

Лабораторная работа № 1.3.3: Измерение вязкости воздуха по течению в тонких трубках

Иванов Артём, Б05-409

3 апреля 2025 г.

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

1 Теоретическая часть

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, а слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta}$$

где v — скорость потока, r — радиус трубки, ρ — плотность движущейся среды, η — её вязкость. В гладких трубах круглого сечения переход от ламининарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l, определяется формулой Пуазейля:

$$Q = \frac{\pi r^4}{8\Delta l\eta} (P_1 - P_2) \tag{1}$$

В этой формуле P_1-P_2 – разность давлений в двух выбранных сечениях 1 и 2, расстояние между которыми равно Δl . Величину Q обычно называют расходом. Формула (1) позволяет определять вязкость газа по его расходу.

Отметим условия, при которых справедлива формула (1). Прежде всего необходимо мо, чтобы с достаточным запасом выполнялось неравенство Re < 1000. Необходимо также, чтобы при течении не происходило существенного изменения удельного объёма газа (при выводе формулы удельный объём считался постоянным). Для жидкости это предположение выполняется практически всегда, а для газа — лишь в тех случаях, когда перепад давлений вдоль трубки мал по сравнению с самим давлением. В нашем случае давление газа равно атмосферному (10^3 см вод. ст.), а перепад давлений составляет не более 10 см вод. ст., т. е. менее 1% от атмосферного. Формула (1) выводится для участков трубки, на которых закон распределения скоростей газа по сечению не меняется при двидении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения

При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему направлению. По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней оси. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на некотором расстоянии a от входа в трубку, которое зависит от радиуса трубки r и числа Рейнольдса по формуле

$$a \approx 0.2 rRe$$
 (2)

Градиент давления на участке формирования потока оказывается больше, чем на участке с установившимся ламинарным течением, что позволяет разделить эти участки экспериментально. Формула (2) даёт возможность оценить дину участка формирования.

2 Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 2. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Рис. 2: Экспериментальная установка

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Рис. 3: Газовый счетчик

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 3, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство. Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Микроманометр. В работе используется жидкостный манометр с наклонной трубкой. Разность давлений на входах манометра измеряется по высоте подъёма этилового спирта. Регулировка наклона позволяет измерять давление в различных диапазонах.

На крышке прибора установлен трехходовой кран, имеющий два рабочих положения - (0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы (в процессе работы также рекомендуется периодически проверять положение нуля). В положении (+) производятся измерения.

3 Обработка рузультатов измерений

Эксперимент проводился при комнатной температуре $T_{\text{комн}}=296,2K$, при атмофсерном давлении $P_{\text{атм}}=101,75$ кПа и при относительной влажности в помещении $\eta=74\%$.

Давление, измеряемое микроманометром, определяется по формуле:

$$P = 9.81 \cdot K \cdot l$$

где l – показание макроманометра, K – коэффициент наклона, P – Давление в паскалях.

3.1 Зависимость разности давлений от расхода

Эксперимент проводился на первой трубе с диаметром $d_1=3{,}95\pm0{,}05$ мм. Данные изменрений приведены в табилце 1.

Таблица 1: Результаты измерений разности давлений от расхода

h, MM	ΔV , л	Δt , c	ΔP , Πa	Q, мл/с
15	3	153,4	29,4	19,6
22	3	103,5	43,1	29,0
29	3	81,0	56,8	37,5
35	4	91,0	68,6	44,4
41	3	58,1	80,4	51,7
49	3	49,1	96,0	61,1
57	4	56,8	111,8	70,4
64	4	51,0	125,6	78,4
80	5	53,3	156,8	93,8
87	5	50,8	170,5	98,4
100	7	66,9	196	104,6
119	8	72,9	233,2	109,7
162	8	66,4	317,5	120,5
196	8	61,8	384,2	129,4
234	9	63,8	458,6	141,0

По результатам измерений был построен график 3.1. По угловому коэффициенту и формуле (1) можно оценить вязкость воздуха. Она составила $\eta=1.95\pm0.03\times10^{-5}$ Па·с.

3.2 Зависимость разности давлений от длины участка

Здесь измерения проводились на трубах 1 и 2 с диаметрами $d_1=3.95\pm0.05$ мм и $d_2=5.10\pm0.05$ мм, с расходами $Q_1\approx82.5$ мм/с и $Q_2\approx105.7$ мл/с соответственно.

3.3 Зависимость разности давлений от длины

Результаты измерений приведены в таблице 2. По этим данным был построен график 3.3, из которого следует, что ламинарное течение устанавливается не раньше $41~\mathrm{cm}$.

Таблица 2: Зависимость давления от длины

$Q=82.5{ m mg/c},d=3.95{ m mm}$			
x, cm	ΔP , Πa		
10,9	82,3		
40,9	186,2		
80,9	313,6		
130,9	450,8		

$Q=105{,}7{ m m}{ m j/c},d=5{,}10{ m m}{ m m}$				
10,9	52,9			
40,9	94,1			
80,9	121,5			
130,9	182,3			

Рис. 4: Зависимость разности давлений от длины

3.4 Зависимость расхода от диаметра трубы

Данные измерений приведены в таблицах. Для измерения зависимости в ламинарном течении было выбрано значение $dP/dl=0.98~\Pi a/cm$. Для турбулентного течения – $dP/dl=6.27~\Pi a/cm$.

Таблица 3: Зависимость расхода от градиента давления

Ламинарное теч.		
Q, мл/с	d, mm	
31	3,95	
11,5	3	
105,7	5,10	

Турбулентное теч.				
Q, мл/с	d, mm			
119	3,95			
57,7	3			
268,8	5,10			

Рис. 5: Зависимость расхода от градиента давления

Из графика видно, что для турбулентного течения всё выполняется хорошо и расход пропорционален радиусу в степени 2,5. С ламинарным же течение зависимость не подтвердилать, показав степень 3,5. Это может говорить о неправильном теоретическом приближении.