

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Introducción

- Test Chi Cuadrado
- Se usa para estudiar datos categóricos
- La información se presenta en tablas de doble entrada de tamaño r x c
- r y c pueden corresponder a dos criterios diferentes de clasificación de una misma población
- r filas variable categórica
- c columnas diferentes poblaciones muestreadas

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Test de Independencia

- Tabla de doble entrada o tabla de contingencia de tamaño r x k
- Test de Independencia.
- Se especifica a priori el tamaño de la muestra a seleccionar de una población
- Se selecciona una muestra aleatoria de n sujetos de una población
- El tipo de estudio se denomina Cross-sectional (transversal)
- Se determina para cada sujeto el nivel de característica A y el nivel de característica B
- Concepto de independencia entre eventos y probabilidad condicional

Test de Independencia

• **Definición 1.** Se denota por P(A/B) a la probabilidad de que ocurra A sabiendo que ocurrió B, o bien, probabilidad de A condicionada a la ocurrencia de B.

$$P(A/B) = \frac{P(A \cap B)}{P(B)} \operatorname{con} P(B) > 0$$

- Definición
 2. Se dice que dos eventos A y B, asociados a un mismo experimento, son independientes cuando la ocurrencia de uno de ellos no afecta la probabilidad de ocurrencia del otro; es decir, si P(B) > 0
- Prueba de independencia entre eventos:

$$P(A/B) = P(A) \leftrightarrow P(A \cap B) = P(A)P(B)$$

• Tabla de contingencias

		Bebidas az	ucaradas	
		Sí	No	Total
AF	Baja	32	12	44
	Media	14	22	36
	Alta	6	9	15
	Total	52	43	95

Rev Medica Sanitas 21 (2): 92-95 2019

Tópicos en investigación clínica y epidemiológica

PRUEBA CHI-CUADRADO DE INDEPENDENCIA APLICADA A TABLAS $2_{\rm X}N$

Fredy Mendivelso 1, Milena Rodriguez 2

 2 MIX: MIVE MIVE FETP: Clinica Reina Sofia 2 MIX: Venezinaria, Epidemiologa, MSc. FETP. Pandación Universitaria Sanitas

RESUMEN

La prueba \bar{p} -cuadrado (\mathcal{K}^2) de Pearson es una de las técnicas estadísticas más usadas en la evaluación de datos de conteo o frecuencias, principalmente en los análisis de tablas de contingencia (r_X c) donde se resumen datos categóricos.

Palabras clave: Distribución de Chi-Cuadrado, Pruebas de Hipótesis, Interpretación Estadística de Datos, Investigación biomédica.

DOI: 10.26852/01234250.6

INDEPENDENCE CHI-SQUARE TEST APPLIED TO 2, N TABLES

ABSTRACT

Pearson chi-square test (X^2) is one of the most used statistical techniques in the assessment of data counting or frequencies, mainly in the analysis of contingency tables $(r_X c)$ where categorical data are comparised.

Keywords: Chi-Square Distribution; Hypothesis-Testing, Data Interpretation, Statistical; Biomedical Research

Recibido: 1 de junio de 2018 Aceptado: 6 de junio de 2018

Correspondencia: friendivelsogicolsanitas.com

• Tabla de frecuencias relativas

Formato teórico

		Bebidas az	ucaradas	
		Sí	No	Total
AF	Baja	0,3368	0,1263	0,4632
	Media	0,1474	0,2316	0,3789
	Alta	0,0632	0,0947	0,1579
	Total	0,5474	0,4526	1

		Bebidas azucaradas			
		Sí		No	Total
AF	Baja	$P(B \cap S)$	P(E	$(S \cap N)$	P(B)
	Media	$P(M \cap S)$	P(N	$(I \cap N)$	P(M)
	Alta	$^{\uparrow}P(A\cap S)$	P(A	$A \cap N$	P(A)
	Total	P(S)	P	(N)	1
Prok	oabilidade	es conjuntas			
	Probab				les marginales

• Cálculos para el análisis de independencia

Probabilidad conjunta	Resultado	Probabilidad marginal	Resultado
$P(B \cap S)$	0.3368	P(B)P(S)	0.2535
$P(M \cap S)$	0.1474	P(M)P(S)	0.2074
$P(A \cap S)$	0.0632	P(A)P(S)	0.0864
$P(B \cap N)$	0.1263	P(B)P(N)	0.2096
$P(M \cap N)$	0.2316	P(M)P(N)	0.1715
$P(A \cap N)$	0.0947	P(A)P(N)	0.0715

Test Chi-Cuadrado de Independencia

Notación

- o_{ij} : indica la observación en la celda de la i ésima fila y la j- ésima columna.
- e_{ij} : denota la frecuencia esperada bajo H_0 en la celda de la i-ésima fila y la j-ésima columna

Hipótesis

 H_0 : Las variables son independientes H_1 : Las variables no son independientes

$$\begin{cases} H_0: P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i), para\ todo(i, j)/1 \le i \le r, 1 \le j \le k, \\ H_1: \exists (i, j)/P(X = x_i, Y = y_i) \ne P(X = x_i)P(Y = y_i) \end{cases}$$

Test Chi-Cuadrado de Independencia

TABLA 1. VALORES OBSERVADOS						
		BEBIDAS AZ	CUCARADAS	_		
		Sı	TOTAL			
	Baja	32	12	44		
AF	Media	14	22	36		
	Alta	6	9	15		
	Total	52	43	95		

TABLA 2. CÁLCULO DE LOS VALORES ESPERADOS							
		BEBIDAS AZ	ZUCARADAS	TOTAL			
		Sı No					
	Baja	(52x44)/95	(43x44)/95	44			
AF	Media	(52x36)/95	(43x36)/95	36			
	Alta	(52x15)/95	(43x15)/95	15			
	Total	52	43	95			

TABLA 3. VALORES ESPERADOS PARA EL EJEMPLO					
		BEBIDAS AZUCARADAS			
		Sı			
	Baja	24,1	19,9		
AF	Media	19,7	16,3		
	Alta	8,2	6,8		

Test Chi-Cuadrado en R

- # Test Chi Cuadrado
- library(stats)
- D=as.table(rbind(c(32,12),c(14,22), c(6,9)))
- # Guarda I o s datos
- dimnames(D)=list(AF=c('Baja','Media', 'Alta'), Bebidas_azucaradas=c('Sí', 'No'))
- D
- # Establece las características del estudio
- Xsq=chisq.test(D)# Realiza el test Chi cuadrado
- Xsq
- Xsq\$expected # Calcula las frecuencias esperadas

```
> D
Bebidas_azucaradas

AF Sí No
Baja 32 12
Media 14 22
Alta 6 9
> # Establece las características del estudio
> Xsq=chisq.test(D)# Realiza el test Chi cuadrado
> Xsq

Pearson's Chi-squared test
```

data: D X-squared = 10.712, df = 2, p-value = 0.004719

> Xsq\$expected # Calcula las frecuencias esperadas Bebidas_azucaradas

```
AF Sí No
Baja 24.084211 19.915789
Media 19.705263 16.294737
Alta 8.210526 6.789474
```

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Test Chi Cuadrado de Homogeneidad

	X_1	X_2	 X_{j}	 X_k	Totales
Muestra 1	0 ₁₁	012	 o_{1j}	 o_{1k}	$n_{1.}$
Muestra 2	021	022	 o_{2j}	 o_{2k}	$n_{2.}$
:	:	:	:	:	:
Muestra i	o_{i1}	o_{i2}	 o_{ij}	 o_{ik}	$n_{i.}$
:	i i	:	:	:	i i
Muestra r	o_{r1}	o_{r2}	 o_{rj}	 o_{rk}	$n_{r.}$
Totales	n1	$n_{.2}$	 $n_{.j}$	 $n_{.k}$	$n_{}$

Vacuna de la gripe. En un estudio prospectivo sobre una nueva vacuna para la gripe, los pacientes fueron asignados aleatoriamente a dos grupos. A los pacientes de uno de los grupos se les trató con la nueva vacuna y a los otros se les administró un placebo salino. Las respuestas fueron los niveles de anticuerpos inhibidores de hemoglutinina (HIA) encontrados en la sangre seis semanas después de la vacunación. Los datos se encuentran en la tabla siguiente. El objetivo del estudio es investigar el efecto de la nueva vacuna, esto es, comprobar si el hecho de dar placebo o vacuna provoca diferente respuesta HIA. Así, la variable HIA es la variable a explicar en función del tipo de tratamiento que ha recibido el paciente y las frecuencias de las celdas.

		Respuesta			
		Pequeño	Moderado	Grande	
Tratamiento	Placebo	25	8	5	
	Vacuna	6	18	11	

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Estadístico de prueba

•
$$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(o_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}}$$

•
$$\chi^2_{(1-\alpha;(k-1)(r-1))}$$

• Se rechaza H_0 si $\chi^2_{obs} > \chi^2_{(1-\alpha;(k-1)(r-1))}$

Test Chi-Cuadrado en R

```
library(stats)
M=as.table(rbind(c(28,8,5),c(6,18,11)))
# Guarda I o s datos
dimnames(M)=list(Tratamiento=c('Placebo','Vac
una'), Respuesta=c('Pequeño', 'Moderado',
'Grande'))
M
# Establece las poblaciones (filas) y las
categorías (columnas) de estudio
Xsq=chisq.test(M)# Realiza el test Chi cuadrado
Xsq
Xsq$expected # Calcula las frecuencias
esperadas
```

```
Respuesta
Tratamiento Pequeño Moderado Grande
Placebo 28 8 5
Vacuna 6 18 11
> # Establece las poblaciones (filas) y las
categorías(columnas) de estudio
> Xsq=chisq.test(M)# Realiza el test Chi cuadrado
> Xsq
```

Pearson's Chi-squared test

data: M X-squared = 19.982, df = 2, p-value = 4.58e-05

> Xsq\$expected # Calcula las frecuencias esperadas Respuesta

Tratamiento Pequeño Moderado Grande Placebo 18.34211 14.02632 8.631579 Vacuna 15.65789 11.97368 7.368421

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Limitaciones

Prueba de independencia	Prueba de homogeneidad
Dos variables categóricas, nominales u ordinales	Una variable categórica, nominal u ordinal
Una sola población	Por lo menos dos subpoblaciones
$\hat{e}_{ij} = \frac{n_{i.} n_{.j}}{n_{}}$	$\hat{e}_{ij} = \frac{n_{i.} n_{.j}}{n_{}}$
$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(o_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}} \sim \chi_{(1-\alpha;(k-1)(r-1))}^2$	$\chi_{obs}^2 = \sum_{i=1}^r \sum_{j=1}^k \frac{(o_{ij} - \hat{e}_{ij})^2}{\hat{e}_{ij}} \sim \chi_{(1-\alpha;(k-1)(r-1))}^2$
Región de rechazo unilateral a derecha	Región de rechazo unilateral a derecha
Rechaza grandes diferencias entre frecuencias observadas y esperadas	Rechaza grandes diferencias entre frecuencias observadas y esperadas

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Test exacto de Fisher

Si las dos variables que se están analizando son dicotómicas, y la frecuencia esperada es menor que 5 en más de una celda, no resulta adecuado aplicar el test de Chi Cuadrado, aunque sí el test exacto de Fisher. El test exacto de Fisher permite analizar si dos variables dicotómicas están asociadas cuando la muestra a estudiar es demasiado pequeña y no cumple las condiciones necesarias para que la aplicación del test de la Chi-cuadrado sea idónea

	Característica A					
		Presente	Ausente	Totales		
Característica B	Presente	а	b	a+b		
	Ausente	С	d	c+d		
	Totales	a+c	b+d	n		

$$p = \frac{C_{a+b,a}C_{c+d,c}}{C_{n,a+c}} = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}$$

 H_0 : El sexo y ser obeso son independiente

			Obesidad	
		Sí	No	Totales
	Mujeres	1	4	5
Sexo	Hombres	7	2	9
	Totales	8	6	14

$$p = \frac{C_{5,1}C_{9,7}}{C_{14,8}} = \frac{\binom{5}{1}\binom{9}{7}}{\binom{14}{8}} = \frac{5!9!8!6!}{14!1!4!7!2!} = 0,0599$$

Las siguientes tablas muestran todas las posibles combinaciones de frecuencias que se pueden obtener con los mismos totales de filas y columnas:

			Obesidad	
		Sí	No	Totales
Sexo	Mujeres	4	1	5
	Hombres	4	5	9
	Totales	8	6	14

$$p = \frac{C_{5,4}C_{9,4}}{C_{14.8}} = \frac{\binom{5}{4}\binom{9}{4}}{\binom{14}{8}} = \frac{5!9!8!6!}{14!4!1!4!5!} = 0,2098$$

	Obesidad			
		Sí	No	Totales
Sexo	Mujeres	2	3	5
	Hombres	6	3	9
	Totales	8	6	14

$$p = \frac{C_{5,2}C_{9,6}}{C_{14,8}} = \frac{\binom{5}{2}\binom{9}{6}}{\binom{14}{8}} = \frac{5!9!8!6!}{14!4!1!4!5!} = 0,2797$$

	Obesidad			
		Sí	No	Totales
Sexo	Mujeres	3	2	5
	Hombres	5	4	9
	Totales	8	6	14

$$p = \frac{C_{5,3}C_{9,5}}{C_{14,8}} = \frac{\binom{5}{3}\binom{9}{5}}{\binom{14}{8}} = \frac{5! \, 9! \, 8! \, 6!}{14! \, 3! \, 2! \, 5! \, 4!} = 0,4196$$

	Obesidad			
		Sí	No	Totales
Sexo	Mujeres	0	5	5
	Hombres	8	1	9
	Totales	8	6	14

$$p = \frac{C_{5,0}C_{9,8}}{C_{14,8}} = \frac{\binom{5}{0}\binom{9}{8}}{\binom{14}{8}} = \frac{5! \, 9! \, 8! \, 6!}{14! \, 0! \, 5! \, 8! \, 1!} = 0,0030$$

	Obesidad			
		Sí	No	Totales
Sexo	Mujeres	5	0	5
	Hombres	3	6	9
	Totales	8	6	14

$$p = \frac{C_{5,5}C_{9,3}}{C_{14,8}} = \frac{\binom{5}{5}\binom{9}{8}}{\binom{14}{8}} = \frac{5!9!8!6!}{14!5!0!3!6!} = 0,0280$$

Resolución:

Sumando las probabilidades de las tablas que son menores o iguales a la probabilidad de la tabla observada (p=0.0599) se tiene:

$$p = 0.0599 + 0.0030 + 0.0280 = 0.0909$$

Siendo p - valor = 0,0909 > 0,05

No se rechaza la hipótesis nula, concluyendo que el sexo y el hecho de ser obeso son independientes, es decir, no existe asociación entre las variables en estudio, con un nivel de significación $\alpha=0.05$.

Test de Fisher en R

```
B=as.table(rbind(c(1,4),c(7,2)))
# Guarda los datos
dimnames(B)=list(Sexo=c('Mujeres','Hombres'), Obesidad=c('Sí','No'))
Xsq=chisq.test(B) # Realiza el test Chicuadrado
Xsq$expected # Calcula las frecuencias esperadas
```

fisher.test(B) # Realiza el test de

Fisher

Fisher's Exact Test for Count Data data: B p-value = 0.09091 alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval: 0.001283434 1.558054487 sample estimates: odds ratio

0.09106548

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Test de Homocedasticidad

Homocedasticidad

- Bartlett
- Levene

Homocedasticidad - Planteo de Hipótesis

Homocedasticidad

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$
 H_1 : al menos alguna de las varianzas es diferente

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$$
$$H_1: \exists (i, j)\sigma_i^2 \neq \sigma_j^2$$

- Criterio de rechazo de H_0 cuando p-valor < α
- Se fija un α = 0,05

Homocedasticidad - Test de Bartlett

- Si el test de Bartlett no rechaza la hipótesis de nulidad, significa que, no hay evidencia estadística significativa de que la varianza de alguno de los subgrupos difiera de las otras.
- El problema de este test es su sensibilidad a la falta de normalidad. Esto implica que puede ocurrir que el mismo rechace la hipótesis nula por no cumplirse el supuesto de normalidad en lugar de rechazarla por no cumplirse el supuesto de homocedasticidad.
- Una alternativa más robusta, lo que significa que no es sensible a la falta de normalidad o a la presencia de algún valor atípico, la brinda el test de Levenne.

Homocedasticidad - Test de Levene

- El test de Levene realiza un nuevo análisis de la varianza para los valores absolutos de los residuos de las observaciones respecto de la mediana, o la media, de su grupo.
- Cuando el p-valor del test es mayor a 0,05 significa que el test de Levene no rechaza la hipótesis nula de homocedasticidad, lo que brinda la misma conclusión que el test de Bartlett. Por lo tanto, podemos suponer que se cumple la hipótesis de homocedasticidad.
- Faltaría analizar el cumplimiento del supuesto de normalidad de la distribución de los residuos, que es equivalente a analizar el supuesto de normalidad de la distribución de la variable original.

- Introducción
- Test de Independencia y Homogeneidad
 - Test Chi Cuadrado de Independencia
 - Test Chi Cuadrado de Homogeneidad
 - Estadístico de prueba
 - Región crítica
 - Limitaciones
 - Test exacto de Fisher
- Test de Homocedasticidad
- Test de Normalidad

Test de Normalidad

Normalidad

- Métodos gráficos
 - QQ-plot o gráfico de cuantil cuantil
- Métodos analíticos
 - Shapiro-Wilk
 - Anderson-Darling
 - D'Agostino

Test de normalidad

- Dentro de las herramientas conocidas, se dispone de distintos tests de normalidad así como de un gráfico que compara los cuantiles empíricos con los esperados, en el caso de que el supuesto se verifica. Este gráfico se denomina QQ-plot o gráfico de cuantil cuantil.
- El programa R tiene implementada una batería de tests de normalidad incluidos en la librería nortest. Dos de los más conocidos y potentes son el test de Shapiro-Wilk y el test de Anderson-Darling

Normalidad - Planteo de Hipótesis

- Normalidad
- H_0 : Los datos siguen una distribución normal
- H_1 : los datos no siguen una distribución normal

- Criterio de rechazo de H_0 cuando p-valor < α
- Se fija un α = 0,05

Normalidad - Gráficos de cuantil-cuantil

Normalidad - Test de Shapiro-Wilk

- Se usa para contrastar la normalidad de un conjunto de datos.
- El test de *Shapiro-Wilks* plantea la hipótesis nula que una muestra proviene de una distribución normal. Se elige un nivel de significanza, por ejemplo 0,05, y la hipótesis alternativa sostiene que la distribución no es normal.

 H_0 : La distribución es normal

 H_1 : La distribución no es normal,

o más formalmente aún:

$$H_0: X \sim \mathcal{N}(\mu, \sigma^2)$$

$$H_1: X \sim \mathcal{N}(\mu, \sigma^2)$$
.

Normalidad - Test de Anderson-Darling

- El estadístico Anderson-Darling mide qué tan bien siguen los datos una distribución específica.
- Para un conjunto de datos y distribución en particular, mientras mejor se ajuste la distribución a los datos, menor será este estadístico.
- Por ejemplo, se puede utilizar el estadístico de Anderson-Darling para determinar si los datos cumplen el supuesto de normalidad.
- Las hipótesis para la prueba de Anderson-Darling son:
- H₀: Los datos siguen una distribución especificada
- H₁: Los datos no siguen una distribución especificada

Normalidad - Test de D' Agostino

- La prueba de D'Agostino sirve para medir el nivel de asimetría de una normal en un conjunto de datos. Bajo la hipótesis de la normalidad, los datos deben ser simétricos (es decir, la asimetría debe ser igual a cero)
- Por ejemplo, se puede utilizar el estadístico de D'Agostino para determinar si los datos cumplen el supuesto de normalidad.
- Las hipótesis para la prueba de D'Agostino:
- H₀: Los datos siguen una distribución normal
- H₁: Los datos no siguen una normal

¿Preguntas?

