第一章

1.1节

1.1-1

- a. 是命题,真命题
- b. 不是命题
- c. 是命题,真值取决于明天是否去郊游
- d. 不是命题
- e. 是命题,假命题
- f. 是命题,不确定
- g. 是命题,假命题
- h. 不是命题

1.1-2

- a. 是命题,假命题
- b. 不是命题
- c. 不是命题
- d. 不是命题
- e. 是命题,真命题
- f. 不是命题
- g. 是命题,真值取决于是否下雨

1.1-3

逆命题:如果我去郊游,那么天不下雨而且我有时间。 否命题:如果天下雨或者我没时间,那么我不去郊游。 逆否命题:如果我不去郊游,那么天下雨或者我没时间。

1.1-4

逆命题:若我去华山,则明天是晴天。 否命题:若明天不是晴天,则我不去华山。 逆否命题:若我不去华山,则明天不是晴天。

1.1-5

- a. $\neg Q$
- b. $(\neg P \land Q) \rightarrow R$
- c. $\neg R \rightarrow P$
- d. $R \leftrightarrow (Q \land \neg P)$

1.1-6

- a. P: 11 是偶数 ¬P
- b. P: 小王很聪明 Q: 小王喜欢学习 $P \land (\neg Q)$
- c. P: 小王不聪明 Q: 小王不够用功 ¬ $P \land Q$

- d. P: 小王的专业是软件工程 Q: 小王的专业是通信工程 $P \lor Q$
- e. P: 天不下雨 Q: 我骑车去上街 $Q \rightarrow P$
- f. P: 1+1=2 Q: 3 不是奇数 $\neg P \leftrightarrow Q$
- g. P: 小王是计算机专业的学生 Q: 小王出生于 1986 年 S: 小王出生于 1987 年 R: 小王是班长 $P \land (Q \lor S) \land R$

1.1-7

- a. *T*
- b. *T*

1.1-8

- a. P: 2+3=5 Q: 19 是素数 $P \leftrightarrow Q$ 真
- b. $P: 2+3=5 Q: 19 是素数 ¬P \leftrightarrow Q 假$
- c. P: 4 是偶数 Q: 5 是偶数 $Q \rightarrow P$ 假
- d. P: 2+2=6 Q: 地球静止不动 $\neg Q \leftrightarrow P$ 假
- e. $P: 2+2=6 \ Q:$ 地球静止不动 $Q \to P$ 真
- f. P: $\sqrt{3}$ 是无理数 Q: $\sqrt{7}$ 是无理数 $P \oplus Q$ 假

1.1-9

- a. *T*
- b. *F* (1972)
- c. T
- d. Not T or F
- e. Not T or F

1.2节

1.2-1

- a. 是
- b. 是
- c. 是
- d. 不是 根据课本第7页定义1.2.2-ii,该公式不是命题。
- e. 不是 根据课本第7页定义 1.2.2-ii,该公式不是命题。

1.2-2

- a. P: 天下雨 Q: 天下雪 R: 我去学校 R 或 $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q) \to R$
- b. P: 天下雨 Q: 天下雪 R: 我去学校 $\neg (P \lor Q) \rightarrow R$
- c. P: 天下雨 Q: 天下雪 R: 我去学校 $R \leftrightarrow (P \land \neg Q)$

- d. Q: 天下雪 R: 我去学校 $R \rightarrow \neg Q$
- e. P: 天下雨 Q: 天下雪 R: 我去学校 $P \lor Q \to \neg R$

1.2-3

- a. 天下雪当且仅当我去学校且天不下雨
- b. 我去学校且天下雪。
- c. 当且仅当天下雪我去学校
- d. 我不去学校且天不下雪

1.2-4

- a. P: 小李去 Q: 小王去 R: 他去 $(\neg P \land \neg Q) \rightarrow R$
- b. *P*: 我们划船 *Q*: 我们跑步 ¬(*P*∧*Q*)
- c. P: 你来了 Q: 他唱歌 R: 你伴奏 $P \rightarrow (R \rightarrow Q)$
- d. P: 你年满 18 岁 Q: 身高不足 1.6 R: 坐过山车 $(\neg P \land Q) \rightarrow \neg R$
- e. P: 小张生病 Q: 小李生病 R: 我出差 S: 小王出差 $((P \land Q) \rightarrow R) \lor (\neg (P \land Q) \rightarrow S)$

1.2 - 5

第一个命题公式的自然语言公式为静静在陕西上学不在四川上学;静静在四川上学不在陕西上学。第二个自然语言公式为:静静在陕西上学或在四川上学。这两个命题的自然语言公式意思相同,所以原式可以符号化为PvQ。

1.2-6

- a. *T*
- b. *T*
- c. T
- d. *F*

1.2-7

a. P: 1+1=2 Q: 地球是静止的

$$P \rightarrow 0$$
 假

b. P: 1+1=2 Q: 地球是运动的

$$P \rightarrow Q$$
 \bar{A}

c. P: 地球上没有水 Q: 人类无法生存

$$P \rightarrow Q$$
 真

d. $P: \sqrt{2}$ 是无理数 Q: 地球上没有水 $P \rightarrow Q$ 假

1.2-8

a. P: 3>4 $Q: 3 \le 5$ $P \to Q$ b. P: 3>4 Q: 3>5 $P \to Q$

 $Q \rightarrow P$ *Q*: 3≤5 **c.** *P*: 3>4

 $Q: 3>5 \qquad \neg Q \to P$ $Q: 3>5 \qquad P \leftrightarrow Q$ d. *P*: 3>4

e. *P*: 3>4

1.2-9

a. F

b. *F*

c. F

 $\mathsf{d}.$ F

1.2-10

(a) $(P \land Q \land R) \lor \neg ((P \lor Q) \land (R \lor Q))$

P	Q	R	$P \lor Q$	RVQ	$\neg ((P \lor Q) \land (R \lor Q))$	$(P \land Q \land R) \lor \neg ((P \lor Q) \land (R \lor Q))$
0	0	0	0	0	1	1
0	0	1	0	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	0	0
1	0	0	1	0	1	1
1	0	1	1	1	0	0
1	1	0	1	1	0	0
1	1	1	1	1	0	1

(b)

P	Q	$P \rightarrow Q$	$Q \wedge (P \rightarrow Q)$	$Q \wedge (P \to Q) \to P$
0	0	1	0	1
0	1	1	1	0
1	0	0	0	1
1	1	1	1	1

(c)

(0)							
P	Q	R	PVQ	$Q \wedge R$	$P \lor Q \to Q \land R$	$P \wedge (\neg R)$	$(P \lor Q \to Q \land R)$ $\to P \land (\neg R)$
0	0	0	0	0	1	0	0
0	0	1	0	0	1	0	0
0	1	0	1	0	0	0	1
0	1	1	1	1	1	0	0
1	0	0	1	0	0	1	1
1	0	1	1	0	0	0	1
1	1	0	1	0	0	1	1

1	0	1	1	1	1	0	0
	_					_	_

(d)

P	Q	R	$\neg P$	$\neg Q$	$\neg R$	$P \wedge (\neg Q)$	$\neg P \to P \land (\neg Q)$	$\to P \wedge (\neg Q)$	$((\neg P) \rightarrow P \land (\neg Q) \rightarrow R) \land Q$	$\rightarrow P \land (\neg$
0	0	0	1	1	1	0	0	1	0	1
0	0	1	1	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0	1	1	1
0	1	1	1	0	0	0	0	1	1	1
1	0	0	0	1	1	1	1	0	0	1
1	0	1	0	1	0	1	1	1	0	0
1	1	0	0	0	1	0	1	0	0	1
1	1	1	0	0	0	0	1	1	1	1

1.2-11

- a. 如果 2 是偶数,那么雪是白的
- b. 如果雪是白的,那么2是偶数。
- c. 如果2不是偶数,那么雪不是白的。
- d. 如果雪不是白的,那么2不是偶数。

1.2-12

(答案不唯一)

a. 真: P.Q.R 为 F 假: P.Q 为 T, R 为 F

b. 真: P.R.S 为 F, Q 为 T 假: P.R.S.Q 为 F

c. 真: P.R.S 为 T, Q 为 F 假: P.Q.R.S 为 T

d. 真: P为F, Q.R为T 假: P.Q.R为F

1.2-13

- (a) $PV(\neg P \land Q) \Leftrightarrow PVQ$
- $\text{(b)}\,P\bigwedge\bigl(\neg P\bigvee(\neg Q)\bigr) \Leftrightarrow P\bigwedge(\neg Q)$

$$(c) \neg (P \lor Q) \leftrightarrow (\neg P \land (\neg Q)) \Leftrightarrow \neg (P \lor Q) \leftrightarrow \neg (P \lor Q) \Leftrightarrow T$$

$$(\mathrm{d})\left(\neg P \vee Q\right) \leftrightarrow \left(P \rightarrow Q\right) \Leftrightarrow \left(\neg P \vee Q\right) \leftrightarrow \left(\neg P \vee Q\right) \Leftrightarrow T$$

(e) $P \land (Q \lor R) \leftrightarrow (P \land Q \lor P \land R) \Leftrightarrow P \land (Q \lor R) \leftrightarrow P \land (Q \lor R)$

$$\text{(f)}\,\neg P \vee Q \to Q \Leftrightarrow P \wedge (\neg Q) \vee Q \Leftrightarrow P \vee Q$$

$$(g) P \wedge Q \to Q \Leftrightarrow \neg P \vee (\neg Q) \vee Q \Leftrightarrow T$$

$$(h) \qquad \qquad (P \land Q \leftrightarrow P) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow ((P \land Q \rightarrow P) \land \big(P \rightarrow (P \land Q)\big) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow$$

$$\big((\neg P \lor (\neg Q) \lor P) \land (\neg P \lor P \land Q) \big) \leftrightarrow \big(P \leftrightarrow Q \big) \Leftrightarrow \big(T \land (\neg P \lor Q) \big) \leftrightarrow \big(P \leftrightarrow Q \big) \Leftrightarrow$$

$$(P \to Q) \leftrightarrow (P \leftrightarrow Q)$$

(i)

P	Q	$Q \wedge (P \rightarrow Q)$	$P \rightarrow \neg Q$	$Q \land (P \rightarrow Q) \rightarrow (P \rightarrow \neg Q)$
0	0	0	1	1
0	1	1	1	1
1	0	0	1	1
1	1	1	0	0

(j)

P	Q	R	$P \wedge (\neg(Q \to P)$	$Q \wedge R$	$(P \wedge (\neg Q \to P)) \wedge (Q \wedge R)$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	0

重言式 c d e g

矛盾式 j

偶然式abf hi

可满足式abcde fg h i

1.2-14

- *a.* ¬*P*
- b. $P \wedge Q$
- c. $P \wedge \neg Q$
- d. $\neg P \land \neg Q$
- e. $(P \land \neg Q) \lor (\neg P \land Q)$
- f. $P \lor Q \land \neg P$

1.2-15

- a. $P \rightarrow Q$
- b. $P \wedge Q \rightarrow R$
- c. $R \rightarrow \neg (R \land \neg Q)$
- d. $Q \leftrightarrow (P \land \neg R)$

1.2-16

- a. $R \wedge \neg Q$
- b. $P \wedge Q \wedge R$
- c. $P \rightarrow R$
- d. $P \wedge \neg Q \wedge R$
- e. $P \wedge Q \rightarrow R$
- f. $R \leftrightarrow (Q \lor P)$

1.3节

1.3-1

(a)

P	Q	R	$P \wedge (Q \wedge R)$	$(P \land Q) \land R$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

(b)

()				
P	Q	R	PV(QVR)	(PVQ)VR
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

(c)

(-)				
P	Q	R	$P\Lambda(QVR)$	$(P \land Q) \lor (P \land R)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0

1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

(d)

P	Q	$\neg (P \lor Q)$	$\neg P \land (\neg Q)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

1.3-2

a. 证明: 左式
$$\Leftrightarrow \neg Q \lor (\neg P \lor R)$$

$$\Leftrightarrow (\neg Q \lor \neg P) \lor R$$

$$\Leftrightarrow \neg (Q \land P) \lor R$$

$$\Leftrightarrow (P \land Q) \rightarrow R$$

b. 证明: 左式
$$\Leftrightarrow \neg P \lor (\neg Q \lor P)$$

$$\Leftrightarrow P \lor (\neg P \lor \neg Q)$$

$$\Leftrightarrow \neg P \to (P \to \neg Q)$$

c.

d. 证明: 左式
$$\Leftrightarrow \neg(\neg P \lor \neg Q) \lor (\neg P \lor (\neg P \lor Q))$$

$$\Leftrightarrow$$
 $(P \land Q) \lor (\neg P \lor Q)$

$$\Leftrightarrow ((P \land Q) \lor \neg P) \lor Q)$$

$$\Leftrightarrow ((P \vee \neg P) \wedge (Q \vee \neg P)) \vee Q$$

$$\Leftrightarrow (T \land (Q \lor \neg P)) \lor Q$$

$$\Leftrightarrow \neg P \lor Q$$

e. 证明: 左式
$$\Leftrightarrow \neg((P \to Q) \land (Q \to P))$$

$$\Leftrightarrow \neg \big((\neg P \lor Q) \land (\neg Q \lor P) \big)$$

$$\Leftrightarrow \neg(\neg P \lor Q) \lor \neg(\neg Q \lor P)$$

$$\Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)$$

f. 证明: 左式
$$\Leftrightarrow$$
 $(\neg P \lor R) \land (\neg Q \lor R)$

$$\Leftrightarrow (\neg P \land \neg Q) \lor R$$

$$\Leftrightarrow \neg(\neg P \land \neg Q) \to R$$

$$\Leftrightarrow (P \vee Q) \to R$$

g. 证明: 左式
$$\Leftrightarrow$$
 (\neg ($P \land Q$) $\lor R$) \land ($\neg Q \lor (S \lor R)$)

$$\Leftrightarrow (\neg P \vee \neg Q \vee R) \wedge (\neg Q \vee S \vee R)$$

$$\Leftrightarrow (\neg P \land S) \lor (\neg Q \lor R)$$

$$\Leftrightarrow (\neg Q \lor (\neg P \land S)) \lor R$$

$$\Leftrightarrow \neg(Q \land (\neg S \lor P)) \lor R$$

$$\Leftrightarrow \neg(Q \land (S \to P)) \lor R$$

$$\Leftrightarrow (Q \land (S \rightarrow P)) \rightarrow R$$

1.3-3

- a. $PV(\neg Q)VR \Leftrightarrow \neg(\neg P \land Q)VR \Leftrightarrow \neg(Q \land (\neg R \land \neg P))$
- b. $PV(\neg QV(\neg R) \to Q) \Leftrightarrow PV(QV(\neg R))VQ \Leftrightarrow PVQV(\neg R)VQ \Leftrightarrow$ $PV(\neg R)VQ \Leftrightarrow \neg RV(\neg (\neg R \land (\neg Q))) \Leftrightarrow \neg (R \land (\neg Q \land \neg P))$
- c. $P \to (\neg Q \lor P) \Leftrightarrow \neg P \lor (\neg Q) \lor P \Leftrightarrow T$

1.3-4

- a. $P \land Q \land (\neg P) \Leftrightarrow F$
- b. $\neg P \land \left(\neg P \lor (Q \lor (\neg R)) \right) \land Q \Leftrightarrow \left(\neg P \lor (\neg P \land Q) \lor (\neg P \land (\neg R)) \right) \land Q \Leftrightarrow$ $\left((\neg P \land Q) \lor (\neg P \land Q) \lor (\neg P \land (\neg R) \land Q) \right) \Leftrightarrow \neg P \land Q \Leftrightarrow \neg (P \lor \neg Q)$
- c. $\neg P \land (R \lor P) \land (\neg Q) \Leftrightarrow (\neg P \land R \lor F) \land (\neg Q) \Leftrightarrow \neg P \land R \land (\neg Q) \Leftrightarrow \neg (P \lor Q \lor \neg R)$

1.3-5

- b. 肯定前件法可证 设 P 为 T,则¬P为 F当 Q 为 T 时,¬P → Q为 T当 Q 为 F 时,¬P → Q为 T得证。
- c. 否定后件法可证 设($P \rightarrow Q$) \rightarrow ($P \rightarrow R$)为 F 则 $P \rightarrow Q$ 为 T, $P \rightarrow R$ 为 F, 进而得 P 为 T, Q 为 T, R 为 F 则 $Q \rightarrow R$ 为 F, $P \rightarrow (Q \rightarrow R)$ 为 F, 得证。

1.3-6

a. 肯定前件法可证 $设P\Lambda(P \to Q)$ 为 T,则 P 为 T, $P \to Q$ 为 T,蕴含 Q 为 T。则 Q 为 T,证之。

- b. 否定后件法可证 设PVQ为F,则P为F,Q为F。 $P\to Q为T$, $P\to Q\to Q为F$ 。 证之。

1.3-7

P: 我学习 Q: 我离散数学不及格 R: 我沉迷于网络游戏

$$H_1: P \rightarrow \neg Q$$
;

$$H_2: \neg R \rightarrow P$$
;

$$H_3: Q;$$

 $C: R_{\circ}$

由于:

$$Q \land (P \rightarrow \neg Q) \Rightarrow \neg P;$$

 $\neg P \land (\neg R \rightarrow P) \Rightarrow R.$

由前提可推出结论,论述有效。

1.3-8

令命题 P: 罗宾恢复了健康 命题 Q: 罗宾能继续工作

命题 R: 罗宾出外疗养 命题 S: 罗宾卧床在家

则前提 *H*1: *P*→*Q*

前提 $H2: \neg Q \rightarrow (R \lor S)$

前提 *H*3: ¬R∧¬*S*

结论: P

验证 $(P \to Q) \land (\neg Q \to R \lor \neg S) \land (\neg R \land \neg S) \Rightarrow P$

设: $(P \to Q) \land (\neg Q \to R \lor S) \land (\neg R \land \neg S)$ 为 T,则 $(P \to Q)$ 为 T、 $(\neg Q \to R \lor S)$ 为 T

且(¬R Λ ¬S)也为 T, 即¬R、¬S 为 T, R、S 为 F, 所以 R $\vee S$ 为 F, 即¬Q 为 F, Q 为 T, 所以 P 为 T, $(P \to Q)\Lambda(\neg Q \to R \vee \neg S)\Lambda(\neg R \wedge \neg S) \to P$ 成立。即罗宾必须恢复健康成立。

1.3-9

P: 琼斯学习 Q: 琼斯的英语四级通过了 R: 琼斯玩 DOTA 游戏。 $(P \rightarrow Q) \land (\neg R \rightarrow P) \land \neg Q \Rightarrow R$

设 $(P \to Q) \land (\neg R \to P) \land \neg Q$ 为 T,则 $\neg Q$ 为 T,Q 为 F,P 为 F, $\neg R$ 为 F,R 为 T,即 $(P \to Q) \land (\neg R \to P) \land \neg Q \to R$ 成立,即琼斯玩 DOTA 游戏成立。

1.3-10

8 个 P Q $\neg P$ $\neg Q$ $P \rightarrow \neg Q$ $\neg P \rightarrow \neg Q$ $\neg P \rightarrow \neg Q$ 能不能用括号?

1.3-11

 $\neg (R \lor \neg S)$

1.3-12

a.

 $P \wedge (P \vee Q) \Leftrightarrow P$

P	Q	$P \lor Q$	$P \wedge (P \vee Q)$
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

b.

$$P \lor (P \land Q) \Leftrightarrow P$$

P	Q	$P \wedge Q$	$P \lor (P \land Q)$
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

1.3-13

a.

$$\neg (A \leftrightarrow B) \Leftrightarrow (A \land \neg B) \lor (\neg A \land B)$$

证明
$$\neg (A \leftrightarrow B)$$

$$\Leftrightarrow \neg ((A \to B) \land (B \to A))$$

$$\Leftrightarrow \neg ((\neg A \lor B) \land (\neg B \lor A))$$

$$\Leftrightarrow \neg (\neg A \lor B) \lor \neg (\neg B \lor A)$$

$$\Leftrightarrow (A \land \neg B) \lor (B \land \neg A)$$

b.

$$P \Leftrightarrow \neg (P \land Q) \rightarrow (\neg Q \land P)$$

证明 $\neg (P \land Q) \rightarrow (\neg Q \land P)$
 $\Leftrightarrow (P \land Q) \lor (\neg Q \land P)$
 $\Leftrightarrow P$

1.3-14

(a)From the True-False table we can figure out that $PimpQ \Leftrightarrow Q$

So we can $infer(PimpQ) \land (QimpP) \Leftrightarrow P \land Q$, and it's a common sense that $P \land Q$ will never be logically equivalent to $P \leftrightarrow Q$.

(b)

P	Q	PimpQ	QimpP	$(PimpQ) \land (QimpP)$	$P \leftrightarrow Q$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

1.3-15

$$\begin{split} &(P \to Q) \land (Q \to R) \to (P \to R) \\ &\Leftrightarrow ((\neg P \lor Q) \land (\neg Q \lor R)) \to (\neg P \lor R) \\ &\Leftrightarrow (P \land \neg Q) \lor (Q \land \neg R) \lor (\neg P \land R) \\ &\Leftrightarrow T \end{split}$$

1.4节

1.4-1

a.
$$\neg p \Leftrightarrow \neg (p \lor p) \Leftrightarrow p \downarrow p$$

b.
$$(p \lor q) \Leftrightarrow \neg(\neg(p \lor q)) \Leftrightarrow \neg(p \downarrow q) \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$

c.
$$p \lor q \Leftrightarrow \neg(\neg p \lor \neg q) \Leftrightarrow \neg p \downarrow \neg q \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$$

d.
$$p \to q \Leftrightarrow \neg p \lor q \Leftrightarrow \neg (\neg (\neg p \lor q)) \Leftrightarrow ((p \downarrow p) \downarrow q) \downarrow ((p \downarrow p) \downarrow q)$$

1.4-2

a.
$$\neg p \Leftrightarrow \neg (p \land p) \Leftrightarrow p \uparrow p$$

b.
$$p \lor q \Leftrightarrow \neg(\neg p \land \neg q) \Leftrightarrow \neg p \uparrow \neg q \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$$

c.
$$p \land q \Leftrightarrow \neg(\neg(p \land q)) \Leftrightarrow \neg(p \uparrow q) \Leftrightarrow (p \uparrow q) \uparrow (p \uparrow q)$$

d.
$$p \to q \Leftrightarrow \neg p \lor q \Leftrightarrow \neg (\neg (\neg p \lor q)) \Leftrightarrow p \uparrow (q \uparrow q)$$

1.4-3

$$p \uparrow q \Leftrightarrow \neg(p \land q)$$

$$\Leftrightarrow \neg(\neg(\neg p \lor (\neg q)))$$

$$\Leftrightarrow \neg((p \downarrow p) \downarrow (q \downarrow q))$$

$$\Leftrightarrow ((p \downarrow p) \downarrow (q \downarrow q)) \downarrow ((p \downarrow p) \downarrow (q \downarrow q))$$

1.4-4

$$\neg(p \downarrow q) \Leftrightarrow p \lor q \Leftrightarrow \neg(\neg p \land (\neg q)) \Leftrightarrow \neg p \downarrow \neg q$$
$$\neg(p \uparrow q) \Leftrightarrow p \land q \Leftrightarrow \neg(\neg p \lor (\neg q)) \Leftrightarrow \neg p \downarrow \neg q$$

1.4-5

$$p \rightarrow \neg q \Leftrightarrow \neg p \lor (\neg q)$$

因为 $\{\neg,\lor\}$ 是全功能连接词集合,所以 $\{,\}$ $\{\neg,\to\}$ 是全功能连接词集合;又,去掉 \to 后, $\{\neg\}$ 不是全功能连接词集合,所以 $\{\neg,\to\}$ 是极小全功能连接词集合。

1.4-6

$$p \oplus \neg q \Leftrightarrow \neg (p \leftrightarrow q)$$

因为 $\{\leftrightarrow,\neg\}$ 不是全功能连接词集合,由上式可知, $\{\oplus,\neg\}$ 不是全功能连接词集合。

1.4-7

a. 由表可知,该连接词 g 是或非↓,

$$P \downarrow Q \Leftrightarrow \neg (P \land Q)$$

因为{¬、∨} 是全功能连接词,所以该连接词 g 是全功能连接词。

b.
$$A = (P \to Q) \lor R \Leftrightarrow \neg P \lor Q \lor R \Leftrightarrow (P \downarrow P) \lor ((Q \downarrow R) \downarrow (Q \downarrow R))$$

 $\Leftrightarrow (P \downarrow P) \downarrow (Q \downarrow R) \downarrow (Q \downarrow R) \downarrow (P \downarrow P) \downarrow (Q \downarrow R) \downarrow (Q \downarrow R)$
 $A = g(g(g(g(P,P),g(Q,R)),g(Q,R)),g(P,P)),g(Q,R))$

1.4-8

For binary operation, there are 16 conditions.

P	Q	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

From the table we can construct f_0 with $\neg(\neg P \lor P)$

$$f_1: \neg(\neg P \lor (\neg Q))$$

$$f_2$$
: $\neg(\neg P \lor Q)$

$$f_3$$
: P

$$f_4$$
: $\neg(PV(\neg Q))$

$$f_5: Q$$

$$f_6: \neg (PV(\neg Q))V(\neg (\neg PVQ))$$

$$f_7: PVQ$$

$$f_8: \neg (P \lor Q)$$

$$f_9$$
: $\neg f_6$

$$f_{10}: \neg Q$$

$$f_{11}$$
: $PV(\neg Q)$

$$f_{12}$$
: $\neg P$

$$f_{13}$$
: $\neg P \lor Q$

$$f_{14}$$
: $\neg P \lor (\neg Q)$

$$f_{15}: \neg P \lor P$$

We can construct all conditions with $\{\neg, V\}$. Therefore, $\{\neg, V\}$ is a functionally complete set.

1.5 节

a.
$$(\neg P \land Q) \lor R$$

- b. $(P \lor Q) \land T$
- c. $\neg (P \land Q) \lor (P \land \neg (Q \lor \neg R))$
- d. $(\neg P \land R) \land Q$
- e. $(\neg P \land Q) \lor R$
- f. $(P \land Q) \land \neg R$

1.5-2

a. 证明 原式 $\Leftrightarrow P \lor \neg [(P \land Q) \lor (\neg Q \land Q)]$

$$\Leftrightarrow P \vee \neg (P \wedge Q)$$

$$\Leftrightarrow P \lor \neg P \lor \neg Q$$

$$\Leftrightarrow T \lor \neg Q \Leftrightarrow T$$

对偶式: $P \land \neg [(P \land \neg Q) \lor Q] \Leftrightarrow F$

b. 证明: 原式 $\Leftrightarrow P \lor (\neg Q \land Q) \land \neg (P \land Q)$

$$\Leftrightarrow P \land (\neg P \lor \neg Q)$$

$$\Leftrightarrow (P \land \neg P) \lor (P \land \neg Q)$$

$$\Leftrightarrow \neg(\neg P \lor Q)$$

对偶式: $(P \land \neg Q) \lor (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow \neg (\neg P \land Q)$

c. 证明: 原式 \leftrightarrow ($P \land Q$) \lor ($P \land \neg Q$)

$$\Leftrightarrow P \land (Q \lor \neg Q) \Leftrightarrow P$$

对偶式: $[\neg(\neg P \land \neg Q) \land \neg(\neg P \land R)] \Leftrightarrow P$

d. 证明: 原式 \leftrightarrow ($P \land Q$) $V(\neg P \lor Q$)

$$\Leftrightarrow (0 \lor \neg P) \lor 0$$

对偶式: $(P \lor Q) \land (\neg P \land (\neg P \land Q)) \Leftrightarrow \neg P \land Q$

1.6节

1.6 - 1

a.
$$\neg (P \lor Q) \leftrightarrow (P \rightarrow Q)$$

$$\Leftrightarrow \left(\neg (P \lor Q) \to (P \to Q)\right) \land \left((P \to Q) \to \neg (P \lor Q)\right)$$

$$\Leftrightarrow \big((P \lor Q) \lor (\neg P \lor Q) \big) \land \big(\neg (\neg P \lor Q) \lor \big(\neg (P \lor Q) \big) \big)$$

$$\Leftrightarrow T \wedge \Big(\Big(P \wedge (\neg Q) \Big) \vee \Big(\neg P \wedge (\neg Q) \Big) \Big) \Leftrightarrow (P \wedge (\neg Q)) \vee (\neg P \wedge (\neg Q))$$

b.
$$\neg (PV(\neg Q)) \land (S \rightarrow R) \Leftrightarrow (\neg P \land Q) \land (\neg S \lor R) \Leftrightarrow \neg P \land (\neg S \lor R) \land Q \Leftrightarrow$$

$$((\neg P \land (\neg S)) \lor (\neg P \land R)) \land Q \Leftrightarrow (\neg P \land (\neg S) \land Q) \lor (\neg P \land R \land Q)$$

c.
$$\neg (P \lor Q) \leftrightarrow (P \land Q) \Leftrightarrow (\neg (P \lor Q) \rightarrow (P \land Q)) \land ((P \land Q) \rightarrow \neg (P \lor Q)) \Leftrightarrow$$

$$((P \lor Q) \lor (P \land Q)) \land ((\neg P \lor (\neg Q)) \lor (\neg (P \lor Q))) \Leftrightarrow (\lor Q) \land (\neg P \lor (\neg Q)) \Leftrightarrow$$

$$(\neg P \land Q) \lor (P \land \neg Q)$$

$$d. \neg (P \lor Q) \land (P \land Q) \Leftrightarrow \neg P \land \neg Q \land P \land Q \Leftrightarrow F$$

1.6-2

a.
$$P \land (P \rightarrow Q) \Leftrightarrow P \land (\neg P \lor Q) \Leftrightarrow P \land \neg P \lor P \land Q \Leftrightarrow P \land Q$$

b.
$$\neg P \leftrightarrow (\neg Q \lor R) \Leftrightarrow (\neg P \to (\neg Q \lor R)) \land ((\neg Q \lor R) \to \neg P) \Leftrightarrow (P \lor (\neg Q \lor R)) \land (\neg (\neg Q \lor R) \lor \neg P)$$

c.
$$\neg (P \rightarrow Q) \Leftrightarrow \neg (\neg P \lor Q) \Leftrightarrow P \land \neg Q$$

$$\mathsf{d}.\quad P\to Q\to R\Leftrightarrow (\neg P\vee Q)\to R\Leftrightarrow (P\wedge\neg Q)\vee R\Leftrightarrow (\neg P\vee Q)\wedge (\neg Q\vee R)$$

1.6-3

a. 构造真值表:

P	Q	$\neg P \lor (\neg Q)$	$P \rightarrow Q$	$\neg P \lor (\neg Q) \leftrightarrow (P \to Q)$
0	0	1	1	0
0	1	1	0	0
1	0	1	0	1
1	1	0	1	1

主析取范式 $(P \land Q) \lor (\neg P \land \neg Q)$

主合取范式 $(PVQ)\Lambda(PV \neg Q)$

b. 构造真值表:

Р	Q	$\neg (P \rightarrow Q)$	$P \rightarrow \neg Q$	$\neg (P \to Q) \leftrightarrow (P \to \neg Q)$
0	0	0	1	0
0	1	0	1	0
1	0	1	1	1
1	1	0	0	1

主析取范式 $P \land Q$) $V(P \land \neg Q)$

主合取范式 $(PVQ)\Lambda(PV\neg Q)$

c. 构造真值表:

Р	Q	R	$\neg R$	$\begin{array}{c} Q \\ \rightarrow P \end{array}$	QVR	$P \rightarrow Q \bigvee R$	$\neg R \land (Q \to P) \to (P \to Q \lor R)$
0	0	0	1	1	0	1	1
0	0	1	0	1	1	1	1
0	1	0	1	0	1	1	1
0	1	1	0	0	1	1	1
1	0	0	1	1	0	0	0
1	0	1	0	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	0	1	1	1	1

主析取范式 \sum (0,1,2,3,5,6,7)

主合取范式∏(4)

d. 构造真值表:

u.	150	40世共且代:								
Р	Q	R	S	$\neg P$	$\neg Q$	$P \wedge (\neg Q) \wedge S$	$\neg P \land Q \land R$	$(P \land (\neg Q) \land S) \lor (\neg P \land Q \land R)$		
0	0	0	0	1	1	0	0	0		
0	0	0	1	1	1	0	0	0		
0	0	1	0	1	1	0	0	0		
0	0	1	1	1	1	0	0	0		
0	1	0	0	1	0	0	0	0		
0	1	0	1	1	0	0	0	0		
0	1	1	0	1	0	0	1	1		
0	1	1	1	1	0	0	1	1		
1	0	0	0	0	1	0	0	0		
1	0	0	1	0	1	1	0	1		
1	0	1	0	0	1	0	0	0		
1	0	1	1	0	1	1	0	1		
1	1	0	0	0	0	0	0	0		
1	1	0	1	0	0	0	0	0		
1	1	1	0	0	0	0	0	0		
1	1	1	1	0	0	0	0	0		

主析取范式∑(6,7,9,11)

主合取范式∏(0,1,2,3,4,5,8,10,12,13,14,15)

1.6-4

不存在

1.6-5

主析取范式 \sum (0,3,5,6)

主合取范式 [(1,2,4,7)

1.6-6

Р	Q	R	$P \wedge Q$	$P \to (P \land Q)$	$(P \to (P \land Q)) \lor R$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	1	1	1

7个极小项 1个极大项

1.6-7

a.
$$(P \to Q) \to R \Leftrightarrow \neg(\neg P \lor Q) \lor R \Leftrightarrow (P \lor R) \land (R \lor (\neg Q)) \Leftrightarrow$$

$$(P \lor R \lor Q) \land (P \lor R \lor (\neg Q)) \land (R \lor (\neg Q) \lor P) \land (R \lor (\neg Q) \lor (\neg P))$$

$$Q \to (P \to R) \Leftrightarrow \neg Q \lor (\neg P \lor R)$$
不等价

b.
$$(P \to Q) \to R \Leftrightarrow (P \to Q) \to R$$

\$\(\phi\)\(\phi\)

c.
$$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$$

$$\neg (PVQ) \Leftrightarrow \neg P \wedge (\neg Q) \Leftrightarrow \Big(PV(\neg Q)\Big) \wedge (\neg PVQ) \wedge (\neg PV(\neg Q))$$
不等价

d.
$$\neg (P \leftrightarrow Q) \Leftrightarrow \neg ((P \to Q) \land (Q \to P)) \Leftrightarrow \neg ((\neg P \lor Q) \land ((\neg Q \lor P)) \Leftrightarrow$$

$$(P \land (\neg Q)) \lor (Q \lor (\neg P)) \Leftrightarrow (P \lor Q) \land (\neg P \lor (\neg Q)) \Leftrightarrow (P \lor Q) \land (\neg P \lor (\neg Q))$$
等价

1.6-8

a.
$$\neg ((\neg P \lor \neg Q \lor R) \land (Q \land \neg R \lor P))$$

b.

c. $\neg P \lor ((\neg Q \lor R) \land (\neg R \lor Q))$ 其他等价的符合条件即可

1.6-9

N个变元有2"个极小项,等价类共有

$$C_{2^n}^0 + C_{2^n}^1 + C_{2^n}^2 + C_{2^n}^3 + \dots + C_{2^n}^{2^n} = 2^{2^n}$$

1.6-10

P	Q	R	$(P \land Q) \to (P \land \left(\neg(Q \lor (\neg R))\right))$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

主析取范式 \sum (2,3,4,5,6,7)

主合取范式 ∏(0,1)

1.6-11

设命题 P: A 得第一,Q: B 得第二,R: C 得第二 S: D 得第四,E: A 得第二。依题意得: $(P \oplus Q) \land (R \oplus S) \land (E \oplus S)$

$$\Leftrightarrow \big((P \land \neg Q) \lor (\neg P \land Q) \big) \land \big((R \land \neg S) \lor (\neg R \land S) \big) \land \big((E \land \neg S) \lor (\neg E \land S) \big)$$

 \Leftrightarrow

 $((P \land \neg Q \land R \land \neg S) \lor (P \land \neg Q \land \neg R \land S) \lor (\neg P \land Q \land R \land \neg S) \lor (\neg P \land Q \land \neg P \land S))$ 因为 $(P \land \neg Q \land \neg R \land S)$ 与 $(\neg P \land Q \land R \land \neg S)$ 不符题意,舍去。 故原式化为

 $(P \land \neg Q \land R \land \neg S \land E \land \neg S) \lor (P \land \neg Q \land R \land \neg S \land \neg E \land S)$

1.6-12

设命题 P: A 出差。

命题 Q: B 出差。

命题 R: C 出差。

命题 S: D 出差。

由题意我们可得: 条件 (a) $P \to (R \land \neg S) \lor (\neg R \land S)$

(b) $\neg (Q \land R)$

(c) $R \rightarrow \neg S$

设命题 $X: P \to (R \land \neg S) \lor (\neg R \land S)$

 $Y: \neg (Q \land R)$

 $Z: R \rightarrow \neg S$

P	Q	R	S	$R \oplus S$	X	Y	Z	$X \wedge Y \wedge Z$
0	0	0	0	0	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	0	0	0	1	1	0
1	0	0	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1
1	0	1	1	0	0	1	0	0
1	1	0	0	0	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	1	1	0	1	0
1	1	1	1	0	0	0	0	0

选取真值表中 *PQRS* "1"的个数等于 2的项。则有 0101, 1010, 1001,

则可得组合: A和D去或A和C去或B和D去

1.6-13 *ABC* 取 1 时代表开关关闭

A	В	С	$A \wedge C$	$B \wedge C$	$A \land C \lor B \land C$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	1

主析取范式 \sum (3,5,7)

主合取范式 [(0,1,2,4,6)

1.7节

1.7-1

a.

(1) $\neg D$

P(假设前提)

(2) *DVA*

P

 $(3) \neg D \rightarrow A \neg D \rightarrow A$

T(1),(2) E^{14}

(4) *A*

T(3) I10

(5) $A \rightarrow B$

P

(6) B

 $T(5)\,I10$

 $(7) \ A \to C$

 \boldsymbol{P}

(8) C

T(7) I10

(9) (B∧C) ∧¬(B∧C)矛盾 T(6)(8) I1

b.

(1) S P(假设前提)

(2) $\neg (\neg P \land S)$

(6) $P \rightarrow Q$ P

(8) $\neg Q \lor R$ P

 $(9) Q \rightarrow R \qquad T (8) E 14$

(1) $\neg R \lor S$ P

(2) $R \rightarrow S$ T (1) E 14

(3) $\neg S$ P

(4) $\neg R$ T(2)(4) I 11

(5) $P \wedge Q \rightarrow R$ P

(6) $\neg (P \land Q)$ T (5) E 14

d.

 $(1)B \wedge C$ P

 $(2)B \leftrightarrow C \tag{1}$

 $(3)(B \leftrightarrow C) \rightarrow (H \lor G) P$

 $(4)H \lor G \tag{2)(3)}$

 $(5)G \lor H \tag{4}$

e.

 $(1)R \wedge S$ P

 $(2)R \qquad \qquad (1)$

1.7-2

a.

