

공공 데이터 분객을 통한 유기견 보호소 생활환경 개선 방안

직영보호소 입지 선정과 입양률 예측 모델을 기반으로

김건희, 김지은, 오형석, 이현진, 임다현, 최진규

Contents

01 분석배경 프로젝트 배경 / 꾸제 선정

02 자료분석 RAW DATA / 전체리 / EDA

03 분석결과 분석 프로/베스 / 찍영보호소 입지 선정 모델 개발 / 입양 예측 모델 개발

04 활용전략 활용방안 / 보완점 및 한계점

'2020년 하반기 보호소 위탁 제도의 문제점 조사'

'비글구조네트워크(이하 비구협)'의 지난 5년 간 전국 지자체 동물보호센터 270여 곳을 방문한 경험을 바탕으로 한 실태 조사 결과를 통해 위탁 보호소에서 발생하는 문제점 파악 가능

안락사 규정 미준수 열악한 보호환경 수익구조의 위탁사업 담당 공무 인력 부족 및 비전문성 중성화 미비로 인한 시골개의 들개화 지자체 유기동물 문제인식 부족

비급구조네트워크

" 열악한 민간위탁제도가 비극 씨앗 "

"위탁 시설이 개인 소유로 다양하게 존재하여 대책 마련 어려움"

" 국내 지자체 보호소의 90%를 차지하는 민간 위탁제도"

직영 보호소 전환 국민청원

2020년도 9월 국민청원으로 **위탁보호소를 직영 보호소로 전환**하는 것을 희망 위탁보호소를 직영으로 전환해달라는 요구는 이전부터 요구되어 왔던 내용 최근 들어 몇몇 지자체에서 **새로운 직영보호소 건립 및 직영 전환 진행 중**

고성군 유기동물보호소, 유기견 천국으로 탈바꿈!

"입양률 전국 최하위에서 경남 도내 입양률 1위로 우뚝 "

지난해 9월 열악한 환경에서 방치되고 있다는 지적으로 유기동물보호소를 위탁에서 직영으로 바꿔 운영

> 이후 8개월 만에 경남 도내 입양률 1위의 유기동물보호소로 탈바꿈 지난해 9월 10일부터 이달 21일까지 40.8%의 입양률

♣ 유기동물 입소 전 전부 건강검사 질병 발견된 경우 별도 관리 및 치료 유기동물 공고 기간 15일 이상 증가

보호소의 환경 개선 🗓

"위탁보호소의 부실 관리에 대한 끊임없는 민원 발생"

직영보호소 입지선정 모델 개발

직영보호소 건립으로 부실 위탁시설낭비 예산 감소 직영보호소 공시를 통해 국민들의 알 권리 충족

"입양이 되지 않아 보호소 내 개체수 조절을 위한 안락사 시행"

입양 예측 모델 개발

유기견 입양률 향상 기대 보호소 수용 공간 확보 **>>** 안락사 / 자연사 감소

02 까료분색

RAW DATA

술센터)

여수시

유기동물

020901145

_s.jpg

나이	보호 장소	<u>보호소</u> 이름	보호소 전화번호	담당자	색상	유기 번호	썸네일 사진	접수일	발견 장소	품종	중 성화 여부	공고 종료일	공고 번호	공고 시작일	담당자 연락처	관할 기관	사진	상태	성별	특징	체중	특이 사항
2012 (년생)	서울특별 시 양천 구 등촌 로 160 (목동) 1 층	강현림 동물병원	02-2642- 9159	양천구청	갈색	4.11E+14	http://www .animal.go .kr/files/sh elter/2016/ 10/201701 011301394 _s.jpg		신정동신 정119안 전센터 (다음1- 1)	[개] 골든 리트리버	N	20170111	서울-양 천- 2017- 00001	20170101	02-2620- 4918	서울특별 시 양천구	http://w ww.anim al.go.kr/ files/shel ter/2016 /10/2017 0101130 1394.jpg			치석O ና 2;으며온 순하고잘 따르나천 방지축임	38(Kg)	열 있음
	• Source 동물보호관리시스템																					
											•											

