Ideal F-v motor, Heavy Spring, Rounded Latch @ Constant Force

Parameters:

Motor: F_{max} , d, v_{max}

Spring: $m_{\rm spr}$

Latch: F_l , m_l , v_{10} , R

Projectile: m

Timing: t_l (time of latch releasing), t_{to} (time of projectile taking off)

Non-dimensionalized variables: see pg. 7, supplemental.

Prior to latch release $(t \leq t_l)$

Latch moves in y direction, projectile in x direction (like supplemental). Position of the rounded latch, w/r/t time (assume y(0) = 0) for a constant force:

$$y(t) = v_0 t + \frac{1}{2} \frac{F_{\text{max}}}{m_l} t^2$$

Position of projectile while in contact with latch:

$$x(t) = R\left(1 - \sqrt{1 - \left(\frac{y(t)}{R}\right)^2}\right)$$

Velocity of projectile, in terms of y(t):

$$v(t) = \frac{y(t)y'(t)}{R\sqrt{1 - \left(\frac{y(t)}{R}\right)^2}}$$

Acceleration:

$$a(t) = \frac{1}{R\sqrt{1 - \left(\frac{y(t)}{R}\right)^2}} \left(y'(t)^2 + y(t)y''(t) + \frac{y(t)^2y'(t)^2}{R^2 - y(t)^2}\right)$$

Game-plan: By leaving these equations in terms of y(t), we can declare y(t) as a separate function in Matlab. This hopefully will also allow changing y(t) easily, if needed (e.g. for testing/debugging).

Sanity checking: Plugging in $y(t) = v_0$ in each of these equations yielded identical results to equations 27-29 in supplemental text.

Non-dimensionalizing: Yields exact same equations (with tildas)

Solving for time of latch release t_l

Using the energy argument of section 6 of supplemental,

$$\frac{1}{2}(1-\tilde{x})^2 + \frac{1}{2}\left(\tilde{m} + \frac{\tilde{m}_{spr}}{3}\right)\tilde{v}^2 - \int_0^{\tilde{x}} f_{latch}(x') dx' = constant.$$

$$\to \left(\tilde{m} + \frac{\tilde{m}_{spr}}{3}\right)\tilde{a}(\tilde{t}_l) = 1 - \tilde{x}(\tilde{t}_l)$$

We can substitude the equations for x(t) and a(t) above into this expression, and solve for t_l .

Solving for velocity at takeoff v_{to} :

Based on conservation of energy: $\tilde{U}(\tilde{t_l}) + \tilde{KE}(\tilde{t_l}) = \tilde{KE}(\tilde{v_{to}})$, we get equation 39 in supplemental:

$$\tilde{v}_{\text{to}} = \sqrt{\tilde{v}_l^2 + \frac{1}{\tilde{m} + \frac{\tilde{m}_{\text{spr}}}{3}} (1 - \tilde{x}_l)^2}$$

where \tilde{v}_l and \tilde{x}_l are the equations for $\tilde{v}(\tilde{t})$ and $\tilde{x}(\tilde{t})$ above, evaluated at \tilde{t}_l .

After latch release $t_l < t < t_{to}$:

Equations 61-67 in supplemental.

After takeoff $t > t_{to}$:

$$x(t) = v_{\text{to}}t$$

$$v(t) = v_{\text{to}}$$