WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is dep recated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. **Load Data** Image_size=256 In [4]: Batch_size=32 dataset=tf.keras.preprocessing.image_dataset_from_directory("project AI", shuffle=True, image_size=(Image_size, Batch_size), batch_size=Batch_size Found 2146 files belonging to 3 classes. In [5]: class_names=dataset.class_names class_names ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy'] Out[5]: for image_batch, labels_batch in dataset.take(1): In [25]: plt.imshow(image_batch[i].numpy().astype("uint8")) 50 100 150 200 250 0 EMPOCHS=10 In [26]: **Splitting Data** trainsize=0.8 In [27]: len(dataset)*trainsize 54.400000000000006 In [28]: train_dataset=dataset.take(54) In [29]: test_ds=dataset.skip(54) In [31]: val_size=0.1 len(dataset)*val_size 6.800000000000001 Out[31]: val_ds=test_ds.take(6) In [32]: test_ds=test_ds.skip(6) In [33]: train_dataset = train_dataset.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) val_ds = val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) test_ds = test_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE) In [37]: resize_and_rescale = tf.keras.Sequential([layers.experimental.preprocessing.Resizing(Image_size, Image_size), layers.experimental.preprocessing.Rescaling(1./255),]) WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please us e tf.compat.v1.get_default_graph instead. In [38]: data_augmentation = tf.keras.Sequential([layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"), layers.experimental.preprocessing.RandomRotation(0.2),]) **Making Model** CHANNELS=3 In [41]: input_shape = (Batch_size, Image_size, Image_size, CHANNELS) $n_{classes} = 3$ model = models.Sequential([resize_and_rescale, layers.Conv2D(32, kernel_size = (3,3), activation='relu', input_shape=input_shape), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, kernel_size = (3,3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, kernel_size = (3,3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Conv2D(64, (3, 3), activation='relu'), layers.MaxPooling2D((2, 2)), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(n_classes, activation='softmax'),]) WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\layers\pooling\max_pooling2d.py:161: The name tf.nn.max_pool is deprec ated. Please use tf.nn.max_pool2d instead. In [42]: model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['accuracy']) WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\optimizers__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead. Training In [43]: history = model.fit(train_dataset, batch_size=Batch_size, validation_data=val_ds, verbose=1, epochs=30, Epoch 1/30 WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\utils\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is depreca ted. Please use tf.compat.v1.ragged.RaggedTensorValue instead. WARNING:tensorflow:From C:\Users\muaaz\anaconda3\Lib\site-packages\keras\src\engine\base_layer_utils.py:384: The name tf.executing_eagerly_outside_ functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead. Epoch 2/30 Epoch 3/30 Epoch 4/30 Epoch 5/30 Epoch 6/30 Epoch 7/30 Epoch 8/30 Epoch 10/30 Epoch 11/30 Epoch 12/30 Epoch 13/30 Epoch 14/30 Epoch 15/30 Epoch 16/30 Epoch 17/30 Epoch 18/30 Epoch 19/30 Epoch 20/30 Epoch 21/30 Epoch 22/30 Epoch 23/30 Epoch 24/30 Epoch 25/30 Epoch 26/30 Epoch 27/30 Epoch 28/30 Epoch 29/30 Epoch 30/30 **Testing** In [44]: scores=model.evaluate(test_ds) In [45]: scores [0.06220560148358345, 0.982300877571106] Out[45]: In [46]: history.params {'verbose': 1, 'epochs': 30, 'steps': 54} Out[46]: history.history.keys() In [47]: dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) Out[47]: acc = history.history['accuracy'] In [50]: val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] In [51]: for images_batch, labels_batch in test_ds.take(1): first_image = images_batch[0].numpy().astype('uint8') first_label = labels_batch[0].numpy() print("first image to predict") plt.imshow(first_image) print("actual label:", class_names[first_label]) batch_prediction = model.predict(images_batch) print("predicted label:",class_names[np.argmax(batch_prediction[0])]) first image to predict actual label: Potato___Early_blight predicted label: Potato___Early_blight 0 50 100 150 200 Store model in a file In [53]: import os model_version=max([int(i) for i in os.listdir("models") + [0]])+1 model.save(f"models/{model_version}") INFO:tensorflow:Assets written to: models/1\assets

INFO:tensorflow:Assets written to: models/1\assets

In []:

In [1]: import tensorflow as tf

import numpy as np

from tensorflow.keras import models, layers

import matplotlib.pyplot as plt