PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

<u>DEPARTAMENTO DE MATEMÁTICA</u>

Primer Semestre de 2016

MAT 1620 – Cálculo II Pauta Interrogación 1

1. Evalúe la integral $\int_0^\infty \frac{1}{\sqrt{x} (1+x)} dx$.

Solución. Observe que la integral es impropia de tipo I y II, entonces la separamos de la siguiente manera:

$$\int_0^\infty \frac{dx}{\sqrt{x}(1+x)} = \int_0^1 \frac{dx}{\sqrt{x}(1+x)} + \int_1^\infty \frac{dx}{\sqrt{x}(1+x)}.$$
 (1)

Ahora bien, observe que haciendo el cambio de variables $u = \sqrt{x}$ tenemos $du/dx = 1/2\sqrt{x}$ por lo que la integral indefinida tiene primitiva

$$\int \frac{dx}{\sqrt{x(1+x)}} = 2 \int \frac{du}{1+u^2} = 2\arctan(u) + C = 2\arctan(\sqrt{x}) + C.$$

Entonces, obtenemos que el valor de la integral es:

$$\begin{split} \int_0^\infty \frac{dx}{\sqrt{x}(1+x)} &= \int_0^1 \frac{dx}{\sqrt{x}(1+x)} + \int_1^\infty \frac{dx}{\sqrt{x}(1+x)} \\ &= \lim_{a \to 0} \int_a^1 \frac{dx}{\sqrt{x}(1+x)} + \lim_{b \to +\infty} \int_1^b \frac{dx}{\sqrt{x}(1+x)} \\ &= \lim_{a \to 0} 2 \arctan(\sqrt{x}) \Big|_a^1 + \lim_{b \to +\infty} 2 \arctan(\sqrt{x}) \Big|_1^b \\ &= 2 \cdot \frac{\pi}{4} + 2 \left(\frac{\pi}{2} - \frac{\pi}{4}\right) \\ &= \pi \, . \end{split}$$

Puntaje Pregunta 1

- (i) **2 puntos** por separar la integral como en (1).
- (ii) **2 puntos** por determinar la primitiva de $\int \frac{dx}{\sqrt{x}(1+x)}$.
- (iii) 2 puntos por calcular los límites y obtener el valor de la integral.

2. La sucesión $\{a_n\}$ se define con $a_1 = 1$ y

$$a_{n+1} = 3 - \frac{1}{a_n}$$
 para $n \ge 1$. (2)

Se sabe que $\{a_n\}$ es monótona creciente. Pruebe que $\{a_n\}$ es convergente y calcule su límite.

Solución. La sucesión $\{a_n\}$ está acotada superiormente por 3, es decir $a_n \leq 3$ para todo $n \in \mathbb{N}$. Por inducción sobre n, para n=1 la desigualdad es claramente válida. Supongamos que $a_k \leq 3$ y demostremos que $a_{k+1} \leq 3$. En efecto,

$$a_k \leqslant 3 \Longrightarrow \frac{1}{3} \leqslant \frac{1}{a_k} \Longrightarrow -\frac{1}{a_k} \leqslant -\frac{1}{3} \Longrightarrow 3 - \frac{1}{a_k} \leqslant 3 - \frac{1}{3} \Longrightarrow a_{k+1} \le 3 - \frac{1}{3} \leqslant 3$$
.

Por el principio de inducción, esto prueba que $a_n \leq 3$ para todo $n \in \mathbb{N}$.

Ahora bien, como la sucesión $\{a_n\}$ es monótona creciente y acotada superiormente entonces la sucesión es convergente, digamos a $L = \lim_{n \to \infty} a_n$. Haciendo $n \to \infty$ en (2) vemos que L satisface

$$L = 3 - \frac{1}{L} \Longrightarrow L^2 = 3L - 1 \Longrightarrow L^2 - 3L + 1 = 0 \Longrightarrow L = \frac{1 \pm \sqrt{5}}{2}$$

pero $L \geqslant 1$ entonces $L = \frac{1 + \sqrt{5}}{2}$.

