第1回 数列と級数

問題 1.1. 次の不等式を示せ.

(i) $\sup_{n\in\mathbb{N}} (a_n+b_n) \leqslant \sup_{n\in\mathbb{N}} a_n + \sup_{n\in\mathbb{N}} b_n$ (ii) $\sup_{n\in\mathbb{N}} (a_n-b_n) \geqslant \sup_{n\in\mathbb{N}} a_n - \sup_{n\in\mathbb{N}} b_n$ (iii) $a_n>0$, $b_n>0$ なら $\sup_{n\in\mathbb{N}} a_nb_n \leqslant \sup_{n\in\mathbb{N}} a_n \sup_{n\in\mathbb{N}} b_n$ 問題 **1.2.** $A=\left\{\frac{2n}{3n-1} \mid n\in\mathbb{N}\right\}$ の上限と下限を求めよ.

問題 1.3. 空でない \mathbb{R} の集合 A, B に対し、次を示せ.

(i) $\inf(-A) = -\sup A$

(ii) $\sup(A+B) = \sup A + \sup B$

(iii) $A, B \subset [0, \infty)$ ならば $\sup AB = \sup A \sup B$

問題 1.4. a < b とする. 区間 (a, b) に属する有理数が存在することを示せ.

問題 1.5. 無理数は有理数列の極限として得られることを示せ.

問題 1.6. $\lim_{n\to\infty}a_n=\alpha$ ならば $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=\alpha$ となることを示せ. また, これは $\alpha = \infty$ でも成立することを示せ.

問題 1.7. $a_n>0$ とする. このとき、 $\lim_{n\to\infty}a_n=\alpha$ ならば $\lim_{n\to\infty}\sqrt[n]{a_1a_2\cdots a_n}=\alpha$ となることを 示せ.

問題 1.8. $0 < b_1 < b_2 < \cdots$, $\lim_{n \to \infty} b_n = \infty$ とする. このとき, $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \alpha$ ならば $\lim_{n \to \infty} \frac{a_n}{h} = \alpha \ \text{となることを示せ}.$

問題 1.9. 次の極限値を求めよ.

(1)
$$\lim_{n \to \infty} \sqrt[n]{n}$$
 (2) $\lim_{n \to \infty} \frac{a^n}{n^k}$ (a > 0, k > 0) (3) $\lim_{n \to \infty} \sum_{k=1}^n \frac{k}{(k+1)!}$

問題 1.10. 次の式で定義される数列の収束性と極限値を求めよ.

$$a_1 = 1 \ , \ a_{n+1} = \frac{1}{a_n + 1}$$

問題 1.11. 収束列は最大数か最小数を持つことを示せ.

問題 1.12. 収束列 $a_n \to \alpha$ と $b_n \to \beta$ に対し, $|a_n| \to |\alpha|$ および $\max\{a_n, b_n\} \to \max\{\alpha, \beta\}$ が 成立することを示せ.

問題 **1.13.** $\alpha, \beta \in \mathbb{R}$ とする.

- (1) $\lim_{n\to\infty} (a_{n+1}-a_n) = \alpha$ ならば $\lim_{n\to\infty} \frac{a_n}{n} = \alpha$ であることを示せ.
- (2) $\lim_{n \to \infty} \frac{a_{n+1} a_n}{n} = \beta$ ならば $\lim_{n \to \infty} \frac{a_n}{n^2}$ が存在することを示し、その値を求めよ.

問題 1.14. 数列 $\{a_n\}_{n=1}^\infty$ が有界であることは、任意の $b_n\to 0$ なる数列 $\{b_n\}_{n=1}^\infty$ に対して $a_nb_n\to 0$ となることと同値であることを示せ.

問題 1.15. 数列 $\sqrt{6}$, $\sqrt{6+\sqrt{6}}$, $\sqrt{6+\sqrt{6}+\sqrt{6}}$, \cdots は収束することを示し, その極限値を求めよ.

問題 1.16. 有界列 $\{a_n\}_{n=1}^\infty$ に対し, $b_n:=\sqrt[n]{|a_1|^n+\cdots+|a_n|^n}$ で定まる数列 $\{b_n\}_{n=1}^\infty$ は収束することを示し、その極限値を求めよ.

問題 1.17.

- (1) $a_n = \left(1 + \frac{1}{n}\right)^n$ で定義される数列 $\{a_n\}$ は有界で単調増加であることを示せ.
- $(2) \ e := \lim_{n \to \infty} a_n$ と定めると, 2 < e < 3 であることを示せ.
- (3) $b_n = 1 + \frac{1}{1!} + \cdots + \frac{1}{n!}$ で定義される数列 $\{b_n\}$ も e に収束することを示せ.
- (4) $\{a_n\}$ と $\{b_n\}$ はどちらが収束スピードが速いか計算機で確かめよ.

問題 1.18.

- (1) 「任意の正の整数 k に対して, $\lim_{n\to\infty}(a_{n+k}-a_n)=0$ を満たすならば, 数列 a_n は有界である」 は偽である. 反例を挙げよ.
- (2) m>n なる m に対し $\forall \varepsilon>0, \exists N\in\mathbb{N}$ s.t. $m>n>N\Rightarrow |a_m-a_n|<\varepsilon$ が成立するので、数列 $\{a_n\}$ はコーシー列になりそうだが、有界でない $\{a_n\}$ もあるので矛盾する。なぜコーシー列にならない?

問題 1.19. 数列 $\{a_n\}_{n=1}^{\infty}$ と実数 α に対し, (1) と (2) は同値であることを示せ.

- $(1) \{a_n\}_{n=1}^{\infty}$ は α に収束する.
- (2) $\{a_n\}_{n=1}^{\infty}$ の任意の部分列は α に収束する部分列をもつ.

問題 1.20. 数列 $\{a_n\}_{n=1}^\infty$ が集積点をもたないことと, $\lim_{n\to\infty}|a_n|=\infty$ であることは同値であることを示せ.

問題 1.21. ゼミ資料を見よ.

(1) Prop2.4 は $\{a_n\}_{n=1}^{\infty}$ が有界でなくても成立することを示せ.

(2) Prop2.7 は $\{a_n\}_{n=1}^{\infty}$ が上に有界でなくても成立することを示せ.

問題 1.22. 以下の不等式・等式が成立することを示せ.

(1) $\forall n$ に対し $a_n \leq b_n$ ならば $\overline{\lim} a_n \leq \overline{\lim} b_n$

- (2) $\lim a_n = -\overline{\lim}(-a_n)$
- (3) $\lambda > 0$ ならば $\overline{\lim}(\lambda a_n) = \lambda \overline{\lim} a_n$

問題 1.23. 以下の不等式・等式が成立することを示せ.

- $(1) \overline{\lim}(a_n + b_n) \le \overline{\lim} a_n + \overline{\lim} b_n$
- (2) $a_n > 0, b_n > 0$ ならば $\overline{\lim}(a_n b_n) \leq \overline{\lim} a_n \overline{\lim} b_n$
- (3) $\lim_{n\to\infty} a_n$ が存在するならば, $\overline{\lim}(a_n+b_n)\leq \lim a_n+\overline{\lim}\,b_n$

問題 **1.24.** 数列 $\{a_n\}_{n=1}^{\infty}$ と実数 α に対し,

- (1) $\overline{\lim_{n \to \infty}} |a_n \alpha| = 0$ と, $\lim_{n \to \infty} a_n = \alpha$ は同値であることを示せ.
- (2) $\lim_{n\to\infty} |a_n-\alpha|=0$ と, α が $\{a_n\}_{n=1}^\infty$ の集積点であることは同値であることを示せ.

問題 **1.25.** 数列 $\{a_n\}_{n=1}^{\infty}$ に対し,

- (1) $\{a_n\}_{n=1}^{\infty}$ が有界であることと、 $\overline{\lim}_{n\to\infty} a_n < \infty$ は同値であることを示せ.
- (2) $\{a_n\}_{n=1}^{\infty}$ が集積点をもつことと、 $\lim_{n\to\infty} a_n < \infty$ は同値であることを示せ.

