Projekt zaliczeniowy Techniki eksploracji danych

Paulina Górska

Informatyka i Ekonometria

Nr albumu: 185203

Zakres projektu

Założeniem projektu było rozwiązanie trzech problemów:

- 1) klasyfikacji binarnej
- 2) klasyfikacji wieloklasowej
- 3) regresji.

Rozwiązania powyższych problemów należało dokonać za pomocą własnych implementacji algorytmów:

- k-najbliższych sąsiadów
- drzewa decyzyjne
- maszyna wektorów nośnych (tylko dla problemu klasyfikacji binarnej)
- sieci neuronowe.

Otrzymane wyniki dla własnych implementacji algorytmów należało porównać z wynikami otrzymanymi dla algorytmów opracowanych na podstawie wbudowanych pakietów języka R.

Analiza powinna obejmować wpływ hiper-parametrów na jakość opracowanych modeli oraz porównanie wyników najlepszych modeli , własnych jak i tych wbudowanych.

Zbiory danych

1) Klasyfikacja binarna:

https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+Dataset

• Liczba obserwacji: 80

Liczba atrybutów: 5

• Zmienna celu: zmienna binarna (0 – nie było cesarskiego cięcia(nie); 1 – było cesarskie cięcie (tak))

2) Klasyfikacja wieloklasowa:

https://archive.ics.uci.edu/ml/datasets/Balance+Scale

• Liczba obserwacji: 625

Liczba atrybutów: 4

• Zmienna celu: trzy klasy (L, B, R)

3) Regresja:

https://archive.ics.uci.edu/ml/datasets/Servo

• Liczba obserwacji: 167

• Liczba atrybutów: 4

• Zmienna celu: zmienna numeryczna

Wszystkie zbiory danych nie zawierały braków danych.

Przekształcenia danych:

- zmienna celu w problemie klasyfikacji wieloklasowej została przekształcona z oznaczeń literowych na wartości liczbowe: 1-B; 2-L; 3-R
- w problemie regresji dwie zmienne: "motor" oraz "screw" zostały przekształcone na wartości liczbowe (1,2,3,4,5)
- dokonano normalizacji danych dla trzech algorytmów: k-najbliższych sąsiadów, maszyna wektorów nośnych oraz sieci neuronowe
- dla algorytmu maszyny wektorów nośnych przekształcono zmienną celu do wartości {-1;1}

Kroswalidacja – W praktycznie wszystkich przypadkach użyto podziału danych z parametrem kFold = 5, ponieważ zbiory nie są duże.

Najlepsze modele dla poszczególnych algorytmów

	Algorytm	Implementacja	Parametry	Ocena jakości dla zbioru Testowego (Trafność)
Klasyfikacja Binarna	knn	Własna	k = 11	0.8125
	SVM	Własna	C = 30	0.7625
	Sieci NN	Własna	h = (4,4), iter = 10000	0.6625
	knn	Biblioteka R	k = 11	0.7321
	SVM	Biblioteka R	C = 7	0.6519
	Sieci NN	Biblioteka R	h = 5	0.6149
	Drzewa decyzyjne	Biblioteka R	max depth = 3	0.6545
Klasyfikacja Wieloklasowa	knn	Własna	k = 42	0.9194
	Sieci NN	Własna	h = (6,6), iter = 80000	0.4736
	knn	Biblioteka R	k = 9	0.9089
	Sieci NN	Biblioteka R	h = 9	0.9679
	Drzewa decyzyjne	Biblioteka R	max depth = 12	0.7903
				(MAE)
Regresja	knn	Własna	k = 2	0.2483
	Sieci NN	Własna	h = (8,8), iter = 100000	0.4776
	knn	Biblioteka R	k = 2	0.2658
	Sieci NN	Biblioteka R	h = 6	0.9705
	Drzewa decyzyjne	Biblioteka R	max depth = 3	0.4630

k najbliższych sąsiadów - knn (własna implementacja) Klasyfikacja Binarna

k najbliższych sąsiadów - knn (własna implementacja) Klasyfikacja Wieloklasowa

<u>k najbliższych sąsiadów – knn (własna implementacja)</u> **Regresja**

k-nn- Porównanie implementacji Klasyfikacja Binarna

<u>k-nn – Porównanie implementacji</u> **Klasyfikacja Wieloklasowa**

<u>k-nn – Porównanie implementacji</u> **Regresja**

Podsumowanie algorytmu k-nn:

Własna implementacja algorytmu k-nn okazała się, nie być najgorszą implementacją tego algorytmu – w przypadku klasyfikacji binarnej, ideowy algorytm, lepiej poradził sobie z klasyfikacją niż zaimplementowany w bibliotece dla R. W pozostałych przypadkach to jednak algorytmy z biblioteki były szybsze i nie powodowały dużych oscylacji Trafności czy MAE dla kolejnych wartości sąsiadów k.

Szybkość algorytmów nie była tutaj brana pod uwagę, ale podczas testów dało się odczuć w tym aspekcie przewagę implementacji algorytmu z biblioteki.

Algorytm k-nn można usprawnić na kilka sposobów – w zależności od implementacji, klasyfikator na bazie k-nn, będzie uzyskiwał różne czasy wykonania oraz różną skuteczność.

SVM (własna implementacja) Klasyfikacja Binarna

SVM – Porównanie implementacji Klasyfikacja Binarna

Podsumowanie algorytmu SVM:

Implementacja SVM w najprostszej wersji okazała się dość niestabilnym klasyfikatorem dla zagadnienia binarnego. Dość duże oscylacje trafności SVM z własnej implementacji są przeciwieństwem dla niemalże stałej odpowiedzi implementacji z biblioteki R. Parametr C, kosztu, niemalże nie ma wpływu na Trafność dla SVM z biblioteki R.

Wyniki trafności dla obu klasyfikatorów nie są wybitnie wysokie, aczkolwiek pewniejszym będzie algorytm zaimplementowany w bibliotece R.

<u>Sieci Neuronowe (własna implementacja – 2 warstwy neuronów)</u>

Klasyfikacja Binarna

```
nn\_grid\_bin = expand.grid($$h = list(data.frame(4,4), data.frame(5,5), data.frame(6,6), data.frame(7,7), data.frame(8,8)), $$lr = c(0.001), $$iter = c(10000, 20000, 50000, 80000, 100000))$$
```

		h	lr.	iter	Czulosc_TRAIN	Specyficznosc_TRAIN	Jakosc_TRAIN	Czulosc_TEST	Specyficznosc_TEST	Jakosc_TEST
1	4,			1e+04	1		0.553125		. , _ 0	0.6625
2	5,	5	0.001	1e+04	1	0	0.562500	1	0	0.6250
3	6,	6	0.001	1e+04	1	0	0.600000	1	0	0.4750
4	7,	7	0.001	1e+04	1	0	0.596875	1	0	0.4875
5	8,	8	0.001	1e+04	1	0	0.593750	1	0	0.5000
6	4,	4	0.001	2e+04	1	0	0.568750	1	0	0.6000
7	5,	5	0.001	2e+04	1	0	0.562500	1	0	0.6250
8	6,	6	0.001	2e+04	1	0	0.600000	1	0	0.4750
9	7,	7	0.001	2e+04	1	0	0.596875	1	0	0.4875
10	8,	8	0.001	2e+04	1	0	0.593750	1	0	0.5000
11	4,	4	0.001	5e+04	1	0	0.568750	1	0	0.6000
12	5,	5	0.001	5e+04	1	0	0.562500	1	0	0.6250
13	6,	6	0.001	5e+04	1	0	0.600000	1	0	0.4750
14	7,	7	0.001	5e+04	1	0	0.596875	1	0	0.4875
15	8,	8	0.001	5e+04	1	0	0.593750	1	0	0.5000
				8e+04	1	0	0.568750	1	0	0.6000
17	5,	5	0.001	8e+04	1	0	0.562500	1	0	0.6250
18	6,	6	0.001	8e+04	1	0	0.600000	1	0	0.4750
19	7,	7	0.001	8e+04	1	0	0.596875	1	0	0.4875
20	8,	8	0.001	8e+04	1	0	0.593750	1	0	0.5000
21	4,	4	0.001	1e+05	1	0	0.568750	1	0	0.6000
22	5,	5	0.001	1e+05	1	0	0.562500	1	0	0.6250
23	6,	6	0.001	1e+05	1	0	0.600000	1	0	0.4750
24	7,	7	0.001	1e+05	1	0	0.596875	1	0	0.4875
25	8,	8	0.001	1e+05	1	0	0.593750	1	0	0.5000

