Кафедра информационной безопасности киберфизических систем Москва 2024

Криптографические методы защиты информации

Поля

Поля

Понятие поля

- Кольцо F, в котором все ненулевые элементы образуют абелеву группу относительно умножения, называется **полем**.
- Кольцо F является полем тогда и только тогда, когда F есть коммутативное кольцо с единицей, в котором каждый ненулевой элемент обратим.
- Группа обратимых элементов F^* поля F состоит из всех ненулевых элементов поля F и называется мультипликативной группой данного поля.

- **Пример** поля $(\mathbb{R}; +; \cdot)$.
- Поле, построенное на основе множества, состоящего из конечного числа элементов, называется **конечным полем**.
- Виды конечных полей:
 - Простые конечные поля.
 - Поля Галуа.

Поля

Простые конечные поля

Московский институт электроники

и математики им. А.Н. Тихонова

- **Теорема**. Кольцо классов вычетов по модулю pявляется полем тогда и только тогда, когда pесть простое число.
- Кольцо классов вычетов по модулю простого числа p называется **простым конечным полем** и обозначается F_p .
- **Теорема**. Мультипликативная группа $F_{\mathcal{D}}^*$ поля $F_{\!\scriptscriptstyle \mathcal{D}}$, где p — простое число, является циклической группой порядка p-1.
- является полем ненулевой Поле характеристики, char $F_p = p$.

Пример для p = 7:

$$F_7 = \{0, 1, 2, 3, 4, 5, 6\};$$

$$F_7^* = \{1, 2, 3, 4, 5, 6\};$$

$$-3^2 = 2 \pmod{7}, 3^3 = 6 \pmod{7},$$

$$3^4 = 4 \pmod{7}, 3^5 = 5 \pmod{7},$$

$$3^6 = 1 \pmod{7}, \Rightarrow O(3) = 6;$$

$$- F_7^* = \langle 3 \rangle = \langle 5 \rangle.$$

Поля

Поля Галуа

Московский институт электроники

и математики им. А.Н. Тихонова

- **Полем Галуа** назовем конечное поле F_{n}^{n} , полученное расширением поля посредством неприводимого многочлена $f \in F_p[X]$ степени n.
- Элементами поля Галуа являются многочлены из $F_{\mathcal{D}}[X]$, степень которых строго меньше n — всевозможные остатки от деления многочленов из $F_n[X]$ неприводимый многочлен $f \in F_p[X]$.

- Мощность поля Галуа составляет p^n .
- Характеристика поля Галуа $F_{\mathcal{p}^n}$ совпадает с характеристикой простого конечного поля F_p : char F_{p^n} = char $F_p = p$.
- **Теорема**. Мультипликативная группа F_{n}^{*} поля Галуа F_{v^n} является циклической группой порядка $p^n - 1$.

Поле Галуа – поле многочленных вычетов

Московский институт электроники

и математики им. А.Н. Тихонова

Поля

Пример построения поля Галуа

- Простое конечное поле $F_3 = \{0, 1, 2\}$.
- Неприводимый многочлен $f = 2x^2 + x + 1$, $f \in F_3[X]$:
 - $-f(0) = 1 \neq 0 \pmod{3};$
 - $-f(1) = 4 \neq 0 \pmod{3};$
 - $-f(2) = 11 \neq 0 \pmod{3};$
- Поле Галуа $F_{3^2}=\{0,1,2,x,x+1,x+2,2x,2x+1,2x+2\}.$

Пример построения поля Галуа: таблица сложения

Московский институт электроники

и математики им. А.Н. Тихонова

+	0	1	2	x	x + 1	x + 2	2x	2x + 1	2x + 2
0	0								
1	1	2							
2	2	0	1						
x	x	x + 1	x + 2	2x					
x + 1	x + 1	x + 2	x	2x + 1	2x + 2				
x + 2	x + 2	x	x + 1	2x + 2	2x	2x + 1			
2 <i>x</i>	2x	2x + 1	2x + 2	0	1	2	\boldsymbol{x}		
2x + 1	2x + 1	2x + 2	2x	1	2	0	x + 1	x + 2	
2x + 2	2x + 2	2 <i>x</i>	2x + 1	2	0	1	x + 2	x	x + 1

Московский институт электроники и математики им. А.Н. Тихонова

Пример построения поля Галуа: таблица умножения

•	1	2	x	x + 1	x + 2	2x	2x + 1	2x + 2
1	1							
2	2	1						
x	x	2 <i>x</i>	x + 1					
x + 1	x + 1	2x + 2	2x + 1	2				
x + 2	x + 2	2x + 1	1	x	2x + 2			
2 <i>x</i>	2x	x	2x + 2	x + 2	2	x + 1		
2x + 1	2x + 1	x + 2	2	2 <i>x</i>	x + 1	1	2x + 2	
2x + 2	2x + 2	x + 1	x + 2	1	2 <i>x</i>	2x + 1	x	2

Пример построения поля Галуа: исследование мультипликативной группы поля

Поля

Найдем порядок элемента x:

$$-x^{2} = x + 1, x^{3} = 2x + 1, x^{4} = 2, x^{5} = 2x,$$

$$x^{6} = 2x + 2, x^{7} = x + 2, x^{8} = 1, \Rightarrow O(x) = 8$$

• Запишем подгруппы группы $F_{3^2}^*$:

$$-F_{3^2}^* = \langle x \rangle = \langle 2x + 1 \rangle = \langle 2x \rangle = \langle x + 2 \rangle$$

$$- H_1 = \langle 2 \rangle = \{1, 2\}$$

$$- H_2 = \langle x + 1 \rangle = \langle 2x + 2 \rangle = \{1, x + 1, 2, 2x + 2\}$$

Элемент	Степень образующего	Порядок		
x	x	8		
x + 1	x^2	4		
2x + 1	x^3	8		
2	x^4	2		
2 <i>x</i>	<i>x</i> ⁵	8		
2x + 2	<i>x</i> ⁶	4		
x + 2	x^7	8		

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru