Probabilità

O. Fondamenti matematici

0.1 Il fattoriale

0.2 Il binomiale

Si
$$n_{K \ge 0}$$
, il binomisle di n su k é
$$\binom{n}{k} = \begin{cases} \frac{n!}{(n-k)! |k|} & \text{se } k \le n \\ 0 & \text{eltriment}. \end{cases}$$

$$5. \left(x+2\right)_{w} = \sum_{p}^{j=0} {j \choose p} x_{j} d_{p-j}$$

$$\left({k \choose p} = {N-K \choose p}\right)$$

3.
$$\binom{n}{0} + \dots + \binom{n}{n} = 2^{n}$$
4. $\binom{n-1}{K-1} + \binom{n-1}{K} = \binom{n}{K}$

1. Combinatoria

Tecniche e prinapi per contare il numero di elementi di un insieme finito.

Das Le cardinalité de un insième X (IXI) é il numero dei suoi element, distinti

Simo A,B due Sottoinsiem, Finiti di un insieme X. Allon:

Più in genevale, su un numero n d. sottoirsiem., A,.... An CX
$$|A_1 \cup \cup A_n| = |A_1| + + |A_n| + (-1)^k \sum_{i} + + (-1)^{n-1} \sum_{n=1}^{n} + (-1)^{n-1} |A_1 \wedge \wedge A_n| \qquad \text{dove } \sum_{n} = \sum_{i} |A_{i,n} \dots \wedge A_{i_n}|$$

165= 65+95+75-30-35-15+MAFA]

=> MAFAL=

PROP

Due insiem finiti hanno la stessa condinalità se e solo sa sono in corrispondenza biunivoca (esiste una funzione biunivoca che li lega)

ES "Multipli di 4 de 1 2 40" Sono 4n, ne |1,..., 10| (corrispondenza biunivoca tra 14,..., 40 e [1,...,10]) quindi sono 10

Def Indichiamo con In l'insieme I, n/. Se n=0, ponizmo Io=

1.1 Sequenze

Ulili a contare eventi il cui ordine conta.

Def Stano MKEIN. Diciemo K-sequenza di In una K-upla ordinata di elementi di In. ((4,..., 24) e Inx.... x In)

La sequenza è della senza vipetizione se i suoi termini sono distinti.

Def Data una K-sequenza (2,...,2n), diciamo permutazione di (2,....2n) una qualunque K-sequenza (6,...,6n) ottenuto Novdinando uli elementi di (2,....2n)

Def S(n,k) il numero di K-sequenze di I_n , con eventuali ripetizioni. $S(n,k) = n^k$ $S(n,k) \text{ il numero di K-sequenze di } I_n \text{ senze ripetizioni.} \qquad S(n,k) = \frac{n!}{(n-k)!}$

ES L'estrazione, con relimmissione, di 5 palline da un'urna di 90 \ddot{e} descritto da una 5-sequenza di I_{90} e $S(n,K)=90^{\frac{1}{2}}$ Se non auvenisse la relimmissione allora $S(n,K)=\frac{90!}{92!}=90.89.88.87.86$

1.2 Spartizioni

Dicismo mespertizione di In una neupla ordinata (C,..., Cn) di sollomaiemi di In a due a due disgiunti (anche vuoli).

Tali due Ciu... u Cn = Ix.

Le spartizioni distribuiscono gli insiemi con ordine

ES S. (17,21, 0, 1,2,5), (3,6) 4-spertizione di I7

DDAD

Le n-spertizioni di Ik sono tente quente le K-sequenze di In, S((n, k)).

Infatti le funzione che associa l'elemento ell'indice del contemitore é biunivoca

Si può descrivere con unz 7-sequenza #Indica contembore (3,1,4,3,3,4,1)
#Indica elemento 1234567

 $I_7 = \{1, 2, 3, 4, 5, 6, 7\}$

 $\begin{bmatrix} 7 \\ 2 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$

1.3 Sottoinsiemi

Diciono K-sottoinsieme di In un sottoinsiene Formato da K elementi distinti di In Indichismo C(n,k) il numero di k-sottoinsiem di In. C(n,k) = \frac{\sum_{ki}}{ki} = \binom{n}{k}

de un s-soltoinsième di Isz e le possibili mani sono (52)

Utili per contore eventi quando l'ordine non conta

Distribuire una mano di 5 carte da un mazzo di 52 l'ordine non conta. L'esito dell'experimento si può descrivere

1.4 Anagrammi

Un enequemme di une K-sequenze è une qualunque K-sequenza che he gli termini con le stesse vipetizioni

della sequenza iniziale.

