

ЛИНЕЙНАЯ АЛГЕБРА

ОВЧИННИКОВ АЛЕКСЕЙ ВИТАЛЬЕВИЧ

ФИЗФАК МГУ

КОНСПЕКТ ПОДГОТОВЛЕН СТУДЕНТАМИ, НЕ ПРОХОДИЛ ПРОФ. РЕДАКТУРУ И МОЖЕТ СОДЕРЖАТЬ ОШИБКИ. СЛЕДИТЕ ЗА ОБНОВЛЕНИЯМИ НА VK.COM/TEACHINMSU.

ЕСЛИ ВЫ ОБНАРУЖИЛИ ОШИБКИ ИЛИ ОПЕЧАТКИ, ТО СООБЩИТЕ ОБ ЭТОМ, НАПИСАВ СООБЩЕСТВУ VK.COM/TEACHINMSU.

БЛАГОДАРИМ ЗА ПРЕДОСТАВЛЕННЫЕ МАТЕРИАЛЫ ДЛЯ ПОДГОТОВКИ КОНСПЕКТА СТУДЕНТА ФИЗФАКА МГУ СУЩЕВА ИВАНА СЕРГЕЕВИЧА

БЛАГОДАРИМ ЗА ОЦИФРОВКУ КОНСПЕКТА СТУДЕНТКУ ФИЗФАКА МГУ ЛИФАТОВУ ДАРЬЮ АЛЕКСЕЕВНУ

Оглавление

1. Преобразование базиса по координатам	4
2. Линейный функционал	6
3. Линейный оператор	g
Матрица ЛО	10
Преобразование матрицы ЛО при замене базиса	10
Алгебра линейного оператора	14
Проектор	15
Инвариантные подпространства	16
4. Жорданова нормальная форма	20
5. Билинейные функции (формы)	22
Замена базиса	22
Квадратичные фермы	23
Закон инерции	24
Критерий Сильвестра	26
6. Евклидово и унитарное пространство	27
Ортогонализация Грама – Шмидта	30
Операторы в евклидовом и унитарном пространствах	32
Общий вид ортогональных матриц $2 imes 2$	33
Теорема Фредгольма	36
Самосопряженные операторы	38
Спектральное разложение ССО	40
Псевдоевклидово пространство	40
7. Тензоры	43
Евклидово пространство	45
Приведение КФ (симм. БФ) к каноническому виду при помощи ортогональных преобра	
Ортогонализация x2 и x3	47

1. Преобразование базиса по координатам

$$\overrightarrow{e_1},...,\overrightarrow{e_n}$$
 — старый базис $\overrightarrow{E}=(\overrightarrow{e_1},...,\overrightarrow{e_n});$ $\overrightarrow{e_{1'}},...,\overrightarrow{e_{n'}}$ — новый базис $\overrightarrow{E'}=(\overrightarrow{e_{1'}},...,\overrightarrow{e_{n'}}).$
$$\begin{cases} \overrightarrow{e_{1'}}=c_{1'}^1\overrightarrow{e_1}+\cdots+c_{1'}^n\overrightarrow{e_n}\\ \vdots\\ \overrightarrow{e_{n'}}=c_{n'}^1\overrightarrow{e_1}+\cdots+c_{n'}^n\overrightarrow{e_n} \end{cases}$$

 $\overrightarrow{e_{k'}}=c_{n'}^{k'}\overrightarrow{e_k}$ $k=1\dots n, k'=1'\dots n'$ — тензорный вид.

$$C = (c_{k'}^{k})_{n'}^{n} = \begin{pmatrix} c_{1'}^{1} & \dots & c_{n'}^{1} \\ \vdots & \ddots & \vdots \\ c_{1'}^{n} & \dots & c_{n'}^{n} \end{pmatrix}$$

$$\overrightarrow{E'}_{1\times n}=\overrightarrow{E}_{1\times n} \underbrace{C}_{n\times n}-$$
 матричный вид.

$$(\overrightarrow{e_{1'}},\ldots,\overrightarrow{e_{n'}})=(\overrightarrow{e_1},\ldots,\overrightarrow{e_n})\begin{pmatrix} c_{1'}^1&\ldots&c_{n'}^1\\ \vdots&\ddots&\vdots\\ c_{1'}^n&\ldots&c_{n'}^n \end{pmatrix}$$

$$\det c \neq 0 \rightarrow \exists C^{-1}$$

$$\overrightarrow{E'}C^{-1} = \overrightarrow{E} \ \overrightarrow{e_k} = {c_k^k}' \overrightarrow{e_{k'}} -$$
для обратного перехода

$$X = CX' \quad X' = C^{-1}X$$

$$x^k \overrightarrow{e_k} = x^{k'} \overrightarrow{e_{k'}}$$
 (*)

$$\overrightarrow{e_{k'}} = c_k^{k'} \overrightarrow{e_k} \to (*)$$

$$x^k \overrightarrow{e_k} = x^{k'} c_k^{k'} \overrightarrow{e_k}$$

Так как разложение по базису единственно:

$$x^k = c_k^{k'} x^{k'}$$

$$x^{k'} = c_k^{k'} x^k$$

4

Объекты, которые преобразованы с помощью матрицы прямого перехода, называются - ковариантными, а обратного перехода – контравариантными.

2. Линейный функционал

Определение. Пусть $\exists V - \mathrm{B}\Pi$ над \mathbb{K} . Отображение $f \colon V \to \mathbb{K}, \ \vec{x} \to f(\vec{x}) \in \mathbb{K}$

1)
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

2)
$$f(\alpha \vec{x}) = \alpha f(\vec{x})$$

- а) проекция вектора на ось;
- б) V = C[a, b] непрерывные функции

$$f \colon C[a,b] \to \mathbb{R}$$

$$\varphi(t) \to \int_a^b \varphi(t)dt$$

$$g: C[a,b] \to \mathbb{R}$$

$$\varphi(t) \to \int_a^b g(t)\varphi(t)dt$$

$$\delta : C[a, b] \to \mathbb{R}$$

$$\varphi(t) \rightarrow \varphi(0)$$

$$f$$
 на $V^{\mathbb{K}}: V \to \mathbb{K} - \Lambda \Phi$

$$\begin{split} f(\vec{x}) &= f(x^k \overrightarrow{e_k}) = f(x^1 \overrightarrow{e_1} + \dots + x^n \overrightarrow{e_n}) = f(x^1 \overrightarrow{e_1}) + \dots + f(x^n \overrightarrow{e_n}) \\ &= x^1 f(\overrightarrow{e_1}) + \dots + x^n f(\overrightarrow{e_n}) = x^k \underbrace{f(\overrightarrow{e_k})}_{\text{число} f_k = \text{координат.Л}\Phi} = x^k f_k \\ &= x^1 f(\overrightarrow{e_1}) + \dots + x^n f(\overrightarrow{e_n}) = x^k \underbrace{f(\overrightarrow{e_k})}_{\text{число} f_k = \text{координат.Л}\Phi} = x^k f_k \end{split}$$

$$F=(f_1,f_2,\dots,f_n)$$

$$f(\vec{x}) = x^k f_k = \underbrace{F}_{1 \times n} \underbrace{X}_{n \times 1}$$

$$\overrightarrow{e_{1'}}$$
, ... , $\overrightarrow{e_{n'}}$ — новый базис

$$f_{k'} = f(\overrightarrow{e_{k'}}) = f(c_k^{k'} \overrightarrow{e_k}) = c_k^{k'} f_k$$

$$f_{k'} = c_k^{k'} f_k$$
 $F'_{1 \times n} = F C_{1 \times n \times n}$

$$u = F(x^1, \dots, x^n)$$

$$grad\ u=(\frac{\partial F}{\partial x^1},...,\frac{\partial F}{\partial x^n})$$

Новые координаты:

$$x^{k'} = c_k^{k'} x^k, \qquad x^k = c_{k'}^k x^{k'}$$

$$\frac{\partial F}{\partial x^{k'}} = \sum_{k=1}^{n} \frac{\partial F}{\partial x^{k}} \frac{\partial x^{k}}{\partial x^{k'}} = \sum_{k=1}^{n} c_k^{k'} \frac{\partial F}{\partial x^{k}}$$

(градиент не вектор, а ковектор ($\Pi\Phi$))

$$f$$
, $g-2$ Л Φ

Определение. Сумма ЛФ h = f + g – это ЛФ.

$$h(\vec{x}) = f(\vec{x}) + g(\vec{x})$$

Определение.

$$\forall \alpha \in \mathbb{K} : l = \alpha f, \quad \forall \vec{x} \in V, l(\vec{x}) = \alpha f(\vec{x})$$

Определение. θ – функционал $\theta(\vec{x}) = 0$.

Теорема. Множество всех Л Φ : $V \to \mathbb{K}$ является ВП (называется сопряженным или двойственным, V^*)

$$\dim V^* = \dim V$$

$$e^1: V \to \mathbb{K}$$
 $e^1(\vec{x}) = x^1$

$$e^2: V \to \mathbb{K} \quad e^2(\vec{x}) = x^2$$

• • • •

$$e^n: V \to \mathbb{K} \ e^n(\vec{x}) = x^n$$

Возьмем $\forall \Lambda \Phi \ f: V \to \mathbb{K}$

$$f(x) = f_k x^k = f_k x^k (\vec{x}) = ... = (f_k x^k) (\vec{x}) \to f = f_k e^k$$

Естественный изоморфизм - без привлечения базиса $V^{**} \sim V$ — естественный изоморфизм.

$$\underbrace{\vec{x}}_{\in V} \to \underbrace{\hat{x}}_{\in V^{**}} \quad \widehat{x}(f) = f(\vec{x})$$

3. Линейный оператор

Пусть V и W - 2 ВП над \mathbb{K} .

Определение. Отображение $\hat{A}: V \to W$ называется ЛО, если:

1)
$$\hat{A}(\vec{x} + \vec{y}) = \hat{A}(\vec{x}) + \hat{A}(\vec{y})$$

2)
$$\hat{A}(\alpha \vec{x}) = \alpha \hat{A}(\vec{x})$$

ОСЛУ:
$$\underbrace{A}_{m \times n} \underbrace{X}_{n \times 1} = \underbrace{0}_{m \times 1}$$

$$X = \underbrace{c^1 X_1 + \dots + c^s X_s}_{\Phi CP}$$

$$\Phi = \|X_1 X_2 \dots X_s\| \quad C = \begin{pmatrix} c^1 \\ c^2 \\ \vdots \\ c^s \end{pmatrix}$$

$$\underbrace{X}_{n\times 1} = \underbrace{\Phi}_{n\times s} \underbrace{C}_{s\times 1} : \widehat{\Phi} \colon \mathbb{K}^s \to \mathbb{K}^n$$

Определение.

$$\underset{\text{sgpo}}{\ker} \hat{A} = \left\{ \vec{x} \in V : \hat{A}(\vec{x}) = \vec{O}w \right\} \subset V$$

Определение.

$$\underbrace{im}_{\text{oбраз}} \hat{A} = \{ \vec{y} \in W \colon \exists \vec{x}, \vec{y} = \hat{A}(\vec{x}) \} \subset W$$

Теорема. Для $\forall A: V \rightarrow W$

$$\ker \hat{A} \subseteq V$$
, $im \hat{A} \subseteq W$

Как найти $\ker \hat{A}$ и $im \hat{A}$:

$$\hat{A}: \mathbb{K}^n \to \mathbb{K}^m$$

$$X \to AX = Y$$

 $?\ker\hat{A} \leftrightarrow$ решение ОСЛУ AX=0

?
$$im \ \hat{A} : Y = AX = A_1 x^1 + \dots + A_n x^n$$

$$im \hat{A} = L(A_1 ... A_n)$$

Матрица ЛО

Пусть $\hat{A}: V \to W \dim V = n$, dim W = m

Базис в
$$V: \overrightarrow{e_1}, ..., \overrightarrow{e_n}$$

Базис в
$$W: \overrightarrow{f_1}, ..., \overrightarrow{f_m}$$

$$\forall \vec{x} \in V : \vec{x} = x^k \overrightarrow{e_k} \ (k = 1, ..., n)$$

$$\hat{A}(\vec{x}) = \hat{A}(x^k \overrightarrow{e_k}) = x^k \hat{A}(\overrightarrow{e_k})$$

$$\underbrace{\hat{A}(\overrightarrow{e_k})}_{\in W} = a_k^{\mu} \overrightarrow{f_{\mu}} \ (\mu = 1, \dots, m)$$

$$A = \underbrace{(a_k^{\mu})_n^m}_{\text{матрица ЛО в}} \in \mathbb{K}^{m \times n}$$
паре базисов
 e_k и f_k

$$x^k \hat{A}(\overrightarrow{e_k}) = x^k a_k^{\mu} \overrightarrow{f_{\mu}} = y^{\mu} \overrightarrow{f_{\mu}}$$

$$y^{\mu} = a_k^{\mu} x^k; \quad Y = AX$$

Преобразование матрицы ЛО при замене базиса

$$\hat{A}: V \to V$$

Базис :
$$\overrightarrow{e_1}$$
, ..., $\overrightarrow{e_n}$ $Y = AX$

Базис :
$$\overrightarrow{e_{1'}}$$
, ..., $\overrightarrow{e_{n'}}$

$$Y = CY' \ y^k = c_{k'}^k y^{k'}$$

$$X = CX' \ c_{k'} = c_{k'}^k e_k$$

$$Y = AX = A(CX') = (AC)X'$$

$$CY' = C(A'X') = (CA')X'$$

10

$$AC = CA' | \cdot C^{-1}$$
, $A' = C^{-1}AC$ $\hat{A}(c_i^i \overrightarrow{e_l}) = c_{i'}^i a_i^k c_k^{k'} \overrightarrow{e_{k'}}$ $a_{i'}^{k'} = c_{k'}^{k'} c_{i'}^i a_i^k$ обр. прям.

