(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-12968 (P2000-12968A)

(43)公開日 平成12年1月14日(2000.1.14)

(51) Int.Cl.7		識別記号	FΙ		テーマコート*(参考)
H01S	5/30		H01S	3/18	5 F O 7 3
	5/06			3/103	
	5/068			3/133	

審査請求 有 請求項の数2 OL (全 11 頁)

(21)出願番号	特願平10-169599	(71)出願人 591102693		
		サンテック株式会社		
(22) 出顧日	平成10年6月17日(1998.6.17)	愛知県小牧市大字上末122番地		
		(72)発明者 鄭 台鎬		
		愛知県小牧市大字上末122番地 サンテッ		
		ク株式会社内		
		(72)発明者 女鹿田 直之		
		愛知県小牧市大字上末122番地 サンテッ		
		ク株式会社内		
		(74)代理人 100084364		
		弁理士 岡本 宜喜 (外1名)		
		Fターム(参考) 5F073 AB25 AB30 BA01 EA03 EA04		
		GA22 GA38		

(54) 【発明の名称】 波長可変型レーザ光源装置

(57)【要約】

【課題】 レーザ光源の発光可能波長範囲内で簡単な構成で小型化され安定に発光するレーザ光源装置を提供すること。

【解決手段】 半導体レーザ1の一方の光ビーム出射端に波長ロッカ4を設ける。波長ロッカ4には干渉光フィルタ3とその透過光及び反射光を受光するフォトダイオードPD1, PD2を配置する。フォトダイオードPD1, PD2の出力比を算出し、出力比が所定値となるように波長を制御する。半導体レーザ1, 波長ロッカ4を光学モジュール11内に封入し、他のブロックと共に基板上に実装する。こうすれば小型で所望の波長を安定して発光させることができる。

【特許請求の範囲】

【請求項1】 光の波長を連続して変化させることがで きる波長可変型の半導体レーザと、

前記半導体レーザの光が空間を介して入射され、所定波 長の光を透過させ、他を反射させる光フィルタと、

前記光フィルタを透過する光及び前記光フィルタに反射 される光を夫々受光する第1,第2の受光素子と、

前記第1, 第2の受光素子の出力比を算出する出力比算 出手段と、

前記出力比算出手段による出力比が所定値となるように 前記光源の発光波長を制御する波長制御手段と、

前記半導体レーザ, 前記光フィルタ及び前記第1, 第2 の受光素子を封止する光学モジュールと、を具備し、

前記出力比算出手段、波長制御手段を構成する電子回路 部及び前記光学モジュールを同一のケース内に収納して 構成したことを特徴とする波長可変型レーザ光源装置。

【請求項2】 前記光フィルタの近傍に設けられ、光フ ィルタ近傍の温度を検出する温度検出素子と、

前記温度検出素子の出力に基づいて光フィルタの温度変 化に伴う特性の変化を補償する温度補償手段と、を更に 具備することを特徴とする請求項1記載の波長可変型レ ーザ光源装置。

【請求項3】 前記光フィルタは、透過波長 λ に対して λ/4の光学厚さを有する低屈折率膜及び高屈折率膜を 交互に多重に積層して構成された干渉光フィルタである ことを特徴とする請求項1又は2記載の波長可変型レー ザ光源装置。

【請求項4】 前記干渉光フィルタは、透過波長λが基 板の所定方向に対して連続的に変化するようにその光学 厚さを連続的に変化させたものであり、

前記レーザ光源装置は、前記レーザ光源から前記干渉光 フィルタへの入射光の入射位置をその所定方向に対して 連続的に変化させる入射位置調整手段を更に有するもの であることを特徴とする請求項2記載の波長可変型レー ザ光源装置。

【請求項5】 前記波長制御手段は、

前記出力比算出手段によって算出された出力比と所定の 基準値との差を検出する誤差検出手段と、

前記誤差検出手段に基準値を設定する基準値設定手段

前記誤差検出手段により検出される誤差値が0となるよ うに前記半導体レーザの発光波長を制御する半導体レー ザ駆動手段と、を具備することを特徴とする請求項1~ 4のいずれか1項記載の波長可変型レーザ光源装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光通信、光情報処 理, 光計測等に使用される波長可変型の半導体レーザ光 源装置に関するものである。

[0002]

【従来の技術】現在光通信においては、光ファイバに多 数の波長の光を多重化して通信することにより、単一波 長の光を用いた場合に比べて伝送量を大幅に増加させる 波長多重通信方式が検討されている。波長多重通信を実 現するためには、光信号をそのまま増幅できる比較的狭 い波長の帯域内に、例えば0.4 n m以下の間隔で多数 の波長のレーザ光を伝送するため、レーザ光源の波長を 十分安定化させ、しかも任意の波長で発振できるように しておく必要がある。又、光情報処理、光計測において 10 は、情報の高密度化や計測の高精度化のためにレーザ光 源の波長安定化は重要な課題である。

