Fiche de révision Convergence, Intégrales, Probabilités

Alexis GRACIAS

13 décembre 2024

Table des matières

1	Top	ologie	3
	1.1	Espaces vectoriels normés	3
	1.2	Espaces métrique	4
	1.3	Ouverts, fermés, boules	4
	1.4	Intérieur - Adhérence	5
	1.5	Suites	5

Introduction

Chapitre 1

Topologie

1.1 Espaces vectoriels normés

Dans toute la suite du chapitre, on notera $\mathbb K$ l'ensemble $\mathbb R$ ou $\mathbb C.$

Definition 1: Espace vectoriel normé

Un K-espace vectoriel E est dit normé si il est muni d'une norme, c'est-à-dire d'une application $\mathcal{N}: E \to \mathbb{R}^+$ qui satisfait les conditions suivantes :

Séparation

$$\forall x \in E, \mathcal{N}(x) = 0 \implies x = 0_E$$

Homogénéité

$$\forall (x, \lambda) \in E \times \mathbb{R}, \mathcal{N}(\lambda x) = |\lambda| \mathcal{N}(x)$$

Sous-additivité (inégalité triangulaire)

$$\forall (x,y) \in E^2, \mathcal{N}(x+y) < \mathcal{N}(x)\mathcal{N}(y)$$

La norme euclidienne d'ordre p dans \mathbb{R}^n :

$$||x||_p = \sqrt[p]{\sum_{k=1}^n |x_p|^p} = (\sum_{k=1}^n |x_p|^p)^{\frac{1}{p}}$$
 (1.1)

avec

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

ou T désigne l'opérateur transpose dans \mathbb{R}^n . De plus, on définit la **norme infinie** :

$$||x||_{\infty} = max\{x_1, x_2, ..., x_n\}$$
 (1.2)

1.2 Espaces métrique

Definition 2: Espace métrique

On note (E, d) un espace métrique (E ensemble et d la distance définie pour tout éléments de E). C'est un espace vectoriel au sein duquel la notion de distance est bien définie pour tout éléments de E. L'application d satisfait les conditions suivantes :

- Symétrie

$$\forall (x,y) \in E^2, d(x,y) = d(y,x)$$

Séparation

$$\forall (x,y) \in E^2, d(x,y) = 0 \iff x = y$$

— Inégalité triangulaire

$$\forall (x, y, z) \in E^3, d(x, y) < d(x, z) + d(z, y)$$

1.3 Ouverts, fermés, boules

Definition 3: Boules

Pour un espace métrique (X, d), on définit :

— Boule ouverte, centre x, rayon r > 0

$$B(x,r) = \{ y \in X, d(x,y) < r \}$$
 (1.3)

— Boule fermée, centre x, rayon $r \ge 0$

$$B(x,r) = \{ y \in X, d(x,y) \le r \}$$
 (1.4)

— Sphère de centre x, rayon r

$$S(x,r) = \{ y \in X, d(x,y) = r \}$$
 (1.5)

Propriétés sur les ouverts et fermés. Pour (X,d) un espace métrique :

- Une réunion quelconque d'ouverts est un ouvert
- Une intersection finie d'ouverts est un ouvert
- Une intersection suelconque de fermés est un fermé
- Une intersection finie de fermés est un fermé
- Une partie F de X est un fermés si son complémentaire F^c est ouvert

1.4 Intérieur - Adhérence

Definition 4: Intérieur

Pour un espace métrique (X, d), soit A une partie de X.

 $x \in X$ est un point **intérieur** de $A \iff \exists r > 0, B(x,r) \subset A$

On note \mathring{A} l'ensemble des points intérieurs de A : c'est le plus grand ouvert contenu dans A

Definition 5: Adhérence

Pour un espace métrique (X, d), soit A une partie de X.

 $x \in X$ est un point **adhérent** de $A \iff \exists r > 0, B(x,r) \cap A \neq \emptyset$

On note \overline{A} l'ensemble des points adhérents de A : c'est le plus petit fermé contenant A.

Definition 6: Frontière

Pour un espace métrique (X, d), soit A une partie de X.

On appelle **frontière de** A l'ensemble $\overline{A} \backslash \mathring{A}$

Propriétés sur les intérieurs et adhérences :

- -A est ouvert $\iff A = \mathring{A}$
- A est fermé $\iff A = \overline{A}$

1.5 Suites

Pour toute la suite, on considère (X, d) un espace métrique.

Definition 7: Convergence de suites

Une suite $(x_n)_{n\in\mathbb{N}}\in X$ converge vers $l\in X$

$$\Longleftrightarrow \forall \epsilon > 0, \exists n_0, \forall n > n_0, d(x_n, l) \leq \epsilon$$

On note alors $\lim_{n \to +\infty} x_n = l$

Definition 8: Suites extraites

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de X. On appelle **sous-suite** ou **suite extraite** de $(x_n)_{n\in\mathbb{N}}$ toute suite de la forme $(x_{\varphi(n)})_{n\in\mathbb{N}}$ tel que l'application $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ est **strictement croissante**

5

Propriétés pour les suites $(x_n)_{n\in\mathbb{N}}\in X$