Теорема.

$$\frac{\dim \ker \hat{A}}{\text{размерность пр-ва}} + \underbrace{\dim im \hat{A}}_{=rkA=} = \underbrace{\dim V}_{\text{число всех неизвестных}}$$
число свободных перем.

$$AX = B$$
, $L(A) -$ образ $AX = 0 -$ ядро

Доказательство.

Возьмем базис в $\ker \hat{A}: \overrightarrow{e_1}, ..., \overrightarrow{e_p}, \dim \ker \hat{A} = p$. Добавим векторы $\overrightarrow{e_{p+1}}, ..., \overrightarrow{e_n},$ так, что $\overrightarrow{e_1}, ..., \overrightarrow{e_p}, \overrightarrow{e_{p+1}}, ..., \overrightarrow{e_n} -$ базис в V.

$$\hat{A}(\overrightarrow{e_1}) = \dots = \hat{A}(\overrightarrow{e_p}) = \vec{0}$$

$$\hat{A}(\overrightarrow{e_{p+1}}) = \overrightarrow{g_{p+1}} \dots \hat{A}(\overrightarrow{e_n}) = \overrightarrow{g_n}$$

Надо доказать, что $\overrightarrow{g_{p+1}}$... $\overrightarrow{g_n}$ – базис в $im\ \hat{A}$.

1) Полнота системы $\overrightarrow{g_{p+1}}$... $\overrightarrow{g_n}$.

$$\begin{split} \forall \vec{y} \in im \hat{A} & \leftrightarrow \exists \; \vec{x} \; \in V: \; \vec{y} = \hat{A}(\vec{x}) \\ \vec{x} = x^k \overrightarrow{e_k} = x^1 \overrightarrow{e_1} + \dots + x^p \overrightarrow{e_p} + x^{p+1} \overrightarrow{e_{p+1}} + \dots + x^n \overrightarrow{e_n} \\ \vec{y} = \hat{A}(\vec{x}) = x^{p+1} \hat{A} \Big(\overrightarrow{e_{p+1}} \Big) + \dots = x^{p+1} \overrightarrow{g_{p+1}} + \dots \end{split}$$

To есть $\forall \vec{y}$ выражается через $\overrightarrow{g_{p+1}}$... $\overrightarrow{g_n}$

2) ЛH

$$\alpha_{p+1}\overrightarrow{g_{p+1}} + \dots + \alpha_n\overrightarrow{g_n} = \overrightarrow{0}$$

Предположим, что $\alpha_n \neq 0$.

$$\alpha_{p+1}\hat{A}\big(\overrightarrow{e_{p+1}}\big)+\cdots+\alpha_n\hat{A}(\overrightarrow{e_n})=\overrightarrow{0}$$

$$\hat{A}\left(\underbrace{\alpha_{p+1}\overrightarrow{e_{p+1}}+\cdots+\alpha_{n}\overrightarrow{e_{n}}}_{\in \ker \hat{A};\neq\vec{0}\rightarrow \overrightarrow{e_{n}}\in \ker \hat{A}-\operatorname{HeT}}\right)=\vec{0}$$

Пусть $P \subseteq V$, $Q \subseteq V$

Теорема. $P \cap Q \subseteq V$

Доказательство:

Пусть
$$\vec{x}, \vec{y} \in P \cap Q$$
 \leftrightarrow
$$\begin{cases} \vec{x} \in P & \{\vec{y} \in P \\ \vec{x} \in Q'\} \end{cases} \begin{cases} \vec{y} \in P \\ \vec{y} \in Q \end{cases}$$
$$\alpha \vec{x} + \beta \vec{y} \in P \\ \alpha \vec{x} + \beta \vec{y} \in Q \end{cases} \rightarrow \alpha \vec{x} + \beta \vec{y} \in P \cap Q$$

Определение. Сумма подпространств:

$$P + Q = {\vec{x} + \vec{y} : \vec{x} \in P, \vec{y} \in Q}$$

(Например, для двух прямых - плоскость)

Пример.

$$V = \mathbb{R}^{3} = L(\vec{i}, \vec{j}, \vec{k})$$

$$P = L(\vec{i}, \vec{j}); \quad Q = L(\vec{i}, \vec{k})$$

$$P + Q = V$$

$$\vec{a} = 2\vec{i} + \vec{j} + \vec{k} = \underbrace{(\vec{i} + \vec{j})}_{\in P} + \underbrace{(\vec{i} + \vec{k})}_{\in Q} = \underbrace{(2\vec{i} + \vec{j})}_{\in P} + \underbrace{\vec{k}}_{\in Q}$$

Определение. Сумма подпространств P и Q называется прямой суммой, если $\forall \vec{z} \in P + Q$ разложение этого вектора в виде $\vec{z} = \vec{x} + \vec{y}$, где $\vec{x} \in P$, $\vec{y} \in Q$ — единственно. Обозначается $P \oplus Q$.

Теорема (формула Грассмана)

$$\dim(P+Q) = \dim P + \dim Q - \dim(P \cap Q)$$

Доказательство.

$$e_1 \dots e_r$$
 — базис в $P \cap Q$

$$e_1 \dots e_r \dots f_1 \dots f_{p-r}$$
 — базис в P

$$e_1 \dots e_r \dots g_1 \dots g_{q-r}$$
 — базис в Q

Надо доказать, что $e_1 \dots e_r \dots f_1 \dots f_{p-r} \dots g_1 \dots g_{q-r}$ – базис в P+Q (их количество = r+(p-r)-(q-r)=p+q-r).

- 1) Полнота очевидна;
- 2) ЛН нет.

Пустого пересечения не бывает, так как \forall подпространства содержат общий $\vec{0}$!

Теорема. Если P+Q – прямая сумма, то $P\cap Q=\{\overrightarrow{0}\}$.

Доказательство (от противного)

Пусть $P \cap Q \neq \{\vec{0}\}$, то есть $\exists \vec{z} \neq \vec{0}, \vec{z} \in P \cap Q$

$$\forall \vec{a} = P + O$$

$$\vec{a} = \underbrace{\vec{x}}_{\in P} + \underbrace{\vec{y}}_{\in O} = \underbrace{\vec{x} + \vec{z}}_{\in P} + \underbrace{\vec{y} - \vec{z}}_{\in O}$$

- сумма векторов не единственна, следовательно, сумма подпространств не прямая.

$$\dim \ker \hat{A} + \dim im \hat{A} = \dim V$$

$$\dim(P+Q) = \dim P + \dim Q \ (P \cap Q = \{\vec{0}\})? - \ker \hat{A} \oplus im \ \hat{A} = V$$

Пример.

$$V = \mathbb{R}^2; \quad \hat{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$im\hat{A} = L\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\ker \hat{A} = L\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{vmatrix} 0 & 0 \\ y & 0 \end{pmatrix} \begin{pmatrix} x \\ y & 0 \end{pmatrix} = \begin{pmatrix} c \\ 0 \end{pmatrix}$$

$$im \hat{A} = \ker \hat{A}$$

$$\dim im \hat{A} = 1$$
, $\dim \ker \hat{A} = 1$

Когда верно?

Алгебра линейного оператора

Рассмотрим ЛО \hat{A} , \hat{B} , \hat{C} , ... : $V \to V$.

Определение.

$$\hat{C} \coloneqq \hat{A} + \hat{B}$$
, если $\forall \vec{x} \in V \quad \hat{C}(\vec{x}) = \hat{A}(\vec{x}) + \hat{B}(\vec{x})$.

Определение.

$$\widehat{D} \coloneqq \alpha \widehat{A}$$
, если $\forall \vec{x} \ \widehat{D}(\vec{x}) \coloneqq \alpha \widehat{A}(\vec{x})$.

Определение.

$$\widehat{0}$$
: $\widehat{0}(\vec{x}) = \overrightarrow{0}$.

Теорема. Множество всех ЛО: $V \to V$ является ВП;

$$L(V) = \underbrace{Hom(V,V)}_{\text{гомоморфизмы}} = \underbrace{End(V)}_{\text{эндоморфизм=}}$$
 гомоморфизм в себя

Теорема. Если $\dim V = n$, то есть $\dim L(V) = n^2$.

<u>Доказательство</u>. Рассмотрим базис в $V \overrightarrow{e_1}, ..., \overrightarrow{e_n}$ и рассмотрим ЛО

$$\widehat{E_{ij}}$$
: $\widehat{E_{ij}} = \begin{pmatrix} 0 & \vdots & 0 \\ \cdots & 1 & \cdots \\ 0 & \vdots & 0 \end{pmatrix} i$ — таких n^2 штук $orall \widehat{A} \in L(V)$: $A = (a_j^i)$ $\widehat{A} = \sum_i a_j^i \widehat{E_{ij}}$

Определение. Пусть $\hat{A}, \hat{B}: V \to V$.

$$\hat{\mathcal{C}}\coloneqq\hat{A}\cdot\hat{B}$$
, если $\forall \vec{x}\in V$ $\hat{\mathcal{C}}(\vec{x})=\hat{A}(\hat{B}(\vec{x}))$ \hat{A} \hat{B} первый

Теорема. Если ЛО \hat{A} , \hat{B} имеют A и B, то $\hat{A} + \hat{B}$ имеет A+B, $\alpha \hat{A} - \alpha A$, $\hat{A}\hat{B} - AB$.

Доказательство.

$$Y = AX$$
, $Z = BX$
 $Y + Z = AX + BX = (A + B)X$
 $Y = BX$, $Z = AY = A(BX) = (AB)X$

Определение. Алгебра – это ВП, в которой имеется операция · :

$$V \times V \rightarrow V$$

$$(\vec{x}, \vec{y}) \rightarrow \vec{x} \cdot \vec{y}$$

Аксиомы:

- 1) $(\alpha_1 \overrightarrow{x_1} + \alpha_2 \overrightarrow{x_2}) \vec{y} = \alpha_1 \overrightarrow{x_1} \vec{y} + \alpha_2 \overrightarrow{x_2} \vec{y}$ лин. 1;
- 2) Лин. 2;
- 3) $(\vec{x}\vec{y})\vec{z} = \vec{x}(\vec{y}\vec{z})$ ассоциативность

Проектор

Пусть $V - B\Pi$.

Определение. ЛО $\widehat{P}:V \to V$ называется проектором, если $\widehat{p^2}=\widehat{p}.$

Теорема. Если \hat{p} – проектор, то $V = im \, \hat{p} \, \oplus \ker \hat{p}$.

Доказательство.

