Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2019-2020

Mathematical Analysis Seminar 2

1. Study the continuity of the following function:

$$f: \mathbb{R} \to \mathbb{R}, \ g(x) := \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

2. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is discontinuous at every point in \mathbb{R} and |f| is continuous on \mathbb{R} .

3. Let $f, g: [0,1] \to \mathbb{R}$ be two continuous functions, such that $f(x) = g(x), \forall x \in [0,1] \cap \mathbb{Q}$. Prove that $f(x) = g(x), \forall x \in [0,1]$.

4. Let $a, b \in \mathbb{R}$ with a < b and let $f : [a, b] \to [a, b]$ be a continuous function. Prove that f has at least one fixed point $x_0 \in [a, b]$, that is, $f(x_0) = x_0$.

5. Show that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[3]{x}$, is not differentiable at 0 although its derivative at 0 exists.

6. Consider the function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0\\ -x^2, & \text{if } x < 0. \end{cases}$$

How many times is this function differentiable?

7. Let $f: D \to \mathbb{R}$ be a function, defined on a nonempty set $D \subseteq \mathbb{R}$, and let S be a nonempty set of D. We say that f is Lipschitzian on S if there exists a real number $L \geq 0$ such that

$$|f(x) - f(y)| \le L|x - y|, \quad \forall x, y \in S.$$

Prove that:

 1° If f is Lipschitzian on S, then f is continuous on S.

2° The function $f:[0,+\infty)\to\mathbb{R}$, $f(x)=\sqrt{x}$, is not Lipschitzian on $[0,+\infty)$. However, f is Lipschitzian on $[a,+\infty)$ for any a>0.