SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

MA215 Probability Theory

Tutorial 01Solu

Set: Wednesday 7th September 2016; Hand in: Friday, 16th September 2016. Note: Hand in your solutions no later than 4pm of Friday, 16th September.

- 1. Provide a strict proof for the following set relations.
 - (i) $B \setminus A = B \cap A^c$;

(ii)
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$
;

(iii)
$$(\bigcup_{k=1}^{\infty} A_k)^c = \bigcap_{k=1}^{\infty} A_k^c;$$

(iv)
$$(\bigcap_{k=1}^{\infty} A_k)^c = \bigcup_{k=1}^{\infty} A_k^c$$
;

(v)
$$A \cup (\bigcap_{k=1}^{\infty} B_k) = \bigcap_{k=1}^{\infty} (A \cup B_k);$$

(vi)
$$A \cap (\bigcup_{k=1}^{\infty} B_k) = \bigcup_{k=1}^{\infty} (A \cap B_k).$$

As the generalizations of (iii) to (vi) we have the following general De Morgan's Laws and **Distributive laws:** For any index set I, we have

(vii)
$$(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} (A_i)^c$$

(viii)
$$(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} (A_i)^c$$

(ix)
$$A \cup (\bigcap_{i \in I} B_i) = \bigcap_{i \in I} (A \cup B_i)$$

$$(\text{vii}) \left(\bigcup_{i \in I} A_i\right)^c = \bigcap_{i \in I} (A_i)^c;$$

$$(\text{viii}) \left(\bigcap_{i \in I} A_i\right)^c = \bigcup_{i \in I} (A_i)^c;$$

$$(\text{ix}) A \cup \left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} (A \cup B_i);$$

$$(\text{x}) A \cap \left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} (A \cap B_i).$$

Proof:

(i)

$$x \in B \setminus A \Leftrightarrow x \in B \text{ and } x \notin A$$

$$\Leftrightarrow x \in B \text{ and } x \in A^c$$

$$\Leftrightarrow x \in B \cap A^c.$$

i.e.
$$B \setminus A = B \cap A^c$$
.

(ii)

$$x \in (A \setminus B) \cap C \Leftrightarrow x \in A \setminus B \text{ and } x \in C$$

$$\Leftrightarrow x \in A \text{ and } x \notin B \text{ and } x \in C$$

$$\Leftrightarrow x \in A \text{ and } x \in C \text{ and } x \notin B$$

$$\Leftrightarrow x \in A \cap C \text{ and } x \notin B \cap C$$

$$\Leftrightarrow x \in (A \cap C) \setminus (B \cap C).$$

i.e.
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$
.

(iii)
$$x \in (\bigcup_{k=1}^{\infty} A_k)^c \Leftrightarrow x \notin \bigcup_{k=1}^{\infty} A_k$$

$$\Leftrightarrow x \notin A_k, \forall k \geq 1$$

$$\Leftrightarrow \forall k \geq 1, x \notin A_k$$

$$\Leftrightarrow x \in A_k^c, \forall k \geq 1$$

$$\Leftrightarrow \forall k \geq 1, x \notin A_k$$

$$\Leftrightarrow x \in \bigcap_{k=1}^{\infty} A_k^c.$$
 i.e.
$$(\bigcup_{k=1}^{\infty} A_k)^c = \bigcap_{k=1}^{\infty} A_k^c.$$
 (iv)
$$x \in (\bigcap_{k=1}^{\infty} A_k)^c \Leftrightarrow x \notin \bigcap_{k=1}^{\infty} A_k$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \notin A_{k_0}$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \in A_{k_0}^c$$

$$\Leftrightarrow x \in \bigcup_{k=1}^{\infty} A_k^c.$$
 (v)
$$x \in A \cup (\bigcap_{k=1}^{\infty} B_k) \Leftrightarrow x \in A \text{ or } x \in \bigcap_{k=1}^{\infty} B_k$$

$$\Leftrightarrow x \in A \text{ or } s.t. \ (\forall k \geq 1, x \in B_k)$$

$$\Leftrightarrow \forall k \geq 1, (x \in A \text{ or } x \in B_k)$$

$$\Leftrightarrow \forall k \geq 1, (x \in A \text{ or } x \in B_k)$$

$$\Leftrightarrow \forall k \geq 1, x \in A \cup B_k$$

$$\Leftrightarrow x \in \bigcap_{k=1}^{\infty} (A \cup B_k).$$
 (vi)
$$x \in A \cap (\bigcup_{k=1}^{\infty} B_k) \Leftrightarrow x \in A \text{ and } x \in \bigcup_{k=1}^{\infty} B_k$$

