Akraino, EdgeX, CORD, OpenEdge, ioFog... What's the best solution for your edge?

Agenda

- Edge computing definition
- Typical edge computing implementations, use cases and their features
- Available edge computing projects in the market
- Summary

Definition of Edge Computing

EDGE COMPUTING IS THE PLACEMENT OF

DATA CENTER-GRADE NETWORK, COMPUTE & STORAGE Closer to

And reduce application Latency

Another Network

Edge Characteristics

Low Latency, Real Time, Optimized Infrastructure and Rapid Response

Massive Various Data Storage and Movement, Data Sovereignty

Enhanced Security and Data Privacy

Context or Location Awareness, Localization

Multi-Access Networking across Large-Scale and Small-Size Sites: Unreliable, Limited, High-Bandwidth

Intelligence, Smartness, Autonomy, Zero-Touch, Self-X

Typical implementations of edge computing

Definition of the implementation

- Fog computing(FC): "A decentralized Computing infrastructure based on Fog Computing nodes (FCNs) placed at <u>any point</u> of the architecture between the end devices and the cloud. The FCNs are <u>heterogeneous in nature</u> and thus can be based on different kinds of elements including but not limited to <u>routers</u>, <u>switches</u>, <u>access points</u>, <u>loT gateways as well as set-top boxes</u>."
- Mobile/Multi-access Edge Computing(MEC): "To bring computational and storage capacities to the edge of the network within the Radio Access Network to reduce latency and improve context awareness. The MEC nodes or servers are usually co-located with the Radio Network Controller or a macro base-station. The servers run multiple instances of MEC host which has the capabilities to perform computation and storage on a virtualized interface."

Definition of the implementations - Cont'd

• Cloudlet(CC): "Treated as "data center in a box" running a virtual machine capable of provisioning resources to end devices and users in real time over a WLAN network. The services are Cloudlets are provided over a one-hop access with high bandwidth, thus offering low latency for applications."

Reference:

[1] Koustabh Dolui and Soumya Kanti Datta, "Comparison of Edge Computing Implementations: Fog Computing, Cloudlet and Mobile Edge Computing". 1-6. 10.1109/GIOTS.2017.8016213.

Characteristics of the implementations

Type of Implementation	FC	MEC	СС
Location	Near end device, dense and distributed	Radio Access Network Controller/Base station	Local/Outdoor Installation in one place
Device	Routers, Switches, Access points, gateways	Servers running in base station or CO	Compact-size data centers
Access Mediums(mostly)	WiFi, LTE, ZigBee, MQTT, Bluetooth	WiFi, LTE	WiFi
Logical Proximity	One/multiple hops	One hop	One hop
Ability for near-real-time Interaction	High	Medium	Medium
Multi-tenancy	Supported	Supported	Supported
Computation power	Medium	High	High

Type of Implementation	FC	MEC	СС
Power Consumption	Low	High	Medium
Context Awareness	Medium	High	Low
Coverage	Low	High	Low
Server Density	Medium	Low	High
Cost/CAPEX	Low	High	Medium
Traffic Continuity	High	Medium	High
Active users	High	Medium	Medium

Reference:

[1] Koustabh Dolui and Soumya Kanti Datta, "Comparison of Edge Computing Implementations:

Fog Computing, Cloudlet and Mobile Edge Computing". 1-6. 10.1109/GIOTS.2017.8016213.

[2] Eugen Borcoci, "Fog Computing, Mobile Edge Computing,

Cloudlets - which one?", 2016

[3] Baktir, Ahmet Cihat & Ozgovde, Atay & Ersoy, Cem. (2017). How Can Edge Computing Benefit from Software-Defined Networking: A Survey, Use Cases & Future Directions. IEEE Communications Surveys & Tutorials. PP. 1-1. 10.1109/COMST.2017.2717482.

Edge use case overview

Edge computing represents a potential value of \$175 billion to \$215 billion in hardware by 2025.

Total: ~\$175 billion-\$215 billion

Reference:

[1] https://www.mckinsey.com/industries/high-tech/our-insights/new-demand-new-markets-what-edge-computing-means-for-hardware-companies

(intel)

Relationship between edge implementation and use case

		Use case features							
			Latency	Extensi bility	Context Awareness	Power Consumption	Scalability	Privacy & Security	
lmp	Access Medium								
Implementation characteristics	Ability for near-real- time Interaction								
tatio	Computation power								
า cha	Context Awareness								
aract	Multi-tenancy								
eristi	Logical proximity								
ics	Coverage								
	Power consumption								

Some typical use cases

Critical

Features	Use cases									
	Smart Cities	RAN-aware Context Optimization	Augmented Reality	E-Health	Autonomous Vehicles	Smart Grid	Video Caching & Analysis			
Bandwidth										
Latency							•			
Extensibility		•								
Context Awareness										
Power Consumption										
Scalability		•					•			
Privacy & Security										

Depends

12

Work Flow

Recommendation for the use cases

Use Cases	Recommendation
Smart Cities	FC + MEC
RAN-aware Context Optimization	MEC
Augmented Reality	MEC/CC + FC
E-Health	FC
Autonomous Vehicles	FC + MEC
Smart Grid	FC
Video Caching & Analysis	MEC/CC

Open source projects available in the market

Regarding the projects...

