Real-time assessment of motives for sharing and creating content among highly active Twitter users

Philipp Lorenz-Spreen^{1,*} Briony Swire-Thompson³ Ruben C. Arslan^{1,2} Michael Geers^{1,4} Ralph Hertwig¹

Anastasia Kozyreva¹ Stefan M. Herzog¹

¹Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany

²University of Leipzig, Leipzig, Germany

³Northeastern University, Boston, USA

⁴Department of Psychology, Humboldt University of Berlin, Berlin, Germany

*lorenz-spreen@mpib-berlin.mpg.de

July 2, 2024

Abstract

What motivates people to share and create content online? In real time, we linked each of N=2,762 individual posts (retweets and newly created content) with the self-reported motives from a sample of N=137 highly active US Twitter users over the course of one week. We also captured their total activity of N=48,419 posts over 10 weeks (March-May 2022). Our results reveal that sharing (retweeting) political content stemmed mostly from motives related to expression and identity. When creating content, participants were more likely to be motivated by the goals of informing and persuading others, for which they used negative language and expressed outrage. In contrast, entertaining content and positive language was used for socializing and attention. Original and political content featuring outrage and anger was more likely to be subsequently retweeted by others. These findings may denote adaptive strategies in the incentive structure of social media that rewards such content.

Introduction

Online—and on social media in particular—content is to a large extent shared and created through self-organized behaviour. As a result, individual decisions to share and create various types of content can drive the overall spread of information, thereby collectively influencing societal opinion formation [1–3]. As a consequence, a question that is becoming increasingly important is: What motives are behind sharing and creating content, and do they link to expressions of outrage or negative emotionality?

While the sharing and creation of information has long been considered an integral part of cultural evolution beyond social media [4–6] their processes and roles have undergone considerable changes in the digital age [7, 8]. So far, there is little insight into why people choose to share or create certain content online. We therefore investigated in depth the motives of people who are very active on social media and how they relate to the modes of interaction on the platform and the content itself. We focused on Twitter (prior to its rebrand as X) and used the survey platform formr [9] to implement a novel paradigm for ecological momentary assessment (EMA) that connects actual behavior with small survey questionnaires in real time, using the Twitter API (see Fig. 1A for an illustration). Our sample of active U.S. Twitter users allowed us to quantify various aspects of the content creation and sharing process, such as the actual content being created and the extent to which it was subsequently shared by others.

Ideally, for public discourse and accurate opinion-formation, people would share and create information on social media primarily because they consider the information to be important and true and follow the seemingly rational motive of disseminating correct information. But sharing and creating information may be disconnected from accuracy [10] and may instead serve a variety of other goals

and functions [11, 12]. Qualitative interviews have found a plethora of motives behind posting on social media, including social interaction, entertainment, and expressing one's opinion [13, 14]. Various surveys have found similar motives, including enjoyment, self-efficacy, social engagement, reputation-building [15], socializing and status seeking [16–21], and political engagement [22]. Moreover, sharing conspiracy theories specifically has been linked to motives such as fostering in-group beliefs and a need for chaos [23, 24].

Another line of research investigating the dynamics of content dissemination has made use of platform data. For instance, studies have found that posts that are moral—emotional [25, 26] or derogatory [27] tend to receive more engagement and shares (but see also [28]). In addition, controlled experiments have shown that emotional content [29] and interesting-if-true content [30] can lead to subsequent sharing. Similarly, antagonistic social content seems to provoke replies [31]. Yet none of these studies examined the specific motives driving users' behaviors.

Two recent studies did make the connection between motives and content. Namely, Osmundsen at al. linked survey data about motives with observational data from social media [32] and found that political polarization and pushing one's political agenda were the primary motives for sharing true as well as false news. However, motives were aggregated for individuals without examining whether different content was associated with different motives within individuals. Finally, another study, Marie and Petersen, that built on the same method and combined observational data with a controlled experiment suggested that posting on social media may be also driven by the desire to garner positive reactions from a politically like-minded audience. However, it is important to note that the experiments were based on hypothetical content and sharing intentions [33]. These studies show impressively how important the interplay of motives, content and context is, but do not yet reach the level of the individual posting decision in an ecologically valid setting.

In summary, the available evidence suggests a plethora of motives for information-sharing behavior on social media, comprising informational, social, and attention-directing goals. The connections between motives and actual online behavior, however, have rarely been studied. Past research has rarely taken into account that the motives for sharing and creating content on social media can depend on both context and content, and an individual may act on the basis of multiple motives. The existing evidence exhibits the strengths and weaknesses of each methodology. On one hand, retrospective surveys rely on participants' memory of past behaviors, and more controlled experimental studies rely on hypothetical rather than actual posting behaviors [33, 34]. On the other hand, observational data allow for measuring actual behavior, but the motivational drivers behind the behaviors are unknown. Combining ecologically valid digital trace data with self-reported survey responses on the level of individual posts therefore provides the best of both worlds [35, 36]. In addition, using EMA establishes a temporally closer link between behavior and self-report.

Our goal is to reveal and describe the multitude and complexity of the motives at play, as well as their context dependency. Understanding the motivational drivers behind posting behavior and the resulting dynamics is necessary for designing effective interventions and regulations for social media [12]. Although several behavioral interventions are based on the implicit assumption—supported by self-reports on the importance of accuracy [37]—that people share information on social media in order to accurately inform others [10, 38], other motives may play an important role (e.g., when sharing misinformation [39]).

In this study, we aim to understand motives behind active posting behavior on Twitter [40] by linking actual posts on Twitter with small survey questionnaires sent via private message in real-time response to each post (see Fig. 1A for an overview of the procedure; for a more detailed timeline and description see the Methods section and Fig. 5). We generally distinguish sharing content as retweets that merely forward an existing message and creating content as original tweets, quotes, and replies. By investigating actual posted content, we were able to not only connect participants' personal attributes with their motives, but also with the content and context of their individual posts. To analyze posts, we collected features from meta-data (e.g., number of followers, tweet type) and inferred others from the content itself using the ChatGPT API (e.g., topic, sentiment [41]; see Methods for details). This process resulted in three categories of variables: motives, person features, and content features (for details, see Methods and Fig. 1B). The Twitter API allowed us to automate our survey to react to activity and type of tweet in real time, gauging motives for sharing with almost no delay. We used this approach to investigate the following research questions: What are people's self-reported motives for creating content and sharing content on Twitter and how do they vary between and within individuals?

