

IN THE CLAIM

Please amend the claims as follows:

1. (original) Method for coding a stream of M input words using a channel code,  
comprising the steps of
  - selecting a frame sync extension from a group of frame sync extensions
  - pre-coding the stream of M input words into a stream of pre-coded input words
  - coding the stream of pre-coded input words into a stream of groups of N code words using a coder
  - inserting a frame sync body directly in a fixed length frame in the stream of groups of N code words
  - arranging for a group of code words representing the frame sync extension in the stream of groups of N code words directly adjacent to the inserted frame sync body where, after a further NRZI coding, a disparity of the frame sync body is balanced by a disparity of the group of code words representing the frame sync extension, characterized in that a length of the group of code words representing the frame sync extension is variable.

2. (original) Method as claimed in claim 1,  
characterized in that the coder is a 17PP coder

3. (original) Method as claimed in claim 1,  
characterized in that the coder is an EFM coder

4. (original) Method as claimed in claim 1,  
characterized in that the coder is an EFM+ coder

5. (currently amended) Method as claimed in claim 1, ~~2, 3 or 4~~,  
characterized in that the step of arranging for the group of code  
words representing the frame sync extension in the stream of groups  
of N code words comprises the step of inserting a frame sync  
balancing input word into the stream pre-coded input words.

6. (currently amended) Method as claimed in claim 1, ~~2, 3 or 4~~  
characterized in that the step of arranging for the group of code  
words representing the frame sync extension in the stream of groups  
of N code words comprises the step of inserting a code word  
representing the frame sync extension into the stream of groups of  
N code words

7. (original) Method as claimed in claim 6,  
characterized in that the group of code words representing the

frame sync extension in the stream of groups of N code words is chosen from the following table:

| Frame Sync extension |   |   |   |   |   |   |   |   |
|----------------------|---|---|---|---|---|---|---|---|
| FS0                  | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| FS1                  | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| FS2                  | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| FS3                  | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| FS4                  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| FS5                  | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| FS6                  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| FS7                  | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| FS8                  | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |

8. (original) Method as claimed in claim 5, characterized in that a first sub group of code words representing a first section of the frame sync extension in the stream is chosen from the following table:

| first section of frame sync extension |   |   |   |   |   |   |   |   |
|---------------------------------------|---|---|---|---|---|---|---|---|
| FS0                                   | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| FS1                                   | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| FS2                                   | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| FS3                                   | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| FS4                                   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| FS5                                   | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |

|     |         |
|-----|---------|
| FS6 | 010 000 |
| FS7 | 100 101 |
| FS8 | 101 010 |

and that a frame sync balancing input word is chosen from the following table:

|     | frame sync balancing input word |
|-----|---------------------------------|
| FS0 | 11 10 10 11                     |
| FS1 | 10 11 10 10                     |
| FS2 | 10 11 11 11                     |
| FS3 | 11 01 10 10                     |
| FS4 | 00 11 10 10                     |
| FS5 | 10 11 11 10                     |
| FS6 | 10 11 01 01                     |
| FS7 | none                            |
| FS8 | none                            |

9. (original) Record carrier for storing a stream comprising code words derived from input words using a channel code and further comprising a frame sync comprising a frame sync extension, the frame sync extension comprising a frame sync identification and a frame sync balancing word where a disparity of the frame sync is zero,

characterized in that a length of the frame sync extension is

variable.

10. Record carrier as claimed in claim 9,  
characterized in that the channel code is a 17PP code

11. (original) Record carrier as claimed in claim 9,  
characterized in that the channel code is an EFM code.

12. (original) Record carrier as claimed in claim 9,  
characterized in that the channel code is an EFM+ code.

