

planetmath.org

Math for the people, by the people.

maximal element

Canonical name MaximalElement
Date of creation 2013-03-22 12:30:44
Last modified on 2013-03-22 12:30:44

Owner akrowne (2) Last modified by akrowne (2)

Numerical id 9

Author akrowne (2) Entry type Definition Classification msc 03E04

Defines greatest element
Defines least element
Defines minimal element

Let \leq be an ordering on a set S, and let $A \subseteq S$. Then, with respect to the ordering \leq ,

- $a \in A$ is the *least* element of A if $a \le x$, for all $x \in A$.
- $a \in A$ is a minimal element of A if there exists no $x \in A$ such that $x \leq a$ and $x \neq a$.
- $a \in A$ is the greatest element of A if $x \leq a$ for all $x \in A$.
- $a \in A$ is a maximal element of A if there exists no $x \in A$ such that $a \le x$ and $x \ne a$.

Examples.

- The natural numbers \mathbb{N} ordered by divisibility (|) have a least element, 1. The natural numbers greater than 1 ($\mathbb{N} \setminus \{1\}$) have no least element, but infinitely many minimal elements (the primes.) In neither case is there a greatest or maximal element.
- The negative integers ordered by the standard definition of \leq have a maximal element which is also the greatest element, -1. They have no minimal or least element.
- The natural numbers N ordered by the standard ≤ have a least element,
 1, which is also a minimal element. They have no greatest or maximal element.
- The rationals greater than zero with the standard ordering \leq have no least element or minimal element, and no maximal or greatest element.