1) Рассмотрим $\forall \vec{y} \in im \ \hat{p} \ (\exists \vec{x} : \vec{y} = \hat{p}(\vec{x})).$

$$\hat{p}(\vec{y}) = \hat{p}(\hat{p}(\vec{x})) = \hat{p}(\vec{x}) = \vec{y}$$

$$\forall \vec{y} \in im \ \hat{p}, \qquad \hat{p}(\vec{y}) = \vec{y}$$

2) Докажем, что $z \in im \ \hat{p} \cap \ker \hat{p}$

$$z \in \ker \hat{p} : \hat{p}(z) = 0$$

$$z \in \operatorname{im} \hat{p} : \vec{z} = p(\vec{z})$$

$$\underset{\operatorname{im} \hat{p} \cap \ker \hat{p} = 0}{\underbrace{\operatorname{im} \hat{p} \cap \ker \hat{p} = 0}}$$

$$\underset{\operatorname{im} \hat{p} \oplus \ker \hat{p} = V}{\underbrace{\operatorname{im} \hat{p} \cap \ker \hat{p} = 0}}$$

Теорема. Если $V=P \oplus Q$, где $P \Subset V$, $Q \Subset V$, то $\exists \ \widehat{p} : V \to V$ — проектор, для которого

$$im \, \hat{p} = p, \quad \ker \hat{p} = Q$$

<u>Доказательство</u>. Пусть $\forall \vec{x} = \underbrace{\vec{a}}_{\in P} + \underbrace{\vec{b}}_{\in Q}$. По определению

$$\hat{p}(\vec{x}) = \vec{a} \rightarrow \vec{a} \in im \, \hat{p}$$

$$\vec{b} = \vec{x} - \hat{p}(\vec{x})$$

$$\hat{p}(\vec{b}) = \hat{p}(\vec{x}) - \hat{p}^2(\vec{x}) = \vec{0} \rightarrow \vec{b} \in \ker \hat{p}$$

Инвариантные подпространства

Рассмотрим $\hat{A}: V \to V$

Определение. Подпространство $P \subseteq V$ называется ИП ЛО \hat{A} , если

$$\forall \vec{x} \in P \ \hat{A}(\vec{x}) \in P$$

Пусть $\hat{A}: V \to V$, Р – его ИП.

Рассмотрим $\hat{A}\big|_p: P \to P$, $\forall \vec{x} \in P : \vec{x} \to \hat{A}(\vec{x})$.

Теорема. Пусть $P - И\Pi ЛО \hat{A}$.

$$\overrightarrow{e_1}$$
, ..., $\overrightarrow{e_p}$ — базис в P

$$\overrightarrow{e_1}, ..., \overrightarrow{e_p} ... \overrightarrow{e_n}$$
 — базис в V

Пусть В – матрица $\hat{A}\big|_p$ в базисе $\overrightarrow{e_1},\ldots,\overrightarrow{e_p},$ А – матрица \hat{A} в $\overrightarrow{e_1},\ldots,\overrightarrow{e_n}.$ Тогда

$$A = \left\| \begin{bmatrix} B & | & * \\ - & | & - \\ 0 & | & * \\ p & & n-p \end{bmatrix} \right\| n-p$$

Теорема. Пусть $P \in V$, $Q \in V - \text{ИП ЛО } \hat{A}$.

$$V = P \oplus Q$$

Определение. Пусть $\hat{A}: V \to V$ над ЧП \mathbb{K} . Вектор $\vec{x} \neq \vec{0}$ называется <u>собственным</u> вектором оператора \hat{A} , если

$$\exists \lambda \in \mathbb{K} : \hat{A}(\vec{x}) = \lambda \vec{x}$$

 λ – собственное значение.

Определение. Множество всех собственных значений называется спектром.

СВ – собственный вектор, СЗ – собственное значение.

Рассмотрим СВ \vec{x} ; $L(\vec{x}) - l$ –мерное ИП.

$$\forall \vec{x} \in L(\vec{x}), \ \vec{y} = \alpha \vec{x}$$

$$\hat{A}(\vec{y}) = \hat{A}(\alpha \vec{x}) = \alpha \hat{A}(\vec{x}) = \alpha \lambda \vec{x} = \lambda \vec{y} \in L(\vec{x})$$

 \vec{y} – тоже СВ.

Собственному значению может соответствовать несколько ЛН СВ (вырождение СВ).

 $\dim \mathcal{A}0$ всех CB, совпадающий с λ , называется <u>геометрической кратностью</u> этого CB.

$$(\hat{A} - \lambda \hat{1})\vec{x} = \vec{0} \rightarrow \vec{x} \in \ker(\hat{A} - \lambda \hat{1})$$

Множество всех CB соответствующих C3 λ называется собственным подпространством $\equiv \ker(\hat{A} - \lambda \hat{1})$.

Если в V есть базис $\overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$, то

$$(\hat{A} - \lambda \hat{1})X = 0$$
 ОСЛУ

$$\underbrace{\det(\hat{A} - \lambda \hat{1}) = 0}_{\text{КОРНИ} \lambda_1, \dots, \lambda_n}$$

Те корни, которые $\in \mathbb{K}$, являются C3.

Алгебраическая кратность – кратность корня.

Если базис состоит из СВ, то

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \ddots \end{pmatrix}$$

17

Теорема. ГКС3 ≤ АКС3

<u>Доказательство</u>. Рассмотрим СЗ λ_0 . Пусть АКСЗ (λ_0 .)= p, ГКСЗ(λ_0) = s. Рассмотрим базис $\overrightarrow{e_1}, \dots, \overrightarrow{e_s}$, $\overrightarrow{e_{s+1}}, \dots, \overrightarrow{e_n}$

Матрица ЛО:

$$\begin{pmatrix} \lambda_0 & 0 & \cdots & 0 & | & * \\ 0 & \lambda_0 & 0 & 0 & | & * \\ 0 & 0 & \ddots & \vdots & | & * \\ \vdots & \vdots & \vdots & \lambda_0 & | & * \\ - & - & - & - & | & - \\ 0 & 0 & 0 & 0 & | & D \end{pmatrix}$$

 $\overrightarrow{e_1}$ – CB;

 $\hat{A}\overrightarrow{e_1} = \lambda_0 \overrightarrow{e_1}$.

$$f_A(\lambda) = |A - \lambda \mathbb{1}| = (\lambda_0 - \lambda)^s |D - \lambda \mathbb{1}|$$

Видим, что $f_A(\lambda)$ делится на $(\lambda_0 - \lambda)^s \to \lambda_0$ – корень кратности $\geq s$.

Теорема. Характеристический многочлен ЛО $f_A(\lambda)$ не зависит от выбора базиса.

<u>Доказательство.</u> Пусть A, A' - матрицы ЛО в 2x разных базиса, $C - M\Pi$.

$$A' = C^{-1}AC$$

$$|A' - \lambda \mathbb{1}| = |C^{-1}AC - C^{-1}\lambda \mathbb{1}C| = |C^{-1}(A - \lambda \mathbb{1})C| = |C^{-1}| |A - \lambda \mathbb{1}||C| = |C^{-1}C||A - \lambda \mathbb{1}|$$

$$= |A - \lambda \mathbb{1}|$$

Теорема. Не зависит от базиса:

- 1) $\det A = \det \hat{A}$ свободный член XM;
- 2) $rk A = \dim im \hat{A}$;
- 3) $tr A = tr \hat{A}$.
- 4)

Теорема. Матрица ЛО в базисе $\overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$ диагональная $\leftrightarrow \overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$ – CB.

$$\longrightarrow$$
 если $A\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix} \rightarrow \hat{A}\vec{e} = \lambda \vec{e};$

 \leftarrow если $\hat{A}\vec{e}=\lambda\vec{e}$, то 1 столбец: $\begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \end{pmatrix}$.

Теорема. СВ отвечает разл. СЗ ЛН.

Доказательство (индукция)

$$k = 1 : \lambda_1 : \overrightarrow{x_1} \neq \overrightarrow{0} \ \widehat{A} \overrightarrow{x_1} = \lambda_1 \overrightarrow{x_1}$$

Предположим, что верно при k.

 $\lambda_1 \dots \lambda_k$ – попарно различным собственным значениям.

 $\overrightarrow{x_1}$... $\overrightarrow{x_k}$ – соответствующие СВ, они ЛЗ, то есть

$$\alpha_1 \overrightarrow{x_1} + \dots + \alpha_k \overrightarrow{x_k} = \overrightarrow{0}$$
, (*) только при $\alpha = 0$.

Возьмем k+1. С3 $\lambda_1 \dots \lambda_{k+1}$ соответствуют СВ $\overrightarrow{x_1} \dots \overrightarrow{x_{k+1}}$. Нужно доказать, что они ЛН.

$$\beta_{1}\overrightarrow{x_{1}} + \dots + \beta_{k}\overrightarrow{x_{k}} + \beta_{k+1}\overrightarrow{x_{k+1}} = \overrightarrow{0} \ (**)$$

$$\hat{A}(\beta_{1}\overrightarrow{x_{1}} + \dots) = \overrightarrow{0}$$

$$\beta_{1}\lambda_{1}\overrightarrow{x_{1}} + \dots + \beta_{k}\lambda_{k}\overrightarrow{x_{k}} + \beta_{k+1}\lambda_{k+1}\overrightarrow{x_{k+1}} = \overrightarrow{0} \ (***)$$

$$(***) - \lambda_{k+1}(**)$$

$$\beta_{1}(\lambda_{1} - \lambda_{k+1})\overrightarrow{x_{1}} + \dots + \beta_{k}(\lambda - \lambda_{k+1})\overrightarrow{x_{k}} = \overrightarrow{0} \rightarrow \beta = 0$$

$$\beta_{k+1}\overrightarrow{x_{k+1}} = \overrightarrow{0} \rightarrow \beta_{k+1} = 0$$

<u>Замечание.</u> Если количество $C3=\dim V$ и все они простые =, то \exists базис, в котором A- диагональная.

4. Жорданова нормальная форма

Жорданова клетка – это
$$J(\lambda_0) = \begin{pmatrix} \lambda_0 & 1 & 0 \\ 0 & \lambda_0 & 1 \\ \underbrace{0 & 0 & \ddots}_{p} \end{pmatrix}$$
 C3 = λ_0 , AK = p , CB = $\begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix}$.

Жорданов блок – это
$$\begin{pmatrix} J_1(\lambda_0) & 0 & 0 & 0 \\ 0 & J_2(\lambda_0) & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \frac{1}{p_k}(\lambda_0) \end{pmatrix} \ \mathrm{C3} = \ \lambda_0, \ \mathrm{AK} = p_1 + \dots + p_k, \mathrm{CB} = \lambda_0$$

<u>к</u> шт.

$$\begin{pmatrix} \lambda_0 & 1 & 0 \\ 0 & \lambda_0 & 1 \\ 0 & 0 & \ddots \end{pmatrix} \stackrel{\hat{A}\overrightarrow{e_1}}{\stackrel{\longrightarrow}{e_2}} = \stackrel{\longrightarrow}{e_1} + \lambda_0 \overrightarrow{e_2} \quad (\hat{A} - \lambda_0 \mathbb{1}) \overrightarrow{e_1} = \vec{0}$$

$$\hat{B}\overrightarrow{e_2} = \overrightarrow{e_1} + \lambda_0 \overrightarrow{e_2} \quad (\hat{A} - \lambda_0 \mathbb{1}) \overrightarrow{e_2} = \overrightarrow{e_1}$$

$$\hat{B}\overrightarrow{e_2} = \overrightarrow{e_1} \rightarrow \hat{B}^2 e_2 - e_1 = \vec{0}$$

$$(\hat{A} - \lambda_0 \mathbb{1}) \overrightarrow{e_{p+1}} = \overrightarrow{e_{p-2}} \leftrightarrow \hat{B}\overrightarrow{e_p} = e \leftrightarrow \hat{B}^{p-1} \overrightarrow{e_{p-1}} = \vec{0}$$

$$\hat{B}\overrightarrow{e_1} = \vec{0} \qquad (\hat{A} - \lambda_0 \mathbb{1}) \overrightarrow{e_1} = \vec{0}$$

$$\hat{B}^2 \overrightarrow{e_2} = \vec{0} \qquad (\hat{A} - \lambda_0 \mathbb{1})^2 \overrightarrow{e_2} = \vec{0}$$

$$\hat{B}^p \overrightarrow{e_p} = \vec{0} \qquad (\hat{A} - \lambda_0 \mathbb{1})^p \overrightarrow{e_p} = \vec{0}$$

Теорема. Матрица любого оператора, все XЧ которого являются его C3, можно привести к Жордановой форме

$$egin{pmatrix} rac{\mathbb{K} \ \mathsf{блок}}{\lambda_1} & \mathbb{K} \ \mathsf{блок} \\ & \boxed{\lambda_2} & \ddots & \boxed{\mathcal{K} \ \mathsf{блок}} \\ & \boxed{\lambda_k} \end{pmatrix}$$

Теорема. Пусть $\lambda + \mu i \ (\mu \neq 0)$ – простой корень. ХМ ЛО $\hat{A}: V \to V \ V(\mathbb{R})$. Тогда $\exists \ 2$ – мерное инвариантное подпространство оператора \hat{A} .

