

PART (A): PHYSICS

ANSWER KEY

- 1. (C)
- 2.
- (D)
- 3. (C)
- 4.
- (C)

(B)

5. (A)

- 6. (A)
- 7.
- (ABCD)
- 8. (AD)
- 9.
- (BD)
- 10. (AB)

(A)

- 11. (BC)
- 12.
- (BD)
- 13. (C)
- 14.
- 15.

- 16. (C)
- 17.
- (B)
- 18. (A)

SOLUTIONS

The retardation is given by $\frac{dv}{dt} = -av^2$

Integrating between proper limits $\Rightarrow -\int_{0}^{v} \frac{dv}{v^2} = \int_{0}^{t} a \, dt$ or $\frac{1}{v} = at + \frac{1}{u}$

$$\Rightarrow \frac{dt}{dx} = at + \frac{1}{u}$$
 $\Rightarrow dx = \frac{u \, dt}{1 + a \, u \, t}$

Integrating between proper limits $\Rightarrow \int_{0}^{s} dx = \int_{0}^{t} \frac{u \, dt}{1 + a \, u \, t} \Rightarrow S = \frac{1}{a} \ln(1 + a \, u \, t)$

2. (D)

From triangle $BCO \implies BC = 4$

From triangle *BCA* $\Rightarrow AC = \sqrt{2^2 + 4^2} = 2\sqrt{5}$

$$AC = u_1t$$
; $BC = u_2t$

$$\therefore \frac{u_1}{u_2} = \frac{AC}{BC} = \frac{2\sqrt{5}}{4} = \frac{\sqrt{5}}{\sqrt{4}}$$

3. (C)

Angle is dimensionless but has unit (radian or degree)

4. (C)

Position vector of point $A = 2\hat{i} + \hat{j}$

Position vector of point $B = 9\hat{i} + 25\hat{j}$

$$\therefore \overline{AB} = (9\hat{i} + 25\hat{j}) - (2\hat{i} + \hat{j}) = 7\hat{i} + 24\hat{j}$$

Unit vector in the direction of \overrightarrow{AB}

$$AB = \frac{\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} = \frac{7\hat{i} + 24\hat{j}}{25}$$

$$\vec{v} = 50AB = 14\hat{i} + 48\hat{j}$$

$$V = \frac{ds}{dt} = 3t^{2} - 12t + 3$$

$$a = \frac{dv}{dt} = 6t - 12 = 0$$

$$t = 2s$$
At. $t = 2s$,
$$V = 3 \times 2^{2} - 12 \times 2 + 3 = 12 - 24 + 3 = -9 \text{ m/s}$$

$$[g] = LT^{-2}$$
 and numerical value $\propto \frac{1}{\text{unit}}$

$$60 = 15t$$
; $t = 4$ sec, therefore $U_y = 20$ m/s

Slope of given v-t graph (i.e. acceleration) is constant.

From 0 to 10 seconds, velocity is in positive and then negative. That means the particle turns around at t = 10 sec.

The positive and negative areas are not equal. So displacement is not zero.

Area of v-t graph from t = 0 to t = 10 sec is same as that from t = 10 to 20 sec.

Hence average speed is same.

Applying NLM on 40 kg block
$$400 - 4T = 40a$$

For 10 kg block $T = 10.4 a$
Solving $a = 2 \text{ m/s}^2$
 $T = 80 \text{ N}$

A The mag sin 30°

10. (AB)

$$AB = BC = 400 \,\mathrm{m} = 0.4 \,\mathrm{km}$$

$$v_r = 5\cos\theta + 1$$

$$v_{v} = 5 \sin \theta$$

tame taken (t) =
$$\frac{AB}{v_y} = \frac{BC}{v_x}$$

$$\Rightarrow v_y = v_x \Rightarrow 5\sin\theta = 5\cos\theta + 1$$

$$\Rightarrow \theta = 53^{\circ} \text{ and } t = \frac{0.4}{5\sin(53^{\circ})} = 0.1 \text{ hr} = 6 \text{ min}.$$

11. (BC)

For equilibrium
$$N_A \cos 60^\circ + N_B \cos 30^\circ = Mg$$

and
$$N_a \sin 60^\circ = N_B \sin 30^\circ$$

On solving
$$N_B = \sqrt{3}N_A$$

$$N_A = \frac{Mg}{2}$$

12. (BD)

Let a be acceleration of system and T be tension in, the string.

