IE1204 Digital Design

F12: Asynchronous Sequential Circuits (Part 1)

Masoumeh (Azin) Ebrahimi
KTH/ICT
mebr@kth.se

IE1204 Digital Design

This lecture

• BV pp. 584-640

Asynchronous Sequential Machines

- An asynchronous sequential machine is a sequential machine without flip-flops
- Asynchronous sequential machines are constructed by combinational logic circuits with feedback
- Assumption: Only one signal in a circuit can change its value at any time

Golden rule

Asynchronous state machines

- Asynchronous state machines are used when it is necessary to keep the information about a state, but no clock is available
 - All flip-flops and latches are asynchronous state machines
 - Useful to synchronize events in situations where metastability is/can be a problem

Asynchronous sequential circuit: SR-latch with NOR gates

 To analyze the behavior of an asynchronous circuit, we use ideal gates and summarize their delays to a single block with delay Δ

Analysis of a sequential asynchronous circuit

- By using a delay block, we can treat
 - y as the current state
 - Y as the next state

State table

 Thus, we can produce a state table where the next state Y depends on the inputs and the current state y

$$Y = \overline{R + \overline{(S + y)}}$$

State table

From statefunction to truth table

	~	_	
y	S	R	Y = R + (S + y)
0	0	0	$0 = 0 + (\overline{0+0})$
0	0	1	0 = 1 + (0 + 0)
0	1	0	$1 = \overline{0 + (\overline{1 + 0})}$
0	1	1	$0 = \overline{1 + (\overline{1 + 0})}$
1	0	0	$1 = \overline{0 + (\overline{0 + 1})}$
1	0	1	$0 = \overline{1 + (\overline{0+1})}$
1	1	0	$1 = \overline{0 + (\overline{1+1})}$
1	1	1	$0 = \overline{1 + (\overline{1 + 1})}$

Note: BV uses this binary code

Present					
state	SR =	00	01	10	11
у		Y	Y	Υ	Y
0		0	0	1	0
1		1	0	1	0

$$Y = \overline{R + \overline{(S + y)}}$$

Stable states

Present	Next state				
state	SR = 00	01	10	11	
У	Υ	Y	Υ	Y	
0	0	0	1	0	
1	1	0	1	0	

 Since we do not have flip-flops, but only combinational circuits, a state change can cause additional state changes

A state is

- stable if
$$Y(t) = y(t + \Delta)$$

- unstable if Y(t) \neq y(t + Δ)

$$Y = y$$
 stable

Excitation table

 Stable states (next state = present state) are circled

Present	Next state					
state	SR = 0	00	01	10	11	
У		Y	Y	Y	Υ	
0	(0	0	1	0	
1		1	0	1	0	

Terminology

- When dealing with asynchronous sequential circuits, a different terminology is used
 - The state table called flow table
 - The state-assigned state table is called excitation table

Flow table (Moore)

Present	Ne	Output			
state	SR = 00	01	10	11	Q
А	A	A	В	\bigcirc A	0
В	B	Α	\bigcirc B	Α	1

Flow Table (Mealy)

Present Next state			Output, Q					
state	SR = 00	01	10	11	00	01	10	11
Α	A	A	В	A	0	0	-	0
В	B	Α	\bigcirc B	Α	1	-	1	-

Do not care ('-') has been chosen for output decoder since output changes directly after the state transition (basic implementation)

Asynchronous Moore compatible

- Asynchronous sequential circuits have similar structure as synchronous sequential circuits
- Instead of flip-flops one have a "delay block"

Asynchronous Mealy compatible

- Asynchronous sequential circuits have similar structure as synchronous sequential circuits
- Instead of flip-flops one have a "delay block"

Analysis of Asynchronous Circuits

- The analysis is done using the following steps:
 - 1) Replace the feedbacks in the circuit with a delay element Δ. The input of the delay element represents the next state Y while the output y represents the current state.
 - 2) Find out the next-state and output expressions
 - 3) Set up the corresponding excitation table
 - 4) Create a **flow table** and replace the encoded states with symbolic states
 - 5) Draw a **state diagram** if necessary

