

# PROCESO DE GESTIÓN DE FORMACIÓN PROFESIONAL INTEGRAL FORMATO GUÍA DE APRENDIZAJE

- 1. IDENTIFICACIÓN DE LA GUIA DE APRENIZAJE: Guía Aplicación de calidad Software
  - Denominación del Programa de Formación: Tecnólogo en Análisis y desarrollo de Software
  - Código del Programa de Formación: 228106
  - Nombre del Proyecto: Sistema Integral Web Para Gestión De Procesos Educativos Del CSF.
  - Fase del Proyecto: Evaluación.
  - Actividad de Proyecto: Determinar la estructura lógica del sistema.
  - Competencia: 38369 Controlar la calidad del servicio de software de acuerdo con los estándares técnicos.
  - Resultados de Aprendizaje Alcanzar: 593145 03 Realizar Actividades de Mejora de la Calidad del Software a Partir de los Resultados de la Verificación.
  - Duración de la Guía: 36 HORAS

#### 2. PRESENTACIÓN

• El uso de herramientas como Codacy y SonarQube es fundamental para garantizar la calidad del software, ya que permiten analizar el código fuente en busca de errores, vulnerabilidades de seguridad, duplicaciones y malas prácticas que afectan la mantenibilidad del sistema. Estas plataformas automatizan la revisión del código, fomentan la mejora continua y aseguran que los equipos de desarrollo cumplan con los estándares de calidad definidos por la norma ISO/IEC 25010, la cual establece los atributos esenciales del producto de software, como la confiabilidad, eficiencia, seguridad y mantenibilidad.

En consecuencia, su implementación contribuye directamente al desarrollo de soluciones más seguras, sostenibles y alineadas con buenas prácticas internacionales de ingeniería de software.



## 3. FORMULACIÓN DE LAS ACTIVIDADES DE APRENDIZAJE

## 3.1 - Foro - Base de datos. Duración: 3 horas - Trabajo: Individual

Para iniciar con esta actividad nos haremos las siguientes preguntas.

- 1. ¿Qué entiendes por calidad del software y por qué consideras que es importante garantizarla durante el ciclo de desarrollo?
- 2. ¿Qué tipos de errores o defectos puede detectar una herramienta de análisis de código como SonarQube o Codacy?
- 3. Según la **norma ISO/IEC 25010**, ¿cuáles son las **características principales** que debe tener un software de calidad?
- 4. ¿Por qué es importante integrar la revisión de código (Code Review) dentro del proceso de desarrollo en equipo?

Esta investigación y conclusión se evidenciara un informe con la entrega final.

### 3.2 - Taller Práctico — Revisión de Calidad de Software Web. Duración: 33 horas.

## **©** Objetivo de la actividad

Desarrollar una aplicación web funcional con estructura completa (Login, Dashboard, CRUD de productos y tipos de productos), implementando buenas prácticas de programación y realizando una **revisión de calidad del código** mediante herramientas especializadas como **SonarQube** o **Codacy** evidenciando los siguiente items.

- 1. Aplicar los conceptos de autenticación, administración y manejo de datos en un entorno web.
- 2. Implementar operaciones CRUD (crear, leer, actualizar, eliminar) para la gestión de productos.
- 3. Integrar un sistema de control de versiones mediante GitHub.
- 4. Evaluar la calidad del código y realizar correcciones con base en un análisis automatizado.

## Descripción del taller

El aprendiz deberá crear **una página web funcional** basada en el **tema otorgado por el instructor**, la cual cuente con:

- Un módulo de autenticación (Login).
- Un dashboard o panel de administración.
- Un CRUD de dos tablas:
  - o productos
  - o tipos\_productos



El proyecto deberá publicarse en **GitHub** y someterse a una revisión de calidad con **SonarQube (Cloud o Desktop)** o **Codacy**.

Posteriormente, se analizarán los **errores encontrados antes y después de su corrección**, documentando el proceso.

Para el desarrollo de la actividad se deben seguir las siguientes instrucciones descritas en el material de apoyo suminstrado por el instructor.



## Entregables

- 1. Carpeta del proyecto web completo (código fuente).
- 2. Link del repositorio GitHub público.
- 3. Capturas de:
  - ✓ Login
  - ✓ Dashboard
  - ✓ CRUD
  - ✓ Escaneo en SonarQube o Codacy
  - ✓ Correcciones de errores antes y después

## 4. Documento PDF con:

- ✓ Descripción del desarrollo.
- ✓ Resultados del análisis de calidad.
- ✓ Tabla comparativa de errores corregidos.
- ✓ Conclusiones personales.

# 4. PLANTEAMIENTO DE EVIDENCIAS DE APRENDIZAJE PARA LA EVALUACIÓN EN EL PROCESO FORMATIVO.

| Fase del<br>proyecto<br>formativo | Actividad del<br>proyecto<br>formativo | Actividad de<br>Aprendizaje | Evidencias de<br>Aprendizaje | Criterios de<br>Evaluación | Técnicas e<br>Instrumentos<br>de Evaluación |
|-----------------------------------|----------------------------------------|-----------------------------|------------------------------|----------------------------|---------------------------------------------|
|                                   |                                        |                             |                              |                            |                                             |



### **5. GLOSARIO DE TÉRMINOS**

- Mantenibilidad: Capacidad de un software para ser modificado, corregido o mejorado de manera eficiente sin introducir nuevos errores. Una alta mantenibilidad facilita la evolución del sistema a lo largo del tiempo.
- **Confiabilidad:** Grado en que un sistema realiza sus funciones de manera consistente y sin fallos bajo condiciones establecidas. Un software confiable reduce los errores y aumenta la satisfacción del usuario.
- **Usabilidad:** Facilidad con la que los usuarios pueden aprender, comprender y operar un software. Involucra aspectos de diseño, claridad de interfaz y experiencia del usuario (UX).
- Eficiencia del rendimiento: Relación entre los recursos utilizados (tiempo, memoria, procesamiento) y el nivel de desempeño alcanzado. Un software eficiente optimiza sus recursos para ofrecer respuestas rápidas y estables.
- **Seguridad:** Capacidad del software para proteger la información y evitar accesos no autorizados, vulnerabilidades o pérdida de datos. Es uno de los pilares de la calidad definidos en la norma **ISO/IEC 25010**.

#### 6. REFERENTES BILBIOGRÁFICOS

- International Organization for Standardization. (2011). ISO/IEC 25010:2011 Systems and software engineering Systems and software Quality Requirements and Evaluation (SQuaRE) System and software quality models. Ginebra: ISO. Disponible en: <a href="https://www.iso.org/standard/35733.html">https://www.iso.org/standard/35733.html</a>
- Sommerville, I. (2016). Software Engineering (10th ed.). Pearson Education. Disponible en: https://www.pearson.com/en-us/subject-catalog/p/software-engineering/P200000003758

#### 7. CONTROL DEL DOCUMENTO

|            | Nombre                          | Cargo          | Dependencia          | Fecha                   |
|------------|---------------------------------|----------------|----------------------|-------------------------|
| Autor (es) | Javier Leonardo Pineda<br>Uribe | Instructor G19 | Planta - Provisional | 8 de Octubre de<br>2025 |

## **8. CONTROL DE CAMBIOS** (diligenciar únicamente si realiza ajustes a la guía)

|            | Nombre | Cargo | Dependencia | Fecha | Razón del Cambio |
|------------|--------|-------|-------------|-------|------------------|
| Autor (es) |        |       |             |       |                  |