F.B.D. of block A

$$mg \sin 30^{\circ} + T = ma$$

$$\frac{mg}{2} + T = ma \qquad \dots (i)$$

F.B.D. of *B*

$$mg - T = ma$$
 ...(ii)

Adding equation (i) & (ii); we get

$$2ma = \frac{3mg}{2} \implies a = \frac{3}{4}g$$

From equation (i); $T = \frac{mg}{4}$

- 13. (C)
- 14. (B)
- 15. (A)

16. (C)
$$x = t^2 - 4$$
 $y = t - 4$

$$x = (y+4)^2 - 4$$

$$x = y^2 + 8y + 12$$

17. (B)
$$t^2 - 4 = 0 \implies t = 2 \sec t$$

18. (A)

$$t = 2 \sec 0$$

$$V_x = \frac{dx}{dt} = 2t = 4 \text{ m/s}$$

$$V_y = \frac{dy}{dx} = 1$$

$$V = \sqrt{4^2 + 1^2} = \sqrt{17}$$

PART (B): CHEMISTRY

ANSWER KEY

SOLUTIONS

$$P_4 + O_2 \rightarrow P_4O_6 + P_4O_{10}$$

31 gram 32 gram

According to question weight of P is conserved to

Let Mole of $P_4O_6 = a$

Mole of
$$P_4O_{10} = b$$

Initial weight of P = Final weight of P.

$$31 = [a \times 4] \times 31 + [b \times 4] \times 31$$

$$4a + 4b = 1$$

$$(1) \times 3$$

Initial weigh of oxygen = Final weight of oxygen

$$32 = [a \times 6] \times 16 + [a \times 10] \times 16$$

$$3a + 5b = 1$$

$$(2) \times 4$$

$$12a + 20b = 4$$

$$12a + 12b = 3$$

So,
$$b = \frac{1}{8}$$

$$8b = 1$$

Similarly
$$a = \frac{1}{8}$$

So weight of
$$P_4O_6 = \frac{1}{8} \times 220 = 27.5$$

$$P_4O_{10} = \frac{284}{8} = 35.5$$

25. (ABCD)

Silica
$$H_2O$$
 Impurities
% in original clay \Rightarrow 40 19 $100 - (40 + 19) = 41$
% after partial drying \Rightarrow a 10 $100 - (a + 10) = 90 - a$

On heating, only water evaporates from clay, whereas silica and impurities are left as it is.

Therefore, % ratio of silica and impurities remains unchanged, i.e.

$$\frac{40}{a} = \frac{41}{90-a}$$
, $\therefore a = 44.4\%$

% of impurities after partial drying = (90 - a) = (90 - 44.4) = 45.6%

26. (AD)

(A) Weight of $CaCO_3 = (0.22 \text{ g } CO_2)$

$$\left(\frac{1 \, \text{mol CO}_2}{44 \, \text{g CO}_2}\right) \left(\frac{1 \, \text{mol CaCO}_2}{\text{mol CO}_2}\right) \left(\frac{100 \, \text{g CaCO}_3}{\text{mol CaCO}_3}\right) \frac{0.22 \times 100}{44} = 0.5 \, \text{g CaCO}_3$$

(B) Moles of CaCO₃ = moles of Ca =
$$\left(\frac{0.22}{44}\right)$$
 = 0.005 mol

Weight
$$Ca = 0.005 \times 40 = 0.2 \text{ g Ca}$$

(D) % of Ca =
$$\frac{0.2}{1.0} \times 100 = 20\%$$
 Ca

Hence (C) is wrong.

27. (ABC)

(A) For
$$n = 5$$
, $\ell_{min} = 0$. \therefore Orbital angular momentum $= \sqrt{\ell(\ell+1)} \hbar = 0$. (False)

(B) Outermost electronic configuration = $3s^1$ or $3s^2$. \therefore possible atomic number = 11 or 12 (False).

