

Un modèle sémantique spatiotemporel pour capturer la dynamique des environnements

Benjamin Harbelot, Helbert Arenas, Christophe Cruz

PLAN DE LA PRESENTATION

Modélisation spatio-temporelle:

Un modèle de données spatio-temporel est un modèle de données représentant l'évolution temporelle des objets géographiques au fil du temps

Donnée:

- un polygone de type « Forêt » à l'instant T1
- un polygone de type « Forêt » à l'instant T2
- La géométrie de T2 est plus petite que la géométrie de T1

Information:

La taille de la forêt s'est réduite entre T1 et T2

Connaissance:

On observe un phénomène de déforestation entre T1 et T2

Représenter la connaissance

- ✓ Classification des entités
 - Classes
 - Relation de subsomption au sein d'une hiérarchie
- ✓ Renforcement des relations entre entités
 - Arcs nommés au sein du graphe
 - Possibilité d'établir une hiérarchie de relation

Inférer de la connaissance

- ✓ Fournit des outils pour le raisonnement
 - Vérification de la consistance
 - Inférence (émergence de nouvelles connaissances en s'appuyant sur celles déjà présentes)

Composantes du modèle Continuum

Outils du Web sémantique

- ✓ Une ontologie spatiale
- ✓ Fonctions d'analyses spatiales

Ontologie de fluent

- ✓ Les entités sont représentées à différents instants de temps
- ✓ Par conséquent, les propriétés et relations évoluent dans le temps

Architecture basée sur une ontologie

CONTINUUM MODEL

CONTINUUM MODEL

Motifs d'évolutions¹

¹Del Mondo, G., M. Rodríguez, C. Claramunt, L. Bravo, et R. Thibaud (2013). Modeling consistency of spatio-temporal graphs. Data & Knowledge Engineering 84, 59–80.

CORINE LAND COVER

INFERENCE DES MOTIFS GENERIQUES

DETECTION DE PHENOMENES

Du phénomène au processus

Détecter des patterns de tendances

20

```
Property path:

| Select ?x | where | { | ?x checksem:hasGrowth/checksem:hasGrowth ?z . | } | group by ?x |
```


Les phénomènes connexes

Les phénomènes connexes

Les phénomènes connexes

CONTINUUM MODEL

Continuum: Modèle sémantique spatio-temporel

- ✓ Modélisation spatio-temporelle
 - ✓ Gestion de la représentation spatiale
 - ✓ Gestion du temps et de l'évolution
 - ✓ Suivi dans le temps des entités
 - ✓ Gestion de l'identité des entités
- ✓ Détection de phénomènes spatio-temporels
 - ✓ Définition de motifs d'évolution
 - ✓ Prise en compte du contexte de l'information

- ✓ Utilisation de connaissances partagées
- ✓ Prise en compte du contexte de l'environnement géographique
- ✓ Amélioration des connaissances
 - o Ex: Détection de phénomènes

QUESTIONS

CHECKSEV SEMANTICINTELLIGENCE RESEARCH

CONCLUSION

Continuum Model

Représenter et stocker l'évolution dans l'espace et dans le temps

- Permet de stocker de l'information
- Suivre des objets dans le temps
- Permet l'évolution des propriétés et relations des entités ainsi que de l'identité
- Utilise l'ontologie pour prendre en compte le contexte de l'environnement géospatial

Vérification de la consistence

Applications spatio-temporelles sujettes à l'erreur

- De nombreuses données mise en jeu
- Mises à jour fréquentes des données

Accroitre la connaissance

A propos des relations de filiations

- Accroitre automatiquement la connaissance sur les phénomènes
- En utilisant les informations spatiales, temporelles et sémantiques définies dans l'ontologie
- Définition d'une hiérarchie de relations de filiation

CONTINUUM MODEL

Stockage des données

Visualisation

4) Charger le fichier automatiquement dans Google Earth afin de visualiser les données

✓ Hypothèse du monde fermé

- o Concerne les domaines où l'information est complète
- Idéal pour contraindre et valider des données

√ Hypothèse du monde ouvert

- o Concerne les domaines où l'information est incomplète
- Permet la représentation d'entités abstraites, non-nommées
- Facile à réutiliser et à étendre
- Idéal pour décrire de la connaissance qui vise à être étendue
 → idéal pour l'inférence

Les deux hypothèses ont chacune leur place dans de nombreuses applications :

Définition de contraintes

Monde fermé vs monde ouvert

- Déclaration
 - Employé subClassOf employéID some integer
 - Personne0254 type Employé
- Hypothèse du monde ouvert
 - Consistant : vrai
 - Raison : Personne0254 a un employéID mais on ne connait pas la valeur exacte de cette propriété.
- Hypothèse du monde fermé
 - Consistant : faux
 - Raison : Personne0254 n'a pas d'employéID.

Monde fermé vs monde ouvert

- Déclaration
 - estEmployéDe range Organisation
 - Personne0254 estEmployéDe Organisation741

- Hypothèse du monde ouvert
 - Consistant : vrai
 - Inférence : Organisation741 type Organisation
- Hypothèse du monde fermé
 - Consistant : faux
 - Raison : Organisation741 type Organisation n'est pas explicitement définie.

- Organisation741 aPourManager Personne 0254
- Organisation741 aPourManager Personne 4520
- Hypothèse du monde ouvert
 - Consistant: vrai
 - Inférence: Personne0254 sameAs Personne4520
- Hypothèse du monde fermé
 - Consistant: faux
 - Raison: Organisation741 a plus d'une valeur pour la propriété aPourManager ce qui est interdit car cette dernière est fonctionnelle.

✓ Contraintes d'intégrités (monde fermé)

- Permet d'éviter l'insertion de données incorrectes dans le modèle
- Utilisé pour la validation, l'analyse et l'insertion de données
- Un seul modèle qui contient seulement les faits insérés

✓ Axiomes logiques (monde ouvert)

- Exemples: restrictions, domain/range
- Tout peut être vrai à moins de prouver le contraire
- Plusieurs modèles possibles pour satisfaire les axiomes
 - Interprétation: peut causer des résultats d'inférences peu intuitifs

Contraintes

Donnée:

- un polygone de type « Forêt » à l'instant T1
- un polygone de type « Forêt » à l'instant T2
- La géométrie de T2 est plus petite que la géométrie de T1

Information:

La taille de la forêt s'est réduite entre T1 et T2

Connaissance:

On observe un phénomène de déforestation entre T1 et T2