<u>Доказательство.</u> Так как $\det(A - (\lambda + \mu i)\mathbb{1}) = 0$,

$$[A - (\lambda + \mu i)\mathbb{1}]Z = 0$$

$$Z = \underbrace{X}_{\mathbb{R}^n} + i \underbrace{Y}_{\mathbb{R}^n}$$

$$AZ = (\lambda + \mu i)Z$$

$$A(X + iY) = (\lambda + \mu i)(X + iY)$$

$$\underbrace{AX}_{AY} + iAY = \underbrace{\lambda X}_{X} + i\lambda Y + i\mu X - \mu Y$$

$$\begin{cases} AX = \lambda X - \mu Y \\ AY = \mu X + \lambda Y \end{cases} (*) - L(X, Y) - \mathsf{И}\Pi\Pi$$

1) Доказать, $Y \neq 0$. Предположим, обратное, тогда

(*)
$$\begin{cases} AX = \lambda X \\ 0 = \mu X \to \mu = 0 - \text{против.} \end{cases}$$

2) Предположим, что X, Y - Л3, то есть $X = \alpha Y$, то

$$\begin{cases} \alpha AY = \lambda \alpha Y - \mu Y \\ AY = \alpha \mu Y + \lambda Y \end{cases} \cdot \alpha$$

$$0 = \lambda \alpha Y - \mu Y - \alpha^2 \mu Y - \lambda \alpha Y$$

$$(\alpha^2 + 1)\mu Y = 0 \quad Y \neq 0, \mu \neq 0 \quad \Rightarrow \alpha^2 + 1 = 0 - \text{HeT}$$

21

5. Билинейные функции (формы)

Определение. Пусть $V(\mathbb{R})$. Функция $\check{B}: V \times V \to \mathbb{K}, \ (\vec{x}, \vec{y}) \to \check{B}(\vec{x}, \vec{y})$ называется билинейной формой, если

- 1) $\check{B}(\alpha_1 \overrightarrow{x_1} + \alpha_2 \overrightarrow{x_2}, \vec{y}) = \alpha_1 \check{B}(\overrightarrow{x_1}, \vec{y}) + \alpha_2 \check{B}(\overrightarrow{x_2}, \vec{y});$
- 2) $\widecheck{B}(\overrightarrow{x}, \beta_1 \overrightarrow{y_1} + \beta_2 \overrightarrow{y_2}) = \cdots$

Пусть $\overrightarrow{e_1}$... $\overrightarrow{e_n}$ – базис в $V: \vec{x} = x^j \overrightarrow{e_l}$, $\vec{y} = y^k \overrightarrow{e_k}$.

$$\check{B}(\vec{x}, \vec{y}) = \check{B}(x^j \overrightarrow{e_j}, y^k \overrightarrow{e_k}) = x^j y^k \check{B}\underbrace{(\overrightarrow{e_j}, \overrightarrow{e_k})}_{b_{jk} \to B} = b_{jk} x^j y^k = X^T B Y$$

$$\check{B}(\vec{x}, \vec{y}) = b_{ik} x^j y^k = X^T B Y$$

Замена базиса

Пусть $B' = (b_{i'k'})$ – в $\overrightarrow{e_{1'}}, \dots, \overrightarrow{e_{n'}}$.

$$\begin{split} b_{j'k'} &= \breve{B} \big(\overrightarrow{e_{j'}}, \overrightarrow{e_{k'}} \big) = \breve{B} \left(c_{j'}^j \overrightarrow{e_{j}}, c_{k'}^k \overrightarrow{e_{k}} \right) = c_{j'}^j c_{k'}^k \breve{B} \big(\overrightarrow{e_{j}}, \overrightarrow{e_{k}} \big) \\ b_{j'k'} &= c_{j'}^j c_{k'}^k b_{jk}, \quad B' = C^T B C \end{split}$$

Инварианты

- 1) $rk \, \check{B}$;
- 2) $sgn \det \check{B}(\mathbb{R});$
- 3) 9

Определение. БФ называются симметричными, если $\check{B}(\vec{x}, \vec{y}) = \check{B}(\vec{y}, \vec{x});$ кососимметричными, если $\check{B}(\vec{x}, \vec{y}) = -\check{B}(\vec{y}, \vec{x}).$

$$\widecheck{B} = \underbrace{\widecheck{B_1}}_{\text{симм.}} + \underbrace{\widecheck{B_2}}_{\text{кососим.}}$$

$$\check{B}(\vec{x}, \vec{y}) = \frac{1}{2} \big[\check{B}(\vec{x}, \vec{y}) + \check{B}(\vec{y}, \vec{x}) \big] + \frac{1}{2} \big[\check{B}(\vec{x}, \vec{y}) - \check{B}(\vec{y}, \vec{x}) \big]$$

Пусть
$$\widecheck{B} = \widecheck{\underbrace{B_1}} + \widecheck{\underbrace{B_2}} = \widecheck{\underbrace{B_3}} + \widecheck{\underbrace{B_4}}$$
 . Тогда кососим.

22

$$\underbrace{\widetilde{B_1} - \widetilde{B_3}}_{\text{симм.}} = \underbrace{\widetilde{B_4} - \widetilde{B_2}}_{\text{кососим.}}$$

Квадратичные фермы

Пусть $\check{B}(\vec{x}, \vec{y}) - \mathbf{Б}\Phi$.

Определение. Квадратичная функция – это $\check{Q}(\vec{x}) = \check{B}(\vec{x}, \vec{x}), \, \check{Q}: V \to \mathbb{K}, \, \mathbb{K} = \mathbb{R}.$

Координаты:

$$raket{Q(ec{x}) = b_{jk}x^jx^k = X^TBX}$$
 $B' = C^TBC, \quad \check{B} = \underbrace{\check{S}}_{\text{СИММ}} + \check{A}_{\text{АНТИС}}$
 $X^TBX = X^T(S+A)X = X^TSX + X^TAX$
 $X^T \underbrace{A}_{1 \times n} \underbrace{X}_{n \times n} = (X^TAX)^T = X^TA^T(X^T)^T = X^T(-A)X = -X^TAX \to X^TAX = 0$
Из $\check{B}(\vec{x}, \vec{y}) \to \check{O}(\vec{x}) = \check{B}(\vec{x}, \vec{x}) = B_{\text{СИММ}}(\vec{x}, \vec{x})$

Определение. Матрица КФ симметричная.

Из
$$\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$$

Теорема. Для \forall КФ \exists канонический базис, то есть базис, в котором матрица КФ диагональная.

Доказательство (по индукции)

$$n = 1: b_{11}(x^1)^2 \to B = (b_{11})$$

Предположим, что верно для n=p, то есть для КФ $Q(x^1,...,x^p)$

$$\begin{split} Q(x^1,\dots,x^{p+1}) &= \sum_{i,j=1}^{p+1} b_{jk} x^j x^k = \\ &= \left[b_{11}(x^1)^2 + 2x^1 \big(b_{12} x^2 + \dots + b_{1p+1} x^{p+1} \big) + \big(b_{12} x^2 + \dots + b_{1p+1} x^{p+1} \big)^2 \right] \\ &- (\dots)^2 + Q_1(x^2,\dots,x^{p+1}) = \\ &= \left[\sqrt{b_{11}} x^1 + b_{12} x^2 + \dots + b_{1p+1} x^{p+1} \right]^2 + Q_2(x^1,\dots,x^{p+1}) = \\ &= \left(x^{1'} \right)^2 + Q_2 \text{(от p перем.)} \end{split}$$

Закон инерции

Пусть $\check{Q}(\vec{x})$ $rk\check{Q}=r$, тогда в \forall каноническом базисе $Q=\begin{pmatrix}q_{11}&0&0\\0&q_{22}&0\\0&0&q_{nn}\end{pmatrix}$, причем среди q_{11},\dots,q_{nn} ровно r ненулевых, n-r нулевых.

Условимся нумеровать базисный вектор канонического базиса так, чтобы

$$\begin{pmatrix} \lambda_1.. & & & \\ & \lambda_p & & \\ & & -\mu_1.. & & \\ & & & -\mu_q & \\ & & & 0.. \end{pmatrix} \lambda > 0, \mu > 0, p+q=r$$

р и q — индексы инерции

К Φ , пара (p, q) – сигнатура.

Закон инерции: p, q — инварианты.

Доказательство.

Предположим, что \exists 2 канонических базиса $\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$ и $\overrightarrow{f_1}, \dots, \overrightarrow{f_n}$, в которых

$$\check{Q}(\vec{x}) = \lambda_1(x^1)^2 + \dots + \lambda_p(x^p)^2 - \mu_{p+1}(x^{p+1})^2 - \mu_r(x^r)^2 - \text{в первом базисе}$$

$$\check{Q}(\vec{x}) = \alpha_1(y^1)^2 + \dots + \alpha_s(y^s)^2 - \beta_{s+1}(y^{s+1})^2 + \dots + \beta_r(y^r)^2$$

Доказать, что p = s

Рассмотрим:

$$P_1 = L(\overrightarrow{e_1}, ..., \overrightarrow{e_p}) \in V$$
 $P_2 = L(\overrightarrow{f_{s+1}}, ..., \overrightarrow{f_n}) \in V$
 $\forall \overrightarrow{x} \neq 0 \in P_1 : \widecheck{Q}(\overrightarrow{x}) > 0$
 $\forall \overrightarrow{x} \neq 0 \in P_2 : \widecheck{Q}(\overrightarrow{x}) \leq 0$
 $P_1 \cap P_2 = \overrightarrow{0}$
 $\dim(P_1 + P_2) = \dim P_1 + \dim P_2 \leq n$
 $p + (n - s) \leq n \rightarrow p \leq s$
Аналогично, $s \leq p$
 $s = p$.
 $\widecheck{Q}(\overrightarrow{x}) \equiv \widecheck{Q}(x^1, ..., x^n)$

Определение. КФ $\check{Q}(\vec{x})$ называется положительно определенной, если $\forall \vec{x} \neq 0 \ \check{Q}(\vec{x}) > 0, \check{Q} > 0.$

Критерий Сильвестра

$$\label{eq:Q} \check{Q}(\vec{x}), \qquad Q = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & \ddots \end{pmatrix}$$

Главные миноры S_1 , S_2 (ГМ)

$$\check{Q} > 0 \leftrightarrow (\operatorname{Bce} \delta_k > 0, k = 1 \dots n)$$

$$\check{Q} < 0 \leftrightarrow (\delta_{2k+1} < 0, \delta_{2k} > 0)$$

Доказательство (по индукции)

$$n = 1 \ \breve{Q}(\vec{x}) = q_{11}(x^1)^2$$

1) \implies если КФ ПО, то все ГМ>0. Пусть справедливо при некотором p . Рассмотрим

$$\check{Q}(x^1, \dots, x^{p+1}) = \sum_{k,j=0}^{p+1} q_{jk} x^j x^k$$

$$\widecheck{Q}\underbrace{(x^1,\ldots,x^p,0)}_{\text{K}\Phi\text{ ot p переменных}\to}>0$$

$$\delta_{p+1} = \det Q$$

$$sgn \det Q = sgn \left(egin{matrix} + & & & & \\ & + & & \\ & & \ddots & & \\ & & & + \end{matrix}
ight) = 1$$
 — инвариант

2) \leftarrow если ГМ>0, то КФ - \oplus - определенная. Предположим, что верно при р.

$$\delta_1>0,\dots,\delta_p=0\ \to \check{Q}(x^1,\dots,x^p)>0$$

Рассмотрим $\check{Q}(x^1,...,x^{p+1}), \delta_1 > 0,...,\delta_{p+1} > 0.$

$$\check{Q}(x^1,...,x^p,0)$$
 — является \oplus — определенной.

Положительный индекс инерции фермы $\c Q \ge p$. Предположим, что ОК=р,

следовательно, в каноническом виде $\begin{pmatrix} + & & & \\ & + & & \\ & & \ddots & \\ & & & 0 \end{pmatrix} \to P_{p+1} \to \Pi \text{ИH} = p+1 \to \Pi \text{O}.$

6. Евклидово и унитарное пространство

Пусть $V(\mathbb{R}) - B\Pi (\dim V \leq \infty)$.

Пусть $\check{G}(\vec{x}, \vec{y})$ – симметричная билинейная ферма, для которой $\check{Q}(\vec{x}) = \check{G}(\vec{x}, \vec{x}) - \bigoplus$ определена

Определение. $\check{G}(\vec{x}, \vec{y})$ – называется скалярным произведением на V

$$(\vec{x}, \vec{y}) \coloneqq \check{G}(\vec{x}, \vec{y})$$

Определение. С.П. $\check{G}(\vec{x}, \vec{y})$ на $V(\mathbb{R})$ – это функция

$$\check{G} \colon V \times V \to \mathbb{R} :$$

- 1) Линейность по 1 аргументу;
- 2) Линейность по 2 аргументу;
- 3) Симметричность;
- 4) \bigoplus определено $\forall \vec{x} \neq 0 \ \check{G}(\vec{x}, \vec{x}) > 0$.

Определение. Евклидово пространство – вещественное пространство с заданным скалярным произведением.

