Homework 1

Nathaniel Hamovitz Math 104A, Atzberger, F22

due 2023-01-18

1 Ch 1.1

2 Show that the following equations have at least one solution in the given intervals.

a.
$$\sqrt{x} - \cos x = 0$$
 on $[0, 1]$

Solution. We use the Intermediate Value Theorem, which is allowed because the LHS is a continuous function of x. $\sqrt{(0)} - \cos(0) = -1 < 0$ and $\sqrt{(1)} - \cos(1) \approx 0.460 > 0$. Thus by IVT, $\exists c \in [0,1], \sqrt{c} - \cos c = 0$.

b.
$$e^x - x^2 + 3x - 2 = 0$$
 on $[0, 1]$.

Solution. The process is similar. $e^0 - 0^2 + 3(0) - 2 = -1 < 0$ and $e^1 - 1^2 + 3(1) - 2 = e > 0$.

c.
$$-3\tan(2x) + x = 0$$
 on $[0, 1]$.

Solution. Here, testing the endpoints finds us the solution directly. $-3\tan(2(0)) + 0 = 0$ and $0 \in [0,1]$.

3 Find intervals containing solutions to the following equations.

a.
$$x - 2^{-x} = 0$$

Solution. [0,1] works; $0-2^0=-1<0$ and $1-2^{-1}=1-\frac{1}{2}=\frac{1}{2}>0$.

c.
$$3x - e^x = 0$$

Solution. [0, 1] works again; $3(0) - e^0 = -1 < 0$ and $3(1) - e^1 = 3 - e \approx 0.3 > 0$.

8 Suppose $f \in C[a,b]$ and f'(x) exists on (a,b). Show that if $f'(x) \neq 0$ for all $x \in (a,b)$, then there can exists at most one number $p \in [a,b]$ with f(p) = 0

Proof. The derivative is everywhere nonzero, so there are no critical points. Thus the function can't possibly "turn around," because doing so would create a local extrema, which would be a critical point, which is impossible. Hence there might or might not be one crossing of the x-axis in the interval but there can't be more than one. \Box

9 Let
$$f(x) = x^3$$
.

a. Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$

Solution.

$$P_2(x) = 0 + 0 + 0 = 0$$

b. Find $R_2(0.5)$ and the actual error in using $P_2(0.5)$ to approximate f(0.5).

Solution.

$$R_2(x) = 1(x)^3$$

Because the $\xi(x)$ term falls out in the third derivative, R_2 is the exact error. Thus $R_2(0.5) = 0.125$ is the exact error in using $P_2(0.5)$ to approximate 0.5^3 .

c. Now about $x_0 = 1$:

Solution.

$$P_2(x) = 1 + 3(x - 1) + \frac{6}{2}(x - 1)^2$$

d. And the associated remainder term again:

Solution. Using the formula for the remainder term at $x_0 = 1$,

$$R_2(x) = 1(x-1)^3$$

Then $R_2(0.5) = -0.125$ and $P_2(0.5) = 1 + 3(-0.5) + 3(-0.5)^2 = 1 - 1.5 + 0.75 = 0.25$, giving an exact error of -0.125. This makes sense because the $\xi(x)$ term fell out of the derivative again.

11 Find the second Taylor polynomial $P_2(x)$ for the function $f(x) = e^x \cos x$ about $x_0 = 0$. We'll need three derivatives:

$$f(x) = e^x \cos x$$

$$f'(x) = e^x (\cos x - \sin x)$$

$$f''(x) = -2e^x \sin x$$

$$f^{(3)} = -2e^x (\sin x + \cos x)$$

- a. Thus by Taylor, $P_2(x) = 1\left[1 + 1 \cdot x + 0 \cdot x^2\right] = 1 + x$ and so $P_2(0.5) = 1.5$. Likewise $R_2(x) = -\frac{1}{3}e^{\xi(x)}\left(\sin\xi(x) + \cos\xi(x)\right)(x^3)$. sin and cos are both bounded in magnitude by 1, so a reasonable upper bound for absolute error would be $R_2(0.5) \leq \frac{1}{3}e^0.5(2)(0.5^3) \approx 1.37393 \cdot 10^{-1}$.
- **b.** As above, $R_2(x) = -\frac{1}{3}e^{\xi(x)} \left(\sin \xi(x) + \cos \xi(x)\right)(x^3)$. We take the absolute value and note that the sum of the trigonometric functions must always be ≤ 2 , and the other parts of the function are monotonically increasing. Thus on [0,1], $|R_2| \leq \frac{1}{3} \cdot e^1 \cdot 2 \cdot 1^3 = \frac{2}{3}e$.

c.
$$\int_0^1 P_2(x) dx = \int_0^1 1 + x dx = \left[x + \frac{1}{2}x^2\right]_0^1 = 1.5$$

d.
$$\int_0^1 |R_2(x)| dx = \frac{1}{3} \int_0^1 e^{\xi(x)} \left[\sin \xi(x) + \cos \xi(x) \right] x^3 dx \le \frac{2}{3} \int_0^1 e^x x^3 dx \approx 0.356$$

14 Let $f(x) = 2x\cos(2x) - (x-2)^2$ and $x_0 = 0$ We'll need five derivatives:

$$\begin{split} f &= 2x\cos(2x) - (x-2)^2 \\ &= 2x\cos(2x) - x^2 + 4x - 4 \\ f' &= 2\cos(2x) + 2x\left(-\sin(2x)\right) \cdot 2 - 2x + 4 \\ &= 2\left[\cos(2x) - 2x\sin(2x) - x + 2\right] \\ f^{(2)} &= 2\left[-\sin(2x) \cdot 2 - 2\sin(2x) - 2x\cos(2x) \cdot 2 - 1\right] \\ &= 2\left[-4\sin(2x) - 4x\cos(2x) - 1\right] \\ &= -8\left(\sin(2x) + x\cos(2x)\right) - 2\text{(used derivative-caluclator for the remaining three)} \\ f^{(3)} &= 16x\sin(2x) - 24\cos(2x) \\ f^{(4)} &= 64\sin(2x) + 32x\cos(2x) \\ f^{(5)} &= 160\cos(2x) - 64x\sin(2x) \end{split}$$

a. Now we plug in $x_0 = 0$, giving

$$P_3(x) = -4 + 6x - x^2 - 4x^3$$

and thus $P_3(0.4) = -2.016$

b. By formula,

$$R_3(x) = \frac{64\sin(2\xi(x)) + 32\xi(x)\cos(2\xi(x))}{24}(x^4).$$

A reasonable upper bound for the error at x = 0.4 would be $R_3(0.4) \le \frac{64 \cdot 1 + 32 \cdot 0.4 \cdot 1}{24}(0.4^4) = 8.192 \cdot 10^{-2}$. The absolute error is $e_{abs} = |P_3(0.4) - f(0.4)| \approx 1.336536748 \cdot 10^{-2}$.

- c. The fourth derivative at 0 is itself 0, so in fact $P_4(x) = P_3(x) = -4 + 6x x^2 4x^3$, and again $P_4(0.4) = -2.016$.
- **d.** However, moving up a derivative allows us the bound the error much tighter; now $R_4(x) = \frac{160\cos(2\xi(x))-64\xi(x)\sin(2\xi(x))}{120}(x^5)$ and applying the same heuristics as before for the bound gives us $R_4(0.4) \leq \frac{160-64(0)}{120}(0.4^5) = 1.365\overline{3} \cdot 10^{-2}$, an error bound about 6 times smaller. Finally, because $P_4(x) = P_3(x)$, the absolute error remains the same at $\approx 1.336536748 \cdot 10^{-2}$.

- **a.** The nice property of the Taylor polynomial is that the first n derivatives match the original function at x_0 . It's a quite good approximation locally, but then becomes very bad.
- **b.** From the clues given, we now that f(1) = -1, f'(1) = 4, and f''(1) = 6. Thus at $x_0 = 1$, $P_2(x) = -1 + 4(x-1) + 3(x-1)^2$.

2 Ch 1.2

1

c.
$$p = e; p^* = 2.718.$$
 $e_{abs} = |e - 2.718| \approx 0.282 \cdot 10^{-3};$ $e_{rel} = \frac{|e - 2.718|}{e} \approx 0.104 \cdot 10^{-3}.$

d.
$$p = \sqrt{2}; p^* = 1.414.$$
 $e_{abs} = \left|\sqrt{2} - 1.414\right| \approx 0.214 \cdot 10^{-3};$ $e_{rel} = \frac{|e - 2.718|}{\sqrt{2}} \approx 0.151 \cdot 10^{-3}.$

 $\mathbf{2}$

a.
$$p = e^{10}$$
; $p^* = 22000$. $e_{abs} = \left| e^{10} - 22000 \right| \approx 0.265 \cdot 10^2$; $e_{rel} = \frac{\left| e^{10} - 22000 \right|}{e^{10}} \approx 0.120 \cdot 10^{-2}$.

b.
$$p = 10^{\pi}$$
; $p^* = 1400$. $e_{abs} = |10^{\pi} - 1400| \approx 0.145 \cdot 10^2$; $e_{rel} = \frac{|10^{\pi} - 1400|}{10^{\pi}} \approx 0.105 \cdot 10^{-1}$.

5

a. (i)
$$\frac{4}{5} + \frac{1}{2} = \frac{12+5}{15} = \frac{17}{15} = 0.11\overline{3} \cdot 10^1$$

- (ii) 3-digit chopping: $\frac{4}{5} + \frac{1}{3} = 0.800 + 0.333 = 1.133$ becomes $0.113 \cdot 10^{1}$, for a relative error of $\approx 0.294 \cdot 10^{-2}$.
- (iii) 3-digit rounding: $\frac{4}{5} + \frac{1}{3} = 0.800 + 0.333 = 1.133$ becomes $0.113 \cdot 10^1$, for the same relative error of $\approx 0.294 \cdot 10^{-2}$.

b. (a)
$$\frac{4}{5} \cdot \frac{1}{3} = \frac{4}{15} = 0.26\overline{6} \cdot 10^0$$

- (b) 3-digit chopping: $\frac{4}{5} \cdot \frac{1}{3} = 0.800 \cdot 0.333 = 0.2664$ becomes $0.266 \cdot 10^0$, for a relative error of $0.25 \cdot 10^{-2}$.
- (c) 3-digit rounding: $\frac{4}{5} \cdot \frac{1}{3} = 0.800 \cdot 0.333 = 0.2664$ becomes $0.266 \cdot 10^0$, for the same relative error of $0.25 \cdot 10^{-2}$.

10

a.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$
 becomes $\frac{0.9285 - 0.8571}{2(2.718) - 5.400} = \frac{0.0714}{0.036} = 1.98\overline{3}$ becomes $0.1983 \cdot 10^{-1}$, for a relative error of $\approx 0.153 \cdot 10^{-1}$

b.
$$-10\pi + 6e - \frac{3}{62}$$
 becomes $-10(3.141) - 6(2.718) - 0.04838 = 31.41 - fl(16.308) - 0.04838 = 31.41 - 16.30 - 0.04838 = fl(15.11) - 0.04838 = fl(15.06162) = 0.1506 \cdot 10^2$

c.
$$\frac{2}{9} \cdot \frac{9}{7}$$
 becomes $fl\left(fl\left(\frac{2}{9}\right) \cdot fl\left(\frac{9}{7}\right)\right) = 0.2855 \cdot 10^0$

d.
$$\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}}$$
 becomes $fl\left(\frac{fl(fl(\sqrt{13}) + fl(\sqrt{11}))}{fl(fl(\sqrt{13}) - fl(\sqrt{11}))}\right) = 0.2394 \cdot 10^2$

15 For problem 15a, the classic quadratic formula gives $x_1 = 92.26$ (with errors $e_{abs} = 0.015420372687700024$ and $e_{rel} = 0.00016716833390104444$) and $x_2 = 0E + 2$ (with errors $e_{abs} = 0.005420372687694908$ and $e_{rel} = 1.0$). The rationalized quadratic formula gives $x_1 = -Infinity$ (with errors $e_{abs} = 0$ and $e_{rel} = 0.0$) and $x_2 = 0.005421$ (with errors $e_{abs} = 6.273123050919496e - 07$ and $e_{rel} = 0.00011573231975654487$).

For problem 15b, the classic quadratic formula gives $x_1 = 0E + 2$ (with errors $e_{abs} = 0.005419735788228408$ and $e_{rel} = 1.0$) and $x_2 = -92.26$ (with errors $e_{abs} = 0.004580264211782037$ and $e_{rel} = 4.964764373626535e - 05$). The rationalized quadratic formula gives $x_1 = 0.005421$ (with errors $e_{abs} = 1.264211771591535e - 06$ and $e_{rel} = 0.0002332607752461634$) and $x_2 = Infinity$ (with errors $e_{abs} = 0$ and $e_{rel} = 0.0$).

