile Asn Ser Asp Arg | 225
230 | 235
240 | 720 |
| ttt gtt gcc act acg agt gag ctt ata gat ccg aat cag atg atg tta
Phe Val Ala Thr Thr Ser Glu Leu Ile Asp Pro Asn Gln Met Met Leu | 245
250 | 255 | 768 |
| aag gtt aca aaa gga aat gtg atc att gat att gat ggt ttt tcg aca
Lys Val Thr Lys Gly Asn Val Ile Ile Asp Ile Asp Gly Phe Ser Thr | 260
265 | 270 | 816 |
| gat gga tta aag tat tta gat att att gct aaa aaa att gaa caa aag | | | 864 |

| |
|------|
| Asp | Gly | Leu | Lys | Tyr | Leu | Asp | Ile | Ile | Ala | Lys | Ile | Glu | Gln | Lys | 275 | 280 | 285 | | |
| caa | tca | att | aca | tca | ggg | gat | aat | tca | gaa | gca | aaa | aca | gat | gtc | act | 290 | 295 | 300 | 912 |
| Gln | Ser | Ile | Thr | Ser | Gly | Asp | Asn | Ser | Glu | Ala | Lys | Thr | Asp | Val | Thr | | | | |
| ctt | att | gcg | ggt | tcc | agt | gaa | tat | gat | tta | agc | aaa | cat | gag | ctg | aaa | 305 | 310 | 315 | 960 |
| Leu | Ile | Ala | Gly | Ser | Ser | Glu | Tyr | Asp | Leu | Ser | Lys | His | Glu | Leu | Lys | | | | |
| aaa | acg | acg | ggt | gaa | aat | gta | tct | aat | gat | gtt | att | gct | atc | acg | gga | 325 | 330 | 335 | 1008 |
| Lys | Thr | Ser | Gly | Glu | Asn | Val | Ser | Asn | Asp | Val | Ile | Ala | Ile | Thr | Gly | | | | |
| tct | agt | aca | ggc | gca | atg | cat | ggt | aaa | aat | att | aag | ttg | att | gtg | aca | 340 | 345 | 350 | 1056 |
| Ser | Ser | Thr | Gly | Ala | Met | His | Gly | Lys | Asn | Ile | Lys | Leu | Ile | Val | Thr | | | | |
| gat | aaa | ggt | gca | ggc | gta | aaa | cat | gat | gga | att | att | ttg | tct | gaa | aat | 355 | 360 | 365 | 1104 |
| Asp | Lys | Gly | Ala | Gly | Val | Lys | His | Asp | Gly | Ile | Ile | Leu | Ser | Glu | Asn | | | | |
| gat | att | cag | att | gaa | atg | aat | gaa | ggt | gac | tta | gaa | ctt | ggc | aat | acg | 370 | 375 | 380 | 1152 |
| Asp | Ile | Gln | Ile | Glu | Met | Asn | Glu | Gly | Asp | Leu | Glu | Leu | Gly | Asn | Thr | | | | |
| att | cag | caa | aca | gtg | gta | aaa | aaa | gac | cga | aat | att | cga | gcc | aag | aaa | 385 | 390 | 395 | 1200 |
| Ile | Gln | Gln | Thr | Val | Val | Lys | Lys | Asp | Arg | Asn | Ile | Arg | Ala | Lys | Lys | | | | |
| aaa | att | gaa | gtg | aaa | aac | gct | aat | cgt | gtt | ttt | gtt | ggt | agt | caa | acg | 405 | 410 | 415 | 1248 |
| Lys | Ile | Glu | Val | Lys | Asn | Ala | Asn | Arg | Val | Phe | Val | Gly | Ser | Gln | Thr | | | | |
| aaa | tca | gat | gaa | att | tgc | tta | gag | gcg | aaa | caa | gtt | aaa | atc | aga | aaa | 420 | 425 | 430 | 1296 |
| Lys | Ser | Asp | Glu | Ile | Ser | Leu | Glu | Ala | Lys | Gln | Val | Lys | Ile | Arg | Lys | | | | |
| aac | gca | gag | att | agg | agt | acg | aca | caa | gcc | aaa | atc | gta | gca | aag | ggt | 435 | 440 | 445 | 1344 |
| Asn | Ala | Glu | Ile | Arg | Ser | Thr | Thr | Gln | Ala | Lys | Ile | Val | Ala | Lys | Gly | | | | |
| gcc | ctg | tct | att | gag | caa | aat | gcg | aag | ctc | gtc | gct | aaa | aag | ata | gat | 450 | 455 | 460 | 1392 |
| Ala | Leu | Ser | Ile | Glu | Gln | Asn | Ala | Lys | Leu | Val | Ala | Lys | Lys | Ile | Asp | | | | |
| gtg | gca | aca | gaa | act | cta | act | aat | gct | ggg | cgt | att | tat | gtt | cga | gag | 465 | 470 | 475 | 1440 |
| Val | Ala | Thr | Glu | Thr | Leu | Thr | Asn | Ala | Gly | Arg | Ile | Tyr | Gly | Arg | Glu | | | | |
| gtt | aag | ctt | gac | act | aat | ttg | att | aat | gat | aaa | gaa | att | tat | gct | | 485 | 490 | 495 | 1488 |
| Val | Lys | Leu | Asp | Thr | Asn | Asn | Leu | Ile | Asn | Asp | Lys | Glu | Ile | Tyr | Ala | | | | |
| gaa | cg | aaa | ttg | agt | att | ttg | acg | aaa | gga | aaa | gat | ctt | gaa | att | att | 500 | 505 | 510 | 1536 |
| Glu | Arg | Lys | Leu | Ser | Ile | Leu | Thr | Lys | Gly | Lys | Asp | Leu | Glu | Ile | Ile | | | | |
| caa | gat | aga | tat | ttg | tct | cca | ctg | atg | cgc | gta | aaa | agt | agt | gtc | cgc | 515 | 520 | 525 | 1584 |
| Gln | Asp | Arg | Tyr | Leu | Ser | Pro | Leu | Met | Arg | Val | Lys | Ser | Ser | Val | Arg | | | | |

| | |
|---|------|
| ttt tta ggc tct ccg ttt ttc tca ata tct ccg tcg atg ctc gca agc
Phe Leu Gly Ser Pro Phe Phe Ser Ile Ser Pro Ser Met Leu Ala Ser
530 535 540 | 1632 |
| ctt agt gca cag ttt aag cct ggt ttt gtg aat aag gga ctc att gaa
Leu Ser Ala Gln Phe Lys Pro Gly Phe Val Asn Lys Gly Leu Ile Glu
545 550 555 560 | 1680 |
| agt gcg ggg agt gca gaa tta act ttt aaa gaa aaa acc agt ttt tta
Ser Ala Gly Ser Ala Glu Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu
565 570 575 | 1728 |
| aca gag ggc aat aat ttt att aga gct aaa gat gcg tta act att aac
Thr Glu Gly Asn Asn Phe Ile Arg Ala Lys Asp Ala Leu Thr Ile Asn
580 585 590 | 1776 |
| gcc caa aat att gaa att gat aaa aat caa gat att caa ttg ggt gct
Ala Gln Asn Ile Glu Ile Asp Lys Asn Gln Asp Ile Gln Leu Gly Ala
595 600 605 | 1824 |
| aat ata acg ttg aat gtg gaa gaa aac ttt gtt aat cgt gca gga aca
Asn Ile Thr Leu Asn Val Glu Asn Phe Val Asn Arg Ala Gly Thr
610 615 620 | 1872 |
| ctg gca act ggt aaa aca ctg aca att aat acc gaa agt ggc agt att
Leu Ala Thr Gly Lys Thr Leu Thr Ile Asn Thr Glu Ser Gly Ser Ile
625 630 635 640 | 1920 |
| tac aat ctt ggt ggg aca tta ggt gct gga aaa tca tta aaa ctg act
Tyr Asn Leu Gly Gly Thr Leu Gly Ala Gly Lys Ser Leu Lys Leu Thr
645 650 655 | 1968 |
| gct aaa tca acg gaa gaa ggt atg gga aat att gtt aac caa gaa aac
Ala Lys Ser Thr Glu Glu Gly Met Gly Asn Ile Val Asn Gln Glu Asn
660 665 670 | 2016 |
| ggg tta ttc cat aca ctc ggt aat atg atg tta gaa gca gag cgt tct
Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu Arg Ser
675 680 685 | 2064 |
| gtt tat aat att ggc gat att tat gcg agt aaa aaa tta aca gtt cat
Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr Val His
690 695 700 | 2112 |
| act cat aat ttg att aat gat gtg cgt tta tct ggc aat gtg agt tat
Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn Val Ser Tyr
705 710 715 720 | 2160 |
| aag cct atc ggt tca agt cgt gat tat gat atc agt cgt gtt gcg gta
Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg Val Ala Val
725 730 735 | 2208 |
| cat ggt tgg cac aat aat gtt tat aag ctc aac tta aat ctg caa gaa
His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn Gln Glu
740 745 750 | 2256 |
| caa gat aaa acc gat att aaa gtt gtg aaa atg ggg gct atc cgt tct
Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala Ile Arg Ser
755 760 765 | 2304 |
| gat ggt gat ttt gac ttt aag gga ata aag gcg aca tca tca gaa tca
Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser Ser Glu Ser
770 775 780 | 2352 |

| | | |
|---|------|------|
| aaa ccg cag tta att aat cat gga tta att aat gtc aaa gga aca ttt | | 2400 |
| Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys Gly Thr Phe | | |
| 785 | 790 | 795 |
| | | 800 |
| aat gcg gaa gct gat caa gtg gtg aac caa atg aaa gcg ttt aac caa | | 2448 |
| Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala Phe Asn Gln | | |
| 805 | 810 | 815 |
| aat gca tta gca agc gtg ttt aag aat cca gcg aaa atc acg atg tac | | 2496 |
| Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile Thr Met Tyr | | |
| 820 | 825 | 830 |
| tat caa cca ctt act cgt tat att tgg aca cca tta tcg ggt aat gca | | 2544 |
| Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser Gly Asn Ala | | |
| 835 | 840 | 845 |
| tcg cgt gaa ttt aac aat tta gag tct ttc ctc gat gcc ttg ttt ggc | | 2592 |
| Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala Leu Phe Gly | | |
| 850 | 855 | 860 |
| tca aca aca atc tta aaa tca agt ttc tat agt acg gaa aat ttt agt | | 2640 |
| Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu Asn Phe Ser | | |
| 865 | 870 | 875 |
| | | 880 |
| gct tat cag ctt cta tct cat att cag cat tca cca atg tac caa aaa | | 2688 |
| Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met Tyr Gln Lys | | |
| 885 | 890 | 895 |
| gcg atg gca caa gtg ttt ggt gca gag tgg cat agt aaa tcc tat gat | | 2736 |
| Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys Ser Tyr Asp | | |
| 900 | 905 | 910 |
| gag atg cga aac aaa tgg aaa agc ttt aaa gaa aat cca aca gat ttc | | 2784 |
| Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro Thr Asp Phe | | |
| 915 | 920 | 925 |
| att tat tac cca tca gaa aaa gca aaa atc cta gcg gga aaa cta gaa | | 2832 |
| Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly Lys Leu Glu | | |
| 930 | 935 | 940 |
| ggt aag ctt aca acg cta caa aat ggt gaa tat gcc gaa cgt ggt aag | | 2880 |
| Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu Arg Gly Lys | | |
| 945 | 950 | 955 |
| | | 960 |
| ttt gat gag agt atc caa att ggt aaa cac caa tta tcg cta cca tca | | 2928 |
| Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser Leu Pro Ser | | |
| 965 | 970 | 975 |
| gta gag ctt aaa gcg gag ttt agt gat aaa gaa cgt ttg gaa gag gac | | 2976 |
| Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu Glu Glu Asp | | |
| 980 | 985 | 990 |
| ggg gta gat tta tcc tcg atc gcc gaa ctc tta gaa atg cca aac tta | | 3024 |
| Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met Pro Asn Leu | | |
| 995 | 1000 | 1005 |
| ttt att gat aat agt atc caa tta gaa aag aaa aag ttg tct cct att | | 3072 |
| Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Lys Leu Ser Pro Ile | | |
| 1010 | 1015 | 1020 |
| gag gat cta gat gaa gaa cca cgt aaa aat ctg gat ata gaa gaa agc | | 3120 |
| Glu Asp Leu Asp Glu Glu Pro Arg Lys Asn Leu Asp Ile Glu Glu Ser | | |
| 1025 | 1030 | 1035 |
| | | 1040 |

| | |
|---|------|
| cat tct aat tca tcg gat gac gtg ctt agc atg aat gat gat gag tct | 3168 |
| His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp Asp Glu Ser | |
| 1045 1050 1055 | |
| gat aca gac gat agc aag tgg agt atg ggc aat gat gag aaa gag atg | 3216 |
| Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu Lys Glu Met | |
| 1060 1065 1070 | |
| ccc gat gat aag ctg ggt ata agt cgt gat gat cgt gga aat aaa cca | 3264 |
| Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn Lys Pro | |
| 1075 1080 1085 | |
| cct cgt act gat cct aca gtt gat tat ctt aac cct gat gaa ttc ttt | 3312 |
| Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu Phe Phe | |
| 1090 1095 1100 | |
| gaa aat ggt tat ctc ttg aat gag cta cta cag gag ctt gga gaa gag | 3360 |
| Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly Glu Glu | |
| 1105 1110 1115 1120 | |
| ccg tta cta aaa gaa ggg gaa gat cat ttt aaa cgt tct acc aat cta | 3408 |
| Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr Asn Leu | |
| 1125 1130 1135 | |
| gtc cgt cta ggc gag aga gat agg caa aat aga gaa aag aga gaa aaa | 3456 |
| Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys Arg Glu Lys | |
| 1140 1145 1150 | |
| gag ggg tat ttt gat ctg cct ggt aca tta gat atg aaa ctg cag gag | 3504 |
| Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys Leu Gln Glu | |
| 1155 1160 1165 | |
| tta ttc gaa aaa aga aaa caa aaa cac gaa gca gaa cag aaa gca aga | 3552 |
| Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys Ala Arg | |
| 1170 1175 1180 | |
| ata gaa aaa gca ctt cta caa aaa tca gaa caa caa gaa aaa cgt gtt | 3600 |
| Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu Lys Arg Val | |
| 1185 1190 1195 1200 | |
| gaa gaa cgt aag caa gag gaa aaa cgt caa gcg caa gat aaa att gct | 3648 |
| Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys Ile Ala | |
| 1205 1210 1215 | |
| aag caa gta gaa att gca aaa gaa atg caa cgg gta gaa gaa att cgc | 3696 |
| Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu Ile Arg | |
| 1220 1225 1230 | |
| cag aga gaa aaa caa ctt gcg atc caa ctg caa gaa gaa gag aag aaa | 3744 |
| Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu Lys Lys | |
| 1235 1240 1245 | |
| caa caa gaa gaa aaa cat tta tcc gag gag aaa aaa caa gct gaa cag | 3792 |
| Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln Ala Glu Gln | |
| 1250 1255 1260 | |
| aaa caa aaa gct gag gag aaa gtt gca caa gaa aga tta gac att gaa | 3840 |
| Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Asp Ile Glu | |
| 1265 1270 1275 1280 | |
| caa cag aaa gcg tat gaa gaa atg gcg aag cga gag gca gag gca tca | 3888 |
| Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu Ala Ser | |
| 1285 1290 1295 | |

| | |
|---|------|
| aaa aat gtt tta ttg aaa gcg att gat gaa gaa cgt cca aaa gtg gaa | 3936 |
| Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro Lys Val Glu | |
| 1300 1305 1310 | |
| act gat cca ctt ttc cgt aca aaa ttg aaa tat atc aat caa gat gac | 3984 |
| Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn Gln Asp Asp | |
| 1315 1320 1325 | |
| tat gct ggt gca aat tat ttc ttc aat aaa gtt ggt tta aat aca aaa | 4032 |
| Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu Asn Thr Lys | |
| 1330 1335 1340 | |
| ggt cat caa aaa gta aat gtg tta ggg gat aac tat ttt gat cat caa | 4080 |
| Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe Asp His Gln | |
| 1345 1350 1355 1360 | |
| gtg att act cgc tcg att gag aaa aaa gta gat aac cac ctt aac caa | 4128 |
| Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His Leu Asn Gln | |
| 1365 1370 1375 | |
| aaa tac aat ctc agc gat gtg gaa tta gtt aaa cag ctg atg gac aat | 4176 |
| Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu Met Asp Asn | |
| 1380 1385 1390 | |
| tcc aca aca caa gcg cag gag ttg gat ttg aaa cta ggt gcg gca tta | 4224 |
| Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly Ala Ala Leu | |
| 1395 1400 1405 | |
| act aaa gaa caa caa gct aac ttg acc caa gat atc gtt tgg tat gtc | 4272 |
| Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val Trp Tyr Val | |
| 1410 1415 1420 | |
| aaa acg aag gta aag ggc aaa gat gtg ttt gtt cca aag gtt tat ttc | 4320 |
| Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys Val Tyr Phe | |
| 1425 1430 1435 1440 | |
| gct tct gaa acg ctc gta gaa gcc caa aaa tta caa ggt tta ggc act | 4368 |
| Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly Leu Gly Thr | |
| 1445 1450 1455 | |
| ggg act atc aga gtt ggt gaa gct aag att aaa gcc aaa gat gtg gtg | 4416 |
| Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys Asp Val Val | |
| 1460 1465 1470 | |
| aat acc ggg aca tta gct ggg aga aaa ctc aat gtt gaa gcg agt aat | 4464 |
| Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu Ala Ser Asn | |
| 1475 1480 1485 | |
| aaa atc aaa aat caa ggg agt atc tta agt act caa gaa aca cgt tta | 4512 |
| Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu Thr Arg Leu | |
| 1490 1495 1500 | |
| gtc ggg cgt aaa ggt att gaa aac gta tct cgt tca ttt gca aat gat | 4560 |
| Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe Ala Asn Asp | |
| 1505 1510 1515 1520 | |
| gaa tta gga gtc act gca caa cgc tca gaa atc aaa acg gaa ggt cat | 4608 |
| Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr Glu Gly His | |
| 1525 1530 1535 | |
| tta cat ctt gaa aca gat aag gat tca act att gat gta caa gca tcg | 4656 |
| Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val Gln Ala Ser | |
| 1540 1545 1550 | |

| | | | |
|---|-----------------|------|------|
| gat att aaa gca aaa aca agc ttt gtg aag act ggt gat | gtg aat ctc | 4704 | |
| Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp | Val Asn Leu | | |
| 1555 | 1560 | 1565 | |
| aaa aat aca tac aat act aaa cat gcc tac cgt gag | aaa ttc tcg ccg | 4752 | |
| Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu | Lys Phe Ser Pro | | |
| 1570 | 1575 | 1580 | |
| agt gca cta caa gtt gca gaa ctt gat gtg gca ggg ctt aaa gtc cca | 4800 | | |
| Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu Lys Val Pro | | | |
| 1585 | 1590 | 1595 | 1600 |
| ctt tta ggc gtg tcc gtc tcc atc cag ttt att cag agc ata cta gtg | 4848 | | |
| Leu Leu Gly Val Ser Val Ser Ile Gln Phe Ile Gln Ser Ile Leu Val | | | |
| 1605 | 1610 | 1615 | |
| agg caa ctt caa gag gga tca atc ttc gaa gta ggg cac tta cat ntt | 4896 | | |
| Arg Gln Leu Gln Glu Gly Ser Ile Phe Glu Val Gly His Leu His Xaa | | | |
| 1620 | 1625 | 1630 | |
| gcg gta gac aga aga tgt gaa cca agc ggg gag ta | 4931 | | |
| Ala Val Asp Arg Arg Cys Glu Pro Ser Gly Glu | | | |
| 1635 | 1640 | | |

<210> 103

<211> 1643

<212> PRT

<213> Pasteurella multocida

<220>

<221> misc_feature

<222> 1632

<223> Xaa = any or unknown amino acid

<400> 103

| | | | |
|---|---|----|----|
| Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Gln Val Lys Gly Cys | | | |
| 1 | 5 | 10 | 15 |

| | | |
|---|----|----|
| Leu Val Pro Val Ala Glu Cys Ile Asn Ser Ala Ile Ser Asn Gly Ser | | |
| 20 | 25 | 30 |

| | | |
|---|----|----|
| Ser Asp Ser Thr Ser Thr Ser Glu Gln Val Glu Glu Pro Phe Leu | | |
| 35 | 40 | 45 |

| | | |
|---|----|----|
| Leu Glu Gln Tyr Ser Leu Ser Ser Val Ser Leu Leu Val Lys Ser Thr | | |
| 50 | 55 | 60 |

| | | | |
|---|----|----|----|
| Phe Asn Pro Val Ser Tyr Ala Met Gln Leu Thr Trp Lys Gln Leu Ser | | | |
| 65 | 70 | 75 | 80 |

| | | |
|---|----|----|
| Ile Leu Phe Leu Thr Val Ile Ser Val Pro Val Leu Ala Glu Gly Lys | | |
| 85 | 90 | 95 |

| | | |
|---|-----|-----|
| Gly Asp Glu Arg Asn Gln Leu Thr Val Ile Asp Asn Ser Asp His Ile | | |
| 100 | 105 | 110 |

| | | |
|---|-----|-----|
| Lys Leu Asp Ala Ser Asn Leu Ala Gly Asn Asp Lys Thr Lys Ile Tyr | | |
| 115 | 120 | 125 |

| | | |
|---|-----|-----|
| Gln Ala Glu Asn Lys Val Leu Val Ile Asp Ile Ala Lys Pro Asn Gly | | |
| 130 | 135 | 140 |

Lys Gly Ile Ser Asp Asn Arg Phe Glu Lys Phe Asn Ile Pro Asn Ser
 145 150 155 160
 Ala Val Phe Asn Asn Asn Gly Thr Glu Ala Gln Ala Arg Ser Thr Leu
 165 170 175
 Ile Gly Tyr Ile Pro Gln Asn Gln Asn Leu Arg Gly Gly Lys Glu Ala
 180 185 190
 Asp Val Ile Leu Asn Gln Val Thr Gly Pro Gln Glu Ser Lys Ile Val
 195 200 205
 Gly Ala Leu Glu Val Leu Gly Lys Lys Ala Asp Ile Val Ile Ala Asn
 210 215 220
 Gln Asn Gly Ile Thr Leu Asn Gly Val Arg Thr Ile Asn Ser Asp Arg
 225 230 235 240
 Phe Val Ala Thr Thr Ser Glu Leu Ile Asp Pro Asn Gln Met Met Leu
 245 250 255
 Lys Val Thr Lys Gly Asn Val Ile Ile Asp Ile Asp Gly Phe Ser Thr
 260 265 270
 Asp Gly Leu Lys Tyr Leu Asp Ile Ile Ala Lys Lys Ile Glu Gln Lys
 275 280 285
 Gln Ser Ile Thr Ser Gly Asp Asn Ser Glu Ala Lys Thr Asp Val Thr
 290 295 300
 Leu Ile Ala Gly Ser Ser Glu Tyr Asp Leu Ser Lys His Glu Leu Lys
 305 310 315 320
 Lys Thr Ser Gly Glu Asn Val Ser Asn Asp Val Ile Ala Ile Thr Gly
 325 330 335
 Ser Ser Thr Gly Ala Met His Gly Lys Asn Ile Lys Leu Ile Val Thr
 340 345 350
 Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser Glu Asn
 355 360 365
 Asp Ile Gln Ile Glu Met Asn Glu Gly Asp Leu Glu Leu Gly Asn Thr
 370 375 380
 Ile Gln Gln Thr Val Val Lys Lys Asp Arg Asn Ile Arg Ala Lys Lys
 385 390 395 400
 Lys Ile Glu Val Lys Asn Ala Asn Arg Val Phe Val Gly Ser Gln Thr
 405 410 415
 Lys Ser Asp Glu Ile Ser Leu Glu Ala Lys Gln Val Lys Ile Arg Lys
 420 425 430
 Asn Ala Glu Ile Arg Ser Thr Thr Gln Ala Lys Ile Val Ala Lys Gly
 435 440 445
 Ala Leu Ser Ile Glu Gln Asn Ala Lys Leu Val Ala Lys Lys Ile Asp
 450 455 460
 Val Ala Thr Glu Thr Leu Thr Asn Ala Gly Arg Ile Tyr Gly Arg Glu
 465 470 475 480

Val Lys Leu Asp Thr Asn Asn Leu Ile Asn Asp Lys Glu Ile Tyr Ala
 485 490 495

 Glu Arg Lys Leu Ser Ile Leu Thr Lys Gly Lys Asp Leu Glu Ile Ile
 500 505 510

 Gln Asp Arg Tyr Leu Ser Pro Leu Met Arg Val Lys Ser Ser Val Arg
 515 520 525

 Phe Leu Gly Ser Pro Phe Phe Ser Ile Ser Pro Ser Met Leu Ala Ser
 530 535 540

 Leu Ser Ala Gln Phe Lys Pro Gly Phe Val Asn Lys Gly Leu Ile Glu
 545 550 555 560

 Ser Ala Gly Ser Ala Glu Leu Thr Phe Lys Glu Lys Thr Ser Phe Leu
 565 570 575

 Thr Glu Gly Asn Asn Phe Ile Arg Ala Lys Asp Ala Leu Thr Ile Asn
 580 585 590

 Ala Gln Asn Ile Glu Ile Asp Lys Asn Gln Asp Ile Gln Leu Gly Ala
 595 600 605

 Asn Ile Thr Leu Asn Val Glu Glu Asn Phe Val Asn Arg Ala Gly Thr
 610 615 620

 Leu Ala Thr Gly Lys Thr Leu Thr Ile Asn Thr Glu Ser Gly Ser Ile
 625 630 635 640

 Tyr Asn Leu Gly Gly Thr Leu Gly Ala Gly Lys Ser Leu Lys Leu Thr
 645 650 655

 Ala Lys Ser Thr Glu Glu Gly Met Gly Asn Ile Val Asn Gln Glu Asn
 660 665 670

 Gly Leu Phe His Thr Leu Gly Asn Met Met Leu Glu Ala Glu Arg Ser
 675 680 685

 Val Tyr Asn Ile Gly Asp Ile Tyr Ala Ser Lys Lys Leu Thr Val His
 690 695 700

 Thr His Asn Leu Ile Asn Asp Val Arg Leu Ser Gly Asn Val Ser Tyr
 705 710 715 720

 Lys Pro Ile Gly Ser Ser Arg Asp Tyr Asp Ile Ser Arg Val Ala Val
 725 730 735

 His Gly Trp His Asn Asn Val Tyr Lys Leu Asn Leu Asn Leu Gln Glu
 740 745 750

 Gln Asp Lys Thr Asp Ile Lys Val Val Lys Met Gly Ala Ile Arg Ser
 755 760 765

 Asp Gly Asp Phe Asp Phe Lys Gly Ile Lys Ala Thr Ser Ser Glu Ser
 770 775 780

 Lys Pro Gln Leu Ile Asn His Gly Leu Ile Asn Val Lys Gly Thr Phe
 785 790 795 800

 Asn Ala Glu Ala Asp Gln Val Val Asn Gln Met Lys Ala Phe Asn Gln
 805 810 815

Asn Ala Leu Ala Ser Val Phe Lys Asn Pro Ala Lys Ile Thr Met Tyr
 820 825 830
 Tyr Gln Pro Leu Thr Arg Tyr Ile Trp Thr Pro Leu Ser Gly Asn Ala
 835 840 845
 Ser Arg Glu Phe Asn Asn Leu Glu Ser Phe Leu Asp Ala Leu Phe Gly
 850 855 860
 Ser Thr Thr Ile Leu Lys Ser Ser Phe Tyr Ser Thr Glu Asn Phe Ser
 865 870 875 880
 Ala Tyr Gln Leu Leu Ser His Ile Gln His Ser Pro Met Tyr Gln Lys
 885 890 895
 Ala Met Ala Gln Val Phe Gly Ala Glu Trp His Ser Lys Ser Tyr Asp
 900 905 910
 Glu Met Arg Asn Lys Trp Lys Ser Phe Lys Glu Asn Pro Thr Asp Phe
 915 920 925
 Ile Tyr Tyr Pro Ser Glu Lys Ala Lys Ile Leu Ala Gly Lys Leu Glu
 930 935 940
 Gly Lys Leu Thr Thr Leu Gln Asn Gly Glu Tyr Ala Glu Arg Gly Lys
 945 950 955 960
 Phe Asp Glu Ser Ile Gln Ile Gly Lys His Gln Leu Ser Leu Pro Ser
 965 970 975
 Val Glu Leu Lys Ala Glu Phe Ser Asp Lys Glu Arg Leu Glu Glu Asp
 980 985 990
 Gly Val Asp Leu Ser Ser Ile Ala Glu Leu Leu Glu Met Pro Asn Leu
 995 1000 1005
 Phe Ile Asp Asn Ser Ile Gln Leu Glu Lys Lys Lys Leu Ser Pro Ile
 1010 1015 1020
 Glu Asp Leu Asp Glu Glu Pro Arg Lys Asn Leu Asp Ile Glu Glu Ser
 1025 1030 1035 1040
 His Ser Asn Ser Ser Asp Asp Val Leu Ser Met Asn Asp Asp Glu Ser
 1045 1050 1055
 Asp Thr Asp Asp Ser Lys Trp Ser Met Gly Asn Asp Glu Lys Glu Met
 1060 1065 1070
 Pro Asp Asp Lys Leu Gly Ile Ser Arg Asp Asp Arg Gly Asn Lys Pro
 1075 1080 1085
 Pro Arg Thr Asp Pro Thr Val Asp Tyr Leu Asn Pro Asp Glu Phe Phe
 1090 1095 1100
 Glu Asn Gly Tyr Leu Leu Asn Glu Leu Leu Gln Glu Leu Gly Glu Glu
 1105 1110 1115 1120
 Pro Leu Leu Lys Glu Gly Glu Asp His Phe Lys Arg Ser Thr Asn Leu
 1125 1130 1135
 Val Arg Leu Gly Glu Arg Asp Arg Gln Asn Arg Glu Lys Arg Glu Lys
 1140 1145 1150

Glu Gly Tyr Phe Asp Leu Pro Gly Thr Leu Asp Met Lys Leu Gln Glu
 1155 1160 1165
 Leu Phe Glu Lys Arg Lys Gln Lys His Glu Ala Glu Gln Lys Ala Arg
 1170 1175 1180
 Ile Glu Lys Ala Leu Leu Gln Lys Ser Glu Gln Gln Glu Lys Arg Val
 1185 1190 1195 1200
 Glu Glu Arg Lys Gln Glu Glu Lys Arg Gln Ala Gln Asp Lys Ile Ala
 1205 1210 1215
 Lys Gln Val Glu Ile Ala Lys Glu Met Gln Arg Val Glu Glu Ile Arg
 1220 1225 1230
 Gln Arg Glu Lys Gln Leu Ala Ile Gln Leu Gln Glu Glu Glu Lys Lys
 1235 1240 1245
 Gln Gln Glu Glu Lys His Leu Ser Glu Glu Lys Lys Gln Ala Glu Gln
 1250 1255 1260
 Lys Gln Lys Ala Glu Glu Lys Val Ala Gln Glu Arg Leu Asp Ile Glu
 1265 1270 1275 1280
 Gln Gln Lys Ala Tyr Glu Glu Met Ala Lys Arg Glu Ala Glu Ala Ser
 1285 1290 1295
 Lys Asn Val Leu Leu Lys Ala Ile Asp Glu Glu Arg Pro Lys Val Glu
 1300 1305 1310
 Thr Asp Pro Leu Phe Arg Thr Lys Leu Lys Tyr Ile Asn Gln Asp Asp
 1315 1320 1325
 Tyr Ala Gly Ala Asn Tyr Phe Phe Asn Lys Val Gly Leu Asn Thr Lys
 1330 1335 1340
 Gly His Gln Lys Val Asn Val Leu Gly Asp Asn Tyr Phe Asp His Gln
 1345 1350 1355 1360
 Val Ile Thr Arg Ser Ile Glu Lys Lys Val Asp Asn His Leu Asn Gln
 1365 1370 1375
 Lys Tyr Asn Leu Ser Asp Val Glu Leu Val Lys Gln Leu Met Asp Asn
 1380 1385 1390
 Ser Thr Thr Gln Ala Gln Glu Leu Asp Leu Lys Leu Gly Ala Ala Leu
 1395 1400 1405
 Thr Lys Glu Gln Gln Ala Asn Leu Thr Gln Asp Ile Val Trp Tyr Val
 1410 1415 1420
 Lys Thr Lys Val Lys Gly Lys Asp Val Phe Val Pro Lys Val Tyr Phe
 1425 1430 1435 1440
 Ala Ser Glu Thr Leu Val Glu Ala Gln Lys Leu Gln Gly Leu Gly Thr
 1445 1450 1455
 Gly Thr Ile Arg Val Gly Glu Ala Lys Ile Lys Ala Lys Asp Val Val
 1460 1465 1470
 Asn Thr Gly Thr Leu Ala Gly Arg Lys Leu Asn Val Glu Ala Ser Asn
 1475 1480 1485

Lys Ile Lys Asn Gln Gly Ser Ile Leu Ser Thr Gln Glu Thr Arg Leu
 1490 1495 1500
 Val Gly Arg Lys Gly Ile Glu Asn Val Ser Arg Ser Phe Ala Asn Asp
 1505 1510 1515 1520
 Glu Leu Gly Val Thr Ala Gln Arg Ser Glu Ile Lys Thr Glu Gly His
 1525 1530 1535
 Leu His Leu Glu Thr Asp Lys Asp Ser Thr Ile Asp Val Gln Ala Ser
 1540 1545 1550
 Asp Ile Lys Ala Lys Thr Ser Phe Val Lys Thr Gly Asp Val Asn Leu
 1555 1560 1565
 Lys Asn Thr Tyr Asn Thr Lys His Ala Tyr Arg Glu Lys Phe Ser Pro
 1570 1575 1580
 Ser Ala Leu Gln Val Ala Glu Leu Asp Val Ala Gly Leu Lys Val Pro
 1585 1590 1595 1600
 Leu Leu Gly Val Ser Val Ser Ile Gln Phe Ile Gln Ser Ile Leu Val
 1605 1610 1615
 Arg Gln Leu Gln Glu Gly Ser Ile Phe Glu Val Gly His Leu His Xaa
 1620 1625 1630
 Ala Val Asp Arg Arg Cys Glu Pro Ser Gly Glu
 1635 1640

<210> 104
 <211> 2009
 <212> DNA
 <213> Pasteurella multocida

<220>
 <223> hmbR

<220>
 <221> CDS
 <222> (1)..(2007)

