

Cell nuclei segmentation

Implementation and evaluation of Otsu thresholding

Topic 01 Team 03
Franka Begall
Kira Effenhauser
Selina Geiger
Anna-Lena Schulz

Supervisor: PD Dr. Karl Rohr, Dr. Leonid Kostrykin, Kerem Celikay, Janis Meyer

Tutor: Hannah Winte

Software requirements

Datasets

	N2DH-GOWT1	N2DL-HeLa	NIH3T3
Organism	mouse (Mus musculus)	human (homo sapiens)	mouse (Mus musculus)
Cell type	embryonic stemm cells	epithelial cells of cervical cancer	embryonic fibroblast cells
Staining	Oct4-GFP	H2b-GFP	Hoechst
Microscope	timelapse confocal microscopy	Olympus lx81 microscope used for live imaging of fluorescently labeled chromosomes	fluorescence microscopy

Input image Preprocessing

Segmentation

Characteristics

Image types

Image

Ground Truth

Otsu thresholding

what we need:

what we work with:

what we get:

http://sharky93.github.io/docs/gallery/auto_examples/plot_otsu.html

Otsu thresholding

$$\sigma_w^2(t) = w_1(t)\sigma_1^2(t) + w_2(t)\sigma_2^2(t)$$

σ: variance of class

w: probabilities of the two classes

divided by a threshold

t: threshold

maximize the between class variance

$$\sigma_b^2(t) = w_1(t)w_2(t)[\mu_1(t) - \mu_2(t)]^2$$

σ: variance of class

w: probabilities of the two classes

divided by a threshold

t: threshold

μ: mean of class

Otsu thresholding

Process the input grayscale image

Generate a distribution of the pixel intensities (histogram)

Calculate the threshold value t

Replace the pixels values with white (>t) an black (<t)

Conditions for optimal Otsu threasholding

- high contrast between objects and background
- bimodal distribution
- minimal image noise
- similar intensities of objects

Challenges: N2DH-GOWT1

- noise
- low contrast

Challenges: N2DL-HeLa

low contrast

Challenges: NIH3T3

- varying brightness
- reflections

How to master these challenges?

Input image

Preprocessing

Segmentation

Characteristics

Local thresholding

Input image

Preprocessing

Segmentation

Characteristics

Local thresholding

Input image

Preprocessing

Segmentation

Characteristics

Usage of Dice Score

Dice Score

Measure of similarity between two sets of data

used to evaluate the similarity between a predicted segmentation mask and the ground truth segmentation mask

Boolean Data

Discrete Data

Usage of Dice Score

Additional ideas

Cell counting

Cell Size

Cell arrangement

Other evaluation methods

Timeline

Python packages

- numpy (numerical python) → to work with numerical data
- skimage (scikit-image) → for image processing
- cv2 (OpenCV) → for solving computer vision problems
- matplotlib.pyplot → to visualize our data

→ and probably many more that we will discover while working on our project

