Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding

Will Monroe, Robert X.D. Hawkins, Noah D. Goodman, and Christopher Potts

Непомнящая М., Родионова Д.

Задача

Задача: создание модели, умеющей по описанию выбирать загаданный цвет из сета цветов. Это задание для слушающего

В большинстве работ с подобной тематикой решали задачу говорящего — порождение описаний цветов

Корпус

- 967 респондентов из Amazon
 Mechanical Turk
- 1059 игр по 50 раундов
- Референциальная игра на двоих
- Уровни сложности: close, split, far
- RGB
- После фильтрации: 53365 описаний из 469994 раундов 948 играх
- 15519 close, 15693 split, 15782 far

Figure 1: Example trial in corpus collection task, from speaker's perspective. The target color (boxed) was presented among two distractors on a neutral background.

Человеческое accuracy

- Слушающий: 97% far, 90% split, 83% close
- Метрики для говорящего: знаки, слова, сравнительные степени, конкретность, отрицание, превосходные степени
 - o Знаки&Слова: для far описания короче, чем для split и close
 - Сравнительные&Превосходные степени: в far меньше, чем в других. В closе больше всего превосходных, а в split сравнительных
 - Отрицание: в far меньше, чем в других
 - Конкретность: в far меньше, чем в других. Иерархия цветов сделана с помощью WordNet

RSA

Listener-based listener:

- $l_0(t \mid u, L) \propto L(u, t)P(t)$
- $s_1(u \mid t, L) \propto e^{\alpha \log(l0(t \mid u, L)) \kappa(u)}$
- $l_2(t \mid u, L) \propto s_0(u \mid t, L)P(t)$

 l_{2} напрямую не оценивает результат L(u, t), он оценивает s_{1} , который оценивает l_{o} , который уже оценивает L(u, t)

Speaker-based listener:

- $s_0(u \mid t,L) \propto L(u, t)e^{-\kappa(u)}$
- $l_1(t \mid u,L) \propto s_0(u \mid t, L)P(t)$

 $l_{_{1}}$, оценивает $s_{_{\mathcal{O}}}$, который уже оценивает $L(u,\,t)$

t — цвет из сета контекстных цветов u — описание цвета L(u, t) — функция интерпретации, выдает 1 или о

κ — функция потерьα — параметр, регулирующий«рациональность» модели говорящего

Проблемы

- Ограниченный сет описаний
- Как определить *L(u, t)*?

Решение — RNNs!

RNNs

(a) The L_0 agent processes tokens u_i of a color description u sequentially. The final representation is transformed into a Gaussian distribution in color space, which is used to score the context colors $c_1 \dots c_3$.

(b) The S_0 agent processes the target color c_t in context and produces tokens u_i of a color description sequentially. Each step in production is conditioned by the context representation h and the previous word produced.

Figure 3: The neural base speaker and listener agents.

Прагматические участники и ансамбль моделей

$$S_{1}(u \mid t, C; \theta) = \frac{L_{0}(t \mid u, C; \theta)^{\alpha}}{\sum_{u'} L_{0}(t \mid u', C; \theta)^{\alpha}} \qquad \mathbf{L}_{a} \propto \mathbf{L}_{0}^{\beta_{a}} \cdot \mathbf{L}_{1}^{1-\beta_{a}}$$

$$L_{2}(t \mid u, C; \theta) = \frac{S_{1}(u \mid t, C; \theta)}{\sum_{t'} S_{1}(u \mid t', C; \theta)} \qquad \mathbf{L}_{b} \propto \mathbf{L}_{0}^{\beta_{b}} \cdot \mathbf{L}_{2}^{1-\beta_{b}}$$

$$L_{1}(t \mid u, C; \phi) = \frac{S_{0}(u \mid t, C; \phi)}{\sum_{t'} S_{0}(u \mid t', C; \phi)} \qquad \mathbf{L}_{e} \propto \mathbf{L}_{a}^{\gamma} \cdot \mathbf{L}_{b}^{1-\gamma}$$

