

COMISSIÓ GESTORA DE LES PROVES D'ACCÉS A LA UNIVERSITAT

PROVES D'ACCÉS A LA UNIVERSITAT

PRUEBAS DE ACCESO A LA UNIVERSIDAD

CONVOCATÒRIA:	JUNY 2022	CONVOCATORIA:	JUNIO 2022
Assignatura: FÍSICA		Asignatura: FÍSICA	

BAREMO DEL EXAMEN: La puntuación máxima de cada problema es de 2 puntos y la de cada cuestión de 1,5 puntos. Se permite el uso de calculadoras siempre que no sean gráficas o programables y que no puedan realizar cálculo simbólico ni almacenar datos o fórmulas en memoria. Los resultados deberán estar siempre debidamente justificados. Realiza primero el cálculo simbólico y después obtén el resultado numérico.

TACHA CLARAMENTE todo aquello que no deba ser evaluado

CUESTIONES (elige y contesta <u>exclusivamente</u> 4 cuestiones)

CUESTIÓN 1 - Interacción gravitatoria

Deduce razonadamente la expresión de la velocidad de un satélite que gira alrededor de un planeta en una órbita circular y también la de la velocidad mínima necesaria para que se aleje indefinidamente desde la órbita en la que se encuentra. Supongamos que un satélite orbita a una distancia r de un planeta y se propulsa instantáneamente, de forma que su velocidad pasa a ser 1,5 veces la velocidad orbital, ¿continuará dicho planeta en alguna órbita o se alejará indefinidamente del planeta? Justifica la respuesta.

CUESTIÓN 2 - Interacción electromagnética

El potencial eléctrico en el punto A de la figura es nulo y $q_2 = 1$ nC. Determina el valor de la carga q_1 y el potencial eléctrico en el punto B.

Dato: constante de Coulomb, $k = 9 \cdot 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$.

CUESTIÓN 3 - Interacción electromagnética

Una partícula cargada entra con velocidad constante \vec{v} en el seno de un campo magnético uniforme no nulo \vec{B} . Escribe qué fuerza aparece sobre la partícula y razona en qué condiciones ésta será nula y en qué condiciones será máxima.

CUESTIÓN 4 - Interacción electromagnética

Por un hilo rectilíneo indefinido circula una corriente uniforme de intensidad I. Escribe la expresión del módulo del vector campo magnético \vec{B} generado por dicha corriente y dibuja razonadamente dicho vector en un punto P situado a una distancia d del hilo. Si el módulo del campo magnético en ese punto es de $100~\mu T$, deduce cuánto valdrá en un punto que se encuentre a una distancia d/2 (expresa el resultado en teslas).

CUESTIÓN 5 – Ondas

Una fuente sonora puntual de potencia $1,26 \cdot 10^{-4}$ W emite uniformemente en todas las direcciones. Calcula la intensidad, I, a 10 m de la fuente ¿Cuál es el nivel de intensidad sonora en decibelios a dicha distancia de la fuente?

Dato: intensidad física umbral $I_0 = 10^{-12} \,\mathrm{Wm}^{-2}$.

CUESTIÓN 6 - Óptica geométrica

En la figura se muestra una lente, la posición de un objeto, O, y la de la imagen, O', que la lente genera de dicho objeto. Determina la distancia focal imagen de la lente, la potencia de la lente en dioptrías y el tamaño de la imagen si el objeto mide $2\ \rm cm$.

CUESTIÓN 7- Física del siglo XX

Al iluminar un determinado cátodo con radiación monocromática de frecuencia $f=6.1\cdot 10^{14}~{\rm Hz}$ se produce efecto fotoeléctrico. Se mide el valor del potencial de frenado ΔV y resulta $0.23~{\rm V}$. Calcula el valor de la frecuencia umbral f_o y determina el metal que constituye el cátodo.