5개년도 데이터 중 미정제된 색상, 품종 등 정제하여 명목변수화, 체중과 나이는 정규화 불필요한 자료 제거

품종	색상	성별	체중	중성화여부	당시의나이	상태
7	1	0	1.410987	0	1.386294	1
4	4	1	1.321756	0	1.098612	1
4	1	0	1.098612	0	1.098612	1
7	1	0	1.335001	2	1.098612	1

/10/2017

0102090

1145.jpg

전처리

Categorical 변수

상태

> 입양 여부에 대한 정보가 있는 입양, 자연사, 안락사만 변환

자연사, 안락사	0
입양	1
 반환, 미포획, 기증, 보호중, 방사	drop

중성화 여부

N(중성화 X)	1
Y(중성화 0)	3
U(중성화 여부 모름)	drop

성별

M(수컷)	0
W(암컷)	1
Q(성별 미상)	drop

색상

글자 수 6 이상 : 다양한 색상 의미 → **혼합(5)** 글자 수 6 이하: 정규표현식 이용하여 색상 분류

→ 흰색(1), 검정(2), 노랑(3), 갈색(4)

품종

동물보호관리시스템의 품종 리스트에 존재하는 종 선별 American Kernel Club 종 분류 이용(160종 > 9종) American Kernel Club 종 분류

분류명	분류설명	label
Foundation stock service	AKC 등록 대상이 아니지만 순종 품종이 계속 발전할 수 있도록 구분	0
Herding	Working 그룹의 일부로서 가축을 모으고 무리를 짓고 보호	1
Hound	사냥에 적합한 특성 보유	2
Non-sporting	다양한 크기, 코트, 성격 및 전반적인 외모를 가진 다양한 품종 그룹으로 일반화하기가 어려움	4
Sporting	물과 숲에 대한 뛰어난 본능이 있는 활동적이고 기민한 스포츠견	5
Terrier	열성적이고 활기찬 성격으로 사냥하고 해충을 죽이고 가족의 집이나 헛간을 보호하기 위해 사육	6
Тоу	다정하고 사교적이며 다양한 생활 방식에 적응할 수 있으며, 영리하고 에너지가 넘치는 소형견	7
Working	재산을 지키고, 썰매를 끌고, 물 구조를 수행하는 것과 같은 사람을 돕는 일에 탁월	8
기타	기타품종	9

직영보호소와 위탁보호소 비교

직영보호소는 개수에 비하여, 입양률 현재히 높음 위탁보호소는 개수에 비하여, 입양률 현재히 낮음

Numerical Data EDA

특징에 따른 입양 건수

16000 상태 일양 O 14000 입양 X 12000 10000 8000 6000 4000 2000 Non-Sporting F.S.S Herding

품종에 따른 입양 건수

나이에 따른 입양 건수 7000 입양 X 일양 O 5000 2000 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 당시의나이

중성화 여부에 따른 입양 건수

보호소와 특징에 따른 입양률

보호소에 따른 품종별 입양률

보호소와 나이에 따른 입양률 보호소 1.0 직영보호소 위탁보호소 0.6 입양률 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 당시의나이

보호소와 성별에 따른 입양률

직영보호소가 대부분의 특징에게

입양률이 높음

보호소에 따른 색깔별 입양률

03 분석결과

기존 연구자료를 바탕으로 유기동물 관련 시설 입지 요인 검토

인구 수, 공시지가, 주거건물 수, 유기견 수, 반려동물 수 등이

직영보호소 선정 시 고려요인임을 확인

직영보호소의 **환경을 분석**한 후, 입지 선정 시 분석 결과와 고려요인을 종합하여

최종입지를 선정

울산시 반려동물 문화센터 건립 관련 자료

"사업비에 직접적인 영향을 주는 지가 및 인가 수 환경과 민원에 영향을 미치는 인가와의 거리 등을 기준으로 입지 평가"

> 지가가 낮고 인가가 적은 곳에 직영보호소를 설립한다면 사업비를 낮출 수 있음

> 주민 불편 및 민원 방지를 위해 주택지와 일정거리 이상 떨어진 곳을 입지로 선택해야 함

-108p

이천시 동물보호센터, 반려동물 놀이터 설치 타당성 조사

"현재 경기도 내 직영 동물보호센터를 운영하는 곳은 100만 인구의 대도시…"

> 인구가 많은 곳이 직영보호소를 설립하고 운영하기 용이함

"경기도 전체 유기동물 중 이천시는 2.3%의 비중만을 차지"

