Univerzita Komenského, Bratislava fakulta Matematiky, Fyziky a Informatiky

Moderné regulárne výrazy

Bakalárska práca

Univerzita Komenského, Bratislava _{Fakulta Matematiky}, Fyziky a Informatiky

Moderné regulárne výrazy

Bakalárska práca

Študijný program: Informatika Študijný odbor: 2508 Informatika Školiace pracovisko: Katedra Informatiky

Školiteľ: RNDr. Michal Forišek, PhD.

Bratislava, 2013 Tatiana Tóthová

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

PRIHLÁŠKA NA ZÁVEREČNÚ PRÁCU

Meno a priezvisko študenta: Tatiana Tóthová

Študijný program: informatika (Jednoodborové štúdium, bakalársky I. st., denná

forma)

Študijný odbor: 9.2.1. informatika

Typ záverečnej práce: bakalárska Jazyk záverečnej práce: slovenský

Názov: Moderné regulárne výrazy

Ciel': Spraviť prehľad nových konštrukcií používaných v moderných knižniciach

s regulárnymi výrazmi (ako napr. look-ahead a look-behind assertions). Analyzovať tieto rozšírenia z hľadiska formálnych jazykov a prípadne tiež

z hľadiska algoritmickej výpočtovej zložitosti.

Vedúci:RNDr. Michal Forišek, PhD.Katedra:FMFI.KI - Katedra informatikyVedúci katedry:doc. RNDr. Daniel Olejár, PhD.

Dátum schválenia: 24.10.2012

podpis študenta

Podakovanie

Tatiana Tóthová

Abstrakt

Abstrakt po slovensky

 $\mathbf{K}\mathbf{l}\mathbf{\acute{u}}\mathbf{\acute{c}}\mathbf{o}\mathbf{v\acute{e}}$ slová: napíšme, nejaké, kľučové, slová

Abstract

Abstract in english

 $\textbf{Key words:} \ \mathrm{some, \ key, \ words}$

Obsah

Ú	$ m \acute{U}vod$														1											
1	Náz 1.1 1.2	Poo	dnac	dpis	1																					2 2 3
Záver												4														
${ m Li}$	terat	úra																								5

$\mathbf{\acute{U}vod}$

Kapitola 1

Názov kapitoly 1

V tejto kapitole formálne definujem operácie z uvedenej dokumentácie jazyka Python [doc12] a ukážem ich silu. Budem používať nasledovné zápisy:

 L_1L_2 – zreťazenie jazykov L_1 a L_2

 \mathcal{R} – tradičné označenie triedy regulárnych jazykov

DKA/NKA – deterministický/nedeterministický konečný automat

1.1 Podnadpis 1

Definícia 1.1.1 (Lookahead). *Majme jazyky* L_1, L_2, L_3 . *Potom operáciu*

$$L_1(? = L_2)L_3 = \{uvw \mid u \in L_1 \land v \in L_2 \land vw \in L_3\}$$

nazývame lookahead.

Veta 1.1.2. Nech
$$L_1, L_2, L_3 \in \mathcal{R}$$
. Potom $L = L_1(? = L_2)L_3 \in \mathcal{R}$.

 $D\hat{o}kaz$. Nech L_1, L_2, L_3 sú regulárne, nech $A_i = (K_i, \Sigma_i, \delta_i, q_{0i}, F_i)$ sú DKA také, že $L(A_i) = L_i, i \in \{1, 2, 3\}$. Zostrojím NKA $A = (K, \Sigma, \delta, q_0, F)$ pre L, kde

$$K = K_1 \cup K_2 \times K_3 \cup K_3 \quad \text{(predpokladáme } K_1 \cap K_3 = \emptyset)$$

$$\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3, \ q_0 = q_{01}, \ F = F_3 \cup F_2 \times F_3$$

$$\forall q \in K_1, \forall a \in \Sigma : \delta(q, a) \ni \delta_1(q, a)$$

$$\forall q \in F_1 : \delta(q, \varepsilon) \ni [q_{02}, q_{03}]$$

$$\forall p \in K_2, \forall q \in K_3, \forall a \in \Sigma_2 \cap \Sigma_3 : \delta([p, q], a) \ni [\delta(p, a), \delta(q, a)]$$

$$\forall p \in F_2, \forall q \in K_3 : \delta([p, q], a) \ni \delta(q, a)$$

$$L(A) = L.$$

 \supseteq : Máme $w \in L$ a chceme preň nájsť výpočet na A. Z definície L vyplýva w = xyz, kde $x \in L_1, y \in L_2$ a $yz \in L_3$, teda existujú akceptačné výpočty pre x, y, yz na DKA A_1, A_2, A_3 . Z toho vyskladáme výpočet pre w na A nasledovne. Výpočet pre x bude rovnaký ako na A_1 . Z akceptačné stavu A_1 vieme na ε prejsť do stavu $[q_{02}, q_{03}]$, kde začne výpočet pre y. Ten vyskladáme z A_2 a A_3 tak, že si ich výpočty napíšeme pod seba a stavy nad sebou budú tvoriť karteziánsky súčin stavov v A (keďže A_2 aj A_3 sú deterministické, tieto výpočty na y budú rovnako dlhé). $y \in L_2$, teda A_2 skončí v akceptačnom stave. Podľa δ funkcie v A vieme pokračovať len vo výpočte na A_3 , teda

doplníme zvyšnú postupnosť stavov pre výpočet z. Keďže $yz \in L_3$ a $F_3 \subseteq F$ (resp. $F_2 \times F_3 \subseteq F$ pre $z = \varepsilon$), automat A akceptuje.

 \subseteq : Nech $w \in L(A)$, potom existuje akceptačný výpočet na A. Z toho vieme w rozdeliť na x,y a z tak, že x je slovo spracovávené od začiatku po prvý príchod do stavu $[q_{02},q_{03}]$, y odtiaľto po posledný stav reprezentovaný karteziánskym súčinom stavov a zvyšok bude z. Nevynechali sme žiadne znaky a nezmenili poradie, teda w=xyz. Do $[q_{02},q_{03}]$ sa A môže prvýkrát dostať len vtedy, ak bol v akceptačnom stave A_1 . Prechod do $[q_{02},q_{03}]$ je na ε , takže $x\in L_1$. Práve tento stav je počiatočný pre A_2 aj A_3 . Ak $z=\varepsilon$, tak akceptačný stav A je z $F_2\times F_3$ a $y\in L_2,y\in L_3$ a aj $yz\in L_3$. Z toho podľa definície vyplýva, že $xyz=w\in L$. Ak $z\neq \varepsilon$, potom je akceptačný stav A z F_3 . Podľa δ funkcie sa z karteziánskeho súčinu stavov do normálneho stavu dá prejsť len tak, že A_2 akceptuje, teda $y\in L_2$. A_3 akceptuje na konci, čo znamená $yz\in L_3$. Znova podľa definície operácie lookahead $xyz=w\in L$.

1.2 Podnadpis 2

Záver

Literatúra

- [Cox07] Russ Cox. Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl, PHP, Python, Ruby, ...), 2007.

 http://swtch.com/~rsc/regexp/regexp1.html[Online; accessed 30-December-2012].
- [doc12] Python documentation. Regular expressions operations, 2012. http://docs.python.org/3.1/library/re.html[Online; accessed 30-December-2012].