

(12) United States Patent

Salvati et al.

US 6,953,679 B2 (10) Patent No.: (45) Date of Patent: Oct. 11, 2005

(54)	METHOI	FOR THE PREPARATION OF		4.476.184 A	10/1004	Lubowitz et al.
(34)		IETEROCYCLIC SUCCINIMIDE		4,507,303 A		Ishizumi et al.
				4,533,737 A	8/1985	
	COMPOU	UNDS AND ANALOGS THEREOF		4,536,559 A		Lubowitz et al.
	_			4.543.355 A		Ishizumi et al.
(75)	Inventors:	Mark E. Salvati, Lawrenceville, NJ		4.562.255 A		Freed et al.
		(US); Toomas Mitt, Plainsboro, NJ		4.584.364 A		Lubowitz et al.
		(US); Ramesh N. Patel, Bridgewater,		4,598,072 A		Schweikert et al.
		NJ (US); Ronald L. Hanson, Morris		4,656,235 A		Tesoro et al.
		Plains, NJ (US); David Brzozowski,		4,659,695 A	4/1987	Labrie
		Piscataway, NJ (US); Animesh		4,666,885 A	5/1987	Labrie
		Goswami, Plainsboro, NJ (US); Linda		4,673,748 A	6/1987	Rock et al.
		Nga Hoong Chu, East Brunswick, NJ		4,739,075 A	4/1988	Odagiri et al.
		(US); Wen-sen Li, Holmdel, NJ (US);		4,753,957 A	6/1988	
		James H. Simpson, Hillsborough, NJ		4,760,053 A	7/1988	
		(US); Michael J. Totleben, North		4,775,660 A		Labrie et al.
		Brunswick, NJ (US); Weixuan He,		4,775,661 A	10/1988	
				4,851,495 A		Sheppard et al.
		Dayton, NJ (US)		4,873,256 A		Coussediere et al.
(774)		D 1 / 1 M C D 1 C		4,892,578 A		Chang et al.
(73)	Assignee:	Bristol-Myers Squibb Company,		4,944,791 A		Schroder et al.
		Princeton, NJ (US)		4,980,481 A		Lubowitz et al.
				5,084,472 A		Moguilewsky et al.
(*)	Notice:	Subject to any disclaimer, the term of this		5,093,500 A	3/1992	
		patent is extended or adjusted under 35		5,098,888 A		Vincent et al.
		U.S.C. 154(b) by 183 days.		5,104,967 A		Sheppard et al.
				5,112,939 A		Lubowitz et al. Benicewicz et al.
(21)	Appl. No.	: 10/024,878		5,114,612 A 5,116,935 A		Lubowitz et al.
	. appir i .o.	·		5,151,487 A		Lubowitz et al.
(22)	Filed:	Dec. 19, 2001		5,155,206 A		Lubowitz et al.
		D. D.W. 1 D.		5,210,213 A		Sheppard et al.
(65)		Prior Publication Data		5,239,046 A		Lubowitz et al.
	TIS 2005/01	119228 A1 Jun. 2, 2005		5,367,083 A		Sheppard et al.
	03 2000)01	119220 AT 348. 2, 2000		5,403,666 A		Lubowitz et al.
	Rol	lated U.S. Application Data		5,434,176 A		Claussner et al.
	Itt	ated Cast Application Data		2,121,270 11	1,1,7,7,0	Catalonier et un
(63)	Continuation-in-part of application No. 09/885,381, filed on Jun. 20, 2001.			(Continued)		
(60)				FOREIG	GN PATE	NT DOCUMENTS
			AU	A-169	93-83	1/1984
	Sept 17, 20001			105	S0877	4/1991

(58) Field of Search 435/121, 183, References Cited

(51) Int. Cl.7 C12P 17/10; C12N 1/00

U.S. PATENT DOCUMENTS

435/243, 253.5, 254.1, 886

	0.5.	ITTILITI	DOCUMENT
3,261,845	Α	7/1966	Bockstahler
3,343,940	A	9/1967	Popoff et al.
3,428,538	A	2/1969	Scheiner
3,821,232	A	6/1974	Redmore
3,906,102	Α	9/1975	Tottori et al.
3,923,490	A	12/1975	Redmore
3,925,554	A	12/1975	Tottori et al.
3.965,264	A	6/1976	Redmore
3,997,293	A	12/1976	Redmore
3,998,833	A	12/1976	Redmore
4,089,650	A	5/1978	Redmore
4,092,413	A	5/1978	Arth et al.
4,097,578	Α	6/1978	Perronnet
4,191,775	A	3/1980	Glen
4,234,736	A	11/1980	Bernauer et al.
4,239,776	A	12/1980	Glen et al.
4,397,857		8/1983	Vincent et al.
4,472,382	Α	9/1984	Labrie et al.
4,473,393	A	9/1984	Nagpal
			-

(56)

CN 1050877 4/1991 DE 3227055 A1 7/1982

(Continued)

OTHER PUBLICATIONS

Furr, Eur. Urol., vol. 29 (Suppl. 2), 83-95 (1996). Negro-Vilar, Journal of Clinical Endocrinology & Metabolism, vol. 84, No. 10, 3459-3462 (1999).

Reid et al., Investigational New Drugs, vol. 17, 271-284 (1999).

(Continued)

Primary Examiner-Fiona T. Powers (74) Attorney, Agent, or Firm-Jacqueline M. Cohen; Suzanne Babajko; Deanna Baxam

ABSTRACT

Fused cyclic compounds, methods of using such compounds in the treatment of nuclear hormone receptor-associated conditions such as cancer and immune disorders, and pharmaceutical compositions containing such compounds.

4 Claims, No Drawings

U.S.	PATENT	DOCUMENTS
5,446,120 A	8/1995	Lubowitz et al.
5,455,115 A	10/1995	Lubowitz et al.
5,463,076 A	10/1995	Sheppard et al.
5,482,921 A	1/1996	Seckinger et al.
5,512,676 A	4/1996	Sheppard et al.
5,516,876 A	5/1996	Lubowitz et al.
5,530,089 A	6/1996	Sheppard et al.
5,550,107 A	8/1996	Labrie
5,556,983 A	9/1996	Claussner et al.
5,573,854 A	11/1996	Sheppard et al.
5,587,105 A	12/1996	Sheppard et al.
5,589,497 A	12/1996	Claussner et al.
5,594,089 A	1/1997	Lubowtiz et al.
5,595,985 A	1/1997	Labrie
5,610,317 A	3/1997	Lubowtiz et al.
5,627,201 A	5/1997	Gaillard-Kelly et al.
5,643,855 A	7/1997	Kilama
5,645,925 A	7/1997	Sheppard et al.
5,693,741 A	12/1997	Sheppard et al.
5,714,566 A	2/1998	Lubowtiz et al.
5,750,553 A	5/1998	Claussner et al.
5,780,583 A	7/1998	Lubowitz et al.
5,817,649 A	10/1998	Labrie
5,817,744 A	10/1998	Sheppard et al.
RE35,956 E	11/1998	Gaillard-Kelly et al.
5,929,146 A	7/1999	Amos et al.
6,017,924 A	1/2000	Edwards et al.
6,020,327 A	2/2000	Messenger
6,071,957 A	2/2000	Miller et al.
6,124,460 A	9/2000	Tomiyama et al.
6,162,444 A	12/2000	Dubois
6,200,573 B1	3/2001	Locke
6,242,611 B1	6/2001	Claussner et al.
2001/0012839 A1	8/2001	Miller et al.
2001/0020002 A1	9/2001	Lederman et al.

FOREIGN PATENT DOCUMENTS

DE	2365677	11/1995
EP	0001813 A1	10/1978
EP	0051020 A1	5/1982
EP	0082402 B1	6/1982
EP	0091596 A2	3/1983
EP	0253503 B1	6/1987
EP	0277476 A2	1/1988
EP	0436426 A1	12/1990
EP	0494819 A1	1/1992
EP	0406119 B1	1/1994
EP	0678507	10/1995
EP	1008457 A1	6/2000
FR	2075751	1/1971
FR	2329276	11/1975
GB	1039020	8/1966
GB	21330696 B	10/1986
GB	2290296	12/1995
JP	51088631	8/1976
JP	53-86035	7/1978
JP	64-6258	1/1989
JP	1-125381	5/1989
JP	7-144477	6/1995
wo	WO95/18794	7/1995
wo	WO96/19458	6/1996
wo	WO97/49709	12/1997
wo	WO98/16830	4/1998
wo	WO98/29495	7/1998
wo	WO98/32439	7/1998
wo	WO98/39303	9/1998
WO	WO98/49555	11/1998
WO	WO99/27365	6/1999
wo	WO02/00653	1/2000

wo	WO00/06525	2/2000
wo	WO00/37430	6/2000
wo	WO01/16108	3/2001
wo	WO01/16133	3/2001
wo	WO01/19831	3/2001
wo	WO01/30781	5/2001
wo	WO02/00617	1/2002
wo	WO01/16139	3/2002
WO	WO02/24702	3/2002

OTHER PUBLICATIONS

Avolos et al., Tetra. Ltrs., vol. 39, 9301–9304 (1998). Rui et al., ACTA Pharmaceutica Sinica, vol. 10, 783–786 (1981).

Tsuchiya et al., Tetra., vol. 29, No. 18, 2747–2751 (1973). Krow et al, Tetrahedron, vol. 30, p. 2977–2981 (1974). Kucharczyk et al., J. Med. Chem., vol. 36, p. 1645–1661

(1993). Ben-Ishai et al., Tetrahedron, vol. 27, p. 3119-3127 (1971). Vincent et al., Tetrahedron Letters, vol. 33, No. 48, p.

7369–7372 (1992). Goldstein et al., Tetrahedron Letters, vol. 31, p. 2631–2634

Evnin et al., J. Org. Chc., vol. 35, No. 9, p. 3097–3106 (1970).

Kobayashi et al., Bull. Chem. Soc. Jpn., vol. 67, No. 11, p. 3082–3087 (1994).

Kobayashi et al., Bull. Chem. Soc. Jpn., vol. 65, p. 61–65

(1992).

Pons et al., Eur. J. Org. Chem., p. 853–859 (1998).

Pons et al., Pept. Proc. Am. Pept. Symp., 15th p. 176–177 (1999). Reyniers et al., Bull. Soc. Chim. Belg. vol. 94(6), pp.

413–419 (1985). Anteunis et al., Tetrahedron Lett., vol. 22(32), p. 3101–3104

(1981). Mauger et al., J. Chem. Soc., Perkin Trans. 1, vol. 17, p. 2146–2148 (1972).

Mauger, J. Chem. Soc. d, vol. 1, p. 39–40 (1971). Lee et al., Tetrahedron Lett., vol. 37(34), p. 6053–6056 (1996).

Verbruggen et al., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., vol. C49(6), p. 1113–1116 (1993). Shalati et al., Journal of Polymer Science: Polm. Chem. Ed.,

Shalati et al., Journal of Polymer Science: Polm. Chem. Ed., vol. 22(1), p. 107–120 (1984).

Van Poucke et al., Bull. Soc. Chim. Belg., vol. 91(3), p.

213-218 (1982). Schrooten et al., Bull. Soc. Chim. Belg., vol. 89(8), p.

615–628 (1980). Hausler et al., Chem. Ber. vol. 107(9), p. 2804–2815 (1974). Vicar et al., Collect. Czech. Chem. Commun. vol. 38(7), p.

1940–1956 (1973). Vicar et al., Collect. Czech. Chem. Commun. vol. 37(12), p.

Voca et al., Conect. Czech. Chem. Commun. vol. 37(12), p. 4060–4071 (1972). Kovtunenko et al., Ukr. Khim. Zh. (Russ. Ed), vol. 58(11),

p. 1035–1040 (1992). Kovtunenko et al., Ukr. Khim. Zh. (Russ. Ed), vol. 58(7), p. 588–592 (1992).

588–592 (1992). Kreher et al., Chem. Ber., vol. 125(1), p. 183–189 (1992). Kovtunenko et al., Ukr. Khim. Zh. (Russ. Ed), vol. 57(1), p. 71–77 (1991).

Kovtunenko et al., Khim. Geterotsikl. Soedin., vol. (2), p. 190–202 (1990).

Kreher et al., Chem. Ber., vol. 123(2), p. 381–390 (1990). Kreher et al., Chem.–Zig., vol. 112(11), p. 335–342 (1988). Kovtunenko et al., Ukr. Khim. Zh. (Russ. ed.), vol. 55(1), p. 64–69 (1989). Kovtunenko et al., Ukr. Khim. Zh. (Russ. ed.), vol. 54(11),

p. 1186-1190 (1988).

Kovtunenko et al., Ukr. Khim. Zh., vol. 54(2), p. 186-190 CA 54:1480g. CA 65:15326c. Kreher et al., Chem.-Ztg., vol. 111(12), p. 349-356 (1987). Warrener et al., Tetrahedron Lett., vol. 36(42), p. 7753-7756 Kreher et al., Chem. Ber., vol. 121(5), p. 927-934 (1988). Kreher et al., Chem.-Ztg., vol. 110(10), p. 363-367 (1986). Qimin et al., J. Pharm. Biomed. Anal., vol. 7(12), p. Kovtunenko et al., Khim. Geterotsikl. Soedin., vol. 20(9), p. 1635-1639 (1989). 1200-1205 (1984). Maruyama et al., J. Org. Chem., vol. 46(1), p. 27-34 (1981). Kreher et al., Angew. Chem., vol. 96(7), p. 507-508 (1984). Zawadowski et al., Rocz. Chem., vol. 51(3), p. 557-560 Kovtunenko et al., Ukr. Khim. Zh., vol. 49(12), p. 1287-1293 (1983). Liu et al., Eur. J. Canada, vol. 31A, (6), p. 953-963 (1995). Kreher et al., Angew. Chem., vol. 94(8), p. 634-635 (1982). Lin, Journal of Natural Toxins, vol. 4 (2), p. 147–153 (1995). Munoz et al., Biotechnol. Bioeng., vol. 71(1), p. 78-84 Walter et al., Biochemica et Biophysica Acta, 1155, p. 207-0226 (1993). Chen et al., Tetrahedron Lett., vol. 40(18), p. 3491-3494 Walter, J. Pharm. Sci., vol. 78 (1), p. 66-67 (1989). Srivastav et al., Natl. Acad. Sci. Lett., vol. 19(1&2), p. Yin et al., Chem. Chinese Chemical Society, No. 1, p. 27–30 (1994).16-18 (1996). Bockstahler et al., J. Med. Chem., vol. 11 (3), p. 603-606 Tosunyan et al., Khim. Geterotsikl. Soedin., vol. (11), p. 1465-1471 (1992). Kirby et al., J. Chem. Res., Synop., vol. (9), p. 273 (1985). Dominianni et al., J. Med. Chem., vol. 14 (2), p. 175 (1971). Krow et al., J. Heterocycl. Chem., vol. 22(1), p. 131-135 Zhou et al., Acta Pharm. Sinica, vol. 18 (10), p. 725-729 (1983)Krow et al., J. Org. Chem., vol. 47(11), p. 1989-1993 Wang, J. Ethnopharm., vol. 26, p. 147-162 (1989). (1982).Honkanen, FEBS Letters, vol. 330 (3), p. 283-286 (1993). Knaus et al., J. Heterocycl. Chem., vol. 13(3), p. 481-486 Waller, Toxicol. Appl. Pharmacol., vol. 137 (2), p. 219-227 (1976).(1996)Lyle et al., J. Org. Chem., vol. 39(25), p. 3708-3711 (1974). Search Report "A" (Scifinder Jun. 23, 2000). Lin et al., Journal of the Chinese Chemical Society, vol. 48, Search Report "B" (Scifinder Jun. 5, 2001). Search Report "C" (Scifinder, Jun. 20, 2001). p. 49-53 (2001). Kirby et al., J. Chem. Res. Miniprint, vol. 9, p. 3089-3097 Search Report "D" (Scifinder, Jun. 20, 2001). (1985).Search Report "E" (Scifinder, Jun. 20, 2001). Search Report "F" (Scifinder, Aug. 16, 2000). Xu, Trends in Pharmacological Science, vol. 2 (10), p. 271-272 (1981). Search Report "G" (Scifinder, Aug. 22, 2000). Li et al., J. Pharm. Biomed. Anal. vol. 7(12), p. 1635-1639 Search Report "H" (Scifinder, Sep. 12, 2000). Search Report "I" Search Report "J' Cheng et al., Huaxue Shiji, vol. 15(1), p. 1-4 (1993). Search Report "K" (Scifinder, Sep. 11, 2000). Search Report "L" (Scifinder, Sep. 11, 2000). Liu et al., Yaoxue Xuebao, vol. 18(10), p. 752-759 (1983). Bockstahler et al., J. Med. Chem., vol. 11(3), p. 603-606 Search Report "M" (Scifinder, Sep. 11, 2000). Search Report "N" (Seifinder, Sep. 11, 2000). Srivastava et al., Natl. Acad. Sci. Lett., vol. 15(2), p. 41-44 Search Report "O" (Scifinder, Sep. 11, 2000). (1992).Search Report "P" (Scifinder, Sep. 11, 2000). Joshi et al., Indian J. Chem., Sect. B, vol. 22B(2), p. Search Report "Q" (Scifinder, Sep. 11, 2000). 131-135 (1983). Search Report "R" (Scifinder, Sep. 11, 2000). Fisera et al., Chem. Pap., vol. 49(4), p. 186-191 (1995). Search Report "S" (Scifinder, Sep. 11, 2000). Search Report "T" (Scifinder, Sep. 11, 2000). Fang et al., Huaxue Tongbao, vol. (1), p. 27-30 (1994). Wijnberg et al., Tetrahedron, vol. 38, p. 209-217 (1982). Search Report "U" (Scifinder, Sep. 11, 2000). Grogan et al., J. Med. Chem., vol. 6, p. 802-805 (1963). Search Report "V" (Scifinder, Sep. 11, 2000). Gringauz et al., J. Med. Chem., vol. 11, p. 611-612 (1968). Search Report "W" Chem. Abstr., vol. 65, p. 15325h (1966). Search Report "X". Dominianni, J. Med. Chem., vol. 14, No. 2, p. 175 (1971). Search Report "Y" (Scifinder, Sep. 11, 2000). Chem. Abstr., vol. 57, p. 16561f (1962). Search Report "Z" Jolivet, Ann. Chim., vol. 5, p. 1165-1217 (1960). Search Report "AA" Maruyama et al., J. Org. Chem., vol. 46, p. 27-34 (1981). Search Report "BB" (Scifinder, Sep. 11, 2000). Chem. Abstr., vol. 68, p. 39458j (1964). Tanaka et al., Tetrahedron, Elsevier Science Publishers, Kwart, J. Amer. Chem. Soc., vol. 74 p. 3094–3097 (1952). Amsterdam. NL, vol. 54 (34), p. 10029-10042 (1998) Berson et al., J. Amer. Chem. Soc., vol. 76, p. 4060-4067 Rosen et al., J. Med. Chem., vol. 31 (8), p 1598-1611 (1954).Yur'ev et al., J. Gen. Chem. (Engl. Transl.), vol. 30, p.

2085–2086 (1956).
Line tal., Bioorganic Chemistry, vol. 28, p. 266–272 (2000).
Mel'nikow, Zh. Obshch. Khim., vol. 26, p. 227–232 (1956).
Mel'nikow, Zh. Obshch. Khim., vol. 29, p. 968,970 (1956).
Unison, J. Biol. Chem., vol. 270 (31), p. 18175–18178.

869-872 (1960).

Jolivet, C.R. Hebd. Seances Acad. Sci., vol. 243, p.

Remuzon et al., Journal of Medicinal Chemistry, American

Chemical Society, vol. 35, (15), p. 2989-2909, 1992.

METHOD FOR THE PREPARATION OF FUSED HETEROCYCLIC SUCCINIMIDE COMPOUNDS AND ANALOGS THEREOF

This application is a continuation-in-part of U.S. application Ser. No. 09/885,381, filed Jun. 20, 2001, now pending which claims the benefit of U.S. Provisional Application Nos. 60/233,519, filed Sep. 19, 2000, and 60/284,730, filed Apr. 18, 2001. The entire disclosure of each of these applications is incorporated herein by reference in its 10 entirety.

FIELD OF THE INVENTION

The present invention relates to fused cyclic compounds, to methods of using such compounds in the treatment of nuclear hormone receptor-associated conditions such as cancer, and to pharmaceutical compositions containing such compounds.

BACKGROUND OF THE INVENTION

Nuclear hormone receptors (NHR's) constitute a large super-family of ligand-dependent and sequence-specific transcription factors. Members of this family influence transcription either directly, through specific binding to the 25 promoter target genes (Evans, in Science 240: 889-895 (1988)), or indirectly, via protein-protein interactions with other transcription factors (Jonat et al., Cell 62: 1189-1204 (1990), Schuele et al., Cell 62: 1217-1226 (1990), and Yang-Yen et al., Cell 62: 1205-1215 (1990)). The nuclear 30 pared to testosterone). hormone receptor super-family (also known in the art as the "steroid/thyroid hormone receptor super-family") includes receptors for a variety of hydrophobic ligands, including cortisol, aldosterone, estrogen, progesterone, testosterone, vitamine D3, thyroid hormone and retinoic acid (Evans, 35 1988, supra). In addition to these conventional nuclear hormone receptors, the super-family contains a number of proteins that have no known ligands, termed orphan nuclear hormone receptors (Mangelsdorf et al., Cell 83: 835-839 Enmark et al., Mol. Endocrinol. 10, 1293-1307 (1996) and Giguere, Endocrin. Rev. 20, 689-725 (1999)). The conventional nuclear hormone receptors are generally transactivators in the presence of ligand, and can either be active repressors or transcriptionally inert in the absence of ligand. 45 Some of the orphan receptors behave as if they are transcriptionally inert in the absence of ligand. Others, however, behave as either constitutive activators or repressors. These orphan nuclear hormone receptors are either under the or do not need to bind ligand to exert these activities.

In common with other transcription factors, the nuclear hormone receptors have a modular structure, being comprised of three distinct domains: an N-terminal domain of variable size containing a transcriptional activation function 55 AF-1, a highly conserved DNA binding domain and a moderately conserved ligand-binding domain. The ligandbinding domain is not only responsible for binding the specific ligand but also contains a transcriptional activation al., Nature Struc. Biol. 3, 87-94 (1996), Parker et al., Nature Struc. Biol. 3, 113-115 (1996) and Kumar et al., Steroids 64, 310-319 (1999)). Although the overall protein sequence of these receptors can vary significantly, all share both a common structural arrangement indicative of divergence 65 from an ancestral archetype, and substantial homology (especially, sequence identity) at the ligand-binding domain.

The steroid binding nuclear hormone receptors (SB-NHR's) comprise a sub-family of nuclear hormone receptors. These receptors are related in that they share a stronger sequence homology to one another, particularly in the ligand binding domain (LBD), than to the other members of the NHR super-family (Evans, 1988, supra) and they all utilize steroid based ligands. Some examples of this sub-family of NHR's are the androgen receptor (AR), the estrogen receptor (ER), the progesterone receptor (PR), the gluebeorticoid receptor (GR), the mineralocorticoid receptor (MR), the aldosterone receptor (ALDR) and the steroid and xenobiotic receptor (SXR) (Evans et al., WO 99/35246). Based on the strong sequence homology in the LBD, several orphan receptors may also be members of the SB-NHR sub-family.

Consistent with the high sequence homology found in the LBD for each of the SB-NHR's, the natural ligands for each is derived from a common steroid core. Examples of some of the steroid based ligands utilized by members of the SB-NHR's include cortisol, aldosterone, estrogen, 20 progesterone, testosterone and dihydrotestosterone. Specificity of a particular steroid based ligand for one SB-NHR versus another is obtained by differential substitution about the steroid core. High affinity binding to a particular SB-NHR, coupled with high level specificity for that particular SB-NHR, can be achieved with only minor structural changes about the steroid core (e.g., Waller et al., Toxicol. Appl. Pharmacol. 137, 219-227 (1996) and Mekenyan et al., Environ, Sci. Technol. 31, 3702-3711 (1997), binding affinity for progesterone towards the androgen receptor as com-

Numerous synthetically derived steroidal and nonsteroidal agonists and antagonists have been described for the members of the SB-NHR family. Many of these agonist and antagonist ligands are used clinically in man to treat a variety of medical conditions. RU486 is an example of a synthetic agonist of the PR, which is utilized as a birth control agent (Vegeto et al., Cell 69: 703-713 (1992)), and Flutamide is an example of an antagonist of the AR, which is utilized for the treatment of prostate cancer (Neri et al, (1995), O'Malley et al., Mol. Endocrinol. 10: 1293 (1996), 40 Endo. 91, 427-437 (1972)). Tamoxifen is an example of a tissues specific modulator of the ER function, that is used in the treatment of breast cancer (Smigel, J. Natl. Cancer Inst. 90, 647-648 (1998)). Tamoxifen can function as an antagonist of the ER in breast tissue while acting as an agonist of the ER in bone (Grese et al., Proc. Natl. Acad. Sci. USA 94. 14105-14110 (1997)). Because of the tissue selective effects seen for Tamoxifen, this agent and agents like it are referred to as "partial-agonist" or partial-antagonist". In addition to synthetically derived non-endogenous ligands, noncontrol of ubiquitous ligands that have not been identified, 50 endogenous ligands for NHR's can be obtained from food sources (Regal et al., Proc. Soc. Exp. Biol. Med. 223, 372-378 (2000) and Hempstock et al., J. Med. Food 2, 267-269 (1999)). The flavanoid phytoestrogens are an example of an unnatural ligand for SB-NHR's that are readily obtained from a food source such as soy (Quella et al., J. Clin. Oncol. 18, 1068-1074 (2000) and Banz et al., J. Med. Food 2, 271-273 (1999)). The ability to modulate the transcriptional activity of individual NHR by the addition of a small molecule ligand, makes them ideal targets for the function called AF-2 and a dimerisation domain (Wurtz et 60 development of pharmaceutical agents for a variety of disease states.

> As mentioned above, non-natural ligands can be synthetically engineered to serve as modulators of the function of NHR's. In the case of SB-NHR's, engineering of an unnatural ligand can include the identification of a core structure which mimics the natural steroid core system. This can be achieved by random screening against several SB-NHR's or

through directed approaches using the available crystal structures of a variety of NHR ligand binding domains (Bourguet et al., Nature 375, 377-382 (1995), Brzozowski, et al., Nature 389, 753-758 (1997), Shiau et al., Cell 95, 927-937 (1998) and Tanenbaum et al., Proc. Natl. Acad. Sci. 5 USA 95, 5998-6003 (1998)). Differential substitution about such a steroid mimic core can provide agents with selectivity for one receptor versus another. In addition, such modifications can be employed to obtain agents with agonist or antagonist activity for a particular SB-NHR. Differential 10 substitution about the steroid mimic core can result in the formation of a series of high affinity agonists and antagonists with specificity for, for example, ER versus PR versus AR versus GR versus MR. Such an approach of differential substitution has been reported, for example, for quinoline 15 based modulators of steroid NHR in J. Med. Chem., 41, 623 (1999); WO 9749709; U.S. Pat. No. 5,696,133; U.S. Pat. No. 5,696,130; U.S. Pat. No. 5,696,127; U.S. Pat. No. 5,693,647; U.S. Pat. No. 5,693,646; U.S. Pat. No. 5,688,810; U.S. Pat. No. 5,688,808 and WO 9619458, all incorporated herein by 20

The compounds of the present invention comprise a core which serves as a steroid mimic, and are useful as modulators of the function of steroid binding nuclear hormone receptors, as well as other NHR as described following.

