Project: Numerical Analysis Calculator Date: September 24, 2025

James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

1. BISECTION Input Parameters: Function: log(sin(x)**2 + 1) - 1/2 a = 0 b = 1 Tolerance = 0.0000001Nmax = 100

2. FALSE POSITION Input Parameters: Function: log(sin(x)**2 + 1) - 1/2 a = 0 b = 1 Tolerance = 0.0000001 Nmax = 100

Project: Numerical Analysis Calculator Date: September 24, 2025

James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

3. INCREMENTAL SEARCH Input Parameters: Function: log(sin(x)**2 + 1) - 1/2 x0 = -3 delta = 0.5

Nmax = 100

4. NEWTON-RAPHSON

Input Parameters: Function: $log(sin(x)**2 + 1) - 1/2 \times 0 = 0.5$ Tolerance = 0.0000001

Nmax = 100

Project: Numerical Analysis Calculator Date: September 24, 2025

James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

5. SECANT Input Parameters: Function: log(sin(x)**2 + 1) - 1/2 x0 = 0.5 x1 = 1 Tolerance = 0.0000001 Nmax = 100

unction f(x) (for roots) — use x as variable	Output							
log(sin(x)**2 + 1) - 1/2								
hoose method		Rai	z aproximada:	0.936404580879563	18			
O Bisection								
○ False Position	1	×0	x1	f(x0)	f(x1)	х2	Error	
Incremental Search	8	-3	1	-0.48028085	8.835366879	0.72565663	8.27434337	
	1	1	0.72565663	0.035366079	-8.13587879	0,94307573	0,2174191	
Fixed Point (g(x))	2	0.72565663	0.94307573	-0.13507879	0.0038475685	0.93705431	0.0050214267	
Newton-Raphson	3	0.94307573	0.93705431	0.0038475685	0.00037609511	0.93640195	0.00065235389	
Secant	5	0.93705431 0.93640195	8.93648195 8.93648458	8.00037609511 -1.5222782c-06	-1.5222782c-86 5.9497518c-18	0.93648458 0.93648458	2.6298017c-06 1.0274493c-09	
Newton (Multiple Roots)			er A by rows (spar and in b: 5 1	ces) and b in a separat	e line. For example, f	or 2x+3y=5 and x	-y=1 write in A:	
Gaussian Elimination	Function examples: * ain(x) - x/3 (trigonometric)							
O Partial Pivoting		 log(x) - 2 or ln(x) - 2 (natural logarithm) ln(sin(x)**2+1)-(1/2) (your example!) exp(x) - 5 (exponential) 						
Total Pivoting		 sqrt(x) - 3 (square root) x**2 * cos(x) - 1 (combined functions) 						

6. MULTIPLE ROOTS Input Parameters: Function: exp(x) - x - 1 x0 = 1 Tolerance = 0.0000001 Nmax = 100

Project: Numerical Analysis Calculator Date: September 24, 2025

James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

7. GAUSSIAN ELIMINATION Input Parameters: Matrix A: 4x4 (shown above) Vector b: [1, 1, 1, 1]

Size n = 4

unction f(x) (for roots) — use x as variable	Output
e.g: sin(x) - x/2, x**3 - x - 2	
hoose method	Solución: 0.038495188, -0.18022747, -0.30971129, 0.24759405
○ Bisection	
O False Position	Linear systems: Enter A by rows (spaces) and b in a separate line. For example, for 2x+3y=5 and x-y=1 write in A: 2 3 and 1 -1 and in b: 5 1 .
Incremental Search	Function examples: • sin(x) - x/3 (trigonometric)
○ Fixed Point (g(x))	 log(x) - 2 or ln(x) - 2 (natural logarithm) ln(zin(x)**z*1) - (1/2) [your example!] exg(x) - 5 (exponential)
O Newton-Raphson	= car(x) = 3 (square root) = x**2 * cos(x) - 1 (combined functions)
○ Secant	
Newton (Multiple Roots)	
Gaussian Elimination	
O Partial Pivoting	
O Total Pivoting	
Size n	
4	
A (each row in a line, separate coefficients with spaces)	
2-103 10.538 013-211 145-23	
b (values separated by spaces)	

Project: Numerical Analysis Calculator Date: September 24, 2025 James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

8. PARTIAL PIVOTING Input Parameters: Matrix A: 4x4 (same matrix) Vector b: [1, 1, 1, 1] Size n = 4

Project: Numerical Analysis Calculator Date: September 24, 2025 James Andrey Valencia Cano, Jose Luis Restrepo, Samuel Sanchez Gutierrez, samuel cadavid

9. TOTAL PIVOTING Input Parameters: Matrix A: 4x4 (same matrix) Vector b: [1, 1, 1, 1] Size n = 4

