AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

Lecture 10: Review for Midterm #1; Gram-Schmidt Orthogonalization

Xiangmin Jiao

Stony Brook University

Outline

Review of Midterm #1

② Gram-Schmidt Orthogonalization (NLA§7)

Modified Gram-Schmidt Orthogonalization (NLA§8)

Xiangmin Jiao Numerical Analysis I 2 / 18

Midterm #1

- Wednesday, Oct. 5th, 2016 in classroom
- It will cover material up to Cholesky factorization
- It is a closed-book exam
- You can bring a single-sided, one-page, letter-size cheat sheet, which you must prepare by yourself

Fundamental Concepts

- Norms, orthogonality, conditioning, stability
- Conditioning of problems
- Stability and backward stability of algorithms
- Efficiency of algorithms, operation counts
- Singular value decomposition, properties, and relationship with eigenvalue problems
- Orthogonal projection matrices, orthogonal matrices

Algorithms

- Matrix multiplication
- Triangular systems
- Gaussian elimination with/without pivoting
- Cholesky factorization and LDL^T factorization
- Understand when they work, how they work, why they work, and how well they work

Outline

Review of Midterm #1

2 Gram-Schmidt Orthogonalization (NLA§7)

3 Modified Gram-Schmidt Orthogonalization (NLA§8)

Xiangmin Jiao Numerical Analysis I 6 / 18

Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

Motivation

Question: Given a linear system $Ax \approx b$ where $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full rank, how to solve the linear system?

- One approach is to solve normal equation $A^TAx = A^Tb$ directly using Cholesky factorization. It is unstable, but is very efficient if $m \gg n$ $(mn^2 + \frac{1}{3}n^3)$.
- 2 Another possible solution is to use SVD:

$$A = U\Sigma V^T$$
, so $x = V\Sigma^{-1}U^Tb$.

It is stable, but is inefficient.

A more robust approach is to use QR factorization, which decomposes A into product of two simple matrices Q and R, where columns of Q are orthonormal and R is upper triangular.

Two Different Versions of QR

There are two versions of QR

• Full QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular

• Reduced (or thin) QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = \widehat{Q}\widehat{R}$$

where $Q \in \mathbb{R}^{m \times n}$ contains orthonormal vectors and $R \in \mathbb{R}^{n \times n}$ is upper triangular

• What space do $\{q_1, q_2, \cdots, q_j\}$, $j \leq n$ span?

Two Different Versions of QR

There are two versions of QR

• Full QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular

• Reduced (or thin) QR factorization: $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$

$$A = \widehat{Q}\widehat{R}$$

where $Q \in \mathbb{R}^{m \times n}$ contains orthonormal vectors and $R \in \mathbb{R}^{n \times n}$ is upper triangular

- What space do $\{q_1, q_2, \cdots, q_j\}$, $j \leq n$ span?
 - Answer: For full rank A, first j column vectors of A, i.e., $\langle q_1, q_2, \dots, q_j \rangle = \langle a_1, a_2, \dots, a_j \rangle$.

Gram-Schmidt Orthogonalization

- A method to construct QR factorization is to orthogonalize the column vectors of A:
- Basic idea:
 - ▶ Take first column a_1 and normalize it to obtain vector q_1 ;
 - ▶ Take second column a_2 , subtract its orthogonal projection to q_1 , and normalize to obtain q_2 ;
 - **>** ...
 - ► Take *j*th column of a_j , subtract its orthogonal projection to q_1, \ldots, q_{j-1} , and normalize to obtain q_i ;

$$v_j = a_j - \sum_{i=1}^{j-1} q_i^T a_j q_i, \ q_j = v_j / \|v_j\|.$$

• This idea is called Gram-Schmidt orthogonalization.

Gram-Schmidt Projections

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$q_j = \frac{P_j a_j}{\|P_j a_j\|}$$

where

$$P_j = I - \hat{Q}_{j-1}\hat{Q}_{j-1}^T$$
 with $\hat{Q}_{j-1} = \left[\begin{array}{ccc} q_1 & q_2 & \cdots & q_{j-1} \end{array}
ight]$

• P_j projects orthogonally onto space orthogonal to $\langle q_1,q_2,\dots,q_{j-1}
angle$ and rank of P_j is m-(j-1)

Existence of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full QR factorization, hence also a reduced QR factorization.

Existence of QR

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ has full QR factorization, hence also a reduced QR factorization.

Key idea of proof: If *A* has full rank, Gram-Schmidt algorithm provides a proof itself for having reduced QR.

If A does not have full rank, at some step $v_j = 0$. We can set q_j to be a vector orthogonal to q_i , i < j.

To construct full QR from reduced QR, just continue Gram-Schmidt an additional m-n steps.

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ij} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_j are determined.

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ii} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_j are determined.

Question: Why do we require $r_{ii} > 0$?

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ii} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ij} are determined, then r_{ij} and q_i are determined.

Question: Why do we require $r_{jj} > 0$?

Question: Is full QR factorization unique?

Theorem

Every $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ of full rank has a unique reduced QR factorization $A = \widehat{Q}\widehat{R}$ with $r_{ij} > 0$.

Key idea of proof: Proof is provided by Gram-Schmidt iteration itself. If the signs of r_{ii} are determined, then r_{ii} and q_i are determined.

Question: Why do we require $r_{jj} > 0$? **Question**: Is full QR factorization unique? **Question**: What if A does not have full rank?

