mpi* - lycée montaigne informatique

DM5 (éléments de réponses)

Question 1. Une expression régulière du langage reconnu par l'automate donné est $0|0^*1$.

Question 2.

```
let etatsQ = [ 0; 1; 2; 3; 4 ]
let etatsI = [ 0 ]
let etatsF = [ 4 ]
let delta = [ (0,-1,1) ; (1,-1,2) ; (2,0,1) ; (2,1,4) ; (0,0,3) ; (3,-1,4) ]
```

Opérations sur la structure d'ensemble

Question 3.

□ **3.1.** On peut définir la fonction cardinal par :

```
let rec cardinal = function
    | [] -> 0
    | t::r -> 1 + cardinal r
```

□ 3.2. Estimer sa complexité en fonction de la taille de son ensemble argument. Le nombre d'appels récursifs dans l'appel cardinal e est égal au cardinal de e.

Question 4.

□ 4.1. On peut définir la fonction appartient par :

```
let rec appartient v = function
    | [] -> false
    | t::r -> v=t || appartient v r
```

□ 4.2. Le nombre maximal d'appels récursifs est égal à 1+|e| et que ce nombre est atteint quand v n'est pas dans e.

Question 5. On définit a jout par :

```
let ajout v e =
  if appartient v e then e else v::e
```

Cette fonction ajoute bien v à e s'il ne s'y trouve pas déjà.

Question 6.

□ **6.1.** Définition de egalite :

```
let egalite e1 e2 =
  let rec aux = function
  | [] -> true
  | t::r -> appartient t e2 && aux r
  in cardinal e1 = cardinal e2 && aux e1
```

 \Box 6.2. La fonction récursive aux teste si un ensemble est inclus dans e2, ce qui se vérifie immédiatement par récurrence : t::r est inclus dans e2 si et seulement si t appartient à e2 et r est inclus dans e2.

Ensuite e1 est égal à e2 si et seulement si e1 est inclus dans e2 et si e1 et e2 ont même nombre d'éléments.

L'appel appartient t e2 nécessite au plus |e2| appels récursifs; dans le pire cas (quand e1=e2) cet appel est effectué pour tous les éléments de e1 soit une complexité totale majorée par : |e1|.|e2|, le test du nombre d'éléments étant lui de complexité |e1|+|e2|.

Question 7. La fonction union est définie par :

Elle parcourt récursivement e2 et si ses éléments ne sont pas déjà dans e1 elle les ajoute dans l'union.

Question 8. La fonction intersection est définie par :

Cette fonction parcourt récursivement e2 et n'en garde que les éléments qui sont déjà dans e1 ce qui produit bien l'intersection des deux ensembles.

mpi* - lycée montaigne informatique

Exploitation des relations de transition

Question 9.

9.1.

$$s(\{0\}, \delta) = \{1, 3\}$$
 $s(\{2\}, \delta) = \{1, 4\}$ $s(\{4\}, \delta) = \emptyset$ $s(\{1, 3\}, \delta) = \{2, 4\}$

9.2.

```
let rec suivants e delta =
  let rec aux t = function
  | [] -> []
  | (q,_,q')::s -> if q = t then q' :: aux t s else aux t s
  in match 0 with
  | [] -> []
  | t::r -> union (aux t delta) (suivants r delta)
```

Question 10.

10.1.

$$\mathbf{a}(\{0\},\delta) = \{0,1,2,3,4\} \qquad \mathbf{a}(\{2\},\delta) = \{1,2,4\} \qquad \mathbf{a}(\{4\},\delta) = \{1,2,3,4\} \qquad \mathbf{a}(\{1,3\},\delta) = \{4\}$$

- **10.2.**
- \triangleright 10.2.1. D'après la définition de A_i , on a bien $A_i \subset A_{i+1}$, ce qui montre que la suite A_i est croissante.
- \triangleright 10.2.2. Les A_i étant inclus dans l'ensemble fini Q, la suite A_i ne peut être strictement croissante; il existe donc un $k \in \mathbb{N}$ tel que $A_k = A_{k+1}$.
- \triangleright 10.2.3. Pour alléger les notations, δ étant fixée, on notera a(A) au lieu de $a(A,\delta)$ et s(A) au lieu de $s(A,\delta)$.

Soit $d \in \mathbf{a}(\mathbf{s}(A_i))$. Par définition de a, il existe $o' \in \mathbf{s}(A_i)$ et $m \in X^*$ tels que $(o', m, d) \in \delta^*$; il existe ensuite (par définition de s) $o \in A_i$ et $e \in X$ tels que $(o, e, o') \in \delta$; on en déduit que $(o, em, d) \in \delta^*$, et donc que $d \in \mathbf{a}(A_i)$, ce qui prouve que $\mathbf{a}(\mathbf{s}(A_i)) \subset \mathbf{a}(A_i)$.

D'autre part, par définition de a, pour deux sous-ensembles E_1 et E_2 de Q, on a a $(E_1 \cup E_2) = \mathsf{a}(E_1) \cup \mathsf{a}(E_2)$. On déduit alors : $\mathsf{a}(A_{i+1}) = \mathsf{a}(A_i) \cup \mathsf{a}(\mathsf{s}(A_i))$ et d'après l'inclusion prouvée précédemment : $\mathsf{a}(A_{i+1}) = \mathsf{a}(A_i)$.

- ightharpoonup > 10.2.4. Soit $E \subset Q$ tel que s(E) $\subset E$ et $d \in \mathsf{a}(E)$; il existe $o \in E$ et $m \in \Sigma^*$ tels que $(o, m, d) \in \delta^*$. Montrons par récurrence sur la longueur de m que $d \in E$. Si m est le mot vide, par définition de s on a $d \in \mathsf{s}(E)$ et donc $d \in E$ Sinon soit m = em' avec $e \in X$ et $m' \in \Sigma^*$, alors, par définition de δ^* , il existe $q \in Q$ tel que $(o, e, q) \in \delta$ et $(q, m', d) \in \delta^*$. D'où $q \in \mathsf{s}(E) \subset E$ et donc par récurrence $d \in E$. D'où $\mathsf{a}(E) \subseteq E$.
- ightharpoonup 10.2.5. D'après les résultats précédents, comme $\operatorname{s}(A_k) \subset A_{k+1} = A_k$ on a $\operatorname{a}(A_k) \subset A_k$; comme par définition de a, on a l'inclusion inverse : $\operatorname{a}(A_k) = A_k$. On a également $\operatorname{a}(E) = \operatorname{a}(A_0) = \operatorname{a}(A_k)$, d'où $\operatorname{a}(E) = A_k$. □ 10.3.

```
let access e delta =
  let rec aux e' =
   let e1 = union e' (suivants e' delta) in
      if egalite e' e1 then e' else aux e1
  in aux e
```

10.4.

Automate fini semi-indéterministe

Question 11.

- □ **11.1.** TODO
- **11.2.**

Cette fonction parcourt la liste et trie les transitions suivant qu'elles sont arbitraires ou non.

Question 12.

- □ 12.1. δ_{ε} contient, en plus de δ , les transitions (q, ε, q) pour $q \in \{A, B, C, D, E\}$ et la transition (A, ε, C) .
- □ 12.2. Si $(q, \varepsilon, q') \in \delta_{\varepsilon}$ (avec $q \neq q'$) il existe une suite finie q_i d'états tels que $q_0 = q$, $q_n = q'$ et pour tout i = 1, ..., n, $(q_{i-1}, \varepsilon, q_i) \in \delta_{\varepsilon}$. On peut supposer (en enlevant d'éventuelles boucles) que les états q_i sont distincts. Une telle chaîne

mpi* - lycée montaigne informatique

de n transitions va produire $\binom{n+1}{2}$ éléments dans $\bar{\delta}_{\varepsilon}$. On peut donc en déduire qu'un majorant de la taille de $\bar{\delta}_{\varepsilon}$ est $\binom{|\delta_{\varepsilon}|+1}{2}+|\delta_{\varepsilon}|+1$ (en comptant les transitions d'un état sur lui-même).

