Measurements of CKM angle γ in LHCb

Martin Tat, on behalf of the LHCb collaboration

University of Oxford

Beauty 2023, Clermont-Ferrand

3rd-7th July 2023

Introduction to γ and CP violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta, γ
- \bullet The angle $\gamma = \arg \Big(\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \Big)$ is very important:
 - Negligible theoretical uncertainties: Ideal SM benchmark
 - Accessible at tree level: Indirectly probe New Physics that enter loops
 - 3 Compare with a global CKM fit: Is the Unitary Triangle a triangle?

(a) Tree level: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

(b) Loop level: $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005), updated results and plots available at: http://ckmfitter.in2p3.fr

Sensitivity through interference

Measure γ through interference effects in $B^{\pm} \rightarrow DK^{\pm}$

- ullet Superposition of D^0 and $ar{D^0}$
 - ullet Consider $D^0/ar{D^0}$ decays to the same final state, such as $D o K^+K^-$
- $b o u \bar{c}s$ and $b o c \bar{u}s$ interference o Sensitivity to γ $\mathcal{A}(B^-) = \mathcal{A}_B \left(\mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$ $\mathcal{A}(B^+) = \mathcal{A}_B \left(\mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

Our most precise knowledge of γ comes from the combination of γ and charm mixing parameters

LHCb-CONF-2022-003

Most precise determination from a single experiment: $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$ Contributions from the B^{\pm} dominate, but all measurements are consistent

Our most precise knowledge of γ comes from the combination of γ and charm mixing parameters

LHCb-CONF-2022-003

Mixing effects to γ measurements are approaching the statistical sensitivity. The simultaneous fit improves the knowledge of y significantly

The γ combination is mainly driven by ${\it B}^{\pm} \rightarrow {\it Dh}^{\pm}$, where:

•
$$D o K^+K^-$$
, $\pi^+\pi^-$, $K^\mp\pi^\pm$

$$\bullet \ D \to K_S^0 \pi^+ \pi^-, \ K_S^0 K^+ K^-$$

•
$$D \rightarrow K^{\mp}\pi^{\pm}\pi^{-}\pi^{+}$$

The γ combination is mainly driven by ${\it B}^{\pm} \rightarrow {\it Dh}^{\pm},$ where:

$$ightarrow$$
 $D
ightarrow$ $K^{+}K^{-}$, $\pi^{+}\pi^{-}$, $K^{\mp}\pi^{\pm}$

$$ightarrow~D
ightarrow~K_S^0\pi^+\pi^-$$
 , $K_S^0K^+K^-$

•
$$D \rightarrow K^{\mp}\pi^{\pm}\pi^{-}\pi^{+}$$

arXiv:2209.03692

The γ combination is mainly driven by ${\it B}^{\pm} \rightarrow {\it Dh}^{\pm}$, where:

•
$$D o K^+K^-$$
, $\pi^+\pi^-$, $K^\mp\pi^\pm$

$$\bullet \ D \to K_S^0 \pi^+ \pi^-, \ K_S^0 K^+ K^-$$

$$\rightarrow D \rightarrow K^{\mp}\pi^{\pm}\pi^{-}\pi^{+}$$

arXiv:2209.03692

The γ combination is mainly driven by $B^{\pm} \to Dh^{\pm}$, where:

- $D \rightarrow K^+K^-$, $\pi^+\pi^-$, $K^\mp\pi^\pm$
- $D o K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$
- $D \rightarrow K^{\mp}\pi^{\pm}\pi^{-}\pi^{+}$

These multi-body decays are analysed in <u>local regions</u> of phase space

Multi-body D decays

This talk: Focus on multi-body *D* decays, where interference effects vary across phase space

- Strong-phase difference δ_D is a function of phase space
- Compare yields of B^+ and B^- and determine the asymmetry in local phase space regions

Multi-body D decays

- Interpretation of γ from the multi-body charm decays require external inputs of the charm strong-phase differences
- The three-body decays $D \to K_S^0 h^+ h^-$ have been studied extensively, using an optimised phase-space binning:
 - CLEO Phys. Rev. **D82** (2010) 112006
 - BESIII Phys. Rev. D101 (2020) 112002
- ullet With charm inputs from CLEO and BESIII, the measurement of γ becomes model independent

Can also consider more complicated multi-body decays: $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

- Phase space is 5-dimensional...
- ...use an amplitude model to determine an efficient binning scheme!

Bins i < 0 on top, i > 0 below Eur. Phys. J. C **83**, 547 (2023)

Fully charged final state \implies Highly suitable for LHCb

Eur. Phys. J. C 83, 547 (2023)

- $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 3026 ± 38
 - $B^{\pm} \rightarrow D\pi^{\pm}$: 44349 ± 218

- Clear bin asymmetries are seen, and the non-trivial distribution is driven by the change in strong-phase differences across phase space
- \bullet While the interpretation of γ require charm inputs, the observed bin asymmetries are model independent

Additionally, one can measure the phase-space integrated asymmetries and measure additional *CP*-violating observables

More B^- candidates because $D^0 \to K^+K^-\pi^+\pi^-$ is predominantly <u>CP-even</u> (Phys. Rev. D **107** 032009)

From the phase-space binned asymmetries, we obtain:

•
$$\gamma = (116^{+12}_{-14})^{\circ}$$

•
$$\delta_D^{DK} = (81^{+12}_{-14})^{\circ}$$

•
$$r_B^{DK} = 0.110^{+0.020}_{-0.020}$$

These results are model dependent, and will be updated once BESIII strong-phase inputs are available

This method works analogously with neutral B decays:

LHCb-PAPER-2023-009 (in preparation) New results!

$$B^0 o (K_S^0 h^+ h^-)_D (K^+ \pi^-)_{K^*}$$

This results supersedes that of JHEP **08** (2016) 137

- Two separate selections of K_S^0 :
 - LL (long tracks): K_S^0 decays in the VELO
 - ullet DD (downstream tracks): K_S^0 decays downstream of the VELO
- $B^0 \to DK^{*0}$ candidates with $D \to K_S^0 \pi^+ \pi^-$ ($D \to K_S^0 K^+ K^-$):
 - LL: $102 \pm 17 \ (12 \pm 6)$
 - DD: $288 \pm 25 (32 \pm 8)$

- Non-zero bin asymmetries are seen:
 - Large asymmetries between B^0 $(\bar{B^0})$ bin pairs
 - ullet Very small CPV is expected in B^0_s decays, and these are not looked for

- Non-zero bin asymmetries are seen:
 - ullet Large asymmetries between B^0 $(ar{B^0})$ bin pairs
 - ullet Very small CPV is expected in B_s^0 decays, and these are not looked for
- Asymmetries differ in size and magnitude across bins of phase space

LHCb-PAPER-2023-009

Measured CP-violating observables:

$$x_{\pm} \equiv r_{B^0} \cos(\delta_{B^0} \pm \gamma)$$
 and $y_{\pm} \equiv r_{B^0} \sin(\delta_{B^0} \pm \gamma)$

- ullet Measured value of γ is consistent with world average:
 - $\gamma = (49 \pm 20)^{\circ}$
 - $\delta_{B^0} = (236 \pm 19)^{\circ}$
 - $r_{B^0} = 0.27 \pm 0.07$

 $B^- \to D^* K^-$ decays are also a powerful probe of CPV:

LHCb-PAPER-2023-012 (in preparation) New results!

The relative sign swap, due to the phase difference of π between π^0 and γ , results in opposite CP asymmetries between $D^* \to D\pi^0$ and $D^* \to D\gamma$

- Good agreement between individual bin asymmetries and the combined CP fit
- Bin asymmetries between $D^* \to D\pi^0$ and $D^* \to D\gamma$ are generally opposite in sign

LHCb-PAPER-2023-012

These results provide strong constraints on γ :

- $\gamma = (69 \pm 14)^{\circ}$
- $\delta_B^{D^*K} = (311 \pm 15)^\circ$
- $r_{P}^{D*K} = 0.15 \pm 0.03$

Summary and future prospects

In summary:

- **1** LHCb performed several measurements of γ , using a set of complementary B and $D^{(*)}$ decay combinations
- ② Phase-space binned analyses using the golden mode $D \to K_S^0 \pi^+ \pi^-$ provide the most powerful constraints for our γ combination
- **3** A binned measurement with the channel $B^{\pm} \to [K^+K^-\pi^+\pi^-]_D K^{\pm}$ has been performed for the first time
 - Need external inputs for charm strong-phases from BESIII
- I have also presented two new model-independent measurements:
 - ullet $B^0 o DK^{*0}$ with $K^{*0} o K^+\pi^-$
 - $B^\pm \to D^* h^\pm$ with $D^* \to D \pi^0$ and $D \gamma$

Summary and future prospects

Future prospects:

- The measurements I have presented today will make valuable improvements to future γ combinations
- Measurements are still dominated by statistical uncertainties, and are expected to reduce significantly at the end of Run 3
- **3** We expect more time-dependent results, such as $B_s^0 \to D_s^- K^+$ with Run 2, that will be interesting to compare with results from B^\pm/B^0

Thanks for your attention!