Problem

Prove that
$$TIME(2^n)$$
 \longrightarrow $TIME(2^{2n})$.

Step-by-step solution

Step 1 of 1

$$Proving \ TIME \big(2^n\big) \subsetneq TIME \big(2^{2n}\big)$$

 $\begin{array}{ll} \text{TIME} \Big(2^n \Big) \subseteq \text{TIME} \Big(2^{2n} \Big)_{\mbox{holds because }} 2^n \leq 2^{2n} \, . \mbox{ Now, consider the {\it time hierarchy theorem}} \mbox{ which says that, "if f, g are time-constructible functions and } & f(n) log f(n) = O \Big(g(n) \Big)_{\mbox{then}} \mbox{ DTIME} \Big(f(n) \Big) \subsetneq \mbox{DTIME} \Big(g(n) \Big)_{\mbox{}} \\ \end{array}$

Thus, the above containment is proper by virtue of the time hierarchy theorem as discussed.

- A Turing machine can write the number 1 followed by 2n 0s in $O(2^{2n})$ time. So, the function 2^{2n} is time constructible
- Hence, the time hierarchy theorem guarantees that a language A exists that can be decided in $O(2^{2n})$ time but not in $O(2^{2n}/\log 2^{2n}) = O(2^{2n}/2n)$ time.
- Therefore, $A \in TIME\left(2^{2n}\right)$ but $A \notin TIME\left(2^n\right)$

From the above explanation it can be said that ${}^{TIME\big(2^n\big)}\!\varsubsetneq TIME\big(2^{2n}\big)\;.$

Comment