

Europäisches Patentamt
European Patent Office
Office européen des brevets

11) Publication number:

0 648 840 A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 94115856.0

2 Date of filing: 07.10.94

(a) Int. CI.S. **C12N 15/53**, C12N 9/02, C07K 14/47, C12Q 1/68, C12Q 1/26, C12N 5/10, C12N 15/85

Priority: 13.10.93 US 135511
 13.10.93 US 135488
 13.10.93 US 135510
 28.01.94 US 187453

- 43 Date of publication of application: 19.04.95 Bulletin 95/16
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC
 NL PT SE
- Applicant: Northeastern Ohio Universities
 College of Medicine,
 4209 State Route 44
 Rootstown,
 Ohio 44272-0095 (US)
- Inventor: Chiang, John Young Ling 3020 Fox Burrow Drive Stow, Ohio 44224 (US)
- (24) Representative: Bösl, Raphael Konrad Hoechst AG Zentrale Patentabteilung Gebäude F 821 D-65926 Frankfurt am Main (DE)
- (See Cholesterol 7alpha-hydroxylase gene regulatory elements and transcription factors.
- $\ensuremath{\mathfrak{D}}$ DNA regulatory elements that control cholesterol 7α -hydroxylase expression are disclosed, including bile acid responsive elements. A gene construct comprising at least one CYP7 regulatory element and a reporter gene is used to transfect HepG2 cells. Confluent transfected HepG2 cells are employed in an assay to detect a compound that modulates cholesterol 7α -hydroxylase enzyme regulation. A method for screening compounds that inhibit or stimulate expression of the enzyme is provided, as well as a method for detecting and isolating transcription factors of the cholesterol 7α -hydroxylase gene. A transcription factor of 57 KDa is identified which is useful in an assay for determining regulation of CYP7 expression.

hig: S

TRE HNF4 TRE HNF1 STFTTO STFTTO C/EBP

648 840 A2

High serum cholesterol is commonly associated with an increased risk of heart attack, atherosclerosis and circulatory disorders. In addition, a variety of diseases are caused by disorder of cholesterol catabolism, such as gallstone disease, atherosclerosis, hyperlipidemia and some lipid storage diseases.

The major pathway for disposal of cholesterol in the body is by secretion of cholesterol and bile acids into the gut. Bile contains free cholesterol and bile acids. The enzyme, cholesterol 7α -hydroxylase (CYP7) commits cholesterol to bile acid synthesis and catalyzes the first and rate-limiting step of bile acid synthesis in the liver. Thus, by increasing synthesis of bile acids, this enzyme plays a key role in the liver by depleting hepatic cholesterol pools, resulting in increased LDL uptake and a lowering of serum cholesterol levels.

Bile acids are physiological agents which are important in the solubilization of lipid-soluble vitamin, sterol and xenobiotics. Bile acids are synthesized exclusively in the liver and are secreted to the intestines where they are modified to secondary bile acids. Most bile acids are reabsorbed in the ileum and recirculated to the hepatocytes via the portal vein.

The feedback of bile into the liver is known to inhibit cholesterol 7α -hydroxylase and thus inhibit the overall rate of bile acid synthesis. Cholesterol 7α -hydroxylase therefore has been a subject of intense studies to elucidate the regulatory mechanisms of bile acid synthesis in the liver.

It is known that an interruption of bile acid reabsorption, such as caused by the bile sequestrant, cholestyramine, or by a bile fistula, stimulates the rate of bile acid synthesis and cholesterol 7α -hydroxylase activity in the liver. It is believed that cholesterol 7α -hydroxylase activity in the liver is regulated primarily at the gene transcriptional level by bile acids, cholesterol, hormones, diurnal rhythm and other factors.

Generally, the regulation of eukaryotic genes is thought to occur at several locations, including the promoter sequences, located upstream of the transcription start site; enhancer or repressor sequences, located upstream of the promoter; within intron sequences, non-coding sequences located between exons or coding sequence; and in 3' sequences, located downstream from the coding region. The promoter sequence is unique to each gene and is required for the accurate and efficient initiation of gene transcription. Enhancers and/or repressors regulate promoter activity and determine the level of gene transcription during development and differentiation of a particular tissue.

The promoter of most eukaryotic genes contains a canonical TATA box which binds a TFIID TATA box binding protein. TFIID complex and associated transcription activators (TAFs) interact with the basal initiation factors and RNA polymerase II to activate promoter. The transcription complex assembly and initiation are regulated by transcription factors bound to enhancer elements located in the promoter and other regions of the gene (Pugh and Tjian, J. Biol. Chem. 267, 679-682, 1992). Tissue-specific transcription factors and nuclear steroid hormone receptors are known to play an important role in the regulation of gene expression in different tissues during development and differentiation.

However, the mechanisms underlying the regulation of cholesterol 7α -hydroxylase CYP7 gene expression at the molecular level are not understood. An understanding of regulation of CYP7 gene expression would permit development of therapeutics for treating patients with defects in bile acid synthesis and cholesterol metabolism due to altered (deficient or excessive) gene expression.

In order to study the mechanism of regulation of human cholesterol 7α -hydroxylase at the molecular level, it is therefore important to determine the correct gene sequence of its coding and promoter regions. An elucidation of its gene structure and its promoter/enhancer activity is sought in order to assay for an agent that modulates cholesterol 7α -hydroxylase enzyme regulation.

Beyond knowledge of the promoter sequence, a cell line is sought that is suitable for transfecting with a CYP7 regulatory element/reporter gene construct to determine the regulatory activity of a particular promoter region. Such a cell line then could be employed in a method for screening compounds for inhibiting or stimulating CYP7 expression by its direct or indirect interaction with the regulatory region, as reported by the reporter gene.

A method for detecting and isolating the CYP7 transcription factors also is sought. Further, upon determining a transcription factor, an assay is desired to discover other endogenous factors or exogenous agents that interact directly or indirectly with the transcription factor. Such an assay is useful to determine factors or agents that modulate the activity of the transcription factor and thereby affect expression of cholesterol 7 α -hydroxylase protein.

Summary of the Invention

55

10

An embodiment of the invention provides a DNA sequence that comprises at least one regulatory element of cholesterol 7α -hydroxylase expression. In an advantageous embodiment, the DNA sequence comprises at least one regulatory element of cholesterol 7α -hydroxylase expression in either rat, human or

hamster. Another embodiment of the invention provides a rat CYP7 promoter region, deposited as clone R7αB24 on January 28, 1994, at the American Type Culture Collection, ATCC, 12301 Parkland Drive, Rockville, Maryland 20852, U.S.A., under accession number ATCC 69546.

An advantageous embodiment provides a DNA sequence comprising a regulatory element of a CYP7 gene which is selected from DNA fragments in the group consisting of human CYP7 gene fragments from about -158 to about + 32, from about -3643 to about -224, and from about -223 to about +32; and rat CYP7 gene fragments in the group consisting of from about -160 to about +32, from about -3643 to about -224, and from about -224 and +32.

Another embodiment provides a DNA sequence comprising a regulatory element of the cholesterol 7α -hydroxylase (CYP7) gene selected from DNA fragments in the group consisting of from about -191 to +64 of the rat CYP7 gene, from about -252 to +3 of the hamster CYP7 gene and from about -187 to +65 of the human CYP7 gene, or functionally active parts thereof.

Another advantageous embodiment provides DNA selected from fragments of DNA identified in Table 1, columns 1-3.

Another advantageous embodiment of the invention provides a gene construct containing at least one of the foregoing regulatory elements and a reporter gene.

Another embodiment provides a method for determining whether an agent inhibits or stimulates CYP7 gene expression. Yet other embodiments provide methods for detecting, substantially isolating and using in an assay a transcription factor of the cholesterol 7α -hydroxylase gene.

Brief Description of the Tables and Drawings

Table 1 shows the regulatory elements of rat, human and harnster CYP7 gene

Tables 2, 3 and 4 show the amino acid sequences of human, rat and hamster CYP7. Table 2 shows the human amino acid sequence (molecular-weight: 57.658; length: 504 amino acids), Table 3 shows the rat amino acid sequence (molecular-weight: 56.880; length: 503 amino acids) and Table 4 shows the hamster amino acid sequence (molecular-weight: 57.444; length: 504 amino acids).

Table 5 shows the nucleotide sequence of the region of the rat CYP7 gene taken from deposit $R7\alpha B24$ and indicated by arrows in Figure 1. The transcription start site "G" is located at nucleotide position 3644. Exon I (3644-3784), Exon II (5400-5640), Exon III (6348-6934) and Exon IV (7928-7997).

Table 6 shows the approximately 5.5 kb nucleotide sequence of the $\lambda HG7\alpha 26$ clone indicated by arrows in Figure 2B.

Table 7 shows the approximately 2.6 kb nucleotide sequence of the $\lambda HG7\alpha 26$ clone indicated by arrows in Figure 2B.

Table 8 shows the approximately 2.3 kb nucleotide sequence of the $\lambda HG7\alpha 5$ clone indicated by arrows in Figure 2C.

Table 9 shows the nucleotide sequence of the region of the hamster CYP7 gene indicated by arrows in Figure 3.

Figure 1 illustrates the rat CYP7 gene map. Boxes indicate exons. The arrows indicate the region for which a nucleic acid sequence of clone $R7\alpha B24$ (shown in Figure 8) now is determined.

Figures 2A, 2B and 2C provide maps of the human CYP7 gene and clones $\lambda HG7\alpha26$ and $\lambda HG7\alpha5$. Figure 2A shows the gene map of human CYP7. Figure 2B shows the gene map of the $\lambda HG\gamma\alpha26$ clone. Figure 2C shows the gene map of the $\lambda HG\gamma\alpha5$ clone. Heavy boxes represent exons I, II, and III. The arrows indicate regions for which nucleic acid sequences now are determined. These sequences are shown in Tables 6, 7 and 8.

Figure 3 illustrates the hamster CYP7 gene map. The arrows indicate the region for which a sequence (shown in Table 9) now is determined.

Figure 4 shows an alignment of the proximal promoter regions of rat, human and hamster CYP7 genes. The following abbreviations are used: GRE, glucocorticoid response element; LFA1, liver factor 1; HRE, steroid/thyroid hormone response element; PPRE, peroxisome proliferator response element; TGT3, TGT3 element; and LFB1, liver factor B1. Transcription start sites "G" are indicated by a "*". Translation start codons "ATG" are underlined. The numbers indicate the nucleotide positions in each gene.

Figure 5 shows a diagram indicating the positions at which transcription factors bind to the CYP7 proximal promoter. The following abbreviations are used: HNF, hepatocyte nuclear factor; TRE, thyroid hormone response element; C/EBP, liver specific enhancer binding protein; and TFIID, TATA box binding site representing general transcription complex.

Figure 6 shows the DNase I hypersensitivity sites (I, II, III and IV) in the SacI fragment of the rat CYP7 gene. Heavy boxes are exons. A 5'-probe was used for hybridization.

15

20

Figure 7 shows the effect of bile acid conjugates on the expression of cholesterol 7α -hydroxylase mRNA levels in confluent (striped block) and subconfluent (solid block) cultures of HepG2 cells, determined by Northern blot hybridization as described in Example 3.3. The endpoint of the sequenced promoter region terminates at position -3643, while the full length of this sequence rat clone is 7997 total nucleotides long.

Figure 8 shows the effect of promoter (observed in control cells), or of added thyroxine (T₄) and dexamethasone (Dex) on the transcriptional activity of cultures of confluent (A) or subconfluent (B) HepG2 cells, transiently transfected with CYP7/LUC constructs.

Figure 9 shows the effect of bile acids on transcriptional activity of CYP7/LUC constructs transiently transfected into cultures of confluent (A) or subconfluent (B) HepG2 cells, as described in Example 3.5.

Table 2

5

10

40

45

50

	Met 145	Met	Glu	Asn	Leu	Gln 150	Arg	Ile	Met	Arg	Pro 155	Pro	Val	Ser	Ser	Asn 160
5	Ser	Lys	Thr	Ala	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ser	Phe	Сув 175	Tyr
	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Ile	Phe	Gly	Arg 190	Asp	Leu
10	Thr	Arg	Arg 195	Asp	Thr	Gln	Lys	Ala 200	His	Ile	Leu	Asn	Asn 205	Leu	Asp	Asn
	Phe	Lys 210	Gln	Phe	Asp	Lys	Val 215	Phe	Pro	Ala	Leu	Val 220	Ala	Gly	Leu	Pro
15	11e 225	His	Met	Phe	Arg	Thr 230	Ala	His	Asn	Ala	Arg 235	Glu	Lys	Leu	Ala	Glu 240
	Ser	Leu	Arg	His	Glu 245	Asn	Leu	Gln	Lys	Arg 250	Glu	Ser	Ile	Ser	Glu 255	Leu
20	Ile	Ser	Leu	Arg 260	Met	Phe	Leu	Asn	Asp 265	Thr	Leu	Ser	Thr	Phe 270	Asp	Авр
			275					280					285		Gln	
25		290					295					300			Arg	
	305					310					315				Leu	320
30					325					330				_	Leu 335	
				340					345		_			350	Lys	
35			355					360					365		Lys	
		370					375				-	380		_	Lув	_
40	385					390					395				Glu	400
					405					410					Glu 415	
45				420					425					430	ГÀв	
			435					440					445		Arg	
50		450					455					460			Ser	_
JU	Phe 465	Glu	Leu	Glu	Leu	11e 470	Glu	Gly	Gln	Ala	Lys 475	Сув	Pro	Pro	Leu	Asp 480

Gln Ser Arg Ala Gly Leu Gly Ile Leu Pro Pro Leu Asn Asp Ile Glu 485

Phe Lys Tyr Lys Phe Lys His Leu 500

Table 3

5

10																
	Met 1	Met	Thr	Ile	Ser 5	Leu	Ile	Trp	Gly	Ile 10	Ala	Val	Leu	Val	Ser 15	Сув
	Сув	Ile	Trp	Phe 20	Ile	Val	Gly	Ile	Arg 25	Arg	Arg	Lys	Ala	Gly 30	Glu	Pro
15	Pro	Leu	Glu 35	Asn	Gly	Leu	Ile	Pro 40	Tyr	Leu	Gly	Сув	Ala 45	Leu	Lys	Phe
	Gly	Ser 50	Asn	Pro	Leu	Glu	Phe 55	Leu	Arg	Ala	Asn	Gln 60	Arg	Lys	His	Gly
20	His 65	Val	Phe	Thr	Сув	Lys 70	Leu	Met	Gly	Lys	Tyr 75	Val	His	Phe	Ile	Thr 80
	Asn	Ser	Leu	Ser	Tyr 85	His	Lys	Val	Leu	Сув 90	His	Gly	Lys	Tyr	Phe 95	Asp
25	Trp	Lys	Lys	Phe 100	His	Tyr	Thr	Thr	Ser 105	Ala	Lys	Ala	Phe	Gly 110	His	Arg
	Ser	Ile	Asp 115	Pro	Asn	Asp	Gly	Asn 120	Thr	Thr	Glu	Asn	Ile 125	Asn	Asn	Thr
30	Phe	Thr 130	Lys	Thr	Leu	Gln	Gly 135	Asp	Ala	Leu	Сув	Ser 140	Leu	Ser	Glu	Ala
	Met 145	Met	Gln	Asn	Leu	Gln 150	Ser	Val	Met	Arg	Pro 155	Pro	Gly	Leu	Pro	Lys 160
35	Ser	ГÀв	Ser	Asn	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ala	Phe	Сув 175	Tyr
	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Leu	Phe	Gly	Arg 190	Asp	Ile
40	Ser	Lys	Thr 195	Asp	Thr	Ġln	Lys	Ala 200	Leu	Ile	Leu	Asn	Asn 205	Leu	Asp	Asn
	Phe	Lys 210	Gln	Phe	Asp	Gln	Val 215	Phe	Pro	Ala	Leu	Val 220	Ala	Gly	Leu	Pro
45	Ile 225	His	Leu	Phe	Lys	Thr 230	Ala	His	Lув	Ala	Arg 235	Glu	Lys	Leu	Ala	Glu 240
	Gly	Leu	Lys	His	Lys 245	Asn	Leu	Сув	Val	Arg 250	Asp	Gln	Val	Ser	Glu 255	Leu
50	Ile	Arg	Leu	Arg 260	Met	Phe	Leu	Asn	Asp 265	Thr	Leu	Ser	Thr	Phe 270	Asp	Авр

		Met	Glu	Lys 275		Lув	Thr	His	Leu 280		Ile	Leu	Trp	Ala 285		Gln	Ala
5		Asn	Thr 290	Ile	Pro	Ala	Thr	Phe 295		Ser	Leu	Phe	Gln 300	Met	Ile	Arg	Ser
		Pro 305	Glu	Ala	Met	Lys	Ala 310		Ser	Glu	Glu	Val 315		Gly	Ala	Leu	Gln 320
10		Ser	Ala	Gly	Gln	Glu 325	Leu	Ser	Ser	Gly	Gly 330	Ser	Ala	Ile	Tyr	Leu 335	
		Gln	Val	Gln	Leu 340	Asn	Asp	Leu	Pro	Val 345	Leu	Asp	Ser	Ile	11e 350		Glu
15		Ala	Leu	Arg 355	Leu	Ser	Ser	Ala	Ser 360	Leu	Asn	Ile	Arg	Thr 365	Ala	Lув	Glu
		Asp	Phe 370	Thr	Leu	His	Leu	Glu 375	Asp	Gly	Ser	Tyr	Asn 380	Ile	Arg	Lys	Asp
20		Asp 385	Met	Ile	Ala	Leu	Tyr 390	Pro	Gln	Leu	Met	His 395	Leu	Asp	Pro	Glu	Ile 400
20		Tyr	Pro	Asp	Pro	Leu 405	Thr	Phe	Lys	Tyr	Asp 410	Arg	Tyr	Leu	Asp	Glu 415	Ser
0.5		Gly	Lys	Ala	Lys 420	Thr	Thr	Phe	Tyr	Ser 425	Asn	Gly	Asn	Lys	Leu 430	Lys	Сув
25		Phe	Tyr	Met 435	Pro	Phe	Gly	Ser	Gly 440	Ala	Thr	Ile	Сув	Pro 445	Gly	Arg	Leu
		Phe	Ala 450	Val	Gln	Glu	Ile	Lys 455	Gln	Phe	Leu	Ile	Leu 460	Met	Leu	Ser	Сув
30		Phe 465	Glu	Leu	Glu	Phe	Val 470	Glu	Ser	Gln	Val	Lys 475	Сув	Pro	Pro	Leu	Asp 480
		Gln	Ser	Arg	Ala	Gly 485	Leu	Gly	Ile	Leu	Pro 490	Pro	Leu	His	Asp	Ile 495	Glu
35		Phe	Lув	Tyr	Lу в 500	Leu	Lys	His									
	Table	4															
40																	
	;	Met 1	Met	Thr	Ile	Ser 5	Leu	Ile	Trp	Gly	Ile 10	Ala	Met	Val	Val	Сув 15	Сув
45	1	Сув	Ile	Trp	Val 20	Ile	Phe	Asp	Arg	Arg 25	Arg	Arg	Lys	Ala	Gly 30	Glu	Pro
	:	Pro	Leu	Glu 35	Asn	Gly	Leu	Ile	Pro 40	Tyr	Leu	Gly	Сув	Ala 45	Leu	Lys	Phe
50	•	Gly	Ser 50	Asn	Pro	Leu	Glu	Phe 55	Leu	Arg	Ala	Asn	Gln 60	Arg	Lys	His	Gly

	His 65	Val	Phe	Thr	Сув	Lys 70	Leu	Met	Gly	Lув	Tyr 75	Val	His	Phe	Ile	Thr 80
5	Asn	Ser	Leu	Ser	Tyr 85	His	Lys	Val	Leu	Сув 90	His	Gly	Lys	Tyr	Phe 95	Asp
	Trp	Lys	Lys	Phe 100	His	Tyr	Thr	Thr	Ser 105	Ala	Lys	Ala	Phe	Gly 110	His	Arg
10	Ser	Ile	Авр 115	Pro	Asn	Asp	Gly	Asn 120	Thr	Thr	Glu	Asn	11e 125	Asn	Asn	Thr
	Phe	Thr 130	Lys	Thr	Leu	Gln	Gly 135	Asp	Ala	Leu	His	Ser 140	Leu	Ser	Glu	Ala
15	Met 145	Met	Gln	Asn	Leu	Gln 150	Phe	Val	Leu	Arg	Pro 155	Pro	Asp	Leu	Pro	L ув 160
	Ser	Lys	Ser	Asp	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ala	Phe	Сув 175	Tyr
20	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Leu	Phe	Gly	Arg 190	Asp	Thr
	Ser	Lув	Pro 195	Asp	Thr	Gln	Arg	Val 200	Leu	Ile	Leu	Asn	Asn 205	Leu	Asn	Ser
25		Lys 210					215					220				
	225	His				230					235					240
30	Gly	Leu	Lys	His	Glu 245	Asn	Leu	Ser	Val	Arg 250	Asp	Gln	Val	Ser	Glu 255	Leu
		Arg		260					265					270		
35		Glu	275					280					285			
		Thr 290					295					300				
40	305	Asp				310					315					320
		Ala	_		325					330					335	
4 5		Ile		340					345					350		
	Ala	Leu	Arg 355	Leu	Ser	Ser	Ala	Ser 360	Leu	Asn	Ile	Arg	Thr 365	Ala	Lys	Glu
50	•	Phe 370					375	_	_		_	380			_	
50	Asp 385	Ile	Ile	Ala	Leu	Tyr 390		Gln	Leu	Met	His 395	Leu	Asp	Pro	Ala	11e 400

Tyr Pro Asp Pro Leu Thr Phe Lys Tyr Asp Arg Tyr Leu Asp Glu Asn Asp Lys Lys Ala Lys Thr Ser Phe Tyr Ser Asn Gly Asn Lys Leu Lys Tyr Asp Phe Tyr Met Pro Phe Gly Ser Gly Ala Thr Ile Cys Pro Gly Arg Leu Phe Ala Val Gln Glu Ile Lys Gln Phe Leu Ile Leu Met Leu Ser Tyr Asp Af5 Gln Ser Arg Ala Gly Leu Gly Ile Leu Pro Pro Leu Asn Asp Ile Glu Phe Lys Tyr Lys Leu Lys His Leu

Detailed Description of the Preferred Embodiments

It was found, surprisingly, that DNA fragments comprising nucleotides downstream from about -187 of the human CYP7 gene, downstream from about -191 of the rat CYP7 gene, and downstream from about -252 of the hamster CYP7 gene are regions that exert regulatory control of transcription of the human, rat and hamster CYP7 gene, respectively.

In particular, it was found that a bile acid responsive element is located within a fragment between nucleotides -160 and +32. According to the invention, a second bile acid responsive element is located in the region between nucleotides - 3643 and -224. This was shown by transfecting hepatoma Hep2G cells with promoter/reporter constructs that contain these genetic elements within the promoter region of the construct. Thereafter the transfectants were exposed, for example, to bile acids taurodeoxycholate ("TDCA") and taurochenodeoxycholate ("TCDCA") and transcriptional activity of the reporter gene was repressed. More specifically, transcriptional activity in HepG2 cells transfected with construct pLUC-3600 was repressed by about 75%. When transfecting with pLUC-224 or pLUC-160, the transcriptional activity was repressed by about 45% or about 35% respectively, (Figure 9(A)).

Advantageously, a fragment located in the region between -160 and +32 was pinpointed to interact with at least one BARP. This fragment specifically is a direct repeat without spacing, and hence was designated as "DR₀". DR₀ in the rat is TCAAGTTCAAGT, and correspondingly in the human, is CCAAGCTCAAGT. DR₀ is a bile acid responsive element (BARE) that binds to a bile acid responsive protein (BARP) factor in the nucleus of liver cells or its nuclear extracts. Accordingly, a consensus "core" nucleotide sequence that emerges from the two species of the molecule is (T or C)CAAG(T or C).

As described in Example 2.3(b), gel shift experiments detect a BARP that binds or interacts with a bile acid responsive element 7α -TRE, for both human and rat, and human and rat DR₀ element. This BARP was characterized and possesses a molecular weight of about 57,000 Daltons, with an experimental error of about + 7000 Daltons.

Additionally, a thyroid and steroid hormone responsive element is located between -3643 and -224 of the rat CYP7 gene. This was demonstrated by increased transcriptional activity of pLUC-3600 upon stimulation with 1 μ M T4 and 0.1 μ M dexamethasone by 2.5-fold in confluent cultures, as demonstrated by Figure 8.

According to the present invention, the term "regulatory" means a characteristic ability of a DNA fragment to exert transcriptional control of a CYP7 gene in the presence of a factor that either down-regulates the CYP7 expression, e.g., bile salts or mevinolin, or up-regulates CYP7 expression, e.g., cholestyramine, bile fistula or cholesterol. Thus, a "regulatory element" refers to a DNA fragment disclosed in accordance with this invention that has regulatory activity with respect to CYP7.

Advantageously, an embodiment of the present invention provides a bile acid responsive element of a rat CYP7 gene which are selected from the group comprising DNA fragments from about -160 and about +32, and between about -3643 and about -224. A further embodiment comprises a bile acid responsive element of a CYP7 human gene which is selected from the group comprising fragments from about -158 to

50

55

about +32, from about -3643 to about -224, from about -223 to about +32.

Another embodiment provides that a thyroid and steroid hormone responsive element within a fragment between about -3643 and about -224 of the rat CYP7 gene.

Another embodiment of the present invention provides a regulatory element of a CYP7 gene selected from the group comprising DNA fragments, from about -191 to about +64 of the rat CYP7 gene, from about -252 to about +3 of the hamster CYP7 gene and from about -187 to about +65 of the human CYT7 gene, and regulatory DNA fragments spanning a region within these fragments (subfragments), such as fragments shown in Figure 4.

Yet another advantageous regulatory element of the rat CYP7 gene is selected from the group of DNA fragments having regulatory activity and consisting of any of the eight fragments of DNA described in the first column of Table 1. The corresponding regulatory elements of hamster and human gene are closely homologous, as shown in Figure 4, and as listed in Table 1. Thus, an advantageous human CYP7 regulatory element is selected from the group consisting of any of the fragments of DNA described in the second column of Table 1 or human 7α-TRE, while an advantageous hamster CYP7 regulatory element is similarly selected from the group consisting of any of the eight fragments of column three of the Table 1. DNA fragments which begin at about the downstream nucleotides and end at about the upstream nucleotides as recited in Table 1 are also contemplated.

In addition to a regulatory element selected from the fragments described above (comprising from about -191 to about 64 of the rat CYP7 gene, from about -252 to about 3 of the hamster CYP7 gene and from about -187 to about 65 of the human CYT7 gene, and fragments described in Table 1), it is contemplated that other substantially homologous sequences will have CYP7 regulatory activity and thus can be used as regulatory elements in accordance with this invention. Exemplary substantially homologous sequences include: substantially homologous sequences having at least about 80%, advantageously about 90% and more advantageously about 95% nucleotide sequence homology with respect to the described fragments; sequences having at least about 82%, and advantageously at least about 90%, homology between a pair of corresponding rat and hamster DNA sequences, such homology to the sequence from about -101 to about -29 of the rat CYP7 gene and the sequence from about -161 to about -86 of the hamster CYP7 gene, for example; and sequences having homology of at least about 71%, advantageously at least about 90%, between any pair of corresponding rat and human DNA sequences, for example, about -101 to about -29 of the rat CYP7 gene and the sequence from about -104 to about -30 of the human CYP7 gene.

TABLE 1

35	Regulatory elemen	nts of rat, human and	hamster CYP7 gene
	I. Rat	II. Human	III. Hamster
	(from transc	ript. start site)	(from start codon)
40	-101 to -29	-104 to -30	-161 to -86
	-81 to -37	-78 to -36	-136 to -92
	-161 to -127	-159 to -124	-208 to -184
	-149 to -131	-147 to -128	-206 to -188
	-171 to -154	-169 to -152	-228 to -211
45	-101 to -82	-104 to -79	-161 to -137
	-73 to -56	-71 to -54	-128 to -111
	-86 to -71	-89 to -68	-146 to -126
	-160 to +32	-158 to +32	-
	-224 to +32	-223 to +32	-
50	-3643 to +32	-3643 to +32	·

Further embodiments of the present invention include a recombinant construct comprising at least one of the above-mentioned regulatory elements, advantageously a fragment disclosed in Table 1. Advantageously, for example, a regulatory element can be operably attached to a structural gene encoding CYP7, or to a reporter protein. Operably attached means that the regulatory element is positioned with respect to the structural gene such that it exerts control of the transcription of the structural gene.

A construct according to the invention can be provided in a vector capable of transforming a host cell. A host cell transformed or transfected with such a vector also comprises an embodiment of this invention, as

well as a method for expressing a selected structural gene, advantageously CYP7 or a reporter gene, using host cells of this invention. Such a method of expression comprises the steps of culturing a host cell transformed with a recombinant DNA vector comprising a gene construct comprising at least one regulatory element operably attached to the selected structural gene, wherein culturing is performed in a medium that is suitable for accommodating the desired expression, and producing the gene product.

A reporter gene allows quantitative determination of gene expression in the presence of inhibitory or stimulatory compounds. A host cell transformed with a recombinant DNA vector comprising a gene construct of at least one regulatory element operably attached to the selected structural gene provides an expression system useful in a conventional method to screen a compound for its ability to inhibit or stimulate structural gene expression. Thus, an example of a screening method provides contacting the host cell with a test compound and detecting an inhibition or stimulation of gene expression. A test compound can comprise, for example, a physiological agent derived from substances endogenous to a human or, an exogenous compound.

Regulatory elements, advantageously those fragments identified in Table 1, are used to control expression of structural genes, such as the CYP7 gene, and various reporter or indicator genes. Reporter genes include, but are not limited to, E. coli β -galactosidase, galactokinase, interleukin 2, thymidine kinase, alkaline phosphatase, luciferase and chloramphenicol acetyltransferase (CAT). Those skilled in the art readily will recognize additional reporter genes.

A representative construct of regulatory element and reporter gene ("promoter/reporter construct") is made according to Example 2.6, which employs, for example, the rat regulatory element -101 to -29. Any of the other regulatory elements according to the invention, preferably those described in Table 1, can be substituted for that rat fragment -101 to -29, by using conventional genetic engineering methods.

According to the present invention, CYP7 constructs, such as the promoter/reporter construct, are transfected into a hepatoma cell line, advantageously, human hepatoma cell line HepG2. HepG2 liver cells express cholesterol 7α-hydroxylase normally, which makes these cells good candidates for the study of CYP7 regulation. Northern blots of normal HepG2 cells that were exposed to several bile acids, including tauro- or glyco-conjugates of cholate, deoxycholate, chenodeoxycholate or ursodeoxycholate, exhibited responsive changes in CYP7 mRNA levels as compared to non-responding control cell lines that were not exposed to those bile acids.

HepG2 cell lines are useful in screening methods provided according to the present invention. By observing expression of CYP7 in HepG2 cultures transiently transfected with CYP7 promoter/reporter gene constructs, the activity of a particular promoter region can be ascertained. Further, an agent can be added to the transfectant, and its effect on transcription can be ascertained readily.

More advantageously, a host HepG2 cell line according to the present invention that is transfected with promoter/reporter gene is both "confluent" and stable. Confluent cells are defined as cells that are at least about 4 days old, preferably 5 days, relative to the initiation of transfection. Confluent cell lines alternatively can be recognized by their uniform growth pattern, where cells tend to "adhere" to one another.

Preferably, stabilized HepG2 transfectants are employed in an assay according to the invention to provide more consistent results. A transfected cell line is stabilized using known methodology, as described by Dai et al., Biochem. 32:6928 (1993).

According to the present invention, it was discovered that the age of HepG2 transfectant cultures had a significant effect on the cells' response to steroid/thyroid hormones or bile acid conjugates. Both the endogenous cholesterol 7α-hydroxylase mRNA and transcriptional activity of the CYP7 chimeric promoter/reporter gene constructs transiently transfected into HepG2 cells responded to hydrophobic bile acids in the adult phenotype only. Younger cells were much less responsive to hormones and produced no response to bile acids, possibly due to an underdeveloped or undeveloped bile acid transport system and/or an immature steroid hormone receptor system.

Results obtained by an assay method employing confluent HepG2 cells that were transiently transfected with rat promoter/reporter constructs according to the invention identified two regions in the CYP7 gene that are responsive to bile acid repression. One bile acid responsive element (BARE) is located in the highly conserved proximal region of the promoter, from nucleotide -160 to +36, while another BARE is located in the region between -224 to -3643.