(1) $\neg P \lor Q \quad P$

(2)
$$P \rightarrow Q$$
 T (1) E 14

(3)
$$\neg Q \lor R$$
 P

(4)
$$Q \rightarrow R$$
 T (3) E 14

(5)
$$P \rightarrow R$$
 T (3)(4) I 13

(6)
$$R \rightarrow S$$
 P

(7)
$$P \rightarrow S$$
 T (6) I 13

$$(1) P \to Q P$$

(2)
$$\neg P \lor Q$$
 T (1) E 14

(3)
$$(\neg P \lor Q) \land (\neg P \lor P)$$
 T (2) E 12

(4)
$$\neg P \lor (P \land Q)$$
 T (3) E 9

(5)
$$P \rightarrow P \land Q$$
 T (4) E 14

c.

$$(1) P \lor Q \to R$$

 \boldsymbol{P}

(2)
$$\neg (P \lor Q) \lor R$$
 T (1) E 14

(3)
$$(\neg P \lor R) \land (\neg Q \lor R)$$
 T (2) E 7

(4)
$$(\neg P \land \neg Q) \lor R$$
 T (3) E 9

(5)
$$(P \wedge Q) \rightarrow R$$
 T (4) E 14

附加前提

(2)
$$P \rightarrow (Q \rightarrow R)$$
 P

(3)
$$Q \rightarrow R$$
 T (1) I 10

$$(4) Q \to (R \to S) P$$

(5)
$$R \rightarrow S$$
 T (3) I 10

(6)
$$Q \rightarrow S$$

(6) $Q \rightarrow S$ T (2)(4) I 13

(7)
$$P \rightarrow (Q \rightarrow S)$$
 T (1)(5) I 14

1.7-3

a.

- (1)P
- $(2)P \rightarrow R$
- (3)R
- $(4)P \rightarrow Q$
- (5)Q
- $(6)Q \rightarrow \neg R$
- $(7)\neg R$
- (8)*R*∧¬*R* 矛盾

b.

- $(1)A \wedge D$
- (2)A
- (3)D
- $(4)A \rightarrow (B \rightarrow C)$
- $(5)B \rightarrow C$
- $(6) \neg (B \land \neg C)$
- $(7)D \rightarrow (B \land \neg C)$
- (8)¬ $(B \land \neg C) \land (B \land \neg C)$ 矛盾

1.7-4

a.

(1)P 附加前提

P

- $(2)\neg P \lor Q$
- $(3)P \to Q \tag{2}$
- (4)Q (1)(3)
- $(5)S \rightarrow \neg Q$ P
- $(6)Q \to \neg S \tag{5}$
- $(7) \neg S \qquad (4)(6)$
- $(8)P \to \neg S \tag{7}$

b.

P(假设前提)

$$(2)P \leftrightarrow Q$$

P

$$(3)(P \rightarrow Q) \land (Q \rightarrow P)$$

$$(4)P \rightarrow Q$$

(2) (3)

(1)(4)

$$(6)S \rightarrow \neg Q$$

P

$$(7)Q \rightarrow \neg S$$

$$(7)Q \rightarrow \neg$$

(6)

$$(8)S\vee R$$

P

(7)(8)

$$(10)\neg R$$

P

$$(11)R \wedge \neg R$$

矛盾

c.

P

$$(2)R \vee S$$

(1)

$$(3)((Q \rightarrow P) \lor \neg R)$$

P

$$(4)Q \rightarrow P$$

(1)(3)

$$(5) \neg (P \rightarrow Q) \rightarrow \neg (R \lor S)$$
 P

$$(6)R \lor S \to (P \to Q) \quad (5)$$

$$(7)P \rightarrow Q$$

(2)(6)

$$(8)(P \rightarrow Q) \land (Q \rightarrow P) \ (4)(7)$$

$$(9)P \leftrightarrow Q$$

(8)

1.7-5

设 P: 有球赛

Q: 交通顺畅

R: 按时到

已知: $P \rightarrow \neg Q$, $R \rightarrow Q$, $R \Rightarrow \neg P$

(1) *P*

P (假设前提)

(2) $P \rightarrow \neg Q$

P

(3) $\neg Q$

T (2) I 10

(4) $R \rightarrow Q$

(5) *¬R*

T (4) I 6

(6) R∧¬R 矛盾 T (5) I 1

1.7-6

- a. 有效结论 R 无效结论 $\neg R$
- b. 有效结论 $\neg P$ 无效结论P
- c. 有效结论 R 无效结论 R

1.7-7

- $P: \omega$ 是奇数
- Q: ω能被 2 整除
- $R: \omega$ 是偶数

前提:

$$P \rightarrow \neg Q, R \rightarrow Q$$

结论:

- $R \rightarrow \neg P$
- 真值表法略
- 主范式法

证明 $(P \rightarrow \neg Q) \land (R \rightarrow \neg Q) \rightarrow (R \rightarrow \neg P)$ 的主析取范式由八个极小项组成,也就

是这个式子永真

逻辑演绎法

(1) P

- P(附加前提)
- (2) $P \rightarrow \neg Q$
- P
- $(3) \neg P \lor \neg Q$
- \boldsymbol{E}

 $(4) \neg Q$

- T(3)
- $(5) \neg Q \rightarrow \neg R$
- \boldsymbol{P}
- (6) $P \rightarrow \neg R$
- T(2)(4)
- $(7) R \rightarrow \neg P$
- (6)

1.7-8

(1) B

- P (附加前提)
- (2) $\neg B \lor D$
- (3)D

- (1)(2)
- (4) $B \rightarrow D$
- (2)
- $(5) (H \rightarrow \neg E) \rightarrow \neg D$
- P
- (6) $D \rightarrow (H \land E)$
- (5)
- (7) $B \rightarrow E$
- (4)(6)

1.7-9

 $P: \omega$ 和t的乘积为负数;

 $Q: \omega$ 为负数;

R: t为负数;

前提: $P \rightarrow (Q \oplus R), \neg P$

结论: $\neg Q \land \neg R$

$$(1) P \rightarrow (\neg Q \land R) \lor (Q \land \neg R) \qquad P$$

$$(2) \neg ((\neg Q \land R) \lor (Q \land \neg R)) \rightarrow \neg P \qquad T (1)$$

$$(3) \neg P$$

$$(4) \neg (Q \land R) \land \neg (Q \land \neg R) \rightarrow \neg P \qquad T (2)(3)$$

$$(5)(Q \vee \neg R) \wedge (\neg Q \vee R) \rightarrow \neg P \qquad T (4)$$

$$(6)(Q \lor (\neg R \land \neg Q)) \land ((Q \land R) \lor \neg R) \rightarrow \neg P \qquad T (5)$$

Ρ

$$(7)(\neg R \land \neg Q) \lor (Q \land R) \qquad T (6)$$

1.7-10

P: 小张是计算机系的学生;

O: 小李是计算机系的学生;

R: 小红是汉语言文学系的学生;

S: 小红喜欢看古典文学书籍;

前提:

$$P \land Q \rightarrow R, R \rightarrow S, \neg S, P$$

结论:

 $\neg Q$

$$(1) \neg S, R \rightarrow S$$

$$(2) \neg S \rightarrow \neg R \tag{1}$$

$$(3) \neg R \tag{2}$$

$$(4) \neg R \rightarrow \neg (P \land Q)$$
 P

(5) $\neg P \lor \neg Q$

(4)

(6) P

Р

 $(7) \neg Q$

(6)

1.7-11

设命题 P: A 曾经到过受害者房间,Q: A 在 10 点前离开,R: 门卫看到他,S: A 是嫌犯。

即证明: $P \land \neg Q \rightarrow A \lor P \lor Q \rightarrow R \lor \neg R$, 可推出 A.

证:

(1) $\neg R$

(2) $Q \rightarrow R$

Р

 $(3) \neg Q$

(1)(2)

(4) P

Р

 $(5) P \land \neg Q \qquad (3) (4)$

(6) $P \land \neg Q \rightarrow S$

(7) S (5) (6)

1.7-12

设命题 P: 今天是周六,Q: 我们去兵马俑玩,R: 我们去华清池玩,S: 兵马俑 游人太多。

 $P \rightarrow (Q \lor R), S \rightarrow \neg Q, P, S \Rightarrow R$

(1) P,S

Р

(2) $S \rightarrow \neg Q$

 $(3) \neg Q$

(1)(2)

(4) $P \rightarrow (Q \lor R)$

(5) $Q \vee R$

(1)(4)

R(6)

(3)(5)

设命题 P: 静静是艺术生,Q: 静静会绘画,R: 静静是文科生。 $P \to Q, \neg P \to R, \neg Q \Rightarrow R$ 。

- $(1) P \rightarrow Q$ P
- (2) $\neg Q$ P
- $(3) \quad \neg P \qquad \qquad (1) \ (2)$
- $(4) \neg P \rightarrow R$ P
- (5) R (3) (4)

1.7-13

设命题 A: 小王喜欢数学, B: 小田喜欢数学, C: 小强喜欢数学, D: 小田喜欢物理。

 $A \rightarrow (B \lor C), B \rightarrow D, A, \neg D \Rightarrow C$

- $\stackrel{\text{i.E.}}{=} (1) \stackrel{B \to D}{=} D$
 - $(2) \neg D$
 - $(3) \neg B \qquad (1) (2)$
 - $(4) A \rightarrow (B \lor C) \qquad P$
 - (5) \boldsymbol{A}
 - $(6) B \vee C \qquad (4) (5)$
 - (7) C (3) (6)

1.7-14

P 铁矿 Q 铜矿 R 锡矿

甲: $\neg P \land \neg Q$ $\angle \neg P \land R$ 丙 $P \land \neg R$

甲全对 $\mathbf{A_i} = \neg P \land \neg Q$

甲全错A3=P>Q

乙全对 $B_1 = \neg P \wedge R$

 $\angle X$ $\rightarrow B_2 = (\neg P \land \neg R) \lor (P \land R)$

乙全错B3=Pv¬R

丙全对 $C_1 = P \land \neg R$

丙对一半 $C_2 = (P \wedge R) \vee (\neg P \wedge \neg R)$

丙全错 $C_3 = \neg P \lor R$

 $E = (A_1 \wedge B_2 \wedge C_3) \vee (A_1 \wedge B_3 \wedge C_2) \vee (A_2 \wedge B_1 \wedge C_3) \vee (A_2 \wedge B_3 \wedge C_1) \vee (A_3 \wedge B_1 \wedge C_2) \vee (A_3 \wedge B_2 \wedge C_1)$

为真

 $A_1 \wedge B_2 \wedge C_3 \Leftrightarrow 0$ $A_1 \wedge B_3 \wedge C_2 \Leftrightarrow 0$

 $A_2 \wedge B_1 \wedge C_3 \Leftrightarrow \neg P \wedge Q \wedge R \qquad A_2 \wedge B_3 \wedge C_1 \Leftrightarrow P \wedge \neg Q \wedge \neg R$

 $A_3 \wedge B_2 \wedge C_1 \Leftrightarrow 0$ $A_3 \wedge B_1 \wedge C_2 \Leftrightarrow 0$

所以 $(\neg P \land Q \land R) \lor (P \land \neg Q \land \neg R) \Leftrightarrow 1$

因为 PQR 只能有一个为真,所以 $P \land \neg Q \land \neg R \Leftrightarrow 1$

所以是铁矿。

1.7-15

假设丙一半对,则有 1、甲全对,乙全错,则小王为上海人。 2、甲全错,乙全对,则小王为江苏人。 故此题无唯一答案。

1.7-16

a. P: there is a gas in the car

Q: I go to the store

R: I get a soda

 $P \rightarrow Q, Q \rightarrow R, P \Rightarrow R$

- (1)P
- $(2)P \rightarrow Q$
- (3)Q
- $(4)Q \rightarrow R$
- (5)R
- b. P: there is a gas in the car
 - Q: I go to the store
 - R: I get a soda

$$P \rightarrow Q, Q \rightarrow R, \neg R \Rightarrow \neg P$$

- $(1)\neg R$
- $(2)Q \rightarrow R$
- $(3) \neg R \rightarrow \neg Q$
- $(4)\neg Q$
- $(5)P \rightarrow Q$
- $(6)\neg Q \rightarrow \neg P$
- $(7)\neg P$
- c. P: Jill can sing
 - Q: Dweezle can play
 - R: I buy the compact disk
 - S: I buy the compact disk player

$$P \lor Q \rightarrow R, P, S \rightarrow R \land S$$

- (1)P
- $(2)P \lor Q \to R$
- (3)R
- (4)S
- $(5)R \wedge S$

2.1 节

2.1 - 1

- A. 设 A(x)表示 x 是工人,a 表示小张 $\neg A(a)$ 。
- B. 设 P(x)表示 x 是田径运动员, Q(x)表示 x 是球类运动员, $P(a) \lor Q(a)$.
- C. 设 P(x)表示 x 是非常美丽的, Q(x)表示 x 是非常聪明的, $P(a) \land Q(a)$.
- D. 设A(x)表示x是奇数,答案为: $A(m) \rightarrow \neg A(2m)$
- E. 设 P(x)表示 x 是有理数,Q(x)表示 "x 是实数", $\forall x(P(x) \rightarrow Q(x))$
- F. 设P(x)表示x是有理数,Q(x)表示x是实数, $\exists x(Q(x) \land P(x))$
- G. 设 P(x)表示 x 是有理数,Q(x)表示 x 是实数, $\neg \forall x(Q(x) \rightarrow P(x))$
- H. 设 P(x,y)表示 x 平行于 y,Q(x,y)表示 x 与 y 不相交, $P(x,y) \leftrightarrow Q(x,y)$.
- I. 设 P(x)表示 x 大于 0, Q(x)表示 x 是偶数, R(x,y)表示 x 与 y 有大于 1 的公约 数。 $\forall a(P(a) \land Q(a)) \land \forall b(P(b) \land Q(b)) \rightarrow R(a,b)$
- J. 设 P(x)表示 x 为实数,Q(x)表示 x 能表示成分数, $\neg \forall x (P(x) \rightarrow Q(x))$ 2.1-2
- A. 设 P(x)表示 x 是整数, Q(x)表示 x 是 D 中的元素, $\forall x(Q(x) \rightarrow P(x))$.
- B. 设 P(x)表示 x 是奇数,Q(x)表示 x 是 D 中的元素, $\forall x(Q(x) \rightarrow P(x))$.
- C. 设 P(x)表示 x 是偶数,Q(x)表示 x 是 D 中的元素,R(x)表示 x 能被 2 整除, $\forall x(P(x) \land Q(x) \rightarrow R(x))$
- D. 设 P(x)表示 x 能被 4 整除,Q(x)表示 x 是偶数,R(x)表示 x 是 D 中的元素, $\exists x (R(x) \land P(x) \land Q(x))$

2.1-3

- A. P(x) 表 示 x 是 偶 数 , Q(x) 表 示 x 能 被 2 整 除 , $\forall x (P(x) \rightarrow Q(x)) \land \forall y (P(y) \rightarrow Q(y))$
- B. P(x) 表示 x 是奇数, Q(x,y) 表示 x,y 有大于 1 的公约数, $\exists x \big(P(x) \land \exists y \big(P(y) \land Q(x,y) \big) \big)$

- C. P(x)表示 x 是火车,Q(x) 表示 x 是汽车,R(x,y)表示 x 的速度比 y 快。 $\neg \forall x (P(x) \rightarrow \forall y (Q(y) \rightarrow R(x,y))$
- D. P(x)表示 x 是整数,Q(x) 表示 x 是负整数,R(x) 表示 x 是正整数,I(x) 表示 x 是 0。 $\forall x \Big(P(x) \rightarrow \big(Q(x) \lor R(x) \lor I(x) \big) \Big)$
- 2.1-4
- A. 设 P(x)表示 $x^2 3 = (x + \sqrt{3})(x \sqrt{3})$, $\forall x P(x)$ $D_{1:T}$ $D_{2:T}$
- B. 设 P(x)表示 x+6>100, $\exists x P(x)$ $D_1:T$ $D_2:T$
- 2.1-5
- A. 7 是素数。
- B. 2 既是偶数又是素数。
- C. 所有能被2整除的数都是偶数。
- D. 存在能被3整除的偶数。
- 2.1-6
- F,当 y 取值为 1 时在论域{1,2}中不存在满足 x+y=4 的 x 值。
- 2.1-7
- A. 设 P(x,y)表示, $\forall x \exists y P(x,y)$ T
- B. 设P(x,y)表示, $\exists x \forall y P(x,y)$ T
- C. 设 P(x,y)表示 y = x+1, $\forall x \exists y P(x,y)$ T
- D. 设 P(x,y)表示 x+y=y+x, $\forall x \forall y P(x,y)$ T
- E. 设 P(x,y)表示, $\forall x \forall y P(x,y)$ F
- F. 设 P(x,y)表示 $x^2 + y^2 < 0$, $\forall x \exists y P(x,y)$
- 2.1-8
- Λ $P(a) \wedge P(b) \wedge P(c)$
- \mathbf{R} $R(a) \wedge R(b) \wedge R(c) \wedge S(a) \wedge S(b) \wedge S(c)$
- $C. \quad (P(a) \to Q(a)) \land (P(b) \to Q(b)) \land (P(c) \to Q(c))$
- $P(a) \land P(b) \land P(c)) \lor (\neg P(a) \land \neg P(b) \land \neg P(c))$
- 2.1-9

$$\exists x (A(x) \to B(x)) \Leftrightarrow (A(a_1) \to B(a_1)) \lor (A(a_2) \to B(a_2)) \lor \\ \cdots (A(a_n) \to B(a_n)) \Leftrightarrow \neg A(a_1) \lor B(a_1) \lor \neg A(a_2) \lor B(a_2) \lor \cdots \neg A(a_n) \lor \\ B(a_n) \Leftrightarrow \neg (A(a_1) \land A(a_2) \land \cdots \land A(a_n)) \lor (B(a_1) \lor B(a_2) \lor \cdots B(a_n)) \\ \Leftrightarrow (A(a_1) \land A(a_2) \land \cdots \land A(a_n)) \to (B(a_1) \lor B(a_2) \lor \cdots B(a_n)) \\ \Leftrightarrow \forall x A(x) \to \exists x B(x)$$

- 2.1-10
- A. $\exists x \forall y L(x, y)$ T
- B. $\forall x \forall y L(x, y) \in F$
- $C = \exists x \exists y L(x, y) T$
- D. $\forall x \exists y L(x, y) \qquad T$

2.2 节

- 2.2 1
- A. 是
- B. 是
- C. 不是
- D. 不是
- 2.2-2
- A. 设 P(x)表示 x 有理数,Q(x)表示 x 是实数, $\neg \exists x (P(x) \land \neg Q(x))$
- B. 设 P(x)表示 x 有理数,Q(x)表示 "x 是实数",R(x)表示 x 大于 0 $\exists x(P(x) \land R(x)) \land \neg \forall x((R(x) \land Q(x)) \rightarrow P(x))$
- C. 设 P(x) 表 示 x 是 实 数 , Q(x,y) 表 示 x 大 于 y $\forall x((P(x) \land Q(x,0)) \rightarrow \exists y(P(y) \land Q(y,x)))$
- D. 设 P(x)表示 x 是实数,Q(x,y)表示 x 大于等于 y, $\neg \exists x (P(x) \land \forall y Q(x,y))$
- E. 设 P(x)表示 x 是素数, Q(x)表示 x 是偶数,R(x,y)表示 x 等于 y, $(\forall x(P(x) \land Q(x)) \land \forall y(P(y) \land Q(y))) \rightarrow R(x,y)$
- 2.2-3

$$\forall x (G(x) \rightarrow F(x)) \land \exists x (F(x) \land \neg G(x))$$

2.2 - 4

A. $\neg \forall x I(x)$

- $\mathbf{R} \quad \forall x (\neg I(x) \rightarrow \neg \exists y (N(x, y) \land T(x, y)))$
- $C = \exists x (I(x) \land \neg \exists y (T(x, y) \land N(x, y)))$
- $\mathbf{D} \quad \exists x \forall z T(x,z) \land \exists y (N(x,y) \land \forall z T(y,z))$

2.2-5

- A. 第一个 $\forall x$ 的辖域为 $P(x) \land Q(x)$,后一个 $\forall x$ 的辖域是P(x),最后一个Q(x)中的x为自由变元,其他为约束变元。
- B. 第一个 $\forall x$ 的辖域为 $P(x) \land \exists x Q(x)$,后一个 $\forall x$ 的辖域是P(x), $\exists x$ 的辖域为Q(x),最后一个Q(x)中的x为自由变元,其他为约束变元。
- C. $\forall x$ 和 $\exists y$ 的辖域为 $P(x,y) \leftrightarrow Q(x,y)$, $\exists x$ 的辖域为 S(x) , 最后一个 S(x) 中的 x 为自由变元,其他为约束变元。
- D. $\exists y$ 的辖域为Q(y), $\forall x$ 和 $\forall y$ 的辖域为R(x,y,z), P(x,y) 的 x, y 是自由变元,z 是自由变元,其他为约束变元。

2.2-6

- A. $\forall w \exists v (P(w, z) \rightarrow Q(v)) \leftrightarrow S(x, y)$
- B. $(\forall w (P(w) \rightarrow (R(x) \lor Q(x)) \land \exists v R(v)) \rightarrow \exists z Q(x, z))$

2.2-7

- $\Delta \quad (\exists y A(w, y) \to \forall x B(x, x)) \land \exists x \forall z S(x, v, z)$
- $\exists z Q(v,z) \lor \forall x R(x,r)$

2.2-8

A. H(x,y):x is a man and y is his wife. C(x,y):x cheats on y. $\forall x \forall y (H(x,y) \rightarrow \neg C(x,y))$

B. P(x): x is a environmental problem. Q(x): x is a tragedy. $\forall x (P(x) \rightarrow \neg Q(x))$

C. L(x): x is a lampshade. C(x): x can be cleaned. $\forall x (L(x) \rightarrow \neg C(x))$

D. P(x): x is a human.

Q(x): x can afford home.

$$\forall x (P(x) \rightarrow \neg Q(x))$$

E. P(x): x is formal investigations.

Q(x): x is a sound practice.