SUMMARY OF THE INVENTION

The present invention provides fused cyclic compounds of the following formula I and salts thereof, which compounds are especially useful as modulators of nuclear hor- 30 mone receptor function:

As used in formula I, and throughout the specification, the symbols have the following meanings unless otherwise indicated, and are, for each occurrence, independently selected:

G is an aryl or heterocyclo (e.g., heteroaryl) group, where said group is mono- or polycyclic, and which is optionally substituted at one or more positions, preferably with hydrogen, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, halo, cycloalkyl or 50 substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, aryl or substituted aryl, heterocyclo or substituted heterocyclo; arylalkyl or substituted arylalkyl, heterocycloalkyl or substituted heterocycloalkyl, CN, R1OC=O, R1C=O, R1C=S, R1HNC=O, 55 R3 and R3 are each independently H, alkyl or substituted R¹R²NC=O, HOCR³R³, nitro, R¹OCH₂, R¹O, NH₂, NR^4R^5 , SR^1 , $S=OR^1$, SO_2R^1 , SO_2OR^2 , $SO_2NR^1R^2$, $(R^1O)(R^1O)P=O$, $ORCOMBO (R^1)(R^1)P=O$, or $ORCOMBO (R^1)P=O$, or ORCP=0;

Z, is O, S, NH, or NR6

Z2 is O. S. NH. or NR6

A₁ is CR⁷ or N;

A₂ is CR⁷ or N;

Y is J-J'-J' where J is (CR⁷R⁷)n and n=0-3, J' is a bond or O, S, S=O, SO2, NH, NR7, C=O, OC=O, NR1C=O, 65 CR^7R^7 , $C=CR^8R^8$, $R^2P=O$, $R^2P=S$, $R^2OP=O$, R2NHP=O, OP=OOR2, OP=ONHR2, OP=OR2,

OSO2, C=NR7, NHNH, NHNR6, NR6NH, N=N, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo or aryl or substituted aryl, and J" is (CR7R7)n and n=0-3, where Y is not a bond (i.e., if J' is a bond, then in at least one of J or J" (each defined as (CR7R7)n), n is not zero):

W is $C\widetilde{R}^7R^7$ — CR^7R^7 , CR^8 = CR^8 , CR^7R^7 —C=O, NR^9 — CR7R7, N=CR8, N=N, NR9-NR9, S-CR4R SO-CR7R7, SO-CR7R7, evcloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, hetcrocyclo or substituted heterocyclo, or aryl or substituted aryl, wherein when W is not NR9-CR7R7, N=CR8, N=N, NR9-NR9, S-CR7R7, SO-CR7R7, SO-CR7R7, or heterocyclo or substituted heterocyclo, then J must be O, S, S=O, SO2, NH, NR7, OC=O, NR1C=O, OP=OOR2, OP=ONHR2, OSO2, NHNH, NHNR6, NR6NH, or N=N.

Q1, is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocycloalkyl or substituted heteroeveloalkyl, arvlalkyl or substituted arylalkyl, alkynyl or substituted alkynyl, aryl or substituted aryl, heterocyclo (e.g., heteroaryl) or substituted heterocyclo (e.g., substituted heteroaryl), halo, CN, $R^{1}OC=O$, $R^{4}C=O$, $R^{5}R^{6}NC=O$, $HOCR^{7}R^{7}$, nitro, R1OCH, R1O, NH, C=OSR1, SO, R1 or NR4R5;

Q2 is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, cycloalkyl or substituted cycloalkyl, cycloalkenvl or substituted eveloalkenvl, heteroeveloalkyl or substituted heterocycloalkyl, arylalkyl or substituted arvlalkyl, alkynyl or substituted alkynyl, arvl or substituted aryl, heterocyclo (e.g., heteroaryl) or substituted heterocyclo (e.g., substituted heteroaryl), halo, CN, $R^{1}OC=O$, $R^{4}C=O$, $R^{5}R^{6}NC=O$, $HOCR^{7}R^{7}$, nitro, R⁴OCH₂, R⁴O, NH₂, C=OSR¹, SO₂R¹ or NR⁴R⁵; L is a bond, (CR⁷R⁷)n, NH, NR⁵, NH(CR⁷R⁷)n, or NR⁵

(CR7R7)n, where n=0-3;

R1 and R1 are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkyalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl;

R2 is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo. cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl;

alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, halo, CN, hydroxylamine, hydroxamide, alkoxy or substituted alkoxy, amino, NR1R2, thiol, alkylthio or substituted alkylthio;

R4 is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenvlalkyl or substituted cycloalkenvlalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substi- 5 tuted aryl, arylalkyl or substituted arylalkyl, R1C=O, $R^1NHC=0$, SO_2OR^1 , or $SO_2NR^1R^1$

R5 is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted 10 cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenvlalkyl or substituted cycloalkenvlalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, R1C=O, 15 R¹NHC=O, SO₂R¹, SO₂OR¹, or SO₂NR¹R¹

R6 is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, 20 cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, CN, OH, OR1. R1C=O, R1NHC=O, SO2R1, SO2OR1, or 25 SO₂NR¹R¹;

R7 and R7 are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or 30 substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, halo, CN, OR1, nitro, 35 hydroxylamine, hydroxylamide, amino, NHR4, NR2R5. NOR1, thiol, alkylthio or substituted alkylthio, R1C=O, $R^{1}(C=0)O$, $R^{1}OC=O$, $R^{1}NHC=O$, $SO_{2}R^{1}$, SOR^{1} , $PO_3R^1R^1$, R^1R^1 NC=O, C=OSR¹, SO_2OR^1 , or SO₂NR¹R¹, or, wherein A₂ or A₃ contains a group R⁷ and 40 W contains a group R7, said R7 groups of A1 or A2 and W together form a heterocyclic ring;

R8 and R8 are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, 45 cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkyalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or 50 substituted arylalkyl, nitro, halo, CN, OR1, amino, NHR4, NR2R5, NOR1, alkylthio or substituted alkylthio, C=OSR¹, R¹OC=O, R¹C=O, R¹NHC=O, $R^1R^1NC=0$, SO_2OR^1 , $S=OR^1$, SO_2R^1 , $PO_3R^1R^1$, or SO-NR1R1: and

Ro and Ro are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted 60 cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arvlalkyl, CN, OH, OR1, R1C=O, R1OC=O, $R^1NHC=0$, SO_2R^1 , SO_2OR^1 , or $SO_2NR^1R^1$

Compounds within formula I are novel, a preferred subgenus of which is the following formula Ia:

(Ia)

where G, L, Z1, Z2, A1, A2, Q1 and Q2 are as defined above; Y' is J-J'-J" where J is (CR7R7)n and n=0-3, J' is a bond or O, S, S=O, SO₂, NH, NR⁷, CR⁷R⁷, R²P=O, R²P=S, $R^2OP=O$, $R^2NHP=O$, $OP=OOR^2$, $OP=ONHR^2$ OSO2, NHNH, NHNR6, NR6NH, N=N, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, or heterocyclo or substituted heterocyclo. and J" is (CR7R7)n and n=0-3, where Y is not a bond; and

W is CR^7R^7 — CR^7R^7 , CR^7R^7 —C=0, NR^9 — CR^7R^7 , N=CR8, N=N, NR9-NR9, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, or aryl or substituted arvl, wherein, when W" is not NR9-CR7R7, N=CR8 N=N, NR9-NR9, or heterocyclo or substituted heterocyclo, then J' must be O, S, S=O, SO2, NH, NR7, OP=OOR2, OP=ONHR2, OSO2, NHNH, NHNR6, NR6NH, or N=N; or alternatively,

Y is NR⁷—CR⁷R⁷ and W is CR⁸=CR⁸; or, alternatively. Y' is CR7R7"—C=O and W' is NR9—CR7R7;

where R2, R6, R7, R7, R8, R9 and R9 are as defined above and with the provisos that

(1) when Y' is -O-, Q1 and Q2 are hydrogen, Z1 and Z2 are O, W is -CH2-CH2-, and A1 and A2 are CH, then G-L is not phenyl, monosubstituted phenyl or phenyl which is substituted with two or more of the following groups: methoxy, halo, NO2, methyl, CH3-S-, OH, CO.H, trifluoromethyl, -C(O)-C.H. NH2, 4-7-epoxy, hexahydro-1H-isoindole-1,3(2H) dione, or -C(O)-CH3;

(2) when Y is -O-, Q1 and Q2 are hydrogen, Z1 and Z2 are O, W' is CH2-CH2, and one of A, and A2 is CH and the other is CR7, then G-L is not unsubstituted

(3) when Y' is -O-, O, and O₂ are hydrogen, Z₁ and Z₂ are O, W' is CH2-CH2, and one of A, and A, is CH and the other is C-CH3, then G-L is not phenyl substituted with chloro and/or methyl;

(4) when Y' is —O— or —S—, Q, and Q₂ are hydrogen, Z1 and Z2 are O, W is CH2-CH2, and one of A1 and A, is CH and the other is CH or C-alkyl, then G-L is not N-substituted piperazine-alkyl- or N-substituted imidazolidine-alkyl-:

(5) when Y' is —O—; Q₁ and Q₂ are hydrogen, Z₁ and Z₂ are O, W is CH2-CH2, and A1 and A2 are CH, then G-L is not oxazole or triazole;

(6) when Y' is —O—; Q, and Q, are hydrogen or methyl, Z1 and Z2 are O, W is CH2-CH2, and A1 and A2 are CH or C-CH2, then G-L is not thiazole or substituted thiazole (in addition such compounds where G-L is optionally substituted thiadiazole or partially saturated thiazole are optionally removed by proviso where A₁ and A₂ are both CH);

(7) when Y' contains a group J' selected from S, S=0, SO_{2} , NH, NR⁷, R²P=O, R²P=S, R²OP=O, R2NHP=0, OP=OOR2, OP=ONHR2, OSO2, NHNH, NHR6, NR6NH or N=N, W is CR7R7CR7R7, and Z1 and Z2 are O, then G-L is not unsubstituted phenyl;

- (8) when Y' is NR7, W' is unsubstituted or substituted phenyl, and Q1 and Q2 are hydrogen, then Z1, and Z2 5
- (9) when Y' is -O-, Q1 and Q2 are hydrogen, Z1, and Z, are O, W is dihydroisoxazole bearing an optionally substituted phenyl group, and A1 and A2 are CH, then G-L is not unsubstituted phenyl or dichlorophenyl;
- (10) when Y' is O, Q1 and Q2 are hydrogen, Z1 and Z2 are O, W is ethylene oxide, and A1 and A2 are CH, then G-L is not methylphenyl or chlorophenyl;
- (11) when Y' is NR7-CR7R7', W' is CR8-CR8' Q, and Q2 are hydrogen, A1 and A2 are CH, C-CH3, C-CH2-C6H5 or C-CH2-CH3, and Z1 and Z2 are O, then G-L is not unsubstituted phenyl, monosubstituted phenyl or methylpyridinyl;
- (12) when Y' is CR⁷R⁷—C=O, W' is NR⁹—CR⁷R⁷, Q, and O2 are hydrogen, A1 and A2 are CH, and Z1 and Z2 are O, then G-L is not unsubstituted phenyl;
- phenyl, methoxy or ethoxy and R7 is unsubstituted phenyl, methyl or -C(O)-C,Hs, W is dimethoxyphenylene or unsubstituted phenylene, Z1 and Z2 are O, Q1 and Q2 are hydrogen, and A1 and A2 are CH, 30 Y' is CR7R7-C=O and W' is NR9-CR7R7; C-CN, $C-C(O)-C_6H_5$, or -C(O)dimethoxyphenyl, then G-L is not unsubstituted phe-
- (14) the compound of formula Ia is not 6,10-epithio-4Hthieno-[3',4':5,6]cyclooct[1,2-f]isoindole-7,9(5H,8H)dione, 8-(3,5-dichlorophenyl)-6,6a,9a, 10,11,12,hexahydro-1,3,6,10-tetramethyl-2,2,13-trioxide, (6R, 6aR.9aS.10S);
- (15) when Y' is O, W' is -CH2-CH2-, Q1 and Q2 are methyl, Z1 and Z2 are O, and A1 and A2 are CH, then G-L is not unsubstituted phenyl, phenyl substituted with methoxy, phenyl-alkyl-, or morpholine-alkyl, nor which is alkylene to form a bis compound;
- (16) when Y' is -O-, Q, and Q, are hydrogen, Z, and Z, are O, W is CR7R7 -CR7R7; and A, and A, are
- (17) when Y' is -O-, Q1 and Q2 are hydrogen, Z1 and Z2 are O, W is cyclopentyl, cyclohexyl, 3-phenyl-2isoxazoline or CR7R7-CR7R7 where R7 and R7 are each independently defined as Cl, Br, H and 4-butyrolactone and R7 and R7 are not all simultaneously H, and A1 and A2 are CH, then G-L is not an unsubstituted naphthyl ring or a monosubstituted phenyl ring, where said substituent is methoxy, Br, Cl, 60 NO2, methyl, ethyl, CH2-phenyl, S-phenyl, or O-phenyl.

Preferably, compounds of formula I are monomeric, and are not comprised within other oligomers or polymers. Another preferred novel subgenus is that of the following

formula lb:

$$Z_{1} = \begin{bmatrix} X_{1} & X_{2} & X_{3} \\ X_{2} & X_{2} & X_{3} \\ X_{1} & X_{2} & X_{3} \end{bmatrix}$$
(lb)

where G, Z1, Z2, Q1 and Q2 are as defined above;

Y' is J-J'-J" where J is (CR7R7)n and n=0-3, J' is a bond or O, S, S=O, SO2, NH, NR7, CR7R7, R2P=O, R2P=S, $R^2OP=O$, $R^2NHP=O$, $OP=OOR^2$, $OP=ONHR^2$ OSO2, NHNH, NHNR6, NR6NH, N=N, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, or heterocyclo or substituted heterocyclo. and J" is (CR7R7")n and n=0-3, where Y is not a bond;

20 W is CR⁷R⁷—CR⁷R⁷, CR⁷R⁷—C=0, NR⁹—CR⁷R⁷, N=CR⁸, N=N, NR⁹—NR⁹, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, or aryl or substituted aryl, wherein,

 $(13) \ when \ Y' \ is \ CHR^7 - NR^7 \ where \ R^7 \ is \ unsubstituted \ \ ^{25} \ \ when \ W' \ is \ not \ NR^9 - CR^7R^7, \ N - CR^8, \ N - N, \ NR^9 - NR^9$ or heterocyclo or substituted heterocyclo, then J' must be O, S, S=O, SO2, NH, NR7, OP=OOR2, OP=ONHR2, OSO2, NHNH, NHNR6, NR6NH, or N=N; or alternatively,

L is a bond; and

A, and A, are as defined above, especially where A, and/or A2 are alkyl or optionally substituted alkyl (preferred such optional substituents being one or more groups V1 defined below), with the proviso that, when Y'=O and W'=-CH2-CH2-, then at least one of A1 or A2 is not CH; with the further provisos (2), (3), (6), (7) and (8) above.

The compounds of formula I and salts thereof comprise a core which can serve as a steroid mimic (and do not require 40 the presence of a steroid-type (e.g., cyclopentanoperhydrophenanthrene analog) structure).

FURTHER DESCRIPTION OF THE INVENTION

The following are definitions of terms used in the present is the compound bridged to itself through a group L 45 specification. The initial definition provided for a group or term herein applies to that group or term throughout the present specification individually or as part of another group, unless otherwise indicated.

The terms "alkyl" and "alk" refers to a straight or CH, then G-L is not an unsubstituted phenyl group; 50 branched chain alkane (hydrocarbon) radical containing from 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms. Exemplary such groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, and the like. "Substituted alkyl" refers to an alkyl group substituted with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents include but are not limited to one or more of the following groups: halo (e.g., a single halo substituent or multiple halo substitutents forming, in the latter case, groups such as a perfluoroalkyl group or an alkyl group bearing Cl₃ or CF₃), alkoxy, alkylthio, hydroxy, carboxy (i.e., -COOH), alkoxycarbonyl, alkylcarbonyloxy, amino 65 (i.e., -NH2), carbamoyl or substituted carbomoyl, carbamate or substituted carbamate, urea or substituted urea, amidinyl or substituted amidinyl, thiol (i.e., -SH), aryl,

heterocycle, cycloalkyl, heterocycloalkyl, -S-aryl, -S-heterocycle, -S=O-aryl, -S=O-heterocycle, arylalkyl-O-, -S(O)2-aryl, -S(O)2-heterocycle, -NHS (O),-aryl, -NHS(O),-heterocycle, -NHS(O),NH-aryl, -NHS(O)2NH-heterocycle, -P(O)2-aryl, -P(O)2-5 heterocycle, -NHP(O)2-aryl, -NHP(O)2-heterocycle, -NHP(O)2NH-aryl, -NHP(O)2NH-heterocycle, -O-aryl, -O-heterocycle, -NH-aryl, -NH-heterocycle, -NHC=0-aryl, -NHC=0-alkyl, -NHC=0heterocycle, -OC=O-aryl, -OC=O-heterocycle, 10 -NHC=ONH-aryl, -NHC=ONH-heterocycle, -OC=OO-aryl, -OC=OO-heterocycle, -OC=ONHaryl, -OC=ONH-heterocycle, -NHC | OO-aryl, -NHC=00-heterocycle, -NHC=00-alkyl, -C=ONH-aryl, -C=ONH-heterocycle, -C=OO-aryl, 15 -C=OO-heterocycle, -N(alkyl)S(O),-aryl, -N(alkyl)S (O),-heterocycle, -N(alkyl)S(O),NH-aryl, -N(alkyl)S (O), NH-heterocycle, -N(alkyl)P(O)2-aryl, -N(alkyl)P (O),-heterocycle, -N(alkyl)P(O),-NH-aryl, -N(alkyl)P (O), NH-heterocycle, -N(alkyl)-aryl, -N(alkyl)heterocycle, -N(alkyl)C=O-aryl, -N(alkyl)C=Oheterocycle, -N(alkyl)C=ONH-aryl, -N(alkyl) C=ONH-heterocycle, -OC=ON(alkyl)-aryl, -OC=ON (alkvl)-heterocycle, -N(alkvl)C=OO-arvl, -N(alkvl) C=OO-heterocycle, -C=ON(alkyl)-aryl, -C=ON (alkyl)-heterocycle, -NHS(O)2N(alkyl)-aryl, -NHS(O) N(alkyl)-heterocycle, -NHP(O) N(alkyl)-aryl, NHP(O) 2N(alkyl)-heterocycle, -NHC=ON(alkyl)-arvl. -NHC-ON(alkyl)-heterocycle, -N(alkyl)S(O),N (alkyl)-aryl, -N(alkyl)S(O)2N(alkyl)-heterocycle, 30 -N(alkyl)P(O)2N(alkyl)-aryl, -N(alkyl)P(O)2 N(alkyl)heterocycle, -N(alkyl)C=ON(alkyl)-aryl, and -N(alkyl) C=ON(alkyl)-heterocycle. In the aforementioned exemplary substitutents, in each instance, groups such as "alkyl", "aryl" and "heterocycle" can themselves be optionally substituted; for example, "alkyl" in the group "NCH=OOalkyl" recited above can be optionally substituted so that both "NHC=OO-alkyl" and "NHC=OO-substituted alkyl" are exemplary substitutents. Exemplary alkyl substituents defined below), especially for substituted alkyl groups within A. or A.

The term "alkenyl" refers to a straight or branched chain hydrocarbon radical containing from 2 to 12 carbon atoms and at least one carbon-carbon double bond. Exemplary 45 such groups include ethenyl or allyl. "Substituted alkenyl" refers to an alkenyl group substituted with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents include, but are groups recited above as exemplary alkyl substituents.

The term "alkynyl" refers to a straight or branched chain hydrocarbon radical containing from 2 to 12 carbon atoms and at least one carbon to carbon triple bond. Exemplary such groups include ethynyl. "Substituted alkynyl" refers to 55 an alkynyl group substituted with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents include, but are not limited to, alkyl or substituted alkyl, as well as those groups recited above as exemplary alkyl substituents.

The term "cycloalkyl" refers to a fully saturated cyclic hydrocarbon group containing from 1 to 4 rings and 3 to 8 carbons per ring. Exemplary such groups include evelopropyl, evelobutyl, evelopentyl, evelohexyl, etc. "Substituted cycloalkyl" refers to a cycloalkyl group substituted 65 with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents

include, but are not limited to, nitro, cyano, alkyl or substituted alkyl, as well as those groups recited above as exemplary alkyl substituents, and as previously mentioned as preferred aryl substituents in the definition for G. Exemplary substituents also include spiro-attached or fused cyclic substituents, especially cycloalkenyl or substituted cycloalk-

The term "cycloalkenyl" refers to a partially unsaturated cyclic hydrocarbon group containing 1 to 4 rings and 3 to 8 carbons per ring. Exemplary such groups include evelobutenyl, evelopentenyl, evelohexenyl, etc. "Substituted cycloalkenyl" refers to a cycloalkenyl group substituted with one more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents include but are not limited to nitro, cyano, alkyl or substituted alkyl, as well as those groups recited above as exemplary alkyl substituents, and as previously mentioned as preferred aryl substituents in the definition for G. Exemplary substituents also include spiro-attached or fused cyclic substituents, especially cycloalkyl or substituted cycloalkyl.

The terms "alkoxy" or "alkylthio" refer to an alkyl group as described above bonded through an oxygen linkage (-O-) or a sulfur linkage (-S-), respectively. The terms "substituted alkoxy" or "substituted alkylthio" refer to a substituted alkyl group as described above bonded through an oxygen or sulfur linkage, respectively.

The term "alkoxycarbonyl" refers to an alkoxy group bonded through a carbonyl group.

The term "alkylcarbonyl" refers to an alkyl group bonded through a carbonyl group. The term "alkylcarbonyloxy" refers to an alkylcarbonyl group bonded through an oxygen linkage.

The terms "arvlalkyl", "substituted arvlalkyl," "cycloalkylalkyl," "substituted cycloalkylalkyl," "cycloalkenylalkyl", "substituted cycloalkenylalkyl", "heterocycloalkyl" and "substituted heterocycloalkyl" refer to aryl, cycloalkyl, cycloalkenyl and heterocyclo groups bonded through an alkyl group, substituted on the arvl, also include groups such as "T" and "T-R12" (which are 40 cycloalkyl, cycloalkenyl or heterocyclo and/or the alkyl group where indicated as "substituted."

The term "aryl" refers to cyclic, aromatic hydrocarbon groups which have 1 to 5 aromatic rings, especially monocyclic or bicyclic groups such as phenyl, biphenyl or naphthyl. Where containing two or more aromatic rings (bicyclic, etc.), the aromatic rings of the arvl group may be joined at a single point (e.g., biphenyl), or fused (e.g., naphthyl, phenanthrenvl and the like), "Substituted arvl" refers to an aryl group substituted by one or more substituents, prefernot limited to, alkyl or substituted alkyl, as well as those 50 ably 1, 2, 3, 4 or 5 substituents, at any point of attachment. Exemplary substituents include, but are not limited to, nitro, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, cyano, alkyl-S(O), (m=0, 1 or 2), alkyl or substituted alkyl, as well as those groups recited above as exemplary alkyl substituents and as previously mentioned as preferred arvl substituents in the definition for G. Exemplary substituents also include fused cyclic substituents, such as heterocyclo or cycloalkenyl, or substituted heterocyclo or cycloalkenyl, groups (e.g., thereby 60 forming a fluoroenyl, tetrahydronapthalenyl, or dihydroindenyl group).

> "Carbamoyl" refers to the group -CONH- which is bonded on one end to the remainder of the molecule and on the other to hydrogen or an organic moiety (such as alkyl, substituted alkyl, aryl, substituted aryl, heterocycle, alkylcarbonyl, hydroxyl and substituted nitrogen). "Carbamate" refers to the group -O-CO-NH- which is bonded

on one end to the remainder of the molecule and on the other to hydrogen or an organic moiety (such as those listed above), "Urea" refers to the group -NH-CO-NHwhich is bonded on one end to the remainder of the molecule and on the other to hydrogen or an organic moiety (such as those listed above). "Amidinyl" refers to the group -C(=NH)(NH2). "Substituted carbamovl," "substituted carbamate," "substituted urea" and "substituted amidinyl" refer to carbamovl, carbamate, urea or amidinyl groups as described above in which one more of the hydrogen groups 10 are replaced by an organic moiety (such as those listed above).

The terms "heterocycle", heterocyclic" and "heterocyclo" refer to fully saturated, or partially or fully unsaturated, including aromatic (i.e., "heteroaryl") cyclic groups (for 15 example, 3 to 7 membered monocyclic, 7 to 11 membered bicyclic, or 10 to 16 membered tricyclic ring systems) which have at least one heteroatom in at least one carbon atomcontaining ring. Each ring of the heterocyclic group conselected from nitrogen atoms, oxygen atoms and/or sulfur atoms, where the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatoms may optionally be quaternized. (The term "heteroarylium" refers thus a positive charge.) The heterocyclic group may be attached to the remainder of the molecule at any heteroatom or carbon atom of the ring or ring system. Exemplary monocyclic heterocyclic groups include ethylene oxide, azetidinyl, pyrrolidinyl, pyrrolyl, pyrazolyl, oxetanyl, 30 pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 35 to satisfy the valences. 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, hexahydrodiazepinyl, 4-piperidonyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, triazolyl, tetrazolyl, tetrahydropyranyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, 1,3-dioxolane 40 and tetrahydro-1,1-dioxothienyl, and the like. Exemplary bicyclic heterocyclic groups include indolyl, isoindolyl, benzothiazolyl, benzodioxolyl, benzoxazolyl, benzoxadiazolyl, benzothienyl, quinuclidinyl, quinolinyl, tetrahydroisoguinolinyl, isoguinolinyl, benzimidazolyl, 45 benzopyranyl, indolizinyl, benzofuryl, benzofurazanyl, chromonyl, coumarinyl, benzopyranyl, cinnolinyl, quinoxalinyl, indazolyl, pyrrolopyridyl, furopyridinyl (such as furo[2,3-c]pyridinyl, furo[3,2-b]pyridinyl] or furo[2,3-b] pyridinyl), dihydrodioxidobenzothiophenyl, dihydroisoindolyl, dihydroindolyl, dihydroquinolinyl, dihydroquinazolinyl (such as 3,4-dihydro-4-oxo-quinazolinyl), triazinylazepinyl, tetrahydroquinolinyl and the like. Exemplary tricyclic heterocyclic groups include carbazolyl, benzidolyl, 55 phenanthrolinyl, dibenzofuranyl, acridinyl, phenanthridinyl, xanthenvl and the like.

