6 Given 1-

→ Problem is

min x II x II, 8.t J (x) - \ II x II, ≤ € - P.

Say, x_0 be minimizer of Laeso cost $f\hat{n}$. $J'(x_0) = 2 ||y - \phi_x||_2 \frac{d}{dx} (||y - \phi_x||) + \lambda \frac{d}{dx} ||x||_1 = 0$ $x = x_0$

 $= \epsilon'$ (say)

 $\Rightarrow 2e' \frac{d}{dx} \left(||y - \phi_x|| \right)_{x = x_0} = -\lambda \frac{d}{dx} \left(||x|| \right)_{x = x_0}$

Let us look at the case split of the above equation

 \Rightarrow Case 1:- both sides zero \Rightarrow [[x,1], is minima at $x=x_0$]

as well since $e' = 0 \angle E$

In this case if we can set a value of ϵ greater than value of ϵ' — when finding solution for P,

than value of the white prossible solution we can search and finally reach possible solution because we achieved best possible solution / seconstruction as $\frac{d}{dx} ||y-\phi_{x}||_{2} = 0$ has global minima for $||y-\phi_{x}||_{2}$ as a solution.

Case 21- non-zero sides.

i e $\epsilon' \neq 0$, both ||x||, and $||y - \Phi x||_2$ does not have extremas at $x = x_0$ $\mathcal{L}(x, \lambda) = f(x) - \lambda g(x)$

$$c \frac{d}{dx} \left(\left| \left| y - \phi_{x} \right| \right|_{2} - \epsilon \right) + \frac{d}{dx} \left| \left| x \right| \right|_{1} = 0$$

→ there € is some constant whereas c is the Lagraingian Multiplier Constant

Now if we put $\epsilon = \epsilon'$ and $c = \frac{2}{\lambda} \epsilon'$ then we are solving same egins for x \Rightarrow Lasso solin will be solin for P_1 .

Hence in Case 1, 2 = D We proved solution so of P, can be Larso solution.