UNIVERSIDAD MAYOR REAL Y PONTIFICIA DE SAN FRANCISCO XAVIER DE CHUQUISACA FACULTAD DE TECNOLOGÍA

PROYECTO FINAL INGENIERIA DE SOFTWAREA

NOMBRES:

- Garcia Vallejos Jose Armando
- Rodrigo Valda Corchado
- Yampara Copa Johan Daniel

CARRERA: Ingeniería de Sistemas

FECHA: 21/06/24

Sucre-Bolivia

FRONTEND

EL DOCUMENTO DEBE CONSIDERAR LOS SIGUIENTES ELEMENTOS

1. LA VISION DEL PROYECTO

El objetivo del proyecto es desarrollar una aplicación de gestión de fichas médicas para un hospital, la cual permite a los pacientes obtener fichas para consultas médicas y gestionar las citas de manera eficiente. La aplicación proporcionará funcionalidades específicas para cuatro tipos de usuarios: médicos, pacientes, administradores y recepcionistas. Los médicos podrán gestionar sus citas y actualizar el estado de las mismas, mientras que los pacientes podrán ver sus citas y el estado de las fichas. Los administradores tendrán control total sobre el sistema y los recepcionistas podrán gestionar la asignación de fichas y citas.

Objetivos:

Facilitar la asignación y gestión de fichas médicas.

Proporcionar una interfaz intuitiva para pacientes, médicos, administradores y recepcionistas.

Mejorar la eficiencia y la organización de las citas médicas en el hospital.

Permitir el seguimiento del estado de las fichas médicas en tiempo real.

Beneficios:

Mejora la experiencia del paciente al reducir el tiempo de espera y organizar mejor las citas.

Proporciona a los médicos una forma eficiente de gestionar sus citas y pacientes.

Facilita a los recepcionistas la tarea de organizar y asignar fichas.

Ofrece a los administradores una visión completa y control del sistema de citas y fichas médicas.

Usuarios destinatarios:

Médicos

Pacientes

Administradores

Recepcionistas

Alcance:

El proyecto abarca el desarrollo de una aplicación web con funcionalidades para la gestión de fichas médicas, la asignación de citas y el seguimiento del estado de las mismas.

2. LA ARQUITECTURA DE LA APLICACION (NIVEL 0 DE ABSTRACION EN TERMINOS DE PAQUETES)

3. LA REALIZACION DE LOS PRINCIPALES CASOS DE USO DE GRUPO ASOCIADO (5 DIAGRAMAS DE SECUENCIA) Principales:

Caso de Uso 1: Solicitar Ficha Médica

Participantes:

- Paciente
- Interfaz de Usuario
- Controlador de Fichas
- Servicio de Fichas
- Base de Datos

Diagrama de Secuencia:

- 1. Paciente solicita una ficha médica a través de la interfaz de usuario.
- 2. La interfaz de usuario envía la solicitud al Controlador de Fichas.
- 3. El Controlador de Fichas valida la solicitud y la envía al Servicio de Fichas.
- 4. El Servicio de Fichas guarda la ficha en la base de datos y devuelve la confirmación al Controlador de Fichas.
- 5. El Controlador de Fichas envía la confirmación a la interfaz de usuario.
- 6. La interfaz de usuario muestra la confirmación al paciente.

Caso de Uso 2: Asignar Cita a un Paciente

Participantes:

- Recepcionista
- Interfaz de Usuario
- Controlador de Citas
- Servicio de Citas
- Base de Datos

Diagrama de Secuencia:

- 1. Recepcionista asigna una cita a un paciente a través de la interfaz de usuario.
- 2. La interfaz de usuario envía la solicitud al Controlador de Citas.
- 3. El Controlador de Citas valida la solicitud y la envía al Servicio de Citas.

- 4. El Servicio de Citas guarda la cita en la base de datos y devuelve la confirmación al Controlador de Citas.
- 5. El Controlador de Citas envía la confirmación a la interfaz de usuario.
- 6. La interfaz de usuario muestra la confirmación al recepcionista.

