# Classification (knn)

# Agenda

- KNN concepts
- Preprocessing
  - Normalization
  - Dummy Coding
- Prediction
- Evaluation
- Implementation

## Classification

- Predicting categorical values
- Methods
  - Nearest Neighbor
  - Naive Bayes
  - Decision Trees
  - SVM (dual use)
  - Neural Network (dual use)

## KNN: K Nearest Neighbor

#### When to use

- relationships among the features and the target classes are numerous, complicated, or otherwise extremely difficult to understand
- items of similar class type tend to be fairly homogeneous

## KNN Strengths and Weaknesses

#### **Pros**

- + Simple and effective
- + No assumptions about the data distributions
- + Fast training

#### Cons

- There is no reusable / interpretable model
- Classification is slow
- Memory dependent
- Requires pre-processing of nominal features and missing data

| ingredient | sweetness | crunchiness | food type |
|------------|-----------|-------------|-----------|
| apple      | 10        | 9           | fruit     |
| bacon      | 1         | 4           | protein   |
| banana     | 10        | 1           | fruit     |
| carrot     | 7         | 10          | vegetable |
| celery     | 3         | 10          | vegetable |
| cheese     | 1         | 1           | protein   |



how sweet the food tastes

| ingredient | sweetness | crunchiness | food type |
|------------|-----------|-------------|-----------|
| apple      | 10        | 9           | fruit     |
| bacon      | 1         | 4           | protein   |
| banana     | 10        | 1           | fruit     |
| carrot     | 7         | 10          | vegetable |
| celery     | 3         | 10          | vegetable |
| cheese     | 1         | 1           | protein   |



how sweet the food tastes



how sweet the food tastes





Which category does tomato belong to?

**Tomato:** sweetness=6; crunchiness=4

dist
$$(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + ... + (p_n - q_n)^2}$$

dist 
$$(tomato, green bean) = \sqrt{(6-3)^2 + (4-7)^2} = 4.2$$

| ingredient | sweetness | crunchiness | food type | distance to the tomato          |
|------------|-----------|-------------|-----------|---------------------------------|
| grape      | 8         | 5           | fruit     | $sqrt((6-8)^2 + (4-5)^2) = 2.2$ |
| green bean | 3         | 7           | vegetable | $sqrt((6-3)^2 + (4-7)^2) = 4.2$ |
| nuts       | 3         | 6           | protein   | $sqrt((6-3)^2 + (4-6)^2) = 3.6$ |
| orange     | 7         | 3           | fruit     | $sqrt((6-7)^2 + (4-3)^2) = 1.4$ |

## What is the best value of k



The balance between overfitting and under-fitting the training data is a problem known as the bias-variance tradeoff

# Preprocessing

1 - Normalization

2 - Nominal features - dummy coding

## Normalization

#### Min-max normalization

 We need a way of "shrinking" or rescaling the various features such that each one contributes relatively equally to the distance formula

$$X_{new} = \frac{X - min(X)}{max(X) - min(X)}$$

Values fall in a range between 0 and 1

# Step functions to

- step\_range(), applies min-max normalization
  - step\_normalize(), standardize (  $z_i = (x_i \mu_x)/\sigma_x$  )
- step\_dummy(), creates dummy variables

# step\_range()

| salary    | weekly_hours<br><dbl></dbl> | yrs_at_company<br><int></int> |
|-----------|-----------------------------|-------------------------------|
| 118680.74 | 56                          | 6                             |
| 85576.44  | 42                          | 10                            |
| 46235.79  | 56                          | 0                             |
| 117226.84 | 50                          | 8                             |

| salary<br><dbl></dbl> | weekly_hours<br><dbl></dbl> | yrs_at_company<br><dbl></dbl> |
|-----------------------|-----------------------------|-------------------------------|
| 0.487322740           | 0.61538462                  | 0.150                         |
| 0.305716491           | 0.07692308                  | 0.250                         |
| 0.089898378           | 0.61538462                  | 0.000                         |
| 0.479346806           | 0.38461538                  | 0.200                         |

$$X_{new} = \frac{X - min(X)}{max(X) - min(X)}$$

## Normalization

```
##
   radius_mean n_radius_mean
##
       <dbl>
              <dbl>
## 1
       6.98
## 2
   7.69
                0.0336
## 3 7.73
                0.0354
## 4 7.76 0.0369
## 5 8.20
                0.0575
## 6
        8.22
                0.0586
```