> 유기동물 수가 많은 곳이 직영 보호소를 설립하기에 적절함

"동물보호센터 설치에 적절한 위치로는 '시 외곽지역'이 64.8%로 가장 높게 나타남"

> 시민 500명 대상 설문조사 결과 시민들은 동물보호소가 '시 외곽지역'에 설치되길 희망함

"동물보호센터 설치에 대해 **반려동물을 기르는** 경우에는 찬성이 95.7%, 반려동물을 기르지 않는 경우에는 찬성이 59.1%"

> 반려동물을 기르는 가구가 많은 곳이 동물보호센터 설치에 더 긍정적임

- 100p -

소음 피해 범위 설정 및 산 요인 추가

"동물보호시설은 **혐오시설**이며, **악취 및 소음 피해**가 발생할 수 있어 주민 반대"

고성군 동물보호센터 추진 '주민 반발'

○ 이대형 기자 | ② 승인 2021.08.29 23:20 | ⊕ 댓글 0

고성군이 유기 동물보호센터를 군농업기술센터 내에 건립할 계획이라고 밝히자 고성읍 우산리 인근 주민들은 소음과 악취가 예상된다며 반대하는 등 집단행동도 불사 하겠다고 나섰다.

< 경남매일

주된 우려사항은 개 짖는 소리로 인한 '소음' 거리에 따른 소음 정도를 구하기 위해 다음과 같은 수식 사용

$$A = a - 20\log\frac{r}{r_0}$$

> 거리 r0 에서 측정된 소음이 a데시벨일 때 거리 r에서 측정되는 소리의 강도

대상 지역	소음원	아침 저녁	주간	야간
주거/관리	사업장	50dB 이하	55dB 이하	45dB 이하

「소음·진동관리법」제21조제2항

1m 반경 내에 개 짖는 소음 100dB (a = 100, r = 1)생활 소음·진동의 규제기준에 따르면, 사업장의 경우 최대 45dB (A = 45) 즉, <mark>거리는 1 km</mark> (r = 1000)

거리 1km로 반경 설정 시,

측정되는 소리의 강도는 40dB이므로 규제기준에 충족

거주민의 소음 및 악취 피해를 줄이고 거주지 외곽임을 확인하기 위해 직영 유기동물보호소 반경 1km내의 '주거건물의 수'와 '산' 요인도 추가

입지 요인을 바탕으로 1차 입지 선정

▷ 직영보호소 환경 분석 결과,

반경 1KM 내에 96% 산 존재, 건물 수 평균 250개

유기견 소음 및 악취 피해 범위를 통해 설정한 <mark>직영보호소 반경 1km</mark>과 동일한 조건을 부여하기 위해 평택 격자 1km로 설정

최근 1년간 유기 발생 지역을 COUNT하여 평택 내 유기 다발지 파악

→ 유기 다발지일수록 빠른 유기동물보호 필요성 증가

보호소 설치 비용을 고려하기 위해 현 공시지가 파악

→ 공시지가가 낮을수록 보호소 입지에 적절

직영보호소 환경분석 결과에 따라

"산이 근처에 존재하고 건물의 수가 250개 이하인 곳"

예산 현황 상

" 공시지가가 평균보다 낮고 유기가 많이 발생하는 곳 "

산 = 1(존재)

건물 <= 250개

유기발생 >= 제 3사분위수(Q3)

공시지가 <= mean(공시지가)

평택 격자 1km 내에 위 4조건을 만족하는 격자 선정

고려 변수 데이터 점수화 및 시각화를 통한 2차 최종 입지 선정

Min-Max Scaler를 이용한 정규화 및 순위 산정

격자이름	X좌표	Y좌표	공시지가	격자 내 건물 수	격자 내 유기 발생 수	총합	순위
다바4393	126.864682	37.038347	-0.068413	-0.000000	0.136364	0.067950	1
다바6891	127.145873	37.021491	-0.109806	-0.196721	0.318182	0.011655	2
다바6396	127.089421	37.066380	-0.603810	-0.450820	1.000000	-0.054630	3

다사5900	127.044212	37.102272	-0.411050	-0.709016	0.636364	-0.483703	8
다사5901	127.044157	37.111286	-0.565312	-0.795082	0.863636	-0.496758	9
다사6400	127.100480	37.102475	-0.356910	-0.204918	0.045455	-0.516373	10