The inventive regulatory elements are also useful for detecting and isolating a transcription factor of CYP7. To detect a transcription factor, a regulatory element according to the invention, advantageously an element from Table 1, is contacted with a biological sample suspected of containing a transcription factor. Binding between the fragment and a transcription factor and the step of isolating the transcription factor are accomplished by conventional methods.

For example, to isolate a transcription factor, the following steps can be employed. First, a footprinting assay is performed to determine whether a particular gene fragment, such as a regulatory element according to the invention, binds to a nuclear transcription factor. The footprinted sequence that is revealed is used to identify DNA-protein interactions by electrophoretic mobility assay (EMSA). If a band shift is detected in EMSA, the shifted sequence is confirmed by Southwestern blot. The Southwestern blot, by SDS-polyacrylamide gel electrophoresis separates nuclear proteins. A separated protein then is incubated with a shifted DNA sequence to identify a nuclear transcription factor. The DNA sequence then is used to screen an expression cDNA library for cDNA clones encoding a transcription factor. In an alternative method, a DNA fragment of the invention can be fixed to an affinity column and used to isolate a transcription factor present in nuclear extracts (See Example 2).

An identified transcription factor can be cloned and expressed in relatively high amounts and then employed in screening compounds for the ability to influence gene expression via the specific transcription factor. For example, the effect of a bile acid or its derivatives on the function of a BARP identified according to the invention is studied by a cotransfection assay. In this assay, a CYP7 promoter/luciferase construct according to the invention, advantageously pLUC-160 and an expression plasmid containing a BARP cDNA, are cotransfected into HepG2 cell cultures. Next, an investigator determines transcriptional activity of the chimeric gene constructs (by way of the reporter gene) in the presence of test agents or endogenous factors and in control cell lines. Additionally, HepG2 cells can be transfected with a BARP, so as to express it in high amounts. Then, EMSA and footprinting assays also are performed to study the activity of a BARP.

The following examples illustrate the invention and, as such, are not to be considered as limiting the invention set forth in the claims. Either human or hamster regulatory elements can be substituted for rat regulatory elements in the following examples.

Example 1: CLONING AND NUCLEOTIDE SEQUENCING OF THE CYP7 GENES

1.(A) The Rat Gene

A rat genomic library (Clontech, RL1022j) was screened with a rat cholesterol 7α -hydroxylase cDNA previously isolated by Li et al., J. Biol. Chem. 265, 12012-12019, (1990). After screening about 1 million plaque-forming units (pfu), a positive clone, λ R7 α 2 was plaque-purified. This clone contains a 13 kb insert that spans 8 kb of the 5'-flanking region as well as the transcription region covering exons 1 through 3 and a partial exon 4 (Figure 1). The nucleotide sequencing of an 8 kb Sacl fragment is shown in Table 5 and includes the 3643 bp 5'-flanking region and coding region from exon 1 to exon 4. This fragment includes about 2 kb of the 5'-upstream region, the sequence of which was published recently by the inventor (Chiang, et al., Biochim. Biophys. Acta. 1132, 337-339, 1992). Many putative regulatory elements, including liver-enriched hepatic nuclear factors (HNFs) binding sites, steroid/thyroid hormone response elements, and ubiquitous transcription factor binding motifs (NF1, OTF-1), were identified in this gene fragment.

40

20

25

45

50

Table 5

,	GAGCTCTACC	CTTGCTCTGC	TATTGTACTT	TTTAATACAC	AGTTCAATCA	AATGTGCCAC	60
	CAGAATATGC	ATGCTAACAG	CTGTAGTGGT	TGATTTTTCT	TTCTACTCTT	CTGTGTGTAA	120
_	GACCCCATGT	TTTATCAATT	ATTTTTTAAT	GATTTCTTTC	TTCATGCATA	TGTGTGGTTG	180
0	TCAGTGTGAG	TCTGTGTGTA	CAGCAGGTGC	ACAGGTATCC	ACAGAGGCCA	GAGGTTCCCT	240
	GTAACTAGAA	TTACAGGCAC	TTGTGAACTT	TCCTGTATGG	GTGCTGGGAA	GCAATCTGAG	300
_	GTCTTCTGCA	AGGGATCTTA	ACCACTGACT	TTCTAGCCTG	CTTTGCCCAT	TTCTATTTAT	360
5	GATGACTGGA	AACTGGGCTT	AGGCCTTATA	TTCTCTGAGG	CCAAAATCAA	GTTCTTCCAA	420
	ACTGCAGGAT	TTATGGTCTT	CTATAGTATC	CCACAGAAAT	GGAAAAGAAA	GTGACCCATT	480
	AGAGCAGTAT	TAGAGTCGAA	ATAAACTCAA	CTTGGTATGC	CAGGACTTTG	GACAATAATA	540
0	ACCCTGTCTT	TTCAGGGCAT	CTATCTGTAC	TGCTGCAATA	GAAACTCCAC	AGGTCAGGGT	600
	CACAGCTGTT	GTGTTTTACA	CAGTGTCCCC	AGGATTAGTT	CAGTGCCCAC	CATGCAATAG	660
	GTGTCATGGT	GTGTGTGTGT	GTGTGTGTGC	GTGTGTCGTG	CTTGTGTGCA	TGTGTGTGAG	720
5	ACACACACAC	AGAGAGATAC	AAAGACAGAA	ACAGAAAATT	AATAAAATTT	TACCAACTAA	780
	AATAGGGAAT	TAAAGAAAAG	GAGGAGAAAA	AGTTGGGCAT	TCAACACCAT	AAAGTCCCAG	840
	TACTATGCTA	AGAACACCCA	GCTGTCCTCA	CACCCGGGCA	TGAAACTTCA	TGCACTGTTC	900
)	ATCAGAAAAT	CGTTTACACA	CATCCCCTTG	CAGTCTACTT	GTAGTTTTAA	CAACTTCAGA	960

	GAGCACTAGC	ATTTCCAGCC	CCAGGTTAGA	AGCTTTGGTA	GATGCTGTTT	GCGAGCACAG	1020
	GATAGCAGCA	AGAAGTGGAC	TTGTTAGAAG	GAAAGCCAAT	GCCTATGTAA	CAACGAAAAC	1080
5	TAAGTATGAA	TCTCGAATCT	CCACTCTCGT	GTGTCTGTGT	CTCCATATAC	GTGCTTGGGT	1140
	GCCTGACATG	GCAAGGTGTT	ACAAGTAAGG	GAGGAACAAG	AAAAGGACAG	GGTAGTGGAC	1200
	ATCAGGATGA	ATGCCAGCCA	GGGCGACTGG	AGAGAGTCTA	CGCTGCTCTG	AAGGTGGGTG	1260
10	AAGAAGACCT	CAGGAAGCTT	TCTGAGGCTC	CGAGAGTGCT	TTTCCCTTCC	CATGTTGAAA	1320
	CATCCTTATT	TGCAGAGAAT	TCCAGGTTCA	TGGGAATTTG	TAAAGAGAAT	ACTAAGAGGC	1380
	CACCTGTGGC	TTCTCCTATT	TTTGTCTGCT	GTCATTTATG	GGACAGGGTT	AGAGACCTGG	1440
15	CTTGCTTGGC	TATGAGGCTG	TTGCTTCCTC	GGTTACTCTG	CTGTGGTTGG	ATGCATTAGG	1500
	GTTAGGCCCC	TCAAGAGCCA	TGTGTCATTT	TATAAAAGCA	ATATAAATAT	ACTTAAGGTG	1560
	CACAAAGCAT	TAGGAGGTCT	GAGATAATAG	ATTCTGAGAA	AATCTATCCT	GCTGTGTAGC	1620
20	AACTGATGTT	TATGATTATA	GTCCCAGACC	ACACGATAAA	GGATCTGTGG	ACTCTGTTTA	1680
	GGGAGGTCAA	AAAACTATTG	CAAATGGAGT	CTATAGAGAA	AACTAGACAG	GACTCAATGC	1740
	TCACCAATCG	AGAATTAGTT	GATGAGCTGG	GGTAGTGACT	TAGTGGATAA	GAACACGGTC	1800
25	CTTTCAGAGG	TCCTGAGTTA	AATCCCCAGC	AAACACATGG	TGGCTCATAA	CCATCTATAT	1860
	TGTGATTTGA	TGCCCTCTTC	TGGCATGCAG	GTGTACATGC	AGACTCGTAT	ACATAAAATA	1920
	AATAAATCTT	GAAAAAATGA	ATACGTTGAA	TAAGTGTCCC	CTCGGATAAC	TTTCTGCAGA	1980
30	ATTTTAAGCA	CATGTCAATG	GTAATAACAC	ACACACACAC	ACACACACAC	ACACACAC	2040
50	ACACACATAC	ACACACCATA	CAGATATGTA	TCTAGAGACA	TACACATGTA	CATTTTATCT	2100
	CTTTTATTTT	CTTCTCCCCT	CTTTGACATC	AAGGAATAGA	ATGCACTCAC	TGTGGCCTAG	2160
05	TGCCACACTC	TACCTATTTC	TTTGGCTTTA	CTTTGTGCTA	GGTGACCCGA	AAGGTTTAAA	2220
35	TATCAAAAAT	GCTAATGGCT	CGACATTTAC	ATCCCCAATT	TCTCCTTTCT	CCTTACCTCA	2280
	GACTCTTACA	TTCAGTTGAC	AATTTGACAT	CGTCTCCTGG	ATTTTCAAAT	GTTCAGCACA	2340
	CTGTACTGAT	GTACTGCCTT	CCAAGGCAAC	CGGCACGATC	CTCTCCCCAC	TCCCAAGCAT	2400
40	CCCTCCATGA	GCCAGTGTTT	GCTTATCTTC	TTGACTCTTG	TTTTAACCCA	ACTCCTCCCC	2460
	TATTCACTCT	GCTCTAATTC	ATTCATTCTA	TATTTTCGCA	CATCAGGCTC	ATCCTTTGCT	2520
	CAGGAACTTC	ACTTTTGCTT	TCCGGTCTCC	TGGAAATGTG	TTTTCTTGGC	TATTCCATCT	2580
45	CAAGACCATC	TTTTCAGAAA	AGCTTTTCCT	ATCAACATAT	TTAAAGCCCT	CTTCATCCCC	2640
	CAGTAGCTCT	GGACACCTCA	TTTTATGGAT	ACACAACACA	TATTTGCCAC	CTGTCTCCCC	2700
	ATTAAAATAT	AATCTTCAGT	AGAGAAACTC	CATATCTTGT	TAATACCTGA	AACAAGAATA	2760
50	TCTTCAAAGA	GTTCCTGGGA	CATAAAAACG	CTCAATTAAT	ATTTATGTTA	AACAGGGATC	2820

	TGGGGTATAT	CACAGAGGTA	GAGGGCTTAC	CTAGGAGGAG	TTGGGCCATG	GGTTCAACTT	2880
	CCAGCACAGA	ATGAAAGATT	ATGTTAAATA	AAGTTGGGAA	GGATGTATGC	CAGTCTATGA	2940
5	GTAGTATAGG	AGGTAAATTA	TGAATTCATA	TTTACTTTTC	GGACAAGAAG	TGTTGTAGTC	3000
	TTTATTTGAA	АТААААТАСА	TCTTAATTAC	CAATAACAAT	TGGTAAGGAG	TGAATTCTCA	3060
	AGCTGTGGCT	TCCTGGTAGA	TGAGTCCTGG	GAGGTTTTCT	ATTTCGATGA	TGGTAGATAG	3120
10	GTAACCTGTC	ATATACCACA	TGAAATACCT	GTGGCTTTGT	AAACACACCG	AGCAGTCAAG	3180
	CAGGAGAATA	GTTCCATACA	GTTCGCGTCC	CTTAGGATTG	GTTTCGGGAT	ACTTCTGGAG	3240
	GTTCATTTAA	ATAATTTTCC	CCGAAGTACA	TTATGGGCAG	CCAGTGTTGT	GATGGGAAGC	3300
15	TTCTGCCTGT	TTTGCTTTGC	GTCGTGCTCC	ACACCTTTGA	CAGATGTGCT	CTCATCTGTT	3360
	TACTTCTTTT	TCTACACACA	GAGCACAGCA	TTAGCTGCTG	TCCCGGCTTT	GGATGTTATG	3420
	TCAGCACATG	AGGGACAGAC	CTTCAGCTTA	TCGAGTATTG	CAGCTCTCTG	TTTGTTCTGG	3480
20	AGCCTCTTCT	GAGACTATGG	ACTTAGTTCA	AGGCCGGGTA	ATGCTATTTT	TTTCTTCTTT	3540
	TTTCTAGTAG	GAGGACAAAT	AGTGTTTGCT	TTGGTCACTC	AAGTTCAAGT	TATTGGATCA	3600
	TGGTCCTGTG	CACATATAAA	GTCTAGTCAG	ACCCACTGTT	TCGGGACAGC	CTTGCTTTGC	3660
25	TAGGCAAAGA	GTCTCCCCTT	TGGAAATTTT	CCTGCTTTTG	CAAAATGATG	ACTATTTCTT	3720
	TGATTTGGGG	AATTGCCGTG	TTGGTGAGCT	GTTGCATATG	GTTTATTGTT	GGAATAAGGA	3780
	GAAGGTATGG	AAAGATTTTT	AAAAATTTGT	CTTTTAGCTT	ATTTCTAGTA	TTCATTGCCT	3840
30	TCACTATTAT	GTAGTGCAAA	AAATACTAAT	GCATTAATAT	TTTTAAATTT	AAATTTAAA	3900
	GACGTACTTC	TTTGACTAAA	TCTAGTAAGA	TGTAGAGAGT	CCCCCTTGGA	ACATTCACAT	3960
	ATGCCACTGG	TAATGCAGAT	CTTGTGAAAT	ATAACTAAAG	AAATCACAAG	TCATCGATGT	4020
35	AAGTTTGTGT	CTGCATGGGC	GGAACAAACC	TAAGCTAAGA	AGAGTAGTAT	TTGGGAGGGA	4080
	TCTTTCTGTG	ACATGAACTG	AATAGACGCA	CTGCCTCAGC	AAACACACAT	TCATTTGAAT	4140
	TTTCCTCAGA	CTCAGTCTAA	GCCTGGTGAG	AGCACCAAGT	GTGAGTCTGT	CTGCCACTAA	4200
40	CGTTTCCTTC	CAGTGGTAAT	CACCTGTGTG	GCTGTGAAAC	CTTGGCGCCT	GCACATGACA	4260
	GCCATTTGAA	TAGTTCAAAG	AACATTTAGG	GACAGGATAT	TAAGATATTT	TCTGTGATGT	4320
	CAACATCAAA	ATAGGAGAAT	GCCCCTGGCA	TTATCTTCAG	AGAGGTAGAC	TACTGTGCGT	4380
45	TGTCTTACTT	TAAAGAAATT	TCTTTGCCCC	TTTGGCTATT	TTAATTCAAA	CCTGAAAGTT	4440
	TTCAGTTTTA	ATTAAACTGT	TGATTTTCAT	GCTAGGAAAG	GAAATATCAA	TTATACTTAA	4500
	TTGTTCTTAC	AAGAAATAAA	ATCATTTATG	TCGGGAGATA	AATAAGCTCA	TAATTTTAAT	4560
50	AAAACATTTA	AGAGAGAGAA	AAAGAGTAGT	GGATTATAGT	TCATTGTCTG	TCAATGTTTA	4620
	CCTGACCCAG	TTTCATTTTA	TAATTATCTA	ATTTTTCAAA	TGAGATTCCT	GTTCTTTCCA	4680

	AATATCATTG	CAGAATACTA	ACATICITI	TTTCAGAGTT	GAGAATCAAA	IGGNGGGIII	4/40
	TTTCATCCTG	GCACAAGCTC	CGCTCTTCAG	TAACACCTCC	AGCCCTCAGA	ATGCCAATAT	4800
5	TTTAAATTAT	GTAGGTTGTT	AAAACTTTAG	TGCTGGGGCT	GGGGATTTAG	CTCAGTGGTA	4860
	GAGCACTTGC	CTAGCAAGCG	CAAGGCCCTG	GGTTCGGTCC	CCAGCTCTGA	AAAAAAGAAA	4920
	AAGAAAAAA	AAAACTTTAG	TGCTGTAGCC	CTTTCTGTTA	TTTGATGTTT	CACATCTGTT	4980
0	AAAAAACAAA	ACAAAACAAA	AAAAACAAGC	AAATGGAACA	TTTTAGGCAT	TCTTTGGGGG	5040
	AAATGATTCT	TAGAGCAAGT	CTAATCATTA	GGTGATAGTT	TCATTTTTAC	ACCAAGAACA	5100
	AGAATCTTGT	TGGCTGTGTT	AACACTTTAA	GCCCTGTTGT	AGGGAAAAAG	CAATCAGACA	5160
5	CAGGCACAGA	AAAGAATTTG	GATGAGTACT	TGATGATGTA	TGTATATATG	GTGAATAGAC	5220
	TGATGGGTGG	GCTGCTGGCT	GGGTTGGTAA	GTGGGTAGAT	TTTTTTTAA	AGATTTATTC	5280
	ATTTATTATA	TATCAGTACA	CTGTAGCTAT	CTTCAGATAC	ACCAGAAGGG	CATCGGATCT	5340
20	CTTTACAGAT	GGTTGTGAGC	CACCATGTTT	TCCTAACCTC	TCAAGTCTCT	GTCTTCCAGG	5400
	AAAGCTGGTG	AACCTCCTTT	GGAGAACGGG	TTGATTCCGT	ACCTGGGCTG	TGCTCTGAAA	5460
	TTTGGATCTA	ATCCTCTTGA	GTTCCTAAGA	GCTAATCAAA	GGAAGCATGG	TCACGTTTTT	5520
?5	ACCTGCAAAC	TGATGGGGAA	ATATGTCCAT	TTCATCACAA	ACTCCCTGTC	ATACCACAAA	5580
	GTCTTATGTC	ATGGAAAATA	TTTTGACTGG	AAAAAATTTC	ATTACACTAC	TTCTGCGAAG	5640
	GTAATTAATT	CGTTATACAG	ATTCTGTTTG	TTTCCTGGTC	TGTTGATGTA	TTAGTGTATT	5700
30	TAGTTGTTCC	AATTTTGTTA	GGTTGCAGAA	TAGAGGTAAC	ATAAAATCAG	GGCGTTTCTT	5760
	AGTAATAAGC	ATTAGACATT	TAAGGCAGAT	GTAAACCTGT	CATTGATGAT	TCCGGAGACA	5820
	GAGGACACTG	CAGGAATCAG	GAAGGTACAG	ATTCATAGCA	CCACTCGTCC	CTTAACAACA	5880
35	CCCTGAGCAG	GGTGTTGGCA	CTCTTAGCCT	TCAGTCCTTG	TACACACGTT	TCATTCCTAA	5940
	GATATAGGCT	GTATATTTAA	ACACGATTTG	GAAGCCATCA	AGAATCTGTT	CTAGAGAAAA	6000
	CAGCATTTAA	TGATCTTTTG	CAAGAAAATA	TCAGTTATAG	TCTCTGTCAT	TAAGTACATT	6060
40	GTAATCTGGT	TAAAGAGTAT	CTACTAAGAA	AGTAAAGGCA	GATTAGAACA	ATACCAATGG	6120
	ATGATGGGCC	ATCCAGAGAA	ATCCTACTGT	AAATGCTGGG	ATTTAAACTT	GACCCCAAGG	6180
	AAGAGTATGA	CTTGATTCTA	CCTTTGGAAT	GTGCTGTAAA	ATCATATTAG	GGAAGGTTCC	6240
45	AGACAGAGAA	GTGGGATGTA	TTTAATCTAT	CTTCCAGCCC	ACTCTCTAAC	ACTAGCTAGC	6300
	TTTGGGCTTT	AGACCCTCCC	CATTTCATGG	ATTCTATTTT	CTACCAGGCA	TTTGGACACA	6360
	GAAGCATTGA	CCCAAATGAT	GGAAATACCA	CGGAAAATAT	AAACAACACT	TTTACCAAAA	6420
50	CCCTCCAGGG	AGATGCTCTG	TGTTCACTTT	CTGAAGCCAT	GATGCAAAAC	CTCCAATCTG	6480
	monmon ca co	mccmccccmm	COM1110011	3030033800	OTTO COTTO NO CO	CARCCARCO	CEAC

	ATGCCTTCTG	TTACCGAGTG	ATGTTTGAAG	CCGGCTATCT	AACACTGTTT	GGCAGAGATA	6600
	TTTCAAAGAC	AGACACACAA	AAAGCACTTA	TTCTAAACAA	CCTTGACAAC	TTCAAACAAT	6660
5	TTGACCAAGT	CTTTCCGGCA	CTGGTGGCAG	GCCTTCCTAT	TCACTTGTTC	AAGACCGCAC	6720
	ATAAAGCTCG	GGAAAAGCTG	GCTGAGGGAT	TGAAGCACAA	GAACCTGTGT	GTGAGGGACC	6780
	AGGTCTCTGA	ACTGATCCGT	CTACGTATGT	TTCTCAATGA	CACGCTCTCC	ACCTTTGACG	6840
10	ACATGGAGAA	GGCCAAGACG	CACCTCGCTA	TCCTCTGGGC	ATCTCAAGCA	AACACCATTC	6900
	CTGCAACCTT	TTGGAGCTTA	TTTCAAATGA	TCAGGTAACT	TTCCAGTGAC	AGAAATTGCA	6960
	TTTTAAACTC	AAAACCCAAA	AAGACTTATA	GAGCTTTCTG	TGCTATCAAC	AAAGAAAGTA	7020
15	ATACTCAATG	TCCGTGTTTA	GCATGTGCGT	AACAGAAGCA	GCAATTTTTA	GGTGCACAGT	7080
73	CCCATCGAAA	GGGATGTCCC	AGAAGCCACA	GAACTCAGAC	AGGTTGGTGC	TCCATTAGTA	7140
	CAGGTTCCCT	GGCCTAGTCT	TGCTCCTCAC	CCGATATGTT	CCTCTTAATA	TCAAATTAAA	7200
20	TCCCCGAGTG	CAGTCGTCAC	CACCATATAA	ACATTTGAAA	TGATGACTGA	CTTGCAGGTG	7260
20	TGATAAGAGC	AGTGACCATA	CCTTACTAAT	TCACTGGAAT	TCATAGGCAA	AGTAACACCA	7320
	TCGATTTTGT	ATTCATATAG	GAGCTGCAGC	CATATTTTAA	ATAGCACAAC	TACTTGTTAG	7380
	TCAAGCATTC	TGAGGCTCAC	TGTAATCAGG	TAAAGTAGGT	TTAACTCAGC	GTCCTACCAG	7440
25	TTCCAGGCAT	TGAAATGGAA	TATCCTTTAT	CCCACCCATT	CAAAACGTAA	TATATAAATG	7500
	GAAGGCACAG	TTTTGAAGGC	CATGGTATGA	TTTAGGGAAT	TTACTCTCAT	GGTCCAATCC	7560
	CTTGTAATTG	TATGCTAGGT	GACATATCCT	TCTGACTTAC	TATGTTCATC	GTATATTCAA	7620
30	TCCTTAGTTT	ATAGAGACTG	ACCAAAGCTC	TGCTTTTGCA	TAGCAAAGCT	CCTTTTAATG	7680
	CCCATTCCTA	AACTCAAGGA	CACGAATCCA	GTTCAGTGCC	CTTTTGCATA	CTCCCTGGCA	7740
	GACTCCCGTT	GCCATACATC	CTCCCTCGCT	CGATTCCCAT	GACCTCGCCC	TTGCACACCC	7800
35	TGGTACTAGG	ACCTCTCCTG	GCGATACTTC	CTACTACCTA	TGCCACCTCA	TTAAAAGGAA	7860
	GGGATAATTG	CTATTTACTT	GCAGTTCTCT	GAATGAGGAC	ATTTTCCCCA	TACGGCTCTT	7920
	TCCACAGGAG	TCCTGAAGCA	ATGAAAGCAG	CCTCTGAAGA	AGTGAGTGGA	GCTTTACAGA	7980
40	GTGCTGGCCA	AGAGCTC					7997

It was shown previously that high cholesterol diet up-regulates transcription of the cholesterol 7α -hydroxylase gene, translation of CYP7 mRNA, and increases enzyme expression and activity in rat liver (Li, et al. J. Biol. Chem. 265, 12012-12019, 1990). It is especially noteworthy that steroid regulatory elements (SREs) similar to those found in the LDL receptor, HMG-CoA reductase, and HMG CoA synthase genes are located in the upstream region of the rat CYP7 gene promoter. These SREs are not present in the human or hamster CYP7 gene promoter. These SRE's are

-1222-ATCCTCTCCCAC TCCCAAGCATCCCTCCATG -1191, -1151-CAACTCCTCCCTATT-1335.

Repeats 1 and 2 in the rat CYP7 gene are similar to the consensus SRE1 (CACC(C/G)(C/T)AC), which represses gene expression in the presence of oxysterols. The repeat 3 of the LDL receptor SRE has 11 bases identical to the sequence between -1151 to -1335 of the rat CYP7 gene. This sequence has been demonstrated to bind Sp1 which is a positive transcription factor in the LDL receptor gene (Dawson, et al. J.

Biol. Chem. 263, 3372-3379, 1988).

1(B) The Human Gene

A human genomic library, which had been constructed with Sau3A1 partially digested human placental DNA ligated into a BamHI site of the EMBL-3 Sp6/T7 phage vector (Clontech, Palo Alto, CA) was screened using a 1.6 kb EcoRI-PstI fragment of a human cholesterol 7α-hydroxylase cDNA isolated previously as a hybridization probe. Human CYP7 cDNA was isolated previously by Karam and Chiang, BBRC 185:588 (1992). Hybridizations were carried out at a high stringency condition of 68°C, 1% SDS and 0.1x SSC. 800,000 pfu of phages were screened. After four cycles of screening, seven positive clones were plaque-purified. Three clones comprising the largest inserts (λHGα26, λHGα5 and λHGα52) were isolated and analyzed by restriction mapping. Figure 2A shows the complete gene map of human CYP7. Clone λHGα26 (Figure 2B) contains a 15 kb insert which spans about 8.0 kb of the 5'-upstream flanking sequence and exons I to III (Tables 6 and 7) Clone λHGα5 (Figure 2C) contains sequences from intron IV, exons V and VI to an 8.0 kb 3'-flanking sequence (Table 8).

Table 6

5	TTTTTGGTTA	TCTTTTCAGC	CGTGCCCCAC	TCTACTGGTA	CCAGTTTACT	GTATTAGTCG	6
	ATTTTCATGC	TGCTGATAAA	GACATACCTG	AAACTGGACA	ATTTACAAAA	GAAAGAGGTT	120
	TATTGGACTT	ACAATTCTAC	ATCACTTGGG	AGGCCTCACA	ATCATGATGG	AAGGAGAAAG	180
10	GCACATCTCA	CATGGCAGCA	GACAAGAAAA	GAGCTTGTGC	AGGGAAACTC	CTCTTTTTAA	240
	AACCATCAGA	TCTCATGAAA	TTTATTCATT	ATCATGACAA	TAGCACAGGA	AAGAACTGCA	300
	CCCATAATTC	AGTCACCTCC	TACCAGGTTC	CTCCCACAAC	ACGTGAGAAT	TCAAGATGAG	360
15	ATTTGGATGG	GGACACAGCC	AAACCATGTC	ACACTACCAT	GCCTGACTTC	CTTTCCATTT	420
	TTGTATATTT	GCTTGTTCTT	CATTTGCCCG	AGAAGTAACT	CTAAAGGGCT	GTATTATTTG	480
	GATATTAGAT	TGGCATTTTA	TCTGACTGGG	ATATCTTGCT	GTGATTGTCC	ATGTATAAGA	540
20	TCAGCTTTTC	TATAAGCCAT	ATTTTTAAAA	AGATATATTA	ATTTTTTAAA	AATCCACCTG	600
-0	TCTAAATAAA	TGCACAAAGC	CCCCCAAAAA	CCTAGATTCT	AAGAAAAATC	TATGTACTGC	660
	CATACAATGA	TTGATATTAA	TATTTATGGT	GATAAATTAC	АСАСАААААА	TGTGTGATCT	720
	CTGTTTAAAC	AGGCAAAAAC	ААААААСАСА	TGAAATAAAT	CTATGGCATC	TATAGCCAAA	780
25	ACTGGAAACA	ACCCACATAT	CCATCAATAG	GAAATCAGTT	AAATAAATTA	TAGTACATTT	840
	ATCCAATGGA	AGATTAAGCA	CATATTCAAT	ATAATTATTT	ATACACACAT	ATAGATACAC	900
	ACATGTATAA	ATATAGAGAA	TACTGTGGGT	GTATGTGTGT	GTGTGTTTAT	ATACATATAT	960
30	ATACACACAC	AGTACTGTTG	CCTACCTTCT	TTTGTCTTAA	TTCTGTGAAC	TCTCATTCAC	1020
	TCTGCTTCAG	TAGGATACCT	CCTTCTTTTT	GGTTCTTAGA	CTCACCAAGT	TGATCCTTGA	1080
	CTCAAGACAT	TGCATTTGCT	GCTTCCTCTT	CCTGGAATAT	CCTTCCTTCT	GATATTCACA	1140
35	TGAGTAGTCT	CTTCTTGTCA	TTCAGATCTC	AAATGTCACA	ATTTCAGAGA	GCCCATCTCT	1200
	GATCATCATA	TCTAAAGTTG	TCCTCATTCC	CCCATAGCTT	TCTATACCAT	GTTTTATTTT	1260
	TTTCATAACA	TGTATTTTAT	TACTCCTTTC	TCCATTGGAA	TAGAATCTCC	ATTAGATTAG	1320
10	GAAATCTGCC	TATCTTATTA	ATGCCTGCAA	CTGGAATACT	TTTGAAGAGT	TCTTGGCACG	1380
	TAATAAATAC	TCAACTAATA	TTTTTGTGTA	CACAGAAATA	AAGTTTGGAA	GAACAGATGC	1440
	CAAATTGTTA	CTAGTGGTTA	CTTCTGAGTA	AAGGAGTAGC	ATGGTAGGTA	AATTATTAAT	1500
1 5	AGATGTTCAC	TTTCCACCAA	GATATGTTTT	AGTTAGTCTT	AACTTACTTG	AAATGAAATT	1560
	TATTACTTTA	ATAATTAGAA	ACATTGATAA	ACATTTTAGT	CACAAGAATG	ATAGATAAAA	1620
	TTTTGATGCT	TCCAATAAGT	TATATTTATC	TAGAGGATGC	ACTTATGTAG	AATACTCTCT	1680
50	TGAGGATGTT	AGGTGAGTAA	CATGTTACTA	ТАТСТАСТА	ል ስ ጥ ል ጥ ር ጥ ል ጥ ር	አጥጥጥአጥአ አ	1740

