Problem 1 – Short Answers (20 points)

1) A resistor of length ℓ consists of a hollow cylinder of radius a surrounded by a layer of carbon that extends from r = a to r = b. Develop an expression for the resistance R.

Carbon resistor of Problem 1.1

Solution:

(a)
$$R = \frac{\ell}{\sigma A}$$
.

The area through which current can flow is the cross section consisting of carbon.

$$A = \pi b^2 - \pi a^2.$$

Thus,

$$R = \frac{\ell}{\sigma\pi(b^2 - a^2)} \,.$$

2) Determine the equivalent resistance between terminals (a,b):

0.

3) Provide expressions in terms of step functions for the waveform

$$v_5(t) = 2u(t) + 4u(t-1) - 4u(t-3) - 2u(t-4)$$

4) Determine I_1 and I_2 in the circuit of Fig. P2.67. Assume $V_F = 0.7$ V for both diodes.

Solution: The diode in the left-hand loop is reverse biased, so

$$I_1 = 0.$$

In the right-hand loop, the diode is forward biased. Hence,

$$I_2 = \frac{6 - 0.7}{53} = 0.1 \text{ A}.$$

5) The excitation function for all four of the circuits shown in Figure 3. is

$$v_{\rm s}(t) = 0$$
 $t < 0$

$$v_s(t) = 10V$$
 $t \ge 0$

For each of the circuits, select the time function on the right that corresponds in magnitude and shape to the output, $v_o(t)$. Assume that all capacitors and inductors have zero initial states, (the appropriate state variable is zero for t less than zero). If no matching response exists, say so and explain briefly. All responses are made up of "straight lines" and "exponentials." You may choose a time function more than once.

Solution:

(A)
$$\to v_0(t) = 10V(1 - e^{-t/\tau}); \tau = R \cdot C$$

(B)
$$\rightarrow v_0(t) = 10V\left(\frac{R}{R+R}\right)\left(1 - e^-t/\tau\right); \tau = R \cdot C$$

(C)
$$\rightarrow v_0(t)$$
: finally = $10V$; initially = 0

$$v_0(t) = 10(1 - e^{-t/\tau})$$
; $\tau = L/R$

(D)
$$\rightarrow \frac{V_S}{R} + C \frac{dV_0}{dt} = 0 \Rightarrow V_0 = \frac{-10}{RC} \cdot t$$
, within the linear region of the op. amp.

3, 7, 3, 4.

Figure 3.

Problem 2 (12 points) – Determine V_x in the circuit

Solution: The combination of nodes V_1 and V_2 constitutes a supernode. Hence, for the supernode

$$\frac{V_1}{10^3} + \frac{V_1 - V_3}{2 \times 10^3} + \frac{V_2 - 10}{5 \times 10^3} + \frac{V_2 - V_3}{6 \times 10^3} = 0 \tag{1}$$

For node V_3 ,

$$\frac{V_3 - V_1}{2 \times 10^3} + \frac{V_3 - V_2}{6 \times 10^3} + \frac{V_3}{4 \times 10^3} = 0.$$
 (2)

The auxiliary equation is

$$V_2 - V_1 = 6 \text{ V}. {3}$$

The three equations can be solved to yield

$$V_1 = 0.38 \text{ V}, \qquad V_2 = 6.38 \text{ V}, \qquad V_3 = 1.37 \text{ V}.$$

Hence,

$$V_x = V_1 = 0.38 \text{ V}.$$

Problem 3 (18 points) Determine the maximum power that can be extracted by the load resistor from the circuit shown below.

Solution: To find the Thévenin equivalent circuit, we start by determining $V_{\text{Th}} = V_{\text{oc}}$.

Voltage division:

$$V_1 = \frac{15}{(3+6)k} \times 6k = 10 \text{ V}$$

 $I_x = \frac{V_1}{6k} = \frac{10}{6} \text{ mA}.$

The dependent voltage source is:

$$2000I_x = 2 \times \frac{10}{6} \times 10^3 \times 10^{-3} = \frac{20}{6} \text{ V}.$$

With (a,b) an open circuit, no current flows through the 4-k Ω resistor. Hence, there is no voltage drop across it.

$$V_{\text{Th}} = V_{\text{oc}} = V_1 - 2000I_x = 10 - \frac{20}{6} = \frac{40}{6} = 6.67 \text{ V}.$$

Next, we find I_{sc} :

$$-15 + 3kI_1 + 6k(I_1 - I_2) = 0$$
$$6k(I_2 - I_1) + 4kI_2 + 2000I_x = 0$$

Also,

$$I_x = I_1 - I_2$$

Solution yields:

$$I_1 = 2.5 \text{ mA}, \qquad I_2 = 1.25 \text{ mA}.$$

$$I_{\text{sc}} = I_2 = 1.25 \text{ mA}.$$

$$R_{\text{Th}} = \frac{V_{\text{oc}}}{I_{\text{sc}}} = \frac{6.67}{1.25 \times 10^{-3}} = 5.33 \text{ k}\Omega.$$

Hence, $R_L = 5.33 \text{ k}\Omega$ extracts maximum power.

$$I = \frac{6.67}{2 \times 5.33} = 0.625 \text{ mA}$$

$$P_{\text{max}} = I^2 R_{\text{L}} = (0.625 \times 10^{-3})^2 \times 5.33 \times 10^3 = 2.09 \quad (\text{mW}).$$

Problem 4 (18 points) – In the circuit below, a bridge circuit is connected at the input side of an inverting op-amp circuit.

- a) Obtain the Thevenin equivalent at terminals (a,b) for the bridge circuit.
- **b)** Use the result in (a) to obtain an expression for $G = v_0/v_s$.

Solution: (a) The Thévenin equivalent circuit at (a,b):

$$v_{\rm s} + i_1(R_1 + R_2) = 0$$

or

$$i_1 = \frac{-v_s}{R_1 + R_2}.$$

Also,

$$-v_{\rm s} + i_2(R_3 + R_4) = 0$$

and

$$i_2 = \frac{v_{\rm s}}{R_3 + R_4} \,.$$

$$\upsilon_{\text{Th}} = \upsilon_{\text{oc}} = i_1 R_2 + i_2 R_4$$

$$= \frac{-\upsilon_{\text{s}} R_2}{R_1 + R_2} + \frac{\upsilon_{\text{s}} R_4}{R_3 + R_4} = \frac{[R_4 (R_1 + R_2) - R_2 (R_3 + R_4)] \upsilon_{\text{s}}}{(R_1 + R_2)(R_3 + R_4)}. \tag{1}$$

Suppressing v_s (by replacing it with a short circuit) leads to

$$R_{\text{Th}} = (R_1 \parallel R_2) + (R_3 \parallel R_4)$$

$$= \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} = \frac{R_1 R_2 (R_3 + R_4) + R_3 R_4 (R_1 + R_2)}{(R_1 + R_2)(R_3 + R_4)}.$$

$$v_{\rm o} = -\frac{R_{\rm f}}{R_{\rm Th}} v_{\rm Th}$$
 (inverting amplifier) (3)

Inserting Eqs. (1) and (2) into (3) leads to

$$G = \frac{v_0}{v_s} = \frac{-R_f[R_4(R_1 + R_2) - R_2(R_3 + R_4)]}{R_1R_2(R_3 + R_4) + R_3R_4(R_1 + R_2)}$$

Problem 5 (12 points) Relate v_0 in the circuit to v_1 and v_2 .

Solution:

Op amp 1:
$$v_{o_1} = \left(-\frac{8}{2}\right)v_1 = -4v_1$$

Op amp 2:
$$\upsilon_{o_2} = \left(-\frac{16}{2}\right)\upsilon_2 = -8\upsilon_2$$

Op amp 3:
$$v_{o_3} = v_{o_1}$$
 (voltage follower)

Op amp 4:
$$v_{o_4} = v_{o_2}$$
 (voltage follower)

Op amp 4:
$$\upsilon_o = -\left(\frac{4}{0.5}\right)\upsilon_{o_3} + \left(\frac{4+0.5}{0.5}\right)\upsilon_{o_4} \qquad \text{(difference amplifier)}$$

$$= 32\upsilon_1 - 72\upsilon_2.$$

Problem 6 (20 points) - First-order circuit analysis

You must show your work to get full credit.

The op-amp circuit shown in Fig. 7 is subjected to an input pulse of amplitude $V_s = 2.4V$ and duration $T_0 = 0.3s$. Determine and plot the output voltage $V_{out}(t)$ for $t \ge 0$, assuming that the capacitor was uncharged before t = 0.

Hint: $e^{-1.2} = 0.3$.

Your answer:

$$\underline{C} \frac{d_{v_{out}}}{dt} + \frac{v_{out}}{R_2} = -\frac{v_i(t)}{R_1}, \ \tau = R_2 C = 0.25s.$$

For $0 \le t \le 0.3$ s, $v_{out} = -12(1 - e^{-4t})V$, $v_{out}(0.3) = -8.4V$. For t > 0.3s, $v_{out} = -8.4(1 - e^{-4(t-0.3)})V$.

