Feature Extraction

Knowledge Discovery and Data Mining 1

Roman Kern

KTI, TU Graz

2014-10-23

Big picture: KDDM

Outline

Introduction

2 Feature Extraction from Text

 $\underset{\text{Review of the preprocessing phase}}{\text{Review of the preprocessing phase}}$

- Initial phase of the Knowledge Discovery process
- ... acquire the data to be analysed
- e.g. by **crawling** the data from the Web
- ... prepare the data
- e.g. by **cleaning** and **removing outliers**

Simple Web crawling schema

Web information extraction

- Web information extraction is the problem of extracting target information item from Web pages
- ullet o Two problems
 - Extract information from natural language text
 - Extract structured data from Web pages
- Three basic approaches for wrapper generation:
 - Manual simple approach, but does not scale for many sites
 - Wrapper induction supervised approach
 - 4 Automatic extraction unsupervised approach

Data cleaning

- Often data sets will contain:
 - Unnecessary data
 - Missing values
 - Noise
 - Incorrect data
 - Inconsistent data
 - Formatting issues
 - Duplicate information
 - Disguised data
- These factors will have an impact on the results of the data mining process

Garbage in \rightarrow garbage out

Types of outliers

Feature Extraction

What are features?

Data vs. Information

- Raw data is useless
- Need techniques to (automatically) extract information from it
- Data: recorded (collected, crawled) facts
- Information: (novel, informative, implicit, useful, ...) patterns within the data

What are features?

- An individual measurable property of a phenomenon being observed
- The items, that represent knowledge suitable for Data Mining algorithms
- A piece of information that is potentially useful for prediction

They are sometimes also called attributes (Machine Learning) or variables (statistics).

Example of features:

- Images → colours, textures, contours, ...
- ullet Signals o frequency, phase, samples, spectrum, ...
- ullet Time series o ticks, trends, self-similarities, ...
- ullet Biomed o dna sequence, genes, ...
- ullet Text o words, POS tags, grammatical dependencies, ...

Features encode these properties in a way suitable for a chosen algorithm

Types of Features

- Numeric (for quantitative data)
 - Continuous, e.g. height, time, ...
 - Discrete, e.g. counts
- Categorial (for qualitative data, level of measurement [Stevens 1946])
 - Nominal
 - Two or more categories
 - e.g. gender, colour
 - Ordinal
 - There is an ordering within the values
 - e.g. ranking
 - Interval, if intervals are equally split, e.g. Likert scale, date
 - Ratio, for intervals with a defined zero point, e.g. temperature, age

Binary features are quite common - what are they?

Categories of Features

- Contextual features
 - e.g. n-grams, position information
- Stuctural features
 - e.g. structural markups, DOM elements
- Linguistic features
 - e.g. POS tags, noun phrases
- o ...

Example for feature extraction

- Handwriting recognition
- ... popular introductory example in textbooks about machine learning,
 e.g. Machine Learning in Action [Harrington 2012]

Example for feature extraction

- Input: A collection of scanned in handwritten digits
- Preprocessing:
 - Remove noise
 - Adapt saturation changes, due to differences in pressure when writing
 - Normalise to the same size
 - Center the images, e.g. center of mass or bounding box
- Feature extraction:
 - Pixels as binary features

Depending on the algorithm to center the images, some algorithm improve in performance, e.g. SVM according to the authors of the MNIST data set

Text mining

Introduction

Text mining

=

data mining (applied to text data)

+

basic linguistics

Text Mining is understood as a process of automatically extracting meaningful, useful, previously unknown and ultimately comprehensible information from textual document repositories.

Text mining - example pipeline

Feature Extraction from Text

Example: Part-of-Speech Tagging

POS - Introduction

What is Part-of-Speech?

