Homework 40

The due date for this homework is Tue 7 May 2013 12:00 AM EDT.

Question 1

Find the coordinates $(\bar x,\bar y)$ of the centroid of the region bounded by $y=\sin x$ and $y=\cos x$ for $0\le x\le \frac{\pi}{4}$.

$$\bar{x}=rac{\pi}{8}$$
 , $ar{y}=\sqrt{rac{2-\sqrt{2}}{2}}$

$$\bar{x} = \frac{\pi\sqrt{2}}{\sqrt{2}-1}, \bar{y} = \frac{1}{\sqrt{2}-1}$$

$$\bar{x} = rac{\pi\sqrt{2}-4}{4(\sqrt{2}-1)}, ar{y} = rac{1}{4(\sqrt{2}-1)}$$

$$\bar{x} = \frac{\sqrt{2}}{2}, \bar{y} = \frac{\sqrt{2}}{2}$$

$$\bar{x} = \frac{1}{\sqrt{2} - 1}, \bar{y} = \frac{1}{\sqrt{2} - 1}$$

$$\bar{x}=\pi\sqrt{2}$$
 , $ar{y}=1$

Question 2

Find the the coordinates $(\bar x,\bar y)$ of the centroid of the region defined by $|x+y|\leq 1, -1\leq x\leq 1,$ and $-1\leq y\leq 1.$

Hint 1: draw a picture!

Hint 2: notice anything interesting about this region?

$$(ar{x},ar{y})=\left(rac{1}{\sqrt{2}}\,,rac{1}{\sqrt{2}}
ight)$$

$$(\bar{x}, \bar{y}) = (1, 1)$$

$$(ar{x},ar{y})=\left(-rac{1}{\sqrt{2}}\,,-rac{1}{\sqrt{2}}
ight)$$

$$(ar{x},ar{y})=\left(-rac{1}{\sqrt{2}}\,,rac{1}{\sqrt{2}}
ight)$$

$$(\bar{x},\bar{y})=(0,0)$$

$$(\bar{x},\bar{y})=\left(rac{1}{2},rac{1}{2}
ight)$$

Question 3

Find the centroid \bar{x} of an infinitely long solid "horn" (cf. Lecture 36) obtained by rotating the region $0 \le y \le \frac{1}{x^2}$ about the x-axis from x=1 to $x=+\infty$.

Hint: begin by writing the volume element dV as a function of x. Compute the volume V and then...

$$\bar{x} = \frac{1}{3}$$

$$\bar{x} = \frac{\pi}{2}$$

$$\bar{x}=1$$

$$\bar{x} = \frac{2}{3}$$

$$\bar{x} = \frac{3}{2}$$

 $\bar{x}=+\infty$ (the integral diverges)

Question 4

Find the coordinates (\bar{x}, \bar{y}) of the centroid of the union of the following two discs:

$$D_1: x^2 + y^2 \le 4$$
 and $D_2: (x-4)^2 + (y-2)^2 \le 1$

Hint: replace each disc with a vertex at its centroid. What "mass" should you assign to each vertex?

$$(\bar{x},\bar{y})=(4\pi,2\pi)$$

$$(\bar{x}, \bar{y}) = \left(\frac{4\pi}{5}, \frac{2\pi}{5}\right)$$

$$(\bar{x},\bar{y}) = \left(\frac{4}{\pi},\frac{2}{\pi}\right)$$

$$\bar{x},\bar{y})=(0,0)$$

$$(ar x,ar y)=(2,1)$$

$$(\bar{x},\bar{y}) = \left(\frac{4}{5},\frac{2}{5}\right)$$

Question 5

Find the x-coordinate of the center of mass of a thin plate of density (mass-per-unit-area) $\delta=\frac{1}{x^2}$ defined by the region $0\leq y\leq \ln x$ for $1\leq x\leq e$.

$$\bigcirc \frac{e-1}{2}$$

$$\bigcirc \frac{e}{2e-4}$$

$$\bigcirc \frac{e}{2-e}$$

- $\bigcirc \frac{e}{e-2}$

Question 6

Find the the coordinates $(\bar x,\bar y)$ of the center of mass of the region between the x-axis, the y-axis, and the lines x=2 and y=x+2, with density (mass-per-unit-area) $\rho=3x$.

Hint: remember, this is a center-of-mass, not a centroid, so you'll need to integrate with respect to $dM=\rho\cdot dA$.

- $(\bar{x},\bar{y}) = \left(\frac{1}{3},\frac{17}{3}\right)$
- $(\bar{x},\bar{y}) = \left(\frac{7}{5},\frac{17}{5}\right)$
- $(\bar{x},\bar{y})=(1,2)$
- $(\bar{x},\bar{y}) = \left(\frac{7}{5},\frac{17}{10}\right)$
- $(\bar{x}, \bar{y}) = \left(10, \frac{17}{3}\right)$
- $(\bar{x},\bar{y}) = \left(\frac{14}{3},\frac{17}{3}\right)$
- In accordance with the Honor Code, I certify that my answers here are my own work.

Submit Answers

Save Answers