CLAIMS

1. A I type collagen gene transcription suppressing composition, which comprises a cinnamoyl compound represented by the formula (I):

$$(Y\alpha)_{\alpha}$$

$$A$$

$$O$$

$$W_{\alpha}$$

$$L_{\alpha}$$

$$(I)$$

5 [wherein

10

- I. A represents a benzene ring or a pyridine ring, in $(Y_{\alpha})_q$, Y_{α} is a substituent on a carbon atom, and represents a substituent of the following X_0 group or Y_0 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_{α} 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_{α} 's constitute a group of a Z_0 group, and may be fused with an A ring;
- (1) a X₀ group:

a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a Rc-Ba-Rd-group (Rc represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, Rd represents a single bond or a C1-C10 alkylene group), a HORd-group (Rd is as defined above), a Re-CO-Rd-group (Re represents a hydrogen atom, or a C1-C10 alkylene group optionally substituted with a halogen atom, and Rd is as defined above), a Re-CO-O-Rd-group (Re and Rd are as

defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_e , and R_d is as defined above), a $R_bO-CO-NR_e'-R_d$ -group (R_b , R_e' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or different, R_e and $R_e{'}$ are as defined above, $R_e{''}$ has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')-R_e'''-R_d$ -group (R_e , R_e' , R_e'' and R_e''' are the same or different, R_e , R_e and R_e are as defined above, $R_e^{\prime\prime\prime}$ has the same meaning as that of R_e , and R_d is as defined above), a $R_b-SO_2-NR_e-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group.];

(2) a Y_0 group:

5

10

15

20

25

a M_{b0} - R_d -group [M_{b0} represents a M_{c0} -group { M_{c0} represents a M_{d0} - R_d '-group { M_{d0} represents a 6 to 10-membered aryl group optionally substituted with a M_a -group (M_a is as defined above), or 5 to 10-membered heteroaryl group optionally substituted with M_a group (M_a is as defined above), or a 3 to 10-membered hydrocarbon ring or heterocycle optionally substituted with a M_a -group (M_a is defined above) and optionally containing an unsaturated bond, or

a (b_0) -group (in (b_0) , G_0 constitutes a saturated or unsaturated non-aromatic 5 to 14-membered hydrocarbon ring or heterocycle optionally having a substituent),

a (c_0) -group (in (C_0) , J_0 may contain a nitrogen atom, and constitutes an aromatic 5 to 7-membered ring),

$$(d_0)$$

5

10

15

a (d_0) -group $\{d_0 \text{ represents a 5 to 12-membered hydrocarbon}$ ring substituted with carbonyl group or a thiocarbonyl group and, further, optionally substituted with an oxy group, a thio group, a -NR₁-group $\{R_1 \text{ represents a hydrogen}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with halogen atom or a R_2 -B₁-group $\{R_2 \text{ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkenyl group, a datho group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, or a S1-C10 alkenyl group, or a S1-C10 alkenyl group, a sulfinyl group, or a sulfonyl group, a sulfinyl group, or a sulfonyl group), or$

an (e_0) -group $\{e_0 \text{ constitutes a 5 to 12-membered}\}$

hydrocarbon ring optionally substituted with a carbonyl group, a thiocarbonyl group, an oxy group, a thio group, a $-NR_1$ -group (R_1 is as defined above), a sulfinyl group or a sulfonyl group}, R_{d} ' is the same as or different from R_{d} , and has the same meaning as that of R_d }}, a M_{c0} - B_a -group (M_{c0} 5 and B_a are as defined above), a $M_{\rm c0}\text{-CO-group}$ $(M_{\rm c0}\text{ is as}$ defined above), a M_{c0} -CO-Ogroup (M_{c0} is as defined above), a $M_{c0}O-CO$ -group (M_{c0} is as defined above), a $M_{c0}R_{e}N$ -group (M_{c0} and $R_{\rm e}$ are as defined above), a $M_{\rm c0}\text{-CO-NR}_{\rm e}\text{-group}$ ($M_{\rm c0}$ and $R_{\rm e}$ are as defined above), a $\rm M_{c0}O\text{-}CO\text{-}NR_{e}\text{-}group}$ ($\rm M_{c0}$ and $\rm R_{e}$ are as 10 defined above), a $M_{c0}R_eN$ -CO-group (M_{c0} and R_e are as defined above), a $M_{c0}R_eN-CO-NR_e'$ -group (M_{c0} , R_e and R_e' are as defined above), a $M_{c0}R_eN-C(=NR_e')-NR_e''-group$ (M_{c0} , R_e , R_e' and R_e " are as defined above), a $M_{c0}-SO_2-NR_e$ -group (M_{c0} and R_e are as defined above) or $M_{c0}R_{e}N-SO_{2}-group$ (M_{c0} and R_{e} are as 15 defined above), and R_d is as defined above.]; (3) a Z_0 group: a group which is a 5 to 12-membered hydrocarbon ring or heterocycle having a halogen atom, a C1-C10 alkoxy group, a C3-C10 alkenyloxy group, a C3-C10 alkynyloxy group, a carbonyl group, a thiocarbonyl group, 20 an oxy group, a thio group, a sulfinyl group or a sulfonyl group, is an aromatic or non-aromatic monocyclic or fused ring, and is fused with an A ring; II. Q_{α} represents an optionally substituted hydroxyl group, 25 or an optionally substituted amino group; III. W_{α} represents an oxygen atom or a-NT_{\alpha}-group (T_{\alpha}

represents a hydrogen atom, or a substituent on a nitrogen

atom.);

5

10

15

20

25

IV. K_{α} and L_{α} are the same or different, and represent a hydrogen atom, or a substituent on a carbon atom, or K_{α} and L_{α} may form a C1-C10 alkylene group optionally having a substituent or a C1-C10 alkenylene group optionally having a substituent; provided that when an A ring is a benzene ring, W_{α} is an oxygen atom, L_{α} is a methyl group, K_{α} is a hydrogen atom, and Q_{α} is a C1-C4 alkoxy group, a C3-C4 alkenyloxy group or a C3-C4 alkynyloxy group, then q is not O and, when an A ring is a benzene ring, W_{α} is an oxygen atom, L_{α} is a methyl group, K_{α} is a hydrogen atom, and Q_{α} is a C1-C4 alkoxy group, a C3-C4 alkenyloxy group or a C3-C4 alkynyloxy group, then q is 1, and Y_{α} is not a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C1-C4 alkoxy group, or a RB-group (R represents a C1-C4 haloalkyl group, and B represents an oxy group or a thio group) and, when A is a benzene ring, W_{α} is an oxygen atom, L_{α} and K_{α} form a 1,3-butadienylene group, and Q_{α} is a methoxy group, then q is 1, and Y_{α} is not a methoxy group or an ethoxy group and, when A is a benzene ring, W_{α} is an oxygen atom, L_{α} and K_{α} form a 1,3-butadienylene group, and Q_{α} is a hydroxyl group, then q is 1, and Y_{α} is not an ethoxy group; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as

that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or the different as far as they are selected in the range]; and an inert carrier;

2. A I type collagen gene transcription suppressing composition, which comprises a cinnamoyl compound represented by the formula (II):

[wherein

5

20

I. A represents a benzene ring or pyridine ring;
II. In (Y_{A0})q, Y_{A0} is a substituent on a carbon atom, and represents a substituent of the following X₀ group and Y₀ group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_{A0}'s are the same or different and, when q is 2 or more, the adjacent two same or different Y_{A0}'s constitute a group of a Z₀ group, and may be fused with an A ring;
(1) a X₀ group:

a M_a -group [M_a represents a R_b group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-

C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d -group (R_e represents hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_eR_e'N-R_d-group (R_e and $R_{\text{e}}{}^{\prime}$ are the same or different, $R_{\text{e}}{}^{\prime}$ has the same meaning as that of R_e and R_d is as defined above), a R_e -CO-N R_e '- R_d group (R_e , R_e ' and R_d are as defined above), a R_bC -CO-N(R_e)- R_d -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N$ -CO- $R_d\mbox{-group}$ ($R_e,\ R_e'$ and R_d are as defined above), a $R_eR_e'\,N\mbox{-CO-}$ $NR_e"-R_d$ -group (R_e , R_e' and $R_e"$ are the same or different, R_e and R_{e}' are as defined above, R_{e}'' has the same meaning as that of R_e and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')$ - $NR_e^{\prime\prime\prime}-R_d$ -group (Re, Re', Re" and Re''' are the same or different, $R_{\text{e}},\ R_{\text{e}}{}'$ and $R_{\text{e}}{}''$ are as defined above, $R_{\text{e}}{}'\,'{}'$ has the same meaning as that of R_e , and R_d is as defined above), a $R_b-SO_2-NR_e-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group.]; (2) a Y_0 group:

5

10

15

20

25

a M_{b0} - R_d -group [M_{b0} represents a M_{c0} group { M_{c0} represents a M_{d0} - R_d '-group { M_{d0} represents a 6 to 10-membered aryl group optionally substituted with a M_a -group (M_a is as defined above), or a 5 to 10-membered heteroaryl group optionally substituted with a M_a -group (M_a is as defined above), a 3 to 10-membered hydrocarbon ring or

heterocycle optionally substituted with a M_a -group (M_a is as defined above) and optionally containing an unsaturated bond, or

a (b_0) -group (in (b_0) , G_0 constitutes a saturated or unsaturated non-aromatic 5 to 14-membered hydrocarbon ring or heterocycle optionally having a substituent),

$$(c_0)$$
 J_0 N

5

10

15

a (c_0) -group (in (c_0) , J_0 may contain a nitrogen atom, and constitutes an aromatic 5 to 7-membered ring),

a (d_0) -group $\{d_0 \text{ constitutes a 5 to 12-membered hydrocarbon ring substituted with a carbonyl group or a thiocarbonyl group and, further, optionally substituted with an oxy group, a thio group, a -NR₁-group <math>\{R_1 \text{ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a <math>R_2$ -B₁-group $\{R_2 \text{ represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and a B₁ represents an oxy group, a thio group, a sulfinyl group or sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, or a C3-C10 alkynyl group, a sulfinyl group or a sulfonyl group} or$

5

10

15

20

an (e_0) -group $\{e_0 \text{ represents a 5 to 12-membered hydrocarbon}$ ring optionally substituted with a carbonyl group, a thiocarbonyl group, an oxy group, a thio group, a $-NR_1$ group $(R_1 \text{ is as defined above})$, a sulfinyl group or a sulfonyl group $\}$, R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a $M_{c0}-B_a$ -group (M_{c0} and B_a are as defined above), a M_{c0} -CO-group (M_{c0} is as defined above), a M_{c0} -CO-O-group (M_{c0} is as defined above), a $M_{c0}O-CO$ -group (M_{c0} is as defined above), a $M_{c0}R_eN$ -group (M_{c0} and R_e are as defined above), a M_{c0} -CO-NR_e-group (M_{c0} and R_e are as defined above), a $M_{c0}O-CO-NR_e-group$ (M_{c0} and R_e are as defined above), a $M_{c0}R_eN$ -CO-group (M_{c0} and R_e are as defined above), a $M_{c0}R_eN-CO-NR_e'$ -group (M_{c0} , R_e and R_e' are as defined above), a $M_{c0}R_eN-C(=NR_e')-NR_e''-group$ (M_{c0} , R_e , R_e' and R_e " are as defined above), a M_{c0} - SO_2 - NR_e -group (M_{c0} and R_e are as defined above) or $M_{c0}R_eN-SO_2-group$ (M_{c0} and R_e are as defined above), and R_d is as defined above.]; (3) a Z_0 group: a group which is a 5 to 12-membered hydrocarbon ring or heterocycle ring optionally having a halogen atom, a C1-C10 alkoxy group, a C3-C10 alkenyloxy group, a C3-C10 alkynyloxy group, a carbonyl group, a thiocarbonyl group, an oxy group, a thio group, a sulfinyl group or a sulfonyl group, is an aromatic or non-aromatic

monocyclic or fused ring, and is fused with an A ring; III. Q_{A0} represents a hydroxyl group, a (b_0) -group $((b_0)$ is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and Bc 5 represents an oxy group or a $-N((0)_mR_1)$ -group {m represents 0 or 1, and R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2-B_1 -group (R_2 represents a C1-C10 alkyl 10 group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, provided that when A9 is a hydrogen atom, then B_c is not a sulfonyl group], an $A_7''-SO_2-B_c$ -group 15 $(A_7"$ represents a substituent of the following $A_7"$ group, and B_c is as defined above), an $A_8-SO_2-B_c$ -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a $R_1R_1'N-SO_2-B_c$ -group (R_1 is as defined above, R_1' and 20 R_1 are the same or different, and has the same meaning as that of R_1 , and B_c is as defined above), a $(b_0)-SO_2-B_c$ -group ((b₀) and B_c are as defined above), an $A_9'-B_c$ -group (A_9' represents a substituent of the following A_7' group or A_8' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 25 represents a substituent of the following D₅ group, R₄

represents a C1-C10 alkylene group, and B_c is as defined above), a M_{c0} - B_3 - B_c -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_{c0} and B_c are as defined above) or a M_{c0} - B_c -group (M_{c0} and B_c are as defined above);

(1) an A_7 group:

5

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a $(b_0)-R_4$ -group $((b_0)$ is as defined above, and R_4 is as defined above), a $(c_0)-R_4$ group $((c_0)$ is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3-R_4 group $\{D_3 \text{ represents a substituent of the following } D_3$ group, and R_4 is as defined above}, an A_4 -SO₂- R_4 -group { A_4 represents a (b_0) -group $((b_0)$ is as defined above), a (c_0) group ((c_0) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1 ' are as defined above), and R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 represents a substituent of the

following A_2 group, and R_4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A₇' group: a C3-C10 alkenyl group optionally

 substituted with a halogen atom, a C3-C10 alkynyl group
 optionally substituted with a halogen atom, a R₂-B₁-R₄'group (R₂ and B₁ are as defined above, and R₄' represents a
 C2-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as
 defined above), a D₁-R₄'-group (D₁ and R₄' are as defined

 above), a (b₀)-R₄'-group ((b₀) and R₄' are as defined above),
 a (c₀)-R₄'-group ((c₀) and R₄' are as defined above), a D₂R₄-group (D₂ and R₄ are as defined above), a D₃-R₄'-group (D₃
 and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and
 R₄ are as defined above);
- 15 (4) an A_8 ' group: a C1-C10 alkyl group or C2-C10 haloalkyl group;
- (5) an A_7'' group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4' -group (R_2 , B_1 and R_4' are as defined above), a D_4 - R_4' -group (D_4 and D_4 are as defined above), a D_5 - D_4 -group (D_5 and D_4 are as defined above), a D_1 - D_4 -group (D_1 and D_4 are as defined above), a D_1 - D_4 -group (D_1 and D_4 -are as defined above), a D_1 - D_4 -group (D_1 and D_4 -are as defined above), a D_1 - D_4 -group (D_2 and D_4 -are as defined above), a D_2 - D_4 -group (D_2 and D_4 -are as defined above), a D_2 - D_4 -group (D_2 and D_4 -are as defined

above), a NO_2-R_4 -group (R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 and R_4 are as defined above);

