References

- Abel, Niels H. 1826. Démonstration de l'Impossibilité de la Résolution Algébrique des Équations Générales qui Passent le Quatrième Degré. Grøndahl & Søn.
- Adhikari, Ani, and DeNero, John. 2018. *Computational and Inferential Thinking: The Foundations of Data Science*. Gitbooks.
- Agarwal, Arvind, and Daumé III, Hal. 2010. A Geometric View of Conjugate Priors. *Machine Learning*, **81**(1), 99–113.
- Agresti, A. 2002. Categorical Data Analysis. Wiley.
- Akaike, Hirotugu. 1974. A New Look at the Statistical Model Identification. *IEEE Transactions on Automatic Control*, **19**(6), 716–723.
- Akhiezer, Naum I., and Glazman, Izrail M. 1993. *Theory of Linear Operators in Hilbert Space*. Dover Publications.
- Alpaydin, Ethem. 2010. Introduction to Machine Learning. MIT Press.
- Amari, Shun-ichi. 2016. Information Geometry and Its Applications. Springer.
- Argyriou, Andreas, and Dinuzzo, Francesco. 2014. A Unifying View of Representer Theorems. In: *Proceedings of the International Conference on Machine Learning*.
- Aronszajn, Nachman. 1950. Theory of Reproducing Kernels. *Transactions of the American Mathematical Society*, **68**, 337–404.
- Axler, Sheldon. 2015. Linear Algebra Done Right. Springer.
- Bakir, Gökhan, Hofmann, Thomas, Schölkopf, Bernhard, Smola, Alexander J., Taskar, Ben, and Vishwanathan, S.V.N (eds). 2007. *Predicting Structured Data*. MIT Press.
- Barber, David. 2012. Bayesian Reasoning and Machine Learning. Cambridge University Press.
- Barndorff-Nielsen, Ole. 2014. Information and Exponential Families: In Statistical Theory. Wiley.
- Bartholomew, David, Knott, Martin, and Moustaki, Irini. 2011. Latent Variable Models and Factor Analysis: A Unified Approach. Wiley.
- Baydin, Atılım G., Pearlmutter, Barak A., Radul, Alexey A., and Siskind, Jeffrey M. 2018. Automatic Differentiation in Machine Learning: A Survey. *Journal of Marchine Learning Research*, **18**, 1–43.
- Beck, Amir, and Teboulle, Marc. 2003. Mirror Descent and Nonlinear Projected Subgradient Methods for Convex Optimization. *Operations Research Letters*, **31**(3), 167–175.
- Belabbas, Mohamed-Ali, and Wolfe, Patrick J. 2009. Spectral Methods in Machine Learning and New Strategies for Very Large Datasets. *Proceedings of the National Academy of Sciences*, 0810600105.
- Belkin, Mikhail, and Niyogi, Partha. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. *Neural Computation*, **15**(6), 1373–1396.
- Ben-Hur, Asa, Ong, Cheng Soon, Sonnenburg, Sören, Schölkopf, Bernhard, and Rätsch, Gunnar. 2008. Support Vector Machines and Kernels for Computational Biology. *PLoS Computational Biology*, **4**(10), e1000173.

395

Draft (March 15, 2019) of "Mathematics for Machine Learning" ©2019 by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. To be published by Cambridge University Press. Please do not post or distribute this file, please link to https://mml-book.com.

Bennett, Kristin P., and Bredensteiner, Erin J. 2000a. Duality and Geometry in SVM Classifiers. In: *Proceedings of the International Conference on Machine Learning*.

- Bennett, Kristin P., and Bredensteiner, Erin J. 2000b. Geometry in Learning. In: Gorini, Catherine A. (ed), *Geometry at Work*. The Mathematical Association of America.
- Berlinet, Alain, and Thomas-Agnan, Christine. 2004. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer.
- Bertsekas, Dimitri P. 1999. Nonlinear Programming. Athena Scientific.
- Bertsekas, Dimitri P. 2009. Convex Optimization Theory. Athena Scientific.
- Bickel, Peter J., and Doksum, Kjell. 2006. *Mathematical Statistics, Basic Ideas and Selected Topics*. Vol. 1. Prentice Hall.
- Bickson, Danny, Doley, Danny, Shental, Ori, Siegel, Paul H., and Wolf, Jack K. 2007. Linear Detection via Belief Propagation. In: *Proceedings of the Annual Allerton Conference on Communication, Control, and Computing.*
- Billingsley, Patrick. 1995. Probability and Measure. Wiley.
- Bishop, Christopher M. 1995. Neural Networks for Pattern Recognition. Clarendon Press.
- Bishop, Christopher M. 1999. Bayesian PCA. In: Advances in Neural Information Processing Systems.
- Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.
- Blei, David M., Kucukelbir, Alp, and McAuliffe, Jon D. 2017. Variational Inference: A Review for Statisticians. *Journal of the American Statistical Association*, **112**(518), 859–877.
- Blum, Arvim, and Hardt, Moritz. 2015. The Ladder: A Reliable Leaderboard for Machine Learning Competitions. In: *International Conference on Machine Learning*.
- Bonnans, J. Frédéric, Gilbert, J. Charles, Lemaréchal, Claude, and Sagastizábal, Claudia A. 2006. *Numerical Optimization: Theoretical and Practical Aspects*. Springer.
- Borwein, Jonathan M., and Lewis, Adrian S. 2006. *Convex Analysis and Nonlinear Optimization*. 2nd edn. Canadian Mathematical Society.
- Bottou, Léon. 1998. Online Algorithms and Stochastic Approximations. In: *Online Learning and Neural Networks*. Cambridge University Press.
- Bottou, Léon, Curtis, Frank E, and Nocedal, Jorge. 2018. Optimization Methods for Large-scale Machine Learning. SIAM Review, 60(2), 223–311.
- Boucheron, Stephane, Lugosi, Gabor, and Massart, Pascal. 2013. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press.
- Boyd, Stephen, and Vandenberghe, Lieven. 2004. *Convex Optimization*. Cambridge University Press.
- Boyd, Stephen, and Vandenberghe, Lieven. 2018. *Introduction to Applied Linear Algebra*. Cambridge University Press.
- Brochu, Eric, Cora, Vlad M., and de Freitas, Nando. 2009. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. Tech. rept. TR-2009-023. Department of Computer Science, University of British Columbia.
- Brooks, Steve, Gelman, Andrew, Jones, Galin L., and Meng, Xiao-Li (eds). 2011. *Handbook of Markov Chain Monte Carlo*. Chapman and Hall/CRC.
- Brown, Lawrence D. 1986. Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. Institute of Mathematical Statistics.
- Bryson, Arthur E. 1961. A Gradient Method for Optimizing Multi-stage Allocation Processes. In: *Proceedings of the Harvard University Symposium on Digital Computers and Their Applications*.
- Bubeck, Sébastien. 2015. Convex Optimization: Algorithms and Complexity. *Foundations and Trends in Machine Learning*, **8**(3-4), 231–357.
- Bühlmann, Peter, and Van De Geer, Sara. 2011. *Statistics for High-Dimensional Data*. Springer.

