Entropy of an autoequivalence on Calabi–Yau manifolds

Yu-Wei Fan

Harvard University

We'll see...

- Counterexamples of a conjecture on categorical entropy.
- ► Homological mirror symmetry ⇒ expect counterexamples.
- ► An interesting(?) entropy formula of an autoequivalence.
- Related project: Dynamics on space of Bridgeland stability conditions motivated from Teichmüller theory.

Examples of autoequivalences

Standard autoequivalences

- $\triangleright \mathcal{D} = \mathcal{D}^b(X).$
- ▶ Standard autoequivalences: $\otimes \mathcal{L}$, $\operatorname{Aut}(X)$, [n].
- ▶ Bondal–Orlov '01: When K_X is (anti-)ample, the group of autoequivalences is generated by the standard ones.

Spherical twists (Seidel-Thomas '01)

- Let X be a Calabi-Yau manifold of dimension d.
- ▶ $E \in \mathcal{D}^b(X)$ is spherical if

$$\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$$

e.g. Lagrangian sphere in derived Fukaya category.

e.g. \mathcal{O}_X is spherical iff $H^i(\mathcal{O}_X) = 0$ for 0 < i < d, i.e. X is strict CY.

Spherical twists (Seidel-Thomas '01)

- Let X be a Calabi-Yau manifold of dimension d.
- ▶ $E \in \mathcal{D}^b(X)$ is spherical if

$$\operatorname{Hom}(E, E[*]) \cong H^*(S^d; \mathbb{C}).$$

- ▶ Spherical twist $T_E : F \mapsto Cone(Hom^{\bullet}(E, F) \otimes E \rightarrow F)$.
 - e.g. Dehn twist along Lagrangian sphere.

Autoequivalences from monodromies

▶ Kähler moduli of CY hypersurface $X \subset \mathbb{CP}^{d+1}$:

- ▶ Monodromies \rightsquigarrow Autoequivalences on $\mathcal{D}^b(X)$
- ► Kontsevich '96, Horja '99: LVL $\leadsto \otimes \mathcal{O}(1)$, Conifold $\leadsto T_{\mathcal{O}_X}$, Gepner $\leadsto T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$.
- lacksquare Ballard–Favero–Katzarkov '12: $(\mathrm{T}_{\mathcal{O}_X}\circ\otimes\mathcal{O}(1))^{d+2}=[2].$

Results

▶ Entropy: Measures "complexity" of an autoequivalence. e.g. $\otimes \mathcal{O}(1)$, $T_{\mathcal{O}_X}$, $T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$ all have zero entropy.

Theorem $(d \ge 3)$

 $T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k>1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1.$$

(e.g. quintic CY3:
$$\lambda^4 - 9\lambda^3 + 11\lambda^2 - 9\lambda + 1 = 0$$
.)

Results

▶ Entropy: Measures "complexity" of an autoequivalence. e.g. $\otimes \mathcal{O}(1)$, $T_{\mathcal{O}_X}$, $T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1)$ all have zero entropy.

Theorem $(d \ge 3)$

 $T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1)$ has positive entropy. Its exponential is the unique $\lambda > 1$ satisfying

$$\sum_{k>1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1.$$

⇒ Counterexamples of Kikuta–Takahashi conjecture.

Plan

- Topological entropy and Gromov–Yomdin theorem.
- ► Categorical entropy and Kikuta—Takahashi conjecture.
- Reason to expect counterexamples via HMS.
- Counterexamples.

Topological entropy

Definition

- ▶ (X,d) compact, $f: X \to X$ continuous surjective.
- ▶ Topological entropy $h_{top}(f)$ measures "how fast points spread out when iterate f".
- ▶ $N(n,\epsilon) := \max\{\#F : F \subset X, \max_{0 \le i \le n-1} d(f^i(x), f^i(y)) \ge \epsilon$ for any $x, y \in F\}$.

Definition

$$h_{\mathrm{top}}(f) := \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{\log N(n, \epsilon)}{n} \in [0, \infty].$$

Topological entropy

Properties

▶ $h_{\text{top}}(f)$ is an topological invariant: If $(X, d) \cong (X, d')$, then one gets the same topological entropy.

$$f^n = \mathrm{id}_X \implies h_{\mathrm{top}}(f) = 0.$$

Theorem (Gromov-Yomdin)

X compact Kähler manifold, $f: X \to X$ holomorphic surjective.

$$h_{\text{top}}(f) = \log \rho(f^*).$$

Here ρ is the spectral radius of $f^*: H^*(X; \mathbb{C}) \to H^*(X; \mathbb{C})$.