	AGCACIGAAA	CHIGHNOCHG	CAGAAAIGII	TTTCCCAGTT	CICITICCIC	IGAACIIGAI	1000
	CACCGTCTCT	CTGGCAAAGC	ACCTAAATTA	ATTCTTCTTT	AAAAGTTAAC	AAGACCAAAT	186
5	TATAAGCTTG	ATGAATAACT	CATTCTTATC	TTTCTTTAAA	TGATTATAGT	TTATGTATTT	1920
	ATTAGCTATG	CCCATCTTAA	ACAGGTTTAT	TTGTTCTTTT	TACACATACC	AAACTCTTAA	198
	TATTAGCTGT	TGTCCCCAGG	TCCGAATGTT	AAGTCAACAT	ATATTTGAGA	GACCTTCAAC	2040
10	TTATCAAGTA	TTGCAGGTCT	CTGATTGCTT	TGGAACCACT	TCTGATACCT	GTGGACTTAG	2100
	TTCAAGGCCA	GTTACTACCA	CTTTTTTTT	TCTAATAGAA	TGAACAAATG	GCTAATTGTT	2160
	TGCTTTGTCA	ACCAAGCTCA	AGTTAATGGA	TCTGGATACT	ATGTATATAA	AAAGCCTAGC	2220
15	TTGAGTCTCT	TTTCAGTGGC	ATCCTTCCCT	TTCTAATCAG	AGATTTTCTT	CCTCAGAGAT	228
	TTTGGCCTAG	ATTTGCAAAA	TGATGACCAC	ATCTTTGATT	TGGGGGATTG	CTATAGCAGC	2340
	ATGCTGTTGT	CTATGGCTTA	TTCTTGGAAT	TAGGAGAAGG	TAAGTAATGT	TTTATCTTTA	2400
20	AATTGCTCTT	TGATTCATCC	ATTTAATTTT	TTTACCTTCA	TTTTTATACA	GTAAATTTGG	2460
	TTTTCTATAC	TTACACATAT	TAGCATTATC	TTCCTTATGT	TTTAAATGAA	AAATTTGATT	2520
	TGAATTTTTA	AAGTAATATC	TTTTTTACTA	TATCTCACAA	GACATATGAC	AGCTTCCCTT	2580
25	TTTAGTATTG	GCATATACCG	ATGGTAATAT	ATAAATGTAT	ATTGGTGTTA	AACATAACTG	2640
	ACAGAAATTG	TATAAGGTCT	CTATGTACAT	TTATATGTGT	ATCTAAAGAG	GAAGCCCAGA	2700
	TTAGTAAGGA	TACAAGTAGC	AAGTGGGAAT	CTACAATGGA	AAGGATTGCT	TTCTCTCACA	2760
30	TGGCTTCAAT	AGATACTCTT	GCTTAAATAA	ATGTTCTCTT	TTAAGCTCAT	TCTTGTGCAT	2820
-	CGCATAGACT	CAGCCTAAGC	CTGAACAAGA	GCATAGAGCC	TGAGCTGATC	ATTCTATTAC	2880
	TGTTTTTAAA	TAAATGTTAA	TCAACTGTGG	TGAATTGGGA	AAGTTTGCTG	AGTGTATGTG	2940
35	ACATCGATTT	CATTTATTTA	CAACTGGTTC	AAGAATGCAA	GAAAAACAAA	TACAGTCAGA	3000
55	TCCAGAACCA	TAGTTTATTT	AACTTCTAAT	TGGCTCAAGG	AGTAATTGTG	GGGAGGCATA	3060
	TAGATATTCT	CTGCTATGTC	AATCTCAAAA	AGAGAAAATA	ACCCTAACCA	TCTTTCAGCT	3120
	TTGTAGATTG	CTATGTGTTT	TCTGCCTTTG	CAGTTTCTTT	CAGGCCTGAT	AGTTTTTACT	3180
4 0	TTTAATTAAA	CTACTTATCT	TCAAACTAAG	AAAAGAAAGG	TAATTACTTT	ATACTGTATT	3240
	ATTCTATCAA	GAGGTACAGA	AGTTTATGTT	GGAAAATAAG	TTTACATGTT	СТААТАААА	3300
	CATTTTAAAG	GAGCACTGAA	TTACAATAGA	TGATTCCGTC	AGTGTTTATC	TTACTCAATT	3360
15	TCATTTTATA	ATAAGCTGAT	TTCTCACATG	AGATTCTTCT	TCTCTGAAAC	CATCCTTATA	3420
	GAATATAATA	TAGATATCTT	TAAACTAGGA	ATATTTTCAA	AACCTCAGTT	CTGAAATCCT	3480
	CCCTTATTCA	GTGATCTGTG	TCTTTAAAGA	AAATAATCAA	AAGAAACATT	TTGAGATATT	3540
50	TRC22222	3.00.00003.003	******	~~~~~~~	m> cmmme.com	D0000000000000000000000000000000000000	2000

	CANCANUANI	Cliditodic	TIGIAAATCC	TTTTGCCTGT	MICACIGGGA	MANGIGATGA	3000
	GCACATAGTA	GACGGGTGCT	TGTTGAATGT	GTATATGGAC	GGATGCATGA	ATGGATGGAT	3720
5	TTAGTAATCC	TTTCCACCAA	CATATCATGT	TACTAGGTTA	ATATAACCTA	TTACTGTAGT	3780
	AAAAGAGCAG	GGCCCATCCA	ACAAAAGAAA	TATCTATAAA	CTATAGGGTT	TCAAAGTTTG	3840
	AAGTCAGTGG	GAAAAATTTT	AAAACCTGAT	GTAAGTAAAA	ACCCAAAACT	GTAATCATCC	3900
10	ATGTCTATCA	TACACTTGTG	TCTGACAGGC	AAACGGGTGA	ACCACCTCTA	GAGAATGGAT	3960
	TAATTCCATA	CCTGGGCTGT	GCTCTGCAAT	TTGGTGCCAA	TCCTCTTGAG	TTCCTCAGAG	4020
	CAAATCAAAG	GAAACATGGT	CATGTTTTTA	CCTGCAAACT	AATGGGAAAA	TATGTCCATT	4080
15	TCATCACAAA	TCCCTTGTCA	TACCATAAGG	TGTTGTGCCA	CGGAAAATAT	TTTGATTGGA	4140
	AAAAATTTCA	CTTTGCTACT	TCTGCGAAGG	TAAGCAGTTT	TACATTTATA	TACCATTCTG	4200
	TTTGTCTTCT	ACCTTTTTAT	GTGCTTGTCT	ATTTAGAAAT	TTTGATGTAC	TTAGATTTTA	4260
20	TGATAAAGGT	GTTGAAGAGA	GTTATCCTTA	TGTGGAGATT	CTTAGAAACA	TAAATAAATT	4320
	ATACGTAGCT	TCTTAGTAAT	AATCATTTAG	AAAGTCAAAA	TAGGTATAGA	TTTCCGTCAT	4380
	TTGCTTTGCA	CGAGCTAATG	AGGGTGAAAT	ACAGATTAAA	TGCTCTACTG	AGACAGGTGG	4440
25	CACTGTACGA	ATAAGATAGA	TTAAAATTCA	TCACATCAGC	AATGTCTATG	CAGAGCGAAG	4500
20	TGACGGAAAC	CTAACATTCA	GCAGTTGTCT	CACCACACTT	GTGCCACACA	GTGTTTCATT	4560
	TTGATAAGGA	ATTGGCAAGA	TATTTTAACA	TCATTTAGAT	GTAATAAAAG	AAGATCTGTT	4620
	ACTGAGAAAA	AAAACCAATA	ACTACTTACT	TACTGCAAAT	AAATATTAGC	TTTGGTCTTT	4680
30	GTGACTAAGT	AGCTTAAAGT	TTGGTTAAAA	TACATCTACA	GCTGGACACA	ATGGAACACA	4740
	CCTGTAGTCC	CTGCTATTTG	AGAGGCTGAG	GCAGGAGGAT	CGCTTGAGTC	CAGGAGTTTG	4800
	AGGCTGCAGT	GAGCTATCAT	TGTGTCACTG	CACTCCAGCC	TGGGTGACAA	TGTGAGACCC	4860
35	CATCTCTAAA	AGAAAAAGAA	AAAGAAATCT	ACAAATAATA	TAAAAGATAA	CTAATGATTT	4920
	TAAAACATTA	TCAATTAGTT	TATGTGCAAT	AGCTGTAAAT	AAGTGCAGTA	GCATAAGAAA	4980
	TAAGACATAG	ATGACTTGAG	TGATCCAGGG	GAGTGCCACT	GAAGTTGGCT	TTAAAGGAAA	5040
40	GGTACAGTTT	GGTCATTTAT	TTGTAAAGTG	CTATGAACTT	GTACAAGGGA	AAGCCAATTT	5100
	CCCGTGTTTA	CCAAGTAAGG	AACTATGAAA	GTATCTAATC	CGTTTTTCAG	TCATTTACTA	5160
	TGACTAGGTC	AGGTTTAACT	TCTTTTTCTG	CATGTTTTAT	TTGCTATCAG	GCATTTGGGC	5220
45	ACAGAAGCAT	TGACCCGATG	GATGGAAATA	CCACTGAAAA	CATAAACGAC	ACTTTCATCA	5280
	AAACCCTGCA	GGGCCATGCC	TTGAATTCCC	TCACGGAAAG	CATGATGGAA	AACCTCCAAC	5340
	GTATCATGAG	ACCTCCAGTC	TCCTCTAACT	CAAAGACCGC	TGCCTGGGTG	ACAGAAGGGA	5400
	ጥር ጥን ጥጥር ጥጥጥ	CTCCTACCCA		*******	mmma a cma mo	mmmcccaaca	EACO

	ATCTTACAAG	GCGGGACACA	CAGAAAGCAC	ATATTCTAAA	CAATCTTGAC	AACTTCAAGC	5520
	AATTCGACAA	AGTCTTT					5537
5	Table 7						•
	GAATTCTACT	CTTTAAAGGG	GTGAATATTA	TGGTACTTGA	ATTTTATCTC	AAGAAAAATG	60
10	AATAAAAAGT	AACTAAATCA	TTGAAAATAT	CTGATGGCAT	GGGGTTTGTG	GGGTAACTGG	120
	CATTCCACAG	TGATTTTCAA	AGGGCTTGTG	CTGTTTTCAT	TTTGCTTTGT	TTTAGTTATG	180
	GAGCCCTTCC	TTGAAACAAA	CTTCATACTA	CAGTCCTCTT	TCATGAAGCA	GAAGAGGGCA	240
15	GTGGGCAGAG	CTCTCCTTTG	GCTTTCTCCC	CCACCACAAC	AGGGAGCCCT	GGAGCTCTAG	300
	GAGAGAAAAT	CTGAAATATA	AAGGGCATGC	ATGTGAGCTG	TGGAGTCCCA	GAGCCCTGGG	360
	TTTGCATCCT	AGATCTGCAA	CTCCCGTGAA	TTGAGTTTTG	GGAAGTTGCT	GAAACTCTGA	420
20	CCTCCTGTTT	TCTCATGGTA	TTGTTGTAAG	GGTTAAATGA	GACAATGTAT	GTGAAGACCC	480
	TGGCCCCACA	GTAGAGGCTC	TGCACACATT	TCAGCGATAC	TTTCCTCATG	TATTTCCAAA	540
	AATGTTTTCT	CATTTTCTTA	AAATGTCAGA	AAGAAGACAA	CAGAACTTAC	TTGCCTTTTA	600
25	CAACAGAACA	AATGGAGCAA	GTCAGAGGTC	AAGGTGCTAA	CATTCTTCAT	GGTTCCTCAC	660
23	CACCTTTTGT	TCTGTTAGCC	TATAGGGAAA	AGTCTTCTTT	CTCATCTCAT	TATCTGCAGG	720
	GGAAAATAGT	ACTTCAGCAA	GTGATCCAGT	TGAAGAACAT	CTCCAGGGCC	ATTAACATAC	780
	AGAGGTTTGT	TCTACTCTCT	CTGTGCTCCA	TGTCTAAGAA	CCTCAGCCTT	CCTCCTAGGA	840
30	GCTAGGGAAA	GTCAGGAAAG	TGAAAATAGT	ACCCCAGCTA	ATGAACTGCC	CTGTGCTGGC	900
	CTGAGAAGAC	AAGACCAGCT	TCCTCAATGG	CTCAAGATTT	GGTTTCCTTC	AATATGTCCT	960
	TTTGGAAATA	TGTCCATGAC	ATCGGAGAGA	TAAAAGGAGC	CAGGATTGCT	CACATTCAGG	1020
35	AAAAAAGCTC	CACTATCTTT	CTCTCTCTCC	СТСТТТСТСТ	CCCTCCCCCT	GACTGCCCTC	1080
	TTCTCTATCT	CTCTCTCTCC	CTGAGCTGGC	AAGGTTAATT	GGTCGCAGAA	AGCCGAAGAA	1140
	ACAAGTGGGC	CTCCTGGAAC	AAAGTTCAAA	AAGCCGAAAA	CGGGAAGAAA	ACTAACCACA	1200
40	AAAGTAAAGG	AACCACTTAG	CCTTCTTTGA	TTCCAGGCCC	CCAAGCCTGT	CTTTAACTTG	1260
	GATGAATGGA	GTTCTTCCTG	TGCTACAGCA	CCGCATAGTA	GGGGCTGCCC	TGGGCCTGAA	1320
						GCTTCATGGT	1380
45	GCTACCCTGT	GGATTAAATG	AAGCAAGTTT	TTGATGATCT	TGACACTGAA	TATTGATGCA	1440
						AATCAAATCA	
						TTGCCTGTCT	

55

	TATTTATCTC	IGCATCTCCA	GCACTTAAAA	GGTGCCTTGC	ATAAGGTACA	TATTAAGTTC	1620
	ATATGAATGA	ATGAATGAAA	TGCATATGAT	TTATTCATAC	CCAGTTGGTG	GTGTGTTTAC	1680
5	CCTTTCCTAA	ACCTGTAGTC	AGATGGCCTT	TGAATCCCCT	GTACTTCTTG	TGAGGTACTG	1740
	TGCTGTAAAG	GTGGACTATC	ACACTTCAGT	TCAGAGCAAT	CTGGGCTTGA	ATCCTGGATT	1800
	TGCCAGTTTA	TTAACTATAG	CAAACATTTT	TGAGCATACA	TTGTGCCAAG	TGCTAGGCTA	1860
10	ACTGTCTTAC	ACACATTGTC	TTATTTCGTC	TTAATATCTA	TGAGTCATGC	ACTATAATCA	1920
	TCCCCATTTT	ACAGATAAGA	AAGCAAAGAC	TTGGAGAGGA	AAAGCATCTT	GTTCAAAGGT	1980
	AAATACTTAA	TGGCCAAGCC	AACATGCAAA	TCTAGATTTA	ATTGCAGCTT	CCTCTTCATC	2040
	TACCATTCGA	ACTAATTCAA	GCTATGTAAT	ATTTCCCACT	GAACCTTCTT	GCCTCTACTT	2100
15	CCTCATCTTT	AACATGGTCA	AAATACCTGT	CCTGCCCAAG	TTAGTTATTT	CATTAAAGTA	2160
	GAAAAATACA	AGAGAAGCTT	TTAAAATGTG	AAACCTCAAA	TGAATGTAAA	ATTATGATGA	2220
	TTCCTTTAGA	ATTTGTCAAC	ACCTTCTTTT	CTCTACTCCT	GCTAGGCATT	TACAATCTCA	2280
20	AAACCATGTA	TTTAAGATGC	AAAACTATAT	TTGTATTTGC	CATAACTGGT	TTCTTTCCCT	2340
	ATGGCTTCAT	GAAAATGTGG	CTCGAATGTG	TTTATTATGA	AAGCCCCAAA	TTAATCACGA	2400
	CAAGACTTCA	CCAGCCCATT	CCACAATAGA	CTCCCATTAC	TTTGCCCTGA	CTTAGAAACC	2460
25	TCATATACAG	TCTTGATTCA	GTACAGCTCT	GTGATGCTCT	TGGAAAATGC	AAAGTGCTTT	2520
	CTTAATTGAG	GCAATCTGTG	TCCCACTACA	GAGAGGTGGT	TTAACTTGTG	AATTC	2575
	Table 8						
30	Table 0						
	AGAGCAACCT	GGGCAACATA	GCAAAACCCT	GTCTCTGCAA		CAACAAAATT	60
		GGTGGCACAT					120
35		TGGGAGGTTG					180
		ATGAGACCCT					240
		AACAGCATAG					300
40		CCCTGTTCAT					360
		ATGACCTTCA					420
		TATCTTTTTT					480
45		TGCCTCCCTC					540
		CTACAACATC					600
		AGAAATCTAC					660

55

	TTCAATATCC	AGGTGATAGC	TACCTAGATC	TAAATAAAGA	GGAAATTTAC	AATGGTAGAA	720
	TTGATTTTCT	CATAGTAGTC	ACAGGAATTG	TCTGACTTAA	TTGTGTTAAA	TATTCATATA	780
5	TTTTGGAAAA	TTTAGATAGT	GGTCTGAATT	TTTCATTTTA	GTCCTGATAT	TTGCCATCAC	840
	ACAGTCTTTG	CTAGATTATA	TTTGCAGTCA	TGATAATAAA	CCTGCCACTT	TTTTTTTCTT	900
	AAAAAGCACC	TCCTCCCAAA	TCCAGGAAAT	TGGAGGCTAA	TATATTGATT	ATTCTAGTTT	960
10	CTTCTGGGAA	CCCTTCTCTC	TCTAGCTCTG	CCTGACTAAG	GAACTAATCG	TTCAAGCAGG	1020
	ATAGGAAGGT	ATCACAAGGC	TTCCTTAGCT	GCATTAAGCT	CCTGTTCCTT	ATTACTTTCT	1080
	GATTCAATGT	GGAGTATTTG	CTAAATCACT	AATGGGGTAG	AATTAAAAAG	AAAATTACTC	1140
15	TTTGGAGCTT	CCAGGTTTAG	AAAGAGATAA	ATTTCTTTAA	AACTAGCTTA	AAGGCGGTTT	1200
	TCTTTGTATT	TTTATTGCAG	ACTTTTAAAT	ATGATAGGTA	TCTTGATGAA	AACGGGAAGA	1260
	CAAAGACTAC	CTTCTATTGT	AATGGACTCA	AGTTAAAGTA	TTACTACATG	CCCTTTGGAT	1320
20	CGGGAGCTAC	AATATGTCCT	GGAAGATTGT	TCGCTATCCA	CGAAATCAAG	CAATTTTTGA	1380
	TTCTGATGCT	TTCTTATTTT	GAATTGGAGC	TTATAGAGGG	CCAAGCTAAA	TGTCCACCTT	1440
	TGGACCAGTC	CCGGGCAGGC	TTGGGCATTT	TGCCGCCATT	GAATGATATT	GAATTTAAAT	1500
0.5	ATAAATTCAA	GCATTTGTGA	ATACATGGCT	GGAATAAGAG	GACACTAGAT	ATTACAGGAC	1560
25	TGCAGAACAC	CCTCACCACA	CAGTCCCTTT	GGACAAATGC	ATTTAGTGGT	GGCACCACAC	1620
	AGTCCCTTTG	GACAAATGCA	TTTAGTGGTG	GTAGAAATGA	TTCACCAGGT	CCAATGTTGT	1680
	TCACCAGTGC	TTGCTTGTGA	AATCTTAACA	TTTTGGTGAC	AGTTTCCAGA	TGCTATCACA	1740
30	GACTCTGCTA	GTGAAAAGAA	CTAGTTTCTA	GGAGCACAAT	AATTTGTTTT	CATTTGTATA	1800
	AGTCCATGAA	TGTTCATATA	GCCAGGGATT	GAAGTTTATT	ATTTTCAAAG	GAAAACACCT	1860
	TTATTTTATT	TTTTTTCAAA	ATGAAGATAC	ACATTACAGC	CAGGTGTGGT	AGCAGGCACC	1920
35	TGTAGTCTTA	GCTACTCGAG	AGGCCAAAGA	AGGAGGATGC	TTGAGCCCAG	GAGTTCAAGA	1980
	CCAGCCTGGA	CAGCTTAGTG	AGATCCCGTC	TCCAAAGAAA	AGATATGTAT	TCTAATTGGC	2040
	AGATTGTTTT	TTCCTAAGGA	AACTGCTTTA	TTTTTATAAA	ACTGCCTGAC	AATTATGAAA	2100
40	AAATGTTCAA	ATTCACGTTC	TAGTGAAACT	GCATTATTTG	TTGACTAGAT	GGTGGGGTTC	2160
	TTCGGGTGTG	ATCATATATC	ATAAAGGATA	TTTCAAATGT	TATGATTAGT	TATGTCTTTT	2220
	AATAAAAAGG	AAATATTTTT	CAACTTCTTC	TATATCCAAA	ATTCAGGGCT	TTAAACATGA	2280
45	TTATCTTGAT	TTCCCAAAAA	CACTAAAGGT	GGTTTT			2316

Cloned bacteriophage $\lambda HG7\alpha 26$ and $\lambda HG7\alpha 5$ were deposited August 25, 1993 at the American Type Culture Collection, ATCC, 12301 Parkland Drive, Rockville, Maryland 20852, U.S.A., under accession numbers ATCC 75534 and 75535, respectively.

Five EcoRI fragments of the clone $\lambda HG\alpha 26$ were excised from the phage DNA insert by restriction digestion and shotgun subcloned into the phagemid vector pBluescript II KS + (Stratagene, La Jolla, CA). The clones were size-selected. EcoRI fragments were isolated from CsCI purified plasmids and used for sequencing. Nested deletions were generated by ExoIII/Mung Bean nuclease digestion according to the manufacturer's instruction (Stratagene, CA) using the conditions of a 37 °C incubation for 1 min intervals. This condition resulted in an average deletion of about 200 to 250 bp/min. DNA sequencing of the nested deletions was carried out by the dideoxy chain termination method using T7 sequence version 2.0 (USB, Cleveland, OH) and 35 S-dATP. Sequence data were obtained from both strands and the overlapping

deletion clones and analyzed using DNASIS software (Hitachi America, CA).

The nucleotide sequences of a 5.5 kb EcoRI fragment (Table 6) and a 2.6 kb EcoRI fragment (Table 7) were determined. The 5 kb fragment contains the sequence from -1886 of the 5'-upstream region to a partial exon 3 (Figure 2B). Included in Table 6 also is the 347 bp 3'-end sequence of a 3.5 Kb EcoRI fragment located immediately upstream of this 5.5 kb fragment (Figure 2B). As shown in Fig. 2A, the 2.6 kb fragment is located further 5' upstream of the 3.5 kb EcoRI fragment. Thus, a 4823 bp 5'-upstream flanking region sequence of the gene now is determined.

Molowa et al. (Biochem. 31, 2539-2544, 1992) published a 1.7 kb upstream sequence of a human gene. A comparison of the sequence of the present invention to that of Molowa et al. in the overlapping region (1604 bp) revealed that sequences from the transcription start site to about -460 are identical, however, further upstream the sequence vary significantly. A total of 52 sequence discrepancies were found, which are far too many to attribute only to the presence of polymorphisms in the human gene. Cohen et al. (Genomics, 14, 153-161, 1992) reported a 723 bp upstream sequence and suggested sequencing errors by Molowa et al.. Thus, the sequence of the present invention, from the transcription start site (nt + 1) to -587, is identical to those reported previously by Molowa et al., Nishimoto et al., (Biochem. Biophys. Acta, 1122, 147-150, 1993) and Thompson et al., (Biochim. Biophys. Acta, 1168, 239-242, 1993).

The present invention identifies seven mismatches in Cohen's sequence from + 1 to - 123. A conversion of at T to C nucleotide -469 was identified to be a Mae II polymorphism (Thompson et al., 1993). The 5'-flanking sequence of the present invention agrees very well with that reported by Thompson et al. (1993). Only one mismatch at nucleotide -1193 (C vs A) was found in the overlapping region from + 1 to nucleotide -2235.

The present invention further identifies transcription factor binding motifs in the human gene, however, SRE-like sequences were not found in the human promoter region.

5 1.(C) The Hamster Gene

A hamster liver genomic library constructed in the $\lambda DASH$ II vector (Stratagene) was screened with a 2.5 kb Eco RI fragment of the rat pBSK7 α 12 comprising the entire coding sequence of the rat cholesterol 7 α -hydroxylase cDNA. About 1 million plaque-forming units were screened and one positive clone was identified and plaque-purified. The phage DNA was purified by CsCl gradient centrifugation and cDNA insert was restriction-mapped using rat probes (Figure 3). EcoRI fragments of the DNA were isolated and subcloned into a pBluescript II KS + vector. Nested deletions were generated with an ExoIII/Mung Bean deletion kit. The DNA sequences of these deletions were determined by the dideoxy chain termination method using Sequenase. In some instances 17-mer synthetic oligonucleotides were designed and used as sequencing primers. Sequences were determined on both strands with overlaps. cDNA sequence analyses were carried out with DNASIS software.

Table 9 shows the 11 kb DNA sequence of the hamster gene. It covers the sequence from nucleotide-1650 of the 5'-flanking region through all six exons and five introns (Exon I: nucleotide 1651-1730; Exon II: 3511-3650; Exon III: 4351-4937; Exon IV: 5945-6075; Exon V: 7690-7865; Exon VI: 8437-8736). The amino acid codons interrupted by introns are identical in each of these three homologous genes. The DNA sequence of the exon-intron junctions follows the canonical GT-AG rule typical of eukaryotic genes. The precise intron sizes determined by DNA sequencing are consistent with those of the rat. The intron 3 of the hamster gene is 1007 bp, which is about 1 kb shorter than that estimated for human intron 3. A putative polyadenylation signal (AATAAA) is located 371 bp upstream from the 3'-end of the gene, indicating that the isolated genomic clone should include the entire coding exon 6.

50

Table 9

5	GAATTCTAAA	CACATATTAA	TATCAATGAC	TTATATGTAT	GTATATATAT	ATCTAATATA	60
	GATAATGTAT	CTAGGGATAT	ATATATATGT	ATATTTTATC	TTTCTTCCTT	TTATTCTTTC	120
	TTCTCCCCTC	TCTGTTCAAC	ACCGAGGAAT	AGAATGCACT	GTGGTGTCAT	ACTCTGCTTA	180
10	CTCAGCCTCT	TATTGACCTC	TGAGTCAATA	CAGTGCTGAT	GTACATCTCC	AAATGCCCTC	240
	TTTTCTCCTA	ACCACAGACT	TTTACATTCA	GTAATCAATT	TGACATTGTC	CCATGATTTA	300
	CAAATGTTCA	CAATAGTATA	TTGACCTATT	GCTGCCTTCC	AAGGTCCTCT	CCCACTCCCA	360
15	AACATCCCAA	TATGAACCAG	CTTTTGCCTA	TCTTCTTGTC	TCTTACTTTA	ACTCAATGTC	420
	ATTCCCTATT	CACTTTGCTG	TAATAGATGC	TACCTTGATT	CTGGTTTTTA	GCACCTTAAT	480
	TTCGCTCTCT	GCTCAGGAAC	TCTGCCTTTG	СТСТТСССТС	TTCTGGGAAC	GCTTTTCCTT	540
20	TGCTGTTATA	TCTCTTCAAA	ACAGCTTCTC	TATTCAATAT	GCTCAAGCTG	CCTTCAGCCC	600

	ICAACAGCIC	COCCTACCTC	ATTUTAGTCC	CICCACTAGA	ATAGAATCTI	CATGAGAGTA	660
	GCGAACTTCC	CTATCTTGCT	AGTACCCAAA	GGCAGAAAA	TCTTTAAAGA	GTTCCTGGGA	720
5	CATAGAAAAA	GTGCTCAATT	AATATTTGTA	TTAAATAGGG	ACCTCAGGTG	TAACTCCGTG	780
	GTAGAGCGTT	TGCCTTAGAG	AAGTAGGGCC	ATGGGTTCAA	ATTCCAGCAC	AGAACAAAAA	840
	ATTGTGCTGA	ATAAAGTTTG	GGAGGATGTG	TAGCAGTTTA	TAGTGCAAGT	GGCATAAGCA	900
10	GTAAATAATG	AATTTGTATC	CACTTTTCTA	GCAAGAAGTA	TTTTATTCTT	TATTTGAAGG	960
	ATAACAATTG	GTAAAGACTG	CATTCTCAAA	ATAAACTATG	GCTTATGGCT	ACGTGGAAGA	1020
	TGAGATAGGG	AGAAGGTTTT	TTTTTGATGA	TGGCAAAATA	ACATGTCATA	GTCCACACGA	1080
15	AACACCTGTG	AAGTTGTAAA	CACACCTAGC	AATCAAACAA	GAAAATTGTC	CCACCCTATT	1140
	ATCATTCTTT	TGGATTGGTT	GTGGCATATT	TCTGGAAAAT	GATTTAAATT	AATTCCTTCT	1200
	AAAGGTAACA	АСАСАААСАА	CCACTATCAT	GACGAAAAGC	TTCTGCCTGT	TTCAGTTTAC	1260
20	ATCATGCTCA	ATGTCTACAA	CAGACGTGCT	CATCTTCAGA	GTGTTTACCT	CTGCTTTTTA	1320
	CACACATTGA	AGCACAATGT	GAGCTGCTGT	CCCTGGGTCT	GAATGTTATG	TCAGCACACA	1380
	AGGGACAGAG	CTTCGGCTTA	TCAAGTATTG	AAGCTCTCTG	CTTGTTTTGG	AGCCTCTTCT	1440
25	GATACTATGG	ACTTAGTTCA	AGGCTGGGCA	ATACTATTTT	TTTCTTTTTT	CTAATAGGAG	1500
	GACAAATAGT	TAGTTGTTTG	CTTTGGTCAT	CCAAGTTCAA	GTTATTGGAT	CATGGTCCTA	1560
	TGTGTATAAA	GAGTCTAGTT	TGAGCCTTTC	AGGGGCAGCC	TTGCTGGCTA	AGCACAGACT	1620
30	CTCCTCTTGG	GAGTTTTCCT	GCTTTGCAAA	ATGATGACCA	TCTCTTTGAT	TTGGGGGATT	1680
	GCTATGGTAG	TGTGCTGTTG	TATATGGGTT	ATCTTTGACA	GAAGGAGAAG	GTATGTCTTT	1740
	TAGCTTATTT	CTAGTGTTTT	CACTATTATA	CAGTTCCAAA	AAAATACTAG	TACATTAGTA	1800
35	TTTTTATTTA	AAATTTAAAG	CCATGCTTCT	TTGACTAAAC	CTGACAAGAT	GTAGAGTTTC	1860
00	CCTTTGAATA	TCCACATACA	CTGATGGTAA	TGCTGATCTT	GTTAAACATA	АСТАААААА	1920
	TTATAAGTAT	TGATGCATGT	TTGTGTGCAC	TTCTGTGGAG	TACACCTAAG	CTGGGAAGGG	1980
40	TGCATTTGGC	AAGGGTGACG	TTTGGAAAGG	ATCTTTCTCT	CACAATAACT	GGTTATGCAT	2040
40	ATGCTCTTCT	GGGTTCTCTG	TTACATCAAC	ATTAAAATAC	AGGAATACCC	TTGGCATATC	2100
	TTTGGCAAGG	TAGACTGTGT	стестетстт	AGTTTTAATA	ACTTCTTTGC	CTTTTGAGTT	2160
	ATTTGAATTT	ATGCCTGATC	GTTTCCAGTT	TTAGTTGTCT	TAATGCTAAG	AAAGGACAAA	2220
45	TCAATTATAT	TTAGTTATTC	TAACAAGAGA	TAACTAGTTT	ACGTTGAAAA	ATAAATTATC	2280
	TTATAATTTC	TAATAAAAAC	ATTTAAGAGA	GTTAGAAATC	AGCGAATTAT	AGCTGATGAT	2340
	CTGCCAATGT	TTACCTCACT	CAACTTCATT	TTAGATACTT	TTTCAAGTGG	GATTCCTATT	2400
50 .	CTCTTCAAAT	ATCCGCACAG	AATTATAGTC	CCCTTCTTTC	AGAGTGGGGG	GAATCAAATG	2460

