L2/L3 Mathématiques 2016–2017

Algèbre et Arithmétique 3

Examen terminal, session 1, 5 Mai 2017

Le barême appliqué tiendra compte de la longueur du sujet. Documents, calculatrices et téléphones interdits.

Exercice 1

- 1 Donnez trois exemples d'anneaux principaux.
- ${\bf 2}$ Donnez deux exemples d'éléments irréductibles dans un anneau qui ne soit pas ${\bf Z}.$

Exercice 2

(Questions de cours)

- 1 Soit $(I_n)_{n\geq 0}$ une suite croissante (au sens de l'inclusion) d'idéaux d'un anneau commutatif unitaire A. Démontrez que la réunion $J=\cup_{n\geq 0}I_n$ est un idéal de A
- **2** Soit $(I_n)_{n\geq 0}$ une suite croissante (au sens de l'inclusion) d'idéaux d'un anneau principal A. Montrez qu'il existe $m\geq 0$ tel que pour tout $n\geq m$, on a $I_n=I_m$.

Exercice 3

Soit σ la permutation de S_{13} définie par

- 1 Donnez la décomposition de σ en produit de cycles à supports disjoints.
- 2 Calculez la signature de σ , et son ordre.
- 3 Calculez σ^{2017} .

Exercice 4

On considère l'anneau $A={\bf Z}/58{\bf Z}$ ainsi que son groupe (multiplicatif) des inversibles $A^\times=({\bf Z}/58{\bf Z})^\times.$

- 1 L'anneau A est-il intègre ? Justifiez.
- **2** Quel est le cardinal de A^{\times} ?
- 4 Le groupe A^{\times} est-il cyclique?

Tournez la page!

Problème

Soit $\omega = \frac{1+\sqrt{5}}{2}$. On note

$$K = \{a + b\omega : (a, b) \in \mathbf{Q}^2\},\$$

et

$$\mathcal{O} = \{ a + b\omega : (a, b) \in \mathbf{Z}^2 \}.$$

- 1. Montrez que K est un sous-anneau de \mathbf{R} , et qu'il est intègre.
- **2.** Montrez que \mathcal{O} est un sous-anneau de K.
- **3.** On rappelle que $\sqrt{5} \notin \mathbf{Q}$. Montrez que pour un élément $x \in K$, il existe un unique couple de nombres rationnels (a,b) tels que $x=a+b\omega$.
- **4.** On note $\omega' = \frac{1-\sqrt{5}}{2}$. Montrez que ω' est dans \mathcal{O} .
- 5. On définit l'application

$$\sigma:K\to K,$$

$$x = a + b\omega \mapsto a + b\omega'$$
.

Montrez que σ est un morphisme d'anneaux, et que c'est une involution.

- **6.** Quels sont les morphismes d'anneaux de K dans K? Indication: remarquer que ω est solution de $X^2-X-1=0$.
- 7. Pour $x \in K$, on définit sa norme:

$$N(x) = x.\sigma(x).$$

Montrez que pour tout $x \in K$, N(x) est un rationnel, et que si de plus $x \in \mathcal{O}$, alors $N(x) \in \mathbf{Z}$.

- **8.** Montrez que K est un corps.
- **9.** Montrez que pour $(x,y) \in K^2$, on a N(xy) = N(x)N(y).
- **10.** Soient $(a,b) \in \mathbb{Q}^2$ avec $|a| \le 1/2$, $|b| \le 1/2$. Montrez que $|N(a+b\omega)| < 1$.
- 11. Montrez que \mathcal{O} est euclidien, de stathme la valeur absolue de N.
- **12.** Soient $(a, b) \in \mathbf{Z}^2$. Montrez que, modulo 5,

$$N(a+b\omega) = (a-2b)^2 \bmod 5.$$

- 13. Montrez que pour tout $x \in \mathcal{O}$, N(x) n'est congru ni à 2, ni à 3 modulo 5.
- **14.** Montrez que $x \in \mathcal{O}$ est inversible si et seulement si $N(x) \in \{-1, +1\}$.
- **15.** Soit p un entier premier (de \mathbf{Z}) congru à 2 ou 3 modulo 5. Montrez que p est un élément irréductible de \mathcal{O} .