問題 **1.26.** 数列 $\{a_n\}$ に対し,

$$\overline{\lim_{n \to \infty}} \, \frac{a_1 + \dots + a_n}{n} \leqslant \overline{\lim_{n \to \infty}} \, a_n$$

を示せ.

問題 1.27. 次の級数の収束・発散を判定せよ.

(1)
$$\sum a^n$$
 (2) $\sum \frac{1}{n^p}$ (3) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$

問題 1.28. 次の級数の収束・発散を判定せよ.

$$(1) \sum \frac{1}{(2n-1)(2n+1)} \qquad (2) \sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1} \qquad (3) \sum \frac{1}{\log(n+1)} \qquad (4) \sum \frac{1}{n^{\log n}} \qquad (5) \sum \frac{\log n}{n^{\alpha}}$$

問題 1.29. 次の級数の収束・発散を判定せよ.

$$(1) \sum_{n=1}^{\infty} \frac{1}{n} \log \left(1 + \frac{1}{n} \right) \qquad (2) \sum_{n=1}^{\infty} \left(a^{\frac{1}{n}} - 1 \right) \qquad (n > 1) \qquad (3) \sum_{n=1}^{\infty} \frac{1}{(\log n)^{\log n}} \qquad (4) \sum_{n=1}^{\infty} \left(1 - \frac{1}{n} \right)^{n^2}$$

問題 1.30. 次の級数の収束・発散を判定せよ.

(1)
$$\sum \frac{n^{\alpha}}{n!}$$
 (2) $\sum \frac{n}{a^n}$ (a > 0) (3) $\sum \frac{(n!)^2}{(2n)!} a^n$ (a > 0)

問題 1.31. 次の級数の収束・発散を判定せよ.

$$(1) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\log n}{\sqrt{n}} (2) \sum_{n=1}^{\infty} (-1)^n \frac{\log n}{\log(n+1)} (3) \sum_{n=1}^{\infty} \frac{\sin n\theta}{\log n} (4) \sum_{n=1}^{\infty} \frac{\cos nx}{n} (x \neq 2k\pi, k \in \mathbb{Z})$$

問題 1.32. 以下を示せ.

- $(1) \sum a_n$ が絶対収束すれば $\sum a_n^2$ も収束する. 逆は成立しない.
- (2) $\sum a_n^2$ が絶対収束すれば $\sum \frac{|a_n|}{n}$, $\sum |a_n a_{n+1}|$ も収束する. 逆は成立しない.

問題 1.33. 正項級数の判定法が一つ, ダランベールの判定法は以下のとおりである.

$$(1) \limsup_{n \to \infty} \frac{a_n}{a_{n-1}} < 1 \Rightarrow \sum a_n \ \text{は収束} \qquad (2) \liminf_{n \to \infty} \frac{a_n}{a_{n-1}} > 1 \Rightarrow \sum a_n \ \text{は発散}$$

(2) は上極限にすると成立しない. 例を挙げよ.

問題 1.34. 正項級数の判定法が一つ、ガウスの判定法の判定法は以下のとおりである.

$$\frac{a_n}{a_{n-1}} = 1 - \frac{\phi}{n} + O\left(\frac{1}{n^{1+\alpha}}\right)(n \to \infty) \text{ なる } \phi > 0, \alpha > 0 \text{ が存在するならば,}$$

$$(1)$$
 $\phi > 1$ のとき, $\sum a_n$ は収束 (2) $\phi \leqslant 1$ のとき, $\sum a_n$ は発散

これを示せ.

問題 1.35. 次の級数の収束・発散を判定せよ. この問題は何が言いたいと思う?

(1)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{6}} + \dots$$

(2)
$$1 + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{7}} - \frac{1}{\sqrt{4}} + \dots$$

問題 **1.36.** ラーベの判定法 (ガウスの判定法のほぼ拡張版)、クンマーの判定法 (ダランベールの判定法の拡張版)、ベルトランの判定法など他にもたくさんある. 気になったら調べてみよ.