Table 1

Incyte Polynucleotide ID 2515666CB1
Polynucleotide SEQ ID NO: 2
Incyte Polypeptide ID 251566601
Polypeptide SEQ ID NO: 1
Incyte Project ID 2515666

GenBank HomoLog	Cytochrome P450 (Homo sanional /Time	Mol. Endocrinol. 3:1399-1408)
Probability Score	6.90E-270	
GenBank ID NO:	g181382	
Incyte Polypeptide ID	2515666CD1	
Polypeptide SEQ ID NO:	7	

	Analytical	Databases	BLIMPS-	FRINIS	BLIMBG	PRINTS		BLIMPS-	PRINTS		MOTIFS	BLAST-DOMO	Br year	PRODOM	HMMER-PFAM	PROFILESCAN	BLIMPS-	BLOCKS		HMMER	HMMER
	Signature Sequences, Domains and Motifs	2000		K294-T311, I314-G340, E357-E375, N398-T422, M436-C446, C446-EA60	Ť	T323-G340,	S433-C446, C446-F469	85:		30 0440	F439-6448	724-1.485		469		-	heme-iron	MARGIN SIGNATURE BL00086; BI	- 1	L14-R32	M.LC22
1 able 3	Potential Glycosylation		4 02	MN	M	00	φ) i	Ži k	W	0	15	á	<i>₫</i>		3 8	11	8	TH	Ė	15	
	Potential Phosphorylation Sites	S10 S89 S212	T267 T323 T378	S348 T363 S433																	
	Amino Acid Residues	504																-	_		
	Incyte Polypeptide ID	Z515666CD1																			
	SEQ ID NO:	-1								_	_	_	_		_				_		

8 2 2
Sequence Fragments Fragments Fragments Szabe00257F1 Szabe0059F1 Szabe00073F1 Szabe00073F1 Szabe00178F1 Szabe00178F1 Szabe00140F1 Szabe000140F1 Szabe00140F1 Szabe000140F1 Szabe00140F1 Sz
Selected Fragments -77, 91-915
Sequence Length 1790
Incyte Polymuleotide 2515666CBI
Polynucleotide SEQ ID NO: 2

		Representative	Library	LIVRTIT-04
	Incyte	Project ID	2515666CB1	
Polynucleotide	SEQ ID NO:	2		

Library	Vector	Library Description
LIVRTUT04	DINCY	Library was constructed using RNA isolated from liver tumor tissue removed from a 50-
		year-old Caucasian male during a partial hepatectomy. Pathology indicated a grade 3-4
		hepatoma, forming a mass. Patient history included benign hypertension and hepatitis.
		Honotitie D gone entires and benefitie D surface entires mad necessar in the nations

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABIPARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastr, thlasm, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	EXTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for minarity between a query squence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, fasta, fasta, fasta, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. USA 852244-2448; Pearson, W.R. (1990) Methods Enzymol. 185.63-98; and Smith, Tf. and Mas. Waterman (1981) Adv. Appl. Math. 2482-489.	ESTs: fasta E value=1 06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fasts E value=1 06F-8 or less Full Length sequences; fasts score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acits Res. 196565-6572, Henikoff, J.G. and S. Henikoff (1990) Methods Enzymol. 266:88-105; and Arwoof, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (FMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Somhammer, E.L.L. et al. (1988) Yuchele Acids Res. 26:2303-522; Durfin, R. et al. (1998) Our World View, in a Nurshell, Cambridge Univ. Press, pp. 1-350.	PFAM hins: Probability value= 1.0E-3 or less Signal pepiide hins: Score=0 or greater

Table 7 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score2GCG- specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, W.A.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	2.
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Soi. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Somhammer, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	.217-221; page WI.