Contents

1	\mathbf{Intr}	oducti	on	1
	1.1	Cance	r Research in the Post-Genomic Era	1
		1.1.1	Cancer as a Global Health Concern	2
			1.1.1.1 Genetics and Molecular Biology in Cancers	3
		1.1.2	The Human Genome Revolution	5
			1.1.2.1 The First Human Genome Sequence	6
			1.1.2.2 Impact of Genomics	6
		1.1.3	Technologies to Enable Genetics Research	7
			1.1.3.1 DNA Sequencing and Genotyping Technologies	7
			1.1.3.2 Microarrays and Quantitative Technologies	7
			1.1.3.3 Massively Parallel "Next Generation" Sequencing	8
			1.1.3.3.1 Molecular Profiling with Genomics Technology .	10
			1.1.3.3.2 Sequencing Technologies	10
			1.1.3.4 Bioinformatics as Interdisciplinary Genomic Analysis .	11
		1.1.4	Follow-up Large-Scale Genomics Projects	12
		1.1.5	Cancer Genomes	13
			1.1.5.1 The Cancer Genome Atlas Project	14
			1.1.5.1.1 Findings from Cancer Genomes	14
			1.1.5.1.2 Genomic Comparisons Across Cancer Tissues .	16
			1.1.5.1.3 Cancer Genomic Data Resources	17
		1.1.6	Genomic Cancer Medicine	17
			1.1.6.1 Cancer Genes and Driver Mutations	18
			1.1.6.2 Personalised or Precision Cancer Medicine	18
			1.1.6.2.1 Molecular Diagnostics and Pan-Cancer Medicine	19
			1.1.6.3 Targeted Therapeutics and Pharmacogenomics	20
			1.1.6.3.1 Targeting Oncogenic Driver Mutations	20
			1.1.6.4 Systems and Network Biology	21
			1.1.6.4.1 Network Medicine, and Polypharmacology	23
	1.2	A Syn	thetic Lethal Approach to Cancer Medicine	24
		1.2.1	Synthetic Lethal Genetic Interactions	25
		1.2.2	Synthetic Lethal Concepts in Genetics	25
		1.2.3	Studies of Synthetic Lethality	26
			1.2.3.1 Synthetic Lethal Pathways and Networks	27
			1.2.3.1.1 Evolution of Synthetic Lethality	28
		1.2.4	Synthetic Lethal Concepts in Cancer	28

1.26 High throughout Concerns for Care	lity in Cancer 30
1.2.6 High-throughput Screening for Syn	thetic Lethality 32
1.2.7 Computational Prediction of Synth	netic Lethality
	es to Genetic Interactions 36
	f Protein Data 40
· · · · · · · · · · · · · · · · · · ·	sion
	e Learning 43
~	
· ·	velopment 47
1.3 E-cadherin as a Synthetic Lethal Target	1
1.3.1 The <i>CDH1</i> gene and it's Biological	
· · · · · · · · · · · · · · · · · · ·	r Micro-Environment 48
	ignalling 48
1.3.2 <i>CDH1</i> as a Tumour (and Invasion)	
	49
1.3.3 Hereditary Diffuse Gastric Cancer	
1.3.4 Somatic Mutations	
1342 Co-occurring Mutations	
1.3.4.2 Co-occurring Mutations 1.3.5 Models of <i>CDH1</i> loss in cell lines	
1.3.5 Models of <i>CDH1</i> loss in cell lines	
~	
1.3.5 Models of <i>CDH1</i> loss in cell lines	
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of Thesi	
 1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of Thesi 2 Methods and Resources 	52 is
 1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of Thesi 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Resources 2.1.1 Public Data and Software Packages 	52 is
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da	52 is
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation	52 is
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation	52 is
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of <i>CDH1</i> loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Resources for Genomics Resources 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Recognized 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Reconstruction 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Reconstruction 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Recognized 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Dacus 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Recognized 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Recognized 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Data 2.1.1.2 Reactome and Annotation 2.2 Data Handling	52 is
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Re 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Da 2.1.1.2 Reactome and Annotation 2.2 Data Handling 2.2.1 Normalisation 2.2.2 Sample Triage 2.2.3 Metagenes and the Singular Value 2.2.3.1 Candidate Triage and Int 2.3 Techniques 2.3.1 Statistical Procedures and Tests 2.3.2 Gene Set Over-representation Anal 2.3.3 Clustering 2.3.4 Heatmap 2.3.5 Modeling and Simulations 2.3.5 Resempling Analysis 2.3.6 Resampling Analysis	52 53 54 55 55 55 56 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58
1.3.5 Models of CDH1 loss in cell lines 1.4 Summary and Research Direction of These 2 Methods and Resources 2.1 Bioinformatics Resources for Genomics Reconstruction 2.1.1 Public Data and Software Packages 2.1.1.1 Cancer Genome Atlas Date 2.1.1.2 Reactome and Annotation 2.2 Data Handling 2.2.1 Normalisation 2.2.2 Sample Triage 2.2.2 Sample Triage 2.2.3 Metagenes and the Singular Value 2.2.3.1 Candidate Triage and Introduction 2.3.1 Statistical Procedures and Tests 2.3.2 Gene Set Over-representation Anal 2.3.3 Clustering 2.3.4 Heatmap 2.3.5 Modeling and Simulations 2.3.5 Modeling and Simulations 2.3.5.1 Receiver Operating Chara 2.3.6 Resampling Analysis 2.3.5.1	52 is

		2.4.3 Constructing Pathway Subgraphs	69 69
	2.5	J.	70
	2.5	Implementation	70
		1	72
		2.5.2 R Language and Packages	74
		2.5.5 Tright renormance and raraner Computing	14
3	Met	thods Developed During Thesis	7 6
	3.1	A Synthetic Lethal Detection Methodology	76
	3.2	Synthetic Lethal Simulation and Modelling	79
		3.2.1 A Model of Synthetic Lethality in Expression Data	79
		3.2.2 Simulation Procedure	83
	3.3	Detecting Simulated Synthetic Lethal Partners	86
		3.3.1 Binomial Simulation of Synthetic lethality	86
		3.3.2 Multivariate Normal Simulation of Synthetic lethality	88
		3.3.2.1 Multivariate Normal Simulation with Correlated Genes	91
		3.3.2.2 Specificity with Query-Correlated Pathways	98
		3.3.2.2.1 Importance of Directional Testing	98
	3.4	1	100
		1	100
		v e	101
		v O	102
	0.5		103
	3.5	g i	107
		V	107
			108
		1 0	110 110
			$110 \\ 110$
			110 111
		ı Ü	111 111
		3.5.3.4 Testing Pathway Structure with Permutation Testing . 3.5.3.5 Metapackage to Install iGraph Functions	
		5.5.5.5 Metapackage to instan iGraph runctions	114
4	Syn	thetic Lethal Analysis of Gene Expression Data 1	13
	4.1		114
		·	116
		4.1.2 Expression profiles of synthetic lethal partners	117
			120
	4.2	Comparison of synthetic lethal gene candidates	123
		4.2.1 Comparison with siRNA screen candidates	123
		4.2.1.1 Comparison with correlation	124
		4.2.1.2 Comparison with viability	125
		4.2.1.3 Comparison with secondary siRNA screen candidates	129
		4.2.1.4 Comparison of screen at pathway level	129
		4.2.1.4.1 Resampling of genes for pathway enrichment	131
	4.3	Metagene Analysis	137

