FUNDAMENTAL MATHEMATICS FOR ROBOTICS Numerical Methods

Optimization

Optimization

- One-dimensional Unconstrained Optimization
 - Golden-Section Search
 - Newton's Method
- Multidimensional Unconstrained Optimization

Multidimensional Unconstrained Optimization

 Techniques to find minimum and maximum of a function of several variables

- These techniques are classified as:
 - That require derivative evaluation
 - Gradient or descent (or ascent) methods
 - That do not require derivative evaluation
 - Non-gradient or direct methods

Direct Methods

Direct Methods: Random Searches

- Based on evaluation of the function randomly at selected values of the independent variables
- If a sufficient number of samples are conducted, the optimum will be eventually located.
- Example: maximum of a function

$$f(x, y)=y-x-2x^2-2xy-y^2$$

can be found using a random number generator

Direct Methods: Random Searches

$$0 \le r \le 1$$
 $x = x_l + (x_u - x_l)r$ $y = y_l + (y_u - y_l)r$

- Take sufficient number of samples
- Keep track of the maximum value from among random trials

Direct Methods: Random Searches

Advantages

- Works even for discontinuous and nondifferentiable functions.
- Always find global optimum rather than a local optimum

Disadvantages

- As the number of independent variables grows, the task can become onerous
- Not efficient, it does not account for the behavior of underlying function

Direct Methods: Univariate and Pattern Searches

 More efficient than random search and still doesn't require derivative evaluation.

- The basic strategy is:
 - Change one variable at a time while the other variables are held constant.
 - Thus problem is reduced to a sequence of one-dimensional searches that can be solved by variety of methods.
 - The search becomes less efficient as you approach the maximum.

Direct Methods: Powell's Method

- If points 1 and 2 are obtained by one dimensional searches in the same direction but from different starting points
 - The line formed by 1 and 2 will be directed toward the maximum
 - Conjugated Direction

Direct Methods: Powell's Method

Gradient Methods

The Gradient

- If f(x,y) is a two dimensional function, the gradient vector tells us
 - What direction is the steepest ascend?

f(x,y) at point x=a and y=b

How much we will gain by taking that step?

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j \quad \text{or } delf$$
Directional derivative of

t direction is the steepest ascend?

much we will gain by taking that step?

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j \quad \text{or } delf$$

$$\nabla f(x) = \begin{cases} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{cases}$$

Directional derivative of

□ Example $f(x,y) = xy^2$

Direction of steepest ascent is perpendicular, or orthogonal to the elevation contour at the coordinate (2,2)

The Hessian

- For one dimensional functions both first and second derivatives are valuable information for searching out optima
- First derivative provides (a) the steepest trajectory of the function and (b) tells us that we have reached the maximum
- Second derivative tells usthat whether we are a maximum or minimum (or saddle)
- For two dimensional functions whether a maximum or a minimum occurs involves not only the partial derivatives w.r.t. x and y but also the second partials w.r.t. x and y

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

$$+ \text{Hessian of f}$$

$$|H| = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial x^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$$

$$+ \text{Determinant of Hessian}$$

$$|H| > 0 \text{ and } \frac{\partial^2 f}{\partial x^2} > 0, \text{ then } f(x, y) \text{ has a local minimum}$$

$$|H| > 0 \text{ and } \frac{\partial^2 f}{\partial x^2} < 0, \text{ then } f(x, y) \text{ has a local maximum}$$

$$|H| < 0, \text{ then } f(x, y) \text{ has a saddle point}$$

- Start at an initial point (x_o,y_o), determine the direction of steepest ascend (the gradient).
- Search along the direction of the gradient, h_o, until we find maximum.
- Process is then repeated.

- The problem has two parts
 - Determining the "best direction" and
 - Determining the "best value" along that search direction.
- Steepest ascent method uses the gradient approach as its choice for the "best" direction.
- □ Totransform a function of x and y into a function of h along the gradient section:

$$x = x_0 + \frac{\partial f}{\partial x} h$$

$$y = y_0 + \frac{\partial f}{\partial y} h$$

$$h \text{ is distance along the } h \text{ axis}$$

 \Box Example $f(x) = 2xy + 2x - x^2 - 2y^2$

Constrained Optimization

Constrained Optimization

- Optimization problem that deals with meeting a desired objective in the presence of constraints
 - Desired objective such as maximizing profit, minimizing cost
 - Constraints such as limited resources.
- Linear Constrained Optimization
 - If both objective function and constraints are linear
- Nonlinear Constrained Optimization
 - Otherwise
- Linear Programming (LP)
 - Doesn't mean "computer programming"
 - Means "Scheduling" or "Setting an agenda"

Standard Form

Maximizing
$$Z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

- $c_j =$ payoff of each unit of the j^{th} activity
- $x_i =$ magnitude of the j^{th} activity
- \square Z = the total payoff due to the total number of activities n

Constraint
$$s \Rightarrow a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n \le b_i$$

- b_i = amount of the i^{th} resource that is available
- \square All activities must have a positive value $x_1 \ge 0$

Example

Resource	Product		
	Regular	Premium	Resource Availability
Raw gas Production time Storage	7 m ³ /tonne 10 hr/tonne 9 tonnes	1 1 m ³ /fonne 8 hr/fonne 6 tonnes	77 m³/week 80 hr/week
Profit	150/tonne	175/tonne	

Graphical Solution

- Four possible outcomes generally obtained in a linear programming problem
 - Unique Solution. The maximum objective function intersects a single point
 - Alternate Solution. The problem has an infinite number of optima
 - No feasible Solution. The problem is overconstrained to the point that no solution can satisfy all constraints
 - Unbounded Problems. The problem is underconstrained and therefore open-ended

The Simplex Method

- Not every extreme point is feasible
 - Limiting ourselves to feasible extreme points narrows the problem
- Simplex method
 - offers a preferable strategy that charts a selective course through a sequence of feasible extreme points
 - Arrive at the optimum in an extremely efficient manner VS.
 exhaustively evaluating the value

Linear Programming in Standard Form

Max
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$
 $\ldots \qquad \ldots$
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$
 $x_1 \ge 0, \ldots x_n \ge 0$

where the objective is maximized, the constraints are equalities and the variables are all nonnegative.

This is done as follows:

- If the problem is min z, convert it to max -z.
- If a constraint is $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \leq b_i$, convert it into an equality constraint by adding a nonnegative slack variable s_i . The resulting constraint is $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n + s_i = b_i$, where $s_i \geq 0$.
- If a constraint is $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \ge b_i$, convert it into an equality constraint by subtracting a nonnegative surplus variable s_i . The resulting constraint is $a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n s_i = b_i$, where $s_i \ge 0$.

Example 7.2.1 Solve the linear program

First, we convert the problem into standard form by adding slack variables $x_3 \ge 0$ and $x_4 \ge 0$.

Let z denote the objective function value. Here, $z = x_1 + x_2$ or, equivalently,

$$z - x_1 - x_2 = 0.$$

Putting this equation together with the constraints, we get the following system of linear equations.

$$z -x_1 -x_2 = 0 \text{ Row } 0$$

 $2x_1 +x_2 +x_3 = 4 \text{ Row } 1$
 $x_1 +2x_2 +x_4 = 3 \text{ Row } 2$ (7.1)