- The process to apply word classes to words within a sentence
- For example
 - Car → noun
 - Writing \rightarrow *noun* or *verb*
 - Grow $\rightarrow verb$
 - From → preposition

Open vs closed word classes

- Prepositions (closed, e.g. "of", "to", "in")
- Verbs (open, e.g. to "google")

POS - open classes

Open classes

Four main open classes:

- Nouns
- Verbs
- Adjectives
- Adverbs

POS - open classes

Nouns

- Proper nouns
 - e.g. names of persons or entities, e.g. Linux
- Common nouns
 - Count nouns, can be enumerated, e.g. one goat
 - Mass nouns, conceptualised as a homogeneous group, e.g. snow

Adjectives

- Adjectives for concepts such as
 - Color, age, value and others

POS - open classes

Verbs

- non-3rd-person-singular (eat)
- 3rd-person-singular (eats)
- Progressive (eating)
- Past participle (eaten)

Adverbs

- Modifying "something" (often verbs)
- Unfortunately, John walked home extremely slowly yesterday
- Directional, locative, degree, manner and temporal adverbs

Closed classes

Main classes:

- Prepositions
- Determiners
- Pronouns
- Conjunctions
- Auxiliary verbs
- Particles
- Numerals

Preposition

- Occur before noun phrases, often indicating spatial or temporal relations
- on, under, over, near, by, at, from, to, with

Determiner ("Artikelwörter")

• a, an, the

Pronoun

- Often act as a kind of shorthand for referring to some noun phrase or entity or event
- she, who, I, others

Conjunctions ("Bindewörter")

- Used to join two phrases, clauses or sentences
- and, but, or, as, if, when

Auxiliary verbs ("Hilfsverben")

- Mark whether an action takes place in the present, past or future, whether it is completed, whether it is negated and whether an action is necessary, possible, suggested or desired
- can, may, should, are

Particles ("Verbindungswörter")

- A word that resembles a preposition or an adverb, often combines with a verb to form a larger unit (went on, throw off, etc.)
- up, down, on, off, in, out, at, by, into, onto

Numerals

• one, two, three, first, second, third

What is POS tagging?

Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word in a corpus [Jurafsky & Martin]

POS tagging process

- Input: a string of words and a specified tagset
- Output: a single best match for each word

Figure: Assing words to tags out of a tagset [Jon Atle Gulla]

Examples:

- Book that flight.
- VB DT NN
- Does that flight serve dinner?
- VBZ DT NN VB NN

This task is not trivial

- For example: "book" is ambiguous (noun or verb)
- Challenge for POS tagging: resolve these ambiguities!

POS tagging - tagsets

Tagset

The tagset is the vocabulary of possible POS tags

Choosing a tagset

Striking a balance between

- Expressiveness (number of different word classes)
- "Classifiability" (ability to automatically classify words into the classes)

POS tagging - tagsets

Examples for existing tagsets:

- Brown corpus, 87-tag tagset (1979)
- Penn Treebank, 45-tag tagset, selected from Brown tagset (1993)
- C5, 61-tag tagset
- C7, 146-tag tagset
- STTS, German tagset (1995/1999) http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/TagSets/ stts-table.html

The Brown corpus

- 1 mio words of American English texts, printed in 1961
- Sampled from 15 different text categories
- The first, and for a long time the only, modern, computer readable general corpus.
- The Corpus is divided into 500 samples of 2000+ words each.
- The samples represent a wide range of styles and varieties of prose.
 - General fiction, mystery, science fiction, romance, humour,
 - Sources books, newspapers, magazines, ...
- Does not include the tagset, the "Brown Corpus Tagset" represents a tagset that has been applied to the Brown Corpus
- http://icame.uib.no/brown/bcm.html

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing, or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	2'	27	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([, (, {, <})$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Figure: Penn Treebank POS tags

Penn Treebank

- Over 4.5 mio words
- Presumed to be the first large syntactically annotated corpus
- Annotated with POS information
- And with skeletal syntactic structure

Two-stage tagging process:

- Assigning POS tags automatically (stochastic approach, 3-5% error)
- Correcting tags by human annotators

Table 4: Penn Treebank (as of 11/92)					
Description	Tagged for Part-of-Speech (Tokens)	Skeletal Parsing (Tokens)			
Dept. of Energy abstracts	231,404	231,404			
Dow Jones Newswire stories	3,065,776	1,061,166			
Dept. of Agriculture bulletins	78,555	78,555			
Library of America texts	105,652	105,652			
MUC-3 messages	111,828	111,828			
IBM Manual sentences	89,121	89,121			
WBUR radio transcripts	11,589	11,589			
ATIS sentences	19,832	19,832			
Brown Corpus, retagged	1,172,041	1,172,041			
Total:	4,885,798	2,881,188			

Figure: Penn Treebank POS corpus

How hard is the tagging problem?

