第七章:参数估计

- 7.1 矩估计
- 7.2 极大似然估计
- 7.3 点估计量的优良准则
- 7.4 正态总体的区间估计(一)
- 7.5 正态总体的区间估计(二)
- 7.6 非正态总体的区间估计

引言

数理统计的任务是用样本去推断总体.. 参数估计是统计推断的一种重要形式,包括**点估计**和**区间估计**.

定义 0.1

设有参数分布族 $\{f(x,\theta),\theta\in\Theta\}$, 其中 Θ 是参数空间, $f(x,\theta)$ 的分布式已知, 但其分布与未知参数 θ 有关. X_1,\cdots,X_n 是 从总体中抽出的简单随机样本, 利用样本对未知参数 θ 或其 函数 $g(\theta)$ 进行估计.

例 0.1

例如, X_1, \dots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$, 记 $\theta = (\mu, \sigma^2)$. 通过样本 对 μ 和 σ^2 或其函数 $g(\theta) = \mu/\sigma^2$ 的值作出估计, 这就是参数估计问题.

引言

定义 0.2

设 $X = (X_1, \cdots, X_n)$ 为从某个总体中抽取的样本,

$$\hat{g}(\boldsymbol{X}) = \hat{g}(X_1, \cdots, X_n)$$

是样本的函数, 用 $\hat{g}(X)$ 作为 $g(\theta)$ 的估计, 称为点估计 (point estimation).

注 0.1

有如下问题:

- (1) 如何找到点估计量? 矩估计、极大似然估计
- (2) 如何评价不同的点估计量? 点估计的评价准则

引言

例 0.2

设 X_1, \dots, X_n 是取自某总体F 一组简单样本. 对此总体的均值 $\theta = E_F(X)$ 可有哪些估计量?

解: 估计量可有如下选择:

$$\hat{\theta}_1 = \overline{X} = \frac{1}{n}(X_1 + \dots + X_n),$$

$$\hat{\theta}_2 = \frac{1}{2}(X_{(1)} + X_{(n)}),$$

$$\hat{\theta}_3 = m_{1/2},$$

$$\hat{\theta}_4 = X_1.$$

其中 $X_{(1)}$ 和 $X_{(n)}$ 为样本最小和最大次序统计量, $m_{1/2}$ 为样本中位数.

7.1 矩估计

矩估计: 定义

定义 1.1

设 X_1, \dots, X_n 是从总体F 中抽取的简单随机样本. 这时,样本矩可用来估计F 的相应的总体矩. 即样本k 阶原点矩

$$A_m = \frac{1}{n} \sum_{i=1}^n X_i^m, \quad k = 1, 2, \cdots$$

是总体 k 阶原点矩 $\alpha_m = E(X^m)$ 的自然矩估计量. 样本 k 阶中心矩

$$M_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, \quad k = 2, 3, \cdots$$

是总体 k 阶中心矩 $\mu_k = E(X - E(X))^k$ 的自然矩估计量.

矩估计: 定义

定义 1.2

一般 α_m 是总体参数 $\theta_1, \dots, \theta_k$ 的函数, 记为 $\alpha_m(\theta_1, \dots, \theta_k)$. 因此, 令总体的前 k 阶原点矩与同阶样本原点矩相等, 就得到关于 $\theta_1, \dots, \theta_k$ 的一个方程组

$$\alpha_m(\theta_1,\cdots,\theta_k)=A_m, \quad m=1,2,\cdots,k.$$

解这个方程组, 其解记为

$$\hat{\theta}_i = \hat{\theta}_i(X_1, X_2, \cdots, X_n), \quad i = 1, \cdots, k.$$

称 $\hat{\theta}_i$ 为 $\theta_1, \dots, \theta_k$ 的矩估计.

矩估计: 理论背景

注 1.1

因为样本 X_1, X_2, \cdots, X_n 是独立同分布的,于是, X_1^m, \cdots, X_n^m 也是独立同分布的,因而

$$E(X_1^m) = E(X_2^m) = \cdots = E(X_n^m) = \alpha_m.$$

接照大数定律,样本原点矩 A_m 作为 $X_1^m, X_2^m, \cdots, X_n^m$ 的算术平均数依概率收敛到均值 $\alpha_m = E(X_i^m)$,即

$$A_m = \frac{1}{n} \sum_{i=1}^n X_i^m \xrightarrow{p} \alpha_m.$$

于是, 对充分大的 n, 有 $\alpha_m(\theta_1,\cdots,\theta_k)\approx A_m$, 将"约等号"换成"等号"就得到矩估计.

矩估计: 步骤

矩估计的求法:

- 求分布的总体矩,如一阶原点矩(期望)或二阶原点矩(方差).
- 求对应阶数的样本矩.
- 令样本矩等于总体矩阵,求解方程得到矩估计.

矩估计的原则:

- n 个参数寻找 n 个对应关系.
- 尽量使用低阶矩!

矩估计: 均匀分布例子

例 1.1

设 X_1, \dots, X_n i.i.d. \sim 均匀分布 $U[\theta_1, \theta_2]$, 参数 $\theta = (\theta_1, \theta_2)$, 其中 $-\infty < \theta_1 < \theta_2 < \infty$. 求 θ_1 和 θ_2 的矩估计量.

 \mathbf{m} : 设 $X \sim U[\theta_1, \theta_2]$, 由均匀分布的性质可知

$$E(X) = \alpha_1 = (\theta_1 + \theta_2)/2, Var(X) = \mu_2 = (\theta_2 - \theta_1)^2/12.$$

对应的样本矩分别为一阶样本原点矩 \overline{X} 和二阶样本中心矩 S_n^2 . 令样本矩等于总体矩阵可得,

$$\hat{\theta}_1 = \alpha_1 - \sqrt{3\mu_2} = \overline{X} - \sqrt{3}S_n,$$

$$\hat{\theta}_2 = \alpha_1 + \sqrt{3\mu_2} = \overline{X} + \sqrt{3}S_n.$$

注意, 此处 $S_n^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / n$, 不是样本方差 S^2 .

矩估计: 正态分布例子

例 1.2

设 X_1, \dots, X_n *i.i.d.* $\sim N(\mu, \sigma^2)$, 其中 $-\infty < \mu < \infty$, $\sigma > 0$. 求 μ 和 σ^2 的矩估计量.

 \mathbf{M} : 先求总体矩 $\alpha_1 = \mu, \mu_2 = \sigma^2$. 再求对应的样本矩

$$A_1 = \bar{X}, \quad M_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

$$\hat{\mu} = \bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = S_n^2.$$

注意, 此处 $S_n^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / n$, 也不是样本方差 S^2 .

矩估计: 伽马分布例子

例 1.3

设 X_1, \dots, X_n *i.i.d.* $\sim \Gamma(\alpha, \lambda)$, 其中 $\alpha, \lambda > 0$. 求 α 和 λ 的矩估计量.

解: 先求总体矩 $\alpha_1 = \alpha/\lambda$, $\mu_2 = \alpha/\lambda^2$. 再求对应的样本矩

$$A_1 = \bar{X}, \quad M_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = S_n^2.$$

$$\hat{\alpha} = \frac{\bar{X}^2}{S_n^2}, \quad \hat{\lambda} = \frac{\bar{X}}{S_n^2}.$$

7.2 极大似然估计

定义 2.1

设 $f(\mathbf{x}, \theta) = f(x_1, \dots, x_n, \theta)$ 为样本 $\mathbf{X} = (X_1, \dots, X_n)$ 的概率 函数. 当 \mathbf{x} 固定时, 把 $f(\mathbf{x}, \theta)$ 看成 θ 的函数, 称为似然函数 (likelihood function), 记为

$$L(\theta, \mathbf{x}) = f(\mathbf{x}, \theta), \quad \theta \in \Theta, \mathbf{x} \in \mathcal{X},$$

其中 Θ 为参数空间, $\mathscr X$ 为样本空间. 称 $\log L(\theta,x)$ 为对数似然函数, 记为 $l(\theta,x)$.

