Calcul Numeric

Cursul 8

2022

Forma superioară Hessenberg

Spunem că o matrice $H \in \mathbb{R}^{n \times n}$ este în *formă superioară Hessenberg* dacă:

$$h_{ij} = 0, i = 1,...,n, j = 1,...,i-2$$

O matrice în formă Hessenberg arată astfel:

$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \cdots h_{1n-1} & h_{1n} \\ h_{21} & h_{22} & h_{23} \cdots h_{2n-1} & h_{2n} \\ 0 & h_{32} & h_{33} \cdots h_{3n-1} & h_{3n} \\ 0 & 0 & h_{43} \cdots h_{4n-1} & h_{4n} \\ \vdots & & & \\ 0 & 0 & 0 \cdots h_{nn-1} & h_{nn} \end{pmatrix}$$

Ne interesează un algoritm care să transforme o matrice pătratică *A* oarecare într-o matrice Hessenberg superioară *H* care să aibă aceleași valori proprii:

 $A \rightarrow H$ a.î. $H \sim A$, $H = \tilde{P}A \tilde{P}^{-1}$, \tilde{P} matrice nesingulară Algoritmul este o adaptare a algoritmului lui Housholder și se desfășoară în (n-2) pași, folosind matricile de reflexie pentru a transforma matricea.

Pas 1

se efectuează operațiile $A=P_1$ A P_1 (matricea P_1 se alege astfel încât coloana 1 să fie transformată în formă superior Hessenberg)

Pas 2

$$A = P_2 A P_2 = P_2 (P_1 A^{init}) P_2$$

(P₂ transformă coloana 2 în formă superior Hessenberg fără să schimbe coloana 1)

Pas r

$$A = P_r A P_r = P_r (P_{r-1} \cdots P_1 A^{init} P_1 \cdots P_{r-1}) P_r$$

(se transformă coloana r în formă superior Hessenberg fără să schimbe primele (r-1) coloane)

Pasul
$$r(r=1,2,...,n-2)$$

La intrarea în pasul r matricea A are primele (r-1) coloane în formă superior Hessenberg. La ieșirea din pasul r matricea A va avea primele r coloane în formă superior Hessenberg:

$$A_{ies} = P_r A_{intr} P_r , A_{ies} \sim A_{intr}$$

$$P_r = I_n - 2v^r (v^r)^T , v^r \in \mathbb{R}^n , ||v^r||_2 = 1$$

Vectorul v^r se alege astfel ca matricea A_{ies} să aibă coloana r în formă superior Hessenberg și să nu schimbe primele (r-1) coloane ale matricii A_{intr} .

Calculul matricii P_r

$$P = I_n - \frac{1}{\beta} u u^T$$

$$\beta = \sigma - k \cdot a_{r+1r}$$

$$k^2 = \sigma = a_{r+1r}^2 + \dots + a_{ir}^2 + \dots + a_{nr}^2 = \sum_{i=r+1}^n a_{ir}^2 \implies k = \pm \sqrt{\sigma}$$

$$\operatorname{semn} k = -\operatorname{semn} a_{r+1r}$$

$$u := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{r+1r} - k \\ \vdots \\ a_{ir} \\ \vdots \\ a_{nr} \end{pmatrix}$$

$$\beta = 0 \rightarrow r = r + 1 \ (P = I_n)$$

Algoritmul de trecere de la matricea A la matricea P_rA este următorul:

$$\gamma_{j} = (Ae_{j}, u)_{\mathbb{R}^{n}} = \sum_{i=r+1}^{n} u_{i} a_{ij}$$

$$u_{i} = 0, \quad i = 1, ..., r, u_{r+1} = a_{r+1r} - k, \quad u_{i} = a_{ir}, \quad i = r+2, ..., n$$

Vom descrie în continuare cum se efectuează operația $A:=AP_r$ fără a face înmulțire matricială (matricea A este cea obținută mai sus având primele r coloane în formă superior Hessenberg).

Vom arata că această operație nu schimbă forma superior Hessenberg obținută. Vom pune în evidență transformările liniilor matricii A. Pentru i=1,...,n avem:

$$e_i^T(AP)$$
 = noua linie i a matricii $AP = (e_i^T A)(I_n - \frac{1}{\beta}uu^T) =$

$$= e_i^T A - \frac{1}{\beta} (e_i^T A) u u^T = e_i^T A - \frac{\gamma_i}{\beta} u^T$$

unde

$$\gamma_i = (e_i^T A)u = a_{ir+1}u_{r+1} + \dots + a_{in}u_n$$

Elementele liniei *i* se schimbă astfel:

$$a_{ij} = a_{ij} - \frac{\gamma_i}{\beta} u_j$$
, $j = r + 1,...,n$, $i = 1,...,n$

Operația $A:=AP_r$ nu modifică primele r coloane ale matricii A, ele rămânând în formă superior Hessenberg.

