Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever.

Sources

If not noted differently, the source is the lecture slides and/or the accompanying book.

1 Approximate Retrieval

Nearest-Neighbor Find $x^* = \operatorname{argmin}_{x \in X} d(x, y)$ given $S, y \in$ $S, X \subseteq S$.

Near-Duplicate detection Find all $x,x' \in X$ with $d(x,x') \le \epsilon$.

1.1 *k*-Shingling

Documents (or videos) as set of k-shingles (a. k. a. k-grams). k-shingle 2 Supervised Learning is consecutive appearance of k chars/words.

Binary shingle matrix $M \in \{0,1\}^{C \times N}$ where $M_{i,j} = 1$ iff document j contains shingle i, N documents, C k-shingles.

1.2 Distance functions

Def. $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x') > 0 \iff x \neq x')$, symmetric (d(x,x') = d(x',x))and triangle inequality holds $(d(x,x'') \le d(x,x') + d(x',x''))$.

Euclidean $L_r d_r(x,y) = ||x-y||_r = (\sum_i |x_i-y_i|^r)^{1/r}$.

Cosine
$$\operatorname{Sim}_c(A,B) = \frac{A \cdot B}{\|A\| \cdot \|B\|}, \ d_c(A,B) = \frac{\cos^{-1}(\operatorname{Sim}_c(A,B))}{\pi}.$$

Jaccard sim., d. $\operatorname{Sim}_J(A,B) = \frac{|A \cap B|}{|A \cup B|}, d_J(A,B) = 1 - \operatorname{Sim}_J(A,B).$

1.3 LSH – local sensitive hashing

Key Idea: Similiar documents have similiar hash.

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair).

Min-hash-family $h_{\pi}(C)$ for Jaccard Hash is the min~(i.e.~first) $Norm-constrained~\min_{\boldsymbol{w}}\sum_{i}\max(0,1-y_{i}\boldsymbol{w}^{T}\boldsymbol{x}_{i})$ s.t. $||\boldsymbol{w}||_{2} \leq \frac{1}{\sqrt{s}}$. non-zero permutated row index: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, bin. vec. C, rand. perm. π .

Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_{J}(C_1, C_2) \text{ if } \pi \in_{\text{u.a.r.}} S_{|C|}$.

Min-hash L_r -norm: Fix $a \in \mathbb{R}$. Random line w paritioned in buckets of length a. Project x,y onto w, if in same bucket, $h_{w}(x) = h_{w}(y)$ In 2-dim. forms a $(a/2,2\cdot a,1/2,1/3)$ -sensitive hash-family. In d-dim. there exists a (d1,d2,p1,p2)-sensitive family $\forall d1 < d2$ with p1 > p2.

Min-hash cos. $h_{\boldsymbol{w}}(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x})$. $\operatorname{Pr}_{\boldsymbol{w}}[h_{\boldsymbol{w}}(x) = h_{\boldsymbol{w}}(y)] = 1 - \frac{\theta_{\boldsymbol{x},\boldsymbol{y}}}{\pi}$.

Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$ given n hash-fns h_i drawn randomly from a universal hash family. **Pseudo permutation** h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, N

number of shingles, $p \ge N$ prime and $a,b \in_{\text{u.a.r.}} [p]$ with $a \ne 0$. Use as universal hash family. Only store a and b. Much more efficient.

Compute signature matix M_S For column $c \in [C]$, row $r \in [N]$

with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i . (d_1, d_2, p_1, p_2) -sensitivity of $F = \{h_1, \dots, h_n\}: \forall x, y \in S: d(x, y) \leq$ $d_1 \Longrightarrow P[h(x) = h(y)] \ge p_1$ and $d(x,y) \ge d_2 \Longrightarrow P[h(x) = h(y)] \le p_2$.

r-way AND $h = [h_1, ..., h_r], h(x) = h(y) \Leftrightarrow \forall i \ h_i(x) = h_i(y)$ is (d_1,d_2,p_1^r,p_2^r) -sensitive.

b-way OR $h = [h_1, \dots, h_b], h(x) = h(y) \Leftrightarrow \exists i \ h_i(x) = h_i(y)$ is $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -sensitive.

