# Содержание

| 1 | Задача 1   1.1 Решение | <b>2</b> |
|---|------------------------|----------|
| 2 | Задача 2               | 2        |
| 3 | Задача 3               | 2        |
| 4 | Залача 4               | 3        |

## 1 Задача 1

Определить регулярность языка  $L = \{ w ~\Big|~ |~ w ~|_{aba} = |~ w ~|_{ab} ~\&~ w \in \{a,b,c\}^* \}$ 

#### 1.1 Решение



Рис. 1: Автомат для языка L

Т.к. удалось построить автомат, то язык регулярный.

### 2 Задача 2

Проанализировать язык истинных выражений, представляющих собой утверждение вида  $N_1+N_2>N_0$ , где  $N_0$ ,  $N_1$  и  $N_2$  - двоичные числа.

#### 3 Задача 3

Определить, описывает ли данная грамматика регулярный язык

$$S \rightarrow STSa \qquad \qquad T \rightarrow a \\ S \rightarrow SS \qquad \qquad T \rightarrow b \\ S \rightarrow bb \qquad \qquad T \rightarrow TT$$

#### Задача 4 4

Пусть h(w) - слово, получающееся из w удвоением каждой буквы. Например,  $h(aba^2) = a^2b^2a^4$ . Запишем эти слова друг под другом так, чтобы первые буквы w и h(w) образовали пару, вторые - следующую за ней, и т.д. Недостающую длину в w дополним "решетками".

Исследовать язык пар слов (w, h(w)), поступающих на вход анализатора разбитыми таким образом на пары букв, т.е. поступающих параллельно (т.е.

элементы входного алфавита - вектора 
$$\begin{pmatrix} w_i \\ v_i \end{pmatrix}$$
 , где  $w_i, v_i \in \{a,b,\#\}$  ). В нашем примере вход анализатора будет представлять собой следующую

последовательность пар:

$$\begin{pmatrix} a \\ a \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} \# \\ a \end{pmatrix}$$