Puntaje Pregunta 2

- (i) **1 punto** por verificar el caso n = 1 en la inducción.
- (ii) 2 puntos por demostrar mediante inducción que la sucesión está acotada.
- (iii) 1 punto por concluir que la sucesión converge.
- (iv) 1 punto por calcular los posibles valores de L.
- (v) **1 punto** por descartar el valor $(1 \sqrt{5})/2$.

3. Para cada una de las siguientes series, determine si ella es convergente o divergente:

$$a) \sum_{n=1}^{\infty} e^{-n}.$$

b)
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^2}$$
.

c)
$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\sqrt{n^6 + n^2 + 1}}$$
.

Solución.

a) Si $f(x) = e^{-x}$ entonces f es continua, positiva y decreciente en el intervalo $[1, +\infty[$. Luego, aplicando el criterio integral obtenemos

$$\int_{1}^{\infty} e^{-x} dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x} dx = \lim_{b \to \infty} [-e^{-x}]_{1}^{b} = \lim_{b \to \infty} [e^{-1} - e^{-b}] = e^{-1}$$

y como la integral impropia es convergente se sigue que $\sum_{n=1}^{\infty} e^{-n}$ es convergente.

b) Para todo $n \in \mathbb{N}$, tenemos $\ln(n^{1/4}) < n^{1/4}$. Como $\ln(n^{1/4}) = \frac{1}{4}\ln(n)$, se deduce que $\ln(n) < 4n^{1/4}$. Elevando al cuadrado resulta $(\ln(n))^2 < 16n^{1/2}$ y dividiendo por n^2 resulta

$$\frac{(\ln(n))^2}{n^2} < 16 \frac{1}{n^{3/2}}.$$

Como la serie $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ es convergente, por el criterio de comparación la serie $\sum_{n=1}^{\infty} \frac{(\ln(n))^2}{n^2}$ es convergente. Otra forma: usar el criterio integral para obtener que $\int_{1}^{\infty} \frac{(\ln(x))^2}{r^2} = 2$.

c) Si $a_n = \frac{n^2 + n + 1}{\sqrt{n^6 + n^2 + 1}}$ y $b_n = \frac{1}{n}$, entonces

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^3 + n^2 + n}{\sqrt{n^6 + n^2 + 1}} = \lim_{n \to \infty} \frac{1 + 1/n + 1/n^2}{\sqrt{1 + 1/n^4 + 1/n^6}} = 1 > 0 ,$$

luego $\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{\sqrt{n^6 + n^2 + 1}}$ diverge por el criterio de comparación al límite ya que la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Puntaje Pregunta 3a)

- (i) 1 punto por verificar las hipótesis del criterio integral
- (ii) 1 punto por calcular la integral y concluir.

Puntaje Pregunta 3b)

- (i) Si usan el criterio integral asignar puntaje como en el problema 3a)
- (ii) Si usan el criterio de comparación otorgar **2 puntos** por obtener correctamente la desigualdad y concluir.

Puntaje Pregunta 3c)

- (i) 1 punto por elegir b_n y calcular el límite
- (ii) 1 punto por usar el criterio de comparación y concluir.

4. Demuestre que si $a_n>0$ y $\lim_{n\to\infty}na_n\neq 0$ entonces $\sum_{n=1}^\infty a_n$ diverge.

Solución. Considere la sucesión $b_n = \frac{1}{n}$ entonces $\{b_n\}$ es una sucesión positiva. Notemos que,

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n}{1/n}=\lim_{n\to\infty}na_n\neq 0\;.$$

En virtud del criterio de comparación en el límite la divergencia de la serie armónica $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n}$ implica la divergencia de $\sum_{n=1}^{\infty} a_n$ como queríamos mostrar.

