PHY 411 Winter 2021

Class Summary—Week 7, Day 2—Thursday, Feb 18

Associated Legendre Functions and Spherical Harmonics

Recall that the generalized Legendre equation, with $x = \cos \theta$, is

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dP}{dx}\right] + \left[l(l+1) - \frac{m^2}{1-x^2}\right]P = 0 \tag{3.9}$$

Previously, we dealt with potential problems involving azimuthal symmetry, so we put m=0 in the equation above (and obtained the ordinary Legendre equation), with solutions in terms of Legendre polynomials of order l, $P_l(\cos \theta)$. The general potential problem, however, can have azimuthal variations, so that $m \neq 0$. Therefore, we need the generalization of $P_l(\cos \theta)$, i.e., the solution of the generalized Legendre equation written above, with l and m both arbitrary.

For the generalized Legendre equation (3.9) to have finite solutions on the interval $-1 \le x \le 1$, the parameter l must be zero or a positive integer and the integer m can only take the values $-l, -(l-1), \ldots, 0, \ldots, (l-1), l$. The solution having these properties is called an **associated** Legendre function $P_l^m(x)$. For positive m, it is defined by the formula:

$$P_l^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x)$$
(3.49)

whereas $P_l^{-m}(x)$ can be obtained from $P_l^m(x)$ because they are proportional, as the generalized Legendre equation (3.9) depends only on m^2 and m is an integer:

$$P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x)$$
(3.51)

The choice of the arbitrary phase factor $(-1)^m$ is by convention (see Jackson's footnote on page 108 for the original source).

If $P_l(x)$ is written explicitly using Rodrigues' formula, then the corresponding expression for $P_l^m(x)$ is valid for both positive and negative integers m:

$$P_l^m(x) = \frac{(-1)^m}{2^l l!} (1 - x^2)^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^2 - 1)^l$$
(3.50)

For fixed m, the associated Legendre functions $P_l^m(x)$ form an orthogonal set in the interval $-1 \le x \le 1$:

$$\int_{-1}^{1} P_{l'}^{m}(x) P_{l}^{m}(x) dx = \frac{2}{2l+1} \frac{(l-m)!}{(l+m)!} \delta_{l'l}$$
(3.52)

We now have the full solution to the generalized Legendre equation (3.9):

$$\Phi(\vec{x}) \equiv \Phi(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A'_{lm} r^l + \frac{B'_{lm}}{r^{l+1}} \right) P_l^m(\cos \theta) e^{im\phi}$$

Note that I've written the ϕ -solution: $Q_m(\phi) = e^{\pm im\phi}$ as just $e^{im\phi}$ because I've covered the case for -m in the summation from -l to l. In this solution, A'_{lm} and B'_{lm} are constants that must be determined from the boundary conditions.

Now, consider the following:

- The functions $Q_m(\phi) = e^{im\phi}$ form a complete set of orthogonal functions in the index m on the interval $0 \le \phi \le 2\pi$.
- The functions $P_l^m(\cos \theta)$ form a complete orthogonal set in the index l for each m value in the interval $-1 \le \cos \theta \le 1$.

So, we can use the orthogonality relation equation (3.52), together with the factor 2π , to write normalized versions of $P_l^m(x)$ and $e^{im\phi}$ into the solution itself in the following manner:

$$\Phi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_{lm} r^{l} + \frac{B_{lm}}{r^{l+1}} \right) \left[\sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos\theta) e^{im\phi} \right]$$

This is very convenient, because we can now define the term in square brackets that is a combination of the angular factors (θ, ϕ) as a complete set of orthogonal functions $Y_{lm}(\theta, \phi)$ in the indices (l, m) that are normalized in the intervals $-1 \le \cos \theta \le 1$ and $0 \le \phi \le 2\pi$ so that our solution to the generalized Legendre equation equation (3.9) now looks like:

$$\Phi(\vec{x}) \equiv \Phi(r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(A_{lm} r^{l} + \frac{B_{lm}}{r^{l+1}} \right) Y_{lm}(\theta, \phi)$$
 (3.61)

where the functions $Y_{lm}(\theta,\phi)$, called the spherical harmonics, and given by

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos \theta) e^{im\phi}$$
 (3.53)

form what are known as orthonormal functions (because they are normalized and orthogonal) over all angles (θ, ϕ) of the unit sphere.

