Package 'NPHMC'

October 12, 2022

Type Package
Title Sample Size Calculation for the Proportional Hazards Mixture Cure Model
Version 2.3
Date 2022-05-08
Author Chao Cai, Songfeng Wang, Wenbin Lu, Jiajia Zhang
Maintainer Chao Cai <caic@email.sc.edu></caic@email.sc.edu>
Description An R-package for calculating sample size of a survival trial with or without cure fractions
Depends survival, smcure
License GPL-2
LazyLoad yes
RoxygenNote 7.1.2
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-08 23:10:02 UTC
Date/Fublication 2022-03-08 25.10.02 01C
D toning do commented.
R topics documented:
NPHMC-package
e1684szdata
fl
f2
f3
f4
НО
m
NPHMC
S0
Sc
Inday 11

2 e1684szdata

NPHMC-package

An R-package for Estimating Sample Size of Proportional Hazards Mixture Cure Model

Description

Estimating sample size for survival trial with or without cure fractions

Details

Package: NPHMC Type: Package Version: 2.2

Date: 2013-09-23 License: GPL-2 LazyLoad: yes

Author(s)

Chao Cai, Songfeng Wang, Wenbin Lu, Jiajia Zhang

Maintainer: Chao Cai <caic@email.sc.edu>

References

S. Wang, J. Zhang, and W. Lu. Sample size calculation for the proportional hazards cure model. Statistics in medicine, 31:3959-3971, 2012

C. Cai, et al., smcure: An R-Package for estimating semiparametric mixture cure models. Computer Methods and Programs in Biomedicine, 108(3):1255-60, 2012

See Also

smcure

e1684szdata

Eastern Cooperative Oncology Group (ECOG) Data

Description

Example data of nonparametric estimation approach with treatment as only covariate

*f*1 3

Usage

```
data(e1684szdata)
```

Format

A data frame with 285 observations on the following 3 variables:

Time observed relapse-free time

Status censoring indicator (1 = event of interest happens, and 0 = censoring)

X arm indicator (1 = treatment and 0 = control)

Examples

data(e1684szdata)

f1

Function One

Description

The first integrate function

Usage

```
f1(t, survdist, k, lambda0)
```

Arguments

		. 11
L	LITTE	variable

survdist survival distribution of uncured patients. It can be "exp" or "weib".

if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

lambda0 the scale parameter of exponential distribution or Weibull distribution for sur-

vival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale

parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

4 f3

f2 Function Two

Description

The second integrate function

Usage

f2(t, accrualtime, followuptime, accrualdist, survdist, k, lambda0)

Arguments

t time variable

accrualtime length of accrual period. followuptime length of follow-up time.

accrualdist accrual pattern. It can be "uniform", "increasing" or "decreasing". survival distribution of uncured patients. It can be "exp" or "weib".

k if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

lambda0 the scale parameter of exponential distribution or Weibull distribution for sur-

vival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale

parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

f3 Function Three

Description

The third integrate function

Usage

f3(t, beta0, gamma0, pi0, survdist, k, lambda0)

f4 5

Arguments

t time variable

beta0 log hazard ratio of uncured patients

gamma0 log odds ratio of cure rates between two arms

pi0 cure rate for the control arm, which is between 0 and 1.

survdist survival distribution of uncured patients. It can be "exp" or "weib".

k if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

lambda0 the scale parameter of exponential distribution or Weibull distribution for sur-

vival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale

parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t>0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

f4 Function Four

Description

The fourth integrate function

Usage

f4(t, accrualtime, followuptime, accrualdist, beta0, gamma0, pi0, survdist,
k, lambda0)

Arguments

t time variable

accrualtime length of accrual period. followuptime length of follow-up time.

accrualdist accrual pattern. It can be "uniform", "increasing" or "decreasing".

beta0 log hazard ratio of uncured patients

gamma0 log odds ratio of cure rates between the two arms
pi0 cure rate for the control arm, which is between 0 and 1.

survdist survival distribution of uncured patients. It can be "exp" or "weib".