(i) a D₄-group: a hydroxy group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)-m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_nR₁')-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, then m is 0, and R₃ is not a hydrogen atom)];

5

10

25

(ii) a D_5 group: an $O=C(R_3)$ -group $(R_3$ is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group $(A_1, n \text{ and } R_3 \text{ are as defined above)}$, a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group $[R_1, R_4, n \text{ and } R_3 \text{ are as defined above}$, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group $(R_1' \text{ and } m \text{ are as defined above})]$, a $D_2-R_4-(O)_n-N=C(R_3)$ -group $(D_2, R_4, n \text{ and } R_3 \text{ are as defined above})$ or a $R_1A_1N-N=C(R_3)$ -group $(R_1, A_1 \text{ and } R_3 \text{ are as defined above})$;

(iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different and represent 0 or 1);

(iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A_1)$ -group $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)$ -group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS -group; (V) a D_3 group: a nitro group or a R_1OSO_2 -group $(R_1 \text{ is as defined above})$;

(vi) an A₂ group:

5

10

15

20

25

1) an A_3-B_4 -group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, R4 and m are as defined above), or a C1-C10 alkyl group substituted with a $(b_0)-R_4$ group ((b_0) and R_4 are as defined above), a ($(c_0)-R_4$ -group $((c_0)$ and R_4 are as defined above), a $R_2-B_1-R_4$ -group (R_2, B_1) and R_4 are as defined above), a D_4-R_4 -group (D_4 and R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3-R_4 -group (D_3 and R_4 are as defined above) or an R_4 -SO₂- R_4 -group {A₄ is as defined above, and R₄ is as defined above);

B₄ represents an oxy group, a thio group or a -

- $N((O)_mR_1)$ group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom.];
- 2) a $R_1-B_4-CO-R_4-B_4'$ -group (R_1 , B_4 and R_4 are as defined above, B_4' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, then R_2 is not hydrogen atom) or a $D_2-R_4-B_4$ -group (D_2 , R_4 and B_4 are as defined above);
- 3) a $R_2-SO_2-NR_1$ -group (R_2 is as defined above, provided that a hydrogen atom is excluded; R_1 is as defined above);
 - 4) a (b_0) -group $((b_0)$ is as defined above);

5

20

- 5) a (c_0) -group $((c_0)$ is as defined above); or
- 6) a R_1 - A_1N - NR_1' -group (R_1 , A_1 and R_1' are as defined above); IV. W_{A0} represents an oxygen atom or a $-NT_{A0}$ -group [T_{A0}
- represents a hydrogen atom, an A_9 ' group $(A_9$ ' is as defined above), a D_5-R_4 -group $(D_5$ and R_4 are as defined above) or a M_{c0} -group $(M_{c0}$ is as defined above)];
 - V. K_{A0} represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_{A0} represents a hydrogen atom, a C1-C10 alkyl group or a M_{b0} -group (M_{b0} is as defined above), or K_{A0} and L_{A0} may form a C1-C10 alkylene group, or a C1-C10
 - alkenylene group optionally substituted with single or the

same or different plural Ma groups, provided that when an A

- ring is a benzene ring, W_{A0} is an oxygen atom, L_{A0} is a
- 25 methyl group, K_{A0} is a hydrogen atom, and Q_{A0} is a C1-C4

alkoxy group, a C3-C4 alkenyloxy group or a C3-C4 alkynyloxy group, then q is not 0 and, when an A ring is a benzene ring, W_{A0} is an oxygen atom, L_{A0} is a methyl group, K_{A0} is a hydrogen atom, and Q_{A0} is a C1-C4 alkoxy group, a 5 C3-C4 alkenyloxy group or a C3-C4 alkynyloxy group, then q is 1, and Y_{AO} is not a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C1-C4 alkoxy group, or a RB-group (R represents a C1-C4 haloalkyl group, and B 10 represents an oxy group or a thio group) and, when A is a benzene ring, W_{A0} is an oxygen atom, L_{A0} and K_{A0} form a 1,3butadienylene group, and Q_{AO} is a methoxy group, q is 1, and Y_{A0} is not a methoxy group or an ethoxy group and, when A is a benzene ring, W_{A0} is an oxygen atom, L_{A0} and K_{A0} form 15 a 1,3-butadienylene group, and Q_{A0} is a hydroxy group, then q is 1, and Y_{AO} is not an ethoxy group; and the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of the substituents independently represent the same meaning 20 as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or the different as far as they are selected in the range]; and an inert carrier;

3. A I type collagen gene transcription suppressing composition, which comprises a cinnamoyl compound represented by the formula (III):

$$(Y_A)_q$$
 A
 O
 W_A
 L_A
 (III)

[wherein

5 I. A represents a benzene ring or a pyridine ring; II. In $(Y_A)_{\alpha}$, Y_A is a substituent on a carbon atom, and represents a substituent of the following X group or Y group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_A 's are the same or the different and, when q is 2 or more, the adjacent two same or different Y_A 's constitute a group 10 of a Z group, and may be fused with an A ring; (1) a X group: a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano 15 group, a hydroxy group, a $R_c-B_a-R_d$ -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and Rd represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined 20 above), a R_e -CO- R_d -group (R_e represents a hydrogen atom, or a C1-C10 alky group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d

are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ group (R_e and $R_e{}^\prime$ are the same or different, R_e is as defined above, R_{e}' has the same meaning as that of \hat{R}_{e} , and R_d is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e '- R_d are as defined above), a $R_b O - CO - N\left(R_e\right) - R_d - group$ (Rb, R_e and R_d are as defined above), a $R_{\text{e}}R_{\text{e}}^{\prime}\,\text{N-CO-}R_{\text{d}}\text{-group}$ ($R_{\text{e}},\ R_{\text{e}}^{\prime}$ and R_{d} are as defined above), a $R_{\rm e}R_{\rm e}{}^{\prime}\,N\text{-CO-NR}_{\rm e}{}^{\prime\prime}\text{-}R_{\rm d}\text{-}group$ (Re, Re' and $R_{\text{e}}{}^{\prime\prime}$ are the same or different R_{e} and $R_{\text{e}}{}^{\prime}$ are as defined above, R_{e} " has the same meaning as that of R_{e} , and R_{d} is as defined above), a $R_eR_e'N-C(=NR_e'')-NR_e'''-R_d$ -group (R_e , R_e' , $R_{\text{e}}{}^{\prime\prime}$ and $R_{\text{e}}{}^{\prime\prime}{}^{\prime\prime}$ are the same or different, $R_{\text{e}},\ R_{\text{e}}{}^{\prime}$ and $R_{\text{e}}{}^{\prime\prime}$ are as defined above, $R_e^{\prime\prime\prime}$ has the same meaning as that of R_e and R_d is as defined above), a $R_b - SO_2 - NR_e - R_d - group$ (R_b , R_e and R_d are as defined above), $R_eR_e{^\prime}\,N\text{--}SO_2\text{--}R_d\text{--}group$ ($R_e,\ R_e{^\prime}$ and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group];

(2) a Y group: a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3^{G_2-G_1}N - G_5$$

5

10

15

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene

group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or $a-NR_1$ -group $\{R_1 \text{ represents a hydrogen }$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2-B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methine group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

5

10

15

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

(3) a Z group: a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group (Y_b and Y_b'' are the same or different, and represent a methylene group, or an oxy group, or a thio

group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or 5 different, and represent a C1-C10 alkylene group); III. Q_A represents a hydroxyl group, a (b)-group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A_7 group or A_8 group, B_6 10 represents a carbonyl group or a thiocarbonyl group, Bc represents an oxy group or a $-N((0)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, B_c is not a sulfonyl group], an $A_7''-SO_2 B_c$ -group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an $A_8-SO_2-B_c$ -group (A_8 15 represents a substituent of the following A₈ group, B_c is as defined above, provided that A₈ is not a hydrogen atom), a $R_1R_1'N-SO_2-B_c$ -group (R_1 is as defined above, R_1' is the same as or different from R_1 , and has the same meaning as 20 that of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an $A_9'-B_c$ -group (A_9' represents a substituent of the following A7' group or A8' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined 25

above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c -group (M_c and B_c are as defined above);

5 (1) an A_7 group:

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3-R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A_7' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4' -group (R_2 and B_1 are as defined above, and R_4' represents a C2-C10 alkylene group), a D_4 - R_4' -group (D_4 and R_4' are as defined above), a D_1 - R_4' -group (D_1 and D_4 are as defined above), a (b)- D_4 -group ((b) and D_4 are as defined above), a (c)- D_4 -group ((c) and D_4 are as defined above), a D_2 - D_4 -group (D_2 and D_4 are as defined above), a D_3 - D_4 -group (D_4 are as defined above) or an D_4 -C0- D_4 -group (D_4 and D_4 are as defined above);

5

10

15

- (4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group

 $(A_2 \text{ and } R_4 \text{ are as defined above});$

5

10

- (i) a D₄ group: a hydroxyl group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)_{m'}-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N(O)_nR₁'-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, m is 0, and R₃ is not a hydrogen atom)];
- (ii) a D_5 group: $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N(O)_mR_1'$)-group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3-R_4 -(D_3)-group (D_3)-grou
 - (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_{k'}$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- 25 (iv) a D group: a cyano group, a $R_1R_1'NC'$ (=N-(O)_n-A₁)-group

 $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above}), an <math>A_1N=C(-O-)$ group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS- group; (v) a D_3 group: a nitro group or a R_1OSO_2- group $(R_1 \text{ is as defined above})$;

5 (vi) an A_2 group:

10

15

20

25

1) an A_3-B_4 -group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)- R_4 -group ((b) and R_4 are as defined above), a (c)- R_4 group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group $(R_2, B_1 \text{ and } R_4 \text{ are as defined above}), a D_4-R_4-group (D_4 \text{ and})$ R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an $A_4-SO_2-R_4$ -group { A_4 is as defined above, and R₄ is as defined above};

 B_4 represents an oxy group, a thio group or a - $N((O)_mR_1)$ - group $(R_1$ and m are as defined above) provided

that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, a R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 10 5) a (c)-group ((c) is as defined above); or

represent a hydrogen atom or Ma); and

5

15

20

25

- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above); IV. W_A represents an oxygen atom or a $-NT_A$ -group [T_A represents a hydrogen atom, an A_9' -group (A_9' is as defined above), a D_5-R_4 -group (D_5 and R_4 are as define above) or a M_c -group (M_c is as defined above)];

provided that when an A ring is a benzene ring, W_A is an oxygen atom, L_A is a methyl group, K_A is a hydrogen atom, and Q_A is a C1-C10 alkoxy group, a C3-10 alkenyloxy group

or a C3-C10 alkynyloxy group, then q is not 0 and, when an A ring is a benzyl ring, W_A is an oxygen atom, L_A is a methyl group, K_A is a hydrogen atom, and Q_A is a C1-C10 alkoxy group, a C3-C10 alkenyloxy group or a C3-C10 alkynyloxy group, then q is 1, and Y_A is not a halogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group and B represents an oxy group or a thio group) and, when A is a benzene ring, W_A is an oxygen atom, L_A and K_A form a 1,3-butadienylene group, and Q_A is a hydroxyl group or a C1-C10 alkoxy group; then q is 1, and Y_A is not a C1-C10 alkoxy group; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range]; and an inert carrier;

4. A I type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (IV):

$$(Y_a)_q$$
 $(X_a)_p$
 A
 (IV)

[wherein

5

10

15

20

I. A represents a benzene ring or a pyridine ring; II. In $(X_a)_p$, X_a is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_a 's are the same or different;

III. In $(Y_a)_q$, Y_a is a substituent on a carbon atom, and represents a substituent of the following X_1 group or Y_1 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_a 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_a 's constitute a Z_1 group, and may be fused with an A ring;

(1) a X_1 group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a

represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HORd-group (Rd is as defined above), a R_e -CO- R_d -group (R_e represents a hydrogen atom, or a C1-C10 5 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a ReRe'N-Rd-group (Re and R_e ' are the same or different, R_e is as defined above, 10 R_e ' has the same meaning as that of R_e , and R_d is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the 15 same or different, R_e and $R_e{'}$ are as defined above, $R_e{''}$ has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C$ (= NR_e'')- NR_e''' - R_d -group (R_e , R_e' , R_e'' and R_e''' are the same or different, Re, Re' and Re" are as defined above, R_e " has the same meaning as that of R_e , and R_d is as 20 defined above), a R_b -SO₂-NR_e-R_d-group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-SO_2-R_d$ -group(R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, a X_a-group (X_a is as defined above) is excluded;

25

(2) a Y_1 group:

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above) or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3^{G_2-G_1}N - G_5$$

5

10

15

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy

group, a thio group, a sulfinyl group, a sulfonyl group or $\hbox{$a$-NR$_1$-group (R$_1$ is as defined above)},$

(c)
$$J_{3} > N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

5

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group, or a thio group), or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (1 and B_b are as defined above), R_d' is the same as or different from R_d, and has the same meaning as that of R_d}, a M_c-B_a-group (M_c and B_a are as defined above), a M_c-CO-group (M_c is as defined above), a M_c-CO-O-group (M_c is as defined above), a M_c-CO-O-group (M_c is as defined above), a M_cCO-CO-group (M_c is as defined above), a M_cCO-NR_e-group (M_c and R_e are as defined above), a M_cO-CO-NR_e-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-group (M_c and R_e are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-CO-NR_e'-group (M_c, R_e and R_e' are as defined above), a M_cR_eN-C(=NR_e')-NR_e"-

group (M_c , R_e , R_e ' and R_e " are as defined above), a $Mc-SO_2-NR_e$ -group (M_c and R_e are as defined above) or a $M_cR_eN-SO_2$ -group (M_c and R_e are as defined above), and R_d is as defined above];

