第二节 复数的几何表示

- 一、复平面
- 二、复球面

一、复平面

1. 复平面的定义

复数 z = x + iy 与有序实数对 (x,y) 成一一对应. 因此,一个建立了直角坐标系的平面可以用来表示复数,通常把横轴叫实轴或 x 轴,纵轴叫虚轴或 y 轴.这种用来表示复数的平面叫复平面.

复数 z = x + iy 可以用复平面上的点 (x,y) 表示.

2. 复数的模(或绝对值)

复数z = x + iy可以用复平面上的向量 \overline{OP} 表示,向量的长度称为z的模或绝对值,

记为
$$|z|=r=\sqrt{x^2+y^2}$$
.

显然下列各式成立

$$|x| \leq |z|, \qquad |y| \leq |z|,$$

$$|z| \le |x| + |y|, \quad z \cdot \overline{z} = |z|^2 = |z^2|.$$

3. 复数的辐角

在 $z \neq 0$ 的情况下,以正实轴为始边,以表示 z的向量 \overrightarrow{OP} 为终边的角的弧度数 θ 称为z的辐角,记作 $\mathbf{Arg}z = \theta$.

说明: 任何一个复数 $z \neq 0$ 有无穷多个辐角,

如果 θ_1 是其中一个辐角,那么z的全部辐角为

 $Argz = \theta_1 + 2k\pi (k$ 为任意整数).

特殊地, 当z=0时, |z|=0, 辐角不确定, 无意义.

4

页

上页

返回

下页

结束

辐角主值的定义:

在z (\neq 0)的辐角中,把满足 $-\pi$ < θ_0 \leq π 的 θ_0 称为Argz的主值,记作 θ_0 = arg z.

z≠0 辐角的主值

与主値
$$arctan \frac{y}{x}, \qquad x > 0,$$

$$\pm \frac{\pi}{2}, \qquad x = 0, y \neq 0,$$

$$arctan \frac{y}{x} \pm \pi, \quad x < 0, y \neq 0,$$

$$\pi, \qquad x < 0, y = 0.$$

(其中
$$-\frac{\pi}{2}$$
< arctan $\frac{y}{x}$ < $\frac{\pi}{2}$)

6

首页

上页

返回

下页

结束

→ 当z落于第一,四象限时, 不变

→ 当z落于第二象限时, 加 π

→ 当z落于第三象限时, 减 π

4. 利用平行四边形法求复数的和差

首页

二页

两个复数的加减法运算与相应的向量的 加减法运算一致.

返回

结束

下页

5. 复数和差的模的性质

因为 $|z_1-z_2|$ 表示点 z_1 和 z_2 之间的距离,故

$$(1) |z_1 + z_2| \le |z_1| + |z_2|;$$

$$(2) |z_1 - z_2| \ge ||z_1| - |z_2||.$$

一对共轭复数z和 \bar{z} 在 复平面内的位置是关于 实轴对称的.

6. 复数的三角表示和指数表示

利用直角坐标与极坐标的关系
$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \end{cases}$$

复数可以表示成 $z = r(\cos\theta + i\sin\theta)$ 复数的三角表示式

再利用欧拉公式
$$e^{i\theta} = \cos\theta + i\sin\theta$$
, 证明?

复数可以表示成 $z = re^{i\theta}$

复数的指数表示式

例1 将下列复数化为三角表示式与指数表示式:

(1)
$$z = -\sqrt{12} - 2i;$$
 (2) $z = \sin \frac{\pi}{5} + i \cos \frac{\pi}{5};$

解
$$(1) r = |z| = \sqrt{12+4} = 4$$
, 因为z在第三象限,

所以
$$\theta = \arctan\left(\frac{-2}{-\sqrt{12}}\right) - \pi = \arctan\frac{\sqrt{3}}{3} - \pi = -\frac{5}{6}\pi$$
,

故三角表示式为
$$z = 4 \left[\cos \left(-\frac{5}{6}\pi \right) + i \sin \left(-\frac{5}{6}\pi \right) \right],$$

指数表示式为 $z=4e^{-\frac{5}{6}\pi i}$.

$$(2) z = \sin\frac{\pi}{5} + i\cos\frac{\pi}{5}$$

$$\sin\frac{\pi}{5} = \cos\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos\frac{3\pi}{10},$$

$$\cos\frac{\pi}{5} = \sin\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \sin\frac{3\pi}{10},$$
故三角表示式为 $z = \cos\frac{3\pi}{10} + i\sin\frac{3\pi}{10},$
指数表示式为 $z = e^{\frac{3}{10}\pi i}.$

例2 把复数 $z = 1 - \cos \alpha + i \sin \alpha$, $0 \le \alpha \le \pi$ 化为三角表示式与指数表示式,并求 z 的辐角的主值.

