Data structure and Algorithms Graph

Thanh-Hai Tran

Electronics and Computer Engineering School of Electronics and Telecommunications

Outline

- Basic concepts
- Graph representation
 - Adjacency matrix
 - Adjacency list
- Graph traversal algorithm
 - Breadth-First Search Algorithm
 - Depth-First Search Algorithm
- References

Introduction

- A graph is an abstract data structure that is used to implement the mathematical concept of graphs.
- It is basically a collection of vertices (also called nodes) and edges that connect these vertices.
- A graph is often viewed as a generalization of the tree structure, where any kind of complex relationship can exist
- Why are Graphs Useful ?
 - Graphs are widely used to model any situation where entities or things are related to each other in pairs
 - Examples:
 - ⋆ Family trees
 - ★ Transportation network

Graph definition

- Graph G is a ordered set (V, E), G = (V, E) where
 - V(G) represents the set of vertices
 - E(G) represents the set of edges that connect these vertices
- Example
 - ♦ V(G) = {A, B, C, D, E} (5 vertices)
 - ► E(G) = {{A,B}, {B, C}, {C,E}, {D, E}, {A, D}, {D, B}} (6 edges)

Adjacent nodes or neighbours:

- For every edge e = (u, v) that connect nodes u and v
- The nodes u and v are the end-points and said to be adjacent nodes / neighbor

- deg(u) is the total number of edges containing the node u
- deg(u) = 0: u is an isolated node
- Regular graph: each node has the same degree
- Size of a graph: total number of edges

- Path: P = {v₀, v₁, ..., v_n} of length n from node u to v is defined as:
 - a sequence of n nodes $(u = v_0, v = v_n)$ and
 - ⋄ v_i is adjacent to v_i with i = 1,2,3,...
- Close path: path has the same end-points $(v_0 = v_n)$
- **Simple path:** all the nodes in the path are distinct with an exception that v_0 may be equal to v_n
- Cycle: A path in which the first and the last vertices are same

Connected graph:

- A graph is said to be connected if for any two vertices (u, v) in V there is a path from u to v.
- There are no isolated nodes in a connected graph.
- A connected graph that does not have any cycle is called a tree.

Complete graph:

- All its nodes are fully connected
- There is a path from one node to every other node in the graph
- ◆ A complete graph has n(n-1)/2 edges, where n is the number of nodes in G A complete graph has n(n-1)/2 edges,
 - where n is the number of nodes in G

Weighted graph:

- A graph is said to be labelled if every edge in the graph is assigned some data.
- In a weighted graph, the edges of the graph are assigned some weight or length.
- The weight of an edge denoted by w(e) is a positive value which indicates the cost of traversing the edge.

- Directed graph: is a graph in which every edge has a direction assigned to it
- Out-degree of a node: outdeg(u) = number of edges that originates at u
- In-degree of a node: indeg(u) = number of edges that terminate at u

Examples of graph

Social network (facebook) (directed or undirected)

Problem: Suggest friends

Examples of graph

World wide web (directed graph)

Problem: web-crawling (graph traversal)

13

Examples of graph

Intercity road network (weighted directed graph)

Problem: shortest path from a city to another city

Graph representation

- Sequential representation by using an adjacency matrix.
- Linked representation by using an adjacency list that stores the neighbors of a node using a linked list.
- Adjacency multi-list which is an extension of linked representation

Adjacency matrix

(a) Directed graph

(b) Directed graph with loop

(c) Undirected graph

(d) Weighted graph

Adjacency matrix

- For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal.
- The adjacency matrix of an undirected graph is symmetric.
- The memory use of an adjacency matrix is O(n²), where n is the number of nodes in the graph.
- Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of edges in the graph.
- The adjacency matrix for a weighted graph contains the weights of the edges connecting the nodes.

Adjacency matrix

Operation:

- finding adjacent nodes
- Complexity: O(n)

Operation:

- checking if two nodes are connected
- ◆ Complexity O(1) (+ O(n) = O(n))

Memory space:

- n²
- If the graph is sparse => waste of memory

Example

- Social network: facebook
 - $N = 10^9$
 - Adjacency matrix: 10¹⁸
- If each person has 1000 = 10³ friends
 - \bullet |E| = 10⁹ x 10³ /2= 10¹² = 5 x 10¹¹ << 10¹⁸
 - ◆ 10¹⁸ (bytes= 1000 PB)
 - $5 \times 10^{11} \text{(bytes)} = 0.5 \text{TB}$
- Finding adjacent nodes:
 - ◆ If machine can scan 10⁶ cells/ seconds
 - \bullet Times: $10^9/10^6 = 1000 \text{sec} = 16.66 \text{mins}$

Adjacency List Representation

Graph traversal algorithms

- Visit all nodes of a graph
- Algorithms:
 - Breadth-first search: uses a queue as an auxiliary data structure to store nodes for further processing
 - Depth-first search: uses a stack
- Status value of a node:

Status	State of the node	Description
1	Ready	The initial state of the node N
2	Waiting	Node N is placed on the queue or stack and waiting to be processed
3	Processed	Node N has been completely processed


```
Step 1: SET STATUS = 1 (ready state)
        for each node in G
Step 2: Enqueue the starting node A
        and set its STATUS = 2
        (waiting state)
Step 3: Repeat Steps 4 and 5 until
        QUEUE is empty
Step 4: Dequeue a node N. Process it
        and set its STATUS = 3
        (processed state).
Step 5: Enqueue all the neighbours of
        N that are in the ready state
        (whose STATUS = 1) and set
        their STATUS = 2
        (waiting state)
        [END OF LOOP]
Step 6: EXIT
```


Breadth-First search algorithm

- Breadth-frst search (BFS) is a graph search algorithm that
 - begins at the root node
 - and explores all the neighbouring nodes.

Breadth-First search algorithm

```
void BreathFirstSearch(G, vs)
    insert(vs, Q);
    while (!isEmpty(Q))
       u = remove(Q);
       visit(u);
       for each u_a: (unvisited) and
                 (adjacent to u) and (u_a \notin Q)
          insert(u_a, Q);
```


Breadth-First search algorithm

Features of Breadth-First Search Algorithm

Space complexity:

- Given a graph with branching factor b (number of children at each node) and depth d, the asymptotic space complexity is the number of nodes at the deepest level O(b^d)
- If the number of vertices and edges in the graph are known ahead of time, the space complexity can also be expressed as O (|E|+|V|), where |E| is the total number of edges in G and |V| is the number of nodes or vertices

Features of Breadth-First Search Algorithm

Time complexity:

- In the worst case, breadth-frst search has to traverse through all paths to all possible nodes, thus the time complexity of this algorithm asymptotically approaches O(b^d).
- ◆ However, the time complexity can also be expressed as O(| E | + | V |), since every vertex and every edge will be explored in the worst case

28

Applications of Breadth-First Search Algorithm

- Finding all connected components in a graph G.
- Finding all nodes within an individual connected component.
- Finding the shortest path between two nodes, u and v, of an unweighted graph.
- Finding the shortest path between two nodes, u and v, of a weighted graph

Depth-first Search Algorithm

- The depth-frst search algorithm progresses by expanding the starting node of G and then going deeper and deeper until the goal node is found, or until a node that has no children is encountered
- When a dead-end is reached, the algorithm backtracks, returning to the most recent node that has not been completely explored


```
Step 1: SET STATUS = 1 (ready state) for each node in G
Step 2: Push the starting node A on the stack and set
    its STATUS = 2 (waiting state)
Step 3: Repeat Steps 4 and 5 until STACK is empty
Step 4:    Pop the top node N. Process it and set its
        STATUS = 3 (processed state)
Step 5:    Push on the stack all the neighbours of N that
        are in the ready state (whose STATUS = 1) and
        set their STATUS = 2 (waiting state)
[END OF LOOP]
Step 6: EXIT
```


32

Example

Adjacency lists A: B, C, D B: E C: B, G D: C, G E: C, F F: C, H G: F, H, I H: E, I I: F

Suppose we want to print all the nodes that can be reached from the node H (including H itself). One alternative is to use a depth-first search of G starting at node H

Applications of Depth-First Search Algorithm

- Finding a path between two specifed nodes, u and v, of an unweighted graph.
- Finding a path between two specifed nodes, u and v, of a weighted graph.
- Finding whether a graph is connected or not.
- Computing the spanning tree of a connected graph

Ý tưởng giải thuật

Đây là một giải thuật đệ quy có các bước cơ bản như sau:

- \bullet Đặt $v = v_s$.
- Thăm nút v.
- (Điểm dừng): giải thuật kết thúc khi đồ thị không còn nút nào cần phải thăm nữa.

Thủ tục

Gọi thủ tục cài đặt cho giải thuật là FullDepthSearch(G, vs), với vs là đỉnh bắt đầu mà thuộc tập các đỉnh V của đồ thị G.

```
void FullDepthSearch(G, vs)
```

```
{
	v = vs;
	DepthFirstSearch(G, v);
}
```


DepthFirstSearch

DepthFirstSearch(G, v) là thủ tục đệ quy duyệt theo chiều sâu có dạng như sau:

```
void DepthFirstSeach(G, v)
```

```
{
    if (v == NULL) return; //Điểm dừng
    visit(v);
    for each unvisited adjacent va to v
        DepthFirstSearch(G, va);
}
```

