Data Sheet

V 1.4 / Oct. 2017

MSM261D4030Z1A

PDM digital output MEMS microphone with Multi-modes

GENERAL DESCRIPTION

MSM261D4030Z1A is an omnidirectional, Bottom-ported, PDM digital output MEMS microphone. It has high performance and reliability. The MSM261D4030Z1A offers multiple performance modes.

MSM261D4030Z1A is available in a 4 mm \times 3 mm \times 1 mm metal cap LGA package. It is SMT compatible with no sensitivity degradation.

APPLICATIONS

- ♦ Mobile Phone
- ♦ Laptop
- ♦ Tablet computer
- ♦ Bluetooth headset
- ♦ Earphone
- ♦ Wearable intelligent equipment

FEATURES

- ♦ Cost effective
- ♦ Fourth-order Σ-Δ modulator
- ♦ Digital PDM output
- Compatible with Sn/Pb and Pb-free solder processes
- ♦ RoHS/Halogen free compliant
- Multiple performance modes (Sleep, Low-Power, Standard Performance)
- ♦ Sensitivity Matching within +-1dB

PRODUCT VIEW

ABSOLUTE MAXIMUM RATINGS

Parameter	Maximum value	Unit
Supply Voltage	-0.3 to 4.0	V
Sound Pressure Level	140	dB SPL
Temperature Range	-40 to 100	°C
Electrostatic discharge protection	2 (HBM)	kV

ACOUSTIC & ELECTRICAL SPECIFICATIONS

TEST CONDITIONS: $23 \pm 2^{\circ}$ C, $55\pm 20\%$ R.H., VDD=1.8 V, fCLOCK=2.4 MHz, SELECT pin grounded, no load, unless otherwise indicate

General Microphone Specifications

	Parameter	Symbol	Conditions	Min	Тур	Max	Units
	Supply Voltage	V _{DD}		1.6	-	3.6	V
Clock	Sleep Mode			0		50	KHz
Frequency	Low-Power Mode			150		900	KHz
Range	Standard Performance Mode			1.1		4.0	MHz
	Sleep Current	ISLEEP	f _{CLOCK} ≤ 50 kHz	-	1		μΑ
	DC Output		Fullscale = ±100	-	4	-	% FS
	Directivity			Omnidirectional		ıal	
Polarity			Increasing sound	Increasing density of 1's			of 1's
	Data Format			½ Cycle PDM		1	
S	Short Circuit Current	Isc	Grounded DATA pin	1	-	10	mA
	Output Load	CLOAD		-	-	200	рF
Fall-asleep Time			f _{CLOCK} ≤ 50 kHz	-	-	30	μs
Wake-up Time			f _{CLOCK} ≥ 151 kHz	-	-	200	μs
Power-up Time			V _{DD} ≥ V(min)	-	-	50	ms
	Mode-Change Time			-	-	10	ms

Standard Performance Mode

TEST CONDITIONS: $f_{CLOCK} = 2.4 \text{ MHz}$, $V_{DD} = 1.8 \text{ V}$, unless otherwise indicated

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Current	ldd	f _{CLOCK} =2.4 MHz		670	-	μА
Sensitivity	S	94 dB SPL @ 1 kHz	-27	-26	-25	dBFS
Signal to Noise Ratio	SNR	20 kHz bandwidth, A-weighted f _{CLOCK} =2.4 MHz	-	64	-	dB(A)
Total Harmonic Distortion	THD	94 dB SPL @ 1 kHz, S = Typ	-	0.2	-	%
Acoustic Overload Point	АОР	10% THD @ 1 kHz, S = Typ	-	120	-	dB SPL
Power Supply Rejection Ratio	PSRR	200 mVpp sinewave @ 1 kHz	-	50	-	dBV/FS
Power Supply Rejection	PSR+N	100 mVpp square wave @ 217 Hz, A-weighted	-	-80	-	dBFS(A)

Low-Power Mode

TEST CONDITIONS: f_{CLOCK} =768 kHz, V_{DD} =1.8 V, unless otherwise indicated

Parameter	Symbol	Conditions		Тур	Max	Units
Supply Current	lod	f _{CLOCK} =768KHz		290	-	μΑ
Sensitivity	S	94 dB SPL @ 1 kHz	-26	-25	-24	dBFS
Signal to Noise Ratio	SNR	94 dB SPL @ 1 kHz, A-weighted(20Hz-8KHz)	-	62	-	dB(A)
Total Harmonic Distortion	THD	94 dB SPL @ 1 kHz, S = Typ	-	0.2	-	%
Acoustic Overload Point	АОР	10% THD @ 1 kHz, S = Typ	-	120	-	dB SPL
Power Supply Rejection Ratio	PSRR	200 mVpp sinewave @ 1 kHz	-	50	-	dBV/FS
Power Supply Rejection	PSR+N	100 mVpp square wave @ 217 Hz, A-weighted(20Hz-8KHz)	-	-80	-	dBFS(A)

Microphone Interface Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Logic Input High	Vıн		0.7xV _{DD}	-	3.6	V
Logic Input Low	VIL		-0.3	-	0.3xV _{DD}	V
Logic Output High	Vон	I _{OUT} = 2 mA	V _{DD} -0.45	-	-	V
Logic Output Low	Vol	I _{OUT} = 2 mA	-	-	0.45	V
Clock Duty Cycle		-	40	-	60	%

MICROPHONE STATE DIAGRAM

TYPICAL FREQUENCY RESPONSE

TIMING DIAGRAM

Parameter	Symbol	Min	Тур	Max
Clock Rise/Fall Time	t _{EDGE}	-	-	13ns
Delay Time to High Z	t _{DZ}	3ns	ı	16ns
Delay Time to Data Line Driven	t _{DD}	18ns	28ns	40ns

% t_{HOLD} and t_{DV} are related to load.

