MCR3U Final Exam Review

1. What is the third term of the sequence: $t_n = n^2 + 3$.	1. 12
2. Find the next two terms of the sequence: 1, 8, 27, 64, perfect cubes	2.125,216
3. Calculate the simple interest on borrowing \$500 at 12% for 3 years.	3. # 180
4. True or False: The following sequence is geometric: 2, 8, 32, 128,	4. true
5. What is the interest rate per period of an investment at 9%/a, compounded quarterly?	5. 2.25%
$\frac{-2}{2}$	1/0
6. Evaluate: $27^{\frac{-2}{3}}$ (No decimals)	6
7. Simplify: $(16x^8)^{\frac{1}{4}}$	7. 2x2.
8. If $g(x) = 3x^2 - 2x + 1$, find $g(-2)$	8
9. Is the following set of ordered pairs a function? $\{(2,7),(3,5),(-2,5),(0,3)\}$	9. yes
10. What is the inverse of the function $y = 2x + 1$?	$10.f^{-1}(x) = \frac{x-1}{2}$
11. Evaluate: $-\sqrt{20}$	$112\sqrt{5}$
12. How many x-intercepts does the function $y = -(x - 3)^2 + 4$?	12. 2
13. Find the value of "d" that makes the following expression a perfect square:	13. 9/16
$x^2 + \frac{3}{2}x + d$	
14. Using the discriminant, determine the number of zeros of the function, $y = 2x^2 + 4x - 3$	14. 2 Zeros
15. What are the next two positive, coterminal angles of 41°?	15. 401°, 761°
16. What is the principal angle of -187°?	16. 173°
17. What is the range of the cosine function.	171=y=1
18. State the period of the function $y = 2 \sin 3\theta$ in degrees.	18. <u>\20°</u> /
19. Solve for θ : $\cos \theta = 0$, $0^{\circ} \le \theta \le 360^{\circ}$	19. 90, 270
20. What is the range of the function $y = 3 \sin \theta + 6$ 21. What is the exact value of $\tan 60^{\circ}$?	20. <u>3 = 4 = 9</u>
22. If a \$12000 car depreciates by 20% each year, what is its value after 6.5 years?	21. 13
23. What is the range of the function $y = 2(3)^x + 5$.	22. \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	23. 475
24. What is the y-intercept of $f(x) = -5(\frac{1}{2})^x + 3$	24
25. What is the horizontal asymptote of $y = (1.5)^x + 9$	25. $y = .9$
26. What is the domain of $y = 13\left(\frac{2}{7}\right)^x - 2$	26 X € TR
27. Is the above function increasing or decreasing?	27. decreasing
28. The value of a vase is given by $f(x) = 500(1.028)^x$ where x is the number of	
years and f(x) is the value.	μ
What is the value of the vase today (original value)?	28A. #500
How much does it appreciate by each year?	28B. 2.8%
29. Is $f(x) = -5^x$ increasing or decreasing?	29. decreasing
30. Evaluate: $\left(\frac{1}{36}\right)^{\frac{1}{2}}$	30. 1/6
\30/	

の日本の公 31. Evaluate: 164 32. Evaluate: $(32)^{\frac{-3}{5}}$ 33. Evaluate: $(3^2 \times 4)^{-1}$ 34. Evaluate to two decimal places: 9.34 5 35. Simplify: 36. Express using only positive exponents: $\frac{9x^{-6}y^3}{6x^{-3}v^{-2}}$ 37. Solve the following exponential equation: $4^x = \sqrt[3]{4}$ 38. Solve the following exponential equation: $2^x = 2^{2x} \times 2^3$ 39. Simplify: $\left[\left(2x^2 - 3x^2 \right)^3 - 4x \left(2x + 5x^3 \right)^{-4} \right]^0$ 40. Simplify $\left(-2x^3+4x-7\right)+\left(5x^3-12\right)$ 41. Express $\sqrt{90}$ as a mixed radical. 42. Express $5\sqrt{4}$ as an entire radical. 43. Simplify: $2\sqrt{6} \times 3\sqrt{6}$ 44. Simplify: $\sqrt{5x} \times \sqrt{4x}$ 45. True or False: $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$ 46. Simplify: $3\sqrt{2} - 8\sqrt{2} + 4\sqrt{2}$ 47. Simplify: $\sqrt{20} + \sqrt{5}$ 48. Simplify: $(3+5\sqrt{7})(3-5\sqrt{7})$ 49. Simplify: $(\sqrt{*} + \sqrt{*})^2$ 50. What is the domain of the function $y = \sqrt{2x-7}$ 51. Determine the fifth term of the following sequence: $t_n = \frac{2n^2+5}{n+4}$ 51. 52. Find the next term of the following sequence: 41, 44, 39, 46, 37, 53. Write the general term for the sequence 3, 15, 75, 375, ... 54. Write the general term for -32, -11, 10, 31, ... 55. Does the general term, $t_n = 3^{n+1}$, represent an arithmetic sequence, geometric sequence or neither? 56. Does the general term, $t_n = (n+2)(n-3)$, represent an arithmetic sequence, geometric sequence or neither? 57. Prove the following identity: $\sin x + \tan x = \tan x(1 + \cos x)$ 58. Simplify using only positive exponents: $\frac{6x^{-2}y^{3}z}{15x^{-4}v^{2}}$ 59. State the restrictions on the following expression: $\frac{2x^2 - 5}{3x^2(x+7)}$ tanx (1+ cosx) Page 2 of 3

Scanned by CamScanner

60. Simplify:
$$-\frac{-(a-b)}{-a+b}$$

61. Simplify:
$$(2x^2 - 7x + 6) - (x^2 - 2x - 9)$$

62. Expand and Simplify:
$$-6x(3x+2)+4x^2-7x+11$$

63. Expand and Simplify:
$$(x-5)^2$$

64. Is
$$(x-6)^2 = (6-x)^2$$

65. Factor:
$$2ab + 2a - 3b - 3$$

66. What is the equation of the vertical asymptote of
$$y = \frac{1}{2x-5}$$

66. What is the equation of the vertical asymptote of
$$y = \frac{1}{2x-5}$$
67. At what coordinates is the hole for the graph $y = \frac{(x-3)}{(x-3)(x+2)}$
68. State the vertex of $f(x) = 3x^2 - 6x + 5$.

68. State the vertex of
$$f(x) = 3x^2 - 6x + 5$$

70. Factor:
$$16a^2 - 4$$
 $4(a^2 - 1)$

71. Factor:
$$x(x-3) - 2(x-3)$$

72. Factor:
$$2n - 6m + 5n^2 - 15mn$$

73. Factor:
$$3a^2 - 10a - 8$$
 $(3a + 2)(a - 4)$

74. What are the coefficients in the expansion of
$$(y-1)^6$$
?

$$63. \frac{\chi^2 - 10\chi + 25}{}$$

$$66. \times = 5/2$$

$$68. = 3(x-1)^{2} + 2$$

$$69. \frac{\sqrt{=2(x+2)(x-4)}}{}$$

$$71.(X-2)(X-3)$$

$$= 3(x^{2}-2x+1)-3+5$$

$$= 3(x-1)^{2}+2$$

#69.
$$\gamma = a(x+2)(x-4)$$

 $-16 = a(0+2)(0-4)$
 $-16 = a(2)(-4)$

Page 3 of 3
$$\alpha = 2$$

Scanned by CamScanner