 $\overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$ – базис в V

$$\widecheck{G}(\overrightarrow{e_{j}},...,\overrightarrow{e_{k}})=g_{jk}$$
 $ightarrow$ G $=(g_{jk})$ матрича Грама матрический тензор

$$\check{G}(\vec{x}, \vec{y}) = g_{jk} x^j y^k = X^T G Y$$

Если $\overrightarrow{e_{1'}}$, ..., $\overrightarrow{e_{n'}}$, С – матричная переменная, то

$$G' = C^T G C$$

$$g_{j'k'} = c_{j'}^j c_{k'}^k g_{jk}$$

Унитарное пространство $V(\mathbb{C})$

$$0 < \underbrace{G(i\vec{x}, i\vec{x})}_{\text{He paforaer}} = i^2 G(\vec{x}, \vec{x}) = -G(\vec{x}, \vec{x}) < 0$$

Определение. СП в УП $V(\mathbb{C})$ – это

$$\check{G}$$
: $V \times V \to \mathbb{C}$:

- 1) Линейность по 2 аргументу;
- 2) Полу линейность по 1 аргументу

$$\check{G}(\alpha_1 \overrightarrow{x_1} + \alpha_2 \overrightarrow{x_2}, \vec{y}) = \overline{\alpha_1} \check{G}(\overrightarrow{x_1}, \vec{y}) + \overline{\alpha_2} \check{G}(\overrightarrow{x_2}, \vec{y})$$

3) Эрмитовость

$$\check{G}(\vec{x}, \vec{y}) = \overline{\check{G}(\vec{y}, \vec{x})}$$

4) ⊕ - определено:

$$\forall \vec{x} \neq \vec{0} \ \check{G}(\vec{x}, \vec{x}) > 0 \ \mathsf{u} \in \mathbb{R}$$

 $reve{G}$ — полуторалинейная эрмитова ферма, \bigoplus - определена.

$$\overrightarrow{e_1}, \dots, \overrightarrow{e_n}$$

$$\check{G}(\vec{x}, \vec{y}) = \check{G}\left(x^{j} \overrightarrow{e_{j}}, y^{k} \overrightarrow{e_{k}}\right) = \overline{x^{j}} y^{k} \check{G}\underbrace{\left(\overrightarrow{e_{j}}, \overrightarrow{e_{k}}\right)}_{g_{jk}} \quad g_{jk} x^{j} y^{k} = \overline{X^{T}} G Y$$

 $\overline{X^T} = X^T -$ эрмитово сопряжение

$$G' = C^+GC$$

$$g_{kj} = (\overrightarrow{e_k}, \overrightarrow{e_j}) = \overline{(\overrightarrow{e_j}, \overrightarrow{e_k})} = \overline{g_{jk}}$$

$$G^T = \overline{G}; \ \overline{G^T} = G$$

$$G^+ = G$$
 — эрмитовость

G — эрмитова матрица

Определение (\mathbb{R} , \mathbb{C}). Длина вектора (норма) – это число

$$\|\vec{x}\| = \sqrt{(\vec{x}, \vec{x})} \ge 0$$

Определение (\mathbb{R}). Угол между векторами \vec{x} , \vec{y}

$$\varphi = \arccos \frac{(\vec{x}, \vec{y})}{\|\vec{x}\| \cdot \|\vec{y}\|}$$

Теорема (неравенство Коши – Буняковского - Шварца)

$$\boxed{\mathbb{C}}: |(\vec{x}, \vec{y})| \leq ||\vec{x}|| \cdot ||\vec{y}||$$

Доказательство (\mathbb{R})

$$|(\vec{x}, \vec{y})|^{2} \leq (\vec{x}, \vec{x})(\vec{y}, \vec{y})$$

$$0 \leq (t\vec{x} + \vec{y}, t\vec{x} + \vec{y}) = t^{2}(\vec{x}, \vec{x}) + t(\vec{y}, \vec{y}) + t(\vec{y}, \vec{x}) + (\vec{y}, \vec{y})$$

$$= t^{2}(\vec{x}, \vec{x}) + 2t(\vec{x}, \vec{y}) + (\vec{y}, \vec{y})$$

$$D = 4(\vec{x}, \vec{y})^{2} - 4(\vec{x}, \vec{x})(\vec{y}, \vec{y}) \leq 0$$

Следствие (свойства нормы)

- 1) $\|\alpha \cdot \vec{x}\| = |\alpha| \|\vec{x}\|$;
- 2) $\|\vec{x}\| \|\vec{y}\| \le \|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$; $\|\vec{x} + \vec{y}\|^2 = (\vec{x} + \vec{y}, \vec{x} + \vec{y}) = (\vec{x}, \vec{x}) + (\vec{x}, \vec{y}) + (\vec{y}, \vec{x}) + (\vec{y}, \vec{y})$ $= (\vec{x}, \vec{x}) + (\vec{y}, \vec{y}) + 2Re(\vec{x}, \vec{y}) \le (\vec{x}, \vec{x}) + (\vec{y}, \vec{y}) + 2|(\vec{x}, \vec{y})|$ $\le \|\vec{x}\|^2 + \|\vec{y}\|^2 + 2\|\vec{x}\| \cdot \|\vec{y}\| = (\|\vec{x}\| + \|\vec{y}\|)^2$

Определение. Векторы \vec{x} , \vec{y} ортогональны, если

$$(\vec{x}, \vec{y}) = 0.$$

Определение. Вектор \vec{x} называется ортогональным подпространству $P \in V$, если

$$\forall y \subset P : \vec{x} \perp \vec{y}$$

Теорема (свойства ⊥)

- 1) $\vec{x} \perp \vec{x} \leftrightarrow \vec{x} = \vec{0}$;
- 2) если $\overrightarrow{x_1}$, ..., $\overrightarrow{x_k}$ (среди них нет 0) попарно \bot ,то они ЛН;
- 3) если $\vec{x} \perp \overrightarrow{y_1}, ..., \vec{x} \perp \overrightarrow{y_k}$, то $\vec{x} \perp L(\overrightarrow{y_1}, ...)$;
- 4) если $\vec{x} \perp \vec{y}$, то $||\vec{x} + \vec{y}|| = ||\vec{x}||^2 + ||\vec{y}||^2$.

Примеры.

1) \mathbb{R}^n

$$\vec{x} = X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

$$(\vec{x}, \vec{y}) = X^T G Y$$

2) \mathbb{C}^n

$$(\vec{x}, \vec{y}) = X^+ G Y$$

$$\overline{G^T} = G$$

3) $\mathbb{R}[t]_{\leq n}$

$$(\vec{x}, \vec{y}) = \int_{a}^{b} x(t)y(t)K(t)dt$$
29

$$(\vec{x}, \vec{y}) = \int_{a}^{b} x(t)y(t)dt$$

4) $\mathbb{C}[t]_{\leq n}$

$$(\vec{x}, \vec{y}) = \int_{a}^{b} \overline{x(t)} y(t) dt$$

Ортогонализация Грама – Шмидта

Пусть $\overrightarrow{x_1}$, ..., $\overrightarrow{x_n}$ - \forall набор векторов.

Построить ОНБ в $L(\overrightarrow{x_1}, ..., \overrightarrow{x_n})$

Шаг 1.

$$\overrightarrow{e_1} = \frac{\overrightarrow{x_1}}{\|\overrightarrow{x_1}\|};$$

Шаг 2.

$$\overrightarrow{h_2} = \overrightarrow{x_2} - pr_{L(\overrightarrow{e_1})} \overrightarrow{x_2} \perp L(\overrightarrow{e_1})$$

$$\overrightarrow{e_2} = \frac{\overrightarrow{h_2}}{\|\overrightarrow{h_2}\|}$$

Шаг 3.

$$\overrightarrow{h_3} = \overrightarrow{x_2} - pr_{L(\overrightarrow{e_1}, \overrightarrow{e_2})} \overrightarrow{x_2} \perp L(\overrightarrow{e_1}, \overrightarrow{e_2})$$

$$\overrightarrow{e_3} = \frac{\overrightarrow{h_3}}{\|\overrightarrow{h_3}\|}$$

Пусть $\overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$ – ОНБ.

$$\forall \vec{x} \subset V : \vec{x} - x^k \overrightarrow{e_k} = x^1 \overrightarrow{e_1}$$
$$\vec{x} = x^1 \overrightarrow{e_1} + \dots + x^k \overrightarrow{e_k} \mid \overrightarrow{e_1}$$
$$30$$

$$(\overrightarrow{e_1}, \overrightarrow{x}) = x^1 \underbrace{(\overrightarrow{e_1}, \overrightarrow{e_1})}_{=1} + x^2 \underbrace{(\overrightarrow{e_1}, \overrightarrow{e_2})}_{=0} + \cdots$$

$$x^1 = (\overrightarrow{e_1}, \overrightarrow{x})$$

$$x^k = (\overrightarrow{e_k}, \overrightarrow{x}) -$$
формула Гиббса

Пусть $L(\overrightarrow{e_1}, ..., \overrightarrow{e_k})$, $\overrightarrow{e_1}, ..., \overrightarrow{e_k}$ – OH система.

$$pr_{L(\overrightarrow{e_1},\dots,\overrightarrow{e_k})}\vec{x} = \alpha^1 \overrightarrow{e_1} + \dots + \alpha^k \overrightarrow{e_k} = \vec{x} - (\underbrace{\vec{x} - \vec{y}}_{L})$$

$$(\overrightarrow{e_1},\alpha^1\overrightarrow{e_1}+\cdots+\alpha^k\overrightarrow{e_k})=(\overrightarrow{e_1},\overrightarrow{x})+(\overrightarrow{e_1},\overrightarrow{x}-\overrightarrow{y})$$

$$\alpha^1 = (\overrightarrow{e_1}, \vec{x})$$

$$pr_{L(\overrightarrow{e_1},...,\overrightarrow{e_n})}\vec{x} = \sum_{i=1}^k (\overrightarrow{e_i}, \vec{x}) \overrightarrow{e_j}.$$

$$V = \mathbb{R}^3$$
; $(\vec{x}, \vec{y}) = X^T Y$

$$\overrightarrow{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \ \overrightarrow{x_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; \ \overrightarrow{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Шаг 1.

$$\overrightarrow{e_1} = \frac{\overrightarrow{x_1}}{\|\overrightarrow{x_1}\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix};$$

Шаг 2.

$$\overrightarrow{h_2} = \overrightarrow{x_2} - pr_{L(\overrightarrow{e_1})} \ \overrightarrow{x_2} = \overrightarrow{x_2} - (\overrightarrow{e_1}, \vec{x}) \overrightarrow{e_1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}^T \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0$$

$$= \begin{pmatrix} -2/3 \\ 1/3 \\ 1/3 \end{pmatrix} \rightarrow \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{e_2} = \frac{1}{\sqrt{6}} \begin{pmatrix} -2\\1\\1 \end{pmatrix};$$

Шаг 3.

$$\begin{split} \overrightarrow{h_3} &= \overrightarrow{x_2} - pr_{L(\overrightarrow{e_1},\overrightarrow{e_2})}\overrightarrow{x_2} = \overrightarrow{x_3} - (\overrightarrow{e_1},\overrightarrow{x_3})\overrightarrow{e_1} - (\overrightarrow{e_2},\overrightarrow{x_3})\overrightarrow{e_2} \\ &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}^T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \left\{ \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}^T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \frac{1}{\sqrt{6}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} \\ &\overrightarrow{e_3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}. \end{split}$$

Операторы в евклидовом и унитарном пространствах

1) Изометрические операторы Пусть V, W $- 2 E\Pi (У\Pi)$.

 \mathbb{R} $\hat{A}: V \to W$ называется изометрическим, если

$$\begin{split} \forall \, \vec{x}, \vec{y} \, \in V : \left(\hat{A} \vec{x}, \hat{A} \vec{y} \right)_W &= (\vec{x}, \vec{y})_V \\ \big\| \hat{A} \vec{x} \big\| &= \| \vec{x} \| \end{split}$$

Ортогональность:

$$\hat{A}:V o V$$
Пусть $\overrightarrow{e_1},\dots,\overrightarrow{e_n}$ — базис в V,A — матрица \hat{A}

$$\underbrace{\left(\hat{A}\vec{x},\hat{A}\vec{y}\right)}_{(AX)^TG(AY)}=\underbrace{\left(\vec{x},\vec{y}\right)}_{X^TGY}$$

$$X^T(A^TGA)Y=X^T(G)Y$$

$$A^TGA=G-\text{в}\ \forall\ \text{базисе}$$

$$\overline{A^TA=1}-\text{в}\ \text{ОНБ}.$$

Определение. Матрица А называется ортогональной, если

$$A^T A = 1$$

Теорема.

