Правительство Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ВЫСШАЯ ШКОЛА ЭКОНОМИКИ"

Московский институт электроники и математики им. А.Н. Тихонова

Департамент электронной инженерии

Учебная дисциплина «Электроника»

Домашнее задание «Расчет и моделирование диодной схемы»

Исполнитель:

студент группы БИТ-203 Ефремов В.В.

Вариант 6

Руководитель работы:

доцент, к.т.н. Самбурский Л.М.

Содержание

редисловие	3
эдание 1	4
1.a	4
1.6	4
1.в	5
1.r	5
1.д	6
1.e	8
1.ж	8
здание 2	11
2.a	11
2.6	11
2.B	12
2.г	12
2.д	14
2.e	16
2.ж	17
ыводы	18
риложение	19
1.6	19
1 n	20

Предисловие

Несколько предварительных замечаний.

Я взял сопротивление нагрузки 10 кОм, последовательное сопротивление индуктивности — 10 мОм. Эти значения ни на что особо не влияют, взял эти т.к. они упоминались на консультации.

Stop time = 11, Time to start saving data = 10.92.80 мc – это 4 периода, дополнительные 101 секунд чтобы пропустить переходный процесс и смотреть установившийся режим.

Maximum timestep = 100u. Чтобы расчеты проводились быстро. Этой точности вполне достаточно.

В формулах расчета коэффициента пульсаций есть умножение на 100, чтобы коэффициент был в процентах, а не долях.

В приложении, в конце документа различные детали и скриншоты не особо важные для понимания происходящего.

Задание 1

1.a

Просто собираем схему. Коэффициент трансформации 10:1, из-за корня в формуле берем индуктивности в соотношении 100:1.

Рисунок 1

1.б

В этом пункте ищем такую индуктивность L1, чтобы среднее выходное напряжение (в точке а) было 11 В. Результат – 300 мкГн. Три .meas команды нужны, чтобы вычислить коэффициент пульсаций. pp (peak to peak, размах\амплитуда), avg (average, среднее). Подбирал используя .step param, детали смотри в приложении.

1.в

Тут подбираем ёмкость С1, чтобы коэффициент пульсаций был меньше 0.01%. Итоговый результат – 20 мФ.

Рисунок 3

Больше скринов в приложении. Пара замечаний:

При росте ёмкости (начиная с 1 мкФ) коэффициент пульсаций падает, примерно на 20 мкФ становится меньше 0.01%, поэтому я взял это значение. Но если повышать ёмкость дальше, то коэф. Пульсаций продолжает падать, а затем начинает расти. При этом параллельно с падением (ростом) коэф. пульсаций растет (падает) выходное напряжение. Немного, но все же. В случае схемы с рис. З выходное напряжение — 11.8637 В. Можно подкорректировать индуктивность L1 и ёмкость С1 так, чтобы было ровно 11 В. Не делал, т.к. позже добавим стабилизатор, в котором есть резистор, который и съест лишние 0.8 В.

1.г

Посмотрим на коэф. пульсаций при ёмкости в десять раз больше и меньше найденных 20 мФ. Для этого используем .step param list ... Эта команда перебирает значения не с шагом, а просто из списка. Я так же взял значение в 100 раз больше, иллюстрации.

При 2 мФ пульсаций почти в 10 раз больше, при 200 мФ пульсаций меньше (!). Это потому, что с ростом ёмкости коэф. пульсаций какое-то время падает и 200 мФ попадают в этот промежуток. Ёмкость в 2 Ф уже слишком велика и коэф. пульсаций вырастает (см. рис. 5)

Per .tran options, skipping operating point for transient analysis.

- .step x=0.002
- .step x=0.02
- .step x=0.2
- .step x=2

Measurement: v	pp	
----------------	----	--

step	PP(v(a))	FROM	TO
1	0.0112972	0	0.08
2	0.00113392	0	0.08
3	0.000214577	0	0.08
4	0.00123692	0	0.08

Measurement: v avg

step	AVG (v (a))	FROM	TO
1	11.8635	0	0.08
2	11.8637	0	0.08
3	11.8578	0	0.08
4	11.7181	0	0.08

Measurement: pulse coef

step	100*v_pp/v_avg
1	0.0952268
2	0.00955788
3	0.00180958
4	0.0105556

Рисунок 5

1.д

В схеме меняем только .tran ... строку, чтобы на графике был и переходный процесс тоже. Рис. 7 — выходное напряжение в зависимости от ёмкости. Рис. 8 — ток до выпрямителя (в увеличенном масштабе).

Зелёный график — ёемкость 2 мФ, синий — 20 мФ, красный — 200 мФ. На рис. 7 видно, что чем больше ёмкость, тем больше длительность переходного процесса. Я полагаю, это связанно, в том числе, с зарядом конденсатора и большая ёмкость требует больше периодов.

На рис. 8 отрицательная часть синусоиды обрезается, т.к. диод D не пропускает ток в обратном направлении.