$$\Leftrightarrow x \in A \text{ and } \exists k_0 \geq 1, s.t. \ x \in B_{k_0}$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \in A \cap B_{k_0}$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \in A \cap B_{k_0}$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \in A \cap B_{k_0}$$

$$\Leftrightarrow \exists k_0 \geq 1, s.t. \ x \in A \cap B_{k_0}$$

i.e. $A \cap (\bigcup_{k=1}^{\infty} B_k) = \bigcup_{k=1}^{\infty} (A \cap B_k)$.

$$x \in (\bigcup_{i \in I} A_i)^c \Leftrightarrow x \notin \bigcup_{i \in I} A_i$$

$$\Leftrightarrow x \notin A_i, \forall i \in I$$

$$\Leftrightarrow x \notin A_i^c, \forall i \in I$$

$$\Leftrightarrow x \in A_i^c, \forall i \in I$$

$$\Leftrightarrow x \in A_i^c, \forall i \in I$$

$$\Leftrightarrow x \in \bigcap_{i \in I} A_i^c.$$
i.e. $(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} (A_i)^c.$
(viii)
$$x \in (\bigcap_{i \in I} A_i)^c \Leftrightarrow x \notin \bigcap_{i \in I} A_i$$

$$\Leftrightarrow \exists i_0 \in I, s.t. \ x \notin A_{i_0}$$

$$\Leftrightarrow \exists i_0 \in I, s.t. \ x \notin A_{i_0}$$

$$\Leftrightarrow x \in \bigcup_{i \in I} A_i^c.$$
i.e. $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} (A_i)^c.$
(ix)
$$x \in A \cup (\bigcap_{i \in I} B_i) \Leftrightarrow x \in A \text{ or } x \in \bigcap_{i \in I} B_i$$

$$\Leftrightarrow x \in A \text{ or } (\forall i \in I, s.t. \ x \in B_i)$$

$$\Leftrightarrow x \in A \text{ or } (x \in B_i, \forall i \in I)$$

$$\Leftrightarrow x \in A \text{ or } x \in B_i), \forall i \in I,$$

$$\Leftrightarrow \forall i \in I, s.t. \ x \in A \cup B_i$$

$$\Leftrightarrow s.t. \ x \in A \cup B_i, \forall i \in I$$

$$\Leftrightarrow s.t. \ x \in A \cup B_i$$

Remark: Note that

$$A = B \Longleftrightarrow A \subset B, A \supset B$$
$$\iff x \in A \Longrightarrow x \in B, x \in B \Longrightarrow x \in A$$

$$x \in \bigcap_{k=1}^{\infty} A_k \iff x \in A_k, \forall k \ge 1 \iff x \in A_k,$$
 对任意的 $k(k \ge 1)$ 都成立
$$\iff x \in A_1 \text{ and } x \in A_2 \text{ and } x \in A_3 \text{ and } \cdots \iff x \in A_m, \forall m \ge 1$$

$$\iff \forall k \ge 1, x \in A_k \iff \text{对任意的} k(k \ge 1), \text{ 都有 } x \in A_k, \text{ 成立}$$
 for any fixed $k(k \ge 1), x \in A_k$
$$\iff \text{对任意固定的} k(k \ge 1), \text{ 都有 } x \in A_k \text{ 成立} \text{ (但是此时 } x = x(k) \text{ 与 } k \text{ 有关})$$

2. A sequence of sets $\{A_1, A_2, \ldots, A_n, \ldots\}$ is called **increasing** if

$$A_1 \subset A_2 \subset A_3 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots$$

Similarly, a sequence of sets $\{A_1, A_2, \dots, A_n, \dots\}$ is called **decreasing** if

$$A_1 \supset A_2 \supset A_3 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots$$
.

Show that

- (i) If $\{A_n; n \ge 1\}$ is an increasing set sequence, then for any $n \ge 1$, $\bigcup_{k=1}^n A_k = A_n$ and $\lim_{n \to \infty} A_n = \bigcup_{k=1}^\infty A_k = \bigcup_{n=1}^\infty A_n$.
- (ii) If $\{A_n; n \geq 1\}$ is a decreasing set sequence, then for any $n \geq 1$, $\bigcap_{k=1}^n A_k = A_n$ and $\lim_{n \to \infty} A_n = \bigcap_{k=1}^\infty A_k = \bigcap_{n=1}^\infty A_n$.

