Written Analysis – Planning Search

The current assignment implemented a classical planning problem using the Planning Domain Definition Language. It solved a deterministic air cargo transport system problem with uninformed (non-heuristic) planning searches (Breadth First Search, Depth First Greedy Search, Greedy Best First Graph Search) and heuristic searches using A* (ignore preconditions, level-sum). Results are found in the tables below with discussion to follow.

Non-Heuristic Search Results

Problem 1	Breadth First Search	Depth First Greedy Search	Greedy Best First Graph Search
Plan Length	6	12	6
Time (s)	0.085	0.017	0.0198
Expansions	43	12	7
Goal Tests	56	13	9
New Nodes	180	48	28
Optimal	Yes	No	Yes

Problem 2	Breadth First Search	Depth First Greedy Search	Greedy Best First Graph Search
Plan Length	9	346	9
Time (s)	17.56	2.85	2.62
Expansions	3401	350	550
Goal Tests	4672	351	552
New Nodes	31049	3142	4950
Optimal	Yes	No	Yes

Problem 3	Breadth First Search	Depth First Greedy	Greedy Best First
		Search	Graph Search
Plan Length	12	3335	22
Time (s)	88.24	106.26	23.51
Expansions	14491	3491	4031
Goal Tests	17947	3492	4033
New Nodes	128184	29332	35794
Optimal	Yes	No	No

Heuristic Search Results

Problem 1	A* h1	A* Ignore Preconditions	A* Level Sum
Plan Length	6	6	6
Time (s)	0.113	0.074	2.489
Expansions	55	41	32
Goal Tests	57	43	34
New Nodes	224	170	138
Optimal	Yes	Yes	Yes

Problem 2	A* h1	A* Ignore Preconditions	A* Level Sum
Plan Length	9	9	9
Time (s)	26.634	8.946	196.141
Expansions	4761	1450	168
Goal Tests	4763	1452	170
New Nodes	43206	13303	1618
Optimal	Yes	Yes	Yes

Problem 3	A* h1	A* Ignore Preconditions	A* Level Sum
Plan Length	12	12	12
Time (s)	117.543	36.719	1482.073
Expansions	17783	5003	1037
Goal Tests	17785	5005	1039
New Nodes	155920	44586	9683
Optimal	Yes	Yes	Yes

Optimal Sequence of Actions

Problem 1

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P1, SFO, JFK)

Fly(P2, JFK, SFO)

Unload(C1, P1, JFK)

Unload(C2, P2, SFO)

Problem 2

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Load(C3, P3, ATL)

Fly(P1, SFO, JFK)

Fly(P2, JFK, SFO)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Problem 3

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, ATL, JFK)

Fly(P2, ORD, SFO)

Unload(C4, P2, SFO)

Unload(C3, P1, JFK)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Discussion

The Breadth First Search was the only non-heuristic search algorithm to provide an optimal search result for all three problems, whereas problem optimality was found with all heuristic search algorithms.

With any state space problem, the goal is to find a path connecting the initial state to the goal state. Heuristics make it easier to find a path but they require human ingenuity to define good domain-specific heuristics for search problems. For planning searches adding more edges to the graph or grouping nodes to form an abstraction with fewer states in the state space makes it easier to search¹. These are some of the reasons that the heuristic searches were able to find an optimal solution to each problem. Although the heuristic searches found optimal solutions they did so with different times and expansions. The A* Ignore Preconditions was the fastest for each problem, solving problem 3 (the most difficult problem) in under 40 seconds. Interestingly, the faster algorithm needed 5 times the expansions of the slowest (A* Level Sum) algorithm. It is difficult to say what heuristic is best, but I would choose A* Ignore preconditions for the speed. It seems that a greater amount of memory is needed for A* Ignore preconditions than A* Level Sum, but the speed to solve the problem is so much greater that the extra memory consumption is worth it.

1. Russell, Stuart, Peter Norvig, and Artificial Intelligence. "A modern approach." Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995): 27.