

SDU Summer School

Deep Learning

Summer 2018

Deep Feedforward Networks

Deep Feedforward Networks

PART I

- Feedforward Networks
- Output Units
- Hidden Units
- Architecture Design

PART II

- Gradient-Based Learning
- Backpropagation

The Neuron ... in Nature

The Artificial Neuron

- An artificial Neuron consists of
 - A number of weighted inputs
 - An activation function
 - The generated output

Connecting to a Network

- We normally have more than one node
- Multiple Nodes are arranged in layers
- Each layer receives the generated output from the previous layer

More Mathematically View

K outputs $y_1,...y_K$ for a given input x Hidden layer consists of M units

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

$$f_m^{\ (1)} = z_m = h(\mathbf{x}, \mathbf{w}_m^{\ (1)}), \ m = 1,..M$$

 $f_k^{\ (2)} = \boldsymbol{\sigma} \ (\mathbf{z}, \mathbf{w}_k^{\ (2)}), \ k = 1,..K$

Note that there are M versions of $f^{(1)}$ and K versions of $f^{(2)}$

More Compact Representation

- We can summarize these networks to their essential parts:
- We receive the vector x and perform an affine transformation according to the weight matrix

$$h' = Wx + b$$

- Does this ring a bell? Linear regression anyone?
- Afterward, the internal representation is component wise feed through an activation function $h_i = g(h_i)$ to generate the input vector \boldsymbol{h} for the next layer

Composition of Complicated Functions

- Model is associated with a directed acyclic graph describing how functions composed
 - E.g., functions $f^{(1)}$, $f^{(2)}$, $f^{(3)}$ connected in a chain to form

$$f(x) = f^{(3)} \left(f^{(2)} \left(f^{(1)}(x) \right) \right)$$

- $f^{(1)}$ is the first layer, $f^{(2)}$ the second, etc.
- The length of the chain is the depth of the model
- The name deep learning arises from this terminology
- Final layer of a feedforward network, (here $f^{(3)}$) is the output layer

Regarding the Depth of a Model

$$p(y = 1 | \mathbf{x}; \mathbf{w}) = \sigma\left(\left[w_1, w_2\right] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right)$$

What are Hidden Layers

- Behavior of other layers is not directly specified by the data
- Learning algorithm must decide how to use those layers to produce a final value that is close to y
- Training data does not say what individual layers should do
 - This is one of the main tasks: Define the appropriate structure of the network and the hidden layers
- Since the desired output for these layers is not shown, they are called hidden layers

Extending Linear Models

To represent non-linear functions of x

- Apply linear model to transformed input $\phi(x)$ with non-linear ϕ
 - Equivalently kernel trick of SVM obtains nonlinearity
- Function is nonlinear wrt x but linear wrt $\phi(x)$
- We can think of ϕ as providing a set of features providing a new representation for x
- Get ϕ
 - Generic functions: There exists a set of useful kernel functions
 - Manually engineer ϕ : Laborious and not transformable
 - **Deep Learning:** Learn ϕ

The XOR Problem

- We are trying to approximate the XOR function
 - Our training points: $X = \{[0,0]^T, [1,0]^T, [0,1]^T, [1,1]^T\}$
 - Using linear regression: $y = f([x_1, x_2]; \mathbf{w}, b) = \mathbf{x}^T \mathbf{w} + b$ to learn XOR
 - When using "mean squared error" as loss function, the result would be w=0 and $b=\frac{1}{2}$... horizontal line outputting 0.5 everywhere

The XOR Problem

- We are trying to approximate the XOR function
 - Our training points: $X = \{[0,0]^T, [1,0]^T, [0,1]^T, [1,1]^T\}$
 - Using linear regression: $y = f([x_1, x_2]; \mathbf{w}, b) = \mathbf{x}^T \mathbf{w} + b$ to learn XOR
 - When using "mean squared error" as loss function, the result would be w=0 and $b=\frac{1}{2}$... horizontal line outputting 0.5 everywhere
- Now lets use a FFN
 - One hidden layer, containing two units
 - Both representations are equivalent
 - Matrix W describes mapping x to h
 - Vector w describes mapping h to y
 - (biases omitted)

What is gonna be computed

Layer 1 (hidden layer): vector of hidden units \boldsymbol{h} computed by function

$$\boldsymbol{h} = f^{(1)}(\boldsymbol{x}; \boldsymbol{W}, c)$$

- c are bias variables
- Layer 2 (output layer) computes

$$y = f^{(2)}(\boldsymbol{h}; \boldsymbol{w}, b)$$

- w are linear regression weights
- Output is linear regression applied to h rather than to x
- Complete model is

$$f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x; W, c), w, b)$$

Activation Function

If we choose both $f^{(1)}$ and $f^{(2)}$ to be linear, the total function will still be linear; which is insufficient (as already seen)

Activation Function:

In linear regression we used a vector of weights **w** and scalar bias b

$$y = x^T w + b$$

- Now we describe an affine transformation from a vector x to a vector h, so an entire vector of bias parameters is needed
- Activation function g is typically chosen to be applied elementwise

$$h_i = g(x^T W_{:i} + c_i)$$

Default Activation Function: ReLU

Activation:

$$g(z) = \max\{0, z\}$$

- This already yields to a non-linear
 - transformation
 - But still piecewise linear
 - Preserves couple of nice properties making gradientbased learning easy
 - Generalizes well

The complete equation is now:

$$f(x; W, c, w, b) = w^{T} \max\{0, W^{T}x + c\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, b = 0 \text{ and } \mathbf{X} = \begin{bmatrix} 0101 \\ 0011 \end{bmatrix}^T$$

The complete equation is now:

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$ and $\mathbf{X} = \begin{bmatrix} 0101 \\ 0011 \end{bmatrix}^T$

$$XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

The complete equation is now:

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$ and $\mathbf{X} = \begin{bmatrix} 0101 \\ 0011 \end{bmatrix}^T$

The complete equation is now:

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \mathbf{b} = 0 \text{ and } \mathbf{X} = \begin{bmatrix} 0101 \\ 0011 \end{bmatrix}^T$$

The complete equation is now:

$$f(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}, b) = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $b = 0$ and $\mathbf{X} = \begin{bmatrix} 0101 \\ 0011 \end{bmatrix}^T$

"Learned XOR"

Two points that must have output 1 have been collapsed into one §

- Can be separated in a linear model:
 - For fixed h_2 output has to increase in h_1
- Of course, we "cheated": We have "guessed" the parameters correctly which lead to the desired result
- In reality: Millions of parameters which we have to actually learn

Deep Feedforward Networks

PART I

- Feedforward Networks
- Output Units
- Hidden Units
- Architecture Design

PART II

- Gradient-Based Learning
- Backpropagation

Output Units

- The choice of cost function is **tightly** coupled with the choice of output unit (later...)
- Most of the time we use cross-entropy between data distribution and model distribution (later ...)
- Choice of how to represent the output then determines the form of the cross-entropy function

Role of a Output Unit

- Any output unit is in principal also usable as a hidden unit
- A feedforward network provides a hidden set of features $h = f(x; \theta)$
- Role of output layer is to provide some additional transformation from the features to the task that network must perform
- **Common Output Units**
 - **Linear units:** no non-linearity (used for Gaussian distributions)
 - Sigmoid units (used for Bernoulli distributions)
 - **Softmax units** (used for Multinoulli distributions)

Linear Units for Gaussian Output Distributions

- Linear unit: simple output based on affine transformation with no nonlinearity
- Given features h, a layer of linear output units produces a vector $\widehat{\mathbf{y}} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$
- Linear units are often used to produce mean \hat{y} of a conditional Gaussian distribution

$$P(\mathbf{y}|\mathbf{x}) = N(\mathbf{y}; \widehat{\mathbf{y}}, \sigma^2)$$

Sigmoid Units for Bernoulli Output Distributions

- Task of predicting value of binary variable y
 - Classification problem with two classes
- Maximum likelihood approach is to define a Bernoulli distribution over y conditioned on x
- Neural net needs to predict $p(y = 1|x) \in [0,1]$: $P(y = 1|x) = \max\{0, \min\{1, w^T h + b\}\}$
 - We would define a valid conditional distribution, but cannot train it effectively with gradient descent
 - A gradient of 0: learning algorithm cannot be guided

