Exercices de statique des fluides

- 1. Un tube en "U" de section constante $s=1\,cm^2$ est ouvert à ses deux extrémités et contient de l'eau. Par une extrémité, on verse un volume $V=10\,cm^3$ d'huile plus légère que l'eau. La différence de niveau entre les deux surfaces libres est $x=15\,mm$.
- (a) Calculer la masse volumique de l'huile.
- (b) On relie la branche qui contient l'huile à une conduite de gaz. La surface de séparation entre l'huile et l'eau se déplace de $y=15\,cm$ vers le haut. Déterminer la pression relative dans la conduite.
- 2. On souhaite mesurer la pression relative à l'aide d'un manomètre différentiel contenant deux fluides non-miscibles ρ₁ et ρ₂ (Fig. 1). On note s et S la petite et grande section de ce manomètre. Sur la figure de gauche, les deux récipients supportent la même pression P₀. Sur celle de droite, le récipient droit est soumis à une pression plus faible P₀ ΔP (ΔP > 0).
- (a) Exprimer ΔP en fonction des masses volumiques, du rapport des sections et de la descente h de l'interface entre les deux fluides.
- (b) Dans quel cas la sensibilité de ce manomètre sera-t-elle la plus importante
 i. si la densité des fluides est connue,
 - ii. si les sections et la densité des fluides changent.

FIGURE 1 - Manomètre différentiel à deux fluides.

UGE, IFSA, Licence Physique, Chimie - L2.S2 Exercices de mécanique des fluides

Figure 2 - Piston.

- 3. Une presse hydraulique (Fig. 2) contient un fluide de poids spécifique $\rho g = 8\,800\,N/m^3$. Les diamètres des petit et grand pistons (respectivement à droite et à gauche) sont $d=2,54\,cm$ et $D=7,62\,cm$. Une tige de longueur L+l ($L=38,1\,cm$ et $l=2,54\,cm$) pivote autour de son extrémité gauche. Cette tige est reliée au petit piston par une barre verticale qui se situe à l de l'axe de rotation. Quelle est l'intensité de la force \vec{F} qui doit être exercée sur la tige de longueur L+l pour équilibrer la masse $M=890\,kg$.
- 4. Un container cylindrique de rayon R, partiellement rempli par un liquide, tourne autour de son axe de symétrie à la vitesse angulaire constante ω. Dans le repère tournant du cylindre (r, z), le liquide est immobile. L'origine du repère mobile est situé au fond du container.
- (a) Montrer que l'équation de la surface libre s'écrit

$$z = h_1 + \frac{(\omega r)^2}{2g}$$

avec h_1 la hauteur de la surface libre en r=0.

- (b) Donner l'expression de l'équation de la surface libre en fonction de h_0 , la hauteur du fluide en l'absence de rotation.
- 5. L'air est modélisé par un gaz parfait satisfaisant la relation $P = \rho rT$ (r = 287 J/(kg.K)). Les conditions au niveau du sol z = 0 sont $P_0 = 1{,}013.10^5 Pa$, $\rho = 1{,}293 \, kg/m^3$. Le modèle standard de l'atmosphère obéit à une loi polytropique : $\frac{P}{c^k} = cste$.
- (a) Donner l'expression de ρ en fonction de $\frac{P}{P_0}$, ρ_0 et k.
- (b) Exprimer la pression en fonction de l'altitude.
- (c) En déduire $\rho(z)$ et T(z).

- (d) Déterminer la valeur numérique de k si la température décroît linéairement de $6.5^{\circ}C$ tous les $1000\,m$ (Modèle standard de l'atmosphère).
- 6. Influence de l'altitude sur la pression : différents modèles et approximations A FAIRE À LA MAISON

La pression et température au sol est donnée par $P_0=1013\,hPa$ et $T_0=20\,^{\circ}C$. L'atmosphère est modélisée par une loi des gaz parfaits. Construire un tableau donnant la variation de la pression de l'atmosphère avec l'altitude pour

- (a) l'atmosphère standard (modèle polytropique) avec la constante k déterminée par l'exercice 6d ;
- (b) un modèle isotherme;
- (c) un modèle isochore;
- (d) un modèle isobare.

En déduire en fonction de l'altitude les erreurs relatives commises par l'utilisation des modèles (b) à (d) par rapport au modèle standard. Si on autorise une erreur de 1%, jusqu'à quelle altitude pourra-t-on utiliser ces différents modèles? Même question si on n'accepte plus qu'une erreur relative de 0,1%.