	AAAGGTTTCA	TGTGTGCTAG	GCAAGAGCAC	CACCGTTGAG	CCACACCTCC	AGACCCCACA	2520
	ATGCCAACAT	TTTTAAACTA	TGTAGAGTTT	AAAAAACTTT	AGTTCTGTAG	CCTTTTCTAT	2580
5	TAGCTGGTGT	TTCATGTCTT	CAAAGAAAAG	GAAAACTGAA	ACATTTTAGA	CATATGGACA	2640
	AATGATTCCT	TGAACAAGTC	TAAGCACTGA	TGATAGCTTC	TTTTCTACAG	TGAGATCAAG	2700
	AATCTTGTTA	GCCCTGTTGA	TACTTGTAGC	CCTGTCACTT	GGAAAAGCAA	TCAATTTTAT	2760
10	GATCTAGAAA	ATAGAGCTTG	CCTAAAGATC	AGAGTGCAGA	GCTAGTCACA	CTAGTCAGCC	2820
	ATACAGGTTA	GGCAGTGGTG	GCACATACCT	TTAATCCCTG	CAGCCACTCA	AGTTACCCAT	2880
	AGAAGCTGGG	TGGTGGTGGT	GCACACCCTT	AATATAAGGT	GGAGCACACT	TTAATGTAAG	2940
15	GTGGGTAGAG	TCAGGAGTGC	AGTGTATTCA	GTCTGCAGTC	ACACTGAGAA	CAATATCACC	3000
	CCAGTCTTGT	TAGAGGTAAG	AACTCTCTAG	TGATTGGCTG	CTTTGCTCTT	CTGATCTTCA	3060
	GTTTGAACTT	CTGTCTCTGG	GTTTTTATTA	TTCGTGCTGC	AGACATAGAC	ATAGCAAACA	3120
20	ATTTAATGAG	TGATTGATGA	ATGTAGATAT	GTATGTACAT	ATTGTGCTGG	ATAGACTGTA	3180
	GATGGGTTGG	TGGATGGGTT	GATGAGTGGG	TAGATTTAGT	AATCACCTTC	ACCAATATCT	3240
	TAGTAGGCTA	AAAAGCCCAC	TGTTTTAGTA	AAAGAGTGGG	GTATCCAACA	AAGAAGTATC	3300
25	TATAAACTGT	AGTTATGTGG	TAGAAATAAG	GGGTAGAAAC	CAGTAAAAAT	TCGGCTTATG	3360
	TACAAATGCT	AAACATGTAA	TTTCCTAAAC	CTCTCAATCT	GTCTCACAGG	AAAGCAGGTG	3420
	AACCTCCTTT	GGAGAATGGG	TTGATTCCAT	ACCTGGGCTG	TGCTCTGAAA	TTTGGCTCTA	3480
30	ATCCTCTTGA	GTTCCTGAGA	GCAAATCAAA	GAAAGCACGG	TCATGTTTTT	ACCTGCAAAT	3540
	TAATGGGGAA	ATATGTTCAC	TTCATCACAA	ACTCCTTGTC	ATACCATAAG	GTGTTATGTC	3600
	ATGGAAAATA	CTTTGATTGG	AAAAAATTTC	ATTACACTAC	TTCTGCAAAG	GTAACTAGTT	3660
35	TTTACAGATT	TTGCTTGTTT	ACTAGCCTGT	TTATTTATTA	GTTTATTTAG	TTGTTCCAAT	3720
	GTTATTAGAT	TGTAGGATAA	AGGGAACATA	AAATCAGGAA	GTCTCTTGGT	ACTAAGCATT	3780
	AAAAAGTCAA	GGTAAATGTG	AATTTGTGAT	TGATGATGAC	ATACACAAAT	TAAGCACTTT	3840
40	GTAAGTACTT	TCTGAGCCAG	AAGACACTAC	AGGAAGGCAC	AGACTCATAA	CATCCATGCT	3900
	GCCATCTACA	CAACACTCAG	AGCACTCAAT	TACCACATCA	TGCACACGAA	CTCGTTCGTT	3960
	AAGAAGTCGA	CAGTATATTT	AAGCATCATT	CAGATGTTAT	CAAGAATCTC	TATTCTAGAG	4020
45	AAAACAACAC	TTAGCTGAAT	TTTTACAAGA	AAATATTAGA	CATGGTCTCT	GTCTTAAGTA	4080
	GATTAAAGTC	TGGCTAAAGT	GCATCTGCAG	AGAACAAAAG	GTAAAGATAA	AATCAATGGC	4140
	CCATTAGTCC	AGAGAAGCTT	ACCTGAAAAT	CTGGGATTTA	AACTTGACCT	TAAAGGAAGA	4200
50	GTATGTCTTA	AGTTTGACTT	TGAAAAATGT	TATGAAATTG	TATTGGGAAG	GCTAGACAGA	4260
	GAAGTATGAT	ATACTTTAAT	CCATCTTCCA	GCCATTTCCT	AACACCCAGG	TTTAGCTGCT	4320

	CCCCCTCTGA	CGAATTTCAT	TTTCTACCAG	GCATTTGGAC	ACAGAAGCAT	TGACCCAAAT	4380
	GATGGAAATA	CCACAGAAAA	CATAAACAAC	ACTTTTACCA	AGACCCTCCA	GGGAGATGCT	4440
5	TTGCATTCAC	TCTCTGAAGC	CATGATGCAA	AACCTTCAAT	TTGTTCTGAG	GCCTCCTGAT	4500
	CTTCCTAAAT	CAAAGAGTGA	TGCCTGGGTC	ACCGAAGGGA	TGTATGCCTT	CTGCTACCGA	4560
	GTGATGTTTG	AAGCTGGATA	TCTAACTCTG	TTTGGCAGGG	ATACTTCAAA	GCCAGACACA	4620
10	CAAAGAGTGC	TTATCCTGAA	CAACCTTAAC	AGCTTCAAGC	AATTTGATCA	AGTCTTTCCG	4680
	GCGTTGGTGG	CAGGCCTCCC	TATTCACTTG	TTCAAGGCGG	CACATAAGGC	CCGGGAACAG	4740
	CTGGCTGAGG	GCTTGAAGCA	TGAGAACCTC	TCTGTGAGGG	ACCAGGTCTC	GGAACTGATA	4800
15	CGTCTACGCA	TGTTTCTCAA	TGACACTCTC	TCTACCTTTG	ATGACATGGA	GAAGGCCAAG	4860
	ACACACCTCG	CTATCCTCTG	GGCCTCTCAG	GCAAACACTA	TTCCTGCAAC	CTTCTGGAGC	4920
	TTATTTCAAA	TGATCAGGTG	GATAGCAATT	TGAGTGTTTA	TTCTTCATAG	TGACAGAAAT	4980
20	TAACAATTTT	TAATAAACCC	CCCAAAAGAC	TAGCAGAGCT	TTCTTTGCTG	TTGGTCAAGA	5040
	ATGTGATACT	CAGTGCCTGT	GTTTGACATA	TATATATAAC	AAAAGTAGCA	TTTTGTAAGA	5100
	ATATAGTCTC	ACCAGAAAGG	GATGTCCCAG	AAGCCGCAGA	ACTTAGATCT	GCTGGCACTT	5160
25	GTCATTAAAG	GTCCCCTTGC	CCAGTCTTGC	TTTTAACTCC	ATAGTGTTCT	TCTTAGTGTC	5220
	AAGTTAAATC	TATGACTGCA	GTCTTCATCA	CAACTTTAAA	TAATGACTGA	CTTGTCAATG	5280
	TGGTAAGTGC	AGAGGCCACA	CCTTACTAGT	TTGAACATTC	CTGTTTTCTG	CGGCCTCACA	5340
30	GATTTACAGC	AGAGTTGCAA	CATCAATTTC	ATATTACCTA	TGAACTACAA	CCATATTTTA	5400
	AGTTCAACAA	CTACTTGTTA	GTAACATTTC	TGAGGCTCAG	TTCACTTTAA	CCAGATAAAG	5460
	GAGATTTCAA	ACAGCTGCCA	ACAAATTTCC	ATGCACTGAA	TGGAAGTATT	CTTTATCGCA	5520
35	CAGTTCAAAA	ATAATAACAT	AAATATTCTG	AAGCTGTGGT	ATGAATTTAA	AGAGTAAATT	5580
	TGAATTTCTA	CTTGGGAATT	CACCAATACC	CTGTAATTGT	ATGTTAGAGG	AAGTATTCGG	5640
	AATGAATTAC	TCTACTCATC	ACACGAATGT	CTAGCCCTTA	TTAGAATCAT	TGGTTTATAG	5700
40	AGATCTGACC	AAAGCTTTGC	TTTTACATAG	CAACGCCCCT	TTAATGCTTC	TTCATAAATT	5760
	CAAGGACATG	AATCCAGTTC	AGAATACAGT	ACAAGTAAAT	GACAATGCCC	TTTGCATGTT	5820
	CCTGGAACCA	CTTCCCTTTT	CATGCTCCCA	TGCTAACGCG	ATCACCTCAT	TAAAAGAAAT	5880
45	GGAGTTCTTA	TTTACTTGCA	GCTCTCTGAA	TAAGGCAATA	TCTTCCATAT	GTCTCTTTTC	5940
	ATAGGAGTCC	TGACGCATTG	AGAGCAGCCT	CTGAAGAAGT	GAATGGAGCA	TTACAGAGTG	6000
	CTGGTCAAAA	GCTCAGCTCT	GAAGGGAATG	CAATTTATTT	GGATCAAATA	CAACTGAACA	6060
50	ACCTGCCAGT	ACTAGGTGTG	TTCCCTATGC	TATCCCTCAC	TAACATGTCA	CTAGTAACAA	6120
	TGCTCAACAT	ATAATGAATG	TACTATATTC	TTGATATTTT	TGCAACGCTG	CAACAGTCTA	6180

	ATAACTAGGG	TCATCTTCAT	TTTTTCTAAC	AAACAAGGAA	CTGAGACCCA	GAGCGTGGGA	6240
	CAGTGGCAAC	CCTGGCATAG	AACATTTGAT	ACTCAGTTGC	TCTAGGTCCT	TGGCCTCCTT	6300
5	TCTTAGTCCT	CCAAAACCAC	AAACCCAGGG	TTAAGGAAGC	ATGGAATTAA	TGTGAACAAA	6360
	GCAACACCAT	TGGTTTGGGC	GATGAGACTG	AGGCTTTTCT	TCCTTTGTTT	CTGTATTTTC	6420
	TAGAATGCAG	TAGTACCATG	TATTACAGTA	AAACAGCCAT	ATTTTTGTGT	CCTGTTCTGT	6480
10	AAAGGACAGA	AGCCCCCATA	TGCTTTGAGG	GCAGTTTAGT	TTATTAGAAG	CAACAGAGCC	6540
	TAGATTCAGC	ACTGCCTGGT	TTGGGACCTC	CCTTTAGACA	CCTCCCTTTT	CTCACCTGTA	6600
	AATAAAGGCT	AAGTAAGCAT	TTGTGACTGC	ATACTCAGTC	ATGGCCTGAA	TCCTGGGAAC	6660
15	AAGGCAGCTA	GCAGCTAGAG	GCTGGAAAAC	AGGACTGGAC	CTCAGCAGCT	CTACTGCATT	6720
,,,	ACTTCCCCTA	GAAGCAGGGT	GTGGCTACAC	AAAACCAGAC	AGATAATGTA	TGGCTGAATG	6780
	TAGATTCATG	AAATGCTTGG	AAAGACATTT	ACTTATCAGT	ATGTTTAATT	CCCAAAATGG	6840
	TCAGCAACAA	TTCACACAAA	ATTGATTATA	AGTTTTTTCA	ATTTGCTTAG	CTGTTTAGTG	6900
20	TCCAGTAGAA	ATAAGATTAC	TATTCTATAA	AGTGACAGAT	GTTCATCTAG	TTCCCATTGA	6960
	TGGTGAAGAA	CATTATGTCA	TCCCAAAAGA	TCGTTAACTT	AGATCGTGGT	TCTCTACCTT	7020
	CCTGATGTTG	TGTGACCCCC	AACTGTGAAA	TTATTTTCAT	TGCTACTTCA	CAACTATAAT	7080
25	TTTGCTTCTG	TCATGAATCA	TAAAGCAAAT	ATCTGTGTTT	TCTGATGGTC	TTAGGTGACC	7140
	CCTGTGAAAG	GGTCATTTGA	CTCTACCCCC	TACATGGGTT	GTGATCCACA	GGTTGAGAAG	7200
	CACTGACTTA	GATTCTCAGA	TTGCAAGTAG	AGCAGCAGAA	TTTCGAAGAA	CAGCAGTGGC	7260
30	GACAGAAGCT	GCTTTGGGCA	GTTGTCATTT	GTTAGCTTTC	ATTGGCTCAT	TTTGTATACA	7320
	GATTTTCGGA	AGTATTTCAG	ACTTTATGTT	ATGTAGCCTT	TAGAGGCAAC	AGTTCAGGAC	7380
	TGGAGAGATG	GCTCAAGGGT	TAAGAGCACT	GGCTGTTTTT	TCAGAGGACC	CATGTTTGAC	7440
35	TCACAGCACA	CACATGGTGG	CTCACAGCCA	TCATGACTCC	TGTTCCAAAG	GATCTGATGT	7500
	CTTCTTCTGA	CCTCTGCAGA	CACCAGGCAT	GCATACATGC	AGGCAAAATA	CCCATCAATA	7560
	AAATAAA	TAACTGGGAA	ATATGCAAAT	TCTTTAATAT	GCAAATTCTT	CTCTCCCCAA	7620
40	CTGCCATTTC	CCATGCTCCA	CCCTCATCCC	ттссстсстс	TCTTACTTCT	TTTGTTTGGA	7680
	ATTCTTTAGA	TAGCATCATC	AAGGAGGCTC	TGAGGCTTTC	CAGTGCATCC	TTGAATATCC	7740
	GGACTGCTAA	GGAGGATTTC	ACTCTGCACC	TTGAGGATGG	CTCCTATAAC	ATCCGAAAAG	7800
45	ACGACATCAT	CGCTCTTTAT	CCACAGTTAA	TGCATTTGGA	TCCTGCAATC	TACCCAGACC	7860
	CTCTGGTAAG	TTTTTCTGCT	CATCAAAGTT	ATGTATCGAG	GTGACAGTCA	CCCAGGAATG	7920
	TATTTGTAAT	TACAGCTTTG	ATTTGATCAT	TAAAGTGAAG	CCATAGGGAT	TGTCCCTCTT	7980
50	TATTGCGGCA	AATATTCATG	TTTTGGAAAC	TTTGGGTAGA	GGCAAGAGTT	TTGAACTTTT	8040

55

	ACACCIANIA	IICAIIICAI	MOTITUTUEL	MONCINIGII	IICAGICAIA	nemmetre	9100
	CACCTTTTTT	CCCCTCACA	AAGTACCCTC	TCCCAAATTT	ACACTAATGG	AGGGTAATGC	8160
5	ATTTGACTTG	ATCCTTAGAG	TAGTTGTTTA	GAGCCATTTT	GCTTCTTTTG	TCTAACTGAA	8220
	GAATTAGTCT	ACAGGTAGAA	CAGGAGGTCC	CTAGAGCTTC	TTGGTCCACC	AGCTCTTCAT	8280
	AAGCTCTTTC	CAGTATCACC	TGGTTCAGTG	CTTGGTGTTT	GCTAACTTGT	AGAGGATGGA	8340
10	TTTATTAGTA	GAAAATTACT	CTTTGGATCC	TCCAGGTCAA	GAAGGCAACA	ACTTTCTATC	8400
	ATAATAGCTC	ATTGGCTTCT	TGTCTCTTTG	TTGCAGACTT	TTAAATATGA	TCGATACCTG	8460
	GATGAGAACA	AGAAGGCAAA	GACCTCCTTC	TATAGCAATG	GAAACAAACT	AAAGTATTTC	8520
15	TATATGCCAT	TTGGATCCGG	AGCTACAATA	TGCCCTGGGA	GACTATTTGC	TGTCCAAGAA	8580
	ATCAAGCAAT	TTTTGATTCT	GATGCTTTCA	TACTTTGAAC	TGGAGCTTGT	GGAGAGTCAT	8640
	GTCAAGTGTC	CTCCTCTAGA	CCAGTCCAGG	GCAGGCTTGG	GGATTTTGCC	ACCATTAAAT	8700
20	GATATTGAGT	AATATAA	ACTGAAACAT	CTGTGACATG	TGGTTGGAAG	AAGAGGACAC	8760
	TGGATGATGT	TGCTGGACTG	CAGCGAGTCT	CACTAAACAA	GCCCTTGGGA	CAAATGCTCT	8820
	CCTTTGCTTC	CCAGCAACTG	ACTGTGCCTA	GGAAAAGAAC	TGGTACCCCC	GGCACCACTC	8880
25	TCTGTTCTCA	CTGCCTGAGT	TCCTGGGTGT	TCAGATAGCT	GAGGTCAGAG	TTTCACCACT	8940
	CTTAGAAGCA	ATGTCTTTTG	TTTTTATTTT	CAAAATGAAG	ATACTCCAAT	TGGCAGATTT	9000
	TTTTTCCTAA	GGAAATTGCT	TCATACTTTT	ATGAAAACTG	ATTAATTATG	AAAAGGCTTC	9060
30	AAATTCACGT	TTTAGTGAAA	CTGTTATTTT	TTTCACTAGT	GAAGTTCTTC	ATGTGTGAAC	9120
,,,	ATATACTATA	AAAACATTTT	AAGGGATCAT	ATCATGCTTT	GCATAAAGGG	AAAGGAAAAT	9180
	ATTATTCAAC	TTTTTTTTT	GGTTTTTCTA	GACAGGGTTT	CTCTGTGTAG	CTTTGGAGCC	9240
ne	TATCCTGGCA	CTCACTCTGT	AGAGCAGGCT	TGGTCTTGAA	CTCACAGAGA	TCTGCCTGCC	9300
35	TTTGCCTTCC	GAGTGCTGGG	ATTAAAGTCG	TGCGTCACCA	ATGCCTGGCT	ATTTAACTTT	9360
	TTCGATGTCT	AGTGGTGAGA	GCTTTGAAAA	TGATGCTACT	GTGTTGGGAA	TACTATGGGA	9420
	AATTTTGATG	CTTCGCTGTT	ACATTTAAAT	TTATTGCTGC	TGGAAATTGT	CACCCAGTT	9480
40	TTCAATTGCC	CCTCTCTCTC	CCTTTTAATA	TTCACACTGA	TGAGCAGAGT	TTTTTAGAGA	9540
	TTAAAAAGAC	CTCCCCAGAG	CCCTGTCTCT	GATGTTTTTA	AGCCTTTAAT	CTCAGTACTC	9600
	AGGAGGCAGA	GGCAGGCAGA	GCTCTGTGAG	TTCGAGGCCA	GCCTGATCTA	CAGATCGAGT	9660
45	TCCAGGCAAG	CCGGGGCTAC	AGAATGAGAC	CTTGTCACTA	AAAGAAATAA	ATAAGGTCAA	9720
	TTTTATGTCA	CAACTGATTA	TGAATCATTG	TAAAGGATAA	ATTGAAAAAA	AAGAACTCCA	9780
	CGGGAATGAC	CATTTAAATG	GTCTATTTTA	GCTAAAATTA	ACTATGAATT	ATGTGGAGTT	9840
50	Churchychem	NTCTTC NCCT	TATA TOTOGO	mmma a a a mmm		N TOTOTO N N T	0000

	GTCTTGTAGA	TGGAGAGCAA	TAATAGTOTT	TAAATACTGA	GTCAATAAGG	TTTTATCTAT	9960
	GTACTTTAAG	AGCATTATTA	GCTGTGTCAT	TTTTACTGAT	ATATCTAATA	TATTTATATG	10020
5	TAAATTATAT	TTATCTTTTA	TCTTATACTA	CAAATATAAG	TAAATATTTT	AAAACCAGTA	10080
	ACTTTAAAAT	TACCTACCTT	TCAGAAATGA	AAATAAGAAC	ATTTGTGCTT	TAACCTTTGA	10140
	AATAGAATGT	TTATTCATCC	ACTGATAAGT	TAAAATAATT	TTATCTGATT	TGTTTCAAGA	10200
10	AACTCAAAAA	TATTCAAAGT	AATCATGCAC	TCAAAGGTCT	TCGTAAGGTT	ACAGAAAATT	10260
	CAATAAAATC	TTTTTTGTGT	AGGGACTGAG	TCAGGGTCTA	GAAGATGCTT	GGCAGGTACT	10320
	CCAGTAGTGA	GCTGGATCCA	GAAGATTCCT	TAAACTTTAA	AATCTTAACA	CTAAGTATTA	10380
15	TCACAGAGTT	ATTACCTAAG	TAGAATATTT	TTCCTTTCCT	TTTCAATTGA	CAGAGTCCCA	10440
	CAGCAACACA	GCTGGCTGTA	ACTCTTCACA	TAGCTTGCGC	AGGCTTTGAA	CTCACTGTAC	10500
	TCCTGCCTTT	CCTTTTCTAG	GAAATTATTT	TCCACATCAA	GAAAATTTAA	TTGTTCCGAT	10560
20	GAGGTATAGA	GTAACAAATT	TCTGTTATAT	ATTCATCTGT	ATTAAACTGA	ATTC	10614

Example 2. REGULATORY ELEMENTS AND TRANSCRIPTION FACTORS

Cloning of the CYP7 gene from three different species allows the analysis of the CYP7 gene structure and organization. Alignment and analysis of the highly conserved proximal promoter region of these homologous gene suggests that many regulatory elements are conserved and are likely to play important roles in gene regulation. Mapping of these transcription factor binding sites is essential to the isolation of transcription factors involving in the regulation of liver-specific CYP7 gene transcription. These sequence elements and protein factors are potential models for designing compounds and for screening for activators or repressors of the gene, such as described in a parent U.S. Application Serial No. 08/135,488, to Chiang, J.. The following discussion relates to the regulatory elements and transcription factors of the rat gene promoter.

5 2.1. Alignment and Analysis of the CYP7 Genes

The proximal promoter regions of the rat, human and hamster genes were aligned. Sequence identity is about 82% between rat and hamster, 77% between hamster and human and 71% between human and rat (Fig. 4). Several liver-enriched transcription factors, HNF3, HNF4, HNF1 and C/EBP, and thyroid/steroid hormone response elements are highly conserved in these homologous genes (Fig. 5). Sequences that are further upstream of these genes have diverged considerably. In contrast to the report that the -400 proximal promoter of the human gene had no promoter activity (Molowa, et al. Biochem. 31, 2539-2544, 1992), this conservation indicates that the proximal promoter is important in transcriptional activation function and contains essential regulatory elements.

2.2. Footprint Analysis of the Rat Gene

DNase I hypersensitivity sites of the rat gene were mapped by digestion of rat liver nuclei (20 OD_{260}) with DNase I at 37 °C for time periods up to 4 minutes. DNA was isolated from nuclei at each time interval and digested with SacI, fractionated on a 0.8 % agarose gel and transferred to nylon membranes. A 5'-probe of Sac I-EcoRI fragment (-3643 to -2265) was used for indirect end-labeling and was labeled with an activity of at least 1 x 10^9 CPM/ μ g. Four DNase I hypersensitivity sites (HSI, HSII, HSIII, HSIV) were mapped. HSI is mapped near a "CA" repeat region around nucleotide-1,500. HSII is located in the proximal promoter region. HSIII and HSIV are located in intron I and intron II, respectively (Fig. 6).

DNase I footprinting technique then was applied to map the transcription factor binding sites in the gene promoter (Heberlein,U, England, B and Tjian, R Cell, 41, 965-977, 1985). Transcription factor binding sites in the gene are protected from DNase I digestion. Two fragments were mapped: a Hind III-Xba I fragment (-346 to +36) in the proximal promoter region near the hypersensitivity site II and an upstream fragment Xba

25

45

I-Hind III(-1530 to -1205) in the hypersensitivity site I. Probes were made from plasmid DNA digested with a restriction enzyme to generate a 5'-overhang, filled in with the Klenow fragment of DNA polymerase I and ³²P-labeled dCTP, and then digested with a second restriction enzyme. Probes were purified from a native 5% polyacrylamide gel. Footprinting reactions included 2 μg of poly(dl-dC), 10% polyvinyl alcohol, 50 mM KCl and 20fmol of probe in a volume of 50 μl. Reactions were stopped with EDTA and SDS, then phenol extracted, ethanol precipitated and run on polyacrylamide sequencing gels.

The footprinted areas are summarized as follows:

Footprints (FP) mapped in hypersensitivity site II:

FP I (Nucleotides -81 to -37): TGT3, 7α-TRE, HNF1 /LFB1, CAAT, Box elements

5'-TGTTTGCTTTGGTCACTCAAGTTCAAGTTATTGGATCATGGTCC-3'

FP II (Nucleotides -149 to -131): HNF4/LFA1 element

5'-CTATGGACTTAGTTCAAGG-3'

FP III (Nucleotides -171 to -154): GRE half site

5'-TGTTCTGGAGCCTCTTCT-3'

Footprint mapped in hypersensitivity site I:

FP IV (Nucleotides -1448 to -1410): NF1 elements

5'-TCACTGTGGCCTAGTGCCACATCTACCTATTTCTTTGGCTTTACTTTGT-3'

Footprint I covers a sequence from nucleotide -81 to -37 and consists of four elements: TGT3/HNF3, 7α -TRE, LFB1 /HNF1, and CAAT box (reversed). Footprint II covers sequence from -149 to -131 and contains an LFA1/HNF4 site. Footprint III covers sequences from -171 to -154 and contains a consensus glucocorticoid response element (GRE) half site. In the hypersensitivity site I, a footprint covers - 1554 to -1505 and contains a bipartite and a half-site of the NF1 /CTF element. Most of these sequences are liver-enriched transcription factor consensus motifs and are highly conserved in all three species. It is especially interesting that Footprint I contains overlapping binding sites for at least four transcription factors, HNF3 α /3 β , 7α -TRE, HNF1/LFB1, and C/EBP. The TRE-like sequence (TGGTCANNNNAGTTCA) located in the center of the cluster may be the binding site for Type II hormone receptors such as the T₃ receptor (T₃R), the retinoic acid receptor (RAR), the retinoid X receptor (RXR), the vitamin D₃ receptor (VD₃R), or the peroxisome proliferator activating receptor (PPAR) (Stunnenberg, HG, BioEssays, 15, 309-315, 1993). This gene fragment has been shown to be essential for major promoter activity and could confer taurocholate repression of promoter activity in rat primary hepatocyte cultures. It is likely that the element in footprint I identified in the present invention is a bile acid response element (BARE) of the CYP7 gene.

2.3. Gel Mobility Shift Analysis of the Rat Gene

The electrophoretic mobility shift assay (EMSA) is used to detect specific DNA-protein interactions in the identified footprints. Oligonucleotides corresponding to PPRE/TRE, 7αTRE, and TGT3 were synthesized and annealed to form double-stranded probes. DNA fragments corresponding to Footprints I, II, and IV were generated by PCR using primers that flank the footprint sequences. Probes are labeled with ³²P dCTP by the Klenow fragment of DNA polymerase I. Probes were gel purified before use. Binding reactions were done in 20 μl comprising 10 % glycerol, 10 mM HEPES, pH 7.9, 2 μg of poly(dl-dC), 1 μg of nuclear protein extracts and 20,000 CPM of probes at 30 °C for 15 min, followed by electrophoresis on 4% native polyacrylamide gels (Carthew, RW, et al. Cell, 43, 439-448, 1985).

The footprint I probe shifted at least 4 bands when it was reacted with liver nuclear extract. Cold competitor specifically prevented band shifts. The footprint II probe shifted two bands whereas Footprint IV probe shifted only one band with liver nuclear extract. Since Footprint I contains several transcription factor binding elements and is the possible bile acid receptor or binding protein (BAR) binding site, double-stranded oligonucleotides were synthesized corresponding to the TGT3 and 7α -TRE elements in Footprint I.

EMSA revealed that the TGT3 element shifted two major bands, which may be due to the binding of HNF3 α and HHF3 β , whereas the 7α -TRE element shifted two different bands. Protein factors that bind to the 7α -TRE probe could be competed out with a 100-fold excess of its cold competitor or a rat growth hormone gene TRE element. However, TGT3 and PPAR/TRE oligonucleotides did not compete with the 7α -TRE probe. These results indicate that the 7α -TRE like element identified in the CYP7 gene promoter binds to one or two specific liver protein factors. In addition, the 7α -TRE of the human CYP7 gene (Figure 4) also shifted one band in human liver nuclear extracts.

Furthermore, EMSA was performed using liver nuclear extracts isolated from rats treated with a diet supplemented with 0.25% deoxycholate, 1% cholate, 5% cholestyramine or 1% cholesterol for two weeks. Only nuclear extracts from deoxycholate-treated rat liver abolished the gel shift of the 7α -TRE oligonucleotide. Deoxycholate or sodium cholate treatment reduced both cholesterol 7α -hydroxylase activity

and mRNA levels by 80% and 60%, respectively, whereas cholestyramine or cholesterol treatment stimulated these parameters by 330% and 180%, respectively.

These results suggested that deoxycholate may inhibit the binding or synthesis of a positive nuclear transcription factor, (i.e. factor A) to a bile acid responsive element (BARE) or inhibit the synthesis of factor A in nuclei as well as repress CYP7 gene expression. Alternatively, deoxycholate may bind to a negative regulator, BAR, which forms a complex with the positive factor A and prevents the binding of factor A with BARE. BAR and nuclear transcription factor A may compete for the same binding site, BARE. These factors are likely members of the steroid/thyroid hormone supergene family, since the recognition sequence is similar to the cognate response element. Interactions between this transcription BAR with adjacent liverenriched transcription factors (HNF3 α , HNF3 β , HNF1, C/EBP) can affect the expression levels of the CYP7 gene.

2.3(a) Effect of Bile Acids on EMSA: Further Results

15

A gel shift experiment was performed to further confirm that the $7\alpha TRE$ and the DR $_0$ elements are bile acid responsive elements. Liver nuclear extracts isolated from rats treated with dietary supplements specified above were used. Deoxycholic acid and sodium cholate treatment significantly suppressed both cholesterol 7α -hydroxylase activity and mRNA levels by about 80% and 60%, respectively. On the other hand, 5% cholestyramine or 1% cholesterol stimulated activity and mRNA level by 330% and 180 respectively.

The rat $7\alpha TRE$ element shifted one band in human nuclear extracts, while the human $7\alpha TRE$ shifted one band in all rat nuclear extracts that were treated with cholestyramine, sodium cholate and cholesterol. In deoxycholate-treated rat liver nuclear extracts, however, human $7\alpha TRE$ did not shift any protein band. All other nuclear extracts showed similar band patterns (no shift) as that of the control (non-treated rat) extracts.

From the gel generated by this experiment, it was observed that $7\alpha TRE$ shifted two bands whereas rat DR₀ shifted one. Thus, rat DR₀ element appeared to bind the transcription factor more specifically than did $7\alpha TRE$. Accordingly, the rat DR₀ element was selected for use as a probe to demonstrate the presence of transcription factor on a Southwestern blot, discussed below.

30 2.3(b) Characterization of a DNA-Binding Protein

A Southwestern blot, which illuminates DNA-protein interactions, was performed to reveal nuclear protein factor(s) that bind to the rat DR $_0$ element, which appears to bind a transcription factor more specifically than 7α -TRE. This rat probe predominantly bound to a polypeptide of about 57,000 + 7000 Daltons which showed a similar band width in all rat liver nuclear extracts tested, including extracts from non-treated rats and rats treated with cholestyramine, sodium cholate, cholesterol and deoxycholate.

The rat DR₀ revealed a second band shift of 116,000 daltons in all of these extracts as well. This second shift is believed to constitute a dimer of two 57 KDa peptides. The 57 KDa polypeptide was also present in nuclear extracts of rat spleen, rat kidney and human liver, although the band was less pronounced in the human liver extracts.

Methods of substantially isolating transcription factors according to the invention, for example, can employ DNA fragments according to the invention in conjunction with methodology taught by Singh et al., Cell 52: 415 (1988) and Kadonaga et al., PNAS USA 83: 5889 (1986). Each of these publications is incorporated by reference herein in their entirety. Yet another approach to identify and clone genes for proteins that interact with DNA-binding protein employs yeast two-hybrid system to study protein-protein interaction (Fields and Song, 1989; Chien et al. PNAS 88:1958 (1991)).

2.4 Recognition site affinity chromatography

One approach to isolating a transcription factor provides the advantage of isolating a protein complex that includes both a DNA-binding protein and other associated protein factors that interact with the a DNA-binding protein. The success of purification of transcription factor is dependent, generally, on parameters including the quality of nuclear extracts, the amount of transcription factors present in the extracts, and the binding affinity of the DNA-affinity column. Also, the binding site sequence selected for use in the column is optimized by EMSA, DNase I footprinting, mutational analysis and by sequence comparison of homologous binding site.

A BARE consensus sequence, such as that identified by the present invention can be utilized advantageously in an affinity column. The rat or human $7\alpha TRE$ or DR_0 , which recognized a single binding

protein in EMSA of either human or rat nuclear extracts, is suitable for DNA affinity column chromatography and identifies a 57 KDa bile acid responsive protein.

Affinity chromatography is performed according to the following protocol. First, cell-free nuclear extracts are obtained from either HepG2 cells or human liver tissues. Fresh human liver tissue is advantageous for isolating nuclear extracts, however, it sometimes difficult to obtain. Nuclear proteins are extracted with high salt and crude extracts are precipitated with ammonium sulfate, dialyzed and then subjected to gel filtration column (i.e., Sephacryl S-300, Pharmacia) or a heparin-agarose affinity column (Sigma Chemical). Column fractions are assayed for transcription factors by EMSA and pooled fractions are applied to a sequence-specific affinity column.

A DNA affinity column is prepared which employs double-stranded BARE consensus oligonucleotides according to the invention, which are provided with a 5' overhang of nucleotides "gate". The oligonucleotides are concatemerized by phosphorylation with T4 polynucleotide kinase and ligated by T4 DNA ligase (Jackson et al., GENE TRANSCRIPTION: A PRACTICAL APPROACH, ed. Hames and Higgins, I.R.L. Press 189-242 (1993). The disclosure of the relevant section of this book concerning affinity chromatography methodology is expressly incorporated herein by reference in its entirety. The ligated, concatemerized DNA is covalently attached to a CNBr-activated Sepharose Cl2B gel (Pharmacia) (Kadonaga, 1986 supra).

A transcription factor preparation isolated by the column is subjected to SDS-polyacrylamide gel electrophoresis. Thereafter, the gel is stained with silver staining to demonstrate the preparation's purity, and the DNA-binding properties of the purified transcription factor measured using EMSA and DNase I footprinting.

Once a transcription factor is purified, it can be used to raise antibodies, which in turn are used as a screening probe to isolate cDNA clone encoding the transcription factor. For example, the purified 57 KDa BARP is used to raise antibodies against itself, which are used as a screening probe to isolate its cDNA.

2.4(a) Screening using recognition-site sequences.

An alternate method of isolating a BARP includes directly cloning cDNAs encoding a BARP from human liver cDNA expression libraries (Promega, Clontech), which are screened for a fusion protein recognizing specific nucleotide sequences. This technique is perhaps simpler than affinity chromatography, but it yields cDNA(s) that encode a DNA-binding protein, not protein itself.

Binding site probes of a BARE consensus sequence according to the invention are prepared by 5'-end labelling a double-stranded oligonucleotide with $\gamma^{-32}P$ ATP using T₄ polynucleotide kinase. T4 DNA ligase is then used to concatamerize oligonucleotides. Human liver λ gt11 cDNA expression libraries will be screened following routine procedure described by Sambrook et al., Mol. Cell Biol. 9:946 (1989).

Fusion proteins are induced by overlaying the plates with IPTG-treated nitrocellulose filters and incubating for 6 hours at 37 °C. Filters are soaked in 6 M guanidinium chloride in binding buffer and washed in the same buffer but gradually reducing the concentration of denaturant to 0.188 M, and finally in buffer without denaturant. Filters are placed in binding buffer, and blocked in non-fat mild solution and incubate with binding site probe at 4 °C overnight. Filters are washed and autoradiographed at -70 °C.

Positive plaques are picked, replated and screened until plaque-purified. cDNA is sequenced by dideoxy chain termination method using Sequenase Kit (USB Co.) and analyzed with DNA analysis software. Amino acid coding sequences are analyzed for sequence motifs and compared against GenBank database for characteristics of DNA-binding proteins, such as possessed by a zinc finger, leucine zipper or member of a nuclear receptor gene family.

2.5 Characterizing transcription factors

To overexpress a BARP for footprinting and transient transection assays, its cDNA is isolated according to the protocol of 2.3(b) and subcloned into a pMT eukaryotic expression vector (Kaufman et al., 1989). For gel shift assay, cDNA will be subcloned into pGEM4 (Promega). Plasmid is linearized and in vitro transcribed by SP6 RNA polymerase. The resulting RNA is translated in a rabbit reticulocytes lysate system in the presence of ³⁵ S-methionine.

EMSA is performed as described herein. In vitro synthesized protein is incubated with ³²P-labeled probe and electrophoresed in low ionic strength polyacrylamide gel. Two filters are placed against the dried gel, the first of which blocks the ³⁵S radiation.

CYP7 promoter/luciferase constructs and pMT plasmid carrying a BARP cDNA are transiently cotransfected into HepG2 cells by calcium phosphate coprecipitation method as described previously, pRSV-ßgal

plasmid is used as an internal standard for normalization of transection efficiency. A test agent or endogenous factor is added in culture media and incubated for a period of time. Cells are lysed, then luciferase activity is measured, as described previously.

Sequ	iences of double-stranded pro	bbes # of bands shifted
1). F	P I probe (-100 to -29):	four to five
5′-		
	GACAAATAGTGTTTGCTTTGGTCACTC CTGTTTATCACAAACGAAACCAGTGAG	
2). F	P II probe (-161 TO -127):	two
	5'-CCTCTTCTGAGACTATGGACTT	
	3'-GGAGAAGACTCTGATACCTGAA	rcaagttccggcc-5'
3). F	P IV probe (-1454/-1394):	one
	GGCCTAGTGCCACATCTACCTATTTCT CCGGATCACGGTGTAGATGGATAAAGA	
4). P	PRE/TRE element probe (nt -	101/-82): two
	E (CA NORMOWNOWN CONCORCINONN	rag 3'
	5'- <u>GAAGA</u> TCTAGTAGGAGGACAAA' 3' CATCCTCCTGTTT	

5). 7α -TRE element probe (nt -73/-56 in FP I) : two

5'-GATCCTTGGTCACTCAAGTTC 3'
GAACCAGTGAGTTCAAGTTCCTAG 5'

6). TGT3 element probe (nt -86/-71 in FP I): two

10

5'-GATCCAATAGTGTTTGCTTTGGT 3'

3′

TCACAAACGAAA<u>CCATCCTAG</u>

5′

15

2.6 Promoter/Reporter Gene Constructs

To determine the promoter sequences responsible for regulation of cholesterol 7α -hydroxylase, deletions of the rat CYP7 promoter were ligated upstream of the luciferase reporter gene (Luc). The promoter fragments were generated by the polymerase chain reaction using the primers listed with a rat CYP7 genomic clone as the template. The fragments were blunted by filling in with the Klenow fragment of DNA polymerase and then digested with Xho I. The fragments were then ligated into the pGL2-basic vector (Promega) which had been digested with Smal and Xho I, and transformed into E. coli HB101 cells. The resulting plasmids (pLUC-224, pLUC-160, pLUC-101, and pLUC-3600) are used to transfect primary hepatocytes or hepatoma cells for the study of luciferase gene expression under the control of the CYP7 promoter. The results show that pLUC-224 had two-fold higher luciferase activity than pLUC-160 and pLUC-3600 when transfected into rat primary hepatocytes, pLUC-3600 had transcription activity similar to that of pLUC-160. In addition, 50 μ M taurocholate inhibited the expression of luciferase activity in these hepatocytes, indicating that these CYP7 gene promoter fragments do contain a BARE, which confers bile acid regulation.

To determine if the sequence from -101 to -29 of the CYP7 gene promoter can function as an enhancer element, the region was cloned into the pGL2-Promoter vector (Promega). The vector is similar to pGL2-basic, with the addition of the SV40 early promoter between the multiple cloning site and the luc gene. The rat sequence was amplified by the polymerase chain reaction to flank the sequence with a BamHI site and a BgIII. The fragment was ligated in both orientations to the pGL2-Promoter, which had been cleaved with BgIII. The resulting plasmids are named pLUC-101/-29 and pLUC-29/-101.

Chloramphenicol acetyltransferase (CAT) reporter gene constructs were made by using the polymerase chain reaction and primers to amplify the region -415 to +36 of the rat CYP7 gene and to incorporate an Xbal at nucleotide + 36. The blunt ended, Xba I digested fragment was ligated into a promoter-less pCAT basic vector (Promega) which had been digested with Sal I, blunt-ended and digested with Xba I to yield -415CAT. A longer construct named -3643CAT was made by digesting - 415CAT with Hind III and inserting a 3.2 kb Sac I-Hind III genomic fragment. The 3.6 kb insert was removed from -3643CAT and ligated into a pGL2-basic vector (Promega). This plasmid was used to generate nested deletions with Exo III and S1 nuclease.

50

Promoter/Reporter Gene Constructs PCR primers used for PCR of fragments

	+30
	L1: 5'-AGATGGCTCGAGACTCTTTGCCTAGCAAA-3'
	XhoI
	-224
	L3: 5'-CAGCACATGAGGGACAG-3'
	-160
	L4: 5'-CTCTTCTGAGACTATGGAC-3'
	-101
	L8: 5'-GA <u>AGATCT</u> AGTAGGAGGACAAATAG-3'
	BglII
Sequ	ences of promoter fragments inserted in pGL2-basic vector
	pLUC-224:
	5'-CAGCACATGAGGGACAGACCTTCAGCTTATCGAGTATTGCAGCTCTCTGTTT
	GTTCTGGAGCCTCTTCTGAGACTATGGACTTAGTTCAAGGCCGGGTAATGCTATT
	TTTTTCTTCTTTTTTCTAGTAGGAGGAGACAAATAGTGTTTGCTTTGGT
	CACTCAAGTTCAAGTTATTGGATCATGGTCCTGTGCACATATAAAGTCTAGTCAGA
	CCCACTGTTTCGGGACAGCCTTGCTTTGCTAGGCAGGCAAAGAGTCTCGAG-3'
	XhoI
	pLUC-160:
	5'-CTCTTCTGAGACTATGGACTTAGTTCAAGGCCGGGTAATGCTATTTTTTCT
	TCTTTTTCTAGTAGGAGGACAAATAGTGTTTGCTTTGGTCACTCAAGTTCA
	AGTTATTGGATCATGGTCCTGTGCACATATAAAGTCTAGTCAGACCCACT
	GTTTCGGGACAGCCTTGCTTGCTAGGCAGGCAAAGAGTCTCGAG-3'
	XhoI

	pLUC-101:
	5'-GAAGATCTAGTAGGAGGACAAATAGTGTTTGCTTTGGTCACTCAAGTTCA AGTTATTGGATCATGGTCCTGTGCACATATAAAGTCTAGTCAGACCCACT GTTTCGGGACAGCCTTGCTTTGCT
	pLUC-3600:
	3.6 kb 5' flanking sequence to +36
Sequ	sences of promoter fragments inserted in pGL2-promoter vector:
	pLuc-101-/-29:
	-101 GAAGATCTAGTAGGAGGACAAATAGTGTTTGATTTGGTCACTCAAGTTC -29 AAGTTATTGGATCATGGTCCTGTGCACATCCTAGGGC-3'
	pLuc-29/-101:
Rev	ersed direction of the above sequence
Pror	noter/CAT gene constructs:
	-415CAT:
	sequence from -415 to +36
	-3643CAT:
	3.6 kb 5'-upstream sequence to +36

Example 3. HepG2 CELLS TRANSFECTED WITH PROMOTER/REPORTER GENE CONSTRUCTS

3.1 HepG2 cell cultures

HepG2 cells were obtained from ATCC (Bethesda, MD) and grown in Dulbecco's Modified Eagles Medium/F12 (50:50) supplemented with 10% heat inactivated fetal bovine serum, 1 mM Minimum Essential Medium (MEM) sodium pyruvate, 1 x MEM non-essential amino acids, 25 mM Hepes, 100 U/ml penicillin G and 100 mg/ml streptomycin in a humidified incubator with 5% CO₂ in air at 37 °C. Forty-eight hours prior to the isolation of RNA, the media were replaced with fresh media containing bile salts but without fetal calf serum. The monolayers were grown to either subconfluent (50 to 70% confluent) or confluent. Viability of the cells was checked by Trypan Blue exclusion test. About 40 million cells were lysed by the addition of 4 M guanidinium thiocyanate, 0.5% N-lauroylsarcosine, 25 mM sodium citrate, pH 7.0, and 0.1 M 2-mercaptoethanol, phenol extracted, and ethanol precipitated. Poly (A +) RNA was isolated using PolyAT tract mRNA isolation system III according to the manufacturer's instructions (Promega, Madison, WI). A Pstl fragment of human cholesterol 7α-hydroxylase cDNA was labeled with ³²P and used as a hybridization probe, according to the method of Karam et al., Biochem. Biophys. Res. Commun. 185: 588 (1992). Human actin cDNA was used to hybridize the same membrane and served as an internal standard for the normalization of RNA level which were quantitated by scanning each lane with a laser scanner.

For transient transfection assay, cells were split and plated for at a density of 10⁶ cells/60 mm Petri dish and grown to subconfluence (about 30% confluence) or to confluence.

3.2 Clarifications concerning the rat CYP7 promoter/reporter gene constructs utilized

Constructs pLUC-3600, pLUC-224, and pLUC-160 were constructed according to the description in section 2.4 above, with the following minor corrections to their nomenclature noted for the sake of exactness. First, as shown in the sequences listed above, the promoter sequences of all three constructs share the common endpoint, nucleotide +32 of the CYP7 DNA sequence, as opposed to nucleotide +36. The latter 4 nucleotides upstream of +32 include non-CYP7 bases that are a part of the exogenously-added Xho splice site. Second, as stated above, construct pLUC-3600 comprises a fragment encompassing the entire 3643 kilobase promoter region up until +32 of CYP7 gene. Accordingly this construct known figuratively as pLUC-3600 denotes a construct that contains a fragment between -3643 and +32 of CYP7.

Accordingly, three chimeric gene constructs, pLUC-3600, pLUC-224, and pLUC-160, represent deletion mutants generated by PCR using primers or by restriction digestion as described herein above. These three constructs were used for transient transfection assays in HepG2 cells.

3.3 Characterization of cholesterol 7α -hydroxylase mRNA in HepG2 cells.

HepG2 liver cells express cholesterol 7α -hydroxylase normally, which makes these cells good candidates for the study of CYP7 regulation. To assess the suitability of these cell lines suitable for use in a transfection assay of the CYP7/reporter chimeric gene constructs, it was necessary to prove first that cholesterol 7α -hydroxylase activity could be regulated in these cells.

To characterize HepG2 cells, expression of cholesterol 7α -hydroxylase mRNA was measured in HepG2 control cells and cells treated with bile acids. Northern blot hybridization of poly (A+) RNAs isolated from confluent cultures of HepG2 cells, that were treated with media containing 100 μ M of tauro-(T) or glyco-(G) conjugate of cholate (CA), deoxycholate (DCA), chenodeoxycholate (CDCA) or ursodeoxycholate (UDCA) and incubated. Cholesterol 7α -hydroxylase cDNA hybridized to two mRNA species of 3 kb and 1.8 kb, in agreement with Hassan et al., Biochem. Pharmacal. 44: 1475 (1992). Both of these RNA species apparently are 7α -hydroxylase mRNA because the two bands changed responsively in parallel.

• In subconfluent cultures, only TCDCA could repress mRNA level. In contrast, tauroursodeoxycholate (TUDCA) significantly increased mRNA level in subconfluent HepG2 cells. Glyco-conjugates of bile acids had similar effects as the tauro-conjugates. At this concentration, bile acid did not reduce viability of HepG2 cells.

Figure 7 summarizes the effects of bile acid conjugates on 7α -hydroxylase mRNA level in HepG2 cells. When 100 μ M taurocholate (TCA) was added, mRNA level was not changed significantly, while TDCA and TCDCA reduced mRNA level by 50 to 80% in confluent cultures. mRNA levels are expressed as % of mRNA level in cells without treatment of bile acids. Values are averages of three experiments. Thus, cholesterol 7α -hydroxylase mRNA level in HepG2 cells is regulated by bile acids. The inhibitory effect of bile acids follows the hydrophobicity indexes of bile acids, TCA < TDCA < TCCA, as described by

Heuman et al., Lipid Res. 30: 1160 (1989). The results are also consistent with those observed in primary cultures of rat hepatocytes, as described by Hylemon et al., J. Biol. Chem. 267: 16866 (1992).

3.4 Transient Transfection of HepG2 cells with rat CYP7 promoter/reporter constructs

CYP7 promoter/reporter constructs were transiently transfected into HepG2 cells using the calcium phosphate-DNA coprecipitation method, with 0.5 ml of coprecipitate containing 5 μ g of test plasmid (pLUC-3600, pLUC-224, and pLUC-160) and 1 μ g of β -galactosidase expression plasmid, pCMV β (Clontech), as an internal standard for transfection efficiency. After 4 hours, cells were shocked with 15% glycerol in TBS for 90 seconds, washed three times with TBS and further incubated for 42 hours in serum free medium containing 200 μ M tauro-conjugates of bile acids. Cells were washed twice with phosphate-buffered saline, lysed and harvested with 400 μ l of reporter lysis buffer (Promega) according to manufacturer's instruction.

Luciferase activity was assayed by mixing 20 µl of cell extracts to 100 µl of luciferase assay reagent (Promega) at room temperature and measuring light emission during the initial 10 seconds of the reaction. A luminometer (Lumat LB9501, Berthold) was used for this purpose. Luciferase activity was corrected for transfection efficiency.

3.5 Results: Transcriptional activity of CYP7 promoter/reporter constructs in HepG2 cultures

The promoter/reporter chimeric gene constructs according to the invention were transiently transfected into HepG2 cells to demonstrate the effect of bile acids on transcriptional activity. The untreated cells shown in Figure 14 reveal that promoter activity of pLUC-224 was much higher than pLUC-3600, and pLUC-160. Enhancer activity therefore is believed to be located between nucleotides -224 and -160. In addition, a repressor is believed to be located upstream of nucleotide -224, between nucleotides -224 and -3643.

The hormone response elements are likely located upstream of nucleotide -224, according to the following experiment. Addition of 1 μ M thyroid hormone, T_4 and 0.1 μ M dexamethasone increased transcriptional activity of pLUC-3600 by 2.5-fold in confluent cultures. However, this same amount of thryoid hormone and dexamethasone decreased the activity of pLUC-160 by 40% in subconfluent cultures, and had little effect on pLUC-224. Luciferase activity in each transfection experiment was expressed as % of activity in cells transfected with pGL2-control plasmid.

That bile acid response elements are located in the proximal promoter region, nucleotides -160 to +32, and also in region upstream of nucleotide -224 was revealed by the following experiment. Addition of 200 μ M TCA, TDCA or TCDCA did not affect transcriptional activity of the promoter/reporter constructs transfected into subconfluent HepG2 cultures, as shown in Figure 15B. Luciferase activity in transfected cells was expressed as % of activity in transfected cells without treatment with bile acids. However, in the confluent cells, TDCA and TCDCA repressed transcriptional activity of p-pLUC-3600 by more than 70% and repressed activity of pLUC-224, or pLUC-160 by up to 45% (Figure 9A). TCA, however, did not affect transcriptional activities of these gene constructs in HepG2 cultures.

It will be apparent to those skilled in the art that various modifications and variations can be made to the compositions of matter and processes of this invention. In particular, various kinds of screening assays are encompassed that employ human CYP7 regulatory elements or its analogs. Thus, it is intended that the present invention cover the modifications and variations provided they fall within the scope of the appended claims and their equivalents.

45

5

20

50

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: (A) NAME: Northeastern Ohio Universities (B) STREET: - (C) CITY: Rootstown (D) STATE: Ohio
10		(E) COUNTRY: USA (F) POSTAL CODE (ZIP): 44272 (G) TELEPHONE: - (H) TELEFAX: - (I) TELEX: -
15	(ii)	TITLE OF INVENTION: Cholesterol $7\alpha-\text{Hydroxylase}$ Gene Regulatory Elements and Transcription Factors
	(iii)	NUMBER OF SEQUENCES: 27
20	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
	(2) INFO	RMATION FOR SEQ ID NO: 1:
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
30	(ii)	MOLECULE TYPE: DNA (genomic)
	(iii)	HYPOTHETICAL: NO
	(iii)	ANTI-SENSE: NO
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: human
40	(ix)	FEATURE: (A) NAME/KEY: Protein (B) LOCATION: 1481 (D) OTHER INFORMATION: /note= "Cholesterol 7α-Hydroxylase"
40		, , , , , , , , , , , , , , , , , , ,
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 1:
45		Met Thr Thr Ser Leu Ile Trp Gly Ile Ala Ile Ala Ala Cys Cys 5 10 15
	Сув	Leu Trp Leu Ile Leu Gly Ile Arg Arg Arg Gln Thr Gly Glu Pro 20 25 30
50	Pro	Leu Glu Asn Gly Leu Ile Pro Tyr Leu Gly Cys Ala Leu Gln Phe 35 40 45
	Gly	Ala Asn Pro Leu Glu Phe Leu Arg Ala Asn Gln Arg Lys His Gly 50 60

	His 65	Val	Phe	Thr	Сув	Lys 70	Leu	Met	Gly	Lys	Tyr 75	Val	His	Phe	Ile	Thr 80
5	Asn	Pro	Leu	Ser	Tyr 85	His	Lys	Val	Leu	Сув 90	His	Gly	Lys	Tyr	Phe 95	Авр
	Trp	Lys	Lув	Phe 100	His	Phe	Ala	Thr	Ser 105	Ala	Lув	Ala	Phe	Gly 110	His	Arg
10	Ser	Ile	Авр 115	Pro	Met	Asp	Gly	Asn 120	Thr	Thr	Glu	Asn	Ile 125	Asn	Asp	Thr
	Phe	Ile 130	Lys	Thr	Leu	Gln	Gly 135	His	Ala	Leu	Asn	Ser 140	Leu	Thr	Glu	Ser
15	Met 145	Met	Glu	Asn	Leu	Gln 150	Arg	Ile	Met	Arg	Pro 155	Pro	Val	Ser	Ser	Asn 160
	Ser	Lys	Thr	Ala	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ser	Phe	Сув 175	Tyr
20	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Ile	Phe	Gly	Arg 190	Asp	Leu
	Thr	Arg	Arg 195	Asp	Thr	Gln	Lys	Ala 200	His	Ile	Leu	Asn	Asn 205	Leu	Asp	Asn
25	Phe	Lys 210	Gln	Phe	Asp	Lув	Val 215	Phe	Pro	Ala	Leu	Val 220	Ala	Gly	Leu	Pro
	Ile 225	His	Met	Phe	Arg	Thr 230	Ala	His	Asn	Ala	Arg 235	Glu	Lув	Leu	Ala	Glu 240
30	Ser	Leu	Arg	His	Glu 245	Asn	Leu	Gln	Lys	Arg 250	Glu	Ser	Ile	Ser	Glu 255	Leu
	Ile	Ser	Leu	Arg 260	Met	Phe	Leu	Asn	Asp 265	Thr	Leu	Ser	Thr	Phe 270	Asp	Asp
35	Leu	Glu	Lys 275	Ala	Lys	Thr	His	Leu 280	Val	Val	Leu	Trp	Ala 285	Ser	Gln	Ala
	Asn	Thr 290	Ile	Pro	Ala	Thr	Phe 295	Trp	Ser	Leu	Phe	Gln 300	Met	Ile	Arg	Asn
40	Pro 305	Glu	Ala	Met	Lys	Ala 310	Ala	Thr	Glu	Glu	Val 315	Lys	Arg	Thr	Leu	Glu 320
	Asn	Ala	Gly	Gln	Lys 325	Val	Ser	Leu	Glu	Gly 330	Asn	Pro	Ile	Сув	Leu 335	Ser
45	Gln	Ala	Glu	Leu 340	Asn	Asp	Leu	Pro	Val 345	Leu	Asp	Ser	Ile	11e 350	Lys	Glu
70	Ser	Leu	Arg 355	Leu	Ser	Ser	Ala	Ser 360	Leu	Asn	Ile	Arg	Thr 365	Ala	Lys	Glu
	ysb	Phe 370	Thr	Leu	His	Leu	Glu 375	Asp	Gly	Ser	Tyr	Asn 380	Ile	Arg	Lys	Авр
50	Авр 385	Ile	Ile	Ala	Leu	Tyr 390	Pro	Gln	Leu	Met	His 395	Leu	Asp	Pro	Glu	11e

	Tyr	Pro	ysb	Pro	Leu 405	Thr	Phe	Lys	Tyr	Asp 410	Arg	Tyr	Leu	Asp	Glu 415	Asn
5	Gly	Lys	Thr	Lys 420	Thr	Thr	Phe	Tyr	Сув 425	Asn	Gly	Leu	Lув	Leu 430	Lys	Tyr
	Tyr	Tyr	Met 435	Pro	Phe	Gly	Ser	Gly 440	Ala	Thr	Ile	Сув	Pro 445	Gly	Arg	Leu
10	Phe	Ala 450	Ile	His	Glu	Ile	Lys 455	Gln	Phe	Leu	Ile	Leu 460	Met	Leu	Ser	Tyr
	Phe 465	Glu	Leu	Glu	Leu	Ile 470	Glu	Gly	Gln	Ala	Lys 475	Сув	Pro	Pro	Leu	Asp 480
15	Gln	Ser	Arg	Ala	Gly 485	Leu	Gly	Ile	Leu	Pro 490	Pro	Leu	Asn	Asp	Ile 495	Glu
	Phe	Lys	туг	Lys 500	Phe	Lys	His	Leu								
20	(2) INFO	RMAT	ON I	FOR S	SEQ I	ED NO): 2:	:								
25	(i)	(B)	LE! TYI STI	E CHANGTH: PE: 8 RANDI POLO	: 503 amino EDNES	3 ami 5 aci 55: s	ino a id sing:	acid	3							
	(ii)	MOLI	ECULI	E TYI	PE: J	prote	ein									
	(iii)	HYPO	THE:	ricai	L: NO	o										
30	(iii)	ANT	I-SEI	NSE:	NO											
	(vi)			L SOU												
35	(ix)	(B) NAI	ME/KI	on:	148	3 1	/not	te= '	"Cho	lest	erol	7a-1	Hydro	эхуlа	ase"
	(xi)	SEQ	JENC	E DE	SCRI	PTIO	N: S	EQ II	ОИО	: 2:						
40	Met 1	Met	Thr	Ile	Ser 5	Leu	Ile	Trp	Gly	Ile 10	Ala	Val	Leu	Val	Ser 15	Сув
	Сув	Ile	Trp	Phe 20	Ile	Val	Gly	Ile	Arg 25	Arg	Arg	Lys	Ala	Gly 30	Glu	Pro
45	Pro	Leu	Glu 35	Asn	Gly	Leu	Ile	Pro 40	Tyr	Leu	Gly	Сув	Ala 45	Leu	Lys	Phe
	Gly	ser 50	Asn	Pro	Leu	Glu	Phe 55	Leu	Arg	Ala	Asn	Gln 60	Arg	Lys	His	Gly
50	His 65	Val	Phe	Thr	Слв	L ув 70	Leu	Met	Gly	Lys	Tyr 75	Val	His	Phe	Ile	Thr 80

	Asn	Ser	Leu	Ser	Tyr 85	His	Lys	Val	Leu	Сув 90	His	Gly	Lys	Tyr	Phe 95	Авр
5	Trp	Lys	Lys	Phe 100	His	Tyr	Thr	Thr	Ser 105	Ala	Lys	Ala	Phe	Gly 110	His	Arg
	Ser	Ile	Авр 115	Pro	Asn	Asp	Gly	Asn 120		Thr	Glu	Asn	Ile 125	Asn	Asn	Thr
10	Phe	Thr 130	Lys	Thr	Leu	Gln	Gly 135	Asp	Ala	Leu	Сув	Ser 140	Leu	Ser	Glu	Ala
	Met 145	Met	Gln	Asn	Leu	Gln 150	Ser	Val	Met	Arg	Pro 155	Pro	Gly	Leu	Pro	Lys 160
15	Ser	Lys	Ser	Asn	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ala	Phe	Сув 175	Tyr
	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Leu	Phe	Gly	Arg 190	Авр	Ile
20	Ser	Lys	Thr 195	Asp	Thr	Gln	Lys	Ala 200	Leu	Ile	Leu	Asn	Asn 205	Leu	Asp	Asn
	Phe	Lув 210	Gln	Phe	Asp	Gln	Val 215	Phe	Pro	Ala	Leu	Val 220	Ala	Gly	Leu	Pro
25	225					230					235				Ala	240
					245					250					Glu 255	
30				260					265					270	Asp	_
••			275					280					285		Gln	
05		290					295					300			Arg	
35	305					310					315				Leu	320
					325					330					Leu 335	
40	Gln			340					345					350		
			355					360					365		Lув	
45		370					375					380			Lys	-
	385					390					395				Glu	400
50	Tyr	Pro	Asp	Pro	Leu 405	Thr	Phe	Lys	Tyr	Авр 410	Arg	Tyr	Leu	Asp	Glu 415	Ser .

