

语法分析

一自下向上

■ 自下而上语法分析

从给定的输入串r开始;

不断寻找于事与某个产生式的候选式匹配;用产生式的左部代替候选式(归约);

最终归约到S。

关键:

- 1) 确定可归约串 —— 归约条件;
- 2) 如何归约 一 归约原则。

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC(自学)

5.1 "移进—归约"分析法

- 5.1.1 直观的"移进—归约"分析法
- 5.1.2 规范归约与句柄

例: 文法G(S):

$$S \rightarrow aABe$$

$$A \rightarrow Abc/b$$

$$B \rightarrow d$$

分析串abbcde是该文法的合法句子。

Ch5 语法分析

移进—归约分析

 $A \rightarrow Abc/b$

步骤	分析栈	待分析串	动作
初始	#	abbcde#	移进
(1)	# a	bbcde#	移进
(2)	#ab	bcde#	$A \rightarrow b$ 归约
(3)	#aA	bcde#	移进
(4)	#aAb	cde#	移进
(5)	#a <mark>Abc</mark>		$A \rightarrow Abc$ 归约
(6)	#aA	de#	移进
(7)	#aAd	e#	$B \rightarrow d$ 归约
(8)	#aAB	e#	移进
\ /	# <mark>aABe</mark>	#	S→aABe归约
(10)	#\ <u>S</u>	#	分析成功

规范推导:

$$S \Rightarrow \underline{aABe}$$

 $\Rightarrow a\underline{Abc}de$

=> *abbcde*

"移进一归约"分析 **5.1**

5.1.1 直观的"移进—归约"分析法

5.1.2 规范归约与句柄

■ 定义(直接短语) S是文法G的开始符号, $\alpha\beta\delta$ 是G的一个句型,若 $S \stackrel{*}{=}> \alpha A \delta$ 且 $A \rightarrow \beta$,则 β 是句型 $\alpha\beta\delta$ 相对于A的直接短语。

则 β 是句型 $\alpha\beta\delta$ 相对于A的短语。

定义(句柄)

一个句型的最左直接短语称为句柄。

- ◆直接短语是特殊短语
- ◆句柄是特殊直接短语
- ◆短语是句型的子串
- ◆ 在规范句型的规范推导序列中,最后使用的 产生式的右部是句柄
- ◆ 句型对应的语法分析树中观察短语与句柄更 直观

例:设有文法G和串aPcB

 $G: S \rightarrow aAcB \quad A \rightarrow P \quad P \rightarrow ab \quad B \rightarrow d$

<u>存在推导</u> $S \Rightarrow \underline{aAcB} \Rightarrow \underline{aPcB}$

P是句型aPcB相对于A的短语,

也是相对于A的直接短语。

aPcB是句型aPcB相对于S的短语。

P是句型aPcB的句柄。

例: 设有文法G和串aabcd

G: $S \rightarrow aAcB$ $A \rightarrow P$ $P \rightarrow ab$ $B \rightarrow d$

<u>存在推导</u> S=>aAcB=>aAcd=>aPcd=>aabcd

ab是句子aabcd相对于P的直接短语; ab是句子aabcd相对于A的短语; d是句子aabcd相对于B的直接短语; aabcd是句子aabcd相对于S的短语 ab是是句子aabcd的句柄。

例: 设有文法G[A]:

$$A \rightarrow AB + |B \rightarrow BC^*|C \qquad C \rightarrow C \wedge |a|$$
 句型 $BBC \wedge * +$ 的直接短语是【 B 和 $C \wedge$ 】。

方法:构造句型对应的语法分析树

$S \Rightarrow \underline{aABe} \Rightarrow aA\underline{d}e \Rightarrow a\underline{Abc}de \Rightarrow a\underline{b}bcde$

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.3 LR分析概述

5.3.1 LR分析

5.3.2 LR分析器结构、组成与工作原理

5.3.3 LR分析实例

- (1) 理论上比较完善;
- (2) 适用性强,对G限定少;
- (3) 便于自动生成。

LR分析:一类对源程序串进行自左向右扫描

并进行规范归约的语法分析方法。

5.3 LR分析概述

5.3.1 LR分析

5.3.2 LR分析器结构、组成与工作原理

5.3.3 LR分析实例

LR分析器逻辑结构

(1) 分析栈 辅助完成LR分析的数据结构。

文法符号 X_i : 分析过程中移进 (V_T) 和归约 (V_N) 的符号;

stack初始化:

例如,设有文法G(L)

和G(L)的LR分析表

- $\bigcirc L \rightarrow E, L$
- $\bigcirc L \to E$
- $\bigcirc B \rightarrow a$
- $\textcircled{4} E \rightarrow b$ 输入字符串 a, b, a #

文法G(L)的LR分析表

小中子	ACTION表			GOTO表		
状态	a	b	,	#	E	L
0	S_3	S ₄			2	1
1				acc		
2			S ₅	$\mathbf{r_2}$		
3			r_3	r ₃		
4			r_4	r_4		
5	S_3	S ₄			2	6
6				\mathbf{r}_1		

5.3.2 LR分析器结构与工作原

(2) LR分析表

LR分析表是LR分析器的核心。

分析动作表(ACTION表)

状态转换表(GOTO表)

分析动作表 $\longrightarrow Q \times (V_T \cup \{\#\})$

状态转换表- $Q \times V_N$

LR分析表

状态转换表 (Goto)

V_N	X_1	X_2	•••	X_n
Q_0	$goto(Q_0,X_1)$	$goto(Q_0, X_2)$	•••	$goto(Q_0, X_n)$
Q_1	$goto(Q_1,X_1)$	$goto(Q_1, X_2)$	•••	$goto(Q_1, X_n)$
•••		•••	•••	
Q_m	$goto(Q_m,X_1)$	$goto(Q_m, X_2)$		$goto(Q_m, X_n)$

 $Q_i \in$ 状态; $X_i \in$ 非终结符号;

$$goto(Q_i, X_i) = \begin{cases} \\ \end{cases}$$

 Q_j (移进:将 Q_j 状态压入状态栈)

空(不会出现的情况,没有动作)

注意

 $goto(Q_i, X_i)$ 的 Q_i 、 X_i 意指当前栈顶的 X_i 和次栈顶的 Q_i 元素。

分析动作表 (Action)

V_T	a_1	a_2	•••	a_n
Q_0	$action(Q_0,a_1)$	$action(Q_0,a_2)$	•••	$action(Q_0,a_n)$
Q_1	$action(Q_1,a_1)$	$action(Q_1,a_2)$	• • •	action (Q_1,a_n)
	•••	•••	•••	
Q_n	$action(Q_n,a_1)$	$action(Q_n,a_2)$	•••	action (Q_n, a_n)

 $Q_i \in$ 状态; $a_i \in$ 终结符号或#;

 S_{Q_j} (移进:将符号 a_i 和状态 Q_j 压入栈)

$$action(Q_i, a_i) =$$

$$action(Q_i, a_i) = \langle$$

 S_{Qj} (移进:将 a_i 和 Q_j 状态压入栈)

 \mathbf{r}_{j} (归约:用第j个产生式归约)

 $action(Q_m, a_i) = \mathbf{r}_j$

1. 归约

设G第j个产生式为:

$$A \rightarrow X_{m-r+1} X_{m-r+2} \dots X_m$$

2. 查Goto表

$$goto(Q_{m-r},A)=Q_j$$

 $action(Q_i, a_i) = \langle$

 S_{Qj} (移进:将 a_i 和第j个状态压入栈) r_j (归约:用第j个产生式归约)

acc (接受: 分析成功)

error (出错:语法错,调出错 处理程序)

析

文法G(L)的LR分析表

/TV 	ACTION表				GOTO表	
状态	a	b	,	#	$egin{array}{c} E \end{array}$	
0	S_3	S_4			2	1
1				(acc)		
2			S_5	r_2		
3			$\mathbf{r_3}$	\mathbf{r}_3		
4			r ₄	$ \mathbf{r}_4 $		
5	S_3	S ₄			2	6
6				$\mathbf{r_1}$		

(3) LR分析总控程序

- ① 分析开始,将开始状态 Q_0 及"#"压入分析栈; // 初始化
- ②据当前分析栈栈顶 Q_m ,当前指针符号 a_i 查action 表:
 - i)若 $action(Q_m, a_i) = S_{Oi}$,完成移进动作;
 - ii) 若action $(Q_m, a_i) = \mathbf{r}_i$,完成归约动作。
 - iii) 若 $action(Q_m, a_i) = acc$,分析成功;
 - iv) 若 $action(Q_m, a_i) = error$,出错处理。
 - ③转②。

5.3 LR分析概述

- 5.3.1 LR分析
- 5.3.2 LR分析器结构、组成与工作原理
- 5.3.3 LR分析实例

例:设有文法G(L)和

G(L)的LR分析表。

- ① $L \rightarrow E$, L
- ② $L \rightarrow E$
- \odot $E \rightarrow a$
- $\textcircled{4} E \rightarrow b$

分析字符串 a, b, a

文法G(L)的句子a, b, a的分析过程

JE.	栈			ハキニャル
步	符号栈	状态栈	余留串	分析动作
0	#	0	<i>a,b,a</i> #	S_3
1	#a	03	, b ,a#	$\mathbf{r_3}$
2	# E	02	, b ,a#	$\frac{\mathbf{r_3}}{\mathbf{S_5}}$
3	#E,	025	b, a#	S_4
4	# E , b	0254	,a #	\mathbf{r}_{4}
5	# E , E	0252	,a #	S_5
6	#E,E,	02525	a #	S_3
7	#E,E,a	025253	#	r_3
8	# E , E , E	025252	#	\mathbf{r}_{2}
9	# E , E , L	025256	#	\mathbf{r}_{1}
10	# E , L	0256	#	$\mathbf{r_1}$
11	# L	01	#	acc

1	L-	ightarrow E ,	\boldsymbol{L}
	T	. 12	

$$\textcircled{4} E \rightarrow b$$

LR分析实例

综述:

- (1) 处理直观简单;
- (2) 基本实现思想:引入状态,状态埋伏了 分析的"历史"和"展望"信息:
- (3) 应用范围广,对G限定少;
- (4) LR分析的关键 LR分析表:集成了全 部分析信息。

Ch5 语法分析

- 5.1 "移进—归约"分析法
- 5.3 LR分析概述
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.4 LR (0)分析

5.4.1 LR(0)分析实现思想

- 5.4.2 构造LR(0)项目集规范族
- 5.4.3 LR (0)分析表的构造

定义(活(可行)前缀)规范句型的不含句柄之后任何符号的前缀,称为该句型的活前缀。

- (1) $\exists S \stackrel{\sim}{\Rightarrow} \alpha A \omega \stackrel{\sim}{\Rightarrow} \alpha \beta \omega$,若串 $\gamma \neq \alpha \beta$ 的前缀,则 $\gamma \neq \beta$ 是活前缀;当 $\gamma = \alpha \beta$,则 $\gamma \Rightarrow \beta$ 和为可归前缀;
 - (2) 活前缀特点: 不含句柄之后的任何符号;
- (3) LR分析中栈中符号始终是活前缀,当构成刚好包含句柄的活前缀(可归前缀)时,实施归约。

文法G(L)的句子a, b, a的分析过程

步	符号栈	找 状态栈	余留串	分析动作
0	#	0	a,b,a #	S ₃
1	#a	03	,b,a #	$r_3(E \rightarrow a)$
2	# E	02	,b,a #	S ₅
3	# E ,	025	b, a#	S_4
4	# E , b	0254	,a #	$\mathbf{r}_4(E \rightarrow b)$
5	# E , E	0252	,a #	S_5
6	# E , E ,	02525	a #	S_3
7	#E,E,a	025253	#	$\mathbf{r}_{3}(E \rightarrow a)$
8	# <i>E</i> , <i>E</i> , <i>E</i>	025252	#	$\mathbf{r}_2(L \rightarrow E)$
9	# <i>E</i> , <i>E</i> , <i>L</i>	025256	#	$\mathbf{r}_{1}(L \rightarrow E, L)$
10	# E , L	0256	#	$\mathbf{r}_{1}(L \rightarrow E, L)$
11	# L	01	#	acc

	T	, T	T
(I)			

②
$$L \rightarrow E$$

$$\odot$$
 $E \rightarrow a$

$$\textcircled{4} E \rightarrow b$$

■ 定义: (LR(0)项目)

在文法G的每个产生式的右部(候选式)的任何位置上添加一个圆点,这样构成的每个产生式称为LR(0)项目。

约定: 若产生式形式为 $A \rightarrow \varepsilon$ 则其LR(0)项

目为: А→・

圆点的位置用来标记候选式已被匹配(放入栈中)了多少。

例:设文法G(S)

$$S' \rightarrow S$$

$$S \rightarrow A \mid B$$

$$S' \rightarrow S$$
 $S \rightarrow A \mid B$ $A \rightarrow aA \mid b \mid \varepsilon \quad B \rightarrow c$

