

Physique

Classe: Bac Math

Devoir de synthèse 3

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Bac Blanc (DS3)

CHIMIE

Exercice 1:

Toutes les solutions sont prises à 25° C, température à laquelle le produit ionique de l'eau est $Ke = 10^{-14}$

On dispose d'une solution aqueuse (S) d'un monoacide **faible AH**, de concentration molaire $C_A=0,1$ mol.L⁻¹ . la mesure du pH fournit la valeur pH= 2,9.

- 1) a- Dresser un tableau d'avancement volumique de la réaction de l'acide avec l'eau.
- **b-** Exprimer le taux d'avancement final, τ_f , de la réaction en fonction de C_A et du pH de la solution et calculer sa valeur et conclure.
 - 2) a-Exprimer la constante d'acidité Ka en fonction de pH et de τ_f .
- **b-**Etablir l'expression du **pKa** du couple **acide/base**, en fonction de **pH** et C_A . Calculer la valeur du **pKa**.
- 3) On dose un volume V_A =10mL de la solution (S) par une solution d'hydroxyde de sodium (NaOH) de concentration molaire C_B et de pH=12,7. L'équivalence acide-base est obtenue par l'ajout d'un volume d'acide égale V_{BE} . Le tableau suivant rassemble les résultats de quelques mesures :

Volume de base ajouté V _B (mL)	0	10	20	40
pН	2,9	•••••	•••••	12,2

- a-Ecrire l'équation chimique de la réaction du dosage
- b-Déterminer la concentration molaire C_B de solution d'hydroxyde de sodium. En déduire la valeur de V_{BE}
- **c-**En faisant les calculs nécessaires, compléter le tableau ci-dessus (recopier le tableau complet sur votre copie).

Exercice 2

On considère deux solutions aqueuses mères (S_1) et (S_2)

- (S_1) solution de sulfate de fer II de concentration molaire $C_1 = 10^{-2} \text{ mol } L^{-1}$
- (S_2) solution de sulfate de zinc de concentration molaire $C_2 = 1$ mol L^{-1}
- 1°) Avec (S₁) et (S₂), On réalise la pile P₁ symbolisée par (Fe | Fe²⁺(C₁) || Zn²⁺(C₂) | Zn). On constate que le courant circule dans un circuit extérieur de l'électrode de fer (Fe) vers

l'électrode de zinc (Zn).

- a- Ecrire l'équation de la réaction chimique associée à la pile
- **b-** Préciser le signe de la f.e.m. initiale E₁ de cette pile. Ecrire l'équation de la réaction spontanée.
- ${f c}$ Exprimer la fem normale E^0 de la pile en fonction de E_1 , et déduire son signe.
- **d-** Comparer les pouvoirs réducteurs des deux métaux.
- 2°) On garde la solution aqueuse mère (S_1) inchangée, et on réalise avec (S_2) l'opération suivante :

On prélève un même volume de la solution que l'on dilue n fois afin de préparer plusieurs solutions filles de concentrations C'₂ différentes. Avec chacune de ces solutions filles, on réalise une pile identique à P₁ et On mesure sa fem initiale notée E ce qui permet de tracer la courbe traduisant l'évolution de E en fonction de log(n)

- **a-** Etablir l'expression de la f.e.m E en fonction de la fem E_1 de la pile P_1 et de log(n).
- **b-** Montrer que la valeur de la f.e.m E_1 de la pile P_1 est $E_1 = -0.26$ V.
- **c-** En déduire celle de la f.e.m normale E^0 de la pile P_1 .
- d- Déterminer C'2 lorsque E=-0,275V.
- 3°) Dans le but de déterminer les potentiels $E^0(Fe^{2+}/Fe)$ et $E^0(Zn^{2+}/Zn)$ On réalise la pile permettant de mesurer le potentiel normal d'un couple (M^{2+}/M) .
 - a- Représenter cette pile et donner son symbole.
- **b-** La mesure de la fem normale de cette pile pour le couple Zn^{2+}/Zn donne la valeur **-0,76** V.

Déterminer les valeurs de potentiels standards des couples $\mathbf{Z}\mathbf{n}^{2+}/\mathbf{Z}\mathbf{n}$ et $\mathbf{F}\mathbf{e}^{2+}/\mathbf{F}\mathbf{e}$.

NWW.t

PHYSIQUE

Exercice 1

On donne:

Charge élémentaire : $e = 1,6.10^{-19}$ C Constante de Planck : $h = 6,62.10^{-34}$ J.s

Célérité de la lumière dans le vide : $c=3.10^8$ m.s⁻¹; $1eV=1,6.10^{-19}$ J

Les niveaux d'énergie quantifiés de l'atome d'hydrogène sont donnés par la relation :

$$E_n = -\frac{E_0}{n^2}$$
 avec $E_0 = 13.6eV$ et n est un nombre entier naturel non nul

- 1°) a-Expliquer brièvement le terme "niveau d'énergie quantifié".
 - **b-** Que représente E₀ pour l'atome d'hydrogène ?
- 2°) On considère le passage de l'atome d'hydrogène d'un niveau d'énergie E_n vers le niveau E_p tels que n>p.
 - a- Dire, en le justifiant, s'il s'agit d'une émission ou d'une absorption.
 - **b**-Montrer que la longueur d'onde λ , de la radiation correspondant à cette transition, s'écrit :

 $\frac{1}{n^2}$] où λ_0 est une constante que l'on exprimera en fonction de E_0 , c et h.

www.taki

c-Déterminer la valeur de λ_0 .

