AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-28. (canceled)
- (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

glyphosate or a salt or ester thereof;

a pyridine analog herbicide or a salt or ester thereof; and,

at least one surfactant;

wherein the glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 7.6:1, and further wherein when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C₃-C₁₆ alkanolammonium salt, a diammonium salt, an alkylamine salt, a C₃-C₁₆ alkanolamine salt, an alkylsulfonium salt, a sulfoxonium salt, and combinations thereof.

- (original) The aqueous herbicidal composition of claim 29 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- (original) The aqueous herbicidal composition of claim 29 wherein the pyridine analog concentration ranges from about 0.4 grams to about 6 grams acid equivalent per liter.
- (original) The aqueous herbicidal composition of claim 29 wherein the weight ratio (a.e. basis) of glyphosate to pyridine analog ranges from about 8:1 to about 15:1.
- (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising;

glyphosate or a salt or ester thereof;

a pyridine analog herbicide selected from the group consisting of triclopyr, clopyralid, dithiopyr, thiazopyr and picloram, or a salt or ester thereof, in a concentration of not greater than 3.9 grams (acid equivalent basis) per liter; and,

at least one surfactant;

wherein (i) the glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least about 1:1, glyphosate being in excess, and (ii) when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C_3 - C_{16} alkanolammonium salt, a di-ammonium salt, an alkylamine salt, a C_3 - C_{16} alkanolamine salt, an alkylsulfonium salt, a sulfoxonium salt, and combinations thereof.

- (original) The aqueous herbicidal composition of claim 33 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- (original) The aqueous herbicidal composition of claim 33 wherein the pyridine analog concentration ranges from about 0.4 grams to about 3 grams acid equivalent per liter.
- (original) The aqueous herbicidal composition of claim 33 wherein the weight ratio (a.e. basis) of glyphosate to pyridine analog ranges from about 8:1 to about 20:1.
- (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

glyphosate, or a salt or ester thereof;

a pyridine analog selected from the group consisting of triclopyr, clopyralid, dithiopyr, thiazopyr and picloram, or a salt or ester thereof; and,

at least one surfactant;

wherein (i) the surfactant concentration is not greater than 3.9 grams per liter, (ii) glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 3:1, and (iii) when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C₃-C₁₆ alkanolammonium salt, a di-ammonium salt, an alkylamine salt, a C₃-C₁₆ alkanolammonium salt, a sulfoxonium salt, and combinations thereof.

 (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

glyphosate, or a salt or ester thereof;

a pyridine analog herbicide or a salt or ester thereof; and,

at least one surfactant:

wherein (i) the surfactant concentration is not greater than 6.6 grams per liter, (ii) glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 5:1, and (iii) when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C₃-C₁₆ alkanolammonium salt, a di-ammonium salt, an alkylamine salt, a C₃-C₁₆ alkanolamine salt, a sulfoxonium salt, and combinations thereof.

 (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

glyphosate, or a salt or ester thereof;

a pyridine analog, herbicide or a salt or ester thereof; and,

at least one surfactant;

wherein (i) the surfactant concentration is not greater than 9.3 grams per liter, (ii) glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 7:1, and (iii) when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C_3 - C_{16} alkanolammonium salt, a di-ammonium salt, an alkylamine salt, a C_3 - C_{16} alkanolammonium salt, an alkylsulfonium salt, a sulfoxonium salt, and combinations thereof.

- 40. (original) The aqueous herbicidal composition of one of claims 37, 38 or 39 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- 41. (original) The aqueous herbicidal composition of one of claims 37, 38 or 39 wherein the pyridine analog concentration ranges from about 0.4 grams to about 6 grams acid equivalent per liter.
- 42. (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

glyphosate or a salt or ester thereof;

pyridine analog herbicide or a salt or ester thereof; and,

at least one surfactant;

wherein either

- (i) the glyphosate concentration (acid equivalent basis) is not greater than 16.2 grams per liter, and the glyphosate (acid equivalent basis) and pyridine analog (acid equivalent basis) are present in a weight ratio of at least 4:1; or
- (ii) the glyphosate concentration (acid equivalent basis) is not greater than 23.8 grams per liter, and the glyphosate (acid equivalent basis) and pyridine analog (acid equivalent basis) are present in a weight ratio of at least 6:1;

and further wherein when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C₃-C₁₆ alkanolammonium salt, a di-ammonium salt, an alkylamine salt, a C₃-C₁₆ alkanolamine salt, an alkylsulfonium salt, a sulfoxonium salt, and combinations thereof.

