Package 'nCopula'

November 30, 2018

Type Package
Title Hierarchical Archimedean Copulas Constructed with Multivariate Compound Distributions
Version 0.1.1
Maintainer Simon-Pierre Gadoury <spgadou@me.com></spgadou@me.com>
Description Construct and manipulate hierarchical Archimedean copulas with multivariate compound distributions. The model used is the one of Cossette et al. (2017) <doi:10.1016 j.insmatheco.2017.06.001="">.</doi:10.1016>
Depends R (>= 3.4.0), copula
Imports Deriv, stringr, stringi, compiler, methods,
License GPL (>= 2)
LazyData FALSE
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
NeedsCompilation no
Author Simon-Pierre Gadoury [cre, aut], David Beauchemin [ctb]
Repository CRAN
Date/Publication 2018-11-30 12:40:07 UTC
R topics documented:
AMH Clayton Frank GAMMA GeneticCodes GEO Gumbel InvLap
Lap

2 AMH

Index		15
	rCop	13
	rCompCop	12
	pCop	11
	pCompCop	11
	Node	10
	LOG	9

AMH

Construction of an Archimedean Copula Class Object.

Description

Constructs an AMH Archimedean copula object with a given parameter and dimension.

Usage

```
AMH(param, dim = 2L, density = FALSE)
```

Arguments

param parameter of the copula.

dim dimension of the copula (>= 2), which is, by default, 2. density compute the expression of the density of the copulas.

Details

Constructs an AMH Archimedean copula object with a given parameter and dimension.

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

Clayton 3

Object

Clayton	Construction	of an Archimed	ean Copula Class
oray con	Constituent	oj ciri i i critirica	con copina ciass

Description

Constructs a Clayton Archimedean copula object with a given parameter and dimension.

Usage

```
Clayton(param, dim = 2L, density = FALSE)
```

Arguments

param the parameter of the copula.

dim the dimension of the copula (\geq 2), which is, by default, 2.

density logical. Should the expression of the density of the copula be computed?

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

Frank Construction of an Archimedean Copula Class O)bject
---	--------

Description

Constructs a Frank Archimedean copula object with a given parameter and dimension.

Usage

```
Frank(param, dim = 2L, density = FALSE)
```

Arguments

param parameter of the copula.

dim dimension of the copula (>= 2), which is, by default, 2. density compute the expression of the density of the copulas.

Value

An archm S4 class object.

4 GAMMA

Author(s)

Simon-Pierre Gadoury

GAMMA

Construction of a GAMMA Child Class Object

Description

The function GAMMA constructs a gamma Child class object for a given parameter and arguments.

Usage

```
GAMMA(par, unif, structure = NULL)
```

Arguments

par parameter of the distribution.

unif uniform structure, a numeric vector of grouped numbers, i.e. c(1,2,3) is trans-

lated as being c(u1, u2, u3).

structure nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if structure is NULL, the function will automatically be of class Child. For

continuous distributions (i.e. GAMMA), structure is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother or child class objects.: GEO, LOG

GeneticCodes 5

GeneticCodes

Obtain the Genetic Codes of a Structure

Description

Function to obtain the list of all genetic codes of a structure.

Usage

```
GeneticCodes(structure)
```

Arguments

structure

an object of class Mother (the structure)

Value

A list of the structure's genetic codes.

Author(s)

Simon-Pierre Gadoury

Examples

```
## Create the structure structure \leftarrow GEO(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL), GEO(0.1, NULL, list(GAMMA(1/30, c(1,2), NULL), GAMMA(1/30, c(3,4), NULL))))) ## Get the genetic codes GeneticCodes(structure)
```

GE0

Construction of a GEO Mother or Child Class Object

Description

Constructs either a GEO Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
GEO(par, unif, structure)
```

6 Gumbel

Arguments

par parameter of the distribution.

unif uniform structure, a numeric vector of grouped. numbers, i.e. c(1,2,3) is trans-

lated as being c(u1, u2, u3).

structure nesting structure of the form

X(par1, c(i,...), list(Y(par2, c(j,...), NULL), Z(par3, c(k,...), NULL))),

where X, Y, and Z are compatible functions (see 'details'). It is to note that if structure is NULL, the function will automatically be of class Child. For

continuous distributions (i.e. GAMMA), structure is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother or child class objects.: GAMMA, LOG

Examples

Gumbel

Construction of an Archimedean Copula Class Object

Description

Constructs a Gumbel Archimedean copula object with a given parameter and dimension.

Usage

```
Gumbel(param, dim = 2L)
```

Arguments

param parameter of the copula

dimension of the copula (>= 2), which is, by default, 2

Value

An archm S4 class object.

Author(s)

Simon-Pierre Gadoury

InvLap 7

InvLap	Inverse LST of a Node	

Description

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the inverse Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

Usage

```
InvLap(code, structure, outVar = "z", par = "value")
```

Arguments

code the genetic code (numeric vector) of the node (can be a leaf i.e. end by 0).

structure an object of class Mother (the structure).

outVar the output variable to be used ('z' by default).

par logical. Should the parameters be values ('value') or variables ('variable')?

Details

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For exemple, a child node with path (0,2,1) will have the parameter 'alpha021'.

Value

A character string giving the inverse LST of the specified node.

Author(s)

Simon-Pierre Gadoury

See Also

Lap

```
structure <- GEO(0.1, NULL, list(GAMMA(0.1, 1:2, NULL), GAMMA(0.2, 3:4, NULL)))

