[4]

Analyse the continuous beam ABCD by slope deflection method.

Analyse the frame by moment distribution method.

- What do you mean by suspension bridges? Write name of various parts 3 Q.6 of suspension bridge.
 - A three-hinged parabolic arch of span 20 m and rise 4 m carries a UDL 7 of 20 kN per metre run on the left half of the span. Find the maximum positive and negative bending moment for the arch.
- OR iii. A cable is supported between two points 30 m horizontally apart. The 7 left support is 3 m above the right support. The cable carries a load of 2 kN/m on the horizontal span. The lowest point of the cable is 6 m below the left support. Find the maximum tension in the cable.

Total No. of Questions: 6

Total No. of Printed Pages:4

P.T.O.

Enrollment No.....

5

5

Faculty of Engineering

End Sem (Even) Examination May-2019 CE3CO06 Structural Analysis –I

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

	-	stions are compulsory. Internal d be written in full instead of	-		Q.1	
Q.1	i.	Number of equilibrium equat	ion for a 3-D s	tructure is:	1	
		(a) Four (b) Three	(c) Six	(d) Zero		
	ii.	The kinematic indeterminacy	of beam is:		1	
		A	B B			
		(a) 3 (b) 2	(c) 1	(d) 0		
	iii.	Resilience can also be termed	* *	(d) 0	1	
	111.	(a) Stress energy	(b) Strain ener	rgv	•	
		(c) Modulus	(d) Tenacity	· 6J		
	iv.	By the law of conservation of	` ′	energy stored is equals to	1	
		(a) Modulus (b) Work done (c) Stress (d) None of these				
	v.	In influence line diagrams (II	` '		1	
		(a) Points remain fixed, position of load changes (b) Points change, position of loads remains fixed				
		(c) Neither of them changes				
		(d) Both of them changes				
	vi.	A single rolling load of 18 k	N rolls along	a girder of 15 m span. The	1	
	maximum bending moment at 5 m from left hand support will be					
		(a) 18 kN.m (b) 15 kN.m	(c) 6 kN.m	(d) None of these		
	vii.	In figure if support B settles	by 1mm dowr	nward, what is direction of	1	
		rotation at point A				
		*		-		
		(a) +ve	(b) -ve	ט		
		(c) Can't say	` '	n loading at A		

- viii. In the slope deflection equations, the deformations are considered to be 1 caused by
 - (a) Bending moment
- (b) Shear force
- (c) Axial force
- (d) None of these
- ix. Top most part of an arch is called (a) Sofit
 - (b) Crown
 - (c) Abutment (d) Centre
- What is the degree of indeterminacy of a two hinged arch?
 - (a) 1

end.

- (b) 2
- (c) 3
- (d) 4

1

1

- Q.2 Differentiate between determinate and indeterminate structure.
 - A continuous beam ABCD 16 m long is simply supported at A, B, C 6 and D. The beam consists of span AB, BC and CD of lengths 4 m, 6 m, and 6 m respectively. It carries a point load 64 kN on the span AB at a distance of 1 m from A, a load of 45 kN on the span BC at a distance of 2 m from B and a uniformly distributed load of 12 kN/m on the span CD. Find the support moments and reactions by using three moment theorem. Draw also B.M diagrams.
- Calculate the force in members GH, EK and FH of truss by method of 6 OR section and also describe nature of forces.

- (a) State the Maxwell's reciprocal theorem with the help of diagram. 0.3 (b) Define principle of virtual work.
 - Using strain energy method determine the deflection of the free end of **6** a cantilever of length 'L' subjected to a concentrated load 'P' at free

iii. Determine the horizontal displacement of the roller end at joint D of 6 OR given portal frame. EI is 8000 kNm² throughout.

- Write down applications of ILD. 0.4
 - A train of 5 wheel-loads as shown in diagram crosses a simply 8 supported beam of span 22.5 m. Calculate the maximum positive and maximum negative shear force value of the centre of the span and the absolute maximum bending moment anywhere in the span.

- iii. A live load of 80 kN per metre moves on a simply supported girder of 8 OR span 12 metres. Find the maximum positive and maximum negative shear force and maximum bending moment which can occur at a section 4 metres from the left end.
- Q.5 Attempt any two:
 - Analyse the portal frame ABCD loaded as shown in diagram and draw 5 the bending moment diagram by moment distribution method.

P.T.O.

