Lecture 10

- Proposals delayed by 2 days, till after midterm
 - Now Thursday 2pm

- Remember: I have office hours!
 - 3pm till about 4:30 Weds
 - Engineering VI 372

• Did you delete your .git folder?

- Don't delete your git folder from its original place!
 - You'll lose your entire history
 - GitHub Desktop won't even navigate to it
 - If you never pushed, your history is gone forever
 - If you delete your other files, they're gone forever

• I just meant don't include it in .zip!

- Take advantage of your private repos!
 - A free backup solution (cloud storage)
 - Can't lose everything

After Proposals I'll give your *team* a free private repo.

Rest of Project Suggestions

Project Ideas - Further reading

Topics I probably won't cover:

- Marching cubes (wiki) / drawing implicit fields & volumes
 - Videos
 - https://www.youtube.com/watch?v=MB9EuXzpCJA
 - https://www.youtube.com/watch?v=NG1qJvdCE4Q
 - https://www.youtube.com/watch?v=soWnbELQmCU
 - Level set method (<u>wiki</u>)
 - https://www.youtube.com/watch?v=lsHJhxGQ3wU

Project Ideas - Further reading

Topics I probably won't cover:

- Fractal generation & rendering look up Mandelbulb videos
 - https://www.youtube.com/watch?v=Yb5MRbgNKSk
 - https://www.youtube.com/watch?v=cPbKP2ep05k
 - https://www.youtube.com/watch?v=KdJepLvW66U
 - https://www.youtube.com/watch?v=cPbKP2ep05k
- Mouse picking (clicking to correctly select objects)

Suggestion: Pick a "Theme" last

- Pick an advanced graphics topic, then:
 - 1. Implement it
 - 2. Game-ify it
 - 3. Theme it last

- If you do this, choose an advanced topic first.
 - Once it works, make it interactive or turn it into a challenge.

Suggestion: Pick a "Theme" last

- Alternatively, if you like modeling shapes more:
 - Build some models first
 - Theme based around whatever came out best

- If that's more your thing, make 3D objects first, then tell a story about the objects you manage to make.
- Good stories are drawn from real events / existing media.
 - Even re-telling a story or re-implementing an established game can be worthwhile.

Midterm Review!

- Affine Transformations
- Coordinate Systems and Transformations
- Order of operations with Matrices
- Projection Transformations
- Understanding Lines and Points
- Operations with Vectors
- Programming

- Translate, Scale, Shear, Rotate
- How are they represented?
- What categories do they fall in?
- What effect do they have on objects?
- What effect do they have on angles?

- Projection Transformations
 - Given a point in x, y, z space, how do we calculate where it appears on the screen?
 - How is the perspective projection different from affine transformations?
 - What do perspective projections preserve?

- Coordinate Systems
 - Given a coordinate system and a point, can you give the coordinates of that point in the coordinate system?
 - If a matrix represents a coordinate system, what does it mean to multiply a point by the matrix?
 - Given basis vectors b_1, b_2, b_3 , and origin 0, how do we convert from the canonical coordinate system to the $[b_1, b_2, b_3, 0]$ coordinate system?
 - Given a picture of two coordinate systems, can you describe the operations that transform one to the other?

- How do we use an affine combination to find point C which is 20% of the way from A to B?
- How do we reflect a point across a line in 2D?
- What does a call to lookAt() make?

 If you understand the slides of every lecture, you should do well on the exam

Stacks

 In graphics, it's common to declare stack objects to hold (and recall) old values of your matrix.

Stacks

- In graphics, it's common to declare stack objects to hold (and recall) old values of your matrix.
- If you're doing something you know you're going to undo, push your matrix to the stack first, and then pop it back out!
- Pop multiple times to go back multiple times in history
 - Example: Pop matrix once after drawing a dragonfly wing, to return to the tail segment to draw the next wing.
 - Pop the matrix twice to go back to the dragonfly's head, to get ready to draw antennae
 - Children of the head box

View Boxes

- View boxes always have six sides
- Anything inside the view box gets projected onto one of the planes
 - The one nearest to the camera
- Suppose a point is now projected onto the near plane somewhere. Where does it draw on the viewport?

Recall Non-Commutativity Example:

Remember our old rotation matrix:

$$scale(\sqrt{2}) * rotate_{z}(45^{\circ}) = ?$$

$$\begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix} * \begin{bmatrix} \cos(45^{\circ}) & -\sin(45^{\circ}) \\ \sin(45^{\circ}) & \cos(45^{\circ}) \end{bmatrix} = ?$$

$$\Rightarrow \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix} * \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} = ?$$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Suppose we modify it with a non-uniform $\begin{bmatrix} 1 \\ 2 \end{bmatrix} * \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} ? \end{bmatrix}$ scale matrix from the left:

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} * \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \\ ? \end{bmatrix}$$

Where do the corners of the face go if we use this one?

Suppose we modify it with a non-uniform scale matrix from the <u>left</u>:

We sheared it!

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} * \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} * \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \end{bmatrix}$$

Suppose we modify it with a non-uniform scale matrix from the right:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ & 2 \end{bmatrix} = \begin{bmatrix} & & \\ & ? & \end{bmatrix}$$

Where do the corners of the face go if we use this one?

Suppose we modify it with a non-uniform scale matrix from the right:

We didn't shear it!

$$\begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix} * \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$

Confirm it with the Bases Game

http://bases-game.glitch.me

The Pumpkin Problem

Transformations practice problem

Three Ways To Do Every Transformation Problem:

- 1. Intuition using moving bases (or axes)
 - Reading typical code forwards
 - Reading written product left-to right ending at p
 - Products formed via post-multiplication
- 2. Intuition using a moving point cloud (or shape)
 - Reading typical code backwards
 - Reading written product right-to-left starting at p
 - Products formed via pre-multiplication
- 3. Writing the product out, doing matrix multiplication by hand, and not relying on intuition at all

Given this pumpkin at (1,1),

Given this pumpkin at (1,1), do the following:

```
model *= trans(x+2,y+2);

model *= rot<sub>z</sub>(90);

model *= scale<sub>x</sub>(-1);

model *= trans(x-1,y-1);
```


Given this pumpkin at (1,1), do the following:

Manually writing the product of matrices

Manually writing the product of matrices

```
trans(2,2) * rot_{7}(90) * scale_{x}(-1) * trans(-1,-1) = ?
```

- Multiply out the product with the "drawing below" trick
- Apply the final product to some points (0,0), (0,2), (2,0)

- Step 1: Points Perpective
- Actually draw out where the pumpkin moves at each step of

 $trans(2,2) * rot_z(90) * scale_x(-1) * trans(-1,-1)$

- We're treating it like an image -> Start at point and move Right-to-Left
- Show that where it landed is consistent with where the product displaced the 3 points to

- Step 2: Bases Perspective
- Actually draw out where a basis would move at each step (go left-right, maintain a basis as your temporary instead of a point)
- Wherever the origin winds up, draw the original image there using those axes

- Why do we prefer left to right when building programs?
- Because of our temporary "partial matrices" when making the various products
 - Each sets us up for the next piece of a hierarchical model

Checking our Answer

Checking our Answer

- Easily summarized as a reflection around a line from (3,0) to (0,3)
- The sequence of transforms to do that reflection is different:
 - trans(0,3) * $rot_z(-45)$ * $scale_v(-1)$ * $rot_z(45)$ * trans(0,-3)
 - What's the code for this?
- Numerically multiplying it out, it was the same matrix, surprise!!!

