Computation with twisted conjugacy classes

2.4.0

23 November 2024

Sam Tertooy

Sam Tertooy

Email: sam.tertooy@kuleuven.be

Homepage: https://stertooy.github.io/

Address: Wiskunde

KU Leuven Kulak Kortrijk Campus

Etienne Sabbelaan 53 8500 Kortrijk Belgium

Abstract

The TWISTEDCONJUGACY package provides methods to calculate Reidemeister classes, numbers, spectra and zeta functions, as well as other methods related to homomorphisms, endomorphisms and automorphisms of groups. These methods are, for the most part, designed to be used with finite groups and polycyclically presented groups.

Copyright

© 2020-2024 Sam Tertooy

The TWISTEDCONJUGACY package is free software, it may be redistributed and/or modified under the terms and conditions of the GNU Public License Version 2 or (at your option) any later version.

Acknowledgements

This documentation was created using the GAPDOC and AUTODOC packages.

Contents

1	Pref	ace	4
2	Twisted Conjugacy		5
	2.1	Twisted Conjugation Action	5
	2.2	Reidemeister Classes	6
	2.3	Reidemeister Spectra	8
	2.4	Reidemeister Zeta Functions	9
3	Multiple Twisted Conjugacy Problem		
	3.1	The Multiple Twisted Conjugacy Problem	11
4	Homomorphisms		
	4.1	Representatives of homomorphisms between groups	13
	4.2	Coincidence and Fixed Point Groups	14
	4.3	Induced and restricted group homomorphisms	14
5	Cosets		
	5.1	Intersection of cosets in PcpGroups	16
	5.2	Membership in double cosets in PcpGroups	16
References		17	
Index			18

Preface

Let G,H be groups and $\varphi,\psi\colon H\to G$ group homomorphisms. Then the pair (φ,ψ) induces a (right) group action on G given by

$$G \times H \to G \colon (g,h) \mapsto g \cdot h = \psi(h)^{-1} g \varphi(h).$$

This group action is called (φ, ψ) -twisted conjugation, and induces an equivalence relation $\sim_{\varphi, \psi}$ on G:

$$g_1 \sim_{\varphi,\psi} g_2 \iff \exists h \in H : g_1 \cdot h = g_2.$$

The equivalence classes (i.e. the orbits of the action) are called *Reidemeister classes* and the number of Reidemeister classes is called the *Reidemeister number* $R(\varphi, \psi)$ of the pair (φ, ψ) . The stabiliser of the identity 1_G for this action is the *coincidence group* $Coin(\varphi, \psi)$, i.e. the subgroup of H given by

$$Coin(\varphi, \psi) := \{ h \in H \mid \varphi(h) = \psi(h) \}.$$

The TWISTEDCONJUGACY package provides methods to calculate Reidemeister classes, Reidemeister numbers and coincidence groups of pairs of group homomorphisms. These methods are implemented for finite groups and polycyclically presented groups. If H and G are both infinite polycyclically presented groups, then some methods in this package are only guaranteed to produce a result if either G = H or G is nilpotent-by-finite. Otherwise, these methods may potentially throw an error: "Error, no method found!"

Bugs in this package, in GAP or any other package used directly or indirectly, may cause functions from this package to produce errors or even wrong results. You can set the variable ASSERT@TwistedConjugacy to true, which will cause certain functions to verify the correctness of their output. This should make results more (but not completely!) reliable, at the cost of some performance.

When using this package with PcpGroups, you can do the same for POLYCYCLIC's variables CHECK_CENT@Polycyclic, CHECK_IGS@Polycyclic and CHECK_INTSTAB@Polycyclic.

Twisted Conjugacy

2.1 Twisted Conjugation Action

Let G, H be groups and $\varphi, \psi \colon H \to G$ group homomorphisms. Then the pair (φ, ψ) induces a (right) group action on G given by

$$G \times H \to G \colon (g,h) \mapsto g \cdot h := \psi(h)^{-1} g \varphi(h).$$

This group action is called (φ, ψ) -twisted conjugation, and induces an equivalence relation on the group G. We say that $g_1, g_2 \in G$ are (φ, ψ) -twisted conjugate, denoted by $g_1 \sim_{\varphi, \psi} g_2$, if and only if there exists some element $h \in H$ such that $g_1 \cdot h = g_2$, or equivalently $g_1 = \psi(h)g_2\varphi(h)^{-1}$.

