Uppgift 1

Patrik Laurell, Björn Wictorin

6 april 2014

a) Plottning av tabellvärden

Figur 1: Resistans som funktion av temperaturen.

Figur 1 visar resistansen för termistorn, som funktion av temperaturen. Korsen visar mätvärdena. Den svarta kurvan anpassades till datapunkterna med hjälp av Matlab och ges av ekvationen $R = a \cdot e^{b/T}$, där T är termistorns temperatur.

b) Plottning av logaritmerade tabellvärden

Antag att sambandet kan skrivas $R=a\cdot e^{b/T}$. Logaritmering av höger- och vänsterled ger $\ln(R)=\ln(a)+\ln(e^{b/T})=\ln(a)+b\cdot \frac{1}{T}$. Detta är ekvationen för en rät linje, y(1/T). Om värdena $\ln(R/\Omega)$ som funktion av 1/T ligger på en rät linje är det alltså sannolikt att antagandet, $R=a\cdot e^{b/T}$, stämmer. Figur 2 visar de logaritmerade resistansvärdena som funktion av 1/T, tillsammans med en anpassad rät linje. I figuren ses att värdena ligger nära linjen, och alltså stämmer modellen $R=a\cdot e^{b/T}$ bra med mätdatan.

Figur 2: Logaritmerade mätpunkter, ln(R), som funktion av 1/T.

c) Rätlinjeanpassning

Som vi såg i uppgift 1
b ligger mätpunkterna ln(R) plottade mot 1/T nära en rät linje. För att
ta fram koefficienterna för linjen användes funktionen "polyfit" i Matlab. Det an
passade polynomet var av grad 1. Den anpassade linjen ges av ekvationen
 $y(1/T) = ln(a) + b \cdot \frac{1}{T}$. Rätlinjeanpassningen ger att $ln(a) = -5.34 \Leftrightarrow a = 4.8m\Omega$ och b = 3040K.

d) Plottning av den räta linjen

Den räta linjen som togs fram i uppgift c
) plottades i samma figur som de logaritmerade mätpunkterna, se figur 2.