CLAIMS

This listing of claims replaces all prior versions and listings of claims in the application. Where claims have been amended and/or canceled, such amendments and/or cancellations are done without prejudice and/or waiver and/or disclaimer, and the applicant reserves the right to claim this subject matter in a continuing application:

1. (Currently amended) A method for analyzing one-way delay in a packet switched network, comprising:

varying a Time To Live (TTL) value in a trace packet <u>addressed to a destination endpoint</u> to intentionally cause an intermediate node <u>other than the destination endpoint</u> in the packet switched network to send back a packet expiration notice; and

receiving an intermediate node time value in the packet expiration notice indicating when the intermediate node received the trace packet.

- 2. (Original) The method according to claim 1 including sending a source time value in the trace packet indicating when the trace packet was sent and receiving both the source time value and the intermediate node time value in the packet expiration notice.
- 3. (Currently amended) The method according to claim 1 including: setting a first TTL value in a first trace packet causing a first intermediate node to send back a first packet expiration notice with a first time value associated with a one-way packet delay to the first intermediate node; and

setting a second larger TTL value in a second trace packet causing a second intermediate node other than the destination endpoint to send back a second packet expiration notice with a second time value associated with a one-way packet delay to the second intermediate node.

4. (Currently amended) The method according to claim 3 including setting incrementally increasing TTL values in additional trace packets until a the destination endpoint sends back a packet expiration notice with a time value associated with a one-way packet delay from the source endpoint to the destination endpoint.

AMENDMENT

PAGE 3 OF 17

Do. No. 2705-326 SERIAL No. 10/797,520 5. (Currently amended) The method according to claim 1 including: using a Network Time Protocol (NTP) timestamp value for the intermediate node time value:

inserting the NTP timestamp value into an Internet Control Message Protocol (ICMP) reply message; and

using the ICMP reply message as the packet expiration notice.

- 6. (Currently amended) The method according to claim 5 including using bits in an existing unused field of the ICMP reply message for containing the NTP timestamp value.
- 7. (Original) The method according to claim 1 including formatting the trace packet as a Real Time Protocol (RTP) payload packet that travels along a same media path as corresponding RTP payload packets containing media content.
- 8. (Currently amended) The method according to claim 7 including varying the TTL value and setting a marker bit in the trace packet causing a <u>the</u> destination endpoint for the trace packet to send a corresponding Real Time Control Protocol (RTCP) report.
- 9. (Original) The method according to claim 8 including determining whether or not to transmit a media stream according to contents of the RTCP report.
- 10. (Currently amended) A network processing device, comprising:
 a processor sending a packet <u>addressed to a destination endpoint</u> that intentionally causes an intermediary node <u>other than the destination endpoint</u> to send back a message containing an intermediate node timestamp value identifying when the packet reached the intermediate node.
- 11. (Currently amended) The network processing device according to claim 10 wherein the processor is enabled to specify causes the intermediate node to decrement a Time To Live (TTL) value in the packet insufficient to reach the destination endpoint, and causing the intermediary node to send back the message when the TTL value is decremented to zero.

AMENDMENT

PAGE 4 OF 17

- 12. (Currently amended) The network processing device according to claim 11 wherein the processor modifies the TTL values in multiple packets causing multiple different intermediate nodes in a network to send back messages each containing a respective intermediate node timestamp values when the TTL values in the packets are decremented to zero by that intermediate node.
- 13. (Original) The network processing device according to claim 10 wherein the processor discerns when the packet was sent and compares that time with the intermediate node timestamp value returned in the message to determine the one-way packet delay between the processor and the intermediate node.
- 14. (Original) The network processing device according to claim 10 wherein the processor formats the packet as a Real Time Protocol (RTP) payload packet that travels along a same media path as associated RTP payload packets containing an actual media payload.
- 15. (Currently amended) The network processing device according to claim 14 wherein the processor sets a Time To Live (TTL) value and a marker bit in the probe packet that causes a the destination endpoint for the packet to send back a Real Time Control Protocol (RTCP) report.
 - 16. (Original) A network processing device, comprising:
- a processor configured to receive a trace packet containing an expiration value causing the processor to discard the trace packet and generate an expiration message that identifies a time value associated with when the trace packet was received by the processor.
- 17. (Original) The network processing device according to claim 16 wherein the network processing device is located at an intermediate location in a network between a source endpoint sending the trace packet and a destination endpoint for the trace packet.
- 18. (Original) The network processing device according to claim 17 wherein the processor is configured to decrement the expiration value and forward the trace packet toward

AMENDMENT

PAGE 5 OF 17

the destination endpoint when the decremented expiration value is not zero, the processor further configured to discard the trace packet and send the expiration message back to the source endpoint when the expiration value is decremented to zero.

- 19. (Currently amended) The network processing device according to claim 16 wherein the processor uses an Internet Control Message Protocol (ICMP) reply message as the expiration message and uses a Network Time Protocol (NTP) timestamp value as the time value.
- 20. (Original) The network processing device according to claim 16 wherein the trace packet is formatted as a media payload packet that uses a same media path as associated media packets containing a media payload.
- 21. (Currently amended) A system for analyzing one-way delay in a packet switched network, comprising:

means for varying a Time To Live (TTL) value in a trace packet <u>addressed to a</u>
<u>destination endpoint</u> to intentionally cause an intermediate node <u>other than the destination</u>
<u>endpoint</u> in the packet switched network to send back a packet expiration notice; and

means for receiving an intermediate node time value in the packet expiration notice indicating when the intermediate node received the trace packet.

