Лекция №2 Раздел 1. Модели стохастических факторов

1. Статистический характер имитационного эксперимента

Сущность метода *статистического моделирования* (метода компьютерной реализации имитационной модели) сводится к построению моделирующего алгоритма, имитирующего поведение реальной системы S во времени.

В результате статистического моделировании системы S получается серия частных значений результатов моделирования, статистическая обработка которых позволяет получить информацию о реальной системе в произвольный момент времени. Если количество реализаций системы достаточно велико, результаты моделирования приобретают статистическую устойчивость, и с достаточной точностью могут быть приняты в качестве оценок параметров функционирования системы S.

Алгоритм статистического моделирования представляется следующей схемой (Рисунок 1)

Рисунок 1 – Схема алгоритма статистического моделирования

N – количество реализаций имитационной модели,

k – порядковый номер реализации.

Блок 2 — это описание модели системы в формализованном виде на одном из универсальных языков программирования или специализированных языков моделирования. Если блок 2 отсутствует, данная схема определяет алгоритм численного метода Монте-Карло, называемого методом *статистических испытаний*. Таким образом, метод имитационного моделирования является развитием метода Монте-Карло для исследования сложных динамических систем.

2. Определение и алгоритмы получения псевдослучайных чисел

Случайные числа Определение случайных чисел: являются реализацией последовательности взаимно независимых и одинаково распределенных случайных величин с произвольным законом распределения F. Если случайные числа имеют дискретное равномерное распределение на множестве чисел 0,1, ..., 9, говорят о равномерно распределенных случайных цифрах. Группировка по *s* смежным случайным цифрам дает *s*-значные случайные числа, являющиеся реализациями случайной величины, которая может принимать соответствующие целочисленные значения с одинаковыми вероятностями 0.1^{S} . Если каждую группировку из s цифр разделить на 10^{S} получится реализация случайной величины, принимающей ѕ-разрядные значения в диапазоне [0 .. 1-10^{-S}] с равными вероятностями 0.1^S. Образованные таким образом случайные числа имеют распределение, близкое к непрерывному равномерному на интервале [0, 1).

Например, группировка из двух цифр дает числа в диапазоне [00..99]. Если эти числа разделить на $10^2 = 100$, получатся значения в диапазоне [0 .. 0.99] с вероятностью 0.01.

Реализации случайных чисел программным путем получают с помощью генераторов псевдослучайных последовательностей (ГПП). Алгоритмы функционирования ГПП основаны на рекуррентных соотношениях вида:

$$X_{n+1}=F(X_n, X_{n-1}, X_{n-2},..., X_{n-k}, \alpha), n=k, k+1, k+2,...; k\geq 1, где$$
 (1)

n — порядковый номер члена последовательности случайных чисел,

 α — вектор параметров алгоритма,

F — детерминированная функция.

Наиболее широко используется ГПП со связью на один шаг:

$$\mathbf{X}_{n+1} = \mathbf{F}(\mathbf{X}_n \,\boldsymbol{\alpha}),\tag{2}$$

Среди алгоритмов, реализующих ГПП, чаще всего используется линейный конгруэнтный генератор Лемера:

$$x_{n+1} = (\sum_{i=0}^{j} a_i x_{n-i} + C) (mod M),$$
 где (3)

 x_0 – начальное значение, $x_0 \ge 0$;

 a_i – множители, целые неотрицательные числа, $a_i >= 0$;

C – приращение, $c \ge 0$;

M – модуль, M > 0;

$$0 \le x_0 < M$$
, $0 \le a_i < M$, $0 \le c < M$.

Генератор выдает целые неотрицательные числа в диапазоне [0, M-1].

Чтобы перейти к случайным числам в диапазоне [0, 1), необходимо выполнить следующее преобразование:

$$r_{n+1} = x_{n+1}/M$$
 (4)

Два целых числа A и B конгруэнтны (сравнимы) по модулю M (где M — целое число) тогда и только тогда, когда существует такое целое число k, что A-B = kM, т.е. если (A-B) делится на M и если числа A и B дают одинаковые остатки при делении на абсолютную величину числа M. Это записывается A = B ($mod\ M$) и читается A конгруэнтно B по модулю M. Например, $100 \equiv 10 \pmod{10}$.

При различном сочетании параметров алгоритма Лемера получается аддитивный, мультипликативный или смешанный генератор.

