Set 31: Paired data

We have X_1, \ldots, X_n iid arising from a population with mean μ_1 , and Y_1, \ldots, Y_n iid arising from a population with mean μ_2 . Furthermore, assume that the data are paired such that X_i corresponds to Y_i . This natural pairing implies that there is a dependence between X_i and Y_i .

To carry out inference (testing and the construction of CI's), we define a new random variable, the difference $D_i = X_i - Y_i$. Our interest concerns the unknown parameter

$$E(D_i) = E(X_i - Y_i)$$

$$= E(X_i) - E(Y_i)$$

$$= \mu_1 - \mu_2.$$

Our analysis proceeds as in the single sample case based on the data D_1, \ldots, D_n .

Example: Suppose scores measuring jitteriness are normally distributed. We believe that scores increase after drinking coffee. Let X_i be the before drinking coffee score and let Y_i be the after drinking coffee score for the *i*-th individual. Based on $\alpha = 0.01$, test the hypothesis.

y_i	d_i
56	
70	
60	
70	
82	
84	
68	
88	
	56 70 60 70 82 84 68

Example cont'd: Obtain a 95% CI for the mean difference in jitteriness scores.

Example cont'd: Suppose we have the same data but the experiment involves 16 people where 8 people were measured without having coffee and 8 other people where measured after drinking coffee. How does the analysis differ?

Pairing is a special case of *blocking* (read in text). Blocking attempts to reduce variation by grouping data that are similar, and this hopefully leads to *more sensitive* tests (ie. tests that reject H_0 more often when H_0 is false).

Example: To illustrate the above, consider five before and after measurements involving a drug where there are big differences in responses between people but there is small variation in the D_i 's. Assuming normal data, we carry out a paired analysis and a non-paired analysis.

x_i	y_i	d_i
25	29	-4
46	50	-4
30	33	-3
75	78	-3
19	25	-6