Suport de curs Modelare si simulare #5

- ✓ Modelarea si simularea problemelor diferenţiale
- ✓ Probleme ce implica calculul derivatei si integralei

Modele diferentiale

- Sunt modele matematice care țin seama de dinamica fenomenelor (procese si sisteme) –
 exprimate prin dependențe continue sau discontinue sub formă de funcții.
- Modelele diferențiale se reduc la modele algebrice prin transformare cu ajutorul unor operatori. Exemplu: diferențele finite Δ (de diferite ordine) transformata Laplace (transformare integrală).
- Calculul diferențial în general implică funcții: Newton și Leibniz sunt părinții calculului diferential (introducând conceptul de integral/calcul integral).

Example process dimannice - quiscorea objecte (or (a))
$$S(t) = v_0 t + \frac{d}{2} t^2$$
 | $a = ct$.

Viteza = variatia spatialmi intimy.

 $V(t) = \frac{ds}{dt} = v_0 + at$ $V = S$ | $f(x)$
 $a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2} = a$ $a = v = S$
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + at$ | (λ, φ, t)
 $(\lambda, \varphi, t) \rightarrow v_0 + a$

Andog oscilatorel meanic (pendulul)

m.l Å + k.l Å + mg Å = 0

const.

de amortigae $\theta(t)$ -> cond. $\theta(t) = 0$. $\theta(t) = 0$. $F_{+} = m \cdot \alpha = 0 \quad \alpha = \frac{F_{+}}{m} = 0$ $S = U_{0} + \alpha + \alpha + \frac{\xi^{2}}{2}$ $V = V_{0} + \alpha + \alpha + \frac{\xi^{2}}{2}$ $S = U_{0} + \alpha + \frac{\xi^{2}}{2}$ $V = V_{0} + \alpha + \frac{\xi^{2}}{2}$