田崎熱力学ノート

大上由人

2024年4月19日

1 前提など

1.1 はじめに

まず、田崎熱における熱力学への立場を明確にする。

前提-

熱力学系は、その外にマクロな力学的な世界が存在する。

以上の過程の意味するところは、我々は、熱力学系を詳細に*¹知ることはできないが、外から仕事を加えるなどして、系の状態を操作することができ、その操作によって、系の状態を操作することができるということである。

1.2 熱力学系に関する要請

いくらかの要請を課す。

- 要請 2.1: 平衡状態 -

ある環境に熱力学系を置き、示量変数を固定したまま十分長い時間が経過した後、系は平衡状態に達する。また、同じ環境に置いた系の平衡状態は、示量変数の組の値だけで完全に決定される。

^{*1} 例えば、粒子一つ一つの運動状態を知ることができる程度のこと。

要請 2.2: 環境と温度 -

各々の環境を特徴づける温度という実数の量が存在する。環境に置いた熱力学系の平衡状態 を左右するのは環境の温度のみであり、環境の温度以外の詳細によらない。

以上の二つを組み合わせると、以下のことがわかる。

- 結果 2.3: 平衡状態の記述 -

熱力学的な系の平衡状態は、環境の温度と示量変数の組(T,X)だけで完全に指定できる。

すなわち、環境をTで、熱力学系をXで表すことで、平衡状態を区別しているのである。 また、以下、熱力学系の状態は、系の形状や、重力による効果を無視して考える。

1.3 断熱系

断熱壁に囲まれた系について、以下の要請を行う。

- 要請 2.4: 断熱系の平衡状態 ―

熱力学的な系を断熱壁で囲み、示量変数の組Xを固定したまま十分長い時間が経過すると、系はある平衡状態(T,X)に達する。ただし、このときの平衡状態の温度Tは系の初めの状況によって決まる。

ここで注意したいこととしては、断熱壁に囲まれることによって達成される平衡状態 (T,X) が、環境のもと平衡状態に達した (T,X) と同じであることも要請している点である。