Probabilty

Events

An event is a collection of outcomes of a random experiment $S = \{$ collection of all outcomes of the

experiment} $\phi = \{\text{empty set}\}\$

If $A \cap B = \phi$,

then A and B are mutually exclusive

DeMorgan's $(A \cup B) = (\bar{A} \cap \bar{B})$

Axioms and Properties

Axioms

I.
$$P(A) \ge 0$$
II. $P(S) = 1$

III. If $(A \cap B) = \phi$,

then $P(A \cup B) = P(A) + P(B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(\bar{A}) = 1 - P(A)$

Independence

If $P\{A \cap B\} = P\{A\}P\{B\}$, then A and B are independent If $P(A \cap B|C) = P(A|C)P(B|C)$,

A and B are conditionally independent given event C

Mutually Exclusivity

If $P\{A \cap B\} = \phi$, then A and B are M.E. And, in this case P(A|B) = P(A) and P(B|A) = P(B)**Conditional Probability**

 $P(A|B) = P(A \cap B)/P(B) P(A \cap B) =$ P(A|B)P(B) = P(B|A)P(A)

Bayes' rule

P(B|A) = P(A|B)P(B)/P(A), PDF and CDF

The Probability Density Function is a function that accepts an outcome and returns the probability of that outcome occuring. Written as:

p(x) and $f_x(x)$ PMF and CMF

Are the discrete time versions of the PDF and CDF

The Cumulative Distribution Function. Commonly written as:

P(x) and $F_x(x)$

Is the integral of the PDF. $F_x(x) = \int f_x(x) dx$

Distributions

Binomial

General

X =the number of successes in n trials. This is n trials of a Bernoulli random variable.

Probability Mass Function

$$P\{X=k\}=\binom{n}{k}p^kq^{n-k},$$
 for $k=0,1,2,...,n,$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Mean

 $m_x = np$ Variance

Var(x) = np(1-p)

Uniform

General

X has equal likeliness of taking any value in the interval [a, b]

Probability Density Function

 $f_x(u) = \frac{1}{b-a}$, for a < u < b, and is 0

Cumulative Distribution Function

$$F_x(u) = \begin{cases} 0, & u < a \\ \frac{u-a}{b-a}, & a < u < b \\ 1, & b < u \end{cases}$$

Mean

 $m_x = (a+b)/2$ Variance

$$Var(X) = \frac{(b-a)^2}{12}$$

Triangular

General

Upon adding two uniform distributions, we get the triangular density function. The function only has value over [2a, 2b]Density

$$f_x(\alpha) = \begin{cases} \frac{\alpha - 2a}{(b-a)^2}, & 2a < \alpha < (a+b)\\ \frac{2b - \alpha}{(b-a)^2}, & (a+b) < \alpha < (2b)\\ 0, & otherwise \end{cases}$$

Cumulative

This was not listed in the summary, and I need to review to understand why.

Exponential

General

X is the time to arrival or time to failure, where arrival rate is λ X can also be viewed as departure time with departure rate μ

Probability Density Function

 $f_x(t) = \lambda e^{-\lambda t}$, for t > 0, and is 0

Cumulative Distribution Function

 $F_x(t) = 1 - e - \lambda t$, for t > 0, and is 0 elsewhere.

Mean and Variance

$$m_x = \sigma_x = 1/\lambda$$

Gaussian General

The normal distribution **Probability Density Function**

With mean m and standard deviation σ

$$f_x(u) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(u-m)^2}{2\sigma^2}}$$
Heit Gaussian (normal) $\sigma =$

Unit Gaussian (normal) $\sigma = 1$, m = 0

$f_x(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$ Unit Gaussian Cumulative Distribution

 $\phi(u)$ was used to compute the following $P\{a < X < b\} = \phi(\frac{b-m}{\sigma}) - \phi(\frac{a-m}{\sigma})$

Mean and Variance

m and σ are the mean and standard deviation σ_x^2 is the variance

Geometric

General X is the number of trials before the first

p is the probability of success

Mass Function
$$P\{X = k\} = p(1-p)^{k-1}$$
, for $k = 1, 2, 3, ...$

$$P\{X=k\} = p(1-p)^{k-1}$$
, fo $k=1,2,3,...$ Mean

 $\begin{array}{l} m_x = 1/p \\ {\rm Variance} \end{array}$

 $Var(X) = (1 - p)/p^2$ Poisson

General

X is the number of arrivals in a time interval t λ is the arrival rate

Mass Function

 $P\{X=k\}=\frac{(\lambda t)^k}{k!}e^{\lambda t},$ for $k=0,1,2,3,\dots$ Mean and Variance $m_x = Var(X) = \lambda t$

Moments

First

General

The first moment is the mean of the distribution. Sometimes refered to as the center of mass.