<400> 104
 atc cgt ggc gtt gat aaa gat cgt gtc gct gtt att gtt gat gga ata 48
 Ile Arg Gly Val Asp Lys Asp Arg Val Ala Val Ile Val Asp Gly Ile
 1 5 10 15
 ccg cag gct gaa tcg act ata tct act tcc gca cgt tat tcg act gaa 96
 Pro Gln Ala Glu Ser Thr Ile Ser Thr Ser Ala Arg Tyr Ser Thr Glu
 20 25 30
 cgt cat aat ggt aat att aat aat att gaa tac gaa aat gtt agt tcg 144
 Arg His Asn Gly Asn Ile Asn Asn Ile Glu Tyr Glu Asn Val Ser Ser
 35 40 45
 ttg aaa gtt caa aaa ggg gca gct tct gta atg tat ggt agc ggt gcg 192
 Leu Lys Val Gln Lys Gly Ala Ala Ser Val Met Tyr Gly Ser Gly Ala
 50 55 60
 tta ggt gga acc gtg gag ttt acc aca aaa gat att gag gac ttt gtc 240
 Leu Gly Gly Thr Val Glu Phe Thr Thr Lys Asp Ile Glu Asp Phe Val
 65 70 75 80

| | |
|---|------|
| gaa cct ggt cgc cat ttg ggc ttt ttg tct aaa acc ggc tat act tca | 288 |
| Glu Pro Gly Arg His Leu Gly Phe Leu Ser Lys Thr Gly Tyr Thr Ser | |
| 85 90 95 | |
| aaa aac aga gaa tat cgt caa gtc atc gga gtt gga ggg aaa ggg gaa | 336 |
| Lys Asn Arg Glu Tyr Arg Gln Val Ile Gly Val Gly Gly Lys Gly Glu | |
| 100 105 110 | |
| cac ttt ttt ggt ttt gta caa tta acc aaa cgt tgg ggg cat gaa aca | 384 |
| His Phe Phe Gly Phe Val Gln Leu Thr Lys Arg Trp Gly His Glu Thr | |
| 115 120 125 | |
| atc aac aac ggc aaa ggt aca gac att ctc ggc gaa cat cga ggt aaa | 432 |
| Ile Asn Asn Gly Lys Gly Thr Asp Ile Leu Gly His Arg Gly Lys | |
| 130 135 140 | |
| ccc aat ccg ctc aac tac tat act aca tca tgg tta acg aaa gtc ggt | 480 |
| Pro Asn Pro Leu Asn Tyr Tyr Thr Ser Trp Leu Thr Lys Val Gly | |
| 145 150 155 160 | |
| tac gat att aat aac act cat cgt ttt aca ctg ttt tta gaa gat cgc | 528 |
| Tyr Asp Ile Asn Asn Thr His Arg Phe Leu Phe Leu Glu Asp Arg | |
| 165 170 175 | |
| cgt gaa aag aag ctt acc gaa gaa aaa aca tta ggg ctt agt gat gca | 576 |
| Arg Glu Lys Lys Leu Thr Glu Glu Lys Thr Leu Gly Leu Ser Asp Ala | |
| 180 185 190 | |
| gtg cgt ttt gct aat gat caa acc cct tat ctc cgt tat ggt att gaa | 624 |
| Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu Arg Tyr Gly Ile Glu | |
| 195 200 205 | |
| tat cga tat aac ggc ttg tct tgg ttg gaa acg gta aag ctt ttt ttg | 672 |
| Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr Val Lys Leu Phe Leu | |
| 210 215 220 | |
| gca aag cag aaa atc gaa caa cgt tct gct ctc caa gag ttt gat att | 720 |
| Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu Gln Glu Phe Asp Ile | |
| 225 230 235 240 | |
| aat aat agg aat aaa ttg gat tcg act atg tcg ttt gta tat tta caa | 768 |
| Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser Phe Val Tyr Leu Gln | |
| 245 250 255 | |
| aga cag aat ata gct cgg gga gaa ttt tca acg agt cct tta tat ttg | 816 |
| Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr Ser Pro Leu Tyr Trp | |
| 260 265 270 | |
| ggg ccg agt cgc cat cgt tta tct gcg aaa ttc gaa ttt cgt gat aag | 864 |
| Gly Pro Ser Arg His Arg Leu Ser Ala Lys Phe Glu Phe Arg Asp Lys | |
| 275 280 285 | |
| ttt tta gaa aat atg aat aag cat ttt acg ttt cgg ccg ttg caa atc | 912 |
| Phe Leu Glu Asn Met Asn Lys His Phe Thr Phe Arg Pro Trp Gln Ile | |
| 290 295 300 | |
| aat aga ttc aga caa caa ggt cga aat aac tat aca gaa gtg ttt ccc | 960 |
| Asn Arg Phe Arg Gln Gln Gly Arg Asn Asn Tyr Thr Glu Val Phe Pro | |
| 305 310 315 320 | |
| gtt aaa tcc cga gag ttt tct ttt ctt atg gac gac att aag att | 1008 |
| Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met Asp Asp Ile Lys Ile | |
| 325 330 335 | |

| | |
|---|------|
| ggc gaa ttg cta cat ctc gga ttg ggc ggt cgg tgg gat cac tat aac
Gly Glu Leu Leu His Leu Gly Leu Gly Gly Arg Trp Asp His Tyr Asn
340 345 350 | 1056 |
| tat aag cca tta tta aat tct cag cat aat atc aac agg aca cag aga
Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile Asn Arg Thr Gln Arg
355 360 365 | 1104 |
| tta cct tat cca aaa aca tca tcc aaa ttt tcg tat caa ttg agt tta
Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser Tyr Gln Leu Ser Leu
370 375 380 | 1152 |
| gag tat caa tta cat cca tca cat caa att gca tac cgt tta agt acc
Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala Tyr Arg Leu Ser Thr
385 390 395 400 | 1200 |
| ggg ttt agg gtt ccc cgt gtt gaa gat ctt tat ttt gaa gac cga gga
Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr Phe Glu Asp Arg Gly
405 410 415 | 1248 |
| aaa agt tct tca caa ttt ctt cct aac ccc gat cta caa ccg gaa act
Lys Ser Ser Ser Gln Phe Leu Pro Asn Pro Asp Leu Gln Pro Glu Thr
420 425 430 | 1296 |
| gca ctg aat cat gaa ata agt tac cgt ttc caa aat caa tat gcc cat
Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln Asn Gln Tyr Ala His
435 440 445 | 1344 |
| ttc agc gtc ggg ctt ttc cgt aca cgt tat cat aac ttt att caa gaa
Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His Asn Phe Ile Gln Glu
450 455 460 | 1392 |
| cgt gag atg acc tgt gat aaa att cca tat gag tat aat agg act tat
Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu Tyr Asn Arg Thr Tyr
465 470 475 480 | 1440 |
| gga tat tgc acg cat aat act tat gta atg ttt gtt aat gaa cct gaa
Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe Val Asn Glu Pro Glu
485 490 495 | 1488 |
| gcc gtg att aaa ggg gtt gaa gta agc ggt gct tta aat ggg tcg gca
Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala Leu Asn Gly Ser Ala
500 505 510 | 1536 |
| ttc gga ctt tcc gac ggt tta act ttc cgt ctc aaa ggg agc tac agc
Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu Lys Gly Ser Tyr Ser
515 520 525 | 1584 |
| aaa ggt caa aat cat gac ggc gat ccg tta aaa tct att caa cca tgg
Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys Ser Ile Gln Pro Trp
530 535 540 | 1632 |
| aca gtg gta acc ggt att gat tac gaa act gaa ggg tgg agc gtg agt
Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu Gly Trp Ser Val Ser
545 550 555 560 | 1680 |
| ttg agc ggg cgt tat agt gct aaa aaa gcc aaa gat gcg ata gaa
Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala Lys Asp Ala Ile Glu
565 570 575 | 1728 |
| acg gaa tac aca cat gat aaa aag gtt gtc aaa caa tgg ccg cat tta
Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys Gln Trp Pro His Leu
580 585 590 | 1776 |

| | |
|---|------|
| agt cca tcc tac ttt gtt gat ttt acg ggg caa gtt aac ctc agt
Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly Gln Val Asn Leu Ser
595 600 605 | 1824 |
| aaa aat gtc att ttg aat atg ggg gta ttt aac ttg ttc aat cgt gat
Lys Asn Val Ile Leu Asn Met Gly Val Phe Asn Leu Phe Asn Arg Asp
610 615 620 | 1872 |
| tat atg acg tgg gac agt gca tat aac ttg ttt act agg ggg tat act
Tyr Met Thr Trp Asp Ser Ala Tyr Asn Leu Phe Thr Arg Gly Tyr Thr
625 630 635 640 | 1920 |
| tcc cgt tct gtc cgt gct aac agc cca ggc att aat cgg ttt acc gca
Ser Arg Ser Val Arg Ala Asn Ser Pro Gly Ile Asn Arg Phe Thr Ala
645 650 655 | 1968 |
| cca aaa cgt aat ttt gct gcc tcg gtg gaa att cgt ttt ta
Pro Lys Arg Asn Phe Ala Ala Ser Val Glu Ile Arg Phe
660 665 | 2009 |
|
 | |
| <210> 105 | |
| <211> 669 | |
| <212> PRT | |
| <213> Pasteurella multocida | |
|
 | |
| <400> 105 | |
| Ile Arg Gly Val Asp Lys Asp Arg Val Ala Val Ile Val Asp Gly Ile
1 5 10 15 | |
| Pro Gln Ala Glu Ser Thr Ile Ser Thr Ser Ala Arg Tyr Ser Thr Glu
20 25 30 | |
| Arg His Asn Gly Asn Ile Asn Asn Ile Glu Tyr Glu Asn Val Ser Ser
35 40 45 | |
| Leu Lys Val Gln Lys Gly Ala Ala Ser Val Met Tyr Gly Ser Gly Ala
50 55 60 | |
| Leu Gly Gly Thr Val Glu Phe Thr Thr Lys Asp Ile Glu Asp Phe Val
65 70 75 80 | |
| Glu Pro Gly Arg His Leu Gly Phe Leu Ser Lys Thr Gly Tyr Thr Ser
85 90 95 | |
| Lys Asn Arg Glu Tyr Arg Gln Val Ile Gly Val Gly Lys Gly Glu
100 105 110 | |
| His Phe Phe Gly Phe Val Gln Leu Thr Lys Arg Trp Gly His Glu Thr
115 120 125 | |
| Ile Asn Asn Gly Lys Gly Thr Asp Ile Leu Gly Glu His Arg Gly Lys
130 135 140 | |
| Pro Asn Pro Leu Asn Tyr Tyr Thr Ser Trp Leu Thr Lys Val Gly
145 150 155 160 | |
| Tyr Asp Ile Asn Asn Thr His Arg Phe Thr Leu Phe Leu Glu Asp Arg
165 170 175 | |
| Arg Glu Lys Lys Leu Thr Glu Glu Lys Thr Leu Gly Leu Ser Asp Ala
180 185 190 | |

Val Arg Phe Ala Asn Asp Gln Thr Pro Tyr Leu Arg Tyr Gly Ile Glu
 195 200 205
 Tyr Arg Tyr Asn Gly Leu Ser Trp Leu Glu Thr Val Lys Leu Phe Leu
 210 215 220
 Ala Lys Gln Lys Ile Glu Gln Arg Ser Ala Leu Gln Glu Phe Asp Ile
 225 230 235 240
 Asn Asn Arg Asn Lys Leu Asp Ser Thr Met Ser Phe Val Tyr Leu Gln
 245 250 255
 Arg Gln Asn Ile Ala Arg Gly Glu Phe Ser Thr Ser Pro Leu Tyr Trp
 260 265 270
 Gly Pro Ser Arg His Arg Leu Ser Ala Lys Phe Glu Phe Arg Asp Lys
 275 280 285
 Phe Leu Glu Asn Met Asn Lys His Phe Thr Phe Arg Pro Trp Gln Ile
 290 295 300
 Asn Arg Phe Arg Gln Gln Gly Arg Asn Asn Tyr Thr Glu Val Phe Pro
 305 310 315 320
 Val Lys Ser Arg Glu Phe Ser Phe Ser Leu Met Asp Asp Ile Lys Ile
 325 330 335
 Gly Glu Leu Leu His Leu Gly Leu Gly Gly Arg Trp Asp His Tyr Asn
 340 345 350
 Tyr Lys Pro Leu Leu Asn Ser Gln His Asn Ile Asn Arg Thr Gln Arg
 355 360 365
 Leu Pro Tyr Pro Lys Thr Ser Ser Lys Phe Ser Tyr Gln Leu Ser Leu
 370 375 380
 Glu Tyr Gln Leu His Pro Ser His Gln Ile Ala Tyr Arg Leu Ser Thr
 385 390 395 400
 Gly Phe Arg Val Pro Arg Val Glu Asp Leu Tyr Phe Glu Asp Arg Gly
 405 410 415
 Lys Ser Ser Ser Gln Phe Leu Pro Asn Pro Asp Leu Gln Pro Glu Thr
 420 425 430
 Ala Leu Asn His Glu Ile Ser Tyr Arg Phe Gln Asn Gln Tyr Ala His
 435 440 445
 Phe Ser Val Gly Leu Phe Arg Thr Arg Tyr His Asn Phe Ile Gln Glu
 450 455 460
 Arg Glu Met Thr Cys Asp Lys Ile Pro Tyr Glu Tyr Asn Arg Thr Tyr
 465 470 475 480
 Gly Tyr Cys Thr His Asn Thr Tyr Val Met Phe Val Asn Glu Pro Glu
 485 490 495
 Ala Val Ile Lys Gly Val Glu Val Ser Gly Ala Leu Asn Gly Ser Ala
 500 505 510
 Phe Gly Leu Ser Asp Gly Leu Thr Phe Arg Leu Lys Gly Ser Tyr Ser
 515 520 525

Lys Gly Gln Asn His Asp Gly Asp Pro Leu Lys Ser Ile Gln Pro Trp
 530 535 540

Thr Val Val Thr Gly Ile Asp Tyr Glu Thr Glu Gly Trp Ser Val Ser
 545 550 555 560

Leu Ser Gly Arg Tyr Ser Ala Ala Lys Lys Ala Lys Asp Ala Ile Glu
 565 570 575

Thr Glu Tyr Thr His Asp Lys Lys Val Val Lys Gln Trp Pro His Leu
 580 585 590

Ser Pro Ser Tyr Phe Val Val Asp Phe Thr Gly Gln Val Asn Leu Ser
 595 600 605

Lys Asn Val Ile Leu Asn Met Gly Val Phe Asn Leu Phe Asn Arg Asp
 610 615 620

Tyr Met Thr Trp Asp Ser Ala Tyr Asn Leu Phe Thr Arg Gly Tyr Thr
 625 630 635 640

Ser Arg Ser Val Arg Ala Asn Ser Pro Gly Ile Asn Arg Phe Thr Ala
 645 650 655

Pro Lys Arg Asn Phe Ala Ala Ser Val Glu Ile Arg Phe
 660 665

<210> 106

<211> 908

<212> DNA

<213> Pasteurella multocida

<220>

<223> lgtC

<220>

<221> CDS

<222> (1)...(906)

<400> 106

atg aat att tta ttt gtt tct gat gat gtt tat gct aaa cat ctg gtg 48
 Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
 1 5 10 15

gtt gcg att aaa agc att ata aat cat aat gaa aaa ggt att tca ttt 96
 Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
 20 25 30

tat att ttt gat ttg ggt ata aag gat gaa aat aag aga aat att aat 144
 Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
 35 40 45

gat att gtt tct tct tat gga agt gaa gtc aac ttt att gct gtg aat 192
 Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
 50 55 60

gag aaa gaa ttt gag agt ttt cct gtt caa att agt tat att tct tta 240
 Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
 65 70 75 80

| | |
|---|-----|
| gca aca tat gca agg cta aaa gcg gca gag tat ttg ccg gat aat tta | 288 |
| Ala Thr Tyr Ala Arg Leu Lys Ala Ala Glu Tyr Leu Pro Asp Asn Leu | |
| 85 | 90 |
| 95 | |
| aat aaa att att tat tta gat gtt gat ttg gtt ttt aac tca tta | 336 |
| Asn Lys Ile Ile Tyr Leu Asp Val Asp Val Leu Val Phe Asn Ser Leu | |
| 100 | 105 |
| 110 | |
| gaa atg tta tgg aat gtt gat gtt aat aat ttt ctt acc gca gcc tgt | 384 |
| Glu Met Leu Trp Asn Val Asp Val Asn Asn Phe Leu Thr Ala Ala Cys | |
| 115 | 120 |
| 125 | |
| tat gat tct ttc atc gaa aat gaa aag tct gag cat aaa aaa tcg att | 432 |
| Tyr Asp Ser Phe Ile Glu Asn Glu Lys Ser Glu His Lys Lys Ser Ile | |
| 130 | 135 |
| 140 | |
| tca atg tca gat aag gaa tat tat ttt aat gca gga gta atg cta ttt | 480 |
| Ser Met Ser Asp Lys Glu Tyr Tyr Phe Asn Ala Gly Val Met Leu Phe | |
| 145 | 150 |
| 155 | 160 |
| aat tta gat gaa tgg cg ^g aag atg gat gta ttc tca aga gct tta gac | 528 |
| Asn Leu Asp Glu Trp Arg Lys Met Asp Val Phe Ser Arg Ala Leu Asp | |
| 165 | 170 |
| 175 | |
| ctg tta gct atg tat cct aat caa atg att tat cag gat caa gat ata | 576 |
| Leu Leu Ala Met Tyr Pro Asn Gln Met Ile Tyr Gln Asp Gln Asp Ile | |
| 180 | 185 |
| 190 | |
| ttg aat atc ctt ttt agg aat aaa gtc tgt tat tta gat tgc aga ttt | 624 |
| Leu Asn Ile Leu Phe Arg Asn Lys Val Cys Tyr Leu Asp Cys Arg Phe | |
| 195 | 200 |
| 205 | |
| aat ttc atg cca aat caa ctt gaa aga ata aaa caa tac cat aaa gga | 672 |
| Asn Phe Met Pro Asn Gln Leu Glu Arg Ile Lys Gln Tyr His Lys Gly | |
| 210 | 215 |
| 220 | |
| aaa ttg agc aac tta cat tct tta gaa aaa aca acg atg cct gtc gtt | 720 |
| Lys Leu Ser Asn Leu His Ser Leu Glu Lys Thr Thr Met Pro Val Val | |
| 225 | 230 |
| 235 | 240 |
| att tca cat tat tgt ggt cca gaa aaa gcg tgg cat gcg gat tgt aaa | 768 |
| Ile Ser His Tyr Cys Gly Pro Glu Lys Ala Trp His Ala Asp Cys Lys | |
| 245 | 250 |
| 255 | |
| cat ttt aat gta tat ttc tat cag aaa ata tta gca gaa ata acg aga | 816 |
| His Phe Asn Val Tyr Phe Tyr Gln Lys Ile Leu Ala Glu Ile Thr Arg | |
| 260 | 265 |
| 270 | |
| ggc acg gat aaa gaa cgc gta tta tct ata aaa act tat ctc aag gcc | 864 |
| Gly Thr Asp Lys Glu Arg Val Leu Ser Ile Lys Thr Tyr Leu Lys Ala | |
| 275 | 280 |
| 285 | |
| ttg att aga agg att aga tat aaa ttc aaa tat caa gtc tat ta | 908 |
| Leu Ile Arg Arg Ile Arg Tyr Lys Phe Lys Tyr Gln Val Tyr | |
| 290 | 295 |
| 300 | |

<210> 107

<211> 302

<212> PRT

<213> Pasteurella multocida

<400> 107

Met Asn Ile Leu Phe Val Ser Asp Asp Val Tyr Ala Lys His Leu Val
 1 5 10 15
 Val Ala Ile Lys Ser Ile Ile Asn His Asn Glu Lys Gly Ile Ser Phe
 20 25 30
 Tyr Ile Phe Asp Leu Gly Ile Lys Asp Glu Asn Lys Arg Asn Ile Asn
 35 40 45
 Asp Ile Val Ser Ser Tyr Gly Ser Glu Val Asn Phe Ile Ala Val Asn
 50 55 60
 Glu Lys Glu Phe Glu Ser Phe Pro Val Gln Ile Ser Tyr Ile Ser Leu
 65 70 75 80
 Ala Thr Tyr Ala Arg Leu Lys Ala Ala Glu Tyr Leu Pro Asp Asn Leu
 85 90 95
 Asn Lys Ile Ile Tyr Leu Asp Val Asp Val Leu Val Phe Asn Ser Leu
 100 105 110
 Glu Met Leu Trp Asn Val Asp Val Asn Asn Phe Leu Thr Ala Ala Cys
 115 120 125
 Tyr Asp Ser Phe Ile Glu Asn Glu Lys Ser Glu His Lys Lys Ser Ile
 130 135 140
 Ser Met Ser Asp Lys Glu Tyr Tyr Phe Asn Ala Gly Val Met Leu Phe
 145 150 155 160
 Asn Leu Asp Glu Trp Arg Lys Met Asp Val Phe Ser Arg Ala Leu Asp
 165 170 175
 Leu Leu Ala Met Tyr Pro Asn Gln Met Ile Tyr Gln Asp Gln Asp Ile
 180 185 190
 Leu Asn Ile Leu Phe Arg Asn Lys Val Cys Tyr Leu Asp Cys Arg Phe
 195 200 205
 Asn Phe Met Pro Asn Gln Leu Glu Arg Ile Lys Gln Tyr His Lys Gly
 210 215 220
 Lys Leu Ser Asn Leu His Ser Leu Glu Lys Thr Thr Met Pro Val Val
 225 230 235 240
 Ile Ser His Tyr Cys Gly Pro Glu Lys Ala Trp His Ala Asp Cys Lys
 245 250 255
 His Phe Asn Val Tyr Phe Tyr Gln Lys Ile Leu Ala Glu Ile Thr Arg
 260 265 270
 Gly Thr Asp Lys Glu Arg Val Leu Ser Ile Lys Thr Tyr Leu Lys Ala
 275 280 285
 Leu Ile Arg Arg Ile Arg Tyr Lys Phe Lys Tyr Gln Val Tyr
 290 295 300

<210> 108
 <211> 2054
 <212> DNA
 <213> Pasteurella multocida

```

<220>
<221> CDS
<222> (1)..(2052)

<400> 108
atg gca agt atg gat gat act act gtg ttt gtc aca gtg gtt gcc aaa 48
Met Ala Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys
    1           5           10          15

aaa gat gtg aaa gaa ggt caa gac ttc ttc cca tta act gtt aac tat 96
Lys Asp Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asn Tyr
    20          25          30

caa gag cgt act tat gct gca ggc cgt att cct ggt ggc ttt ttc aaa 144
Gln Glu Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys
    35          40          45

cgt gaa ggt cgt cct tct gaa ggc gaa act tta att gct cgt tta att 192
Arg Glu Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile
    50          55          60

gac cgt cca att cgt cct ctt ttc cca gaa ggt ttt tat aac gaa atc 240
Asp Arg Pro Ile Arg Pro Leu Phe Pro Glu Gly Phe Tyr Asn Glu Ile
    65          70          75          80

caa atc gtg gcg aca gtg gtg tct gtt aat ccg caa att tgt cca gat 288
Gln Ile Val Ala Thr Val Val Ser Val Asn Pro Gln Ile Cys Pro Asp
    85          90          95

tta gtg gca atg atc ggt gca tct gcg gca ctt tct tta tca ggt gtg 336
Leu Val Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val
    100         105         110

cca ttt aat ggc cct atc ggt gcg gca cgt gtt ggt ttt att gat gat 384
Pro Phe Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asp Asp
    115         120         125

caa ttt gtg tta aac cca acc atg aac gag caa aaa caa agc cgt tta 432
Gln Phe Val Leu Asn Pro Thr Met Asn Glu Gln Lys Gln Ser Arg Leu
    130         135         140

gac ttg gtt gtc gcg gga aca gat aaa gcg gtg tta atg gtg gaa tct 480
Asp Leu Val Val Ala Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser
    145         150         155         160

gaa gcc gat gta tta acc gaa gaa caa atg tta gct gcg gtg gtg ttt 528
Glu Ala Asp Val Leu Thr Glu Glu Gln Met Leu Ala Ala Val Val Phe
    165         170         175

ggc cat cag caa caa caa gtg gtg att gac gcg atc aaa gaa ttt acc 576
Gly His Gln Gln Gln Val Val Ile Asp Ala Ile Lys Glu Phe Thr
    180         185         190

gca gaa gcc ggt aaa ccg cgt tgg gat tgg gtg gca cct gaa cca aat 624
Ala Glu Ala Gly Lys Pro Arg Trp Asp Trp Val Ala Pro Glu Pro Asn
    195         200         205

acc gcg tta att gaa aaa gtg aaa gcg att gca gaa gcg cgt tta ggc 672
Thr Ala Leu Ile Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly
    210         215         220

```

| | |
|---|------|
| gaa gca tac cgt atc act gaa aaa caa gca cgt tat gaa caa att gat
Glu Ala Tyr Arg Ile Thr Glu Lys Gln Ala Arg Tyr Glu Gln Ile Asp
225 230 235 240 | 720 |
| gcg att aaa gct gat gtg att gca caa atc aca gct gaa gta gca gaa
Ala Ile Lys Ala Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu
245 250 255 | 768 |
| ggc gaa gac atc agt gaa ggg aaa att gtc gat att ttc acc gca ctt
Gly Glu Asp Ile Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu
260 265 270 | 816 |
| gaa agc caa atc gta cgt agc cgt atc att gct ggt gaa cca cgt att
Glu Ser Gln Ile Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile
275 280 285 | 864 |
| gat ggt cgt aca gtg gat act gtt cgt gca tta gat att tgt act ggt
Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly
290 295 300 | 912 |
| gtt tta cca cgt aca cac ggt tct gcg att ttc acc cgt ggt gaa aca
Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr
305 310 315 320 | 960 |
| cag gcg tta gct gtc gcg aca tta ggt aca gaa cgt gat gca caa att
Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile
325 330 335 | 1008 |
| att gat gaa tta aca ggt gag cgt tca gat cac ttc tta ttc cac tac
Ile Asp Glu Leu Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr
340 345 350 | 1056 |
| aac ttc ccg cca tat tct gtg ggt gaa acc ggt atg att ggt tca cca
Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro
355 360 365 | 1104 |
| aaa cgt cgt gaa att ggt cat ggt cgt tta gcg aaa cgc ggt gta gct
Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg Gly Val Ala
370 375 380 | 1152 |
| gca gtg atg cca aca ctt gcc gag ttc ccg tat gtg gta cgt gtt gtc
Ala Val Met Pro Thr Leu Ala Glu Phe Pro Tyr Val Val Arg Val Val
385 390 395 400 | 1200 |
| tct gaa atc aca gaa tca aat ggt tct tct atg gca tcg gtt tgt
Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Met Ala Ser Val Cys
405 410 415 | 1248 |
| ggt gcg tct tta gca tta atg gat gcg ggt gta cca att aaa gcg gcg
Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala
420 425 430 | 1296 |
| gtt gca ggt att gca atg ggc tta gtc aaa gaa gac gaa aaa ttt gtg
Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val
435 440 445 | 1344 |
| gtg ctt tca gac atc tta ggt gat gaa gat cac tta ggt gac atg gac
Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp
450 455 460 | 1392 |
| ttc aaa gtc gcg ggt aca cgt acg ggt gtg acg gca tta caa atg gat
Phe Lys Val Ala Gly Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp
465 470 475 480 | 1440 |

| | |
|---|------|
| atc aaa atc gaa ggt atc aca gca gaa atc atg caa att gcg tta aac
Ile Lys Ile Glu Gly Ile Thr Ala Glu Ile Met Gln Ile Ala Leu Asn
485 490 495 | 1488 |
| caa gcg aaa agc gca cgt tta cac att tta ggt gtg atg gag caa gcg
Gln Ala Lys Ser Ala Arg Leu His Ile Leu Gly Val Met Glu Gln Ala
500 505 510 | 1536 |
| atc cca gcg cca cgt gcg gat att tct gat ttt gca ccg cgt att tac
Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro Arg Ile Tyr
515 520 525 | 1584 |
| act atg aaa att gat ccg aag aaa atc aaa gat gtg atc ggt aaa ggt
Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly
530 535 540 | 1632 |
| ggc gca acc att cgt gcc tta aca gaa gaa aca ggt acc tca att gat
Gly Ala Thr Ile Arg Ala Leu Thr Glu Glu Thr Gly Thr Ser Ile Asp
545 550 555 560 | 1680 |
| atc gat gat gat ggt acg gtg aag att gct gcg gtt gat ggc aat tca
Ile Asp Asp Asp Gly Thr Val Lys Ile Ala Ala Val Asp Gly Asn Ser
565 570 575 | 1728 |
| gca aaa gag gtg atg gcg cgt att gaa gat att act gca gaa gtt gaa
Ala Lys Glu Val Met Ala Arg Ile Glu Asp Ile Thr Ala Glu Val Glu
580 585 590 | 1776 |
| gcg ggt gca gtg tat aaa ggt aaa gtt act cgt tta gct gat ttt ggt
Ala Gly Ala Val Tyr Lys Gly Lys Val Thr Arg Leu Ala Asp Phe Gly
595 600 605 | 1824 |
| gcc ttc gtt tct atc gta ggt aac aaa gaa ggc tta gtg cat att tct
Ala Phe Val Ser Ile Val Gly Asn Lys Glu Gly Leu Val His Ile Ser
610 615 620 | 1872 |
| caa atc gcg gaa gag cgt gtt gag aaa gtg agt gat tat ctt gca gtg
Gln Ile Ala Glu Glu Arg Val Glu Lys Val Ser Asp Tyr Leu Ala Val
625 630 635 640 | 1920 |
| ggg caa gaa gtg act gtt aaa gtg gtt gag att gat cgt caa ggt cgt
Gly Gln Glu Val Thr Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg
645 650 655 | 1968 |
| att cgt tta acc atg aaa gaa gtt gca cca aag caa gaa cac gtt gat
Ile Arg Leu Thr Met Lys Glu Val Ala Pro Lys Gln Glu His Val Asp
660 665 670 | 2016 |
| tct gtt gtc gca gac gtt gcc gca gaa gaa aac gca ta
Ser Val Val Ala Asp Val Ala Ala Glu Glu Asn Ala
675 680 | 2054 |
|
 | |
| <210> 109 | |
| <211> 684 | |
| <212> PRT | |
| <213> Pasteurella multocida | |
|
 | |
| <400> 109 | |
| Met Ala Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys
1 5 10 15 | |
| Lys Asp Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asn Tyr | |

| 20 | 25 | 30 |
|---|-----|-----|
| Gln Glu Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys | | |
| 35 | 40 | 45 |
| Arg Glu Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile | | |
| 50 | 55 | 60 |
| Asp Arg Pro Ile Arg Pro Leu Phe Pro Glu Gly Phe Tyr Asn Glu Ile | | |
| 65 | 70 | 75 |
| 80 | | |
| Gln Ile Val Ala Thr Val Val Ser Val Asn Pro Gln Ile Cys Pro Asp | | |
| 85 | 90 | 95 |
| Leu Val Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val | | |
| 100 | 105 | 110 |
| Pro Phe Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asp Asp | | |
| 115 | 120 | 125 |
| Gln Phe Val Leu Asn Pro Thr Met Asn Glu Gln Lys Gln Ser Arg Leu | | |
| 130 | 135 | 140 |
| Asp Leu Val Val Ala Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser | | |
| 145 | 150 | 155 |
| 160 | | |
| Glu Ala Asp Val Leu Thr Glu Glu Gln Met Leu Ala Ala Val Val Phe | | |
| 165 | 170 | 175 |
| Gly His Gln Gln Gln Val Val Ile Asp Ala Ile Lys Glu Phe Thr | | |
| 180 | 185 | 190 |
| Ala Glu Ala Gly Lys Pro Arg Trp Asp Trp Val Ala Pro Glu Pro Asn | | |
| 195 | 200 | 205 |
| Thr Ala Leu Ile Glu Lys Val Lys Ala Ile Ala Glu Ala Arg Leu Gly | | |
| 210 | 215 | 220 |
| Glu Ala Tyr Arg Ile Thr Glu Lys Gln Ala Arg Tyr Glu Gln Ile Asp | | |
| 225 | 230 | 235 |
| 240 | | |
| Ala Ile Lys Ala Asp Val Ile Ala Gln Ile Thr Ala Glu Val Ala Glu | | |
| 245 | 250 | 255 |
| Gly Glu Asp Ile Ser Glu Gly Lys Ile Val Asp Ile Phe Thr Ala Leu | | |
| 260 | 265 | 270 |
| Glu Ser Gln Ile Val Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile | | |
| 275 | 280 | 285 |
| Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Gly | | |
| 290 | 295 | 300 |
| Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg Gly Glu Thr | | |
| 305 | 310 | 315 |
| 320 | | |
| Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile | | |
| 325 | 330 | 335 |
| Ile Asp Glu Leu Thr Gly Glu Arg Ser Asp His Phe Leu Phe His Tyr | | |
| 340 | 345 | 350 |
| Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Met Ile Gly Ser Pro | | |

| 355 | 360 | 365 | |
|---|-------------------------|-----------------|-----|
| Lys Arg Arg Glu Ile Gly His | Gly Arg Leu Ala Lys | Arg Gly Val Ala | |
| 370 | 375 | 380 | |
| Ala Val Met Pro Thr Leu Ala Glu Phe Pro | Tyr Val Val Arg Val | Val | |
| 385 | 390 | 395 | 400 |
| Ser Glu Ile Thr Glu Ser Asn Gly Ser | Ser Ser Met Ala Ser | Val Cys | |
| 405 | 410 | 415 | |
| Gly Ala Ser Leu Ala Leu Met Asp Ala | Gly Val Pro Ile Lys | Ala Ala | |
| 420 | 425 | 430 | |
| Val Ala Gly Ile Ala Met Gly Leu Val Lys | Glu Asp Glu Lys | Phe Val | |
| 435 | 440 | 445 | |
| Val Leu Ser Asp Ile Leu Gly Asp Glu Asp | His Leu Gly Asp Met Asp | | |
| 450 | 455 | 460 | |
| Phe Lys Val Ala Gly Thr Arg Thr Gly Val | Thr Ala Leu Gln Met Asp | | |
| 465 | 470 | 475 | 480 |
| Ile Lys Ile Glu Gly Ile Thr Ala Glu Ile | Met Gln Ile Ala Leu Asn | | |
| 485 | 490 | 495 | |
| Gln Ala Lys Ser Ala Arg Leu His Ile Leu Gly Val | Met Glu Gln Ala | | |
| 500 | 505 | 510 | |
| Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala | Pro Arg Ile Tyr | | |
| 515 | 520 | 525 | |
| Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val | Ile Gly Lys Gly | | |
| 530 | 535 | 540 | |
| Gly Ala Thr Ile Arg Ala Leu Thr Glu Glu | Thr Gly Thr Ser Ile Asp | | |
| 545 | 550 | 555 | 560 |
| Ile Asp Asp Asp Gly Thr Val Lys Ile Ala Ala Val | Asp Gly Asn Ser | | |
| 565 | 570 | 575 | |
| Ala Lys Glu Val Met Ala Arg Ile Glu Asp Ile Thr Ala | Glu Val Glu | | |
| 580 | 585 | 590 | |
| Ala Gly Ala Val Tyr Lys Gly Lys Val Thr Arg Leu | Ala Asp Phe Gly | | |
| 595 | 600 | 605 | |
| Ala Phe Val Ser Ile Val Gly Asn Lys Glu Gly Leu | Val His Ile Ser | | |
| 610 | 615 | 620 | |
| Gln Ile Ala Glu Glu Arg Val Glu Lys Val | Ser Asp Tyr Leu Ala Val | | |
| 625 | 630 | 635 | 640 |
| Gly Gln Glu Val Thr Val Lys Val Val Glu | Ile Asp Arg Gln Gly Arg | | |
| 645 | 650 | 655 | |
| Ile Arg Leu Thr Met Lys Glu Val Ala Pro Lys Gln | Glu His Val Asp | | |
| 660 | 665 | 670 | |
| Ser Val Val Ala Asp Val Ala Ala Glu Glu Asn Ala | | | |
| 675 | 680 | | |

<210> 110
<211> 1514
<212> DNA
<213> Pasteurella multocida

<220>
<223> purF

<220>
<221> CDS
<222> (1)...(1512)

<400> 110

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| atg | tgt | ggt | att | gtt | ggt | att | gtt | agc | caa | agc | ccc | gtt | aac | caa | tca | 48 |
| Met | Cys | Gly | Ile | Val | Gly | Ile | Val | Ser | Gln | Ser | Pro | Val | Asn | Gln | Ser | |
| 1 | 5 | | | | | | | 10 | | | | | 15 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| att | tat | gat | gcg | tta | acc | tta | ttg | caa | cac | cgc | ggg | caa | gac | gcc | gcc | 96 |
| Ile | Tyr | Asp | Ala | Leu | Thr | Leu | Leu | Gln | His | Arg | Gly | Gln | Asp | Ala | Ala | |
| 20 | | | | | | | | 25 | | | | | 30 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ggg | att | gta | acc | gta | gat | gat | gaa | aac | cga | ttc | cgc | ttg | cgt | aaa | gcg | 144 |
| Gly | Ile | Val | Thr | Val | Asp | Asp | Glu | Asn | Arg | Phe | Arg | Leu | Arg | Lys | Ala | |
| 35 | | | | | | | 40 | | | | | | 45 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aac | ggg | tta | gtc | agc | gat | gta | ttt | gaa | caa | gtt | cat | atg | tta | cgt | tta | 192 |
| Asn | Gly | Leu | Val | Ser | Asp | Val | Phe | Glu | Gln | Val | His | Met | Leu | Arg | Leu | |
| 50 | | | | | | | 55 | | | | | 60 | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| caa | ggc | aat | gct | ggc | att | gga | cat | gtt | cgt | tat | cct | acg | gct | ggg | agc | 240 |
| Gln | Gly | Asn | Ala | Gly | Ile | Gly | His | Val | Arg | Tyr | Pro | Thr | Ala | Gly | Ser | |
| 65 | | | | | | | 70 | | | 75 | | | 80 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tca | agt | gtc | tct | gaa | gcg | caa | cct | ttt | tat | gta | aat | tcg | cct | tat | ggc | 288 |
| Ser | Ser | Val | Ser | Glu | Ala | Gln | Pro | Phe | Tyr | Val | Asn | Ser | Pro | Tyr | Gly | |
| 85 | | | | | | | 90 | | | | | | 95 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | acc | tta | gtg | cat | aat | ggt | aac | ttg | acc | aat | tca | agt | gaa | tta | aaa | 336 |
| Leu | Thr | Leu | Val | His | Asn | Gly | Asn | Leu | Thr | Asn | Ser | Ser | Glu | Leu | Lys | |
| 100 | | | | | | | 105 | | | | | | 110 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gaa | aag | tta | ttt | cgt | ctc | gca | cgt | cgc | cat | gta | aat | acc | aat | tca | gat | 384 |
| Glu | Lys | Leu | Phe | Arg | Leu | Ala | Arg | Arg | His | Val | Asn | Thr | Asn | Ser | Asp | |
| 115 | | | | | | | 120 | | | | | | 125 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tct | gaa | tta | tta | ctc | aat | atc | tta | gcc | aat | cac | ctt | gat | cac | ttc | gaa | 432 |
| Ser | Glu | Leu | Leu | Asn | Ile | Leu | Ala | Asn | His | Leu | Asp | His | Phe | Glu | | |
| 130 | | | | | | | 135 | | | | | | 140 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aaa | tac | caa | tta | gat | ccg | caa | gat | gta | ttc | agt | gct | gtc | aaa | caa | acg | 480 |
| Lys | Tyr | Gln | Leu | Asp | Pro | Gln | Asp | Val | Phe | Ser | Ala | Val | Lys | Gln | Thr | |
| 145 | | | | | | | 150 | | | 155 | | | 160 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| cat | cag | gat | att | cgt | ggt | gct | tat | gct | tgt | atc | gcc | atg | att | att | ggt | 528 |
| His | Gln | Asp | Ile | Arg | Gly | Ala | Tyr | Ala | Cys | Ile | Ala | Met | Ile | Ile | Gly | |
| 165 | | | | | | | 170 | | | | | | 175 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| cat | ggt | atg | gtc | gcf | ttt | cgt | gat | ccg | aac | ggt | atc | cgt | ccg | tta | gtg | 576 |
| His | Gly | Met | Val | Ala | Phe | Arg | Asp | Pro | Asn | Gly | Ile | Arg | Pro | Leu | Val | |
| 180 | | | | | | | 185 | | | | | | 190 | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | ggg | aaa | cgc | gag | gaa | aat | ggc | aaa | aca | gag | tat | atg | ttt | gcc | tcc | 624 |
| Leu | Gly | Lys | Arg | Glu | Glu | Asn | Gly | Lys | Thr | Glu | Tyr | Met | Phe | Ala | Ser | |

| 195 | 200 | 205 | |
|---|----------------------------|----------------------------|------|
| gaa agt atc gca tta gat aca gtg ggt ttt gag ttt gta cga gat gta
Glu Ser Ile Ala Leu Asp Thr Val Gly Phe Glu Phe Val Arg Asp Val | 210 215 | 220 | 672 |
| caa ccc ggc gaa gcg att tat gtc acg ttt gaa ggg gaa atg tat gct
Gln Pro Gly Glu Ala Ile Tyr Val Thr Phe Glu Gly Glu Met Tyr Ala | 225 230 | 235 240 | 720 |
| cag caa tgc gca gac aaa cca aca tta aca cct tgt att ttt gaa tac
Gln Gln Cys Ala Asp Lys Pro Thr Leu Thr Pro Cys Ile Phe Glu Tyr | 245 | 250 | 768 |
| gtc tat ttt gca cgt cca gac tct tgc atc gat ggg gtt tct gtt tat
Val Tyr Phe Ala Arg Pro Asp Ser Cys Ile Asp Gly Val Ser Val Tyr | 260 | 265 | 816 |
| gct gcc cgt gtt cat atg gga caa cgt tta ggt gaa aaa att gca cgg
Ala Ala Arg Val His Met Gly Gln Arg Leu Gly Glu Lys Ile Ala Arg | 275 | 280 | 864 |
| gaa tgg gcg gat gtg gat gat att gat gtg gtc att cct gtg cct gaa
Glu Trp Ala Asp Val Asp Ile Asp Val Val Ile Pro Val Pro Glu | 290 | 295 | 912 |
| acc tct aac gat att gct tta cgt att gcg cgcc gtg tta aat aaa ccg
Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala Arg Val Leu Asn Lys Pro | 305 | 310 | 960 |
| tat cgt caa ggt ttt gtg aaa aat cgc tat gta gga cgt acg ttt att
Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Gly Arg Thr Phe Ile | 325 | 330 | 1008 |
| atg ccg ggg cag gca ttg cga gtc agt tct gtt aga cgt aaa ctc aat
Met Pro Gly Gln Ala Leu Arg Val Ser Ser Val Arg Arg Lys Leu Asn | 340 | 345 | 1056 |
| acc att gct tca gaa ttt aaa gat aag aat gtg tta tta gtt gac gac
Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn Val Leu Leu Val Asp Asp | 355 | 360 | 1104 |
| tcg att gta cgt ggt acc acg tct gaa caa att gtc gaa atg gcg aga
Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala Arg | 370 | 375 | 1152 |
| gcg gca ggt gcg aag aaa att tat ttt gcc tct gct gca cca gaa att
Ala Ala Gly Ala Lys Lys Ile Tyr Phe Ala Ser Ala Ala Pro Glu Ile | 385 | 390 | 1200 |
| cgt tat cca aat gtg tat ggt att gat atg cca acc aaa aat gaa ttg
Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Lys Asn Glu Leu | 405 | 410 | 1248 |
| atc gct tat ggt cgt gat gta gat gaa att gct aac tta att ggt gtg
Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile Ala Asn Leu Ile Gly Val | 420 | 425 | 1296 |
| gat aaa ttg att ttc caa gat ttg gat gcg tta act ggt tct gtg caa
Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala Leu Thr Gly Ser Val Gln | 435 | 440 | 1344 |
| caa gaa aat cca agt att caa gac ttt gat tgt tcg gtg ttt aca ggg | | | 1392 |

| | | | | | | | | | | | | | | | | |
|-----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Gln | Glu | Asn | Pro | Ser | Ile | Gln | Asp | Phe | Asp | Cys | Ser | Val | Phe | Thr | Gly | |
| 450 | | | | | | 455 | | | | | | 460 | | | | |
| gtt | tat | gtg | acg | ggc | gat | att | aca | cct | gaa | tat | ctg | gat | aat | att | gca | 1440 |
| Val | Tyr | Val | Thr | Gly | Asp | Ile | Thr | Pro | Glu | Tyr | Leu | Asp | Asn | Ile | Ala | |
| 465 | | | | | 470 | | | | | 475 | | | | 480 | | |
| gaa | cag | cgt | aat | gat | atc | gcc | aag | aaa | aag | cgt | gaa | aaa | gat | gct | acc | 1488 |
| Glu | Gln | Arg | Asn | Asp | Ile | Ala | Lys | Lys | Lys | Arg | Glu | Lys | Asp | Ala | Thr | |
| | | | | | 485 | | | | 490 | | | | 495 | | | |
| aat | ctt | gaa | atg | cac | aat | gaa | aaa | ta | | | | | | | | 1514 |
| Asn | Leu | Glu | Met | His | Asn | Glu | Lys | | | | | | | | | |
| | | | | | 500 | | | | | | | | | | | |
| <210> 111 | | | | | | | | | | | | | | | | |
| <211> 504 | | | | | | | | | | | | | | | | |
| <212> PRT | | | | | | | | | | | | | | | | |
| <213> Pasteurella multocida | | | | | | | | | | | | | | | | |
| <400> 111 | | | | | | | | | | | | | | | | |
| Met | Cys | Gly | Ile | Val | Gly | Ile | Val | Ser | Gln | Ser | Pro | Val | Asn | Gln | Ser | |
| 1 | | | | 5 | | | | | 10 | | | | 15 | | | |
| Ile | Tyr | Asp | Ala | Leu | Thr | Leu | Leu | Gln | His | Arg | Gly | Gln | Asp | Ala | Ala | |
| 20 | | | | | 25 | | | | | 30 | | | | | | |
| Gly | Ile | Val | Thr | Val | Asp | Asp | Glu | Asn | Arg | Phe | Arg | Leu | Arg | Lys | Ala | |
| 35 | | | | | 40 | | | | | 45 | | | | | | |
| Asn | Gly | Leu | Val | Ser | Asp | Val | Phe | Glu | Gln | Val | His | Met | Leu | Arg | Leu | |
| 50 | | | | | 55 | | | | | 60 | | | | | | |
| Gln | Gly | Asn | Ala | Gly | Ile | Gly | His | Val | Arg | Tyr | Pro | Thr | Ala | Gly | Ser | |
| 65 | | | | | 70 | | | | 75 | | | | 80 | | | |
| Ser | Ser | Val | Ser | Glu | Ala | Gln | Pro | Phe | Tyr | Val | Asn | Ser | Pro | Tyr | Gly | |
| | | | | 85 | | | | 90 | | | 95 | | | | | |
| Leu | Thr | Leu | Val | His | Asn | Gly | Asn | Leu | Thr | Asn | Ser | Ser | Glu | Leu | Lys | |
| 100 | | | | | 105 | | | | | 110 | | | | | | |
| Glu | Lys | Leu | Phe | Arg | Leu | Ala | Arg | Arg | His | Val | Asn | Thr | Asn | Ser | Asp | |
| 115 | | | | | 120 | | | | | 125 | | | | | | |
| Ser | Glu | Leu | Leu | Leu | Asn | Ile | Leu | Ala | Asn | His | Leu | Asp | His | Phe | Glu | |
| 130 | | | | | 135 | | | | | 140 | | | | | | |
| Lys | Tyr | Gln | Leu | Asp | Pro | Gln | Asp | Val | Phe | Ser | Ala | Val | Lys | Gln | Thr | |
| 145 | | | | | 150 | | | | | 155 | | | 160 | | | |
| His | Gln | Asp | Ile | Arg | Gly | Ala | Tyr | Ala | Cys | Ile | Ala | Met | Ile | Ile | Gly | |
| 165 | | | | | 170 | | | | | 175 | | | | | | |
| His | Gly | Met | Val | Ala | Phe | Arg | Asp | Pro | Asn | Gly | Ile | Arg | Pro | Leu | Val | |
| 180 | | | | | 185 | | | | | 190 | | | | | | |
| Leu | Gly | Lys | Arg | Glu | Glu | Asn | Gly | Lys | Thr | Glu | Tyr | Met | Phe | Ala | Ser | |
| 195 | | | | | 200 | | | | | 205 | | | | | | |
| Glu | Ser | Ile | Ala | Leu | Asp | Thr | Val | Gly | Phe | Glu | Phe | Val | Arg | Asp | Val | |
| 210 | | | | | 215 | | | | | 220 | | | | | | |

Gln Pro Gly Glu Ala Ile Tyr Val Thr Phe Glu Gly Glu Met Tyr Ala
 225 230 235 240
 Gln Gln Cys Ala Asp Lys Pro Thr Leu Thr Pro Cys Ile Phe Glu Tyr
 245 250 255
 Val Tyr Phe Ala Arg Pro Asp Ser Cys Ile Asp Gly Val Ser Val Tyr
 260 265 270 275
 Ala Ala Arg Val His Met Gly Gln Arg Leu Gly Glu Lys Ile Ala Arg
 275 280 285
 Glu Trp Ala Asp Val Asp Asp Ile Asp Val Val Ile Pro Val Pro Glu
 290 295 300
 Thr Ser Asn Asp Ile Ala Leu Arg Ile Ala Arg Val Leu Asn Lys Pro
 305 310 315 320
 Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Gly Arg Thr Phe Ile
 325 330 335
 Met Pro Gly Gln Ala Leu Arg Val Ser Ser Val Arg Arg Lys Leu Asn
 340 345 350
 Thr Ile Ala Ser Glu Phe Lys Asp Lys Asn Val Leu Leu Val Asp Asp
 355 360 365
 Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala Arg
 370 375 380
 Ala Ala Gly Ala Lys Lys Ile Tyr Phe Ala Ser Ala Ala Pro Glu Ile
 385 390 395 400
 Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Lys Asn Glu Leu
 405 410 415
 Ile Ala Tyr Gly Arg Asp Val Asp Glu Ile Ala Asn Leu Ile Gly Val
 420 425 430
 Asp Lys Leu Ile Phe Gln Asp Leu Asp Ala Leu Thr Gly Ser Val Gln
 435 440 445
 Gln Glu Asn Pro Ser Ile Gln Asp Phe Asp Cys Ser Val Phe Thr Gly
 450 455 460
 Val Tyr Val Thr Gly Asp Ile Thr Pro Glu Tyr Leu Asp Asn Ile Ala
 465 470 475 480
 Glu Gln Arg Asn Asp Ile Ala Lys Lys Lys Arg Glu Lys Asp Ala Thr
 485 490 495
 Asn Leu Glu Met His Asn Glu Lys
 500

<210> 112
<211> 989
<212> DNA
<213> *Pasteurella multocida*

<220>
<223> rci

<220>
 <221> CDS
 <222> (1)...(987)

| | | | |
|---|--|--|-----|
| <400> 112 | | | |
| atg gca aca ata aga aaa cgt ggt aac tca tat cgt gct gag ata agc | | | 48 |
| Met Ala Thr Ile Arg Lys Arg Gly Asn Ser Tyr Arg Ala Glu Ile Ser | | | |
| 1 5 10 15 | | | |
| aaa aac gga gta agg aaa tca gca aca ttt aag act aaa tca gaa gct | | | 96 |
| Lys Asn Gly Val Arg Lys Ser Ala Thr Phe Thr Lys Ser Glu Ala | | | |
| 20 25 30 | | | |
| aat gcg tgg gct gtt gac gag gag aga aaa tta gct gat ttg gca aaa | | | 144 |
| Asn Ala Trp Ala Val Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys | | | |
| 35 40 45 | | | |
| ggt atc gct cca gat att att ttt aga gat gta ata gaa cgc tat caa | | | 192 |
| Gly Ile Ala Pro Asp Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Gln | | | |
| 50 55 60 | | | |
| aat gaa gtg tct ata act aaa aaa ggc gcg cga aat gaa att ata aga | | | 240 |
| Asn Glu Val Ser Ile Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg | | | |
| 65 70 75 80 | | | |
| tta aac cgc ttt tta aga tat gat att tct aat ctg tat att cgt gat | | | 288 |
| Leu Asn Arg Phe Leu Arg Tyr Asp Ile Ser Asn Leu Tyr Ile Arg Asp | | | |
| 85 90 95 | | | |
| tta aga aaa gaa gat ttt gag gag tgg atc aga att cgc cta acc gaa | | | 336 |
| Leu Arg Lys Glu Asp Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu | | | |
| 100 105 110 | | | |
| gta tcg gat gct agc gtt aga cgt gag ctt gtt act ata tcg tca gtg | | | 384 |
| Val Ser Asp Ala Ser Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val | | | |
| 115 120 125 | | | |
| ctg aca aca gca ata aat aag tgg gga tat att tca agg cat cca atg | | | 432 |
| Leu Thr Thr Ala Ile Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met | | | |
| 130 135 140 | | | |
| act ggt att gaa aaa cca aaa aac tcg gca gaa aga aaa gaa cga tat | | | 480 |
| Thr Gly Ile Glu Lys Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr | | | |
| 145 150 155 160 | | | |
| tca gaa cag gac att aaa aca ata tta gaa aca gct aga tat tgt gaa | | | 528 |
| Ser Glu Gln Asp Ile Lys Thr Ile Leu Glu Thr Ala Arg Tyr Cys Glu | | | |
| 165 170 175 | | | |
| gat aaa cta ccc ata aca ctc aaa caa aga gta gca att gca atg tta | | | 576 |
| Asp Lys Leu Pro Ile Thr Leu Lys Gln Arg Val Ala Ile Ala Met Leu | | | |
| 180 185 190 | | | |
| ttt gct att gaa acc gct atg cgt gct ggt gag att gct agt ata aaa | | | 624 |
| Phe Ala Ile Glu Thr Ala Met Arg Ala Gly Glu Ile Ala Ser Ile Lys | | | |
| 195 200 205 | | | |
| tgg gat aat gtt ttt ctt gaa aag aga ata gta cat tta ccg aca act | | | 672 |
| Trp Asp Asn Val Phe Leu Glu Lys Arg Ile Val His Leu Pro Thr Thr | | | |
| 210 215 220 | | | |

aaa aac ggg cac tct aga gat gtg ccg ctt tcg caa aga gct gtt gcg 720
 Lys Asn Gly His Ser Arg Asp Val Pro Leu Ser Gln Arg Ala Val Ala
 225 230 235 240
 cta att tta aaa atg aaa gag gta gaa aat gga gat ctt gtg ttt cag 768
 Leu Ile Leu Lys Met Lys Glu Val Glu Asn Gly Asp Leu Val Phe Gln
 245 250 255
 acc acg cct gaa tca tta agc acc acg ttt aga gtg tta aag aaa gag 816
 Thr Thr Pro Glu Ser Leu Ser Thr Phe Arg Val Leu Lys Lys Glu
 260 265 270
 tgt gga ctt gaa cat ctc cat ttt cat gat acg aga agg gaa gcg ttg 864
 Cys Gly Leu Glu His Leu His Phe His Asp Thr Arg Arg Glu Ala Leu
 275 280 285
 acg aga tta tct aag aaa gta gat gta atg act cta gcc aaa att agc 912
 Thr Arg Leu Ser Lys Lys Val Asp Val Met Thr Leu Ala Lys Ile Ser
 290 295 300
 gga cat aga gat tta aga att tta caa aac aca tat tac gca ccg aat 960
 Gly His Arg Asp Leu Arg Ile Leu Gln Asn Thr Tyr Tyr Ala Pro Asn
 305 310 315 320
 atg agt gaa gtg gca aac ttg ttg gat ta 989
 Met Ser Glu Val Ala Asn Leu Leu Asp
 325
 <210> 113
 <211> 329
 <212> PRT
 <213> Pasteurella multocida
 <400> 113
 Met Ala Thr Ile Arg Lys Arg Gly Asn Ser Tyr Arg Ala Glu Ile Ser
 1 5 10 15
 Lys Asn Gly Val Arg Lys Ser Ala Thr Phe Lys Thr Lys Ser Glu Ala
 20 25 30
 Asn Ala Trp Ala Val Asp Glu Glu Arg Lys Leu Ala Asp Leu Ala Lys
 35 40 45
 Gly Ile Ala Pro Asp Ile Ile Phe Arg Asp Val Ile Glu Arg Tyr Gln
 50 55 60
 Asn Glu Val Ser Ile Thr Lys Lys Gly Ala Arg Asn Glu Ile Ile Arg
 65 70 75 80
 Leu Asn Arg Phe Leu Arg Tyr Asp Ile Ser Asn Leu Tyr Ile Arg Asp
 85 90 95
 Leu Arg Lys Glu Asp Phe Glu Glu Trp Ile Arg Ile Arg Leu Thr Glu
 100 105 110
 Val Ser Asp Ala Ser Val Arg Arg Glu Leu Val Thr Ile Ser Ser Val
 115 120 125
 Leu Thr Thr Ala Ile Asn Lys Trp Gly Tyr Ile Ser Arg His Pro Met
 130 135 140
 Thr Gly Ile Glu Lys Pro Lys Asn Ser Ala Glu Arg Lys Glu Arg Tyr

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 145 | 150 | 155 | 160 | | | | | | | | | | | | |
| Ser | Glu | Gln | Asp | Ile | Lys | Thr | Ile | Leu | Glu | Thr | Ala | Arg | Tyr | Cys | Glu |
| | | | | 165 | | | | 170 | | | | | | 175 | |
| Asp | Lys | Leu | Pro | Ile | Thr | Leu | Lys | Gln | Arg | Val | Ala | Ile | Ala | Met | Leu |
| | | | | 180 | | | 185 | | | | | | 190 | | |
| Phe | Ala | Ile | Glu | Thr | Ala | Met | Arg | Ala | Gly | Glu | Ile | Ala | Ser | Ile | Lys |
| | | | | 195 | | | 200 | | | | | 205 | | | |
| Trp | Asp | Asn | Val | Phe | Leu | Glu | Lys | Arg | Ile | Val | His | Leu | Pro | Thr | Thr |
| | | | | 210 | | 215 | | | | | 220 | | | | |
| Lys | Asn | Gly | His | Ser | Arg | Asp | Val | Pro | Leu | Ser | Gln | Arg | Ala | Val | Ala |
| | | | | 225 | | 230 | | | 235 | | | | 240 | | |
| Leu | Ile | Leu | Lys | Met | Lys | Glu | Val | Glu | Asn | Gly | Asp | Leu | Val | Phe | Gln |
| | | | | 245 | | | 250 | | | | | 255 | | | |
| Thr | Thr | Pro | Glu | Ser | Leu | Ser | Thr | Thr | Phe | Arg | Val | Leu | Lys | Lys | Glu |
| | | | | 260 | | | 265 | | | | | 270 | | | |
| Cys | Gly | Leu | Glu | His | Leu | His | Phe | His | Asp | Thr | Arg | Arg | Glu | Ala | Leu |
| | | | | 275 | | | 280 | | | | 285 | | | | |
| Thr | Arg | Leu | Ser | Lys | Lys | Val | Asp | Val | Met | Thr | Leu | Ala | Lys | Ile | Ser |
| | | | | 290 | | 295 | | | | | 300 | | | | |
| Gly | His | Arg | Asp | Leu | Arg | Ile | Leu | Gln | Asn | Thr | Tyr | Tyr | Ala | Pro | Asn |
| | | | | 305 | | 310 | | | 315 | | | | 320 | | |
| Met | Ser | Glu | Val | Ala | Asn | Leu | Leu | Asp | | | | | | | |
| | | | | | 325 | | | | | | | | | | |

<210> 114
<211> 1190
<212> DNA
<213> Pasteurella multocida

<220>
<223> sopE

<220>
<221> CDS
<222> (1)..(1188)

<400> 114
atg tct gaa gaa tat cta cat ggt gtc aaa gtc aca gaa atc aat caa 48
Met Ser Glu Tyr Leu His Gly Val Lys Val Thr Glu Ile Asn Gln
1 5 10 15

gca att cgc aca att caa agt cta tca acc gca gtc atc ggt att gtc 96
Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly Ile Val
20 25 30

tgt act gca aat gac gca gac aat gaa aca ttc cca ctc aat gaa ccc 144
Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn Glu Pro
35 40 45

gtt ctc atc aca aac gtg gca gcg gca att ggc aag gct gga aaa caa 192
Val Leu Ile Thr Asn Val Ala Ala Ile Gly Lys Ala Gly Gln

| 50 | 55 | 60 | |
|---|----|----|-----|
| ggc acg ctt tca cgt gcg ctt gac ggg att tct gat gta gtc aat tgc
Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val Asn Cys
65 70 75 80 | | | 240 |
| aaa gtg att gtt gtg cga gtg caa gaa agt gcg caa gaa gac gaa gaa
Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp Glu Glu
85 90 95 | | | 288 |
| aca aaa gca agt gaa atg aac acg gca att att ggc aca atc aca gaa
Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile Thr Glu
100 105 110 | | | 336 |
| gaa ggg cag tac aca ggc ttg aag gcg tta ttg att gcg aaa aac aaa
Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys Asn Lys
115 120 125 | | | 384 |
| ttc ggt atc aaa cca cgt att tta tgt gtg cca aaa ttc gac aca aaa
Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp Thr Lys
130 135 140 | | | 432 |
| gaa gtc gcc aca gag ctt gca agt atc gcc gcc aaa ctc aac gca ttt
Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Lys Leu Asn Ala Phe
145 150 155 160 | | | 480 |
| gct tac att tca tgt caa ggg tgt aaa acg aaa gaa caa gcg gtg caa
Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala Val Gln
165 170 175 | | | 528 |
| tat aaa cgc aac ttc tca caa cgt gaa gtc atg ctg atc atg ggc gat
Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met Gly Asp
180 185 190 | | | 576 |
| ttt ctg tca ttt aat gtc aac aca tca aaa gtt gag att gac tat gcc
Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala
195 200 205 | | | 624 |
| gtc act cgt gcg gca atg cgt gca tat ctt gat aaa gaa cag ggc
Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly
210 215 220 | | | 672 |
| tgg cat acg tct att tca aat aaa ggc att aat ggc gtg agc ggt gtc
Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val
225 230 235 240 | | | 720 |
| aca caa cca ctc tat ttt gac att aac gac agc tcg act gat gtg aac
Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn
245 250 255 | | | 768 |
| tat ctc aat gaa caa ggc atc acg tgt tgc gtg aat cat aat ggc ttt
Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe
260 265 270 | | | 816 |
| cgt ttt tgg ggc tta cgc acg act gca gaa gat cca tta ttc aag ttt
Arg Phe Trp Gly Leu Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe
275 280 285 | | | 864 |
| gaa gtg tac acc cgc act gca caa atc tta aaa gat acg att gca ggg
Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly
290 295 300 | | | 912 |
| gcg ttt gat tgg gca gtg gat aaa gat att tct gtc acg cta gtg aaa | | | 960 |

Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys
 305 310 315 320
 gat att att gaa gca atc aat gcg aag tgg cgt gat tac acc aca aaa 1008
 Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr Lys
 325 330 335
 ggc tac tta att ggc ggt aaa gcg tgg ctt aat aaa gag ctt aac agt 1056
 Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser
 340 345 350
 gca acg aat tta aaa gat gcg aag ttg ttg atc tct tat gat tat cac 1104
 Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His
 355 360 365
 cca gta cca ccg ctc gaa cag cta ggc ttt aat cag tac att tct gat 1152
 Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp
 370 375 380
 gaa tac ctt gtt gat ttt tca aat cgt tta gca tcg ta 1190
 Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser
 385 390 395

 <210> 115
 <211> 396
 <212> PRT
 <213> Pasteurella multocida

 <400> 115
 Met Ser Glu Glu Tyr Leu His Gly Val Lys Val Thr Glu Ile Asn Gln
 1 5 10 15

 Ala Ile Arg Thr Ile Gln Ser Leu Ser Thr Ala Val Ile Gly Ile Val
 20 25 30

 Cys Thr Ala Asn Asp Ala Asp Asn Glu Thr Phe Pro Leu Asn Glu Pro
 35 40 45

 Val Leu Ile Thr Asn Val Ala Ala Ala Ile Gly Lys Ala Gly Lys Gln
 50 55 60

 Gly Thr Leu Ser Arg Ala Leu Asp Gly Ile Ser Asp Val Val Asn Cys
 65 70 75 80

 Lys Val Ile Val Val Arg Val Gln Glu Ser Ala Gln Glu Asp Glu Glu
 85 90 95

 Thr Lys Ala Ser Glu Met Asn Thr Ala Ile Ile Gly Thr Ile Thr Glu
 100 105 110

 Glu Gly Gln Tyr Thr Gly Leu Lys Ala Leu Leu Ile Ala Lys Asn Lys
 115 120 125

 Phe Gly Ile Lys Pro Arg Ile Leu Cys Val Pro Lys Phe Asp Thr Lys
 130 135 140

 Glu Val Ala Thr Glu Leu Ala Ser Ile Ala Ala Lys Leu Asn Ala Phe
 145 150 155 160

 Ala Tyr Ile Ser Cys Gln Gly Cys Lys Thr Lys Glu Gln Ala Val Gln
 165 170 175

Tyr Lys Arg Asn Phe Ser Gln Arg Glu Val Met Leu Ile Met Gly Asp
 180 185 190
 Phe Leu Ser Phe Asn Val Asn Thr Ser Lys Val Glu Ile Asp Tyr Ala
 195 200 205
 Val Thr Arg Ala Ala Ala Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly
 210 215 220
 Trp His Thr Ser Ile Ser Asn Lys Gly Ile Asn Gly Val Ser Gly Val
 225 230 235 240
 Thr Gln Pro Leu Tyr Phe Asp Ile Asn Asp Ser Ser Thr Asp Val Asn
 245 250 255
 Tyr Leu Asn Glu Gln Gly Ile Thr Cys Cys Val Asn His Asn Gly Phe
 260 265 270
 Arg Phe Trp Gly Leu Arg Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe
 275 280 285
 Glu Val Tyr Thr Arg Thr Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly
 290 295 300
 Ala Phe Asp Trp Ala Val Asp Lys Asp Ile Ser Val Thr Leu Val Lys
 305 310 315 320
 Asp Ile Ile Glu Ala Ile Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys
 325 330 335
 Gly Tyr Leu Ile Gly Gly Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser
 340 345 350
 Ala Thr Asn Leu Lys Asp Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His
 355 360 365
 Pro Val Pro Pro Leu Glu Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp
 370 375 380
 Glu Tyr Leu Val Asp Phe Ser Asn Arg Leu Ala Ser
 385 390 395

<210> 116
 <211> 2204
 <212> DNA
 <213> Pasteurella multocida

<220>
 <223> unkK

<220>
 <221> CDS
 <222> (1)..(2202)

<400> 116
 atg aat aaa aat cgc tat aaa ctc att ttt agt aaa act aaa ggc tgt 48
 Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Lys Thr Lys Gly Cys
 1 5 10 15
 ctt gta cct gtt gct gaa acg att aat tct gca gta gga aat gcc tca 96
 Leu Val Pro Val Ala Glu Thr Ile Asn Ser Ala Val Gly Asn Ala Ser
 20 25 30

| | |
|---|-----|
| tca aaa gac gtt tct gac acc gag ata agt gct tct caa cca gcg ctc
Ser Lys Asp Val Ser Asp Thr Glu Ile Ser Ala Ser Gln Pro Ala Leu
35 40 45 | 144 |
| aac tcg ccg ctt tcg acc ctt tct gta tta gtc aaa acc gca ttt aat
Asn Ser Pro Leu Ser Thr Leu Ser Val Leu Val Lys Thr Ala Phe Asn
50 55 60 | 192 |
| ccg gtt tca aca ttg atg tcg ttg act tgg aaa gaa tac gcc gtt tta
Pro Val Ser Thr Leu Met Ser Leu Thr Trp Lys Glu Tyr Ala Val Leu
65 70 75 80 | 240 |
| tta tta agt gtg gtg tct ttt cct ctt atg gca caa gcc tct gat aca
Leu Leu Ser Val Val Ser Phe Pro Leu Met Ala Gln Ala Ser Asp Thr
85 90 95 | 288 |
| gat tca gtg gta caa aga aaa cct gaa tta act gat gtg acg aat agc
Asp Ser Val Val Gln Arg Lys Pro Glu Leu Thr Asp Val Thr Asn Ser
100 105 110 | 336 |
| aac agc tat cat gtg gaa tta gat aga gag cat cat aaa ggg gag cat
Asn Ser Tyr His Val Glu Leu Asp Arg Glu His His Lys Gly Glu His
115 120 125 | 384 |
| caa aca aaa atc aaa cat act gag aat aat gtc atc att gtt gat att
Gln Thr Lys Ile Lys His Thr Glu Asn Asn Val Ile Ile Val Asp Ile
130 135 140 | 432 |
| gca aaa cca aac caa aag ggc att tca gat aac cgt ttt aaa cac ttc
Ala Lys Pro Asn Gln Lys Gly Ile Ser Asp Asn Arg Phe Lys His Phe
145 150 155 160 | 480 |
| aac atc cca aat ggg gcg gta ttt aac aat agc gcc aag gaa aaa cgc
Asn Ile Pro Asn Gly Ala Val Phe Asn Asn Ser Ala Lys Glu Lys Arg
165 170 175 | 528 |
| tca cag tta gtg ggg tat ttg cca ggt aac cag aat tta acg gaa ggt
Ser Gln Leu Val Gly Tyr Leu Pro Gly Asn Gln Asn Leu Thr Glu Gly
180 185 190 | 576 |
| agt gaa gca aaa gcg atc tta aat cag gtg act gga ccg gat gcc agt
Ser Glu Ala Lys Ala Ile Leu Asn Gln Val Thr Gly Pro Asp Ala Ser
195 200 205 | 624 |
| aaa att gaa ggc gcc ctt gaa att tta ggg caa aaa gcc gat ttg gtg
Lys Ile Glu Gly Ala Leu Glu Ile Leu Gly Gln Lys Ala Asp Leu Val
210 215 220 | 672 |
| att gcg aac caa aat ggc att gtg ctt aat ggg gta aaa acc att aat
Ile Ala Asn Gln Asn Gly Ile Val Leu Asn Gly Val Lys Thr Ile Asn
225 230 235 240 | 720 |
| gcc aat cgt ttt gtg gca aca acc agt agt acc att gat cct gag caa
Ala Asn Arg Phe Val Ala Thr Thr Ser Ser Thr Ile Asp Pro Glu Gln
245 250 255 | 768 |
| atg cag tta aat gtc acg caa ggt aca gtg aca att ggg gtg gat gga
Met Gln Leu Asn Val Thr Gln Gly Thr Val Thr Ile Gly Val Asp Gly
260 265 270 | 816 |
| ttt gcc aca gat ggc tta cct tat ttg gat atc att gcc aaa aag att
Phe Ala Thr Asp Gly Leu Pro Tyr Leu Asp Ile Ile Ala Lys Lys Ile
275 280 285 | 864 |

| | |
|---|------|
| gaa caa aaa caa gcg att aca aaa gaa aga aca gga aat tcc gaa acc
Glu Gln Lys Gln Ala Ile Thr Lys Glu Arg Thr Gly Asn Ser Glu Thr
290 295 300 | 912 |
| gat atc act ttt gtc gca ggt aac agt aaa tat gat tta aag aca cat
Asp Ile Thr Phe Val Ala Gly Asn Ser Lys Tyr Asp Leu Lys Thr His
305 310 315 320 | 960 |
| caa gtg aca gaa aag cat acc gct gag gca caa ggt gaa att gcg att
Gln Val Thr Glu Lys His Thr Ala Glu Ala Gln Gly Glu Ile Ala Ile
325 330 335 | 1008 |
| agc ggt gcg agt acc ggt gca atg tac ggt aaa aat atc aaa tta atc
Ser Gly Ala Ser Thr Gly Ala Met Tyr Gly Lys Asn Ile Lys Leu Ile
340 345 350 | 1056 |
| gta acg gat aaa ggc gct ggg gta aaa cat gat ggc att att tta tct
Val Thr Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser
355 360 365 | 1104 |
| gag gcg gat att caa att gaa acc cat gag ggc gat gtt gaa tta ggc
Glu Ala Asp Ile Gln Ile Glu Thr His Glu Gly Asp Val Glu Leu Gly
370 375 380 | 1152 |
| aat aca aaa aat aat cag aat gag aat tat gcc aaa gct cat gcg gaa
Asn Thr Lys Asn Asn Gln Asn Glu Asn Tyr Ala Lys Ala His Ala Glu
385 390 395 400 | 1200 |
| ggg aat ttt acg gtt aaa ggc ggt aag cac gtt att att ggt aag gaa
Gly Asn Phe Thr Val Lys Gly Lys His Val Ile Ile Gly Lys Glu
405 410 415 | 1248 |
| gtt aaa gcc aac aaa gcg gtc gat att caa gca caa gaa aca aca gta
Val Lys Ala Asn Lys Ala Val Asp Ile Gln Ala Gln Glu Thr Thr Val
420 425 430 | 1296 |
| aga caa aat gcg aaa tta act gcc aaa acg agt gcc aaa att aca gca
Arg Gln Asn Ala Lys Leu Thr Ala Lys Thr Ser Ala Lys Ile Thr Ala
435 440 445 | 1344 |
| agt aag agt gtg aat ctt gaa gat aac gcg aaa ctt att gct aat gag
Ser Lys Ser Val Asn Leu Glu Asp Asn Ala Lys Leu Ile Ala Asn Glu
450 455 460 | 1392 |
| ctg agc aca aca acc aat aaa tta acc aat aaa ggt agc att tac ggc
Leu Ser Thr Thr Asn Lys Leu Thr Asn Lys Gly Ser Ile Tyr Gly
465 470 475 480 | 1440 |
| aag aaa gtg acg cta gat gct gat aat tta gtc aat agt aaa gaa atc
Lys Lys Val Thr Leu Asp Ala Asp Asn Leu Val Asn Ser Lys Glu Ile
485 490 495 | 1488 |
| tat gcg tct agc gaa ctt gat att caa acc aaa ggt cgt gat ctt tta
Tyr Ala Ser Ser Glu Leu Asp Ile Gln Thr Lys Gly Arg Asp Leu Leu
500 505 510 | 1536 |
| ctt gag gat ggg gtt aat caa cca ctg agt ttc tta aaa ggc gct tca
Leu Glu Asp Gly Val Asn Gln Pro Leu Ser Phe Leu Lys Gly Ala Ser
515 520 525 | 1584 |
| ttg tta gcg ccg ggg ttt gtc aac act ggg cta att cac agt aac ggt
Leu Leu Ala Pro Gly Phe Val Asn Thr Gly Leu Ile His Ser Asn Gly
530 535 540 | 1632 |

| | |
|---|------|
| aat gcc aag ctc act ttt aaa gat gac acc agt ttt gtg act gaa gga
Asn Ala Lys Leu Thr Phe Lys Asp Asp Thr Ser Phe Val Thr Glu Gly
545 550 555 560 | 1680 |
| aat aac ttt atc aca gca aaa gac aac tta gaa atc acg gca aaa aat
Asn Asn Phe Ile Thr Ala Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn
565 570 575 | 1728 |
| gtt caa att gat caa gcg aaa aat att caa tta aac gcg aat atc acg
Val Gln Ile Asp Gln Ala Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr
580 585 590 | 1776 |
| atc aat acc aag tct ggt ttt gtg aat tac ggt acc tta gca agt gct
Ile Asn Thr Lys Ser Gly Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala
595 600 605 | 1824 |
| caa aat tta acg att aat acc gaa caa ggc agc att tat aac ata ggc
Gln Asn Leu Thr Ile Asn Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly
610 615 620 | 1872 |
| ggg atc ttg ggg gcg ggt aaa agt ttg aat ctg agc gcg aaa aga gga
Gly Ile Leu Gly Ala Gly Lys Ser Leu Asn Ser Ala Lys Arg Gly
625 630 635 640 | 1920 |
| gaa aac caa gga gga tat ctt att aat caa ggt aag agt cta ctc cat
Glu Asn Gln Gly Gly Tyr Leu Ile Asn Gln Gly Lys Ser Leu Leu His
645 650 655 | 1968 |
| tct gaa ggc gcc atg aac ctc aca gcg gat cgc acg gtg tac aat tta
Ser Glu Gly Ala Met Asn Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu
660 665 670 | 2016 |
| ggg aat att ttt gct aaa ggt gac gcg acg atc aat gca aac gcg tta
Gly Asn Ile Phe Ala Lys Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu
675 680 685 | 2064 |
| att aat gat gtt act ctc aca ggt cgt ctt gag tat caa gat ctg aaa
Ile Asn Asp Val Thr Leu Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys
690 695 700 | 2112 |
| aaa gat tat acg cgt tat tat cgt atc aat gaa acg gca aaa cat ggt
Lys Asp Tyr Thr Arg Tyr Arg Ile Asn Glu Thr Ala Lys His Gly
705 710 715 720 | 2160 |
| tgg cat aat aac ttc tat gaa tta aac gtc gac aga gtt tct tg
Trp His Asn Asn Phe Tyr Glu Leu Asn Val Asp Arg Val Ser
725 730 | 2204 |
|
 | |
| <210> 117 | |
| <211> 734 | |
| <212> PRT | |
| <213> Pasteurella multocida | |
|
 | |
| <400> 117 | |
| Met Asn Lys Asn Arg Tyr Lys Leu Ile Phe Ser Lys Thr Lys Gly Cys
1 5 10 15 | |
| Leu Val Pro Val Ala Glu Thr Ile Asn Ser Ala Val Gly Asn Ala Ser
20 25 30 | |
| Ser Lys Asp Val Ser Asp Thr Glu Ile Ser Ala Ser Gln Pro Ala Leu
35 40 45 | |

Asn Ser Pro Leu Ser Thr Leu Ser Val Leu Val Lys Thr Ala Phe Asn
 50 55 60
 Pro Val Ser Thr Leu Met Ser Leu Thr Trp Lys Glu Tyr Ala Val Leu
 65 70 75 80
 Leu Leu Ser Val Val Ser Phe Pro Leu Met Ala Gln Ala Ser Asp Thr
 85 90 95
 Asp Ser Val Val Gln Arg Lys Pro Glu Leu Thr Asp Val Thr Asn Ser
 100 105 110
 Asn Ser Tyr His Val Glu Leu Asp Arg Glu His His Lys Gly Glu His
 115 120 125
 Gln Thr Lys Ile Lys His Thr Glu Asn Asn Val Ile Ile Val Asp Ile
 130 135 140
 Ala Lys Pro Asn Gln Lys Gly Ile Ser Asp Asn Arg Phe Lys His Phe
 145 150 155 160
 Asn Ile Pro Asn Gly Ala Val Phe Asn Asn Ser Ala Lys Glu Lys Arg
 165 170 175
 Ser Gln Leu Val Gly Tyr Leu Pro Gly Asn Gln Asn Leu Thr Glu Gly
 180 185 190
 Ser Glu Ala Lys Ala Ile Leu Asn Gln Val Thr Gly Pro Asp Ala Ser
 195 200 205
 Lys Ile Glu Gly Ala Leu Glu Ile Leu Gly Gln Lys Ala Asp Leu Val
 210 215 220
 Ile Ala Asn Gln Asn Gly Ile Val Leu Asn Gly Val Lys Thr Ile Asn
 225 230 235 240
 Ala Asn Arg Phe Val Ala Thr Thr Ser Ser Thr Ile Asp Pro Glu Gln
 245 250 255
 Met Gln Leu Asn Val Thr Gln Gly Thr Val Thr Ile Gly Val Asp Gly
 260 265 270
 Phe Ala Thr Asp Gly Leu Pro Tyr Leu Asp Ile Ile Ala Lys Lys Ile
 275 280 285
 Glu Gln Lys Gln Ala Ile Thr Lys Glu Arg Thr Gly Asn Ser Glu Thr
 290 295 300
 Asp Ile Thr Phe Val Ala Gly Asn Ser Lys Tyr Asp Leu Lys Thr His
 305 310 315 320
 Gln Val Thr Glu Lys His Thr Ala Glu Ala Gln Gly Glu Ile Ala Ile
 325 330 335
 Ser Gly Ala Ser Thr Gly Ala Met Tyr Gly Lys Asn Ile Lys Leu Ile
 340 345 350
 Val Thr Asp Lys Gly Ala Gly Val Lys His Asp Gly Ile Ile Leu Ser
 355 360 365
 Glu Ala Asp Ile Gln Ile Glu Thr His Glu Gly Asp Val Glu Leu Gly
 370 375 380