Unambiguous (1 tag)	35,340	
Ambiguous (2–7 tags)	4,100	
2 tags	3,760	
3 tags	264	
4 tags	61	
5 tags	12	
6 tags	2	
7 tags	1	("still")

Figure: The number of word classes in the the Brown corpus by degree of ambiguity

Main approaches for POS tagging

- Rule based
 - ENGTWOL tagger
- Transformation based
 - Brill tagger
- Stochastic
 - HMM tagger

Rule based POS tagging

- A two stage process
 - \blacksquare Assign a list of potential parts-of-speech to each word, e.g. BRIDGE $\to V\ N$
 - Using rules, eliminate parts-of-speech tags from that list until a single tag remains
- ENGTWOL uses about 1.100 rules to rule out incorrect parts-of-speech

Input

Rules

```
ADVERBIAL-THAT RULE

Given input: "that"

if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier */

(+2 SENT-LIM); /* and following which is a sentence boundary; */

(NOT -1 SVOC/A); /* and the previous word is not a verb like */

/* 'consider' which allows adjs as object complements */

then eliminate non-ADV tags
else eliminate ADV tag
```

Transformation based POS tagging

- Brill Tagger [Brill 1995]
- Combination of rule-based tagger with supervised learning
- Rules:
 - Initially assign each word a tag (without taking the context into account)
 - \bullet Known words \to assign the most frequent tag
 - Unknown word \rightarrow e.g. noun (guesser rules)
 - ullet Apply rules iteratively (taking the surrounding context into account o context rules)
 - e.g. If Trigger, then change the tag from X to Y,
 - If Trigger, then change the tag to Y
- Typically 50 guessing rules and 300 context rules
- Rules have been induced from tagged corpora by means of Transformation-Based Learning (TBL)

Transformation-Based Learning - based on tagged training data set

- Generate all rules that correct at least one error
- 2 For each rule:
 - Apply a copy of the most recent state of the training set
 - Score the result using the objective function (e.g. number of wrong tags)
- Select the rules with the best score
- Update the training set by applying the selected rules
- **3** Stop if the the score is smaller than some pre-set threshold T; otherwise repeat from step 1

Stochastic part-of-speech tagging

- Based on probability of a certain tag given a certain context
- Necessitates a training corpus
- No probabilities available for words not in training corpus
 - Smoothing
- Simple Method: Choose the most frequent tag in the training text for each word
 - Result: 90% accuracy
 - Baseline method
- Lot of non-trivial methods, e.g. Hidden Markov Models (HMM)

Motivation

- Statistical NLP aims to do statistical inference for the field of NL
- Statistical inference consists of taking some data (generated in accordance with some unknown probability distribution) and then making some inference about this distribution.
- An example of statistical inference is the task of language modelling (ex how to predict the next word given the previous words)
- In order to do this, we need a model of the language.
- Probability theory helps us finding such model

The noisy channel model

- Given an input stream of data, which gets corrupted in a noisy channel
- Assume, the input has been a string of words with their associated POS tags
- The output we observe is a string of words
- $\bullet \; \mathsf{Word} + \mathsf{POS} \to \mathsf{noisy} \; \mathsf{channel} \to \mathsf{word}$
- The task is to recover the missing POS tag

Markov models & Markov chains

- Markov chains can be seen as a weighted finite-state machines
- They have the following Markov properties, where X_i is a state in the Markov chain, and s is a value that the state takes:
 - Limited horizon: $P(X_{t+1} = s | X_1, ..., X_t) = P(X_{t+1} = s | X_t)$ (first order Markov models)
 - ullet ... the value at state t+1 just depends on the previous state
 - Time invariant: $P(X_{t+1} = s | X_t)$ is always the same, regardless of t
 - ... there are no side effects

Example of a **transition matrix** (A) corresponding to a Markov model for word sequences involving: *the*, *dogs*, *bit*:

	the	dogs	bit
the	0.01	0.46	0.53
dogs	0.05	0.15	0.80
bit	0.77	0.32	0.01

P(dogs|the) = 0.46 ... the probability of word dogs to follow the is 46%.