- 43. (original) The aqueous herbicidal composition of claim 42 wherein the glyphosate concentration is not greater than about 15 grams acid equivalent per liter and the weight ratio (a.e. to a.e.) of glyphosate to pyridine analog is at least about 10:1.
- 44. (original) The aqueous herbicidal composition of claim 42 wherein the glyphosate concentration is not greater than about 20 grams acid equivalent per liter and the weight ratio (a.e. to a.e.) of glyphosate to pyridine analog is at least about 10:1.
- 45. (original) The aqueous herbicidal composition of claim 42 wherein the pyridine analog concentration ranges from about 0.4 grams to about 6 grams acid equivalent per liter.
- 46. (previously presented) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants comprising:

at least one glyphosate salt predominantly in the form of potassium glyphosate, monoethanolamine glyphosate, or a mixture thereof; and

a pyridine analog selected from the group consisting of triclopyr, clopyralid, fluroxypyr, dithiopyr, thiazopyr and picloram, or a salt or ester thereof;

wherein (i) the glyphosate salt is present in a concentration less than 180 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 1:1, glyphosate being in excess; (ii) the glyphosate salt is present in a concentration less than 240 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present

in a weight ratio of at least 2:1; (iii) the glyphosate salt is present in a concentration less than 270 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 3:1; (iv) the glyphosate salt is present in a concentration less than 288 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 4:1; (v) the glyphosate salt is present in a concentration less than 300 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 5:1; (vi) the glyphosate salt is present in a concentration less than 308 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 6:1; (vii) the glyphosate salt is present in a concentration less than 315 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 7:1; (viii) the glyphosate salt is present in a concentration less than 320 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 8:1; (ix) the glyphosate salt is present in a concentration less than 324 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 9:1; or (x) the glyphosate salt is present in a concentration less than 326 grams acid equivalent per liter and the glyphosate salt (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 10:1.

- (original) The aqueous herbicidal composition of claim 46 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- (original) The aqueous herbicidal composition of claim 46 wherein the pyridine analog concentration ranges from about 0.8 grams to about 2 grams acid equivalent per liter.
- (previously presented) The aqueous herbicidal composition of claim 46 wherein the weight ratio (a.e. basis) of glyphosate to pyridine analog is at least 11:1.
- (previously presented) The aqueous herbicidal composition of claim 46 wherein the weight ratio (a.e. basis) of glyphosate to pyridine analog is at least 15:1.

- (original) The aqueous herbicidal composition of claim 46 further comprising a surfactant
- 52. (original) The aqueous herbicidal composition of claim 51 wherein the composition is a liquid concentrate which may be diluted with water to provide an aqueous herbicidal application mixture for application to the foliage of a plant.
- 53. (previously presented) The aqueous herbicidal composition of one of preceding claims 29, 33, 37, 38, 39, 42 or 51 wherein said surfactant is selected from the group consisting of:
 - (a) a secondary or tertiary amine having the formula:

$$R^1$$
— N $\stackrel{R^2}{\underset{R^3}{\longleftarrow}}$ (1)

wherein R^1 and R^2 are hydrocarbyl having from 1 to about 30 carbon atoms, and R^3 is hydrogen or hydrocarbyl having from 1 to about 30 carbon atoms;

(b) a monoalkoxylated amine having the formula:

$$R^{1}$$
 N $(R^{2}O)_{x}R^{3}$ (2)

wherein R^1 and R^4 are independently hydrocarbyl or substituted hydrocarbyl groups having from 1 to about 30 carbon atoms or $-R^5SR^6$, R^2 in each of the x (R^2O) groups is independently C_2-C_4 alkylene, R^3 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, R^5 is a linear or branched alkyl group having from about 6 to about 30 carbon atoms, R^6 is a hydrocarbyl or substituted hydrocarbyl group having from 4 to about 15 carbon atoms and x is an average number from 1 to about 60;