Figure 1: Overview of experimental setup, data structure, and correlational network of variables. A: General data-collection procedure for sharing and creating content. Shared content (content not created by the participant) is recorded via the API and a real-time survey about the motives for sharing it is sent via direct message. In the survey the respective content is repeated and the motive ratings are collected. The resulting three-dimensional data structure, where person features are collected once for each participant in the onboarding survey, motives are collected via multiple real-time survey for each post within the observation period (1 week), and content features are recorded from all content posted during the extended period (9 weeks). B: Network of positive Spearman's rank correlations between person features, content features, and motives. Weighted links represent the correlation coefficient within the 2,762 posts recorded in the active period of data collection.

How do people's motives change depending on the type of post (retweet, original, quote, reply)? How are different content features associated with the motives behind sharing (retweets)? How are different motives associated with the features of content that is created (original tweets, quotes, replies)? And finally, how do these motives and associated content features relate to a post's success?

Results

We conducted an exploratory field study on Twitter over 10 weeks (March–May 2022) to assess people's motives for posting behavior in real time (see Methods for details). We used a stepped-wedge design to average out the influence of external events on posting behavior (see Fig. 5, top row). Participants were recruited in 10 waves, each consisting of 1 week of active data collection. Of the n=2,762 posts collected, n=907 were shared (retweets) and n=1,855 were created (original tweets, quotes, and replies). Participants allowed us to collect their posts for 4 weeks before and 4 weeks after the active observation, resulting in a total of n=48,419 posts (see Fig. 5 for an overview). Overall, this resulted in an average of 39 posts per participant per week. This rate puts our sample in the ballpark of the 10% most active Twitter users—who, as a group, are responsible for 96% of the content on the platform [43]. The behavior of highly active users is of particular interest, given that "supersharers" of misinformation fall in this category [44].

As an initial analysis and to provide an overview, Fig. 1C shows Spearman's rank correlations between all variables as a network visualization. The structure of the network suggests that motives cluster around features of content. For instance, motives related to informing and persuading were linked to political and negative content as well as retweets, while motives linked to expression and identity were more connected to original tweets and replies. Higher education and older age were more connected to political content and its associated motives, whereas younger age was more connected to nonpolitical content and motives related to socializing.

General Distributions of Motives

To examine the self-reported motives for content sharing and creation, we asked participants to indicate the extent to which each of 16 preselected motives (see the methods section for a full list) captured the motives behind their posting behavior. Fig. 2A shows their average motive ratings, separately for two time points: at the beginning of the study (onboarding survey) and in real time, after they had posted on Twitter (EMA). Participants rated the motives of expressing their opinion, connecting with others, drawing attention to a topic, and informing others as most important at both time points. The rank order of motives was fairly consistent between the retrospective and the real-time surveys, with some notable discrepancies. In real-time, motives consistently drew lower average levels of endorsement. Presumably, when reflecting on a specific tweet, participants identified a few motives and excluded the rest, whereas reflecting on their general tweeting behavior made them more likely to endorse multiple motives. In the onboarding survey, participants also seemed to underestimate the importance of motives related to expression and identity, while overestimating the importance of motives related to socializing and attention, relative to the EMAs. Correlations on the level of individual participants between the general and real-time motives were all positive, ranging from .18 (showing achievement) to .67 (deceiving others; see Supplementary Table 1). Lower correlations may have been due to memory error or to the observed week being unrepresentative.

A multilevel structural equation model of the 16 motive real-time ratings suggested that they could be subsumed into four categories (see Supplementary Material for details): motives related to informing and persuading others, to expression and identity, to socializing and attracting attention, and to provocation (see additional labels in Fig. 2). The correlation matrix in Supplementary Fig. 3 further supports the notion that there are clusters of motives at play.

Fig. 2B shows the distributions of the average ratings per participant over the real-time surveys, split by political views. Although the sample of Republican participants consistently gave lower agreement ratings than the samples of Democrats or Independents, the general patterns of agreement were largely similar between all groups. Agreement differences were largest for motives related to socializing and attracting attention, which were more important for Democrats, and for motives related to expression and identity, which were more important for both Independents and Democrats. The ratings of all three groups were similar for the motive of 'proving a point.' Other sociodemographic

Figure 2: Person features and posting type and their relation to motives. **A:** Average agreement ratings for all 16 motives in the onboarding survey (blue) and for the per-participant averaged ratings over all their EMA real-time surveys (red). **B:** Distributions of average agreement ratings averaged for each participant over the real-time surveys, split across shared and created content. **C:** Distributions of average agreement ratings, split across Republicans, Democrats, and Independents. **D:** Explained variance R^2 [42] for the Bayesian regression model 1 for the model components: sociodemographic variables (age, political orientation, employment status, gender, and education), random intercept for each individual participant, type of tweet (original, retweet, quote, and reply), and the within-subject residual that remains unexplained.

variables did not yield large differences in the agreement distributions (see Supplementary Fig. 4). The most notable difference can be seen as a function of age: Younger participants agreed more strongly that they posted content for motives related to expression and identity, whereas older participants agreed more strongly that they posted for motives related to informing and persuading. Also, female participant agreed more strongly that they posted to 'show their emotions' than male participants, who identified more with the motive of 'showing their attitude'.

Motives for Sharing Versus Creating Content

We next examined whether motives for sharing or creating content differed. Fig. 2C shows the average motive ratings per participant, split between shared and created content. While the distributions of motives are similar, small differences can be discerned. Motives of information and persuasion were the dominant motives for sharing content, whereas motives related to expression and identity topped the list of motives to create content. In addition, compared to sharing content, creating content was more strongly associated with the motive of connecting with other. This suggests that, notwithstanding the similar motivational landscape, people create content more out of a desire for personal expression, and share content more to inform others and draw attention to issues.

