# Universidade da Beira Interior

# Departamento de Informática



Nº 2 - 2020: αsteroids - Alpha Defense Team

Elaborado por:

Rúben Guilherme, nº 41059 Paulo Duarte, nº 41853

Orientador:

Professor/a Doutor/a Abel Gomes

14 de janeiro de 2021

# Conteúdo

1

# Introdução

## 1.1 Motivação

Este projeto foi desenvolvido, no âmbito da disciplina de Computação Gráfica lecionada pelo professor Abel Gomes, com o intuito de desenvolver e aperfeiçoar as técnicas aprendidas ao longo do semestre.

## 1.2 História do jogo

- Quem é o jogador? O jogador faz parte da equipa de defesa Alpha da base espacial UPT-2. Esta base está a navegar por uma cintura de asteroides e devido a isso está a ser atacada por naves inimigas. O jogador deve proteger o caminho da base espacial contra os asteroides e eventuais naves inimigas.
- 2. **Quem é o inimigo?** O inimigo faz parte dos planetas que ambicionam destruir a nossa presença no Universo. Depois da destruição da Terra alguns planetas decidiram revoltar-se contra a União Planetária da Terra, criada para unir e guiar as várias nações terráqueas. Estes não querem mais um inimigo a conquistar o cosmos e estão dispostos a tudo para eliminar os humanos.
- 3. **Porquê?** Alienígenas estão a atacar o planeta Terra com o intuito de dizimar a raça humana. Assim sendo, os terráqueos não têm outra opção senão fugir, uma vez que a tecnologia dos extraterrestres é muito superior à dos humanos.
- 4. Objetivo? Fugir do planeta Terra atravessando a cintura de asteroides.

2 Introdução

5. **Onde?** – Sistema Solar - Cintura de asteróides

2

# Tecnologias e Ferramentas Utilizadas

## 2.1 OpenGL

OpenGL é a API utilizada para o desenvolvimento do jogo Asteroids em 3D.

#### **2.2 GLFW**

A biblioteca GLFW é utilizada para que nos seja possível criar e gerir janelas e interagir com o teclado e com o rato.

#### 2.3 GLM

A biblioteca GLM é utilizada para que consigamos extender o nosso conjuntos de funções matemáticas.

#### **2.4 GLAD**

O Glad é utilizado para carregar algumas linguagens necessárias para a implementação do programa nomeadamente o GL.

#### 2.5 ASSIMP

A biblioteca ASSIMP é utilizada para importar os nossos objetos 3D.

## 2.6 FreeType

A biblioteca FreeType é utilizada para que possamos ler fontes de texto e convertêlas de forma a que as possamos utilizar no OpenGL.

## 2.7 Blender

Utilizámos o Blender para modelar e texturizar os nossos objetos.

3

# Desenvolvimento e Implementação

## 3.1 Gestão do projeto

Numa primeira fase críamos um plano de trabalho no qual nos baseámos para a concretização do projeto que queríamos. Começámos por criar e pensar nas funcionalidades que queríamos ver realizadas no nosso jogo. De seguida, estimámos o tempo médio de execução de cada fase do projeto e as respetivas deadlines.

#### 3.2 Parte Técnica

Concluída a fase de gestão do projeto, começámos o seu desenvolvimento.

#### 3.2.1 Modelação

No que diz respeito à fase de **Modelação**, utilizámos o Blender para criar alguns objetos, tais como: a nossa nave, os asteróides e o nosso cenário.





#### 3.2.2 Interação

Na fase de desenvolvimento da **Interação** preocupámo-nos com a escolha de comandos fáceis e intuitivos para manipular a nave. Assim sendo, decidimos utilizar o teclado para a mover, e o rato para controlar a mira da nave e a descarga de plasma para destruir os asteróides.

#### 3.2.3 Shaders

No projeto temos 3 tipos de **Shaders**, um para as texturas, um para o texto e outro para dar load a objetos 2d (como a mira). Estes shaders são baseados naqueles encontrados no website learnopengl.

## 3.2.4 Texturização

A **Texturização** dos nossos objetos foi realizada conjuntamente com a modelação no Blender.

#### 3.3 Funcionalidades Extra

A equipa de desenvolvimento decidiu implementar algumas funcionalidades extra que achou pertinentes.

#### 3.3.1 Texto Gráfico

Decidimos colocar **Texto Gráfico** no nosso jogo para melhorar a experiência de utilizador.

#### 3.3.2 Sistemas de Pontuação

Criámos um Sistema de Pontuação para tornar o jogo mais competitivo.

#### 3.3.3 2D -> 3D

Desde a fase de gestão e planeamento do nosso projeto que nunca pensámos em fazer o jogo em 2D dado que queríamos revolucionar o clássico jogo Asteroids com uma versão em 3D.

#### **3.3.4** Menus

Desenvolvemos alguns menus para o nosso jogo, nomeadamente: um menu principal, um menu de pausa e um menu de *Game Over*.



4

# Descrição do funcionamento do software

O jogo consiste numa nave que, controlada pelo jogador através do rato e do teclado, tem de destruir os asteróides existentes. Caso a nave não consiga destruir ou desviar-se dos asteróides, esta vai perdendo vida até ser destruída.

A nave movimenta-se num mapa esférico com limites bem definidos, caso a nave se movimente para fora dos limites do mapa, inicialmente aparecerá uma mensagem de aviso que se ignorada pelo jogador, este perderá o jogo tendo de começar de novo.



5

## Conclusões e Trabalho Futuro

## 5.1 Conclusões Principais

Com a finalização deste projeto pudemos aprender sobre todas as fases de desenvolvimento de uma aplicação gráfica (neste caso de um jogo), assim como desenvolver as nossas capacidades técnicas e soft-skills.

#### 5.2 Trabalho Futuro

A equipa de desenvolvimento acha que o jogo desenvolvido cumpre todos os requisitos estabelecidos, no entanto os programadores tinham mais alguns objetivos que ficaram por concretizar e que podem ser encarados como "trabalho futuro". A equipa gostaria de ter criado mais naves para que o jogador pudesse escolher a nave de que mais gosta, naves inimigas, *bosses*, diferentes cenários e alguns *power-ups*. Além disso, também tínhamos planeado existirem algumas opções de customização nomeadamente ao que diz respeito à nave, à mira e aos tiros.

6

# Bibliografia

| 1.           | https://learnopengl.com/In-Practice/2D-Game/Levels                     |  |  |  |  |
|--------------|------------------------------------------------------------------------|--|--|--|--|
| 2.           | https://learnopengl.com/Getting-started/Transformations                |  |  |  |  |
| 3.           | https://learnopengl.com/Model-Loading/Assimp                           |  |  |  |  |
| 4.           | https://learnopengl.com/Model-Loading/Mesh                             |  |  |  |  |
| 5.           | https://learnopengl.com/Model-Loading/Model                            |  |  |  |  |
| 6.           | https://learnopengl.com/Getting-started/Camera                         |  |  |  |  |
| 7.           | https://github.com/lucatironi/cpp-gl-asteroids                         |  |  |  |  |
| 8.           | https://www.cplusplus.com/reference/vector/vector/                     |  |  |  |  |
| 9.           | https://www.glfw.org/docs/3.3/input <sub>g</sub> uide.html             |  |  |  |  |
| 10.https     | : //cc0textures.com/categories                                         |  |  |  |  |
| 11.https://a | $leveloper.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detec$ |  |  |  |  |
| 12.http://w  | ww.cplusplus.com/reference/cmath/sqrt/                                 |  |  |  |  |