1. Let X have a Poisson distribution with mean λ . The prior probability distribution of λ is

$$P(\lambda = 2) = 0.30$$
, $P(\lambda = 3) = 0.50$, $P(\lambda = 5) = 0.20$.

Find the posterior distribution of λ , given that we observe x = 4.

Let $X_1, X_2, ..., X_n$ be a random sample from a gamma distribution with known α and $\theta = 1/\tau$. Say τ has a prior p.d.f. which is gamma with parameters α_0 and θ_0 so that the prior mean is $\alpha_0\theta_0$.

- (a) Find the posterior p.d.f. of τ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.
- (b) Find the mean of this posterior distribution and write it as a function of the sample mean \overline{X} and $\alpha_0\theta_0$.
- (c) Explain how you would find a 95% interval estimate of τ if n = 10, $\alpha = 3$, $\alpha_0 = 10$, and $\theta_0 = 2$.
 - 3.* Suppose that $S = \{1, 2\}$, $\Omega = \{1, 2, 3\}$, and the class of probability distribution for the response s is given by the following table.

	s = 1	s = 2
$f_1(s)$	1/2	1/2
$f_2(s)$	1/3	2/3
$f_3(s)$	3/4	1/4

If we use the prior $\pi(\theta)$ given by the table

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta)$	1/5	2/5	2/5

then determine the posterior distribution of θ for each possible sample of size ...

a) ...
$$n = 1$$
.

b) ...
$$n = 2$$
.

Answers:

1. Let X have a Poisson distribution with mean λ . The prior probability distribution of λ is

$$P(\lambda = 2) = 0.30$$
, $P(\lambda = 3) = 0.50$, $P(\lambda = 5) = 0.20$.

Find the posterior distribution of λ , given that we observe x = 4.

$$P(X=4 \mid \lambda=2) = \frac{2^4 e^{-2}}{4!} \approx 0.090.$$

$$P(X=4 \mid \lambda=3) = \frac{3^4 e^{-3}}{4!} \approx 0.168.$$

$$P(X=4 | \lambda=5) = \frac{5^4 e^{-5}}{4!} \approx 0.175.$$

$$P\left(\; X=4 \; \right) \; = \; 0.30 \times 0.090 \; + \; 0.50 \times 0.168 \; + \; 0.20 \times 0.175 \; = \; 0.146.$$

$$P(\lambda = 2 \mid X = 4) = \frac{0.30 \times 0.090}{0.146} \approx 0.185.$$

$$P(\lambda = 3 \mid X = 4) = \frac{0.50 \times 0.168}{0.146} \approx 0.575.$$

$$P(\lambda = 5 \mid X = 4) = \frac{0.20 \times 0.175}{0.146} \approx 0.240.$$

Let $X_1, X_2, ..., X_n$ be a random sample from a gamma distribution with known α and $\theta = 1/\tau$. Say τ has a prior p.d.f. which is gamma with parameters α_0 and θ_0 so that the prior mean is $\alpha_0\theta_0$.

- (a) Find the posterior p.d.f. of τ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.
- **(b)** Find the mean of this posterior distribution and write it as a function of the sample mean \overline{X} and $\alpha_0\theta_0$.
- (c) Explain how you would find a 95% interval estimate of τ if n = 10, $\alpha = 3$, $\alpha_0 = 10$, and $\theta_0 = 2$.

a)
$$f(x_1, x_2, \dots x_n | \tau) = f(x_1; \tau) f(x_2; \tau) \dots f(x_n; \tau)$$
$$= \prod_{i=1}^n \left(\frac{\tau^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha - 1} e^{-\tau x_i} \right)$$

$$f(x_1, x_2, \dots x_n, \lambda) = f(x_1, x_2, \dots x_n | \lambda) \times \pi(\lambda)$$

$$= \prod_{i=1}^n \left(\frac{\tau^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\tau x_i} \right) \times \frac{1}{\Gamma(\alpha_0) \theta_0^{\alpha_0}} \tau^{\alpha_0 - 1} e^{-\tau/\theta_0}$$

$$= \dots \tau^{\alpha_0 + \alpha_0 - 1} e^{-\tau \left(\sum_{i=1}^n x_i + \frac{1}{\theta_0}\right)}.$$

$$\Rightarrow$$
 the posterior distribution of τ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$,

is **Gamma** with New
$$\alpha = \alpha n + \alpha_0$$
 and New $\theta = \frac{1}{\sum_{i=1}^{n} x_i + \frac{1}{\theta_0}}$.

b) (conditional mean of
$$\lambda$$
, given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$)

= (New
$$\alpha$$
) × (New θ) =
$$\frac{\alpha n + \alpha_0}{\sum_{i=1}^{n} x_i + \frac{1}{\theta_0}}$$

$$= \frac{\alpha n}{\sum_{i=1}^{n} x_{i}} \cdot \frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i} + \frac{1}{\theta_{0}}} + \alpha_{0} \theta_{0} \cdot \frac{\frac{1}{\theta_{0}}}{\sum_{i=1}^{n} x_{i} + \frac{1}{\theta_{0}}}$$

$$= \frac{\alpha}{\overline{x}} \cdot \frac{n\overline{x}}{n\overline{x} + \frac{1}{\theta_0}} + \alpha_0 \theta_0 \cdot \frac{\frac{1}{\theta_0}}{n\overline{x} + \frac{1}{\theta_0}}$$

$$= \left(\text{MLE} \right) \cdot \frac{n \overline{x}}{n \overline{x} + \frac{1}{\theta_0}} + \left(\text{prior mean} \right) \cdot \frac{\frac{1}{\theta_0}}{n \overline{x} + \frac{1}{\theta_0}}.$$