• 데이터 단위 통일을 위한 정규화

*min-max scaler:
$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

: 최소값(Min)과 최대값(Max)을 사용해서 '0~1' 사이의 범위(range)로 데이터를 표준화해주는 '0~1 변환'

• 정규화 합으로 순위 산정 후 1~10위까지 추출

상위 10개 입지 중 입지 간 위치가 비슷한 곳 · 평택시 경계지역 제외

위치를 고려한 5곳 중 **상위 3곳**을 **최종입지**로 선정

최종 입지의 적합성 판단

경기도 평택시 월곡동 279-3번지

공시지가 : 10,900원

발견된 유기동물 수 : 11마리

접근성: 낮음

후보2

경기도 평택시 장안동 산 16-9

공시지가: 112,600원

발견된 유기동물 수 : 26마리

소음 민원 가능성 : 낮음

접근성: 낮음

반경 500m 이후 아파트와 대학교 위치 산이 둘러싼 지형으로

소음 문제가 적을 것으로 판단

후보3

경기도 평택시 현덕면 운정리 395-8

\$

공시지가: 101,400원

발견된 유기동물 수 : 26마리

소음 민원 가능성 : 높음

접근성:높음

평택 화양도시 개발구역 인근으로, 많은 주거시설 및 기관이 입주 예정인 부지 소음 이슈를 해결해야 하는 문제가 있으므로 펫 빌리지·펫 테마파크 건립으로 주민 반발 해소

모델 선정 기법

PyCaret

적은 코드로 <mark>머신러닝</mark>을 가능하게 해주는 파이썬 오픈소스 라이브러리

머신러닝(기계학습) : 경험을 통해 자동으로 개선하는 컴퓨터 알고리즘

Classification :

지도학습의 일종으로 기존에 존재하는 데이터의 category 관계를 파악하고, 새롭게 관측된 데이터의 category를 스스로 판별하는 과정이다. 후에 Accuracy(정확도) 와 F1-Score 를 통한 모델 성능 확인

F1-Score: Precision 과 Recall의 조화평균으로 주로 분류 클래스 간 데이터가 심각한 불균형을 이루는 경우에 사용하는 지표

모델 선정 과정

F1-Score : Precision 과 Recall의 조학 평균

Recall: TP / (TP + FN) 실제 1인 값 중에서 True라고 예측한 비율

precision * recall F1 = 2 * precision + recall Precision: TP / (TP + FP) 예측한 값 중에서 실제 True 비율

TP Positive Negative

실제

Positive | Negative

Tunning

머신러닝 모델들의 Hyperparameter 들을 가장 최적의 값으로 만들어주는 과정 이 과정에서 Random grid search 를 사용한다.

> Hyper parameter(초매개변수) : 모델을 생성할 때, 사용자가 직접 설정하는 변수 Random Grid Search : 초매개변수에 넣을 수 있는 값들을 무작위로 입력한 뒤, 가장 높은 성능의 초매개변수들을 찾는 탐색 방법

Stacking

여러 모델들을 활용해 **각각의 예측 결과**를 도출한 뒤, 그 **예측 결과를 결합해 최종 예측 결과**를 만들어내는 것 모델의 성능을 높여주는 <mark>앙상블</mark> 방법 중에 한 종류. (Overfitting을 막기위해 교차검증을 활용)

> Overfitting(과적합) : 학습 데이터를 과하게 학습하는 것. (예측 데이터에서 큰 오차를 발생) 교차검증: 데이터를 N개의 세트로 분할하여, 모든 데이터셋을 평가(훈련데이터셋)에 활용하는 방법

1. F1-Score

2. Tunning

3. Stacking

4. 최종 Model

5. 분석결과

1. F1-Score (3) 12

사용한 머신러닝 분류 모델 종류

- GBC
- 2. SVM
- 3. Catboost
- 4. ADA
- 5. Light GBM
- Ridge
- 7. Logistic Regression

- 8. Linear Discriminant Analysis
- 9. Naive Bayes
- 10. Random Forest Classifier
- 11. K Neighbors Classifier
- 12. Extra Tree Classifier
- 13. Decision Tree Classifier
- 14. Quadratic Discriminant **Analysis**

