FIN 6100 Module 2 Assignment

By: Opeyemi Morakinyo

Instructor:Dr Keith Wade

Date: 17th October, 2023

Redgecoop is a digital cooperative society that provides financial clusion services for small and medium businesses in underserved communities.

This comprehensive financial plan provides a roadmap for the digital cooperative company's financial management, with the flexibility to adapt to changing market conditions and meet its goals for customer and facility expansion. It also promotes ethical considerations in cost management and focuses on key performance indicators that drive strategic actions within the organization.

IT Services Forecasting model

Start Date	01-August-23
Current Month	05-March-24
Forecast end	05-March-25

Scenario 1: Base Case

Assumptions: Steady market conditions, expected customer growth, and facility expansion. Forecast revenues, costs, and cash flows accordingly.

		12-																				
		M																				
		O																				
		NT																				
		Н																				
	SC	R																				
	EN	OL																				
	A	LI																				
	RI	N																				
	O	G																				
	1:	FO																				
	Ba	RE																				
	se	C																				
	cas	AS																				
	e	T																				
					\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$						
					2,0	3,0	4,5	6,7	10,	15,			70,	10	15	23						
	Re												06									
50	ve												9,4									
10	nu												29.									
0	e		\$ -	\$ -	0	0	0	0	00	00	00	19	69	4.5	6.8	5.2	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -

													3	0	0						
	Op					\$															
	era			\$										19,							
	tio													22							
	nal													1,6							
	cos		_											79.							
1	t	\$ -	\$ -	00	00	0	0	0	0	0	5	5	13	69	53	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
	De																				
	vel																				
	op																				
	me																				
	nt																				
	an																				
	d																				
	ma																				
	int				\$			\$													
	en													34,							
	an													59							
50	ce													9,0							
10	cos													23.							
2	t	\$ -	\$ -	00	0	0	0	0	0	0	5	75	63	44	16	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
	Ma																				
	rke																				
	tin																				
	g																				
	an																				
	d																				
	cus																				
	to																				
	me																				
	r																				
	ac							\$	\$												
	qui			\$	\$	\$	\$	1,3	2,0	3,0			10,	15,	23,						
	siti			(30	40	60								37							
50	on			0,0	0,0		0,0							7,3							
10	cos			00.	00.	00.	00.	0.0	0.0	0.0	0.0	5.0	62.	43.	15.						
3	ts	\$ -	\$ -	00)	00	00	00	0	0	0	0	0	50	75	63	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
50	Ca			\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$						
10	shf	\$ -	\$ -	10,	13,	19,	29,	44,	66,	99,	96,	17	25			\$ -	\$ -	\$ -	\$ -	\$ -	\$ -

4	lo	55	10	65	47	21	31	47	25	0,8	6,2	4,4	6,6	
	w	0,0	0,0	0,0	5,0	2,5	8,7	8,1	2,4	61,	91,	37,	56,	
		00.	00.	00.	00.	00.	50.	25.	89.	08	62	43	15	
		00	00	00	00	00	00	00	84	3.5	5.3	8.0	7.1	
										9	9	9	3	
								\$	\$	\$	\$	\$	\$	
		\$	\$	\$	\$	\$	\$	13	16	27	40	61	91	
		13,	18,	27,	41,	61,	92,	8,9	7,4	1,6	7,5	1,2	6,9	
		60	30	45	17	76	64	65,	60,	85,	27,	91,	37,	
		0,0	0,0	0,0	5,0	2,5	3,7	62	98	20	80	70	55	
		00.	00.	00.	00.	00.	50.	5.0	2.0	0.7	1.1	1.7	2.6	
		00	00	00	00	00	00	0	3	8	7	6	4	

Variance 1: Revenue Shortfall such as lower-than-expected customer acquisition. Solutions: Intensify marketing efforts, explore new markets, and enhance customer retention programs.

Cost Management Strategies:

Strategy 1: Technology Optimization

Assess and upgrade technology infrastructure to reduce long-term operational costs.

Ethical considerations: Ensure data security and user privacy during upgrades and follow ethical guidelines in data handling.

KPI 1: Customer Acquisition Cost (CAC)

Alignment: Aligns with the expansion objective by measuring the efficiency of marketing and customer acquisition.

Measurement: CAC = Total marketing and sales costs / Number of new customers.

Action: Allows optimization of marketing campaigns and strategies to reduce CAC over time.

Scenario 2: Bull Market

Assumptions: Favorable market conditions, faster customer acquisition, and facility expansion. Forecast for higher revenues and more significant investments.

														\$	\$						
											\$	\$	\$	2,5	8,9						
							\$	\$	\$	\$	66,	20	73	65,	79,						
				\$	\$	\$	15	52	1,8	6,4	03	9,4	2,9	44	07						
				3,0	12,	43,	0,6	7,3	45,	60,	9,6	24,	85,	9,0	1,6						
	Re			50,	30	05	75,	62,	76	19	92,	41	43	38,	35,						
50	ve			00	0,0	0,0	00	50	8,7	0,6	57	1,3	9,6	76	69						
10	nu			0.0	00.	00.	0.0	0.0	50.	25.	8.1	28.	48.	9.2	3.0						
0	e	\$ -	\$ -	0	00	00	0	0	00	00	3	13	44	5	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -

															\$						
												\$	\$	\$	1,1						
									\$	\$	\$	27,	94,	33	58,						
(Ор					\$	\$	\$	13	47	8,7	02	57	1,0	58						
	era			\$	\$	3,1	11,											•			
	tio			20			02														
50 n							5,0														
10							00.														
1 t		•	¢	00.												¢	¢	¢	¢	•	¢
		D -	φ-	00	UU	U	00	00	U	U	13	U	3	91	U	Φ-	Ф -	Ф -	D -	D -	φ-
]	De																				
1	vel																				
(op																				
1	me																				
1	nt																				
	an														\$						
	d										\$	\$	\$	\$	2.3						
	ma							\$	\$	\$				66							
	int				\$	\$	•	14													
				ot l																	
	en						40,														
	an						42														
50							5,0														
10							00.														
2 t	t	\$ -	\$ -	00	0	00	00	0	0	00	5	0	50	81	0	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
]	Ma																				
	rke																				
	tin																				
	g an																				
	d																				
	cus																				
	to											Φ.	Φ.	Φ.	Φ.						
1	me								_	_	_	\$	\$	\$	\$						
1	r							\$	\$	\$	\$	13,	47,	16	57						
8	ac				\$	\$	\$							5,5							
(qui			\$	3,0	10,	36,	8,6	0,1	75,	84,	1,2	9,3	12,	94,						
	siti			30	00,	50	75	25,	87,	65	61	52,	83,	84	94						
5		1						00	50	60	7.0	2.4	20	1 2	4.0						
50	on			0,0	00	0,0	0,0	00	50	0,2	7,9	34	20	1,2	4,2						
				1			0,0														

													\$	Ф	\$						
												_		\$							
										\$	\$		2,1	,							
						\$	\$	\$	\$	26,	18	61	51,	30,	35						
				\$	\$	17	62	2,1	7,6	94	9,2	4,7	66	83	7,9						
				10,	51,	9,5	8,4	99,	98,	3,7	03,	61,	6,9	4,2	19,						
	Ca			05	30	50,	25,	48	20	21,	48	98	35,	75.	96						
50	shf					_		7,5		,											
10				· 1	· 1			00.			· 1	· 1			· 1						
		σ.	₽													ф	d.	d.	₽.	₽.	d.
4	W	D -	y -	00	00	0	U	00	00	U	13	03	0	U	00	D -	2 -	2 -	3 -	2 -	2 -
													\$	\$	\$						
									\$	\$	\$	\$	3,2	11,	39,						
						\$	\$	\$	10,												
				\$	\$			3,0													
				14				35,													
								55													
								0,0			,	,		,							
				00.	00.	0.0	0.0	00.	0.0	0.0	50.	75.	2.3	43.	02.						
				00	00	0	0	00	0	0	00	00	1	90	80						

"Variance 2: High Operational Costs including increased employee expenses. Solutions: Optimize workforce, implement cost-saving technology, and negotiate better vendor contracts.