(C)
$$Mn_{25} = [Ar] 3d^5 4s^2$$
. \therefore 5 unpaired electrons. \therefore Total spin = $\pm \frac{5}{2}$ (False).

(D) Inert gases have no unpaired electrons. \therefore spin magnetic moment = 0 (True).

28. (AC)

30. (C)

Electronic configuration \rightarrow 1s, 1p, 2s, 1d, 2p, 3s, 3d, 3p, 4s, 3d For third period 3s³, 3d¹⁵, 3p⁹ number of element = 27

 $\ell = 5 \rightarrow 4 \text{ h}$

- 32. (A) $1s^3$, $1p^9$, $2s^3$, $1d^{14}$
- 33. (B) 71
- 34. (C)
- 35. (B)
- 36. (B)

PART (C): MATHEMATICS

ANSWER KEY

(BCD)

37.

38.

40.

41.

42.

(D)

43.

(ABCD)

44.

45.

(ABC) (C)

46. (ABD)

47.

(A)

(A)

48.

(BCD)

49. (D) 50.

51. (A)

(B)

52. (C)

53.

(B)

54.

SOLUTIONS

(A)

37.

$$|3x-9|+2 \ge 2$$
 OR $|3x-9|+2 \le -2$

$$|3x-9|+2 \le -2$$

$$|3x-9| \ge 0$$

$$\left|3x - 9\right| \ge 0 \qquad \left|3x - 9\right| \le -4$$

$$x \in R$$

(B)

$$\therefore x \in (-\infty, \infty)$$

38.

$$a^2 - 1 = 0$$
 and $a^2 - 4a + 3 = 0$ and $a^2 - 100a + 99 = 0$

$$a = 1, -1$$
 and $a = 1, 3$ and $a = 1, 99$

$$\therefore$$
 $a = 1$ (only one value possible).

39. (C)

$$\sin(\theta + \phi - \phi) = 5\sin(\theta + \phi)$$

$$\Rightarrow \sin(\theta + \phi) \cdot \cos\phi - \cos(\theta + \phi) \sin\phi = 5\sin(\theta + \phi)$$

$$\Rightarrow \tan(\theta + \phi) \cdot \cos\phi - \sin\phi = 5 \cdot \tan(\theta + \phi)$$

$$\Rightarrow \tan(\theta + \phi) = \frac{\sin(\phi)}{\cos \phi - 5}$$

40.

$$N = \frac{4 \times 4^5 \times 6 \times 6^5}{3 \times 3^5 \times 2 \times 2^5} = \frac{4^6 \times 6^6}{3^6 \times 2^6} = \left(\frac{4 \times 6}{3 \times 2}\right)^6 = 4^6$$

$$\therefore \log_2 4^6 = 12$$

41. (B

$$8\cos x \cdot \left(\cos^2\frac{\pi}{6} - \sin^2 x - \frac{1}{2}\right) = 1$$

$$8\cos x \left(\frac{3}{4} - \sin^2 x - \frac{1}{2}\right) = 1$$

$$8\cos x \left(\frac{1}{4} - \sin^2 x\right) = 1$$

$$2\cos x - 8\cos x \left(1 - \cos^2 x\right) = 1$$

$$2\cos x - 8\cos x + 8\cos^3 x = 1$$

$$8\cos^3 x - 6\cos x - 1 = 0$$

$$2(4\cos^3 x - 3\cos x) = 1$$

$$2\cos 3x = 1$$

$$\cos 3x = \frac{1}{2}$$

$$\therefore 3x = 2n\pi \pm \frac{\pi}{3} \quad n \in I$$

$$x = \frac{2n\pi}{3} \pm \frac{\pi}{9}$$

$$n = 0, x = \frac{\pi}{9}, n = 1, x = \frac{2\pi}{3} - \frac{\pi}{9} = \frac{5\pi}{9}, \frac{2\pi}{3} + \frac{\pi}{9} = \frac{7\pi}{9}$$

$$\therefore \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} = \frac{13\pi}{9}$$

42. (D)

$$x^2 - 3kx + 2 \cdot k^2 - 1 = 0$$

$$2k^2-1=7 \implies 2k^2=8 \implies k=\pm 2$$
.

$$\therefore$$
 Sum = $3k = 6$. ($k = -2$ rejected).