Puntaje Pregunta 4

- (i) **6 puntos** por usar el correctamente el criterio de comparación al límite, independientemente si asumen que límite $\lim_{n\to\infty} na_n$ existe o no.
- (ii) No otorgar puntaje por argumentos sin justificación como: Si lím $na_n \neq 0$ entonces lím $a_n \neq 0$.

5. Para cada una de las siguientes series, determine si ella es convergente o divergente:

$$a) \sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!}.$$

$$b) \sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}.$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{1 + 2\sqrt{n}}$$
.

En caso de ser convergente, indique si dicha convergencia es absoluta o condicional.

Solución.

- a) Note que $\frac{n^n}{n!} = \frac{n \cdot n \cdot \dots \cdot n}{1 \cdot 2 \cdot \dots \cdot n} \geqslant n$ entonces $\lim_{n \to \infty} \frac{n^n}{n!} = \infty$ lo cual implica que $\lim_{n \to \infty} \frac{(-1)^n n^n}{n!}$ no existe. Luego la serie $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!}$ diverge.
- b) Si $f(x) = \frac{\ln(x)}{x}$ entonces $f'(x) = \frac{1 \ln(x)}{x^2} < 0$ para x > e, luego $a_n = f(n)$ es una sucesión decreciente para $n \ge 3$. Además,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{x \to \infty} \frac{\ln(x)}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0.$$

Luego la serie $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ es convergente por el criterio de la serie alternante. Por otro lado,

la serie es condicionalmente converge ya que la serie $\sum_{n=1}^{\infty} \left| (-1)^n \frac{\ln(n)}{n} \right| = \sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ es divergente aplicando el criterio integral a la función continua, positiva y decreciente $f(x) = \frac{\ln(x)}{x}$.

c) Sea $b_n = \frac{\sqrt{n}}{1 + 2\sqrt{n}}$ entonces

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{1}{2+1/\sqrt{n}}=\frac{1}{2}\neq 0$$

por lo que $\lim_{n\to\infty} (-1)^n b_n$ no existe, luego la serie es divergente.

Puntaje Pregunta 5a)

- (i) 1 punto por justificar que el límite no existe.
- (ii) 1 punto por concluir que la serie es divergente.

Puntaje Pregunta 5b)

- (i) 1 punto por mostrar que la serie alternate es convergente.
- (ii) 1 punto por justificar que la convergencia es condicional.

Puntaje Pregunta 5c)

- (i) 1 punto por calcular el límite
- (ii) 1 punto por concluir que la serie es divergente.

6. Sea k un entero positivo, fijo. Encuentre el radio de convergencia de la serie $\sum_{n=1}^{\infty} \frac{(n!)^k}{(kn)!} x^n$.

Solución. Sea $a_n = \frac{(n!)^k}{(kn)!}x^n$. Entonces, aplicando el criterio de la razón vemos que

$$\begin{split} & \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \frac{((n+1)!)^k (kn)!}{(n!)^k [k(n+1)]!} |x| \\ &= \lim_{n \to \infty} \left(\frac{(n+1)!}{n!} \right)^k \cdot \frac{(kn)!}{(kn+k)!} |x| \\ &= \lim_{n \to \infty} \left(\frac{(n+1)n!}{n!} \right)^k \cdot \frac{(kn)!}{(kn+k)(kn+k-1) \cdot (kn+1)(kn)!} |x| \\ &= \lim_{n \to \infty} \frac{(n+1)^k}{(kn+k)(kn+k-1) \cdot (kn+1)} |x| \\ &= \lim_{n \to \infty} \left[\frac{n+1}{kn+1} \cdot \frac{n+1}{kn+2} \cdot \dots \cdot \frac{n+1}{kn+k} \right] \\ &= |x| \left[\lim_{n \to \infty} \frac{n+1}{kn+1} \right] \cdot \left[\lim_{n \to \infty} \frac{n+1}{kn+2} \right] \dots \left[\lim_{n \to \infty} \frac{n+1}{kn+k} \right] \\ &= |x| \left[\frac{1}{k} \right] \cdot \left[\frac{1}{k} \right] \dots \left[\frac{1}{k} \right] \\ &= |x| \left[\frac{1}{k^k} \right] \end{split}$$

El límite anterior es menor que 1 si y sólo $|x| < k^k$ y el radio de convergencia de la serie de potencias es $R = k^k$.

