VIII

Razones trigonométricas de cualquier ángulo

Actividades

- 1 Reduce cada uno de los siguientes ángulos al primer giro e indica el cuadrante al que pertenece cada uno:
 - a) 600°
 - **b)** 405°
 - c) 4800°
 - *d*) -135°
 - *e*) 1860°
 - *f*) -1110°
 - g) 1530°

- Representa en la circunferencia goniométrica los siguientes ángulos con ayuda de un transportador. Utiliza una hoja de papel milimetrado y dibuja una circunferencia de 10 cm de radio y toma como valor unidad esa equivalencia, escala 10:1.
 - **a**) 0 rad
 - **b)** 60°
 - $c) -60^{\circ}$
 - d) 35°
 - e) 160°
 - f) 250°

- 2 Halla las razones trigonométricas directas de los ángulos de la actividad anterior.
- 4 Determina aproximadamente los puntos de corte de los ángulos de la actividad anterior con la circunferencia goniométrica y expresa aproximadamente su seno y coseno.

Actividades

5 Calcula, en cada caso, las demás razones trigonométricas de:

a) sen
$$\alpha = 0.433$$
, si $0^{\circ} < \alpha < 90^{\circ}$

b) $\cos \alpha = -0.896$, $\sin \alpha \in II$ cuadrante

c)
$$tg \alpha = 0,777, si 180^{\circ} < \alpha < 270^{\circ}$$

d)
$$\cos \alpha = 0.21$$
, $\sin \frac{3\pi}{2}$ rad $< \alpha < 2\pi$ rad

e)
$$\sec \alpha = -3$$
, $\sin \alpha \in II$ cuadrante

f) sen
$$\alpha = 0.683$$
, si $\alpha \in I$ cuadrante

Sabiendo que sen
$$\alpha = \frac{-2}{5}$$
 y 270° < α < 360°, calcula:

a)
$$\cos \alpha$$

b)
$$\cos\left(\frac{\pi}{2} - \alpha\right)$$

c)
$$tg(\pi - \alpha)$$

d)
$$sec(\pi + \alpha)$$

Dibuja cada uno de los siguientes ángulos en la circunferencia goniométrica, relaciónalos con un ángulo del primer cuadrante.

Halla la medida de todos los ángulos α , del primer giro positivo, que tienen cada una de las siguientes razones:

a) sen
$$\alpha = 0.78$$

b)
$$\cos \alpha = 0.78$$

c)
$$tg \alpha = 8$$

d)
$$tg \alpha = -0.34$$

e) sen
$$\alpha = 0,101$$

f)
$$\sec \alpha = 6$$

18

Razones trigonométricas de cualquier ángulo

Solución de las actividades

- 1 a) $\frac{600^{\circ}}{360^{\circ}} = 1$ giro antihorario + 240° pertenece al III cuadrante.
 - **b)** $\frac{405^{\circ}}{360^{\circ}} = 1$ giro antihorario + 45° pertenece al l cuadrante.
 - c) $\frac{4800^{\circ}}{360^{\circ}}$ = 13 giros antihorarios + 120° pertenece al II cuadrante.
 - d) $360^{\circ} 135^{\circ} = 225^{\circ}$ pertenece al III cuadrante.
 - e) $\frac{1860^{\circ}}{360^{\circ}}$ = 5 giros antihorarios + 60° pertenece al I cuadrante.
 - f) $\frac{-1110^{\circ}}{360^{\circ}} = -3$ giros horarios $-30^{\circ} \Rightarrow$ $\Rightarrow 360^{\circ} - 30^{\circ} = 330^{\circ}$ pertenece al IV cuadrante.
 - g) $\frac{1530^{\circ}}{360^{\circ}}$ = 4 giros antihorarios + 90° división del I y II cuadrante.
- 2 a) $sen 600^\circ = sen 240^\circ = -sen 60^\circ = -\frac{\sqrt{3}}{2},$ $cos 600^\circ = cos 240^\circ = -cos 60^\circ = -\frac{1}{2},$ $tg 600^\circ = tg 240^\circ = tg 60^\circ = \sqrt{3}$
 - **b**) sen 405° = sen 45° = $\frac{\sqrt{2}}{2}$, cos 405° = = cos 45° = $\frac{\sqrt{2}}{2}$, tg 405° = tg 45° = 1
 - c) sen 4800° = sen 120° = sen 60° = $\frac{\sqrt{3}}{2}$, $\cos 4800^{\circ}$ = $\cos 120^{\circ}$ = $-\cos 60^{\circ}$ = $-\frac{1}{2}$,