Datos: carga elemental, $q = 1.6 \cdot 10^{-19}$ C; constante de Planck, $h = 6.6 \cdot 10^{-34}$ J·s; trabajos de extracción, $W_e(potasio) = 2.3$ eV, $W_e(aluminio) = 4.3$ eV, $W_e(cobre) = 4.7$ eV.

CUESTIÓN 8 - Física del siglo XX

Un núcleo de ^{60}Co se desintegra según la reacción $^{60}_{27}Co \rightarrow ^{60}_{28}Ni^* + ^a_bX$. Razona qué partícula es X. Posteriormente, el núcleo de níquel excitado, $^{60}_{28}Ni^*$, emite dos fotones de energías 1,17 y 1,33 MeV. Si en un segundo se emiten 10^{10} fotones de cada tipo, calcula la energía por unidad de tiempo (en watios) que produce la emisión.

Dato: carga elemental, $q = 1.6 \cdot 10^{-19}$ C.

PROBLEMAS (elige y contesta exclusivamente 2 problemas)

PROBLEMA 1 - Interacción gravitatoria

Un planeta de radio $R_P = 5000 \, \mathrm{km}$ que tiene una intensa actividad volcánica, emite fragmentos en las erupciones que pueden llegar a orbitar circularmente a una altura $h = 400 \, \mathrm{km}$, donde el campo gravitatorio del planeta vale $g = 7 \, \mathrm{m/s^2}$.

- a) Deduce las expresiones de la velocidad orbital y de la energía mecánica de un fragmento de masa m=2 kg que se encuentra en dicha órbita y calcula también sus valores numéricos. (1 punto)
- b) Calcula el campo gravitatorio en la superficie del planeta y la velocidad con la que el fragmento ha sido emitido desde dicha superficie. (1 punto)

PROBLEMA 2 - Interacción electromagnética

Una carga puntual fija $q_1 = 10^{-9}$ C se encuentra situada a 1 m de otra carga puntual fija $q_2 = -2$ q_1 .

- a) Determina el punto de la recta que contiene las cargas en el cual el campo eléctrico es nulo. (1 punto)
- b) Un protón con velocidad inicial nula se deja libre entre q_1 y q_2 , a 90 cm de q_2 . Determina la diferencia de energía potencial del protón entre el punto inicial y un punto situado a 10 cm de q_2 ¿Qué velocidad tendrá el protón cuando alcance este último punto? (1 punto)

Datos: constante de Coulomb, $k=9\cdot 10^9~{\rm N\cdot m^2/C^2}$; masa del protón, $m_p=1,67\cdot 10^{-27}~{\rm kg}$; carga del protón, $q=1,6\cdot 10^{-19}~{\rm C}$

PROBLEMA 3 - Ondas

La función que representa una onda es y(x,t)=2 $sen(\pi t-8\pi x)$, donde x e y están expresadas en metros y t en segundos. Calcula razonadamente:

- a) La amplitud, el periodo, la frecuencia y la longitud de onda. (1 punto)
- b) La velocidad de propagación de la onda y la velocidad de vibración de un punto situado a 1 m del foco emisor, para t = 8 s. (1 punto)

PROBLEMA 4 - Física del siglo XX

El mesón J/ψ tiene una vida media de $7.2 \cdot 10^{-21}\,\mathrm{s}$ en su sistema de referencia y de $1.1 \cdot 10^{-20}\,\mathrm{s}$ cuando se mueve a velocidad relativista respecto a un sistema de referencia ligado al laboratorio. Calcula razonadamente:

- a) El valor de la velocidad respecto al laboratorio. (1 punto)
- b) La energía cinética y la energía total, en MeV, en ambos sistemas de referencia. (1 punto)

Datos: masa (en reposo) del mesón J/ψ , $m_0=5.52\cdot 10^{-27} {\rm kg}$; velocidad de la luz en el vacío, $c=3\cdot 10^8 {\rm m/s}$; carga elemental, $q=1.6\cdot 10^{-19} {\rm C}$.

