# **Iris-Dataset ANN**

## Jyotirmay Narayan Bhatt HappymonkAl

## The Iris Dataset

The iris dataset used contains 150 examples that has 3 classes and each class has 50 examples. There are four features with three of them being linearly separable unlike the fourth.



### Normalization

I used keras.layer.LayerNormalization to normalize the dataset



## Model

The model has the following structure that is self-explanatory.

- 1. Normalization Layer
- 2. Dense layer with 16 neurons and relu activation
- 3. Dense layer with 32 neurons and relu activation

- 4. Dense layer with 32 neurons and relu activation
- 5. Dense layer with 64 neurons and relu activation
- 6. Dense layer with 3 (n\_classes) neurons and relu activation

This structure was decided after training and iteratively altering values for best performance.

## **Model Compilation**

#### Loss Function

The loss function used was SparseCategoricalCrossEntropyLoss due to the purpose of classification and this being one of the most widely used lost functions for the purpose.

#### Learning Rate

Learning rate was made to decay exponentially as the epochs increase to converge in better to the minimum loss function.

#### Optimizer

Stochastic Gradient Descent

#### Accuracy

SparceCategoricalAccuracy

## **Model Training**

The model was trained for 30 epochs.

#### Callbacks

- 1. Save the best model: The weights of the model with best validation accuracy was saved to use for predictions in future
- 2. Tensorboard: Tensorboard callbacks were used to visualise training

#### Model Evaluation

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 1.00   | 1.00     | 19      |
| 1            | 0.93      | 0.93   | 0.93     | 15      |
| 2            | 0.94      | 0.94   | 0.94     | 16      |
| accuracy     |           |        | 0.96     | 50      |
| macro avg    | 0.96      | 0.96   | 0.96     | 50      |
| weighted avg | 0.96      | 0.96   | 0.96     | 50      |