

FIRST SEMESTER 2015-16

Course Handout

03/08/2015

Course No. : CHE F213

Course Title : Chemical Engineering Thermodynamics

Instructor-in-Charge : DR. RAMAN SHARMA

Instructors (Tutorial) : Dr. Pradipta Chattopadhaya & Mr. Tapas Kumar Patra

1. Course Description

Development and applications of the combined first and second laws; relations between state properties; chemical equilibria in reacting and non-reacting systems; statistical concepts, and brief exposure to irreversible thermodynamics; extensive problem assignments throughout. [Review of work, heat, reversible and irreversible processes, First Law applications to closed and open systems, Second Law, Entropy, and applications related to power and refrigeration, Heat effects, Availability and Exergy analyses, Equations of state and generalized correlations for PVT behaviour, Maxwell relations and fluid properties estimation; Residual and excess properties, Partial molar quantities; Gibbs-Duhem Equation, Fugacity and Activity Coefficient models, Vapour-Liquid equilibria, Chemical Reaction Equilibrium.]

2. Scope & Objective

The purpose of this course is to provide a comprehensive treatment of thermodynamics (maintaining the standard of rigor demanded by sound thermodynamic analysis) from a chemical engineering viewpoint. The most important problems the chemical engineer must be able to cope with will be emphasized, viz. heat and work requirements for many physical and chemical processes, determination of equilibrium constants for chemical reactions and for the transfer of chemical species between phases.

3. Text Book (TB)

Smith, J M, H C Van Ness and M M Abbott, (Adapted by: B I Bhatt), Introduction *to Chemical Engineering Thermodynamics (7th ed.)*, Tata McGraw Hill, 2005.

Reference Books (RB)

RB1 Rao, Y V C, Chemical Engineering Thermodynamics, Universities Press, 1997.

RB2 Narayanan K V, *A Textbook of Chemical Engineering Thermodynamics*, Prentice Hall of India, 2006.

RB3 Sandler, Stanley I., *Chemical, Biochemical and Engineering Thermodynamics*, 4th Edition, Wiley (India Pvt. Ltd.: Wiley Student Edition), 2006.

RB4 Cengel, Y A and M A Boles, *Thermodynamics : An Engineering Approach (SI Units)*, 7th Edition, Tata McGraw Hill Education (India) Pvt. Ltd., (Special Indian Edition, 2011: Sixth Reprint, 2013!)

4. Course Plan

Module:	Learning Objectives	Topics to be	Reference (TB)	
Lecture No.		covered	Ch./Sec. #	
M1 :1	Introduction	Scope and Objectives	1 (Assignment)	
		of course,		
M2: 2 - 4	First Law of Thomas dynamics	Methodology	2.1 to 2.12	
W12: 2 - 4	First Law of Thermodynamics + Basic Concepts	First law, Closed system, State and state functions	2.1 to 2.12	
	Basic Concepts	Equilibrium, Phase rule,		
		Reversible process,		
		Const-V and Const-P		
		processes, Enthalpy,		
		Heat capacity, First law		
		for open systems.		
M3: 5 – 8	Volumetric Properties of Pure	PVT behaviour of pure	3.1 to 3.7	
	Fluids	substances, Virial		
		equations, Ideal gas,		
		Applications of Virial		
		equations, Cubic		
		equations of state,		
		Generalized correlations		
3.54 0 11	H . D00	for gases and liquids.	41.45	
M4: 9 – 11	Heat Effects:	Sensible heat effects,	4.1 to 4.7	
	Heat of Reaction	Latent heat, Standard heats of		
		reaction, formation and		
		combustion,		
		Temperature dependence		
		of H°, Heat effects of		
		industrial reactions		
M5: 12 – 15	Second Law: Entropy and Third	Statements of second	5.1 to 5.10	
	Law	law, Heat engines,		
		Thermodynamic		
		temperature scale,		
		Entropy, $\Box S$ for an ideal		
		gas, Entropy balance for		
		open Systems, Ideal		
		work, Lost work, Third		
Mc. 16 10	Thomas dynamica Duran antica - f	Dranarty relations for	6.1 to 6.7	
M6: 16 – 19	Thermodynamic Properties of Fluids	Property relations for homogeneous phases,	6.1 to 6.7	
	Fluids	Residual properties and		
		their calculations by		
		cubic equations		
		Two-phase systems,		

M7: 20 - 21	Applications of Thermodynamics to Flow Processes	Thermodynamic diagrams and tables, Generalized property correlations for gases. Duct flow of compressible fluid, Turbines, Compression	7.1 to 7.3
		processes	
M8 & M9: 21 +	Production of Power from Heat Refrigeration & Liquefaction	Steam power plant, Internal-Combustion engines, Jet engines; Rocket engines Carnot refrigerator, Vapour- Compression cycle, Choice of refrigerant, Absorption refrigeration, Heat pump, Liquefaction processes	Chapters 8 & 9 [Assignments]
M10: 22 – 26	Introduction to Vapour/Liquid Equilibrium	Nature of equilibrium, Phase rule, Duhem's theorem VLE: Qualitative behaviour, Simple models for VLE, VLE by Modified Raoult's law, K-value correlations	10.1 to 10.6
M11: 27 – 31	Basic Concepts of Solution Thermodynamics: Theory	Fundamental property relation, Chemical potential and Phase equilibrium, Partial properties, Ideal gas mixtures, Fugacities of pure species, Fugacities of Species in solution, Generalized correlations, Ideal solution, Excess properties	11.1 to 11.9
M12: 32 – 35	Solution Thermodynamics: Applications	Liquid-phase properties from VLE data, Activity coefficients from VLE data, Models for Excess Gibbs energy, Property changes of mixing, Heat effects of mixing processes	12.1 to 12.4

M13: 36 – 40	Chemical Reaction Equilibria	Reaction coordinate,	13.1 to 13.9
		Equilibrium criteria for	
		chemical reactions,	
		Equilibrium constants	
		and their variation with	
		temperature, Evaluation	
		of equilibrium constants,	
		Relation of equilibrium	
		constants with	
		compositions,	
		Equilibrium conversions	
		for single reactions,	
		Phase rule and Duhem's	
		theorem for reacting	
		systems and	
		multi-reaction equilibria	

5. Evaluation Scheme

EC	Evaluation	Duration	Weightage	Weightage	Date,	Remarks
No.	Component (EC)		(%)	(Marks)	Time	
1	Mid Semester Test	1.5 hrs	30	90	8/10	CB
					2:00 -	
					3:30 PM	
2	Tutorial Tests /	-	30	90	-	CB/OB
	Surprise Quizzes /					
	Assignments /					
	Projects, etc.					
3	Comprehensive	3 hrs	40	120	9/12 FN	CB+OB
	Exam					

CB = Close Book **OB** = Open Book

Chamber consultation hour will be announced in the class.

- The **notices**, if any, concerning the course, will be displayed on the notice board of the Department of Chemical Engineering **only**.
- Make-up will be granted for **genuine cases only**. Certificate from authenticated doctor, say from the Medical Center, must accompany make-up application (*only prescription or vouchers for medicines will not be sufficient*). Prior permission of IC is compulsory.

Instructor-in-charge | CHE F213

