CS/ECE 374 P08

Junquan Chen, Pengxu Zheng, Jiawei Tang

TOTAL POINTS

93 / 100

QUESTION 1

1 Problem 8.A. 30 / 30

√ - 0 pts Correct

QUESTION 2

2 Problem 8.B. 55 / 60

√ - 5 pts (vi) Correct justification, but error in expression.

QUESTION 3

3 Problem 8.C. 8 / 10

 $\sqrt{-2 \text{ pts}}$ Missing or wrong case for Kleene star.

HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

• «Jiawei Tang»: «jiaweit2»

 $\bullet \ll Junquan Chen \gg : \ll junquan 2 \gg$

• «Pengxu Zheng»: «pzheng5»

Solution:

8.A.

When $r = \emptyset$,

$$even_0(L(r)) = \emptyset$$

Version: 1.0

$$odd_0(L(r)) = \emptyset$$

When $r = \epsilon$,

$$even_0(L(r)) = (00)^*$$

$$odd_0(L(r)) = 0(00)^*$$

When r = 0,

$$even_0(L(r)) = 0(00)^*$$

$$odd_0(L(r)) = 00(00)^*$$

When r = 1,

$$even_0(L(r)) = (00)^*(010 + 1)(00)^*$$

$$odd_0(L(r)) = (00)^*(10 + 01)(00)^*$$

8.B. (i)

$$even_0(L(r_1+r_2)) = e_1 + e_2$$

Since we have $L(r_1 + r_2) = L(r_1) \cup L(r_2)$, the input can be $L(r_1)$ or $L(r_2)$. Also we are asking for inserting even number of 0s. Therefore, we want to take the union of e_1 and e_2 , which is $e_1 + e_2$.

$$odd_0(L(r_1 + r_2)) = o_1 + o_2$$

Same reason as above but in the case of inserting odd number of 0s. So we will take the union of o_1 and o_2 , which is $o_1 + o_2$.

(iii)

$$even_0(L(r_1r_2)) = e_1e_2 + o_1o_2$$

In this case of r_1 concatenated with r_2 , we want to insert even number of 0s. To insert even number of 0s, we have to concatenate e_1 with e_2 or o_1 with o_2 because only an even number adds to another even number or an odd number adds to another odd number can be an even number.

(iv)

$$odd_0(L(r_1r_2)) = e_1o_2 + o_1e_2$$

In this case of r_1 concatenated with r_2 , we want to insert odd number of 0s. To insert odd number of 0s, we have to concatenate e_1 with e_2 or e_1 with e_2 because only an even number adds to an odd

1 Problem 8.A. 30 / 30

√ - 0 pts Correct

HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

• «Jiawei Tang»: «jiaweit2»

 $\bullet \ll Junquan Chen \gg : \ll junquan 2 \gg$

• «Pengxu Zheng»: «pzheng5»

Solution:

8.A.

When $r = \emptyset$,

$$even_0(L(r)) = \emptyset$$

Version: 1.0

$$odd_0(L(r)) = \emptyset$$

When $r = \epsilon$,

$$even_0(L(r)) = (00)^*$$

$$odd_0(L(r)) = 0(00)^*$$

When r = 0,

$$even_0(L(r)) = 0(00)^*$$

$$odd_0(L(r)) = 00(00)^*$$

When r = 1,

$$even_0(L(r)) = (00)^*(010 + 1)(00)^*$$

$$odd_0(L(r)) = (00)^*(10 + 01)(00)^*$$

8.B. (i)

$$even_0(L(r_1+r_2)) = e_1 + e_2$$

Since we have $L(r_1 + r_2) = L(r_1) \cup L(r_2)$, the input can be $L(r_1)$ or $L(r_2)$. Also we are asking for inserting even number of 0s. Therefore, we want to take the union of e_1 and e_2 , which is $e_1 + e_2$.

$$odd_0(L(r_1 + r_2)) = o_1 + o_2$$

Same reason as above but in the case of inserting odd number of 0s. So we will take the union of o_1 and o_2 , which is $o_1 + o_2$.

(iii)

$$even_0(L(r_1r_2)) = e_1e_2 + o_1o_2$$

In this case of r_1 concatenated with r_2 , we want to insert even number of 0s. To insert even number of 0s, we have to concatenate e_1 with e_2 or o_1 with o_2 because only an even number adds to another even number or an odd number adds to another odd number can be an even number.

(iv)

$$odd_0(L(r_1r_2)) = e_1o_2 + o_1e_2$$

In this case of r_1 concatenated with r_2 , we want to insert odd number of 0s. To insert odd number of 0s, we have to concatenate e_1 with e_2 or e_1 with e_2 because only an even number adds to an odd

2 Problem 8.B. **55** / **60**

√ - 5 pts (vi) Correct justification, but error in expression.

number can be an odd number.

(v)

$$even_0(L(r_1^*)) = (o_1e_1^*o_1 + e_1)^*$$

In this case of Kleene star of r_1 , we want to insert even number of 0s. There are two cases. The first one is we can have e_1^* because it will always add even number of 0s. The second one is we can have two o_1 concatenated together to add even number of 0s. We can also put any number of e_1 in the middle of o_1o_1 so that it will still insert even number of 0s. We can have any combination of these two cases so that we take the Kleene star of the union of both. Besides, this expression holds when we insert zero 0. Also, if $L(r_1^*) = \{\epsilon\}$, it still holds as it can be equal to e_1 where e_1 can be $even_0(L(\epsilon))$, which is a base case in 8.A.

(vi)

$$odd_0(L(r_1^*)) = (o_1e_1^*o_1 + e_1)^*o_1e_1^*$$

In this case of Kleene star of r_1 , we want to insert odd number of 0s. Then we can concatenate it with the insertion of any even number because any odd number is in the form of 2y + 1 where $y \ge 0$. Therefore, we must have o_1 in the expression. And we can then have $even_0(L(r_1^*))o_1$. At last, we may end it with e_1 or o_1 by adding e_1^* at the end, which leads to the final answer above. If $L(r_1^*) = \{\epsilon\}$, it holds as $odd_0(L(r_1^*))$ can be equal to o_1 , where $o_1 = odd_0(L(\epsilon))$, which is a base case in 8.A.

8.C. We can have recursive definition by using the conclusions from previous questions. Here, we use the same notation as 8.B. that for $j \in \{1, 2\}$,

$$e_j = even_0(L(r_j))$$

 $o_j = odd_0(L(r_j))$

 $even_0(L(r))$ is recursively defined as below:

$$even_0(L(r)) = \begin{cases} even_0(L(r)) \text{ as defined in 8.A.} & \text{if L(r) is in base case, } r \in \{\emptyset, \epsilon, 0, 1\} \\ e_1 + e_2 & \text{if } r = r_1 + r_2 \\ e_1 e_2 + o_1 o_2 & \text{if } r = r_1 r_2 \\ (o_1 e_1^* o_1 + e_1)^* & \text{if } r = r_1^* \end{cases}$$

 $odd_0(L(r))$ is recursively defined as below:

$$odd_0(L(r)) = \begin{cases} odd_0(L(r)) \text{ as defined in 8.A.} & \text{if L(r) is in base case, } r \in \{\emptyset, \epsilon, 0, 1\} \\ o_1 + o_2 & \text{if } r = r_1 + r_2 \\ e_1o_2 + e_2o_1 & \text{if } r = r_1r_2 \\ (o_1e_1^*o_1 + e_1)^*o_1e_1^* & \text{if } r = r_1^* \end{cases}$$

3 Problem 8.C. 8 / 10

 \checkmark - 2 pts Missing or wrong case for Kleene star.