Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1 to 5 (canceled).

Claim 6 (currently amended): A method for indexing minimum coded units (MCUs) in a Joint Photographic Expert Group (JPEG) bit stream on an as needed basis, comprising:

receiving a request for an *i*th MCU in the bit stream;

determining if the i^{th} MCU precedes a last indexed MCU in the bit stream, wherein the last indexed MCU is a last MCU in the bit stream that has [[its]] \underline{a} bit offset from a start of the bit stream stored in an index; and

if the *i*th MCU does not precede the last indexed MCU in the bit stream:

entropy decoding a plurality of the MCUs up to and including the i^{th} MCU in the bit stream, but without going beyond the i^{th} MCU, to determine their corresponding bit offsets from the start of the bit stream; and

indexing the plurality of the MCUs by saving their corresponding bit offsets in the index.

Claim 7 (original): The method of claim 6, wherein:

said entropy decoding a plurality of the MCUs up to and including the *i*th MCU in the bit stream further comprises determining a plurality of DC coefficients of the plurality of the MCUs; and

said indexing the plurality of the MCUs further comprises saving the plurality of DC coefficients in the index.

Claim 8 (currently amended): The method of claim 7, further comprising:

if the i^{th} MCU precedes the last indexed MCU in the bit stream:
reading the index to determine [[a]] the bit offset of the i^{th} MCU; and
entropy decoding the i^{th} MCU starting at the bit offset in the bit stream.
Claim 9 to 22 (canceled).