Controle N1

MksjBCc3

What will be the output of the code?

```
def filter_odd_numbers(numbers):
    return [num for num in numbers if num % 2 != 0]

nums = [2, 3, 4, 5, 6]
    filtered = filter_odd_numbers(nums)
    print(filtered)
```

```
[2, 4, 6]
[3, 5]
[2, 4, 6, 3, 5]
[3, 4, 5]
```

wAD21uWg

```
numbers = [1, 2, 3, 4, 5]
    squared_numbers = [x**2 for x in numbers if x % 2 == 0]
    print(squared_numbers)
```

```
O [1, 4, 9, 16, 25]
O [1, 9, 25]
O [4, 16]
O [2, 4]
```

1BSjHDSz

What type of relationship is shown between the Customer and BankAccount classes?

YnlP6sm9

What type of relationship exists between the Car and Engine classes in the diagram?

yHT7UDhl

What will be the output of the code?

```
def append_value(lst, value=None):
    if value is not None:
        lst.append(value)
    return lst

my_list = [1, 2, 3]
    result = append_value(my_list, 4)
    print(result)
```

```
[1, 2, 3]
[1, 2, 3, 4]
[4]
[1, 2, 3, None]
```

hjbpbt0e

```
def update_dict(d, key, value):
    d[key] = value
    return d

my_dict = {'a': 1, 'b': 2}
    result = update_dict(my_dict, 'b', 3)
    print(result)
```

```
O {'a': 1, 'b': 2}
O {'a': 1, 'b': 3}
O {'a': 1, 'b': '3'}
O {'a': 1, 'b': 2, '3': 3}
```

kO40y4WW

What is the diagram's relationship between the Student and Course classes?

The Student class inherits from the Course class.
 The Student class is associated with the Course class.
 The Course class is an interface implemented by Student.
 The Student class is composed of the Course class.

2QQeJ5u0

```
def calculate_sum(a, b=5):
    return a + b

    result = calculate_sum(10)
    print(result)
```

0	10
0	15
0	5
0	Error

ZO8zvWTK

What is the relationship between the Manager and Employee classes in the diagram?

0	Inheritance
0	Aggregation
0	Composition
0	Association

IiLilloV

Using the table below, determine the molarity of each solution if the total volume is 1 liter.

Solute	Mass (g)	Molar Mass (g/mol)
Sodium Hydroxide (NaOH)	40	40.0
Potassium Chloride (KCI)	74	74.0
Calcium Chloride (CaCl ₂)	147	147.0
Ammonium Nitrate (NH ₄ NO ₃)	80	80.0

0	(NaOH): 1.0 M;(KCl): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 1.0 M
0	(NaOH): 0.5 M;(KCl): 0.5 M;(CaCl ₂): 0.5 M;(NH ₄ NO ₃): 0.5 M
0	(NaOH): 1.0 M;(KCl): 0.5 M;(CaCl₂): 0.68 M;(NH₄NO₃): 1.0 M
0	(NaOH): 0.8 M;(KCI): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 0.8 M

G2cKYu7b

What type of relationship exists between the Library and Book classes in the diagram?

Controle N2

hjbpbt0e

What will be the output of the code?

```
def update_dict(d, key, value):
    d[key] = value
    return d

my_dict = {'a': 1, 'b': 2}
    result = update_dict(my_dict, 'b', 3)
    print(result)
```

- ('a': 1, 'b': 2)
 ('a': 1, 'b': 3)
 ('a': 1, 'b': '3')
 ('a': 1, 'b': 2, '3': 3)
 - wAD21uWg

What will be the output of the code?

```
numbers = [1, 2, 3, 4, 5]
    squared_numbers = [x**2 for x in numbers if x % 2 == 0]
    print(squared_numbers)
```

O [1, 4, 9, 16, 25]
O [1, 9, 25]
O [4, 16]
O [2, 4]

2QQeJ5u0

What will be the output of the code?

```
def calculate_sum(a, b=5):
    return a + b

    result = calculate_sum(10)
    print(result)
```


YnlP6sm9

What type of relationship exists between the Car and Engine classes in the diagram?

0	Inheritance
0	Aggregation
0	Composition
0	Association

MksjBCc3

What will be the output of the code?

```
def filter_odd_numbers(numbers):
    return [num for num in numbers if num % 2 != 0]

nums = [2, 3, 4, 5, 6]
    filtered = filter_odd_numbers(nums)
    print(filtered)
```

```
[2, 4, 6]
[3, 5]
[2, 4, 6, 3, 5]
[3, 4, 5]
```

G2cKYu7b

What type of relationship exists between the Library and Book classes in the diagram?

0	Inheritance
0	Aggregation
0	Composition
0	Association

1BSjHDSz

What type of relationship is shown between the Customer and BankAccount classes?