Asn Thr Lys Asn Asn Gln Asn Glu Asn Tyr Ala Lys Ala His Ala Glu
 385 390 395 400
 Gly Asn Phe Thr Val Lys Gly Gly Lys His Val Ile Ile Gly Lys Glu
 405 410 415
 Val Lys Ala Asn Lys Ala Val Asp Ile Gln Ala Gln Glu Thr Thr Val
 420 425 430
 Arg Gln Asn Ala Lys Leu Thr Ala Lys Thr Ser Ala Lys Ile Thr Ala
 435 440 445
 Ser Lys Ser Val Asn Leu Glu Asp Asn Ala Lys Leu Ile Ala Asn Glu
 450 455 460
 Leu Ser Thr Thr Thr Asn Lys Leu Thr Asn Lys Gly Ser Ile Tyr Gly
 465 470 475 480
 Lys Lys Val Thr Leu Asp Ala Asp Asn Leu Val Asn Ser Lys Glu Ile
 485 490 495
 Tyr Ala Ser Ser Glu Leu Asp Ile Gln Thr Lys Gly Arg Asp Leu Leu
 500 505 510
 Leu Glu Asp Gly Val Asn Gln Pro Leu Ser Phe Leu Lys Gly Ala Ser
 515 520 525
 Leu Leu Ala Pro Gly Phe Val Asn Thr Gly Leu Ile His Ser Asn Gly
 530 535 540
 Asn Ala Lys Leu Thr Phe Lys Asp Asp Thr Ser Phe Val Thr Glu Gly
 545 550 555 560
 Asn Asn Phe Ile Thr Ala Lys Asp Asn Leu Glu Ile Thr Ala Lys Asn
 565 570 575
 Val Gln Ile Asp Gln Ala Lys Asn Ile Gln Leu Asn Ala Asn Ile Thr
 580 585 590
 Ile Asn Thr Lys Ser Gly Phe Val Asn Tyr Gly Thr Leu Ala Ser Ala
 595 600 605
 Gln Asn Leu Thr Ile Asn Thr Glu Gln Gly Ser Ile Tyr Asn Ile Gly
 610 615 620
 Gly Ile Leu Gly Ala Gly Lys Ser Leu Asn Leu Ser Ala Lys Arg Gly
 625 630 635 640
 Glu Asn Gln Gly Gly Tyr Leu Ile Asn Gln Gly Lys Ser Leu Leu His
 645 650 655
 Ser Glu Gly Ala Met Asn Leu Thr Ala Asp Arg Thr Val Tyr Asn Leu
 660 665 670
 Gly Asn Ile Phe Ala Lys Gly Asp Ala Thr Ile Asn Ala Asn Ala Leu
 675 680 685
 Ile Asn Asp Val Thr Leu Thr Gly Arg Leu Glu Tyr Gln Asp Leu Lys
 690 695 700
 Lys Asp Tyr Thr Arg Tyr Tyr Arg Ile Asn Glu Thr Ala Lys His Gly
 705 710 715 720

Trp His Asn Asn Phe Tyr Glu Leu Asn Val Asp Arg Val Ser
725 730

<210> 118
<211> 251
<212> DNA
<213> Pasteurella multocida

<220>
<223> unk0

<220>
<221> CDS
<222> (1) .. (249)

<400> 118

atg aaa att act att aca cga aat cat cca gaa gta ttt caa gaa tcc 48
Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser
1 5 10 15

```

gct cgt tta gta gcc gaa aag ttc att aaa gcc caa tgt gta gaa gca  96
Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala
          20           25           30

```

tta aca ttg gct ttg att gag ggt gtc gag cac ttt gtg ctg gaa ggt 144
 Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly
 35 40 45

| | |
|---|-----|
| gag gag gaa agc aaa agg gga cat agt att aag gtt gta tta aaa gga | 192 |
| Glu Glu Glu Ser Lys Arg Gly His Ser Ile Lys Val Val Leu Lys Gly | |
| 50 55 60 | |

agt cac gaa gtt att aag tca gag gtg aat aca aat gaa aaa aat cat 240
 Ser His Glu Val Ile Lys Ser Glu Val Asn Thr Asn Glu Lys Asn His
 65 70 75 80

tgt aat cat ta
Cys Asn His 251

<210> 119
<211> 83
<212> PRT
<213> Pasteurella multocida

<400> 119

Met Lys Ile Thr Ile Thr Arg Asn His Pro Glu Val Phe Gln Glu Ser
 1 5 10 15

Ala Arg Leu Val Ala Glu Lys Phe Ile Lys Ala Gln Cys Val Glu Ala
20 25 30

Leu Thr Leu Ala Leu Ile Glu Gly Val Glu His Phe Val Leu Glu Gly
35 40 45

Glu .Glu Glu Ser Lys Arg Gly His Ser Ile Lys Val Val Leu Lys Gly
50 55 60

Ser His Glu Val Ile Lys Ser Glu Val Asn Thr Asn Glu Lys Asn His
65 70 75 80

Cys Asn His

<210> 120
<211> 548
<212> DNA
<213> Pasteurella multocida

<220>
<223> unkP

<220>
<221> CDS
<222> (1)..(546)

<400> 120
atg cgt gca tat ctt gat aaa gaa cag ggc tgg cat acg tct att tca 48
Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile Ser
1 5 10 15

aat aaa ggc att aat ggc gtg agc ggt gtc aca caa cca ctc tat ttt 96
Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr Phe
20 25 30

gac att aac gac agc tcg act gat gtg aac tat ctc aat gaa caa ggc 144
Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln Gly
35 40 45

atc acg tgt tgc gtg aat cat aat ggc ttt cgt ttt tgg ggc tta cgc 192
Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu Arg
50 55 60

acg act gca gaa gat cca tta ttc aag ttt gaa gtg tac acc cgc act 240
Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg Thr
65 70 75 80

gca caa atc tta aaa gat acg att gca ggg gcg ttt gat tgg gca gtg 288
Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala Val
85 90 95

gat aaa gat att tct gtc acg cta gtg aaa gat att att gaa gca atc 336
Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala Ile
100 105 110

aat gcg aag tgg cgt gat tac acc aca aaa ggc tac tta att ggc ggt 384
Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly Gly
115 120 125

aaa gcg tgg ctt aat aaa gag ctt aac agt gca acg aat tta aaa gat 432
Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys Asp
130 135 140

gcg aag ttg ttg atc tct tat gat tat cac cca gta cca ccg ctc gaa 480
Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu Glu
145 150 155 160

cag cta ggc ttt aat cag tac att tct gat gaa tac ctt gtt gat ttt 528
Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp Phe
165 170 175

tca aat cgt tta gca tcg ta 548

Ser Asn Arg Leu Ala Ser
180

<210> 121
<211> 182
<212> PRT
<213> Pasteurella multocida

<400> 121
Met Arg Ala Tyr Leu Asp Lys Glu Gln Gly Trp His Thr Ser Ile Ser
1 5 10 15

Asn Lys Gly Ile Asn Gly Val Ser Gly Val Thr Gln Pro Leu Tyr Phe
20 25 30

Asp Ile Asn Asp Ser Ser Thr Asp Val Asn Tyr Leu Asn Glu Gln Gly
35 40 45

Ile Thr Cys Cys Val Asn His Asn Gly Phe Arg Phe Trp Gly Leu Arg
50 55 60

Thr Thr Ala Glu Asp Pro Leu Phe Lys Phe Glu Val Tyr Thr Arg Thr
65 70 75 80

Ala Gln Ile Leu Lys Asp Thr Ile Ala Gly Ala Phe Asp Trp Ala Val
85 90 95

Asp Lys Asp Ile Ser Val Thr Leu Val Lys Asp Ile Ile Glu Ala Ile
100 105 110

Asn Ala Lys Trp Arg Asp Tyr Thr Thr Lys Gly Tyr Leu Ile Gly Gly
115 120 125

Lys Ala Trp Leu Asn Lys Glu Leu Asn Ser Ala Thr Asn Leu Lys Asp
130 135 140

Ala Lys Leu Leu Ile Ser Tyr Asp Tyr His Pro Val Pro Pro Leu Glu
145 150 155 160

Gln Leu Gly Phe Asn Gln Tyr Ile Ser Asp Glu Tyr Leu Val Asp Phe
165 170 175

Ser Asn Arg Leu Ala Ser
180

<210> 122
<211> 69
<212> DNA
<213> Actinobacillus pleuropneumoniae

<220>
<223> apvA-or1

<220>
<221> CDS
<222> (1)...(69)

<400> 122
atg ttt tat gtc atg ctt gcc aat agg acg tct ata att tca tca atc 48
Met Phe Tyr Val Met Leu Ala Asn Arg Thr Ser Ile Ile Ser Ser Ile
1 5 10 15

gat aag ttt aag ata ctt agc
Asp Lys Phe Lys Ile Leu Ser
20

69

```
<210> 123
<211> 23
<212> PRT
<213> Actinobacillus pleuropneumoniae

<400> 123
Met Phe Tyr Val Met Leu Ala Asn Arg Thr Ser Ile Ile Ser Ser Ile
      1           5                   10                  15

Asp Lys Phe Lys Ile Leu Ser
      20
```

<210> 124
<211> 64
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> apvA-or2

<220>
<221> CDS
<222> (3) .. (62)

```

<400> 124
ag cta agt atc tta aac tta tcg att gat gaa att ata gac gtc cta 47
  Leu Ser Ile Leu Asn Leu Ser Ile Asp Glu Ile Ile Asp Val Leu
    1           5           10          15

```

ttg gca agc atg aca ta 64
Leu Ala Ser Met Thr
20

<210> 125
<211> 20
<212> PRT
<213> *Actinobacillus pleuropneumoniae*

<400> 125
Leu Ser Ile Leu Asn Leu Ser Ile Asp Glu Ile Ile Asp Val Leu Leu
1 5 10 15

Ala Ser Met Thr
20

<210> 126
<211> 653
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> apvB

<220>
<221> CDS

<222> (1)..(651)

<400> 126
 tta att agc ttt cct ttt att act ttt gca agt aat gtt aat gga gcc 48
 Leu Ile Ser Phe Pro Phe Ile Thr Phe Ala Ser Asn Val Asn Gly Ala
 1 5 10 15
 gaa att gga ttg gga gga gcc cgt gag agt agt att tac tat tct aaa 96
 Glu Ile Gly Leu Gly Gly Ala Arg Glu Ser Ser Ile Tyr Tyr Ser Lys
 20 25 30
 cat aaa gta gca aca aat ccc ttt tta gca ctt gat ctt tct tta ggt 144
 His Lys Val Ala Thr Asn Pro Phe Leu Ala Leu Asp Leu Ser Leu Gly
 35 40 45
 aat ttt tat atg aga ggg act gca gga att agc gaa ata gga tat gaa 192
 Asn Phe Tyr Met Arg Gly Thr Ala Gly Ile Ser Glu Ile Gly Tyr Glu
 50 55 60
 caa tct ttc act gac aat ttc agc gta tca ctg ttt gtt aac cca ttt 240
 Gln Ser Phe Thr Asp Asn Phe Ser Val Ser Leu Phe Val Asn Pro Phe
 65 70 75 80
 gat ggt ttt tca att aaa gga aaa gac ttg tta cct gga tat caa agt 288
 Asp Gly Phe Ser Ile Lys Gly Lys Asp Leu Leu Pro Gly Tyr Gln Ser
 85 90 95
 att caa act cgc aaa act caa ttt gcc ttt ggt tgg gga tta aat tat 336
 Ile Gln Thr Arg Lys Thr Gln Phe Ala Phe Gly Trp Gly Leu Asn Tyr
 100 105 110
 aat ttg gga ggt tta ttc ggc tta aat gat act ttt ata tcc ttg gaa 384
 Asn Leu Gly Gly Leu Phe Gly Leu Asn Asp Thr Phe Ile Ser Leu Glu
 115 120 125
 gga aaa agc gga aaa cgt ggt gcg agt agt aat gtc agc tta ctt aaa 432
 Gly Lys Ser Gly Lys Arg Gly Ala Ser Ser Asn Val Ser Leu Leu Lys
 130 135 140
 tcg ttt aat atg acg aaa aat tgg aaa gtt tca cca tat att ggc tca 480
 Ser Phe Asn Met Thr Lys Asn Trp Lys Val Ser Pro Tyr Ile Gly Ser
 145 150 155 160
 agt tat tat tca tct aaa tat aca gat tat tac ttt ggt att aaa caa 528
 Ser Tyr Tyr Ser Ser Lys Tyr Thr Asp Tyr Tyr Phe Gly Ile Lys Gln
 165 170 175
 tcc gaa tta ggt aat aaa att aca tcc gta tat aaa cct aaa gca gct 576
 Ser Glu Leu Gly Asn Lys Ile Thr Ser Val Tyr Lys Pro Lys Ala Ala
 180 185 190
 tat gca aca cac ata ggt att aat act gat tat gct ttc acg aac aat 624
 Tyr Ala Thr His Ile Gly Ile Asn Thr Asp Tyr Ala Phe Thr Asn Asn
 195 200 205
 ctt ggc atg ggt tta tct gtc ggt tgg at 653
 Leu Gly Met Gly Leu Ser Val Gly Trp
 210 215

<210> 127
<211> 217
<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 127

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ile | Ser | Phe | Pro | Phe | Ile | Thr | Phe | Ala | Ser | Asn | Val | Asn | Gly | Ala |
| 1 | | | | | 5 | | | | 10 | | | | | | 15 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Ile | Gly | Leu | Gly | Gly | Ala | Arg | Glu | Ser | Ser | Ile | Tyr | Tyr | Ser | Lys |
| | | | 20 | | | | 25 | | | | 30 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Lys | Val | Ala | Thr | Asn | Pro | Phe | Leu | Ala | Leu | Asp | Leu | Ser | Leu | Gly |
| | | | 35 | | | | 40 | | | 45 | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Phe | Tyr | Met | Arg | Gly | Thr | Ala | Gly | Ile | Ser | Glu | Ile | Gly | Tyr | Glu |
| | | | 50 | | | 55 | | | 60 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Ser | Phe | Thr | Asp | Asn | Phe | Ser | Val | Ser | Leu | Phe | Val | Asn | Pro | Phe |
| | | | 65 | | | 70 | | | 75 | | | 80 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Gly | Phe | Ser | Ile | Lys | Gly | Lys | Asp | Leu | Leu | Pro | Gly | Tyr | Gln | Ser |
| | | | 85 | | | 90 | | | 95 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Gln | Thr | Arg | Lys | Thr | Gln | Phe | Ala | Phe | Gly | Trp | Gly | Leu | Asn | Tyr |
| | | | 100 | | | 105 | | | 110 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Leu | Gly | Gly | Leu | Phe | Gly | Leu | Asn | Asp | Thr | Phe | Ile | Ser | Leu | Glu |
| | | | 115 | | | 120 | | | 125 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Lys | Ser | Gly | Lys | Arg | Gly | Ala | Ser | Ser | Asn | Val | Ser | Leu | Leu | Lys |
| | | | 130 | | | 135 | | | 140 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Phe | Asn | Met | Thr | Lys | Asn | Trp | Lys | Val | Ser | Pro | Tyr | Ile | Gly | Ser |
| | | | 145 | | | 150 | | | 155 | | | 160 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Tyr | Tyr | Ser | Ser | Lys | Tyr | Thr | Asp | Tyr | Tyr | Phe | Gly | Ile | Lys | Gln |
| | | | 165 | | | 170 | | | 175 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Glu | Leu | Gly | Asn | Lys | Ile | Thr | Ser | Val | Tyr | Lys | Pro | Lys | Ala | Ala |
| | | | 180 | | | 185 | | | 190 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Ala | Thr | His | Ile | Gly | Ile | Asn | Thr | Asp | Tyr | Ala | Phe | Thr | Asn | Asn |
| | | | 195 | | | 200 | | | 205 | | | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| Leu | Gly | Met | Gly | Leu | Ser | Val | Gly | Trp | | | | | | | |
| | | | 210 | | | 215 | | | | | | | | | |

<210> 128

<211> 242

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> apvC

<220>

<221> CDS

<222> (1)..(240)

<400> 128

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| atg | tgg | cgg | atg | gga | gat | ttt | atg | tct | aaa | aaa | gag | agg | ctg | aat | gat | 48 |
| Met | Trp | Arg | Met | Gly | Asp | Phe | Met | Ser | Lys | Lys | Glu | Arg | Leu | Asn | Asp | |
| 1 | | | | | 5 | | | | 10 | | | | 15 | | | |

| | | | |
|---|-----|----|-----|
| atg gct cgc cag att tta tca gcg gcg gag ttg ctc att gca aag gaa | 96 | | |
| Met Ala Arg Gln Ile Leu Ser Ala Ala Glu Leu Leu Ile Ala Lys Glu | | | |
| 20 | 25 | 30 | |
| ggt ttg caa aat tta tcg atg agg aaa atc gca agt gaa gcc ggt atc | 144 | | |
| Gly Leu Gln Asn Leu Ser Met Arg Lys Ile Ala Ser Glu Ala Gly Ile | | | |
| 35 | 40 | 45 | |
| gca aca ggc acg ctt tat ctc tat ttc aaa acg aaa gac gag tta ctg | 192 | | |
| Ala Thr Gly Thr Leu Tyr Leu Tyr Phe Lys Thr Lys Asp Glu Leu Leu | | | |
| 50 | 55 | 60 | |
| gat tgt ttg gcg gaa caa tta cat gaa cga tat tat cgt tat ctg aat | 240 | | |
| Asp Cys Leu Ala Glu Gln Leu His Glu Arg Tyr Tyr Arg Tyr Leu Asn | | | |
| 65 | 70 | 75 | 80 |
| at | | | 242 |
|
 | | | |
| <210> 129 | | | |
| <211> 80 | | | |
| <212> PRT | | | |
| <213> Actinobacillus pleuropneumoniae | | | |
|
 | | | |
| <400> 129 | | | |
| Met Trp Arg Met Gly Asp Phe Met Ser Lys Lys Glu Arg Leu Asn Asp | | | |
| 1 | 5 | 10 | 15 |
| Met Ala Arg Gln Ile Leu Ser Ala Ala Glu Leu Leu Ile Ala Lys Glu | | | |
| 20 | 25 | 30 | |
| Gly Leu Gln Asn Leu Ser Met Arg Lys Ile Ala Ser Glu Ala Gly Ile | | | |
| 35 | 40 | 45 | |
| Ala Thr Gly Thr Leu Tyr Leu Tyr Phe Lys Thr Lys Asp Glu Leu Leu | | | |
| 50 | 55 | 60 | |
| Asp Cys Leu Ala Glu Gln Leu His Glu Arg Tyr Tyr Arg Tyr Leu Asn | | | |
| 65 | 70 | 75 | 80 |
|
 | | | |
| <210> 130 | | | |
| <211> 527 | | | |
| <212> DNA | | | |
| <213> Actinobacillus pleuropneumoniae | | | |
|
 | | | |
| <220> | | | |
| <223> apvD | | | |
|
 | | | |
| <220> | | | |
| <221> CDS | | | |
| <222> (1)...(525) | | | |
|
 | | | |
| <400> 130 | | | |
| aat att caa aaa aca gtt att gct agc ggc aca ttg caa gcg act gaa | 48 | | |
| Asn Ile Gln Lys Thr Val Ile Ala Ser Gly Thr Leu Gln Ala Thr Glu | | | |
| 1 | 5 | 10 | 15 |
| caa gta gat att ggt gca caa gta tct ggg cag att aag cat att tta | 96 | | |
| Gln Val Asp Ile Gly Ala Gln Val Ser Gly Gln Ile Lys His Ile Leu | | | |
| 20 | 25 | 30 | |
| gta caa gaa gga cag aag gtt aaa aaa ggt gag cta tta gct gta att | 144 | | |

| | | | |
|---|-----|-----|-----|
| Val Gln Glu Gly Gln Lys Val Lys Lys Gly Glu Leu Leu Ala Val Ile | | | |
| 35 | 40 | 45 | |
| gat cca cgt ctg gct gaa acg gaa tta aaa cta gca aaa gct gag cta | | | 192 |
| Asp Pro Arg Leu Ala Glu Thr Glu Leu Lys Leu Ala Lys Ala Glu Leu | | | |
| 50 | 55 | 60 | |
| gca aat gct tct gct aat ttg gat aca aaa aaa att aat ctt aag caa | | | 240 |
| Ala Asn Ala Ser Ala Asn Leu Asp Thr Lys Lys Ile Asn Leu Lys Gln | | | |
| 65 | 70 | 75 | 80 |
| ctg caa tca gat tgg gaa cgt cat caa cgt ttg ata cga acc aat gcg | | | 288 |
| Leu Gln Ser Asp Trp Glu Arg His Gln Arg Leu Ile Arg Thr Asn Ala | | | |
| 85 | 90 | 95 | |
| aca agc caa aag gaa aca gaa gca aaa agt aga tta aat acg gcc | | | 336 |
| Thr Ser Gln Lys Glu Thr Glu Ala Lys Ser Arg Leu Asn Thr Ala | | | |
| 100 | 105 | 110 | |
| aaa gca gaa ctt caa att gcg caa aat aat cta gat atc gct aaa atc | | | 384 |
| Lys Ala Glu Leu Gln Ile Ala Gln Asn Asn Leu Asp Ile Ala Lys Ile | | | |
| 115 | 120 | 125 | |
| aga gtg gaa aaa gct gaa acc gaa cta gga tat aca gaa att cgt tct | | | 432 |
| Arg Val Glu Lys Ala Glu Thr Glu Leu Gly Tyr Thr Glu Ile Arg Ser | | | |
| 130 | 135 | 140 | |
| cca ctt gat gca aca gta att tca gta ttt gcg caa aat ggt caa act | | | 480 |
| Pro Leu Asp Ala Thr Val Ile Ser Val Phe Ala Gln Asn Gly Gln Thr | | | |
| 145 | 150 | 155 | 160 |
| tta gtc acc acc caa caa gta cca gtg ctg atg aaa tta gct aat at | | | 527 |
| Leu Val Thr Thr Gln Gln Val Pro Val Leu Met Lys Leu Ala Asn | | | |
| 165 | 170 | 175 | |

<210> 131

<211> 175

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 131

| | | | |
|---|---|----|----|
| Asn Ile Gln Lys Thr Val Ile Ala Ser Gly Thr Leu Gln Ala Thr Glu | | | |
| 1 | 5 | 10 | 15 |

| | | | |
|---|----|----|--|
| Gln Val Asp Ile Gly Ala Gln Val Ser Gly Gln Ile Lys His Ile Leu | | | |
| 20 | 25 | 30 | |

| | | | |
|---|----|----|--|
| Val Gln Glu Gly Gln Lys Val Lys Lys Gly Glu Leu Leu Ala Val Ile | | | |
| 35 | 40 | 45 | |

| | | | |
|---|----|----|--|
| Asp Pro Arg Leu Ala Glu Thr Glu Leu Lys Leu Ala Lys Ala Glu Leu | | | |
| 50 | 55 | 60 | |

| | | | |
|---|----|----|----|
| Ala Asn Ala Ser Ala Asn Leu Asp Thr Lys Lys Ile Asn Leu Lys Gln | | | |
| 65 | 70 | 75 | 80 |

| | | | |
|---|----|----|--|
| Leu Gln Ser Asp Trp Glu Arg His Gln Arg Leu Ile Arg Thr Asn Ala | | | |
| 85 | 90 | 95 | |

| | | | |
|---|-----|-----|--|
| Thr Ser Gln Lys Glu Thr Glu Ala Lys Ser Arg Leu Asn Thr Ala | | | |
| 100 | 105 | 110 | |

Lys Ala Glu Leu Gln Ile Ala Gln Asn Asn Leu Asp Ile Ala Lys Ile
 115 120 125

Arg Val Glu Lys Ala Glu Thr Glu Leu Gly Tyr Thr Glu Ile Arg Ser
 130 135 140

Pro Leu Asp Ala Thr Val Ile Ser Val Phe Ala Gln Asn Gly Gln Thr
 145 150 155 160

Leu Val Thr Thr Gln Gln Val Pro Val Leu Met Lys Leu Ala Asn
 165 170 175

<210> 132

<211> 867

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> atpG

<220>

<221> CDS

<222> (1)...(864)

<400> 132

| | |
|---|----|
| atg gca ggt gcg aaa gag ata aga acc aaa att gca agt gtg aaa aat | 48 |
| Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys Asn | |
| 1 5 10 15 | |

| | |
|---|----|
| act caa aaa atc acc aaa gca atg gaa atg gtt gct acc tct aaa atg | 96 |
| Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Thr Ser Lys Met | |
| 20 25 30 | |

| | |
|---|-----|
| cgt aaa acg caa gag cgt atg gct gcc agt cgt cct tat tcg gaa aca | 144 |
| Arg Lys Thr Gln Glu Arg Met Ala Ala Ser Arg Pro Tyr Ser Glu Thr | |
| 35 40 45 | |

| | |
|---|-----|
| atc cgt aag gtg att agc cat att gcg aaa gga agc att ggt tat aag | 192 |
| Ile Arg Lys Val Ile Ser His Ile Ala Lys Gly Ser Ile Gly Tyr Lys | |
| 50 55 60 | |

| | |
|---|-----|
| cac ccg ttt tta act gaa cgt gat att aaa aaa gta ggc tat ctt gtc | 240 |
| His Pro Phe Leu Thr Glu Arg Asp Ile Lys Lys Val Gly Tyr Leu Val | |
| 65 70 75 80 | |

| | |
|---|-----|
| gtt tcg acc gat cgc ggt tta tgc ggt ggc ctt aat atc aat tta ttc | 288 |
| Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Ile Asn Leu Phe | |
| 85 90 95 | |

| | |
|---|-----|
| aaa gcg act ttg aat gaa ttt aaa acg tgg aaa gat aaa gac gtt agt | 336 |
| Lys Ala Thr Leu Asn Glu Phe Lys Thr Trp Lys Asp Lys Asp Val Ser | |
| 100 105 110 | |

| | |
|---|-----|
| gtt gag ctt ggt tta gta ggg tcg aaa ggc gta agc ttt tac caa aat | 384 |
| Val Glu Leu Gly Leu Val Gly Ser Lys Gly Val Ser Phe Tyr Gln Asn | |
| 115 120 125 | |

| | |
|---|-----|
| cta ggc tta aac gtg aga tct caa gta acg gga tta ggc gat aat ccg | 432 |
| Leu Gly Leu Asn Val Arg Ser Gln Val Thr Gly Leu Gly Asp Asn Pro | |
| 130 135 140 | |

gaa atg gaa cgt atc gtg ggc gca gtt aat gaa atg att aat gcg ttc 480

| | | | |
|---|-----|-----|-----|
| Glu Met Glu Arg Ile Val Gly Ala Val Asn Glu Met Ile Asn Ala Phe | | | |
| 145 | 150 | 155 | 160 |
| cga aac gga gaa gtg gat gcg gtt tac gtc gct tac aac cgt ttt gaa | | | 528 |
| Arg Asn Gly Glu Val Asp Ala Val Tyr Val Ala Tyr Asn Arg Phe Glu | | | |
| 165 | 170 | 175 | |
| aat acg atg tca caa aaa cct gtt atc gca cag tta ctt ccg tta cct | | | 576 |
| Asn Thr Met Ser Gln Lys Pro Val Ile Ala Gln Leu Leu Pro Leu Pro | | | |
| 180 | 185 | 190 | |
| aaa cta gat gac gat gaa tta gat acg aaa ggt tca tgg gat tat att | | | 624 |
| Lys Leu Asp Asp Asp Glu Leu Asp Thr Lys Gly Ser Trp Asp Tyr Ile | | | |
| 195 | 200 | 205 | |
| tat gaa ccg aat cca caa gtt tta ttg gat agt tta ctt gtt cgt tat | | | 672 |
| Tyr Glu Pro Asn Pro Gln Val Leu Leu Asp Ser Leu Leu Val Arg Tyr | | | |
| 210 | 215 | 220 | |
| tta gaa act cag gta tac caa gca gtt gta gat aac cta gct tct gaa | | | 720 |
| Leu Glu Thr Gln Val Tyr Gln Ala Val Val Asp Asn Leu Ala Ser Glu | | | |
| 225 | 230 | 235 | 240 |
| caa gcc gct cga atg gta gcg atg aaa gcc gca aca gat aat gcg ggt | | | 768 |
| Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly | | | |
| 245 | 250 | 255 | |
| aca tta atc gat gaa tta caa tta gtg tat aac aaa gct cgc caa gca | | | 816 |
| Thr Leu Ile Asp Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala | | | |
| 260 | 265 | 270 | |
| agc att aca aat gaa tta aac gaa att gtt gcg ggt gcc gca gca att | | | 864 |
| Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala Ile | | | |
| 275 | 280 | 285 | |
| taa | | | 867 |
| <210> 133 | | | |
| <211> 288 | | | |
| <212> PRT | | | |
| <213> Actinobacillus pleuropneumoniae | | | |
| <400> 133 | | | |
| Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Lys Asn | | | |
| 1 5 10 15 | | | |
| Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Thr Ser Lys Met | | | |
| 20 25 30 | | | |
| Arg Lys Thr Gln Glu Arg Met Ala Ala Ser Arg Pro Tyr Ser Glu Thr | | | |
| 35 40 45 | | | |
| Ile Arg Lys Val Ile Ser His Ile Ala Lys Gly Ser Ile Gly Tyr Lys | | | |
| 50 55 60 | | | |
| His Pro Phe Leu Thr Glu Arg Asp Ile Lys Lys Val Gly Tyr Leu Val | | | |
| 65 70 75 80 | | | |
| Val Ser Thr Asp Arg Gly Leu Cys Gly Leu Asn Ile Asn Leu Phe | | | |
| 85 90 95 | | | |

Lys Ala Thr Leu Asn Glu Phe Lys Thr Trp Lys Asp Lys Asp Val Ser
 100 105 110
 Val Glu Leu Gly Leu Val Gly Ser Lys Gly Val Ser Phe Tyr Gln Asn
 115 120 125
 Leu Gly Leu Asn Val Arg Ser Gln Val Thr Gly Leu Gly Asp Asn Pro
 130 135 140
 Glu Met Glu Arg Ile Val Gly Ala Val Asn Glu Met Ile Asn Ala Phe
 145 150 155 160
 Arg Asn Gly Glu Val Asp Ala Val Tyr Val Ala Tyr Asn Arg Phe Glu
 165 170 175
 Asn Thr Met Ser Gln Lys Pro Val Ile Ala Gln Leu Leu Pro Leu Pro
 180 185 190
 Lys Leu Asp Asp Asp Glu Leu Asp Thr Lys Gly Ser Trp Asp Tyr Ile
 195 200 205
 Tyr Glu Pro Asn Pro Gln Val Leu Leu Asp Ser Leu Leu Val Arg Tyr
 210 215 220
 Leu Glu Thr Gln Val Tyr Gln Ala Val Val Asp Asn Leu Ala Ser Glu
 225 230 235 240
 Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly
 245 250 255
 Thr Leu Ile Asp Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala
 260 265 270
 Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala Ile
 275 280 285

<210> 134

<211> 534

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> atpH

<220>

<221> CDS

<222> (1)...(531)

<400> 134

| | |
|---|----|
| atg tca gaa tta agt aca gta gct cgc ccc tac gct aaa gca gct ttt | 48 |
| Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe | |
| 1 5 10 15 | |

| | |
|---|----|
| gat ttt gct tta gaa caa ggt cag ttg gac aaa tgg caa gaa atg tta | 96 |
| Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu | |
| 20 25 30 | |

| | |
|---|-----|
| cag ttt tcg gca ttc gtt gct gaa aac gaa caa gtg gcg gaa tat att | 144 |
| Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile | |
| 35 40 45 | |

| | |
|---|-----|
| aat tct tcc ctt gca agc ggt cag att tct gaa act ttt atc aaa atc | 192 |
|---|-----|

| | | | |
|---|-----|-----|-----|
| Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile | | | |
| 50 | 55 | 60 | |
| tgc ggc gac caa ctt gat caa tat ggg caa aat ttt att cgt gta atg | | | 240 |
| Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met | | | |
| 65 | 70 | 75 | 80 |
| gct gaa aat aaa cgt ctg gct gtg ttg cct atg gtt ttt gat act ttc | | | 288 |
| Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe | | | |
| 85 | 90 | 95 | |
| gta tca tta cga gcg gaa cat gaa gcg gta aaa gat gta aca att gtt | | | 336 |
| Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val | | | |
| 100 | 105 | 110 | |
| tcg gca aac gaa tta agt caa gca caa gaa gat aaa atc gca aaa gcg | | | 384 |
| Ser Ala Asn Glu Leu Ser Gln Ala Gln Glu Asp Lys Ile Ala Lys Ala | | | |
| 115 | 120 | 125 | |
| atg gaa aaa cgc tta ggt caa aaa gtt cgt tta acc aac caa atc gat | | | 432 |
| Met Glu Lys Arg Leu Gly Gln Lys Val Arg Leu Thr Asn Gln Ile Asp | | | |
| 130 | 135 | 140 | |
| aac agc ctg att gca ggc gta att att aaa tac gat gat gtt gtt att | | | 480 |
| Asn Ser Leu Ile Ala Gly Val Ile Lys Tyr Asp Asp Val Val Ile | | | |
| 145 | 150 | 155 | 160 |
| gat ggt agt agc cgc ggt cag tta aat cgc tta gcg tca gcg ttg agc | | | 528 |
| Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser | | | |
| 165 | 170 | 175 | |
| ttg taa | | | 534 |
| Leu | | | |
| <210> 135 | | | |
| <211> 177 | | | |
| <212> PRT | | | |
| <213> <i>Actinobacillus pleuropneumoniae</i> | | | |
| <400> 135 | | | |
| Met Ser Glu Leu Ser Thr Val Ala Arg Pro Tyr Ala Lys Ala Ala Phe | | | |
| 1 | 5 | 10 | 15 |
| Asp Phe Ala Leu Glu Gln Gly Gln Leu Asp Lys Trp Gln Glu Met Leu | | | |
| 20 | 25 | 30 | |
| Gln Phe Ser Ala Phe Val Ala Glu Asn Glu Gln Val Ala Glu Tyr Ile | | | |
| 35 | 40 | 45 | |
| Asn Ser Ser Leu Ala Ser Gly Gln Ile Ser Glu Thr Phe Ile Lys Ile | | | |
| 50 | 55 | 60 | |
| Cys Gly Asp Gln Leu Asp Gln Tyr Gly Gln Asn Phe Ile Arg Val Met | | | |
| 65 | 70 | 75 | 80 |
| Ala Glu Asn Lys Arg Leu Ala Val Leu Pro Met Val Phe Asp Thr Phe | | | |
| 85 | 90 | 95 | |
| Val Ser Leu Arg Ala Glu His Glu Ala Val Lys Asp Val Thr Ile Val | | | |
| 100 | 105 | 110 | |

Ser Ala Asn Glu Leu Ser Gln Ala Gln Glu Asp Lys Ile Ala Lys Ala
 115 120 125

Met Glu Lys Arg Leu Gly Gln Lys Val Arg Leu Thr Asn Gln Ile Asp
 130 135 140

Asn Ser Leu Ile Ala Gly Val Ile Ile Lys Tyr Asp Asp Val Val Ile
 145 150 155 160

Asp Gly Ser Ser Arg Gly Gln Leu Asn Arg Leu Ala Ser Ala Leu Ser
 165 170 175

Leu

<210> 136

<211> 321

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> dksA

<220>

<221> CDS

<222> (1)..(318)

<400> 136

| | |
|---|----|
| gca tgg cat gtg caa att atg gac gaa gct gag cgt aca aaa aac caa | 48 |
| Ala Trp His Val Gln Ile Met Asp Glu Ala Glu Arg Thr Lys Asn Gln | |
| 1 5 10 15 | |

| | |
|---|----|
| atg cag gaa gaa gtc gct aat ttc gcc gat cct gcg gac cgc gcc act | 96 |
| Met Gln Glu Glu Val Ala Asn Phe Ala Asp Pro Ala Asp Arg Ala Thr | |
| 20 25 30 | |

| | |
|---|-----|
| cag gaa gaa gaa ttc agt ctt gaa tta aga aac cgt gac cgt gag cgt | 144 |
| Gln Glu Glu Glu Phe Ser Leu Glu Leu Arg Asn Arg Asp Arg Glu Arg | |
| 35 40 45 | |

| | |
|---|-----|
| aaa ttg ctt aag aag att gag caa acg tta aat agc att gcc gaa gac | 192 |
| Lys Leu Leu Lys Lys Ile Glu Gln Thr Leu Asn Ser Ile Ala Glu Asp | |
| 50 55 60 | |

| | |
|---|-----|
| gaa tac ggc tat tgc gaa act tgc ggt gtt gaa atc ggt tta cgt cgt | 240 |
| Glu Tyr Gly Tyr Cys Glu Thr Cys Gly Val Glu Ile Gly Leu Arg Arg | |
| 65 70 75 80 | |

| | |
|---|-----|
| tta gaa gcg cgc ccg acc gcg gat atg tgt atc gat tgc aaa aca ctt | 288 |
| Leu Glu Ala Arg Pro Thr Ala Asp Met Cys Ile Asp Cys Lys Thr Leu | |
| 85 90 95 | |

| | |
|---|-----|
| gcg gaa atc cgt gaa aag caa atg ggc tta taa | 321 |
| Ala Glu Ile Arg Glu Lys Gln Met Gly Leu | |
| 100 105 | |

