Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Měření prvního Townsendova koeficientu

Zpracovali: Radek Horňák, Lukáš Vrána Naměřeno: 1. 3. 2022

1 Teorie

Teorie lavin popsaná Townsendem vysvětluje základní ionizační mechanismus elektrického výboje. Mějme dvě paralelní kovové desky a mezi nimi homogenní elektrické pole E. Elektrony jsou v poli urychlovány a sráží se s neutrálními částicemi, přičemž může docházet k nepružným srážkám vedoucím k excitaci nebo ionizaci neutrálů. Pokud počet elektronů v místě x označíme n, pak podél dráhy dx vznikne ionizačními srážkami dn nových elektronů a platí

$$dn = n\alpha \, dx \tag{1}$$

kde α je označení pro první Townsendův, někdy nazývaný i ionizační koeficient. Ten vyjadřuje počet ionizačních srážek jednoho elektronu na jednotkové délce. Integrací získáme

$$ln n = \alpha x + konst$$
(2)

a následnou úpravou dostáváme vztah

$$n = n_0 e^{\alpha x} \tag{3}$$

kde n_0 je počet elektronů v počátečním bodě x=0. Ionizační koeficient závisí na intenzitě elektrického pole E a na tlaku plynu v aparatuře p. Je-li dán podíl E/p, můžeme psát

$$\alpha = p f\left(\frac{E}{p}\right) \tag{4}$$

tedy ionizační koeficient je úměrný počtu srážek na jednotku délky. Experimentální výsledky ukazují, že konkrétní závislost α na E/p je ve tvaru

$$\frac{\alpha}{p} = A e^{-\frac{Bp}{E}} \tag{5}$$

kde A a B jsou konstanty, pro které platí

$$U_{\rm i} = \frac{B}{A} \tag{6}$$

kde U_i je ionizační potenciál plynu v aparatuře. Hodnotu konstant A a B lze určit experimentálně.

2 Měření a výsledky

Aparatura použitá v tomto praktiku je schematicky znázorněna na obr. 1. Jejími hlavními komponenty jsou zdroj napětí, rotační olejová vývěva, výbojka s pracovním plynem, rtuťová výbojka, jehlový ventil, Piraniho manometr, ampérmetr a voltmetr. Je založena na principu fotoelektrického jevu. Pomocí rtuťové výbojky osvětlujeme hliníkovou rovinnou katodu UV zářením, a produkujeme tak fotoelektrony. Ty jsou urychlovány homogenním elektrickým polem na mřížkovou anodu. Katodu můžeme posouvat, a tím měnit dráhu, po níž dochází k ionizaci neutrálů. Výbojku čerpáme vakuovou vývěvou, tlak se nastavuje regulací toku argonu jehlovým ventilem a měří Piraniho manometrem. Jedná se o nepřímý manometr, pro argon je tedy odečítaný tlak potřebné vynásobit faktorem 1,59.

Obrázek 1: Schéma použité aparatury

Při měření musíme dbát na to, aby ve výbojce nevznikl samostatný výboj, tedy měříme pro hodnoty intenzity elektrického pole 80– $120\,\mathrm{V/cm}$. Konstantní elektrické pole v jedné sérii měření udržujeme nastavením napětí na zdroji a přizpůsobením vzájemné vzdálenosti elektrod, přičemž posouváme i UV lampou, aby vzdálenost mezi ní a katodou byla stálá. Výstupem z měření je poloha katody x, hodnota napětí U a proud i pro několik hodnot konstantní intenzity elektrického pole E. Pro každou změnu intenzity pole naladíme irisovou clonu UV výbojky tak, abychom měli maximální proud okolo $1800\,\mathrm{pA}$ z důvodu rozsahu na přístroji do $1999\,\mathrm{pA}$. Proud je tedy řádově pA až nA, pro zlepšení přesnosti měření z ampérmetru odečítáme vždy 3 hodnoty a dále budeme pracovat s jejich průměrem. Tlak je konstantní o hodnotě $p=79,5\,\mathrm{Pa}$.

V rovnicích (2) a (3) lze nahradit počet elektronů proudem. Z naměřených dat můžeme sestavit graf závislosti $i = i_0 f(x)$, viz obr. 2 a obr. 3. Body jsou proložené exponenciální funkcí $i = i_0 e^{\alpha x}$, z toho získané i_0 a α jsou uvedené v levé části tabulky 1.

Dále můžeme vytvořit graf závislosti ln i=f(x), viz obr. 4 a obr. 5. Závislost je proložená lineární funkcí ln $i=\ln i_0+\alpha x$, získané i_0 a α jsou uvedené v pravé části tabulky 1. U naměřených dat pro $E=120~{\rm V}\,{\rm cm}^{-1}$ jsme vynechali z fitu hodnotu $x=0,2{\rm cm}$, protože se viditelně odchyluje od zbytku měření a je v ní tedy nejspíše zanesena hrubá chyba.

