Lab (2) Securing Wireless LANs

Instructor: Prof. Phone Lin (林風)

Teacher Assistants: Chia-Peng Lee(李家朋)

Date: 2019/3/20

Outline

- ☐ Introduction to Wireless Network
- Securing wireless LANs
 - Authentication, Authorization and Accounting

Characteristics of selected wireless link standards

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize
 themselves into a
 network: route among
 themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Outline

- Introduction to Wireless Network
- Securing wireless LANs
 - Authentication, Authorization and Accounting

WEP Design Goals

Symmetric key crypto

- Confidentiality
- Station authorization
- Data integrity

Self synchronizing: each packet separately encrypted

- Given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost
- Unlike Cipher Block Chaining (CBC) in block ciphers

Efficient

Can be implemented in hardware or software

Review: Symmetric Stream Ciphers

- © Combine each byte of keystream with byte of plaintext to get ciphertext
- m(i) = ith unit of message
- ks(i) = ith unit of keystream
- c(i) = ith unit of ciphertext
- $m(i) = ks(i) \oplus c(i)$
- **WEP uses RC4**

Stream cipher and packet independence

- Recall design goal: each packet separately encrypted
- ☐ If for frame n+1, use keystream from where we left off for frame n, then each frame is not separately encrypted
 - Need to know where we left off for packet n
- **™ WEP approach: initialize keystream with key + new IV for each packet:**

WEP encryption (1)

- Sender calculates Integrity Check Value (ICV) over data
 - four-byte hash/CRC for data integrity
- **□** Each side has 104-bit shared key
- Sender creates 24-bit initialization vector (IV), appends to key: gives 128-bit key
- Sender also appends keyID (in 8-bit field)
- 23 128-bit key inputted into pseudo random number generator to get keystream
- **□** data in frame + ICV is encrypted with RC4:
 - Bytes of keystream are XORed with bytes of data & ICV
 - IV & keyID are appended to encrypted data to create payload
 - Payload inserted into 802.11 frame

WEP encryption (2)

New IV for each frame

WEP decryption overview

- Receiver extracts IV
- Inputs IV and shared secret key into pseudo random generator, gets keystream
- **SORs** keystream with encrypted data to decrypt data + ICV
- **Verifies integrity of data with ICV**
 - Note that message integrity approach used here is different from the MAC (message authentication code) and signatures (using PKI).

End-point authentication w/ nonce

Nonce: number (R) used only once –in-a-lifetime

<u>How:</u> to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

WEP Authentication

Not all APs do it, even if WEP is being used. AP indicates if authentication is necessary in beacon frame. Done before association.

Breaking 802.11 WEP encryption

security hole:

- 24-bit IV, one IV per frame, -> IV's eventually reused
- IV transmitted in plaintext -> IV reuse detected
- attack:
 - Trudy causes Alice to encrypt known plaintext d₁ d₂ d₃
 d₄ ...
 - Trudy sees: $c_i = d_i XOR k_i^{IV}$
 - Trudy knows c_i d_i, so can compute k_i^{IV}
 - Trudy knows encrypting key sequence $k_1^{IV} k_2^{IV} k_3^{IV} \dots$
 - Next time IV is used, Trudy can decrypt!

What is AAA?

- Authentication is essentially a login procedure involving a username and password: the process by which the network validates a dial-in user's identity distinguishing a legitimate user from a malicious or mischievous hacker.
- Authorization is the process of restricting and enabling what each user can do.
- Accounting is the process of collecting and reporting statistics.

Outline

- Introduction to Wireless Network
- Securing wireless LANs
 - Authentication, Authorization and Accounting

- Remote Authentication Dial-In User Service (RADIUS) is a data-communications protocol designed to provide security management and statistics collection in remote computing environments, especially for distributed networks with dial-in users.
- A central database, the RADIUS Server, maintains network security data (such as user profiles) and statistics (such as bytes transmitted and received).
- © Centrally stored security data is more secure, easier to manage, and scales more smoothly than data scattered throughout the network on multiple devices.

BADIUS Client/Server Architecture

- RADIUS operates on the client/server model. A RADIUS Authentication Server provides security services and stores security data.
- A RADIUS Accounting Server collects and stores statistical data.
- Most often a single machine provides both functions, however the two RADIUS servers may reside on separate machines. Network managers may configure a RADIUS Client to use RADIUS security services, RADIUS accounting services, or both.

- A RADIUS client consists of a Network Access Server (NAS) which provides one or more remote users with access to network resources.
- A single RADIUS Server can serve hundreds of RADIUS clients and up to tens of thousand of end users.
- Fault tolerance and redundancy concerns can be addressed by configuring a RADIUS client to use one or more alternate RADIUS servers.
- A NAS can access a local RADIUS Server on the connected LAN, or a remote RADIUS Server via WAN connections.

RADIUS Authentication Procedure

NETWORKING

Lab, NTUZ

RADIUS Authentication Procedure

- 1. User dials into the NAS and establishes a connection.
- 2. The NAS prompts for user ID, password and challenge (CHAP).
- 3. User responds with user ID, password and challenge response (CHAP).
- 4. NAS forwards an Authentication Request Packet to the RADIUS Server, containing user identification, encrypted password, and NAS identification.

RADIUS Authentication Procedure

- 5. RADIUS Server validates the user and sends the NAS an Authentication Acknowledgement packet containing user configuration and either
 - a) Specifying what network services and privileges the NAS should provide to the user (Access-accept), or
 - b) Denying the Authentication Request (Access-reject).
- 6. NAS forwards the Authentication Acknowledgement packet to user.

Challenge-Handshake Authentication Protocol (CHAP)

- Used for authenticating dial-in users over a PPP(Point-to-Point Protocol) link.
- Based on the use of shared secrets
- Avoids sending passwords over a network
- The knowledge of the password is proved indirectly, using a one-way hash function
- RFC 1994 defines the packet format for CHAP message sent encapsulated in PPP frames

The CHAP 3-way handshake

CHAP Security

- The 128-bit MD5 algorithm is the default hash function used CHAP.
 - Without knowing the shared secret, it its practically impossible to create a valid response to given challenge.
 - Password guessing is still possible.
- The use of a random challenge eliminates the possibility for a replay attack.
 - The CHAP handshake procedure may be periodically repeated to limit the time of exposure to any single attack.

