Assignment #3 - CPSC 4310

Aldrin Azucena

Non Programming Part

1. Consider the following data sets comprising of 3 boolean input and 1 boolean output

Example	A_1	A_2	A_3	output
x_1	1	0	0	0
x_2	1	0	1	0
x_3	0	1	0	0
x_4	1	1	1	1
x_5	1	1	0	1

• Classify the following example using a native Bayes classifier with Laplace 1 smoothing with the addition of $x_6=(0,1,1,?)$ to the table

Prior Probability:

output:

	0	1	total
output	3	2	5

$$egin{aligned} P_{LAP,1}(output=0) &= rac{3+1}{5+1(2)} = 4/7 \ P_{LAP,1}(output=1) &= rac{2+1}{5+1(2)} = 3/7 \ P_{LAP,1}(output) &= \langle rac{4}{7}, rac{3}{7}
angle \end{aligned}$$

 A_i :

	0	1	total
A_1	1	4	5
A_2	2	3	5
A_3	3	2	5

	0	1	total
total	6	9	15

$$P_{LAP,1}(A_1 = 0) = \frac{1+1}{5+1(2)} = 2/7$$
 $P_{LAP,1}(A_1 = 1) = \frac{4+1}{5+1(2)} = 5/7$
 $P_{LAP,1}(A_1) = \langle \frac{2}{7}, \frac{5}{7} \rangle$

$$egin{aligned} P_{LAP,1}(A_2=0) &= rac{2+1}{5+1(2)} = 3/7 \ P_{LAP,1}(A_2=1) &= rac{3+1}{5+1(2)} = 4/7 \ P_{LAP,1}(A_2) &= \langle rac{3}{7}, rac{4}{7}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_3=0) &= rac{3+1}{5+1(2)} = 4/7 \ P_{LAP,1}(A_3=1) &= rac{2+1}{5+1(2)} = 3/7 \ P_{LAP,1}(A_3) &= \langle rac{4}{7}, rac{3}{7}
angle \end{aligned}$$

Conditional Probability:

$$egin{aligned} P_{LAP,1}(x_i|A_i=0) &= 1/2 \ P_{LAP,1}(x_i|A_i=1) &= 1/2 \ P_{LAP,1}(x_i|A_i) &= \langle rac{1}{2},rac{1}{2}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_1=0|output=0) &= rac{1+1}{3+1(2)} = 2/5 \ P_{LAP,1}(A_1=1|output=0) &= rac{2+1}{3+1(2)} = 3/5 \ P_{LAP,1}(A_1|output=0) &= \langle rac{2}{5},rac{3}{5}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_1=0|output=1) &= rac{0+1}{2+1(2)} = 1/4 \ P_{LAP,1}(A_1=1|output=1) &= rac{2+1}{2+1(2)} = 3/4 \ P_{LAP,1}(A_1|output=1) &= \langle rac{1}{4}, rac{3}{4}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_2=0|output=0) &= rac{2+1}{3+1(2)} = 3/5 \ P_{LAP,1}(A_2=1|output=0) &= rac{1+1}{3+1(2)} = 2/5 \ P_{LAP,1}(A_2|output=0) &= \langle rac{3}{5}, rac{2}{5}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_2=0|output=1) &= rac{0+1}{2+1(2)} = 1/4 \ P_{LAP,1}(A_2=1|output=1) &= rac{2+1}{2+1(2)} = 3/4 \ P_{LAP,1}(A_2|output=1) &= \langle rac{1}{4},rac{3}{4}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_3=0|output=0) &= rac{2+1}{3+1(2)} = 3/5 \ P_{LAP,1}(A_3=1|output=0) &= rac{1+1}{3+1(2)} = 2/5 \ P_{LAP,1}(A_3|output=0) &= \langle rac{3}{5}, rac{2}{5}
angle \end{aligned}$$

$$egin{aligned} P_{LAP,1}(A_3=0|output=1) &= rac{1+1}{2+1(2)} = 2/4 = 1/2 \ P_{LAP,1}(A_3=1|output=1) &= rac{1+1}{2+1(2)} = 2/4 = 1/2 \ P_{LAP,1}(A_3|output=1) &= \langle rac{1}{2},rac{1}{2}
angle \end{aligned}$$

Calculations:

$$P_{LAP,1}(output = 0|x_1)$$

$$\propto P_{LAP.1}(output=0)$$

$$P_{LAP,1}(A_1 = 1|output = 0)P_{LAP,1}(x_1|A_1 = 1)$$

$$P_{LAP,1}(A_2=0|output=0)P_{LAP,1}(x_1|A_2=0)$$

$$P_{LAP,1}(A_3 = 0|output = 0)P_{LAP,1}(x_1|A_3 = 0)$$

$$\propto \frac{4}{7} * \left(\frac{3}{5} * \frac{1}{2}\right) * \left(\frac{3}{5} * \frac{1}{2}\right) * \left(\frac{3}{5} * \frac{1}{2}\right) = \frac{4}{7} * \left(\frac{3}{5} * \frac{1}{2}\right)^3 = \frac{4}{7} * \left(\frac{3}{10}\right)^3 = \frac{4}{7} * \frac{27}{1000} = \frac{108}{7000} = \frac{27}{1750}$$

$$P_{LAP,1}(output=0|x_1) \propto rac{27}{1750} pprox 0.015$$

$$P_{LAP,1}(output = 0|x_2)$$

$$\propto P_{LAP.1}(output = 0)$$

$$P_{LAP,1}(A_1=1|output=0)P_{LAP,1}(x_2|A_1=1)$$

$$P_{LAP,1}(A_2=0|output=0)P_{LAP,1}(x_2|A_2=0)$$

$$P_{LAP,1}(A_3=1|output=0)P_{LAP,1}(x_2|A_3=1)$$

$$\propto \frac{4}{7} * \left(\frac{3}{5} * \frac{1}{2}\right) * \left(\frac{3}{5} * \frac{1}{2}\right) * \left(\frac{2}{5} * \frac{1}{2}\right) = \frac{4}{7} * \left(\frac{3}{10}\right)^2 * \frac{1}{5} = \frac{4}{7} * \frac{9}{100} * \frac{1}{5} = \frac{4}{7} * \frac{9}{500} = \frac{36}{3,500} = \frac{9}{875}$$

$$P_{LAP,1}(output=0|x_2) \propto rac{9}{875} pprox 0.010$$

$$P_{LAP,1}(output = 0|x_3)$$

$$\propto P_{LAP.1}(output = 0)$$

$$P_{LAP,1}(A_1=0|output=0)P_{LAP,1}(x_3|A_1=0)$$

$$\begin{split} P_{LAP,1}(A_3 &= 0|output = 0)P_{LAP,1}(x_3|A_3 = 0) \\ &\propto \frac{4}{7}*\left(\frac{2}{5}*\frac{1}{2}\right)*\left(\frac{2}{5}*\frac{1}{2}\right)*\left(\frac{3}{5}*\frac{1}{2}\right) = \frac{4}{7}*\left(\frac{1}{5}\right)^2*\frac{3}{10} = \frac{4}{7}*\frac{1}{25}*\frac{3}{10} = \frac{4}{7}*\frac{3}{250} = \frac{12}{1750} = \frac{6}{875} \\ P_{LAP,1}(output = 0|x_3) &\propto \frac{6}{875} \approx 0.007 \\ P_{LAP,1}(output = 1|x_4) \\ &\propto P_{LAP,1}(output = 1) \\ P_{LAP,1}(A_1 = 1|output = 1)P_{LAP,1}(x_4|A_1 = 1) \\ P_{LAP,1}(A_2 = 1|output = 1)P_{LAP,1}(x_4|A_2 = 1) \\ P_{LAP,1}(A_3 = 1|output = 1)P_{LAP,1}(x_4|A_3 = 1) \\ &\propto \frac{3}{7}*\left(\frac{3}{4}*\frac{1}{2}\right)*\left(\frac{3}{4}*\frac{1}{2}\right)*\left(\frac{1}{2}*\frac{1}{2}\right) = \frac{3}{7}*\left(\frac{3}{8}\right)^2*\frac{1}{4} = \frac{3}{7}*\frac{9}{16}*\frac{1}{25} = \frac{3}{7}*\frac{9}{400} = \frac{27}{2800} \\ P_{LAP,1}(output = 1|x_4) &\propto \frac{27}{2800} \approx 0.010 \\ P_{LAP,1}(output = 1|x_5) \\ &\propto P_{LAP,1}(output = 1) \\ P_{LAP,1}(A_1 = 1|output = 1)P_{LAP,1}(x_5|A_1 = 1) \\ P_{LAP,1}(A_2 = 1|output = 1)P_{LAP,1}(x_5|A_2 = 1) \\ P_{LAP,1}(A_3 = 0|output = 1)P_{LAP,1}(x_5|A_3 = 0) \\ &\propto \frac{3}{7}*\left(\frac{3}{4}*\frac{1}{2}\right)*\left(\frac{3}{4}*\frac{1}{2}\right)*\left(\frac{1}{2}*\frac{1}{2}\right) = \frac{3}{7}*\left(\frac{3}{8}\right)^2*\frac{1}{4} = \frac{3}{7}*\frac{9}{16}*\frac{1}{25} = \frac{3}{7}*\frac{9}{400} = \frac{27}{2800} \\ P_{LAP,1}(output = 1|x_5) &\propto \frac{27}{2800} \approx 0.010 \end{split}$$

