Fonction exponentielle

Exercice 1:

Pour $n \in \mathbb{N}^*$, on définit la fonction $f_n(x) = x^n e^x$. La fonction f_n est définie, continue, et dérivable sur \mathbb{R} .

On souhaite démontrer que $f_n(x)$ converge vers 0 quand x tend vers $-\infty$.

- 1. En fonction de si n est pair ou impair, étudiez les variations de la fonction f_n .
- 2. En déduire que $\forall n \in \mathbb{N}^*$, f_n converge vers une valeur réelle quand x tend vers $-\infty$.
- 3. En utilisant le fait que $f_{n+1}(x) = xf_n(x)$, conclure que $f_n(x)$ converge vers 0 en $-\infty$.

Soit $n \in \mathbb{N}^*$, on étudie désormais la fonction $g_n(x) = \frac{e^x}{x^n}$. La fonction g_n est définie, continue, et dérivable sur \mathbb{R}^* .

On souhaite montrer que $g_n(x)$ tend vers $+\infty$ quand x tend vers $+\infty$.

- 1. Montrez que $\frac{1}{g_n(x)} = (-1)^n f_n(-x)$.
- 2. Quelle est la limite de $f_n(-x)$ quand x tend vers $+\infty$?
- 3. En déduire la limite de $\frac{1}{g_n(x)}$ puis de $g_n(x)$ en $+\infty$.

Exercice 2:

On souhaite calculer des valeurs approximatives de l'exponentielle. On va utiliser l'approximation de f par sa dérivée.

- 1. Soit f une fonction dérivable en a. Expliquez pourquoi pour h très petit, $f(a+h) \simeq f(a) + hf'(a)$.
- 2. En déduire que $e^h \simeq 1 + h$ pour h très petit.
- 3. Soit a>0, on pose $h=\frac{a}{n}$ pour un très grand n. En déduire $e^a\simeq (1+\frac{a}{n})^n$.
- 4. Quelles sont les trois premières décimales de e?