Strategy 2: Lean Workforce ManagementImplement a lean approach to workforce management, focusing on productivity.

Ethical considerations: Ensure fair treatment, training, and reassignment options for employees impacted by downsizing.

KPI 2: Customer Lifetime Value (CLV)

Alignment: Measures the long-term value of a customer, aligning with customer expansion goals.

Measurement: CLV = (Average revenue per customer * Gross margin) / Churn rate.

Action: Helps in customer retention strategies and maximizing revenue from existing customers "

Scenario 3: Bear Market

Assumptions: Challenging market conditions, slower customer growth, and limited expansion. Forecast with cost control measures in place to ensure sustainability.

		12- M O NT H R OL LI N G FO RE C AS																				
10	Re ve nu e	T	\$ -	\$ -	55 0,0 00. 00	60, 00 0.0 0	86, 00 0.0 0	\$	77, 06 0.0 0	44, 76 6.0 0	2,0 29, 24 2.6 0	4,7 84, 98 6.2 6	87, 07 5.1 9	85, 78 2.7 1	24, 36 0.9 8	5,3 06, 79 7.0 7	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
	era tio nal cos t		\$ -	\$ -	50, 00 0.0	60, 00 0.0	66, 00 0.0	3,7 02, 60 0.0 0	72, 86 0.0	80, 14 6.0	28, 16 0.6	66 0,0 45.	51 4,4 61.	56 5,9 07.	62 2,4 98.	68 4,7 48.	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
10	vel op me nt an d ma int en an ce		\$ -	\$ -	55 0,0	60, 00 0.0	1,3 86, 00 0.0	\$ 1,5 24, 60 0.0 0	1,6 77, 06 0.0	1,8 44, 76 6.0	2,0 29, 24	\$ (14 5,2 68.	1,0 28, 92 2.6	1,1 31, 81 4.8	1,2 44, 99 6.3	1,3 69, 49 6.0		\$ -	\$ -	\$ -	\$ -	\$ -

	cos t																				
	Ma rke tin																				
	g an d																				
	cus to																				
	me r ac			\$	\$	\$	\$	\$	\$	\$	\$										
	qui								4,4			\$	\$	\$	\$						
	siti								80,					31	34						
	on			00	00									1,2							
	cos ts	\$ -	\$ -		0.0	0.0	0.0	0.0	0.0		62. 79)			49. 10		\$ -	\$ -	\$ -	\$ -	\$ -	\$ -
		•	<u> </u>				_			\$	\$	\$	\$	\$	\$	•	,	,	,	,	
				\$	\$	\$	\$	\$	\$	1,0				14,							
	Ca			(45	66				96			70		16	57						
	shf													1,8							
10	lo W	•	•	00.		00.			06.					33. 83		\$	•	•	•	•	•
4	W	Ф-	D -													Ф-	Ф -	Φ-	\$ -	D -	\$ -
				\$ 7.7	\$ 0.3	\$ 10	\$ 11	\$ 12	\$ 13	\$ 14	\$ 15	\$ 17	10	\$ 21,	\$ 23,						
					00,	23	25		61	97	42	49		16	28						
				00	-									4,9							
				0.0										38.							
				0	0	00	00	00	00	00	07	69	16	47	32						

Variance 3: Capital Expenditure Overrun possibly due to unexpected facility-related costs. Solutions: Review project budgeting, get multiple quotes from contractors, and consider phased expansion.

BUDGET

Strategy 3 Sustainable Procurement

Shift towards sustainable and cost-effective procurement practices.

Ethical considerations: Ensure suppliers meet ethical and environmental standards, fostering sustainable practices.

KPI 3: Facility Utilization Rate

Alignment: Measures the efficiency of facility use in line with expansion.

Measurement: Utilization rate = (Actual facility use / Total capacity) * 100.

Action: Ensures optimal facility use and informs decisions on expansion or consolidation.