Prior sensitivity analysis

Female, Education level - A level and above

FALSE Loading required package: Matrix

	IF	Mean	SD	lower	upper
β_1^C	436.254	1.025	0.209	0.666	1.417
β_1^N	125.947	-4.022	0.216	-4.456	-3.599
eta_2^N	128.841	-4.033	0.212	-4.463	-3.620
eta_3^N	133.330	-4.205	0.220	-4.642	-3.767
eta_4^N	110.673	-3.308	0.185	-3.677	-2.951
eta_5^N	102.364	-2.920	0.176	-3.263	-2.570
eta_6^N	56.149	-1.809	0.138	-2.080	-1.545
eta_7^N	123.750	-4.114	0.219	-4.557	-3.689
eta_8^N	115.203	-3.904	0.215	-4.327	-3.470
eta_9^N	126.726	-3.754	0.199	-4.159	-3.373
eta_{10}^N	123.741	-3.431	0.188	-3.813	-3.070
eta_{11}^N	23.816	-1.193	0.142	-1.484	-0.927
eta_{12}^N	65.897	-1.852	0.136	-2.121	-1.589
β_{13}^N	127.999	-4.390	0.230	-4.867	-3.951
eta_{14}^N	129.792	-4.036	0.212	-4.469	-3.623
eta_{15}^N	84.288	-2.505	0.162	-2.827	-2.188
eta_{16}^N	91.617	-2.644	0.165	-2.970	-2.326
eta_{17}^N	131.406	-4.199	0.220	-4.638	-3.766
β_{18}^N	133.323	-4.250	0.225	-4.715	-3.821
eta_{19}^N	130.405	-4.383	0.233	-4.861	-3.941
eta_{20}^N	127.145	-4.302	0.232	-4.761	-3.844
eta_{21}^N	130.311	-4.872	0.255	-5.364	-4.353
eta_{22}^N	130.813	-4.303	0.227	-4.767	-3.866
β_{23}^N	130.305	-4.695	0.255	-5.199	-4.192
β_{24}^N	123.653	-4.652	0.248	-5.175	-4.191

	IF	Mean	SD	lower	upper
eta_{25}^N	124.611	-4.447	0.238	-4.932	-3.981
β_{26}^N	132.838	-4.572	0.242	-5.046	-4.081
β_{27}^N	134.693	-4.880	0.254	-5.387	-4.379
β_{28}^N	134.594	-5.433	0.282	-6.018	-4.895
β_{29}^N	137.001	-4.813	0.251	-5.320	-4.320
β_{30}^N	117.839	-3.942	0.212	-4.369	-3.531
β_{31}^N	136.002	-4.541	0.240	-5.025	-4.075
β_{32}^N	126.404	-3.489	0.188	-3.871	-3.130
β_{33}^N	116.134	-3.735	0.202	-4.136	-3.337
β_{34}^N	131.664	-4.930	0.257	-5.440	-4.419
β_{35}^N	138.117	-4.564	0.238	-5.044	-4.100
β_{36}^N	128.850	-3.430	0.190	-3.812	-3.060
β_{37}^N	136.181	-4.232	0.221	-4.675	-3.795
β_{wage}^{C}	3.129	0.201	0.110	-0.017	0.417
β_{wage}^{N}	1.327	0.396	0.600	-0.811	1.537
σ_1^2	381.174	0.348	0.108	0.130	0.532
σ_2^2	395.690	0.435	0.113	0.212	0.631
σ_3^2	2.675	0.849	0.040	0.772	0.927
σ_4^2	1.094	0.563	0.027	0.511	0.615
σ_5^2	1.166	0.391	0.019	0.354	0.427
σ_6^2	1.176	0.370	0.018	0.335	0.405
σ_7^2	1.063	0.616	0.029	0.560	0.672
σ_8^2	1.041	0.821	0.038	0.748	0.898
σ_9^2	1.032	0.904	0.042	0.820	0.984
σ_{10}^2	1.181	0.542	0.026	0.492	0.593
σ_{11}^2	1.073	0.699	0.033	0.634	0.763
σ_{12}^2	1.180	0.421	0.020	0.383	0.462
σ_{13}^2	1.112	0.535	0.025	0.487	0.585
σ_{14}^2	1.000	1.196	0.056	1.087	1.305
σ_{15}^2	1.019	0.868	0.040	0.792	0.950
σ_{16}^2	1.201	0.425	0.020	0.385	0.464
σ_{17}^2	1.163	0.385	0.018	0.349	0.421

	IF	Mean	SD	lower	upper
σ_{18}^2	1.034	0.889			0.970
σ_{19}^2		0.831			0.905
	1.158				
	1.201				
	1.145				
		0.596			
	1.329	0.427			0.469
	1.181				0.478
σ_{26}^2	1.129		0.037	0.700	0.843
	1.135			0.530	0.640
		0.651	0.031	0.592	0.713
σ_{29}^2	1.166	0.525	0.025	0.477	0.575
σ_{30}^2	1.259	0.386	0.019	0.350	0.424
σ_{31}^2	1.273	0.483	0.023	0.439	0.529
σ_{32}^2	1.220	0.412	0.020	0.373	0.452
σ_{33}^2	1.125	0.548	0.026	0.498	0.600
σ_{34}^2	1.198	0.515	0.025	0.467	0.564
σ_{35}^2	1.094	0.451	0.021	0.410	0.493
σ_{36}^2	1.086	0.561	0.027	0.510	0.614
σ_{37}^2	1.272	0.444	0.021	0.404	0.488
σ_{38}^2	1.265	0.411	0.020	0.374	0.452
σ_{39}^2	1.064	0.589	0.028	0.535	0.643
σ_{40}^2	1.200	0.373	0.018	0.338	0.408
σ_{41}^2	1.034	3.440	0.161	3.126	3.757
ϕ_1	360.917	0.537	0.112	0.337	0.752
ϕ_2	121.150	0.014	0.001	0.011	0.017
α_1	1.000	-50.466	111.802	-276.071	161.277
α_2	1.000	-50.481	111.800	-274.691	162.565
α_3	1.000	50.374	111.801	-161.327	275.953
α_4	1.000	50.406	111.801	-161.357	276.041
α_5	1.000	50.381	111.801	-161.431	275.939
α_6	1.000	50.348	111.801	-161.486	275.803

	IF	Mean	SD	lower	upper
α_7	1.000	50.559	111.802	-160.885	276.542
α_8	1.000	50.889	111.803	-160.865	276.412
$lpha_9$	1.044	-0.075	0.062	-0.195	0.046


```
mean(beta_Gauss[,"wage_c"]>0)

## [1] 0.9649

mean(beta_Gauss[,"wage_n"]>0)
```

[1] 0.7470667