注 2.1

似然函数和概率函数是同一表达式, 但表示两种不同含意.

- 当把 θ 固定,将其看成定义在样本空间 $\mathcal X$ 上的函数时, 称为概率函数.
- 当把x 固定,将其看成定义在参数空间 Θ 上的函数时, 称为似然函数.

例 2.1

设罐子里有许多黑球和红球. 假定已知它们的比例是 1:3,但不知道是黑球多还是红球多. 也就是说抽出一个黑球的概率是 1/4 或者 3/4. 如果有放回地从罐子中抽 n 个球,根据抽样数据,说明抽到黑球的概率是 1/4 还是 3/4.

② 许岷

 \mathbf{m} : 令 X_i 表示第 i 次抽球的结果,即

$$X_i = \begin{cases} 1, & \text{第 } i \text{ 次抽出为黑球}, \\ 0, & \text{其他}. \end{cases}$$

记每次抽样中抽到黑球的概率为 θ , 此处 θ 只取可能的两个 值 $\theta_1 = 1/4$ 和 $\theta_2 = 3/4$ 之一.

- 样本分布族为 $\mathscr{F} = \{f(x, \theta_1), f(x, \theta_2)\}, 其中 f(x, \theta_1) 为 b(n, \theta_1), f(x, \theta_2) 为 b(n, \theta_2).$

根据抽样结果, 判断样本来自总体 $f(x, \theta_1)$ 还是 $f(x, \theta_2)$?

为简单记, 取 n = 3. 当 x = 0, 1, 2, 3 时似然函数取值

\overline{x}	0	1	2	3
$L(\theta_1, x)$	$\frac{27}{64}$	$\frac{27}{64}$	$\frac{9}{64}$	$\frac{1}{64}$
$L(\theta_2, x)$	$\frac{1}{64}$	$\frac{9}{64}$	$\frac{27}{64}$	$\frac{27}{64}$

- 当 x = 0, 1 时, $L(\theta_1, x) > L(\theta_2, x)$ ⇒ 样本来自 $f(x, \theta_1)$, $\hat{\theta}_1 = 1/4$.
- $\stackrel{.}{\underline{}}$ x = 2, 3 pt, $L(\theta_2, x) > L(\theta_1, x) \Rightarrow \text{ pt}$ pt $\hat{\theta}_2 = 3/4$.

更具体地, 从罐子中抽出 3 个球, 3 个球中没有黑球, 直观上黑球和红球的比例"看起来更像"是 1:3, 即抽出一个黑球的概率为 1/4.

注 2.2

上例表明,

• 若

$$L(\theta_1, x) > L(\theta_2, x),$$

则倾向于认为样本 X 来自总体 $f(x,\theta_1)$, 即真实参数 θ 为 θ_1 的理由比认为样本 X 来自总体 $f(x,\theta_2)$, 即真实参数 θ 为 θ_1 的理由更充分.

• 或者说, 真实参数 θ 为 θ_1 的"似然性"更大些. 这样自然 把"似然性"最大 (看起来最像) 的那个值作为真实参数 θ 的估计值, 即极大似然估计值.

极大似然估计: 极大似然估计

定义 2.2

设 $X = \{X_1, \dots, X_n\}$ 是从参数分布族 $\{f(x, \theta), \theta \in \Theta\}$ 中抽取的简单随机样本, $L(\theta, x)$ 是似然函数, 若存在统计量 $\hat{\theta} = \hat{\theta}(X)$, 满足条件

$$L(\hat{\theta}, \mathbf{x}) = \sup_{\theta \in \Theta} L(\theta, \mathbf{x}), \quad \mathbf{x} \in \mathcal{X},$$

或等价地使得对数似然函数

$$l(\hat{\theta}^*, \mathbf{x}) = \sup_{\theta \in \Theta} l(\theta, \mathbf{x}), \quad \mathbf{x} \in \mathcal{X},$$

则称 $\hat{\theta}^*$ 为 θ 的极大似然估计 (maximum likelihood estimation, MLE). 若待估函数是 $g(\theta)$, 则定义 $g(\hat{\theta}^*(X))$ 为 $g(\theta)$ 的 MLE.

极大似然估计:极大似然估计求法 I

定理 2.1 (用微积分中求极值的方法)

设 $\theta = (\theta_1, \dots, \theta_k)$ 为参数向量, 若 $l(\theta, x)$ 的极大值在参数空间 Θ 的内点处 (而非边界点) 达到, 则此点必为似然方程组

$$\frac{\partial l(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \theta_i} = 0, \quad i = 1, 2, \cdots, k$$

的解. 方程的解为参数极大似然估计 $\hat{\theta}$.

注 2.3

若似然函数 $L(\theta,x)$ 是 θ 的连续可微函数, 则可用微积分中求极值的方法去求 θ 的 MLE, 即找使 $L(\theta,x)$ 达到最大时 θ 的值. 由于 $L(\theta,x)$ 与 $\log L(\theta,x) = l(\theta,x)$ 拥有相同的极值点, 可用 $l(\theta,x)$ 代替 $L(\theta,x)$.

极大似然估计:极大似然估计求法 I

但方程的解是否一定是 θ 的 MLE 呢?

- $\hat{\theta}$ 满足似然方程只是 MLE 的必要条件, 而非充分条件.
- 一般只有满足:
 - (1) 似然函数的极大值在参数空间 Θ 内部达到.
 - (2) 似然方程只有唯一解.

则似然方程之解 $\hat{\boldsymbol{\theta}}$ 必为 $\boldsymbol{\theta}$ 的 MLE.

因此求出似然方程的解后, 要验证它为 θ 的 MLE, 有时并非 易事.

极大似然估计: 二项分布例子

例 2.2

设 $X = (X_1, \dots, X_n)$ 是从两点分布族 $\{b(1, p): 0 中抽取的简单随机样本, 求 <math>p$ 的 MLE.

解: 似然函数为

$$L(p, \mathbf{x}) = p^{\sum_{i=1}^{n} x_i} (1 - p)^{n - \sum_{i=1}^{n} x_i},$$

故有

$$l(p, \mathbf{x}) = \log p \left(\sum_{i=1}^{n} x_i \right) + \log(1-p) \left(n - \sum_{i=1}^{n} x_i \right).$$

极大似然估计: 二项分布例子

对数似然方程为

$$\frac{\partial l(p, \mathbf{x})}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} x_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} x_i \right) = 0,$$

解得

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}.$$

注意到 $\sum_{i=1}^{n} x_i \le n$, 很容易验证 $\ln L(p)$ 的二阶导数在 \bar{x} 处取负值, 于是 \bar{x} 是 $\ln L(p)$ 的最大值点. 因此, \bar{X} 是 p 的极大似然估计.

极大似然估计: 正态分布例子

例 2.3

设 $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, 其中 $-\infty < \mu < \infty, \sigma^2 > 0$. 求 μ 和 σ^2 的 MLE.

 \mathbf{M} : 样本 X_1, \dots, X_n 的分布为

$$f(\mathbf{x}, \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right\}.$$

对数似然函数为

$$l(\theta, \mathbf{x}) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

极大似然估计: 正态分布例子

由对数似然方程组

$$\frac{\partial l(\theta, \mathbf{x})}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0,$$

$$\frac{\partial l(\theta, \mathbf{x})}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0,$$

解得

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

易验证似然方程组有唯一解 $(\hat{\mu}, \hat{\sigma}^2)$, 且一定是最大值. 因此, $\hat{\mu}, \hat{\sigma}^2$ 为 μ 和 σ^2 的 MLE.

极大似然估计: 极大似然估计求法 Ⅱ

例 2.4

设 $X = (X_1, \dots, X_n)$ 是从均匀分布族 $\{U(0, \theta) : \theta > 0\}$ 中抽取的简单随机样本. 求 θ 的 MLE.

解: 样本 $X = (X_1, \dots, X_n)$ 的联合密度为

$$f(\mathbf{x}, \theta) = \begin{cases} \frac{1}{\theta^n}, & 0 < x_1, \dots, x_n < \theta, \\ 0, & \sharp \text{ th.} \end{cases}$$

因为均匀分布 $U(0,\theta)$ 的支撑集依赖 θ , 似然函数 $L(\theta,x)$ 不是 θ 的连续函数. **不能用对数似然函数求微商的方法求解** θ **的 MLE**.

极大似然估计: 极大似然估计求法 Ⅱ

只能从定义的角度出发, 为使 $L(\theta, x)$ 达到极大, 应使分母上 θ 尽可能地小, 但 θ 不能太小以致 L 为 θ .

$$L(\theta, \mathbf{x}) = \frac{1}{\theta^n} \prod_{i=1}^n I(x_i \le \theta) = \frac{1}{\theta^n} I(\theta \ge x_{(n)}),$$

其中 $I(\cdot)$ 为示性函数, $x_{(n)}$ 表示最大次序统计量. 要使得似然 函数达到最大, 需满足 (1) θ 尽可能地小, (2) $I(\theta \ge x_{(n)}) = 1$, 即

$$\hat{\theta} = X_{(n)}.$$

٦

○ 许岷

极大似然估计: 极大似然估计求法 Ⅱ

例 2.5

设 $X = (X_1, \dots, X_n)$ 是从均匀分布族 $\{U(a, b) : a < b\}$ 中抽取的简单随机样本. 求 $a \rightarrow b$ 的 MLE.

 \mathbf{m} : 给定样本 \mathbf{x} 时, θ 的似然函数为

$$L(a,b,\mathbf{x}) = \begin{cases} \frac{1}{(b-a)^n}, & a \le x_i \le b, i = 1, 2, \dots, n \\ 0, & \sharp \text{ th} \end{cases}$$

在支撑集 $a \le x_i \le b, i = 1, 2, \dots, n$ 上

$$L(a,b,\mathbf{x}) = \frac{1}{(b-a)^n} \cdot I(a \le x_{(1)} \le x_{(n)} \le b).$$

为使 L(a,b,x) 达到最大, 需使得 b-a 尽量的小, 即

$$\hat{a} = X_{(1)}, \quad \hat{b} = X_{(n)}.$$

7.3 点估计量的优良准则

定义 3.1

设 $\hat{g}(X)$ 为 $g(\theta)$ 的估计量, 则称 $E_{\theta}\left[\left(\hat{g}(X) - g(\theta)\right)^{2}\right]$ 为均方误差 (Mean Square error, MSE). 特别地, 当 $g(\theta) = \theta$ 时, 设其估计量为 $\hat{\theta}$, 则均方误差为 $E_{\theta}\left[\left(\hat{\theta} - \theta\right)^{2}\right]$.

性质 3.1

均方误差可进行如下分解:

$$MSE = E_{\theta}[(\hat{\theta} - \theta)^{2}] = E_{\theta}[(\hat{\theta} - E[\hat{\theta}]) + (E[\hat{\theta}] - \theta)]^{2}$$

$$= E_{\theta}(\hat{\theta} - E[\hat{\theta}])^{2} + (E[\hat{\theta}] - \theta)^{2} + 2E[(\hat{\theta} - E[\hat{\theta}]) \cdot (E[\hat{\theta}] - \theta)]$$

$$= Var(\hat{\theta}) + (E[\hat{\theta}] - \theta)^{2}.$$

其中 $E(\hat{\theta}) - \theta$ 是估计量 $\hat{\theta}$ 的偏差 (Bias).

方差刻画了估计量的波动程度,偏差刻画了估计量偏离真实值 θ 的程度.

例 3.1

 $> X_1, \cdots, X_n \text{ i.i.d.} \sim N(\mu, \sigma^2)$. 利用样本均值 \overline{X} 和样本方差 S^2 来估计 μ 和 σ^2 . 试求两个估计量的 MSE.

解: 因为

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \mu,$$

$$E(S^{2}) = E\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) = \frac{1}{n-1}E\left(\sum_{i=1}^{n}X_{i}^{2}-n\bar{X}^{2}\right)$$

$$= \frac{1}{n-1}\sum_{i=1}^{n}E(X_{i}^{2}) - \frac{n}{n-1}E(\bar{X}^{2}).$$

其中

$$E(X_i^2) = Var(X_i) + [E(X_i)]^2 = \sigma^2 + \mu^2,$$

 $E(\bar{X}^2) = Var(\bar{X}) + [E(\bar{X})]^2 = \frac{\sigma^2}{n} + \mu^2.$

将其代入上式可知,

$$E(S^{2}) = \frac{n}{n-1}(\sigma^{2} + \mu^{2}) - \frac{n}{n-1}\left(\frac{\sigma^{2}}{n} + \mu^{2}\right)$$

= σ^{2} .

所以 \overline{X} 和 S^2 是无偏的.

求 MSE 需求参数 μ 和 σ^2 的方差, 显然 $Var(\overline{X}) = \sigma^2/n$. 对样本方差 S^2 , 因为 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$, 所以

$$Var\left(\frac{(n-1)S^2}{\sigma^2}\right) = \frac{(n-1)^2}{\sigma^4} Var(S^2) = 2(n-1),$$

即 $Var(S^2) = 2\sigma^4/(n-1)$. 因此

$$MSE_{\overline{X}} = Var(\overline{X}) = \frac{\sigma^2}{n},$$

 $MSE_{S^2} = Var(S^2) = \frac{2\sigma^4}{n-1}.$

例 3.2

令 X_1, \dots, X_n *i.i.d.* $\sim \mathcal{N}(\mu, \sigma^2)$. 利用

$$\hat{\sigma}^2 = S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

来估计 σ^2 , 试求估计量 S_n^2 的 MSE.

解: 先求该估计的偏差,

$$E(\hat{\sigma}^2) = E\left(\frac{n-1}{n}S^2\right) = \frac{n-1}{n}\sigma^2,$$

其偏差为

$$|E(\hat{\sigma}^2) - \sigma^2| = \frac{1}{n} > 0.$$

⑥ 许岷

再求估计的方差

$$Var(\hat{\sigma}^2) = Var\left(\frac{n-1}{n}S^2\right) = \frac{(n-1)^2}{n^2} \frac{2\sigma^4}{n-1} = \frac{2(n-1)\sigma^4}{n^2}.$$

该估计量的 MSE 为

$$MSE_{\hat{\sigma}^2} = (E(\hat{\sigma}^2) - \sigma^2)^2 + Var(\hat{\sigma}^2) = \frac{(2n-1)\sigma^4}{n^2}.$$

由于

$$\frac{(2n-1)\sigma^4}{n^2} / \frac{2\sigma^4}{n-1} = \frac{(2n-1)(n-1)}{2n^2} = \frac{2n^2 - 3n + 1}{2n^2} < 1.$$

因此,

$$MSE_{S_n^2} = \frac{(2n-1)\sigma^4}{n^2} < \frac{2\sigma^4}{n-1} = MSE_{S^2}.$$

可见, 虽然估计量 S_n^2 有偏差, 但 MSE 较小.