$$tg 600^{\circ} = tg 120^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$

- d) $\operatorname{sen} -135^{\circ} = \operatorname{sen} 225^{\circ} = -\operatorname{sen} 45^{\circ} = -\frac{\sqrt{2}}{2},$ $\cos -135^{\circ} = -\cos 45^{\circ} = -\frac{\sqrt{2}}{2}, \operatorname{tg} -135^{\circ} =$ $= \operatorname{tg} 45^{\circ} = 1$
- e) sen 1860° = sen 60° = $\frac{\sqrt{3}}{2}$, cos 1860° = = cos 60° = $\frac{1}{2}$, tg 1860° = tg 60° = $\sqrt{3}$
- f) $sen (-1110^\circ) = sen -30^\circ = -\frac{1}{2}, cos (-1110^\circ) =$ = $cos (-30^\circ) = \frac{\sqrt{3}}{2}, tg -1110^\circ = tg (-30^\circ) = -\frac{\sqrt{3}}{3}$
- g) $sen 1530^\circ = sen 90^\circ = 1, cos 1530^\circ = cos 90^\circ = 0, tg 1530^\circ = tg 90^\circ = \infty$

- 4 El valor aproximado del coseno es la abscisa y del seno la ordenada de cada punto de corte:
 - a) corte de 0 rad $\Rightarrow P(0, 0)$
 - **b)** corte de $60^{\circ} \Rightarrow P(0,5,0,9)$
 - c) corte de $-60^{\circ} \Rightarrow P(0,5, -0,9)$
 - **d**) corte de $35^{\circ} \Rightarrow P(0,8,0,6)$
 - e) corte de $160^{\circ} \Rightarrow P(-0.9, 0.3)$
 - f) corte de $250^{\circ} \Rightarrow P(-0.3, -0.9)$

Razones trigonométricas de cualquier ángulo

Solución de las actividades

5 a) $\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - 0.433^2} = 0.901.$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{0,433}{0,901} = 0,481; \csc \alpha =$$

$$= \frac{1}{\sin \alpha} = \frac{1}{0,433} = 2,31; \sec \alpha = \frac{1}{\cos \alpha} =$$

$$= \frac{1}{0,901} = 1,11; \cot \alpha = \frac{1}{tg \alpha} = \frac{1}{0,481} = 2,08$$

b) sen $\alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - 0.896^2} = 0.444$.

$$tg \alpha = \frac{\sec \alpha}{\cos \alpha} = -\frac{0,444}{0,896} = -0,450; \csc \alpha =$$

$$= \frac{1}{\sec \alpha} = \frac{1}{0,444} = 2,25; \sec \alpha = \frac{1}{\cos \alpha} =$$

$$= \frac{1}{0,896} = -1,12; \cot \alpha = \frac{1}{tg \alpha} = -\frac{1}{0,450} =$$

$$= -2,22$$

c) $\sec \alpha = -\sqrt{1 + tg^2 \alpha} = -\sqrt{1 + 0.777^2} = -1.26;$

$$\cos \alpha = \frac{1}{\sec \alpha} = \frac{1}{-1,26} = -0,794; \text{ sen } \alpha =$$

$$= tg\alpha \cdot \cos \alpha = -0,617; \text{ cosec } \alpha = \frac{1}{\sin \alpha} =$$

$$1 \qquad 1 \qquad 1$$

$$= -\frac{1}{0,617} = -1,621; \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{0,777} =$$