D-latch state function

$$Y = C.D + \overline{C}.y$$

$$\uparrow \qquad \uparrow$$

$$follow \quad \overline{latch}$$

Example Master-slave D flip-flop

 Master-slave D flip-flop is designed using two D-latches

Excitation table

 From these equations, we can directly deduce excitation table

$$Y_{m} = CD + \overline{C}y_{m}$$

$$Y_{s} = \overline{C}y_{m} + Cy_{s}$$

$$Q = y_{s}$$

Excitation table

Present	Nextstate				
state	CD = 00	01	10	11	Output
y m y s		Y _m Y _s			
00	00	00	00)	10	0
01	00	00	(01)	11	1
10	11	11	00	10	0
11	11	(11)	01	11	1

or with help from K-map ...

binary order as in BV

00

10

11

Flow table

 We define four states S1, S2, S3, S4 and get the following flow table

Present	Nextstate	
state	<i>CD</i> = 00 01 10 11	Output
y m y s	Ym Ys	Q
00	<u></u>	0
01	00 00 01 11	1
10	11 11 00 10	0
11	11 11 01 11	1

Present	Ne	Output			
state	CD = 00	01	10	11	Q.
S1	<u>(S1)</u>	<u>S1</u>	<u>(S1)</u>	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	S4	S4	S1	(33)	0
S4	<u>\$4</u>	<u>S4</u>	S2	<u>S4</u>	1

Excitation table

Flow table

Flow table

Present	Ne	extsta	ite		Output
state	CD = 00	01	10	11	Q
S1	<u>(S1)</u>	<u>S1</u>	<u>S1</u>	S3	0
S2	S1	S1	<u>S2</u>	S4	1
S3	S4	S4	S1	(33)	0
S4	S4	<u>S4</u>	S2	<u>S4</u>	1

- Remember: Only one input can be changed simultaneously
- Thus, some transitions never occur!

Flow table (Impossible transitions)

State S3

- The only stable state is S3 with input combination 11
- Only one input can be changed => possible transitions are (11 => 01, 11 => 10)
 - These transitions leave S3!
 - The input combination 00 in S3 is not possible!
 - The input combination 00 is set to don't care!

Flow table (Impossible transitions)

State S2

- The only stable state is S2 with input combination 10
- Only one entry can be changed => possible transitions are (10 => 11, 10 => 00)
 - These transitions leave S2!
 - The input combination 01 in S2 is not possible!
 - The input combination 01 is set to don't care!

State Diagram Master-slave D flip-flop

Present	Ne	Output			
state	CD = 00	01	10	11	Q
S1	(\$1)	<u>S1</u>	<u>(S1)</u>	S3	0
S2	S1	-	S2	S4	1
S3	-	S4	S1	S3	0
S4	S4	<u>S4</u>	S2	S4	1

Flow table

Synthesis of asynchronous circuits

- The synthesis is carried out using the following steps:
 - Create a state diagram according to the functional description
 - 2) Create a **flow table** and **reduce the number of states** if possible
 - 3) Assign codes to the states and create excitations table
 - 4) **Determine expressions** (transfer functions) for the next state and outputs
 - 5) Construct a circuit that implements the above expressions

Example: Serial Parity Generator Step 1: Create a state diagram

- Input x
- Output z
- z = 1 if the number of pulses applied to x is odd
- z = 0 if the number of pulses applied to x is even

Step 2: Flow table

Pres state	Next S	Z	
	x=0	x=1	
А	(A)	В	0
В	C	(B)	1
С	\bigcirc	D	1
D	Α	\bigcirc	0

State diagram

Flow table

Step 3: Assign state codes

Pres state	Next State		Z
	x=0	x=1	
А	(A)	В	0
В	C	(B)	1
С	\bigcirc	D	1
D	Α	D	0

Pres state	Next State		Z
	x=0	x=1	
y 2 y 1	Y ₂ Y ₁		
00	(00)	01	0
01	10	01	1
10	(10)	11	1
11	00	(11)	0

Flow table

A:00, B:01, C:10, D:11 - binary code? Which encoding is good?

Step 3: Assign state codes Which encoding is good?

Assume \rightarrow A:00, B:01, C:10, D:11

Pres state	Next State		Q
	X=0 1		
y ₂ y ₁	Y ₂ \	′ 1	
00	(00)	01	0
01	10	(01)	1
10	10	11	1
11	00	11	0

Bad encoding (HD=2!)