Il numero di anagremmi di une K-sequenze di In che ha K, ripetizioni di 1, Kz ripetizioni di 2,..., Kn ripetizioni di n é <u>K!...K.!</u>

1.5 Principio di moltiplicazione

Nel caso in cui gli elementi di un insieme X si possono individuare tramite una procedure di n faci.

Dove la prima fase ha m. esiti possibili, la seconda ma, ...

E se l'elemento costruito determine univocamente que esiti delle n fasi

Allon | X | = m. x ... x m.

oss Devo essere in grado di viconoscere quele elemento è stato scelto al primo, secondo, ..., n-esimo steo.

Es Oventi comitati si possono costruire de 6 donne e 5 vomini se devono essere camposti de un vomo e une Johnz

6.5 = 30 com. tati

Es Conta il nunero di full (un tris e una coppie) nel poker a se cinta

4. (13). 3 (13)

Es Conte yli inequeumi di "Mississiapi" sanze vipotizioni di s

Conto gli inagrevami di "MILIPPI" -> 7! =105

Prizzo le S _M_1_1_1_P_P_1_ -> 8 slot, 45 -> (8).105 = 7350.

2. Probabilità

2.1 Probabilità uniforme

S, dice insieme delle parti di Ω $(P(\Omega))$ l'insieme di tutti i possibili sottoinsiemi di Ω

Det Siz I un insieme finito. Diciemo probabilità uniforme sullo spezio cempioneno i le funzione

P: P(1) - [0,1] , P(A) = 1A1

Def Gli elementi di a si dicono eventi elementari o esiti dell'esperimento

Def I sottomsiem d. a sono detti eventi dell'esperimento

PROP Se P: P(A) -> [O, 1] é uniforme su a allove si he P(|w|) = 101

PROP Sieno A e B due eventi di uno aprelo compioneno finito a con probabilità uniforme P.

- P(\$)=0 @ P(D)=1 - P(AUB)=P(A)+P(B)-P(AAB)

-P(A')=1-P(A) . Se Ecf, P(F,E)=P(F)-P(E)

2.2 Definizione di probabilità

Def Si, a un insieme exbitrario.

Dicismo funzione di probabilità su a un funzione P: P(x)->[a,1] tile une

- 0 CP(A) CI

- P(\$) =0, P(D)=1

- Se A, ... & De & due & due disagnint, allows P(VA;) = F(A;) := line (P(A) + ... + P(An))

- Se Ecfer allow P(E) & P(F)

PROP P(A, u u An) = P(A,) + ... + P(An) + (-1) Ex + + (-1) - E - + (-1) - P(A, A An) dove Ex = EP(A, a ... A An)

PROP Due insiemi infiniti hinno la stessa cardinalità se possoro essere messi in comispondenza biunivoca.

Se un insieme si prò mettere in conispondenza biunivoca con IN si dice numerabile

PROP (A.) . U A.

(U A) - A A

3. Probabilità condizionata

Siz a uno spezio cempionerio, P funzione di probebilité su a. Siano E, F \leq r con P(F) \neq 0. Diciemo probabilità di E ad F il numero P(E|F) = $\frac{P(E \cap F)}{P(F)} = \frac{P(E \cap F)}{P(F)}$

PROP SE P.FCA - P(F) funcione di probabilità su A. La funcione P(.IF): ECFCA - P(EIF) funcione di probabilità su F

PROP Se P é uniforme su a ellore P(IF) é uniforme su F

PROP $P(E|P) = \frac{P(E \cap F)}{P(E \cap F)} \Rightarrow P(E \cap F) = P(E|F) P(F)$

PROP - Formula del prodotto

Siano A, ..., An & 2 e P funzione di probabilità su 12.

Allora P(A,...An) = P(A,) P(A, IA,) . P(A, IA, A,) P(A, IA,...A...)

Un asema si supere con 3 compilion P(1)=0,7, P(11)=0.8, P(111-1)=0.9

PROP-Formula di inversione

Le probabilité de superere l'eseme é P(I-I-II)=0.7.08.09=0.504

Siz FEA e A funcione di probabilità su a con P(F)>0.

Per ogni A = 2 con P(A) > 0 si ha P(F(A) = P(A|F) P(A)

TEO- Formula della partizione

Siz | F.,..., Fn | une n-pertizione di a con P(F,) >0, ..., P(Fn)>0

Per ogni Esa si ha P(E)=P(EAF,)+...+P(EAF,)=P(E|F,)P(F,)+...+P(E|F,)P(F,)

TEO - Formula di Bayes Siz | F. F. | une n-pertizione di a con P(F,1>0, P(Fa)>0

Per agui. As a con P(A) to si he P(F, A) = P(A|F,)P(F,)+...+P(A|F,)P(F,)

3.1 Indipendenza di eventi Det Due event, A,B s. 2 sono indipendenti per (1, P) se P(AB) = P(A)P(B)

Def Tre events A,B,Cc. a sono indipendenti se: 1. sono indipendenti e due e due

2. P(ABC) = P(A) P(B) P(C)

Def Due event, A,B some indipendent, condizionatemente & Fer se P(AB|F) = P(A|F). P(B|F)

4. Variabili aleatorie

Def Sia a specio campionavio. Una variabile aleatone su a é una funcione XIA-IR

Scrivereno | X = x | = X (| x () := | were | X(w) = x | dove xelR

Det Diciemo distribuzione, o ripartizione, di X le funzione Fx: R→[o,1]
x →P(X≤x)

2. lim Fx(x)=0, lim Fx(x)=1

3. Fx é continux à destra

4. Per ogni cell si he P(xcz)=Fx(z):= lim Fx(x)

5. Per ogni cell si he P(x=2) = Fx(2)-Fx(2-)

COROLLAGIO Vinchil electorie X, Y con stesse distribuzioni (Fx=Fy) Essumono i velovi con ugueli probebilité P(XEA)=P(YEA) VACIR

Def Siano X;, i E I c IN famiglia di vanabili aleatorie.

Esse si dicono indipendenti se gli eventi de esse descritte sono indipendenti

Overs so per syn scells di A; ER, i El ql. event, X; EA; i e I som indipendenti.

4.1 Variabili aleatorie discrete

Def Una variabile aleatona X:12-31R si dice discreta sa

l'immagine lm(X) di X è un insieme finito o numerabile |xo,x,....

Def. Siano (a,p) spizio campionario e sua funzione di probabilità, X:a→1R vaviabile aleotoria. Discreta

Diciemo densitá discrete di X la Funzione $P_x:IR \rightarrow [o,i]$ $x \rightarrow P(X=x)$

Def Sia a spezio campionavio e P una funzione di probabilità su a.

1. lm x = 10,11 2 px(1)=p, px(0)=1-p

4.2 La variabile di Bernoulli

Rapprosente esperimenti con due esiti: Successo/Insuccesso. (es. Lancio una moneta: Successo se esce testa)

Una variabile aleatoria XI.a. IR si dice vaniabile aleatoria di Bernoully di parametro p se

Schwereno XaBe(p). Il uslove streso è E[X]=p e le vorinner Vir[X]=p(1-p)

4.3 La variabile binomiale

Del Sie a spezio compionerio e P funzione di probebiliti su a. Une variable electoria X: 2 -> IR si dice variabile electoria binomiale di peremetri (n,p) se: 1. lm(x)= lo,..., n} $2.p_{x}(k) = {n \choose k} p^{x} (1-p)^{h-k} \quad \forall k=0,1,...,n$ Scrivereno X~B(n,p), di valore atteso E[X]=np e Var[X]=np(1-p) Une monete che de teste nel 30% dei cissi

Une monete equilibrate

Une monete she dis teste nel 80% dei casi

B(so 0.3)

B(50,0.5)

B(50,0.8)

4.4 La variabile geometrica

Del Sie a uno spezio cempionevio e P une l'unzione di probebilité su a. Una variabile aleatoric X:2-IR si dice variabile aleatoria geometrica di pavametro pelo,1[se 1. lm X = IN.

2.
$$p_x(k) = p(1-p)^{k-1}$$
 $\forall k \in \mathbb{N}_2$

Si sonve X~Ge(p), il valore atteso è E[X]=1 e Var[X]=1-p PROP Sie XnGelp). Allors VKEIN si he P(Xxk)=(1-p)K

Sizno X, ..., X, ... ~ B(p), pe]a, [indipendent, su (a,p)

Allory X~Ge(p)

Siz X~Ge(p), pe]o, [. VK, mell si he P(xskim | xxk)=P(xsm)

4.5 La variabile di Poisson

Avenue B(500,000, 0.026) e volendo cekolere $p_x(x=11300)$ douvemmo celculere $\binom{500,000}{11,000} = \frac{500,000}{448100[x 11300]}$ on celculo non benele La variabile di Poisson pone n(=500'000) -> +00 e atrutta ció per semplificare il calcolo.

$$S_{1k} \quad h \to +\infty \quad \& \quad P_{n} := \frac{\lambda}{h} \quad \& \quad X \sim B_{R} \left(n, \frac{\lambda}{h} \right)$$

$$P_{K} \left(k \right) = \binom{n}{k} P^{h} \left(i - \frac{\lambda}{h} \right)^{n-K} = \binom{n}{k} \left(\frac{\lambda}{h} \right)^{h} \left(i - \frac{\lambda}{h} \right)^{h-K} = e^{-\lambda} \frac{\lambda^{h}}{h^{h}}$$

Es Centrolino con 1=30 telefonde/h. Trovo la probabiliti che nei prossimi 30 min il centralino non viceva

$$X_{\xi_{1}} - X_{\xi} \sim P_{\sigma}(s.3\%_{o})$$
 $P(X_{\xi_{1}} - X_{\xi} = 0) = e^{-3\chi_{c}}$

5. Valore atteso e Varianza

5.1 Valore atteso

PROP

Def Six X unz v.z. discrets con uslovi | x, | iEI | con Isli,..., n |. Dicismo uslove stesso o medie di X il numero: $E[X] = \sum_{i=1}^{m} x_i p_X(x_i) = \sum_{i=1}^{m} (x_i) \times P(X=x)$

PROP Simo X: A → IR e 4: IR → IR. Allores

1. go X: 2 -> IR & une v. a. discrete.

2. E[g(X)) = [[y g(x) px(x)

COROLLARIO [[&X+b]=&E[X]+b

PROP Sino X,Y v.z. e y: $\mathbb{R}^2 \to \mathbb{R}$ allow: $\mathbb{E}[g(X,Y)] = \sum_{x \in Im(X), y \in Im(Y), y \in Im(Y)} g(x,y) P(X=x) P(Y=y)$ CORDILARIO $E[XY] = \sum_{x \in I_m(X)} xy P(X=x) P(Y=y)$

se X, Y indipendent: E[x Y] = E[x] E[Y]

COROLLARIO E[X,+...+Xn] = E[x,]+...+ E[xn]

Se X & Y Allow E[X] & E[Y]

5.2 Varianza e deviazione standard

Det Le venienze di X à Ver [x] = E[(X-E[x])] = E[x] - E[x]

Le deviczione standard di X é ox = NVar[X]

PROP Var [2X+b] = 22 Var [X]

Det Le verrebile normalizzate di X é Y:= $\frac{X - E[X]}{\sigma_x}$. Tale che $E[Y] = \sigma_x$ Var[Y] = 1

Del Dicismo consusars di X e Y il numero Cov[X,Y] = E[(x-E[x])(Y-E[Y])] = E[XY] - E[X]E[Y]

Se Coulx, Y) so allow X e Y si dicono positivamente convelete

Se Cou[x, Y] co allors X e Y si dicono negativamente convelate

Se Cou[X,Y]=0 Illore Xe Y sono indipendenti sullo spizio cimpionevio PROP Var [X+Y] = Vor [X] + Var [Y] + 2 Cov [X,Y], se X,Y indipendenti Var [X+Y] = Vor [X] + Var [Y]

