

3 dagers plan

Dag 1: Bit-manipulasjon

- Sette en bit høy, lav
- Toggling av bit.
- Bruk av knapp.

Dag 2: Klokke, timer og hardware interrupt.

- Bruke mikrokontrollerens klokke for å utføre operasjoner mer nøyaktig.
- PWM, timer, interrupts, etc.

Dag 3: ADC

- Analog til digital konvertering
- Leke seg med ideer.

Bit-operasjoner

Eller-operasjon:

- Setter en bit høy.
- Jeg holder et kurs ELLER er hjemme = sant
- Syntax: «|».

Og-operasjoner

- Setter en bit lav.
- Sammenligne to bitmasker.
- Jeg holder et kurs OG er hjemme = Usant
- Syntax: «&».

Not-operasjoner

- Inverterer svare.
- Syntax: For bit «~» og for logikk «!».

XOR-operasjoner

- Setter bit høy hvis den er lav og omvendt(toggle)
- Er den 5V så blir den 0V, og 0V blir til 5V
- Jeg holder ENTEN et kurs ELLER er jeg hjemme = SANT
- Syntax: «^»

Bit-shifting

- Flytter bitene X antall steg i retningen man ønsker.
- Venstreskift brukes masse i kombinasjon med maskenavn for å få en god og leselig kode.
- Syntax: «<<», «>>»
- Ideellkode: #define LED1 bp 5 //PB5
- PORTB.OUT |= (1<<LED1_bp);

Kahoot!

Titallssystemet: Decimaltall

Tier potens	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰
Verdi	10000	1000	100	10	1
Tallverdi	5	3	0	2	3

<u>53023</u>

$$5 * 10^4 + 3 * 10^3 + 0 * 10^2 + 2 * 10^1 + 3 * 10^0$$

$$5 * 10000 + 3 * 1000 + 0 * 100 + 2 * 10 + 3 * 1$$

$$50000 + 3000 + 0 + 20 + 3 = 53023$$

Binært: totallsystemet

Toer potens	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Verdi	128	64	32	16	8	4	2	1
Tallverdi	1	0	0	1	1	0	0	1
=	$= 2^7 * 1 +$	$-2^6*0 +$	$2^5 * 0 +$	-2^4*1	+ 2 ³ * 1	$+ 2^2 * 0 -$	$+ 2^1 * 0 +$	$2^{0} * 1$

$$128*1+64*0+32*0+16*1+8*1+4*0+2*0+1*1$$

$$= 128 + 16 + 8 + 1 = 153$$

Tier potens	10 ²	10 ¹	10 ⁰
Verdi	100	10	1
Tallverdi	1	5	3

Mikrokontrollerens klokke

3 klokker

20Mhz klokken

- Default klokken
- Forhånds prescalet med en faktor på 6.
 20Mhz/6 = 3333333

32Khz klokken

- Low power klokken
- For treg til å kjøre visse funksjoner

32.769Khz klokken

- RTC: Real time klokke
- Gir fine runde tall 32768/32 = 1024
- Krystall

Bruk av klokkenpulsen

$$f = \frac{1}{T}$$

Når vi ønsker nøyaktige operasjoner bruker vi en klokke. Denne er ofte for rask å må senkes

Prescaling: «oversetter» klokkehastigheten til en hastighet vi kan jobbe med.

Timer:

Desto høyere TOP verdien er desto lengere er er det mellom avbruddene

$$16bit \rightarrow 2^{16-1}$$

$$2^{15} = 65,536$$

Prescaleverdien

Få avbruddet på 1 milisekund

$$\frac{3333333hz}{256} = 13020.83hz, \frac{3333333hz}{128} = 26041.66hz$$

$$T = \frac{1}{f} = \frac{1}{13020.83hz} = 0.0768ms$$

$$0.0768ms * 13 = 0.9984ms$$

$$avbruddinterval = \frac{prescaleverdi*TOPverdi}{klokkehastighet}$$

Klokkehastighet Prescaleverdi

= nyfrekvens

nyperiode * TOPverdi
= avbruddinterval

PWM: Pulse Width Modulation

$$f_{\text{PWM_SS}} = \frac{f_{\text{CLK_PER}}}{N(\text{PER}+1)} \quad \text{Duty cycle} = (1 - \frac{CMPn}{2^{15}}) * 100$$

Kontrollere duty-cycle

Figure 20-10. Single-Slope Pulse Width Modulation

Pull-up (og pull-down)

Knapp falling

Debounce

Tid for datablad!