33

点估计量的优良准则: 均方误差准则

例 3.3

设 $X \sim b(100, \theta)$, $0 < \theta < 1$, 分别利用

$$\delta_1 = \frac{X}{100}, \quad \delta_2 = \frac{X+3}{100}, \quad \delta_3 = \frac{X+3}{106}$$

来估计 θ , 比较三个估计量的MSE.

解: 对 $0 < \theta < 1$, 分别求三个估计量的 MSE 为

$$\begin{split} \textit{MSE}_{\delta_1} &= \left(E \bigg[\frac{X}{100} \bigg] - \theta \right)^2 + \textit{Var} \bigg(\frac{X}{100} \bigg) = \frac{\theta (1 - \theta)}{100}; \\ \textit{MSE}_{\delta_2} &= \left(E \bigg[\frac{X + 3}{100} \bigg] - \theta \right)^2 + \textit{Var} \bigg(\frac{X + 3}{100} \bigg) = \frac{9 + \theta (1 - \theta)}{100^2}; \\ \textit{MSE}_{\delta_3} &= \left(E \bigg[\frac{X + 3}{106} \bigg] - \theta \right)^2 + \textit{Var} \bigg(\frac{X + 3}{106} \bigg) = \frac{(9 - 8\theta)(1 + 8\theta)}{106^2}. \end{split}$$

⑥ 许岷

点估计量的优良准则: 均方误差准则

对 $0 < \theta < 1$, 作出三个估计量 MSE 的函数图,

35

点估计量的优良准则: 均方误差准则

在上例的讨论中, 只要知道 θ 的值, 可以选择最优的估计量.

- 但实际是 θ 是未知的待估参数, 所以才会产生参数估计 问题.
- 该如何选择在 MSE 准则下最优的估计?
- 此时, 常常制定新的, 更合理的评价准则, 求出新准则下 最优的估计. 一条常用的准则是:
- 在偏差为 0 (无偏, Unbiased) 的一簇估计中选取方差较小的 (有效), 方差最小的估计量称为最小方差无偏估计.

定义 3.2 (无偏性)

设 $X=(X_1,\cdots,X_n)$ 为从总体 $\{f(x,\theta):\theta\in\Theta\}$ 中抽取的样本 $g(\theta)$ 是定义在 Θ 上的已知函数. $\hat{g}(X)=\hat{g}(X_1,\cdots,X_n)$ 是 $g(\theta)$ 的一个估计量, 如果

$$E_{\theta}[\hat{g}(X)] = g(\theta), \quad \theta \in \Theta,$$

则称 $\hat{g}(X)$ 为 $g(\theta)$ 的一个无偏估计 (unbiased estimation).

注 3.1

无偏性有两层含义: (1) 无系统偏差,即由于样本随机性产生的正负偏差平均起来值为0,不存在总是高估或者低估某一参数的情况; (2) 要求估计量大量重复使用,在多次重复使用下给出接近真实值 $g(\theta)$ 的估计.

例 3.4

设 X_1, \dots, X_n 是来自均值为 μ , 方差为 σ^2 总体的一个样本(没有正态假设). 验证 X_1 和 \overline{X} 是 μ 的无偏估计; 验证 S^2 是 σ^2 的无偏估计.

证明: 由样本均值和方差的性质,

$$E(X_1) = E(\overline{X}) = \mu, \quad E(S^2) = \sigma^2.$$

所以无偏性成立. 需注意, 无偏估计可以不只有一个. 此外, 这里也解释了样本方差 S^2 要除以 n-1 是出于无偏性的考虑.

例 3.5

设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,样本方差 S^2 是 σ^2 的无偏估计. 验证S 不是 σ 的无偏估计.

证明: 因为 $X_1, \dots, X_n \sim N(\mu, \sigma^2)$,

$$Y \equiv \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \Rightarrow S = \frac{\sigma}{\sqrt{n-1}} Y^{1/2}.$$

求 S 的期望转换为求 $Y^{1/2}$ 的期望. 先从 Y 的密度函数出发,

$$f(y) = \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} y^{\frac{n-1}{2} - 1} e^{-\frac{y}{2}}, \quad y > 0.$$

从而

$$E(Y^{1/2}) = \int_0^\infty y^{1/2} \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} y^{\frac{n-1}{2} - 1} e^{-\frac{y}{2}} dy$$

$$= \frac{1}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} \int_0^\infty y^{\frac{n}{2} - 1} e^{-\frac{y}{2}} dy$$

$$= \frac{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}{2^{\frac{n-1}{2}} \Gamma(\frac{n-1}{2})} = \sqrt{2} \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}.$$

所以,

$$E(S) = E\left[\frac{\sigma}{\sqrt{n-1}}Y^{1/2}\right] = \sqrt{\frac{2}{n-1}}\frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}\sigma \neq \sigma.$$

因此, S 不是 σ 的无偏估计.

点估计量的优良准则:有效性

定义 3.3

设 $\hat{g}_1(X) = \hat{g}_1(X_1, \dots, X_n)$ 和 $\hat{g}_2(X) = \hat{g}_2(X_1, \dots, X_n)$ 为 $g(\theta)$ 的两个不同无偏估计量, 若

$$D_{\theta}(\hat{g}_1(X)) \leq D_{\theta}(\hat{g}_2(X)), \quad \forall \theta \in \Theta,$$

且至少存在一个 $\theta \in \Theta$, 使得严格不等号成立, 则称估计量 $\hat{g}_1(X)$ 比 $\hat{g}_2(X)$ 有效.

例 3.6

在无偏估计类中, 方差越小的估计量越有效. 利用 X_1 和 \overline{X} 估计 μ , 方差为 $D_{X_1} = \sigma^2 > \frac{\sigma^2}{n} = D(\overline{X})$. 可见 \overline{X} 比 X_1 更有效, 且 n 越大, \overline{X} 对 μ 的估计越有效.

点估计量的优良准则: 有效性

例 3.7

设 X_1, \cdots, X_n 是抽自均值为 μ 的总体,考虑 μ 的两个估计

$$\hat{\mu} = \bar{X}, \quad \hat{\mu}_{(-i)} = \frac{1}{n-1} \sum_{i \neq i} X_j,$$

这里 $\hat{\mu}_{(-i)}$ 表示去掉第 i 个样本 X_i 后, 对其余 n-1 个样本 所求的样本均值. 显然, $\hat{\mu}$ 和 $\hat{\mu}_{(-i)}$ 都是无偏估计. 二者哪个 更有效? 因为 X_1, \dots, X_n 独立同分布,

$$Var(\hat{\mu}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{\sigma^2}{n},$$

$$Var(\hat{\mu}_{(-i)}) = \frac{\sigma^2}{n-1} > \frac{\sigma^2}{n} = Var(\hat{\mu}).$$

7.4 正态总体的区间估计 (一)

定义 4.1

设有一个参数分布族 $\{f(x,\theta),\theta\in\Theta\}$, $g(\theta)$ 是定义在参数空间 Θ 上的已知函数, $X=(X_1,\cdots,X_n)$ 是从分布族某总体 $f(x,\theta)$ 中抽取的样本, 令 $\hat{g}_1(X)$ 和 $\hat{g}_2(X)$ 为定义在样本空间 \mathscr{X} 上, 取值在 Θ 上的两个统计量, 且 $\hat{g}_1(X) \leq \hat{g}_2(X)$, 则称随机区间 $[\hat{g}_1(X),\hat{g}_2(X)]$ 为 $g(\theta)$ 的一个区间估计 (interval estimation).