5 (3) a Z_1 group:

10

15

20

25

a $-N=C(Y_a)-Y_a'$ -group (Ya represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group $(Y_b \text{ and } Y_b" \text{ are the same or different, and represent a}$ methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and $Y_b{}^\prime$ represents a C1-C4alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group); IV. QA represents a hydroxyl group, a (b)-group ((b) is as defined above), an $A_9-B_6-B_c$ -group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, Bc represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9

is a hydrogen atom, B_c is not a sulfonyl group], an $A_7''-SO_2-$

 B_c -group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an $A_8-SO_2-B_c$ -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A₈ is not a hydrogen atom), a $R_1R_1'N-SO_2-Bc-group$ (R_1 is as defined above, R_1' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)-SO₂-B_cgroup ((b) and B_c are as defined above), an $A_9'-B_c$ -group (A_9') represents a substituent of the following A_7' group or A_8 ' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_c is as defined above), $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group and M_{c} and B_{c} are as defined above) or a M_c-B_c -group (M_c and B_c are as defined above);

(1) an A_7 group:

5

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 - B_1 - R_4 -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4 - R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5 - R_4 -group (D_5 represents a substituent of the following D_5 group, D_6 group, D_7 as defined above), a D_1 - D_8 -group (D_9 represents a substituent of the following D_9 group, and

 R_4 is as defined above}, a (b)- R_4 -group {(b) is as defined above, and R_4 is as defined above}, a (c)- R_4 -group ((c) is as defined above, and R_4 is as defined above), a D_2 - R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an A_4 - SO_2 - R_4 -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R_1R_1 'N-group (R_1 and R_1 ' are as defined above), and R_4 is as defined above} or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);

5

10

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- 15 (3) an A₁' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C₂-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a D₃-R₄'-group (D₃ and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);

- (4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₇" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D₄ group: a hydroxyl group or an A₁-O-group [A₁]
 represents a R₃-(CHR₀)_m-(B₂-B₃)_{m'}-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N(O)_nR₁')-group (R₁' is as defined above, and n represents 0 or 1, B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, m is 0, and R₃ is not a hydrogen atom)}];

- (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3-R_4 -qooling (D_3)-group (
- (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_{k'}$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
 - (iv) a D₂ group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A)$ -group (R₁, R₁', n and N₁ are as defined above), an A₁N=C(-OR₂)-group (A₁ and R₂ are as defined above) or a NH₂-CS-group.
- 15 (v) a D_3 group: a nitro group or a R_1OSO_2 -group (R_1 is as defined above);
 - (vi) an A_2 group:

5

1) an A_3-B_4 -group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a -(R_4)_m-group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a

C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)- R_4 -group ((b) and R_4 are as defined above), a (c)- R_4 -group ((c) and R_4 are as defined above), a R_2 - B_1 - R_4 -group (R_2 , R_1 and R_4 are as defined above), a R_4 -group (R_4 are as defined above), a R_4 -group (R_4 are as defined above), a R_4 -group (R_4 are as defined above), a R_4 -group (R_4 are as defined above), a R_4 -group (R_4 are as defined above), a R_4 -group (R_4 is as defined above, and R_4 is as defined above);

5

10

15

20

 B_4 represents an oxy group, a thio group or a $-N((0)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO $_2$ -N R_1 -group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above),
 - 4) a (b)-group ((b) is as defined above);
 - 5) a (c)-group ((c) is as defined above); or
 - 6) a $R_1A_1N-NR_1'$ -group (R_1 , R_1 and R_1' are as defined above);
 - V. Ka represents a hydrogen atom, a halogen atom or a C1-
- 25 C10 alkyl group, La represents a hydrogen atom, a C1-C10

alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when K_a is a hydrogen atom, L_a is a methyl group and an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in a range]; and an inert carrier;

5. A 2H-pyran-2-one compound represented by the formula (V):

[wherein

5

10

20

I. A represents a benzene ring or a pyridine ring; II. In $(X_b)_p$, X_b is a substituent on a carbon atom, and represents a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C2-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B

represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_b 's are the same or different;

III. In $(Y_b)_q$, Y_b is a substituent on a carbon atom, and represents a substituent of the following X_2 group or Y_2 group, q represents 0,1, 2, 3, 4 or 5, when q is 2 or more, Y_b 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_b 's constitutes a group of a Z_2 group, and may be fused with an A ring;

10 (1) a X_2 group:

5

15

20

25

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR $_d$ -group (R_d is as defined above), a R_e -CO- R_d -group (R_e represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a R_e O-CO- R_d -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a R_e R $_e$ 'N- R_d -group (R_e and R_e ' are the same or different, R_e is as defined above, R_e ' has the same meaning as that of R_e , and R_d is as defined

above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_e R_e' N-CO-NR_d''-R_d$ -group (R_e , R_e' and R_e'' are the 5 same or different, R_e has the same meaning as that of R_e' , R_e " has the same meaning as that of R_e , and R_d is as defined above), $a : R_e R_{e'} N - C (= NR_{e''}) - NR_{e'''} - R_d - group (R_e, R_{e'}, R_{e''})$ and $R_e^{\prime\prime\prime}$ are the same or different, $R_e,~R_e{'}$ and $R_e{''}$ are as defined above, $R_e^{"'}$ has the same meaning as that of R_e , and R_{d} is as defined above), a $R_{b}\text{-}SO_{2}\text{-}NR_{e}\text{-}R_{d}\text{-}group}$ ($R_{b}\text{, }R_{e}$ and R_{d} 10 are as defined above), a $R_e R_e' N-SO_2-R_d$ -group (R_e , R_e' and $R_{\mbox{\scriptsize d}}$ are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that, when A represents a benzene ring, then, a halogen atom, or a C1-C10 alkyl group 15 optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R and B are as described above) is excluded; (2) a Y_2 group:

a M_b-R_d -group [M_b represents a M_c -group { M_c represents a M_d-R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above) or

(b)
$$G_3 N - G_5$$

5

10

15

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group, or a $-NR_1$ -group $\{R_1 \text{ represents a hydrogen}\}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R2-B1-group (R2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a NR_1 - group (R_1 is as defined above)},

(c)
$$J_{3} > N$$

a (c)-group (in(c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a

methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

a (d) group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

5

10

15

20

an (e)-group (1 and B_b are as defined above), R_{d} is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c ReN-group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c ReN-CO-group (M_c and R_e are as defined above), a M_c ReN-CO- NR_e -group (M_c , R_e are as defined above), a M_c ReN-CO- NR_e -group (M_c , R_e and R_e are as defined above), a M_c ReN-C(= NR_e)- NR_e -group (M_c , R_e , R_e ' and R_e " are as defined above) or M_c ReN- SO_2 -group (M_c and R_e are as defined above) or M_c ReN- SO_2 -group (M_c and R_e are as defined above) or M_c ReN- SO_2 -group (M_c and R_e are as defined above), and R_d is as defined above);

a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen

5

10

15

20

25

atom, or a C1-C10 alkoxy group, and Y_a represents an oxy group, or a thio group, or an imino group optionally substituted C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group (Y_b and Yb" are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Yb' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O Y_c^{\prime}$ -O-group (Y_c and Y_c^{\prime} are the same or different, and represent a C1-C10 alkylene group); III. Q_A' represents a (b)-group ((b) is as defined above), an $A_9-B_6-B_c$ -group [A9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((O)_mR_1$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A9 is a hydrogen atom, then B_c is not a sulfonyl group], an $A_7^{\prime\prime}-SO_2-B_c$ -group $(A_7^{\prime\prime}$ represents a substituent of the following $\text{A}_7{}^{\prime\prime}$ group, and B_c is as defined above), an $A_8-SO_2-B_c$ -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a $R_1R_1{}^\prime\,N$ - SO_2-B_c -group (R₁ is as defined above, R₁' is the same as or different from R_1 , and has the same meaning as that of R_1 and B_c is as defined above), a (b)-SO2-Bc-group ((b) and B_c

are as defined above), an $A_9'-B_c$ -group (A_9' represents a substituent of the following A_7' group or A_8' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c -group (M_c and M_c are as defined above);

(1) an A_7 group:

5

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D₃ group, and R₄ is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as

defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);

5 (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

10

15

- (3) an A_7' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a C_2 - B_1 - R_4' -group (C_2 and B_1 are as defined above, and R_4' represents a C2-C10 alkylene group), a D_4 - R_4' -group (D_4 and D_4' are as defined above), a D_1 - D_4' -group (D_1 and D_4' are as defined above), a (D_1 - D_4' -group ((D_1) and D_4 - D_4' are as defined above), a (D_2 - D_4' -group ((D_1) and D_4 - D_4' -group ((D_2) and D_4 - D_4 -group (D_4) are as defined above), a D_4 - D_4 -group (D_4) and D_4 -group (D_4) and D_4 - D_4 -group (D_4) and D_4 - D_4 -group (D_4) and D_4 -group (D_4) and D_4 -group (D_4) and D_4 - D_4 - D_4 -group (D_4) and D_4 - D_4 -group (D_4) and D_4 - D_4 - D_4 -group (D_4) and D_4 - D_4
- (4) an A_8 -group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A_7 "-group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 , B_1 and R_4 ' are as defined above), a D_4 - R_4 '-group (D_4 and D_4 ' are as defined above), a D_5 - D_4 -group (D_5 and D_4 are as defined above), a D_1 - D_4 '-group (D_1 and D_4 ' are

R₄ are as defined above);

as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D_2 -R₄-group (D_2 and D_4 are as defined above), a D_2 -R₄-group (D_4 is as defined above) or an D_4 -CO-R₄-group (D_4 and D_4 are as defined above);

5

10

15

20

25

(i) a D₄ group: a hydroxyl group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C1 alkynyl group, R₀ represents a hydrogen atom, C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_nR₁'-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, and m' represents 0 or 1 and, when B₃ is a sulfonyl group, m is 0, and R₃ is not a hydrogen atom}];

 $A_1-(O)_n-N=C(R_3)$ -group $(A_1, n \text{ and } R_3 \text{ are as defined above})$, an $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group $[R_1, R_4, n \text{ and } R_3 \text{ are as defined above, and } B_0 \text{ represents an oxy group, a thio group or a <math>-N((O)_mR_1')$ -group $(R_1' \text{ and } m \text{ are as defined above})]$, a $D_2-R_4-(O)_n-N=C(R_3)$ -group $(D_2, R_4, n \text{ and } R_3 \text{ are as defined above})$ or a $R_1A_1N-N=C(R_3)$ group $(R_1, A_1 \text{ and } R_3 \text{ are as defined above})$;

(ii) a D_5 group: $O=C(R_3)$ group $(R_3$ is as defined above), an

(iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);

(iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(0)_n-A_1$ -group $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)-$ group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS -group. (v) a D_3 group: a nitro group or a R_1OSO_2 -group $(R_1 \text{ is as defined above})$;

(vi) an A_2 group:

10 1) an A_3-B_4 -group

5

[A3 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl 15 group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a 20 (b) $-R_4$ -group ((b) and R_4 are as defined above), a (c) $-R_4$ group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group $(R_2, B_1 \text{ and } R_4 \text{ are as defined above}), a D_4-R_4-group (D_4 \text{ and})$ R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a 25 D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4

are as defined above) or an A_4 -SO₂-R₄-group {A₄ is as defined above, and R₄ is as defined above},

 B_4 represents an oxy group, a thio group or a - $N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, A_3 is not a hydrogen atom]; 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 provided that when B_4 is a thio group, R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);

- 3) a R_2 -SO $_2$ -N R_1 -group (R_2 is as defined above provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);

5

10

25

- 5) a (c)-group ((c) is as defined above); or
- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above); IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, p is 2, 3 or 4 in the case that q is 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of

substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

6. A 2H-pyran-2-one compound represented by the
5 formula (VI):

$$(Y_c)_q \xrightarrow{O} \xrightarrow{O} K_a$$
 (VI)

[wherein

10

15

20

I. A represents a benzene ring or a pyridine ring; II. In $(X_c)_p$, X_c is a substituent on a carbon atom, and represents a hydroxyl group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a R'-S(O)_1-group (R' represents a C1-C10 alkyl group, and l represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a $(R')_2N$ -group (R' is as defined above), or a R'CO-NH-group (R' is as defined above), or a nitro group, or a C1-C10 alkoxy group, or a RB-group (R represents a C1-C10 haloalkyl group, and B represents an oxy group or a thio group), p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_c 's are the same or different; III. In $(Y_c)_q$, Y_c is a substituent on a carbon atom, and

represents a substituent of the following X_3 group or Y_3

group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_c 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_c 's constitute a group of a Z_3 group, and may be fused with an A ring;

5 (1) a X_3 group:

10

15

20

25

a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 alkyl group substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a $R_c-B_a-R_d$ -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_{d} is as defined above), a $R_{\text{e}}\text{-CO-O-}R_{\text{d}}\text{-group}$ (R_{e} and R_{d} are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e' are the same or different, R_e is as defined above, $R_e{'}$ has the same meaning as that of R_{e} , and R_{d} is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a $R_eR_e{'}\,N\text{-CO-NR}_e{''}\text{-}R_d\text{-group}$ ($R_e,\ R_e{'}$ and $R_e{''}$ are the same or different, R_e and R_e' are as defined above, R_e'' has the same

meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')-NR_e'''-R_d$ -group (R_e , R_e' , R_e'' and R_e''' are the same or different, Re, Re' and Re" are as defined above, R_{e} '' has the same meaning as that of R_{e} , and R_{d} is as defined above), a R_b -SO₂-NR_e-R_d-group (R_b , R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a hydroxy group, or a halogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a C1-C10 alkoxy group, or a C2-C10 alkenyl group, or a $R'-S(0)_1$ group (R' represents a C1-C10 alkyl group, and 1 represents 0, 1 or 2), or a cyano group, or a C1-C10 alkoxycarbonyl group, or an aminocarbonyl group, or a (R')2N-group (R' is as defined above), or a R'CO-NH-group (R' is as defined above), or a nitro group or a C1-C10 alkoxy group is excluded;

(2) a Y_3 group:

a M_b-R_d -group [M_b represents a M_c -group { M_c represents a M_d-R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

5

10

(b)
$$G_3 N - G_5$$

5

10

15

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group $\{R_1 \text{ represents a hydrogen}\}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2-B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group) or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3}^{J_2=J_1}N$$
—

20 a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different,

and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

a (d)-group (l is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

5

10

15

20

(e)
$$B_{b} = (CH_{2})_{l}$$

an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO- M_c -group (M_c and M_c are as defined above), a M_c - M_c -M

trifluoromethyl group, or a phenoxy group substituted with single or plural halogen atoms is excluded;

(3) a Z_3 group:

5

10

15

20

25

a -N=C(Y_a)- Y_a '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group), provided that when p is 0, then Y_c is not fused with an A ring to form a benzo[1,3]dioxol ring;

IV. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above, and between the plurality of substituents, a selection range of selected substituents is the same, while the selected range may be the same or different as far as they are selected in the range];

7. A I type collagen gene transcription suppressing composition, which comprises a 2H-pyran-2-one compound represented by the formula (VII):

$$(X_l)_k$$
 (VII) (VII)

[wherein X_I represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a R_I -S(O)₁-group (R_I represents a C1-C4 alkyl group, and l represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a (R_I)₂N-group (R_I is as defined above), a R_I -C0-NH-group (R_I is as defined above), a R_I O-C0-NH-group (R_I is as defined above), a R_I NH-C0-NH-group (R_I is as defined above) or a (R_I')₂N-C0-group (R_I' represents a hydrogen atom or a C1-C4 alkyl group), X_I' represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C1-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a

sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, $X_{\rm I}$'s may be different, and $r_{\rm I}$ is a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group],

8. A 2H-pyran-2-one compound represented by the

$$(X_l)_k$$
 $(X_l'')_{K'}$
 $(VIII)$

and a inert carrier;

formula (VIII):

5

[wherein X_I represents a C2-C4 alkenyl group, a C2-C4 10 alkynyl group, a R_I-S(O)₁-group (R_I represents a C1-C4 alkyl group, and 1 represents an integer of 0 to 2), a cyano group, a carboxy group, a C1-C4 alkoxycarbonyl group, a $(R_{\rm I})_2 N$ -group $(R_{\rm I}$ is as defined above), a $R_{\rm I}$ -CO-NH-group $(R_{\rm I}$ is as defined above), a $R_{\rm I}O-CO-NH-{\rm group}$ ($R_{\rm I}$ is as defined 15 above), a R_INH-CO-NH-group (R_I is as defined above) or $(R_{I}')_{2}N-CO$ -group $(R_{I}'$ represents a hydrogen atom or a C1-C4 alkyl group), X_I" represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C2-C4 alkoxy 20 group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group

substituted with a halogen atom), k represents 0 or 1, k' represents an integer of 0 to 4, when k is 0, k' is an integer of 2 to 4 and, when k' is 2 to 4, X_I "'s may be different, and r_I is a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group];

9. A 2H-pyran-2-one compound represented by the formula (IX):

$$(X_1"')_{K''} \xrightarrow{f_1} O O CH_3$$

5

10

15

[wherein X_{I}''' represents a C2-C4 alkenyl group, a C2-C4 alkynyl group, a carboxy group, a C2-C4 alkoxycarbonyl group or a $(R_{II})_2N$ -group $(R_{II}$ represents a C2-C4 alkyl group), X_{I}'' represents a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a nitro group, or a C2-C4 alkoxy group, or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents 0 or 1, k" represents an integer of 0 to 2, when k is 0, k" is 2 and, when k" is 2, X"'s are different];

10. A I type collagen gene transcription suppressing

20 composition, which comprises a 2H-1-benzopyran-2-one

compound represented by the formula (X):

$$(X_d)_p$$
 A O O A (X)

[wherein

5

10

represents a methoxy group or an ethoxy group, p represents

0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different;

III. In $(Y_d)_q$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_4 group or Y_4 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_4 group, and may be fused with an A ring;

(1) a X_4 group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen, atom, a nitro group, a cyano group, a hydroxyl group, a R_c - B_a - R_d -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_a represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d -group (R_e represents a hydrogen atom, or a C1-C10

5

10

15

20

25

alkyl group optionally substituted with a halogen atom, and R_{d} is as defined above), a $R_{e}\text{-}CO\text{-}O\text{-}R_{d}\text{-}group$ (R_{e} and R_{d} are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e are the same or different, R_e is as defined above, R_{e}' has the same meaning as that of R_{e} , and R_{d} is as defined above), a Re-CO-NRe'-Rd-group (Re, Re' and Rd are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a $R_eR_e{'}\,N\text{-CO-NR}_e{''}\text{-}R_d\text{-group}$ ($R_e,\ R_e{'}$ and $R_e{''}$ are the same or different, R_e and R_{e}^{\prime} are as defined above, $R_{e}^{\prime\prime}$ has the same meaning as that of R_{e} , and R_{d} is as defined above), a $R_eR_e{'}\,N-C\,(=NR_e{''})\,-NR_e{'}\,'\,'\,-R_d-group$ (Re, Re', Re" and Re''' are the same or different, Re, Re' and Re" are as defined above, $R_{\text{e}}{^{\prime}}{^{\prime}}{^{\prime}}{^{\prime}}$ has the same meaning as that of $R_{\text{e}},$ and R_{d} is as defined above), a $R_b\text{-}SO_2\text{-}NR_e\text{-}R_d\text{-}group\ }(R_b,\ R_e\ and\ R_d\ are\ as$ defined above), a $R_{e}R_{e}{^{\prime}}\,N-SO_{2}-R_{d}\text{-group}$ ($R_{e},\ R_{e}{^{\prime}}$ and R_{d} are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a methoxy group and an ethoxy group are excluded; (2) a Y_4 group: a M_b-R_d -group [M_b represents a M_c -group { M_c represents a M_d- R_d'-group {M_d represents a phenyl group optionally substituted with a Ma-group (Ma is as defined above), or a

pyridyl group optionally substituted with a Ma-group (Ma is

as defined above), or a naphthyl group optionally substituted with a $M_a\mbox{-}\mathrm{group}\ (M_a$ is as defined above), or

(b)
$$G_3$$
 N — G_4-G_5

5

10

15

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group $\{R_1 \text{ represents a hydrogen}\}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group optionally substituted with a halogen atom or a R_2-B_1 -group $(R_2 \text{ represents a C1-C10 alkyl group, a C3-C10 alkenyl group})$ or C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group} or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

5

10

15

20

(e)
$$B_{b} - (CH_{2})_{l}$$

an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c O-CO-group (M_c is as defined above), a M_c ReN-group (M_c and R_e are as defined above), a M_c CO-NRe-group (M_c and R_e are as defined above), a M_c ReN-CO-group (M_c and R_e are as defined above), a M_c ReN-CO-group (M_c and M_c are as defined above), a M_c ReN-CO-NRe'-group (M_c , M_c are as defined above), a M_c ReN-CO-NRe'-group (M_c , M_c are as defined above), a M_c ReN-C(=NRe')-NRe"-group (M_c , M_c , M_c , M_c are as defined above), a M_c ReN-C(=NRe')-NRe-group (M_c , and M_c are as defined above) or a M_c ReN-SO2-group (M_c and M_c are as defined above), and M_c as defined above];

(3) a \mathbb{Z}_4 group:

5

10

a -N=C(Y_a)- Y_a '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b$ '- Y_b "-group (Y_b and Y_b " are the same or different, a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b) group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a -N((O)_mR₁)-group (m represents 0 or 1, and R₁ is as defined above), provided that when A₉ is a hydrogen atom, then B_c is not a sulfonyl group], an A₇"-SO₂-B_c-group (A₇" represents a substituent of the following A₇" group, and B_c is as defined above), an A₈-SO₂-B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A₈ is not

a hydrogen atom), a $R_1R_1'N-SO_2-B_c$ -group (R_1 is as defined above, R_1' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2-B_c -group ((b) and B_c are as defined above), an A_9' - B_c -group (A_9' represents a substituent of the following A_7' group or A_8' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above);

(1) an A_7 group:

5

10

a C2-C10 alkenyl group optionally substituted with a

halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl
group, a R2-B1-R4-group (R2 and B1 are as defined above, and
R4 is as defined above), a D4-R4-group (D4 represents a
substituent of the following D4 group, and R4 is as defined
above), a D5-R4-group (D5 represents a substituent of the

following D5 group, and R4 is as defined above), a D1-R4group (D1 represents a substituent of the following D1
group, and R4 is as defined above), a (b)-R4-group ((b) is
as defined above, and R4 is as defined above), a (c)-R4group ((c) is as defined above, and R4 is as defined above),

25 a D2-R4-group (D2 represents a substituent of the following

 D_2 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an A_4 - SO_2 - R_4 -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a R_1R_1 'N-group (R_1 and R_1 ' are as defined above), and R_4 is as defined above} or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);

5

10

15

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A_7' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4' -group (R_2 and B_1 are as define above, and R_4' represents a C2-C4 alkylene group), a D_4 - R_4' -group (D_4 and D_4' are as defined above), a D_1 - D_4' -group (D_1 and D_4' are as defined above), a (D_1 - D_4' -group ((D_1) and D_4' are as defined above), a (D_2 - D_4' -group ((D_1) and D_4' are as defined above), a D_2 - D_4 -group (D_2) and D_4 are as defined above), a D_3 - D_4' -group (D_4) and D_4 are as defined above) or an D_4 - D_4 -group (D_4) and D_4 -group (D_4) are as defined above);
 - (4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A_7 " group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl

group optionally substituted with a halogen atom, a $R_2-B_1-R_4'$ -group (R_2 , B_1 and R_4' are as defined above), a $D_4-R_4'-$ group (D_4 and D_4' are as defined above), a D_5-R_4 -group (D_5 and D_4 are as defined above), a D_1-R_4' -group (D_1 and D_4' are as defined above), a (D_1-R_4' -group (D_1 and D_4' are as defined above), a (D_1-R_4' -group (D_1 and D_4' are as defined above), a (D_1-R_4' -group (D_1 and D_4' are as defined above), a (D_1-R_4' -group (D_1 and D_1 are as defined above), a D_2-R_4 -group (D_1 and D_1 are as defined above), a D_1-R_4 -group (D_1 and D_1 are as defined above), a D_1-R_4 -group (D_1 and D_1 are as defined above), a D_1-R_4 -group (D_1 and D_1 are as defined above), a D_1-R_4 -group (D_1 and D_1 are as defined above), a D_1-R_4 -group (D_1 and D_1 are as defined above), a

5

- (i) a D₄ group: a hydroxy group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_mR₁')-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, then m is 0, and R₃ is not a hydrogen atom}];
 - (ii) a D_5 group: an $O=C(R_3)$ -group $(R_3$ is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group $(A_1$, n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group $[R_1$, R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group

or a $-N((O)_mR_1')$ -group $(R_1'$ and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group $(D_2, R_4, n \text{ and } R_3 \text{ are as defined}$ above) or a $R_1A_1N-N=C(R_3)$ -group $(R_1, A_1 \text{ and } R_3 \text{ are as defined}$ above);

- 5 (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
 - (iv) a D₂ group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A_1)$ -group (R₁, R₁', n and A₁ are as defined above), an A₁N=C(-OR₂)-group (A₁ and R₂ are as defined above) or a NH₂-CS-group;
 - (v) a D_3 group: a nitro group or a R_1OSO_2 -group (R_1 is as defined above);
 - (vi) an A₂ group:

- 1) an A_3-B_4 -group
- [A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a R_a -(R_4)_m-group (R_a represents a phenyl group, a pyridinyl group, a furyl group or a thienyl group,
 - optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b)- R_4 -group ((b) and R_4 are as defined above), a
- (c) $-R_4$ -group ((c) and R_4 are as defined above), a R_2 - B_1 - R_4 -

group (R_2 , B_1 and R_4 are as defined above), a D_4 - R_4 -group (D_4 and R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1 - R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an A_4 - SO_2 - R_4 -group (A_4 is as defined above, and A_4 is as defined above),

 B_4 represents an oxy group, a thio group or a - $N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a $R_1-B_4-CO-R_4-B_4'$ -group (R_1 , B_4 and R_4 are as defined above, B_4' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, then R_2 is not a hydrogen atom) or a $D_2-R_4-B_4$ -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO $_2$ -NR $_1$ -group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above),
- 4) a (b)-group ((b) is as defined above);

5

10

- 5) a (c)-group ((c) is as defined above) or
- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above); V. M_a' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, in case that q and r are 0, then p is 2, 2, 3 or 4; and
- 25 the "as defined above" in the same symbol between a

plurality of substituent indicates that the plurality of
the substituents independently represent the same meaning
as that of described above and, between the plurality of
substituents, a selection range of the selected
substituents is the same, while the selected substituents
may be the same or different as far as they are selected in
the range];

and an inert carrier;

11. A 2H-1-benzopyran-2-one compound represented by
10 the formula (XI):

$$(X_d)_p$$
 A O Q_A (XI)

[wherein

5

- I. A represents a benzene ring or a pyridine ring; II. In $(X_d)_p$, X_d is a substituent on a carbon atom, and represents a methoxy group or an ethoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different;
- III. In $(Y_d)_q$, Y_d is a substituent on a carbon atom, and represents a substituent of the following X_4 group or Y_4 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_d 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_d 's constitute a group of a Z_4 group, and may be fused with an A ring;

(1) a X₄ group:

5

10

15

20

25

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d-group$ (R_e and R_e' are the same or different, Re is as defined above, Re' has the same meaning as that of R_e , and R_d is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or different, R_e and R_e' are as defined above, R_e'' has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')-NR_e'''-R_d-group$ (R_e , R_e' , R_e'' and R_e''' are the same or different, $R_{\rm e}$, $R_{\rm e}{}^{\prime}$ and $R_{\rm e}{}^{\prime\prime}$ are as defined above, $R_{\text{e}}{^{\prime}}{^{\prime}}{^{\prime}}{^{\prime}}$ has the same meaning as that of $R_{\text{e}},$ and R_{d} is as

defined above), a R_b -SO₂-NR_e-R_d-group (R_b , R_e and R_d are as defined above), a R_eR_e' N-SO₂-R_d-group (R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a methoxy group and an ethoxy group are excluded; (2) Y_4 group:

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3^{G_2-G_1}N - G_5$$

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group { R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group

substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group (R_1 is as defined above)},

(c)
$$J_{3}^{J_2=J_1}N$$
—

5

10

15

20

a (c)-group (in (c), J_1 , J_2 , and J_3 are the same or different and, represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \xrightarrow{N} B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_{b} = (CH_{2})_{l}$$

an (e)-group (l and B_b are as defined above), R_d is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-O-group (M_c

is as defined above), a $M_cO-CO-group$ (M_c is as defined above), a $M_cR_eN-group$ (M_c and R_e are as defined above), a $M_c-CO-NR_e-group$ (M_c and R_e are as defined above), a $M_cO-CO-NR_e-group$ (M_c and R_e are as defined above), a $M_cR_eN-CO-group$ (M_c and R_e are as defined above), a $M_cR_eN-CO-NR_e'-group$ (M_c , R_e and R_e' are as defined above), a $M_cR_eN-CO-NR_e'-group$ (M_c , R_e , R_e' and R_e'' are as defined above), a $M_cR_eN-C(=NR_e')-NR_e''-group$ (M_c , R_e , R_e' and R_e are as defined above), a $M_c-SO_2-NR_e-group$ (M_c and R_e are as defined above) or a $M_cR_eN-SO_2-group$ (M_c and R_e are as defined above), and R_d is as defined above];

(3) a Z_4 group:

5

10

15

20

a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group (Y_b and Y_b'' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, Y_b' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or different, and a C1-C10 alkylene group);

IV. Q_A' represents a (b)-group ((b) is as defined above),

an A₉-B₆-BC-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, $B_{\rm c}$ represents an oxy group or a $-N((0)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "- SO_2 - B_c -group (A_7 " represents a substituent of the following A7" group, and Bc is as defined above), an $A_8-SO_2-B_c$ -group (A_8 represents a substituent of the following A_8 group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a $R_1R_1'N$ - SO_2-B_c -group (R_1 is as defined above, $R_1{}^\prime$ is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an $A_9'-B_c$ -group (A_9' represents a substituent of the following $A_7{}^\prime$ group or $A_8{}^\prime$ group, and B_c is as defined above), a $D_5-R_4-B_c$ -group (D_5 represents a substituent of the following D₅ group, R₄ represents a C1-C10 alkylene group, and B_c is as defined above), a $M_c-B_3-B_c$ group (B₃ represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c -group (M_c and B_c are as defined above);

(1) an A_7 group:

5

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 - B_1 - R_4 -group (R_2 and B_1 are as defined above, and

 R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 -5 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following 10 D_2 group, and R_4 is as defined above}, a D_3-R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined 15 above), and R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A_2 group, and R_4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or C1-C10 alkyl group optionally substituted with a halogen atom;
- 20 (3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and R_1 are as defined above, and R_4 ' represents a C2-C10 alkylene group), a R_4 - R_4 ' group (R_4 and R_4 ' are as defined above), a R_4 -group (R_4 and R_4 ' are as defined

above), a (b)- R_4 '-group ((b) and R_4 ' are as defined above), a (c)- R_4 '-group ((c) and R_4 ' are as defined above), a D_2 - R_4 -group (D_2 and D_4 are as defined above), a D_3 - D_4 '-group (D_3 and D_4 ' are as defined above) or an D_4 -group (D_4 and D_4 ' are as defined above);

(4) an A_9 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;

5

- (5) an A₁" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl

 10 group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
- (i) a D₄ group: a hydroxy group or an A₁-O-group [A₁]
 20 represents a R₃-(CHR₀)_m-(B₂-B₃)_m'-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10haloalkyl group, m is as defined

above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1')$ -group $(R_1'$ is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}];

(ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3 - D_3 -group (D_3 , D_4 , n and D_3 are as defined above);

(iii) a D_1 group: a $(R) - (O)_k A_1 N_- (O)_k'$ -group $(R_1 \text{ and } A_1 \text{ are})$ as defined above, and k and k' are the same or different, and represent 0 or 1);

(iv) a D₂ group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A_1)$ -group (R₁, R₁', n and A₁ are as defined above), an A₁N=C-(OR₂)-group (A₁ and R₂ are as defined above) or a NH₂-CS-group;

20 (v) a D_3 group: a nitro group or a R_1OSO_2 -group (R_1 is as defined above);

(vi) an A₂ group:

5

10

1) an A_3-B_4 -group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group

optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a 5 C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b) $-R_4$ -group ((b) and R_4 are as defined above), a (c) $-R_4$ group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group (R_2 , B_1 and R_4 are as defined above), a D_4 - R_4 -group (D_4 and 10 R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a $D_2\text{-group}$ (D_2 is as defined above), a $D_3\text{-}R_4\text{-group}$ (D_3 and R_4 are as defined above) or an $A_4-SO_2-R_4$ -group { A_4 is as 15 defined above, and R_4 is as defined above}, B_4 represents an oxy group, a thio group or a $-N((O)_mR_1)$ group $(R_1 \text{ and } m \text{ are as defined above})$, provided that when B_4 is a thio group, A_3 is not a hydrogen atom]; 2) a $R_1-B_4-CO-R_4-B_4'$ -group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the 20 same meaning as that of B_4 , provided that when B_4 is a thio group, R_2 is not a hydrogen atom), or a $D_2-R_4-B_4$ -group (D_2 , R_4 and B_4 are as defined above);

3) a $R_2-SO_2-NR_1$ -group (R_2 is as defined above, provided that

a hydrogen atom is excluded, and R_1 is as defined above);

25

- 4) a (b)-group ((b) is as defined above);
- 5) a (c)-group ((c) is as defined above) or
- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above);
- V. M_{a} ' is the same as or different from M_{a} , and has the same meaning as that of M_{a} , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, in case that q is 0, then p is 2, 3 or 4; and

the "as defined above" between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

12. A 2H-1-benzopyran-2-one compound represented by the formula (XII):

$$(Y_e)_q$$
 (XII) $(X_e)_p$ (XII)

[wherein

5

10

20

I. A represents a benzene ring or a pyridine ring; II. In $(X_e)_p$, X_e represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a R'-S(O)l- group (R' represents a C1-C10 alkyl group, and l represents 0, 1 or 2), a cyano group, a HOCO-CH=CH-group, a $(R')_2N$ -group (R' is as defined

above), a R' CO-NH-group (R' is as defined above), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_d 's are the same or different; III. In $(Y_e)_q$, Y_e is a substituent on a carbon atom, and represents a substituent of the following X_5 group or Y_5 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_e 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_e 's constitute a group of a Z_5 group, and may be fused with an A ring;

10 (1) a X_5 group:

a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a Rc-Ba-Rd-group (Rc represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and Rd represents a single bond or a C1-C10 alkylene group), a HORd-group (Rd is as defined above), a Re-CO-Rd-group (Rd represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and Rd is as defined above), a Re-CO-O-Rd-group (Re and Rd are as defined above), a RO-CO-CH-GH-group, a Re-Re'N-Rd-group (Re and Re' are the same or different, Re is as defined above, Re' has the same meaning as that of Re, and Rd is as defined above),

a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or 5 different, R_e and $R_e{'}$ are as defined above, $R_e{''}$ has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')-NR_e'''-R_d$ -group (R_e , R_e' , R_e'' and R_e''' are the same or different, Re, Re' and Re" are as defined above, R_e " has the same meaning as that of R_e , and R_d is as defined above), a $R_b-SO_2-NR_e-R_d$ -group (R_b , R_e and R_d are as 10 defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a X_e -group (X_e is as defined above) is excluded; 15 (2) a Y_5 group:

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_{3}^{G_{2}-G_{1}}N - G_{4}$$

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene

group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group $\{R_1 \text{ represents a hydrogen}\}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2-B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

5

10

15

20

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

- 5 an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-O-group (M_c is as defined above), a $M_cO-CO-group$ (M_c is as defined 10 above), a M_cR_eN -group (M_c and R_e are as defined above), a M_c -CO-NR_e-group (M_c and R_e are as defined above), a M_c O-CO- NR_e -group (M_c and R_e are as defined above), a M_cR_eN -CO-group $(M_c \text{ and } R_e \text{ are as defined above}), a M_c R_e N - CO - N R_e' - group (M_c,$ R_e and R_e' are as defined above), a $M_cR_eN-C(=NR_e')-NR_e$ -group 15 (M_c , R_e , R_e' and R_e'' are as defined above), a M_c -SO₂-NR_egroup (M_c and R_e are as defined above) or a M_cR_eN-SO₂-group $(M_c \text{ and } R_e \text{ are as defined above})$, and R_d is as defined above];
 - (3) a Z_5 group:
- a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group

 $(Y_b \text{ and } Y_b" \text{ are the same or different, and represent a}]$ methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and $Y_b"$ represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c"-O$ -group $(Y_c \text{ and } Y_c" \text{ are the same or different,}]$ and represent a C1-C10 alkylene group), provided that when p is 0, then Y_e is not fused with an A ring to form a benzo[1,3]dioxol ring;

5

10

15

20

IV. $M_a{}'$ is the same as or different from $M_a{}$, and has the same meaning as that of $M_a{}$, and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

13. A 2H-1-benzopyran-2-one compound represented by the formula (XIII):

$$(X_{II})_k$$

5

10

15

[wherein X_{II} represents a hydrogen atom, or a hydroxyl group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C3-C4 alkoxy group, or a R_T -S(0)₁-group (R_T represents a C1-C4 alkyl group, and 1 represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a $(R_I)_2N$ -group $(R_I$ is as defined above), or a R_I -CO- N_I -group (R_I is as defined above), or a $R_{I}O-CO-NH-group$ (R_{I} is as defined above), or a $R_{I}NH-CO-NH$ group $(R_I \text{ is as defined above})$, or a $(R_{I'})_2N$ -CO-group $(R_{I'})_2N$ -CO-group represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents an integer of 1 to 4 and, when k is an integer of 2 to 4, X_{II} 's may be different, and r_I represents a C1-C4 alkyl group, a C2-C4 alkenyl group or a C2-C4 alkynyl group];

14. A 2H-1-benzopyran-2-one compound represented by the formula (XIV):

5

10

15

[wherein X_{II} ' represents a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, a C2-C4 alkenyl group, a C2-C4 alkynyl group, a C3-C4 alkoxy group, a R_{II} -S(0)₁-group (R_{II} represents a C2-C4 alkyl group, and 1 represents an integer of 0 to 2), a cyano group, a carboxy group, a C_1 -C4 alkoxycarbonyl group, a $(R_{II})_2N$ -group $(R_{II}$ is as defined above), a R_I -CO-NH-group (R_I represents a C1-C4 alkyl group), a $R_IO-CO-NH$ -group (R_I is as defined above), a $R_1NH-CO-NH$ -group (R_1 is as defined above), a (R_1')₂N-COgroup (R_I' represents a hydrogen atom or a C1-C4 alkyl group) or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{II}" represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group or a C3-C4 alkoxy group, m represents 1 or 2 and, when m is 2, X_{II}"'s may be different];

15. A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-pyridinone compound represented by the formula (XV):

$$(Y_f)_q$$
 A
 O
 A
 C
 A

[wherein

5

- I. A represents a benzene ring or a pyridine ring; II. In $(Y_f)_q$, Y_f is a substituent on a carbon atom, and represents a group of the following X group or Y group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_f 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_f 's constitutes a group of a Z group, and may be fused with an A ring; (1) a X group:
- a Ma-group [Ma represents a Rb-group (Rb represents a C1-C10 10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents 15 an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_{d} is 20 as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e' are the same or different, R_e is as defined above, R_e' has the same meaning as that of R_{e} , and R_{d} is as defined above),

a R_e-CO-NR_e'-R_d-group (R_e, R_e' and R_d are as defined above),

a R_bO-CO-N(R_e)-R_d-group (R_b, R_e and R_d are as defined above),

a R_eR_e'N-CO-R_d-group (R_e, R_e' and R_d are as defined above), a

R_eR_e'N-CO-NR_e"-R_d-group (R_e, R_e' and R_e" are the same or

different, R_e and R_e' are as defined above, R_e" has the same meaning as that of R_e, and R_d is as defined above), a

R_eR_e'N-C(=NR_e")-NR_e"'-R_d-group (R_e, R_e', R_e" and R_e"' are the same or different, R_e, R_e' and R_e" are as defined above,

R_e"' has the same meaning as that of R_e, and R_d is as

defined above), a R_b-SO₂-NR_e-R_d-group (R_b, R_e and R_d are as defined above), a R_eR_e'N-SO₂-R_d-group (R_e, R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group];

(2) a Y group:

15 a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3 N - G_5$$

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single

bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group $\{R_1 \text{ represents a hydrogen}\}$ atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2-B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group}, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3} = J_{1}$$
 N—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \stackrel{\bigcirc}{\longrightarrow} B_b$$

5

10

15

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

- (3) a Z group: a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an imino group optionally substituted with an oxy group, or a thio group, or a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group (Y_b and Y_b'' are the same or

different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4alkylene group optionally substituted with a halogen atom, or a C1-C4alkylene group optionally having an oxo group), or a $-Y_c-O-Y_c$ '-O-group (Y_c and Y_c ' are the same or different, and represent a C1-C10 alkylene group);

5

III. Q_A represents a hydroxyl group, a (b)-group ((b) is as 10 defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 15 is a hydrogen atom, then B_c is not a sulfonyl group], an $A_7''-SO_2-B_c$ -group (A_7'' represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8-SO_2- B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A_8 is not 20 a hydrogen atom), a $R_1R_1'N-SO_2-B_c$ group (R_1 is as defined above, R_1 ' is the same as or different of R_1 , and has the same meaning of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an $A_9'-B_c$ -group $(A_9)'$ represents a substituent of the following A_7 ' group or 25 a A_8 ' group, and B_c is as defined above), a $D_5-R_4-B_c$ -group

(D₅ represents a substituent of the following D₅ group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a M_c - B_3 - B_c -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a Mc- B_c -group (M_c and B_c are as defined above);

(1) an A_7 group:

5

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D4 group, and R4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3 - R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above), an $A_4-SO_2-R_4$ -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above} or an A_2 -CO- R_4 -group (A_2

represents a substituent of the following A_2 group, and R_4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- 5 (3) an A₁' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂ and B₁ are as defined above, and R₄' represents a C2-C10 alkylene group), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a D₃-R₄'-group (D₃ and R₄' are as defined above) or an A₂-CO-R₄-group (A₂ and R₄ are as defined above);
 - (4) an A_8 ' group: a C1-C10 alkyl group or a 2-C10 haloalkyl group;
- (5) an A_7'' group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl 20 group optionally substituted with a halogen atom, a R_2 - B_1 - R_4' -group (R_2 , B_1 and R_4' are as defined above), a D_4 - R_4' -group (D_4 and D_4 are as defined above), a D_5 - D_4 -group (D_5 and D_4 are as defined above), a D_1 - D_4 -group (D_1 and D_4 are as defined above), a (D_1 - D_4 -group (D_1 - D_4 -group

above), a D_2 - R_4 -group (D_2 and R_4 are as defined above), a NO_2 - R_4 -group (R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 and R_4 are as defined above);

5

10

15

20

25

(i) a D₄ group: a hydroxy group or an A₁-O-group [A₁ represents a R₃-(CHR₀)_m-(B₂-B₃)_{m'}-group {R₃ represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R₂-B₁-group (R₂ and B₁ are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R₀ represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B₂ represents a single bond, an oxy group, a thio group or a -N((O)_nR₁')-group (R₁' is as defined above, and n represents 0 or 1), B₃ is as defined above, m' represents 0 or 1 and, when B₃ is a sulfonyl group, then m is 0, and R₃ is not a hydrogen atom)];

(ii) a D_5 group: an $O=C(R_3)$ -group $(R_3$ is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group $(A_1$, n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group $[R_1$, R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group $(R_1'$ and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group $(D_2$, R_4 , n and R_3 are as defined above) or a $R_1A_1N-N=C(R_3)$ -group $(R_1$, R_1 and R_2 are as defined above);

(iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different,

and represent 0 or 1);

(iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A_1)$ -group $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)$ -group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS -group; (v) a D_3 group: a nitro group or a R_1OSO_2 -group $(R_1 \text{ is as defined above})$;

(vi) an A_2 group:

5

1) an A_3-B_4 -group

[A3 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group 10 optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a 15 C1-C10 alkoxy group or a nitro group, and R4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b) $-R_4$ -group ((b) and R_4 are as defined above), a (c) $-R_4$ group ((c) and R_4 are as defined above)], a $R_2-B_1-R_4$ -group (R2, B1 and R4 are as defined above), a D4-R4-group (D4 and 20 R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an A_4 -SO₂- R_4 -group { A_4 is as 25 defined above, and R4 is as defined above},

 B_4 represents an oxy group, a thio group, or a - $N((O)_mR_1)$ -group (R_1 and m are as defined above), provided that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from R_4 , and has the same meaning as that of B_4 , provided that when R_4 is a thio group, then R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
 - 4) a (b)-group ((b) is as defined above);
 - 5) a (c)-group ((c) is as defined above) or
 - 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above);
- IV. T_A represents a hydrogen atom, an A_9' -group $(A_9'$ is as defined above), a D_5 - R_4 -group $(D_5$ and R_4 are as defined above) or a M_c -group $(M_c$ is as defined above);
 - V. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above) or a K_a

and L_a may form a C1-C10 alkylene group; and

20

25

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of

substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range]; and an inert carrier;

16. A 2(1H)-pyridinone compound represented by the formula (XVI):

$$(X_g)_p \xrightarrow{A} A O \xrightarrow{N} L_a$$
 (XVI)

[wherein

5

10

15

- I. A represents a benzene ring or a pyridine ring; II. In $(X_g)_p$, X_g represents a hydroxyl group, a halogen atom, a $(R')_2N$ -group (R' represents a C1-C10 alkyl group), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_g 's are the same or different;
- III. In $(Y_g)_q$, Y_g is a substituent on a carbon atom, and represents a group of the following X_6 group or Y_6 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_g 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_g 's constitutes a group of a Z_6 group, and may be fused with an A ring;
- 20 (1) a X_6 group:
 - a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10

alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl 5 group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is 10 as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d-group$ (R_e and R_e' are the same or different, Re is as defined above, Re' has the same meaning as that of R_e , and R_d is as defined above), 15 a R_e -CO-NR_e'-R_d-group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or different, R_e and $R_e{'}$ are as defined above, $R_e{''}$ has the same 20 meaning as that of a R_e , and R_d is as defined above), a $R_eR_e{'}\,N-C\,(=NR_e{''})\,-NR_e{''}{'}\,-R_d-group$ (Re, Re', Re" and R"' are the same or different, Re, Re' and Re" are as defined above, R_e " has the same meaning as that of R_e , and R_d is as defined above), a R_b -SO₂-NR_e-R_d-group (R_b , R_e and R_d are as 25 defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as

defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a X_g -group (X_g is as defined above) is excluded; (2) a Y_6 group:

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3^{G_2-G_1}N - G_5$$

15

20

a (b)-group {in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R₂-B₁-group (R₂ represents a C1-C10 alkyl group, a C3-C10 alkynyl

group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group (R_1 is as defined above)},

(c)
$$\int_{3}^{J_2=J_1} N$$
—

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \rightarrow B_b$$

a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

5

10

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-O-group (M_c is as defined above), a M_c 0-CO-group (M_c is as defined above), a M_c 0-CO-group (M_c is as defined above), a M_c 0- M_c 1 and M_c 2 are as defined above), a

 M_c -CO-NR_e-group (M_c and R_e are as defined above), a M_c O-CO-NR_e-group (M_c and R_e are as defined above), a M_c R_eN-CO-group (M_c and R_e are as defined above), a M_c R_eN-CO-NR_e'-group (M_c , R_e and R_e ' are as defined above), a M_c R_eN-C(=NR_e')-NR_e"-group (M_c , R_e , R_e ' and R_e " are as defined above), a M_c -SO₂-NR_e-group (M_c and M_c are as defined above) or a M_c R_eN-SO₂-group (M_c and M_c are as defined above), and M_c as defined above];

(3) a Z_6 group:

5

10

15

20

25

a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''$ -group (Y_b and Y_b'' are the same or different, a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b' represents a C1-C4alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or different, and represent a C1-C10 alkylene group);

IV. Q_A represents a hydroxyl group, a (b)-group ((b) is as defined above), an $A_9-B_6-B_c$ -group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6

represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((0)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an 5 $A_7''-SO_2-B_c$ -group (A_7'' represents a substituent of the following A_7 " group, and B_c is as defined above), an $A_8-SO_2 B_c$ -group (A₈ represents a substituent of the following A₈ group, B₁ is as defined above, provided that A₈ is not a hydrogen atom), a R₁R₁'N-SO₂-B_c-group (R₁ is as defined 10 above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b) $-SO_2-B_c$ -group ((b) and B_c are as defined above), an A_9' -B_c-group (A₉' represents a substituent of the following A₇' group or A_8 ' group, and B_c is as defined above), a $D_5-R_4-B_c-$ 15 group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as defined above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above), or a M_c - B_c -group (M_c and B_c are as 20 defined above);

(1) an A₇ group:

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a R_2 - B_1 - R_4 -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4 - R_4 -group (D_4 represents a

substituent of the following D4 group, and R4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is 5 as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3-R_4 -group { D_3 10 represents a substituent of the following D_3 group, and R_4 is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a -(b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above) or an A_2 -CO- R_4 group (A_2 15 represents a substituent of the following A_2 group, and R_4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and B_1 are as defined above, and R_4 ' represents a C2-C10 alkylene group), a D_4 - R_4 '-group (D_4 and D_4 ' are as defined above), a D_1 - D_4 '-group (D_1 and D_4 ' are as defined above), a D_1 - D_4 '-group (D_1 and D_4 ' are as defined above),

- a (c)- R_4 '-group ((c) and R_4 ' are as defined above), a D_2 - R_4 -group (D_2 and R_4 are as defined above), a D_3 - R_4 '-group (D_3 and R_4 ' are as defined above), and an A_2 -CO- R_4 -group (A_2 and A_4 are as defined above);
- 5 (4) an A₈' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;

10

15

- (5) an A_7'' group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4' -group (R_2 , B_1 and R_4' are as defined above), a D_4 - R_4' -group (D_4 and D_4 are as defined above), a D_5 - D_4 -group (D_5 and D_4 are as defined above), a D_1 - D_4 -group (D_1 and D_4 are as defined above), a (D_1 - D_4 -group ((D_1) and D_4 -are as defined above), a (D_1 - D_4 -group ((D_1) and D_4 -are as defined above), a (D_2 - D_4 -group (D_4) and D_4 -are as defined above), a (D_2 - D_4 -group (D_4) and D_4 -are as defined above), a (D_4 - D_4 -group (D_4) and D_4 -are as defined above), a
- represents a R_3 -(CHR₀)_m-(B_2 - B_3)_{m'}-group { R_3 represents a hydrogen atom, or a C1-10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group (R_2 and B_1 are as defined above), or a C1-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio

(i) a D_4 group: a hydroxyl group or an A_1 -O-group $[A_1]$

 $(A_2 \text{ and } R_4 \text{ are as defined above});$

group or a $-N((O)_nR_1')$ - group (R_1') is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, m is 0, and R_3 is not a hydrogen atom}];

- (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3 - D_4 - D_5 - D_5 - D_5 - D_6 - D_7 -
 - (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
 - (iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(O)_n-A_1)$ -group $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)$ -group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS -group; (V) a D_3 group: a nitro group or a R_1OSO_2 -group $(R_1 \text{ is as defined above})$;
 - (vi) an A_2 group:

15

20

25

1) an A_3-B_4 -group

 $[A_3 \text{ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10$

alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group a C1-C10 alkoxy group or a nitro group, and R_4 and m are as 5 defined above), or a C1-C10 alkyl group substituted with a (b)- R_4 -group ((b) and R_4 are as defined above), a (c)- R_4 group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group $(R_2, B_1 \text{ and } R_4 \text{ are as defined above}), a <math>D_4-R_4$ -group $(D_4 \text{ and }$ 10 R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an $A_4-SO_2-R_4$ -group { A_4 is as defined above, and R_4 is as defined above},

- B₄ represents an oxy group, a thio group or a -N((O)_mR₁)group (R₁ and m are as defined above), provided that when
 B₄ is a thio group, then A₃ is not a hydrogen atom];
 2) a R₁-B₄-CO-R₄-B₄'-group (R₁, B₄ and R₄ are as defined
 above, B₄' is the same as or different from B₄, and has the
 same meaning as that of B₄, provided that when B₄ is a thio
 group, then R₂ is not a hydrogen atom) or a D₂-R₄-B₄-group
 (D₂, R₄ and B₄ are as defined above);
 - 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 25 4) a (b)-group ((b) is as defined above);

5) a (c)-group ((c) is as defined above) or

5

10

15

20

- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above);
- V. T_A represents a hydrogen atom, an A_9 '-group (A_9 ' is as defined above), a D_5 - R_4 -group (D_5 and R_4 are as defined above) or a M_c -group (M_c is as defined above);
- VI. K_a represents a hydrogen atom, a halogen atom or a C1-C10 alkyl group, L_a represents a hydrogen atom, a C1-C10 alkyl group or a M_b -group (M_b is as defined above), or K_a and L_a may form a C1-C10 alkylene group, provided that when an A ring is a benzene ring, then q is not 0; and

the "as defined above" in he same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

17. A I type collagen gene transcription suppressing composition, which comprises a 2 (1H)-pyridinone compound represented by the formula (XVII):

$$(X_{III})_{k} \xrightarrow{II} O O_{r_{II}} CH_{3}$$

[wherein XIII represents a hydrogen atom, or a hydroxy

group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C1-C4 alkoxy group, or a R_1 -S(O)₁-group (R_1 represents a C1-C4 alkyl group, and 1 represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a $(R_I)_2N$ -group $(R_I$ is as defined above), or a R_I -CO-NH-group (R_I is as defined above), or a $R_IO-CO-NH$ -group (R_I is as defined above), or a $R_INH-CO-NH$ group (R_I is as defined above), or a (R_I')₂N-CO-group (R_I' represents a hydrogen atom or a C1-C4 alkyl group) or a RBgroup (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), K represents an integer of 1 to 4, when k is an integer of 2 to 4, X_{III} 's may be different, r_{II} and $r_{II'}$ are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group];

and an inert carrier;

5

10

15

18. A 2(1H)-pyridinone compound represented by the 20 formula (XVIII):

$$X_{|||}$$
 $(X_{|||})_{m}$
 O
 O
 O
 C
 H_{3}

[wherein X_{III} ' represents a C2-C4 alkyl group, or a C1-C4

alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C2-C4 alkoxy group, or a R_I -S(O)₁-group (R_I represents a C1-C4 alkyl group, and l represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, a $(R_{II})_2N$ -group $(R_{II}$ represents a C2-C4 alkyl group), or a $R_I-CO-NH$ -group (R_I is as defined above), or a $R_IO-CO-NH$ -group (R_I is as defined above), or a $R_1NH-CO-NH-group$ (R_I is as defined above), or a $(R_I')_2N-CO$ group (R_I' represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), $X_{\rm III}$ " represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, or a C1-C4 alkoxy group, m represents 1 or 2, when m is 2, X_{III} "'s may be different, and r_{II} and $r_{II'}$ are the same or different, and represent a hydrogen atom or a C1-C4alkyl group];

19. A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XIX):

$$(Y_f)_q$$
 A
 O
 Q_A
 (XIX)
 T_A

5

10

15

[wherein

5

10

15

20

25

I. A represents a benzene ring or a pyridine ring; II. In $(Y_f)_q$, Y_f is a substituent on a carbon atom, and represents a group of the following X group or Y group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_f 's are the same or different and, when q is 2 or more, the adjacent two same or different Y_f 's constitute a group of a Z group, and may be fused with an A ring;

(1) a X group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxyl group, a $R_c-B_a-R_d$ -group (R_c represents a C1-C10 alkyl group optionally substituted with a halogen atom, B_{a} represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (Re represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, and R_d is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e' are the same or different, $R_{\rm e}$ is as defined above, $R_{\rm e}{}^{\prime}$ has the same meaning as that of R_e , and R_d is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above),

a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or different, R_e and R_e' are as defined above, R_e'' has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e'N-C(=NR_e'')-NR_e'''-R_d$ -group (R_e , R_e' , R_e'' and R_e''' are the same or different, R_e , R_e' and R_e''' are as defined above, R_e''' has the same meaning as that of R_e , and R_d is as defined above), a $R_b-SO_2-NR_e-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-SO_2-R_d$ -group or a C_2-C_10 alkenyl group];

(2) a Y group:

5

10

15

a M_b - R_d -group [M_b represents a M_c -group { M_c represents a M_d - R_d '-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_3 \cdot N - G_5$$

a (b)-group (in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group,

or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group {R₁ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - B_1 -group (R_2 represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkenyl group, a c3-C10 alkynyl group, a sulfinyl group, a sulfonyl group, a oxy group, a thio group, a sulfinyl group, a sulfonyl group or a -NR₁-group (R_1 is as defined above)},

(c)
$$J_{3} > N -$$

5

10

15

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \longrightarrow B_b$$

20 a (d)-group (1 is 2, 3 or 4, and B_b represents an oxy group or a thio group)

or

5

10

15

20

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_c - R_e -

(3) a Z group:

a -N=C(Y_a)- Y_a '-group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and Y_a ' represents an oxy group, or a thio group, or an imino group optionally substituted with a C1-C10 alkyl group), a - Y_b - Y_b '- Y_b "-group (Y_b and Y_b ' are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a

sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 alkylene group optionally substituted with a halogen atom, or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or different, 5 and represent a C1-C10 alkylene group); III. Q_A represents a hydroxy group, a (b)-group ((b) is as defined above), an A₉-B₆-B_c-group [A₉ represents a substituent of the following A₇ group or A₈ group, B₆ represents a carbonyl group or a thiocarbonyl group, and B_c 10 represents an oxy group or a $-N((O)_mR_1)$ -group (m represents 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A_7 "- SO_2 - B_c -group (A_7 " represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 -SO₂-15 B_c -group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a $R_1R_1'N-SO_2-B_c$ -group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the 20 same meaning as that of R_1 , and B_c is as defined above), a (b)-SO₂-B_c-group ((b) and B_c are as defined above), an A_9 '- B_c -group (A_9 ' represents a substituent of the following A_7 ' group or A_8' group, and B_c is as defined above), a $D_5-R_4-B_c$ group (D_5 represents a substituent of the following D_5 25 group, R_4 represents a C1-C10 alkylene group, and B_c is as

defined above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_c and B_c are as defined above) or a M_c-B_c -group (M_c and B_c are as defined above);

5 (1) an A_7 group:

10

15

20

25

a C2-C10 alkenyl group optionally substituted with a halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D4 group, and R4 is as defined above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1$ group, and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 group ((c) is as defined above, and R_4 is as defined above), a D2-R4-group {D2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3-R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above) or an A_2 -CO- R_4 -group (A_2 represents a substituent of the following A2 group, and R4 is as defined above);

- (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;
- (3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and B_1 are as defined above, and R_4 ' represents a C2-C10 alkylene group), a D_4 - R_4 '-group (D_4 and D_4 ' are as defined above), a D_1 - D_4 '-group (D_1 and D_4 ' are as defined above), a (D_1 - D_4 '-group ((D_1) and D_4 ' are as defined above), a (D_2 - D_4 '-group ((D_1) and D_4 ' are as defined above), a D_2 - D_4 -group (D_4) and D_4 are as defined above), a D_4 - D_4 -group (D_4) and D_4 are as defined above) or an D_4 - D_4 -group (D_4) and D_4 -group (D_4) a

10

- (4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;
- (5) an A₁" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group

 $(A_2 \text{ and } R_4 \text{ are as defined above});$

is not a hydrogen atom}];

5

- (i) a D₄ group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B_2 - B_3)_m'-group { R_3 represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a -N((O)_n R_1 ')-group (R_1 ' is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3
- (ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , n and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group (D_2 , D_3 , n and D_3 are as defined above) or a D_3 - D_4 - D_5 -
 - (iii) a D_1 group: a $(R_1-(O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);
- 25 (iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(0)_n-A_1)$ -group

 $(R_1, R_1', n \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)-group$ (A_1 and R_2 are as defined above) or a $NH_2-CS-group$; (V) a D_3 group: a nitro group or a $R_1OSO_2-group$ (R_1 is as defined above);

5 (vi) an A_2 group:

10

15

20

25

. 1) an A_3-B_4 -group

[A₃ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkenyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b) $-R_4$ -group ((b) and R_4 are as defined above), a (c) $-R_4$ group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group $(R_2, B_1 \text{ and } R_4 \text{ are as defined above}), a <math>D_4-R_4$ -group $(D_4 \text{ and }$ R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an $A_4-SO_2-R_4-group$ { A_4 is as defined above, and R_4 is as defined above},

 B_4 represents an oxy group, a thio group or a - $N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provided

that when B_4 is a thio group, then A_3 is not a hydrogen atom];

- 2) a R_1 - B_4 -CO- R_4 - B_4 '-group (R_1 , B_4 and R_4 are as defined above, B_4 ' is the same as or different from B_4 , and has the same meaning as that of B_4 , provided that when B_4 is a thio group, then R_2 is not a hydrogen atom) or a D_2 - R_4 - B_4 -group (D_2 , R_4 and B_4 are as defined above);
- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 10 4) a (b)-group ((b) is as defined above);

5

15

- 5) a (c)-group ((c) is as defined above) or
- 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above); IV. T_A represents a hydrogen atom, an A_9' -group (A_9' is as defined above), a D_5-R_4 -group (D_5 and R_4 are as defined above) or a M_c -group (M_c is as defined above);
- V. $M_{a}{}^{\prime}$ is the same as or different from $M_{a}{}^{\prime}$, and has the same meaning as that of $M_{a}{}^{\prime}$, and r represents 0, 1, 2, 3 or 4; and

the "as defined above" in the same symbol between a

20 plurality of substituents indicates that the plurality of
substituents independently represent the same meaning as
that described above and, between the plurality of
substituents, a selection range of selected substituents is
the same, while the selected substituents may be the same

25 or different as far as they are selected in the range];

and an inert carrier;

20. A 2(1H)-pyridinone compound represented by the formula (XX):

I. A represents a benzene ring or a pyridine ring;

[wherein

5

II. In $(X_h)_p$, X_h represents a hydroxy group, a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxycarbonyl group, a $(R')_2N$ -group (R' represents a C1-C10 alkyl group), a nitro group or a C1-C10 alkoxy group, p represents 0, 1, 2, 3 or 4 and, when p is 2 or more, X_h 's are the same or different, 10 provided that when p is 2 or more, and in case that X_h is selected from a hydroxy group, a halogen atom, a C1-C10 alkyl group and a C1-C10 alkoxy group, then Xh's do not represent the same group or atom at the same time; III. In $(Y_h)_g$, Y_h is a substituent on a carbon atom, and 15 represents a substituent of the following X_7 group or Y_7 group, q represents 0, 1, 2, 3, 4 or 5, when q is 2 or more, Y_h 's are the same or different and, when q is 2 or more, the adjacent two same or different Yh's constitute a group of a Z₇ group, and may be fused with an A ring; 20 (1) a X_7 group:

a M_a -group [M_a represents a R_b -group (R_b represents a C1-C10 alkyl group optionally substituted with a halogen atom), a halogen atom, a nitro group, a cyano group, a hydroxy group, a R_c-B_a-R_d-group (R_c represents a C1-C10 alkyl group 5 optionally substituted with a halogen atom, Ba represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group, and R_d represents a single bond or a C1-C10 alkylene group), a HOR_d -group (R_d is as defined above), a R_e -CO- R_d group (R_e represents a hydrogen atom, or a C1-C10 alkyl 10 group optionally substituted with a halogen atom, and R_{d} is as defined above), a R_e -CO-O- R_d -group (R_e and R_d are as defined above), a $R_eO-CO-R_d$ -group (R_e and R_d are as defined above), a HO-CO-CH=CH-group, a $R_eR_e'N-R_d$ -group (R_e and R_e' are the same or different, R_e is as defined above, $R_e{'}$ has 15 the same meaning as that of R_e , and R_d is as defined above), a R_e -CO-N R_e '- R_d -group (R_e , R_e ' and R_d are as defined above), a $R_bO-CO-N(R_e)-R_d$ -group (R_b , R_e and R_d are as defined above), a $R_e R_e' N-CO-R_d$ -group (R_e , R_e' and R_d are as defined above), a $R_eR_e'N-CO-NR_e''-R_d$ -group (R_e , R_e' and R_e'' are the same or 20 different, R_e and $R_{e}{}^{\prime}$ are as defined above, $R_{e}{}^{\prime\prime}$ has the same meaning as that of R_e , and R_d is as defined above), a $R_eR_e"N-C(=NR_e")-NR_e"'-R_d$ -group (R_e , R_e' , $R_e"$ and $R_e"'$ are the same or different, R_e , R_e' and R_e'' are as defined above, $R_{\text{e}}^{\hspace{0.5mm}\prime\prime}$ has the same meaning as that of $R_{\text{e}},$ and R_{d} is as 25 defined above), a R_b -SO₂-NR_e-R_d-group (R_b , R_e and R_d are as

defined above), a $R_eR_e'N-SO_2-R_d$ -group (R_e , R_e' and R_d are as defined above), a C2-C10 alkenyl group or a C2-C10 alkynyl group], provided that when A represents a benzene ring, then a X_h -group (X_h is as defined above) is excluded;

5 (2) a Y_7 group:

10

15

20

a M_b -R_d-group [M_b represents a M_c -group { M_c represents a M_d -R_d'-group { M_d represents a phenyl group optionally substituted with a M_a -group (M_a is as defined above), or a pyridyl group optionally substituted with a M_a -group (M_a is as defined above), or a naphthyl group optionally substituted with a M_a -group (M_a is as defined above), or

(b)
$$G_{3}^{G_{2}-G_{1}}N - G_{5}$$

a (b)-group (in (b), G_1 , G_2 , G_4 and G_5 represent a methylene group which is connected to an adjacent atom with a single bond, and may be substituted with a methyl group, or a methine group which is connected to an adjacent atom with a double bond, and may be substituted with a methyl group, and G_3 represents a single bond, or a double bond, or a C1-C10 alkylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 alkyl group substituted with a halogen atom or a R_2 - R_1 -group (R_2

represents a C1-C10 alkyl group, a C3-C10 alkenyl group or a C3-C10 alkynyl group, and B_1 represents an oxy group, a thio group, a sulfinyl group or a sulfonyl group), or a C3-C10 alkenyl group, or a C3-C10 alkynyl group), or a C2-C10 alkenylene group optionally substituted with a methyl group, an oxy group, a thio group, a sulfinyl group, a sulfonyl group or a $-NR_1$ -group (R_1 is as defined above)},

(c)
$$J_{3}^{2} = J_{1}$$

5

10

a (c)-group (in (c), J_1 , J_2 and J_3 are the same or different, and represent a methine group optionally substituted with a methyl group, or a nitrogen atom),

(d)
$$N \xrightarrow{N} B_b$$

a (d)-group (1 is 2, 3 or 4, and B_{b} represents an oxy group or a thio group) or

(e)
$$B_b \longrightarrow B_b$$

an (e)-group (1 and B_b are as defined above), R_d ' is the same as or different from R_d , and has the same meaning as that of R_d }, a M_c - B_a -group (M_c and B_a are as defined above), a M_c -CO-group (M_c is as defined above), a M_c -CO-O-group (M_c is as defined

above), a M_cR_eN -group (M_c and R_e are as defined above), a M_c -CO- NR_e -group (M_c and R_e are as defined above), a M_cR_eN -CO-group (M_c and R_e are as defined above), a M_cR_eN -CO-group (M_c and R_e are as defined above), a M_cR_eN -CO- NR_e' -group (M_c , R_e and R_e' are as defined above), a M_cR_eN -C(= NR_e')- NR_e'' -group (M_c , R_e , R_e' and R_e'' are as defined above), a M_c -SO₂- NR_e -group (M_c and R_e are as defined above) or a M_cR_eN -SO₂-group (M_c and R_e are as defined above), and R_d is as defined above];

10 (3) a Z_7 group:

5

a $-N=C(Y_a)-Y_a'$ -group (Y_a represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom, or a C1-C10 alkoxy group, and $Y_a{}^\prime$ represents an oxy group, or a thio group, or an imino group optionally 15 substituted with a C1-C10 alkyl group), a $-Y_b-Y_b'-Y_b''-group$ $(Y_b$ and Y_b " are the same or different, and represent a methylene group, or an oxy group, or a thio group, or a sulfinyl group, or an imino group optionally substituted with a C1-C10 alkyl group, and Y_b ' represents a C1-C4 20 alkylene group optionally substituted with a halogen atom or a C1-C4 alkylene group optionally having an oxo group) or a $-Y_c-O-Y_c'-O$ -group (Y_c and Y_c' are the same or different, or a C1-C10 alkylene group), provided that when p is 0, then Y_h does not fused with an A ring to form a

25 benzo[1,3]dioxol ring;

IV. Q_A represents a hydroxy group, a (b)-group ((b) is as defined above), an $A_9-B_6-B_c$ -group [A_9 represents a substituent of the following A_7 group or A_8 group, B_6 represents a carbonyl group or a thiocarbonyl group, and B_c represents an oxy group or a $-N((0)_mR_1$ -group (m represents 5 0 or 1, and R_1 is as defined above), provided that when A_9 is a hydrogen atom, then B_c is not a sulfonyl group], an A₇"-SO₂-B_c-group (A₇" represents a substituent of the following A_7 " group, and B_c is as defined above), an A_8 - SO_2 -10 B_c-group (A₈ represents a substituent of the following A₈ group, and B_c is as defined above, provided that A_8 is not a hydrogen atom), a $R_1R_1'N-SO_2-Bc$ -group (R_1 is as defined above, R_1 ' is the same as or different from R_1 , and has the same meaning as that of R_1 , and B_c is as defined above), a (b)- SO_2 - B_c -group ((b) and B_c are as defined above), an A_9 '-15 B_c-group (A₉' represents a substituent of the following A₇' group or A_8 ' group, and B_c is as defined above), a $D_5-R_4-B_c$ group (D_5 represents a substituent of the following D_5 group, R_4 represents a C1-C10 alkylene group, and B_c is as 20 defined above), a $M_c-B_3-B_c$ -group (B_3 represents a carbonyl group, a thiocarbonyl group or a sulfonyl group, and M_{c} and B_c are as defined above) or a M_c - B_c -group (M_c and B_c are as defined above);

(1) an A_7 group:

25 a C2-C10 alkenyl group optionally substituted with a

halogen atom, a C2-C10 alkynyl group, a C3-C10 haloalkynyl group, a $R_2-B_1-R_4$ -group (R_2 and B_1 are as defined above, and R_4 is as defined above), a D_4-R_4 -group (D_4 represents a substituent of the following D_4 group, and R_4 is as defined 5 above), a D_5-R_4 -group (D_5 represents a substituent of the following D_5 group, and R_4 is as defined above), a D_1-R_4 group $\{D_1 \text{ represents a substituent of the following } D_1 \text{ group,}$ and R_4 is as defined above}, a (b)- R_4 -group ((b) is as defined above, and R_4 is as defined above), a (c)- R_4 -group 10 ((c) is as defined above, and R_4 is as defined above), a D_2-R_4 -group { D_2 represents a substituent of the following D_2 group, and R_4 is as defined above}, a D_3-R_4 -group { D_3 represents a substituent of the following D_3 group, and R_4 is as defined above}, an $A_4-SO_2-R_4$ -group { A_4 represents a 15 (b)-group ((b) is as defined above), a (c)-group ((c) is as defined above) or a $R_1R_1'-N$ -group (R_1 and R_1' are as defined above), and R_4 is as defined above} or an $A_2-CO_2-R_4$ -group (A_2 represents a substituent of the following A_2 group, and R₄ is as defined above);

20 (2) an A_8 group: a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom;

25

(3) an A_7 ' group: a C3-C10 alkenyl group optionally substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R_2 - B_1 - R_4 '-group (R_2 and B_1 are as defined above, and R_4 ' represents a

C2-C10 alkylene group), a D_4 - R_4 '-group (D_4 and R_4 ' are as defined above), a D_1 - R_4 '-group (D_1 and D_4 ' are as defined above), a (b)- D_4 '-group ((b) and D_4 ' are as defined above), a (c)- D_4 '-group ((c) and D_4 ' are as defined above), a D_2 - D_4 -group (D_4 and D_4 are as defined above), a D_4 - D_4 -group (D_4 and D_4 are as defined above) or an D_4 - D_4 -group (D_4 and D_4 -group (D_4 -group (D

(4) an A_8 ' group: a C1-C10 alkyl group or a C2-C10 haloalkyl group;

5

- (5) an A₁" group: a C2-C10 alkenyl group, a C3-C10 alkenyl group substituted with a halogen atom, a C3-C10 alkynyl group optionally substituted with a halogen atom, a R₂-B₁-R₄'-group (R₂, B₁ and R₄' are as defined above), a D₄-R₄'-group (D₄ and R₄' are as defined above), a D₅-R₄-group (D₅ and R₄ are as defined above), a D₁-R₄'-group (D₁ and R₄' are as defined above), a (b)-R₄'-group ((b) and R₄' are as defined above), a (c)-R₄'-group ((c) and R₄' are as defined above), a D₂-R₄-group (D₂ and R₄ are as defined above), a NO₂-R₄-group (R₄ is as defined above) or an A₂-CO-R₄-group

 (A₂ and R₄ are as defined above);
 - (i) a D₄ group: a hydroxy group or an A_1 -O-group [A_1 represents a R_3 -(CHR₀)_m-(B_2 - B_3)_m'-group { R_3 represents a hydrogen atom, or a C1-C10 alkyl group optionally substituted with a halogen atom or a R_2 - B_1 -group (R_2 and B_1 are as defined above), or a C2-C10 alkenyl group, or a C2-

C10 alkynyl group, R_0 represents a hydrogen atom, a C1-C10 alkyl group or a C2-C10 haloalkyl group, m is as defined above, B_2 represents a single bond, an oxy group, a thio group or a $-N((O)_nR_1')$ -group $(R_1'$ is as defined above, and n represents 0 or 1), B_3 is as defined above, m' represents 0 or 1 and, when B_3 is a sulfonyl group, then m is 0, and R_3 is not a hydrogen atom}];

(ii) a D_5 group: an $O=C(R_3)$ -group (R_3 is as defined above), an $A_1-(O)_n-N=C(R_3)$ -group (A_1 , N and R_3 are as defined above), a $R_1-B_0-CO-R_4-(O)_n-N=C(R_3)$ -group [R_1 , R_4 , n and R_3 are as defined above, and B_0 represents an oxy group, a thio group or a $-N((O)_mR_1')$ -group (R_1' and m are as defined above)], a $D_2-R_4-(O)_n-N=C(R_3)$ -group (D_2 , D_3 , D_4 , D_4 , D_5 , D_5 , D_6 , D_7 , D_8 , D

(iii) a D_1 group: a $(R_1-O)_k-)A_1N-(O)_k'$ -group $(R_1$ and A_1 are as defined above, and k and k' are the same or different, and represent 0 or 1);

(iv) a D_2 group: a cyano group, a $R_1R_1'NC(=N-(0)_n-A_1$ -group $(R_1, R_1', N \text{ and } A_1 \text{ are as defined above})$, an $A_1N=C(-OR_2)$ -group $(A_1 \text{ and } R_2 \text{ are as defined above})$ or a NH_2-CS -group; (v) a D_3 group: a nitro group or a R_1OSO_2 -group $(R_1 \text{ is as defined above})$;

(vi) an A₂ group:

25 1) an A_3-B_4 -group

5

10

15

 $[A_3]$ represents a hydrogen atom, or a C1-C10 alkyl group, or a C2-C10 haloalkyl group, or a C2-C10 alkynyl group optionally substituted with a halogen atom, or a C3-C10 alkynyl group optionally substituted with a halogen atom, or a $R_a-(R_4)_m$ -group (R_a represents a phenyl group, a pyridyl group, a furyl group or a thienyl group, optionally substituted with a halogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group or a nitro group, and R_4 and m are as defined above), or a C1-C10 alkyl group substituted with a (b) $-R_4$ -group ((b) and R_4 are as defined above), a (c) $-R_4$ group ((c) and R_4 are as defined above), a $R_2-B_1-R_4$ -group (R_2 , B_1 and R_4 are as defined above), a D_4 - R_4 -group (D_4 and R_4 are as defined above), a D_5 -group (D_5 is as defined above), a D_1-R_4 -group (D_1 and R_4 are as defined above), a D_2 -group (D_2 is as defined above), a D_3 - R_4 -group (D_3 and R_4 are as defined above) or an $A_4-SO_2-R_4$ -group { A_4 is as defined above, and R_4 is as defined above},

5

10

15

20

25

 B_4 represents an oxy group, a thio group or a - $N((O)_mR_1)$ -group $(R_1$ and m are as defined above), provide that when A_4 is a thio group, then A_3 is not a hydrogen atom];

2) a $R_1-B_4-CO-R_4-B_4'$ -group (R_1 , B_4 and R_4 are as defined above, B_4' is the same as or different from B_4 , and has the same meaning as B_4 , provided that when B_4 is a thio group, then R_2 is not a hydrogen atom) or a $D_2-R_4-B_4$ -group (D_2 , R_4

and B₄ are as defined above);

20

25

- 3) a R_2 -SO₂-NR₁-group (R_2 is as defined above, provided that a hydrogen atom is excluded, and R_1 is as defined above);
- 4) a (b)-group ((b) is as defined above);
- 5 5) a (c)-group ((c) is as defined above) or
 - 6) a $R_1A_1N-NR_1'$ -group (R_1 , A_1 and R_1' are as defined above); V. T_A represents a hydrogen atom, an A_9' -group (A_9' is as defined above), a D_5-R_4 -group (D_5 and R_4 are as defined

above) or a M_c -group (M_c is as defined above);

VI. M_a ' is the same as or different from M_a , and has the same meaning as that of M_a , and r represents 0, 1, 2, 3 or 4, provided that when an A ring is a benzene ring, then q is not 0 and, when an A ring is a benzene ring or a pyridine ring, then p and q are not 0 at the same time, in either case; and

the "as defined above" in the same symbol between a plurality of substituents indicates that the plurality of substituents independently represent the same meaning as that described above and, between the plurality of substituents, a selection range of selected substituents is the same, while the selected substituents may be the same or different as far as they are selected in the range];

21. A I type collagen gene transcription suppressing composition, which comprises a 2(1H)-quinolinone compound represented by the formula (XXI):

$$(X_{|V})_k$$

[wherein X_{IV} represents a hydrogen atom, or a hydroxy group, or a halogen atom, or a C1-C4 alkyl group optionally substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C1-C4 alkoxy group, or a $R_I-S(0)_1$ -group (R_I represents a C1-C4 alkyl group, and 1 represents an integer of 0 to 2), or a nitro group, or a cyano group, or a carboxy group, or a C1-C4 alkoxycarbonyl group, or a $(R_{\rm I})_2N$ -group $(R_{\rm I}$ is as defined above), or a R_I -CO-NH-group (R_I is as defined above), or a R_{I} -O-CO-NH-group (R_{I} is as defined above), or a R_{I} NH-CO-NHgroup (R_I is as defined above), or a $(R_I')_2N$ -CO-group $(R_I')_2N$ represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), k represents an integer of 1 to 4 and, when k is an integer of 2 to 4, X_{IV} 's may be different, and r_{II} and r_{II} are the same or different, and represent a hydrogen atom or a C1-C4 alkyl group];

20 and an inert carrier;

5.

10

15

22. A 2(1H)-quinolinone compound represented by the

formula (XXII):

5

10

15

20

$$X_{|V'|}$$
 $X_{|V'|}$ $X_{|V'|}$

[wherein X_{IV} ' represents a C2-C4 alkyl group, or a C1-C4 alkyl group substituted with a halogen atom or a C1-C4 alkoxy group, or a C2-C4 alkenyl group, or a C2-C4 alkynyl group, or a C2-C4 alkoxy group, or a R_I -S(O)₁-group (R_I represents a C1-C4 alkyl group, and l represents an integer of 0 to 2), or a cyano group, or a carboxy group, or a C2-C4 alkoxycarbonyl group, or a $(R_{II})_2N$ -group $(R_{II}$ represents a C2-C4 alkyl group), or a R_I-CO-NH-group (R_I is as defined above), or a $R_IO-CO-NH$ -group (R_I is as defined above), or a $R_1NH-CO-NH-group$ (R_1 is as defined above), or a $(R_1')_2N-CO$ group ($R_{\rm I}'$ represents a hydrogen atom or a C1-C4 alkyl group), or a RB-group (B represents an oxygen atom or a sulfur atom, and R represents a C1-C4 alkyl group substituted with a halogen atom), X_{IV}" represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group or a C1-C4 alkoxy group, m represents 1 or 2 and, when m is 2, X_{IV}'' 's may be different, and r_{II} and r_{II}' are the same or different, and represent a hydrogen atom or a C1-C4alkyl group];

23. Use of a compound according to claims 5, 6, 8, 9,

- 11, 12, 13, 14, 16, 18, 20 or 22, as an active ingredient for suppressing transcription of a Type I collagen gene;
- 24. Use of a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, as an active ingredient for decreasing expression of a Type I collagen gene to induce a reduction in accumulation of collagen and thereby improving tissue fibrosis;

10

20

- 25. A composition for improving tissue fibrosis, which comprises a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, and an inert carrier;
- 26. A method for improving tissue fibrosis, which comprises administering an effective amount of a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22 to a mammal in need thereof;
- 15 27. Use of a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, as an active ingredient for suppressing the activity of TGF- β ;
 - 28. A composition for suppressing the activity of TGF- β , which comprises a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, and an inert carrier;
 - 29. Use of a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, as an active ingredient for inhibiting a promoting effect of TGF- β on transition to a hair regression phase to induce extension of a hair growth phase and thereby providing hair-growing effect;

- 30. A composition for hair growth which comprises a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22, and an inert carrier;
- 31. A method for growing hair, which comprises administering an effective amount of a compound according to claims 5, 6, 8, 9, 11, 12, 13, 14, 16, 18, 20 or 22 to a mammal in need thereof;

10

15

- 32. Use of a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, as an active ingredient for suppressing transcription of a Type I collagen gene;
- 33. Use of a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, as an active ingredient for decreasing expression of a Type I collagen gene to induce a reduction in accumulation of collagen and thereby improving tissue fibrosis;
- 34. A composition for improving tissue fibrosis, which comprises a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, and an inert carrier;
- 35. A method for improving tissue fibrosis, which

 comprises administering an effective amount of a compound

 according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21 to

 a mammal in need thereof;
 - 36. Use of a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, as an active ingredient for suppressing the activity of TGF- β ;

- 37. A composition for suppressing the activity of TGF- β , which comprises a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, and an inert carrier;
- 38. Use of a compound according to claims 1, 2, 3, 4,
 7, 10, 15, 17, 19 or 21, as an active ingredient for inhibiting a promoting effect of TGF-β on transition to a hair regression phase to induce extension of a hair growth phase and thereby providing hair-growing effect;
- 39. A composition for hair growth which comprises a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21, and an inert carrier;
 - 40. A method for growing hair, which comprises administering an effective amount of a compound according to claims 1, 2, 3, 4, 7, 10, 15, 17, 19 or 21 to a mammal in need thereof;
 - 41. A 2(1H)-pyridinone compound represented by the formula (XXIII):

42. A $2(1\mathrm{H})$ -pyridinone compound represented by the formula (XXIV):