

Hidden Gems: 4D Radar Scene Flow Learning Using Cross-Modal Supervision

Fangqiang Ding, Andras Palffy, Dariu M. Gavrila, Chris Xiaoxuan Lu

Contact: fding@ed.ac.uk

Code Available

What is Scene Flow and 4D Radar?

Scene Flow on Point Cloud

- Represent the 3D inter-frame displacement of each source point
- Induced by the motion of both the ego-vehicle and ambient objects

4D Automotive Radar

- Robust to adverse weather and poor illumination conditions
- **4D imaging**: 3D position + 1D doppler velocity measurement
- Radar-on-a-chip: low-cost (vs. LiDAR), small size and lightweight

Challenges and Motivation

Challenge: trade-off (annotation efforts and performance)

Strategy	Supervision	Annotation efforts	performance
Self-supervised	None	None	low
Weakly-supervised	GT BG/FG mask	medium	medium
Fully-supervised	GT Scene flow	high	high

How to overcome such trade-off, i.e. get high performance with low efforts?

Challenge: radar characteristic (sparsity and noise)

- **Sparse** point cloud: average ~350 points per frame (<1% of LiDAR)
- Noisy (ghost) points due to multi-path effects of millimeter-wave
- **Result:** complicate the point-wise scene flow manual annotation; hard to exclusively rely on self-supervision for performance and safety.

Motivation

- Fact: self-driving cars today are equipped with heterogeneous sensors.
- **Insight**: such co-located perception redundancy can be used to provide supervision cues that bootstrap radar scene flow learning.

How to retrieve useful cross-modal supervision cues and apply them to bootstrap radar scene flow learning?

Proposed Method

- Cross-modal supervised learning pipeline:
- a) end-to-end two stages (blue/orange block colors for stage 1/2) model.
- b) multi-task problem: scene flow, motion segmentation, ego-motion transform.
- c) no need for pretraining any models, no need for annotating any labels manually.

- Temporal update module embedded in backbone: propagate previous latent global information to the current frame
- Optical flow loss $\mathcal{L}_{opt}^{\bullet}$: use **point-to-ray** distance instead of flow divergence in the pixel scale. See motivation below:

Scene Flow Evaluation

State-of-the-art comparison: compare **CMFlow** (T denotes temporal update) with baselines that also demand no annotation efforts on the *View-of-Delft* dataset.

Method	EPE [m]	AccR	Method	EPE [m]	AccR
Graph Prior	0.445	0.104	SLIM	0.323	0.170
JGWTF	0.375	0.103	RaFlow	0.226	0.390
PointPWC	0.422	0.113	CMFlow	0.141	0.499
FlowStep3D	0.292	0.161	CMFlow (T)	0.130	0.539

• **Breakdown results:** combine cross-modal supervision signals from different modalities. Abbrev.: odometer (O), LiDAR (L), camera (C).

	O	L	С	EPE [m]	AccS	AccR
(a)				0.228	0.184	0.392
(b)	$\sqrt{}$			0.161	0.203	0.442
(c)	$\sqrt{}$	$\sqrt{}$		0.145	0.228	0.482
(d)	$\sqrt{}$		$\sqrt{}$	0.159	0.216	0.458
(e)		$\sqrt{}$	$\sqrt{}$	0.141	0.233	0.499

• **Impact of the amount of unannotated training data.** PV-RAFT is fully-supervised trained with limited annotated samples.

• Qualitative results: pink/green for source/target point cloud

Sub-Task Evaluation

• Motion segmentation: orange/blue color for moving/static points

• **Ego-motion estimation:** We accumulate our inter-frame ego-motion transform estimations and plot the long-term trajectories.