注 4.1

注意定义中"随机区间"的概念, $\hat{g}_1(X)$ 和 $\hat{g}_2(X)$ 是统计量, 随样本变动. 而参数 $g(\theta)$ 是固定的. 由于样本是随机的, 不能保证在任何情况下, 随机区间 $[\hat{g}_1(X),\hat{g}_2(X)]$ 必定包含 $g(\theta)$, 只能以一定概率保证. 希望随机区间 $[\hat{g}_1(X),\hat{g}_2(X)]$ 包含

 \bigcirc 许 $\mathbf{w}(\theta)$ 的概率越大越好.

任何一个满足条件 $\hat{g}_1 \leq \hat{g}_2$ 的统计量 $\hat{g}_1 \leq \hat{g}_2$ 都可构成 $g(\theta)$ 的一个区间估计 $[\hat{g}_1, \hat{g}_2]$. 如何挑选一个好的呢? 有两个要素: **可靠性**和**精度**.

- 可靠性是待估参数 $g(\theta)$ 包含住 $[\hat{g}_1, \hat{g}_2]$ 内的可能性大小. **可能性越大**, **可靠性越强**.
- 精度可由随机区间的平均长度度量. **长度越短, 精度越高**.

二者常常是矛盾的,不可能同时高. **在保证一定可靠性的前提下,选择精度尽可能高的区间估计**. 如果应用中要求可靠性和精度同时提高,只能增加样本量.

定义 4.2 (置信系数 (可靠性指标))

设随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 为参数 θ 的一个区间估计, 则 $[\hat{\theta}_1, \hat{\theta}_2]$ 包含 θ 的概率 $P_{\theta}(\hat{\theta}_1 \leq \theta \leq \hat{\theta}_2)$ 称为此区间估计的置信水平 (confidence level). 置信水平在参数空间 Θ 上的下确界

$$\inf_{\theta \in \Theta} P_{\theta}(\hat{\theta}_1 \le \theta \le \hat{\theta}_2)$$

称为该区间估计的置信系数 (coefidence coefficient).

定义 4.3 (精度指标)

精度的标准不止一个, 最常见的是随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 的平均长度 $E_{\theta}(\hat{\theta}_2 - \hat{\theta}_1)$. 平均长度越短, 精度越高.

例 4.1

设样本 (X_1, \dots, X_n) 来自正态总体 $\mathcal{N}(\mu, \sigma^2)$, 其中 $\mu \in \mathbb{R}$, $\sigma^2 > 0$. μ 和 σ^2 的估计量分别是样本均值 \overline{X} 和样本方差 $S^2 = \sum_{i=1}^n (X_i - \overline{X})^2/(n-1)$, 用 $[\overline{X} - kS/\sqrt{n}, \overline{X} + kS/\sqrt{n}]$ 作 总体均值 μ 的区间估计. 考虑其置信度和精度.

解: 记
$$\theta = (\mu, \sigma^2)$$
, 上述区间估计的置信度为
$$P_{\theta}(\overline{X} - kS/\sqrt{n} \le \mu \le \overline{X} + kS/\sqrt{n}) = P_{\theta}(|\sqrt{n}(\overline{X} - \mu)/S| \le k)$$

$$= P(|T| \le k),$$

其中 $T = \sqrt{n}(\overline{X} - \mu)/S \sim t_{n-1}$, 其分布与 θ 无关, 因而区间估计的置信系数为 $P(|T| \le k)$. 显然, k 越大, 区间的置信系数越大, 区间就越可靠.

由于 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$, 所以区间的平均长度为

$$l_k = E\left[\frac{2k}{\sqrt{n}}S\right] = \frac{2k}{\sqrt{n}}E[S] = \frac{2\sqrt{2}k\sigma\Gamma(n/2)}{\sqrt{n(n-1)}\Gamma((n-1)/2)}.$$

显然, k 越大, 区间也越长, 精度越差.

- 在样本量n固定时,为了提高置信度,需增加k值,从而放大了区间,降低了精度.
- 反过来,为了提高精度,需要减少k值,缩短区间,降低了置信度.

置信度和精度相互制约着. 要想同时提高可靠性和精度, 只能增大样本量 n.

定义 4.4

设 $[\hat{\theta}_1(X), \hat{\theta}_2(X)]$ 是参数 θ 的一个区间估计, 若对给定的 $0 < \alpha < 1$, 有

$$P_{\theta}(\hat{\theta}_1(\mathbf{X}) \le \theta \le \hat{\theta}_2(\mathbf{X})) \ge 1 - \alpha, \quad \theta \in \Theta,$$

则称 $[\hat{\theta}_1(X), \hat{\theta}_2(X)]$ 是 θ 的置信水平为 $1-\alpha$ 的置信区间 (confidence interval).

注 4.2

设 $\alpha = 0.05$, 则 $1 - \alpha = 0.95$, 若把置信区间 $[\hat{\theta}_1(X), \hat{\theta}_2(X)]$ 重 复 100 次, 平均约有 95 次随机区间 $[\hat{\theta}_1(X), \hat{\theta}_2(X)]$ 包含真参数 θ , 平均约有 5 次随机区间 $[\hat{\theta}_1(X), \hat{\theta}_2(X)]$ 不包含 θ .

例 4.2

设 $X=(X_1,\cdots,X_{10})\sim\mathcal{N}(\mu,\sigma^2)$, 其中 $\mu\in\mathbb{R},\sigma^2>0$. 参数 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$[\overline{X} - kS/\sqrt{n}, \overline{X} + kS/\sqrt{n}].$$

若分别 $\alpha=0.1$ 和 $\alpha=0.5$, 利用模拟方法比较二者的置信区间.

解: 设 $\mu = 15$, $\sigma^2 = 4$. (1) 若取 $\alpha = 0.1$, 由 α 确定 k = 1.833. 利用随机模拟的方法从 N(15,4) 中产生一个容量为 10 的样本,例如 14.85, 13.01,13.50, 14.93, 6.97, 13.80, 17.95, 13.37, 16.29, 2.38.

计算其样本均值 $\bar{x} = 14.705$,样本标准差 s = 1.843. 从而得到参数 μ 的区间估计为

$$\left[14.705 - \frac{1.833 \times 1.843}{\sqrt{10}}, 14.705 + \frac{1.833 \times 1.843}{\sqrt{10}}\right] \approx [13.637, 15.773].$$

该区间包含真实参数 $\mu = 15$. 现重复这样的方法 100 次, 可得到 100 个样本, 得到 100 个区间.

(2) 若取 $\alpha = 0.5$, 由 α 可确定 k = 0.7027. 同样利用随机模拟的方法生成随机样本, 重复 100 次, 得到 100 个区间, 作出下图.

正态总体的区间估计: 枢轴量法

例 4.3

设 $X = (X_1, \dots, X_n)$ 是从总体 $N(\mu, \sigma^2)$ 中抽取的简单随机样本, 其中 σ^2 已知, 求 μ 的置信系数为 $1 - \alpha$ 的置信区间.

解: 显然, μ 的点估计是 $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, 将其标准化

$$U = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim \mathcal{N}(0, 1),$$

其分布与 μ 无关. 由正态分布的对称性可知,

$$P_{\mu}\left(\left|\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\right| \le Z_{\alpha/2}\right) = 1 - \alpha,$$

此处 $Z_{\alpha/2}$ 为标准正态分布的上侧 $\alpha/2$ 分位数.

正态总体的区间估计: 枢轴量法

经不等式等价变形,可知

$$P_{\mu}\left(\overline{X} - \frac{\sigma}{\sqrt{n}}Z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}Z_{\alpha/2}\right) = 1 - \alpha.$$

因此

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{\alpha/2}\right]$$

为 μ 的置信系数 $1-\alpha$ 的置信区间.

⑥ 许岷

正态总体的区间估计: 枢轴量法

利用枢轴量法构造置信区间的步骤如下:

- (1) 找待估参数 μ 的一个良好估计, 如点估计 $T(X) = \overline{X}$.
- (2) 构造一个 T(X) 与 μ 的函数 $\varphi(T,\mu)$, 使其满足 其表达 式与待估参数 μ 有关,其分布与待估参数 μ 无关,则称 随机变量 $\varphi(T,\mu)$ 为枢轴变量. 如变量 U.
- (3) 对给定的 $0 < \alpha < 1$, 决定两个常数 a 和 b, 使得

$$P_{\mu}(a \le \varphi(T, \mu) \le b) = 1 - \alpha.$$

求解括号中的不等式得到 $\hat{\mu}_1(X) \le \mu \le \hat{\mu}_2(X)$, 则有

$$P_{\mu}(\hat{\mu}_1(X) \le \mu \le \hat{\mu}_2(X)) = 1 - \alpha.$$

这表明 $[\hat{\mu}_1(X), \hat{\mu}_2(X)]$ 是 μ 置信水平为 $1-\alpha$ 的置信区间.

正态总体 μ 的区间估计: 枢轴量法 (均值未知, 方差已知)

例 4.4 (均值未知, 方差已知)

设某车间生产零件的长度 $X \sim \mathcal{N}(\mu, 0.09)$, 若得到一组样本观察值为

12.6, 13.4, 12.8, 13.2.

求零件平均长度 μ 的 95% 的置信区间.

解: 由样本观测值计算 $\overline{X} = 13, n = 4, \sigma = 0.3$. 查表求得 $Z_{0.025} = 1.96$, 所以

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{\alpha/2} \right] = \left[13 - \frac{0.3}{\sqrt{4}} \times 1.96, 13 + \frac{0.3}{\sqrt{4}} \times 1.96 \right]$$

$$\approx [12.71, 13.29]$$

μ 的区间估计: 枢轴量法 (均值未知, 方差未知)

应用上, σ^2 常常是未知的. 考虑

$$T = \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}.$$

其中 T 的表达式与 μ 有关, 但其分布与 μ 无关, 可取为枢轴 量. 由于 t 分布关于原点对称, 令

$$P(|T| \le c) = P\left(-c \le \frac{\sqrt{n}(\overline{X} - \mu)}{S} \le c\right) = 1 - \alpha,$$

则 $c = t_{n-1}(\alpha/2)$. 变形得到 μ 的置信系数为 $1 - \alpha$ 的置信区间为

$$\left[\overline{X} - \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2), \overline{X} + \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)\right]$$

μ 的区间估计: 枢轴量法 (均值未知, 方差未知)

例 4.5 (均值未知, 方差未知)

为测得某种溶液中的甲醛浓度, 取得 4 个独立测定的平均值 $\overline{X}=8.34\%$, 样本标准差 S=0.03%, 设测量近似服从正态分布, 求总体均值 μ 的 95% 的置信区间.

解: 因为 $1-\alpha=0.95$, n=4, $t_{n-1}(\alpha/2)=t_3(0.025)=3.182$, 故有 $St_{n-1}(\alpha/2)/\sqrt{n}=0.03\times3.182/2=0.0477, \overline{X}=8.34$. 由此,

$$\left[\overline{X} - \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2), \overline{X} + \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)\right] = [8.292\%, 8.388\%]$$

为μ的置信系数为95%的置信区间.

σ^2 的区间估计: 枢轴量法 (均值已知)

当 μ 已知时, σ^2 的一个良好估计为

$$S_{\mu}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2},$$

且 $nS_{\mu}^2/\sigma^2 \sim \chi_n^2$, 则取 $T = nS_{\mu}^2/\sigma^2$ 为枢轴量, 其表达式与 σ^2 有关, 但其分布与 σ^2 无关, 找到 c_1 和 c_2 使得

$$P\left(c_1 \le \frac{nS_\mu^2}{\sigma^2} \le c_2\right) = 1 - \alpha.$$

满足上式要求的 c_1 和 c_2 有无穷多对, 其中有一对 c_1 和 c_2 ,使得区间长度最短. 但这样一对 c_1 和 c_2 不易求且表达式复杂, 应用不方便.

⑥ 许岷

σ^2 的区间估计: 枢轴量法 (均值已知)

一般令 c_1 和 c_2 满足

$$P\left(\frac{nS_{\mu}^2}{\sigma^2} < c_1\right) = \frac{\alpha}{2}, \quad P\left(\frac{nS_{\mu}^2}{\sigma^2} > c_2\right) = \frac{\alpha}{2}.$$

由 χ^2 分布的上侧分位数表可知, $c_1 = \chi_n^2 (1 - \alpha/2)$, $c_2 = \chi_n^2 (\alpha/2)$, 即有

$$P_{\sigma^2}\left(\chi_n^2\left(1-\frac{\alpha}{2}\right) \le \frac{nS_\mu^2}{\sigma^2} \le \chi_n^2\left(\frac{\alpha}{2}\right)\right) = 1-\alpha.$$

利用不等式变形得到 σ^2 的置信系数为 $1-\alpha$ 的置信区间为

$$\left[\frac{nS_{\mu}^2}{\chi_n^2(\alpha/2)}, \frac{nS_{\mu}^2}{\chi_n^2(1-\alpha/2)}\right].$$

59

σ^2 的区间估计: 枢轴量法 (均值已知)

例 4.6

为了解一台测量长度的仪器的精度, 对一根长 30mm 的标准 金属棒进行了 6 次测量, 结果 (单位: mm) 是 30.1, 29.9, 29.8, 30.3, 29.6. 假如测量值服从正态分布 $N(30, \sigma^2)$, 求 σ^2 置信 水平为 0.95 的置信区间.

解: 此处
$$n = 6, \mu = 30, 得 \sum_{i=1}^{6} (X_i - \mu)^2 = 0.35, \alpha = 0.05,$$

查表得 $\chi_6^2(0.025) = 14.4494, \chi_6^2(0.975) = 1.2375.$ 计算
$$\hat{\sigma}_1^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_n^2(\alpha/2)} = \frac{0.35}{14.4494} \approx 0.0242,$$

$$\hat{\sigma}_2^2 = \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_n^2(1 - \alpha/2)} = \frac{0.35}{1.2375} \approx 0.2828.$$

因此, σ^2 置信水平为 0.95 的置信区间为 [0.0242, 0.2828].