Sieci Neuronowe (własna implementacja – 2 warstwy neuronów) Wykres Error podczas uczenia na całym zbiorze do klasyfikacji Binarnej

<u>Sieci Neuronowe (własna implementacja – 2 warstwy neuronów)</u>

Klasyfikacja Wieloklasowa

 $nn_grid_multi = expand.grid($$h = list(data.frame(4,4), data.frame(5,5), data.frame(6,6), data.frame(7,7), data.frame(8,8)), $$lr = c(0.001), $$iter = c(10000, 20000, 50000, 80000, 100000))$$$

					- 1	- 1
					Jakosc_TRAIN	
1					0.4620	
2					0.7004	
3	6,	6	0.001	1e+04	0.6288	0.4492
4	7,	7	0.001	1e+04	0.2592	0.4500
5	8,	8	0.001	1e+04	0.2728	0.4360
6	4,	4	0.001	2e+04	0.4676	0.4336
7	5,	5	0.001	2e+04	0.7252	0.4284
8	6,	6	0.001	2e+04	0.7152	0.4560
9	7,	7	0.001	2e+04	0.4872	0.4408
10	8,	8	0.001	2e+04	0.4268	0.4556
11	4,	4	0.001	5e+04	0.5920	0.4420
12	5,	5	0.001	5e+04	0.7924	0.4280
13	6,	6	0.001	5e+04	0.8196	0.4596
14	7,	7	0.001	5e+04	0.7472	0.4496
15	8,	8	0.001	5e+04	0.7348	0.4536
16	4,	4	0.001	8e+04	0.7360	0.4436
17	5,	5	0.001	8e+04	0.8588	0.4452
18	6,	6	0.001	8e+04	0.8720	0.4736
19	7,	7	0.001	8e+04	0.8344	0.4524
				8e+04		0.4564
						0.4368
						0.4452
			0.001			0.4716
						0.4652
				1e+05		
	-,					

Sieci Neuronowe (własna implementacja – 2 warstwy neuronów) Wykres Error podczas uczenia na zbiorze do klasyfikacji Wieloklasowej