"Substituted heterocycle," "substituted heterocyclic," and "substituted heterocyclo" (such as "substituted heteroaryl") refer to heterocycle, heterocyclic or heterocyclo groups 60 substituted with one or more substituents, preferably 1 to 4 substituents, at any available point of attachment. Exemplary substituents include, but are not limited to, cycloalkyl or substituted eveloalkyl, eveloalkenyl or substituted cycloalkenyl, nitro, oxo (i.e., -O), cyano, alkyl-S(O), - 65 (m=0, 1 or 2), alkyl or substituted alkyl, as well as those groups recited above as exemplary alkyl substituents, and as

previously mentioned as preferred heterocyclo substituents in the definition for G.

The term "quaternary nitrogen" refers to a tetravalent positively charged nitrogen atom including, for example, the positively charged nitrogen in a tetraalkylammonium group (e.g., tetramethylammonium, N-methylpyridinium), the positively charged nitrogen in protonated ammonium species (e.g., trimethylhydroammonium, N-hydropyridinium), the positively charged nitrogen in amine N-oxides (e.g., N-methyl-morpholine-N-oxide, pyridine-N-oxide), and the positively charged nitrogen in an N-amino-ammonium group (e.g., N-aminopyridinium).

The terms "halogen" or "halo" refer to chlorine, bromine, fluorine or iodine

The terms "hydroxylamine" and "hydroxylamide" refer to the groups OH-NH- and OH-NH-CO-, respectively.

When a functional group is termed "protected", this means that the group is in modified form to mitigate, especially preclude, undesired side reactions at the protected taining a heteroatom may have 1, 2, 3, or 4 heteroatoms 20 site. Suitable protecting groups for the methods and compounds described herein include, without limitation, those described in standard textbooks, such as Greene, T. W. et al., Protective Groups in Organic Synthesis, Wiley, N.Y. (1991).

When a term such as "(CRR)n" is used, it denotes an to a heteroaryl group bearing a quaternary nitrogen atom and 25 optionally substituted alkyl chain existing between the two fragments to which it is bonded, the length of which chain is defined by the range described for the term n. An example of this is n=0-3, implying from zero to three (CRR) units existing between the two fragments, which are attached to the primary and terminal (CRR) units. In the situation where the term n is set to zero (n=0) then a bond exists between the two fragments attached to (CRR).

Unless otherwise indicated, any heteroatom with unsatisfied valences is assumed to have hydrogen atoms sufficient

Divalent groups, such as those in the definition of W (e.g., NR9-CR7R7), may be bonded in either direction to the remainder of the molecule (e.g.

$$-A_1-NR^9-CR^7R^7-A_2-$$
 or, $-A_1-CR^7R^7-NR^9-A_2-$

for the aforementioned group within the definition of W). Carboxylate anion refers to a negatively charged group -coo-

The compounds of formula I form salts which are also within the scope of this invention. Reference to a compound of the formula I herein is understood to include reference to dihydrobenzodioxinyl, 50 salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic and/or basic salts formed with inorganic and/or organic acids and bases. In addition, when a compound of formula I contains both a basic moiety, such as but not limited to a pyridine or imidazole, and an acidic moiety such as but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful, e.g., in isolation or purification steps which may be employed during preparation. Salts of the compounds of the formula I may be formed, for example, by reacting a compound I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.

> The compounds of formula I which contain a basic moiety, such as but not limited to an amine or a pyridine or

imidazole ring, may form salts with a variety of organic and inorganic acids. Exemplary acid addition salts include acetates (such as those formed with acetic acid or trihaloacetic acid, for example, trifluoroacetic acid), adipates, alginates, ascorbates, aspartates, benzoates, 5 benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, hydroxyethanesulfonates (e.g., 2-hydroxyethanesulfonates), lactates, maleates, methanesulfonates, naphthalenesulfonates (e.g., 2-naphthalenesulfonates), nicotinates, nitrates, oxalates, pectinates, persulfates, phenylpropionates (e.g., 3-phenylpropionates), phosphates, picrates, pivalates, propionates, salicylates, succinates, sulfates (such as those formed with sulfuric acid), sulfonates (such as those mentioned herein), tartrates, thiocyanates, toluenesulfonates such as tosylates, undecanoates, and the like.

The compounds of formula I which contain an acidic 20 moiety, such but not limited to a carboxylic acid, may form salts with a variety of organic and inorganic bases. Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium and potassium salts, alkaline earth organic bases (for example, organic amines) such as benzathines, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glycamides, t-butyl amines, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quaternized with 30 agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decvl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl 35 and phenethyl bromides), and others.

Prodrugs and solvates of the compounds of the invention are also contemplated herein. The term "prodrug" as employed herein denotes a compound which, upon administration to a subject, undergoes chemical conversion by 40 metabolic or chemical processes to yield a compound of the formula 1, or a salt and/or solvate thereof. Solvates of the compounds of formula 1 include, for example, hydrates.

Compounds of the formula I, and salts thereof, may exist in their tautomeric form (for example, as an amide or imino 45 ether). All such tautomeric forms are contemplated herein as part of the present invention.

All stereoisomers of the present compounds (for example, those which may exist due to asymmetric carbons on various substituents), including enantiomeric forms and diastereo- 50 meric forms, are contemplated within the scope of this invention. Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers (e.g., as a pure or substantially pure optical isomer having a specified activity), or may be admixed, for 55 example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention may have the S or R configuration as defined by the IUPAC 1974 Recommendations. The racemic forms can be resolved by physical methods, such as, for example, fractional 60 Soc. 117, 3405-3421 (1995); Kreher et al., Chem Ber. 125, crystallization, separation or crystallization of diastercomeric derivatives or separation by chiral column chromatography. The individual optical isomers can be obtained from the racemates by any suitable method, including without limitation, conventional methods, such as, for example, 65 salt formation with an optically active acid followed by crystallization.

All configurational isomers of the compounds of the present invention are contemplated, either in admixture or in pure or substantially pure form. The definition of compounds of the present invention embraces both cis (Z) and trans (E) alkene isomers, as well as cis and trans isomers of cyclic hydrocarbon or heterocyclo rings. In certain cases, for example, the exo or endo conformation can be preferred for the fused ring system bonded to G-L in formula I. For example, for androgen receptor antagonists (or selective androgen receptor modulators), where Y is O or NR7, the exo configuration can be preferred, while for most other definitions of Y, the endo configuration can be preferred. As can be appreciated, the preferred configuration can be a function of the particular compound and its preferred activity. Separation of configurational isomers can be achieved by any suitable method, such as column chromatography.

Throughout the specifications, groups and substituents thereof may be chosen to provide stable moieties and comnounds

Embodiments indicated herein as exemplary or preferred are intended to be illustrative and not limiting.

Methods of Preparation

The compounds of the present invention may be prepared metal salts such as calcium and magnesium salts, salts with 25 by methods such as those illustrated in the following Schemes I to XI. Solvents, temperatures, pressures, and other reaction conditions may readily be selected by one of ordinary skill in the art. Starting materials are commercially available or readily prepared by one of ordinary skill in the art. Combinatorial techniques may be employed in the preparation of compounds, for example, where the intermediates possess groups suitable for these techniques. See the following which describe other methods which may be employed in the preparation of compounds of the present invention: Li, et al., Eur. J. Org. Chem. 9, 1841-1850 (1998); Li, Y-Q, Synlett. 5, 461-464 (1996); Thiemann, et al., Bull. Chem. Soc. Jpn. 67, 1886-1893 (1994); Tsuge et al., Heterocycles 14, 423-428 (1980); Ward et al., Can J. Chem. 75, 681-693 (1997); Ward et al., Can J. Chem. 69, 1487-1497 (1991); Ward et al., Tetrahedron Lett. 31, 845-848 (1990); Fleming et al., J. Org. Chem. 44, 2280-2282 (1979); Jankowski et al., J. Organomet. Chem. 595, 109-113 (2000); Keglevich et al., J. Organomet. Chem. 579, 182-189 (1999); Keglevich et al., J. Organomet. Chem. 570, 49-539 (1998); Jankowski et al., Hetroat. Chem. 7, 369-374 (1996); Jankowski et al., J. Am. Chem. Soc. 113, 7011-7017 (1991); Ouin et al., Tetrahedron Lett. 31, 6473-6476 (1990); Quin et al., J. Org. Chem. 59, 120-129 (1994); Quin et al., J. Org. Chem. 58, 6212-6216 (1993); Ouin et al., Phosphorous, Sulfur Silicon Relat. Elem. 63, 349-362 (1991); Quin et al., Hetroat. Chem. 2, 359-367 (1991); Hussong et al., Phosphorus Sulfur. 25, 201-212 (1985); Quin et al., J. Org. Chem. 51, 3341-3347 (1986); Myers et al., J. Am. Chem. Soc. 114, 5684-5692 (1992); Myers et al., J. Am. Chem. Soc. 113, 6682-6683 (1991); Shen et al., U.S. Pat. No. 5,817,679; Cordone et al., J. Am. Chem. Soc. 111, 5969-5970 (1989); Jung et al., J. Chem. Soc. Commun. 630-632 (1984); Lay et al., J. Am. Chem. Soc. 104, 7658-7659 (1982); Gonzalez et al., J. Am. Chem. 183-189 (1992); Simig et al., Synlett. 7, 425-426 (1990); Sha et al., J. Org. Chem. 55, 2446-2450 (1990); Drew et al., J. Chem. Soc., Perkin Trans. 1 7, 1277–1284 (1985); Kreher ct al., Anorg. Chem., Org Chem. 31B, 599-604 (1976); Avalos et al., Tetrahedron Lett. 39, 9301-9304 (1998); Gousse et al., Macromolecules 31, 314-321 (1998); Mikhailyuchenko et al., Khim. Geterotsikl. Soedin. 6, 751-758

(1993); Lubowitz et al., U.S. Pat. No. 4,476,184; Padwa et al., J. Org. Chem. 61, 3706-3714 (1996); Schlessinger et al., J. Org. Chem. 59, 3246–3247 (1994); Buchmeiser et al., WO Publication No. 9827423; Tanabe et al., Japanese Patent Document JP 07144477; Mochizucki et al., Japanese Patent Document JP 63170383; Hosoda et al., Japanese Patent Document JP 62053963; Onaka et al., Japanese Patent Document JP 62053964; Kato et al., Japanese Patent Document JP 53086035; Kato et al., Japanese Patent Document JP 51088631; Tottori et al., Japanese Patent Document JP 49124225; Augustin et al., German Patent Document DD101271; Title et al., French Patent Document FR 2031538; Gousse et al., Polym. Int. 48, 723-731 (1999); Padwa et al., J. Org. Chem. 62, 4088-4096 (1997); Theurillat-Moritz et al., Tetrahedron: Asymmetry 7, 3163-3168 (1996); Mathews et al., J. Carbohydr. Chem. 14, 287-97 (1995); Srivastava et al., Natl. Acad. Sci. Lett. (India) 15, 41-44 (1992); Mayorga et al., Rev. Cubana Ouim. 4, 1-6 (1988); Kondoli et al., J. Chem. Res., Synop. 3, 76 (1987); Primelles et al., Cent. Azucar 7-14 (1985); Solov'eva et al., Khim. Geterotsikl. Soedin. 5, 613-15 20 (1984); Liu et al., Yaoxue Xuebao 18, 752-759 (1983); Joshi et al., Indian J. Chem, Sect. B. 22B, 131-135 (1983); Amos et al., WO Publication No. 9829495; Odagiri et al., U.S. Pat. No. 4,670,536; Gallucci et al., European Patent Document EP 355435; Redmore, D. U.S. Pat. No. 3,821,232; Nakano 25 Takahashi et al., Chem. Lett. 6, 1229-1232 (1987). et al., Heterocycles 35, 37-40 (1993); Tomisawa et al., Chem. Pharm. Bull. 36, 1692-1697 (1988); Krow et al., J. Heterocycl. Chem. 22, 131-135 (1985); Krow et al., J. Org. Chem. 47, 1989-1993 (1982); Liu et al., Yaoxue Xuebao 18, 752-759 (1983); Nishikawa et al., Yaoxue Xuebao JP 30 01061457; and/or Rice et al., J. Med. Chem. 11, 183-185 (1968).

All documents cited in the present specification, such as those cited in this "Methods of Preparation" as well as other sections herein, are incorporated herein by reference in their entirety. Reference to any document herein is not to be construed as an admission that such document is prior art.

As illustrated in Scheme I, a diene of formula II can be reacted with a dienophile of formula III, under conditions readily selected by one skilled in the art (such as by the 60 addition of heat ("A")), to obtain a compound of formula IV. which is a compound of formula I. An intermediate diene of formula II can be obtained from commercial sources or readily made by one skilled in the art, for example, in accordance with the following literature documents and the 65 references found therein: Hofman et al., J. Agric. Food Chem. 45, 898-906 (1997); Baciocchi et al., J. Chem. Soc.,

Perkin Trans. 2 8, 821-824 (1975); Wu et al., J. Heterocycles 38, 1507-1518 (1994); Yin et al., Tetrahedron Lett. 38, 5953-5954 (1997); Mic'ovic' et al., Tetrahedron 20, 2279-2287 (1964); Gorbunova et al., J. Org. Chem. 35, 1557-1566 (1999); Rassu et al., Chem. Soc. Rev. 29, 109-118 (2000); Kaberdin et al., Russ. Chem. Rev. 68, 765-779 (1999); Barluenga et al., Aldrichimica Acta 32, 4-15 (1999); Bogdanowicz-Szwed et al., Pol. Wiad. Chem. 52, 821-842 (1998); Casiraghi et al., Adv. Asymmetric Synth. 113-189 (1998); and/or Bacckvall et al., Chem. Rev. 98. 2291-2312 (1998). An intermediate diencophile of formula III can be obtained from commercial sources or readily made by one skilled in the art, for example, in accordance with the following literature references and the references found therein: Deshpande et al., Heterocycles 51, 2159-2162 (1999); Scijas et al., J. Chem. Res., Synop. 7, 420421 (1999); Langer et al., Eur. J. Org. Chem. 7. 1467-1470 (1998); Kita et al., Japanese Patent Document JP 09194458; Lopez-Alvarado et al., J. Org. Chem. 61, 5865-5870 (1996); Condon et al., U.S. Pat. No. 5,523,277; Sasakihara et al., Japanese Patent Document JP 04290868; Igarashi et al., Japanese Patent Document JP 04149173; Aoyama et al., Japanese Patent Document JP 04134063; Aoyama et al., Japanese Patent Document JP 04134062; Pastor et al., J. Org. Chem. 53, 5776-5779 (1988); and/or

As illustrated in Scheme II, compounds of formula 1 can be obtained by reaction of a primary amine of formula IV with a substituted anhydride-like intermediate of formula VI, for example, in a solvent such as acetic acid with or without heating, to yield a compound of formula IV, which is a compound of formula I. Primary amines of formula V can be obtained from commercial sources or readily synthesized by one skilled in the art. Anhydride-like agents of formula VI can be obtained from commercial sources or 55 readily synthesized by one skilled in the art. The documents listed following describe exemplary approaches for the synthesis of intermediates of formula VI as well as synthetic approaches which can be applied to the synthesis of compounds of formula IV (all incorporated herein by reference in their entirety): Kohler, E. P.; Tishler, M.; Potter, H.; Thompson, H. T. J. Am. Chem. Soc. 1939, 1057–1061; Yur'ev, Y. K.; Zefirov, N. S. J. Gen. Chem. U.S.S.R. (Engl. Transl.) 1961, 31, 772-5; Norman G. Gaylord U.S. Pat. No. 3,995,099; Schueler, P. E.; Rhodes, Y. E. J. Org. Chem. 1974, 39, 2063-9; Ishitobi, H.; Tanida, H; Tsuji, T. Bull. Chem. Soc. Japan 1971, 44, 2993-3000; Stajer, G.; Virág, M.; Szabó, A. E.; Bernáth, G.; Sohár, P.; Sillanpää, R. Acta.

Chem. Scand. 1996, 50, 922–30; Hart, H.; Ghosh, T. Tetrahedron Lett. 1988;29;881–884; Kato, M.; Yamamoto, S.; Yoshibara, T.; Furuichi, K.; Miwa, T. Chem. Lett. 1987, 1823–1826; Kottwitz, J.; Vorbrüggen, H. Synthesis 1995, 636–637; Creary, X. J. Org. Chem. 1975, 40, 3326–3331; Alder, K.; Ache, H.-J.; Flock, F. H. Chem. Ber. 1960, 93, 1888–1895; Toder, B. H.; Branca, S. J.; Dieter, R. K.; Smith, A. B. III. Synth. Commun. 1975, 5, 438439; Sprague, P. W.; Heikes, J. E.; Gougoutus, J. Z.; Malley, M. F.; Harris, D. N.; 10 and/or Greenberg, R. J. Med. Chem. 1985, 28, 1580–1590.

The aforementioned approach(es) can be applied in a combinatorial fashion, for example, by utilizing a multi-well reaction block such as is described in Waldemar Ruediger, Wen-Jeng Li, John W., Allen Jr., and Harold N. Weller III, U.S. Pat. No. 5,961,925, Apparatus for Synthesis of Multiple Organic Compounds With Pinch Valve Block (incorporated 20 herein by reference in its entirety). By utilizing the abovementioned multi-well reaction block, one can, for example, perform multiples of 96 reactions at a time. Solvent can then be removed from the reaction tubes without removal from the reaction block and the crude products can be precipitated using a base such as sodium bicarbonate. The precipitates can be collected by filtration of the reaction block and then the desired products can be transferred directly to 96 well plates for screening. In this fashion, a large array of compounds of formula I can be synthesized, and tests conducted as desired by an automated approach.

Scheme.III

$$A_{2}^{V}$$
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5

Scheme III describes a method for preparing an intermediate compound of formula I V which can be used to synthesize a compound of formula I, as described in Scheme III. As described in Scheme III, a diene of formula II can be reacted with a diencophile of formula VII to yield the intermediate of formula VI. The methods applied to obtain such a transformation are analogous to those described in Scheme I.

$$X_{N}$$
 X_{N}
 X_{N

-continued Z_2 Z_2 Z_3 Z_4 Z_4

Scheme IV describes a method for preparing an intermediate compound of formula VI which can be used to synthesize a compound of formula I, as described in Scheme II. As shown in Scheme IV, a diene of formula II can be reacted with a diencelyhile of formula VIII to yield the intermediate of formula IX. can be dehydrated to an anhydride-like intermediate of formula IX. can be dehydrated to an anhydride-like intermediate of formula IX. Dehydration of the bis-sacid intermediate of formula IX can be achieved by a variety of methods, such as those known to one skilled in the art and described in the following documents and the references embodied therein: Sprague et al., J. Med. Chem. 28, 1580-1590 (1985); andfor Retemi et al., J. Ore. Chem. of 16, 6296-6301 (1996).

Schemes I to IV describe general methods for the synthesis of compounds of formula I, and intermediates thereof, 30 in which substitution about the ring system is incorporated directly, for example, at the level of the intermediate diene, disnophile, anhydride-like intermediate and aming groups. In addition to these approaches, additional substitution can be incorporated onto an already-pepared compound of 35 formula I by a variety of approaches to prepare other compounds of the formula I. Exemplary methods for further substitution are described in Schemes V to XI.

Scheme V

60 Scheme V describes one such approach to incorporating additional substitution into a structure of formula I. As illustrated in Scheme V, a compound of formula X, which is a compound of formula I where A₁ and A₂ are CR², W is S NH—CHR² and Y is CHR²—CHR², can be functionalized at the free amine of the group W by reaction with any of a variety of electrophilic agents such as acid haldes or alkyl

halides in the presence of base, for example, by methods known by one skilled in the art. In Scheme V, X is a leaving group, and a compound of formula XI is a compound of formula I where A_1 and A_2 are CR^7 , W is NR^7 — CHR^7 and Y is CHR^7 — CHR^7 .

Scheme VI

Scheme VI

$$G^{-1}$$
 Q_1
 R^7
 R^7

$$G$$
 Z_1
 Z_2
 Z_3
 Z_4
 Z_5
 Z_5
 Z_7
 Z_7

Scheme VI describes an additional approach for further incorporating substitution onto a compound of formula I. As illustrated in Scheme VI, a compound of formula XII, which is a compound of formula I where A, and A, are CR7, W is S-CHR7 and Y is CHR7-CHR7, can be partially oxidized with an oxidizing agent such as mCPBA or other agents such 45 as those known to one skilled in the art, to give the sulfoxide analog of formula XIII, which is a compound of formula I where A, and A, are CR7, W is SO-CHR7 and Y is CHR7-CHR7. Further treatment of a compound of formula XIII with an oxidizing agent such as mCPBA or other agents such as those known to one skilled in the art, can yield the sulphone analog of formula XIV, which is a compound of formula I where A₁ and A₂ are CR⁷, W is SO₂-CHR⁷ and Y is CHR7-CHR7. Alternatively, a compound of formula XII can be converted directly to a compound of formula XIV by prolonged treatment with an oxidizing agent, such as mCPBA, or with other agents such as those known to one skilled in the art.

15

$$T - R^{12}$$
 $T - R^{12}$

15

 $G - I - V - Q_1$
 $Q_1 - Q_2 - Q_3$
 $Q_1 - Q_4$
 $Q_2 - Q_4$
 $Q_3 - Q_4$
 $Q_4 - Q_4$
 $Q_5 - Q$

Scheme VII describes another approach to incorporating additional substitution onto a compound of formula 1. As illustrated in Scheme VII, a dience of formula III, as described in Scheme IVI, a dience of formula III, as described in Scheme I, to yield a compound of formula IVI, which is a compound of formula IVI averable VII and VII averable VII averable

readily be prepared by one skilled in the art. In the above Scheme, R12 has the same definition as R7 defined earlier, q is zero or an integer from 0-8, and T is defined either as (1) a nucleophilic center such as, but not limited, to a nitrogen, oxygen or sulfur-containing group, capable of undergoing a nucleophilic substitution reaction with the leaving group T or (2) a leaving group capable undergoing a nucleophilic substitution reaction with a nucleophilic group T (such as, but not limited, to a nitrogen. oxygen or sulfur-containing nucleophilic group). T' has the same definition as T. In the present case, for example, a nucleophilic substitution reaction occurs when the attacking reagent (the nucleophile) brings an electron pair to the substrate, using this pair to form the new bond, and the leaving group (the nucleofuge) comes away with the electron pair, leaving as an anionic intermediate. For a detailed discussion of the mechanism of aliphatic nucleophilic substitutions and a review of specific aliphatic nucleophilic 60 substitution reactions see Advanced Organic Chemistry, Reactions, Mechanisms, and Structure, 4th Addition. Jerry March (Ed.), John Wiley & Sons, New York (1992) 293-500 and the references therein. Compounds of the formulae IVa. IVb, or IVc may, of course, be employed in the methods 65 described herein (especially, in the treatment of nuclear hormone receptor-associated conditions) without undergoing further reaction of T or T.

10

60

ΙVc

An alternate approach to compounds of formula IVa, IVb and IVe is illustrated in Scheme VIII. For this approach, 4s techniques such as those described in Schemes II, III and IV can be applied to the preparation of an intermediate of formula VIa, where T and q are as defined in Scheme VII. The intermediate of formula VIa can be reacted with a substitited anime of formula IVa, which is a compound of formula IVa, which is a compound of formula IVa, which is a compound of formula IVa can be treated in the manner 5s the Compound of formula IVa can be treated in the manner 5s the compound of formula IVa can be treated in the manner 5s the VIV or IVC which are compounds of formula IVa, $A_1 > CR^2$ and $A_2 > CR^2$ and $A_3 > CR^2$ a

Scheme IX describes another approach to incorporating further substitution onto a compound of formula I. As 2s illustrated in Scheme IX (where X is a leaving group), a diene of formula IIB can be reacted with a dienophile of formula IW, as described in Scheme I, to yield a compound of formula IVe, which is a compound of formula IVe, which is a compound of formula IVE is NII, and A₃ are CR. The compound of formula IVE is NII, and A₃ are CR is a sum in the preacting with a variety of electrophilic agents such as acid halides or ally! halides in the presence of base, for example by methods known by one skilled in the art and described in Scheme V, to yield a compound of formula IVE, which is a compound 55 of formula I where Y is NIV. 3 and A₃ and A₄ are CR.

IVE

$$G \stackrel{\text{VID}}{\longrightarrow} V \stackrel{$$

An alternate approach to compounds of formula IVe and IVf is illustrated in Scheme X. For this approach, techniques

35

as described in Schemes II, III and IV can be applied to the preparation of an intermediate of formula VIb. The intermediate of formula VIb can be reacted with a substituted amine of formula V, as described in Scheme II, to vield a compound of formula IVe, which is a compound of formula I where Y is NH, and A1 and A2 are CR7. The latter intermediate can be treated in the manner described in Scheme V to obtain a compound of formula IVf, which is a compound of formula I where Y is NR7, and A, and A, are 10 CR7.

Scheme XI describes another approach to incorporating additional substitution onto a compound of formula L As illustrated in Scheme XI, a diene of formula IIc can be reacted with a dienophile of formula 111, as described in Scheme I, to yield a compound of formula IVg, which is a 50 compound of formula I where Y is SO and A1 and A2 are CR7. A compound of formula IVg can be treated with an oxidizing agent such as mCPBA, as described in Scheme VI, to yield a compound of formula IVh, which is a compound of formula I where Y is SO₂ and A₁ and A₂ are CR⁷.

Scheme XII

$$G$$
 A_1
 A_2
 A_3
 A_4
 A_5
 A_6
 A_6
 A_6
 A_6
 A_7
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8
 A_8

ΙVh

24

Scheme XII describes another approach to incorporating additional substitution onto a compound of formula 1. As illustrated in Scheme XII, a compound of formula XV, which can be prepared in accordance with the above 15 Schemes, can be incubated in the presence of a suitable enzyme or microorganism resulting in the formation of a hydroxylated analog of formula XVI. Such a process can be employed to yield regiospecific as well as enantiospecific incorporation of a hydroxyl group into a molecule of formula XV by a specific microorganism or by a series of different microorganisms. Such microorganisms can, for example, be bacterial, yeast or fungal in nature and can be obtained from distributors such as ATCC or identified for use in this method such as by methods known to one skilled in the art. Compound XVI is a compound of formula 1 where Y is as described above and A₁ and A₂ are preferably CR⁷.

Scheme XIII

Scheme XIII describes another approach to incorporating additional substitution onto a compound of formula 1. As illustrated in Scheme XIII, a compound of formula XVII, which can be prepared in accordance with the above Schemes, can be incubated in the presence of a suitable enzyme or microorganism resulting in the formation of a diol analog of formula XVIII. Such a process can be employed to yield regiospecific as well as enantiospecific transformation of a compound of formula XVII to a 1-2 diol of formula XVIII by a specific microorganism or by a series of different microorganisms. Such microorganisms can, for example, be bacterial, yeast or fungal in nature and can be obtained from distributors such as ATCC or identified for use in this method such as by methods known to one skilled 60 in the art. Compound XVIII is a compound of formula I where Y is as described above and A1 and A2 are preferably CR^7

The present invention also provides the methods of Schemes and XIII.

