Tutorial 3-4

Question	Formula used	Answer
6.	Linear density= no. of atoms / length	(a) 2.77 atoms /nm (b) 3.912 atoms/nm (c) 1.597 atoms/nm
7.	Linear density= no. of atoms / length	3.91*10 ⁶ atoms/mm
8.	Linear density= no. of atoms / length	[110]= 3.605 atoms/nm [111]= 1.47 atoms/nm
9.	$ \rho_P = \frac{N_e}{A} $, where N_e is the no. of effective atoms in the plane and A is the area of the plane.	$[111]= 1.47 \text{ atoms/nm}$ $[100] = \frac{3}{16r^2}$ $[110] = \frac{3}{8\sqrt{2}r^2}$ $[111] = \frac{\sqrt{3}}{16r^2}$
10.	$\rho_P = \frac{N_e}{A}$ $2d \sin\theta = n\lambda$	17.16×10 ¹² atoms/mm ²
11.	$2d \sin\theta = n\lambda$ $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	a = 4.026Å
12.	$2d \sin\theta = n\lambda$ $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ $\rho = \frac{M}{V} = \frac{m \times N_e}{a^3}$	d = 2.227 $\lambda = 1.5236 \text{Å}$
14.	$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	d=5.63 Å
	$m = \frac{atomic\ weight\ (m_A)}{Avagadro's\ number\ (N_A)}$	a = 4.077 Å
16.	$APF = \frac{Volume \ of \ atom \ in \ unit \ cell}{volume \ of \ unit \ cell}$	For SCC, APF= 0.57 For FCC, APF= 0.74
17.	$2d \sin\theta = n\lambda$ $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ For FCC, $\sqrt{2}a = 4r$	r = 1.45 Å

Tutorial 5

Question	Formula used	Answer
1	For FCC,	ρ=8.93g/cc
	$a*\sqrt{2}=4R$	
	$\rho = \frac{A * n}{N * V}$	
2	$h = \sqrt{3}a/2$	$\rho = 2.211 \text{ g/cc}$
	For HCP,	
	Volume= $6*1/2*a*\sqrt{3}a/2*c$	
	$\rho = \frac{A * n}{N * V}$	
3	For HCP,	ρ=5.546 g/cc
3	Volume= $6*1/2*a*\sqrt{3}a/2*c$	p 3.340 g/cc
	$\frac{c}{a} = \frac{\sqrt{8}}{\sqrt{3}}$	
	$\rho = \frac{A * n}{N * V}$	
4	$V_{BCC} = a^3/2$ (per atom)	%change in volume=3.2%
	$V_{HCP} = a^3/6$ (per atom)	yourunge in volume 5.270
	%Change in volume = $\frac{\text{VBCC-VHCP}}{\text{VBCC}} \times 100$	
5	$V_{FCC}= a^3/4$ (per atom)	$a_{FCC} = 3.671 \text{ Å}$
	$\sqrt{2} a = 4R$	$a_{BCC} = 2.905 \text{ Å}$
	$V_{BCC} = a^3/2 \text{ (per atom)}$	% change in volume at 990 °C
	$\sqrt{3} a = 4R$	=0.97% Linear change in iron= 26.36%
	% change in volume at 990 °C=	Linear change in non–20.3070
	$\frac{ V_{BCC} - V_{FCC} }{V_{BCC}} \times 100$	
	Linear change in iron= $\frac{ a_{BCC} - a_{FCC} }{a_{BCC}} \times 100$	
6.		For HCP and FCC = 0.74
	$APF = \frac{Volume \ of \ atom \ in \ unit \ cell}{volume \ of \ unit \ cell}$	For SCC = 0.52
7.	Dyraid	For BCC = 0.68 $R_{VOID} = 0.414*R_n$
	Ratom	$\mathbf{R} \vee \mathbf{O} = 0.414 \cdot \mathbf{R}_{\mathbf{n}}$
8.	Tetrahedral void at $(0,\frac{1}{2},\frac{1}{4})$	
1	$\frac{\text{RVOID}}{\text{RATOM}} = 0.225$	
	Octahedral void at $(\frac{1}{2}, \frac{1}{2}, 0)$	
	$\left(\frac{1}{2},0,0\right)$	
	$\frac{\text{RVOID}}{\text{RATOM}} = 0.414$	
9.	a=A*n	d=2.863 Å
	$\rho = \frac{A * n}{N * V}$ $A = 2P$	
	d=2R	