<u>Sieci Neuronowe (własna implementacja – 2 warstwy neuronów)</u>

Regresja

```
nn_grid_multi = expand.grid( h = list(data.frame(4,4), data.frame(5,5), data.frame(6,6), data.frame(7,7), data.frame(8,8)), lr = c(0.001), iter = c(10000, 20000, 50000, 80000, 100000))
```

```
iter MAE_TRAIN MSE_TRAIN MAPE_TRAIN MAE_TEST MSE_TEST MAPE_TEST
  4, 4 0.001 1e+04 0.6428503 0.7639935 0.7400306 0.5812200 0.5934162 0.7565529
  5, 5 0.001 1e+04 0.5805535 0.6680637 0.6472925 0.5916473 0.5929658 0.7695442
  6, 6 0.001 1e+04 0.6210131 0.7177338 0.7467128 0.7381840 0.9020054 0.7082569
  7, 7 0.001 1e+04 0.5826569 0.6196749 0.7182905 0.7635898 1.1387122 0.7147901
  8, 8 0.001 1e+04 0.5104059 0.5025658 0.6252082 0.7188911 1.1681766 0.5839337
  4, 4 0.001 2e+04 0.4711496 0.5520885 0.4672651 0.3974458 0.4082859 0.4344668
  5, 5 0.001 2e+04 0.4839927 0.5657735 0.4941931 0.4729905 0.4602828 0.5740935
  6, 6 0.001 2e+04 0.4780102 0.5514039 0.5272130 0.6350459 0.7870918 0.5405550
9 7, 7 0.001 2e+04 0.4473539 0.4630616 0.4971654 0.5836559 0.9093017 0.4673589
10 8, 8 0.001 2e+04 0.3955131 0.3720087 0.4280549 0.5557748 0.9866210 0.3419601
11 4, 4 0.001 5e+04 0.4078735 0.4824849 0.3681130 0.3534728 0.3625822 0.3540378
12 5, 5 0.001 5e+04 0.4252319 0.4809942 0.4155773 0.4100868 0.3391847 0.4879808
13 6, 6 0.001 5e+04 0.4018041 0.4509018 0.3982552 0.5751574 0.6936388 0.4349889
14 7, 7 0.001 5e+04 0.3842785 0.3685915 0.3987115 0.4905616 0.8387685 0.3462382
15 8, 8 0.001 5e+04 0.3540590 0.3282008 0.3622393 0.5259005 1.0041600 0.2839828
16 4, 4 0.001 8e+04 0.3932981 0.4659471 0.3506859 0.3429728 0.3558639 0.3407892
17 5, 5 0.001 8e+04 0.3681511 0.3341335 0.3865401 0.3650761 0.2633269 0.4119247
18 6, 6 0.001 8e+04 0.3606656 0.3700510 0.3642664 0.5188544 0.5796434 0.3844382
19 7, 7 0.001 8e+04 0.3523900 0.3312913 0.3532937 0.4539211 0.7907191 0.3134736
20 8, 8 0.001 8e+04 0.3362661 0.3085609 0.3399491 0.5042360 0.9638853 0.2726240
21 4, 4 0.001 1e+05 0.3852809 0.4491291 0.3450256 0.3370940 0.3493786 0.3398211
22 5, 5 0.001 1e+05 0.3526641 0.3074505 0.3653131 0.3420835 0.2356359 0.3757700
23 6, 6 0.001 1e+05 0.3314293 0.2921592 0.3578711 0.4469096 0.4436799 0.3680586
24 7, 7 0.001 1e+05 0.3373189 0.3115149 0.3397765 0.4319811 0.7433113 0.2882737
25 8, 8 0.001 1e+05 0.3260855 0.2875617 0.3313991 0.4775881 0.8735837 0.2669550
```

Sieci Neuronowe (własna implementacja – 2 warstwy neuronów) Wykres Error podczas uczenia na zbiorze do Regresji

Sieci Neuronowe (NNET)

Klasyfikacja Binarna

Sieci Neuronowe (NNET)

Klasyfikacja Wieloklasowa

Sieci Neuronowe (NNET)

Regresja

Podsumowanie algorytmu Sieci Neuronowych:

Algorytmy na bazie sieci neuronowych nie radziły sobie najlepiej w zagadnieniu klasyfikacji binarnej. Dla obu implementacji, własnej jak i *nnet*, trafność klasyfikacji binarnej była najgorsza ze wszystkich klasyfikatorów. Należy pamiętać, że zbiór danych nie był duży, a takie algorytmy jak sieci neuronowe potrzebują dużo danych aby w pełni wykorzystać swój potencjał.

Klasyfikacja na wielu klasach była zdecydowanie lepsza, przynajmniej dla implementacji z biblioteki R. Wysoki wynik trafności na poziomie 0.9679 świadczy o dobrze nauczonych klasyfikatorze. Implementacja własna tego algorytmu niestety nie poradziła sobie z tym zagadnieniem. Na taki stan rzeczy mogło się nałożyć kilka czynników, np. wykorzystanie innej funkcji aktywacji, lub inna ilość neuronów w warstwie czy samych warstw neuronów.

Regresja dla sieci jest za to bardzo zróżnicowana – własna implementacja posiada MAE na średnim poziomie ze wszystkich algorytmów, gdzie sieci na bazie *nnet* wykazują najwyższe MAE.

Dla sieci neuronowych własnej implementacji, można zobaczyć różną charakterystykę błędu w zależności od iteracji uczenia. Na niektórych wykresach widać punkty przegięcia, które świadczą o nagłej zmianie wartości wag pozwalającej na lepsze ich dopasowanie względem wartości oczekiwanych. W niektórych przypadkach, z testów wynikało, że podniesienie ilości iteracji z 80 tys na 100 tys pozwoliło na zmniejszenie MAE o kolejne wartości.

Drzewa Decyzyjne (Rpart) Klasyfikacja Binarna

<u>Drzewa Decyzyjne (Rpart)</u> **Klasyfikacja Wieloklasowa**

<u>Drzewa Decyzyjne (Rpart)</u> **Regresja**

<u>Drzewa Decyzyjne (Rpart) – Wizualizacja drzewa</u> **Klasyfikacja Binarna**

<u>Drzewa Decyzyjne (Rpart) – Wizualizacja drzewa</u> **Klasyfikacja Wieloklasowa**

<u>Drzewa Decyzyjne (Rpart) – Wizualizacja drzewa</u> **Regresja**

<u>Drzewa Decyzyjne (własna implementacja) – Wizualizacja drzewa</u> **Klasyfikacja Binarna**

<u>Drzewa Decyzyjne (własna implementacja) – Wizualizacja drzewa</u> **Klasyfikacja Wieloklasowa**

<u>Drzewa Decyzyjne (własna implementacja) – Wizualizacja drzewa</u> **Regresja**

Podsumowanie algorytmu Drzew Decyzyjnych:

Ze względu na brak funkcji do predykcji na własnej implementacji drzew decyzyjnych, skupiono się na przeglądzie algorytmów opartych o bibliotekę rpart oraz na wizualizacji drzew decyzyjnych.

Sprawdzenie zależności wpływu głębokości drzewa na trafność oraz błąd MAE wykazało, że tylko przy klasyfikacji wieloklasowej kolejne głębokości drzewa mają wpływ na trafność. W pozostałych przypadkach dla głębokości drzewa równej 3, drzewo decyzyjne osiągało stabilną trafność czy błąd MAE.

Dla najlepszych parametrów drzewa wykonano wizualizację takiego drzewa przy pomocy biblioteki rpart.plot. Pozwala to lepiej zrozumieć idee i działanie takiego drzewa. Dla klasyfikacji wieloklasowej widać, że drzewo jest dość rozbudowane i głębokość drzewa miałaby duży wpływ na odpowiednią predykcję.

Dla najlepszych parametrów drzew z biblioteki rpart wykonano również nauczanie drzew własnej implementacji oraz wizualizację takich struktur. Widać, po wizualizacji jednak, że struktury zaimplementowane ręcznie nie pokrywają się z tymi z biblioteki rpart. Można jedynie przypuszczać, że takie drzewa decyzyjne nie byłyby idealnymi klasyfikatorami.

Podsumowanie

Podsumowując poszczególne fragmenty związane z różnymi klasyfikatorami i ich działaniem warto spojrzeć na tabele z najlepszymi modelami dla poszczególnych algorytmów.

Przy klasyfikacji binarnej najlepszym algorytmem okazał się *k Najbliższych Sąsiadów* – z trafnością na poziomie 0.8125 był zdecydowanie najlepszym klasyfikatorem ze wszystkich sprawdzonych.

Sieci Neuronowe z biblioteki *nnet* uzyskały najlepszy wynik trafności jeśli chodzi o klasyfikację wieloklasową – 0.9679. Tuż za nimi był algorytm *k-nn*, który w obu implementacjach uzyskał podobne wyniki.

Przy zagadnienie regresji zdecydowanie górowały algorytmy k-nn, osiągając w obu implementacjach bardzo podobne wyniki przy tym samym parametrze k = 2.

Ręczna implementacja algorytmów pozwala poznać różnorodność i wiele możliwości zróżnicowania kodu odpowiedzialnego ideowo za ten sam algorytm. Każdą z tych metod można urozmaicić o kolejne pomysły przyśpieszając czy zwiększając skuteczność danych algorytmów.