Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій

3ВІТ Про виконання лабораторної роботи № 2

«розв'язування нелінійних рівнянь методом дотичних та методом послідовних наближень»

з дисципліни «Чисельні методи»

Лектор:

доцент кафедри ПЗ Мельник Н.Б.

Виконав:

студ. групи ПЗ-15 Марущак А. С.

Прийняв:

 Тема роботи: розв'язування нелінійних рівнянь методом дотичних та методом послідовних наближень.

Мета роботи: ознайомлення на практиці з методом дотичних та методом послідовних наближень для розв'язування нелінійних рівнянь.

Теоретичні відомості

Наступні методи розв'язування нелінійних рівнянь дозволяють знайти розв'язок для наступної задачі: Розглянемо рівняння f(x) = 0, у якому f(x) є неперервною нелінійною функцією. На відрізку [a,b] дана функція є монотонною та диференційованою, на ньому міститься єдиний корінь x_* заданого рівняння, тобто f(a)f(b) < 0. Потрібно знайти значення кореня x_* з заданою похибкою ε .

В лабараторній роботі №1 ми розглянули 2 методи: бісекції та хорд. Нижче ми розглянемо наступні два.

Метод Ньютона (метод дотичних)

Геометричний зміст методу Ньютона полягає в тому, що дугу кривої y = f(x) на відрізку [a,b] замінюють дотичною до цієї кривої, а наближене значення кореня визначають як абсцису точки перетину дотичної з віссю Ох , проведеної через один із кінців відрізка (рис 2.1). Запишемо рівняння дотичної до кривої y = f(x) в точці $(x_i, f(x_i))$:

$$y - f(x_i) = f'(x_i)(x - x_i)$$

Покладемо у цьому співвідношенні y=0 і визначимо х. У результаті отримаємо

$$x = x_i - \frac{f(x_i)}{f'(x_i)}.$$

Тоді ітераційні формули запишемо у вигляді

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, i = 0,1,2,...$$

Для вибору початкового наближення кореня рівняння f(x) = 0 необхідно керуватися таким правилом: за початкову точку слід вибирати той кінець відрізка [a,b], в якому знак функції y = f(x) співпадає зі знаком її другої похідної f''(x).

Процес побудови дотичної продовжуємо до тих пір, поки не виконається нерівність $|x_{i+1}-x_i|<\varepsilon$, де ε – задана точність шуканого розв'язку; x_i,x_{i+1} – наближені значення кореня рівняння f(x)=0 на i -му та (i+1)-му кроках.

Рис 2.1 Графічна інтерпретація методу дотичних.

Алгоритм методу Ньютона:

- 1. Отримати значення a, b, ε .
- 2. Обрати початкове наблження x_0 в залежності від того, на якому кінці відрізка (а або b) значення функції має той самий знак, що і друга похідна.
- 3. Допоки $|x_{i+1} x_i| < \varepsilon$, то $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$.
- 4. Отримуємо і виводимо результат.

Метод простої ітерації (метод послідовних наближень)

Одним із найпоширеніших методів чисельного розв'язування нелінійних рівнянь ϵ метод простої ітерації. Іноді його називають методом послідовних наближень.

Рівняння f(x) = 0 запишемо у канонічній формі

$$x = \varphi(x)$$
.

Довільним способом визначимо наближене значення x_0 кореня рівняння і підставимо його в праву частину цього співвідношення. У результаті отримаємо

$$x_1 = \varphi(x_0).$$

Підставивши тепер в праву частину рівняння (3.5) замість x_0 значення x_1 , отримаємо $x_2 = \varphi(x_1)$. Повторюючи цей процес, отримаємо ітераційні формули

$$x_i = \varphi(x_{i-1}), i = 1,2,3,...$$

Кожний дійсний корінь x_* рівняння є абсцисою точки перетину М кривої $y = \phi(x)$ з прямою y = x (рис. 2.2).

Рис 2.2 Графічна інтерпретація методу ітерацій

Доведено, що ітераційний процес, збігається до єдиного кореня рівняння f(x) = 0, якщо на відрізку [a;b], що містить цей корінь, виконується умова:

$$|\varphi'(x)| \le q = \max_{x \in [a,b]} |\varphi'(x)| < 1$$

Збіжність процесу ітерації буде тим швидшою, чим меншим є число q, яке задовольняє нерівність. Якщо умова не виконується, то необхідно перетворити рівняння f(x) = 0 до вигляду $x = \varphi(x)$ так, щоб досягти її виконання. Наприклад, можна визначати функцію $\varphi(x)$ зі співвідношення

$$\varphi(x) = x - \frac{f(x)}{k},$$

де значення k вибирають так, щоб виконувалась умова $|k| \ge \frac{Q}{2}$. Тут $Q = \max_{x \in [a,b]} |f'(x)|$ та знак k співпадає зі знаком f'(x) на відрізку [a;b]. Ітераційний процес продовжують до тих пір, поки не виконуватиметься умова $4|x_i-x_{i-1}| < \varepsilon$, де ε – задана похибка шуканого кореня.

Алгоритм методу простої ітерації:

- 1. Обираємо початкове наближення x_0 та обираємо точність ε .
- 2. Допоки $|x_i x_{i-1}| < \varepsilon$, то $x_i = \varphi(x_{i-1})$.
- 3. Виводимо результат.