Подставляя в (3) c=0, $a_1=...=a_j=0$ и полагая $a_0>0$, получим мультипликативный конгруэнтный генератор Лемера

$$\mathbf{x}_{n+1} = \mathbf{a}_0 \; \mathbf{x}_n \; (mod \; M) \tag{5}$$

Подставляя в (3) $a_0 > 0$, c > 0, $a_I = ... = a_j = 0$, получим смешанный конгруэнтный генератор Лемера

$$x_{n+1} = (a_0 x_n + c) \pmod{M}$$
 (6)

Подставляя в (3) $a_0=a_1=1$, c=0, $a_2=...=a_j=0$, получим аддитивный конгруэнтный генератор Лемера

$$\mathbf{x}_{n+1} = (\mathbf{x}_n + \mathbf{x}_{n-1}) \ (mod \ M) \tag{7}$$

3. Свойства случайных чисел, вырабатываемых ГПП

3.1 Повторяемость

Повторяемость обусловлена конечностью разрядной сетки Пусть последовательность $\{x_n\}$, n=0, 1, 2, ..., образованная на основе рекуррентного соотношения (2) состоит из конечного числа различных чисел. Она периодична в следующем смысле: существуют такие натуральные числа N и k, что для всех $n \ge N$ имеет

место соотношение $x_n = x_{n+jk}$, j=1,2,... Число k называют периодом последовательности.

Для линейных генераторов выбирают большое значение k. У последовательностей чисел, вырабатываемых этими генераторами, используют участки чисел с длиной, не превышающей их периода.

3.2 Вырождение

При определенных значениях параметров a_0 , c, M последовательность $\{x_n\}$ вырождается, т. е. получаемые числа никак не похожи на случайные:

c=0,
$$a_0$$
=0, x_0 =3 \Rightarrow 3, 0, 0, 0, ...; a_0 =1, x_0 =3, M =10 \Rightarrow 3, 3, 3 ...

Возможность вырождения последовательности приводит к тому, что параметры $\{a_0, c, M\}$ должны выбираться определенным образом, т. к. от них зависит качество псевдослучайной последовательности.

Рассмотрим влияние a_0 и x_0 на вырождение последовательности псевдослучайных чисел. Для этого надо проанализировать последовательность, получаемую, например, по формуле конгруэнтного мультипликативного генератора:

$$x_n = a_0 x_{n-1} \pmod{M}$$

и сравнить ее с чисто случайной последовательностью $\{x^n\}$ независимых реализаций целочисленной случайной величины X: $\{x^n \in [0, M]\}$. Комбинации всех возможных пар (x^n, x^{n-1}) соседних членов последовательности $\{x^n\}$ изобразим точками в плоскости (x^{n-1}, x^n) (Рисунок 2).

Рисунок 2 — Комбинации пар независимых реализаций случайно величины X

Определяя мощность последовательности $\{x^n\}$ как количество возможных комбинаций (x^{n-l}, x^n) , получаем $(M+1)^2$, т.к. у чисто случайной последовательности последующий член никак не определяется предыдущим числом.

Для схемы Лемера значения $x_n=M$ и $x_n=0$ приводят к вырождению (все последующие члены последовательности – нули), т.е. исключаются точки, расположенные на сторонах квадрата. Кроме того, к вырожденным последовательностям приводят и точки, лежащие на диагонали (0,0)-(M,M) квадрата, получаемые при $a_0=1$. Они определяют последовательности $\{x_n\}$, состоящие из одинаковых значений. $a_0=M$ -1 также приводит к вырождению последовательности $\{x_n\}$. При любом выборе x_0 она состоит из двух повторяющихся чисел, лежащих на диагонали (0,M)-(M,0).

Алгоритм Лемера (как и любой другой алгоритм ГПП) определяет функциональную зависимость между x_n и x_{n-1} , в соответствии с которой каждому значению x_{n-1} соответствует только одно значение x_n . Таким образом, мощность ГПП, основанного на мультипликативной схеме Лемера, не превышает (M-1).

3.3 Требования, предъявляемые к свойствам случайных чисел

Число x_n , получаемое с помощью ГПП, рассматривается как случайное.

Проверка, производит ли генератор случайные числа с требуемым распределением вероятностей, может быть сведена к проверке гипотезы: можно ли последовательность чисел $x_0, x_1, \ldots, x_{N-1}$ рассматривать в качестве случайной выборки объема N из определенной генеральной совокупности, т.е. является ли эта последовательность последовательностью независимых случайных величин с одинаковым законом распределения вероятностей.

Существуют 3 группы критериев, предъявляемых к свойствам случайных чисел:

- критерий согласия между эмпирическим и теоретическим распределением;
- критерий стохастической независимости чисел, следующих друг за другом;
- критерий случайности.

Последовательность $\{x_n\}$ может считаться хорошей, если ее период повторения близок к мощности, а внутри периода значения достаточно «перемешаны».

3.4 Тесты, используемые для проверки свойств случайных чисел

1 Частотный тест

Для сравнения близости распределения полученного набора чисел к равномерному распределению чаще всего используется критерий χ^2 Пирсона. По полученному значению χ^2 при заданном уровне значимости α и пороге y_0 необходимо определить, принять ли гипотезу критерия о принадлежности случайной величины равномерному распределению. Если $\chi^2 > y_0$, гипотеза отвергается, если $\chi^2 < y_0$, гипотеза принимается.

