Sprawozdanie z Listy 4 Obliczenia Naukowe

Tomasz Hałas 6 grudnia 2021

Spis treści

1	Zadanie 1.			
	1.1	Opis problemu	3	
	1.2	Rowiązanie	3	
2	Zadanie 2.			
	2.1	Opis problemu	3	
	2.2	Rowiązanie		
3	Zad	anie 3.	4	
	3.1	Opis problemu	4	
	3.2	Rowiązanie		
4	Zadanie 4.			
	4.1	Opis problemu	5	
	4.2	Rowiązanie		
5	Zad	anie 5.	5	
	5.1	Opis problemu	5	
	5.2	Rowiązanie		
	5.3	Wyniki		
	5.4	Wnioski		
6	Zadanie 6.			
	6.1	Opis problemu	9	
	6.2	Rowiązanie	9	
	6.3	Wyniki		
	6.4	Wnioski 1		

1 Zadanie 1.

1.1 Opis problemu

Zadanie polega na zaimplementowaniu algorytmu liczenia ilorazów różnicowych za pomoca tablicy jednowymiarowej.

1.2 Rowiązanie

Aby rowiązać to zadanie skorzystałem z następujących wzorów:

$$f[x_0] = f(x_0)$$

$$f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i}$$

$$f[x_0, x_1, x_2, ..., x_{n-1}, x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, ..., x_{n-1}]}{x_n - x_0}$$

Daną mamy na wejściu węzeł x_i oraz wartość funkcji w tym węźle $f(x_i)$. Ponad to za pomocą $(f[x_0] = f(x_0))$ obliczymy również iloraz zerowego rzędu. Tworzę tablice jednowymiarową, której przypisuje wartości $[f_i]$ dla każdego x_i . Nastepnie wyliczam według wzoru

$$array[i] = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-j}}$$

Kolejne wartości zmieniane są kolumnowo oraz wewnątrz każdej kolumny, zaczynając od dołu do góry. Na tej podstawie uzyskuje tablicę, zawierającą ilorazy różnicowe.

```
for i := 0 to n do
    c[i] := y[i];
for j := 1 to n do
    for i := n downto j do
        c[i] := (c[i]-c[i-1])/(x[i]-x[i-j]);
```

Rysunek 1: Pseudokod dla zadania 1.

2 Zadanie 2.

2.1 Opis problemu

Zadanie polegało na napisaniu funkcji obliczającej wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$ w punkcie x = t za pomocą uogólnionego algorytmu Hornera, w czasie O(n).

Wartość w punkcie x wynosi:

$$N_n(x) = \sum_{i=0}^{n} c_i \prod_{j=0}^{i-1} (x - x_j)$$

gdzie c_i to nasz iloraz różnicowy stopnia i, a x_j jest węzłem interpolacji.

2.2 Rowiązanie

Aby policzyć wartość danego wielomianu w punkcie zastosuje uogólniony algorytm Hornera, według poniższych wzorów:

$$w_n(x) := f[x_0, x_1, \dots, x_n]$$

$$w_k(x) := f[x_0, x_1, \dots, x_k] + (x - x_k)w_{k+1}(x) \quad (k = n - 1, \dots, 0)$$

$$N_n(x) = w_0(x)$$

Na tej podstawie możemy zapisać algorytm, wyglądający nastepująco:

:

```
w := c[n];
for i := n-1 downto 0 do
  w := w*(t-x[i]) + c[i];
```

Rysunek 2: Pseudokod dla zadania 2.

3 Zadanie 3.

3.1 Opis problemu

Znając współczynniki wielomianu interpolacyjnego w postaci Newtona $c_0 = f[x_0], c_1 = f[x_0, x_1], c_2 = f[x_0, x_1, x_2], \ldots, c_n = f[x_0, \ldots, x_n]$ (ilorazy różnicowe) oraz węzły x_0, x_2, \ldots, x_n napisać funkcję obliczającą, w czasie $O(n^2)$, współczynniki jego postaci naturalnej a_0, \ldots, a_n .

