Weather Radar Imagery Interpretation in the Cockpit

SAWS II Workshop (2008)

Dr. Curtis N. James Associate Professor Department of Meteorology Embry-Riddle Aeronautical University Prescott, Arizona Curtis.James@erau.edu http://meteo.pr.erau.edu/

EMBRY-RIDDLE AERONAUTICAL UNIVERSITY

Embry-Riddle Aeronautical University

ERAU's Prescott Campus offers:

- o B.S. Aeronautics
- B.S. Aeronautical Science
- o B.S. Aerospace Studies
- o B.S. Applied Meteorology
- o B.S. Aviation Business Administration
- o B.S. Aviation Environmental Science
- o B.S. Engineering (AE, EE, ME, CS, CE)
- o B.S. Global Security and Intelligence Studies
- o B.S. Space Physics
- o M.S. Safety Science
- o Ph.D. in Aviation

RAdio Detection And Ranging (RADAR)

- Radars transmit focused pulses of microwave light
 - NEXRAD: 10 cm
 - Airborne: 3 cm
- o Solid & liquid scatterers return the signal
 - Precipitation (rain, snow, etc.)
 - Bugs / birds
 - Terrain
- Size and number of scatterers determines power returned
 - Clouds, dust have low reflectivity
 - · Large hail has high reflectivity

Radar system (schematic)

- Weather radars are pulsed and monostatic (i.e. antenna transmits and receives)
- Consist of transmitter/receiver, moveable antenna, radome, signal processor, display

Key facts about scattering

- Depends on sum of diameter to the sixth power (D^{b}) of all particles in sample (assumed spherical)
- Water is more reflective than ice
- Smaller wavelengths (airborne radar) scatter more than longer wavelengths (NEXRAD)
- Reflectivity (Z) obtained from power returned $[dBZ=10 \log_{10}(Z)]$
- o Echo range computed from elapsed time between pulse transmission and reception

Particle type identification Particle type is related to reflectivity, but... Icing conditions may be undetectable Clouds often invisible to radar (esp. airborne) Icing occurs in clouds between 0 and -40°C Need to know freezing level(s) in order to identify an echo that contains freezing rain Light snow often undetectable (airborne) Non-precipitation echoes often misleading NEXRAD will have polarimetric capabilities in about 5 years (better particle ID)

Tilt management (airborne radar)

- Four useful tilt angles:
 - o Terminal tilt
 - o Zero tilt
 - o Low-altitude tilt
 - Normal tilt
- However, it is best to regularly vary tilt, especially after turns
- Stratiform echo: Best viewed below bright band (freezing level)
- Convective: Best between 18-25 kft

Alt: 20,000' AGL Alt: 20,000' AGL O How to find: 1. Tilt beam down until strong ground clutter is seen at a range (in NM) equivalent to your altitude (in kft AGL) O Bottom of beam will be about 10° down 2. Then, tilt beam upward by the angle 10° - (beamwidth / 2) O Center of beam is now approx. horizontal (good reference tilt)

Attenuation O Loss of radar's power along radial due to absorption and scattering Larger particles and shorter wavelength → more attenuation NEXRAD (10-cm wavelength): attenuation negligible Airborne radar (3-cm wavelength): blind beyond first strong echo RADOME CONSIDERATIONS: Class of radome (should transmit > 90%) Water, ice & paint on radome also attenuate!

Airborne radar: What you MUST know O Key meteorological information O Maximum Permissible Exposure Level O MPEL = 10 mW/cm² (typically ~10' from radar) O Radar's antenna size (beamwidth) 10" → 10°; 12" → 8°; 18" → 6°; 24" → 4° O Tilt management (pilot controls tilt) O Radar's limitations (e.g. attenuation) WHEN IN DOUBT: O Refer to NEXRAD data (if available) O Contact ATC for guidance

NEXRAD in the cockpit: What you MUST know

- Whether you have composite or base reflectivity data
- o The age of the data
- o Where data void regions are located
- Key meteorological information
 - Freezing level(s) for anticipating icing
 - Anticipated weather and trends (e.g. thunderstorms, turbulence, fronts)
 - If precipitation may mix with dry air (T-DP > 10°C) → microbursts

Mesoscale Convective Systems

- o Thunderstorms often form in groups
 - Lines (squall lines) or clusters (MCS or MCC)
- o Contain convective & stratiform echoes
 - The convective echoes are in their cumulus and mature stages (strong updrafts)
 - The stratiform echoes are dissipating cells (downdraft regions)
- Unsafe to penetrate stratiform echoes that are connected to convective ones!

Beware of the following:

- o Strong reflectivity gradients
- Strong reflectivity echoes (red and magenta)
- Severe storm patterns: Hooks (or pendants), bows, fingers, and crescentshaped echoes
- o Squall lines
- Cells that produce shadows or attenuation (airborne radar)
 - Blind alleys (airborne radar)

In summary...

For safe interpretation of weather radar:

- Need key meteorological information
 - Freezing level(s), expected weather conditions, etc.
- Understand radar's characteristics & limitations
 - NEXRAD: (use composite reflectivity; recognize data void regions and shadows; check time stamp)
 - Airborne Radar: (know it's a crude instrument, use proper tilt management & beware of attenuation)
- o Recognize stratiform & convective echo
 - Don't penetrate echoes associated with convection
- o Recognize signs of severe weather