Safe Sequential Path Planning of Multi-Vehicle Systems Under Presence of Disturbances and Measurement Noise

Somil Bansal*, Mo Chen*, Claire J. Tomlin

Abstract—

I. Introduction

II. PROBLEM FORMULATION

Consider N vehicles whose joint dynamics described by

$$\dot{x}_i = f_i(t, x_i, u_i, d_i)
|u_i| \in \mathcal{U}
|d_i| \in \mathcal{D}
i = 1, ..., N$$
(1)

where blah blah and [STANDARD ASSUMPTIONS HERE].

Under the worst case disturbance, each vehicle aims to get to some target state, denoted \mathcal{T}_i at some scheduled time of arrival t_{STA} . On its way to the target state, each vehicle i must avoid the danger zones $\mathcal{A}_i(t)$ of all other vehicles $j \neq i$ for all time, defined as

$$A_i(t) = \bigcup_j \{x_i : ||x_i - x_j(t)|| \le R_c\}$$
 (2)

III. SOLUTION VIA DOUBLE-OBSTACLE HJI VI AND SPP

- A. Double-Obstacle Hamilton-Jacobi Variational Inequality
 - Reachability general theory (backwards, then forwards)
- B. Sequential Path Planning
 - Priorities Treat higher priority vehicles as obstacles
- C. Obstacle Generation
 - Forward reachable set
 - 1) Centralized Planning:
 - 2) Distributed Planning:
- D. State Measurement Updates
 - IV. NUMERICAL IMPLEMENTATION
 - V. CONCLUSIONS AND FUTURE WORK

This work has been supported in part by NSF under CPS:ActionWebs (CNS-931843), by ONR under the HUNT (N0014-08-0696) and SMARTS (N00014-09-1-1051) MURIs and by grant N00014-12-1-0609, by AFOSR under the CHASE MURI (FA9550-10-1-0567). The research of J.F. Fisac has received funding from the "la Caixa" Foundation.

* Both authors contributed equally to this work. All authors are with the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. {mochen72, somil, tomlin}@eecs.berkeley.edu