Reproducing Table 1-2-3-5, and Figure 1 using the simulated data

July 6, 2016

1 Figures

Figure 1: Individual ROC curves for the 13 studies investigating the diagnostic accuracy of the PHQ-9 questionnaire. Each line represents a study-specific empirical ROC curve based on estimated sensitivity and specificity for threshold 0 to 27. The study numbers found in Table 1 identified which ROC curve represented which study.

2 Tables

Table 1: Number of truly MDD/non-MDD patients with test result above/below the threshold of interest, for each threshold between 7 and 14 of PHQ-9 score categories in 13 studies

			Sin	nulated E	xample So	core			
Study	€7	8	9	10	11	12	13	\geqslant 14	Total
1	0/1411	0/42	0/69	0/55	0/69	0/55	14/14	84/221	98/1936
2	2/144	1/12	1/11	9/10	6/10	5/7	6/7	76/9	106/210
3	0/32	0/4	2/6	0/3	1/3	1/2	1/2	31/8	36/60
4	59/642	13/27	18/28	9/21	16/18	16/6	13/15	80/43	224/800
5	0/91	2/4	0/2	0/2	1/3	0/4	3/0	15/5	21/111
6	3/334	1/11	1/21	0/9	1/7	0/8	2/5	12/23	20/418
7	14/161	1/19	3/11	2/8	2/9	4/6	4/3	7/11	37/228
8	1/413	1/34	1/21	1/27	9/19	2/9	9/14	57/41	81/578
9	8/132	6/5	1/5	0/1	1/3	2/3	0/2	17/7	35/158
10	0/103	0/4	0/2	0/3	2/3	6/0	4/0	48/2	60/117
11	55/2886	25/164	42/102	53/119	47/79	26/95	43/64	337/210	628/3719
12	0/236	1/45	1/33	0/21	2/15	5/23	4/17	58/60	71/450
13	2/144	1/26	1/28	0/15	1/13	0/9	2/11	12/14	19/260
Total	144/6729	52/397	71/339	74/294	89/251	67/227	105/154	834/654	1436/9045

Table 3: Parameter estimates (standard errors) obtained by the bivariate approach

Threshold	Logit	Logit	Correlations
Inresnoid	(sensitivity)	(1-specificity)	ρ_T
7	3.29(0.60)	-1.00 (0.15)	0.42
8	2.65 (0.51)	-1.28 (0.14)	0.49
9	2.18(0.43)	-1.58 (0.12)	0.48
10	1.95(0.42)	-1.83 (0.12)	0.48
11	1.47 (0.35)	-2.12(0.13)	0.54
12	1.14(0.32)	-2.40(0.13)	0.62
13	0.64 (0.25)	-2.68 (0.14)	0.76
14	$0.33 \ (0.22)$	-3.06 (0.15)	0.56

For thresholds j=7,...,14, sensitivity $j=\text{expit}(\text{Logit sensitivity}_j)$ and specificity $j=1-\text{expit}(\text{Logit }(1-\text{specificity}_j))$.

Table 5: Parameter estimates (standard errors) obtained by the Poisson approach

Threshold	Hazards Diseased	Hazards Healthy		Frailty Variances	C	orrelations	
7 8 9 10 11 12 13 14	0.04 (0.018) 0.04 (0.021) 0.06 (0.028) 0.06 (0.029) 0.09 (0.034) 0.08 (0.036) 0.11 (0.048) 0.10 (0.043)	0.19 (0.026) 0.18 (0.025) 0.21 (0.029) 0.20 (0.026) 0.20 (0.031) 0.19 (0.032) 0.24 (0.036) 0.25 (0.040)	$\begin{cases} \xi^1 \\ \xi^0 \end{cases}$	0.92 (0.22) 0.09 (0.02)	$ ho_{ m thres}$ $ ho_{ m dis}$	0.54 (0.15) 0.29 (0.14)	

For thresholds j=7,...,14, sensitivity $j=\prod_{k=1}^{j}(1-\text{Hazard Diseased}_k)$ and sensitivity $j=1-\prod_{k=1}^{j}(1-\text{Hazard Healthy}_k)$.

Table 2: Estimates (95% CI) of the pooled sensitivity and specificity from the three methods

	Bivariate	Bivariate approach	Ordinal a	Ordinal approach	Poisson approach	approach
Fhreshold	Sensitivity	Specificity	Sensitivity	Sensitivity Specificity	Sensitivity	Specificity
	0.96 (0.89-0.99)	0.73 (0.67-0.78)	NA	NA	0.88 (0.82-0.94)	0.73 (0.67-0.79)
~	0.93 (0.84-0.97)	0.78 (0.73-0.83)	NA	NA	0.85 (0.77-0.93)	0.78 (0.74-0.82)
6	0.90(0.79-0.95)	$0.83 \ (0.79 - 0.86)$	NA	NA	(0.79 (0.69-0.89))	0.83 (0.79-0.87)
10	$0.88 \ (0.76-0.94)$	0.86(0.83-0.89)	NA	NA	$0.74 \ (0.62 - 0.86)$	0.86 (0.82 - 0.90)
11	$0.81 \ (0.69-0.90)$	$0.89 \ (0.87 - 0.91)$	NA	NA	0.68 (0.54-0.82)	(0.89 (0.85-0.93)
12	0.76 (0.63-0.85)	0.92 (0.90-0.93)	NA	NA	0.62 (0.48-0.76)	(0.91 (0.89-0.93)
13	$0.65 \ (0.54 - 0.76)$	$0.94 \ (0.92-0.95)$	NA	NA	0.55 (0.39 - 0.71)	$0.93 \ (0.91-0.95)$
14	$0.58 \ (0.47 - 0.68)$	0.96(0.94-0.97)	NA	NA	$0.50 \ (0.34 - 0.66)$	0.95 (0.93-0.97)