ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Θερινό εξάμηνο 2021

Ασκήσεις 4ου Κεφαλαίου - Β μέρος

1. Αν οι στηλές ενός 7×7 πίνακα D είναι γραμμικώς ανεξάρτητες, τι μπορείτε να πείτε για τις λύσεις του $D\mathbf{x} = \mathbf{b}$;

2. Προσδιορίστε αν τα πιο κάτω σύνολα είναι βάσεις του \mathbb{R}^2 ή \mathbb{R}^3 .

$$i) \ \left\{ \begin{bmatrix} 5 \\ -2 \end{bmatrix}, \begin{bmatrix} 10 \\ -3 \end{bmatrix} \right\}$$

$$ii) \ \left\{ \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix} \right\}$$

$$iii) \ \left\{ \begin{bmatrix} 1 \\ -6 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 7 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 8 \\ 9 \end{bmatrix}, \right\}$$

3. Έστω ο πίνακας

$$A = \left[\begin{array}{rrrr} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{array} \right]$$

- i) Είναι το NulA υπόχωρος \mathbb{R}^3 ή \mathbb{R}^4 ?
- ii) Είναι το $\mathrm{Col} A$ υπόχωρος του \mathbb{R}^3 ή \mathbb{R}^4 ?
- iii) Βρείτε μία βάση του πυρήνα NulA και προσδιορίστε την διάστασή του.
- iv) Βρείτε μία βάση του $\mathrm{Col} A$ και τον βαθμό του πίνακα A.

4. Έστω ο πίνακας

$$A = \begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$

- i) Βρείτε μία βάση του πυρήνα $\mathrm{Nul} A$ και το nullity του A.
- ii) Βρείτε μία βάση του υποχώρου ColA του \mathbb{R}^4 και την διάσταση του.

5. Έστω ο πίνακας

$$E = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

1

- i) Βρείτε το rankE.
- ii) Βρείτε την μηδενικότητα του E.

6. Έστω ο αντιστρέψιμος πίνακας:

$$C = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$

- i) Βρείτε το ColC.
- ii) Βρείτε το NulC.

7. Έστω F ένας 5×5 πίνακας του οποίου ο χώρος που παράγεται από τις στήλες του δεν είναι το \mathbb{R}^5 . Τι μπορείτε να πείτε για τον μηδενοχώρο του;

8. Βρείτε μία βάση του υποχώρου που παράγεται από τα διανύσματα:

$$\left\{ \begin{bmatrix} 1\\ -3\\ 2\\ -4 \end{bmatrix}, \begin{bmatrix} -3\\ 9\\ -6\\ 12 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 4\\ 2 \end{bmatrix} \begin{bmatrix} -4\\ 5\\ -3\\ 7 \end{bmatrix} \right\}$$

Ποια η διάσταση του υποχώρου;

9. Έστω η βάση $\mathcal{B}=\{\left[\begin{array}{c}1\\-4\end{array}\right],\left[\begin{array}{c}-2\\7\end{array}\right]\}$ του υποχώρου H και $\mathbf{y}=\left[\begin{array}{c}-3\\7\end{array}\right]\in H.$ Βρείτε το διάνυσμα \mathcal{B} -συντεταγμένων του \mathbf{y} .

10. Έστω η βάση $\mathcal{E}=\left\{\begin{bmatrix}1\\5\\-3\end{bmatrix},\begin{bmatrix}-3\\7\\5\end{bmatrix}\right\}$ του υποχώρου K και $\mathbf{z}=\begin{bmatrix}4\\10\\-7\end{bmatrix}\in K$. Βρείτε το διάνυσμα $[\mathbf{z}]_{\mathcal{E}}$.

11. Θεωρούμε την απεικόνιση $T(\mathbf{x}) = A\mathbf{x}$, όπου

$$A = \left[\begin{array}{rrr} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{array} \right]$$

Βρείτε το διάνυσμα ${\bf x}$ του οποίου η εικόνα είναι ${\bf b}=\begin{bmatrix} -1\\ 7\\ -3 \end{bmatrix}$ και προσδιορίστε αν το ${\bf x}$ είναι μοναδικό.

12. Βρείτε όλα τα ${\bf x}$ που απεικονίζονται στο μηδενικό διάνυσμα μέσω του μετασχηματισμού ${\bf x}\mapsto A{\bf x}$

$$A = \left[\begin{array}{rrrr} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{array} \right]$$

2

Έστω $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Είναι το \mathbf{y} στο πεδίο τιμών του γραμμικού μετασχηματισμού $\mathbf{x} \mapsto A\mathbf{x}$;

13. Έστω $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y_1} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ και $\mathbf{y_2} = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$ και $T: \mathbb{R}^2 \to \mathbb{R}^2$ ένας γραμμικός μετασχηματισμός που απεικονίζει το $\mathbf{e_1}$ στο $\mathbf{y_1}$ και το $\mathbf{e_2}$ στο $\mathbf{y_2}$. Βρείτε τις εικόνες των $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$ και $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

- 14. Προσδιορίστε αν οι παρακάτω μετασχηματισμοί είναι γραμμικοί:
 - i) $T: \mathbb{R}^2 \to \mathbb{R}^3$, $T(x_1, x_2) = (2x_1 3x_2, x_1 + 4, 5x_2)$
 - ii) $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T(x_1, x_2, x_3) = (x_1, x_2 x_3)$
- 15. Προσδιορίστε τον κανονικό πίνακα Α που αντιστοιχεί στον γραμμικό μετασχηματισμό.
 - i) $T: \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e_1}) = (3,1,3,1)$ kai $T(\mathbf{e_2}) = (-5,2,0,0)$, ópou $\mathbf{e_1} = (1,0)$ kai $\mathbf{e_2} = (0,1)$.
 - ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ απεικονίζει το $\mathbf{e_1}$ στο $\mathbf{e_1} 2\mathbf{e_2}$ και αφήνει το $\mathbf{e_2}$ αναλλοίωτο.
- **16.** Έστω $T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4).$
 - i) Προσδιορίστε τον κανονικό πίνακα A που αντιστοιχεί στον γραμμικό μετασχηματισμό T.
 - ii) Προσδιορίστε αν ο T είναι (α) 1 1, (β) επί.
- **17.** Έστω $T(x_1, x_2, x_3) = (x_1 5x_2 + 4x_3, x_2 6x_3).$
 - i) Προσδιορίστε τον κανονικό πίνακα A που αντιστοιχεί στον γραμμικό μετασχηματισμό T.
 - ii) Προσδιορίστε αν ο T είναι (α) 1 1, (β) επί.