7. Un réservoir possède une porte de vidange circulaire de diamètre $D=4\,cm$ (Fig. 3). Cette porte s'ouvre automatiquement dès que la force hydrostatique

FIGURE 3 - Réservoir avec vidange.

excède $F=25\,N$. On relève alors $L=2\,cm$. Quelle sera alors la hauteur h lue sur le manomètre au mercure $(d_{Hq}=13,6)$?

8. Du béton de densité d=2,4 est versé dans un moule (Fig. 4) pour former un petit escalier. Les dimensions d'une marche sont : hauteur $h=20,3\,cm$, profondeur $l=25,4\,cm$ et longueur $L=91\,cm$. On note $m=38\,kg$ la masse du moule sans fond et M la masse de sable contenu dans un sac posé sur le moule

UGE, IFSA, Licence Physique, Chimie - L2.S2 Exercices de mécanique des fluides

Figure 4 - Moule sans fond pour fabriquer un petit escalier.

- (a) Montrer que la résultante horizontale des forces de pression qui s'exerce sur le moule est nulle.
- (b) Calculer la résultante des forces de pression que le béton exerce sur le moule dans la direction verticale.
- (c) En prenant le système {moule}, en déduire la masse minimale de sable M qu'il faut utiliser pour fabriquer cet escalier.
- 9. Soit un barrage hydraulique de section triangulaire et d'envergure b (Fig. 5). On

 ${\tt Figure 5-Barrage\ hydraulique}.$

note d_b la densité du matériau de construction du barrage et $\vec{R} = R_x \vec{e}_x + R_y \vec{e}_y$ la force de réaction qu'exerce le sol sur le barrage. Le coefficient de frottement du barrage sur le sol, $C_f = \frac{|R_x|}{|R_y|} = 0.48$.

(b) Déterminer la valeur de l'angle pour $d_b = 2,4$.

10. La barrière illustrée sur la figure 6 a une envergure de b=1.5 m avec $a=1 m^{-2}$.

FIGURE 6 - Surface courbe.

L'eau est maintenue du coté droit de la barrière sur une profondeur $D=1,2\,m$. Le point A est situé sur la barrière à une hauteur $H=1,4\,m$. On néglige le poids et l'épaisseur de la barrière.

- (a) Déterminer les intensités des composantes verticale (F_v) et horizontale (F_h) des forces de pression.
- (b) Déterminer x_{F_v} et y_{F_h} les coordonnées du centre de poussée que l'eau exerce sur le barrage.
- (c) Déterminer les moments algébriques de rotation autour du point O des deux composantes des forces de pression, M_{Fv/O} et M_{Fh/O}.
- (d) On note $\vec{R} = R_x \vec{e}_x + R_y \vec{e}_y$ la force résultante appliquée par le sol en O et on applique une force horizontale en A, $\vec{F}_A = F_A \vec{e}_x$. Déterminer R_x , R_y et F_A pour que la barrage soit à l'équilibre et qu'aucun moment ne soit appliqué au point O.
- 11. Une structure en béton $(d_b = 2.5)$ est fabriquée dans un moule dont la forme est un quart de cercle de rayon R = 0.3 m avec une envergure de b = 1.25 m (Fig. 7). Le moule est rempli jusqu'à une hauteur H = 0.24 m. Calculer l'in-

FIGURE 7 - Moule pour béton.

tensité de la force hydrostatique exercée par le béton liquide sur le moule. Exprimer l'abscisse de la ligne d'action (l'intégrale ne sera pas calculée).

- 12. Un ballon sphérique de rayon $R=5\,m$ est gonflé à l'hélium. Au niveau du sol la pression et la température sont égales à $P_0=10^5\,Pa$ et $T_0=20\,^{\circ}C$. L'air suit une évolution isentropique $(P/\rho^{\gamma}=\text{cste avec }\gamma=1.4)$.
 - (a) Calculer la poussée que l'air exerce sur ce ballon en assimilant l'air à un gaz parfait.
 - (b) Le ballon et son chargement ont une masse totale $M=400\,kg$. Quelle est la masse de lest qu'il faut prévoir pour que la force ascensionnelle (résultante des forces) soit égale à $200\,N$.
 - (c) Le ballon s'élève. Une soupape d'échappement maintient la pression de l'hélium égale à la pression atmosphérique. Le ballon cesse de monter lorsque la température extérieure atteint 6 °C. Quelle masse de lest a-t-on jeté?
- 13. On considère un cylindre homogène, de section circulaire. On note R le rayon, L la longueur et d la densité du cylindre. Montrer que, dans l'eau, le cylindre a une position vertical stable si :

$$\frac{R}{L} > \sqrt{2d(1-d)}$$

5