COMISSIÓ GESTORA DE LES PROVES D'ACCÉS A LA UNIVERSITAT

PROVES D'ACCÉS A LA UNIVERSITAT

PRUEBAS DE ACCESO A LA UNIVERSIDAD

CONVOCATÒRIA: JUNY 2022	CONVOCATORIA: JUNIO 2022
Assignatura: FÍSICA	Asignatura: FÍSICA

BAREM DE L'EXAMEN: La puntuació màxima de cada problema és de 2 punts i la de cada qüestió d'1,5 punts. Es permet l'ús de calculadores sempre que no siguen gràfiques o programables i que no puguen realitzar càlcul simbòlic ni emmagatzemar dades o fórmules en memòria. Els resultats han d'estar sempre degudament justificats. Realitzeu primer el càlcul simbòlic i després obteniu el resultat numèric.

RATLLEU CLARAMENT tot allò que no haja de ser avaluat

QÜESTIONS (trieu i contesteu exclusivament 4 qüestions)

QÜESTIÓ 1 - Interacció gravitatòria

Deduïu raonadament l'expressió de la velocitat d'un satèl·lit que gira al voltant d'un planeta en una òrbita circular i també la de la velocitat mínima necessària per allunar-se indefinidament des de l'òrbita en la que es troba. Suposem que un satèl·lit orbita a una distància r d'un planeta i es propulsa instantàniament, de forma que la seva velocitat passa a ser 1,5 vegades la velocitat orbital, ¿continuarà l'anomenat satèl·lit en alguna òrbita o s'allunarà indefinidament del planeta? Justifica la resposta.

QÜESTIÓ 2 - Interacció electromagnètica

El potencial elèctric en el punt A de la figura és nul i $q_2=1\,\mathrm{nC}$. Determineu el valor de la càrrega q_1 i el potencial elèctric en el punt B.

Dada: constant de Coulomb, $k = 9 \cdot 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$.

4 m

QÜESTIÓ 3 - Interacció electromagnètica

Una partícula carregada entra amb velocitat constant \vec{v} en el si d'un camp magnètic uniforme no nul \vec{B} . Escriviu quina força apareix sobre la partícula i raoneu en quines condicions aquesta serà nul·la i en quines condicions serà màxima.

QÜESTIÓ 4 - Interacció electromagnètica

Per un fil rectilini indefinit circula un corrent uniforme d'intensitat I. Escriviu l'expressió del mòdul del vector camp magnètic \vec{B} generat per aquest corrent i dibuixeu raonadament aquest vector en un punt P situat a una distància d del fil. Si el mòdul del camp magnètic en aqueix punt és de $100~\mu T$, deduïu quant valdrà en un punt que es trobe a una distància d/2 (expresseu el resultat en tesles).

QÜESTIÓ 5 – Ones

Una font sonora puntual de potència $1,26 \cdot 10^{-4}$ W emet uniformement en totes les direccions. Calculeu la intensitat, I, a 10 m de la font. Quin és el nivell d'intensitat sonora en decibels a aquesta distància de la font? Dada: intensitat física llindar $I_0 = 10^{-12}$ Wm⁻².

QÜESTIÓ 6 - Òptica geomètrica

En la figura es mostra una lent, la posició d'un objecte, O, i la de la imatge, O', que la lent genera d'aquest objecte. Determineu la distància focal imatge de la lent, la potència de la lent en diòptries i la grandària de la imatge si l'objecte mesura $2 \, \mathrm{cm}$.

QÜESTIÓ 7- Física del segle XX

En il· luminar un determinat càtode amb radiació monocromàtica de freqüència $f = 6.1 \cdot 10^{14} \, \mathrm{Hz}$ es produeix efecte fotoelèctric. Es mesura el valor del potencial de frenat ΔV i resulta 0,23 V. Calculeu el valor de la freqüència llindar f_o i determineu el metall que constitueix el càtode.

