a) decreased by 5.26%

c) decreased by 11%

10.

To decrease the volume of a gas by 5% at constant temperature, the pressure should be

b) increased by 5.26%

d) increased by 11%

THEI	Max x rep estate es .			
28.	Calculate the amo	ount of heat (in calori	es) required to conv	ert 5 g of ice at 0°C to steam
	a) 3100 cal	b) 3200 cal	c) 3600 cal	d) 4200 cal
29.	a block of ice at 0' furnace was : Spe	°C weighing 0.1 kg. I cific heat capacity of	f the block melts con iron = 470 J kg ⁻¹ °C ⁻	long time and then put on appletely, the temperature of l, Latent heat of ice = 80 cal.
	a) 715°C	b) 615°C	c) 815°C -CET 2022)	d) 915°C
		(1717)	CET 2022)	occupies of heat at its two
30.	ends conducts ar	amount of heat Q_1	' in time 't'. The me four times the length	eservoirs of heat at its two tallic rod is melted and the of original rod. The amount I contact with the same two
	reservoirs in time	et is ' Q_2 '. Then $\frac{Q_1}{Q_2}$	is	
	4	b) 4		d) $\frac{1}{16}$
31.	produced is abso	rbed by the ice and	all energy of ice gets	ht 'h'. Only 25% of the heat converted into heat during
	the fall. The valu	e of 'h' is (Latent hea	at of ice = $3.5 \times 10^5 \frac{1}{kg}$	
	a) 140 km	D) 120 Kill	c) 120 km	d) 130 km
32.	Which of the foll	owing is NOT a mod	le of heat transfer?	
	a) Conduction	b) Radiation	c) Sublimation	d) Convection
		6.9 He	at Transfer	
			T-CET 2021)	
33.	same thickness.	The thermal conduct il equilibrium the to difference across the	ivity of the material emperature differer e layer 'A' is	A is thrice that of material B. ace across the wall is 48°C,
	a) 12°C	b) 24°C	c) 18°C	d) 6°C
34.	A window glass 32°C and on the	of area 10 ³ cm ² and e other side as -8°C	thickness 4 mm has . Coefficient of ther	temperature on one side as mal conductivity of glass is
	$2.2 \frac{\text{cal}}{\text{sm}^{\circ}\text{C}}$. The r	ate of loss of heat th		
	a) 2.2 k cal s^{-1}		b) 2.2×10^{-3} c	al s ⁻¹
	c) 2.2 cal s^{-1}		d) $2.2 \times 10^3 \text{ k}$	cal s ⁻¹
35.	A black rectangu	iced to (1/3) rd of thei	r initial values and to	second at 27°C. If length and emperature is raised to 327°C
		tted per second beco	14 of \$400	4F
	a) $\frac{20E}{9}$	ь) <u>8Е</u>	c) $\frac{16E}{9}$	d) $\frac{4E}{9}$

134	LIT	CET	2021)
UVI	п	-CEI	ZUZI

	(MH1-CE1 2021)					
44.	A body cools from 80°C to 64°C in 5 minutes and same body cools from 80 °C to 52 °C in 10 minutes. The temperature of surroundings is					
	a) 24°C b) 26°C c) 28°C	d) 22°C				
4 5.		ts temperature is 80°C. At what				
	a) 0.9°C/min b) 0.6°C/min c) 1.5°C/m (MHT-CET 2022)	nin d) 1.2°C/min				
46.		nperature of the surroundings is 50°C is				
	a) 12 minutes b) 8 minutes c) 10 minutes	utes d) 15 minutes				
	LEVEL - II					
47.	 If pressure of a gas contained in a closed vessel is in 1°C, the initial temperature must be 					
	a) 250 K b) 250°C c) 2500 K	d) 25°C				
48.	atmospheric pressure. If the volume becomes 10 times	sure is allowed to expand to the sits initial volume, then the final				
	temperature becomes a) 100°C b) 173°C c) 273°C	d) -173°C				
40		•				
49.	steel rod is 5 cm longer than the copper rod at any te α (Steel) = 1.1 × 10 ⁻⁵ /°C, α (Copper) = 1.7 × 10 ⁻⁵ /°C	What should be the lengths of a steel and a copper rod at 0°C so that the length of the steel rod is 5 cm longer than the copper rod at any temperature? $\alpha \text{ (Steel)} = 1.1 \times 10^{-5} \text{ (Copper)} = 1.7 \times 10^{-5} \text{ (Copper)}$				
	a) 14.17 cm; 9.17 cm b) 9.17 cm	; 14.17 cm				
	c) 28.34 cm; 18.34 cm d) 14.17 cm	n; 18.34 cm				
50.	40°C. The coefficient of linear expansion of the metal	is °C ⁻¹ .				
	4) 2 10	-5 d) 1.2 × 10 ⁻⁵				
51.	51. Two rods, one of aluminium and other of steel, has connected together to form a single rod of length l expansion of aluminium and steel are α_A and α_S respincereases by same amount when the temperature is ra	$_1 + l_2$. The coefficients of linear ectively. If the length of each rod				
	for $\frac{l_1}{l_1+l_2}$.					
	a) $\frac{\alpha_A}{\alpha_A + \alpha_S}$ b) $\frac{\alpha_S}{\alpha_A}$ c) $\frac{\alpha_A}{\alpha_S}$					
52.	The coefficient of apparent expansion of a liquid who and when heated in a silver vessel is S. If A is coefficient then the coefficient of linear expansion of silver is	ent of linear expansion of copper,				
	a) $\frac{C+S+3A}{3}$ b) $\frac{C+3A-S}{3}$ c) $\frac{C+S-S}{3}$	$\frac{3A}{3} \qquad d) \frac{S+3A-C}{3}$				
53.		ch time will it take to boil 1 kg of				

c) 6.3 min

b) 4.2 min

a) 12.6 min

d) 8.4 min

Thermal	Pro	perties	of	Matter
Incimar			-	The State of the S

36.	A conducting rod of length 1 m has area of cross-section 10^{-3} m ² . One end is immers in boiling water (100°C) and the other end in ice (0°C). If coefficient of the conductivity of rod is 96 cal/sm °C and latent heat for ice is 8×10^{-4} cal/kg then the amount of ice which will melt in one minute is
	amount of the 10-3 kg at 10-3 kg

a) $5.4 \times 10^{-3} \text{ kg}$

b) 7.2×10^{-3} kg

c) 1.8×10^{-3} kg

d) $3.6 \times 10^{-3} \, \text{kg}$

(MHT-CET 2022)

The ratio of thermal conductivity of two rods A and B having same area The ratio of thermal conductions area of the two rods is same, then the ration 37. length of rod A to length of rod B is

a) 5:1

b) 2:3

c) 3:2

d) 1:5

Rate of flow of heat through a cylindrical rod is H₁. The temperatures of the ends of the 38. rod are T₁ and T₂. If all the dimensions of the rod become double and the temperature difference remains the same, the rate of flow of heat becomes H₂. Then the relation between H₁ and H₂ is

a) $H_2 = 4 H_1$

b) $H_2 = \frac{H_1}{2}$ c) $H_2 = 2 H_1$

d) $H_2 = \frac{H_1}{4}$

Two metal slabs of same cross-sectional area have thicknesses ' d_1 ' and ' d_2 ' and thermal 39. conductivities 'K1' and 'K2' respectively, connected in series. The free ends of the two slabs are kept at temperatures ' T_1 ' and ' T_2 '. ($T_1 > T_2$). The temperature 'T' of their common junction is a) $\frac{K_1T_1 + K_2T_2}{K_1 + K_2}$ b) $\frac{K_1T_1 + K_2T_2}{T_1 + T_2}$ c) $\frac{K_1T_1d_1 + K_2T_2d_2}{K_1d_2 + K_2d_1}$ d) $\frac{K_1T_1d_2 + K_2T_2d_1}{K_1d_2 + K_2d_1}$

Two rods of same material, same length and same radius transfer a given amount of heat in 't' seconds when they are joined end to end. When the rods are joined one above the other then, they will transfer same heat in same conditions in time

a) 2 t seconds

b) $\frac{t}{2}$ seconds c) t seconds

d) $\frac{t}{4}$ seconds

6.10 Newton's Law of Cooling

(MHT-CET 2005)

A body cools from 100°C to 70°C in 8 s. If the room temperature is 15°C and assuming 41. Newton's law of cooling holds good, then time required for the body to cool from 70°C

a) 14 s

b) 8 s

c) 10 s

d) 5 s

(MHT-CET 2006)

42. Newton's law of cooling holds good only if the temperature difference between the

a) less than 10°C

b) more than 10°C

c) less than 100°C

d) more than 100°C

43. (MHT-CET 2019) A hot body at a temperature 'T' is kept in a surrounding of temperature 'To'. It takes time 't₁' to cool from 'To' to 'T'. time 't₁' to cool from 'T₁' to 'T₂', time t₂ to cool from 'T₂' to 'T₃' and time 't₃' to cool from 'T₄'. If $(T_1 - T_2) = (T_2 - T_1) = (T_1 - T_2) = (T_2 - T_3) = (T_1 - T_2) = (T_2 - T_3) = (T_1 - T_3) = (T_2 - T_3) = (T_3 - T_3) = (T_$ T_3 to T_4 . If $T_1 - T_2 = T_3 = T_4$, then

b) $t_1 = t_2 = t_3$

c) $t_3 > t_2 > t_1$

d) $t_1 > t_2 = t_3$