R(x): x is in the right circumstance.

$$(P(x) \land R(x) \rightarrow Q(x)) \land \forall y (\neg R(y))$$

2.3 节

2.3 - 1

х	у	$\neg P(x)$	D(x,y)	E(x,y)	$\forall x \exists y (\neg P(x) \lor D(x,y) \to E(x,y))$
2	2	0	1	1	1
2	3	0	0	0	1
3	2	0	0	0	1
3	3	0	1	0	0

故真值为真

2.3-2

A. F

B. *T*

C. F

2.3-3

$$\forall x (P(x) \rightarrow Q(x)) \land \forall x P(x)$$

$$\Leftrightarrow \forall x((\neg P(x) \lor Q(x)) \land P(x))$$

$$\Leftrightarrow \forall x((\neg P(x) \land P(x)) \lor (Q(x) \land P(x)))$$

- $\Leftrightarrow \forall x (Q(x) \land P(x))$
- $\Leftrightarrow \forall x P(x) \land \forall x Q(x)$
- $\Rightarrow \forall x Q(x)$
- A. $\Rightarrow \forall x P(x) \rightarrow \forall x Q(x)$
- B. 设 $^{P(x)}$ 表示 x 参加球赛, $^{Q(x)}$ 表示 x 在比赛中得分了,论域为甲乙两人,所以右式就是甲乙任意参加比赛都得分了,而左式则有四种表示其中有甲参加比赛,乙得分,与右式不符合,说明原式不成立。

 $\exists x P(x) \rightarrow \forall x Q(x)$

- $\Leftrightarrow \neg \exists x P(x) \lor \forall x Q(x)$
- $\Leftrightarrow \forall x (\neg P(x) \lor Q(x))$
- $\Leftrightarrow \forall x (P(x) \to Q(x))$

C.

设P(x)表示x参加球赛,Q(x)表示x在比赛中得分了,论域为甲乙两人,所以左式就是甲乙任意参加比赛都得分了,右式表示甲或者乙参加比赛时能推出所有人都得分,前后存在矛盾,所以原式不成立。

左式的P(x)的x为自由变元, 先换名为P(y), 则左式为 $P(y) \land \forall x Q(x)$,

 $\exists x (P(x) \land Q(x)) \Leftrightarrow \exists x P(x) \land \exists x Q(x) \ , \ \ \overrightarrow{\text{m}} \ P(y) \Rightarrow \exists x P(x), \forall x Q(x) \Rightarrow \exists x Q(x) \ , \ \ \text{m} \ \lor$

 $P(x) \land \forall x Q(x) \Longrightarrow \exists x (P(x) \land Q(x))$

2.3-5

设P(x)表示x是自然数,Q(x)表示x是整数,个体域为实数集R,所以

 $\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \Longrightarrow \exists x Q(x)$

- $(1)\exists x P(x)$
- (2)P(a)
- $(3) \forall x (P(x) \rightarrow Q(x))$
- $(4)P(a) \rightarrow Q(a)$
- (5)Q(a)
- $(6)\exists xQ(x)$
- 2.3-6

证明:

- $(1)\exists x(P(x) \land H(x))$
- $(2)P(a) \wedge H(a)$
- (3)P(a)
- (4)H(a)

$$(5) \forall x (P(x) \rightarrow Q(x))$$

$$(6)P(a) \rightarrow Q(a)$$

$$(8)Q(a) \wedge H(a)$$

$$(9)\exists x(Q(x) \land H(x))$$

$$2.3-7$$

$$\neg \exists x (P(x) \land \neg Q(x)) \Leftrightarrow \neg (\exists x P(x) \land \exists x \neg Q(x))$$
 错误

$$\forall x \forall y (P(x) \rightarrow Q(y))$$

$$\Leftrightarrow \forall x \forall y (\neg P(x) \lor Q(y))$$

$$\Leftrightarrow \forall x \neg P(x) \lor \forall y Q(y)$$

$$\Leftrightarrow \neg \exists x P(x) \lor \forall y Q(y)$$

$$\Leftrightarrow \exists x P(x) \to \forall y Q(y)$$

2.3-9

A.
$$\forall x (P(x) \rightarrow \exists y Q(x,y))$$

$$\Leftrightarrow \forall x (\exists y (P(x) \to Q(x,y)))$$

$$\Leftrightarrow \forall x \exists y (P(x) \to Q(x,y))$$

B.
$$\forall x \forall y (\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,u))$$

$$\Leftrightarrow \forall x \forall y \left(\exists u \left(\exists z (P(x,z) \land P(y,z)) \rightarrow Q(x,y,u) \right) \right)$$

$$\Leftrightarrow \forall x \forall y \exists z \exists u \left(\left(P(x,z) \land P(y,z) \right) \rightarrow Q(x,y,u) \right)$$

C.
$$\exists x \left(\neg \exists y P(x, y) \rightarrow \left(\exists z Q(z) \rightarrow R(x) \right) \right)$$

$$\Leftrightarrow \exists x \Big(\forall y \neg P(x, y) \rightarrow \Big(\exists z Q(z) \rightarrow R(x) \Big) \Big)$$

$$\Leftrightarrow \exists x \Big(\forall y \neg P(x, y) \to \forall z \Big(Q(z) \to R(x) \Big) \Big)$$

$$\Leftrightarrow \exists x \Big(\forall z \Big(\forall y \neg P(x, y) \rightarrow \Big(Q(z) \rightarrow R(x) \Big) \Big) \Big)$$

$$\Leftrightarrow \exists x \forall y \forall z \left(\neg P(x, y) \rightarrow \left(Q(z) \rightarrow R(x) \right) \right)$$

$$D. \quad \forall x \big(P(x,y) \vee \forall y R(y,z) \big) \rightarrow \forall z Q(x,z)$$

$$\Leftrightarrow \forall x \Big(P(x,u) \lor \forall y R(y,v) \Big) \to \forall z Q(w,z)$$

$$\Leftrightarrow \forall x \forall y \Big(P(x,u) \lor R(y,v) \Big) \to \forall z Q(w,z)$$

$$\Leftrightarrow \forall x \forall y \forall z \Big(\Big(P(x,u) \lor R(y,v) \Big) \to Q(w,z) \Big)$$

$$E. \quad \neg \Big(\forall x \exists y P(a,x,y) \to \exists x \Big(\neg \forall y Q(y,b) \to R(x) \Big) \Big)$$

$$\Leftrightarrow \neg \Big(\forall x \exists y P(a,x,y) \to \exists z \Big(\neg \forall u Q(u,b) \to R(z) \Big) \Big)$$

$$\Leftrightarrow \neg \Big(\forall x \exists y P(a,x,y) \to \exists z \Big(\exists u \neg Q(u,b) \to R(z) \Big) \Big)$$

$$\Leftrightarrow \neg \Big(\forall x \exists y P(a,x,y) \to \exists z \Big(\forall u \Big(\neg Q(u,b) \to R(z) \Big) \Big) \Big)$$

$$\Leftrightarrow \neg \Big(\forall x \exists y \exists z \forall u \Big(P(a,x,y) \to \Big(\neg Q(u,b) \to R(z) \Big) \Big) \Big)$$

$$\Leftrightarrow \exists x \forall y \forall z \exists u \Big(P(a,x,y) \to \Big(\neg Q(u,b) \to R(z) \Big) \Big)$$
2.3-10

- A. F(x):x 是汽车; G(y) 是火车, H(x, y)比y快; $\exists x \exists y \quad F \quad)x \land \quad G \quad \dot{y}$
- B. F(x):x 是汽车; G(y) 是火车, H(x, y)比y快; $\exists y \ \forall (x \ F \)x \land G \ \Longrightarrow$
- C. F(x):x 是汽车; G(y) 是火车, H(x, y)比y快; $\exists x \exists y \quad F \quad)x \land \quad G \quad \dot{y}y$
- D. F(x):x 是汽车; G(y) 是飞机, H(x, y)比y慢; $\forall x \ \forall (y \ F \)x \land G \ \Rightarrow \Rightarrow$
- 2.3 11

A. P Q $P \to Q$ $Q \to P$ $(P \to Q) \lor (Q \to P)$ 0 0 0 1 0

B. According to question a can prove it.

2.4-1

 $(1)\forall x(\neg A(x) \rightarrow B(x))$

P

 $(2) \neg A(c) \rightarrow B(c)$

US (1)

 $(3) \forall x \neg B(x)$

P

 $(4)\neg B(c)$

US (3)

 $(5) \neg B(c) \rightarrow A(c)$

E (2)

(6)A(c)

(4)(5)

 $(7)\exists xA(x)$

EG

 $\exists x P(x) \rightarrow \forall x Q(x)$

 $\Leftrightarrow \neg \exists x P(x) \lor \forall x Q(x)$

 $\Leftrightarrow \forall x \neg P(x) \lor \forall x Q(x)$

 $\Rightarrow \forall x (\neg P(x) \lor Q(x))$

 $\Leftrightarrow \forall x (P(x) \to Q(x))$

 $(1) \forall x (A(x) \rightarrow B(x))$

 $(2) \forall x (\neg B(x) \rightarrow \neg A(x))$

 $(3) \forall x (C(x) \rightarrow \neg B(x))$

 $(4) \forall x (C(x) \rightarrow \neg A(x))$

 $(1) \forall x (A(x) \lor B(x))$

 $(2) \forall x (\neg A(x) \rightarrow B(x))$

 $(3) \forall x (B(x) \rightarrow \neg C(x))$

 $(4) \forall x (\neg A(x) \rightarrow \neg C(x))$

- $(5) \forall x (C(x) \rightarrow A(x))$
- $(6) \forall x C(x) \rightarrow \forall x A(x)$
- $(7)\forall xC(x)$
- $(8)\forall xA(x)$
- 2.4-2
- (1)∀*xA*(*x*) 附加前提
- $(2)\forall x(A(x) \to B(x))$
- $(3)\forall x(\neg A(x) \lor B(x)) \qquad E \quad (2)$
- $(4)\forall x B(x) \qquad I \quad (3)$
- $(5)\forall x A(x) \to \forall x B(x) \tag{1)(5)}$
- $(1)\forall x A(x) \vee \exists x B(x)$ P
- $(2)\exists x \neg A(x) \to \exists x B(x) \qquad E \quad (1)$
- (3)∃*x*−*A*(*x*) 附加前提
- $(4) \neg A(c) \qquad ES \quad (3)$
- $(5)\forall x(A(x)\vee B(x))$
- $(6)A(c) \vee B(c) \qquad \qquad US (5)$
- $(7)B(c) \tag{4)(6)}$
- $(8)\exists x B(x) \qquad EG (7)$
- $(9)\exists x \neg A(x) \to \exists x B(x)$ (3)(8)

2.4-3

P(x): x 是天鹅,Q(x): x 是癞蛤蟆,R(x): x 会飞

 $\forall x (P(x) \rightarrow R(x)), \forall x (Q(x) \rightarrow \neg R(x)) \Rightarrow \forall x (Q(x) \rightarrow \neg P(x))$

证明:

 $(1)\forall x(Q(x) \to \neg R(x))$

$$(2)Q(x) \rightarrow \neg R(x)$$

$$(3)\forall x(P(x) \to R(x))$$

$$(4)\forall x(\neg R(x) \rightarrow \neg P(x)) \qquad E \quad (3)$$

(1)

$$(5) \neg R(x) \rightarrow \neg P(x) \tag{4}$$

$$(6)Q(x) \to \neg P(x) \qquad I \quad (2)(5)$$

$$(7)\forall x(Q(x) \to \neg P(x)) \tag{6}$$

2.4-4

设
$$P(x): x$$
 是自然数, $H(x,y): x > y$:

$$\forall x \neg (P(x) \rightarrow \neg H(x,0)), H(2,0) \Rightarrow P(2)$$

$$(1)\forall x \neg (\neg P(x) \lor H(x,0)) \qquad PE$$

$$(2)\forall x (P(x) \land H(x,0))$$
 E

$$(3)P(2) \wedge H(2,0) \qquad \qquad US$$

$$(4)P(2) I (3)$$

2.4-5

$$(1)\exists x P(x)$$

$$(2)\exists x P(x) \to \forall x (P(x) \lor Q(x) \to R(x))$$

$$(3)P(x) \lor Q(x) \to R(x) \tag{1)(2)}$$

$$(4)P(a)$$
 ES

$$(5)P(a) \lor Q(a)$$
 $I(4)$

$$(6)P(a) \lor Q(a) \to R(a)$$
 US

$$(7)R(a) (5)(6)$$

$$(8)\exists x R(x) \qquad \qquad P$$

$(9)\exists x\exists y(R(x)\land R(y))$	(8)
$(1)\exists x P(x)$	P
(2)P(a)	ES
$(3)\forall x (P(x) \to (Q(y) \land R(x)))$	P
$(4)P(a) \to (Q(y) \land R(a))$	US
$(5)Q(y) \wedge R(a)$	(2)(4)
(6)Q(y)	I
(7)R(a)	I
$(8)P(a) \wedge R(a)$	(2)(7)
$(9)\exists x(P(x) \land R(x))$	EG
$(10)Q(y) \wedge \exists x (P(x) \wedge R(x))$	(6)(9)
$(10)Q(y) \wedge \exists x (P(x) \wedge R(x))$ $(1)\forall x (\forall y (H(y) \wedge N(x, y)))$	(6)(9) P
$(1)\forall x(\forall y(H(y) \land N(x,y)))$	P
$(1)\forall x(\forall y(H(y) \land N(x,y)))$ $(2)H(a) \land N(x,a)$	P US
$(1)\forall x(\forall y(H(y) \land N(x,y)))$ $(2)H(a) \land N(x,a)$ $(3)H(a)$	P US I
$(1)\forall x(\forall y(H(y) \land N(x,y)))$ $(2)H(a) \land N(x,a)$ $(3)H(a)$ $(4)N(x,a)$	P US I
$(1)\forall x(\forall y(H(y) \land N(x,y)))$ $(2)H(a) \land N(x,a)$ $(3)H(a)$ $(4)N(x,a)$ $(5)\forall x(H(x) \rightarrow A(x))$	P US I P
$(1)\forall x(\forall y(H(y) \land N(x,y)))$ $(2)H(a) \land N(x,a)$ $(3)H(a)$ $(4)N(x,a)$ $(5)\forall x(H(x) \rightarrow A(x))$ $(6)H(a) \rightarrow A(a)$	P US I I US

2.4-6

(4)中的 *UG* 使用错误

2.4-7

设P(x):x是有理数,Q(x):x是实数,R(x):x是整数。

 $\forall x (P(x) \rightarrow Q(x)), \exists x (P(x) \land R(x)) \Longrightarrow \exists x (Q(x) \land R(x))$

证明:

- $(1)\exists x (P(x) \land R(x))$
- $(2)P(a) \wedge R(a)$ ES
- (3)P(a)
- (4)R(a)
- $(5)\forall x(P(x) \to Q(x))$
- $(6)P(a) \to Q(a) \qquad US$
- $(7)Q(a) \tag{3)(6)}$
- $(8)Q(a) \wedge R(a) \tag{4)(7)}$
- $(9)\exists x(Q(x) \land R(x))$ EG

设P(x):x是大学生,Q(x):x是刻苦的,a代表小王。

 $\forall x (P(x) \rightarrow Q(x)), \neg Q(a) \Rightarrow \neg P(a)$

证明:

- $(1)\forall x(P(x) \to Q(x))$
- $(2)P(a) \to Q(a) \qquad US$
- $(3) \neg Q(a) \rightarrow \neg P(a)$ E
- $(4)\neg Q(a)$
- $(5) \neg P(a) \tag{3}(4)$

设P(x): x 喜欢步行,Q(x): x 喜欢乘汽车,R(x): x 喜欢骑自行车

 $\forall x (P(x) \rightarrow \neg Q(x)), \forall x (Q(x) \lor R(x)), \exists x \neg R(x) \Rightarrow \exists x \neg P(x)$ 证明:

 $\exists x (P(x) \land \forall y (Q(y) \to H(x, y))), \forall x (P(x) \to \forall y (R(y) \to \neg H(x, y))) \Rightarrow \forall x (Q(x) \to \neg R(x))$ 证明: $(1)\exists x (P(x) \land \forall y (Q(y) \to H(x, y))) \qquad \qquad P$

 $(2)P(a) \land \forall y(Q(y) \to H(a,y)))$ ES

(3)P(a) I (2)

 $(4)\forall y(Q(y) \to H(a, y)) \qquad I \qquad (2)$

 $(5)\forall x (P(x) \to \forall y (R(y) \to \neg H(x, y)))$

 $(6)P(a) \to \forall y (R(y) \to \neg H(a, y))$ US

 $(7)\forall y (R(y) \to \neg H(a, y)) \tag{3)(6)}$

 $(8)\forall y (H(a, y) \rightarrow \neg R(y))$ E (7)

 $(9)\forall y(Q(y) \to \neg R(y)) \qquad I \quad (4)(8)$

2.4-9

设P(x):x 是科研工作者,Q(x):x 是刻苦认真专研的,R(x):x 是聪明的,H(x):x 在事业中获得成功。

 $\forall x (P(x) \to Q(x)), \forall x (Q(x) \land R(x) \to H(x)), P(a) \land R(a) \Longrightarrow H(a)$

证明:

 $(1)P(a) \wedge R(a)$

(2)P(a) I (1)

(3)R(a) I (1)

 $(4)\forall x(P(x) \to Q(x))$

 $(5)P(a) \to Q(a) \qquad US (4)$

(6)Q(a) (2)(5)

