STRUMENTI FORMALI PER LA BIOINFORMATICA

Grammatiche e Linguaggi Context-free Esercizi - Parte I(a)

Esercizio 2.3 - Sipser

Rispondere a ciascun punto per la seguente grammatica context-free G

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Esercizio 2.3 - Sipser

- Quali sono le variabili di *G*?
- Quali sono i terminali di *G*?
- Qual è la variabile iniziale di *G*?
- Fornire tre stringhe in L(G).
- Fornire tre stringhe *non* in L(G).
- Vero o Falso: $T \Rightarrow aba$.
- Vero o Falso: $T \stackrel{*}{\Rightarrow} aba$.
- Vero o Falso: $T \Rightarrow T$.

Esercizio 2.3 - Sipser

- Vero o Falso: $T \stackrel{*}{\Rightarrow} T$.
- Vero o Falso: $X \stackrel{*}{\Rightarrow} aba$.
- Vero o Falso: $T \stackrel{*}{\Rightarrow} XX$.
- Vero o Falso: $T \stackrel{*}{\Rightarrow} XXX$.
- Vero o Falso: $S \stackrel{*}{\Rightarrow} \epsilon$.
- Dare una descrizione (informale) di L(G).

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Quali sono le variabili di G?

Soluzione:

Le variabili di G sono R, X, S, T.

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Quali sono i terminali di G?

Soluzione:

I terminali di G sono $a \in b$.

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Qual è la variabile iniziale di G?

Soluzione:

La variabile iniziale di $G \in R$.

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Fornire tre stringhe in L(G).

Soluzione:

$$R \Rightarrow S \Rightarrow aTb \Rightarrow ab$$

 $R \Rightarrow S \Rightarrow bTa \Rightarrow ba$
 $R \Rightarrow S \Rightarrow bTa \Rightarrow bXa \Rightarrow bba$

Tre stringhe in L(G): ab, ba, bba.

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Fornire tre stringhe *non* in L(G).

Soluzione:

Tre stringhe non in L(G): ϵ, a, b .

Soluzione:

Vero o Falso: $T \Rightarrow aba$.

Soluzione:

Falso. Per avere $T \Rightarrow aba$ dovremmo avere la produzione $T \rightarrow aba$. Ma $T \rightarrow aba$ non è una produzione in G.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $T \stackrel{*}{\Rightarrow} aba$.

Soluzione:

Vero.

$$T\Rightarrow XTX\Rightarrow XXX\Rightarrow aXX\Rightarrow abX\Rightarrow aba.$$

Quindi $T \stackrel{*}{\Rightarrow} aba$.

Soluzione:

Vero o Falso: $T \Rightarrow T$.

Soluzione:

Falso. Non abbiamo in G la produzione $T \rightarrow T$.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $T \stackrel{*}{\Rightarrow} T$.

Soluzione:

Vero. Per ogni stringa α di variabili e terminali risulta $\alpha \stackrel{*}{\Rightarrow} \alpha$.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $XXX \stackrel{*}{\Rightarrow} aba$.

Soluzione:

Vero.

$$XXX \Rightarrow aXX \Rightarrow abX \Rightarrow aba$$
.

Quindi $XXX \stackrel{*}{\Rightarrow} aba$.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $X \stackrel{*}{\Rightarrow} aba$.

Soluzione:

Falso. X genera solo le stringhe a e b.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $T \stackrel{*}{\Rightarrow} XX$.

Soluzione:

Vero.

$$T \Rightarrow XTX \Rightarrow XX$$
.

Quindi $T \stackrel{*}{\Rightarrow} XX$.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $T \stackrel{*}{\Rightarrow} XXX$.

Soluzione:

Vero.

$$T \Rightarrow XTX \Rightarrow XXX$$
.

Quindi $T \stackrel{*}{\Rightarrow} XXX$.

Soluzione:

$$\begin{array}{cccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Vero o Falso: $S \stackrel{*}{\Rightarrow} \epsilon$.

Soluzione:

Falso. Le produzioni con S sul lato sinistro, che vanno usate come primo passo in una derivazione da S, generano stringhe di terminali di lunghezza maggiore o uguale a due.

Soluzione:

$$\begin{array}{ccc} R & \rightarrow & XRX \mid S \\ S & \rightarrow & aTb \mid bTa \\ T & \rightarrow & XTX \mid X \mid \epsilon \\ X & \rightarrow & a \mid b \end{array}$$

Dare una descrizione (informale) di L(G).

Soluzione:

$$R \rightarrow XRX \mid S, S \rightarrow aTb \mid bTa$$

 $T \rightarrow XTX \mid X \mid \epsilon, X \rightarrow a \mid b$

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a, b\}^*$.

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a, b\}^*$.

La grammatica G', con simbolo iniziale T e produzioni

$$T o XTX \mid X \mid \epsilon, \quad X o a \mid b$$

genera $\{a,b\}^*$.

Perché?

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a, b\}^*$.

Perché?

Certamente G' genera ϵ, a, b , usando la produzione $T \to \epsilon$ oppure $T \to X$ e poi le produzioni di X.

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a,b\}^*$.

Perché?

Certamente G' genera ϵ, a, b , usando la produzione $T \to \epsilon$ oppure $T \to X$ e poi le produzioni di X.

La generazione delle altre stringhe inizia sempre con la derivazione $T \stackrel{*}{\Rightarrow} X^k T X^k$.

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a,b\}^*$.

Perché?

Certamente G' genera ϵ, a, b , usando la produzione $T \to \epsilon$ oppure $T \to X$ e poi le produzioni di X.

La generazione delle altre stringhe inizia sempre con la derivazione $T \stackrel{*}{\Rightarrow} X^k T X^k$.

Quindi, per ogni n esiste la derivazione $T \stackrel{*}{\Rightarrow} X^n$ in G'.

La grammatica G', con simbolo iniziale T e produzioni

$$T \rightarrow XTX \mid X \mid \epsilon, \quad X \rightarrow a \mid b$$

genera $\{a,b\}^*$.

Perché?

Certamente G' genera ϵ, a, b , usando la produzione $T \to \epsilon$ oppure $T \to X$ e poi le produzioni di X.

La generazione delle altre stringhe inizia sempre con la derivazione $T \stackrel{*}{\Rightarrow} X^k T X^k$.

Quindi, per ogni n esiste la derivazione $T \stackrel{*}{\Rightarrow} X^n$ in G'.

Ogni stringa w può essere generata. Se |w|=h, usando le produzioni di X si ha:

$$T \stackrel{*}{\Rightarrow} X^h \stackrel{*}{\Rightarrow} w$$

$$R \rightarrow XRX \mid S, S \rightarrow aTb \mid bTa$$

 $T \rightarrow XTX \mid X \mid \epsilon, X \rightarrow a \mid b$

Una qualsiasi derivazione di una stringa w di terminali è necessariamente una delle seguenti due derivazioni:

$$R \stackrel{*}{\Rightarrow} X^{n}RX^{n} \Rightarrow X^{n}SX^{n} \Rightarrow X^{n}aTbX^{n} \stackrel{*}{\Rightarrow} w, \quad n \ge 0$$
$$R \stackrel{*}{\Rightarrow} X^{n}RX^{n} \Rightarrow X^{n}SX^{n} \Rightarrow X^{n}bTaX^{n} \stackrel{*}{\Rightarrow} w, \quad n \ge 0$$

Soluzione:

L(G) consiste di tutte le stringhe su a e b che non sono palindrome.

$$L(G) = \{ w \in \{a, b\}^* \mid w \neq w^R \}.$$

Esercizio 5.1.1- a)

Fornire una grammatica context-free che generi il linguaggio $\{a^nb^n\mid n\geq 1\}.$

Soluzione:

Definizione ricorsiva di $S = \{a^n b^n \mid n \ge 1\}$:

Soluzione:

Definizione ricorsiva di $S = \{a^nb^n \mid n \ge 1\}$:

PASSO BASE: $ab \in S$.

Soluzione:

Definizione ricorsiva di $S = \{a^n b^n \mid n \ge 1\}$:

PASSO BASE: $ab \in S$.

PASSO RICORSIVO: Se x è una parola in S allora anche axb appartiene a S.

Soluzione:

Risulta
$$L=L(G)$$
 con $G=(V,T,P,S)$, $V=\{S\}$, $T=\{a,b\}$ e
$$P=\{S\rightarrow aSb,\ S\rightarrow ab\}$$

Esercizio 5.1.7:

Consideriamo la grammatica context-free G definita dalle produzioni

$$S \rightarrow aS \mid Sb \mid a \mid b$$

- Dimostrare per induzione sul numero di passi di derivazione (sul libro: induzione sulla lunghezza della stringa) che nessuna stringa in L(G) ha ba come sottostringa.
- Descrivere L(G) (in termini informali) e giustificare la risposta servendosi (anche) della proprietà precedente.

Soluzione:

Consideriamo la grammatica context-free ${\it G}$ definita dalle produzioni

$$S \rightarrow aS \mid Sb \mid a \mid b$$

Proviamo che nessuna stringa in L(G) ha ba come sottostringa.

Sia $w \in \{a, b\}^*$ e $w \in L(G)$. Allora abbiamo uno dei seguenti quattro casi:

- 1 $S \Rightarrow w = a$, numero di passi di derivazione = 1;
- 2 $S \Rightarrow w = b$, numero di passi di derivazione = 1;
- 3 $S \Rightarrow aS \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1;
- 4 $S \Rightarrow Sb \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1.

Soluzione:

 $S \Rightarrow w = a$, numero di passi di derivazione = 1

 $S \Rightarrow w = b$, numero di passi di derivazione = 1

Ovviamente nel primo e nel secondo caso w non ha ba come sottostringa.

Se $S \Rightarrow aS \stackrel{*}{\Rightarrow} w$, con numero di passi di derivazione n > 1, allora w = ax e $S \stackrel{*}{\Rightarrow} x$ in un numero di passi $n - 1 \ge 1$.

Analogamente, se $S\Rightarrow Sb\overset{*}{\Rightarrow}w$, con numero di passi di derivazione n>1, allora w=xb e $S\overset{*}{\Rightarrow}x$ in un numero di passi $n-1\geq 1$.

 $S \Rightarrow aS \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1;

 $S \Rightarrow Sb \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1.

Nel terzo caso, w=ax, con $S\stackrel{*}{\Rightarrow} x$ in un numero di passi $n-1\geq 1$. Per ipotesi induttiva, x non ha ba come sottostringa e quindi anche w non ba come sottostringa.

Analogamente, nel quarto caso, w = xb, con $S \stackrel{*}{\Rightarrow} x$ in un numero di passi $n-1 \ge 1$. Per ipotesi induttiva, x non ha ba come sottostringa e quindi anche w non ba come sottostringa.

Soluzione:

Consideriamo la grammatica context-free G definita dalle produzioni

$$S \rightarrow aS \mid Sb \mid a \mid b$$

Descrivere L(G) (in termini informali) e giustificare la risposta servendosi (anche) della proprietà precedente.

Soluzione:

Come descrivere il linguaggio delle stringhe non vuote sull'alfabeto $\{a,b\}$ che non contengono ba come sottostringa?

Come descrivere il linguaggio delle stringhe non vuote sull'alfabeto $\{a,b\}$ che non contengono ba come sottostringa? Il linguaggio delle stringhe non vuote sull'alfabeto $\{a,b\}$ che non contengono ba come sottostringa è

$$\{a^nb^m \mid n, m \in \mathbb{N}, n+m \neq 0\}$$

Come descrivere il linguaggio delle stringhe non vuote sull'alfabeto $\{a,b\}$ che non contengono ba come sottostringa? Il linguaggio delle stringhe non vuote sull'alfabeto $\{a,b\}$ che non contengono ba come sottostringa è

$$\{a^nb^m \mid n, m \in \mathbb{N}, n+m \neq 0\}$$

Proviamo che

$$L(G) = \{a^n b^m \mid n, m \in \mathbb{N}, n + m \neq 0\}$$

$$L(G) = \{a^n b^m \mid n, m \in \mathbb{N}, n + m \neq 0\}$$

Infatti, se $w \in L(G)$ allora w non ha ba come sottostringa e $w \neq \epsilon$. Quindi $w = a^n b^m$, con $n, m \in \mathbb{N}$, $n + m \neq 0$. Viceversa, sia $w = a^n b^m$, con $n, m \in \mathbb{N}$, $n + m \neq 0$. Se n > 0, allora

$$S \stackrel{*}{\Rightarrow} Sb^m \stackrel{*}{\Rightarrow} a^nb^m$$

Analogamente, se m > 0, allora

$$S \stackrel{*}{\Rightarrow} a^n S \stackrel{*}{\Rightarrow} a^n b^m$$
.

Esercizio 5.1.8 (parziale):

Consideriamo la grammatica context-free G definita dalle produzioni

$$S
ightarrow aSbS \mid bSaS \mid \epsilon$$

Provare che

$$L(G) \subseteq \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$$

Per induzione sul numero di passi di derivazione. Sia $w \in L(G)$.

Se $w = \epsilon$, ovviamente $|w|_a = |w|_b = 0$.

Se $w \neq \epsilon$ abbiamo uno dei seguenti due casi:

- **1** $S \Rightarrow aSbS \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1;
- 2 $S \Rightarrow bSaS \stackrel{*}{\Rightarrow} w$, numero di passi di derivazione = n > 1.

Nel primo caso w=axby, nel secondo caso w=bxay, in entrambi i casi con x,y in L(G) e $S \stackrel{*}{\Rightarrow} x$, $S \stackrel{*}{\Rightarrow} y$, con derivazioni più corte. Per ipotesi induttiva $|x|_a = |x|_b$ e $|y|_a = |y|_b$ e quindi:

$$|w|_a = |x|_a + |y|_a + 1 = |x|_b + |y|_b + 1 = |w|_b$$

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: *Se* $w \in \Sigma^*$ *e* $x \in \Sigma$, allora $wx \in \Sigma^*$.

Definizione

L'insieme Σ^* delle stringhe sull'alfabeto Σ è definito ricorsivamente come segue:

PASSO BASE: $\epsilon \in \Sigma^*$ (dove ϵ è la stringa vuota).

PASSO RICORSIVO: *Se* $w \in \Sigma^*$ *e* $x \in \Sigma$, allora $wx \in \Sigma^*$.

• Nota. Se nel passo ricorsivo $w = \epsilon$, porremo $\epsilon x = x$.

Fornire una grammatica context-free che generi $\{0,1\}^*$.

Soluzione:

 $\{0,1\}^*$ è generato dalla grammatica definita da:

$$S \rightarrow S0 \mid S1 \mid \epsilon$$

Un'altra grammatica che genera $\{0,1\}^*$:

$$S \rightarrow 0S \mid 1S \mid \epsilon$$

Fornire una grammatica context-free che generi $S = \{w \in \{0,1\}^* \mid w = w^R\}$, cioè l'insieme delle parole palindrome sull'alfabeto $\{0,1\}$.

Soluzione:

• Definizione ricorsiva di $S = \{w \in \{0,1\}^* \mid w = w^R\}$:

Fornire una grammatica context-free che generi $S = \{w \in \{0,1\}^* \mid w = w^R\}$, cioè l'insieme delle parole palindrome sull'alfabeto $\{0,1\}$.

Soluzione:

• Definizione ricorsiva di $S = \{w \in \{0,1\}^* \mid w = w^R\}$: PASSO BASE: $\epsilon \in S$, $0 \in S$, $1 \in S$.

Fornire una grammatica context-free che generi $S = \{w \in \{0,1\}^* \mid w = w^R\}$, cioè l'insieme delle parole palindrome sull'alfabeto $\{0,1\}$.

Soluzione:

Definizione ricorsiva di S = {w ∈ {0,1}* | w = w^R}:
 PASSO BASE: ε ∈ S, 0 ∈ S, 1 ∈ S.

 PASSO RICORSIVO: Se x è una parola in S allora anche 0x0 e 1x1 appartengono a S.

Fornire una grammatica context-free che generi $S = \{w \in \{0,1\}^* \mid w = w^R\}$, cioè l'insieme delle parole palindrome sull'alfabeto $\{0,1\}$.

