Лекция по эконометрике № 1, 2 модуль

Фиктивные переменные и тест Чоу

Демидова
Ольга Анатольевна
https://www.hse.ru/staff/demidova_olga
E-mail:demidova@hse.ru
26.10.2020

План лекции

- •Фиктивные (дамми) переменные
- •Тест Чоу
- •Моделирование сезонности

Дамми (фиктивные) переменные

Определение

Для исследования влияния качественных признаков в модель можно вводить бинарные (дамми) переменные, которые, как правило, принимают значение 1, если данный качественный признак присутствует в наблюдении, и значение 0 при его отсутствии.

COST – годовые издержки 74 средних школ в Шанхае середине 1980-х годов, N – количество обучавшихся в них учеников.

Затраты в профессиональных школах больше, т.к. для обучения там используется специальное оборудование.

Если оценивать регрессии отдельно для профессиональных и обычных школ, то размеры выборок уменьшатся, что снизит точность оценивания.

Предположим, что коэффициенты наклона в регрессиях для профессиональных и обычных школах одинаковы, а свободные члены различаются.

Мы предполагаем, что постоянные затраты для двух типов школ различаются, а предельные затраты у них одинаковы.

Обычные школы
$$COST = \beta_0 + \beta_1 N + \varepsilon$$

Профессиональные школы
$$COST = \beta_0' + \beta_1 N + \varepsilon$$

Обозначим δ разность свободных членов: $\delta = \beta_0' - \beta_0$

Тогда $\beta_0' = \beta_0 + \delta$ и мы можем переписать регрессию для профессиональных школ.

Обычные школы
$$COST = \beta_0 + \beta_1 N + \varepsilon$$

Профессиональные школы
$$COST = \beta_0 + \delta + \beta_1 N + \varepsilon$$

Пример дамми переменной при наличии двух категорий (7)

Введем дамми- переменную ОСС, которая равна 0 для обычных школ и 1 для профессиональных. Dummy- переменная всегда принимает только два значения, обычно 0 и 1.

Общее уравнение
$$COST = \beta_0 + \delta OCC + \beta_1 N + \varepsilon$$

Обычные школы, ОСС = 0
$$COST = \beta_0 + \beta_1 N + \varepsilon$$

Профессиональные школы, ОСС = 1
$$COST = \beta_0' + \delta + \beta_1 N + \varepsilon$$

В последней колонке сформирована дамми - переменная. В приведенной таблице указаны данные лишь для 5 школ. В последней колонке сформирована дамми - переменная.

School	Type	COST	N	OCC
1	Occupational	345,000	623	1
2	Occupational	537,000	653	1
3	Regular	170,000	400	0
4	Occupational	526.000	663	1
5	Regular	100,000	563	0

В таблице приведены результаты оценивания регрессии COST на N и OCC.

. reg COST N OCC

Source	•	df	MS		Number of obs	
Model Residual	9.0582e+11 5.6553e+11	71 7.96	91e+11 52e+09		Prob > F R-squared	
Total	+ 1.4713e+12	73 2.01			Adj R-squared Root MSE	= 0.6048 = 89248
COST		Std. Err.		P> t	-	Interval]
N	331.4493 133259.1	39.75844 20827.59 23573.47	8.337 6.398 -1.426	0.000 0.000 0.158	252.1732 91730.06 -80616.71	410.7254 174788.1 13391.61

Результаты оценивания

Коэффициент при ОСС значим, расходы на учеников в профессиональных школах на 133259 юаней больше.

Коэффициент при N значим, каждый ученик увеличивает расходы школы на 331 юань.

Свободный член является незначимым.

На диаграмме изображены наблюдения для 74 школ и проведены линии регрессии для одинаковых коэффициентов наклона двух типов школ.

Ослабим требование об одинаковых предельных издержках (коэффициентах наклона) для обычных и профессиональных школ.

Введем переменную NOCC, произведение N и OCC.

Для обычных школ переменная ОСС равна 0 и, следовательно, NOCC также равна 0.

Для профессиональных школ переменная ОСС равна 1, следовательно, переменная NOCC равна N.

$$COST = \beta_0 + \delta OCC + \beta_1 N + \lambda NOCC + \varepsilon$$
Общие школы (OCC = NOCC = 0)
$$COST = \beta_0 + \beta_1 N + \varepsilon$$
Профессиональные школы (OCC = 1; NOCC = N)
$$COST = (\beta_0 + \delta) + (\beta_1 + \lambda)N + \varepsilon$$

Предельные издержки на одного студента профессиональной школы больше на λ по сравнению с расходами на одного студента обыкновенной школы, постоянные издержки различаются на δ.

Диаграмма иллюстрирует разницу в коэффициентах наклона графически.

