Sogang University: Data Mining Presentation

Knowledge-incorporating BERT for Response Selection

Janghoon Han

Sogang University

120190211

한장훈

목차

제안모델

실험결과

결론

Dialog System

- 인간과 기계가 상호작용 하며 대화를 나눌 수 있게 하는 시스템.
- 여러 문장으로 이루어진 Multi-turn 환경에서 응답을 생성 or 선택

■ Dialog system의 종류

Generative System

- ◆ 대화 History (Context) 주어졌을 때 단어 단위로 response를 생성.
- ◆ Context는 인코더를 통해 summary vector로 변환되어 디코더를 통해 response를 생성.

Retrieval based System

- ◆ Response를 생성하는게 아님.
- ◆ Response candidate 중에서 Best response를 선택함 (selection)

■ 기존 연구의 한계점

- 기존 연구는 주어진 대화 데이터만 사용함
- 대화를 하는데 외부지식이 필요할 수 있음.

■ 제안모델

• 외부지식을 텍스트로부터 학습하여 response selection Task의 성능을 향상시킴.

Data

Dataset

- Ubuntu Corpus V1 사용
- Training data: 100K context-response pair
- Validation, Test data: 각각
 50K context-response pair
- Context는 multi-turn
 환경으로 평균 8 turn을 가짐

Context

Utterance 1:

My networking card is not working on my Ubuntu, can somebody help me?

Utterance 2:

What's your kernel version? Run *uname* -r or *sudo dpkg* -l | *grep* linux-headers | *grep* ii | *awk* '{ *print* \$3}' and paste the output here.

Utterance 3:

It's 2.8.0-30-generic.

Utterance 4:

Your card is not supported in that kernel. You need to upgrade, that's like decade old kernel!

Utterance 5:

Ok how do I install the new kernel??

Response

Just do sudo apt-get upgrade, that's it.

Data

External Knowledge Data

- Ubuntu command 관한 외부
 지식
- Ubuntu man page의 manual description을 web crawling 하여 정제
- Ubuntu dataset에 나타난
 명령어에 관한 8313개 문서
- 문서는 web의 Name 항목과
 Description 항목을 사용

NAME

sudo, sudoedit - execute a command as another user

SYNOPSIS

```
sudo -h | -K | -k | -V
sudo -v [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-u user]
sudo -v [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-U user] [-u user] [command]
sudo [-AbEHnPS] [-a type] [-C num] [-c class] [-g group] [-h host] [-p prompt] [-r role]
[-t type] [-u user] [YAB=value] [-i | -s] [command]
sudoedit [-AknS] [-a type] [-C num] [-c class] [-g group] [-h host] [-p prompt] [-u user]
file ...
```

DESCRIPTION

sudo allows a permitted user to execute a <u>command</u> as the superuser or another user, as specified by the security policy. The invoking user's real (<u>not</u> effective) user ID is used to determine the user name with which to query the security policy.

sudo supports a plugin architecture for security policies and input/output logging. Third parties can develop and distribute their own policy and I/O logging plugins to work seamlessly with the sudo front end. The default security policy is sudoers, which is configured via the file /etc/sudoers, or via LDAP. See the Plugins section for more information.

제안모델

Knowledge-incorporating BERT

- Pre-trained 된 언어모델인 BERT를 Dialog Selection에 적용하여 성능을 향상
- 기존 Ubuntu Dialog Corpus 뿐만 아니라 Manual Description data를
 확보하여 외부지식을 사용
- 외부지식을 학습하기 위해 BERT를 Post-training 한 후, Post-trained 된
 BERT 모델을 통해 Dialog Selection Task를 해결.

이전연구

■ BERT(Bidirectional Encoder Representations from Transformers)

- 언어모델
 - ◆ 단어 시퀀스의 확률을 할당 이전 단어가 주어졌을 때 다음 단어가 무엇인지 예측
 - 위키피디아, 뉴스 데이터 등 대용량 코퍼스로 학습

BERT

사전 학습된 BERT를 다양한 Task에 적용하여 좋은 성능을 보임

BERT

■ 구조

- 12개의 트랜스포머 인코더 블록, 히든레이어 크기는 768차원
- 멀티 헤드 어텐션: 768차원을 12개로 나누어 각각 어텐션을 계산
- 셀프 어텐션 사용 (어텐션 스코어 함수는 Scaled dot product)
- 입력: 토큰 임베딩, 포지션 임베딩, 세그먼트 임베딩

BERT

Transformer encoder

MultiHead Attention

Self Attention

제안모델

Knowledge-incorporating Post-Training

- Post-Training 데이터로 manual description data사용
- 학습 방법으로 masked language model (MLM) 방식과 next sentence prediction (NSP) 을 사용
- Masked Language Model (MLM)
 - ◆ 특정 토큰을 mask 하고 mask 된 토큰을 예측하는 방식.
 - ◆ 기존 방식과는 다르게 명령어 토큰만 mask 하여 학습 일반적인 코퍼스에서 나타나지 않는 정보를 학습
- Next Sentence Prediction (NSP)
 - ◆ 두 문장을 입력으로 두번째 문장이 첫번째 문장의 다음문장인지 예측
 - 연속된 문장은 한 문서 내에서 추출하여 사용.
 - 다음문장과 관련성을 학습.
- 최종적으로 2가지 방식을 융합하여 손실함수로 학습함. 이때 Cross Entropy Loss 사용

$$L_{final} = L_{MLM} + L_{NSP}$$

제안모델

BERT for Response Selection

 외부지식을 학습한(Post-trained) BERT를 사용하여 Response Selection Task를 수행함.