사용한 모델들의 (Accuracy, F1 Score)

0.6896, 0.7917

- 2. 0.6580, 0.7910
- 3. 0.6907, 0.7898
- 4. 0.6866, 0.7893
- 5. 0.6888, 0.7890
- 6. 0.6752, 0.7887
- 7. 0.6778, 0.7882

- 8. 0.6773, 0.7881
- 9. 0.6581, 0.7541
- 10. 0.6527, 0.7484
- 11. 0.6504, 0.7461
- 12. 0.6400, 0.7309
- 13. 0.6311, 0.7206
- 14. 0.5794, 0.6939

F1 Score가 가장높은 GBC Model 을 선택

2. Tunning 🗇

F1 Score를 증가시키기 위하여, Random Grid Search를 사용하여, 5번의 교차 검증을 통한 최적의 초매개변수를 도출하여 모델을 Tunning

Model	*GBC	
Accuracy	0.6805	0.6896
AUC	0.6901	
Recall	0.9672	
Prec.	0.6799	
F1	0.7985	0.7917
Карра	0.1292	
MCC	0.1967	

GBC 모델의 Tunning 결과

Acuuracy 0.6896 → 0.6805

0.9% 정도 감소

F1 Score 0.7917 \rightarrow 0.7985

0.68% 정도 증가

1. F1-Score

2. Tunning

3. Stacking

4. 최종 Model

5. 분석결과

2-1. Tunning 🗇

그 후 2~6등 모델들을 튜닝하여 Feature Importance를 확인 각기 다른 Feature Importance를 가지고 있다는 것을 확인

Light GBM

Support Vector Machine

Light GBM - 체중, SVM - 품종_9 AdaBoost - 나이, GBC - 나이

3. Stacking

사용한 모델중 Accuracy, F1 Score 값이 가장 높은 1개의 Model(GBC)을 제외한 상위 5개의 모델을 추려내어, Tunning된 1위 모델에 Stacking 적용

사용한 머신러닝 분류 모델 Top6 (Accuracy, F1 Score)

- 1. GBC
- 2. SVM
- 3. Catboost
- 4. ADA
- 5. Light GBM
- Ridge

- 1. 0.6896, 0.7917
- 2. 0.6580, 0.7910
- 3. 0.6907, 0.7898
- 4. 0.6866, 0.7893
- 5. 0.6888, 0.7890
- 6. 0.6752, 0.7887

5개의 모델의 예측결과를, 5번의 교차검증을 통한 GBC Model에 Stacking

	•	\searrow		
Model	*GBC		Model	*GBC
Accuracy	0.6805	증가	Accuracy	0.6875
AUC	0.6901	증가	AUC	0.6937
Recall	0.9672	감소	Recall	0.9373
Prec.	0.6799	증가	Prec.	0.6933
F1	0.7985	감소	F1	0.7970
Карра	0.1292	증가	Карра	0.1802
мсс	0.1967	증가	мсс	0.2263

1. F1-Score

2. Tunning

3. Stacking

4. 최종 Model

5. 분석결과

*Label 1 == 입양, Label == 0 입양X

0.5633

0.5212

4. 최종 Model 👯

제일 점수가 높은 GBC Model에 SVM, ADA, Light GBM, Ridge, Logistic Regression를 Stacking 한 최종 Model

Stacking에 적용된 Model 들의 초매개변수(Hyper Parameter)

- {'svm': SGDClassifier(alpha=0.0001, average=False, class_weight=None, early_stopping=False, epsilon=0.1, eta0=0.001, fit_intercept=True, I1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=1000, n_iter_no_change=5, n_iobs=-1, penalty='12', power_t=0.5, random_state=2, shuffle=True, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False),
- 'ada': AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=1.0, n_estimators=50, random_state=2),
- 'lightgbm': LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, device='gpu', importance_type='split', learning_rate=0.1, max_depth=-1, min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, n_estimators=100, n_jobs=-1, num_leaves=31, objective=None, random_state=2, reg_alpha=0.0, reg_lambda=0.0, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0),
- 'ridge': RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=2, solver='auto', tol=0.001),
- 'Ir': LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_iobs=None, penalty='l2', random_state=2, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)}