Burges, Christopher. 2010. Dimension Reduction: A Guided Tour. *Foundations and Trends in Machine Learning*, **2**(4), 275–365.

- Carroll, J Douglas, and Chang, Jih-Jie. 1970. Analysis of Individual Differences in Multidimensional Scaling via an N-way Generalization of "Eckart-Young" Decomposition. *Psychometrika*, **35**(3), 283–319.
- Casella, George, and Berger, Roger L. 2002. Statistical Inference. Duxbury.
- Çinlar, Erhan. 2011. Probability and Stochastics. Springer.
- Chang, Chih-Chung, and Lin, Chih-Jen. 2011. LIBSVM: A Library for Support Vector Machines. *ACM Transactions on Intelligent Systems and Technology*, **2**, 27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
- Cheeseman, Peter. 1985. In Defense of Probability. In: *Proceedings of the International Joint Conference on Artificial Intelligence*.
- Chollet, Francois, and Allaire, J. J. 2018. *Deep Learning with R.* Manning Publications. Codd, Edgar F. 1990. *The Relational Model for Database Management*. Addison-Wesley Longman Publishing.
- Cunningham, John P., and Ghahramani, Zoubin. 2015. Linear Dimensionality Reduction: Survey, Insights, and Generalizations. *Journal of Machine Learning Research*, **16**, 2859–2900.
- Datta, Biswa N. 2010. Numerical Linear Algebra and Applications. SIAM.
- Davidson, Anthony C., and Hinkley, David V. 1997. *Bootstrap Methods and their Application*. Cambridge University Press.
- Dean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai, Devin, Matthieu, Le, Quoc V., Mao, Mark Z., Ranzato, Marc Aurelio, Senior, Andrew, Tucker, Paul, Yang, Ke, and Ng, Andrew Y. 2012. Large Scale Distributed Deep Networks. In: *Advances in Neural Information Processing Systems*.
- Deisenroth, Marc P., and Mohamed, Shakir. 2012. Expectation Propagation in Gaussian Process Dynamical Systems. Pages 2618–2626 of: *Advances in Neural Information Processing Systems*.
- Deisenroth, Marc P., and Ohlsson, Henrik. 2011. A General Perspective on Gaussian Filtering and Smoothing: Explaining Current and Deriving New Algorithms. In: *Proceedings of the American Control Conference*.
- Deisenroth, Marc P., Fox, Dieter, and Rasmussen, Carl E. 2015. Gaussian Processes for Data-Efficient Learning in Robotics and Control. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **37**(2), 408–423.
- Dempster, Arthur P., Laird, Nan M., and Rubin, Donald B. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. *Journal of the Royal Statistical Society*, **39**(1), 1–38.
- Deng, Li, Seltzer, Michael L., Yu, Dong, Acero, Alex, Mohamed, Abdel-rahman, and Hinton, Geoffrey E. 2010. Binary Coding of Speech Spectrograms using a Deep Auto-Encoder. Pages 1692–1695 of: *Interspeech*.
- Devroye, Luc. 1986. Non-Uniform Random Variate Generation. Springer.
- Donoho, David L., and Grimes, Carrie. 2003. Hessian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data. *Proceedings of the National Academy of Sciences*, **100**(10), 5591–5596.
- Dostál, Zdeněk. 2009. Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities. Springer.
- Douven, Igor. 2017. Abduction. In: *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University.
- Downey, Allen B. 2014. *Think Stats: Exploratory Data Analysis*. 2nd edn. O'Reilly Media.
- Dreyfus, Stuart. 1962. The Numerical Solution of Variational Problems. *Journal of Mathematical Analysis and Applications*, **5**(1), 30–45.

Drumm, Volker, and Weil, Wolfgang. 2001. *Lineare Algebra und Analytische Geometrie*. Lecture Notes, Universität Karlsruhe (TH).

- Dudley, Richard M. 2002. Real Analysis and Probability. Cambridge University Press.
- Eaton, Morris L. 2007. *Multivariate Statistics: A Vector Space Approach*. Institute of Mathematical Statistics Lecture Notes.
- Eckart, Carl, and Young, Gale. 1936. The Approximation of One Matrix by Another of Lower Rank. *Psychometrika*, **1**(3), 211–218.
- Efron, Bradley, and Hastie, Trevor. 2016. *Computer Age Statistical Inference: Algorithms, Evidence and Data Science*. Cambridge University Press.
- Efron, Bradley, and Tibshirani, Robert J. 1993. *An Introduction to the Bootstrap*. Chapman and Hall/CRC.
- Elliott, Conal. 2009. Beautiful Differentiation. In: *International Conference on Functional Programming*.
- Evgeniou, Theodoros, Pontil, Massimiliano, and Poggio, Tomaso. 2000. Statistical Learning Theory: A Primer. *International Journal of Computer Vision*, **38**(1), 9–13.
- Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-Rui, and Lin, Chih-Jen. 2008. LIBLINEAR: A Library for Large Linear Classification. *Journal of Machine Learning Research*, **9**, 1871–1874.
- Gal, Yarin, van der Wilk, Mark, and Rasmussen, Carl E. 2014. Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models. In: *Advances in Neural Information Processing Systems*.
- Gärtner, Thomas. 2008. Kernels for Structured Data. World Scientific.
- Gavish, Matan, and Donoho, David L. 2014. The Optimal Hard Threshold for Singular Values is $4\sqrt{3}$. *IEEE Transactions on Information Theory*, **60**(8), 5040–5053.
- Gelman, Andrew, Carlin, John B., Stern, Hal S., and Rubin, Donald B. 2004. *Bayesian Data Analysis*. Chapman & Hall/CRC.
- Gentle, James E. 2004. Random Number Generation and Monte Carlo Methods. Springer.
- Ghahramani, Zoubin. 2015. Probabilistic Machine Learning and Artificial Intelligence. *Nature*, **521**, 452–459.
- Ghahramani, Zoubin, and Roweis, Sam T. 1999. Learning Nonlinear Dynamical Systems using an EM Algorithm. In: *Advances in Neural Information Processing Systems*. MIT Press.
- Gilks, Walter R., Richardson, Sylvia, and Spiegelhalter, David J. 1996. *Markov Chain Monte Carlo in Practice*. Chapman & Hall.
- Gneiting, Tilmann, and Raftery, Adrian E. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation. *Journal of the American Statistical Association*, **102**(477), 359–378.
- Goh, Gabriel. 2017. Why Momentum Really Works. Distill.
- Gohberg, Israel, Goldberg, Seymour, and Krupnik, Nahum. 2012. *Traces and Determinants of Linear Operators*. Birkhäuser.
- Golan, Jonathan S. 2007. The Linear Algebra a Beginning Graduate Student Ought to Know. Springer.
- Golub, Gene H., and Van Loan, Charles F. 2012. Matrix Computations. JHU Press.
- Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. 2016. *Deep Learning*. MIT Press.
- Graepel, Thore, Candela, Joaquin Quiñonero-Candela, Borchert, Thomas, and Herbrich, Ralf. 2010. Web-scale Bayesian Click-through Rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine. In: *Proceedings of the International Conference on Machine Learning*.
- Griewank, Andreas, and Walther, Andrea. 2003. Introduction to Automatic Differentiation. In: *Proceedings in Applied Mathematics and Mechanics*.