c) If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then ${}^2T/_{\theta} = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$2\left(\sum_{i=1}^{n} x_i + \frac{1}{\theta_0}\right) \left(\tau \mid x_1, x_2, ..., x_n\right) \text{ has a } \chi^2(2\alpha n + 2\alpha_0) \text{ distribution.}$$

$$P\left(\chi_{1-\gamma/2}^{2}\left(2\alpha n+2\alpha_{0}\right)<2\left(\sum_{i=1}^{n}x_{i}+\frac{1}{\theta_{0}}\right)\left(\tau|x_{1},x_{2},...,x_{n}\right)<\chi_{\gamma/2}^{2}\left(2\alpha n+2\alpha_{0}\right)\right)$$

$$=1-\gamma.$$

$$P\left(\frac{\chi_{1-\gamma/2}^{2}\left(2\alpha n+2\alpha_{0}\right)}{2\left(\sum_{i=1}^{n}x_{i}+\frac{1}{\theta_{0}}\right)}<\left(\tau\left|x_{1},x_{2},...,x_{n}\right.\right)<\frac{\chi_{\gamma/2}^{2}\left(2\alpha n+2\alpha_{0}\right)}{2\left(\sum_{i=1}^{n}x_{i}+\frac{1}{\theta_{0}}\right)}\right)=1-\gamma.$$

$$\Rightarrow \left(\begin{array}{c} \frac{\chi_{1-\gamma/2}^{2}(2\alpha n + 2\alpha_{0})}{2\left(\sum_{i=1}^{n}x_{i} + \frac{1}{\theta_{0}}\right)}, & \frac{\chi_{\gamma/2}^{2}(2\alpha n + 2\alpha_{0})}{2\left(\sum_{i=1}^{n}x_{i} + \frac{1}{\theta_{0}}\right)} \end{array}\right)$$

is a $(1-\gamma)$ 100% interval estimate for τ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

$$n = 10$$
, $\alpha = 3$, $\alpha_0 = 10$, $\theta_0 = 2$.

 $2 \alpha n + 2 \alpha_0 = 80$ degrees of freedom.

$$\chi^{\,2}_{0.975}(\,\,80\,\,)\,\,=\,\,57.15,$$
 $\chi^{\,2}_{0.025}(\,\,80\,\,)\,\,=\,\,106.6.$

$$\Rightarrow \left(\begin{array}{c} \frac{57.15}{2\sum_{i=1}^{n} x_{i} + 1}, \frac{106.6}{2\sum_{i=1}^{n} x_{i} + 1} \end{array}\right)$$

is a 95% interval estimate for τ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

3.* Suppose that $S = \{1, 2\}$, $\Omega = \{1, 2, 3\}$, and the class of probability distribution for the response s is given by the following table.

	s = 1	s = 2
$f_1(s)$	1/2	1/2
$f_2(s)$	1/3	2/3
$f_3(s)$	3/4	1/4

If we use the prior $\pi(\theta)$ given by the table

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta)$	1/5	2/5	2/5

then determine the posterior distribution of θ for each possible sample of size ...

a) ... n = 1.

$$P(s=1) = \frac{1}{5} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{1}{3} + \frac{2}{5} \cdot \frac{3}{4} = \frac{3+4+9}{30} = \frac{16}{30}.$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta \mid s=1)$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{9}{16}$

$$P(s=2) = \frac{1}{5} \cdot \frac{1}{2} + \frac{2}{5} \cdot \frac{2}{3} + \frac{2}{5} \cdot \frac{1}{4} = \frac{3+8+3}{30} = \frac{14}{30}.$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta \mid s=2)$	3 14	$\frac{8}{14}$	$\frac{3}{14}$

b) ...
$$n = 2$$
.

$$P((1,1)) = \frac{1}{4} \times \frac{1}{5} + \frac{1}{9} \times \frac{2}{5} + \frac{9}{16} \times \frac{2}{5} = \frac{1}{20} + \frac{2}{45} + \frac{9}{40} = \frac{18}{360} + \frac{16}{360} + \frac{81}{360} = \frac{115}{360}$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (1,1))$	$\frac{18}{115}$	$\frac{16}{115}$	$\frac{81}{115}$

(1,2)

$$P((1,2)) = \frac{1}{4} \times \frac{1}{5} + \frac{2}{9} \times \frac{2}{5} + \frac{3}{16} \times \frac{2}{5} = \frac{1}{20} + \frac{4}{45} + \frac{3}{40} = \frac{18}{360} + \frac{32}{360} + \frac{27}{360} = \frac{77}{360}$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (1,2))$	$\frac{18}{77}$	$\frac{32}{77}$	27 77

(2,1)

$$P((2,1)) = \frac{1}{4} \times \frac{1}{5} + \frac{2}{9} \times \frac{2}{5} + \frac{3}{16} \times \frac{2}{5} = \frac{1}{20} + \frac{4}{45} + \frac{3}{40} = \frac{18}{360} + \frac{32}{360} + \frac{27}{360} = \frac{77}{360}$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (2,1))$	$\frac{18}{77}$	$\frac{32}{77}$	27 77

(same as the one for (1, 2))

(2,2)

$$P((2,2)) = \frac{1}{4} \times \frac{1}{5} + \frac{4}{9} \times \frac{2}{5} + \frac{1}{16} \times \frac{2}{5} = \frac{1}{20} + \frac{8}{45} + \frac{1}{40} = \frac{18}{360} + \frac{64}{360} + \frac{9}{360} = \frac{91}{360}$$

	$\theta = 1$	$\theta = 2$	$\theta = 3$
$\pi(\theta (2,2))$	$\frac{18}{91}$	$\frac{64}{91}$	9 91