Algoritmul de obținere a formei superior Hessenberg

for
$$r = 1, ..., n - 2$$

// construcția matricii P_r – constanta β și vectorul u

$$\bullet \ \sigma = \sum_{i=r+1}^n a_{ir}^2;$$

- if $(\sigma \le \varepsilon)$ break; $//r = r + 1 \leftrightarrow P_r = I_n$
- $k = \sqrt{\sigma}$;
- if $(a_{r+1r} > 0) k = -k$;
- $\bullet \beta = \sigma k \ a_{r+1r};$
- $\bullet u_{r+1} = a_{r+1r} k; u_i = a_{ir}, i = r+2,...,n;$

$$//A = P_r * A$$

// transformarea coloanelor j = r + 1, ..., n

• for j = r + 1, ..., n

$$\begin{cases} \gamma = (\gamma_j / \beta) = (Ae_j, u) / \beta = (\sum_{i=r+1}^n u_i a_{ij}) / \beta; \\ \text{for } i = r+1, \dots, n \\ a_{ij} = a_{ij} - \gamma * u_i; \end{cases}$$

// transformarea coloanei r a matricii A

$$\bullet a_{r+1r} = k ; a_{ir} = 0, i = r+2,...,n;$$

$$//A = A * P_r$$

// transformarea liniilor i = 1, ..., n

• for $i = 1, \ldots, n$

$$\begin{cases} \gamma = (\gamma_i / \beta) = ((e_i^T A)u) / \beta = (\sum_{j=r+1}^n u_j a_{ij}) / \beta; \\ \text{for } j = r+1, \dots, n \\ a_{ij} = a_{ij} - \gamma * u_j; \end{cases}$$

Algoritmul *QR* de aproximare a valorilor proprii ale unei matrice oarecare

Prezentăm în continuare cel mai folosit algoritm de aproximare a valorilor proprii pentru matrice pătratice oarecare.

Spunem că o matrice $S \in \mathbb{R}^{n \times n}$ este în *formă Schur reală* dacă matricea S este în formă superior Hessenberg și în plus este bloc-diagonală:

$$S = \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1p} \\ \mathbf{0} & S_{22} & \cdots & S_{2p} \\ \vdots & & & & \\ \mathbf{0} & \mathbf{0} & \cdots & S_{pp} \end{pmatrix}$$

blocurile S_{ii} sunt astfel ca:

- $S_{ii} \in \mathbb{R}$ este valoare proprie reală
- $S_{ii} \in \mathbb{R}^{2 \times 2}$ este bloc corespunzător valorilor proprii complexe

blocului

Valorile proprii corespunzătoare
$$S_{ii} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2} \quad \text{sunt rădăcinile ecuației:}$$

$$\begin{vmatrix} \lambda - a & -b \\ -c & \lambda - d \end{vmatrix} = (\lambda - a)(\lambda - d) - bc = \lambda^2 - (a + d)\lambda + ad - bc = 0$$

Se presupune că această ecuație de gardul 2 are rădăcini complexe.

Algoritmul QR de aproximare a valorilor proprii construiește un șir de matrici $A^{(k)} \in \mathbb{R}^{n \times n}$, matrici asemenea cu matricea A, $A^{(k)} \sim A$, $\forall k$, șir care converge la o matrice în formă Schur reală, $A^{(k)} \to S$, $k \to \infty$. Matricea limită S este asemenea cu matricea A, valorile prorii ale matricii S fiind ușor de calculat. Şirul $A^{(k)}$ se construiește astfel:

$$A^{(0)} := A$$
, $A^{(0)} = Q_0 R_0$ (descomp. QR calc. pentru matricea $A^{(0)}$)

$$A^{(1)} := R_0 Q_0$$
, $A^{(1)} = Q_1 R_1$ (descomp. QR calc. pentru matricea $A^{(1)}$)

$$A^{(2)} := R_1 Q_1$$

•

$$A^{(k)} = Q_k R_k$$
 (descomp. QR calc. pentru matricea $A^{(k)}$),

$$A^{(k+1)} := R_k Q_k$$
, $k = 0,1,2,...$

Matricile Q_k sunt matrici ortogonale $(Q_k^{-1} = Q_k^T)$ iar matricile R_k sunt superior triunghiulare.

Matricile $A^{(k)}$ și $A^{(k+1)}$ sunt asemenea:

$$Q_k^T * | A^{(k)} = Q_k R_k \Rightarrow R_k = Q_k^T A^{(k)}$$

$$A^{(k+1)} = R_k Q_k = Q_k^T A^{(k)} Q_k \Rightarrow A^{(k+1)} \sim A^{(k)}, \forall k$$

Matricile șirului construit sunt toate asemenea prin urmare au aceleași valori proprii anume cele ale matricii inițiale $A = A^{(0)}$:

$$A = A^{(0)} \sim A^{(1)} \sim \cdots \sim A^{(k)} \sim \cdots \sim S$$

Dacă matricea $A^{(k)}$ este în formă superioară Hessenberg, atunci descompunerea QR realizată cu algoritmul lui Givens se simplifică. Reamintim algoritmul lui Givens:

$$R_{n-1n}(\theta_{n-1n})\cdots R_{pn}(\theta_{pn})\cdots R_{pp+1}(\theta_{pp+1})\cdots R_{1n}(\theta_{1n})\cdots R_{12}(\theta_{12}) A = R$$

Dacă matricea A este în formă Hessenberg în algoritmul lui Givens, din cele $\frac{n(n-1)}{2}$ înmulțiri cu matrici de rotație rămân doar (n-1):

$$R_{n-1n}(\theta_{n-1n})\cdots R_{pp+1}(\theta_{pp+1})\cdots R_{23}(\theta_{23})R_{12}(\theta_{12}) A = R.$$

Problema care se pune este dacă pornind cu o matrice în formă Hessenberg, toate matricile șirului rămân în formă Hessenberg:

 $A^{(k)}$ (în formă Hessenberg) = H = QR (cu Givens) \Rightarrow ? $A^{(k+1)} = \overline{H} = RQ = Q^T A^{(k)} Q = Q^T HQ$ – este tot în formă Hessenberg?

Avem:

$$\overline{H} = Q^{T} H Q = R R_{12}^{T}(\theta_{12}) \cdots R_{rr+1}^{T}(\theta_{rr+1}) \cdots R_{n-1n}^{T}(\theta_{n-1n})$$

Notăm cu:

$$\overline{R} = R R_{12}^T(\theta_{12})$$

pentru care avem:

$$\begin{cases}
\overline{r_{i1}} = cr_{i1} + sr_{i2}, \forall i \\
\overline{r_{i2}} = -sr_{i1} + cr_{i2}, \forall i
\end{cases} + \begin{cases}
r_{i1} = 0, i = 2, ..., n \\
r_{i2} = 0, i = 3, ..., n
\end{cases} \Rightarrow \begin{cases}
\overline{r_{i1}} = 0, i = 3, ..., n \\
\overline{r_{i2}} = 0, i = 3, ..., n
\end{cases}$$

deci coloana 1 se transformă în formă Hessenberg iar coloana 2 rămâne în formă suprior triunghiulară.

La pasul *p* avem:

$$\begin{split} \left(R \, R_{12}^T(\theta_{12}) \cdots R_{p-1p}^T(\theta_{p-1p}) \right) R_{pp+1}^T(\theta_{pp+1}) &= \tilde{R} \, R_{pp+1}^T(\theta_{pp+1}) = \tilde{R} \\ \tilde{R} &= R \, R_{12}^T(\theta_{12}) \cdots R_{p-1p}^T(\theta_{p-1p}) \end{split} ,$$

matricea \overline{R} are primele (p-1) coloane în formă Hessenberg iar restul coloanelor sunt în formă superior triunghiulară. Vom arata că la acest pas matricea \overline{R} va avea primele p coloane în formă Hessenberg iar restul coloanelor în formă superior triunghiulară. Operația $\overline{R} := \widetilde{R} R_{pp+1}^T(\theta_{pp+1})$ presupune doar schimbarea elementelor coloanelor p și p+1:

$$\begin{cases} \overline{r}_{ip} = c\tilde{r}_{ip} + s\tilde{r}_{ip+1}, \forall i \\ \overline{r}_{ip+1} = -s\tilde{r}_{ip} + c\tilde{r}_{ip+1}, \forall i \end{cases} + \begin{cases} \tilde{r}_{ip} = 0, i = p+1, \dots, n \\ \tilde{r}_{ip+1} = 0, i = p+2, \dots, n \end{cases} \Rightarrow$$

 $\begin{cases}
\overline{r_{ip}} = 0, & i = p + 2, ..., n \\
\overline{r_{ip+1}} = 0, & i = p + 2, ..., n
\end{cases}$

Observăm din relația de mai sus că în matricea \overline{R} coloana p are formă Hessenberg iar coloana p+1 rămâne în formă superior triunghiulară (celelalte elemente din matrice nu se modifică).

Prin urmare după pasul n-1 matricea $\overline{H} = A^{(k+1)}$ este în formă superioară Hessenberg. Algoritmul QR de aproximare a valorilor proprii folosind descompunerea Givens păstrează forma Hessenberg.

Algoritmul QR pentru valori proprii

// se aduce matricea A la forma Hessenberg

$$\bullet A = \overline{Q} A \overline{Q}^T;$$

- k = 0;
- while ($A \neq \text{forma Schur real} \check{a}$)
 - $\begin{cases} \bullet A = QR; / / \text{ se calculează cu algoritmul Givens} \\ \bullet A = RQ \text{ sau } Q^T AQ; \\ \bullet k = k + 1; \end{cases}$

În practică se presupune că matricea *A* este în **formă Hessenberg neredusă**, adică:

$$a_{ii-1} \neq 0 \quad \forall i = 2, \dots, n$$

Dacă matricea nu este în formă neredusă, problema se decuplează:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{matrix} p \\ n-p \end{matrix} , p = n-1 \operatorname{sau} n-2$$

$$p \quad n-p$$

Algoritmului QR cu deplasare ("shift") simplă

Algoritmul cu deplasare simplă este următorul:

- $A = \bar{Q} A \bar{Q}^T$; // aducerea la forma Hessenberg neredusă
- k = 0;
- while ($A \neq \text{forma Schur real} \check{a}$)

$$\begin{cases} \bullet A - d_k I_n = QR; / / \text{ se calc. cu alg. Givens} \\ \bullet A := RQ + d_k I_n; \\ \bullet k = k + 1; \end{cases}$$

 $d_k \in \mathbb{R}$ sunt constantele de deplasare.

Dacă $A - dI_n = QR(A^{(k)})$ și $\overline{A} = RQ + dI_n(A^{(k+1)})$, se pune problema dacă cele două matrice sunt asemenea $(A \sim \overline{A})$ (șirul de matrice construit cu pasul QR cu deplasare simplă au aceleași valori proprii).

$$\overline{A} = Q^T Q R Q + d Q^T Q = Q^T (Q R + d I_n) Q = Q^T A Q \implies \overline{A} \sim A$$

Varianta cu deplasare se efectuează pentru a accelera convergența algoritmului. Dacă λ_1 , λ_2 ,..., λ_n sunt valorile proprii ale matricii A ordonate astfel ca:

$$\left|\lambda_{1}-d\right| \geq \left|\lambda_{2}-d\right| \geq \cdots \geq \left|\lambda_{n}-d\right|$$

Rapiditatea cu care $a_{p+1p}^{(k)} \to 0$, $k \to \infty$ este dată de rata de convergența a expresiei $\left| \frac{\lambda_{p+1} - d}{\lambda_p - d} \right|^k$. Dacă se alege $d \approx \lambda_n$

convergența $a_{n-1n}^{(k)} \rightarrow 0$ este rapidă. Avem următorul rezultat:

Teoremă

Fie d o valoare proprie a unei matrice Hessenberg nereduse H. Dacă $\overline{H} = RQ + dI_n$, cu $H - dI_n = QR$ descompunerea QR a matricei $H - dI_n = QR$. Atunci:

$$\overline{h}_{nn-1}=0$$
 , $\overline{h}_{nn}=d$

Algoritmul *QR* cu deplasare simplă găsește valoarea proprie *d* într-un singur pas. Euristic s-a constatat că la fiecare pas, cea mai bună aproximare a unei valori proprii este $a_{nn}^{(k)}$.

$$d_k = a_{nn}^{(k)}$$

Algoritmul QR cu deplasare simplă

- $A = \overline{Q} A \overline{Q}^T$; // aducerea la forma Hessenberg neredusă
- k=0;
- while ($A \neq \text{forma Schur real} \check{a}$)
 - $\begin{cases} \bullet A a_{nn} I_n = QR; / / \text{ se calc. cu algoritmul Givens} \\ \bullet A := RQ + a_{nn} I_n; \\ \bullet k = k + 1; \end{cases}$