3.2 Rowiązanie

W wielomianie interpolacyjnym współynikiem a_n stojącym przy najwyższej potędze x^n jest c_n , gdzie c_0, c_1, \ldots są ilorazami różnicowymi tego wielomianu. W kolejnych krokach tworzone są współczynniki a_i , które oparte są na a_{i+1} . W celu obliczenia a_i iteruje po wszytskich w_i od n do 0, zmieniając w danym momencie iteracji odpowiednio współczyniki w_i , aby nasz wielomian był w postaci naturalnej.

4 Zadanie 4.

4.1 Opis problemu

Napisać funkcję, która zinterpoluje zadaną funkcję f(x) w przedziale [a, b] za pomocą wielomianu interpolacyjnego stopnia n w postaci Newtona. Następnie narysuje wielomian interpolacyjny i interpolowaną funkcję.

4.2 Rowiązanie

Na wskazanym przedziałe [a,b] "wybieram" n+1 równoległych węzłów. Nastepnie wyliczam ilorazy różnicowe za pomocą stworzenej przeze mnie funkcji i dyskretyzuje przedział. Dla każdego węzła liczymy wartość funkcji i wielomianu.

5 Zadanie 5.

5.1 Opis problemu

Przetestować funkcję rysujNnfx(f, a, b, n) na funkcjach e^x oraz $x^2sin(x)$.

5.2 Rowiązanie

Rozwiązanie znaduję sie w zadaniu 5 oraz w plikach .png. Na niebiesko oznaczam moją interpolacje, a na pomarańczowo funkcję.

5.3 Wyniki

:

Rysunek 3: e^x dla n=5

2.75 2.50 2.25 2.00 1.75 1.50

:

1.00 -

0.0

Rysunek 4: e^x dla n=10

0.6

0.8

1.0

0.4

0.2

Rysunek 5: e^x dla $n=15\,$

Rysunek 6: $x^2 sin(x)$ dla n=5

Rysunek 7: $x^2 sin(x)$ dla n = 10

:

Rysunek 8: $x^2 sin(x)$ dla n = 15

Dla wielomianu o małym stopniu wykresy pokrywają się.

5.4 Wnioski

Interpolowanie funkcji, której wartości nie zmieniają się drastycznie oraz pochodna nie zmienia znaku na danym przedziale, daje bardzo dokładne wielomiany interpolacyjne.

6 Zadanie 6.

6.1 Opis problemu

Przetestować funkcję rysujNnfx(f,a,b,n)na funkcjach |x|oraz $\frac{1}{1+x^2}.$

6.2 Rowiązanie

Na wskazanym przedziałe [a,b] "wybieram" n+1 równoległych węzłów. Nastepnie wyliczam ilorazy różnicowe za pomocą stworzenej przeze mnie funkcji i dyskretyzuje przedział. Dla każdego węzła liczymy wartość funkcji i wielomianu.

6.3 Wyniki

Rysunek 9: |x| dla n=5

Rysunek 10: $\left|x\right|$ dla n=10

•

:

Rysunek 11: |x| dla n=15

Rysunek 12: $\frac{1}{1+x^2}$ dlan=5

Rysunek 13: $\frac{1}{1+x^2}$ dlan=10

Rysunek 14: $\frac{1}{1+x^2}$ dla n=15

Funckje |x| oraz $\frac{1}{1+x^2}$ mocno zmieniają wartości w swoich przedziałach i znak pochodnych obu funkcji ulega zmianie (powoduje to powstanie lokalnego minimum/maksimum). Ponad to widzimy, że im większy jest stopień wielomianu interpolacyjnego tym dokładniejszse wartości otrzymujemy w centrum interpolacji (tutaj okolice 0), jednak na końcach przedziału pojawiają się duże wahania wartości.

6.4 Wnioski

:

"Odwzorowanie" wielomianu interpolacyjnego zależy przede wszystkim od funkcji, ponieważ w sytuacji, gdy posiada on pochodną zmieniająca znak lub występuje w niej drastyczna zmianna wartości w danym przedziale, może być ono gorzej przybliżone. Ponad to dla bardzo wysokiego stopnia współczynika wielomianu, stracimy dokładność interpolacji na brzegach przedziału.