MODELO DE MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA DE GERAÇÃO SOLAR FOTOVOLTAICA DE 20,52kW CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM 380V CARACTERIZADO COMO INDIVIDUAL.

BENEDITO LUIS ALVES DE OLIVEIRA

CPF: 010.716.998-30

ESDRAS MANOEL SANTOS FERREIRA DA SILVA
ENGENHEIRO ELETRICISTA
REGISTRO: 020833774-1

MACEIÓ – AL AGOSTO– 2025

Data:12/11/2024

Rev:05

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída

HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}\,\,$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJ	ETIVO	4			
2.	REF	ERÊNCIAS NORMATIVAS E REGULATÓRIA	4			
3.	DADOS DA UNIDADE CONSUMIDORA					
4.	LEVANTAMENTO DE CARGA					
5.	PADRÃO DE ENTRADA					
	5.1.	Tipo de Ligação e Tensão de Atendimento	6			
	5.2.	Disjuntor de Entrada	6			
	5.3.	Potência Disponibilizada	7			
	5.4.	Caixa de Medição	7			
	5.5.	Ramal de Entrada	8			
6.	ESTI	MATIVA DE GERAÇÃO	8			
7.	DIMENSIONAMENTO DO GERADOR8					
	7.1.	Dimensionamento do gerador	8			
8.	DIME	ENSIONAMENTO DO INVERSOR (SE HOUVER)	9			
9.	DIME	ENSIONAMENTO DA PROTEÇÃO	9			
	9.1.	Fusíveis	9			
	9.2.	Disjuntores	9			
	9.3.	Dispositivo de seccionamento visível (quando houver)	9			
	9.4.	DPS	10			
	9.5.	Aterramento	10			
	9.6.	Requisitos de Proteção	10			
10.	. DIMENSIONAMENTO DOS CABOS					
11.	PLA	CA DE ADVERTÊNCIA	11			
12.	ANE	xos	12			

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à *EQUATORIAL ALAGOAS*, dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para **SOLICITAÇÃO DO PARECER DE ACESSO** de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema *SOLAR FOTOVOLTAICO* de 20,52 kW, composto por 36 MÓDULOS FOTOVOLTAICOS E INVERSOR SOLAR CC CA, caracterizado como INDIVIDUAL.

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado de (o) **ALAGOAS** foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.00020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.00001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- i) EQUATORIAL ENERGIA NT.00030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Conexão ao Sistema de Distribuição de Energia Elétrica.
- k) ANEEL Resolução Normativa nº 1000, de 07 de dezembro de 2021, que estabelece as regras de prestação do serviço público de distribuição de energia elétrica.
- I) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- m) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures

3. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 3001078851

Classe: RESIDENCIAL

Nome do Titular da CC: BENEDITO LUIS ALVES DE OLIVEIRA

Endereço Completo: TV MARLON BATISTA, 774, ILHA DA CRÔA, BARRA DE SANTO ANTÔNIO – AL,

CEP: 57925-000

Número de identificação do poste e/ou transformador mais próximo:

Coordenadas georrefenciadas:

UTM = X: 225776.42 Y: 8959745.19

Figura 1: Localização da unidade consumidora.

4. LEVANTAMENTO DE CARGA

Tabela 1 – Levantamento de carga

ITENS	DESCRIÇÃO	P (kW) [A]	QNTD [B]	CI (kW) [C=(A*B)]	FP [D]	CI (kVa) [E=C/D]	FD [F]	D (kW) [G=C*F]	D (kVa) [H=E*F]
1	AR-CONDICIONADO SPLIT DE 9.000 BTUS	1,2	4	4,8	100,00%	4,8	75,00%	3,6	3,6
3	BOMBA 1 CV	0,75	1	0,75	100,00%	0,75	80,00%	0,6	0,6
4	CAFETEIRA	0,6	3	1,8	100,00%	1,8	80,00%	1,44	1,44
5	CHAPA	0,758	1	0,758	100,00%	0,758	80,00%	0,6064	0,6064
6	NOTEBOOK	0,15	3	0,45	100,00%	0,45	80,00%	0,36	0,36
7	FREEZER	0,4	4	1,6	100,00%	1,6	80,00%	1,28	1,28
8	GELADEIRA DUPLEX	0,5	2	1	100,00%	1	80,00%	0,8	0,8
9	FERRO ELETRICO	1	3	3	100,00%	3	75,00%	2,25	2,25
10	GELÁGUA	0,97	4	3,88	100,00%	3,88	80,00%	3,104	3,104
11	LÂMPADA DE 20W	0,02	21	0,42	100,00%	0,42	80,00%	0,336	0,336
12	LÂMPADA DE 40W	0,04	15	0,6	100,00%	0,6	80,00%	0,48	0,48
13	LÂMPADA DE 9W	0,009	20	0,18	100,00%	0,18	80,00%	0,144	0,144
14	LIQUIDIFICADOR	1,4	2	2,8	100,00%	2,8	75,00%	2,1	2,1
15	COMPUTADOR + IMPRESSORA	0,545	4	2,18	100,00%	2,18	80,00%	1,744	1,744
16	MAQUINA DE LAVAR ROUPA	1	2	2	100,00%	2	75,00%	1,5	1,5
17	MICROONDAS	0,9	2	1,8	100,00%	1,8	80,00%	1,44	1,44
19	SUQUEIRA	0,067	1	0,067	100,00%	0,067	80,00%	0,0536	0,0536
20	TV LED 32 POLEGADAS	0,1	7	0,7	100,00%	0,7	80,00%	0,56	0,56
21	TV LED 52 POLEGADAS	0,31	4	1,24	100,00%	1,24	80,00%	0,992	0,992
22	TV LED 40 POLEGADAS	0,13	5	0,65	100,00%	0,65	80,00%	0,52	0,52
23	TORRADEIRA	0,8	1	0,8	100,00%	0,8	80,00%	0,64	0,64
24	VENTILADOR	0,1	5	0,5	100,00%	0,5	80,00%	0,4	0,4
TOTAL				31,98	-	31,98	-	24,95	24,95

