Aaditya Chandrasekhar

DOCTORAL CANDIDATE · MECHANICAL ENGINEERING

2050, Department of Mechanical Engineering, 1513 University Ave, Madison, WI 53706

□ (608)622-1023 | Sec.aaditya@gmail.com | Aadityacs.github.io | Caditya-cs

Summary_

I am a Doctoral candidate in Mechanical Engineering at UW Madison, advised by Prof. Krishnan Suresh. My research explores incorporating physics constraints in Machine Learning; primarily for design optimization. My current research includes mechanics driven Neural Networks for Topology Optimization, selection of material and the design of multi-material components, imposing Additive Manufacturing constraints such as build orientation, path optimization for continuous fiber AM, length scale control in designs.

I am currently seeking a research scientist position with interests involving Machine Learning for Engineering, design optimization and Additive Manufacturing.

Education

University of Wisconsin - Madison

Madison, WI, USA

PHD (PURSUING) IN MECHANICAL ENGINEERING

Jan. 2016 - Exp. July 2022

SRM Institute of Science and Technology, Chennai

Chennai, India

B.TECH IN MECHANICAL ENGINEERING

2011 - 2015

Work Experience

PARC Xerox

Cary, NC, USA

INTELLIGENT SYSTEMS LAB RESEARCH INTERN

May. 2021 - Aug. 2021

- Worked on algorithms to optimize continuous fiber reinforced composites designs.
- · Developed algorithms to represent, optimize, and on-the-Fly correction of print paths using sequential Neural Networks

Teaching Experience

Introduction to Design Optimization (ME 548), Spring 2020

Madison, WI, USA

TEACHING ASSISTANT UNDER PROF. KRISHNAN SURESH

Jan. 2020 - May 2020

· Conducted discussions. Aided with regular lectures, content preparation, setting exams and grading.

Computer Aided Engineering (ME 331), Fall 2019

Madison, WI, USA

TEACHING ASSISTANT UNDER JEFF ROESSLER

Sep. 2019 - Dec. 2019

Conducted tutorials and discussions. Lab sessions included teaching SolidWorks- theory and practical. Aided with regular lectures, setting
exams and grading.

Awards and Recognitions

Myers Wisconsin Distinguished Graduate Fellow

2021

Grainger Wisconsin Distinguished Graduate Fellow

2020

Publications

A Physics and Data Driven Neural Network Approach for Multiscale Topology Optimization

In Progress

Aaditya Chandrasekhar and Krishnan Suresh

2022

- Construct a data-driven differentiable latent representation of microstructures using Variational Autoencoders.
- Optimize macroscale topology by interfacing with microstructure's latent space via physics-driven design optimization.

A Neural Network Framework for the Topology Optimization of Continuous Fiber Reinforced Composites

In Progress

 ${\tt Aaditya}\ Chandrase khar, Amir\ Mirzendehdel,\ Morad\ Behandish,\ Saketh\ Sridhara\ and\ Krishnan\ Suresh$

2022

- Simultaneous optimization of topology and continuous fiber orientation and concentration.
- Neural Net representation enables us to represent and extract continuous fibers.

Integrating Material Selection with Design Optimization via Neural Networks

Under Review

AADITYA CHANDRASEKHAR, SAKETH SRIDHARA AND KRISHNAN SURESH

2022

- Construct a data-driven differentiable representation of material properties.
- Optimize designs by simultaneously choosing material and geometry via physics-driven design optimization.

JANUARY 10, 2022 AADITYA CHANDRASEKHAR

Length Scale Control in Topology Optimization using Fourier Enhanced Neural Networks

Under Review

AADITYA CHANDRASEKHAR AND KRISHNAN SURESH

• Enables length scale control in designs through projecting coordinates to frequency space.

Extract smooth differentiable boundaries at sub-element length scales

AuTO: Automatic Differentiation for Sensitivity Analysis in Topology Optimization

SAMO 2021

2021

AADITYA CHANDRASEKHAR, SAKETH SRIDHARA AND KRISHNAN SURESH

- Overcome the need to manually derive and implement sensitivity expressions in topology optimization.
- · Applied automatic differentiation for compliance minimization, compliant mechanism design and microstructural design in JAX.

Multi-Material Topology Optimization Using Neural Networks

CAD

AADITYA CHANDRASEKHAR AND KRISHNAN SURESH

- Extends the TOuNN framework to handle designing with multiple materials.
- Computationally efficient method to obtain checkerboard-free designs.

TOuNN: Topology Optimization using Neural Networks

SAMO

AADITYA CHANDRASEKHAR AND KRISHNAN SURESH

2020

- Directly execute topology optimization using neural networks.
- Impose design and manufacturing constraints within the proposed framework are described.

Build optimization of Fiber-Reinforced Additively Manufactured Components

SAMO

AADITYA CHANDRASEKHAR, TEJ KUMAR, KRISHNAN SURESH

2019

- Optimization of the build direction, topology, and fiber orientation of AM Short Fiber Composites.
- Effect of layer-wise printing on anisotropic material properties was considered.

Towards Assembly-Free Methods for Additive Manufacturing Simulation

ASME-IDETC

Anirudh Krishnakumar, Aaditya Chandrasekhar, Krishnan Suresh

2015

- · Increase simulation speed for modelling transient thermo-mechanical interactions during Additive Manufacturing.
- Extended assembly-free finite element analysis to nonlinear physics models.

Conferences & Talks

Optimization of Support Structure for AM Via Pseudo-Fiber Material Model

TOPOLOGY OPTIMIZATION ROUNDTABLE, ALBUQUERQUE, NM

2019

Build Optimization of Fiber Reinforced 3D-Printed Components

WORLD CONGRESS FOR COMPUTATIONAL MECHANICS, NEW YORK, NY

2018

Limited-memory assembly free finite element simulation of fused deposition modeling

United States National Congress on Computational Mechanics, Montreal, Canada

2017

A Memory-efficient Finite Element Simulation to Predict Warping in Metal AM

SOLID FREEFORM SYMPOSIUM, AUSTIN, TX

2016

Exploratory Projects

Design and Analysis of 3D Printed Heat Exchangers

DOE Project

SUPERVISED BY PROF. KRISHNAN SURESH

- Improve the thermal efficiency of additively manufactured dry-cooled condensers by reducing the air-side thermal resistance.
- · Performed stress and thermal analysis to assess the feasibility of proposed designs and suggested design modifications.

Slicing on a GPU Course Project

CS 759

- Implemented 3D printer slicing algorithms on multi-core CPU and GPU.
- Evaluated performance gains and identified core algorithms that accelerate performance.

Parametric Solid Modeling

Course Project

ME 535

- Developed a lightweight command based parametric solid modeling tool in Python.
- Explored design optimization of parametric solids using the tool.

Software Skills

Languages

PRIMARY: C++, PYTHON, MATLAB. SECONDARY: JAVA, JULIA, CUDA

Modeling & Analysis

SolidWorks, Ansys, Comsol, Rhino