CMPT 429.3/833.3

CLOSED BOOK

TIME: 50 Minutes

MIDTERM EXAM

November 18/91

MARKS:

- 1. From a programming language design viewpoint, give a <u>brief</u> evaluation of high-level programming language that you know well.
- 2. Obtain a grammar for the language which consists of the set of all strings containing more 0's than 1's.
- 3. Construct a nondeterministic finite-state automaton that recognizes the language generated by the regular grammar:

$$G = (\{S, A, B\}, \{0, 1\}, S, \Phi)$$

where Φ consists of the rules

S -> 1B | 0

A -> 1A | OB | 1 | 0

B -> 1

4. Given the following ambiguous grammar

with operator precedence and associativity according to the following table (higher lines in the table are higher precedence operators).

	Associativity	Operator	Description
٠.	left to right	()	parentheses for grouping (highest precedence)
	left to right	_*	unary minus and pointer dereference
	left to right	*/	multiplication, division
	left to right	+-	addition, subtraction
	right to left	=	assignment (lowest precedence)
10	(a) Modify the grammar so that it is not ambiguous.		
10	(b) Obtain an LL(1) grammar for your grammar in part (a) which satisfies the table above (show that it is LL(1)!).		