If $\varphi \colon G \to G$ is an endomorphism of a group G, then by φ -twisted conjugacy we mean (φ, id_G) -twisted conjugacy. Most functions in this package will allow you to input a single endomorphism instead of a pair of homomorphisms. The "missing" endomorphism will automatically be assumed to be the identity mapping. Similarly, if a single group element is given instead of two, the second will be assumed to be the identity.

2.1.1 TwistedConjugation

Implements the twisted conjugation (right) group action induced by the pair of homomorphisms (hom1, hom2) as a function.

2.1.2 RepresentativeTwistedConjugation

Tests whether the elements g1 and g2 are twisted conjugate under the twisted conjugacy action of the pair of homomorphisms (hom1, hom2).

This function relies on the output of RepresentativeTwistedConjugation. Computes an element that maps g1 to g2 under the twisted conjugacy action of the pair of homomorphisms (hom1, hom2) or returns fail if no such element exists.

If G is abelian, this function relies on (a generalisation of) [DT21, Alg. 4]. If H is finite, it relies on a stabiliser-orbit algorithm. Otherwise, it relies on a mixture of the algorithms described in [Rom16, Thm. 3], [BKL⁺20, Sec. 5.4], [Rom21, Sec. 7] and [DT21, Alg. 6].

2.2 Reidemeister Classes

The equivalence classes of the equivalence relation $\sim_{\varphi,\psi}$ are called the *Reidemeister classes of* (φ,ψ) or the (φ,ψ) -twisted conjugacy classes. We denote the Reidemeister class of $g\in G$ by $[g]_{\varphi,\psi}$. The number of Reidemeister classes is called the Reidemeister number $R(\varphi,\psi)$ and is always a positive integer or infinity.

2.2.1 ReidemeisterClass

```
▷ ReidemeisterClass(hom1[, hom2], g)

▷ TwistedConjugacyClass(hom1[, hom2], g)

(function)

(function)
```

If hom1 and hom2 are group homomorphisms from a group H to a group G, this method creates the Reidemeister class of the pair (hom1, hom2) with representative g. The following attributes and operations are available:

- Representative, which returns g,
- GroupHomomorphismsOfReidemeisterClass, which returns the list [hom1, hom2],
- ActingDomain, which returns the group H,
- FunctionAction, which returns the twisted conjugacy action on G,
- Random, which returns a random element belonging to the Reidemeister class,
- \in, which can be used to test if an element belongs to the Reidemeister class,
- List, which lists all elements in the Reidemeister class if there are finitely many, otherwise returns fail,
- Size, which gives the number of elements in the Reidemeister class,
- StabiliserOfExternalSet, which gives the stabiliser of the Reidemeister class under the twisted conjugacy action.

2.2.2 ReidemeisterClasses

Returns a list containing the Reidemeister classes of (hom1, hom2) if the Reidemeister number R(hom1, hom2) is finite, or returns fail otherwise. It is guaranteed that the Reidemeister class of the identity is in the first position.

If G is abelian, this function relies on (a generalisation of) [DT21, Alg. 5]. If G and H are finite and G is not abelian, it relies on an orbit-stabiliser algorithm. Otherwise, it relies on (variants of) [DT21, Alg. 7].

This function is only guaranteed to produce a result if either G = H or G is nilpotent-by-finite.

2.2.3 RepresentativesReidemeisterClasses

```
▷ RepresentativesReidemeisterClasses(hom1[, hom2]) (function)
▷ RepresentativesTwistedConjugacyClasses(hom1[, hom2]) (function)
```

Returns a list containing representatives of the Reidemeister classes of (hom1, hom2) if the Reidemeister number R(hom1, hom2) is finite, or returns fail otherwise. It is guaranteed that the identity is in the first position.

The same remarks as for ReidemeisterClasses are valid here.

2.2.4 ReidemeisterNumber

```
▷ ReidemeisterNumber(hom1[, hom2])

▷ NrTwistedConjugacyClasses(hom1[, hom2])

(function)

(function)
```

Returns the Reidemeister number of (hom1, hom2), i.e. the number of Reidemeister classes.

If G is abelian, this function relies on (a generalisation of) [Jia83, Thm. 2.5]. If G = H, G is finite non-abelian and $\psi = \mathrm{id}_G$, it relies on [FH94, Thm. 5]. Otherwise, it uses the output of ReidemeisterClasses.

This function is only guaranteed to produce a result if either G = H or G is nilpotent-by-finite.

```
_{-} Example
gap> tcc := ReidemeisterClass( phi, psi, g1 );
(4,6,5)^G
gap> Representative( tcc );
(4,6,5)
gap> GroupHomomorphismsOfReidemeisterClass( tcc );
[[(1,2)(3,5,4), (2,3)(4,5)] \rightarrow [(1,2)(3,4), ()],
[(1,2)(3,5,4), (2,3)(4,5)] \rightarrow [(1,4)(3,6), ()]
gap> ActingDomain( tcc ) = H;
true
gap> FunctionAction( tcc )( g1, h );
(1,6,4,2)(3,5)
gap> Random( tcc ) in tcc;
true
gap> List( tcc );
[ (4,6,5), (1,6,4,2)(3,5) ]
```

```
gap> Size( tcc );
2
gap> StabiliserOfExternalSet( tcc );
Group([ (1,2,3,4,5), (1,3,4,5,2) ])
gap> ReidemeisterClasses( phi, psi ){[1..7]};
[ ()^G, (4,5,6)^G, (4,6,5)^G, (3,4)(5,6)^G, (3,4,5)^G, (3,4,6)^G, (3,5,4)^G ]
gap> RepresentativesReidemeisterClasses( phi, psi ){[1..7]};
[ (), (4,5,6), (4,6,5), (3,4)(5,6), (3,4,5), (3,4,6), (3,5,4) ]
gap> NrTwistedConjugacyClasses( phi, psi );
184
```

2.3 Reidemeister Spectra

The set of all Reidemeister numbers of automorphisms is called the *Reidemeister spectrum* and is denoted by $\operatorname{Spec}_R(G)$, i.e.

$$\operatorname{Spec}_R(G) := \{ R(\varphi) \mid \varphi \in \operatorname{Aut}(G) \}.$$

The set of all Reidemeister numbers of endomorphisms is called the *extended Reidemeister spectrum* and is denoted by $ESpec_R(G)$, i.e.

$$\operatorname{ESpec}_R(G) := \{ R(\varphi) \mid \varphi \in \operatorname{End}(G) \}.$$

The set of all Reidemeister numbers of pairs of homomorphisms from a group H to a group G is called the *coincidence Reidemeister spectrum* of H and G and is denoted by $\operatorname{CSpec}_R(H,G)$, i.e.

$$\operatorname{CSpec}_R(H,G) := \{ R(\varphi, \psi) \mid \varphi, \psi \in \operatorname{Hom}(H,G) \}.$$

If H = G this is also denoted by $\operatorname{CSpec}_R(G)$. The set of all Reidemeister numbers of pairs of homomorphisms from every group H to a group G is called the *total Reidemeister spectrum* and is denoted by $\operatorname{TSpec}_R(G)$, i.e.

$$\mathsf{TSpec}_R(G) := \bigcup_H \mathsf{CSpec}_R(H,G).$$

Please note that the functions below are only implemented for finite groups.

2.3.1 ReidemeisterSpectrum

ightharpoonup ReidemeisterSpectrum(G)

(function)

Returns the Reidemeister spectrum of G.

If G is abelian, this function relies on the results from [Sen23].

2.3.2 ExtendedReidemeisterSpectrum

(function)

Returns the extended Reidemeister spectrum of G.

2.3.3 CoincidenceReidemeisterSpectrum

▷ CoincidenceReidemeisterSpectrum([H,]G)

(function)

Returns the coincidence Reidemeister spectrum of H and G.