σ^2 的区间估计: 枢轴量法 (均值未知)

记 $\theta = (\mu, \sigma^2)$. 此时

$$S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} / (n-1)$$

是 σ^2 的良好无偏估计. 因为 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$. 取

$$T = (n-1)S^2/\sigma^2$$

为枢轴量, 其表达式与 σ^2 有关, 而其分布与 σ^2 无关. 找到 d_1 和 d_2 使得

$$P_{\theta}\left(d_1 \le \frac{(n-1)S^2}{\sigma^2} \le d_2\right) = 1 - \alpha.$$

σ^2 的区间估计: 枢轴量法 (均值未知)

取
$$d_1 = \chi_{n-1}^2(1-\alpha/2), d_2 = \chi_{n-1}^2(\alpha/2),$$
 故有

$$P_{\sigma^2}\left(\chi_n^2\left(1-\frac{\alpha}{2}\right) \le \frac{(n-1)S^2}{\sigma^2} \le \chi_n^2\left(\frac{\alpha}{2}\right)\right) = 1-\alpha.$$

利用不等式变形得到 σ^2 的置信系数为 $1-\alpha$ 的置信区间为

$$\left[\frac{(n-1)S^2}{\chi_n^2(\alpha/2)}, \frac{(n-1)S^2}{\chi_n^2(1-\alpha/2)}\right].$$

σ^2 的区间估计: 枢轴量法 (均值未知)

例 4.7

为测得某种溶液中的甲醛浓度, 取得 4 个独立测定的平均值 $\overline{X}=8.34\%$, 样本标准差 S=0.03%, 设测量近似服从正态分布, 求总体方差 σ^2 的 95% 的置信区间.

解: 同上例, 由 n-1=3, $\alpha/2=0.025$, 查表得

$$\chi_3^2(0.025) = 9.348, \chi_3^2(0.975) = 0.216, S^2 = 0.0009$$

可知

$$\left[\frac{(n-1)S^2}{\chi_n^2(\alpha/2)}, \frac{(n-1)S^2}{\chi_n^2(1-\alpha/2)}\right] = [0.00029, 0.0125]$$

为 σ^2 的置信系数为 95% 的置信区间.

7.5 正态总体的区间估计(二)

设

- X_1, \dots, X_m 是自正态总体 $\mathcal{N}(\mu_1, \sigma_1^2)$ 抽取的简单随机样本.
- Y_1, \dots, Y_n 是自正态总体 $\mathcal{N}(\mu_2, \sigma_2^2)$ 抽取的简单随机样本.
- 且 X_1, \dots, X_m 和 Y_1, \dots, Y_n 相互独立.

设 \overline{X} , \overline{Y} 和 S_1^2 , S_2^2 分别为这两组样本的样本均值和样本方差,其中

$$S_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2.$$

◎ 许岷 64

(1) 当 m = n, σ_1^2 , σ_2^2 未知时. 令 $Z_i = Y_i - X_i$, $i = 1, 2, \dots, n$, 且记 $\tilde{\mu} = \mu_1 - \mu_2$, $\tilde{\sigma}^2 = \sigma_1^2 + \sigma_2^2$, 则有

$$Z_i \sim N(\tilde{\mu}, \tilde{\sigma}^2), \quad i = 1, 2, \cdots, n.$$

 $\overline{Z} = \overline{Y} - \overline{X}$ 是一个良好的无偏估计, 枢轴量为

$$T_Z = \frac{\sqrt{n}(\overline{Z} - \widetilde{\mu})}{S_Z} \sim t_{n-1},$$

其中 $S_Z^2 = \sum_{i=1}^n (Z_i - \overline{Z})^2 / (n-1)$, T_Z 的表达式与 $\tilde{\mu}$ 有关, 但其分布与 $\tilde{\mu}$ 无关. 因此, $\tilde{\mu}$ 的 $1-\alpha$ 的置信区间为

$$\left[\overline{Z} - \frac{S_Z}{\sqrt{n}} t_{n-1}(\alpha/2), \overline{Z} + \frac{S_Z}{\sqrt{n}} t_{n-1}(\alpha/2)\right],$$

(2) 当 σ_1^2 和 σ_2^2 已知时. 易知 $\overline{Y} - \overline{X}$ 是 $\mu_1 - \mu_2$ 的一个良好无偏估计,且 $\overline{Y} - \overline{X} \sim N(b - a, \sigma_1^2/m + \sigma_2^2/n)$,由此可知

$$U = \frac{\overline{Y} - \overline{X} - (b-a)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \sim N(0, 1).$$

U 的表达式与 $\mu_1 - \mu_2$ 有关, 但其分布与 $\mu_1 - \mu_2$ 无关, 取 U 为枢轴量, 故有

$$P_{\mu_1,\mu_2} = \left(\left| \frac{\overline{Y} - \overline{X} - (\mu_2 - \mu_1)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \right| \le u_{\alpha/2} \right) = 1 - \alpha.$$

括号中不等式的等价变形得到 b-a 的置信系数为 $1-\alpha$ 的置信区间, 故有

$$\left[\overline{Y} - \overline{X} - u_{\alpha/2}\sqrt{\sigma_1^2/m + \sigma_2^2/n}, \quad \overline{Y} - \overline{X} + u_{\alpha/2}\sqrt{\sigma_1^2/m + \sigma_2^2/n}\right].$$

◎ 许岷

(3) 当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知时. 令

$$S_{\omega}^{2} = \frac{1}{m+n-2} [(m-1)S_{1}^{2} + (n-1)S_{2}^{2}]$$

$$= \frac{1}{m+n-2} \left[\sum_{i=1}^{m} (X_{i} - \overline{X})^{2} + \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} \right],$$

显然 $\overline{Y} - \overline{X}$ 是 b - a 的无偏估计, 可知

$$T_{\omega} = \frac{\overline{Y} - \overline{X} - (b - a)}{S_{\omega}} \sqrt{\frac{mn}{m+n}} \sim t_{n+m-2},$$

其中 T_{ω} 的表达式与 b-a 有关, 但其分布与 b-a 无关.

取 T_{ω} 为枢轴量, 故有

$$P\left(\left|\frac{\overline{Y}-\overline{X}-(b-a)}{S_{\omega}}\right|\sqrt{\frac{mn}{m+n}}\leq t_{m+n-2}(\alpha/2)\right)=1-\alpha,$$

括号中不等式的等价变形得到 b-a 的置信系数为 $1-\alpha$ 的置信区间为

$$\left[\overline{Y} - \overline{X} - S_{\omega} t_{m+n-2} \left(\frac{\alpha}{2}\right) \sqrt{\frac{1}{m} + \frac{1}{n}}, \right.$$

$$\overline{Y} - \overline{X} + S_{\omega} t_{m+n-2} \left(\frac{\alpha}{2}\right) \sqrt{\frac{1}{m} + \frac{1}{n}}\right],$$

例 5.1

某公司利用两条自动化流水线罐装矿泉水. 现从生产线上抽取样本 X_1,\cdots,X_{12} 和 Y_1,\cdots,Y_{17} , 它们是每瓶矿泉水的体积 (单位: ml). 计算样本均值 $\overline{X}=501.1$ 和 $\overline{Y}=499.7$; 样本方差 $S_1^2=2.4$ 和 $S_2^2=4.7$. 假设这两条流水线所装的矿泉水的体积分别服从正态分布 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$,试求 $\mu_2-\mu_1$ 置信系数为 0.95 的置信区间.

