AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1-12. (canceled)

13. (new) A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{max} \geq 270$ nm selected from the group consisting of the moieties represented by general formulae:

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

 R^9 and R^{10} are independently H or C_1 - C_6 -alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C_1 - C_6 -alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

 R^{15} , R^{16} and R^{17} are independently selected from H and C_1 - C_6 -alkyl; and wherein R' is H, OH, straight or branched chain C_1 - C_{20} -alkyl, C_1 - C_{20} -alkoxy or C_2 - C_{20} -alkenyl;

and wherein In the above definition the symbol "-| " denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4,2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone; and a cosmetically acceptable carrier.

- 14. (new) Compositions according to claim 13, characterized in that the hyperbranched polymer exhibits an average degree of branching ≥ 25%.
- 15. (new) Compositions according to claim 13, characterized in that the hyperbranched polymer has an average molecular weight M_w within the range of from 500 to 50,000 g mol⁻¹.
- 16. (new) Compositions according to claim 13, characterized in that the hyperbranched polymer comprises an average number of 2 to 600 dendritic building blocks.
- 17. (new) Compositions according to claim 13, characterized in that the hyperbranched polymer comprises a structure represented by general formula (I)

$${[Q] (Y^1)_g} (LX)_p (Y^2)_h$$
 (I),

wherein

Y¹ and Y² independently represent UV absorbing chromophores;

{[Q] (Y¹)g} represents the hyperbranched polymer covalently bonded to g UV absorbing chromophores Y¹;

(LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being

- covalently bonded to an UV absorbing chromophore Y2, or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

wherein

index g is an integer, wherein $0 \le g \le 100$; index h is an integer, wherein $0 \le h \le p$; and index p is an integer, wherein $0 \le p \le 100$; with the proviso that $g + h \ge 3$.

18. (new) Compositions according to claim 17, characterized in that the hyperbranched polymer comprises a structure represented by general formula (II)

$$\{[(B_k)_l (AB_m)_n] (Y^1)_g\} (LX)_p (Y^2)_h$$
 (II),

wherein

Y¹ and Y² are defined as in claim 5;

LX is defined as in claim 5;

B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is

- covalently bonded to a functional group A of a building block AB_m, or
- covalently bonded to the proximal end of a linker unit LX, or

- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form;

(AB_m)_n represents n building blocks AB_m, each bearing a functional group A and m independent functional groups B, wherein independently each functional group A is

- covalently bonded to a functional group B
 - of a further building block AB_m or
 - of the starter unit B_k, or
- covalently bonded to a capping group, or
- in its free reactive form.

and wherein independently each functional group B is

- covalently bonded to a functional group A of a further building block AB_{m} , or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

wherein

index g is defined as in claim 5;

index h is defined as in claim 5;

index k is an integer of from 1 to 6;

index I is 0 or 1;

index m is an integer of from 2 to 4;

index n is an integer of from 3 to 100; and

index p is an integer wherein $0 \le p \le n(m-1)+k$.

19. (new) Compositions according to claim 18, characterized in that in the hyperbranched polymer index I is 1, the starting unit B_k is trimethylolpropane and the building block AB_m is glycidol.

20. (new) Compositions according to claim 17, characterized in that the hyperbranched polymer comprises a structure represented by general formula (III)

$$\{[(B_k)_I\,(AB_m)_n\,(C_q)_r]\,\,(Y^1)_g\}\,\,(LX)_p\,\,(Y^2)_h \eqno(III),$$

wherein

Y¹ and Y² are defined as in claim 5;

LX is defined as in claim 5;

 B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is

- covalently bonded to a functional group C
 - of a monomer C₂ or
 - of a building block C_q or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form;

(AB_m)_n represents n building blocks AB_m, each bearing a functional group A and m independent functional groups B, wherein independently each functional group A is

- covalently bonded to a functional group C
 - of a monomer C₂ or
 - of a building block Cq, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form:

and wherein independently each functional group B is

- covalently bonded to a functional group C
 - of a monomer C2 or

- of a building block C_q, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y1, or
- covalently bonded to a capping group, or
- in its free reactive form;

(C_q)_r represents

- when index q = 2: r monomers C₂ or
- when index q > 2: r building blocks C_q each bearing q functional groups C, wherein independently each functional group C is
 - covalently bonded to a functional group A of a building block AB_m, or
 - covalently bonded to a functional group B
 - of a building block AB_m or
 - of the starter unit Bk, or
 - covalently bonded to the proximal end of a linker unit LX, or
 - covalently bonded to an UV absorbing chromophore Y1, or
 - covalently bonded to a capping group, or
 - in its free reactive form:

wherein

```
index g is defined as in claim 5;
index h is defined as in claim 5;
index k is an integer of from 1 to 6;
index I is 0 or 1;
index m is an integer of from 2 to 4;
index n is an integer of from 3 to 100;
index p is an integer wherein 0 \le p \le n(m-1) + r(q-1) + k;
index q is an integer of from 2 to 4; and
index r is an integer wherein 1 \le r \le nm/q.
```

21. (new) Compositions according to claim 20, characterized in the hyperbranched polymer index I is 0, index q is 2, building block AB_m is diisopropanolamine and monomer C_2 is a compound represented by general formula (IV)

$$\begin{array}{ccc}
& & & & \\
& & & \\
O & (CH_2)_s & & (IV) \\
& & & \\
O & & & \\
\end{array}$$

wherein

index s is 0, 1 or 2;

 R^1 and R^2 are independently H, linear or branched C_1 - C_{18} -alkyl or C_2 - C_{18} -alkenyl, or

R¹ and R² together with the carbon atoms to which the are attached form a 4 to 7 membered aliphatic or aromatic ring.

- 22. (new) The composition according to claim 17, characterized in that in the hyperbranched polymer the linker unit LX comprises polyethyleneoxide or polypropyleneoxide.
- 23. (new) Compositions according to claim 17, characterized in that the hyperbranched polymer comprises 1 to 20 capping groups.
- 24. (new) Compositions according to claim 23, characterized in that the capping group is a straight or branched chain ether or ester group with 1 to 20 carbon atoms.