References 399

Griewank, Andreas, and Walther, Andrea. 2008. Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. SIAM.

- Grimmett, Geoffrey R., and Welsh, Dominic. 2014. *Probability: An Introduction*. Oxford University Press.
- Grinstead, Charles M., and Snell, J. Laurie. 1997. *Introduction to Probability*. American Mathematical Society.
- Hacking, Ian. 2001. Probability and Inductive Logic. Cambridge University Press.
- Hall, Peter. 1992. The Bootstrap and Edgeworth Expansion. Springer.
- Hallin, Marc, Paindaveine, Davy, and Šiman, Miroslav. 2010. Multivariate Quantiles and Multiple-output Regression Quantiles: From ℓ_1 Optimization to Halfspace Depth. *Annals of Statistics*, **38**, 635–669.
- Hasselblatt, Boris, and Katok, Anatole. 2003. A First Course in Dynamics with a Panorama of Recent Developments. Cambridge University Press.
- Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. 2001. *The Elements of Statistical Learning—Data Mining, Inference, and Prediction*. Springer.
- Hausman, Karol, Springenberg, Jost T., Wang, Ziyu, Heess, Nicolas, and Riedmiller, Martin. 2018. Learning an Embedding Space for Transferable Robot Skills. In: *Proceedings of the International Conference on Learning Representations*.
- Hazan, Elad. 2015. Introduction to Online Convex Optimization. *Foundations and Trends in Optimization*, **2**(3–4), 157–325.
- Hensman, James, Fusi, Nicolò, and Lawrence, Neil D. 2013. Gaussian Processes for Big Data. In: *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
- Herbrich, Ralf, Minka, Tom, and Graepel, Thore. 2007. TrueSkill(TM): A Bayesian Skill Rating System. In: *Advances in Neural Information Processing Systems*.
- Hiriart-Urruty, Jean-Baptiste, and Lemaréchal, Claude. 2001. Fundamentals of Convex Analysis. Springer.
- Hoffman, Matthew D., Blei, David M., and Bach, Francis. 2010. Online Learning for Latent Dirichlet Allocation. *Advances in Neural Information Processing Systems*.
- Hoffman, Matthew D., Blei, David M., Wang, Chong, and Paisley, John. 2013. Stochastic Variational Inference. *Journal of Machine Learning Research*, **14**(1), 1303–1347.
- Hofmann, Thomas, Schölkopf, Bernhard, and Smola, Alexander J. 2008. Kernel Methods in Machine Learning. *Annals of Statistics*, **36**(3), 1171–1220.
- Hogben, Leslie. 2013. Handbook of Linear Algebra. Chapman and Hall/CRC.
- Horn, Roger A., and Johnson, Charles R. 2013. *Matrix Analysis*. Cambridge University Press.
- Hotelling, Harold. 1933. Analysis of a Complex of Statistical Variables into Principal Components. *Journal of Educational Psychology*, **24**, 417–441.
- Hyvarinen, Aapo, Oja, Erkki, and Karhunen, Juha. 2001. *Independent Component Analysis*. Wiley.
- Imbens, Guido W., and Rubin, Donald B. 2015. *Causal Inference for Statistics, Social and Biomedical Sciences*. Cambridge University Press.
- Jacod, Jean, and Protter, Philip. 2004. Probability Essentials. Springer.
- Jaynes, Edwin T. 2003. Probability Theory: The Logic of Science. Cambridge University Press.
- Jefferys, Willian H., and Berger, James O. 1992. Ockham's Razor and Bayesian Analysis. *American Scientist*, **80**, 64–72.
- Jeffreys, Harold. 1961. Theory of Probability. Oxford University Press.
- Jimenez Rezende, Danilo, and Mohamed, Shakir. 2015. Variational Inference with Normalizing Flows. In: *Proceedings of the International Conference on Machine Learning*.
- Jimenez Rezende, Danilo, Mohamed, Shakir, and Wierstra, Daan. 2014. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In: *Proceedings of the International Conference on Machine Learning*.

Joachims, Thorsten. 1999. Advances in Kernel Methods—Support Vector Learning. MIT Press. Chap. Making Large-Scale SVM Learning Practical, pages 169–184.