Algoritmului QR cu deplasare ("shift") dublă

În cazul când valorile proprii a_1 , a_2 corespunzătoare blocului:

$$G = \begin{bmatrix} a_{pp} & a_{pn} \\ a_{np} & a_{nn} \end{bmatrix} , p = n-1$$

sunt complexe, $a_1, a_2 \in \mathbb{C}$, abordarea cu deplasare simplă nu mai asigură accelerarea convergenței. Avem:

$$\det(\lambda I_2 - G) = (\lambda - a_1)(\lambda - a_2) = (\lambda - a_{pp})(\lambda - a_{nn}) - a_{pn}a_{np} =$$

$$= \lambda^2 - (a_1 + a_2)\lambda + a_1a_2 = \lambda^2 - (a_{pp} + a_{nn})\lambda + a_{pp}a_{nn} - a_{pn}a_{np}$$

$$a_1 + a_2 = a_{pp} + a_{nn} = trace(G)$$
 , $a_1 a_2 = a_{pp} a_{nn} - a_{pn} a_{np} = \det G$

Algoritmul QR cu deplasare dublă constă în trecerea de la matricea $A = A^{(k)}$ la matricea $A_2 = A^{(k+1)}$ realizând doi paşi cu deplasare simplă :

 $A \rightarrow A_1$ (deplasare simplă a_1), $A_1 \rightarrow A_2$ (deplasare simplă a_2)

$$A - a_1 I_n = Q_1 R_1$$

$$A_1 = R_1 Q_1 + a_1 I_n$$

$$A_1 - a_2 I_n = Q_2 R_2$$

$$A_2 = R_2 Q_2 + a_2 I_n$$

Fie matricea:

$$M := (Q_1 Q_2)(R_2 R_1) = Q_1(Q_2 R_2)R_1 = Q_1(A_1 - a_2 I_n)R_1 =$$

$$= Q_1(Q_1^T A Q_1 - a_2 I_n)R_1 = Q_1Q_1^T A Q_1 R_1 - a_2Q_1 R_1 =$$

$$= (A - a_2 I_n)Q_1 R_1 = (A - a_2 I_n)(A - a_1 I_n)$$

$$M = (Q_1 Q_2)(R_2 R_1) = (A - a_2 I_n)(A - a_1 I_n) =$$

$$= A^2 - (a_1 + a_2)A + a_1 a_2 I_n$$

Avem următoarele relații de asemănare:

$$A \sim A_1 = Q_1^T A Q_1 \sim A_2 = Q_2^T A_1 Q_2 = Q_2^T Q_1^T A Q_1 Q_2 = (Q_1 Q_2)^T A (Q_1 Q_2)$$

$$A_2 = (Q_1Q_2)^T A(Q_1Q_2) = Q^T AQ$$
 , $Q := Q_1Q_2$

Matricea Q care asigură trecerea de la matricea A la matricea A_2 este matricea ortogonală din descompunerea QR a matricii $M = (A - a_2 I_n)(A - a_1 I_n)$. Pasul QR cu deplasare dublă se face urmând etapele:

1) se calculează matricea $M = A^2 - s A + q I_n$ cu

$$s = a_1 + a_2 = a_{pp} + a_{nn}$$
 , $q = a_1 a_2 = a_{pp} a_{nn} - a_{pn} a_{np}$;

- 2) se calculează descompunerea QR a matricii M;
- 3) $A_2:=Q^TAQ$.

Vectori proprii

Considerăm două matrici asemenea A și B:

 $A \sim B \iff A = PBP^{-1}$, P matrice nesingulară Știm că cele două matrici au același polinom caracteristic, $p_{A}(\lambda) \equiv p_{B}(\lambda)$, deci au aceleași valori proprii. Ne interesează care este legătura între vectorii proprii asociați aceleiași valori proprii. Fie u vector propriu asociat valorii proprii λ pentru matricea A și w vector propriu asociat valorii proprii λ pentru matricea **B**. Care este relația între **u** și **w**?

$$Au = \lambda u , Bw = \lambda w , A = PBP^{-1} \Rightarrow PBP^{-1}u = \lambda u \Rightarrow$$

