1

Linear Equations in Linear Algebra

1.7

LINEAR INDEPENDENCE

■ **Definition:** An indexed set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

 $x_1 V_1 + x_2 V_2 + ... + x_p V_p = 0$

has only the trivial solution. The set $\{v_1, ..., v_p\}$ is said to be **linearly dependent** if there exist weights $c_1, ..., c_p$, not all zero, such that

$$c_1 V_1 + c_2 V_2 + \dots + c_p V_p = 0$$
 (2)

- Equation (2) is called a **linear dependence relation** among $\mathbf{v}_1, ..., \mathbf{v}_p$ when the weights are not all zero.
- An indexed set is linearly dependent if and only if it is not linearly independent.

• Example 1: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

- a. Determine if the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- b. If possible, find a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .
- Solution: We must determine if there is a nontrivial solution of the equation on the previous slide.

 Row operations on the associated augmented matrix show that

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- x_1 and x_2 are basic variables, and x_3 is free.
- Each nonzero value of x_3 determines a nontrivial solution of (1).
- Hence, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are linearly dependent.

b. To find a linear dependence relation among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , completely row reduce the augmented matrix and write the new system:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 - 2x_3 &= 0 \\ x_2 + x_3 &= 0 \\ 0 &= 0 \end{aligned}$$

- Thus, $x_1 = 2x_3$, $x_2 = -x_3$, and x_3 is free.
- Choose any nonzero value for x_3 —say, $x_3 = 5$.
- Then $x_1 = 10$ and $x_2 = -5$.

• Substitute these values into equation (1) and obtain the equation below.

$$10v_1 - 5v_2 + 5v_3 = 0$$

• This is one (out of infinitely many) possible linear dependence relations among \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

LINEAR INDEPENDENCE OF MATRIX COLUMNS

- Suppose that we begin with a matrix $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$ instead of a set of vectors.
- The matrix equation Ax = 0 can be written as $x_1a_1 + x_2a_2 + ... + x_na_n = 0$.
- Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A\mathbf{x} = 0$
- The columns of matrix A are linearly independent if and only if the equation Ax = 0 has *only* the trivial solution.

SETS OF ONE OR TWO VECTORS

- A set containing only one vector say, \mathbf{v} is linearly independent if and only if \mathbf{v} is not the zero vector.
- This is because the vector equation $x_1 v = 0$ has only the trivial solution when $v \neq 0$.

• The zero vector is linearly dependent because $x_1 0 = 0$ has many nontrivial solutions.

SETS OF ONE OR TWO VECTORS

A set of two vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

• The set is linearly independent if and only if neither of the vectors is a multiple of the other.

THEOREM 7

Characterization of Linearly Dependent Sets

An indexed set $S = \{v_1, ..., v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (with j > 1) is a linear combination of the preceding vectors, $v_1, ..., v_{j-1}$.

- **Proof:** If some \mathbf{v}_j in S equals a linear combination of the other vectors, then \mathbf{v}_j can be subtracted from both sides of the equation, producing a linear dependence relation with a nonzero weight (-1) on \mathbf{v}_j .
- For instance, if $\mathbf{v}_1 = c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$, then $0 = (-1)\mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 + 0 \mathbf{v}_4 + \dots + 0 \mathbf{v}_p.$
- Thus *S* is linearly dependent.
- Conversely, suppose *S* is linearly dependent.
- If \mathbf{v}_1 is zero, then it is a (trivial) linear combination of the other vectors in S.

• Otherwise, $V_1 \neq 0$, and there exist weights $c_1, ..., c_p$, not all zero, such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = 0.$$

- Let j be the largest subscript for which $c_j \neq 0$.
- If j = 1, then $c_1 v_1 = 0$, which is impossible because $v_1 \neq 0$.

• So j > 1, and

$$\begin{split} c_{1}\mathbf{v}_{1} + \ldots + c_{j}\mathbf{v}_{j} + 0\mathbf{v}_{j} + 0\mathbf{v}_{j+1} + \ldots + 0\mathbf{v}_{p} &= 0 \\ c_{j}\mathbf{v}_{j} &= -c_{1}\mathbf{v}_{1} - \ldots - c_{j-1}\mathbf{v}_{j-1} \\ \mathbf{v}_{j} &= \left(-\frac{c_{1}}{c_{j}}\right)\mathbf{v}_{1} + \ldots + \left(-\frac{c_{j-1}}{c_{j}}\right)\mathbf{v}_{j-1}. \end{split}$$

- Theorem 7 does *not* say that *every* vector in a linearly dependent set is a linear combination of the preceding vectors.
- A vector in a linearly dependent set may fail to be a linear combination of the other vectors.

• Example 4: Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the

set spanned by **u** and **v**, and explain why a vector **w** is in Span {**u**, **v**} if and only if {**u**, **v**, **w**} is linearly dependent.

- Solution: The vectors \mathbf{u} and \mathbf{v} are linearly independent because neither vector is a multiple of the other, and so they span a plane in \mathbb{R}^3 .
- Span $\{\mathbf{u}, \mathbf{v}\}$ is the x_1x_2 -plane (with $x_3 = 0$).
- If w is a linear combination of u and v, then {u, v, w} is linearly dependent, by Theorem 7.
- Conversely, suppose that {**u**, **v**, **w**} is linearly dependent.
- By theorem 7, some vector in $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linear combination of the preceding vectors (since $\mathbf{u} \neq \mathbf{0}$).
- That vector must be w, since v is not a multiple of u.

• So w is in Span $\{u, v\}$. Fig. 2 below

Linearly dependent,
w in Span{u, v}

Linearly independent, w not in Span{u, v}

- Example 4 generalizes to any set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ in \mathbb{R}^3 with \mathbf{u} and \mathbf{v} linearly independent.
- The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v.

THEOREM 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf v_1, ..., \mathbf v_p\}$ in $\mathbb R^n$ is linearly dependent if p > n.

- **Proof:** Let $A = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix}$.
- Then A is $n \times p$, and the equation Ax = 0 corresponds to a system of n equations in p unknowns.
- If p > n, there are more variables than equations, so there must be a free variable.

- Hence Ax = 0 has a nontrivial solution, and the columns of A are linearly dependent.
- See the figure below for a matrix version of this theorem.

If p > n, the columns are linearly dependent.

• Theorem 8 says nothing about the case in which the number of vectors in the set does *not* exceed the number of entries in each vector.

THEOREM 9

If a set $S = \{v_1, ..., v_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

- **Proof:** By renumbering the vectors, we may suppose $v_1 = 0$.
- Then the equation $1v_1 + 0v_2 + ... + 0v_p = 0$ shows that S in linearly dependent.