Proof:

(i) 1. It is easy to see that for any $n \ge 1$, $x \in A_n \Rightarrow x \in \bigcup_{k=1}^n A_k$, i.e.

$$A_n \subset \bigcup_{k=1}^n A_k$$
.

However, on the other hand, $x \in \bigcup_{k=1}^{n} A_k \Rightarrow \exists k_0, 1 \leq k_0 \leq n$, s.t.

$$x \in A_{k_0}$$
.

Since $\{A_n; n \geq 1\}$ is an increasing set sequence, hence for $1 \leq k_0 \leq n$, we have $A_{k_0} \subset A_n$, so $x \in A_n$, i.e.

$$\bigcup_{k=1}^{n} A_k \subset A_n.$$

Altogether, we get

$$\bigcup_{k=1}^{n} A_k = A_n.$$

2. Formal proof: Since we have

$$A_n = \bigcup_{k=1}^n A_k.$$

Let $n \to \infty$, we get

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \bigcup_{k=1}^n A_k = \bigcup_{k=1}^{\lim_{n \to \infty} n} A_k = \bigcup_{k=1}^{\infty} A_k.$$

Rigorous Proof: Firstly, we should show two facts: for any $k \in \mathbb{N}_+$,

$$\bigcap_{n=k}^{\infty} A_n = A_k, \quad \bigcup_{n=k}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_n.$$

Indeed, It is easy to see that $\bigcap_{n=k}^{\infty} A_n \subset A_k$. On the other hand, $\forall x \in A_k$, note that $\{A_n; n \geq 1\}$ is an increasing set sequence, hence $n \geq k$, we have $A_k \subset A_n$, so $x \in A_n, n \geq k$, i.e. $x \in \bigcap_{n=k}^{\infty} A_n$. Then, $\bigcap_{n=k}^{\infty} A_n \supset A_k$. Altogether, we get

$$\bigcap_{n=k}^{\infty} A_n = A_k.$$

Note that $\bigcup_{n=k}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} A_n$. To show the converse case, suppose $x \in \bigcup_{n=1}^{\infty} A_n$, thus $\exists n_0 \ge 1$, s.t. $x \in A_{n_0}$

• if $n_0 < k$, then

$$x \in A_{n_0} \subset A_k \subset \bigcup_{n=k}^{\infty} A_n.$$

• if $n_0 \ge k$, then

$$x \in A_{n_0} \subset \bigcup_{n=0}^{\infty} A_n.$$

Hence, $x \in \bigcup_{n=k}^{\infty} A_n$, i.e. $\bigcup_{n=k}^{\infty} A_n \supset \bigcup_{n=1}^{\infty} A_n$. So,

$$\bigcup_{n=k}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

Therefore, we can get

$$\overline{\lim}_{n \to \infty} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} A_n$$

$$= \bigcup_{n=1}^{\infty} A_n (x \in \bigcup_{n=1}^{\infty} A_n \iff x \in A_1 \text{ or } x \in A_2 \text{ or } x \in A_3 \text{ or } \cdots)$$

$$= \bigcup_{k=1}^{\infty} A_k$$

$$= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \underline{\lim}_{n \to \infty} A_n.$$

Hence, $\lim_{n\to\infty} A_n = \bigcup_{k=1}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n$.

(ii) 1. It is easy to see that $\bigcap_{k=1}^n A_k \subset A_n$. However, on the other hand, if $\forall x \in A_n$. Since $\{A_n; n \geq 1\}$ is a decreasing set sequence, hence for any $k, 1 \leq k \leq n$, we have $A_n \subset A_k$, so $x \in A_k, 1 \leq k \leq n$, i.e. $A_n \subset \bigcap_{k=1}^n A_k$.

