

GADEST 20/24

Program and abstract booklet

20th meeting Gettering and Defect Engineering in Semiconductor Technology

Bad Schandau (Saxony, Germany) September 8 - 13, 2024

2024/09/10 Tuesday 19:00-22:00

TP02

Influence of illumination spectrum on dissociation kinetic of iron-boron pairs in silicon

Oleg Olikh, Oleksandr Datsenko, Serhiy Kondratenko

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, Ukraine

Email: olegolikh@knu.ua

The iron-boron pair is one of the most extensively examined defects in silicon. The complex's levels, carrier capture cross-sections, kinetic models, dissociation techniques, and even ultrasound influence on pairing have been established [1-3]. However, the exact mechanism underlying the second decay phase — iron ion recharge or a recombination-enhanced defect reaction (REDR) — remains debatable. We believe that investigation of the illumination spectrum impact on light-induced dissociation may reveal which proposed model is correct. An experimental study was undertaken to explore the efficiency of FeB pair dissociation in silicon solar cells (iron concentration of 8.7×10^{12} cm⁻³, doping level by boron of 1.4×10^{15} cm⁻¹

³) when different light sources are utilized. To achieve a varied illumination spectrum (see Fig.1), halogen lamps from three manufacturers — Orion, Osram, and General Electric (GE) — were used.

The characteristic time of FeB dissociation τ_{dis} was determined by measuring the dependence of the concentration of dissociated pairs on the illumination duration using a methodology referenced in [1]. It was observed that τ_{dis} , was influenced not only by the light intensity W_{ill} and the carrier generation rate but also by the light source – see Table. It was found that as the photon wavelength decreases, the dissociation rate increases. Fig. 2 shows the average photon energy for different sources, correlating with the data in Table. The findings suggest that REDR is likely to be the dominant mechanism for pair decay.

References:

- [1] O. Olikh et al., J.Appl. Phys. 2021, 130, 235703.
- [2] F. E. Rougieux, C. Sun, D. Macdonald, Sol. Energy Mater. Sol. Cells 2018, 187, 263.
- [3] C. Sun et al., Phys. Status Solidi RRL 2021, 15, 2000520.

Fig. 1. The spectral composition of the sample illumination for different light sources, which is influenced by 1) the temperature of the filament; 2) the surface of the lamp reflector; and 3) the transmission characteristics of the optical fiber through which the illumination was conducted.

Table. The characteristic time of FeB dissociation for different illumination intensities and

li	ght sources	
W)	$\tau_{ m dis}\left({ m s}\right)$	
Orion	Osram	GE
42±3	20.0±0.7	15.1±0.5
15.7±0.6	12.4±0.1	6.5±0.2
8.8±0.3	6.1±0.3	3.6±0.3
5.5±0.2	4.5±0.2	
3.7±0.2	3.0±0.2	
2.4+0.2	2.4±0.2	
	Orion 42±3 15.7±0.6 8.8±0.3 5.5±0.2	V) Orion Osram 42±3 20.0±0.7 15.7±0.6 12.4±0.1 8.8±0.3 6.1±0.3 5.5±0.2 4.5±0.2 3.7±0.2 3.0±0.2

Fig. 2. Dependencies of the average photon energy on carrier generation rate for different light sources.