

2.1 Deformasyon

Şekil Değiştirme

Deformasyon

- Bir cisme uygulanan kuvvet onun şeklini ve boyutlarını değiştirmeye çalışır.
- Bu değişimler deformasyon olarak tanımlanır.
- Bu deformasyon miktarı gözle görülebilecek kadar büyük yada görülemeyecek kadar küçük olabilir.
- Örneğin bir lastik bant uzatıldığında elemanda büyük deformasyonlar meydana gelir, fakat bir bina içerisindeki insanların hareketi yapıda oldukça küçük deformasyonlar meydana getirir.
- Sıcaklık değişimleri de deformasyonlar meydana getirir.

Lastik bant uzatıldığında ele manda büyük deformasyonlar meydana gelir.

Deformasyon

- ➤ Genel olarak bir cismin deformasyonu hacmi boyunca düzgün olarak gerçekleşmez. ✓•
- Bu nedenle cisim içerisindeki bir çizgi parçasının geometrisi uzunluğu boyunca önemli ölçüde değişebilir.
- Bu yüzden, şekil değişimlerini daha düzgün bir şekilde inceleyebilmek için bir noktanın yakınında bulunan çok kısa çizgi segmentleri ele alınacaktır.
- Bununla birlikte, şekil değişiklikleri aynı zamanda çizgi parçasının noktadaki oryantasyonuna bağlıdır.

Lastik bant uzatıldığında elemanda büyük deformasyonlar meydana gelir.

2.2 Gerinim

Şekil Değiştirme

Gerinim (Şekil Değiştirme)

- Bir cisim üzerindeki çizgi parçalarının uzunluğundaki ve aralarındaki açıların değişimlerine göre deformasyonunu tanımamak için 'birim şekil değiştirme' kavramı tanımlayacağız.
- Şekil değişiklikleri deneysel olarak ölçülür ve gerilme olan ilişkisini ileriki konulara açıklayacağız.

Normal Şekil Değiştirme;

Bir cisim üzerinde n ekseni boyunca uzanan ∆s uzunluğundaki düz AB çizgisini ele aldığımızda;

- Cisim deformasyona uğradıktan sonra A ve B noktaları sırasıyla A' ve B' konumlarına kayacak,
- ightharpoonup Çizgi eğrisel olacak ve uzunluğu da $\Delta s'$ olacaktır.
- ightharpoonup Çizginin boyundaki değişim de $\Delta s' \Delta s$ kadar olacaktır.
- \triangleright Bu durumda ortalama normal şekil değişimi ε_{ort}

$$\epsilon_{ort} = rac{\Delta s' - \Delta s}{\Delta s}$$
 olur

Gerinim (Şekil Değiştirme)

Normal Şekil Değiştirme;

- ➤ B noktasını A noktasına çok yaklaştırdığımızda Δs de sıfıra yaklaşacaktır ($\Delta s \rightarrow 0$).
- Bu da B' noktasının A' noktasına çok yaklaşmasına ve Δs' uzunluğunun da sıfıra yaklaşmasına neden olacaktır.
- Böylece n doğrultusu boyunca A noktasındaki normal şekil değişimi;

$$\epsilon = \lim_{B \to A} \frac{\Delta s' - \Delta s}{\Delta s}$$

olacaktır.

€ pozitif olduğunda başlangıçtaki doğru uzar.
 € negatif olduğunda başlangıçtaki doğru kısalır.

Şekil değişimi iki uzunluk biriminin birbirine oranı şeklinde olan boyutsuz bir büyüklüktür. Buna rağmen birim olarak bazen iki uzunluk biriminin birbirine oranı şeklinde ifade edilir.

Kayma Şekil Değişimi; 🗸

Şekil Değiştirme

- Deformasyon sadece cisim üzerinde aldığımız çizgilerin boylarında değişime neden olmaz, onların yönlerinin değişmesine de sebep olur.
- Başlangıçta birbirine dik olan iki çizgi seçtiğimizde deformasyon nedeniyle bu çizgiler arasındaki açının değişimi kayma şekil değişimi olarak tanımlanır.
- Bu açı değişimi γ (gama) ile gösterilir ve radyan cinsinden ölçülür.

