# 프로그래밍 언어 응용

chapter02

변수와 자료형

제공된 자료는 훈련생의 수업을 돕기 위한 것으로, 타인과 공유하시면 안됩니다.

## Contents

part.1 컴퓨터에서 데이터를 어떻게 표현할까? part.2 변수 part.3 자료형 part.4 상수와 리터럴 part.5 형변환

### 컴퓨터에서 데이터를 어떻게 표현할까? 비트와 바이트

#### 이진법과 비트(BIT)

- 컴퓨터는 이진 숫자 체계를 사용하여 숫자 0과 1로 값을 나타낸다.
- 비트는 데이터를 표현하는 가장 작은 단위이다.

#### 바이트 (BYTE)

- 8개의 비트로 구성된다.
- 바이트는 비트의 묶음이다.



### 컴퓨터에서 데이터를 어떻게 표현할까?

### 2진수와 10진수

#### 10진수

- 일상생활에서 사용하는 숫자 체계이다.

#### 2진수

- 컴퓨터 내부에서 사용하는 숫자 체계이다.

#### 비트로 표현할 수 있는 수의 범위

| 자리수 | 값의 범위                                 |  |
|-----|---------------------------------------|--|
| 1개  | 0,1 (0~1)                             |  |
| 2개  | 00,01,10,11 (0~3)                     |  |
| 3개  | 000,001,010,011,100,101,110,111 (0~7) |  |

| 10진수 | 2진수  |  |
|------|------|--|
| 0    | 0    |  |
| 1    | 1    |  |
| 2    | 10   |  |
| 3    | 11   |  |
| 4    | 100  |  |
| 5    | 101  |  |
| 6    | 110  |  |
| 7    | 111  |  |
| 8    | 1000 |  |
| •    | -    |  |

### 프로그램에서 데이터는 어떻게 나타낼까?

자동차의 정보를 프로그램으로 작성할 때는, 자동차의 다양한 특성을 변수로 표현할 수 있다.



변수

변수란?

part

이해

변수

값을 저장하는 공간이며, 값은 변경될 수 있다



#### 변수 선언하기

- 변수를 선언할 때는 먼저 자료형을 지정하고, 변수의 이름을 작성한다.

#### 변수의 이름 짓기

- 변수의 이름은 용도에 맞게 작성한다.
- 변수의 이름은 소문자로 시작한다.
- 변수의 이름을 여러 단어로 조합할 경우에는 중간에 첫 글자를 대문자로 한다.



변수

part

#### 변수에 값 대입하기

- 대입연산자를 쓰고 저장하고 싶은 값을 작성한다.
- 오른쪽 값이 왼쪽 변수에 저장된다.





### 자료형

### 자료형이란?

이해

자료형

변수에 저장할 수 있는 값의 종류와 값의 범위







### 자료형

### 기초자료형

#### 기초자료형

- 자바에서 기본적으로 제공하는 타입이다.
- 기초자료형은 변수가 실제 값을 저장한다.
- 기초자료형은 고정된 크기를 가진다.

기초변수

100

#### 자료형의 종류

| 종류 | 자료형                    | 크기         | 예시                 |
|----|------------------------|------------|--------------------|
| 정수 | byte, short, int, long | 1, 2, 4, 8 | 10, 20             |
| 실수 | float, double          | 4, 8       | 23.4f, 34.567      |
| 문자 | char                   | 2          | 'A', 'a'           |
| 논리 | boolean                | 1          | true(참), false(거짓) |

#### 참조자료형

- 변수가 값 대신에 메모리 위치를 참조한다.
- 복잡한 데이터 구조를 다룰 때 사용한다.



### 자료형

### 정수 자료형

#### 정수 자료형의 특징

- 정수자료형은 양수, 음수, 0을 나타낼 수 있다.
- 정수자료형에는 바이트 크기별로 byte, short, int, long형 4종류가 있다.
- 정수 자료형 중 가장 많이 사용하는 것은 int형이다.

int i = 10;



- Q. 왜 숫자를 표현하는 방법이 4가지나 될까?
- Q. 만약 1~100 범위의 숫자를 1000개 저장해야 한다면, 어떤 자료형을 사용해야 할까?

part

03

#### 정수 자료형의 범위

- 정수 자료형의 첫 번째 자리는 부호비트이다.
- 0이면 양수, 1이면 음수를 의미한다.
- 예를 들어 byte형 변수는 부호비트를 제외한 나머지 7비트로 -128~127까지 표현할 수 있다.
- 만약, 범위에 벗어나는 값을 대입하면 오류가 발생한다.

byte b = 200;



### 자료형

문자 자료형

#### 문자형

- 문자자료형은 문자 하나를 나타낼 수 있다.
- ''작은 따음표로 값을 감싸주어야 한다.

#### 문자열형

- String은 문자열을 저장 할 수 있는 참조자료형이다.
- "" 큰 따음표로 값을 감싸주어야 한다.

char ch = 'a';

String str = "안녕하세요";

### 인코딩

인코딩이란?

- 컴퓨터는 문자를 이해할 수 없기 때문에 문자도 숫자로 변환해서 저장해야 한다.
- 인코딩은 숫자와 문자를 맵핑한 코드체계이고, 문자를 숫자코드로 변환하는 것을 문자인코딩이라고 한다.
- 예를 들어 사용자가 문자 A를 입력하면 문자에 해당하는 65라는 코드값이 저장된다.

```
Dec Hx Oct Html Chr Dec Hx Oct Html Chr
64 40 100 @#64; 0
                   96 60 140 @#96;
 65 41 101 A A
                   97 61 141 6#97; a
 66 42 102 B B
                   98 62 142 b b
                   99 63 143 6#99; 0
 67 43 103 a#67; C
 68 44 104 D D
                  |100 64 144 d d
 69 45 105 E E
                  |101 65 145 @#101; e
 70 46 106 6#70; F 102 66 146 6#102; f
 71 47 107 6#71; G 103 67 147 6#103; g
 72 48 110 6#72; H 104 68 150 6#104; h
 73 49 111 6#73; I 105 69 151 6#105; i
 74 4A 112 6#74; J | 106 6A 152 6#106; j
 75 4B 113 4#75; K 107 6B 153 4#107; k
76 4C 114 6#76; L 108 6C 154 6#108; L
77 4D 115 6#77; M | 109 6D 155 6#109; M
```

아스키코드를 보면 "7비트체계"로 128가지의 문자를 표현할 수 있다  $'A' \rightarrow 65$ 

영문 -> 아스키코드

한글, 한자 ... -> UTF-8, UTF-16, EUC-KR ...

한글이나 한자를 표현하기 위해 다양한 코드체계가 만들어졌다

part

#### 실수 자료형

- 실수 자료형은 정수부분과 소수부분을 따로 표현한다.
- 예를 들어 3.14를 표현한다면 3이라는 정수부분과 .14라는 소수부분을 따로 표현한다.  $float\ f=3.14f;$
- 실수 자료형에는 float형과 double형이 있다.



03

#### 논리형

- 논리자료형은 참, 거짓 값을 나타낼 때 사용한다.
- true는 참, false는 거짓을 의미한다.
- 결혼을 했는지? 값이 존재하는지? 와 같은 여부를 나타낼 때 주로 사용한다.

#### 네이밍 규칙

- 변수의 이름은 일반적으로 is~로 시작한다.

### boolean isMarried = false;

### 상수와 리터럴

#### 상수

- 상수는 프로그램에서 변하지 않는 수를 만들 때 사용한다.
- 상수는 한번 선언하면 변경할 수 없다.
- 예를 들어 원주율이나 1년은 12개월이라는 값 등이 있다.

#### 리터럴

- 리터럴은 프로그램에서 사용하는 모든숫자, 문자, 논리값을 말한다.

final double PI = 3.14; int i = 10; char ch = 'a'; 상수 키워드 boolean b = true;

### 형변환

### 형변환이란?

#### 형변환이란?

- 형변환은 자료형을 다른 자료형으로 변환하는 것을 말한다.

#### 형변환의 특징

- 형변환은 크게 자동형변환과 강제형변환으로 구분한다.
- 바이트크기가 더크거나, 더정밀한 자료형으로 바꿀 때는 형변환이 자동으로 이루어진다.
- 반대로 형변환을 하려면 강제로 변환해야 하고, 값 손실이 발생할 수 있다.



### 형변환

### 자동형변환

#### 자동형변환의 규칙

- 바이트 크기가 작은 자료형에서 큰 자료형으로 대입하면 형변환이 자동으로 이루어진다.
- 덜 정밀한 자료형에서 더 정밀한 자료형으로 대입하면 형변환이 자동으로 이루어진다.



### 형변환

#### 자동형변환과 강제형변환의 차이점

- 자동형변환 예시를 보면 byte형은 1바이트이고 int형은 4바이트이므로 자료손실없이 값이 옮겨진다.

자동형변환과 강제형변환

- 강제형변환 예시를 보면 값 1000은 byte형 범위를 넘기 때문에 값이 손실되었다.

byte b = 10;

int i = b; → 출력결과: 10



int i = 1000;

byte b = (byte) i; → 출력결과: -24



부호비트가 짤려서 음수로 변함