- Jordan, Michael I., Ghahramani, Zoubin, Jaakkola, Tommi S., and Saul, Lawrence K. 1999. An Introduction to Variational Methods for Graphical Models. *Machine Learning*, 37, 183–233.
- Julier, Simon J., and Uhlmann, Jeffrey K. 1997. A New Extension of the Kalman Filter to Nonlinear Systems. In: *Proceedings of AeroSense Symposium on Aerospace/Defense Sensing, Simulation and Controls*.
- Kaiser, Marcus, and Hilgetag, Claus C. 2006. Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems. *PLoS Computational Biology*, **2**(7), e95.
- Kalman, Dan. 1996. A Singularly Valuable Decomposition: The SVD of a Matrix. *The College Mathematics Journal*, **27**(1), 2–23.
- Kalman, Rudolf E. 1960. A New Approach to Linear Filtering and Prediction Problems. *Transactions of the ASME—Journal of Basic Engineering*, **82**(Series D), 35–45.
- Kamthe, Sanket, and Deisenroth, Marc P. 2018. Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control. In: *Proceedings of the International Conference on Artificial Intelligence and Statistics*.
- Katz, Victor J. 2004. A History of Mathematics. Pearson/Addison-Wesley.
- Kelley, Henry J. 1960. Gradient Theory of Optimal Flight Paths. *Ars Journal*, **30**(10), 947–954.
- Kimeldorf, George S., and Wahba, Grace. 1970. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines. *Annals of Mathematical Statistics*, **41**(2), 495–502.
- Kingma, Diederik P., and Ba, Jimmy. 2014. Adam: A Method for Stochastic Optimization. *Proceedings of the International Conference on Learning Representations*, 1–13.
- Kingma, Diederik P., and Welling, Max. 2014. Auto-Encoding Variational Bayes. In: *Proceedings of the International Conference on Learning Representations.*
- Kittler, Josef, and Föglein, Janos. 1984. Contextual Classification of Multispectral Pixel Data. *Image and Vision Computing*, **2**(1), 13–29.
- Kolda, Tamara G., and Bader, Brett W. 2009. Tensor Decompositions and Applications. *SIAM Review*, **51**(3), 455–500.
- Koller, Daphne, and Friedman, Nir. 2009. Probabilistic Graphical Models. MIT Press.
- Kong, Linglong, and Mizera, Ivan. 2012. Quantile Tomography: Using Quantiles with Multivariate Data. *Statistica Sinica*, **22**, 1598–1610.
- Lang, Serge. 1987. Linear Algebra. Springer.
- Lawrence, Neil D. 2005. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. *Journal of Machine Learning Research*, **6**(Nov.), 1783–1816.
- Leemis, Lawrence M., and McQueston, Jacquelyn T. 2008. Univariate Distribution Relationships. *The American Statistician*, **62**(1), 45–53.
- Lehmann, Erich L., and Romano, Joseph P. 2005. *Testing Statistical Hypotheses*. Springer.
- Lehmann, Erich Leo, and Casella, George. 1998. *Theory of Point Estimation*. Springer. Liesen, Jörg, and Mehrmann, Volker. 2015. *Linear Algebra*. Springer.
- Lin, Hsuan-Tien, Lin, Chih-Jen, and Weng, Ruby C. 2007. A Note on Platt's Probabilistic Outputs for Support Vector Machines. *Machine Learning*, **68**, 267–276.
- Ljung, Lennart. 1999. System Identification: Theory for the User. Prentice Hall.
- Loosli, Gaëlle, Canu, Stéphane, and Ong, Cheng Soon. 2016. Learning SVM in Krein Spaces. *IEEE Transactions of Pattern Analysis and Machine Intelligence*, **38**(6), 1204–1216.
- Luenberger, David G. 1969. Optimization by Vector Space Methods. Wiley.
- MacKay, David J. C. 1992. Bayesian Interpolation. Neural Computation, 4, 415-447.

MacKay, David J. C. 1998. Introduction to Gaussian Processes. Pages 133–165 of: *Neural Networks and Machine Learning*. Springer.

- MacKay, David J. C. 2003. *Information Theory, Inference, and Learning Algorithms*. Cambridge University Press.
- Magnus, Jan R., and Neudecker, Heinz. 2007. *Matrix Differential Calculus with Applications in Statistics and Econometrics*. Wiley.
- Manton, Jonathan H., and Amblard, Pierre-Olivier. 2015. A Primer on Reproducing Kernel Hilbert Spaces. *Foundations and Trends in Signal Processing*, **8**(1–2), 1–126.
- Markovsky, Ivan. 2011. Low Rank Approximation: Algorithms, Implementation, Applications. Springer.
- Maybeck, Peter S. 1979. Stochastic Models, Estimation, and Control. Academic Press.
- McCullagh, Peter, and Nelder, John A. 1989. Generalized Linear Models. CRC Press.
- McEliece, Robert J., MacKay, David J. C., and Cheng, Jung-Fu. 1998. Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm. *IEEE Journal on Selected Areas in Communications*, **16**(2), 140–152.
- Mika, Sebastian, Rätsch, Gunnar, Weston, Jason, Schölkopf, Bernhard, and Müller, Klaus-Robert. 1999. Fisher Discriminant Analysis with Kernels. Pages 41–48 of: *Proceedings of the Workshop on Neural Networks for Signal Processing*.
- Minka, Thomas P. 2001a. *A Family of Algorithms for Approximate Bayesian Inference*. Ph.D. thesis, Massachusetts Institute of Technology.
- Minka, Tom. 2001b. Automatic Choice of Dimensionality of PCA. In: Advances in Neural Information Processing Systems.
- Mitchell, Tom. 1997. Machine Learning. McGraw Hill.
- Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness, Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K., Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik, Amir, Antonoglou, Ioannis, King, Helen, Kumaran, Dharshan, Wierstra, Daan, Legg, Shane, and Hassabis, Demis. 2015. Human-Level Control through Deep Reinforcement Learning. *Nature*, 518, 529–533.
- Moonen, Marc, and De Moor, Bart. 1995. SVD and Signal Processing, III: Algorithms, Architectures and Applications. Elsevier.
- Moustaki, Irini, Knott, Martin, and Bartholomew, David J. 2015. *Latent-Variable Modeling*. American Cancer Society. Pages 1–10.
- Müller, Andreas C., and Guido, Sarah. 2016. *Introduction to Machine Learning with Python: A Guide for Data Scientists*. O'Reilly Publishing.
- Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
- Neal, Radford M. 1996. *Bayesian Learning for Neural Networks*. Ph.D. thesis, Department of Computer Science, University of Toronto.
- Neal, Radford M., and Hinton, Geoffrey E. 1999. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants. Pages 355–368 of: *Learning in Graphical Models*. MIT Press.
- Nelsen, Roger. 2006. An Introduction to Copulas. Springer.
- Nesterov, Yuri. 2018. Lectures on Convex Optimization. Springer.
- Neumaier, Arnold. 1998. Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization. *SIAM Review*, **40**, 636–666.
- Nocedal, Jorge, and Wright, Stephen J. 2006. Numerical Optimization. Springer.
- Nowozin, Sebastian, Gehler, Peter V., Jancsary, Jeremy, and Lampert, Christoph H. (eds). 2014. *Advanced Structured Prediction*. MIT Press.
- O'Hagan, Anthony. 1991. Bayes-Hermite Quadrature. Journal of Statistical Planning and Inference, 29, 245–260.
- Ong, Cheng Soon, Mary, Xavier, Canu, Stéphane, and Smola, Alexander J. 2004. Learning with Non-positive Kernels. Pages 639–646 of: *Proceedings of the International Conference on Machine Learning*.