【0003】レーザ光源の発光波長を安定化するために は、例えば何らかの方法で基準となる波長特性を有する 素子を用い、発光波長との誤差を検出してレーザ光源に 帰還する。そのため従来より、原子や分子の吸収を用い てそれを基準として波長を安定化する装置や、ホログラ フィ、グレーティング又はマッハツェンダ干渉計やファ ブリペロー干渉計を用いて基準となる光又は光源の波長 をディザによって変調し、波長を調整するようにした方 法が知られている。ディザとは光の波長を何らかの方法 でわずかに振動させることであり、これによって基準と なる波長との差及び方向を判別してレーザ光源に帰還す ることによって、発光波長を安定化している。

【0004】又特開昭60-74687号では、ディザをかけず 半導体レーザからの光を分離し、わずかに透過する波長 の異なる2つのフィルタを用いて夫々のフィルタを通過 する光のレベルを光電変換素子によって検出し、その光 強度比が一定となるように半導体レーザに帰還する方法 が提案されている。

[0005] 30

【発明が解決しようとする課題】しかしながらこのよう な従来の方法は、ディザにより光源に微妙な変化を与え て発光波長を変化させ、電気的に方向を判別し、基準に 対する変化分を検出して光源である半導体レーザにフィ ードバックしているため、光源の光が変調されてしま う。そのため情報としての変調信号と重なる可能性があ り、ディザの影響をなくすためにローパスフィルタ等の 電気フィルタ等が必要になるという欠点があった。又デ ィザを用いるため制御系が複雑となり、ディザが可動部 40 を伴う場合には、信頼性が低く、寿命が短くなるという 欠点があった。又特開昭60-74687号の方法においては、 光を分岐するためにビームスプリッタ等の光カップラが 必要となる。ビームスプリッタは光の偏光の影響を受 け、又温度によって分光比が変わり易く、理想的に所定 の比率で光を安定に分岐する素子を作ることが難しいと いう欠点があった。又フィルタについても、わずかに透 過波長の異なる2つの光フィルタを製造することが難し いという欠点があった。更に波長計を用いてフィードバ ックすることにより波長を固定させる方法も提案されて

50 いるが、定期的な校正が必要であるという欠点があっ

た。

【0006】本発明はこのような従来の問題点に着目してなされたものであって、ディザや光カップラを用いることなく極めて簡単な構成で小型化でき、正確に任意の波長のレーザ光を発光することができる半導体レーザ光源装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本願の請求項1の発明は、光の波長を連続して変化させることができる波長可変型の半導体レーザと、前記半導体レーザの光が空間を介して入射され、所定波長の光を透過させ、他を反射させる光フィルタと、前記光フィルタを透過する光及び前記光フィルタに反射される光を夫々受光する第1,第2の受光素子と、前記第1,第2の受光素子の出力比を算出する出力比算出手段と、前記出力比算出手段による出力比が所定値となるように前記光源の発光波長を制御する波長制御手段と、前記半導体レーザ、前記光フィルタ及び前記第1,第2の受光素子を封止する光学モジュールを、を具備し、前記出力比算出手段、波長制御手段を構成する電子回路部及び前記光学モジュールを同一のケース内に収納して構成したことを特徴とするものである。

【0008】本願の請求項2の発明は、請求項1の波長可変型レーザ光源装置において、前記光フィルタの近傍に設けられ、光フィルタ近傍の温度を検出する温度検出素子と、前記温度検出素子の出力に基づいて光フィルタの温度変化に伴う特性の変化を補償する温度補償手段と、を更に具備することを特徴とするものである。

【0009】本願の請求項3の発明は、請求項1又は2の波長可変型レーザ光源装置において、前記光フィルタは、透過波長λに対してλ/4の光学厚さを有する低屈折率膜及び高屈折率膜を交互に多重に積層して構成された干渉光フィルタであることを特徴とするものである。

【0010】本願の請求項4の発明は、請求項2の波長可変型レーザ光源装置において、前記干渉光フィルタは、透過波長2が基板の所定方向に対して連続的に変化するようにその光学厚さを連続的に変化させたものであり、前記レーザ光源装置は、前記レーザ光源から前記干渉光フィルタへの入射光の入射位置をその所定方向に対して連続的に変化させる入射位置調整手段を更に有するものであることを特徴とするものである。

【0011】本願の請求項5の発明は、請求項1~4のいずれか1項の波長可変型レーザ光源装置において、前記波長制御手段は、前記出力比算出手段によって算出された出力比と所定の基準値との差を検出する誤差検出手段と、前記誤差検出手段に基準値を設定する基準値設定手段と、前記誤差検出手段により検出される誤差値が0となるように前記半導体レーザの発光波長を制御する半導体レーザ駆動手段と、を具備することを特徴とするものである。

4

【0012】このような特徴を有する本発明によれば、 レーザ光源を発光させて、そのレーザ光を光フィルタに 入射する。光フィルタへの入射はレンズで集光して入射 することも含むが、光ファイバ等は用いず、空間を介し て入射するものとする。このフィルタは所定波長の光を 透過し他を反射させるため、透過した光と反射した光を 夫々第1, 第2の受光素子によって受光し、その出力比 を出力比算出手段によって算出する。そして出力比が所 定値となるようにレーザ光源の発光波長を制御すること 10 により、所定の波長のレーザ光を発光させることができ る。請求項2の発明は、光フィルタの温度を検出し、温 度変化に伴う特性の変化を補償するようにしたものであ る。請求項3の発明は、このような光フィルタを多層膜 による干渉光フィルタによって実現したものである。又 多層膜干渉光フィルタを請求項4に示すように、所定の 方向に対して透過波長が連続的に変化するように構成し た波長可変型の干渉光フィルタを用い、その受光位置を 変更するようにすれば、レーザ光源の発光波長を変化さ せることができる。又請求項5の発明では、基準値設定 20 手段により基準値を設定しておき、誤差検出手段により 出力比算出手段によって算出された出力比と基準値との 差を誤差として検出する。そして光源駆動手段により誤 差が0となるようにレーザ光源を制御することにより、 レーザ光源の発光波長を調整することができる。

[0013]

【発明の実施の形態】図1は本発明の第1の実施の形態 による波長可変型レーザ装置の全体の光学系部分を示す 図である。本図に示すようにこの実施の形態では、多電 極型の半導体レーザを用いるものとする。多電極型の波 長可変型半導体レーザ1は、例えば特開平8-5603 0号に示されているように、温度及び複数の電極に供給 する電流を制御することによって、発光波長を例えば6 0 n m以下の範囲内で変化させることができる。半導体 レーザ1はチップの両側にレーザ光を出射する。従って 図中下方に出射するレーザ光をモニタ用として用いる。 ここではレーザ光をレンズ2を介して干渉光フィルタ3 に入射させる。干渉光フィルタ3はレーザ光源の発光可 能波長のほぼ中心が透過波長となるバンドパス型の光フ ィルタであり、透過した光を受光する位置に第1の受光 40 素子であるフォトダイオードPD1を配置する。又干渉 光フィルタ3によって反射された光を受光できる位置に 第2の受光素子であるフォトダイオードPD2を配置す る。干渉光フィルタ3とフォトダイオードPD1, PD 2とは波長をモニタし、波長を固定するための波長ロッ カ4として用いられている。

【0014】一方半導体レーザ1の他方の出射面にはレンズ5を介してアイソレータ6を配置する。アイソレータ6は光の透過方向を規定するものであり、その出射光はレンズ7及びコリメータ8を介して光ファイバ9に接50 続される。光ファイバ9は発光したレーザ光を所望の位

置に導くものである。ここで半導体レーザとレンズ2及び5とは、ペルチェ素子等の温度制御素子を用いて温度制御可能な温度調整モジュール10内に配置されている。又波長ロッカ4と温度調整モジュール10及びアイソレータ6,レンズ7とは、全体が気密の光学モジュール11内に封入されて構成される。この光学モジュール11の外部にはフォトダイオードPD1,PD2からの出力に基づいて温度制御をするための電子回路部が設けられている。

【0015】次に干渉光フィルタ3について説明する。 干渉光フィルタ3は半導体レーザ1が発光可能な波長の 範囲内で入射された光の波長に応じて出力される透過率 及び反射率が変化する光フィルタである。このような干 渉光フィルタは透過波長を1とすると、1/4の光学厚 さを有する低屈折率膜及び高屈折率膜を交互に多重に積 層して構成することができる。

【0016】次にこの半導体レーザ光源装置の波長制御部について説明する。波長制御部は出力比算出手段12及び波長制御手段13Aを有している。出力比算出手段12は第1,第2の受光素子であるフォトダイオードPD1,PD2の出力比を算出するものであり、その出力は波長制御手段13Aに与えられる。波長制御手段13Aは出力比算出手段12による出力比が所定値となるようにレーザ光源の発光波長を制御するものである。半導体レーザ1の発光波長は複数の電極に供給する駆動電流を変化させたり、周囲温度を変化させることによって調整するものとする。

【0017】次に出力比算出手段12及び波長制御手段 13Aについて図2を用いて詳細に説明する。第1,第 2のフォトダイオードPD1, PD2からの出力は出力 比算出手段12内のI/V変換器21, 22に与えら れ、電圧信号に変換される。 I/V変換器21, 22の 出力は加算器23及び減算器24に与えられ、夫々の出 力は加算及び減算されて割算器25に与えられる。割算 器25は波長ロッカ4に入射された光を正規化し、これ らの出力比に基づいて入力光の波長を検出するものであ る。ここで I / V変換器 21, 22、加算器 23、減算 器24、割算器25は、第1,第2の受光素子の出力比 によってレーザ光の波長を検出する出力比算出手段12 を構成しており、その出力は誤差検出器26に与えられ る。誤差検出器26の他方の入力端には基準電圧が与え られている。この基準電圧は+V_{CC}~-V_{DD}の間で基準 値設定手段27、例えば可変抵抗器VR1によって調整 できるように構成する。誤差増幅器26はこの基準電圧 と入力電圧との差を誤差信号として検出し、誤差信号を PID制御部28に与える。PID制御部28は誤差信 号がOとなるようにPID制御するものであり、その出 力は半導体レーザ駆動部29を介して半導体レーザ1に 帰還するように構成されている。半導体レーザ駆動部1 9は半導体レーザ1の複数の電極の駆動電流、及び温度

制御モジュール10内の半導体レーザ1の温度を制御することにより、半導体レーザ1の発光波長を、例えば60nm以下の範囲内で変化するように制御するものである。ここで誤差検出器26と誤差検出器26に基準電圧を与える可変抵抗器VR1,PID制御部28,半導体レーザ駆動部29は、出力比算出手段12による出力比が所定値となるようにレーザ光源の発光波長を制御する波長制御手段13Aを構成している。

【0018】図3(a)はこのレーザ光源装置の全体構 10 成を示す図である。この実施の形態では光学モジュール 11と前述した出力比算出手段12,波長制御手段13 Aの各電子部品14とを1枚のプリント基板15上に実装して構成する。このように全ての部品をプリント基板上に実装することにより、レーザ光源装置を極めて小型 軽量化することができる。

【0019】図3(b)はこの実施の形態によるレーザ 光源装置をケース16に収納した状態を示す斜視図であ る。この実施の形態では、可変抵抗器VR1による基準 電圧の設定つまみ17が設けられ、ケース16の外部よ り発光波長を調整できるように構成されている。

【0020】次にこの実施の形態によるレーザ光源装置

の動作について説明する。図4(a), (b) は干渉光 フィルタ3の透過率、反射率の特性を示すグラフであ る。半導体レーザ1の発光可能な波長範囲をλ1~λ2 とすると、この間で反射率と透過率とが連続して変化す るように干渉光フィルタ3の中心波長λ3を選択する。 例えば発光可能な波長の一端の波長、例えば 1 と等し くなるように選択する。干渉光フィルタ3はこの波長λ 3の光を透過させ、図4(b)に示すようにその他の光 を反射させる特性を有している。このとき半導体レーザ 1の発光波長 λ (λ 1 \leq λ \leq λ 2) に対して、フォトダ イオードPD1, PD2に得られる光出力は夫々図4 (c), (d) に示すものとなる。即ちフォトダイオー ドPD1、PD2で得られる出力は、夫々図4(a)の 透過率及び図4(b)の反射率の特性に対応している。 【0021】従ってフォトダイオードPD1、PD2の I/V変換出力をA, Bとすると、これらを加算及び減 算し、割算器25により割算し、(A-B)/(A+ B) を算出する。割算することにより正規化したレベル は図5に示すものとなる。このようにレーザ光源の発光 波長に応じて波長モニタ信号が連続的に変化する。波長 モニタ信号のレベルと誤差検出器26の基準電圧との差 分値を誤差信号とし、誤差信号が零となるように制御す ることによって、誤差検出器26に設定された基準電圧 と一致するように半導体レーザ1の波長を制御すること ができる。例えば基準電圧をOVとすれば、PD1, P D2の出力レベルが等しい波長λ4を発光したとき、誤 差信号は0となり、半導体レーザ1の発光波長をλ4に 制御することができる。又基準電圧を図5のレベルV1 に設定すれば、短波長側のλ5に波長がロックされるこ

ととなる。このように誤差検出器 26 の基準電圧を変化させることによって図 4 、図 5 に示す波長 λ $1 \sim \lambda$ 2 の範囲内で発光波長を調整することができる。

【0022】この実施の形態によれば半導体レーザ1を温度調整モジュール10内に封入すると共に、波長ロッカ4とを含めて光学モジュール11内に封入し、更に全体をプリント基板上15に実装しているため、半導体レーザの光を直接干渉フィルタ3に導くことができる。そのため光ファイバや光カップラ等を用いて干渉フィルタに導いた場合に比べて偏光方向の変化を考慮する必要がなく、波長精度を向上させることができる。又小型軽量で可動部がなく、信頼性の高いレーザ光源装置を実現することができる。

【0023】尚この実施の形態では明示していないが、加算器23からの出力によって発光波長の如何にかかわらず半導体レーザ1からの出力レベルを検出できる。従って加算器23の出力が一定となるように半導体レーザの出力レベルを調整することによって、半導体レーザ1の出力レベルを一定に保持することができる。このような出力レベルのモニタ及び出力レベル制御は半導体レーザで広く行われており、本実施の形態ではフォトダイオードPD1、PD2を出力モニタ用素子としても用いることができる。

【0024】次に本発明の第2の実施の形態について説 明する。この実施の形態では図6に示すように干渉フィ ルタ3の温度変動に伴う特性の変化を補償するようにし たものである。そのため図6に示すように干渉フィルタ 3の近傍には温度検出素子、例えばサーミスタ31を設 ける。図7は第2の実施の形態による出力比算出手段1 2,波長制御手段13Bの構成を示しており、サーミス タ31の出力は図7に示すように温度検出手段32に与 えられる。温度検出手段32はサーミスタからの信号に 基づいて温度を検出するものであり、その出力は波長制 御手段13B内の加算器33に与えられる。加算器33 は前述した誤差検出器26の出力と温度検出信号を加算 することによって、干渉光フィルタ3の温度変化に基づ く特性の変化を補償するためのものであり、温度検出手 段32と共に干渉光フィルタの温度変化に伴う特性変化 を補償する温度補償手段を構成している。その他の構成 は前述した第1の実施の形態と同様である。

【0025】この実施の形態では光学モジュール11内の波長ロッカ4部分の温度が変化しても温度変化に基づく干渉光フィルタ3の特性を補償することができるため、温度変化にかかわらず正確に所望の波長のレーザ光を発光することができる。

【0026】次に本発明の第3の実施の形態について図8を用いて説明する。この実施の形態では図8に示すように波長ロッカ内の干渉光フィルタとして、光の入射位置に応じて透過する波長が連続的に変化する干渉光フィルタ41を用いたものである。そしてこの干渉光フィル50

タ41への入射位置を機械的に変化させるために、入射 位置調整手段を設ける。入射位置調整手段は例えば、ね じを回転させることによって干渉光フィルタ41を図8 に示すX軸方向にスライドさせるスライド調整機構42 として構成してもよい。こうすれば干渉光フィルタ41 への入射位置を所定の範囲内で変化させることができ る。この実施の形態では半導体レーザ1の波長可変範囲 内で干渉光フィルタの透過波長を入射位置を変えて連続 的に変化させる。干渉光フィルタ41自体の特性は図9 10 に示すように、発光可能波長の範囲(λ 1 \sim λ 2) より も十分狭い急峻な特性を有する光フィルタとしておく。 その他の構成は前述した第1の実施の形態と同様であ り、フォトダイオードPD1, PD2の出力を出力比算 出手段12に与え、波長制御手段13Aによって発光波 長を制御する。又前述した第2の実施の形態と同様に、 この干渉光フィルタの近傍にサーミスタ31を設け、温 度を検出し、波長制御手段13Bによってその温度変化 に基づく特性を補償するようにしてもよい。

【0027】図10はこの実施の形態による波長可変型 レーザ光源装置の全体構成を示す斜視図である。この実施の形態でも第1の実施の形態と同様に、プリント基板 15上に光学モジュール11,電子回路部14を実装し、ケース16内に収納しておく。そしてケースの外側よりつまみ43を設けて干渉光フィルタ41の入射位置を変化できるように構成する。更に可変抵抗器VR1による基準電圧の設定つまみ17も同時に設けておく。その他の構成は第1の実施の形態と同様である。

【0028】この干渉光フィルタ41は特公平7-92530 号に示されるように、高屈折率膜と低屈折率膜とを交互 に積層し、積層した波長の光学厚さを連続的に変化させ るようにしたものである。次にこの干渉光フィルタにつ いて図11を用いて説明する。本実施の形態による波長 可変型の干渉光フィルタ41は、例えばガラス,シリコ ン等のサブストレート51上に物質を多層蒸着させて構 成している。このサブストレート51は使用する波長の 範囲で光の透過率が高い材質を用いて構成するものと し、誘電体や半導体が用いられる。本実施の形態では石 英ガラスを用いている。そしてこのサブストレート51 の上部には、使用する波長での光の透過率の高い蒸着物 40 質、誘電体、半導体等の多層膜52を蒸着する。ここで 多層膜52は図示のように下部多層膜53,キャビティ 層54及び上部多層膜55から形成されるものとする。 又サブストレート51の下面には反射防止膜56を蒸着 によって形成する。

【0029】ここで多層膜52、反射防止膜56の蒸着材料として用いられる物質は、例えば SiO_2 (屈折率n=1.46), Ta_2O_5 (n=2.15),Si (n=3.46) や Al_2O_3 , Si_2N_4 ,Mg F等が用いられる。又本実施の形態では多層膜53,55は低屈折率膜と高屈折率膜とを交互に積層して蒸着させている。ここで膜厚 dと

透過波長λ、屈折率nとは以下の関係となるようにす る。

$\lambda = 4 \text{ n d}$ \cdots (1)

即ち各層はその光学厚さndをλ/4とする。そして低 屈折率膜と高屈折率膜とを交互に積み重ねることによっ て透過率のピークの半値全幅(FWHM)を小さくして いる。又キャビティ層 5 4 の膜厚 d c とは透過波長 λ, 屈折率nとは以下の関係になるようにする。

 $\cdot \cdot \cdot (2)$ $\lambda = 2 \text{ nd}_{c}$

即ちキャビティ層 5 4 の光学厚さ n d c は λ / 2 とす る。

【0030】さて本実施の形態による干渉光フィルタ4 1は、透過波長と膜厚とが式(1), (2)の関係を有 することから、サブストレート51を細長い板状の基板 とし、多層膜52の屈折率を一定とし、膜厚を連続的に 変化させて透過波長λを異ならせるようにしている。そ してこの波長可変型干渉光フィルタ5の透過波長を λ_a $\sim \lambda_c$ ($\lambda_a < \lambda_c$) とし、その中心点($x = x_b$) で の透過波長を入りとする。上下の多層膜53,55は、 夫々第1の屈折率 n₁ の第1の蒸着物質膜とこれより屈 折率の低い第2の屈折率n2 の第2の蒸着物質膜とを、 交互に積層して構成する。即ち図11(a)の円形部分 の拡大図を図11(c)に示すように、夫々の膜厚を連 続的に変化させている。図11(c)において、下部多 層膜53の低屈折率膜を53L,高屈折率膜を53Hと し、上部多層膜55の高屈折率膜を55H, 低屈折率膜 を55Lとする。そして図11(a)のフィルタのX軸 上での端部 x_a の透過波長 λ_a に対して、夫々低屈折率 膜及び高屈折率膜で上記の式(1), (2)が成り立つ ように設定する。 $\mathbf{Z} \mathbf{x}_{\mathbf{b}}$, $\mathbf{x}_{\mathbf{c}}$ での透過波長 $\lambda_{\mathbf{b}}$, $\lambda_{\mathbf{c}}$ に対しても、その波長 λ_b , λ_c で式(1), (2)が 成り立つようにその膜厚を設定する。そしてその間の膜 厚も波長の変化が直線的に変化するように設定する。従 って層の各膜厚は図示のようにX軸上の位置 xa ~ xc につれて連続的に変化し、X軸の正方向に向かって膜厚 が大きくなる。

【0031】このように膜厚を連続的に変化させる干渉 光フィルタ41は、サブストレート51上に多層膜52 を蒸着して形成する際に、蒸着源との間隔を連続的に変 化するようにサブストレートを傾けて配置しておくこと により、実現することができる。

【0032】又干渉光フィルタ41の膜厚自体を連続し て変化させるようにしているが、各膜厚は一定とし、多 層膜52の屈折率 n1, n2 をX軸方向に連続的に変化 させるようにして光学厚さを連続的に可変するようにし てもよい。

【0033】このように構成した干渉光フィルタ41は 狭帯域特性を有している。従って干渉光フィルタ41へ 光が入射する位置をスライド調整機構42を用いて機械 を連続的に変化させることができる。

【0034】次にこの実施の形態の動作について説明す る。この実施の形態においてはレーザ光源の発光波長を 大きく変化させるためにはスライド調整機構42の調整 つまみ43を回転させて干渉光フィルタ41への入射光 の入射位置を変えれば、図9に示す干渉光フィルタ41 の透過波長λを変化させることができる。こうすれば発 光可能な波長を大きく変化させることができる。従って 発光波長を干渉光フィルタ41への入射位置によって大 10 まかに調整し、微妙な波長の調整を基準値設定手段17 の基準電圧を変化させることによって調整すれば、使用 者が任意の波長に設定することが可能となる。このよう に本発明では1つの干渉光フィルタを用いることによ り、ビームスプリッタや2つの近接する透過波長を有す るフィルタを用いることなく、正確に波長を制御するこ とができる。

【0035】尚この実施の形態では干渉光フィルタ41 の長手方向に透過波長を連続的に変化させるようにして いるが、干渉光フィルタを円形とし、その半径方向に沿 って透過波長が連続的に変化する干渉光フィルタとする こともできる。この場合には入射位置調整手段として、 スライド調整機構に代えて入射位置軸方向に沿って回転 させる回転機構を設けて透過波長を変化させることがで

【0036】又前述した第3の実施の形態では、スライ ド調整機構42と可変抵抗器VR1のつまみ43,17 をケースの外部から調整できるようにしているが、可変 抵抗器VR1による基準値設定手段を設けることなくス ライド調整機構42のつまみ43のみで波長を変化させ るようにしてもよい。

【0037】尚前述した第1~第3の実施の形態では、 信号処理回路として加算器と減算器及びその出力比を算 出する割算器を設けているが、2つのI/V変換器の比 を直接算出するようにしてもよいことはいうまでもな い。又加算値とフォトダイオードからの一方の出力との 比を算出して波長モニタ信号とすることができる。更に 出力比算出手段及び波長制御手段をマイクロコンピュー タを用いて実現することができることはいうまでもな

【0038】更に前述した各実施の形態では、半導体レ ーザとして多電極型半導体レーザを用いているが、分布 帰還型等の半導体レーザを用い、その周囲温度を変化さ せて波長を調整するようにしてもよい。分布帰還型半導 体レーザでは温度制御により数nmの範囲内で波長を変 化させることができる。

[0039]

【発明の効果】以上詳細に説明したように本願の請求項 1~5の発明によれば、干渉光フィルタを用いることに より入射光と反射光との比率から光源の発光波長を制御 的にX軸方向に移動させることによって、透過波長自体 50 するようにしている。そのため従来の波長制御方法のよ

うに分光比を正確に一定に保つことが難しいビームスプリッタを用いる必要がなく、その温度制御も不要となる。又波長選択特性が近接する2つのフィルタを用いることも不要となる。又半導体レーザの2つの出射光の一部を波長制御用に利用しており、光ファイバや光カップラ等を介して波長制御部に光を分波させて入射させる必要がなく、光ファイバによる偏光方向の変化分を考慮する必要がなくなる。更にこれらの光学系部分をモジュール化しているため、波長制御手段と共にプリント基板上に実装することができ、光源全体を極めて小型化することができる。従って極めて簡単な簡単な構成で正確な波長制御が可能となる。

