The Language Modeling Problem (Continued)

- Training Sample for Language Model
 - Objective is to use a training sample of example sentences in English.
 - The task involves *learning* a probability distribution p.
- Properties of Probability Distribution p
 - It is a **function** satisfying the following criteria:
 - * The sum of the probabilities of all possible sentences is equal to 1, i.e., $\sum_{x \in V^*} p(x) = 1$, where V^* represents the set of all possible sentences
 - * Probability p(x) is greater than or equal to 0 for all $x \in V^*$.
- Examples of Calculating Probabilities for Sentences:
 - Probability calculations for sentences ending with the word 'STOP':
 - * $p(\text{the STOP}) = 10^{-2}$
 - * $p(\text{the fan STOP}) = 10^{-3}$
 - * $p(\text{the fan saw STOP}) = 10^{-5}$
 - * $p(\text{the fan saw Beckham STOP}) = 2 \times 10^{-8}$
 - * $p(\text{the fan saw Beckham play for Real Madrid STOP}) = 2 \times 10^{-9}$
- The examples demonstrate how adding more words usually leads to a decrease in the probability of the sentence—a principle often seen in language modeling.# Motivation for Language Modeling
- Language models have a strong motivation and are useful in a variety of applications.
 - Speech Recognition
 - * The first application of language models.
 - * Critical to modern speech recognizers.
 - Other examples include:
 - * Optical Character Recognition (OCR).
 - * Handwriting Recognition.
 - * Machine Translation (will be discussed later in the course).
 - Language models are essential in many applications, and their importance will be elaborated further.# Relevance of Language Models in NLP
- Motivation for studying language models:
 - Initially motivated by **speech recognition**.
 - Related areas include optical character recognition, handwriting recognition.
- Usefulness across different NLP tasks:
 - Estimation techniques applicable to:
 - * Part of speech tagging
 - * Natural language parsing
 - * Machine translation

Speech Recognition and Language Models

- Basic Problem in Speech Recognition:
 - Input is an **acoustic recording** of speech.
 - Recording features:
 - * Time axis representing the sequence of spoken words.
 - * Amplitude or energy axis capturing the intensity of speech.
- Process in Speech Recognition:
 - Involves pre-processing, which includes:
 - * Splitting the audio sequence into short segments for analysis. # Speech Recognition Process
- Time Frames
 - Divided into frames, approximately **10 milliseconds** each.
 - Fourier analysis performed on each frame to get energy at different frequencies.
- Acoustic Input to Words Mapping
 - Preprocessing maps acoustic sequences to spoken words.
 - Example: "recognize speech" versus "wreck a nice beach".
- Acoustic Sequence and Sentence Output
 - The speech recognizer inputs an acoustic sequence.
 - Outputs a sentence or a sequence of words.
- Challenge of Confusable Sentences
 - Many alternative sentences could match the acoustic input.
 - Confusable sentences can be acoustically similar.
 - Importance of evaluating sentence compatibility with acoustics.

Language Model Integration

- Probability Evaluation
 - Evaluates the probability P of sentences with a language model.
- Likelihood of Sentences
 - Higher probability is assigned to more probable sentences.
 - Example: "recognize speech" is more likely than "recognize beach".
- Role of Language Model
 - Provides likelihood of sentences based on their probability in the language.

Sources of Information in Speech Recognizers

- Acoustic Evaluation
 - Measures how well a sentence matches the input acoustically.
- Language Model
 - Offers information on the likelihood of different sentences in English.

Importance of Speech Recognition

• Original motivation for NLP.

- Techniques applicable to other areas:
 - Optical character recognition.
 - Handwriting recognition.
- Estimation techniques in speech recognition are valuable for broader NLP problems. Motivation for Studying Language Probabilities
 - Speech Recognition: Foundational motivation.
 - * Related to optical character recognition and handwriting recognition.
 - Techniques for estimating probabilities in language models are crucial.
 - * Essential in various NLP applications beyond speech recognition.

• Application of Probability in NLP

- Prior probability plays a key role in interpreting sentences.
- Helps to disambiguate sentences that sound similar but have different meanings.

• Example of Ambiguity in Speech

- "recognize speech" vs. "wreck a nice beach"
 - * These phrases may sound similar.
 - * Applying a prior probability can help distinguish the intended meaning.

• Importance of Probability Estimation

- Advanced estimation techniques developed for speech recognition are transferable.
- Can be utilized to solve diverse problems within the NLP domain. # A Naive Method for Language Modeling

• Context

- Language models estimate the probability of sentences.

• Training Data

- Assume a dataset of N sentences (e.g., from the New York Times).

• Sentence Occurrences

- For any sequence of words x_1, \ldots, x_n :
 - * Let $c(x_1, \ldots, x_n)$ denote the count of that sentence in the dataset.

• Probability Estimate

- The probability p of a sentence is estimated as:

*
$$p(x_1, ..., x_n) = \frac{c(x_1, ..., x_n)}{N}$$

• Properties of Model

- Ensures $p(x_1,\ldots,x_n)\geq 0$ for any sentence.
- Summing p over all sentences equals $1 (\sum p = 1)$.

• Deficiencies of the Naive Method

- Assigns a probability of 0 to any unseen sentence.
- This results in poor generalization to new sentences.

• Objective of Improvement

- The goal is to develop models that provide better estimates than this naive approach.
- Improved models should generalize well to novel sentences not present in training data. t I cannot assist with that requ