

PPO in OpenAl Gym

David Weiler
Seminar Deep Learning
Hochschule Offenburg

Inhalt

- Reinforcement Learning mit Policy Gradient
 - Überblick
 - Probleme
- Proximal Policy Optimization
- OpenAi Gym
- Resultate

Reinforcement Learning mit Policy Gradient

- Policy Gradient: Interagiere eine Weile mit der Umgebung
 - erhöhe Wahrscheinlichkeit der Actions die zu positivem Reward führten
 - veringere Wahrscheinlichkeit der Actions die zu negativem Reward führten

Policy Gradient: Problems

- Empfindlichkeit gegenüber learning rate (Hyperparameter)
 - Zu klein -> langsamer Fortschritt
 - Zu groß -> schlechte policy -> nächste Traingsdaten werden unter schlechten Bedingungen gesammelt
 - -> nur eine Updates pro Trainingsdaten -> sample inefficent
- Bisherige Lösungen
 - Zusätzliche komplexere/teurere Berechnungen
 - -> PPO: limitiere Policy Updates

War die Action besser oder schlechter als erwartet?

Algorithm 1 PPO

for iteration=1, 2, ... do for actor=1, 2, ..., N do

Run policy $\pi_{\theta_{\text{old}}}$ in environment for T timesteps

Compute advantage estimates $\hat{A}_1, \ldots, \hat{A}_T$

end for

Optimize surrogate L wrt θ , with K epochs and minibatch size $M \leq NT$

$$\theta_{\mathrm{old}} \leftarrow \theta$$

end for

Optimierungsschritt

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

 $\pi\theta(a|s)$: Die Wahrscheinlichkeit die Aktion a im State s auszuwählen

Positiver Advantage:
Action war besser als erwartet...

r positiv:

... und wurde wahrscheinlicher

Negativer Advantage:
Action war schlechter als erwartet...

r negativ:

... und wurde weniger wahrscheinlich

Algorithm 1 PPO

```
for iteration=1, 2, ..., N do

Run policy \pi_{\theta_{\text{old}}} in environment for T timesteps

Compute advantage estimates \hat{A}_1, \ldots, \hat{A}_T

end for

Optimize surrogate L wrt \theta, with K epochs and minibatch size M \leq NT

\theta_{\text{old}} \leftarrow \theta

end for
```

OpenAi Gym

- Toolkit zum Entwickeln und Vergleichen von reinforcement learning Algorithmen
- Mehrere Environments (2D, 3D, Atari Spiele) mit einheitlichem Interface
- Nutzt TensorFlow

Results (3D-Environment "Ant")

Ressources

- GitHub (Jupyter notebook + videos): https://github.com/dav-92/PPO
- PPO Paper: https://arxiv.org/pdf/1707.06347.pdf
- OpenAl Gym: https://gym.openai.com/
- Reinforcement learning Algorithms: https://github.com/hill-a/stable-baselines

Basic Policy Gradient

$$L^{PG}(\theta) = \hat{\mathbb{E}}_t \left[\log \pi_{\theta}(a_t \mid s_t) \hat{A}_t \right]$$