Computer-Aided VLSI System Design

HW4 - DFT/ATPG

Due in 12:00 11/27/2018 (Tue)

TA:

葉日豐 r06921074@ntu.edu.tw

Purpose

In this homework, you have to perform DFT insertion to the synthesized *Frequency Analysis System* gate-level netlist. You also have to generate test patterns by using TetraMAX® ATPG.

Goal

Learn how to insert scan chain which is based on the design and generate the test patterns

Download Files from CEIBA website

- 1. Create a work directory and copy the files into it.
- 2. Check if you have these files:

Filename	Description
FAS_syn.v	Synthesized gate level Verilog netlist (no scan chain
	yet)
.synopsys_dc.setup	Synopsys Design Compiler setup file, which defines
	search paths, library name, etc.
FAS_syn.sdc	The constraints that are used in this homework.

Note: in the lab, you used the file "constraints.tcl". But here we use "FAS_syn.sdc" instead of it.

Problem 1: Perform DFT insertion

- 1. Perform DFT insertion with **X scan chains** and fix any DRC violation.
- 2. Save the DFT insertion results.
- 3. Modify the testbench and verify the DFT inserted design. Make sure your DFT inserted design still work in functional mode.

Hint:

*Scan chain number is <u>based on the design's DFF number</u>. We usually link 100 DFF with one scan chain.

*You can follow the step on Lab4 but sometimes you may need to modify some parameters (that's all based on the design).

Problem 2: Generate stuck-at fault test patterns

- 4. Generate stuck-at fault test patterns for the scan-ready design.
- 5. Save the ATPG results.
- 6. Verify the Verilog format test patterns (optional).

Hint:

In this homework, all you need is to make sure that your test coverage will over than 98%. You can do some experiments to find the minimum pattern count.

Online Submission (FTP):

FTP:

Deadline	12:00 11/27/2018 (Tue)
IP	140.112.175.174
Account	1071cvsd
Password	cvsd2018

Please submit a zipped file named *StudentID_HW4_vk.zip* (k is the number of version, k =1,2,...). This zip file has to contain the 11 files below.

Script Files:

1. "dft.tcl": dft insertion script

2. "atpg.tcl": atpg script

Synthesis Results:

3. "report_FAS_syn.txt" : pre-scan report summarizing timing, power, and area

DFT Insertion Results:

- 4. FAS dft.v": gate level netlist (scan-ready)
- 5. "FAS dft.sdf": post-scan (scan-ready) sdf file
- 6. "report_dft.txt": post-scan report summarizing timing, power, and area
- 7. "FAS dft.spf": test protocol file
- 8. "FAS dft.scan path": scan path report
- 9. "FAS dft.scan cell": scan cell report

ATPG Results:

10. "FAS_atpg.stil": STIL format test patterns

Questions:

- 11. "Answers.txt": answer the following questions by **your results**. All answers must base on your own result. There is no golden answer for all students.
 - (A)
 - A-1. How many flip-flops are chained?
 - A-2. How many scan cells in every scan chain, respectively?
 - A-3. What are the inputs and outputs of these scan chains?
 - A-4. What is the name of the scan enable pin for your scan chain?
 - (B)
 - B-1. What is the area before scan chain insertion?
 - B-2. What is the area after scan chain insertion?
 - B-3. How much is the area overhead percentage of scan chain?
 - B-4. Try to explain why scan chain introduces area overhead.
 - (C) Ignore the input external and output external delay.
 - C-1. How long (ns) is the critical path delay before scan chain insertion?
 - C-2. How long the critical path after scan chain insertion?
 - C-3. How many percent is the path delay overhead?
 - C-4. Sometimes, the individual gate delay changes in the critical path.

 Try to explain why?
 - (D)
 - D-1. How many total faults (uncollapsed) are there in the circuit?
 - D-2. How many patterns do we have?
 - D-3. What is the test coverage (%)?
 - D-4.What is the fault coverage (%)?

Revised by Bing-Chuan Bai, 2011

Revised by Kuan-Yu Liao, 2012

Revised by Chieh-Fu Chu, 2013

Revised by Guo-Yu Lin, 2014

Revised by Kuan-Yen Huang, 2015

Revised by Po-Wei Chen, 2018

Revised by Rih-Fong Yeh, 2018