TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

Quad Copter Project

IRON MAN 650

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com

> 학생 - GJ (박현우) uc820@naver.com

INDEX

01

설계 목적

시장 현황 / 개발 목표 / 개발 일정

02

시스템 구성

전체 시스템 구성 / 하드웨어 구성 / 물리 모델링 / 펌웨어 & FPGA 개발

03

주요 기능

시연 영상 / 기능 소개

04

기타

개발 환경 / 물품 구매 목록

- 1. 물품 구매
- 2. 하드웨어 구성
- 3. 적정 스펙 계산하기

- 4~6 주차
- 4. 자세 제어 모델링
- 5. PID 모델링
- 6. 필터 모델링

- 7. 모델링 기반 MCU 프로그래밍
- 8. FPGA로 코드 컨버팅
- 9. Petalinux 기반 Device Driver 개발 11. 오류 수정 및 최종 완성
- 10~12 주차
- 10. 안드로이드 기반 컨트롤러 개발

Quad Copter Overall Diagram

TI HERCULES TMS570

MPU6050

Zynq-7000

모터 선정

총 무게는 대략 3kg 이기 때문에 모터 하나당 0.75kg은 버텨야 한다.

수식을 바탕으로 내가 선정한 모터와 프로펠러의 스펙을 넣어보면

Full throttle에서 모터 하나당 2kg은 충분히 버텨준다.

총 무게에 1.5배 정도를 여유로 계산을 해도 충분한 추력이다.

프로펠러 Thrust 계산

	Aircraft	Aircraft	Dynamic	Dynamic	Dynamic	Dynamic	Dynamic
	Airspeed, V ₀	Airspeed,	Thrust, F				
	(m/s)	V ₀ (mph)	(N)	(g)	(kg)	(oz)	(lb)
Static Thrust>	0	0	19.81356	2019.73	2.01973	71.244	4.45274
all others are	0.44704	1	19.14059	1951.13	1.95113	68.8242	4.3015
dynamic thrust	0.89408	2	18.46762	1882.53	1.88253	66.4044	4.15026
	1.34112	3	17.79465	1813.93	1.81393	63.9846	3.99903
	1.78816	4	17.12168	1745.33	1.74533	61.5648	3.84779
	2.2352	5	16.44872	1676.73	1.67673	59.145	3.69655
	2.68224	6	15.77575	1608.13	1.60813	56.7252	3.54531
V	3.12928	7	15.10278	1539.53	1.53953	54.3053	3.39408
	3.57632	8	14.42981	1470.93	1.47093	51.8855	3.24284
	4.02336	9	13.75684	1402.33	1.40233	49.4657	3.0916
	4.4704	10	13.08388	1333.73	1.33373	47.0459	2.94036
	4.91744	11	12.41091	1265.13	1.26513	44.6261	2.78913
	5.36448	12	11.73794	1196.53	1.19653	42.2063	2.63789
	5.81152	13	11.06497	1127.93	1.12793	39.7865	2.48665
	6.25856	14	10.392	1059.33	1.05933	37.3667	2.33541
	6.7056	15	9.719036	990.727	0.99073	34.9469	2.18418
	7.15264	16	9.046068		0.92213	32.5271	2.03294
	7.59968	17	8.3731	853.527	0.85353	30.1073	1.8817
	8.04672	18		784.927	0.78493	27.6875	1.73047
	8.49376			716.327	0.71633	25.2677	1.57923
	8.9408	20	6.354195	647.726	0.64773	22.8479	1.42799
	9.38784	21	5.681227	579.126	0 57913	20.4281	1.27675
	9.83488	22	5.008259	510.526	0.51053	18.0083	1.12552
	10.28192	23	4.335291		0.44193	15.5885	0.97428
	10.72896	24		373.325	0.37333	13.1687	0.82304
	11.176	25	2.989355	304.725	0.30473	10.7489	0.6718
	11.62304	26	2.316387	236.125	0.23613	8.32908	0.52057
	12.07008	27	1.643419	167.525	0.16752	5.90927	0.36933
	12.51712	28	0.970451	98.9246	0.09892	3.48947	0.21809

8m/s의 속력을 내면 추력이 0.78로 떨어지므로 속도를 더 높이면 무게를 못 버티고 추락할 가능성이 생긴다.

비행시간 계산

배터리 규격 5200[mAh], 65C이기 때문에 연속적으로 뽑아내는 전류량은 5200 * 45 = 234,000[mAh]이므로 234[A]가 되어 4개의 모터가 필요로 하는 58[A] 전류용량을 충분히 커버함을 확인할 수 있다.

Max Thrust 기준으로 약 16분 정도는 비행이 가능하므로, 적정 속도에서는 더 장시간 비행이 가능하다는 것을 유추할 수 있다. (단, 보드 및 다른 추가적인 장치에 전압을 공급해줘야 하므로 비행시간이 더 적어질 수 있다.)

구매물품 Info

부품	부품명	무게		
Frame	IRON-MAN 650 Sports Quad	750g		
Motor	Tarot 4114-11 320 KV	148 * 4 = 592g		
ESC	Xrotor 40A	26 * 4 = 104g		
Circuit for Power	BUCK CONVERTER	Not yet		
Battery	22.2V, 6S1P, 45C B5200N-KP45	685g		
Propeller	Dualsky 15 x 5.2	Each prop 8g * 8 = 64g		
Gyro acceleration	MPU6050	2.1g		
MCU	TMS570 – Hercules board	80g		
FPGA Board	ZYBO Zynq – 7000 board	100g		
etc (cable, connector)	XT60, Wires	300 ~ 500g		
Total Weight		2.677kg(about 3kg)		

기판 상부와 암 결합

하부 결합

상하부 결합 중간 점검

기판에 ESC 납땜

최종 조립 완성(전면)

최종 조립 완성(측면)

하드웨어 구성에서 겪은 문제점

- CCW 프로펠러 나사 불량으로 반품
- 부품들은 커넥터 XT60인데, 배터리를 커넥터 XT90으로 주문 실수 함.
- 배터리 커넥터 XT90 to XT60 Gender 만들다가 스파크 2번으로 배터리 터트릴 뻔함. (용산RC 가서 커넥터 XT60으로 교체)
- Servo 케이블과 Wire를 암에 넣으면서 배선을 잘못해서 여러 번 안쪽에 넣었다 뺏다 수정함

보완사항

- 큰 돈이 아니라면 부품을 사거나 전문가를 찾아가는 게 안전함.
- 리튬 폴리머 배터리는 열과 충격에 예민하므로 꼭 주의해서 사용해야 함.
- 배터리 보관시 습기가 많고 열을 많이 받는 곳은 피해야 함.
- 장기간 배터리 보관시 30~40%로 에너지 용량을 남기고 보관.
- 배터리 과충전 또는 방전시 배터리 사용불가.

하드웨어 구성에서 겪은 문제점

- 모터를 ESC에 연결 후 반드시 ESC Calibration을 해야 함.
- Full Throttle(2ms)에서 프로펠러가 달린 모터의 힘이 너무 강력해서 위험함.

보완사항

- ESC Manual에서 나온 방법대로 PWM을 조정하면 된다.
- Full Throttle을 사용하지 않고 적정 Duty를 찾아 안전하게 작동 시킨다.

