CLASS 8, MONDAY FEBRUARY 26TH: THE STRUCTURE OF A MODULE: GENERATION AND FREE MODULES

Last time we talked about the sum of 2 submodules $N + N' \subseteq M$. This can be used to establish the idea of generation for modules in an identical way to that of ideals.

Definition 0.1. \circ If $N_{\lambda} \subseteq M$ is a submodule for each λ in an indexing set Λ , then

$$\sum_{\lambda \in \Lambda} N_{\lambda} = \{ n_{\lambda_1} + \ldots + n_{\lambda_m} \mid n_{\lambda_i} \in N_{\lambda_i} \}$$

That is to say the **sum of modules** consists of a finite sum of elements from each. If Λ is a finite indexing set, it is often written as $N_1 + \ldots + N_m$

 \circ If $n \in N$, we let $\langle n \rangle_N$ be the smallest submodule of N containing n. It consists precisely of elements $r \cdot n$ for $r \in R$. We can further write

$$\langle S \rangle = \sum_{s \in S} \langle s \rangle_N$$

for any subset $S \subseteq N$.

- We say a module is **generated** by a subset $S \subseteq M$ if $M = \langle S \rangle$.
- \circ We say M is **finitely generated** if S can be assumed to be a finite set.
- \circ We say M is **cyclic** if S can be assumed to be 1 element.
- If M is finitely generated, we call S a minimal generating set if there exists no generating set of smaller cardinality.

Finitely generated modules over Noetherian rings are one of the most well studied objects in commutative algebra.

Example 0.2 (Non-finitely generated modules). Consider \mathbb{Q} is a \mathbb{Z} -module. It is fairly easy to see that this is a non-finitely generated \mathbb{Z} -module. In particular, if $\mathbb{Q} = \langle \frac{a_1}{b_1}, \dots, \frac{a_n}{b_n} \rangle$, we can choose a rational number smaller than $|\frac{1}{b_1 \cdots b_n}|$. This number cannot be represented as a sum with integer coefficients.

Additionally, K[x] as a K-module is an infinite dimensional vector space (with basis $1, x, x^2, \ldots$). Therefore it cannot be finitely generated, or it would be a finite dimensional vector space.

Example 0.3 (Many cyclic modules). R viewed as an R-module is a cyclic module, generated by 1. The same holds for R/I for an ideal I, so these are all examples of cyclic modules.

Example 0.4 (Finitely generated modules). Let R = S = K[x]. Consider the map $R \to S : x \mapsto x^n$ with K fixed. Then S is a non-cyclic but finitely generated R-module. It has a (minimal) generating set given by $\langle 1, x, \ldots, x^{n-1} \rangle$.

Next up, we can consider the operation of \oplus , called the **direct sum**.

Definition 0.5. For 2 modules M, N, we define

$$M \oplus N = \{(m, n) \mid m \in M, n \in N\}$$

where addition and multiplication are defined by r(m, n) = (rm, rn) and (m, n) + (m', n') = (m + m', n + n'). We can perform this operation inductively to produce a finite direct sum of modules $M_1 \oplus M_2 \oplus \ldots \oplus M_n$.

There is also a notion of an infinite direct sum, where we consider infinite tuples of elements of each module, but require that all but finitely many of them are 0:

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \{ (m_{\lambda})_{\lambda \in \Lambda} \mid m_{\lambda} = 0 \text{ for almost all } \lambda \in \Lambda \}$$

This differs from the notion of the **Direct Product**, for which no such restriction is put on almost all m_{λ} . They are however identical in the case of a finite indexing set.

Definition 0.6. A module F is said to be **free** if $F \cong R^{\oplus \Lambda}$ for some indexing set Λ . If Λ is a finite set, we define the **rank** of F is $rank(F) = |\Lambda|$.

The rank of a free module is the same as the rank/dimension of a vector space.

One can view minimal generation in terms of free modules. Say M is a module generated minimally by the set $S = \{m_1, \ldots, m_n\}$. We can then consider the homomorphism

$$g: F = \mathbb{R}^n \to M: (r_1, \dots, r_n) \mapsto r_1 m_1 + \dots + r_n m_n$$

This map is surjective by definition of generation! The kernel of this map can be thought of as an **obstruction** to being free. That is to say $\ker(g) = 0$ if and only if M is free, and larger kernels can be thought of as 'less free' modules.

Aside (Homology). This produces the idea of the **Homology** of a module. Because we can surject onto any module M by a free module F_0 , we can form a **free resolution** of M by surjecting onto the kernel of the map by a free module F_1 , and continue in this fashion:

$$\ldots \to F_2 \to F_1 \to F_0 \to M \to 0$$

The propogation of kernels allows one to measure the complexity of the module. We may return to Homological Algebra later on.

On the opposite end of the spectrum, we have a notion of torsion modules:

Definition 0.7. A module M is said to be **torsion** if for each $m \in M$ there exists a non-zero divisor $r \in R$ (depending on m) such that $r \cdot m = 0$.

Example 0.8 (\mathbb{Z}). Any finite \mathbb{Z} -module M is a finite Abelian group (as discussed in Class 6). Therefore, if |M| = n, we know that $n \cdot M = 0$. Therefore, M is a torsion module! There also exist infinite torsion groups. Let p_i be the i^{th} prime number. Then

$$M = \bigoplus_{i=1}^{\infty} \mathbb{Z}/p_i \mathbb{Z}$$

is an infinitely generated (thus infinite) torsion module.

This is part of a much larger theorem, that I will state without proof:

Theorem 0.9 (Finitely Generated Modules over a PID). Let R be a principal ideal domain (every ideal is principal). Then if M is a finitely generated module,

$$M \cong F \oplus T$$

where F is a free module and T is a torsion module.

This is not the case if R is not a PID $(R = K[x, y], M = \langle x^2 + y^3, x^4 - y^2 \rangle)$ or if M is infinitely generated $(R = \mathbb{Z}, M = \mathbb{Q})$.