MATH 313 HMWK 9

Daniel Xu

April 6, 2018

Exercise 4.4.7 For any ϵ given, we simply choose $\delta = \epsilon \cdot \left| \sqrt{x} + \sqrt{x'} \right|$. Then

$$\begin{aligned} |x - x'| &< \epsilon \cdot \left| \sqrt{x} + \sqrt{x'} \right| \\ \frac{|x - x'|}{\left| \sqrt{x} + \sqrt{x'} \right|} &< \epsilon \\ \left| \sqrt{x} - \sqrt{x'} \right| &< \epsilon \end{aligned}$$

Exercise 4.4.9

(a) For any ϵ given, we simply choose $\delta = \epsilon/M$. Then

$$|x-y|<\frac{\epsilon}{M}$$

$$M\cdot |x-y|<\epsilon$$

We know that

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M$$
$$|f(x) - f(y)| \le M \cdot |x - y|$$

so

$$|f(x) - f(y)| \le M \cdot |x - y| < \epsilon$$

 $|f(x) - f(y)| < \epsilon$

(b) False. The function \sqrt{x} is a counterexample. It is continuous on the compact set [0,1], yet it is not a Lipschitz function. For any bound M given, we can choose $x=1/(M+1)^2$ and y=0 that do not satisfy the requirement of a Lipschitz function, as seen below.

$$\left| \frac{f(x) - f(y)}{x - y} \right| = \frac{\sqrt{\frac{1}{(M+1)^2}} - \sqrt{0}}{\frac{1}{(M+1)^2} - 0}$$
$$= \frac{1}{|M+1|} \cdot (M+1)^2$$
$$= M+1 > M$$

Exercise 4.4.13 For any $\delta > 0$, we know that there exists $N \in \mathbb{N}$ such that for any $m \geq N$ and $n \geq N$, $|x_n - x_m| < \delta$ for any Cauchy sequence $x_n \subset A$. By the definition of a uniformly continuous function, this implies that $|f(x_n) - f(x_m)| < \epsilon$, which meets the definition of a Cauchy sequence.

Exercise 4.5.2

- (a) Let us define the function $f(x) = x^3 9x$ on the open interval (-3,3). Then it will have range $[-6\sqrt{3}, 6\sqrt{3}]$, which is a closed interval. It should be readily apparent that for any $x \in (-3,3)$, $\lim_{x\to c} f(x) = f(c)$, so f is continuous.
- (b) Impossible. Let f be a function defined on the closed interval [a, b] with range equal to the open interval (c, d). Let us assume that f is a continuous function. Then for all $V_{\epsilon}(a)$, there exists a $V_{\delta}(c)$ with the property that $xLetf(x) = 1/(1-x^2)$ be defined on the interval (-1, 1).
- (d) Impossible.

Exercise 4.5.8 We proceed by contradiction; we assume that f^{-1} is actually not continuous. Then by **Corollary 4.3.3**, there exists a sequence (x_n) in the domain of f^{-1} and a number c in the domain of f^{-1} , with $(x_n) \to c$ but $f^{-1}(x_n)$ does not converge to $f^{-1}(c)$. By **Theorem 4.3.2**, however, a characteristic of our continuous function f is that $f^{-1}(x_n) \to f^{-1}(c) \Longrightarrow (x_n) \to c$. Since $f^{-1}(x_n) \to f^{-1}(c)$ is false by **Corollary 4.3.3**, but $f^{-1}(x_n)$ is true, our implication is false; however, we know that f is continuous. Thus, we must conclude that f^{-1} is also continuous.