(c) a dialkoxylated quaternary ammonium salt having the formula:

$$(R^{2}O)_{x}R^{3}$$
 X^{*}
 \downarrow
 R^{1}
 N^{*}
 $(R^{2}O)_{y}R^{3}$ (3)

 \downarrow
 R^{4}

wherein R^1 is hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R^2 in each of the x (R^2O) and y (R^2O) groups is independently $C_2\text{-}C_4$ alkylene, R^3 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, R^4 is hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, x and y are independently an average number from 1 to about 40, and X- is an agriculturally acceptable anion;

(d) a monoalkoxylated quaternary ammonium salt having the formula;

$$R^{5} \qquad X^{-}$$

$$R^{1} \longrightarrow N^{*} \longrightarrow (R^{2}O)_{x}R^{3} \qquad (4)$$

wherein R¹ and R⁵ are independently hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R⁴ is hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R² in each of the x (R²O) groups is independently C₂-C₄ alkylene, R³ is hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms, x is an average number from 1 to about 60, and X- is an agriculturally acceptable anion;

(e) a quaternary ammonium salt having the formula:

$$\begin{array}{ccc}
R^2 & X^- \\
\downarrow & & \\
R^1 & & \\
\downarrow & & \\
R^3 & & \\
\downarrow & & \\
R^4 & &
\end{array}$$
(5)

wherein R^1 , R^3 and R^4 are independently hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R^2 is hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, and X- is an agriculturally acceptable anion;

(f) an ether amine having the formula:

$$R^{1}O - R^{2} - N R^{3}$$
 (6)

wherein R^1 is hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms; R^2 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 30 carbon atoms; R^3 and

 R^4 are independently hydrogen, hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, or -(R^5O), R^6 , R^5 in each of the x(R^5-O) groups is independently C_2-C_4 alkylene, R^6 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, and x is an average number from 1 to about 50;

(g) a diamine having the formula:

wherein R^1 , R^3 , R^4 and R^5 are independently hydrogen, hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, or $-(R^6O)_8R^7$; R^2 and R^8 are independently hydrocarbylene or substituted hydrocarbylene having from 2 to about 30 carbon atoms, R^6 in each of the x (R^6O) and y (R^6O) groups is independently C_2 - C_4 alkylene, R^7 is hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms, x is an average number from 1 to about 30, X is -O-, $-N(R^6)$ -, -C(O)-, -C(O)-, -O(O)-, $-N(R^9)C(O)$ -, $-C(O)N(R^9)$ -, -S-, -SO-, or $-SO_2$ -, y is 0 or an average number from 1 to about 30, n and z are independently 0 or 1, and R^9 is hydrogen or hydrocarbyl or substituted hydrocarbyl;

(h) an amine oxide having the formula:

$$R^1 \longrightarrow R^3 \qquad (8)$$
 R^2

wherein R^1 , R^2 and R^3 are independently hydrogen, hydrocarbyl or substituted hydrocarbyl, - $(R^4O)_xR^5$, or - $R^6(OR^4)_xOR^5$; R^4 in each of the x (R^4O) groups is independently C_2 - C_4 alkylene, R^5 is hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms, R^6 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 6 carbon atoms, x is an average number from 1 to about 50, and the total number of carbon atoms in R^1 , R^2 and R^3 is at least 8:

(i) a dialkoxylated amine having the formula:

$$R^{1}$$
 N $(R^{2}O)_{x}R^{3}$ (9) $(R^{2}O)_{y}R^{3}$

wherein R^1 is a hydrocarbyl or substituted hydrocarbyl having from about 6 to about 30 carbon atoms, or $-R^4SR^5$, R^4 and R^2 in each of the x (R^2O) and the y (R^2O) groups is independently C_2 - C_4 alkylene, R^3 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, R^5 is a linear or branched alkyl group having from about 4 to about 15 carbon atoms, and x and y are independently an average number from 1 to about 40;