<210> 137

<211> 106

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 137
 Ala Trp His Val Gln Ile Met Asp Glu Ala Glu Arg Thr Lys Asn Gln
 1 5 10 15
 Met Gln Glu Glu Val Ala Asn Phe Ala Asp Pro Ala Asp Arg Ala Thr
 20 25 30
 Gln Glu Glu Glu Phe Ser Leu Glu Leu Arg Asn Arg Asp Arg Glu Arg
 35 40 45
 Lys Leu Leu Lys Lys Ile Glu Gln Thr Leu Asn Ser Ile Ala Glu Asp
 50 55 60
 Glu Tyr Gly Tyr Cys Glu Thr Cys Gly Val Glu Ile Gly Leu Arg Arg
 65 70 75 80
 Leu Glu Ala Arg Pro Thr Ala Asp Met Cys Ile Asp Cys Lys Thr Leu
 85 90 95
 Ala Glu Ile Arg Glu Lys Gln Met Gly Leu
 100 105

<210> 138
<211> 33
<212> DNA
<213> *Actinobacillus pleuropneumoniae*
<220>
<223> dnaK
<220>
<221> CDS
<222> (1)..(30)
<400> 138
gct gag ttt gaa gaa gtg aaa gat aat aaa taa 33
Ala Glu Phe Glu Glu Val Lys Asp Asn Lys
1 5 10

<210> 139
<211> 10
<212> PRT
<213> *Actinobacillus pleuropneumoniae*
<400> 139
Ala Glu Phe Glu Glu Val Lys Asp Asn Lys
1 5 10

<210> 140
<211> 453
<212> DNA
<213> *Actinobacillus pleuropneumoniae*
<220>
<223> exbB
<220>
<221> CDS
<222> (1)..(450)

<400> 140
atg gaa caa atg ctt gaa ctt tta caa ggt cat gtt gat tat att att 48
Met Glu Gln Met Leu Glu Leu Leu Gln Gly His Val Asp Tyr Ile Ile
1 5 10 15

tta ggc tta tta cta tta atg agt gtt gtg ttg gta tgg aaa att att 96
Leu Gly Leu Leu Leu Met Ser Val Val Leu Val Trp Lys Ile Ile
20 25 30

gaa cgc gta ctt ttc tac aaa caa ttg gat gtg acc aaa tat gac acg 144
Glu Arg Val Leu Phe Tyr Lys Gln Leu Asp Val Thr Lys Tyr Asp Thr
35 40 45

cta caa gat ttg gaa att gat acc act cgc aat tta acc acc att tcc 192
Leu Gln Asp Leu Glu Ile Asp Thr Thr Arg Asn Leu Thr Thr Ile Ser
50 55 60

act atc ggt gcc aac gcc cct tat atc ggt tta tta gga acc gta tta 240
Thr Ile Gly Ala Asn Ala Pro Tyr Ile Gly Leu Leu Gly Thr Val Leu
65 70 75 80

ggg atc tta ctt acc ttc tat cat tta ggg cat tcc ggc ggt gat att 288
Gly Ile Leu Leu Thr Phe Tyr His Leu Gly His Ser Gly Gly Asp Ile
85 90 95

gac gcc gca tcc att atg gtt cac ctt tcg ctt gca tta aaa gca acc 336
Asp Ala Ala Ser Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr
100 105 110

gca gcc ggt atc tta gtc gct att ccg gca atg atg ttc tac agc ggt 384
Ala Ala Gly Ile Leu Val Ala Ile Pro Ala Met Met Phe Tyr Ser Gly
115 120 125

ttt aac cgt aaa gtg gat gaa agc aaa ctt aaa tgg caa gcg att caa 432
Phe Asn Arg Lys Val Asp Glu Ser Lys Leu Lys Trp Gln Ala Ile Gln
130 135 140

gct cgt aaa gcc aat caa taa 453
Ala Arg Lys Ala Asn Gln
145 150

<210> 141
<211> 150
<212> PRT
<213> *Actinobacillus pleuropneumoniae*

<400> 141
Met Glu Gln Met Leu Glu Leu Leu Gln Gly His Val Asp Tyr Ile Ile 15
1 5 10 15

Leu Gly Leu Leu Leu Met Ser Val Val Leu Val Trp Lys Ile Ile
20 25 30

Glu Arg Val Leu Phe Tyr Lys Gln Leu Asp Val Thr Lys Tyr Asp Thr
35 40 45

Leu Gln Asp Leu Glu Ile Asp Thr Thr Arg Asn Leu Thr Thr Ile Ser
50 55 60

Thr Ile Gly Ala Asn Ala Pro Tyr Ile Gly Leu Leu Gly Thr Val Leu
65 70 75 80

Gly Ile Leu Leu Thr Phe Tyr His Leu Gly His Ser Gly Gly Asp Ile
85 90 95

Asp Ala Ala Ser Ile Met Val His Leu Ser Leu Ala Leu Lys Ala Thr
100 105 110

Ala Ala Gly Ile Leu Val Ala Ile Pro Ala Met Met Phe Tyr Ser Gly
115 120 125

Phe Asn Arg Lys Val Asp Glu Ser Lys Leu Lys Trp Gln Ala Ile Gln
130 135 140

Ala Arg Lys Ala Asn Gln
145 150

<210> 142

<211> 720

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> fkpA

<220>

<221> CDS

<222> (1)..(717)

<400> 142

atg tta aaa aat aaa ctt tct gtt ctt gca atc gta gcc ggt acg ttc 48
Met Leu Lys Asn Lys Leu Ser Val Leu Ala Ile Val Ala Gly Thr Phe
1 5 10 15

gtt tca gct caa act gca ttt gca gcg gat caa aaa ttc att gac gat 96
Val Ser Ala Gln Thr Ala Phe Ala Ala Asp Gln Lys Phe Ile Asp Asp
20 25 30

tca tca tat gca gtc ggc gta ttg atg ggt aaa aat atc gaa ggc gtc 144
Ser Ser Tyr Ala Val Gly Val Leu Met Gly Lys Asn Ile Glu Gly Val
35 40 45

gtt gaa tca caa aaa gaa att ttt tct tat aac caa gat aaa atc ttg 192
Val Glu Ser Gln Lys Glu Ile Phe Ser Tyr Asn Gln Asp Lys Ile Leu
50 55 60

gcg ggt gtc caa gat acc atc aaa aaa acc ggt aaa tta acc gat gaa 240
Ala Gly Val Gln Asp Thr Ile Lys Lys Thr Gly Lys Leu Thr Asp Glu
65 70 75 80

gat cta caa aaa caa tta aaa tcg ctt gat act tat ctt gca agt caa 288
Asp Leu Gln Lys Gln Leu Lys Ser Leu Asp Thr Tyr Leu Ala Ser Gln
85 90 95

gaa agc aaa att gcg gcg gag aaa agc aaa gca acc gta gaa gcc ggt 336
Glu Ser Lys Ile Ala Ala Glu Lys Ser Lys Ala Thr Val Glu Ala Gly
100 105 110

aat aaa ttt cgt acc gac tac gaa aaa caa agc ggc gtg aaa aaa acc 384
Asn Lys Phe Arg Thr Asp Tyr Glu Lys Gln Ser Gly Val Lys Lys Thr
115 120 125

gct tcc ggt tta ctt tat aaa att gaa aaa gcc ggc acg ggc gaa tcg 432

| | | | |
|---|-----|-----|-----|
| Ala Ser Gly Leu Leu Tyr Lys Ile Glu Lys Ala Gly Thr Gly Glu Ser | | | |
| 130 | 135 | 140 | |
| cct aaa gcg gaa gat acc gtt aaa gtt cac tat aaa ggg aca tta acc | 480 | | |
| Pro Lys Ala Glu Asp Thr Val Lys Val His Tyr Lys Gly Thr Leu Thr | | | |
| 145 | 150 | 155 | 160 |
| gat ggt acg gta ttc gat agc tca tac gat cgc ggt gag ccg att gaa | 528 | | |
| Asp Gly Thr Val Phe Asp Ser Ser Tyr Asp Arg Gly Glu Pro Ile Glu | | | |
| 165 | 170 | 175 | |
| tcc caa tta aac caa tta att ccg ggt tgg att gaa gcg att cca atg | 576 | | |
| Phe Gln Leu Asn Gln Leu Ile Pro Gly Trp Ile Glu Ala Ile Pro Met | | | |
| 180 | 185 | 190 | |
| ttg aaa aaa ggc gga aaa atg gaa atc gtc gtt ccg cct gaa ctt ggt | 624 | | |
| Leu Lys Lys Gly Gly Lys Met Glu Ile Val Val Pro Pro Glu Leu Gly | | | |
| 195 | 200 | 205 | |
| tac ggc gaa cgc caa gca ggt aag att ccg gca agt tca acc tta aaa | 672 | | |
| Tyr Gly Glu Arg Gln Ala Gly Lys Ile Pro Ala Ser Ser Thr Leu Lys | | | |
| 210 | 215 | 220 | |
| ttc gag att gaa ttg tta gat ttc aaa gcg gcc gaa gcg aaa aaa taa | 720 | | |
| Phe Glu Ile Glu Leu Leu Asp Phe Lys Ala Ala Glu Ala Lys Lys | | | |
| 225 | 230 | 235 | |

<210> 143

<211> 239

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 143

| | | | |
|---|---|----|----|
| Met Leu Lys Asn Lys Leu Ser Val Leu Ala Ile Val Ala Gly Thr Phe | | | |
| 1 | 5 | 10 | 15 |

| | | | |
|---|----|----|--|
| Val Ser Ala Gln Thr Ala Phe Ala Ala Asp Gln Lys Phe Ile Asp Asp | | | |
| 20 | 25 | 30 | |

| | | | |
|---|----|----|--|
| Ser Ser Tyr Ala Val Gly Val Leu Met Gly Lys Asn Ile Glu Gly Val | | | |
| 35 | 40 | 45 | |

| | | | |
|---|----|----|--|
| Val Glu Ser Gln Lys Glu Ile Phe Ser Tyr Asn Gln Asp Lys Ile Leu | | | |
| 50 | 55 | 60 | |

| | | | |
|---|----|----|----|
| Ala Gly Val Gln Asp Thr Ile Lys Lys Thr Gly Lys Leu Thr Asp Glu | | | |
| 65 | 70 | 75 | 80 |

| | | | |
|---|----|----|--|
| Asp Leu Gln Lys Gln Leu Lys Ser Leu Asp Thr Tyr Leu Ala Ser Gln | | | |
| 85 | 90 | 95 | |

| | | | |
|---|-----|-----|--|
| Glu Ser Lys Ile Ala Ala Glu Lys Ser Lys Ala Thr Val Glu Ala Gly | | | |
| 100 | 105 | 110 | |

| | | | |
|---|-----|-----|--|
| Asn Lys Phe Arg Thr Asp Tyr Glu Lys Gln Ser Gly Val Lys Lys Thr | | | |
| 115 | 120 | 125 | |

| | | | |
|---|-----|-----|--|
| Ala Ser Gly Leu Leu Tyr Lys Ile Glu Lys Ala Gly Thr Gly Glu Ser | | | |
| 130 | 135 | 140 | |

| | | | |
|---|-----|-----|-----|
| Pro Lys Ala Glu Asp Thr Val Lys Val His Tyr Lys Gly Thr Leu Thr | | | |
| 145 | 150 | 155 | 160 |

Asp Gly Thr Val Phe Asp Ser Ser Tyr Asp Arg Gly Glu Pro Ile Glu
 165 170 175

Phe Gln Leu Asn Gln Leu Ile Pro Gly Trp Ile Glu Ala Ile Pro Met
 180 185 190

Leu Lys Lys Gly Gly Lys Met Glu Ile Val Val Pro Pro Glu Leu Gly
 195 200 205

Tyr Gly Glu Arg Gln Ala Gly Lys Ile Pro Ala Ser Ser Thr Leu Lys
 210 215 220

Phe Glu Ile Glu Leu Leu Asp Phe Lys Ala Ala Glu Ala Lys Lys
 225 230 235

<210> 144

<211> 290

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> HI0379

<220>

<221> CDS

<222> (3) .. (287)

<400> 144

tg cat agc gtg aga ggt ccg ggc ggc ggt tat caa ctc ggt aag caa 47
 His Ser Val Arg Gly Pro Gly Gly Tyr Gln Leu Gly Lys Gln
 1 5 10 15

cct gaa gag att agt gtg ggg atg att att gcg gcg gtg aat gaa aat 95
 Pro Glu Glu Ile Ser Val Gly Met Ile Ala Ala Val Asn Glu Asn
 20 25 30

ctc gac gta acc aaa tgt aaa ggt agc ggc aac tgc aat aac tct 143
 Leu Asp Val Thr Lys Cys Lys Gly Ser Gly Asn Cys Ser Lys Asn Ser
 35 40 45

cag tgc tta acc cat cat tta tgg gaa cgt tta gaa gaa caa atc ggt 191
 Gln Cys Leu Thr His His Leu Trp Glu Arg Leu Glu Glu Gln Ile Gly
 50 55 60

gtg ttt tta aat acg att act tta gcg gaa ctt gtt gaa gaa cat tcg 239
 Val Phe Leu Asn Thr Ile Thr Leu Ala Glu Leu Val Glu Glu His Ser
 65 70 75

gat cac gat tgt gaa aaa gaa cat tgc cac gat cat tca cac aaa cat 287
 Asp His Asp Cys Glu Lys Glu His Cys His Asp His Ser His Lys His
 80 85 90 95

taa 290

<210> 145

<211> 95

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 145

His Ser Val Arg Gly Pro Gly Gly Tyr Gln Leu Gly Lys Gln Pro

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 5 | 10 | 15 | | | | | | | | | | | | |
| Glu | Glu | Ile | Ser | Val | Gly | Met | Ile | Ile | Ala | Ala | Val | Asn | Glu | Asn | Leu |
| | | | | 20 | | | | 25 | | | | | | | 30 |
| Asp | Val | Thr | Lys | Cys | Lys | Gly | Ser | Gly | Asn | Cys | Ser | Lys | Asn | Ser | Gln |
| | | | | | | | 35 | | 40 | | | 45 | | | |
| Cys | Leu | Thr | His | His | Leu | Trp | Glu | Arg | Leu | Glu | Glu | Gln | Ile | Gly | Val |
| | | | | | | | 50 | | 55 | | | 60 | | | |
| Phe | Leu | Asn | Thr | Ile | Thr | Leu | Ala | Glu | Leu | Val | Glu | Glu | His | Ser | Asp |
| | | | | | | | 65 | | 70 | | 75 | | | 80 | |
| His | Asp | Cys | Glu | Lys | Glu | His | Cys | His | Asp | His | Ser | His | Lys | His | |
| | | | | | | | 85 | | | 90 | | | 95 | | |

<210> 146

<211> 273

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> *hupA*

<220>

<221> CDS

<222> (1) .. (270)

<400> 146

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| atg | aac | aaa | act | gag | tta | atc | gat | gca | atc | gca | gct | ggg | gca | gag | tta |
| Met | Asn | Lys | Thr | Glu | Leu | Ile | Asp | Ala | Ile | Ala | Ala | Gly | Ala | Glu | Leu |
| 1 | | | | 5 | | | | 10 | | | | | | 15 | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| agc | aag | aaa | gac | gcg | aaa | gcg | gca | tta | gaa | gcg | act | tta | aat | gcg | atc |
| Ser | Lys | Lys | Asp | Ala | Lys | Ala | Ala | Leu | Glu | Ala | Thr | Leu | Asn | Ala | Ile |
| | | | | | | | 20 | | 25 | | | 30 | | | 96 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tct | gaa | agc | cta | aaa | aat | ggc | gac | acc | gtt | cag | tta | atc | ggc | ttc | ggg |
| Ser | Glu | Ser | Leu | Lys | Asn | Gly | Asp | Thr | Val | Gln | Leu | Ile | Gly | Phe | Gly |
| | | | | | | | 35 | | 40 | | | 45 | | | 144 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| act | ttt | aaa | gta | aac | gag | cgt | aat | gca | cgt | acg | ggg | cgt | aac | ccg | cgt |
| Thr | Phe | Lys | Val | Asn | Glu | Arg | Asn | Ala | Arg | Thr | Gly | Arg | Asn | Pro | Arg |
| | | | | | | | 50 | | 55 | | | 60 | | | 192 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| acc | ggc | gaa | gaa | atc | aaa | atc | gca | gca | tct | aaa | gtg | ccg | ggc | ttt | gtt |
| Thr | Gly | Glu | Ile | Lys | Ile | Ala | Ala | Ser | Lys | Val | Pro | Ala | Phe | Val | |
| | | | | | | | 65 | | 70 | | | 75 | | | 240 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|-----|
| gca | ggt | aaa | gca | tta | aaa | gat | tta | gta | aaa | taa | | | | | |
| Ala | Gly | Lys | Ala | Leu | Lys | Asp | Leu | Val | Lys | | | | | | 273 |
| | | | | | | 85 | | | 90 | | | | | | |

<210> 147

<211> 90

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 147

Met Asn Lys Thr Glu Leu Ile Asp Ala Ile Ala Gly Ala Glu Leu

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 5 | 10 | 15 | | | | | | | | | | | | |
| Ser | Lys | Lys | Asp | Ala | Lys | Ala | Ala | Leu | Glu | Ala | Thr | Leu | Asn | Ala | Ile |
| | | | | 20 | | | | 25 | | | | | 30 | | |
| Ser | Glu | Ser | Leu | Lys | Asn | Gly | Asp | Thr | Val | Gln | Leu | Ile | Gly | Phe | Gly |
| | | | | 35 | | | 40 | | | | 45 | | | | |
| Thr | Phe | Lys | Val | Asn | Glu | Arg | Asn | Ala | Arg | Thr | Gly | Arg | Asn | Pro | Arg |
| | | | | 50 | | | 55 | | | 60 | | | | | |
| Thr | Gly | Glu | Glu | Ile | Lys | Ile | Ala | Ala | Ser | Lys | Val | Pro | Ala | Phe | Val |
| | | | | 65 | | | 70 | | | 75 | | | 80 | | |
| Ala | Gly | Lys | Ala | Leu | Lys | Asp | Leu | Val | Lys | | | | | | |
| | | | | 85 | | | 90 | | | | | | | | |

<210> 148
<211> 551
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> *lpdA*

<220>
<221> CDS
<222> (1)..(549)

<400> 148
atg agc aaa gaa atc aaa acg caa gtc gtg gta ctt ggt gcg ggt cct 48
Met Ser Lys Glu Ile Lys Thr Gln Val Val Leu Gly Ala Gly Pro
1 5 10 15

gcc ggt tat tca gcg gca ttc cgt tgc ttt gcc gac tta ggc tta gaa aca 96
Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr
20 25 30

gta att gtc gaa cgt tat tca act ttg ggc ggt gta tgc tta aac gta 144
Val Ile Val Glu Arg Tyr Ser Thr Leu Gly Gly Val Cys Leu Asn Val
35 40 45

ggt tgc att ccg tct aaa gca tta tca cac gtt gca aaa gtt atc gaa 192
Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu
50 55 60

gaa gca aaa cac gca gag aaa aac ggt att act ttc ggt gag ccc aac 240
Glu Ala Lys His Ala Glu Lys Asn Gly Ile Thr Phe Gly Glu Pro Asn
65 70 75 80

att gat tta gat aaa gtg cgt gcg ggt aaa gaa gcg gtt gtt tct aaa 288
Ile Asp Leu Asp Lys Val Arg Ala Gly Lys Glu Ala Val Val Ser Lys
85 90 95

tta acc ggc ggt tta gcg ggt atg gct aaa gca cgt aaa gta aca gta 336
Leu Thr Gly Leu Ala Gly Met Ala Lys Ala Arg Lys Val Thr Val
100 105 110

gtg gaa ggt tta gcg gcg ttt acc gat ccg aat act tta gta gct cgt 384
Val Glu Gly Leu Ala Ala Phe Thr Asp Pro Asn Thr Leu Val Ala Arg
115 120 125

| | | | |
|---|-----|-----|-----|
| gac cgt gac ggt aat ccg aca acg att aaa ttt gat tat gca att att | | 432 | |
| Asp Arg Asp Gly Asn Pro Thr Thr Ile Lys Phe Asp Tyr Ala Ile Ile | | | |
| 130 | 135 | 140 | |
| gca gcc ggt tct cgt ccg att cag ctt ccg ttc att cca cac gaa gat | | 480 | |
| Ala Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp | | | |
| 145 | 150 | 155 | 160 |
| ccg cgt gtg tgg gat tct acg gat gca ctt aaa tta aaa gaa gta ccc | | 528 | |
| Pro Arg Val Trp Asp Ser Thr Asp Ala Leu Lys Leu Lys Glu Val Pro | | | |
| 165 | 170 | 175 | |
| gaa aaa att act cat tat ggg cc | | 551 | |
| Glu Lys Ile Thr His Tyr Gly | | | |
| 180 | | | |
|
 | | | |
| <210> 149 | | | |
| <211> 183 | | | |
| <212> PRT | | | |
| <213> <i>Actinobacillus pleuropneumoniae</i> | | | |
|
 | | | |
| <400> 149 | | | |
| Met Ser Lys Glu Ile Lys Thr Gln Val Val Val Leu Gly Ala Gly Pro | | | |
| 1 | 5 | 10 | 15 |
| Ala Gly Tyr Ser Ala Ala Phe Arg Cys Ala Asp Leu Gly Leu Glu Thr | | | |
| 20 | 25 | 30 | |
| Val Ile Val Glu Arg Tyr Ser Thr Leu Gly Gly Val Cys Leu Asn Val | | | |
| 35 | 40 | 45 | |
| Gly Cys Ile Pro Ser Lys Ala Leu Leu His Val Ala Lys Val Ile Glu | | | |
| 50 | 55 | 60 | |
| Glu Ala Lys His Ala Glu Lys Asn Gly Ile Thr Phe Gly Glu Pro Asn | | | |
| 65 | 70 | 75 | 80 |
| Ile Asp Leu Asp Lys Val Arg Ala Gly Lys Glu Ala Val Val Ser Lys | | | |
| 85 | 90 | 95 | |
| Leu Thr Gly Leu Ala Gly Met Ala Lys Ala Arg Lys Val Thr Val | | | |
| 100 | 105 | 110 | |
| Val Glu Gly Leu Ala Ala Phe Thr Asp Pro Asn Thr Leu Val Ala Arg | | | |
| 115 | 120 | 125 | |
| Asp Arg Asp Gly Asn Pro Thr Thr Ile Lys Phe Asp Tyr Ala Ile Ile | | | |
| 130 | 135 | 140 | |
| Ala Ala Gly Ser Arg Pro Ile Gln Leu Pro Phe Ile Pro His Glu Asp | | | |
| 145 | 150 | 155 | 160 |
| Pro Arg Val Trp Asp Ser Thr Asp Ala Leu Lys Leu Lys Glu Val Pro | | | |
| 165 | 170 | 175 | |
| Glu Lys Ile Thr His Tyr Gly | | | |
| 180 | | | |
|
 | | | |
| <210> 150 | | | |
| <211> 1095 | | | |
| <212> DNA | | | |

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> Omp5-2

<220>

<221> CDS

<222> (1) .. (1092)

<400> 150

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| atg | aaa | aaa | tca | tta | gtt | gct | tta | aca | gta | tta | tcg | gct | gca | gcg | gta | 48 |
| Met | Lys | Lys | Ser | Leu | Val | Ala | Leu | Thr | Val | Leu | Ser | Ala | Ala | Ala | Val | |
| 1 | | | | 5 | | | | 10 | | | | 15 | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| gct | caa | gca | gcg | cca | caa | aat | act | ttc | tac | gca | ggt | gct | gca | aaa | gca | 96 |
| Ala | Gln | Ala | Ala | Pro | Gln | Gln | Asn | Thr | Phe | Tyr | Ala | Gly | Ala | Lys | Ala | |
| 20 | | | | 25 | | | | 30 | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ggt | tgg | gct | tca | ttc | cat | gat | ggt | atc | gaa | caa | tta | gat | tca | gct | aaa | 144 |
| Gly | Trp | Ala | Ser | Phe | His | Asp | Gly | Ile | Glu | Gln | Leu | Asp | Ser | Ala | Lys | |
| 35 | | | | 40 | | | 45 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aac | aca | gat | cgc | ggt | aca | aaa | tac | ggt | atc | aac | cgt | aat | tca | gta | act | 192 |
| Asn | Thr | Asp | Arg | Gly | Thr | Lys | Tyr | Gly | Ile | Asn | Arg | Asn | Ser | Val | Thr | |
| 50 | | | | 55 | | | 60 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tac | ggc | gta | ttc | ggc | ggt | tac | caa | att | tta | aac | caa | gac | aaa | tta | ggt | 240 |
| Tyr | Gly | Val | Phe | Gly | Tyr | Gln | Ile | Leu | Asn | Gln | Asp | Lys | Leu | Gly | | |
| 65 | | | 70 | | | 75 | | 80 | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| tta | gct | gaa | tta | ggt | tat | gac | tat | ttc | ggt | cgt | gtg | cgc | ggt | tct | 288 | |
| Leu | Ala | Ala | Glu | Leu | Gly | Tyr | Asp | Tyr | Phe | Gly | Arg | Val | Arg | Gly | Ser | |
| 85 | | | 90 | | | 95 | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gaa | aaa | cca | aac | ggt | aaa | gct | gac | aag | aaa | act | ttc | cgt | cac | gct | gca | 336 |
| Glu | Lys | Pro | Asn | Gly | Lys | Ala | Asp | Lys | Lys | Thr | Phe | Arg | His | Ala | Ala | |
| 100 | | | | 105 | | | 110 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| cac | ggt | gct | aca | atc | gca | tta | aaa | cct | agc | tac | gaa | gta | tta | cct | gac | 384 |
| His | Gly | Ala | Thr | Ile | Ala | Leu | Lys | Pro | Ser | Tyr | Glu | Val | Leu | Pro | Asp | |
| 115 | | | 120 | | | 125 | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | gac | gtt | tac | ggt | aaa | gta | ggt | atc | gca | tta | gta | aac | aat | aca | tat | 432 |
| Leu | Asp | Val | Tyr | Gly | Lys | Val | Gly | Ile | Ala | Leu | Val | Asn | Asn | Thr | Tyr | |
| 130 | | | 135 | | | 140 | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aaa | aca | ttc | aat | gca | gca | caa | gag | aaa | gtg | aaa | act | cgt | cgt | ttc | caa | 480 |
| Lys | Thr | Phe | Asn | Ala | Ala | Gln | Glu | Lys | Val | Lys | Thr | Arg | Arg | Phe | Gln | |
| 145 | | | 150 | | | 155 | | 160 | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| agt | tct | tta | att | tta | ggt | gct | ggt | gtt | gag | tac | gca | att | ctt | cct | gaa | 528 |
| Ser | Ser | Leu | Ile | Leu | Gly | Ala | Gly | Val | Glu | Tyr | Ala | Ile | Leu | Pro | Glu | |
| 165 | | | 170 | | | 175 | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | gct | gca | cgt | gtt | gaa | tac | caa | tgg | tta | aac | aac | gca | ggt | aaa | gca | 576 |
| Leu | Ala | Ala | Arg | Val | Glu | Tyr | Gln | Trp | Leu | Asn | Asn | Ala | Gly | Lys | Ala | |
| 180 | | | 185 | | | 190 | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| agc | tac | tct | act | tta | aat | cgt | atg | ggt | gca | act | gac | tac | cgt | tcg | gat | 624 |
| Ser | Tyr | Ser | Thr | Leu | Asn | Arg | Met | Gly | Ala | Thr | Asp | Tyr | Arg | Ser | Asp | |
| 195 | | | 200 | | | 205 | | | | | | | | | | |

| | |
|---|------|
| atc agt tcc gta tct gca ggt tta agc tac cgt ttc ggt caa ggt gcg
Ile Ser Ser Val Ser Ala Gly Leu Ser Tyr Arg Phe Gly Gln Gly Ala
210 215 220 | 672 |
| gca ccg gtt gca gct ccg gca gtt gaa act aaa aac ttc gca ttc agc
Ala Pro Val Ala Ala Pro Ala Val Glu Thr Lys Asn Phe Ala Phe Ser
225 230 235 240 | 720 |
| tct gac gta tta ttc gca ttc ggt aaa tca aac tta aaa ccg gct gcg
Ser Asp Val Leu Phe Ala Phe Gly Lys Ser Asn Leu Lys Pro Ala Ala
245 250 255 | 768 |
| gca aca gca tta gat gca atg caa acc gaa atc aat aac gca ggt tta
Ala Thr Ala Leu Asp Ala Met Gln Thr Glu Ile Asn Asn Ala Gly Leu
260 265 270 | 816 |
| tca aat gct gcg atc caa gta aac ggt tac acg gac cgt atc ggt aaa
Ser Asn Ala Ala Ile Gln Val Asn Gly Tyr Thr Asp Arg Ile Gly Lys
275 280 285 | 864 |
| gaa gct tca aac tta aaa ctt tca caa cgt cgt gcg gaa aca gta gct
Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg Ala Glu Thr Val Ala
290 295 300 | 912 |
| aac tac atc gtt tct aaa ggt gct ccg gca gct aac gta act gca gta
Asn Tyr Ile Val Ser Lys Gly Ala Pro Ala Ala Asn Val Thr Ala Val
305 310 315 320 | 960 |
| ggg tac ggt gaa gca aac cct gta acc ggc gca aca tgt gac aaa gtt
Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala Thr Cys Asp Lys Val
325 330 335 | 1008 |
| aaa ggt cgt aaa gca tta atc gct tgc tta gca ccg gat cgt cgt gtt
Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala Pro Asp Arg Arg Val
340 345 350 | 1056 |
| gaa gtt caa gtt caa ggt act aaa gaa gta act atg taa
Glu Val Gln Val Gln Gly Thr Lys Glu Val Thr Met
355 360 | 1095 |

<210> 151
<211> 364
<212> PRT
<213> *Actinobacillus pleuropneumoniae*

<400> 151
Met Lys Lys Ser Leu Val Ala Leu Thr Val Leu Ser Ala Ala Ala Val
1 5 10 15

Ala Gln Ala Ala Pro Gln Gln Asn Thr Phe Tyr Ala Gly Ala Lys Ala
20 25 30

Gly Trp Ala Ser Phe His Asp Gly Ile Glu Gln Leu Asp Ser Ala Lys
35 40 45

Asn Thr Asp Arg Gly Thr Lys Tyr Gly Ile Asn Arg Asn Ser Val Thr
50 55 60

Tyr Gly Val Phe Gly Gly Tyr Gln Ile Leu Asn Gln Asp Lys Leu Gly
65 70 75 80

Leu Ala Ala Glu Leu Gly Tyr Asp Tyr Phe Gly Arg Val Arg Gly Ser

| 85 | 90 | 95 |
|---|---------------------------------|-----|
| Glu Lys Pro Asn Gly Lys Ala Asp | Lys Lys Thr Phe Arg His Ala Ala | |
| 100 | 105 | 110 |
| His Gly Ala Thr Ile Ala Leu Lys | Pro Ser Tyr Glu Val Leu Pro Asp | |
| 115 | 120 | 125 |
| Leu Asp Val Tyr Gly Lys Val Gly Ile Ala Leu Val Asn Asn Thr Tyr | | |
| 130 | 135 | 140 |
| Lys Thr Phe Asn Ala Ala Gln Glu Lys Val Lys Thr Arg Arg Phe Gln | | |
| 145 | 150 | 155 |
| 160 | | |
| Ser Ser Leu Ile Leu Gly Ala Gly Val Glu Tyr Ala Ile Leu Pro Glu | | |
| 165 | 170 | 175 |
| Leu Ala Ala Arg Val Glu Tyr Gln Trp Leu Asn Asn Ala Gly Lys Ala | | |
| 180 | 185 | 190 |
| Ser Tyr Ser Thr Leu Asn Arg Met Gly Ala Thr Asp Tyr Arg Ser Asp | | |
| 195 | 200 | 205 |
| Ile Ser Ser Val Ser Ala Gly Leu Ser Tyr Arg Phe Gly Gln Gly Ala | | |
| 210 | 215 | 220 |
| Ala Pro Val Ala Ala Pro Ala Val Glu Thr Lys Asn Phe Ala Phe Ser | | |
| 225 | 230 | 235 |
| 240 | | |
| Ser Asp Val Leu Phe Ala Phe Gly Lys Ser Asn Leu Lys Pro Ala Ala | | |
| 245 | 250 | 255 |
| Ala Thr Ala Leu Asp Ala Met Gln Thr Glu Ile Asn Asn Ala Gly Leu | | |
| 260 | 265 | 270 |
| Ser Asn Ala Ala Ile Gln Val Asn Gly Tyr Thr Asp Arg Ile Gly Lys | | |
| 275 | 280 | 285 |
| Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg Ala Glu Thr Val Ala | | |
| 290 | 295 | 300 |
| Asn Tyr Ile Val Ser Lys Gly Ala Pro Ala Ala Asn Val Thr Ala Val | | |
| 305 | 310 | 315 |
| 320 | | |
| Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala Thr Cys Asp Lys Val | | |
| 325 | 330 | 335 |
| Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala Pro Asp Arg Arg Val | | |
| 340 | 345 | 350 |
| Glu Val Gln Val Gln Gly Thr Lys Glu Val Thr Met | | |
| 355 | 360 | |

<210> 152
<211> 1110
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> Omp5

<220>

<221> CDS

<222> (1)..(1107)

<400> 152

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| atg | aaa | aaa | tca | tta | gtt | gct | tta | gca | gta | tta | tcg | gct | gca | gca | gta | 48 |
| Met | Lys | Lys | Ser | Leu | Val | Ala | Leu | Ala | Val | Leu | Ser | Ala | Ala | Ala | Val | |
| 1 | | | | 5 | | | | 10 | | | | 15 | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| gct | caa | gca | gct | cca | caa | aat | act | ttc | tac | gca | ggt | gct | gca | aaa | gtt | 96 |
| Ala | Gln | Ala | Ala | Pro | Gln | Gln | Asn | Thr | Phe | Tyr | Ala | Gly | Ala | Lys | Val | |
| 20 | | | | 25 | | | | 30 | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ggt | caa | tca | tca | ttt | cac | cac | ggt | gtt | aac | caa | tta | aaa | tct | ggt | cac | 144 |
| Gly | Gln | Ser | Ser | Phe | His | His | Gly | Val | Asn | Gln | Leu | Lys | Ser | Gly | His | |
| 35 | | | | 40 | | | 45 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gat | gat | cgt | tat | aat | gat | aaa | aca | cgt | aag | tat | ggt | atc | aac | cgt | aac | 192 |
| Asp | Asp | Arg | Tyr | Asn | Asp | Lys | Thr | Arg | Lys | Tyr | Gly | Ile | Asn | Arg | Asn | |
| 50 | | | | 55 | | | 60 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tct | gta | act | tac | ggt | gta | ttc | ggc | ggt | tac | caa | atc | tta | aac | caa | aat | 240 |
| Ser | Val | Thr | Tyr | Gly | Val | Phe | Gly | Gly | Tyr | Gln | Ile | Leu | Asn | Gln | Asn | |
| 65 | | | | 70 | | | 75 | | | 80 | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aac | ttc | ggt | tta | gca | gct | gaa | tta | ggc | tat | gac | tac | tac | ggt | cgc | gta | 288 |
| Asn | Phe | Gly | Leu | Ala | Ala | Glu | Leu | Gly | Tyr | Asp | Tyr | Tyr | Gly | Arg | Val | |
| 85 | | | | 90 | | | 95 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| cgt | ggt | aac | gta | gat | gaa | ttc | cgt | aca | gtt | aaa | cac | tct | gct | cac | ggt | 336 |
| Arg | Gly | Asn | Val | Asp | Glu | Phe | Arg | Thr | Val | Lys | His | Ser | Ala | His | Gly | |
| 100 | | | | 105 | | | 110 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | aac | tta | gcg | tta | aaa | cca | agc | tac | gaa | gta | tta | cct | gac | tta | gac | 384 |
| Leu | Asn | Leu | Ala | Leu | Lys | Pro | Ser | Tyr | Glu | Val | Leu | Pro | Asp | Leu | Asp | |
| 115 | | | | 120 | | | 125 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gtt | tac | ggt | aaa | gta | ggt | att | gcg | gtt | gtt | cgt | aat | gac | tat | aaa | aaa | 432 |
| Val | Tyr | Gly | Lys | Val | Gly | Ile | Ala | Val | Val | Arg | Asn | Asp | Tyr | Lys | Lys | |
| 130 | | | | 135 | | | 140 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tat | ggt | gct | gaa | aac | act | aac | gaa | tca | aca | aca | aaa | ttc | cac | aaa | tta | 480 |
| Tyr | Gly | Ala | Glu | Asn | Thr | Asn | Glu | Ser | Thr | Thr | Lys | Phe | His | Lys | Leu | |
| 145 | | | | 150 | | | 155 | | | 160 | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| aaa | gca | tca | act | att | tta | ggt | gca | ggt | gtt | gag | tac | gca | att | ctt | cct | 528 |
| Lys | Ala | Ser | Thr | Ile | Leu | Gly | Ala | Gly | Val | Glu | Tyr | Ala | Ile | Leu | Pro | |
| 165 | | | | 170 | | | 175 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| gaa | tta | gct | gca | cgt | ggt | gaa | tac | caa | tac | tta | aac | aaa | gct | ggg | aac | 576 |
| Glu | Leu | Ala | Ala | Arg | Val | Glu | Tyr | Gln | Tyr | Leu | Asn | Lys | Ala | Gly | Asn | |
| 180 | | | | 185 | | | 190 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tta | aat | aaa | gca | tta | gtt | cgt | tca | ggc | aca | caa | gat | gtt | gac | ttc | caa | 624 |
| Leu | Asn | Lys | Ala | Leu | Val | Arg | Ser | Gly | Thr | Gln | Asp | Val | Asp | Phe | Gln | |
| 195 | | | | 200 | | | 205 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tat | gct | cct | gat | atc | cac | tct | gta | aca | gca | ggt | tta | tca | tac | cgt | ttc | 672 |
| Tyr | Ala | Pro | Asp | Ile | His | Ser | Val | Thr | Ala | Gly | Leu | Ser | Tyr | Arg | Phe | |
| 210 | | | | 215 | | | 220 | | | | | | | | | |

| | | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| ggt | caa | ggc | gct | gta | gca | cca | gtt | gag | cca | gaa | gtt | gta | act | aaa | 720 | |
| Gly | Gln | Gly | Ala | Val | Ala | Pro | Val | Val | Glu | Pro | Glu | Val | Val | Thr | Lys | |
| 225 | | | | 230 | | | 235 | | | 240 | | | | | | |

| | | | |
|---|------|-----|-----|
| aac ttc gca ttc agc tca gac gtt tta ttt gat ttc ggt aaa tca agc | 768 | | |
| Asn Phe Ala Phe Ser Ser Asp Val Leu Phe Asp Phe Gly Lys Ser Ser | | | |
| 245 | 250 | 255 | |
| tta aaa cca gca gca aca gct tta gac gca gct aac act gaa atc | 816 | | |
| Leu Lys Pro Ala Ala Ala Thr Ala Leu Asp Ala Ala Asn Thr Glu Ile | | | |
| 260 | 265 | 270 | |
| gct aac tta ggt tta gca act cca gct atc caa gtt aac ggt tat aca | 864 | | |
| Ala Asn Leu Gly Leu Ala Thr Pro Ala Ile Gln Val Asn Gly Tyr Thr | | | |
| 275 | 280 | 285 | |
| gac cgt atc ggt aaa gaa gct tca aac tta aaa ctt tca caa cgc cgt | 912 | | |
| Asp Arg Ile Gly Lys Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg | | | |
| 290 | 295 | 300 | |
| gca gaa act gta gct aac tac tta gtt tct aaa ggt caa aac cct gca | 960 | | |
| Ala Glu Thr Val Ala Asn Tyr Leu Val Ser Lys Gly Gln Asn Pro Ala | | | |
| 305 | 310 | 315 | 320 |
| aac gta act gca gta ggt tac ggt gaa gca aac cca gta acc ggc gca | 1008 | | |
| Asn Val Thr Ala Val Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala | | | |
| 325 | 330 | 335 | |
| aca tgt gat gca gtt aaa ggt cgt aaa gca tta atc gct tgc tta gca | 1056 | | |
| Thr Cys Asp Ala Val Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala | | | |
| 340 | 345 | 350 | |
| ccg gat cgt cgt gtt gaa gtt caa gta caa ggt gct aaa aac gta gct | 1104 | | |
| Pro Asp Arg Arg Val Glu Val Gln Val Gln Gly Ala Lys Asn Val Ala | | | |
| 355 | 360 | 365 | |
| atg taa | 1110 | | |
| Met | | | |

