Лекция 16

Нахождение изображений.

Восстановление оригинала по известному изображению

Для нахождения оригинала f(t) по изображению F(p) используются несколько приемов.

1. Если изображение отличается от табличного на постоянный множитель, то его следует умножить и одновременно поделить на этот множитель, затем воспользоваться свойством линейности и найти оригинал по таблице оригиналов и изображений.

Примеры

Найти оригиналы для данных изображений.

1.
$$\frac{4}{p^5} = \frac{4}{4!} \frac{4!}{p^5} = \frac{1}{6} \frac{4!}{p^5}; \quad \frac{1}{6} \frac{4!}{p^5} \to \frac{1}{6} t^4.$$

2.
$$\frac{8p}{p^2+7} = \frac{8p}{p^2+(\sqrt{7})^2}$$
; $\frac{8p}{p^2+(\sqrt{7})^2} \to 8\cos\sqrt{7}t$.

3.
$$\frac{2}{p^2 - 9} = \frac{2}{p^2 - 3^2} = \frac{2}{3} \frac{3}{p^2 - 3^2}$$
; $\frac{2}{3} \frac{3}{p^2 - 3^2} \rightarrow \frac{2}{3} sh3t$.

2. Если переменная p смещена на несколько единиц, то необходимо применить теорему смещения.

Если изображение имеет множитель e^{-ap} , то необходимо применить теорему запаздывания.

Примеры

Найти оригиналы для данных изображений.
1.
$$\frac{3p+2}{(p-1)^6} = \frac{3(p-1+1)+2}{(p-1)^6} = \frac{3}{(p-1)^5} + \frac{5}{(p-1)^6} = \frac{3}{4!} \frac{4!}{(p-1)^5} + \frac{5}{5!} \frac{5!}{(p-1)^6} = \frac{1}{8} \frac{4!}{(p-1)^5} + \frac{1}{24} \frac{5!}{(p-1)^6}.$$

По теореме смещения:

$$\frac{1}{8} \frac{4!}{(p-1)^5} + \frac{1}{24} \frac{5!}{(p-1)^6} \to \frac{1}{8} e^t t^4 + \frac{1}{24} e^t t^5.$$

2.
$$\frac{15e^{-5p}}{p^4}$$
.

Изображение $\frac{15}{n^4}$ умножено на e^{-5p} . Следовательно, надо использовать тео-

рему запаздывания.

$$\frac{15}{p^4} = \frac{15}{3!} \frac{3!}{p^4}$$
. Тогда $\frac{15}{3!} \frac{3!}{p^4} \rightarrow \frac{5}{2} t^3$.

Теперь применяем теорему запаздывания оригинала:

$$\frac{15}{3!} \cdot e^{-5p} \cdot \frac{3!}{p^4} \to \frac{5}{2} (t-5)^3 \chi(t-5).$$
WTAK,
$$\frac{15e^{-5p}}{p^4} \to \frac{5}{2} (t-5)^3 \chi(t-5).$$
3.
$$\frac{6e^{-7p}}{(p+3)^2 - 12}.$$

Здесь надо использовать и теорему смещения, и теорему запаздывания. По таблице оригиналов и изображений находим сначала оригинал для функции $\frac{6}{(n+3)^2-12}$, используя теорему смещения.

$$\frac{6}{(p+3)^2 - 12} = \frac{6}{(p+3)^2 - (\sqrt{12})^2} = \frac{6}{2\sqrt{3}} \frac{2\sqrt{3}}{(p+3)^2 - (2\sqrt{3})^2}.$$

$$\frac{6}{2\sqrt{3}} \frac{2\sqrt{3}}{(p+3)^2 - (2\sqrt{3})^2} \to \frac{6}{2\sqrt{3}} e^{-3t} sh2\sqrt{3}t.$$

Теперь применяем теорему запаздывания оригинала:

$$\frac{6e^{-7p}}{(p+3)^2-12} \to \frac{6}{2\sqrt{3}}e^{-3(t-7)}sh2\sqrt{3}(t-7)\chi(t-7).$$

3. Если знаменатель дроби содержит квадратный трехчлен, то для использования теоремы смещения в нем выделяется полный квадрат.