Thus, in one embodiment, the present invention provides a method for preparation of a compound of the following formula XVI, or salt thereof:

XVIII

where the symbols are as defined herein, comprising the steps of contacting a compound of the following formula XV, or salt thereof:

$$G$$
 A_1
 A_2
 A_1
 A_2

where the symbols are as defined above; with an enzyme or microorganism capable of catalyzing the hydroxylation of said compound XV to form said compound XVI, and effecting said hydroxylation.

In another preferred embodiment, the present invention provides a method for preparation of a compound of the following formula XVIII, or salt thereof:

$$Q_1$$
 Q_2
 Q_3
 Q_4
 Q_5
 Q_5
 Q_6
 Q_6

where the symbols are as defined herein, comprising the steps of contacting a compound of the following formula XVII, or salt thereof:

$$Q$$
 Z_1
 Z_2
 Z_1
 Z_2
 Z_1
 Z_2
 Z_2
 Z_1
 Z_2
 Z_2
 Z_1
 Z_2
 Z_2
 Z_1
 Z_2
 Z_2
 Z_2
 Z_1
 Z_2
 Z_2
 Z_2
 Z_1
 Z_2
 Z_2

where the symbols are as defined above; with an enzyme or microorganism capable of catalyzing the 55 opening of the epoxide ring of compound XVII to form the diol of said compound XVIII, and effecting said ring opening and diol formation.

All stereoconfigurations of the unspecified chiral centers of the compounds of the formulae XV, XVI, XVII and XVIII go are contemplated in the methods of the present invention, either alone (that is, substantially free of other stereoisomers) or in admixture with other stereoisomeric forms. Conversion of one isomer selectively (e.g., hydroxylation of the exto isomer preferentially to hydroxylation of the extoner when the preferred embodiment of the invention. Conversion to one

isomer selectively (e.g., hydroxylation on the exo face "exo isomer" preferentially to the endo face "endo isomer" or regioselective opening of an epoxide to form only one of two possible regiosisomers of a trans diof) is a preferred embodiment of the invention. Hydroxylation of an achiral intermediate to form a single optical isomer of the hydroxylated product is also a preferred embodiment of the invention. Resolution of a recemic mixture of an intermediate by selective hydroxylation, or epoxide ring opening and diol formation, to generate one of the two possible optical isomers is also a preferred hondiment of the invention. The term "resolution" as used herein denotes partial, as well as, preferably, complete resolution.

preferably, complete resolution.

The terms "enzymatic process" or "enzymatic method",

15 as used herein, denote a process or method of the present
invention employing an enzyme or microorganism. The term
"hydroxylation", as used herein, denotes the addition of a
hydroxylation can be achieved, for example, by contact
with molecular oxygen according to the methods of the
present invention. Diol formation can be achieved, for
example, by contact with water according to the methods of
the present invention. Used of many and the present invention used of the
present invention. Used of many and processing the
the present invention. Used of many and the present invention used of the
second of the present invention. Used of the present invention used of the
second of the present invention used of the present invention. Used of the
second of the present invention used to the present invention used to the
second of the present invention used to the present inv

The enzyme or microorganism employed in the present invention can be any enzyme or microorganism capable of catalyzing the enzymatic conversions described herein. The opurity, can be employed in the free state or immobilized on a support such as by physical adsorption or entrapment. Microorganisms or enzymes ustable for use in the present invention can be selected by screening for the desired activity, for example, by contacting a candidate microorganism or enzymes with a starting compound XV or XVII or sall thereof, and noting conversion to the corresponding compound XVI or XVIII or sall thereof, and noting conversion to the corresponding compound XVI or XVIII or sall thereof, and noting conversion animal or plant enzymes or on mixtures thereof, cells of microorganisms, crushed cells, extracts of cells, or of swithetic origin.

Exemplary microorganisms include those within the genera: Streptomyces or Amycolatopsis. Particularly preferred microorganisms are those within the species Streptomyces XVII 45 griseus, especially Streptomyces griseus ATCC 10137, and Amycolatopsis orientalis such as ATCC 14930, ATCC 21425, ATCC 35165, ATCC 39444, ATCC 43333, ATCC 43490, ATCC 53550, ATCC 53630, and especially ATCC 43491. The term "ATCC" as used herein refers to the 50 accession number of the American Type Culture Collection, 10801 University Blvd., Manassas Va. 20110-2209, the depository for the organism referred to, It should be understood that mutants of these organisms are also contemplated by the present invention, for use in the methods described herein, such as those modified by the use of chemical, physical (for example, X-rays) or biological means (for example, by molecular biology techniques).

Preferred enzymes include those derived from microorganisms, particularly those microorganisms, particularly those microorganisms described above. Enzymes may be isolated, for example, by a utilized and purification methods such as by methods known to those of ordinary skill in the art. An enzyme may, by methods known to those of ordinary skill in the art. An enzyme may, one embodiment of the invention is that where an enzyme is adsorbed onto a suitable carrier, e.g., distancesous earth (porous Celite Hyllo Supercel), microporous polypropylene powden, or a noisonic poly-foreign polypropylene powden, or a noisonic poly-

meric adsorbent such as Amberlite® XAD-2 (polystyrene) or XAD-7 (polyacrylate) from Rohm and Haas Co. When employed to immobilize an enzyme, a carrier may control the enzyme particle size and prevent aggregation of the enzyme particles when used in an organic solvent. Immo- 5 bilization can be accomplished, for example, by precipitating an aqueous solution of the enzyme with cold acetone in the presence of the Celite Hyflo Supercel followed by vacuum drying, or in the case of a nonionic polymeric adsorbent, incubating enzyme solutions with adsorbent on a 10 shaker, removing excess solution and drying enzymeadsorbent resins under vacuum. While it is desirable to use the least amount of enzyme possible, the amount of enzyme required will vary depending upon the specific activity of the enzyme used.

Hydroxylation as described above can occur in vivo. For example, liver enzyme can selectively, relative to the endo isomer, hydroxylate the exo isomer of a compound of the present invention. In conducting the methods of the present invention outside the body, liver microsomal hydroxylase 20 can be employed as the enzyme for catalysis.

These processes may also be carried out using microbial cells containing an enzyme having the ability to catalyze the conversions. When using a microorganism to perform the adding the cells and the starting material to the desired reaction medium.

Where microorganisms are employed, the cells may be used in the form of intact wet cells or dried cells such as lyophilized, spray-dried or heat-dried cells, or in the form of 30 treated cell material such as ruptured cells or cell extracts. Cell extracts immobilized on Celite® or Accurel® polypropylene as described earlier may also be employed. The use of genetically engineered organisms is also contemplated. The host cell may be any cell, e.g. Escherichia coli, modified 35 to contain a gene or genes for expressing one or more enzymes capable of catalysis as described herein.

Where one or more microorganisms are employed, the enzymatic methods of the present invention may be carried out subsequent to the fermentation of the microorganism 40 (two-stage fermentation and conversion), or concurrently therewith, that is, in the latter case, by in situ fermentation and conversion (single-stage fermentation and conversion).

Growth of the microorganisms can be achieved by one of ordinary skill in the art by the use of an appropriate medium. 45 Appropriate media for growing microorganisms include those which provide nutrients necessary for the growth of the microbial cells. A typical medium for growth includes necessary carbon sources, nitrogen sources, and elements (e.g. in trace amounts). Inducers may also be added. The 50 term "inducer", as used herein, includes any compound enhancing formation of the desired enzymatic activity within the microbial cell.

Carbon sources can include sugars such as maltose, lactose, glucose, fructose, glycerol, sorbitol, sucrose, starch, 55 mannitol, propylene glycol, and the like; organic acids such as sodium acetate, sodium citrate, and the like; and alcohols such as ethanol, propanol and the like:

Nitrogen sources can include N-Z amine A, corn steep liquor, soy bean meal, beef extracts, yeast extracts, 60 molasses, baker's yeast, tryptone, nutrisoy, peptone; yeastamin, amino acids such as sodium glutamate and the like, sodium nitrate, ammonium sulfate and the like.

Trace elements can include magnesium, manganese, calcium, cobalt, nickel, iron, sodium and potassium salts. 65 A2 is CR7 or N; Phosphates may also be added in trace or, preferably, greater than trace amounts.

The medium employed can include more than one carbon or nitrogen source or other nutrient

Preferred media for growth include aqueous media.

The agitation and aeration of the reaction mixture affects the amount of oxygen available during the conversion process when conducted, for example, in shake-flask cultures or fermentor tanks during growth of microorganisms.

Incubation of the reaction medium is preferably at a temperature between about 4 and about 60° C. The reaction time can be appropriately varied depending upon the amount of enzyme used and its specific activity. Reaction times may be reduced by increasing the reaction temperature and/or increasing the amount of enzyme added to the reaction solution.

It is also preferred to employ an aqueous liquid as the reaction medium, although an organic liquid, or a miscible or immiscible (biphasic) organic/aqueous liquid mixture, may also be employed. The amount of enzyme or microorganism employed relative to the starting material is selected to allow catalysis of the enzymatic conversions of the present invention.

Solvents for the organic phase of a biphasic solvent system may be any organic solvent immiscible in water, such as toluene, evelohexane, xvlene, trichlorotrifluoroethane and the like. The aqueous phase is conveniently of conversion, these procedures are conveniently carried out by 25 water, preferably deionized water, or a suitable aqueous buffer solution, especially a phosphate buffer solution. The biphasic solvent system preferably comprises between about 10 to 90 percent by volume of organic phase and between about 90 to 10 percent by volume of aqueous phase, and most preferably contains at or about 20 percent by volume of organic phase and at or about 80 percent by volume of the aqueous phase.

An exemplary embodiment of such processes starts with preparation of an aqueous solution of the enzyme(s) or microbes to be used. For example, the preferred enzyme(s) or microbes can be added to a suitable amount of an aqueous solvent, such as phosphate buffer or the like. This mixture is preferably adjusted to and maintained at a desired pH.

The compounds XVI and XVIII produced by the processes of the present invention can be isolated and purified, for example, by methods such as extraction, distillation, crystallization, and column chromatography.

Preferred Compounds

A preferred subgenus of the compounds of the present invention includes compounds of the formula I or salts thereof wherein one or more, preferably all, of the following substituents are as defined below:

G is an aryl or heterocyclo (e.g., heteroaryl) group, where said group is mono- or polycyclic, and which is optionally substituted at one or more positions, preferably with hydrogen, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, halo, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, aryl or substituted aryl, heterocyclo or substituted heterocyclo, arvlalkyl or substituted arvlalkyl, heterocycloalkyl or substituted heterocycloalkyl, CN, $R^1OC=0$, $R^1C=0$, $R^1HNC=0$, $R^1R^2NC=0$, HOCR3R3, nitro, R1OCH2, R1O, NH2, NR4R5, S=OR1 SO_2R^1 , $SO_2NR^1R^1$, $(R^1)(R^1)P=0$, or $(R^1)(NHR^1)$ P=O;

Z, is O, S, NH, or NR6; Z, is O, S, NH, or NR6;

A₁ is CR⁷ or N;

Y is J-J-J" where J is (CR7R7) n and n=0-3, J is a bond or O, S, S=O, SO2, NH, OC=O, C=O, NR7, CR7R7, R²P=O, R²P=S, R²OP=O, R²NHP=O, OP=OOR², OP=ONHR², OP=OR², OSO₂, NHNH, NHNR², NR²NII, N=D, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, or heterocyclo or substituted heterocyclo, and Jⁿ is (CR²R²)n and n=0-3, 5 where Y is not a bond;

W is CR⁷R⁷—CR⁷R⁷, CR⁷R⁷—C=0, NR⁰—CR⁷R⁷, N=CR⁸, N=N, NR⁰—NR⁰, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, het-

erocyclo or substituted heterocyclo, or aryl or substituted 10 aryl, wherein, when W is not NR®—CR*7R*, N=CR*, N=N, NR*—NR*, or heterocyclo or substituted heterocyclo, then J* must be 0, 8, \$=0, \$0₂; NH, NR*, 0P=ONR*, 0O=ONR*IN, NINR*, NR*

NH, or N=N;

Q, is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocycloalkyl or substituted heterocycloalkyl, arylakyl or substituted arylakyl, alkynyl or substituted alkynyl, aryl or substituted heterocyclo (e.g., substituted heteroaryl), halo, CN, R¹OC=O, R²C=O, R²R²NC=O, HOCR²R², nitro, R²OCH, R²O, NHg, or NR²R²,

Q₂ is H, alkyl or substituted alkyl, alkenyl or substituted 2s alkenyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkyl or substituted arylalkyl, arylalkyl or substituted arylalkyl, alkynyl or substituted arylalkyl alkynyl arylalkyl arylalkyl arylalkyl alkynyl arylalkyl alkynyl arylalkyl arylalkyl

R¹OCH₂, R¹O, NH₂, or NR⁴R⁵; L is a bond, (CR⁷R⁷)n, NH, NR⁵ or NR⁵(CR⁷R⁷)n, where

n=0-3;

R³ and R³ are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted betreeycle, cycloalkylalkyl or substituted substituted heterocycle, cycloalkylalkyl or substituted cycloalkyalkyl, ecycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl.

R² is alkyl or substituted alkyl, alkenyl or substituted sklenyl, alkynyl or substituted alkynyl, eyeloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkyl, betrocyclo or substituted exploalkylalkyl, cycloalkenyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl, or substituted cycloalkylalkyl, aryl or substituted cycloalkyl, aryl or substituted arylalkyl or substituted arylalkyl or substituted arylalkyl subst

R² and R² ane cach independently H, alkyl or substituted alkyl, alknoyl or substituted alknyl, alkynyl or substituted alkyn, level or substituted eycloalkenyl, testrocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, eycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl nelo, substituted arylalkyl, halo, CN, hydroxylamine, hydroxamide, alkoxy or substituted alkoxy, amino, NR R², tiliol, alkythio or substituted alkythio;

R⁴ is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or 65 substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, R³C=O, R³NHC=O, or SO,NR³R³;

R⁵ is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted tercocycloalkyl or substituted cycloalkyl or substituted tercocycloalkyl, arvl or substicocycloalkyl or substituted tercocycloalkyl, arvl or substi-

tuted aryl, arylalkyl or substituted arylalkyl, R¹C=O, R¹NHC=O, SO₂R¹, or SO₂NR¹R¹;

R° is alkyl or substituted alkyl, alkenyl or substituted alkynl, cycloalkeyl or substituted alkynl, expendituted alkynl, expendituted alkynl, expendituted alkynyl, cycloalkeyl or substituted cycloalkeyl or substituted cycloalkeynly or substituted cycloalkeynly, exploalkeyl or substituted cycloalkeynly, cycloalkeynly or substituted cycloalkeynly are substituted cycloalkeynly or substituted cycloalkeynly, c

R⁷ and R⁸ are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkyl, alkenyl or substituted explaintly of substituted explaintly or substituted explaintly exploalkenyl or substituted explaintly heterocycle substituted explaintly heterocycle explaintly explaintly for substituted explaintly, heterocyclaintly or substituted explaintly, heterocyclaintly or substituted heterocycloalkyl aryl or substituted heterocycloalkyl, aryl or substituted arylalkyl, heterocyclaintly or substituted arylalkyl, halo, CN, OR², nitro, hydroxylamine, hydroxylamine, amino, NHR², NR²R³, NOR³, thiol, alkythilo or Substituted alkything R²C=O, R³(C=O)O, R³OC=O, R³NHC=O, SOR³, PO, R³R³R³C=O, C=OSR³, SOR³, or SONR³R³R³R³C=O, C=OSR³SOR³, or SONR³R³R³R³C=O.

R⁸ and R⁸ are 'ach independently H, alkyl or substituted alkyl, alkenyl or substituted alkynl, exploalkyl or substituted alkynl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl or substituted cycloalkenyl or substituted cycloalkynlyl, exploalkynlyl, or substituted cycloalkynlyl, exploalkynlyl or substituted cycloalkynlakyl, heterocycloalkyl aryl arylaikyl or substituted heterocycloalkyl, aryl or substituted aryl, arylaikyl, nro, and bo, CN, oR, armin, NHR⁸, NR⁸R⁸, NOR⁸, alkylthio or substituted alkylthio, C=OSR¹, R¹OC=O, R¹C=O, R³HVC=O, R¹R³NC=O, S=OR¹, SO₂R¹, PO₃R¹R³, or SO₃NR¹R³,

R⁹ and R⁹ are each independently H, alkyl or substituted alkynyl, skynyl or substituted alkenyl, alkynyl or substituted alkynyl; cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkyl, cycloalkenyl substituted substituted beterocyclo, cycloalkyalkyl or substituted cycloalkyalkyl, cycloalkenylalkyl or substituted cycloalkyalkyl, cycloalkenylalkyl, are busbituted cycloalkyalkyl, april or substituted and beterocycloalkyl, april or substituted and s

especially where the groups W and Y of this prefurred subgenus are also within the definitions of W and Y of formula Ia, with the provisos (1) to (14) of said formula Ia where appropriate to this subgenus, and most preferably where (1) when Y is — O— and W is CR R. CR (R. A, and A₂ are not simultaneously CH; and (ii) when L is a bond, G is not an unsubstituted behowing roup.

Another, more preferred subgenus of the compounds of the invention includes compounds of the formula I or salts thereof wherein one or more, preferably all, of the following substituents are as defined below:

- G is an aryl or heterocyclo (e.g., heteroaryl) group, where said group is mono- or polycycle, and which is optionally substituted at one or more positions, preferably with 5 hydrogen, alkyl or substituted alky, alknyl or substituted alknyl, alknyl or substituted alkynyl, halo, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, anyl or substituted aryl, heterocyclo or substituted heterocyclo, arylalkyl or substituted arylalkyl, lot, heterocycloalkyl or substituted beterocycloalkyl, CN, R'C-OR, R'HNC-OR, R'R'NC-OR, HOCR'R's, nitro, R'OCH, R'ON, ML, NR'R's S.OR, or SO.NR'R'S.
- Z_1 is O; Z_2 is O;
- A₁ is CR⁷;
- A₂ is CR⁷;
- \hat{Y} is $J=J^{-1}$ " where J is $(\mathbb{CR}^{R})^{n}$ and $n=0^{-3}$, J is a bond or O, S, S=O, S_{0} , M_{1} , M_{2}^{N} , C_{R}^{R} , $R^{R}=D_{0}$, $R^{2}P=S$, $R^{2}OP=O$, $R^{2}MP=O$, $OP=O(R^{2}, OP=O)MIR^{2}$, $OP=O(R^{2}, OP=O(R^{2}, OP=O)MIR^{2})$, $OP=O(R^{2}, OP=O(R^{2}, OP=O)MIR^{2})$, $OP=O(R^{2}, OP=O(R^{2}, OP=O)MIR^{2})$, $OP=O(R^{2}, OP=O(R^{2}, OP=O)MIR^{2})$, $OP=O(R^{2}, OP=O)MIR^{2}$, $OP=O(R^{2}, OP=O)$, $OP=O(R^$
- W is CR^{*}R^{*}−CR^{*}R^{*}−CR^{*}R^{*}−CR^{*}R^{*}.

 N=CR⁸, N=N, NR⁸−NR⁸, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkyl, cycloalkenyl or substituted veloalkenyl, heterocyclo or substituted heterocyclo, or aryl or substituted aryl, wherein, when W is not NR⁸−CR⁸, N=CR⁸, N=CR⁸, N=CR⁸, N=CR⁸, N=CR⁸−NER⁸; or heterocyclo or substituted heterocycle, then J must be 0, S, S=0, SO, NH, NR⁸, OP=OOR⁸, OP=ONHR², OSO₂, NHNH, NHNR⁹, NR⁹NH, Or N=N⁸:
- Q_i is II, alkyl or substituted alkyl, alkenyl or substituted 3s alkenyl, cycloalky or substituted cycloalkyl or substituted cycloalkyl or substituted heterocycloalkyl, arylalkyl or substituted heterocycloalkyl, arylalkyl, alkyl or substituted arylalkyl, alkylyof substituted alkynyl, aryl or substituted aryl, heterocyclo (e.g., beteroayl) or substituted obeterocyclo (e.g., substituted heteroayl), halo, CN, R°C=0, R°R°NC=0, HOCR°R°, nitro, R°OCH₂, R°O, NH₂, or NR°R°E.
- Q. is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, cycloalk-4 enyl or substituted cycloalkyl or substituted cycloalkyl or substituted heterocycloalkyl, arylakyl or substituted arylakyl, alkyyl or substituted arylakyl, alkyyl or substituted arylakyl, alkyyl or substituted aryl, heterocyclo (e.g., heteroayl) or substituted heterocyclo (e.g., substituted heteroayl), halo, CN, 50 R°C—0, R°R°NC—0, HOCR°R°, nitro, R°OCH₂, R°O, NH₃, or NR°R°2.
- L is a bond;
- R² and R² are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo substituted heterocyclo, cycloalkylalkyl or substituted cycloalkyalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted of heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl.
- R² is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted of cycloalkyalkyl or substituted cycloalkyalkyl, cycloalkyalkyl or substituted cycloalkyalkyl, cycloalkyalkyl or substituted cycloalkyalkyl, cycloalkyalkyl or substituted cycloalkyalkyl, cycloalkyalkyl

- enylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl;
- R³ and R³ ac each independently II, alkyl or substituted alky, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkyl or substituted cycloalkylakyl, cycloalkenylakyl or substituted cycloalkylakyl, cycloalkenylakyl or substituted cycloalkylakyl, cycloalkenylakyl or substituted cycloalkylakyl, apid or substituted cycloalkylakyl, apid or substituted alkeny, apidily or substituted alkoy, amin, NPR ², alkylnio or substituted alkylnio;
- R* is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl substituted cycloalkyl, cycloalkenyl or substituted cycloalkylajkyl or substituted cycloalkenyl, cycloalkcycloalkylajkyl or substituted cycloalkenylajkyl, cycloalkpolicy or substituted cycloalkenylajkyl, heterocycloalkyl or substituted cycloalkenylajkyl, heterocycloalkyl or substituted cycloalkenylajkyl, alkyloalkyl R*NIC=0, or SO.NR*R*I
- R'NIC—(), or NO, NK R';

 R' is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkenyl, or substituted alkynyl, cycloalkyl or substituted cycloalkyl, or substituted cycloalkenyl or substituted cycloalkenyl or substituted cycloalkenyl, beterocyclo. cycloalkylakyl or substituted cycloalkenylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted cycloalkenylalkyl, heterocycloalkyl, or substituted cycloalkenylalkyl. heterocycloalkyl or substituted aryl, arylalkyl or substituted aryl, arylalkyl or substituted aryl, arylalkyl or substituted aryl, arylalkyl, R'C—O, R'NIC—O, SO,R', or SO,N'R' S', ON,R' S', or SO,R' or SO,N'R' S', or SO,R' or SO,R'
- R° is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkylajkyl or substituted cycloalkylajkyl, cycloalkenylajkyl or substituted cycloalkylajkyl, cycloalkenylajkyl or substituted cycloalkylajkyl, heterocycloalkyl or substituted cycloalkylajkyl, heterocycloalkyl or substituted cycloalkylajkyl, or substituted aryl, arylajkyl or substituted arylajkyl, CN, OH, OR, R'C—0, R'NHC—0, SOR, or SOR, NR'R'.
- R² and R² are each independently II, ally I or substituted ally illustry all experiments of the substituted ally illustry all experiments of the substituted explosition of substituted explosition of substituted explosition of substituted explosition of explosition of substituted ally substit
- R⁸ and R⁸ are each independently II, alkyl or substituted alkyl, alkenyl or substituted alkyl, alkenyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl substituted cycloalkenyl in substituted cycloalkylalkyl, cycloalkylalkyl or substituted cycloalkylalkyl, tetrocycloalkyl or substituted cycloalkylalkyl, heterocycloalkyl aryl alkyl in substituted aryl, arylalkyl or substituted aryl, arylalkyl or substituted alkylhio, R⁸ C=0, R⁸ NMC=0, SO, R⁸ o SO, NR R⁸ and R⁸ alkylthio or substituted alkylthio, R⁸ c=0, R⁸ NMC=0, SO, R⁸ o SO, NR R⁸ and R⁸ alkylthio
- R° and R° are each independently H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkenyl or substituted alkenyl, alkenyl or substituted eycloalkyl or substituted eycloalkenyl, peterocyclo or substituted eycloalkenyl, heterocyclo or

substituted heterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted heterocycloalkyl, aryl or substituted arylalkyl, CN, OH, OR³, R³C=O, 5 R³NHC=O, or SO.NR³R³.