	Gly	Lys	Ala	Lys 420	Thr	Thr	Phe	Tyr	Ser 425	Asn	Gly	Asn	Lys	Leu 430	Lys	Сув
5	Phe	Tyr	Met 435	Pro	Phe	Gly	Ser	Gly 440	Ala	Thr	Ile	Сув	Pro 445	Gly	Arg	Leu
	Phe	Ala 450	Val	Gln	Glu	Ile	Lys 455	Gln	Phe	Leu	Ile	Leu 460	Met	Leu	Ser	Сув
10	Phe 465	Glu	Leu	Glu	Phe	Val 470	Glu	Ser	Gln	Val	Lys 475	Сув	Pro	Pro	Leu	Asp 480
	Gln	Ser	Arg	Ala	Gly 485	Leu	Gly	Ile	Leu	Pro 490	Pro	Leu	His	Asp	Ile 495	Glu
15	Phe	Lys	Tyr	Lys 500	Leu	Lys	His									
	(2) INFO	RMAT:	ION I	FOR S	SEQ I	D NO): 3:	:								
20	(i)	(A) (B) (C)	UENCI) LEI) TYI) STI) TOI	NGTH: PE: & RANDE	: 504 amino EDNES	lami aci	ino a id sing:	acid	8							
	(ii)	MOLI	ECULI	TYI	PE: p	prote	ein									
25	(iii)	HYPO	OTHE?	CICAL	L: NO)										
	(iii)	ANT	I-SEI	SE:	NO											
30	(vi)		GINAI ORG				er									
	(ix)	(A)) NAI	Æ/KI CATIO	ON: 3	148	31	/not	te= '	"Cho	leste	∍rol	7α-1	Hydro	oxyla	ıse"
35	/vi)	S POI	TENC	2 1050	- CD T I	מת ד תר	J. CI	- TI	NO.	. 2.						
	(Xi)										. ו מ	Wat	Val	Val	Cva	Cva
	1	Met	1111	116	5	peu	116	пр	GIY	10	ALG	net	AGI	Val	15	Сув
40	Сув	Ile	Trp	Val 20	Ile	Phe	Asp	Arg	Arg 25	Arg	Arg	Lys	Ala	Gly 30	Glu	Pro
	Pro	Leu	Glu 35	Asn	Gly	Leu	Ile	Pro 40	Tyr	Leu	Gly	Сув	Ala 45	Leu	Lys	Phe
4 5	Gly	Ser 50	Asn	Pro	Leu	Glu	Phe 55	Leu	Arg	Ala	Asn	Gln 60	Arg	Lys	His	Gly
	His 65	Val	Phe	Thr	Сув	Lys 70	Leu	Met	Gly	Lys	Tyr 75	Val	His	Phe	Ile	Thr 80
50	Asn	Ser	Leu	Ser	Tyr 85	His	Lys	Val	Leu	Сув 90	His	Gly	Lys	Tyr	Phe 95	Asp

	Trp	Lys	Lys	Phe 100	His	Tyr	Thr	Thr	Ser 105	Ala	Lys	Ala	Phe	Gly 110	His	Arg
5	Ser	Ile	Авр 115	Pro	Asn	Asp	Gly	As n 120	Thr	Thr	Glu	Asn	Ile 125	Asn	Asn	Thr
	Phe	Thr 130	Lув	Thr	Leu	Gln	Gly 135	Asp	Ala	Leu	His	Ser 140	Leu	Ser	Glu	Ala
10	Met 145	Met	Gln	Asn	Leu	Gln 150	Phe	Val	Leu	Arg	Pro 155	Pro	Asp	Leu	Pro	Lув 160
	Ser	Lys	Ser	Asp	Ala 165	Trp	Val	Thr	Glu	Gly 170	Met	Tyr	Ala	Phe	Сув 175	Tyr
15	Arg	Val	Met	Phe 180	Glu	Ala	Gly	Tyr	Leu 185	Thr	Leu	Phe	Gly	Arg 190	Asp	Thr
	Ser	Lys	Pro 195	Asp	Thr	Gln	Arg	Val 200	Leu	Ile	Leu	Asn	Asn 205	Leu	Asn	Ser
20	Phe	Lys 210	Gln	Phe	Asp	Gln	Val 215	Phe	Pro	Ala	Leu	Val 220	Ala	Gly	Leu	Pro
	11e 225	His	Leu	Phe	Lys	Ala 230	Ala	His	Lys	Ala	Arg 235	Glu	Gln	Leu	Ala	Glu 240
25	Gly	Leu	Lys	His	Glu 245	Asn	Leu	Ser	Val	Arg 250	Asp	Gln	Val	Ser	Glu 255	Leu
	Ile	Arg	Leu	Arg 260	Met	Phe	Leu	Asn	Asp 265	Thr	Leu	Ser	Thr	Phe 270	Asp	Asp
30	Met	Glu	Lys 275	Ala	Lys	Thr	His	Leu 280	Ala	Ile	Leu	Trp	Ala 285	Ser	Gln	Ala
30	Asn	Thr 290	Ile	Pro	Ala	Thr	Phe 295	Trp	Ser	Leu	Phe	Gln 300	Met	Ile	Arg	Ser
	Pro 305	Asp	Ala	Leu	Arg	Ala 310	Ala	Ser	Glu	Glu	Val 315	Asn	Gly	Ala	Leu	Gln 320
35	Ser	Ala	Gly	Gln	Lys 325	Leu	Ser	Ser	Glu	Gly 330	Asn	Ala	Ile	Tyr	Leu 335	Asp
	Gln	Ile	Gln	Leu 340	Asn	Asn	Leu	Pro	Val 345	Leu	Asp	Ser	Ile	11e 350	Lys	Glu
40	Ala	Leu	Arg 355	Leu	Ser	Ser	Ala	Ser 360	Leu	Asn	Ile	Arg	Thr 365	Ala	Lys	Glu
	Asp	Phe 370	Thr	Leu	His	Leu	Glu 375	Asp	Gly	Ser	Tyr	Asn 380	Ile	Arg	Lys	Asp
45	Asp 385	Ile	Ile	Ala	Leu	Tyr 390	Pro	Gln	Leu	Met	His 395	Leu	Asp	Pro	Ala	Ile 400
	Tyr	Pro	Asp	Pro	Leu 405	Thr	Phe	Lys	Tyr	Asp 410	Arg	Tyr	Leu	Asp	Glu 415	Asn
50	Lys	Lув	Ala	Lys 420	Thr	Ser	Phe	Tyr	Ser 425	Asn	Gly	Asn	Lys	Leu 430	Lys	Tyr

	Phe	Tyr	Met 435	Pro	Phe	Gly	Ser	Gly 440	Ala	Thr	Ile	Сув	Pro 445	Gly	Arg	Leu	
5	Phe	Ala 450	Val	Gln	Glu	Ile	Lys 455	Gln	Phe	Leu	Ile	Leu 460	Met	Leu	Ser	Tyr	
	Phe 465	Glu	Leu	Glu	Leu	Val 470	Glu	Ser	His	Val	Lys 475	Сув	Pro	Pro	Leu	Asp 480	
10	Gln	Ser	Arg	Ala	Gly 485	Leu	Gly	Ile	Leu	Pro 490	Pro	Leu	Asn	Asp	Ile 495	Glu	
,,,	Phe	Lys	Tyr	Lys 500	Leu	Lys	His	Leu									
15	(2) INFO	RMAT	ION	FOR .	SEQ	ID N	0: 4	:									
	(i)	(B	UENC) LE) TY) ST	NGTH PE: RAND	: 79 nucl EDNE	97 b eic SS:	ase acid sing	pair	B								
20	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)								
-	(iii)	HYP	отне	TICA	L: N	0											
	(iii)	ANT	'I-SE	NSE:	YES												
25	(vi)	ORI (A	GINA () OR														
	(vii)	IMM (P	ŒDIA () LI	TE S	OURC Y: C	E: lont	ech.	RL	1022	j							
30	(ix)	įF	A) NA	ME/K	ON:	17	997	/no	te=	"Cho	lest	erol	. 7α-	-Hydr	оху1	ase"	
35	(xi) SEÇ	QUENC	CE DE	SCRI	PTIC	on: S	SEQ I	D NO	: 4:							
	GAGCTCT	ACC (CTTG	CTCTC	C T	\TTG1	CACTI	r TTI	AATA	CAC	AGTI	CAAT	CA A	ATGI	GCCF	4C	60
	CAGAATA	rgc 1	ATGC?	TAACA	G C	GTAC	TGG	TGA	TTTI	TCT	TTCI	ACTO	CTT C	TGTG	TGT	λA	120
40	GACCCCA'	TGT :	TTTAT	CAAT	T AT	r tt t	raati	GAT	TTCI	TTC	TTC	TGC	TA I	GTGT	GGT1	rg	180
	TCAGTGT	GAG :	rctg:	rgtgi	ra ca	AGCA	GTG	C ACA	GGT	ATCC	ACAC	AGG	CA C	AGGT	TCC	CT	240
	GTAACTA	GAA :	TTAC	AGGC?	AC T	rgtg/	AACT	r TCC	CTGT	ATGG	GTG	CTGG	GAA (CAAT	CTG	AG	300
45	GTCTTCT	GCA 2	AGGG	ATCT	CA AC	CCAC	rgac'	r TTC	CTAGO	CTG	CTTT	recc	CAT T	rtct <i>i</i>	ATTT/	TA	360
	GATGACT	GGA I	AACT	GGGC1	A TI	GCC:	TAT	A TTO	CTCTC	GAGG	CCA	TAAL	CAA (STTC	TCC	A.A	420
	ACTGCAG	GAT '	TAT	GGTC	rt C	rata(GTAT	c cci	ACAG?	AAAT	GGA	AAAG	AAA (STGAC	CCA	ГT	480
	2020020	መእመ ሳ	ም አ ር አ (CTCC	ימ ממ	ומממי	- ምር አ	ል ርሞ፣	гаста	ATGC	CAGO	ACT	rtg (GACA	ATAA:	ra	540

	ACCCTGTCTT	TTCAGGGCAT	CTATCTGTAC	TGCTGCAATA	GAAACTCCAC	AGGTCAGGGT	600
	CACAGCTGTT	GTGTTTTACA	CAGTGTCCCC	AGGATTAGTT	CAGTGCCCAC	CATGCAATAG	660
5	GTGTCATGGT	GTGTGTGTGT	GTGTGTGTGC	GTGTGTCGTG	CTTGTGTGCA	TGTGTGTGAG	720
	ACACACACAC	AGAGAGATAC	AAAGACAGAA	ACAGAAAATT	AATAAAATTT	TACCAACTAA	780
	AATAGGGAAT	TAAAGAAAAG	GAGGAGAAAA	AGTTGGGCAT	TCAACACCAT	AAAGTCCCAG	840
10	TACTATGCTA	AGAACACCCA	GCTGTCCTCA	CACCCGGGCA	TGAAACTTCA	TGCACTGTTC	900
	ATCAGAAAAT	CGTTTACACA	CATCCCCTTG	CAGTCTACTT	GTAGTTTTAA	CAACTTCAGA	960
	GAGCACTAGC	ATTTCCAGCC	CCAGGTTAGA	AGCTTTGGTA	GATGCTGTTT	GCGAGCACAG	1020
15	GATAGCAGCA	AGAAGTGGAC	TTGTTAGAAG	GAAAGCCAAT	GCCTATGTAA	CAACGAAAAC	1080
	TAAGTATGAA	TCTCGAATCT	CCACTCTCGT	GTGTCTGTGT	CTCCATATAC	GTGCTTGGGT	1140
	GCCTGACATG	GCAAGGTGTT	ACAAGTAAGG	GAGGAACAAG	AAAAGGACAG	GGTAGTGGAC	1200
20	ATCAGGATGA	ATGCCAGCCA	GGGCGACTGG	AGAGAGTCTA	CGCTGCTCTG	AAGGTGGGTG	1260
	AAGAAGACCT	CAGGAAGCTT	TCTGAGGCTC	CGAGAGTGCT	TTTCCCTTCC	CATGTTGAAA	1320
	CATCCTTATT	TGCAGAGAAT	TCCAGGTTCA	TGGGAATTTG	TAAAGAGAAT	ACTAAGAGGC	1380
or.	CACCTGTGGC	TTCTCCTATT	TTTGTCTGCT	GTCATTTATG	GGACAGGGTT	AGAGACCTGG	1440
25	CTTGCTTGGC	TATGAGGCTG	TTGCTTCCTC	GGTTACTCTG	CTGTGGTTGG	ATGCATTAGG	1500
	GTTAGGCCCC	TCAAGAGCCA	TGTGTCATTT	TATAAAAGCA	ATATAAATAT	ACTTAAGGTG	1560
	CACAAAGCAT	TAGGAGGTCT	GAGATAATAG	ATTCTGAGAA	AATCTATCCT	GCTGTGTAGC	1620
30	AACTGATGTT	TATGATTATA	GTCCCAGACC	ACACGATAAA	GGATCTGTGG	ACTCTGTTTA	1680
	GGGAGGTCAA	AAAACTATTG	CAAATGGAGT	CTATAGAGAA	AACTAGACAG	GACTCAATGC	1740
	TCACCAATCG	AGAATTAGTT	GATGAGCTGG	GGTAGTGACT	TAGTGGATAA	GAACACGGTC	1800
35	CTTTCAGAGG	TCCTGAGTTA	AATCCCCAGC	AAACACATGG	TGGCTCATAA	CCATCTATAT	1860
	TGTGATTTGA	TGCCCTCTTC	TGGCATGCAG	GTGTACATGC	AGACTCGTAT	ACATAAAATA	1920
	AATAAATCTT	Gaaaaaatga	ATACGTTGAA	TAAGTGTCCC	CTCGGATAAC	TTTCTGCAGA	1980
10	ATTTTAAGCA	CATGTCAATG	GTAATAACAC	ACACACACAC	ACACACACAC	ACACACACAC	2040
	ACACACATAC	ACACACCATA	CAGATATGTA	TCTAGAGACA	TACACATGTA	CATTTTATCT	2100
	CTTTTATTTT	СТТСТССССТ	CTTTGACATC	AAGGAATAGA	ATGCACTCAC	TGTGGCCTAG	2160
‡ 5	TGCCACACTC	TACCTATTTC	TTTGGCTTTA	CTTTGTGCTA	GGTGACCCGA	AAGGTTTAAA	2220
	TATCAAAAAT	GCTAATGGCT	CGACATTTAC	ATCCCCAATT	TCTCCTTTCT	CCTTACCTCA	2280
	GACTCTTACA	TTCAGTTGAC	AATTTGACAT	CGTCTCCTGG	ATTTTCAAAT	GTTCAGCACA	2340
50	CTGTACTGAT	GTACTCCCTT	CCAACCCAAC	CCCCACCATO	CTCTCCCCC	maaaaa m	2 4 2 2

	CCCTCCATGA	GCCAGTGTTT	GCTTATCTTC	TTGACTCTT	TTTTAACCC	ACTCCTCCC	2460
	TATTCACTCT	GCTCTAATTC	ATTCATTCTA	TATTTTCGC	A CATCAGGCTC	ATCCTTTGCT	2520
5	CAGGAACTTC	ACTTTTGCTT	TCCGGTCTCC	TGGAAATGT	TTTTCTTGGC	TATTCCATCT	2580
	CAAGACCATC	TTTTCAGAAA	AGCTTTTCCI	ATCAACATAT	r ttaaagccct	CTTCATCCCC	2640
	CAGTAGCTCT	GGACACCTCA	TTTTATGGAT	ACACAACAC	A TATTTGCCAC	CTGTCTCCCC	2700
10	ATTAAAATAT	AATCTTCAGT	AGAGAAACTC	CATATCTTGT	TAATACCTGA	AACAAGAATA	2760
	TCTTCAAAGA	GTTCCTGGGA	CATAAAAACG	CTCAATTAAT	ATTTATGTTA	AACAGGGATC	2820
	TGGGGTATAT	CACAGAGGTA	GAGGGCTTAC	CTAGGAGGAG	TTGGGCCATG	GGTTCAACTT	2880
15	CCAGCACAGA	ATGAAAGATT	ATGTTAAATA	AAGTTGGGAA	GGATGTATGC	CAGTCTATGA	2940
	GTAGTATAGG	AGGTAAATTA	TGAATTCATA	TTTACTTTTC	GGACAAGAAG	TGTTGTAGTC	3000
	TTTATTTGAA	ATAAAATACA	TCTTAATTAC	CAATAACAAT	TGGTAAGGAG	TGAATTCTCA	3060
20	AGCTGTGGCT	TCCTGGTAGA	TGAGTCCTGG	GAGGTTTTCT	ATTTCGATGA	TGGTAGATAG	3120
	GTAACCTGTC	ATATACCACA	TGAAATACCT	GTGGCTTTGT	AAACACACCG	AGCAGTCAAG	3180
	CAGGAGAATA	GTTCCATACA	GTTCGCGTCC	CTTAGGATTG	GTTTCGGGAT	ACTTCTGGAG	3240
25	GTTCATTTAA	ATAATTTTCC	CCGAAGTACA	TTATGGGCAG	CCAGTGTTGT	GATGGGAAGC	3300
	TTCTGCCTGT	TTTGCTTTGC	GTCGTGCTCC	ACACCTTTGA	CAGATGTGCT	CTCATCTGTT	3360
	TACTTCTTTT	TCTACACACA	GAGCACAGCA	TTAGCTGCTG	TCCCGGCTTT	GGATGTTATG	3420
30	TCAGCACATG	AGGGACAGAC	CTTCAGCTTA	TCGAGTATTG	CAGCTCTCTG	TTTGTTCTGG	3480
50	AGCCTCTTCT	GAGACTATGG	ACTTAGTTCA	AGGCCGGGTA	ATGCTATTTT	TTTCTTCTTT	3540
	TTTCTAGTAG	GAGGACAAAT	AGTGTTTGCT	TTGGTCACTC	AAGTTCAAGT	TATTGGATCA	3600
	TGGTCCTGTG	CACATATAAA	GTCTAGTCAG	ACCCACTGTT	TCGGGACAGC	CTTGCTTTGC	3660
35	TAGGCAAAGA	GTCTCCCCTT	TGGAAATTTT	CCTGCTTTTG	CAAAATGATG	ACTATTTCTT	3720
	TGATTTGGGG	AATTGCCGTG	TTGGTGAGCT	GTTGCATATG	GTTTATTGTT	GGAATAAGGA	3780
	GAAGGTATGG	AAAGATTTTT	AAAAATTTGT	CTTTTAGCTT	ATTTCTAGTA	TTCATTGCCT	3840
10	TCACTATTAT	GTAGTGCAAA	AAATACTAAT	GCATTAATAT	TTTTAAATTT	AAATTTAAA	3900
	GACGTACTTC	TTTGACTAAA	TCTAGTAAGA	TGTAGAGAGT	CCCCCTTGGA	ACATTCACAT	3960
	ATGCCACTGG	TAATGCAGAT	CTTGTGAAAT	ATAACTAAAG	AAATCACAAG	TCATCGATGT	4020
15	AAGTTTGTGT	CTGCATGGGC	GGAACAAACC	TAAGCTAAGA	AGAGTAGTAT	TTGGGAGGGA	4080
	TCTTTCTGTG	ACATGAACTG	AATAGACGCA	CTGCCTCAGC	AAACACACAT	TCATTTGAAT	4140
	TTTCCTCAGA	CTCAGTCTAA	GCCTGGTGAG	AGCACCAAGT	GTGAGTCTGT	CTGCCACTAA	4200
0	CGTTTCCTTC	CAGTGGTAAT	CAGCTGTGTG	GCTGTGAAAC	CTTGGCGCCT	GCACATGACA	4260

	GCCATTTGAA	TAGTTCAAAG	AACATTTAGG	GACAGGATAT	TAAGATATTT	TCTGTGATGT	4320
	CAACATCAAA	ATAGGAGAAT	GCCCTGGCA	TTATCTTCAG	AGAGGTAGAC	TACTGTGCGT	4380
5	TGTCTTACTT	TAAAGAAATT	TCTTTGCCCC	TTTGGCTATT	TTAATTCAAA	CCTGAAAGTT	4440
	TTCAGTTTTA	ATTAAACTGT	TGATTTTCAT	GCTAGGAAAG	GAAATATCAA	TTATACTTAA	4500
	TTGTTCTTAC	AAGAAATAAA	ATCATTTATG	TCGGGAGATA	AATAAGCTCA	TAATTTTAAT	4560
10	AAAACATTTA	AGAGAGAGAA	AAAGAGTAGT	GGATTATAGT	TCATTGTCTG	TCAATGTTTA	4620
	CCTGACCCAG	TTTCATTTTA	TAATTATCTA	ATTTTTCAAA	TGAGATTCCT	GTTCTTTCCA	4680
	AATATCATTG	CAGAATACTA	ACATTCTTTT	TTTCAGAGTT	GAGAATCAAA	TGGAGGGTTT	4740
15	TTTCATCCTG	GCACAAGCTC	CGCTCTTCAG	TAACACCTCC	AGCCCTCAGA	ATGCCAATAT	4800
	TTTAAATTAT	GTAGGTTGTT	AAAACTTTAG	TGCTGGGGCT	GGGGATTTAG	CTCAGTGGTA	4860
	GAGCACTTGC	CTAGCAAGCG	CAAGGCCCTG	GGTTCGGTCC	CCAGCTCTGA	AAAAAAGAAA	4920
20	AAGAAAAAA	AAAACTTTAG	TGCTGTAGCC	CTTTCTGTTA	TTTGATGTTT	CACATCTGTT	4980
	ААААААСААА	АСААААСААА	AAAAACAAGC	AAATGGAACA	TTTTAGGCAT	TCTTTGGGGG	5040
	AAATGATTCT	TAGAGCAAGT	CTAATCATTA	GGTGATAGTT	TCATTTTTAC	ACCAAGAACA	5100
25	AGAATCTTGT	TGGCTGTGTT	AACACTTTAA	GCCCTGTTGT	AGGGAAAAAG	CAATCAGACA	5160
	CAGGCACAGA	AAAGAATTTG	GATGAGTACT	TGATGATGTA	TGTATATATG	GTGAATAGAC	5220
	TGATGGGTGG	GCTGCTGGCT	GGGTTGGTAA	GTGGGTAGAT	TTTTTTTAA	AGATTTATTC	5280
30	ATTTATTATA	TATCAGTACA	CTGTAGCTAT	CTTCAGATAC	ACCAGAAGGG	CATCGGATCT	5340
	CTTTACAGAT	GGTTGTGAGC	CACCATGTTT	TCCTAACCTC	TCAAGTCTCT	GTCTTCCAGG	5400
	AAAGCTGGTG	AACCTCCTTT	GGAGAACGGG	TTGATTCCGT	ACCTGGGCTG	TGCTCTGAAA	5460
35	TTTGGATCTA	ATCCTCTTGA	GTTCCTAAGA	GCTAATCAAA	GGAAGCATGG	TCACGTTTTT	5520
	ACCTGCAAAC	TGATGGGGAA	ATATGTCCAT	TTCATCACAA	ACTCCCTGTC	ATACCACAAA	5580
	GTCTTATGTC	ATGGAAAATA	TTTTGACTGG	AAAAATTTC	ATTACACTAC	TTCTGCGAAG	5640
40	GTAATTAATT	CGTTATACAG	ATTCTGTTTG	TTTCCTGGTC	TGTTGATGTA	TTAGTGTATT	5700
	TAGTTGTTCC	AATTTTGTTA	GGTTGCAGAA	TAGAGGTAAC	ATAAAATCAG	GGCGTTTCTT	5760
	AGTAATAAGC	ATTAGACATT	TAAGGCAGAT	GTAAACCTGT	CATTGATGAT	TCCGGAGACA	5820
45	GAGGACACTG	CAGGAATCAG	GAAGGTACAG	ATTCATAGCA	CCACTCGTCC	CTTAACAACA	5880
	CCCTGAGCAG	GGTGTTGGCA	CTCTTAGCCT	TCAGTCCTTG	TACACACGTT	TCATTCCTAA	5940
	GATATAGGCT	GTATATTTAA	ACACGATTTG	GAAGCCATCA	AGAATCTGTT	CTAGAGAAAA	6000
50	CAGCATTTAA	TGATCTTTTG	CAAGAAAATA	TCAGTTATAG	TCTCTGTCAT	TAAGTACATT	6060
	GTAATCTGGT	TAAAGAGTAT	CTACTAAGAA	AGTAAAGGCA	GATTAGAACA	ATACCAATGG	6120

	ATGATGGGCC	ATCCAGAGAA	ATCCTACTGT	AAATGCTGGG	ATTTAAACTT	GACCCCAAGG	9190
		CTTGATTCTA					6240
5		GTGGGATGTA					6300
	TTTGGGCTTT	AGACCCTCCC	CATTTCATGG	ATTCTATTTT	CTACCAGGCA	TTTGGACACA	6360
	GAAGCATTGA	CCCAAATGAT	GGAAATACCA	CGGAAAATAT	AAACAACACT	TTTACCAAAA	6420
10	CCCTCCAGGG	AGATGCTCTG	TGTTCACTTT	CTGAAGCCAT	GATGCAAAAC	CTCCAATCTG	6480
		TCCTGGCCTT					6540
		TTACCGAGTG					6600
15	TTTCAAAGAC	AGACACACAA	AAAGCACTTA	TTCTAAACAA	CCTTGACAAC	TTCAAACAAT	6660
	TTGACCAAGT	CTTTCCGGCA	CTGGTGGCAG	GCCTTCCTAT	TCACTTGTTC	AAGACCGCAC	6720
		GGAAAAGCTG					6780
20		ACTGATCCGT					6840
	ACATGGAGA	GGCCAAGACG	CACCTCGCTA	TCCTCTGGGC	: ATCTCAAGCA	AACACCATTC	6900
						AGAAATTGCA	6960
25						AAAGAAAGTA	7020
						GGTGCACAGT	7080
						TCCATTAGTA	7140
30						TCAAATTAAA	7200
						CTTGCAGGTG	7260
						A AGTAACACCA	7320
35						TACTTGTTAG	7380
30						C GTCCTACCAG	7440
						A TATATAAATG	7500
40						T GGTCCAATCC	7560
40						C GTATATTCAA	7620
						T CCTTTTAATG	7680
						A CTCCCTGGCA	7740
45						C TTGCACACCC	7800
						A TTAAAAGGAA	7860
	GGGATAATT	G CTATTTACT	T GCAGTTCTC	T GAATGAGGA	C ATTTTCCCC	A TACGGCTCTT	7920

50

	TCCACAGGAG TCCTGAAGCA ATGAAAGCAG CCTCTGAAGA AGTGAGTGGA GCTTTACAGA	7980
	GTGCTGGCCA AGAGCTC	7997
5		
	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5537 base pairs	
10	(B) TYPE: nucleic acid	
70	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
15	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: human	
	• •	
20	(ix) FEATURE: (A) NAME/KEY: exon	
	(B) LOCATION: 15537 (D) OTHER INFORMATION: /note= "Cholesterol 7α-Hydroxylase"	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	TTTTTGGTTA TCTTTTCAGC CGTGCCCCAC TCTACTGGTA CCAGTTTACT GTATTAGTCG	60
	ATTTTCATGC TGCTGATAAA GACATACCTG AAACTGGACA ATTTACAAAA GAAAGAGGTT	120
30	TATTGGACTT ACAATTCTAC ATCACTTGGG AGGCCTCACA ATCATGATGG AAGGAGAAAG	180
00	GCACATCTCA CATGGCAGCA GACAAGAAAA GAGCTTGTGC AGGGAAACTC CTCTTTTAA	240
	AACCATCAGA TCTCATGAAA TTTATTCATT ATCATGACAA TAGCACAGGA AAGAACTGCA	300
	CCCATAATTC AGTCACCTCC TACCAGGTTC CTCCCACAAC ACGTGAGAAT TCAAGATGAG	360
35	ATTTGGATGG GGACACAGCC AAACCATGTC ACACTACCAT GCCTGACTTC CTTTCCATTT	420
	TTGTATATTT GCTTGTTCTT CATTTGCCCG AGAAGTAACT CTAAAGGGCT GTATTATTTG	480
	GATATTAGAT TGGCATTTTA TCTGACTGGG ATATCTTGCT GTGATTGTCC ATGTATAAGA	540
40	TCAGCTTTTC TATAAGCCAT ATTTTTAAAA AGATATATTA ATTTTTTAAA AATCCACCTG	600
	TCTAAATAAA TGCACAAAGC CCCCCAAAAA CCTAGATTCT AAGAAAAATC TATGTACTGC	660
	CATACAATGA TTGATATTAA TATTTATGGT GATAAATTAC ACACAAAAAA TGTGTGATCT	720
45	CTGTTTAAAC AGGCAAAAAC AAAAAACACA TGAAATAAAT CTATGGCATC TATAGCCAAA	780
	ACTGGAAACA ACCCACATAT CCATCAATAG GAAATCAGTT AAATAAATTA TAGTACATTT	840
	ATCCAATGGA AGATTAAGCA CATATTCAAT ATAATTATTT ATACACACAT ATAGATACAC	900
50	ACATGTATAA ATATAGAGAA TACTGTGGGT GTATGTGTGT GTGTGTTTAT ATACATATAT	960

	ATACACACAC	AGTACTGTTG	CCTACCTTCT	TTTGTCTTAA	TTCTGTGAAC	TCTCATTCAC	1020
	TCTGCTTCAG	TAGGATACCT	CCTTCTTTTT	GGTTCTTAGA	CTCACCAAGT	TGATCCTTGA	1080
5	CTCAAGACAT	TGCATTTGCT	GCTTCCTCTT	CCTGGAATAT	CCTTCCTTCT	GATATTCACA	1140
	TGAGTAGTCT	CTTCTTGTCA	TTCAGATCTC	AAATGTCACA	ATTTCAGAGA	GCCCATCTCT	1200
	GATCATCATA	TCTAAAGTTG	TCCTCATTCC	CCCATAGCTT	TCTATACCAT	GTTTTATTTT	1260
10	TTTCATAACA	TGTATTTTAT	TACTCCTTTC	TCCATTGGAA	TAGAATCTCC	ATTAGATTAG	1320
	GAAATCTGCC	TATCTTATTA	ATGCCTGCAA	CTGGAATACT	TTTGAAGAGT	TCTTGGCACG	1380
	TAATAAATAC	TCAACTAATA	TTTTTGTGTA	CACAGAAATA	AAGTTTGGAA	GAACAGATGC	1440
15	CAAATTGTTA	CTAGTGGTTA	CTTCTGAGTA	AAGGAGTAGC	ATGGTAGGTA	AATTATTAAT	1500
	AGATGTTCAC	TTTCCACCAA	GATATGTTTT	AGTTAGTCTT	AACTTACTTG	AAATGAAATT	1560
	TATTACTTTA	ATAATTAGAA	ACATTGATAA	ACATTTTAGT	CACAAGAATG	ATAGATAAAA	1620
20	TTTTGATGCT	TCCAATAAGT	TATATTTATC	TAGAGGATGC	ACTTATGTAG	AATACTCTCT	1680
	TGAGGATGTT	AGGTGAGTAA	CATGTTACTA	TATGTAGTAA	AATATCTATG	ATTTTATAAA	1740
	AGCACTGAAA	CATGAAGCAG	CAGAAATGTT	TTTCCCAGTT	CTCTTTCCTC	TGAACTTGAT	1800
25	CACCGTCTCT	CTGGCAAAGC	ACCTAAATTA	ATTCTTCTTT	AAAAGTTAAC	AAGACCAAAT	1860
	TATAAGCTTG	ATGAATAACT	CATTCTTATC	TTTCTTTAAA	TGATTATAGT	TTATGTATTT	1920
	ATTAGCTATG	CCCATCTTAA	ACAGGTTTAT	TTGTTCTTTT	TACACATACC	AAACTCTTAA	1980
30	TATTAGCTGT	TGTCCCCAGG	TCCGAATGTT	AAGTCAACAT	ATATTTGAGA	GACCTTCAAC	2040
	TTATCAAGTA	TTGCAGGTCT	CTGATTGCTT	TGGAACCACT	TCTGATACCT	GTGGACTTAG	2100
	TTCAAGGCCA	GTTACTACCA	CTTTTTTTT	TCTAATAGAA	TGAACAAATG	GCTAATTGTT	2160
35	TGCTTTGTCA	ACCAAGCTCA	AGTTAATGGA	TCTGGATACT	ATGTATATAA	AAAGCCTAGC	2220
00	TTGAGTCTCT	TTTCAGTGGC	ATCCTTCCCT	TTCTAATCAG	AGATTTTCTT	CCTCAGAGAT	2280
	TTTGGCCTAG	ATTTGCAAAA	TGATGACCAC	ATCTTTGATT	TGGGGGATTG	CTATAGCAGC	2340
40	ATGCTGTTGT	CTATGGCTTA	TTCTTGGAAT	TAGGAGAAGG	TAAGTAATGT	TTTATCTTTA	2400
40	AATTGCTCTT	TGATTCATCC	ATTTAATTTT	TTTACCTTCA	TTTTTATACA	GTAAATTTGG	2460
	TTTTCTATAC	TTACACATAT	TAGCATTATC	TTCCTTATGT	TTTAAATGAA	AAATTTGATT	2520
	TGAATTTTTA	AAGTAATATC	TTTTTTACTA	TATCTCACAA	GACATATGAC	AGCTTCCCTT	2580
45	TTTAGTATTG	GCATATACCG	ATGGTAATAT	ATAAATGTAT	ATTGGTGTTA	AACATAACTG	2640
	ACAGAAATTG	TATAAGGTCT	CTATGTACAT	TTATATGTGT	ATCTAAAGAG	GAAGCCCAGA	2700
	TTAGTAAGGA	TACAAGTAGC	AAGTGGGAAT	CTACAATGGA	AAGGATTGCT	TTCTCTCACA	2760
50	TGGCTTCAAT	AGATACTCTT	GCTTAAATAA	ATGTTCTCTT	TTAAGCTCAT	TCTTGTGCAT	2820

	CGCATAGACT	CAGCCTAAGC	CTGAACAAGA	GCATAGAGCC	TGAGCTGATC	ATTCTATTAC	2880
	TGTTTTTAAA	TAAATGTTAA	TCAACTGTGG	TGAATTGGGA	AAGTTTGCTG	AGTGTATGTG	2940
5	ACATCGATTT	CATTTATTTA	CAACTGGTTC	AAGAATGCAA	GAAAAACAAA	TACAGTCAGA	3000
	TCCAGAACCA	TAGTTTATTT	AACTTCTAAT	TGGCTCAAGG	AGTAATTGTG	GGGAGGCATA	3060
	TAGATATTCT	CTGCTATGTC	AATCTCAAAA	AGAGAAAATA	ACCCTAACCA	TCTTTCAGCT	3120
10	TTGTAGATTG	CTATGTGTTT	TCTGCCTTTG	CAGTTTCTTT	CAGGCCTGAT	AGTTTTTACT	3180
	TTTAATTAAA	CTACTTATCT	TCAAACTAAG	AAAAGAAAGG	TAATTACTTT	ATACTGTATT	3240
	ATTCTATCAA	GAGGTACAGA	AGTTTATGTT	GGAAAATAAG	TTTACATGTT	СТААТАААА	3300
15	CATTTTAAAG	GAGCACTGAA	TTACAATAGA	TGATTCCGTC	AGTGTTTATC	TTACTCAATT	3360
	TCATTTTATA	ATAAGCTGAT	TTCTCACATG	AGATTCTTCT	TCTCTGAAAC	CATCCTTATA	3420
٠	GAATATAATA	TAGATATCTT	TAAACTAGGA	ATATTTTCAA	AACCTCAGTT	CTGAAATCCT	3480
20	CCCTTATTCA	GTGATCTGTG	TCTTTAAAGA	AAATAATCAA	AAGAAACATT	TTGAGATATT	3540
	TAGAAAAATG	ATGCTTAGCA	AAGTGATAAA	CACTAGAATG	TAGTTTTGTT	TCCGCACTGA	3600
	CAACAAGAAT	CTTGTTGGTC	TTGTAAATCC	TTTTGCCTGT	ATCACTGGGA	AAAGTGATGA	3660
25	GCACATAGTA	GACGGGTGCT	TGTTGAATGT	GTATATGGAC	GGATGCATGA	ATGGATGGAT	3720
	TTAGTAATCC	TTTCCACCAA	CATATCATGT	TACTAGGTTA	ATATAACCTA	TTACTGTAGT	3780
	AAAAGAGCAG	GGCCCATCCA	ACAAAAGAAA	TATCTATAAA	CTATAGGGTT	TCAAAGTTTG	3840
30	AAGTCAGTGG	GAAAAATTTT	AAAACCTGAT	GTAAGTAAAA	ACCCAAAACT	GTAATCATCC	3900
00	ATGTCTATCA	TACACTTGTG	TCTGACAGGC	AAACGGGTGA	ACCACCTCTA	GAGAATGGAT	3960
	TAATTCCATA	CCTGGGCTGT	GCTCTGCAAT	TTGGTGCCAA	TCCTCTTGAG	TTCCTCAGAG	4020
25	CAAATCAAAG	GAAACATGGT	CATGTTTTTA	CCTGCAAACT	aatgggaaaa	TATGTCCATT	4080
35	TCATCACAAA	TCCCTTGTCA	TACCATAAGG	TGTTGTGCCA	CGGAAAATAT	TTTGATTGGA	4140
	AAAAATTTCA	CTTTGCTACT	TCTGCGAAGG	TAAGCAGTTT	TACATTTATA	TACCATTCTG	4200
	TTTGTCTTCT	ACCTTTTTAT	GTGCTTGTCT	ATTTAGAAAT	TTTGATGTAC	TTAGATTTTA	4260
40	TGATAAAGGT	GTTGAAGAGA	GTTATCCTTA	TGTGGAGATT	CTTAGAAACA	TAAATAAATT	4320
	ATACGTAGCT	TCTTAGTAAT	AATCATTTAG	AAAGTCAAAA	TAGGTATAGA	TTTCCGTCAT	4380
	TTGCTTTGCA	CGAGCTAATG	AGGGTGAAAT	ACAGATTAAA	TGCTCTACTG	AGACAGGTGG	4440
45	CACTGTACGA	ATAAGATAGA	TTAAAATTCA	TCACATCAGC	AATGTCTATG	CAGAGCGAAG	4500
	TGACGGAAAC	CTAACATTCA	GCAGTTGTCT	CACCACACTT	GTGCCACACA	GTGTTTCATT	4560
	TTGATAAGGA	ATTGGCAAGA	TATTTTAACA	TCATTTAGAT	GTAATAAAAG	AAGATCTGTT	4620
50	ACTGAGAAAA	AAAACCAATA	ACTACTTACT	TACTGCAAAT	AAATATTAGC	TTTGGTCTTT	4680

