Appunti integrati di Machine Learning and Data Analitics (2017/2018)

A cura di L. B. ¹

Materiale disponible su https://youactuary.altervista.org/

¹Lo scopo è quello di dare un ordine gerarchico agli argomenti presenti nel materiale del prof. Eric Medvet

Indice

1	Sec	tion 1:	General information	35
2	Sec	tion 2:	Introduction	36
	2.1	Binar	y classification problem	36
		2.1.1	Given any new observation, we want to automatically assign the	
			species	37
		2.1.2	Sketch of a possible solution:	
			1. learn a model (classifier)	
			2. "use" model on new observations	37
	2.2	Choos	ing the model	37
		2.2.1	The choice of the model/tool/algorithm to be used is determined	
			by many factors:	
			- Problem size (n and p)	
			- Availability of an output variable (y)	
			- Computational effort (when learning or "using")	
			- Explicability of the model	
				37
	2.3	-	aring many models	37
		2.3.1	Experimentally: does the model work well on (new) data? It	
			does not work well because:	
			- the data is not informative	
			- the data is not representative	
			- the data has changed	
			- the data is too noisy	37
	2.4		mentation	37
		2.4.1	When "solving" a problem, we usually need:	
			- explore/visualize data	
			- apply one or more learning algorithms	25
			- assess learned models	37
3	Sec	tion 3:	Fundamentals of R	38
4	Sec	tion 4:	Tree-based methods	39
	41	How to	o build a decision tree	30

	4.1.1	Dividi-et-impera (recursively):	
		- find a cut variable and a cut value	
		- for left-branch, dividi-et-impera	
		- for right-branch, dividi-et-impera	39
4.2	How to	o build a decision tree: detailed	
	functio	on BuildDecisionTree $(X; y)$	
	- Recu	rsive binary splitting	
	- Top	down (start from the "big" problem)	39
4.3	Best b	ranch	39
	4.3.1	function $BestBranch(X; y) \dots \dots \dots \dots \dots$	39
	4.3.2	Classification error on subset	39
4.4	Stoppi	ing criterion	39
	4.4.1	function $ShouldStop(y) \dots \dots \dots \dots \dots \dots$	39
	4.4.2	tree depth larger than d_{max}	39
4.5	Best b	oranch criteria	39
4.6	Best b	ranch criteria: binary classification	42
	4.6.1	Graphics $(P(\mathbf{y},c), \text{ index of } \mathbf{y}) : E \leq G \leq D \dots \dots \dots$	42
	4.6.2	what happens with multiclass problems?	42
4.7	Catego	orical independent variables	42
	4.7.1	Trees can work with categorical variables	
		Branch node is $x_i = c$ or $x_i \in C' \subset C$ (c is a class)	
		Can mix categorical and numeric variables	42
4.8	Stoppi	ing criterion: role of k_{min}	42
	4.8.1	Suppose $k_{min} = 1$ (never stop for \mathbf{y} size)	42
4.9	Tree c	omplexity	42
	4.9.1	When the tree is "too complex":	
		- less readable/understandable/explicable	
		- maybe there was noise into the data	
		Tree complexity is not related (only) with k_{min} , but also with data	42
	4.9.2	Tree complexity: other interpretation	
		maybe there was noise into the data.	
		The tree fits the learning data too much:	
		- (overfitting)	
		- does not generalize (high variance : model varies if learning	
		data varies)	42
4.10	_	variance	42
	4.10.1	"model varies if learning data varies": what? why data varies?	
		- learning data is about the system/phenomenon/nature S \rightarrow a	
		collection of observations of S, a point of view on S	
		- learning is about understanding/knowing/explaining S	
		if I change the point of view on S, my knowledge about S should	
		remain the same!	42
4.11	Spotti	ng overfitting	43

	4.11.1	Learning error curve in the plane (Model complexity, Error) de-
		creasing, while Test error curve decrease but then increase
		Test error is error on unseen data
4.12	k-fold	cross-validation
	4.12.1	For each fold calulcate accuracy or classification error rate or any
		other meaningful measure
4.13	Fightin	ng overfitting
	4.13.1	large k_{min}
		when building, limit depth
		when building, don't split if low overall impurity decrease
		after building, prune
4.14	Prunin	ng: high level idea
	4.14.1	1. learn a full tree t_0
		2. build from t_0 a sequence $T = \{t_0, t_1,, t_n\}$ of trees such that
		- t_i is a root-subtree of t_{i-1} $(t_i \subset t_{i.1})$
		- t_i is always less complex than t_{i-1}
		3. choose the $t \in T$ with minimum classification error with k-fold
		cross-validation
4.15	Subse	ection 1: Regression trees
4.16	Regres	sion with trees
	4.16.1	Trees can be used for regression, instead of classification.
		decision tree vs. regression tree
	4.16.2	Tree building: decision \rightarrow regression; Stopping criterion
4.17	Tree b	uilding: decision \rightarrow regression
	4.17.1	function BuildDecisionTree($\mathbf{X}; \mathbf{y}$)
		$(\neq \text{mean } \mathbf{y} \text{ in shouldStop}(\mathbf{y}) \dots \dots \dots \dots \dots \dots$
4.18	Best b	ranch
		function $BestBranch(X; y)$
		Minimize sum of residual sum of squares (RSS) (the two \bar{y} in the
		argmin are different)
4.19	Stoppi	ng criterion
		function $ShouldStop(y)$
		RSS is 0
4.20	Interp	retation
4.21	Regres	sion and overfitting
		in summary
	4.22.1	(+) easily interpretable/explicable
		(+) learning and regression/classification easily understandable
		(+) can handle both numeric and categorical values
		(-) not so accurate
	4.22.2	Tree accuracy?
4.23		etion 2: Trees aggregation
		ness of the tree

	4.24.1 Small tree:	
	- low complexity	
	- will hardly fit the "curve" part of points	
	- high bias, low variance	
	Big tree:	
	- high complexity	
	- may overfit the noise (on the right part of graph example)	
	- low bias, high variance	8:
4.25	Big tree view:	.9
	4.25.1 A big tree has	
	- a detailed view of the learning data (high complexity)	
	- "trusts too much" the learning data (high variance) 4	.9
4.26	Wisdom of the crowds	
	the wisdom of the crowds: a collective opinion may be better than a	
	single expert's opinion	9
	4.26.1 What if we "combine" different big tree views and ignore details	
	on which they disagree?	
	- many views	
	- independent views	
	- aggregation of views	9
4.27	Wisdom of the trees	9
	4.27.1 - many views: just use many trees	
	- independent views: ??? learning is deterministic: same	
	$\mathrm{data} o \mathrm{same} \; \mathrm{tree} o \mathrm{same} \; \mathrm{view}$	
	- aggregation of views: just average prediction (regression) or	
	take most common prediction (classification)	
4.28	•	0
	4.28.1 Independent views \equiv different points of view \equiv different learning	
4.00	v	0
4.29	Independent views: idea!	U
	4.29.1 Like in cross-fold, consider only a part of the data, but:	
	- instead of a subset	
	- a sample with repetitions	
	\rightarrow (y omitted for brevity)	
	→ learning data size is not a limitation (differently than with	
	subset) outside \mathbf{v} of \mathbf{v} o	· _
		$\frac{1}{2}$
4 9O		0
4.00	Tree bagging	0