Puntaje Pregunta 6)

- (i) 4 puntos por calcular correctamente lím $|a_{n+1}/a_n|$.
- (ii) 2 puntos por usar el criterio de la razón y obtener el radio de convergencia.

7. Exprese la integral indefinida $\int \frac{t}{1-t^3} dt$ como una serie de potencias. ¿Cuál es su radio de convergencia?

Solución. Notemos que

$$\frac{t}{1-t^3} = t \cdot \frac{1}{1-t^3} = t \sum_{n=0}^{\infty} (t^3)^n = \sum_{n=0}^{\infty} t^{3n+1}.$$

Integrando indefinidamente con respecto t resulta:

$$\int \frac{t}{1-t^3} dt = \sum_{n=0}^{\infty} \frac{t^{3n+2}}{3n+2} + C,$$

donde C es una constante. La serie $1/(1-t^3)$ converge para $|t^3|<1 \Longleftrightarrow |t|<1$ y el radio de convergencia es R=1 y se sigue que la serie de $t/(1-t^3)$ también tiene radio de convergencia R=1.

Puntaje Pregunta 7)

- (i) **2 puntos** por usar la serie geometrica para obtener el desarrollo en serie de $t/(1-t^3)$.
- (ii) 2 puntos por calcular la integral indefinida
- (iii) 2 puntos por justificar que el radio de convergencia es R=1.

8. Determine la serie de Taylor de $f(x) = \cos(x)$ centrada en $a = \pi/3$.

Solución. Tenemos que

$$f(x) = \cos(x) \implies f\left(\frac{\pi}{3}\right) = \frac{1}{2},$$

$$f'(x) = -\sin(x) \implies f'\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2},$$

$$f''(x) = -\cos(x) \implies f''\left(\frac{\pi}{3}\right) = -\frac{1}{2},$$

$$f'''(x) = \sin(x) \implies f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2},$$

$$f^{(4)}(x) = \cos(x) \implies f^{(4)}\left(\frac{\pi}{3}\right) = \frac{1}{2}.$$

Se sigue que

$$\cos(x) = f\left(\frac{\pi}{3}\right) + f'\left(\frac{\pi}{3}\right)\left(x - \frac{\pi}{3}\right) + \frac{f''\left(\frac{\pi}{3}\right)}{2!}\left(x - \frac{\pi}{3}\right)^2 + \frac{f'''\left(\frac{\pi}{3}\right)}{3!}\left(x - \frac{\pi}{3}\right)^3 + \frac{f^{(4)}\left(\frac{\pi}{3}\right)}{4!}\left(x - \frac{\pi}{3}\right)^4 + \cdots$$

$$= \frac{1}{2}\left[1 - \frac{1}{2!}\left(x - \frac{\pi}{3}\right)^2 + \frac{1}{4!}\left(x - \frac{\pi}{3}\right)^4 - \cdots\right] + \frac{\sqrt{3}}{2}\left[-\left(x - \frac{\pi}{3}\right) + \frac{1}{3!}\left(x - \frac{\pi}{3}\right)^3 - \cdots\right]$$

$$= \frac{1}{2}\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!}\left(x - \frac{\pi}{3}\right)^{2n} + \frac{\sqrt{3}}{2}\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n+1)!}\left(x - \frac{\pi}{3}\right)^{2n+1}.$$

Puntaje Pregunta 8)

- (i) 2 puntos por calcular las derivadas f y sus evaluaciones en $\pi/3$
- (ii) 2 puntos escribir el desarrollo en serie de Taylor.
- (iii) 2 puntos por separar la serie en series de términos pares e impares.