Table of Contents

l Condensador	2	į
1.1 Imanes permanentes		
1.2 Ejercicios		
1.3 Soluciones		

1 Condensador

1.1 Imanes permanentes

A diferencia de las cargas eléctricas (como las que se observan al frotar el ámbar contra una tela), los objetos magnéticos poseen dos polos de efecto opuesto, denominados norte y sur. Es imposible aislar uno de estos polos por sí mismo cortando el imán en trozos. Cada trozo de imán posee su propio par de polos norte y sur. Los polos se denominan norte y sur, porque si se deja girar al imán libremente, por ejemplo flotando sobre agua, se orientará hacia los polos norte y sur terrestres.

Paulino Posada pág. 2 de 6

1.2 Ejercicios

Ejercicio 1.4-1

Calcula la capacidad equivalente del circuito, siendo:

$$C_1 = 50 \, \mu F$$
 , $C_2 = 25 \, \mu F$, $C_3 = 50 \, \mu F$ y $C_4 = 10 \, \mu F$

Ejercicio 1.4-2

Calcula la capacidad equivalente del circuito, siendo:

$$C_1 = 3\,\mu F$$
 , $C_2 = 1\,\mu F$, $C_3 = 2\,\mu F$, $C_4 = 4\,\mu F$, $C_5 = 1\,\mu F$, $C_6 = 3\,\mu F$, $C_7 = 5\,\mu F$

Paulino Posada pág. 3 de 6

Ejercicio 1.4-3Determina la corriente instantanea $i(t=160\,s)$ de un condensador en $t=160\,s$, con $C=1\,mF$

Paulino Posada pág. 4 de 6

1.3 Soluciones

Paulino Posada pág. 5 de 6

Estos apuntes son una adaptación de "<u>Lessons in electric circuits volume 1 DC</u>", del autor Tony R. Kuphaldt.

Traducción y adaptación Paulino Posada

Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator

Paulino Posada pág. 6 de 6