*

Оглавление

1 Теория функции комплексной переменной

3

Глава 1

Теория функции комплексной переменной

Косплексная плоскость $\mathbb C$ является метрическим пространством, поскольку $|z|=\sqrt{x^2+y^2}=\|(x,y)\|_{R^2},$ если z=x+iy. Поэтому определны понятия точки сгущения множества и предела функции:

Определение 1. c является точкой сгущения множетсва $E \subset \mathbb{C}$, если

$$\forall \delta > 0 \quad \exists z \in E \setminus \{c\}: \quad |z - c| < \delta$$

Определение 2.

$$f(z) \xrightarrow[z \to c]{} A \in \mathbb{C} \iff \forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall z \in E \setminus \{\, c \,\} : |z - c| < \delta \qquad |f(z) - c| < \varepsilon$$

Для w=u+iv полагаем $\Re \mathfrak{e}\, w=u,\quad \Im \mathfrak{m}\, w=v,\quad \overline{w}=u-iv.$ Множеству $x+i\cdot 0$ соспоставим $\mathbb{R}.$ Полагаем, что $i\cdot 0=0,$ и $\mathbb{R}\subset \mathbb{C}.$

Утверждение 1. Если $u(z)=\mathfrak{Re}\,f(z),\quad v(z)=\mathfrak{Im}\,f(z),$ то

$$f(z) \xrightarrow[z \to c]{} A \iff \begin{cases} u(z) \xrightarrow[z \to c]{} \mathfrak{Re} \, A \\ v(z) \xrightarrow[z \to c]{} \mathfrak{Im} \, A \end{cases}$$

Из свойств функций нескольких переменных получаем:

$$f(z) \xrightarrow[z \to c]{} A \in \mathbb{C} \implies \exists \, \delta > 0, \, \, M > 0: \quad \, \forall z \in E \setminus \{ \, c \, \} : |z - c| < \delta \qquad |f(z)| \leq M$$