Review Lab 2

Tanguy Bosser

Machine Learning I - UMONS

February 2022

- When we conduct an experiment, we look at the outcome of a stochastic process taking values in some sample space Ω .
 - Defining all possible outcomes of the experiment.
- An event A is a subset of Ω ($A \in \Omega$). An event A occurs if the outcome of the experiment belongs to A.
- A random variable X is a mapping from the sample space Ω to the reals.
 - E.g. X = # heads from throwing a coin 10 times.
 - $\mathcal{X} \in \{0, 1, 2, ...10\}$, where \mathcal{X} is the support of X.

- Two kinds of random variables :
 - Discrete random variables
 - Support of X is discrete : $\mathcal{X} \in \{0, 1, 2, 3, ...\}$
 - ullet Associated to a probability mass function (pmf) $p_X(x)$:

$$p_X(x) = \mathbb{P}(X = x)$$

- $p_X(x) \ge 0$, $\forall x \in \mathcal{X}$
- Continuous random variables :
 - Support of X is continuous : $X \in S \subseteq \mathbb{R}$.
 - Associated to a probability density function $f_X(x)$:

$$\int_{a}^{b} f_X(x)dx = \mathbb{P}(a \le x \le b)$$

- $f_X(x) \ge 0, \forall x \in \mathcal{X}$

• Expectation of a discrete random variable :

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \ p_X(x) = \mu_X$$

• Expectation of a continuous random variable :

$$\mathbb{E}[X] = \int_{\mathcal{X}} f_X(x) dx = \mu_X$$

- Properties of the expectation :
 - For any constant c, $\mathbb{E}[X+c] = \mathbb{E}[X] + c$
 - For any constant c, $\mathbb{E}[cX] = c\mathbb{E}[X]$
 - ullet For any function g:
 - $\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) p_X(x)$ for discrete variables.
 - $\mathbb{E}[g(X)] = \int_{\mathcal{X}} g(X) f_X(x) dx$ for continuous variables.
 - ullet For any functions g and h, $\mathbb{E}[g(X)+h(X)]=\mathbb{E}[g(X)]+\mathbb{E}[h(X)]$

• Variance of a random variable :

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \mathbb{E}[(X - \mu_X)^2]$$

• Standard deviation of a random variable :

$$\sigma(X) = \sqrt{\mathsf{Var}(X)}$$

- Properties of the variance :
 - $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - For any constant c, $Var(cX) = c^2 Var(X)$
 - $\bullet \ \ \text{For any constant} \ c\text{,} \ \ \text{Var}(c+X) = \text{Var}(X)$

 Given two discrete random variables X and Y, their joint pmf is written:

$$p_{XY}(x,y) = \mathbb{P}(X=x,Y=y)$$

• Given two continuous random variables X and Y, their **joint** pdf is written $f_{XY}(x,y)$ such that:

$$\int_a^b \int_c^d f_{XY}(x,y) dx dy = \mathbb{P}(a \le x \le b, c \le y \le d)$$

The marginal pmf of X is defined as :

$$p_X(x) = \sum_{y \in \mathcal{Y}} p_{XY}(x, y)$$

• The marginal pdf of X is defined as :

$$f_X(x) = \int_{\mathcal{Y}} f_{XY}(x, y) dy$$

- For any function g, the joint expectation is defined as :
 - For discrete random variables :

$$\mathbb{E}[g(X,Y)] = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} g(x,y) p_{XY}(x,y)$$

For continuous random variables :

$$\mathbb{E}[g(X,Y)] = \int_{\mathcal{X}} \int_{\mathcal{Y}} g(x,y) f_{XY}(x,y) dx dy$$

ullet The covariance of two random variables X and Y is defined as :

$$\mathsf{Cov}(X,Y) = \mathbb{E}\big[(X - \mu_X)(Y - \mu_Y)\big]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- Useful properties :
 - $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
 - $\bullet \ \operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$

• The **conditional** pmf of Y given X is :

$$p_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_X(x)}$$

• The **conditional** pdf of Y given X is :

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

The law of total probability for discrete random variables gives :

$$p_X(x) = \sum_{y \in \mathcal{Y}} p_{XY}(x, y)$$
$$= \sum_{y \in \mathcal{Y}} p_{X|Y}(x|y) p_Y(y)$$

Bayes' rule :

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{x \in \mathcal{X}} p_{Y|X}(y|x)p_X(x)}$$

Replace pmf's by pdf's and sums by integrals for continuous random variables. ◆□▶ ◆問▶ ◆団▶ ◆団▶ ■ めぬぐ The conditional expectation of Y given X for discrete random variables is:

$$\mathbb{E}[Y|X=x] = \sum_{y \in \mathcal{Y}} y p_{Y|X}(y|x)$$

 The conditional expectation of Y given X for continuous random variables is:

$$\mathbb{E}[Y|X=x] = \int_{\mathcal{Y}} y f_{Y|X}(y|x) dy$$

• The law of total expectation yields :

$$\mathbb{E}[Y] = \sum_{x \in \mathcal{X}} \mathbb{E}[Y|X = x] p_X(x) \quad \text{or} \quad \mathbb{E}[Y] = \int_{\mathcal{X}} \mathbb{E}[Y|X = x] f_X(x) dx$$

ullet Two random variables X and Y are independent i.i.f :

$$p_{XY}(x,y) = p_X(x)p_Y(y) \quad \text{or} \quad f_{XY}(x,y) = f_X(x)f_Y(y)$$

ullet If two random variables X and Y are independent, then :

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

- Usually, we don't have access to the entire population of a random variable X.
 - The population statistics, such as the mean μ_X and the variance ${\sf Var}(X)$ of p_X are unknown!
 - We must rely on **point estimators** for these quantities given a finite number of samples $X_1,...X_n \sim p_X$.
 - Ex : The sample mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, is an estimator of μ_X .
- Suppose that we observed a finite sample of data points $x_1, x_2, ... x_n$. We believe that all these points originated from the same **unknown** distribution p_X , i.e. $X_1, X_2, ..., X_n \sim p_X$.
- \bullet How can we estimate this distribution p_X based on our finite set of samples ?
 - We suppose that the data originated from a distribution $p(x;\theta)$, and we want to find the best θ such that $p(x;\theta)$ is as close as possible to p_X .

- In other words, we want to maximize the **likelihood** that $p(x;\theta)$ generated the observed samples $x_1,...,x_n$.
- The **likelihood function** is defined as the probability to observe all samples if they are distributed as $p(x; \theta)$:

$$L(\theta) = p(x_1, ..., x_n; \theta)$$

 If we make the assumption that our samples are independent and identically distributed (i.i.d), we have:

$$L(\theta) = \prod_{i=1}^{n} p(x_i; \theta)$$

• We want to find the **Maximum Likelihood Estimator (MLE)**, i.e. the value of θ that maximizes the likelihood function :

$$\begin{split} MLE &= \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} \ L(\theta) \\ &= \underset{\theta \in \Theta}{\operatorname{argmax}} \ \log \ L(\theta) \\ &= \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log \ p(x_i; \theta) \end{split}$$

• Taking the first derivative of log $L(\theta)$ with respect to θ , equalling it to zero and solving for θ yields the MLE :

$$MLE = \hat{\theta} \ : \ \left(\log L\right)'(\hat{\theta}) = 0$$

• We can further check that this is indeed a maximum by taking the second derivative of log $L(\theta)$ with respect to θ and verifying that :

$$\left(\log\,L\right)^{''}(\hat{\theta})\leq 0$$