解: 由题意, $\overline{Y} - \overline{X} = -1.4$,

$$S_{\omega}^{2} = \frac{(m-1)S_{1}^{2} + (n-1)S_{2}^{2}}{n+m-2} = \frac{11 \times 2.4 + 16 \times 4.7}{12 + 17 - 2} \approx 3.763.$$

查表求得 $t_{m+n-2}(0.025) = 2.05$.

算得

$$\left[\overline{Y} - \overline{X} - S_{\omega} t_{m+n-2} \left(\frac{\alpha}{2} \right) \sqrt{\frac{1}{m} + \frac{1}{n}}, \right]$$

$$\overline{Y} - \overline{X} + S_{\omega} t_{m+n-2} \left(\frac{\alpha}{2} \right) \sqrt{\frac{1}{m} + \frac{1}{n}} \right]$$

$$= \left[-1.4 - \sqrt{3.763} \times 2.05 \times \sqrt{\frac{1}{12} + \frac{1}{17}}, -1.4 + \sqrt{3.763} \times 2.05 \times \sqrt{\frac{1}{12} + \frac{1}{17}} \right]$$

$$\approx [-2.9, 0.1]$$

为 $\mu_2 - \mu_1$ 的 95% 的置信区间.

7.6 非正态总体的区间估计

二项分布参数的置信区间

设 $X = (X_1, \dots, X_n)$ 是两点分布 B(1,p) 的简单随机样本, 求 p 的置信区间. 令 $S_n = \sum_{i=1}^n X_i$, 可知 $S_n \sim B(n,p)$. 利用中心 极限定理, 有

$$\frac{S_n - np}{\sqrt{np(1-p)}} = \frac{\sqrt{n}(\overline{X} - p)}{\sqrt{p(1-p)}} \xrightarrow{d} N(0,1), \quad n \to \infty.$$

这表明当 n 充分大时,随机变量 $T = \sqrt{n}(\overline{X} - p)/\sqrt{p(1-p)}$ 的极限分布是 N(0,1),与未知参数 p 无关,可取 T 为枢轴量. 当 n 充分大时有

$$P(|T| \le u_{\alpha/2}) = P\left(\left|\frac{\sqrt{n}(\overline{X} - p)}{\sqrt{p(1 - p)}}\right| \le u_{\alpha/2}\right) \approx 1 - \alpha.$$

二项分布参数的置信区间

由 $\hat{p} = S_n/n \stackrel{P}{\to} p$,则当 $n \to \infty$,有 $\frac{\sqrt{n}(\hat{p} - p)}{\sqrt{n}(1 - p)} \stackrel{d}{\to} \mathcal{N}(0, 1), \quad \sqrt{\frac{p(1 - p)}{\hat{p}(1 - \hat{p})}} \stackrel{P}{\to} 1.$

故由 Slutsky 定理可知,

$$T = \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{\hat{p}(1 - \hat{p})}} = \frac{\sqrt{n}(\hat{p} - p)}{\sqrt{p(1 - p)}} \times \sqrt{\frac{p(1 - p)}{\hat{p}(1 - \hat{p})}} \xrightarrow{d} \mathcal{N}(0, 1),$$

故可取 T 为枢轴量, 其极限分布与 p 无关. 令

$$P\left(\left|\frac{\sqrt{n}(\hat{p}-p)}{\sqrt{\hat{p}(1-\hat{p})}}\right| \le u_{\alpha/2}\right) \approx 1-\alpha.$$

利用不等式变形得

$$\left[\hat{p} - u_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p} + u_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right].$$

二项分布参数的置信区间例子

例 6.1

对某事件 A 作 120 次观察, A 发生 36 次. 试给出事件 A 发生 概率 p 的 0.95 置信区间.

解: 由题意 $n=120, \hat{p}=\bar{x}=36/120=0.3, u_{0.025}=1.96,$ 于

$$\left[0.3 - 1.96 \times \sqrt{\frac{0.3 \times 0.7}{120}}, 0.3 + 1.96 \times \sqrt{\frac{0.3 \times 0.7}{120}}\right] = [0.218, 0.382].$$

为比例 p 置信系数为 0.95 的置信区间.

泊松分布参数的置信区间

设 $X = (X_1, \dots, X_n)$ 为抽自 Poisson 总体 $\mathcal{P}(\lambda)$ 的简单随机 样本, 求 λ 的置信区间. 记 $S_n = \sum_{i=1}^n X_i$, 则 S_n 为服从参数为 $n\lambda$ 的 Poisson 分布, 即

$$P(S_n = k) = \frac{e^{-n\lambda}(n\lambda)^k}{k!}, \quad k = 0, 1, 2, \cdots$$

当 n 充分大时,由中心极限定理可知:

$$\frac{S_n - n\lambda}{\sqrt{n\lambda}} = \frac{\sqrt{n}(\overline{X} - \lambda)}{\sqrt{\lambda}} \xrightarrow{d} N(0, 1), \quad n \to \infty.$$

将随机变量 $T = \sqrt{n}(\overline{X} - \lambda)/\sqrt{\lambda}$ 作枢轴量, 其极限分布与未知参数 λ 无关.

泊松分布参数的置信区间

由 $\hat{\lambda} = \overline{X} \stackrel{P}{\to} \lambda$, 当 $n \to \infty$ 时有

$$\frac{\sqrt{n}(\overline{X} - \lambda)}{\sqrt{\lambda}} \xrightarrow{d} \mathcal{N}(0, 1), \quad \frac{\sqrt{\lambda}}{\hat{\lambda}} \xrightarrow{P} 1.$$

由 Slutsky 定理可知,

$$\frac{\sqrt{n}(\overline{X} - \lambda)}{\sqrt{\hat{\lambda}}} = \frac{\sqrt{n}(\overline{X} - \lambda)}{\sqrt{\lambda}} \cdot \frac{\sqrt{\lambda}}{\hat{\lambda}} \xrightarrow{d} N(0, 1).$$

令 $T = \sqrt{n}(\hat{\lambda} - \lambda)/\sqrt{\hat{\lambda}}$ 为枢轴量, 其极限分布与未知参数 λ 无关. 给定置信系数 $1 - \alpha$, 则有

$$P\left(\left|\frac{\sqrt{n}(\hat{\lambda}-\lambda)}{\sqrt{\hat{\lambda}}}\right| \le u_{\alpha/2}\right) \approx 1-\alpha.$$

不等式变形得到, λ 的置信系数近似为 $1-\alpha$ 的置信区间为

$$\left[\hat{\lambda} - u_{\alpha/2}\sqrt{\hat{\lambda}/n}, \hat{\lambda} + u_{\alpha/2}\sqrt{\hat{\lambda}/n}\right],$$

泊松分布参数的置信区间

例 6.2

公共汽车站在一单位时间内(如 20 分钟)到达的乘客数服从泊松分布 $P(\lambda)$,对不同的车站,所不同的仅仅是参数 λ 的取值不同. 现对一城市某一公共汽车进行了 100 个单位时间的调查. 计算得到每 20 分钟内来到该车站的乘客数平均值 $\bar{X}=15.2$ 人. 求参数 λ 的置信系数为 0.95 的置信区间.

解:
$$n = 100, \alpha = 0.05, Z_{\alpha/2} = 1.96, \bar{X} = 15.2$$
. 可得

$$\left[15.2 - 19.6 \times \sqrt{\frac{15.2}{100}}, 15.2 + 19.6 \times \sqrt{\frac{15.2}{100}}\right] = [14.44, 15.96]$$

为参数 λ 的置信系数为 0.95 的置信区间.