Примеры

Найти оригиналы для данных изображений.

1.
$$\frac{3}{p^2 - 6p + 11};$$

$$\frac{3}{p^2 - 6p + 11} = \frac{3}{p^2 - 2 \cdot 3p + 9 - 9 + 11} = \frac{3}{(p - 3)^2 + 2} = \frac{3}{(p - 3)^2 + (\sqrt{2})^2} = \frac{3}{\sqrt{2}} \frac{\sqrt{2}}{(p - 3)^2 + (\sqrt{2})^2}.$$

Используем теорему смещения:

Для того чтобы можно было использовать теорему смещения, надо в числителе получить выражение $\left(p + \frac{5}{2}\right)$.

$$\frac{4p-1}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}-\frac{5}{2}\right) - 1}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}\right) - 11}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}\right) - 11}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}\right) - \left(\frac{3}{2}\right)^2}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2}{\left(p+\frac{5}{2}\right)^2 - \left(\frac{3}{2}\right)^2} = \frac{4\left(p+\frac{5}{2}\right)$$

4. Если оригинал — правильная рациональная дробь, то следует разложить ее на простейшие дроби и для каждой из полученных дробей найти оригинал.

Пример

Найти оригинал для данного изображения:

$$\frac{4p^2 + p - 1}{(p-1)(p^2 - 5p + 4)}$$

Данная дробь является правильной. Квадратный трехчлен, стоящий в знаменателе, имеет два действительных корня $p_1 = 1$, $p_2 = 4$. Разложим квадратный трехчлен на множители и представим дробь в виде суммы простейших дробей:

$$\frac{4p^2+p-1}{(p-1)^2(p-4)} = \frac{A}{p-1} + \frac{B}{(p-1)^2} + \frac{C}{p-4}.$$

Правую часть приводим к общему знаменателю и приравниваем числители дробей левой и правой частей.

$$4p^2+p-1=A(p-4)(p-1)+B(p-4)+C(p-1)^2;$$
 $p=1$ $| 4=-3B$ $p=4$ $| 67=9C$ $| P^2$ $| A+C=4$. Получаем, $B=-\frac{4}{3}$; $C=\frac{67}{9}$. Тогда, $A=4-C$; $A=4-\frac{67}{9}=-\frac{31}{9}$.

Таким образом,

$$\frac{4p^{2}+p-1}{(p-1)(p^{2}-5p+4)} = -\frac{31}{9} \frac{1}{p-1} - \frac{4}{3} \frac{1}{(p-1)^{2}} + \frac{67}{9} \frac{1}{p-4}.$$

$$-\frac{31}{9} \frac{1}{p-1} - \frac{4}{3} \frac{1}{(p-1)^{2}} + \frac{67}{9} \frac{1}{p-4} \rightarrow -\frac{31}{9} e^{t} - \frac{4}{3} e^{t} \cdot t + \frac{67}{9} e^{4t}.$$
We have:
$$W_{Tak}, \frac{4p^{2}+p-1}{(p-1)(p^{2}-5p+4)} \rightarrow -\frac{31}{9} e^{t} - \frac{4}{3} e^{t} \cdot t + \frac{67}{9} e^{4t}.$$

Свертка функций. Умножение изображений.

Сверткой функций f(t) и g(t) называется интеграл:

$$f(t) * g(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau = \int_{0}^{t} g(\tau)f(t-\tau)d\tau.$$

Теорема об умножении изображений (теорема о свертке).

Пусть
$$f(t) \rightarrow F(p), g(t) \rightarrow G(p)$$
.

Произведение изображений является изображением свертки их оригиналов:

$$f(t) * g(t) \rightarrow F(p)G(p)$$

Следствие. Формула Дюамеля

Если $f_1(t) * f_2(t) \to F_1(p) \cdot F_2(p)$ и $f_1^{'}(t)$ также является оригиналом, то

$$p \cdot F_1(p) \cdot F_2(p) \to \int_0^t f_1'(\tau) f_2(t-\tau) d\tau + f_1(0) f_2(t)$$

Примеры

1. Найти свертку функций и соответствующее ей изображение:

$$f(t) = e^{4t}$$
, $g(t) = e^{-2t}$.

Свертка функций: $e^{4t} * e^{-2t}$.

$$e^{4t} \to \frac{1}{p-4}; e^{-2t} \to \frac{1}{p+2}.$$

Следовательно, изображение свертки: $e^{4t} * e^{-2t} \to \frac{1}{p-4} \frac{1}{p+2}$.

Свертку функций найдем по определению:

$$e^{4t} * e^{-2t} \rightarrow \int_{0}^{t} e^{4\tau} e^{-2(t-\tau)} d\tau = \int_{0}^{t} e^{4\tau} e^{-2t} e^{2\tau} d\tau = e^{-2t} \int_{0}^{t} e^{6\tau} d\tau = \frac{1}{6} e^{-2t} \left(e^{6\tau} \Big|_{0}^{t} \right) = \frac{1}{6} e^{-2t} \left(e^{6t} - e^{0} \right) = \frac{1}{6} e^{4t} - \frac{1}{6} e^{-2t}.$$

Итак,
$$e^{4t} * e^{-2t} = \frac{1}{6}e^{4t} - \frac{1}{6}e^{-2t}$$
.

Свертку можно найти другим способом. Мы нашли изображение свертки: $\frac{1}{p-4}\frac{1}{p+2}$. Оригинал этого изображения является искомой сверткой функций.

Представим изображение в виде суммы простейших дробей, определим неизвестные коэффициенты (способ определения коэффициентов рассмотрен выше).

$$\frac{1}{p-4} \frac{1}{p+2} = \frac{A}{p-4} + \frac{B}{p+2}; A = \frac{1}{6}, B = -\frac{1}{6}.$$

Таким образом,
$$\frac{1}{p-4}\frac{1}{p+2} = \frac{1}{6}\frac{1}{p-4} - \frac{1}{6}\frac{1}{p+2}$$
.

Находим оригинал для изображения свертки:

$$\frac{1}{6} \frac{1}{p-4} - \frac{1}{6} \frac{1}{p+2} \to \frac{1}{6} e^{4t} - \frac{1}{6} e^{-2t}.$$

OTBET:
$$e^{4t} * e^{-2t} \to \frac{1}{p-4} \frac{1}{p+2}$$
, $e^{4t} * e^{-2t} = \frac{1}{6} e^{4t} - \frac{1}{6} e^{-2t}$.

2. Пользуясь теоремой о свертке, найти оригинал изображения:

$$F(p) = \frac{p^2}{(p^2 + 4)(p^2 + 25)}.$$

$$\frac{p^2}{(p^2 + 4)(p^2 + 25)} = \frac{p}{p^2 + 4} \cdot \frac{p}{p^2 + 25}; \frac{p}{p^2 + 4} \to \cos 2t, \frac{p}{p^2 + 25} \to \cos 5t. \quad \text{По теореме о свертке:}$$

$$\frac{p}{p^2+4} \cdot \frac{p}{p^2+25} \to \cos 2t \cdot \cos 5t.$$

Найдем свертку $\cos 2t * \cos 5t$, используя определение:

$$\cos 2t * \cos 5t = \int_{0}^{t} \cos 2\tau \cos 5(t-\tau) d\tau =$$

$$= \frac{1}{2} \left(\frac{1}{7} \sin(7\tau - 5t) - \frac{1}{3} \sin(5t - 3\tau) \right) \Big|_{0}^{t} =$$

$$= \frac{1}{2} \left(\frac{1}{7} \sin(7t - 5t) - \frac{1}{3} \sin(5t - 3t) - \frac{1}{7} \sin(-5t) + \frac{1}{3} \sin 5t \right) =$$

$$= \frac{1}{2} \left(\frac{1}{7} \sin 2t - \frac{1}{3} \sin 2t + \frac{1}{7} \sin 5t + \frac{1}{3} \sin 5t \right) =$$

$$= \frac{1}{2} \left(-\frac{4}{21} \sin 2t + \frac{10}{21} \sin 5t \right) = \frac{5}{21} \sin 5t - \frac{2}{21} \sin 2t .$$

We have
$$\frac{p^{2}}{(p^{2} + 4)(p^{2} + 25)} \rightarrow \frac{5}{21} \sin 5t - \frac{2}{21} \sin 2t .$$