HEART ATTACK PREDICTION ANALYSIS

MADE BY:
SIDHARTH JAIN
JAI19481234

Heart Attact Prediction

DATA SCIENCE

INDEX

1.	Introduction	.3
	1.1 introduction to dataset	.3
2.	Data Processing	.4
	2.1 Manually	.5 .6
3.	Hypothesis	.7
4.	Proposed Solution and implementation	.8
	4.1 Hypothesis 1	10-11
5.	Reflection and references.	.14

INTRODUCTION

Human Heart is the mother of all the organs which supply clean blood to the body and make the system working. Researchers said that our beat around 1000,000 times and the it pump 2,000 gallons of the blood by the body. It's been said that we have 60,000 miles long blood vessels in a human body.

In this report, we are going to discuss about the dataset we have downloaded from this website ('https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset') where the publisher name is Rashik Rahman for and this dataset has been updated in 2021. We are going to do analysis for different genders on the basis of different factors which are discussed below.

	Features	Description
	electrocardiographic results	Normal = Normal
	LVH = 1	ST = having ST-T wave
	Normal=2	abnormality (T wave inversions
	ST=3	and/or ST elevation or
		depression of $> 0.05 \text{ mV}$)
Categorical Data	Sex	M= MALE
	M =1	F= FEMALE
	F=2	
	Cheat Pain:	ASY: asymptomatic
	ASY = 1	ATA: atypical angina
	ATA =2	NAP: non-anginal pain
	NAP =3	TA: typical angina
	TA =4	The system and seem
	Exercise	Y= YES
	Y =1	N= NO
	N =0	
	ST Slope peak exercise	the slope of the peak exercise
	Up =1	ST segment — 0: UP; 1: flat
	Flat =0	
	DowNO = 2	
	Age	The Age of the Person
	Blood Pressure	The persons resting blood
	Biodu i ressure	pressure(admission to
		hospital.)
Numerical Data	Cholesterol	The persons cholesterol
Numerical Data	Cholesterol	
	Forther Manual Control	measured in mg/dl
	Fasting blood sugar	The person's fasting blood
		sugar (> 120 mg/dl, 1 = true;
		0 = false
	Max Heart Rate	Maximum Heart Achieved
	Heart Disease	Heart disease $(1 = no, 0 = yes)$

PRE-PROCESSING:

MANUALLY:

Step 1: First and Foremost, i have deleted the oldpeck column because it is not of my use anymore. As shown in image below.

Step2: I have deleted all the duplicate rows from the dataset and make it normalise. Moreover, there are some values missing from the dataset I just deleted from and the dataset perfect and checked all the names and values to avoid error or consistency in the analysis.

Step 3: I have changed the naming for the columns and the values for example M= male , F= Female , N= NO , Y= YES , NOORMAL = NORMAL , FEMAALTE= FLAT and so on and the perfect dataset in shown below.

USING PYTHON COMMANDS:

Step 1: if there is no Null Values in the data.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 918 entries, 0 to 917
Data columns (total 9 columns):
# Column
                                 Non-Null Count Dtype
0 Age
1 Sex
2 ChestPain
                                 -----
                                 918 non-null
                                                int64
                                 918 non-null
                                                int64
                                 918 non-null
                                                int64
3 Blood_Pressure
                                918 non-null
                                                int64
4 Cholesterol
                                918 non-null
                                                int64
5 electrocardiographic results 918 non-null
                                                int64
                                918 non-null
6 Max Heart Rate
                                                int64
7 ST_Slope8 HeartDisease
                                 918 non-null
                                                int64
                                 918 non-null
                                                int64
dtypes: int64(9)
memory usage: 64.7 KB
```

Step2: Describe the dataset with all the mean values and std etc.

	Age	Sex	ChestPain	Blood_Pressure	Cholesterol	electrocardiographic results	Max Heart Rate	ST_Slope	HeartDisease
count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000
mean	53.510893	0.789760	1.781046	132.396514	198.799564	1.989107	136.809368	0.567538	0.553377
std	9.432617	0.407701	0.956519	18.514154	109.384145	0.631671	25.460334	0.618959	0.497414
min	28.000000	0.000000	1.000000	0.000000	0.000000	1.000000	60.000000	0.000000	0.000000
25%	47.000000	1.000000	1.000000	120.000000	173.250000	2.000000	120.000000	0.000000	0.000000
50%	54.000000	1.000000	1.000000	130.000000	223.000000	2.000000	138.000000	0.000000	1.000000
75%	60.000000	1.000000	3.000000	140.000000	267.000000	2.000000	156.000000	1.000000	1.000000
max	77.000000	1.000000	4.000000	200.000000	603.000000	3.000000	202.000000	2.000000	1.000000

Step 3: Dividing data into categorical and numerical list.

