Алгебра 3 Кузнецов

1 Листок 1. Нётеровы кольца

1. R нёторово. Покажем, что R[[x]] тоже нётерово. Пусть J — идеал в R[[x]]. Пусть $\mathfrak{a}(n) = \{a_n \in R : \exists p = a_n x^n + a_{n+1} x^{n+1} + \ldots \in J\}$. Ясно, что $\mathfrak{a}(0) \subseteq \mathfrak{a}(1) \subseteq \mathfrak{a}(2) \subseteq \ldots$ — идеалы в R. Поэтому из нётеровости R следует, что при некотором $d \in \mathbb{N}$ имеет место

$$\mathfrak{a}(n) = \mathfrak{a}(d) \ \forall n \ge d.$$

Найдём образующие каждого идеала $\mathfrak{a}(n)$ при $n \leq d$ и выберем соответствующие степенные ряды в R[[x]] для каждой образующей (для $a \in \mathfrak{a}(n)$ выбираем степенной ряд вида $a_n x^n + \ldots$). Вся эта совокупность образующих и порождает идеал J. Если степенной ряд в J начинается со степени меньше d, то вычитаниями приводим его к начинающемуся со степени не меньше d. А для ряда, начинающегося со степени не меньше d, проводим аналог деления с остатком на степенные ряды, соответствующие образующим $\mathfrak{a}(d)$. Только в отличие от деления многочленов этот процесс бесконечный. В результате такого деления получаем представление степенного ряда в виде суммы произведений некоторых степенных рядов на степенные ряды, соответствующие образующим $\mathfrak{a}(d)$.

- 2. Конечно порождённый модуль над нётеровым кольцом нётеров. Пусть R нётерово кольцо, M нётеров модуль над R. Если M не нётеров, то существует бесконечная последовательность b_1, b_2, \ldots элементов M, такая, что ни один из b_k не выражается как линейная комбинация с коэффициентами из R предыдущих b_i . Записывая b_k как линейные комбинации образующих модуля M a_1, \ldots, a_N , получаем, что есть бесконечная последовательность векторов из R^N , такая, что ни один из них не является линейной комбинацией предыдущих с коэффициентами из R. Индукцией по N показываем, что это не так.
- 3. M нётеров R-модуль. $\mathfrak a$ аннигиляционный идеал в R. Покажем, что $R/\mathfrak a$ нётерово кольцо.

 R/\mathfrak{a} действует на M так, что ни один его элемент кроме нуля не действует на M нулём.

Можно считать сразу, что R действует на M так, что ни один элемент, кроме нуля, не действует нулём, и показывать, что R — нётерово кольцо.

Пусть m_1, \ldots, m_n — порождают M над R. Допустим, M не нёторово. Тогда есть идеал I в R, который не конечно порождён.

Выбираем последовательность i_1, i_2, \ldots, i_k , такую, что i_{k+1} не содержится в идеале, порождённом i_1, \ldots, i_k , для любого k. Рассматриваем векторы в M^n :

$$\begin{pmatrix} i_1 m_1 \\ \vdots \\ i_1 m_n \end{pmatrix}, \dots, \begin{pmatrix} i_k m_1 \\ \vdots \\ i_k m_n \end{pmatrix}, \dots$$

Лемма 1.1. Если M — нётеров R-модуль, то в любой последовательности векторов из M^n какой-то вектор будет линейной комбинацией предыдущих. Иначе говоря, M^n — нётеров модуль.

Эта лемма следует из следующей.

Лемма 1.2. Если M и N — нётеровы R-модули, то $M \times N$ — нётеров R-модуль.

Proof. Если это не так, то существует бесконечная последовательность

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_k \\ y_k \end{pmatrix}, \dots$$

в которой каждый элемент не является линейной комбинацией (с коэффициентами из R) предыдущих. Сначала за счёт нётеровости обнулим первую компоненту, затем вторую.

Применяя лемму к нашей ситуации, получаем при некотором k равенство

$$\begin{pmatrix} i_k m_1 \\ \vdots \\ i_k m_n \end{pmatrix} = r_1 \begin{pmatrix} i_1 m_1 \\ \vdots \\ i_1 m_n \end{pmatrix} + \ldots + r_{k-1} \begin{pmatrix} i_{k-1} m_1 \\ \vdots \\ i_{k-1} m_n \end{pmatrix}.$$

А отсюда получаем, что $i_k - r_1 i_1 - \ldots - r_{k-1} i_{k-1}$ действует нулём на M. Значит, это 0. Противоречие.

- 4. а) Нуль на всех координатных плоскостях. Образующая xyz. Если содержатся члены, которые не содержат одну из переменных, например, z, то p(x,y) + zq(x,y) на плоскости z=0 не тождественный ноль.
 - б) Нуль на всех координатных прямых. Координатные прямые:

$$x = y = 0, x = z = 0, y = z = 0.$$

xy,yz,zx — образующие. Как только есть члены, зависящие только от одной переменной, например p(x), то мы получаем не тождественный ноль на y=z=0.

в) Нуль на t^2, t^3, t^4 . $z-x^2, y^2-x^3$. Допустим, многочлен обращается в 0 на (t^2, t^3, t^4) . Тогда его можно представить в виде

$$(z - x^2)p(x, y) + q(x, y),$$

и при этом q(x,y) обращается в ноль на (t^2,t^3) . А это ровно когда $y^2=x^3$. Делим на y^2-x^3 , получаем в остатке многочлен степени не выше 1 по y. Это многочлен вида yr(x)+u(x), причём он обращается в 0 когда $y^2=x^3$. Заменяем y на -y, и он уже не обращается в 0, если не был нулевым тождественно.

 \mathbf{r}

5. а) Кольцо полиномов, инвариантных относительно действия группы диэдра D_n . Положим z=x+iy и будем рассматривать полиномы $p(z,\overline{z})$. Наш полином должен быть инвариантен относительно сопряжения и умножения z на $e^{2\pi i/n}$. Инвариантами должны быть и его однородные компоненты. Из

 $\frac{1}{n}\sum_{k=0}^{n}p(e^{2\pi i}z,\overline{e^{2\pi i}z})=p(z,\overline{z})$

получаем, что $z^k\overline{z}^l$ не усредняется в 0 только при k-l делящемся на n. Из инвариантности относительно сопряжения получаем, что наш многочлен представляется в виде суммы членов вида $a(z^k\overline{z}^l+z^l\overline{z}^k)$ с k-l делящимся на n .

- 2 Листок 2. Факториальные кольца
- 3 Листок 3
- 4 Листок 4
- 5 Листок 5