Suppose
$$X = 1 \quad Y_2 Y_1 = 11$$
Then
$$X \to 0 \to Y_2 Y_1 = 00?$$

$$11 \to 10!$$

$$11 \to 01 \to 10! \quad ? \to 00$$

We will never reach 00?

Step 3: Assign state codes Which encoding is good?

A:00, B:01, C:10, D:11

Pres state	Next State		Z
	x=0	x=1	
y 2 y 1	Y_2Y_1		
00	(00)	01	0
01	10	01	1
10	(10)	11	1
11	00	(11)	0

Poor encoding (HD = 2) If we are in 11 under input w = 1 and input change to w = 0, the circuit should change to 00 A:00, B:01, C:11, D:10

Pres state	Next State		Z
	x=0	x=1	
y ₂ y ₁	Y ₂ Y ₁		
00	(00)	01	0
01	11	01)	1
11	11)	10	1
10	00	10	0

Good encoding (HD = 1)

What is a good state encoding?

• Suppose

$$X = 1$$
 $Y_2Y_1 = 10$

• Then

$$X \rightarrow 0 \rightarrow Y_2 Y_1 = 00$$

$$10 \rightarrow 00$$

Pres state	Next State		Q
	X=0-1		
y 2 y 1	Y_2Y_1		
00	100	01	0
01	11	01	1
11	(11)	10	1
10	00	10	0

Good encoding (HD=1)

Step 4: **Draw Karnaugh maps**

Pres state	Next State		Z
	x=0	x=1	
y 2 y 1	Y_2Y_1		
00	(00)	01	0
01	11	(01)	1
11	(11)	10	1
10	00	10	0

$$Y_2 = \overline{x}y_1 + y_2y_1 + xy_2$$
 $Y_1 = x\overline{y}_2 + \overline{y}_2y_1 + \overline{x}y_1$

$$Y_1 = xy_2 + y_2y_1 + xy_1$$

$$y_{2}$$

$$y_{1}$$

$$0$$

$$1$$

$$0$$

$$1$$

$$0$$

$$1$$

$$z = y_{1}$$

They red circles are needed to avoid hazards (see later Section)!

What is a Hazard?

- Hazard is a term that means that there is a danger that the output value is not stable, but it can have glitches at certain input combinations
- Hazard occurs when paths from different inputs to the output have different lengths
- To avoid this, we must add implicants to cover the "dangerous" transitions

Examples of hazard: MUX

During the transition from the $(xy_2y_1) = (111)$ to (011), the output Q has a glitch, as the path from x to Q is longer through the upper AND gate than through the lower AND gate (racing).

MORE ABOUT hazard in the next lecture!

Step 5: Complete circuit

Serial Parity Generator

(easier with D-flip-flop)

We have made an ''every other time'' earlier in the course. Then with a D flip-flop.

More on state encoding

- In asynchronous sequential circuits, it is impossible to guarantee that the two state variables change value simultaneously
 - Thus, a transition 00 => 11 results in
 - a transition 00 => 01 => ???
 - a transition 00 => 10 => ???
- To ensure correct operation, all state transitions
 MUST have Hamming distance 1
 - The Hamming distance is the number of bits in which two binary numbers differ
 - Hamming distance between 00 and 11 is 2
 - Hamming distance between 00 and 01 is 1

State encoding

- Procedure to obtain good codes:
 - Draw the transition diagram along the edges of the hypercube defined by the codes
 - 2) Remove any crossing lines by
 - a) swapping two adjacent nodes
 - b) exploiting available unused states
 - c) introducing more dimensions in the hypercube

State encoding Example: Serial Parity Generator

Pres state	Next S	State	Z
	x=0	x=1	
y 2 y 1	Y ₂ `	Y ₁	
00	(00)	01	0
01	10	01)	1
10	(10)	11	1
11	00	(11)	0

A:00, B:01, C:10, D:11

Poor coding -Hamming Distance = 2 (Intersecting lines)

State encoding Example: Serial Parity Generator

Pres state	Next State		Z
	x=0	x=1	
y 2 y 1	Y ₂ \	Y ₁	
00	(00)	01	0
01	11	01)	1
11	11)	10	1
10	00	10	0