These results also shed light on an important property of individuals' motivational repertoire: Participants invoked multiple motives, not just a single one. To analyze further how motives vary not only between, but within individuals, we conducted a simple linear regression model for each motive rating (model 1, see Methods for details). The model permits for variations via random intercepts for individual participants as well as for the type of tweet (retweet, original, quote, reply) and includes fixed effects for the following demographic variables: education, employment, age, gender, and political stance. We used the R^2 for Bayesian regression models [42] to calculate the relative contributions of the components of this model to the variance explained, for all 16 motive ratings in the real-time surveys. Fig. 2D shows that demographic variables only explained a small fraction of the variance in the data; individual differences unrelated to demographic variables accounted for a bigger part of the variance the model captures. However, for almost all motives the biggest part of variance was the within-participant residual that remained unexplained by the model. This suggests that other factors may shape people's motives for posting content on Twitter, although it should be noted that the residual also includes noise. This picture is corroborated by descriptive data in Supplementary Fig. 5, which shows the within-subject variability in the top-rated motives. On average, participants reported over five different motives within a week as being the most important for posting a particular content. Almost all participants had a clearly positive Shannon entropy of the distribution of motives they reported in that time, suggesting heterogeneity in an individual's motives over time.

Our approach also allowed us to consider a variety of content features of posts within participants. We collected several features of the content itself, namely, topic, sentiment, emotions being expressed, and the inclusion of an external URL. To consider social context, we collected the follower relationship between the original author of content that was retweeted by our participants. For original tweets, quotes, and replies, we collected the subsequent number of retweets our participants' posts received (see Methods for a full list of content features). Furthermore, when considering the connection between motives and content, the type of posting behavior is crucial [45]. For original tweets, quotes, and replies, motives can be conceptualized as triggers of the tweet's content. For retweets, however, the content in all likelihood triggers motives for sharing. To account for differences in the triggering process, we split the following analysis between pre-existing content that our participants shared (retweets) and content that they themselves created (original tweets, quotes, and replies).

Predictors of Sharing Motives

When someone retweets, they are sharing another person's content with their own followers. To investigate whether this choice is driven by a distinct set of motives, we focused on retweets only, annotated with motive ratings. This resulted in 907 data points that we used in the following linear regression model (in modified Wilkinson notation):

```
model 1: Predictors of sharing motives

motive_rating ~ outrage + category + sentiment + following + url_type + emotion + (1 | user)
```

sharing content

Figure 3: Marginal effect comparison of model estimates for content-feature variables on motive ratings for retweets only, using a linear regression model (see Methods for details). The four dependent variables are the averaged motive ratings of the factors determined by the factor analysis: expression and identity, informing and persuading, socializing and attention, and provocation. Independent variables and their levels are listed in the Methods section. Average marginal contrasts on the x-axes are shown in the units of ratings from the original Likert scale. Values describe the change in response to changing one of the predictor variables listed on the y-axes, relative to the baseline level listed in parentheses. Darker colors represent marginal contrasts further from zero and divided by the width of the confidence interval (95%).

creating content

Figure 4: Marginal effect comparison of model estimates for content-feature variables of created (original tweets, replies, and quotes) posts. **A:** Results of the logistic regression model 2 for political and entertainment content, outrage, sentiment (coded negative to positive), the top three emotions, and presence of an external URL. **B:** Resulting marginal effects of the hurdle lognormal model 3 for subsequent retweets per category of motive. **C:** Resulting marginal contrasts from the hurdle lognormal model for the full sample of posts containing original content.

, where the dependent variables are the four categories of motive ratings: informing and persuading, expression and identity, socializing and attention, and provocation. Fig. 3 shows the resulting marginal contrasts of the content-level variables on motive ratings (expressed in their original units). The results reveal several associations. For example, the presence of external links was generally an important factor for retweeting across most motives, but in particular for motives related to expression and identity as well as to informing and persuading. Furthermore, political content was mostly shared for motives related to expression and identity, but not for motives related to socializing and attention or provocation. Outrage content was retweeted to inform and persuade. Content showing the emotions of joy, anger, and disgust, as well as positive sentiment, seemed to have no pronounced relationship with motives. Whether the tweet's original author was someone the participant followed also had no strong relationship with any motive.

In summary, a multitude of motives were at play when content was retweeted, and these motives varied depending on the content. Political content, negative content, and content expressing outrage was shared for motives that had a public-facing end, such as informing and persuading and expression and identity. Social motives were more closely linked to sharing entertainment content than political content.

Motives predicting Created Content

We used a different set of models to examine the association between motives and the content people create. In these models, content features are the dependent variable and motives are the predictors. This results in a set of logistic regression models, where content_feature is the dependent variable, entailing several binary variables (e.g., whether the content expresses outrage, whether it is political, whether the sentiment is positive or negative), while the four categories of motives represent the predictor variables:

model 2: Motives predicting created content

```
content_feature ~ expression_identity + informing_persuasion + socializing_attention +
    provocation + (1 | user)
```

Filtering the data for creation (original tweets, quotes, and replies) resulted in 1,855 data points. They are the basis of our regression model. Fig. 4A shows the resulting marginal contrasts in units of probability (0 to 1), highlighting that different motives clearly predicted different created content. For example, when people are motivated by informing, persuading, or provoking, it was much more likely that they had written political content. Relatedly, when participants wanted to provoke others, it was much more likely that their created content contained negative emotions like disgust and anger. Content that expressed outrage was mostly created to inform and persuade others, as well as for motives related to expression and identity. For motives related to socializing and gaining attention, participants created mostly nonpolitical content and entertainment content, incorporating positive sentiment and language expressing joy.

Predictors of Retweet Success

Why do social media users resort to negative emotions and outrage when aiming to spread their message, express themselves, and signal their identity? One possibility is that users who are active and experienced on the platform have learned to take advantage of emotions when their goal is to increase the reach of their messages on Twitter [46]. Here we investigate this issue in more detail.

To model a tweet's success (i.e., the likelihood of it being retweeted and the number of retweets it receives), we used a hurdle lognormal model with the dependent variable being the number of retweets. Only a few motives related to informing and persuading others predicted retweet success (Fig. 4B). This resonates with the public-facing nature of those motives.

We used another hurdle lognormal model to examine which content features in the full dataset of original content from our sample of created posts (32,870 data points) predicted subsequent retweets:

```
model 3: Predictors of retweet success
```

Resulting marginal contrasts are shown in Fig. 4C. Structural factors such as being a hub (i.e., having more than 3,000 followers) and being original content (vs. quotes or replies) led to more retweets, as did content that was political and expressed outrage or anger.

Discussion

The current study aimed to understand motives behind active posting behavior on Twitter. A number of studies have shed light on what motivates people to share and create content online. However, due to methodological limitations they could not directly connect motives with content. We took a novel approach that combined the real-time elicitation of motives via EMA with the actual behavior in question—namely, sharing or creating content—on the level of individual posts. We observed five key results.

