T-8846

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-173250

(43)公開日 平成10年(1998) 6月26日

FΙ

H01L 41/08 H05K 1/16 A

В

審査請求 未請求 請求項の数4 OL (全 4 頁)

21)出願番号	特願平8-333481	(71)出顧人 000134257	
(21) MEXICA		株式会社トーキン	
(22) 出顧日	平成8年(1996)12月13日	宫城県仙台市太白区郡山(3] 日7 番 1 写
		(72)発明者 岡本 幸一	L
		宫城県仙台市太白区郡山方	て」日で番1サ
		株式会社トーキン内	
		(72)発明者 龍坂 克典	
		宫城県仙台市太白区郡山7	八丁日(倒ょり
		株式会社トーキン内	
		(72) 発明者 布田 良明	
		宫城県仙台市太白区郡山	公1日1母でな
		株式会社トーキン内	4 o #\
		(74)代理人 弁理士 後藤 洋介 (外2名)

(54) 【発明の名称】 圧電トランス電源

(57)【要約】

【課題】 小形化の要求を満足できる圧電トランス電源を得ることである。

【解決手段】 圧電トランスの外寸法より小さい可撓性 絶縁シート21を用いている。可撓性絶縁シート21と 圧電トランスとの電気的接続点は、圧電トランスの一面 に配置されており、回路基板31のスルーホール34a~34dを介して回路基板31の裏側のランド33a~33dとの電気的接続がなされる。

【特許請求の範囲】

複数の線状のパターン導体を一面に設け 【請求項1】 た可撓性絶縁シートと、電力を入力するための少なくと も1組の入力用電極と電力を取り出すための少なくとも 1つの出力用電極とを有する圧電トランスと、前記入力 用電極及び前記出力用電極を前記複数の線状のパターン 導体で各々電気的に接続すると共に、前記圧電トランス を支持・固定し前記圧電トランス及び前記可撓性絶縁シ ートを一体化するように覆うための絶縁カバーとを備 え、前記可撓性絶縁シートの一面は、圧電トランスの外 10 形寸法よりも小さくしたことを特徴とする圧電トランス 電源。

1

請求項1の圧電トランス電源において、 【請求項2】 前記絶縁カバーと前記可撓性絶縁シートと前記圧電トラ ンスとの電気的接続部は、回路基板と対向する前記圧電 トランスの一面上に配置したことを特徴とする圧電トラ ンス電源。

【請求項3】 請求項2の圧電トランス電源において、 前記回路基板は、前記可撓性絶縁シートと電気的接続を するためのランドを備え、このランドにスルーホールを 20 設けたことを特徴とする圧電トランス電源。

【請求項4】 請求項2の圧電トランス電源において、 前記可撓性絶縁シートは、前記圧電トランスと電気的接 続するためのランドを備え、このランドにスルーホール を設けたことを特徴とする圧電トランス電源。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、圧電トランスを用 いた圧電トランス電源に関するものである。

[0002]

【従来の技術】圧電セラミック矩形板を応用したデバイ スとして圧電トランスが知られている。現在、圧電トラ ンスに用いる振動子としてセラミックやニオブ酸リチウ ム単結晶を用いることが多く、一般的な構造としては、 図5や図6の概略図に示すように圧電振動子(セラミッ ク矩形板)11の表面あるいは側面にそれぞれ電力を入 力、出力できる入力用外部電極12a,12bと出力電 極13が形成されて、かつ電力の取り出しは、前記振動 子上に形成された電極にリード線41a, 41b, 42 を直接半田付けするか、入力用板バネ(バネ状の導体) 51a. 51b, 52で取り出す方法が一般的であっ た。

【〇〇〇3】一般に圧電トランスは、信頼性が高く、小 形化、低背化、低コスト化の要求が非常に強いが、従来 の圧電トランスの構成では、これらの要求を十分に満足 できなかったという欠点があった。

【0004】すなわち、図5、図6に示したように圧電 トランスにリード線等により接続するため、圧電トラン スの小形、低背化を図っても実装面積、工数が膨大とな った。これに代わるものとして、図7に示したような圧 50 ちセラミック矩形板11の内部に複数の入力用内部電極

電トランスを複数の線状のパターン導体23a~23d を有する可撓性絶縁シートを介して回路基板上に固定し た構造がある。この構造は、小形、低背化が可能で組立 工数もかからないという利点がある。

[0005]

【発明が解決しようとする課題】しかしながら、圧電ト ランスと可撓性絶縁シートとの電気的接続点22a~2 2 dは、圧電トランスの側面で行われており、可撓性絶 縁シートの導電パターンは素子の外側に形成されてい る。そのため、さらなる小形化の要求を満足することが できないという問題点があった。

【〇〇〇6】そこで、本発明の技術的課題は、小形化の 要求を満足できる圧電トランス電源を得ることである。 [0007]

【課題を解決するための手段】本発明によれば、複数の 線状のパターン導体を一面に設けた可撓性絶縁シート と、電力を入力するための少なくとも1組の入力用電極 と電力を取り出すための少なくとも1つの出力用電極と を有する圧電トランスと、前記入力用電極及び前記出力 用電極を前記複数の線状のパターン導体で各々電気的に 接続すると共に、前記圧電トランスを支持・固定し前記 圧電トランス及び前記可撓性絶縁シートを一体化するよ うに覆うための絶縁カバーとを備え、前記可撓性絶縁シ ートの一面は、圧電トランスの外形寸法よりも小さくし たことを特徴とする圧電トランス電源が得られる。

[0008]

【作用】電力の取り出しをするのに、線状のパターン導 体を有する可撓性絶縁シートを用いている。可撓性絶縁 シートの一面は、圧電トランスの外形寸法よりも小さい 30 ので、厚み側面ではなく、一面からのみ電力が取り出せ る。これにより、信頼性が高く、小形、低背化が実現さ れる。

[0009]

【発明の実施の形態】本発明の実施の形態による圧電ト ランス電源では、可撓性絶縁シートと圧電トランスの電 気的接続を圧電トランス形状内に配置されており、回路 基板のスルーホールを介して回路基板との電気的接続が なされる。これにより、圧電トランスの幅とほぼ等しい 回路基板が使用される。この結果、十分に信頼性を確保 し、低背化、低コスト化が図れた圧電トランス電源を供 給することができる。

【0010】以下に実施例を挙げることにより、本発明 の圧電トランスの実施の形態について、図面を参照しな がら詳細に説明する。

[0011]

40

【実施例】図1および図2は本発明の実施例に係る圧電 トランスの一実施例を示す上面図と底面図である。図3 は本発明の実施例に用いた圧電トランスの概略図であ る。図1に示すように圧電トランスは圧電振動子すなわ

3

15a, 15b (図4)を有し、内部電極と交互にそれぞれ電気的接続を持たせた1組の入力用外部電極12a, 12bを形成し、出力用外部電極13, 14a, 14bもセラミック矩形板11の端面に形成した。ここで圧電トランスの外形すなわちセラミック矩形板11の寸法は50mm×6mm×1.5mmであり、PZT系セラミックスを用い、内部電極はAg/Pdを一体焼結し、外部電極はAgを焼き付けにて形成した。

【0012】次に、圧電トランスとの接続用ランド22 a~dを有する可撓性絶縁シート(FPC)21を形成 10 する。圧電トランスの入力用外部電極12a,12b、出力用外部電極13,14a,14bに対して、FPC 21でのランド22a,22b,22c,22dを各々一対一に電気的に接続する。FPC21のランド22a,22c,22dはスルーホール34a~34dを介して、回路基板31の裏側のランド33a~33dと電*

*気的に接続されている。さらに、圧電トランスの振動の 節点周辺を、絶縁性の収縮チューブ35a, 35bを用 いて、圧電トランスと絶縁性可撓性シート(FPC)2 1と回路基板を一体化した。FPC21を用いた本発明 の実施例と、従来のFPC21を用いた構造の従来例 と、リード線を用いた構造の比較例との圧電トランス 源の特性比較を表1に示す。このとき、圧電トランス は、図4に示したような一体積層品(10層)であり、 φ2×200mmの冷陰極管を用いた。表1、から解る とおり、本発明の実施例の圧電トランス電源は同じFP Cを用いた従来例やリード線を用いた比較例と比較し て、大幅な小形化を実現しつつ、同特性が得られてい る。

[0013]

【表1】

表 1 圧電トランス電源の特性比較(入力電圧 20V)

	FPC使用		リード線使用	
	本発明の実施例	從来例	比較例	
出力電圧(V)	1410	1380	1410	
出力電流(mA)	6.0	6.0	6.0	
秦子温度(°C)	33	36	33	
形状寸法(mm)	9 × 130 × 5	12×130×5	20×120×7	

【0014】表2に本実施例の圧電トランス電源のエージングの結果を示すが、1000時間経過してもほとんど特性が劣化せず、信頼性を確保していることが分か ※

※る。

[0015]

【表2】

表 2 圧電トランス電源のエージング結果(入力電圧 20V)

エージング時間	0	500	1000
出力電圧(V)	1410	1404	1398
出力電流(mA)	B. 0	6.1	6.0
条子温度(℃)	33	34	33

[0016]

【発明の効果】以上説明したように、本発明の圧電トランス電源を用いれば、従来の特性を維持しつつ、圧電トランスの幅とほぼ等しい回路基板を使うことできるので、さらなる小形化が可能である。

【図面の簡単な説明】

【図1】本発明の実施例に係る圧電トランス電源の上面図である。

【図2】図1の圧電トランス電源の底面図である。

【図3】本発明の実施例に係る圧電トランス斜視図である。

【図4】図3の圧電トランス電源の断面図である。

【図5】従来の圧電トランスの斜視図である。

【図6】バネ状の導体を用いた圧電トランスの比較例の 斜視図である。

【図7】 FPCを用いた圧電トランスの従来例の上面図 50 32

である。

【符号の説明】

11 圧電振動子(セラミック矩形板)

12a, 12b 入力用外部電極

13 出力用外部電極(高電圧側)

40 14 a, 14 b 出力用外部電極(GND側)

15a, 15b 入力用内部電極

16b 出力用外部電極(高電圧側)

17b 出力用外部電極(GND側)

21 可撓性絶縁シート(FPC)

22a~22d 圧電トランスとの電気的接続のため に可撓性絶縁シート21に設けられたランド(圧電トラ ンスと可撓性絶縁シートとの電気的接続点)

23a~23d 導電パターン

31 回路基板

0 32 出力用コネクタ

33a~33d 可撓性絶縁シート21のランド22 a, 22c, 22dと電気的接続のために回路基板31 の裏面に設けられたランド

34a~34d スルーホール

35a, 35b 絶縁性収縮チューブ

【図1】

【図3】

【図5】

【図7】

6

41a, 41b 入力用リード線

42 出力用リード線

51a, 51b 入力用板バネ (バネ状の導体)

52 出力用板バネ

【図2】

【図4】

【図6】