 3°) Dans la série de Balmer (le retour au niveau $\mathbf{p} = 2$) le spectre de l'atome d'hydrogène révèle la présence de quatre raies visibles correspondant aux longueurs d'ondes suivantes :

 $\lambda_1 = 657 \text{ nm}, \ \lambda_2 = 486 \text{ nm}, \ \lambda_3 = 434 \text{ nm} \text{ et } \ \lambda_4 = 410 \text{ nm}.$

- **a-** Montrer qu'on peut déterminer **n** par la relation suivante : $\mathbf{n} = \sqrt{\frac{4\lambda}{\lambda 4\lambda_0}}$
- **b-** Calculer **n** pour $\lambda = \lambda_2 = 486$ **nm**.
- c- L'atome d'hydrogène est dans son niveau d'énergie E_2 (n=2), reçoit un photon incident de longueur d'onde λ =486 nm. Ce photon est il absorbé ? Justifier sans calcul.
- 4°) L'atome dans son niveau d'énergie E_2 reçoit maintenant un photon de longueur d'onde λ . L'atome est ainsi ionisé et l'électron est éjecté avec une énergie cinétique de valeur E_c = 1,92.10⁻¹⁹ J. Calculer λ .
- 5°) Un électron d'énergie cinétique E_{C} =3,006 eV heurte l'atome d'hydrogène supposé au repos pris dans son niveau d'énergie E_{2} . Suite à ce choc l'atome est excité et l'électron acquiert une énergie cinétique de E'_{C} =0,15 eV. Déterminer la transition correspondante ?

Exercice 2

On donne : $1u = 1,66.10^{-27} \text{ Kg} = 931,5 \text{ Mev.c}^{-2}$; $1\text{Mev} = 1,6.10^{-13} \text{ J}$; $m_p = 1,00727u$; $m_n = 1,00867u$ et

Masse d'un noyau de phosphore (32 P) : m (P) = 31,9739 u ;

Masse d'un noyau de soufre $(\frac{32}{16}S)$: m $(\frac{32}{16}S)$ = 31,97207 u;

Masse de la particule $(\mathbf{a}^{\mathbf{b}}\mathbf{x})$: $m(\mathbf{a}^{\mathbf{b}}\mathbf{x}) = 5,48.10^{-4} \, \mathrm{u}$

En 1934, Les physiciens français Irène et Frédéric Joliot-Curie, ont découvert la radioactivité artificielle en bombardant des noyaux d'aluminium $\frac{27}{3}$ Al par des particules $\frac{4}{5}$ X. Il se forme alors du phosphore radioactif $\frac{39}{5}$ P avec libération d'un neutron.

- 1) Identifier la particule projectile $\frac{1}{2}X$ et écrire l'équation de la réaction nucléaire en précisant si elle est provoquée ou spontanée.
- 2) L'un des isotopes du phosphore formé, le 32 P est radioactif, il se désintègre en soufre 32 S avec émission d'une particule b x.
- **a-** Préciser les nombres de protons et de neutrons des noyaux de phosphore et de soufre et déduire la transformation ayant lieu à l'intérieur du noyau de phosphore et dont résulte la particule ${}^b_a x$
- **b-** Identifier alors la particule en précisant son symbole et son nom , et écrire l'équation de la désintégration subi par le noyau de phosphore.
- 3) Le défaut de masse du noyau de phosphore 32 P est $\Delta m = 0,2825$ u et l'énergie de liaison du noyau de soufre 32 S est $E\ell = 263,58$ Mev. Préciser en justifiant, et avec le minimum de calculs nécessaires le noyau le plus stable

4) On dispose, à t=0, d'un nombre $N_0=10^{15}$ noyaux de phosphore. La mesure de l'activité à différentes dates montre qu'il existe une durée Δt pour laquelle l'activité vérifie la relation :

$$\frac{A(t-\Delta t)}{A(t+\Delta t)}=3.$$

- **a-** Montrer que la demi- vie radioactive T du phosphore s'exprime en fonction de la durée Δt par une relation que l'on déterminera.
 - **b-** sachant que $\Delta t = 11.9$ jours, montrer que la valeur de T = 15 jours.
 - c- En déduire, en Bq, la valeur de l'activité initiale A0
- 5) La particule $\frac{\mathbf{b}}{\mathbf{a}}$ x émise lors de la désintégration d'un noyau de phosphore, a pour énergie totale

 $\mathbf{E} = 1,2$ MeV. Montrer que l'énergie cinétique du noyau fils est négligeable devant celle de $\mathbf{a}^{\mathbf{b}}$ x.

(On supposera que le noyau fils prend naissance dans son état fondamental)

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000