上海理工大学机器人创新大赛 2025 年度赛事样题

主题: 陆上丝绸——智慧物流

赛项:物流运输机器人

上海理工大学机器人创新社 2024 年 11 月

一. 比赛背景介绍

本届机器人挑战赛以智慧物流为主题大背景。智慧物流是现代物流发展方向,它在多个环节实现信息化、自动化和智能化处理,能大幅提高物流效率,降低物流成本,促进产业低碳化发展。全球智慧物流行业正迎来重要发展机遇期。自2013年我国正式提出共建"一带一路"宏伟倡议以来。取得历史性成就,成果惠及150多个国家,开拓出一条通向共同发展的合作之路、机遇之路、繁荣之路,成为当今世界最受欢迎的国际公共产品和最大规模的国际合作平台。同时,全球产业链供应链加速重构,要求现代物流对内主动适应社会主要矛盾变化,更好发挥连接生产消费、畅通国内大循环的支撑作用;对外妥善应对错综复杂国际环境带来的新挑战,为推动国际经贸合作、培育国际竞争新优势提供有力保障。

本届机器人挑战赛以"21世纪世纪海上丝绸之路"为主题大背景。自 2013年我国正式提出共建"一带一路"宏伟倡议以来。已取得众多历史性成就,成功构建了和平稳定的周边环境、深化改革开放、拓展经济发展空间,促进沿线 150多个国家共同繁荣。上海港作为中国最大的港口,在 2005年货物总吞吐量首次达到世界第一,2010年后成为世界最大的集装箱港口,2021年处理的集装箱量达到 4703万标准箱。本次比赛模拟某港某大型货轮出海作业的流程。旨在提高学生的实践创新能力,加强产教结合。所有参赛队伍需自行设计、组装机器人并编写相应程序,在规定时间内完成指定任务。

二.参赛人员要求

参赛范围: 上海理工大学全日制本科生

参赛人数:每支参赛队伍限2至5人,每人限加入一支队伍

指导老师: 每队至多2名指导老师(可以选择无指导老师)

三. 赛程赛制

1.赛前检录:

所有参赛队伍上交机器人,放在指定区域。

2.参赛队员入场:

入场正式开赛时,裁判示意参赛人员进入比赛场地。

3.二维码抽签:

参赛队员依次抽取任务二维码。

4.正式开始比赛:

裁判示意参赛队员,开始比赛,得到参赛队员回应后,裁判发布"开始"指令,参赛队员按照规则启动参赛机器人。

5.成绩确认并签名:

每队有两次连续上场机会,中间不得做任何程序的修改和物料颜色顺序的调整,最终成绩取最好成绩。每队比赛结束时,参赛队员确认成绩,并签名。

四. 比赛场地及器材

1.比赛场地图例

图 4-1

图 4-2

2.比赛场地说明

场地材质及尺寸: 比赛场地采用彩色喷涂布,尺寸为: 4000mm*2440mm。

场地组成:场地由①"西安"(启动区) ②"广州港"(待行区) ③ "近海航线"(拾取线)④"中转站"(二维码扫描位)、⑤"远洋航线"(迷宫区)、⑥"目的地港口"(物料放置台1、2、3)、⑦"返航航线"、⑧"补给港"(返航标志点)组成(如图4-2)。

器材放置: "丝绸"(红)、"茶叶"(绿)、"瓷器"(蓝)种货物将以任意顺序放置在"装载航线"上或放置在距离该线切线 $1^{\sim}10$ cm 处。

3.比赛场地元素说明

"货物"(物块)材质: ABS 3d 打印材质(如图 4-3),尺寸: Φ50mm*70mm 重量约 80g。 "茶叶": 正绿色。"丝绸": 正红色。"瓷器": 正蓝色。

