Проблемы оценки коммерческой эффективности инновационногопроекта

И. А. Брусакова¹, В. И. Фомин² Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ¹brusakovai@mail.ru, ²vfomin.vfomin@ya.ru

Аннотация. В статье перечислены проблемы оценки коммерческой эффективности инновационного проекта, заключающиеся в необходимости учитывать весь период жизненного цикла инноваций, дисконтирование всех денежных потоков, использовании ценовых и количественных характеристик при реализации нового продукта на рынке, учете рисков при создании нового продукта и при выводе его на рынок. Для устранения проблем оценки коммерческой эффективности инновационных проектов предлагается использовать модифицированный подход расчета рентабельности инвестиций и индекса доходности затрат. В статье приводится классификация факторов, определяющих вероятность организационного успеха инновационного проекта.

Ключевые слова: управление инновационной деятельностью компании; коммерческая эффективность инновационного успеха.

I. Введение

В процессе управления инновационной деятельностью компаний возникает проблема оценки целесообразности и выбора лучших вариантов капиталовложений в инновационные проекты. При этом речь может идти как о выполнении собственных инновационных проектов, так и о приобретении лицензий и использовании результатов сторонних разработок. Результатом внедрения инновационных разработок может быть создание и вывод на соответствующий рынок новых продуктов, технологий и услуг. Возможно также изменение характеристик уже выпускаемой компанией продукции в результате применения новаций при ее производстве и реализации на рынке.

II. МОДИФИЦИРОВАННЫЙ ПОДХОД РАСЧЕТА ОЦЕНОК КОММЕРЧЕСКОЙ ЭФФЕКТИВНОСТИ ИННОВАЦИОННЫХ ПРОЕКТОВ

Для оценки целесообразности и выбора лучших вариантов для инвестиций обычно используют показатели коммерческой эффективности, которые должны учитывать финансовые последствия реализации проекта (при этом исходят из предположения, что все затраты по его реализации и все полученные результаты принадлежат компании). Чаще всего для этих целей используют показатели: ROI (Return on Investment) –коэффициент возврата инвестиций (или рентабельность инвестиций) и BCR

Р. Е. Шепелев

Московский государственный университет управления shepelevroman@gmail.com

(Benefit/Cost Ratio) – индекс доходности затрат (в отечественной литературе оба эти термина имеют несколько вариантов наименований и трактовки). В самом общем виде упомянутые показатели могут быть вычислены из соотношений:

$$ROI = \frac{D - C}{K} u BCR = \frac{D}{K + C},$$

где D — доход (денежные поступления) от реализации инвестиционного проекта; C — текущие издержки на реализацию инвестиционного проекта; K — капиталовложения (инвестиции) в проект.

При оценке коммерческой эффективности инновационных проектов необходимо соблюдение следующих условий:

- должен рассматриваться весь период жизненного цикла инновации;
- должно использоваться дисконтирование всех денежных потоков;
- должны использоваться ценовые и количественные характеристики при реализации нового продукта на соответствующем рынке;
- должны учитываться риски, как при создании, так и в процессе вывода на рынок новой продукции.

Для решения рассматриваемой задачи может быть использован модифицированный подход, приводимый в ряде источников со ссылкой на практику американских консалтинговых фирм [1]–[3].

Прогнозное (с учетом рисков) значение рентабельности инвестиций в инновационный проект ROI_{uhh} может быть вычислено по формуле:

$$ROI_{\mathit{UHH}} = \frac{\sum_{t=0}^{T} \frac{\Pi_{t}(E_{t-}C_{t})}{(1+r)^{t}}}{\sum_{t=0}^{T} \frac{K_{t}}{\left(1+r\right)^{t}}} P_{o}P_{\kappa}\,,$$

а соответствующее значение индекса доходности затрат BCR_{UHH} по формуле:

$$BCR_{\mathit{UHH}} = \frac{\sum_{t=0}^{T} \frac{\Pi_{t} E_{t}}{(1+r)^{t}}}{\sum_{t=0}^{T} \frac{K_{t}}{(1+r)^{t}} + \sum_{t=0}^{T} \frac{\Pi_{t} C_{t}}{(1+r)^{t}}} P_{o} P_{\kappa},$$

где Π_t — прогнозируемый объем продаж нового продукта (в единицах измерения — штуках, комплектах, кубометрах и т.п.) за период t; E_t — средняя продажная цена за единицу продукции в период t (в денежных единицах); T — прогнозируемый жизненный цикл нового продукта (обычно в годах); K_t — капитальные вложения в реализацию проекта в период t; C_t — текущие издержки на производство и реализацию единицы продукции в период t; P_o — вероятность организационного успеха (вероятность практической реализации инновационной разработки); P_K — вероятность коммерческого успеха (вероятность получения ожидаемых прибылей); r — норма дисконта за период (обычно за год).

