(a) Determine the SI base units of stress. Show your working.

base units[2]

(b) A beam PQ is clamped so that the beam is horizontal. A mass *M* of 500 g is hung from end Q and the beam bends slightly, as illustrated in Fig. 1.1.

Fig. 1.1

The length l of the beam from the edge of the clamp R to end Q is 60.0 cm. The width b of the beam is 30.0 mm and the thickness d of the beam is 5.00 mm. The material of the beam has Young modulus E.

The mass M is made to oscillate vertically. The time period T of the oscillations is 0.58 s.

The period *T* is given by the expression

$$T = 2\pi \sqrt{\frac{4Ml^3}{Ebd^3}}.$$

(i) Determine E in GPa.

(ii)	The	The quantities used to determine \boldsymbol{E} should be measured with accuracy and with precision.			
	1. Explain the difference between accuracy and precision.				
		accuracy:			
		precision:			
	2.	In a particular experiment, the quantities $\it l$ and $\it T$ are measured with the same percentage uncertainty. State and explain which of these two quantities contributes more to the uncertainty in the value of $\it E$.			
		[1]			
		[Total: 8]			

2	(a)	State the two conditions for a system to be in equilibrium.
---	-----	---

1	 	 	 	
2	 	 	 	
				121

(b) A paraglider P of mass 95 kg is pulled by a wire attached to a boat, as shown in Fig. 2.1.

Fig. 2.1

The wire makes an angle of 25° with the horizontal water surface. P moves in a straight line parallel to the surface of the water.

The variation with time t of the velocity v of P is shown in Fig. 2.2.

Fig. 2.2

(i)	Show that the acceleration of P is $1.4 \mathrm{ms^{-2}}$ at time $t = 5.0 \mathrm{s}$.
(ii)	Calculate the total distance moved by P from time $t = 0$ to $t = 7.0$ s.
(iii)	distance =
(iv)	change in kinetic energy =
	Calculate, for the horizontal motion,
	1. the vertical lift force <i>F</i> supporting P,
	F =
	R =N [3]

[Total: 14]

3 (a) A cylinder is made from a material of density 2.7 g cm⁻³. The cylinder has diameter 2.4 cm and length 5.0 cm.

Show that the cylinder has weight 0.60 N.

[3]

(b) The cylinder in (a) is hung from the end A of a non-uniform bar AB, as shown in Fig. 3.1.

Fig. 3.1

The bar has length $50\,\text{cm}$ and has weight $0.25\,\text{N}$. The centre of gravity of the bar is $20\,\text{cm}$ from B. The bar is pivoted at P. The pivot is $12\,\text{cm}$ from B.

An object X is hung from end B. The weight of X is adjusted until the bar is horizontal and in equilibrium.

(i)	Explain what is meant by <i>centre of gravity</i> .
	[1]

(ii)	Calculate the weight of X.				
		weight of 2	X =		ا3] ا
The	e cylinder is now immersed in water,	as illustrated ir	ı Fig. 3.2.		
	A			В	
W	/ater	0.25 N	Р	x	
	F	ig. 3.2			
An	upthrust acts on the cylinder and the	e bar is not in e	quilibrium.		
(i)	Explain the origin of the upthrust.				
					[2]
(ii)	Explain why the weight of X must b	e reduced in o	rder to obtain	equilibrium for AB.	

[Total: 10]

(c)

4	(a)	State the conditions required for the formation of stationary waves.	
			[2]

(b) One end of a string is attached to a vibrator. The string is stretched by passing the other end over a pulley and attaching a load, as illustrated in Fig. 4.1.

Fig. 4.1

The frequency of vibration of the vibrator is adjusted to $250\,\text{Hz}$ and a transverse wave travels along the string with a speed of $12\,\text{m}\,\text{s}^{-1}$. The wave is reflected at the pulley and a stationary wave forms on the string.

Fig. 4.2 shows the string between points A and B at time $t = t_1$.

Fig. 4.2

At time $t = t_1$ the string has maximum displacement.

(i) Calculate the distance AB.

- (ii) On Fig. 4.2, sketch the position of the string between A and B at times
 - **1.** $t = t_1 + 2.0 \,\text{ms}$ (label this line P),
 - **2.** $t = t_1 + 5.0 \,\text{ms}$ (label this line Q).

[3]

[Total: 7]

(a)	Describe the Doppler effect.
	[1
(b)	A car travels with a constant velocity along a straight road. The car horn with a frequency of 400 Hz is sounded continuously. A stationary observer on the roadside hears the sound from the horn at a frequency of $360\mathrm{Hz}$. The speed of sound is $340\mathrm{ms^{-1}}$.
	Determine the magnitude v , and the direction, of the velocity of the car relative to the observer
	v =ms
	direction
	[3
	[Total: 4

6	(a)	Define the <i>ohm</i> .
		[1]
	(b)	A cell X of electromotive force (e.m.f.) 1.5 V and negligible internal resistance is connected in series to three resistors A, B and C, as shown in Fig. 6.1.
		$X = 1.5V$ $A = 6.0\Omega$ $B = 4.0\Omega$
		Fig. 6.1
		Resistors A and B have resistances 6.0Ω and 3.0Ω respectively and are connected in parallel. Resistor C has resistance 4.0Ω and is connected in series with the parallel combination.
		Calculate
		(i) the current in the circuit,

(ii) the current in resistor B,

current =A [3]

current =A [1]

(iii) the ratio

 $\frac{\text{power dissipated in resistor B}}{\text{power dissipated in resistor C}} \,.$

		ratio =[2]
(c)	The	resistors A, B and C in (b) are wires of the same material and have the same length.
	(i)	Explain how the resistors may be made with different resistance values.
		[1]
	(ii)	Calculate the ratio
		$\frac{\text{average drift speed of the charge carriers in resistor B}}{\text{average drift speed of the charge carriers in resistor C}}.$
		ı;
		ratio =[2]
(d)		ell of e.m.f. 1.5V and negligible internal resistance is connected in parallel with cell X in 6.1 with their positive terminals together.
	Stat	e the change, if any, to the current in
	(i)	cell X,
		[1]
	(ii)	resistor C.
		[1]
		[Total: 12]

(a)	the quark mode	I to show that					
(i) the charge on a	proton is + <i>e</i> ,					
				[1			
(ii) the charge on a	neutron is zero.					
				[1			
	nucleus of $^{90}_{38}$ Sr demission of a β^+ part		particle. A nucleus of $^{64}_{29}$ Cu dec	cays by the			
(i) In Fig. 7.1, stat each of these de		oton number for the nucleus p	oroduced ir			
		nucleus formed by β^- decay	nucleus formed by β^+ decay				
	nucleon number						
	proton number						
		Fig. 7.1		[1			
(ii) State the name	of the force responsible for β	lecay.				
				[1			
(iii) State the names	s of the leptons produced in ea	ch of the decay processes.				
	β ⁻ decay:						
	β ⁺ decay:						
				[1			
				[Total: 5			