R'NIC—O, or SO₂NR'R'; especially where the groups W and Y of this preferred subgenus are also within the definitions of W and Y' of formula la, with the provisos (1) to (14) of said formula la where appropriate to this subgenus, and most preferably where (i) when Y' is —O— and W is CR'R?—CR'R', A; and A₂ are not simultaneously CH; and (ii) when L is a bond, G is not an unsubstituted phentyl group. Aparticularly preferred subgenus of the compounds of the invention includes compounds of the formula I or salts 15 thereof wherein one or more, preferably all, of the substitutents are as defined below:

G is an aryl (especially, phenyl or naphthyl) or heterocyclo (especially those heterocyclo groups G of the compounds of the Examples herein) group, where said group is mono-20 or polycyclic, and which is optionally substituted at one or more positions, preferably with substitutes as exemplified in any of the compounds of the Examples herein; Lis a bond, (CR²/R) (where it a lan R² and R² are each independently H, alkyl or substituted alkyl), or —CH2- 25

NH—; A₁ and A₂ are each independently CR⁷ where R⁷ (i) is hydrogen, alkyl or substituted alkyl, arylalkyl or substituted arylalkyl, alkenyl or substituted alkenyl (for example, alkenyl substituted with aryl (sepcially, phenyl 30

example, alkenyl substituted with aryl (especially, phenyl 30 or naphthyl) or substituted aryl, nor alkenyl substituted with heterocyclo or substituted heterocyclo, aryl or substituted aryle heterocyclo, heterocycloalkyl or substituted heterocyclo, heterocycloalkyl or substituted heterocycloalkyl, where, for each, perferred substituted are one or more groups 35 selected from V^1 (especially N_1 and A_{22} groups of the formula CR^2 where R^2 for each of A_3 and/or A_3 is independently selected from unsubstituted C_{1-4} alkyl, or C_{1-4} alkyl, which alkyl is substituted by one or more groups V^2), or (ii) forms, together with R^2 of a group V^2 of especially where V^2 is CR^2 V^2 , a heterocyclic especially where V^2 is CR^2 V^2 , a heterocyclic

ring; V1 is OH, CN, halo, -O-aryl, -O-substituted aryl, -O-heterocyclo (e.g., -O-(optionally substituted pyridinyl) or -O-(optionally substituted pyrimidinyl)), 45 -O-substituted heterocyclo, -O-CO-alkyl, -0-CO-substituted alkyl, -0-(alkylsilyl), -O-arylalkyl, -O-substituted arylalkyl, -O-COalkyl, -O-CO-substituted alkyl, -O-CO-arylalkyl, -O-CO-substituted arylalkyl, -O-CO-aryl, 50 -O-CO-substituted aryl, -O-CO-heterocyclo, —O—CO-substituted heterocyclo, —S-(optionally substituted aryl)-NH-CO-(optionally substituted alkyl), -SO-(optionally substituted aryl)-NH-CO-(optionally substituted alkyl). -SO2-(optionally substituted aryl)- 55 NH-CO-(optionally substituted alkyl), -NH-SO2aryl, -NH-SO2-substituted aryl, -NH-CO-O-(optionally substituted arylalkyl), -NH-CO-O-alkyl, NH-CO-O-substituted alkyl, -NH-CO-alkyl, -NH-CO-substituted alkyl, -NH-CO-aryl, -NH-60 CO-substituted aryl, -NH-CO-(optionally substituted arylalkyl), -NH-CO-(optionally substituted alkyl)-O-(optionally substituted aryl), -N(optionally substituted alkyl)(optionally substituted arvl), -N(optionally substituted alkyl)(optionally substituted arylalkyl), -COH, 65 —COOH, —CO—O-alkyl, —CO—O-substituted alkyl,

-CO-O-optionally substituted arylalkyl, -CO-aryl,

—CO-substituted aryl, —O—CO—NH-aryl, —O—CO—NH-substituted aryl, —CO—NH-aryl, —CO—NH-substituted aryl, —CO—NH-supstituted aryl, —O-(optionally substituted aryl)-NH—CO-(optionally substituted aryl)-NH—CO-(optiona

Y is -O-, -SO-, -N(V²)-, -CH₂-N(V²)-, -CO-N(alkyl)-, -CH₂-S-; -CH₂-SO₂-; V² is hydrogen, alkyl, arylalkyl, -CO-alkyl, -CO-O-

V" is hydrogen, alkyl, arylalkyl, —CO-alkyl, —CO—O aryl, —CO—O-arylalkyl;

W is CR'R'—CR'R' (where R' and R' are each independently selected from H, OH, alkyl or substituted alkyl (such as hydroxyalkyl), or where R' forms a heterocyclic ring together with R' of A, or A,). CR'—CR" (where R' and R' are each independently selected from H, alkyl or substituted alkyl (such as hydroxyalkyl), CR'R'—C—O (where R' and R' are each hydrogen, or where R' forms a heterocyclic ring together with R' of A₁ or A₂), N=CR' (where R' is alkyl), cycloalkyl or substituted cyclalkyl, or heterocyclo or substituted heterocyclo;

 Z_1 and Z_2 are O; and Q_1 and Q_2 are H.

Preferred G—L groups are optionally substituted phenyl, optionally substituted naphhyl and optionally substituted fused bicyclic heterocyclic groups such as optionally substituted henzo-fused heterocyclic groups (e.g., bonded to the remainder of the molecule through the benzene portion).

remainder of the molecule inrough the benzene portions, especially such groups wherein the heterocyclic ring bonded to benzene has 5 members exemplified by benzoxazole, benzothiazole, benzothiadazole, benzoxadiazole or benzothiophene, for example:

$$(e.g., \quad \bigcap_{N} W \text{ where } X \text{ is OH or CN) or}$$

$$\downarrow U \qquad \qquad \downarrow U \qquad \qquad$$

where

X=halo (especially F), OH, CN, NO2 or

$$(e.g., -\sqrt{O}), -\sqrt{\sqrt{2}C^2}$$

X'=halo (especially Cl, F, or I), CH₃, CF₃, CN or OCH₃; U is O or S (where S can optionally be oxygenated, e.g., to SO);

U1 is CH2 or CF2;

each U2 is independently N, CH or CF;

U3 is N, O or S;

U⁴ and U⁵, together with the atoms to which they are bonded, form an optionally substituted 5-membered het-45 erocyclic ring which can be partially unsaturated or aromatic and which contains 1 to 3 ring heteroatoms; each U⁶ is independently CH or N; and

. .

denotes optional double bond(s) within the ring formed by U³, U⁴ and U⁵.

An especially preferred subgenus includes compounds of the formula I having the following structure, or salts thereof:

$$G$$
 H_3C
 R^7

where G is an optionally substituted phenyl, naphthyl or benzo-fused bicyclic heterocyclic group, \mathbb{R}^7 is CH_3 or C_{1-4} alkyl substituted by V^1 , and one \mathbb{R}^7 is H or hydroxyl and the other is H

5 Compounds where R" is hydroxyl can provide enhanced water solubility and metabolic stability, fealties to the corresponding compounds where R" is II, in addition to having good permeability and high systemic blood levels. These hydroxyl-bearing compounds can be obtained in vivo by I on metabolism of the corresponding compound where R" is II, as well as by synthetic preparative methods such as those described herea.

Use and Utility

The compounds of the present invention modulate the function of nuclear hormone receptors (NHR), and include compounds which are, for example, agonists, partial agonists, antagonists or partial antagonists of the androgen receptor (RR), the estrogen receptor (ER), the progesterone receptor (PR), the estrogen receptor (ER), the mineral accorticoid receptor (RR), the steroid and xenobiotic receptor (SXR), other steroid binding NHR's, the Orphan receptors on other NHR's. Selective modulation of one such nMR relative to others within the NHR family is preferred. "Modulation" includes, for example, activation (e.g., agonist activity) or inhibition (e.g., antagonist activity) or inhibition (e.g., antagonist activity)

The present compounds are thus useful in the treatment of NHR associated conditions, "NIR associated condition", of NHR associated condition", wherein treated by modulating the function of a NHR in a subject wherein treatment comprises prevention (e.g., prophylactic treatment), partial alleviation or cure of the condition or disorder. Modulation may occur locally, for example, within certain tissues of the subject, or more extensively throughout a subject being treated for such a condition disorder.

The compounds of the present invention are useful for the treatment of a variety of conditions and disorders including, but not limited to, those described following:

Tompounds of formula I can be applied as agoniss, partial agoniss, antagonists, or partial antagonists of the estrogen receptor, preferably selectively to that receptor, in an array of medical conditions which involve modulation of a the estrogen receptor pathway. Applications of said compounds include but are not limited to: osteoporosis, but flushes, vagainal dryness, prostate cancer, breast cancer, endometrial cancer, cancers expressing the estrogen receptor such as the aforementioned cancers and others, so contraception, pregnancy termination, menopause, amenoreaches, and dvsmenoreaches.

Compounds of formula I can be applied as agonists, partial agonists, antagonists or partial antagonists of the progesterone receptor, preferably selectively to that receptor, 5 in an array of medical conditions which involve modulation of the progesterone receptor pathway. Applications of said compounds include but are not limited to breast cancer, containing the progesterone receptor, each other cancers containing the progesterone receptor, and other cancers containing the progesterone receptor progesterone receptor, and the progester cancer cancer

Compounds of formula I can be applied as agonists, partial agonists, antagonists or partial antagonists of the glucocorticoid receptor, preferably selectively to that 65 receptor, in an array of medical conditions which involve modulation of the glucocorticoid receptor pathway. Applications of said compounds include but are not limited to:

inflammatory diseases, autoimmune diseases, prostate cancer, breast cancer, Alzheimer's disease, psychotic disorders, drug dependence, non-insulin dependent Diabetes Mellitus, and as dopamine receptor blocking agents or otherwise as agents for the treatment of dopamine receptor smediated disorders.

Compounds of formula I can be applied as agonists, partial agonists, antagonists or partial antagonists of the mineralocorticoid receptor, preferably selectively to that receptor, in an array of medical conditions which involve modulation of the mineralocorticoid receptor pathway. Applications of said compounds include but are not limited of drug withfaval syndrome and inflammatory diseases.

Compounds of formula 1 can be applied as agonists, partial agonists, antagonists or partial antagonists of the aldosterone receptor, preferably selectively to that receptor, in an array of medical conditions which involve modulation of the aldosterone receptor pathway. One application of said compounds includes but is not limited to: congestive heart failure.

Compounds of formula I can be applied as agonists, partial agonists, antagonists or partial antagonists of the androgen receptor, preferably selectively to that receptor, in an array of medical conditions which involve modulation of the androgen receptor pathway. Applications of said com- 2: pounds include but are not limited to: hirsutism, acne, seborrhea, Alzheimer's disease, androgenic alopecia, hypogonadism, hyperpilosity, benign prostate hypertrophia, adenomas and neoplasies of the prostate (such as advanced metastatic prostate cancer), treatment of benign or malignant 30 tumor cells containing the androgen receptor such as is the case for breast, brain, skin, ovarian, bladder, lymphatic, liver and kidney cancers, pancreatic cancers modulation of VCAM expression and applications therein for the treatment of heart disease, inflammation and immune modulations, 35 modulation of VEGF expression and the applications therein for use as antiangiogenic agents, osteoporosis, suppressing spermatogenesis, libido, cachexia, endometriosis, polycystic ovary syndrome, anorexia, androgen supplement for age related decreased testosterone levels in men, male 40 menopause, male hormone replacement, male and female sexual dysfunction, and inhibition of muscular atrophy in ambulatory patients. For example, pan AR modulation is contemplated, with prostate selective AR modulation ("SARM") being particularly preferred, such as for the 4 treatment of early stage prostate cancers.

Compounds of formula I can be applied as (preferably, selective) antagonisis of the mutated androgen receptor, for example, found in many tumor lines. Examples of such mutants are those found in perpensentative prostate tumor cell 30 lines such as LNCap. (1877A mutation, Biophys. Acta, 187, 1052 (1990), Pc.2ca, (1,7011 R. T877A mutations, J. Urol., 162, 2192 (1999)) and CWR22, (1874Y mutation, Mol. Endo., 11, 450 (1997)). Applications of said compounds include but are not limited to: adenoms and neoplassics of 55 the prostate, breast cancer and endometrial cancer.

Compounds of formula I can be applied as agonists, partial agonists, antagonists or partial antagonists of the steroid and xenobiotic receptor, preferably selectively to that receptor, in an array of medical conditions which involve of modulation of the steroid and xenobiotic receptor pathway. Applications of said compounds include but are not limited to: treatment of disequalation of cholesterol homeostasis, attenuation of metabolism of pharmaceutical agents by co-administration of an agent (compound of the present 65 invention) which modulates the P450 regulator effects of STR

Along with the aforementioned NHR, there also exist a might provide the activating ligands may not be characterized. These proteins are classified as NHR due to strong sequence homology to other NHR, and are known as the Orphan receptors. Because the Orphan receptors demonstrate strong sequence homology to other NHR, compounds of formula 1 include thoses which serve as modulators of the function of the Orphan NHR. Orphan receptors which are modulated by NHR modulators such as compounds within the scope of formula 1 are exemplified, but not limited to, those listed in Table 1. Exemplary therapeutic applications of modulators of said orphan receptors are also listed in Table 1. but are not

Table 1. Exemplary Orphan nuclear hormone receptors, form (M=monomeric, D=heterodimeric, H=homodimeric), tissue expression and target therapeutic applications. (CNS=central nervous system)

limited to the examples therein.

TABLE 1

Exemplary Orphan nuclear hormone receptors, form (M = monomeric, D = heterodimeric, H = homodimeric), tissue expression and target therapeutic applications. (CNS = central nervous system)

Receptor	Form	Tissue Expression	Target Therapeutic Application
NURR1	M/D	Dopaminergic Neurons	Parkinson's Disease
RZRß	M	Brain (Pituitary), Muscle	Sleep Disorders
RORa	M	Cerebellum, Purkinje Cells	Arthritis, Corebellar Ataxia
NOR-1	M	Brain, Muscle, Heart, Adrenal, Thymus	CNS Disorders, Cancer
NGFI-B6	M/D	Brain	CNS Disorders
COUP-Tfa	H	Brain	CNS Disorders
COUP-TFB	H	Brain	CNS Disorders
COUP-TFyx	H	Brain	CNS Disorders
Nur77	H	Brain, Thymus, Adrenals	CNS Disorders
Rev-ErbAα	Н	Muscle, Brain (Ubiquitous)	Obesity
HNF4α	H	Liver, Kidney, Intestine	Diabetes
SF-1	M	Gonads, Pituitary	Metabolic Disorders
LXRα.β	D	Kidney (Ubiquitous)	Metabolic Disorders
GCNF	M/H	Testes, Ovary	Infertility
ERRa.ß	M	Placenta, Bone	Infertility, Osteoporosis
FXR	D	Liver, Kidney	Metabolic Disorders
CARa	н	Liver, Kidney	Metabolic Disorders
PXR	H	Liver, Intestine	Metabolic Disorders
COUP-TF2 (ARP1)	D	Testis	Oncology/angiogenesis
RORbeta	M	CNS, retina, pineal gland	Metabolic Disorders

The present invention thus provides methods for the treatment of NHR-associated conditions, comprising the step of administering to a subject in need thereof at least one compound of formula I in an amount effective therefor. Other therapeutic agents such as those described below may be employed with the inventive compounds in the present methods (for example, separately, or formulated together as a fixed dose). In the methods of the present invention, such other therapeutic agent(s) can be administered prior to, simultaneously with or following the administration of the compound(s) of the present invention.

The present invention also provides pharmaceutical compositions comprising at least one of the compounds of the formula I capable of treating a NHR-associated condition in an amount effective therefor, and a pharmaceutically acceptable carrier (vehicle or diluent). The compositions of the present invention can contain other therapeutic agents as described below, and can be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmacentical formulation It should be noted that the compounds of the present 5

invention are, without limitation as to their mechanism of action, useful in treating any of the conditions or disorders listed or described herein such as inflammatory diseases or cancers, or other proliferate diseases, and in compositions for treating such conditions or disorders. Such conditions 10 due to high increase in REM sleep and a decrease in REM and disorders include, without limitation, any of those described previously, as well as those described following such as: maintenance of muscle strength and function (e.g., in the elderly); reversal or prevention of frailty or agerelated functional decline ("ARFD") in the elderly (e.g., 15 sarcopenia); treatment of catabolic side effects of gliucocorticoids; prevention and/or treatment of reduced bone mass, density or growth (e.g., osteoporosis and osteopenia); treatment of chronic fatigue syndrome (CFS); chronic malagia; treatment of acute fatigue syndrome and muscle loss fol- 20 lowing elective surgery (e.g., post-surgical rehabilitation); acceleration of wound healing; accelerating bone fracture repair (such as accelerating the recovery of hip fracture patients); accelerating healing of complicated fractures, e.g. distraction osteogenesis; in joint replacement; prevention of 25 post-surgical adhesion formation; acceleration of tooth repair or growth; maintenance of sensory function (e.g., hearing, sight, olefaction and taste); treatment of periodontal disease; treatment of wasting secondary to fractures and wasting in connection with chronic obstructive pulmonary 30 disease (COPD), chronic liver disease, AIDS, weightlessness, cancer cachexia, burn and trauma recovery, chronic catabolic state (e.g., coma), eating disorders (e.g., anorexia) and chemotherapy; treatment of cardiomyopathy; treatment of thrombocytopenia; treatment of growth retar- 35 dation in connection with Crohn's disease; treatment of short bowel syndrome; treatment of irritable bowel syndrome; treatment of inflammatory bowel disease, treatment of Crohn's disease and ulcerative colits; treatment of complications associated with transplantation; treatment of 40 Metabolic Syndrome as detailed in Johannsson J. Clin. physiological short stature including growth hormone deficient children and short stature associated with chronic illness; treatment of obesity and growth retardation associated with obesity; treatment of anorexia (e.g., associated with cachexia or aging); treatment of hypercortisolism and 45 Cushing's syndrome; Paget's disease; treatment of osteoarthritis; induction of pulsatile growth hormone release; treatment of osteochondrodysplasias; treatment of depression, nervousness, irritability and stress; treatment of reduced mental energy and low self-esteem (e.g., motivation/ 50 assertiveness); improvement of cognitive function (e.g., the treatment of dementia, including Alzheimer's disease and short term memory loss); treatment of catabolism in connection with pulmonary dysfunction and ventilator dependency: treatment of cardiac dysfunction (e.g., associated 55 with valvular disease, myocardial infarction, cardiac hypertrophy or congestive heart failure); lowering blood pressure; protection against ventricular dysfunction or prevention of reperfusion events; treatment of adults in chronic dialysis; reversal or slowing of the catabolic state of aging; attenu- 60 ation or reversal of protein catabolic responses following trauma (e.g., reversal of the catabolic state associated with surgery, congestive heart failure, cardiac myopathy, burns, cancer, COPD etc.); reducing cachexia and protein loss due to chronic illness such as cancer or AIDS; treatment of 65 hyperinsulinemia including nesidioblastosis; treatment of immunosuppressed patients; treatment of wasting in con-

nection with multiple sclerosis or other neurodegenerative disorders; promotion of myelin repair; maintenance of skin thickness; treatment of metabolic homeostasis and renal homeostasis (e.g., in the frail elderly); stimulation of osteoblasts, bone remodeling and cartilage growth; regulation of food intake; treatment of insulin resistance, including NIDDM, in mammals (e.g., humans); treatment of insulin resistance in the heart; improvement of sleep quality and correction of the relative hyposomatotropism of senescence latency; treatment of hypothermia; treatment of congestive heart failure; treatment of lipodystrophy (e.g., in patients taking HIV or AIDS therapies such as protease inhibitors); treatment of muscular atrophy (e.g., due to physical inactivity, bed rest or reduced weight-bearing conditions); treatment of musculoskeletal impairment (e.g., in the elderly); improvement of the overall pulmonary function; treatment of sleep disorders; and the treatment of the catabolic state of prolonged critical illness; treatment of hirsutism, acne, seborrhea, androgenic alopecia, anemia, hyperpilosity, benign prostate hypertrophy, adenomas and neoplasies of the prostate (e.g., advanced metastatic prostate cancer) and malignant tumor cells containing the androgen receptor, such as is the case for breast, brain, skin, ovarian, bladder, lymphatic, liver and kidney cancers; cancers of the skin, pancreas, endometrium, lung and colon; osteosarcoma; hypercalcemia of malignancy; metastatic bone disease; treatment of spermatogenesis, endometriosis and polycystic ovary syndrome; conteracting preeclampsia, eclampsia of pregnancy and preterm labor; treatment of premenstrual syndrome; treatment of vaginal dryness; age related decreased testosterone levels in men, male menopause, hypogonadism, male hormone replacement, male and female sexual dysfunction (e.g., erectile dysfunction, decreased sex drive, sexual well-being, decreased libido), male and female contraception, hair loss, Reaven's Syndrome and the enhancement of bone and muscle performance/strength; and the conditions, diseases, and maladies collectively referenced to as "Syndrome X" or Endocrinol. Metab., 82, 727-34 (1997).

The present compounds have therapeutic utility in the modulation of immune cell activation/proliferation, e.g., as competitive inhibitors of intercellular ligand/receptor binding reactions involving CAMs (Cellular Adhesion Molecules) and Leukointegrins. For example, the present compounds modulate LFA-ICAM 1, and are particularly useful as LFA-ICAM 1 antagonists, and in the treatment of all conditions associated with LFA-ICAM 1 such as immunological disorders. Preferred utilities for the present compounds include, but are not limited to: inflammatory conditions such as those resulting from a response of the nonspecific immune system in a mammal (e.g., adult respiratory distress syndrome, shock, oxygen toxicity, multiple organ injury syndrome secondary to septicemia, multiple organ injury syndrome secondary to trauma, reperfusion injury of tissue due to cardiopulmonary bypass, myocardial infarction or use with thrombolysis agents, acute glomerulonephritis, vasculitis, reactive arthritis, dermatosis with acute inflammatory components, stroke, thermal injury, hemodialysis, leukapheresis, ulcerative colitis, necrotizing enterocolitis and granulocyte transfusion associated syndrome) and conditions resulting from a response of the specific immune system in a mammal (e.g., psoriasis, organ/tissue transplant rejection, graft vs. host reactions and autoimmune diseases including Raynaud's syndrome, autoimmune thyroiditis, dermatitis, multiple sclerosis, rheumatoid arthritis, insulindependent diabetes mellitus, uveitis, inflammatory bowel disease including Crohn's disease and ulcerative colitis, and systemic lupus erythematosus). The present compounds can be used in treating asthma or as an adjunct to minimize toxicity with cytokine therapy in the treatment of cancers. 5 The present compounds can be employed in the treatment of all diseases currently treatable through steroid therapy. The present compounds may be employed for the treatment of these and other disorders alone or with other immunosuppressive or antiinflammatory agents. In accordance with the 10 invention, a compound of the formula I can be administered prior to the onset of inflammation (so as to suppress an anticipated inflammation) or after the initiation of inflammation. When provided prophylactically, the immunosupressive compound(s) are preferably provided in advance of 15 any inflammatory response or symptom (for example, prior to, at, or shortly after the time of an organ or tissue transplant but in advance of any symptoms or organ rejection). The prophylactic administration of a compound of the formula I prevents or attenuates any subsequent inflammatory 20 response (such as, for example, rejection of a transplanted organ or tissue, etc.) Administration of a compound of the formula I attenuates any actual inflammation (such as, for example, the rejection of a transplanted organ or tissue).

The compounds of the formula I can be administered for 25 any of the uses described herein by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; bucally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection or infusion techniques (e.g., as sterile 30 injectable aqueous or non-aqueous solutions or suspensions); nasally, including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations contain- 35 ing non-toxic, pharmaceutically acceptable vehicles or diluents. The present compounds can, for example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release can be comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps. The present compounds can also be administered liposomally.

suspensions which can contain, for example, microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners or flavoring agents such as those known in the art; and immediate release tablets which 50 other and/or other suitable therapeutic agents useful in the can contain, for example, microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and/or lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants such as those known in the art. The compounds of formula I can also be delivered through the 55 oral cavity by sublingual and/or buccal administration. Molded tablets, compressed tablets or freeze-dried tablets are exemplary forms which may be used. Exemplary compositions include those formulating the present compound(s) with fast dissolving diluents such as mannitol, lactose, 60 sucrose and/or cyclodextrins. Also included in such formulations may be high molecular weight excipients such as celluloses (avicel) or polyethylene glycols (PEG). Such formulations can also include an excipient to aid mucosal adhesion such as hydroxy propyl cellulose (HPC), hydroxy 65 propyl methyl cellulose (HPMC), sodium carboxy methyl cellulose (SCMC), maleic anhydride copolymer (e.g.,

Gantrez), and agents to control release such as polyacrylic copolymer (e.g. Carbopol 934). Lubricants, glidants, flavors, coloring agents and stabilizers may also be added for ease of fabrication and use

Exemplary compositions for nasal aerosol or inhalation administration include solutions in saline which can contain, for example, benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, and/or other solubilizing or dispersing agents such as those known in the art

Exemplary compositions for parenteral administration include injectable solutions or suspensions which can contain, for example, suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3butanediol, water, Ringer's solution, an isotonic sodium chloride solution, or other suitable dispersing or wetting and suspending agents, including synthetic mono- or diglycerides, and fatty acids, including oleic acid, or Crema-

Exemplary compositions for rectal administration include suppositories which can contain, for example, a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquify and/or dissolve in the rectal cavity to release the drug.

Exemplary compositions for topical administration include a topical carrier such as Plastibase (mineral oil gelled with polyethylene).

The effective amount of a compound of the present invention can be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 1 to 100 (for example, 15 or lower, especially 1 to 3 or less) mg/kg of body weight of active compound per day, which can be administered in a single dose or in the form of individual divided doses, such as from 1 to 4 times per day. It will be understood that the specific dose level and frequency of dosage for any particular subject can be varied and will depend upon a variety of factors including the activity of the specific compound employed, achieved by the use of suitable pharmaceutical compositions 40 the metabolic stability and length of action of that compound, the species, age, body weight, general health, sex and diet of the subject, the mode and time of administration, rate of excretion, drug combination, and severity of the particular condition. Preferred subjects for Exemplary compositions for oral administration include 45 treatment include animals, most preferably mammalian species such as humans, and domestic animals such as dogs, cats and the like, subject to NHR-associated conditions.

As mentioned above, the compounds of the present invention can be employed alone or in combination with each treatment of NHR-associated conditions, e.g., an antibiotic or other pharmaceutically active material.

For example, the compounds of the present invention can be combined with growth promoting agents, such as, but not limited to, TRH, diethylstilbesterol, theophylline, enkephalins, E series prostaglandins, compounds disclosed in U.S. Pat. No. 3,239,345, e.g., zeranol, and compounds disclosed in U.S. Pat. No. 4,036,979, e.g., sulbenox or peptides disclosed in U.S. Pat. No. 4,411,890.

The compounds of the invention can also be used in combination with growth hormone secretagogues such as GHRP-6, GHRP-1 (as described in U.S. Pat. No. 4,411,890 and publications WO 89/07110 and WO 89/07111), GHRP-2 (as described in WO 93/04081), NN703 (Novo Nordisk), LY444711 (Lilly), MK-677 (Merck), CP424391 (Pfizer) and B-HT920, or with growth hormone releasing factor and its analogs or growth hormone and its analogs or somatomedins

including IGF-1 and IGF-2, or with alpha-adrenergic agonists, such as clonidine or scrotinin 5-HTD agonists, such as sumatriptan, or agents which inhibit somatostatin or its release, such as physostigmine and pyridostigmine. A still further use of the disclosed compounds of the invention is in 5 combination with parathyroid hormone, PTH(1-34) or bisphosphonates, such as MK-217 (alendronate).

A still further use of the compounds of the invention is in combination with estrogen, testosterone, a selective estrogen receptor modulator, such as tamoxifen or raloxifene, or other 10 androgen receptor modulators, such as those disclosed in Edwards, J. P. et al., Bio, Med. Chem. Let., 9, 1003-1008 (1999) and Hamann, L. G. et al., J. Med. Chem., 42, 210-212 (1999).

A further use of the compounds of this invention is in 15 combination with progesterone receptor agonists ("PRA"), such as levonorgestrel, medroxyprogesterone acetate (MPA).

The compounds of the present invention can be employed alone or in combination with each other and/or other modu- 20 lators of nuclear hormone receptors or other suitable therapeutic agents useful in the treatment of the aforementioned disorders including: anti-diabetic agents; anti-osteoporosis agents; anti-obesity agents; anti-inflammatory agents; antianxiety agents; anti-depressants; anti-hypertensive agents; 25 anti-platelet agents; anti-thrombotic and thrombolytic agents; cardiac glycosides; cholesterol/lipid lowering agents; mineralocorticoid receptor antagonists; phospodiesterase inhibitors; protein tyrosine kinase inhibitors; thyroid mimetics (including thyroid receptor agonists); ana- 30 bolic agents; HIV or AIDS theranies; theranies useful in the treatment of Alzheimer's disease and other cognitive disorders; therapies useful in the treatment of sleeping disorders; anti-proliferative agents; and anti-tumor agents.