First, we found that people have a large variety of motives when posting content, beyond simply informing others. This rich repertoire can be collapsed into four categories: expression and identity, informing and persuading, socializing and attention, and provocation. In our 1-week observational window, participants selected more than five different motives as the "most important," thereby demonstrating the broad array of motives underlying posting behavior.

Second, even though the distributions of motives behind sharing and creating content were not strikingly different, the motives that participants invoked most were: Motives related to identity and expression were ranked top for creation, whereas motives related to informing and persuading were ranked top for sharing.

Third, people shared political content primarily for the purposes of expression and identity, and less so to socialize or attract attention. By contrast, people created political content to inform, persuade, or provoke. When provocation was the driving force, negative emotions such as anger and disgust permeated the content, whereas when people's motivations were related to informing and persuading, outrage was commonly displayed. Anger, disgust, and outrage were also predictors of the success of a tweet, alongside the number of followers a person has and whether the content is political.

Fourth, for motives related to socializing and gaining attention, people mostly posted entertaining rather than political content. These motives also tend to be linked to joyful content and positive sentiment, possibly because such positive interactions foster bonding and in-group interactions.

Fifth, our results align with previous findings that older adults are generally more interested in news and visit more news sites [47] than younger people. In our sample, older participants reported being more strongly motivated by informing and persuading than younger participants, who were more strongly motivated by expression and identity.

Limitations of our study revolve around the limited number of participants we were able to recruit due to the long and laborious participation for each individual. However, as a trade-off, the design gave us access to many data points on the content level. Our study is therefore not as well powered to detect associations with demographic variables as it is for content features. In future studies, the observation period could be shortened in order to reduce the burden on each participant and thereby be able to involve more participants. This trade-off during recruitment also resulted in some deviations from the preregistration that mostly regarded the data portioning approaches, which were not feasible with our small sample (see https://osf.io/n7wfm; see Methods for a detailed description). Another limitation of the study is rooted in the current lack of a coherent conceptual framework of the types of behaviors we observed and their dependency on platforms' technical affordances [48]. We had to refine our research questions along different types of posts in order to accommodate a phenomenon we had initially overlooked: There are mechanistically different relationships between motives and content depending on whether the content is shared or created. Based on our insights, future studies could focus more specifically on those mechanistic differences.

The use of negative and outraging language (also observed in other studies [26, 27]) for motives related to informing and persuading can be understood as behavior adapted to a platform's affordances and incentives. The engagement-based algorithms that curate content on platforms like Twitter have been shown to favor emotionally charged content [49], thereby increasing its reach. We believe that the negative language and outrage we observed may be a technique people use to reach their goal of spreading their message further. Using negative and outraging language may well be a strategy that our participants have learned through reward learning, with social feedback as the reward [46, 50]. It seems to work: Content that is created with the goal of informing and persuading others does receive more retweets than content created for other motives. Given that our sample belonged to the small group of highly active (and likely experienced) Twitter users, those results may be indicative of how the platform incentivizes the creation of such content by favoring it with social feedback and algorithmic selection.

Motives related to socializing also influence people's posting behavior. The clear differences between content posted for motives related to socializing and content posted for motives related to informing align with previous findings on the general differences between broadcasting versus narrowcasting [51]. Retweets geared at informing others and bringing attention to a topic represent broadcasting; these include more critical and political content. Replies, on the other hand, represent narrowcasting; in our study, these contained less political content and more positive language, and were posted for motives related to socializing.

In sum, our results confirm that motives vary on the level of individual tweets, and show how motives may drive people to share negative and outraging content. Our findings also highlight the importance of designing online environments that do not favor this potentially divisive content [52], of implementing interventions against sharing misinformation that shift people's motives further towards accuracy [53], and of employing algorithms that maximize metrics other than pure engagement [54, 55]. The interplay of motives, content, and platform affordances should be taken into account in all

efforts to understand and improve public discourse online.

Methods

We recruited 195 consenting participants through Twitter advertisements in four different campaigns, each aimed at balancing age and gender. A total of N = 137 participants followed through the whole 1-week observation period and were actively tweeting during that time (see Supplementary Fig. 2 for a description of the sample).

The anonymized data (excluding the original text of posts, user names, exact timestamps, and other details; but including relevant derived content features, e.g., sentiment, topic, number of retweets) can be found at https://osf.io/gqfjs/ alongside the preprocessing and all analysis scripts. We used the survey platform formr [9] to implement an event-driven experience sampling approach during the active observation time, when our participants' Twitter accounts were continuously and automatically monitored. Within 2 minutes of tweeting during their 1-week period of observation, participants received a direct message containing a link to a short survey. The survey displayed the tweet that had just been posted and asked participants about their agreement with 16 statements, each corresponding to one motive for posting that content. The average response rate for the real-time surveys was 67%. See Fig. 5 for the detailed participant timeline, Supplementary Fig. 1 for screenshots of the procedure, and Supplementary Fig. 2 for details on the sample. The resulting data structure consisted of observational data of participants' activity on Twitter, including posts from before and after the active observation period, as well as survey-based data on their demographic and political variables and their self-reported general motives for sharing content on Twitter.

Our original preregistered research questions—which we needed to subsequently refine—were:

- RQ1: What are the main self-reported motives for sharing information on Twitter and how do they vary within and between individuals?
- RQ2: How do these self-reported motives differ for the type of content (e.g., web domain, topic, sentiment) being shared, its context (e.g., popularity, original author), and the type of sharing (tweet, retweet, quote tweet, reply)?
- RQ3: How does sharing behavior change if participants are repeatedly prompted to reflect on their motives for sharing content on Twitter?

To:

- What are people's self-reported motives for creating content and sharing content on Twitter and how do they vary between and within individuals?
- How do people's motives change depending on the type of post (retweet, original, quote, reply)?
- How are different content features associated with the motives behind sharing (retweets)?
- How are different motives associated with the features of content that is created (original tweets, quotes, replies)?
- How do these motives and associated content features relate to a post's success?

The preregistered data partitioning was not feasible due to smaller than expected sample sizes and the exploratory research questions. This combination did not allow for developing an analysis pipeline of a (very small) subset of the data, as further steps depended on the results in our inherently exploratory approach. Without explicit hypothesis, we needed the full data set for identifying the most important relationships in the data.

