· Porque Aprender

· reconhecer a estrutura da Transformada

· Exemplo de Aplicação da transformador

· Uso da Tabela.

Denece solvões mois suples concertendo pro-Algebricos con Solvides mois faceis.

Ex: Circuito RC, as invis de una fonte de

Tensos constante, usa-se una função perio-

EPO & Eq. Algebrica

Solicio + L Soliciso

* Transformada de laplace (L)

 $\mathcal{L}\{f(\tau)\} = F(s) = \int e^{s\tau} f(\tau) d\tau$

função impropria sos.

g(T)dt = lim 5 g(T)dt

b=00 50

D | feft) = F(s) = [est f(t) dt = lim [est f(t) dt]

* Exemplo - Tabela função 4: f(T) = eKT

Llert = Sest et all = lim Sest et all =

= lim (= (s-k) t dt = lim [1 e (s-k) T b]] -

= lim 1 e(s-k)b - (1 e(s-k)o)] =

Para 5-K >0 - 5>K -> lim -00.

Para 5-KKU - 5KK - lim - 000 (diverge)

solvas: Leeki = = para S-KDO ou SDK

 $\int e^{-(s-k)T} dt = \int e^{u} \frac{du}{dt} = \frac{1}{-(s-k)} \cdot e^{-(s-k)} + c$ $u : -(s-k)T - s \frac{du}{dt} = -(s-k) - s \frac{dt}{-(s-k)} = \frac{du}{-(s-k)}$

-ST+KT T(-S+K) -(S-K)T e = e = e

$$f(3) = f(s) = \frac{3}{2}$$

$$P\{T^2\} = F(S) = \frac{2}{S^3}$$

Para a profine aula!

- Transformados inversos f-1
- condição de existência da Transformada
- Propriedade de Livearidade
- -s Propriedes de Transformades Derivada
- Propriedade de Transformada de Integral

3) [Excepto: f(1) = 5 + 13 + 2 sen41 L{f(t)} = 5 L{1} + 1 L{13} + 2 L{5en4t}

$$\begin{cases} \{1\} = \frac{1}{s} \\ \{1\} = \frac{1}{s} \\ \frac{1}{s} = \frac{3!}{s^4} = \frac{3 \cdot 2 \cdot 1}{s^4} = \frac{6}{s^4}$$

$$\mathcal{L}\{\text{Seu}(1)\} = \frac{4}{S^2 + 16}$$

$$\mathcal{L}\{f(\tau)\} = \frac{5}{s} + \frac{1}{s^4} + \frac{8}{s^2 + 16}$$

PVI / Equações Deferenciais Condições Iniciais

Departamento de Matemática - Universidade de Coimbra Tabela de Transformadas de Laplace

	Função	Transformada de Laplace	Domínio
1.	k, constante	$\frac{k}{s}$	s > 0
2.	$t^n, n = 1, 2, 3, \dots$	$\frac{n!}{s^{n+1}}$	s > 0
3.	$t^{-1/2}$	$\sqrt{rac{\pi}{s}}$	s > 0
4.	e^{kt}	$\frac{1}{s-k}$	s > k
5.	$\sin kt$	$\frac{k}{s^2 + k^2}$	s > 0
6.	$\cos kt$	$\frac{s}{s^2 + k^2} $	s > 0
7.	sinh kt	$\frac{k}{s^2 - k^2}$	s > k
8.	$\cosh kt$	$\frac{s}{s^2 - k^2}$	s > k
9.	$e^{kt}f(t)$	F(s-k)	$s - k \in D_F$
10.	$f(t-a)u_a(t)$	$e^{-as}F(s)$	$s \in D_F$
11.	$t^n f(t), \ n = 1, 2, 3, \dots$	$(-1)^n \frac{d^n F(s)}{ds^n}$	
12.	$f^{(n)}(t), n = 1, 2, 3, \dots$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$	$s \in D_F$
13.	$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)	$s \in D_F \cap D_G$
14.	$\int_0^t f(\tau)d\tau$	$\frac{F(s)}{s}$	$s \in D_F \cap]0, +\infty[$
15.	$f(kt), k \in \mathbb{R}^+$	$\frac{1}{k} F(\frac{s}{k})$	$\frac{s}{k} \in D_F$
			,

Observação : F(s) designa a Transformada de Laplace da função f(t), D_F designa o domínio de F e $u_a(t)$ representa a função de Heaviside.