Ormoneit, Dirk, Sidenbladh, Hedvig, Black, Michael J., and Hastie, Trevor. 2001. Learning and Tracking Cyclic Human Motion. In: *Advances in Neural Information Processing Systems*.

- Page, Lawrence, Brin, Sergey, Motwani, Rajeev, and Winograd, Terry. 1999. *The PageRank Citation Ranking: Bringing Order to the Web*. Tech. rept. Stanford InfoLab.
- Paquet, Ulrich. 2008. *Bayesian Inference for Latent Variable Models*. Ph.D. thesis, University of Cambridge.
- Parzen, Emanuel. 1962. On Estimation of a Probability Density Function and Mode. *The Annals of Mathematical Statistics*, **33**(3), 1065–1076.
- Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
- Pearl, Judea. 2009. Causality: Models, Reasoning and Inference. 2nd edn. Cambridge University Press.
- Pearson, Karl. 1895. Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, **186**, 343–414.
- Pearson, Karl. 1901. On Lines and Planes of Closest Fit to Systems of Points in Space. *Philosophical Magazine*, **2**(11), 559–572.
- Peters, Jonas, Janzing, Dominik, and Schölkopf, Bernhard. 2017. *Elements of Causal Inference: Foundations and Learning Algorithms*. MIT Press.
- Petersen, Kaare B., and Pedersen, Michael S. 2012. *The Matrix Cookbook*. Tech. rept. Technical University of Denmark.
- Platt, John C. 2000. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In: *Advances in Large Margin Classifiers*.
- Pollard, David. 2002. A User's Guide to Measure Theoretic Probability. Cambridge University Press.
- Polyak, Roman A. 2016. The Legendre Transformation in Modern Optimization. Pages 437–507 of: *Optimization and Its Applications in Control and Data Sciences*. Springer.
- Press, William H., Teukolsky, Saul A., Vetterling, William T., and Flannery, Brian P. 2007. *Numerical Recipes: The Art of Scientific Computing*. Cambridge University Press.
- Proschan, Michael A., and Presnell, Brett. 1998. Expect the Unexpected from Conditional Expectation. *American Statistician*, **52**(3), 248–252.
- Raschka, Sebastian, and Mirjalili, Vahid. 2017. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow. Packt Publishing
- Rasmussen, Carl E., and Ghahramani, Zoubin. 2001. Occam's Razor. In: Advances in Neural Information Processing Systems.
- Rasmussen, Carl E., and Ghahramani, Zoubin. 2003. Bayesian Monte Carlo. In: *Advances in Neural Information Processing Systems*.
- Rasmussen, Carl E., and Williams, Christopher K. I. 2006. *Gaussian Processes for Machine Learning*. MIT Press.
- Reid, Mark, and Williamson, Robert C. 2011. Information, Divergence and Risk for Binary Experiments. *Journal of Machine Learning Research*, **12**, 731–817.
- Rifkin, Ryan M., and Lippert, Ross A. 2007. Value Regularization and Fenchel Duality. *Journal of Machine Learning Research*, **8**, 441–479.
- Rockafellar, Ralph T. 1970. Convex Analysis. Princeton University Press.
- Rogers, Simon, and Girolami, Mark. 2016. *A First Course in Machine Learning*. Chapman and Hall/CRC.
- Rosenbaum, Paul R. 2017. *Observation & Experiment: An Introduction to Causal Inference*. Harvard University Press.
- Rosenblatt, Murray. 1956. Remarks on Some Nonparametric Estimates of a Density Function. *The Annals of Mathematical Statistics*, **27**(3), 832–837.

Roweis, Sam T. 1998. EM Algorithms for PCA and SPCA. Pages 626–632 of: *Advances in Neural Information Processing Systems*.

- Roweis, Sam T., and Ghahramani, Zoubin. 1999. A Unifying Review of Linear Gaussian Models. *Neural Computation*, **11**(2), 305–345.
- Roy, Anindya, and Banerjee, Sudipto. 2014. Linear Algebra and Matrix Analysis for Statistics. Chapman and Hall/CRC.
- Rubinstein, Reuven Y., and Kroese, Dirk P. 2016. Simulation and the Monte Carlo Method. Wiley.
- Ruffini, Paolo. 1799. Teoria Generale delle Equazioni, in cui si Dimostra Impossibile la Soluzione Algebraica delle Equazioni Generali di Grado Superiore al Quarto. Stamperia di S. Tommaso d'Aquino.
- Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. 1986. Learning Representations by Back-propagating Errors. *Nature*, **323**(6088), 533–536.
- Sæmundsson, Steindór, Hofmann, Katja, and Deisenroth, Marc P. 2018. Meta Reinforcement Learning with Latent Variable Gaussian Processes. In: *Proceedings of the Conference on Uncertainty in Artificial Intelligence*.
- Saitoh, Saburou. 1988. Theory of Reproducing Kernels and its Applications. Longman Scientific & Technical.
- Särkkä, Simo. 2013. Bayesian Filtering and Smoothing. Cambridge University Press.
- Schölkopf, Bernhard, and Smola, Alexander J. 2002. Learning with Kernels—Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
- Schölkopf, Bernhard, Smola, Alexander J., and Müller, Klaus-Robert. 1997. Kernel Principal Component Analysis. In: *Proceedings of the International Conference on Artificial Neural Networks*.
- Schölkopf, Bernhard, Smola, Alexander J., and Müller, Klaus-Robert. 1998. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. *Neural Computation*, 10(5), 1299–1319.
- Schölkopf, Bernhard, Herbrich, Ralf, and Smola, Alexander J. 2001. A Generalized Representer Theorem. In: *Proceedings of the International Conference on Computational Learning Theory*.
- Schwartz, Laurent. 1964. Sous Espaces Hilbertiens d'Espaces Vectoriels Topologiques et Noyaux Associés. *Journal d'Analyse Mathématique*, **13**, 115–256.
- Schwarz, Gideon E. 1978. Estimating the Dimension of a Model. *Annals of Statistics*, **6**(2), 461–464.
- Shahriari, Bobak, Swersky, Kevin, Wang, Ziyu, Adams, Ryan P., and De Freitas, Nando. 2016. Taking the Human out of the Loop: A Review of Bayesian Optimization. *Proceedings of the IEEE*, **104**(1), 148–175.
- Shalev-Shwartz, Shai, and Ben-David, Shai. 2014. *Understanding Machine Leanring: From Theory to Algorithms*. Cambridge University Press.
- Shawe-Taylor, John, and Cristianini, Nello. 2004. *Kernel Methods for Pattern Analysis*. Cambridge University Press.
- Shawe-Taylor, John, and Sun, Shiliang. 2011. A Review of Optimization Methodologies in Support Vector Machines. *Neurocomputing*, **74**(17), 3609–3618.
- Shental, Ori, Siegel, Paul H., Wolf, Jack K., Bickson, Danny, and Dolev, Danny. 2008. Gaussian Belief Propagation Solver for Systems of Linear Equations. Pages 1863–1867 of: *Proceedings of the International Symposium on Information Theory*.
- Shewchuk, Jonathan R. 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
- Shi, Jianbo, and Malik, Jitendra. 2000. Normalized Cuts and Image Segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **22**(8), 888–905.
- Shi, Qinfeng, Petterson, James, Dror, Gideon, Langford, John, Smola, Alexander J., and Vishwanathan, S.V.N. 2009. Hash Kernels for Structured Data. *Journal of Machine Learning Research*, 2615–2637.