Dades: càrrega elemental, $q=1.6\cdot 10^{-19}\,\mathrm{C}$; constant de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{J\cdot s}$; treballs d'extracció, $W_e(potassi)=2.3\,\mathrm{eV},\,W_e(alumini)=4.3\,\mathrm{eV},\,W_e(coure)=4.7\,\mathrm{eV}.$

QÜESTIÓ 8 - Física del segle XX

Un nucli de ^{60}Co es desintegra segons la reacció $^{60}_{27}Co \rightarrow ^{60}_{28}Ni^* + ^a_bX$. Raoneu quina partícula és X. Posteriorment, el nucli de níquel excitat, $^{60}_{28}Ni^*$, emet dos fotons d'energies 1,17 i 1,33 MeV. Si en un segon s'emeten 10^{10} fotons de cada tipus, calculeu l'energia per unitat de temps (en watts) que produeix l'emissió. Dada: càrrega elemental, $q = 1,6 \cdot 10^{-19}$ C.

PROBLEMES (trieu i contesteu exclusivament 2 problemes)

PROBLEMA 1 - Interacció gravitatòria

Un planeta de radi $R_P = 5000 \,\mathrm{km}$ que té una intensa activitat volcànica, emet fragments en les erupcions que poden arribar a orbitar circularment a una altura $h = 400 \,\mathrm{km}$, on el camp gravitatori del planeta val $g = 7 \,\mathrm{m/s^2}$.

- a) Deduïu les expressions de la velocitat orbital i de l'energia mecànica d'un fragment de massa $m=2~{\rm kg}$ que es troba en aquesta òrbita i calculeu també els seus valors numèrics. (1 punt)
- b) Calculeu el camp gravitatori en la superfície del planeta i la velocitat amb la qual el fragment ha sigut emès des d'aquesta superfície. (1 punt)

PROBLEMA 2 - Interacció electromagnètica

Una càrrega puntual fixa $q_1 = 10^{-9}$ C està situada a 1 m d'una altra càrrega puntual fixa $q_2 = -2$ q_1 .

- a) Determineu el punt de la recta que conté les càrregues en el qual el camp elèctric és nul. (1 punt)
- b) Un protó amb velocitat inicial nul·la es deixa lliure entre q_1 i q_2 , $90 \, \mathrm{cm}$ de q_2 . Determineu la diferència d'energia potencial del protó entre el punt inicial i un punt situat a $10 \, \mathrm{cm}$ de q_2 . Quina velocitat tindrà el protó quan arribe a aquest últim punt? (1 punt)

Dades: constant de Coulomb, $k=9\cdot 10^9~{\rm N\cdot m^2/C^2}$; massa del protó, $m_p=1,67\cdot 10^{-27}~{\rm kg}$; càrrega del protó, $q=1,6\cdot 10^{-19}~{\rm C}$.

PROBLEMA 3 - Ones

La funció que representa una ona és y(x,t)=2 $sen(\pi t-8\pi x)$, on x i y estan expressades en metres i t en segons. Calculeu raonadament:

- a) L'amplitud, el període, la freqüència i la longitud d'ona. (1 punt)
- b) La velocitat de propagació de l'ona i la velocitat de vibració d'un punt situat a 1 m del focus emissor, per a t = 8 s. (1 punt)

PROBLEMA 4 - Física del segle XX

El mesó J/ψ té una vida mitjana de $7.2 \cdot 10^{-21}$ s en el seu sistema de referència i d' $1.1 \cdot 10^{-20}$ s quan es mou a velocitat relativista respecte a un sistema de referència lligat al laboratori. Calculeu raonadament:

- a) El valor de la velocitat respecte al laboratori. (1 punt)
- b) L'energia cinètica i l'energia total, en MeV, en tots dos sistemes de referència. (1 punt)

Dades: massa (en repòs) del mesó J/ψ , $m_0=5.52\cdot 10^{-27} \rm kg$; velocitat de la llum en el buit, $c=3\cdot 10^8 \rm \ m/s$; càrrega elemental, $q=1.6\cdot 10^{-19} \rm \ C$.