Verification of Kirchhoff's Laws

Exp. No: Date:

Aim: To verify Kirchhoff's voltage law for the electric circuit.

Apparatus required:

S.No	Name of the	Range/	Type	Quantity
	equipment	Specification		
1	Resistors		Carbon	5
			composite	
2	Bread board	30V, 1A	-	1
3	Regulated power	(0-30)V, 2A	-	1
	supply			
4	Voltmeter	(0-30)V, MC	Digital	5
5	Connecting wires	1/22 guage	Copper	Adequate

Circuit diagram for KVL:

Circuit diagram for Kirchhoffs Voltage law

Procedure for KVL:

- 1. Connect the circuit as per circuit diagram
- 2. Switch on the power supply.
- 3. Apply the input voltages and note down the readings of the voltmeters. i.e. Voltage drop across all the resistances.
- 4. Repeat step-3 for different input voltages.

Tabular column for KVL:

S.No	Applied voltages		Mesh-1		Mesh-2			
	VA(V)	VB(V)	V1(V)	V3(V)	V4(V)	V2(V)	V3(V)	V5(V)

Theoretical calculations for KVL:

Applying KVL to loop1 we get (in C.W direction)

$$-I_1 R_1 - (I_1 - I_2) R_3 - I_1 R_4 + V_1 = 0 - Eq. (1)$$

Applying KVL to loop2 we get (in C.W direction)

$$-I_2 R_5 - (I_2 - I_1) R_3 - I_2 R_4 + V_2 = 0$$
 ----- Eq.(2)

By solving equation (1) and (2) we get I_1 and I_2

Using ohms law, we have

$$V_1 = -I_1 R_1$$
 $V_2 = -I_2 R_2$
 $V_3 = -(I_1 - I_2) R_3$
 $V_4 = -I_1 R_4$
 $V_5 = -I_2 R_5$

b) To verify Kirchhoff's current law for the electric circuit.

Apparatus required:

S.No	Name of the	Range/	Type	Quantity
	equipment	Specification		
1	Resistors		Carbon	5
			composite	
2	Bread board	30V, 1A	-	1
3	Regulated power	(0-30)V, 2A	-	1
	supply			
4	Ammeter	(0-500)mA,	Digital	3
		MC		
5	Connecting wires		Copper	Required

Circuit diagram for KCL:

Circuit diagram for Kirchhoffs Current law

Procedure for KCL:

- 1. Connect the circuit as per circuit diagram
- 2. Switch on the power supply.
- 3. Apply the input voltages and note down the readings of the ammeters.
- 4. Repeat step-3 for different input voltages.

Tabular column for KCL:

S.No	Applied voltages		I1	I2	I3
	VA(V)	VB(V)	(mA)	(mA)	(mA)

Theoretical calculations for KCL:

Applying KCL to Node A, we have

$$I_1 + I_2 - I_3 = 0$$
 ----- Eq (1)

Applying ohms to three resistive branches, we have

$$\begin{split} I_1 &= V_1/ & R_1 \\ I_2 &= V_2/R_2 \\ I_3 &= - (V_3/R_3) \\ V_1/R_1 + V_2/R_2 - V_3/R_3 = 0 ---- From \ eq \ (1) \\ V_3 &= \frac{(V_1/R_1) + (V_2/R_2)}{R_3} \end{split}$$

Precautions:

- 1. Set the current adjustment knob of the RPS in maximum position and voltage coarse and voltage fine adjustment knobs in minimum position.
- 2. While using multimeter as a voltmeter or ammeter insert the connecting probes in proper sockets.

Result: