Kraków 2022-10-30

Zadanie G: Gonitwa

Limit czasowy: 5s, limit pamięciowy: 1GB.

Zabawa w policjantów i złodzieja odbywa się na długiej ulicy, którą na potrzeby zadania możemy utożsamiać z osią liczbową. Jeden z uczestników (złodziej) ustawia się na pozycji 0 na osi, zaś pozostałych n osób (policjanci) po obu jego stronach (po każdej przynajmniej jeden). Wraz z rozpoczęciem zabawy każdy policjant zaczyna biec w stronę złodzieja z ustaloną prędkością, zaś złodziej rozpoczyna swoją ucieczkę z prędkością v, większą od prędkości każdego z policjantów, kierując się w prawo (zgodnie z rosnącymi wartościami na osi). Za każdym razem, gdy złodziej dobiegnie do pierwszego policjanta pędzącego na niego, zawraca (w pomijalnie małym czasie) i biegnie dalej w przeciwnym kierunku. Taka sytuacja powtarza się aż do spotkania pewnych dwóch policjantów, biegnących w przeciwnych kierunkach, kiedy to złodziej zostaje złapany i zabawa dobiega końca.

Dla danego układu początkowego, wyznacz, jaką odległość przebiegnie złodziej w czasie całej zabawy.

Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych z ($1 \le z \le 10\,000$). Potem kolejno podawane są zestawy w następującej postaci:

Pierwsza linia zestawu zawiera dwie liczby całkowite $n~(2 \le n \le 400\,000)$ i $v~(1 < v \le 10^6)$ – liczbę policjantów i prędkość złodzieja.

Każda z kolejnych n linii zestawu zawiera dwie liczby całkowite p_i ($-10^{12} \le p_i \le 10^{12}, p_i \ne 0$) i v_i ($1 \le v_i < v$) – początkową pozycję i prędkość i-tego policjanta.

Sumaryczna liczba policjantów we wszystkich zestawach testowych nie przekroczy $2 \cdot 10^6$.

Wyjście

Dla każdego zestawu danych, w osobnej linii, wypisz jedną liczbę rzeczywistą w formacie z kropką dziesiętną (nie w notacji naukowej), oznaczającą długość trasy pokonanej przez złodzieja. Aby odpowiedź została uznana za poprawną wystarczy, by błąd względny lub bezwzględny nie przekraczał 10^{-8} . Innymi słowy, jeśli Twój algorytm odpowie a, zaś poprawna odpowiedź to b, to wystarczy, by zachodziło $\frac{|a-b|}{\max(1,b)} \leqslant 10^{-8}$.

Wypisana liczba może mieć co najwyżej 20 cyfr po kropce dziesiętnej.

Zadanie G: Gonitwa 1/2

Przykład

Dla danych wejściowych:	Możliwą poprawną odpowiedzią jest:
3	38.25
	1.23076923
4 9	300000000000
10 2	
-7 2	
-6 1	
7 1	
2 8	
-1 7	
1 6	
2 3	
-100000000000 1	
100000000000 1	

Puste linie w wejściu testu przykładowego zostały dodane dla czytelności. Nie są one obecne w plikach testowych, na których uruchamiane będzie Twoje rozwiązanie.

Uwaga

Zauważ, że w tym zadaniu bierzemy pod uwagę zarówno błąd bezwzględny, jak i względny. W szczególności oznacza to, że gdy poprawna odpowiedź jest duża, dozwolony błąd Twojego programu również jest duży. W ostatnim teście przykładowym poprawną odpowiedzią jest $3\cdot 10^{12}$, a więc dowolna liczba różniąca się od niej o nie więcej niż 30 000 byłaby zaakceptowana.

Zadanie G: Gonitwa 2/2