Problem Set #5

Reiko Laski

Exercise 8.1-8.2

See jupyter notebook

Exercise 8.3

maximize
$$4b + 3j$$

subject to $15b + 10j \le 1800$
 $2b + 2j \le 300$
 $j \le 200$
 $b, j \ge 0$

Exercise 8.4

$$\begin{array}{ll} \text{maximize} & 2x_{AB} + 5x_{AD} + 5x_{BC} + 2x_{BD} + 7x_{BE} + 9x_{BF} + 2x_{CF} + 4x_{DE} + 3x_{EF} \\ \text{subject to} & x_{AB} + x_{AD} = 10 \\ & x_{BC} + x_{BD} + x_{BE} + x_{BF} - x_{AB} = 1 \\ & x_{CF} - x_{BC} = -2 \\ & x_{DE} - x_{AD} - x_{BD} = -3 \\ & x_{EF} - x_{BE} - x_{DE} = 4 \\ & - x_{BF} - x_{CF} - x_{EF} = -10 \\ & 0 \leq x_{AB}, x_{AD}, x_{BC}, x_{BD}, x_{BE}, x_{BF}, x_{CF}, x_{DE}, x_{EF} \leq 6 \\ \end{array}$$

Exercise 8.5

(i)

maximize
$$3x_1 + x_2$$

subject to $x_1 + 3x_2 + w_1 = 15$
 $2x_1 + 3x_2 + w_2 = 18$
 $x_1 - x_2 + w_3 = 4$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Optimizer: (6,2)Optimum value: 20

(ii)

maximize
$$4x + 6y$$

subject to $-x + 3x_2 + w_1 = 11$
 $x + y + w_2 = 27$
 $2x + 5y + w_3 = 90$
 $x, y, w_1, w_2, w_3 \ge 0$

ζ	=			4x	+	6y
w_1	=	11	+	x	_	y
w_2	=	27	_	x	_	y
w_3	=	90	_	2x	_	5y
ζ	=	66	+	10 <i>x</i>	_	$6w_1$
\overline{y}	=	11	+	x	_	$\overline{w_1}$
w_2	=	16	_	2x	+	w_1
w_3	=	35	_	7x	+	$5w_1$
ζ	=	116	+	$\frac{8}{7}w_1$	_	$\frac{10}{7}w_3$
$\frac{\zeta}{y}$	=	116 16	+	$\frac{8}{7}w_1$ $\frac{2}{7}w_1$	_	$\frac{\frac{10}{7}w_3}{\frac{1}{7}w_3}$
	= =		+		_ _ +	
\overline{y}	= = =	16	+ - - +	$\frac{2}{7}w_1$	_ _ + _	$\frac{1}{7}w_3$
$y \\ w_2$	= = =	16 6	+ - + + -	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$
y w_2 x	= = = =	16 6 5	+ - + + + +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$ $\frac{1}{7}w_3$
$ \begin{array}{c} y\\w_2\\x\\\hline \zeta \end{array} $	= = = =	16 6 5 132	- - +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + - - - +	

Optimizer: (15, 12) Optimum value: 132

Exercise 8.6

$$\begin{array}{ll} \text{maximize} & 4b+3j \\ \text{subject to} & 15b+10j+w_1=1800 \\ & 2b+2j+w_2=300 \\ & j+w_3=200 \\ & b,j,w_1,w_2,w_3\geq 0 \end{array}$$

ζ	=			4b	+	3j
w_1	=	1800	_	15b	_	10j
w_2	=	300	_	2b	_	2j
w_3	=	200	_	j		
ζ	=	450	+	b	_	$\frac{3}{2}w_2$
$\overline{w_1}$	=	300	_	5b	+	$5w_2$
j	=	150	_	b	_	$\frac{1}{2}w_{2}$
w_3	=	50	+	b	+	$\frac{1}{2}w_2$
ζ	=	510	_	$\frac{1}{5}w_1$	_	$\frac{1}{2}w_2$
b	=	60	_	$\frac{1}{5}w_1$	+	$\overline{w_2}$
j	=	90	+	$\frac{1}{5}w_1$	_	$\frac{3}{2}w_{2}$
w_3	=	110	_	$\frac{1}{5}w_1$	+	$\frac{3}{2}w_2$

Optimal choice: 60 GI Barb soldiers, 90 Joey dolls

Maximal profit: \$510

Exercise 8.7

(i)

maximize
$$x_1 + 2x_2$$

subject to $-4x_1 - 2x_2 + x_3 = -8$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $-4x_1 - 2x_2 + x_3 - x_0 = -8$
 $-2x_1 + 3x_2 + x_4 - x_0 = 6$
 $x_1 + x_5 - x_0 = 3$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Optimal point: (3,4) Optimal value: 11