Altogether, we get

$$\bigcap_{k=1}^{n} A_k = A_n.$$

2. Formal proof: Since we have

$$A_n = \bigcap_{k=1}^n A_k.$$

Let $n \to \infty$, we get

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \bigcap_{k=1}^n A_k = \bigcap_{k=1}^{\lim_{n \to \infty} n} A_k = \bigcap_{k=1}^{\infty} A_k.$$

Rigorous Proof: Firstly, we should show two facts: for any $k \in \mathbb{N}_+$,

$$\bigcup_{n=k}^{\infty} A_n = A_k, \quad \bigcap_{n=k}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n.$$

Indeed, It is easy to see that

$$\bigcup_{n=k}^{\infty} A_n \supset A_k.$$

On the other hand, $\forall x \in \bigcup_{n=k}^{\infty} A_n, \Rightarrow \exists n_0, n_0 \geq k, \ s.t. \ x \in A_{n_0}$, note that $\{A_n; n \geq 1\}$ is a decreasing set sequence, hence for $n_0 \geq k$, we have $A_{n_0} \subset A_k$, so $x \in A_k$, i.e. $\bigcup_{n=k}^{\infty} A_n \subset A_k$. Altogether, we get

$$\bigcup_{n=k}^{\infty} A_n = A_k.$$

Note that $\bigcap_{n=k}^{\infty} A_n \supset \bigcap_{n=1}^{\infty} A_n$. To show the converse case, suppose $x \in \bigcap_{n=k}^{\infty} A_n$, thus $\forall n \geq k$, s.t. $x \in A_n$. then for $1 \leq n < k$, since $\{A_n; n \geq 1\}$ is a decreasing set sequence,

$$\Rightarrow x \in A_k \subset A_{k-1} \subset A_n$$

Hence, $x \in A_n, \forall n \ge 1$, i.e. $x \in \bigcap_{n=1}^{\infty} A_n$. Therefore,

$$\bigcap_{n=k}^{\infty} A_n \subset \bigcap_{n=1}^{\infty} A_n.$$

So, we obtain

$$\bigcap_{n=k}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Therefore, we can get

$$\overline{\lim_{n \to \infty}} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcap_{k=1}^{\infty} A_k$$
$$= \bigcap_{n=1}^{\infty} A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} A_n$$
$$= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \underline{\lim}_{n \to \infty} A_n.$$

Hence, $\lim_{n\to\infty} A_n = \bigcap_{k=1}^{\infty} A_k = \bigcap_{n=1}^{\infty} A_n$.

<u>Method 2: dual principle</u> Since $\{A_n; n \ge 1\}$ is a decreasing set sequence, so $\{A_n^c; n \ge 1\}$ is an increasing set sequence, use the above conclusion of (i), we have

$$\varliminf_{n\to\infty}A_n^c=\varlimsup_{n\to\infty}A_n^c=\varliminf_{n\to\infty}A_n^c=\bigsqcup_{k=1}^\infty A_k^c=\bigcup_{n=1}^\infty A_n^c.$$

Therefore,

$$\overline{\lim}_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} (A_k^c)^c
= \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c\right)^c = \left(\underline{\lim}_{n \to \infty} A_n^c\right)^c
= \left(\lim_{n \to \infty} A_n^c\right)^c = \left(\bigcup_{n=1}^{\infty} A_n^c\right)^c = \bigcap_{n=1}^{\infty} (A_n^c)^c
= \bigcap_{n=1}^{\infty} A_n (x \in \bigcap_{n=1}^{\infty} A_n \iff x \in A_1 \text{ and } x \in A_2 \text{ and } x \in A_3 \text{ and } \cdots)
= \bigcap_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} (A_k^c)^c
= \left(\overline{\lim}_{n \to \infty} A_n^c\right)^c = \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k^c\right)^c
= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} (A_k^c)^c = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k
= \lim_{n \to \infty} A_n.$$

Hence,
$$\lim_{n\to\infty} A_n = \bigcap_{k=1}^{\infty} A_k = \bigcap_{n=1}^{\infty} A_n$$
.

