Computer Vision HW6: Report

The snapshot of my code result is as the following image:

1	11111151	
2	15555551	
3	15555551	
4	15555551	
5	15555551	
6	15555551	
7	15555551	
8	15111551	
9	111 1551	
10	11 1551	21155555511 15511155555511
11	21 1551	2 1555555511 1551 11555511 2 155555555511 1551 115551 1
12 13	1 1551 1551	112115555555551 1551 15511 12
14	1551	1555555555555511 1551 1111 111
15	1551	1 222115555555555511 1151 11 1151
16	1551	2 22 1 155555555555511 151 11111 1551
17	1551	2 1 1155555555555555551 151 115551 11551
18	1551	2 115555555555555555111511155511 115551
19	1551	12 115555555555555555555555555555555555
20	1551	11 0 2215555555555555555555555555555
21	1551	111 22 15555555555555555555555555555555
22	1551	1511 1 125112111112111555555555111 11555551
23	1551	15521 1 121 1 11 1 15555555111 0 155555551
24	1551	1151 132 2 1155555111 0 115555551
25	1551	151 0 322 115555111 121 155555551
26	1551	1221 2 1555551 131 1155555551 2 0 1 115555511 1 1155555551 2 0 0 1155555551 0 1 155555551
27	1551	2 0 1 115555511 1 1155555551
28	1551	2 0 0 1155555551 0 1 155555551
29	1551	2 11555555551 21155555551
30	1551	1 0 11555555551 1555555551 1 11511155555521 1 115555555551
31	1551	1 11511115555521 1 115555555551
32	1551	1 1 11111 1155511 2 1555555551
33	1551	131 111 15111 2 155555555551
34 35	1551 1551	121 0 1121 1 111 1 2 115555555551 11 111 1 221 11 1 2 15555555555
36		12 0 1 21 121 11 1111 2 155555555551
37	1551	1 12 22 151111111551 2 115555555555
38		
39	1551	1 2 1555551115511 1 1555555555551 2 0 0 22 12555551 15551 1 1555555555551
40	1551	1 1 1555511 11511 2 1155555555555
41	1551	1 1 1555511 11511 2 1155555555551 0 0 21 155551 1 151 2 1555555555551
42	1551	2 15555112 151 2 1555555555555
43	1551	1 1 1 1155555511111 2 1555555555555
44	1551	2 22 111511111212 211555555555555
45	1551	
46	1551	0 0 0 1111 121 155555551 15555551
47	1551	0 11111111 155555551 1555551
48	1551	0 115551 15555551 1555511
49 50	1551	15551 211111111 155511 1 12 122155511 2 11 115511
50 51	11521 1 151 (
52	22 1511	
53	22 1511	1 15555555551 155551 1151
54	2 1511	0 1 11155555555511 155511 1511
55	2 1521	0 1 15555555555511 15551 12151
56	2 151	121 1555555555551 155511 1551
57	2 1511	0 15555555555551 115551 1511
58	21 1511	11 1555555555555 1111111151
59	11 151	0 1155555555555511 111511
60	11 151	1555555555555555 151
61	11 151	0 1155555555555555 211
62	11 151	115555555555555511 1
63	11 151	0 155555555555555
64	11 111	0 1211111111111111

The main code structure of the .ipynb file consists of the following parts (each part is a code cell, with detailed description in the preceding markdown cell):

- 1. Import the libraries
- 2. The 2 primitive functions that we used to count the Yokoi connectivity number
 - a. h
 - b. f
- 3. Read in the image by cv2.imread() as usual
- 4. downsampling
- 5. Calculate the Yokoi connectivity number by first obtaining the value of each index in the neighborhood, then plug in to the 2 primitive functions we have defined in step 2, print after each row is processed.

A really detailed explanation for each step is covered in the markdown cells, so I'll just paste the screenshots and give brief explanation here.

For the primitive function h, our aim is to determine whether a three-pixel corner neighborhood is connected in a particular way, so we use three symbols 'q', 'r', 's' to represent the 3 situations, and check to return which symbol by definition:

```
1 def h(b, c, d, e):
2     if b == c and (d != b or e != b):
3         return 'q'
4     elif b == c and (d == b and e == b):
5         return 'r'
6     else:
7         return 's'
8
$\square$ 0.0s
```

¹ The definition written in mathematical equations, and examples of each returning value is contained in the corresponding markdown cell.

For the primitive function f, we just implement it as definition:

```
primitive function f

f counts the number of arguments having a paricular value.

The symbol (label) 5 stands for interior pixels, so we output 5 if all the arguments are r.

For other cases, the connectivity number is the number of times a 4-connected neighbor has the same value but the corresponding 3-pixel corner neighborhood does not, if we represent this in a formula, it would be:

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}

f(a_1, a_2, a_3, a_4) = \#\{a_k | a_k = q\}
```

After the 2 primitive functions are defined, we do the downsampling part:

```
Downsampling lena from 512x512 to 64x64

1. binarize lena image as HW2
2. use 8x8 blocks as a unit
3. take top-most left pixel as downsampled data

Note: Result is a 64x64 matrix
```

We start by binarizing the lena image as usual:

Then the downsample process is just assigning each downsampled pixel by the corresponding topmost left pixel of the 8x8 block in the original binarized image:

Finally we calculate the Yokoi connectivity number, to print out the results, we print after each row is proceeded, so we create an empty string after each iteration of i:

Then we get the values of each pixel in the neighborhood, with the indexing like below:

```
The indexing for pixels in a 3x3 neighborhood is: \begin{bmatrix} x_7 & x_2 & x_6 \\ x_3 & x_0 & x_1 \\ x_8 & x_4 & x_5 \end{bmatrix}
```

To obtain these values, cases that may contain indexes out of the image should be taken into consideration:

```
Here we have to define different cases, since for pixels on the boundary, some of their neighbors do not exist. We classify the situation into 9 cases:

• top

1. top-left
2. top-right
3. top

• bottom

4. bottom-left
5. bottom-right
6. bottom

7. left
8. right
9. center
```

For foreground pixels, we define the values by cases differently, and we set the nonexist pixels' values to zero (due to the report length, here I only present the first 3 cases that represents the top row):

The last part is to call the functions and derive the connectivity number by definition, and concatenate the result to the string of the current row.