Значения величин Π_t , E_t , K_t , C_t , T, входящих в формулы для расчета ROI_{UHH} и BCR_{UHH} требуют для своей оценки проведения соответствующих предпроектных, в том числе маркетинговых, исследований и расчетов [4,5]. Методики таких расчетов являются предметом отдельных исследований и существенно зависят от отраслевой специфики. Указанные параметры могут быть также получены на основе экспертных оценок (прежде всего при наличии аналогов исследуемого инновационного продукта).

Для определения величины P_o может быть использована модифицированная версия таблицы факторов, влияющих на вероятность организационного успеха (табл. 1). Следует отметить, что как состав учитываемых факторов, так и значения P_{ij} могут уточняться с учетом особенностей конкретной отрасли деятельности компании.

Величина P_o может быть рассчитана (с учетом возможности соответствия одного проекта разным группам характеристик по различным факторам) по формуле:

$$P_o = \sum_{i=1}^{6} \sum_{j=1}^{3} d_{ij} P_{ij}$$
,

где: P_{ij} — составляющая вероятности успеха по i-му фактору в j-й группе; d_{ij} — коэффициент, учитывающий попадание характеристик i -го фактора проекта в j-ю группу ($d_{ij}=1$, если i-я характеристика проекта соответствует j-й группе, и $d_{ij}=0$ в противном случае). При заданных в табл. 1 значениях P_o может изменяться от 0,12 до 0,9.

В простейшем случае для экспертного определения величины P_K может быть использована шкала вероятности коммерческого успеха, построенная на основе эмпирической шкалы риска, предложенной Т. Бачкаи, К. Татеиси, В. Рудашевским [6] (табл. 2):

ТАБЛИЦА І ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ВЕРОЯТНОСТЬ ОРГАНИЗАЦИОННОГО УСПЕХА ПРОЕКТА

	Факторы	Характеристики условий реализации проекта					
i		Группа ј=1	P_{ij}	$\Gamma pynna j = 2$	P_{ij}	Группа j = 3	P_{ij}
1	Информационный	Продукция данного типа известна или хорошо известна	0,15	Требования к изделию определены, характеристики – лишь в общих чертах	0,1	Требования к изделию известны в общих чертах	0,02
2	Научно-технический	Потребуются лабораторные исследования или производство опытных образцов	0,15	Необходимы большие теоретические исследования и значительные эксперименты	0,1	Необходима широкая исследовательская и эксперименталь- ная работа	0,02
3	Производственно- технический	Продукцию можно изго-товить на имеющемся оборудовании	0,15	Требуется модернизация производства	0,1	Необходимо освоить новые техноло-гии	0,02
4	Правовой	Фирма имеет преимущество в патентах и лицензиях	0,15	Относительно свободная возможность использовать патенты и лицензии	0,1	Преимущественное положение в патентах и лицензиях имеют конкуренты	0,02
5	Кадровый	Персонал – специалисты в данной области	0,15	Специалисты как у конкурентов	0,1	Отсутствие опыта в данной области	0,02
6	Финансовый	Фирма обладает достаточными финансами для всего комплекса работ	0,15	Финансовые возможности фирмы ограничены	0,1	Вопросы финансирования требуется решить	0,02

ТАБЛИЦА II Эмпирическая шкала оценки вероятности коммерческого успеха

Наименование градаций коммерческих рисков	Вероятность нежелательного исхода (величина риска)	Вероятность коммерческого успеха
Минимальный риск	0,0 - 0,1	1,0 - 0,9
Малый риск	0,1 - 0,3	0,9 - 0,7
Средний риск	0,3 - 0,4	0,7 - 0,6
Высокий риск	0,4 - 0,6	0,6 - 0,4
Максимальный риск	0,6 - 0,8	0,4 - 0,2
Критический риск	0,8 - 1,0	0,2 - 0,0

Условием целесообразности инвестиций в инновационный проект принято считать $ROI \geq 1$ или $BSR \geq 1$ когда речь идет о расчете соответствующих показателей без учета вероятности организационного и коммерческого успеха. Для ROI_{uhh} и BCR_{uhh} в этом плане требуются дополнительные исследования.