2 Сериальный тест

Серией называется любой отрезок последовательности случайных величин, состоящий из одинаковых элементов. Тест фиксирует частоты появления всех возможных комбинаций чисел 2,3,4... и проводит оценку полученных данных по критерию γ^2 .

3 Интервальный тест

Проводит подсчет знаков, появляющихся между повторами каких-либо цифр, и сравнивает результаты с ожидаемыми по критерию χ^2 .

4 Циклический тест

Проверяет количество циклов ниже и выше некоторой константы (обычно величины математического ожидания). В этом тесте подсчитывается истинное число циклов разной длины, которое сравнивается с ожидаемым по критерию χ^2 .

5 Автокорреляционный тест

Измеряет корреляцию между x_n и x_{n+k} , где κ – смещение по генерируемой последовательности, k=1,2,3...

4. Рекомендации по выбору параметров ГПП

Выбирать a_0 , x_0 , c, M следует так, чтобы обеспечить максимальный период и минимальную корреляцию между генерируемыми числами.

В качестве M обычно выбирается максимальное целое число, которое можно записать в разрядную сетку — $M=2^{b}$, где b — число бит в машинном слове. Максимальный период, который получается при правильном выборе a_0 и x_0 тогда равен:

 $K = 2^{b-2} = M/4$ для двоичной системы с b > 2.

Рекомендуется, чтобы a_0, x_0, M были взаимно простыми числами, c=0.

 a_0 =8T±3, где T – любое положительное число;

 x_0 – любое положительное нечетное число.

Значение a_0 не должно быть связано никакой функциональной зависимостью с M. Множитель должен быть числом, содержащим пять или больше цифр без длинных цепочек нулей и единиц. a_0 не должно принимать значения 0, 1, M-1, M, т.к. эти значения приводят к вырождению.

Если b=32, рекомендуются значения $a_0=5^{13}=1220703125$, $x_0=16807$.

5. Моделирование случайных величин с заданными законами распределения вероятностей

Для формирования значений случайной величины (CB) X с произвольным законом распределения вероятностей используются реализации случайной величины $R \sim [0, 1)$. Существуют две группы методов преобразования случайной величины R:

- 1. Прямые методы, которые состоят в выполнении некоторой операции над случайной величиной R, формирующей случайную величину X, имеющую точно или приближенно заданный закон распределения вероятностей.
- 2. Приближенные методы, которые основываются на моделировании условий соответствующей предельной теоремы теории вероятностей, или на аппроксимации функции распределения.

5.1 Прямые методы

5.1.1 Метод обратной функции

Метод обратной функции реализует преобразование случайной величины R с помощью некоторой функции $X = \varphi(R)$.

Идея преобразования вытекает из следующей теоремы. Если случайная величина X имеет плотность распределения f(x), то случайная величина R с реализациями

 $r_i = \int\limits_0^{x_i} f(x) dx$ равномерно распределена на интервале [0,1), т.е. всякую непрерывную случайную величину можно преобразовать в случайную величину, равномерно распределенную на интервале [0,1).

Справедливо и обратное. Если F(x) — функция распределения непрерывной случайной величины X, а R — случайная величина с равномерным распределением на интервале [0,1), то случайная величина $X=F^{-1}(R)$ имеет функцию распределения F(x), где F^{-1} — функция, обратная по отношению к F. Рисунок 3 иллюстрирует нахождение функции распределения F(x) случайной величины X.

$$P(X < x) = P(F^{-1}(R) < x) = P[F(F^{-1}(R)) < F(x)] = P(R < F(x)) =$$

$$= \int_0^{F(x)} f(r) dr = F(x). \tag{8}$$

Таким образом, последовательность r_1 , r_2 , r_3 , ..., принадлежащая R[0,1), преобразуется в последовательность x_1 , x_2 , x_3 , ..., имеющую заданную функцию распределения F(x).

Рисунок 3 — Функция распределения F(x) случайной величины X

Значение x_i случайной величины X является решением уравнения

$$F(x_i) = r_i \tag{9}$$

Соответственно,

$$\chi_i = F^{-1}(r_i) \tag{10}$$

Алгоритм получения случайной величины с заданной функцией распределения $F(\mathbf{x})$:

- получить реализацию $r_i \in R \sim [0, 1)$;
- вычислить значение реализации x_i по формуле (10).

5.1.1.1 Моделирование случайной величины с экспоненциальным законом распределения вероятностей

На Рисунке 4 представлены плотность и функция распределения случайной величины с экспоненциальным законом распределения вероятностей.

Рисунок 4 — Плотность и функция распределения случайной величины с экспоненциальным законом распределения вероятностей

Формулы (11) и (12) задают плотность и функцию распределения случайной величины с экспоненциальным законом распределения, λ – параметр распределения.

$$f(x) = \lambda e^{-\lambda x}, \lambda > 0, x \ge 0 \tag{11}$$

$$F(x) = \int_{0}^{x_i} f(x)dx = \int_{0}^{x_i} \lambda e^{-\lambda x} dx = 1 - e^{-\lambda x_i}$$
(12)

Решая уравнение (10), находим обратную по отношению к F функцию:

$$F(x) = 1 - e^{-\lambda x_i} = r_i$$

$$x_i = -\frac{1}{\lambda} \ln(1 - r_i).$$
(13)

Т.к. случайная величина (1-R) имеет такое же распределение, как и случайная величина R, от (13) переходим к (14).

$$x_i = -\frac{1}{\lambda} \ln r_i \tag{14}$$

5.1.1.2 Моделирование случайной величины с равномерным законом распределения вероятностей

На Рисунке 5 представлены плотность и функция распределения случайной величины с равномерным законом распределения вероятностей.

Рисунок 5 — Плотность и функция распределения случайной величины с равномерным законом распределения вероятностей

Плотность распределения вероятностей для равномерного закона

$$f(x) = \frac{1}{b-a},\tag{15}$$

a и b — параметры распределения.

Функция распределения вероятностей для равномерного закона

$$F(x) = \frac{x_i - a}{b - a} \tag{16}$$

Решая уравнение (10), находим обратную функцию:

$$F(x) = \frac{x_i - a}{b - a} = r_i$$

$$x_i = a + r_i(b - a) \tag{17}$$

5.1.2 Методы, основанные на преобразовании равномерно распределенной случайной величины

5.1.2.1 Моделирование случайной величины с дискретным распределением, с ограниченным спектром значений

Случайная величина $x = {x_0, x_1, ... x_n \brace p_0, p_1, ... p_n}$ имеет дискретное распределение

$$F(x) = P(X = x_k), \qquad \sum_{i=0}^{n} p_i = 1$$
 (18)

Преобразование равномерно распределенной СВ к дискретной производится с помощью функции (19).

$$x_n = \min_{k} \left(x_k : r_n \le \sum_{i=0}^k p_i \right)$$
 (19)

Это преобразование выполняется с использованием интегральной функции распределения вероятностей (Рисунок 6).

Рисунок 6 – Интегральная функция распределения вероятностей

Функция моделирования дискретной случайной величины с ограниченным спектром значений получается путем инверсии функции распределения вероятностей (Рисунок 7).

Рисунок 7 – Инверсная функция распределения вероятностей

Моделирование случайной величины сводится к розыгрышу значений, которые случайная величина может принимать. Розыгрыш заключается в том, что каждому значению ставится в соответствие событие, вероятность наступления которого совпадает с вероятностью данного значения случайной величины.

Область определения случайной величины R делится на подинтервалы Δ_k , такие что длина интервала Δ_k равна p_k . Тогда вероятность попадания реализация r_i случайной величины R в интервал Δ_k , равна p_k , т.е. $p\{r_i \in \Delta_k\} = p_k$. Алгоритм моделирования дискретной случайной величины основан на формальной идентичности событий:

$$X = x_k \text{ if } r \in \Delta_k \tag{20}$$

$$\begin{split} &if \; (r_i \leq p_0) \; X = x_0 \\ &else \; if \; (\; r_i \leq p_0 + p_1) \; X = x_1 \\ &else \; if \; (\; r_i \leq p_0 + p_1 + p_2 \;) \; X = x_2 \end{split}$$

$$else \ if \ r_i \leq \sum_{i=0}^k p_i \ X = x_k$$

•••

$$else\ X = x_n$$

5.1.2.2 Моделирование случайной величины с дискретным законом распределения вероятностей с неограниченным спектром значений (случайной величины, распределенной по закону Пуассона)

Случайная величина

$$X = \begin{pmatrix} 0 & 1 & 2 & \dots & k & \dots \\ p_0 & p_1 & p_2 & \dots & p_k & \dots \end{pmatrix}$$

распределена по закону Пуассона, если вероятность того, что она примет определенное значение k, определяется формулой

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} k = 0,1,...$$
 (21)

 $\lambda \ge 0$ — параметр закона Пуассона.

На Рисунке 8 представлена плотность распределения случайной величины, распределенной по закону Пуассона.

Рисунок 8 — плотность распределения случайной величины, распределенной по закону Пуассона

Рассмотрим два алгоритма моделирования случайной величины, распределенной по закону Пуассона (алгоритм моделирования 2 рассматривается в п. 5.2.1.3).

Алгоритм моделирования 1

1) получить реализацию r случайной величины, равномерно распределенной на [0,1),

3) Если неравенство (22) выполнятся, то X = k.