Рисунок 6

Рисунок 7

Рисунок 8

1.e

Добавление стабилизатора. Используем простую схему из резистора и стабилитрона. Стабилитрон выбирал по напряжению пробоя (11 В). Сопротивление R2 подбираем чтобы среднее напряжение в точке а было 11 В. Также стабилизатор заментно уменьшает коэф. пульсаций (см. рис. 11). Со стабилизатором коэф. пульсаций на порядок с лишним ниже.

Рисунок 9

1.ж

Посмотрим на выходное напряжение, если входное либо 220 В, либо 242 В (+10%). Видно (см. рис. 11), что выходное напряжение фактически не меняется. Из-за стабилизатора, если его убрать, то выходное напряжение заметно (почти на 10%) вырастает (см. рис. 12 и 13).

Рисунок 10

```
Per .tran options, skipping operating point for transient analysis.
.step x=220
.step x=242
Measurement: v_pp
                    PP (v(a))
                                        FROM
                                                            то
  step
                                                            0.08
                    6.38962e-005
                                        0
     1
     2
                                                            0.08
                    1.52588e-005
                                        0
Measurement: v_avg
                                        FROM
                                                            TO
                    AVG(v(a))
  step
                                                            0.08
                    10.978
     1
     2
                    10.9942
                                        0
                                                            0.08
Measurement: pulse coef
                    100*v pp/v avg
  step
                    0.000582039
     1
     2
                    0.000138789
```

Рисунок 11

Рисунок 12

```
Per .tran options, skipping operating point for transient analysis.
.step x=220
.step x=242
Measurement: v_pp
                                       FROM
                                                           TO
  step
                   PP(v(a))
                                                           0.08
     1
                   0.00113392
     2
                   0.00125408
                                       0
                                                           0.08
Measurement: v_avg
                   AVG(v(a))
                                       FROM
                                                           TO
  step
    1
                   11.8637
                                       0
                                                           0.08
                                                           0.08
     2
                   13.1097
                                       0
Measurement: pulse coef
                   100*v_pp/v_avg
  step
                   0.00955788
     1
     2
                   0.00956608
```

Рисунок 13

Задание 2

Это задание аналогично первому, просто диод заменяется на диодный мост. Поэтому меньше комментариев, если все так же.

Разница между диодом и додным мостом почти незаметна, полагаю из-за пульсаций в 0.01%. Думаю, если бы были нужны 0.001% (или даже меньше), то разница была бы заметна, но подробнее об этом в выводах далее.

Одно концептуальное отличие в пункте 2.д во входном токе выпрямителя, т.к. диодный мост пропускает ток в двух направлениях, в отличии от диода.

2.a Важная деталь: в схеме две земли. Они обе важны.

Рисунок 14

2.б

Подходящее значение индуктивности L1 здесь такое же как в задаче 1, 300 мкГн.

2.в

Аналогично использую ёмкость в 20 мФ. Это круглое число и почти минимальная ёмкость, при которой коэф. пульсаций меньше 0.01%.

Рисунок 16

v_pp: PP(v(a))=0.00113487 FROM 0 TO 0.08
v_avg: AVG(v(a))=11.862 FROM 0 TO 0.08
pulse_coef: 100*v_pp/v_avg=0.00956731

Рисунок 17

2.г

Разные коэф. пульсации, кстати, хорошо видно на графике (см. рис. 20).


```
D3: both pins shorted together -- ignoring.
Per .tran options, skipping operating point for transient analysis.
.step x=0.002
.step x=0.02
.step x=0.2
Measurement: v_pp
                                        FROM
                                                            TO
                    PP(v(a))
  step
                                                            0.08
                    0.0113354
     1
                                        n
     2
                    0.00113487
                                        0
                                                            0.08
     3
                    0.000212669
                                        0
                                                            0.08
Measurement: v_avg
                    AVG(v(a))
                                        FROM
                                                            то
  step
                                                            0.08
                    11.8618
     1
                                        0
     2
                    11.862
                                        0
                                                            0.08
     3
                    11.8561
                                        0
                                                            0.08
Measurement: pulse coef
                    100*v pp/v_avg
  step
                    0.0955619
     1
     2
                    0.00956731
     3
                    0.00179375
```

Рисунок 19

Рисунок 20

2.д Графики неотличимы на глаз от аналогичных из задачи 1.

Зеленый – ёмкость 2 мФ, синий – 20 мФ, красный 200 мФ.

Рисунок 21

Рисунок 22

Для графиков входного тока выпрямителя немого изменим схему – поставим наноомный резистор, чтобы померять ток на нём.

Хорошо видно отличие от случая просто диода (Рисунок 8): есть ток в обоих направлениях.

Рисунок 23

Рисунок 24

2.e Добавляем стабилизатор. Такой же как в задании 1.