43. (ABCD)

Case 1: x > 0

$$\frac{x - 7x + 10}{x^2 - 6x + 9} < 0$$

$$\frac{(x - 2)(x - 5)}{(x - 3)^2} < 0$$

$$x \in (2,3) \cup (3,5)$$

Case 2: x < 0

$$\frac{x^2 + 7x + 10}{x^2 - 6x + 9} < 0$$

$$\frac{\left(x+2\right)\left(x+5\right)}{\left(x-3\right)^2} < 0$$

$$x \in (-5, -2)$$

44. (BCD)

$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{5}{2}$$
 and $\tan \frac{\alpha}{2} \cdot \tan \frac{\beta}{2} = \frac{3}{2}$

$$\therefore \tan\left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = \frac{\frac{5}{2}}{1 - \frac{3}{2}} = \frac{\frac{5}{2}}{\frac{-1}{2}} = -5$$

$$\sin(\alpha + \beta) = \frac{2\tan(\frac{\alpha + \beta}{2})}{1 + \tan^2(\frac{\alpha + \beta}{2})} = \frac{-10}{1 + 25} = \frac{-10}{26} = \frac{-5}{13}$$

$$\tan(\alpha + \beta) = \frac{2\tan\left(\frac{\alpha + \beta}{2}\right)}{1 - \tan^2\left(\frac{\alpha + \beta}{2}\right)} = \frac{-10}{1 - 25} = \frac{-10}{-24} = \frac{5}{12}$$
$$= \frac{\frac{-32}{11}}{1 - \frac{256}{121}} = \frac{\frac{-32}{11}}{\frac{-135}{121}} = \frac{352}{135}$$

$$\therefore \cos(2\alpha + 2\beta) = \frac{1 - \tan^2(\alpha + \beta)}{1 + \tan^2(\alpha + \beta)} = \frac{1 - \frac{25}{144}}{1 + \frac{25}{144}} = \frac{119}{169}$$

45. (ABC)

$$2\sin\left(\frac{x}{2}\right)\left(\cos^2 x - \sin^2 x\right) = \cos^2 x - \sin^2 x$$

$$2\sin\frac{x}{2}\cdot\cos 2x - \cos 2x = 0$$

$$\left(\cos 2x\right)\left(2\sin\frac{x}{2}-1\right)=0$$

$$\therefore \cos 2x = 0 \text{ or } \sin \frac{x}{2} = \frac{1}{2}$$

$$\therefore 2x = 2n\pi \pm \frac{\pi}{2} \text{ or } \therefore \frac{x}{2} = n\pi + (-1)^n \cdot \frac{\pi}{6}$$
$$x = n\pi \pm \frac{\pi}{4} \qquad x = 2n\pi + (-1)^n \cdot \frac{\pi}{3} \qquad n \in I$$

$$5^{x+1} = 7^x$$

$$(x+1)\log 5 = x \cdot \log 7$$

$$x+1 = x \cdot \log_5 7$$

$$x(1-\log_5 7) = -1$$

$$\therefore x = \frac{1}{\log_5 7 - 1} = \frac{1}{\frac{\log_3 7}{\log_3 5} - 1} = \frac{\log_3 5}{\log_3 7 - \log_3 5}$$

$$\therefore x = \frac{\log_3 5}{\log_3 (7/5)} = \log_{7/5} 5 = \log_{1.4} 5$$

$$D > 0 \implies 1 - 4a^2 \ge 0$$

$$\Rightarrow 4a^2 - 1 \le 0$$

$$\Rightarrow a \in \left(-\frac{1}{2}, \frac{1}{2}\right) - \left\{0\right\}$$

Now,
$$|x_1 - x_2| < 1$$

$$\left|\frac{\sqrt{D}}{a}\right| < 1 \implies \left|\frac{\sqrt{1 - 4a^2}}{a}\right| < 1 \implies a \in \left(-\infty, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$$