Soluzione:

- Definizione ricorsiva di S = {w ∈ {0,1}* | w = w^R}:
 PASSO BASE: ϵ ∈ S, 0 ∈ S, 1 ∈ S.

 PASSO RICORSIVO: Se x è una parola in S allora anche 0x0 e 1x1 appartengono a S.
- $\{w \in \{0,1\}^* \mid w = w^R\}$ è generato dalla grammatica definita da:

$$S \to 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$$
.

Fornire una grammatica context-free che generi $T = \{y \in \{0,1\}^* \mid y = ww^R\}$, cioè l'insieme delle parole palindrome di lunghezza pari sull'alfabeto $\{0,1\}$.

Soluzione:

• Definizione ricorsiva di $T = \{y \in \{0,1\}^* \mid y = ww^R\}$:

Fornire una grammatica context-free che generi $T=\{y\in\{0,1\}^*\mid y=ww^R\}$, cioè l'insieme delle parole palindrome di lunghezza pari sull'alfabeto $\{0,1\}$.

Soluzione:

• Definizione ricorsiva di $T = \{y \in \{0,1\}^* \mid y = ww^R\}$: PASSO BASE: $\epsilon \in T$.

Fornire una grammatica context-free che generi $T=\{y\in\{0,1\}^*\mid y=ww^R\}$, cioè l'insieme delle parole palindrome di lunghezza pari sull'alfabeto $\{0,1\}$.

Soluzione:

• Definizione ricorsiva di $T = \{y \in \{0,1\}^* \mid y = ww^R\}$: PASSO BASE: $\epsilon \in T$.

PASSO RICORSIVO: Se x è una parola in T allora anche 0x0 e 1x1 appartengono a T.

Fornire una grammatica context-free che generi $T=\{y\in\{0,1\}^*\mid y=ww^R\}$, cioè l'insieme delle parole palindrome di lunghezza pari sull'alfabeto $\{0,1\}$.

Soluzione:

- Definizione ricorsiva di T = {y ∈ {0,1}* | y = ww^R}:
 PASSO BASE: ϵ ∈ T.

 PASSO RICORSIVO: Se x è una parola in T allora anche 0x0 e 1x1 appartengono a T.
- $\{w \in \{0,1\}^* \mid w = w^R\}$ è generato dalla grammatica definita da:

$$T \rightarrow 0T0 \mid 1T1 \mid \epsilon$$
.

Esercizio 2.6 (c)

Fornire una grammatica context-free che generi il linguaggio

 $\{w \# x \mid w^R \text{ è una sottostringa di } x, \text{ con } w, x \in \{0,1\}^*\}.$

Soluzione:

• Le stringhe da generare hanno la forma $w \# y w^R z$, con $w, y, z \in \{0, 1\}^*$.

- Le stringhe da generare hanno la forma $w\#yw^Rz$, con $w,y,z\in\{0,1\}^*$.
- ullet Ci serviamo della grammatica che genera $\{0,1\}^*$

$$X \rightarrow 0X \mid 1X \mid \epsilon$$

per generare y e z.

- Le stringhe da generare hanno la forma $w \# y w^R z$, con $w, y, z \in \{0, 1\}^*$.
- Ci serviamo della grammatica che genera $\{0,1\}^*$

$$X \rightarrow 0X \mid 1X \mid \epsilon$$

per generare y e z.

Usiamo la grammatica che genera le stringhe ww^R

$$T \rightarrow 0T0 \mid 1T1 \mid \epsilon$$
.

Soluzione:

• Le stringhe da generare hanno la forma $w\#yw^Rz$, con $w,y,z\in\{0,1\}^*$.

- Le stringhe da generare hanno la forma $w \# y w^R z$, con $w, y, z \in \{0, 1\}^*$.
- $\{w\#x\mid w^R$ è una sottostringa di x, con $w,x\in\{0,1\}^*\}$ è generato dalla grammatica definita da:

$$S \rightarrow TX$$

$$T \rightarrow 0T0 \mid 1T1 \mid \#X$$

$$X \rightarrow 0X \mid 1X \mid \epsilon$$