(j) an aminated alkoxylated alcohol having the structure:

$$R^{1}$$
— X — $(R^{2})_{m}$ - $(R^{3}O)_{n}$ — R^{4} — $(NR^{6})_{q}$ — N
 R^{7}
(10)

wherein R^1 , R^7 , R^8 , and R^9 are each independently hydrogen, hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, or $-(R^{11})_*(R^3O)_*R^{10}_*$; X is -O-, -OC(O)-, -C(O)O-, $-N(R^{12})C(O)$ -, $-C(O)N(R^{12})$ -, -S-, -SO-, -SO-, -SO- or $-N(R^9)$ -; R^3 in each of the n (R^3O) groups and the v (R^3O) groups is independently C_2 - C_4 alkylene; R^{10} is hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms; n is an average number from 1 to about 50; R^2 and R^{11} are each independently hydrocarbylene or substituted hydrocarbylene having from 1 to about 6 carbon atoms; R^4 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 6 carbon atoms; R^{12} is hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms; m and s are each independently 0 or 1; R^6 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 30 carbon atoms, $-C(=NR^{12})$ -, -C(S)-, or -C(O)-; q is an integer from 0 to 5; and R^5 is hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms;

(k) a quaternary ammonium, sulfonium or sulfoxonium salt having the formula:

or

$$A^{-}$$
 R^{10}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{5}
 R^{7}
 R^{5}
 R^{7}
 R^{8}
 R^{10}
 R^{10}

or

$$A^{-}$$
 A^{10} R^{10} R^{5} R^{7} A^{-} R^{1} R^{2} R^{2} R^{3} R^{3} R^{4} R^{4} R^{6} R^{6} R^{7} R^{8} R^{10} R^{10}

or

$$R^{7} - S^{*} - (R^{2})_{m} - (R^{3}O)_{n} - R^{4} - (NR^{6})_{q} - N^{*} - R^{8}$$
(15)

wherein R^1 , R^7 , R^8 , R^9 , R^{10} and R^{11} are independently hydrogen, hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, or $-(R^{13})_s(R^3O)_sR^{12}$; X is -O-, -OC(O)-, $-N(R^{14})C(O)$ -, $-C(O)N(R^{14})$ -, -C(O)O-, or -S-; R^3 in each of the n (R^3O) groups and v (R^3O) groups is independently C_2 - C_4 alkylene; R^{12} is hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms; n is an average number from 1 to about 60; v is an average number from 1 to about 50; R^2 and R^{13} are each independently hydrocarbylene or substituted hydrocarbylene having from 1 to about 6 carbon atoms; m and s are each independently 0 or 1; R^4 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 6 carbon atoms; R^6 is hydrocarbylene or substituted hydrocarbylene having from 2 to about 30 carbon atoms, $-C(=NR^{12})$ -, -C(S)-, or -C(O)-; R^{14} is hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, q is an integer from 0 to 5; R^5 is hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms; and each A^- is an agriculturally acceptable anion:

(1) a diamine or diammonium salt having the formula:

$$R^{1} \underbrace{\qquad}_{D^{6}} (R^{2}O)_{m} \underbrace{\qquad}_{D^{5}} N \underbrace{\qquad}_{D^{5}} (R^{2}O)_{n} \underbrace{\qquad}_{R^{4}} (16)$$

or

$$R^{1} - - (R^{2}O)_{m} - N^{+} - R^{3} - N^{+} - (R^{2}O)_{n} - R^{4}$$
 (17)

wherein R^1 , R^4 , R^5 , R^6 , R^7 and R^8 are independently hydrogen or hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R^2 in each of the m (R^2O) and n (R^2O) groups and R^9 are independently C_2 - C_4 alkylene, R^3 is hydrocarbylene or substituted hydrocarbylene having from about 2 to about 6 carbon atoms or $-(R^2O)_pR_{9^n}$, m and n are individually an average number from 0 to about 50, and p is an average number from 0 to about 60;

(m) an alkoxylated alcohol having the formula:

$$R^1O$$
— $(R^2O)_{\nu}R^3$ (18)

wherein R^1 is hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms, R^2 in each of the x (R^2O) groups is independently C_2 - C_4 alkylene, R^3 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, and x is an average number from 1 to about 60:

(n) alkoxylated dialkylphenols having the formula:

wherein R^1 and R^4 are independently hydrogen, or a linear or branched alkyl group having from 1 to about 30 carbon atoms and at least one of R^1 and R^4 is an alkyl group, R^2 in each of the x (R^2O) groups is independently C_2 - C_4 alkylene, R^3 is hydrogen, or a linear or branched alkyl group having from 1 to about 4 carbon atoms, and x is an average number from 1 to about 60;

