REPORT

[응용수학 문제풀이 및 증명]

학 과	컴퓨터공학부	
Ğİ	<u> </u>	컴퓨터공학전공
교수님		서경룡 교수님
학	번	201911608
o]	름	김지환
제출일		2022.04.24

< 목 차 >

1.	함수	`	3	
1)	8번,	$f(t)=2t$, $g(t)=t-1$ $h(t)=t^{-1}$	² 3	
2)	12번	f(t)=2t+3, g(t)=3t, h(t)	c)=f(g(t)) 4	
2.	로_	<u> 1</u> 함수	5	
1)	17번	, log-linear	5	
2)	18번	, log-log	6	
3.	sin	, cos 정리 증명	7	
4.	좌표	E계		}
1)	1번,	직교좌표 -> 극좌표	9	
2)	12번	, 극좌표 -> 직교좌표		
5.	멱현	: :	15	
6.	행립	<u> </u>		
1)	1번,	벡터곱		
2)	2번,	a × b, b × a	17	
3)	4번,	행렬곱		
4)	5번,	행렬제곱		
5)	6번,	행렬덧셈의 제곱	20	
6)	3번,	대칭행렬	21	
7)	4번,	전치행렬	22	
8)	3번,	행렬식		
9)	4번,	행렬식 증명		
7.	복소	·수		24
			곱셈/나눗셈 24	
		3 3 -3 -3 -3	25	

Given f(t) = 2t, g(t) = t - 1 and $h(t) = t^2$ write expressions for

- (a) f(g(t))
- (b) *f* (*h*(*t*))
- (c) g(h(t))
- (d) g(f(t))
- (e) h(g(t))
- (f) h(f(t))
- (g) f(f(t))
- (h) g(g(t))
- (i) h(h(t))
- (j) f(g(h(t)))
- (k) g(f(h(t))) (l) h(g(f(t)))

- 풀이 -

- a) f(g(t)) = f(t-1)이다. 함수 f는 입력 값의 2배를 반환한다. : f(g(t)) = 2(t-1)
- b) $f(h(t)) = f(t^2)$ 이다. 함수 f는 입력 값의 2배를 반환한다. : $f(h(t)) = 2t^2$
- c) g(h(t)) = g(t²)이다. 함수 g는 입력 값에 1을 빼는 값을 반환한다. ∴ g(h(t)) = t²-1
- d) g(f(t)) = g(2t)이다. 함수 g는 입력 값에 1을 빼는 값을 반환한다. ∴ g(f(t)) = 2t-1
- e) h(g(t)) = h(t-1)이다. 함수 h는 입력 값을 제곱 후 반환한다. ∴ h(g(t)) = (t-1)²
- f) h(f(t)) = h(2t)이다. 함수 h는 입력 값을 제곱 후 반환한다. : h(f(t)) = (2t)² = 4t²
- g) f(f(t)), 함수 f는 입력 값의 2배를 반환한다. f(2t) = 2(2t), : f(f(t)) = 4t
- h) g(g(t), 함수 g는 입력 값에 1을 빼는 값을 반환한다. g(t-1) = (t-1)-1, ∴ g(g(t)) = t-2
- i) h(h(t)), 함수 h는 입력 값을 제곱 후 반환한다. h(t²) = (t²)², ∴ h(h(t)) = t⁴
- j) f(g(h(t))), 함수 $f(g(t^2))) \Rightarrow f((t^2)-1) \Rightarrow 2((t^2)-1)$, $\therefore f(g(h(t))) = 2(t^2-1)$
- k) g(f(h(t))), 함수 $g(f(t^2)) \Rightarrow g(2(t^2)) \Rightarrow 2(t^2)-1$, $\therefore g(f(h(t))) = 2t^2-1$
- l) h(g(f(t))), 함수 h(g(2t)) => g((2t)-1) => ((2t)-1)^2, : h(g(f(t))) = (2t-1)^2

Given f(t) = 2t + 3, g(t) = 3t and h(t) = f(g(t)) write expressions for

- (a) h(t)
- (b) $f^{-1}(t)$
- (c) $g^{-1}(t)$
- (d) $h^{-1}(t)$
- (e) $g^{-1}(f^{-1}(t))$

What do you notice about (d) and (e)?

- 풀이 -

- a) h(t) = f(g(t))이다.
- f(g(t)) => g는 입력값의 3배를 반환 => f(3t),
- f(3t) => f는 입력값의 2배 후 3더하기를 반환 => 2(3t)+3,
- \therefore h(t) = 6t+3
- b) f⁻¹(t) => f(t)는 2t+3이므로 f⁻¹(2t+3) = t,
- => f⁻¹(y) = x 꼴에서 y = 2t+3, x = t,
- => t = (y-3)/2 => f⁻¹(y) = (y-3)/2, y를 t로 사용
- $f^{-1}(t) = (t-3)/2$
- c) g⁻¹(t) => g(t)는 3t이므로 g⁻¹(3t) = t,
- => g⁻¹(y) = x 끌에서 y = 3t, x = t,
- => g = y/3 => g⁻¹(y) = (y/3)에서 y를 t로 사용
- $g^{-1}(t) = t/3$
- d) h⁻¹(t) => h(t)는 6t+3 이므로 h⁻¹(6t+3) = t,
- $=> h^{-1}(y) = x 꼴에서 y = 6t+3, x = t,$
- => t = (y-3)/6 => f⁻¹(y) = (y-3)/6, y를 t로 사용
- $h^{-1}(t) = (t-3)/6$
- e) g⁻¹(f⁻¹(t)) => f⁻¹(t)는 b)에서 구한 (t-3)/2이다,
- => g⁻¹(t)는 c)에서 구한 t/3이다,
- \Rightarrow g⁻¹(t) = ((t-3)/2)/3
- $g^{-1}(t) = (t-3)/6$

=========

∴ (d) 와 (e)는 같다. h⁻¹(t) = g⁻¹(t)이다.

By using log-linear paper find the relationship between x and y given the following table of values:

- 풀이 -

log-linear 그래프에서 y축은 log단위 그래프 => Y=aX+b의 그래프

시작점 log(8.5) = 1.5a+b 끝 점 log(89.6) = 4.9a+b

끝점 - 시작점 = log(89.6)-log(8.5) = 3.4a

 $a = (\log(89.6) - \log(8.5)) / 3.4 = 0.3008..,$ $\log(8.5) = 1.5a + b$ $b = \log(8.5) - (0.3008... \cdot 1.5) = 0.4781..$

Y = 0.3008x + 0.4781 $y = 10^{Y} = 10^{logy} = 10^{0.3008x + 0.4781} = 10^{0.4781} \cdot (10^{0.3008})^{x} = 3.007... \cdot (1.999..)^{x}$

 \therefore 3(2^x)

By using log-log paper find the relationship between x and y given the following table of values:

- 풀이 -

log-linear 그래프에서 y축 x축 둘 다 log단위 그래프 => Y=aX+b의 그래프

시작점 log(13) = log(2)a+b 끝 점 log(51.6) = log(4.5)a+b

끝점 - 시작점 = log(51.6)-log(13) = (log(4.5)-log(2))a

 $a = (\log(51.6) - \log(13)) / (\log(4.5) - \log(2)) = 1.6999...,$ $\log(13) = \log(2)a + b$ $b = \log(13) - (1.7 \cdot \log(2)) = 0.60219..$

Y = 1.7X+0.6 $10^{Y} = y = 10^{1.7X + 0.6} = 10^{0.6} \cdot 10^{1.7logx} = 4.001... \cdot x^{1.7}$

 $\therefore 4 \cdot (x^{1.7})$

 $\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

cos(a-b) = cosAcosB+sinAsinB, proof

 $P(\cos(a), \sin(a)), Q(\cos(b), \sin(b)), \angle a-b$ $\overline{PQ}^2 = \overline{OP}^{2+} \overline{OQ}^2 - 2 \cdot \overline{OP} \cdot \overline{OQ} \cdot \cos(a-b) -- ①$

피타고라스 $\overline{PQ}^2 = (\cos(a) - \cos(b))^2 + (\sin(a) - \sin(b))^2 - - ②$ ① 과 ②를 이용,

 $(\cos(a)-\cos(b))^2+(\sin(a)-\sin(b))^2 = 1^2+1^2-2\cdot1\cdot1\cdot\cos(a-b)$

 $=> \cos^2(a) - 2\cos(a)\cos(b) + \cos^2(b) + \sin^2(a) - 2\sin(a)\sin(b) + \sin(b)^2 = 2 - 2\cos(a-b)$

p

Q

X

7

- $=> 2-2(\cos(a)\cos(b)+\sin(a)\sin(b)) = 2-2\cos(a-b)$
- : cos(a-b) = cos(a)cos(b)+sin(a)sin(b) ----- 증명1

cos(a+b) = cosAcosB-sinAsinB, proof

증명 1에서 b 대신 -b를 대입한다

∴ cos(a+b) = cos(a)cos(b)-sin(a)sin(b) ----- 증명 2

sin(a+b) = sinAcosB+sinBcosA, proof

 $\sin\theta = \cos(\pi/2 - \theta) - - 3$, 증명2에 $a = \pi/2 - a$ 대입

- $=> \cos((\pi/2 a) + b) = \cos(\pi/2 a)\cos(b) \sin(\pi/2 a)\sin(b)$
- => cos((π/2 -a)+b)를 cos(π/2-(a-b))로 바꾸면, ③으로
- ∴ sin(a+b) = sin(a)cos(b)+sin(b)cos(a) ----- 증명 3

sin(a-b) = sinAcosB+sinBcosA, proof

증명 3에서 b 대신 -b를 대입한다

: sin(a-b) = sin(a)cos(b) - sin(b)cos(a) ---- 증명 4

$2\sin A\cos B = \sin(A+B)+\sin(A-B)$, proof

=> 증명 3 + 증명 4

sin(A+B) = sinAcosB+sinbBcosA

- $+ \sin(A-B) = \sin A \cos B \sin B \cos A$
- = sin(A+B)+sin(A-B) = sinAcosB+sinBcosA+sinAcosB-sinBcosA = 2sinAcosB
- ∴ 2sinAcosB = sin(A+B)+sin(A-B) --- 증명 5

$2\cos A\cos B = \cos(A+B)+\cos(A-B)$, proof

```
=> 증명 2 + 증명 1
cos(A+B) = cosAcosB-sinAsinB
+ cos(A-B) = cosAcosB+sinAsinB
= cos(A+B)+cos(A-B) = cosAcosB-sinAsinB+(cosAcosB+sinAsinB) = 2cosAcosB
∴ 2cosAcosB = cos(A+B)+cos(A-B) --- 증명 6
```

$2\sin A \sin B = \cos(A-B)-\cos(A+B)$, proof

```
=> 증명 1 - 증명 2

cos(A-B) = cosAcosB+sinAsinB

- cos(A+B) = cosAcosB-sinAsinB

= cos(A-B)-cos(A+B) = cosAcosB+sinAsinB-(cosAcosB-sinAsinB) = 2sinAsinB

∴ 2cosAcosB = cos(A+B)+cos(A-B) --- 증명 6
```

- 1 Express the following Cartesian coordinates as cylindrical polar coordinates.
 - (a) (-2, -1, 4) (b) (0, 3, -1) (c) (-4, 5, 0)

- 풀이 -

a) 직교좌표 x=-2, y=-1, z=4에서 원통형 극좌표 전환은 (r,φ,z)이다.

원통 극좌표계 그림을 참고해서

$$r = \sqrt{(x^2 + y^2)} = \sqrt{5}$$

φ = tan²(-1/-2) = 26.565° => x좌표와 y좌표가 음수이므로 제 3사분면이므로 +π, 206.565°

$$z = 4$$

 \therefore cartesian coordinates(-2, -1, 4) => cylindrical polar coordinates($\sqrt{5}$, 206.565°, 4)

b) 직교좌표 x=0, y=3, z=1에서 원통형 극좌표 전환은 (r,φ,z)이다.