13. (currently amended) Method as claimed in claim 9, ~~10, 11 or~~  
~~12,~~

characterized in that the group of code words representing the  
frame sync extension in the stream is chosen from the following  
table:

|     | Frame Sync extension    |
|-----|-------------------------|
| FS0 | 000 001 000 001 001 000 |
| FS1 | 010 010 001 000 001 001 |
| FS2 | 101 000 001 000 101 000 |
| FS3 | 100 001 000 010 001 001 |
| FS4 | 000 100 010 100 001 001 |
| FS5 | 001 001 001 000 101 001 |
| FS6 | 010 000 001 000 010 010 |

|     |         |
|-----|---------|
| FS7 | 100 101 |
| FS8 | 101 010 |

14. (original) Apparatus for storing data on a recording medium comprising an encoder with an output connected to an input of a frame sync insertion means where the encoder is arranged for coding the stream of input words into a stream of code words and the insertion means is arranged for inserting a group of code words representing a frame sync body into the stream of code words, where the encoder is arranged to control an RDS of the code words and where the insertion means is arranged to insert a group of code words representing a frame sync extension with a frame sync extension disparity into the stream adjacent to the code words representing the frame sync body, where the frame sync extension disparity is chosen to cancel a disparity of the group of code words representing the frame sync body,  
characterized in that a length of the group of code words representing the frame sync extension is variable.

15. Apparatus for storing data on a recording medium comprising an encoder with an input and with an output connected to an input of a frame sync insertion means where the encoder is arranged for coding the stream of input words into a stream of code words and the insertion means is arranged for inserting a group of code words

representing a frame sync body into the stream of code words, where the encoder is arranged to control an RDS of the code words and where the insertion means is arranged to insert a first sub group of code words representing a first section of a frame sync extension into the stream adjacent to the group of code words representing the frame sync body, and where a further insertion means is coupled to the input of the encoder , where the further insertion means is arranged to provide a frame sync balancing input word to the encoder for obtaining a second sub group of code words representing a second section of the frame sync extension at the output of the encoder, where the group of code words representing the frame sync extension comprsies the first sub group of code words representing the first section of the frame sync extension and the second sub group of code words representing the second section of the frame sync extension, and where the frame sync balancing input word is chosen to cancel a disparity of the group of code words representing the frame sync body, characterized in that a length of the group of code words representing the frame sync extension is variable.

16. (currently amended) Apparatus for storing data on a recording medium as claimed in claim 14—~~or~~ 15,  
characterized in that the coder is a 17PP coder

17. (currently amended) Apparatus for storing data on a recording medium as claimed in claim 14—~~or~~ 15,  
characterized in that the coder is an EFM coder

18. (currently amended) Apparatus for storing data on a recording medium as claimed in claim 14—~~or~~ 15,  
characterized in that the coder is an EFM+ coder

19. (currently amended) Apparatus for storing data on a recording medium as claimed in claim 14, ~~15 or 16~~,  
characterized in that a group of code words representing the frame sync extension in the stream is chosen from the following table:

first section of frame sync extension

|     |                         |
|-----|-------------------------|
| FS0 | 000 001 000 001 001 000 |
| FS1 | 010 010 001 000 001 001 |
| FS2 | 101 000 001 000 101 000 |
| FS3 | 100 001 000 010 001 001 |
| FS4 | 000 100 010 100 001 001 |
| FS5 | 001 001 001 000 101 001 |
| FS6 | 010 000 001 000 010 010 |
| FS7 | 100 101                 |
| FS8 | 101 010                 |

20. (currently amended) Apparatus for storing data on a recording medium as claimed in claim 15—~~or~~<sup>16</sup>, characterized in that the first sub group of code words representing the first section of the frame sync extension in the stream is chosen from the following table:

| Frame Sync sub ID |         |
|-------------------|---------|
| FS0               | 000 001 |
| FS1               | 010 010 |
| FS2               | 101 000 |
| FS3               | 100 001 |
| FS4               | 000 100 |
| FS5               | 001 001 |
| FS6               | 010 000 |
| FS7               | 100 101 |
| FS8               | 101 010 |

and that the frame sync balancing input word is chosen from the following table:

| frame sync balancing input word |             |
|---------------------------------|-------------|
| FS0                             | 11 10 10 11 |
| FS1                             | 10 11 10 10 |
| FS2                             | 10 11 11 11 |
| FS3                             | 11 01 10 10 |
| FS4                             | 00 11 10 10 |
| FS5                             | 10 11 11 10 |

**FS6**      10 11 01 01

**FS7**      none

**FS8**      none