□ 12.3. Si l'on identifie (comme le suggère l'énoncé) ε et Λ , $\bar{\delta}_{\varepsilon}$ est égale à $(\delta_{\varepsilon})^*$ (en prenant $X = \varnothing$); d'après la définition de a on a $\mathrm{a}(\{o\}) = \{d \in Q \mid (o, \varepsilon, d) \in \delta_{\varepsilon}^*\}$ (le seul mot possible étant le mot vide); ceci entraı̂ne évidemment : $\bar{\delta}_{\varepsilon} = \{(o, \varepsilon, d) \mid o \in Q, d \in \mathrm{a}(\{o\}, \delta_{\varepsilon})\}.$

12.4.

Question 13.

- □ 13.1. Chaque transition de $\delta_{\Sigma} \triangleright \delta_{\varepsilon}$ provenant de la composée d'une transition de δ_{Σ} et d'une de δ_{ε} , la taille de $\delta_{\Sigma} \triangleright \delta_{\varepsilon}$ est majorée par le produit des tailles de δ_{Σ} et de δ_{ε} .
- □ 13.2. Quand c'est possible, on prolonge chaque transition de δ_{Σ} par une transition de $\bar{\delta}_{\varepsilon}$, et on obtient : $\delta_{\Sigma} \triangleright \delta_{\varepsilon} = \{(2,0,1),(2,0,2),(2,1,4),(0,0,3),(0,0,4)\}.$

□ 13.3.

L'appel aux (o,e,d) g calcule les transitions obtenues en composant (o,e,d) avec une des transitions de la relation arbitraire g, ce qui se vérifie facilement par récurrence. Puis compose applique aux successivement à tous les éléments de δ_1 et prend l'union du tout.

Question 14.

- □ 14.1. Soit un mot u reconnu par l'automate \mathcal{A} . Si u est le mot vide c'est qu'il existe un chemin dans \mathcal{A} étiqueté uniquement par ε qui va d'un état initial i à un état terminal t, ce qui veut dire que $t \in \mathsf{a}(I,\bar{\delta}_{\varepsilon})$ donc que t est aussi état initial de $\mathcal{E}(\mathcal{A})$ d'où $\mathcal{E}(\mathcal{A})$ reconnaît aussi le mot vide. Si le mot n'est pas vide : $u = u_1 \dots u_n$, il existe une suite d'états q_i tels que : $q_0 \in I$, $q_n \in T$ et, pour tout $i = 1, \dots, n$, il existe q_i' tel que $(q_{i-1}, u_i, q_i' \in \delta_{\Sigma} \text{ et } (q_i', \varepsilon, q_i) \in \bar{\delta}_{\varepsilon})$, ce qui entraîne que $(q_{i-1}, u_i, q_i) \in \delta_{\Sigma} \triangleright \hat{\delta}_{\varepsilon}$, donc que le mot u est reconnu par $\mathcal{E}(\mathcal{A})$. La réciproque se fait de la même façon. Les deux automates \mathcal{A} et $\mathcal{E}(\mathcal{A})$ reconnaisssent donc le même langage.
- □ 14.2. En utilisant les questions précédentes et en remarquant que $\delta_{\Sigma} \subset \delta_{\Sigma} \triangleright \bar{\delta}_{\varepsilon}$, on a comme majorant de la taille de $\delta_{\Sigma} \triangleright \bar{\delta}_{\varepsilon} : |\delta_{\Sigma}| . \left(\binom{|\delta_{\varepsilon}|+1}{2} + |\delta_{\varepsilon}| + 1\right)$. La déterminisation d'un automate de taille n pouvant donner un automate de taille 2^n , la taille obtenue ici est meilleure.

14.3.

 \square 14.4. La fonction semi traduit seulement la définition de $\mathcal{E}(A)$ en utilisant les fonctions des questions précédentes.

```
let semi (Q, I, T, delta) =
  let deltaX, deltaE = decompose delta in
  let deltaF = fermeture deltaE in
  let delta' = compose deltaX deltaF in
  let I' = union I (suivants I deltaF)
  in (Q, I', T, delta')
```