원통 극좌표계 그림을 참고해서

$$r = \sqrt{(x^2+y^2)} = \sqrt{9} = 3$$

φ = y가 양수이고 x는 0이므로 90° 혹은 원통 극좌표계 그림을 통해 90°임을 알 수 있음.

z = 1

: cartesian coordinates(0, 3, 1) => cylindrical polar coordinates(3, 90°, 1)

c) 직교좌표 x=-4, y=5, z=0에서 원통형 극좌표 전환은 (r,φ,z)이다.

원통 극좌표계 그림을 참고해서

$$r = \sqrt{(x^2+y^2)} = \sqrt{41}$$

$$\phi$$
 = $tan^{-1}(-4/5)$ = -38.66° , 제2사분면 이므로 $\pi/2$ - ϕ = 128.66°

$$z = 0$$

 \therefore cartesian coordinates(-4, 5, 0) => cylindrical polar coordinates($\sqrt{41}$, 128.66°, 0)

2 Express the following cylindrical polar coordinates as Cartesian coordinates.

- (a) $(3,70^{\circ},7)$ (b) $(1,200^{\circ},6)$ (c) $(5,180^{\circ},0)$

- 풀이 -

a) 원통형 극좌표 r=3, φ=70°, z=7 에서 직교좌표 전환은 (x, y, z)이다.

φ = 70°로 x와 y는 양수임을 알 수 있다.

 $x = r \cdot \cos \varphi = 3\cos(70) = 1.026..$

 $y = r \cdot \sin \varphi = 3\sin(70) = 2.819...$

z = 7

: cylindrical polar coordinates(3, 70°, 7) => cartesian coordinates(1.026, 2.819, 7)

b) 원통형 극좌표 r=1, φ=200°, z=6 에서 직교좌표 전환은 (x, y, z)이다.

φ = 200°로 x와 y는 음수임을 알 수 있다.

 $x = r \cdot \cos \varphi = \cos(200) = -0.939..$

 $y = r \cdot \sin \varphi = \sin(70) = -0.342..$

z = 6

∴ cylindrical polar coordinates(1, 200°, 6) => cartesian coordinates(-0.939, -0.342, 6)

c) 원통형 극좌표 r=5, φ=180°, z=0 에서 직교좌표 전환은 (x, y, z)이다.

φ = 180°로 x는 음수 y는 0임을 알 수 있다.

$$x = r \cdot \cos \varphi = r \cdot \cos(180) = -r = -5$$

$$y = r \cdot \sin \varphi = \sin(180) = 0$$

$$z = 0$$

∴ cylindrical polar coordinates(5, 180°, 0) => cartesian coordinates(5, 0, 0)

● (5, 180°, 0)를 갖는 극좌표계

● (5, 0, 0)를 갖는 직교좌표계

1 The power series expansion of ex is given by

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

and is valid for any x. Take four terms of the series when x = 0, 0.1, 0.5 and 1, to compare the sum to four terms with the value of e^x obtained from your calculator. Comment upon the result.

- 풀이 -

x가 0일 때,

4개의 항을 이용해 구한 값 : 1 + 0 + 0 + 0 = 1 계산기를 이용해 구한 값 : $e^0 = 1$

x가 0.1일 때,

4개의 항을 이용해 구한 값 : 1 + 0.1 + 0.01/2 + 0.001/6 = 1.10516.. 계산기를 이용해 구한 값 : $e^{0.1}$ = 1.1051709...

x가 0.5일 때,

4개의 항을 이용해 구한 값 : 1 + 0.5 + 0.25/2 + 0.125/6 = 1.64583.... 계산기를 이용해 구한 값 : $e^{0.5}$ = 1.64872...

x가 1일 때,

4개의 항을 이용해 구한 값 : 2.6666.... 계산기를 이용해 구한 값 : e¹ = 2.71828...

