

Vorlesung: Statistik I

Prof. Dr. Simone Abendschön

4. Einheit

Plan für heute

Univariate Datenanalyse: Streumaße (Dispersionsmaße)

Lernziele

- Kenntnis von Streumaßen der univariaten Statistik
- Bestimmung und Berechnung von Streumaßen der univariaten Statistik: Spannweite, Interquartilsabstand, Varianz, Standardabweichung
- Kenntnis von Normalverteilung und Formmaßen

- Statistische Kennwerte beschreiben spezifische Eigenschaften einer empirischen Merkmalsverteilung
- Unterscheidung Lage- und Streu(ungs)maße
- Lagemaße allein nicht ausreichend, um Daten angemessen zu beschreiben

- Streumaße (auch Dispersionsmaße) beantworten Fragen wie
 - Über welchen Bereich erstrecken sich die Beobachtungen?
 - Wie stark unterscheiden sich die Einzelwerte voneinander?
 - Wie stark "streuen" die Werte? Wie groß sind die Unterschiede in der Merkmalsausprägung zwischen den Beobachtungseinheiten?
 - Wie groß ist die durchschnittliche Abweichung vom Mittelwert?

- Verteilung der Einzelwerte kann sehr stark "auseinandergezogen" sein (Werte sind sehr ungleich, stärkere Streuung)
- Verteilung der Einzelwerte kann "schmal" sein (Werte sind eher gleich, geringere Streuung)

Beispiel: Lebenszufriedenheit auf einer Skala von 0 ("ganz unzufrieden") bis 10 ("ganz zufrieden")

Übung: Bitte berechnen Sie für beide Gruppen ("Stadt", "Land") Modus, Median und arithmetisches Mittel.

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	Х9	X ₁₀	X ₁₁
Stadt	6	7	7	7	7	7	7	7	7	7	8
Land	1	2	7	7	7	7	8	8	10	10	10

Übung

Modus, Median und arithmetisches Mittel liegt jeweils bei 7

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X9	X ₁₀	X ₁₁
Stadt	6	7	7	7	7	7	7	7	7	7	8
Land	1	2	7	7	7	7	8	8	10	10	10

Aber: Gruppen unterscheiden sich trotzdem → Wichtig, über Streuung in den Daten informiert zu sein

Auch: Range

- Definition: Differenz zwischen dem größten x_{max} und dem kleinsten Wert x_{min} der Daten (zwischen Maximum und Minimum)
- beschreibt die Größe des Bereichs, innerhalb derer sich die Werte befinden
- Berechnung: $V = x_{max} xmi_n$
- Aber:
 - V ist anfällig gegenüber Extremwerten, "Ausreißern"
 - Berücksichtigt nur zwei Werte, alle anderen werden vernachlässigt

Spannweite: Beispiel mit Übung

Einkommensverteilung:

$$x_{max}$$
 = 1000 \in ; x_{min} = 900 \in

• Berechnung: $V = x_{max} - x_{min}$ =

Spannweite: Beispiel mit Übung

Einkommensverteilung, x_{max} = 1000€; x_{min} = 900€

• Berechnung: $V = x_{max} - x_{min} = 1000 - 900 = 100$

IQR

- Definition: Differenz zwischen dem oberen Quartil und dem unteren Quartil
- Berechnung: $IQR = Q_{075} Q_{025}$
- Berücksichtigt mittlere 50% der Verteilung, weniger anfällig ggü.
 Extremwerten
- vor allem sinnvoll, wenn der Kernbereich einer Häufigkeitsverteilung d.h. wenn die zentral gelegenen 50% der Merkmalsausprägungen – interessieren
- Je größer der IQR desto stärker streuen die Beobachtungen

- 25% der Werte sind kleiner oder gleich und 75% der Werte sind größer oder gleich dem 1. Quartil (Q_{0.25})
- Das zweite Quartil ist der Median.
 Der Median (Q_{0.5}) zerteilt eine
 Verteilung in zwei gleich große
 Hälften.
- 75% der Werte sind kleiner oder gleich und 25% der Werte größer oder gleich dem 3. Quartil (Q_{0.75}).

Beispiel IQR

Wie lautet im Beispiel der IQR?

