

自然语言处理

在线峰会

信息抽取与检索论坛

2021.07.10 (周六) 09: 00~17: 30

□ 12指技术 DataFunSummit

飞猪旅行酒店搜索 相关性建设

林睿 阿里巴巴飞猪算法专家

酒搜背景 Subject

基础建设 Subject

酒店相关性 Subject

相关性建模 Subject

过猪技术 | DataFunSummit

01

酒搜背景

Subject

酒店小搜

业务特点

- 多端多场景多意图
- 多元的搜索条件
- 决策周期长; 用户行为稀疏
- 周期性需求
- 个性化的结果

带来挑战

- 多维的搜索query
 - 用户: 距离、价格偏好
 - 关键词: POI、筛选条件
- 多维相关性需求
 - 空间
 - 价格
 - 文本

酒店搜索架构

02

酒店相关性

Subject

场景与相关性

特点

- 空搜/附近搜与景点/商圈搜都对距离相关性有比较强的需求,前者看重酒店与用户的距离,后者看重酒店与目标地点的距离。
- 空搜/附近搜需求较泛,排序偏用户个性化;景点/商圈搜用户有比较明确的需求,以满足用户需求为主。

空搜/附近搜

景点/商圈搜

场景与相关性

特点

- 空搜/附近搜与景点/商圈搜都对距离相关性有比较强的需求,前者看重酒店与用户的距离,后者看重酒店与目标地点的距离。
- · 空搜/附近搜需求较泛,排序偏用户个性化;景点/商圈搜用户有比较明确的需求,以满足用户需求为主。
- 名称搜注重文本相关性,以品牌、酒店名符合用户需求的酒店优先。
- 用户还有可能使用名称与商圈混合的搜索,需要综合文本相关性和空间相关性等,给出符合当前用户的最优排序

名称搜

混合搜

酒店的相关性

总结

- 酒店相关性是一个由文本、 空间、价格多元融合的相关 性
- · 受用户、场景、query等不同的条件影响,相关性的侧重点也会有所不同
- 相关性的多元化导致标注难度大,只能依赖点击和成交的label

用户

- 年龄
- 性别
- 购买力
- •常住地

.

场景

- 附近搜
- 景点搜
- 商圈搜
- 名称搜

.

query

- 关键词
- 筛选项
- 过滤条件

.

方案: 识别用户需求, 构建多元相关性, 根据用户需求得到最终的整体相关性

03 题目

基础建设

Subject

核心因子预估

背景

价格和距离是酒店购买决策中的重要组成部分,也是酒店相关性的重要一环,好的j需求预估能更好的构建酒店搜索相关性

面临问题

按实际物理意义划分,标签分布极度不 均匀

距离因子分布

价格因子分布

 $\operatorname{argmax}_{y \in [L]} \exp(w_y^\top \Phi(x)) / \pi_y^\tau = \operatorname{argmax}_{y \in [L]} f_y(x) - \tau \cdot \log \pi_y,$

核心实体识别

背景

- LBS召回是酒店召回的极为重要一环,这就依赖于POI识别的准确性。同时,POI的准确识别也为空间相关性的计算提供了支撑
- 酒店名称、酒店品牌的识别能更好的辅助用户意图的判断。

主要问题

- 实体词识别的准确率
- 实体词与业务中真实实体的映射

核心实体识别

方案

- Mention识别
 - 利用bert+crf的方式进行ner识别
 - 使用标注数据与实体库做数据增强
- 多路召回候选实体
 - 倒排精确召回
 - 向量召回
 - 用户行为召回
- 排序
 - 基于文本相似分、热度、点击、所在 城市等特征构建了简单的排序模型

04 题目

相关性建模

Subject

文本相关性

- 粗排
 - 利用计算好的文本匹配特征排序
- 精排
 - 利用文本匹配特征分档作为精排相关性特征
 - 利用原始的term和实体特征构建文本相关性网络

空间相关性

现状

- 用户酒店距离 & POI酒店距离特征与距离预估因子交叉
- 酒店、POI及用户的geohash id特征

问题

- 距离这个特征不能很好的衡量空间相关性
- geohash作为id特征过于稀疏,丢失了geohash中包含的地理信息

优化

• 将geohash转化为原始的二进制序列,用一个token list 表示,保留了原有的地理信息。

空间相关性

W						M					7					0					N					T				
	1	1	1	0	0	1	0	0	1	1	0	0	1	1	1	0	0	0	0	0	1	0	1	0	0	1	1	0	0	1

优点

- · 保留了空间信息,相邻的geohash最终在网络中的embedding相近
- 转化成了一个token序列,可以用文本的方式计算相关性

ご指技术 | DataFunSummit

多场景相关性

问题

- 酒店搜索的多端多场景,多元的相关性
- 不同场景对相关性侧重有异同
- 场景存在融合情况

方案

- 同时训练通用特征提取和不同场景的子任务特征提取,让不同场景关注不同的特征
- 在点击和成交预测上也是用分场景的分类器。

详情页特征

优化

在成交和点击之间,用户在酒店详情页上也会有丰富的 行为,但是传统的模型忽略了这一点。仅使用了点击与 成交的label

已指技术 | DataFunSummit

详情页特征

优化

- 在成交和点击之间,用户在酒店详情页上也会有丰 富的行为,但是传统的模型忽略了这一点。仅使用 了点击与成交的label
- 我们引入详情页行为预测任务作为辅助任务,期望 其为相关性任务优化带来增益
- 最终辅助任务和点击成交预估任务按照一定的人工 权重融合计算最终loss

$$loss = w_{click} \cdot loss_{click} + w_{pay} \cdot loss_{pay} + w_{detail} \sum_{1}^{N} loss_{label_n}$$

考虑到酒店购买决策周期较长,我们还引入了全域 的成交来优化酒店搜索的成交label

多场景成交预测

Future Work

Query分析

- 更精准的空间价格预估
 - 用空间分布预估替代距离分布预估
 - 构建价格比例分布预估

相关性

- 空间和文本相关性模型结构升级,价格相关性模型构建
- 引入历史搜索序列计算上下文的相关性

THANKS!

今天的分享就到这里...

Ending