

Lecture 4: Convolutional Neural Networks

Deep Learning @ UvA

Lecture overview

- Inductive bias: what makes images special?
- Convolution, pooling, dropout
- Study I: AlexNet
- Visualizations
- Transfer learning

Input dimensions are correlated

Traditional task: Predict my salary!

Shift 1 dimension makes no sense

×	Level of education	Age	Years of experience	Previous job	Nationality
	"Higher"	28	6	Researcher	Spain
1	Level of education	Age	Years of experience	Previous job	Nationality
	Spain	"Higher"	28	6	Researcher

Shifting images by several dimensions (pixels) barely makes a difference

First 5x5 values

First 5x5 values

What makes images different?

- An image has spatial structure
- Huge dimensionality
 - 256x256 RGB image ~200M dimensions
 - 1-layered NN with 1,000 neurons → 200M parameters
- Images are stationary signals → they share features
 - Cropping/shifting/occluding dimensions → still an image
 - Possibly with same semantics
 - Basic natural image statistics are the same

Convolutional Neural Networks

- Adding inductive bias to neural networks to deal with spatial signals
- Use convolutional filters to encode spatial structure
- Use local connectivity, parameter sharing, translation equivariance, to account for the huge input dimensionalities
- Use spatial pooling to remain robust to local variations

Why spatial?

- Images are 2-D
 - 3-D if you also count the extra channels
 - RGB, hyperspectral, etc.

- What does a 2-D input really mean?
 - Neighboring variables are locally correlated

Example filter when K=1

e.g. Sobel 2-D filter

Learnable filters

- o Image processing and computer vision has many handcrafted filters
 - · Canny, Sobel, Gaussian blur, morphological filters, Gabor filters, etc
- Are they optimal for recognition?
- Can we learn optimal filters from our data instead?
- Are they going resemble the handcrafted filters?

$$vs. \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix}$$

2-D Filters (Parameters)

- o If images are 2-D, parameters should also be organized in 2-D
 - That way they can learn the local correlations between input variables
 - That way they can "exploit" the spatial nature of images

3-D Filters (Parameters)

o Similarly, if images have k channels, parameters should also have k channels

What does a 3-D filter look like?

2-D filter

Hypothesis

- Image statistics are not location dependent
 - Natural images are stationary
- The same filters should work on every corner of the image similarly
- Perhaps move and reuse the same (red, yellow, green) filter across the whole image?

