GUI FOR OPTIMAL PARAMETER ESTIMATION OF RLC MODEL.

AUTORZY

Bartosz Koszołko Aleksander Czajczyński

$$f_0 = \frac{1}{2\pi\sqrt{L_m C_m}}.$$

$$R_m = 1/Y_{m0}$$

$$L_{m} = \frac{QR_{m}}{2\pi f_{0}}.$$

$$Q = \frac{f_0}{f_2 - f_1}$$

WPROWADZENIE

$$Y_{in_{-}RLC} = j\omega C_o + \omega C_1 \frac{R_1 \omega C_1 - j(\omega^2 L_1 C_1 - 1)}{(R_1 \omega C_1)^2 + (\omega^2 L_1 C_1 - 1)^2}$$

PREZENTACJA DANYCH

OPTYMALIZACJA

Zastosowaliśmy dwie metody optymalizacji wyników:

- Interpolacja sygnału w celu dokładniejszego znalezienia częstotliwości reznonansowej
- Użycie metody najmniejszych kwadratów w celu dopasowania funkcji do zadanych danych.

Dzięki temu można dokładniej oszacować parametry RLC

PREZENTACJA WYNIKÓW

GUI

DZIĘKUJEMY ZA UWAGĘ