Kayma Şekil Değişimi;

cisim

Deforme olmuş cisim

- ▶ Deforme olmamış bir cisim üzerinde başlangıç noktaları A olan, birbirine dik n ve t eksenleri boyunca uzanan № ve AC çizgileri olduğunu düşünelim.
- Deformasyondan sonra bu çizgilerin uç noktaları yer değiştirecek, çizgiler eğrisel olacak ve aralarındaki açı A noktasında θ' olacaktır.
- Böylece n ve t eksenleri ile ilişkili A noktasındaki kayma şekil değişimi;

$$\gamma_{nt} = \frac{\pi}{2} - \lim_{\substack{B \to A \\ C \to A}} \theta'$$

Eğer;

 $\theta' < \frac{\pi}{2}$ ise kayma şekil değişimi pozitif, $\theta' > \frac{\pi}{2}$ ise kayma şekil değişimi negatif olur.

Kartezyen Şekil Değişimi Bileşenleri; ✓

Şekil Değiştirme

- ightharpoonup Elimizdeki cismimizi boyutları Δx , Δy ve Δz olan küçük kübik elemanlara bölelim.
- Eğer elemanımızın şekli çok küçük ise deformasyondan sonra şekli kenarları düz olan paralelyüz formunda olacaktır.
- Bu deforme olmuş şekli elde etmek için normal şekil değişiminin elemanın kenar uzunluklarını, kayma şekil değişiminin de her bir yüzün açılarını nasıl değiştirdiğine bakmalıyız.

Kartezyen Şekil Değişimi Bileşenleri;

 \blacktriangleright Örneğin Δx uzunluğu ϵ_x Δx kadar uzayacak ve yeni boyu $\Delta x + \epsilon_x$ Δx olacaktır. Böylece paralel yüzün üç kenarının yaklaşık uzunlukları;

$$(1 + \epsilon_x) \Delta x$$
 $(1 + \epsilon_y) \Delta y$ $(1 + \epsilon_z) \Delta z$

$$(1+\epsilon_{\nu})\Delta y$$

$$(1+\epsilon_z) \Delta z$$

Bu kenarlar arasındaki yaklaşık açılar;

$$\frac{\pi}{2} - \gamma_{xy}$$

$$\frac{\pi}{2} - \gamma_{yz}$$

$$\frac{\pi}{2} - \gamma_{xz}$$

olacaktır.

Kartezyen Şekil Değişimi Bileşenleri;

Özet olarak;

ightharpoonup Cisim üzerindeki bir noktadaki şekil değişimini belirlemek için ϵ_x , ϵ_y ve ϵ_z normal şekil değişimlerine, γ_{xy} , γ_{yz} ve γ_{xz} kayma şekil değişimlerine ihtiyaç vardır.

NOT: Normal şekil değişimi elemanın hacminde, kayma şekil değişimi ise elemanın şeklinde değişiklik meydana getirir.

Örnek 2.2

Şekil Değiştirme

Örnek;

Şekildeki ABC rijit koluna P yükü uygulandığında kol saatin tersi yönde 0,05° dönüyor. Buna göre BD kablosunda meydana gelen normal şekil değişimini bulunuz.

Çözüm;

Kolun saatin tersi yönündeki dönüşünden sonraki konumu şekilde gösterilmiştir.

Geometriden α ve ϕ açıları ile L_{AD} uzunluğunu bulabiliriz.

$$\alpha = \tan^{-1} \left(\frac{400 \text{ mm}}{300 \text{ mm}} \right) = 53.1301^{\circ}$$

$$\phi = 90^{\circ} - \alpha + 0.05^{\circ} = 90^{\circ} - 53.1301^{\circ} + 0.05^{\circ}$$

 $\phi = 36.92^{\circ}$

$$L_{AD} = \sqrt{(300 \text{ mm})^2 + (400 \text{ mm})^2} = 500 \text{ mm}$$

Çözüm;

Kosinüs teoreminden $L_{B'D}$ uzunluğunu bulabiliriz.

$$L_{B'D} = \sqrt{L_{AD}^2 + L_{AB'}^2 - 2(L_{AD})(L_{AB'})\cos\phi}$$

$$= \sqrt{(500 \text{ mm})^2 + (400 \text{ mm})^2 - 2(500 \text{ mm})(400 \text{ mm})\cos 36.92^\circ}$$

$$L_{B'D} = 300.3491 \text{ mm}$$

 L_{BD} ve $L_{B^{\prime}D}$ uzunluklarını kullanarak normal şekil değişimini bulabiliriz.

