Building the Ensemble Model

Packages

```
In [1]: ### Data Handling & Helpers
        import pandas as pd
        import numpy as np
        import pandas_ta as ta
        ### Plotting
        import seaborn as sns
        import matplotlib.pyplot as plt
        from matplotlib.ticker import PercentFormatter
        ### Processing
        from sklearn.decomposition import PCA
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import GridSearchCV
        from sklearn.model_selection import train_test_split
        ### Models
        from sklearn.svm import SVC
        from sklearn.ensemble import VotingClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.ensemble import RandomForestClassifier
        ### Model Evaluation
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import ConfusionMatrixDisplay
        from sklearn.model selection import cross val score
```

Function Space

```
In [105]: # Pie chart
          def pie_chart(dataset, **kwargs):
              labels = '-1', '1', '0'
              sizes = [(len(dataset[dataset==-1])/len(dataset)),
                       (len(dataset[dataset==1])/len(dataset)),
                       (len(dataset[dataset==0])/len(dataset))]
              fig1, ax1 = plt.subplots()
              ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True)
              ax1.axis('equal')
              if "title" in kwargs: ax1.set title(kwargs["title"])
              plt.show()
          # Method for Creating past data as Xtraini and Xtest as recent data
          def create timeseries split(dataframe, test size):
              stop = int(len(dataframe) * (1-test_size));
              Train = dataframe.iloc[0:stop]
              Test = dataframe.iloc[stop+1:-1]
              Xtrain = Train.drop(columns="Target")
              ytrain = Train.Target
              Xtest = Test.drop(columns="Target")
              ytest = Test.Target
              return Xtrain, Xtest, ytrain, ytest
          # Sklearn method for creating training and test data sets
          def create_splits(X, y, rnd_state=2, test_size=0.30):
              return train_test_split(X, y, test_size=test_size, random_state=rnd_state)
          def target helper(y pred, y testp, SP500, test size):
              SP500.ta.ema(length = 30, append=True)
              SP500["EMA_30_FT"] = SP500.EMA_30.shift(periods=-30)
              SP500["Diff"] = (SP500.EMA 30 FT - SP500.EMA 30)
              SP500["Diff ratio"] = SP500.Diff / SP500.EMA 30
              SP500["Diff_shift"] = SP500.Diff_ratio.shift(periods=-30)
              SP500["Target"] = SP500.Diff shift.apply(lambda x: -1 if x < -0.01 else (1 if x)
              SP500["Pred"] = y pred
              return SP500
```

Import the Data

```
In [3]: dataframe = pd.read_csv(r"data/momentum_market_data.csv", index_col="Date")
# dataframe.head(5)
```

Process the Data

As expected there are not issues with the dataset. No multi-colinearity so the models should do fine. All values are oscillators so finding boundaries should be easier for the models.

```
In [4]: plt.figure(figsize=(15,10))
    sns.heatmap(dataframe.corr())
    plt.xlabel('')
    plt.ylabel('')
    plt.title('Data Correlation to Target (S&P500 Futures)')
    fig.savefig(r"figures\DataCorrelationPlot.png", dpi=600)
    plt.show()
```


Here I'm making 3 sets of data. One for training the model, another for testing the model, and another for testing the model predictions in a forward intime capacity. *Note: I'm not certain this is the most efficient way to achieve high performance.*

```
In [24]: train_and_test = create_timeseries_split(dataframe, test_size=0.10)
    Xtrain = train_and_test[0].to_numpy()
    Xtest_ft = train_and_test[1].to_numpy()
    ytrain = train_and_test[2].to_numpy()
    ytest_ft = train_and_test[3].to_numpy()
    X_train, X_test, y_train, y_test = create_splits(Xtrain, ytrain)

print(f'Training sample: [{X_train.shape}, {y_train.shape}], ({type(X_train)}, {typrint(f'Train Test sample: [{X_test.shape}, {y_test.shape}], ({type(X_test)}, {typrint(f'Test sample: [{Xtest_ft.shape}, {ytest_ft.shape}], ({type(Xtest_ft)}, {typrint(f'Test sample: [(2910, 253), (2910,)], (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
    Train Test sample: [(1248, 253), (1248,)], (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
    Test sample: [(460, 253), (460,)], (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>)
```

Gathering the Models

- Running Grid-Search again, because the dataset is much larger now, and the models might prefer some differently tuned hyperparameters.
- · Gathering the best estimators and using those into the ensemble
- · Using a soft voting class ensemble to generate final target

Support Vector Machine Classifier (SVC)

```
In [7]: # svm score = svm results.best score
        print(f'Support Vector Machine Score: {svm results.best score :.2%}')
        print(svm_results.best_estimator_, svm_results.best_params_)
        svm = svm results.best estimator
        Support Vector Machine Score: 98.94%
        Pipeline(steps=[('scaling', StandardScaler()), ('pca', PCA()),
                        ('model', SVC(C=10, probability=True))]) {'model__C': 10, 'mode
        l__kernel': 'rbf', 'model__probability': True, 'pca__n_components': None}
In [8]: from sklearn.metrics import classification report
        y pred = svm.predict(X test)
        print(classification_report(y_test, y_pred))
                      precision
                                   recall f1-score
                                                       support
                -1.0
                           0.97
                                     0.95
                                               0.96
                                                           312
                 0.0
                           0.90
                                     0.91
                                               0.91
                                                           253
                 1.0
                           0.98
                                     0.99
                                               0.98
                                                           683
                                               0.96
                                                         1248
            accuracy
                           0.95
                                     0.95
                                               0.95
                                                         1248
           macro avg
        weighted avg
                                     0.96
                                               0.96
                           0.96
                                                         1248
```