Sogang University

BERT for Response Selection

Problem Formalization

- Conversation dataset $D = \{(y_i, c_i, r_i)\}_{i=1}^N$, $c_i = \{u_{i,1}, ..., u_{i,l_i}\}$, $y_i \in \{0,1\}$
- y는 정답, c는 conversation context , r 은 response
- c_i (Context) 는 여러 개의 문장 $u_{i,1}$ 으로 이루어짐.
- Task 는 matching model g(·, ·)을 찾는 것 , 즉 g(c,r) 의 Score 가 Context –
 response 매칭 정도를 나타냄

BERT Input

- 기존의 BERT 입력은 x = [CLS], sentence1, [SEP], sentence2, [SEP]
- Context와 response의 관계를 분류하는 문제이므로 다음과 같이 사용. $x = [CLS], u_1, [EOS], ..., u_m, [EOS], [SEP], r_1, ..., r_n, [SEP])$
- CLS 토큰 : 입력된 문장들의 관계정보를 파악하기위해 넣어줌.

BERT for Response Selection

Initial Representations

- 입력은 포지션 임베딩, 세그먼트 임베딩, 토큰임베딩으로 표현됨
- 포지션 임베딩: 위치정보를 표현
- 세그먼트 임베딩: SEP로 나뉘며 첫번째, 두번째 문장 여부를 나눔
- 토큰임베딩: Base 가 되는 토큰 단위의 임베딩. 입력은 tokenizer에 의해 token 단위로 나뉨

Training

- Token 단위로 출력이 되면 $T_{[CLS]}$ 을 사용하여 최종 스코어 계산
- 최종 스코어는 CLS 토큰을 FFN을 통과시켜 구함. $g(c,r) = \sigma(WT_{[CLS]} + b)$
- 손실 함수는 Binary cross entropy 사용

$$Loss = -\sum_{(c_i, r_i, y_i) \in D} y \log(g(c, r))$$
$$+ (1 - y) \log(1 - g(c, r))$$

실험결과

■ 다른 모델들과 비교

Model	$R_{10}@1$	$R_{10}@2$	$R_{10}@2$
DAM	0.767	0.874	0.969
IoI-local	0.796	0.894	0.974
ESIM	0.796	0.894	0.975
MSN	0.800	0.899	0.978
$BERT_{Base}$	0.810	0.900	0.977
$BERT_{Knowledge}$	0.824	0.908	0.978

Table 1: Model comparison on Ubuntu Corpus V1.

- Metric으로 10개의 상위 k개의 후보 중에 답이 존재하는지 평가하는 Recall 사용 $(R_{10}@k)$
- 기존 모델 보다 BERT 기반 모델이 성능이 좋음, R₁₀@k 기준 2.4% 향상
- 외부지식을 학습한 $BERT_{knowledge}$ 가 그렇지 않는 $BERT_{base}$ 모델보다 성능이 1.4 % 향상

실험결과

■ Post-Training 학습 방법에 따른 비교

Loss	$R_{10}@1$	$R_{10}@2$	$R_{10}@2$
MLM	0.818	0.905	0.978
$MLM_{command}$	0.821	0.906	0.978
NSP	0.817	0.904	0.978
MLM + NSP	0.822	0.906	0.978

Table 2: ablation with Loss function.

- 기본 MLM 방식보다 명령어 토큰만 \max k를 한 $MLM_{command}$ 가 성능이 0.3% 향상
- 단일 MLM, NSP 방식보다 모두 사용했을 경우 성능이 약 0.5% 향상

결론

■ Ubuntu corpus Leader board 에서 2위의 성능을 달성

RA	ANK	METHOD	R10@1	R10@2	R10@5	R2@1	PAPER	CODE	RESULT	YEAR				
	1	BERT-DPT	0.851	0.924	0.984		Domain Adaptive Training BERT for Response Selection	0	Ð	2019	0.82	1	0.908	0.978
	2	MSN	0.800	0.899	0.978		Multi-hop Selector Network for Multi-turn Response Selection in Retrieval-based Chatbots	0	Ð	2019	0.62	4	0.906	0.976
	3	ESIM	0.796	0.894	0.975		Sequential Attention-based Network for Noetic End-to- End Response Selection	0	Ð	2019				
	4	lol-local	0.796	0.894	0.974	0.947	One Time of Interaction May Not Be Enough: Go Deep with an Interaction-over-Interaction Network for Response Selection in Dialogues	0	Ð	2019				
	5	IMN	0.794	0.889	0.974	0.946	Interactive Matching Network for Multi-Turn Response Selection in Retrieval-Based Chatbots	0	Ð	2019				
	6	TripleNet	0.790	0.885	0.970	0.943	TripleNet: Triple Attention Network for Multi-Turn Response Selection in Retrieval-based Chatbots	O	Ð	2019				

• 추가적으로 implicit 하게 외부지식을 학습하는것이 아닌 explicit하게 필요한 외부지식을 추출하여 모델에 직접 사용하는 방법을 연구 중

감사합니다

APPENDIX