Sigmoid Units

Sigmoid always gives a gradient

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{h} + b)$$

with

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Sigmoid Unit has two components:
 - A linear layer to compute

$$z = \mathbf{w}^T \mathbf{h} + b$$

A sigmoid activation function to convert zinto a probability

Softmax units for Multinoulli Output

- Any time we want a probability distribution over a discrete variable with n values we may us the softmax function
- Softmax most often used for output of classifiers to represent distribution over *n* classes
 - Also inside the model itself when we wish to choose between one of n options
- For the Binary case we have produced a single number

$$\hat{y} = P(y = 1 | \mathbf{x})$$

Now, we have to produce a vector $\hat{\boldsymbol{y}}$

$$\hat{y}_i = P(y = i | \mathbf{x})$$

Softmax Defintion

- The same procedure as for the Bernoulli distribution
- We have a linear layer predicting unnormalized log probabilities

$$z = W^T h + b$$

with

$$z_i = \log \widehat{P}(y = i | \mathbf{x})$$

Softmax can then exponentiate and normalize z to get \widehat{y}

$$\operatorname{softmax}(z)_{i} = \frac{\exp(z_{i})}{\sum_{j} \exp(z_{j})}$$

Softmax Regression

Deep Feedforward Networks

PART I

- Feedforward Networks
- Output Units
- Hidden Units
- Architecture Design

PART II

- Gradient-Based Learning
- Backpropagation

General Construction of a Hidden Unit

- Very Similar to an output unit
- Accepts a vector of inputs x and computes an affine transformation $z = W^T x + b$
- Computes an element-wise non-linear function q(z)
- Most hidden units are distinguished from each other by the choice of activation function g(z)
 - We look at: ReLU, Sigmoid and tanh, and other hidden units

Choice of Hidden Unit

- We now look at how to choose the type of hidden unit in the hidden layers of the model
- Design of hidden units is an active research area that does not have many definitive guiding theoretical principles
- ReLU is an excellent default choice
- But there are many other types of hidden units available
- When to use which kind?
 - Impossible to predict in advance which will work best
 - Design process is trial and error

Is Differentiability necessary?

- Some hidden units are not differentiable at all input points
 - Most notably: Rectified Linear Function

$$g(z) = \max\{0, z\}$$

is not differentiable at z=0

- May seem like it invalidates for use in gradient-based learning
- In practice gradient descent still performs well enough for these models to be used in ML tasks
- Not differentiable hidden units are usually non-differentiable at only a small number of points

Left and Right Differentiability

- Function g(x) has a left and right derivate:
 - defined by the slope Immediately left of *x*
 - defined by the slope Immediately right of x

In case of $g(x) = \max\{0, z\}$ the left derivate at z = 0 is 0, the right derivate is 1.

Software normally reports either of the values as derivate

The ReLU

$$\mathbf{h} = g(\mathbf{W}^T \mathbf{x} + \mathbf{b})$$
$$g(\mathbf{x}) = \max\{0, \mathbf{x}\}$$

- Good practice to set all elements of \boldsymbol{b} to a small value such as 0.1
 - This makes it likely that ReLU will be initially active for most training samples and allow derivatives to pass through
- Generalizations of ReLU
 - Perform comparably to ReLU and occasionally perform better
 - ReLU cannot learn on examples for which the activation is zero
 - Generalizations guarantee that they receive gradient everywhere

Generalizations of ReLU

Three methods based on using a non-zero slope α_i when $z_i < 0$:

$$h_i = g(\mathbf{z}, \boldsymbol{\alpha})_i = \max(0, z_i) + \alpha_i \min(0, z_i)$$

- Absolute-value rectification:
 - fixes $\alpha_i = -1$ to obtain g(z) = |z|
- Leaky ReLU:
 - fixes α_i to a small value like 0.01
- Parametric ReLU or PReLU
 - treats α_i as a learnable parameter

Maxout Units

- Maxout units further generalize ReLUs
- Instead of applying element-wise function g(z), maxout units divide z into groups of k values
- Each maxout unit then outputs the maximum element of one of these groups:

$$g(\mathbf{z})_i = \max_{j \in G^{(i)}} z_j$$

with $G^{(i)}$ is the set of indices for group i, $\{(i-1)k+1,...,ik\}$

 A maxout unit can learn a piecewise linear, convex function with up to k pieces

Maxout

- Thus seen as learning the activation function itself rather than just the relationship between units
- With large enough k, approximate any convex function
- A maxout layer with two pieces can learn to implement the same function as a traditional layer using ReLU or its generalizations

Logistic Sigmoid

Prior to introduction of ReLU, most neural networks used logistic sigmoid activation

$$g(z) = \sigma(z)$$

Or the hyperbolic tangent

$$g(z) = \tanh(z)$$

These activation functions are closely related because $tanh(z) = 2\sigma(2z) - 1$

Sigmoid units are used to predict probability that a binary variable is 1

Sigmoid Saturation

- Sigmoidals saturate across most of domain
 - Saturate to 1 when z is very positive and 0 when z is very negative
 - Strongly sensitive to input when z is near 0
 - Saturation makes gradient-learning difficult
- ReLU and Softplus increase for input >0