	4.30.1	When learning: 1. Repeat B times	
		- 1.1 Take a sample of the learning data 2. learn a tree (unpruned)	
		When predicting: 1. Repeat B times	
		- 1.1 get a prediction from ith learned tree	
		2. predict the average (or most common) prediction	
A 21	Нош т	For classification, other aggregations can be done: majority voting (most common) is the simplest	50 51
4.01		B is a parameter:	91
	4.01.1	- when there is a parameter, there is the problem of finding a good value	
		- remember k_{min} , depth	
		- it has been shown (experimentally) that:	
		- for "large" B, bagging is better than single tree	
		- increasing B does not cause overfitting	
		- (for us: default B is ok! "large" \approx hundreds)	51
4.32		ng	52
	4.32.1	Graphics (Number B of trees, Test error) curve tends to stabilize	F 0
4.00	т 1	and does not swing too much	52
4.33	_	Despite being learned on different samples, bagging trees may be	52
		correlated, hence views are not very independent - e.g., one variable is much more important than others for pre-	
		dicting (strong predictor).	
		Idea: force point of view differentiation by "hiding" variables	52
4.34	Rando	m forest	53
		When learning:	
		1. Repeat B times	
		- 1.1 Take a sample of learning data	
		1.2 consider only m on p independent variables	
		1.3 learn a tree (unpruned)	
		When predicting:	
		1. Repeat B times	
		- 1.1 get a prediction from ith learned tree	
		2 predict the average (or most common) prediction	
		(observations and) variables are randomly chosento learn a	.
		forest of trees	53

4.35	Random forest: parameter m	54
	4.35.1 How to choose the value for m?	
	$-m = p \rightarrow \text{bagging}$	
	it has been shown (experimentally) that	
	- m does not relate with overfitting	
	$-m = \sqrt{p}$ is good for classification	
	$-m = \frac{v}{3}$ is good for regression	
		54
	4.35.2 Experimentally shown: one of the "best" multi-purpose supervi-	
	sed classification methods is RF: (Manuel Fernandez) graph(classifier	
4.00		54
4.30		56
	4.36.1 (David H Wolpert)	
	- many restaurants, many items on menus, many possibly prices	
	for each item: where to go to eat?	
	- no general answer	
	- but, if you are a vegan, or like pizza, then a best choice could	
		56
4.37	Observation sampling	57
	4.37.1 When learning:	
	1. Repeat B times	
	- 1.1 take a sample of the learning data	
	- 1.2 consider only m on p independent variables (only for RF)	
	- 1.3 learn a tree (unpruned)	
	Each learned tree uses only a portion of the observation in the	
	learning data:	
	- for each observation, $\approx \frac{B}{3}$ trees did not considered it when learned	
	- those observation were <i>unseen</i> for those trees, like in cross-	
	•	57
1 20	(
4.30	_	57
	4.38.1 - for unseen each observation there are $\frac{B}{3}$ predictions	
	- can "average" prediction among trees, observation and obtain	
	an estimate of the testing error (OOB error)	
	- like with cross-fold validation	
4.00		57
4.39		57
	4.39.1 Graph (number of trees, Error): test bagging, test random forest,	
4 40	00 07	57
4.40	v o	58 58
	,	58
4.41		60
	4.41.1 - Trees are easily understandable \rightarrow explicability	
	- Hundreds of trees are not!	60

4.42	Bagging/RF and explicability: idea!	60
	4.42.1 While learning:	
	1. for each tree, at each split	
	- 1.1 keep note of the split variable	
	- 1.2 keep note of RSS/Gini reduction	
	2. for each variable, sum reductions	
	The largest reduction, the more important the variable!	60
4.43	Bonus 2: variable importance	61
	4.43.1 Instead of explicability based on tree shape: importance of va-	
	riables based on RSS/Gini reduction	61
4.44	Nature of the prediction	61
	4.44.1 Consider classification:	
	- tree \rightarrow the class	
	- forest \rightarrow the class, as resulting from a voting	61
4.45	Bonus 3: confidence/tunability	61
	4.45.1 Voting outcome:	
	- in classification, a measure of confidence of the decision	
	in binary classification, voting threshold can be tuned to adjust	
	bias towards one class (sensitivity)	61
4.46	Binary classification	61
	4.46.1 (example) Consider the problem of classifying a person ('s data) as suffering or not suffering from a disease X.	
	- positive : an observation of "suffering" class	
	- negative an observation of "not suffering" class	
	In other problems, positive may mean a different thing: define it!	62
4.47	FPR, FNR	62
	4.47.1 Given some labeled data and a classifier for the disease X problem, we can measure:	
	- the number of negative observations wrongly classified as posi-	
	tives: False Positives (FP)	
	- the number of positive observations wrongly classified as nega-	
	tives False Negatives (FN)	
	To decouple FP, FN from data size:	
	$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$	
	$FNR = \frac{FN}{P} = \frac{FP + TN}{FN + TP}$	62
4.48	Accuracy and error rate $\dots \dots \dots \dots \dots \dots \dots$	62
	4.48.1 Accuracy = 1 - Error Rate	
	Error Rate= $\frac{FN+FP}{P+N}$	62
4.49	FPR, FNR and sensitivity	63

	4.49.1	Suppose FPR = 0.06 , FNR = 0.04 with threshold set to 0.5	
		(default for RF)	
		- One could be interested in "limiting" the FNR	
		graph (threshold t, error rate) curves FPR, FNR	63
4.50		er operating characteristic (ROC)	63
	4.50.1	graph (threshold t, error rate) curves FPR, FNR:	
		- FPR \cap FNR \rightarrow Equal error rate (EER) point in which the	
		percentage error is the same	63
4.51	ROC a	and comparison	66
	4.51.1	EER e AUC is used to compare two binary classificator	66
4.52	Many	views and aggregation	66
	4.52.1	In bagging/RF (regression):	
		- many views are different samples	
		- aggregation is average	
		Alternative:	
		- many views are subsequent residuals	
		- aggregation is the sum	66
4 53	Boosti	ng	67
1.00		When learning:	01
	1.00.1	1. Current data is learning data	
		2. Repeat B times	
		2.1 learn a tree on current data	
		2.2 current data becomes residuals of learned tree $(\hat{\mathbf{y}} - \mathbf{y})$	
		2.2 current data becomes residuais of learned tree $(y - y)$	
		When predicting:	
		1. Repeat B times	
		- 1.1 get a prediction from ith learned tree	
		2. sum prediction	
		differences w.r.t. RF? In boosting it is not usable parallel calcu-	
		lation	67
4.54	Boosti	ng (regression)	68
		function BoostTrees($\mathbf{X}; \mathbf{y}$)	
		BuildDecisionTree($\mathbf{X}; \mathbf{y}; \mathbf{d}$)	
		- Each learned tree should be simple (maximum splits d)	
		- λ slows down learning	
		Trickier with classification	68
4.55	Boosti	ng parameters	68

