WHAT IS CLAIMED IS:

1 1. A compound having the formula: Ab-G-L-T 2 3 wherein 4 Ab is an antibody; G is an intact glycosyl linking group covalently joining Ab to L; 5 L is a bond or a spacer moiety covalently joining G to T; and 6 7 T is a toxin. 2. The compound according to claim 1, wherein said linker moiety is a 1 2 member selected from substituted or unsubstituted alkyl, substituted or unsubstituted 3 heteroalkyl and substituted or unsubstituted aryl moieties. 3. The compound according to claim 2, wherein said linker moiety 1 2 comprises a poly(ethylene glycol) moiety. 4. The compound according to claim 1, wherein L has the formula: 1 }—L¹—A−L²−} 2 wherein 3 L¹ is a bond or a linker moiety covalently joining S to A; 4 5 A is an amplifier moiety; and L² is a bond or a spacer moiety covalently adjoining A to T. 6 The compound according to claim 4, wherein said amplifier moiety is a 1 5. 2 polyamine moiety. The compound according to claim 5, wherein said polyamine moiety is 1 6. 2 a dendrimer. 7. The compound according to claim 4, having the formula: 1 $Ab-G-(PEG)_m-(toxin)_n$ 2 wherein 3 4 PEG is a straight- or branched-chain poly(ethylene glycol); m is an integer from 1 to 6; and 5 6 n is an integer from 1 to 1,000.

3

wherein

1 8. The compound according to claim 4, having the formula: Ab-G-L¹-(dendrimer)_m-(L²-toxin)_n 2 3 wherein 4 m is an integer from 1 to 6; and n is an integer from 1 to 1,000. 5 9. The compound according to claim 4, having the formula: 1 $Ab-G-(L^1)_m-(toxin)_n$ 2 3 wherein m is an integer from 1 to 6; and 4 n is an integer from 1 to 1,000. 5 1 10. The compound according to claim 1, having the formula: $Ab-G-X^{1}-PEG-X^{2}-A-X^{3}-(CH_{2})_{a}-Z-(CH_{2})_{b}-X^{4}-T$ 2 3 wherein X¹, X² and X⁴ are linking groups and are members selected from the group 4 consisting of O, S, NH, (CH₂)_q-NH, NH-(CH₂)_q, NH-C(O)-O, 5 O-C(O)-NH, $(CH_2)_q-NH-C(O)-O$, $O-C(O)-NH-(CH_2)_q$, C(O)-O, 6 O-C(O), (CH₂)_q-NH-C(O), C(O)-NH-(CH₂)_q, NH-C(S), and C(S)-NH 7 8 and wherein 9 A is an amplifier moiety; 10 Z is a bond cleaved by a metabolic/physiological process; n is an integer from 1 to 1,000; 11 12 a is an integer from 1 to 10; 13 b is an integer from 1 to 10; and q is and integer from 0 to 20. 14 1 11. The compound according to claim 1, having the formula: $Ab-G-X^{1}-PEG-X^{2}-A-X^{2}-A-X^{2}-R^{2}$ R^{1} R^{2} 2

at least one of R¹, R², R³, R⁴, R⁵, is: 4 $-C - X^2 - (CH_2CH_2O)_r - CH_2CH_2 - X^3 - T$ 5 6 wherein r is an integer from 1 to 2,500; 7 8

 Z^1 is selected from the group consisting of O, S, and NH;

 Z^2 is selected from the group consisting of NH, and NH-(CH₂)_q;

10 and

9

1

2

9

10

1

2

X¹. X² and X³ are linking groups and are members selected from the group 11 consisting of O, S, NH, (CH₂)_q-NH, NH-(CH₂)_q, NH-C(O)-O, 12 O-C(O)-NH, $(CH_2)_q-NH-C(O)-O$, $O-C(O)-NH-(CH_2)_q$, C(O)-O, 13 14 O-C(O), $(CH_2)_q$ -NH-C(O), C(O)-NH-(CH₂)_q, NH-C(S), and C(S)-NH

15 wherein

16 n is an integer from 1 to 1,000; and q is an integer from 0 to 20. 17

> 12. The compound according to claim 1, having the formula:

$$Ab-G-X^1-PEG-X^2$$
 $Ab-G-X^1-PEG-X^2$
 $Ab-G-X^1-PE$

3 wherein

 X^{1} , X^{2} and X^{4} are linking groups and are members selected from the group 4 consisting of O, S, NH, (CH₂)_q-NH, NH-(CH₂)_q, NH-C(O)-O, 5 O-C(O)-NH, $(CH_2)_q-NH-C(O)-O$, $O-C(O)-NH-(CH_2)_q$, C(O)-O, 6 O-C(O), (CH₂)_q-NH-C(O), C(O)-NH-(CH₂)_q, NH-C(S), and C(S)-NH 7

8 wherein

> n is an integer from 1 to 1,000; and q is an integer from 0 to 20.

> > 13. The compound according to claim 12, having the formula:

1 A compound having the formula: 14. 2 S-L-T 3 wherein 4 S is a nucleotide sugar 5 L is a bond or a spacer moiety covalently joining S to T; and 6 T is a toxin moiety. 15. The compound according to claim 14, wherein said spacer moiety is a 1 2 member selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl and substituted or unsubstituted aryl moieties. 3 16. The compound according to claim 15, wherein said spacer moiety 1 2 comprises a poly(ethylene glycol) moiety. The compound according to claim 14, wherein L has the formula: 1 17. }---L¹---A--L²--} 2 wherein 3 L¹ is a bond or a spacer moiety covalently joining S to A; 4 A is an amplifier moiety; and 5 L² is a bond or a spacer moiety covalently joining A to T. 6 1 18. The compound according to claim 17, wherein said amplifier moiety is a polyamine moiety. 2 The compound according to claim 18, wherein said polyamine moiety 1 19. 2 is a dendrimer. The compound according to claim 17, having the formula: 1 20. S-(PEG)_m-(toxin)_n 2 3 wherein 4 PEG is a straight- or branched-chain poly(ethylene glycol); 5 m is an integer from 1 to 6; and n is an integer from 1 to 1,000. 6 The compound according to claim 17, having the formula: 1 21. S-L¹-(dendrimer)_m-(L²-toxin)_n 2

5

3 wherein 4 m is an integer from 1 to 6; and 5 n is an integer from 1 to 1,000. 22. The compound according to claim 17, having the formula: 1 $S-(L^1)_m$ -(toxin)_n 2 wherein 3 4 m is an integer from 1 to 6; and 5 n is an integer from 1 to 1,000. 1 23. The compound according to claim 22, having the formula: 2 wherein 3 X¹, X² and X³ are linking groups and are members selected from the group 4 consisting of O, S, NH(CH₂)_q-NH, NH-(CH₂)_q, NH-C(O)-O, 5 O-C(O)-NH, $(CH_2)_q-NH-C(O)-O$, $O-C(O)-NH-(CH_2)_q$, C(O)-O, 6 O-C(O), $(CH_2)_q$ -NH-C(O), C(O)-NH- $(CH_2)_q$, NH-C(S), and C(S)-NH 7 and wherein 8 9 A is an amplifier moiety; 10 Z is a bond cleaved by a metabolic/physiological process; 11 n is an integer from 1 to 1,000; a is an integer from 1 to 10; 12 b is an integer from 1 to 10; and 13 q is and integer from 0 to 20. 14 24. The compound according to claim 14, having the formula: 1 2 3 wherein X^{1} , X^{2} and X^{3} are linking groups and are members selected from the group 4

consisting of O, S, NH(CH₂)_q-NH, NH-(CH₂)_q, NH-C(O)-O,

2

- O-C(O)-NH, (CH₂)_q-NH-C(O)-O, O-C(O)-NH-(CH₂)_q, C(O)-O,
 O-C(O), (CH₂)_q-NH-C(O), C(O)-NH-(CH₂)_q, NH-C(S), and C(S)-NH
 wherein
 q is an integer from 0 to 20.
- 1 25. The compound according to claim 24, having the formula: