NEURONES ARTIFICIELS

Par Kévin Bouchard Ph.D.

Professeur titulaire en intelligence artificielle et apprentissage automatique

Laboratoire d'Intelligence Ambiante pour la reconnaissance d'activités (LIARA)

Directeur de l'Espace innovation en technologies numériques Hydro-Ouébec

Président du Regroupement québécois des maladies orphelines (RQMO) Université du Québec à Chicoutimi

www.Kevin-Bouchard.ca

Kevin Bouchard@ugac.ca

CONTENU DE LA LEÇON #2

Vous apprendrez:

- Comment fonctionne un seul neurone artificiel (ou réviserez)
- Comment on entraîne un Adaline et le passage vers l'optimisation
- Nous essaierons également de définir l'apprentissage profond comme un sous-domaine de l'intelligence artificielle

Contenu spécifique:

- Retour sur le Perceptron
- Exercices
- Adaline et le gradient
- Retour sur Logistic Regression
- Exemples de code

UN BREF HISTORIQUE DES PERCEPTRONS

- Retour en 1943: McCullock & Pitts publient le MCP Neuron
 - A logical Calculus of the Ideas Immanent in Nervous Activity
- Cellules nerveuses interconnectées
 - Transmettent des signaux électriques et chimiques
 - Simple porte logique!

[L'image montre un neurone biologique avec ses composants: dendrites (entrées), noyau, axone, gaine de myéline, et terminaison axonale (sorties)]

PERCEPTRON

- Rosenblatt 1957: Apprendre les poids optimaux à multiplier avec les entrées afin de déterminer si le neurone s'active ou non
 - Utile pour la classification binaire (ML supervisé)
 - 1 positif
 - -1 négatif
- z est l'entrée nette composé d'une combinaison linéaire d'entrées
 x et de poids w (somme pondérée)

```
W = [W_1, W_2, ..., W_m]^T, X = [X_1, X_2, ..., X_m]^T

Z = W_1X_1 + ... + W_mX_m
```

```
  \phi(z) = \{ \\ 1 & \text{if } z \ge \theta \\ -1 & \text{otherwise}
```

– La classification se définie par une fonction d'activation $\phi(z)$ avec un threshold θ

PERCEPTRON

- x représente l'entrée
 - Grosso modo, l'instance avec ses m features
- Il peu s'agir d'une instance d'apprentissage ou d'une instance à classer
- La classe est déterminée en fonction de ce qu'on appelle une fonction d'activation
- La fonction d'activation du Perceptron s'appelle Heaviside ou encore function par palier (step-wise function)
- Elle est représentée par $\varphi()$ et prend z en entrée avec un seuil θ

```
 \begin{aligned} w &= [w_1, \ w_2, \ \dots, \ w_m]^\top, & x &= [x_1, \ x_2, \ \dots, \ x_m]^\top \\ z &= w_1 x_1 + \dots + w_m x_m \\ \phi(z) &= \{ & & & \\ 1 & & \text{if } z \geq \theta \\ &-1 & \text{otherwise} \\ \} \end{aligned}
```

[L'image montre un graphique de la fonction Heaviside (fonction en marche d'escalier) qui passe de 0 à 1 au point z=0]

PERCEPTRON

- L'équation peut être écrite plus simplement apprendre le seuil θ comme un paramètre supplémentaire
- Pour ce faire, nous définissons un paramètre w_θ = θ avec une caractéristique fictive x_θ = 1

```
Z = W_0 X_0 + W_1 X_1 + ... + W_m X_m = W^T X = \sum_{j=0}^{m} W_j X_j = W^T X_n
```

T est ajouté dans la forme vectorielle pour signifier transposé

- E.g.:
$$z = [1 \ 2 \ 3] \times [4, 5, 6]^{T} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 32$$
.

- Note: w₀ est ce qu'on appelle le biais

PERCEPTRON

[L'image montre deux représentations graphiques du perceptron: à gauche la fonction d'activation en marche d'escalier, et à droite un graphique montrant une classification binaire avec des cercles

rouges (classe négative) et des croix bleues (classe positive) séparés par une ligne de décision]

FONCTIONNEMENT DE L'APPRENTISSAGE

- 1. Initialisation des poids à 0 (ou un petit nombre aléatoire)
- 2. Tant qu'il y a des mauvaises classifications:
 - Pour chaque exemple d'entraînement x⁽ⁱ⁾:
- 1. Classer $x^{(\text{i})}$ avec les modèles courant pour obtenir la sortie estimée $\hat{y}^{(\text{i})}$
 - 2. Mettre à jour les poids
- La mise à jour des poids $w_j \in w$ est $w_j = w_j + \Delta w_j$
- Δw; calculé selon la règle d'apprentissage du perceptron:

$$\Delta w_{j} = \eta (y^{(i)} - \hat{y}^{(i)}) x_{j}^{(i)}$$

- η est le fameux « Learning rate » dans l'intervalle [0.0,1.0]

FONCTIONNEMENT DE L'APPRENTISSAGE

$$\Delta w_{i} = n(v^{(i)} - \hat{v}^{(i)})x_{i}^{(i)}$$

- Exemples:
 - $\Delta w_1 = 1(1 1) * 1 = 0$

[Prédiction positive

correcte!]

 $-\Delta w_1 = 1(-1 - -1) * 1 = 0$

[Prédiction négative

correcte!]

- $-\Delta w_1 = 1(1 -1) * 4 = 8$
- $-\Delta w_1 = 1(-1 1) * 0.5 = -1$
- $-\Delta w_1 = 0.1(1 -1) * 4 = 0.8$
- Le poids ne changera pas si la prédiction est correcte!
- Il varie autrement en fonction de la valeur de $x_{j}^{\,(\,\mathrm{i}\,)}$ dans le vecteur d'entraı̂nement i

BILAN

- Si pas séparable linéairement, Perceptron MàJ à l'infini
 Nombre max de passes à travers l'ensemble (epochs)
- [L'image montre trois graphiques illustrant différents cas de séparabilité linéaire, avec des points rouges et bleus représentant deux classes différentes]
- [L'image montre également la structure d'un perceptron avec entrées, poids, fonction de somme (net input) et fonction d'activation]

BILAN

 Dans l'ensemble, le perceptron original met en place les principaux éléments des réseaux de neurones

- Le perceptron est un modèle linéaire
- Si pas séparable linéairement, Perceptron MàJ à l'infini
 Nombre max de passes à travers l'ensemble (epochs)

[L'image répète les mêmes graphiques et la structure du perceptron]

EXERCICES

- Faisons des entraînements de Perceptron ensemble
- Supposons un Perceptron entraîné sur l'ensemble des Iris
 - Poids : [-0.311, -3.091, 3.443, -3.292]
 - Biais : -1.0
- Tentez le calcul avec les instances suivantes (et votre ordinateur!!!)
 - Instance Versicolor: [0.311,-0.592,0.535,0.001]
 - Instance Virginica: [-0.174,1.71,-1.17,-1.184]
- -z = -1 + 0.311 * -0.311 3.091 * -0.592 + 3.443 * 0.535 + 0.001 * -3.292 = 2.572
- -z = -1 0.311 * -0.174 3.091 * 1.71 + 3.443 * -1.17 3.292 * -1.184 = -6.362

EXEMPLE AVEC LES IRIS

- À partir du code, voici un moment spécifique dans l'exécution

. . .

```
Modèle actuel: [ 0. -0.24 0.14 -0.7 -0.3 ] Fleur: [4.6 3.1 1.5 0.2] Type: Iris-setosa Z= 0.0 *1+ [-0.24 0.14 -0.7 -0.3 ] * [4.6 3.1 1.5 0.2] = -1.780000000000005 Update = 0.1 * ( 1 - -1 ) = 0.2 Poids MàJ: [-0.24 0.14 -0.7 -0.3 ] + [4.6 3.1 1.5 0.2] * 0.2 = [ 0.68 0.76 -0.4 -0.26]
```

- On voit le calcul de l'entrée nette (en prenant le biais)
- Le calcul de la mise à jour
- La mise à jour elle-même

ONE-VS-ALL

- Les algorithmes de classification binaires tel que le perceptron peuvent être étendu aux problèmes multi classes par diverses stratégies
- Le One-vs-All consiste à créer un classeur par classe où toute autre instance est considérée de classe négative
- La classification consiste ensuite à passer un nouvel exemple dans tous les classeurs de façon à trouver celui qui se déclenche

- Attention! En général, on préfère plutôt avoir une sortie en termes de niveau de confiance où l'on cherche le max
 - Difficile avec des données mal balancées
- Difficile de s'assurer que la gamme de niveaux de confiance ne varie pas trop d'un classeur à l'autre

ONE-VS-ONE

- Il existe une autre stratégie populaire pour d'autres types de classeurs qui ne sont pas multiclasses par défaut
- Le One-vs-One est une des stratégies populaires utilisées dans Scikit-Learn
 - Un classeur par pair de classe
 - Vote sur la totalité des classeurs
- Le vote se fait sur l'entièreté des $T_k = c(c-1)/2$ classeurs E.g.: pour 10 classes→10(10 1)/2 = 45 classeurs
- Scikit-Learn explique de long en large les stratégies implémentées selon l'algorithme:
 - https://scikit-learn.org/stable/modules/multiclass.html

ADAPTIVE LINEAR NEURONS

Adaline: Un autre type de NN simple couche

-MàJ des poids selon une fonction d'activation linéaire!