=> e의 지수 x의 값이 증가할수록 e^x의 값과 4개의 항을 이용해 구한 값의 오차가 증가한다.

1 Evaluate

- 풀이 -

a) Evaluate

i	j	k
3	1	2
2	1	4

=>
$$(4\cdot1)i-(2\cdot1)i+(2\cdot2)j-(3\cdot4)j+(3\cdot1)k-(1\cdot2)k$$

= $4i-2i + 4j-12j + 3k-2k$
= $2i+(-8j)+k$

∴ 2i-8j+k

b) Evaluate

i	j	k
-1	2	-3
-4	0	1

=>
$$(2 \cdot 1)i - (-3 \cdot 0)i + (-3 \cdot -4)j - (-1 \cdot 1)j + (-1 \cdot 0)k - (2 \cdot -4)k$$

= $2i - 0i + 12j - (-j) + 0k - (-8k)$
= $2i + 13j + 8k$

∴ 2i+13j+8k

c) Evaluate

=>
$$(1\cdot4)i-(0\cdot0)i + (0\cdot0)j-(0\cdot4)j + (0\cdot0)k-(1\cdot1)k$$

= $4i-0i + 0j-0j + 0k-k$
= $4i - k$

d) Evaluate

=>
$$(5 \cdot 4)i - (2 \cdot -1)i + (2 \cdot -3)j - (3 \cdot 4)j + (3 \cdot -1)k - (5 \cdot -3)k$$

= $20i - (-2i) + (-6)j - 12j + (-3k) - (-15k)$
= $22i - 18j + 12k$

2 If $\mathbf{a} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$, find

- (a) **a** × **b**
- (b) $\mathbf{b} \times \mathbf{a}$

- 풀이 -

a) a × b

1	-2	3	= (2-(-3))i - (-1-6)j + (-1-(-4))k $ = 5i + 7j + 3k$
2	-1	-1	∴ 5i + 7j + 3k

b) b \times x

i	j	k	$ \begin{vmatrix} => (b_2a_3 - b_3a_2)i - (b_1a_3 - b_3a_1)j + (b_1a_2 - b_2a_1)k \\ = (-1\cdot3 - (-1)\cdot-2)i - (2\cdot3 - (-1)\cdot1)j + (2\cdot-2 - (-1)\cdot1)k \end{vmatrix} $
2	-1	-1	= (-3-(2))i - (6-(-1))j + (-4-(-1))k $ = -5i - 7j - 3k$
1	-2	3	∴ -5i - 7j - 3k

4 Find AB and BA where

$$A = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 4 \\ 5 & 1 & -1 \end{pmatrix}$$
$$B = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 3 & 4 \\ 1 & 3 & 5 \end{pmatrix}$$

- 풀이 -

Α		
1	3	2
-1	0	4
5	1	-1

=>
$$ab_{11} = 1.5 + 3.0 + 2.1$$
 $ab_{12} = 1.2 + 3.3 + 2.3$ $ab_{13} = 1.1 + 3.4 + 2.5$ $ab_{21} = -1.5 + 0.0 + 4.1$ $ab_{22} = -1.2 + 0.3 + 4.3$ $ab_{23} = -1.1 + 0.4 + 4.5$ $ab_{31} = 5.5 + 1.0 + -1.1$ $ab_{32} = 5.2 + 1.3 + -1.3$ $ab_{33} = 5.1 + 1.4 + -1.5$

∴ AB

7	17	24
-1	10	19
24	10	4

5	2	1
0	3	4
1	3	5

	1	3	2
×	-1	0	4
	5	1	-1

$$_1$$
=>ba₁₁ = 5·1+2·-1+1·5 ba₁₂ = 5·3+2·0+1·1 ba₁₃ = 5·2+2·4+1·-1

$$ba_{21} = 0.1+3.-1+4.5$$
 $ba_{22} = 0.3+3.0+4.1$ $ba_{23} = 0.2+3.4+4.-1$ $ba_{31} = 1.1+3.-1+5.5$ $ba_{32} = 1.3+3.0+5.1$ $ba_{33} = 1.2+3.4+5.-1$

∴ ВА

В

8	16	17
17	4	8
23	8	9

Given that A^2 means the product of a matrix A with itself, find A^2 when $A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$. Find A^3 .