	GTGACTAAGT AGCTTAAAGT TTGGTTAAAA TACATCTACA GCTGGACACA ATGGAACACA	4740
	CCTGTAGTCC CTGCTATTTG AGAGGCTGAG GCAGGAGGAT CGCTTGAGTC CAGGAGTTTG	4800
5	AGGCTGCAGT GAGCTATCAT TGTGTCACTG CACTCCAGCC TGGGTGACAA TGTGAGACCC	4860
	CATCTCTAAA AGAAAAAGAA AAAGAAATCT ACAAATAATA TAAAAGATAA CTAATGATTT	4920
	TAAAACATTA TCAATTAGTT TATGTGCAAT AGCTGTAAAT AAGTGCAGTA GCATAAGAAA	4980
10	TAAGACATAG ATGACTTGAG TGATCCAGGG GAGTGCCACT GAAGTTGGCT TTAAAGGAAA	5040
	GGTACAGTTT GGTCATTTAT TTGTAAAGTG CTATGAACTT GTACAAGGGA AAGCCAATTT	5100
	CCCGTGTTTA CCAAGTAAGG AACTATGAAA GTATCTAATC CGTTTTTCAG TCATTTACTA	5160
15	TGACTAGGTC AGGTTTAACT TCTTTTTCTG CATGTTTTAT TTGCTATCAG GCATTTGGGC	5220
	ACAGAAGCAT TGACCCGATG GATGGAAATA CCACTGAAAA CATAAACGAC ACTTTCATCA	5280
	ARACCCTGCA GGGCCATGCC TTGAATTCCC TCACGGAAAG CATGATGGAA AACCTCCAAC	5340
20	GTATCATGAG ACCTCCAGTC TCCTCTAACT CAAAGACCGC TGCCTGGGTG ACAGAAGGGA	5400
	TGTATTCTTT CTGCTACCGA GTGATGTTTG AAGCTGGGTA TTTAACTATC TTTGGCAGAG	5460
	ATCTTACAAG GCGGGACACA CAGAAAGCAC ATATTCTAAA CAATCTTGAC AACTTCAAGC	5520
25	AATTCGACAA AGTCTTT	5537
	(2) INFORMATION FOR SEQ ID NO: 6:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2575 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: human	
40	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 12575 (D) OTHER INFORMATION: /note= "Cholesterol 7α-Hydroxylase"</pre>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GAATTCTACT CTTTAAAGGG GTGAATATTA TGGTACTTGA ATTTTATCTC AAGAAAAATG	60
	AATAAAAAGT AACTAAATCA TTGAAAAATAT CTGATGGCAT GGGGTTTGTG GGGTAACTGG	120
50	CATTCCACAG TGATTTTCAA AGGGCTTGTG CTGTTTTCAT TTTGCTTTGT TTTAGTTATG	180

	GAGCCCTTCC	IIGAAACAAA	CIICAIACIA	CAGICCICIT	TCATGAAGCA	GAAGAGGGCA	240
	GTGGGCAGAG	CTCTCCTTTG	GCTTTCTCCC	CCACCACAAC	AGGGAGCCCT	GGAGCTCTAG	300
5	GAGAGAAAAT	CTGAAATATA	AAGGGCATGC	ATGTGAGCTG	TGGAGTCCCA	GAGCCCTGGG	360
	TTTGCATCCT	AGATCTGCAA	CTCCCGTGAA	TTGAGTTTTG	GGAAGTTGCT	GAAACȚCTGA	420
	CCTCCTGTTT	TCTCATGGTA	TTGTTGTAAG	GGTTAAATGA	GACAATGTAT	GTGAAGACCC	480
10	TGGCCCCACA	GTAGAGGCTC	TGCACACATT	TCAGCGATAC	TTTCCTCATG	TATTTCCAAA	540
	AATGTTTTCT	CATTTTCTTA	AAATGTCAGA	AAGAAGACAA	CAGAACTTAC	TTGCCTTTTA	600
	CAACAGAACA	AATGGAGCAA	GTCAGAGGTC	AAGGTGCTAA	CATTCTTCAT	GGTTCCTCAC	660
15	CACCTTTTGT	TCTGTTAGCC	TATAGGGAAA	AGTCTTCTTT	CTCATCTCAT	TATCTGCAGG	720
	GGAAAATAGT	ACTTCAGCAA	GTGATCCAGT	TGAAGAACAT	CTCCAGGGCC	ATTAACATAC	780
	AGAGGTTTGT	TCTACTCTCT	CTGTGCTCCA	TGTCTAAGAA	CCTCAGCCTT	CCTCCTAGGA	840
20	GCTAGGGAAA	GTCAGGAAAG	TGAAAATAGT	ACCCCAGCTA	ATGAACTGCC	CTGTGCTGGC	900
	CTGAGAAGAC	AAGACCAGCT	TCCTCAATGG	CTCAAGATTT	GGTTTCCTTC	AATATGTCCT	960
	TTTGGAAATA	TGTCCATGAC	ATCGGAGAGA	TAAAAGGAGC	CAGGATTGCT	CACATTCAGG	1020
25	AAAAAAGCTC	CACTATCTTT	CTCTCTCTCC	CTCTTTCTCT	CCCTCCCCCT	GACTGCCCTC	1080
20	TTCTCTATCT	СТСТСТСТСС	CTGAGCTGGC	AAGGTTAATT	GGTCGCAGAA	AGCCGAAGAA	1140
	ACAAGTGGGC	CTCCTGGAAC	AAAGTTCAAA	AAGCCGAAAA	CGGGAAGAAA	ACTAACCACA	1200
	AAAGTAAAGG	AACCACTTAG	CCTTCTTTGA	TTCCAGGCCC	CCAAGCCTGT	CTTTAACTTG	1260
30	GATGAATGGA	GTTCTTCCTG	TGCTACAGCA	CCGCATAGTA	GGGGCTGCCC	TGGGCCTGAA	1320
	GCCAGAGCTT	CACCATATTC	AGTCATCTGT	ACATTGAGGC	AACAGTGCCT	GCTTCATGGT	1380
	GCTACCCTGT	GGATTAAATG	AAGCAAGTTT	TTGATGATCT	TGACACTGAA	TATTGATGCA	1440
35	TTGGTCAGAC	TTTTTCTGAT	AGTAAAAAAT	GGTGGTTTCT	TGTTGTCAGA	AATCAAATCA	1500
	ATATATTTGT	TCTCCTGTTG	ATTAGCTATG	TCCCCTAGAG	GGCAGCGACT	TTGCCTGTCT	1560
	TATTTATCTC	TGCATCTCCA	GCACTTAAAA	GGTGCCTTGC	ATAAGGTACA	TATTAAGTTC	1620
40	ATATGAATGA	ATGAATGAAA	TGCATATGAT	TTATTCATAC	CCAGTTGGTG	GTGTGTTTAC	1680
	CCTTTCCTAA	ACCTGTAGTC	AGATGGCCTT	TGAATCCCCT	GTACTTCTTG	TGAGGTACTG	1740
	TGCTGTAAAG	GTGGACTATC	ACACTTCAGT	TCAGAGCAAT	CTGGGCTTGA	ATCCTGGATT	1800
45	TGCCAGTTTA	TTAACTATAG	CAAACATTTT	TGAGCATACA	TTGTGCCAAG	TGCTAGGCTA	1860
	ACTGTCTTAC	ACACATTGTC	TTATTTCGTC	TTAATATCTA	TGAGTCATGC	ACTATAATCA	1920
	TCCCCATTTT	ACAGATAAGA	AAGCAAAGAC	TTGGAGAGGA	AAAGCATCTT	GTTCAAAGGT	1980
E 0	ממידים מידממ	TOCOCOARCOO	******	TOTACATOR	3 mmo o 3 c c mm	~~~~	0040

	TACCATTCGA ACTAATTCAA GCTATGTAAT ATTTCCCACT GAACCTTCTT GCCTCTACTT	2100
	CCTCATCTTT AACATGGTCA AAATACCTGT CCTGCCCAAG TTAGTTATTT CATTAAAGTA	2160
5	GAAAAATACA AGAGAAGCTT TTAAAATGTG AAACCTCAAA TGAATGTAAA ATTATGATGA	2220
	TTCCTTTAGA ATTTGTCAAC ACCTTCTTTT CTCTACTCCT GCTAGGCATT TACAATCTCA	2280
	AAACCATGTA TTTAAGATGC AAAACTATAT TTGTATTTGC CATAACTGGT TTCTTTCCCT	2340
10	ATGGCTTCAT GAAAATGTGG CTCGAATGTG TTTATTATGA AAGCCCCAAA TTAATCACGA	2400
	CAAGACTTCA CCAGCCCATT CCACAATAGA CTCCCATTAC TTTGCCCTGA CTTAGAAACC	2460
	TCATATACAG TCTTGATTCA GTACAGCTCT GTGATGCTCT TGGAAAATGC AAAGTGCTTT	2520
15	CTTAATTGAG GCAATCTGTG TCCCACTACA GAGAGGTGGT TTAACTTGTG AATTC	2575
	(2) INFORMATION FOR SEQ ID NO: 7:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2316 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: human	
35	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 12316 (D) OTHER INFORMATION: /note= "Cholesterol 7α-Hydroxylase"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	AGAGCAACCT GGGCAACATA GCAAAACCCT GTCTCTGCAA ACAATAAAAA GAAGAAAATT	60
40	AGCTGGGTAT GGTGGCACAT GCTATAGTCG CAGCTACTCG AGAGGTTGAG GTGGGAGGAT	120
	CAGTTCAGCC TGGGAGGTTG AGGCTGCAGT GAGCCAGATC ATGCCACTGC ACTGCAGCAT	180
	GGGCAACAGA ATGAGACCCT GGCTAAAAGA AAACAAAATA AAAAATTCAG ACACAGGTTG	240
45	AATCATTGAT AACAGCATAG TGGTAACAGA AAGAAAGTTT GGGAAATTTT TATCTGATCA	300
	GCTTCCCATA CCCTGTTCAT CTTTGTGTTA TGCACTGCCA GGCTGTCTGT AGGTTCAGAC	360
	TCTATATCAT ATGACCTTCA AACACTTGGT TTGTTCTTCT CCTTCCTTCC TCCCTTCTTC	420
50	TTTCATTTTT TATCTTTTTT TCTTTTAAAA TGTTTAGATA GTATAATAAG GAACTGCTGA	480
	GGCTTTCCAG TGCCTCCCTC AACATCCGGA CAGCTAAGGA GGATTTCACT TTGCACCTTG	540

	AGGACGGTTC	CTACAACATC	CGAAAAGATG	ACATCATAGC	TCTTTACCCA	CAGTTAATGC	600
	ACTTAGATCC	AGAAATCTAC	CCAGACCCTT	TGGTAAAGTC	GCAGTGTGCC	CGAATTGAAA	660
5	TTCAATATCC	AGGTGATAGC	TACCTAGATO	TAAATAAAGA	GGAAATTTAC	AATGGTAGAA	720
	TTGATTTTCT	CATAGTAGTC	ACAGGAATTG	TCTGACTTAA	TTGTGTTAAA	TATTCATATA	780
	TTTTGGAAAA	TTTAGATAGT	GGTCTGAATT	TTTCATTTTA	GTCCTGATAT	TTGCCATCAC	840
40	ACAGTCTTTG	CTAGATTATA	TTTGCAGTCA	TGATAATAAA	CCTGCCACTT	TTTTTTTCTT	900
10	AAAAAGCACC	TCCTCCCAAA	TCCAGGAAAT	TGGAGGCTAA	TATATTGATT	ATTCTAGTTT	960
	CTTCTGGGAA	CCCTTCTCTC	TCTAGCTCTG	CCTGACTAAG	GAACTAATCG	TTCAAGCAGG	1020
	ATAGGAAGGT	ATCACAAGGC	TTCCTTAGCT	GCATTAAGCT	CCTGTTCCTT	ATTACTTTCT	1080
15	GATTCAATGT	GGAGTATTTG	CTAAATCACT	AATGGGGTAG	AATTAAAAAG	AAAATTACTC	1140
	TTTGGAGCTT	CCAGGTTTAG	AAAGAGATAA	ATTTCTTTAA	AACTAGCTTA	AAGGCGGTTT	1200
	TCTTTGTATT	TTTATTGCAG	ACTTTTAAAT	ATGATAGGTA	TCTTGATGAA	AACGGGAAGA	1260
20	CAAAGACTAC	CTTCTATTGT	AATGGACTCA	AGTTAAAGTA	TTACTACATG	CCCTTTGGAT	1320
	CGGGAGCTAC	AATATGTCCT	GGAAGATTGT	TCGCTATCCA	CGAAATCAAG	CAATTTTTGA	1380
	TTCTGATGCT	TTCTTATTTT	GAATTGGAGC	TTATAGAGGG	CCAAGCTAAA	TGTCCACCTT	1440
25	TGGACCAGTC	CCGGGCAGGC	TTGGGCATTT	TGCCGCCATT	GAATGATATT	GAATTTAAAT	1500
	ATAAATTCAA	GCATTTGTGA	ATACATGGCT	GGAATAAGAG	GACACTAGAT	ATTACAGGAC	1560
	TGCAGAACAC	CCTCACCACA	CAGTCCCTTT	GGACAAATGC	ATTTAGTGGT	GGCACCACAC	1620
30	AGTCCCTTTG	GACAAATGCA	TTTAGTGGTG	GTAGAAATGA	TTCACCAGGT	CCAATGTTGT	1680
	TCACCAGTGC	TTGCTTGTGA	AATCTTAACA	TTTTGGTGAC	AGTTTCCAGA	TGCTATCACA	1740
	GACTCTGCTA	GTGAAAAGAA	CTAGTTTCTA	GGAGCACAAT	AATTTGTTTT	CATTTGTATA	1800
35	AGTCCATGAA	TGTTCATATA	GCCAGGGATT	GAAGTTTATT	ATTTTCAAAG	GAAAACACCT	1860
	TTATTTTATT	TTTTTTCAAA	ATGAAGATAC	ACATTACAGC	CAGGTGTGGT	AGCAGGCACC	1920
	TGTAGTCTTA	GCTACTCGAG	AGGCCAAAGA	AGGAGGATGC	TTGAGCCCAG	GAGTTCAAGA	1980
40	CCAGCCTGGA	CAGCTTAGTG	AGATCCCGTC	TCCAAAGAAA	AGATATGTAT	TCTAATTGGC	2040
	AGATTGTTTT	TTCCTAAGGA	AACTGCTTTA	TTTTTATAAA	ACTGCCTGAC	AATTATGAAA	2100
	AAATGTTCAA	ATTCACGTTC	TAGTGAAACT	GCATTATTTG	TTGACTAGAT	GGTGGGGTTC	2160
45	TTCGGGTGTG	ATCATATATC	ATAAAGGATA	TTTCAAATGT	TATGATTAGT	TATGTCTTTT	2220
-	AATAAAAAGG	AAATATTTTT	CAACTTCTTC	TATATCCAAA	ATTCAGGGCT	TTAAACATGA	2280
	TTATCTTGAT	TTCCCAAAAA	CACTAAAGGT	GGTTTT			2316

50

(2) INFORMATION FOR SEQ ID NO: 8:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10614 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: hamster</pre>	
15	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 110614 (D) OTHER INFORMATION: /note= "Cholesterol 7α-Hydroxylase"</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GAATTCTAAA CACATATTAA TATCAATGAC TTATATGTAT GTATATATAT ATCTAATATA	60
	GATAATGTAT CTAGGGATAT ATATATATGT ATATTTTATC TTTCTTCCTT TTATTCTTTC	120
25	TTCTCCCCTC TCTGTTCAAC ACCGAGGAAT AGAATGCACT GTGGTGTCAT ACTCTGCTTA	180
	CTCAGCCTCT TATTGACCTC TGAGTCAATA CAGTGCTGAT GTACATCTCC AAATGCCCTC	240
	TTTTCTCCTA ACCACAGACT TTTACATTCA GTAATCAATT TGACATTGTC CCATGATTTA	300
30	CARATGITCA CARTAGIATA TIGACCIATI GCIGCCITCC ARGGICCTCI CCCACTCCCA	360
	AACATCCCAA TATGAACCAG CTTTTGCCTA TCTTCTTGTC TCTTACTTTA ACTCAATGTC	420
	ATTCCCTATT CACTTTGCTG TAATAGATGC TACCTTGATT CTGGTTTTTA GCACCTTAAT	480
35	TTCGCTCTCT GCTCAGGAAC TCTGCCTTTG CTGTTCCCTC TTCTGGGAAC GCTTTTCCTT	540
	TGCTGTTATA TCTCTTCAAA ACAGCTTCTC TATTCAATAT GCTCAAGCTG CCTTCAGCCC	600
	TCAACAGCTC TCCCTACCTC ATTCTAGTCC CTCCACTAGA ATAGAATCTT CATGAGAGTA	660
40	GCGAACTTCC CTATCTTGCT AGTACCCAAA GGCAGAAAAA TCTTTAAAGA GTTCCTGGGA	720
	CATAGAAAAA GTGCTCAATT AATATTTGTA TTAAATAGGG ACCTCAGGTG TAACTCCGTG	780
	GTAGAGCGTT TGCCTTAGAG AAGTAGGGCC ATGGGTTCAA ATTCCAGCAC AGAACAAAAA	840
45	ATTGTGCTGA ATAAAGTTTG GGAGGATGTG TAGCAGTTTA TAGTGCAAGT GGCATAAGCA	900
	GTAAATAATG AATTTGTATC CACTTTTCTA GCAAGAAGTA TTTTATTCTT TATTTGAAGG	960
	ATAACAATTG GTAAAGACTG CATTCTCAAA ATAAACTATG GCTTATGGCT ACGTGGAAGA	1020
	TGAGATAGGG AGAAGGTTTT TTTTTGATGA TGGCAAAATA ACATGTCATA GTCCACACGA	1080

55

50

AACACCTGTG AAGTTGTAAA CACACCTAGC AATCAAACAA GAAAATTGTC CCACCCTATT

	ATCATTCTTT	TGGATTGGTT	GTGGCATATT	TCTGGAAAAT	GATTTAAATT	AATTCCTTCT	1200
	AAAGGTAACA	ACACAAACAA	CCACTATCAT	GACGAAAAGC	TTCTGCCTGT	TTCAGTTTAC	1260
5	ATCATGCTCA	ATGTCTACAA	CAGACGTGCT	CATCTTCAGA	GTGTTTACCT	CTGCTTTTTA	1320
	CACACATTGA	AGCACAATGT	GAGCTGCTGT	CCCTGGGTCT	GAATGTTATG	TCAGCACACA	1380
	AGGGACAGAG	CTTCGGCTTA	TCAAGTATTG	AAGCTCTCTG	CTTGTTTTGG	AGCCTCTTCT	1440
10	GATACTATGG	ACTTAGTTCA	AGGCTGGGCA	ATACTATTTT	TTTCTTTTTT	CTAATAGGAG	1500
	GACAAATAGT	TAGTTGTTTG	CTTTGGTCAT	CCAAGTTCAA	GTTATTGGAT	CATGGTCCTA	1560
	TGTGTATAAA	GAGTCTAGTT	TGAGCCTTTC	AGGGGCAGCC	TTGCTGGCTA	AGCACAGACT	1620
15	CTCCTCTTGG	GAGTTTTCCT	GCTTTGCAAA	ATGATGACCA	TCTCTTTGAT	TTGGGGGATT	1680
	GCTATGGTAG	TGTGCTGTTG	TATATGGGTT	ATCTTTGACA	GAAGGAGAAG	GTATGTCTTT	1740
	TAGCTTATTT	CTAGTGTTTT	CACTATTATA	CAGTTCCAAA	AAAATACTAG	TACATTAGTA	1800
20	TTTTTATTTA	AAATTTAAAG	CCATGCTTCT	TTGACTAAAC	CTGACAAGAT	GTAGAGTTTC	1860
	CCTTTGAATA	TCCACATACA	CTGATGGTAA	TGCTGATCTT	GTTAAACATA	АСТАААААА	1920
	TTATAAGTAT	TGATGCATGT	TTGTGTGCAC	TTCTGTGGAG	TACACCTAAG	CTGGGAAGGG	1980
25	TGCATTTGGC	AAGGGTGACG	TTTGGAAAGG	ATCTTTCTCT	CACAATAACT	GGTTATGCAT	2040
20	ATGCTCTTCT	GGGTTCTCTG	TTACATCAAC	ATTAAAATAC	AGGAATACCC	TTGGCATATC	2100
	TTTGGCAAGG	TAGACTGTGT	CTGCTGTCTT	AGTTTTAATA	ACTTCTTTGC	CTTTTGAGTT	2160
	ATTTGAATTT	ATGCCTGATC	GTTTCCAGTT	TTAGTTGTCT	TAATGCTAAG	AAAGGACAAA	2220
30	TCAATTATAT	TTAGTTATTC	TAACAAGAGA	TAACTAGTTT	ACGTTGAAAA	ATAAATTATC	2280
	TTATAATTTC	TAATAAAAAC	ATTTAAGAGA	GTTAGAAATC	AGCGAATTAT	AGCTGATGAT	2340
	CTGCCAATGT	TTACCTCACT	CAACTTCATT	TTAGATACTT	TTTCAAGTGG	GATTCCTATT	2400
35	CTCTTCAAAT	ATCCGCACAG	AATTATAGTC	CCCTTCTTTC	AGAGTGGGGG	GAATCAAATG	2460
	AAAGGTTTCA	TGTGTGCTAG	GCAAGAGCAC	CACCGTTGAG	CCACACCTCC	AGACCCCACA	2520
	ATGCCAACAT	TTTTAAACTA	TGTAGAGTTT	AAAAAACTTT	AGTTCTGTAG	CCTTTTCTAT	2580
40	TAGCTGGTGT	TTCATGTCTT	CAAAGAAAAG	GAAAACTGAA	ACATTTTAGA	CATATGGACA	2640
	AATGATTCCT	TGAACAAGTC	TAAGCACTGA	TGATAGCTTC	TTTTCTACAG	TGAGATCAAG	2700
	AATCTTGTTA	GCCCTGTTGA	TACTTGTAGC	CCTGTCACTT	GGAAAAGCAA	TCAATTTTAT	2760
45	GATCTAGAAA	ATAGAGCTTG	CCTAAAGATC	AGAGTGCAGA	GCTAGTCACA	CTAGTCAGCC	2820
	ATACAGGTTA	GGCAGTGGTG	GCACATACCT	TTAATCCCTG	CAGCCACTCA	AGTTACCCAT	2880
	AGAAGCTGGG	TGGTGGTGGT	GCACACCCTT	AATATAAGGT	GGAGCACACT	TTAATGTAAG	2940
50	GTGGGTAGAG	TCAGGAGTGC	AGTGTATTCA	GTCTGCAGTC	ACACTGAGAA	CAATATCACC	3000

	CCAGICIIGI	INGNGGIANG	ANCICICIAG	IGATIGGCIG	CITIGCICII	CIGNICITCA	3060
	GTTTGAACTT	CTGTCTCTGG	GTTTTTATTA	TTCGTGCTGC	AGACATAGAC	ATAGCAAACA	3120
5	ATTTAATGAG	TGATTGATGA	ATGTAGATAT	GTATGTACAT	ATTGTGCTGG	ATAGACTGTA	3180
	GATGGGTTGG	TGGATGGGTT	GATGAGTGGG	TAGATTTAGT	AATCACCTTC	ACCAATATCT	3240
	TAGTAGGCTA	AAAAGCCCAC	TGTTTTAGTA	AAAGAGTGGG	GTATCCAACA	AAGAAGTATC	3300
10	TATAAACTGT	AGTTATGTGG	TAGAAATAAG	GGGTAGAAAC	CAGTAAAAAT	TCGGCTTATG	3360
	TACAAATGCT	AAACATGTAA	TTTCCTAAAC	CTCTCAATCT	GTCTCACAGG	AAAGCAGGTG	3420
	AACCTCCTTT	GGAGAATGGG	TTGATTCCAT	ACCTGGGCTG	TGCTCTGAAA	TTTGGCTCTA	3480
15	ATCCTCTTGA	GTTCCTGAGA	GCAAATCAAA	GAAAGCACGG	TCATGTTTTT	ACCTGCAAAT	3540
	TAATGGGGAA	ATATGTTCAC	TTCATCACAA	ACTCCTTGTC	ATACCATAAG	GTGTTATGTC	3600
	ATGGAAAATA	CTTTGATTGG	AAAAAATTTC	ATTACACTAC	TTCTGCAAAG	GTAACTAGTT	3660
20	TTTACAGATT	TTGCTTGTTT	ACTAGCCTGT	TTATTTATTA	GTTTATTTAG	TTGTTCCAAT	3720
	GTTATTAGAT	TGTAGGATAA	AGGGAACATA	AAATCAGGAA	GTCTCTTGGT	ACTAAGCATT	3780
	AAAAAGTCAA	GGTAAATGTG	AATTTGTGAT	TGATGATGAC	ATACACAAAT	TAAGCACTTT	3840
25	GTAAGTACTT	TCTGAGCCAG	AAGACACTAC	AGGAAGGCAC	AGACTCATAA	CATCCATGCT	3900
	GCCATCTACA	CAACACTCAG	AGCACTCAAT	TACCACATCA	TGCACACGAA	CTCGTTCGTT	3960
	AAGAAGTCGA	CAGTATATTT	AAGCATCATT	CAGATGTTAT	CAAGAATCTC	TATTCTAGAG	4020
30	AAAACAACAC	TTAGCTGAAT	TTTTACAAGA	AAATATTAGA	CATGGTCTCT	GTCTTAAGTA	4080
	GATTAAAGTC	TGGCTAAAGT	GCATCTGCAG	AGAACAAAAG	GTAAAGATAA	AATCAATGGC	4140
	CCATTAGTCC	AGAGAAGCTT	ACCTGAAAAT	CTGGGATTTA	AACTTGACCT	TAAAGGAAGA	4200
35	GTATGTCTTA	AGTTTGACTT	TGAAAAATGT	TATGAAATTG	TATTGGGAAG	GCTAGACAGA	4260
	GAAGTATGAT	ATACTTTAAT	CCATCTTCCA	GCCATTTCCT	AACACCCAGG	TTTAGCTGCT	4320
	CCCCTCTGA	CGAATTTCAT	TTTCTACCAG	GCATTTGGAC	ACAGAAGCAT	TGACCCAAAT	4380
40	GATGGAAATA	CCACAGAAAA	CATAAACAAC	ACTTTTACCA	AGACCCTCCA	GGGAGATGCT	4440
70	TTGCATTCAC	TCTCTGAAGC	CATGATGCAA	AACCTTCAAT	TTGTTCTGAG	GCCTCCTGAT	4500
	CTTCCTAAAT	CAAAGAGTGA	TGCCTGGGTC	ACCGAAGGGA	TGTATGCCTT	CTGCTACCGA	4560
45	GTGATGTTTG	AAGCTGGATA	TCTAACTCTG	TTTGGCAGGG	ATACTTCAAA	GCCAGACACA	4620
45	CAAAGAGTGC	TTATCCTGAA	CAACCTTAAC	AGCTTCAAGC	AATTTGATCA	AGTCTTTCCG	4680
	GCGTTGGTGG	CAGGCCTCCC	TATTCACTTG	TTCAAGGCGG	CACATAAGGC	CCGGGAACAG	4740
	CTGGCTGAGG	GCTTGAAGCA	TGAGAACCTC	TCTGTGAGGG	ACCAGGTCTC	GGAACTGATA	4800
50	0000000000	mammamax x	max ax amama	mama a a mmma			4000

	ACACACCTCG	CIMICCICIO	GGCCTCTCAG	GCAAACACIA	TICCIGCAAC	CITCIGGAGC	4720
	TTATTTCAAA	TGATCAGGTG	GATAGCAATT	TGAGTGTTTA	TTCTTCATAG	TGACAGAAAT	4980
5	TAACAATTTT	TAATAAACCC	CCCAAAAGAC	TAGCAGAGCT	TTCTTTGCTG	TTGGTCAAGA	5040
	ATGTGATACT	CAGTGCCTGT	GTTTGACATA	TATATATAAC	AAAAGTAGCA	TTTTGTAAGA	5100
	ATATAGTCTC	ACCAGAAAGG	GATGTCCCAG	AAGCCGCAGA	ACTTAGATCT	GCTGGCACTT	5160
10	GTCATTAAAG	GTCCCCTTGC	CCAGTCTTGC	TTTTAACTCC	ATAGTGTTCT	TCTTAGTGTC	5220
	AAGTTAAATC	TATGACTGCA	GTCTTCATCA	CAACTTTAAA	TAATGACTGA	CTTGTCAATG	5280
	TGGTAAGTGC	AGAGGCCACA	CCTTACTAGT	TTGAACATTC	CTGTTTTCTG	CGGCCTCACA	5340
15	GATTTACAGC	AGAGTTGCAA	CATCAATTTC	ATATTACCTA	TGAACTACAA	CCATATTTTA	5400
	AGTTCAACAA	CTACTTGTTA	GTAACATTTC	TGAGGCTCAG	TTCACTTTAA	CCAGATAAAG	5460
	GAGATTTCAA	ACAGCTGCCA	ACAAATTTCC	ATGCACTGAA	TGGAAGTATT	CTTTATCGCA	5520
20	CAGTTCAAAA	ATAATAACAT	AAATATTCTG	AAGCTGTGGT	ATGAATTTAA	AGAGTAAATT	5580
	TGAATTTCTA	CTTGGGAATT	CACCAATACC	CTGTAATTGT	ATGTTAGAGG	AAGTATTCGG	5640
	AATGAATTAC	TCTACTCATC	ACACGAATGT	CTAGCCCTTA	TTAGAATCAT	TGGTTTATAG	5700
25	AGATCTGACC	AAAGCTTTGC	TTTTACATAG	CAACGCCCCT	TTAATGCTTC	TTCATAAATT	5760
	CAAGGACATG	AATCCAGTTC	AGAATACAGT	ACAAGTAAAT	GACAATGCCC	TTTGCATGTT	5820
	CCTGGAACCA	CTTCCCTTTT	CATGCTCCCA	TGCTAACGCG	ATCACCTCAT	TAAAAGAAAT	5880
30	GGAGTTCTTA	TTTACTTGCA	GCTCTCTGAA	TAAGGCAATA	TCTTCCATAT	GTCTCTTTTC	5940
	ATAGGAGTCC	TGACGCATTG	AGAGCAGCCT	CTGAAGAAGT	GAATGGAGCA	TTACAGAGTG	6000
	CTGGTCAAAA	GCTCAGCTCT	GAAGGGAATG	CAATTTATTT	GGATCAAATA	CAACTGAACA	6060
35	ACCTGCCAGT	ACTAGGTGTG	TTCCCTATGC	TATCCCTCAC	TAACATGTCA	CTAGTAACAA	6120
	TGCTCAACAT	ATAATGAATG	TACTATATTC	TTGATATTTT	TGCAACGCTG	CAACAGTCTA	6180
	ATAACTAGGG	TCATCTTCAT	TTTTTCTAAC	AAACAAGGAA	CTGAGACCCA	GAGCGTGGGA	6240
40	CAGTGGCAAC	CCTGGCATAG	AACATTTGAT	ACTCAGTTGC	TCTAGGTCCT	TGGCCTCCTT	6300
	TCTTAGTCCT	CCAAAACCAC	AAACCCAGGG	TTAAGGAAGC	ATGGAATTAA	TGTGAACAAA	6360
	GCAACACCAT	TGGTTTGGGC	GATGAGACTG	AGGCTTTTCT	TCCTTTGTTT	CTGTATTTTC	6420
45	TAGAATGCAG	TAGTACCATG	TATTACAGTA	AAACAGCCAT	ATTTTTGTGT	CCTGTTCTGT	6480
	AAAGGACAGA	AGCCCCCATA	TGCTTTGAGG	GCAGTTTAGT	TTATTAGAAG	CAACAGAGCC	6540
	TAGATTCAGC	ACTGCCTGGT	TTGGGACCTC	CCTTTAGACA	CCTCCCTTTT	CTCACCTGTA	6600
50	AATAAAGGCT	AAGTAAGCAT	TTGTGACTGC	ATACTCAGTC	ATGGCCTGAA	TCCTGGGAAC	6660
	AAGGCAGCTA	GCAGCTAGAG	GCTGGAAAAC	AGGACTGGAC	CTCAGCAGCT	CTACTGCATT	6,720