Semesterzahl	Absolute Häufigkeit	%	Kumulierte %
10	1	9.1	9.1
11	2	18.2	27.3
12	3	27.3	54.6
13	2	18.2	72.8
14	1	9.1	81.9
15	1	9.1	91
20	1	9.1	100
Σ	11	100	100

Beispiel IQR

Wie lautet im Beispiel der IQR → 14-11=3 Semester

Semesterzahl	Absolute Häufigkeit	%	Kumulierte %
10	1	9.1	9.1
11	2	18.2	27.3
12	3	27.3	54.6
13	2	18.2	72.8
14	1	9.1	81.9
15	1	9.1	91
20	1	9.1	100
Σ	11	100	100

Beispiel IQR

- Wie lautet im Beispiel der IQR → 14-11=3 Semester
- → Interpretation: 50% der Befragten haben zwischen 11 und 14 Semester für ihr Studium benötigt

Semesterzahl	Absolute Häufigkeit	%	Kumulierte %
10	1	9.1	9.1
11	2	18.2	27.3
12	3	27.3	54.6
13	2	18.2	72.8
14	1	9.1	81.9
15	1	9.1	91
20	1	9.1	100
Σ	11	100	100

Zählt zusammen mit der Standardabweichung zu den am Häufigsten verwendeten Streuungsmaßen

- Ermittelt die durchschnittliche "Abweichung" der Ausprägungen eines Merkmals vom arithmetischen Mittelwert aller Merkmalsausprägungen
- Definition: Summe der quadrierten Abweichungen der Merkmalswerte vom arithmetischen Mittelwert, dividiert durch die Anzahl der Beobachtungen
- Notation: σ^2 (für Grundgesamtheiten) oder s^2 (für Stichprobe)
- Warum quadriert? (Summe der Abweichungen von \bar{x} ist immer 0)
- Voraussetzung ist mindestens (pseudo-)metrisches Skalenniveau

17

 In einer Klausur haben n= 5 Prüflinge jeweils die folgenden Anzahl richtig gelöster Aufgaben erzielt:

$$x_1 = 2, x_2 = 3, x_3 = 4, x_4 = 5$$
 und $x_5 = 5$

- Wie streuen die Werte um das arithmetische Mittel \bar{x} ?
- Berechnen Sie das arithmetische Mittel :

 In einer Klausur haben n= 5 Prüflinge jeweils die folgenden Anzahl richtig gelöster Aufgaben erzielt:

$$x_1 = 2, x_2 = 3, x_3 = 4, x_4 = 5$$
 und $x_5 = 5$

Berechnen Sie das arithmetische Mittel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{5} (2+3+4+5+5) = \frac{19}{5} = 3.8$$

- Formel Varianz "normal" bzw. bei Grundgesamtheit
- Summe der quadrierten Abweichungen vom arithmetischen Mittel, geteilt durch n

$$\sigma^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

 In einer Klausur haben n= 5 Prüflinge jeweils die folgenden Anzahl richtig gelöster Aufgaben erzielt:

$$x_1 = 2, x_2 = 3, x_3 = 4, x_4 = 5$$
 und $x_5 = 5$

Berechnen Sie das arithmetische Mittel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{5} (2 + 3 + 4 + 5 + 5) = \frac{19}{5} = 3.8$$

- Die Abweichungen vom arithmetischen Mittel werden als Differenzen berechnet:
- 2-3.8 = -1.8; 3-3.8 = -0.8; 4-3.8 = 0.2, 5-3.8 = 1.2 und 5-3.8 = 1.2

Formel Varianz "normal" bzw. bei Grundgesamtheit

$$\sigma^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$= \frac{1}{5}(-1.8^2 - 0.8^2 + 0.2^2 + 1.2^2 + 1.2^2) = \frac{6.8}{5} = 1.36$$

Formel Varianz "normal" bzw. bei Grundgesamtheit

$$\sigma^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$= \frac{1}{5}(-1.8^2 - 0.8^2 + 0.2^2 + 1.2^2 + 1.2^2) = \frac{6.8}{5} = 1.36$$

Ergebnis: Quadrierte Anzahl der Aufgabenlösungen?