Remark:

$$\begin{split} \lim\sup_{k\to\infty}A_k &= \varlimsup_{k\to\infty}A_k\\ &= \{\text{ consists of elements which belong to } A_k \text{ for infinitely many } k\}\\ &= \{x\colon \forall n\in\mathbb{N}, \exists k\geq n,\ s.t.\ x\in A_k\} \end{split}$$

$$\liminf_{k \to \infty} A_k = \underline{\lim}_{k \to \infty} A_k$$

= $\{$ consists of elements which belong to A_k for all but finitely many $k\}$

= $\{$ consists of elements which not belong to A_k for finitely many $k\}$

$$= \{x \colon \exists n_0 \in \mathbb{N}, \forall k \ge n_0, \ s.t. \ x \in A_k\}$$

The $\lim_{n\to\infty} A_n$ exists if and only if $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n$, in which case

$$\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \underline{\lim}_{n\to\infty} A_n.$$

From the above definition, we can get

$$\bigcap_{k=1}^{\infty} A_k \subset \underline{\lim}_{k \to \infty} A_k \subset \overline{\lim}_{k \to \infty} A_k \subset \bigcup_{k=1}^{\infty} A_k.$$

Prop: Assume $\{A_n; n \ge 1\}$ is an set sequence, then

(a)
$$\lim_{k \to \infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k;$$

(b)
$$\lim_{k \to \infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$
.

3. Show that if A_1, A_2, \ldots, A_n are all countable sets, then so is the n-tuple **Cartesian product**

$$A_1 \times A_2 \times \cdots \times A_n$$
.

In particular, if A is a countable set, then so is A^n .

Proof: (Use Mathematical induction)

Assume n = 1, then $A_1 \times A_2 \times \cdots \times A_n = A_1$ is a countable set.

If n=2, for any fixed $a_2\in A_2$, $\{(a_1,a_2)\colon a_1\in A_1\}$ is a countable set (In fact for any fixed $a_2\in A_2, a_1\xleftarrow{one\ to\ one\ correspondence}}(a_1,a_2),$ so $\overline{\overline{A_1}}=\overline{A_1\times\{a_2\}}$). Notice that

$$A_1 \times A_2 = \bigcup_{a_2 \in A_2} \{(a_1, a_2) \colon a_1 \in A_1\},$$

then it also is a countable set.

Suppose $n = k, A_1 \times A_2 \times \cdots \times A_k$ is a countable set. Then, for n = k + 1, only need to notice that for any fixed $a_{k+1} \in A_{k+1}$, $A_1 \times A_2 \times \cdots \times A_k \times \{a_{k+1}\}$ is a countable set and

$$A_1 \times A_2 \times \dots \times A_k \times A_{k+1} = \bigcup_{a_{k+1} \in A_{k+1}} A_1 \times A_2 \times \dots \times A_k \times \{a_{k+1}\},$$

then it also is a countable set.

In particular, if A is a countable set, then so is A^n .

4. Suppose that the three sets A, B and C have the relationship $A \subset B \subset C$ and that Card(A) = Card(C), then

$$Card(A) = Card(B) = Card(C),$$

where Card(A) denotes the cardinal number of the set A etc.

Proof: Since $A \subset B \subset C$, consider maps

$$i_A:A\to A\subset B, x\mapsto x;$$

$$i_B: B \to B \subset C, x \mapsto x.$$

Note that identity map is a special bijective map (one to one and onto), so

$$\operatorname{Card} A \leq \operatorname{Card} B$$
; $\operatorname{Card} B \leq \operatorname{Card} C$,

but Card(A) = Card(C). Thus, by using the Cantor-Bernstein's theorem, we get

$$Card(A) = Card(B) = Card(C).$$

5. Show that the set [0,1] is not countable.

Proof: Now, suppose [0,1] is countable, then it can be written as a sequence $\{x_1, x_2, x_3, \dots\}$ say. Suppose

$$x_1 = 0.a_{11}a_{12}a_{13}a_{14}\cdots a_{1n}\cdots$$

$$x_2 = 0.a_{21}a_{22}a_{23}a_{24}\cdots a_{2n}\cdots$$

$$x_3 = 0.a_{31}a_{32}a_{33}a_{34}\cdots a_{3n}\cdots$$

$$x_n = 0.a_{n1}a_{n2}a_{n3}a_{n4}\cdots a_{nn}\cdots$$

(Remember all of the numbers in [0,1] are be listed. *) where a_{ij} are all $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Now we define a number, x_* , say, as

$$x_* = 0.a_{*1}a_{*2}a_{*3}\cdots a_{*n}\cdots,$$

 $0.314 = 0.3139999 \cdots \checkmark$ $1 = 0.99999 \cdots \checkmark$ = $0.3140000 \cdots$ = 1.0000 where $a_{*1} \neq a_{11}, a_{*2} \neq a_{22}, \ldots, a_{*n} \neq a_{nn}, \cdots$ and all $a_{*k}, k \geq 1$ take value in $\{0, 1, 2, \cdots, 9\}$. Surely $x_* \in [0, 1]$, but x_* is not be listed. Since it equals neither of the x_n , hence we have a contradiction, i.e. the set [0, 1] is not countable.

6. Show that the Cardinal number of the real number \mathbb{R} is equal to the cardinal number of the open unit internal (0,1).

Proof: Let $f:(0,1)\to\mathbb{R}, x\mapsto f(x)=\tan(\pi x-\frac{\pi}{2}).$

• For any $0 < x_1 < 1, 0 < x_2 < 1$,

$$f(x_1) = f(x_2) \Longleftrightarrow \tan(\pi x_1 - \frac{\pi}{2}) = \tan(\pi x_2 - \frac{\pi}{2})$$
$$\iff \pi x_1 - \frac{\pi}{2} = \pi x_2 - \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
$$\iff x_1 = x_2 + k, k \in \mathbb{Z}.$$

Note that $0 < x_1 < 1, 0 < x_2 < 1$, then $k \equiv 0$, so $x_1 = x_2$. Therefore, f is a map and also is a injective map.

• For any $y \in \mathbb{R}$, let $x = \frac{\arctan y}{\pi} + \frac{1}{2}$, then 0 < x < 1 and $y = f(x) = \tan(\pi x - \frac{\pi}{2})$. Therefore f is a surjective map.

Hence, we have show that f is a bijective map, so $\operatorname{Card}((0,1)) = \operatorname{Card}(\mathbb{R})$.

7. Suppose $\{A_n; n=1,2,\ldots\}$ is an increasing sequence of sets.

Define $B_1 = A_1$, $B_2 = A_2 \setminus A_1$, and in general, $B_n = A_n \setminus A_{n-1} (n \ge 2)$. Show that

- (i) $\{B_n; n \geq 1\}$ are (pairwise) disjoint.
- (ii) For any $k \ge 1$, $\bigcup_{n=1}^{k} B_n = A_k$;
- (iii) $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n.$

Proof:

(i) For any $m, n \in \mathbb{N}_+$, $B_n = A_n \setminus A_{n-1} \subset A_n$ (where $A_0 \triangleq \emptyset$).

Without loss of generality, we can suppose m > n, note that $m, n \in \mathbb{N}_+$, so

$$m-1 \ge n \ge 1$$
.

Since $\{A_n; n = 1, 2, ...\}$ is an increasing sequence of sets, then $A_n \subset A_{m-1}$, yields

$$B_n \subset A_n \subset A_{m-1}$$
.

However, $B_m^c = (A_m \setminus A_{m-1})^c = (A_m \cap A_{m-1}^c)^c = A_m^c \cup (A_{m-1}^c)^c = A_m^c \cup A_{m-1} \supset A_{m-1}$. Altogether, we have for any $m > n \ge 1$,

$$B_n \subset A_n \subset A_{m-1} \subset B_m^c$$

i.e. $B_n \cap B_m = B_m \cap B_n = \emptyset$.

Hence, $\{B_n; n \geq 1\}$ are (pairwise) disjoint.

(ii) (By Mathematical induction) For k = 1, we have

$$\bigcup_{n=1}^{1} B_n = B_1 = A_1.$$

Suppose for k = m, we have $\bigcup_{n=1}^{m} B_n = A_m$, thus

$$\bigcup_{n=1}^{m+1} B_n = \left(\bigcup_{n=1}^m B_n\right) \cup B_{m+1} = A_m \cup B_{m+1}$$
$$= A_m \cup (A_{m+1} \setminus A_m) = A_{m+1} \quad \text{since } A_m \subset A_{m+1}.$$

According to mathematical induction, we get for any $k \geq 1$,

$$\bigcup_{n=1}^{k} B_n = A_k.$$

Method 2: Rigorous proof

If $x \in \bigcup_{n=1}^k B_n$, then $\exists k_0, 1 \leq k_0 \leq k$, s.t. $x \in B_{k_0} = A_{k_0} \setminus A_{k_0-1} \Rightarrow x \in A_{k_0}$. Since $\{A_n; n = 1, 2, \ldots\}$ is an increasing sequence of sets, so $A_{k_0} \subset A_k$, therefore $x \in A_k$, hence $\bigcup_{n=1}^k B_n \subset A_k$.

