A first proposed procedure to LEARN=TRAIN=CHANGE THE WEIGHTS (AND BIAS) TO IMPROVE PERFORMANCE, BY INTERACTING WITH DATA

"Hebbian Learning"

Donald Hebb, a psychologist at McGill University, proposed in 1949 that learning takes place by modification of the synapse strengths (weights) in a manner such that *if two interconnected neurons are both "on" at the same time, then the strength of the connection between those neurons (weight) should be increased.*

'Neurons that FIRE together, WIRE together'

IN ANN terms : $w_i(new) = wi(old) + x_iy$

The idea can be extended so that the connection is also enhanced if both neurons involved are "off" at the same time.

Hebbian Learning Algorithm:

- 0) Initialize weights e.g., $w_i = 0$
- 1) For each training vector-target pair, do 2-4:
 - 2) Set activation for input units: $x_i = s_i$ (training vector)
 - 3) Set activation for output unit: y = t (target)
 - 4) Adjust the weights and bias:
 - $w_i \text{ (new)} = w_i \text{(old)} + x_i y$
 - b(new) = b(old) + y

If the weight and the inputs (including the bias) are handled as vectors, the weight upgrade can be calculated through a vector (matrix) equation:

$$\overline{w}(new) = \overline{w}(old) + \Delta \overline{w}$$

where the weight change vector $\Delta \overline{w}$ is:

$$\Delta \overline{w} = \overline{x} y$$

This is:

$$\overline{w}(new) = \overline{w}(old) + \overline{x}y$$

Example:

AND function with bipolar inputs and targets

The "Truth Table" for the AND function, including a bias term will be

INF	TU		TARGET	Sample #		
X 1	X 2	"1"(for bias)				
1	1	1	1	First		
1	-1	1	-1	Second		
-1	1	1	-1	Third		
-1	-1	1	-1	Forth		

Application of the algorithm above yields the following results:

Hebb Learning (AND bipolar inputs and targets)

Inputs		Target	Weig	Weights					
X ₁	X ₂	"1"		Δw_l	Δ W2	Δb	W ₁	w ₂	b 0
1	1	1	1	1	1	1	1	1	1
1	-1	1	-1	-1	1	-1	0	2	0
-1	1	1	-1	1	-1	-1	1	1	-1
-1	-1	1	-1	1	1	-1	2	2	-2

Note that at each point the weights for inputs and bias determine a "decision boundary" and that it "moves" to effectively *separate one kind of inputs from the other*.

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{b}{w_2}$$

Hebbian learning of bipolar "AND" function

$$\chi_2 = -\left(\frac{w_1}{w_2}\right)\chi_1 - \left(\frac{b}{w_2}\right)$$
 Decision Boundary

