INFO251 – Applied Machine Learning

Lab 8 – Metrics & Fairness
Satej Soman
based heavily on material by Suraj Nair, Joshua Blumenstock and Simón Ramirez Amaya

Announcements

PS5 due April 3

Today's topics

- Review of prediction metrics
- Fairness:
 - Statistical non-discrimination
 - Fairness, datasets, benchmarks, and folktables
 - Useful components in scikit-learn

Review: metrics for assessing prediction quality

Assume that green is the "positive" class here

		Predicted	
		Green	Orange
Astrol	Green	TP	FN
Actual	Orange	FP	TN

- Accuracy = (TP + TN)/(TP + FP + FN + TN)
- TPR = TP/(TP + FN)
- FPR = FP/(FP + TN)
- Precision = TP/(TP + FP)

Probabilistic interpretation

- Assume that green is the "positive" class here (Green = 1, Orange = 0)
- \hat{y} is prediction, y is the true value (both take on values 0 or 1)

- TPR = TP/(TP + FN) = $P(\hat{y} = 1 | y = 1)$
- FPR = FP/(FP + TN) = $P(\hat{y} = 1 | y = 0)$
- Precision = TP/(TP + FP) = $P(y = 1 | \hat{y} = 1)$

		Predicted condition		Sources: [8][9][10][11][12][13][14][15] view·talk·edit	
	Total population = P + N	Predicted positive	Predicted negative	Informedness, bookmaker informedness (BM) $= TPR + TNR - 1$	Prevalence threshold $= \frac{(PT)}{\sqrt{TPR \times FPR} - FPR}$ $= \frac{\sqrt{TPR} - FPR}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP), hit ^[b]	False negative (FN), miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, $\frac{power}{P} = \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate type II error $^{[c]}$ = $\frac{FN}{P} = 1 - TPR$
	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]	False positive rate (FPR), probability of false alarm, fall-out type I error $^{[f]}$ = $\frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{TP + FP} = 1 - FDR$	False omission rate (FOR) $= \frac{FN}{TN + FN}$ $= 1 - NPV$	Positive likelihood ratio $(LR+)$ $= \frac{TPR}{FPR}$	Negative likelihood ratio $(LR-)$ $= \frac{FNR}{TNR}$
-	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{TP + FP} = 1 - PPV$	Negative predictive value	Markedness (MK), deltaP (Δp) $= PPV + NPV - 1$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	$= \frac{F_1 \text{ score}}{\frac{2 \text{ PPV} \times \text{TPR}}{\text{PPV} + \text{TPR}}}$ $= \frac{2 \text{ TP}}{2 \text{ TP} + \text{FP} + \text{FN}}$	Fowlkes-Mallows index (FM) $= \sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) = √TPR × TNR × PPV × NPV - √FNR × FPR × FOR × FDR	Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$

More general metrics derived from confusion matrix

Source: https://en.wikipedia.org/wiki/Confusion _matrix

Receiver Operator Characteristic Curve (ROC Curve)

- In classification problems, we usually get a predictive score that we threshold:
 - e.g. sigmoid predictor outputs a "score" in the range [0, 1]
 - a classifier takes this score, and compares it to a threshold
 - see: model.predict proba in scikit-learn classifiers

ROC Curve

- Comes from WW2 radar-based sensors scored by how well they detected enemy tanks/guns/ships
- For every threshold, calculate the TPR and FPR and plot it out see tradeoff between TPR and FPR
- Other option for quota problems: Set "acceptance rate" to the rate of positive observations in the training set

Hypothetical ROC Curves

Source:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Example ROC Curves

Source:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Statistical definitions of fairness

- When we calculate TPR, FPR, etc do we always calculate it for the entire dataset?
- The metrics we discussed (especially in their probabilistic formulation) are properties of the joint distribution of y and \hat{y}
- What if some of the aspects of each data point also mattered? Consider a discrete variable A (race, gender, location, etc) – it could be a feature, or it could be strongly correlated
- Now, the criteria are properties of the joint distribution of y, \hat{y} , and A
- Error parity: probability of error is the same for members and non-members
 - e.g. TPR parity: $P(\hat{y} = 1 | y = 1, A = 1) = P(\hat{y} = 1 | y = 1, A = 0)$

Exercise on your own:

Does this classifier satisfy error parity for the TPR? For the FPR?

A = 0	Ŷ = 0	Ŷ = 1
Y = 0	6/32	6/32
Y = 1	1/32	3/32

A = 1	Ŷ = 0	Ŷ = 1
Y = 0	4/32	4/32
Y = 1	2/32	6/32

Datasets and benchmarks

- Datasets are pretty key to ML practice!
- Performance on widely-used datasets (ImageNet, MNIST digits) becomes a benchmark to compare different methods' efficacy
- In ML-based fairness, the "UCI Adult" dataset was extremely popular extract of 1994 US census data with a target binary variable based on whether income > \$50k
- Hundreds if not thousands of ML fairness studies done using this dataset
- But... \$50k was an arbitrary threshold! What if we used something else?

Overfitting to UCI Adult

folktables

- folktables is a Python package that offers a convenient and well documented interface to the ACS information!
- Using the resources in folktables you can generate data samples on the fly and get a better sense of whether a model is overfitting to a particular realization of the census data.
- For instance: you can train a model in CA data and used it to predict in AL. Or use data from two consecutive years to test how quickly performance degrades.
- Needless to say, you can include different covariates, set thresholds, etc...

https://github.com/socialfoundations/folktables

i'm not directly concerned with fairness – is this relevant to general ML practice?

yes.

- Understanding differential performance by subgroup can be
 - A. key to boosting overall performance
 - B. key to operationalizing predictions

Useful components in sklearn

- Tree-based methods
 - sklearn.tree.DecisionTreeClassifier
 - sklearn.ensemble.RandomForestClassifier
- Pre-processing
 - sklearn.compose.ColumnTransformer
 - sklearn.preprocessing.OneHotEncoder
 - sklearn.preprocessing.StandardScaler
- Validation
 - sklearn.pipeline.Pipeline
 - sklearn.model selection.GridSearchCV
 - sklearn.model selection.cross validate