<210> 153

<211> 369

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 153

Met Lys Lys Ser Leu Val Ala Leu Ala Val Leu Ser Ala Ala Ala Val

1 5 10 15

Ala Gln Ala Ala Pro Gln Gln Asn Thr Phe Tyr Ala Gly Ala Lys Val

20 25 30

Gly Gln Ser Ser Phe His His Gly Val Asn Gln Leu Lys Ser Gly His

35 40 45

Asp Asp Arg Tyr Asn Asp Lys Thr Arg Lys Tyr Gly Ile Asn Arg Asn

50 55 60

Ser Val Thr Tyr Gly Val Phe Gly Gly Tyr Gln Ile Leu Asn Gln Asn

65 70 75 80

Asn Phe Gly Leu Ala Ala Glu Leu Gly Tyr Asp Tyr Tyr Gly Arg Val

85 90 95

Arg Gly Asn Val Asp Glu Phe Arg Thr Val Lys His Ser Ala His Gly

100 105 110

Leu Asn Leu Ala Leu Lys Pro Ser Tyr Glu Val Leu Pro Asp Leu Asp
 115 120 125
 Val Tyr Gly Lys Val Gly Ile Ala Val Val Arg Asn Asp Tyr Lys Lys
 130 135 140
 Tyr Gly Ala Glu Asn Thr Asn Glu Ser Thr Thr Lys Phe His Lys Leu
 145 150 155 160
 Lys Ala Ser Thr Ile Leu Gly Ala Gly Val Glu Tyr Ala Ile Leu Pro
 165 170 175
 Glu Leu Ala Ala Arg Val Glu Tyr Gln Tyr Leu Asn Lys Ala Gly Asn
 180 185 190
 Leu Asn Lys Ala Leu Val Arg Ser Gly Thr Gln Asp Val Asp Phe Gln
 195 200 205
 Tyr Ala Pro Asp Ile His Ser Val Thr Ala Gly Leu Ser Tyr Arg Phe
 210 215 220
 Gly Gln Gly Ala Val Ala Pro Val Val Glu Pro Glu Val Val Thr Lys
 225 230 235 240
 Asn Phe Ala Phe Ser Ser Asp Val Leu Phe Asp Phe Gly Lys Ser Ser
 245 250 255
 Leu Lys Pro Ala Ala Ala Thr Ala Leu Asp Ala Ala Asn Thr Glu Ile
 260 265 270
 Ala Asn Leu Gly Leu Ala Thr Pro Ala Ile Gln Val Asn Gly Tyr Thr
 275 280 285
 Asp Arg Ile Gly Lys Glu Ala Ser Asn Leu Lys Leu Ser Gln Arg Arg
 290 295 300
 Ala Glu Thr Val Ala Asn Tyr Leu Val Ser Lys Gly Gln Asn Pro Ala
 305 310 315 320
 Asn Val Thr Ala Val Gly Tyr Gly Glu Ala Asn Pro Val Thr Gly Ala
 325 330 335
 Thr Cys Asp Ala Val Lys Gly Arg Lys Ala Leu Ile Ala Cys Leu Ala
 340 345 350
 Pro Asp Arg Arg Val Glu Val Gln Val Gln Gly Ala Lys Asn Val Ala
 355 360 365

Met

<210> 154
 <211> 1076
 <212> DNA
 <213> *Actinobacillus pleuropneumoniae*
 <220>
 <223> pnp new
 <220>
 <221> CDS
 <222> (1)..(1074)

<400> 154
 aat att aaa gaa ttc gta aaa gaa gcg ggt aaa ccg cgt tgg gat tgg 48
 Asn Ile Lys Glu Phe Val Lys Glu Ala Gly Lys Pro Arg Trp Asp Trp
 1 5 10 15

gtt gcg ccg gaa ccg aat acc gca tta atc aac caa gtt aaa gcg tta 96
 Val Ala Pro Glu Pro Asn Thr Ala Leu Ile Asn Gln Val Lys Ala Leu
 20 25 30

gct gaa gct cgt atc ggc gat ccg tat cgt att aca gaa aaa caa gct 144
 Ala Glu Ala Arg Ile Gly Asp Ala Tyr Arg Ile Thr Glu Lys Gln Ala
 35 40 45

cgt tac gaa caa atc gat gca att aaa gct gat gtt atc gca caa tta 192
 Arg Tyr Glu Gln Ile Asp Ala Ile Lys Ala Asp Val Ile Ala Gln Leu
 50 55 60

acc gca caa gac gaa acc gtt tct gaa ggt gct att att gat att att 240
 Thr Ala Gln Asp Glu Thr Val Ser Glu Gly Ala Ile Ile Asp Ile Ile
 65 70 75 80

acc gca tta gaa agt tct att gtt cgc ggt cgt att att gcc ggc gaa 288
 Thr Ala Leu Glu Ser Ser Ile Val Arg Gly Arg Ile Ile Ala Gly Glu
 85 90 95

ccg cgt att gac ggt cgt acg gta gat acg gtt cgt gca tta gac att 336
 Pro Arg Ile Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile
 100 105 110

tgc acc ggc gta tta cct cgt acg cac ggt tct gca atc ttt act cgc 384
 Cys Thr Gly Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg
 115 120 125

ggt gaa aca caa gca tta gct gta acc tta ggt act gag cgc gat 432
 Gly Glu Thr Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp
 130 135 140

gca caa att gtt gac gaa tta acc ggc gag aaa tca gac cgt ttc tta 480
 Ala Gln Ile Val Asp Glu Leu Thr Gly Glu Lys Ser Asp Arg Phe Leu
 145 150 155 160

ttc cac tat aac ttc cct ccg tac tct gtc ggt gaa acc ggt cgt atc 528
 Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Arg Ile
 165 170 175

ggt tcg ccg aaa cgt cgt gaa atc ggc cac ggt cgt tta gct aaa cgc 576
 Gly Ser Pro Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg
 180 185 190

ggt gta tta gct gta atg ccg act gct gaa gaa ttc ccg tat gta gtg 624
 Gly Val Leu Ala Val Met Pro Thr Ala Glu Glu Phe Pro Tyr Val Val
 195 200 205

ccg gta gta tct gaa att acc gaa tca aac ggt tct tct tca atg gct 672
 Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala
 210 215 220

tcc gta tgc ggc gca tct tta gct gaa atg gac gca ggc gta ccg att 720
 Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile
 225 230 235 240

aaa gct gct ggt gct ggt atc gca atg ggc tta gtg aaa gaa gaa gaa 768
 Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Glu Glu

| 245 | 250 | 255 | |
|--|-----|-----|------|
| aaa ttt gtg gtg ctt tca gac atc tta ggt gac gaa gac cat tta ggc
Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly | 260 | 265 | 816 |
| gat atg gac ttc aaa gta gcc ggt acg cgt gaa ggt gta acc gca ctt
Asp Met Asp Phe Lys Val Ala Gly Thr Arg Glu Gly Val Thr Ala Leu | 275 | 280 | 864 |
| caa atg gat att aaa atc gaa ggt atc acg cct gaa att atg caa atc
Gln Met Asp Ile Lys Ile Glu Gly Ile Thr Pro Glu Ile Met Gln Ile | 290 | 295 | 912 |
| gca tta aat caa gcg aaa ggt gcg cgt atg cac atc tta agc gtg atg
Ala Leu Asn Gln Ala Lys Gly Ala Arg Met His Ile Leu Ser Val Met | 305 | 310 | 960 |
| gaa caa gcg att cct gca cct cgt gcc gat att tcc gat ttt gcg cct
Glu Gin Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro | 325 | 330 | 1008 |
| cgt att cat acg atg aag atc gat ccg aag aaa atc aaa gac gtg atc
Arg Ile His Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile | 340 | 345 | 1056 |
| ggt aaa ggc ggt gcg gtt at
Gly Lys Gly Gly Ala Val | 355 | | 1076 |
|
<210> 155 | | | |
| <211> 358 | | | |
| <212> PRT | | | |
| <213> Actinobacillus pleuropneumoniae | | | |
|
<400> 155 | | | |
| Asn Ile Lys Glu Phe Val Lys Glu Ala Gly Lys Pro Arg Trp Asp Trp | 1 | 5 | 10 |
| | | | 15 |
| Val Ala Pro Glu Pro Asn Thr Ala Leu Ile Asn Gln Val Lys Ala Leu | 20 | 25 | 30 |
| | | | |
| Ala Glu Ala Arg Ile Gly Asp Ala Tyr Arg Ile Thr Glu Lys Gln Ala | 35 | 40 | 45 |
| | | | |
| Arg Tyr Glu Gln Ile Asp Ala Ile Lys Ala Asp Val Ile Ala Gln Leu | 50 | 55 | 60 |
| | | | |
| Thr Ala Gln Asp Glu Thr Val Ser Glu Gly Ala Ile Ile Asp Ile Ile | 65 | 70 | 75 |
| | | | 80 |
| | | | |
| Thr Ala Leu Glu Ser Ser Ile Val Arg Gly Arg Ile Ile Ala Gly Glu | 85 | 90 | 95 |
| | | | |
| Pro Arg Ile Asp Gly Arg Thr Val Asp Thr Val Arg Ala Leu Asp Ile | 100 | 105 | 110 |
| | | | |
| Cys Thr Gly Val Leu Pro Arg Thr His Gly Ser Ala Ile Phe Thr Arg | 115 | 120 | 125 |
| | | | |
| Gly Glu Thr Gln Ala Leu Ala Val Ala Thr Leu Gly Thr Glu Arg Asp | | | |

| 130 | 135 | 140 |
|---|-----|-----|
| Ala Gln Ile Val Asp Glu Leu Thr Gly Glu Lys Ser Asp Arg Phe Leu | | |
| 145 | 150 | 155 |
| Phe His Tyr Asn Phe Pro Pro Tyr Ser Val Gly Glu Thr Gly Arg Ile | | |
| 165 | 170 | 175 |
| Gly Ser Pro Lys Arg Arg Glu Ile Gly His Gly Arg Leu Ala Lys Arg | | |
| 180 | 185 | 190 |
| Gly Val Leu Ala Val Met Pro Thr Ala Glu Glu Phe Pro Tyr Val Val | | |
| 195 | 200 | 205 |
| Arg Val Val Ser Glu Ile Thr Glu Ser Asn Gly Ser Ser Ser Met Ala | | |
| 210 | 215 | 220 |
| Ser Val Cys Gly Ala Ser Leu Ala Leu Met Asp Ala Gly Val Pro Ile | | |
| 225 | 230 | 235 |
| Lys Ala Ala Val Ala Gly Ile Ala Met Gly Leu Val Lys Glu Glu | | |
| 245 | 250 | 255 |
| Lys Phe Val Val Leu Ser Asp Ile Leu Gly Asp Glu Asp His Leu Gly | | |
| 260 | 265 | 270 |
| Asp Met Asp Phe Lys Val Ala Gly Thr Arg Glu Gly Val Thr Ala Leu | | |
| 275 | 280 | 285 |
| Gln Met Asp Ile Lys Ile Glu Gly Ile Thr Pro Glu Ile Met Gln Ile | | |
| 290 | 295 | 300 |
| Ala Leu Asn Gln Ala Lys Gly Ala Arg Met His Ile Leu Ser Val Met | | |
| 305 | 310 | 315 |
| Glu Gln Ala Ile Pro Ala Pro Arg Ala Asp Ile Ser Asp Phe Ala Pro | | |
| 325 | 330 | 335 |
| Arg Ile His Thr Met Lys Ile Asp Pro Lys Lys Ile Lys Asp Val Ile | | |
| 340 | 345 | 350 |
| Gly Lys Gly Gly Ala Val | | |
| 355 | | |

<210> 156
<211> 1055
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> potD

<220>
<221> CDS
<222> (1)..(1053)

<400> 156
atg aaa aaa tta gcg ggt tta ttt gca gca ggt tta gcg aca gtt gca 48
Met Lys Lys Leu Ala Gly Leu Phe Ala Ala Gly Leu Ala Thr Val Ala
1 5 10 15

tta aca gcg tgt aat gaa gaa aag cca aaa gcg gct gaa gca gcg gct 96

| | | | |
|---|-----|-----|-----|
| Leu Thr Ala Cys Asn Glu Glu Lys Pro Lys Ala Ala Glu Ala Ala Ala | | | |
| 20 | 25 | 30 | |
| caa ccg gca gca gcg gga aca gtt cac ctt tat act tgg act gaa tat | | | 144 |
| Gln Pro Ala Ala Ala Gly Thr Val His Leu Tyr Thr Trp Thr Glu Tyr | | | |
| 35 | 40 | 45 | |
| gtg cct gaa ggc ttg tta gat gaa ttt aca aag caa acc ggt atc aaa | | | 192 |
| Val Pro Glu Gly Leu Leu Asp Glu Phe Thr Lys Gln Thr Gly Ile Lys | | | |
| 50 | 55 | 60 | |
| gta gag gtt tca agc ctt gaa tct aac gaa acc atg tat gcg aaa tta | | | 240 |
| Val Glu Val Ser Ser Leu Glu Ser Asn Glu Thr Met Tyr Ala Lys Leu | | | |
| 65 | 70 | 75 | 80 |
| aaa tta caa ggt aaa gac ggc ggt tac gat gtt atc gca cct tct aac | | | 288 |
| Lys Leu Gln Gly Lys Asp Gly Gly Tyr Asp Val Ile Ala Pro Ser Asn | | | |
| 85 | 90 | 95 | |
| tac ttc gtt tca aaa atg gcg aaa gaa ggt atg tta gcg gaa tta gat | | | 336 |
| Tyr Phe Val Ser Lys Met Ala Lys Glu Gly Met Leu Ala Glu Leu Asp | | | |
| 100 | 105 | 110 | |
| cac gca aaa ctt cct gta atc aaa gag tta aac caa gat tgg tta aac | | | 384 |
| His Ala Lys Leu Pro Val Ile Lys Glu Leu Asn Gln Asp Trp Leu Asn | | | |
| 115 | 120 | 125 | |
| aaa cct tat gac caa ggt aac aaa tac tct tta ccg caa tta tta ggt | | | 432 |
| Lys Pro Tyr Asp Gln Gly Asn Lys Tyr Ser Leu Pro Gln Leu Leu Gly | | | |
| 130 | 135 | 140 | |
| gca ccg ggt atc gca ttt aac tca aat gac tat aag ggc gat gcg ttc | | | 480 |
| Ala Pro Gly Ile Ala Phe Asn Ser Asn Asp Tyr Lys Gly Asp Ala Phe | | | |
| 145 | 150 | 155 | 160 |
| act tct tgg ggt gat tta tgg aaa cct gag ttt gcg aat aaa gta caa | | | 528 |
| Thr Ser Trp Gly Asp Leu Trp Lys Pro Glu Phe Ala Asn Lys Val Gln | | | |
| 165 | 170 | 175 | |
| tta tta gat gac gca cgt gaa gta ttt aac att gcg tta tta aaa tta | | | 576 |
| Leu Leu Asp Asp Ala Arg Glu Val Phe Asn Ile Ala Leu Leu Lys Leu | | | |
| 180 | 185 | 190 | |
| ggt aaa aac cct aat aca acc aat ccg gaa gag att aaa gcg gct tac | | | 624 |
| Gly Lys Asn Pro Asn Thr Thr Asn Pro Glu Glu Ile Lys Ala Ala Tyr | | | |
| 195 | 200 | 205 | |
| gaa gag tta aga aaa tta cgt cca aac gta ctt tct ttc act tca gac | | | 672 |
| Glu Glu Leu Arg Lys Leu Arg Pro Asn Val Leu Ser Phe Thr Ser Asp | | | |
| 210 | 215 | 220 | |
| aac cca gcg aac tca ttt atc gca ggt gaa gta tct gta ggt caa tta | | | 720 |
| Asn Pro Ala Asn Ser Phe Ile Ala Gly Glu Val Ser Val Gly Gln Leu | | | |
| 225 | 230 | 235 | 240 |
| tgg aac ggt tct gta cgt att gcg aaa aaa gaa caa gcg ccg gta aac | | | 768 |
| Trp Asn Gly Ser Val Arg Ile Ala Lys Lys Glu Gln Ala Pro Val Asn | | | |
| 245 | 250 | 255 | |
| atg gtg ttc cca aaa gaa ggt cct gta ctt tgg gtt gat acg tta gcc | | | 816 |
| Met Val Phe Pro Lys Glu Gly Pro Val Leu Trp Val Asp Thr Leu Ala | | | |

260

265

270

att ccg gcg aat gcg aaa aac aaa gaa aat gcg cat aag tta atc aac 864
 Ile Pro Ala Asn Ala Lys Asn Lys Glu Asn Ala His Lys Leu Ile Asn
 275 280 285

tac tta tta agc gca ccg gtt gcg gaa aaa tta acg tta gaa atc ggt 912
 Tyr Leu Leu Ser Ala Pro Val Ala Glu Lys Leu Thr Leu Glu Ile Gly
 290 295 300

tat ccg act tca aac gta gaa gcg tta aaa aca tta cca aaa gag att 960
 Tyr Pro Thr Ser Asn Val Glu Ala Leu Lys Thr Leu Pro Lys Glu Ile
 305 310 315 320

acc gaa gat ccg gca atc tat ccg aca gct gat gtg tta aaa gcg gca 1008
 Thr Glu Asp Pro Ala Ile Tyr Pro Thr Ala Asp Val Leu Lys Ala Ala
 325 330 335

caa tgg caa gac gat gta ggt aat gca atc gaa ctt tac gaa aaa ta 1055
 Gln Trp Gln Asp Asp Val Gly Asn Ala Ile Glu Leu Tyr Glu Lys
 340 345 350

<210> 157

<211> 351

<212> PRT

<213> Actinobacillus pleuropneumoniae

<400> 157

Met Lys Lys Leu Ala Gly Leu Phe Ala Ala Gly Leu Ala Thr Val Ala
 1 5 10 15

Leu Thr Ala Cys Asn Glu Glu Lys Pro Lys Ala Ala Glu Ala Ala Ala
 20 25 30

Gln Pro Ala Ala Ala Gly Thr Val His Leu Tyr Thr Trp Thr Glu Tyr
 35 40 45

Val Pro Glu Gly Leu Leu Asp Glu Phe Thr Lys Gln Thr Gly Ile Lys
 50 55 60

Val Glu Val Ser Ser Leu Glu Ser Asn Glu Thr Met Tyr Ala Lys Leu
 65 70 75 80

Lys Leu Gln Gly Lys Asp Gly Gly Tyr Asp Val Ile Ala Pro Ser Asn
 85 90 95

Tyr Phe Val Ser Lys Met Ala Lys Glu Gly Met Leu Ala Glu Leu Asp
 100 105 110

His Ala Lys Leu Pro Val Ile Lys Glu Leu Asn Gln Asp Trp Leu Asn
 115 120 125

Lys Pro Tyr Asp Gln Gly Asn Lys Tyr Ser Leu Pro Gln Leu Leu Gly
 130 135 140

Ala Pro Gly Ile Ala Phe Asn Ser Asn Asp Tyr Lys Gly Asp Ala Phe
 145 150 155 160

Thr Ser Trp Gly Asp Leu Trp Lys Pro Glu Phe Ala Asn Lys Val Gln
 165 170 175

Leu Leu Asp Asp Ala Arg Glu Val Phe Asn Ile Ala Leu Leu Lys Leu

| | | |
|---|-----|-----|
| 180 | 185 | 190 |
| Gly Lys Asn Pro Asn Thr Thr Asn Pro Glu Glu Ile Lys Ala Ala Tyr | | |
| 195 | 200 | 205 |
| Glu Glu Leu Arg Lys Leu Arg Pro Asn Val Leu Ser Phe Thr Ser Asp | | |
| 210 | 215 | 220 |
| Asn Pro Ala Asn Ser Phe Ile Ala Gly Glu Val Ser Val Gly Gln Leu | | |
| 225 | 230 | 235 |
| Trp Asn Gly Ser Val Arg Ile Ala Lys Lys Glu Gln Ala Pro Val Asn | | |
| 245 | 250 | 255 |
| Met Val Phe Pro Lys Glu Gly Pro Val Leu Trp Val Asp Thr Leu Ala | | |
| 260 | 265 | 270 |
| Ile Pro Ala Asn Ala Lys Asn Lys Glu Asn Ala His Lys Leu Ile Asn | | |
| 275 | 280 | 285 |
| Tyr Leu Leu Ser Ala Pro Val Ala Glu Lys Leu Thr Leu Glu Ile Gly | | |
| 290 | 295 | 300 |
| Tyr Pro Thr Ser Asn Val Glu Ala Leu Lys Thr Leu Pro Lys Glu Ile | | |
| 305 | 310 | 315 |
| 320 | | |
| Thr Glu Asp Pro Ala Ile Tyr Pro Thr Ala Asp Val Leu Lys Ala Ala | | |
| 325 | 330 | 335 |
| Gln Trp Gln Asp Asp Val Gly Asn Ala Ile Glu Leu Tyr Glu Lys | | |
| 340 | 345 | 350 |

<210> 158

<211> 525

<212> DNA

<213> *Actinobacillus pleuropneumoniae*

<220>

<223> rpmF

<220>

<221> CDS

<222> (1)...(522)

<400> 158

| | |
|---|----|
| atg caa aag gta aaa cta ccc ctc acc att gac cca tat aaa gac gct | 48 |
| Met Gln Lys Val Lys Leu Pro Leu Thr Ile Asp Pro Tyr Lys Asp Ala | |
| 1 | 5 |
| 10 | 15 |

| | |
|---|----|
| cag cgt cga atg gat tac gaa ggc tac atc tca cgt agt ctg ctt aat | 96 |
| Gln Arg Arg Met Asp Tyr Glu Gly Tyr Ile Ser Arg Ser Leu Leu Asn | |
| 20 | 25 |
| 30 | 30 |

| | |
|---|-----|
| cgt ttg ggt gaa tct gtg agc aat gtg cta agc gat gca caa gtt act | 144 |
| Arg Leu Gly Glu Ser Val Ser Asn Val Leu Ser Asp Ala Gln Val Thr | |
| 35 | 40 |
| 45 | 45 |

| | |
|---|-----|
| ctc tcg tta tat atc gat ccg caa cgc tta acc gtt att aaa ggt acg | 192 |
| Leu Ser Leu Tyr Ile Asp Pro Gln Arg Leu Thr Val Ile Lys Gly Thr | |
| 50 | 55 |
| 60 | 60 |

| | |
|---|-----|
| gcg aca gtg gaa gtg gaa ttc gat tgc caa cga tgc ggt aac ccg ttt | 240 |
|---|-----|

| | | | |
|---|-----|-----|-----|
| Ala Thr Val Glu Val Glu Phe Asp Cys Gln Arg Cys Gly Asn Pro Phe | | | |
| 65 | 70 | 75 | 80 |
| aca caa acg ctt gac tgt tcg ttt tgt ttc agt ccg gtg tcc aat atg | 288 | | |
| Thr Gln Thr Leu Asp Cys Ser Phe Cys Phe Ser Pro Val Ser Asn Met | | | |
| 85 | 90 | 95 | |
| gat cag gcg gac aat ttg ccc gaa att tat gaa cca atc gaa gta aac | 336 | | |
| Asp Gln Ala Asp Asn Leu Pro Glu Ile Tyr Glu Pro Ile Glu Val Asn | | | |
| 100 | 105 | 110 | |
| gag ttc ggt gaa gta aat tta cta gat atg atc gaa gat gga ttt atc | 384 | | |
| Glu Phe Gly Glu Val Asn Leu Leu Asp Met Ile Glu Asp Gly Phe Ile | | | |
| 115 | 120 | 125 | |
| atc gaa ttg cct cta gtc ccg atg cat agt gaa gaa cac tgt gaa gtg | 432 | | |
| Ile Glu Leu Pro Leu Val Pro Met His Ser Glu Glu His Cys Glu Val | | | |
| 130 | 135 | 140 | |
| tcc gtg agt gaa cag gtg ttt ggc gaa ttg cct gaa gaa ttg gcg aaa | 480 | | |
| Ser Val Ser Glu Gln Val Phe Gly Glu Leu Pro Glu Glu Leu Ala Lys | | | |
| 145 | 150 | 155 | 160 |
| aaa cct aac ccg ttc gct gta tta gct aat tta aag aaa aac tag | 525 | | |
| Lys Pro Asn Pro Phe Ala Val Ala Asn Leu Lys Lys Asn | | | |
| 165 | 170 | | |

<210> 159

<211> 174

<212> PRT

<213> *Actinobacillus pleuropneumoniae*

<400> 159

| | | | |
|---|---|----|----|
| Met Gln Lys Val Lys Leu Pro Leu Thr Ile Asp Pro Tyr Lys Asp Ala | | | |
| 1 | 5 | 10 | 15 |

| | | |
|---|----|----|
| Gln Arg Arg Met Asp Tyr Glu Gly Tyr Ile Ser Arg Ser Leu Leu Asn | | |
| 20 | 25 | 30 |

| | | |
|---|----|----|
| Arg Leu Gly Glu Ser Val Ser Asn Val Leu Ser Asp Ala Gln Val Thr | | |
| 35 | 40 | 45 |

| | | |
|---|----|----|
| Leu Ser Leu Tyr Ile Asp Pro Gln Arg Leu Thr Val Ile Lys Gly Thr | | |
| 50 | 55 | 60 |

| | | | |
|---|----|----|----|
| Ala Thr Val Glu Val Glu Phe Asp Cys Gln Arg Cys Gly Asn Pro Phe | | | |
| 65 | 70 | 75 | 80 |

| | | |
|---|----|----|
| Thr Gln Thr Leu Asp Cys Ser Phe Cys Phe Ser Pro Val Ser Asn Met | | |
| 85 | 90 | 95 |

| | | |
|---|-----|-----|
| Asp Gln Ala Asp Asn Leu Pro Glu Ile Tyr Glu Pro Ile Glu Val Asn | | |
| 100 | 105 | 110 |

| | | |
|---|-----|-----|
| Glu Phe Gly Glu Val Asn Leu Leu Asp Met Ile Glu Asp Gly Phe Ile | | |
| 115 | 120 | 125 |

| | | |
|---|-----|-----|
| Ile Glu Leu Pro Leu Val Pro Met His Ser Glu Glu His Cys Glu Val | | |
| 130 | 135 | 140 |

| | | | |
|---|-----|-----|-----|
| Ser Val Ser Glu Gln Val Phe Gly Glu Leu Pro Glu Glu Leu Ala Lys | | | |
| 145 | 150 | 155 | 160 |

Lys Pro Asn Pro Phe Ala Val Leu Ala Asn Leu Lys Lys Asn
165 170

<210> 160
 <211> 1302
 <212> DNA
 <213> *Actinobacillus pleuropneumoniae*

 <220>
 <223> tig

 <220>
 <221> CDS
 <222> (1) .. (1299)

 <400> 160
 atg tca att tct att gaa act tta gaa ggc tta caa cgc cgc gta act 48
 Met Ser Ile Ser Ile Glu Thr Leu Glu Gly Leu Gln Arg Arg Val Thr
 1 5 10 15

 att acc gta gct gct gat aaa atc gaa ggc gct tac aaa gag caa tta 96
 Ile Thr Val Ala Ala Asp Lys Ile Glu Ala Ala Tyr Lys Glu Gln Leu
 20 25 30

 aaa ggc tat gcg aaa aac gct cgt gta gac ggt ttc cgt aaa ggt aaa 144
 Lys Gly Tyr Ala Lys Asn Ala Arg Val Asp Gly Phe Arg Lys Gly Lys
 35 40 45

 gta ccg cac gca att atc gaa caa cgt ttc ggt tta gcg gct cgc caa 192
 Val Pro His Ala Ile Ile Glu Gln Arg Phe Gly Leu Ala Ala Arg Gln
 50 55 60

 gac gta tta tcc gat gaa atg caa cgt gcg ttc ttt gat gcg gta atc 240
 Asp Val Leu Ser Asp Glu Met Gln Arg Ala Phe Phe Asp Ala Val Ile
 65 70 75 80

 gct gag aaa att aac ctt gcc ggt cgt cct acc ttc aca ccg aac aac 288
 Ala Glu Lys Ile Asn Leu Ala Gly Arg Pro Thr Phe Thr Pro Asn Asn
 85 90 95

 tac caa ccg agt caa gaa ttc agc ttc act gca act ttt gaa gta ttc 336
 Tyr Gln Pro Ser Gln Glu Phe Ser Phe Thr Ala Thr Phe Glu Val Phe
 100 105 110

 ccg gaa gtt gaa tta aaa ggc tta gaa aat atc gaa gtt gaa aaa ccg 384
 Pro Glu Val Glu Leu Lys Gly Leu Glu Asn Ile Glu Val Glu Lys Pro
 115 120 125

 gtt gta gaa atc aca gaa gct gat tta gac aaa atg atc gat gtg tta 432
 Val Val Glu Ile Thr Glu Ala Asp Leu Asp Lys Met Ile Asp Val Leu
 130 135 140

 cgt aaa caa caa gcg act tgg gct gaa tct caa gca gcg gca caa gcg 480
 Arg Lys Gln Gln Ala Thr Trp Ala Glu Ser Gln Ala Ala Ala Gln Ala
 145 150 155 160

 gaa gac cgt gtt gta atc gac ttc gta ggt tct gta gac ggt gaa gag 528
 Glu Asp Arg Val Val Ile Asp Phe Val Gly Ser Val Asp Gly Glu Glu
 165 170 175

 ttt gaa ggc ggt aaa gcg aca gac ttc act tta gca atg ggt caa agt 576
 Phe Glu Gly Gly Lys Ala Thr Asp Phe Thr Leu Ala Met Gly Gln Ser

| 180 | 185 | 190 | |
|--|-----|-----|------|
| cgt atg atc cct ggt ttt gaa gaa ggt atc gtt ggt cac aaa gcc ggc
Arg Met Ile Pro Gly Phe Glu Glu Gly Ile Val Gly His Lys Ala Gly | 195 | 200 | 624 |
| | 205 | | |
| gaa caa ttc gat atc gat gtt act ttc cct gaa gaa tac cac gct gaa
Glu Gln Phe Asp Ile Asp Val Thr Phe Pro Glu Glu Tyr His Ala Glu | 210 | 215 | 672 |
| | 220 | | |
| aac tta aaa ggt aaa gcg gcg aaa ttc gca att aca ctt aag aaa gta
Asn Leu Lys Gly Lys Ala Ala Lys Phe Ala Ile Thr Leu Lys Lys Val | 225 | 230 | 720 |
| | 235 | 240 | |
| gaa aat atc gta tta cct gaa tta acc gaa gaa ttc gtg aaa aaa ttc
Glu Asn Ile Val Leu Pro Glu Leu Thr Glu Glu Phe Val Lys Lys Phe | 245 | 250 | 768 |
| | 255 | | |
| ggt tca gca aaa act gta gaa gat tta cgt gcg gaa att aag aaa aat
Gly Ser Ala Lys Thr Val Glu Asp Leu Arg Ala Glu Ile Lys Lys Asn | 260 | 265 | 816 |
| | 270 | | |
| atg caa cgt gaa ctt aaa aac gca gta acc gca cgc gtt aaa aac caa
Met Gln Arg Glu Leu Lys Asn Ala Val Thr Ala Arg Val Lys Asn Gln | 275 | 280 | 864 |
| | 285 | | |
| gta atc aac ggt tta atc gca caa aat gaa att gaa gtg ccg gct gca
Val Ile Asn Gly Leu Ile Ala Gln Asn Glu Ile Glu Val Pro Ala Ala | 290 | 295 | 912 |
| | 300 | | |
| gcg gta gcg gaa gaa gtg gac gta tta cgt cgt caa gcg gtt caa cgt
Ala Val Ala Glu Glu Val Asp Val Leu Arg Arg Gln Ala Val Gln Arg | 305 | 310 | 960 |
| | 315 | 320 | |
| tcc ggt ggt aaa ccg gaa atg gct gca caa tta ccg gcg gaa tta ttc
Phe Gly Gly Lys Pro Glu Met Ala Ala Gln Leu Pro Ala Glu Leu Phe | 325 | 330 | 1008 |
| | 335 | | |
| gaa gcg gat gca aaa cgt cgt gtt caa gta ggt tta tta ctt tca acc
Glu Ala Asp Ala Lys Arg Arg Val Gln Val Gly Leu Leu Ser Thr | 340 | 345 | 1056 |
| | 350 | | |
| gta atc ggt act aac gaa tta aaa gtt gat gaa aaa cgt gtt gaa gaa
Val Ile Gly Thr Asn Glu Leu Lys Val Asp Glu Lys Arg Val Glu Glu | 355 | 360 | 1104 |
| | 365 | | |
| acg att gca gaa atc gct tca gct tac gaa caa ccg gcg gaa gtt gtt
Thr Ile Ala Glu Ile Ala Ser Ala Tyr Glu Gln Pro Ala Glu Val Val | 370 | 375 | 1152 |
| | 380 | | |
| gct cat tat gcg aaa aac cgt caa tta acc gaa aat atc cgt aac gta
Ala His Tyr Ala Lys Asn Arg Gln Leu Thr Glu Asn Ile Arg Asn Val | 385 | 390 | 1200 |
| | 395 | 400 | |
| gtg tta gaa gag caa gcg gtt gaa gtt gta ctt gcg aaa gca aaa gta
Val Leu Glu Glu Gln Ala Val Glu Val Val Leu Ala Lys Ala Lys Val | 405 | 410 | 1248 |
| | 415 | | |
| act gaa aaa gcg act tct ttt gat gaa gta atg gct caa caa gct caa
Thr Glu Lys Ala Thr Ser Phe Asp Glu Val Met Ala Gln Gln Ala Gln | 420 | 425 | 1296 |
| | 430 | | |
| ggc taa | | | 1302 |

