Ensemble	Microcanonical	Canonical
Bath	Isolated	Heat
Fundamental Variables	E, N, V	T, N, V
Thermodynamic Potentials	S(E, N, V), E(S, N, V)	Helmholtz Free energy
		$A\left(T,N,V\right) = E - TS$
Thermodynamic Relation	$dE = TdS - PdV + \mu dN + \dots$	$dA = -SdT - PdV + \mu dN + \dots$
Stationarity Principle	S maximized	A minimized at fixed T, N, V
Extensivity ($\varepsilon = E/N$ etc.)	$\varepsilon = \varepsilon(s, v)$	$a = a\left(T, v\right)$
Euler Relation	$E = TS + \mu N - PV$	$A = -PV + \mu N$
Applications	Basic	Energy available in slow
		volume expansion

Ensemble	Constant Pressure	Gibbs
Bath	Volume	Heat, Volume
Fundamental Variables	S, N, P	T, P, N
Thermodynamic Potentials	Enthalpy	Gibbs Free energy
	$H\left(S,N,P\right) = E + PV$	G(T, N, P) = E - TS + PV
Thermodynamic Relation	$dH = TdS + VdP + \mu dN + \dots$	$dG = -SdT + VdP + \mu dN + \dots$
Stationarity Principle	H minimized at constant S, N, P	G minimized at constant T, P, N
Extensivity ($\varepsilon = E/N$ etc.)	$h = h\left(s, P\right)$	$g = g\left(T, P\right)$
Euler Relation	$H = TS + \mu N$	$G = \mu N$
Applications	Heat produced in	Phase equilibria
	chemical reactions	Chemical reactions

Ensemble	Grand Canonical
Bath	Heat, Particles
Fundamental Variables	T, μ, V
Thermodynamic Potentials	Grand Potential $\Omega(T, N, V) = E - TS - \mu N$
Thermodynamic Relation	$d\Omega = -SdT - PdV - Nd\mu + \dots$
Stationarity Principle	Ω minimized at constant T, μ, V
Extensivity ($\varepsilon = E/N$ etc.)	$\omega = \omega \left(T, v \right)$
Euler Relation	$\Omega = -PV$
Applications	Theoretical calculations