 $(7)Q(a) \wedge R(a) \tag{3)(6)}$

 $(8)\forall x(Q(x) \land R(x) \to H(x))$

(9)
$$Q(a) \land R(a) \rightarrow H(a)$$
 US (8)
(10) $H(a)$ (7)(9)
2.4-10
A. $P(x)$: x is in the class. $Q(x)$: x has a graphing calculator. $R(x)$: x understands the trigonometric functions. a: Ralphie
$$\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x)) \Rightarrow P(a) \rightarrow R(a)$$
(1)
$$\forall x (P(x) \rightarrow Q(x)) \qquad P$$
(2)
$$P(a) \rightarrow Q(a) \qquad US$$
 (1) (3)
$$\forall x (Q(x) \rightarrow R(x)) \qquad P$$
(4)
$$Q(a) \rightarrow R(a) \qquad US$$
 (1) (5)
$$P(a) \rightarrow R(a) \qquad US$$
 (1) (5)
$$P(a) \rightarrow R(a) \qquad US$$
 (1) (6)
$$P(x) : x \text{ is a member of the Titans.}$$

$$Q(x) : x \text{ can hit the ball a long way.}$$

$$R(x) : x \text{ can make a lot of money.}$$
a: Ken
$$P(a) \land Q(a), \forall x (Q(x) \rightarrow R(x)) \Rightarrow \exists x (P(x) \land R(x))$$
(1)
$$\forall x (Q(x) \rightarrow R(x)) \qquad P$$
(2)
$$(Q(a) \rightarrow R(a)) \qquad US$$
 (1) (3)
$$P(a) \land Q(a) \qquad P$$
(4)
$$Q(a) \qquad (3) \qquad (5) P(a) \qquad (5) (6) \qquad (8) \exists x (P(x) \land R(x)) \qquad EG$$
 (7)

C.
$$P(x) : x \text{ is in the discrete mathematics class.}$$

$$Q(x) : x \text{ loves proofs.}$$

$$R(x) : x \text{ has never taken calculus.}$$

$$\forall x (P(x) \rightarrow Q(x)), \exists x (P(x) \land R(x)) \Rightarrow \exists x (Q(x) \land R(x)) \Rightarrow \exists x (Q(x) \land R(x))$$

P

(1) $\exists x (P(x) \land R(x))$

(2) $P(a) \wedge R(a)$

(3) P(a)

 $(4) \ R(a)$

 $(5) \ \forall x \big(P(x) \to Q(x) \big)$

 $(6)\ P(a) \to Q(a)$

(7) Q(a)

(8) $Q(a) \wedge R(a)$

 $(9) \ \exists x \big(Q(x) \land R(x) \big)$

ES (1)

(2)

(2)

P

US (5)

(3)(6)

(4)(7)

EG (8)

3. 1-1

b.
$$\{-3, -2, -1, 0, 1, 2, 3\}$$

3.1-2

a.
$$\{x \mid ax + b = 0 \land a \neq 0 \land a \in R \land b \in R\}$$

b.
$$\{(x,y)|x^2+y^2=1 \land x \in R \land y \in R\}$$

$$c. \quad \{x | (x = 3n \lor x = 7n) \land n \in Z^+\}$$

3. 1-3

$$A = \{1\}$$
 $B = \{1, \{1\}\}$ $C = \{1, \{1, \{1\}\}\}$

3.1-4

证明:

a. 正确

因为B⊆C, 所以对于 $\forall x \in B$, $x \in C$, 又 $A \in B$, 所以 $A \in C$ 。

- b. 不正确 由 *a* 得,该命题不正确。
- c. 不正确 设*A* = {1}, *B* = {1, {1}}, *C* = {{1, {1}}},

 $A \subseteq B$, $B \in C$, 而 $A \notin C$, 所以该命题不正确。

d. 不正确 同 *c*。

e. 不正确

设
$$A = \{1\}, B = \{1, \{1\}\}, C = \{\{1\}\},$$

 $A \in B, B \subset C$, 而 $A \in C$, 所以该命题不正确。

f. 不正确

设
$$A = \{1\}, B = \{1, \{1\}\}, C = \{\{1\}, \{1, \{1\}\}\},$$

 $A \subseteq B$, $B \in C$, 而 $A \in C$, 所以该命题不正确。

3.1-5

- a. 不正确
- b. 正确
- c. 不正确
- d. 正确
- e. 正确
- f. 不正确
- 3.1-6

$$a. \quad \rho(A) = \{\emptyset, \{\emptyset\}, \{a\}, \{\{b\}\}, \{\emptyset, a\}, \{\emptyset, \{b\}\}, \{a, \{b\}\}, \{\emptyset, a, \{b\}\}\}\}, |\rho(A)| = 8\}$$

b.
$$\rho(A) = \{\emptyset, \{\{a, \{b\}\}\}\}, |\rho(A)| = 2$$

c.
$$\rho(A) = \{\emptyset\}, |\rho(A)| = 1$$

3. 1-7

他自己给自己刮脸。悖论:假如他自己不给自己刮脸,那么他就要给他自己刮脸。但他说他仅给村子里不给自己刮脸的人刮脸。这与他给他自己刮脸相矛盾。3.1-8

- a. 如果S ∈ S,同时 S 应该是一个不以自身为元素的集合,即S ∉ S,矛盾。
- b. 如果 $S \notin S$, 那么 S 满足 S 中元素的形式定义 $A \notin A$, 这样就有 $S \in S$, 矛盾。

3.1-9

(a)(e)

3.1-10

 $\{\emptyset\}, \{C\}, \{C++\}, \{PASCAL\}, \{Ada\}, \{C, C++\}, \{C, PASCAL\}, \{C, Ada\}, \{C++, PASCAL\}, \{C++, Ada\}, \{C++\}, \{C++$

 $\{PASCAL, Ada\}, \{C, C + +, PASCAL\}, \{C, C + +, Ada\}, \{C, PASCAL, Ada\}, \{C + +, PASCAL, Ada\}, \{C, C + +, Ada\}, \{C, C +,$

 $\{C, C + +, PASCAL, Ada\}.$

- 3. 1-11
- a. $\{a,b,c,d,e,f,g\}$
- *b.* {1,2,4,5}
- c. $\{x | x \neq 0 \pmod{3}, x \in N\}$

3.2节

- 3. 2-1
- a. $\{0,1,2,3,6,7,8,9\}$
- b. {2,3}
- *c.* {0,1,3,4,5,7,9}
- *d.* {2,6,8}
- *e*. {2,3}

3.2-2

a.

b.

c.

3. 2-3

a. $B \cap C - A$

b. $(A \cap B) \cup (A \cap C) \cup (B \cap C) - (A \cap B \cap C)$

c. $\overline{A \cup B \cup C} \cup (A \cap B \cap C)$

3.2-4

3.2-5 证明:

 $a. \ A \subseteq B \Leftrightarrow (\forall x)(x \in A \to x \in B) \Leftrightarrow (\forall x)(x \notin B \to x \notin A) \Leftrightarrow (\forall x)(x \in \bar{B} \to x \in \bar{A})$

 $\Leftrightarrow \bar{B} \subseteq \bar{A}$

 $A \subseteq B \Leftrightarrow (\forall x)(x \in A \to x \in B) \therefore A \cup B = \{x | x \in A \lor x \in B\} = \{x | x \in B\} = B$ 同理得, $A \cup B = B \Rightarrow A \subseteq B$, $\therefore A \cup B = B \Leftrightarrow A \subseteq B$

 $A \subseteq B \Leftrightarrow (\forall x)(x \in A \to x \in B) :: A \cap B = \{x | x \in A \land x \in B\} = \{x | x \in A\} = A$ 同理得, $A \cap B = A \Rightarrow A \subseteq B$,:: $A \cap B = A \Leftrightarrow A \subseteq B$

b. $A \cap B = \emptyset \Leftrightarrow (\forall x)((x \in A \to x \notin B) \land (x \in B \to x \notin A)) \Leftrightarrow (\forall x)((x \in A \to x \in \overline{B}) \land (x \in B \to x \in \overline{A})) \Leftrightarrow A \subseteq \overline{B} \land B \subseteq \overline{A}$

$$\therefore A \cap B = \emptyset \Leftrightarrow A \subset \overline{B} \Leftrightarrow B \subset \overline{A}$$

c. $A \cup B = U \Leftrightarrow (\forall x)(x \notin A \to x \in B) \Leftrightarrow \bar{A} \subseteq B$,

同理得, $A \cup B = U \Leftrightarrow \bar{B} \subset A$, $\therefore A \cup B = U \Leftrightarrow \bar{A} \subset B \Leftrightarrow \bar{B} \subset A$.

d.
$$A = B \Rightarrow A \oplus B = \{x | (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\} = \{x | (x \in A \land x \notin A) \lor (x \in B \land x \notin B)\} = \emptyset$$

$$A \oplus B = \emptyset \Rightarrow \{x | (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\} = \emptyset \Rightarrow \{x | (x \in A \land x \notin B)\} = \emptyset$$

$$\emptyset \cancel{B}\{x | (x \in B \land x \notin A)\} = \emptyset \Rightarrow (\forall x) ((x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A))$$

$$\Rightarrow A = B$$

$$A = B \Leftrightarrow A \oplus B = \emptyset$$

3.2-6

证明:

a. A = B

 $\partial A = B$,则 $A \cap B = A = A \cup B$;

 $\partial A \cap B = A \cup B$,则 $A \subset A \cap B$, $B \subset A \cap B$,所以 $A \subset B$, $B \subset A$,所以A = B。

- c. $A \subset \bar{B} \cup \bar{C}$

$$(A - B) \cup (A - C) = (A \cap \bar{B}) \cup (A \cap \bar{C}) = A \cap (\bar{B} \cup \bar{C})$$

所以 $(A - B) \cup (A - C) = A \Leftrightarrow A \cap (\bar{B} \cup \bar{C}) = A \Leftrightarrow A \subseteq \bar{B} \cup \bar{C}$

- d. $A \cap (\bar{B} \cup \bar{C}) = \emptyset$ 由 $c \in A$ $(A B) \cup (A C) = \emptyset \Leftrightarrow A \cap (\bar{B} \cup \bar{C}) = \emptyset$
- e. $A \subset \overline{B} \cap \overline{C}$

$$(A-B)\cap (A-C)=(A\cap \bar{B})\cap (A\cap \bar{C})=A\cap \bar{B}\cap \bar{C}$$

所以
$$(A - B) \cap (A - C) = A \Leftrightarrow A \cap \overline{B} \cap \overline{C} = A \Leftrightarrow A \subseteq \overline{B} \cap \overline{C}$$

 $f. \quad A \cap \bar{B} \cap \bar{C} = \emptyset$

由 e 得, $(A - B) \cap (A - C) = \emptyset \Leftrightarrow A \cap \overline{B} \cap \overline{C} = \emptyset$

3. 2-7

证明:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) = (A \cap B) \cup C$$

所以 $A \cap C = C, C \subseteq A$

3.2-8

 $A = \emptyset$

证明:

 $设 A \oplus B = B$

 $由 A \subseteq B$, $A \subseteq \bar{B}$ 得 , $A = \emptyset$ 。

$$\mathcal{C}_A = \emptyset$$
,则 $A \oplus B = (A \cup B) \cap (\overline{A \cap B}) = B \cap U = B$

得证。

3. 2-9

$$c. \quad \{x | x \neq 1, x \in R\}$$

d.
$$\{x | x \neq -2 \exists x \neq -1 \exists x \neq 1 \exists x \neq 0, x \in R\}$$

3. 2-10

a.

- b. $A \cup B$
- c. $A \subseteq C, B \subseteq C, \therefore (\forall x)(x \in A \to x \in C) \perp (\forall x)(x \in B \to x \in C), \quad \square(\forall x)(x \in A \lor x \in B \to x \in C), \quad \square(\forall x)(x \in B \to x \in C$

3.3-1

设 A 表示会 C 语言的人的集合,B 表示会 Java 的人的集和,C 表示会 Perl 语言的人的集合

 $|A \cup B \cup C| = 50 \perp |A \cup B \cup C|$

$$= |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
$$|A| = 40, |B| = 35, |C| = 10, |A \cap B \cap C| = 5$$

所以 $|A \cap B| + |A \cap C| + |B \cap C| = -50 + 40 + 35 + 10 + 5 = 40$ 会两门及以上的人数为:

$$|(A \cap B) \cup (A \cap C) \cup (B \cap C)| = |A \cap B| + |A \cap C| + |B \cap C| - 2|A \cap B \cap C|$$

= $40 - 2 * 5 = 30$

只会两门的人数为:

$$|(A \cap B) \cup (A \cap C) \cup (B \cap C)| - |A \cap B \cap C| = 30 - 5 = 25$$

3.3-2

设 A.B.C 分别表示能被 2、3、7 整除的整数的集合,则有

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

= 125 + 83 + 35 - 41 - 17 - 11 + 5 = 179

所以能被2、3、7至少一个数整除数的个数为179。

3.3-3

设 A,B,C 分别表示定杂志甲乙丙的同学集合,则有

a.
$$|A \cap B \cap C| = -(|A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C|) + |A \cup B \cup C| = -(25 + 26 + 26 - 11 - 9 - 8) + 52 = 3$$

b. 订了两本及以上的人:

 $|(A \cap B) \cup (A \cap C) \cup (B \cap C)| = |A \cap B| + |A \cap C| + |B \cap C| - 2|A \cap B \cap C| = 11 + 9 + 8 - 2 * 3 = 22$

只订一种杂志的学生人数:

$$|A \cup B \cup C| - |(A \cap B) \cup (A \cap C) \cup (B \cap C)| = 52 - 22 = 30$$

3. 3-4

设 A,B,C 分别表示会 C, java, C++的人的集合,则有

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

 $\not = \uparrow$, $|A| = 14$, $|B| = 12$, $|C| = 6$, $|A \cap B| = 6$, $|A \cap C| = 5$, $|A \cap B \cap C| = 2$

 $|A \cup B \cup C| = 14 + 12 + 6 - 6 - 5 - |B \cap C| + 2 = 23 - |B \cap C|$ 由或用 C++编程的共六人且他们均会另一种语言和 5 人既会用 C++又会用 C 编程,得 $|B \cap C| = 6 - 5 + |A \cap B \cap C| = 3$

$$|A \cup B \cup C| = 23 - 3 = 20$$

三种都不会的人数为

$$25 - |A \cup B \cup C| = 25 - 20 = 5$$

3.3-5

设 *A,B,C* 分别表示选修 formal logic, operating systems, compiler construction principles 的学生的集合,则有

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

= $64 + 94 + 58 - 26 - 28 - 22 + 14 = 154$

a. 所有课都没选的学生人数为

 $260 - |A \cup B \cup C| = 106$

b. 选两门及以上的学生人数为:

$$|(A \cap B) \cup (A \cap C) \cup (B \cap C)| = |A \cap B| + |A \cap C| + |B \cap C| - 2|A \cap B \cap C| = 26 + 28 + 22 - 2 * 14 = 48$$

只选一门的学生人数为

$$|A \cup B \cup C| - |(A \cap B) \cup (A \cap C) \cup (B \cap C)| = 154 - 48 = 106$$

3. 4 $^{\circ}$

- 3.4-1
- a. 设 R 表示所有有限长度二进制数的集合,则其归纳证明如下:
- (1) 如果a ∈ {0,1}, 那么a ∈ R。
- (2) 如果 $a,b \in R$, 那么 $ab \in R$ 。
- (3) R 仅包含能由有限次应用(1)(2)构成的元素。
- b. 设 R 表示以 a 开头的有限长度的英文字母串组成的集合,D 为英文字母串集合,则其归纳证明如下:
- $(1) a \in R$.
- (2) 若 $x \in R, y \in D$, 则 $xy \in R$ 。
- (3) R 仅包含能由有限次应用(1)(2)构成的元素。
- C. 设 R 表示所有不能被 3 整除的正整数组成的集合,则其归纳证明如下:
- (1) 1 \in R, 2 \in R \circ
- (2) 若 $a \in R$, 则 $a + 3 \in R$ 。
- (3) R 仅包含能由有限次应用(1)(2)构成的元素。
- 3, 4-2

证明: 当
$$n = 1$$
时,¬ $A_1 \Leftrightarrow \neg A_1$ 假设当 $n = k$ 时,¬ $(A_1 \lor A_2 \lor \cdots \lor A_k) \Leftrightarrow (\neg A_1 \land \neg A_2 \land \cdots \land \neg A_k)$ 当 $n = k + 1$ 时,

$$\neg(A_1 \lor A_2 \lor \cdots \lor A_k \lor A_{k+1}) \Leftrightarrow \neg(A_1 \land A_2 \land \cdots \land A_k) \land \neg A_{k+1} \Leftrightarrow (\neg A_1 \land \neg A_2 \land \cdots \land \neg A_k) \land \neg A_{k+1} \Leftrightarrow (\neg A_1 \land \neg A_2 \land \cdots \land \neg A_k \land \neg A_{k+1})$$
即当 $n=k+1$ 时也成立。所以

$$\neg (A_1 \lor A_2 \lor \cdots \lor A_n) \Leftrightarrow (\neg A_1 \land \neg A_2 \land \cdots \land \neg A_n)$$

3.4-3

证明: 当n = 1 时, 1 * 2 = 2 = 1 * 2 * 3/3

假设当
$$n = k$$
时, $1 * 2 + 2 * 3 + \dots + k(k+1) = k(k+1)(k+2)/3$

当
$$n = k+1$$
 时 , $1*2+2*3+\cdots+k(k+1)+(k+1)(k+2)=$

$$\frac{k(k+1)(k+2)}{3} + (k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}$$

即当n = k + 1时也成立。所以

当 n 为正整数时有 $1 * 2 + 2 * 3 + \cdots + n(n+1) = n(n+1)(n+2)/3$ 。

3.4-4

证明: $\exists n = 1$ 时, $2^n * 2^n - 1 = 2 * 2 - 1 = 3$, 能被 3 整除

假设当n = k时, $2^n * 2^n - 1$ 能被 3 整除,即 $2^k * 2^k - 1 = 3a$, $a \in N^+$ 当 n = k + 1 时, $2^{k+1} * 2^{k+1} - 1 = 4 * 2^k * 2^k - 1 = 4(3a + 1) - 1 =$

12a + 3, 能被 3 整除

即当n = k + 1时也成立。所以 对所有正整数 n 均有 $2^n * 2^n - 1$ 能被 3 整除。

3.4-5

证明: 即要证明 $n = 2p + 5q (n \ge 4, 其中 p, q 为 自然数)$ 。

- (1)4=2*2,5=5*1,6=2*3.
- (2) 假设n < k, 且n 2 ≥ 4时,有

$$n = 2p + 5q(p, q 为自然数)$$
。

现证n = k时,上式亦成立。

由假设k-2 < k, 且 $k-2 \ge 4$,

所以(k-2) = 2p + 5q

所以k = 2(p+1) + 5q

因此n = k时,也成立。证毕。

3.4-6

可以构成 5、6、10、11、12、15、16、17、18、

20 及以上。

证明: 当 n < 20时, 显然易证

X 20=5*4, 21=5*3+6, 22=5*2+6*2, 23=5+6*3, 24=6*4, 25=5*5.