k if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

6 H0

lambda0

the scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

HØ

Cumulative hazard function

Description

Cumulative Hazard Function for Exponential and Weibull Distributions

Usage

H0(t, survdist, k, lambda0)

Arguments

t time variable

survdist survival distribution of uncured patients. It can be "exp" or "weib".

k if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

lambda0 the scale parameter of exponential distribution or Weibull distribution for sur-

vival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale

parameter λ_0 is given by

$$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

m 7

m M Function

Description

M integrate function

Usage

```
m(t, beta0, gamma0, pi0, survdist, k, lambda0)
```

Arguments

t time variable

beta0 log hazard ratio of uncured patients

gamma0 log odds ratio of cure rates between two arms

pi0 cure rate for the control arm, which is between 0 and 1.

survdist survival distribution of uncured patients. It can be "exp" or "weib".

k if survdist = "weib", the shape parameter k needs to be specified. By default

k = 1, which refers to the exponential distribution.

lambda0 the scale parameter of exponential distribution or Weibull distribution for sur-

vival times of uncured patients in the control arm.

The density function of Weibull distribution with shape parameter k and scale

parameter λ_0 is given by

$$f(t) = \lambda_0 k (\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t > 0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

NPHMC Title

Description

Title

NPHMC

Usage

```
NPHMC(
  n = NULL,
  power = 0.8,
  alpha = 0.05,
  accrualtime = NULL,
  followuptime = NULL,
  p = 0.5,
  accrualdist = c("uniform", "increasing", "decreasing"),
  hazardratio = NULL,
  oddsratio = NULL,
  pi0 = NULL,
  survdist = c("exp", "weib"),
  k = 1,
  lambda0 = NULL,
  data = NULL
)
```

sample size needed for power calculation

Arguments

n

	1
power	powered needed for sample size calculation
alpha	level of significance of statistical test (default is 0.05)
accrualtime	level of accrual period
followuptime	length of follow up time
p	proportion of subjects in treatment arm (default is 0.5)
accrualdist	accrual pattern (uniform, decreasing, increasing)
hazardratio	hazard ratio of uncured patients between two arms (must be greater than 0)
oddsratio	odds ratio of cured patients between two arms. It must be greater than 0. If it is 0, the model is reduced to standard proportional hazards model.
pi0	cure rate for the control arm (between 0 and 1)
survdist	distribution of uncured patients (exp or weib)
k	shape parameter if survdist = 'weib' (By default, it is 1 referring to exponential distribution)
lambda0	scale parameter of exponential or Weibull distribution for survival times of uncured patients in the control arm.
data	observed or historical data if available

Value

a NPHMC object

S0

Examples

S0

S0 Function

Description

Baseline survival function for mixture cure model

Usage

```
S0(t, pi0, survdist, k, lambda0)
```

Arguments

t	time variable
pi0	cure rate for the control arm, which is between 0 and 1.
survdist	survival distribution of uncured patients. It can be "exp" or "weib".
k	if $survdist = "weib"$, the shape parameter k needs to be specified. By default $k = 1$, which refers to the exponential distribution.
lambda0	scale parameter of exponential distribution or Weibull distribution for survival times of uncured patients in the control arm.
	The density function of Weibull distribution with shape parameter k and scale parameter λ_0 is given by

$$f(t) = \lambda_0 k(\lambda_0 t)^{k-1} \exp(-(\lambda_0 t)^k),$$

for t>0, and the corresponding survival distribution is

$$S(t) = \exp(-(\lambda_0 t)^k).$$

10 Sc

Sc	Sc Function

Description

Survival distribution of censoring times

Usage

```
Sc(t, accrualtime, followuptime, accrualdist)
```

Arguments

t time variable

accrualtime length of accrual period. followuptime length of follow-up time.

accrualdist accrual pattern. It can be "uniform", "increasing" or "decreasing".

Index

```
* datasets
e1684szdata, 2
e1684szdata, 2
f1, 3
f2, 4
f3, 4
f4, 5
H0, 6
m, 7
NPHMC, 7
NPHMC-package, 2
S0, 9
Sc, 10
smcure, 2
```