

OBJETIVO

 Repasar paso a paso los principales conceptos teóricos de COBOL CICS a efectos que el estudiante pueda encarar su primer desafío de código COBOL pseudo-conversacional.

ESPECIFICACIONES

¿QUÉ ES CICS?

CICS, que es el acrónimo de: *Customer Information Control System*, es un servidor de transacciones desarrollado por IBM que se utiliza principalmente en sistemas mainframe para gestionar aplicaciones críticas de negocio en tiempo real.

Fue creado en 1968 y desde entonces ha evolucionado para soportar tecnologías modernas como Java, Node.js etc.

Su función principal es permitir que múltiples transacciones se procesen de forma simultánea, garantizando integridad, consistencia y disponibilidad. Esto lo hace ideal para sectores como la banca, los seguros y el gobierno, donde se requiere alta disponibilidad y rendimiento.

CICS permite desarrollar aplicaciones en lenguajes como COBOL y otros más, lo que facilita la integración de sistemas antiguos con nuevas tecnologías.

Además, ofrece herramientas para monitoreo, seguridad avanzada y recuperación ante fallos.

En el sector bancario, **CICS se utiliza como la columna vertebral de muchas operaciones críticas**. Su capacidad para manejar miles de transacciones por segundo lo convierte en una herramienta ideal para servicios como:

- **Procesamiento de transacciones financieras**: depósitos, retiros, transferencias y pagos se ejecutan en tiempo real con alta confiabilidad.
- **Gestión de cuentas**: permite acceder y actualizar información de cuentas bancarias de forma segura.
- Integración con cajeros automáticos (ATM) y banca en línea: CICS actúa como intermediario entre los sistemas front-end y las bases de datos centrales.
- Cumplimiento normativo y auditoría: registra cada transacción con precisión, lo que facilita el seguimiento y la trazabilidad.
- **Seguridad y control de acceso**: protege los datos sensibles mediante autenticación robusta y control de permisos.

Además de la banca, CICS se utiliza en una variedad de industrias que requieren procesamiento de transacciones de alto volumen y alta disponibilidad. Algunos ejemplos son:

- **Seguros**: para gestionar pólizas, procesar reclamaciones y calcular primas en tiempo real.
- **Gobierno**: en sistemas de recaudación de impuestos, seguridad social y registros civiles, donde se necesita integridad de datos y trazabilidad.
- Retail y comercio electrónico: para manejar inventarios, ventas, devoluciones y programas de fidelización de clientes.
- Salud: en la administración de historiales médicos, facturación y autorizaciones de tratamientos.
- Transporte y logística: para reservas, seguimiento de envíos y gestión de flotas.

CICS también se adapta a entornos modernos gracias a su compatibilidad con Apis, servicios web y lenguajes como Java y Node.js. Esto permite que empresas con sistemas heredados puedan integrarse con nuevas plataformas sin rehacer todo desde cero.

Vamos a ver cómo CICS se está modernizando con inteligencia artificial (IA) para seguir siendo relevante en los entornos empresariales actuales.

IBM ha desarrollado formas de **infundir lA directamente en las aplicaciones que corren sobre CICS**, lo que permite tomar decisiones en tiempo real dentro de las transacciones.

Por ejemplo:

- Evaluación de riesgos en préstamos: una transacción puede consultar un modelo de IA para decidir si aprobar o no un crédito en el momento exacto en que el cliente lo solicita.
- **Detección de fraude**: al procesar un reclamo de un seguro o una transacción bancaria, CICS puede invocar un modelo de IA que detecte patrones sospechosos sin salir del entorno mainframe.
- **Ofertas personalizadas**: mientras un cliente interactúa con un canal digital, CICS puede usar IA para recomendar productos financieros adaptados a su perfil.

CONFIGURACIÓN BÁSICA DE CICS

- LAS TABLAS PROPIAS

En CICS, las tablas propias son estructuras internas que definen cómo se comportan y se configuran los distintos componentes del sistema. Algunas de las más importantes incluyen:

- PCT (Program Control Table): define las transacciones disponibles y a qué programa están asociadas.
- PPT (Processing Program Table): describe los programas que pueden ejecutarse, sus nombres y características.
- FCT (File Control Table): especifica los archivos que CICS puede usar, como archivos VSAM.
- TCT (Terminal Control Table): configura los terminales o dispositivos conectados al sistema.
- DCT (Destination Control Table): se usa para definir destinos de impresión o colas de salida.
- TST (Temporary Storage Table) y TDQ (Transient Data Queue): gestionan almacenamiento temporal y colas de datos transitorios respectivamente.

¿CÓMO INGRESAR A ENTORNO CICS?

En pantalla de **Z/OS**: logon CICSTS61

```
UBA - wc3270
                                                             ×
File
        Options Keypad
06/22/25
                         WELCOME TO
                                                               14:14:58
                                     000000000
                                               SSSSSSS
                                    00
              77 77777777
                                  00
                                                     2.5
                                 00
                               00 00000000
                                      00
            YOUR TERMINAL NAME IS : TCP00970
                                      YOUR IP ADDRESS IS : 201.216.219.33
                     IBM Scholars zSeries Center
  .....z/OS 2.5 + +...z/OS 2.5 + +...z/OS 2.5 + +.z/OS 2.5 + +....
 ===> ENTER "L " FOLLOWED BY THE APPLID YOU WISH TO LOGON TO. EXAMPLE "L TSO" FOR TSO/E OR "CICS" FOR THE CICS
 cicsts61
                                               TELNET
                                                               024/011
```

PRESIONAR 'ENTER'

LIMPIAR PANTALLA CON 'CLEAR' (dentro de opción KEYPAD)

Recién en este espacio podrás ingresar la transacción que quieras arrancar.