$$\epsilon_{BD} = \frac{L_{B'D} - L_{BD}}{L_{BD}} = \frac{300.3491 \text{ mm} - 300 \text{ mm}}{300 \text{ mm}}$$

$$\epsilon_{BD} = 0.00116 \text{ mm/mm}$$

Örnek 2.3

Örnek;

Şekil Değiştirme

Şekilde gösterilen koyu renkli plaka yüklemeden dolayı kesikli çizgi ile gösterilen formu almıştır. Buna göre; AB kenarı boyunca ortalama normal şekil değişimini, x ve y eksenlerine göre de A noktasındaki kayma şekil değişimini bulunuz.

Çözüm;

Şekil Değiştirme

AB kenarı deformasyondan dolayı AB^I şeklini alıyor. Buna göre AB^I;

$$AB' = \sqrt{(250 \text{ mm} - 2 \text{ mm})^2 + (3 \text{ mm})^2} = 248.018 \text{ mm}$$

AB kenarındaki ortalama normal şekil değişimi;

$$(\epsilon_{AB})_{\text{avg}} = \frac{AB' - AB}{AB} = \frac{248.018 \text{ mm} - 250 \text{ mm}}{250 \text{ mm}}$$

$$= -7.93(10^{-3}) \text{ mm/mm}$$

Çözüm;

Şekil Değiştirme

x ve y eksenlerine göre A noktasındaki ortalama kayma gerilmesi;

$$\gamma_{xy} = \tan^{-1} \left(\frac{3 \text{ mm}}{250 \text{ mm} - 2 \text{ mm}} \right) = 0.0121 \text{ rad}$$

Örnek 2.2-11 (Problems)

Şekil Değiştirme

Örnek;

Şekildeki plaka deformasyona uğradığında kesikli çizgi ile gösterilen şekli alıyor. Buna göre A ve B noktalarındaki ortalama kayma

şekil değişimlerini bulunuz.

Çözüm;

Şekil Değiştirme

Trigonometrik bağıntılar uygulanarak α ve φ açıları bulunur.

$$\phi = \tan^{-1}\left(\frac{13}{16}\right) = 39.09^{\circ}\left(\frac{\pi \text{ rad}}{180^{\circ}}\right) = 0.6823 \text{ rad}$$

$$\alpha = \tan^{-1}\left(\frac{16}{13}\right) = 50.91^{\circ}\left(\frac{\pi \text{ rad}}{180^{\circ}}\right) = 0.8885 \text{ rad}$$

A ve B noktasındaki kayma şekil değişimleri;

$$(\gamma_{xy})_A = \frac{\pi}{2} - 2\phi = \frac{\pi}{2} - 2(0.6823) = 0.206 \text{ rad}$$

$$(\gamma_{xy})_B = \frac{\pi}{2} - 2\alpha = \frac{\pi}{2} - 2(0.8885) = -0.206 \text{ rad}$$

Örnek 2.2-21 (Problems)

Şekil Değiştirme

Örnek;

Şekildeki rijit kol uygulan kuvvet nedeniyle saat yönünde 3° açı yapacak şekilde dönüyor. Buna göre kabloda meydana gelen ortalama normal gerilmeyi bulunuz.

Geometriden $L_{B'D}$ uzunluğunu bulabiliriz.

$$L_{B'D} = \sqrt{(0.6\cos 45^\circ)^2 + (0.6\sin 45^\circ)^2 - 2(0.6\cos 45^\circ)(0.6\sin 45^\circ)\cos 93^\circ}$$
$$= 0.6155 \text{ m}$$

Kablonun deformasyondan önceki uzunluğu $L_{BD}=600\ mm'$ dir. Bu nedenle kablodaki ortalama normal şekil değişimi;

$$\varepsilon_{ort} = \frac{L_{B'D} - L_{BD}}{L_{BD}} = \frac{0.6155 - 0.6}{0.6}$$

$$\varepsilon_{ort} = 0.0258 \,\mathrm{m/m}$$

