SAT-3SAT

(a) Wie zeigt man die aus der NP-Schwere des 3SAT-Problems die NP-Schwere des SAT-Problems?

Reduktion 3SAT \leq p SAT : Jede 3SAT-Problem ist auch ein SAT-Problem, weil 3SAT \subset SAT \rightarrow Damit braucht es keine Funktion (bzw. Identitäts-/Einheitsfunktion). Die Funktion ist korrekt, total und in Polynomialzeit anwendbar. \rightarrow SAT-Problem ist ebenfalls NP- schwer.

(b) Wie zeigt man die aus der NP-Schwere des SAT-Problems die NP-Schwere des 3SAT-Problems?

Reduktion SAT \leq p 3SAT : Man muss eine Funktion finden, die eine allgemeine Aussagenlogik in eine Aussagenlogik mit 3 Literalen in konjunktiver Normalform umformt.

Durch die boolsche Algebra lässt sich jede logische Aussagenlogik in eine konjunkti- ve Normalform bringen. Dies ist eine Konjunktion von Disjunktionstermen. Wir formen einen Disjunktionsterm mithilfe einer Funktion in ein 3SAT-Problem um. Diese Funktion kann auf jeden Disjunktionsterm angewendet werden und damit wird das gesamte SAT-Problem auf 3SAT reduzieren.

Die Funktion formt Formel aus SAT mithilfe von Hilfsvariablen h 1, ..., h n–2 derart um (a 1 \vee ... \vee a n) \rightarrow (a 1 \vee a 2 \vee h 1) \wedge (\neg h 1 \vee a 3 \vee h 2) \wedge (\neg h 2 \vee a 4 \vee h 3) \wedge ... \wedge (\neg h n–2 \vee a n)

Diese Funktion ist total, denn jede in SAT enthaltene Aussagenlogik kann so umgewandelt werden.

Korrektheit: Die Hilfsvariablen sind wahr, solange bis ein Literal a x selber true ist. Ab diesem Zeitpunkt sind dann die Hilfsvariablen dann falsch. JA-Instanzen: Der erste und alle mittleren Disjunktionstermen sind wahr, weil aufgrund der Nicht-Negierung und Negierung immer ein wahres Literal in den Disjunktionster- men. Somit ist dann auch der Disjunktionsterm wahr. Da es eine JA-Instanz ist, existiert ein a x welches wahr ist. Somit sind ab diesem Zeitpunkt die Hilfvariablen falsch. Der letzte Disjunktionsterm wird dadurch sicher wahr, weil $\neg h n-2$ somit wahr ist. NEIN-Instanz: Alle a x sind falsch. Auch hier sind wieder der erste und alle mittleren Dis-junktionsterme wahr (gleiche Begründung wie oben). Der letzte Disjunktionsterm ist al- lerdings falsch, weil die Hilfvariablen durchgehend wahr bleiben und alle a x falsch sind. Durch die Konjunktion der Disjunktionsterme ist dann auch die Gesamtaussage falsch. Polynomialzeit: Der Algorithmus, der Formeln aus SAT nach 3SAT umformt liegt in O(n) und somit in Polynomialzeit.