IA: Tamba

Lycée : Koumpentoum

Année : 2021-2022 Ch

M. DRAME

Classe : Terminale S_2

Chapitre: Statistiques

SERIE D'EXERCICES

EXERCICE 1

Bac 2005

Une entreprise a mis au point un nouveau produit et cherche à en fixer le prix de vente. Une enquête est réalisée auprès des clients potentiels ; les résultats sont donnés dans le tableau suivant où yi est représente le nombre d'exemplaires du produit que les clients sont disposés à acheter si le prix de vente, exprime en milliers de francs, est xi.

X_i	60	80	100	120	140	160	180	200
Y_i	952	805	630	522	510	324	205	84

On appelle x la variable statistique dont les valeurs sont xi et y celle dont les valeurs sont les yi.

- 1) Calculer le coefficient de corrélation linéaire de y et x. La valeur trouvée justifie-t-elle la recherche d'un ajustement linéaire.
- 2) Déterminer l'équation de la droite de régression de y en x.
- 3) Les frais de conception du produit se sont élevés à 28 millions de francs. Le prix de fabrication de chaque produit est de 25000 francs.
- a) Déduire de la question précédente que le bénéfice z en fonction du prix de vente est donné par l'égalité :
- z = -5.95 x2 + 1426.25 x 59937.5, où x et z sont exprimés en milliers de francs.
- b) Déterminer le prix de vente x permettant de réaliser un bénéfice maximum et calculer ce bénéfice.

NB: Prendre 2 chiffres après la virgule sans arrondi. Rappel: Bénéfice = Prix de vente – prix de revient.

EXERCICE 2

Une étude du prix du Kg d'haricot chez un commerçant a donné le tableau suivant.

Mois	Janvier	février	mars	avril	mai
Rang du mois : X	1	2	3	4	5
Prix du Kg d'haricot en FCFA: Y	300	325	350	k	475

- 1. Déterminer l'effectif de cette série statistique en déduire la moyenne \bar{X} .
- 2. Trouver la valeur de k sachant que la moyenne $\overline{Y} = 375$.

EXERCICE 3

Bac 2009

- 1. (X,Y) est une série statistique double.
 - Soit (D1) la droite de régression de Y en X. Soit (D2) la droite de régression de X en Y.

On suppose que : (D1) : y = a x + b et (D2) : x = a' y + b'.

Soit r le coefficient de corrélation linéaire entre X et Y. Etablir que $r^2 = aa'$.

- 2. Dans une entreprise une étude simultanée portant sur deux caractères X et Y donnent les résultats suivants :
 - la droite de régression de Y en X a pour équation : 2,4x y = 0.
 - la droite de régression de X en Y a pour équation : 3.5 y 9 x + 24 = 0.
 - a. Calculer le coefficient de corrélation linéaire entre X et Y, sachant que leur covariance est positive.
 - b. Calculer la moyenne de chacun des caractères X et Y.

EXERCICE 4

Bac 2006

Une étude sur les causes des accidents donne les résultats ci-contre.

Type de transport	Particuliers y1	Transporteurs en commun y2
Cause des accidents :X		
Accidents liés à l'excès de vitesse :x1	440	360
Accidents à cause mécanique : x2	110	90

- 1. Déterminer l'effectif total des accidents enregistrés lors de cette étude.
- 2. Déterminer les fréquences conditionnelles $f_{y2}_{/x1}$ et $f_{x2}_{/y2}$
- 3. Déterminer les fréquences marginales $f_{.1}$ et $f_{2.}$.

EXERCICE 5

Bac 2002

63 candidats se sont présentés au baccalauréat comportant une épreuve de maths et une épreuve de sciences physiques : SP. Le tableau statistique suivant donne le nombre de candidats ayant obtenu un couple de notes donne.

Note en	2	6	10	14	18	Totaux
Maths						
Note en SP						
6	4	2	1	0	0	7
8	2	5	2	0	0	9
10	1	6	16	5	1	29
12	0	2	3	6	2	13
14	0	1	0	1	3	5
Totaux	7	16	22	12	6	63

On note X = (xi) la série statistique des notes de Sciences Physiques et Y= (yi) la série statistique des notes de Mathématiques.

- 1. Déterminer pour chaque xi la moyenne zi de la série conditionnelle y / xi.
- 2. On considère la série double (xi,zi). Déterminer le tableau de cette série.

EXERCICE 6

Bac 2010

Une étude sur le nombre d'années d'exercice X, des ouvriers d'une entreprise et leur salaire mensuel Y en milliers de francs, a donné les résultats indiqués dans le tableau ci-dessous avec des données manquantes désignées par a et b.

Y	2	6	10	14	18	22
75	а	5	0	0	0	0
125	0	7	1	0	2	0
175	2	0	9	8	15	4
225	0	1	0	3	b	1

- 1. Déterminer a et b pour que la moyenne de la série marginale de X soit égale à $\frac{596}{59}$ et celle de la série marginale de Y soit $\frac{8450}{59}$.
- 2. Dans la suite, on suppose que a = 40 et b = 20. A chaque valeur xi de X on associe la moyenne mi de la série conditionnelle : Y/X = xi. On obtient ainsi la série double (X, M). Déterminer le tableau correspondant à cette série.