МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических исследований

Лабораторная работа 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Автор: Говорухин Матвей Б03-201

1 Аннотация

Цель работы: Экспериментально получить зависимость между напряжением и деформацией для простейшего напряженного состояния упругих тел: одностороннего сжатия; по результатам эксперимента вычислить модуль Юнга.

Оборудование:Прибор Лермантова, проволка из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка.

2 Определение модуля Юнга по измерения растяжения проволки

2.1 Теоретические сведения

Растяжение проволки соответствует напряженому состоянию вдоль одной оси, которое описывается формулой:

$$\sigma = E\varepsilon, \quad \frac{F}{S} = E\frac{\Delta l}{l}$$
 (1)

$$E = \frac{Fl}{\Delta lS} \tag{2}$$

Измерения производятся на установке Лермантова. Направим зрительную трубку на зеркальце. Тогда, учитывая параксиальность углов, для расчета растяжения проволки справедлива формула:

$$l = y \frac{r}{2h},\tag{3}$$

где h - расстояние от шкалы до зеркальца, r - длина рычага, y - показания шкалы

2.2 Экспериментальная установка

Рис. 1: Установка Лермантова

Для определения модуля Юнга используется прибор Лермонтова, схема которого изображена на рис. 1. Верхний конец проволоки П, изготовленной из исследуемого материала, прикреплен к консоли К, а нижний - к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг г, связанный с зеркальцем 3. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца.

Натяжение проволоки можно менять, перекладывая грузы с площадки M на площадку O и наоборот. Такая система позволяет исключить влияние деформации кронштейна K на точность измерений, так как нагрузка на нем все время остается постоянной.

2.3 Результаты эксперимента и обработка данных

Сначала измерим параметры системы:

$$y_0 = 131 \pm 1 \text{ MM}, \quad r = 20 \pm 0.5 \text{ MM}, \quad d_{\text{проволки}} = 0.51 \pm 0.01 \text{ MM}, \quad h = 134.4 \pm 1 \text{ mm}$$

По полученным значениям вычисляем площадь и ее погрешность:

$$S = \frac{\pi d^2}{4} = 0.2043 \text{ mm}^2, \quad \sigma_S = S \frac{\sqrt{2}\sigma_d}{d} = 0.0057 \text{ mm}^2, \quad \varepsilon_S = 2.7\%$$

Измеряем длину проволки $l=1.740\pm0.002$ м.

С учетом полученного выше значения снимаем зависимость удлинения проволки от массы грузов грузов m при увеличении и уменьшении нагрузки. Данные заносим в таблицу ниже. Расчет Δl производим по формуле, а погрешность измерения Δl оцениваем по формуле:

$$\varepsilon_{\Delta l} = \sqrt{\left(\frac{\sigma_y}{y}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2} \approx \varepsilon_r = 2.6\%, \qquad \varepsilon_{\Delta m} = 0.2\%$$

N	1	2	3	4	5	6	7	8
т, г	245.8	245.3	245.5	245.6	245.9	245.3	245.8	245.3

Таблица 1: Номера грузов и их масса

навешенные грузы	0	1	1->2	1->3	1->4	1->5	1->6	1->7	1->8
показания шкалы, мм	131	150	166	183	196	214	229	244	262
навешенные грузы	1->8	1->7	1->6	1->5	1->4	1->3	1->2	1	0
показания шкалы, мм	262	249	234	219	205	188	172	154	135

Таблица 2: показания на шкале в зависимости от количества навешенных грузов туда и обратно

По полученным данным строим график зависимости $P(\Delta l)$ Так же учтем что в недеформированном состоянии проволка, как правило, изогнута, и при малых нагрузках ее удлинение определяется не растяжением, а выпрямлением. Поэтому исключим начальный участок зависимости из обработки данных.

С учетом формул выше получаем, как выражается модуль Юнга через формулу 2, и выражение для его погрешности:

$$E = 180 \ \Gamma \Pi a$$

$$\varepsilon_E = \sqrt{\varepsilon_S^2 + \varepsilon_p^2 + \varepsilon_l^2 + \varepsilon_{\Delta l}^2} \approx 3.8\%$$

По итогу получаем значение для модуля Юнга проволјки: $E=(16.71\pm0.63)~\Gamma\Pi$ а и относительной погрешность $\varepsilon_E=3.8\%$

Рис. 2: График зависимости Δl от Δl

3 Выводы

В результате выполнения работы было подтверждено несколько теоретических зависимостей. Получены ожидаемые линейные зависимости между длиной растяжения и весом нагрузки.

Получены значения для модулей Юнга $E=(16.71\pm0.63)\cdot10^{10}$ которые совпадают с табличными значениями (констатант $16,3\cdot10^{10}$) в пределах погрешности.