0	Inheritance
0	Aggregation
0	Composition
0	Association

IiLilloV

Using the table below, determine the molarity of each solution if the total volume is 1 liter.

Solute	Mass (g)	Molar Mass (g/mol)
Sodium Hydroxide (NaOH)	40	40.0
Potassium Chloride (KCI)	74	74.0
Calcium Chloride (CaCl ₂)	147	147.0
Ammonium Nitrate (NH₄NO₃)	80	80.0

0	(NaOH): 1.0 M;(KCI): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 1.0 M
0	(NaOH): 0.5 M;(KCI): 0.5 M;(CaCl ₂): 0.5 M;(NH ₄ NO ₃): 0.5 M
0	(NaOH): 1.0 M;(KCl): 0.5 M;(CaCl₂): 0.68 M;(NH₄NO₃): 1.0 M
0	(NaOH): 0.8 M;(KCI): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 0.8 M

ZO8zvWTK

What is the relationship between the Manager and Employee classes in the diagram?

kO40y4WW

What is the diagram's relationship between the Student and Course classes?

The Student class inherits from the Course class.
 The Student class is associated with the Course class.
 The Course class is an interface implemented by Student.
 The Student class is composed of the Course class.

yHT7UDhl

```
def append_value(lst, value=None):
    if value is not None:
        lst.append(value)
    return lst

my_list = [1, 2, 3]
    result = append_value(my_list, 4)
    print(result)
```

```
[1, 2, 3]
[1, 2, 3, 4]
[4]
[1, 2, 3, None]
```

Controle N3

2QQeJ5u0

What will be the output of the code?

```
def calculate_sum(a, b=5):
    return a + b

    result = calculate_sum(10)
    print(result)
```

0	10
0	15
0	5
0	Error

yHT7UDhl

```
def append_value(lst, value=None):
    if value is not None:
        lst.append(value)
        return lst

    my_list = [1, 2, 3]
    result = append_value(my_list, 4)
    print(result)
```

0	[1, 2, 3]
0	[1, 2, 3, 4]
0	[4]
0	[1, 2, 3, None]

kO40y4WW

What is the diagram's relationship between the Student and Course classes?

- O The Student class inherits from the Course class.
- O The Student class is associated with the Course class.
- O The Course class is an interface implemented by Student.
- O The Student class is composed of the Course class.

hjbpbt0e

```
def update_dict(d, key, value):
    d[key] = value
    return d

my_dict = {'a': 1, 'b': 2}
    result = update_dict(my_dict, 'b', 3)
    print(result)
```

- ('a': 1, 'b': 2)('a': 1, 'b': 3)('a': 1, 'b': '3')
- O {'a': 1, 'b': 2, '3': 3}

YnlP6sm9

What type of relationship exists between the Car and Engine classes in the diagram?

wAD21uWg

```
numbers = [1, 2, 3, 4, 5]
          squared_numbers = [x**2 for x in numbers if x % 2 == 0]
          print(squared_numbers)
```

```
[1, 4, 9, 16, 25]
[1, 9, 25]
[4, 16]
[2, 4]
```

MksjBCc3

What will be the output of the code?

```
def filter_odd_numbers(numbers):
    return [num for num in numbers if num % 2 != 0]

nums = [2, 3, 4, 5, 6]
    filtered = filter_odd_numbers(nums)
    print(filtered)
```

```
[2, 4, 6]
[3, 5]
[2, 4, 6, 3, 5]
[3, 4, 5]
```

G2cKYu7b

What type of relationship exists between the Library and Book classes in the diagram?

0	Inheritance
0	Aggregation
0	Composition
0	Association

liLilloV

Using the table below, determine the molarity of each solution if the total volume is 1 liter.

Solute	Mass (g)	Molar Mass (g/mol)
Sodium Hydroxide (NaOH)	40	40.0
Potassium Chloride (KCI)	74	74.0
Calcium Chloride (CaCl ₂)	147	147.0
Ammonium Nitrate (NH₄NO₃)	80	80.0

0	(NaOH): 1.0 M;(KCl): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 1.0 M
0	(NaOH): 0.5 M;(KCl): 0.5 M;(CaCl ₂): 0.5 M;(NH ₄ NO ₃): 0.5 M
0	(NaOH): 1.0 M;(KCl): 0.5 M;(CaCl ₂): 0.68 M;(NH ₄ NO ₃): 1.0 M
0	(NaOH): 0.8 M;(KCl): 1.0 M;(CaCl ₂): 1.0 M;(NH ₄ NO ₃): 0.8 M

ZO8zvWTK

What is the relationship between the Manager and Employee classes in the diagram?

0	Inheritance
0	Aggregation
0	Composition
0	Association

1BSjHDSz

What type of relationship is shown between the Customer and BankAccount classes?