Now taking intersection

$$\therefore a \in \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

$$\log x = k(b-c), \log y = k(c-a), \log z = k(a-b)$$

$$\therefore x = 10^{k(b-c)}, y = 10^{k(c-a)}, z = 10^{k(a-b)}$$

Then
$$xyz = 10^{\circ} = 1$$
.

$$x^a \cdot y^b \cdot z^c = 10^o = 1$$

$$x^{b+c} \cdot y^{c+a} \cdot z^{a+b} = 10^{k(b^2-c^2+c^2-a^2+a^2-b^2)} = 1$$

$$x^{b^2+bc+c^2} \cdot y^{c^2+ac+a^2} \cdot z^{a^2+ab+b^2} = 10^{k(b^3-c^3+c^3-a^3+a^3-b^3)}$$
$$= 10^{\circ} = 1.$$

Solution for Passage 1 Que. No. 49, 50 & 51

$$y = ax^2 + bx + c$$

Vertex
$$\equiv \left(\frac{-b}{2a}, \frac{-D}{4a}\right) \equiv (3, -2)$$

$$\therefore \frac{-b}{2a} = 3 \text{ and } \frac{-D}{4a} = -2 \text{ and } c = 10.$$

:.
$$b = -6a$$
 and $4ac - b^2 = -8a$ and $c = 10$.

$$b = -6a$$
 and $40a - b^2 = -8a$

Now, $a \neq 0$

$$\therefore 40a - 36a^2 = -8a$$

$$\therefore 40-36a=-8 \implies 36a=48$$

$$b = -6 \times \frac{4}{3} = -8$$
 (Ans. of Q. 49)

$$\therefore$$
 Quadratic equation is $\frac{4}{3}x^2 - 8x + 10 = 0$

or
$$4x^2 - 24x + 30 = 0 \begin{cases} \alpha \\ \beta \end{cases}$$

$$\therefore \alpha + \beta = \frac{24}{4} = 6; \ \alpha\beta = \frac{30}{4} = \frac{15}{2}$$

$$\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 36 - 15 = 21$$

$$\therefore S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{21 \times 2}{15} = \frac{14}{5}$$

$$p=1$$
 : equation $\Rightarrow x^2 - \frac{14}{5}x + 1 = 0 \Rightarrow 5x^2 - 14x + 5 = 0$ (Ans. of Q.50)

$$y \ge \frac{-2}{3}.$$

$$\frac{4}{3}x^2 - 8x + 10 \ge \frac{-2}{3}$$

$$4x^2 - 24x + 30 \ge -2$$

$$4x^2 - 24x + 32 > 0$$

$$x^2 - 6x + 8 \ge 0$$

$$(x-2)(x-4) \ge 0$$

$$x \in (-\infty, 2] \cup [4, \infty)$$
 (Ans. of Q.51)

Solution for Passage 2 Que. No. 52, 53 & 54

$$x^2 + y^2 = 1 \implies x = \cos \theta, y = \sin \theta$$

$$\therefore P = (3\cos\theta - 4\cos^3\theta)^2 + (3\sin\theta - 4\sin^3\theta)^2$$

$$P = \cos^2 3\theta + \sin^2 3\theta = 1$$

$$Q = \cos^6 \theta + \sin^6 \theta = 1 - 3\cos^2 \theta \sin^2 \theta$$

$$=1 - \frac{3}{4}\sin^{2}2\theta$$

$$Q_{\min} = \frac{1}{4}; \quad Q_{\max} = 1$$

$$R = 3(\cos^{4}\theta + \sin^{4}\theta) - 2(\cos^{6}\theta + \sin^{6}\theta) - 1$$

$$= 3(1 - 2\cos^{2}\theta\sin^{2}\theta) - 2(1 - 3\cos^{2}\theta\sin^{2}\theta) - 1$$

$$= 3 - 6\sin^{2}\theta\cos^{2}\theta - 2 + 6\sin^{2}\theta\cos^{2}\theta - 1$$

$$R = 0$$