- 풀이 -

If
$$A = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}$$
. $B = \begin{pmatrix} 2 & 1 \\ -4 & 5 \end{pmatrix}$ find AB , BA , $A + B$

and $(A + B)^2$. Show that

- 풀이 -

A B
$$\Rightarrow$$
 ab₁₁ = 1·2+3·-4 ab₁₂ = 1·1+3·5 ab₂₁ = -2·2+4·-4 ab₂₂ = -2·1+4·5 -20 18

B
$$A$$
 \Rightarrow $ba_{11} = 2 \cdot 1 + 1 \cdot -2$ $ba_{12} = 2 \cdot 3 + 1 \cdot 4$ $ba_{21} = -4 \cdot 1 + 5 \cdot -2$ $ba_{22} = -4 \cdot 3 + 5 \cdot 4$ 0 10 -14 8

A B
$$\Rightarrow$$
 (a+b)₁₁ = 1+2 (a+b)₁₂ = 3+1 (a+b)₂₁ = -2+(-4) (a+b)₂₂ = 4+5 \Rightarrow A+B

-2 4 \Rightarrow -6 9

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 show that AA^T is a symmetric matrix.

- 풀이 -

=> ii, jj 행 (대각선)을 기준으로 양값이 동일하다.

$$\therefore AA^T$$

a ² +b ²	ac+bd	
ac+bd	c^2+d^2	∴ AA ^T 는 symmetric matrix이다.

If
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -7 & 0 \\ 0 & 2 & 5 \\ 3 & 4 & 5 \end{pmatrix}$

find A^T , B^T , AB and $(AB)^T$. Deduce that $(AB)^T = B^T A^T$.

- 풀이 -

Α

2	1	3
4	2	1
-1	3	2

 \Rightarrow $a_{11}^{t}=a_{11}$ $a_{12}^{t}=a_{21}$ $a_{13}^{t}=a_{31}$ $a_{21}^{t}=a_{12}$ $a_{22}^{t}=a_{22}$ $a_{31}^{t}=a_{13}$ $a_{31}^{t}=a_{13}$ $a_{32}^{t}=a_{23}$ $a_{33}^{t}=a_{33}$

$\therefore A^{T}$			
2	4	-1	
1	2	3	
3	1	2	

В

1	-7	0
0	2	5
3	4	5

 \Rightarrow $b_{11}^{t}=b_{11}$ $b_{12}^{t}=b_{21}$ $b_{13}^{t}=b_{31}$ $b_{21}^{t}=b_{12} \ b_{22}^{t}=b_{22} \ b_{31}^{t}=b_{13}$ $b_{31}^{t}=b_{13} \ b_{32}^{t}=b_{23} \ b_{33}^{t}=b_{33}$

$\therefore B^T$			
1	0	3	
-7	2	4	
0	5	5	

Α

2	1	3
4	2	1
-1	3	2

В

	1	-7	0
×	0	2	5
	3	4	5

=> ab_{11} = $2 \cdot 1 + 1 \cdot 0 + 3 \cdot 3$ ab_{12} = $2 \cdot -7 + 1 \cdot 2 + 3 \cdot 4$ ab_{13} = $2 \cdot 0 + 1 \cdot 5 + 3 \cdot 5$ ab_{21} = 4·1+2·0+1·3 ab_{22} = 4·-7+2·2+1·4 ab_{23} = 4·0+2·5+1·5 $ab_{31} = -1 \cdot 1 + 3 \cdot 0 + 2 \cdot 3$ $ab_{32} = -1 \cdot -7 + 3 \cdot 2 + 2 \cdot 4$ $ab_{33} = -1 \cdot 0 + 3 \cdot 5 + 2 \cdot 5$

