Job Recommendation System: An NLP Based Implementation

Presented By

Alessandro Gentili - Manon Lainaud - Marc Martinez - Nigel Tao

1) Introduction

- Objective to this Milestone :Develop a recommendation system
- N
- Focus on three primary fields
 - Job focus
 - Relevant skills
 - Full-descriptive text

2) Related work

- Two tower architecture.proposed by UBER recommendation system
- Confit.A project which uses data augmentation and contrastive learning
- Entity extraction.Furthermore, Das et al. (2018)

Two tower architecture

CONFIT

- Data augmentation for reducing data sparsity
- Contrastive learning for obtaining a dense embedding space
- A simple transformer architecture is applied and cosine similarity is used

NER for resume extraction

- Implement NER techniques to extract relevant information
- Techniques such as POS tagging or tokenization are used
- The author deals with the problem of having different contexts for the same word.

3) Solution Concept And Approach

- Classical cleaning pipeline:
 - Named Entity Recognition (NER) for extracting job-relevant entities
- Two-Tower embedding model:
 - Learning semantic similarity through contrastive learning
 - Twin Tower Architecture
 - Matching Engine

Contrastive Learning

- How contrastive learning works:
 - A self-supervised learning technique that trains a model by comparing pairs of data points
 - The goal is to bring similar points closer while pushing dissimilar pairs apart
 - The main idea is that the model learns meaningful representation without labels
- How contrastive learning is applied:
 - Each JD and CV is **embedded** in a vector space
 - The model receives positive and negative pairs

Twin Tower Architecture

- Two independent neural networks:
 - **Job Tower**: encodes job description
 - **Resume Tower**: encodes resume content
- The embeddings are shared in the **same vector space**

Matching Engine

- 1. Indexing Job description:
 - Job embeddings are stored in FAISS index for fast lookup
- 2. Querying with a resume:
 - A resume is encoded as an embedded vector
 - FAISS retrieve the top-k closest nearest job embeddings based on cosine similarity
- 3. Ranking and final selection:
 - Matches are ranked by cosine similarity scores
 - The **top result** represent the best job position for the candidate

4) Experiments

- 2 datasets:
 - Linkedin Job Postings : focus on job requirements
 - Resume : **contains "Category"** columns essential for evaluating the model's performance and analysing its ability to generalize
- Data Preprocessing:
 - **Text cleaning**: lowercasing, tokenization
 - **Embedding generation:** Sentence-BERT (SBERT), capture the semantics meaning and moving beyond simple keyword matching
 - Additional features: TF-IDF
 - Data was transformed into share embedding space
 - **Category**: Enables sector-specific analysis -> help identify potential biases and enable visualizations like t-SNE to observe clustering patterns

Model Architecture

- Two-Tower Neural Network
 - **One tower:** Job description
 - **Second tower:** Resume
 - **SBERT embeddings:** follow by dense layers and normalization to ensure compatibility
 - **Training:** Contrastive loss to minimize distance for matching pairs
 - -> This ensured that the model learned meaningful semantic relationships

- Matching Process :
 - FAISS indexing: Ensuring fast retrieval of relevant matches
 - Input: Job description -> vector representation
 - Matching: **Nearest-neighbour** search in FAISS retrieves the closest matching resumes
 - Refined : **Cosine similarity**, prioritizing resumes with the highest semantic alignment to the job description
- Ethical Considerations:
 - **Data privacy** : No sensitive information
 - **Anonymized resume templates:** provided diverse and structured data without compromising privacy
 - Compliance: GDPR, maintaining realistic evaluation framework

Key results

- Systematically assess our model's performance across industries
- Leveraging structured embedding
- Fast and accurate retrieval
- Sector-specific evaluations -> deliver accurate and meaningful matches

5) Analysis

t-SNE Component 1

t-SNE Clustering of Resume Categories

- t-SNE plot reveals distinct clusters for certain job categories
- Clusters can be observed with isolated clusters highlighted
 - Indicate niche job roles or unique skill sets

Cosine Similarity vs FAISS

- Facebook Al Similarity Search proves to be of no use, as its results are often entirely mismatched
- The model was trained using cosine similarity rather than relying on FAISS
- FAISS should still provide sensible matches, yet it fails to do so, further indicating that it does not contribute meaningfully

