

Stoichiometry-1

SAP-4

Atom -> Atom is a Smallest fundamental Particle of an element. Representation of atom zx^A or zx x = Notation of atomz = Atomic no. A = mass no. (no. of nucleons) atomic no. = 11 Ex. Na mass no = 23 No. of Protons in an atom = Z * No. of newtrons in an atom = A-Z * No. of electrons in a neutral atom = No. of — in a charged species = No. of Protons - charge o^{2} (0 xide ion) (80⁶) No. of Protons = 8 No. of neutrons = 16-8=8

No. of electrons =
$$8 - (-2) = 10$$

Ex. NHy (Ammonium ion)

14

No. of Protons = $7 + (4 \times 1) = 11$

No. of neutrons = $7 + (4 \times 0) = 7$

No. of electrons = $11 - 1 = 10$

Ex. $C_2O_4^2$ (oxalate ion)

No. of Protons = $12 + 32 = 44$

No. of neutrons = $12 + 32 = 44$

No. of neutrons = $12 + 32 = 44$

No. of electrons = $44 - (-2) = 46$

Atomic No. Notation of atom mass no.

1 He

2 He

3 Li

4 Be

9

11

C

1 N

14

Atomic mass - mass of 1 atom of an element Atomic mass = (mass no.) amu Atomic mass unit (amu) = $\frac{1}{12}$ x (mass of 1 atom of c-12) Gram atomic mass (Molar mass of atom) -It is the mass of 1 mole atoms of an element * $1 \text{ amu} = \frac{1}{N_A} gm$ Ex. 24 Mg mass no = 24

mass no. = 24 mass of 1 atom of Mg or atomic mass of Mg = 24 amu = $\frac{24}{N_A}$ gm

Gram atomic mass of Mg

mass of 1 mole Mg atoms = $\frac{24}{N_A} \times N_A$ gm

or

mass of N_A Mg atoms = 24 gm

 $\frac{\text{Ex.}}{\text{Ca}} \quad \text{mass of atom}$

mass no. \pm 40

Atomic mass \pm 40 amu = $\frac{40}{N_A}$ gm

Molar mass \pm 40 gm

2. If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

(A) decrease twice

remain unchanged

(D) be a function of the molecular mass of the substance

increase two folds

(B)

amu
$$\longrightarrow$$
 Double
 $N_A \longrightarrow$ Haif

```
mass of 1 atom of Mg = [24 amu]
    mass of 1 mol Mg atoms = (24 amu) X NA 3m
                                  48 amu X NA
                                = 24 amu x NA
                                 = 24 gm
molecular mass -> mass of 1 molecule
         Molecular mass = (Total mass no.) amu
Gram molecular mass (molar mass of molecule) -
        mass of 1 mole molecules.
     molar mass of molecule = (Total mass no.) gm
                                  16 amu
                Molecular mass =
       CHy
Ex.
                 molar mass =
                                  16 gm
               Molecular mass =
                                 98 amu
       H,SOu
                molar mass =
                                 98 gm
                Molecular mass =
                                  63 amu
       HNO3
                                  63 gm
                molar mass =
```

Average atomic mass (Atomic mass of mix)-

M2 -> atomic mass of atom B

no of moles of atom B

Naturally occuring chlorine is 75% Cl³⁵ which has an atomic mass of 35 amu and 25% Cl³⁷ which has a mass of 37 amu. Calculate the average atomic mass of chlorine
(A) 35.5 amu

(B) 36.5 amu

(C) 71 amu

(D) 72 amu

$$(A) 35.5 \text{ amu} \qquad (B) 36.5 \text{ amu} \qquad (C) 71 \text{ amu} \qquad (D) 72 \text{ amu}$$

$$(D) 72 \text{ amu}$$

$$(D) 72 \text{ amu}$$

$$(D) 72 \text{ amu}$$

$$\frac{301}{75+25}$$
 Mavg =
$$\frac{(13\times37)}{75+25}$$

Average molecular mass (molecular mass of mix)

$$M_{avg} = \frac{n_1 M_1 + n_2 M_2 + - - - -}{n_1 + n_2 + - - -}$$

The molar composition of polluted air is as follows:

mole percentage composition 16%

Oxygen (0_2) Nitrogen (N_2) 80% Carbon dioxide 03%

Sulphurdioxide 01% What is the average molecular weight of the given polluted air ? (Given, atomic weights of C and S are 12 and 32 respectively. $M_{avg} = (16 \times 32) + (80 \times 28) + (3 \times 44)$

