

Wyższa Szkoła Oficerska Sił Powietrznych

Geodezyjne Podstawy Nawigacji								
Rok akademicki	Rok studiów	Kierunek	Grupa					
2010/2011	2	Lotnictwo i Kosmonautyka	C9A					
Ciąg poligonowy otwarty obustronnie nawiązany								
Nr 11 Łukasz Kusek								

Spis treści

1	Obliczanie azymutu początkowego $A_P \equiv A_{AB}$ ze współrzędnych 1.1 Kontrola	2					
2	Obliczanie azymutu końcowego $A_K \equiv A_{CD}$ ze współrzędnych 2.1 Kontrola						
3	Obliczenie sumy praktycznej kątów poziomych $[\alpha]_p$	3					
4	Obliczenie sumy teoretycznej kątów poziomych $[\alpha]_t$	3					
5	Obliczenie odchyłki kątowej f_{kt} 5.1 Obliczenie odchyłki kątowej dopuszczalnej $f_{kt \max}$						
6	Obliczenie azymutów	3					
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4					
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4					
9	Obliczenie odchyłki liniowej 9.1 Obliczenie odchyłki liniowej dopuszczalnej	5					
10) Obliczanie współrzadnych	5					

1 Obliczanie azymutu początkowego $A_P \equiv A_{AB}$ ze współrzędnych

$$\tan A_{AB} = \frac{Y_B - Y_A}{X_B - X_A}$$

$$\tan A_{AB} = \frac{3300 - 3000}{2010 - 2000} = \frac{300}{10} = 30$$

$$A_{AB} = \arctan 30$$

$$A_{AB} = 97,8787^g$$

1.1 Kontrola

$$\tan (A_{AB} + 50^g) = \frac{300 + 10}{-300 + 10} = \frac{310}{-290}$$

$$A_{AB} + 50^g = 200^g + \arctan \frac{310}{-290}$$

$$A_{AB} + 50^g = 200^g + (-52, 1213^g)$$

$$A_{AB} + 50^g = 147, 8787^g$$

$$A_{AB} = 97, 8787^g$$

2 Obliczanie azymutu końcowego $A_K \equiv A_{CD}$ ze współrzędnych

$$\tan A_{CD} = \frac{Y_D - Y_C}{X_D - X_C}$$

$$\tan A_{CD} = \frac{4199, 10 - 3932, 75}{1421, 10 - 1719, 50} = \frac{266, 35}{-298, 40}$$

$$\arctan \frac{266, 35}{-298, 40} = -46, 3910^g$$

$$A_{CD} = 200^g - 46, 3910^g$$

$$A_{CD} = 153, 6090^g$$

2.1 Kontrola

$$\tan (A_{CD} + 50^g) = \frac{266, 35 + (-298, 40)}{-266, 35 + (-298, 40)} = \frac{-32, 05}{-564, 75}$$

$$A_{CD} + 50^g = 200^g + \arctan \frac{-32, 05}{-564, 75}$$

$$A_{CD} + 50^g = 200^g + 3,6090^g$$

$$A_{CD} + 50^g = 203,6090^g$$

$$A_{CD} = 153,6090^g$$

3 Obliczenie sumy praktycznej kątów poziomych $[\alpha]_p$

$$[\alpha]_p = 245,5720^g + 154,3320^g + 254,8050^g + 170,2000^g + 230,8090^g = 1055,7180^g$$

4 Obliczenie sumy teoretycznej kątów poziomych $[\alpha]_t$

$$[\alpha]_t = A_K - A_P + n * 200,0000^g$$

$$n = 5$$
 $A_K \equiv A_{CD}$ $A_P \equiv A_{AB}$

$$[\alpha]_t = A_{CD} - A_{AB} + 5*200,0000^g = 153,6090^g - 97,8787^g + 1000,0000^g = 1055,7303^g$$

5 Obliczenie odchyłki kątowej f_{kt}

$$f_{kt} = [\alpha]_p - [\alpha]_t$$

$$f_{kt} = 1055, 7180^g - 1055, 7303^g = -0,0123^g$$

5.1 Obliczenie odchyłki kątowej dopuszczalnej $f_{kt \max}$

$$f_{ktmax} = \pm 0,0180^g * \sqrt{n}$$

$$n=5$$

$$f_{ktmax} = \pm 0,0180^g * \sqrt{5} = \pm 0,0402^g$$

5.2 Rozrzucenie równomierne odchyłki kątowej

$$v_{kt} = -\frac{f_{kt}}{n}$$

$$n = 5$$

$$v_{kt} = -\frac{-0.0123^g}{5} = 0.00246^g \approx 0.0024^g | 0.0025^g$$

6 Obliczenie azymutów

$$A_N = A_{N-1} + \alpha_{N-1} + v_{kt_{N-1}} - 200^g$$

7 Obliczenie przyrostu Δx

$$\Delta x = d \cdot \cos A$$

7.1 Kontrola

$$S = \frac{d}{\sqrt{2}} \cdot \sin(A + 50^g), \qquad C = \frac{d}{\sqrt{2}} \cdot \cos(A + 50^g)$$
$$\Delta x = S + C$$

7.2 Obliczenie sumy praktycznej przyrostu

$$[\Delta x]_p = \Delta x_{B-1} + \Delta x_{1-2} + \Delta x_{2-3} + \Delta x_{3-C}$$

7.3 Obliczenie sumy teoretycznej przyrostu

$$[\Delta x]_t = X_C - X_B$$

7.4 Obliczenie odchyłki

$$f_x = [\Delta x]_p - [\Delta x]_t$$

7.5 Rozrzucenie odchyłki proporcjonalnie do długości boków

$$v_i^x = -\frac{f_x}{L}d_i$$

8 Obliczenie przyrostu Δy

$$\Delta y = d \cdot \sin A$$

8.1 Kontrola

$$S = \frac{d}{\sqrt{2}} \cdot \sin(A + 50^g), \qquad C = \frac{d}{\sqrt{2}} \cdot \cos(A + 50^g)$$
$$\Delta y = S - C$$

8.2 Obliczenie sumy praktycznej przyrostu

$$[\Delta y]_p = \Delta y_{B-1} + \Delta y_{1-2} + \Delta y_{2-3} + \Delta y_{3-C}$$

8.3 Obliczenie sumy teoretycznej przyrostu

$$[\Delta y]_t = Y_C - Y_B$$

8.4 Obliczenie odchyłki

$$f_y = [\Delta y]_p - [\Delta y]_t$$

8.5 Rozrzucenie odchyłki proporcjonalnie do długości boków

$$v_i^y = -\frac{f_y}{L}d_i$$

4

9 Obliczenie odchyłki liniowej

$$f_L = \sqrt{f_x^2 + f_y^2}$$

9.1 Obliczenie odchyłki liniowej dopuszczalnej

$$f_{Lmax} = \sqrt{u^2 L + \left(\frac{m_0}{\varrho}\right)^2 \frac{(n_b + 1)(n_b + 2)}{12n_b} L^2 + c^2}$$

10 Obliczenie współrzędnych

$$X_N = X_P + \Delta x_{P-N} + v_N^x$$

$$Y_N = Y_P + \Delta y_{P-N} + v_N^y$$

	Kąty	Azymuty	Boki	Przyrosty		Kontrola przyrostów			Współrzędne		
	lewe	A	d	Δx	Δy	$\frac{d}{\sqrt{2}}$	S	$\Delta x = S + C$	X	Y	
	g c cc	g c cc				$A + 50^g$	C	$\Delta y = S - C$			
1	2	3	4	5	6	7	8	9	10	11	12
A		07 0707							2000,00	3000,00	A
A	0,0025	97,8787							2010,00	3300,00	В
В	245, 5720	143,4532	150,11	0,03	0	106, 144	10,90	-94,68	·	·	
	0,0024			-94,69	116, 48	193, 4532	-105, 58	116,48	1915,34	3416,48	1
1	154, 3320	97,7876	200,00	0,05	0,01	141, 421	103,41	6,95			
	0,0025			6,95	199,88	147, 7876	-96,46	199,87	1922,34	3616,37	2
2	254, 8050	152,5951	175,50	0,04	0	124, 097	-5,06	-129,05			
	0,0024			-129,05	118,94	202, 5951	-123,99	118,93	1793,33	3735,31	3
3	170, 2000	122,7975	210,80	0,05	0,01	149,058	61,77	-73,89			
	0,0025			-73,88	197, 43	172, 7975	-135,66	197, 43	1719,50	3932,75	C
С	230, 8090	153,6090									
									1421,10	4199,10	
D			L = 736, 41	$\sum p = -290,67$	$\sum p = 632,73$						
$[\alpha]_p$	1055, 7180			$\sum t = -290, 50$	$\sum t = 632,75$						
$[\alpha]_t$	1055,7303			$f_x = -0, 17$	$f_y = -0,02$						
f_{kt}	-0,0123			$f_L = 0, 17$	$f_{L\mathrm{max}}=0,21$						
$f_{kt \max}$	0,0402										