Raisonnement par récurrence:

- 1. « $n^2 + n + 2$ est pair pour $n \in \mathbb{N}$ »
- 2. « $2^n \ge n^2$, $n \in \mathbb{N}$ »
- 3. « $\sum_{k=0}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$, $n \in \mathbb{N}$ »
- 4. « $\sum_{k=0}^n k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, $n \in \mathbb{N}$ »
- 5. « $(1+a)^n \ge 1 + n \cdot a$ »
- 6. Soit (u_n) la suite définie par $u_1=0.4$ et pour tout entier $n\geq 1,$ $u_{n+1}=0.2\cdot u_n+0.4.$ Démontrer que la suite (u_n) est croissante.
- 7. Soit la suite (u_n) définie par $u_0=0$ et pour tout entier naturel n, $u_{n+1}=\frac{u_n+3}{4\cdot u_n+4}$.

On considère la fonction f définie sur $]-1;+\infty[\cup]-$

- 1; $+\infty$ [par $f(x) = \frac{x+3}{4x+4}$.
- 1) Étudier les variations de f.
- 2) Démontrer par récurrence que pour tout entier naturel n,
- $0 \le u_n \le 1$