Online So	urces of Information
External	Class Wabsite:
	ontact informations
	Syllabus
	office hours
	policies
	portices

DEN Website:
_ lecture videos
- lecture notes
- HW assignments
- HW assignments - any other documents

Instructors	Cectures, Discuss
TAS /	Cectures, Discuss INS & Exams
- Course producers	9
Graders	grading of HNS
- CS Dept advisers	grading of HNS registration iss DEN suport
- DEN	DEN support

	Text books	
o Algori	then Design by	Jon Kleinberg
		Eva Tardos
o Supples	nental textbook:	Introduction
	lgorilhms, 3	edition by Corn

 Attend lecture	s and dis	cussion ses
 study the ma	terial from	1 text book
Study the ma	blems	
Do as mann	other prob	lem Iron
Do as many	he tenthonk	an na recht
,	Q /0X/ 2002	as possion

Exam 1	30%	Feb 16
Exam 2	30%	March 30
Exam 3	40%	Apr. 27

Presignisites
1.5.74
1 + 11 -271 + 12 1
- Descrete Math - Mathematical Induction
- Asymptotic notation
- Sorting methods
- Basic data structures: Arrays, Stacks.
gueues, linke I lists
- Basies of graphs: Trees, cycles, DAG,
adjacency list, adjacency matrix etc
- Basies of graphs: Trees, cycles, DAG, adjacency list, adjacency matrix, etc. - Graph search algs: BFS, DFS
- Grayin search ares: DF3, DF3

- Network Flow
- NP, NP- Complete, NP- hard
- Randomization - NP, NP- Complete, NP-hard - Approximation methods
- Linear Programming
Exam 3

		priections:		
1_	An alg	withour a	set of ins	Tructions
		aragmi		
		rithm		
		0		

2	Alg. science advan	nced on Wall st.
3_	Invite 6 million	alg's for a listen.

	FPGA
	EPGA Cache GPU
	GPU
	SMP DMP
	DMP
<u> </u>	

In studying a problem, we go Through the following steps:
1- Come up with a concise problem statement
2- Present a solution
3- Prove correctness
4 - Perform complexity analysis

	Stab	6 Ma	thing		
-	2)				
		75 11 W		100	
1					
					- 1336 - 1336 - 1336
				(4	
•					

	Stable Matching Example
Proble	n men with n women so that they could stay happily married ever after.
	ever after.

Step 1: Come up with a concise

problem statement.

We have a set of 1 men M= {m, ..., m_n}

We have a set of 1 women W= {w, ..., w_n}

Add notion of preferences
Each man me M ranks all women
Each man me M ranks all women o m prefers w to w' if m ranks w higher than w'.
o ordered ranking of m is his preference list
Pm: = { Wi, Wiz, Win}
Same for women, i.e. each woman weW ranks all men.
Same for women, se each woman weW ranks all men.
Same for women, i.e. each woman we'w ranks all men.
Same for women, i.e. each woman weW ranks all men.

Not prepared! N Such a pair (m,w') is an instability WRT 5.

Def. Matchine 5 is stable if

1- It is perfect

2- There are no enstabilities

WRT 5

Stop 1: Input: Preference lists for a
set of n men & n women.

Output: Set of marriages w/
no instabilities

Stop 2 Gale - Shapley Alg.

Did we use any code?

W Such a pair (M, W) is an instability WRTS

Def. Matching S is stable if 1- It is perfect 2- There are no enstabilities WRT S
Complete Stop 1: Input: Preference lists for a set of n men & n women. Output: Set of marriages w/ no instabilities
Step 2: Gale-Shapeley

Step 3 Proof of Correctness
1) From the woman's perspective, She
She can only get into better engagements
Single, gets engaged, and might
single gets engaged, and might be dropped repeatedly only to sattle for a woman w/ lower rankings
3) Alg. terminates after nº iterations
(3) Alg. terminates after nº iterations (4) Solutions is a perfect matching
(4) Solutions is a perfect matching
(4) Solutions is a perfect matching
(4) Solutions is a perfect matching

Q. Did m propose to wat some

point in the execution of the algorithm?

If no, then w must be higher than w'

on his list > Contradiction!

If yes, then he must have been rejected

in faror of m", and due to O

either m" = m' or m' is better

than m" > contradiction!

2. Identify the highest ranked woman
to whom m has not yet proposed.

Keep an array Next [1..n] where

Next [m] points to the position of the
next woman he will be proposing to
on his ranked list.

Men's preference list. Man Pref [1n, 1n] ushere Man Pref [m, i] denotes the i the woman on man m's preference list
To find next woman w to whom m will be proposing to: w = ManPref[m, Next[m]]

3. Decide if w is engaged, and if so to whom.
Keep an array called current [1n] where
Current [w] is Null if w is not engaged. " is set to m if she is engaged to m.
0(1)
4- Decede which man (mor m') is preferred by w.
Woman Pref = 3 8 4 22 1 -

The state of the s