		4.3.1	Pathway expression	37
		4.3.2	Somatic mutation	40
		4.3.3	Mutation locus	41
		4.3.4	Synthetic lethal metagenes	43
	4.4	Replic	eation in stomach cancer	45
		4.4.1	Synthetic Lethal Genes and Pathways	45
		4.4.2	Synthetic Lethal Expression Profiles	47
		4.4.3	Comparison to Primary Screen	49
				50
		4.4.4	Metagene Analysis	50
	4.5	Globa		51
		4.5.1	Hub Genes	52
		4.5.2	Hub Pathways	54
	4.6	Replic	eation in cell line encyclopaedia	55
	4.7	Discus	ssion	57
		4.7.1	Strengths of the SLIPT Methodology	57
		4.7.2	Syntheic Lethal Pathways for E-cadherin	58
		4.7.3	Replication and Validation	60
			4.7.3.1 Integration with siRNA Screening	60
			4.7.3.2 Replication across Tissues and Cell lines	61
	4.8	Summ	nary	62
5	Syn	thatic	Lothal Dathway Structure	65
5	-			65 66
5	Syn 5.1	Synth	etic Lethal Genes in Reactome Pathways	66
5	-	Synthe 5.1.1	etic Lethal Genes in Reactome Pathways	66 66
5	-	Synthe 5.1.1 5.1.2	etic Lethal Genes in Reactome Pathways	66 66 68
5	-	Synthe 5.1.1 5.1.2 5.1.3	etic Lethal Genes in Reactome Pathways	66 66 68 71
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4	etic Lethal Genes in Reactome Pathways	66 66 68 71 71
5	-	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Netwo	etic Lethal Genes in Reactome Pathways	66 68 71 71 72
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1	etic Lethal Genes in Reactome Pathways	66 68 71 71 72 72
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Netwo	etic Lethal Genes in Reactome Pathways	66 68 71 71 72 72
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1	etic Lethal Genes in Reactome Pathways	66 68 71 71 72 72 74 74
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2	tetic Lethal Genes in Reactome Pathways	66 68 71 72 72 74 74 76
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2	tetic Lethal Genes in Reactome Pathways	66 68 71 71 72 74 74 76 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2	tetic Lethal Genes in Reactome Pathways	66 68 71 71 72 74 74 76 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2	tetic Lethal Genes in Reactome Pathways	66 68 71 72 72 74 76 78 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2 Testin 5.3.1	tetic Lethal Genes in Reactome Pathways	66 68 71 72 72 74 76 78 78 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2	tetic Lethal Genes in Reactome Pathways	66 68 71 71 72 74 74 76 78 78 78 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2 Testin 5.3.1	tetic Lethal Genes in Reactome Pathways	66 68 71 72 72 74 76 78 78 78
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2 Testin 5.3.1	tric Lethal Genes in Reactome Pathways	66 68 71 72 72 74 76 78 78 78 78 81 82
5	5.1	Synthe 5.1.1 5.1.2 5.1.3 5.1.4 Network 5.2.1 5.2.2 Testin 5.3.1	tetic Lethal Genes in Reactome Pathways	66 68 71 71 72 74 74 76 78 78 78 78

6	Sim	ulatior	and Modeling of Synthetic Lethal Pathways	189
	6.1	Simula	ations and Modelling Synthetic Lethality in Expression Data	. 192
	6.2	Simula	ations over simple graph structures	. 193
		6.2.1	Performance	
		6.2.2	Synthetic lethality across graph stuctures	
		6.2.3	Performance with inhibition links	. 193
		6.2.4	Performance with 20,000 genes	
	6.3	Simula	ations over pathway-based graphs	. 193
	6.4	Compa	aring methods	
		6.4.1	SLIPT and Chi-Squared	
			6.4.1.1 Correlated query genes	
		6.4.2	Correlation	
		6.4.3	Bimodality with BiSEp	. 193
7	Disc	cussion	1	195
	7.1	Signifi	cance	. 197
	7.2	Future	e Directions	. 198
	7.3	Conclu	asion	. 199
8	Con	clusio	n	201
	Refe	erence	S	202
\mathbf{A}	San	iple Q	uality	227
			e Correlation	. 227
			ate Samples in TCGA Breast	
В	Soft	ware U	Used for Thesis	234
\mathbf{C}	Seco	ondary	Screen Data	243
D	Mu	tation	Analysis in Breast Cancer	245
			etic Lethal Genes and Pathways	. 245
	D.2		etic Lethal Expression Profiles	
	D.3		arison to Primary Screen	
		_	Resampling Analysis	
	D.4		are SLIPT genes	
	D.5	_	ene Analysis	
	D.6		ion Variation	
		D.6.1	Mutation Frequency	. 258
		D.6.2	PI3K Mutation Expression	. 259
${f E}$	Met	agene	Expression Profiles	262

${f F}$	Sto	mach Expression Analysis	268
	F.1	Synthetic Lethal Genes and Pathways	268
	F.2	Comparison to Primary Screen	271
		F.2.1 Resampling Analysis	273
	F.3	Metagene Analysis	275
\mathbf{G}	Sto	mach Mutation Analysis	276
	G.1	Synthetic Lethal Genes and Pathways	276
	G.2	Synthetic Lethal Expression Profiles	279
	G.3	Comparison to Primary Screen	282
		G.3.1 Resampling Analysis	284
	G.4	Metagene Analysis	
н	Glo	bal Synthetic Lethality in Stomach Cancer	287
	H.1	Hub Genes	289
		Hub Pathways	
Ι	Rep	olication in cell line encyclopaedia	291

List of Figures

1.1 1.2	Synthetic genetic interactions
2.1 2.2	Read count density
3.1	Framework for synthetic lethal prediction
3.2	Synthetic lethal prediction adapted for mutation
3.3	A model of synthetic lethal gene expression
3.4	Modeling synthetic lethal gene expression
3.5	Synthetic lethality with multiple genes
3.6	Simulating gene function
3.7	Simulating synthetic lethal gene function
3.8	Simulating synthetic lethal gene expression
3.9	Performance of binomial simulations
3.10	Comparison of statistical performance
3.11	Performance of multivariate normal simulations
3.12	Simulating expression with correlated gene blocks
3.13	Simulating expression with correlated gene blocks
3.14	Synthetic lethal prediction across simulations
3.15	Performance with correlations
3.16	Comparison of statistical performance with correlation structure 96
3.17	Performance with query correlations
3.18	Statistical evaluation of directional criteria
3.19	Performance of directional criteria
	Simulated graph structures
	Simulating expression from a graph structure
3.22	Simulating expression from graph structure with inhibitions 106
3.23	Demonstration of violin plots with custom features
3.24	Demonstration of annotated heatmap
	Simulating graph structures
4.1	Synthetic lethal expression profiles of analysed samples
4.2	Comparison of SLIPT to siRNA
4.3	Compare SLIPT and siRNA genes with correlation
4.4	Compare SLIPT and siRNA genes with correlation
4.5	Compare SLIPT and siRNA genes with siRNA viability

4.6	Compare SLIPT and siRNA genes with viability	126
4.7	Compare SLIPT and siRNA genes with siRNA viability	128
4.8	Resampled intersection of SLIPT and siRNA candidates	132
4.9	Pathway metagene expression profiles	138
4.10	Somatic mutation against PI3K metagene	140
4.11	Somatic mutation locus against expression	142
4.12	Synthetic lethal expression profiles of stomach samples	148
	Synthetic lethal partners across query genes	152
5.1	Synthetic Lethality in the PI3K Cascade	167
5.2	Synthetic Lethality in the Elastic Fibre Formation Pathway	169
5.3	Synthetic Lethality in the Fibrin Clot Formation	170
5.4	Synthetic Lethality and Vertex Degree	173
5.5	Synthetic Lethality and Centrality	175
5.6	Synthetic Lethality and PageRank	177
5.7	Structure of PI3K Ranking	179
5.8	Synthetic Lethality and Hierarchy Score in PI3K	180
5.9	Hierarchy Score in PI3K against Synthetic Lethality in PI3K	180
5.10	Structure of Synthetic Lethality in PI3K	181
5.11	Structure of Synthetic Lethality Resampling in PI3K	182
A.1	Correlation profiles of removed samples	228
A.2	Correlation analysis and sample removal	229
A.3	Replicate excluded samples	230
A.4	Replicate samples with all remaining	231
A.5	Replicate samples with an remaining	231
A.5	Replicate samples with some excluded	$\frac{232}{233}$
11.0	replicate samples with some excluded	200
D.1	Synthetic lethal expression profiles of analysed samples	249
D.2	Comparison of mtSLIPT to siRNA	251
D.3	Compare mtSLIPT and siRNA genes with correlation	255
D.4	Compare mtSLIPT and siRNA genes with correlation	255
D.5	Compare mtSLIPT and siRNA genes with siRNA viability	256
D.6	Somatic mutation locus	258
D.7	Somatic mutation against PIK3CA metagene	259
D.8	Somatic mutation against PI3K protein	260
D.9	Somatic mutation against AKT protein	261
T: 1	Dath	262
E.1	Pathway metagene expression profiles	263
E.2	Expression profiles for constituent genes of PI3K	264
E.3	Expression profiles for p53 related genes	265
E.4	Expression profiles for estrogen receptor related genes	266
E.5	Expression profiles for BRCA related genes	267
F.1	Comparison of SLIPT in stomach to siRNA	271
G.1	Synthetic lethal expression profiles of stomach samples	280

G.2	Comparison of mtSLIPT in stomach to siRNA	282
H.1	Synthetic lethal partners across query genes	288

List of Tables

1.1	Methods for Predicting Genetic Interactions	37
1.2	Methods for Predicting Synthetic Lethality in Cancer	38
1.3	Methods used by Wu et al. (2014)	39
2.1	Excluded Samples by Batch and Clinical Characteristics	62
2.2	Computers used during Thesis	71
2.3	Linux Utilities and Applications used during Thesis	71
2.4	R Installations used during Thesis	72
2.5	R Packages used during Thesis	72
2.6	R Packages Developed during Thesis	74
4.1	Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from SLIPT	115
4.2	Pathways for <i>CDH1</i> partners from SLIPT	117
4.3	Pathway composition for clusters of $CDH1$ partners from SLIPT	121
4.4	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	130
4.5	Pathways for <i>CDH1</i> partners from SLIPT	134
4.6	Pathways for $CDH1$ partners from SLIPT and siRNA primary screen .	135
4.7	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from SLIPT	144
4.8	Pathways for CDH1 partners from SLIPT in stomach cancer	146
4.9	Query synthetic lethal genes with the most SLIPT partners	153
4.10	Pathways for genes with the most SLIPT partners	154
4.11	Pathways for <i>CDH1</i> partners from SLIPT in CCLE	155
4.12	Pathways for <i>CDH1</i> partners from SLIPT in breast CCLE	157
5.1	analysis of variance (ANOVA) for Synthetic Lethality and Vertex Degree	174
5.2	ANOVA for Synthetic Lethality and Information Centrality	176
5.3	ANOVA for Synthetic Lethality and PageRank Centrality	177
5.4	ANOVA for Synthetic Lethality and PI3K Hierarchy	180
5.5	Resampling for pathway structure of synthetic lethal detection methods	184
B.1	R Packages used during Thesis	234
C.1 C.2	Comparing SLIPT genes against Secondary siRNA Screen in breast cancer Comparing mtSLIPT genes against Secondary siRNA Screen in breast	243
	cancer	244
C.3	Comparing SLIPT genes against Secondary siRNA Screen in stomach	
	cancer	244

D.1	Candidate synthetic lethal gene partners of <i>CDH1</i> from mtSLIPT	246
D.2	Pathways for <i>CDH1</i> partners from mtSLIPT	247
D.3	Pathway composition for clusters of CDH1 partners from mtSLIPT	250
D.4	Pathway composition for <i>CDH1</i> partners from mtSLIPT and siRNA	252
D.5	Pathways for <i>CDH1</i> partners from mtSLIPT	253
D.6	Pathways for <i>CDH1</i> partners from mtSLIPT and siRNA primary screen	254
D.7	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT	257
F.1	Synthetic lethal gene partners of <i>CDH1</i> from SLIPT in stomach cancer	269
F.2	Pathway composition for clusters of <i>CDH1</i> partners in stomach SLIPT	270
F.3	Pathway composition for CDH1 partners from SLIPT and siRNA screen-	
	ing	272
F.4	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	273
F.5	Pathways for CDH1 partners from SLIPT in stomach and siRNA screen	274
F.6	Candidate synthetic lethal metagenes against CDH1 from SLIPT in	
	stomach cancer	275
G.1	Synthetic lethal gene partners of <i>CDH1</i> from mtSLIPT in stomach cancer	277
G.2	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach cancer	278
G.3	Pathway composition for clusters of CDH1 partners in stomach mtSLIPT	281
G.4	Pathway composition for <i>CDH1</i> partners from mtSLIPT and siRNA	283
G.5	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach cancer	284
G.6	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach and siRNA screen	285
G.7	Candidate synthetic lethal metagenes against <i>CDH1</i> from mtSLIPT in	
	stomach cancer	286
H.1	Query synthetic lethal genes with the most SLIPT partners	289
H.2	Pathways for genes with the most SLIPT partners	290
I.1	Candidate synthetic lethal gene partners of CDH1 from SLIPT in CCLE	292
I.2	Candidate synthetic lethal gene partners of <i>CDH1</i> from SLIPT in breast	
	CCLE	293
I.3	Candidate synthetic lethal gene partners of CDH1 from SLIPT in stom-	
	ach CCLE	294
I.4	Pathways for $CDH1$ partners from SLIPT in stomach CCLE	295
I.5	Pathways for CDH1 partners from SLIPT in breast and stomach CCLE	295

Chapter 6

Simulation and Modeling of Synthetic Lethal Pathways

Aims

- A Model of Synthetic Lethal Genes in Gene Expression Data
- Simulations of Known Synthetic Lethal Genes within Pathway Networks
- Comparison of SLIPT to Alternative Approaches

Summary

- We have designed a straight-forward rational query-based synthetic lethal detection method with the example of application to *CDH1* in cancer gene expression
- We have developed a simulation pipeline to generate continuous gene expression with pathway structure including a procedure to simulate synthetic lethality
- Our simulation procedure is robust across pathway structures and has desirable performance compared to other statistical techniques

Synthetic lethality (SL) is the death of a cell or organism with the combined loss of two non-essential genes. This phenomenon was originally used to study genetic interactions and functional redundancy in models organisms (Boone et al. 2007). While synthetic lethal experiments have been performed in Drosophila melanogaster (Dobzhansky 1946), Caenorhabditis elegans (Lehner et al. 2006), Escherichia coli (Butland et al. 2008), Schizosaccharomyces pombe (Roguev et al. 2007), and various mammalian cell lines (Kaelin 2005), the most extensive synthetic lethal screens have been performed with the synthetic gene array (SGA) technique in Saccharomyces cerevisiae (Boone et al. 2007; Costanzo et al. 2011; Tong et al. 2004).

Originally defined by double mutants, a range of mechanisms for gene inactivation of synthetic lethal partners can induce cell death including RNA interference and drug treatment where it is sometimes called induced essentiality or non-oncogene addiction in cancer research (Fece de la Cruz et al. 2015). Cellular viability is the main means to measure synthetic lethal effects experimentally because it is quantified and measured consistently (as shown in Figure 1), whereas qualitative measures of impaired organism viability are ambiguous and less relevant to yeast or cancer research.

The cancer genetics laboratory are currently working on developing a synthetic lethal approach to target the tumour suppressor gene CDH1 which has been found to cause predispose early-onset breast and stomach cancers in mutation carriers, including families of New Zealand Māori (Berx et al. 1995; Guilford et al. 1998). These families are currently closely monitored and offered drastic preventative surgery. If it were developed, a drug selective against CDH1 mutant tumours would serve not only as a chemopreventative alternative for these families but also benefit the wider community as a treatment for sporadic cases of CDH1 mutant cancer. To augment experimental work on CDH1 with isogenic cell lines (Telford et al. 2015), a computational methodology is explored here to exploit public cancer genomic databases.

Microarray and massively-parallel sequencing technologies are driving a revolution in molecular biological research, particularly with regard to cancer where the premise of genomic medicine is rapidly becoming feasible with the use of genomics to identify cancer genes, diagnose patients with actionable mutations, and use gene expression as a prognostic marker. Genomic data could also be used to identify novel drug targets and synthetic lethal partners of known cancer genes in particular. The Cancer Genome Atlas database (TCGA) and the overarching International Cancer Genome Consortium (ICGC) provide a valuable public cancer genome data resource because they support many different data types for the same samples, for many different cancer types, and

for high sample sizes (Cancer Genome Atlas Research Network 2014; Cancer Genome Atlas Research Network et al. 2013; International Cancer Genome Consortium 2014). They host data of patient clinical factors, gene expression, somatic mutation, DNA copy number, and DNA methylation which could all serve to predict synthetic lethality from frequency of mutually exclusive gene inactivation and its impact on patient survival. A number of other databases are given in the Table 6 which may be used to explore gene function, drug target feasibility, or replicate analyses but TCGA and ICGC datasets will be the focus of this project.

There is a growing need for a robust approach to cost-effective prediction of candidate synthetic lethal interaction, particularly in cancer research. Exploiting existing public genomic databases is an ideal way to utilise existing resources with suitable sample sizes, data types, and different limitations to those of laboratory experiments. A number of computation approaches to synthetic lethality have been developed but many of these rely on data not available to cancer researchers, methods that are difficult to replicate, over-fitted to a particular dataset, having mixed validation results, or do not have a software tool accessible to the research community. These methodologies are reviewed in detail in the accompanying literature review. They will still be considered to develop an improved synthetic lethal interaction prediction tool (SLIPT).

A bioinformatics approach has distinct limitations to experimental methods and would work well combined with genetic screen data and conventional molecular biology laboratory validation techniques to answer biological research questions. Compared with an experimental screen, a bioinformatics approach has the benefits of reduced costs, with the potential for automation, scaling up, and replication of the same gene across populations and cell types. Analysis of public genomic data accounts for real tumour variation showing detection with tumour heterogeneity and genomic instability. Compared with a cell line or xenograft experimental model we are limited by difficulties in establishing validity of a novel method, lack of mechanism, or potential for testing drug activity in the same system. However, computational methods may further miss useful therapeutic candidates from variable genetic background and be limited by the population sampled. This research builds on previous work in an Honours project and similar approaches in the literature (Jerby-Arnon et al. 2014; Kelly 2013; Lu et al. 2015).

6.1 Simulations and Modelling Synthetic Lethality in Expression Data

Synthetic lethality was modelled for effects on expression levels and whether these are detectable in known interacting and non-interacting genes in simulated data. These were conducted for expression data but the nature of these simulations would be relevant to how synthetic lethality would manifest in other factors, particularly DNA copy number variation and DNA methylation. These simulations were discussed at length in the previous meeting and showed that synthetic lethality was detectable with our approach in simple cases. While it was less effective, the methods were able to detect synthetic lethal genes in expression data with correlation structure (generated with the multi-variate normal distribution) and were distinguishable from correlated genes. Therefore the strongest (most significant) synthetic lethal genes are more likely to be true synthetic lethal partners and a high number of hits are expected from correlated genes and co-regulated pathways.

The power of the method to detect interactions depleted with increasing multiple tests, interactions, and cryptic (third party) interacting partners. Increased sample size counteracted these effects as expected. This led the idea that pathways would be more suitable as the focus of this project. Biological pathways led to fewer multiple tests, more relevant to understanding cancer biology, and are often drug targets in practice.

- 6.2 Simulations over simple graph structures
- 6.2.1 Performance
- 6.2.2 Synthetic lethality across graph stuctures
- 6.2.3 Performance with inhibition links
- 6.2.4 Performance with 20,000 genes
- 6.3 Simulations over pathway-based graphs
- 6.4 Comparing methods
- 6.4.1 SLIPT and Chi-Squared
- 6.4.1.1 Correlated query genes
- 6.4.2 Correlation
- 6.4.3 Bimodality with BiSEp

References

- Aarts, M., Bajrami, I., Herrera-Abreu, M.T., Elliott, R., Brough, R., Ashworth, A., Lord, C.J., and Turner, N.C. (2015) Functional genetic screen identifies increased sensitivity to weel inhibition in cells with defects in fanconi anemia and hr pathways. *Mol Cancer Ther*, 14(4): 865–76.
- Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C.D., Annala, M., Aprikian, A., Armenia, J., Arora, A., et al. (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell, 163(4): 1011–1025.
- Adamski, M.G., Gumann, P., and Baird, A.E. (2014) A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. *PLoS ONE*, **9**(8): e103917.
- Adler, D. (2005) vioplot: Violin plot. R package version 0.2.
- Agarwal, S., Deane, C.M., Porter, M.A., and Jones, N.S. (2010) Revisiting date and party hubs: Novel approaches to role assignment in protein interaction networks. *PLoS Comput Biol*, **6**(6): e1000817.
- Agrawal, N., Akbani, R., Aksoy, B.A., Ally, A., Arachchi, H., Asa, S.L., Auman, J.T., Balasundaram, M., Balu, S., Baylin, S.B., et al. (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159(3): 676–690.
- Akbani, R., Akdemir, K.C., Aksoy, B.A., Albert, M., Ally, A., Amin, S.B., Arachchi, H., Arora, A., Auman, J.T., Ayala, B., et al. (2015) Genomic Classification of Cutaneous Melanoma. Cell, 161(7): 1681–1696.
- Akobeng, A.K. (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. *Acta Pdiatrica*, **96**(5): 644–647.
- American Cancer Society (2017) Genetics and cancer. https://www.cancer.org/cancer/cancer-causes/genetics.html. Accessed: 22/03/2017.

- American Society for Clinical Oncology (ASCO) (2017) The genetics of cancer. http://www.cancer.net/navigating-cancer-care/cancer-basics/genetics-cancer. Accessed: 22/03/2017.
- Araki, H., Knapp, C., Tsai, P., and Print, C. (2012) GeneSetDB: A comprehensive meta-database, statistical and visualisation framework for gene set analysis. *FEBS Open Bio*, **2**: 76–82.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1): 25–29.
- Ashworth, A. (2008) A synthetic lethal therapeutic approach: poly(adp) ribose polymerase inhibitors for the treatment of cancers deficient in dna double-strand break repair. J Clin Oncol, 26(22): 3785–90.
- Audeh, M.W., Carmichael, J., Penson, R.T., Friedlander, M., Powell, B., Bell-McGuinn, K.M., Scott, C., Weitzel, J.N., Oaknin, A., Loman, N., et al. (2010) Oral poly(adp-ribose) polymerase inhibitor olaparib in patients with *BRCA1* or *BRCA2* mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet*, **376**(9737): 245–51.
- Babyak, M.A. (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. *Psychosom Med*, **66**(3): 411–21.
- Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer, 91(2): 355–358.
- Barabási, A.L. and Albert, R. (1999) Emergence of scaling in random networks. *Science*, **286**(5439): 509–12.
- Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. *Nat Rev Genet*, **5**(2): 101–13.
- Barrat, A. and Weigt, M. (2000) On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems, 13(3): 547–560.

- Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391): 603–607.
- Barry, W.T. (2016) safe: Significance Analysis of Function and Expression. R package version 3.14.0.
- Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F.J., Myers, C.L., Andrews, B., and Boone, C. (2010a) Synthetic genetic array (sga) analysis in saccharomyces cerevisiae and schizosaccharomyces pombe. *Methods Enzymol*, **470**: 145–79.
- Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.Y., Ou, J., San Luis, B.J., Bandyopadhyay, S., et al. (2010b) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Meth, 7(12): 1017–1024.
- Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., Bernard, B., Hinoue, T., Laird, P.W., Curtis, C., Shen, H., et al. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513(7517): 202–209.
- Bates, D. and Maechler, M. (2016) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-7.1.
- Bateson, W. and Mendel, G. (1909) Mendel's principles of heredity, by W. Bateson. University Press, Cambridge [Eng.].
- Beck, T.F., Mullikin, J.C., and Biesecker, L.G. (2016) Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. *Clin Chem*, **62**(4): 647–654.
- Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hfler, H. (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. *Cancer Research*, **54**(14): 3845–3852.
- Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353): 609–615.
- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B (Methodological)*, **57**(1): 289–300.

- Berx, G., Cleton-Jansen, A.M., Nollet, F., de Leeuw, W.J., van de Vijver, M., Cornelisse, C., and van Roy, F. (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. *EMBO J*, **14**(24): 6107–15.
- Berx, G., Cleton-Jansen, A.M., Strumane, K., de Leeuw, W.J., Nollet, F., van Roy, F., and Cornelisse, C. (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. *Oncogene*, **13**(9): 1919–25.
- Berx, G. and van Roy, F. (2009) Involvement of members of the cadherin superfamily in cancer. *Cold Spring Harb Perspect Biol*, **1**: a003129.
- Bitler, B.G., Aird, K.M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A.V., Schultz, D.C., Liu, Q., Shih Ie, M., Conejo-Garcia, J.R., *et al.* (2015) Synthetic lethality by targeting ezh2 methyltransferase activity in arid1a-mutated cancers. *Nat Med*, **21**(3): 231–8.
- Blake, J.A., Christie, K.R., Dolan, M.E., Drabkin, H.J., Hill, D.P., Ni, L., Sitnikov, D., Burgess, S., Buza, T., Gresham, C., et al. (2015) Gene Ontology Consortium: going forward. *Nucleic Acids Res*, **43**(Database issue): D1049–1056.
- Boettcher, M., Lawson, A., Ladenburger, V., Fredebohm, J., Wolf, J., Hoheisel, J.D., Frezza, C., and Shlomi, T. (2014) High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells. *BMC Genomics*, **15**: 158.
- Boone, C., Bussey, H., and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. *Nat Rev Genet*, **8**(6): 437–49.
- Borgatti, S.P. (2005) Centrality and network flow. Social Networks, 27(1): 55 71.
- Boucher, B. and Jenna, S. (2013) Genetic interaction networks: better understand to better predict. *Front Genet*, 4: 290.
- Breiman, L. (2001) Random forests. *Machine Learning*, **45**(1): 5–32.
- Brin, S. and Page, L. (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, **30**(1): 107 117.

- Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005) Specific killing of *BRCA2*-deficient tumours with inhibitors of poly*adpribose* polymerase. *Nature*, **434**(7035): 913–7.
- Burk, R.D., Chen, Z., Saller, C., Tarvin, K., Carvalho, A.L., Scapulatempo-Neto, C., Silveira, H.C., Fregnani, J.H., Creighton, C.J., Anderson, M.L., et al. (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, 543(7645): 378–384.
- Bussey, H., Andrews, B., and Boone, C. (2006) From worm genetic networks to complex human diseases. *Nat Genet*, **38**(8): 862–3.
- Butland, G., Babu, M., Diaz-Mejia, J.J., Bohdana, F., Phanse, S., Gold, B., Yang, W., Li, J., Gagarinova, A.G., Pogoutse, O., et al. (2008) esga: E. coli synthetic genetic array analysis. Nat Methods, 5(9): 789–95.
- Cancer Research UK (2017) Family history and cancer genes. http://www.cancerresearchuk.org/about-cancer/causes-of-cancer/inherited-cancer-genes-and-increased-cancer-risk/family-history-and-inherited-cancer-genes. Accessed: 22/03/2017.
- Cancer Cell Line Encyclopedia (CCLE) (2014) Broad-Novartis Cancer Cell Line Encyclopedia. http://www.broadinstitute.org/ccle. Accessed: 07/11/2014.
- cBioPortal for Cancer Genomics (cBioPortal) (2017) cBioPortal for Cancer Genomics. http://www.cbioportal.org/. Accessed: 26/03/2017.
- Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., and Sander, C. (2011) Pathway Commons, a web resource for biological pathway data. *Nucleic Acids Res*, 39(Database issue): D685–690.
- Chen, A., Beetham, H., Black, M.A., Priya, R., Telford, B.J., Guest, J., Wiggins, G.A.R., Godwin, T.D., Yap, A.S., and Guilford, P.J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. *BMC Cancer*, **14**(1): 552.
- Chen, K., Yang, D., Li, X., Sun, B., Song, F., Cao, W., Brat, D.J., Gao, Z., Li, H., Liang, H., et al. (2015) Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proc Natl Acad Sci USA, 112(4): 1107–1112.

- Chen, S. and Parmigiani, G. (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol, 25(11): 1329–1333.
- Chen, X. and Tompa, M. (2010) Comparative assessment of methods for aligning multiple genome sequences. *Nat Biotechnol*, **28**(6): 567–572.
- Cherniack, A.D., Shen, H., Walter, V., Stewart, C., Murray, B.A., Bowlby, R., Hu, X., Ling, S., Soslow, R.A., Broaddus, R.R., et al. (2017) Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 31(3): 411–423.
- Chipman, K. and Singh, A. (2009) Predicting genetic interactions with random walks on biological networks. BMC Bioinformatics, $\mathbf{10}(1)$: 17.
- Christofori, G. and Semb, H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. *Trends in Biochemical Sciences*, **24**(2): 73 76.
- Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., et al. (2015) Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 163(2): 506–519.
- Clark, M.J. (2004) Endogenous Regulator of G Protein Signaling Proteins Suppress G o-Dependent -Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization.

 Journal of Pharmacology and Experimental Therapeutics, 310(1): 215–222.
- Clough, E. and Barrett, T. (2016) The Gene Expression Omnibus Database. *Methods Mol Biol*, **1418**: 93–110.
- Collingridge, D.S. (2013) A primer on quantitized data analysis and permutation testing. *Journal of Mixed Methods Research*, **7**(1): 81–97.
- Collins, F.S. and Barker, A.D. (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. *Sci Am*, **296**(3): 50–57.
- Collins, F.S., Morgan, M., and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. *Science*, **300**(5617): 286–290.
- Collisson, E., Campbell, J., Brooks, A., Berger, A., Lee, W., Chmielecki, J., Beer, D., Cope, L., Creighton, C., Danilova, L., et al. (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511): 543–550.

- Corcoran, R.B., Ebi, H., Turke, A.B., Coffee, E.M., Nishino, M., Cogdill, A.P., Brown, R.D., Della Pelle, P., Dias-Santagata, D., Hung, K.E., et al. (2012) Egfr-mediated reactivation of mapk signaling contributes to insensitivity of BRAF-mutant colorectal cancers to raf inhibition with vemurafenib. Cancer Discovery, 2(3): 227–235.
- Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. Science, 327(5964): 425–31.
- Costanzo, M., Baryshnikova, A., Myers, C.L., Andrews, B., and Boone, C. (2011) Charting the genetic interaction map of a cell. *Curr Opin Biotechnol*, **22**(1): 66–74.
- Creighton, C.J., Morgan, M., Gunaratne, P.H., Wheeler, D.A., Gibbs, R.A., Robertson, A., Chu, A., Beroukhim, R., Cibulskis, K., Signoretti, S., et al. (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456): 43–49.
- Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., et al. (2014) The Reactome pathway knowledge-base. Nucleic Acids Res, 42(database issue): D472D477.
- Crunkhorn, S. (2014) Cancer: Predicting synthetic lethal interactions. *Nat Rev Drug Discov*, **13**(11): 812.
- Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. *InterJournal*, Complex Systems: 1695.
- Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403): 346–352.
- Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res, 5(10): 2929–2943.
- Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet, 37(10): 1147–1152.

- De Leeuw, W.J., Berx, G., Vos, C.B., Peterse, J.L., Van de Vijver, M.J., Litvinov, S., Van Roy, F., Cornelisse, C.J., and Cleton-Jansen, A.M. (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. *J Pathol*, **183**(4): 404–11.
- Demir, E., Babur, O., Rodchenkov, I., Aksoy, B.A., Fukuda, K.I., Gross, B., Sumer, O.S., Bader, G.D., and Sander, C. (2013) Using biological pathway data with Paxtools. *PLoS Comput Biol*, **9**(9): e1003194.
- Deshpande, R., Asiedu, M.K., Klebig, M., Sutor, S., Kuzmin, E., Nelson, J., Piotrowski, J., Shin, S.H., Yoshida, M., Costanzo, M., et al. (2013) A comparative genomic approach for identifying synthetic lethal interactions in human cancer. Cancer Res, 73(20): 6128–36.
- Dickson, D. (1999) Wellcome funds cancer database. Nature, 401(6755): 729.
- Dienstmann, R. and Tabernero, J. (2011) *BRAF* as a target for cancer therapy. *Anti*cancer Agents Med Chem, **11**(3): 285–95.
- Dijkstra, E.W. (1959) A note on two problems in connexion with graphs. *Numerische Mathematik*, **1**(1): 269–271.
- Dixon, S.J., Andrews, B.J., and Boone, C. (2009) Exploring the conservation of synthetic lethal genetic interaction networks. *Commun Integr Biol*, **2**(2): 78–81.
- Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A, 105(43): 16653–8.
- Dorogovtsev, S.N. and Mendes, J.F. (2003) Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, USA.
- Erdős, P. and Rényi, A. (1959) On random graphs I. Publ Math Debrecen, 6: 290–297.
- Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. In *Publ. Math. Inst. Hung. Acad. Sci*, volume 5, 17–61.
- Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A. (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. *Cancer Treat Rev*, **38**(6): 698–707.

- Ezkurdia, I., Juan, D., Rodriguez, J.M., Frankish, A., Diekhans, M., Harrow, J., Vazquez, J., Valencia, A., and Tress, M.L. (2014) Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. *Human Molecular Genetics*, **23**(22): 5866.
- Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005) Targeting the dna repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035): 917–21.
- Fawcett, T. (2006) An introduction to ROC analysis. *Pattern Recognition Letters*, **27**(8): 861 874. {ROC} Analysis in Pattern Recognition.
- Fece de la Cruz, F., Gapp, B.V., and Nijman, S.M. (2015) Synthetic lethal vulnerabilities of cancer. *Annu Rev Pharmacol Toxicol*, **55**: 513–531.
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer*, **136**(5): E359–386.
- Fisher, R.A. (1919) Xv.the correlation between relatives on the supposition of mendelian inheritance. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, **52**(02): 399–433.
- Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009) Inhibition of poly(adpribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med, 361(2): 123–34.
- Fong, P.C., Yap, T.A., Boss, D.S., Carden, C.P., Mergui-Roelvink, M., Gourley, C., De Greve, J., Lubinski, J., Shanley, S., Messiou, C., et al. (2010) Poly(adp)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. *J Clin Oncol*, **28**(15): 2512–9.
- Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., et al. (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res, 43(Database issue): D805–811.

- Fraser, A. (2004) Towards full employment: using RNAi to find roles for the redundant. Oncogene, 23(51): 8346–52.
- Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004) A census of human cancer genes. *Nat Rev Cancer*, 4(3): 177–183.
- Futreal, P.A., Kasprzyk, A., Birney, E., Mullikin, J.C., Wooster, R., and Stratton, M.R. (2001) Cancer and genomics. *Nature*, **409**(6822): 850–852.
- Gao, B. and Roux, P.P. (2015) Translational control by oncogenic signaling pathways. Biochimica et Biophysica Acta, 1849(7): 753–65.
- Gatza, M.L., Kung, H.N., Blackwell, K.L., Dewhirst, M.W., Marks, J.R., and Chi, J.T. (2011) Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. *Breast Cancer Res*, **13**(3): R62.
- Gatza, M.L., Silva, G.O., Parker, J.S., Fan, C., and Perou, C.M. (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. *Nat Genet*, **46**(10): 1051–1059.
- Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 5(10): R80.
- Genz, A. and Bretz, F. (2009) Computation of multivariate normal and t probabilities. In *Lecture Notes in Statistics*, volume 195. Springer-Verlag, Heidelberg.
- Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2016) mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-5. URL.
- Gilbert, W. and Maxam, A. (1973) The nucleotide sequence of the lac operator. *Proceedings of the National Academy of Sciences*, **70**(12): 3581–3584.
- Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 16(5): 991–1006.

- Globus (Globus) (2017) Research data management simplified. https://www.globus.org/. Accessed: 25/03/2017.
- Graziano, F., Humar, B., and Guilford, P. (2003) The role of the E-cadherin gene (*CDH1*) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. *Annals of Oncology*, **14**(12): 1705–1713.
- Güell, O., Sagus, F., and Serrano, M. (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. *PLoS Comput Biol*, **10**(5): e1003637.
- Guilford, P. (1999) E-cadherin downregulation in cancer: fuel on the fire? *Molecular Medicine Today*, **5**(4): 172 177.
- Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A., and Reeve, A.E. (1998) E-cadherin germline mutations in familial gastric cancer. *Nature*, 392(6674): 402–5.
- Guilford, P., Humar, B., and Blair, V. (2010) Hereditary diffuse gastric cancer: translation of *CDH1* germline mutations into clinical practice. *Gastric Cancer*, **13**(1): 1–10.
- Guilford, P.J., Hopkins, J.B., Grady, W.M., Markowitz, S.D., Willis, J., Lynch, H., Rajput, A., Wiesner, G.L., Lindor, N.M., Burgart, L.J., et al. (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat, 14(3): 249–55.
- Guo, J., Liu, H., and Zheng, J. (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. *Nucleic Acids Res*, 44(D1): D1011–1017.
- Hajian-Tilaki, K. (2013) Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. *Caspian J Intern Med*, 4(2): 627–635.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009) The weka data mining software: an update. *SIGKDD Explor Newsl*, **11**(1): 10–18.
- Hammerman, P.S., Lawrence, M.S., Voet, D., Jing, R., Cibulskis, K., Sivachenko, A., Stojanov, P., McKenna, A., Lander, E.S., Gabriel, S., et al. (2012) Comprehensive

- genomic characterization of squamous cell lung cancers. *Nature*, **489**(7417): 519–525.
- Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J.M., Cusick, M.E., Roth, F.P., et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430(6995): 88–93.
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100(1): 57–70.
- Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. *Cell*, **144**(5): 646–674.
- Hanna, S. (2003) Cancer incidence in new zealand (2003-2007). In D. Forman, D. Bray
 F Brewster, C. Gombe Mbalawa, B. Kohler, M. Piñeros, E. Steliarova-Foucher,
 R. Swaminathan, and J. Ferlay (editors), Cancer Incidence in Five Continents,
 volume X, 902-907. International Agency for Research on Cancer, Lyon, France.
 Electronic version http://ci5.iarc.fr Accessed 22/03/2017.
- Heiskanen, M., Bian, X., Swan, D., and Basu, A. (2014) caArray microarray database in the cancer biomedical informatics gridTM (caBIGTM). Cancer Research, **67**(9 Supplement): 3712–3712.
- Heiskanen, M.A. and Aittokallio, T. (2012) Mining high-throughput screens for cancer drug targets-lessons from yeast chemical-genomic profiling and synthetic lethality. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3): 263–272.
- Hell, P. (1976) Graphs with given neighbourhoods i. problémes combinatorics at theorie des graphes. *Proc Coil Int CNRS, Orsay,* **260**: 219–223.
- Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., et al. (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol, 8(5): R76.
- Hillenmeyer, M.E. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. *Science*, **320**: 362–365.

- Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158(4): 929–944.
- Hoehndorf, R., Hardy, N.W., Osumi-Sutherland, D., Tweedie, S., Schofield, P.N., and Gkoutos, G.V. (2013) Systematic analysis of experimental phenotype data reveals gene functions. *PLoS ONE*, **8**(4): e60847.
- Holm, S. (1979) A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, **6**(2): 65–70.
- Holme, P. and Kim, B.J. (2002) Growing scale-free networks with tunable clustering. *Physical Review E*, **65**(2): 026107.
- Hopkins, A.L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol, 4(11): 682–690.
- Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7: 96.
- Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M., Horng, C., Bild, A., Iversen, E., Liao, M., Chen, C., et al. (2003) Gene expression predictors of breast cancer outcomes. *Lancet*, **361**: 1590–1596.
- Illumina, Inc (Illumina) (2017) Sequencing and array-based solutions for genetic research. https://www.illumina.com/. Accessed: 26/03/2017.
- International HapMap 3 Consortium (HapMap) (2003) The International HapMap Project. *Nature*, **426**(6968): 789–796.
- International Human Genome Sequencing Consortium (IHGSC) (2004) Finishing the euchromatic sequence of the human genome. *Nature*, **431**(7011): 931–945.
- Jerby-Arnon, L., Pfetzer, N., Waldman, Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P., et al. (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 158(5): 1199–1209.

- Joachims, T. (1999) Making large-scale support vector machine learning practical. In S. Bernhard, lkopf, J.C.B. Christopher, and J.S. Alexander (editors), Advances in kernel methods, 169–184. MIT Press.
- Ju, Z., Liu, W., Roebuck, P.L., Siwak, D.R., Zhang, N., Lu, Y., Davies, M.A., Akbani, R., Weinstein, J.N., Mills, G.B., et al. (2015) Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics, 31(6): 912.
- Kaelin, Jr, W. (2005) The concept of synthetic lethality in the context of anticancer therapy. *Nat Rev Cancer*, **5**(9): 689–98.
- Kaelin, Jr, W. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. *Genome Med*, **1**: 99.
- Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., Yamamoto, S., Tatsuno, K., Katoh, H., Watanabe, Y., et al. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet, 46(6): 583–587.
- Kamada, T. and Kawai, S. (1989) An algorithm for drawing general undirected graphs. *Information Processing Letters*, **31**(1): 7–15.
- Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., Benz, C.C., et al. (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447): 67–73.
- Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., et al. (2001) Functional annotation of a full-length mouse cDNA collection. Nature, 409(6821): 685–690.
- Kelley, R. and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. *Nat Biotech*, **23**(5): 561–566.
- Kelly, S., Chen, A., Guilford, P., and Black, M. (2017a) Synthetic lethal interaction prediction of target pathways in E-cadherin deficient breast cancers. Submitted to *BMC Genomics*.
- Kelly, S.T. (2013) Statistical Predictions of Synthetic Lethal Interactions in Cancer. Dissertation, University of Otago.
- Kelly, S.T., Single, A.B., Telford, B.J., Beetham, H.G., Godwin, T.D., Chen, A., Black, M.A., and Guilford, P.J. (2017b) Towards HDGC chemoprevention: vulnerabilities

- in E-cadherin-negative cells identified by genome-wide interrogation of isogenic cell lines and whole tumors. Submitted to *Cancer Prev Res*.
- Kozlov, K.N., Gursky, V.V., Kulakovskiy, I.V., and Samsonova, M.G. (2015) Sequence-based model of gap gene regulation network. *BMC Genomics*, **15**(Suppl 12): S6.
- Kranthi, S., Rao, S., and Manimaran, P. (2013) Identification of synthetic lethal pairs in biological systems through network information centrality. *Mol BioSyst*, **9**(8): 2163–2167.
- Lander, E.S. (2011) Initial impact of the sequencing of the human genome. *Nature*, **470**(7333): 187–197.
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome. *Nature*, **409**(6822): 860–921.
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol*, **10**(3): R25.
- Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. Phys Rev Lett, 87: 198701.
- Laufer, C., Fischer, B., Billmann, M., Huber, W., and Boutros, M. (2013) Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. *Nat Methods*, **10**(5): 427–31.
- Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol*, **15**(2): R29.
- Lawrence, M.S., Sougnez, C., Lichtenstein, L., Cibulskis, K., Lander, E., Gabriel, S.B., Getz, G., Ally, A., Balasundaram, M., Birol, I., et al. (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517(7536): 576–582.
- Le Meur, N. and Gentleman, R. (2008) Modeling synthetic lethality. *Genome Biol*, **9**(9): R135.
- Le Meur, N., Jiang, Z., Liu, T., Mar, J., and Gentleman, R.C. (2014) Slgi: Synthetic lethal genetic interaction. r package version 1.26.0.

