Securité

Caesar:

Encryption F(Plain, Key) = (P+K) MOD 26 Decryption F(Cipher, Key) = (C-K) MOD 26

Key= F(Plain,Cipher) = (C-P) Mod 26

PlayFair:

- Row of letter and column of the other

Separator X

- Filler X

- In case same Row:

Encryption : Shift right Decrypt : Shift left

- In case same column:

Encryption : Shift down Decrypt : Shift up

Operation modes for DES and AES:

ECB: Electronic Codebook Book mode

- +ECB can be done simultaneously (threads)
- +Order doesn't matter in ECB
- ECB is suitable for short messages (IVs) or for exchanging keys of other modes
- La redondance des memes blocs est propagé

CBC: Cipher Block Chaining mode

Cryptage:

C 0 = IV; c j =E(c j-1 \oplus m j) pour 1 \leq j \leq t

Décryptage :

C 0 = IV; m j = c j-1 \oplus D(c j) pour 1 \leq j \leq t

- +Plus de confusion
- +Si l'ordre change le decryptage devient impossible
- - Propagation de l'erreur
- Approprié au messages longs (Multimedias)

CFB Cipher Feed Back Mode

OFB Output Feed Back Mode

Counter Mode:

Parameters d'un algo de cryptage :

confusion : Rend la relation entre le ciphertext et la clé aussi complexe que possible (apparence

aléatoire)

diffusion : Chaque bit du plaintext affecte tous les bits du ciphertext (avalanche)

DES : IP MATRIX

Initial Permutation (IP)										
58	50	42	34	26	18	10	2			
60	52	44	36	28	20	12	4			
62	54	46	38	30	22	14	6			
64	56	48	40	32	24	16	8			
57	49	41	33	25	17	9	1			
59	51	43	35	27	19	11	3			
61	53	45	37	29	21	13	5			
63	55	47	39	31	23	15	7			

Expansion MAtrix

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

RSA:

- 1 Choose 2 prime numbers p and q
- 2 Compute N = p x q
- 3 Compute Phi(N) = (p-1)(q-1)
- 4 Choose e
- 1 < e < phi and must be coprime with phi (PGCD(e,phi) = 1)

Choose d

 $0 \le d \le n$

D = (1 + k*phi)/e and K : 1 ... e The result should be prime and no decimal

Public key (e,n)

Private Key (d,n)

Taille maximale d'un bloc de plaintext X = Entiere(Ln(n)/ln(dimension(text clair))Taille maximale d'un bloc de cipher = X+1

Encryption

 $E(P) = P^e \mod n$

Decrypt

$D(C) = C^d \mod n$

Diffie Helmann

Soit p =17, g= 3 des clés globales partagés entre Alice et bob. Alice choisit a= 7, et Bob choisit b= 4.

- Alice calcule sa clé publique A = g^a mod p = 3 7 mod 17 = 11 et envoie A à Bob
- Bob calcule sa clé publique B = g^b mod p = 3 4 mod 17 = 13 et envoie B à Alice
- Alice calcule la clé secrète par K = B^a mod p = 13 7 mod 17 = 4
- Bob calcule la clé secrète K par K = A^b mod p = 11 4 mod 17 = 4