 $BP^{-1}u = \lambda P^{-1}u \Rightarrow w = P^{-1}u , u = Pw$

Dacă se aplică algoritmul QR unei matrici simetrice, forma Schur reală la care se ajunge este o matrice diagonală:

$$S = \Lambda = \operatorname{diag}[\lambda_1, \lambda_2, ..., \lambda_n]$$

Legătura dintre matricea simetrică inițială A și matricea diagonală este de forma:

$$S = \Lambda = \operatorname{diag}[\lambda_1, \lambda_2, ..., \lambda_n] = U^T A U$$

unde U este o matrice ortogonală, coloanele matricii U fiind vectori proprii asociați valorilor proprii reale $\lambda_1, \lambda_2, ..., \lambda_n$. Matricea U se poate calcula astfel:

Algoritmul QR pentru matrici simetrice (valori +vectori proprii)

// se aduce matricea A la forma Hessenberg

$$\bullet A = \overline{Q} A \overline{Q}^T;$$

•
$$U = \overline{Q}^T$$
;

•
$$k = 0$$
;

• while ($A \neq$ matrice diagonală)

$$\begin{cases} \bullet A = QR; // \text{ se calculează cu algoritmul Givens} \\ \bullet A = RQ \text{ sau } Q^T \text{AQ;} \\ \bullet U = UQ; \\ \bullet k = k+1; \end{cases}$$

$$\bullet A = RQ \operatorname{sau} Q^{T} \mathbf{AQ};$$

$$\bullet U = UQ;$$

$$\bullet k = k + 1;$$

Descompunerea după valori singulare

(Singular Value Decomposition)

Teoremă

Fie $A \in \mathbb{R}^{m \times n}$. Atunci există o matrice ortogonală pătratică de dimensiune m, $U \in \mathbb{R}^{m \times m}$, o matrice ortogonală pătratică de dimensiune n, $V \in \mathbb{R}^{n \times n}$ și constantele pozitive:

$$\sigma_{l} \geq \sigma_{2} \geq \dots \geq \sigma_{r} > 0, \quad r \leq \min\{m, n\} \text{ a.î.}$$

$$A = U \Sigma V^{T}, \quad \Sigma \in \mathbb{R}^{m \times n}, \quad \Sigma = \begin{bmatrix} D & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}, \quad (1)$$

$$D \in \mathbb{R}^{r \times r}, \quad D = \operatorname{diag} \left[\sigma_{1}, \dots, \sigma_{r}\right]$$

Constanta r este chiar rangul matricii A, r = rang(A).

Constantele $\sigma_1, \sigma_2, \ldots, \sigma_r$ poartă numele de *valori singulare* ale matricii A.

Folosind relația (1) avem:

$$A^{T} = (U\Sigma V^{T})^{T} = V\Sigma^{T}U^{T},$$

$$AA^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T} = U\Lambda_{m}U^{T},$$

$$\Lambda_{m} = \Sigma\Sigma^{T} = \begin{bmatrix} D^{2} & \mathbf{0}_{r\times(m-r)} \\ \mathbf{0}_{(m-r)\times r} & \mathbf{0}_{(m-r)\times(m-r)} \end{bmatrix} \in \mathbb{R}^{m\times m}$$

$$A^{T}A = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T} = V\Lambda_{n}V^{T},$$

$$\Lambda_{n} = \Sigma^{T}\Sigma = \begin{bmatrix} D^{2} & \mathbf{0}_{r\times(n-r)} \\ \mathbf{0}_{(n-r)\times r} & \mathbf{0}_{(n-r)\times(n-r)} \end{bmatrix} \in \mathbb{R}^{n\times n}$$

Ținând cont de ortogonalitatea matricilor U și V, putem rescrie relațiile de mai sus astfel:

$$(AA^{T})U = U \Lambda_{m} , \Lambda_{m} = \operatorname{diag}\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{r}^{2}, 0, \dots, 0\right] \in \mathbb{R}^{m \times m}$$

$$(A^{T}A)V = V \Lambda_{n} , \Lambda_{n} = \operatorname{diag}\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \dots, \sigma_{r}^{2}, 0, \dots, 0\right] \in \mathbb{R}^{n \times n}$$