Preprocessing Pipeline

All preprocessing steps can be found in the 'Make public data' script at https://github.com/philipplorenz/real time motives.

Figure 5: Overview of the study timeline and setup. The general timeline included 10 waves of recruitment in a stepped-wedge design. The participant timeline spanned 4 weeks of passive data collection (after consent, collected in hindsight via the API), 1 week of active data collection (including recruitment via advertisement, the onboarding survey, and the real-time surveys automatically triggered through the API by on-platform activity), and another 4 weeks of passive data collection. The resulting nested data structure from all phases of the study is shown in the bottom row.

Variables Collected

Participants were asked to rate their agreement with the statement "I shared the above tweet ..." followed by 16 predefined motives on a 6-point Likert scale ("strongly agree" to "strongly disagree") derived from the literature [11, 13–23, 25, 29, 30, 32, 56, 57]. The following 16 items were presented in randomized order:

- to inform.
- to entertain.
- to express my opinion (to share my views)
- to provoke others.
- to save the content to my timeline.
- to show my emotions.
- to connect with others (start a conversation).
- to show an achievement.
- to show my attitude.
- to deceive others.
- to gain attention, likes, or followers.
- to prove a point.
- to cause chaos.
- to bring attention to the topic.
- to influence or persuade others.
- to surprise.

We collected the following participant features through the onboarding survey and the Twitter API:

- age
- gender (male, female, other)
- political affiliation (Democrat, Republican, Independent)
- education (no college degree, some college degree or higher)
- employment status (full- or part-time employment; not employed, including students and others)
- number of followers (hub = more than 3,000 followers; no hub = fewer than 3,000 followers)
- activity on Twitter (active = more than 10 posts per day; not active = fewer than 10 posts per day).

We also collected features of individual posts:

- tweet type (original, retweet, quote tweet, reply)
- URL types (entertainment, mainstream news, alternative news)
- number of retweets (number).

Content Coding With ChatGPT

For summaries of the content itself we used a simple ChatGPT pipeline, which can be found in the preprocessing script (https://github.com/philipplorenz/real_time_motives), including all exact prompts. We used this method to infer the following features of individual posts from the text:

- topic (political, social, entertainment, others)
- sentiment (positive, negative)
- outrage (present, not present)
- emotion (anger, joy, disgust, other)

The results were cross-checked with a human coder (100 random posts) who received the exact same instructions. The interrater reliability was 0.72 for sentiment, 0.76 for outrage, 0.77 for political vs. not and 0.46 for the type of emotion.

Reactivity to EMAs

Another unique feature of our dataset is the data we were able collect historically through the API, which had been created by participants even before they joined the study. With participant consent, we collected data from 4 weeks of their timeline both before and after the study. This allowed us to quantify whether and how participants changed their behavior during and after our study. Fig. 6A shows the descriptive results and indicates that slightly fewer original tweets, quotes, and replies were created during the study period than prior to it. This change in behavior could be due to the feeling of being observed (especially given the direct messages they received after each tweet). Participants may also have tweeted less so as to avoid the burden of responding to more real-time surveys. The results of modelling different content features as dependent on the study period (before, during, and after the active observation period) indicate that the type of content did not change credibly during our study (Fig. 6B). Slightly more negative sentiment, outrage, and disgust were observed after the study, but this could also be due to exogenous events that were not averaged out by the stepped-wedge design.

Data availability: The data is stripped of details that would make it possible to re-identify participants in terms of user names, original text, or exact timing. All individual data points, including all variables used in this manuscript, can be found at https://github.com/philipplorenz/real time motives.

Code availability: All code used for preprocessing and anonymizing the data, as well as for analysis and plotting, can be found at https://github.com/philipplorenz/real_time_motives.

Acknowledgements: We thank Friederike Stock for her help with recruitment via Twitter Ads, data collection, and design tasks; Deborah Ain for editing the manuscript; and Almog Simchon for

Figure 6: Reactivity analysis to the ecological momentary assessment (EMA) approach. A: Descriptive average activities per user, per day, of the different types of posting behavior: retweet, original, quote, and reply. B: Resulting marginal contrasts in units of probability (0–1) of the logistic regression model content_feature ~ period + (1 + user), with 'period' representing a categorical variable that distinguished between pre-, during, and post-EMA treatment.

inspiring discussions. Philipp Lorenz-Spreen, Stefan M. Herzog and Ralph Hertwig aknowledge financial support from the Volkswagen Foundation (grant 'Reclaiming individual autonomy and democratic discourse online: How to rebalance human and algorithmic decision-making'). Michael Geers is a fellow of the International Max Planck Research School on the Life Course in Berlin and is supported by the Joachim Herz Foundation.

Author Contributions: Conceptualization: P.L.-S., A.K., B.S.-T., M.G., S.M.H., and R.H. Data curation: P.L.-S. Formal analysis: P.L.-S., R.C.A., and S.M.H. Funding acquisition: S.M.H. and R.H. Investigation: P.L.-S. Methodology: P.L.-S., R.C.A., A.K., B.S.-T., and S.M.H. Project administration: P.L.-S. Software: R.C.A. Supervision: S.M.H. and R.H. Visualization: P.L.-S., R.C.A., and S.M.H. Writing - original draft: P.L.-S. Writing - review & editing: P.L.-S., R.C.A., A.K., B.S.-T., M.G., S.M.H., and R.H.

Ethics Declaration: Informed consent was obtained from all participants, and the study was conducted in accordance with relevant guidelines and regulations. The Institutional Review Board of the Max Planck Institute for Human Development approved the study

Competing Interests Statement: The authors declare no competing interests.

