

IE534/CS547: Deep Learning

(Due: Feb-03-2021)

Homework #1

Instructor: Richard B. Sowers

Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- This is a group homework, every group only submit ONE solution on Compass. Please include the names of all the group members.
- Due time is at 11:59pm at the due date. No late submission!
- All students are expected to abide by the Honor Code
- All date-times will be in Champaign-Urbana

Problem 1: gradientdescent

(10 points)

Consider the cost function

$$f(x_1, x_2) \stackrel{\text{def}}{=} 9x_1^2 + x_2^2$$
 $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$

- (1) Compute $\nabla f(\mathbf{x})$
- (2) Fix $\delta > 0$ and construct gradient descent $\mathbf{x}_{n+1}^{(\delta)} = \mathbf{x}_n^{(\delta)} \delta \nabla f\left(\mathbf{x}_n^{(\delta)}\right)$, with initial conditions $\mathbf{x}_0^{(\delta)} = (1, 2)$.

Defining $X_t^{(\delta)} \stackrel{\text{def}}{=} \mathbf{x}_{\lfloor t/\delta \rfloor}^{(\delta)}$ (with $\lfloor \cdot \rfloor$ the integer floor function), find an ODE for $\lim_{\delta \searrow 0} X_t^{(\delta)}$ (3) Explicitly solve this ODE

(Solution)

(1)

$$\nabla f(x_1, x_2) = (18x_1, 2x_2)$$

(2) Since

$$x_{\lfloor \frac{t}{\delta} \rfloor + 1} - x_{\lfloor \frac{t}{\delta} \rfloor} = X_{t+\delta} - X_t$$

Then

$$\dot{X}_t = -\nabla f(X_t) = -2AX_t$$

where

$$A \stackrel{\text{def}}{=} \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$$

(3) Given $\mathbf{x}_0^{(\delta)} = (1, 2)$

$$X_t = (e^{-18t}, 2e^{-2t})$$

Problem 2: stability

(10 points)

Consider the function

$$f(x) \stackrel{\text{def}}{=} \lambda x^2. \qquad x \in \mathbb{R}$$

where $\lambda > 0$.

- Homework #1

- (1) Explicitly describe the gradient descent iteration $x_{n+1} = x_n \delta f'(x_n)$.
- (2) Describe the stability of gradient descent iteration for different values of δ .

(Solution)

(1) Since $f'(x) = 2\lambda x$ and $x_{n+1} - x_n - \delta f'(x_n) = x_n - 2\delta \lambda x_n = (1 - 2\delta \lambda)x_n$, thus

$$x_{n+1} = (1 - 2\delta\lambda)x_n.$$

(2) if $|1 - 2\delta\lambda| < 1$, (i.e., $\delta < 1/\lambda$), gradient descent decreases f. If $\delta = 1/\lambda$, gradient descent oscillates, and if $\delta > 1/\lambda$, gradient descent increases f.

Problem 3: Coding question

(10 points)

Let's understand linear regression for all features in the dataset used in the linear regression lecture; i.e., let's understand multidimensional linear regression

- The data set is QSAR fish toxicity Data Set and you can also download it on Piazza.
- Attribute information
 - 1. CIC0
 - 2. $SM1_Dz(Z)$
 - 3. GATS1i
 - 4. NdsCH
 - 5. NdssC
 - 6. MLOGP
 - 7. quantitative response, LC50 [-LOG(mol/L)]
- The linear regression model is given by $LC50 = \alpha_1CIC0 + \alpha_2SM1.Dz(Z) + \alpha_3GATS1i + \alpha_4MLOGP + \beta$
- (1) Use sklearn to find the formula (i.e., coefficients) for the linear regression
- (2) Derive the explicit formula for multidimensional linear regression and implement it in numpy to get explicit coefficients
- (3) Construct a gradient descent method for linear regression with the data, and use numpy to implement it to find the fixed point.

(Solution)

- (1) Code is attached
- (2) Let's assume the linear model is given by $y = Xb + \epsilon$, where the bias term is hidden in X. The derivation is based on least squares estimation, and we need to do the following minimization.

$$\min \epsilon^T \epsilon = (y - Xb)^T (y - Xb)$$
$$= y^y - 2b^T X^T y + b^T X^T Xb$$

Let the gradient to be 0, we have

$$\frac{\partial (\epsilon^T \epsilon)}{\partial b} = -2X^T y + 2X^T X b = 0$$

Then we have

$$b = (X^T X)^{-1} X^T y$$

(3) Code is attached