	ACTTCCCCTA	GAAGCAGGGT	GTGGCTACAC	AAAACCAGAC	AGATAATGTA	TGGCTGAATG	6/80
	TAGATTCATG	AAATGCTTGG	AAAGACATTT	ACTTATCAGT	ATGTTTAATT	CCCAAAATGG	6840
5	TCAGCAACAA	TTCACACAAA	ATTGATTATA	AGTTTTTTCA	ATTTGCTTAG	CTGTTTAGTG	6900
	TCCAGTAGAA	ATAAGATTAC	TATTCTATAA	AGTGACAGAT	GTTCATCTAG	TTCCCATTGA	6960
	TGGTGAAGAA	CATTATGTCA	TCCCAAAAGA	TCGTTAACTT	AGATCGTGGT	TCTCTACCTT	7020
10	CCTGATGTTG	TGTGACCCCC	AACTGTGAAA	TTATTTTCAT	TGCTACTTCA	CAACTATAAT	7080
	TTTGCTTCTG	TCATGAATCA	TAAAGCAAAT	ATCTGTGTTT	TCTGATGGTC	TTAGGTGACC	7140
	CCTGTGAAAG	GGTCATTTGA	CTCTACCCCC	TACATGGGTT	GTGATCCACA	GGTTGAGAAG	7200
15	CACTGACTTA	GATTCTCAGA	TTGCAAGTAG	AGCAGCAGAA	TTTCGAAGAA	CAGCAGTGGC	7260
	GACAGAAGCT	GCTTTGGGCA	GTTGTCATTT	GTTAGCTTTC	ATTGGCTCAT	TTTGTATACA	7320
	GATTTTCGGA	AGTATTTCAG	ACTTTATGTT	ATGTAGCCTT	TAGAGGCAAC	AGTTCAGGAC	7380
20	TGGAGAGATG	GCTCAAGGGT	TAAGAGCACT	GGCTGTTTTT	TCAGAGGACC	CATGTTTGAC	7440
	TCACAGCACA	CACATGGTGG	CTCACAGCCA	TCATGACTCC	TGTTCCAAAG	GATCTGATGT	7500
	CTTCTTCTGA	CCTCTGCAGA	CACCAGGCAT	GCATACATGC	AGGCAAAATA	CCCATCAATA	7560
25	ТАААААТААА	TAACTGGGAA	ATATGCAAAT	TCTTTAATAT	GCAAATTCTT	CTCTCCCCAA	7620
20	CTGCCATTTC	CCATGCTCCA	CCCTCATCCC	TTCCCTCCTC	TCTTACTTCT	TTTGTTTGGA	7680
	ATTCTTTAGA	TAGCATCATC	AAGGAGGCTC	TGAGGCTTTC	CAGTGCATCC	TTGAATATCC	7740
20	GGACTGCTAA	GGAGGATTTC	ACTCTGCACC	TTGAGGATGG	CTCCTATAAC	ATCCGAAAAG	7800
30	ACGACATCAT	CGCTCTTTAT	CCACAGTTAA	TGCATTTGGA	TCCTGCAATC	TACCCAGACC	7860
	CTCTGGTAAG	TTTTTCTGCT	CATCAAAGTT	ATGTATCGAG	GTGACAGTCA	CCCAGGAATG	7920
	TATTTGTAAT	TACAGCTTTG	ATTTGATCAT	TAAAGTGAAG	CCATAGGGAT	TGTCCCTCTT	7980
35	TATTGCGGCA	AATATTCATG	TTTTGGAAAC	TTTGGGTAGA	GGCAAGAGTT	TTGAACTTTT	8040
	ACACCTAATA	TTCATTTCAT	AGTTTCTGCT	AGACTATGTT	TTCAGTCATA	ACAAAACTAC	8100
	CACCTTTTTT	CCCCTCACA	AAGTACCCTC	TCCCAAATTT	ACACTAATGG	AGGGTAATGC	8160
40	ATTTGACTTG	ATCCTTAGAG	TAGTTGTTTA	GAGCCATTTT	GCTTCTTTTG	TCTAACTGAA	8220
	GAATTAGTCT	ACAGGTAGAA	CAGGAGGTCC	CTAGAGCTTC	TTGGTCCACC	AGCTCTTCAT	8280
	AAGCTCTTTC	CAGTATCACC	TGGTTCAGTG	CTTGGTGTTT	GCTAACTTGT	AGAGGATGGA	8340
45	TTTATTAGTA	GAAAATTACT	CTTTGGATCC	TCCAGGTCAA	GAAGGCAACA	ACTTTCTATC	8400
	ATAATAGCTC	ATTGGCTTCT	TGTCTCTTTG	TTGCAGACTT	TTAAATATGA	TCGATACCTG	8460
	GATGAGAACA	AGAAGGCAAA	GACCTCCTTC	TATAGCAATG	GAAACAAACT	AAAGTATTTC	8520
50	TATATGCCAT	TTGGATCCGG	AGCTACAATA	TGCCCTGGGA	GACTATTTGC	TGTCCAAGAA	8580

	ATCAAGCAAT	r ttttgattct	GATGCTTTC	TACTTTGAAC	TGGAGCTTGT	GGAGAGTCAT	8640
	GTCAAGTGTC	CTCCTCTAGA	CCAGTCCAGG	GCAGGCTTGG	GGATTTTGCC	CACCATTAAAT	8700
5	GATATTGAGT	AATATAATT 7	ACTGAAACAT	CTGTGACATG	TGGTTGGAAG	AAGAGGACAC	8760
	TGGATGATG	TGCTGGACTG	CAGCGAGTCT	CACTAAACAA	GCCCTTGGGA	CAAATGCTCT	8820
	CCTTTGCTTC	CCAGCAACTG	ACTGTGCCTA	GGAAAAGAAC	TGGTACCCC	GGCACCACTC	8880
10	TCTGTTCTCA	CTGCCTGAGT	TCCTGGGTGT	TCAGATAGCT	GAGGTCAGAG	TTTCACCACT	8940
	CTTAGAAGCA	ATGTCTTTTG	TTTTTATTT	CAAAATGAAG	ATACTCCAAT	TGGCAGATTT	9000
	TTTTTCCTAA	GGAAATTGCT	TCATACTTTT	ATGAAAACTG	ATTAATTATG	AAAAGGCTTC	9060
15	AAATTCACGT	TTTAGTGAAA	CTGTTATTTT	TTTCACTAGT	GAAGTTCTTC	ATGTGTGAAC	9120
	ATATACTATA	AAAACATTTT	AAGGGATCAT	ATCATGCTTT	GCATAAAGGG	AAAGGAAAAT	9180
	ATTATTCAAC	TTTTTTTTT	GGTTTTTCTA	GACAGGGTTT	CTCTGTGTAG	CTTTGGAGCC	9240
20	TATCCTGGCA	CTCACTCTGT	AGAGCAGGCT	TGGTCTTGAA	CTCACAGAGA	TCTGCCTGCC	9300
20	TTTGCCTTCC	GAGTGCTGGG	ATTAAAGTCG	TGCGTCACCA	ATGCCTGGCT	ATTTAACTTT	9360
	TTCGATGTCT	AGTGGTGAGA	GCTTTGAAAA	TGATGCTACT	GTGTTGGGAA	TACTATGGGA	9420
	AATTTTGATG	CTTCGCTGTT	ACATTTAAAT	TTATTGCTGC	TGGAAATTGT	CACCCCAGTT	9480
25	TTCAATTGCC	CCTCTCTCTC	CCTTTTAATA	TTCACACTGA	TGAGCAGAGT	TTTTTAGAGA	9540
	TTAAAAAGAC	CTCCCCAGAG	CCCTGTCTCT	GATGTTTTTA	AGCCTTTAAT	CTCAGTACTC	9600
	AGGAGGCAGA	GGCAGGCAGA	GCTCTGTGAG	TTCGAGGCCA	GCCTGATCTA	CAGATCGAGT	9660
30	TCCAGGCAAG	CCGGGGCTAC	AGAATGAGAC	CTTGTCACTA	AAAGAAATAA	ATAAGGTCAA	9720
	TTTTATGTCA	CAACTGATTA	TGAATCATTG	TAAAGGATAA	ATTGAAAAAA	AAGAACTCCA	9780
	CGGGAATGAC	CATTTAAATG	GTCTATTTTA	GCTAAAATTA	ACTATGAATT	ATGTGGAGTT	9840
35	CATTAAGTGT	ATGTTGACGT	TATATGTTCC	TTTAAAATGT	CTTATGTTTT	ATCTCTGAAT	9900
	GTCTTGTAGA	TGGAGAGCAA	TAATAGTGTT	TAAATACTGA	GTCAATAAGG	TTTTATCTAT	9960
	GTACTTTAAG	AGCATTATTA	GCTGTGTCAT	TTTTACTGAT	ATATCTAATA	TATTTATATG	10020
40	TAAATTATAT	TTATCTTTTA	TCTTATACTA	CAAATATAAG	TAAATATTTT	AAAACCAGTA	10080
	ACTTTAAAAT	TACCTACCTT	TCAGAAATGA	AAATAAGAAC	ATTTGTGCTT	TAACCTTTGA	10140
	AATAGAATGT	TTATTCATCC	ACTGATAAGT	TAAAATAATT	TTATCTGATT	TGTTTCAAGA	10200
45	AACTCAAAAA	TATTCAAAGT	AATCATGCAC	TCAAAGGTCT	TCGTAAGGTT	ACAGAAAATT	10260
	CAATAAAATC	TTTTTTGTGT	AGGGACTGAG	TCAGGGTCTA	GAAGATGCTT	GGCAGGTACT	10320
	CCAGTAGTGA	GCTGGATCCA	GAAGATTCCT	TAAACTTTAA	AATCTTAACA	CTAAGTATTA	10380
	TCACAGAGTT	ATTACCTAAG	TAGAATATTT	TTCCTTTCCT	TTTCAATTGA	CAGAGTCCCA	10440

55

	CAGCAACA	CA GCTGGCTGTA	ACTOTTCACA	TAGCTTGCGC	AGGCTTTGAA	CTCACTGTAC	10500
	TCCTGCCT	TT CCTTTTCTAG	GAAATTATTT	TCCACATCAA	GAAAATTTAA	TTGTTCCGAT	10560
5	GAGGTATA	GA GTAACAAATT	TCTGTTATAT	ATTCATCTGT	ATTAAACTGA	ATTC	10614
		RMATION FOR SE	_				
10		(A) LENGTH: (B) TYPE: nu (C) STRANDED: (D) TOPOLOGY	cleic acid NESS: singl				
	(ii)	MOLECULE TYPE	: DNA (gend	omic)			
15	(iii)	HYPOTHETICAL:	NO				
	(iii)	ANTI-SENSE: Y	ES				
20	(vi)	ORIGINAL SOUR (A) ORGANISM					
	(vii)	(A) LIBRARY:		RL 102j			
25	(ix)	FEATURE: (A) NAME/KEY (B) LOCATION (D) OTHER IN: 7α-Hyd	: 144 FORMATION:	/note= "1. 2. promoter		ı	
	(xi)	SEQUENCE DESC	RIPTION: SE	EQ ID NO: 9:	•		
30	TGTTTGCT	TT GGTCACTCAA	GTTCAAGTTA	TTGGATCATG	GTCC		44
	(2) INFO	RMATION FOR SE	Q ID NO: 10):			
35	(i)	SEQUENCE CHARMAN (A) LENGTH: (B) TYPE: nucleocity (C) STRANDEDICATION (D) TOPOLOGY	19 base pai cleic acid NESS: singl	irs			
40	(ii)	MOLECULE TYPE	: DNA (gend	omic)			
	(iii)	HYPOTHETICAL:	NO				
	(iii)	ANTI-SENSE: Y	es				
45	(vi)	ORIGINAL SOURCE (A) ORGANISM					
	(vii)	IMMEDIATE SOUI (A) LIBRARY:		RL 102j			
50							

5	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 119 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	CTATGGAC	TT AGTTCAAGG	19
10	(2) INFO	RMATION FOR SEQ ID NO: 11:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
20	(iii)	HYPOTHETICAL: NO	
20	(iii)	ANTI-SENSE: YES	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
25	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
30	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 118 (D) OTHER INFORMATION: /note= "1. Cholesterol 7\alpha-Hydroxylase; 2. Promoter"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
35	TGTTCTGG	AG CCTCTTCT	18
	(2) INFO	RMATION FOR SEQ ID NO: 12:	
40	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 49 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
45	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
	(vi)	ORIGINAL SOURCE:	
50		(A) ORGANISM: rat	

	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
5	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 149 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
10	` .	SEQUENCE DESCRIPTION: SEQ ID NO: 12: GC CTAGTGCCAC ATCTACCTAT TTCTTTGGCT TTACTTTGT	49
	(2) INFO	RMATION FOR SEQ ID NO: 13:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
25	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
30	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 112 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	TGGTCAAG	TT CA	12
40	(2) INFO	RMATION FOR SEQ ID NO: 14:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(ii)	MOLECULE TYPE: DNA (genomic)	
		HYPOTHETICAL: NO	
		ANTI-SENSE: YES	
50	. ,		

	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: rat</pre>	
5	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
10	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1126 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	CTAGTAGGAG GACAAATAGT GTTTGCTTTG GTCACTCAAG TTCAAGTTAT TGGATCATGG	60
15	TCC	63
	(2) INFORMATION FOR SEQ ID NO: 15:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 70 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
-0	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	
	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
35	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 170 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CCTCTTCTGA GACTATGGAC TTAGTTCAAG GCCGG	35
	(2) INFORMATION FOR SEQ ID NO: 16:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 base pairs (B) TYPE: nucleic acid	
50		

69

		(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
5	(ii)	MOLECULE TYPE: DNA (genomic)	
J	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
10	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
15	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1120 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
20	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	TCACTGTG	GC CTAGTGCCAC ATCTACCTAT TTCTTTGGCT TTACTTTGTG CTAGGTGACC	60
25	(2) INFO	RMATION FOR SEQ ID NO: 17:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
35	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
40	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 143 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
45			
		SEQUENCE DESCRIPTION: SEQ ID NO: 17:	- -
	GAAGATCT	AG TAGGAGGACA AATAG	25
50			

	(2) INFO	RMATION FOR SEQ ID NO: 18:	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
10	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
15	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
20	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 145 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
	GATCCTTG	GT CACTCAAGTT C	21
25	(2) INFO	RMATION FOR SEQ ID NO: 19:	
		-	
30	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
	(iii)	HYPOTHETICAL: NO	
35	(iii)	ANTI-SENSE: YES	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
40	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
45	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 139 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	GATCCAATA	AG TGTTTGCTTT GGT	23

55

	(2) INFO	RMATION FOR SEQ ID NO: 20:	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
10	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
15	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
20	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 129 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
25	AGATGGCT	CG AGACTCTTTG CCTAGCAAA	29
	(2) INFO	RMATION FOR SEQ ID NO: 21:	
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	
35	(iii)	HYPOTHETICAL: NO	
	(iii)	ANTI-SENSE: YES	
40	(vi)	ORIGINAL SOURCE: (A) ORGANISM: rat	
70	(vii)	IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
45	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 117 (D) OTHER INFORMATION: /note= "1. Cholesterol 7α-Hydroxylase; 2. Promoter"	
50			

72

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	CAGCACATGA GGGACAG	17
5	(2) INFORMATION FOR SEQ ID NO: 22:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	
20	(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j	
25	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 119 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22: CTCTTCTGAG ACTATGGAC	19
30	· · · -	19
30 35	CTCTTCTGAG ACTATGGAC	19
	CTCTTCTGAG ACTATGGAC (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	19
	CTCTTCTGAG ACTATGGAC (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	19
35	CTCTTCTGAG ACTATGGAC (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	19
35 40	CTCTTCTGAG ACTATGGAC (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	19
35	CTCTTCTGAG ACTATGGAC (2) INFORMATION FOR SEQ ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: YES (vi) ORIGINAL SOURCE:	19

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	GAAGATCTAG TAGGAGGACA AATAG	25
5		
	(2) INFORMATION FOR SEQ ID NO: 24:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 264 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	
20	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
25	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1264 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
30	CAGCACATGA GGGACAGACC TTCAGCTTAT CGAGTATTGC AGCTCTCTGT TTGTTCTGGA	60
	GCCTCTTCTG AGACTATGGA CTTAGTTCAA GGCCGGGTAA TGCTATTTTT TTCTTCTTTT	120
	TTCTAGTAGG AGGAGGACAA ATAGTGTTTG CTTTGGTCAC TCAAGTTCAA GTTATTGGAT	180
35	CATGGTCCTG TGCACATATA AAGTCTAGTC AGACCCACTG TTTCGGGACA GCCTTGCTTT	240
	GCTAGGCAGG CAAAGAGTCT CGAG	264
	(2) INFORMATION FOR SEQ ID NO: 25:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 199 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
50	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	

	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
5	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1199 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
,,	CTCTTCTGAG ACTATGGACT TAGTTCAAGG CCGGGTAATG CTATTTTTTT CTTCTTTTTT	60
	CTAGTAGGAG GACAAATAGT GTTTGCTTTG GTCACTCAAG TTCAAGTTAT TGGATCATGG	120
15	TCCTGTGCAC ATATAAAGTC TAGTCAGACC CACTGTTTCG GGACAGCCTT GCTTTGCTAG	180
75	GCAGGCAAAG AGTCTCGAG	199
	(2) INFORMATION FOR SEQ ID NO: 26:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	
	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
35	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1145 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GAAGATCTAG TAGGAGGACA AATAGTGTTT GCTTTGGTCA CTCAAGTTCA AGTTATTGGA	60
	TCATGGTCCT GTGCACATAT AAAGTCTAGT CAGACCCACT GTTTCGGGAC AGCCTTGCTT	120
45	TGCTAGGCAG GCAAAGAGTC TCGAG	145

50

	(2) INFORMATION FOR SEQ ID NO: 27:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
70	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: rat	
15	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: Clontech, RL 102j</pre>	
20	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 186 (D) OTHER INFORMATION: /note= "1. Cholesterol</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	•
25	GAAGATCTAG TAGGAGGACA AATAGTGTTT GATTTGGTCA CTCAAGTTCA AGTTATTGGA	60
	TCATGGTCCT GTGCACATCC TAGGGC	86

Claims

30

35

- 1. A regulatory element of the cholesterol 7α-hydroxylase (CYP7) gene selected from DNA fragments in the group consisting of from about -160 to about +32, from about -3643 to about -224, from about -224 and +32, from about -191 to about +64 of the rat CYP7 gene, from about -252 to about +3 of the hamster CYP7 gene, and from about -187 to about +65, from about -158 to about +32, from about -3643 to about -224, from about -223 to about +32, of the human CYP7 gene.
- 2. A regulatory element of the rat CYP7 gene selected from DNA fragments in the group consisting of from about -101 to about -29, from about -81 to about -37, from about -161 to about -127, from about -149 to about -131, from about -171 to about -154, from about -101 to about -82, from about -73 to about -56, and from about -86 to about -71.
- 3. A regulatory element of the human CYP7 gene selected from DNA fragments in the group consisting of from about -104 to about -30, from about -36, from about -159 to about -124, from about -147 to about -128, from about -169 to about -152, from about -104 to about -79, from about -71 to about -54 and from about -89 to about -68.
- 4. A regulatory element of hamster CYP7 gene selected from DNA fragments in the group consisting of from about -161 to about -86, from about -136 to about -92, from about -208 to about -184, from about -206 to about -188, from about -228 to about -211, from about -161 to about -137, from about -128 to about -111 and from about -146 to about -126.
 - 5. A construct comprising at least one regulatory element as defined in claim 1, wherein said regulatory element is operably attached to a structural gene.
 - 6. A construct according to claim 5, wherein said structural gene is a reporter gene.

- 7. A construct according to claim 6, wherein said structural gene comprises the gene encoding luciferase.
- 8. A host cell transformed with a vector comprising a construct according to claim 6.
- 9. A host cell according to claim 8 that is a HepG2 cell.
 - 10. A host cell according to claim 9 that is a confluent HepG2 cell.
- 11. A method for determining whether an agent inhibits or stimulates CYP7 gene expression comprising the steps of:
 - (a) providing a host cell according to claim 9 in a medium suitable for expression of said structural gene;
 - (b) contacting said host cell with said agent; and
 - (c) detecting an inhibition or stimulation of gene expression.
 - 12. A method according to claim 9, wherein said agent is a physiological agent endogenous to a human.
 - 13. A method according to claim 11, wherein said agent is an agent exogenous to a human.
- 14. A method for detecting a transcription factor of CYP7, comprising the step of contacting a fragment of DNA according to claim 1 with a biological sample suspected of containing a transcription factor and detecting binding between said fragment and a transcription factor.
- 15. A method for detecting a transcription factor according to claim 14, wherein said binding is detected by performing a footprint analysis.
 - 16. A method according to claim 14 further comprising the step of isolating the transcription factor.
- 17. A substantially isolated CYP7 transcription factor identified by the process of claim 16, wherein the factor binds to a core sequence comprising (T or C)CAAG(T or C).
 - 18. A transcription factor according to claim 17 wherein said factor binds to a sequence comprising TCAAGTTCAAGT or CCAAGCTCAAGT.
- 35 **19.** A transcription factor according to claim 17 that is characterized by a molecular weight of about 57,000 Daltons.

40

15

45

50

HIG. 1

GRE TGTTCTGGAGCCTCTTCTGAGAC-TATGGACTTAGTT TGTTTTGGAGCCTCTTCTGATAC-TATGGACTTAGTT TGTTTTGGAGCCTCTTCTGATAC-TATGGACTTAGTT TGCTTTGGAACCACTTCTGATACCTGTGGACTTAGTT	PPRE / HRE CITITITETAGTAGGAGGACAAATAG CITITITETAATAGGAGGACAAATAG-TTAGT CITITITETAATAGGAGGACAAATAG-TTAGT - TITITITETAATAGAATGAACAAATGGCTAAT	BOX TCATGGICCTGIGCACATATAAA- TCATGGICCTATGTGTATAAAG TC-TGGTACTATGTATATAAA	TTT-GCTAGGCAAAGAGTCTCCCCT- .T*G-GCTAAGCACAGACTCTCCTCT- .CTTT-CTAATCAGAGA-TTTTCTTCC	Fig. 4
GREGAGTATTGCAGCTCTCTGTTTGTTCTGGAGC TATCAAGTATTGAAGCTCTCTGCTTGTTTTGGAGCTGTATTGCAGGTCTCTGATTGCAACC	CAAGGCCGGGTAATGCTATTTTTTTTTTTTTTTTTTTTT	TGTT3 HRE LFBI CAAT BOX TGTTTGCTTTGGTCACTC-AAGTTCAAGTTATTGGATCATGGTCCTGTGCACATATAAA- TGTTTGCTTTGGTCA-TCCAAGTTCAAGTTATTGGATCATGGTCCTGTGCACATATAAAG TGTTTGCTTTGGTCA-TCCAAGTTCAAGTTATTGGATC-TGGTCCTATGTGTATAAAG TGTTTGCTTTGCTTTG-TCAA-CCAAGTTCAAGTTAATGGATC-TGGTACTATGTATATAAAA	-GTCTAGTCAGACCCACTGTTTC-GGGACAGCCTTGCTTT-GCTAGGCAAAGAGTCTCC(*********************************	TTGGAAATTTTCCTGCTTTTGCAAATG * *** *******************************
Rat -191 Hamster - 252 Human -187	-135 -192 -132	-81 -136 -78	- 2 3 - 7 9 - 2 3	37-23-38

EP 0 648 840 A2

Hig. B

Effect of T4 and Dexamethasone on transcriptional activity of CYP7 / Luc constructs in HepG2 cell cultures

Europäisches Patentamt European Patent Office

Office européen des brevets

EP 0 648 840 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 20.08.1997 Bulletin 1997/34
- (43) Date of publication A2: 19.04.1995 Bulletin 1995/16
- (21) Application number: 94115856.0
- (22) Date of filing: 07.10.1994

(51) Int. Cl.6: C12N 15/53, C12N 9/02, C07K 14/47, C12Q 1/68, C12Q 1/26, C12N 5/10, C12N 15/85

(11)

- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
- (30) Priority: 13.10.1993 US 135511 13.10.1993 US 135488 13.10.1993 US 135510 28.01.1994 US 187453
- (71) Applicant: Northeastern Ohio Universities Rootstown, Ohio 44272-0095 (US)

- (72) Inventor: Chiang, John Young Ling Stow, Ohio 44224 (US)
- (74) Representative: Bösl, Raphael Konrad, Dr. **Hoechst AG** Zentrale Patentabteilung Gebäude F 821 65926 Frankfurt am Main (DE)
- Cholesterol 7alpha-hydroxylase gene regulatory elements and transcription factors (54)
- DNA regulatory elements that control choles-(57)terol 7α -hydroxylase expression are disclosed, including bile acid responsive elements. A gene construct comprising at least one CYP7 regulatory element and a reporter gene is used to transfect HepG2 cells. Confluent transfected HepG2 cells are employed in an assay to detect a compound that modulates cholesterol 7α hydroxylase enzyme regulation. A method for screening

compounds that inhibit or stimulate expression of the enzyme is provided, as well as a method for detecting and isolating transcription factors of the cholesterol 7αhydroxylase gene. A transcription factor of 57 KDa is identified which is useful in an assay for determining regulation of CYP7 expression.

Hig. S

EP 0 648 840 A3

EUROPEAN SEARCH REPORT

Application Number EP 94 11 5856

i	Citation of document with ind	ERED TO BE RELEVANT	Relevant	CLASSIFICATION OF THE
Category	of relevant pass	ages	to claim	APPLICATION (Int.Cl.6)
Х	WO 92 18523 A (MERCK DAVID T (US)) 29 Oct	& CO INC ;MOLOWA ober 1992	1,3,5,6, 8-10, 14-16	C12N15/53 C12N9/02 C07K14/47
	* the whole document	*		C12Q1/68 C12Q1/26
x	GENE, vol. 130, 25 August pages 217-223, XP002 HOEKMAN, M.F.M., ET "TRANSCRIPTIONAL REG ENCODING CHOLESTEROL THE RAT" * the whole document	026711 AL .: ULATION OF THE GENE .7ALPHA-HYDROXYLASE IN	1,2,5,6, 8	C12N5/10 C12N15/85
X,D	BIOCHIMICA ET BIOPHY vol. 1132, 1992, pages 337-339, XP000 CHIANG, J.Y.L., ET A 5'-FLANKING SEQUENCE 7ALPHA-HYDROXYLASE (* the whole document	0674487 NL .: "CLONING AND E OF A RAT CHOLESTEROL GENE"	1,2	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
x	BIOCHIMICA ET BIOPHY vol. 1168, 1993, pages 239-242, XPOO THOMPSON, J.F., ET 7ALPHA-HYDROXYLASE CYCLOPHILIN PSEUDOG * the whole document	0674632 AL .: "CHOLESTEROL PROMOTER SEPARATED FROM ENE BY ALU SEQUENCE"	1,3	C07K C12N C12Q
X,D	BIOCHIMICA ET BIOPH vol. 1172, 1993, pages 147-150, XP00 NISHIMOTO,M., ET AL GENE ENCODING HUMAN 7ALPHA-HYDROXYLASE"	0674597 .: "STRUCTURE OF THE		
Y	* the whole documen	t * -/	5-10	
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	11 June 1997	Но	ltorf, S
THE HAGUE 11 June 1997 CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document A: member of the same patent family, corresponding document				

EUROPEAN SEARCH REPORT

Application Number EP 94 11 5856

Category	Citation of document with ind	ication, where appropriate,	Relevant	CLASSIFICATION OF THE
acegory	of relevant pass	ages	to claim	APPLICATION (Int.CL6)
x	EMBL SEQUENCE DATA L GERMANY, XP002026713 CRESTANI,M., ET AL . SEQUENCING, AND ANAL CHOLESTEROL 7ALPHA-H (CYP7)" ACCESSION NO. L04690	: "GENOMIC CLONING, YSIS OF THE HAMSTER YDROXYLASE GENE	1,4	
P,X P,Y	WO 94 18346 A (UNIV * the whole document		14-16 5-10	
P , X	THE JOURNAL OF BIOLO vol. 269, no. 26, 1 pages 17502-17507, X CHIANG, J.Y.L., ET A AND CHARACTERIZATION ACID-RESPONSIVE ELEM 7alpha-HYDROXYLASE G* the whole document	July 1994, P002032493 L . : "IDENTIFICATION OF A PUTATIVE BILE ENT IN CHOLESTEROL ENE PROMOTER"	1,2, 5-12,14, 15,17-19	
Ρ,Χ	THE JOURNAL OF BIOLO vol. 269, no. 20, 20 pages 14681-14689, X LEE, Y-H., ET AL .: FUNCTIONAL DBP SITES THE CHOLESTEROL 7alp GENE, CYP7" * the whole document	May 1994, P002032494 "MULTIPLE, ON THE PROMOTER OF ha-HYDROXYLASE P450	1,2, 5-10,14, 15	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
		-/		
	The present search report has been	en drawn up for all claims		
	Place of search	Date of completion of the search	<u>- </u>	Examiner
	THE HAGUE	11 June 1997	Ho1	torf, S
X: particularly relevant if taken alone Y: particularly relevant if combined with another D: document of the same category L:			le underlying the current, but publi ate in the application or other reasons	

EUROPEAN SEARCH REPORT

Application Number EP 94 11 5856

Category	Citation of document with in of relevant pas		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
P,X	ACIDS AND STEROID/THEXPRESSION OF CHOLES	January 1994, 2032495 .: "EFFECTS OF BILE HYROID HORMONES ON THE STEROL 7 RNA AND THE CYP7 GENE		•
Т		7 February 1997 002032496 .: "CHARACTERIZATION REGULATORY ELEMENTS I OF THE HUMAN HYDROXYLASE GENE"	1-19 N	
				TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has be	en drawn up for all claims		
	Place of search	Date of completion of the search		Examinet
	THE HAGUE	11 June 1997	Hol	torf, S
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent after the filing ther D : document cite L : document cite	iple underlying the document, but publi	invention
		L: document cite	for other reasons	y, corresponding

European Patent

Office

CL	AIMS INCURRING FEES
The preser	nt European patent application comprised at the time of filing more than ten claims.
	All claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for all claims.
	Only part of the claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid,
	namely claims:
	No daims tees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LA	CK OF UNITY OF INVENTION
1	n Division considers that the present European patent application does not comply with the requirement of unity of
invention a namely:	nd relates to several inventions or groups of inventions,
	see sheet -B-
	333 3,1033 3
X	All further search lees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
	Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respects of which search fees have been paid,
	namely daims:
	None of the further search fees has been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims.
	namely claims

EP 94 11 5856 - B -

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions, or groups of inventions, namely:

1. Claims 1-13:

Use of rat, hamster and human Promoter-sequences of the CYP7 gene in a screening method including recombinant cells to detect agents that stimulate or inhibit CYP7 gene expression; regulatory element for use in said assay

2. Claims 14-19:

Method of detection of CYP7 Transcription factors as determined by a footprintanalysis and transcription factors identified by said method

EPO Form Supplementary Sheet B (1996)