

Support Vector Machines

Relationship to Logistic Regression

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Three misclassifications

Two misclassifications

No misclassifications

No misclassifications—but is this the best position?

No misclassifications—but is this the best position?

Maximize the region between classes.

Similarity Between Logistic Regression and SVM

Two features (nodes, age)
Two labels (survived, lost)

Also, include the largest boundary possible.

Logistic Regression vs SVM Cost Functions

Logistic Regression vs SVM Cost Functions

Patient Status After Five Years

Logistic Regression vs SVM Cost Functions

Number of Positive Nodes

Patient Status After Five Years

This is probably still the correct boundary.

Regularization in SVMs
$$J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c}\sum_i \beta_i$$

Regularization in SVMs
$$J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c}\sum_i \beta_i$$

Regularization in SVMs
$$J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c}\sum_i \beta_i$$

Interpretation of SVM Coefficients $J(\beta_i) = SVMCost(\beta_i) + \frac{1}{C}\sum_i \beta_i$

$$J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c} \sum_i \beta_i$$

Interpretation of SVM Coefficients $J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c}\sum_i \beta_i$

$$J(\beta_i) = SVMCost(\beta_i) + \frac{1}{c}\sum_i \beta_i$$

Import the class containing the classification method.

from sklearn.svm import LinearSVC

Import the class containing the classification method.

```
from sklearn.svm import LinearSVC
```

Create an instance of the class.

```
LinSVC = LinearSVC (penalty='12', C=10.0)
```

Import the class containing the classification method.

from sklearn.svm import LinearSVC

Create an instance of the class.

LinSVC = LinearSVC(penalty='12', C=10.0)

Regularization parameters

Import the class containing the classification method.

```
from sklearn.svm import LinearSVC
```

Create an instance of the class.

```
LinSVC = LinearSVC (penalty='12', C=10.0)
```

Fit the instance on the data and then predict the expected value.

```
LinSVC = LinSVC.fit(X_train, y_train)
y_predict = LinSVC.predict(X_test)
```

Import the class containing the classification method.

```
from sklearn.svm import LinearSVC
```

Create an instance of the class.

```
LinSVC = LinearSVC (penalty='12', C=10.0)
```

Fit the instance on the data and then predict the expected value.

```
LinSVC = LinSVC.fit(X_train, y_train)
y_predict = LinSVC.predict(X_test)
```

Tune regularization parameters with cross-validation.

Classification with SVMs

Non-Linear Decision Boundaries with SVM

Non-linear data can be made linear with higher dimensionality.

The Kernel Trick

Transform data so it is linearly separable.

IMDB User Rating

Approach 1:

Create higher order features to transform the data.

Budget² +
Rating² +
Budget * Rating +

• • •

Approach 2:

Transform the space to a different coordinate system.

Define Feature 1: Similarity to "Pulp Fiction."

Define Feature 2: Similarity to "Black Swan."

Define Feature 3: Similarity to "Transformers."

Palme d'Or Winners at Cannes.

$$a_1(x^{obs}) = exp \left[\frac{-\sum (x_i^{obs} - x_i^{Pulp\ Fiction})^2}{2\sigma^2} \right]$$

Create a
Gaussian function
at feature 1.

Palme d'Or Winners at Cannes.

$$a_1(x^{obs}) = exp\left[\frac{-\sum (x_i^{obs} - x_i^{Black\ Swan})^2}{2\sigma^2}\right]$$

Palme d'Or Winners at Cannes.

$$a_1(x^{obs}) = exp\left[\frac{-\sum(x_i^{obs} - x_i^{Transformers})^2}{2\sigma^2}\right]$$

Create a
Gaussian function
at feature 3.

IMDB User Rating

IMDB User Rating

IMDB User Rating

Transformation:

 $[x_1, x_2] \rightarrow [0.7a_1, 0.9a_2, -0.6a_3]$

Classification in the New Space

Transformation:

 $[x_1, x_2] \rightarrow [0.7a_1, 0.9a_2, -0.6a_3]$

IMDB User Rating

IMDB User Rating

IMDB User Rating

Import the class containing the classification method.

from sklearn.svm import SVC

Import the class containing the classification method.

```
from sklearn.svm import SVC
```

Create an instance of the class.

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```

Import the class containing the classification method.

```
from sklearn.svm import SVC
```

Create an instance of the class.

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```


Set kernel and associated coefficient (gamma).

Import the class containing the classification method.

```
from sklearn.svm import SVC
```

Create an instance of the class.

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```


"C" is penalty associated with the error term.

Import the class containing the classification method.

```
from sklearn.svm import SVC
```

Create an instance of the class.

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```

Fit the instance on the data and then predict the expected value.

```
rbfSVC = rbfSVC.fit(X_train, y_train)
y_predict = rbfSVC.predict(X_test)
```

Import the class containing the classification method.

```
from sklearn.svm import SVC
```

Create an instance of the class.

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```

Fit the instance on the data and then predict the expected value.

```
rbfSVC = rbfSVC.fit(X_train, y_train)
y_predict = rbfSVC.predict(X_test)
```

Tune kernel and associated parameters with cross-validation.

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data.

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data.

Solution

 Construct approximate kernel map with SGD using Nystroem or RBF sampler

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data.

Solution

- Construct approximate kernel map with SGD using Nystroem or RBF sampler
- Fit a linear classifier

Import the class containing the classification method.

```
from sklearn.kernel_approximation import Nystroem
```

Create an instance of the class.

Fit the instance on the data and transform.

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel approximation import Nystroem
```

Create an instance of the class.

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0, n_components=100) Multiple non-linear kernels can be used.
```

Fit the instance on the data and transform.

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel approximation import Nystroem
```

Create an instance of the class.

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0,
n_components=100) Kernel and gamma are identical to SVC.
```

Fit the instance on the data and transform.

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel approximation import Nystroem
```

Create an instance of the class.

Fit the instance on the data and transform.

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel_approximation import RBFsampler
```

Create an instance of the class.

Fit the instance on the data and transform.

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel approximation import RBFsampler
```

Create an instance of the class.

Fit the instance on the data and transform.

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```

Import the class containing the classification method.

```
from sklearn.kernel_approximation import RBFsampler
```

Create an instance of the class.

Fit the instance on the data and transform.

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```

When to Use Logistic Regression vs SVC

Features	Data	Model Choice
Many (~10K Features)	Small (1K rows)	Simple, Logistic or LinearSVC
Few (<100 Features)	Medium (~10k rows)	SVC with RBF
Few (<100 Features)	Many (>100K Points)	Add features, Logistic, LinearSVC or Kernel Approx.