SMT Parameters:

1. Recommend PCB land pattern layout: (unit: mm)

2. Recommend stencil pattern: (unit: mm)

3. Recommend reflow profile:

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time(T _{SMIN} to T _{SMAX})	t _S	60 sec to 120 sec
Ramp-up rate	T _{SMAX} to T _L	1.25 °C/sec max
Time maintained above liquidus temperature	t _L	60 sec to 150 sec
Liquidus temperature	T _L	217 °C
Peak temperature	T _P	260 °C max
Time within 5°C of actual peak temperature	t _P	20 sec to 40 sec
Ramp-down rate	T _L to T _P	6 °C/sec max
Time 25 °C (t25 °C) to peak temperature	t	8 minutes max

OUTLINE DIMENSIONS AND PIN DEFINITION:

PIN function description

	•	
PIN#	Function	
1	VDD	
2	DATA	
3	CLK	
4	L/R	
5	GND	

Item	Dimension	Tolerance
Length (L)	4.0	±0.10
Width (W)	3.0	±0.10
Height (H)	1.0	±0.10
Acoustic Port (AP)	Ø0.25	±0.05

Dimensions are in millimeters
Tolerance is ±0.15mm unless otherwise specified.

ADDITIONAL NOTES

- (A) MSL (moisture sensitivity level) Class 2a.
- (B) Maximum of 3 reflow cycles is recommended.
- (C) In order to minimize device damage:

Do not board wash or clean after the reflow process.

Do not brush board with or without solvents after the reflow process.

Do not directly expose to ultrasonic processing, welding, or cleaning.

Do not insert any object in port hole of device at any time.

Do not apply air pressure into the port hole.

Do not pull a vacuum over port hole of the microphone.

MATERIALS STATEMENT

Meets the requirements of the European RoHS and Halogen-Free.

PACKAGING & MARKING DETAIL:

Direction of Feed

ITEM	W	E	F	ØD0	K0
DIM(mm)	12.00±0.30	1.75±0.10	5.50±0.10	1.50 ₀ ^{+0.10}	1.35±0.10
ITEM	P0	10P0	P1	A0	В0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	4.30±0.10	3.30±0.10
ITEM	P2	Т			
DIM(mm)	2.00±0.10	0.25±0.05			

Note:

- 1) Dimensions are in mm;
- 2) Don't put the vacuum suction nozzle alignment the port hole;
- 3) Tape & Reel Per EIA-481 standard;
- 4) Label applied to external package and direct to reel;
- 5) Static voltage <100V;

Model Number	Reel Diameter	Quantity Per Reel
MSM261D4030Z1A	13 inch	5700

Figuer 1. MSM261D4030Z1A electrical connections

Figuer 2. Electrical connections for stereo configurations

Power supply decoupling capacitors (100nF ceramic,10uF ceramic) should be placed as near as possible to VDD of the device.(common design practice)

RELIABILITY SPECIFICATIONS

Test	Description
Thermal Shock	100 cycles air-to-air thermal shock from -40°C to +125°C with 15 minute soaks. (IEC 68-2-4)
High Temperature Storage	1,000 hours at +105°C environment (IEC 68-2-2 Test Ba)
Low Temperature Storage	1,000 hours at -40°C environment (IEC 68-2-2 Test Aa)
Reflow	5 reflow cycles with peak temperature of +260°C
ESD-HBM/LID-GND	3 discharges of ±2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)& 3 discharges of ±8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2)
Vibration	4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20 G peak acceleration lasting 12 minutes in X, Y and Z directions. (Mil-Std-883E, Method 2007.2 A)
Mechanical Shock	3 pulses of 3,000 G in the X, Y and Z direction (IEC 68-2-27, Test Ea)
High Temperature Bias	1,000 hours at +105°C under bias (IEC 68-2-2 Test Ba)
Low Temperature Bias	1,000 hours at -40°C under bias (IEC 68-2-2 Test Aa)
Temperature/Humidity Bias	1,000 hours at +85°C/85% R.H. under bias. (JESD22-A101A-B)
Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 18 times from 1.5 meter height

NOTE: Sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at 20 ± 2 °C, R.H 60% \sim 70%)

MSM261D4030Z1A

PDM digital output MEMS microphone

Revision	Subjects (major changes since last revision)	Date
1.0	Initial Release	2016-10-28
1.1	Modified the Timing diagram	2017-1-16
1.2	Modified PCB land pattern layout and stencil pattern	2017-03-07
1.3	Modified the Interface Circuit	2017-07-11
1.4	Update packaging detail	2017-10-24

公司销售、技术支持联系方式

For English:

 ${\it MEMSensing Microsystems} (Suzhou, China)$

Co. Ltd.

No. 99 Jinji Lake Avenue, Bldg. NW-09, Suite 501

Suzhou Industrial Park, China 215123

Phone: +86 512 62956055

Fax: +86 512 62956056

中文用户:

苏州敏芯微电子技术股份有限公司

苏州工业园区金鸡湖大道 99 号, NW-09 楼, 501 室

(http://www.memsensing.com)

苏州敏芯微电子技术股份有限公司

中国 215123

电话: +86 512 62956055 传真: +86 512 62956056

<u>Disclaimer</u>: specifications and characteristics are subject to change without notice. MEMSensing Microsystems Co. Ltd. assumes no liability to any customer, licensee or any third party for any damages or any kind of nature whatsoever related to using this technical data.