Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soit \mathcal{F} une sous-tribu de \mathcal{A} .

Theorem 1. Soit $X \in L^1(\Omega, \mathcal{A}, P)$ il existe un unique $Y \in L^1(\Omega, \mathcal{F}, P)$ tel que

$$\forall Z \in L^{\infty}(\Omega, \mathcal{F}, P), \ E(XZ) = E(YZ)$$

On appelle espérance conditionnelle la variable Y et on la note $Y = E(X|\mathcal{F})$.

Théorème de Riesz $L^2(\Omega, \mathcal{F}, P)$ est un sous-espace vectoriel fermé de $L^2(\Omega, \mathcal{A}, P)$. En effet soit $(f_n)_{n\in\mathbb{N}}\in \left(L^2(\Omega,\mathcal{F},P)\right)^{\mathbb{N}}$ qui converge. Alors c'est une suite de Cauchy dans $L^2(\Omega,\mathcal{A},P)$ mais aussi dans $L^2(\Omega,\mathcal{F},P)$. Par complétude de $L^2(\Omega,\mathcal{F},P)$ on a que $(f_n)_{n\in\mathbb{N}}$ converge dans $L^2(\Omega,\mathcal{F},P)$. On a évidemment que $L^2(\Omega,\mathcal{A},P)$ est un espace de Hilbert. On définit l'application $\Phi_X(Z)=E(XZ)$ qui va de $L^2(\Omega,\mathcal{F},P)$ dans \mathbb{R} . Cette application linéaire est continue via le théorème de Cauchy-Schwarz. On peut donc appliquer le théorème de Riesz et il existe un unique $Y\in L^2(\Omega,\mathcal{A},P)$ qui vérifie $\forall Z\in L^2(\Omega,\mathcal{F},P)$, E(XZ)=E(YZ). On a montré l'existence de la variable Y (en se rappelant l'inclusion de $L^\infty(\Omega,\mathcal{F},P)$ dans $L^2(\Omega,\mathcal{F},P)$). Pour montrer l'unicité supposons (Y_1,Y_2) qui vérifie les hypothèses alors Y_1-Y_2 est orthogonale à $L^\infty(\Omega,\mathcal{F},P)$ qui est dense dans $L^2(\Omega,\mathcal{F},P)$ d'où $Y_1=Y_2$.

Positivité et majoration Soit X une variable aléatoire de carré intégrable positive. On considère l'évènement $E(X|\mathcal{F}) < 0$ et on obtient que cet ensemble est de mesure nulle. Donc $E(X|F) \geq 0$. On a donc $E(|X|+X|\mathcal{F}) \geq 0$ et $E(|X|-X|\mathcal{F}) \geq 0$. Donc $E(|X||\mathcal{F}) \geq |E(X|\mathcal{F})|$. On a $E(E(|X||\mathcal{F})) = E(|X|)$ (on prend $Z = \chi_{\Omega}$ dans la définition de l'espérance conditionnelle). Donc

$$||E(X|\mathcal{F})||_1 \le ||X||_1$$

et on étend par continuité.