2

Marking Scheme CE3CO06 Structural Analysis –I

Q.1	i.	Number of equilibrium equation for a 3-D s	tructure is:	1
	ii.	(c) Six The kinematic indeterminacy of beam is: (b) 2		1
	iii.	Resilience can also be termed as (b) Strain energy		1
	iv.	By the law of conservation of energy, strain (b) Work done	energy stored is equals to	1
	v.	In influence line diagrams (ILD): (d) Both of them changes		
	vi.	A single rolling load of 18 kN rolls along a girder of 15 m span. The maximum bending moment at 5 m from left hand support will be (d) None of these		
	vii.	In figure if support B settles by 1mm downward, what is direction of 1 rotation at point A		
	viii.	(a) +ve In the slope deflection equations, the deformations are considered to be caused by		
	ix.	(a) Bending moment Top most part of an arch is called (b) Crown		
	х.	What is the degree of indeterminacy of a tw (b) 2	o hinged arch?	1
Q.2 i.		Differentiate between determinate and indeterminate structure.		4
	ii.	1 mark for each point Draw also B.M diagrams.	(1 mark * 4)	6
	11.	For correct diagram	1 mark	U
		For correct maximum moments	1 mark	
		For correct three moment equation for each span		
		1	2 marks	
		For correct calculation	1 mark.	
		For correct BMD	1 mark	
OR	iii.	Calculate the force in members GH, EK and FH of truss by method of section and also describe nature of forces.		6
		For correct reaction	1 mark	
		For correct distances of X, Y,Z	1.5 marks	
		For correct equilibrium equation on each join		
		1 mark for each joint (1 mark * 3)	3 marks	
		For correct nature of force description	0.5 mark	

Q.3	i.	(a) State the Maxwell's reciprocal theorem with the Diagram	e help of diagram 1 mark	4
		Statement	1 mark	
		(b) Define principle of virtual work.	2 marks	
	ii.	Using strain energy method determine the deflection a cantilever of length 'L' subjected to a concentrated.	on of the free end of	6
		For correct diagram	1 mark	
		For correct formula of strain energy	1 mark	
		For correct value of strain energy	1 mark	
		For applying law of conservation of energy	2 marks	
		For correct answer	1 mark	
OR	iii.	Determine the horizontal displacement of the roll given portal frame.	er end at joint D of	6
		For bending moment expression table	3 marks	
		Strain energy formula	1 mark	
		Work done formula	1 mark	
		Correct answer	1 mark	
Q.4	i.	Applications of ILD.		2
		At least four points0.5 mark for each application	(0.5 mark * 4)	_
	ii.	-	the centre of the span and the absolute maximum bending anywhere in the span.	
		Correct diagram for Max positive and negative She	ear force and B.M.	
		1 mark for each (1 mark * 3)	3 marks	
		For correct formula		
		1 mark each (1 mark * 3)	3 marks	
		For correct SFD and BMD	1 mark	
		For correct Answer with sign	1 mark	
OR	iii.	Find the maximum positive and maximum negat	ive shear force and	8
	maximum bending moment which can occur at a section 4 metres the left end.		ection 4 metres from	
		Correct diagram for Max positive and negative She	ear force and B.M.	
		1 mark for each (1 mark * 3)	3 marks	
		For correct formula		
		1 mark each (1 mark * 3)	3 marks	
		For correct SFD and BMD	1 mark	
		For correct Answer with sign	1 mark	

Q.5		Attempt any two:		
	i.	Analyse the portal frame ABCD loaded as shown i	n diagram and draw	5
		the bending moment diagram by moment distribution method.		
		For correct fixed end moments	1 mark	
		For correct distribution factor table	1 mark	
		For correct calculation of balancing moment	2 marks	
		For correct BMD	1 mark	
	ii.	Analyse the continuous beam ABCD by slope defle	ection method.	5
		For correct fixed end moments	1 mark	
		Slope deflection equation for each span		
		½ mark for each span (½ mark *4)	2 marks	
		Correct equilibrium equation for joints	1 mark	
		Correct answer	1 mark	
	iii.	Analyse the frame by moment distribution method.		5
		For correct fixed end moments	1 mark	
		For correct distribution factor table	2 marks	
		For correct calculation of balancing moment	2 marks	
Q.6	i.	Proper definition suspension bridges	1.5 marks	3
Q.0	1.	Name of various parts of suspension bridge	1.5 marks	3
		1) 1 5 marks	
	ii	At least three name 0.5 mark for each (0.5 mark *3		7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending n	noment for the arch.	7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending not be correct diagram	noment for the arch. 1 mark	7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending not for correct diagram For correct formula 1 mark each (1 mark * 2)	noment for the arch.	7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending not a correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y	noment for the arch. 1 mark 2 marks	7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2)	noment for the arch. 1 mark 2 marks	7
	ii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust	noment for the arch. 1 mark 2 marks 2 marks 1 mark	7
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer	noment for the arch. 1 mark 2 marks	
OR	ii. iii.	At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable.	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark	7
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable. For correct diagram	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark 1 mark	
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable. For correct diagram For correct formula – 1 mark each (1 mark * 2)	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark	
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable. For correct diagram For correct formula – 1 mark each (1 mark * 2) For correct value of x and y	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark 1 mark 2 marks	
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable. For correct diagram For correct formula – 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2)	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark 2 marks 2 marks	
OR		At least three name 0.5 mark for each (0.5 mark *3 Find the maximum positive and negative bending in For correct diagram For correct formula 1 mark each (1 mark * 2) For correct value of x and y 1 mark each (1 mark * 2) For correct value of horizontal thrust Correct answer Find the maximum tension in the cable. For correct diagram For correct formula – 1 mark each (1 mark * 2) For correct value of x and y	noment for the arch. 1 mark 2 marks 2 marks 1 mark 1 mark 1 mark 2 marks	
