MODIS LST 插值流程

作者: 陈玉红

更新时间: 2023.02.14

1. 数据准备

Product code	Spatial/temporal resolutions	Variable(s) provided
MYD11A1	1 km/daily	Daytime LST
		View time
MYD03	1 km/daily	View zenith/azimuth angle
		Solar zenith/azimuth angle
MYD06_L2	1 km/5 min	Cloud-top height
MYD13A2	1 km/16 d	NDVI
MCD18A1	1 km/3 h	Downward shortwave radiation
GLASS Albedo	1 km/8 d	Albedo
SRTM	90 m	Elevation

2. 数据预处理

2.1. 对云高数据进行均值滤波(data->Cloud_top_height)

- 1) R代码
- 1_1_Preprocess_Filter_CloudTopHeight.R
- 2) 注:滤波后的数据会存在边界问题,通常会将影像裁剪为比研究区略大的区域,最后再进行裁剪

2.2. 时间数据补齐 (data—>view_time)

在 MODIS LST 数据中,存在卫星获取 LST 的过境时间,由于 LST 的缺失,时间数据也会存在缺失,这里根据经纬度信息,对时间数据进行了一个简单的补齐。相关代码未包含在Rcode 中。

2.3. 处理地表下行短波辐射数据(data—>DSR)

1) 原理

DSR 数据有两种时间分辨率,分别是瞬时和 3h,DSR 瞬时数据由于云的影响存在大面积缺失。3h 数据不存在数据缺失,本研究假设基于 MODIS 的过境时间,寻找距离 MODIS 过境时间最近的两个时刻。假设 DSR 在两个时刻随时间线性变化,通过线性插值获取 MODIS 过境时刻的 DSR。

- 2) R代码
- 1 2 Preprocess DSR UTC2MODISPasstime.R

3. SCSG 图像的生成 (result—>SCSG)

- 1) R 代码
- 2 1 Generate SCSG image.R
- 2 2 SCSG PostProcessing.R

4. 晴空温度插值(result—>LSTClearSky—> fusionResults)

- 1) R 代码
- 3 1 LST interpolation clearSky.R
- 3 2 Fuse ClearSkyInterpolations.R

5. 云下地表温度插值(result—>LSTcloudy)

R代码

4 LST interpolation cloudySky KMeans.R

6. 参考文献

[1] SCSG 原理:

Wang, T., Shi, J., Ma, Y., Husi, L., Comyn Platt, E., Ji, D., Zhao, T., Xiong, C., 2019. Recovering land surface temperature under cloudy skies considering the solar-cloud-satellite geometry: Application to MODIS and Landsat-8 data. Journal of Geophysical Research: Atmospheres 124, 3401-3416.

[2] 晴空温度插值法:

Chen, Y., Nan, Z., Zhao, S., Xu, Y., 2021. A Bayesian approach for interpolating clear-sky MODIS land surface temperatures on areas with extensive missing data. IEEE J. Sel. Top. Appl. *Earth Observ. Remote Sens.* 14, 515-528.

[3] 云下温度插值:

Chen, Y., Nan, Z., Cao, Z., Min, Y., Feng, K., 2021. A stepwise framework for interpolating land surface temperature under cloudy conditions based on the solar-cloud-satellite geometry. *ISPRS Journal of Photogrammetry and Remote Sensing*.