Example of a **initial probability matrix** (π) :

the | 0.7 dogs | 0.2 bit | 0.1

Note: The A matrix can be seen as bi-gram Language Model and π as unigram Language

- What is the probability of the sequence "the dogs bit"?
- \rightarrow multiply the probabilities:
 - $P(the, dogs, bit) = \pi(the) * A(dogs|the) * A(bit|dogs) = 0.7 * 0.46 * 0.80 = 0.2576$
- What is the probability of dogs as the second word?
- → add the probabilities:
 - $p(w_2 = dogs) = \pi(the) * A(dogs|the) + \pi(dogs) * A(dogs|dogs) + \pi(bit) * A(dogs|bit)$

If we have the probability of the other two words (*the*, *bit*) as second word, we can determine which is the best second word.

Hidden Markov Models

- Now, that we are given a sequence of words (observation) and want to find the POS tags?
 - Each state in the Markov model will be a POS tag (hidden state), but we don't know the correct state sequence
 - The underlying sequence of events (= the POS tags) can be seen as generating a sequence of words
 - ... thus, we have a Hidden Markov Model
- ⇒ Requires an additional emission matrix (B), linking words to POS tags

Hidden Markov Models

Needs three matrices as input: A (transmission, POS \mapsto POS), B (emission, POS \mapsto Word), π (initial probabilities, POS)

Hidden states: DET, N, and VB

... then the **transmission matrix** (A - POS \rightarrow POS) could look like:

	DET	N	VB
DET	0.01	0.89	0.10
N	0.30	0.20	0.50
VB	0.67	0.23	0.10

... **emission matrix** ($B - POS \rightarrow word$):

				chased				
DET	0.33	0.0	0.0	0.0	0.33	0.33	0.0	
N	0.0	0.2	0.1	0.0	0.0	0.0	0.15	
VB	0.0	0.1	0.6	0.0 0.3	0.0	0.0	0.0	

... initial probability matrix (π) :

DET	0.7
N	0.2
VB	0.1

Generative model

- In order to generate sequence of words, we:
 - **1** Choose tag/state from π
 - Choose emitted word from corresponding row of B
 - 3 Choose transition from corresponding row of A
 - GOTO 2 (while keeping track of the probabilities)
- This is easy, as the state stays known
- If we wanted, we could generate all possibilities this way and find the most probable sequence

State sequences

- Given a sequence of words, we don't know with tag sequence generated it, e.g. "the bit dogs"
 - DET N VB
 - DET N N
 - DET VB N
 - DET VB VB
- Each tag sequence has different probabilities
- → we need an algorithm which will give us the best sequence of states (i.e. tags) for a given sequence of words

Three fundamental problems

- **Operation** Probability estimation: How do we efficiently compute probabilities, i.e. $P(O|\mu)$ the probability of an observation sequence O given a model μ
 - $\mu = (A, B, \pi)$, A ... transition matrix, B ... emission matrix, π initial probability matrix
- **2** Best path estimation: How do we choose the best sequence of states X, given our observation O and the model μ
 - How do we maximise P(X|O)?
- **3** Parameter estimation: From a space of models, how do we find the best parameters $(A, B, \text{ and } \pi)$ to explain the observation
 - How do we (re)estimate μ in order to maximise $P(O|\mu)$?

Three fundamental problems

- Probability estimation
 - Dynamic programming (summing forward probabilities)
- Best path estimation
 - Viterbi algorithm
- Parameter estimation
 - Baum-Welch algorithm (Forward-Backward algorithm)

Simplifying the probabilities

- ullet argmax_{$t_{1,n}$} $P(t_{1,n}|w_{1,n}) = \operatorname{argmax}_{t_{1,n}} P(w_{1,n}|t_{1,n}) P(t_{1,n})$
- ullet \rightarrow refers to the whole sentence
- ... estimating probabilities for an entire sentence is a bad idea
- Markov models have the property of limited horizon: one state refers only back the previous (n, typically 1) steps - is has no memory
- ... other assumptions