References

- 1. Bak-Coleman, J. B. et al. Stewardship of global collective behavior. Proceedings of the National Academy of Sciences 118, e2025764118 (2021).
- 2. Lewandowsky, S. *et al.* Technology and democracy: Understanding the influence of online technologies on political behaviour and decision-making (2020).
- Lorenz-Spreen, P., Oswald, L., Lewandowsky, S. & Hertwig, R. A systematic review of worldwide causal and correlational evidence on digital media and democracy. *Nature Human Behaviour* 7, 74–101 (2023).
- 4. Mesoudi, A. Cultural evolution: How Darwinian theory can explain human culture and synthesize the social sciences (University of Chicago Press, 2011).
- 5. Creanza, N., Kolodny, O. & Feldman, M. W. Cultural evolutionary theory: How culture evolves and why it matters. *Proceedings of the National Academy of Sciences* **114**, 7782–7789 (2017).
- Enquist, M., Jansson, F., Ghirlanda, S. & Michaud, J. Cultural traits operating in senders are driving forces of cultural evolution. *Proceedings of the Royal Society B: Biological Sciences* 291, 20232110 (2024).
- 7. Acerbi, A. Cultural evolution in the digital age (Oxford University Press, 2019).
- 8. Brinkmann, L. et al. Machine culture. Nature Human Behaviour 7, 1855–1868 (2023).
- Arslan, R. C., Walther, M. P. & Tata, C. S. formr: A study framework allowing for automated feedback generation and complex longitudinal experience-sampling studies using R. Behavior Research Methods 52, 376–387 (2020).
- 10. Pennycook, G. et al. Shifting attention to accuracy can reduce misinformation online. Nature 592, 590–595 (2021).
- 11. Boyd, D., Golder, S. & Lotan, G. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter in 2010 43rd Hawaii International Conference on System Sciences (Honolulu, HI, 2010), 1–10.
- 12. Van Bavel, J. J. & Pereira, A. The partisan brain: An identity-based model of political belief. Trends in Cognitive Sciences 22, 213–224 (2018).
- 13. Whiting, A. & Williams, D. Why people use social media: A uses and gratifications approach. *Qualitative Market Research* **16**, 362–369 (2013).
- 14. Wong, L. Y. C. & Burkell, J. Motivations for sharing news on social media in Proceedings of the 8th International Conference on Social Media & Society (Association for Computing Machinery, New York, NY, 2017), Article 57.
- 15. Oh, S. & Syn, S. Y. Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, YouTube, and Flickr. *Journal of the Association for Information Science and Technology* **66**, 2045–2060 (2015).

- Lee, C. S., Ma, L. & Goh, D. H.-L. Why do people share news in social media? in Active Media Technology: 7th International Conference (eds Zhong, N., Callaghan, V., Ghorbani, A. A. & Hu, B.) 6890 (Springer, Lanzhou, China, 2011), 129–140.
- 17. Johnson, P. R. & Yang, S.-U. Uses and gratifications of Twitter: An examination of user motives and satisfaction of Twitter use in Communication Technology Division of the annual convention of the Association for Education in Journalism and Mass Communication 54 (Boston, MA, 2009).
- 18. Kim, D. H., Jones-Jang, S. M. & Kenski, K. Why do people share political information on social media? *Digital Journalism* **9**, 1123–1140 (2021).
- 19. Lee, C. S. & Ma, L. News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior 28, 331–339 (2012).
- Ghaisani, A. P., Handayani, P. W. & Munajat, Q. Users' motivation in sharing information on social media. Procedia Computer Science 124, 530-535 (2017).
- 21. Krasnova, H., Spiekermann, S., Koroleva, K. & Hildebrand, T. Online social networks: Why we disclose. *Journal of information technology* **25**, 109–125 (2010).
- 22. Lane, D. S., Kim, D. H., Lee, S. S., Weeks, B. E. & Kwak, N. From online disagreement to offline action: How diverse motivations for using social media can increase political information sharing and catalyze offline political participation. *Social Media + Society* 3 (2017).
- 23. Arceneaux, K. et al. Some people just want to watch the world burn: The prevalence, psychology and politics of the 'Need for Chaos'. Philosophical Transactions of the Royal Society B: Biological Sciences 376, Article 20200147 (2021).
- 24. Farhart, C. E., Fitz, E. B., Miller, J. M. & Saunders, K. L. By any memes necessary: Belief-and chaos-driven motives for sharing conspiracy theories on social media. *Research & Politics* 10 (2023).
- 25. Stieglitz, S. & Dang-Xuan, L. Political communication and influence through microblogging—An empirical analysis of sentiment in Twitter messages and retweet behavior in 2012 45th Hawaii International Conference on System Sciences (Maui, HI, 2012), 3500–3509.
- 26. Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A. & Van Bavel, J. J. Emotion shapes the diffusion of moralized content in social networks. *Proceedings of the National Academy of Sciences* 114, 7313–7318 (2017).
- 27. Rathje, S., Van Bavel, J. J. & van der Linden, S. Out-group animosity drives engagement on social media. *Proceedings of the National Academy of Sciences* **118**, Article e2024292118 (2021).
- 28. Burton, J. W., Cruz, N. & Hahn, U. Reconsidering evidence of moral contagion in online social networks. *Nature Human Behaviour* 5, 1629–1635 (2021).
- 29. Berger, J. & Milkman, K. L. What makes online content viral? *Journal of Marketing Research* 49, 192–205 (2012).
- 30. Altay, S., de Araujo, E. & Mercier, H. "If this account is true, it is most enormously wonderful": Interestingness-if-true and the sharing of true and false news. *Digital Journalism* **10**, 373–394 (2022).
- 31. Buder, J. et al. Online interaction turns the congeniality bias into an uncongeniality bias. Psychological Science **34**, 1055–1068 (2023).
- 32. Osmundsen, M., Bor, A., Vahlstrup, P. B., Bechmann, A. & Petersen, M. B. Partisan polarization is the primary psychological motivation behind political fake news sharing on Twitter. *American Political Science Review* 115, 999–1015 (2021).
- 33. Marie, A. & Petersen, M. B. Motivations to affiliate with audiences drive the sharing of partisan (mis)information on social media (2023).
- 34. Scholz, C., Baek, E. C. & Falk, E. B. Invoking self-related and social thoughts impacts online information sharing. *Social Cognitive and Affective Neuroscience* 18, Article nsad013 (2023).
- 35. Geers, M. Linking lab and field research. Nature Reviews Psychology 2, Article 458 (2023).
- 36. Mosleh, M., Pennycook, G. & Rand, D. G. Field experiments on social media. *Current Directions in Psychological Science* **31**, 69–75 (2022).

