

- additive models
- multilevel models
- models with functional covariates

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

canonical

(linear)

Pearson

Unified methodology for

- additive models
- multilevel models
- models with functional covariates

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- EM algorithm
- MCMC (Gibbs/HMC)

Pearson

Unified methodology for

- additive models
- multilevel models
- models with functional covariates

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- EM algorithm
- MCMC (Gibbs/HMC)

Bayesian Variable Selection

(using I-priors in the canonical RKHS)

Good performance in cases with multicollinearity

- additive models
- multilevel models
- models with functional covariates

FBM (linear) RKHS Pearson

Bayesian Variable Selection

(using I-priors in the canonical RKHS)

Good performance in cases with multicollinearity

<u>Advantages</u>

- Minimal assumptions
- Straightforward inference
- Performance competetive

R/iprior

Estimation:

- Direct maximisation
- EM algorithm
- MCMC (Gibbs/HMC)

Binary probit models with I-priors

Extension to binary responses Estimation using variational inference