(ii)

$$\begin{array}{ll} \text{maximize} & 5x_1+2x_2\\ \text{subject to} & 5x_1+3x_2+x_3=15\\ & 3x_1+5x_2+x_4=15\\ & 4x_1-3x_2+x_5=-12\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

Auxiliary problem:

maximize
$$-x_0$$

subject to $5x_1 + 3x_2 + x_3 - x_0 = 15$
 $3x_1 + 5x_2 + x_4 - x_0 = 15$
 $4x_1 - 3x_2 + x_5 - x_0 = -12$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

$$\frac{\zeta}{x_3} = 15 - 5x_1 - 3x_2 + x_0
x_4 = 15 - 3x_1 - 5x_2 + x_0
x_5 = -12 - 4x_1 + 3x_2 + x_0
\hline
\zeta = -12 - 4x_1 + 3x_2 - x_5
\hline
x_3 = 27 - x_1 - 6x_2 + x_5
x_4 = 27 + x_1 - 8x_2 + x_5
\hline
x_0 = 12 + 4x_1 - 3x_2 + x_5
\hline
\zeta = -\frac{15}{8} - \frac{29}{8}x_1 - \frac{3}{8}x_4 - \frac{5}{8}x_5
\hline
x_3 = \frac{27}{4} - \frac{7}{4}x_1 + \frac{3}{4}x_4 + \frac{1}{4}x_5
x_2 = \frac{27}{8} + \frac{1}{8}x_1 - \frac{1}{8}x_4 + \frac{1}{8}x_5
x_0 = \frac{15}{8} + \frac{29}{8}x_1 + \frac{3}{8}x_4 + \frac{5}{8}x_5$$

The original problem has no feasible solutions.

(iii)

maximize
$$-3x_1 + x_2$$

subject to $x_2 + x_3 = 4$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Optimal point: (0,2)Optimal value: 2 Exercise 8.8 Give an example of a three-dimensional linear problem where the feasible region is closed and unbounded, but where the objective function still has a unique feasible maximizer.

maximize
$$-x-y-z$$

subject to $x, y, z \ge 0$

Maximizer: (0,0,0)

Exercise 8.9

Give an example of a three-dimensional linear problem where the feasible region is closed and unbounded and where the objective function has no maximizer.

maximize
$$x + y + z$$

subject to $x, y, z \ge 0$

Exercise 8.10

Give an example of a three-dimensional linear problem where the feasible region is empty.

maximize
$$x + y + z$$

subject to $x + y + z \le -1$
 $x, y, z > 0$

Exercise 8.11

Give an example of a three-dimensional linear problem where the feasible region is nonempty, closed, and unbounded, but $\mathbf{0}$ is not feasible.

$$\begin{aligned} & \text{maximize} & & x+y+z \\ & \text{subject to} & & x+y+z \geq 1 \\ & \text{subject to} & & x+y+z \leq 3 \\ & & & x,y,z \geq 0 \end{aligned}$$

Auxiliary problem:

$$\begin{array}{ll} \text{maximize} & -w \\ \text{subject to} & -x-y-z-w \leq -1 \\ \text{subject to} & x+y+z-w \leq 3 \\ & x,y,z,w \geq 0 \end{array}$$

Exercise 8.12

maximize
$$10x_1 - 57x_2 - 9x_3 - 24x_4$$

subject to $0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_5 = 0$
 $0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_6 = 0$
 $x_1 + x_7 = 0$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

$$\zeta = 10x_1 - 57x_2 - 9x_3 - 24x_4
x_5 = -0.5x_1 + 1.5x_2 + 0.5x_3 - x_4
x_6 = -0.5x_1 + 5.5x_2 + 2.5x_3 - 9x_4
x_7 = 1 - x_1$$

$$\zeta = -27x_2 + x_3 - 44x_4 - 20x_5
x_1 = 3x_2 + x_3 - 2x_4 - 2x_5
x_6 = 4x_2 + 2x_3 - 8x_4 + x_5
x_7 = 1 - 3x_2 - x_3 + 2x_4 + 2x_5$$

$$\zeta = 1 - 30x_2 - 42x_4 - 18x_5 - x_7
x_1 = 1 - x_7
x_6 = 2 - 2x_2 - 4x_4 + 5x_5 - 2x_7
x_3 = 1 - 3x_2 + 2x_4 + 2x_5 - x_7$$

Optimal point: (1,0,1,0) Optimum value: 1

Exercise 8.15

If $\mathbf{x} \in \mathbb{R}^n$ is feasible for the primal and $\mathbf{y} \in \mathbb{R}^m$ is feasible for the dual, then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$.

