LAB. DI ALGORITMI APPUNTI A CURA DI: RICCARDO LO IACONO

Università degli studi di Palermo a.a. 2023-2024

a.u. 2025-2024

Indice.

1	Strutture dati astratte: alberi	
	1.1	BST: binary search trees
	1.2	AVL trees: Adelson-Velsky-Landis trees

- 1 - Strutture dati astratte: alberi.

Tra le varie strutture dati astratte, gli alberi sono sicuramente quelli maggiormente utilizzati e di maggior importanza. Di questi, ne esistono molteplici varianti, ciascuna con uno scopo ben preciso; fatto sta che tutte queste varianti sono accomunate dall'efficienza.

-1.1 - BST: binary search trees.

Prima di procedere con il discutere varianti di alberi più complesse, si procede a fare un richiamo al concetto di albero binario di ricerca. Questi si ricorda essere una tipologia di albero binario che, dato S un insieme di elementi ordinati, memorizza gli stessi in un nodo dell'albero in modo tale che, posto $x \in S$, si abbia

 \bullet per ogni altro y nel sotto-albero sinistro con radice x, si abbia

$$key[y] \le key[x]$$

cioè, ogni elemento del sotto-albero sinistro deve avere un valore minore o uguale, a quello della radice del sotto-albero stesso;

• per ogni ogni altro y nel sotto-albero destro radicato in x, si abbia

cioè, ogni elemento del sotto-albero sinistro deve avere un valore maggiore, a quello della radice del sotto-albero stesso.

Si ricorda brevemente che, posto h l'altezza dell'albero, le operazioni di inserimento, ricerca e cancellazione sono tutto di costo $\mathcal{O}(h)$. Si ha quindi che, poiché

$$h = \begin{cases} \log_2\left(n\right) \text{ , se l'albero è perfettamente bilanciato;} \\ \log_2\left(n\right) \leq k \leq n \text{ , se l'albero non è perfettamente bilanciato;} \\ n \text{ , se completamente sbilanciato,} \end{cases}$$

nel caso pessimo si ha un costo di $\mathcal{O}(n)$.

- 1.2 - AVL trees: Adelson-Velsky-Landis trees.

Gli AVL sono una tipologia di alberi binari di ricerca bilanciati in altezza. Nello specifico, si dice che un AVL è bilanciato se questi ha, per ogni sotto-albero, un fattore di bilanciamento B_f minore o uguale ad uno.

Per quel che riguarda le operazioni: essendo, come detto, che gli AVL sono dei BST, e poiché essa non modifica la struttura dell'albero, la ricerca è analoga a quella dei BST; inserimento e cancellazione viceversa, proprio perché modificano la struttura dell'albero, e rischiano di sbilanciarlo, sono modificate in modo tale che a seguito di esse l'albero risulti ancora bilanciato. Tale modifica consiste nelle operazioni di rotazione descritte a seguito.

Qui per fattore di bilanciamento si

intende la diffe-

renza in modulo

tra l'altezza dei

 $due\ sotto-alberi.$

− 1.2.1 − Ribilanciamento di un AVL.

Alla base del processo di bilanciamento vi sono le operazioni di rotazione a sinistra e a destra. Per comprendere l'operazione di rotazione, si consideri Figura 1.a, come si osserva, u sbilancia l'albero avendo due figli di altezza a+1; in questo caso è necessario effettuare una rotazione a destra ($Figura\ 1.b$) ossia si rende u la nuova radice, e si rende T_2 figlio sinistro di v bilanciando così l'albero. L'operazione appena descritta prende il nome di rotazione destra-destra, a questa si aggiungono la rotazione sinistra-sinistra

(simmetrica alla rotazione destra-destra) e le rotazioni sinistra-destra, destra-sinistra tra loro simmetriche.

1.a 1.b

Osservazione. Nel caso di rotazioni sinistra-sinistra (destra-destra equivalentemente) si dimostra sufficiente un'unica operazioni di rotazione elementare.