Suppose $x \in A_k$,

▶ if
$$x \notin A_{k-1}$$
, then $x \in A_k \setminus A_{k-1} = B_k \subset \bigcup_{n=1}^k B_n$, i.e. $x \in \bigcup_{n=1}^k B_n$;

 $\blacktriangleright \text{ if } x \in A_{k-1},$

▶ if
$$x \notin A_{k-2}$$
, then $x \in A_{k-1} \setminus A_{k-2} = B_{k-1} \subset \bigcup_{n=1}^k B_n$, i.e. $x \in \bigcup_{n=1}^k B_n$;

ightharpoonup if $x \in A_{k-2}$,

▶ if
$$x \notin A_{k-3}$$
, then $x \in A_{k-2} \setminus A_{k-3} = B_{k-2} \subset \bigcup_{n=1}^k B_n$, i.e. $x \in \bigcup_{n=1}^k B_n$;

 $\blacktriangleright \text{ if } x \in A_{k-3},$

▶ if
$$x \notin A_1$$
, then $x \in A_2 \setminus A_1 = B_2 \subset \bigcup_{n=1}^k B_n$, i.e. $x \in \bigcup_{n=1}^k B_n$;

▶ if
$$x \in A_1 = B_1 \subset \bigcup_{n=1}^k B_n$$
, i.e. $x \in \bigcup_{n=1}^k B_n$.

(iii) Since for any
$$n \ge 1$$
, $B_n \subset A_n$, $\Rightarrow \bigcup_{n=1}^{\infty} B_n \subset \bigcup_{n=1}^{\infty} A_n$.

In the other hand, for any $x \in \bigcup_{n=1}^{\infty} A_n, \Rightarrow \exists k_0 \geq 1, s.t. \ x \in A_{k_0}$. According to the above conclusion (ii), we have $A_{k_0} = \bigcup_{n=1}^{k_0} B_n \subset \bigcup_{n=1}^{\infty} B_n$, so $x \in \bigcup_{n=1}^{\infty} B_n$, yields

$$\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} B_n.$$

All in all, we can get $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

Formal proof: Since we know $\bigcup_{n=1}^k B_n = A_k$, let $k \to \infty$, we have

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\lim_{k \to \infty} k} B_n = \lim_{k \to \infty} \bigcup_{n=1}^k B_n = \lim_{k \to \infty} A_k = \bigcup_{n=1}^{\infty} A_n.$$

Remark:

$$A \cap B = \emptyset \iff A \subset B^c \iff B \subset A^c$$
.

8. Let S be the set of all the sequences with elements 0 and 1 only.

Is S countable or not? Prove your conclusion.

Proof: Note that

$$S = \{ \xi = \{x_n\}_{n=1}^{\infty} : x_n = 0 \text{ or } 1, n \ge 1 \}.$$

We will show that S is uncountable.

In fact, suppose S is countable, then it can be written as a sequence $\{\xi_1, \xi_2, \xi_3, \dots\}$ say. Suppose

$$\xi_1 = \{x_{1n}\}_{n=1}^{\infty} = \{x_{11}, x_{12}, x_{13}, x_{14}, \cdots, x_{1n}, \cdots\}$$

$$\xi_2 = \{x_{2n}\}_{n=1}^{\infty} = \{x_{21}, x_{22}, x_{23}, x_{24}, \cdots, x_{2n}, \cdots\}$$

$$\xi_3 = \{x_{3n}\}_{n=1}^{\infty} = \{x_{31}, x_{32}, x_{33}, x_{34}, \cdots, x_{3n}, \cdots\}$$

$$\xi_n = \{x_{nn}\}_{n=1}^{\infty} = \{x_{n1}, x_{n2}, x_{n3}, x_{n4}, \dots x_{nn}, \dots\}$$

where $x_{ij}, i, j \ge 1$ is 0 or 1. Now we define a new sequence, ξ^* , say, as

$$\xi^* = \{x_n^*\}_{n=1}^{\infty} = \{x_1^*, x_2^*, x_3^*, \cdots, x_n^*, \cdots\}$$

where for any $n \geq 1$,

$$x_n^* = 1, \quad if \quad x_{nn} = 0$$

$$x_n^* = 0, \quad if \quad x_{nn} = 1$$

Surely $\xi^* \in S$, but ξ^* is not be listed. Since it equals neither of the ξ_n , we have a contradiction! Hence S is uncountable.