假设n < k, 且 $n - 5 \ge 20$ 时,有

n = 5p + 6q(p,q为自然数)。

现证n = k时,上式亦成立。

由假设k-5 < k, 且 $k-5 \ge 20$,

所以k - 5 = 5p + 6q

所以k = 5(p+1) + 6q

因此n = k时,也成立。证毕。

3.4-7

证明: 当i = 0时, c = 0。

假设当i = k时成立,则c = k * k。

当i = k + 1时,c = k * k + k + (k + 1) = (k + 1) * (k + 1)

即当n = k + 1时也成立。证毕。

3.4-8

无效。

因为(a)和(b)都为成对证明,所以(c)应该改为证明 p(n+1)和 p(n+2)都为真。 3. 4-9

当n = 2时前一匹马和自己的颜色一样,后一匹马和自己的颜色一样,无法推出这两匹马的颜色相同,因为将n规模分解成若干个n-1规模的问题时,如果分解方法并不是对所有的n都成立,那么数学归纳法将失效,即无法推出这k+1匹马

的颜色相同。

3.4-10

证明: 当n = 7时, $3^n = 729,7! = 5040$ 。

假设当n = k时,不等式成立,即 $3^k < k!$ 。

当n = k + 1时, $3^{k+1} = 3 * 3^k < 3 * k!$ 因为 $k \ge 7$,所以 $3^{k+1} < 3 * k! < (k+1) * k! = (k+1)!$ 即当n = k + 1时也成立。所以 当n > 6时, $3^n < n!$ 。

3.4-11

n 块需要掰 n-1 次。

证明: 当 n = 1时,需要掰 0 次。

假设当n = k时,需要 $\Re n - 1$ 次。

当n = k + 1时,由假设得,掰了n-1次后还剩下一个小矩形巧克力块,它由两个小正方形组成,所以只需再掰一次,即一共需要掰n次。即当n = k + 1时也成立。得证。

3.5 节

3.5-1

$$A \times B = \{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 1,1 \rangle, \langle 1,2 \rangle\}$$

$$A \times \{1\} \times B = \{\langle 0,1,1 \rangle, \langle 0,1,2 \rangle, \langle 1,1,1, \rangle, \langle 1,1,2 \rangle\}$$

$$A \times A \times B = \{\langle 0,0,1 \rangle, \langle 0,0,2 \rangle, \langle 0,1,1 \rangle, \langle 0,1,2 \rangle, \langle 1,0,1 \rangle, \langle 1,0,2 \rangle, \langle 1,1,1 \rangle, \langle 1,1,2 \rangle\}$$

$$A \times B \times B = \{\langle 0,1,1 \rangle, \langle 0,1,2 \rangle, \langle 0,2,1 \rangle, \langle 0,2,2 \rangle, \langle 1,1,1, \rangle, \langle 1,1,2 \rangle, \langle 1,2,1 \rangle, \langle 1,2,2 \rangle\}$$
3. 5-2

$$\rho(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$$

$$A \times \rho(A) = \{\langle a, \emptyset \rangle, \langle a, \{a\} \rangle, \langle a, \{b\} \rangle, \langle a, \{a, b\} \rangle, \langle b, \emptyset \rangle, \langle b, \{a\} \rangle, \langle b, \{b\} \rangle, \langle b, \{a, b\} \rangle\}$$

35-3

 $A \times B$ 表示所有计算机院教授教授计算机系所开设课程的集合。

3.5-4

因为 $A \subseteq B$, 所以 $\{\langle a,c \rangle | a \in A, c \in C\} \subseteq \{\langle b,c \rangle | b \in B, c \in C\}$ 。

因为 $C \subseteq D$, 所以{ $\langle b,c \rangle | b \in B, c \in C$ } \subseteq { $\langle b,d \rangle | b \in B, d \in D$ }。

所以 $\{\langle a,c\rangle | a \in A, c \in C\} \subseteq \{\langle b,d\rangle | b \in B, d \in D\},$

即 $A \times C \subseteq B \times D$ 。

3.5-5

设 $A = \{sedan, coupe, van\}, B = \{gas, diesel\}.$

所有可能的汽车模型即为

 $A \times B$

 $= \{\langle sedan, gas \rangle, \langle sedan, diesel \rangle, \langle coupe, gas \rangle, \langle coupe, diesel \rangle, \langle van, gas \rangle, \langle van, siesel \rangle \}$

3.5-6 假设 *a,b* 为平面坐标。

- a. $A \times B$ 表示 $-2 \le x \le 3$ 和 $1 \le y \le 5$ 所构成的平面图形。
- b. $B \times A$ 表示 $1 \le x \le 5$ 和 $-2 \le y \le 3$ 所构成的平面图形。

$$R = A \times B = \{ \langle a, \alpha \rangle, \langle a, \beta \rangle, \langle b, \alpha \rangle, \langle b, \beta \rangle \}$$

$$R_0 = \emptyset$$

$$R_1 = \{ \langle a, \alpha \rangle \}$$

$$R_2 = \{ \langle a, \beta \rangle \}$$

$$R_3 = \{ \langle b, \alpha \rangle \}$$

$$R_4 = \{ \langle b, \beta \rangle \}$$

$$R_5 = \{ \langle a, \alpha \rangle, \langle a, \beta \rangle \}$$

$$R_6 = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle \}$$

$$R_7 = \{ \langle a, \alpha \rangle, \langle b, \beta \rangle \}$$

$$R_8 = \{ \langle a, \beta \rangle, \langle b, \alpha \rangle \}$$

$$R_9 = \{ \langle a, \beta \rangle, \langle b, \beta \rangle \}$$

$$R_{10} = \{ \langle b, \alpha \rangle, \langle b, \beta \rangle \}$$

$$R_{11} = \{ \langle a, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle \}$$

$$R_{12} = \{ \langle a, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle \}$$

$$R_{13} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle b, \beta \rangle \}$$

$$R_{14} = \{ \langle a, \beta \rangle, \langle b, \alpha \rangle, \langle b, \beta \rangle \}$$

$$R_{15} = R$$

3.6-2

关系矩阵为
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

关系图为

3.6-3

根据课本 87 页定义 3.6.2 可知: $A_1 \times A_2 \times \dots \times A_n$ 的任一子集R称为 $A_1, A_2, \dots A_n$ 上的一个n元关系.

故从 A_1,A_2,\dots,A_n 上可以定义 $|\rho(A_1\times A_2\times\dots\times A_n)|=2^{\prod_{k=1}^n|A_k|}$ 个 n 元关系.

3.6-4

$$P \cap Q = \emptyset$$

$$P \cup Q = \{<1,2>, <1,3>, <2,3>, <2,4>, <3,1>, <3,4>, <4,1>\}$$

$$domP = \{1,2,3,4\}, ranP = \{1,2,3,4\}$$

$$domQ = \{1,2,3\}, ranQ = \{1,3,4\}$$

$$domP \cap domQ = \{1,2,3\}$$

$$dom(P \cap Q) = \emptyset$$

$$ranR \cap ranQ = \{1,3,4\}$$

$$ran(P \cap Q) = \emptyset$$

根据题意得:

$$R_1 = \{ < 2,4 >, < 2,6 >, < 3,6 > \}$$

 $R_2 = \{ < 4,8 >, < 4,12 >, < 6,12 > \}$

关系图如下:

可得
$$R_1 \circ R_2 = \{<2,8>,<2,12>,<3,12>\}$$

关系矩阵
$$R_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $R_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$\text{th} \ R_1 \circ R_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

3.6-6

(a)

According to conditions, we can infer that:

$$R = \{ < 1,1 >, < 1,4 >, < 1,6 >, < 1,9 >, < 2,4 >, < 2,6 >, < 3,6 >, < 3,9 >, < 4,4 > \}$$

$$domR = \{1,2,3\}$$

$$ranR = \{1,4,6,9\}$$

Matrix of R:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Graph of R:

(b)

$$R = \{<1,1>, <2,4>, <3,9>\}$$

$$domR = \{1,2,3\}$$

$$ranR = \{1,4,9\}$$

Matrix of R:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Graph of R:

(c)

$$R = \{ <1,1>, <1,2>, <1,3>, <1,4>, <1,5>, <2,2>, <2,3>, <2,4>, <2,5>, <3,3>, <3,4>, <3,5>, <4,4>, <4,5>, <5,5> \}$$

$$domR = \{1,2,3,4,5\}$$

$$ranR = \{1,2,3,4,5\}$$

Matrix of R:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Graph of R:

3.6-7

Formalize the conditions: $R = \{ \langle a, b \rangle | a = b^k, a \in Z, b \in Z, k \in Z^+ \}$

We can't find a k in Z^+ for $4 = 16^k$, $1 = 7^k$, $2 = 8^k$, $2 = 32^k$.

$$k = 3 for 8 = 2^3$$
, $k = 1 for 13 = 3^1$.

So we can figure out (c), (b) belong to R.

$$(a)R = \{ <1,2 >, <1,3 >, <1,4 >, <2,4 > \}$$

$$(b)M_R = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3.7-2

(a)R 中的所有序偶为<5, 5>, <5,4>, <5,35>, <4, 5>, <4, 4>, <4,35>, <4,49>, <35,5>, <35,4>, <49,4>.

(b)

(c)

对于任意 $a \in A$, 存在aRa,说明 R 满足对称性.

对于任意 $a,b \in A$, 若xRy,则必有yRx,说明 R 满足对称性.

3.7-3

满足自反性,对称性,反对称性,传递性.

3.7-4

解:

- (a)反自反,反对称,传递
- (b)自反,对称,传递
- (c)自反,对称,传递
- (d)反自反,反对称,传递

3.7-5

- (a)自反,反对称,传递
- (b)自反,对称,传递
- (c)自反,对称

3.7-6

- (a)R1 不具有特性;
- (b)R2 具有自反性,反对称性,传递性;
- (c)R3 具有自反性,对称性,传递性;
- (d)R4 具有自反性,对称性,反对称性,传递性.
- 3.7-7

(a)

(b)

3.7-8

由反对称关系的关系矩阵特点可知:

若
$$r_{ij}=1$$
,则 $r_{ji}=0$,

而由逆关系的定义可知,

 $若r_{ij} = 1$,则 $r_{ij}^{-1} = 0$,即 r_{ij} 和 r_{ij}^{-1} 不可能同时为 $1(i \neq j)$

即主对角线的位置上应该全为1,此时矩阵中的非零元素最多为6个.

3.7-9

不正确; 若 $R = \emptyset$,则 R 是对称和传递的,然而 R 不是自反的.

3.7-10

(a)(充分性) 设 $I_A \subseteq R$,对于任意的 $x \in A$,有 $< x, x > \in I_A$,而 $< x, x > \in R$,故 R 是自反;

(必要性) 设 R 是自反的,若 $< x, y > \in I_A$,则 x=y,从而 $< x, x > \in I_A$,故 $I_A \subseteq R$.

(b) (充分性)设 $I_A \cap R = \emptyset$.若存在 $x \in A$,使得 $< x, x > \in R$,由 $< x, x > \in I_A$ 可得 $< x, x > \in I_A \cap R$,这与 $I_A \cap R = \emptyset$ 矛盾.所以对任 $-x \in A$,都有 $< x, x > \notin R$,因此 R是反自反的;

(次要性) 设 R 是反自反的,因为对于任意 $x \in A$,都有 $< x, x > \notin R$,所以 $I_A \cap R = \emptyset$.

(c) (充分性) 设 $R = R^{-1}$ 对于任意的 $x, y \in A$,若有 $< x, y > \in R$,则有 $< y, x > \in R^{-1} = R$,所以R 是对称的;

(必要性) 设 R 是对称的,因为< $x,y>\in R, < y,x>\in R \Leftrightarrow < x,y>\in R^{-1}$,所以 $R=R^{-1}$.

(*d*)(充分性) 设 $R \cap R^{-1} \subseteq I_A$,对任意的 $x, y \in A$,若 $< x, y > \in R$, $< y, x > \in R$,则 $< y, x > \in R^{-1}$,从而 $< x, y > \in R \cap R^{-1}$,而 $R \cap R^{-1} = I_A$,所以 $< x, y > \in I_A$,因此有 x = y,故 R 是反对称的:

(必要性) 设 R 是反对称的,若 $< x, y > \in R \cap R^{-1}$,则 $< x, y > \in R$ 且 $< x, y > \in R$,从而x = y,所以 $< x, y > = < x, x > \in I_A$,故 $x \cap R^{-1} \subset I_A$ 。

(*e*)(充分性)设R°R⊆R,则对于任意<x,y>,<y,z>∈R,都有<x,z>∈R,即 R 是传递的:

(必要性)设 R 是传递的,则若 < x,y >, < y,z > $\in R$,则 < x,z > $\in R$,又R°R = $\{< x,z > | x \in A \land z \in A \land (\exists y)(y \in A \land < x,y > \in R \land < y,z > \in R)\} \subseteq R$ 3.7-11

(a)真;

因为 R 是自反的,所以 $\forall x(x \in A \rightarrow xRx)$,同理得, $\forall y(y \in A \rightarrow ySy)$,

所以 $\forall x(x \in A \rightarrow xR^{\circ}Sx)$,即 $R^{\circ}S$ 也是反自反的.

(b)假;

设 $A = \{a, b\}$,A 上的关系 $R = \{\langle a, b \rangle\}$, $S = \{\langle b, a \rangle\}$,R和 S 都是反自反的,但R°S不是反自反的;

(c)假;

例如:设 $A = \{a, b, c\}, A$ 上的关系, $R = \{\langle a, b \rangle, \langle b, a \rangle\}, S = \{\langle b, c \rangle, \langle c, b \rangle\}, R和 S 都是对称的,但<math>R^{\circ}S$ 不是对称的;

(d)假;

例如:设 $A = \{a,b,c\}$,A 上的关系 $R = \{\langle a,b \rangle,\langle c,c \rangle\}$, $S = \{\langle b,c \rangle,\langle c,a \rangle\}$,R和 S 都是反对称的,但R°S这不是反对称的;

(e)假;

例如: 设 $A = \{a, b, c\}$, A上的关系 $R = \{< b, a >, < b, c >, < c, a >\}$, $S = \{(c, a), < a, b >, < c, b >\}$,由于R, S 都是传递的,但R° $S = \{< b, a >, < b, b >, < c, b >\}$ 不是传递的.

3.7-12

(a)R ∪ S不一定是传递的;

证明:

设 $A = \{1,2,3\}$, 令 $R = \{<1,2>,<2,1>,<1,1>,<2,2>\}$, $S = \{<2,3>,<3,2>,<2,2>,<3,3>\}$,不难验证 $R \subseteq A \times A$, $S \subseteq A \times A$, $R \cap S \cup B \in B$

S = {< 1,2 >, < 2,1 >, < 1,1 >, < 2,2 >, < 2,3 >, < 3,2 >, < 3,3 >} 不是传递的;

(b) R ∪ S不一定不是传递的;

证明:

例如 R=S,则 $R \cup S$ 是传递的.

3.7-13

(a) 根据自反性的定义,若要证明 $R \cap S$ 是自反的,只需证明($\forall x$)($x \in A \rightarrow < x, x > \in R \cap S$)

对于任意的 $x \in A$,因为R和S都是自反的,则 $< x, x > \in R \land < x, x > \in R \cap S$, 所以 $R \cap S$ 是自反的;

(b) 要证明 $R \cap S$ 是对称的,即证明: $(\forall x)(\forall y)(< x, y > \in R \cap S \rightarrow < y, x > \in R \cap S)$.

$$< x,y > \in R \cap S \Rightarrow < x,y > \in R \land < x,y > \in S \Rightarrow < y,x > \in R \land < y,x > \in S \Rightarrow < y,x > \in R \cap S$$
,所以 $R \cap S$ 是对称的;

(c) 要证明 $R \cap S$ 是传递的,即证明($\forall x$)($\forall y$)($\forall z$)($< x,y > \in R \cap S \land < y,z > \in R \cap S \Rightarrow < x,z > \in R \cap S$).

 $\langle x, y \rangle \in R \cap S \land \langle y, z \rangle \in R \cap S \Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in S \land \langle y, z \rangle \in R \land \langle y, z \rangle \in S \Rightarrow \langle x, z \rangle \in R \land \langle x, z \rangle \in S \Rightarrow \langle x, z \rangle \in R \cap S.$

3.7-14

- (a) 正确.对所有 a 属于 A,因为 R 是自反的,所以< a,a >属于 R,从而< a,a > \in R^{-1} ,故 R^{-1} 是自反的;
- (b) 正确.若 R 是对称的,则有 $R^{-1} = R$,故 R^{-1} 也是对称的;
- (c) 正确.即证明 $(\forall x)(\forall y)(\forall z)((x,y) \in R^{-1} \land (y,z) \in R^{-1} \rightarrow (x,z) \in R^{-1})$

 $< x,y> \in R^{-1} \land < y,z> \in R^{-1} \Rightarrow < y,x> \in R \land < z,y> \in R \Rightarrow < z,x> \in R \Rightarrow < x,z> \in R^{-1}.$

3.7-15

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, c \rangle, \langle c, a \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle b, c \rangle, \langle c, b \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle \},$$

$$\{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle,$$

$$\langle c, b \rangle \}$$

$$(b)8 \times 3^3 = 216$$

$$(c)2^9 - 216 - 8 \times 2^3 = 232$$

3.7-16

反对称

3.7-17

证明:

设 R 是 A 上是传递的,即若 xRy 且 yRz,则有 xRz.现若有 xR^2y 且 yR^2z ,则存在 $u,v\in A$,使 xRu,uRy 且 yRv,vRz,进而有xRy 且 yRz,即 xR^2z ,即 R^2 也是集合 A 上的传递关系.

3.8 节

3.8-1

 $r(R) = R \cup I_A = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle a, c \rangle \}$

$$s(R) = R \cup R^{-1} = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, d \rangle, \langle d, c \rangle, \langle a, c \rangle, \langle c, a \rangle \}$$

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow M_{t(R)} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $t(R) = \{ < a, a >, < a, b >, < a, c >, < a, d >, < b, a >, < b, b >, < b, c >, < b, d >, < c, d > \}$

r(R)

s(R)

t(R)

3.8-2

解: s(R)不一定是传递的.

设 $R = \{<1,2>,<2,3>,<1,3>\}$

3.8-3

证明: <1> 证 $t(R) \subseteq \bigcup_{i=1}^{\infty} R^i$

任取 $< a, b > \in \bigcup_{i=1}^{\infty} R^i$, $< b, c > \in \bigcup_{i=1}^{\infty} R^i$, 必存在正整数 s, t, 使得 $< a, b > \in R^s$,

:: t(R)是包含 R 的最小集合 $:: t(R) \subseteq \bigcup_{i=1}^{\infty} R^i$

<2> 证任 $-R^n \subseteq t(R)$

数学归纳法: 基础: 当 n=1 时, $R \subseteq t(R)$

假设: 当 n=k 时, $R^k \subseteq t(R)$

推理: 当 n=k+1 时,任取< a,b > \in R^{k+1} ,若< a,b > \in R^k , \because $R^k \subseteq t(R)$, \therefore $R^{k+1} \subseteq t(R)$,

综上所述,所以 $t = \bigcup_{i=1}^{\infty} R^i$.

3.8-4

- (a) $t(R) = \{ \langle a1, a2 \rangle, \langle a1, a3 \rangle, \langle a1, a4 \rangle, \langle a1, a5 \rangle, \langle a2, a3 \rangle, \langle a2, a4 \rangle, \langle a2, a5 \rangle, \langle a3, a4 \rangle, \langle a3, a5 \rangle, \langle a4, a5 \rangle \}$
- (b) $r(R) = R \cup I_A = \{ \langle a1, a1 \rangle, \langle a2, a2 \rangle, \langle a3, a3 \rangle, \langle a4, a4 \rangle, \langle a5, a5 \rangle, \langle a1, a2 \rangle, \langle a2, a3 \rangle, \langle a3, a4 \rangle, \langle a4, a5 \rangle \}$

$$sr(R) = \{ < a1, a1 >, < a2, a2 >, < a3, a3 >, < a4, a4 >, < a5, a5 >, < a1, a2 >, < a2, a1 >, < a2, a3 >, < a3, a2 >, < a3, a4 >, < a4, a3 >, < a4, a5 >, < a5, a4 > \}$$

$$tsr(R) = A \times A$$

(c) (i)基础: 若 $< a, b > \in R$,则 $< a, b > \in t(R)$

(*ii*)归纳:若 $< a, b > \in t(R)$,且 $< b, c > \in t(R)$,则 $< a, c > \in t(R)$

(iii)极小性: t(R)是满足(i)和(ii)的最小集合.