A:00, B:01, C:11, D:10

Good coding
Hamming Distance = 1
(No intersecting lines)

swapping two adjacent nodes

State encoding Exploiting unused states

Flow table from Fig. 9.21a of BV textbook

Note: BV uses this binary code

Present	Ne	xtsta	te		Output
state	$r_2r_1=00$	01	10	11	<i>9</i> ₂ <i>9</i> ₁
Α	A	В	С	1	00
В	А	\bigcirc B	С	\bigcirc B	01
С	А	В	<u>C</u>	\bigcirc	10

Poor coding

In the transition from B to C (or C to B) has the Hamming distance 2! Danger to get stuck in an unspecified state (with code 11)!

State encoding Exploiting aunused states

 Solution: Introduce a transition state that ensures that you do not end up in an

unspecified state!

Good coding

exploiting available unused states

Present	Ne	xtsta	te		Output
state	$r_2r_1 = 00$	01	11	10	9291
Α	A	В	-	O	00
В	A	\bigcirc B	\bigcirc	С	01
С	А	В	©	0	10

	Present	Nextstate	
	state	$r_2r_1 = 00 01 11 10$	Output
	y 2 y 1	Y ₂ Y ₁	<i>9</i> ₂ <i>9</i> ₁
Α	00	<u>00</u> 01 - 10	00
В	01	00 @ 01_11	01
D	11	- 01 - 10	dd
С	10	00 11 10 10	10

State encoding: Additional states (more dimensions)

 One can increase the number of dimensions in order to implement stable state transitions

If it is not possible to redraw a diagram for HD = 1, we can add more states by adding extra dimensions. We take the nearest largest hypercube and draw the transitions through the available non steady states.

State encoding: Additional states (more dimensions)

• It's easier to draw a "flat" 3D cube (perspective, is then from the front)

State Minimizing

Asynchronous state machines has many "unspecified" positions in the flow table that can be exploited to minimize the number of states.

The probability that less number of states leads to a simpler implementation is high in the case of asynchronous circuits!

State Minimizing

Two steps:

Equivalency - equivalent state. The same steps as the state minimization of synchronous sequential circuits, full flexibility remain.

Compatibility - compatible states will be different for Moore or Mealy compliant realization, the choices you make now affect the future flexibility.

Example Candy Machine (BV page 610)

- Candy machine has two inputs:
 - N: nickel (5 cents)
 - D: dime (10 cents)
- A candy bar costs 10 cents
- The machine will not return any change if there is 15 cents in the candy machine (a candy bar returned)
- The output z is active if there is enough money for a piece of candy

State Diagram and Flow Chart

• You can't insert two coins at the same time!

Pres	Next State		Z
state	X=00 01 10	11	
А	(A) B C	<u>[-]</u>	0
В	D (B) -	-	0
С	A - (C)	-	1
D	D E F	-	О
Е	A E -	-	1
F	A - (F)	<u> </u>	1
(X = DN)			

A flow table that contains only one stable state per row is called primitive flow table.

Step 1: Form and minimize equivalence classes

- 1. Forming equivalence classes. To be in the same class, the following should hold for states:
 - Outputs must have the same value
 - Stable states must be at the same positions
 - Don't cares for next state must be in the same positions
- 2. Minimize equivalence classes (state-reduction)

State reduction

Outputs must have the same value

$$P_1 = (ABD)(CEF)$$

Stable states must be at the same positions

$$P_2 = (AD)(B)(CF)(E)$$

 Don't cares for next state must be in the same positions

$$P_2 = (AD)(B)(CF)(E)$$

Or in short: equivalence classes

The same output AND the same position for stable states AND the same position for don't cares: (AD) (CF)

Primitive flow table

Pres	Next State		Q
state	X=00 01 10	11	
Α	A B C	-	0
В	D (B) -	-	0
С	A - C	-	1
D	(D) E F	-	0
E	A E -	-	1
F	A - (F)	-	1

Equivalence groups

	Pres	Ne	ext S	state		Q
	state	X=00	01	10	11	
	→ A	A	В	С	-	0
	В	D	\bigcirc	-	-	0
\perp	→ C	Α	-	\bigcirc	-	1
L	→ D	D	E	F	-	0
	Е	Α	(E)	-	-	1
	→ F	Α	- (F	-	1

$$(X = ND, Q = z)$$

The states is divided in blocks after the output value.