Din aceste relații deducem că $\sigma_1^2, \sigma_2^2, ..., \sigma_r^2$ sunt valorile proprii strict pozitive ale matricilor AA^T și/sau A^TA iar matricile U și V sunt matrici ale căror coloane sunt vectorii proprii asociați (cei ce formează baze ortonormate). Matricile AA^T și A^TA sunt matrici simetrice:

$$\left(AA^{T}\right)^{T} = \left(A^{T}\right)^{T}A^{T} = AA^{T} \quad , \quad \left(A^{T}A\right)^{T} = A^{T}\left(A^{T}\right)^{T} = A^{T}A$$

și au toate valorile proprii nenegative:

$$(AA^{T})u = \lambda u \Rightarrow (AA^{T}u, u) = (\lambda u, u) \Rightarrow$$

$$\lambda = \frac{(A^{T}u, A^{T}u, u)}{(u, u)} = \frac{\|A^{T}u\|_{2}^{2}}{\|u\|_{2}^{2}} \ge 0$$

Putem folosi descompunerea după valori singulare pentru a defini pseudo-inversa unei matrici oarecare $A \in \mathbb{R}^{m \times n}$ $(n \neq m)$.

$$A = U\Sigma V^{T}$$
, $A^{-1} =_{?} (U\Sigma V^{T})^{-1} = (V^{T})^{-1}\Sigma_{?}^{-1}U^{-1} = V\Sigma_{?}^{-1}U^{T}$

Rămâne de definit matricea Σ_2^{-1} . Urmând acest raționament se definește *pseudoinversa Moore-Penrose* a unei matrici

 $A \in \mathbb{R}^{m \times n}$ astfel:

$$A^{I} = V\Sigma^{I}U^{T} , A^{I} \in \mathbb{R}^{n \times m} , \Sigma^{I} = \begin{bmatrix} D^{-1} & 0_{r \times (m-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times (m-r)} \end{bmatrix} \in \mathbb{R}^{n \times m} ,$$

$$D^{-1} \in \mathbb{R}^{r \times r}, D^{-1} = \operatorname{diag} \left[\frac{1}{\sigma_{1}}, \dots, \frac{1}{\sigma_{n}} \right].$$

Pseudoinversa definită mai sus satisface următoarele proprietăți:

$$(A^I)^I = A$$
, $\forall A \in \mathbb{R}^{m \times n}$; $(A^T)^I = (A^I)^T$, $\forall A \in \mathbb{R}^{m \times n}$
 $AA^IA = A$, $A^IAA^I = A^I$

Există o proprietate care nu mai este satisfăcută de psudoinversă deși este respectată de inversa clasică:

$$\exists A, B \text{ a.i.} (AB)^I \neq B^I A^I.$$

Descompunerea după valori singulare poate fi utilizată și pentru rezolvarea sistemelor liniare cu matrici oarecare $(m\neq n)$

$$Ax = b$$
 , $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x := A^I b \in \mathbb{R}^n$.

Problema celor mai mici pătrate

$$A \in \mathbb{R}^{m \times n} , b \in \mathbb{R}^{m} , Ax = b , x \in \mathbb{R}^{n}$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} = b_{i}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

Sistemul are soluții clasice dacă:

$$\operatorname{rang} A = \operatorname{rang} \left[A / b \right]$$

- m < n o infinitate de soluții
- $\bullet m \geq n$
 - dacă $\operatorname{rang} A = \operatorname{rang} [A/b]$ soluții clasice
 - dacă $\operatorname{rang} A \neq \operatorname{rang} [A / b]$ soluții în sensul celor mai mici pătrate

Vectorul reziduu:

$$r(x)=b-Ax \in \mathbb{R}^m$$

Vectorul $x \in \mathbb{R}^n$ se numește *soluție în sensul celor mai mici pătrate* pentru sistemul (1) dacă este soluția următoarei probleme de optimizare:

$$\min\{\|r(x)\|_{2}^{2} = \|b - Ax\|_{2}^{2}; x \in \mathbb{R}^{n}\}$$
 (LSP)

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \in \mathbb{R}^{3 \times 2} , b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, m = 3, n = 2$$

$$\operatorname{rang} A = 2 \neq \operatorname{rang} \left[A / b \right] = 3$$

Sistemul:

$$x_{1} + 4x_{2} = 0$$

$$2x_{1} + 5x_{2} = 0$$

$$3x_{1} + 6x_{2} = 1$$
(2)

nu are soluție clasică (nu există x_1 , x_2 care să satisfacă toate cele 3 ecuații simultan). Vectorul reziduu are forma:

$$r(x) = b - Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_1 - 4x_2 \\ -2x_1 - 5x_2 \\ 1 - 3x_1 - 6x_2 \end{pmatrix}$$