Outline

Review of Midterm #1

② Gram-Schmidt Orthogonalization (NLA§7)

3 Modified Gram-Schmidt Orthogonalization (NLA§8)

Xiangmin Jiao Numerical Analysis I 13 / 18

Algorithm of Gram-Schmidt Orthogonalization

Classical Gram-Schmidt method
$$\begin{aligned} & \textbf{for } j = 1 : n \\ & v_j = a_j \\ & \textbf{for } i = 1 : j - 1 \\ & r_{ij} = q_i^\mathsf{T} a_j \\ & v_j = v_j - r_{ij} q_i \\ & r_{jj} = \|v_j\|_2 \\ & q_j = v_j / r_{jj} \end{aligned}$$

- ullet GS require $\sim 2mn^2$ flops to compute QR factorization of $m \times n$ matrix
- Classical Gram-Schmidt (CGS) is unstable, which means that its solution is sensitive to perturbation

Alternative View of Gram-Schmidt Projection

 Orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$q_j = rac{P_j a_j}{\|P_j a_j\|}, ext{ where } P_j = I - \hat{Q}_{j-1} \hat{Q}_{j-1}^T, \; \hat{Q}_{j-1} = [q_1 | q_2 | \cdots | q_{j-1}]$$

• We may view P_i as product of a sequence of projections

$$P_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \dots P_{\perp q_1}$$

where
$$P_{\perp q} = I - qq^T$$

• Instead of computing $v_j = P_j a_i$, one could compute $v_j = P_{\perp q_{j-1}} P_{\perp q_{j-2}} \dots P_{\perp q_1} a_j$ instead, resulting in modified Gram-Schmidt algorithm

Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method

for
$$j = 1 : n$$

$$v_j = a_j$$
for $i = 1 : j - 1$

$$r_{ij} = q_i^T a_j$$

$$v_j = v_j - r_{ij}q_i$$

$$r_{jj} = ||v_j||_2$$

$$q_i = v_i/r_{ii}$$

Modified Gram-Schmidt method

for
$$j = 1 : n$$

 $v_j = a_j$
for $i = 1 : n$
 $r_{ii} = ||v_i||_2$
 $q_i = v_i/r_{ii}$
for $j = i + 1 : n$
 $r_{ij} = q_i^T v_j$
 $v_j = v_j - r_{ij}q_i$

Modified Gram-Schmidt Algorithm

Classical Gram-Schmidt method $\begin{aligned} \textbf{for } j &= 1:n \\ v_j &= a_j \\ \textbf{for } i &= 1:j-1 \\ r_{ij} &= q_i^T a_j \\ v_j &= v_j - r_{ij} q_i \\ r_{jj} &= \|v_j\|_2 \\ q_i &= v_i/r_{ii} \end{aligned}$

```
Modified Gram-Schmidt method for j = 1: n
v_j = a_j
for i = 1: n
r_{ii} = ||v_i||_2
q_i = v_i/r_{ii}
for j = i + 1: n
r_{ij} = q_i^T v_j
v_j = v_j - r_{ij}q_i
```

- Key difference between CGS and MGS is how r_{ij} is computed
- CGS above is column-oriented (in the sense that R is computed column by column) and MGS above is row-oriented, but this is NOT the main difference between CGS and MGS. There are also column-oriented MGS and row-oriented CGS.
- MGS is numerically "more stable" than CGS, but neither is stable
- In MGS, v_j can overwrite a_j , and q_j can overwrite v_j

Example: CGS vs. MGS

Consider matrix

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{array} \right]$$

where ε is small such that $1+\varepsilon^2=1$ with round-off error

For both CGS and MGS

$$\begin{aligned} v_1 \leftarrow (1, \varepsilon, 0, 0)^T, \ r_{11} &= \sqrt{1 + \varepsilon^2} \approx 1, \ q_1 = v_1/r_{11} = (1, \varepsilon, 0, 0)^T, \\ v_2 \leftarrow (1, 0, \varepsilon, 0)^T, r_{12} &= q_1^T a_2 (\text{or } = q_1^T v_2) = 1 \\ v_2 \leftarrow v_2 - r_{12} q_1 &= (0, -\varepsilon, \varepsilon, 0)^T, \\ r_{22} &= \sqrt{2}\varepsilon, \ q_2 = (0, -1, 1, 0)/\sqrt{2}, \\ v_3 \leftarrow (1, 0, 0, \varepsilon)^T, r_{13} &= q_1^T a_3 (\text{or } = q_1^T v_3) = 1 \\ v_3 \leftarrow v_3 - r_{13} q_1 &= (0, -\varepsilon, 0, \varepsilon)^T \end{aligned}$$

Example: CGS vs. MGS Cont'd

For CGS:

$$r_{23} = q_2^T a_3 = 0, \ v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon, 0, \varepsilon)^T$$

 $r_{33} = \sqrt{2}\varepsilon, q_3 = v_3/r_{33} = (0, -1, 0, 1)^T/\sqrt{2}$

- ▶ Note that $q_2^T q_3 = (0, -1, 1, 0)(0, -1, 0, 1)^T/2 = 1/2$
- For MGS:

$$r_{23} = q_2^T v_3 = \varepsilon / \sqrt{2}, \ v_3 \leftarrow v_3 - r_{23} q_2 = (0, -\varepsilon/2, -\varepsilon/2, \varepsilon)^T$$

 $r_{33} = \sqrt{6}\varepsilon/2, q_3 = v_3 / r_{33} = (0, -1, -1, 2)^T / \sqrt{6}$

▶ Note that $q_2^T q_3 = (0, -1, 1, 0)(0, -1, -1, 2)^T / \sqrt{12} = 0$