- Shiryayev, Albert N. 1984. Probability. Springer.
- Shor, Naum Z. 1985. *Minimization Methods for Non-differentiable Functions*. Springer. Shotton, Jamie, Winn, John, Rother, Carsten, and Criminisi, Antonio. 2006. Texton-Boost: Joint Appearance, Shape and Context Modeling for Mulit-Class Object Recognition and Segmentation. In: *Proceedings of the European Conference on Computer Vision*.
- Smith, Adrian F. M., and Spiegelhalter, David. 1980. Bayes Factors and Choice Criteria for Linear Models. *Journal of the Royal Statistical Society B*, **42**(2), 213–220.
- Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems.
- Spearman, Charles. 1904. "General Intelligence," Objectively Determined and Measured. *American Journal of Psychology*, **15**(2), 201–292.
- Sriperumbudur, Bharath K., Gretton, Arthur, Fukumizu, Kenji, Schölkopf, Bernhard, and Lanckriet, Gert R. G. 2010. Hilbert Space Embeddings and Metrics on Probability Measures. *Journal of Machine Learning Research*, 11, 1517–1561.
- Steinwart, Ingo. 2007. How to Compare Different Loss Functions and Their Risks. *Constructive Approximation*, **26**, 225–287.
- Steinwart, Ingo, and Christmann, Andreas. 2008. Support Vector Machines. Springer.
- Stoer, Josef, and Burlirsch, Roland. 2002. *Introduction to Numerical Analysis*. Springer. Strang, Gilbert. 1993. The Fundamental Theorem of Linear Algebra. *The American Mathematical Monthly*, **100**(9), 848–855.
- Strang, Gilbert. 2003. Introduction to Linear Algebra. Wellesley-Cambridge Press.
- Stray, Jonathan. 2016. *The Curious Journalist's Guide to Data*. Tow Center for Digital Journalism at Columbia's Graduate School of Journalism.
- Strogatz, Steven. 2014. Writing about Math for the Perplexed and the Traumatized. *Notices of the American Mathematical Society*, **61**(3), 286–291.
- Sucar, Luis E., and Gillies, Duncan F. 1994. Probabilistic Reasoning in High-Level Vision. *Image and Vision Computing*, **12**(1), 42–60.
- Szeliski, Richard, Zabih, Ramin, Scharstein, Daniel, Veksler, Olga, Kolmogorov, Vladimir, Agarwala, Aseem, Tappen, Marshall, and Rother, Carsten. 2008. A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-based Priors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **30**(6), 1068–1080.
- Tandra, Haryono. 2014. The Relationship Between the Change of Variable Theorem and The Fundamental Theorem of Calculus for the Lebesgue Integral. *Teaching of Mathematics*, **17**(2), 76–83.
- Tenenbaum, Joshua B., De Silva, Vin, and Langford, John C. 2000. A Global Geometric Framework for Nonlinear Dimensionality Reduction. *Science*, **290**(5500), 2319–2323.
- Tibshirani, Robert. 1996. Regression Selection and Shrinkage via the Lasso. *Journal of the Royal Statistical Society B*, **58**(1), 267–288.
- Tipping, Michael E., and Bishop, Christopher M. 1999. Probabilistic Principal Component Analysis. *Journal of the Royal Statistical Society: Series B*, **61**(3), 611–622.
- Titsias, Michalis K., and Lawrence, Neil D. 2010. Bayesian Gaussian Process Latent Variable Model. In: *Proceedings of the International Conference on Artificial Intelligence and Statistics*.
- Toussaint, Marc. 2012. Some Notes on Gradient Descent.
- Trefethen, Lloyd N., and Bau III, David. 1997. Numerical Linear Algebra. SIAM.
- Tucker, Ledyard R. 1966. Some Mathematical Notes on Three-mode Factor Analysis. *Psychometrika*, **31**(3), 279–311.
- Vapnik, Vladimir N. 1998. Statistical Learning Theory. Wiley.

References 405

Vapnik, Vladimir N. 1999. An Overview of Statistical Learning Theory. *IEEE Transactions on Neural Networks*, **10**(5), 988–999.

Vapnik, Vladimir N. 2000. The Nature of Statistical Learning Theory. Springer.

Vishwanathan, S.V.N., Schraudolph, Nicol N., Kondor, Risi, and Borgwardt, Karsten M. 2010. Graph Kernels. *Journal of Machine Learning Research*, **11**, 1201–1242.

von Luxburg, Ulrike, and Schölkopf, Bernhard. 2011. Statistical Learning Theory: Models, Concepts, and Results. Pages 651–706 of: *Handbook of the History of Logic*, vol. 10. Elsevier.

