1. Nash Equilibrium and Maximin

Definition 1.1 (Nash Equilibrium): A strategy profile (π_i, π_{-i}) forms a *Nash equilibrium* if none of the players benefit by deviating from their policy.

$$\forall i \in \mathcal{N}, \forall \pi_i': R_i^{\pi_i, \pi_{-i}} \geq R_i^{\pi_i', \pi_{-i}}$$

Lemma 1.1: Strategy profile (π_i, π_{-i}) forms a Nash equilibrium if and only if

 $\forall i \in \mathcal{N} : \pi_i \text{ is a best response to } \pi_{-i}$

Where best response to π_{-i} is $\pi_i^{\star} = \arg \max_{\pi_i} R_i^{\pi_i, \pi_{-i}}$.

Definition 1.2 (Maximin Policy): Maximin policy of a player i is:

$$\arg\max_{\pi_i} \min_{\pi_{-i}} R_i^{\pi_i,\pi_{-i}}$$

Theorem 1.2 (Minimax):

$$\max_{\pi_i} \min_{\pi_{-i}} R_i^{\pi_i, \pi_{-i}} = \min_{\pi_{-i}} \max_{\pi_i} R_i^{\pi_i, \pi_{-i}}$$

We will denote $\underline{v_i} = \max_{\pi_i} \min_{\pi_{-i}} R_i^{\pi_i,\pi_{-i}} = -\max_{\pi_i} \min_{\pi_{-i}} R_{-i}^{\pi_i,\pi_{-i}} = \underline{v_{-i}}.$

Theorem 1.3 (Nash is Maximin): For a two player zero-sum game:

 (π_i, π_{-i}) is a Nash equilibrium $\Rightarrow \pi_i$ is a maximin policy $\land \pi_{-i}$ is a maximin policy

Proof: WLOG we will talk only about player i. First we can see that since π_{-i} is the best response from Lemma 1.1. Suppose that there is an another policy π_i' that does better than π_i in the worst case. That $\min_{\pi_{-i}^*} R_i^{\pi_i', \pi_{-i}^*} > \min_{\pi_{-i}^*} R_i^{\pi_i, \pi_{-i}^*}$. So even:

$$R_i^{\pi_i',\pi_{-i}} \geq \min_{\pi_{-i}^{\star}} R_i^{\pi_i',\pi_{-i}^{\star}} > \min_{\pi_{-i}^{\star}} R_i^{\pi_i,\pi_{-i}^{\star}} \stackrel{\text{Lemma 1.1}}{=} R_i^{\pi_i,\pi_{-i}} \stackrel{\text{Definition 1.1}}{\geq} R_i^{\pi_i',\pi_{-i}}$$

This is a contradiction. Which concludes the proof.

Theorem 1.4 (Maximin is Nash): For a two player zero-sum game:

 π_i^{\star} is a maximin policy $\wedge \pi_{-i}^{\star}$ is a maximin policy $\Rightarrow (\pi_i^{\star}, \pi_{-i}^{\star})$ is a Nash equilibrium

Proof: Suppose that (π_i, π_{-i}) is not Nash equilibrium. Then there is a policy π_i' such that $R_i^{\pi_i', \pi_{-i}^\star} > R_i^{\pi_i^\star, \pi_{-i}^\star}$. And with that immediately follows:

$$\underline{v_i} \overset{\text{Theorem 1.2}}{=} -\underline{v_{-i}} \overset{\pi_{-i}^\star \text{ is maximin}}{\geq} -R_{-i}^{\pi_i',\pi_{-i}^\star} \overset{\text{zero-sum game}}{=} R_i^{\pi_i',\pi_{-i}^\star} > R_i^{\pi_i^\star,\pi_{-i}^\star} \geq \underline{v_i}$$

This is a contradiction. Which concludes the proof.