¿ Cómo salir de CICS ?: CESF LOGOFF

PRESIONAR 'ENTER' y sale de la Section

COMANDOS DE CICS

CICS ofrece una amplia gama de **comandos propios** que permiten a los programas interactuar con recursos del sistema, gestionar transacciones y controlar el flujo de ejecución. Estos comandos se escriben generalmente con la sintaxis EXEC CICS ... END-EXEC y se utilizan en lenguajes como COBOL, PL/I o C.

Aquí te dejo una lista de algunos comandos clave:

- SEND / RECEIVE: para mostrar datos en pantalla o recibir entradas del usuario.
- READ / WRITE / DELETE: para interactuar con archivos (por ejemplo, VSAM).
- LINK / XCTL: para transferir el control entre programas.
- **RETURN**: finaliza una transacción y devuelve el control al sistema.
- ABEND: termina una tarea de forma anormal, útil para manejo de errores.
- ADDRESS / ASSIGN: acceden a áreas de memoria o información del entorno.
- **INQUIRE** / **SET**: permiten consultar o modificar atributos de recursos como archivos, programas o terminales.

•

Además, existen *transacciones administrativas (PROPIAS DE CICS)* como:

- **CECI**: (CICS **E**XECUTE **C**OMMAND **I**NTERPRETER) para probar comandos CICS directamente desde una terminal.
- **CEDA**: para definir recursos (programas, archivos, colas, etc.).
- **CEMT**: para gestionar recursos en tiempo de ejecución (por ejemplo, hacer un **newcopy** de un programa).

En general se deberá observar que, toda transacción que comienza con la letra 'C' está reservada para uso exclusivo de CICS.

¿QUÉ ES EL NEWCOPY EN CICS?

El comando **NEWCOPY en CICS** se utiliza para **recargar una versión actualizada de un programa** en memoria sin necesidad de reiniciar la región de CICS. Es especialmente útil cuando se ha recompilado un programa y se quiere que CICS utilice la nueva versión inmediatamente.

Cuando se ejecuta un CEMT SET PROGRAM(nombre) NEWCOPY, CICS:

- Marca el programa como "no residente" en su tabla interna.
- La próxima vez que se invoque ese programa, lo cargará desde la biblioteca de carga (*loadlib*), trayendo así la versión más reciente.
- Si el programa está en uso (por ejemplo, en una sesión activa), la nueva copia se usará solo cuando finalicen esas sesiones.

Vamos con un ejemplo paso a paso de cómo hacer un **NEWCOPY** en CICS para actualizar un programa sin reiniciar la región:

% Supuestos

- Se tiene un programa llamado **PGMALCAB** que fue recompilado y cargado en la *loadlib* correspondiente.
- A efectos que CICS use esta nueva versión inmediatamente; se deberá seguir el siguiente:

Paso a paso

1. Verificar que el programa está definido en CICS

mediante comando CEMT:		


```
UBA - wc3270
                                                                                                                    Options Keypad
 STATUS: RESULTS - OVERTYPE TO MODIFY
Prog(PGMALCAB) Leng(0000000000) Cob Pro Ena Pri
Resc(0000) Use(0000000000) Any Uex Ful Qua Cic
                                                                                            Ced
   RESPONSE: NORMAL
3 HOLD 3 END
                                      SYSID=S740 APPLID=CICSTS6
TIME: 14.16.15 DATE: 06/22/25
5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF
```

Se escribirá NEW al final de la línea.

O ingresando directamente mediante comando SET:

Luego de presionar 'ENTER' en ambos casos, indicará a CICS que la próxima vez que se invoque **PGMALCAB**, lo cargue desde la biblioteca de carga (*LOADLIB*).

SIEMPRE verificar que el NEWCOPY fue exitoso; o sea que el largo en bytes del programa en tabla PPT se ha modificado (parámetro **Leng**).

¿CÓMO EJECUTAMOS LA COMPILACIÓN?

En entorno TSO:

IMPORTANTE - PASO PREVIO: Alocar biblioteca KC03XXX.CURSOS.COPYLIB

con la misma estructura que KC02788.ALU9999.COPYLIB

a efectos que el COPY COBOL de cada MAPA compilado quede disponible en dicha biblioteca para que, posteriormente, lo pueda leer la compilación del programa que utilice dicho mapa.

1) Compilar el mapa asociado a la transacción:

a) KC02788.ALU9999.FUENTE(COMPMAPA) KC03XXX.CURSOS.FUENTE

copiarlo

а

2) Compilar el programa asociado a la transacción:

a) KC02788.ALU9999.FUENTE(COMPCICS) copiarlo a KC03XXX.CURSOS.FUENTE

En entorno CICSTS61:

Antes de disparar la transacción asociada a la funcionalidad que se quiere testear; **RECORDATORIO**: **NEW COPY** del MAPA y del PROGRAMA

Luego se tipea la transacción + 'ENTER' y comienza la navegabilidad y el testeo.