Отчёт по лабораторной работе N?4: Вычисление наибольшего общего делителя

Дисциплина: Математические основы защиты информации и информационной безопасности

Савченко Елизавета Николаевна

Содержание

1 Оощая информация о задании лаоораторнои раооты	
1.1 Цель работы	
1.2 Задание	
2. Теоретическое введение	
2.1 Алгоритм Евклида	
2.2 Бинарный алгоритм Евклида	
2.3 Расширенный алгоритм Евклида	
2.4 Расширенный бинарный алгоритм Евклида	
3. Выполнение лабораторной работы	
3.1 Алгоритм Евклида и Бинарный алгоритм Евклида	
3.2 Расширенный алгоритм Евклида	
3.3 Расширенный бинарный алгоритм Евклида	
4. Выводы	?

1 Общая информация о задании лабораторной работы

1.1 Цель работы

Выполнить лаборатнорную работу 4 и изучить алгоритмы вычисления наибольшего общего делителя

1.2 Задание

Реализовать все рассмотренные алгоритмы программно.

2. Теоретическое введение

2.1 Алгоритм Евклида

Основан на принципе, что НОД двух чисел а и b равен НОД числа b и остатка от деления а на b. Формально:

- HOД(a, b) = HOД(b, a mod b)
- Процесс повторяется, пока остаток не станет 0.
- Тогда НОД равен последнему ненулевому делителю.

2.2 Бинарный алгоритм Евклида

Также известен как алгоритм на основе сдвигов. Использует свойства двоичной арифметики:

- Если оба числа чётные, $HOД(a, b) = 2 \times HOД(a/2, b/2)$
- Если одно число чётное, другое нечётное, делим чётное на 2 (сдвигаем вправо)
- Если оба нечётные, заменяем большее число на разность с меньшим
- Повторяем, пока числа не сравняются

Преимущество — отсутствие операций деления и взятия остатка, что ускоряет вычисления на двоичных системах.

2.3 Расширенный алгоритм Евклида

Помимо вычисления НОД, позволяет найти коэффициенты x и y в уравнении: $a \times x + b \times y = HOД(a, b)$

Коэффициенты важны для решения уравнений в целых числах (например, диофантовы уравнения), криптографии (например, для нахождения обратного по модулю числа).

2.4 Расширенный бинарный алгоритм Евклида

Комбинирует идеи расширенного алгоритма и бинарного, используя двоичные операции для ускорения и одновременно вычисляя коэффициенты x, y, что полезно при работе с большими числами.

3. Выполнение лабораторной работы

3.1 Алгоритм Евклида и Бинарный алгоритм Евклида

```
The state of the s
```

3.2 Расширенный алгоритм Евклида

```
The Processor General States that Case Courses

The Processor Course of Course Courses

The Processor Course of Course Courses

The Processor Course of Course Cour
```

3.3 Расширенный бинарный алгоритм Евклида

```
    Reconstruction from the first f
```

4. Выводы

В результате работы мы смогли реализовать все рассмотренные алгоритмы программно с помощью Julia