19

Результаты оценивания модели

. reg COST N OCC NOCC

Source	ss	df	MS		Number of obs	
Model Residual Total	1.0009e+12 4.7045e+11 1.4713e+12	70 6.72			F(3, 70) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.6803
COST	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
N OCC NOCC _cons	152.2982 -3501.177 284.4786 51475.25	60.01932 41085.46 75.63211 31314.84	2.537 -0.085 3.761 1.644	0.013 0.932 0.000 0.105	32.59349 -85443.55 133.6351 -10980.24	272.003 78441.19 435.3221 113930.7

$$COST = 51000 - 4000 OCC + 152N + 284NOCC$$
Общие школы $COST = 51000 + 152N$
(OCC = NOCC = 0)

Профессиональные школы $COST = 51000 - 4000 + 152N + 152N + 284N = 47000 + 436N$

Для общих школ ОСС и NOCC равны 0, соответственно, постоянные и предельные издержки для студентов общих школ равны 51000 юаней и 152 юаня.

Для профессиональных школ ОСС равна 1, следовательно, NОСС равна N, соответственно постоянные и предельные издержки для студентов профессиональных школ равны 47000 юаней и 436 юаней.

На рисунке приведены графики оцененных регрессий для профессиональных и обычных школ.

t – статистика переменной NOCC равна 3.76, p-value <0.05, этот коэффициент значим, следовательно, предельные расходы для студентов обычных и профессиональных школ различаются.

Коэффициент при переменной ОСС незначим, следовательно, постоянные расходы не различаются.

Проверка гипотез о значимости коэффициентов при дамми переменных

Нулевая гипотеза состоит в том, что коэффициенты перед переменными ОСС и NOCC одновременно равны 0.

Проверка гипотез о значимости коэффициентов при дамми переменных

Находим значение F – статистики и сравниваем его с критическим.

. reg COST N OCC NOCC

74
49.64
.0000
.6803
.6666
81980
•

. reg COST N

Source	1	SS	df	MS	Number of obs	=	74
	+				F(1, 72)	=	46.82
Model	1	5.7974e+11	1	5.7974e+11	Prob > F	=	0.0000
Residual	1	8.9160e+11	72	1.2383e+10	R-squared	=	0.3940
	+				Adj R-squared	=	0.3856
Total	1	1.4713e+12	73	2.0155e+10	Root MSE	=	1.1e+05

$$F(2,70) = \frac{(8.92 \times 10^{11} - 4.70 \times 10^{11})/2}{4.70 \times 10^{11}/70} = 31.4$$

$$F(2,70)_{crit, 0.1\%} = 7.6$$

Проверка гипотез о значимости коэффициентов при дамми переменных

Поскольку значение F- статистики больше критического (при любом разумном уровне значимости), то нулевая гипотеза отвергается.

Следовательно, есть различия между школами в предельных или постоянных издержках.

$$F(2,70) = \frac{(8.92 \times 10^{11} - 4.70 \times 10^{11})/2}{4.70 \times 10^{11}/70} = 31.4 \qquad F(2,70)_{\text{crit}, 0.1\%} = 7.6$$

Тест Чоу (Chow)

Пример неоднородности выборки

Рис. 9.6. Регрессии, оцениваемые для теста Чоу

Тест Чоу

Тест Chow дает ответ на вопрос, можно ли считать что две выборки принадлежат одной генеральной совокупности, т.е. лучше оценивать одну регрессию, или к разным, тогда лучше оценивать две отдельные регрессии.

Тест может рассматриваться для более чем двух выборок.

Тест Чоу

В тесте Чоу мы начинаем с оценки параметров регрессии по всем наблюдениям.

• Профессиональные школы

Тест Чоу (4)

Линии оцененных по двум выборкам функций регрессии.

Основная и альтернативная гипотезы в тесте Чоу

Модель для первого

модель для первого набора наблюдений:
$$Y = \beta_0' + \beta_1' X_1 + ... + \beta_k' X_k + \varepsilon'$$

Модель для второго

модель для второго набора наблюдений:
$$Y = \beta_0'' + \beta_1'' X_1 + ... + \beta_k'' X_k + \varepsilon''$$

$$H_0: \beta_0' = \beta_0'', \dots, \beta_k' = \beta_k'', \sigma_{\varepsilon'}^2 = \sigma_{\varepsilon''}^2$$

$$H_1: \exists i: \beta'_i \neq \beta''_i$$

Основная и альтернативная гипотезы в тесте Чоу

Модель для первого набора наблюдений:

$$Y = \beta_0' + \beta_1' X_1 + \ldots + \beta_k' X_k + \varepsilon'$$

Модель для второго набора наблюдений:

$$Y = (\beta_0' + \delta_0) + (\beta_1' + \delta_1)X_1 + \dots + (\beta_k' + \delta_k)X_k + \varepsilon''$$

$$H_0: \beta_0' = \beta_0'', \ldots, \beta_k' = \beta_k'', \sigma_{\varepsilon'}^2 = \sigma_{\varepsilon''}^2$$

$$\Leftrightarrow H_0: \delta_0 = \delta_1 = \dots = \delta_k = 0$$

$$H_1: \delta_0^2 + \delta_1^2 + \dots + \delta_k^2 > 0$$

Основная и альтернативная гипотезы в тесте Чоу

Общая модель:

$$Y = (\beta_0' + \delta_0 D) + (\beta_1' + \delta_1 D) X_1 + \dots + (\beta_k' + \delta_k D) X_k + \varepsilon''$$