Chef	- lead chef food truck manager (Match: 79.12%) - executive chef (Match: 78.24%) - chef owner (Match: 77.89%) - chef de cuisine (Match: 77.23%) - food preparation workers grill chef (Match: 77.12%)	 noc engineer (Match: 8.81%) finance accountant (Match: 4.96%) assistant store manager operations human resources (Match: 3.43%) hr manager (Match: 0.08%) graphic designer (Match: 0.00%)
Construction Worker	- construction worker (Match: 73.17%) - construction manager (Match: 72.06%) - construction manager ii (Match: 71.56%) - construction foreman (Match: 71.44%) - senior construction manager (Match: 71.18%)	 - sales representative (Match: 9.57%) - executive chef (Match: 4.14%) - director client services films operations technical services west coast (Match: 3.74%) - sales manager (Match: 2.88%) - sales associate (Match: 0.00%)

Identifying Specialities

Type of Resume	Cosine Similarity Evaluation	FAISS Evaluation
Nurse Practitioner	- practicum experience (Match: 74.69%) - charge nurse (Match: 74.24%) - licensed practical nurse step unit (Match: 73.90%) - registered nurse (Match: 73.76%) - field nurse (Match: 73.51%)	- volunteer hr ivolunteer (Match: 10.60%) - accountant (Match: 9.00%) - digital marketing manager (Match: 7.32%) - associate manager desig (Match: 6.41%) - partner business development (Match: 0.00%)
Physical Therapist Assistant	 physical therapist technician (Match: 73.97%) rehabilitation specialist massage therapist (Match: 70.72%) certified personal trainer (Match: 70.25%) dance educator (Match: 69.88%) physical therapy aide (Match: 69.73%) 	- online coaching personal training (Match: 6.81%)

Identifying Skill Sets

Differences in skill sets despite both being in legal

Legal Assistant	- cashier (Match: 66.93%) - customer service manager (Match: 66.44%) - sales associate cashier (Match: 66.42%) - customer service advocate (Match: 66.04%) - sales associate (Match: 65.93%)	- graphic designer (Match: 1.74%) - senior accountant (Match: 1.70%) - healthcare consultant (Match: 0.56%) - chef (Match: 0.25%) - digital marketing director (Match: 0.00%)
Legal Secretary	- legal assistant (Match: 72.51%)) - consultant (Match: 69.45%) - assistant company secretary (Match: 68.85%) - owner attorney mediator (Match: 68.47%) - consultant (Match: 67.97%)	 - business development specialist (Match: 15.15%) - administrative assistant (Match: 5.70%) - volunteer advocate (Match: 3.85%) - information technology specialist (Match: 1.12%) - engineering manager (Match: 0.00%)

Identifying Specialized Roles

Type of Resume	Cosine Similarity Evaluation	FAISS Evaluation
iOS Developer	 manager (Match: 66.48%) information technology intern test automation engineer (Match: 64.49%) corporate engineering support technician (Match: 63.51%) director engineering (Match: 63.35%) platform architect healthcare incubation lab hil (Match: 63.28%) 	- mineralogy engineering intern (Match: 3.64%) - director quality improvement network facilitation (Match: 1.00%) - digital marketing associate (Match: 0.35%) - accountant (Match: 0.00%)
Java Developer	 - java intern (Match: 72.23%) - information technology intern test automation engineer (Match: 71.77%) - technical designer (Match: 70.03%) - construction worker (Match: 69.86%) - consultant (Match: 69.14%) 	- sales representative (Match: 12.63%) - mineralogy engineering intern (Match: 11.18%) - associate teacher (Match: 5.70%) - executive chef (Match: 5.15%) - accountant (Match: 0.00%)

6) Conclusion

- Methodology & Implementation
 - Leveraged NER, TF-IDF, and contrastive learning for feature extraction.
 - Used SpaCy, TF-IDF, and dense embeddings to match CVs and JDs effectively.
 - Improved semantic relevance and ranking for job recommendations.
- Impact & Benefits
 - Reduces manual effort in recruitment for HR teams and candidates.
 - Enhances fairness & efficiency in job matching.
 - o Provides a scalable, modular solution for large datasets.

Thank you for your attention