T	TO WHOM IT MAY CONCERN:
2	
3	BE IT KNOW THAT WE, RONALD T. BUTLER, a
4	citizen of the United States of America, residing in
5	Santa Barbara, in the County of Santa Barbara, State of
6	California, and ALAN GEORGEFF, a citizen of the United
7	States of America, residing in Newbury Park, in the
8	County of Ventura, State of California, have invented a
9	new and useful improvement in
10	
11	
12	GAUGING APPARATUS AND METHOD
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1 BACKGROUND OF THE INVENTION

3	This invention relates generally to accurate
4	selection and installation of vehicle wheels and tires,
5	and more specifically concerns provision of apparatus
6	and methods to achieve such selection and installation,
7	rapidly and accurately.
8	In the past, vehicle tires, installed on metallic
9	wheels, were selected by visually estimating the sizes
10	of tires and wheels to be installed. Generally this
11	required installation of a series of wheels and tires,
12	until a satisfactory fit of a wheel and tire to the
13	vehicle wheel well space was achieved. Such procedures
14	were inefficient, time consuming and required time and
15	labor to mount several wheels, with different tires
16	until the desired result was achieved. The problems
17	included interference, or potential interferance, of
18	oversize tires with fenders and fender edges,
19	particularly during wheel turning, and interference
20	with vehicle structure, such as struts, shock
21	absorbers, tie rods, and other vehicle equipment facing
22	the wheel well. The problems became acute when it was
23	desired to install wide or larger size tires as on
24	racing vehicles. No way was known to achieve the
25	highly advantageous results and methods of wheel and

2	invention.
3	
4	SUMMARY OF THE INVENTION
	SOMMARI OF THE INVENTION
5	
6	It is a major object of the invention to
7	provide apparatus and method to overcome the above
8	referenced problems and difficulties. Basically, the
9	apparatus of the invention includes provision of a
10	multiple gauge assembly for establishing vehicle wheel
11	rim and tire sizes to prevent interference with vehicle
12	structure facing the wheel, as during directional
13	turning of the wheel on a vehicle wheel mount, about a
14	pivot axis normal to the wheel axis, comprises in
15	combination:
16	a) a first adjustable gauge to establish a
17	rim edge radial dimension, from that wheel axis,
18	b) a second adjustable gauge to establish a
19	rim offset or back spacing dimension in a direction
20	generally parallel to the wheel axis,
21	c) and a third adjustable gauge to
22	establish a tire peripheral dimension generally
23	parallel to said wheel axis,
24	d) whereby clearance between the wheel and

1 tire size selection, as are now provided by the present

- 1 said vehicle structure can be predictively ascertained,
- 2 as by gauge assembly manipulation, prior to
- 3 installation of the wheel on the mount.
- 4 It is another object of the invention to
- 5 provide the first gauge which is elongated in a first
- 6 direction, second gauge elongation in a second
- 7 direction, such first and second directions being
- 8 mutually substantially perpendicular. The third gauge
- 9 is typically elongated in a third direction
- 10 substantially parallel to said second direction.
- 11 A further object is to provide for the
- 12 assembly to include a first carrier supporting the
- 13 first gauge for linear adjustable movement in said
- 14 first direction, and a second carrier supporting the
- 15 second gauge for linear adjustable movement in second
- 16 direction. In this regard, the assembly may include a
- 17 third carrier supporting the third gauge for linear
- 18 adjustable movement in a third direction relative to
- 19 the wheel axis. Further, the second direction is
- 20 typically substantially perpendicular to the first
- 21 direction, and the third direction is substantially
- 22 parallel to said second direction.
- Yet another object is to provide a gauge
- 24 assembly in which the first, second and third gauges
- 25 have sliding interconnection, with said first, second
- 26 and third carriers, respectively.

- 1 An additional object is to provide a
- 2 connector plate carrying the gauge assembly, and
- 3 configured for bolt-on connection to the vehicle wheel
- 4 mount. In this regard, the multiple carriers are
- 5 rigidly carried by that connector plate, to project in
- 6 directions accommodating shifting of three gauge
- 7 sliders, and pivoting of all three shifted sliders with
- 8 the wheel mount, to determine the existence and extents
- 9 of gauge assembly clearance with respect to vehicle
- 10 structure facing the wheel well, all prior to any need
- 11 for wheel and tire mounting or installation to the
- 12 wheel mount. The sliders may be shifted to assure
- 13 sufficient clearances, and satisfactory wheel and tire
- 14 sizes may then be rapidly and accurately determined
- 15 from the shifted gauge slider positions.
- The basic method of the invention includes
- 17 provision of a gauge assembly, as referred to, its
- 18 installation on a vehicle wheel mount, gauge slider
- 19 shifting to assure clearances as referred to, and
- 20 readout of gauge slider positions.
- These and other objects and advantages of
- 22 the invention, as well as the details of an
- 23 illustrative embodiment, will be more fully understood
- 24 from the following specification and drawings, in
- 25 which:

1	DRAWING DESCRIPTION
2	
3	Fig. 1 is a frontal elevation of a multiple
4	gauge assembly incorporating the invention;
5	Fig. $1a$ is an enlarged section taken on lines
6	1 <u>a</u> -1 <u>a</u> of Fig. 1;
7	Fig. 2 is a rear elevation of the assembly of
8	Fig. 1;
9	Fig. $2a$ is a side elevation taken on lines
10	2 <u>a</u> -2 <u>a</u> of Fig. 2;
11	Fig. 3 is a perspective view of one form of
12	adapter plate used to connect the Fig. 1 assembly to a
13	vehicle wheel mount;
14	Fig. 4 is a view like Fig. 3, showing another
15	form of adapter plate;
16	Fig. 5 is a perspective view showing
17	installation of the adapter plate and gauge assembly
18	onto a vehicle wheel mount, in a vehicle wheel well;
19	and
20	Fig. 6 is a schematic view showing
21	correspondence between gauge settings and a vehicle
22	wheel and tire, to be installed in mounted condition.
23	
24	

DETAILED DESCRIPTION

2

- In the drawings, a preferred multiple gauge
- 4 assembly is shown at 10 for establishing vehicle wheel
- 5 rim and tire sizes to prevent interference with vehicle
- 6 structure facing the wheel, as during directional
- 7 turning of the wheel on a vehicle wheel mount, about a
- 8 pivot axis 11 angled relative to the wheel axis 12.
- 9 See pivot structure 11a in Fig. 5. The assembly
- 10 includes:
- a) a first adjustable gauge 13 to establish
- 12 a rim edge radial dimension 14, from the wheel and
- 13 wheel mount axis 12,
- b) a second adjustable gauge 15 to
- 15 establish a rim offset (back spacing) dimension 16,
- 16 relative to wheel mount 50, in a direction 17 generally
- 17 parallel to the wheel axis,
- c) and a third adjustable gauge 18 to
- 19 establish a tire peripheral radial dimension 19
- 20 relative to, and generally parallel to the wheel axis
- 21 12,
- d) whereby clearance between the wheel and
- 23 said potentially interfering vehicle structure can be
- 24 predictively ascertained, as during said wheel turning,
- 25 prior to installation of the wheel on the mount.

- 1 Such vehicle structure may include the curved
- 2 or projecting rim 20 of a vehicle fender 21 facing the
- 3 wheel well, and structure 22 such as a shock absorber
- 4 or absorbers 23, and/or a strut or struts or a tie rod
- 5 or tie rods 24.
- 6 As shown, and with regard to the installed
- 7 assembly, the first gauge 13 is elongated in a first
- 8 direction 23 extending away from axis 12, and the
- 9 second gauge 15 is elongated in a second direction
- 10 indicated at 17, generally parallel to axis 12, said
- 11 first and second directions being mutually
- 12 perpendicular, or substantially perpendicular. The
- 13 third gauge 18 is elongated in a third direction seen
- 14 at 25, which is substantially parallel to second
- 15 direction 17.
- 16 The assembly includes a first carrier 26
- 17 supporting the first gauge 13 for linear adjustable
- 18 movement in direction or directions 23, and a second
- 19 and transverse carrier 27 supporting the second gauge
- 20 15 for linear adjustable movement in a second direction
- 21 24. Carrier 26 is carried by mount 50 and carrier 27
- 22 is or may be carried by gauge 13, as shown. The
- 23 assembly may also include a third carrier 28 carried by
- 24 14 and supporting the third gauge 18 for linear
- 25 adjustable movement in third direction or directions
- 26 35. Carrier 28 is supported by vertical slide 38,

- 1 slidable in a carrier 39 attached to 26, but not to 27.
- 2 The carriers may be elongated as shown, and have like
- 3 sides 30, 31 and 32, gauge edge guides 33, 34 and 35,
- 4 and set screws 60 to clamp edge guides, and that may be
- 5 loosened to allow gauge adjustment and tightening, to
- 6 fix the gauges in selected positions. The carriers are
- 7 operatively interconnected.
- Note that the second direction is
- 9 substantially perpendicular to said first direction,
- 10 and the third direction is substantially parallel to
- 11 said second direction; and the first, second and third
- 12 gauges have sliding interconnection with the first,
- 13 second and third carriers, respectively. The gauges
- 14 have indicia thereon, as at 40, 41 and 42, that
- 15 indicates dimensions corresponding to vehicle wheel and
- 16 tire radial, rim offset (back spacing), and tire
- 17 dimensions indicated at 44, 45 and 46 relatively, as in
- 18 Fig. 6.
- 19 A connector plate 50 carries said assembly
- 20 10, and is configured for bolt-on connection to the
- 21 vehicle wheel, hub or mount 51. Hub 51 is turnable
- 22 with the mounted (selected) wheel 52, about axis 12.
- 23 Mount 51 is also turnable with the wheel (by steering)
- 24 about pivot axis 11 normal to axis 12.

```
1
               Bolts 60 project from hub or mount 51 for
    attachment to the wheel 52, or to the connector plate
 2
 3
    50.
               Fig. 3 shows connector plate 50, with
 4
 5
    openings 50' to pass bolts 60; and Fig. 4 shows an
    alternate plate 50\underline{a}, with openings 50\underline{a}' to pass bolts.
 6
    A lug 62 projects from the plate.
 7
               Indicia on the gauges or sliders register
 8
 9
    with edges 51-53 to indicate measurements.
10
11
12
13
14
15
16
17
18
19
20
21
```