3.8-5

证明:

(a)
$$r(R_1) = R_1 \cup I_A \ r(R_2) = R_2 \cup I_A$$

 $\therefore R_1 \subseteq R_2 \ \therefore r(R_1) \subseteq r(R_2)$
(b) $s(R_1) = R_1 \cup R_1^{-1} \ s(R_2) = R_2 \cup R_2^{-1} \ \therefore R_1 \subseteq R_2 \ \therefore R_1^{-1} \subseteq R_2^{-1} \ \therefore s(R_1) \subseteq s(R_2)$

$$\therefore R_1 \subseteq t(R_2) \quad \therefore t(R_1) \subseteq t(R_2)$$

3.8-6

$$(a)r(R_1 \cup R_2) = R_1 \cup R_2 \cup I_A$$

$$r(R_1) \cup r(R_2) = (R_1 \cup I_A) \cup (R_2 \cup I_A) = R_1 \cup R_2 \cup I_A$$

$$\therefore r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$$

$$(b)S(R_1) \cup S(R_2) = R_1 \cup R_1^{-1} \cup R_2 \cup R_2^{-1}$$

$$S(R_1 \cup R_2) = R_1 \cup R_2 \cup (R_1 \cup R_2)^{-1} = R_1 \cup R_2 \cup R_1^{-1} \cup R_2^{-1}$$

$$\therefore S(R_1 \cup R_2) = S(R_1) \cup S(R_2)$$

(c)任取 $< a,b> \in t(R_1) \cup t(R_2)$

若 $< a, b > \in t(R_1)$,必然存在正整数 k,使得 $< a, b > \in R_1^k$

$$: R_1 \subseteq t(R_1 \cup R_2) : t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$$

若 $< a,b > \notin t(R_1)$, 则 $< a,b > \in t(R_2)$

同理可得, $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$

3.8-7

(a)反自反,对称

(b)
$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

3.8-8

$$R={<1,2>,<2,3>,<3,4>,<2,1>}$$

$$R^2 = R \circ R = \{ < 1.3 > . < 1.1 > . < 2.4 > . < 2.2 > \}$$

$$R^3 = R^2 \circ R = \{ <1,4 > <1,2 > <2,3 > <2,1 > \}$$

$$R^4 = R^3 \circ R = \{ <1,3 >, <1,1 >, <2,4 >, <2,2 > \}$$

3.8-9

证明:
$$: R$$
 是自反的 $: r(R) = R$
$$R^* = t(R) \quad \exists R \in T(R) \quad I_A \in R$$

$$: I_A \subseteq t(R) \quad \exists R^* \in T(R) \in T(R)$$

3.8-10

证明: 任取<
$$a,b > \in R^*$$
, 令 $S = r(R)$

必存在正整数t,使得 $< a,b > \in S^t$

$$S^t = \underbrace{S \circ S \circ S \circ \cdots \circ S}_{t}$$
, S 中存在元素 $x_1, x_2, \cdots, x_{t-1}$, 使得

$$< a, x_1 > \in S, < x_1, x_2 > \in S, \cdots, < x_{t-1}, b > \in S$$

$$: S = r(R) = R \cup I_A$$
 R 是对称的, I_A 也是对称的

:: S也是对称的.

$$\therefore < b, x_{t-1} > \in S, \dots, < x_2, x_1 > \in S, < x, a > \in S$$

:: R*是对称的.

3.9 节

3.9-1

- (a) 不是等价关系,不满足对称性;
- (b) 是等价关系.

3.9-2

(a)R 时自反,对称,传递的,所以 R 是等价关系;

S不是对称的,所以 S不是等价关系.

(b)等价关系的每个子图都是有向完全图.

3.9-3

(b)
$$S = \{ <1,1 >, <2,2 >, <1,2 >, <2,1 >, <3,3 >, <4,4 >, <5,5 > \}$$

3.9-4

证明:

1)证明*S*⊆*R*

 $\forall < a,b > \in S$,根据S的定义, $\exists c \in A$,使得 $< a,c > \in R$ 且 $< c,b > \in R$, 又由于R是传递的,因此 $< a,b > \in R$,故 $S \subseteq R$.

(2)证明*R*⊆*S*

 $\forall < e, f > \in R$,由于R是自反的,所以 $< f, f > \in R$,根据S的定义, $< e, f > \in S$, 故 $R \subseteq S$.

3.9-5

证明:

(1) 假设 R 是等价关系;

显然 R 是自反的,

 $\forall a, b, c \in A$,若有aRb和bRc,由对称性可推出bRa和cRb, 再由传递性得cRa,即R是循环的.

(2) 假设 R 是自反和循环的;

即有aRa, bRb, cRc, 假设有aRb, 由循环性可得必有bRa, 若有bRa则必有aRb, 以此类推, 可得R是对称的.

同理,可推得 R 是传递的,综上得 R 是等价的.

3.9-6

证明:

充分性: 设对于任意的 $a,b,c \in A$,若有aRb和aRc,则必有bRc;

又R是自反的,则 $\forall a,b \in A$,显然有aRa,若aRb,则必有bRa, 所以R是对称的;

 $\forall a,b,c \in A$, 显然有aRa, 若aRb, bRc, 则必有bRa, 则必有aRc, 所以R是传递的;

综上得,R 是等价关系;

必要性: R 是等价关系;

 $\forall a, b, c \in A$, 若aRb, aRc, 由对称性可得bRa, 又由传递性可得bRc;

综上得,R 是等价关系当且仅当对于任意的 $a,b,c \in A$,若有aRb 和aRc,则必有bRc.

证明:

- (1) 自反性::: R是自反的,:: $\forall a \in A$, $\bar{q} < f(a)$, $f(a) > \in R$, 由 S 的定义得< $a, a > \in S$, 所以 S 是自反的;
- (2) 对称性: :: R是对称的, $:: \forall a, b \in A, \overline{A} < f(a), f(b) > \in R$, 则 $< f(b), f(a) > \in R$, 由S的定义得若 $< aa, b > \in S$, 则 $< b, a > \in S$, 所以S是自反的;
- (3) 传递性: "R是对称的, " $\forall a, b, c \in A$, 若 $< f(a), f(b) > \in R$, $< f(b), f(c) > \in R$, 则 $< f(a), f(c) > \in R$, 由S的定义得若 $< a, b > \in S$, $< b, c > \in S$, 则 $< a, c > \in S$, 所以S是传递的;

综上得,S 是 A 上的等价关系.

3.9-8

证明:

$$M_{ts(R)} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

由矩阵图得,ts(R)是 X 上的等价关系.

证明:

(a) 因为 R_1 和 R_2 是等价关系,所以 $E \subseteq R_1$, $E \subseteq R_2$, 从而 $E \subseteq (R_1 \cap R_2)$, 因此 $R_1 \cap R_2$ 是自反的.

又
$$\widetilde{R_1 \cap R_2} = \widetilde{R_1} \cap \widetilde{R_2} = R_1 \cap R_2$$
,因此 $R_1 \cap R_2$ 是对称的.

$$\forall < x, y > \in R_1 \cap R_2, < y, z > \in R_1 \cap R_2, 则 < x, y > \in R_1, < y, z > \in R_1.$$
 因此 $< x, z > \in R_1.$ 同理 $< x, z > \in R_2$, 因此 $< x, z > \in R_1 \cap R_2$.

因此 $R_1 \cap R_2$ 也是传递的,因而是等价关系.

$$(b)[a]_{R_1 \cap R_2} = \{x | x \in A, x(R_1 \cap R_2)a\} = \{x | x \in A, xR_1 a \cap xR_2 a\} = [a]_{R_1} \cap [a]_{R_2}$$
3.9-10

$$R1 = \{ \langle a, a \rangle \langle b, b \rangle \langle c, c \rangle \langle d, d \rangle \langle e, e \rangle \langle g, g \rangle \langle f, f \rangle \langle a, b \rangle$$

$$< b, a \rangle \langle a, c \rangle \langle c, a \rangle \langle b, c \rangle \langle c, b \rangle \langle d, e \rangle \langle e, d \rangle \langle e, g \rangle$$

$$> \langle g, e \rangle \langle d, g \rangle \langle g, d \rangle \}$$

$$R2 = \{ \langle a, a \rangle \langle b, b \rangle \langle c, c \rangle \langle d, d \rangle \langle e, e \rangle \langle f, f \rangle \langle g, g \rangle \langle a, c \rangle \langle c, a \rangle \\ > \langle b, d \rangle \langle d, b \rangle \langle b, e \rangle \langle e, b \rangle \langle d, e \rangle \langle e, d \rangle \langle f, g \rangle \\ < \langle g, f \rangle \}$$

$$R1 \cap R2 = \{ \langle a, a \rangle \langle b, b \rangle \langle c, c \rangle \langle d, d \rangle \langle e, e \rangle \langle f, f \rangle \langle g, g \rangle \langle a, c \rangle \langle c, a \rangle \langle d, e \rangle \langle e, d \rangle \}$$

$$\frac{A}{R1 \cap R2} = \{\{a, c\}, \{d, e\}, \{b\}, \{g\}, \{f\}\}\}$$

3.9-11

证明:

(a) $I_A \subseteq R_1$, $I_A \subseteq R_2$, 显然 $I_A \subseteq R_1$ ° R_2 , 满足自反性;

$$\forall$$
< a, b > \in R₁°R₂, \exists c 使 < a, c > \in R₁, < c, b > \in R₂, 则 < c, a > \in R₁, < b, c > \in R₂, 则 < b, a > \in R₂°R₁ = R₁°R₂, 满足对称性

 aR_1 ° $R_2b \wedge bR_1$ ° $R_2c \Rightarrow \exists d, e \ aR_1d \wedge dR_2b \wedge bR_1e \wedge eR_2c \Rightarrow$ $\exists d, e \ aR_1d \wedge dR_2$ ° $R_1e \wedge eR_2c \Rightarrow \exists d, e, f \ aR_1d \wedge dR_2f \wedge fR_1e \wedge eR_2c \Rightarrow$ $\exists f \ aR_1$ ° $R_2f \wedge fR_1$ ° $R_2c \Rightarrow aR_1$ ° R_2c ,满足传递性,综上得 R_1 ° R_2 是A上的等价关系.

(b)因为 R_1 和 R_2 是等价关系,所以 $R_1 \cup R_2$ 是等价关系,所以 $r(R_1 \cup R_2) = R_1 \cup R_2$.

 $\forall < a,b> \in R_1 °R_2, \exists c \notin < a,c> \in R_1, < c,b> \in R_2, 则 < a,c>, < c,b> \in R_1 \cup R_2, 又R_1 \cup R_2 是 等 价 关 系, 所 以 < a,b> \in R_1 \cup R_2, 所 以 R_1 °R_2 \subseteq R_1 \cup R_2 = r(R_1 \cup R_2).$

 $\forall < a, b > \in R_1 \cup R_2, < a, b > \in R_1$ 或 $< a, b > \in R_2$. 假设 < a, b > $\in R_1$,因为 R_2 是等价关系,所以 $< a, a > \in R_2$,所以 < a, b > $\in R_2$ ° $R_1 = R_1$ ° R_2 ,所以 $r(R_1 \cup R_2) = R_1 \cup R_2 \subseteq R_1$ ° R_2 ;若 $< a, b > \in R_2$,同理得 $r(R_1 \cup R_2) = R_1 \cup R_2 \subset R_1$ ° R_2 .

综上得, $r(R_1 \cup R_2) = R_1 {}^{\circ}R_2$.

3.9-12

(a)证明:

自反性: $\forall S \in \rho(A)$, 因为|S| = |S|, 所以SRS;

对称性: $\forall < S, T > \in R$,有|S| = |T|,即|T| = |S|, $< T, S > \in R$;

传递性: $\forall < S, A >, < A, T > \in R$, 有|S| = |A|, |A| = |T|, 则|S| = |T|, $< S, T > \in R$.

(b)

 $\frac{\rho(A)}{R}$

 $= \{\{\emptyset\}, \{\{1\}, \{2\}, \{3\}, \{4\}\}, \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}, \{\{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}\}\}, \{\{1,2,3,4\}\}\}\}$

3.9-13

$$(a)E = tsr(R) = rst(R) = I_A \cup R \cup R^{-1} \cup R^n$$

(b)

(c) $I_A \cup R \cup R^{-1} \cup R^n = \{ < 1,1 >, < 2,2 >, < 3,3 >, < 4,4 >, < 5,5 >, < 6,6 >, < 1,2 >, < 1,3 >, < 2,1 >, < 2,3 >, < 3,1 >, < 3,2 >, < 3,3 >, < 4,5 >, < 5,4 > \}$

3.9-14

- (1)3 块只含 1 个元素,1 块含 3 个,有 $C_6^3 = 20$ 种;
- (2)2 块含 2 个元素,2 块含 1 个,有 $\frac{1}{2}C_6^2C_4^2 = 45$ 种.

3.9-15

 $(a)2^{25}$;

(b) 集合上每个等价关系对应集合的一种划分,集合的每一种划分又对应于该集合的一个等价关系,不同的等价关系对应于集合的划分也不同,因此集合有多少不同划分,就有多少不同等价关系,用 Bn 表示 n 个元素集合 X 的划分个数,其中称 Bn 为 Bell 数,关于 Bell 数有如下递推公式:

Bn+1=C(n,0)B0+C(n,1)B1+C(n,2)B2+...+C(n,n)Bn

其中 B0=1, C(n,k)是个 n 元数取 k 个元的组合数,利用公式可以计算出前几个 Bell数:

 $B1 = C(0,0)B0 = 1 \times 1 = 1$,

 $B2 = C(1,0)B0 + C(1,1)B1 = 1 \times 1 + 1 \times 1 = 2$,

 $B3 = C(2,0)B0 + C(2,1)B1 + C(2,2)B2 = 1 \times 1 + 2 \times 1 + 1 \times 2 = 5$

B4 = C(3,0)B0 + C(3,1)B1 + C(3,2)B2 + C(3,3)B3 = 1 + 3 + 6 + 5 = 15

B5 = C(4,0)B0 + C(4,1)B1 + C(4,2)B2 + C(4,3)B3 + C(4,4)B4

=1+4+12+20+15=52,

故5个元素的集合的等价关系有52种.

3.9-16

(a)将 A 划分为 1 块有 1 个,划分为两块有 3+4=7 个,划分为三块有 6 个,划分为四块有 1 个,共 15 个;

(b)所诱导划分的秩为 2 即划分为两块有 7 个.

3.9-17

证明: 若 A/R 是 A 上的一个划分,那么可以定义二元关系< x,y> 当且仅当存在 R 使 x,y 同时属于 A/R.直接验证,其确实满足等价关系的定义.

若有一个 A 上的等价关系,那么对于任意 $x \in A$,记 A/x 是与 x 等价的元素集合. 然后在所有 $\{A/x\}$ 中,去掉所有重复的集合,即若 A/x=A/y,只保留其中一个,组成一个新的集合簇,于是 A/x 和 A/y 的交集为空集并且所有 A/x 的并就是 x.

3.9-18

$$R = \{ \langle a, a \rangle, \langle c, c \rangle, \langle e, e \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle a, e \rangle, \langle e, a \rangle, \langle c, e \rangle, \\ \langle e, c \rangle, \langle b, b \rangle, \langle d, d \rangle, \langle b, d \rangle, \langle d, b \rangle \}$$

3.9-19

$$A/R = \{\{a, b, c, e\}, \{d\}\}$$

3.10 节

3.10-1

(b)极大元:b,d 极小元:a 最大元:无 最小元:a.

3.10-2

最大元:无 最小元:无 上界:11 下界:1 最小上界:11 最大下界 1.

3.10-3

- (a)极大元:I,m 极小元:a,b,c;
- (b)没有;

(c)上界:k,I,m 最小上界:k;

(d)无.

3.10-4

极大元:6 极小元:3 最大元:6 最小元:3 最小上界:6 最大下界:3 3.10-5

任取 $a \in A$, $a \to A$ 中单个元素,则不存在 $b \in A$ 使得 $b \neq a \pounds\{b\} \subseteq \{a\}$ 所以 $\forall a \in A$, $\{a\}$ 为B 中的极小元;

任取 $a \in A$, $A - \{a\} \in \rho(A)$, $A\{a\}$ 中含有 |A| - 1 个元素.且对于任意的 $b \in A$ 中 $b \neq a$, $A - \{b\}$ 中各有 |A| - 1 个元素且 $A - \{a\}$ 与 $A - \{b\}$ 互不包涵.

所以对于 A 中任意单个元素 $a, A - \{a\}$ 为 B 中的极大元.

因为 A 中至少有 2 个元素,任取 $a,b \in A$, $a \neq b$, $\{a\}$ 和 $\{b\}$ 均为极小元,所以不存在最小元

同理,也不存在最大元.

3.10-6

证明: 因为 R 是 A 上的偏序,所以 R 是自反的, R^{-1} 是自反的, $\nabla \forall < a,b > \in R$, 若 $a \neq b$,则 $< b,a > \notin R$,综上得, $R \cap R^{-1} = \{< a,a > | a \in A\}$,显然 $R \cap R^{-1}$ 是等价关系.

3.10-7

- (*a*)令*A* = {*a*|*a*是大于等于 0 的实数},则(*A*,≤)是一个非空偏序集.令 *B* 是大于零的实数的集合,则 *B* 没有最小元;
- (c) 令 $A = \{a, b, c, d\}, R = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle a, d \rangle, \langle b, d \rangle\}, 则(A,R)$ 是以非空偏序集.令 $B = \{a, b\}$,则它有上界的d, c,但没有最小上界.

 $\{b | b \in B \land \neg (\exists x \in B(b \neq x \land b \leq x))\}$

任取 $a1 \in A$,若 a1 为 a 的极大元,则结论成立;若不是,则存在 $a2 \in A$,使得 $a1 \ne a2$ 且 $a2 \ge a1$.若 a2 为极大元,则结论成立;否则存在 $a3 \in A$,使得 $a3 \ne a2$, $a3 \ne a1$ 且 $a3 \ge a2$ ……重复上述过程,因为 a1 是有限集,所以一定有 $ai \in A$,使得 $ai \ge ai - 1 \ge \dots \ge a2 \ge a1$ 且 ai 为 a1 的极大元,否则将与集合 a1 的有限性矛盾.

(a)证明: 若 $\exists x, y \in A$, 使得 $< x, y > \in R \land < y, x > \in R$, 则由传递性得, $< x, x > \in R$, 与R是反自反的相矛盾, 所以拟序一定是反对称的;

(b)若 R 是拟序,则 r(R)是偏序,则 $R-I_A$ 是拟序

3.10-10

(a) 因为 $R \cap R^{-1} = I_x$ 所以有自反性,反对称性

因为 $R^* = tr(R) \ r(R) = R$

所以R = t(R)

所以 R 是传递的

综上得,R 是偏序;

(b) < x, x > ∈ R, 𝔻 < x, x > ∈ R^{-1}

所以 $< x, x > \in R \cap R^{-1} 与 R \cap R^{-1} = \emptyset$ 矛盾

所以 R 满足反自反性

 $R = R^+ = t(R)$ 所以 R 满足传递性,

综上得,R 是拟序的.

3.10-11

(a) display \geq discrete

(b)*girl* ≤ *girls*

3.10-12

 $0 \le 1 \le 00 \le 01 \le 10 \le 11 \le 000 \le 001 \le 010 \le 011 \le 100 \le 101 \le 110$ $\le 111 \le \cdots$

3.10-13

是的,按照词典序和标准序的定义,其任意元素都可比较且每一非空子集都有最小元,所以是良序.

3.10-14

(a)词典序: $quack \le quick \le quicking \le quicksand \le quicksilver$

标准序: $quack \le quick \le quicking \le quicksand \le quicksilver$

(b)词典序: $open \leq opened \leq opener \leq opera \leq operand$

标准序: open \leq opena \leq opened \leq opener \leq openand

(c)词典序: $zero \le zoo \le zoological \le zoology \le zoom$

标准序: $zoo \le zero \le zoom \le zoology \le zoological$

3.10-15

(a)

(b)

3.10-16

证明:

 $\forall U \in \rho(S)$,因为 $U \subset U$,所以 < $U,U > \notin R$,所以 R 是反自反的;

 $\forall < U,V >, < V,T > \in R$,有 $U \subset V \perp U \subset T$,得 $U \subset T$,所以 $< U,T > \in R$,

即R是传递的;

综上得,R 是拟序关系.

