基于 GPU 异构平台的 AES 并行计算

何振忠

School of Computer South China Normal University

6/3, 2013

Mind Map

Outline

- ① 从 OpenCL 开始
 - 什么是 OpenCL
 - 为什么选择 OpenCL
- 2 进度
 - 组建 AMD 流计算环境
 - 基于 GPU 上加解密
 - 不同平台之间比较
- 3 AES 优化
 - 从最优算法开始
 - OpenCL 矢量
 - 内存访问的优化
 - No Functions
 - Precomputation
- 4 后续
 - 后续工作
- 6 End

Open Computing Language

OpenCL 为异构平台提供一个编写程序,特别是并行程序的开放框架标准。

OpenCL The Open Standard for Heterogeneous Parallel Programming

MyDrivers.com 超动之家

OpenCL 由两部分组成:

• 编写内核程序的语言OpenCL C 是基于 ISO/IEC 9899:1999 C 标准做了一定的扩展和限制

Built-in Scalar Data Types [6.1.1]			
OpenCL Type	API Type	Description	
bool		true (1) or false (0)	
char	cl_char	8-bit signed	
unsigned char, uchar	cl_uchar	8-bit unsigned	
short	cl_short	16-bit signed	
unsigned short, ushort	cl_ushort	16-bit unsigned	
int	cl_int	32-bit signed	
unsigned int, uint	cl_uint	32-bit unsigned	
long	cl_long	64-bit signed	
unsigned long, ulong	cl_ulong	64-bit unsigned	
float	cl_float	32-bit float	
half	cl_half	16-bit float (for storage only)	
size_t		32- or 64-bit unsigned integer	
ptrdiff_t		32- or 64-bit signed integer	
intptr_t		signed integer	
uintptr_t		unsigned integer	
void	void	void	

OpenCL Type	API Type	Description
charn	cl_charn	8-bit signed
uchar <i>n</i>	cl_ucharn	8-bit unsigned
shortn	cl_shortn	16-bit signed
ushort <i>n</i>	cl_ushortn	16-bit unsigned
intn	cl_intn	32-bit signed
uintn	cl_uintn	32-bit unsigned
long <i>n</i>	cl_longn	64-bit signed
ulongn	cl_ulongn	64-bt unsigned
floatn	cl floatn	32-hit float

00000

OpenCL 由两部分组成:

● 定义并控制平台的 API 适用于各种类型异构处理器的坐标数据和基于任务并行计算 API.

- GPU 的运算核心数量要远远超过高端 CPU 的核心数量
- GPU 是通过大量并行线程之间交织运算隐藏全局访问的延迟

Processor Parallelism

OpenCL - Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous parallel computing CPUs, GPUs, and other processors

为什么选择 OpenCL

OpenCL 为程序员提供了平台独立性

问题:不同平台,不同厂商,不同产品型号的 GPU 往往有着不

同的架构。

解决: OpenCL 支持各种各样的并行处理器的组合平台。

Windows

- 安装 ATI driver
- AMD Stream SDK
- IDE: MS Visual Studio 2010

Linux

- 安装 ATI driver
- AMD Stream SDK
- 将库文件路径添加到环境变量中

AES Encryption

在 CPU 完成密钥扩展后,将明文和扩展密钥复制到 GPU 上进行 AES 加密。

用相同的密钥加密不同长度的明文

N 个明文, K 个密钥

Furious

Furious

OpenCL 矢量

OpenCL 矢量

矢量化允许一个线程同时执行多个操作。 矢量化在 AMD 的 GPU 上效果更明显。

Global Memory

Global Memory 的访存模式也会在很大程度上影响程序的性能。

- 2 种需要把数据写回 Global Menory 的情况:
 - Kernel 需要保存作为输出的数据
 - 需要在 Group 之间交换数据

Local Memory

Local Memory 是指在 GPU 上对每个 Thread Group 有一块可以进行快速访问的内存.

No Functions

将 AddRoundKey、SubBytes、ShiftRows、MixColumns 四个操作 都写到循环里, 省去函数的调用时间。

Precomputation

将全部密钥都做完密钥扩展后复制到 GPU。

No.1

• 查找国内外有关 GPU 并行加速运算的文献,比较一下我们的优劣和不足。

No.2

• 继续优化 AES 的并行加速

No.3

• 尝试其它分组加密算法

No.4

• 搭建一个台式机的测试环境

End

Thank You!