Definition (Dimitrov-Haiden-Katzarkov-Kontsevich '13)

Definition

For $E, F \in \mathcal{D}$, the *complexity* of F relative to E is

$$\delta(E,F) := \inf \left\{ k \middle| \begin{matrix} 0_{\overline{K}} & & \cdots & A_{k-1} & \cdots & A_{k-1} \\ & & & & & \\ & E[n_1] & & \cdots & & E[n_k] \end{matrix} \right\}$$

Definition

If $\mathcal D$ has a split generator G, then the <u>categorical entropy</u> of an autoequivalence Φ is

$$h_{\mathrm{cat}}(\Phi) := \lim_{n \to \infty} \frac{\log \delta(G, \Phi^n G)}{n} \in [-\infty, \infty).$$

Properties

▶ The limit exists. And is independent of the choice of *G*.

Conjecture (Kikuta-Takahashi)

For $\mathcal{D} = \mathcal{D}^b(X)$ and Φ an autoequivalence on \mathcal{D} ,

$$h_{\mathrm{cat}}(\Phi) = \log \rho(\Phi_{H^*}).$$

<u>Proved</u>: dim X = 1; standard autoequivalences.

Reason to expect counterexamples

- ▶ Thurston: examples of pseudo-Anosov maps on Riemann surface S (g > 1) that act trivially on H^* . These maps are symplectomorphisms, but not holomorphic. Gromov–Yomdin fails in these cases: $h_{\text{top}}(f) = \log \lambda > 0 = \log \rho(f^*)$.
- ▶ DHKK: $h_{\text{cat}}(f_*) = \log \lambda > 0$. Here f_* is the induced autoequivalence on Fuk(S).
- ▶ Idea: If there are autoequivalences on $\operatorname{Fuk}(X)$ with $h_{\operatorname{cat}}(\Phi) > \log \rho(\operatorname{HH}_{\bullet}(\Phi))$ for some Calabi–Yau X, then by homological mirror symmetry, one may expect to find counterexamples of the conjecture on the mirror.

Counterexamples

Theorem $(d \ge 3)$

 $\Phi:=\mathrm{T}_{\mathcal{O}_X}\circ\otimes\mathcal{O}(-1) \ \ \text{has positive categorical entropy. Its}$ exponential is the unique $\lambda>1$ satisfying

$$\sum_{k\geq 1} \frac{\chi(\mathcal{O}(k))}{\lambda^k} = 1.$$

Claim

 $d \geq$ 4 even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d+2. Then

$$\rho(\Phi_{H^*})=1.$$

Hence $h_{\mathrm{cat}}(\Phi) > 0 = \log \rho(\Phi_{H^*})$. So Kikuta–Takahashi conjecture fails in this case.

Proof of Claim

- ▶ $d \ge 4$ even. $X \subset \mathbb{CP}^{d+1}$ CY hypersurface of degree d+2.
- ▶ Recall that $(T_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))^{d+2} = [2].$

$$\implies (\mathrm{T}_{\mathcal{O}_X} \circ \otimes \mathcal{O}(1))_{H^*}^{d+2} = \mathrm{id}_{H^*}.$$

► Fact: $(T_S^2)_{H^*} = id_{H^*}$ when X is of even dimension.

$$\implies \Phi_{H^*}^{d+2} = (\mathrm{T}_{\mathcal{O}_X} \circ \otimes \mathcal{O}(-1))_{H^*}^{d+2} = \mathrm{id}_{H^*}.$$

$$\implies \rho(\Phi_{H^*}) = 1.$$

Sketch of proof of Theorem

▶ DHKK: If G and G' are both split generators of $\mathcal{D}^b(X)$, then

$$h_{\mathrm{cat}}(\Phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{a \in \mathbb{Z}} \dim \mathrm{Hom}(G, \Phi^n G'[a]).$$

- ▶ Orlov: $G = \bigoplus_{i=1}^{d+1} \mathcal{O}(i)$ and $G' = \bigoplus_{i=1}^{d+1} \mathcal{O}(-i)$ are split generators.
- ▶ Lemma: Recursive formula for the dimension of $\operatorname{Hom}(\mathcal{O}, \Phi^n(G') \otimes \mathcal{O}(-k)[a])$ via Kodaira vanishing.
- ightharpoonup + some combinatorics \implies Theorem.

Thank you!!