

Atividade: Qual é a expressão?

Habilidades

EM13MAT304 Resolver e elaborar problemas com funções exponenciais nos quais é necessário compreender e interpretar a variação das grandezas envolvidas, em contextos como o da Matemática Financeira e o do crescimento de seres vivos microscópicos, entre outros.

Para o professor

Objetivos específicos

OE1 Deduzir expressões de funções exponenciais envolvendo expoentes racionais, a partir de situações problema.

Observações e recomendações

- A ideia central é que se a cada 4 dias o número de infectados triplica, a cada dois dias ficará multiplicado por $\sqrt{3}$, e cada 1 dia ficará multiplicado por $\sqrt[4]{3} = \sqrt{\sqrt{3}}$. E isso levará à expressão $3^{\frac{1}{4}}$.
- Como estamos propondo uma simulação de dados reais, é possível trabalhar com uma margem de aproximações para os valores colocados.
- Ao término da atividade, durante as discussões, proponha algumas generalizações como: qual seria a fórmula se houvesse 200 infectados no início? Se quintuplicasse a cada 4 dias? Se quadruplicasse a cada 5 dias? etc.

Atividade

Uma epidemia causada por um vírus está se espalhando na cidade. Os cientistas, após analisarem os primeiros dados concluem que a doença está se espalhando rapidamente porque o número de infectados está triplicando a cada 4 dias. O número inicial de infectados que compuseram a análise foi de 100 pessoas. Responda as perguntas.

a) Complete a tabela com os possíveis números de infectados observados pelos cientistas.

Infectados	100					
Dias desde o						
100° caso	0	4	8	12	16	20
confirmado						

b) Considerando que esse modelo retrata bem a realidade, ou seja, que a evolução do número de casos obedece a um padrão de crescimento exponencial, qual deve ser o número aproximado de infectados no segundo e no sexto dias desde o 100° confirmado?

Infectados	100				
Dias desde o					
100° caso	0	2	4	6	8
confirmado					

Realização:

Patrocínio:

c) Complete a tabela abaixo, com a possível evolução diária dos casos. Explique seu raciocínio.

Infectados	100								
Dias desde o									
100° caso	0	1	2	3	4	5	6	7	8
confirmado									

d) Denotando por D(t) o número de infectados t dias após o 100 caso confirmado, qual dos modelos exponenciais abaixo melhor representa D(t).

(I)
$$D(t) = 100 \cdot 3^{t+4}$$

(II)
$$D(t) = 100 \cdot 3^{4t}$$

(III)
$$D(t) = 100 \cdot 3^{\frac{t}{4}}$$

Solução:

- a) 300,900,2700,8100,24300
- b) $100\sqrt{3} \approx 173 = 300\sqrt{3} \approx 519$
- c) 131,173,227,300,395,520,684,900. Para obter o valor do dia seguinte, multiplicar o anterior por $\sqrt[4]{3}$.
- d) Modelo (III).

