CSC 261/461 Database Systems

Eustrat Zhupa

November 7, 2018

Relational Algebra

CARTESIAN PRODUCT Operation

- ▶ This operation is used to combine tuples from two relations.
- ▶ Denoted by $R(A1, A2, ..., An) \times S(B1, B2, ..., Bm)$
- ▶ Result is a relation Q with n + m attributes: Q(A1, A2, . . ., An, B1, B2, . . ., Bm)
- The resulting relation state has one tuple for each combination of tuples.
- ► The two operands do NOT have to be "type compatible"

[1]

Example

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

Example

EMP_DE	PENDEN	TS					
Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	М	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	М	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	М	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	М	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	М	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	М	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	М	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	М	1942-02-28	
Joyce	English	453453453	123456789	Michael	М	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

JOIN

- ▶ Denoted by ⋈
- ► The sequence of CROSS PRODUCT followed by SELECT is used quite to identify and select related tuples from two relations
- A special operation, called JOIN combines them into a single operation
- very important because it allows us combine data from various relations
- ► The general form of a join operation is:

 $R\bowtie_{< join condition>} S$

JOIN

- ► Consider the following JOIN: $R(A1, A2, ..., An) \bowtie_{R.Ai=S.Bj} S(B1, B2, ..., Bm)$
- ► Result is a relation Q with n + m attributes: Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
- ► The result has one tuple for each combination of tuples one from R and one from S, but only if they satisfy the join condition r[Ai] = s[Bj]

[2]

Example

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

THETA JOIN

- ► The general case of JOIN operation is called a Theta-join: $R \bowtie_{theta} S$
- ► The join condition is called theta
- ► Theta can be any boolean expression on attributes of R and S: Example:

$$R.A_i < S.B_j$$
 AND $(R.A_k = S.B_i \ OR \ R.A_p < S.B_q)$

EQUIJOIN

- ► Join conditions with equality comparisons only
- ▶ In the result we always have one or more pairs of attributes that have identical values in every tuple.

$DEPT_MGR \leftarrow DEPARTMENT \bowtie_{Mgr_ssn=Ssn} EMPLOYEE$

DEPT_MGR

Dname	Dnumber	Mgr_ssn	 Fname	Minit	Lname	Ssn	
Research	5	333445555	 Franklin	Т	Wong	333445555	
Administration	4	987654321	 Jennifer	S	Wallace	987654321	
Headquarters	1	888665555	 James	E	Borg	888665555	

NATURAL JOIN

- ► denoted by *
- created to get rid of the second attribute in an EQUIJOIN condition.
 - one of each pair of attributes with identical values is redundant
- each pair of corresponding join attributes have the same name in both relations
 - ▶ If not, a renaming operation is applied first.

[3

Example

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19
	Research Administration	Research 5 Administration 4	Research 5 333445555 Administration 4 987654321

$PROJ_DEPT \leftarrow PROJECT * \rho_{(Dname,Dnum,Mgr_ssn,Mgr_start_date)}(DEPARTMENT)$

(a)

PROJ_DEPT

Pname	Pnumber	Plocation	Dnum	Dname	Mgr_ssn	Mgr_start_date
ProductX	1	Bellaire	5	Research	333445555	1988-05-22
ProductY	2	Sugarland	5	Research	333445555	1988-05-22
ProductZ	3	Houston	5	Research	333445555	1988-05-22
Computerization	10	Stafford	4	Administration	987654321	1995-01-01
Reorganization	20	Houston	1	Headquarters	888665555	1981-06-19
Newbenefits	30	Stafford	4	Administration	987654321	1995-01-01

Example

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS?

(b) DEPT LOCS

Dname	Dnumber	Mgr_ssn	Mgr_start_date	Location
Headquarters	1	888665555	1981-06-19	Houston
Administration	4	987654321	1995-01-01	Stafford
Research	5	333445555	1988-05-22	Bellaire
Research	5	333445555	1988-05-22	Sugarland
Research	5	333445555	1988-05-22	Houston

OUTER JOIN

- ▶ LEFT OUTER JOIN *R* ⋈ *S*: keeps every tuple in R; if no matching tuple is found in S, then the attributes of S are filled with NULL.
- ▶ RIGHT OUTER JOIN *R* ⋈ *S*: keeps every tuple in *S* in the result, fill in with NULLs in *R*.
- ▶ FULL OUTER JOIN $R \bowtie S$: keeps all tuples in both relations: when no matching tuples are found, fills with NULL.

[4]

Example

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

RESULT

Fname	Minit	Lname	Dname	
John	В	Smith	NULL	
Franklin	Т	Wong	Research	
Alicia	J	Zelaya	NULL	
Jennifer	S	Wallace	Administration	
Ramesh	К	Narayan	NULL	
Joyce	Α	English	NULL	
Ahmad	٧	Jabbar	NULL	
James	E	Borg	Headquarters	

Division

Division

The division operator denoted as $R \div S$.

- ▶ If $R(Z) \div S(X)$, where $X \subseteq Z$, and Y = Z X.
- ▶ Result is a relation T(Y) including a tuple t if:
 - t_R appears in R with $t_R[Y] = t$
 - $t_R[x] = t_S$ for every tuple t_S in S.
- ▶ Otherwise, For a tuple t to appear in the result, values in t must be in R combined with all tuples in S.

Division

Example

SSN_PNOS

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

SMITH_PNOS

Pno	
1	
2	

SSNS

Α	В
a1	b1
a2	b1
аЗ	b1
a4	b1
a1	b2
аЗ	b2
a2	b3
аЗ	b3
a4	b3
a1	b4
a2	b4

b4

	Α
	a1
	a2
	a3

Т
В
b1
b4

RA Operations

Generalized Projection

The generalized projection operation:

$$\pi_{F_1,F_2,\ldots,F_n}(R)$$

▶ $F_1, F_2, ..., F_n$ are functions over the attributes of R and may involve arithmetic operations and constant values.

 $\pi_{Ssn,Salary-Deduction,2000*Years_service,0.25*Salary}(EMPLOYEE)$

RA Operations

Aggregate Functions

We can define an AGGREGATE FUNCTION operation, using the symbol $\mathcal{F}\colon$

$$<$$
grouping_attributes $>$ $\mathcal{F}<$ function_list $>$ (R)

- ► < grouping_attributes > is a list of attributes
- < function_list > is a list of (< function >, < attribute >)
 pairs.
- function > is one of SUM , AVERAGE , MAXIMUM , MINIMUM , COUNT.

R

Dno No_of_employees		Average_sal
5	4	33250
4	3	31000
1	1	55000
		_

(b)	Dno	Count_ssn	Average_salary
	5	4	33250
	4	3	31000
	1	1	55000

(c)	Count_ssn	Average_salary
	8	35125

Figure 8.10

The aggregate function operation.

- $a. \ \ \rho_{\textit{R}(Dno, \ No_of_employees, \ Average_sal)}(Dno \ \ \ \ COUNT \ Ssn, \ AVERAGE \ Salary} \ \ (EMPLOYEE)).$
- b. Dno 3 COUNT Ssn, AVERAGE Salary (EMPLOYEE).
- c. \Im COUNT Ssn, AVERAGE Salary (EMPLOYEE).

