"Experimental Data Processing"

Assignment 1
Reconstructing the past:
Estimating solar radio flux F10.7 from sunspot records.

Tatiana Podladchikova
Term 1B, October 2025
t.podladchikova@skol.tech

SUNSPOT NUMBER OBSERVATIONS

30 September 2024

R = k(n + 10g)

n – number of observed sunspots

g – number of observed sunspot groups

k – coefficient of a telescope

Around 80 cooperating stations around the globe observe sunspot numbers daily

Main indicators of solar activity

Sunspot number

From ground-based observatories

Solar radio flux at 10.7 cm (in sfu)

 $1 \text{ sfu} = 10^{-22} \text{ W m}^{-2} \text{ Hz}^{-1}$

Ottawa and
Pentincton
Observatory, Canada

$$R = k(n + 10g)$$

n – number of observed sunspots

g – number of observed sunspot groups

k – coefficient of a telescope

A measurement of radio
emission at a wavelength
of 10.7 cm (2800 MHz) from all sources
present on the solar disk

13-month sequent monthly mean sunspot numbers

13-month running mean \overline{R}

$$\frac{1}{24}R_{i-6} + \frac{1}{12}(R_{i-5} + R_{i-4} + \dots + R_{i-1} + R_i + R_{i+1} + \dots + R_{i+5}) + \frac{1}{24}R_{i+6}$$

Smoothing: 13-month running mean

Multi-dimensional linear regression

$$F_i = \beta_0 + \beta_1 R_i + \beta_2 R_i^2 + \beta_3 R_i^3 + \varepsilon_i$$

i = 1, N

 F_i Dependent variable
Regressand

 $oldsymbol{eta_j}$ Coefficients of regression

 R_i Independent
variable
Regressor

E_i
 Unbiased
 uncorrelated
 Gaussian noise
 with constant
 variance

Coefficients eta_j are determined by LSM

$$\sum_{i=1}^{N} \varepsilon_i^2 \rightarrow min$$

Multi-dimensional linear regression

$$F = \begin{vmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{vmatrix} \rightarrow \begin{cases} \text{Vector of dependent variables} \end{cases} \qquad \begin{cases} \beta = \begin{vmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{vmatrix} \rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$R = \begin{vmatrix} 1 & r_1 & r_{1^2} & r_1^3 \\ 1 & r_2 & r_2^2 & r_3^3 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & r_N & r_N^2 & r_N^3 \end{vmatrix} \rightarrow \begin{cases} \text{Matrix of independent variables} \end{cases} \qquad \begin{cases} \epsilon = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

$$E = \begin{vmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{vmatrix} \Rightarrow \begin{cases} \text{Vector of coefficients} \end{cases}$$

Linear Regression Analysis, G.A.F. Seber and J. Lee, Wiley, N.Y., 2003

Estimation error of solar radio flux F10.7

Properties of Earth's atmosphere, NASA

Solar EUV irradiance

Variability in the thermosphere density and temperature

Atmospheric drag change

Decay and following re-entry

Require **F10.7** and **F30** as a proxy for solar input

