

EE2211 Pre-Tutorial 7

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 7

Recap

- Overfitting, underfitting & model complexity
 - Overfitting: low error in training set, high error in test set
 - Underfitting: high error in both training & test sets
 - Overly complex models can overfit; Overly simple models can underfit
- Feature selection
 - Extract useful features from training set
- Regularization (e.g., L2 regularization)
 - Solve "ill-posed" problem (e.g., more unknowns than data points)
 - Reduce overfitting
- Bias-Variance Decomposition Theorem
 - Test error = Bias Squared + Variance + Irreducible Noise
 - Can be interpreted as trading off bias & variance:
 - Overly complex models can have high variance, low bias
 - Overly simple models can have low variance, high bias

 Overly simple models can have low variance, high bias

 Overly simple models can have low variance. All Rights Reserved.

Overfitting

Training

Overfitting Example

Order 9

Overfitting Example

10

-10

Testing

Big Prediction Error

Regression (Order 9)

6

	Training Set Fit	Test Set Fit
Order 9	Good	Bad

Underfitting

Training

Testing

Underfitting Example

Order 9

Order 1

Underfitting Example

(10)	National Universit of Singapore

NUS NUS

	Training Set Fit	Test Set Fit
Order 9	Good	Bad
Order 1	Bad	Bad

Perfect Fitting

Training

Testing

"Just Nice"

National University of Singapore

"Just Nice"

	Training Set Fit	Test Set Fit		
Order 9	Good	Bad		
Order 1	Bad	Bad		
Order 2	Good	Good		

Fitting VS Model Complexity

Overfitting / Underfitting Schematic

or Number of Features

Pearson's R

 Pearson's correlation r measures linear relationship between two variables

Regularization

Bias vs Variance

Suppose we are trying to predict red target below:

Low Bias: blue predictions on average close to red target
Low Variance: low variability among blue predictions

Low Bias: blue predictions on average close to red target
High Variance: large variability among blue predictions

High Bias: blue predictions on average not close to red target Low Variance: Low variability among blue predictions

High Bias: blue predictions on average not close to red target High Variance: high variability among blue predictions

Bias + Variance Trade Off

Test error = Bias Squared + Variance + Irreducible Noise

Bias-Variance Decomposition Theorem

- Test error = Bias Squared + Variance + Irreducible Noise
 - Mathematical details in optional uploaded material (won't be tested)
- "Variance" refers to variability of prediction models across different training sets
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - "Variance" quantifies variability across trained models
- "Bias" refers to how well an average prediction model will perform
 - In previous example, every time the training set of 10 samples changes, the trained model changes
 - If we average the trained models, how well will this average trained model perform?
- "Irreducible Noise" reflects the fact that even if we are perfect modelers, it might not be possible to predict target y with 100% accuracy from feature(s) x

THANK YOU