解
$$z = 1 - \cos \alpha + i \sin \alpha = 2 \left(\sin \frac{\alpha}{2} \right)^2 + 2i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$$

$$= 2\sin \frac{\alpha}{2} \left(\sin \frac{\alpha}{2} + i \cos \frac{\alpha}{2} \right)$$

$$= 2\sin \frac{\alpha}{2} \left(\cos \frac{\pi - \alpha}{2} + i \sin \frac{\pi - \alpha}{2} \right) \quad (三角式)$$

$$= 2\sin \frac{\alpha}{2} e^{\frac{\pi - \alpha}{2}i}. \quad (指数式) \quad \arg z = \frac{\pi - \alpha}{2}.$$

13

首页

上页

返回

下页

吉束

例3 求下列方程所表示的曲线:

(1)
$$|z+i|=2;$$
 (2) $|z-2i|=|z+2|;$

(3) $\text{Im}(i + \bar{z}) = 4$.

 \mathbf{m} (1) 方程 |z+i|=2 表示所有与点 -i 距离 为2的点的轨迹.

即表示中心为-i,半径为2的圆.

设
$$z = x + iy$$
, $|x + (y + 1)i| = 2$,

$$\sqrt{x^2 + (y+1)^2} = 2$$
, 圆方程 $x^2 + (y+1)^2 = 4$.

14

首页

上页

返回

下页

结束

$$(2) |z - 2i| = |z + 2|$$

表示所有与点 2i 和-2距离相等的点的轨迹.

故方程表示的曲线就是连接点 2i 和 - 2 的线

段的垂直平分线. 设z = x + iy,

$$|x + yi - 2i| = |x + yi + 2|$$
, 化简后得 $y = -x$.

$$(3) \operatorname{Im}(i+\overline{z}) = 4 \qquad \quad$$
设 $z = x + iy$,

$$i + \bar{z} = x + (1 - y)i$$
, $Im(i + \bar{z}) = 1 - y = 4$,

所求曲线方程为 y = -3.

二、复球面

1. 南极、北极的定义

取一个与复平面切于原 点 z = 0 的球面,球面上一点 S 与原点重合,通过 S 作垂直于复平面的直线与球面相交于另一点 N,我们称 N 为北极,S 为南极.

2. 复球面的定义

球面上的点,除去北极 N 外,与复平面内的点之间存在着一一对应的关系.我们可以用球面上的点来表示复数.

我们规定: 复数中有一个唯一的"无穷大"与复平面上的无穷远点相对应, 记作 ∞ . 因而球面上的北极 N 就是复数无穷大 ∞ 的几何表示.

球面上的每一个点都有唯一的复数与之对应,这样的球面称为复球面. N

上页 返回 下页 结束

3. 扩充复平面的定义

- 包括无穷远点在内的复平面称为扩充复平面.
- 不包括无穷远点在内的复平面称为有限复平面,或简称复平面.
- 对于复数 ∞来说, 实部, 虚部, 辐角等概念均 无意义, 它的模规定为正无穷大.

复球面的优越处:

● 能将扩充复平面的无穷远点明显地表示出来.

关于∞的四则运算规定如下:

(1) 加法:
$$\alpha + \infty = \infty + \alpha = \infty$$
, $(\alpha \neq \infty)$

(2) 减法:
$$\alpha - \infty = \infty - \alpha = \infty$$
, $(\alpha \neq \infty)$

$$(3)$$
 乘法: $\alpha \cdot \infty = \infty \cdot \alpha = \infty$, $(\alpha \neq 0)$

(4) 除法:
$$\frac{\alpha}{\infty} = 0$$
, $\frac{\infty}{\alpha} = \infty$, $(\alpha \neq \infty)$, $\frac{\alpha}{0} = \infty$, $(\alpha \neq 0)$