则G(S)的LR(0)项目有:

$$S' \rightarrow \cdot S$$

$$S \rightarrow S \bullet$$

$$S \rightarrow \bullet A$$

$$S \rightarrow A$$
 •

$$S \rightarrow \bullet B \qquad S \rightarrow B \bullet$$

$$S \rightarrow B \bullet$$

$$A \rightarrow \bullet aA \qquad A \rightarrow a \bullet A$$

$$A \rightarrow a \cdot A$$

$$A{
ightarrow}aA$$
 •

$$A \rightarrow \bullet b \qquad A \rightarrow b \bullet$$

$$A{
ightarrow} b$$
 •

$$A \rightarrow \bullet$$

$$B \rightarrow \bullet c \qquad B \rightarrow c \bullet$$

$$B{
ightarrow}c$$
 ullet

LR (0) 项目分类

(1)接受项目: $S' \rightarrow S \cdot (S$ 是开始符号) 唯一项目

分析栈中内容恰好为开始符号S,整个分析的符号串归约为开始 符号S,整个分析成功。

(2) 归约项目: $A \rightarrow \alpha$ · (α 不是开始符号)

句柄 α 恰好包含在栈中,即当前栈中的内容构成了刚好含句柄 α 的活前缀 (可归前缀), 应按 $A \rightarrow \alpha$ 进行归约。

(3) 移进项目: $A \rightarrow \alpha \cdot a\beta (a \in V_T)$

分析栈中是不完全包含句柄的活前缀,为构成含有句柄 $\alpha\alpha\beta$ 的活前 缀(可归前缀), 需将a 移进分析栈。

(4) 待约项目: $A \rightarrow \alpha \cdot B\beta (B \in V_N)$

分析栈中是不完全包含句柄的活前缀,为构成含有句柄 $\alpha B\beta$ 的活前 缀(可归前缀),应先把当前分析的字符串中的相应内容归约到图 25页 例:设文法G(S)

$$S' \rightarrow S$$
 $S \rightarrow A \mid B \mid A \rightarrow aA \mid b \mid \varepsilon \mid B \rightarrow c$

则G(S)的LR(0)项目有:

$$S' \rightarrow \bullet S$$

$$S \rightarrow {}^{\bullet}A$$

$$S \rightarrow \bullet F$$

$$A \rightarrow \bullet aA$$

$$A \rightarrow b$$

$$A \rightarrow \bullet$$

$$B \rightarrow c$$

$$S' \rightarrow S$$

$$S \rightarrow A$$
 •

$$S \rightarrow B$$

$$A \rightarrow a \cdot A$$

$$A \rightarrow b$$
 •

$$B \rightarrow c$$

$$A \rightarrow aA \bullet$$

构造识别文法G的所有可归前缀的有限自动机:

第一步: 拓广文法

设文法G的开始符号是S,则G的拓广文法G'为: 在G的基础上增加一新的产生式 $S' \rightarrow S$, S'作为文法 G'的开始符号。

目的: 用来指示语法分析器什么时候应该停止分 析并宣布接受输入(已把分析串归约到了S)。

 $B \rightarrow c$

例,设文法G(S)为:

$$S \rightarrow A \mid B$$

$$S \rightarrow A \mid B \qquad A \rightarrow aA \mid b \mid \varepsilon$$

则文法G(S)的拓广文法G'(S')为

$$S' \rightarrow S$$

$$S \rightarrow A \mid B$$

$$S \rightarrow A \mid B \qquad A \rightarrow aA \mid b \mid \varepsilon$$

$$B \rightarrow c$$

例,设文法G(A)为:

$$A \rightarrow aA \mid b$$

则文法G(A)的拓广文法G'(S)为

$$S \rightarrow A$$

$$A \rightarrow aA \mid b$$

构造识别文法G的所有可归前缀的有限自动机

第二步: 构造NFA 基本项目

- ①所有LR(0)项目分别对应NFA的一个状态。
- ②增加的产生式的第一个LR(0)项目对应的状态为NFA的初态。

圆点在候选式的最左侧的LR(0)项目

③LR(0)项目为归约或接受项目的状态为NFA的 终态。 ④若状态i和状态j出自同一产生式,两个状态的

LR(0) 项目的圆点只相差一个位置,即:

i中项目为: $A \rightarrow \alpha \cdot X\beta$; j中项目为: $A \rightarrow \alpha X \cdot \beta$

(i) X (j)

则状态i为状态i识别字符X的后继状态,即在状态图中

有:

⑤若状态i为待约项目,(设待约到的非终结符号为B)

即 $A \rightarrow \alpha \cdot B\beta$),状态j为待约到的非终结符号对应的第一

个LR(0)项目(即 $B \rightarrow \bullet \gamma$),则状态*i*为状态*i*识别 ϵ 的后继

状态,即在状态图中有:

$$i$$
 ε j

其中 α , $\beta \in V^*$, $X \in V$, A, $B \in V_N$

总结: 识别文法G的所有可归前缀的NFA

FA
$$M=(Q, \Sigma, f, q_0, Z)$$

LR(0)项目 G的V

基本项目

归约+接受项目

若 i 为: $A \rightarrow \alpha \cdot X\beta$

i为: $A \rightarrow \alpha X \cdot \beta$

则 $j \in f(i,X)$ 。

若i为: $A \rightarrow \alpha \cdot B\beta(B \in V_N)$,

j为: $B \rightarrow \bullet \gamma$

则 $j \in f(i, \varepsilon)$ 。

其中 α , $\beta \in V^*$, $X \in V$, A, $B \in V_N$

例:设文法G(A)

$$A \rightarrow aA \mid b$$

构造识别文法G(A)的所有可归前缀的FA。

拓广文法为: $S \rightarrow A$ $A \rightarrow aA \mid b$

第三步: 构造DFA

识别文法G(S)的所有 可归前缀的DFA:

		I_a	I_A	I_b
0	{0,1,3}	1 {2,1,3}	2{5}	3 {4}
1	{2,1,3}	1 {2,1,3}	4 { 6 }	3 {4}
2*	{5}	Ø	Ø	Ø
3*	{4}	Ø	Ø	Ø
4*	{6}	Ø	Ø	Ø

识别可归前缀的DFA 句子ab的分析:

0→1 <u>→3</u> ab (b归约到A)

 $0 \rightarrow 1 \rightarrow 4$ aA (aA 归约到A)

A (分析结束) $0 \rightarrow 2$

5.4 LR (0)分析

- 5.4.1 LR(0)分析实现思想
- 5.4.2 构造LR(0)项目集规范族

定义

$$C= (\{S \rightarrow \cdot A, A \rightarrow \cdot aA, A \rightarrow \cdot b\})$$
 $\{A \rightarrow a \cdot A, A \rightarrow \cdot aA, A \rightarrow \cdot b\}$
 $\{S' \rightarrow A \cdot \} \{A \rightarrow b \cdot \} \{A \rightarrow aA \cdot \})$

构造LR(0)项目集规范族的方法(之一)

第一步: 拓广文法

第二步: 基于文法的LR(0)项目,构造识别所有可归前缀的NFA;

第三步: NFA确定化为DFA,该DFA的所有 状态所对应的项目集的集合,即构成了G的 LR(0)项目集规范族。

构造LR(0)项目集规范族的方法(之二)

引入两个函数

closure(项目集闭包)函数

GO(项目集转移)函数

项目集闭包closure

I是文法G的任一项目集,则构造I的项目集 闭包closure(I)的方法如下:

- ① I中的每一个项目皆属于closure(I);
- ② 若形如 $A \rightarrow \alpha \cdot B\beta (B \in V_N)$ 的项目属于I, 则对G中的任何产生式 $B \rightarrow \gamma$ 的第一个 LR(0)项目(B→・火)也属于closure(I);
- ③ 重复上述步骤,直至不再有新的项目加入 closure(I)为止;

项目集转移函数GO(I,X):

定义

若 I 是文法G的一个项目集,X为G 的符号,则GO(I,X)=closure(J)。

其中

 $J={\mathbb{Z}}$ 影如 $A \rightarrow \alpha X \cdot \beta$ 的项目 $\exists A \rightarrow \alpha \cdot X \beta \in I$ 。

利用函数closure和GO

第一步: 拓广文法

第二步: 构造

itemsets(G')

{ C={closure{基本项目}};

do{

if(对C的每个项目集I和每个文法符号X,

若GO(I, X) 非空且不在C中)

把 GO(I, X)加入C中;

} while (没有更多的项目集可以加入C);

 $GO(I_2,b) = closure(A \rightarrow b.) = I_3$

利用构造LR(0)项目集规范族的方法(之二)求 如下文法G(A)的项目集规范族 $A \rightarrow aA \mid b$

拓广文法为:
$$S \rightarrow A$$
 $A \rightarrow aA \mid b$ closure($S \rightarrow A$)={ $S \rightarrow A$, $A \rightarrow .aA \mid .b$ }= I_0 GO(I_0 ,A)=closure($S \rightarrow A$.)={ $S \rightarrow A$.}= I_1 GO(I_0 ,a)=closure($A \rightarrow aA$)={ $A \rightarrow aA$, $A \rightarrow .aA \mid .b$ }= I_2 GO(I_0 ,b)=closure($A \rightarrow b$.)={ $A \rightarrow b$.}= I_3 GO(I_2 ,A)=closure($A \rightarrow aA$.)={ $A \rightarrow aA$.}= I_4 GO(I_2 ,a)=closure($A \rightarrow aA$.)= I_2

求得项目集规范族为:

$$\{I_0, I_1, I_2, I_3, I_4\}$$
 $=\{\{S' \to A, A \to .aA \mid .b\}, \{S' \to A.\},$
 $\{A \to aA, A \to .aA \mid .b\}, \{A \to b.\}, \{A \to aA.\}\}$

项目集GO函数为:

	_ \ / _	_ \ /	
	a	b	$oldsymbol{A}$
0	2	3	1
1			
2	2	3	4
3			
4			

$$1.Q = C$$

$$2. \Sigma = V$$

- 4. q。为基本项目的闭包对应的状态。
- 5. 包含归约或接受项目的项目集构成终态集Z。

- 1. 拓广文法。
- 2. 利用函数closure和GO,构造DFA: 初始状态 $0=\{$ closure (基本项目) $\}$ do{

if (对每个状态i 和每个文法符号X 若GO(i, X)=i非空且不在Q中) 把j加入Q中且f(i,X)=j;

} while (没有更多的状态可以加入Q);

3. 包含归约或接受项目的状态为终态。

应用求项目集规范族的方法二直接

 $A \rightarrow aA \mid b$

求出识别可归前缀的DFA。

拓广文法为: $S \rightarrow A$ $A \rightarrow aA \mid b$

5.4 LR (0)分析

- 5.4.1 LR(0)分析实现思想
- 构造LR(0)项目集规范族
- 5.4.3 LR (0)分析表的构造 <

定义

若一个文法G的识别可归前缀的DFA的每一个 状态(项目集规范族中的每一个LR(0)项目集) 中不存在

- ① 即含移进项目又含归约项目;
- 或 ② 含有多个归约项目;
- 或 ③ 即有归约项目又有接受项目 则每个项目集的项目相容,称G是一个 LR(0)文法。

句子ab的归约:

$$0 \rightarrow 2 \rightarrow 4$$
 $aA (aA 归约到A)$

识别可归前缀的DFA与自下而上语法分析的关系

①在DFA中从状态M出发,经过一条 $a(a \in V_T)$ 弧到达状态N;

栈顶还没有出现句柄

②在DFA中从状态M出发,经过一条 $B(B \in V_N)$ 弧到达

状态 N:

栈顶归约出非终结符号

分析动作移进状态

分析动作移进状态和符号

③在DFA中M为终态(含归约项目),该状态中的文法

产生式编号为n:

栈顶出现句柄

分析动作归约

④在DFA中M是终态(接受项目对应的状态)。

栈中为开始符号

结束分析

从识别可归前缀的DFA构造LR(0)分析表

■ 算法: 构造LR(0)分析表

输入: 文法G识别可归前缀的DFA。

输出: 文法G的LR(0)分析表

方法:

分析表的状态集为DFA的状态集,设 $Q = \{0,1,2,...,n\}$

- ①若 $f(K, a) = J(a \in V_T)$,则置 $action(K, a) = S_T$;
- ②若 $f(K, A) = J(A \in V_N)$,则置goto(K, A) = J;
- ③若归约项目 $A \rightarrow \alpha \cdot \in K$,对所有 $a \in V_T \cup \{\#\}$,置 $action(K, a) = r_i(假设产生式A \rightarrow \alpha$ 是文法第j个产生式)
- ④ 若接受项目 $\in K$, \mathbb{E} action(K, #) = acc
- ⑤ action表中空白置出错标志。

从LR(0)项目集规范族C和GO函数构造LR(0)分析表

■算法 构造LR(0)分析表

输入: 文法G和文法G的LR(0)项目集规范族C和GO函数

输出: 文法G的LR(0)分析表

方法:

- 设 $C=\{I_0,I_1,...,I_n\}$,项目集 I_K 的下标K作为分析器的状态。
- ①若 $GO(I_K,a)=I_J(a \in V_T)$,则置 $action(K,a)=S_J$;
- ②若 $GO(I_K,A)=I_J(A \in V_N)$,则置goto(K, A)=J;
- ③若归约项目 $A \to \alpha \cdot \in I_K$,则对所有 $a \in V_T \cup \{\#\}$,置 $action(K, a) = r_j$ (假设产生式 $A \to \alpha$ 是文法第j个产生式)
- ④ 若接受项目 $\in I_K$, 置 $\operatorname{action}(K, \#) = \operatorname{acc}$
- ⑤ action表中空白置出错标志。

Ch5 语法分析 5.4 LR(0)分析与LR(0)分析器 5.4.3 LR(0)分析表的格

对例5.12的文法G(A)有LR(0)项目集规范族及GO函数为

$$I_0: \{S \rightarrow {}^{\bullet}A, A \rightarrow {}^{\bullet}aA, A \rightarrow {}^{\bullet}b\}$$

$$I_1: \{S \rightarrow A \bullet \}$$

$$I_2: \{A \rightarrow a \cdot A, A \rightarrow a \cdot aA, A \rightarrow b\}$$

$$I_3: \{A \rightarrow b \cdot \}$$

$$I_A: \{A \rightarrow aA \cdot \}$$

文法G(S)的LR(0)分析表

	state	A	ction表	Goto表	
	State	a	b	#	A
	0	s2	s 3		1
	1			acc	
	2	s2	s3		4
	3	r2	r2	r2	
/	4	r1	r1	r1	

$S \rightarrow A$		
$A \rightarrow aA$	1 1	2

GO函数:

	a	b	$oldsymbol{A}$
0	2	3	1
1			
2	2	3	4
3			
4			

例: 有文法G(S):

 $S \rightarrow aABe$

 $A \rightarrow Abc/b$

 $B \rightarrow d$

分析串abbcde是该文法的合法句子。

Ch5 语法分析

5.1 移进—归约分析

步骤	分析栈	待分析串	动作
初始	#	abbcde#	移进
(1)	# <i>a</i>	bbcde#	移进
(2)	#ab	bcde#	$A \rightarrow b$ 归约
(3)	# aA	bcde#	移进
(4)	#aAb	cde#	移进
(5)	#aAbc	de#	$A \rightarrow Abc$ 归约
(6)	# aA	de#	移进
(7)	#aAd	e#	$B \rightarrow d$ 归约
(8)	#aAB	e#	移进
(9)	# <mark>aABe</mark>	#	S→aABe归约
(10)	# <u>S</u>	#	分析成功

规范推导:

$$S \Rightarrow \underline{aABe}$$

 $=>aA\underline{d}e$

 $\Rightarrow a\underline{Abc}de$

=> *a<u>b</u>bcde*

构造文法G的识别可归前缀的DFA

拓广文法为:

$$S' \rightarrow S$$

$$S \rightarrow aABe$$

$$A \rightarrow Abc 2 / b 3$$

$$B \rightarrow d(4)$$

步骤 分析栈 待分析串 动作 $S' \rightarrow S S \rightarrow aABe \ 1 A \rightarrow Abc \ 2/b \ 3 B \rightarrow d \ 4$
Coto Representation Representati
(1) # \overline{a} $bbcde # $ 移进 $abcde # ABS$ $abcde # ABS$
(2) # ab $bcde # A \rightarrow b$ 归约 $ab c d e # ABS$ 0.23 $bcde # BB$ $bcde # BB$ 0.23 $bcde # BB$
1 acc
(4) # aAb
(5) H $A \rightarrow A h c $
(5) # $aAbc$ $de \# A \rightarrow Abc$ 归约 3 S_6 S_7 5
(6) # aA de # 移进 4 r ₃ r ₃ r ₃ r ₃ r ₃ r ₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(8) # aAB e # 移进 6 S ₉ 7 r r r r r r
(9) # aABe # S→aABe归约
(10) #5 # 分析成功 9 r ₂ r ₃ r ₉ p

Ch5 语法分析

- 5.1"移近—归约"分析法
- 5.3 LR分析鸟瞰
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析
- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

例:设有文法

G:
$$S \rightarrow aA$$

$$A \rightarrow BaA \mid \varepsilon$$

$$B \rightarrow + \mid -\mid *\mid$$

构造文法G的LR(0)分析表。

首先文法G拓广为

$$G': S' \rightarrow S$$

 $S \rightarrow aA$ ①
 $A \rightarrow BaA$ ② | ε ③
 $B \rightarrow +4$ | -5 | $*6$ | $,7$

$$\{S' \rightarrow S; S \rightarrow aA \}I_0$$

$$\{S' \rightarrow S^{\bullet}\} I_1$$

$$\{S \rightarrow a \cdot A ; A \rightarrow \cdot B a A | \cdot ; B \rightarrow \cdot + | \cdot - | \cdot * | \cdot , \} I_2$$

$$\{S \rightarrow aA \cdot\} I_3$$

$$\{A \rightarrow B \cdot aA\}I_{4}$$

$$\{B \rightarrow + \cdot\}I_5$$

$$\{B \rightarrow - \cdot\} I_6$$

$$\{B{
ightarrow} *{ullet} \}I_7$$

$$\{B\rightarrow, \cdot\}I_8$$

项目集2和9中:

即有移进项

$$B \rightarrow \cdot + |\cdot -| \cdot *| \cdot , ,$$

又有归约项 $A \rightarrow \cdot$,

G不是LR(0)文法

$$S \rightarrow aA$$
 ①

 $S' \rightarrow S$

$$A \rightarrow BaA 2 \mid \varepsilon 3$$

$$B \to +4$$
 | -5 | *6 | ,7

GO函数

		\ /			_			
	a	+	-	*	,	S	A	B
0	2					1		
2		5	6	7	8		3	4
4	9							
9		5	6	7	8		10	4

$$\{A \rightarrow Ba \cdot A; A \rightarrow BaA \mid :B \rightarrow +|\cdot -|\cdot *|\cdot ,\} I_9$$

$$\{A \rightarrow BaA \cdot\} I_{10}$$

5.5 SLR(1)分析与SLR(1)分析表的构造

文法G的LR(0)分析表

24242			action					goto		
state	a	+	-	*	,	#	S	$oldsymbol{A}$	В	
0	S2						1			
1						acc				
2	r3 (S5 _{r3}	S6r3	S7 r3	S8 _{r3}) r3		3	4	
3	r1	r1	r1	r1	r1	r1				
4	S9									
5	r4	r4	r4	r4	r4	r4				
6	r5	r5	r5	r5	r5	r5				
7	r6	r6	r6	r6	r6	r6				
8	r 7	r7	<u>r7</u>	r 7	r7	r 7				
9	r3	\$5 _{r3}	$S6_{r3}$	S7 r3	$S8_{r3}$) r3		10	4	
10	r2	r2	r2	r2	r2	r2				

- 1. 若既含有移进项目,又含有归约项目, 该状态(项目集)存在移进一归约冲突。
- 2. 若含有两个或两个以上的归约项目, 该状态(项目集)存在归约一归约冲突。
- 3. 若既含有接受项目,又含有归约项目, 该状态(项目集)存在接受一归约冲突。

△ 注意:

冲突情况都与归约动作相关。

- 分析:

LR(0)分析表构造算法对含有归约项目 $A \rightarrow \beta$ · 的项目集(状态) I_i ,不管当前输入符号为何,皆把action子表相应于状态 i的那一行的诸元素都指定为 r_j (其中j 为产生式 $A \rightarrow \beta$ · 的编号)。

	a_1	a_2	•••	a_n	
i	r_j	r_j	• • •	r_j	
•••				y	

$action(i, a) = \{A \to \beta\} \qquad (\forall a \in V_T \cup \{\#\})$

归约未必有效!

- : 可能不存在一个规范句型为...Aa...形式。
- 定义 (回顾)

设上下文无关文法G, S是文法的开始符号, 对于文法G的任何非终结符A

 $FOLLOW(A) = \{a \mid S = > ... A a ..., a \in V_T\}$ 若S=>...A,则令# \in FOLLOW(A)。

若归约项目 $A \rightarrow \alpha \cdot \in I_K$:

填写归约动作时,首先求解A的FOLLOW集合, 归约动作的填写改写为:

当 $a \in FOLLOW(A)$ 时,置 $action(i,a) = \{r_j\}$;

(假设产生式 $A \rightarrow \alpha$ 是文法第j个产生式)

当a∉ FOLLOW(A)时,不填写归约到A的动作。

SLR(1)归约规则。

从识别可归前缀的DFA构造SLR(1)分析表

■ 算法 构造SLR(1)分析表

输入:识别可归前缀的DFA及每个非终结符号的FOLLOW集合。

输出:SLR(1)分析表

方法:

分析表的状态集为DFA的状态集,设为 $Q=\{0,1,2,...n\}$

- ②若 $f(K, A) = J(A \in V_N)$, 则置goto(K, A) = J;
- ③若归约项目 $A \rightarrow \alpha \cdot \in K$,则对所有 $a \in FOLLOW(A)$,

 \mathbb{E} action $(K,a)=\mathbf{r}_{i}$ 。(假设 $A \rightarrow \alpha$ 是文法第j个产生式)

- ④若接受项目 $\in K$,则置 $\operatorname{action}(K, \#) = \operatorname{acc}$;
- ⑤ action表中空白置出错标志。

Ch5 语法分析 5.4 LR(0)分析与LR(0)分析器 5.4.3 LR(0)分析表的构始

从LR(0)项目集规范族C和GO函数构造SLR(1)分析

■ 算法 构造SLR(1)分析表

输入:文法G的LR(0)项目集规范族C和GO函数及每个非终结符号的FOLLOW集合。

输出:SLR(1)分析表

方法:

设 $C=\{I_0,I_1,...,I_n\}$,项目集 I_K 的下标K作为分析器的状态。

- ①若 $GO(I_K,a)=I_J(a\in V_T)$,则置 $action(K,a)=S_J$;
- ②若 $GO(I_K,A)=I_J(A \in V_N)$,则置goto(K, A)=J;
- ③若归约项目 $A \to \alpha \cdot \in I_K$,则对所有 $a \in FOLLOW(A)$,action(K,a)= \mathbf{r}_i (假设产生式 $A \to \alpha$ 是文法第j个产生式)
- ④ 若接受项目 $\in I_K$, 置 $\operatorname{action}(K, \#) = \operatorname{acc}$
- ⑤ action表中空白置出错标志。

定义

分析器。

如果文法G的SLR(1)分析表不含多重定义入口,则<u>称文法G为SLR(1)文法。</u> 使用SLR(1)分析表的语法分析器称作SLR(1)

$S' \rightarrow S$

构造文法的LR(0)项目集规范族

$$\{S' \rightarrow S; S \rightarrow aA \} I_0$$

$$\{S' \rightarrow S^{\bullet}\} I_1$$

$$\{S \rightarrow a \cdot A ; A \rightarrow \cdot B a A \mid \cdot ; B \rightarrow \cdot + \mid \cdot - \mid \cdot * \mid \cdot , \} I_2$$

$$\{S \rightarrow aA \cdot\} I_3$$

$$\{A \rightarrow B \cdot aA\}I_A$$

$$\{B\rightarrow + \cdot\}I_5$$

$$\{B \rightarrow - \cdot\} I_6$$

$$\{B{
ightarrow} *{ullet} \}I_7$$

$$\{B\rightarrow, \cdot\}I_{8}$$

项目集2和9中:

即有移进项

$$B \rightarrow \cdot + |\cdot -| \cdot *| \cdot ,$$

又有归约项
$$A \rightarrow \cdot$$
,

G不是LR(0)文法

$$\begin{array}{c} 0.4 \\ \hline \end{array}$$

$$S \rightarrow aA$$
 ①

$$A \rightarrow BaA 2 \mid \varepsilon 3$$

$$B \to +4$$
 | -5 | *6 | ,7

GO函数

	a	+	-	*	,	S	A	B
0	2					1		
2		5	6	7	8		3	4
4	9					X		
9		5	6	7	8		10	4

$$\{A \rightarrow Ba \cdot A; A \rightarrow BaA \mid :B \rightarrow +|\cdot-|\cdot*|\cdot,\} I_9$$

$$\{A \rightarrow BaA \cdot\} I_{10}$$

文法G的SLR(1)分析表

		action									
state	a	+	-/	*	,	#	S	A	B		
0	S2						1				
1						acc					
X 2	r3	S5 _{r3}	$S6_{r3}$	S7	$S8_{r3}$	r3		3	4		
3	r1	r1	r1	r1	r1	r1					
4	S9										
5	r4	r4	r4	r4	r4	r4					
6	r5	r5	r5	r5	r5	r5					
7	r6	r6	r6	r6	r6	r6					
8	r7	r7	r 7	r7	r7	r 7					
9	r3	S5 _{r3}	S6 _{r3}	S7	S8 _{r3}	r3		10	4		
10	r2	r2	r2	r2	r2	r2					

$$S' \rightarrow S$$

 $S \rightarrow aA$ ①
 $A \rightarrow BaA$ ② | ε ③
 $B \rightarrow +4$ | -5 | $*6$ | $,7$

FOLLOW(
$$S$$
)={#}
FOLLOW(A)={#}
FOLLOW(B)={ a }

Ch4 语法分析 4.1 语法分析程序综述 4.1.2 语法分析分

例:设有文法G和输入串r

 $G: S \rightarrow aA$

 $A \rightarrow BaA | \varepsilon$

$$B \rightarrow + | - | * |$$

r: a*a+a

表示方式1

(分析树):

不用着急。 静 地等待 梦想长大。

构造文法G的LR(0)分析表。

state			goto						
	a	+	-	*	,	#	S	A	B
0	S2						1		
1						acc			
2		S5	S6	S7	S8	r3		3	4
3						r1			
4	S9								
5	r4								
6	r5								
7	r6								
8	r7								
9		S5	S6	S7	S8	r3		10	4
10						r2			

\		
1		
10		
~		
9		
9		
1 /4		
- U	/	
9 3		
/_		
12		
/ 4		
1		
1		
	X	
U		
/		

Ch5 语法分析

The state of the s

- 5.1 "移近—归约"分析法
- 5.3 LR分析鸟瞰
- 5.4 LR (0)分析
- 5.5 SLR (1)分析
- 5.6 LR (1)分析

- 5.7 LALR (1)分析
- 5.8 LR分析对二义文法的应用
- 5.9 LR分析的错误处理与恢复
- 5.10 语法分析器的自动生成与YACC

5.6 LR (1)分析

5.6.1 SLR(1)分析的缺陷

- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

例:设有文法G(S)为

$$S \rightarrow L=R/R$$
 $L \rightarrow R/i$
 $R \rightarrow L$

构造文法G(S)的识别可归前缀的DFA:

首先文法拓广为

G'(S'),增加一产生式 $S' \rightarrow S$

$$S' \rightarrow S$$
 $S \rightarrow L = R / R$

$$L \rightarrow *R / i$$

状态2=
$$\{S \rightarrow L := R, R \rightarrow L \cdot \}$$

存在移进一归约冲突,据SLR(1)归约规则:

$$FOLLOW(R) = \{=, \#\}$$

有 $FOLLOW(R) \cap \{=\} \neq \Phi$

: 文法G不是SLR(1)文法

对SLR(1)分析,存在 $I_k: A \to \beta$ •

$$S' \rightarrow S$$

$$S \rightarrow L = R / R$$

$$L \rightarrow *R / i$$

归约未必有效!

- : 可能不存在一个规范句型含有前缀 δAa
- ∴ $用A \rightarrow \beta$ 归约不一定有效。

FOLLOW(A) =
$$\{a \mid S^* > ... A a ..., a \in V_T\}$$

此推导不考虑A前面的符号串

\$: ... *a* ... # 得到δ*Aa*... 形式 的规范句型。

5.6 LR (1)分析

- 5.6.1 SLR(1)分析的缺陷
- 5.6.2 LR(1)分析的实现思想

5.6.4 LR (1)分析表的构造

■ 定义(LR(k)项目)

文法G的一个LR(k)项目是

$$[A \rightarrow \alpha \beta, a_1 a_2 \dots a_k]$$

其中:

 $A \rightarrow \alpha \cdot \beta$ 是一个LR(0)项目;

$$a_i \in V_T \cup \{\#\}$$
;

 $a_1 a_2 \dots a_k$: 搜索符串;

■ 定义(LR(1)有效项目)

若文法G的一个LR(1)项目 $[A \rightarrow \alpha \cdot \beta, a]$

对活前缀/是有效的,当且仅当存在规范推导

 $S_{\mathbb{R}}^{*} > \delta A \omega_{\mathbb{R}} > \underline{\delta \alpha} \beta \omega$

其中: $\omega \in V_T^*$, $\gamma = \delta \alpha$, $a \in FIRST(\omega)$ 或

 $a为' #' (当 \omega = \varepsilon)$,称a为搜索符。

例: 设有文法G

 $S \rightarrow BB \qquad B \rightarrow aB \mid b$ LR(1)项目 [$B \rightarrow a.B$, a] 对活前缀aaa有效

∃ 规范推导 S => BB => BaB => Bab => aBab

$$=> aaBab => aaaBab \omega$$

$$\omega \delta \alpha \alpha \beta$$

LR(1)项目 [$B \rightarrow .aB$, a] 对活前缀aa有效

LR(1)项目 $[B \rightarrow a.B, (#)]$ 对活前缀Baa有效

 \exists 规范推导 $S \Longrightarrow BB \Longrightarrow BaB \Longrightarrow BaaB$

例如,对例5.15有

$$I_2 = \{ S \rightarrow L := R, R \rightarrow L \cdot \}$$
FOLLOW(R)= {=, #}

从[$R \rightarrow L$ ·,#]项目考察知,它对L有效。

而[$R \rightarrow L$,=]项目考察知,它对L无效。

$$\exists S \Rightarrow R \Rightarrow L$$

$$S \Rightarrow L = R$$

等号前不可能只出现一个R即不可能有规范句型 $R = \omega$

$$S' \rightarrow S$$
 $S \rightarrow L = R / R$ $L \rightarrow R / i$ $R \rightarrow L$

■ LR(0)有效项目

若文法G的一个LR(0)项目 $[A \rightarrow \beta_1 \cdot \beta_2]$ 对活前缀 $\delta\beta_1$ 是有效的,当且仅当存在规范推导

$$S \stackrel{*}{\overline{R}} > \delta A \omega \stackrel{*}{\overline{R}} > \underline{\delta \beta_1} \beta_2 \omega$$

例如,对例5.12的文法G(A)有识别可归前缀

5.6 LR (1)分析

- SLR(1)分析的缺陷 5.6.1
- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

构造LR(1)项目集规范族C

两个函数

1: 函数 closure(I);

2: GO函数:

算法5.7 closure(I) {

do {

*注意:待约项目扩展的项目的搜索符的求法。

if (对 I 的每个项目 $[A \rightarrow \alpha \cdot B\beta, \alpha]$, 及文法中的 每个产生式 $B \rightarrow \gamma \pi$ FIRST(βa)的每个符号 b, 若项目[$B \rightarrow \bullet \gamma$, b]不在I中) 则把 $[B\rightarrow \bullet \gamma, b]$ 加到I中; } while (没有更多的项目可以加入I); return I;

LR(1)项目集I的GO函数: GO(I, X)是I中LR(0)的项目圆点右移一个位置的项目且搜索符不变,然后对项目集求closure。

算法5.9

items(G')

//LR(1)的C的构造

```
C = closure (\{S' \rightarrow \bullet S, \#\}); //初始化 do {
```

if (对C的每个项目集I和每个文法符号 X, 若GO(I, X) 非空且不在C中) 把GO(I, X) 加入C中;

} while (没有更多的项目集可以加入C中);

算法5.9°

```
构造识别LR(1)项目有效可归前缀的DFA
 初态0= closure (\{S' \rightarrow \bullet S, \#\});
                               //初始化
 do {
     if (对每个状态i和每个文法符号
     X, 若GO(i, X) = j 非空且不在DFA中)
        j加入DFA中且f(i, X)=j;
     } while (没有更多的状态可以加入DFA中);
```

例5.15 $S' \rightarrow S$

$$S' \rightarrow S$$

 $S \rightarrow L = R \quad 1/R \quad 2$
 $L \rightarrow R \quad 3/i \quad 4$
 $R \rightarrow L \quad 5$

构造识别LR(1)项目有效可归前缀的DFA。

5.6 LR (1)分析

- 5.6.1 SLR(1)分析的缺陷
- 5.6.2 LR(1)分析的实现思想
- 5.6.3 LR (1)项目集规范族的构造
- 5.6.4 LR (1)分析表的构造

■ 算法 (LR(1)分析表构造)

输入: 文法G 和文法G的识别LR(1)项目有效可归前缀的DFA。

输出: 文法G的LR(1)分析表

方法: 设G的识别LR(1)项目有效可归前缀的

DFA的状态k为分析表的状态。

①对于每个状态k,若 $f(k, a) = j(a \in V_T)$,则置Action $(k, a) = S_i$;

若 $f(k, A) = j (A \in V_N)$,则置GOTO(k, A) = j;

②若归约项目 $[A \rightarrow \alpha \cdot , a] \in k$,则置 $Action[k, a] = r_j$ 。

 $(其中假设产生式<math>A \rightarrow \alpha \cdot 是文法第j$ 个产生式)

- ③若接受项目[$S' \rightarrow S \cdot , \#$] $\in k$, 则置 Action(k, #) = acc;
- ④ Action表中不能按上述规则填入信息的,则置"出错"标志。

算法 (LR(1)分析表构造)

输入: 文法G和文法G的LR(1)项目集规范族C和GO函数

输出: 文法G的LR(1)分析表

方法: 设G的LR(1)项目集规范族中每个 I_k 的下标k为分析表的状态。含有 $S' \rightarrow \cdot S$,#]的项目集为分析表的初态。

- ①对于每个项目集 I_i ,若 $GO(I_i,X)=I_j$,且 $X \in V_T$,置 Action $[i,X]=S_j$ 。 若 $X \in V_N$ 时,则置GOTO[i,X]=j。
- ②若归约项目 $[A \to \alpha \cdot , \alpha] \in I_i$, $A \to \alpha$ 为文法的第j个产生式,则置Action $[i, \alpha] = r_j$ 。
- ③若接受项目[$S' \rightarrow S \cdot , \#$] $\in I_i$, 则置Action [i, #] = ``acc''。
- ④对Action表中不能按上述规则填入信息的,则置"出错"标志。

按照LR(1)的项目集规范族(识别LR(1)项 目有效可归前缀的DFA)构造的文法G的LR(1)分 析表,如果每个入口不含多重定义,则称文法G为LR(1)文法。使用LR(1)分析表的语法分析器 称作LR(1)分析器。

g4g4g		Action		goto			
state	=	*	i	#	L	R	S
0		S_4	S_5		2	3	
1				acc			
2	S			r5			
3				r5 r2			
4		S_4	S_5		8	7	
5	r4			r4			
6		S_{11}	S_{12}		10	9	
7	r3			r3			
8	r 5			r5			
9				r1			
10				r5			
11		S_{11}	S_{12}		10	13	
12				r4			
13				r3			

页

例:设有文法G(A)

$$A \rightarrow BB$$

$$B \rightarrow aB/b$$

构造该文法的LR(1)分析表

首先对文法进行拓广

$$S \rightarrow A$$

$$A \rightarrow BB$$
 ①

$$B \rightarrow aB \ 2/b \ 3$$

		•		后法	771	וע		
$\{S \rightarrow A \cdot ,\# \} I_1 $ $\{B \rightarrow b \cdot ,a/b\} I_4$								
$\{A \rightarrow BB \cdot ,\#\} I_5$								
$\{B \rightarrow b \cdot, \#\} I_7$ $\{B \rightarrow aB \cdot, a/b\} I_8$								
$\{B \rightarrow aB \cdot , \# \}I_9$ $S \rightarrow A$								
$A \rightarrow BB $								
		a	b	B	$m{A}$			
	0	3	4	2	1			
	2	6	7	5				
	4	U	-		\Box			
	3	3	4	8				

LR(1)分析表

state	A	CTION表	G	GOTO表			
	a	b	#	В	\boldsymbol{A}		
0	S_3	S ₄		2	1		
1			acc				
2	S_6	S ₇		5			
3	S ₃	S ₄		8			
4	$\mathbf{r_3}$	r ₃					
5			$\mathbf{r_1}$				
6	S_6	S ₇		9			
7			$\mathbf{r_3}$				
8	$\mathbf{r_2}$	\mathbf{r}_{2}					
9			$\mathbf{r_2}$		第 124		

end