Banding as boosting Reduce FP/FN by b-way OR after r-way AND. Stochastic PGD (SGD) Online-to-batch. Compute $\tilde{\boldsymbol{w}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{w}_t$ Group sig. matrix into b bands of r rows. CP match in at least one If data i. i. d.: exp. error (risk) $\mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\boldsymbol{w}^*) + R_T/T$, $L(\boldsymbol{w}^*)$ band (check by hashing). Result is $(d_1,d_2,1-(1-p_1^r)^b,1-(1-p_2^r)^b)$ is best error (risk) possible. sensitive.

Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter FP by checking signature matrix, shingles or even whole documents.

Linear classifier $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin. Homogeneous transform $\tilde{x} = [x,1]; \tilde{w} = [w,b]$, now w passes origin.

Kernel k is inner product in high-dim. space: $k(x,y) = \langle \phi(x), \phi(y) \rangle$.

shift-invariance $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$. Gaussian $k(\boldsymbol{x}-\boldsymbol{y}) = \exp(-||\boldsymbol{x}-\boldsymbol{y}||_2^2/h^2)$.

Convex function $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in$ $[0,1], \lambda f(x)+(1-\lambda)f(x') \geq f(\lambda x+(1-\lambda)x')$, i. e. every segment lies above function. Equiv. bounded by linear fn. at every point.

 $\nabla f(x)^T (x'-x) + \frac{H}{2} ||x'-x||_2^2$, i. e. bounded by quadratic fin Suitable for MapReduce cluster, multi. passes possible. (at every point).

2.1 Support vector machine (SVM)

SVM primal

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_i \xi_i$, s.t. $\forall i: y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1 - \xi_i$, slack C. Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{G}$.

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}, \ \alpha_{i} \in [0, C]$ Apply kernel trick: $\max_{\alpha} \sum_{i} \alpha_i + \frac{1}{2} \sum_{i} \alpha_i \alpha_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j), \ \alpha_i \in [0, C]$ prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i \hat{k}(\boldsymbol{x}_i, \boldsymbol{x}))$.

2.2 Convex Programming

Convex program $\min_{x} f(x)$, s. t. $x \in S$, f convex.

Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i) + \lambda R(\boldsymbol{w})$, where lis a (convex) loss function and R is the (convex) regularizer.

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t. $\boldsymbol{w} \in S_{\lambda}$, l is loss and S_{λ} some (norm-)constraint. Note: This is an OCP.

 $l_t = f_t(\boldsymbol{w}_t)$. Regret $R_T = (\sum_{t=1}^T l_t) - \min_{\boldsymbol{w} \in S} \sum_{t=1}^T f_t(\boldsymbol{w})$.

 $y_t = \operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t)$, incur $l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t)$, update \boldsymbol{w}_t (see later). Informativeness Metric of "information" gainable; \neq uncertainty. Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^{T} \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^{T} l_t - L^*$.

Online proj. gradient descent (OPGD) Update for online SVM: $\boldsymbol{w}_{t+1} = \operatorname{Proj}_{S}(\boldsymbol{w}_{t} - \eta_{t} \nabla f_{t}(\boldsymbol{w}_{t})) \text{ with } \operatorname{Proj}_{S}(\boldsymbol{w}) = \operatorname{argmin}_{\boldsymbol{w}' \in S} ||\boldsymbol{w}' - \boldsymbol{w}_{t}|| + \operatorname{Proj}_{S}(\boldsymbol{w}_{t}) = \operatorname{Proj}_{S}(\boldsymbol{w}_{t} - \eta_{t} \nabla f_{t}(\boldsymbol{w}_{t}))$ $|w|_{2}$, gives regret bound $\frac{R_{T}}{T} \leq \frac{1}{\sqrt{T}} (||w_{0} - w^{*}||_{2}^{2} + ||\nabla f||_{2}^{2}).$

For *H*-strongly convex fn, $\eta_t = \frac{1}{H_t}$ gives $R_t \leq \frac{||\nabla f||^2}{2H}(1 + \log T)$.

PEGASOS OPGD w/ mini-batches on strongly convex SVM form. $\min_{\boldsymbol{w}} \sum_{t=1}^{T} g_t(\boldsymbol{w})$, s.t. $||\boldsymbol{w}||_2 \le \frac{1}{\sqrt{t}}$, $g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w})$. g_t is λ -strongly convex, $\nabla g_t(\mathbf{w}) = \lambda \mathbf{w} + \nabla f_t(\mathbf{w})$.

