CS 457, Fall 2019

Drexel University, Department of Computer Science Lecture 16

Today's Lecture

- Graph algorithms
 - Minimum Spanning Tree
 - Breadth First Search
 - Depth First Search
 - Topological Sorting
 - Strongly Connected Components
- Greedy algorithms

Graphs

- Things to know:
 - Path
 - Cycle
 - Sub-graph
 - Degree of a vertex
 - Maximum and minimum degree
 - Maximum number of edges
 - Connected components
 - Shortest path (weighted & unweighted)
 - Distance of two vertices
 - Tree (rooted tree)
 - Spanning tree of a graph
 - Acyclic graph
 - Bipartite graph

Definitions

- Given A graph G=(V,E), where
 - V is its vertex set, |V|=n,
 - E is its edge set, with $|E| = m = O(n^2)$
- If G is connected then for every pair of vertices u,v in G, there is path connecting them
- In an undirected graph, an edge (u, v)=(v, u).
- In a directed graph, (u, v) is different from (v, u).
- In a weighted graph there are weights associated with edges and/or vertices.
- Running time of graph algorithms are usually expressed in terms of n or m.

Graph Representations

- Adjacency List
 - Good for sparse graphs

- Adjacency Matrix
 - Quick edge existence query
 - Simple

Minimum Spanning Tree of a Weighted Graph

- Let G=(V,E) be a graph on n vertices, m edges, and a weight w on edges in E.
- Sub-graph T=(V,E') with $E'\subseteq E$ with no cycles is a spanning tree
- The weight of T is the sum of the weights of its edges: $w(T) = \sum_{(u,v) \in E'} w(u,v)$

Set Operations

- We will use the following set operations:
 - Make-Set(v): creates a set containing element v, i.e., $\{v\}$
 - Find-Set(u): returns the set to which v belongs to
 - Union(u,v): creates a set which is the union of two sets, the one containing v and the one containing u

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```


Prim's Algorithm

```
\begin{aligned} \text{MST-PRIM}(G, w, r) \\ 1 \quad & \textbf{for } \text{each } u \in G.V \\ 2 \qquad & u.key = \infty \\ 3 \qquad & u.\pi = \text{NIL} \\ 4 \quad & r.key = 0 \\ 5 \quad & Q = G.V \\ 6 \quad & \textbf{while } Q \neq \emptyset \\ 7 \qquad & u = \text{EXTRACT-MIN}(Q) \\ 8 \quad & \textbf{for } \text{each } v \in G.Adj[u] \\ 9 \quad & \textbf{if } v \in Q \text{ and } w(u, v) < v.key \\ 10 \quad & v.\pi = u \\ 11 \quad & v.key = w(u, v) \end{aligned}
```


Practice Problem

- Is the path between two vertices in an MST necessarily a shortest path between the two vertices in the full graph? Give a proof or a counterexample
 - Answer: No it is not. For example, consider a graph that forms a single n-vertex cycle. The minimum spanning tree will remove just one edge (u,v), significantly increasing the distance between u and v

Breadth First Search (BFS)

- Given a graph G = (V, E), BFS starts at some source vertex s and discovers which vertices are reachable from s
- The distance between a vertex v and s is the minimum number of edges on a path from s to v (the shortest path length)
- BFS discovers vertices in increasing order of distance, and hence can be used as an algorithm for computing shortest paths from s
- At any given time there is a frontier of vertices that have been discovered, but not yet processed.
- BFS first visits all vertices across the breadth of this frontier (hence the name)

BFS: coloring

- We will use the following coloring procedure to show the status of BFS at each instance of time:
 - Initially all vertices (except the source) are colored white, meaning that they are undiscovered
 - When a vertex has first been discovered, it is colored gray (and is part of the frontier)
 - When a gray vertex is processed, it becomes black

BFS Algorithm

BFS (G, s)

```
for each u \in G.V - \{s\}
1.
            u.color = WHITE
            u.d = \infty
           u.\pi = NIL
4.
      s.color = GRAY
      s.d = 0
      s.\pi = NIL
8.
      Q = \emptyset
      ENQUEUE(Q, s)
      while Q \neq \emptyset
10
            u = \mathsf{DEQUEUE}(Q)
11.
           for each v \in G. Adj[u]
12.
                 if v.color == WHITE
13.
                        v.color = GRAY
14.
                        v.d = u.d + 1
15.
16.
                        v.\pi = u
                        ENQUEUE(Q, v)
17.
18.
            u.color = BLACK
```


BFS predecessor subgraph of G

For a graph G = (V, E) with source S the predecessor subgraph of G is:

- $G_{\pi}=(V_{\pi},E_{\pi})$, where
- $V_{\pi} = \{v \in V : v \cdot \pi \neq \text{NIL}\} \cup \{s\}$
- $E_{\pi} = \{(v.\pi, v): v \in V_{\pi} \{s\}\}$

DFS Algorithm

```
DFS (G)
    for each vertex u \in G.V
          u.color = WHITE
2.
          u.\pi = NIL
    time = 0
    for each vertex u \in G.V
6.
          if u.color = WHITE
                    DFS-Visit(G,u)
7.
DFS-Visit(G,u)
    time = time + 1
    u.d = time
    u.color = GRAY
    for each vertex v \in G. Adj[u]
          if v.color == WHITE
5.
              v.\pi = u
              \mathsf{DFS}\text{-Visit}(G,v)
7.
    u.color = BLACK
    time = time + 1
10. u.f = time
```


Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Timestamps within vertices indicate discovery time/finishing times.

Depth-First Forest Edges

Classification of edges based on depth-first forest:

- Tree Edges: Edges in the depth-first forest G_{π}
- Back Edges: connecting a vertex to an ancestor in the depth-first tree
- Forward Edges: connecting a vertex to a descendant in the depth-first tree
- Cross edges: all other edges

Cycles in a Graph

- Time stamps of DFS help determine if a graph G = (V, E) contains any cycles
- Consider any DFS forest of G, and consider any edge (u, v) in E:
 - If this edge is a tree, forward, or cross edge, then u.f > v.f
 - If the edge is a back edge then u.f < v.f
- G has a cycle if and only the DFS forest has a back edge
- Checking if G is acyclic reduces to checking if it has a back edge

Directed Acyclic Graph

- A directed acyclic graph is often called a DAG for short.
- DAG's arise in many applications with precedence / ordering constraints
- In general a precedence constraint graph is a DAG in which
 - vertices are tasks and
 - the edge (u, v) means that task u must be completed before task v begins.

Topological Sort

• A topological sort of a DAG is a linear ordering of the vertices of the DAG such that for each edge (u, v), u appears before v in the ordering.

Example

Topological Sort Algorithm

TopologicalSort(*G*)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

- Running time
- DFS: $\Theta(n+m)$
- Insertion to linked list: $\Theta(n)$

Strongly Connected Components

Strongly Connected Componenets(G)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop of DFS, use decreasing order w.r.t. v.f
- 4. return the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly Connected Components

Strongly Connected Componenets(G)

- 1. call DFS(G) to compute finishing times v.f for each vertex v
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop of DFS, use decreasing order w.r.t. v.f
- 4. return the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Practice Problems

 A root of a DAG is a vertex r such that every other vertex of the DAG can be reached from r using a directed path. Give an algorithm that determines whether a given DAG has a root.

• Provide an algorithm that, given a directed acyclic graph G = (V, E) and two vertices $s, t \in V$, returns the number of simple paths from s to t in G.