Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

ОТЧЁТ по лабораторной работе №43

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МЕТАЛЛОВ МЕТОДОМ ВОЛЬТМЕТРА И АМПЕРМЕТРА

Выполнил студент группы
Преподаватель кафедры физики
Отметка о защите

Лабораторная работа № 43

ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МЕТАЛЛОВ МЕТОДОМ ВОЛЬТМЕТРА И АМПЕРМЕТРА

Цель работы — определить удельное электрическое сопротивление металлов методом вольтметра и амперметра.

Приборы и принадлежности: подставка с натянутыми проводниками из различных металлов, амперметр, вольтметр, выключатель, источник тока.

Общие положения

Электрическое сопротивление (R) — скалярная физическая величина, характеризующая свойство проводника противодействовать пропусканию электрического тока и равная отношению напряжения U на концах проводника к силе тока I, протекающего по нему:

$$R = \frac{U}{I} \,. \tag{1}$$

Величина сопротивления зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан. Для однородного цилиндрического проводника

$$R = \rho \frac{l}{S},\tag{2}$$

где l — длина проводника, S — площадь поперечного сечения, ρ — удельное электрическое сопротивление материала проводника. Отсюда

$$\rho = R \frac{S}{I} \,. \tag{3}$$

Удельное сопротивление численно равно сопротивлению цилиндрического проводника единичной длины и единичной площади поперечного сечения. Удельное сопротивление зависит от природы вещества.

Чтобы определить ρ , необходимо измерить электрическое сопротивление R проводника, его длину l и диаметр d проводника. Площадь сечения

$$S = \frac{\pi d^2}{4} \,. \tag{4}$$

В данной лабораторной работе для измерения сопротивления используется метод амперметра и вольтметра, который по-другому называется техническим методом. В основе этого метода лежит закон Ома. По закону Ома сила тока, текущего по однородному металлическому проводнику, пропорциональна напряжению на этом проводнике

$$I = \frac{1}{R} \cdot U \tag{5}$$

Сделав замены в формуле (3) в соответствии с выражениями (1) и (4), получим:

$$\rho = \frac{U}{I} \frac{\pi d^2}{4l}.$$
 (6)

Описание экспериментальной установки

Для измерения сопротивления собирают электрическую цепь, схема которой представлена на рис.1.

G1– источник тока, K1 – ключ, R_1 , R_2 , R_3 , R_4 – исследуемые проводники, натянутые на специальной подставке. Длина каждого проводника l=1 м. Диаметр проводников d указан на подставке. A – амперметр для измерения тока в цепи, V – вольтметр для измерения напряжения на отдельных участках проводников R_1 , R_2 , R_3 и R_4 . Реостат R служит для регулировки тока в цепи.

Подготовка к работе

(ответы представить в письменном виде)

- 1. В чём состоит цель работы?
- 2. Какой закон лежит в основе метода амперметра и вольтметра?
- 3. Какие величины в работе измеряются непосредственно?
- 4. Запишите формулу, по которой Вы будете рассчитывать удельное сопротивление проводника. Поясните смысл обозначений.

Выполнение работы

- 1. Собрать электрическую цепь по схеме (рис. 1).
- 2. Определить цену деления амперметра и вольтметра.
- 3. Подключить установку к источнику тока.
- 4. Замкнуть ключ KI и установить определённый ток I в цепи с помощью реостата R.

- 5. Измерить напряжение U на участках: а) длиной l_1 =0,5 м; б) длиной l_2 =1 м; для каждого проводника.
- 6. Изменить силу тока и измерить напряжение U на участках длиной l_3 =1 м для каждого проводника.

Оформление отчёта

1. Расчёты

- 1. Рассчитать удельное сопротивление для каждого опыта по формуле (6).
- 2. Определить для каждого проводника среднее значение удельного сопротивления ρ_{cp} .
- 3. Рассчитать абсолютную погрешность $\Delta \rho$ как для прямых измерений. Найти относительную погрешность измерений каждого опыта.
- 4. Окончательный результат для каждого исследуемого проводника представить в стандартном виде:

$$\rho = \rho_{cp} \pm \Delta \rho.$$

2. Защита работы

(ответы представить в письменном виде)

- 1. Дайте определение сопротивления проводника. От каких величин оно зависит? Запишите формулу. Поясните смысл обозначений. Укажите единицы измерения.
- 2. Сформулируйте закон Ома для однородного участка цепи. Запишите формулу.
- 3. Каков физический смысл удельного сопротивления? От чего оно зависит?
- 4. Сравните полученные результаты с табличными значениями удельных сопротивлений и определите возможный материал проводников.

ПРОТОКОЛ

измерений к лабораторной работе №43

Выполнил(а)	Группа
-------------	--------

Определение цены деления приборов

No		Предел подключения	Число	Цена деления
п/п	Прибор	с указанием единицы	делений на	с указанием еди-
		измерения	шкале	ницы измерения
1	Вольтметр			
2	Амперметр			

Проводник 1

Диаметр первого проводника $d = _____$

№ п/п	l, M	I, A	U, B	ρ, мкОм∙м
1	0,5			
2	1,0			
3	1,0			
Среднее				

Проводник 2

Диаметр второго проводника $d = _____$

No	l,	I,	U,	ρ,
Π/Π	M	A	В	мкОм∙м
1	0,5			
2	1,0			
3	1,0			
Среднее				

Проводник 3

Диаметр третьего проводника $d = _____$

No	l,	I,	U,	ρ,
Π/Π	M	A	В	мкОм∙м
1	0,5			
2	1,0			
3	1,0			
Среднее				

Дата	Подпись преподавателя