Необходимо отметить, что в случае равенства суммарных затрат сравниваемых вариантов при выборе лучшего варианта инвестиций по значению ROI_{uhh} предпочтение будет отдано проекту с более низкими первоначальными капитальными затратами. При использовании в качестве критерия выбора значения BCR_{uhh} (при тех же условиях) предпочтение будет отдано варианту с более низкими текущими затратами.

В том случае, когда инновационный проект имеет своим результатом не выпуск новой продукции, а изменение характеристик уже выпускаемой компанией продукции расчет может быть выполнен по следующим формулам:

$$ROI_{\mathit{UHH}} = \frac{\sum_{t=0}^{T} \frac{\Pi_{t} \left(E_{t} - C_{t} \right) - \Pi_{t}^{0} \left(E_{t}^{0} - C_{t}^{0} \right)}{(1+r)^{t}}}{\sum_{t=0}^{T} \frac{K_{t}}{\left(1+r \right)^{t}}} P_{o} P_{\kappa}$$

$$BCR_{\mathit{UHH}} = \frac{\sum_{t=0}^{T} \frac{\Pi_{t}E_{t} - \Pi_{t}^{0}E_{t}^{0}}{(1+r)^{t}}}{\sum_{t=0}^{T} \frac{K_{t}}{(1+r)^{t}} + \sum_{t=0}^{T} \frac{\Pi_{t}^{0}C_{t}^{0} - \Pi_{t}C_{t}}{(1+r)^{t}}} P_{o}P_{\kappa}$$

где, и — соответствующие параметры продукта до применения при его производстве и реализации на рынке инновационных решений

III. ЗАКЛЮЧЕНИЕ

Таким образом, выявлены проблемы оценки коммерческой эффективности инновационного проекта, заключающиеся в необходимости учитывать весь период жизненного цикла инноваций, дисконтирование всех денежных потоков, использовании ценовых и количественных характеристик при реализации нового продукта на рынке, учете рисков при создании нового продукта и при выводе его на рынок. Для устранения проблем оценки коммерческой эффективности инновационных проектов предлагается использовать модифицированный подход расчета рентабельности инвестиций и индекса доходности затрат. Приведена классификация факторов, определяющих вероятность организационного успеха инновационного проекта и эмпирическая шкала оценки вероятности коммерческого успеха. Величину вероятности организационного успеха предлагается выбирать в диапазоне от 0,12 до 0,9.

Список литературы

- [1] Томпсон, А.А. Стратегический менеджмент. Искусство разработки и реализации стратегии: учебник / А.Дж. Стрикленд, А.А. Томпсон. М.: ЮНИТИ-ДАНА, 2012. 578 с.
- [2] Харгадон Э. Управление инновациями. Опыт ведущих компаний = How Breakthrouths Happen. The Surprising Truth About How Companies Innovate. М.: «Вильямс», 2007. 304 с.
- [3] https://studopedia.ru/2_120702_faktori-vliyayushchie-na-otsenkuveroyatnosti-uspeha-proekta.html
- [4] Брусакова И.А., Фомин В.И., Косухина М.А., Панин С.Н. Исследование тенденций развития информационного менеджмента в современных условиях (Монография)/ СПб.: Изд-во Санкт-Петербургского университета управления и экономики, 2014. 138 с.
- [5] Косухина М.А., Фомин В.И. Финансово-экономические основы моделирования бизнес-процессов: Монография. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2016. 165 с.
- [6] Бачкаи Т., Рудашевский В., Татеиси К. Хозяйственный риск и методы его измерения [текст]/ Т. Бачкаи, В. Рудашевский, К. Татеиси. М: ИНФА-М, 1999. 345 с.