qml4omics: A Quantum-Classical Machine Learning Benchmarking tool for multi-omics data

qml4omics

qml4omics: Data Complexities

Dimensional

- Intrinsic Dimension (Rank)
- Manifold (Fractal Dimension)
- Volume
- Effective rank
- Eigenspectra

Distributional

- Kurtosis & Skewness
- Mutual Information
- Sparsity
- Entropy
- Condition Number

Geometric

- Manifolds
- Clusters
- Density
- Topological Data Analysis
- Graph-based measures

Sampling

- Class imbalance ratio
- Class overlap measures
- Margin of separation between classes
- Sampling density variation

qm14omics: Embeddings

Non-negative Matrix Factorization (NMF)

Locally Linear Embedding (LLE) Isomap

qml4omics: Models

- Logistic Regression
- Support Vector Classifiers
- Naïve Bayes
- Random Forest
- XGBoost
- Multi-layer Perceptron

- Quantum Kernel Estimation
- Projected Quantum Kernel
- Quantum Support Vector Classifiers
- Variational Quantum Classifier / Quantum Neural Networks

Artificial Data Generation

- To diversify datasets, we developed functions to generate artificial data based on user-defined combinations of data characteristic.
- These modules generate blobs, moons, circles, spheres, spirals.
- Located inside /data/artificial_datasets/make_X

Understanding the analyses

Hierarchical clustering heat maps

- What it's doing here:
 - Complexity measure range is normalized between 0 and 1.
 - Euclidean distance is calculated between columns and rows, clustering together those with the shortest distance → similar intensities for complexity measures.
 - The dendrogram branches create a pairing hierarchy.
 - Outlier has longest branch.
 - Helps answer:
 Is there some structure or pattern in my data?

Understanding the analyses

Spearman Rank Correlations

- What it's doing here:
 - Correlates data complexity measure to model performance (F1-score)
 - Red = positive correlated
 - Blue = anti-correlated
 - Size of sphere = magnitude of F1-score
 - Helps answer:
 What complexity measures influence your model score the most?

Understanding the analyses

Box-and-whisker plots

- What it's doing here:
 - Plots distribution of median F1-scores per datasets, across all splits of data, per model
 - Top and bottom of box = upper and lower quartiles (Q3 and Q1)
 - Whiskers denote range in F1- scores
 - Helps answer:
 What is the locality, spread, and skewness
 groups in my data (F1-scores) based on their
 quartiles?

Understanding QSage

So, what is the big picture?

What do we do with all this stuff?

- What if I were to tell you, what ML method to use, just by looking at your data?
- We trained a new model on all of these correlations --> QSage

Predicts F1, AUC, and accuracy beforehand --> no need to run all model!

Examples: geometric shapes

- Let's look at higher dimensional artificial, geometric data sets (3D and beyond).
- Task generate QML and CML models for these and compare performance.
- This data is periodic can QML do well with these

5 qubits/features

3 qubits/features

High dimension and # of samples

12 qubits/features

Examples: spheres and spirals

- Spirals seem QML friendly.
- SVC>QSVC with spheres, but it flips to QSVC>SVC with spirals
- RF improves with spheres, MLP is consistent across both

Examples: spheres and spirals

- Spheres: clear switch with Intrinsic dimension, Coeff of variance, and total correlations
- Spirals: correlation type switches (red vs blue) for Fischer Discrimination Ratio (measures imbalance) between CML and QSVC

14

Spheres Spirals

Examples: spheres and spirals

- Remember: on average QSVC>SVC with spirals.
- So, what is it about the spirals?
- There is a rather obvious disparity in a few areas

Let's take it for a ride

So, let's try it out!

- 1) Go over the config. yaml file and learn how to change parameters
- 2) Activate your environment
 - o If you haven't done so, set up your environment now following the instructions in the README.md
- 3) Run the main code. In your terminal, type:

```
python qml4omics-profiler.py --config-name=config.yaml
```

- 4) Wait and watch the progress outputs being printed out.
- 5) We'll analyze the results and run your own data in the afternoon 😇 .