Wahba, Grace. 1990. *Spline Models for Observational Data*. Society for Industrial and Applied Mathematics.

Walpole, Ronald E., Myers, Raymond H., Myers, Sharon L., and Ye, Keying. 2011. *Probability & Statistics for Engineers & Scientists*. Prentice Hall.

Wasserman, Larry. 2004. All of Statistics. Springer.

Wasserman, Larry. 2007. All of Nonparametric Statistics. Springer.

Whittle, Peter. 2000. Probability via Expectation. Springer.

Wickham, Hadley. 2014. Tidy Data. Journal of Statistical Software, 59.

Williams, Christopher K. I. 1997. Computing with Infinite Networks. In: *Advances in Neural Information Processing Systems*.

Yu, Yaoliang, Cheng, Hao, Schuurmans, Dale, and Szepesvári, Csaba. 2013. Characterizing the Representer Theorem. In: *Proceedings of the International Conference on Machine Learning*.

Zadrozny, Bianca, and Elkan, Charles. 2001. Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayesian Classifiers. In: *Proceedings of the International Conference on Machine Learning*.

Zhang, Haizhang, Xu, Yuesheng, and Zhang, Jun. 2009. Reproducing Kernel Banach Spaces for Machine Learning. *Journal of Machine Learning Research*, **10**, 2741–2775.

Zia, Royce K. P., Redish, Edward F., and McKay, Susan R. 2009. Making Sense of the Legendre Transform. *American Journal of Physics*, 77(614).

1-of- K representation, 361 ℓ_2 norm, 72 ℓ_1 norm, 71 abduction, 255 Abel-Ruffini theorem, 331 Abelian group, 36 absolutely homogeneous, 71 activation function, 312 affine mapping, 63 affine subspace, 61 Akaike information criterion, 285 algebra, 17 algebraic multiplicity, 105 analytic, 142 ancestral sampling, 337, 361 angle, 76 associativity, 23, 25, 36 attribute, 251 augmented matrix, 29 auto-encoder, 340 automatic differentiation, 160 automorphism, 49	canonical basis, 45 canonical feature map, 385 canonical link function, 312 categorical variable, 179 Cauchy-Schwarz inequality, 75 change of variable, 217 characteristic polynomial, 103 Cholesky decomposition, 113 Cholesky factor, 113 Cholesky factorization, 113 class, 367 classification, 312 closure, 36 code, 340 codirected, 104 codomain, 58, 138 collinear, 104 column, 22 column space, 59 column vector, 22, 38 completing the squares, 304 concave function, 235
backpropagation, 158 basic variables, 30 basis, 44 basis vector, 45 Bayes factor, 284 Bayes' law, 184 Bayes' rule, 184 Bayes' theorem, 184 Bayesian GP-LVM, 344 Bayesian inference, 271 Bayesian inference, 271 Bayesian linear regression, 300 Bayesian model selection, 283 Bayesian network, 276, 280 Bayesian PCA, 343 Bernoulli distribution, 204 Beta distribution, 205 bijective, 48 bilinear mapping, 72 binary classification, 367 Binomial distribution, 204 blind-source separation, 343 Borel σ -algebra, 179	condition number, 228 conditional probability, 178 conditionally independent, 193 conjugate, 206 conjugate prior, 206 convex conjugate, 240 convex function, 235 convex hull, 383 convex optimization problem, 234, 237 convex set, 234 coordinate, 50 coordinate representation, 50 coordinate vector, 50 correlation, 190 covariance, 188, 189 covariance matrix, 189, 196 covariate, 251 CP decomposition, 135 cross validation, 255, 261 cross-covariance, 189 cumulative distribution function, 177, 180 d-separation, 278

407

Draft (March 15, 2019) of "Mathematics for Machine Learning" © 2019 by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. To be published by Cambridge University Press. Please do not post or distribute this file, please link to https://mml-book.com.

data covariance matrix, 315 data point, 251 data-fit term, 299 decoder, 340 deep auto-encoder, 344 defective, 110 denominator layout, 150 derivative, 140 design matrix, 291, 293 determinant, 98 diagonal matrix, 114 diagonalizable, 115 diagonalization, 115 difference quotient, 140 dimension, 45 dimensionality reduction, 314 directed graphical model, 275, 276, 280 direction, 61 direction space, 61 distance, 75 distribution, 176 distributivity, 24, 26 domain, 58, 138 dot product, 72 dual SVM, 382	feature, 251 feature map, 252 feature matrix, 293 feature vector, 292 Fisher discriminant analysis, 135 Fisher-Neyman theorem, 209 forward mode, 160 free variables, 30 full rank, 47 full SVD, 127 fundamental theorem of linear mappings, 60 Gaussian elimination, 31 Gaussian mixture model, 346 Gaussian process, 313 Gaussian process latent variable model, 344 general linear group, 37 general solution, 28, 30 generalized linear models, 312 generating set, 44 generative process, 270, 283 generator, 341 geometric multiplicity, 107 Givens rotation, 94
Eckart-Young theorem, 130, 331 eigendecomposition, 115 eigenspace, 105 eigenspectrum, 105 eigenvalue, 104 eigenvalue equation, 104 eigenvector, 104 elementary transformations, 28 EM algorithm, 357	global minimum, 223 GP-IVM, 344 gradient, 145 Gram matrix, 386 Gram-Schmidt orthogonalization, 89 graphical model, 275 group, 36 Hadamard product, 23 hard margin SVM, 374
embarrassingly parallel, 262 empirical covariance, 191 empirical mean, 190 empirical risk, 258 empirical risk minimization, 255, 258 encoder, 340 endomorphism, 49 epigraph, 235 equivalent, 56	Hessian, 163 Hessian eigenmaps, 135 Hessian matrix, 164 hinge loss, 378 histogram, 366 hyper-prior, 278 hyperparameter, 256 hyperplane, 61, 62
error function, 291 error term, 379 Euclidean distance, 72, 75 Euclidean norm, 72 Euclidean vector space, 73 event space, 174 evidence, 184, 282, 303 example, 251	i.i.d., 193 ICA, 343 identity automorphism, 49 identity mapping, 49 identity matrix, 23 image, 58, 138 independent and identically distributed, 193, 258, 264 independent component analysis, 343
expected risk, 259 expected value, 186 exponential family, 204, 210 extended Kalman filter, 169 factor analysis, 343 factor graph, 280	inference network, 341 injective, 48 inner product, 73 inner product space, 73 intermediate variables, 161 inverse, 24