Tutorial 6

Question	Formula used	Answer
1	R= 0.414r R= radius of largest interstitial void r = radius of iron atom	0.5341 Å
2	No. of dislocations that have slipped out of the crystal $= \frac{\text{width of slip band} - \text{size of dislocations}}{\text{size of dislocations}}$	999
5	$E = \frac{1}{2}\mu b^{2}$ $\rho = \frac{1}{l^{2}}$ $\tau = \frac{\mu b}{l} = \frac{\mu}{6}$	$b = 1.67 \mu m$ $E = 36.17 \times 10^{-3} J$
6	$n = N_A \exp\left(\frac{-\Delta H_F}{2RT}\right)$	$\frac{n_1}{n_2} = 1.31 \times 10^{-6}$
7	$\frac{b}{h} = \tan \theta$ $b = \frac{a}{\sqrt{2}}$	h=150.5 nÅ
8	$h = \frac{b}{\theta}$	h_1 - h_2 = 107.48 Å
9	$N_v = rac{Affected\ area imes no.\ of\ atoms\ in\ unit\ cell}{area\ of\ the\ unit\ cell}$	1.73×10 ¹⁰

Tutorial 7

Question	Formula used	Answer
3	$W L = \frac{C s - C o}{C s - C L}$ $W s = \frac{C o - C L}{C s - C L}$	$W_L = 0.48$ $W_S = 0.52$
4	P+F=C+1	Maximum no. of phases, For $F = 0$, $C = 2$, $P=3$ Maximum possible degree of freedom For $P = 1$, $C = 2$, $F=2$
5	$Y = \sigma + \frac{k}{\sqrt{d}}$	Y = 178.61 MPa
6	Actual grain size $d = \sqrt{\frac{4 \times area \ of \ one \ grain}{\pi \times 10^4}}$ $Y = \sigma + \frac{k}{\sqrt{A}}$	$Y_2-Y_1 = 292MPa$
7	Volume fraction of $\alpha = \frac{V_{\alpha}}{V_{\alpha} + V_{\beta}}$ Volume fraction of $\beta = \frac{V_{\beta}}{V_{\alpha} + V_{\beta}}$ weight fraction of $Cu = \frac{W_{Cu}}{W_{Cu} + W_{Ni}}$ weight fraction of $Ni = \frac{W_{Ni}}{W_{Cu} + W_{Ni}}$	= 0.574 = 0.426
8	weight fraction of $Cu = \frac{W_{Cu}}{W_{Cu} + W_{Ni}}$ weight fraction of $Ni = \frac{W_{Ni}}{W_{Ni} + W_{Ni}}$	= 0.70 = 0.30

Tutorial 8-9

Question	Formula used	Answer
1(a)	Ideal density = $(n \times A)/a^3.N_a$	11.35 g/cm ³
1 (b)	No. of vacancies = $4/(500 \text{ x (a}^3 \text{ x } 11.32))$	5.83 x 10 ¹⁸
1 (c)	Density= ((4-(4/500)) x 207.2)/((4.949 x 10 ⁻⁸) ³ x 6.022 x 10 ²³)	11.32 g/cm ³
2	No of vacancy; $n = N \exp(-Q/k_B .T)$ and $(N) = (N_a \rho)/A$	3.65 x 10 ¹⁸ cm ⁻³
3	$Q_{v} = -kT \ln(n/N)$	$Q_v = 0.75 \text{ eV/atom}$
4	Schimid's law: $\tau = \sigma \cos \varphi_1 \cdot \cos \varphi_2$	1225 psi
5	Hall-Petch eq. $\sigma_y = \sigma_0 + \frac{K}{\sqrt{d}}$	0.0148 mm
6	$\tau_R = \sigma \cos \varphi_1 \cdot \cos \varphi_2$	22 MPa
7	$\tau = \sigma \cos \varphi_1 \cdot \cos \varphi_2$	0.80 MPa or 114psi
8	$\sigma_T = F/A_f$	$6.6 \times 10^8 \text{ N/m}^2 \text{ or } 660 \text{ MPa}$
9	$F = (\delta d \times \pi d0 \times E)/4 v$	5600 N
10	a) $\sigma_y = F_{max}/A$; $F_{max} = \sigma_y \times A$	89375 N
	b) Max. length = $l_0 + \delta l = l_0 + (\sigma_y \times l_0)/E$	115.28 mm
11	$\sigma = F/A_0 = F/\pi(d_0^2/4) = E \times (\delta l/l_0)$	7.65×10 ⁻³ m or 7.65 mm
12 (a)	$\phi_1 = \cos^{-1}\left[\frac{(u_1u_2+v_1v_2+w_1w_2)}{\sqrt{(u_1^2+v_1^2+w_1^2)(u_2^2+v_2^2+w_2^2)}}\right]$	0 MPa
(b)	The most favored slip system is the one that has the largest τ_R value. Therefore, the (110)-[-111] is the most favored since its τ_R (1.12 MPa) is greater than the τ_R value for (101)-[-111]	(viz., 0 Mpa)