Heat Control System in Vehicles

- By Parth Zala

Table of contents

- 1. Description
- 2. Features
- 3. SWOT Analysis
- 4. 5W's & 1H

Requirements

- 1. High level requirements
- 2. Low level requirements

Block Diagram and Blocks explanation

- 1. Block Diagram
- 2. Sensors
- 3. Actuators
- 4. Micro controller and memory

Architecture

- 1. Block Diagram
- 2. Flow Chart

Test plan and output

- 1. High level test plan
- 2. Low level test plan

Application

Output

References

1 About the Temperature Monitoring System

1.1 Introduction

One of the most important aspects of our project is monitoring. This technology is utilised to determine whether or not a passenger is there, and if the passenger is present, our machine begins to evolve its functionality. So, in recent years, everything has been digitised, and everyone is looking for new products to make their lives simpler. The main goal of our project is to design and expand a system that can track a passenger's life as well as monitor and display heat.

1.2 Features

It's capable of determining whether or not the customer is still inside the car. If a passenger is present inside the vehicle, it will provide the signal. The heat will be decided after the indication.

The driver and the passenger may have access to changing the temperature inside the vehicle.

Because the presentation is supplied within the system, the passenger may change the temperature by glancing at the show.

1.3 S.W.O.T Analysis

Strengths

Easy to adjust the temperature value.

The machine is robust.

Low cost.

Modular Based Programs.

User Friendly.

Weakness

It's handiest beneficial for the international locations which might be having low temperature.

Opportunities

It can be practised by replacing heater by air conditioners so that it will be usefull in all the countries

Threats

Not suitable for average or high temperature environment.

5W,s And 1H

WHAT: Temperature Monitoring System

WHERE: Used in Automotive Industries

WHEN: At low Temperature

2 Requirements

2.1 High Level Requirements

High Level Requirements	Description		
HLR1	Temperature Sensor		
HLR2	Switches		
HLR3	Heat Generation		
HLR4	Microcontroller		
HLR5 Software used			
HLR6	Display		

2.2 Low Level Requirements

Low Level Requirements	Description	
100 A	Thermoelectric	
HLR1_LLR1	module	
HLR2_LLR1	Push Button	
HLR3_LLR1	ADC with PWM-fast	
HLR3_LLR2 LM35 and ADC		
HLR4_LLR1	ATmega328	

3 Block Diagram and Blocks explination

3.1 BLOCK DIAGRAM

3.2 SENSORS

• Temperature Sensor (Thermistor)

Thermistors are a very accurate and cost- effective sensor for measuring temperature.it is the NTC thermistor that is commonly used to measure temperature

Resistence produces change in voltage, this voltage is taken as input to micro controller.

3.3 ACTUATORS

LCD Display:

Displays each and every value we enter in our keypad along with Temperature.

• LED:

A light-emitting diode is a semiconductor light source that emits light when current flows through i

3.4 MICRO CONTROLLER

An integrated circuit that contains a microprocessor along with memory and associated circuits and that controls the whole system. Here I am using ATmega-328 controller as part of project requirement.

3.5 Power Supply

The DC Power supply powers Microcontroller and other components in the system. Here I am using 5V Dc supply to power the circuit.

3.6 Push Button Switch

Push button switch is connected to the microcontroller through a switch inorde to limit the flowing current.

4 Architecture

• 4.1 Block Diagram

4.1.1 Flow Chart

5 Test plan and output

5.1 HIGH LEVEL TEST PLAN

Test ID	Description	Input	Output	Status
1	Is person seated	push button=1	push button=1	PASS
2	Is person not seated	push button=0	push button=0	PASS
3	Temperature Request	Temp=0	heater=Off	PASS
4	Temperature Request	Temp=10	heater=10 degree generation	PASS
5	Temperature Request	Temp=15	heater=15 degree generation	PASS
5	Temperature Request	Temp=23	heater=23 degree generation	PASS
7	Temperature Request	Temp=33	heater=33 degree generation	PASS
3	LED ON	Button=1 && Heater=1	LED=1	PASS
9	LED OFF	Button=0 && Heater=0	LED=0	PASS
*		Temperature	Temperature	
0 LCD Display	23 degree	23 degree	PASS	

6 Application

- It's capable of determining whether or not the customer is still inside the car.
- If a passenger is present within the vehicle, the indicator will be given.
- The heat will be decided after the indication.
- Both the driver and the passenger may have access to changing the temperature within the vehicle.
- Because the display is presented within the system, the passenger may change the temperature by glancing at the show.

Simulation Diagram:

7 References

- 1. https://www.electronicshub.org/digital-temperature-sensor-circuit/
- 2. https://www.projectsof8051.com/sms-based-weather-report-information-system/amp/
- 3. https://www.projectsof8051.com/microcontroller-based-overheat-detector-using-temperature-sensor-with-buzzer-indication/amp/