Vincent Latona August 31, 2021

Assignment 2

1. a.
$$f(n) = 4^n$$
, $g(n) = 6^n$, $\lim_{n \to \infty} \left(\frac{4}{6}\right)^n = 0$, then $f(n) = \Omega(g(n))$
b. $f(n) = 9 \log_3 n$, $g(n) = 3 \log_9 n$, $\lim_{n \to \infty} \left(\frac{9 \log_3 n}{3 \log_9 n}\right) = 6$, then $f(n) = \theta(g(n))$
c. $f(n) = 4n^2 + 7n$, $g(n) = 12n^2 + 9n + n^3$, $\lim_{n \to \infty} \left(\frac{4n^2 + 7n}{12n^2 + 9n + n^3}\right) = 0$, then $f(n) = \Omega(g(n))$
d. $f(n) = 8n^7$, $g(n) = (3n^5 + 5n^2)/2$, $\lim_{n \to \infty} \left(\frac{8n^7}{(3/2)n^5 + (5/2)n^2}\right) = \infty$, then $f(n) = 0(g(n))$
e. $f(n) = 4 \log_5 n$, $g(n) = 8 \log_5 n$, $\lim_{n \to \infty} \left(\frac{4 \log_5 n}{8 \log_5 n}\right) = 1/2$, then $f(n) = \theta(g(n))$

- 2. Suppose that the running time of algorithm A is $2800n^2$ and the running time of algorithm B is $40n^4$. In order to find the largest integer value of n such that the running time of A will be larger than B, we must satisfy the following inequality:
 - $2800n^2 > 40n^4$. This inequality simplifies to $\pm \sqrt{70} > n$, but we are only concerned with the largest integer value, so we must take the floor function in order to obtain the largest integer value. $\lfloor \sqrt{70} \rfloor = 8$, therefore the running time of algorithm A will be larger than that of algorithm B for $n \le 8$.
- 3. Suppose that $f(n) = 8n^2 + 11n + 6$, $g(n) = n^2$ and there exists 2 constants a = 26 and b = 7, which are positive. By the definition of big-O, f(n) = O(g(n)) if $0 \le f(n) \le a * g(n)$ for all $n \ge b$. If n > 1, then $n^2 > n$; the same relationship will

hold for $n \ge 7$. By the relationship $n^2 > n$, then $9n^2 > 8n^2$, $11n^2 > 11n$, and $6n^2 > 6$ each holds true. Thus, $8n^2 + 11n + 6 < 9n^2 + 11n^2 + 6n^2$ which simplifies to $8n^2 + 11n + 6 < 26n^2$ for all $n \ge 7$. Therefore, by the definition of big-O, f(n) = O(g(n)).

- 4. Suppose that $f(n) = 8n^2 11n 6$, $g(n) = n^2$ and there exists 2 constants a = 1, b = 2, which are positive. By the definition of big- Ω , $f(n) = \Omega(g(n))$ if $0 \le a * g(n) \le f(n)$ for all $n \ge b$. $8n^2 11n 6 \ge n^2$ simplifies to $(7n + 3)(n 2) \ge 0$ which yields intersections at n = -7/3, 2. This means that when $n \ge 2$, $8n^2 11n 6 \ge n^2$; therefore, $f(n) = \Omega(g(n))$.
- 5. We are given the following: $f(n) = \Omega(g(n))$, $h(n) = (f(n))^2$. Suppose that each of these functions are non-negative and for the purpose of obtaining a contradiction that $h(n) \neq \Omega((g(n))^2)$. By the definition of big- Ω , $a(n) = \Omega(b(n))$ if $0 \leq A * b(n) \leq a(n)$ for all $n \geq B$ if there exists constants A, B. If $f(n) = \Omega(g(n))$, then there exists constants a, b which satisfies the definition, proving that the following inequality holds true: $a * g(n) \leq f(n)$ for all $n \geq b$. Since each function is non-negative the following inequality also holds true:

 $a(g(n))^2 \le a * g(n) * f(n) \le (f(n))^2$ for all $n \ge b$. However, if this is true, then A = a, B = b, and since $h(n) = (f(n))^2$, then we have a contradiction in our conclusion. Therefore, $h(n) = \Omega((g(n))^2)$.

6. a.

Constant	Times
c1	1
c2	1
c3	$\sum_{i=1}^{n+1} 1 = n+1$
c4	$\sum_{i=1}^{n} \sum_{j=2}^{n-i+3} 1 = (n^2/2) + (3n/2)$
c5	$\sum_{i=1}^{n} \sum_{j=2}^{n-i+2} 1 = (n^2/2) + (3n/2) - 1$
c6	$\sum_{i=1}^{n} \sum_{j=2}^{n-i+2} \sum_{k=j}^{j+i+1} t_k \text{(variable may be 0 or 1)}$
c7	$\sum_{i=1}^{n} \sum_{j=2}^{n-i+2} \sum_{k=j}^{j+i} t_k \text{ (variable may be 0 or 1)}$
c8	$\sum_{i=1}^{n} \sum_{j=2}^{n-i+2} \sum_{k=j}^{j+i} t_k \text{ (variable may be 0 or 1)}$
c9	1

General Running Time

$$T(n) = c1 + c2 + c3(n+1) + c4((n^{2}/2) + (3n/2)) + c5((n^{2}/2) + (n/2)) + \sum_{i=1}^{n} \sum_{j=2}^{n-i+2} \sum_{k=j}^{j+i+1} t_{k}(c6) + 2\sum_{i=1}^{n} \sum_{j=2}^{n-i+2} \sum_{k=j}^{j+i} t_{k} + c9$$

b. Best-Case Running Time:

$$T(n) = c1 + c2 + c3(n + 1) + c4((n^2/2) + (3n/2)) + c5((n^2/2) + (n/2)) + c9$$

which simplifies to a format of $An^2 + Bn + C$ where A, B, C are constants.

Fastest Growing Term: n^2

c. Worst-Case Running Time:

 $T(n) = c1 + c2 + c3(n+1) + c4((n^2/2) + (3n/2)) + c5((n^2/2) + (3n/2) - 1) + c6((n^3/3) + (n^2/2) + (5n/3)) + c7((n^3/3) + (n^2/2) + (5n/3) - 1) + c8((n^3/3) + (n^2/2) + (5n/3) - 1)$ which simplifies to a format of $An^3 + Bn^2 + Cn + D$ where A, B, C, D are constants.

Fastest Growing Term: n^3