

Tutorium 4

Wir haben eine orthogonale Matrix A, was gilt für diese?

a)
$$A^2 = A$$

b)
$$A^T = A$$

c)
$$A^2 = I$$

$$d) A^T = A^{-1}$$

Wir haben eine symmetrische Matrix A, was gilt für die Eigenwerte λ ?

a)
$$\lambda \in \mathbb{R}$$

b)
$$\lambda \in \mathbb{C}$$

c)
$$\lambda > 0$$

d)
$$\lambda \in \mathbb{R}^+$$

Wir haben eine symmetrische Matrix A, was gilt für diese?

a)
$$A^2 = A$$

b)
$$A^T = A$$

c)
$$A^2 = I$$

$$d) A^T = A^{-1}$$

Wie lauten die Eigenwerte und Eigenvektoren der folgenden 3-reihigen symmetrischen Matrizen?

a)
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 b) $\mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$

Aufgabe 1

(a) Gegeben sind die Matrizen

$$A = \begin{bmatrix} -5 & 3 \\ 3 & 3 \end{bmatrix} \quad \text{und} \quad B = \begin{bmatrix} -2 & 2 \\ 0 & -2 \end{bmatrix}.$$

Bestimmen Sie die Eigenwerte von A und B sowie die zugehörigen Eigenvektoren. Geben Sie zu allen Eigenwerten die algebraische und geometrische Vielfachheit an.

(b) Sind $\lambda_1 = 0$ und $\lambda_2 = 1 + 2i$ Eigenwerte der Matrix

$$C = \begin{bmatrix} -4 & 0 & 3 & -6 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 12 & -1 \\ -6 & 0 & -1 & 2 \end{bmatrix}?$$

Begründen Sie Ihre Aussagen.

(c) Geben Sie alle Eigenwerte der Matrix $D=B^3-B^2+12I$ an, wobei $I\in\mathbb{R}^{2\times 2}$ die Einheitsmatrix sei.

Sind $\lambda_1 = 0$ und $\lambda_2 = 1 + 2i$ Eigenwerte der Matrix ?

a) ja

c) nur λ_1

b) nur λ_2

d) nein

Aufgabe 1

(a) Gegeben sind die Matrizen

$$A = \begin{bmatrix} -5 & 3 \\ 3 & 3 \end{bmatrix} \quad \text{und} \quad B = \begin{bmatrix} -2 & 2 \\ 0 & -2 \end{bmatrix}.$$

Bestimmen Sie die Eigenwerte von A und B sowie die zugehörigen Eigenvektoren. Geben Sie zu allen Eigenwerten die algebraische und geometrische Vielfachheit an.

(b) Sind $\lambda_1 = 0$ und $\lambda_2 = 1 + 2i$ Eigenwerte der Matrix

$$C = \begin{bmatrix} -4 & 0 & 3 & -6 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 12 & -1 \\ -6 & 0 & -1 & 2 \end{bmatrix}?$$

Begründen Sie Ihre Aussagen.

(c) Geben Sie alle Eigenwerte der Matrix $D=B^3-B^2+12I$ an, wobei $I\in\mathbb{R}^{2\times 2}$ die Einheitsmatrix sei.

Lösung

a)
$$A: v_1 = (-3,1)$$
 zu $\lambda_1 = -6$ und $v_2 = (1,3)$ zu $B: v_{1,2} = (1,0)$ zu $\lambda_{1,2} = -2$

b)
$$\lambda_1$$
 ja, weil $\det(a)=0$ λ_2 nein, weil $A=A^T$ also symmetrisch und somit nur reelle Eigenwerte

c)
$$\lambda = 0$$

1. Gegeben ist die Matrix

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 3 & -1 & -3 \\ -3 & 0 & 2 \end{bmatrix}.$$

- (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren. Geben Sie zu allen Eigenwerten die algebraische und geometrische Vielfachheit an.
- (b) Ist A diagonalisierbar? Falls ja, geben Sie eine invertierbare Matrix V und eine Diagonalmatrix D an, für die $A = VDV^{-1}$ gilt.
- (c) Wie müssen die Konstanten $\alpha, \beta \in \mathbb{R}$ gewählt werden, damit $A^2 + \alpha A + \beta I = O$ gilt? **Hinweis:** Denken Sie über die Eigenwerte und Eigenvektoren der Nullmatrix nach.

Lösung

a)
$$v_1 = (0, -1, 1)$$
 zu $\lambda_1 = 2$
 $v_2 = (1, 0, 1)$ zu $\lambda_2 = -1$
 $v_3 = (0, 1, 0)$ zu $\lambda_3 = -1$

b)
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 mit $V = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

c)
$$2^2 + \alpha \cdot 2 + \beta \cdot 1 = 0$$
 und $(-1)^2 + \alpha \cdot (-1) + \beta \cdot 1 = 0$
 $\rightarrow \alpha = -1$ und $\beta = -2$