AΒ

11	0	20
7	-20	15
5	21	25

 \Rightarrow $(ab)_{11}^{t} = ab_{11} (ab)_{12}^{t} = ab_{21} (ab)_{13}^{t} = ab_{31}$ $(ab)_{21}^{t} = ab_{12} (ab)_{22}^{t} = ab_{22} (ab)_{23}^{t} = ab_{32}$ $(ab)_{31}^{t} = ab_{13} (ab)_{32}^{t} = ab_{23} (ab)_{33}^{t} = ab_{33}$

\therefore (AB) ^T			
11	7	5	
0	-20	21	
20	15	25	

 B^{T}

1	0	3
-7	2	4
0	5	5

 A^T

	11		
	2	4	-1
×	1	2	3
	3	1	2

 $B^{T}A^{T}$

11	7	5
0	-20	21
20	15	25

 \Rightarrow b^ta^t₁₁= 1·2+0·1+3·3

 $b^{t}a_{12}^{t} = 1.4 + 0.2 + 3.1$

 $b^{t}a_{13}^{t} = 1 \cdot (-1) + 0 \cdot 3 + 3 \cdot 2$

 $b^{t}a_{31}^{t} = 0.2 + 5.1 + 5.3$

 $b^{t}a^{t}_{32} = 0.4 + 5.2 + 5.1$ $b^{t}a^{t}_{33} = 0.(-1) + 5.3 + 5.2$

 $b^{t}a_{21}^{t} = -7 \cdot 2 + 2 \cdot 1 + 4 \cdot 3$ $b^{t}a_{22}^{t} = -7 \cdot 4 + 2 \cdot 2 + 4 \cdot 1$ $b^{t}a_{23}^{t} = -7 \cdot (-1) + 2 \cdot 3 + 4 \cdot 2$

$$\therefore$$
 (AB)^T = B^TA^T

If
$$A = \begin{pmatrix} 3 & 0 \\ -1 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & 8 \\ 4 & 3 \end{pmatrix}$

find |AB|, |BA|.

- 풀이 -

2x2 행렬식 = ad-bc

A B
$$\Rightarrow$$
 $ab_{11} = 3.7 + 0.4$ $ab_{12} = 3.8 + 0.3$ \Rightarrow AB \Rightarrow AB \Rightarrow $ab_{21} = -1.7 + 4.4$ $ab_{22} = -1.8 + 4.3$ \Rightarrow \Rightarrow 4

$$\therefore$$
 |AB| = 21·4 - 24·9 = -132

B A
$$\therefore$$
 BA \Rightarrow ba₁₁ = $7 \cdot 3 + 8 \cdot -1$ ba₁₂ = $7 \cdot 0 + 8 \cdot 4$ ba₂₁ = $4 \cdot 3 + 3 \cdot -1$ ba₂₂ = $4 \cdot 0 + 3 \cdot 4$ 13 32 9 12

$$\therefore$$
 |BA| = 13·12 - 32·9 = -132 => |AB| = |BA|

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$

find AB, |A|, |B|, |AB|.

Verify that |AB| = |A||B|.

а	b		е	f
С	d	×	g	h

=>
$$ab_{11}$$
 = $a \cdot e + b \cdot g$ ab_{12} = $a \cdot f + b \cdot h$
 ab_{21} = $c \cdot e + d \cdot g$ ab_{22} = $c \cdot f + d \cdot h$

ae+bg	af+bh
ce+dg	cf+dh

∴ AB

$$\therefore$$
 |A| = ad-bc, |B| = eh-fg

$$\therefore$$
 |AB| = (ae+bg)(cf+dh)-(af+bh)(ce+dg)

= aecf+aedh+bgcf+bgdh - (afce+afdg+bhce+bhdg)

= 동일항 (bgdh - bhdg), (aecf - afce)

= aedh+bgcf-(afdg+bhce) =aedh+bgcf-afdg-bhce

verify |AB| = |A||B|

=> |A||B| = (ad-bc)(eh-fg) = adeh-adfg-bceh+bcfg, 위에서 구한 |AB|와 동일

 \Rightarrow |AB| = |A||B

Find the modulus and argument of (a) z₁ = -√3 + j and (b) z₂ = 4 + 4j. Hence express z₁z₂ and z₁/z₂ in polar form.