- 1) $A^T = A^{-1}$;
- 2) $AA^{T} = 1$;
- 3) $\sum_{k=1}^{n} a_k^j a_k^l = \delta^{jl};$
- 4) $\sum_{k=1}^{n} a_i^k a_l^k = \delta_{il};$
- 5) $\det A = \pm 1$;
- 6) C3: $\lambda = \pm 1$ (если есть) Пусть $\lambda = \text{C3}$, $\vec{x} = \text{CB}$.

$$\frac{\left(\hat{A}\vec{x},\hat{A}\vec{x}\right) = (\vec{x},\vec{x})}{(\lambda\vec{x},\lambda\vec{x}) = \lambda^2(\vec{x},\vec{x})} \lambda = \pm 1.$$

Общий вид ортогональных матриц 2×2

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad AA^T = 1$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + dc & b^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} a^2 + c^2 = 1 \\ b^2 + d^2 = 1 \\ ab + cd = 0 \end{cases} \begin{vmatrix} a = \cos \varphi \\ c = \sin \varphi \\ b = \cos \psi \\ d = \sin \psi \end{vmatrix}$$

$$\cos \varphi \cos \psi + \sin \varphi \sin \psi = 0$$

$$\cos(\varphi - \psi) = 0$$

$$\psi - \varphi = \frac{\pi}{2} \text{ или } \frac{3\pi}{2}$$

1)
$$\psi = \varphi + \frac{\pi}{2} \to \text{поворот } A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
;

2)
$$\psi = \varphi + \frac{\pi}{2} \to \text{отражение } A = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$
.

Пусть А, В – ортогональны. ?АВ – ортогональны?

$$(AB)^T(AB) = B^T A^T AB = B^T B = 1$$

Теорема. Множество всех ортогональных матриц $n \times n$ образует группу, называемую ортогональной группой.

$$O(n, \mathbb{R}) = O(n)$$

Множество $SO(n) = \{A \in O(n) : \det A = 1\}$ группа вращения.

 $\ \ \ \ \ \ \ \, \mathbb{C}\ \ \ \,$ Пусть V — унитарное пространство.

Определение. $\hat{A}: V \to V$ называется унитарным, если

$$(\hat{A}\vec{x}, \hat{A}\vec{y}) = (\vec{x}, \vec{y})$$

Матрица унитарного оператора:

$$(AX)^+G(AY) = X^+GY$$

$$X^+A^+GAY = X^+GY$$

$$A^+GA = G - в \forall$$
 базисе

$$A^{+}A = 1$$
 — в ОНБ. матрица

Свойства унитарных матриц:

- 1) $A^{-1} = A^T$:
- 2) $AA^{T} = 1$;
- 3) $\sum_{k=1}^{n} \bar{a}_k^j a_k^l = \delta^{jl};$
- 4) $\sum_{k=1}^{n} \bar{a}_{i}^{k} a_{l}^{k} = \delta_{il};$
- 5) $|\det A| = 1$;
- 6) C3: $|\lambda| = 1$.

Теорема. Множество всех унитарных матриц $n \times n$ образует группу, которая называется U(n) унитарная группа.

$$SU(n) = \{A \in U(n), \det A = 1\}$$

Поворот:

$$\vec{x} = \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \rightarrow \begin{pmatrix} x^3 & x^1 - ix^2 \\ x^1 + ix^2 & -x^3 \end{pmatrix} = \hat{X}$$

$$\|\vec{x}\| = -\det \hat{X}$$

$$\begin{pmatrix} x^3 & x^1 - ix^2 \\ x^1 + ix^2 & -x^3 \end{pmatrix} = x^1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + x^2 \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + x^3 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \to \underbrace{\sigma_1, \sigma_2, \sigma_3}_{\text{матрицы Паули}}$$

2) Сопряженные операторы V, W – унитарные пространства

$$\hat{A}:V\to V$$

Определение. ЛО $\hat{A}^*: W \to V$ называется сопряженным к \hat{A} , если

$$\forall \vec{x} \in V, \quad \forall \vec{y} \in W$$

$$\left(\hat{A}\vec{x},\vec{y}\right)_W = (\vec{x},\hat{A}^* \vec{y})_V$$

Теорема (свойства сопряженного оператора)

- 1) $\hat{A}^* ЛО$;
- 2) $\forall \hat{A} \exists \hat{A}^*$:
- 3) $(\hat{A}^*)^* = \hat{A};$
- 4) $(\hat{A} + \hat{B})^* = \hat{A}^* + \hat{B}^*$;
- 5) $(\alpha \hat{A})^* = \bar{\alpha} \cdot \hat{A}^*$;
- 6) $(\hat{A}\hat{B})^* = \hat{B}^*\hat{A}^*;$
- 7) $\hat{0}^* = \hat{0}, \hat{1}^* = 1.$

Доказательство.

$$\begin{split} \hat{A}^*(\alpha_1\overrightarrow{y_1}+\alpha_2\overrightarrow{y_2}) &= \alpha_1\hat{A}^*\overrightarrow{y_1}+\alpha_2\hat{A}^*\overrightarrow{y_2} \\ \Big(\vec{x},\hat{A}^*(\alpha_1\overrightarrow{y_1}+\alpha_2\overrightarrow{y_2})\Big) &= \alpha_1\Big(\vec{x},\hat{A}^*\overrightarrow{y_1}\Big) + \alpha_2\Big(\vec{x},\hat{A}^*\overrightarrow{y_2}\Big) \end{split}$$

Пусть $\overrightarrow{e_1}, ..., \overrightarrow{e_n}$ — базис в V; G — матрица Грама, $\overrightarrow{f_1}, ..., \overrightarrow{f_m}$ — базис в W; H — матрица Грама.

$$(\hat{A}\vec{x}, \vec{y})_W = (\vec{x}, \hat{A}^* \vec{y})_V$$
$$(AX)^+ HY = X^+ G(A^*Y)$$
$$X^+ A^+ HY = X^+ GA^*Y$$
$$GA^* = A^+ H \to A^* = G^{-1}A^+ H$$

B ОНБ $G = \mathbb{1}_n$, $H = \mathbb{1}_m$.

$$A^* = A^+$$

Пример

$$\mathbb{V}_3$$
; $\hat{A}: \mathbb{V}_3 \to \mathbb{V}_3$

 $\hat{A}\vec{x} = [\vec{a}, \vec{x}]$ — векторное произведение, $\vec{a} \neq 0$ — фикс.

Найти \hat{A}^* :

$$(\hat{A}\vec{x}, \vec{y}) = (\vec{x}, \hat{A}^* \vec{y})$$

$$([\vec{a}, \vec{x}]\vec{x}, \vec{y}) = (\vec{a}, \vec{x}, \vec{y}) = (\vec{x}, \vec{y}, \vec{a}) = (\vec{x}, [\vec{y}, \vec{a}]) = (\vec{x}, -[\vec{a}, \vec{y}]) = (\vec{x}, -\hat{A}\vec{y})$$

$$\hat{A}^* = -\hat{A}; \ A^* = -A - \text{B OHE}$$

$$A = \begin{pmatrix} 0 & a_z & -a_y \\ -a_z & 0 & a_x \\ a_y & -a_x & 0 \end{pmatrix} - \text{B OHE}$$

Теорема Фредгольма

Пусть $\hat{A}: V \to W$

$$\ker \hat{A} = (im\hat{A}^*)^{\perp}$$
$$(\ker \hat{A})^{\perp} = im\hat{A}^*$$
$$\ker \hat{A}^* = (im\hat{A})^{\perp}$$
$$(\ker \hat{A}^*)^{\perp} = im\hat{A}$$

Доказательство.

- 1) Доказать:
 - A) dim $\hat{A} = \dim(\ker \hat{A}^*)^{\perp}$;
 - Б) $im\hat{A} \subset \left(\ker \hat{A}^*\right)^{\perp}$.

A)

$$\dim(\ker \hat{A}^*)^{\perp} = \dim W - \dim(\ker \hat{A}^*)^{\perp} = -\dim W - [\dim W] - \dim \inf \hat{A}^*$$
$$= \dim \operatorname{im} \hat{A}^* = \operatorname{rk} \hat{A}^* \operatorname{rk} \hat{A} = \dim \operatorname{im} \hat{A}$$

Б)

$$\forall \vec{y} \in im\hat{A} : \vec{y} \in \left(\ker \hat{A}^*\right)^{\perp}$$

$$\forall \vec{x} \in V \ \vec{y} = \hat{A}\vec{x} : \vec{y} \perp \ker \hat{A}^*$$

$$\forall \vec{z} \in \ker \hat{A} : \vec{y} \perp \vec{z}$$

$$\forall \vec{z} : \hat{A}^*\vec{z} = 0 : (\vec{y}, \vec{z}) = 0$$
36

$$(\vec{y}, \vec{z}) = (\hat{A}\vec{x}, \vec{z}) = (\vec{x}, \underbrace{\hat{A}^*\vec{z}}_{\vec{0}}) = (\vec{x}, \vec{0}) = 0.$$

Ортогональное дополнение:

Пусть V – ЕП (на УП) Рextstyle extstyle extstyle

Определение.

$$P^{\perp} = \{\vec{x} \in V; \ \vec{x} \perp P\}$$

Теорема.

$$\forall P \subseteq V : P^{\perp} \subseteq V$$

Пусть

$$\vec{x}, \vec{y} \in \bar{P}^\perp \leftrightarrow \forall \vec{x} \in P \ (\vec{x}, \vec{z}) \ \bar{\cdot} \ (\vec{y}, \vec{z}) = 0$$

$$(\bar{\alpha}\vec{x} + \beta\vec{y}, \vec{z}) = \underbrace{\bar{\alpha}(\vec{x}, \vec{z}) + \beta(\vec{y}, \vec{z})}_{\rightarrow \bar{\alpha}\vec{x} + \beta\vec{y} \in P^{\perp}} = 0$$

Теорема.

$$V = P \oplus P^{\perp}$$

ОНБ в
$$P : \overrightarrow{e_1}, ..., \overrightarrow{e_p}, \quad p = \dim P$$

Дополняя его до ортонормированного во всем пространстве $\overrightarrow{e_{p+1}}, \dots, \overrightarrow{e_n}$:

$$P = L(\overrightarrow{e_1}, ..., \overrightarrow{e_p}), P^{\perp} = L(\overrightarrow{e_{p+1}}, ..., \overrightarrow{e_n}), \quad \sum dim = \dim V$$

HСЛУ: AX = B(1)

(1) Совместна
$$\leftrightarrow B \in im A = \left(\ker \hat{A}^*\right)^{\perp} \leftrightarrow B \perp \underbrace{\ker \hat{A}^*}_{A^*Y=0}$$

(1) Совместна $\leftrightarrow B \perp \forall$ решению системы $A^*Y = 0$ (2) Рассмотрим \forall НСЛУ AX = B (совместна или нет)

Теорема.

$$A^*AX = A^*B$$
 совместна

Доказательство.

Доказать, что

$$A^*B \perp \forall$$
 решению $(A^*A)^*Y = 0$

$$(A^*A)^*Y = 0 \iff A^*A Y = 0$$

Пусть Y – решение $A^*AY=0$.

$$0 = (Y, A^*B) = (AY, B) = 0$$

Доказать, что A Y = 0:

$$0 = \left(Y, \underbrace{A^*AY}_{=0}\right) = (AY, AY) \to AY = 0.$$

Теорема.

Пусть $\hat{A}: V \rightarrow V (V - ЕП или УП).$

Пусть $P \subseteq V - \Pi$ ЛО \hat{A} . Тогда P^{\perp} является Π ЛО \hat{A}^* .

Доказательство.

Нужно доказать, что

$$\forall \vec{y} \in P^{\perp} : A^* \vec{y} \in P^{\perp}$$

$$\forall \vec{y} : y \perp P : A^* \vec{y} \perp P$$

$$\forall \vec{y} : \forall \vec{x} \in P \ (\vec{y}, \vec{x}) = 0 \ (\vec{x}, A^* \vec{y}) = 0$$

$$(\vec{x}, A^* \vec{y}) = \left(\frac{\hat{A}\vec{x}}{\hat{x}}, \vec{y}\right) = \left(\frac{\vec{x}}{\hat{x}}, \vec{y}\right) = 0$$

Самосопряженные операторы

Пусть $V - E\Pi$ (или $Y\Pi$)

$$\hat{A}: V \rightarrow V$$

Определение. \hat{A} называется самосопряженным, если

$$\hat{A} = \hat{A}^*$$

$$\forall \vec{x}, \vec{y} : (\hat{A}\vec{x}, \vec{y}) = (\vec{x}, \hat{A}\vec{y}).$$

$$A^* = G^{-1}A^+G -$$
в \forall базисе

$$A^* = A^+ -$$
в ОНБ

Матрица в \forall базисе $A = G^{-1}A^+G$.

$$GA = A^+G = A^+G^+ = (GA)^+$$

$$(GA)^+ = GA$$
, $GA -$ эрмитова

B ОНБ : $A^{+} = A$;

B \mathbb{R} : $A^T = A$.

