Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) (vgl. Martinshorn)

$$\boldsymbol{v} = \frac{\boldsymbol{k} - \boldsymbol{1}}{\boldsymbol{k} + \boldsymbol{1}} \cdot \boldsymbol{c} \qquad mit \quad k = \frac{f_1}{f_2}$$

v: Geschwindigkeit des Fahrzeugs c: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" ⇒ Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)} \quad und \quad v = \frac{\Delta d}{\Delta t}$$

ERGEBNISSE

→ Akkurate Berechnung

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

→ Sehr anfällig für Messfehler (z. B. starker Wind)

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) (vgl. Martinshorn)

$$\boldsymbol{v} = \frac{\boldsymbol{k} - \boldsymbol{1}}{\boldsymbol{k} + \boldsymbol{1}} \cdot \boldsymbol{c} \qquad mit \quad k = \frac{f_1}{f_2}$$

v: Geschwindigkeit des Fahrzeugs c: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" ⇒ Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)} \quad und \quad v = \frac{\Delta d}{\Delta t}$$

ERGEBNISSE

→ Akkurate Berechnung

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

→ Sehr anfällig für Messfehler (z. B. starker Wind)

jugend@forscht

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) $(vgl.\ Martinshorn)$

$$\boldsymbol{v} = \frac{\boldsymbol{k} - \boldsymbol{1}}{\boldsymbol{k} + \boldsymbol{1}} \cdot \boldsymbol{c} \qquad mit \quad k = \frac{f_1}{f_2}$$

v: Geschwindigkeit des Fahrzeugsc: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" \Rightarrow Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)}$$
 und $v = \frac{\Delta d}{\Delta t}$

ERGEBNISSE

→ Akkurate Berechnung

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) (vgl. Martinshorn)

$$\mathbf{v} = \frac{\mathbf{k} - \mathbf{1}}{\mathbf{k} + \mathbf{1}} \cdot \mathbf{c}$$
 mit $k = \frac{f_1}{f_2}$

v: Geschwindigkeit des Fahrzeugs c: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" ⇒ Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)}$$
 und $v = \frac{\Delta d}{\Delta t}$

ERGEBNISSE

→ Akkurate Berechnung

→ Keine Konstanten notwendig

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

→ Sehr anfällig für Messfehler (z. B. starker Wind)

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

ANSÄTZE

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) $(vgl.\ Martinshorn)$

$$\mathbf{v} = \frac{\mathbf{k} - \mathbf{1}}{\mathbf{k} + \mathbf{1}} \cdot \mathbf{c}$$
 mit $k = \frac{f_1}{f_2}$

v: Geschwindigkeit des Fahrzeugsc: Schallgeschwindigkeit (343 m/s)

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" \Rightarrow Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)} \quad und \quad v = \frac{\Delta d}{\Delta t}$$

ERGEBNISSE

→ Akkurate Berechnung

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

