

planetmath.org

Math for the people, by the people.

commutant

Canonical name Commutant

Date of creation 2013-03-22 17:21:53 Last modified on 2013-03-22 17:21:53 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 11

Author asteroid (17536)

Entry type Definition Classification msc 46L10

Related topic VonNeumannAlgebra Defines double commutant

Definition

Let H be an Hilbert Space, B(H) the algebra of bounded operators in H and $\mathcal{F} \subset B(H)$.

The **commutant** of \mathcal{F} , usually denoted \mathcal{F}' , is the subset of B(H) consisting of all elements that commute with every element of \mathcal{F} , that is

$$\mathcal{F}' = \{ T \in B(H) : TS = ST, \forall S \in \mathcal{F} \}$$

The **double commutant** of \mathcal{F} is just $(\mathcal{F}')'$ and is usually denoted \mathcal{F}'' .

Properties:

- If $\mathcal{F}_1 \subseteq \mathcal{F}_2$, then $\mathcal{F}_2' \subseteq \mathcal{F}_1'$.
- \bullet $\mathcal{F} \subset \mathcal{F}''$.
- If \mathcal{A} is a subalgebra of B(H), then $\mathcal{A} \cap \mathcal{A}'$ is the http://planetmath.org/CenterOfARingcente of \mathcal{A} .
- If \mathcal{F} is self-adjoint then \mathcal{F}' is self-adjoint.
- \mathcal{F}' is always a subalgebra of B(H) that contains the identity operator and is closed in the weak operator topology.
- If \mathcal{F} is self-adjoint then \mathcal{F}' is a von Neumann algebra.

Remark: The commutant is a particular case of the more general definition of centralizer.