

SCC131: Digital Systems

Topic 4: Boolean logic

Boolean (a.k.a. binary) logic

- The fundamental binary logical operators are AND, OR, NOT and XOR
- They are very commonly seen in programming languages:
 - e.g., conditional and looping statements in Java or C

```
• if (expression && ...) ... /* && is logical AND */
```

- while (expression $\mid \mid$...) ... $/* \mid \mid$ is logical OR */
- etc.
- e.g., bit manipulation in C
 - byte1 = byte1 & 0x7f; // Clear top bit of byte (n.b. & is bitwise AND)
 - byte2 = byte2 | 0x80; // Set top bit of byte (n.b. | is bitwise OR)
- But boolean logic is also crucial to the design of computer hardware at the lowest level...

Boolean logic operations can be understood as "truth tables"

For any pair of binary digits (bits) A and B...

AND			
A B Q			
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR		
Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

NOT		
A Q		
0	1	
1	0	

TRUE if, and only if, the single input is FALSE

XOIX			
Α	В	Q	_
0	0	0	
0	1	1	
1	0	1	
1 1 0			
(eXclusive OR)			
c ., .			

YOR

TRUE if, and only if, all inputs are TRUE

TRUE if any input is TRUE

True if an odd number of inputs are TRUE, otherwise FALSE

1 is interpreted as meaning TRUE; and 0 as FALSE

Notation

Instead of AND/OR/NOT/XOR you will often see

```
— AND: • or ∧ or <nothing>
cf. "product"
```

```
— OR: + or V
cf. "sum"
```

```
    NOT: 'or (bar) or ¬
    'may be pronounced as prime
    may be pronouced as bar
```

– XOR: ⊕

Note also the strong relationship to set theory and set operations ...see discrete maths course

Logic components (a.k.a. "logic gates")

XOR

В

0

Q

0

Inverted logical operations

- In practice, different gates, called NANDs and NORs, are very commonly used instead of AND/OR/NOT/XOR gates
 - A NAND B = (A AND B)'
 - A NOR B = (A OR B)'
 - NOT AND → NAND indicates inversion
 NOT OR → NOR
- This is because NAND and NOR are "universal": **any** binary logic circuit can be built entirely from NAND gates, or from NOR gates
 - Also: using only NANDs (or NORs) makes circuit design significantly more cost-effective, as only one type of component is needed

NAND and NOR as truth tables...

Oix			
Α	В	Q	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

OR

NAND			
Α	В	Q	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR		
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Building AND/OR/NOT from NANDs/NORs

What can we use to build computer logic?

Transistors

Vacuum Tubes

Electro-mechanical Relays

Sheet Metal

...anything we can build a switch from

Example: building a NAND gate from a transistor

- Applying +5v to inputs A and B "opens" the transistor that so current can flow from the collector to the emitter, taking Q down to 0
 - (n.b. this is our sole foray into analog electronics!)

NAND			
A B Q			
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Boolean algebra

_	Law	AND form	OR form
ide	Identity 1	A = A''	A = A''
proven on next slide	Identity 2	1A = A	0 + A = A
u u	Null	0A = 0	1 + A = 1
ven	Idempotence	AA = A	A + A = A
pro	Complementarity	AA' = 0	A + A' = 1
School?	Commutativity	AB = BA	A + B = B + A
	Associativity	(AB)C = A(BC)	(A + B) + C = A + (B + C)
	Distributivity	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
	Absorption	A(A+B)=A	A + AB = A
	de Morgan's law	(AB)' = A' + B'	(A + B)' = A'B'

Note relationship between AND and OR variants... Swap 0s and 1s, ANDs and ORs ...one function is the dual of the other – if a function is correct, its dual must also be

oven on next slide

familiar from School?

Demonstration of (some of) the laws of Boolean Algebra by *perfect induction*

That is, by tabulating all possible combinations!

Identity 1

A = A''		
A A' A''		
0	1	0
1	0	1

Identity 2

1A = A			
1	1 A 1 AND A		
1	0	0	
1	1	1	

Null

	0A = 0		
0	0 A 0 AND A		
0	0	0	
0	1	0	

Idempotence

AA = A					
A A A A A A A A A A A A A A A A A A A					
0	0	0			
1	1 1 1				

Complemen

-tarity

	AA' = 0			
A	A A' A AND A'			
0)	1	0	
1		0	0	

(OR form of Identity 1 is same as above)

0 + A = A						
0	0 A 0 OR A					
0	0	0				
0	1	1				

1 + A = 1				
1 A 1 OR A				
1	0	1		
1	1	1		

A + A = A					
A A A OR A					
0	0	0			
1	1	1			

A + A' = 1					
A A' A OR A'					
0	1	1			
1	0	1			

Proof of absorption by perfect induction

A	(A +		
Α	В	A + B	A (A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1
1			1

de Morgan's Law

•
$$(AB)' = A' + B'$$
 $(A + B)' = A'B'$ Very useful!