Edge Implementations

Akraino Edge Stack

"Fully integrated edge infrastructure"

"Intend to develop solutions and support of carrier, provider and the IoT networks"

BPs within the project

- Connected Vehicle Blueprint
- Edge Video Processing
- Edge Lightweight and IoT Blueprint
- Integrated Edge Cloud Blueprint
- Kubernetes-Native Infrastructure for Edge
- Micro-MEC
- Radio Edge Cloud
- StarlingX Far Edge Distributed Cloud
- Time-Critical Edge Compute

Airship

StarlingX

"A deployment-ready, scalable and highly reliable edge infrastructure software platform"

Evaluation of StarlingX

- China Unicom, together with Intel, 99Cloud build a new ME-laaS (Mobile Edge-Infrastructure as a Service) based on the StarlingX.^[1]
- The approved Akraino blueprint that submitted by Tencent on connected vehicle has StarlingX proposed with TARS.^[2] StarlingX is also proposed to be used in another blueprint submitted by WR on Far Edge Distributed Cloud.^[3]
- China Mobile Suzhou Software has evaluated StarlingX for its edge and cloud plan, and China Mobile Research Institute and Intel experimented vCPE onboarding on top of ONAP with StarlingX.
- China Telecom Research Institute Guangzhou has evaluated StarlingX as a candidate for its edge solution
- [1] Chinese ver: https://mp.weixin.qq.com/s/dlOpeo1Le5HEYCiSt3yUxg
- [2] https://wiki.akraino.org/display/AK/StarlingX+Far+Edge+Distributed+Cloud
- [3] <u>https://wiki.akraino.org/display/AK/Connected+Vehicle+Blueprint</u>

CORD

"Manage their Central Offices using declarative modeling languages for agile, real-time configuration of new customer services"

VCO

"Successfully completed two demos on residential, enterprise and mobile services "

EdgeX Foundry

"Loosely coupled microservice framework with device management and various protocols supported"

"SouthBound" Devices, Sensors and Actuators

Open Edge

"Open edge computing framework that provide temporary offline, low-latency services, and include remote synchronization, function computing, video access pre-processing, Al inference, etc."

Already support functions such as python 27, and compatible with Baidu CFC

Support both containerized mode and normal process mode

KubeEdge

"First Kubernetes Native Edge Computing Platform"

"Small footprint(66M and ~30MB needed for memory)."

"Easy to enable a mini-cloud at the edge"

IoFog

"Deploying, running, and networking distributed microservices at the edge"

"Construct an Edge Compute Network (ECN) with Agent, Controller and Connector"

"Need to write microservices for one's own purpose"

Glimpse of Edge Projects

Project	Foundation	Key Participators	Layer	Segment/Focus	MANO	SDN	Latest version	Infra	Code Repo
Akraino	Linux Foundation	AT&T, Intel, ARM, Nokia, Ericsson, Dell, Red Hat, Juniper, WRS, etc.	Umbrel la, Full Stack	All-in-one edge stack	N/A	N/A	N/A	Openstack, K8S	http://gerrit.akraino.or g
StarlingX	OpenStack Foundation	Wind River, Intel, Huawei, Ericsson, China Unicom, etc.	laaS	Industrial IoT and MEC	ONAP	ODL	1.0	OpenStack	https://git.starlingx.io/ cgit
Airship	OpenStack Foundation	AT&T, SKT, Intel, Mirantis, etc.	Deploy ment	Openstack on Kubernetes	ONAP/Tack er	Calico	0.1	OpenStack/K 8S	https://git.airshipit.org /cgit
CORD	Linux Foundation	AT&T, SK Telecom, Verizon, China Unicom and NTT, etc.	laaS	MEC for residential, enterprise & mobile	XOS	ONOS	6.0	OpenStack/K 8S	https://github.com/op encord
vCO	Linux Foundation	Red Hat, China Mobile, etc.	laaS	MEC for residential, enterprise & mobile	ONAP/Tack er	ODL	2.0/3.0	OpenStack	No code repo yet. Just POC 28

Glimpse of Edge Projects

Project	Foundation	Key Participators	Scope	Layer	Segment /Focus	Latest version	Code Repo
EdgeX Foundry	Linux Foundation	Dell, Vmware, etc.	Common framework for Edge solutions (SDK).	PaaS	Industrial IoT	3.0 (4.0 expected in April 2019)	Go: https://github.com/edgexfoundry Java: https://github.com/edgexfoundry
OpenEdge	N/A	Baidu, etc.	Open edge computing framework	PaaS		0.1.2	https://github.com/baidu/openedge
KubeEdge	CNCF, Linux Foundation	Huawei, etc	Extend native containerized application orchestration capabilities at Edge	PaaS		0.2	https://github.com/kubeedge/kubeedge/
Azure IoT Edge	N/A	Microsoft	Internet of Things (IoT) service that offload task to edge	PaaS	IoT	1.0.8-dev	https://github.com/Azure/iotedge
ioFog	Eclipse Foundation	Edgeworx, etc.	Edge computing platform through microservice at edge	PaaS	IoT	2.0/3.0	https://github.com/ioFog/iofog.org
Eclipse Kura	Eclipse Foundation	Eurotech, Rad Hat, Comtrade, etc.	Platform for building IoT gateways, enabling remote management & app deployment	PaaS	IoT	4.0	https://github.com/eclipse/kura/

Summary

What's the best for your edge?

- EC implementations have difference on characteristics
- Use case have their unique features and suitable implementation
- Projects could be categorized into different implementations

Find the features of your USE CASE and choose the most appropriate implementation for that!