```
catagorocal data
['Sex', 'ChestPain', 'electrocardiographic results', 'ST_Slope', 'HeartDisease']
numerical data

['Age', 'Blood_Pressure', 'Cholesterol', 'Max Heart Rate']
```

HYPOTHESIS:

PROPOSED SOLUTION:

To find the solution of this problems proposed in hypothesis can be achieved by **KNN** algorithm. It is used to solve the classification and regression problems. It find the nearest neighbour in certain area around the point for prediction and check which attribute is closest to that so that it can predict it. Which comes under supervised learning technique.

The diagram below describe how does it work.

- **Step 1:** load the dataset
- **Step 2:** Initialize K to your chosen number however by default if k=5.
- **Step 3:** Calculate the distance between the actual point and the predicted point.
- **Step 4:** Add the distance and the index of the data point to the ordered list.
- **Step 5:** pick the first k values from the list and find the least distance from the predicted point.
- **Step 6:** get the label of the nearest K value.

Hypothesis 1: we have the results in zero and one which represents yes or no if the person has heart disease then it will be one if he doesn't have heart disease then it will be 0 and we have some values like age and gender through which we can differentiate how many males and females of which each category are affected most by the heart diseases. So that if you are giving any age and gender it can calculate the nearest neighbour and can predict whether they have heart disease or not.

Step 1: calculate the number ages in male= 1 and female =0 with the target value 0=negavtive and 1= positive.

```
Percent of '1' at high risk of heart attack = 63.17 %
'1' average high-risk age = 56 yrs

Percent of '0' at high risk of heart attack = 25.91 %
'0' Average high-risk age = 56 yrs
```

Step 2: the number of positive heart problem and people with no heart problem in different genders where 1 = positive and 0 = negative.

Step3: Training the dataset and checking Acuracy

0.625

Step 4: Giving raw data and getting the output.

	Age	Sex	Į.											
0	15	1		No	Disease	,	You	can	healty	But	have	regular	check-ups	

Hypothesis 2: It is going to check from the four different chest pains which is the most common and highly affected with heart disease so that if you're giving and he does mean it can identify by calculating the nearest neighbour and can predict changes of the person is affected with heart disease or not.

Step 1: Finding all the different Chest Pains using head which gives top 5 of all the different number of chest pains.

	index	Age	Sex	ChestPain	Blood_Pressure	Cholesterol	electrocardiographic results	Max Heart Rate	ST_Slope	HeartDisease
0	3	48	0	1	138	214	2	108	0	1
1	8	37	1	1	140	207	2	130	0	
2	13	49	1	1	140	234	2	140	0	
3	16	38	1	1	110	196	2	166	0	
4	18	60	1	1	100	248	2	125	0	
	index	Age	Sex	ChestPain	Blood_Pressure	Cholesterol	electrocardiographic results	Max Heart Rate	ST_Slope	HeartDisease
0	0	40	1	2	140	289	2	172	1	(
1	2	37	1	2	130	283	3	98	1	
2	6	45	0	2	130	237	2	170	1	
3	7	54	1	2	110	208	2	142	1	
4	9	48	0	2	120	284	2	120	1	
	index	Age	Sex	ChestPain	Blood_Pressure	Cholesterol	electrocardiographic results	Max Heart Rate	ST_Slope	HeartDisease
_	1	49	0	3	160	180	2	156	0	
0			-	3						
1	4	54	1	3	150	195	2	122	1	
		54 39			150 120	195 339	2	122 170	1	
1	4		1	3						(
1	4 5	39	1	3	120	339	2	170	1	(
1 2 3	4 5 10 14	39 37 42	1 1 0	3 3 3	120 130 115	339 211 211	2	170 142 137	1 1 1	
1 2 3	4 5 10 14	39 37 42	1 1 0	3 3 3	120 130 115	339 211 211	2 2 3	170 142 137	1 1 1	HeartDiseas
1 2 3 4	4 5 10 14 index	39 37 42 Age	1 1 0 0	3 3 3 3 ChestPain	120 130 115 Blood_Pressure	339 211 211 Cholesterol	2 2 3 electrocardiographic results	170 142 137 Max Heart Rate	1 1 1 ST_Slope	
1 2 3 4	4 5 10 14 index	39 37 42 Age 43	1 0 0 \$ex	3 3 3 3 ChestPain 4	120 130 115 Blood_Pressure	339 211 211 Cholesterol 223	2 2 3 electrocardiographic results	170 142 137 Max Heart Rate	1 1 1 ST_Slope 1	HeartDiseas
1 2 3 4	4 5 10 14 index 20 88	39 37 42 Age 43 43	1 0 0 Sex 0	3 3 3 3 ChestPain 4	120 130 115 Blood_Pressure 100 120	339 211 211 Cholesterol 223 291	2 2 3 electrocardiographic results 2 3	170 142 137 Max Heart Rate 142 155	1 1 1 ST_Slope 1 0	HeartDiseas

Step 2: Finding the percentage of different ages affected with the different kind of chest pain and highlighting the most affected age.