- 37. Coppock, A. & McClellan, O. A. Validating the demographic, political, psychological, and experimental results obtained from a new source of online survey respondents. *Research & Politics* 6 (2019).
- 38. Kozyreva, A. et al. Toolbox of individual-level interventions against online misinformation and manipulation. Nature Human Behaviour (2024).
- 39. Sun, Y. & Xie, J. Who shares misinformation on social media? A meta-analysis of individual traits related to misinformation sharing. *Computers in Human Behavior* **158**, Article 108271 (2024).
- 40. Kwak, H., Lee, C., Park, H. & Moon, S. What is Twitter, a social network or a news media? in Proceedings of the 19th International Conference on World Wide Web (Association for Computing Machinery, Raleigh, NC, 2010), 591–600.
- 41. Rathje, S. et al. GPT is an effective tool for multilingual psychological text analysis (2024).
- 42. Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. *The American Statistician* **73**, 307–309 (2019).
- 43. Pew Research Center. Differences in how Democrats and Republicans behave on Twitter (2020). https://www.pewresearch.org/politics/wp-content/uploads/sites/4/2020/10/PDL_10.15.20.twitter.dems_.reps_.fullreport.pdf.
- 44. Baribi-Bartov, S., Swire-Thompson, B. & Grinberg, N. Supersharers of fake news on Twitter. *Science* **384**, 979–982 (2024).
- 45. Roth, C., St-Onge, J. & Herms, K. Quoting is not citing: Disentangling affiliation and interaction on Twitter in Complex Networks & Their Applications X: Volume 1, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 (eds Benito, R. M. et al.) (Springer, 2022), 705–717.
- 46. Lindström, B. et al. A computational reward learning account of social media engagement. Nature Communications 12, Article 1311 (2021).
- 47. Lyons, B., Montgomery, J. & Reifler, J. Partisanship and older Americans' engagement with dubious political news (2024).
- 48. Willaert, T. A computational analysis of Telegram's narrative affordances. *PLOS ONE* **18**, Article e0293508 (2023).
- 49. Milli, S. et al. Engagement, user satisfaction, and the amplification of divisive content on social media 2023.
- 50. Ceylan, G., Anderson, I. A. & Wood, W. Sharing of misinformation is habitual, not just lazy or biased. *Proceedings of the National Academy of Sciences* **120**, Article e2216614120 (2023).
- 51. Barasch, A. & Berger, J. Broadcasting and narrowcasting: How audience size affects what people share. *Journal of Marketing Research* **51**, 286–299 (2014).
- 52. Grüning, D. J., Kamin, J., Panizza, F., Katsaros, M. & Lorenz-Spreen, P. A framework for promoting online prosocial behavior via digital interventions. *Communications Psychology* 2, Article 6 (2024).
- 53. Rathje, S., Roozenbeek, J., Van Bavel, J. J. & van der Linden, S. Accuracy and social motivations shape judgements of (mis)information. *Nature Human Behaviour* 7, 892–903 (2023).
- 54. Ovadya, A. & Thorburn, L. Bridging systems: Open problems for countering destructive divisiveness across ranking, recommenders, and governance 2023.
- 55. Burton, J. W., Herzog, S. M. & Lorenz-Spreen, P. Simple changes to content curation algorithms affect the beliefs people form in a collaborative filtering experiment 2024.
- 56. Bode, L. & Vraga, E. K. See something, say something: Correction of global health misinformation on social media. *Health communication* **33**, 1131–1140 (2018).
- 57. Craker, N. & March, E. The dark side of Facebook®: The Dark Tetrad, negative social potency, and trolling behaviours. *Personality and Individual Differences* **102**, 79–84 (2016).

Supplementary Material for "Real-time assessment of motives for sharing and creating content among highly active Twitter users"

Supplementary Figure 1: Detailed procedure of the study setup with screenshots from the recruitment ad, questionnaire and other elements.

Supplementary Figure 2: Descriptive data of the final sample, with A the age distribution, B the gender, C the political affiliation, D level of education, E status of employment and F self-reported twitter use.

Supplementary Figure 3: Correlation matrix between motive ratings

Supplementary Figure 4: The distributions of average agreement ratings (ranging from 1 "disagree completely" to 6 "agree completely") averaged for each participant over the real-time surveys, split across sociodemographic variables, namely, education and employment, age and gender, respectively.

within-subject correlation
0.32
0.40
0.25
0.48
0.50
0.27
0.34
0.18
0.44
0.67
0.40
0.42
0.45
0.31
0.47
0.36

Supplementary Table 1: Correlation values of within-subject comparison between general motives stated in the onboarding survey and the average motives they report during the real-time surveys.

Supplementary Figure 5: Variance of motives within participants. A shows the number of different motives that were reported as the most important for each participant during the one week observation time. B shows the corresponding Shannon entropy and C the different categories of motives over time for each participant row-wise.

Supplementary Figure 6: Distributions of ratings over motives.

Supplementary Figure 7: Full model results for content types predicting sharing motives as in model 1 and as shown in Fig. 3.

Supplementary Figure 8: Full model results for content types predicting sharing motives as in model 2 and model 3 and as shown in Fig. 4

Structural Equation Model

Model:

```
model <- '
  level: 1
    information_tw = motive_provepoint + motive_bringattention +
    motive influence + motive informothers
    expression_tw = motive_expressopinion + motive_showemotions +
    motive_showattitude
    provocation_tw = motive_provoke + motive_causechaos +
    motive_deceiveothers
    social_tw = motive_showachievement + motive_gainattention +
    motive_surpriseothers + motive_connectwothers + motive_entertain +
    motive_savecontent
  level: 2
    information_ind = motive_provepoint + motive_bringattention +
    motive_influence + motive_informothers
    expression_ind = motive_expressopinion + motive_showemotions +
    motive showattitude
    #entertainment_ind = motive_entertain + motive_savecontent
    provocation_ind = motive_provoke + motive_causechaos + motive_deceiveothers
    social_ind = motive_showachievement + motive_gainattention +
    motive_surpriseothers + motive_connectwothers + motive_entertain +
    motive savecontent
  Results of a multilevel CFA (Confirmatory Factor Analysis):
lavaan 0.6.17 ended normally after 104 iterations
  Estimator
                                                    MT.
  Optimization method
                                                NLMINB
  Number of model parameters
                                                    92
  Number of observations
                                                  2762
  Number of clusters [session]
                                                   137
Model Test User Model:
  Test statistic
                                              1807.125
  Degrees of freedom
                                                  196
                                                 0.000
  P-value (Chi-square)
Parameter Estimates:
  Standard errors
                                              Standard
  Information
                                              Observed
  Observed information based on
                                              Hessian
Level 1 [within]:
Latent Variables:
                   Estimate Std.Err z-value P(>|z|)
  information_tw =~
    motive_provpnt
                      1.000
    motv_brngttntn 1.185 0.054 22.060 0.000
```

motive_influnc	1.055	0.044	23.786	0.000
motiv_nfrmthrs	1.092	0.053	20.444	0.000
expression_tw =~				
motiv_xprsspnn	1.000			
motive_shwmtns	1.051	0.044	24.073	0.000
motive_shwtttd	1.117	0.047	23.751	0.000
provocation_tw =^		0.017	20.701	0.000
motive_provoke	1.000			
motive_causchs	0.709	0.046	15.431	0.000
motive_dcvthrs	0.138	0.013	10.512	0.000
social_tw =~	0.130	0.013	10.512	0.000
motv_shwchvmnt	1.000			
motive_gnttntn	2.196	0.219	10.013	0.000
_		0.219	9.258	0.000
motv_srprsthrs	1.878			
mtv_cnnctwthrs	1.221	0.149	8.193	0.000
motive_entertn	2.674	0.284	9.403	0.000
motive_svcntnt	1.599	0.168	9.501	0.000
Covariances:		a. 1 =	7	- /· / / /
	Estimate	Std.Err	z-value	P(> z)
information_tw ~^			10 500	
expression_tw	0.443	0.035	12.533	0.000
provocation_tw	0.307	0.035	8.772	0.000
social_tw	0.082	0.012	6.568	0.000
expression_tw ~~				
provocation_tw	0.377	0.035	10.645	0.000
social_tw	0.083	0.013	6.643	0.000
provocation_tw ~~	•			
social_tw	0.117	0.014	8.494	0.000
Variances:				
	Estimate	Std.Err	z-value	P(> z)
<pre>.motive_provpnt</pre>	1.451	0.052	28.144	0.000
.motv_brngttntn	1.358	0.056	24.261	0.000
<pre>.motive_influnc</pre>	1.199	0.046	26.189	0.000
<pre>.motiv_nfrmthrs</pre>	1.736	0.062	28.064	0.000
.motiv_xprsspnn	1.555	0.058	26.869	0.000
.motive_shwmtns	1.429	0.055	26.155	0.000
.motive_shwtttd	0.964	0.050	19.096	0.000
.motive_provoke	0.718	0.065	11.014	0.000
.motive_causchs	0.579	0.035	16.471	0.000
.motive_dcvthrs	0.186	0.005	34.129	0.000
.motv_shwchvmnt	1.188	0.035	34.017	0.000
.motive_gnttntn	1.100	0.044	25.120	0.000
.motv_srprsthrs	1.323	0.044	28.788	0.000
.mtv_cnnctwthrs	1.753	0.052	33.961	0.000
.motive_entertn	2.091	0.032	26.884	0.000
.motive_svcntnt	1.609	0.050	32.082	0.000
	0.850			
information_tw		0.059	14.375	0.000
expression_tw	1.052 1.011	0.070 0.076	15.085 13.338	0.000
provocation_tw	1 1111	u u/h	1 × × ××	11 111111
social_tw	0.102	0.018	5.551	0.000

Level 2 [session]:

Latent Variables:				
nacenc variables.	Estimate	e Std.Err	z-value	P(> z)
information_ind =				,
motive_provpnt	1.000)		
motv_brngttntn	0.889	0.084	10.573	0.000
motive_influnc	0.966		14.242	0.000
motiv_nfrmthrs	0.835	0.083	10.047	0.000
expression_ind =				
motiv_xprsspnn	1.000)		
motive_shwmtns	0.926		10.354	0.000
motive_shwtttd	1.047			0.000
provocation_ind =		0.100	J. 0 10	0.000
motive_provoke	1.000)		
motive_causchs	1.037		6.842	0.000
motive_dcvthrs	0.550			0.000
social_ind = ~	0.550	0.032	3.702	0.000
motv_shwchvmnt	1.000)		
motive_gnttntn	1.355		6.393	0.000
motv_srprsthrs	1.349			0.000
mtv_cnnctwthrs				
motive_entertn	0.972			0.000
motive_svcntnt	1.177	0.218	5.398	0.000
Covariances:				
	Estimate	e Std.Err	z-value	P(> z)
information_ind	~ ~			
expression_ind	1.021		5.959	0.000
provocation_nd	0.320			0.004
social_ind	0.461	0.101	4.583	0.000
expression_ind ~	~			
provocation_nd	0.179			0.053
social_ind	0.328	0.087	3.784	0.000
provocation_ind	~ ~			
social_ind	0.287	0.070	4.075	0.000
Intercepts:				
-	Estimate	Std.Err	z-value F	(> z)
.motive_provpnt	2.805	0.117	23.945	0.000
.motv_brngttntn		0.115	34.606	0.000
.motive_influnc		0.113	25.270	0.000
.motiv_nfrmthrs		0.110	35.303	0.000
.motiv_xprsspnn	4.208	0.110	38.173	0.000
.motive_shwmtns	3.717	0.115	32.231	0.000
.motive_shwtttd		0.125	28.552	0.000
.motive_provoke		0.090	21.732	0.000
.motive_causchs		0.030	21.732	0.000
.motive_dcvthrs				0.000
		0.044	26.171	
.motv_shwchvmnt	1.783	0.082	21.720	0.000
.motive_gnttntn		0.110	23.394	0.000
.motv_srprsthrs		0.093	22.318	0.000
.mtv_cnnctwthrs		0.116	34.510	0.000
.motive_entertn		0.113	30.781	0.000
.motive_svcntnt	2.622	0.123	21.327	0.000
Variances:				
	Estimate	Std.Err	z-value F) (> z)

.motive_provpnt .motv_brngttntn .motive_influnc .motiv_nfrmthrs .motiv_xprsspnn .motive_shwmtns .motive_shwttd .motive_provoke .motive_causchs .motive_dcvthrs .motv_shwchvmnt .motive_gnttntn .motv_srprsthrs .mtv_cnnctwthrs	0.240 0.407 0.226 0.366 0.173 0.471 0.547 0.429 0.134 0.101 0.338 0.676 0.232 1.168	0.072 0.095 0.062 0.097 0.077 0.100 0.123 0.083 0.050 0.020 0.070 0.121 0.070	3.340 4.290 3.629 3.760 2.233 4.716 4.436 5.158 2.699 4.953 4.815 5.589 3.311 6.336	0.001 0.000 0.000 0.000 0.026 0.000 0.000 0.007 0.000 0.000 0.000 0.001