Step-1

a) Given set is the plane of vectors (b_1, b_2, b_3) with first component $b_1 = 0$.

We have to verify that the given set is a subspace of \mathbb{R}^3 or not.

Step-2

Let
$$A = \{(b_1, b_2, b_3) \mid b_1, b_2, b_3 \in \mathbf{R}, b_1 = 0\}$$

Let
$$(b_1, b_2, b_3) \in A, (c_1, c_2, c_3) \in A$$

then
$$b_1 = 0, c_1 = 0$$

Step-3

Now,

$$\begin{aligned} \left(b_{1}, b_{2}, b_{3}\right) + \left(c_{1}, c_{2}, c_{3}\right) &= \left(b_{1} + c_{1}, b_{2} + c_{2}, b_{3} + c_{3}\right) \\ &= \left(0, b_{2} + c_{2}, b_{3} + c_{3}\right) \in A & \left(\begin{array}{c} \text{Since } b_{1} &= 0, c_{1} &= 0 \\ \Rightarrow b_{1} + c_{1} &= 0 \end{array}\right) \end{aligned}$$

Therefore, A is closed under vector addition.

Let $c \in \mathbf{R}$ and $(b_1, b_2, b_3) \in A$

$$\begin{split} c\left(b_{1},b_{2},b_{3}\right) &= \left(cb_{1},cb_{2},cb_{3}\right) \\ &= \left(0,cb_{2},cb_{3}\right) \in A & \left(\begin{array}{c} \text{Since } b_{1} = 0 \\ \Rightarrow cb_{1} = 0 \end{array} \right) \end{split}$$

Therefore A is closed under scalar multiplication

Thus A is a subspace of \mathbb{R}^3

Step-4

b) Given set is the plane of vectors b with $b_1 = 1$.

We have to verify that the given set is a subspace of \mathbb{R}^3 or not.

Step-5

Let
$$B = \{(b_1, b_2, b_3) | b_1, b_2, b_3 \in \mathbf{R}, b_1 = 1\}$$

B is not closed under vector addition.

Since
$$(1,2,3),(1,5,6) \in B$$

But
$$(1,2,3)+(1,5,6)=(2,7,9) \notin B$$

The first component is not equal to 1.

Hence *B* is not a subspace of \mathbb{R}^3 .

Step-6

c) Given set is the set of vectors b with $b_2b_3 = 0$.

We have to verify that the given set is a subspace of \mathbb{R}^3 or not.

Step-7

Let
$$C = \{(b_1, b_2, b_3) | b_1, b_2, b_3 \in \mathbf{R}, b_2b_3 = 0\}$$

[This union of two subspaces $A = \{(b_1, b_2, b_3) \mid b_2 = 0\}$, $B = \{(b_1, b_2, b_3) \mid b_3 = 0\}$]

But C is not a subspace of \mathbb{R}^3

Since
$$(1,0,2) \in C_{and}(1,5,0) \in C$$

Now
$$(1,0,2)+(1,5,0)=(2,5,2) \notin C$$

since $5 \cdot 2 = 10 \neq 0$

Therefore C is not a subspace of \mathbb{R}^3

Step-8

d) Given set is the set all combiantions of two vectors (1,1,0) and (2,0,1).

We have to verify that the given set is a subspace of \mathbb{R}^3 or not.

Step-9

Let D = the linear combinations of the vectors (1,1,0) and (2,0,1)

That is
$$D = \{a(1,1,0) + b(2,0,1) | a, b \in \mathbf{R} \}$$

D is closed and vector addition

Since

$$(a_1(1,1,0) + b_1(2,0,1)) + (a_2(1,1,0) + b_2(2,0,1))$$
$$= (a_1 + a_2)(1,1,0) + (b_1 + b_2)(2,0,1) \in D$$

Let c be a scalar and $a_1(1,1,0)+b_1(2,0,1) \in D$

Now
$$c(a_1(1,1,0)+b_1(2,0,1))=(ca_1(1,1,0)+cb_1(2,0,1))\in D$$

Hence D is a subspace of \mathbb{R}^3

Step-10

e) Given set is the plane of vectors (b_1, b_2, b_3) that satisfy $b_3 - b_2 + 3b_1 = 0$.

We have to verify that the given set is a subspace of \mathbb{R}^3 or not.

Step-11

Let E be the plane of vectors b_1, b_2, b_3 satisfy $b_3 - b_2 + 3b_1 = 0$

$$E = \{(b_1, b_2, b_3) | b_3 - b_2 + 3b_1 = 0\}$$

Let
$$(b_1, b_2, b_3) \in E, (c_1, c_2, c_3) \in E$$

Now,
$$(b_1, b_2, b_3) + (c_1, c_2, c_3) = (b_1 + c_1, b_2 + c_2, b_3 + c_3) \in E$$

Since,

Step-12

$$(b_3 + c_3) - (b_2 + c_2) + 3(b_1 + c_1) = (b_3 - b_2 + 3b_1) + (c_3 - c_2 + 3c_1)$$
$$= 0 + 0$$
$$= 0$$

Therefore, E is closed under vector addition

Step-13

Let
$$a \in \mathbf{R}$$
, $(b_1, b_2, b_3) \in E$

$$\Rightarrow a(b_1, b_2, b_3) = (ab_1, ab_2, ab_3) \in E$$

Since

$$ab_3 - ab_2 + 3ab_1 = a(b_3 - b_2 + 3b_1)$$

= $a \cdot 0$
= 0

Therefore, E is closed under scalar multiplication

Therefore E is a subspace of \mathbb{R}^3 .