D = 0 для наблюдений из первого набора,

D=1 для наблюдений из второго набора

$$H_0$$
: $\delta_0 = \delta_1 = \dots = \delta_k = 0$

$$H_1: \delta_0^2 + \delta_1^2 + ... + \delta_k^2 > 0$$

Тестовая статистика в тесте Чоу

$$F = \frac{(RSS_R - RSS_{UR})/(k+1)}{(RSS_1 + RSS_2)/(n-2(k+1))} =$$

$$\frac{(RSS_P - [RSS_1 + RSS_2])/(k+1)}{(RSS_1 + RSS_2)/(n-2(k+1))} \sim F(k+1, n-2(k+1))$$

где k+1 – это количество регрессоров с константой, т.е. всех коэффициентов в модели.

RSSp – это сумма квадратов остатков для всей выборки

RSS1 – это сумма квадратов остатков для выборки 1

RSS2 – это сумма квадратов остатков для выборки 2

Если F > Fкритическое (при выбранном уровне значимости), то основная гипотеза отвергается и нужно оценивать две отдельные регрессии.

Тест Чоу. Пример

Вернемся к рассматриваемому примеру. Сравним RSS по всей выборке и отдельно по двум группам школ.

$$F = \frac{(RSS_{p} - [RSS_{1} + RSS_{2}])/(k+1)}{(RSS_{1} + RSS_{2})/(n-2(k+1))}$$

$$F(2,70) = \frac{(8.91 \times 10^{11} - [3.49 \times 10^{11} + 1.22 \times 10^{11}])/2}{(3.49 \times 10^{11} + 1.22 \times 10^{11})/70} = 31.2$$

(RSS₁+RSS₂) 4.71 RSS_P 8.91

Тест Чоу. Пример (2)

Полученное значение F- статистики превышает критическое при любом разумном уровне значимости, следовательно, нулевая гипотеза отвергается, для профессиональных и обычных школ имеет место разная зависимость. Нужно оценивать отдельные регрессии.

$$F(2,70) = \frac{(8.91 \times 10^{11} - [3.49 \times 10^{11} + 1.22 \times 10^{11}])/2}{(3.49 \times 10^{11} + 1.22 \times 10^{11})/70} = 31.2$$

$$F(2,70)_{crit. 0.1\%} = 7.6$$

8.91

Эквивалентность

Тест Чоу эквивалентен тесту о значимости группы dummy переменных.

Если тест Чоу показывает, что есть различия в коэффициентах модели по двум наборам выборок, то можно оценить одну модель, но с дамми переменными.

Оценив модель с набором дамми переменных и проверив их совместную значимость, можно проверит ту же гипотезу, что и в тесте Чоу.

Дамми переменные для моделирования категориальных переменных

Если качественная переменная имеет *т* градаций, то в модель надо ввести *m – 1* фиктивных переменных, если в уравнение регрессии включена константа (иначе мы попадем в ловушку дамми (dummy trap), между столбцами матрицы X в модели Y = Xβ + ε будет линейная зависимость и мы не сможем однозначно оценить параметры этой модели с помощью МНК.

Дамми переменные для моделирования сезонности

Часто в распоряжении исследователя имеются недельные, месячные или квартальные данные.

Если данные квартальные, то

D1 = 1, если наблюдение относится к 1 – му кварталу и 0, если не относится;

D2 = 1, если наблюдение относится к 2 – му кварталу и 0, если не относится;

D3 = 1, если наблюдение относится к 3 – му кварталу и 0, если не относится.

Дамми переменные для моделирования сезонности

Рассмотрим квартальные данные. В качестве базы выберем 4-ый квартал, тогда:

Модель:
$$Y = \beta_0 + \beta_1 D1 + \beta_2 D2 + \beta_3 D3 + \beta_4 X + \epsilon$$

Оцененное уравнение регрессии:

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} D1 + \widehat{\beta_2} D2 + \widehat{\beta_3} D3 + \widehat{\beta_4} X$$

Дамми переменные для моделирования сезонности

Поквартальные зависимости:

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} \, \mathrm{D1} + \widehat{\beta_4} \, \mathrm{X}$$
 - для 1-го квартала, $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_2} \, \mathrm{D2} + \widehat{\beta_4} \, \mathrm{X}$ - для 2-го квартала, $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_3} \, \mathrm{D3} + \widehat{\beta_4} \, \mathrm{X}$ - для 3-го квартала, $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_4} \, \mathrm{X}$ - для 4-го квартала (базового)