- 풀이 -

a) 직교좌표 z₁ = (-√3)+j => 극형(r,θ)

x가 음값이므로 실수허수 좌표에서 제 2사분면

$$r_1 = \sqrt{((-\sqrt{3})^2 + 1^2)} = 2$$

 $\theta_1 = \tan^{-1}(y/x) = \tan^{-1}(1/-\sqrt{3}) = 30^\circ$, 제 2사분면 이므로 2π - 30 = 150°
 \therefore z_1 의 극형 = $(2, \angle 150^\circ)$

b) 직교좌표 z₂ = 4+4j => 극형(r,θ)

$$r_2 = \sqrt{(4^2+4^2)} = \sqrt{32} = 4\sqrt{2}$$

 $\theta_2 = \tan^{-1}(y/x) = \tan^{-1}(4/4) = \pi/4 = 45^\circ$
 $\therefore z_2$ 의 극형 = $(4\sqrt{2}, \angle 45^\circ)$

$$z_1z_2 = r_1r_2 \angle (\theta_1 + \theta_2) = 2*4\sqrt{2}\angle (150+45) = 8\sqrt{2}\angle 195^\circ$$

 $z_1/z_2 = r_1/r_2\angle (\theta_1 - \theta_2) = 2/4\sqrt{2}\angle (150-45) = 1/(2\sqrt{2})\angle 105^\circ$

7 Express

- (a) 7 + 5j and
- (b) $\frac{1}{2} \frac{1}{3}j$ in exponential form.

- 풀이 -

오일러 방정식

a)
$$z = r(\cos\theta + j\sin\theta) = re^{j\theta}$$

$$r = \sqrt{(7^2 + 5^2)} = \sqrt{74}$$

$$\theta = tan^{-1}(y/x) = tan^{-1}(5/7) = 35.537...° => 0.6202.. radian$$

$$z = \sqrt{74}(\cos(0.62rad) + j\sin(0.62rad)) = \sqrt{74}e^{0.62j}$$

Express
$$z_1 = 1 - j$$
 and $z_2 = \frac{1+j}{\sqrt{3}-j}$ in the form $re^{j\theta}$.

- 풀이 -

$$z_1 = r(\cos\theta + j\sin\theta) = re^{j\theta}$$

 $r_1 = \sqrt{(1^2 + (-1)^2)} = \sqrt{2}$
 $\theta_1 = tan^{-1}(1/-1) = tan^{-1}(-1) = -\pi/4$

$$z_1 = \sqrt{2(\cos(-\pi/4) + i\sin(-\pi/4))} = \sqrt{2}e^{-(\pi/4)i}$$

$$z_2 = r(\cos\theta + j\sin\theta) = re^{j\theta}$$

 $r = 분자 \sqrt{(1^2 + 1^2)} = \sqrt{2}$, 분모 $\sqrt{(\sqrt{3^2 + (-1)^2})} = 2$
 $\theta = 분자 tan^{-1}(1/1) = \pi/4 \Rightarrow 45^\circ$, 분모 $tan^{-1}(-1/\sqrt{3}) \Rightarrow -\pi/6$

-> 분자를 분자 부분을
$$\theta_n$$
, r_n / 분모 부분을 θ_m , r_m z_2 = $r_n/r_m \angle \theta_n - \theta_m$ = $\sqrt{2/2} \angle (\pi/4 - (-\pi/6))$ r_2 = $\sqrt{2/2}$ θ_2 = $5\pi/12$

$$\therefore z_2 = \sqrt{2/2}(\cos(5\pi/12) + j\sin(5\pi/12)) = \sqrt{2/2}e^{(5\pi/12)j}$$