Jelikož lineární fit v grafech 4 a 5 na první pohled příliš neodpovídá vynesené závislosti, zkusíme provést zpřesnění a data proložíme funkcí $\ln i = \ln(i_0 e^{\alpha x} + i_p)$, kde i_p nazveme posuvným proudem. i_0 , α a i_p získané z tohoto přesnějšího fitu jsou uvedené v tabulce 2

Ve všech případech je vidět, že s rostoucí intenzitou elektrického pole E proud i_0 klesá a ionizační koeficient α roste.

Obrázek 2: Graf závislosti i na x.

Obrázek 3: Graf závislosti i na x.

Obrázek 4: Graf závislosti l
nina $\boldsymbol{x}.$

Obrázek 5: Graf závislosti $\ln i$ na x.

Tabulka 1: Hodnoty proudů i_0 a ionizačních koeficientů α pro různé hodnoty E.

	i =	$i_0 e^{\alpha x}$	$\ln i = \ln i_0 + \alpha x$		
$E [Vcm^{-1}]$	i_0 [pA]	$\alpha [\mathrm{cm}^{-1}]$	i_0 [pA]	$\alpha [\mathrm{cm}^{-1}]$	
80	63.7 ± 6.6	$1,60 \pm 0,06$	44.7 ± 1.1	$1,83 \pm 0,04$	
90	$45,3 \pm 2,8$	$1,85 \pm 0,03$	$30,2 \pm 1,1$	$2,12 \pm 0.08$	
100	$26,7 \pm 1,7$	$2,07 \pm 0,03$	$15,3 \pm 1,1$	$2,43 \pm 0,09$	
110	$19,9 \pm 1,2$	$2,23 \pm 0,03$	$12,3 \pm 1,1$	$2,60 \pm 0,09$	
120	$7,1 \pm 0,5$	$2,80 \pm 0,04$	$5,9 \pm 1,2$	$2,91 \pm 0,11$	

Tabulka 2: Hodnoty proudů $i_0,\,i_{\rm p}$ a ionizačních koeficientů α pro různé hodnoty E.

	$\ln i = \ln(i_0 e^{\alpha x} + i_p)$					
$E \left[\text{Vcm}^{-1} \right]$	i_0 [pA]	$\alpha \ [\mathrm{cm}^{-1}]$	$i_{\rm p}~{\rm [pA]}$			
80	67.4 ± 6.3	$1,60 \pm 0,05$	$-36,1 \pm 8,9$			
90	63.5 ± 2.8	$1,69 \pm 0.03$	-54.9 ± 3.9			
100	29.5 ± 1.7	$2,03 \pm 0,04$	$-26,1 \pm 2,5$			
110	22.9 ± 0.9	$2,22 \pm 0,03$	-20.8 ± 1.4			
120	10.6 ± 0.8	$2,57 \pm 0,05$	-14.4 ± 1.2			

Jelikož jsme provedli měření pro několik hodnot E/p, můžeme sestavit grafy závislosti $\ln \alpha/p = f(p/E)$ a proložit jej lineární funkcí $\ln \alpha/p = \ln A - \frac{Bp}{E}$, která vychází z úpravy rovnice (5). To provedeme jak pro α získané z exponenciálního fitu, tak i pro α z lineárního fitu. Následně pomocí rovnice (6) určíme ionizační potenciál argonu U_i , viz tab. 3. Tabulková hodnota pro argon je $U_i = 15,76\,\mathrm{eV}$. Té se více přiblížil potenciál $U_i = (15,3\pm1,9)\,\mathrm{eV}$ získaný po dosazení α z lineárního fitu.

Obrázek 6: Graf závislosti l
n α/p na p/E pro α z exponenciálního fitu.

Tabulka 3: Hodnoty konstant A, B a ionizačních potenciálů U_i argonu z $\ln \alpha/p = \ln A - \frac{Bp}{E}$.

Dosazení α z exponenciálního fitu			Dosazení α z lineárního fitu		
$A \left[\mathrm{Pa}^{-1} \mathrm{m}^{-1} \right]$	$B [V Pa^{-1} m^{-1}]$	$U_{\rm i} \; [{\rm eV}]$	$A \left[\mathrm{Pa}^{-1} \mathrm{m}^{-1} \right]$	$B [V Pa^{-1} m^{-1}]$	$U_{\rm i}~{\rm [eV]}$
$9,3 \pm 1,2$	156 ± 18	16.8 ± 2.9	$9,0 \pm 1,0$	137 ± 5	$15,3 \pm 1,9$

Obrázek 7: Graf závislosti l
n α/p na p/E pro α z lineárního fitu.

3 Závěr

Cílem této úlohy bylo seznámit se s Townsendovou teorií lavin. Z měření jsme ověřili exponenciální růst proudu s rostoucí vzdáleností elektrod. Také jsme určili první Townsendův koeficient pro různé hodnoty intenzity elektrického pole, který roste s rostoucí E. Nakonec jsme získali ionizační potenciál argonu ze závislostí i = f(x) a $\ln i = f(x)$, který nám vyšel přesněji z lineárního proložení $\ln i = f(x)$ jako $U_i = (15,3 \pm 1,9)\,\mathrm{eV}$, tabulková hodnota je $U_i = 15,76\,\mathrm{eV}$. V případě fitu exponenciální závislosti metodou nejmenších čtverců mají body o vyšší y hodnotě ve fitu větší váhu než ty při nižších y.