Financial Econometrics Notes

Kevin Sheppard University of Oxford

Wednesday 11th September, 2019

Contents

Probability, Random Variables and Expectations

	1.2	Univariate Random Variables
	1.3	Multivariate Random Variables
	1.4	Expectations and Moments
2	Estir	mation, Inference, and Hypothesis Testing 63
	2.1	Estimation
	2.2	Convergence and Limits for Random Variables
	2.3	Properties of Estimators
	2.4	Distribution Theory
	2.5	Hypothesis Testing
	2.6	The Bootstrap and Monte Carlo
	2.7	Inference on Financial Data
3	Anal	lysis of Cross-Sectional Data 141
3	Anal	lysis of Cross-Sectional Data Model Description
3		Model Description
3	3.1	•
3	3.1 3.2	Model Description141Functional Form145Estimation148
3	3.1 3.2 3.3	Model Description 141 Functional Form 145 Estimation 148 Assessing Fit 151
3	3.1 3.2 3.3 3.4	Model Description141Functional Form145Estimation148
3	3.1 3.2 3.3 3.4 3.5	Model Description141Functional Form145Estimation148Assessing Fit151Assumptions155Small Sample Properties of OLS estimators158
3	3.1 3.2 3.3 3.4 3.5 3.6	Model Description141Functional Form145Estimation148Assessing Fit151Assumptions155Small Sample Properties of OLS estimators158Maximum Likelihood159
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Model Description141Functional Form145Estimation148Assessing Fit151Assumptions155Small Sample Properties of OLS estimators158
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Model Description 141 Functional Form 145 Estimation 148 Assessing Fit 151 Assumptions 155 Small Sample Properties of OLS estimators 158 Maximum Likelihood 159 Small Sample Hypothesis Testing 161

1

	3.A	Selected Proofs
4	Anal	ysis of a Single Time Series 233
	4.1	Stochastic Processes
	4.2	Stationarity, Ergodicity, and the Information Set
	4.3	ARMA Models
	4.4	Difference Equations
	4.5	Data and Initial Estimates
	4.6	Autocorrelations and Partial Autocorrelations
	4.7	Estimation
	4.8	Inference
	4.9	Forecasting
	4.10	Nonstationary Time Series
	4.11	Nonlinear Models for Time-Series Analysis
	4.12	Filters
	4.A	Computing Autocovariance and Autocorrelations
5	Anal	ysis of Multiple Time Series 331
	5.1	Vector Autoregressions
	5.2	Companion Form
	5.3	Empirical Examples
	5.4	VAR forecasting
	5.5	Estimation and Identification
	5.6	Granger causality
	5.7	Impulse Response Function
	5.8	Cointegration
	5.9	Cross-sectional Regression with Time-series Data
	5.A	Cointegration in a trivariate VAR
6	Gene	eralized Method Of Moments (GMM) 387
	6.1	Classical Method of Moments
	6.2	Examples
	6.3	General Specification
	6.4	Estimation
	6.5	Asymptotic Properties
	6.6	Covariance Estimation
	6.7	Special Cases of GMM
	6.8	Diagnostics
	6.9	Parameter Inference
		Two-Stage Estimation
		Weak Identification

	6.12	Considerations for using GMM
7	Univ	rariate Volatility Modeling 427
	7.1	Why does volatility change?
	7.2	ARCH Models
	7.3	Forecasting Volatility
	7.4	Realized Variance
	7.5	Implied Volatility and VIX
	7.A	Kurtosis of an ARCH(1)
	7.B	$Kurtos is of a GARCH (1,1) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
8	Valu	e-at-Risk, Expected Shortfall and Density Forecasting 493
	8.1	Defining Risk
	8.2	$Value-at-Risk \ (VaR) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	8.3	Expected Shortfall
	8.4	Density Forecasting
	8.5	Coherent Risk Measures
9	Mult	ivariate Volatility, Dependence and Copulas 531
	9.1	Introduction
	9.2	Preliminaries
	9.3	Simple Models of Multivariate Volatility
	9.4	Multivariate ARCH Models
	9.5	Realized Covariance
	9.6	Measuring Dependence
	9.7	Copulas
	9.A	Bootstrap Standard Errors

List of Figures

1.1	Set Operations
1.2	Bernoulli Random Variables
1.3	Normal pdf and cdf
1.4	Poisson and χ^2 distributions
1.5	Bernoulli Random Variables
1.6	Joint and Conditional Distributions
1.7	Joint distribution of the FTSE 100 and S&P 500
1.8	Simulation and Numerical Integration
1.9	Modes
2.1	· · · · · · · · · · · · · · · · · · ·
2.2	•
2.3	<u>ī</u> <u>ī</u>
2.4	
2.5	
2.6	*
2.7	CRSP Value Weighted Market (VWM) Excess Returns
3.1	Rejection regions of a t_{10}
3.2	
3.3	, 0,00
3.4	
3.5	•
3.6	o a constant of the constant o
3.7	· ·
3.8	<u> </u>
3.9	
	0 Influential Observations
	1 Correct and Incorrect use of "Robust" Estimators
3.1	2 Weights of an S&P 500 Tracking Portfolio

4.1	Dynamics of linear difference equations
4.2	Stationarity of an AR(2) $\dots \dots \dots$
4.3	VWM and Default Spread
4.4	ACF and PACF for ARMA Processes
4.5	ACF and PACF for ARMA Processes
4.6	$Autocorrelations\ and\ Partial\ Autocorrelations\ for\ the\ VWM\ and\ the\ Default\ Spread 264$
4.7	M1, M1 growth, and the ACF and PACF of M1 growth
4.8	Time Trend Models of GDP $\ \ldots \ $
4.9	Unit Root Analysis of ln CPI and the Default Spread
4.10	Ideal Filters
4.11	Actual Filters
	Cyclical Component of U.S. Real GDP $\ \dots \ $
	Markov Switching Processes
	Self Exciting Threshold Autoregression Processes
	Exercise 4.9
4.16	Plots for question 2(b)
5 1	Commonling forwards from a WAR(1) and an AR(1)
5.1	Comparing forecasts from a VAR(1) and an AR(1)
5.2	
5.3	Impulse Response Functions
5.4 5.5	Detrended CAY Residuals
5.6	Impulse Response of Level-Slope-Curvature
3.0	impulse response of Lever-Stope-Cut valure
6.1	2-Step GMM Objective Function Surface
7.1	Returns of the S&P 500 and WTI $\ \ldots \ $
7.2	Squared returns of the S&P 500 and WTI $\dots \dots \dots$
7.3	Absolute returns of the S&P 500 and WTI $\ \ldots \ $
7.4	News impact curves
7.5	Various estimated densities for the S&P 500 $\ldots\ldots\ldots\ldots\ldots$. 455
7.6	Effect of distribution on volatility estimates
7.7	ACF and PACF of S&P 500 squared returns
7.8	ACF and PACF of WTI squared returns $\ \ldots \ $
7.9	Realized Variance and sampling frequency $\ \ldots \ $
	RV^{AC1} and sampling frequency
	Volatility Signature Plot for SPDR RV
	Black-Scholes Implied Volatility
7.13	VIX and alternative measures of volatility
8.1	Graphical representation of Value-at-Risk

8.3	S&P 500 Returns and a Parametric Density
8.4	Empirical and Smoothed empirical CDF
8.5	Naïve and Correct Density Forecasts
8.6	Fan plot
8.7	QQ plot
8.8	Kolmogorov-Smirnov plot
8.9	Returns, Historical Simulation VaR and Normal GARCH VaR 528
9.1	Lag weights in RiskMetrics methodologies
9.2	Rolling Window Correlation Measures
9.3	Observable and Principal Component Correlation Measures 546
9.4	Volatility from Multivariate Models
9.5	Small Cap - Large Cap Correlation
9.6	Small Cap - Long Government Bond Correlation
9.7	Large Cap - Bond Correlation
9.8	Symmetric and Asymmetric Dependence
9.9	Rolling Dependence Measures
9.10	Exceedance Correlation
9.11	Copula Distributions and Densities
9.12	Copula Densities with Standard Normal Margins
9.13	S&P 500 - FTSE 100 Diagnostics
9.14	S&P 500 and FTSE 100 Exceedance Correlations

List of Tables

1.1	Monte Carlo and Numerical Integration
2.1	Parameter Values of Mixed Normals
2.2	Outcome matrix for a hypothesis test
2.3	Inference on the Market Premium
2.4	Inference on the Market Premium
2.5	Comparing the Variance of the NASDAQ and S&P 100
2.6	Comparing the Variance of the NASDAQ and S&P 100
2.7	Wald, LR and LM Tests
3.1	Fama-French Data Description
3.2	Descriptive Statistics of the Fama-French Data Set
3.3	Regression Coefficient on the Fama-French Data Set
3.4	Centered and Uncentered R^2 and \bar{R}^2
3.5	Centered and Uncentered R^2 and \bar{R}^2 with Regressor Changes
3.6	t-stats for the Big-High Portfolio
3.7	Likelihood Ratio Tests on the Big-High Portfolio
3.8	Comparison of Small- and Large- Sample <i>t</i> -Statistics
3.9	Comparison of Small- and Large- Sample Wald, LR and LM Statistic 188
3.10	OLS and GLS Parameter Estimates and <i>t</i> -stats
4.1	Estimates from Time-Series Models
4.2	ACF and PACF for ARMA processes
4.3	Seasonal Model Estimates
4.4	Unit Root Analysis of ln <i>CPI</i>
5.1	Parameter estimates from Campbell's VAR
5.2	AIC and SBIC in Campbell's VAR
5.3	Granger Causality
5.4	Johansen Methodology
5.5	Unit Root Tests

6.1	Parameter Estimates from a Consumption-Based Asset Pricing Model 400
6.2	Stochastic Volatility Model Parameter Estimates
6.3	Effect of Covariance Estimator on GMM Estimates
6.4	Stochastic Volatility Model Monte Carlo
6.5	Tests of a Linear Factor Model
6.6	Fama-MacBeth Inference
7.1	Summary statistics for the S&P 500 and WTI
7.2	Parameter estimates from ARCH-family models
7.3	Bollerslev-Wooldridge Covariance estimates
7.4	GARCH-in-mean estimates
7.5	Model selection for the S&P 500
7.6	Model selection for WTI
8.1	Estimated model parameters and quantiles
8.2	Unconditional VaR of the S&P 500
9.1	Principal Component Analysis of the S&P 500
9.2	Correlation Measures for the S&P 500
9.3	CCC GARCH Correlation
9.4	Multivariate GARCH Model Estimates
9.5	Refresh-time sampling
9.6	Dependence Measures for Weekly FTSE and S&P 500 Returns
9.7	Copula Tail Dependence
9.8	Unconditional Copula Estimates
9.9	Conditional Copula Estimates