【0040】これに加えて請求項1~3の発明では、可動部がなく、信頼性を向上させることができるという効果が得られる。又請求項2の発明では、干渉光フィルタの温度変化にかかわらず一定の波長出力が得られる。請求項4の発明では、干渉光フィルタへの入射位置を制御することによって透過波長を変化させているため、干渉光フィルタとして急峻な特性のフィルタを用いることができ、波長設定の精度を向上させることができる。又請求項5の発明では、基準値設定手段により設定する基準値を変化させることによって、レーザ光源の発光周波数を調整することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による波長可変型レーザ光源装置の全体構成を示す概略図である。

【図2】本実施の形態によるレーザ光源装置の出力比算 出手段,波長制御手段の構成を示すプロック図である。

【図3】本実施の形態によるレーザ光源装置のプリント 基板上の部品及び外観を示す斜視図である。

【図4】本実施の形態によるレーザ光源装置のフィルタ 特性及びフォトダイオードの受光特性を示すグラフであ る。 【図 5 】波長に対する誤差信号の変化を示すグラフであ ス

【図6】本発明の第2の実施の形態による波長可変型レ ーザ光源装置の全体構成を示す概略図である。

【図7】第2の実施の形態によるレーザ光源装置の出力 比算出手段,波長制御手段の構成を示すブロック図であ ス

【図8】本発明の第3の実施の形態による波長可変型レ ーザ光源装置の全体構成を示す概略図である。

10 【図9】第3の実施の形態による干渉光フィルタの特性 を示すグラフである。

【図10】第3の実施の形態によるレーザ光源装置の全体構成を示す斜視図である。

【図11】(a)は本発明の第3の実施の形態によるシングルキャビティ構造の干渉光フィルタの構成を示す断面図、(b)はそのX軸上での透過率の変化を示すグラフ、(c)は(a)の円形部分の拡大断面図である。

【符号の説明】

- 1 半導体レーザ
- 20 2,5 レンズ
 - 3,41 干渉光フィルタ
 - 4 波長ロッカ
 - 6 アイソレータ
 - 7 レンズ
 - 8 コリメータ
 - 9 光ファイバ
 - 10 温度調整モジュール
 - 11 光学モジュール
 - 12 出力比算出手段
- 30 13A, 13B 波長制御手段
 - 32 温度検出手段
 - 42 スライド調整機構

9 - 8 - 7 - 11 - 10 - 11 - 10 - 5 - 11 - 13 A - 2 - 2 - 2 - 2 - 7 - ド 調整機構

【図8】

【図11】

【手続補正書】

【提出日】平成11年5月14日(1999.5.14)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 光の波長を連続して変化させる波長可変型半導体レーザと、

前記半導体レーザの光が空間を介して入射され、入射光 の一部を透過させ他を反射させる干渉光フィルタと、 前記干渉光フィルタを透過する光及び前記干渉光フィル 夕に反射される光を夫々受光する第1,第2の受光素子 と、

前記第1,第2の受光素子の出力比を算出する出力比算 出手段と、

前記出力比算出手段による出力比が所定値となるように 前記<u>半導体レーザ</u>の発光波長を制御する波長制御手段 と、

前記半導体レーザ,前記<u>干渉光フィルタ</u>及び前記第1, 第2の受光素子を封止する光学モジュールと、

前記半導体レーザから前記干渉光フィルタへの入射光の 入射位置を所定方向に対して連続的に変化させる入射位 置調整手段と、

<u>前記干渉光フィルタの近傍に設けられ、干渉光フィルタ</u> 近傍の温度を検出する温度検出素子と、

前記温度検出素子の出力に基づいて干渉光フィルタの温度変化に伴う特性の変化を前記出力比算出手段から出力される出力比の目標値を補正することによって補償する温度補償手段と、を具備し、

前記干渉光フィルタは、波長 λ に対して λ / 4 の光学厚さを有する低屈折率膜及び高屈折率膜を基板に交互に多重に積層して構成され、少なくとも前記半導体レーザの波長可変範囲内において波長 λ が基板の前記所定方向に対して連続的に変化するようにその光学厚さを連続的に変化させたものであり、

前記出力比算出手段、波長制御手段を構成する電子回路 部<u>及び入射位置調整手段と</u>前記光学モジュールを同一の ケース内に収納して構成したことを特徴とする波長可変 型レーザ光源装置。

【請求項2】 前記波長制御手段は、

前記出力比算出手段によって算出された出力比と所定の 基準値との差を検出する誤差検出手段と、

前記誤差検出手段に基準値を設定する基準値設定手段 レ

前記誤差検出手段により検出される誤差値を前記温度補 償手段によって補償した値が0となるように前記半導体 レーザの発光波長を制御する半導体レーザ駆動手段と、 を具備することを特徴とする請求項1記載の波長可変型 レーザ光源装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0007

【補正方法】変更

【補正内容】

[0007]