2.3.4 TotalReidemeisterSpectrum

▷ TotalReidemeisterSpectrum(G)

(function)

Returns the total Reidemeister spectrum of G.

```
gap> Q := QuaternionGroup( 8 );;
gap> D := DihedralGroup( 8 );;
gap> ReidemeisterSpectrum( Q );
[ 2, 3, 5 ]
gap> ExtendedReidemeisterSpectrum( Q );
[ 1, 2, 3, 5 ]
gap> CoincidenceReidemeisterSpectrum( Q );
[ 1, 2, 3, 4, 5, 8 ]
gap> CoincidenceReidemeisterSpectrum( D, Q );
[ 4, 8 ]
gap> CoincidenceReidemeisterSpectrum( Q, D );
[ 2, 3, 4, 6, 8 ]
gap> TotalReidemeisterSpectrum( Q );
[ 1, 2, 3, 4, 5, 6, 8 ]
```

2.4 Reidemeister Zeta Functions

Let $\varphi, \psi \colon G \to G$ be endomorphisms such that $R(\varphi^n, \psi^n) < \infty$ for all $n \in \mathbb{N}$. Then the *Reidemeister zeta function* $Z_{\varphi, \psi}(s)$ of the pair (φ, ψ) is defined as

$$Z_{\varphi,\psi}(s) := \exp \sum_{n=1}^{\infty} \frac{R(\varphi^n, \psi^n)}{n} s^n.$$

Please note that the functions below are only implemented for endomorphisms of finite groups.

2.4.1 ReidemeisterZetaCoefficients

▷ ReidemeisterZetaCoefficients(endo1[, endo2])

(function)

For a finite group, the sequence of Reidemeister numbers of the iterates of endo1 and endo2, i.e. the sequence R(endo1, endo2), $R(\text{endo1}^2, \text{endo2}^2)$, ..., is eventually periodic, i.e. there exist a periodic sequence $(P_n)_{n\in\mathbb{N}}$ and an eventually zero sequence $(Q_n)_{n\in\mathbb{N}}$ such that

$$\forall n \in \mathbb{N} : R(\varphi^n, \psi^n) = P_n + Q_n.$$

This function returns a list containing two sublists: the first sublist contains one period of the sequence $(P_n)_{n\in\mathbb{N}}$, the second sublist contains $(Q_n)_{n\in\mathbb{N}}$ up to the part where it becomes the constant zero sequence.

2.4.2 IsRationalReidemeisterZeta

```
▷ IsRationalReidemeisterZeta(endo1[, endo2]) (function)
```

Returns true if the Reidemeister zeta function of endo1 and endo2 is rational, and false otherwise.

2.4.3 ReidemeisterZeta

```
    ReidemeisterZeta(endo1[, endo2])

(function)
```

Returns the Reidemeister zeta function of endo1 and endo2 if it is rational, and fail otherwise.

2.4.4 PrintReidemeisterZeta

Returns a string describing the Reidemeister zeta function of endo1 and endo2. This is often more readable than evaluating ReidemeisterZeta in an indeterminate, and does not require rationality.

```
gap> khi := GroupHomomorphismByImages( G, G, [ (1,2,3,4,5), (4,5,6) ],
> [ (1,2,6,3,5), (1,4,5) ] );;
gap> ReidemeisterZetaCoefficients( khi );
[ [ 7 ], [ ] ]
gap> IsRationalReidemeisterZeta( khi );
true
gap> ReidemeisterZeta( khi );
function( s ) ... end
gap> s := Indeterminate( Rationals, "s" );;
gap> ReidemeisterZeta( khi )(s);
(1)/(-s^7+7*s^6-21*s^5+35*s^4-35*s^3+21*s^2-7*s+1)
gap> PrintReidemeisterZeta( khi );
"(1-s)^(-7)"
```

Multiple Twisted Conjugacy Problem

3.1 The Multiple Twisted Conjugacy Problem

Let H and G_1, \ldots, G_n be groups. For each $i \in \{1, \ldots, n\}$, let $g_i, g_i' \in G_i$ and let $\varphi_i, \psi_i \colon H \to G_i$ be group homomorphisms. The multiple twisted conjugacy problem is the problem of finding some $h \in H$ such that $g_i = \psi_i(h)g_i'\varphi_i(h)^{-1}$ for all $i \in \{1, \ldots, n\}$.