ABD has output **0**, **CEF** has output **1**. $P_1 = (ABD)(CEF)$

Stable states must be for same input signal (column), don't care must be for same column.

AD has a stable state for 00. B has a stable for 01. CF has a stable state for 10. E has a stable for 01. AD and CF has don't care for corresponding input signals.

$$P_2 = (AD)(B)(CF)(E)$$

Merge equivalence groups

Two rows could be "merged" if they do not conflict in their successor states

$$C,F_{00} \rightarrow (AD), (AD)$$

 $C,F_{01} \rightarrow -, -$
 $C,F_{10} \rightarrow (CF), (CF)$
 $C,F_{11} \rightarrow -, -$

$$A,D_{00} \rightarrow (\mathbf{AD}), (\mathbf{AD})$$

$$A,D_{01} \rightarrow (\mathbf{B}), (\mathbf{E})$$

$$A,D_{10} \rightarrow (\mathbf{CF}), (\mathbf{CF})$$

$$A,D_{11} \rightarrow -, -$$

$$P_2 = (AD)(B)(CF)(E)$$

 $P_3 = (A)(D)(B)(CF)(E)$
 $P_3 = P_4$

Primitive flow table

	NI. (Otata			ľ
Pres	Next State		Q	
state	X=00 01 10	11		
A	(A) B C	-	0	
В	D B -	-	0	
С	A - C	-	1 -	L
D	D E F	-	0	
E	A (E) -	-	1	
F	A - (F)	-	1	<u> </u>

Resulting flow table

	Pres	Next State		Q
	state	X=00 01 10	11	
				_
	Α	(A) B C	-	0
	В	D (B) -	-	0
_	→ C	A - C	-	1
	D	D E C	-	0
	Е	A (E) -	-	1
		1		

State Diagram and Flow Chart

State Minimization means that two states may be equivalent, and if so, replaced by one state to simplify the state diagram, and network.

One can easily see that state C and F could be replaced by one state, as a candy always be ejected after a Dime regardless of previous state.

Step 2: Compatibility Groups

- 3. Construct state diagram either for Mealy or Moore
- 4. Merge **compatible states** in groups. Minimize the number of groups simultaneously. Each state may belong to one group only.
- Construct the reduced flow table by merging rows in the selected groups
- Repeat steps 3-5 to see if more minimizations can be done

Merging rules

- Two states are compatible and can be merged if the following applies
 - 1. at least one of the following conditions apply to all input combinations
 - both S_i and S_i have the same successor, or
 - both S_i and S_i are stable, or
 - the successor of S_i or S_i, or both, is unspecified
 - 2. For a Moore machine, in addition the following should hold
 - both S_i and S_j have the same output values whenever specified (not necessary for a Mealy machine)

Resulting flow table

Pres	Next State	Q
state	X=00 01 10 1	11
А	(A) B C	- 0
В	DB -	- 0
С	A - C	- 1
D	D E C	- 0
Е	A (E) -	- 1

Each row will be a point in a compatibility graph

- both S_i and S_j have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility graph

Resulting flow table

Each row will be a point in a compatibility graph

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility graph

Resulting flow table

Each row will be a point in a compatibility graph

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility graph

Resulting flow table

Each row will be a point in a compatibility graph

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility graph

Resulting flow table

Pres	Next State Q
state	X=00 01 10 11
A	(A) B C - 0
В	D (B) 0
С	A - C - 1
D	D E C - 0
E	A E - 1

Each row will be a point in a compatibility graph

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility graph

Resulting flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	(A) B C -	0
В	D B	0
С	A - (C) -	1
D	DEC -	0
E	A (E)	1

Pres	Next State		Q
state	X=00 01 10	11	
Α	A B C	-	0
В	D (B) -	-	0
→ C	A CC	-	1
D	D C C	-	0

Merging state C and E

An illustrative example (BV 9.8)

Primitive flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	A F C -	0
В	A (B) - H	1
С	G - (C) D	0
D	- F - D	1
Е	G - (E) D	1
F	- (F) - K	0
G	(G) B J -	0
Н	- L E (H)	1
J	G - (J) -	0
К	- B E (B)	1
L	A (L) - K	1

Equivalence classes

The same output AND the same position for stable states AND don't cares.

An illustrative example (BV 9.8)

Primitive flow table

Equivalence classes

The same output AND the same position for stable states AND don't cares: (AG) (BL) (HK)

$$P_1 = (AG)(BL)(C)(D)(E)(F)(HK)(J)$$

Successor state: A, G are *not* equivalent

$$A,G_{00} \to (AG), (AG) \quad A,G_{01} \to (F),(BL)$$

 $A,G_{10} \to (C),(J) \quad A,G_{11} \to -, -$

$$B,L_{00} \to (AG), (AG) B,L_{01} \to (BL), (BL)$$

 $B,L_{10} \to -, - B,L_{11} \to (HK), (HK)$

$$H,K_{00} \rightarrow -, - H,K_{01} \rightarrow (BL), (BL)$$

 $H,K_{10} \rightarrow (E), (E) H,K_{11} \rightarrow (HK), (HK)$

$$P_2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J)$$
 $P_3 = P_2$

An illustrative example

Primitive flow table

	Pres	Next State	Q
	state	X=00 01 10 11	
ſ	→ A	AFC -	0
_	→ B	A (B) - H	1
	С	G - (C) D	0
	D	- F - D	1
	E	G - 🖹 D	1
	F	- (F) - K	0
L	→ G	G в J -	0
	→H	- L E (H)	1
	J	G - (J) -	0
	→K	- B E (K)	1
	→ L	A 🕒 - K	1

Equivalence classes

$$P_1$$
= (AG) (BL) (C) (D) (E) (F) (HK) (J)
 P_2 = (A) (G) (BL) (C) (D) (E) (F) (HK) (J)
 P_3 = P_2

An illustrative example

Primitive flow table

Equivalence classes

 P_1 = (AG) (BL) (C) (D) (E) (F) (HK) (J) P_2 = (A) (G) (BL) (C) (D) (E) (F) (HK) (J) P_3 = P_2

B for (BL) H for (HK)

Pres	Nex	t State		Q
state	X=00 (01 10	11	
Α	A	F C	-	0
В	A (B) -	Н	1
С	G	- ©	D	0
D	-	F -	(D)	1
E	G	- E	D	1
F	- (F) -	Н	0
G	G	ΒЈ	-	0
Н	-	ВЕ	\bigoplus	1
J	G	- 🛈	-	0

Compatibility

Pres	Next State	Q
state	X=00 01 10 11	
А	(A) F C -	0
В	A (B) - H	1
С	G - (C) D	0
D		4
ן ט	- F - (D)	1
Е	G - E D	1
F	- (F) - H	0
'		U
G	(G) B J -	0
Н	- B E (H)	1
		•
J	G - (J) -	0
L	· · · · · · · · · · · · · · · · · · ·	

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility

Pres	Next State	Q
state	X=00 01 10 11	
> A	A F C -	0
→ B	A (B) - H	1
	G - (C) D	0
→ D	- F - D	1
	G - (E) D	1
F	- (F) - Н	0
<mark>→</mark> G	© В Ј -	0
	- B E (H)	1
J	G - (J) -	0

- both S_i and S_i have the same successor, or
- both S_i and S_i are stable, or
- the successor of S_i or S_j , or both, is unspecified Moreover, both S_i and S_j must have the same output whenever specified

Compatibility

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	A A C B	0
В	A B D B	1
С	G - © D	0
D	G A (D) (D)	1
G	<u> </u>	0

New names B (BH), A (AF), G (JG), D (DE)

Reduced flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	A A C B	0
В	A B D B	1
→ C	G - © D	0
D	G A (D) (D)	1
→ G	G B G -	0

Final flow table

Pres	Next State	Q
state	X=00 01 10 11	
Α	A A C B	0
В	ABDB	1
С	© B © D	0
D	C A (D) (D)	1

Summary

- Asynchronous state machines
 - Based on analysis of combinational circuits with feedback
 - All flip-flops and latches are asynchronous state machines
- A similar theory as for synchronous state machines can be applied
 - Only one input or state variable can be changed at a time!
 - We must also take into account the problem with hazards
- Next lecture: BV pp. 640-648, 723-724