Caso de Uso 3: Llamar a Paciente

Participantes:

- Médico
- Interfaz de Usuario
- Controlador de Citas
- Servicio de Citas
- Base de Datos

Diagrama de Secuencia:

- 1. El médico llama a un paciente a través de la interfaz de usuario.
- 2. La interfaz de usuario envía la solicitud al Controlador de Citas.
- 3. El Controlador de Citas actualiza el estado de la cita a "Llamado" en la base de datos.
- 4. El Servicio de Citas guarda el estado actualizado y devuelve la confirmación al Controlador de Citas.
- 5. El Controlador de Citas envía la confirmación a la interfaz de usuario.
- 6. La interfaz de usuario muestra la confirmación al médico.

Caso de Uso 4: Atender a Paciente

Participantes:

- Médico
- Interfaz de Usuario
- Controlador de Citas
- Servicio de Citas
- Base de Datos

Diagrama de Secuencia:

- 1. El médico marca una cita como "Atendiendo" a través de la interfaz de usuario.
- 2. La interfaz de usuario envía la solicitud al Controlador de Citas.
- 3. El Controlador de Citas actualiza el estado de la cita a "Atendiendo" en la base de datos.
- 4. El Servicio de Citas guarda el estado actualizado y devuelve la confirmación al Controlador de Citas.
- 5. El Controlador de Citas envía la confirmación a la interfaz de usuario.
- 6. La interfaz de usuario muestra la confirmación al médico.

Caso de Uso 5: Finalizar Atención

Participantes:

- Médico
- Interfaz de Usuario
- Controlador de Citas
- Servicio de Citas

Base de Datos

Diagrama de Secuencia:

- 1. El médico marca una cita como "Atendido" a través de la interfaz de usuario.
- 2. La interfaz de usuario envía la solicitud al Controlador de Citas.
- 3. El Controlador de Citas actualiza el estado de la cita a "Atendido" en la base de datos.
- 4. El Servicio de Citas guarda el estado actualizado y devuelve la confirmación al Controlador de Citas.
- 5. El Controlador de Citas envía la confirmación a la interfaz de usuario.
- 6. La interfaz de usuario muestra la confirmación al médico.

4. EL DIAGRAMA DE ESTADO DE DOS CLASES

4. LA DESCRIPCION DE LAS TABLAS RELACIONALES

TABLA USER

ID_USER: Integer (Primary Key)

ACCOUNT: Varchar(255)

PASSWORD: Varchar(255)

TYPE: Varchar(50)

TABLA DOCTOR

ID_DOCTOR: Integer (Primary Key)

NAME: Varchar(255)

ID_SPECIALITY: Integer (Foreign Key a SPECIALITY)

TABLA SPECIALITY

ID_SPECIALITY: Integer (Primary Key)

NAME: Varchar(255)

TABLA RECEPTIONIST

ID_RECEPTIONIST: Integer (Primary Key)

ID_USER: Integer (Foreign Key a USER)

NAME: Varchar(255)

TABLA STAFF

ID_STAFF: Integer (Primary Key)

ID_USER: Integer (Foreign Key a USER)

NAME: Varchar(255)

ROLE: Varchar(255)

TABLA CLINIC

ID_CLINIC: Integer (Primary Key)

NAME: Varchar(255)

LOCATION: Varchar(255)

TABLA PATIENT

ID_PATIENT: Integer (Primary Key)

ID_USER: Integer (Foreign Key a USER)

NAME: Varchar(255)

DOB: Date

ADDRESS: Varchar(255)

PHONE: Varchar(50)

APPOINTMENT

ID_APPOINTMENT: Integer (Primary Key)

ID_PATIENT: Integer (Foreign Key a PATIENT)

ID_DOCTOR: Integer (Foreign Key a DOCTOR)

DATE: DateTime

STATUS: Varchar(50)

TABLA ADMINISTRATOR

D_ADMINISTRATOR: Integer (Primary Key)

ID_USER: Integer (Foreign Key a USER)

NAME: Varchar(255)

5. EL DIAGRAMA DE COMPONENTES Y DE DESPLIEGUE

GIT DEL PROYECTO:

https://github.com/6to-GRUPO/Proyecto-Final---Colas.git