	4.55.1	- λ usually set to 0.01 or 0.001	
		- λ and B interact: for small λ , B should be large	
		large B can lead to overfitting (unlike bagging/RF (because it is	
		trying to improve the residues)	
		Find a good value for B with cross-validation	68
4.56	Baggii	ng/RF/boosting in summary	69
	4.56.1	Tree Bagg RF Boost	
		\uparrow / / interpretability	
		$\uparrow \uparrow \uparrow \uparrow \text{numeric/categorical}$ $\downarrow \uparrow \uparrow \uparrow \text{accuracy}$ $/ \uparrow \uparrow / \text{test error estimate}$ $/ \uparrow \uparrow \uparrow \text{variable importance}$	
		\downarrow \uparrow \uparrow \uparrow accuracy	
		$/$ $ $ \uparrow $ $ \uparrow $ $ $/$ test error estimate	
		/ \uparrow \uparrow \uparrow variable importance	
		/ \uparrow \uparrow / confidence/tunability / \uparrow \uparrow \downarrow fast to learn	
		$/$ $ $ \uparrow $ $ \downarrow fast to learn	
		$/$ $ $ \uparrow $ $ \uparrow $ $ $/$ (almost) non-parametric	
		69	
C	F.	Company Washen Mashings	70
		11	70
5.1		·	71 71
5.2		Let's draw a decision boundary! (in 2 dimension)	71
5.2	5.2.1	We drew a line: $X_2 = mX_1 + q$ or $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$	11
	0.2.1	in p-dimensional space $\beta_0 + \beta_1 X_1 + + \beta_p X_p = 0$ the line is a	
		separating hyperplane	71
5.3	Classi		71
0.0	5.3.1	Given an osservation (2,3) it belongs to half plane on left or right	11
	0.0.1	Given an osservation (2,3) it belongs to han plane on left of right	
		The larger the difference, the stronger the confidence (i.e. more	
		· · · · · · · · · · · · · · · · · · ·	71
5.4	Learni	ing a separating hyperplane	71
0.1	5.4.1	We want an hyperplane which perfectly separates the learning	11
	0.1.1	data but there could be many ∞ of them! Which one?	
		Idea: the farthest from the learning observations! Idea: the far-	
		thest from the learning observations! Maximal margin classifier	71
5.5	Maxin	nal margin classifier	71
0.0	5.5.1	margin M: the margin is the maximum distance between the	• •
	0.0.1	nearest point of any classes from the separation line	
		support vectors are the nearest point of any classes from the	
		separation line	71
5.6	Learni	ing the maximal margin classifier	73
		0	

	5.6.1	Find the line which:	
		- 1. perfectly separates learning observations	
		- 2. has the largest margin from support vectors	
		Looks like an optimization problem	73
5.7	Suppo	rt vectors	73
	5.7.1	$\forall i \in \{1, 2,, n\}, \ y_i(\beta_0 + \beta_1 x_{i,1} + + \beta_p x_{i,p} = M$	
		They lie exactly on the margin!	73
5.8	Learni	ng the maximal margin classifier	73
	5.8.1	Looks like an optimization problem which is not hard to be	
		solved	73
5.9	Maxin	nal margin classifier issues	73
	5.9.1	- What if the learning data is not perfectly separable? cannot learn!	
		- What if a learning observation (being a support vector) is	
		added/removed? could learn a very different classifier! high	
		variance!	73
5.10	High v	variance of Maximal margin	74
	5.10.1	Image	74
5.11	Soft m	nargin	74
	5.11.1	How to cope with these issues? Idea: be more tolerant!	
		- some learning observation may be within the margin	
		- some learning observation may be misclassified	
		Margin can be exceeded \rightarrow soft margin classifier or support	
		vector classifier	74
5.12	Learni	ng with toleration: support vector classifier	75
	5.12.1	$\max_{\beta_0,,\beta_p,\epsilon_1,,\epsilon_n} M \text{ under constraints } \sum_{j=1}^p \beta_j^2 = 1$ $\forall i \in \{1, 2,, n\},$	
		ϵ_i are positive slack variables	
		C is the toleration budget ($C = 0$! maximal margin classifier)	
		(cfr 5.2.7)	
		$u_i(\beta_0 + \beta_1 x_{i,1} + \cdots + \beta_n x_{i,n}) = M(1 - \epsilon_i)$	
		$\forall i \in \{1,, n\}, \epsilon_i \ge 0$	
		$ \frac{\forall i \in \{1,, n\}, \epsilon_i \ge 0}{\sum_{j=1}^{n} \epsilon_j = C \dots \dots$	75
		j=1	. 0
5.13	Role o	f the parameter C	75

	5.13.1	The larger C	
		- the larger the toleration	
		- the larger the number of learning observations which can exceed	
		the margin (or be misclassified)	
		- the larger the number of support vectors	
		- the lower the variance	75
5.14	Summ. 5.14.1	ary	75
		\uparrow fast to learn	
		↓ ↑ variance	
			75
5.15	Linear		76
		Some problems cannot be solved with an hyperplane! (es (x_1, x_2)	76
5.16	Some i		77
		Finding values for $\beta_0,, \beta_p$ involves computing inner products between pair of observations: $\langle x_i, x_i' \rangle = \sum_{j=1}^p x_{i,j} x_{i',j}$ And we can rewrite: $\beta_0 + \sum_{i=1}^p \beta_i x_i^* = f(x^*) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x^*, x_i \rangle$ x^* is observation which we want to classify	
		•	77
5.17	Non su	apport vectors	77
	5.17.1	$f(x^*) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x^+, x_i \rangle$	
		- $f(x^*)$ is the distance of x^* from the decision boundary	
		- the (position of the) decision boundary depends only on the support vectors	
		$-\Rightarrow f(x^*)$ depends only on the support vectors	
		When predicting: $f(x^*) = \beta_0 + \sum_{i \in \mathcal{S}_i} \alpha_i \langle x^*, x_i \rangle$	
			77
5.18			77
5 10	Intuiti	(with some other properties). Support Vector Machines	77 78
0.19	THE GILL		10

	5.19.1	Consider prediction:	
		$f(x^*) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x^+, x_i)$	
		- x^* is mapped from R^p to $R^{p'}$ with $p' >> p$, using a function Φ :	
		$K(x_i, x_j)$ computes the inner product $\langle \phi(x_i), \phi(x_j) \rangle$ of mapped	
		x_i, x_j without explicitly mapping them (kernel trick)	
		- the α_i define (indirectly) an hyperplane in $R^{p'}$	
		- the classification is done by means of a separating hyperplane in the new space is $f(x^*)$ measures the distance of meaned x^*	
		in the new space, i.e., $f(x^*)$ measures the distance of mapped x^* from the hyperplane	70
5 20	Kernel	nom one hyperpresses	78 78
5.20		1 - linear kernel:	10
	0.20.1	$K(x^*, x_i) = \langle x_i, x^* \rangle = \sum_{j=1}^p x_{i,j} x_j^*$	
		2 - polynomial kernel: (d is the degree)	
		$K(x^*, x_i) = \left(1 + \sum_{j=1}^p x_{i,j} x_j^*\right)^d$	
		3 - radial basis function kernel (or radial, or RBF, or Gaussian):	
		$K(x^*, x_i) = \exp\left(-\gamma \sum_{j=1}^p (x_{i,j} - x_j^*)^2\right)$ (very used, default in R)	78
5 21	Intuiti	on behind radial kernel	81
0.21	5.21.1	$K(x^*, x_i) = \exp\left(-\gamma \sum_{j=1}^p (x_{i,j} - x_j^*)^2\right) = \exp(-\gamma x_i, x^* ^2)$	01
	0.21.1	- the coordinates in the new space are related to the distances	
		of x^* from the support vectors (the closer, the higher the $K(\cdot)$,	
		$K(\cdot) \in]0;1]$	
		- γ determines how fast the coordinate goes to 0, i.e., a support	
		vector becomes irrelevant for classifying x^*	81
5 22	Very r	aw visual intuition	81
0.22		example in which increase dimension of space to increase distance	01
	0.22.1		81
۲ ۵۵	N. T. 1	between points new points $(x^*,y^*,z^*) \in (d(x),d(y),d(y))$	
5.23		class (≥ 2) classification with SVM	81
	5.23.1	one-vsone classification	
		one-vsall classification	
		and many other proposals	81
5 24	One-vs	sone SVM	81
0.24		When learning:	01
	0.24.1	1. for each pair (C_1, C_2) of classes, learn a binary SVM	
		1. For each pair (e_1, e_2) of classes, leaff a smary $s v m$	
		When predicting:	
		1. for each learned SVM, predict class \hat{y}	
		2. choose the most frequently predicted class	
		$\binom{k}{2} = \frac{k(k-1)}{2}$ binary classifier	81
5.25	One-vs	s-all SVM	81

		5.25.1	When learning: 1 for each class C_i , learn a binary SVM (C_i vs. all C_j , with $j \neq i$, C_i coded as y=+1)	
			When predicting:	
			1. for each learned SVM, get $f(x^*)$ 2. choose the class with the largest $f(x^*)$	
			K classifiers	81
6	Sect	tion 6:	Text mining	83
	6.1	Text n 6.1.1	nining	84
			Text mining is about extracting high level information from textual data.	
			A joint effort of Machine Learning and Natural Language Processing (NLP)	84
	6.2	Examp 6.2.1	ple 1: sentiment on brands	84 84
	6.3	Examp	ole 2: topics in letters	84
		6.3.1	In this corpus of letters to/from the front in WW1, which are the topics covered?	84
	6.4	Comm 6.4.1	on tasks	84
	6.5	Examp 6.5.1	ple 3: relevance of citations	85
	6.6	Step 0 6.6.1	paper A to a scientific paper B?	85 85
			- learning data (if any) Define a way to asses a solution	85
	6.7	Natura 6.7.1	al language and ambiguity	85
	6 9	Ç.,b	Expect results" to be worse than in normal ML!	85 85
	6.8 6.9		ection 1: Sentiment analysis (and text categorization) em formalization	85 85
	0.9	T TODIG	III IOI III alizaliOII	00

	6.9.1	Input: a piece of text (document) - Output? - numeric value in [-1 1] (positivity) -a categorical value in {Pos; Neg} - categorical value in {Pos; Neutral; Neg}	
		Regression, multiclass classification, or binary classification (possibly with confidence).	
6.10		We can use the techniques we already know (e.g., RF)! are the features?	85 86 86
6.11		o features	86
6.12	_	- Options can be combined	86 86
		$t_1 = ext{the cat is on the table}$ $x_{1;the} = 2$ $x_{1;cat} = 1$	
6.13		which words?	86 87
		- Which words? How big is x_i ? p =? - common solution: the most k frequent words in the corpus "Interesting" words not frequent enough in the corpus may be lost	87
6.14	-	Fords	87
6.15	Stemm	Stop words are language dependent!	87 87

	6.15.1	- There are variants for many words:	
		- drink, drinks, drinking	
		-happy, happier	
		- Even more in other languages:	
		– mangio, mangia, mangiai,	
		- Stemming: reduce word to its word stem (the morphological	
		root)	
		$-\operatorname{drinking} \to \operatorname{drink}$	
		$- argued \rightarrow argu$	
		Stemming are language dependent!	87
6.16	A typi	cal workow	88
	6.16.1	Preprocessing $(d \to d')$:	
		- 1. remove punctuation	
		- 2. to lowercase	
		- 3. remove stop words	
		- 4. stemming	
		Learning	
		- 1. preprocess each d in corpus	
		- 2. find most frequent k words in preprocessed corpus	
		- 3.compute \mathbf{X}	
		- 4. learn a classifier	
		Predicting	
		- preprocess input d	
		- predict based on preprocessed d	88
6.17	Limita	tions and caveat: punctuation	89
	6.17.1	remove punctuation	
		It has been show that often punctuation matter (e.g., Twitter	
		sentiment analysis):	
		I just saw Alice.	
		I just saw Alice!!!!!	
		I just saw Alice!!! :-))))	89
6.18	Words	that matter	89
	6.18.1	Word count may be too coarse to capture desired information:	
		- documents with very different lengths	
		- irrelevant terms with general high frequencies	
		Use frequency or more complex variants	89
6.19	Goal,	context, hypothesis	89

	6.19.1	-Twitter profiling: predict age and gender of user from his/her tweets.	
		- people of different ages differently use case	
		- people of different age/gender differently use punctuation	
		A step in the work ow corresponds to an (implicit) hypothesis: - remove stop words \rightarrow stop words frequencies is not useful for	
6.20	Tf -idf	predicting X	89 90
		$x_{i,j} = x_{d,t} = tf(t,d)idf(t,D)$	
		$-tf(t;d) = f_{t,d}$ term frequency	
		- the more important the term t in document d, the larger $idf(t,D) = \frac{ D }{ \{d \in f_{t,d} > 0\} }$ inverse document frequency	
		-the more common t in the corpus, the lower \dots	90
6.21	Bag of	words and ordering	91
	6.21.1	Sentiment analysis of restaurant reviews:	
		- t_1 = The beer was good and the pub was not too noisy.	
		- t_2 = The beer was not good and the pub was too noisy.	
		- fundamental problem: ordering is lost	
		- even more fundamental: natural language can be hard to algo-	
		rithmically understand (irony, sarcasm,)	
		Colutions	
		Solutions:	
		-ngrams - text parsing (NLP)	91
6 22	Parsin	g: POS tagging	91
0.22		Assign a role to part of speech (POS) (is the process of assigning	JI
		a part of speech or lexical class marker to each word in a corpus)	93
6.23	n-gran		93
	6.23.1	Instead of counting words, count short (up to n) sequences of	
		words: $x_{1;dog,eat,cat}$ instead of $x_{1;dog}$	
		- size of data (p) grows dramatically (and is sparser)	
		- useful in general for manipulating sequences	
		n-gram is a contiguous sequence of n elements of a given text	
		or speech sample; objects can be phonemes, syllables, letters,	0.0
C 24	C .	words	93
0.24	Genera	ality of a sentiment classifier	93

	6.24.1	How many sentiment classifier should exist? Words that matter in sentiment should be predefined - predefined list of opinion words (positive, negative), i.e., features are those words - but context often matter - predictable is good for a car and bad for a movie - features for sentiment analysis in Twitter are likely different than features from sentiment analysis of a early '900 writer's corrispondence	
6.25	Out of	1 , 0	94 94
0.20		Should I use a pre-trained tool or build my own?	74
		It depends:	
		- is sentiment analysis just a piece of a more complex ML system?- which is my budget?	
		- is learning data easily available?	94
6.26	Lab: T		94
	6.26.1	Build a binary classifier for tweets: sport vs. politics	
		- 1. decide input, output	
		- 2. decide solution assessment	
		- 3. decide (if any) how to obtain learning data	
		· · · · · · · · · · · · · · · · · · ·	94
6.27	Subse		94
			94
	_	Given a corpus of documents, what do they talk about?	94
6 20	Probal		95
0.23		Assume stochastic document building process:)0
	0.23.1	- there exist k topics	
		- a topic is a distribution over words	
		•	
		- a topic is assigned to the document according to a known pro-	
		bability (a document may exhibit multiple topics)	
		- a word in a document is drawn according to topic and document- topic assignment	
		Words order does not matter!	
			95
6.30	Probab	pilistic graphical model	97

