- 1. process for each digit. $O(\log W)$.
- 2. in $O(\log^{\epsilon} W)$ time we can preprocess the reverse of $O(\log \log W)$ bits and query in O(1). $O(\frac{\log W}{\log \log W})$.

note. for binary integer, reverse integer can be solved in $O(\log \log W)$ time by divide and conquer. otherwise we may need number base conversion.

after preprocessing in $O(W^{\epsilon})$, we can reverse integer in O(1).

in general, for binary integer we can shuffle the bits in $O(\log \log W)$ time [1, Sec. 7.1.3]. we also have a matching $\Omega(\log \log W)$ lower bound if multiplication is not allowed.

References

[1] Donald E Knuth. The art of computer programming, volume 4A: combinatorial algorithms, part 1. Pearson Education India, 2011.