Examples of suitable anti-diabetic agents for use in com- 35 bination with the compounds of the present invention include biguanides (e.g., metformin), glucosidase inhibitors (e.g., acarbose), insulins (including insulin secretagogues or insulin sensitizers), meglitinides (e.g., repaglinide), sulfonylureas. (e.g., glimepiride, glyburide and glipizide), 40 biguanide/glyburide combinations (e.g., Glucovance®), thiazolidinediones (e.g., troglitazone, rosiglitazone and pioglitazone), PPAR-alpha agonists, PPAR-gamma agonists, PPAR alpha/gamma dual agonists, SGLT2 inhibitors, glycogen phosphorylase inhibitors, inhibitors of fatty acid 45 binding protein (aP2) such as those disclosed in U.S. Ser. No. 09/519,079 filed Mar. 6, 2000, glucagon-like pentide-1 (GLP-1), and dipeptidyl peptidase IV (DP4) inhibitors.

Examples of suitable anti-osteoporosis agents for use in include alendronate, risedronate, PTH, PTH fragment, raloxifene, calcitonin, steroidal or non-steroidal progesterone receptor agonists, RANK ligand antagonists, calcium sensing receptor antagonists, TRAP inhibitors, selective estrogen receptor modulators (SERM), estrogen and AP-1 55 inhibitors.

Examples of suitable anti-obesity agents for use in combination with the compounds of the present invention include aP2 inhibitors, such as those disclosed in U.S. Ser. No. 09/519,079 filed Mar. 6, 2000, PPAR gamma 60 antagonists, PPAR delta agonists, beta 3 adrenergic agonists, such as AJ9677 (Takeda/Dainippon), L750355 (Merck), or CP331648 (Pfizer) or other known beta 3 agonists as disclosed in U.S. Pat. Nos. 5,541,204, 5,770,615, 5,491,134, 5,776,983 and 5,488,064, a lipase inhibitor, such as orlistat 65 or ATL-962 (Alizyme), a scrotonin (and dopamine) reuptake inhibitor, such as sibutramine, topiramate (Johnson &

Johnson) or axokine (Regeneron), a thyroid receptor beta drug, such as a thyroid receptor ligand as disclosed in WO 97/21993 (U. Cal SF), WO 99/00353 (KaroBio) and GB98/ 284425 (KaroBio), and/or an anorectic agent, such as dexamphetamine, phentermine, phenylpropanolamine or mazindol.

Examples of suitable anti-inflammatory agents for use in combination with the compounds of the present invention include prednisone, dexamethasone, Enbrel®, cyclooxygenase inhibitors (i.e., COX-1 and/or COX-2 inhibitors such as NSAIDs, aspirin, indomethacin, ibuprofen, piroxicam, Naproxen®, Celebrex®, Vioxx®), CTLA4-Ig agonists/ antagonists, CD40 ligand antagonists, IMPDH inhibitors, such as mycophenolate (CellCept®) integrin antagonists, alpha-4 beta-7 integrin antagonists, cell adhesion inhibitors, interferon gamma antagonists, ICAM-1, tumor necrosis factor (TNF) antagonists (e.g., infliximab, OR1384), prostaglandin synthesis inhibitors, budesonide, clofazimine, CNI-1493, CD4 antagonists (e.g., priliximab), p38 mitogenactivated protein kinase inhibitors, protein tyrosine kinase (PTK) inhibitors, IKK inhibitors, and therapies for the treatment of irritable bowel syndrome (e.g., Zelmac® and Maxi-K® openers such as those disclosed in U.S. Pat. No. 6,184,231 B1).

Example of suitable anti-anxiety agents for use in combination with the compounds of the present invention include diazepam, lorazepam, buspirone, oxazepam, and hydroxyzine pamoate.

Examples of suitable anti-depressants for use in combination with the compounds of the present invention include citalonram, fluoxetine, nefazodone, sertraline, and paroxet-

Examples of suitable anti-hypertensive agents for use in combination with the compounds of the present invention include beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g. diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), renin inhibitors, ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisinopril), AT-1 receptor antagonists (e.g., losartan, irbesartan, valsartan), ET receptor antagonists (e.g., sitaxsentan, atrsentan and compounds disclosed in U.S. Pat. Nos. 5,612,359 and 6,043,265), Dual ET/AII antagonist (e.g., compounds disclosed in WO combination with the compounds of the present invention 50 00/01389), neutral endopeptidase (NEP) inhibitors, vasopepsidase inhibitors (dual NEP-ACE inhibitors) (e.g., omapatrilat and gemopatrilat), and nitrates.

Examples of suitable anti-platelet agents for use in combination with the compounds of the present invention include GPIIb/IIIa blockers (e.g., abciximab, eptifibatide, tirofiban), P2Y12 antagonists (e.g., clopidogrel, ticlopidine, CS-747), thromboxane receptor antagonists (e.g., ifetroban), aspirin, and PDE-III inhibitors (e.g., dipyridamole) with or without aspirin.

Examples of suitable cardiac glycosides for use in combination with the compounds of the present invention include digitalis and ouabain.

Examples of suitable cholesterol/lipid lowering agents for use in combination with the compounds of the present invention include HMG-CoA reductase inhibitors (e.g., pravastatin, Iovastatin, atorvastatin, simvastatin, NK-104 (a.k.a. itavastatin, or nisvastatin or nisbastatin) and ZD-4522

(a.k.a. rosuvastatin, or atavastatin or visastatin)), squalene synthetase inhibitors, fibrates, bile acid sequestrants, ACAT inhibitors, MTP inhibitors, lipooxygenase inhibitors, cholesterol absorption inhibitors, and cholesterol ester transfer protein inhibitors (e.g., CP-529414).

Examples of suitable mineralocorticoid receptor antagonists for use in combination with the compounds of the present invention include spironolactone and eplerinone.

Examples of suitable phospodiesterase inhibitors for use include PDEIII inhibitors such as cilostazol, and PDE V inhibitors such as sildenafil.

Examples of suitable thyroid mimetics for use in combination with the compounds of the present invention include thyrotropin, polythyroid, KB-130015, and dronedarone.

Examples of suitable anabolic agents for use in combination with the compounds of the present invention include testosterone, TRH diethylstilbesterol, estrogens, β-agonists, theophylline, anabolic steroids, dehydroepiandrosterone, enkephalins, E-series prostagladins, retinoic acid and com- 20 pounds as disclosed in U.S. Pat. No. 3,239,345, e.g., Zeranol®; U.S. Pat. No. 4,036,979, e.g., Sulbenox® or peptides as disclosed in U.S. Pat. No. 4,411,890.

Examples of suitable HIV or AIDS therapies for use in combination with the compounds of the present invention 25 include indinavir sulfate, saquinavir, saquinavir mesylate, ritonavir, lamivudine, zidovudine, lamivudine/zidovudine combinations, zalcitabine, didanosine, stavudine, and megestrol acetate.

Examples of suitable therapies for treatment of Alzhe- 30 imer's disease and cognitive disorders for use in combination with the compounds of the present invention include donepezil, tacrine, revastigmine, 5HT6, gamma secretase inhibitors, beta secretase inhibitors, SK channel blockers, Maxi-K blockers, and KCNQs blockers

Examples of suitable therapies for treatment of sleeping disorders for use in combination with the compounds of the present invention include melatonin analogs, melatonin receptor antagonists, ML1B agonists, and GABA/NMDA receptor antagonists.

Examples of suitable anti-proliferative agents for use in combination with the compounds of the present invention include cyclosporin A, paclitaxel, FK 506, and adriamycin.

Examples of suitable anti-tumor agents for use in combination with the compounds of the present invention 45 include paclitaxel, adriamycin, epothilones, cisplatin and carboolatin.

Compounds of the present invention can further be used in combination with nutritional supplements such as those described in U.S. Pat. No. 5,179,080, especially in combi- 50 nation with whey protein or casin, amino acids (such as leucine, branched amino acids and hydroxymethylbutyrate), triglycerides, vitamins (e.g., A, B6, B12, folate, C, D and E), minerals (e.g., selenium, magnesium, zinc, chromium, calcium and potassium), carnitine, lipoic acid, creatine, and 55 coenzyme Q-10.

In addition, compounds of the present invention can be used in combination with therapeutic agents used in the treatment of sexual dysfunction, including but not limited to PDE5 inhibitors, such as sildenafil or IC-351; with an 60 antiresorptive agent, hormone replacement therapies, vitamin D analogues, calcitonins, elemental calcium and calcium supplements, cathensin K inhibitors, MMP inhibitors, vitronectin receptor antagonists, Src SH, antagonists, vacular -H+-ATPase inhibitors, progesterone receptor agonists, 65 ipriflavone, fluoride, RANK antagonists, PTH and its analogues and fragments, Tibolone, HMG-CoA reductase

inhibitors, SERM's, p38 inhibitors, prostanoids, 17-beta hydroxysteroid dehydrogenase inhibitors and Src kinase inhibitors

Compounds of the present invention can be used in 5 combination with male contraceptives, such as nonoxynol 9 or therapeutic agents for the treatment of hair loss, such as minoxidil and finasteride or chemotherapeutic agents, such as with LHRH agonists.

For their preferred anticancer or antiangiogenic use, the in combination with the compounds of the present invention 10 compounds of the present invention can be administered either alone or in combination with other anti-cancer and cytotoxic agents and treatments useful in the treatment of cancer or other proliferative diseases, for example, where the second drug has the same or different mechanism of action than the present compounds of formula I. Examples of classes of anti-cancer and evtotoxic agents useful in combination with the present compounds include but are not limited to: alkylating agents such as nitrogen mustards, alkyl sulfonates, nitrosoureas, ethylenimines, and triazenes; EGFR inhibitors such as small molecule EGFR inhibitors. EGFR antibodies such as C225 (Erbitux); antimetabolites such as folate antagonists, purine analogues, and pyrimidine analogues; antibiotics such as anthracyclines, bleomycins, mitomycin, dactinomycin, and plicamycin; enzymes such as L-asparaginase; farnesyl-protein transferase inhibitors; 50: reductase inhibitors; inhibitors of 17β-hydroxy steroid dehydrogenase type 3 or type 1; hormonal agents such as glucocorticoids, estrogens/antiestrogens, androgens/ antiandrogens, progestins, and luteinizing hormonereleasing hormone antagonists, octreotide acetate; microtubule-disruptor agents, such as ecteinascidins or their analogs and derivatives; microtubule-stabilizing agents such as taxanes, for example, paclitaxel (Taxol®), docetaxel (Taxotere®), and their analogs, and epothilones, such as 35 epothilones A-F and their analogs; plant-derived products, such as vinca alkaloids, epipodophyllotoxins, taxanes; and topiosomerase inhibitors; prenyl-protein transferase inhibitors; and miscellaneous agents such as hydroxyurea, procarbazine, mitotane, hexamethylmelamine, platinum 40 coordination complexes such as cisplatin and carboplatin; and other agents used as anti-cancer and cytotoxic agents such as biological response modifiers, growth factors; immune modulators and monoclonal antibodies. The compounds of the invention may also be used in conjunction with radiation therapy.

Representative examples of these classes of anti-cancer and cytotoxic agents include but are not limited to mechlorethamine hydrochloride, cyclophosphamide, chlorambucil, melphalan, ifosfamide, busulfan, carmustin, lomustine, semustine, streptozocin, thiotepa, dacarbazine, methotrexate, thioguanine, mercaptopurine, fludarabine, pentastatin, cladribin, cytarabine, fluorouracil, doxorubicin hydrochloride, daunorubicin, idarubicin, bleomycin sulfate, mitomycin C, actinomycin D, safracins, saframycins, quinocarcins, discodermolides, vincristine, vinblastine, vinorelbine tartrate, etoposide, etoposide phosphate, teniposide, paclitaxel, tamoxifen, estramustine, estramustine phosphate sodium, flutamide, buserelin, leuprolide, pteridines, divneses, levamisole, aflacon, interferon, interleukins, aldesleukin, filgrastim, sargramostim, rituximab, BCG, tretinoin, irinotecan hydrochloride, betamethosone, gemcitabine hydrochloride, altretamine, and topoteca and any analogs or derivatives thereof.

Preferred member of these classes include, but are not limited to, paclitaxel, cisplatin, carboplatin, doxorubicin, carminomycin, daunorubicin, aminopterin, methotrexate, methopterin, mitomycin C, ecteinascidin 743, or porfiromycin, 5-fluorouracil, 6-mercaptopurine, gemcitabine, cytosine arabinoside, podophyllotoxin or podophyllotoxin derivatives such as etoposide, etoposide phosphate or teniposide, melphalan, vinblastine, vincristine, leurosidine, vindesine and leurosine.

Examples of anticancer and other cytotoxic agents include the following: epothilone derivatives as found in German Patent No. 4138042.8; WO 97/19086, WO 98/22461, WO 98/25929, WO 98/38192, WO 99/01124, WO 99/02224, WO 99/02514, WO 99/03848, WO 99/07692, WO 10 99/27890, WO 99/28324, WO 99/43653, WO 99/54330, WO 99/54318, WO 99/54319, WO 99/65913, WO 99/67252, WO 99/67253 and WO 00/00485; cyclin dependent kinase inhibitors as found in WO 99/24416 (see also U.S. Pat. No. 6,040,321); and prenyl-protein transferase 15 inhibitors as found in WO 97/30992 and WO 98/54966; and agents such as those described generically and specifically in U.S. Pat. No. 6,011,029 (the compounds of which U.S. patent can be employed together with any NHR modulators (including, but not limited to, those of present invention) 20 such as AR modulators, ER modulators, with LHRH modulators, or with surgical castration, especially in the treatment of cancer).

The combinations of the present invention can also be formulated or co-administered with other therapeutic agents 25 that are selected for their particular usefulness in administering therapies associated with the aforementioned conditions. For example, the compounds of the invention may be formulated with agents to prevent nausea, hypersensitivity and gastric irritation, such as antiemetics, and H_1 and H_2 30 antibistaminies.

As it pertains to the treatment of cancer, the compounds of this invention are most preferably used alone or in combination with anti-cancer treatments such as radiation therapy and/or with cytostatic and/or cytotoxic agents, such 35 as, but not limited to, DNA interactive agents, such as cisplatin or doxorubicin; inhibitors of farnesyl protein transferase, such as those described in U.S. Pat. No. 6,011, 029; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors, such as CPT-11 or topotecan; tubulin 40 stabilizing agents, such as paclitaxel, docetaxel, other taxanes, or epothilones; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; antimetabolites, such as methoxtrexate; antiangiogenic agents, such as angiostatin, ZD6474, ZD6126 and comber- 45 statin A2; kinase inhibitors, such as her2 specific antibodies, Iressa and CDK inhibitors; histone deacetylase inhibitors, such as CI-994 and MS-27-275. Such compounds may also be combined with agents which suppress the production of circulating testosterone such as LHRH agonists or antago- 50 nists or with surgical castration. Exemplary combination therapies (e.g., for the treatment of prostate cancer) for use with a compound of the present invention include an LHRH modulator or prednisone.

The present invention also contemplates kits, for example, 55 for the treatment of prostate cancer, comprising a first container (such as a vial) containing a pharmaceutical formulation comprising a compound of the present invention, said compound optionally in a pharmaceutically acceptable carrier, and a second container (such as as vial) containing a 60 pharmaceutical formulation comprising one or more agents (such as an LHRI modulator) to be used in combination with said compound of the present invention, said agent(s) optionally in a pharmaceuticall was exceptable carrier.

For example, known therapies for advanced metastatic 65 prostate cancer include "complete androgen ablation therapy" wherein tumor growth is inhibited by controlling

the supply of androgen to the prostate its suce via chemical castration (castration serves to inhibit the production of circulating testesterone (T) and dihydrotestosterone (DHT)) followed by the administration of antrogen excepts (Ag antagonists (which inhibit the function T/DHT derived from the conversion of circulating androgen precursors to T/DHT by the prostate tissue). The compounds of the present invention can be employed as AR antagonists in complete ablation therapy, alone or in combination with other AR antagonists such as Flutamide, Casedex, Nilutamide, or Cyproterone acetate.

The present invention provides compounds which can be used to treat patients suffering from prostate cancer resistant to androgen recentor antagonists which are not within formula I of the invention (or salts thereof), such as bicalutimide. The invention thus further contemplates a method of treating prostate cancer resistant to an androgen receptor antagonist other than those of formula I or salts thereof, comprising the step of administering to a patient in need thereof a compound capable of reducing the growth rate of the tumor mass of said cancer in an amount effective therefor. The term "reducing the growth rate of said tumor mass" denotes reduction in the growth rate (including, of course, stabilization or reduction in size) of said tumor mass upon treatment relative to the growth rate upon treatment with said androgen recentor antagonist other than those of formula I or salts thereof. Compounds of the formula I and pharmaceutically acceptable salts thereof of the present invention are preferred such compounds.

The present invention also contemplates use of an antiestrogen and/or aromatase inhibitor in combination with a compound of the present invention, for example, to assist in mitigating side effects associated with antiandrogen therapy such as gynecomastia. Exemplary antiestrogen and/or aromatase inhibitors include anastrozole (Arimidex), tamoxifen cirtate (Novadex), exemestane (Aromasin), normifene cirrate (Fareston), letrozole (Feman), raloxifene hydrochloride (Evisal), Fasolock, or 923 (Werth Aversi).

The compounds of the present invention may be employed adjuvant to surgery.

Another application of the present compounds is in combination with antibody therapy such as but not limited to antibody therapy against PSCA. An additional application is in concert with vaccine/immune modulating agents for the treatment of cancer.

Compounds of the present invention can be employed in accordance with the methods described in U.S. Provisional Patent Application Ser. No. 60/284,438, entitled "Selective Androgen Receptor Modulators and Methods for Their Identification, Design and Use" filed Apr. 18, 2001 by Mark E. Salvati et al. which Provisional Patent Application is incorporated herein by reference in its entirety (including, but not limited to, reference to all specific compounds within formula I of the present invention), and U.S. patent application Ser. No. 09/885,827, entitled "Selective Androgen Receptor Modulators and Methods for Their Identification. Design and Use" filed Jun. 20, 2001 by Mark E. Salvati et al. which Patent Application is incorporated herein by reference in its entirety (including, but not limited to, reference to all specific compounds within formula 1 of the present invention).

For racemates of compounds of the present invention, one enantiomer can, for example be a full AR antagonist while the other can be an AR antagonist in tumor tissue while having no activity or agonist activity in nontumor tissue containing the androgen receptor.

The above other therapeutic agents, when employed in combination with the compounds of the present invention, can be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.

The following assays can be employed in ascertaining the activity of a compound as a NHR modulator. Preferred are 5 those compounds with an activity greater than 20 µm for binding or transactivation in any of these assays. Various compounds of the present invention were determined to have AR modulator activity utilizing the transactivation assay, and standard AR binding assays as described follow- 10

Transactivation Assays:

AR Specific Assay:

Compounds of the present invention were tested in transactivation assays of a transfected reporter construct and 15 using the endogenous androgen receptor of the host cells. The transactivation assay provides a method for identifying functional agonists and partial agonists that mimic, or antagonists that inhibit, the effect of native hormones, in this case, dihydrotestosterone (DHT). This assay can be used to 20 predict in vivo activity as there is a good correlation in both series of data. See, e.g. T. Berger et al., J. Steroid Biochem. Molec. Biol. 773 (1992), the disclosure of which is herein incorporated by reference.

For the transactivation assay a reporter plasmid is intro- 25 duced by transfection (a procedure to induce cells to take foreign genes) into the respective cells. This reporter plasmid, comprising the cDNA for a reporter protein, such as secreted alkaline phosphatase (SEAP), controlled by ing androgen response elements (AREs). This reporter plasmid functions as a reporter for the transcription-modulating activity of the AR. Thus, the reporter acts as a surrogate for the products (mRNA then protein) normally expressed by a gene under control of the AR and its native hormone. In 35 order to detect antagonists, the transactivation assay is carried out in the presence of constant concentration of the natural AR hormone (DHT) known to induce a defined reporter signal. Increasing concentrations of a suspected antagonist will decrease the reporter signal (e.g., SEAP 40 (ICso). production). On the other hand, exposing the transfected cells to increasing concentrations of a suspected agonist will increase the production of the reporter signal.

For this assay, LNCaP and MDA 453 cells were obtained from the American Type Culture Collection (Rockville, 45 Md.), and maintained in RPMI 1640 or DMEM medium supplemented with 10% fetal bovine serum (FBS; Gibco) respectively. The respective cells were transiently transfected by electroporation according to the optimized procedure described by Heiser, 130 Methods Mol. Biol., 117 50 control was quantified (EC50). (2000), with the pSEAP2/PSA540/Enhancer reporter plasmid. The reporter plasmid, was constructed as follows: commercial human placental genomic DNA was used to generate by Polymerase Cycle Reaction (PCR) a fragment containing the BgIII site (position 5284) and the Hind III site 55 at position 5831 of the human prostate specific antigen promoter (Accession # U37672), Schuur, et al., J. Biol. Chem., 271 (12): 7043-51 (1996). This fragment was subcloned into the pSEAP2/basic (Clontech) previously digested with BglII and HindIII to generate the pSEAP2/ PSA540 construct. Then a fragment bearing the fragment of human PSA upstream sequence between positions -5322 and -3873 was amplified by PCR from human placental genomic DNA. A XhoI and a BgIII sites were introduced with the primers. The resulting fragment was subcloned into 65 pSEAP2/PSA540 digested with XhoI and BgIII respectively, to generate the pSEAP2/PSA540/Enhancer construct.

LNCaP and MDA 453 cells were collected in media containing 10% charcoal stripped FBS. Each cell suspension was distributed into two Gene Pulser Cuvetts (Bio-Rad) which then received 8 µg of the reporter construct, and electoporated using a Bio-Rad Gene Pulser at 210 volts and 960 µFaraday. Following the transfections the cells were washed and incubated with media containing charcoal stripped fetal bovine serum in the absence (blank) or presence (control) of 1 nM dihydrotestosterone (DHT; Sigma Chemical) and in the presence or absence of the standard anti-androgen bicalutamide or compounds of the present invention in concentrations ranging from 10-10 to 10-5 M (sample). Duplicates were used for each sample. The compound dilutions were performed on a Biomek 2000 laboratory workstation. After 48 hours, a fraction of the supernatant was assayed for SEAP activity using the Phospha-Light Chemiluminescent Reporter Gene Assay System (Tropix, Inc). Viability of the remaining cells was determined using the CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay (MTS Assay, Promega). Briefly, a mix of a tetrazolium compound (3-(4,5-dimethylthiazol-2-vl)-5-(3carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS) and an electron coupling reagent (phenazine methosulfate; PMS) are added to the cells. MTS (Owen's reagent) is bioreduced by cells into a formazan that is soluble in tissue culture medium, and therefore its absorbance at 490 nm can be measured directly from 96 well assay plates without additional processing. The quantity of formazan product as measured by the amount of 490 nm prostate specific antigen (PSA) upstream sequences contain- 30 absorbance is directly proportional to the number of living cells in culture. For each replicate the SEAP reading was normalized by the Abs490 value derived from the MTS assay. For the antagonist mode, the % Inhibition was calculated as:

% Inhibition=100x(1-faverage control-average blank/average sample-average blank])

Data was plotted and the concentration of compound that inhibited 50% of the normalized SEAP was quantified

For the agonist mode % Control was referred as the effect of the tested compound compared to the maximal effect observed with the natural hormone, in this case DHT, and was calculated as:

% Control=100xaverage sample-average blank/average controlaverage blank

Data was plotted and the concentration of compound that activates to levels 50% of the normalized SEAP for the GR Specificity Assay:

The reporter plasmid utilized was comprised of the cDNA for the reporter SEAP protein, as described for the AR specific transactivation assay. Expression of the reporter SEAP protein was controlled by the mouse mammary tumor virus long terminal repeat (MMTV LTR) sequences that contains three hormone response elements (HREs) that can be regulated by both GR and PR see, e.g. G. Chalepakis et al., Cell, 53(3), 371 (1988). This plasmid was transfected into A549 cells, which expresses endogenous GR, to obtain a GR specific transactivation assay. A549 cells were obtained from the American Type Culture Collection (Rockville, Md.), and maintained in RPMI 1640 supplemented with 10% fetal bovine serum (FBS; Gibco). Determination of the GR specific antagonist activity of the compounds of the present invention was identical to that described for the AR specific transactivation assay, except

that the DHT was replaced with 5 mM dexamethasone (Signa Chemicals), a specific agonist for GR. Determination of the GR specific agonist activity of the compounds of the present invention was performed as described for the AR transactivation assay, wherein one measures the activation 5 of the GR specific reporter system by the addition of a test compound, in the absence of a known GR specific agonists ligand.

PR Specific Assay:

AR Binding Assay:

of bound [3H]-DHT.

The reporter plasmid utilized was comprised of the cDNA 10 for the reporter SEAP protein, as described for the AR specific transactivation assay. Expression of the reporter SEAP protein was controlled by the mouse mammary tumor virus long terminal repeat (MMTV LTR) sequences that contains three hormone response elements (HREs) that can 15 be regulated by both GR and PR. This plasmid was transfected into T47D, which expresses endogenous PR, to obtain a PR specific transactivation assay. T47D cells were obtained from the American Type Culture Collection (Rockville, Md.), and maintained in DMEM medium 20 supplemented with 10% fetal bovine serum (FBS; Gibco). Determination of the PR specific antagonist activity of the compounds of the present invention was identical to that described for the AR specific transactivation assay, except that the DHT was replaced with 1 nM Promegastone (NEN), 25 a specific agonist for PR. Determination of the PR specific agonist activity of the compounds of the present invention was performed as described for the AR transactivation assay, wherein one measures the activation of the PR specific reporter system by the addition of a test compound, in the 30 absence of a known PR specific agonists ligand.

(T877A mutant AR) or MDA 453 (wild type AR) in 96-well microtiter plates containing RPMI 1640 or DMEM supple- 35 mented with 10% charcoal stripped CA-FBS (Cocaleco Biologicals) respectively, were incubated at 37° C. to remove any endogenous ligand that might be complexed with the receptor in the cells. After 48 hours, either a saturation analysis to determine the K, for tritiated 40 dihydrotestosterone, [3H]-DHT, or a competitive binding assay to evaluate the ability of test compounds to compete with [3H]-DHT were performed. For the saturation analysis, media (RPMI 1640 or DMEM-0.2% CA-FBS) containing [3H]-DHT (in concentrations ranging from 0.1 nM to 16 45 nM) in the absence (total binding) or presence (non-specific binding) of a 500-fold molar excess of unlabeled DHT were added to the cells. After 4 hours at 37° C., an aliquot of the total binding media at each concentration of [3H]-DHT was removed to estimate the amount of free [3H]-DHT. The 50 remaining media was removed, cells were washed three times with PBS and harvested onto UniFilter GF/B plates (Packard), Microscint (Packard) was added and plates

For the whole cell binding assay, human LNCaP cells

For the saturation analysis, the difference between the total binding and the non-specific binding, was defined as specific binding. The specific binding was evaluated by Scatchard analysis to determine the K₂ for [PH]-DHT. See a. D. Rochbard, Mathematics and statistics of ligand assays: 60 an illustrated guide: In: 1. Langon and J. J. Clapp, eds., Ligand Assay, Masson Publishing U.S.A., Inc., New York, pp. 45–99, (1981), the disclosure of which is herein incorporated by reference.

counted in a Top-Counter (Packard) to evaluate the amount

For the competition studies, media containing 1 nM 65 [3H]-DHT and compounds of the invention ("test compounds") in concentrations ranging from 10⁻¹⁰ to 10⁻⁵

M were added to the cells. Two replicates were used for each sample. After 4 hours at 3° C, cells were washed, harvested and counted as described above. The data was plotted as the amount of [⁴H]-DHT (% of control in the absence of teconopound) remaining over the range of the dose response curve for a given compound. The concentration of the compound that inhibited 50% of the amount of [⁴H]-DHT bound in the absence of competing ligand was quantified (C_{S₂)} after log-logit transformation. The K₁ values were determined by application of the Cheng-Prusoff equation to the IC_{S₂} values, where:

$$K_1 = \frac{IC_{50}}{(1 + (^3H\text{-DHT})/K_4 \text{ for }^3H\text{-DHT})}$$

After correcting for non-specific binding, $\rm IC_{50}$ values were determined. The $\rm IC_{50}$ is defined as the concentration of competing ligand needed to reduce specific binding by $\rm 50\%$. The $\rm K_{5}$ for [H-DHII for MDA 453 and LNCaP were 0.7 and 0.2 nM respectively.

Human Prostate Cell Proliferation Assay.

Compounds of the present invention were tested ("test compounds") on the proliferation of human prostate cancer cell lines. For that, MDA PCa2b cells, a cell line derived from the metastasis of a patient that failed castration, Navone et al., Clin. Cancer Res., 3, 2493-500 (1997), were incubated with or without the test compounds for 72 hours and the amount of [3H-thymidine incorporated into DNA was quantified as a way to assess number of cells and therefore proliferation. The MDA PCa2b cell line was maintained in BRFF-HPC 1 media (Biological Research Faculty & Facility Inc., MD) supplemented with 10% FBS. For the assay, cells were plated in Biocoated 96-well microplates and incubated at 37° C. in 10% FBS (charcoalstripped)/BRFF-BMZERO (without androgens). After 24 hours, the cells were treated in the absence (blank) or presence of 1 nM DHT (control) or with test compounds (sample) of the present invention in concentrations ranging from 10-10 to 10-5 M. Duplicates were used for each sample. The compound dilutions were performed on a Biomek 2000 laboratory work station. Seventy two hours later 0.44 uCi. of [3H]-Thymidine (Amersham) was added per well and incubated for another 24 h followed by tripsinization, harvesting of the cells onto GF/B filters. Micro-scint PS were added to the filters before counting them on a Beckman TopCount.

The % Inhibition was calculated as:

% Inhibition=100x(1-[average_{control}-average_{blank}/average_{sample}-average blank])

Data was plotted and the concentration of compound that inhibited 50% of the [3 H]-Thymidine incorporation was quantified (IC $_{50}$).

55 C2C12 Mouse Myoblast Transactivation Assay:

Two functional transactivation assays were developed to assess the efficacy of androgan agonists in a muscle cell background using a luciferase reporter. The first assay (ARTAStable J buses a cell line, Stable 1 (clone #72), which stably expresses the full length rat androgen receptor but requires the transient transfection of an enhance/reporter. This cell line was derived from C2C12 mouse moyoblast cells. The second assay (ARTA Stable 2 uses a cell line, Stable 2 (clone #133), derived from Stable 1 which stably corresses both AR and the enhance/fuciferase reporter.

The enhancer/reporter construct used in this system is pGL3/2XDR-1/luciferase. 2XDR-1 was reported to be an AR specific response element in CV-1 cells, Brown et. al. The Journal of Biological Chemisty 272, 8227-8235, (1997). It was developed by random mutagenesis of an AR/GR consensus enhancer sequence. ARTA Stable 1:

- Stable 1 cells are plated in 96 well format at 6,000 cells/well in high glucose DMEM without phenol red (Gibco BRL, Cat. No.: 21063-029) containing 10% charcoal and dextran treated FBS (HyClone Cat. No.: No.: 15630-080), 1x MEM Na Pyruvate (Gibco BRL, Cat. No.: 11360-070), 0.5x Antibiotic-Antimycotic, and 800 ug/ml Geneticin (Gibco BRL, Cat. No.: 10131-035).
- 2: 48 hours later, cells are transfected with pGL3/2XDR-1/ luciferase using LipofectAMINE Plus™ Reagent (Gibco 15 BRL, Cat. No.: 10964-013). Specifically, 5 ng/well pGL3/ 2XDR-1/luciferase DNA and 50 ng/well Salmon Sperm DNA (as carrier) are diluted with 5 µl/well Opti-MEMem media (Gibco BRL, Cat. No.: 31985-070). To this, 0.5 µl/well Plus reagent is added. This mixture is incubated 20 for 15 minutes at room temperature. In a separate vessel, 0.385 µl/well LipofectAMINE reagent is diluted with 5 µl/well Opti-MEM. The DNA mixture is then combined with the LipofectAMINE mixture and incubated for an additional 15 minutes at room temperature. During this 25 time, the media from the cells is removed and replaced with 60 µl/well of Opti-MEM. To this is added 10 µl/well of the DNA/LipofectAMINE transfection mixture. The cells are incubated for 4 hours.
- 3. The transfection mixture is removed from the cells and 30 replaced with 90 ul of media as in #1 above.
- 4. 10 ul/well of appropriate drug dilution is placed in each well.
- 5. 24 hours later, the Steady-Glo™ Luciferase Assay System instructions (Promega, Cat. No.: E2520). ARTA Stable 2
- 1. Stable 2 cells are plated in 96 well format at 6,000 cells/well in high glucose DMEM without phenol red (Gibco BRL, Cat. No.: 21063-029) containing 10% char- 40 coal and dextran treated FBS (HyClone Cat. No.: SH30068.02), 50 mM HEPES Buffer (Gibco BRL, Cat. No.: 15630-080), 1×MEM Na Pyruvate (Gibco BRL, Cat. No.: 11360-070), 0.5× Antibiotic-Antimycotic, 800 µg/ml Geneticin (Gibco BRL, Cat. No.: 10131-035) and 800 45 sion: ug/ml Hygromycin β (Gibco BRL, Cat. No.: 10687-010).
- 2. 48 hours later, the media on the cells is removed and replaced with 90 µl fresh. 10 µl/well of appropriate drug dilution is placed in each well.
- 3. 24 hours later, the Steady-Glo™ Luciferase Assay System 50 is used to detect activity according to the manufacturer's instructions (Promega, Cat. No.: E2520).
- See U.S. patent application Ser. No. 09/885,831, entitled "Cell Lines and Cell-BasedAssays for Identification of Jacek Ostrowski et al. which Patent Application is incorporated herein by reference in its entirety. Proliferation Assays

Murine Breast Cell Proliferation Assay:

The ability of compounds of the present invention ("test 60 compounds") to modulate the function of the AR was determined by testing said compounds in a proliferation assay using the androgen responsive murine breast cell line derived from the Shionogi tumor, Hiraoka et al., Cancer Res., 47, 6560-6564 (1987). Stable AR dependent clones of 65 the parental Shionogi line were established by passing tumor fragments under the general procedures originally described

in Tetuo, et. al., Cancer Research 25, 1168-1175 (1965). From the above procedure, one stable line, SC114, was isolated, characterized and utilized for the testing of example compounds. SC114 cells were incubated with or without the test compounds for 72 hours and the amount of [3H]thymidine incorporated into DNA was quantified as a surrogate endpoint to assess the number of cells and therefore the proliferation rate as described in Suzuki et. al., J. Steroid Biochem. Mol. Biol. 37, 559-567 (1990). The SC114 cell SH30068.02), 50 mM HEPES Buffer (Gibco BRL, Cat. 10 line was maintained in MEM containing 10-8 M testosterone and 2% DCC-treated FCS. For the assay, cells were plated in 96-well microplates in the maintenance media and incubated at 37° C. On the following day, the medium was changed to serum free medium [Ham's F-12:MEM (1:1, v/v) containing 0.1% BSA] with (antagonist mode) or without (agonist mode) 10-8 M testosterone and the test compounds of the present invention in concentrations ranging from 10-10 to 10-5 M. Duplicates were used for each sample. The compound dilutions were performed on a Biomek 2000 laboratory work station. Seventy two hours later 0.44 uCi of [3H]-Thymidine (Amersham) was added per well and incubated for another 2 hr followed by tripsinization, and harvesting of the cells onto GF/B filters. Micro-scint PS were added to the filters before counting them on a Beckman TopCount. For the antagonist mode, the % Inhibition was calculated

% Inhibition=100x(1-[average_sample-average blank/average_control-

Data was plotted and the concentration of compound that inhibited 50% of the [3H]-Thymidine incorporation was quantified (IC50).

For the agonist mode % Control was referred as the effect is used to detect activity according to the manufacturer's 35 of the tested compound compared to the maximal effect observed with the natural hormone, in this case DHT, and was calculated as:

> % Control=100x(average_sample-average_blank)/(average_control-average blank)

Data was plotted and the concentration of compound that inhibited 50% of the [3H]-Thymidine incorporation was quantified (EC50)

In Vitro Assay to Measure GR Induced AP-1 Transrepres-

The AP-1 assay is a cell based luciferase reporter assay. A549 cells, which contain endogenous glucocorticoid receptor, were stably transfected with an AP-1 DNA binding site attached to the luciferase gene. Cells are then grown in RPMI+10% fetal calf serum (charcoal-treated)+Penicillin/ Streptomycin with 0.5 mg/ml geneticin. Cells are plated the day before the assay at approximately 40000 cells/well. On assay day, the media is removed by aspiration and 20 μ l assay buffer (RPMI without phenol red+10% FCS (charcoal-Androgen Receptor Modulators" filed Jun. 20, 2001 by 55 treated)+Pen/Strep) is added to each well. At this point either 20 ul assay buffer (control experiments), the compounds of the present invention ("test compounds") (dissolved in DMSO and added at varying concentrations) or dexamethasome (100 nM in DMSO, positive control) are added to each well. The plates are then pre-incubated for 15 minutes at 37° C., followed by stimulation of the cells with 10 ng/ml PMA. The plates are then incubated for 7 hrs at 37° C. after which 40 µl luciferase substrate reagent is added to each well. Activity is measured by analysis in a luminometer as compared to control experiments treated with buffer or dexamethasome. Activity is designated as % inhibition of the reporter system as compared to the buffer control with 10 ng/ml PMA alone. The control, dexamethasone, at a concentration of ≤ 10 µM typically suppresses activity by 65%. Test compounds which demonstrate an inhibition of PMA induction of 50% or greater at a concentration of test compound of ≤10 µM are deemed active.

Wet Prostate Weight Assay AR Antagonist Assay:

The activity of compounds of the present invention as AR antagonists was investigated in an immature male rat model, a standard, recognized test of antiandrogen activity of a given compound, as described in L. G. Hershberger et al., Proc. Soc. Expt. Biol. Med., 83, 175 (1953); P. C. Walsh and R. F. Gittes, "Inhibition of extratesticular stimuli to prostate growth in the castrated rat by antiandrogens", Endocrinology, 86, 624 (1970); and B. J. Furr et al., "ICI 176,334: A novel non-steroid, peripherally selective antiandrogen", J. Endocrinol., 113, R7-9 (1987), the disclosures of which are herein incorporated by reference.

The basis of this assay is the fact that male sexual accessory organs, such as the prostate and seminal vesicles, play an important role in reproductive function. These glands are stimulated to grow and are maintained in size and secretory function by the continued presence of serum testosterone (T), which is the major serum androgen (>95%) produced by the Leydig cells in the testis under the control of the pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH). Testosterone is converted to the more 25 active form, dihydrotestosterone, (DHT), within the prostate by 5α-reductase. Adrenal androgens also contribute about 20% of total DHT in the rat prostate, compared to 40% of that in 65-year-old men. F. Labrie et al. Clin. Invest. Med., 16, 475-492 (1993). However, this is not a major pathway, since in both animals and humans, castration leads to almost complete involution of the prostate and seminal vesicles without concomitant adrenalectomy. Therefore, under normal conditions, the adrenals do not support significant growth of prostate tissues. M. C. Luke and D. S. Coffey, 'The Physiology of Reproduction' ed. By E. Knobil and J. D. Neill, 1, 1435-1487 (1994). Since the male sex organs are the tissues most responsive to modulation of the androgen activity, this model is used to determine the androgen dependent growth of the sex accessory organs in immature castrated rats.

Male immature rats (19-20 days old Sprague-Dawley, Harlan Sprague-Dawely) were castrated under metofane ansestesia. Five days after surgery these castrated rats (60-70 g, 23-25 day-old) were dosed for 3 days. Animals were dosed sub-cutaneously (s.c.) 1 mg/kg with Testosterone Proprionate (TP) in arachis oil vehicle and antiandrogen test compounds (compounds of the present invention) were dosed orally by gavage (p.o.) in dissolved/ suspensions of 80% PEG 400 and 20% Tween 80 (PEGTW). Animals were dosed (v/w) at 0.5 ml of vehicle/100 g body weight. Experimental groups were as follows:

- 1. Control vehicle
- 2. Testosterone Propionate (TP) (3 mg/rat/day, 55 subcutaneous)
- 3. TP plus Casodex (administered p.o. in PEGTW, QD), a recognized antiandrogen, as a reference compound.
- 4. To demonstrate antagonist activity, a compound of the present invention ("test compound") was administered (p.o. in PEGTW, OD) with TP (s.c. as administered in group 2) in a range of doses.
- 5. To demonstrate agonist activity a compound of the present invention ("test compound") was administered alone (p.o. in PEGTW, QD) in a range of doses. At the end of the 3-day treatment, the animals were

sacrificed, and the ventral prostate weighed. To compare

data from different experiments, the sexual organs weights were first standardized as mg per 100 g of body weight, and the increase in organ weight induced by TP was considered as the maximum increase (100%), ANOVA followed by 5 one-tailed Student or Fischer's exact test was used for statistical analysis

The gain and loss of sexual organ weight reflect the changes of the cell number (DNA content) and cell mass (protein content), depending upon the serum androgen concentration. See Y. Okuda et al., J. Urol., 145, 188-191 (1991), the disclosure of which is herein incorporated by reference. Therefore, measurement of organ wet weight is sufficient to indicate the bioactivity of androgens and androgen antagonist. In immature castrated rats, replacement of exogenous androgens increases seminal vesicles (SV) and the ventral prostate (VP) in a dose dependent manner.

The maximum increase in organ weight was 4 to 5-fold when dosing 3 mg/rat/day of testosterone (T) or 1 mg/rat/ day of testosterone propionate (TP) for 3 days. The ECso of 20 T and TP were about 1 mg and 0.03 mg, respectively. The increase in the weight of the VP and SV also correlated with the increase in the serum T and DHT concentration. Although administration of T showed 5-times higher serum concentrations of T and DHT at 2 hours after subcutaneous injection than that of TP, thereafter, these high levels declined very rapidly. In contrast, the serum concentrations of T and DHT in TP-treated animals were fairly consistent during the 24 hours, and therefore, TP showed about 10-30-

fold higher potency than free T. In this immature castrated rat model, a known AR antagonist (Casodex) was also administered simultaneously with 0.1 mg of TP (EDon), inhibiting the testosterone-mediated increase in the weights of the VP and SV in a dose dependent manner. The antagonist effects-were similar when dosing 35 orally or subcutaneously. Compounds of the invention also exhibited AR antagonist activity by suppressing the testosterone-mediated increase in the weights of VP and SV. Levator Ani & Wet Prostate Weight Assay AR Agonist Assav:

The activity of compounds of the present invention as AR agonists was investigated in an immature male rat model, a recognized test of anabolic effects in muscle and sustaining effects in sex organs for a given compound, as described in L. G. Hershberger et al., Proc. Soc. Expt. Biol. Med., 83, 175 (1953); B. L. Beyler et al, "Methods for evaluating anabolic and catabolic agents in laboratory animals", J. Amer. Med. Women's Ass., 23, 708 (1968); H. Fukuda et al., "Investigations of the levator ani muscle as an anabolic steroid assay", Nago Dai. Yak. Ken. Nem. 14, 84 (1966) the disclo-

50 sures of which are herein incorporated by reference. The basis of this assay lies in the well-defined action of androgenic agents on the maintenance and growth of muscle tissues and sexual accessory organs in animals and man. Androgenic steroids, such as testosterone (T), have been well characterized for their ability to maintain muscle mass. Treatment of animals or humans after castrations with an exogenous source of T results in a reversal of muscular atrophy. The effects of T on muscular atrophy in the rat levator ani muscle have been well characterized. M. Masuoka et al., "Constant cell population in normal, testosterone deprived and testosterone stimulated levator ani muscles" Am. J. Anat. 119, 263 (1966); Z. Gori et al., "Testosterone hypertrophy of levator ani muscle of castrated rats. I. Quantitative data" Boll.-Soc. Ital. Biol. Sper. 42, 1596 65 (1966); Z. Gori et al., "Testosterone hypertrophy of levator ani muscle of castrated rats. II. Electron-microscopic observations" Boll.-Soc. Ital. Biol. Sper. 42, 1600 (1966); A. Boris

et al., Steroids 15, 61 (1970). As described above, the effects of androgens on maintenance of male sexual accessory organs, such as the prostate and seminal vesicles, is well described. Castration results in rapid involution and atrophy of the prostate and seminal vesicles. This effect can be 5 reversed by exogenous addition of androgens. Since both the levator ani muscle and the male sex organs are the tissues most responsive to the effects of androgenic agents, this model is used to determine the androgen dependent reversal organs in immature castrated rats. Sexually mature rats (200-250 g, 6-8 weeks-old, Sprague-Dawley, Harlan) were acquired castrated from the vendor (Taconic). The rats were divided into groups and treated daily for 7 to 14 days with one of the following:

- 1. Control vehicle
- 2. Testosterone Propionate (TP) (3 mg/rat/day, subcutaneous)
- a recognized antiandrogen, as a reference compound.
- 4. To demonstrate antagonist activity, a compound of the present invention ("test compound") was administered (p.o. in PEGTW, QD) with TP (s.c. as administered in group 2) in a range of doses.
- 5. To demonstrate agonist activity a compound of the present invention ("test compound") was administered alone (p.o. in PEGTW, QD) in a range of doses.

At the end of the 7-14-day treatment, the animals were sacrificed by carbon dioxide, and the levator ani, seminal 30 Dunning Prostate Tumor: vesicle and ventral prostate weighed. To compare data from different experiments, the levator ani muscle and sexual organ weights were first standardized as mg per 100 g of body weight, and the increase in organ weight induced by TP was considered as the maximum increase (100%). Super- 35 anova (one factor) was used for statistical analysis.

The gain and loss of sexual organ weight reflect the changes of the cell number (DNA content) and cell mass (protein content), depending upon the serum androgen concentration. See Y. Okuda et al., J. Urol., 145, 188-191 40 bacilutamide/Casodex (Maucher A., and von Angerer, J. (1991), the disclosure of which is herein incorporated by reference. Therefore, measurement of organ wet weight is sufficient to indicate the bioactivity of androgens and androgen antagonist. In immature castrated rats, replacement of exogenous androgens increases levator ani, seminal vesicles 45 (SV) and prostate in a dose dependent manner.

The maximum increase in organ weight was 4 to 5-fold when dosing 3 mg/rat/day of testosterone (T) or 1 mg/rat/ day of testosterone propionate (TP) for 3 days. The EC₅₀ of T and TP were about 1 mg and 0.03 mg, respectively. The 50 increase in the weight of the VP and SV also correlated with the increase in the serum T and DHT concentration. Although administration of T showed 5-times higher serum concentrations of T and DHT at 2 hours after subcutaneous injection than that of TP, thereafter, these high levels 55 declined very rapidly. In contrast, the serum concentrations of T and DHT in TP-treated animals were fairly consistent during the 24 hours, and therefore, TP showed about 10-30fold higher potency than free T. MDA PCa2b Human Prostate Zenograft Assay:

In Vivo Antitumor Testing: MDA-PCa-2b human prostate tumors were maintained in Balb/c nu/nu nude mice. Tumors were propagated as subcutaneous transplants in adult male nude mice (4-6 weeks old) using tumor fragments obtained from donor mice. Tumor passage occurred every 5-6 weeks. 65

For antitumor efficacy trial, the required number of animals needed to detect a meaningful response were pooled at

the start of the experiment and each was given a subcutaneous implant of a tumor fragment (~50 mg) with a 13-gauge trocar. Tumors were allowed to grow to approx. 100-200 mg (tumors outside the range were excluded) and animals were evenly distributed to various treatment and control groups. Treatment of each animal was based on individual body weight. Treated animals were checked daily for treatment related toxicity/mortality. Each group of animals was weighed before the initiation of treatment (Wt1) of atrophy in the levator ani muscle and the sex accessory 10 and then again following the last treatment dose (Wt2). The difference in body weight (Wt2-Wt1) provides a measure of treatment-related toxicity.

Tumor response was determined by measurement of tumors with a caliper twice a week, until the tumors reach 15 a predetermined "target" size of 0.5 gm. Tumor weights (mg) were estimated from the formula: Tumor weight= (length×width2)+2.

Tumor response end-point was expressed in terms of tumor growth inhibition (% T/C), defined as the ratio of 3. TP plus Casodex (administered p.o. in PEGTW, QD), 20 median tumor weights of the treated tumors (T) to that of the control group (C).

> To estimate tumor cell kill, the tumor volume doubling time was first calculated with the formula:

TVDT=Median time (days) for control tumors to reach target size-Median time (days) for control tumors to reach half the target size s And, Log cell kill=(T-C)+(3.32×TVDT)

Statistical evaluations of data were performed using Gehan's generalized Wilcoxon test.

Dunning R3327H prostate tumor is a spontaneously derived, well differentiated androgen responsive adenocarcinoma of the prostate (Smolev J K, Heston W D, Scott W W. and Coffey D S. Cancer Treat Rep. 61, 273–287 (1977). The growth of the R3327H subline has been selected for its highly androgen-dependent and reproducible growth in intact male rats. Therefore, this model and other sublines of this tumor have been widely used to evaluate in vivo antitumor activities of antiandrogens such as flutamide and Cancer Res. Clin. Oncol., 119, 669-674 (1993), Furr B. J. A. Euro. URL. 18 (suppl. 3), 2-9 (1990), Shain S. A. and Huot R I. J. Steriod Biochem. 31, 711–718 (1988)).

At the beginning of the study, the Dunning tumor pieces (about 4×4 mm) are transplanted subcutaneously to the flank of mature male Copenhagen rats (6-7 weeks old, Harlan-Sprague Dawley, Indianapolis, Md.), About 6 weeks after the implantation, the animals with tumors of measurable size (about 80-120 mm2) are randomized into treatment groups (8-10 rats/group) and the treatments are initiated. One group of the rats are castrated to serve as the negative control of tumor growth. Animals are treated daily with compounds of the current invention, standard antiandrogens such as bacilutamide or vehicle (control) for an average of 10 to 14 weeks. Test compounds are dissolved in a vehicle of (2.5 ml/kg of body weight) 10% polyethylene glycol and 0.05% Tween-80 in 1% carboxymethyl cellulose, PEG/CMC, (Sigma, St Louis, Mo.). Typical therapeutic experiments would include three groups of three escalating doses for 60 each standard or test compound (in a range of 300-3 mg/kg).

Tumors in the vehicle (control) group reach a size of 1500 to 2500 mm3, whereas the castrated animal group typically shows tumor stasis over the 14 weeks of observation. Animals treated orally with 20 mg/kg of bicalutamide or flutamide would be expected to show a 40% reduction in tumor volumes compared to control after 14 weeks of treatment. The size of tumors are measured weekly by

vernier caliper (Froboz, Switzerland), taking perpendicular measurements of length and width. Tumor volumes are measured in mm3 using the formula: Length×Width× Height=Volume. Statistical differences between treatment groups and control are evaluated using multiple ANOVA 5 analysis followed by one tail non-parametric Student t test. Mature Rat Prostate Weight Assay:

The activity of compounds of the present invention were investigated in a mature male rat model, which is a variation of the Levator ani & wet prostate weight assay described 10 above. The above in vivo assays are recognized assays for determining the anabolic effects in muscle and sustaining effects in sex organs for a given compound, as described in L. G. Hershberger et al., 83 Proc. Soc. Expt. Biol. Med., 175 (1953); B. L. Beyler et al, "Methods for evaluating anabolic 15 and catabolic agents in laboratory animals", 23 J. Amer. Med. Women's Ass., 708 (1968); H. Fukuda et al., "Investigations of the levator ani muscle as an anabolic steroid assay", 14 Nago Dai. Yak. Ken. Nem. 84 (1966) the disclosures of which are herein incorporated by reference. The 20 basis of this assay lies in the well-defined action of androgenic agents on the maintenance and growth of muscle tissues and sexual accessory organs in animals and man.

The male sexual accessory organs, such as the prostate and seminal vesicles, play an important role in reproductive 25 function. These glands are stimulated to grow and are maintained in size and secretory function by the continued presence of serum testosterone (T), which is the major serum androgen (>95%) produced by the Levdig cells in the testis under the control of the pituitary luteinizing hormone (LH) 30 and follicle stimulating hormone (FSH). Testosterone is converted to the more active form, dihydrotestosterone, (DHT), within the prostate by 5α-reductase. Adrenal androgens also contribute about 20% of total DHT in the rat prostate, compared to 40% of that in 65-year-old men. F. 35 Labrie et. al. 16 Clin. Invest. Med., 475-492 (1993). However, this is not a major pathway, since in both animals and humans, castration leads to almost complete involution of the prostate and seminal vesicles without concomitant adrenalectomy. Therefore, under normal conditions, the 40 adrenals do not support significant growth of prostate tissues, M. C. Luke and D. S. Coffey, "The Physiology of Reproduction" ed. By E. Knobil and J. D. Neill, 1, 1435-1487 (1994). Since the male sex organs and the levator ani are the tissues most responsive to modulation of 45 the androgen activity, this model is used to determine the activity of compounds that modulate the androgen receptor pathway in mature rats.

Along with its mitogenic activity on tissues such as prostate, seminal vesicle and muscle, testosterone also 50 serves as a negative regulator for its own biosynthesis. Testosterone production in the Leydig cells of the testis is controlled by the level of circulating LH released from the pituitary gland. LH levels are themselves controlled by the osterone levels in the blood serve to inhibit the secretion of LHRH and subsequently reduce levels of LH and ultimately the levels of circulating testosterone levels. By measuring blood levels of LH as they are effected by compounds of the present invention ("test compounds"), it is possible to deter- 60 mine the level of agonist or antagonist activity of said compounds at the hypothalamic axis of this endocrine cycle.

