

Figure 39.5: The parametric surface $x=u,y=v,z=u^2+v^2.$

the scalar product of grad f(a) and v.

Example 39.5. Consider the quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = x^{\mathsf{T}} A x, \quad x \in \mathbb{R}^n,$$

where A is a real $n \times n$ symmetric matrix. We claim that

$$df_u(h) = 2u^{\top} Ah$$
 for all $u, h \in \mathbb{R}^n$.

Since A is symmetric, we have

$$f(u+h) = (u^{\top} + h^{\top})A(u+h)$$

= $u^{\top}Au + u^{\top}Ah + h^{\top}Au + h^{\top}Ah$
= $u^{\top}Au + 2u^{\top}Ah + h^{\top}Ah$,

so we have

$$f(u+h) - f(u) - 2u^{\mathsf{T}} A h = h^{\mathsf{T}} A h.$$

If we write

$$\epsilon(h) = \frac{h^{\top} A h}{\|h\|}$$

for $h\not\in 0$ where $\|\ \|$ is the 2-norm, by Cauchy–Schwarz we have

$$|\epsilon(h)| \le \frac{\|h\| \|Ah\|}{\|h\|} \le \frac{\|h\|^2 \|A\|}{\|h\|} = \|h\| \|A\|,$$

which shows that $\lim_{h\to 0} \epsilon(h) = 0$. Therefore,

$$df_u(h) = 2u^{\top} A h$$
 for all $u, h \in \mathbb{R}^n$,