Вместо L(u, t) — выученные веса heta

Чтобы в знаменатели считать сумму не для всех потенциальных описаний, будем брать 8 сэмплов из $S_{\alpha}(u \mid i, C; \phi)$ для каждого таргета

Обучение модели

- Делим датасет на три части: train, dev, test
- Препроцессинг: нижний регистр, токенизация, заменяем слова, которые встретились меньше 2 раз на <unk>, убираем высказывания слушающего
- Adam, ADADELTA и SGD для обучения RNNs
- Гиперпараметры подбирались грид серчем

Результаты

- S₀ по качеству не отличается от S₁. Сравнение с человеком по нашим метрикам: слова, символы, отрицания и конкретность имеют такие же паттерны, как и у человека. Единственное отличие в превосходных и сравнительных степенях: нет такого количества сравнительных степеней для split
- Лучше всего работает ансамбль из моделей

model	accuracy (%)	perplexity
L_0	83.30	1.73
$L_1 = L(S_0)$	80.51	1.59
$L_2 = L(S(L_0))$	83.95	1.51
$L_a = L_0 \cdot L_1$	84.72	1.47
$L_b = L_0 \cdot L_2$	83.98	1.50
$L_e = L_a \cdot L_b$	84.84	1.45
human	90.40	
L_0	85.08	1.62
L_e	86.98	1.39
human	91.08	

Table 3: Accuracy and perplexity of the base and pragmatic listeners and various blends (weighted averages, denoted $A \cdot B$). Top: dev set; bottom: test set.

Анализ результатов

- 1. L_2 лучше L_0 , когда на вход подается сгенерированное S0 описание и L0 не удается по нему идентифицировать загаданный цвет. L_2 в таком случае считает, что этот цвет сложно описать, и поднимает ему вероятность
- 2. L₂ и L₀ лучше L₁, потому что L₁ не натренирована на выполнение задачи слушающего
- 3. L_1 помогает L_2 и L_0 , потому что ей на вход изначально подается контекст

L₁ — speaker-based, L₂ — listener-based

Вопросы от нас

- 1. Зачем заменять на <unk>, если можно просто убрать эти слова? И подходит ли нам в качестве критерия фильтрации частота? Важно ли нам что-то, кроме наречий, прилагательных, сравнительных штук и not?
- 2. Ушла проблема ограниченного кол-ва описаний, но словарный запас все еще ограничен. Возможно ли как-то реализовать генерацию не встретившихся в выборке названий цветов (и нужно ли это)?

Вопросы из зала

- 1. Вообще цвет это не универсальное понятие, поэтому цветовая семантика в разных культурах (в том числе в разных языках) отличается. Учитывали ли это авторы статьи, когда искали людей для игры?
- 2. Как именно listener-based модель помогает speaker-based модели?
- 3. Модели слушающего вообще не видят контекст, или это касается только Lo? Почему так сделано?
- 4. Как вам кажется, не было ли разумнее ограничить описание цвета в игре каким-то числом слов (1-2-3), как это было сделано в исследовании, которые мы обсуждали на паре?

Вопросы из зала

- 1. Если между участниками-людьми был возможен диалог, получается, слушающий мог переспросить, если не понял объяснение? Мне кажется, что говорящий в таком случае мог очень сильно изменить исходное описание так, чтобы слушающему стало понятнее, но тогда первое и второе описание вступили бы в конфликт. Кажется, в таких случаях авторы учитывали оба описания ("We also remove listener utterances and concatenate speaker utterances on the same context."). Могло ли это повлиять на «успешность» полученных моделей в худшую сторону?
- 2. Авторы говорят о том, что они ожидали от говорящих опору на базовые цвета для описания более специфичных. Что делалось в том случае, когда участники не называли никаких цветов? Или, например, сначала могли сказать одно, а потом другое (передумав)? Устная речь в этом плане предоставляет свободу выбора, изменения своего мнения и предоставления новой совершенно другой информации