Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2018-2019

Prova scritta - 21 gennaio 2019

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7	
							SI	NO

Leggere le tracce con attenzione!

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning.

1. (15 punti)

Provare che la classe dei linguaggi regolari è chiusa rispetto all'unione.

2. (15 punti)

Si consideri l'espressione regolare $E = 0*110* \cup (01)*$. Definire un automa a stati finiti deterministico \mathcal{A} il cui linguaggio riconosciuto sia il linguaggio rappresentato da E, cioè tale che $L(\mathcal{A}) = L(E)$.

- 3. (15 punti)
 - (a) (3 punti) Fornire la definizione di Macchina di Turing deterministica.
 - (b) (6 punti) Fornire la definizione di linguaggio riconosciuto da una macchina di Turing.
 - c) (6 punti) Definire una macchina di Turing deterministico che riconosca $\{a^nb \mid n \in \mathbb{N}, n \geq 0\}$.
- 4. (15 punti)

Data la seguente formula booleana

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

definire il grafo G e l'intero k tali che $\langle G, k \rangle$ sia l'immagine di $\langle \Phi \rangle$ nella riduzione polinomiale di 3-SAT a CLIQUE.

5. (15 punti)

Siano L_1 ed L_2 due linguaggi su un alfabeto Σ . Per ognuna delle seguenti affermazioni dire se essa è vera o falsa. È necessario giustificare formalmente la risposta data ed enunciare con precisione eventuali risultati intermedi utilizzati. Risposte non giustificate non saranno valutate.

- (a) (8 punti) Se $L_1 \leq_P L_2$, $L_2 \leq_P L_1$ ed $L_1, L_2 \in NP$, allora L_1 ed L_2 sono entrambi linguaggi NP-completi.
- (c) (7 punti) $NP \cap coNP = \emptyset$

Prova scritta 2

6. (15 punti)

Definire il linguaggio A_{TM} e provare che $\{ab,ba\} \leq_m A_{TM}$.

7. Poniamo

 $HO_{TM} = \{\langle M \rangle \mid M$ è una macchina di Turing che si arresta su ogni input di lunghezza dispari $\}$ Definire il linguaggio $HALT_{TM}$ e provare che $HALT_{TM} \leq_m HO_{TM}$.