Sigmoid vs tanh Activation

- Hyperbolic tangent typically performs better than logistic sigmoid
- It resembles the identity function more closely

$$tanh(0) = 0$$
 while $\sigma(0) = 1/2$

Because tanh is similar to identity near 0, training a deep neural network

$$\widehat{y} = \mathbf{w}^T \tanh(\mathbf{U}^T \tanh(\mathbf{V}^T \mathbf{x}))$$

resembles training a linear model

$$\widehat{\boldsymbol{y}} = \boldsymbol{w}^T \boldsymbol{U}^T \boldsymbol{V}^T \boldsymbol{x}$$

so long as the activations can be kept small

They are still useful

- Sigmoidal more common in settings other than feed-forward networks
- Recurrent networks, many probabilistic models and autoencoders have additional requirements that rule out piecewise linear activation functions
- They make sigmoid units appealing despite saturation

Other Output Units

Cosine

$$\boldsymbol{h} = \cos(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b})$$

Feedforward networks on MNIST obtained error rate of less than 1%

Radial Basis

$$h_i = \exp\left(-\frac{1}{\sigma^2} \|\boldsymbol{W}_{:j} - \boldsymbol{x}\|^2\right)$$

Becomes more active as ${m x}$ approaches a template $W_{::i}$

Softplus

$$g(a) = \zeta(a) = \log(1 + e^a)$$

Smooth version of the rectifier

Hard tanh

$$g(a) = \max(-1, \min(1, a))$$

Shaped similar to tanh and the rectifier but it is bounded

Deep Feedforward Networks

PART I

- Feedforward Networks
- Output Units
- Hidden Units
- Architecture Design

PART II

- Gradient-Based Learning
- Backpropagation

A mostly complete chart of Neural Networks

> https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

A mostly complete chart of Neural Networks

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

A mostly complete chart of Neural Networks

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Main Architectural Considerations

- 1. Choice of depth of network
- 2. Choice of width of each layer
- Deeper networks have
 - Far fewer units in each layer
 - Far fewer parameters
 - Often generalize well to the test set
 - But are often more difficult to optimize
- Ideal network architecture must be found via experimentation guided by validation set error

On the Power of Neural Networks

- A linear model, mapping from features to outputs via matrix multiplication, can by definition represent only linear functions.
 - Easy to learn
 - Cost function results in convex optimization problem

The universal approximation theorem states that a feedforward network with a linear output layer and at least one hidden layer with any "squashing" activation function and enough units (e.g. sigmoid) can approximate any Borel measurable function (with some restrictions).

- We don't need specialized model families for approximating functions
- However, it does not state how to learn and how to design the appropriate network

Implication of Theorem

- Whatever function we are trying to learn, a large MLP will be able to represent it
- However we are not guaranteed that the training algorithm will learn this function
 - Optimizing algorithms may not find the parameters
 - May choose wrong function due to over-fitting
- No Free Lunch: There is no universal procedure for examining a training set of samples and choosing a function that will generalize to points not in training set

Function Families and Depth

- Some families of functions can be represented efficiently in a deep network but require much larger networks if the model is shallow
- In some cases no. of hidden units required by shallow model is exponential in n
- Piecewise linear networks (which can be obtained from rectifier nonlinearities or maxout units) can represent functions with a no. of regions that is exponential in d

Advantage of deeper networks

- Absolute value rectification creates mirror images of function computed on top of some hidden unit, wrt the input of that hidden unit.
- Each hidden unit specifies where to fold the input space in order to create mirror responses.
- By composing these folding operations we obtain an exponentially large no. of piecewise linear regions which can capture all kinds of repeating patterns

Intuition of Depth

- Any time we choose a ML algorithm we are implicitly stating a set of beliefs about what kind of functions that algorithm should learn
- Choosing a deep model encodes a belief that the function should be a composition several simpler functions
- The learning problem consists of discovering a set of underlying factors of variation that can in turn be described in terms of other, simpler underlying factors of variation.
- Empirically: Deeper Networks perform better ©

Deeper Networks

Test accuracy consistently increases with depth

Increasing parameters without increasing depth is not as effective

Other architectural considerations

- Most important specialized architectures are
- Convolutional Networks
 - Used heavily for computer vision
- Recurrent Neural Networks
 - Used for sequence processing
 - Have their own architectural considerations
- Non-chain architectures
 - Skipping going from layer i to layer i+2 or higher