## Normalization

#### z-score standardization

- Rescales each of a feature's values in terms of how many standard deviations they fall above or below the mean value.
- The resulting value is called a z-score. The z-scores fall in an unbounded range of negative and positive numbers
- Used when outliers are important indication of a class (like tumor growth in cancer detection)

$$X_{new} = \frac{X - \mu}{\sigma} = \frac{X - mean(x)}{StdDev(x)}$$

# step\_normalize()

| salary    | weekly_hours<br><dbl></dbl> | yrs_at_company<br><int></int> |
|-----------|-----------------------------|-------------------------------|
| 118680.74 | 56                          | 6                             |
| 85576.44  | 42                          | 10                            |
| 46235.79  | 56                          | 0                             |
| 117226.84 | 50                          | 8                             |

| salary<br>«dbl» | weekly_hours<br><dbl></dbl> | yrs_at_company<br><dbl></dbl> |
|-----------------|-----------------------------|-------------------------------|
| 0.6327092094    | 1.27048268                  | -0.17722292                   |
| -0.2378880424   | -1.66514407                 | 0.48039485                    |
| -1.2724926113   | 1.27048268                  | -1.16364957                   |
| 0.5944735977    | 0.01235693                  | 0.15158596                    |



z: standard score

 $\mu$ : variable mean

 $\sigma$ : variable standard deviation

## Z-score normalization

#### scale() performs z-score standardization

```
wbc_data%>%
mutate(n_radius_mean=normalize(radius_mean) ,s_radius_mean=scale(radius_mean))%>%
select(ends_with('radius_mean'))%>%arrange(radius_mean)%>%head()
```

| ##   | radius_mean | n_radius_mean | s_radius_mean |
|------|-------------|---------------|---------------|
| ##   | <dbl></dbl> | <dbl></dbl>   | <dbl></dbl>   |
| ##   | 1 6.98      | 0             | -2.03         |
| ##   | 7.69        | 0.0336        | -1.83         |
| ## : | 7.73        | 0.0354        | -1.82         |
| ##   | 7.76        | 0.0369        | -1.81         |
| ##   | 8.20        | 0.0575        | -1.68         |
| ##   | 8.22        | 0.0586        | -1.68         |

## Transform all Numeric variables

We can apply normalization function to every numeric variable.

```
normalize<-function(x){(x-min(x))/(max(x)-min(x))}
wbc_data= wbc_data%>%column_to_rownames("id") ## Id is not a variable
wbc_n=wbc_data%>%mutate_if(is.numeric, normalize)
```

# Preprocessing

1 - Normalization

2 - Nominal features - dummy coding

# Dummy coding

• A value of 1 indicates one category, and 0 indicates the other. For instance, dummy coding for a gender variable could be constructed as:

$$male = \begin{cases} 1 & \text{if } x = male \\ 0 & \text{otherwise} \end{cases}$$

• An n-category nominal feature can be dummy coded by creating binary indicator variables for (n-1) levels of the feature. For example, dummy coding for a three-category temperature variable (for example, hot, medium, or cold) could be set up as (3-1) = 2 features, as shown:

$$hot = \begin{cases} 1 & \text{if } x = hot \\ 0 & \text{otherwise} \end{cases}$$

$$medium = \begin{cases} 1 & \text{if } x = medium \\ 0 & \text{otherwise} \end{cases}$$

# Step dummy



| left_company<br><fctr></fctr> | department_Sales<br><dbl></dbl> | department_Research<br><dbl></dbl> | department_Product.Development |
|-------------------------------|---------------------------------|------------------------------------|--------------------------------|
| Yes                           | 1                               | 0                                  | 0                              |
| No                            | 1                               | 0                                  | 0                              |
| Yes                           | 0                               | 0                                  | 1                              |
| No                            | 0                               | 0                                  | 0                              |

# Dummy coding (without tidy models)

```
##
    MS Zoning
## 1 A agr
## 2 C all
## 3 Floating_Village_Residential
f=formula('~MS Zoning-1')
model.matrix(f, data=ames_data)
##
        MS_ZoningA_agr MS_ZoningC_all MS_ZoningFloating_Village_Residential
## 1
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
```

## Converting all nominal features

```
categorical=ames_data%>%select_if(is.character)

models=map(.x=names(categorical), ~formula(paste(" ~ ",.x," -1", sep="")))

rs=map(models, ~model.matrix(.x, data=ames_data))
all_dummies=Reduce(cbind, rs)%>%as_tibble()
```

#### Alternatively we can use **caret** library

```
require(caret)
dmy <- dummyVars(" ~ .", data = ames_data)
all_dummies2=data.frame(predict(dmy, newdata = ames_data))</pre>
```

# Agenda

- KNN concepts
- Preprocessing
  - Normalization
  - Dummy Coding
- Prediction
- Evaluation
- Implementation

## Prediction

- Prediction and model building is together
- Lazy algorithm (instance-based learning)
  - No abstraction
  - Stores the data verbatim

## Recipe and Model

## Workflow and fit

## Predict and Evaluate

```
test_result=predict(model_fit, new_data = employee_test)%>%bind_cols(employee_test%>%select(left_company))
conf_mat(test_result, truth = left_company, estimate = .pred_class)
test_result=predict(model_fit, new_data = employee_test)%>%bind_cols(employee_test%>%select(left_company))
conf_mat(test_result, truth = left_company, estimate = .pred_class)
           Truth
Prediction Yes No
        Yes 45 11
            14 297
        No
```

# Selecting k

- Selecting optimal k requires running the model with different k values and see which one performed the best
- Odd numbers are preferred (even number of k's may result in ties)

# Selecting the k - Parameter tuning

What is the number of neighbors we should consider to get the best

results



The balance between overfitting and under-fitting the training data is a problem known as the bias-variance tradeoff

# tune() for parameter

```
\{r\}
employee_folds <- vfold_cv(employee_training, v = 5)</pre>
 ``{r}
knn_model2 <- nearest_neighbor(neighbors</pre>
                                                      %>%
                                              tune()
              set_engine('kknn') %>%
              set_mode('classification')
   \{r\}
knn_workflow2 <- workflow() %>%
          add_model(knn_model2) %>%
          add_recipe(employee_recipe)
```

- setup with v-fold cross validation

- enter tune() function instead of a predefined k value
- proceed the same way

# Define the search grid for the best k

| <pre>```{r} k_grid &lt;- tibble(neighbors k_grid ```</pre> | = c(1:10,         | 20, | 30, | 50, | 75, | 100, | 125, | 150)) |
|------------------------------------------------------------|-------------------|-----|-----|-----|-----|------|------|-------|
| ne                                                         | eighbors<br>«dbl» |     |     |     |     |      |      |       |
|                                                            | 1                 |     |     |     |     |      |      |       |
|                                                            | 2                 |     |     |     |     |      |      |       |
|                                                            | 3                 |     |     |     |     |      |      |       |
|                                                            | 4                 |     |     |     |     |      |      |       |
|                                                            | 5                 |     |     |     |     |      |      |       |
|                                                            | 6                 |     |     |     |     |      |      |       |
|                                                            | 7                 |     |     |     |     |      |      |       |
|                                                            | 8                 |     |     |     |     |      |      |       |
|                                                            | 9                 |     |     |     |     |      |      |       |
|                                                            | 10                |     |     |     |     |      |      |       |
| 1-10 of 17 rows                                            |                   |     |     |     |     |      |      |       |

- create a table (tibble) of values that will be tried

# search the grid

- tune\_grid() uses a table (tibble) of parameters and plug it in where previously filled with =tune()
- previously we set neighbors= tune()
   and the neighbors column in k\_grid
   will be used for the neighbors
   parameter

# Finding the best parameter value

| knn_tuning%>%s           | knn_tuning%>%show_best('accuracy') |            |                     |                         |                        |  |  |  |
|--------------------------|------------------------------------|------------|---------------------|-------------------------|------------------------|--|--|--|
| neighbors<br><dbl></dbl> |                                    | .estimator | mean<br><dbl></dbl> | <b>n</b><br><int></int> | std_err<br><dbl></dbl> |  |  |  |
| 20                       | accuracy                           | binary     | 0.9337927           | 5                       | 0.007721810            |  |  |  |
| 30                       | accuracy                           | binary     | 0.9283464           | 5                       | 0.008595037            |  |  |  |
| 10                       | accuracy                           | binary     | 0.9283422           | 5                       | 0.010149714            |  |  |  |
| 50                       | accuracy                           | binary     | 0.9283340           | 5                       | 0.012345119            |  |  |  |
| 9                        | accuracy                           | binary     | 0.9265282           | 5                       | 0.009738308            |  |  |  |

 best model based on the 'accuracy' metric

## Finalize the workflow with best value

## Fit the model

```
## Train and Eval with Last fit
```{r}
last_fit_knn<- final_knn_wf%>%last_fit(split=employee_split)
```{r}
last_fit_knn %>% collect_metrics()
```{r}
test_result<-last_fit_knn%>%collect_predictions()
conf_mat(test_result, truth = left_company, estimate=.pred_class)
          Truth
Prediction Yes No
       Yes 45 11
            14 297
```

last\_fit\_knn() is combines the two steps below 1 - model fit with training data 2 - predict with testing data