

Data Science Program

Statistics Sessions -4

Session - 4 Content

Content

- Linear Regression
- Regression Equation
- Coefficient of Determination

LMS Pre-Class'ta bu dersle ilgili kısma çalıştım

Review

Konular

- Correlation
- Pearson katsayısı
- Sample ve Population corr.
- R hesaplanması

Linear Regression

Lineer Regresyon

- Amaç: İki değişken arasındaki ilişkiye dayanarak ileri dönük tahmin yapmak
- Sebep-sonuç ilişkisi içinde, Independent variable (bağımsız değişken) sebep, bağımlı değişken ise sonuctur.

X Değişkeni (Sebep - Input) (Independent Variable)

Y Değişkeni (Sonuç - Output) (Dependent Variable)

Linear Regression

Independent Variable

- Gelir
- Araç sahipliliği
- IQ değeri
- ŠŠŠ

Dependent variables

EFFECT

Dependent Variable

- Yaşam konforu
- Trafik hacmi
- İş performansı
- ŠŠŠ

Aklınıza gelen Linear regreesyon örneklerini yazar mısnız?

Matching on Peardeck

Daily temperature

Annual Salary

Number of exams passed

Life Expectancy

Amount of time spent studying

Electricity Consumption

GDP per Capita

Number of vacations taken

Linear Regression and Equation

En küçük Kareler Yöntemi

- The least squares (en küçük kareler) yöntemi
- X bağımsız değişkenin değerine bağlı olarak, Y bağımlı değişkenin değerini tahmin etmek için kullanılan bir yöntem

$$Y = aX + b$$

Linear Regression Requirement

Değişken Sayısı

1 Bağımlı değişken 1 Bağımsız değişken

Lineerlik

Lineer ilişki olmalı, nonlineer vb. değil

Ölçülebilirlik

Interval veya ratio scale

Linear Regression Sample

Herhangi Ekranda geçirilen süre -X	Ağırlıklı Genel Not Ortalaması -Y
3	2,7
5	2,2
2	3,3
0,5	3,4
5	2
3	3
1	3,6
4	2,4
3	3,3
4	2,6
3,05 (ort)	2,85 (ort)

Linear Regression Sample

x-x _{ort}	$(x-x_{ort})^2$	y-y _{ort}	(y-y _{ort}) ²	$(x-x_{ort})^*(y-y_{ort})$	
-0,05	0,0025	-0,15	0,0225	0,0075	
1,95	3,8025	-0,65	0,4225	-1,2675	
-1,05	1,1025	0,45	0,2025	-0,4725	
-2,55	6,5025	0,55	0,3025	-1,4025	
1,95	3,8025	-0,85	0,7225	-1,6575	
-0,05	0,0025	0,15	0,0225	-0,0075	
-2,05	4,2025	0,75	0,5625	-1,5375	
0,95	0,9025	-0,45	0,2025	-0,4275	
-0,05	0,0025	0,45	0,2025	-0,0225	
0,95	0,9025	-0,25	0,0625	-0,2375	
	21,225		2,725	-7,025	Toplam
	SSx		SSy	SP	

SSx: Sum of Square for independent variable **SSy:** Sum of Square for dependent variable

SP: Sum of products

$$\mathbf{b} = SP / SSx = -7.025/21,225 = -0.3310$$

$$a = yort - b*xort = 2,85 - (-0,3310)*3,05 = 3,85$$

$$Y = a + bX$$

 How to calculate linear regression using least square method

https://www.youtube.com/watch?v=Jv\$2triCgOY

Pearson's r Calculation

x-x _{ort}	$(x-x_{ort})^2$	y-y _{ort}	(y-y _{ort}) ²	(x-x _{ort})*(y-y _{ort})
-0,05	0,0025	-0,15	0,0225	0,0075
1,95	3,8025	-0,65	0,4225	-1,2675
-1,05	1,1025	0,45	0,2025	-0,4725
-2,55	6,5025	0,55	0,3025	-1,4025
1,95	3,8025	-0,85	0,7225	-1,6575
-0,05	0,0025	0,15	0,0225	-0,0075
-2,05	4,2025	0,75	0,5625	-1,5375
0,95	0,9025	-0,45	0,2025	-0,4275
-0,05	0,0025	0,45	0,2025	-0,0225
0,95	0,9025	-0,25	0,0625	-0,2375
	21,225		2,725	-7,025 Toplam
	SSx		SSy	SP

Formula of Pearson's Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\ \sum \left(x_i - ar{x}
ight)^2 \left(y_i - ar{y}
ight)^2}}$$

$$r = \frac{SP}{\sqrt{SS_xSS_y}}$$

$$r = -0.92$$

Residual = Observed value - Predicted value

Regression Model

Coefficient of Determination – R²

Determinasyon – Belirlilik Katsayısı

Coefficient of Determination - R²

R² R-square

- Analizimizde iki değişken arasındaki ilişki hakkında fikir sunar
- R² değeri bize bağımlı değişkendeki toplam varyansın yüzde kaçının bağımsız değişken tarafından açıklandığını söyler.
- R² 0-1 arasında değişir

Regression / Best-fit Line

Sum of Squares Regression (SSF)

Sum of Squares Total (SST)

Mean of Actual / Response Variable Value $R^2 = \frac{SSR}{SST} = \frac{\sum (\hat{V}_i - \bar{V})^2}{\sum (\hat{V}_i - \bar{V})^2}$

YOUTUBE VIDEO ONERI

https://www.youtube.com/watch?v=w2FKXOa0HGA

 How to Calculate R Squared Using Regression Analysis

Python Calculation

• It is time to code by Python...

Do you have any questions?

Send it to us! We hope you learned something new.