ADALINE

- La fonction d'activation linéaire $\phi(z)$ est simplement la fonction d'identité de l'entrée nette $\phi(w^{\scriptscriptstyle T}x)$ = $w^{\scriptscriptstyle T}x$
- Elle sert à mettre à jour les poids
- Cependant, un élément similaire à la fonction Heaviside parfois nommé « Quantizer » permet la prédiction de la classe
- Les sorties sont des valeurs continues! (plutôt que binaires)

FONCTION DE COÛTS

- Clé en ML: optimisation d'une fonction objective (souvent cost ou loss function)
- Ceci n'est pas un cours d'optimisation, mais nous devrons comprendre quelques éléments
- Pour Adaline, fonction de coûts à minimiser
 Apprendre les poids en tant que Sum of Squared Errors (SSE) entre les sorties et les vraies classes

$$J(w) = 1/2 \sum_{i} (y^{(i)} - \varphi(z^{(i)}))^{2}$$

*Le ½ est ajouté pour faciliter le calcul du gradient (1/n classes)

ALGORITHME DU GRADIENT

- Puisque J(w) est une fonction convexe, nous pouvons faire l'optimisation grâce à l'algorithme gradient descent.
- Regarde la « pente » des états voisins
 - Bouge dans la direction la plus abrupte
 - Trouvée par la dérivée partielle (voir diapo 15)
- Learning rule: $w := w + \Delta w$

$$\Delta w_{j} = -\eta \partial J/\partial w_{j} = \eta \sum_{i} (y^{(i)} - \phi(z^{(i)})) x_{j}^{(i)}$$

[L'image montre un encadré sur l'algorithme Hill-climbing avec: Exploration locale, G(n) (cost) de chaque voisin, On choisit le voisin qui améliore le plus]

ALGORITHME DU GRADIENT

- La dérivée d'une fonction mesure comment elle change à un point donné
- Elle quantifie le taux de variation de la fonction par rapport à une ou plusieurs variables
- La dérivée de f(x) à un point spécifique x = a est directement la pente de la tangente à ce point (taux de variation instantané) $f'(a) = \lim[h→0] [f(a+h) f(a)]/h$
- Par exemple, si $f(x) = 3x^2 + 4x$ et x = 1, alors pour h vers 0 nous aurons ≈ 2
- E.g. h = 0.1, f'(1) = 2.3 mais h = 0.00001, f'(1) = 2.00003

POURQUOI EST-CE PERTINENT?

- La différentiation peut nous dire comment varier les paramètres d'une fonction
- Évidemment, nos fonctions sont plus complexes, car elles contiennent |w| paramètres
- Le gradient d'une fonction $f(x_1, x_2, ..., x_n)$ est un vecteur qui contient les dérivées partielles de f par rapport à chacune des variables x_1

$$\nabla f = (\partial f/\partial x_1, \partial f/\partial x_2, \dots, \partial f/\partial x_n)$$