Vor [X,+...+X,] = Vor [X,]+...+ Vor [X,]+ = \(\sum_{i=1}^{\infty} \cdot \con [X; \cdot \

6. Variabili aleatorie continue

Def Une venebile electorie X si dice continue se esiste une funzione fx, dette densiti di X fx: IR - [0, +00[integrabile e (2,6) intervallo (aperto, chiuso, limitato, illimitato) t.c. P(Xe(2,6))=)fx(1)dt

PROP So F_x functions di distribuzione di X $\int_{F_x} (f_x(t)) f_x = P(x_0(x_0, b)) = F_x(b) - F_x(b)$

In tal caso F'esiste ovunque tranne che al più noi punti Iti,..., tal

PROP Se X é v.z. con Fx continue e C'a tretti, allove X é una v.z. continua di densité fx=Fx' e Fx(x)= fx(t)dt Vxeir

6.1 La variabile aleatoria uniforme

Allore F_x ê continue e C^1 e tretti, quindi X è v.e. continue. E $F_x(x) = F_x^1(x) = \begin{bmatrix} \frac{1}{b-2} & x \in J, b \in I \\ 0 & x \in X, x > b \end{bmatrix}$

$$S_1$$
 dice the X é uniforme S_1 (a,b) e S_1 scrive $X \sim U(a,b)$ e $E[X]_{\frac{a}{2}}$

Def la funzione di distribuzione di X è Fx(f)= 1-6-yf fro

Si dice the X segue to legge exponenziste di peremetro λ e si scrive $X = Exp(\lambda)$ e $E[X] = \frac{1}{\lambda}$

6.3 Valore atteso e varianza di una v.a. continua

Dot Sie X v.s. di densité fx. Dofiniamo il valore atteso di X il numero: E[X]= Jxfx(x) dx

PROP 1. Se X & Y, allow E[X] & E[Y] 2. Se a,belR, allore E[ax+b] = x E[x]+b

- 3. Se 2,661R, 2110r2 E[2X+64] = 2 E[X]+6E[Y]
- 4. Se q: IR IR, allow E[g(x)] = (q(u) fx(x) dx

Def $V_{av}[X]: E[(X - E[X])^2] = E[X^{-\frac{1}{2}}] - E[X]^2$ (uquale alle v.a. discrete)

7. Variabili normali e Teorema centrale del limite

7.1 Variabile normale standard

Ricordo che \(\int_{e}^{-\forall}^{\forall} \right) \(\forall = 1 \)

Det Une v.z. X continue si dice normale standard (e si scrive X~N(o,1))

se le sue demonté fx= 1/2 e

La Funzione di distribuzione (solitzmente Fran) è indiceta con P(x)

PROP Se X-N(o,1) Allow E[x]=0 e Var[x]=1

PROP 1. \$(0) =0.5 2. \$(-x)=1- \$(x)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.535
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
1.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.651
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.687
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.72
.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.75
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.78
8.	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.83
.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.86
1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.88
2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90
3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9031	0.9147	0.9162	0.91
4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.93
5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.94
6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.95
7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.96
8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.97
9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.97
0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.98
1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.98
.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.98
3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.99
4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.99
.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.99
6	0.9953	0.9955	0.9956	0.9957	0.9958	0.9960	0.9961	0.9962	0.9963	0.99
.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.99
8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.99
.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998

7.2 Variabile normale

Siano Melle, 020. Una venabile X si dice normale (0 Gaussiana) di paremetri (M. 02) se

X= 1+0Z, dove Z~ N(0,1)

Si scrive X~N(m, o2) e E[x]= m, Ver[x]= o2

PROP Lz v.z. Xn N(0,02) é simmetrice Voso, X e -X hanno atessa distribuzione

PROOF LE densité f_X di $X \sim N(\mu, \sigma^2)$ é $f_X(x) = \frac{1}{42\pi\sigma^2} e^{-\frac{1}{4}\frac{(x-\mu)^2}{\sigma^2}}$