3.1.1 IsTwistedConjugateMultiple

```
▷ IsTwistedConjugateMultiple(hom1List[, hom2List], g1List[, g2List]) (function)
```

Verifies whether the multiple twisted conjugacy problem for the given homomorphisms and elements has a solution.

3.1.2 RepresentativeTwistedConjugationMultiple

```
\label{lem:list_norm} $$ $$ $$ $$ RepresentativeTwistedConjugationMultiple(hom1List[, hom2List], g1List[, g2List]) $$ $$ $$ (function) $$
```

Computes a solution to the multiple twisted conjugacy problem for the given homomorphisms and elements, or returns fail if no solution exists.

```
> [ (1,5)(4,6), (1,4)(3,5) ], [ (1,4,5,3,6), (2,4,5,6,3) ] );
(1,2)
```

Homomorphisms

4.1 Representatives of homomorphisms between groups

Please note that the functions below are only implemented for finite groups.

4.1.1 Representatives Automorphism Classes

Let G be a group. This command returns a list of the automorphisms of G up to composition with inner automorphisms.

(function)

4.1.2 RepresentativesEndomorphismClasses

```
\triangleright RepresentativesEndomorphismClasses(G) (function)
```

Let G be a group. This command returns a list of the endomorphisms of G up to composition with inner automorphisms. This does the same as calling AllHomomorphismClasses(G, G), but should be faster for abelian and non-2-generated groups. For 2-generated groups, this function takes its source code from AllHomomorphismClasses.

4.1.3 RepresentativesHomomorphismClasses

```
\triangleright RepresentativesHomomorphismClasses(H, G) (function)
```

Let G and H be groups. This command returns a list of the homomorphisms from H to G, up to composition with inner automorphisms of G. This does the same as calling AllHomomorphismClasses (H,G), but should be faster for abelian and non-2-generated groups. For 2-generated groups, this function takes its source code from AllHomomorphismClasses.

```
gap> G := SymmetricGroup( 6 );;
gap> Auts := RepresentativesAutomorphismClasses( G );;
gap> Size( Auts );
2
gap> ForAll( Auts, IsGroupHomomorphism and IsEndoMapping and IsBijective );
true
```

```
gap> Ends := RepresentativesEndomorphismClasses( G );;
gap> Size( Ends );
6
gap> ForAll( Ends, IsGroupHomomorphism and IsEndoMapping );
true
gap> H := SymmetricGroup( 5 );;
gap> Homs := RepresentativesHomomorphismClasses( H, G );;
gap> Size( Homs );
6
gap> ForAll( Homs, IsGroupHomomorphism );
true
```

4.2 Coincidence and Fixed Point Groups

4.2.1 FixedPointGroup

```
    FixedPointGroup(endo)
```

(function)

Let *endo* be an endomorphism of a group G. This command returns the subgroup of G consisting of the elements fixed under the endomorphism *endo*.

This function does the same as $CoincidenceGroup(endo,id_G)$.

4.2.2 CoincidenceGroup

```
▷ CoincidenceGroup(hom1, hom2[, ...])

(function)
```

Let hom1, hom2, ... be group homomorphisms from a group H to a group G. This command returns the subgroup of H consisting of the elements h for which $h^hom1 = h^hom2 = ...$

For infinite non-abelian groups, this function relies on a mixture of the algorithms described in [Rom16, Thm. 2], [BKL+20, Sec. 5.4] and [Rom21, Sec. 7].

4.3 Induced and restricted group homomorphisms

4.3.1 InducedHomomorphism

```
▷ InducedHomomorphism(epi1, epi2, hom)
```

Let hom be a group homomorphism from a group H to a group G, let epi1 be an epimorphism from H to a group Q and let epi2 be an epimorphism from G to a group P such that the kernel of epi1 is mapped into the kernel of epi2 by hom. This command returns the homomorphism from Q to P induced by hom via epi1 and epi2, that is, the homomorphism from Q to P which maps h^epi1 to (h^hom)^epi2, for any element h of H. This generalises InducedAutomorphism to homomorphisms.

4.3.2 RestrictedHomomorphism

```
▷ RestrictedHomomorphism(hom, N, M)
```

(function)

Let hom be a group homomorphism from a group H to a group G, and let N be subgroup of H such that its image under hom is a subgroup of M. This command returns the homomorphism from N to M induced by hom. This is similar to RestrictedMapping, but the range is explicitly set to M.

