

Light scattering coefficients and enhancement factors in dry conditions

Evaluation between different models and measurements

Introduction

- Light scattering coefficient is a measure of light scattering abilities of aerosol particles
 - a strong function of RH

$$\sigma_{sp} = \sigma_{ex} - \sigma_{ab}$$

Larger for small particles

Can be used to calculate enhancement factor in different RH cases

Motivation

 Is there inconsistencies in different models by the means of aerosol optical properties in "dry" cases?

 Is there inconsistencies between models and measurement dry scattering?

Measurement data

Measurement data measured with humidified nephelometer system

- Data (EBAS) from different measurement sites
 - Tiksi, Zeppelin, Barrow and Alert
- Used the dry case studies (RH=0) to see differences between models and measurement

Model data

 Models: CAM5-Atras, CAM5, GEOS-Chem, OSLO-CTM3, TM5-AP3, GEOS5-Globase, ECHAM6.3-SALSA

- Data for different RH cases
 - absorption and extinction in 0, 40 and 85 RH

Different time format and resolution for different models

March, 2010

2.5

March, 2010

Conclusions

- Models represent the dry scattering and enhancement factor differently
- Models can somewhat represent the aerosol optical properties in dry case when compared to measurements but more thorough investigation is needed

Outlook

- Data temporal collocation and correlation plots between models and the measurements
- Include more models in the evaluation (ECMWF, MERRAero, etc..)

References

Ziegler et al. (2015). Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study. ACP. 15, 7247–7267, doi:10.5194/acp-15-7247-2015