Індивідуальне завдання

- 1. Ознайомитися з теоретичним матеріалом.
- 2. Скласти програму розв'язування нелінійного рівняння методом дотичних та методом простої ітерацій:

6)
$$x^3 + 3x^2 + 12x - 3 = 0$$

Хід роботи

Нагадаємо собі, що в результаті відокремлення коренів в лабараторній роботі №1 ми дійшли висновку, що корінь рівняння локалізований на відрізку [0; 1]. Тому і в подальшій роботі я буду використовувати цей відрізок.

Для того щоб далі застосувати метод простої ітерації, нам необхідно звести початкове рівняння f(x) = 0 до вигляду $x = \varphi(x)$. Зробимо це наступним чином:

$$x^{3} + 3x^{2} + 12x - 3 = 0$$

$$x(x^{2} + 3x + 12) - 3 = 0$$

$$x(x^{2} + 3x + 12) = 3$$

$$x = \frac{3}{x^{2} + 3x + 12}$$

 $x=rac{3}{x^2+3x+12}$ Звідки дістаємо, що $\varphi(x)=rac{3}{x^2+3x+12}$. Її похідна $\varphi'(x)=rac{-6x-9}{(x^2+3x+12)^2}$. Для збіжності ітераційного процесу повинна виконуватись умова $|\varphi'(x)|<1$. Перевіримо цю умову, знайшовши глобальний максимум та мінімум похідної.

Візьмемо похідну від похідної та отримаємо, що $\varphi''(x) = \frac{18x^2 + 54x - 18}{(x^2 + 3x + 12)^3}$. Функція $g(x) = x^2 + 3x + 12$ має мінімум у точці $x_0 = -1.5$ рівний 9.75, тому $x^2 + 3x + 12 > 0 \rightarrow (x^2 + 3x + 12)^3 > 0$.

3 цього робимо висновок, що $D(\varphi'') = \mathbb{R}$, і критичні точки можемо знайти, як корінь рівняння $18x^2 + 54x - 18 = 0$:

$$18x^{2} + 54x - 18 = 0$$

$$x^{2} + 3x - 1 = 0$$

$$x_{1} = \frac{-3 - \sqrt{13}}{2}; x_{2} = \frac{-3 + \sqrt{13}}{2}$$

У точці x_1 функція $\varphi'(x)$ має локальний максимум: $\varphi'(x_1) = \frac{3}{13\sqrt{13}} \approx 0.064$.

У точці x_2 функція $\varphi'(x)$ має локальний мінімум: $\varphi'(x_2) = -\frac{3}{13\sqrt{13}} \approx -0.064$.

Врахувавши, що $\lim_{x\to\pm\infty}(\varphi'(x))=0$, то, знайдені локальні максимум та мінімум є глобальними, і $|\varphi'(x)|\leq \frac{3}{13\sqrt{13}}\ll 1$, що означає, що ітераційний процес буде збіжним при будь-якому початковому наближені і, при тому, з досить високою швидкістю.

Для подальшої роботи я використовуватиму функції f, df, d2f та phi, які відповідають функції f(x), її першій та другій похідній, та функції $\phi(x)$. Їх код має наступний вигляд:

```
double f(double x)
{
    return x*x*x + 3*x*x + 12*x - 3;
}

double df(double x)
{
    return 3*x*x + 6*x + 12;
}

double d2f(double x)
{
    return 6*x + 6;
}

double phi(double x)
{
    return 3/(x*x + 3*x + 12);
}
```

Метод Ньютона(дотичних):

Код функції:

```
double findTangents(double start, double end, double precision, int &iterations)
{
    double x_prev = 0;
    double x = f(start)*d2f(start) > 0 ? start : end; // За початкове наближення
    oбираемо той кінець, де знак функції збігається зі знаком її другої похідної

    do {
        x_prev = x; // Зберігаємо попереднє значення
        x = x - f(x)/df(x); // Використовуємо рекурентну формулу для отримання
        iterations++;
    } while(fabs(x - x_prev) > precision); // Допоки не досягнемо заданої точності..
    return x; // Повертаємо відповідь
}
```

Метод простої ітерації:

Код функції:

```
double findSimpleIteration(double x0, double precision, int &iterations)
{
    double x_prev = 0;
    double x = x0; // За початкове наближення беремо x0.

    do {
        x_prev = x; // Зберігаємо попереднє значення
        x = phi(x); // Використовуємо рекурентну формулу для отримання наступного наближення
        iterations++;
```

```
} while(fabs(x - x_prev) > precision); // Допоки не досягнемо заданої точності..
return x; // Повертаємо відповідь
}
```

Результат виконання програми:

Рис 2.3. Результати виконання програми.

Аналіз результатів:

3 рис 2.3 можна зробити декілька висновків:

- Точка перетину графіків $y = \varphi(x)$ та y = x лежить над точкою перетину графіка y = f(x) з віссю Ox, що означає, що ми правильно привели рівняння f(x) = 0 до вигляду $x = \varphi(x)$.
- Корінь, знайдений кожним з чотирьох методів ϵ однаковим, тому ϵ вірним.
- Метод простої ітерації та дотичних в більшості випадків ϵ швидшими за метод бісекції та хорд.

Висновок:

Я ознайомився на практиці з методами знаходження коренів нелінійних рівнянь та розробив функції для уточнення коренів на заданих проміжках на основі отриманих знань. Я встановив, що корінь рівняння $^{6)}x^3 + 3x^2 + 12x - 3 = 0$ знаходиться на відрізку [0; 1]. Потім, використавши методи хорд, бісекції, Ньютона та простої ітерації я уточнив локацію кореня і вирахував його наближене значення: $x_* \approx 0.235099$.