Pauta Ayudantía 7 Álgebra Lineal

5 de mayo de 2022

Problema 1. Sean V, W espacios vectoriales sobre $K, U \leq V$. Probar que toda aplicación lineal $S : U \to W$ puede ser extendida a una aplicación lineal $T : V \to W$, es decir, T es lineal Y : T = S en T.

Demostración. Sea $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ base de U. Podemos entonces completar en una base $\{\mathbf{u}_1, \dots, \mathbf{u}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_n\}$ de V. Definimos entonces

$$T\mathbf{u}_k = S\mathbf{u}_k, \qquad T\mathbf{u}_j = \mathbf{0}_{\mathbf{W}} \qquad 1 \le k \le m, m+1 \le j \le n$$

Por teorema visto en clases existe una única aplicación lineal que verifica las condiciones anteriores. Es claro que T es una extensión de S pues si $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \ldots + \alpha_m \mathbf{u}_m \in \mathbf{U}$ entonces

$$T\mathbf{u} = T(\alpha_1 \mathbf{u}_1 + \dots + \alpha_m \mathbf{u}_m)$$

$$= \alpha_1 T(\mathbf{u}_1) + \dots + \alpha_m T(\mathbf{u}_m)$$

$$= \alpha_1 S(\mathbf{u}_1) + \dots + \alpha_m S(\mathbf{u}_m)$$

$$= S(\alpha_1 \mathbf{u}_1 + \dots + \alpha_m \mathbf{u}_m) = S\mathbf{u}$$

Problema 2. Sea $T: \mathbf{V} \to \mathbf{V}$ aplicación lineal entre espacios vectoriales. Demuestre que

- 1. $T^2 = \mathbf{0} \iff \operatorname{Im} T \subseteq \ker T$
- 2. $T^2 = T \Rightarrow V = \operatorname{Im} T \oplus \ker T$

Demostración.

- 1. (\Rightarrow) Suponemos en primer lugar que $T^2 = \mathbf{0}$. Sea $\mathbf{v} \in \operatorname{Im} T$. Por definición existe $\mathbf{w} \in \mathbf{V}$ tal que $T(\mathbf{w}) = \mathbf{v}$. Aplicando T a la identidad anterior $T(T(\mathbf{w})) = T(\mathbf{v}) = \mathbf{0}$ donde la última igualdad viene de la hipótesis $T^2 = \mathbf{0}$. Por lo tanto $\mathbf{v} \in \ker T$ y así $\operatorname{Im} T \subseteq \ker T$.
 - (\Leftarrow) Suponer que Im $T \subseteq \ker T$. Para todo $\mathbf{v} \in \mathbf{V}$, por definición $T(\mathbf{v}) \in \operatorname{Im} T$ y luego $T(\mathbf{v}) \in \ker T$. Lo anterior se traduce en que $T(T(\mathbf{v})) = T^2(\mathbf{v}) = \mathbf{0}$ deduciendo que $T^2 = \mathbf{0}$.
- 2. Suponer que $T^2 = T$. Probaremos que $\mathbf{V} = \operatorname{Im} T + \ker T$ y $\operatorname{Im} T \cap \ker T = \{0\}$. Sea $\mathbf{v} \in \mathbf{V}$. Por hipótesis

$$T(T(\mathbf{v})) = T(\mathbf{v}) \Rightarrow T(T(\mathbf{v})) - T(\mathbf{v}) = T(T(\mathbf{v}) - \mathbf{v}) = \mathbf{0}$$

es decir, $T(\mathbf{v}) - \mathbf{v} \in \ker T$. Por lo tanto tenemos que

$$\mathbf{v} = \underbrace{\mathbf{v} - T(\mathbf{v})}_{\in \ker T} + \underbrace{T(\mathbf{v})}_{\in \operatorname{Im} T} \in \operatorname{Im} T + \ker T$$

deduciendo así que $\mathbf{V} = \operatorname{Im} T + \ker T$.

Por otro lado, si $\mathbf{v} \in \operatorname{Im} T \cap \ker T$ entonces $T(\mathbf{v}) = \mathbf{0}$ y además existe $\mathbf{w} \in \mathbf{V}$ tal que $T(\mathbf{w}) = \mathbf{v}$, de donde $T(T(\mathbf{w})) = \mathbf{0} = T(\mathbf{w})$ y así $\mathbf{v} = \mathbf{0}$, deduciendo $\operatorname{Im} T \cap \ker T \subseteq \{0\}$. La otra inclusión es trivial pues $\operatorname{Im} T$ y $\ker T$ son subespacios.

