Privacy in Information Age

Wenhui Fang GR 5243: Advanced Data Science Columbia University, Department of Statistics

Introduction:

- Privacy vs. Information Age, a hot topic over many years.
- Increasing number of stalkers using social media information.
- Weibo began to display user's IP address without user's consent
 - Discussion about personal privacy invaded
 - o Discussion about bad people can use this to do

Project Goal:

- How easily personal information can be obtained?
- How our information can be used in good or bad ways?

Data Collection

- Some Tweets comes with geographic location.
- If we gather enough tweet with different location, we can infer on one's travel pattern.
- Use snscrapper package in python to find geotagged tweets, save usernames.
- Input usernames to Tweepy package for full tweets history for each user
- Dataset consists of 65170 tweets.
- After cleaning, we have 27126 tweets and 591 users with their locations, and time for each tweet.

Data Overview

- Every tweet comes with latitude and longitude that have precision with 4 places
- Time of tweet also specified to second.

	date	year	month	day	hour	minute	second	user_id	user	geo	latitude	longitude	
0	2021- 12-27	2021	12	27	11	53	59	24402703.0	MerDiann	41.2225, -74.2897	41.2225	-74.2897	
1	2021-	2021	11	30	18	26	49	24402703.0	MerDiann	35.9886, -78.9072	35.9886	-78.9072	

Visualization

Visualization

Set-up

Divided longitude and latitude equally to create different zones.

```
\circ S = {z1, z2, ..., zn}
```

Divide time into 24 intervals by one hour.

```
\circ T = {t1, t2, ..., tn}
```

- By calculating the ratio of traveler's record falls into zone Z and time T, we
 have the MLE of probability showing up in Z during T
- Let S be column and T be rows: form a probability matrix for each traveler.
 - Denoted by S-T matrix

Features using in Predict Travel Mode

- Spatial Distribution Similarity (AZ): (Travel space similarity)
 - Each traveler's spatial distribution vector is obtained from S-T matrix, and the similarity between two travelers is calculated by cosine similarity.
- Temporal Distribution Similarity (AT): (Travel time similarity)
 - Each traveler's temporal distribution vector obtain is from S-T matrix, and the similarity is also calculated by cosine similarity
- Radius of gyration (AR): (Travel radius)
 - Gyration is calculated by the standard deviation of a travel's spatial distance. Similarity of gyration is calculated by
 - \circ cl(x,y)=1-2×|sigmoid(x-y)-0.5|
- Travel frequency similarity:
 - \circ Frequency is calculated by the ratio of number of travel records and the number of observation period. Similarity of frequency is also calculated by cl(x,y) function

Reference Label

The reference label is overall travel pattern similarity

$$S_{ij} = \sum_{m=1}^T \sum_{k=1}^N \sqrt{p_{mk}^i * p_{mk}^i}$$
 ,

- Where T is the number of time span, N is the number of zones.
- p is MLE probability in ST matrix

Model: Multivariate Linear Regression

- Since we have four features that are correlated with reference label, we use multivariate linear regression.
- We got R square = 0.806
 - o 80% variation in overall travel pattern similarity has been explained by 4 features
- All p-values for features are less than 0.05
 - Preserve them all in the model

Conclusion:

- Relatively easy to obtain user's personal information
- Personal information that are not protected well can be used in bad way
- After performing similarity analysis, a relatively simple model can have a high accuracy predicting one's travel pattern
- In this information age, big data provides data scientists a way to find solutions efficiently
- We can use this analysis in many ways such as travel, transportation
- But it can also be used to predict one specific person's travel mode
- Dataset are not just digits, each case is living life

Conclusion:

- Personal information that are not protected well can be used in bad way

Thank you!