5. 분석결과 🎉

40

	색상	중성화여부	성별	체중	당시의나이	품종	Label	Score
10	4 2	0	0	1.609438	1.098612	1	1	0.8790
4	4 1	1	1	3.433987	0.693147	2	1	0.7659
4	6 1	1	0	1.609438	0.693147	3	1	0.7466
	4 2	0	1	1.791759	0.000000	3	1	0.7090
9	8 4	1	1	3.258097	1.386294	2	1	0.6596
3	5 2	0	0	1.757858	1.098612	3	1	0.6595
3	9 1	0	0	3.178054	1.791759	4	0	0.5909
10	0 4	0	0	3.433987	1.386294	2	1	0.5899

0 1.945910

0 3.091042

52815 (rows) * 7 (columns) 의 DATASET을 가지고 Model을 만들고 Tunning 후 Stacking까지 적용한 Model로 예측한 결과로

1.791759

1.609438

4

'나이', '체중', '품종'이 중요한 변수임을 확인할 수 있었음

중성화 제외 모든 변수들의 성질이 다른 두 강아지를 모델에 적용해 비교

1 강아지 A

비숑 | 4 흰색 | 1 색상 | 암컷 | 1 4kg | 1.61 중성화l 1 2 나이 6살 | 1.95 모델 적용 결과

입양결과 입양성공

정확도 67.6%

강아지 B

푸들 | 7 갈색 | 4 색상 성별 수컷 | 0 5.9kg | 1.93 중성화 0 | 2 나이 10살 | 2.4

모델 적용 결과

입양결과 입양실패

정확도

66%

#1. 71 ~ \$ 2 수단 적극 활용

智慧之时初夏里

介观智明的时野社

SNS \$ 2

明祖 电量平组码量 蒙記 蒙里

#2. 다 나 나 아니 호호

YOUTUBE D

3월 23월 - 국제 가하지의 날

04 활용전략

04. 활용전략 활용방안 / 보완점 및 한계점

직영보호소 추가 설치 시 활용 가능

입양 예측 모델을 활용한 맞춤 입양 컨설팅 제공

유기견 입양 예측을 바탕으로 각 개체에 맞춘 <mark>입양 컨설팅 제공</mark>, 입양 전략 수립 및 입양 촉진

보완점 및 한계점

건축물 기준, 면적기준, 수용개체수 등 직영보호소 설립 조건에 대한 명확한 기준 부재

사용데이터

이름	기준년도	형식	제공기관
농림축산식품부 농림축산검역본부_동물보호관리시스템 유기동물 조회 서비스	2021-09-29	Xml (open api)	DATA ###
경기도_유기동물 보호시설 현황	2019-08-23	csv	DATA ###
국토교통부 국토지리정보원_통계지도_인구	2021-04	shp	국토정보플랫폼
국토교통부 국토지리정보원_통계지도_공시지가	2021-01	shp	국토정보플랫폼
국토교통부_연속지적_ 경기_평택시	2021-10-10	shp	국가공간정보포털 국료교통부
환경부_환경지리_생태자연도(면)	2019-10-17	shp	국가공간정보포털 국도교육부
국토교통부_건물통합정보	2021-10-06	shp	국가공간정보포털 국도고통부 bidrol Sadd that Predexture food

참고자료

울산시청(2015). 울산시 반려동물 문화센터 건립 기본계획수립 및 입지선정

이천시청(2019). 이천시 동물보호센터, 반려동물 놀이터 설치 타당성 조사 연구 보고서

동물자유연대(2021). 2016-2020 유실·유기동물 분석 보고서

최성은,유현선,정희운,정희원,박유미,and 이관제(2019). "지방자치단체 동물보호소의 유기.유실 반려견에 대한 입양확률예측모형."

Journal of the Korean Data Analysis Society 21.5: 2365-2378.

비글구조네트워크(2021). 2020년 하반기 보호소 위탁 제도의 문제점 조사

Queen(2021.05.26). 고성군 유기동물보호소, 유기견 천국으로 탈바꿈!

한겨레(2020.01.19). "90% 위탁보호소"에서 '무마취 고통사' 남발하는 이유

직영보호소 전환 국민청원

유기동물 보호소 나무위키

경남매일(2021.08.26). 고성군 동물보호센터 추진 '주민 반발'

감/ 합니다.