- Whenever we see an expression whose subexpressions are all ANDed together, or all ORed together, we can re-state by
 - 1. negating the overall expression
 - 2. negating the sub-expressions
 - 3. flipping the operators from OR to AND, or vice versa
- Can you demonstrate, using perfect induction (i.e. a truth table), that (A' + B')'= AB ???

Towards the design of logic circuits

- Here are some examples of logic circuits that we might want to design
 - Traffic lights, counters, clocks, multiplexers, segmented numeric displays, ...
 - Computer ALUs, computer control units, computer memory units, buses, etc...
- The basic approach is
 - 1. Write out a truth table for the desired logical function
 - Derive a boolean expression by ORing together all the rows whose "output column" is 1
 - This is often called the *sum-of-products* form (cf. arithmetic "+")
 - 3. Translate the Boolean expression to logic gates
 - May need to map to AND/OR/NOT gates or to NAND or NOR only
 - May need to use Boolean alegbra or "Karnaugh maps" (see later) to obtain the simplest mapping to our target types of logic gate

A first example of logic circuit design (XOR)

- Consider a stair-hall lighting circuit a light over the stairs is controlled by a switch H in the hall, and a switch S on the stairs
 - We want to be able to switch the light on at the bottom, and off again at the top—and vice versa

— So, we want the light to be on if S is up and H is down, or if S is down and H is up

	5	н	Light
	0	0	0
S'H SH'	0	1	1
	1	0	1
	1	1	0

Example *contd*.

• So, L = S'H + SH' [in sum-of-products form]

Let's implement this using NAND gates...

- Apply de Morgan's law
 - Let X = S'H and let Y = SH' So we have X + Y
 - By de Morgan's law, X + Y = (X' Y')'
 - Expand to ((S'H)'(SH')')' So L = ((S'H)'(SH')')'
 - This is now in the required "inverted AND" form...

Example contd.

$$L = ((S'H)' (SH')')'$$

A second example: design a 4-way multiplexer

We want a multiplexer that "lets though" one of four inputs A, B, C or D, depending on the values of control inputs C₁ and C₂ (i.e. 4 control possibilities: 00, 01, 10 or 11)

$$- C_1 = 0 C_2 = 0 \text{ makes } X = A$$

$$- C_1 = 0 C_2 = 1 \text{ makes } X = B$$

$$-C_1=1C_2=0$$
 makes $X=C$

$$- C_1 = 1 C_2 = 1 \text{ makes } X = D$$

Multiplexer example cont.

 Write out the truth table and derive the sum-ofproducts form:

$$X = (AC_1'C_2') + (BC_1'C_2) + (CC_1C_2') + (DC_1C_2)$$

(each term is taken from an "X=1" row)

N.B., an X in a truth table means either 0 or 1 – i.e. "don't care"; this is useful in reducing the number of rows we have to consider!

C_1	C ₂	A	В	С	D	X
0	0	1	X	X	X	1
0	0	0	X	X	X	0
0	1	X	1	X	X	1
0	1	X	0	X	X	0
1	0	X	X	1	X	1
1	0	X	X	0	X	0
1	1	X	X	X	1	1
1	1	X	X	X	0	0

Example cont.

 Apply de Morgan's law to get this into "inverted AND" form

$$AC_{1}'C_{2}' + BC_{1}'C_{2} + CC_{1}C_{2}' + DC_{1}C_{2}$$

$$= ((AC_{1}'C_{2}')' (BC_{1}'C_{2})' (CC_{1}C_{2}')' (DC_{1}C_{2})')'$$

 Now we can map directly to 3-input NANDs...

Using Karnaugh maps (K-map) to minimise Boolean logic functions

- Our examples so far have mapped "conveniently" to NAND gates; we have just needed de Morgan's law to translate to "inverted AND" form
 - But it's not always so straightforward in practice using a truth table directly will often lead to a more complex implementation than necessary

- We can often *minimise* a Boolean function to produce a functionally equivalent, but simpler, implementation
- Karnaugh maps (K-map) offer an easy way to do this...

What is a Karnaugh map (K-map)?

- A grid in which each square represents one possible combination of inputs (cf. truth table row)
- Columns/rows are ordered so that only one input "changes" from col-to-col, and from row-to-row

(Also: note that Karnaugh maps "wrap" left-to-right and top-to-bottom)

	Α	Α'
В		
B'		

2-input map

	АВ	A'B	A'B'	AB'
С				
C'				

3-input map

	AB	A'B	A'B'	AB'
CD				
C'D				
C'D'				
CD'				

4-input map

Using a Karnaugh map (K-map)

- 1. Pick a template with the required number of inputs, and put a 1 in any square for which we want an output of 1
- 2. Look for *rectangular groups* of 1s
 - Groups must contain 2 or 4 or 8 ... (2^n) cells
 - Groups may overlap, and may wrap around the edges
 - The larger the groups, and the fewer the groups, the better

Result: for each group simply list the "unchanged" terms and OR them together ("changed" ones "cancel")

	A' BCD	+ A'B'CD +
	A'BC'D	+ A'B'C'D + AB'C'D +
		AB'C'D'+
ABCD' +	A'BCD'	+ A'B'CD' + AB'CD'
= A'D +	AB'C'	+ CD'

3 3 3 3 3 3 3 3 3 3							
	AB	A'B	A'B A'B'				
CD		1	1				
C'D		1	1	1			
C'D'				1			
CD'	1	1	1	1 2			

Karnaugh map example

- Implement a Decoder function that detects the following inputs: 0, 1, 2, 4 and 5 (assume 3-bit binary)
- Here's the truth table:

Decimal		Output		
	А	В	С	Output
0	0	0	0	1
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

Identify the sum-of-products expression

• F = A'B'C' + A'B'C + A'BC' + AB'C' + AB'C'

Decimal		Binary	Output	Towns	
	A	В	C	Output	Term
0	0	0	0	1	A'B'C'
1	0	0	1	1	A'B'C
2	0	1	0	1	A'BC'
3	0	1	1	0	
4	1	0	0	1	AB'C'
5	1	0	1	1	AB'C
6	1	1	0	0	
7	1	1	1	0	

Now, enter these five terms into a 3-input Karnaugh map template...

•
$$F = A'B'C' + A'B'C + A'BC' + AB'C' + AB'C$$

	AB	A'B	A'B'	AB'
С	0	0	1	1
C'	0	1	1	1

Find the groups

• F = A'B'C' + A'B'C + A'BC' + AB'C' + AB'C

	AB	A'B	A'B'	AB'
С			1	1
C'		1	1	1

The **larger** the groups the better The **fewer** the groups the better... (doesn't matter if groups overlap)

Derive the result...

Look for the "unchanged" variables in each group

B' is unchanged ("A" cancels: appears as both A and A'; "C" cancels: appears as both C and C')

A'C' is unchanged ("B" cancels: appears as both B and B')₂₉

Result

- Write down and OR together the "unchanged" variables...
 - B' was unchanged
 - A'C' was unchanged
- Result is therefore, F = B' + A'C'
- (Can you derive an implementation using NAND gates? hint: apply de Morgan's law to our result...)
- (Can you prove that A'B'C' + A'B'C + A'BC' + AB'C' + AB'C
 = B' + A'C' using perfect induction?)

Be careful not to miss "wrap around" possibilities

- Remember that groups may "wrap around"
- So, in each of the following examples we have a single group of four cells

	AB	A'B	A'B'	AB'		AB	A'B	A'B'	AB'		ged
CD					CD	1			1	4	unchang
C'D	1			1	C'D						'unc
C'D'	1			1	C'D'						are '
CD'					CD'	1			1	4	C
	1			<u>_</u>	•						and
A and C' are "unchanged"							31	A			

Let's do the same using Boolean algebra

- F = A'B'C' + A'B'C + A'BC' + AB'C' + AB'C
 - Can use *idempotence* to expand:

$$= A'B'C' + A'B'C + A'BC' + A'B'C' + AB'C' + AB'C$$

— Can then use distributivity to combine "similar" pairs of terms:

$$= A'B'(C' + C) + A'(B + B')C' + AB'(C' + C)$$

Can then use complementarity and then identity-2 to simplify:

$$= A'B' + A'C' + AB'$$

$$[X+X'=1 \text{ and then } 1X=X]$$

— Can then use commutativity to rearrange:

$$= A'B' + AB' + A'C'$$

— Can then use distributivity (again):

$$= (A' + A)B' + A'C'$$

Can then use complementarity and then identity-2 (again) to simplify:

$$= B' + A'C'$$

Why do Karnaugh maps "work"?

- A Karnaugh map is simply a visual representation of a logical expression in sum-of-products form
- As we just saw, we can often simplify a sum-of-products expression like this:

$$AB + AB' => A(B + B') => A$$

[via distributivity=>complementarity=>identity-2]

- This is what we informally called « cancelling »
- This is essentially what a Karnaugh map does e.g., the fact that the red group below includes both B and B' allows the B variable to be cancelled from the expression

Summary

- We know the four basic Boolean operators, and the corresponding logic gates
- We understand truth tables
- We appreciate the universality of NAND and NOR
- We understand the laws of Boolean algebra
- We promise to remember at least some of them (especially, de Morgan's law)!
- We know how to go through the following process
 - a logic function specification → a truth table → a "sum of products" logic expression → a logic circuit
- We know how to minimise logic expressions using Karnaugh maps