ISOMORPHISM WRAPUP

PROPOSITION: Let $f: G \to H$ be a group homomorphism. Then f is an isomorphism if and only if f is bijective¹.

LEMMA: Let $f: G \to H$ be an isomorphism. Then for any $g \in G$, we have |g| = |f(g)|.

DEFINITION: A property \mathcal{P} of a group is an **isomorphism invariant** if whenever $G \cong H$ and \mathcal{P} holds for G, then \mathcal{P} also holds for H.

THEOREM: The following are isomorphism invariants:

- (1) The order of the group.
- (2) The set of orders of elements of the group.
- (3) Being abelian.
- (4) The order of the center of the group.
- (5) Being finitely generated.
- (1) Use the Theorem to show that none of the following groups are pairwise isomorphic:

$$S_3$$
 S_4 $\mathbb{Z}/6$

- **(2)** Prove the Proposition.
- (3) Prove the Lemma.
- (4) Prove the Thoerem.

¹Reminder: by definition a function is **bijective** if it is injective and surjective (i.e. a one-to-one correspondence). It is a theorem from set theory that a function $f: X \to Y$ is bijective if and only if there exists an inverse function $g: Y \to X$.