Mavg =
$$\frac{16+80+3+1}{16+80+3+1}$$

= 29.48 amu
Calculation of no. of moles \longrightarrow

given mass (gm) no of moles =

no of moles $(n) = \frac{PV}{a}$ For ideal gases, (3)

at NTP/STP -> P = 1 atm = 1 bar

$$*$$
 0.0821 \times 273 = 22.4

$$0.0821 \times 298 = 24.46$$

$$\frac{\text{No. of moles at NTP/sTP}}{22.4}$$

(Vi) mass in mg
$$SOI \rightarrow n = \frac{PV}{RT} = \frac{2 \times 2.446}{1000}$$

$$24.46$$

$$=$$
 2 \times 10 moles

```
no of moles = no of molecules
         No. of molecules = 2 × 10 NA
     Total No. of atoms = 5x2x10 NA
       No of c-atoms = 1 \times 2 \times 10^{-4} N_A
       No of H- atoms = 4x2x10 NA
            mass = mole x molar mass
                     = 2 \times 10^4 \times 16 gm
                       = 2 \times 10^{-4} \times 16 \times 10^{3} \text{ mg}
                        = 3.2 \, \text{mg}
     Arrange the following in the increasing
      order of no. of atoms:
                        (b) 1960 gm H<sub>2</sub>SO4
     220 gm co<sub>2</sub>
(a)
                       (d) 93 gm Pu
    196 amu H<sub>2</sub>50 U
(c)
(e) 6.4 kg Sg
501→
       (a) moles = \frac{220}{44} = 5 mole
                  Molecules = 5 NA
```

 $a+oms = 15 N_A$

(c) moles =
$$\frac{196}{N_A}$$
 = $\frac{2}{N_A}$

atoms = $7 \times \frac{2}{N_A} \times N_A = 14$

(d) 93 9m Py

mole = $\frac{93}{124} = 0.75$

atoms = $4 \times 0.75 N_A = 3 N_A$

(e) 6.4 kg Sg

mole = $\frac{6.4 \times 10^3}{2.56} = 25$

atoms = $8 \times 2.5 N_A = 200 N_A$

c < d < a < b < e

Note \Rightarrow

(1) No of gram atoms of atom or No of gram moles of atom = No of moles

(b) moles = $\frac{1960}{30}$ = 20 mole

atoms = 7 × 20 NA = 140 NA

No. of gram molecules of molecule (2) No. of gram moles of molecule moles 2 gm molecules of H2 = 2 moles of H2 molecules <u>Ex</u>. 2 gm of H2 molecules = 1 mole of H2 molecules 5 gm atoms of N = 5 moles of N-atoms 5 gm of N atoms = $\frac{5}{14}$ moles of N-atoms Ex. Calculate No. of gram atoms of c and H in 5 gm molecules of C2 H6? No. of moles of $C_2H_6 = 5$ $C_2H_6 \longrightarrow 2C + 6H$

 $C_2H_6 \longrightarrow 2C + 6H$ 1 mole
2 mole
5 mole
5 mole
No. of gram atoms of C = 10No. of gram atoms of H = 30

Solution -> It is a homogeneous Mix of two or more components dispersed on a molecular Scale. major component -> solvent minor component -> solute Methods to express concentration of a solution-(1) mass Percentage $(\frac{\omega}{\omega})$ Temp. dependent

mass by vol. Percentage $(\% \frac{\omega}{V}) \rightarrow$ (3) $\frac{\omega_{A}^{2}}{V_{A}+V_{B}}\times 100$ Temp dependent $\left(\frac{1}{2} \frac{\omega}{\omega}\right)_{\alpha} =$ $\left(\frac{\omega}{v} \right)_{\beta} = \frac{\omega_{\beta}}{v_{a} + v_{b}} \times 10^{\circ}$

(4) mole fraction (x) -> chi

501 B Temp. independent

 $\kappa_{A} = \frac{\gamma_{A}}{\gamma_{A} + \gamma_{B}}$

 $\chi_{\beta} = \frac{\gamma_{\beta}}{\gamma_{\alpha} + \gamma_{\beta}}$

= 1- × A (5) molarity (M) -> No. of moles of solute voloof som in lit

* Temp dependent * Unit -> mol/ritve

(6)	molality (m)	no of moles of solute
	·	mass of solvent in Kg
	* Unit → mol/kg	
.	* Temp. independent	t
(٦)		- mass of solute in gm
		vol. of sold in lite
	S = M >	× Mo
	Unit = $9m$	vol. of sol ⁿ in lit. X Mo U Molar mass of solwte
	Lit	
)	* Temp dependent	
(8)	Parts Per million (PPm)	mass of solute x 106 mass of solute
(9)	Parts Per billion (PP	mass of solute x 109
	32. What would be the molality of 20% (mass/n	nass) aqueous solution of KI? (2019)
	(molar mass of KI = 166 g mol^{-1})	
	(A) 1.48 ⟨B) 1.51	(C) 1.08 (D) 1.35
Sol	<u>1 20% ₩</u> KI	

If $100 \text{ gm } 501^{\text{N}} \longrightarrow 20 \text{ gm } \text{KI}$ $80 \text{ gm } H_20$ $m = \frac{(20/166)}{(80/1000)} = 1.506$

Homework

Workbook- DTS I to II
Q. I-15, I7, I8, 24, 26, 27, 29, 30, 31, 43-47, 53, 58, 68, 69, 86, 98, 99, 108, II0, II6, II8, I30, I35