Eksamen info102 mai 2015

Oppgave 1

- a) Forklar følgende begreper:
 - i) Tautologi
 - ii) Euler-graf.
 - iii) Funksjon.
 - iv) Komplement ~
 - v) Topologisk sortering
- b) Lag et binært søketre ved å sette inn følgende tall i den gitte rekkefølgen.

- c) La $M = \{1,2,3,4\}$ og la $R \subseteq M \times M$. Spesifikt er $R = \{(1,2), (2,3), (3,4)\}$ Hva er:
 - i) den refleksive tillukningen til R?
 - ii) den symmetriske tillukningen til *R*?
 - iii) den transitive tillukningen til *R*?

Oppgave 2 Mengder

Ta utgangspunkt i følgende mengder: $A = \{1,2,3\}, B = \{2,3,4,5\}, C = \{3,6\}$

- a) Hva er
 - 1. A∪B
 - 2. A∩B
 - 3. A-B
 - 5. $(A-C) \cap (B-C)$
 - 6. $(A-B) (A \times B)$
 - 7. $(A \cup C)$ - $((B \cap C) \cup (A-C))$
 - 8. $(A \times C) \cap (C \times B)$
 - 9. $A \cap \wp(A)$
 - 10. $\{X \cap Y | X \subseteq A \text{ and } Y \subseteq C\}$

I det følgende er M₁, M₂ og M₃ vilkårlige mengder

- b) Sant eller galt?
 - 1. $M_1 \times (M_2 \times M_3) = (M_1 \times M_2) \times M_3$
 - 2. $M_1 \times (M_2 \times M_3) = M_1 \times M_2 \times M_3$
 - 3. $M_1 \times (M_2 \times M_3) = (M_3 \times M_2) \times M_1$
 - 4. $\wp(M_1 \cup M_2) = \wp(M_1) \cup \wp(M_2)$
 - 5. $\wp(M_1) \cap \wp(\wp(M_1)) = \emptyset$
- c) Bruk mengdealgebra til å vise at $((M_1 \cap M_2) \cup (M_2 \cup M_1)) = M_1$

Oppgave 3 Logikk

- a) Lag sannhetsverditabell for utsagnet $R \Rightarrow (P \text{ and } (\text{not } Q))$
- b) Hva vil det si at to utsagn er ekvivalente?
- c) Bevis ved selvmotsigelse at det følgende er en tautologi:

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (Q \Rightarrow (P \Rightarrow R))$$

d) Relasjonen $liker \subseteq Personer \times Personer$ er definert ved at liker(x,y) er sant hviss personen x liker personen y.

Oversett det følgende til predikatlogikk:

- i) Per liker ikke Kari
- ii) Noen som liker Kari liker ikke Per
- iii) Den som liker Per liker også Kari
- iv) Den som liker alle liker også seg selv

Vedlegg til eksamen INFO102

Mengde algebra (Gitt en universell mengde U)

Assosiative lover

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Kommutative lover

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Identitetslover

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cup U = U$$

$$A \cap U = A$$

Idempotente lover

$$A \cup A = A$$

$$A \cap A = A$$

Distributive lover

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Komplement lover

$$A \cup \sim A = U$$

$$\sim U = \emptyset$$

$$\sim$$
(\sim A) = A

$$A \cap \sim A = \emptyset$$

$$\sim \varnothing = U$$

De Morgans lover

$$\sim$$
(A \cup B) = \sim A $\cap \sim$ B

$$\sim$$
(A \cap B) = \sim A $\cup \sim$ B

Boole'sk algebra

Kommutative lover

$$(P \text{ and } Q) \equiv (Q \text{ and } P)$$

 $(P \text{ or } Q) \equiv (Q \text{ or } P)$

Assosiative lover

$$(P \text{ and } (Q \text{ and } R)) \equiv ((P \text{ and } Q) \text{ and } R)$$

 $(P \text{ or } (Q \text{ or } R)) \equiv ((P \text{ or } Q) \text{ or } R)$

Distributive lover

$$(P \text{ and } (Q \text{ or } R)) \equiv ((P \text{ and } Q) \text{ or } (P \text{ and } R))$$

 $(P \text{ or } (Q \text{ and } R)) \equiv ((P \text{ or } Q) \text{ and } (P \text{ or } R))$

Idempotente lover

$$(P \text{ and } P) \equiv P$$

 $(P \text{ or } P) \equiv P$

Absorbsjonslover

$$(P \text{ and } (P \text{ or } Q)) \equiv P$$

 $(P \text{ or } (P \text{ and } Q)) \equiv P$

De Morgans lover

not
$$(P \text{ and } Q) \equiv ((\text{not } P) \text{ or } (\text{not } Q))$$

not $(P \text{ or } Q) \equiv ((\text{not } P) \text{ and } (\text{not } Q))$

Dobbel negasjon

$$(not (not P)) \equiv P$$