7.3 Approssimazioni mediante la variabile normale

PROP Per m>>0, p 6]0, (=> B(m,p) = N(mp, mp(1-p))

PROP Per 1,0 => Po(1) = N(1,1)

7.4 Il Teorema Centrale del Limite

Def Due v.s. XY sono identicamente distribuite se Fx = Fv

PROP Siano X,..., Xn una famiglia numerobile di v.a. indipendenti ed identicamente distribuite con E[X;]=, u e Vau[Xi]=02

Allora E[X,+...+ Xn]=np e Var[X,+...+ Xn]=no2 Le normalizzate di Xi+...+ Xn & Xi+...+Xn-nju

TEO - centrale del linite

Siano X,.... v.z. indipendenti ed identicimente distribute con E[x;]= u e Van[X;]=02 Allore YeelR P(X,+...+Xn-n/4 Ez) -. \$(3), n-+0

COROLLARIO

Siano X,..., Xn una famiglia di v.z. indipendenti ed identicamente distribuite con E[X;]= n e Vac[Xi]=0=

Allow Velk P(X,+...+X, e) = P(nx+1not Z e) n -..., Z~N(0,1)

8. Variabili aleatorie congiunte

Def Une venebole conquente discrete su uno spisio compionerio (s., P) è una coppie (x, Y) di v. i. discrete

Es Per scephere è caso un punto del pieno tre un insieme finito di elementi posso usere (X,Y)

Def Sizno X e Y due v.z. discrete.

Diciamo densità conquenta di Xe Y la funzione pxy: IR2 - (0,1), (0,6) - P(X=2, Y=6)

Le densité di p. e py sono dette densité manginali di pary

PADP Sic (X, Y) u.s. congiunts discrete e yilk2-sir une funzione.

Allore E[q(x,Y)] = E g(x,y) pxy(x,y)

PROD Sizuo X, Y v.z. discuete.

Allow Xel Y some indipendent, <=> V(1,6) & IR2 pxx(2,6) = px (2) · px(b)

8.1 Variabili congiunte continue

Del Una vanabale conquenta continua su uno spazio campionario (A,P) é una coppia di v.a. (X,Y):A-IR2 tale the esiste fxy: 182 - [0,+00[(Jells densité conquente continue)

tale the VACIR2 P((x,y) EA) =) Fx,y (x,y) dx dy

e) fxy(x,y) dx dy = P((x, Y) & 1R2)=1

Def Lz Funzione di distimbuzione di (X,Y) è V(x,y) elle Fx,v(x,y) = P(Xex, Yey) PROP Siz Fxy(x,y) = P(Xex, Yey) distribuzione di una v.z. conquenta continua. Se fxy & la densità di (X, Y), su aym aperto dove Fxy & C2 si ha fxy (x,y) = d2y Fxy (x,y)

Det - Variabile uniforme su un insieme del piano

Sie CEIR con eres finite.

PROP Sia (X,Y) variabile conquenta continua con densità fxy.

$$f_{x}(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) \, dy \qquad \qquad f_{y}(x) = \int_{-\infty}^{\infty} f_{xy}(x,y) \, dx$$

Def Six
$$(X,Y)$$
 congiunts continux con densiti f_{XY} e $g: \mathbb{R}^2 \to \mathbb{R}$ unc funcione continux.

Allore $E[X] = g(X,Y) \cdot f(X,Y) \cdot f(X,Y)$

Allore E[X] =] g(x,y) fxx (x,y) dxdy

Det Cov [x,y] = E[(x-E[x])(Y-E[Y])] = E[xY] - E[X]E[Y]

- PROD V2, [X, +...+ X,] = V2, [X,] + ... + Va, [X,] + z \sum_{i \in 1} Cov [X, X_j]
- PROP X e Y sono indipendenti (=> V(x,y) E R2 Fx (x,y) = Fx (x) · Fx (y)

9. Legge dei grandi numeri

Sieno X, Xz, ... Femiglia numerobile di U.E. Indipendenti ed identicemente distribuite con E[Xi] = q e Var[Xi] finite.

Allore P (1 m X1 + ... + Xn = 21) =1