= 1,288

d)
$$\operatorname{sen} \alpha = -\sqrt{1 - \cos^2 \alpha} = -\sqrt{1 - 0.21^2} = -0.977;$$

 $\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} = -\frac{0.977}{0.21} = -4.65;$ $\operatorname{cosec} \alpha = \frac{1}{\operatorname{sen} \alpha} = -\frac{1}{0.977} = -1.02;$ $\operatorname{sec} \alpha = \frac{1}{\cos \alpha} = \frac{1}{0.21} = 4.76;$ $\operatorname{cotg} \alpha = \frac{1}{\operatorname{tg} \alpha} = -\frac{1}{4.65} = \frac{1}{0.21} = \frac{1}{0.21$

- e) $\sec \alpha = -3$, $\sin \alpha \in \mathbb{I}$ cuadrante $\cos \alpha = \frac{1}{\sec \alpha} = \frac{1}{3}$; $\sin \alpha = \sqrt{1 \cos^2 \alpha} = \sqrt{1 0.333^2} = \frac{1}{0.943}$; $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{0.943}{0.333} = -2.83$. $\csc \alpha = \frac{1}{\sin \alpha} = \frac{1}{0.943} = 1.06$; $\cot \alpha = \frac{1}{10.943} = -0.353$
- f) $\operatorname{sen} \alpha = 0,683$, $\operatorname{si} \alpha \in I$ cuadrante $\cos \alpha = \sqrt{1 \operatorname{sen}^2 \alpha} = \sqrt{1 0,683^2} = 0,73$; $\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} = \frac{0,683}{0,73} = 0,93$; $\operatorname{cosec} \alpha = \frac{1}{\operatorname{sen} \alpha} = \frac{1}{0,683} = 1,46$; $\operatorname{sec} \alpha = \frac{1}{\cos \alpha} = \frac{1}{0,73} = 1,37$; $\operatorname{cotg} \alpha = \frac{1}{\operatorname{tg} \alpha} = \frac{1}{0,93} = 1,07$

6 a) $\cos \alpha = \sqrt{1 - 0.4^2} = 0.917$

b)
$$\cos\left(\frac{\pi}{2} - \alpha\right) = \operatorname{sen} \alpha = -\frac{2}{5}$$

c)
$$tg(\pi - \alpha) = \frac{-sen \alpha}{cos \alpha} = \frac{0.4}{0.917} = 0.436$$

d)
$$\sec{(\pi + \alpha)} = \frac{1}{\cos{(\pi + \alpha)}} = \frac{-1}{0.917} = -1,09$$

7 a)

- c) 60° 2 · 360°+120°
- -360°-330°
- d) 45° 2 · 360°+135°
- **8** a) sen $\alpha = 0.78 \Rightarrow \alpha = \text{arc sen } 0.78 = 51.3^{\circ} \text{ y}$ $180^{\circ} - 51.3^{\circ} = 128.7^{\circ}$
 - **b)** $\cos \alpha = 0.78 \Rightarrow \alpha = \arccos 0.78 = 38.7^{\circ} \text{ y}$ $360^{\circ} - 38.7^{\circ} = 321.3^{\circ}$
 - c) $tg \alpha = 8 \Rightarrow \alpha = arc tg 8 = 82,9^{\circ} y 180^{\circ} + 82,9^{\circ} = 262,9^{\circ}$
 - d) $tg \alpha = -0.34 \Rightarrow \alpha = arc tg (-0.34) = 341^{\circ} y$ $341^{\circ} - 180^{\circ} = 161^{\circ}$
 - e) sen $\alpha = 0.101 \Rightarrow \alpha = \text{arc sen } 0.101 = 5.80^{\circ} \text{ y}$ $180^{\circ} - 5.80^{\circ} = 174.2^{\circ}$
 - f) $\sec \alpha = 6 \Rightarrow \cos \alpha = \frac{1}{6} \Rightarrow \alpha = \arccos \frac{1}{6} = 80.4^{\circ} \text{ y } 360^{\circ} 80.4^{\circ} = 279.6^{\circ}$

20