(o) an alkyl alkoxylated phosphate having the formula:

wherein R^1 and R^3 are independently a linear or branched alkyl, linear or branched alkynyl, aryl, or aralkyl group having from about 4 to about 30 carbon atoms; R^2 in each of the m (R^2 O) and the n (R^2 O) groups is independently C_2 - C_4 alkylene; and m and n are independently from 1 to about 30:

(p) an alkyl alkoxylated phosphate having the formula:

$$R^1 \longrightarrow O \longrightarrow (R^2O)_m$$
 $O \longrightarrow H^+$ (21)

wherein R^1 is a linear or branched alkyl, linear or branched alkenyl, linear or branched alkynyl, aryl, or aralkyl group having from about 8 to about 30 carbon atoms; R^2 in each of the m (R^2 O) groups is independently Cy-C₄ alkylene; and m is from 1 to about 30:

and mixtures or combinations thereof.

54-58. (canceled)

 (previously presented) A method for killing or controlling the growth of unwanted plants comprising contacting the foliage of said plants with a herbicidally effective amount of the herbicidal composition of any one of claims 29, 33, 37, 38, 39, 42 or 46.

60-61. (canceled)

62. (previously presented) A method of killing or controlling weeds or unwanted plants comprising:

diluting an aqueous herbicidal concentrate composition in an amount of water to form an application mixture; and

applying a herbicidally effective amount of the application mixture to foliage of the weeds or unwanted plants, wherein the weeds or unwanted plants comprise poison ivy, poison oak, kudzu, multiflora rose, golden rod, blue fescue, red maple, and/or red oak, and the aqueous herbicidal concentrate composition comprises glyphosate or a salt or ester thereof; a pyridine

analog selected from the group consisting of triclopyr, clopyralid, dithiopyr, thiazopyr and picloram, or a salt or ester thereof; and, at least one surfactant.

63. (new) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants wherein the composition is a solution containing no effective amount of an organic solvent, the composition comprising:

glyphosate or a salt or ester thereof;

a pyridine analog herbicide or a salt or ester thereof; and,

at least one surfactant;

wherein the glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 7.6:1, and further wherein when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C₃-C₁₆ alkanolammonium salt, a diammonium salt, an alkylamine salt, a C₃-C₁₆ alkanolamine salt, an alkylamine salt, a sulfoxonium salt, and combinations thereof.

- (new) The aqueous herbicidal composition of claim 63 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- 65. (new) The aqueous herbicidal composition of claim 63 wherein the pyridine analog concentration ranges from about 0.4 grams to about 6 grams acid equivalent per liter.
- 66. (new) The aqueous herbicidal composition of claim 63 wherein the weight ratio (a.e. basis) of glyphosate to pyridine analog ranges from about 8:1 to about 15:1.
- 67. (new) An aqueous herbicidal composition useful for killing or controlling the growth of unwanted plants wherein the composition is a solution containing no effective amount of an organic solvent, the composition comprising:

glyphosate or a salt or ester thereof;

a pyridine analog herbicide or a salt or ester thereof; and,

at least one surfactant:

wherein the glyphosate (acid equivalent basis) and the pyridine analog (acid equivalent basis) are present in a weight ratio of at least 7.6:1, and further wherein when the glyphosate is predominantly in the form of a salt, said salt is selected from the group consisting of a sodium salt, an ammonium salt, an alkylammonium salt, a C_3 - C_{16} alkanolammonium salt, a diammonium salt, an alkylamine salt, a C_3 - C_{16} alkanolamine salt, an alkylsulfonium salt, a sulfoxonium salt, and combinations thereof,

wherein, upon application of a herbicidally effective amount of the composition to plants, early visual symptoms of plant treatment are provided within about 5 days after treatment and at least 70% plant control is provided about 20 days after treatment.

- (new) The aqueous herbicidal composition of claim 67 wherein the glyphosate concentration ranges from about 4 grams to about 25 grams acid equivalent per liter.
- (new) The aqueous herbicidal composition of claim 67 wherein the pyridine analog concentration ranges from about 0.4 grams to about 6 grams acid equivalent per liter.
- (new) The aqueous herbicidal composition of claim 67 wherein the weight ratio
 (a.e. basis) of glyphosate to pyridine analog ranges from about 8:1 to about 15:1.