- 22. (Original) A system according to claim 21 including means for sending a source time value in the trace packet indicating when the trace packet was sent and receiving both the source time value and the intermediate node time value in the packet expiration notice.
 - 23. (Currently amended) A system according to claim 21 including:

means for setting a first TTL value in a first trace packet causing a first intermediate node to send back a first packet expiration notice with a first time value associated with a one-way packet delay to the first intermediate node; and

means for setting a second larger TTL value in a second trace packet causing a second intermediate node other than the destination endpoint to send back a second packet expiration

notice with a second time value associated with a one-way packet delay to the second intermediate node.

- 24. (Currently amended) A system according to claim 23 including means for setting incrementally increasing TTL values in additional trace packets until a <u>the</u> destination endpoint sends back a packet expiration notice with a time value associated with a one-way packet delay from the source endpoint to the destination endpoint.
- 25. (Currently amended) A system according to claim 21 including: means for using a Network Time Protocol (NTP) timestamp value for the intermediate node time value;

means for inserting the NTP timestamp value into an Internet Control Message Protocol (ICMP) reply message; and

means for using the ICMP reply message as the packet expiration notice.

- 26. (Currently amended) A system according to claim 25 including means for using bits in an existing unused field of the ICMP reply message for containing the NTP timestamp value.
- 27. (Original) A system according to claim 21 including means for formatting the trace packet as a Real Time Protocol (RTP) payload packet that travels along a same media path as corresponding RTP payload packets containing media content.
- 28. (Currently amended) A system according to claim 27 including means for varying the TTL value and setting a marker bit in the trace packet causing a <u>the</u> destination endpoint for the trace packet to send a corresponding Real Time Control Protocol (RTCP) report.
- 29. (Original) A system according to claim 28 including means for determining whether or not to transmit a media stream according to contents of the RTCP report.

AMENDMENT

PAGE 7 OF 17

30. (Currently amended) A computer readable medium for analyzing one-way delay in a packet switched network, comprising:

varying a Time To Live (TTL) value in a trace packet <u>addressed to a destination endpoint</u> to intentionally cause an intermediate node <u>other than the destination endpoint</u> in the packet switched network to send back a packet expiration notice; and

receiving an intermediate node time value in the packet expiration notice indicating when the intermediate node received the trace packet.

- 31. (Original) A computer readable medium according to claim 30 including sending a source time value in the trace packet indicating when the trace packet was sent and receiving both the source time value and the intermediate node time value in the packet expiration notice.
- 32. (Currently amended) A computer readable medium according to claim 30 including:

setting a first TTL value in a first trace packet causing a first intermediate node to send back a first packet expiration notice with a first time value associated with a one-way packet delay to the first intermediate node; and

setting a second larger TTL value in a second trace packet causing a second intermediate node <u>other than the destination endpoint</u> to send back a second <u>packet</u> expiration notice with a second time value associated with a one-way packet delay to the second intermediate node.

- 33. (Currently amended) A computer readable medium according to claim 32 including setting incrementally increasing TTL values in additional trace packets until a the destination endpoint sends back a packet expiration notice with a time value associated with a one-way packet delay from the source endpoint to the destination endpoint.
- 34. (Currently amended) A computer readable medium according to claim 30 including:

using a Network Time Protocol (NTP) timestamp value for the intermediate node time value;

inserting the NTP timestamp value into an Internet Control Message Protocol (ICMP) reply message; and

using the ICMP reply message as the packet expiration notice.

- 35. (Currently amended) A computer readable medium according to claim 34 including using bits in an existing unused field of the ICMP reply message for containing the NTP timestamp value.
- 36. (Original) A computer readable medium according to claim 30 including formatting the trace packet as a Real Time Protocol (RTP) payload packet that travels along a same media path as corresponding RTP payload packets containing media content.
- 37. (Currently amended) A computer readable medium according to claim 36 including varying the TTL value and setting a marker bit in the trace packet causing a the destination endpoint for the trace packet to send a corresponding Real Time Control Protocol (RTCP) report.
- 38. (Original) A computer readable medium according to claim 37 including determining whether or not to transmit a media stream according to contents of the RTCP report.
- 39. (New) The method according to claim 7 wherein the trace packet is part of a same media stream as the RTP payload packets.
- 40. (New) The network processing device according to claim 19 wherein the Network Time Protocol (NTP) timestamp value is placed in an unused field of the ICMP message.
- 41. (New) The network processing device according to claim 20 wherein the trace packet is part of a same media stream as the media packets containing the media payload.

42. (New) A method for analyzing one-way delay in a packet switched network, comprising:

formatting a trace packet for transferring on a path that extends from an origination endpoint, through at least one intermediary node in the packet switched network, to a destination endpoint that is different than the intermediary node, said formatting including addressing the trace packet with a destination address that corresponds to the destination endpoint;

selecting a Time To Live (TTL) value for the trace packet, the selected TTL value to intentionally cause the intermediate node to send back a packet expiration notice; and receiving the packet expiration notice; and

extracting an intermediate node time value from the packet expiration notice, the packet expiration notice inserted by the intermediate node and indicating when the intermediate node, not the destination node, received the trace packet.

- 43. (New) The method of claim 42 wherein intermediate node time value is used, at least in part, to determine one-way packet delay from the source endpoint to the intermediate node.
- 44. (New) The method of claim 43 wherein the packet expiration notice is a Internet Control Message Protocol (ICMP) message with a Network Time Protocol (NTP) timestamp inserted therein.
 - 45. (New) The method of claim 44 further comprising:

formatting the trace packet as a Real Time Protocol (RTP) payload packet that travels along a same media path as corresponding RTP payload packets containing media content.

46. (New) The method of claim 45 wherein, at a time the trace packet is sent, the existence of the destination node on the path is known by the originating endpoint while the existence of the intermediary node on the path is not known, such that the originating node receives back a communication indicating the time that a previously unknown node received the trace packet.

AMENDMENT

PAGE 10 OF 17