Самосопряженный оператор в \mathbb{R} - симметричный, в \mathbb{C} - эрмитов.

Теорема (свойства ССО)

- 1) Все собственные значения ССО $\in \mathbb{R}$;
- 2) СВ, относящиеся к разным СЗ ортогональны;
- 3) В V \exists OHБ, состоящий из CB \hat{A} .

<u>Доказательство</u> **ℂ**

1) Пусть λ – C3, \vec{x} – CB

$$\hat{A}\vec{x} = \lambda \vec{x} \quad (\vec{x} \neq 0)$$

$$(\hat{A}\vec{x}, \vec{x}) = (\lambda \vec{x}, \vec{x}) = \bar{\lambda}(\vec{x}, \vec{x})$$

$$(\vec{x}, \hat{A}\vec{x}) = (\vec{x}, \lambda \vec{x}) = \lambda(\vec{x}, \vec{x})$$

$$\bar{\lambda} = \lambda \rightarrow \lambda \in \mathbb{R}$$

2) Пусть $\lambda_1, \lambda_2 - C3 \lambda_1 \neq \lambda_2, \overrightarrow{x_1}, \overrightarrow{x_2} - CB$.

$$\hat{A}\overrightarrow{x_1} = \lambda_1 \overrightarrow{x_1}, \quad \hat{A}\overrightarrow{x_2} = \lambda_2 \overrightarrow{x_2}$$

$$(\hat{A}\overrightarrow{x_1}, \overrightarrow{x_2}) = (\lambda_1 \overrightarrow{x_1}, \overrightarrow{x_2}) = \lambda_1 (\overrightarrow{x_1}, \overrightarrow{x_2})$$

$$(\overrightarrow{x_1}, \hat{A} \overrightarrow{x_2}) = (\overrightarrow{x_1}, \lambda_2 \overrightarrow{x_2}) = \lambda_2 (\overrightarrow{x_1}, \overrightarrow{x_2})$$

$$\lambda_1 (\overrightarrow{x_1}, \overrightarrow{x_2}) = \lambda_2 (\overrightarrow{x_1}, \overrightarrow{x_2})$$

$$\underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} (\overrightarrow{x_1}, \overrightarrow{x_2}) = 0$$

$$(\overrightarrow{x_1}, \overrightarrow{x_2}) = 0$$

$$\overrightarrow{x_1} \perp \overrightarrow{x_2}$$

3) A)
$$\exists$$
 C3 λ_1 , CB $-\overrightarrow{x_1}$ Рассмотрим $P_1 - L(\overrightarrow{x_1}) - \mathsf{И}\Pi\ \hat{A}, P_1^{\perp} - \mathsf{И}\Pi\ \hat{A}^* = \hat{A}$

Б) Рассмотрим $\hat{A}: P_1^{\perp} \rightarrow P_1^{\perp} \ GOTO \ (A)$

Спектральное разложение ССО

 $\overrightarrow{e_1}$, ..., $\overrightarrow{e_n}$ – ОНБ из СВ.

Ортогональный проектор на $L(\overrightarrow{e_k})$

$$\widehat{P_k}\vec{x} = (\overrightarrow{e_k}, \vec{x})\overrightarrow{e_k}$$

$$\forall \vec{x} \colon \vec{x} = \sum_{k=1}^n (\overrightarrow{e_k}, \vec{x})\overrightarrow{e_k} - \text{разложение по базису}$$

$$\widehat{A}\vec{x} = \widehat{A}\left(\sum_{k=1}^n (\overrightarrow{e_k}, \vec{x})\overrightarrow{e_k}\right) = \sum_{k=1}^n (\overrightarrow{e_k}, \vec{x})\lambda_k \overrightarrow{e_k} = \sum \lambda_k \widehat{P_k}\vec{x}$$

$$\widehat{A} = \sum_{k=1}^n \lambda_k \widehat{P}$$

Псевдоевклидово пространство

Определение. ВП V(\mathbb{R}) называется псевдоевклидовым, если в нем зафиксирована невырожденная (det $G \neq 0$) симметричная $G(\vec{x}, \vec{y}) = G(\vec{y}, \vec{x})$ неопределенная билинейная форма.

В каноническом базисе (псевдо ортонормированный, галилеев)

$$G = \begin{pmatrix} + & & & & & \\ & \ddots & & & & \\ & & + & & & \\ & & & - & & \\ & & & \ddots & \\ & & & - \end{pmatrix} q$$

$$(p,q)$$
 — сигнатура

Определение. Пространство Минковского — это $V(\mathbb{R})$, dim V=4 сигнатура (1,3).

В каждом базисе

$$G = \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \dots \end{pmatrix}$$

Pассмотрим dim V = 2, $G = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Определение. $\hat{A}: V \to V$ называется изометрическим, если

$$\forall \vec{x}, \vec{y} \in V : (\hat{A}\vec{x}, \hat{A}\vec{y}) = (\vec{x}, \vec{y})$$
$$(\hat{A}\vec{x}, \hat{A}\vec{y}) = (\vec{x}, \vec{y})$$
$$(AX)^T G(AY) = X^T GY$$
$$A^T GA = G$$

Во втором случае
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} a & -c \\ b & -d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 - c^2 & ab - cd \\ ab - dc & b^2 - d^2 \end{pmatrix}$$

$$\begin{cases} a^2 - c^2 = 1 \\ b^2 - d^2 = 1 \\ ab - cd = 0 \end{cases} \begin{vmatrix} a = ch \varphi \\ c = sh \varphi \\ b = ch \psi \\ d = sh \psi$$

 $\operatorname{ch} \varphi \operatorname{ch} \psi + \operatorname{sh} \varphi \operatorname{sh} \psi = 0$

$$\operatorname{sh}(\varphi - \psi) = 0 \to \varphi = \psi$$

$$A = \begin{pmatrix} ch\varphi & sh\varphi \\ sh\varphi & ch\varphi \end{pmatrix} \det A = 1$$

$$A^{-1} = \begin{pmatrix} ch\varphi & -sh\varphi \\ -sh\varphi & ch\varphi \end{pmatrix}$$

$$X = \begin{pmatrix} x^0 \\ x^1 \end{pmatrix} \quad X' = \begin{pmatrix} x^{0'} \\ x^{1'} \end{pmatrix}$$

$$X' = A^{-1}X$$

$$x^{0'} = x^0 ch \varphi + x^1 sh \varphi$$

$$x^{1'} = -x^0 sh \varphi + x^1 ch \varphi$$

$$x^0 = ct, \quad x^{0'} = ct', \qquad \frac{v}{c} = th \varphi$$

$$ch^2 \varphi - sh^2 \varphi = 1$$

$$1 - th^2 \varphi = \frac{1}{ch^2 \varphi}$$

$$ch^2 \varphi = \frac{1}{1 - \frac{v^2}{c^2}}, \qquad ch \varphi = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}, \qquad sh \varphi = \frac{v/c}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$ct' = \frac{ct - x\frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}}, \qquad t' = \frac{t - x\frac{v}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}, \qquad x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

Тензоры

$$\overrightarrow{e_1},...,\overrightarrow{e_n}$$
 и $\overrightarrow{e_{1'}},...,\overrightarrow{e_{n'}}$ С — матрица перехода

$$\overrightarrow{e_{k'}} = c_{k'}^{k} \overrightarrow{e_k}$$

$$\overrightarrow{e_k} = c_k^{k'} \overrightarrow{e_{k'}}$$

1) Вектор

$$x^{k'} = \underbrace{c_k^{k'}}_{\text{odp.}} x^k$$

2) Линейная форма (ковектор)

$$a_{k'} = \underbrace{c_{k'}^k}_{\text{nn}} a^k$$

3) Линейный оператор

$$a_{k'}^{j'} = \underbrace{c_j^{j'}}_{\text{oбp. прям.}} \underbrace{c_{k'}^k}_{\text{ирям.}} a_k^j$$

$$A' = C^{-1}AC$$

4) Билинейная форма

$$b_{j'k'} = \underbrace{c_{j'}^{\ j}}_{\text{прям. прям.}} \underbrace{c_{k'}^{\ k}}_{\text{прям.}} b_{jk}$$

$$B = C^T B C$$

Определение. Пусть $V(\mathbb{R}) - B\Pi$; dim V = n. Тензор типа (p,q) - это упорядоченный набор n^{p+q} чисел, поставленных в соответствие каждому базису и преобразующихся при изменении базиса по формуле:

$$A_{j_1...j_p}^{k_1...k_q}$$

$$A^{k \prime_1 \dots k \prime_q}_{j \prime_1 \dots j \prime_p} = C^{k \prime_1 \dots k \prime_q}_{k_1 \dots k_q} C^{j_1 \dots j_p}_{j_1 \dots j_p} A^{k_1 \dots k_q}_{j_1 \dots j_p}$$

Операции

1) Сумма

$$A_{kl}^j + B_{kl}^j = D_{kl}^j$$

$$D_{kl}^j = A_{kl}^j + B_{kl}^j$$

$$D_{k'l'}^{j'} = A_{k'l'}^{j'} + B_{k'l'}^{j'} = c_j^{j'} c_{k'}^{k} c_{l'}^{l} A_{kl}^{j} + c_j^{j'} c_{k'}^{k} c_{l'}^{l} B_{kl}^{j} = c_j^{j'} c_{k'}^{k} c_{l'}^{l} \left(\underbrace{A_{kl}^{j} + B_{kl}^{j}}_{D_{kl}^{j}} \right)$$

2) Умножение на число

$$(\alpha A)_{kl}^j = \alpha \cdot A_{kl}^j$$

3) Умножение тензоров

$$A_{kl}^{j} \cdot B_{t}^{s} = F_{klt}^{js}$$

$$V = \mathbb{R}^{2}; \ F_{1}^{11} = A_{1}^{1} \cdot B^{1}$$

$$F_{1}^{12} = A_{1}^{1} \cdot B^{2}; \ F_{2}^{11} = A_{2}^{1} \cdot B^{1} \dots$$

4) Свертка

$$A_{kl}^{js} \rightarrow B_l^j = \sum_{\alpha=1}^n A_{\alpha l}^{j\alpha}$$

Свертка – тензор

Доказать:

$$A_{kl}^{ij} \to B_l^i = \sum_{\alpha=1}^n A_{\alpha l}^{i\alpha}$$

Дано:

$$A_{k'l'}^{i'j'} = A_{kl}^{ij} c_i^{i'} c_j^{j'} c_{k'}^{k} c_{l'}^{l}$$

Доказательство.

$$\begin{split} B_{\alpha'}^{i\prime} &= B_l^i c_i^{i'} c_{l'}^l \\ B_{l'}^{i\prime} &= A_{k'l'}^{i\prime j\prime} = A_{kl}^{ij} \, c_i^{i'} \quad \underbrace{c_j^{\alpha'} c_{\alpha'}^k}_{=c_{\alpha'}^{\alpha'} c_j^{\alpha'}}_{=\delta_j^k} c_l^{l} = A_{kl}^{ij} \delta_j^k c_i^{i'} c_{l'}^l = A_{jl}^{ij} c_i^{i'} c_{l'}^l = B_l^i c_i^{i'} c_{l'}^l \\ &= c_{\alpha'}^{i\prime} c_j^{\alpha'} = \delta_j^k \\ \delta_k^j x^k &= x^j \end{split}$$

Евклидово пространство

Пусть A^i_{jk} — тензор. $G = (g_{kl})$ — матрица Грама (2 ковариантная (метрич.))

$$\det G \neq 0 \rightarrow \exists G^{-1} = (g^{kl})$$

$$g_{kl}g^{lp}=\delta_k^p o g^{kl}$$
 – тензор

$$g_{pq}A_{jk}^{\widehat{i}} o g_{plpha}A_{jk}^{\widehat{lpha}}=A_{pjk}^{ullet}-$$
 опускание индекса

Подъем индекса:

$$g^{p\widehat{q}}A^i_{jk}\to g^{p\widehat{\alpha}}A^i_{j\alpha}=A^{pi}_{j\bullet}$$

Линейная форма:

$$f(\vec{x})=f_ix^i=f_ix^k\delta^i_k=f_ix^k\,\widehat{g^{ilpha}}\,g_{klpha}=g_{lpha k}f^lpha x^k=\left(\vec{f},\vec{x}
ight)$$
 $f_i o f^lpha=g^{lpha i}f_i$ В ОНБ: $f^lpha=f_lpha$

Теорема. В ЕП \forall ЛФ $f(\vec{x})$ \exists вектор \vec{f} :

$$f(\vec{x}) = (\vec{f}, \vec{x})$$

Рассмотрим БФ

$$\check{B}(\vec{x}, \vec{y}) = b_{ij}x^i y^j = b_{ij}x^k y^j \delta_k^i = g_{k\alpha}g^{i\alpha}b_{ij}x^k y^j = g_{k\alpha}b_j^{\alpha}x^k y^j = g_{k\alpha}x^k (b_j^{\alpha}y^j) \\
= (\vec{x}, \hat{B}\vec{y}),$$

где \hat{B} – имеет матрицу $b_{j}^{lpha}=g^{lpha i}b_{ij}.$

Теорема. \forall БФ $\check{B}(\vec{x}, \vec{y})$ в ЕП \exists ЛО \hat{B} :

$$\check{B}(\vec{x}, \vec{y}) = (\vec{x}, \hat{B}\vec{y})$$

$$\check{B}(\vec{x},\vec{y}) = \left(\vec{x},\hat{B}\vec{y}\right) = \check{B}(\vec{y},\vec{x}) = \left(\vec{y},\hat{B}\vec{x}\right) = \left(\hat{B}\vec{x},\vec{y}\right) - \frac{\text{самосопряженный оператор,}}{\text{если } \check{B} - \text{симметрич.}}$$

Приведение КФ (симм. БФ) к каноническому виду при помощи ортогональных преобразований

Пусть $\check{B}(\vec{x}, \vec{y})$ – симметричная БФ

$$Q(\vec{x}) = \breve{B}(\vec{x}, \vec{x})$$

 $B = (b_{ij})$ – матрица БФ, $B^T = B$. Будем считать, что матрица B относится к ОНБ. Следовательно, можно считать, что она является матрицей самосопряженного оператора \hat{B} .

$$ЛО: B' = C^{-1}BC$$

$$Б\Phi : B' = C^T BC$$

Построим ОНБ из СВ ЛО \hat{B} .

Матрица перехода – ортогональна $\rightarrow C^{-1} = C^T$.

$$C^{-1}BC = C^{T}BC$$

$$Q(\vec{x}) = (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2} - 6x^{1}x^{2} - 6x^{1}x^{3} - 6x^{2}x^{3}$$

$$B = \begin{pmatrix} 1 & -3 & -3 \\ -3 & 1 & -3 \\ -3 & -3 & 1 \end{pmatrix}$$

$$|B - \lambda \mathbb{1}| = \begin{vmatrix} 1 - \lambda & -3 & -3 \\ -3 & 1 - \lambda & -3 \\ -3 & -3 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} -\lambda - 5 & -\lambda - 5 & -\lambda - 5 \\ -3 & 1 - \lambda & -3 \\ -3 & -3 & 1 - \lambda \end{vmatrix} =$$

$$= (-\lambda - 5) \begin{vmatrix} 1 & 1 & 1 \\ -3 & 1 - \lambda & -3 \\ -3 & -3 & 1 - \lambda \end{vmatrix} = (-\lambda - 5) \begin{vmatrix} 1 & 0 & 0 \\ -3 & 4 - \lambda & 0 \\ -3 & 0 & 4 - \lambda \end{vmatrix} = (-\lambda - 5)(4 - \lambda)^{2}$$

$$\lambda_{1} = -5 \text{ (AK = 1)}$$

$$\lambda_{2} = 4 \text{ (AK = 2)}$$

Для $\lambda_1 = -5$

$$B - \lambda_1 \mathbb{1} = \begin{bmatrix} 6 & -3 & -3 \\ -3 & 6 & -3 \\ -3 & -3 & 6 \end{bmatrix} \to CB \overrightarrow{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \overrightarrow{e_1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Для $\lambda_2 = 4$

Ортогонализация $\overrightarrow{x_2}$ и $\overrightarrow{x_3}$

$$\overrightarrow{e_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

$$\overrightarrow{g_3} = \overrightarrow{x_3} - Pr_{L(\overrightarrow{e_2})}, \overrightarrow{x_3} = \overrightarrow{x_1} - (\overrightarrow{x_3}, \overrightarrow{e_2}) \overrightarrow{e_2}$$

$$\overrightarrow{g_3} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}^T \begin{pmatrix} -1\\0\\-1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -1/2\\-1/2\\1 \end{pmatrix}$$

$$\overrightarrow{e_3} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$$

МП от исходного базиса к $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$.

$$C = \begin{pmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix}, \qquad C^{-1} = C^T$$

В базисе $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$.

Матрица ЛО $B' = C^{-1}BC = \begin{pmatrix} -5 & & \\ & 4 & \\ & & 4 \end{pmatrix}$. Но матрица БФ $B'' = C^TBC = B'$.

Канонический вид $Q(\vec{x}) = -5(x^{1'})^2 + 4(x^{2'})^2 + 4(x^{3'})^2$.

$$a_k^i \to g_{\alpha i} g^{\beta k} a_k^j$$
$$(\hat{A}\vec{x}, \vec{y}) = (\vec{x}, \hat{A}^* \vec{y})$$
$$(AX)^T GY = X^T G (A^*Y)$$
$$X^T A^T GY = X^T G A^* Y$$

$$A^*=G^{-1}A^+G$$
 , $A^*=G^{-1}A^TG$
$$\underbrace{g^{eta k}_{\downarrow}}_{G^{-1}A^T}a^j_k\underbrace{g_{jlpha}}_{A^TG}-$$
 элемент \hat{A}^*

Теорема. Пусть дана КФ $Q(\vec{x})$, $G(\vec{x})$. В ВП \exists базис, в котором обе формы имеют диагональные матрицы.

Доказательство.

$$E = (\overrightarrow{e_1}, ..., \overrightarrow{e_n})$$

В нем Q, G – матрицы КФ.

1) Можно найти базис $E'=(\overrightarrow{e_{1\prime}},...,\overrightarrow{e_{n\prime}})$, в котором $G(\vec{x})$ имеет канонический вид. Тогда

$$G'=1$$

Пусть C_1 – МП от E к E'. E' - ОНБ относительно СП, полярной к КФ $G(\vec{x})$.

$$G' = C_1^T G C_1 = 1$$

$$Q' = C_1^T G C_1$$

2) Найти базис $E'' = (\overrightarrow{e_{1''}}, ..., \overrightarrow{e_{n''}})$ (ОНБ), в котором Q'' будет диагональная. Это делается ортогональным преобразованием.

 C_2 – МП от E'к E''.

$$Q^{\prime\prime} = C_2^T Q^{\prime} C_2$$
 — диагональная

$$G'' = \underbrace{C_2^T}_{\text{optor.}} \underbrace{G}' \underbrace{C_2}_{\text{optor.}} = C_2^T C_2 = C_2^{-1} C_2 = \mathbb{1}$$

 $\mathrm{B}\,E^{\prime\prime}$

$$G'' = \mathbb{1}$$

$$Q'' = diag (\lambda_1 \dots \lambda_n)$$

$$\check{G}(\vec{x}) = (x^1)^2 - 2x^1x^2 + 4(x^2)^2 \quad G = \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix}$$

$$\check{Q}(\vec{x}) = -4x^1x^2 \quad Q = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$$

Шаг 1.

$$\check{G}(\vec{x}) \rightarrow$$
 канонический вид

$$(x^{1})^{2} - 2x^{1}x^{2} + 4(x^{2})^{2} = ((x^{1})^{2} - 2x^{1}x^{2} + (x^{2})^{2}) + 3(x^{2})^{2} = (x^{1'})^{2} + (x^{2'})^{2}$$

$$x^{1'} = x^{1} - x^{2}$$

$$x^{2'} = \sqrt{3}x^{2}$$

$$C_{1}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \sqrt{3} \end{pmatrix} \rightarrow C_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{3} & 1 \\ 0 & 1 \end{pmatrix}$$

$$\det C_{1}^{-1} = \sqrt{3}$$

$$G' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Q' = C_{1}^{T}QC_{1} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 0 & -\frac{2}{\sqrt{3}} \\ -\frac{2}{\sqrt{3}} & -\frac{4}{3} \end{pmatrix}$$

Шаг 2.

Приведем $\check{Q}(\vec{x})$ к каноническому виду:

$$Q' = \begin{pmatrix} 0 & -\frac{2}{\sqrt{3}} \\ \frac{-2}{\sqrt{3}} & -\frac{4}{3} \end{pmatrix}$$
$$\det(Q' - \lambda \mathbb{1}) = \begin{vmatrix} -\lambda & -\frac{2}{\sqrt{3}} \\ \frac{-2}{\sqrt{3}} & -\frac{4}{3} - \lambda \end{vmatrix} \quad \lambda_1 = -2$$
$$\lambda_2 = \frac{2}{3}$$

CB для $\lambda_1 = -2$

$$Q' - \lambda \mathbb{1} = \begin{pmatrix} 2 & -\frac{2}{\sqrt{3}} \\ -\frac{2}{\sqrt{3}} & \frac{2}{3} \end{pmatrix} \quad \overrightarrow{x_1} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$

CB для $\lambda_2 = \frac{2}{3}$

$$Q' - \lambda \mathbb{1} = \begin{pmatrix} -\frac{2}{3} & -\frac{2}{\sqrt{3}} \\ \frac{-2}{\sqrt{3}} & -2 \end{pmatrix} \overrightarrow{x_2} = \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix}$$

$$\overrightarrow{e_{1''}} = \begin{pmatrix} 1/2 \\ \sqrt{3}/2 \end{pmatrix} \overrightarrow{e_{2'''}} = \begin{pmatrix} -\sqrt{3}/2 \\ 1/2 \end{pmatrix}$$

$$C_2 = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

Шаг 3.

$$E' = EC_1$$

$$E'' = E'C_2 = EC_1C_2$$

$$C = C_1C_2 = \begin{pmatrix} 1 & 1/\sqrt{3} \\ 0 & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} 1/2 & 1/\sqrt{3} \\ \sqrt{3}/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & -1/\sqrt{2} \\ 1/2 & 1/2\sqrt{3} \end{pmatrix}$$

$$x^1 = x^{1''} - \frac{1}{\sqrt{3}}x^{2''}$$

$$x^2 = \frac{1}{2}x^{1''} + \frac{1}{2\sqrt{3}}x^{2''}$$

$$\check{Q}(\vec{x}) = -2(x^{1''})^2 + \frac{2}{3}(x^{2''})^2$$

$$\check{G}(\vec{x}) = (x^{1''})^2 + (x^{2''})^2$$

$$Q = (q_{jk}) \qquad G_{\text{метр.тензор}} = (g_{jk})$$

 $q \uparrow$:

$$q_k^i=g^{ij}q_{jk}$$
 — получился ССО $\det(q_k^i-\lambda\delta_k^i)=0 \ o \ \lambda_1 ... \lambda_n$ $(q_k^i-\lambda_lpha\delta_k^i)x^k=0$ $X=egin{pmatrix} x^1 \ dots \ x^n \end{pmatrix}$

Находим ОНБ:

$$(g^{ij}q_{jk} - \lambda_{\alpha}g^{ij}q_{jk})x^{k} = 0$$

$$g^{ij}(q_{jk} - \lambda_{\alpha}q_{jk})x^{k} = 0$$

$$G^{-1}(Q - \lambda_{\alpha}G)X = 0$$

$$(Q - \lambda_{\alpha}G)X = 0$$

$$\det(Q - \lambda_{\alpha}G) = 0$$

$$G = \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \quad Q = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$$

$$\det(Q - \lambda G) = \left| \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} \right| = \left| \begin{pmatrix} \lambda & -2 - \lambda \\ 2 + \lambda & -4\lambda \end{pmatrix} \right| = 3\lambda^{2} + 4\lambda - 4$$

$$\lambda_{1} = -2$$

$$\lambda_{2} = \frac{2}{3}$$

Для $\lambda_1 = -2$

$$\overrightarrow{x_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Для $\lambda_2 = \frac{2}{3}$

$$\overrightarrow{x_2} = {-2 \choose 1}$$
 — ортогональны относительно G $(\overrightarrow{x_1}, \overrightarrow{x_2}) = X_1^T G X_2 = 0$ $\|\overrightarrow{x_1}\|^2 = X_2^T G X_1 = 4$ $\|\overrightarrow{x_2}\| = 2/\sqrt{3}$ $\overrightarrow{f_1} = {1 \choose \frac{1}{2}}$ $\overrightarrow{f_2} = {-\frac{1}{\sqrt{3}} \choose \frac{1}{2\sqrt{3}}}$

$$\tilde{C} = \begin{pmatrix} 1 & -\frac{1}{\sqrt{3}} \\ \frac{1}{2} & \frac{1}{2\sqrt{3}} \end{pmatrix}.$$