Formula

Where p(x) is the probabilty of the outcome x occurring.

$$\mu_x = E\{X\} = \int p(x)xdx$$

And applies via a sum for the discrete

Nth Moment

$$E\{X^n\} = \int p(x)x^n dx$$
Properties

If Y = aX + b, then $m_y = am_x + b$ and $\sigma_u^2 = a^2 \sigma_x^2$

Expectation

General

The expectation E of a function g of a random variable x, $E\{g(X)\}$: $E\{g(X)\} = \int_{-\infty}^{\infty} g(u)f_x(u)du$

A sum can be substituted for the integral in the discrete case unless using impulse functions

Properties

$$\begin{split} E\{\dot{C}\} &= C \\ E\{ag(X) + bh(X)\} &= \\ aE\{g(x)\} + bE\{h(X)\} \\ \text{If } g(X) &\geq 0 \text{, then } E\{g(X)\} \geq 0 \end{split}$$

Variance

$$Var(X) = E\left[(X - \mu_x)^2\right] = E[X^2] - \mu_x^2$$
 $Var(X) = \sigma^2 = \int (X - \mu_x)^2 f_x(x) dx$ $Var(X) = \sigma^2 = \sum_{i=1}^n p_i (x_i - \mu_x)^2$ Covariance

Var(X) = Cov(X, X) $Cov(X,Y) = \sigma_{XY}$ $\sigma_{XY} = E[(X - \mu_x)(Y - \mu_y)]$ $\sigma_{XY} = E[XY] - E[X]E[Y]$ cov(X, a) = 0 cov(X, Y) = cov(Y, X)cov(X + a, Y + b) = abcov(X, y)cov(X + a, Y + b) = cov(X, Y)

Covariance for RV Vector

$$\begin{split} \sigma_{\vec{X}\vec{Y}} &= E[(\vec{X} - E[\vec{X}])(\vec{Y} - E[\vec{Y}])] \\ \sigma_{\vec{X}\vec{Y}} &= E[\vec{X}\vec{Y}^T] - E[\vec{X}]E[\vec{Y}]^T \\ \textbf{Correlation} \end{split}$$

$\begin{array}{l} corr(X,Y) = \rho_{XY} \\ \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} \end{array}$

Processes

Poisson Process Independend Increments

Basic Maths

Series and Sequences Geometric Sequence

A series with a constant ration between successive terms.

Ex. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ Often defined as using ar

Ex. $a + ar + ar^2 + ar^3 + ...$ For $r \neq 1$, the sum of the first n terms is: $\sum_{k=0}^{n-1} ar^k = a(\frac{1-r^n}{1-r})$

And for infinite sequences:

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}, \text{ for } |r| < 1$$
 Arithmetic Series

A series with a constant difference

between successive terms. Ex. 2+5+8+11+...

Sum of an arithmetic series with n terms starting with a_1 and ending with a_2 :

$\sum = \frac{n(a_1 + a_2)}{2}$ Power Series

A series of the form: $\sum_{n=0}^{\infty} = a_n (x-c)^n$ Where often c=0 $\sum_{n=0}^{\infty} = a_n(x)^n$

The power series allows generalization of multiplication, division, subtraction, and addition between like series. It is also possible to integrate or differentiate a power series.

Taylor Series

The Taylor series of f(x) (a function that is infinetely differentiable at a number a) is the power series: $f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a) + \dots$

$$\sum_{n=0}^{\infty} rac{f^{(n)}(a)}{n!} (x-a)^n$$
 Logarithms

Logarithms
$$\log_b c = k$$

$$b^k = c$$

$$\ln(xy) = \ln(x) + \ln(y)$$

$$\ln(x/y) = \ln(x) - \ln(y)$$

$$\ln(x^y) = yln(x)$$

$$\ln(e) = 1$$

$$\ln(1/x) = -\ln(x)$$

$$\ln \log x$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1}, n \neq -1$$

$$\int \frac{1}{n} dx = \ln|x|$$

$\int xe^{ax}dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax}$ **Derivatives**

 $\int e^{ax} dx = \frac{1}{a} e^{ax}$

 $\int u dv = uv - \int v du$

Combinatorics Permutations

Number of ways to order n distinct elements:

k-Permutations of n

Ordered arrangements of a k-element subset of an n-set. $P(n,k) = \frac{n!}{(n-k)!}$

Permutations With Repitition

For a set S of size k, the number of n-tuples over S is. k^n **Combination**

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
Binomial Theorem

Test

$$a = 5$$

= 6