Performance ϵ -accurate sol. with prob. $\geq 1-\delta$ in runtime $O^*(\frac{d \cdot \log \frac{1}{\delta}}{\delta})$. **ADAGrad** Adapt to geometry. *Mahalanobis norm* $||w||_G = ||Gw||_2$. $w_{t+1} = \operatorname{argmin}_{w \in S} ||w - (w_t - \eta G_t^{-1} \nabla f_t(w))||_{G_t}$. Min. regret with

 $G_t = (\sum_{\tau=1}^t \nabla f_{\tau}(\boldsymbol{w}_{\tau}) \nabla f_{\tau}(\boldsymbol{w}_{\tau})^T)^{1/2}$. Easily invable matrix with $G_t = \operatorname{diag}(...)$. $R_t \in O(\frac{\|\boldsymbol{w}^*\|_{\infty}}{\sqrt{T}} \sqrt{d})$, even better for sparse data.

ADAM Add 'momentum' term: $\mathbf{w}_{t+1} = \mathbf{w}_t - \mu \bar{g}_t$, $g_t = \nabla f_t(\mathbf{w})$, $\bar{g}_t = (1-\beta)g_t + \beta \bar{g}_{t-1}, \ \bar{g}_0 = 0.$ Helps for dense gradients.

Parallel SGD (PSGD) Randomly partition to k (indep.) machines. *H*-strongly convex f *H*-strongly convex iff $f(x') \geq f(x) + \text{Comp. } \boldsymbol{w} = \frac{1}{k} \sum_{i=1}^{k} \boldsymbol{w}_{i}$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if $T \in \Omega(\frac{\log \frac{k\lambda}{\epsilon}}{\epsilon \lambda})$

Hogwild! Shared mem., no sync., sparse data. [...]

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m$, $d \ll$ $D,m \ll D$. Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x')$.

Random fourier features Given shift-invariant kernel k.

 $p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\delta} k(\delta) d\Delta$ $\omega_i \sim p = \text{eg Gaussian}, b_i \sim U(0.2\pi)$ $z(x) \equiv \sqrt{2/m} [cos(\omega_1'x+b_1)...cos(\omega_m'x+b_m)]$

Nyström features (need entire dataset) In practice: pick random samples $S = {\{\hat{x}_1 ... \hat{x}_n\} \subseteq X}$

 $K_{SXi,j} = k(\hat{x}_i, \hat{x}_j), K_{SSi,j} = k(\hat{x}_i, \hat{x}_j)$ approximate $K = K_{XS}K_{SS}^{-1}K_{SX}, K_{SS} = VDV^T$. new point x': $z(x') = D^{-1/2}V^T[k(x',\hat{x}_1),...,k(x',\hat{x}_m)]$

3 Pool-based active Learning (semi-supervised)

Uncertainty sampl. $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$, request y_t for $x_t = \operatorname{argmax}_x U_t(x)$. SVM: $x_t = \operatorname{argmin}_{x_i} |\boldsymbol{w}^T \boldsymbol{x}_i|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}_t^T \boldsymbol{x}|}$.

Sub-linear time w/ LSH $|w^T x_i|$ small if \angle_{w,x_i} close to π . Hash hyperplane: $h_{u,v}(\boldsymbol{a},\boldsymbol{b}) = [h_u(\boldsymbol{a}),h_v(\boldsymbol{b})] = [\operatorname{sgn}(\boldsymbol{u}^T\boldsymbol{a}),\operatorname{sgn}(\boldsymbol{v}^T\boldsymbol{b})]$ **Solving OCP** Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $w_0 \in S$, OCP (as LSH hash family: $h_H(z) = h_{u,v}(z,z)$ if z datapoint, $h_H(z) = h_{u,v}(z,z)$ above). Round $t \in [T]$: pick feasible pt. \boldsymbol{w}_t , get convex fn. f_t , incur $h_{u,v}(\boldsymbol{z},-\boldsymbol{z})$ if z query hyperplane. $\Pr[h_H(\boldsymbol{w})=h_H(\boldsymbol{x})]=\Pr[h_{\boldsymbol{u}}(\boldsymbol{w})=h_H(\boldsymbol{x})]$ $h_{\boldsymbol{u}}(\boldsymbol{x}) \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) = h_{\boldsymbol{v}}(\boldsymbol{x})] = \frac{1}{4} - \frac{1}{\pi^2} (\angle_{\boldsymbol{x},\boldsymbol{w}} - \frac{pi}{2})^2.$

Online SVM $||w||_2 \le \frac{1}{\lambda}$ (norm-constr.). For new pt. x_t classify Hash all unlabeled. Loop: Hash w, req. labels for hash-coll., update.

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$

Relevant version space given unlabeled pool $U = \{x'_1, \dots, x'_n\}$ $\tilde{\mathcal{V}}(D;U) = \{h: U \to \{\pm 1\} \mid \exists \boldsymbol{w} \in \mathcal{V}(D) \ \forall x \in U \ \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = h(\boldsymbol{x})\}.$

Generalized binary search Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, compared $v^{\pm}(x) = |\tilde{\mathcal{V}}(D \cup \{(x,\pm)\}; U)|, \text{ label of argmin}_{x} \max\{v^{-}(x), v^{+}(x)\}.$

Approx. $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}$, $\forall x$. Max-min **5** k-armed bandits as recommender systems $\max_x \min\{m^+(x), m^-(x)\}\$ or ratio $\max_x \min\{\frac{m^+(x)}{m^-(x)}, \frac{m^-(x)}{m^+(x)}\}\$

4 Model-based clustering - Unsupervised learning

k-means problem $\min_{\mu} L(\mu)$ with $L(\mu) = \sum_{i=1}^{N} \min_{j} ||x_i - \mu_j||_2^2$ and Total regret $R_T = \sum_{t=1}^{T} r_t$. cluster centers $\mu = \mu_1, ..., \mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow). Assign all x_i to closest center $z_i \leftarrow$ $\text{argmin}_{j \in [k]} || \boldsymbol{x}_i - \boldsymbol{\mu}_j^{(t-1)} ||_2^2, \ \textit{Update to mean:} \ \boldsymbol{\mu}_j^{(t)} \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} \boldsymbol{x}_i.$ Always converge to local minimum.

Online k-means Init μ somehow. For $t \in [n]$ find z = $\operatorname{argmin}_{j} ||\mu_{j} - \boldsymbol{x}_{t}||_{2}, \text{ set } \mu_{c} \leftarrow \mu_{c} + \eta_{t}(\boldsymbol{x}_{t} - \mu_{c}). \text{ For local opti- Update } n_{i_{t}} \leftarrow n_{i_{t}} + 1, \hat{\mu}_{i_{t}} \leftarrow \hat{\mu}_{i_{t}} + \frac{y_{t} - \hat{\mu}_{i_{t}}}{n_{t}}.$ mum: $\sum_{t} \eta_{t} = \infty \wedge \sum_{t} \eta_{t}^{2} < \infty$ suffices, e.g. $\eta_{t} = \frac{c}{t}$, $c \in \mathbb{R}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$.

 (k,ϵ) -coreset iff $\forall \mu: (1-\epsilon)L_k(\mu;D) \leq L_k(\mu;C) \leq (1+\epsilon)L_k(\mu;D)$.

 D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x \in X} d(x',B)^2}$.

Merge coresets union of (k,ϵ) -coreset is also (k,ϵ) -coreset.

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -coreset.

Coresets on streams Bin. tree of merge-compress. Error \propto height.

many restarts) on coreset. (Repeat.) Near-optimal solution.

Regret μ_i mean of P_i (arm i), $\mu^* = \max_i \mu_i$. Regret $r_t = \mu^* - \mu_i$. Hybrid Model $y_t = \boldsymbol{w}_i^T \boldsymbol{z}_t + \beta^T \phi(\boldsymbol{x}_i, \boldsymbol{z}_t) + \epsilon_t$ captures sep. and shared

 ϵ -greedy Explore u.a.r. with prob. ϵ_t , exploit with prob. $1 - \epsilon_t$: Rejection Sampling Evaluate bandit: For $t \in \mathbb{N}$ read log choose $\operatorname{argmax}_{i} \hat{\mu}_{i}$. Suitable $\epsilon_{t} \in O(1/t)$ gives $R_{T} \in O(k \log T)$. Clearly unoptimal: !TODO! Why?

UCB1 Init $\hat{\mu}_i \leftarrow 0$; try all arms once. Following $t \in [T-k]$ rounds: 6 Submodularity $UCB(i) \leftarrow \hat{\mu}_i + \sqrt{\frac{2 \log t}{n_i}}, \text{ pick } i_t \leftarrow \operatorname{argmax}_i UCB(i), \text{ observe } y_t. \ F: 2^V \rightarrow \mathbb{R} \ subm. \text{ iff } F(A \cup \{s\}) - F(A) \geq F(B \cup \{s\}) - F(B),$

recommend $x_t \in A_t$. Reward $y_t = f(x_t, z_t) + \epsilon_t$. $r_t = \max_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{z}_t) - f(\boldsymbol{x}_t, \boldsymbol{z}_t)$. Often $f(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{w}_{\boldsymbol{x}}^T \boldsymbol{z}$ linear.

Idea behind LinUCB Estimate $\hat{\boldsymbol{w}}_i = \operatorname{argmin}_{\boldsymbol{w}} \sum_{t=1}^m (y_t - \boldsymbol{w}^T \boldsymbol{z}_t) +$ $||\boldsymbol{w}||_2^2$. Closed form: $\hat{\boldsymbol{w}}_i = M_i^{-1} D_i^T \boldsymbol{y}_i$, $M_i = D_i^T D_i + I$, $D_i = [\boldsymbol{z}_1|...|\boldsymbol{z}_m], \boldsymbol{y}_i = (y_1|...|y_m)^T$.

Confidence If $\alpha = 1 + \sqrt{\ln(\frac{2}{\delta})/2}$:

$$\Pr\left[|\hat{\boldsymbol{w}}_i^T \boldsymbol{z}_t - \boldsymbol{w}_i^T \boldsymbol{z}_t| \leq \alpha \sqrt{\boldsymbol{z}_t^T M_i^{-1} \boldsymbol{z}_t}\right] \geq 1 - \delta.$$

tures z_t . For all $x \in A_t$: if x new, set $M_x \leftarrow \mathbb{I}$ and $b_x \leftarrow 0$; set $A_i \leftarrow A_{i-1} \cup \{s^*\}$ else resort and pick top element (as in Greedy).

 $\hat{w}_{x} \leftarrow M_{x}^{-1}b_{x}$; set $UCB_{x} \leftarrow \hat{w}_{x}^{T}z_{t} + \alpha\sqrt{z_{t}^{T}M_{x}^{-1}z_{t}}$. Recommend k-armed bandit k arms with diff. prob. dist. For $t \in [T]$ rounds, action $x_t = \operatorname{argmax}_{x \in A_t} UCB_x$; observe y_t . Set $M_x \leftarrow M_x + z_t z_t^T$ pick $i_t \in [k]$, sample $y_t \in P_i$ (indep. of other rounds). Max. $\sum_{t=1}^T y_t$. and $b_x \leftarrow b_x + y_t z_t$.

 $(\boldsymbol{x}_1^{(t)},\dots,\boldsymbol{x}_k^{(t)},\boldsymbol{z}_t,a_t,y_t)$. Pick a_t' by algo. If $a_t'=a_t$ feed y_t to algo., else ignore line. Stop after T feedbacks.

 $\forall A \subseteq B \subseteq V, s \in V \text{ with } s \notin B.$

Contextual bandits Round t: Obs. context $z_t \in \mathcal{Z} \subseteq \mathbb{R}^d$; Closedness: If $F_{1,\dots,m}(A)$ subm. then $\lambda_i > 0$: $F'(A) := \sum_i \lambda_i F_i(A)$

Other properties: If F(S) subm. on V, then $F(S \cap W), F(S \cup V)$ W), $F(V \setminus S)$ subm. where $W \subseteq V$.

Marginal gain: $\Delta_F(s|A) = F(\{s\} \cup A) - F(A)$

Greedy algo: In round i+1, previously picked $A_i = \{s_1,...,s_i\}$; pick $s_{i+1} = \operatorname{argmax}_s \Delta_F(s|A_i) = \operatorname{argmax}_s(F(\{s\} \cup A_i) - F(A_i)).$

Lazy Greedy: Observation: Submodularity implies $\Delta(s|A_i) >$ $\Delta(s|A_{i+1})$. Algo.: $A_0 \leftarrow \{\}$; first iteration as usual. Then keep ordered list of Δ_i from prev. iteration. For $i \in [k]$ do: $\Delta_i = F(A_{i-1} \cup A_i)$ **Mapreduce k-means** Construct (k,ϵ) -coreset C, solve k-means (w/LinUCB (Algorithm)) For t=[T] receive action set A_t and fea- $\{s^*\}$, $s^*=\operatorname{argmax}_s\Delta_F(s|A_{t-1})$ (top element). If s^* is still top, then