Enhancing Cryptocurrency Pairs Trading

An Integrated Framework Combining Cointegration and Causal Inference

Iñigo Valenzuela

Illinois Institute of Technology — Polytechnic University of Madrid July 7, 2025

Summary: This research introduces a novel two-stage framework integrating cointegration screening with Granger-causality filtering for cryptocurrency pairs trading. The methodology demonstrates significant improvements over traditional approaches, with a 61.7% return and 3.18 Sharpe ratio at 5-minute intervals. The modular Python implementation enables robust backtesting and parameter optimization.

Key Innovations

- Causal Enhancement: First formal integration of Granger-causality filtering with cointegration, improving returns by 14.8 percentage points (pp) at 5-minute intervals
- Volatility-Adaptive Sizing: Position scaling $\propto 1/\sigma_i$ reduces drawdowns by 29-32%
- Latency-Constrained Execution: Actionable 1-4 bar lag window ensures tradability
- Modular Architecture: 8-component Python system enables walk-forward validation

Methodology

Two-Stage Framework

1. Cointegration Screening

- Johansen trace test (p < 0.05) on high-frequency data
- Spread calculation: $Z_{ij,t} = \frac{P'_{i,t}}{\beta P_{j,t}}$ Validation: Half-life (1-252 days), $\sigma_Z > 0.01$

2. Granger-Causality Filtering

- VECM specification: $\Delta Y_t = \alpha \beta' Y_{t-1} + \sum_{i=1}^4 \Gamma_i \Delta Y_{t-i} + \varepsilon_t$
- Unidirectional causality (Wald test, p < 0.05)
- Practical latency: 1-4 bars

Trading Engine

- Entry: $|Z| > 2.0\sigma$
- Exit: $|Z| < 0.5\sigma$ (methodology compliant)
- Stop-loss: $|Z| > 3.0\sigma$ OR 5-day hold
- Costs: 4 basis points (bps) fee + 5 bps slippage

System Architecture

Figure 1: Modular implementation with data flow

Vector Error Correction Model (VECM)

The VECM framework captures both short-term dynamics and long-term equilibrium between cointegrated assets:

Figure 2: VECM components and relationships

Understanding the VECM Components The VECM model helps us understand how cryptocurrency pairs interact over time:

- 1. Long-term Relationship (β): Measures how two cryptocurrencies move together β is the "hedge ratio" for position sizing Example: $ETH/BTC \beta = 0.04$
- 2. Short-term Adjustments (Γ): Shows immediate reactions between coins Reveals leader-follower relationships $Example: BTC\ moves \rightarrow ETH\ follows\ in\ 5\ min$

3. Correction Speed (α): - Measures how quickly prices return to equilibrium - Negative values indicate mean reversion - Example: $\alpha = -0.18$ (18% correction per period)

Preliminary Results

Performance Metrics (5-minute interval)

Metric	Filtered	Unfiltered	Improvement
Total Return	61.7%	46.9%	+14.8 pp
Avg Return/Trade	0.26%	0.19%	+36.8%
Sharpe Ratio	3.18	2.54	+25.2%
Max Drawdown	3.7%	5.2%	-28.8%
Success Rate	81%	73%	+8 pp

Table 1: Performance comparison with vs. without Granger filtering

Interval Comparison

Metric	1-minute	5-minute	60-minute
Total Return	52.4%	61.7%	14.2%
Avg Trade Duration	18.4 h	22.1 h	35.7 h
Stop-Loss Triggers	15.3%	$\boldsymbol{13.1\%}$	13.6%
Calmar Ratio	12.5	16.7	1.8

Table 2: Performance across different time intervals

Key Findings

- 5-minute interval optimal: Balances signal quality and execution efficiency
- Granger filtering critical: Reduces time-expired trades by 42% and increases success rate to 81%
- Volatility scaling essential: Drawdowns 29-32% lower than fixed allocation
- Statistical significance: Diebold-Mariano (DM) tests confirm outperformance (p < 0.01)

Conclusion and Next Steps

The integrated cointegration-causality framework demonstrates substantial improvements over traditional statistical arbitrage:

- Robust Alpha Generation: 61.7% returns with 3.18 Sharpe at optimal frequency
- Risk Mitigation: 3.7% max drawdown through adaptive sizing
- Actionable Implementation: Modular Python system enables parameter optimization

Validation Roadmap:

- 1. Extended backtesting (2019-2024) across market regimes
- 2. Integration of regime-switching models
- 3. Live paper trading implementation

For full methodology and replication code: https://github.com/ivalenzuelan/pairtrading-framework