Assignment 1 Analysis Report

	sortInsert (s)	sortComparable (s)	sortBinary (s)	sortHeap (s)	sortMerge (s)
Input Array Size (elements)					
2 ⁴	0.00000	0.00000	0.00000	0.00000	0.00000
2 ⁶	0.00000	0.00000	0.00000	0.00000	0.00000
2 ⁸	0.00100	0.00000	0.00000	0.00000	0.00000
2 ¹⁰	0.00500	0.00400	0.00200	0.00030	0.00010
2 ¹²	0.01000	0.02200	0.02000	0.00200	0.00100

Hypothesis for sortInsert order of growth is O(n²):

$$T(n) = a*n^2$$

 $0.01 \text{ (seconds)} = a * (4096 \text{ elements})^2$

a = 5.96e-10 is the constant.

 $T(n) = 5.96e-10*n^2$

For array sizes with, 16 384 and 65 536 elements respectively, the estimated run time are:

 $T(n) = 5.96e-10*16 384^{2}$

T(16384) = 0.16 seconds

 $T(n) = 5.96e-10*65536^2$

T(65536) = 2.56 seconds

Hypothesis for sortComparable order of growth is O(n²):

$$T(n) = a*n^2$$

0.022 (seconds) = a * $(4096 \text{ elements})^2$

a = 1.311e-9 is the constant.

$$T(n) = 1.331e-9*n^2$$

For array sizes with, 16 384 and 65 536 elements respectively, the estimated run time are:

$$T(n) = 1.331e-9*16 384^2$$

T(16384) = 0.352 seconds

 $T(n) = 1.331e-9*65536^2$

T(65536) = 5.62 seconds

Hypothesis for sortBinary order of growth is O(n²):

$$T(n) = a*n^2$$

 $0.02 \text{ (seconds)} = a * (4096 \text{ elements})^2$

a = 1.192e-9 is the constant.

$$T(n) = 1.192e-9 *n^2$$

For array sizes with, 16 384 and 65 536 elements respectively, the estimated run time are:

T(16384) = 0.32 seconds

 $T(n) = 1.192e-9 *65536^2$

T(65536) = 5.09 seconds

Hypothesis for sortHeap order of growth is O(n lg n):

$$T(n) = a*n \lg n$$

 $0.002 \text{ (seconds)} = a * (4096 \text{ elements})* \lg(4096)$

a = 4.069e-8 is the constant.

$$T(n) = 4.069e-8*n^2$$

For array sizes with, 16 384 and 65 536 elements respectively, the estimated run time are:

T(n) = **4.069e-8***16 384*lg*(16384)

T(16384) = 0.00933 seconds

T(n) = 4.069e-8*65536*lg*(65536)

T(65536) = 0.042seconds

Bilal Jaffry Jaffryb

Hypothesis for sortMerge order of growth is O(n lg n):

$$T(n) = a*n \lg n$$

 $0.001 \text{ (seconds)} = a * (4096 \text{ elements})* \lg(4096)$

a = 2.035e-8 is the constant.

$$T(n) = 2.035e-8 *n^2$$

For array sizes with, 16 384 and 65 536 elements respectively, the estimated run time are:

T(16384) = 0.00467 seconds

T(n) = **2.035e-8** *65536*lg*(65536)

T(65536) = 0.0213seconds

Results for 2¹⁴ and 2¹⁶ size input arrays.

	sortInsert (s)	sortComparable (s)	sortBinary (s)	sortHeap (s)	sortMerge (s)
Input Array Size (elements)					
214	0.11600	0.27500	0.12100	0.00600	0.00900
2 ¹⁶	2.55200	6.96400	2.80700	0.05600	0.01800