- Lee, A.Y., Perreault, R., Harel, S., Boulier, E.L., Suderman, M., Hallett, M., and Jenna, S. (2010a) Searching for signaling balance through the identification of genetic interactors of the rab guanine-nucleotide dissociation inhibitor gdi-1. *PLoS ONE*, **5**(5): e10624.
- Lee, I., Lehner, B., Vavouri, T., Shin, J., Fraser, A.G., and Marcotte, E.M. (2010b) Predicting genetic modifier loci using functional gene networks. *Genome Research*, **20**(8): 1143–1153.
- Lee, I. and Marcotte, E.M. (2009) Effects of functional bias on supervised learning of a gene network model. *Methods Mol Biol*, **541**: 463–75.
- Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., MacBeath, G., and Yaffe, M.B. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. *Cell*, **149**(4): 780–94.
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A., and Fraser, A.G. (2006) Systematic mapping of genetic interactions in caenorhabditis elegans identifies common modifiers of diverse signaling pathways. *Nat Genet*, **38**(8): 896–903.
- Li, X.J., Mishra, S.K., Wu, M., Zhang, F., and Zheng, J. (2014) Syn-lethality: An integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies. *Biomed Res Int*, **2014**: 196034.
- Linehan, W.M., Spellman, P.T., Ricketts, C.J., Creighton, C.J., Fei, S.S., Davis, C., Wheeler, D.A., Murray, B.A., Schmidt, L., Vocke, C.D., et al. (2016) Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med, 374(2): 135–145.
- Lokody, I. (2014) Computational modelling: A computational crystal ball. *Nature Reviews Cancer*, **14**(10): 649–649.
- Lord, C.J., Tutt, A.N., and Ashworth, A. (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med, 66: 455–470.
- Lu, X., Kensche, P.R., Huynen, M.A., and Notebaart, R.A. (2013) Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. *Nat Commun*, 4: 2124.

- Lu, X., Megchelenbrink, W., Notebaart, R.A., and Huynen, M.A. (2015) Predicting human genetic interactions from cancer genome evolution. *PLoS One*, **10**(5): e0125795.
- Lum, P.Y., Armour, C.D., Stepaniants, S.B., Cavet, G., Wolf, M.K., Butler, J.S., Hinshaw, J.C., Garnier, P., Prestwich, G.D., Leonardson, A., et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell, 116(1): 121–137.
- Luo, J., Solimini, N.L., and Elledge, S.J. (2009) Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. *Cell*, **136**(5): 823–837.
- Machado, J., Olivera, C., Carvalh, R., Soares, P., Berx, G., Caldas, C., Sercuca, R., Carneiro, F., and Sorbrinho-Simoes, M. (2001) E-cadherin gene (*CDH1*) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. *Oncogene*, **20**: 1525–1528.
- Masciari, S., Larsson, N., Senz, J., Boyd, N., Kaurah, P., Kandel, M.J., Harris, L.N., Pinheiro, H.C., Troussard, A., Miron, P., et al. (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet, 44(11): 726–31.
- Mattison, J., van der Weyden, L., Hubbard, T., and Adams, D.J. (2009) Cancer gene discovery in mouse and man. *Biochim Biophys Acta*, **1796**(2): 140–161.
- Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. *Proceedings* of the National Academy of Science, **74**(2): 560–564.
- McCourt, C.M., McArt, D.G., Mills, K., Catherwood, M.A., Maxwell, P., Waugh, D.J., Hamilton, P., O'Sullivan, J.M., and Salto-Tellez, M. (2013) Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. *PLoS ONE*, 8(7): e69604.
- McLachlan, J., George, A., and Banerjee, S. (2016) The current status of parp inhibitors in ovarian cancer. *Tumori*, **102**(5): 433–440.
- McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, G.M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216): 1061–1068.

- Miles, D.W. (2001) Update on HER-2 as a target for cancer therapy: herceptin in the clinical setting. *Breast Cancer Res*, **3**(6): 380–384.
- Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*, **5**(7): 621–628.
- Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407): 330–337.
- Neeley, E.S., Kornblau, S.M., Coombes, K.R., and Baggerly, K.A. (2009) Variable slope normalization of reverse phase protein arrays. *Bioinformatics*, **25**(11): 1384.
- Novomestky, F. (2012) matrixcalc: Collection of functions for matrix calculations. R package version 1.0-3.
- Oliveira, C., Senz, J., Kaurah, P., Pinheiro, H., Sanges, R., Haegert, A., Corso, G., Schouten, J., Fitzgerald, R., Vogelsang, H., et al. (2009) Germline CDH1 deletions in hereditary diffuse gastric cancer families. Human Molecular Genetics, 18(9): 1545–1555.
- Oliveira, C., Seruca, R., Hoogerbrugge, N., Ligtenberg, M., and Carneiro, F. (2013) Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). Eur J Hum Genet, 21(8).
- Pandey, G., Zhang, B., Chang, A.N., Myers, C.L., Zhu, J., Kumar, V., and Schadt, E.E. (2010) An integrative multi-network and multi-classifier approach to predict genetic interactions. *PLoS Comput Biol*, **6**(9).
- Parker, J., Mullins, M., Cheung, M., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of Clinical Oncology*, **27**(8): 1160–1167.
- Peltonen, L. and McKusick, V.A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. *Science*, **291**(5507): 1224–1229.
- Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016) Erratum: The somatic

- mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. *Nat Commun*, **7**: 11908.
- Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000) Molecular portraits of human breast tumours. Nature, 406(6797): 747–752.
- Pleasance, E.D., Cheetham, R.K., Stephens, P.J., McBride, D.J., Humphray, S.J., Greenman, C.D., Varela, I., Lin, M.L., Ordonez, G.R., Bignell, G.R., et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278): 191–196.
- Polyak, K. and Weinberg, R.A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. *Nat Rev Cancer*, **9**(4): 265–73.
- Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., Beijersbergen, R.L., Bardelli, A., and Bernards, R. (2012) Unresponsiveness of colon cancer to *BRAF* (v600e) inhibition through feedback activation of egfr. *Nature*, **483**(7387): 100–3.
- R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.3.2.
- Ravnan, M.C. and Matalka, M.S. (2012) Vemurafenib in patients with *BRAF* v600e mutation-positive advanced melanoma. *Clin Ther*, **34**(7): 1474–86.
- Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*, **43**(7): e47.
- Robin, J.D., Ludlow, A.T., LaRanger, R., Wright, W.E., and Shay, J.W. (2016) Comparison of DNA Quantification Methods for Next Generation Sequencing. *Sci Rep*, 6: 24067.
- Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol*, **11**(3): R25.
- Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H.O., Hayles, J., et al. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science, **322**(5900): 405–10.

- Rung, J. and Brazma, A. (2013) Reuse of public genome-wide gene expression data. Nat Rev Genet, 14(2): 89–99.
- Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., et al. (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res, 41(Database issue): D987–990.
- Ryan, C., Lord, C., and Ashworth, A. (2014) Daisy: Picking synthetic lethals from cancer genomes. *Cancer Cell*, **26**(3): 306–308.
- Sander, J.D. and Joung, J.K. (2014) Crispr-cas systems for editing, regulating and targeting genomes. *Nat Biotechnol*, **32**(4): 347–55.
- Sanger, F. and Coulson, A. (1975) A rapid method for determining sequences in dna by primed synthesis with dna polymerase. *Journal of Molecular Biology*, **94**(3): 441 448.
- Scheuer, L., Kauff, N., Robson, M., Kelly, B., Barakat, R., Satagopan, J., Ellis, N., Hensley, M., Boyd, J., Borgen, P., et al. (2002) Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. *J Clin Oncol*, **20**(5): 1260–1268.
- Semb, H. and Christofori, G. (1998) The tumor-suppressor function of E-cadherin. *Am J Hum Genet*, **63**(6): 1588–93.
- Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005) Rocr: visualizing classifier performance in r. *Bioinformatics*, **21**(20): 7881.
- Slurm development team (Slurm) (2017) Slurm workload manager. https://slurm.schedmd.com/. Accessed: 25/03/2017.
- Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98(19): 10869–10874.
- Stajich, J.E. and Lapp, H. (2006) Open source tools and toolkits for bioinformatics: significance, and where are we? *Brief Bioinformatics*, **7**(3): 287–296.

- Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009) The cancer genome. *Nature*, **458**(7239): 719–724.
- Ström, C. and Helleday, T. (2012) Strategies for the use of poly(adenosine diphosphate ribose) polymerase (parp) inhibitors in cancer therapy. *Biomolecules*, **2**(4): 635–649.
- Sun, C., Wang, L., Huang, S., Heynen, G.J.J.E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S.M., et al. (2014) Reversible and adaptive resistance to BRAF(v600e) inhibition in melanoma. Nature, 508(7494): 118–122.
- Taylor, I.W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S., Pawson, T., Morris, Q., and Wrana, J.L. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. *Nat Biotechnol*, 27(2): 199–204.
- Telford, B.J., Chen, A., Beetham, H., Frick, J., Brew, T.P., Gould, C.M., Single, A., Godwin, T., Simpson, K.J., and Guilford, P. (2015) Synthetic lethal screens identify vulnerabilities in gpcr signalling and cytoskeletal organization in E-cadherin-deficient cells. *Mol Cancer Ther*, **14**(5): 1213–1223.
- The 1000 Genomes Project Consortium (1000 Genomes) (2010) A map of human genome variation from population-scale sequencing. *Nature*, **467**(7319): 1061–1073.
- The Cancer Genome Atlas Research Network (TCGA) (2012) Comprehensive molecular portraits of human breast tumours. *Nature*, **490**(7418): 61–70.
- The Cancer Genome Atlas Research Network (TCGA) (2017a) The Cancer Genome Atlas Project. https://cancergenome.nih.gov/. Accessed: 26/03/2017.
- The Cancer Genome Atlas Research Network (TCGA) (2017b) The Cancer Genome Atlas Project Data Portal. https://tcga-data.nci.nih.gov/. Accessed: 06/02/2017 (via cBioPortal.
- The Cancer Society of New Zealand (Cancer Society of NZ) (2017) What is cancer? https://otago-southland.cancernz.org.nz/en/cancer-information/other-links/what-is-cancer-3/. Accessed: 22/03/2017.
- The Catalogue Of Somatic Mutations In Cancer (COSMIC) (2016) Cosmic: The catalogue of somatic mutations in cancer. http://cancer.sanger.ac.uk/cosmic. Release 79 (23/08/2016), Accessed: 05/02/2017.

- The Comprehensive R Archive Network (CRAN) (2017) Cran. https://cran.r-project.org/. Accessed: 24/03/2017.
- The ENCODE Project Consortium (ENCODE) (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. *Science*, **306**(5696): 636–640.
- The Internation Cancer Genome Consortium (ICGC) (2017) ICGC Data Portal. https://dcc.icgc.org/. Accessed: 06/02/2017.
- The National Cancer Institute (NCI) (2015) The genetics of cancer. https://www.cancer.gov/about-cancer/causes-prevention/genetics. Published: 22/04/2015, Accessed: 22/03/2017.
- The New Zealand eScience Infrastructure (NeSI) (2017) NeSI. https://www.nesi.org.nz/. Accessed: 25/03/2017.
- The Pharmaceutical Management Agency (PHARMAC) (2016) Approval of multiproduct funding proposal with roche.
- Tierney, L., Rossini, A.J., Li, N., and Sevcikova, H. (2015) snow: Simple Network of Workstations. R package version 0.4-2.
- Tiong, K.L., Chang, K.C., Yeh, K.T., Liu, T.Y., Wu, J.H., Hsieh, P.H., Lin, S.H., Lai, W.Y., Hsu, Y.C., Chen, J.Y., et al. (2014) Csnk1e/ctnnb1 are synthetic lethal to tp53 in colorectal cancer and are markers for prognosis. Neoplasia, 16(5): 441–50.
- Tischler, J., Lehner, B., and Fraser, A.G. (2008) Evolutionary plasticity of genetic interaction networks. *Nat Genet*, **40**(4): 390–391.
- Tomasetti, C. and Vogelstein, B. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science*, **347**(6217): 78–81.
- Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550): 2364–8.
- Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004) Global mapping of the yeast genetic interaction network. Science, 303(5659): 808–13.

- Travers, J. and Milgram, S. (1969) An experimental study of the small world problem. Sociometry, **32**(4): 425–443.
- Tsai, H.C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F.V., Shin, J.J., Harbom, K.M., Beaty, R., Pappou, E., et al. (2012) Transient low doses of dnademethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21(3): 430–46.
- Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010) Oral poly(adpribose) polymerase inhibitor olaparib in patients with *BRCA1* or *BRCA2* mutations and advanced breast cancer: a proof-of-concept trial. *Lancet*, **376**(9737): 235–44.
- van der Meer, R., Song, H.Y., Park, S.H., Abdulkadir, S.A., and Roh, M. (2014) RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. *Clinical Cancer Research*, **20**(12): 3211–3221.
- van Steen, K. (2012) Travelling the world of genegene interactions. *Briefings in Bioinformatics*, **13**(1): 1–19.
- van Steen, M. (2010) Graph Theory and Complex Networks: An Introduction. Maarten van Steen, VU Amsterdam.
- Vapnik, V.N. (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc.
- Vargas, J.J., Gusella, G., Najfeld, V., Klotman, M., and Cara, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. *Hum Gene Ther*, 15: 361–372.
- Vizeacoumar, F.J., Arnold, R., Vizeacoumar, F.S., Chandrashekhar, M., Buzina, A., Young, J.T., Kwan, J.H., Sayad, A., Mero, P., Lawo, S., et al. (2013) A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol, 9: 696.
- Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W. (2013) Cancer genome landscapes. Science, 339(6127): 1546–1558.
- Vos, C.B., Cleton-Jansen, A.M., Berx, G., de Leeuw, W.J., ter Haar, N.T., van Roy, F., Cornelisse, C.J., Peterse, J.L., and van de Vijver, M.J. (1997) E-cadherin inactivation

- in lobular carcinoma in situ of the breast: an early event in tumorigenesis. $Br\ J$ Cancer, 76(9): 1131-3.
- Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res, 38(18): e178.
- Wang, K., Yuen, S.T., Xu, J., Lee, S.P., Yan, H.H., Shi, S.T., Siu, H.C., Deng, S., Chu, K.M., Law, S., et al. (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet, 46(6): 573–582.
- Wang, X. and Simon, R. (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. *BMC Medical Genomics*, **6**(1): 30.
- Wappett, M. (2014) Bisep: Toolkit to identify candidate synthetic lethality. r package version 2.0.
- Wappett, M., Dulak, A., Yang, Z.R., Al-Watban, A., Bradford, J.R., and Dry, J.R. (2016) Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs. BMC Genomics, 17: 65.
- Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., et al. (2015) gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.
- Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. *Nature*, **393**(6684): 440–2.
- Weinstein, I.B. (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. *Carcinogenesis*, **21**(5): 857–864.
- Weinstein, J.N., Akbani, R., Broom, B.M., Wang, W., Verhaak, R.G., McConkey, D., Lerner, S., Morgan, M., Creighton, C.J., Smith, C., et al. (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507(7492): 315–322.
- Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Chang, K., et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 45(10): 1113–1120.

- Wickham, H. and Chang, W. (2016) devtools: Tools to Make Developing R Packages Easier. R package version 1.12.0.
- Wickham, H., Danenberg, P., and Eugster, M. (2017) roxygen2: In-Line Documentation for R. R package version 6.0.1.
- Wong, S.L., Zhang, L.V., Tong, A.H.Y., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. (2004) Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(44): 15682–15687.
- World Health Organization (WHO) (2017) Fact sheet: Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Updated February 2017, Accessed: 22/03/2017.
- Wu, M., Li, X., Zhang, F., Li, X., Kwoh, C.K., and Zheng, J. (2014) In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. Cancer Inform, 13(Suppl 3): 71–80.
- Yu, H. (2002) Rmpi: Parallel statistical computing in r. R News, 2(2): 10–14.
- Zhang, F., Wu, M., Li, X.J., Li, X.L., Kwoh, C.K., and Zheng, J. (2015) Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. *J Bioinform Comput Biol*, **13**(3): 1541002.
- Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., Hsu, J., Liang, Y., Rivkin, E., Wang, J., Whitty, B., et al. (2011) International cancer genome consortium data portal one-stop shop for cancer genomics data. Database: The Journal of Biological Databases and Curation, 2011: bar026.
- Zhong, W. and Sternberg, P.W. (2006) Genome-wide prediction of c. elegans genetic interactions. *Science*, **311**(5766): 1481–1484.
- Zweig, M.H. and Campbell, G. (1993) Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. *Clinical Chemistry*, **39**(4): 561–577.