GATE 2007 MA

EE24BTECH11032- John Bobby

- 1) Let $f(z) = 2z^2 1$. Then the maximum value of |f(z)| on the unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ equals
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- 2) Let $f(z) = \frac{1}{z^2 3z + 2}$ Then the coefficient of $\frac{1}{z^3}$ in the Laurent series expansion of f(x) for |z| > 1 is
 - a) 0
 - b) 1
 - c) 3
 - d) 5
- 3) Let $f: \mathbb{C} \to \mathbb{C}$ be an arbitrary analytic function satisfying f(0) = 0 and f(1) = 2. Then
 - a) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| > n$
 - b) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| < n$
 - c) there exists a sequence $\{z_n\}$ such that $|f(z_n)| > n$
 - d) there exists a sequence $\{z_n\}$ such that $z_n \to 0$ and $f(z_n) \to 2$
- 4) Define $f: \mathbb{C} \to \mathbb{C}$ by

$$f(z) = \begin{cases} 0, & if \quad Re(z) = 0 \quad or \quad Im(z) = 0, \\ z, & otherwise \end{cases}$$

Then the set of points where f is analytic is

- a) $\{z : Re(z) \neq 0 \quad and \quad Im(z) \neq 0\}$
- b) $\{z : Re(z) \neq 0\}$
- c) $\{z : Re(z) \neq 0 \text{ or } Im(z) \neq 0\}$
- d) $\{z : Im(z) \neq 0\}$
- 5) Let U(n) be the set of all positive integers less than n and relatively prime to n. Then U(n) is the group under multiplication modulo n. For n = 248, the number of elements in U(n) is
 - a) 60
 - b) 120
 - c) 180
 - d) 240
- 6) Let R [x] be the polynomial ring in x with real coefficients and let $I = \langle x^2 + 1 \rangle$ be the ideal generated by the polynomial $x^2 + 1$ in R [x]. Then
 - a) I is a maximum ideal
 - b) I is a prime ideal but NOT a maximum ideal
 - c) I is NOT a prime ideal
 - d) R[x]/I has zero divisors
- 7) Consider \mathbb{Z}_5 and \mathbb{Z}_{20} as rings modulo 5 and 20, respectively. Then the number of homomorphisms $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{20}$ is
 - a) 1
 - b) 2
 - c) 4
 - d) 5

- 8) Let **Q** be the field of rational numbers and consider \mathbb{Z}_2 as a field modulo 2. Let $f(x) = x^3 9x^2 + 9x + 3$. Then f(x) is
 - a) irreducible over \mathbf{Q} but reducible over \mathbf{Z}_2
 - b) irreducible over both Q and Z_2
 - c) reducible over ${\bf Q}$ but irreducible over ${\bf Z}_2$
 - d) reducible over both \mathbf{Q} and \mathbf{Z}_2
- 9) Consider \mathbb{Z}_5 as a field modulo 5 and let $f(x) = x^5 + 4x^4 + 4x^3 + 4x^2 + x + 1$. Then the zeroes of f(x) over \mathbb{Z}_5 are 1 and 3 with respective multiplicity
 - a) 1 and 4
 - b) 2 and 3
 - c) 2 and 2
 - d) 1 and 2
- 10) Consider the Hilbert space $l^2 = \{\mathbf{x} = \{x_n\} : x_n \in \mathbf{R}, \sum_{n=1}^{\infty} x_n^2 < \infty\}$. Let $E = \{\{x_n\} : |x_n| \le \frac{1}{n} \text{ for all } n\}$ be a subset of l^2 . Then
 - a) $E^o = \left\{ \mathbf{x} : |x_n| < \frac{1}{n} \text{ for all } \mathbf{n} \right\}$
 - b) $E^o = E$
 - c) $E^o = \{ \mathbf{x} : |x_n| < \frac{1}{n} \text{ for all n but finitely many n} \}$
 - d) $E^o = \dot{\phi}$
- 11) Let X and Y be normed linear spaces and let $T: X \to Y$ be a linear map. Then T is continuous if
 - a) Y is finite dimensional
 - b) X is finite dimensional
 - c) T is one to one
 - d) T is onto
- 12) Let X be a normed linear space and let $E_1, E_2 \subseteq X$. Define $E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}$. Then $E_1 + E_2$ is
 - a) open if E_1 or E_2 is open
 - b) NOT open unless both E_1 and E_2 are open
 - c) closed if E_1 or E_2 is closed
 - d) closed if both E_1 and E_2 are closed
- 13) For each $a \in \mathbb{R}$, consider the linear programming problem Max. $z = x_1 + 2x_2 + 3x_3 + 4x_4$ subject to $ax_1 + 2x_3 \le 1$

$$x_1 + ax_2 + 3x_4 \le 2$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

Let $S = \{a \in \mathbb{R} : \text{ the given LP problem has a basic feasible solution} \}$.

- a) $S = \phi$
- b) $S = \mathbf{R}$
- c) $S = (0, \infty)$
- d) $S = (-\infty, 0)$
- 14) Consider the linear programming problem Max. $z = x_1 + 5x_2 + 3x_3$ subject to

$$2x_1 - 3x_2 + 5x_3 \le 3$$

$$3x_1 + 2x_3 \le 5$$

$$x_1, x_2, x_3 \geq 0.$$

Then the dual of this LP problem

- a) has a feasible solution but does NOT have a basic feasible solution
- b) has a basic feasible solution
- c) has infinite number of feasible solutions
- d) has no feasible solution

- 15) Consider a transportation problem with two warehouses and two markets. The warehouse capacities are $a_1 = 2$ and $a_2 = 4$ and the market demands $b_1 = 3$ and $b_2 = 3$. Let x_n be the quantity shipped from warehouse i to market j and c_{ij} be the corresponding unit cost. Suppose that $c_{11} = 1$, $c_{21} = 1$, $c_{22} = 2$. $(x_{11}, x_{12}, x_{21}, x_{22}) = (2, 0, 1, 3)$ is optimal for every
 - a) $c_{12} = [1, 2]$
 - b) $c_{12} = [0, 3]$
 - c) $c_{12} = [1, 3]$
 - d) $c_{12} = [2, 4]$
- 16) The smallest degree of the polynomial that interpolates the data

	х	-2	-1	0	1	2	3
ĺ	f(x)	-58	-21	-12	-13	-6	27

is

- a) 3
- b) 4
- c) 5
- d) 6
- 17) Suppose that x_0 is sufficiently close to 3. Which of the following iterations $x_{n+1} = g(x_n)$ will converge to the fixed point x = 3?
 - a) $x_{n+1} = -16 + 6x_n + \frac{3}{x_n}$
 - b) $x_{n+1} = \sqrt{3 + 2x_n}$ c) $x_{n+1} = \frac{3}{x_n 2}$ d) $x_{n+1} = \frac{x_n^2 3}{2}$