K-Medias

Omar Sanchez Hernandez

4/6/2022

INTRODUCCIÓN

El metodo de agrupación K-medias pertenece al conjunto de metodos de aprendizaje **NO** supervisados el cual agrupa a los sujetos de la matriz de datos en K grupos dependiendo en base a sus similitudes.

En el presente ejercicio se llevara a cabo el desarrollo de esta tecnica usando la matriz de datos ${\bf state.x77}$ que se encuentra en la libreria de ${\it datasets}$ que contiene informacion sobre indicadores de 50 estados de Estados Unidos.

Matriz de datos.

```
# Librerias
library(cluster)
library(knitr)
X<-as.data.frame(state.x77)
head(X)</pre>
```

##		${\tt Population}$	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
##	Alabama	3615	3624	2.1	69.05	15.1	41.3	20	50708
##	Alaska	365	6315	1.5	69.31	11.3	66.7	152	566432
##	Arizona	2212	4530	1.8	70.55	7.8	58.1	15	113417
##	Arkansas	2110	3378	1.9	70.66	10.1	39.9	65	51945
##	${\tt California}$	21198	5114	1.1	71.71	10.3	62.6	20	156361
##	Colorado	2541	4884	0.7	72.06	6.8	63.9	166	103766

Sobre la matriz de datos

```
# Librerias
dim(X)

## [1] 50 8

str(X)
```

```
## 'data.frame':
                   50 obs. of 8 variables:
## $ Population: num 3615 365 2212 2110 21198 ...
## $ Income
               : num 3624 6315 4530 3378 5114 ...
## $ Illiteracy: num 2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
   $ Life Exp : num 69 69.3 70.5 70.7 71.7 ...
  $ Murder
               : num 15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 ...
##
   $ HS Grad : num 41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 ...
   $ Frost
               : num 20 152 15 65 20 166 139 103 11 60 ...
##
   $ Area
               : num 50708 566432 113417 51945 156361 ...
```

La matriz de datos contiene 50 casos, 8 variables y todas las variables son de tipo numericas.

Transformación de datos

Debido a las grandes diferencias entre las escalas de la matriz de datos es que se propone realizar una transformación logartimica sobre las variables 1,3 y 8.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo k-means

```
dim(X)
## [1] 50 8

n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

Estandarizacion univariante.

Se aplica una estandarización a la matriz para homogeneizarla y que las variables con valores muy altos o valores muy bajos no tengan problemas por el tipo de escala.

```
X.s<-scale(X)</pre>
```

Aplicación del algoritmo k-medias

Se plantean 3 grupos (cantidad de subconjuntos \mathbf{K}) aleatorios que se escogen para realizar los calculos de algoritmo y luego se muestran los centroides de cada grupo.

```
Kmeans.3<-kmeans(X.s, 3, nstart=25)</pre>
Kmeans.3$centers
##
    Log-Population
                    Income Log-Illiteracy Life Exp
                                                      Murder
                                                              HS Grad
## 1
       0.5693805 0.5486843
                              0.05412021 0.1388564 -0.01977495 0.1203417
## 2
       -0.7900149 0.2080926
                             ## 3
                              1.31921387 -1.0778757 1.10983501 -1.3566922
        0.2360549 -1.2266128
##
        Frost
               Log-Area
## 1 -0.3291597 -0.4878988
## 2 0.8803670 0.4093602
## 3 -0.7719510 0.1991243
```

Cluster de pertenencia

Kmeans.3\$cluster

##	Alabama	Alaska	Arizona	Arkansas	California
##	3	2	1	3	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	1	1	1	3
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	1	2	1	1	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	3	3	2	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	1	1	2	3	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	2	2	2	1
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	3	1	3	2	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	2	1	1	3
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	2	3	3	2	2
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	1	3	2	2

SCDG

```
SCDG<-sum(Kmeans.3$withinss)
SCDG
```

[1] 203.2068

Clusters

```
cl.kmeans<-Kmeans.3$cluster
cl.kmeans</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	3	2	1	3	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	1	1	1	3
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	1	2	1	1	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	3	3	2	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	1	1	2	3	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	2	2	2	1
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	3	1	3	2	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	2	1	1	3
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	2	3	3	2	2
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	1	1	3	2	2

Scatter plot por grupos (delimitados por el K-medias)

```
col.cluster<-c("blue", "red", "green")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=19)</pre>
```

k-means

Visualizacion con las dos componentes principales

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)</pre>
```

Generacion del grafico

```
plot(Sil.kmeans, main="Silhouette for k-means",
col="blue")
```

Silhouette for k-means

Average silhouette width: 0.28