Gly

<210> 161
<211> 433
<212> PRT
<213> *Actinobacillus pleuropneumoniae*

<400> 161
Met Ser Ile Ser Ile Glu Thr Leu G'l Gly Leu Gln Arg Arg Val Thr
1 5 10 15
Ile Thr Val Ala Ala Asp Lys Ile Glu Ala Ala Tyr Lys Glu Gln Leu
20 25 30
Lys Gly Tyr Ala Lys Asn Ala Arg Val Asp Gly Phe Arg Lys Gly Lys
35 40 45
Val Pro His Ala Ile Ile Glu Gln Arg Phe Gly Leu Ala Ala Arg Gln
50 55 60
Asp Val Leu Ser Asp Glu Met Gln Arg Ala Phe Phe Asp Ala Val Ile
65 70 75 80
Ala Glu Lys Ile Asn Leu Ala Gly Arg Pro Thr Phe Thr Pro Asn Asn
85 90 95
Tyr Gln Pro Ser Gln Glu Phe Ser Phe Thr Ala Thr Phe Glu Val Phe
100 105 110
Pro Glu Val Glu Leu Lys Gly Leu Glu Asn Ile Glu Val Glu Lys Pro
115 120 125
Val Val Glu Ile Thr Glu Ala Asp Leu Asp Lys Met Ile Asp Val Leu
130 135 140
Arg Lys Gln Gln Ala Thr Trp Ala Glu Ser Gln Ala Ala Ala Gln Ala
145 150 155 160
Glu Asp Arg Val Val Ile Asp Phe Val Gly Ser Val Asp Gly Glu Glu
165 170 175
Phe Glu Gly Gly Lys Ala Thr Asp Phe Thr Leu Ala Met Gly Gln Ser
180 185 190
Arg Met Ile Pro Gly Phe Glu Gly Ile Val Gly His Lys Ala Gly
195 200 205
Glu Gln Phe Asp Ile Asp Val Thr Phe Pro Glu Glu Tyr His Ala Glu
210 215 220
Asn Leu Lys Gly Lys Ala Ala Lys Phe Ala Ile Thr Leu Lys Lys Val
225 230 235 240
Glu Asn Ile Val Leu Pro Glu Leu Thr Glu Glu Phe Val Lys Lys Phe
245 250 255
Gly Ser Ala Lys Thr Val Glu Asp Leu Arg Ala Glu Ile Lys Lys Asn
260 265 270
Met Gln Arg Glu Leu Lys Asn Ala Val Thr Ala Arg Val Lys Asn Gln
275 280 285

Val Ile Asn Gly Leu Ile Ala Gln Asn Glu Ile Glu Val Pro Ala Ala
 290 295 300
 Ala Val Ala Glu Glu Val Asp Val Leu Arg Arg Gln Ala Val Gln Arg
 305 310 315 320
 Phe Gly Gly Lys Pro Glu Met Ala Ala Gln Leu Pro Ala Glu Leu Phe
 325 330 335
 Glu Ala Asp Ala Lys Arg Arg Val Gln Val Gly Leu Leu Ser Thr
 340 345 350
 Val Ile Gly Thr Asn Glu Leu Lys Val Asp Glu Lys Arg Val Glu Glu
 355 360 365
 Thr Ile Ala Glu Ile Ala Ser Ala Tyr Glu Gln Pro Ala Glu Val Val
 370 375 380
 Ala His Tyr Ala Lys Asn Arg Gln Leu Thr Glu Asn Ile Arg Asn Val
 385 390 395 400
 Val Leu Glu Glu Gln Ala Val Glu Val Val Leu Ala Lys Ala Lys Val
 405 410 415
 Thr Glu Lys Ala Thr Ser Phe Asp Glu Val Met Ala Gln Gln Ala Gln
 420 425 430
 Gly

<210> 162
 <211> 316
 <212> DNA
 <213> *Actinobacillus pleuropneumoniae*

 <220>
 <223> tRNA-glu

 <400> 162
 aatattgcgc tcaaatggca aagcggagag catctttaaa tgggttcccc atcgcttaga 60
 ggcctaggac atcgcccttt cacggcgta accggggttc gaatccccgt ggggacgcca 120
 tttaaagatg acttttgttg tctgaattgt tctttaaaaa attggaaaca agctgaaaac 180
 tgagagattt tcgaaagaaa gtctgagtag taaaagataa gtaattatct tgaaaatctt 240
 agctgaacaa aagcagctaa gtgttttagtt gaataaagta tcgcgttgaa tgcgttcaaa 300
 taaaatttga aaatat 316

<210> 163
 <211> 85
 <212> DNA
 <213> *Actinobacillus pleuropneumoniae*

 <220>
 <223> tRNA-leu

 <400> 163
 gctctgggtgg tggaatttgtt agacacgcta tcttgagggg gtagtgtccca taggatgtgc 60

gagttcgagt ctcggccaga gcacc 85

<210> 164
<211> 623
<212> DNA
<213> *Actinobacillus pleuropneumoniae*

<220>
<223> *yaeE*

<220>
<221> CDS
<222> (1)..(621)

<400> 164 48
atg caa gaa ctc aca cct caa atg tgg ggc tta gtc ggc act tca acg
Met Gln Glu Leu Thr Pro Gln Met Trp Gly Leu Val Gly Thr Ser Thr
1 5 10 15

ctt gaa acg ctc tat atg ggc ttt gcg gcg act tta ctt gct gtg gta 96
Leu Glu Thr Leu Tyr Met Gly Phe Ala Ala Thr Leu Leu Ala Val Val
20 25 30

gtc ggt ttg ccg atc ggt ttt ctg gca ttt tta acc ggt aaa gga gag 144
Val Gly Leu Pro Ile Gly Phe Leu Ala Phe Leu Thr Gly Lys Gly Glu
35 40 45

att tta gag aat ccg cgt tta cat caa gta tta gat gtg att att aat 192
Ile Leu Glu Asn Pro Arg Leu His Gln Val Leu Asp Val Ile Ile Asn
50 55 60

atc ggt cgt tcc gta ccg ttt att att ttg tta gtc gtg ttg tta cct 240
Ile Gly Arg Ser Val Pro Phe Ile Ile Leu Leu Val Val Leu Leu Pro
65 70 75 80

ttt acg cgt tta ttg gtc ggg aca acg ctc ggt act acg gcg gcg att 288
Phe Thr Arg Leu Leu Val Gly Thr Thr Leu Gly Thr Thr Ala Ala Ile
85 90 95

gtg ccg tta agc gtt tcg gca att ccg ttt ttt gcg cgt tta act tca 336
Val Pro Leu Ser Val Ser Ala Ile Pro Phe Phe Ala Arg Leu Thr Ser
100 105 110

aat gcg tta tta gaa atc cca gca ggt tta acc gaa gcg gcg aaa tcg 384
Asn Ala Leu Leu Glu Ile Pro Ala Gly Leu Thr Glu Ala Ala Lys Ser
115 120 125

atg ggc gca acg aat tgg caa gtg gtc agt aaa ttt tat tta ccg gaa 432
Met Gly Ala Thr Asn Trp Gln Val Val Ser Lys Phe Tyr Leu Pro Glu
130 135 140

tca ctg ccg att tta atc aat ggt atc aca tta act tta gtc gct tta 480
Ser Leu Pro Ile Leu Ile Asn Gly Ile Thr Leu Thr Leu Val Ala Leu
145 150 155 160

atc ggt tat tcg gca atg gcg ggt gtc ggc ggc ggc ggt ttg ggt 528
Ile Gly Tyr Ser Ala Met Ala Gly Ala Val Gly Gly Gly Gly Leu Gly
165 170 175

aac ctt gcc atc agt tac ggt gaa cac cga aat atg gtc tat gta aaa 576
Asn Leu Ala Ile Ser Tyr Gly Glu His Arg Asn Met Val Tyr Val Lys
180 185 190

| | |
|--|-----|
| tgg atc tca aca att att atc gta gcg att gtg atg atc agt caa aa | 623 |
| Trp Ile Ser Thr Ile Ile Val Ala Ile Val Met Ile Ser Gln | |
| 195 | 200 |
| | 205 |

<210> 165
<211> 207
<212> PRT
<213> *Actinobacillus pleuropneumoniae*

| | |
|---|----|
| <400> 165 | |
| Met Gln Glu Leu Thr Pro Gln Met Trp Gly Leu Val Gly Thr Ser Thr | |
| 1 | 5 |
| | 10 |
| | 15 |

| | |
|---|----|
| Leu Glu Thr Leu Tyr Met Gly Phe Ala Ala Thr Leu Leu Ala Val Val | |
| 20 | 25 |
| | 30 |

| | |
|---|----|
| Val Gly Leu Pro Ile Gly Phe Leu Ala Phe Leu Thr Gly Lys Gly Glu | |
| 35 | 40 |
| | 45 |

| | |
|---|----|
| Ile Leu Glu Asn Pro Arg Leu His Gln Val Leu Asp Val Ile Ile Asn | |
| 50 | 55 |
| | 60 |

| | |
|---|----|
| Ile Gly Arg Ser Val Pro Phe Ile Ile Leu Leu Val Val Leu Leu Pro | |
| 65 | 70 |
| | 75 |
| | 80 |

| | |
|---|----|
| Phe Thr Arg Leu Leu Val Gly Thr Thr Leu Gly Thr Thr Ala Ala Ile | |
| 85 | 90 |
| | 95 |

| | |
|---|-----|
| Val Pro Leu Ser Val Ser Ala Ile Pro Phe Phe Ala Arg Leu Thr Ser | |
| 100 | 105 |
| | 110 |

| | |
|---|-----|
| Asn Ala Leu Leu Glu Ile Pro Ala Gly Leu Thr Glu Ala Ala Lys Ser | |
| 115 | 120 |
| | 125 |

| | |
|---|-----|
| Met Gly Ala Thr Asn Trp Gln Val Val Ser Lys Phe Tyr Leu Pro Glu | |
| 130 | 135 |
| | 140 |

| | |
|---|-----|
| Ser Leu Pro Ile Leu Ile Asn Gly Ile Thr Leu Thr Leu Val Ala Leu | |
| 145 | 150 |
| | 155 |
| | 160 |

| | |
|---|-----|
| Ile Gly Tyr Ser Ala Met Ala Gly Ala Val Gly Gly Gly Gly Leu Gly | |
| 165 | 170 |
| | 175 |

| | |
|---|-----|
| Asn Leu Ala Ile Ser Tyr Gly Glu His Arg Asn Met Val Tyr Val Lys | |
| 180 | 185 |
| | 190 |

| | |
|---|-----|
| Trp Ile Ser Thr Ile Ile Val Ala Ile Val Met Ile Ser Gln | |
| 195 | 200 |
| | 205 |

<210> 166
<211> 866
<212> DNA
<213> *Pasteurella (Mannheimia) haemolytica*

<220>
<221> CDS
<222> (1)...(864)

<220>
<223> atpG

<400> 166
atg gca ggt gct aaa gag ata aga acc aaa att gca agt gtt cgt aat 48
Met Ala Gly Ala Lys Glu Ile Arg Thr Lys Ile Ala Ser Val Arg Asn
1 5 10 15

aca caa aaa att acc aaa gcg atg gaa atg gtt gcc gca tca aaa atg 96
Thr Gln Lys Ile Thr Lys Ala Met Glu Met Val Ala Ala Ser Lys Met
20 25 30

cgt aaa acc caa gag cgt atg gcg gct tct cgc cct tat gct gaa agt 144
Arg Lys Thr Gln Glu Arg Met Ala Ala Ser Arg Pro Tyr Ala Glu Ser
35 40 45

att cgc aag gca att agc cat att gcc aaa ggt aac att gag tat aaa 192
Ile Arg Lys Ala Ile Ser His Ile Ala Lys Gly Asn Ile Glu Tyr Lys
50 55 60

cac cca ttt ttg acc cca cgt ccg gta aaa aaa gtt ggc tat tta gta 240
His Pro Phe Leu Thr Pro Arg Pro Val Lys Lys Val Gly Tyr Leu Val
65 70 75 80

gtt tca acc gat cgc ggt tta tgt ggt ggc tta aat atc aat tta ttt 288
Val Ser Thr Asp Arg Gly Leu Cys Gly Gly Leu Asn Ile Asn Leu Phe
85 90 95

aaa acc gtt tta cat gaa ttg aaa gaa aaa gat gac caa ggt gtt aag 336
Lys Thr Val Leu His Glu Leu Lys Glu Lys Asp Asp Gln Gly Val Lys
100 105 110

tct cga ctt gct gtg gtg gga aat aaa ggg atc tcc ttt ttt aac cca 384
Ser Arg Leu Ala Val Val Gly Asn Lys Gly Ile Ser Phe Phe Asn Pro
115 120 125

atg ggg cta gag att aaa ggt cat atc aat gga ttg ggt gat aca ccg 432
Met Gly Leu Glu Ile Lys Gly His Ile Asn Gly Leu Gly Asp Thr Pro
130 135 140

gca atg gaa gat tta gtc ggt att gtt aat ggt atg gta aat gcc tac 480
Ala Met Glu Asp Leu Val Gly Ile Val Asn Gly Met Val Asn Ala Tyr
145 150 155 160

cgt gaa ggc gaa att gat gaa gtg tat gtg gta tat aac cgt ttt ata 528
Arg Glu Gly Glu Ile Asp Glu Val Tyr Val Val Tyr Asn Arg Phe Ile
165 170 175

aac acg atg tca caa aaa ccg aca gta caa cag ttg ctt cct ttg cct 576
Asn Thr Met Ser Gln Lys Pro Thr Val Gln Gln Leu Leu Pro Leu Pro
180 185 190

gca ctg gaa aat gac tca tta gag caa act ggt tct tgg gat tat ctc 624
Ala Leu Glu Asn Asp Ser Leu Glu Gln Thr Gly Ser Trp Asp Tyr Leu
195 200 205

tat gaa cca aat cca caa gcg tta tta gac agc tta ctg gtt cgt tat 672
Tyr Glu Pro Asn Pro Gln Ala Leu Leu Asp Ser Leu Leu Val Arg Tyr
210 215 220

tta gaa tct caa gtt tat cag gca gtg gta gat aat ctt gcg tct gaa 720
Leu Glu Ser Gln Val Tyr Gln Ala Val Val Asp Asn Leu Ala Ser Glu
225 230 235 240

cag gct gct cga atg gtg gca atg aaa gca gca acc gat aac gca ggt 768
Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly

Gln Ala Ala Arg Met Val Ala Met Lys Ala Ala Thr Asp Asn Ala Gly
 245 250 255

Asn Leu Ile Asn Glu Leu Gln Leu Val Tyr Asn Lys Ala Arg Gln Ala
 260 265 270

Ser Ile Thr Asn Glu Leu Asn Glu Ile Val Ala Gly Ala Ala Ala Ile
 275 280 285

<210> 168

<211> 1463

<212> DNA

<213> Pasteurella (Mannheimia) haemolytica

<220>

<221> CDS

<222> (1)..(1461)

<220>

<223> guaB

<400> 168

| | |
|---|----|
| atg cta cga att aaa caa gaa gcc ctc act ttt gat gat gtt ctt ctc | 48 |
| Met Leu Arg Ile Lys Gln Glu Ala Leu Thr Phe Asp Asp Val Leu Leu | |
| 1 5 10 15 | |

| | |
|---|----|
| gtc ccg gca cat tct act gtg ctt cct aat act gct gat ctt tct act | 96 |
| Val Pro Ala His Ser Thr Val Leu Pro Asn Thr Ala Asp Leu Ser Thr | |
| 20 25 30 | |

| | |
|---|-----|
| caa tta act aaa acc att cgt tta aac att ccg atg ctt tct gct gca | 144 |
| Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro Met Leu Ser Ala Ala | |
| 35 40 45 | |

| | |
|---|-----|
| atg gat acc gtt aca gaa act aag ctt gcg atc tcc ctt gct caa gaa | 192 |
| Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile Ser Leu Ala Gln Glu | |
| 50 55 60 | |

| | |
|---|-----|
| ggc ggc att ggt ttt atc cat aaa aat atg tcg att gaa cgc cag gca | 240 |
| Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser Ile Glu Arg Gln Ala | |
| 65 70 75 80 | |

| | |
|---|-----|
| gac cgt gtg cgt aaa gtg aaa aaa ttt gaa agt ggt att gtt tct gag | 288 |
| Asp Arg Val Arg Lys Val Lys Lys Phe Glu Ser Gly Ile Val Ser Glu | |
| 85 90 95 | |

| | |
|---|-----|
| cca gtg acg att tct cct gat atg aca tta gcg gaa ttg gct gaa ttg | 336 |
| Pro Val Thr Ile Ser Pro Asp Met Thr Leu Ala Glu Leu Ala Glu Leu | |
| 100 105 110 | |

| | |
|---|-----|
| gtg aaa aag aac ggt ttt gca ggc tat ccg gtg att gat gaa aac caa | 384 |
| Val Lys Lys Asn Gly Phe Ala Gly Tyr Pro Val Ile Asp Glu Asn Gln | |
| 115 120 125 | |

| | |
|---|-----|
| aat tta gtg gga att att acc gga cgt gat acc cga ttt gtc acg gat | 432 |
| Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr Arg Phe Val Thr Asp | |
| 130 135 140 | |

| | |
|---|-----|
| tta agc aaa aca gtg cgt gaa ttt atg aca cca aaa gac cgt tta gtg | 480 |
| Leu Ser Lys Thr Val Arg Glu Phe Met Thr Pro Lys Asp Arg Leu Val | |
| 145 150 155 160 | |

| | |
|---|------|
| acg gta aaa gaa aac gca agc cgt gaa gaa att ttc cac tta atg cac | 528 |
| Thr Val Lys Glu Asn Ala Ser Arg Glu Glu Ile Phe His Leu Met His | |
| 165 | 170 |
| | 175 |
| gaa cac cga gtg gag aaa gtg ctg gta gtg aat aat gaa ttt cag tta | 576 |
| Glu His Arg Val Glu Lys Val Leu Val Val Asn Asn Glu Phe Gln Leu | |
| 180 | 185 |
| | 190 |
| aaa gga atg att acc cta aaa gac tac caa aaa gcg gaa agc aaa ccg | 624 |
| Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys Ala Glu Ser Lys Pro | |
| 195 | 200 |
| | 205 |
| aat gcc tgt aaa gat gag ttt ggg cgt ttg cgt gtg ggg gcg gca gtg | 672 |
| Asn Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg Val Gly Ala Ala Val | |
| 210 | 215 |
| | 220 |
| gga gcc ggt ccg ggc aat gaa gaa cga att gat gct tta gta aaa gcg | 720 |
| Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp Ala Leu Val Lys Ala | |
| 225 | 230 |
| | 235 |
| | 240 |
| ggg gtc gat gtg cta tta atc gac tct tcg cac ggg cat tct gaa ggt | 768 |
| Gly Val Asp Val Leu Leu Ile Asp Ser Ser His Gly His Ser Glu Gly | |
| 245 | 250 |
| | 255 |
| gta tta caa cgt gtg cgt gaa acc cgt gca aaa tac cct gat tta ccg | 816 |
| Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys Tyr Pro Asp Leu Pro | |
| 260 | 265 |
| | 270 |
| att gtt gcc ggt aat att gcc act gca gaa gga gcg att gcg tta gct | 864 |
| Ile Val Ala Gly Asn Ile Ala Thr Ala Glu Gly Ala Ile Ala Leu Ala | |
| 275 | 280 |
| | 285 |
| gat gca gga gcc agt gct gtg aaa gta gga atc ggc ccg ggt tca att | 912 |
| Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile Gly Pro Gly Ser Ile | |
| 290 | 295 |
| | 300 |
| tgt acc acc aga att gta aca ggc gtt ggc gtg cca caa atc acg gca | 960 |
| Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val Pro Gln Ile Thr Ala | |
| 305 | 310 |
| | 315 |
| | 320 |
| atc gca gaa gcg gca gct gcg ctt aaa gaa cga ggc att cct gtg att | 1008 |
| Ile Ala Glu Ala Ala Ala Leu Lys Glu Arg Gly Ile Pro Val Ile | |
| 325 | 330 |
| | 335 |
| gct gat ggt gga att cgt tat tca ggc gat att tca aaa gct att gcc | 1056 |
| Ala Asp Gly Gly Ile Arg Tyr Ser Gly Asp Ile Ser Lys Ala Ile Ala | |
| 340 | 345 |
| | 350 |
| gcc ggt gca agt tgc gta atg gtc ggt tcg atg ttt gcc ggc aca gaa | 1104 |
| Ala Gly Ala Ser Cys Val Met Val Gly Ser Met Phe Ala Gly Thr Glu | |
| 355 | 360 |
| | 365 |
| gaa gcc ccg ggt gaa att gag ctt tat caa ggc aga gca ttc aaa tcc | 1152 |
| Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly Arg Ala Phe Lys Ser | |
| 370 | 375 |
| | 380 |
| tac cgt gga atg gga tca tta ggt gca atg agt aaa ggc tcg tca gat | 1200 |
| Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser Lys Gly Ser Ser Asp | |
| 385 | 390 |
| | 395 |
| | 400 |
| cgc tat ttc caa tct gat aat gcc gcc gac aag ctc gta ccg gaa ggg | 1248 |
| Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys Leu Val Pro Glu Gly | |
| 405 | 410 |
| | 415 |

| | |
|---|------|
| att gaa ggg cgt atc gct tac aaa ggc tac ttg aaa gaa att atc cac | 1296 |
| Ile Glu Gly Arg Ile Ala Tyr Lys Gly Tyr Leu Lys Glu Ile Ile His | |
| 420 | 425 |
| 430 | |
| caa caa atg ggc ggc tta cgc tcc tgt atg gga tta acc ggc tgt gcc | 1344 |
| Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly Leu Thr Gly Cys Ala | |
| 435 | 440 |
| 445 | |
| act att gaa gaa ctc cgc acc aaa gca gaa ttt gtc cgc att agt ggt | 1392 |
| Thr Ile Glu Glu Leu Arg Thr Lys Ala Glu Phe Val Arg Ile Ser Gly | |
| 450 | 455 |
| 460 | |
| gct ggt att aaa gaa agc cac gtc cac gat gtg aca att acc aaa gaa | 1440 |
| Ala Gly Ile Lys Glu Ser His Val His Asp Val Thr Ile Thr Lys Glu | |
| 465 | 470 |
| 475 | |
| 480 | |
| gca ccg aac tac cga atg ggt ta | 1463 |
| Ala Pro Asn Tyr Arg Met Gly | |
| 485 | |

<210> 169

<211> 487

<212> PRT

<213> Pasteurella (Mannheimia) haemolytica

<400> 169

| | |
|---|---|
| Met Leu Arg Ile Lys Gln Glu Ala Leu Thr Phe Asp Asp Val Leu Leu | |
| 1 | 5 |
| 10 | |
| 15 | |

| | |
|---|----|
| Val Pro Ala His Ser Thr Val Leu Pro Asn Thr Ala Asp Leu Ser Thr | |
| 20 | 25 |
| 30 | |

| | |
|---|----|
| Gln Leu Thr Lys Thr Ile Arg Leu Asn Ile Pro Met Leu Ser Ala Ala | |
| 35 | 40 |
| 45 | |

| | |
|---|----|
| Met Asp Thr Val Thr Glu Thr Lys Leu Ala Ile Ser Leu Ala Gln Glu | |
| 50 | 55 |
| 60 | |

| | |
|---|----|
| Gly Gly Ile Gly Phe Ile His Lys Asn Met Ser Ile Glu Arg Gln Ala | |
| 65 | 70 |
| 75 | |
| 80 | |

| | |
|---|----|
| Asp Arg Val Arg Lys Val Lys Lys Phe Glu Ser Gly Ile Val Ser Glu | |
| 85 | 90 |
| 95 | |

| | |
|---|-----|
| Pro Val Thr Ile Ser Pro Asp Met Thr Leu Ala Glu Leu Ala Glu Leu | |
| 100 | 105 |
| 110 | |

| | |
|---|-----|
| Val Lys Lys Asn Gly Phe Ala Gly Tyr Pro Val Ile Asp Glu Asn Gln | |
| 115 | 120 |
| 125 | |

| | |
|---|-----|
| Asn Leu Val Gly Ile Ile Thr Gly Arg Asp Thr Arg Phe Val Thr Asp | |
| 130 | 135 |
| 140 | |

| | |
|---|-----|
| Leu Ser Lys Thr Val Arg Glu Phe Met Thr Pro Lys Asp Arg Leu Val | |
| 145 | 150 |
| 155 | |
| 160 | |

| | |
|---|-----|
| Thr Val Lys Glu Asn Ala Ser Arg Glu Glu Ile Phe His Leu Met His | |
| 165 | 170 |
| 175 | |

| | |
|---|-----|
| Glu His Arg Val Glu Lys Val Leu Val Val Asn Asn Glu Phe Gln Leu | |
| 180 | 185 |
| 190 | |

Lys Gly Met Ile Thr Leu Lys Asp Tyr Gln Lys Ala Glu Ser Lys Pro
 195 200 205
 Asn Ala Cys Lys Asp Glu Phe Gly Arg Leu Arg Val Gly Ala Ala Val
 210 215 220
 Gly Ala Gly Pro Gly Asn Glu Glu Arg Ile Asp Ala Leu Val Lys Ala
 225 230 235 240
 Gly Val Asp Val Leu Leu Ile Asp Ser Ser His Gly His Ser Glu Gly
 245 250 255
 Val Leu Gln Arg Val Arg Glu Thr Arg Ala Lys Tyr Pro Asp Leu Pro
 260 265 270
 Ile Val Ala Gly Asn Ile Ala Thr Ala Glu Gly Ala Ile Ala Leu Ala
 275 280 285
 Asp Ala Gly Ala Ser Ala Val Lys Val Gly Ile Gly Pro Gly Ser Ile
 290 295 300
 Cys Thr Thr Arg Ile Val Thr Gly Val Gly Val Pro Gln Ile Thr Ala
 305 310 315 320
 Ile Ala Glu Ala Ala Ala Leu Lys Glu Arg Gly Ile Pro Val Ile
 325 330 335
 Ala Asp Gly Gly Ile Arg Tyr Ser Gly Asp Ile Ser Lys Ala Ile Ala
 340 345 350
 Ala Gly Ala Ser Cys Val Met Val Gly Ser Met Phe Ala Gly Thr Glu
 355 360 365
 Glu Ala Pro Gly Glu Ile Glu Leu Tyr Gln Gly Arg Ala Phe Lys Ser
 370 375 380
 Tyr Arg Gly Met Gly Ser Leu Gly Ala Met Ser Lys Gly Ser Ser Asp
 385 390 395 400
 Arg Tyr Phe Gln Ser Asp Asn Ala Ala Asp Lys Leu Val Pro Glu Gly
 405 410 415
 Ile Glu Gly Arg Ile Ala Tyr Lys Gly Tyr Leu Lys Glu Ile Ile His
 420 425 430
 Gln Gln Met Gly Gly Leu Arg Ser Cys Met Gly Leu Thr Gly Cys Ala
 435 440 445
 Thr Ile Glu Glu Leu Arg Thr Lys Ala Glu Phe Val Arg Ile Ser Gly
 450 455 460
 Ala Gly Ile Lys Glu Ser His Val His Asp Val Thr Ile Thr Lys Glu
 465 470 475 480
 Ala Pro Asn Tyr Arg Met Gly
 485

<210> 170
 <211> 2150
 <212> DNA
 <213> Pasteurella (Mannheimia) haemolytica

<220>
 <221> CDS
 <222> (1)...(2148)

<220>
 <223> pnp

<400> 170

| | |
|---|----|
| atg act cca att gta aaa cag ttt aaa tac ggt cag cac acc gtg acc | 48 |
| Met Thr Pro Ile Val Lys Gln Phe Lys Tyr Gly Gln His Thr Val Thr | |
| 1 | 5 |
| 10 | 15 |

tta gaa acc ggt gct atc gca cgc caa gca acg gca gca gta atg gca

| | |
|---|----|
| Leu Glu Thr Gly Ala Ile Ala Arg Gln Ala Thr Ala Ala Val Met Ala | 96 |
| 20 | 25 |
| 30 | |

agt atg gac gac aca acc gta ttt gtt acc gta gta gcg aaa aaa gac

| | |
|---|-----|
| Ser Met Asp Asp Thr Thr Val Phe Val Thr Val Val Ala Lys Lys Asp | 144 |
| 35 | 40 |
| 45 | |

gta aaa gaa ggg caa gat ttc ttc cca tta acc gta gat tat caa gag

| | |
|---|-----|
| Val Lys Glu Gly Gln Asp Phe Phe Pro Leu Thr Val Asp Tyr Gln Glu | 192 |
| 50 | 55 |
| 60 | |

cgt act tac gca gcc ggt cgt att ccg ggc ggt ttc ttc aaa cgt gaa

| | |
|---|-----|
| Arg Thr Tyr Ala Ala Gly Arg Ile Pro Gly Gly Phe Phe Lys Arg Glu | 240 |
| 65 | 70 |
| 75 | 80 |

gga cgt cct agc gaa ggt gaa acc tta atc gct cgc ttg atc gac cgt

| | |
|---|-----|
| Gly Arg Pro Ser Glu Gly Glu Thr Leu Ile Ala Arg Leu Ile Asp Arg | 288 |
| 85 | 90 |
| 95 | |

cct gtg cgt cca ctt ttc cca gaa ggt ttc ttt aac gaa att caa gtg

| | |
|---|-----|
| Pro Val Arg Pro Leu Phe Pro Glu Gly Phe Phe Asn Glu Ile Gln Val | 336 |
| 100 | 105 |
| 110 | |

att gcg acc gta gta tcg gta aac cca caa atc agt cct gat ctg gtt

| | |
|---|-----|
| Ile Ala Thr Val Val Ser Val Asn Pro Gln Ile Ser Pro Asp Leu Val | 384 |
| 115 | 120 |
| 125 | |

gcg atg atc ggt gca tcg gct gcc ctt tca tta tcc ggc gtg ccg ttt

| | |
|---|-----|
| Ala Met Ile Gly Ala Ser Ala Ala Leu Ser Leu Ser Gly Val Pro Phe | 432 |
| 130 | 135 |
| 140 | |

aac ggt cca atc ggt gcg gct cgt gtc ggt ttt atc aac gat caa ttc

| | |
|---|-----|
| Asn Gly Pro Ile Gly Ala Ala Arg Val Gly Phe Ile Asn Asp Gln Phe | 480 |
| 145 | 150 |
| 155 | 160 |

gta tta aac cca acc acc agc gag caa aaa atc agc cgc tta gat tta

| | |
|---|-----|
| Val Leu Asn Pro Thr Thr Ser Glu Gln Lys Ile Ser Arg Leu Asp Leu | 528 |
| 165 | 170 |
| 175 | |

gtg gtt tca ggt aca gac aaa gcc gtg ttg atg gtg gaa tct gaa gcg

| | |
|---|-----|
| Val Val Ser Gly Thr Asp Lys Ala Val Leu Met Val Glu Ser Glu Ala | 576 |
| 180 | 185 |
| 190 | |

gat atc tta acc gaa gag caa atg tta gcg gcg gtg gtg ttc ggc cac

| | |
|---|-----|
| Asp Ile Leu Thr Glu Glu Gln Met Leu Ala Ala Val Val Phe Gly His | 624 |
| 195 | 200 |
| 205 | |

gag caa caa cag gtt gta atc gaa aac atc aaa gaa ttt gtt aaa gaa

| | |
|---|-----|
| Glu Gln Gln Gln Val Val Ile Glu Asn Ile Lys Glu Phe Val Lys Glu | 672 |
| 210 | 215 |
| 220 | |

| | |
|---|------|
| gcg ggc aaa cca cgt tgg gat tgg gtt gca cca gag cca aat aca gat
Ala Gly Lys Pro Arg Trp Asp Trp Val Ala Pro Glu Pro Asn Thr Asp
225 230 235 240 | 720 |
| tta atc aac aaa gta aaa gca tta gca gaa aca cgc ctt ggc gat gct
Leu Ile Asn Lys Val Lys Ala Leu Ala Glu Thr Arg Leu Gly Asp Ala
245 250 255 | 768 |
| tat cgt atc gta gaa aaa caa gtt cgt tac gag caa atc gat gcg att
Tyr Arg Ile Val Glu Lys Gln Val Arg Tyr Glu Gln Ile Asp Ala Ile
260 265 270 | 816 |
| aaa gca gag gtg att gca caa ctt acc gca gaa gat gaa act gtt tct
Lys Ala Glu Val Ile Ala Gln Leu Thr Ala Glu Asp Glu Thr Val Ser
275 280 285 | 864 |
| gaa ggg act atc atc gac atc acc gca tta gag agc caa atc gtg
Glu Gly Thr Ile Ile Asp Ile Ile Thr Ala Leu Glu Ser Gln Ile Val
290 295 300 | 912 |
| cgt agc cgt att att gca ggc gaa cca cgc att gac ggc cgt acg gtg
Arg Ser Arg Ile Ile Ala Gly Glu Pro Arg Ile Asp Gly Arg Thr Val
305 310 315 320 | 960 |
| gat acc gtg cgt gca ttg gat att tgc acc agt gtg tta cca cgc acc
Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Ser Val Leu Pro Arg Thr
325 330 335 | 1008 |
| cac ggt tct gct ctt ttc acc cgt ggc gaa acc caa gca tta gca gta
His Gly Ser Ala Leu Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala Val
340 345 350 | 1056 |
| gca aca ttg ggc aca gag cgt gat gcc caa atc att gac gaa ttg acc
Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu Thr
355 360 365 | 1104 |
| ggc gaa aaa tct gac cgt ttc tta ttc cac tac aat ttc cct cca tac
Gly Glu Lys Ser Asp Arg Phe Leu Phe His Tyr Asn Phe Pro Pro Tyr
370 375 380 | 1152 |
| tct gtg ggc gaa acc ggt cgt atc ggc tcg cca aaa cgc cgt gaa atc
Ser Val Gly Glu Thr Gly Arg Ile Gly Ser Pro Lys Arg Arg Glu Ile
385 390 395 400 | 1200 |
| ggt cac ggt cgt tta gca aaa cgt ggc gta tta gcc gtg atg cca acc
Gly His Gly Arg Leu Ala Lys Arg Gly Val Leu Ala Val Met Pro Thr
405 410 415 | 1248 |
| gct gaa gag ttc ccg tat gta gtg cgt gtg gtg tct gaa atc act gaa
Ala Glu Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr Glu
420 425 430 | 1296 |
| tct aac ggt tct tca atg gca tct gtg tgt ggt gcg tct ctt gcg
Ser Asn Gly Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu Ala
435 440 445 | 1344 |
| ttg atg gac gca ggt gtg cca atc aaa gca gcg gtt gcc ggt atc gca
Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile Ala
450 455 460 | 1392 |
| atg ggg ctc gtg aaa gaa gac gag aaa ttc gtg gta ctt tct gac atc
Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp Ile
465 470 475 480 | 1440 |

| | |
|---|------|
| tta ggt gat gaa gac cac tta ggc gat atg gac ttt aaa gta gcg gga | 1488 |
| Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala Gly | |
| 485 | 490 |
| 495 | |
| acc cgt acc ggt gtg act gcg ctg caa atg gac atc aaa atc gaa ggg | 1536 |
| Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu Gly | |
| 500 | 505 |
| 510 | |
| atc acc cct gaa att atg cgt att gcc tta aac caa gct aaa ggt gca | 1584 |
| Ile Thr Pro Glu Ile Met Arg Ile Ala Leu Asn Gln Ala Lys Gly Ala | |
| 515 | 520 |
| 525 | |
| aga atg cac att tta ggt gta atg gaa caa gcc att ccg gca cct cgt | 1632 |
| Arg Met His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro Arg | |
| 530 | 535 |
| 540 | |
| gca gat att tct gac tat gcc cca cgc att cac aca atg aag atc gat | 1680 |
| Ala Asp Ile Ser Asp Tyr Ala Pro Arg Ile His Thr Met Lys Ile Asp | |
| 545 | 550 |
| 555 | 560 |
| ccg aag aaa atc aaa gat gtg att ggt aaa ggc ggt gca aca att cgt | 1728 |
| Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile Arg | |
| 565 | 570 |
| 575 | |
| gct tta acc gaa gag acc aat act tct atc gac att gat gat gac ggt | 1776 |
| Ala Leu Thr Glu Glu Thr Asn Thr Ser Ile Asp Ile Asp Asp Asp Gly | |
| 580 | 585 |
| 590 | |
| acg gtg aaa att gcg gca act gac ggc aat gca gcg aaa gca gta atg | 1824 |
| Thr Val Lys Ile Ala Ala Thr Asp Gly Asn Ala Ala Lys Ala Val Met | |
| 595 | 600 |
| 605 | |
| gct cgt att gaa gag atc gtt gcc gaa gtg gaa gta aac caa atc tac | 1872 |
| Ala Arg Ile Glu Glu Ile Val Ala Glu Val Glu Val Asn Gln Ile Tyr | |
| 610 | 615 |
| 620 | |
| aac ggt aaa gta acc cgt gtg gtc gac ttc ggt gca ttc gtt tcc atc | 1920 |
| Asn Gly Lys Val Thr Arg Val Val Asp Phe Gly Ala Phe Val Ser Ile | |
| 625 | 630 |
| 635 | 640 |
| tta ggt ggc aaa gaa ggt tta gtc cac att tca caa atc acc aac gaa | 1968 |
| Leu Gly Gly Lys Glu Gly Leu Val His Ile Ser Gln Ile Thr Asn Glu | |
| 645 | 650 |
| 655 | |
| cgt gtt gag cgt gta gcg gac tac tta acc gtt ggt caa gaa gta caa | 2016 |
| Arg Val Glu Arg Val Ala Asp Tyr Leu Thr Val Gly Gln Glu Val Gln | |
| 660 | 665 |
| 670 | |
| gtg aaa gtg gta gaa att gac cgt caa gga cgc att cgt ctg acg atg | 2064 |
| Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr Met | |
| 675 | 680 |
| 685 | |
| aaa gac atc aat aat acc aac gag gca aat gca gaa gaa act gta gct | 2112 |
| Lys Asp Ile Asn Asn Thr Asn Glu Ala Asn Ala Glu Glu Thr Val Ala | |
| 690 | 695 |
| 700 | |
| gaa aat gtg gta gaa aca gaa caa gaa aat aat ttc ta | 2150 |
| Glu Asn Val Val Glu Thr Glu Gln Glu Asn Asn Phe | |
| 705 | 710 |
| 715 | |