inverse element, 36 marginal likelihood, 184, 283, 303 invertible, 24 marginal probability, 178 Isomap, 135 marginalization property, 183 isomorphism, 49 Markov random field, 280 matrix, 22 Jacobian, 145, 149 matrix factorization, 97 Jacobian determinant, 151 maximum a posteriori, 297 Jeffreys-Lindley paradox, 284 maximum a posteriori estimation, 266 Jensen's inequality, 236 maximum likelihood, 255 joint probability, 177 maximum likelihood estimate, 293 Karhunen-Loève transform, 315 maximum likelihood estimation, 263, kernel, 33, 47, 58, 252, 385 290 kernel density estimation, 366 mean, 186 kernel matrix, 386 mean function, 306 kernel PCA, 344 mean vector, 196 kernel trick, 313, 344, 385 measure, 179 label, 251 median, 187 Lagrange multipliers, 232 metric, 76 Lagrangian, 232 minimal, 44 Lagrangian dual problem, 232 minimax inequality, 232 Laplace approximation, 169 misfit term, 299 Laplace expansion, 101 mixture models, 346 Laplacian eigenmaps, 135 mixture weights, 346 LASSO, 300, 313 mode, 187 latent variables, 272 model, 249 law, 176, 180 model evidence, 283 leading coefficient, 30 model selection, 256 least-squares loss, 153 Moore-Penrose pseudo-inverse, 35 least-squares problem, 259 multidimensional scaling, 135 least-squares solution, 88 multiplication by scalars, 37 left-singular vectors, 118 multivariate, 177 Legendre transform, 240 multivariate Gaussian distribution, 196 Legendre-Fenchel transform, 240 multivariate Taylor series, 165 length, 71 natural parameters, 210 likelihood, 184, 263, 266, 288 negative log-likelihood, 263 line, 61, 82 nested cross validation, 256, 281 linear combination, 40 neutral element, 36 linear manifold, 61 non-invertible, 24 linear mapping, 48 non-singular, 24 linear program, 237 norm, 71 linear subspace, 39 normal distribution, 196 linear transformation, 48 normal equation, 86 linearly dependent, 40 normal vector, 80 linearly independent, 40 null space, 33, 47, 58 loading, 319 numerator layout, 149 local minimum, 223 log-partition function, 210 Occam's razor, 282 logistic regression, 312 ONB, 79 logistic sigmoid, 312 one-hot encoding, 361 loss function, 258, 378 ordered basis, 50 loss term, 379 orthogonal, 77 lower-triangular matrix, 100 orthogonal basis, 79 orthogonal complement, 79 Maclaurin series, 142 orthogonal matrix, 78 Manhattan norm, 71 orthonormal, 77 MAP, 297 MAP estimation, 266 orthonormal basis, 79 margin, 371 outer product, 38 overfitting, 260, 268, 296 marginal, 189

PageRank, 113	regularized least squares, 299
parameters, 61	regularizer, 260, 299, 377, 379
parametric equation, 61	representer theorem, 381
partial derivative, 145	responsibility, 349
particular solution, 27, 30	reverse mode, 160
PCA, 314	right-singular vectors, 118
pdf, 179	RMSE, 295
penalty term, 260	root mean squared error, 295
pivot, 30	rotation, 91
plane, 62	rotation matrix, 92
plate, 278	row, 22
population mean and covariance, 190	row echelon form, 30
positive definite, 71, 73, 74, 76	row vector, 22, 38
posterior, 184, 265	row-echelon form, 30
posterior odds, 284	comple meen 100
power iteration, 331	sample mean, 190
power series representation, 144	sample space, 174
•	scalar, 37
PPCA, 337	scalar product, 72
preconditioner, 228	sigmoid, 211
predictor, 252	similar, 56
predictors, 12	singular, 24
primal problem, 232	singular value decomposition, 118
principal component, 319	singular value equation, 123
principal component analysis, 135, 314	singular value matrix, 118
principal subspace, 323	singular values, 118
prior, 184, 266	slack variable, 376
prior odds, 284	soft margin SVM, 376, 377
probabilistic inverse, 185	solution, 20
probabilistic PCA, 337	span, 44
probabilistic programming, 275	special solution, 27
probability, 174	
probability density function, 179	spectral clustering, 135
	spectral norm, 130
probability distribution, 171	spectral theorem, 110
probability integral transform, 215	spectrum, 105
probability mass function, 177	square matrix, 25
product rule, 183	standard basis, 45
projection, 82	standard deviation, 189
projection error, 88	standard normal distribution, 197
projection matrix, 82	standardization, 333
pseudo-inverse, 86	statistical independence, 193
random variable, 171, 174	statistical learning theory, 262
range, 58	stochastic gradient descent, 229
rank, 47	strong duality, 234
	sufficient statistics, 208
rank deficient, 47	sum rule, 183
rank-k approximation, 129	support point, 61
rank-nullity theorem, 60	support vectors, 381
raw-score formula for variance, 191	supporting hyperplane, 240
recognition network, 341	
reconstruction error, 88, 324	surjective, 48
reduced hull, 385	SVD, 118
reduced row echelon form, 31	SVD theorem, 118
reduced SVD, 128	symmetric, 73, 76
REF, 30	symmetric matrix, 25
regression, 286	symmetric, positive definite, 74
regular, 24	symmetric, positive semi-definite, 74
regularization, 260, 299, 379	system of linear equations, 20
regularization parameter, 260, 299, 377	target space, 174
j i i i i i i i i i i i i i i i i i i i	· ,

Taylor polynomial, 141, 165 Taylor series, 141 test error, 297 test set, 259, 281 Tikhonov regularization, 262 trace, 102 training, 12 training error, 297 training set, 258, 289 transfer function, 312 transformation matrix, 51 translation vector, 63 transpose, 25, 38 triangle inequality, 71, 76 truncated SVD, 128 Tucker decomposition, 135 underfitting, 269 undirected graphical model, 280 uniform distribution, 181 univariate, 177 unscented transform, 169 upper-triangular matrix, 100 validation set, 261, 281 variable selection, 313 variance, 189 vector, 37 vector addition, 37 vector space, 37 vector space homomorphism, 48 vector space with inner product, 73 vector subspace, 39 weak duality, 233 zero-one loss, 378