Soluția în sensul celor mai mici pătrate a acestui sistem este definită ca soluția problemei de optimizare:

$$\min\{(-x_1 - 4x_2)^2 + (-2x_1 - 5x_2)^2 + (1 - 3x_1 - 6x_2)^2; x_1, x_2 \in \mathbb{R}\}$$

$$\min\{1 - 6x_1 - 12x_2 + 64x_1x_2 + 14x_1^2 + 77x_2^2; x_1, x_2 \in \mathbb{R}\}$$

Această problemă de minimizare are soluția:

$$x_1 = \frac{13}{18}, \qquad x_2 = -\frac{2}{9}, \qquad ||r(x)||_2^2 = \frac{1}{6}$$

și este soluția în sensul celor mai mici pătrate a sistemului (2).

range(A) = {
$$y \in \mathbb{R}^m$$
; $y = a_1 A^1 + a_2 A^2 + \dots + a_n A^n$, $a_i \in \mathbb{R}$, $i = 1, n$ }

$$A = \begin{bmatrix} A^1 & A^2 & \cdots & A^n \end{bmatrix}, A^i \in \mathbb{R}^m$$
 sunt coloanele matricii A

Teoremă

Fie $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, $b \in \mathbb{R}^m$. Un vector $x \in \mathbb{R}^n$ minimizează norma euclidiană a vectorului reziduu /|r(x)|/2 = ||b-Ax|/2|, rezolvând problema (LSP), dacă și numai dacă:

$$r(x) \perp \text{range}(A) \Leftrightarrow A^T r(x) = 0$$

sau echivalent

$$A^T A x = A^T b \tag{3}$$

Sistemul (3) poartă numele de sistemul de *ecuații normale*.

Este un sistem pătratic de dimensiune n, matricea sistemului $A^T A \in \mathbb{R}^{n \times n}$ este simetrică. Sistemul de ecuații normale (3) este nesingular dacă și numai dacă $\operatorname{rang} A = n$, în acest caz soluția x a sistemului (3) este unică.

$$\det A^T A \neq 0 \iff \operatorname{rang} A = n$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}, A^{T}A = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}, A^{T}b = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$14x_{1} + 32x_{2} = 3$$

$$32x_{1} + 77x_{2} = 6 \Rightarrow x_{1} = \frac{13}{18}, x_{2} = -\frac{2}{9}$$

Pseudo-inversa matricii A

Presupunem că A are $\mathbf{rang} A = n$. Atunci pseudo-inversa poate fi definită ca:

$$A^{+} = \left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times m} \qquad (A^{+} = A^{I} ?)$$

$$A^{+} = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}^{-1} * \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Rezolvarea sistemului de ecuații normale

1) Folosind factorizarea Cholesky (descompunere *LU*) pentru matrici simetrice:

$$A^T A = LL^T$$
, $L \in \mathbb{R}^{n \times n}$ matrice inferior triunghiulară

- Se calculează matricea A^TA și vectorul A^Tb ;
- Se calculează factorizarea Cholesky a matricii $A^TA = LL^T$;
- Se rezolvă sistemul inferior triunghiular $Ly = A^Tb$ pentru y;
- Se rezolvă sistemul superior triunghiular $L^T x = y$ pentru x;
- 2) Se calculează descompunerea QR (cu algoritmul lui

Householder adaptat) pentru matricea A:

$$A = QR$$
, $Q \in \mathbb{R}^{m \times m}$ matrice ortogonală, $R \in \mathbb{R}^{m \times n}$,

$$R = \begin{bmatrix} \overline{R} \in \mathbb{R}^{n \times n} \\ \mathbf{0}_{(m-n) \times n} \end{bmatrix}$$
, \overline{R} —matrice superior triunghiulară

- Se calculează factorizarea QR modificată a matricii A;
- Se calculează vectorul $Q^T b$;
- Se rezolvă sistemul sup. triunghiular $\overline{R}x = (Q^T b)_{i=1,n}$;

- 3) Se folosește desc. după valori singulare a matricii A $A = U\Sigma V^{T}, \ \Sigma \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$
 - Se calculează SVD pentru matricea $A=U\Sigma V^T$;
 - Se calculează vectorul U^Tb ;
 - Se rezolvă sistemul diagonal $\Sigma w = U^T b$ pentru w;
 - Soluţia este x=Vw;
- 1), 2) sau 3)? \rightarrow se recomandă 2)