第4章

第一节

4.1-1 a, b 不能构成函数。

c: dom $f_3 = N$; ran $f_3 = Z^+$;

d: dom $f_4 = R$; $ran f_4 = \{y | y \ge 0\}$

4.1-2 (a) 8种

$$f_1 = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \}; f_2 = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 1 \rangle \};$$

$$f_3 = \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}; f_4 = \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \};$$

$$f_5 = \{ \langle a, 1 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \}; f_6 = \{ \langle a, 1 \rangle, \langle b, 0 \rangle, \langle c, 1 \rangle \};$$

$$f_7 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}; f_8 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \};$$

(b) 9种

$$f_1 = \{ <0, a >, <1, a > \}; f_2 = \{ <0, a >, <1, b > \}; f_3 = \{ <0, a >, <1, c > \};$$

$$f_4 = \{ <0, b>, <1, a> \}; f_{5=} \{ <0, b>, <1, b> \}; f_6 = \{ <0, b>, <1, c> \};$$

$$f_7 = \{ <0, c>, <1, a> \}; f_8 = \{ <0, c>, <1, b> \}; f_9 = \{ <0, c>, <1, c> \};$$

4.1-3 (a)证明:

充分性: $h = f \cap g$, $\forall x_0 \in X$, $fh(x_0) \in Y$ 。

$$h(x_0) = f(x_0) = g(x_0), \quad \exists \forall x_0 \in X, \quad \exists f(x_0) = g(x_0) \in Y, \quad : f = g.$$

必要性: : f = g, $: h = f \cap g = f$ 。 $Z : f \not = x$ 到Y的函数, $: h \not = x$ 到Y的函数。

(b) 不一定

若 $∃x_1 ∈ X$ 时,有 $f(x_1) ≠ g(x_1)$,那么对于 $f \cup g$, x_1 存在两个不同的值 $f(x_1)$, $g(x_1)$ 与其对应,不符合函数的定义,故不是从X到Y的函数。

- 4.1-4 证明:
 - (a): 在f(1)处无定义。
 - (b): f(2) = f(0) + 1, f(0)处无定义。
 - (c): f(2) = f(f(1)) + 1 = f(2) + 1, 矛盾。
- 4.1-5 解: 设f: N → N。

$$f(x) = \begin{cases} x - 2 & x > 50 \\ f(f(x+3)) & x \le x \le 50 \end{cases}$$

- 4.1-6 证明:
 - (a) \diamondsuit h(n) = g(n) f(n)

由
$$f(n) - f(n-1) \le g(n) - g(n-1)$$
 可得 $g(n-1) - f(n-1) \le g(n) - f(n)$

即: $h(n-1) \le h(n)$, : h(n)是单调递增的。

$$X: h(1) = g(1) - f(1) \ge 0, : h(n) \ge h(1) \ge 0$$

即 $g(n) \ge f(n)$ 。

(b)
$$\Leftrightarrow f(n) = \frac{1}{n^2}$$
, $g(n) = \begin{cases} 1 & n = 1 \\ \frac{1}{n(n-1)} & n > 1 \end{cases}$

易知f,g满足(1),(2)条件。

∴
$$f(n) \le g(n)$$
, $p(1) \le g(1)$, $p(2) \le g(2)$, ..., $p(n) \le g(n)$

即
$$f(1) + f(2) + \cdots + f(n) \le g(1) + g(2) + \cdots + g(n)$$

$$\therefore 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 1 + \frac{1}{1 + 2} + \dots + \frac{1}{(n-1) + n} = 2 - \frac{1}{n}$$

$$f(n) = 2f(n-1) + 1$$

```
f(n) + 1 = 2(f(n-1) + 1) = 2^2(f(n-2) + 1) = \dots = 2^n(f(0) + 1)
       f(n) = 5 * 2^n - 1
        当n = 0时,f(0) = 4也满足上式。
       h(n) = \sqrt[2]{5 * 2^n - 1}
4. 1-8
       解:
        (a) f(2,1) = 2
        (b) f(3,3) = f(2,f(3,2))
           f(3,2) = f(2,f(3,1)) = f(2,2) = f(1,f(2,1)) = f(1,2) = f(0,f(1,1)) = f(0,2) = 4
           f(3,3) = f(2,4) = f(1,f(2,3))
           f(2,3) = f(1,f(2,2)) = f(1,4) = f(0,f(1,3))
           f(1,3) = f(0,f(1,2)) = f(0,4) = 8
           f(2,3) = f(0,8) = 16
           (c) f(m, 2) = f(m - 1, f(m, 1)) = f(m - 1, 2)
            f(m-1,2) = f(m-2, f(m-1,1)) = f(m-2,2)
           f(m, 2) = f(1, 2) = 4
        (d) f(1,n) = f(0,f(1,n-1)) = 2f(1,n-1)
           f(1, n-1) = f(0, f(1, n-2)) = 2f(1, n-2)
           f(1, n) = 2^{n-2}f(1, 2) = 2^n
        (e) 证明: (1) 数学归纳法: 证f(m, n + 1) \ge f(m, n)
            基础: 当n = 1时, f(m, 2) = 4 > f(m, 1) = 2
            假设: 当n > 1时,对于任何k < n,都有f(m, k + 1) > f(m, k)成立
            推理: 当k = n时, 若m = 1, 有f(1, n + 1) = 2^{n+1} > f(1, n) = 2^n;
            若m > 1时, f(m, n + 1) = f(m - 1, f(m, n))
            f(m, n) = f(m - 1, f(m, n - 1))
           f(m,3) = f(m-1, f(m,2))
            f(m, 2) = 4
            易知, f(m,n) \ge f(m,n-1) \ge f(m,n-2) \ge \cdots \ge f(m,3)
            由该函数的运算规律可知,f(m-1,f(m,n)) \ge f(m-1,f(m,n-1))
            即f(m, n + 1) \ge f(m, n)。
            根据归纳假设可知, m > 0, n > 0有f(m, n + 1) \ge f(m, n)成立。
            (2)证明: f(m+1,n) > f(m,n)
            当n = 1时,f(m + 1,1) = f(m,1) = 2
            易知f(m+1,n-1) \ge f(m+1,n-2) \ge \cdots \ge f(m+1,2) = 4
           f(m, f(m+1, n-1)) \ge f(m, n+1) \ge f(m, n)
           即f(m+1,n) \ge f(m,n)
        (a) 不是函数
4.1-9
        (b) 是函数, ranR = {1,2,3}
4.1-10 (a) F
        (b) F
```

(c) T

(d) F

第二节

- 4.2-1 (a) 单射
 - (b) 满射
 - (c) 双射
 - (d) 既不是单射也不是满射
 - (e) 双射
 - (f) 双射
- 4.2-2 满射, 非单射
- 4.2-3 (a) 证明: (1) f 是满射,故任意 $b \in B$,都存在 $x \in A$ 满足函数 g,即g(b)不为空集。 (2) f 是函数,对于任意 $x \in A$,都只存在唯一的 $b \in B$ 使得 f 成立。

设 b_1 , $b_2 \in B \coprod b_1 \neq b_2$, 由(1)知:

$$g(b_1) = \{x_1, x_2, ...\}$$
,不妨将结果集设为 S_1 , $S_1 \neq \emptyset$

$$g(b_2) = \{x_3, x_4, ...\}$$
,不妨将结果集设为 S_2 , $S_2 \neq \emptyset$

从 S_1 中取出 x_1 ,由(2)可得, S_1 包含唯一的 x_1 ,故 $S_1 \neq S_2$,即 $g(b_1) \neq g(b_2)$ 。故 g 是单射。

(b) 不一定。

证明: f 是单射函数,则对于任意的 x_1 , $x_2 \in A$, $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$ 。则对于 g 来说,其结果集大小不超过 1. 若 $\rho(A)$ 中有大小大于 1 的集合,则其在 g 中无原像,故 g 不一定是满射。

- 4. 2-4 (a) {< 1,1 >, < 2,1 >, < 3,2 >}, {< 1,1 >, < 2,2,>, < 3,1 >}, {< 1,2 >, < 2,1 >, < 3,1 >}, {< 1,1 >, < 2,2,>, < 3,2 >},
 - {< 1,2 >, < 2,1 >, < 3,1 >}, {< 1,2 >, < 2,2,>, < 3,1 >}
 - (b) {< 1,1 >, < 2,2 >}, {< 1,1 >, < 2,3 >}, {< 1,2 >, < 2,1 >}, {< 1,2 >, < 2,3 >}, {< 1,3 >, < 2,1 >}, {< 1,3 >, < 2,2 >}
- 4.2-5 解: (a) f₁既不是单射也不是满射。

不存在 $< x, y > \in N \times N$,使得f(< x, y >) = 0

:: f1不是满射

又: f(<1,1>) = f(<0,2>)

:: f1不是单射

 $f_1(N \times \{1\}) = \{x + 2 | x \in N\} = \{x | x \in N \& x \ge 2\}$

(b) f₂是单射不是满射。

不存在 $x \in N$,使得f(x) = < 0.0 >

:: *f*₂不是满射

又对任意 $x_1, x_2 \in N, x_1 \neq x_2, f(x_1) = \langle x_1, x_1 + 1 \rangle \neq f(x_2) = \langle x_2, x_2 + 1 \rangle$

:: *f*₂是单射

$$f_2 = \{ < 0.1 >, < 1.2 >, < 2.3 > \}$$

- 4.2-6 解: h 是双射,证明如下:
 - (1) 先证 h 是单射。

反证法: 假设 h 不是单射

存在< a, c >, < b, d > $\in A \times C$, $< a, c > \neq < b, d >$

$$h(< a, c >) = < f(a), f(c) > = h(< b, d >) = < f(b), g(d) >$$

: f,g都是双射,< a, c >≠< b, d >

 $:< f(a), g(c) > \neq < f(b), g(d) >$,矛盾

- :: h是单射。
- (2) 再证 h 是满射。

对于任意 $< e, f> \in B \times D$,由于 f, g 都是双射,则存在 x_1, x_2 ,使得f(x_1) = e, f(x_2) =

f \circ

: h是满射

综上所述, h 是双射

4.2-7

- 4. 2-8 单射: f 是 A 到 B 的双射函数,任意 $a_1, a_2 \in A$,如果 $a_1 \neq a_2$,那么 $f(a_1) \neq f(a_2)$ 。 所以 $a_1, a_2 \in \rho(A)$,如果 $a_1 \neq a_2$,那么 $g(a_1) \neq g(a_2)$ 。 满射:由满射定义可知,任意 $b \in B$,存在 $a \in A$,使得f(a) = b。 所以任意 $b \in \rho(B)$,存在 $a \in \rho(A)$,使得 $g(\rho(a)) = \rho(b)$ 。 综上,所以 g 是双射。
- 4. 2-9 (1) Both
 - (2) Onto
 - (3) Both
- 4. 2-10 (1) f(x) = x + 1
 - (2) f(x) = |x 1|
 - (3) f(x) = x
 - $(4) f(x) = x \pmod{6}$

第三节

- 4.3-1 证明:假设没有两个英文单词以同一个字母开头,那么每个单词都以一种字母开头,则需要 27 个不同的英文字母,这与 26 个英文字母矛盾.因此至少有两个单词是由同一个字母开头。
- 4.3-2 证明:假设 51 栋房子没有门牌号是连续的,那么每个房间之间就要至少要隔着一个门牌号,那么至少要 101 个门牌,这与只有 100 门牌相矛盾,因此至少有两栋房子是门牌号连续的.
- 4. 3-3 证明: 1 到 25 中恰有 13 个奇数,而每个正整数 n 均可唯一地写成 $n = 2^k * m$ 的形式,其中 m 是奇数,并且整数 $k \ge 0$,m 称为 n 的奇数部分。从 1 到 25 中个任取 14 个不同的数,至少有两个数 n_1 和 n_2 的奇数部分同为 m,令 $n_1 = 2^{k_1} * m$, $n_2 = 2^{k_2} * m$ 。若 $k_1 > k_2$,则 n_1 是 n_2 的倍数,否则, n_2 是 n_1 的倍数。
- 4.3-4 证:假设任意两台计算机所连接的计算机数目不同,因为每台计算机至少与一台其他计算机相连,则他们连接的计算机数目分别为 1, 2, 3, 4, 5, 6.不可能存在一台计算机连接 6 台其他计算机,这与只有 6 台计算机相矛盾。因此至少存在 2 台计算机所连接的计算机数目相同。

4.3-5

4.3-6 考虑科学家 A, 他要与另外的 16 位科学家每人讨论一个问题,则根据鸽巢定理可知,他必定要与至少 6 位科学家讨论一个相同的问题,不妨设为问题 1, 如果这六位科学家之间相互讨论中存在问题 1, 那么讨论的这两位科学家必定与科学家 A 在讨论同一个问题 1。如果这六位科学家之间没有人讨论问题 1, 那么他们之间只有讨论问题 2 或问题 3。考虑这六位科学家中有一位科学家 B, 根据鸽巢定理,他必定要与其余 5 位科学家中的 3 位讨论同一问题,不妨设为问题 2。那么这三位与科学家 B 讨论同一个问题 2,否则他们 3 位相互之间只能讨论问题 3,综上所述,

- 一定存在三个科学家在讨论同一个问题。
- 4. 3-7 将这 12 个数分为 6 组,{1,12},{2,11},{3,10},{4,9},{5,8},{6,7}。 则根据推论 2 可得,至少有一个组中的两个数字都被选中,而这两个数之和为 13, 得证。
- 4.3-8 从 10 个人中选出 3 个,则有 120 种方案,这 120 种方案放入 10 个帽子中,根据 推论 2 可得,至少 1 个帽子中有 12 种或以上的方案。

第四节

4. 4-1 (a) $f \lozenge g = f(x^2) = 2x^2 + 3$

(b)
$$g \lozenge f = g(2x + 3) = 4x^2 + 12x + 9$$

(c)
$$f \lozenge h = f(\frac{1}{2}x - 3) = x - 3$$

4.4-2 双射

证明:设n = 1时, $f = I_x$, 故f是双射的。

当n > 1时,若 f 不是单射,则必有 $x_1, x_2 \in X$, $x_1 \neq x_2$,但 $f(x_1) = f(x_2)$,因而 $f^n(x_1) = f^n(x_2)$,这与 $f^n = I_x$ 矛盾,故 f 必为单射。

若 f 不是满射,则必有 $y \in X$,使得对于任意 $x \in X$,有 $f(x) \neq y$,由此可得,存在 $z \in X$,必有 $f^n(z) \neq y$,与 $I_x = f^n$ 矛盾。

因此f必为双射。

4.4-3 (a)证明:假定 f 不是满射

故 $\exists y_1 \in Y(\forall x \in X(f(x) \neq y_1))$ 。

因为 g 是单射,所以 $g(y_1)$ 所对应的 z_1 就取不到,则复合函数不是满射函数,这与条件矛盾,所以 f 是满射函数。

(b) 不一定

例如: X集合为Z, Y集合为Z, Z'集合为N, f(x) = |x|, g(x) = |x|。

- 4. 4-4 因为 $f \land f^{-1} = I_A$, $f \land f = I_A$,所以 $f = f^{-1}$,所以 $f = I_A$ 。
- 4. 4–5 因为g \Diamond f = I_X ,为一个双射函数,由定理 4. 4. 4 可得,所以f为单射函数,g为满射函数。
- 4. 4-6 (a) 由 f \Diamond $f^{-1} = I_A$ 求 f 为单射: 因为 f \Diamond $f^{-1} = I_A$,所以有 f $\Big(f^{-1}(b)\Big) = b$ 即 $f^{-1}\Big(f\Big(f^{-1}(b)\Big)\Big) = f^{-1}(b)$,令 $f^{-1}(b) = a$,即 $f^{-1}\Big(f(a)\Big) = a$,即 f^{-1} \Diamond f = I_A ,由 定理 4. 4. 4 可得,f为单射。

由f为单射求f $\Diamond f^{-1}=I_A$: 因为 f 为单射,则在陪域 $\{f(x)|x\in A\}$ 上f为双射,而 f^{-1} 在 $\{f(x)|x\in A\}$ 上为双射。由定理 4. 4. 5 可得,对于任意的 $x\in A$,f $\Diamond f^{-1}=I_A$,得证。

(b) 因为 $g \land f = I_X$,为一个双射函数,由定理 4.4.4 可得,所以f为单射函数,g为满射函数。

4. 4-7 (a) $f^{-1}(x) = x$

(b)
$$f^{-1}(x) = 2x - \frac{1}{2}$$

(c)
$$f^{-1}(x) = \sqrt[3]{2+x}$$

(d)
$$f^{-1}(x) = \log_2 x$$

4. 4-8 $g = \{<1, a>, <2, c>, <3, b>, <4, a>\}$ $g = \{<1, a>, <2, c>, <3, b>, <4, b>\}$ $g = \{<1, a>, <2, c>, <3, b>, <4, b>\}$

4. 4-9 (a) $f = \{ \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle \}$

(b) $f = \{ \langle a, b \rangle, \langle b, b \rangle, \langle c, d \rangle, \langle d, d \rangle \}$

- 4. 4-10 (a) 256
 - (b) 41
 - (c) 10
- 4. 4-11 $g \lozenge f = 2x + 2$ $f \lozenge g = 2x + 1$
- 4.4-12 (a) 不是
 - (b)是

第五节

- 4.5-1 (a)可数
 - (b) 可数
 - (c)可数
 - (d)可数
 - (e)不可数
 - (f)不可数
- 4.5-2 证明:

定义函数 $f: R \to (0, \infty)$, $f(x) = e^x$ 。显然 f 是双射函数, 所以 $R = (0, \infty)$ 等势。

4.5-3 证明:

设集合A = $\{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$, B = $\{\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$, A, B分别是(0, 1], (0, 1)的子集。

定义函数f: (0,1] → (0,1), 使得

$$\begin{cases} f\left(\frac{1}{n}\right) = \frac{1}{n+1}, \, \text{ in } \in \mathbb{N}^+ \text{ in } \\ f(x) = x, \, \text{ in } x \in (0.1] - A \text{ in } \end{cases}$$

可以验证,f是双射函数,所以(0,1]~(0,1)

- 4.5-4 设A = $\{a_0, a_1, ..., a_n, ...\}$, B = $\{b_0, b_1, ..., b_n, ...\}$ 则可以通过下标从N × N到A × B建立一个双射函数,这样就在N × N到A × B之间建立了一个一映射,所以它们等势,因为N × N是可数集合,则A × B也是可数集合。
- - (1) 当 $\mathbf{n} = 1$ 时, $A^1 \sim A$,所以 A^1 是可数集合。
 - (2) 假设对于n = k时, A^k 是可数集合
 - (3) 当 $\mathbf{n} = \mathbf{k} + 1$ 时, $A^{k+1} = A^k \times A$,因为 A^k 与N等势,A与N等势,易从N × N到 $A^k \times A$ 建立起双射函数,又根据 4.5.8 可知N × N是可数集合,则 $A^k \times A$ 也是可数集合,即 A^{k+1} 是可数集合。

综上所述, A^n 是可数集合。

- 4.5-6 因为 $N \times N$ 是可数集合,故存在一个枚举S,又因为A是有限集合,不妨设 $N = \{1,2,3,...,n\}$ 为其枚举,则将 $S \cup N$ 即为构造出来的枚举。
- 4.5-7 (a) 若A为有理数集,则 F_n 的基数为: $\frac{\aleph_0^2}{2}$
 - (b) 若A为实数集,则 F_n 的基数为: $\aleph_0 * \frac{\aleph}{2}$
- 4.5-8 定义函数f: $[0,1) \rightarrow (\frac{1}{4}, \frac{1}{2}]$,

$$f(x) = \frac{1}{2} - \frac{1}{4}x$$

易证f是双射函数,所以A~B

4. 5-9 $S = \{ < m, n > | m, n \in Z^+, m 与 n 互质 \}$ 因为S是 $N \times N$ 的无限子集,所以S是可数的。

令g: S
$$\rightarrow Q^-$$
, $g(< m, n >) = -\frac{m}{n}$, g是双射, 故S是 Q^- 的一个枚举。

第六节