

Procesamiento y Análisis de Imágenes

Violeta Chang

violeta.chang@usach.cl

Créditos por slides: José M. Saavedra

Análisis de imágenes binarias

¿Cuántos objetos hay?

Sea S un conjunto no vacío de I. Se dice que P y Q son conexos en S si existe una ruta de P a Q que consiste únicamente de puntos de S. Se denominará a P y Q 4-conexos o 8-conexos dependiendo del tipo de ruta que une P y Q.

8-vecinos (azul)

Tipos de conectividad

Componente conexo

Un conjunto *P* es *x-conexo* si para cada par *(a,b)* tal que *a* y *b* pertenecen a *P*, existe un camino *x-conexo* de *a* hacia *b*.

¿Son conexos a y b?

¿Cuántos componentes existen en cada una de la imágenes?

- Etiquetado de componentes a través de recorridos de grafos: (Podemos entender una imagen binaria como un grafo)
 - Recorrido Primero en Profundidad (DFS)
 - Recorrido Primero en Anchura (BFS)

Etiquetado de componentes 8-conexos

Componentes conexos

Propiedades de los Componentes

- Tamaño: número de pixels
- Centro de masa
- Borde (Boundary)
- Bounding box
- etc.

Componentes conexos

Propiedades de los Componentes

- Tamaño: número de pixels
- Centro de masa
- Borde (Boundary)
- Bounding box
- etc.

Componentes conexos

Propiedades de los Componentes

Borde de un componente

- Sea P un componente binario y Q el fondo
- Sea P 8-conexo
- Sea conexidad entre P y Q 4-conexo
- El borde B de P es el conjunto de puntos con al menos un 4-vecino en Q.

- Algoritmo para encontrar borde de un componente conexo
 - Sean p en P y q en Q; y sea B el conjunto de puntos del borde.
 - [1] Analizar pares (p,q) partiendo de (p_0, q_0) . El primer par se puede encontrar barriendo en modo *left-right* & *top-bottom*
 - [2] Agregar p_0 a B.

 Algoritmo para encontrar borde de un componente conexo

[3] Partiendo de q_i , buscar el siguiente par (p_{i+1}, q_{i+1}) , siguiendo en sentido horario a través de los 8-vecinos de p_i Recordar que (p,q) deben ser 4-vecinos [¿por qué?]

[4] Agregar p_{i+1} a B.

 Algoritmo para encontrar borde de un componente conexo

[5] Repetir desde paso 3, hasta que $p_n = p_1$ y $p_{n-1} = p_0$


```
S(x,y)=1, S(x,y)=0
Para cada (x,y) \in S que no tiene CC
     Alguno de 4-vecinos de (x,y) \in CC?
          SI:(x,y) \in CC
          NO:
               encontrar borde del comp de (x,y)
               Alguno de los elementos del borde \in CC'
                    SI:(x,y) \in CC'
                          Elementos del borde \in CC'
                          4-vecinos de anteriores \in CC'
                     NO :(x,y) \in CC''
```


 Es posible identificar a cada elemento de todos los componentes conexos (CC) encontrados, con el número de componente asociado.

Nº de elementos en la imagen ≡
 Máximo nº de componente asociado

Imagen Original

Imagen Binarizada