"目的地港口"(物料台)材质: ABS 3d 打印材质,尺寸:长: 300mm 宽: 150mm 高: 40mm。

"远洋航线"(迷宫)材质: 合成木板,厚度10mm,高200mm。

"中转站"(任务二维码): 共 6 个, 尺寸: 60mm*60mm, 二维码中心距地面 100mm。

图 4-3

五. 比赛任务

机器人需要在 360 秒内完成以下任务,离开"西安"开始计时,完全进入"广州港"计时结束。比赛时间从场上参赛选手举手明确示意后开始计时。若比赛开始计时后,在 15 秒内,参赛车辆没有产生有效行动(如静止在某区域或者原地转圈),则可以由裁判认定比赛失败,队伍得分以当前已得分数计入成绩。

1.启动

机器人在"西安"启动,进入"广州港"后停止5秒,进入"近海航线"。 注: 离开"西安"后,选手不允许以任何方式影响机器人运行,如触摸机器 人,遮挡改变光线等。

2.装载货物

进入"近海航线"后,机器人巡线行驶,并将"货物"拾取至机器人上。

3.卸载货物

机器人行驶至"近海航线"末端,扫描右侧"中转站"二维码并将获取到的信息显示在机器人上,进入"远洋航线",将不同颜色的物料放置在指定物料台上,而后进入指定"返航航线"。

注: "货物"放置位置以及机器人"返航航线"由二维码决定,见附录 B。

4.返回

在指定"返航航线"巡线行驶,行驶至"补给港"时,蜂鸣器短鸣3次,而 后返回"广州港"。

5.附加说明

以上说明为本题最高难度任务,选手可选择减去一个或多个任务点,详细说明与具体分值请查看评分表。

"进入(离开)"等描述,均指机器人正投影完全"进入(离开)"。 命题组对规则有释权,对有争议问题现场裁判团有最终裁决权。

六. 机器人要求

1.尺寸

机器人起始尺寸长宽不大于 30*30cm, 高不大于 40cm。完全展开尺寸长宽不大于 50*50cm, 高度不限。

2.驱动

至多使用8个驱动电机,只允许使用转动驱动,禁止使用大扭矩、高转速危险性驱动。

3.传感器

传感器数量不限,不允许使用集成类传感器,如循迹卡等,禁止使用危险性 传感器。

4.供电

供电电源输出电压不大于 16.8V, 只允许使用一个电源, 严禁使用充电宝供电。

5.其他硬件及程序

机器人不得采用市面上所采购的机器人套件,也不得使用成品套件并加以改装参赛,机器人制作材料不限,机器人程序不允许有任何无线通信模块,如蓝牙, 红外等。

七. 附录

附录 A 二维码与数字对应关系

二维码图案			
对应数字	1	2	3
二维码图案			
对应数字	4	5	6

附录 B 二维码对应货物运输方案表

二维码对应数字	丝绸	茶叶	瓷器	返航路线选择
1	孟加拉港	印度港	埃及港	1
2	孟加拉港	埃及港	印度港	1
3	印度港	孟加拉港	埃及港	2
4	印度港	埃及港	孟加拉港	2
5	埃及港	孟加拉港	印度港	3
6	埃及港	印度港	孟加拉港	3

八. 评分表

上海理工大学 2025 机器人创新大赛评分表

任务	分值	得分
离开西安	10	
进入广州港,等待五秒	10	
完全进入广州港红色区域	10	
拿起第一个货物	15	
拿起第二个货物	15	
拿起第三个货物	15	
通过装载航线	10	
扫描二维码并显示在机器人上	15	
正确放置第一个货物	25	
正确放置第二个货物	25	
正确放置第三个货物	25	
经过返航航线并进入港口	15	
行驶至补给港时短鸣3次	20	
行驶过程中碰撞迷宫墙	-5	
选择不扫描二维码并随意放置货物	0/20	
选择减去高台,在地面放置货物	0/15	
选择更换为简单圆柱体为货物	0/15	
选择将3个货物均摆放在路线上	0/10	

比赛时长:

比赛总分:

队长签名: