- ※ 다음은 태풍과 관련된 질문이다. 각 질문에 간단히 답하시오(1-2).
- 1. 태풍의 발달 과정에서 상층 약 200hPa 대기에서의 발산장이 태풍의 성장에 미치는 영향을 간략히 설명하시오.

(

해답: 하층에서 수렴하는 공기는 상층에 도달하여 발산하게 된다. 발산장이 강할수록 하층의 수렴을 강하게 유지할 수 있기 때문에, 발산장의 강도와 태풍의 성장은 비례한다.

2. 지구 온난화의 영향으로 한반도 부근의 수온이 평년대비 상승하고 있다면, 가을철 한반도에 영향을 주는 태풍의 발생 빈도는 어떻게 변할 것인가? 간단한 이유와 함께 답하시오.

(

해답: 해수면의 증가는 해양에서의 증발이 증가하여 태풍의 에너지원인 수분 공급을 증가시킨다. 가을철 태풍의 대부분은 한반도 주변의 낮은 수온에 기인 하여 이동 중 소멸하는 경우가 많은데, 해수면의 증가는 한반도에 도달하는 가을 태풍의 빈도를 증가시킨다.

3. 최근 몇 년간 겨울철 한파가 잦아지면서 이러한 원인으로 제트기류의 약화를 언급하곤 한다. 제트기류의 강도는 북극의 평균 기온과 연관이 있다. 중위도의 기온은 큰 변화가 없는데, 북극의 기온이 증가한다면 제트기류는 강도는 어떻게 변하는가? 그 이유와 함께 간단히 답하시오.

해답: 제트기류는 고위도와 중위도 사잉의 온도차이에 의해 발생하는 온도풍이다. 즉, 온도의 경도가 클수록 제트류의 강도는 강해진다. 북극의 기온 증가는 온도경도를 약화시켜 제트류를 약화시킨다.

4. A와 B 두 지점에서 강제 단열상승하는 공기덩어리가 있다고 가정하자. 두 지점의 기온분포 및 지표면에서의 공기덩어리의 온도도 동일하다. 다만, A 지점의 상대습도가 B지점보다 높다고 가정하자. 두 지점에서 상승하는 공기덩어리는 모두 어느 순간 구름이 생성되었다면, 구름 생성 고도는 어느 지점이 더높은가? 간단한 이유와 함께 답하시오.

해답: 모든 조건이 동일할 때, A 지점의 상대습도가 높다면, 이슬점 온도가 높기 때문에 빠른 시간 안에 이슬점에 도달한다. 따라서, A지점의 구름생성 고도가 더 낮고, B지점이 높다.

5. 일반적으로 키가 높은 적운형 구름에서 내리는 빗방울의 크기가 층운형 구름에서 내리는 빗방울보다 크다. 이러한 차이가 나타나는 이유를 강수과정 중하나로 설명하시오.

해답: 적운형 구름의 경우 빗방울이 생성되어 낙하하면서 주변 물방울을 포획하는 병합설에 의해 성장하게 된다. 또한 적운형 구름의 내부에는 상승운동이일어나 상승과 하강을 반복하면서 빗방울의 크기가 매우 크게 성장할 수 있다.