Simplifying the probabilities

- Independence assumption: words/tags are independent of each other
 - For a bi-gram model:

•
$$P(t_{1,n}) \approx P(t_n|t_{n-1})P(t_{n-1}|t_{n-2})...P(t_2|t_1) = \prod_{i=1}^n P(t_i|t_{i-1})$$

- A word's identity only depends on its tag
 - $P(w_{1,n}|t_{1,n}) \approx \prod_{i=1}^{n} P(w_i|t_i)$
- The final equation is:
- $\hat{t}_{1,n} = \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$

Probability estimation for tagging

- How do we get such probabilities?
- → With supervised tagging we can simply use Maximum Likelihood Estimation (MLE) and use counts (C) from a reference corpus
 - $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$
 - $P(w_i|t_i) = \frac{C(w_i,t_i)}{C(t_i)}$
- Given these probabilities we can finally assign a probability to a sequence of states (tags)
- To find the best sequence (of tags) we can apply the Viterbi algorithm

There is a IPython notebook for playing around with HMMs

Probability estimation

- Given an observation, estimate the underlying probability
- e.g. recall PMF for binomial: $p(k) = \binom{n}{k} (1-p)^{n-k} p^k$
- We want to estimate the best p:
- $\operatorname{argmax}_p P(observed\ data) = \operatorname{argmax}_p \binom{n}{k} (1-p)^{n-k} p^k$
- ullet ightarrow derivative to find the maxima $(0=rac{\partial}{\partial p}inom{n}{k}(1-p)^{n-k}p^k$)
- For large np one can approximate p to be $\frac{k}{n}$ (and standard deviation of $\sqrt{\frac{k(n-k)}{n^3}}$ for independent and an unbiased estimate)

There are alternative versions on how to estimate the probabilities

- Does work for cases, where there is evidence in the corpus
- But what to do, if there are rare events, which just did not make it into the corpus?
- Simple non-solution: always assume their probability to be 0
- Alternative solution: smoothing

Will the sun rise tomorrow?

- Laplace's Rule of Succession
- We start with the assumption that rise/non-rise are equally probable
- On day n + 1, we've observed that the sun has risen s times before
- $p_{Lap}(S_{n+1} = 1|S_1 + ... + S_n = s) = \frac{s+1}{n+2}$
- What is the probability on day 0, 1, ...?

Laplace Smoothing

- Simply add one:
- $\bullet \ \frac{C(t_{i-1},t_i)}{C(t_{i-1})} \Rightarrow \frac{C(t_{i-1},t_i)+1}{C(t_{i-1})+V(t_{i-1},t)}$
- ... where $V(t_{i-1}, t) = |\{t_i | C(t_{i-1}, t_i) > 0\}|$ (vocabulary size)
- ullet Can be further generalised by introducing a smoothing parameter λ

Also called Lidstone smoothing, additive smoothing

Estimate the smoothing parameter

- $\bullet \frac{C(t_{i-1},t_i)+\lambda}{C(t_{i-1})+\lambda V(t_{i-1},t)}$
- ullet ... typically λ is set between 0 and 1
- How to choose the correct λ ?
- Separate a small part of the training set (held out data)
 - ... development set
- Apply the maximum likelihood estimate

State-of-the-Art

Syst	em name	Short description	All tokens	Unknown words
TnT	-	Hidden markov model	96.46%	85.86%
MEI	t	MEMM	96.96%	91.29%
GEN	liA Tagger	Maximum entropy	97.05%	Not available
Ave	raged Perceptron	Averaged Perception	97.11%	Not available
Max	ent easiest-first	Maximum entropy	97.15%	Not available
SVN	/ITool	SVM-based	97.16%	89.01%
LAF	OS	Perceptron based	97.22%	Not available
Mor	če/COMPOST	Averaged Perceptron	97.23%	Not available
Star	nford Tagger 2.0	Maximum entropy	97.32%	90.79%
LTA	G-spinal	Bidirectional perceptron	97.33%	Not available
SCC	:N	Condensed nearest neighbor	97.50%	Not available

Taken from:

http://aclweb.org/aclwiki/index.php?title=POS_Tagging_%28State_of_the_art%29

Thank You!

Next up: Feature Engineering