

- □ Schaltwerke
 - Flipflops
 - Signalverlauf in Schaltwerken
- Rechnerarchitekturen und Rechnerorganisation
 - Speicherzugriff
 - EVA-Prinzip
 - Cache-Speicher
- Betriebssysteme
 - Aufgaben eines Betriebssystems

«T» steht für «Toggle»

Alltagsanalogie für das Verhalten: Blinker beim Auto

Verwendung: für Zähler, als Frequenzteiler

IS BUT DON'T CHARLE

Aufgabe 1 - Schaltwerke

□ Aufgabe 1.1

Schaltsymbol	Bezeichnung	Ansteuertabelle			e
s 0-1S -0 a		q!	q1+1	r	8
To-Cl	RS-Latch	0	0	-	0
r ∞ 1R 0 ∞ q	oder synchrones RS-Flipflop	0	1	0	1
		1	0	1	0
		1	1	0	-
J	JK-Flipflop	qt	q1+1	j	k
		0	8	0	-
To->C1 ko-1K o-oq		0	1	1	
111		1	0	-	1
		1	1	1	e

© 2015 UZH, CSG@IFI

ifi

Aufgabe 1 - Schaltwerke

□ Aufgabe 1.2

Vervollständigen Sie die Funktionstabelle für das gegebene Speicherelement.

→ Unerlaubte Belegung: $X \land y = 1$

Q Q" Q

ifi

Aufgabe 1 - Schaltwerke

□ Aufgabe 1.2

Um welches bekannte Speicherelement handelt es sich?

Q	X	y	Q'-1	Q
0	0	0	.0	1
0	0	1	0	1
0	1	9	1	9
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
	1			

Ansteuertabelle

Q	Q'1	r	S
0	0	-	9
0	1	0	1
1	0	1	0
1	1	0	-

→ synchrones RS-Flipflop

e 2015 UZH, OSGQIFI

H

Aufgabe 1 - Schaltwerke

□ Aufgabe 1.3

Zeichnen Sie den Signalverlauf für das folgende Schaltwerk.

Annahmen:

- Eingang ist permanent auf logisch "1"
- Verzögerungszeit: 1/2 der Taktlänge
- Alle Flipflops zu Beginn zurückgesetzt

© 2015 UZH, CNGQIFT

if

□ Aufgabe 1.3

Aufgabe 2 – Rechnerstrukturen und Rechnerorganisation

□ Aufgabe 2.1

Zykluszeit:

Unter Zykluszeit versteht man die minimale Zeitdauer, die zwischen zwei hintereinander folgenden Aufschaltungen von Adressen an den Speicher vergehen muss.

→ die benötigte Zeit um sich nach dem Zugriff zu "erholen" bis der nächste Zugriff erfolgen kann

→ Vgl. M5 - 36

e 2015 UZH, CSOBIFT

ifi

Aufgabe 2 – Rechnerstrukturen und Rechnerorganisation

□ Aufgabe 2.2 EVA-Prinzip:

- Eingabe
 - Daten gelangen über Eingabeeinheit (Tastatur, Memorystick, etc.) in den Computer.
- Verarbeitung
 - Daten werden in Zentraleinheit verarbeitet.
- Ausgabe
 - Daten werden über Ausgabegerät (Bildschirm, Drucker, Festplatte etc.) ausgegeben.
- → Vgl. M5 6

@ 2015 UZH, OSG@IFT

Aufgabe 2 – Rechnerstrukturen und Rechnerorganisation

□ Aufgabe 2.3

Cache-Speicher:

Unter einem Cache-Speicher versteht man im Allgemein einen kleinen, schnellen Pufferspeicher, der vor einen langsameren, größeren Speicher geschaltet wird.

→ Verbesserung der Zugriffszeit

→ Vgl. M5 - 46

@ 2015 UZH, CSG@IF!

Aufgabe 3 – Betriebssysteme

□ Aufgabe 3.1

Aufgaben eines Betriebssystems:

- Schnittstelle zwischen Mensch und Hardware
 - Bedien- und Programmierschnittstelle
- Betriebsmittelverwaltung
 - Verwaltung peripherer Betriebsmittel
- Prozessverwaltung (Tasks)
- Speicherverwaltung
- Geräteverwaltung und Treiber

→ Vgl. M6 - 8, 9, 10

© 2015 UZH, OSG@IFI

Aufgabe 4 - Repetition

□ Aufgabe 4.1

Führen Sie für den Booleschen Ausdruck

a∧c∨b∧c∧d∨a∧b∧d∨a∧b∧c∧d eine NAND
Konversion durch.

Aufgabe 4 - Repetition

□ Aufgabe 4.1

ancybacadvaabadvaabacad

= ancvbncndvanbndvanbncnd

= anchbachdahbadhahbachd

= NAND, [NAND, (a, c), NAND, (b, c, d),

NAND, (a, b, d), NAND, (a, b, c, d)]

2x negieren

De Morgansches Gesetz

Darstellung mit NAND-Operatoren

Aufgabe 4 - Repetition

□ Aufgabe 4.2

 $(a \rightarrow b) \land a \land b \land c$

 $=(a \lor b) \land a \land b \land c$

 $=(a \lor b) \land (a \lor b \lor c)$

 $=(a \lor b) \land (a \lor b \lor c)$

 $=(a \lor b) \lor (a \lor b \lor c)$

NOR, [NOR, (a, b), NOR, (a, b, c)] Darstellung mit NOR-Operatoren

Implikation

De Morgansches Gesetz

2x negieren

De Morgansches Gesetz

Aufgabe 4 - Repetition

□ Aufgabe 4.3

Bestimmen Sie, ob es sich bei den Booleschen Ausdrückera $\rightarrow b$) $\vee a \wedge b \wedge (a \wedge (b \rightarrow b))$

 $((c \lor d) \land d) \lor a \land c \leftrightarrow (d \land c \lor d)$ ruancine Tautologie, eine Kontradiktion oder keines von beidem handelt.

Zur Erinnerung:

- → Tautologie: Boolescher Ausdruck ist immer "wahr", unabhängig von Variablenbelegung.
- > Kontradiktion: Boolescher Ausdruck ist immer "falsch", unabhängig von Variablenbelegung.

Aufgabe 4 - Repetition			
□ Aufgabe 4.3			
$(\overline{a \rightarrow b}) \vee a \wedge b \wedge (\overline{a} \wedge (b \rightarrow b))$			
$= (\overline{a} \lor \overline{b}) \lor a \land b \land (\overline{a} \land (\overline{b} \lor b))$	2x Implikation		
$\equiv (\overline{a} \lor b) \lor a \land b \land (\overline{a} \land 1)$	Einselement		
$\equiv (\overrightarrow{a} \lor \overrightarrow{b}) \lor a \land b \land \overrightarrow{a}$	Einselement		
$\equiv (\overline{a} \lor b) \lor b \land 0$	Kommutativgesetz & Nullelement		
$\equiv (\overline{a \lor b})$	Nullelement		
$=(a\wedge \overline{b})$	De Morgansches Gesetz		
> keines von beide	m		

Aufgabe 4 – Repetition				
□ Aufgabe 4.3				
$((\overline{c} \lor \overline{d}) \land \overline{d}) \lor a \land c \leftrightarrow (\overline{d} \land \overline{c} \lor \overline{d}) \land a \land c$				
$\equiv (c \land d \land d) \lor a \land c \longleftrightarrow (d \lor c \lor d) \land a \land c$	2x De Morgansches Gesetz			
$\equiv (c \land d \land d) \lor a \land c \leftrightarrow (c \lor 1) \land a \land c$	Kommutativgesetz & Einselement			
$= (c \land 0) \lor a \land c \leftrightarrow (c \lor 1) \land a \land c$	Nullelement			
$\equiv 0 \lor a \land c \leftrightarrow c \land a \land c$	Nullelement & Einselement			
$\equiv a \land c \leftrightarrow c \land a \land c$	Nullelement			
$\equiv a \land c \leftrightarrow a \land c$	Idempotenzgesetz			
= 1				
→ Tautologie				

Aufgabe 4 - Repetition

□ Aufgabe 4.4

KMF:

1. Möglichkeit:

$$(\bar{a} \lor b) \land (a \lor \bar{b}) \land (\bar{b} \lor \bar{d})$$

1. Möglichkeit:

$$(\bar{a} \lor b) \land (\bar{a} \lor \bar{b}) \land (\bar{a} \lor \bar{d})$$

Aufgabe 4 - Repetition

□ Aufgabe 4.5

Modellieren Sie einen Moore-Automaten mit dem folgenden Verhalten:

- Eingabemenge: E = {00, 01, 10, 11}
- Ausgabemenge: A = {0, 1}
- Menge aller Zustände: Z = {S0, S1} = {0, 1}
- · Verhalten: JK-Flipflop

Aufgabe 4 - Repetition

□ Aufgabe 4.5

Aufgabe 4 - Repetition

□ Aufgabe 4.6

Ausgang x₂: Statischer 0-Hasard

Ausgang y: Statischer 1-Hasard

· Termin:

Donnerstag, 17. Dezember 2015, 10:00 - 12:00 Uhr

- Zeit- und Punktverteilung:
 - Ihr erhaltet beide Prüfungsteile, Eprog und TGI; die Zeit, die Ihr auf die einzelnen Teile verwendet, könnt Ihr selbst einteilen. Richtzeit und Punkteverteilung: 2/3 – 1/3.
 - Die beiden Teilen müssen nicht einzeln bestanden werden, es genügt, insgesamt genügend Punkte zu erreichen.

Infos Schlussklausur

- Ort: Messe Oerlikon, Halle 5
- Legi nicht vergessen
- kein Taschenrechner erlaubt
- Keine Bleistifte, keine Rotstifte, kein Tipp-Ex

Genauere (und verbindliche) Informationen: http://www.oec.uzh.ch/studies/general/exams/asse ssment.html

Halle7

Halle5

Gebäude