- Par exemple, pour $f(x,y) = x^2 + y^2$ le gradient serait le vecteur $\nabla f = [2x, 2y]$
- Bref, le gradient de notre fonction de coûts est le vecteur de

```
taille |w|!
   Donc,
                 w := w + \Delta w
## DÉRIVÉE PARTIELLE DE SSE
J(w) = 1/2 \sum_{i} (v^{(i)} - \varphi(z^{(i)}))^{2}
- Pour trouver la dérivée partielle ∂J/∂w; (comment J change en
fonction du poids)
- On applique la règle de la chaîne pour le terme au carré:
   \partial J/\partial w_{i}(y^{(i)} - \phi(z^{(i)}))^{2} = 2(y^{(i)} - \phi(z^{(i)})) * \partial J/\partial w_{i}(y^{(i)} - y^{(i)})
φ(z<sup>(i)</sup>))
   \partial J/\partial w_i = 1/2\sum_i 2(y^{(i)} - \varphi(z^{(i)})) * \partial J/\partial w_i(y^{(i)} - \varphi(z^{(i)}))
- De plus le 2 annule le \frac{1}{2}
   \partial J/\partial w_i = \sum_i (y^{(i)} - \varphi(z^{(i)})) * \partial J/\partial w_i (y^{(i)} - \varphi(z^{(i)}))
## DÉRIVÉE PARTIELLE DE SSE
J(w) = 1/2 \sum_{i} (y^{(i)} - \varphi(z^{(i)}))^{2}
- La fonction \varphi(z^{(i)}) peut être remplacée par la somme pour toutes
les instances
   \partial J/\partial w_j = \sum_i (y^{(i)} - \varphi(z^{(i)})) \partial J/\partial w_j (y^{(i)} - \sum_i w_j^{(i)} x_j^{(i)})
- Comme y^{(i)} est une constante, nous cherchons plutôt \partial \phi(z^{(i)})/\partial w_i
   \partial \Phi(Z^{(i)})/\partial W_i = \Phi'(Z^{(i)}) * \partial Z^{(i)}/\partial W_i
- Puisque z^{(i)} = \sum_j w_j^{(i)} x_j^{(i)}, alors \partial \phi(z^{(i)})/\partial w_j = x_j^{(i)}
   \partial J/\partial w_i = \sum_i (y^{(i)} - \varphi(z^{(i)}))(-x_j^{(i)}) = -\sum_i (y^{(i)} - \varphi(z^{(i)}))x_j^{(i)}
## RETOUR AU GRADIENT
- Bref nous avons maintenant: \partial J/\partial w_j = -\sum_i (y^{(i)} - \varphi(z^{(i)})) x_j^{(i)}
- Nous avons dit précédemment que la mise à jour des poids Δw =
-n∂J/∂wi
- Donc ultimement, si vous souhaitez implémenter Adaline avec le
gradient:
   \Delta w = \eta \sum_{i} (y^{(i)} - \varphi(z^{(i)})) x_{i}^{(i)}
- En code c'est encore plus simple:
output = self.activation(X)
errors = (y - output)
self.w [1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
## EXPLICATION DU CODE
```

. . .

```
output = self.activation(X)
- Calcul l'entrée nette pour chaque instance
errors = (y - output)
- Deux vecteurs de la taille du dataset
- Donne en retour un vecteur d'erreurs de la même taille où chaque
vraie classe se voit soustraire l'entrée
- E.g. y=1, z=0.234 alors 1-0.234
self.w_[1:] += self.eta * X.T.dot(errors)
- On multiplie le learning rate avec X
- X est un tableau de dimension instances par features
- T transpose X afin de pouvoir le multiplier par notre vecteur
d'erreurs
- Ça donne un vecteur de taille features, soit 1 élément par w!!!
self.w_[0] += self.eta * errors.sum()
- Fait la somme des erreurs * le learning rate et l'addition au
biais
## PRODUIT CROISÉ (DOT) - RAPPEL
- Attention! Cette ligne ne donne pas la même chose:
                                                           X.T*errors
- On multiplie chaque élément du vecteur par les éléments de la
matrice et on reste en instances x features!!!
- Tandis que le produit croisé change la dimension
- Si X \in \mathbb{R}^{n \times f} et errors e \in \mathbb{R}^n alors X^T e:
X^{T}e = [\sum_{i=1}^{n} X_{i}, 1e_{i}, \sum_{i=1}^{n} X_{i}, 2e_{i}, ..., \sum_{i=1}^{n} X_{i}, f_{e_{i}}]^{T}
## GRADIENT
Haut: Visualisation de l'algorithme du gradient à 1 paramètre
Bas: SSE en fonction des epochs
*Image towardsdatascience.com
## RÉSUMÉ
– Même si la règle d'apprentissage \varphi(z^{(i)}) ressemble à celle du
perceptron, z^{(i)} = w^T x est un nombre réel
  - Dans le perceptron, c'est en entier naturel de classe 1 ou -1
```

- Enfin, la MàJ des poids se fait sur le dataset en entier!
- Dans le perceptron, c'est plutôt incrémental (instance par instance)
- L'algorithme du gradient bénéficie du feature scaling
 - Le calcul est plus rapide!!!
 - sklearn.preprocessing.scale (standardisation)
- Sinon avec un tenseur Torch:

data = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
means = data.mean(dim=0, keepdim=True)
stds = data.std(dim=0, keepdim=True)
normalized_data = (data - means) / stds

ALLER UN PEU PLUS LOIN...

