Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

HARSHITA MANGAL

Paired and Unpaired Image to Image Translation

▶ Paired Training data- y_i
corresponding to each x_i is given
▶ Unpaired data- No information
provided as to which x_i
corresponds to which y_i

Why do we need Cyclic loss?

Dataset

Object Transfiguration:

- ➤ Subset of ImageNet is used.
- Two pairs of classes- horse and zebra, orange and apple
- Around 1000 images

Style Transfer:

Experiments conducted on 3 styles-

The Ukiyo-e, The style of Claude Monet and Vincent Van Vangogh

Season Transfer:

>854 winter photos and 1273 summer photos of Yosemite

Training images- Train A-14 (left), Train B 37(right)

Training Details

$$L(G, F, D_x, D_y) = L_{GAN}(G, D_y, X, Y) + L_{GAN}(F, D_x, X, Y) + \lambda L_{cyc}(G, F)$$

- \triangleright Control parameter $\lambda = 10$
- ➤ We are using Adam Solver with Batch size=1
- ➤ No. of Epochs=200
 - First 100 Epochs- Learning rate=0.0002
 - Next 100 Epochs- Learning rate decays linearly

Experimental Results

 $horse \rightarrow zebra$ $zebra \rightarrow horse$

Experimental Results

Experimental Results

winter \rightarrow summer

Automatic Labelling for Imaging Plane Estimation

Statistical shape and Appearance model

- Procrustes Analysis- Align shapes
- PCA to find mean shape
- Deform mean shape