【課題を解決するための手段】本願の請求項1の発明 は、光の波長を連続して変化させる波長可変型半導体レ ーザと、前記半導体レーザの光が空間を介して入射さ れ、入射光の一部を透過させ他を反射させる干渉光フィ ルタと、前記干渉光フィルタを透過する光及び前記干渉 光フィルタに反射される光を夫々受光する第1, 第2の 受光素子と、前記第1, 第2の受光素子の出力比を算出 する出力比算出手段と、前記出力比算出手段による出力 比が所定値となるように前記半導体レーザの発光波長を 制御する波長制御手段と、前記半導体レーザ、前記干渉 光フィルタ及び前記第1,第2の受光素子を封止する光 学モジュールと、前記半導体レーザから前記干渉光フィ ルタへの入射光の入射位置を所定方向に対して連続的に 変化させる入射位置調整手段と、前記干渉光フィルタの 近傍に設けられ、干渉光フィルタ近傍の温度を検出する 温度検出素子と、前記温度検出素子の出力に基づいて干 渉光フィルタの温度変化に伴う特性の変化を前記出力比 算出手段から出力される出力比の目標値を補正すること によって補償する温度補償手段と、を具備し、前記干渉 光フィルタは、波長λに対してλ/4の光学厚さを有す る低屈折率膜及び高屈折率膜を基板に交互に多重に積層 して構成され、少なくとも前記半導体レーザの波長可変 範囲内において波長λが基板の前記所定方向に対して連 続的に変化するようにその光学厚さを連続的に変化させ たものであり、前記出力比算出手段、波長制御手段を構 成する電子回路部及び入射位置調整手段と前記光学モジ ュールを同一のケース内に収納して構成したことを特徴 とするものである。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0008

【補正方法】変更

【補正内容】

【0008】本願の請求項2の発明は、請求項1の波長可変型レーザ光源装置において、前記波長制御手段は、前記出力比算出手段によって算出された出力比と所定の基準値との差を検出する誤差検出手段と、前記誤差検出手段に基準値を設定する基準値設定手段と、前記誤差検出手段により検出される誤差値を前記温度補償手段によって補償した値が0となるように前記半導体レーザの発光波長を制御する半導体レーザ駆動手段と、を具備する

ことを特徴とするものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

【0009】このような特徴を有する本願の請求項1の 発明によれば、レーザ光源を発光させて、そのレーザ光 を光フィルタに入射する。光フィルタへの入射はレンズ で集光して入射することも含むが、光ファイバ等は用い ず、空間を介して入射するものとする。このフィルタは 所定波長の光を透過し他を反射させるため、透過した光 と反射した光を夫々第1,第2の受光素子によって受光 し、その出力比を出力比算出手段によって算出する。そ して出力比が所定値となるようにレーザ光源の発光波長 を制御することにより、所定の波長のレーザ光を発光さ せることができる。そしてこの光フィルタを多層膜によ る干渉光フィルタによって実現し、所定の方向に対して 透過波長が連続的に変化するように構成した波長可変型 の干渉光フィルタを用い、その受光位置を変更するよう にすれば、レーザ光源の発光波長を変化させることがで きる。又この干渉光フィルタの温度を温度検出手段によ って検出し、温度変化に伴う特性の変化を補償すること によって干渉光フィルタの温度変化にかかわらず一定の 波長出力を得るようにしたものである。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】請求項2の発明ではこれに加えて、基準値設定手段により基準値を設定しておき、誤差検出手段により出力比算出手段によって算出された出力比と基準値との差を誤差として検出する。そして光源駆動手段により誤差が0となるようにレーザ光源を制御することにより、レーザ光源の発光波長を微調整することができる。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0011

【補正方法】削除

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 2

【補正方法】削除

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0039

【補正方法】変更

【補正内容】

[0039]

【発明の効果】以上詳細に説明したように本願の請求項 1,2の発明によれば、干渉光フィルタを用いることに より入射光と反射光との比率から光源の発光波長を制御 するようにしている。そのため従来の波長制御方法のよ うに分光比を正確に一定に保つことが難しいビームスプ リッタを用いる必要がなく、その温度制御も不要とな る。又波長選択特性が近接する2つのフィルタを用いる ことも不要となる。又半導体レーザの2つの出射光の一 部を波長制御用に利用しており、光ファイバや光カップ ラ等を介して波長制御部に光を分波させて入射させる必 要がなく、光ファイバによる偏光方向の変化分を考慮す る必要がなくなる。更にこれらの光学系部分をモジュー ル化しているため、波長制御手段と共にプリント基板上 に実装することができ、光源全体を極めて小型化するこ とができる。従って極めて簡単な構成で正確な波長制御 が可能となる。又干渉光フィルタへの入射位置を制御す ることによって透過波長を変化させているため、干渉光 フィルタとして急峻な特性のフィルタを用いることがで き、波長設定の精度を向上させることができる。これに 加えて干渉光フィルタの温度変化にかかわらず一定の波 長出力が得られるという優れた効果が得られる。・

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0040

【補正方法】変更

【補正内容】

【0040】これに加えて<u>請求項2</u>の発明では、基準値設定手段により設定する基準値を変化させることによって、レーザ光源の発光<u>液長を微調整することができると</u>いう効果が得られる。