

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General Degree) Examination

Second Year – Semester 11 Examination- March /April 2014

MAA 2203 - Numerical Analysis II

Answer four questions.

Time allowed: 02 hours

101

Calculators will be provided

1.

i. The population of a country in the decennial census were as given below. Estimate the population for the year 1895.

Year (x):

1891 1901 1911 1921 1931

Population (y) (in thousands):

46 66 81 93

- ii. Let $x_0 = 0.85$, $x_1 = 0.87$, $x_2 = 0.89$. Find the interpolating polynomial of function $f(x) = e^x$ by using the Newton formula. Find a linear approximation for f(0.86).
- 2. Given the table of values

X	1.0	1.05	1.08	1.1
F(x)	2.72	3.29	3.66	3.90

- I. Construct the best quadratic Lagrange interpolating polynomial to approximate the function $f(x) = 3xe^x 2e^x$ at x = 1.04.
- II. Compute the error bound for your approximation in part (a).
- III. Use three point formula to find the approximate value of the f '(1.05). Compute an actual error and an error bound.

3.

- a. Consider the points $x_0 = 1$, $x_1 = 1.5$, $x_2 = 2.5$ for a function f(x) and the divided differences are $f[x_2] = 5$, $f[x_1, x_2] = 15$, $f[x_0, x_1, x_2] = 35$. Use these information, construct the complete divided differences table for the given points.
- b. Use quadratic interpolation which interpolates f(x) at points x_0 , x_1 and x_2 , derive a suitable numerical integration rule for approximating the integral $\int_a^b f(x) dx$.
- c. Evaluate $\int_{1}^{2} \frac{e^{-x}}{x} dx$, with h = 0.2 using suitable numerical integration formula.
- 4. Construct the natural cubic spline interpolant for $f(x)=\ln(e^x+2)$ with nodal values

х	f(x)	
-1.0	0.86199480	
-0.5	0.958o2009	
0.0	1.0986123	
0.5	1.2943767	

Calculate the absolute error in using the interpolant to approximate f(0.25) and f'(0.25).

5.

- a) Evaluate the integral $\int_0^{\frac{\pi}{4}} \sin 4x \, dx$ using trapezoidal rule with n = 4. Estimate the error bound and compare with the exact error.
- b) Approximate the integral $\int_0^{0.5} \sqrt{1-x^2} \, dx$ using Simpson's rule with six sub-intervals.
- 6. Use the Hermite polynomial that agrees with the data listed in the following table to find an approximation of f(1.5)

k	X _k	f(x _k)	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571