

- (from last time) What about subtraction?
 - Computer treats subtracting a number as adding a negative number
 - ◆ Must first know how *negative* numbers are represented
- Can you think of a straightforward way to represent negative numbers?
- Sign-magnitude representation Why this convention?
 - ♦ *Most significant bit* = *sign bit* (0 is positive, 1 is negative)
 - Other bits represent magnitude (same as unsigned numbers)
 - (illustrate using 4 bits)

1

Digital Representation of Information (signed whole numbers)

■ Sign-magnitude (example using 4 bits):

decimal	binary	decimal	binary
0	0000	-0	1000
1	0001	-1	1 001
2	0010	-2	1 010
3	0011	-3	1 011
4	0100	-4	1 100
5	0101	-5	1 101
6	0 110	-6	1 110
7	0111	-7	1 111

- Why most modern computers don't use sign-magnitude representation?
 - Arithmetic is very complicated
 - Consider the rules for adding 2 signed numbers (for example):
 If numbers have same sign, ...
 If the numbers differ in sign, ...
 - ♦ Has 2 representations for 0
- Can you think of another straightforward way to represent negative numbers?
- *Ones' complement* representation
 - Flip zeroes to ones and ones to zeroes
 - (illustrate using 4 bits)

3

Digital Representation of Information

Digital Representation of Information (signed whole numbers)

■ Ones' complement (example using 4 bits):

decimal	binary	decimal	binary
0	0000	-0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000

- Ones' complement (reason for the name):
 - ◆ Consider using 8 bits to represent 51 and −51 (or any other pairs within the range of values that can be represented):

decimal	binary	decimal	binary
51	00110011	-51	11001100

```
8 ones

111111111b ← Ones

00110011b = 51

(-) ------

11001100b = -51

-51 = 11001100b = 111111111b - 51

n-bit ones' complement of x = 1.....1b - x
```

Digital Representation of Information (signed whole numbers)

- Why most modern computers don't use ones' complement representation?
 - Solves the arithmetic problem (suffered by sign-magnitude representation)
 - To add two ones' complement numbers:
 - (1) Add as if unsigned
 - (2) If there's carry out the left end, add it back to the right end (end-around carry)
 - To subtract a ones' complement number from another:
 - (1) Take the ones' complement of the number to be subtracted
 - (2) Add as if unsigned
 - But still has 2 representations for 0
- How do most modern computers represent negative numbers?
- Two's complement representation (illustrate using 4 bits)
 - ◆ Take ones' complement then add 1
 - (illustrate)

■ Two's complement (example using 4 bits):

decimal	binary	decimal	binary
0	0000	(0)	(0000)
1	0001	-1	1111
2	0010	-2	1110
3	0011	-3	1101
4	0100	-4	1100
5	0101	-5	1011
6	0110	-6	1010
7	0111	-7	1001
		-8	1000

■ Note that the *leftmost bit* still serves well as the sign bit

7

200111110000111111000000

Digital Representation of Information

note "-" sign (signed whole numbers)

■ Polynomial expansion for two's complement number:

$$\bullet_{\neg} d_n 2^n + d_{n-1} 2^{n-1} + d_{n-2} 2^{n-2} + ... + d_2 2^2 + d_1 2^1 + d_0$$

■ Can still use *Horner's scheme* to evaluate:

$$\begin{array}{c} \bullet - d_n 2^n + d_{n-1} 2^{n-1} + d_{n-2} 2^{n-2} + ... + d_2 2^2 + d_1 2^1 + d_0 = \\ \hline ((...((-d_n r + d_{n-1})2 + d_{n-2})2 + ... + d_2)2 + d_1)2 + d_0 \end{array}$$

Example (n is 6):

$$-1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 =$$

$$(((((-1 \times 2 + 0)2 + 1)2 + 1)2 + 0)2 + 1)2 + 0 = -38$$

- Two's complement (reason for the name):
 - Commonly mentioned relationship with ones' complement: (n-bit two's complement of x) = (n-bit ones' complement of x) + 1
 - From previous discussion (of Ones' complement):
 (n-bit ones' complement of x) = (n ones)b x
 - Substituting:

```
(n-bit two's complement of x) = (n ones)b - x + 1
```

♦ Rearranging:

```
(n-bit two's complement of x) = (n ones)b + 1 - x
```

Or:

```
(n-bit two's complement of x) = 2^n - x
```

two

Digital Representation of Information (signed whole numbers)

- Simple algorithm for obtaining two's complement of a binary number in 1 step:
 - ◆ Traverse the bits from the *rightmost bit* to the *leftmost bit* and do the following during the traversal:
 - *Keep all digits until and including the first 1 unchanged
 - Flip all further digits (if any) to the left of the first 1
 - ◆ Example: flip these first I given number: 11010 100b

 Two's complement of given number: 00101 100b
 - ◆ For further examples, look under the earlier slide that gives *Two's complement example using 4 bits*

- Why simple algorithm works:
 - Not-so-simple algorithm (by definition):
 - Flip all bits
 - Add 1
 - Simple algorithm:
 - Traverse bits from right to left
 - ☞ Locate "1st occurrence of 1" & leave it (& any 0's to its right) alone
 - Flip all bits left of "1st occurrence of 1"
 - ◆ Simple algorithm = Not-so-simple algorithm:

```
Given:
                             <some pattern>1<n 0s>
```

- <complement of some pattern>0<n 1s>
- @ Complement + 1: <complement of some pattern>1<n 0s>
- 2 "don't apply" situations:

compare

♦ <some 0s> → only 1 representation for zero ♦ 1<some 0s> → can't represent complement of most negative number

Digital Representation of Information (signed whole numbers)

- Distinguishing between two's complement *representation* and two's complement operation:
 - lack The two's complement representation of -x is the result of applying two's complement operation to the representation of x
 - Examples:
 - **≈ 00110011b** is the 8-bit two's complement *representation* of **51**
 - **11001101b** is the 8-bit two's complement representation of −51
 - The two's complement operation applied to 00110011b (= 51) is 11001101b (= -51)
 - The two's complement *operation* applied to 11001101b (= -51) is 00110011b (= 51)

- Adding two's complement numbers:
 - Simply add the numbers as if they were unsigned numbers
 - ◆ If there's any carry out the left end, throw it away
 - Example cases (using 8 bits):

```
11 1
         (carries)
                       11 11 (carries)
                                        111111 (carries)
   01001010b = 74
                      10110110b = -74
                                         10110110b = -74
   11001101b = -51
                      00110011b = 51
                                         11001101b = -51
(+)-----
                  (+)-----
                                     (+)----
                                        110000011b = -125
                      11101001b = -23
  100010111b = 23
 throw away
                                        throw away
                                                       13
```

Digital Representation of Information (signed whole numbers)

- More about two's complement representation:
 - ◆ Two's complement arithmetic is even easier than 1's complement ☞ Though computing 2's complements is slightly harder
 - ◆ There's no negative zero problem:
 - -00000000b = 111111111b + 1
 - **= 0000000b** (when carry out the left end is discarded)
 - ◆ Unfortunately, a new problem is introduced → there's a negative number for which there's no corresponding positive number:
 - In 8-bit Two's complement: 10000000b = -128
 - Taking Two's complement: 01111111b + 1 = 10000000b (!)
 - ◆ There's no way to avoid this anomaly (do you see why?)
 - Having a negative number without a corresponding positive doesn't commonly present problems in two's complement...
 - Because the anomaly occurs at the fringes
 - But often that number must be tested for and treated specially

- Two's complement in hex:
 - We can of course do it this way:
 - Convert hex number into binary
 - Take two's complement in binary
 - Convert two's complement in binary into hex
 - But it's also easily done directly in hex:
 - Taking ones' complement is equivalent to subtracting the number from all 1s in binary
 - In hex it is subtracting the number from all Fs TIP: It's probably easiest to mentally convert each digit to decimal, do the subtraction, then convert back to hex
 - Once the ones' complement is obtained, add
 1 to get the two's complement

<u>CAVEAT:</u> Be sure to do the addition in *hex*

1 + 9 = A (not 10) 1 + F = 0 carry 1 Example:
Find two's complement of 3DA6h

FFFFh

3DA6h

(-) ---C259h (ones' complement)
1h

C25Ah (two's complement)

(+) ----

15

Digital Representation of Information (signed whole numbers)

- Which two's complement hex numbers are negative?
 - ◆ (Can you come out with the rules?)
 - ◆ If the first hex digit is in the range 8-F, ...
 - The number is negative
 - ◆ If the first hex digit is in the range 0-7, ...
 - The number is *positive*
 - ◆ (Can you explain why?)

