PROJECT 2: ARITHMETIC LOGIC UNIT (ALU)

Arithmetic Logic Unit (ALU) Overview

- · digital system that accepts binary numerical input values
- · computes one out of several possible output values based on an arithmetic or logical function of the inputs.
- · Also accepts another binary value, an opcode, which dictates which function is computed.

System Block Diagram

TRUTH TABLE

ALL BIN OFF 0000	A>B Function 5
BTN1 ON OOO!	A+B (signed) <- Function 1
BTN2 ON OO IO	A ASR B + Function 2
BTN3 ON 0 1 0 0	AB Function 3
BTN4 ON 1 0 0 0	A XOR B - Function 4

- Each value of S on the MUX corresponds to 1 of 4 push buttons on the FRGA board.
- When no buttons are pressed, Function 5 is output to the board.

Function 1	y = A + B , A and B represent two input operands and are signed binary numbers.
Function 2	Arithmetic shift right of A by B positions
Function 3	y = A.B., the 4-bit product of A and B, both inputs are unsigned binary numbers
Function 4	y=A xor B
Function 5	y=A>B, LSb of $Y='1'$ if $A>B$ and 'o' otherwise.


```
1 🕀
. 20
 21
 22
       library IEEE;
  23
      use IEEE.STD_LOGIC_1164.ALL;
 24
 25 -- Uncomment the following library declaration if using...
 27
      use IEEE.NUMERIC STD.ALL; --uncomment this line allows me to use signed and unsigned types
 28
                                                                                in thench
 29 + -- Uncomment the following library declaration if instantiating...
                         Entity name must match component declaration
 33
 34 entity (Function1) is
          Port ( A : in STD_LOGIC_VECTOR (1 downto 0); -- 1 downto 0 = 2-bit std_logic_vector input A
 35
                 B: in STD_LOGIC_VECTOR (1 downto 0); -- 1 downto 0 = 2-bit std logic vector input B
 36
                 Y: out STD_LOGIC_VECTOR (3 downto 0); -- 3 downto 0 = 2-bit std logic vector output Y
 37
                 S: in SID_LOGIC_VECTOR (3 downto 0) Added S input for opcode
. 38
. 39
                 ); -- S declared here. Refer to system block diagram.
. 40 end Functionl;
 4.1
```

```
LOGIC FOR 5 Functions
67
     begin
68
69
     --Function 1
70
     A signed <= signed(A);
 71
     B_signed <= signed(B);</pre>
 72
     sum <= (A_signed + B_signed);</pre>
 73
     sum1 <= sum(1) & sum(1) & sum;
     fl <= std_logic_vector(suml);
 75
 76
     f2 <= ("00" & A(1 downto 0)) when B = "00" else ("00" & (A(1)&A(1))) when B = "01" else "0000"; -- Zero padding to ensure 4-bits
 78
 79
     A_unsigned <= unsigned(A);
 80
81
      B_unsigned <= unsigned(B);</pre>
82
      Y_unsigned <= A_unsigned * B_unsigned;
83
      f3 <= std_logic_vector(Y_unsigned);
84
85
      --Function 4
86
     f4 <= "00" & (A XOR B); -- Zero padding to ensure 4-bits are output to Y
87
      --Function 5
88
     f5 <= "0001" when A > B else "0000"; -- final implementation
89
90
91
                           initial implementation
     --f5 <= "0001" when (A = "01" and B = "00") or (A = "10" and B = "00")
92
      -- or (A = "10" and B = "01") or (A = "11" and B = "00") or (A = "11" and B = "01")
93
      -- or (A = "11" and B = "10") else "0000";
94
95
     Y <= f5 when S <= "0000" else f1 when S <= "0001" else f2 when S <= "0010" else f3 when S <= "1000";
96
      -- S corresponds to 1 of 4 push buttons on the FPGA board. When no buttons are pressed (i.e S = 0000) function 5 is output to Y.
97
     1 This line makes the S value control which function is output
98
99
                                                                                           to the board
     end Behavioral;
101
```


NOTE: Came across issues with simulation.
Kept simulating the wrong source file.

TROUBLESHOOTING METHODS

- Component declaration name in testberch was different from entity name in design file. These must match. Renamed both to "ALUI"
- · Also deleted old Source files from project (vivado design herarchy) AND same folder as current project

Simulation

Function 5 Verification

S[3:0] = 0000 → FUNCTION 5

ABB	y = "001" when A > B
01 01	0000 A>B
01 10	0000
	0001 LED ON IN THIS CASE
11.11	0000

Function 1 Verification

A B
$$y$$
 $y = A + B$ (signed)
01 01 1110
01 10 1111

possible error in function 1 implementation

$$\frac{2}{4}$$
 $\frac{0}{1}$

EXPECTED OUTPUT

SIMULATION OUTPUT

```
reanalyzing my hardware design for function 1
                               . Zero padding should be used here is function 1.
68
    -- Function 1
    A signed <= signed(A);
                               · I speculate that Sum(1) & Sum(1) are responsible for
    B_signed <= signed(B);
    sum <= (A_signed + B_signed);
    sum1 <= sum(1) & sum(1) & sum;</pre>
    fl <= std logic vector(suml);
   sum (1) is the Most
significant bit (MSB) of sum variable
                                  and sum is responsible for
                                    Sum being the actual sum of inputs A and B
 FUNCTION 1
       REVISION
 69
```


Function 1 Reverification

EXPECTED OUTPUT

$$y = 0 110$$

zero padding to make Y output 4-bits

CONCLUSION:

when the sum of A and B is 3 bits the zero padding doesn't output the correct value to y

SIMULATION OUTPUT

-- Convert back to std_logic_vector

TROUBLESHOOTING STEPS:

- revised function 1 logic

Since only one combination of A and B results in a 3 bit sum, I'll add conditional logic for that scenario into function 1.

```
B_signed <= signed(B); -- convert signed to unsigned, input B

sum <= (A_signed + B_signed); -- signed addition

-- using the concatenation operator ($\alpha$), sum(1) is the MSB of sum variable

-- sum1 <= sum(1) & sum(1) & sum; -- resulted in errors in function 1 simulation

-- sum1 <= "0" & "0" & sum;

process(A, B, sum)

begin

if sum = "110" then

sum1 <= "0110";

else sum1 <= "0" & "0" & sum;

end if;
end process;

Sum1 = "0110"
```

FUNCTION 2
REVISION 2

Function 2 Verification S[3:0] = 0010 FUNCTION 2 Arithmetic shift right of A by B positions	1
A B Y Y Y A ASR B Y Y A New A value	
OI OI OOOO EXPECTED OUTPUT	
Of 10 0000 A = 0 1 B = 0 1 A = 00 $y = \frac{0.00}{2}$	
A = 0 shift right Padding.	vc
THOU AWAY. REFER TO S[3:0] = 0010) .
IN SIMULATION	

Function 3 Verification

Α		FUNCTION 3	= 0100	3:0]	S[
		y= AB + + + + + +			- A
			0001	01	01
0		EXPECTED	100 1 0 X		
1		OUTPUT			
1			0010 X	01	10
	0 1	0 1	110011	1.1.	. 1 1.
3	1 6	AND O I AND			

SIMULATION

		. ()	ŀ			0	-1	
.A	1D	. C)	į		AND	İ	0	
					_				

AND	Ĺ			<u>A</u> 1	νD	. 1]
	Ċ					1	1

В

0

1

0 1

AND Y = AB \Rightarrow

> 0 0

0

1

