Integration of single-cell transcriptome in retinoblastoma

Jing Liu
PhD student

24.09.2020

Variations in single-cell transcriptome

- ☐ Technical variations (batch effects) :
 - Technology platforms (Smart-seq, 10X Chromium)
 - Labs (equipments, handling personnel, reagents)
 - Sequencing (depth, read length, lanes, flow cells)
 - Sampling time
- ☐ Biological variations:
 - Species
 - Tissues
 - Spatial locations
 - Time points
 - Inter-individual variations

How to remove batch effects while preserving biological vatiations?

Batch-effect correction in single-cell transcriptome

- ☐ 97 Integration methods (2020.09.24)
- **EscRNA**-tools

- Limma/Combat
- MNN
- Dimention Reduction (Seurat 2 CCA, LIGER NMF)
- Dimention Reduction + MNN (Seurat 3 CCA + MNN, HARMONY PCA + MNN)
- Neural network (scVI, scGen)
- Benchmarking studies

Büttner, Miao et al, 2019 Nature Methods (7 methods) Tran, Ang, Chevrier, Zhang et al, 2020 Genome Biology (14 methods) Luecken et al, 2020 bioRxiv (10 methods)

- Different scenarios:
 - Different technology
 - Different labs
 - Species
 - **Tissues**
 - Individual variations
 - Unbalanced batches

Removal of batch effects
Conservation of bilogical variances

scRNA-seq captured retinoblastoma heterogeneity

Question: Comparisons between ARR3+ cells in Subtype 1 vs ARR33+ cells in Subtype 2 EBF3+ARR3- cells vs EBF3+ARR3+ cells in subtype 2

Integration method	Gene selection	Cell selection
No batch effect corretion	Most variable 2000 genes	All cells/Tumor cells
Seurat 3 (CCA + MNN)	Most variable 2000 genes	All cells/Tumor cells
	Differentially expressed genes between Subtype 1 and Subtype 2 retinoblastoma	Tumor cells
	177 retinal markers	Tumor cells
Harmony (PCA + MNN)	Most variable 2000 genes / 3000 genes	Tumor cells

Merge without batch effect correction

Merge, removing immune cells, without batch effect correction

Seurat3 integration, differential expressed genes between subtype 1 and subtype 2, removing immune/low-quality cells

Seurat3 integration, using 177 retinal cell markers, removing immune /low-quality cells

Centroid correlation of 10 retinoblastoma samples

Centroid correlation using 1084 diff genes (> 1.5FC), logNorm expression, Row-centered

Discussion

- Single-cell transcriptome captured cone differentiation heterogeneity in retinoblastoma in individual-sample analysis.
- Integration of single-cell transcriptome in different retinoblastoma samples without batch-effect correction identified various immune cells and separate subtype 1 tumors from subtype 2 tumors.
- Integration with batch-effect correction fails to separate Subtype 1 from Subtype 2 tumors.
- Centroid correlation of cell clusters in different retinoblastoma samples separate subtype
 1 from subtype 2 retinoblastoma and showed higher similarity of subtype 2 ARR3+ cells to subtype 1 tumors

Solutions:

No batch-effect correction + differential expression analysis + NMF / ICA to study common signaling programs in different samples

Other batch effect correction methods

Other batch-effect correction methods