Name:	Index No
Cianaturo	

P525/1 Chemistry Paper 1 July/August 2024 2 3/4 hours

KAYUNGA SECONDARY SCHOOLS EXAMINATIONS COMMITTEE (KASSEC) JOINT MOCK EXAMINATIONS 2024 Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 HOURS: 45 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section **A** and any **Six** questions in section **B**.
- All questions must be answered in the spaces provided
- The periodic table has been attached at the end
- Mathematical tables (3 figure tables are adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.
- Where necessary, use the following
 - Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$
 - Molar volume of a gas at s.t.p is 22.4 litres.

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Turn Over

SECTION A (46 MARKS)

Answer all question in this section

1.	(a)	State what is meant by the term first election affinity.	(01mark)
	(b)	The enthalpy changes for some processes are shown in t	table 1 .
		Atomization of potassium = 90	
		Bond dissociation energy of hydrogen = 436	
		First ionization energy of potassium = 418	
		Lattice energy of potassium hydride = 710	
		Formation of potassium hydride = -62	
		Use the thermochemical data to calculate electron affini	l ty of hydrogen.
			(03marks)
•••••	• • • • • • • • • • • • • • • • • • • •		•••••
•••••	• • • • • • • • •		•••••
•••••	• • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
•••••			
	• • • • • • • • • • • • • • • • • • • •		
2.	Com	aplete the following equations and give the IUPAC name of	the main product in
	each	n case.	
	(a)	CH_3 HBr	(04marks)
			(**************************************
Mec	hanisr	n	
•••••	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		

(b)	OH	KMnO₄/H ⁺ (aq) Heat		(01 ½ marks)
	•	пеас		(01 ½ marks)
		Name		
(c)	(CH₃COO)₂Ca	heat	—————————————————————————————————————	(01 ½ marks)
		Nar	ne	
3.	State the oxidation	on of the central atom and r	name the complex ion(s)	(04 ½ marks)
	nula of ion	Oxidation state	Name of ion	
Cu($(CN)_4^{3-}$			
Zn(OH)4 ²⁻			
Ag(NH ₃) ₂ ⁺			
4.	(a) Define	e the term cryoscopic consta	ant	(1 mark)
	10g o Calcul	f camphor is 147°c.	ontaining 1g of naphthalene , K f, for camphor. (C ₁₀ H ₁₆ C 177.5°c)	

	(c)	State the reason relative molecula				y the cryo	
 5.	·	uations to show how			•	(03marks)
	•••••		•••••				
6.	` '	ate what is observed	and write ed	quation(s)	for the react	ion(s) that	takes place
	(i) nic	kel ethanoate is hea agent.	ted strongly	and the ga	seous produ	•	through `Brady's ' 04marks)
	Equation	ı 					
	(b) Observati	Lead (IV) oxide is	added to ho	ot concentr	ated hydroc	hloric acid.	(02 ½ marks)
•••••	Equation	ı					
7.	Bond dis	ssociation energies Element Bond dissociation	for Group 'Fluorine 33.3	VII elemen Chlorine 57.8	nts are sho Bromine 46.1	wn in Tab Iodine 36.2	le 2 .
		operay (Kimal-1)	33.3	37.10		30.2	

(a) 	(i) 		and dissociation energies vary.	(01mark)
	(b)		r answer in (i)	(03marks)
		•••••		
••••	(b)		d be observed and write equaticentrated sulphuric acid is add	
•••••	•••••	Equation	••••••	
8.	Com	cH ₂ =C(CH ₃) ₂	g organic reactions and outline HBr	the mechanism(s). (02 ½ marks)
*****	(b)	СН3СОСН3	KCN/diluteH2SO4 0- 20°C	(02 ½ marks)

9.		Some I	half cell reactions	s are given belo	w.			
		R; Pb	$O_{2(s)} + 4H^{+}_{(aq)}$	+2e-	▶ Pb ²⁴ (aq)	+2H ₂ O	+1.46 E°/v.	
		Q; Fe	3+ _(aq) + e-	→ Fe ²⁺ (a	ι q)		+ 0.77	
	(a)	Write t	the cell notation i				ells R and Q (01mark)	•
•••••	(b)	State w	hat is observed an	d write equation	s for the rea	action (s) that	take place at the	
		(i)	Positive electrode Observation.	2.			(01 ½ mark)	
								•
			Equation;					
		(ii)	Negative electro Observation	de			(01 ½ marks	. <i>)</i>
			Equation					
	(c)	Write t	the overall equati	on for the cell	reaction.		(1 ½ mark)	•
•••••		Calcula	ate the e.m.f of tl	ne cell.			(01 ½ mark)	•
								•

SECTION B (54 MARKS)Attempt any **six** questions in this section)
Additional questions answered will not be marked.

10.	Exp (a)	olain the following observation (s) When dilute ammonia solution is added to a solution containin ions, a white precipitate forms. However similar treatment of so aluminium ions in the presence of ammonium chloride no prec	lution of
	(b) 	Lead (IV) iodide does not exist whereas lead (IV) chloride exists.	(02 marks)
	•••••		
•••••	(c)	The melting points of group(II) elements are higher than those delements.	of group(i) (03 marks)
• • • • • • • • • • • • • • • • • • • •			