16

- a. The classic quadratic formula gives $x_1 = 1.903$ (with errors $e_{abs} = 0.0006535189493659388$ and $e_{rel} = 0.00034353308184164813$) and $x_2 = 0.743$ (with errors $e_{abs} = 0.0004048300139565253$ and $e_{rel} = 0.0005445619904688071$). The rationalized quadratic formula gives $x_1 = 1.903$ (with errors $e_{abs} = 0.0006535189493659388$ and $e_{rel} = 0.00034353308184164813$) and $x_2 = 0.7430$ (with errors $e_{abs} = 0.0004048300139565253$ and $e_{rel} = 0.0005445619904688071$).
- **b.** The classic quadratic formula gives $x_1 = -0.07798$ (with errors $e_{abs} = 0.0004287938339695291$ and $e_{rel} = 0.005468695703666852$) and $x_2 = -4.060$ (with errors $e_{abs} = 0.00038027344468982704$ and $e_{rel} = 9.367218367827243e 05$). The rationalized quadratic formula gives $x_1 = -0.07840$ (with errors $e_{abs} = 8.793833969525378e 06$ and $e_{rel} = 0.00011215366975477655$) and $x_2 = -4.082$ (with errors $e_{abs} = 0.02238027344469007$ and $e_{rel} = 0.005512898978762303$).
- c. The classic quadratic formula gives $x_1 = 1.223$ (with errors $e_{abs} = 0.00012977027895555437$ and $e_{rel} = 0.00010611941954393391$) and $x_2 = -2.223$ (with errors $e_{abs} = 0.00012977027895555437$ and $e_{rel} = 5.837960184110239e 05$). The rationalized quadratic formula gives $x_1 = 1.223$ (with errors $e_{abs} = 0.00012977027895555437$ and $e_{rel} = 0.00010611941954393391$) and $x_2 = -2.223$ (with errors $e_{abs} = 0.00012977027895555437$ and $e_{rel} = 5.837960184110239e 05$).
- **d.** The classic quadratic formula gives $x_1 = 6.235$ (with errors $e_{abs} = 0.001759153700807481$ and $e_{rel} = 0.0002820621507828506$) and $x_2 = -0.3205$ (with errors $e_{abs} = 0.00017937060119210813$ and $e_{rel} = 0.0005593456194448491$). The rationalized quadratic formula gives $x_1 = 6.240$ (with errors $e_{abs} = 0.0032408462991924125$ and $e_{rel} = 0.0005196362757201132$) and $x_2 = -0.3208$ (with errors $e_{abs} = 0.00012062939880785883$ and $e_{rel} = 0.0003761682536101697$).

17

- a. For problem 17a, the classic quadratic formula gives $x_1 = 92.24$ (with errors $e_{abs} = 0.004579627312310208$ and $e_{rel} = 4.964657360695745e 05$) and $x_2 = 0.01500$ (with errors $e_{abs} = 0.009579627312305092$ and $e_{rel} = 1.7673373888205772$). The rationalized quadratic formula gives $x_1 = 33.32$ (with errors $e_{abs} = 58.924579627312305$ and $e_{rel} = 0.6387863640918536$) and $x_2 = 0.005418$ (with errors $e_{abs} = 2.372687694907581e 06$ and $e_{rel} = 0.000437735158007484$).
- b. For problem 17b, the classic quadratic formula gives $x_1 = 0E + 2$ (with errors $e_{abs} = 0.005419735788228408$ and $e_{rel} = 1.0$) and $x_2 = -92.25$ (with errors $e_{abs} = 0.005419735788223079$ and $e_{rel} = 5.8747072028339875e 05$). The rationalized quadratic formula gives $x_1 = 0.005417$ (with errors $e_{abs} = 2.7357882284081286e 06$ and $e_{rel} = 0.0005047825826399551$) and $x_2 = Infinity$ (with errors $e_{abs} = 0$ and $e_{rel} = 0.0$).

25

a. With the nesting technique, the polynomial becomes

$$f(x) = (((1.01e^x - 4.6)e^x - 3.11)e^x + 12.2)e^x - 1.99$$

- **b.** Normal evaluation of f(1.53): -6.09 (absolute error 1.52, relative error 0.200)
- c. Nested evaluation of f(1.53): -7.07 (absolute error 0.540, relative error 0.0710)
- d. see above