Non-reversible Monte Carlo simulation of spin models

Simon Michael Bäse

Technische Universität Berlin

simonbaese@mailbox.tu-berlin.de

July 23, 2013

Outline

- Simple Mathematical Approach
- 2 Non-reversible Algorithm
- 3 Application Ising-Model
- 4 Fiber-Algorithm
- 5 Implementation

2 / 14

Definitions

Let $\Omega = \{1, ..., n\}$ finite state space,

P transition matrix, $P(x \rightarrow y) = P(x, y)$ and

 π invariant distribution such that $\pi P = \pi$.

Detailed Balance Equation

$$\pi(x)P(x,y) = \pi(y)P(y,x)$$
 for all $x,y \in \Omega$.

3 / 14

Convergence Theorem

Let P be the transition matrix of an irreducible and aperiodic Markov chain on finite state space Ω . Then:

- (1) There exists a unique invariant distribution π (See [3], p. 14)
- (2) For all $x, y \in \Omega$ and $\delta > 0$:

$$|P^t(x,y) - \pi(y)| \le (1-\delta)^t$$

(See extra material).

4 / 14

Simple Random Walk

Nearest neighbor random walk with transition probabilities 1/2.

Invariant Distribution

$$\pi(x) = 1/n$$
 for all $x \in \Omega$.

Directed Random Walk

Duplicate state space and introduce an extra label for direction.

Invariant Distribution

 $\pi(\pm,x)=1/2n$ for all $x\in\Omega$, because P is double-stochastic.

 $\pi(x) = 1/n$ for all $x \in \Omega$, marginal distribution (See [2], Chapter 2).

Non-reversible Algorithm

 θ is the probability to change direction.

Step A Metropolis update $(\pm, x) \rightarrow (\mp, x \pm 1)$ with acceptance probability:

$$p_{acc} = \min \left[1, \frac{\pi(\mp, x \pm 1)}{\pi(\pm, x)} \right],$$

Step B Flip label to keep direction $(\pm, x) \to (\mp, x)$ with fixed probability $1 - \theta$.

(See [1], Chapter 1)

Non-reversible Algorithm

Properties

- No need to consider normalization like in Metropolis algorithm.
- ullet With heta we can control the probability to change direction.
- Convergences because the chain is irreducible and aperiodic.

Invariant Distribution

Both steps leave π invariant.

Step A follows the construction of a Metropolis algorithm.

Step B because $\pi(+,x) = \pi(-,x)$.

Easily derive (See [2], Chapter 5.1):

$$\pi(\pm, x) = \pi(x)/2$$
 for all $x \in \Omega$.

Application Ising-Model

Mean Field Ising Model over Magnetization

State space:
$$\Omega = \{-1, 1\}^{N^d}$$

Spin:
$$\sigma(v) = \{-1, 1\}$$
 for all $v \in \Omega$

Magnetization:
$$M = \sum_{v \in \Omega} \sigma(v)$$

Energy Level:
$$\mathcal{H} = -\frac{J}{2N} \sum_{v,w} \sigma(v) \sigma(w) = -\frac{J}{2N} M^2$$

Application Ising-Model

Invariant Distribution (Gibbs distribution)

$$\pi(M) = \frac{N!}{(\frac{N+M}{2})!(\frac{N-M}{2})!} \exp\left(\frac{\beta JM^2}{2N}\right),$$

with inverse temperatur β and exchange matrix J (here J=1).

Acceptance Probability

$$p_{acc} = \min \left[1, \frac{N \mp M}{N \pm M + 2} \exp \left(\frac{2\beta J}{N} (\pm M + 1) \right) \right]$$

(See [1], Chapter 2)

Application Ising-Model

Nearest Neighbor Ising Model over Energy Level

Energy Level: $\mathcal{H} = -J \sum_{\langle v, w \rangle} \sigma(v) \sigma(w)$, where $\langle v, w \rangle$ are direct neighbors.

Acceptance Probability

In 2-D case a single spin flip can lead to energy changes $\Delta \mathcal{H}=0$, $\Delta \mathcal{H}=\pm 4$ and $\Delta \mathcal{H}=\pm 8$.

Use Fiber-Algorithm with acceptance probability (See [1], Chapter 3):

$$p_{acc} = \min \left[1 \, , \, rac{K_{\pm |\Delta \mathcal{H}|}}{K_{\mp |\Delta \mathcal{H}|}'} \exp^{-eta \Delta \mathcal{H}}
ight]$$

where K is the number of possible moves before and K' after spin flip.

Fiber-Algorithm

Step A Randomly select stepsize s from a given set.

Step B Metropolis update $(\pm, x) \rightarrow (\mp, x \pm s)$ with acceptance probability:

$$p_{acc} = \min \left[1, \frac{\pi(\mp, x \pm s)}{\pi(\pm, x)} \right]$$

Step C Flip label to keep direction $(\pm, x) \to (\mp, x)$ with fixed probability $1 - \theta$.

(See [2] Chapter 5.2 for general approach)

Implementation

Example (Non-reversible 1D-Ising-Model over M)

```
nonrevMFI1D(theta,plotRun,calcIndicators,samples)
>> nonrevMFI1D(0.001,1,0,10000)
```

Example (Non-reversible 2D-Ising-Model over M)

```
nonrevMFI2DM(theta,plotRun,calcIndicators,samples)
>> nonrevMFI2DM(0.001,1,0,10000)
```

Example (Non-reversible 2D-Ising-Model over E)

```
nonrevNNI2DE(theta,plotRun,calcIndicators,samples)
>> nonrevNNI2DE(0.001,1,0,10000)
```

References

1. Fernandes, Weigel

Non-reversible Monte Carlo simulations of spin models

Computer Physics Communications 182, (2011), 1856 - 1859

http://www.cond-mat.physik.uni-mainz.de/~weigel/fileadmin/media/pdf/cpc_182_1856.pdf

2. Diaconis, Holmes, Neal

Analysis of a nonreversible Markov chain sampler

The Annals of Applied Probability, (2000), Vol. 10, No. 3, 726-752

http://www-stat.stanford.edu/~susan/papers/rev4.ps

3. Levin, Peres, Wilmer

Markov Chains and Mixing Times

American Mathematical Society, (2009)

http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

Material for this presentation: http://tinyurl.com/kzmthcq