5. PADRÃO DE ENTRADA

5.1. Tipo de Ligação e Tensão de Atendimento

5.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é (será) ligada em ramal de ligação em baixa tensão, através de um circuito TRIFÁSICO à QUATRO condutores, sendo 1 condutor(es) FASE de seção nominal 10 mm2 e um condutor NEUTRO de seção nominal 10 mm2, com tensão de atendimento em 380V, derivado de uma rede aérea/subterrânea de distribuição secundária da EQUATORIAL ENERGIA no estado de(o) ALAGOAS.

OBS: PROJETO SITUADO A MENOS DE 2KM DA ORLA MARÍTIMA

5.2. Disjuntor de Entrada

No ponto de entrega/conexão é (será) instalado um disjuntor termomagnético, em conformidade com a norma NT.00001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: 3

TENSÃO NOMINAL: 380 V

CORRENTE NOMINAL: 63 A

FREQUÊNCIA NOMINAL: 50/60 HZ

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO

CAPACIDADE MAXIMA DE INTERRUPCAO: 3 kA;

ACIONAMENTO: TERMOMAGNÉTICO

CURVA DE ATUACAO (DISPARO): C.

5.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é (será) igual à:

PD $[kVA] = (V_N [V] X I_{DG} [A] X NF)/1000$

PD [kW] = PD [kVA] x FP

 $V_N = 380 \text{ V}$

 $I_{DG} = 63A$

 $NF = \sqrt{3}$

FP = 0.92

PD (kVA) = 38,146 KVA

PD (kW) = 41,464 KW

NOTA 1: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

NOTA 2: V_N é a tensão nominal entre fase e neutro para instalações monofásicas ou entre fases para bifásicas e trifásicas.

NOTA 3: NF é um fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para sistemas trifásicos.

5.4. Caixa de Medição

A caixa de medição **EXISTENTE POLIFÁSICA** em material polimérico tem (terá) as dimensões de **260** mm x **423** mm x **130** mm (comprimento, altura e largura), está (será) instalada FACHADA, no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e lay-out, em conformidade com as normas da concessionária NT.00001.EQTL e NT.00030.EQTL, conforme a FIGURA 2.

Figura 2: Desenho dimensional detalhado da caixa de medição.

O aterramento da caixa de medição é(será) com 1 hastes de aterramento de comprimento 1500mm e diâmetro 5/8", condutor de 6 mm² com conexão em solda exotérmica.

5.5. Ramal de Entrada

O ramal de entrada da unidade consumidora é (será), através de um circuito **TRIFÁSICO** à **QUATRO** condutores, sendo **UM** condutor(es) FASE de diâmetro nominal **10mm**² e um condutor NEUTRO de diâmetro nominal **10mm**², em **380V**.

6. ESTIMATIVA DE GERAÇÃO

Geração média estimada em 2.568,9kW

7. DIMENSIONAMENTO DO GERADOR

7.1. Dimensionamento do gerador

Descrever o dimensionamento do gerador e informar as características técnicas.

Tabela 3 – Características técnicas do gerador

Fabricante	TSUN
Modelo	TS570S8B-144NT
Potência nominal – Pn [W]	570
Tensão de circuito aberto – Voc [V]	50,74
Corrente de curto circuito – Isc [A]	13,31

Tensão de máxima potência – Vpmp [V]	42,07
Corrente de máxima potência – Ipmp [A]	13,55
Eficiência [%]	22,1
Comprimento [m]	2,278
Largura [m]	1,134
Área [m2]	2,58
Peso [kg]	27,5
Quantidade	36
Potência do gerador [kW]	20,52

8. DIMENSIONAMENTO DO INVERSOR (SE HOUVER)

Descrever o dimensionamento do inversor e informar as características técnicas.

Tabela 4 – Características técnicas do inversor

Fabricante	SAJ			
Modelo	R6-15K-T2-32			
Quantidade	1			
Entrada				
Potência nominal – Pn [kW]	15			
Máxima potência na entrada CC – Pmax-cc [kW]	30			
Máxima tensão CC – Vcc-máx [V]	1100			
Máxima corrente CC – Icc-máx [A]	32/32			
Máxima tensão MPPT – Vpmp-máx [V]	1000			
Mínima tensão MPPT – Vpmp-min [V]	180			
Tensão CC de partida – Vcc-part [V]	200			
Quantidade de Strings	2/2			
Quantidade de entradas MPPT	2			
Saída				
Potência nominal CA – Pca [kW]	15			
Máxima potência na saída CA – Pca-máx [kW]	16,5			
Máxima corrente na saída CA – Imáx-ca [A]	21,7			
Tensão nominal CA – Vnon-ca [V]	220/380			
Frequência nominal – Fn [Hz]	60			
Máxima tensão CA – Vca-máx [V]	485			
Mínima tensão CA – Vca-min [V]	312			
THD de corrente [%]	< 3			
Fator de potência	0,8 ~0,8			
Tipo de conexão – número de fases + neutro + terra	3L+N+PE			
Eficiência máxima [%]	98,8			

9. DIMENSIONAMENTO DA PROTEÇÃO

9.1. Fusíveis

Para esse sistema não foi necessário a utilização de fusível

9.2. Disjuntores

Número de pólos: 1

• Tensão nominal CA ou CC [V]: 380

• Corrente Nominal [A]: 40

• Frequência [Hz], para disjuntor CA: 50/60

• Capacidade máxima de interrupção [kA]: 3

• Curva de atuação: C

9.3. PROTEÇÃO E CHAVE SECCIONADORA DO TIPO CC INTERNAS NO INVERSOR

9.4. DPS

Dimensionar e descrever as características técnicas dos DPSs CA e CC, informando no mínimo as seguintes características:

Tipo CA

Classe: II

• Tensão CA [V]: 275

• Corrente nominal [kA]: 10

• Corrente máxima [kA]: 20

9.5. Aterramento

Dimensionar e descrever as características técnicas do aterramento, informando no mínimo as seguintes características:

- Geometria linear com distância mínima de 3m entre cada haste.
- Hastes de comprimento de 1500 mm e diâmetro 5/8"
- Quantidade de hastes: 1
- Descrição das conexões: solda exotérmica 9.3.6 Valor da resistência de aterramento: 10
- ohms
- Descrição e dimensões:

TENSÃO MAXIMA SUPORTADA (V)	1 kV
SEÇÃO TRANSVERSAL (MM²)	6
CORRENTE MÁXIMA SUPORTADA (A)	54
ISOLAÇÃO	XLPE

9.6. Requisitos de Proteção

Tabela 5 – Características técnicas do gerador

REQUISITOS DE PROTEÇÃO	INDICAR SE POSSUI		
Proteção de subtensão (27)	SIM		
Proteção de sobretensão (59)	SIM		

Proteção de subfrequência (81U)	SIM
Proteção de sobrefrequência (810)	SIM
Proteção de sobrecorrente (50/51 e 50N/51N)	SIM
Tempo de reconexão – temporizador (62)	Opcional, quando não usar inversor
Proteção direcional de potência (32)	Sim, quando não usar inversor

10. DIMENSIONAMENTO DOS CABOS

Dimensionar e descrever as características técnicas dos cabos CA e CC, informando no mínimo as seguintes características:

10.1 CABOS CA

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 10

• Capacidade de condução de corrente: 75A

10.1 CABOS CC

Isolação: XLPEIsolamento: 1 kVBitola [mm2]: 6

Capacidade de condução de corrente: 54A

11. PLACA DE ADVERTÊNCIA

Descrever forma e local de instalação, conforme modelo abaixo:

Características da Placa:

Espessura: 2 mm;

Material: Policarbonato com aditivos anti-raios UV (ultravioleta);

Gravação: As letras devem ser em Arial Black;

 Acabamento: Deve possuir cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa;

Figura 3: Placa de advertência.

Estinas Manuel S. F. Od Salva Gag* Bierroleta CREANA, 1913 TP PROCESSAT741

12. ANEXOS

- Formulário de Solicitação de Orçamento.
- Documento de responsabilidade técnica (projeto e execução) do conselho profissional competente.
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Relatório de ensaio, em língua portuguesa, atestando a conformidade de todos os conversores de potência para a tensão nominal de conexão com a rede, sempre que houver a utilização de conversores.
- Dados de registro.
- Lista de rateio dos créditos.
- Cópia de instrumento jurídico de solidariedade.
- Para cogeração documento que comprove o reconhecimento pela ANEEL.