Proof:

Let $\mathbf{x} \in \mathbb{R}^n$ be feasible for the primal and $\mathbf{y} \in \mathbb{R}^m$ be feasible for the dual. Then we know that $A\mathbf{x} \leq \mathbf{b}$ and $A^T\mathbf{y} \leq \mathbf{c}$, so

$$A\mathbf{x} \leq \mathbf{b}$$

$$\mathbf{x}^T A^T \leq \mathbf{b}^T$$

$$\mathbf{x}^T A^T \mathbf{y} \leq \mathbf{b}^T \mathbf{y}$$

$$\mathbf{x}^T \mathbf{c} \leq \mathbf{b}^T \mathbf{y}$$

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$$

Exercise 8.17

For a linear optimization problem in standard form, the dual of the dual optimization problem is again the primal problem.

Proof:

Consider the primal problem:

maximize
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \succeq \mathbf{0}$

with the dual problem:

minimize
$$\mathbf{b}^T \mathbf{y}$$

subject to $A^T \mathbf{y} \succeq \mathbf{c}$
 $\mathbf{y} \succeq \mathbf{0}$

The dual in standard form becomes:

maximize
$$(-\mathbf{b}^T)\mathbf{y}$$

subject to $(-A)^T\mathbf{y} \leq -\mathbf{c}$
 $\mathbf{y} \succeq \mathbf{0}$

and the dual of the dual is:

minimize
$$(-\mathbf{c}^T)\mathbf{x}$$

subject to $((-A)^T)^T\mathbf{x} \succeq -\mathbf{b}$
 $\mathbf{x} \succeq \mathbf{0}$

In standard form, this is:

$$\begin{array}{ll}
\text{maximize} & \mathbf{c}^T \mathbf{x} \\
\text{subject to } A\mathbf{x} \leq \mathbf{b} \\
\mathbf{x} \succeq \mathbf{0}
\end{array}$$

which is the original primal problem.

Exercise 8.18

Primal:

maximize
$$x_1 + x_2$$

subject to $2x_1 + x_2 + w_1 = 3$
 $x_1 + 3x_2 + w_2 = 5$
 $2x_1 + 3x_2 + w_3 = 4$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

$$\frac{\zeta}{w_1} = \frac{x_1}{3} + \frac{x_2}{2}$$

$$\frac{w_1}{x_2} = \frac{3}{5} - \frac{2x_1}{3} - \frac{3x_2}{3}$$

$$\frac{x_5}{x_5} = \frac{4}{3} - \frac{2x_1}{2} - \frac{1}{2}w_1$$

$$\frac{\zeta}{x_1} = \frac{3}{2} - \frac{1}{2}x_2 - \frac{1}{2}w_1$$

$$\frac{w_2}{x_2} = \frac{7}{2} - \frac{5}{2}x_2 + \frac{1}{2}w_1$$

$$\frac{w_3}{x_3} = \frac{1}{3} - \frac{1}{4}w_1 - \frac{1}{4}w_1$$

$$\frac{\zeta}{x_1} = \frac{7}{4} - \frac{1}{4}w_1 - \frac{1}{4}w_1$$

$$\frac{\zeta}{x_1} = \frac{5}{4} - \frac{3}{4}w_1 + \frac{1}{4}w_3$$

$$\frac{w_2}{x_2} = \frac{9}{4} - \frac{3}{4}w_1 + \frac{5}{4}w_3$$

$$\frac{x_2}{x_2} = \frac{1}{2} + \frac{1}{2}w_1 - \frac{1}{2}w_3$$

Optimal point: $(\frac{5}{4}, \frac{1}{2})$

Optimum value: $\frac{7}{4}$

Dual:

minimize
$$3y_1 + 5y_2 + 4y_3$$

subject to $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Dual in standard form:

maximize
$$-3y_1 - 5y_2 - 4y_3$$

subject to $-2y_1 - y_2 - 2y_3 + v_1 - v_0 = -1$
 $-y_1 - 3y_2 - 3y_3 + v_2 - v_0 = -1$
 $y_1, y_2, y_3, v_1, v_2 \ge 0$

Optimal point: $(\frac{1}{4}, 0, \frac{1}{4})$

Optimum value: $\frac{7}{4}$