HYPERPARAMÈTRES

- η , le « Learning rate » et le nombre d'« epochs » sont ce qu'on appelle des hyperparamètres
 - Il n'y a pas de valeurs parfaites
 - Un learning rate trop haut peut empêcher de converger
- Un learning rate trop faible fera tourner l'algorithme longtemps (besoin de rouler un grand nombre d'epochs)
- Des méthodes existent pour automatiquement calibrer les hyperparamètres
- Nous en rediscuterons plus tard

STOCHASTIC GRADIENT DESCENT

- Nous avons vu comment minimiser une fonction de coûts avec un gradient calculé à partir de l'ensemble complet
 - Difficile si nous avons des millions d'instances!
 - Réévaluation de l'ensemble en entier à chaque étape (!!!)
- Plus populaire dans le ML:
 - Stochastic Gradient Descent (parfois iterative ou online)
- Incrémentation des poids pour chaque échantillon de l'ensemble d'entraînement!

$$\Delta w \, = \, \eta \sum_{i} \big(y^{(\,i\,)} \, - \, \phi(z^{(\,i\,)}) \big) x^{(\,i\,)} \, . \quad \rightarrow \quad \Delta w \, = \, \eta \big(y^{(\,i\,)} \, - \, \phi(z^{(\,i\,)}) \big) x^{(\,i\,)} \, .$$

STOCHASTIC GRADIENT DESCENT (SUITE)

- C'est une approximation de l'algorithme du gradient
 - Converge plus rapidement en général! (+ de MàJ)
 - L'erreur contient plus de bruit
- IMPORTANT: Les données doivent être présentées en ordre aléatoire pour obtenir de bons résultats
 - Puisqu'on calcule sur chaque échantillon sans remise à 0

```
Le learning rate est souvent adaptatif avec SGDVoir code Adaline – SGD (fit, partial_fit et shuffle)
```

LOGISTIC REGRESSION

Un autre algorithme pour la classification

-Étonnamment, pas pour la régression!!!!

LOGISTIC REGRESSION

- Similairement au Perceptron et à Adaline
 - Classification binaire
 - Très populaire, peut utiliser la stratégie One vs All
- Modèle probabiliste
- La fonction d'activation est le Sigmoid

[L'image montre la structure d'un neurone logistique avec les entrées, poids, sommation et fonction d'activation sigmoïde]

ODDS RATIO (RAPPORT DES CHANCES)

- Le rapport des chances en faveur d'un certain événement
 Le ratio utilise p la probabilité qu'un événement se produise
 p/(1-p)
- La fonction suivante est le logarithme d'un odds ratio logit(p) = log(p/(1-p))
- Elle permet de prendre en entrée des valeurs entre 0 et 1 et de les transformer afin d'exprimer une relation linéaire avec les logodds
- Ici p(y = 1|x) est la probabilité conditionnelle qu'un échantillon appartienne à la classe 1 étant donné ses attributs x

$$logit(p(y = 1|x)) = w_0x_0 + w_1x_1 + ... + x_mw_m = \sum_{i=0}^{m} w_ix_i = w^Tx.$$

FONCTION D'ACTIVATION

- Nous sommes plutôt intéressés à :
- Prédire les probabilités qu'un échantillon appartienne à une classe spécifique
- C'est la fonction inverse, la fonction sigmoïde (ou la fonction logistique)!
- z est l'entrée nette (tel que précédemment) → $z = w^Tx$

