COL Worksheet

Your Name:		Signature: _		
Lab partner(s):				
Course & Section:		Station #	Date:	
Section D. Procedu	ıre			
1. What are the mas	sses of your two car	ts, gratings, and mas	s bars?	
$m_{cart1} = \underline{\qquad} \pm \underline{\qquad}$	(units)			
$m_{cart2} = \underline{\qquad} \pm \underline{\qquad}$	(units)			
$m_{grating1} = \underline{\qquad} \pm$	(unit	ts)		
$m_{grating2} = \underline{\qquad} \pm$	(unit	ts)		
$m_{bar1} = \underline{\qquad} \pm \underline{\qquad}$	(units)			
$m_{bar2} = \underline{\qquad} \pm \underline{\qquad}$	(units)			
	•	n photogate? Remen the velocities of all s		•
V _{photogate1} =	± (un	its)		
$v_{photogate2} = \underline{\qquad}$	± (un	its)		
Section E Analysis				
3. Record your data quantities.	a in the tables below	. Do not forget to in	clude the directions	for the vector
Collision 1	-	,		
Mass (kg)	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision ±	Cart 2 after collision±

$\varepsilon_{\rm p} =$		

Velocity (m/s)
Momentum (kg m/s)
Kinetic energy (J)

$$\epsilon_{k\,=\,____}$$

Collision 2

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	±	±	±	±
Velocity (m/s)	±	±	±	±
Momentum (kg m/s)				
Kinetic energy (J)				

$\varepsilon_p = \underline{\hspace{1cm}}$	
_	
$\varepsilon_{k} = \underline{\hspace{1cm}}$	

Collision 3*

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	±	±	±	±
Velocity (m/s)	±	±	±	±
Momentum (kg m/s)	±	±	±	±
Kinetic energy (J)	±	±	±	±

$\varepsilon_p = \underline{\hspace{1cm}}$	
$\varepsilon_k = \underline{\hspace{1cm}}$	

Collision 4

Compion .				
	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	±	±	±	±
Velocity (m/s)	±	±	±	±
Momentum (kg m/s)				
Kinetic energy (J)				

$\varepsilon_p = \underline{}$	
•	
$\varepsilon_{k} = $	

Collision 5

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	±	±	±	±
Velocity (m/s)	±	±	±	±
Momentum (kg m/s)				
Kinetic energy (J)				

$\Delta p = \underline{\hspace{1cm}}$	Kg.m/s
$\Lambda K =$	J

Collision 6

	Cart 1 before collision	Cart 1 after collision	Cart 2 before collision	Cart 2 after collision
Mass (kg)	±	±	±	±
Velocity (m/s)	±	±	±	±
Momentum (kg m/s)				
Kinetic energy (J)				

$\Delta p = \underline{\hspace{1cm}}$	Kg.m/s.
$\Delta K =$	J.

4*. Write out the error analysis for collision 3 to find the uncertainties in momentum and kinetic energy, and the uncertainties in ϵ_p and ϵ_k .

GRADE:(out of 30 points)	GRADED BY(TA's initials)
7. For the "explosion," did your data was the energy gained?	a fit the conservation of momentum model? Explain. Wha
6. For the inelastic collisions, did yo What was the relative energy loss?	our data fit the conservation of momentum model? Explain Where did the energy go?
5. For the elastic collisions, did you Explain.	r data fit the conservation of energy and momentum model