We also need $Y_{l,-m}(\theta,\phi)$, so from equation (3.53)

$$Y_{l,-m}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-(-m))!}{(l+(-m))!}} P_l^{-m}(\cos\theta) e^{i(-m)\phi}$$
$$= \sqrt{\frac{2l+1}{4\pi} \frac{(l+m)!}{(l-m)!}} \left[(-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(\cos\theta) \right] e^{-im\phi}$$

where I've written $P_l^{-m}(\cos \theta)$ from equation (3.51). Simplifying the above expression by canceling common terms, we get

$$Y_{l,-m}(\theta,\phi) = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{-im\phi}$$

The right hand side is just $(-1)^m$ times $Y_{lm}^*(\theta,\phi)$, the complex conjugate of $Y_{lm}(\theta,\phi)$ written in equation (3.53). Therefore

$$Y_{l,-m}(\theta,\phi) = (-1)^m Y_{lm}^*(\theta,\phi)$$
 (3.54)

Since $Y_{lm}(\theta,\phi)$ are orthonormalized on the unit sphere, the orthogonality condition looks like

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} \sin \theta \, d\theta \, Y_{l'm'}^{*}(\theta, \phi) \, Y_{lm}(\theta, \phi) = \delta_{l'l} \, \delta_{m'm} \tag{3.55}$$

The explicit forms of $Y_{lm}(\theta, \phi)$ for $0 \le l \le 3$ are written on page 109 in Jackson.

For m = 0, the spherical harmonics don't depend on the azimuthal angle, so we just get a Legendre polynomial:

$$Y_{l0}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}} P_l(\cos\theta)$$
 (3.57)

Since $Y_{lm}(\theta, \phi)$ form a complete set of functions, an arbitrary function $f(\theta, \phi)$ can be expanded in spherical harmonics:

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} Y_{lm}(\theta,\phi)$$
(3.58)

where the coefficients C_{lm} are given by

$$C_{lm} = \int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta \, d\theta \, f(\theta, \phi) \, Y_{lm}^*(\theta, \phi)$$

Addition Theorem for Spherical Harmonics

There is a very useful rule called the addition theorem for spherical harmonics.

The addition theorem tells us that a Legendre polynomial $P_l(\cos \gamma)$ having as its argument the angle γ between two vectors \vec{x} and \vec{x}' is expanded in terms of the spherical harmonics of \vec{x} and \vec{x}' .

Consider two coordinate vectors \vec{x} and \vec{x}' with spherical coordinates (r, θ, ϕ) and (r', θ', ϕ') respectively. Suppose the angle between the two vectors is γ , as shown in the figure on the right (modified from Figure 3.7 on page 111 in Jackson).

Then the addition theorem says that

$$P_{l}(\cos \gamma) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{lm}^{*}(\theta', \phi') Y_{lm}(\theta, \phi)$$
 (3.62)

where

$$\cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\phi - \phi')$$

We won't prove this theorem, but if you're interested in the proof, it is given on pages 110-111 in Jackson.

If the angle γ goes to zero, we get a sum rule for the squares of Y_{lm} 's, given by

$$\sum_{m=-l}^{l} \left| Y_{lm}(\theta, \phi) \right|^2 = \frac{2l+1}{4\pi}$$
 (3.69)

A useful expansion

Now that we have the machinery of the expansion in Legendre polynomials, we can take advantage of it to render the expansion of $1/|\vec{x} - \vec{x}'|$, the potential at \vec{x} due to a unit point charge at \vec{x}' .

Consider the figure below (taken from Figure 3.3 on page 102 in Jackson), where the potential is sought at the observation point \vec{x} due to a unit point charge at the source point \vec{x}' ; notice that the angle between \vec{x} and \vec{x}' is γ .

We know that the potential at the observation point \vec{x} due to the unit point charge at \vec{x}' is

$$\Phi(\vec{x}) = \frac{1}{|\vec{x} - \vec{x}'|}$$

where we've ignored factors of $4\pi\epsilon_0$ for now.

The expansion can be written as

$$\frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\gamma}}$$

where $r = |\vec{x}|$, and $r' = |\vec{x}'|$, as shown in the figure above.

Without any loss of generality, we can rotate axes so that \vec{x}' lies along the z-axis. Then, the angle γ is just the angle θ of the observation point \vec{x} .

More important, though, letting \vec{x}' lie along the z-axis means that the potential is azimuthally symmetric, so we can express it in terms of Legendre polynomials (with γ playing the role of θ):

$$\Phi(\vec{x}) = \sum_{l=0}^{\infty} \left[A_l r^l + \frac{B_l}{r^{l+1}} \right] P_l(\cos \gamma)$$

With $\phi(\vec{x}) = 1/|\vec{x} - \vec{x}'|$ written in terms of r and r' above, we then get

$$\frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\gamma}} = \sum_{l=0}^{\infty} \left[A_l r^l + \frac{B_l}{r^{l+1}} \right] P_l(\cos\gamma)$$

On the previous page, we obtained that

$$\frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\gamma}} = \sum_{l=0}^{\infty} \left[A_l r^l + \frac{B_l}{r^{l+1}} \right] P_l(\cos\gamma)$$

To find the coefficients A_l and B_l , we note that this relation must be valid for all θ (being called γ here), so we can simplify our task by choosing a particular θ ; let's choose $\gamma = 0$ (which is what Jackson means when he says "if the point \vec{x} is on the z-axis"):

$$\frac{1}{\sqrt{r^2 + r'^2 - 2rr'\cos\gamma}} = \frac{1}{\sqrt{r^2 + r'^2 - 2rr'}} = \frac{1}{\sqrt{(r - r')^2}} = \frac{1}{|r - r'|}$$

We have a choice of sign for the square root and pick the positive, since we're interested in the magnitude.

So, now we have

$$\frac{1}{|r - r'|} = \sum_{l=0}^{\infty} \left[A_l \, r^l + \frac{B_l}{r^{l+1}} \right]$$

• For r < r', that is, when the observation point is closer to the origin than the source charge, you showed on the worksheet that we get

$$\frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{r'} \sum_{l=0}^{\infty} \left(\frac{r}{r'}\right)^l$$

• For r > r', that is, when the observation point is farther from the origin than the source charge, you showed on the worksheet that we get

$$\frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^{l}$$

We can write the results from the two cases (r < r') and r > r' in one equation by writing:

$$\frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{r_{>}} \sum_{l=0}^{\infty} \left(\frac{r_{<}}{r_{>}}\right)^{l}$$

where we will write $r_{<} \equiv r$ and $r_{>} \equiv r'$, if r < r', whereas the converse applies if r > r', i.e., we will then write $r_{<} \equiv r'$ and $r_{>} \equiv r$, if r > r'.

Space left blank for student notes; class summary continues on next page.

On the previous page, we wrote that

$$\frac{1}{|\vec{x} - \vec{x}'|} = \frac{1}{r_>} \sum_{l=0}^{\infty} \left(\frac{r_<}{r_>}\right)^l$$

where $r_{<} \equiv r$ and $r_{>} \equiv r'$, if r < r', whereas the converse applies if r > r', i.e., $r_{<} \equiv r'$ and $r_{>} \equiv r$, if r > r'.

Remember, though, that the above expression was derived by choosing $\gamma \equiv \theta = 0$, i.e., only for points \vec{x} lying on the z-axis.

For points off the axis, all we need to do is multiply by $P_l(\cos \gamma)$.

Therefore, the expansion for the potential at the observation point \vec{x} due to a unit point charge at the source point \vec{x}' (ignoring factors of $4\pi\epsilon_0$ for now), is

$$\frac{1}{|\vec{x} - \vec{x}'|} = \sum_{l=0}^{\infty} \left(\frac{r_{<}^{l}}{r_{>}^{l+1}}\right) P_{l}(\cos \gamma)$$
(3.38)

where $r = |\vec{x}|, r' = |\vec{x}'|$ and, as stated above, $r_{<}$ is the smaller of r and r' (or, equivalently, $r_{>}$ is the larger of r and r'), and γ is the angle between \vec{x} and \vec{x}' .

This can be put into an even more explicit form by using the addition theorem that we wrote above. Substituting for $P_l(\cos \gamma)$ from equation (3.62) for the addition theorem, we get

$$\frac{1}{|\vec{x} - \vec{x}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \left(\frac{r_{<}^{l}}{r_{>}^{l+1}}\right) Y_{lm}^{*}(\theta', \phi') Y_{lm}(\theta, \phi)$$
(3.70)

This will be a very useful expansion, as we will see shortly. Note that, since the left hand side is the potential for a unit point charge, equation (3.70) is also the expansion of the Green function in spherical coordinates.