Learning Deep Learning with PyTorch

(4) Convolutional Neural Networks

Qiyang Hu IDRE

"Hello-World" Image Classification Problems

MNIST dataset of handwritten digits

- 28x28 pixel grey images
- o 10 classes
- training set: 60,000, test set: 10,000

Fashion MNIST dataset

- 28x28 pixel grey images
- o 10 classes
- training set: 60,000, test set: 10,000

CIFAR-10

- 32x32 pixel color images
- 10 classes
- training set: 50,000, test set: 10,000

Dogs vs. Cats Kaggle Challenge

- Redux: Kernels Edition
 - Submission scored by the probability of dogs using log loss

$$L = -rac{1}{n} \sum_{i=1}^n \Bigl[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i) \Bigr]$$

- Dataset
 - Training set: 25,000 dogs and cats images
 - Testing set: 12,500 images
 - Images with different sizes
 - Neural network needs fixed sized input.
 - We will resize images to 150x150 pixels
 - Images are colored
 - Represented by Red-Green-Blue channels
 - One image \Rightarrow 150x150x3 matrices

Digitalization for Color Images

3-D Tensors

Image data conversion in PyTorch

- PIL to convert JPG to PIL Image
 - pil.Image.open(path).convert('RGB')

- Resize to the uniform sizes for all images
 - torchvision.transforms.Resize((150, 150))
- Convert to tensors:
 - torchvision.transforms.ToTensor()
 - Indexes $(H \times W \times C) \Rightarrow (C \times H \times W)$
 - Range $[0, 255] \Rightarrow [0.0, 1.0]$

Python Image Library (PIL)

- Pillow as newer versions
- Various image processing
- Per-pixel manipulations

Torchvision is a package for computer vision, containing:

- Popular datasets
- Model architectures
- Image transformations

Datasets and Data loading

- Defining the dataset class
 - Subclassing torch.utils.data.Dataset
 - PyTorch dataset object requires 2 methods:
 - __len__()
 - __getitem__()
 - Wrapping conversions in __getitem__()
- Loading the dataset with torch.utils.data.DataLoader
 - Batching the data
 - Shuffling the data
 - Loading the data in parallel using multiprocessing workers

Limits of fully connected model

- Not scale well with pixel numbers
 - 1024x1024 RGB image
 One 1024-feature hidden layer
 - \circ \rightarrow 3 billion parameters
 - → 12 GB ram for 32-bit floats
 - → Hard to fit in a GPU

- Not translation-invariant
 - Shifting 1 pixel
 - → Re-learn!

Convolutional Neural Networks (CNNs)

- A special network architecture
- 3 processes in CNNs:
 - Convolutions to extract as tiles

- Logic behind CNNs
 - Sparse connectivity (characteristic features in smaller local regions)
 - Parameter equivariance & sharing (features appear in different locations)
 - Translation invariance (some sampling will not lose main information)

One Channel, One Filter

Image Matrix

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Output Matrix

Convolution with horizontal and vertical strides = 1, with 'same' padding

Multiple Channels

Figure Source

Multiple Filters

Figures from Aurélien Géron's 1st Ed. Book

Figure Source

A Convolutional layer

A Convolution Layer

Figure Source

Pooling Layer

Figure Source

 Assuming downsampling will not lose the major information.

Figures from Aurélien Géron's 1st Ed. Book

Architecture of Convolutional Neural Networks

Construct CNN architecture for Dogs-vs.-Cats Problem

4 Convolution layers:

torch.nn.Conv2d(in channels, out channels, kernel size, ...)

- o Input size: (N, C_{in}, H, W)
- Output size: $(N, C_{out}, H_{out}, W_{out})$
- Activation function: torch.nn.functional.relu(...)

MaxPooling layer:

torch.nn.max pool2d(...)

- Kernel size: 2
- Default: stride=None, padding=0, dilation=1
- Flattened layer
 - Manually flattening tensor by views
- Dense (linear) layer

torch.nn.Linear(in_features, out_features)

- o Units: 512 and 2
- Activation: 'relu' and 'softmax'

```
class CatAndDogNet(nn.Module):
   def init (self):
        super(). init ()
        self.conv1 = nn.Conv2d(in channels = 3, out channels = 32, kernel size=(3, 3))
       self.conv2 = nn.Conv2d(in channels = 32, out channels = 64, kernel size=(3, 3))
        self.conv3 = nn.Conv2d(in channels = 64, out channels = 128, kernel size=(3, 3))
        self.conv4 = nn.Conv2d(in channels = 128, out channels = 128, kernel size=(3, 3))
        self.fc1 = nn.Linear(in features= 128 * 7 * 7, out features=512)
        self.fc2 = nn.Linear(in features=512, out features=2)
   def forward(self, X):
    X = F.relu(self.conv1(X))
(148,148,32)
       x = F.max_pool2d(x, 2) (74.74.32)
       x = F.relu(self.conv2(X))  (72,72,64)
       X = F.relu(self.conv3(X))
       X = F.max pool2d(X, 2)
       X = F.relu(self.conv4(X))
       X = F.max_pool2d(X, 2) (7.7.128)
       X = X.view(-1, self.num flat features(X)) 6272
       X = F.relu(self.fc1(X))
       X = self.fc2(X)
        return X
   def num flat features(self, x):
        size = x.size()[1:] # all dimensions except the batch dimension
       num features = 1
                            # Get the products
        for s in size:
           num features *= s
       return num features
```

Save and Load the model in PyTorch

- Need to save the trained model
 - Colab's active session time is limited.
 - Models can be re-used at user's end (e.g. browser with tf.js or phone with tf.lite)
- PyTorch's 3 core functions:
 - o torch.sove: saves a serialized object to disk
 - torch.load: deserializes pickled object files to memory
 - o torch.nn.Module.load_state_dict: loads parameters using a deserialized state_dict
- Recommended usage (for inference):
 - torch.save(model.state_dict(), PATH)
 - model.load_state_dict(torch.load(PATH))
 - o model.eval()
- Saving & loading a checkpoint for resuming training (<u>link</u>)

Before running the colab demo in this workshop

- 1. Register a Kaggle account
 - Kaggle.com → "Register"
- 2. Create Kaggle API token and download json file
 - Sign in → Your Profile → "My Account" → "Create New API Token"
- 3. Join the competition → "Join Competition"
 - o <u>Dogs-vs-Cats Challenge</u>

Colab Hands-on

bit.ly/LDL_02

Don't forget to

- Sign in your info to the class
 - To get the email notifications
- Contact me for questions or discussions
 - <u>huqy@idre.ucla.edu</u>
 - Office: Math Sci #3330
 - o Phone: 310-825-2011