EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the <u>Privacy Policy</u>.

×

Homework 3: Introduction to

<u>Course</u> > <u>Unit 2 Foundation of Inference</u> > <u>Hypothesis Testing</u>

> 3. Simple Testing

Currently enrolled in **Audit Track** (expires December 25, 2019) <u>Upgrade (\$300)</u>

3. Simple Testing

Let X_1,\ldots,X_n be i.i.d. $\mathcal{N}\left(\theta,1\right)$. Consider testing

$$H_0: \theta = 0$$
 v.s. $H_1: \theta = 1$.

(a)

2/2 points (graded)

What would a Type 1 error be in this test?

- lacksquare Rejecting H_0 when heta=0
- igcap Not Rejecting H_0 when heta=0
- igcap Rejecting H_0 when heta=1

Generating Speech Output

 \bigcirc Not rejecting H_0 when heta=1

What would a Type 2 error be in this test?

igcup Rejecting H_0 when heta=0

igcap Not Rejecting H_0 when heta=0

igcap Rejecting H_0 when heta=1

lacksquare Not rejecting H_0 when heta=1

Submit

You have used 1 of 1 attempt

(b)

1/1 point (graded)

Suppose that the rejection region of a test ψ has the form $R=\{\overline{X}_n:\overline{X}_n>c\}$. Find the smallest c such that ψ has level α .

(If applicable, type **abs(x)** for |x|, **Phi(x)** for $\Phi(x) = \mathbf{P}(Z \le x)$ where $Z \sim \mathcal{N}(0,1)$, and **q(alpha)** for q_{α} , the $1-\alpha$ quantile of a standard normal variable.)

 $c \geq \mathsf{q}(\mathsf{alpha})/\mathsf{sqrt}(\mathsf{n})$

STANDARD NOTATION

Generating Speech Output

You have used 3 of 3 attempts Submit ✓ Correct (1/1 point) (c) 2/2 points (graded) Suppose that the test ψ has level $\alpha=0.05$. What is the power of ψ ? (If applicable, type **abs(x)** for |x|, **Phi(x)** for $\Phi(x)=\mathbf{P}(Z\leq x)$ where $Z\sim\mathcal{N}(0,1)$, and **q(alpha)** for q_{lpha} , the 1-lpha quantile of a standard normal variable, e.g. enter **q(0.01)** for $q_{0.01}$.) Power of ψ : 1-Phi(q(0.05)-sqrt(n)) What does the power of ψ approach as $n \to \infty$? $\lim Power =$ $n o \infty$ STANDARD NOTATION You have used 1 of 3 attempts Submit ✓ Correct (2/2 points) Discussion

Hide Discussion

Topic: Unit 2 Foundation of Inference: Homework 3: Introduction to Hypothesis Testing / 3. Simple Testing

Generating Speech Output

Add a Post

Add a comment		
nowing all responses		
Add a response:		
review		
Submit		
udit Access Expires Dec 24, 2019		
ou lose all access to this course, inclu		
pgrade by Nov 4, 2019 to get unlimite	d access to the course as long as it exists on the site. <u>Upgrad</u>	<u>e now</u>

Generating Speech Output