Рисунок 25

```
D3: both pins shorted together -- ignoring.
Per .tran options, skipping operating point for transient analysis.
.step x=220
.step x=242
Measurement: v_pp
                   PP (v(a))
                                        FROM
                                                            TO
  step
                                                            0.08
                    6.58035e-005
                                        0
     1
     2
                    1.43051e-005
                                                            0.08
                                        0
Measurement: v_avg
                                        FROM
                                                            TO
  step
                   AVG(v(a))
     1
                   10.9779
                                                            0.08
     2
                   10.9942
                                                            0.08
Measurement: pulse coef
  step
                    100*v pp/v avg
                    0.000599418
     1
     2
                   0.000130115
```

2.ж

Убедимся, что без стабилизатора повышение напряжения с 220 В до 242 В заметно повышает выходное напряжение.


```
D3: both pins shorted together -- ignoring.
Per .tran options, skipping operating point for transient analysis.
.step x=220
.step x=242
Measurement: v_pp
                   PP(v(a))
                                      FROM
                                                          TO
  step
                   0.00113487
                                                          0.08
     1
                                      n
     2
                   0.0012598
                                                          0.08
                                      n
Measurement: v_avg
  step
                   AVG(v(a))
                                      FROM
                                                          TO
                   11.862
                                                          0.08
     1
     2
                   13.1078
                                                          0.08
Measurement: pulse coef
 step
                   100*v pp/v avg
                   0.00956731
    1
     2
                   0.00961111
```

Рисунок 28

Выводы

	Без стабилизатора	Со стабилизатором
Диод	0.00955788	0.000582039
Диодный мост	0.00956731	0.000599418

Таблица 1. Коэф. пульсаций

Из таблицы 1 видно, что разница в коэф. пульсаций между просто диодом и диодным мостом, в рассмотренном случае, на уровне погрешности. При этом стабилизатор не только защищает от повышения напряжения на входе (1.ж, 2.е), но и снижает коэф. пульсаций на порядок.

Я считаю, это происходит потому, что коэф. пульсаций 0.01% можно добиться любым из вариантов. Более тонкой подстройкой можно получить 0.0017% без стабилизатора. И на этом уровне мост слегка (процентов на 10) лучше просто диода. Но возможно это просто погрешности.

Входной ток у диода и моста отличется (Рисунок 8, Рисунок 24). Какой из вариантов лучше и чем я сказать не могу.

Выходное напряжение и время установления у двух вариантов не отличаются.

С мостом схема несколько сложнее, но я полагаю эта разница совершенно несущественна, особенно учитывая, что мосты бывают цельными компонентами.

Приложение

1.б

.step param x ... присваивает разные значения переменной x, и для каждого моделирует схему. В L1 стоит {x}. Именно так, с фигурными скобками, чтобы спайс считал это переменной.

Рисунок 29

Результаты в Spice error log (Ctrl-I). Нас интересует часть с v_avg, т.к. это среднее напряжение в точке а. Видно что 11 В это почти 6 шаг

Measurement:	_		
step	AVG (v (a))	FROM	TO
1	23.3506	0	0.08
2	18.5551	0	0.08
3	15.4759	0	0.08
4	13.4714	0	0.08
5	12.0553	0	0.08
6	10.992	0	0.08
7	10.1576	0	0.08
8	9.48099	0	0.08
9	8.91837	0	0.08
10	8.44106	0	0.08
11	8.02956	0	0.08
12	7.67014	0	0.08
13	7.35268	0	0.08
14	7.06966	0	0.08
15	6.81519	0	0.08
16	6.58495	0	0.08
17	6.37517	0	0.08
18	6.18305	0	0.08
19	6.00628	0	0.08
20	5.8429	0	0.08

Идем в начало лога, смотрим какой индуктивности соответствует 6 шаг (300 мкГн). Здесь я остановился, но можно уточнять значение взяв меньший шаг.

```
Per .tran options, skipping operating point for transient analysis.
.step x=5e-005
.step x=0.0001
.step x=0.00015
.step x=0.0002
.step x=0.00025
.step x=0.0003
.step x=0.00035
.step x=0.0004
.step x=0.00045
.step x=0.0005
.step x=0.00055
.step x=0.0006
.step x=0.00065
.step x=0.0007
.step x=0.00075
.step x=0.0008
.step x=0.00085
.step x=0.0009
.step x=0.00095
.step x=0.001
```

Рисунок 31

1.в

В этом пункте подбирали значение ёмкости. Начал с такого. Очень широкий диапазон, при этом использую Octave sweep, а не Linear sweep. Разница в том, что в линейном каждый шаг увеличивает значение на сколько-то (10u, например), а в Octave — в несколько раз.

На рис. 33 результаты, видно что с ростом ёмкости коэф. пуьсаций сначала падает, а потом начинает расти.

Measurement:	pulse coef
step	100*v pp/v avg
1	137.263
2	104.485
3	78.0228
4	57.519
5	42.0248
6	30.5173
7	22.0401
8	15.8551
9	11.367
10	8.12883
11	5.79894
12	4.13133
13	2.937
14	2.08681
15	1.48059
16	1.04907
17	0.742823
18	0.525765
19	0.371945
20	0.263022
21	0.186032
22	0.131499
23	0.0930563
24	0.0657804
25	0.0465999
26	0.032894
27	0.0232637
28	0.016463
29	0.0116399
30	0.00823957
31	0.00582798
32	0.0041238
33	0.00290998
34	0.00218658
35	0.001817
36	0.00177726
37	0.0019712
38	0.00232689
39	0.00287734
40	0.0037127
41	0.00481827
I	