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

MAT210 UTFSM

Problema 3. Considere $\mathbf{V} = \mathbb{C}[X]_3$ el espacio vectorial sobre \mathbb{C} de los polinomios con coeficientes complejos de grado ≤ 3 . Considere las siguientes aplicaciones definidas en dicho espacio:

$$u: \mathbf{V} \to \mathbf{V}, \quad P \mapsto P' + P'' + XP(0)$$

 $v: \mathbf{V} \to \mathbf{V}, \quad P \mapsto X^3P(0) - P'$

Con respecto a las aplicaciones definidas:

- 1. Pruebe que u, v son aplicaciones lineales.
- 2. Determine los kernel de u, v. Encuentre bases para dichos espacios.
- 3. Determine las imágenes de u, v. Encuentre bases.
- 4. Encuentre la aplicación inversa en caso de existir.

Demostración.

1. Sean $\alpha \in \mathbb{C}, P, Q \in \mathbf{V}$. Basta entonces notar que

$$u(\alpha P + Q) = (\alpha P + Q)' + (\alpha P + Q)'' + X(\alpha P + Q)(0)$$

= $\alpha P' + Q' + \alpha P'' + Q'' + \alpha XP(0) + XQ(0)$
= $\alpha (P' + P'' + XP(0)) + (Q' + Q'' + XQ(0))$
= $\alpha u(P) + u(Q)$

y similar para v

$$v(\alpha P + Q) = X^{3}(\alpha P + Q)(0) - (\alpha P + Q)'$$

$$= \alpha X^{3}P(0) + X^{3}Q(0) - \alpha P' - Q'$$

$$= \alpha (X^{3}P(0) - P') + (X^{3}Q(0) - Q')$$

$$= \alpha v(P) + v(Q)$$

2. Veamos en primer lugar el kernel de u. Considere $P=aX^3+bX^2+cXd\in \mathbf{V}$.

$$u(aX^{3} + bX^{2} + cX + d) = 3aX^{2} + 2bX + c + 6aX + 2b + dX$$
$$= 3aX^{2} + (2b + 6a + d)X + (2b + c)$$

Por lo tanto si $P \in \ker u$ se deberá cumplir que a = 0 y c = d = -2b, es decir,

$$\ker u=\{bX^2-2bX-2b\in \mathbf{V}:b\in\mathbb{C}\}=\operatorname{span}(\{X^2-2X-2\})$$

Para v se tiene que

$$v(aX^3 + bX^2 + cX + d) = dX^3 - 3aX^2 - 2bX - c$$

de donde es claro que $\ker v = \{0\}.$

3. Gracias al cálculo anterior tenemos que

$$u(aX^{3} + bX^{2} + cX + d) = a(3X^{2} + 6X) + b(2X + 2) + c + dX$$

deduciendo que

$$\operatorname{Im} u \subseteq \operatorname{span}(\{3X^2+6X,2X+2,X,1\})$$

Notamos sin embargo que el conjunto anterior no es linealmente independiente pues 2X + 2 es combinación lineal de X y 1. Ahora, por el teorema del rango $\dim(\mathbf{V}) = 4 = \dim(\operatorname{Im}(u)) + \dim(\ker(u))$ y así $\dim(\operatorname{Im}(u)) = 3$. Por lo tanto $\{3X^2 + 6X, X, 1\}$ es base de $\operatorname{Im} u$.

En el caso de v, se tiene que

$$v(aX^{3} + bX^{2} + cX + d) = dX^{3} - 3aX^{2} - 2bX - c$$

de donde deducimos que $\operatorname{Im} v = \mathbf{V}$.

MAT210 UTFSM

4. Dado que la aplicación ${\bf v}$ es biyectiva, podemos encontrar su inversa.

Considerar $P = aX^3 + bX^2 + cX + d \in V$. Entonces $v^{-1}(P) = \alpha X^3 + \beta X^2 + \gamma X + \delta$ debe ser tal que

$$v(\alpha X^{3} + \beta X^{2} + \gamma X + \delta) = \delta X^{3} - 3\alpha X^{2} - 2\beta X - \gamma = aX^{3} + bX^{2} + cX + d$$

Encontramos entonces que $\alpha = -b/3, \beta = -c/2, \gamma = -d, \delta = a$ y por lo tanto

$$v^{-1}(P) = \frac{-b}{3}X^3 - \frac{c}{2}X^2 - dX + a$$

Definición 1. Sea V espacio vectorial y $T : V \to V$ lineal. Decimos que un subespacio $W \le V$ es **invariante** bajo T si $T(W) \subseteq W$.