11.	(a)	During the extraction of iron from hematite the ore is mixed with coke, limestone and then heated strongly in a blast furnace.							
		Write equations for the reactions that lead to formation of iron. (03 marks))						
• • • • • •	• • • • • • •		••••						
• • • • •	• • • • • • •		••••						
• • • • • •	• • • • • • • •		••••						
• • • • • •	• • • • • • •		••••						
• • • • • •	• • • • • • • • •		••••						
	(b)	Acidified solution of hydrogen peroxide was added to iron (II) sulphate solu							
•		State what is observed and write equation for the reaction that takes place (02 ½ mar							
		Observation.	·						
• • • • • •	• • • • • • •		••••						
• • • • • •	• • • • • • •	Equation:	••••						
• • • • • •	• • • • • • • •								
			••••						
	(c)	3g of a sample of hematite were dissolved in concentrated hydrochloric acc							
		and the solution dilute to 250cm ³ . 25cm ³ of this solution after reduction v tin(II) chloride, required 26.6cm ³ of potassium dichromate for complete	vith						
		oxidation. (03 ½ mar	·ks)						
		Calculate the percentage of iron (III) oxide in the ore.							
• • • • • •	• • • • • • • •		••••						
• • • • • •	• • • • • • •		••••						
• • • • • •	• • • • • • • •		••••						
• • • • • •	• • • • • • • •		••••						
• • • • • •			••••						
	• • • • • • • •		••••						
			••••						
12.	(a)	Name two major sources of sulphur dioxide for use in the manufacture of sulphur							
		acid. (O1mark	:)						
• • • • • •	• • • • • • • •		••••						
			••••						

	(b)	Sulphur	dioxide reacts	s with oxygen	to form su	ilphur trio	xide accord	ing to the	equation
		2SO _{2(g)} State wh (i)	hat happens to The pressure	•	of equilibr n is increas	rium and i sed.	n each case	e give a re (01 ½	a marks)
							•••••		
		(ii)	Vanaduim(v)	oxide powde					a marks
•••••		(iii)	The tempera	•••••	•••••	•••••			
•••••	•••••								
	(c)	litres v	1.4 moles of second to the contract of the con	ated at 700°c,				•	
		(i)	The amount	of oxygen and	d sulphur d	lioxide at	equilibrium	in moles p	oer litre.
								•	mark)
•••••	•••••								
	•••••	•••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	(ii)		um constant ,						
		-						(02m	arks)
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	

13.	A compound G contains carbon 61.02%, hydrogen 15.25% and rest nitrogen.								
	(a) (i)	Calculate the empirical formula of G .	(02 marks)						
•••••	•••••	••••••	••••••						
• • • • • •	•••••								
•••••									
• • • • • •									
•••••									
	(b) Deteri	mine the molecular formula of G (density of G at S.t.p	$= 2.63g dm^{-3}$)						
			(02marks)						
• • • • • •	•••••								
	(c) Write	the structural formulae of the possible isomers of \boldsymbol{G} a							
			(03marks)						
•••••	••••••								
•••••	••••••								
•••••	••••••								
•••••	•••••								
		ns a yellow oil when reacted with aqueous sodium nitr centrates hydrochloric acid at O°c.	rate solution and						
	3311								
	(i) Ide	entify G	(01 mark)						
	(.) -00	- , -	(0 =						
•••••	•••••								

•••••	(ii) Write	e equation the	reaction leading to	the formation	of a yellow oil. (01 mark)
14.			ween a thermoset of each type of plas		d a them softenir	ng plastic. (03 marks)
(b)		ner J has the $-CH_2 - CH_1$				
	(i)	Write the s monomer.	structural formula a	and give the IU	PAC name of the	e (01 mark)
	(ii) Nam	e the type of p	olymerization reac	tion leading to	the formation of	the polymer. (0 ½ mark)
	po	hen 71.76g o lymer was for alculate the ;	f the monomer ir med.	n a(i) was poly	merized 2.67 x	10 ⁻² moles of
•••••	(i)		mass of polyme			(02 marks)
	•••••					
• • • • • • •	•••••					

(ii) 		Value	of n		(02 marks)
	(d)	State	one us	e of polymer J .	(0 ½ Mark)
 15.		(a)	(i)	Write the general electronic configuration of group(IV) elements. (01mark)
			(ii)	State the common oxidation states exhibited by the el compounds.	ements in their (01 mark)
		(b)	Expla	in the trend in stability of the oxidation states in a(ii) do	own the group. (04 marks)
		(c)	Write (i)	equation for the reaction of the following chlorides with Tin(II) chloride.	n water. (01 ½ mark)
			(ii)	Tin (IV) chloride	(01 ½ marks)

16.	Name the reagent(s) t In each case state w each compound.	hat can be used hat is observed	to distinguish be I when the reag	tween the follow ent is reacted s	ving compounds. separately with
(a)	CH ₃	and		-сн₂он (03	marks)
	Reagent				
	Observation				
•••••				Br	
(b)	CH₂Br Reagent	and		CH₃	(03marks)
	Observation				
	(c)	H₂CH₃ and		O CH₂CCH₃	
	Doggont			(03n	narks)
	Reagent				
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••

(a) Def	ine the term	eutectic	mixture.				(01	l mark)
							· · · · · · · · · · · · · · · · · · ·	
	te one differe	ence and	one simila	arity betwee	en the <i>eu</i>	itectic mi	ixture	and a p u
(i)	Differer	nce					(0	½ mark
(ii)	Similari	ty					(0	½ mar
(c) The	Similari	nts of mo	olten mixtu	ures of bis	muth(Bi)	and cadn		

(i) Plot the freezing point – composition labelled phase diagram for the Bismuth- cadmium system. (03 marks)

	(ii)	Use the phase diagram you have plotted to determine the composition of euromoture and eutectic temperature.	tectic (01mark ,
	(d)	Describe and explain what happened when a liquid mixture containing 60% loooled from 400°c to 100°c.	Bismuth is
•••••	•••••		

END

Periodic table

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)															
	•	•	57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260