$$\varphi(z) = 1/(1+e^{-z})$$

INTERPRÉTATION

```
- La fonction d'activation tend vers
  - 1 lorsque z tend vers ∞
  - 0 lorsque z tend vers -∞
  - Elle vaut exactement 0.5 lorsque z = 0
- On interprète la φ(z) comme la probabilité qu'un échantillon
appartienne à une classe spécifique
  - E.g. \varphi(z) = 0.8 pourrait vouloir dire 80% de chance que
l'échantillon soit de type Iris-Versocolor
  - Il resterait dans ce cas 20% d'appartenance à l'autre classe
(binaire!)
- On peut utiliser un Quantizer pour une réponse discrète
  \hat{y} = \{
    1
          if \varphi(z) \ge 0.5
    0
          otherwise .
  }
## APPRENTISSAGE DES POIDS
- Sum-Squared-Error (SSE) en tant que fonction de coûts:
  – On a minimisé pour apprendre!
  J(w) = 1/2 \sum_{i} (\varphi(z^{(i)}) - y^{(i)})^{2}
- Fonction de coûts pour Logistic Regression
  - La probabilité à maximiser en supposant que les échantillons de
notre dataset sont indépendants:
  L(w) = P(y|x; w) = \prod_{i=1}^{n} P(y^{(i)}|x^{(i)}; w) = \prod_{i=1}^{n} (\varphi(z^{(i)}))^{(y^{(i)})}
(1-\varphi(z^{(i)}))^{(1-y^{(i)})}

    Plus facile d'utiliser les logarithmes (fonction Log-Likelyhood)

  l(w) = \log L(w) = \sum_{i=1}^{n} [y^{(i)} \log(\varphi(z^{(i)})) + (1-y^{(i)}) \log(1-\varphi(z^{(i)}))]
## APPRENTISSAGE DES POIDS

    Les logs permettent d'éviter un « underflow » (soupassement

arithmétique)
  - E.g.: 0.0000001*0.003*...
- De plus, on transforme le produit en somme! (plus facile à
dériver)
- On peut donc optimiser de la même façon qu'avec Adaline en
dérivant pour trouver le gradient
  - Attention, il faut utiliser gradient ascent avec la fonction
  - Ou inverser celle-ci:
J(w) = \sum_{i=1}^{n} [-v^{(i)} \log(\varphi(z^{(i)})) - (1-v^{(i)}) \log(1-\varphi(z^{(i)}))]
## EXEMPLE
- Supposons la fonction de coûts pour un seul échantillon:
  J(\varphi(z), y; w) = -y\log(\varphi(z)) - (1-y)\log(1-\varphi(z)).
```

```
- Si l'échantillon est 0 ou s'il est 1, nous avons:
  J(\phi(z), y; w) = \{
     -\log(\varphi(z)) if y = 1
     -\log(1-\varphi(z)) if y=0
- Pour différentes valeurs de la fonction d'activation:
   [L'image montre un graphique des fonctions de coût selon les
valeurs de \varphi(z) pour les cas y=0 et y=1]
## DÉRIVÉE DE LOG-LIKELYHOOD
Dérivée de sigmoïde:
\partial/\partial w_i \phi(z) = \partial/\partial z \ 1/(1+e^{-z}) = 1/(1+e^{-z})^2 \ e^{-z} = 1/(1+e^{-z})(1-1/(1+e^{-z}))
= \varphi(z)(1-\varphi(z))
Dérivée de log-likelyhood
\partial/\partial w_j l(w) = (y 1/\varphi(z) - (1-y) 1/(1-\varphi(z))) \partial/\partial w_j \varphi(z)
= (y \ 1/\phi(z) - (1-y) \ 1/(1-\phi(z))) \ \phi(z)(1-\phi(z)) \ \partial/\partial w_j z
= (y(1-\phi(z)) - (1-y)\phi(z)) x_j
= (y-\varphi(z))x_i
[Encadré en rouge avec texte: Forme connue!!!]
## LEARNING RULE

    La mise à jour des poids fonctionne de cette facon (comme

précédemment):
  W_{j} := W_{j} + \eta \sum_{i=1}^{n} (y^{(i)} - \varphi(z^{(i)})) X_{j}^{(i)}
  w := w + \Delta w

    Delta w est trouvé grâce au gradient de la fonction J(w)

\Delta w_{i} = -n\partial J/\partial w_{i} = n \sum_{i=1}^{n} (v^{(i)} - \omega(z^{(i)})) x_{i}^{(i)}
W := W + \Delta W, \Delta W = -\eta \nabla J(W)
## OPTIMISEURS DES LIBRAIRIES CONNUES
- Nous reviendrons sur l'optimisation dans les prochains cours, mais
en attendant voici vos options.
- Dans Scikit-Learn, peu de choix: https://scikit-learn.org/stable/
modules/neural_networks_supervised.html
- Dans Tensorflow: https://www.tensorflow.org/api_docs/python/tf/
keras/optimizers
  - Adam et RMSProp sont particulièrement populaires
- PyTorch offre encore plus de choix que Keras:
  https://pytorch.org/docs/stable/optim.html
```

RÉFÉRENCES ORIGINALES

Perceptron Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
Adaline Widrow, B. (1960). Adaptive" adaline" Neuron Using Chemical" memistors.".
Logistic Regression Cox, David R. (1958). "The regression analysis of binary sequences (with discussion)". J R