<210> 171
<211> 716

<212> PRT

<213> Pasteurella (Mannheimia) haemolytica

<400> 171

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Thr | Pro | Ile | Val | Lys | Gln | Phe | Lys | Tyr | Gly | Gln | His | Thr | Val | Thr |
| 1 | | | | | | | | | | | | | | | 15 |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Glu | Thr | Gly | Ala | Ile | Ala | Arg | Gln | Ala | Thr | Ala | Ala | Val | Met | Ala |
| | | | | 20 | | | | 25 | | | | | 30 | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ser | Met | Asp | Asp | Thr | Thr | Val | Phe | Val | Thr | Val | Val | Ala | Lys | Lys | Asp |
| | | | | 35 | | | | 40 | | | | 45 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Lys | Glu | Gly | Gln | Asp | Phe | Phe | Pro | Leu | Thr | Val | Asp | Tyr | Gln | Glu |
| | | | | 50 | | | | | 55 | | | 60 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Thr | Tyr | Ala | Ala | Gly | Arg | Ile | Pro | Gly | Gly | Phe | Phe | Lys | Arg | Glu |
| 65 | | | | | 70 | | | | 75 | | | | 80 | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gly | Arg | Pro | Ser | Glu | Gly | Glu | Thr | Leu | Ile | Ala | Arg | Leu | Ile | Asp | Arg |
| | | | | 85 | | | | 90 | | | 95 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Pro | Val | Arg | Pro | Leu | Phe | Pro | Glu | Gly | Phe | Phe | Asn | Glu | Ile | Gln | Val |
| | | | | 100 | | | | 105 | | | 110 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ile | Ala | Thr | Val | Val | Ser | Val | Asn | Pro | Gln | Ile | Ser | Pro | Asp | Leu | Val |
| | | | | | 115 | | | 120 | | | 125 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Met | Ile | Gly | Ala | Ser | Ala | Ala | Leu | Ser | Leu | Ser | Gly | Val | Pro | Phe |
| | | | | 130 | | | | 135 | | | 140 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asn | Gly | Pro | Ile | Gly | Ala | Ala | Arg | Val | Gly | Phe | Ile | Asn | Asp | Gln | Phe |
| 145 | | | | | 150 | | | | 155 | | | 160 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Leu | Asn | Pro | Thr | Thr | Ser | Glu | Gln | Lys | Ile | Ser | Arg | Leu | Asp | Leu |
| | | | | | 165 | | | | 170 | | | 175 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | Val | Ser | Gly | Thr | Asp | Lys | Ala | Val | Leu | Met | Val | Glu | Ser | Glu | Ala |
| | | | | | 180 | | | | 185 | | | 190 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Asp | Ile | Leu | Thr | Glu | Glu | Gln | Met | Leu | Ala | Ala | Val | Val | Phe | Gly | His |
| | | | | | 195 | | | 200 | | | 205 | | | | |

| | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Gln | Gln | Val | Val | Ile | Glu | Asn | Ile | Lys | Glu | Phe | Val | Lys | Glu |
| | | | | | 210 | | | 215 | | | 220 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Ala | Gly | Lys | Pro | Arg | Trp | Asp | Trp | Val | Ala | Pro | Glu | Pro | Asn | Thr | Asp |
| 225 | | | | | 230 | | | | 235 | | | 240 | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ile | Asn | Lys | Val | Lys | Ala | Leu | Ala | Glu | Thr | Arg | Leu | Gly | Asp | Ala |
| | | | | | 245 | | | 250 | | | 255 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Tyr | Arg | Ile | Val | Glu | Lys | Gln | Val | Arg | Tyr | Glu | Gln | Ile | Asp | Ala | Ile |
| | | | | | 260 | | | 265 | | | 270 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ala | Glu | Val | Ile | Ala | Gln | Leu | Thr | Ala | Glu | Asp | Glu | Thr | Val | Ser |
| | | | | | 275 | | | 280 | | | 285 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Glu | Gly | Thr | Ile | Ile | Asp | Ile | Ile | Thr | Ala | Leu | Glu | Ser | Gln | Ile | Val |
| | | | | | 290 | | | 295 | | | 300 | | | | |

| | | | | | | | | | | | | | | | |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arg | Ser | Arg | Ile | Ile | Ala | Gly | Glu | Pro | Arg | Ile | Asp | Gly | Arg | Thr | Val |
| 305 | | | | | 310 | | | | 315 | | | 320 | | | |

Asp Thr Val Arg Ala Leu Asp Ile Cys Thr Ser Val Leu Pro Arg Thr
 325 330 335
 His Gly Ser Ala Leu Phe Thr Arg Gly Glu Thr Gln Ala Leu Ala Val
 340 345 350
 Ala Thr Leu Gly Thr Glu Arg Asp Ala Gln Ile Ile Asp Glu Leu Thr
 355 360 365
 Gly Glu Lys Ser Asp Arg Phe Leu Phe His Tyr Asn Phe Pro Pro Tyr
 370 375 380
 Ser Val Gly Glu Thr Gly Arg Ile Gly Ser Pro Lys Arg Arg Glu Ile
 385 390 395 400
 Gly His Gly Arg Leu Ala Lys Arg Gly Val Leu Ala Val Met Pro Thr
 405 410 415
 Ala Glu Glu Phe Pro Tyr Val Val Arg Val Val Ser Glu Ile Thr Glu
 420 425 430
 Ser Asn Gly Ser Ser Ser Met Ala Ser Val Cys Gly Ala Ser Leu Ala
 435 440 445
 Leu Met Asp Ala Gly Val Pro Ile Lys Ala Ala Val Ala Gly Ile Ala
 450 455 460
 Met Gly Leu Val Lys Glu Asp Glu Lys Phe Val Val Leu Ser Asp Ile
 465 470 475 480
 Leu Gly Asp Glu Asp His Leu Gly Asp Met Asp Phe Lys Val Ala Gly
 485 490 495
 Thr Arg Thr Gly Val Thr Ala Leu Gln Met Asp Ile Lys Ile Glu Gly
 500 505 510
 Ile Thr Pro Glu Ile Met Arg Ile Ala Leu Asn Gln Ala Lys Gly Ala
 515 520 525
 Arg Met His Ile Leu Gly Val Met Glu Gln Ala Ile Pro Ala Pro Arg
 530 535 540
 Ala Asp Ile Ser Asp Tyr Ala Pro Arg Ile His Thr Met Lys Ile Asp
 545 550 555 560
 Pro Lys Lys Ile Lys Asp Val Ile Gly Lys Gly Gly Ala Thr Ile Arg
 565 570 575
 Ala Leu Thr Glu Glu Thr Asn Thr Ser Ile Asp Ile Asp Asp Asp Gly
 580 585 590
 Thr Val Lys Ile Ala Ala Thr Asp Gly Asn Ala Ala Lys Ala Val Met
 595 600 605
 Ala Arg Ile Glu Glu Ile Val Ala Glu Val Glu Val Asn Gln Ile Tyr
 610 615 620
 Asn Gly Lys Val Thr Arg Val Val Asp Phe Gly Ala Phe Val Ser Ile
 625 630 635 640
 Leu Gly Gly Lys Glu Gly Leu Val His Ile Ser Gln Ile Thr Asn Glu
 645 650 655

Arg Val Glu Arg Val Ala Asp Tyr Leu Thr Val Gly Gln Glu Val Gln
 660 665 670

Val Lys Val Val Glu Ile Asp Arg Gln Gly Arg Ile Arg Leu Thr Met
 675 680 685

Lys Asp Ile Asn Asn Thr Asn Glu Ala Asn Ala Glu Glu Thr Val Ala
 690 695 700

Glu Asn Val Val Glu Thr Glu Gln Glu Asn Asn Phe
 705 710 715

<210> 172

<211> 1517

<212> DNA

<213> Pasteurella (Mannheimia) haemolytica

<220>

<221> CDS

<222> (1)...(1515)

<220>

<223> purF

<400> 172

| | |
|---|----|
| atg tgc ggc att gtc ggt att att ggg aat tcg ccg gtg aat cag gcg | 48 |
| Met Cys Gly Ile Val Gly Ile Ile Gly Asn Ser Pro Val Asn Gln Ala | |
| 1 5 10 15 | |

| | |
|---|----|
| att tat gat ggt tta aca tta ctt caa cac cga gga caa gat gcc gca | 96 |
| Ile Tyr Asp Gly Leu Thr Leu Leu Gln His Arg Gly Gln Asp Ala Ala | |
| 20 25 30 | |

| | |
|---|-----|
| ggt atc gtc acc ata gac gat gaa aat cgt ttc cgc tta cgc aaa gct | 144 |
| Gly Ile Val Thr Ile Asp Asp Glu Asn Arg Phe Arg Leu Arg Lys Ala | |
| 35 40 45 | |

| | |
|---|-----|
| aac ggc tta gtc agc gat gtt ttc cag caa gag cat atg gtg aga tta | 192 |
| Asn Gly Leu Val Ser Asp Val Phe Gln Gln Glu His Met Val Arg Leu | |
| 50 55 60 | |

| | |
|---|-----|
| caa ggc aat gtt gga att ggt cac gtt cgc tac cca aca gca ggt agc | 240 |
| Gln Gly Asn Val Gly Ile Gly His Val Arg Tyr Pro Thr Ala Gly Ser | |
| 65 70 75 80 | |

| | |
|---|-----|
| tca agt gtg tct gaa gcc cag cca ttt tat gtc aat tca cct ttc ggt | 288 |
| Ser Ser Val Ser Ala Gln Pro Phe Tyr Val Asn Ser Pro Phe Gly | |
| 85 90 95 | |

| | |
|---|-----|
| att acc tta gtt cac aac ggt aat tta act aat aat gcg gaa ctt aaa | 336 |
| Ile Thr Leu Val His Asn Gly Asn Leu Thr Asn Asn Ala Glu Leu Lys | |
| 100 105 110 | |

| | |
|---|-----|
| gct cgc tta tac aac gaa gcc cgc cgc cat gtg aac act aat tct gat | 384 |
| Ala Arg Leu Tyr Asn Glu Ala Arg Arg His Val Asn Thr Asn Ser Asp | |
| 115 120 125 | |

| | |
|---|-----|
| tct gaa tcc ctt ctt aat att ttt gct tac ttt tta gat ctc tat tcc | 432 |
| Ser Glu Ser Leu Leu Asn Ile Phe Ala Tyr Phe Leu Asp Leu Tyr Ser | |
| 130 135 140 | |

| | |
|---|-----|
| act cag cat tta agc cca gac aat atc ttt gaa acg gtt cgt aaa acc | 480 |
|---|-----|

| | | | | |
|---|------|-----|-----|--|
| Thr Gln His Leu Ser Pro Asp Asn Ile Phe Glu Thr Val Arg Lys Thr | | | | |
| 145 | 150 | 155 | 160 | |
| aat gat agc att cgt ggt gct tat gct tgc att gcg atg att atc gga | 528 | | | |
| Asn Asp Ser Ile Arg Gly Ala Tyr Ala Cys Ile Ala Met Ile Ile Gly | | | | |
| 165 | 170 | 175 | | |
| cac ggt atg gtt gct ttc cgt gac cca ttc ggt att cgc ccg tta gtg | 576 | | | |
| His Gly Met Val Ala Phe Arg Asp Pro Phe Gly Ile Arg Pro Leu Val | | | | |
| 180 | 185 | 190 | | |
| ctg ggt aaa cgt gaa atc gag ggt aaa acc gaa tat atg ttt gct tcg | 624 | | | |
| Leu Gly Lys Arg Glu Ile Glu Gly Lys Thr Glu Tyr Met Phe Ala Ser | | | | |
| 195 | 200 | 205 | | |
| gaa agt gtg gct ctt gat gta gtg ggg ttt gaa ttt gtg cga gat gtg | 672 | | | |
| Glu Ser Val Ala Leu Asp Val Val Gly Phe Glu Phe Val Arg Asp Val | | | | |
| 210 | 215 | 220 | | |
| ctg ccg ggt gaa gcg att tat gtt acc ttt gat ggg caa tta cat tcg | 720 | | | |
| Leu Pro Gly Glu Ala Ile Tyr Val Thr Phe Asp Gly Gln Leu His Ser | | | | |
| 225 | 230 | 235 | 240 | |
| caa att tgt gcc gat aat cca aaa ctg aat cct tgt att ttt gaa tat | 768 | | | |
| Gln Ile Cys Ala Asp Asn Pro Lys Leu Asn Pro Cys Ile Phe Glu Tyr | | | | |
| 245 | 250 | 255 | | |
| gtt tat ttt gcc cgt cct gat tcc gtc att gat ggc gtt tct gta tat | 816 | | | |
| Val Tyr Phe Ala Arg Pro Asp Ser Val Ile Asp Gly Val Ser Val Tyr | | | | |
| 260 | 265 | 270 | | |
| tct gca cga gtg cat atg ggc gaa tta tta ggt gag aaa att aaa cgt | 864 | | | |
| Ser Ala Arg Val His Met Gly Glu Leu Leu Gly Glu Lys Ile Lys Arg | | | | |
| 275 | 280 | 285 | | |
| gaa tgg gga cga att atc gat gat att gat gtg gtg atc ccg att cct | 912 | | | |
| Glu Trp Gly Arg Ile Ile Asp Asp Ile Asp Val Val Ile Pro Ile Pro | | | | |
| 290 | 295 | 300 | | |
| gaa acc tca aat gat att gcg gta cgt att gct aat atg ttg tat aaa | 960 | | | |
| Glu Thr Ser Asn Asp Ile Ala Val Arg Ile Ala Asn Met Leu Tyr Lys | | | | |
| 305 | 310 | 315 | 320 | |
| ccc tat cgt caa ggg ttt gtt aaa aac cgc tat gta gct cga act ttt | 1008 | | | |
| Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Ala Arg Thr Phe | | | | |
| 325 | 330 | 335 | | |
| att atg ccg ggg caa gca cag cgt aaa agc tcg gtt cgc cgt aaa tta | 1056 | | | |
| Ile Met Pro Gly Gln Ala Gln Arg Lys Ser Ser Val Arg Arg Lys Leu | | | | |
| 340 | 345 | 350 | | |
| aat gcg att gcc tct gaa ttt aaa ggc aaa agc gtg tta ctg gtt gat | 1104 | | | |
| Asn Ala Ile Ala Ser Glu Phe Lys Gly Lys Ser Val Leu Leu Val Asp | | | | |
| 355 | 360 | 365 | | |
| gat tct att gta cga ggt aca acg tct gaa caa atc gtg gaa atg gca | 1152 | | | |
| Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala | | | | |
| 370 | 375 | 380 | | |
| cga gca gct ggt gca aaa cgg gtt tat ttt gcc tct gcc gca ccg gaa | 1200 | | | |
| Arg Ala Ala Gly Ala Lys Arg Val Tyr Phe Ala Ser Ala Ala Pro Glu | | | | |
| 385 | 390 | 395 | 400 | |

| | |
|---|------|
| att cgc tac ccg aat gtg tat ggc att gat atg ccg act tgt gaa gaa
Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Cys Glu Glu
405 410 415 | 1248 |
| tta gtg gct tat gat cgc tca gtg gaa gag gtt gca cag atg ata ggg
Leu Val Ala Tyr Asp Arg Ser Val Glu Glu Val Ala Gln Met Ile Gly
420 425 430 | 1296 |
| gtg gat aaa ttg att ttc caa gac ctt gaa gca ctt tat aag tct att
Val Asp Lys Leu Ile Phe Gln Asp Leu Glu Ala Leu Tyr Lys Ser Ile
435 440 445 | 1344 |
| caa ctg gaa aat ccg act att cat cgc ttt gat gac tct gta ttt aca
Gln Leu Glu Asn Pro Thr Ile His Arg Phe Asp Asp Ser Val Phe Thr
450 455 460 | 1392 |
| gga gaa tat att aca ggt gat gta gat aaa tgc tat tta gac agt ata
Gly Glu Tyr Ile Thr Gly Asp Val Asp Lys Cys Tyr Leu Asp Ser Ile
465 470 475 480 | 1440 |
| gca aga tct cga aac gat aaa gca aaa gca gag gcg gca aaa caa gcc
Ala Arg Ser Arg Asn Asp Lys Ala Lys Ala Glu Ala Ala Lys Gln Ala
485 490 495 | 1488 |
| acc aat tta gaa att cat aac gaa aga ta
Thr Asn Leu Glu Ile His Asn Glu Arg
500 505 | 1517 |
|
 | |
| <210> 173 | |
| <211> 505 | |
| <212> PRT | |
| <213> Pasteurella (Mannheimia) haemolytica | |
|
 | |
| <400> 173 | |
| Met Cys Gly Ile Val Gly Ile Ile Gly Asn Ser Pro Val Asn Gln Ala
1 5 10 15 | |
| Ile Tyr Asp Gly Leu Thr Leu Leu Gln His Arg Gly Gln Asp Ala Ala
20 25 30 | |
| Gly Ile Val Thr Ile Asp Asp Glu Asn Arg Phe Arg Leu Arg Lys Ala
35 40 45 | |
| Asn Gly Leu Val Ser Asp Val Phe Gln Gln Glu His Met Val Arg Leu
50 55 60 | |
| Gln Gly Asn Val Gly Ile Gly His Val Arg Tyr Pro Thr Ala Gly Ser
65 70 75 80 | |
| Ser Ser Val Ser Glu Ala Gln Pro Phe Tyr Val Asn Ser Pro Phe Gly
85 90 95 | |
| Ile Thr Leu Val His Asn Gly Asn Leu Thr Asn Asn Ala Glu Leu Lys
100 105 110 | |
| Ala Arg Leu Tyr Asn Glu Ala Arg Arg His Val Asn Thr Asn Ser Asp
115 120 125 | |
| Ser Glu Ser Leu Leu Asn Ile Phe Ala Tyr Phe Leu Asp Leu Tyr Ser
130 135 140 | |

Thr Gln His Leu Ser Pro Asp Asn Ile Phe Glu Thr Val Arg Lys Thr
 145 150 155 160
 Asn Asp Ser Ile Arg Gly Ala Tyr Ala Cys Ile Ala Met Ile Ile Gly
 165 170 175
 His Gly Met Val Ala Phe Arg Asp Pro Phe Gly Ile Arg Pro Leu Val
 180 185 190
 Leu Gly Lys Arg Glu Ile Glu Gly Lys Thr Glu Tyr Met Phe Ala Ser
 195 200 205
 Glu Ser Val Ala Leu Asp Val Val Gly Phe Glu Phe Val Arg Asp Val
 210 215 220
 Leu Pro Gly Glu Ala Ile Tyr Val Thr Phe Asp Gly Gln Leu His Ser
 225 230 235 240
 Gln Ile Cys Ala Asp Asn Pro Lys Leu Asn Pro Cys Ile Phe Glu Tyr
 245 250 255
 Val Tyr Phe Ala Arg Pro Asp Ser Val Ile Asp Gly Val Ser Val Tyr
 260 265 270
 Ser Ala Arg Val His Met Gly Glu Leu Leu Gly Glu Lys Ile Lys Arg
 275 280 285
 Glu Trp Gly Arg Ile Ile Asp Asp Ile Asp Val Val Ile Pro Ile Pro
 290 295 300
 Glu Thr Ser Asn Asp Ile Ala Val Arg Ile Ala Asn Met Leu Tyr Lys
 305 310 315 320
 Pro Tyr Arg Gln Gly Phe Val Lys Asn Arg Tyr Val Ala Arg Thr Phe
 325 330 335
 Ile Met Pro Gly Gln Ala Gln Arg Lys Ser Ser Val Arg Arg Lys Leu
 340 345 350
 Asn Ala Ile Ala Ser Glu Phe Lys Gly Lys Ser Val Leu Leu Val Asp
 355 360 365
 Asp Ser Ile Val Arg Gly Thr Thr Ser Glu Gln Ile Val Glu Met Ala
 370 375 380
 Arg Ala Ala Gly Ala Lys Arg Val Tyr Phe Ala Ser Ala Ala Pro Glu
 385 390 395 400
 Ile Arg Tyr Pro Asn Val Tyr Gly Ile Asp Met Pro Thr Cys Glu Glu
 405 410 415
 Leu Val Ala Tyr Asp Arg Ser Val Glu Glu Val Ala Gln Met Ile Gly
 420 425 430
 Val Asp Lys Leu Ile Phe Gln Asp Leu Glu Ala Leu Tyr Lys Ser Ile
 435 440 445
 Gln Leu Glu Asn Pro Thr Ile His Arg Phe Asp Asp Ser Val Phe Thr
 450 455 460
 Gly Glu Tyr Ile Thr Gly Asp Val Asp Lys Cys Tyr Leu Asp Ser Ile
 465 470 475 480

Ala Arg Ser Arg Asn Asp Lys Ala Lys Ala Glu Ala Ala Lys Gln Ala
 485 490 495

Thr Asn Leu Glu Ile His Asn Glu Arg
 500 505

<210> 174
 <211> 386
 <212> DNA
 <213> Pasteurella (Mannheimia) haemolytica

<220>
 <221> CDS
 <222> (1)..(384)

<220>
 <223> yjgF

<400> 174
 atg aca gtt atc cac aca gaa aat gca ccg gca gcg att ggg cct tat 48
 Met Thr Val Ile His Thr Glu Asn Ala Pro Ala Ala Ile Gly Pro Tyr
 1 5 10 15

gtg caa gca gtt gat tta ggc aat atg gtt tta act tct ggg caa att 96
 Val Gln Ala Val Asp Leu Gly Asn Met Val Leu Thr Ser Gly Gln Ile
 20 25 30

ccc gtg aat cct gaa acc ggc gaa atc ccg agt gat att gtg caa caa 144
 Pro Val Asn Pro Glu Thr Gly Glu Ile Pro Ser Asp Ile Val Gln Gln
 35 40 45

acc cgc caa tct ctg aac aac gtg aaa gcc att atc gaa caa gcc ggc 192
 Thr Arg Gln Ser Leu Asn Asn Val Lys Ala Ile Ile Glu Gln Ala Gly
 50 55 60

tta acc gtt gcc gat att gta aag acc acc gta ttt gtc aaa gat ctt 240
 Leu Thr Val Ala Asp Ile Val Lys Thr Thr Val Phe Val Lys Asp Leu
 65 70 75 80

aac gac ttc gca aag gta aat gcg gaa tac caa gcc ttc ttc caa gaa 288
 Asn Asp Phe Ala Lys Val Asn Ala Glu Tyr Gln Ala Phe Phe Gln Glu
 85 90 95

aac gaa cac cct aat ttt ccg gct cgt tct tgc gta gaa gtg gct cgt 336
 Asn Glu His Pro Asn Phe Pro Ala Arg Ser Cys Val Glu Val Ala Arg
 100 105 110

tta cca aaa gat gtt ggc att gag atc gaa gcg att gca gta cgc cga 384
 Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Arg Arg
 115 120 125

ta 386

<210> 175
 <211> 128
 <212> PRT
 <213> Pasteurella (Mannheimia) haemolytica

<400> 175
 Met Thr Val Ile His Thr Glu Asn Ala Pro Ala Ala Ile Gly Pro Tyr
 1 5 10 15

Val Gln Ala Val Asp Leu Gly Asn Met Val Leu Thr Ser Gly Gln Ile
20 25 30

Pro Val Asn Pro Glu Thr Gly Glu Ile Pro Ser Asp Ile Val Gln Gln
35 40 45

Thr Arg Gln Ser Leu Asn Asn Val Lys Ala Ile Ile Glu Gln Ala Gly
50 55 60

Leu Thr Val Ala Asp Ile Val Lys Thr Thr Val Phe Val Lys Asp Leu
65 70 75 80

Asn Asp Phe Ala Lys Val Asn Ala Glu Tyr Gln Ala Phe Phe Gln Glu
85 90 95

Asn Glu His Pro Asn Phe Pro Ala Arg Ser Cys Val Glu Val Ala Arg
100 105 110

Leu Pro Lys Asp Val Gly Ile Glu Ile Glu Ala Ile Ala Val Arg Arg
115 120 125

<210> 176
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221>
<222>
<223> Description of Artificial Sequence: PRIMER

<400> 176
atggcnggng cnaargarat 20

<210> 177
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221>
<222>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 3
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 12
<223> n = A or T or G or C

<220>
<221> misc_feature
<222> 15
<223> n = A or T or G or C

<400> 177
gcngcyttca tngcnaccat 20

<210> 178

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 3
<223> N = A or T or G or C

<400> 178
ggnttyatyc ayaaaaayat g

21

<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 6
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 12
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 15
<223> N = A or T or G or C

<400> 179
tcttngtra tngtnacatc rtg

23

<210> 180
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 180
gcsggyaaac crcgttggga ttgg

24

<210> 181
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 181
crcctaarat rtctgaaagc accac

25

<210> 182
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 9
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 15
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 18
<223> N = A or T or G or C

<400> 182

atgtgyggna tygtnggnat 20

<210> 183
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 183
catatatcaata ccatacacat t 21

<210> 184
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 3
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 6
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 12
<223> N = A or T or G or C

<400> 184
ggncctayg tncarg 16

<210> 185
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<220>
<221> misc_feature
<222> 1
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 4
<223> N = A or T or G or C

<220>
<221> misc_feature
<222> 10
<223> N = A or T or G or C

<400> 185
ngcnacytcn acrca 15

<210> 186
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 186
gaagccgcca tacgctcttg gg 22

<210> 187
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 187
gttgcttcct ttgcctgcac tgg 23

<210> 188
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 188
ggctcagaaa caataccact ttca 24

<210> 189
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 189
gcaccaaaggc agaatttgc c 21

<210> 190
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 190
ggtgatgtatg tcgatgatag tccc 24

<210> 191
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 191
ggcgtagatcc ccgtgtgcc aacc 24

<210> 192
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 192
gaccacttag gcgatatgga ctt 23

<210> 193
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 193
accatcataaa atcgctgtat tc 22

<210> 194
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 194
acctgcggca tcttgtcctc 20

<210> 195
<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 195
acgggttat tttgcctctg 20

<210> 196
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 196
cgcccggttc aggattcacg gg 22

<210> 197
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 197
ctgaacaacg tgaaagccat 20

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 September 2002 (26.09.2002)

PCT

(10) International Publication Number
WO 02/075507 A3

(51) International Patent Classification⁷: **C12N 1/20**, A61K 39/102, 35/74, C12N 15/31, 15/63, C07K 14/285, 16/12, C12Q 1/18, G01N 33/68

(21) International Application Number: PCT/US02/01971

(22) International Filing Date: 17 January 2002 (17.01.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/809,665 15 March 2001 (15.03.2001) US

(71) Applicant (for all designated States except US): **PHARMACIA & UPJOHN COMPANY [US/US]**; 301 Henrietta Street, Kalamazoo, MI 49007 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **LOWERY, David, E.** [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). **FULLER, Troy, E.** [US/US]; 111 Dreamfield Drive, Battle Creek, MI 49014 (US). **KENNEDY, Michael, J.** [US/US]; 2364 Quincy Avenue, Portage, MI 49024 (US).

(74) Agent: **WILLIAMS, Joseph, A., Jr.**; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report: 12 September 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/075507 A3

(54) Title: ANTI-BACTERIAL VACCINE COMPOSITIONS

(57) Abstract: Gram negative bacterial virulence genes are identified, thereby allowing the identification of anti-bacterial agents that target these virulence genes and their products, and the provision of gram negative bacterial mutants useful in vaccines.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 02/01971

A. CLASSIFICATION OF SUBJECT MATTER

| | | | | | |
|-------|------------|------------|-----------|-----------|-----------|
| IPC 7 | C12N1/20 | A61K39/102 | A61K35/74 | C12N15/31 | C12N15/63 |
| | C07K14/285 | C07K16/12 | C12Q1/18 | G01N33/68 | |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A61K C07K C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal, WPI Data, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category ^o | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|-----------------------|---|-----------------------|
| X | DATABASE EMBL [Online]
10 February 2001 (2001-02-10)
MAY B.J. ET AL.: "Pasteurella multocida
PM70 section 152 of 204 of the complete
genome"
Database accession no. AE006064
XP002224305
nucleotides 3352-4146
& DATABASE EMBL [Online]
Entry AE006064,
10 February 2001 (2001-02-10)
MAY B.J. ET AL.: "Pasteurella multocida
PM70 section 31 of 204 of the complete
genome"
the whole document | 1-41 |
| X | & BARBARA J. MAY ET AL.: "Complete
genomic sequence of Pasteurella multocida,
PM70"
PROCEEDINGS OF THE NATIONAL ACADEMY OF
-/- | 5-23, 25,
28 |
| A | | 1-41 |

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

12 May 2003

Date of mailing of the international search report

16. 05. 2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Montero Lopez, B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 02/01971

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|--|-----------------------|
| X | <p>SCIENCES OF USA,
vol. 98, no. 6,
13 March 2001 (2001-03-13), pages
3460-3465, XP002202785
WASHINGTON US
page 3463, right-hand column, paragraph 2
-page 3464, left-hand column, paragraph 1</p> <p>---</p> <p>COONEY ET AL: "Three contiguous
lipoprotein genes in <i>Pasteurella</i>
<i>haemolytica</i> A1 which are homologous to a
lipoprotein gene in <i>Haemophilus influenza</i>
Type b"</p> <p>INFECTION AND IMMUNITY, AMERICAN SOCIETY
OF MICROBIOLOGY, WASHINGTON, DC, US,
vol. 61, no. 11, November 1993 (1993-11),
pages 4682-4688, XP002148894
ISSN: 0019-9567
abstract
page 4683, left-hand column, last
paragraph -page 4685, left-hand column,
paragraph 1; figures 3,4
page 4686, right-hand column, paragraph 2</p> <p>---</p> | 5-23,25,
28 |
| A | <p>TROY E. FULLER ET AL.: "Identification of
<i>Pasteurella multocida</i> virulence genes in a
septicemic mouse model using
signature-tagged mutagenesis"</p> <p>MICROBIAL PATHOGENESIS,
vol. 29, 2000, pages 25-38, XP002224304
the whole document</p> <p>-----</p> | 1-41 |

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 02/01971

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
1-41 partially

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-41 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:1 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:1, vector and host cell comprising the same and use thereof to produce a polypeptide; encoded polypeptide of sequence SEQ ID NO:2; antibody against it; use of the polypeptide of sequence SEQ ID NO:2 for identifying antibacterial agents.

2. Claims: 1-41 partially

Idem as subject 1 for, respectively sequences SEQ ID NO:3 and 4; 7 and 8; 9 and 10; 21 and 22; 25 and 26.

3. Claims: 1-4, 21-23, 27, 28 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:27 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; nucleotide sequence comprising SEQ ID NO:27.

4. Claims: 1-41 partially

Idem as subject 1 for, respectively, sequences SEQ ID NOS:29 and 30; 39 and 40; 41 and 42; 51 and 52; 53 and 54; 55 and 56.

5. Claims: 1-28 partially

Gram-negative bacteria comprising a mutation in a gene of sequence SEQ ID NO:57 resulting in decreased activity of the gene product; immunogenic composition comprising the bacteria; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:57.

6. Claims: 1-41 partially

Idem as subject 1 for, respectively sequences SEQ ID NOS:58 and 59; 60 and 61; 68 and 69; 72 and 73; 74 and 75; 76 and 77; 78 and 79; 80 and 81; 82 and 83; 84 and 85; 104 and 105; 108 and 109; 112 and 113; 116 and 117; 118 and 119; 120 and 121; 122 and 123; 124 and 125; 126 and 127; 128 and 129; 130 and 131

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

7. Claims: 5-26, 29-41 partially

Attenuated Pasteurellaceae bacteria comprising a mutation in a gene of sequence SEQ ID NO:11; immunogenic composition containing it; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:11, vector and host cell comprising the same and use thereof to produce a polypeptide; encoded polypeptide of sequence SEQ ID NO:12; antibody against it; use of the polypeptide of sequence SEQ ID NO:12 for identifying antibacterial agents.

8. Claims: 5-26, 28-41 partially

Idem as subject 36 for, respectively, sequences SEQ ID NOs:13 and 14; 15 and 16; 17 and 18; 19 and 20; 23 and 24; 31 and 32; 33 and 34; 35 and 36; 37 and 38; 70 and 71; 100 and 101; 102 and 103; 106 and 107; 110 and 111; 114 and 115; 132 and 133; 134 and 135; 136 and 137; 138 and 139; 140 and 141; 142 and 143; 144 and 145; 146 and 147; 148 and 149; 150 and 151; 152 and 153; 154 and 155; 156 and 157; 158 and 159; 160 and 161

9. Claims: 5-26 partially

Attenuated Pasteurellaceae bacteria comprising a mutation in, respectively a gene of sequence SEQ ID NO:162 and 163; immunogenic composition containing it; method of producing such mutant bacteria; nucleotide sequence comprising SEQ ID NO:162 or 163.

10. Claims: 5-26, 28-41 partially

Idem as subject 36 for, respectively, sequences SEQ ID NOs:164 and 165; 166 and 167; 168 and 169; 170 and 171; 172 and 173; 174 and 175

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 September 2002 (26.09.2002)

PCT

(10) International Publication Number
WO 02/075507 A3

(51) International Patent Classification⁷: **C12N 1/20**,
A61K 39/102, 35/74, C12N 15/31, 15/63, C07K 14/285,
16/12, C12Q 1/18, G01N 33/68

(21) International Application Number: PCT/US02/01971

(22) International Filing Date: 17 January 2002 (17.01.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/809,665 15 March 2001 (15.03.2001) US

(71) Applicant (for all designated States except US): **PHARMACIA & UPJOHN COMPANY [US/US]**; 301 Hemmetta Street, Kalamazoo, MI 49007 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **LOWERY, David, E.** [US/US]; 1207 Woodland Drive, Portage, MI 49024 (US). **FULLER, Troy, E.** [US/US]; 111 Dreamfield Drive, Battle Creek, MI 49014 (US). **KENNEDY, Michael, J.** [US/US]; 2364 Quincy Avenue, Portage, MI 49024 (US).

(74) Agent: **WILLIAMS, Joseph, A., Jr.**; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with amended claims

(88) Date of publication of the international search report:
12 September 2003

Date of publication of the amended claims: 11 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/075507 A3

(54) Title: ANTI BACTERIAL VACCINE COMPOSITIONS

(57) Abstract: Gram negative bacterial virulence genes are identified, thereby allowing the identification of anti-bacterial agents that target these virulence genes and their products, and the provision of gram negative bacterial mutants useful in vaccines.

AMENDED CLAIMS

[received by the International Bureau on 11 July 2003 (11.07.03)
original claims 1 to 41 have been amended by claims 1 to 29

WHAT IS CLAIMED IS:

1. An attenuated *Mannheimia* bacteria comprising a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172 and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
5
2. The *Mannheimia* bacteria of claim 1 wherein said mutation results in decreased expression of a gene product encoded by the mutated gene.
- 10 3. The *Mannheimia* bacteria of claim 1 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
4. The *Mannheimia* bacteria of claim 1 wherein said mutation results in deletion of all or part of said gene.
15
5. The *Mannheimia* bacteria of claim 1 wherein the *Mannheimia bacteria* is *Mannheimia haemolytica*.
6. The *Mannheimia* bacteria of claim 5 wherein said mutation results in
20 decreased expression of a gene product encoded by the mutated gene.
7. The *Mannheimia* bacteria of claim 5 wherein said mutation results in expression of an inactive gene product encoded by the mutated gene.
- 25 8. The *Mannheimia* bacteria of claim 5 wherein said mutation results in deletion of all or part of said gene.
9. An immunogenic composition comprising the bacteria according to
any one of claims 1 through 8.
30

10. A vaccine composition comprising the immunogenic composition according to claim 9 and a pharmaceutically acceptable carrier.

11. The vaccine composition according to claim 10 further comprising an
5 adjuvant.

12. A method for producing a gram-negative bacteria mutant comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172, and 174 or a species homolog
10 thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.

13. A method for producing an attenuated *Mannheimia* bacteria comprising the step of introducing a mutation in a gene represented by a nucleotide sequence set forth in any one of SEQ ID NOS: 166, 168, 170, 172, and 174 or a species homolog thereof, said mutation resulting in decreased activity of a gene product encoded by the mutated gene.
15

14. A purified and isolated *Mannheimia* polynucleotide comprising a
20 nucleotide sequence selected from the group consisting of nucleotide sequences set forth in SEQ ID NOS: 166, 168, 170, 172 and 174.

15. A purified and isolated *Mannheimia* polynucleotide comprising a nucleotide sequence as set forth in SEQ ID NO: 166.
25

16. A purified and isolated polynucleotide encoding a *Mannheimia* virulence gene product, or species homolog thereof, selected from the group consisting of:

- a) the polynucleotide according to claim 14;

- b) polynucleotides encoding a polypeptide encoded by the polynucleotide of (a); and
- c) polynucleotides that hybridize to the complement of the polynucleotides of (a) or (b) under moderate stringency conditions.

5

17. A purified and isolated *Mannheimia* polynucleotide encoding a polypeptide selected from the group consisting of polypeptides having amino acid sequences set forth in SEQ ID NOS: 167, 169, 171, 173, and 175.

10

18. The polynucleotide of claim 17 which is a DNA.

19. A vector comprising the DNA of claim 18.

20. The vector of claim 19 that is an expression vector, wherein the DNA
15 is operatively linked to an expression control DNA sequence.

21. A host cell stably transformed or transfected with the DNA of claim 18
in a manner allowing the expression of the encoded polypeptide in said host cell.

20

22. A method for producing a recombinant polypeptide comprising
culturing the host cell of claim 21 in a nutrient medium and isolating the encoded
polypeptide from said host cell or said nutrient medium.

23. A purified polypeptide produced by the method of claim 22.

25

24. A purified polypeptide comprising a polypeptide selected from the
group consisting of polypeptides having amino acid sequences set forth in SEQ ID
NOS: 167, 169, 171, 173, and 175.

25. An antibody that is specifically reactive with the polypeptide of claim
24.

26. The antibody of claim 25 that is a monoclonal antibody.

5

27. A method of using the monoclonal antibody of claim 26 for identifying
a bacteria of claims 1 or 5, comprising the steps of contacting an extract of bacteria
with said monoclonal antibody and detecting the absence of binding of said
monoclonal antibody.

10

28. A method of identifying an anti-bacterial agent comprising the steps of
assaying potential agents for the ability to interfere with expression or activity of gene
products represented by the amino acid sequences set forth in any one of SEQ ID
NOS: 167, 169, 171, 173, and 175 and identifying an agent that interferes with
15 expression or activity of said gene products.

29. A method of identifying an anti-bacterial agent comprising the steps
of:

- a) measuring expression or activity of a gene product as set out in
20 any one of SEQ ID NOS: 167, 169, 171, 173, and 175;
- b) contacting the gene product in (a) with a test compound;
- c) measuring expression or activity of the gene product in the
presence of the test compound; and
- d) identifying the test compound as an antibacterial agent when
25 expression or activity of the gene product is decreased in the presence of the test
compound as compared to expression or activity in the absence of the test compound.