	6.30.1 - nodes are random variables - edges are dependencies - shaded nodes are observed	
6.31	- boxes are repeated variables	97 97
	Given K (parameter), - for each topic, compute words distribution - for each document, compute topic "distribution"	
	 - Latent refers to the unknown random variables - Dirichlet is the distribution assumed for topics and words - Allocation of words to topics and topics to documents 	97
6.32	LDA internals	99
6.00	Conflicting goals, which results in finding (and putting in the same topics) words which often co-occur	99
6.33	For each document of the corpus, a vector in $[0;1]^K$ where i-th value is "how much the document exhibits i-th topic" - reasonable values for the number of topics K is some tens (10-50) - For each topic, a vector $[0,1]^V$ where the i-th value is "how much the i-th word (on V words) is associated with the topic"	
	how to visualize/understand a topic? Select its most likely words	99
6.34	•	100 100
6.35		100
	document $\rightarrow R^K$	100
6.36	LDA: document $\rightarrow R$ LDA: document $\rightarrow R^k$ 6.36.1 - How to apply to new data? assume everything is known (i.e., already computed on the corpus)	100 100
	- just infer the posterior of topic assignment for the new document 6.36.2 Lab: Sport vs. politics with topics	
Sect	ion 7: Recommender systems 1	L 01
	•	102

	7.1.1	Scenario: a service where users consume items	
		- predict the users' rating to unconsumed items	
		- great interest from industry	
		e-commerce	
		online social networks	
		entertainment on demand	
		- users usually pay for consuming	102
7.2	Exam	ple: movie recommendation	102
	7.2.1	A B C D Movie	
		$5 \mid 5 \mid 0 \mid 0 \mid$ Hugs and kisses	
		5 ? ? 0 Sweetness day	
		? 4 0 ? The true love	
		$0\mid 0\mid 5\mid 4\mid { m Crazy\ Max}$	
		$0\mid 0\mid 5\mid ?\mid$ The final judgement	
		- some users rated some movies	
		- predict the rating of unrated movies	
		(it is a regression problem (for each individual)	102
7.3	Conte	nt-based representation	102
7.4		ion	104
		- X_1 represents "romance"	
		- X_2 represents "action"	
		$-X_0 = 1$ represents bias	
		A B C D X_1 X_2 Movie	
		$5 \mid 5 \mid 0 \mid 0 \mid 0.95 \mid 0.01 \mid$ Hugs and kisses (+ romance than action)	
		5 ? ? 0 1 0 Sweetness day	
		? 4 0 ? 0.99 0 The true love	
		0 0 5 4 0 1 Crazy Max	
		0 0 5 ? 0.2 0.99 The final judgement	
		- $r_{i,j} \in \{0,1\}$ is 1 iff user j rated movie i	
		- $y_{i,j}$ is rating given by user j to movie i (iff $r_{i,j} = 1$)	
		$\mathbf{y}_{i,j}$ is the feature vector of movie i	
		"predict the rating of unrated movies" corresponds to solving	
		to solving n_u (number of users) regression problems	
		- learn $f_{\text{Alice}}(x), f_{\text{Bob}}(x), \dots$	
		example for Alice: It's a regression problem (my Y is 5 5 ? 0 0) \rightarrow predict Alice's preferences	104
7.5	Recon	amendation as linear regression	104

	7.5.1	Assume a linear dependency between rating and features: $y_{i,j} = \theta_{0,j}x_{i,0} + \theta_{1,j}x_{i,1} + \theta_{2,j}x_{i,2} + \dots = \theta_j^T x_i$ (movie i, user j) $\theta_j \in R^p$ is the set of parameters of user j - θ_j represents preferences of user j	
		"solving n_u (number of users) regression problems" corresponds to for each user j, learn θ_j	104
	_	it seems reasonable to use the linear regression model	104
7.6	Learni 7.6.1	we want to learn the user's preferences that minimize the error on the evaluation of the films which he has already evaluated - for a single user (at the moment) - minimize sum of squared	106
		errors	
		- consider only rated movies $(r_{i,j} = 0 \text{ for unrated})$	
		- we also want to minimize the square sum of preferences ("re-	
		gulariazion") so as not to evaluate extreme features	
		- If lambda is zero then we don't do regularization in coefficient	
		theta and so is the risk of overfitting. If lambda is too large than	
		we can occur to large bias!!!!	
		$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^p \theta_{k,j}^2 \dots \dots$	106
	7.6.2	for all users $\min_{\theta_1,,\theta_{n_u}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i=1}^n r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \theta_j^T \theta_j$ Can be solved with any optimization algorithm, e.g., gradient	
		descent	107
7.7	The m	novie features? (change pov)	107
1.1	7.7.1	Which features to characterize movies? (or songs, products, peo-	101
	1.1.1	ple,)	
		I Who assign feature values to movies? Is it costly? - scale?	
		Assume we "want" p features:	
		A B C D X_1 X_p Movie	
		1 2 2 4 ? ? ? film1	
		0 2 1 5 ? ? ? film2	
		107	
7.8	Collab	porative filtering	107
	7.8.1	In content-based:	
		- we know movie features $x_1, x_2,, x_n$ and ratings $\mathbf{y}_1, \mathbf{y}_2,, \mathbf{y}_{n_u}$	
		- we learn users' preferences $\theta_1, \theta_2,, \theta_{n_u}$	
		Assume we know users' preferences:	
		- we learn movie feature	
		Users (implicitly) collaborate to characterize content	108
7.9	Learn	ing features from preferences	108

	7.9.1	- one movie $\frac{1}{n_u} \frac{n_u}{n_u}$	
		$\min_{x_i} \frac{1}{2} \sum_{j=1}^{n_u} r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} x_j^T x_j$	
		$ \begin{array}{ccc} & j=1 \\ - & \text{all movies} \end{array} $	
		$\min_{x_1, \dots, x_n} \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^{n_u} r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^n x_j^T x_j \dots \dots \dots$	108
		$\lim_{x_1,\dots,x_n} 2 \underset{i=1}{\overset{\text{lim}}{\nearrow}} \underset{j=1}{\overset{\text{lim}}{\nearrow}} (\overset{\text{g}}{\nearrow} \overset{\text{g}}{\nearrow} \overset{\text{g}}{\nearrow}) \qquad 2 \underset{i=1}{\overset{\text{g}}{\nearrow}} \overset{\text{g}}{\nearrow} \overset{\text{g}}{\nearrow} \cdots \cdots$	100
7.10		preferences	109
	7.10.1	"Assume we want p features" corresponds to "users' preferences	
		are p dimensional"	
		- how to collect users' preferences?	
		- how many?	
		- relation with "linear dependency assumption"?	
		It may be preferable to learn features and preferences together!	109
7.11	Learni	ng features and preferences	109
	7.11.1	$1 n n_u \qquad \qquad$	
	1.11.1	$\lim_{x_1,,x_n,\theta_1,,\theta_{n_u}} \frac{1}{2} \sum_{i=1}^{n_{i,j}} \sum_{j=1}^{n_{i,j}} \binom{v_j}{x_i} - g_{i,j} + \frac{1}{2} \sum_{i=1}^{n_{i,j}} x_j + \frac{1}{2} \sum_{j=1}^{n_{i,j}} v_j$	
		- it's a big optimization problem. Users work together to charac-	
		terize the content.	
		- here we regularize both for preferences and for items	109
7.12	New u	ser?	109
	7.12.1	$\min_{x_1,,x_n,\theta_1,,\theta_{n_u}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_u} r_{i,j} \left(\theta_j^T x_i - y_{i,j}\right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n} x_j^T x_j + \frac{\lambda}{2} \sum_{j=1}^{n_u} \theta_j^T \theta_j$	
		0	
		- sum of squared errors is always zero for the new user	
		- the only goal is to minimize sum of preferences" what happens without regularization? The values will remain tho-	
		se of initialization	
		- which results in no preferences $(\forall k, \theta_{k,j} = 0)$, and hence equal	
			109
7.13	Cold s	tart problem	109
		When something "new" arrives and no data is available	
		- new user	
		- new movie	
		One possible solution: use mean values $\mathbf{y}_{j'} = \frac{1}{n_u} \sum_{j=1}^{n_u} \mathbf{y}_j$	_j 109
7.14	Recom	nmender system assessment	109

		(.14.1	- as a regression problem, RMSE (root mean square error (to understand how good it is. I take the y, I take the y cap estimate, I look at the RMSE) - as a classification problem, accuracy	
			(if someone tells me what is right or wrong I can make it become a recommendation problem.) does the tool recommend the most preferred item to the user?	
			- as a classification problem, accuracy@K	
			- does the tool recommend the most preferred item to the user among the top k recommendations?(I take the most recommended films, with a prefixed number of elements k. Then I ask the program: "tell me the 5 numbers you would recommend"). it is accuracy on the first k recommended elements.	
			- as an information retrieval problem, precision and recall	
			does the tool recommend relevant items?	
			$\operatorname{Prec} = \frac{(\operatorname{relevant} \wedge \operatorname{recomm.})}{\operatorname{recomm.}}$ $\operatorname{Rec.} = \frac{(\operatorname{relevant} \wedge \operatorname{recomm.})}{\operatorname{relevant}}$ precision: number of documents that are simultaneously returned (recommended) and relevant.	
			In practice, how to measure them? I measure them as I would measure them in a recommendation problem. Assume that if a user has consumed a content, the recommendation is made	110
	7.15	Beyon	d accuracy	
			- diversity (desirable diversity (do not always recommend the same films))	
			- serendipity: positive surprise	
			- revenue? number of click/user/usages?	
			More in general, UI plays a crucial role!	111
8	Sect	ion 8:	Evolutionary computation	112
	8.1		is Machine Learning?	113
		8.1.1	Definition Machine Learning is the science of getting computer	440
	0.0	IIn to	to learn without being explicitly programmed	113
	8.2	Up to 8.2.1	"learn without being explicitly"! refine some prededefine more general solution scheme - RF for regression \rightarrow find a good forest - SVM for binary classification \rightarrow finnd a good hyperplane We have some (quite precise) idea (the hypothesis) What if we	113
	8.3	No han	do not?	113 113
	0.0	110 Hy]		110

	8.3.1	We just have a way to assess a candidate solution No hypothesis	
		Computer: be free, learn a (good) solution! (= program yourself!	
		How? A significant case: problem: life user:God? computer: nature learning method: natural evolution	113
8.4	Evolut 8.4.1	A general and basic scheme: - population of individuals compete for limited resources - the population is dynamic: individuals die and are born - fittest individual survive and reproduce more than the others - offspring inherit some characters from parents (they are similar but not identical)	114
0.5	EC	On/by/for computers? Evolutionary computation (EC)	114
8.5	EC: a 8.5.1	bit of history	115
		2000s+ mature expansion	115
8.6		nunities	115
	8.6.1	At least three communities: - biologists: simulate/understand real evolution - computer scientists/engineers: build interesting artifacts - artificial-life researchers: build/study artificial worlds	
		Result: - some duplications - different vocabularies - strong habits	
		the same ideas proposed by people from different scientific communities studies are evaluated differently	
		Kenneth A De Jong. Evolutionary computation: a unified approach. MIT press, 2006(https://cs.gmu.edu/ kdejong/) from here on, the slides are inspired by this book: in fact, the book was intended to unify all these approaches in one	115
8.7	What	can be taught/learned?	116

	8.7.1	EC: evolutionary computation EA: evolutionary algorithm	
		Here:	
		- general scheme	
		-terminology	
		- some significant variants	
		-general usage guidelines	
		Not here:	
		- (variant) details	
		- detailed motivation ("theory")	
		- specific tools	116
8.8	Gener	al scheme	117
	8.8.1	- a population of individuals compete for limited resources	
		- the population is dynamic: individuals die and are born	
		- fittest individual survive and reproduce more than the others	
		(there are subjects favored in evolution)	
		- offspring inherit some characters from parents (they are similar	
		but not identical)	
		Some questions (to introduce argument):	
		- what is an individual?	
		- what is a population? what are resources?	
		- how individuals compete?	
		- how fitness is measured?	
		- how do individual reproduce?	117
8.0	Indivi	dual	118

	8.9.1	What is an individual? It is a possible solution to the problem I am dealing with.	
		A candidate solution for the considered problem: (phenotype =ex representation)	ternal
		- a program in a given programming language	
		- a set of numerical parameters	
		- a picture	
		Internally it could be represented differently	
		Internally represented as: (genotype)	
		- itself (program, set, picture,)	
		- some well defined data structure:	
		a fixed/variable-length string of bits	
		an abstract syntax tree	
			
		There must be some way to deterministically map a genotype	
		with a phenotype	118
8.10	Individ	dual: why genotype/phenotype?	
		To resemble nature	
		To ease manipulation	
		how two programs should reproduce?	
		how two images should reproduce?	
		- To allow reuse, hence enabling actual usage of EC	
		I someone found a good way of making bits strings reproduce	
		- user "just" need to decide how to transform	
		(genotype-phenotype mapping))a bits string to his/her so-	
		lution form (e.g., numerical parameters)	119
8.11	Popula	ation and competition for resources	119
		Mainstream:	
		- a population is a set of individuals with a fixed (max) size	
		"limited resources" is a place in the population	
		The population is dynamic:	
		when a new individual is born, some individual must leave the	
		population (die): which one?	119
8.12	Popula	ation dynamics	120

	8.12.1	How/when individuals are replaced? (generational model) or replacement strategy (is the definition of the way in which the population is dynamic)	
8.13		Underlying (and common) assumptions: - individuals life is instantaneous - given the genotype, the phenotype (if any) and the fitness are immediately known (appena nascono, si considera fissata la loro vita. Non può subire altre evoluzioni genetiche per esempio. Da quel momento può solo peggiorare.) - When a new individual is born, some individual must leave the population (die): which one?	120 120
		At every moment: - the population is composed of m individuals who are all potentially parents - after a step n children are generated. - a Boolean flag (overlapping or not) But the population is fixed,	
		that is $= m$	120
8.14		At each time tick(of time): 1. build n offspring from the m parent 2. obtain an n + m population by merging parents and offspring 3. select m individuals to survive	121 121
8.15		verlapping generational model	121
0.10	C-	All parents die!	121
8.10	Comm	on cases	122

	8.16.1	(typical combinations):	
		-n = m, overlapping	
		-n = m, non-overlapping	
		- $n = 0.8m$, overlapping	
		- $n = 1$, overlapping (steady state) (at every step a single indivi-	
		dual is generated)	
		Problem:	
		- different degrees of dynamicity in the single time tick, makes	
		different variants comparison difficult	
		Solution:	
		- measure time flowing as number of births referred to population size m	
		- a generation occurs each m births (time is measured in gene-	
		rations, every m birth spends a generation)	
		Which is the impact of parameters on population? LARGE IM-PACT, usually approach are different, moreover is not easy to	
		compare how fast evolution go on. Which is a good idea to compare different velocity? F.e. comparing the number of add /	400
0 1 -	G 1	remove individuals	122
8.17		on criteria	123
	8.17.1	It is one of the most important components of evolutionary com-	
		putation.	
		How to - select individuals to survive?	
		- select parents to reproduce?	
		Many options:	
		- 1. uniform (neutral) selection: with uniform probability peach an individual who will survive or reproduce	
		- 2. fitness-proportional selection: probabilistic extraction in pro-	
		portion to fitness has been completed	
		- 3. rank-proportional selection	
		- 4. truncation selection	
		- 5. tournament selection	
			123
		.) Fitness/rank-proportional	124
8.19		.) Uniform and truncation	125
	8.19.1	Uniform:	
		1. pick randomly an individual (with uniform probability)	
		Truncation:	
		1. pick the best individual (elitism) (chooses exactly the best	
		individual). It is Deterministic	125

8.20	(5.) To	ournament selection	125
	8.20.1	Given a parameter n_{size} (size of the tournament):	
		1. randomly (with uniform probability) pick $n_{\rm size}$ individuals	
		2. from them, choose the one with the best fitness	
		es. Randomly choose 5 (n_{size}) individuals with repetition (can	
		be rescued who I have already fished) (among these 5 I choose	
		the one with better fitness)	125
8 21	Selecti	on criteria differences	125
0.21		Is criterion A better than criterion B? just measure	120
	0.21.1	is effection if severe than effection B. Just measure	
		Criteria differ in how strongly they tend to prefer fit vs. un-	
		fit individuals:	
		- (1.) uniform selection: no preferences	
		- (4.) truncation selection: strong preference of fit individuals	
		- (5.) tournament: $n_{size} \rightarrow 1$: no preference, $n_{size} \rightarrow m$: strong	
		preference	
		n_{size} determines the selectivity of the preference	
		Main impact of selection criteria is our preference in favoring	
		fitter individual. In case of uniform selection we don't have pre-	
		ferences, in truncation selection we have strong preference to fit-	
		test individual, tournament is a criterion in which we can choose	
		the preferences with the parameter nsize, so you can tune the	
		preference	125
8.22	Selecti	ng fit/unfit individuals	126
	8.22.1	Strong preference (or selective/evolutionary pressure):	
		- population tends to converge to fittest individuals	
		- evolution concentrates in improving most promising solutions	
		(exploitation)	
		- risk of "falling" in local optimum	
		Weak preference (or selective/evolutionary pressure):	
		- population includes also unfit individuals	
		- evolution investigates many different (maybe not promising)	
		solutions (exploration)	
		- risk of not finding a good solution	
		Exploration/exploitation trade-off is hard to rule!	126
8.23	Selecto	ors: common cases	127

	8.23.1	Reproduction: tournament of n_{size} . E.g. $m = n_{pop} = 500$, $n_{size} = 5$	
		Note than tournament can be applied also to non numerican	
		fitness; we have just to decide which is the best individual.	
		- Survival: truncation	
		- Reproduction: fitness proportional	
		- Survival: truncation	127
Q 24	Dopro		
0.24	_		128
	0.24.1	Build n offspring from the m parents. How? General scheme:	
		- given one or more parents, an offspring is generated by applying a unary or binary genetic operator on parent genotypes:	
		- unary (mutation): $f: \mathcal{G} \to \mathcal{G}$	
		binary (recombination or (crossover): $f: \mathcal{G} \to \mathcal{G}$	
		- given n and a set of wighted operators, generate offspring with	
		operators according to their weights (deterministically or stocha-	
		stically)	
		stically)	
		I create a child applying a genetic operator that is a function	
		that in the case of 1 parent (work in the domain: space of all	
		genotypes, codomain: genotype space) binary genetic operator	
		also called crossover -> from 2 individuals generates one. Instead	
		mutation: from 1 parent it generates 1	128
8 25	Choice	e of operators	128
0.20		Operators:	120
	0.20.1	- crossover for generating 80% of offspring	
		- mutation for generating 20% of offspring	
		matation for generating 20% of onspring	
		Deterministically:	
		1. for 0:8n times - 1.1 select 2 parents (with reproduction selec-	
		tion criterion)	
		- 1.2 apply crossover to genotypes	
		2. for 0:2n times	
		- 2.1 select 1 parent (with reproduction selection criterion)	
		- 2.2 apply mutation to genotype	
		Stochastically:	
		1. for n times	
		- 1.1 randomly choose between mutation/crossover with $20/80$	
		probability	
		- 1.2 select 1 or 2 parents (with reproduction selection criterion)	
		accordingly	
		- 1.3 apply operator to genotype(s)	128
8.26	Mutat	ion for bits string genotypes	129

	8.26.1	Most classical option: probabilistic bit flip mutation 1. copy parent genotype g_p as child genotype g_c	
		2. for each bit in the in gc, flip it $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$ with p	
		probability	
		Commonly, $p = 0.01$	
		change g_p to g_c through the random replacement of a string aid bit element	
		$g_p = 001010011101010101100100101$	
		$g_c = 001010\underline{1}1110101010110\underline{1}100101 \dots \dots \dots \dots \dots$	
8.27		over for (bits) string genotypes	129
	8.27.1	Many options:	
		- one-point crossover	
		- two-points crossover	
		- n-points crossover	
		- uniform crossover	
			129
8.28		, -	130
	8.28.1	Assume parents with equal genotype size:	
		1. choose randomly one (two, n) cut points in the genotype	
		(indexes i such that $i < g_{p_1} = g_{p_2} $	
		2. child bits before the cut point comes from parent 1, child bits	
		after the cut point comes from parent 2	
		In general, jth bit comes from parent 1 iff closest larger cut point	100
0.00	TI .C.	is even, from 2, otherwise	130
8.29		rm crossover	131
	8.29.1	One-point:	
		$g_{p_1} = 00101001110101010101101010101$	
		$g_{p_2} = \frac{11101010101010101010101110111}{g_c = 0010100111010101010111111}$	
		$g_c = 00101001110101010101110111$	
		Two-points:	
		$g_{p_1} = 0010100 1110101010 1100100101$	
		$g_{p_1} = 1110101 0101001010 0101110111$	
		$\mathbf{g}_c = 110101 0101010101011011111111111111111$	131
8.30	Unifor	rm crossover	131
		A cut point is placed at each index with $p = 0.5$ probability	131
8.31		over with variable length (bits) string genotype	131
		ion (trees)	134
		1. choose a random subtree	
		2. replace with a randomly generated subtree	134
8.33	Crosso	over (trees)	134

