

## Fit Indices commonly reported for CFA and SEM

There are more than a dozen different fit statistics researchers use to assess their confirmatory factor analyses and structural equation models. Here we have assembled a list of the most popular fit statistics used and recommended cut-offs that indicate a good fit.

| Measure           | Name                                                | Description                                                                                                                                                                                                                         | Cut-off for good fit      |
|-------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| X <sup>2</sup>    | Model Chi-<br>Square                                | Assess overall fit and the discrepancy between the sample and fitted covariance matrices. Sensitive to sample size. H <sub>0</sub> : The model fits perfectly.                                                                      | p-value><br>0.05          |
| (A)GFI            | (Adjusted)<br>Goodness of Fit                       | GFI is the proportion of variance accounted for by the estimated population covariance. Analogous to R <sup>2</sup> . AGFI favors parsimony.                                                                                        | GFI ≥ 0.95<br>AGFI ≥0.90  |
| (N)NFI<br>TLI     | (Non) Normed-<br>Fit Index<br>Tucker Lewis<br>index | An NFI of .95, indicates the model of interest improves the fit by 95% relative to the null model. NNFI is preferable for smaller samples. Sometimes the NNFI is called the Tucker Lewis index (TLI)                                | NFI ≥ 0.95<br>NNFI ≥ 0.95 |
| CFI               | Comparative Fit Index                               | A revised form of NFI. Not very sensitive to sample size. Compares the fit of a target model to the fit of an independent, or null, model.                                                                                          | CFI ≥.90                  |
| RMSEA             | Root Mean<br>Square Error of<br>Approximation       | A parsimony-adjusted index. Values closer to 0 represent a good fit.                                                                                                                                                                | RMSEA < 0.08              |
| (S)RMR            | (Standardized)<br>Root Mean<br>Square Residual      | The square-root of the difference between the residuals of the sample covariance matrix and the hypothesized model. If items vary in range (i.e. some items are 1-5, others 1-7) then RMR is hard to interpret, better to use SRMR. | SRMR <0.08                |
| AVE<br>(CFA only) | Average Value<br>Explained                          | The average of the R <sup>2</sup> s for items within a factor                                                                                                                                                                       | AVE >.5                   |

Kline suggests that at a minimum the following indices should be reported:

- 1) The model chi-square
- 2) RMSEA
- 3) CFI
- 4) SRMR

## How to estimate these fit indices:

- In R, use the FitMeasures function from the lavaan package.
- In SAS's Proc Calis, specify the fitindex option with the particular indices you want.
- In Stata, after executing a CFA or SEM, use the command: estat gof, stats(all)

## References:

Principles and Practice of Structural Equation Modeling. Rex B. Kline. 2005. Structural Equation Modelling: Guidelines for Determining Model Fit. Daire Hooper, et al. 2008.