1

Assignment 1: Matrix Theory

Alok ranjan Roll No.: EE20MTECH11013 Assignment1

Abstract—This assignment solves a problem to find the slope of a line.

Download all python codes from

https://github.com/Alok0895/Assignment1/blob/ master/Assignment1.py

and latex-tikz codes from

https://github.com/Alok0895/Assignment1/blob/ master/Assignment1.tex

1 Problem

The perpendicular from the origin to the line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = c$$

meets it at the point $\mathbf{P} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. find the value of m and c.

2 Solution

The line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = c \tag{2.0.1}$$

meets it at the point $\mathbf{P} = \begin{pmatrix} -1\\2 \end{pmatrix}$ Since,

$$\mathbf{P} - \mathbf{0} = \mathbf{P} \tag{2.0.2}$$

is the normal vector, where 0 is the origin, then

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{2.0.3}$$

is the direction vector, Hence

$$\mathbf{m}^T \mathbf{P} = 0 \tag{2.0.4}$$

Fig. 0: Perpendicular Lines crossing

$$\implies (1 \quad m) {\binom{-1}{2}} = 0$$

$$\implies (-1 + 2m) = 0$$

$$\implies m = \frac{1}{2}$$

$$\implies m = 0.5 \qquad (2.0.5)$$

now the line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = c$$

meets it at the point $P = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and using the value of m from 2.0.5 we get,

$$(-0.5 1)\mathbf{P} = c$$

$$\implies (-0.5 1)\binom{-1}{2} = c$$

$$\implies c = 2.5$$

Hence, the value of m and c are obtained as 0.5 and 2.5 respectively.