	8.33.1	first representation: 1) genotype as byte string 2) other representation: genotype is a given structure (as a random forest tree)	
		 choose a random subtree in parent 1 choose a random subtree in parent 2 swap subtrees (child is copy of parent) 	
		Usually, constraints on depth	134
8.34		f operators	135
		-crossover → exploration	135
8.35	Popula	ation initialization	135
0.00	_	Totally random	100
		More specific approaches, dependent on genotype form	135
8.36	Fitness	S	135
	8.36.1	the choice of fitness is the most important thing for the model (and for the success of the algorithm)	
		Fitness of an individual = ability to solve the problem of interest	
		- errors on several fitness cases by execution/simulation/application	L
		Common cases:	
		- one numerical index	
		- more than one numerical indexes	
		Closely related with selectors	135
8.37	Many	indexes: multiobjective	136
	8.37.1	$f(i) = \langle f_1(i),, f_n(i) \rangle$	
		How to compare individuals i_1, i_2 ?	
		- linearization	
		$f(i) = \alpha_1 f_1(i) + + \alpha_n f_n(i)$ (Assign coefficient values: values that are higher, the greater the importance of the corresponding	
		object) - lexicographical order: compare	
		$f_1(i_1)?>f_1(i_2);$	
		$f_2(i_1)?>f_2(i_2);$	
		- Pareto dominance:	
			136
8.38	Pareto	dominance	136

	8.38.1	this is one of the possible ways to compare objects with different characteristics	
		i_1 dominates i_2 iff: $\forall j, f_j(i_1) \geq f_j(i_2) \land \exists k, f_k(i_1) > f_k(i_2)$, it is no worse for every object and is at least larger for an object - 1st Pareto front: undominated solutions - 2nd Pareto front: undominated solutions, while not considering 1st front (forgetting the first frontier)	136
8.39	In pra	ctice	138
	8.39.1	- Is my EA working?	
		- I When to stop evolution?	
		- I How to choose value for parameter X?	
		visualization tool (plot the fitness vs Generation):	
		chart where you put the highest value of the fitenss for individuals,	
		Shows the speed of convergence.	
		From an idea of the numbers of the phenomenon.	
		Oss. fitness measure chosen by me, so it may not be suitable	138
8.40	Issues		139
	8.40.1	- Diversity	
		- Variational inheritance: children inherit some features from but not all parents	
		- Expressiveness: is the chosen representation able to represent a good solution	
			139
8.41	Divers	ity	139
	8.41.1	Is the population diverse enough?	
		"No" \rightarrow too much exploitation \rightarrow local minimum	
		"yes" \rightarrow in principle, no drawbacks	
		- how to measure diversity?	
		- how to enforce/promote diversity?	
		Diversity= related to diversity in population. In general high	
		diversity is nt a problem. The point is that is not easy to measure	
		diversity!!! And this measurement has effect to the solution. Also	
		if we have a good measurement, there is a common problem of	
		too low diversity	139
8.42	Variat	ional inheritance	139

8.42.1	Are children similar but not identical to parents?	
	- "Too much similar" \rightarrow too much exploitation \rightarrow local mini-	
	mum, no/slow evolution	
	"Too much different" \rightarrow no exploitation, just coarse exploration	
	(random walk)	
	Children should be similar but not equal to parents. If they are	
	the same we have only exploitation (a way of no evolution) On	
	the other extreme children are very dissimilar from parents, we	
	randomly walk. There are no measurements but only some pro-	
	perties; locality, redundancy, degenerary, uniformity	
	- How to measure? (locality, redundancy, degeneracy, uniformi-	
	ty,	
	How to tackle? Operators, mapping, both?	139
Expres	ssiveness	139
8.43.1	Is the representation (phenotype) expressive enough?	
	- "Low expressiveness" \rightarrow good/optimal solution might not be	
	representable, or might not be reachable	
	- "Large expressiveness" \rightarrow "Large expressiveness" \rightarrow very long	
	or infiniti convergence time	
	trade-off between low and high representation because that affect	
		139
Fitness		139
8.44.1	How are genotype and fitness spaces related?	
	- What does a small step on one correspond to on the other?	139
Geneti	c Algorithms (GA)	139
8.45.1	First (of 3) family of algorithms	
	- Genotype = phenotype = bits string	
	selection	
	- Most widely used/studied - Genotypes often encodes numerical	
	, , , , , , , , , , , , , , , , , , ,	139
Geneti	•	141
	Focus: individuals are programs	
	· · · · · · · · · · · · · · · · · · ·	
	, 11 0	
		141
Gram		141
	Expres 8.43.1 Fitnes 8.44.1 Geneti 8.45.1	$\begin{array}{c} \text{mum, no/slow evolution} \\ \text{"Too much different"} \rightarrow \text{no exploitation,just coarse exploration} \\ \text{(random walk)} \\ \text{Children should be similar but not equal to parents. If they are} \\ \text{the same we have only exploitation (a way of no evolution) On} \\ \text{the other extreme children are very dissimilar from parents, we} \\ \text{randomly walk. There are no measurements but only some properties; locality, redundancy, degeneracy, uniformity} \\ \text{- How to measure? (locality, redundancy, degeneracy, uniformity,} \\ \text{How to tackle? Operators, mapping, both?} \\ \text{- "Expressiveness} \\ \text{- "Low expressiveness"} \rightarrow \text{good/optimal solution might not be} \\ \text{representable, or might not be reachable} \\ \text{- "Large expressiveness"} \rightarrow \text{"Large expressiveness"} \rightarrow \text{very long} \\ \text{or infiniti convergence time} \\ \text{trade-off between low and high representation because that affect} \\ \text{the convergence} \\ \text{- What does a small step on one correspond to on the other?} \\ \text{- Genetic Algorithms (GA)} \\ \text{- 4.4.1 How are genotype and fitness spaces related?} \\ \text{- What does a small step on one correspond to on the other?} \\ \text{- Genetic Algorithms (GA)} \\ \text{- 4.5.1 First (of 3) family of algorithms} \\ \text{- Genotype} = \text{phenotype} = \text{bits string} \\ \text{- } m = n \approx 1000, \text{ no overlapping} \\ \text{- Fitness-proportional selection, or multiobjective (Pareto-based)} \\ \end{array}$

8.47.1	(3 of 3) family of algorithms	
	A form of GP based on GA, given a context-free grammar \mathcal{G}	
	- Genotype = bits string, phenotype = string $\in \mathcal{L}(\mathcal{G})$	
	We need a genotypical space with a map function that tells us if	
	the strings are defined according to their grammatics	
	GA works with bit strings (works with operators,)	
	GE works on GA and obtains solutions as long as there is gram-	
	mar on the grammar	
	- steady state $(m \approx 500, n = 1, overlaping)$	
	- Tournament selection	141
8.48 GE (st	andard) genotype-phenotype mapping	142
8.48.1	NO LOCALITY: small modification of genotypes lead to a large	
	modification of phenotype	
	So there are other generalized methods	142
Bibliografia		143