With $x_6 = (0, 1, 1, ?)$:

Example	A_1	A_2	A_3	output
x_1	1	0	0	0
x_2	1	0	1	0
x_3	0	1	0	0
x_4	1	1	1	1
x_5	1	1	0	1
x_6	0	1	1	?

 $P_{LAP.1}(A_2 = 1|output = 0)P_{LAP.1}(x_3|A_2 = 1)$

Since we don't know what's the output for x_6 , we can calculate with each cases.

Prior Probability:

output:

	true	false	total
output=0	4	2	6

$$egin{aligned} P_{LAP,1}(output=0) &= rac{4+1}{6+1(2)} = 5/8 \ P_{LAP,1}(output
eq 0) &= rac{2+1}{6+1(2)} = 3/8 \ P_{LAP,1}(output=0) &= \langle rac{5}{8}, rac{3}{8}
angle \end{aligned}$$

	true	false	total
output=1	3	3	6

$$egin{aligned} P_{LAP,1}(output=1) &= rac{3+1}{6+1(2)} = 4/8 = 1/2 \ P_{LAP,1}(output
eq 1) &= rac{3+1}{6+1(2)} = 4/8 = 1/2 \ P_{LAP,1}(output=1) &= \langle rac{1}{2}, rac{1}{2}
angle \end{aligned}$$

 A_i :

	0	1	total
A_1	2	4	6
A_2	2	4	6
A_3	3	3	6
total	7	11	18

$$egin{aligned} P_{LAP,1}(A_1=0) &= rac{2+1}{6+1(2)} = 3/8 \ P_{LAP,1}(A_1=1) &= rac{4+1}{6+1(2)} = 5/8 \ P_{LAP,1}(A_1) &= \langle rac{3}{8}, rac{5}{8}
angle \end{aligned}$$

$$P_{LAP,1}(A_2 = 0) = \frac{2+1}{6+1(2)} = 3/8$$

 $P_{LAP,1}(A_2 = 1) = \frac{4+1}{6+1(2)} = 5/8$
 $P_{LAP,1}(A_2) = \langle \frac{3}{8}, \frac{5}{8} \rangle$

$$egin{aligned} P_{LAP,1}(A_3=0) &= rac{3+1}{6+1(2)} = 4/8 = 1/2 \ P_{LAP,1}(A_3=1) &= rac{3+1}{6+1(2)} = 4/8 = 1/2 \ P_{LAP,1}(A_3) &= \langle rac{1}{2}, rac{1}{2}
angle \end{aligned}$$

Conditional Probability:

$$P_{LAP,1}(x_i|A_i=0)=1/2 \ P_{LAP,1}(x_i|A_i=1)=1/2$$

$$P_{LAP,1}(x_i|A_i) = \langle rac{1}{2}, rac{1}{2}
angle$$

$$P_{LAP,1}(A_1=0|output=0)=rac{2+1}{4+1(2)}=3/6=1/2$$

$$P_{LAP,1}(A_1=1|output=0)=rac{2+1}{4+1(2)}=3/6=1/2$$

$$P_{LAP,1}(A_1|output=0)=\langle rac{1}{2},rac{1}{2}
angle$$

$$P_{LAP,1}(A_1=0|output=1)=rac{1+1}{3+1(2)}=2/5$$

$$P_{LAP,1}(A_1=1|output=1)=rac{2+1}{3+1(2)}=3/5$$

$$P_{LAP,1}(A_1|output=1)=\langle rac{2}{5},rac{3}{5}
angle$$

$$P_{LAP,1}(A_2=0|output=0)=rac{2+1}{4+1(2)}=1/2$$

$$P_{LAP,1}(A_2=1|output=0)=rac{2+1}{4+1(2)}=1/2$$

$$P_{LAP,1}(A_2|output=0)=\langle \frac{1}{2},\frac{1}{2}\rangle$$

$$P_{LAP,1}(A_2 = 0|output = 1) = \frac{1+1}{3+1(2)} = 2/5$$

$$P_{LAP,1}(A_2=1|output=1)=rac{2+1}{3+1(2)}=3/5$$

$$P_{LAP,1}(A_2|output=1)=\langle rac{2}{5},rac{3}{5}
angle$$

$$P_{LAP,1}(A_3=0|output=0)=rac{2+1}{4+1(2)}=1/2$$

$$P_{LAP,1}(A_3=1|output=0)=rac{2+1}{4+1(2)}=1/2$$

$$P_{LAP,1}(A_3|output=0)=\langle rac{1}{2},rac{1}{2}
angle$$

$$P_{LAP,1}(A_3=0|output=1)=rac{1+1}{3+1(2)}=2/5$$

$$P_{LAP,1}(A_3=1|output=1)=rac{2+1}{3+1(2)}=3/5$$

$$P_{LAP,1}(A_3|output=1)=\langle rac{2}{5},rac{3}{5}
angle$$

Calculations:

$$P_{LAP,1}(output=0|x_6)$$

$$\propto P_{LAP,1}(output=0)$$

$$P_{LAP,1}(A_1=0|output=0)P_{LAP,1}(x_6|A_1=0)$$

$$P_{LAP,1}(A_2=1|output=0)P_{LAP,1}(x_6|A_2=1)$$

$$P_{LAP,1}(A_3=1|output=0)P_{LAP,1}(x_6|A_3=1)$$

$$\propto \frac{5}{8} * (\frac{1}{2} * \frac{1}{2}) * (\frac{1}{2} * \frac{1}{2}) * (\frac{1}{2} * \frac{1}{2}) = \frac{5}{8} * (\frac{1}{4})^3 = \frac{5}{8} * \frac{1}{16} = \frac{5}{128}$$

$$P_{LAP,1}(output=1|x_6) \propto rac{5}{128} pprox 0.039$$

$$P_{LAP,1}(output=1|x_6)$$

$$\propto P_{LAP,1}(output=1)$$

$$P_{LAP,1}(A_1=0|output=1)P_{LAP,1}(x_6|A_1=0)$$

$$P_{LAP,1}(A_2=1|output=1)P_{LAP,1}(x_6|A_2=1)$$

$$P_{LAP,1}(A_3=1|output=1)P_{LAP,1}(x_6|A_3=1)$$

$$\propto \frac{1}{2} * (\frac{2}{5} * \frac{1}{2}) * (\frac{2}{5} * \frac{1}{2}) * (\frac{2}{5} * \frac{1}{2}) = \frac{1}{2} * (\frac{1}{5})^3 = \frac{1}{2} * \frac{1}{125} = \frac{1}{250}$$

$$P_{LAP,1}(output=1|x_6) \propto rac{1}{250} pprox 0.004$$

 $P_{LAP,1}(output|x_6)$

$$\propto \max(P_{LAP,1}(output=0|x_6), P_{LAP,1}(output=1|x_6)) = \max(0.039, 0.004) = 0.039$$

$$P_{LAP,1}(output|x_6) \propto P_{LAP,1}(output=0|x_6) = rac{5}{128} pprox 0.039$$

Therefore, $x_6 = (0, 1, 1, 0)$

Example	A_1	A_2	A_3	output
x_1	1	0	0	0
x_2	1	0	1	0
x_3	0	1	0	0
x_4	1	1	1	1
x_5	1	1	0	1
x_6	0	1	1	0