K-Nearest Neighbors (KNN)

```
In [9]: knn_m = modeling_pipeline = Pipeline([('scaling', StandardScaler()),
                                                ('pca', PCA(n_components=None)),
                                                ('model', KNeighborsClassifier())])
         param_grid = [
           {'model__n_neighbors': [1, 4, 8, 10, 15],
             'pca__n_components': [None,1,2,3,4,5,10,15],
            'model__weights': ['uniform','distance']}
          ]
         knn_results = GridSearchCV(estimator=knn_m, param_grid=param_grid, scoring=scori
         knn_results = knn_results.fit(X_train, y_train)
         knn score = knn results.score(X test, y test)
In [10]:
         print(f'k-Nearest Neighbor Score: {knn score:.2%}')
         print(knn results.best estimator )
         k-Nearest Neighbor Score: 99.32%
         Pipeline(steps=[('scaling', StandardScaler()), ('pca', PCA()),
                          ('model',
                          KNeighborsClassifier(n neighbors=4, weights='distance'))])
```

```
In [107]: from sklearn.metrics import classification report
          y pred = knn results.predict(X test)
          print(classification_report(y_test, y_pred))
                        precision
                                      recall f1-score
                                                         support
                  -1.0
                              0.96
                                        0.95
                                                  0.96
                                                             312
                   0.0
                              0.87
                                        0.90
                                                  0.88
                                                             253
                   1.0
                              0.98
                                        0.98
                                                  0.98
                                                             683
```

0.94

0.95

0.95

0.94

0.95

1248

1248

1248

Random Forest (RF)

accuracy

macro avg
weighted avg

0.94

0.95

Validation score: 96.49% Test score: 98.13%

Test store.	70.13/6			
	precision	recall	f1-score	support
-1.0	0.97	0.86	0.91	312
0.0	0.91	0.68	0.78	253
1.0	0.86	0.99	0.92	683
accuracy			0.89	1248
macro avg	0.91	0.84	0.87	1248
weighted avg	0.90	0.89	0.89	1248

These are excellent scores. To my knowledge, no target data has been leaked into the training set. I believe this is diractly related to the ticker symbols I've chosen to include. Notes:

- The SVM did better with no PCA while the Random Forest best estimator used a 20 componet PCA. This is probably because of model methods. The RF is constantly splitting data, limiting the data to several components and a tree depth of 20 mostlikely made the weak estimatator forest stronger a whole. Also this RF is uses more data than the previously pilot tested version in the ChooseModels file, where the RF best estimator use a PCA of 15 and max depth of 15 here both are 20.
- As expected the KNN model is the best estimator over all with a 99% score. What is not
 expected is that the neighboring range is set to 4 whereas in the pilot test it was set to 1. This
 means that the large dataset is better understood when grouping by 4s with distance.

Voting Classifier Ensemble

```
In [13]: ems = [('knn', knn_results.best_estimator_),('rf', rf_results.best_estimator_),('en = VotingClassifier(estimators=ems, weights=None, voting='soft', n_jobs=-1)
en = en.fit(X_train, y_train)
scores = cross_val_score(estimator=en, X=X_train, y=y_train, cv=10, scoring='roc_print(f'ROC AUC OVO {scores.mean():.2f} (+/- {scores.std():.2f}) [Ensemble]')
ROC AUC OVO 0.99 (+/- 0.01) [Ensemble]
```

```
In [14]: y_testp = en.predict(X_test)
y_testp_en = en.predict_proba(X_test)

print(f'Test score: {en.score(X_test, y_test):.2%}')

from sklearn.metrics import classification_report
print(classification_report(y_test, y_testp))
```

Test score:	96.15%			
	precision	recall	f1-score	support
-1.0	0.97	0.96	0.96	312
0.0	0.91	0.90	0.90	253
1.0	0.98	0.99	0.98	683
accuracy			0.96	1248
macro avg	0.95	0.95	0.95	1248
weighted avg	0.96	0.96	0.96	1248

```
In [15]: ytestp = en.predict(Xtest_ft)
    ytestp_en = en.predict_proba(Xtest_ft)

print(f'Test score: {en.score(Xtest_ft, ytest_ft):.2%}')

from sklearn.metrics import classification_report
    print(classification_report(ytest_ft, ytestp))
```

Test score: 62.61% precision recall f1-score support 0.00 0.00 -1.0 0.00 33 0.00 0.0 0.00 0.00 88 1.0 0.79 0.85 0.82 339 0.63 460 accuracy 0.26 0.28 0.27 460 macro avg 0.58 0.60 weighted avg 0.63 460

Seems pretty good at predicting that the market will go up.

```
In [109]: # Xtrain, Xtest, ytrain, ytest
          X_train, X_test, y_train, y_test = create_splits(train_and_test[0], train_and_test
          yTEST = train and test[3]
          yTEST = pd.concat([yTEST, pd.Series(ytestp, name="ytestp", index=yTEST.index)], a
          yTRAIN = pd.concat([y_test, pd.Series(y_testp, name="y_testp", index=y_test.index
          fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(15,10))
          yTEST.plot(ax=ax1, style="*", alpha=.5, label="Test Data", fontsize=16)
          yTRAIN.plot(ax=ax2, style="*", alpha=.5, label="Training Test Data", fontsize=16)
          ax1.legend()
          ax2.legend("")
          ax1.set title("Ensemble Prediction & Truth Comparison")
          ax2.set_title("Ensemble Test & Truth Comparison")
          ax1.set_ylabel("Class")
          ax2.set ylabel("Class")
          plt.subplots adjust(hspace=0.4)
          fig.savefig(r"figures\EnsemblePredictionComparison.png", dpi=600)
```


Next Steps!!!

- Needs more tuning...
- Needs another thorough look through...
- Conversion into something deployable

• Train for 14-Day and 7-Day forecasts