# به نام خدا

مختصری درباره کد گری و ساخت یک مبدل کد گری به باینری

گرد آوری: محمد کریمی

# فهرست

### ا.مختصری درباره کد گری

۲.جدول درستی برای کد گری ۴ بیتی و معادل کد باینری ۴ بیتی

۳.ساخت جداول کارنو و عبارات بولی و مدار منطقی معادل

۴.مدار کامل شده با اتصال مدارهای ناقص برای هر بیت به هم

الگوریتم تبدیل کد گری n بیتی به کد باینری n بیتی 🕰

### کد گری چیست؟

کد گری در واقع نوعی نمایش کد های دودویی است ، به گونه ای که دو عدد متوالی وقتی به صورت کد گری نمایش داده شوند فقط در یک بیت با هم اختلاف دارند.

### تاریخچه:

کد گری به نام فرانک گری یکی از محققین و فیزیکدانان آزمایشگاههای بل که طور رسمی کد گری را مورد استفاده قرار داد و این کد بعد از گری توسط افرادی که از آن استفاده میکردند کد گری نامگذاری شد .

با این حال قبل از فرانک گری از این کد استفاده می شد.

به عنوان مثال ، ریاضیدان فرانسوی Emile Boudat از کد گری. در سال ۱۸۷۸ در تلگراف استفاده کرد و برای این کارش مدال دریافت کرد.

ـ کد گری قبل از آن که در مهندسی به کار رود در پازلهای ریاضی به کار برده میشد.

#### **جدول** درستی کد گری و باینری و نیز معادل دهدهی این کدها(۴ بیتی):

| <u>ری</u> |    | ايـــــا | دې |    | <u>ری</u> |    | ــد گـــ |    | <u>ک</u> |
|-----------|----|----------|----|----|-----------|----|----------|----|----------|
| دهدهی     | В3 | B2       | B1 | В0 | G3        | G2 | G1       | G0 | دهدهی    |
| o         | 0  | 0        | 0  | 0  | 0         | 0  | 0        | 0  | 0        |
| 1         | •  | •        | 0  | 1  | 0         | 0  | 0        | ١  | ١        |
| ۲         | 0  | 0        | ١  | 0  | 0         | 0  | ١        | ١  | ٣        |
| ٣         | 0  | 0        | ١  | ١  | 0         | 0  | ١        | 0  | ۲        |
| k         | o  | ١        | o  | o  | 0         | ١  | ١        | o  | ۶        |
| ۵         | o  | ١        | o  | ١  | 0         | ١  | ١        | ١  | ٧        |
| ۶         | o  | ١        | ١  | o  | 0         | ١  | o        | ١  | ۵        |
| ٧         | o  | ١        | ١  | ١  | 0         | ١  | o        | o  | k        |
| ٨         | 1  | o        | 0  | o  | ١         | ١  | 0        | 0  | ۱۲       |
| ٩         | ١  | o        | o  | ١  | ١         | ١  | o        | ١  | ۱۳       |
| 10        | ١  | o        | ١  | o  | ١         | ١  | ١        | ١  | ۱۵       |
| 11        | ١  | o        | ١  | ١  | ١         | ١  | ١        | o  | 116      |
| ١٢        | ١  | ١        | o  | o  | ١         | o  | ١        | o  | 10       |
| ۱۳        | ١  | ١        | o  | ١  | ١         | o  | ١        | ١  | 11       |
| 116       | ١  | ١        | ١  | 0  | ١         | 0  | •        | ١  | ٩        |
| ۱۵        | ١  | ١        | ١  | ١  | ١         | o  | o        | 0  | ٨        |

اختلاف بیتها با کد عدد قبلی در کد **گری** با <mark>قرمز</mark> و در کد **باینری** با **سبز** مشخص شده است.

# جدول کارنو:برای راحتتر به دست آوردن عبارات بولی و مدار منطقی معادل از جدول کارنو استفاده می کنیم.

با استفاده از جدول درستی ، برای هر بیت باینری یک جدول کارنو رسم می کنیم.

#### در ادامه

برای هر *بیت باینری* 

یک جدول کارنو ، عبارت بولی و مدار منطقی معادل آن را می بینید:

#### بيت B0:

با توجه به جدول درستی همه حالتهایی که بیت باینری مورد نظر یک هست را مشخص می کنیم، برای بیت B زمانی که کد گری در مجموعه زیر باشد برابر با یک خواهد بود:

که نمایش دهدهی آن سری زیر خواهد بود:

 $B0=\Sigma m(1,Y,F,Y,\Lambda,11,1P,1F)$ 

و جدول كارنو حاصل براي B0 :

| В0           | G1,G0<br>• • | G1,G0<br>•\ | G1,G0<br>\\ | G1,G0 |
|--------------|--------------|-------------|-------------|-------|
| G3,G2        | 0            | 1           | 0           | 1     |
| G3,G2<br>• \ | 1            | 0           | ١           | 0     |
| G3,G2        | 0            | 1           | 0           | 1     |
| G3,G2        | 1            | 0           | ١           | 0     |

با توجه به جدول کارنو ،

اگر G3 و G2 هر دو صفر یا هر دو یک باشند و

و 1=0 و يا 1=1 و 60=0 باشند ، 80 برابر با يک خواهد بود؛ G1=0

و اگر G1 و G0 هر دو صفر یا هر دو یک باشند و

و G3=0 و G3=1 و يا G3=1 و G2=0 باشند ، B0 برابر با يک خواهد بود؛

یعنی:

 $B0=(G3 \times G2) \times G1 \times G0$ 

### مدار منطقی معادل عبارت بولی بالا برای B0:



#### بيت B1:

با توجه به جدول درستی همه حالتهایی که بیت باینری مورد نظر یک هست را مشخص می کنیم، برای بیت B زمانی که کد گری در مجموعه زیر باشد برابر با یک خواهد بود:

که نمایش دهدهی آن سری زیر خواهد بود:

و جدول كارنو حاصل براى B1:

| B1           | G1,G0<br>• • | G1,G0<br>• \ | G1,G0<br> | G1,G0<br>\ |
|--------------|--------------|--------------|-----------|------------|
| G3,G2        | 0            | 0            | ١         | 1          |
| G3,G2<br>• \ | 1            | 1            | 0         | 0          |
| G3,G2        | 0            | 0            | 1         | 1          |
| G3,G2        | 1            | 1            | 0         | 0          |

با توجه به جدول کارنو ، اگر G2 و G3 هر دو یک یا هر دو صفر باشند و G1=1 باشد ، B2 برابر با یک خواهد بود ؛

> و اگر G2=1 و G3=0 و یا G2=0 و G3=1 باشند و G1=0 باشد ، B2 برابر با یک خواهد بود ؛ یعنی:

**B1=(G3 XOR G2) XOR G1** 

## مدار منطقی معادل عبارت بولی بالا برای B1:



#### ىيت B2:

با توجه به جدول درستی همه حالتهایی که بیت باینری مورد نظر یک هست را مشخص می کنیم، برای بیت B زمانی که کد گری در مجموعه زیر باشد برابر با یک خواهد بود:

که نمایش دهدهی آن سری زیر خواهد بود:

B2=
$$\sum m( \mathcal{F}_{\iota} \Delta_{\iota} \mathcal{F}_{\iota} V_{\iota} \Lambda_{\iota} q_{\iota} | o_{\iota} | 1)$$

و جدول كارنو حاصل براي B2:

| B2           | G1,G0<br>• • | G1,G0<br>• \ | G1,G0<br> | G1,G0<br>\• |
|--------------|--------------|--------------|-----------|-------------|
| G3,G2<br>• • | 0            | 0            | 0         | 0           |
| G3,G2<br>• \ | ١            | ١            | ١         | ١           |
| G3,G2        | 0            | 0            | 0         | 0           |
| G3,G2        | ١            | ١            | ١         | ١           |

با توجه به جدول کارنو ،زمانی که G2 و G3 هر دو صفر یا هر دو هر دو یک باشند ، B2 برابر با صفر و در غیر این صورت برابر بار یک خواهد بود، که نتیجه می گیریم:

**B2=G2 XOR G3** 

## مدار منطقی معادل عبارت بولی بالا برای B2:



#### بيت B3:

با توجه به جدول درستی همه حالتهایی که بیت باینری مورد نظر یک هست را مشخص می کنیم، برای بیت B زمانی که کد گری در مجموعه زیر باشد برابر با یک خواهد بود:

که نمایش دهدهی آن سری زیر خواهد بود:

B3= $\Sigma$ m( $\Lambda$ ,9,10,11,1 $\Gamma$ ,1 $\Gamma$ ,1 $\Gamma$ ,1 $\Gamma$ ,1 $\Gamma$ )

و جدول كارنو حاصل براي B3:

| В3           | G1,G0<br>• • | G1,G0<br>• \ | G1,G0<br>\\ | G1,G0<br>\• |
|--------------|--------------|--------------|-------------|-------------|
| G3,G2<br>• • | 0            | 0            | 0           | 0           |
| G3,G2<br>•\  | 0            | 0            | 0           | 0           |
| G3,G2        | 1            | 1            | ١           | 1           |
| G3,G2        | 1            | 1            | ١           | 1           |

با توجه به جدول كارنو فوق B3 فقط به G3 بستگى دارد ، يعنى:

B3=G3
که در مدار منطقی معادل یک سیم است ،یعنی بیت گری با یک سیم مستقیماً به بیت باینری متصل می شود.

## مدار منطقی معادل عبارت بولی بالا برای <mark>B3</mark>:



## مدار کامل شده مبدل ۴ بیتی:



# الگوریتم تبدیل کد گری بیتی به کد باینری بیتی



که از این الگوریتم میتوان از یک بیت تا n بیت استفاده کرد، به این صورت که بیت n ام جایگزین بیت پنجم شده و به همین ترتیب تا بیت صفرم ادامه می دهیم.

بیت n ام پر ارزش ترین بیت و بیت صفرم کم ارزش ترین بیت است

ahooyee@gmail.com

#### منابع:

https://www.geeksforgeeks.org/code-converters-binary-to-/from-gray-code

 $\frac{https://fa.wikipedia.org/wiki/\%DA\%A9\%D8\%AF\_\%DA}{\%AF\%D8\%B1\%DB\%8C}$ 

http://www.matrixlab-examples.com/gray-code.html

https://www.zzoomit.com/code-conversion-binary-to-gray-/code-converter

•

•

•