Problema 4. Sea $T: \mathbf{V} \to \mathbf{V}$ lineal y $\mathbf{v} \in \mathbf{V}$. Sea $\mathbf{W} = \text{span}(\{\mathbf{v}, T(\mathbf{v}), T^2(\mathbf{v}), \ldots\})$ el subespacio generado por las potencias de \mathbf{v} bajo T.

- 1. Mostrar que W es invariante.
- 2. Probar que \mathbf{W} es el subespacio invariante por T más pequeño que contiene a \mathbf{v} , es decir, si $\mathbf{x} \in \mathbf{U} \leq \mathbf{V}$ y $T(\mathbf{U}) \subseteq \mathbf{U}$ entonces $\mathbf{W} \leq \mathbf{U}$.

Demostración.

1. Sea $\mathbf{w} \in \mathbf{W}$. Entonces existen escalares tales que

$$\mathbf{w} = \alpha_1 \mathbf{v} + \alpha_2 T(\mathbf{v}) + \ldots + \alpha_{n+1} T^n(\mathbf{v})$$

Aplicando T obtenemos que

$$T(\mathbf{w}) = \alpha_1 T(\mathbf{v}) + \alpha_2 T^2(\mathbf{v}) + \ldots + \alpha_{n+1} T^{n+1}(\mathbf{v}) \in \mathbf{W}$$

obteniendo que W es invariante bajo T.

2. De manera inductiva se prueba que si \mathbf{U} es un subespacio invariante bajo T que contiene a \mathbf{v} , entonces $T^n(\mathbf{v}) \in \mathbf{U}$ para todo $\mathbf{v} \in \mathbf{U}$.

En efecto, para n=0 es obvio pues $T^n(\mathbf{v})=\mathbf{v}\in \mathbf{U}$, y suponiendo que $T^n(\mathbf{v})\in \mathbf{U}$, entonces $T^{n+1}(\mathbf{v})=T(T^n(\mathbf{v}))\in \mathbf{U}$ pues es invariante. Por lo tanto se obtiene directamente que $\mathbf{W}\leq \mathbf{U}$.

Problema 5. Sea $T: \mathbf{V} \to \mathbf{V}$ lineal.

- 1. Pruebe que $\ker T$ e $\operatorname{Im} T$ son invariantes bajo T.
- 2. Sea $\mathbf{W} \leq \mathbf{V}$ invariante bajo T tal que $V = \operatorname{Im} T \oplus \mathbf{W}$. Demostrar $\mathbf{W} \subseteq \ker T$.

Demostración.

- 1. Basta notar que si $\mathbf{v} \in \ker T$, entonces $T(\mathbf{v}) = \mathbf{0}$ y luego $T(T(\mathbf{v})) = T(\mathbf{0}) = \mathbf{0}$ por linealidad, deduciendo que $T(\ker T) \subseteq \ker T$. Similarmente, si $\mathbf{v} \in \operatorname{Im} T$ existe $\mathbf{w} \in \mathbf{V}$ tal que $\mathbf{v} = T(\mathbf{w})$, y luego $T(\mathbf{v}) = T(T(\mathbf{w})) \in \operatorname{Im} T$ pues es la imagen de $T(\mathbf{w})$. Así también se tiene que $T(\operatorname{Im} T) \subseteq \operatorname{Im} T$.
- 2. En la Ayudantía 5 vimos la existencia del subespacio complementario, por lo que efectivamente existe \mathbf{W} tal que $\mathbf{V} = \operatorname{Im} T \oplus \mathbf{W}$. Sea $\mathbf{v} \in \mathbf{W}$. Entonces como \mathbf{W} es invariante $T(\mathbf{v}) \in \mathbf{W}$. Ahora, como $\operatorname{Im} T$ está en suma directa con \mathbf{W} entonces $\operatorname{Im} T \cap \mathbf{W} = \{\mathbf{0}\}$, y dado que $T(\mathbf{v}) \in \mathbf{W}$, se tiene que $T(\mathbf{v}) = \mathbf{0}$, por lo que $\mathbf{v} \in \ker T$.

_