```
Percent of '1' at high risk of heart attack = 42.7 %
Asymptomatic average high-risk age = 56 yrs

Percent of '2' at high risk of heart attack = 2.61 %
Atypical-Angina Average high-risk age = 56 yrs
Percent of '3' at high risk of heart attack = 7.84 %
Non-Anginal Pain average high-risk age = 57 yrs

Percent of '4' at high risk of heart attack = 2.18 %
Typical Angina Average high-risk age = 55 yrs
```

Step 3: Plotting the chest pain among different ages with regard to target value of o and 1 which is positive and negative heart problems.

Step3: Training the dataset and checking Acuracy

0.7554347826086957

Step 4: Giving raw data and getting the output.

	Age	Chest Pain								
0	32	. 1		ng*** chance	of	Heart	Disease	Contact	Your	Doctor

Hypothesis 3: we are going to take people who are doing exercise and people who are not doing exercise and what is their cholesterol an heart rate level moreover they are affected with the heart disease or not so that if you read any patients report which is near to that values which are positive heart disease then we can give them a better treatment on time.

Step 1: Finding the relation between different categories through graph as shown below

Step 2: Now Plotting relation between cholesterol, blood pressure and max heart rate with Target value 0 and 1 where 0 is no heart problem and 1 means have heart problems.

Step 3: Training the dataset and checking Acuracy

0.7119565217391305

Step 4: Giving raw data and getting the output.

	Cholesterol	Blood_Pressure	Max Heart Rate		_
0) 1	175	0	No Disease , You can healty But have regular check-ups	

Reflection:

As I coursework two I have made some assumption with hypothesis 3 I have to change it because if I was using chest pain then it was not producing the appropriate output .However, I have to change it to max_heart_rate and compare values with target value 0 and 1.

In the second hypothesis I have added age through which I can compare chest pain with the target values which was missing in coursework2.

However, apart from this i have achieved all the requirement which were stated in coursework 2 and proper implementation.

References:

[1] https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

[2] https://www.alliedacademies.org/articles/prediction-of-heart-disease-using-knearest-neighbor-and-particle-swarm-

 $\frac{optimization.html\#: \sim :text=Supervised \% 20 algorithms \% 20 are \% 20 used \% 20 for, a \% 20 large \% 20 number \% 20 of \% 20 features.$

[3]http://rstudio-pubstatic.s3.amazonaws.com/318411 18399592759841f2a151e445adb851c7.html

[4] https://www.youtube.com/watch?v= xfCq9mxrwM&ab channel=CodewithMarcus