Devoir à la maison n°14

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après Petites Mines 2002

Partie I -

Soit f l'application de \mathbb{R} dans \mathbb{R} définie par f(0) = 1 et $f(t) = \frac{\arctan t}{t}$ pour tout $t \in \mathbb{R}^*$.

- **1.** Montrer que f est continue sur \mathbb{R} et paire.
- 2. Donner le développement limité de f à l'ordre 1 en 0. En déduire que f est dérivable en 0 et donner f'(0).
- **3.** Justifier que f est dérivable sur \mathbb{R} et calculer f'(t) pour tout $t \in \mathbb{R}^*$.
- **4.** A l'aide d'une intégration par parties, montrer que pour tout $t \in \mathbb{R}$,

$$\int_0^t \frac{u^2}{(1+u^2)^2} \, \mathrm{d}u = -\frac{1}{2}t^2 f'(t)$$

En déduire le sens de variation de f.

5. Tracer la courbe représentative de f dans un repère orthonormé (unité : 2 cm). On précisera les éventuelles branches infinies.

Partie II -

Soit ϕ l'application de \mathbb{R} dans \mathbb{R} définie par $\phi(0) = 1$ et pour tout $x \in \mathbb{R}^*$, $\phi(x) = \frac{1}{x} \int_0^x f(t) dt$.

- 1. Montrer que ϕ est continue sur \mathbb{R} et paire.
- **2.** Montrer que pour tout $x \in \mathbb{R}$, $f(x) \le \phi(x) \le 1$. On pourra commencer par supposer x > 0.
- 3. Montrer que ϕ est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$, $\phi'(x) = \frac{1}{x}(f(x) \phi(x))$. Montrer que ϕ est dérivable en 0 avec $\phi'(0) = 0$. Donner les variations de ϕ .
- **4.** Montrer que $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$. En déduire que $\lim_{x \to +\infty} \phi(x) = 0$.
- 5. Tracer la courbe représentative de ϕ dans un repère orthonormé (unité : 2cm). On précisera les éventuelles branches infinies.

Partie III -

Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et $u_{n+1} = \phi(u_n)$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que pour tout $t \in \mathbb{R}_+$, $0 \le \frac{t}{1+t^2} \le \frac{1}{2}$.
- **2.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$|\phi'(x)| \le \frac{1}{x}(1 - f(x)) = \frac{1}{x^2} \int_0^x \frac{t^2}{1 + t^2} dt$$

On pourra utiliser les questions II.2 et II.3.

En déduire que $|\phi'(x)| \le \frac{1}{4}$ pour tout $x \in \mathbb{R}_+^*$ puis que cette inégalité reste vraie pour tout $x \in \mathbb{R}$.

- 3. Montrer que l'équation $\phi(x) = x$ admet une unique solution sur \mathbb{R} . On note α cette solution. Montrer que $\alpha \in]0,1]$.
- **4.** Prouver que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{1}{4}|u_n \alpha|$. En déduire que (u_n) est convergente et préciser sa limite.

Partie IV -

On considère l'équation différentielle $x^2y' + xy = \arctan(x)$.

- 1. Résoudre cette équation différentielle sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **2.** Montrer que ϕ est l'unique solution de cette équation différentielle sur \mathbb{R} .