Dokumentation EPU

Markus Schneider

20. August 2016

Inhaltsverzeichnis

Αŀ	bkürzungsverzeichnis	3
Αŀ	bbildungsverzeichnis	4
Ta	abellenverzeichnis	5
1	Einleitung	6
2	Befehlssatzarchitektur 2.1 Grundgedanken	7 7 7 9
3	Hardwaredesign	10
4	Anwendungssoftware	11
5	Diskussion	12

Abkürzungsverzeichnis

EPU Educational Processing Unit

CPU Central Processing Unit

Abbildungsverzeichnis

Tabellenverzeichnis

2.1 1	Registerbelegung																													8
-------	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Einleitung

Diese Dokumentation beschreibt den Aufbau und die Funktionsweise der Educational Processing Unit (EPU). Das Projekt kam dadurch zustande, dass die Struktur und die Arbeitsweise eines Computers, insbesondere der Central Processing Unit (CPU) besser verstanden werden soll. Um dieses Ziel zu erreichen, wurde die EPU gebaut, da sie als lehrreicher Computer, wobei der Hauptteil der EPU nur aus einer CPU besteht, die Funktionsweise und den Aufbau eines Alltagscomputer erklärt und somit Verständnis für die Komplexität unserer heutingen Rechner einbringt.

2 Befehlssatzarchitektur

2.1 Grundgedanken

Die Befehlssatzarchitektur beschreibt die Schnittstelle zwischen Hardwaredesign und Anwendungssoftware. Da die Veränderungen der Befehlssatzarchitektur Einfluss sowohl auf das Hardwaredesign als auch die Anwendungssoftware hat, wird diese hier zuerst beschrieben. Das Endergebnis der Befehlssatzarchitektur ist ein auf den Rechner angepassten Befehlssatz, welcher die Hardware mit der Software verbindet. Das Hauptziel des Befehlssatzes der EPU ist es, möglichst viele elemantere Operationen mit möglichst wenigen Befehlen auszuführen. Dabei wird auch auf einen einfachen Hardwareaufbau zur Implementierung des Befehlssatzes geachtet, um die Anzahl der genutzten Logikeinheiten zu reduzieren. Über die Anzahl der Logikeinheiten wird in Kapitel 3 genaueres beschrieben.

2.1.1 Registerbelegung

Die EPU besitzt 16 Register, welche durch Selektion von $\log_2(16) = 4$ Adressbits angesprochen werden. Mithilfe der Tabelle 2.1 soll eine Übersicht aller Register dargestellt werden.

Selektion	Name	Zweck
0000	R0	Akkumulator
0001	R1	Allgemeine Verwendung
0010	R2	Laufvariable
0011	R3	Datenregister
0100	R4	Allgemeine Verwendung
0101	R5	Allgemeine Verwendung
0110	R6	Allgemeine Verwendung
0111	R7	Allgemeine Verwendung
1000	R8	Allgemeine Verwendung
1001	R9	Allgemeine Verwendung
1010	R10	Allgemeine Verwendung
1010	R11	Allgemeine Verwendung
1100	R12	Allgemeine Verwendung
1101	R13	Allgemeine Verwendung
1110	FLA	Flagregister
1111	ID	Interruptdaten Verwendung

Tabelle 2.1: Registerbelegung

2.2 Befehlsformen

3 Hardwaredesign

4 Anwendungssoftware

5 Diskussion

Literaturverzeichnis