Cosets

Please note that the functions below are implemented only for PcpGroups.

5.1 Intersection of cosets in PcpGroups

5.1.1 Intersection

```
ightharpoonup Intersection(C1, C2, ...) (function)

ightharpoonup Intersection2(C1, C2) (operation)
```

Here, C1, C2, ... must be (right) cosets, or list must be a list of (right) cosets.

```
gap> G := ExamplesOfSomePcpGroups(5);;
gap> H := Subgroup(G, [G.1*G.2^-1*G.3^-1*G.4^-1, G.2^-1*G.3*G.4^-2]);;
gap> K := Subgroup(G, [G.1*G.3^-2*G.4^2, G.1*G.4^4]);;
gap> x := G.1*G.3^-1;;
gap> y := G.1*G.2^-1*G.3^-2*G.4^-1;;
gap> Hx := RightCoset(H, x);;
gap> Ky := RightCoset(K, y);
gap> Intersection(Hx, Ky);
RightCoset(<group with 2 generators>,<object>)
```

5.2 Membership in double cosets in PcpGroups

5.2.1 \in (for IsPcpElement, IsDoubleCoset)

```
\triangleright \setminus in(g, D) (operation)
```

Here g is an element of a polycyclic group and D is a double coset in the same group.

```
gap> HxK := DoubleCoset( H, x, K );;
gap> G.1 in HxK;
false
gap> G.2 in HxK;
true
```

References

- [BKL⁺20] F. Bassino, I. Kapovich, M. Lohrey, A. Miasnikov, C. Nicaud, A. Nikolaev, I. Rivin, V. Shpilrain, A. Ushakov, and P. Weil. *Complexity and Randomness in Group Theory*. De Gruyter, 2020. 5, 14
- [DT21] K. Dekimpe and S. Tertooy. Algorithms for twisted conjugacy classes of polycyclic-by-finite groups. *Topology Appl.*, 293:107565, 2021. 5, 7
- [FH94] A. Fel'shtyn and R. Hill. The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion. *K-Theory*, 8(4):367–393, 1994. 7
- [Jia83] B. Jiang. Lectures on Nielsen fixed point theory, volume 14 of Contemp. Math. Amer. Math. Soc., 1983. 7
- [Rom16] V. Roman'kov. On solvability of equations with endomorphisms in nilpotent groups. *Sib. Elektron. Mat. Izv.*, 13:716–725, 2016. 5, 14
- [Rom21] V. Roman'kov. Algorithmic theory of solvable groups. *Prikl. Diskretn. Mat.*, 52:16–64, 2021. 5, 14
- [Sen23] P. Senden. The Reidemeister spectrum of finite abelian groups. *Proc. Edinburgh Math. Soc.*, 66(4):940–959, 2023. 8

Index

```
\in
   for IsPcpElement, IsDoubleCoset, 16
CoincidenceGroup, 14
CoincidenceReidemeisterSpectrum, 9
ExtendedReidemeisterSpectrum, 8
FixedPointGroup, 14
InducedHomomorphism, 14
Intersection, 16
   for IsList, 16
Intersection2
    for IsRightCoset, IsRightCoset, 16
IsRationalReidemeisterZeta, 10
IsTwistedConjugateMultiple, 11
NrTwistedConjugacyClasses, 7
PrintReidemeisterZeta, 10
ReidemeisterClass, 6
ReidemeisterClasses, 7
ReidemeisterNumber, 7
ReidemeisterSpectrum, 8
ReidemeisterZeta, 10
ReidemeisterZetaCoefficients, 9
RepresentativesAutomorphismClasses, 13
RepresentativesEndomorphismClasses, 13
RepresentativesHomomorphismClasses, 13
RepresentativesReidemeisterClasses, 7
RepresentativesTwistedConjugacy-
       Classes, 7
RepresentativeTwistedConjugation, 5
{\tt RepresentativeTwistedConjugation-}
       Multiple, 11
RestrictedHomomorphism, 15
TotalReidemeisterSpectrum, 9
TwistedConjugacyClass, 6
```

TwistedConjugacyClasses, 7 TwistedConjugation, 5