Vereinfachung: Ziehen der Quadratwurzel aus der

Varianz → Standardabweichung

$$\sqrt{1.36} = 1.17$$

Achtung: wichtige Unterscheidung

- Daten der Grundgesamtheit oder Daten einer Stichprobe?
- Unterscheidung zwischen empirischer Varianz σ^2 und korrigierter Varianz s^2
- Anpassung durch Korrekturfaktor $\frac{1}{n-1}$

Achtung: wichtige Unterscheidung

- Daten der Grundgesamtheit oder Daten einer Stichprobe?
- Unterscheidung zwischen empirischer Varianz σ^2 und korrigierter Varianz s^2
- Anpassung durch Korrekturfaktor $\frac{1}{n-1}$

$$\sigma^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

$$s^{2} = \frac{1}{n-1} * \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Standardabweichung

- Varianz als "durchschnittliche quadrierte Abweichung vom arithmetischen Mittel" nicht besonders "intuitiv" verständlich bzw. interpretierbar
- → Standardabweichung: Wurzel der Varianz, gleiche Maßeinheit wie Ausgangsvariable
- Varianzberechnung wird aber als Zwischenschritt benötigt

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

"normal", bei Grundgesamtheit/Vollerhebung

Korrigierte Standardabweichung, bei Stichprobe

Standardabweichung, Beispiel Interpretation

1.000 Personen wurden nach ihren wöchentlichen Ausgaben befragt. Der Mittelwert liegt bei 200 Euro, die Standardabweichung liegt bei s = 70 Euro.

Was heißt das?

Standardabweichung, Beispiel Interpretation

1.000 Personen wurden nach ihren wöchentlichen Ausgaben befragt. Der Mittelwert liegt bei 200 Euro, die Standardabweichung liegt bei s = 70 Euro.

Was heißt das? → die durchschnittliche Entfernung aller beobachteten Werte zum Mittelwert liegt bei 70 Euro

Ergänzung: Formmaße

Neben Streu- und Lagemaßen gibt es auch noch (die weniger häufig berechneten) Formmaße

- Schiefe (engl.: skewness)
- Wölbung (Kurtosis)

Beide Maße beschreiben die Abweichung einer Verteilung von der sog. "Normalverteilung"

Normalverteilung

Deskriptiv:

- Beschreibt eine symmetrische Verteilungsform in Form einer Glocke ("Gaußsche Glockenkurve")
- Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf

Normalverteilung

- Im "wirklichen Leben", in der Natur: einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)
- Inferenzstatistik: zentrales Modell für Wahrscheinlichkeitsverteilungen für kontinuierliche Zufallsvariablen, sog. "stetige Verteilungen" (→ v.a. Statistik 2)

Ergänzung: Formmaße

Formmaße Schiefe und Wölbung: beschreiben die Abweichung einer Verteilung von der sog. "Normalverteilung"

- → "horizontale" Abweichung: Schiefe (engl.: skewness)
- → "vertikale" Abweichung: Wölbung (Kurtosis)

Händische Berechnung sehr aufwändig, daher Statistikprogramm!

Quelle: Eigene Darstellung

Schiefe =
$$\frac{\sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x}\right)^3}{n}$$

Interpretation der Werte:

Schiefe < 0: linksschiefe Verteilung (rechtssteil/-gipflig)

Schiefe = 0: symmetrische Verteilung

Schiefe > 0: rechtsschiefe Verteilung (linkssteil)

Werte, deren Beträge > als 1 sind werden als deutliche Abweichung interpretiert

"Schiefe" Verteilungen, Beispiele

Daten: ALLBUS 2016. Eigene Berechnungen

Ergänzung: Wölbung

"vertikale" Abweichung von der Normalverteilung: Wölbung (Kurtosis)

Quelle: Eigene Darstellung

Formmaße: Wölbung

Interpretation der Werte:

- Kurtosis < 0: flachgipflige Verteilung</p>
- Kurtosis = 0: Normalverteilung
- Kurtosis > 0: hochgipflige Verteilung

Lernziele

- Kenntnis von Streumaßen der univariaten Statistik
- Bestimmung und Berechnung von Streumaßen der univariaten Statistik: Spannweite, Interquartilsabstand, Varianz, Standardabweichung
- Kenntnis von Normalverteilung und Formmaßen

Übung: Zusammenfassung Kennwerte

Bitte ergänzen Sie folgende Tabelle

Kennwert	Ab Skalenniveau
Modus	nominal
Median	
Arithmetisches Mittel	
Variationsweite	
Varianz	
Standardabweichung	
Schiefe	
Wölbung	