Lab EXP-5 – Programming for Data Science-28-08-2025

Total Marks: 100

Topic: Solar System Data Representation and Analysis

Understanding Kepler's Third Law (kepler_k)

In this lab exercise, we calculated a value called kepler_k based on Kepler's Third Law of Planetary Motion. This law describes the relationship between a planet's orbital period and its average distance from the Sun.

The Law

Kepler's Third Law states that the square of a planet's orbital period (P) is directly proportional to the cube of its average distance from the Sun (a):

$$P^2 / a^3 = k$$

Where:

- P = Orbital period (in Earth years)
- a = Semi-major axis, i.e., average distance from the Sun (in Astronomical Units, AU)
- k = A constant value, which is approximately equal to 1 for all planets orbiting the Sun.

Why is $k \approx 1$?

If we measure orbital period in Earth years and distance from the Sun in AU, then the value of k should be close to 1 for all planets orbiting the Sun. Small deviations from 1 are due to rounding or approximations in the data.

Example: Earth

For Earth:

- Orbital Period (P) = 365 days = 1 year
- Distance (a) = 1 AU

Thus:

$$k = P^2 / a^3 = 1^2 / 1^3 = 1$$

Example: Jupiter

For Jupiter:

- Orbital Period (P) ≈ 11.86 years
- Distance (a) $\approx 5.2 \text{ AU}$

Thus:

$$k = (11.86^2) / (5.2^3) \approx 1.0$$

This confirms that the dataset is consistent with Kepler's Third Law.

Conclusion

The kepler_k values calculated for different planets demonstrate that the orbital mechanics of the Solar System align with Kepler's Third Law. This law provides a simple yet powerful way to verify the consistency of planetary data in terms of orbital periods and distances from the Sun.

Instructions for Students

- 1. Write your solution in R programming language with appropriate comments explaining each step of your code. *Ensure that the last four digits of your registration number are included in all variable names and user defined functions used in your program*.
 - You must use the following R data structures and concepts in your program:
 - Array
 - Matrix
 - List
 - Data Frame
 - User-Defined Functions
- 2. The solution should be written neatly with correct indentation and comments.
- 3. Prepare a Lab Report containing:
 - Problem statement
 - Complete R code (with comments)
 - Output screenshots
 - Short analysis of the results (3–4 sentences)
- 4. The report must be submitted in .docx format with the following naming convention: Name_RegistrationNumber.docx
 - Example: RaviKumar_123456.docx
- 5. Upload the report in the LMS before the deadline.
- 6. Any form of plagiarism or use of AI tools will be considered academic malpractice.

Problem Statement (100 Marks)

The Solar System consists of 8 planets revolving around the Sun, each with properties such as diameter, distance from the Sun, orbital period, and number of moons.

Your task is to design an R program that organizes and analyzes Solar System data using multiple data structures.

Part A: Using Array (10 Marks)

- Create an array that stores the names of the planets and their corresponding orbital periods in days.
- Display the orbital period of Earth using array indexing.

Part B: Using Matrix (15 Marks)

- Create a numeric matrix that stores the diameter (in km) and distance from Sun (in million km) for all 8 planets.
- Extract and display the values for the outer planets (Jupiter to Neptune).

Part C: Using List (15 Marks)

- Create a list that stores the following information for Earth:
- Name
- Diameter (km)
- Distance from Sun (million km)
- Number of moons
- Access and display each element of the list separately with proper comments.

Part D: Using Data Frame (30 Marks)

- 1. Create a data frame with the following columns:
- Planet
- Diameter_km
- Distance_MillionKm
- Orbital_Period_days
- No_of_Moons
- 2. Perform the following operations:
- Display all terrestrial planets (Mercury, Venus, Earth, Mars).
- Find and display the planet with the maximum number of moons.
- Sort planets in ascending order of their distance from the Sun.

Part E: User-Defined Functions (30 Marks)

- 1. Write a function that converts orbital period in days to Earth years (365 days = 1 year). Apply it to all planets and add the result as a new column in your data frame.
 - 2. Write another function that, given a planet's name, returns a short summary of its properties (diameter, distance, number of moons) using the data frame.
- 2. Write a function to find Kepler k for all the planets.

Marking Rubric (100 Marks)

Component	Marks	Criteria
Part A: Array	10	Correct array creation and indexing
Part B: Matrix	15	Proper matrix construction and subsetting
Part C: List	15	Correct list creation and element access
Part D: Data Frame	30	Correct data frame creation, subsetting, sorting, and analysis

Part E: Functions	30	Correct implementation of
		functions and application to data
Report Presentation	Included	Code comments, formatting, and
		adherence to naming rules

Total = 100 Marks