InvLap(c(0,2), structure, outVar = 'z', par = 'value')
```

8 Lap

Lap	LST of a Node	

Description

With a specific path and a predefined structure (S4 class of a type 'Mother'), returns the Laplace-Stieltjes Transform expression of the corresponding node with a specific variable.

Usage

```
Lap(code, structure, outVar = "z", par = "value")
```

Arguments

code genetic code (numeric vector) of the node (can be a leaf i.e. end by 0).

structure object of class Mother (the structure).

outVar output variable to be used ('z' by default).

par Should the parameters be values ('value') or variables ('variable')?

Details

For mother nodes, parameters are always called 'gamma' and for child nodes, parameters are always called 'alpha'. Furthermore, to recognize the parameters, the path is inserted at the end. For exemple, a child node with path (0,2,1) will have the parameter 'alpha021'.

Value

A character string giving the LST of the specified node.

Author(s)

Simon-Pierre Gadoury

See Also

InvLap

LOG 9

LOG

Construction of a LOG Mother or Child Class Object

Description

Constructs either a LOG Mother or Child class object for a given parameter, arguments, and nesting structure.

Usage

```
LOG(par, unif, structure)
```

Arguments

par parameter of the distribution.

unif uniform structure, a numeric vector of grouped numbers, i.e. c(1,2,3) is trans-

lated as being c(u1, u2, u3).

structure nesting structure of the form

 $X(par1,\,c(i,\ldots),\,list(Y(par2,\,c(j,\ldots),\,NULL),\,Z(par3,\,c(k,\ldots),\,NULL))),$

where X, Y, and Z are compatible functions (see 'details'). It is good to note that if structure is NULL, the function will automatically be of class Child. For

continuous distributions (i.e. GAMMA), structure is always NULL.

Author(s)

Simon-Pierre Gadoury

See Also

Other mother or child class objects.: GAMMA, GEO

```
LOG(0.5, NULL, list(GAMMA(1/30, c(5,6), NULL),

LOG(0.1, NULL, list(GAMMA(1/30, c(1.2), NULL),

GAMMA(1/30, c(3,4), NULL)))))
```

Node

Node

Obtain a node in mother class object

Description

Use a path (numeric vector) to obtain a subgroup of a structure (mother class object).

Usage

```
Node(path, structure)
```

Arguments

path the path of the node (numeric vector).

structure a mother class object (S4).

Details

Every node of a mother object (structure) can be identified with a numeric vector that indicates the path used from the root to the node. The vector is the 'path' argument and is used to find specific nodes of a given structure. For a complete explanation, we refer to Cossette et al. (2017).

Value

Either a child or mother class object.

Author(s)

Simon-Pierre Gadoury

```
# We directly give the path of the desired node.  \begin{tabular}{ll} \begin{tabular
```

pCompCop 11

Description

Distribution function of a Mother class object.

Usage

```
pCompCop(structure, vector = FALSE, express = TRUE)
```

Arguments

structure object of class Mother.

vector logical. If false, returns a function or a character string with (u_1, u_2, ...) as

arguments, else, just (u).

express logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Examples

pCop

Distribution function of archm class objects

Description

Distribution function of an Archimedean copula (archm) class object.

12 rCompCop

Usage

```
pCop(copula, vector = FALSE, express = TRUE)
```

Arguments

copula an Archimedean copula (archm) class object.

vector logical. If false, returns a function or a character string with (u_1, u_2, ...,

u_dim) as arguments, else, just (u).

express logical. If false, returns a function, else, a character string.

Value

The distribution function in the form of either a function or a character string.

Author(s)

Simon-Pierre Gadoury

See Also

```
rCop, Clayton, AMH, Gumbel, Frank
```

Examples

```
cop <- Clayton(5, 2)
pCop(cop, vector = TRUE, express = TRUE)
pCop(cop, vector = FALSE, express = TRUE)</pre>
```

rCompCop

Random number generator for Mother class objects

Description

Samples from a Mother class object.

Usage

```
rCompCop(n, structure)
```

Arguments

n the number of realisations. structure an object of class Mother.

Value

A numeric matrix of sampled data from the structure

rCop

Author(s)

Simon-Pierre Gadoury

Examples

rCop

Random number generator for Archimedean copula class objects

Description

Random number generator for archm class objects.

Usage

```
rCop(n, copula)
```

Arguments

n number of realisations.

copula an Archimedean copula (archm) class object.

Details

For bivariate archm copula objects, the function uses the conditional approach. As for dimensions higher than 2, the Marshall-Olkin (1988) approach is chosen instead.

Value

A numeric matrix containing the samples.

Author(s)

Simon-Pierre Gadoury

See Also

```
pCop, Clayton, AMH, Frank, Gumbel
```

rCop

```
## Create the trivariate archm copula object
cop <- Clayton(5, 3)

## Generate the samples
res <- rCop(10000, cop)

## Plot the values
pairs(res, pch = 16, cex = 0.7)</pre>
```

Index

```
AMH, 2, 12, 13

Clayton, 3, 12, 13

Frank, 3, 12, 13

GAMMA, 4, 6, 9
GeneticCodes, 5
GEO, 4, 5, 9
Gumbel, 6, 12, 13

InvLap, 7, 8
Lap, 7, 8
LOG, 4, 6, 9

Node, 10

pCompCop, 11
pCop, 11, 13

rCompCop, 12
rCop, 12, 13
```