ECE2050 Homework 3

Due: March 8, 2025

Q1 Apply DeMorgan's theorems to each expression

1.
$$\overline{(\overline{ABC})(\overline{EFG})} + \overline{(\overline{HIJ})(\overline{KLM})}$$
.

2.
$$(\overline{A} + B + C + D)(\overline{A}\overline{B}\overline{C}D)$$
.

Q2 Given the truth table below,

\boldsymbol{A}	\boldsymbol{B}	C	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- 1. Write down standard sum-of-product (SOP) form.
- 2. Write down standard product-of-sum (POS) form.

SOP=ABOD+ABOD+ABOD+ABOD +ABOD+ABOD+ABOD+ABOD

POS = (A+B+C+D) (A+B+C+D) *(A+B+C+D) (A+B+C+D) *(A+B+C+D) (A+B+O+D) *(A+B+C+D) (A+B+C+D)

Q3 A circuit has four inputs and two outputs. The inputs $A_{3:0}$ represent a number from 0 to 15. Output P should be TRUE if the number is not prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number is divisible by 4. Give simplified Boolean equations. (Tips: A prime number is a number greater than 1 that has no divisors other than 1 and itself.)

Convert 0,4.8,1) to binary:
0000,0100,1000,1100.
... D = ĀIĀo

Q4 Develop a truth table for each of the SOP expressions:

1.
$$A\bar{B}\bar{C}D + AC\bar{D} + B\bar{C}D + \bar{A}BC\bar{D}$$
.

2.
$$A + B\bar{C} + CD$$
.

1. f.	B	C	D	Y
C	0	0	0	0
0	0	0	1	0
C	0	1	0	0
C	0	1	- 1	0
C) 1	0	0	0
0) 1	0	1	ı
0) 1	- 1	0	1
0		1 1	1	0
1	(0	0	0
1	(0	1	1
, ,	() 1	0	1
1	(7 1	1	0
-	1	0	0	0
1	1		- 1	1
1	1	1	0	
1	1	1	1	ð

2.	A 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	B	0 0 1 1	D	Y
	0		0	0	ò
	0	0 0 0 0 1 1 1 0 0 0 0 1 1 1 1	0	000000000000000000000000000000000000000	10000-
	0	0	1	0	0
	0	0	1	1	ī
	0	1	0	0	Εİ.
	0	1	D	1	
	0	1	1	0	0
	0	1	1	1	011111
	1	0	0	0	1
	1	O	0	1	1
	1	0	1	0	1
	1	0	1)	i
	1	í	0	0	i
	1	1	0	1	1
	1	1	00110011	0	1
	1	1	1	1	- 1

Q5 Develop a truth table for each of the POS expressions

1.
$$A(B+\bar{C})(\bar{A}+C)(A+\bar{B}+C)(\bar{A}+B+\bar{C})$$
.

2.
$$(X + \bar{Y})(W + \bar{Z})(\bar{X} + \bar{Y} + \bar{Z})(W + X + Y + Z)$$
.

Q6 Convert each of the following POS expressions to minimum SOP expressions using a Karnaugh map.

1.
$$(A + \bar{B} + C + \bar{D})(\bar{A} + B + \bar{C} + D)(\bar{A} + \bar{B} + \bar{C} + \bar{D}).$$

2.
$$A(B+\bar{C})(\bar{A}+C)(A+\bar{B}+C)(\bar{A}+B+\bar{C}).$$

Q7 Prove De Morgan's Theorem for three variables, A, B, and C, using perfect induction.

To prove De Morgan's Theorem for three variables A, B, and C using **perfect induction**, we construct truth tables for all possible combinations of A, B, and C and verify the equalities. Perfect induction involves checking every possible input combination (8 cases for three variables) to confirm the equivalence of both sides of the equations.

First Part: $\overline{A\cdot B\cdot C}=\overline{A}+\overline{B}+\overline{C}$

A	В	C	$A \cdot B \cdot C$	$\overline{A \cdot B \cdot C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} + \overline{B} + \overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

Conclusion:

 $\overline{A\cdot B\cdot C}$ is identical to $\overline{A}+\overline{B}+\overline{C}$ in all cases.

Second Part: $\overline{A+B+C}=\overline{A}\cdot\overline{B}\cdot\overline{C}$

\boldsymbol{A}	\boldsymbol{B}	C	A+B+C	$\overline{A+B+C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} \cdot \overline{B} \cdot \overline{C}$
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	0
_								

Conclusion:

 $\overline{A+B+C}$ is identical to $\overline{A}\cdot \overline{B}\cdot \overline{C}$ in all cases.

Conclusion

By using perfect induction, we have verified both parts of De Morgan's Theorem for three variables $A,\,B$, and C across all possible combinations:

1.
$$\overline{A\cdot B\cdot C} = \overline{A} + \overline{B} + \overline{C}$$

2.
$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Since the left-hand side equals the right-hand side in every case, De Morgan's Theorem is proven for three variables using perfect induction.

Q8 Find a minimal Boolean equation for the function as shown below.

\boldsymbol{A}	B	C	D	Y
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	X
0	1	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	1

Q9 According to the below figure,

- 1. Draw the true table for c with respect to A, B, C and D;
- 2. Write down the SOP and POS according to the true table in Q9.1;
- 3. Simplify the expression by using Karnaugh map.

		1
f	g	b
		C
e	<u> </u>	C

		Segr	nents In	puts			7 Segment Display Outpu
а	b	С	d	e	f	g	ABCI
1	1	1	1	1	1	0	00000
0	1	1	0	0	0	0	1 0 0 0 1
1	1	0	1	1	0	1	2 0 0 1 0
1	1	1	1	0	0	1	3 0 0 1 1
0	1	1	0	0	1	1	4 0 1 0 0
1	0	1	1	0	1	1	5 0 1 0 1
1	0	1	1	1	1	1	6 0 1 1 0
1	1	1	0	0	0	0	7 0 1 1 1
1	1	1	1	1	1	1	8 1 0 0 0
1	1	1	1	0	0	1	9 1 0 0 1

1.	Α	B	C	D	C
	0	0 0 0 0 1	0	0	1
	000000011	0	0	1	1
	0	0	1	O	0
	0	0	(1	1
	0	1	000	0	1
	0	1	0	1	1
	0	ſ	1	0	1
	0	i	1	1	1
	1	0	D	0	1
	1	0	0	1	1
	1	10000011	1001	0	×
	1	0	1	0	×
	1	1	0		×
	1	1	0	1	×
	1	1	1	0	× × ×
	1	1	. 1	1	×

BCD	00	01	[1]	110	1:B+ C+D
00	1	m	1	0	
01	IT	1	1	7	
7 1	×	×	×	x	
10	1	W	X	X	