Backpropagation in Deep Learning

- Backpropagation (short for "backward propagation of errors") is a key algorithm used for training artificial neural networks.
- It's a supervised learning technique that helps the network learn by adjusting the weights of neurons in order to minimize the difference between predicted outputs and actual target values.

★ Key Idea:

- 1. Forward Propagation → Compute predictions.
- 2. Calculate Loss → Calculating the error between predictions and true values.
- 3. **Backward Propagation** → Compute *gradients (derivatives)* of the loss function w.r.t. weights.
- 4. **Update Weights** → Adjust weights using Gradient Descent to reduce the error.

Backpropagation finds out appropriate values of weights & biases.

Data:

Steps

Note: Here, activation function is Linear.

1. Initialize weights & biases (w,b)

 $w \rightarrow 1$

 $b \rightarrow 0$

2. Select a row

- Feed the data
 - ∘ eg. **80 & 8** (Row 1 \(\frac{1}{2} \))

3. Predict using the initial weight & bias

- This step is called **forward propagation**.
- eg. The model predicted 18
 - \(\frac{1}{2} \) This is obviously far from the actual value (3)

4. Choose a Loss Function

• eg. MSE for regression

$$(3-18)^2=225$$

- Here, we have to decrease the value.
- To decrease the value, we have to ${f go}$ back and change the values of w & b
 - \circ Therefore, the name \rightarrow Back propogation

5. Update the weights & biases

• Use → Gradient Descent

η = Learning rate

For above example, we have to calculate these 9 derivatives:

$$\frac{\partial L}{\partial w_{11}^{2}}$$
, $\frac{\partial L}{\partial w_{21}^{2}}$, $\frac{\partial L}{\partial b_{21}}$, $\frac{\partial L}{\partial w_{11}^{1}}$, $\frac{\partial L}{\partial w_{21}^{1}}$, $\frac{\partial L}{\partial b_{11}}$, $\frac{\partial L}{\partial w_{12}^{1}}$, $\frac{\partial L}{\partial w_{22}^{1}}$, $\frac{\partial L}{\partial b_{12}}$

Meaning of Derivative:

How much the ${\bf L}$ changes when we are changing w or b

- L is loss
- The loss changes when we make changes in weights and biases. We're finding out→how much does it change?

We cannot directly calculate:

First we have to calculate

• After that we'll multiply these 2

$$\frac{\partial L}{\partial w_{11}^{2}} = \frac{\partial L}{\partial \hat{y}} \times \frac{\partial \hat{y}}{\partial w_{11}^{2}}$$

This is called chain rule.

$$\frac{\partial L}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} (y - \hat{y})^{2} = \left[-2(y - \hat{y}) \right] \\
\frac{\partial \hat{y}}{\partial \hat{y}} = \frac{\partial}{\partial \hat{y}} \left[0_{11} w_{11}^{2} + 0_{12} w_{21}^{2} + b_{21} \right] \\
= 0_{11}$$

Similarly, the second derivative will be

$$\frac{\partial L}{\partial W_{21}^2} = -2(y-\hat{y})O_{12}$$

Bias:

6. Repeat this process

Key Insights

1. Vanishing Gradients:

- If gradients become too small (e.g., in sigmoid/tanh), early layers learn slowly.
- Fix: Use ReLU or batch normalization.

2. Exploding Gradients:

- If gradients grow too large (common in RNNs), training becomes unstable.
- Fix: Use gradient clipping.

3. Local Minima:

- Backpropagation can get stuck in suboptimal solutions.
- Fix: Use momentum (e.g., Adam optimizer).

MLP Memoization – Optimizing Neural Network Efficiency

Memoization is already built-in in Keras library

 Memoization (caching intermediate results) can speed up training & inference in Multilayer Perceptrons (MLPs) by avoiding redundant computations.

★ What is Memoization in MLPs?

- Stores layer outputs during forward/backward passes.
- Reuses them instead of recalculating (e.g., in loops or repeated calls).
- Trade-off: Saves compute but increases memory usage.

Limitations:

- **Memory usage**: Memoization consumes memory to store intermediate results, which could become an issue when training deep networks with large datasets.
- **Batch processing**: When processing large batches of data, memoization might be less effective because the inputs are often different across samples, leading to fewer cache hits.