Consideração sobre notações

A notação O é utilizada para indicar o limite superior de uma função. Por exemplo g(n) = O(f(n)) indica que g(n) é da ordem no máximo f(n). A notação Ω , por sua vez, especifica em f(n) um limite inferior para g(n). Já a notação Θ define f(n) como um limite assintótico firme (ZIVIANI, 2006).

Exerc. 4.

- **a)** $O(n), \Omega(n), \Theta(n)$
- **b)** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **c)** $O(n^3), \Omega(n^3), \Theta(n^3)$
- **d)** $O(\sqrt{n}), \Omega(\sqrt{n}), \Theta(\sqrt{n})$
- **e)** $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$
- **f)** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **g)** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **h)** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **i)** $O(n^4), \Omega(n^4), \Theta(n^4)$
- **j)** $O(n), \Omega(n), \Theta(n)$
- **Exerc. Res. 1.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 2.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 3.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 4.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 5.** $O(n), \Omega(n), \Theta(n)$
- **Exerc. Res. 6.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 7.** $O(n), \Omega(n), \Theta(n)$
- **Exerc. 5.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. 6.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. 7.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. Res. 8.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. 8.** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **Exerc. 9.** $O(1), \Omega(1), \Theta(1)$
- **Exerc. 10.** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **Exerc. 11.** $O(n^2), \Omega(n^2), \Theta(n^2)$

Exerc. 12. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. 13. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. 14. $O(n^2), \Omega(n^2), \Theta(n^2)$

Exerc. Res. 9. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. 15. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. 16. $O(\log_2 n)$, $\Omega(\log_2 n)$, $\Theta(\log_2 n)$

Exerc. 17. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. 18. $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. Res. 10.

- **a)** $O(n^2), \Omega(n^2), \Theta(n^2)$
- **b)** $O(n^3), \Omega(n^3), \Theta(n^3)$
- **c)** $O(n), \Omega(n), \Theta(n)$
- **d)** $O(n^3), \Omega(n^3), \Theta(n^3)$
- **e)** $O(n^4), \Omega(n^4), \Theta(n^4)$
- **f)** $O(\log_2 n), \Omega(\log_2 n), \Theta(\log_2 n)$

Exerc. Res. 11. $O(n), \Omega(n), \Theta(n)$

Referências

ZIVIANI, Nivio. **Projeto de Algoritmos com implementações em Java e** C++. Cengage Learning, 2006.