- Changing lengths of two's complement representations
 - Why do we need to know how to do that?
 - ◆ In two's complement arithmetic, ...
 - All operands must be of the same length
 - First bit of an operand is always interpreted as the sign bit
 - ♦ And we need...
 - More bits to represent large numbers than small numbers
 - ◆ There are thus occasions when we have to...
 - ☞ Increase or decrease the number of bits in our representation
 - ◆ So we need to know how to do it

Digital Representation of Information (signed whole numbers)

- Shortening two's complement numbers (in binary):
 - ◆ Can remove as many bits as we like from the left end as long as
 - They are all the same as the sign bit
 - The *original sign bit must be retained* in the shortened representation

X

X

- Lengthening two's complement numbers (in binary):
 - ◆ (What do you think?)
 - Can always be done
 - Simply copy the sign bit into as many positions to the left as necessary
 - Process is called sign extension

10

Digital Representation of Information (signed whole numbers)

- Shortening two's complement numbers in hex:
 - ♦ (Can you arrive at some guidelines?)
 - Only series of O's or series of F's can be removed (why?)
 - ◆ **0**'s can be removed from the *left end* as long as...
 - The first remaining digit is in the range 0-7 (why?)
 - ◆ F's can be removed from the *left end* as long as...
 The *first remaining digit* is in the range 8-F (why?)
- Lengthening two's complement numbers in hex:
 - ◆ (Can you arrive at some guidelines?)
 - Only series of O's or series of F's can be added (why?)
 - ◆ If the *leftmost digit* is in the range **0-7**...
 - As many O's as needed can be added to the *left* end (*why?*)
 - ◆ If the *leftmost digit* is in the range **8-F**...
 - As many F's as needed can be added to the *left* end (why?)

- Range of signed two's complement numbers:
 - ◆ (Can you write the range for **n** bits?)
 - (-2^{n-1}) to $(2^{n-1}-1)$
 - ♦ Examples:

Storage Type	Range (low-high)	Powers of 2
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63}-1)$

21

Digital Representation of Information (signed whole numbers)

- Overflow involving two's complement numbers:
 - ◆ (What does overflow mean?)
 - Condition that occurs when the result of an arithmetic operation is too big to be represented with the number of bits we are using

	01010111 = 87
	00101010 = 42
(+)	
	10000001 = -127
	10101001 = -87
	11010110 = -42
(+)	
	101111111 = 127

◆ Results are incorrect because it's not possible to represent the true answers (129, −129) as 8-bit two's complement numbers

- Detecting overflow (for two's complement numbers):
 - ◆ (Can you think of two common-sense rules?)
 - **♦** Rule 1:
 - Adding 2 numbers with *different* signs
 - Overflow will never occur (can you see why?)
 - **♦** Rule 2:
 - Adding 2 numbers with the same sign
 - To Overflow occurs if the sign of the result is different

Quick quiz: What indicates overflow in unsigned addition?

23

Digital Representation of Information (signed whole numbers)

■ Overflow detection examples (two's complement):

	01010111	
	00101010	
(+)		
	10000001	
(on ortlow)		

(overflow)

10101001		
11010110		
(+)		
101111111		
(overflow)		

```
11001011
11010110
10100001
```

(no overflow)

```
11001011
 01010110
100100001
```

(no overflow)

Digital Representation of Information ("unsigned rendition of" signed whole numbers)

- (biased / excess representation)
- Basic idea is to...
 - ... adjust/shift each number upward by...
 - ... fixed amount so that...
 - ... smallest (most negative) number becomes 0 (fixed amount applied is called bias or excess)
 - ... and represent adjusted numbers as unsigned
- What bias to cover *same range of numbers covered* by two's complement with same number of bits?
 - ♦ With *n* bits:
 - \sim Range using two's complement: $[-2^{n-1}, 2^{n-1} 1]$
 - \sim To cover same range *biased*: use excess of 2^{n-1}
 - E.g.: n = 4, excess = $2^3 = 8$
 - Two's complement range: [-8, 7]

 - rendered range": [0, 15]

excess-8	
representation of	
[-8, 7]	

decimal	excess-8
-8	0000
-7	0001
-6	0010
-5	0011
-4	0100
-3	0101
-2	0110
-1	0111
0	1000
1	1001
2	1010
3	1011
4	1100
5	1101
6	1110
7	1111

☞ Note: negative if MSB = 0, positive if MSB = 1

Digital Representation of Information ("unsigned rendition of" signed whole numbers)

- (biased / excess representation continued)
- Working with numbers represented as such:
 - Involves bias addition during encoding
 - Involves bias subtraction during decoding
- Unnecessarily complicated for regular use
- Selected for use in *IEEE-754*
 - When representing exponent (of floating-point number)
 - (more on this later)