Matched sets of Harlan Sprague-Dawely rats (40-42 days old, 180-220 g), were dosed orally by gavage (p.o.) with the test compounds in dissolved/suspensions of 80% PEG 400 65 and 20% Tween 20 (PEGTW) for 14 days, Two control groups, one intact and one castrated were dose orally only

with the PEGTW vehicle. Animals were dosed (v/w) at 0.5 ml of vehicle/100 g body weight. Experimental groups were as follows:

1. Intact vehicle (p.o., PEGTW, QD)

2. Control vehicle (p.o., PEGTW, QD)

3. Bicalutamide (Casodex, a recognized antiandrogen, as a reference compound) or a compound of the present invention, p.o. in PEGTW QD. (in a range of doses). At the end of the 14-day treatment, the animals were sacrificed, and the ventral prostate, the seminal vesicles, and the levator ani were removed surgically and weighed. To compare data from different experiments, the organs weights were first standardized as mg per 100 g of body weight, and expressed as a percentage of the value of the respective organ in the intact group.

Rat luteinizing hormone (rLH) is quantitatively determined with the Biotrak [1251] kit (Amersham Pharmacia Biotek), following the manufacturer directions. The assay is based on the competition by the LH present in the serum of the binding of [125] rLH to an Amerlex-M bead/antibody suspension. The radioactivity that remains after incubation with the serum and subsequent washes is extrapolated into a standard curve to obtain a reading in ng/ml.

The gain and loss of sexual organ and levator ani weight reflect the changes of the cell number (DNA content) and cell mass (protein content), depending upon the serum androgen concentration, see Y. Okuda et al., J. Urol., 145, 188-191 (1991), the disclosure of which in herein incorporated by reference. Therefore, measurement of organ wet weight is sufficient to indicate the bioactivity of androgens and androgen antagonist. In the mature rats assay, active agonist agents will have no effect or will increase the weight of one or more of the androgen responsive organs (levator ani, prostate, seminal vessicle) and will have no effect or a suppressive effect on LH secretion. Compounds with antagonist activity will decrease the weight of one or more of the androgen responsive organs (levator ani, prostate, seminal vesicle) and will have no effect or a reduced suppressive effect on LH secretion.

CWR22 Human Prostate Zenograft Assay:

In Vivo Antitumor Testing: CWR22 human prostate tumors were maintained in Balb/c nu/nu nude mice. Tumors were propagated as subcutaneous transplants in adult male nude mice (4-6 weeks old) using tumor fragments obtained from donor mice. Tumor passage occurred every 5-6 weeks.

For antitumor efficacy trial, the required number of animals needed to detect a meaningful response were pooled at the start of the experiment and each was given a subcutaneous implant of a tumor fragment (~50 mg) with a 13-gauge trocar. Tumors were allowed to grow to approx. 100-200 mg (tumors outside the range were excluded) and animals were evenly distributed to various treatment and control groups. Treatment of each animal was based on individual body weight. Treated animals were checked daily for treatment related toxicity/mortality. Each group of anilevel of LHRH produced in the hypothalmic region. Test- 55 mals was weighed before the initiation of treatment (Wt1) and then again following the last treatment dose (Wt2). The difference in body weight (Wt2-Wt1) provides a measure of treatment-related toxicity.

> Tumor response was determined by measurement of tumors with a caliper twice a week, until the tumors reach a predetermined "target" size of 0.5 gm. Tumor weights (mg) were estimated from the formula: Tumor weight= (lengthxwidth2)+2.

Tumor response end-point was expressed in terms of tumor growth inhibition (% T/C), defined as the ratio of median tumor weights of the treated tumors (T) to that of the control group (C).

To estimate tumor cell kill, the tumor volume doubling time was first calculated with the formula:

TVDT-Median time (days) for control tumors to reach target size— Median time (days) for control tumors to reach half the target size And, Log cell kill=(T-C)+(3.32xTVDT)

size And, Log cell kill=(T-C)+(3.32×TVDT)

Statistical evaluations of data were performed using

Gehan's generalized Wilcoxon test.

The following Examples illustrate embodiments of the present invention, and are not intended to limit the scope of 10

the claims. Within certain Examples, one compound of the formula I is prepared and then employed to further prepare one or more additional compounds of the formula I or salts thereof. Methods employed to prepare one compound of the formula I or salt thereof as described herein can be employed 15 as appropriate to prepare other compounds of the invention.

ABBREVIATIONS The following abbreviations are used herein:

DBU=1,8-diazabicyclo[5.4.0]undec-7-ene 4-DMAP=4-dimethylaminopyridine ee=enantiomeric excess DMF dimethylformamide EtOAc=ethyl acetate LDA=lithium diisopropylamide Hünig's Base=N,N-diisopropylethylamine Me=methyl RT=retention time TEA=trifluoroacetic acid THF=tetrahvdrofuran TLC=thin layer chromatography 35 TMS=trimethylsilyl pTSA=para-toluenesulfonic acid ⊗=heat t-Bu=tert-butyl PhCH₂=toluene Pd/C palladium on activated charcoal TsCl=tosyl chloride TBSOTf=tert-butyldimethylsilyl trifluoromethane sulfonate TBS=tert-butyldimethylsilane MeI methyl iodide (BOC), O=di-tert-butyl dicarbonate TEA=triethylamine 50

Ts=tosyl Ph=phenyl EtOH=ethanol

DCE=dichloroethane DMSO=dimethylsulfoxide Ra-Ni=Raney Nickel MS=molecular sieves

n-BuLi=n-butyllithium rt=room temperature LC=liquid chromatography

MS(ES)=Electro-Spray Mass Spectrometry mCPBA=m-chloroperoxybenzoic acid

sat=saturated AcOH=acetic acid McOH=methanol Et₂O=diethyl ether Ac=acetyl

DEAD=diethyl azodicarboxylate

h=hours

Et=cthyl

WSDCC=water soluble dicarbonyl diimide, 1-(3-di methylaminopropyl)-3-ethylcarbodiimide hydrochloride

TBAF=tetrabutylammonium fluoride

DBAD=di-terbutylazodicarboxylate

DCC=Dicyclohexylcarbodiimide

Wilkinson's catalyst=RhCl(PPh3)3 ADDP=1.1-fazodicarbonylldiniperidine

DMA=dimethylacetamide

DME=1,2-dimethoxyethane BOP=benzotriazol-1-vloxytris(dimethylamino)-

phosphonium hexafluorophosphate

HRMS=high resolution mass spectrometry

TBME=MTBE=methyl tert-butyl ether (i.e., 2-methoxy-2-methyl-propane)

TiCl₂ Cp₂=bis(cyclopentadienyl)titanium dichloride DPPA=diphenylphosphoryl azide

HMPA=hexamethylphosphoryl amide

V %=volume percent

BH₃.DMS=borane dimethylsulfate vvm=volume gas per volume liquid per minute

EXAMPLE 1

(3aa,4a,7a,7aa)-2-(4-Bromo-3-methylphenyl) tetrahydro-4,7-ethanothiopyrano[3,4-c]pyrrole-1,3,8 (2H,4H)-trione (1C)

A. 4-(tert-Butyldimethylsiloxy)-2H-thiopyran (1A)

2,3-Dihydro-4H-thiopyran-4-one (1.50 g, 13.1 mmol, synthesized as described in Richards et al. J. Org. Chem. 46, 4836–4842 (1981)) was dissolved in CH₂Cl₂ (130 mL) and 10

15

20

triethylamine (5.47 mL, 39.4 mmol) was added. tert-Butyldimethylsilyl trifluoromethanesulfonate (3.62 mL, 15.8 mmol) was then added. After 10 minutes, the volatiles were removed in vacuo at 25° C. The resulting vellow oil was passed through a short column of SiO₂ eluting with 3% 5 TEA in hexanes to yield 1.82 g (7.97 mmol, 61%) of compound 1A as an orange oil.

B. 1-[4-bromo-3-methylphenyl]-1H-pyrrole-2,5dione (1B)

4-Bromo-3-methylaniline (1.55 g, 8.33 mmol) and maleic anhydride (0.898 g, 9.16 mmol) were dissolved in acetic acid (10 mL) and heated at 115° C. for 12 h. The reaction was then cooled to 25° C. and the acetic acid was removed 20 in vacuo. The resulting residue was suspended in 5% K,CO, (100 mL), stirred for 25 minutes, filtered and rinsed with water. The material was then dried in vacuo to give 1.65 g (6.20 mmol, 74%) of compound 1B as a light brown solid. HPLC: 100% at 2.96 min (retention time) (YMC S5 ODS 35 [M+NH₄]*. column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm).

C. (3aα,4α,7α,7aα)-2-(4-Bromo-3-methylphenyl) tetrahydro-4,7-ethanothiopyrano[3,4-c]pyrrole-1,3,8 (2H,4H)-trione (1C)

Compound 1A (0.313 g, 1.41 mmol) and compound 1B (0.250 g, 0.940 mmol) were dissolved in toluene and heated 50 to reflux for 5 h. The toluene was then removed by passing a stream of argon through the reaction flask. The residue was then purified by flash chromatography on SiO, eluting with 20% hexane in chloroform. This gave 0.168 g of the enol 55 ether intermediate as a yellow solid. The enol ether intermediate was dissolved in dichloroethane (2.0 mL) and TFA (0.25 mL) was added. After 0.5 h, the reaction was quenched with saturated aqueous NaHCO3 and extracted with CH2Cl3 (2×30 mL). The organics were dried over anhydrous sodium 60 sulfate and evaporated to give 0.079 g (0.21 mmol, 22%) of compound 1C as a white solid. HPLC: 99% at 3.010 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 396.9 [M+NH₄]*.

EXAMPLE 2

(3aq.4q.7q.7aq)-2-(4-Bromo-3-methylphenyl) tetrahydro-4,7-ethanothiopyrano[3,4-c]pyrrole-1,3,8 (2H,4H)-trione 5,5-dioxide (2)

Compound 1C (0.040 g, 0.11 mmol) was dissolved in CH2Cl2 (4.0 mL) and cooled to 0° C. m-CPBA (60% purity. 0.061 g, 0.21 mmol) was added and the reaction was then warmed to 25° C. After 1 h, a 1:1 mixture of saturated NaHCO3 and saturated sodium sulfite (20 mL) was added with vigorous stirring. After 15 minutes, the mixture was extracted with CH2Cl2 (2×30 mL) and the organics were dried over anhydrous sodium sulfate to yield 0.031 g (0.075 mmol, 71%) of compound 2 as a white solid. No purification was necessary. HPLC: 78% at 2.290 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 429.8

EXAMPLE 3

(3aα,4β,7β,7aα)-2-(3-Chlorophenyl)hexahydro-4methyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (3)

3-Chloroaniline (0.100 g, 0.787 mmol) and 3,6-endoxo-3-methylhexahydrophthalic anhydride (0.172 g, 0.945 mmol) were dissolved in AcOH (2.0 mL) and heated at 110° C. for 11 h. The reaction was then cooled to 25° C., poured into cold saturated aq. K2CO3 and stirred vigorously for 10 min. The solution was then filtered and rinsed with water. The resulting filtrate was dried in vacuo to give 0.118 g (0.404 mmol, 51%) of compound 3 as a white solid. No further purification was needed. HPLC: 99% at 2.510 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 292.32 [M+H]+.

10

55

(3aα,4α,7α,7aα)- and (3aα,4β,7β,7aα)-4-[(Acetyloxy)methyl]-3a,4,7,7a-tetrahydro-2-[3-(trifluoromethyl)phenyl]-4,7-poxy-III-isoindole-1,3 (2H)-dione (4i and 4ii, Respectively)

2-Acctoxymethylfuran (0.599 m.l., 4.78 mmol) and 1-[3-(trifluromethyl-pheny]-HI-pyroce2-5-tione (0.500 g. 2.39 mmol, prepared as described in Example B) were dissolved in methylene chloride (3.0 m.l.) at 25° C. Affer 22 3° h, the volatiles were removed in vacuo and the resulting residue was purified by flash chromatography on 510₂ eluting with 0-15% acctone in methylene chloride to give 0.438 g (1.15 mmol, 48%) of a yellow oil as a 2:1 mixture 49 of compound 4 and compound 41%, which was not separated. HPLC: 100% at 3.093 min (retention time) (YMC S5 ODS column 4.6.500 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 ml./min, monitoring at 220 mm. MS (ES): mr 2.39.9 [MN+H],"

EXAMPLE 5

(3aα,4α,7α,7aα)- and (3aα,4β,7β,7aα)-4-[(Acetyloxy)methyl]-Hexahydro-2-[3-(trifluoromethyl)phenyl]-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (5i and 5ii, Respectively)

66

The 2.1 mixture of compounds 4i and 4ii (0.361 g, 0.948 mixture) was dissolved in ethyl acetale (25 mL) and PdlC (10% Pdl, 0.2) was added. Hydrogen was introduced via a balloon and the reaction was stirred at 25° C. for 4 h, followed by filtration through Celtie and firsing with ethyl acetate. Concentration in vacuo gave 0.348 g (0.908 mmd), 90%) of a yellow oil that was determined to be a 21 mixture 20 of compound 5i and compound 5ii (which was not separated). HPLC: 100% at 2.900 min (retention time) (YMC SS OIDS column 4.6x50 mm ethuing with 10-90% aqueous methanol over 4 minutes containing 0.1% TRA, 4 ml/min, monitoring at 220 mm). MS (ES): m/z 401.0 filt-4111.

EXAMPLE 6

(3αα,4α,7α,7αα)- and (3αα,4β,7β,7αα)-3a,4,7,7a-Tetrahydro-5-(hydroxymethyl)-2-[3-(trifluoromethyl)phenyl]-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (6i and 6ii. Respectively)

1-[3-(Trifluoromethyl)phenyl]-1H-pyrrole-2.5-dione (0.500 g. 2.9 mmol, prepared as described in Example 1B) and 3-furamethanol (0.412 ml., 4.78 mmol) were dissolved in methylene chloride (3.0 ml.) and stirred at 25° C. for 20 h. The volatiles were then removed in vacuo and the resulting material purilled by flash chromatography on SiO₂ chiting with chloroformiaceone to give 0.379 g. (1.12 mmol, 47%) of compound 6i and 0.220 g. of compound 6ii, both as white solids. Compound 6i IPLC: 100% at 2.197 min (retention time) (YMC SS ODS column 4.6×50 mm elluting with 10-90% auguous methanol over 4 minutes containing

50

0.1% TEA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 338.0 [M-H]⁻. Compound 6ii: HPLC: 100% at 2.477 min (retention time) (YMC SS ODS column 4.6x50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 5 338.0 [M-H]⁻.

EXAMPLE 7

(3aα,4α,7α,7aα)-3a,4,7,7a-Tetrahydro-5-(hydroxymethyl)-4-methyl-2-[3-(trifluoromethyl) phenyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione (7)

2-Methyl-3-furamethanol (0.537 g., 478 mmol) and 1/34(fillnormethyl)-phenyl-11-pyrole-23-clinone (0.500 g., 2.39 mmol, prepared as described in Example 118) were dissolved in dichloroethane (2.0 mL) and stirred at 25° C, for 20 h. The reaction was then concentrated in vacuo and purified by flash chromatography in SiO₂ cluting with ethyl catalactic methylene chloride to give 0.317 g (0.897 mmol, 37.5%) of compound 7 as a white solid. No other possible isomer was isolated after chromatography, HPLC: 100% at 2.197 min (retention time) (YMC S5 ODS column 4.6x50 me lutting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 mm). MS (ES): mir 251.9 [M-HT].

EXAMPLE 8

(3aα,4β,7β,7aα)-2-[3,5-Bis(trifluoromethyl)phenyl] hexahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione (8)

3.5-Bistriflucomenthylpaniline (0.017 g. 0.075 mmod) was dissolved in aceite acid (0.300 ml) and transferred to a 1.5 ml. conical vial with a septa cap. Stock solutions of an additional 95 amines were prepared as described above. To each of the above vials was added 0.40 ml. (0.12 mmol) of a sock solution of exo-7-oxidicyclog(2.21) [beptane-2.3-diter/boxylic anhydride in aceite acid. The vials were then excluded the detail of the configuration of

acetone/methylene chloride and the vials were heated at 40° C. for 1 h. Once all products were in solution, they were transferred via robot to filter tubes with coarse frits prewetted with 0.2 mL of water. Nitrogen was blown through each tube until the volatile organics were removed, 1.5 mL of 10% aq. K2CO3 was then added to each tube followed by vigorous shaking at 25° C. for 15 min. The tubes were then drained, resealed and 1.0 mL of water was added to each tube followed by shaking. The tubes were drained again and 10 washed with water a second time. The resulting residues in each tube were then dried in vacuo for 48 h. After drying, 1.0 mL of 20% TFA in methylene chloride was added to each tube and the racks were shaken for 30 min. The tubes were then drained into a 96-well plate with pre-tared custom 15 micro-tubes present. Each tube was assayed for product purity (analytical LC) and identity (LC-MS). The tubes were then concentrated in vacuo and weighed for yields. The tube containing the reaction of 3,5-bistrifluoromethylaniline and exo-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic 20 anhydride, yielded 0.022 g (0.058 mmol, 77%) of compound 8 as a white solid. HPLC: 94% at 4.03 nin (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 434.2 25 [M+Na+MeOH]*. Of the remaining 95 additional reactions run, a total of 80 final compounds were obtained in >70% purity and >5 mg yield. Several samples needed further purification which was performed by short SiO2 column cluting with methylene chloride/acetone. See Table 2 below.

EXAMPLE 9

(3aα,4α,7α,7aα)-2-(4-Bromophenyl)octahydro-1,3dioxo-4,7-etheno-5H-pyrrolo[3,4-c]pyridine-5carboxylic Acid Phenyl Ester (9)

1-[4-Bromophenyl]-1H-pyrrole-2,5-dione (0.250 g, 0.992 mmol, prepared as described in Example 1B) and 1(2H)pyridinecarboxylic acid phenylmethyl ester (0.299 g, 1.49 55 mmol, synthesized as described in Richard et al. J. Org. Chem. 46, 4836-4842 (1981)) were dissolved in toluene and heated at 85° C. for 1 h. Upon cooling to 25° C., the toluene was removed in vacuo. The resulting residue was dissolved in a minimum amount of chloroform and the product was precipitated by addition of hexanes. After 1 h at 25° C., the product was filtered and rinsed with cold 20% hexanes in chloroform giving 0.243 g (0.536 mmol, 54%) of compound 9 as a white solid (single isomer). HPLC: 100% at 3.393 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 454.98 [M+H]+.

EXAMPLE 10

(3aα,4α,7α,7aα)-2-(4-Bromophenyl)octahydro-1,3dioxo-4,7-etheno-5H-pyrrolo[3,4-c]pyridine-5carboxylic Acid Phenylmethyl Ester (10)

1-[3-(Trifluoromethyl)phenyl]-III-pyrrote-2,5-dione (3/8 g, 15.7 mmol, repract as described in Example 1B) and 1(2II)-pyridinecarboxylic acid phenylmethyl ester (4.00 g, 18.8 mmol, synthesized as described in Richard et al., J. ²⁵ org. Chem. 46, 4836–4842 (1981)) were dissolved in toluene and bated at 80° C. for 3 h. After cooling to 25° C, the toluene was removed in vacuo and the resulting residue was purified by flast chematography on 8iO₂ eluting with methanol/methylene chloride to give 3.20 g (7.01 mmol, 45%) of compound 10 as a yellow oil IIPLC: 95% at 3.510 min (retention time) (YMC SS ODS column 4.6-SO mm chuting with 10–90% aguecus methanol over 4 minutes containing 0.1% TFA, 4 ml/min, monitoring at 220 mm). MS (SS): mi. 457.2 [M-HIT].

EXAMPLE 11

(3aa,4a,7a,7aa)-Hexahydro-2-[3-(trifluoromethyl) phenyl]-4,7-ethano-1H-pyrrolo[3,4-c]pyridine-1,3 (2H)-dione trifluoroacetate (11)

Compound 10 (3.20 g, 7.01 mmol) was dissolved in 100 m. of McOH and 10% PdUC Deguss catalyst (2.00 g, cat.) was added. Hydrogen was then introduced via a halloon. of After 1 h, the reaction was filtered through Cellic and rinsed with McOH. The volatiles were removed in vacuo and the resulting crude material was purified by neverse phase preparative HPLC to yield 2.50 g (5.70 mmol, 81%) of compound 11 as the THA salt (white solid), HPLC-199% at e5 star through the compound 12 as the THA salt (white solid), HPLC-199% at e5 mm letting with 10–90% autoess methand over 4 minutes

containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 325.12 [M+H]*.

EXAMPLE 12

(3a\aa,4\aa,7\aa,7\aa)-5-Acetylhexahydro-2-[3-(trifluoromethyl)phenyl]-4,7-ethano-1H-pyrrolo[3,4c]pyridine-1,3(2H)-dione (12)

Compound II (0.10 g. 0.23 mmol) was suspended in TIH (5.0 mL) and TEA (0.097 mL, 0.46 mmol) was added resulting in a homogeneous solution. Actyl chloride (0.033 mL, 0.46 mmol) was been added. After 2h, the reaction was quenched with saturated aqueous NaI(CO), and extracted with methylene chloride (3×15 mL). The crude material was purified by preparative TIC cluting with chloroform/acetone to give 0.067 g (0.18 mmol, 79%) of compound 12 as a colorless of il. HPLC . 99% at 2.66 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TRA, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 367.0 [M+H]⁺.

EXAMPLE 13

(3aα,4α,7α,7aα)-5-Benzoylhexahydro-2-[3-(trifluoromethyl)phenyt]-4,7-ethano-1H-pyrrolo[3,4c]pyridine-1,3(2H)-dione (13)

Compound II (0.10 g. 0.23 mmol) was suspended in THF (55 m II.) and TEA (0.097 m II.) 0.46 mmol) was added resulting in a homogeneous solution. Benzoyl chloride (0.053 m II.) 0.46 mmol) was then added. After 2 h, the reaction was quenched with saturated aqueous NaHCO, and the extracted with methylene chloride (3x15 m II.). The erude material was purified by reverse phase preparative HPIC to give 0.002 g (0.047 mmol. 20%) of compound 13 as a white

45

50

foam. HPLC: 99% at 3.183 min (retention time) (YMC S5 ODS column 4.6x50 mm eltuting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/x 429.1 [M+H]^T.

EXAMPLE 14

(3aa,4a,7a,7aa)-Hexahydro-5-methyl-2-[3-(trifluoromethyl)phenyl]4,7-ethano-1H-pyrrolo[3,4c]pyridine-1,3(2H)-dione (14)

Compound 11 (0.10 g. 0.23 µmmol) was suspended in 25 IIIF (50 ml.) and TEA (0.09 ml., 0.46 mmol) was added resulting in a homogeneous solution. Dimethyl sulfate (0.043 ml., 0.46 mmol) was added and the reaction was stirred at 25° C. Alter 14 h, the reaction was concentrated in vaccio and the crude material was purified by preparative 30° TLC cluting with 10% MeOH in methylene chloride to give 0.030 g (0.088 mml., 30%) of compound 14 as a white solid. HPLC: 100% at 1.797 min (retention time) (YMC S5 ODS column 4.655 mm etluting with 10–30% aspecus methanol over 4 minutes containing 0.1% TFA, 4 ml./min, 35° memoiniring at 220 mml. MS (ES); mx 339.21 [MHH].

EXAMPLE 15

(3aα,4α,7α,7aα)-Hexahydro-5-(phenylmethyl)-2-[3-(trifluoromethyl)phenyl]-4,7-ethano-1H-pyrrolo[3,4c]pyridine-1,3(2H)-dione Trifluoroacetate (15)

Compound 11 (0.10 g. 0.23 mmol) was dissolved in DMF (5.0 mL) and K,CO, (0.063 g. 0.46 mmol) was added. Benzyl bromide (0.041 mL, 0.35 mmol) was then added. The reaction was sirred at 25° C. for 1 h, filtered and concentrated in vacuo. The crude material was purified by reverse phase preparative HPLC to give 0.055 g (0.10 mmol, 43%) of compound 15 sa a white solid. HPLC 1.009 st 12.31 min (retention time) (YMC SS ODS column 4.6x50 mm cluting with 10~90% agreeous methanol over 4 minutes 65 containing 0.1% TPA, 4 mL/min, monitoring at 220 mm). MS (ES): m2 4.15.36 [MHT]?

(3aα,4α,7α,7aα-Hexahydro-5-propyl-2-[3-(trifluoromethyl)phenyl]-4,7-ethano-1H-pyrrolo[3,4c]pyridine-1,3(2H)-dione Trifluoroacetate (16)

Compound 11 (0.10 g. 0.23 mmol) was dissolved in DMf (5.0 mL) and K₂CO₅ (0.079 g. 0.57 mmol) was added, followed by 1-bromopropase (0.031 mL, 0.34 mmol). The reaction was stirred at 25° C. for 6 h, then filtered and concentrated in vacuo. The crede material was purified by reverse phase preparative HPLC to give 0.070 g (0.15 mmol. 63%) of compound 16 as a white solid. HPLC: 100% at 1.907 min (retention time) (YMC SS ODS column 4.6x50 mm cluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 mm). MS (ES): mc 340.22 [M+H]T.

EXAMPLE 17

(3αα,4α,4αβ,5αβ,6α,6αα)-2-[4-Cyano-3-(irifluoromethyl)phenyl]decahydro-1,3-dioxo-4,6-(iminomethano)cycloprop[f]isoindole-7-carboxylic Acid Phenylmethyl Ester (17)

1-Methyl-3-nitro-1-nitrosoguanidine (2.5 g. 17 mmol) was added portionwise to a solution of 40% KOHITL/G 25 mt). and E.Q (25 mt), at 0° C. The ether layer turned yellow once addition was complete. After 30-min at 0° C., the other layer was poured into a solution of (3ca.4c,4c,7ca)-2(4-cyano-3-(trifluoromethylphenyl-1)-ctahydro-1,3-dixxx-47-cyteno-51-pyrrol(3,4-c)-pyridim-5-zarboxylic acid phenylmethyl ester (0.500 g. 1.09 mmol, prepared as described in Example 10) and Pd(OAz), (0.010 g) in THI (70 mt) at 0° C. The reaction was then warmed slowly to 25° C., stirred for 24 h and then filtered through Cellier insing with THF. The crude material was then purified by flash chromatogra-ply on SiO₃ cluting with Medl-Chi[L-1, L_5, to give 0.34 g (0.69 s).

nmol, 63%) of compound 17 as a white solid and a single ison. HPLC: 100% at 3.61 min (retention time) (YMC S5 ODS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.11% TFA, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 496.25 [M-H]T

EXAMPLE 18

(3aa,4a,4aβ,5aβ,6a,6aa)-4-[Decahydro-1,3-dioxo-4,6-(iminomethano)cyloprop[f]isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (18)

Compound 17 (0.200 g. 0.404 mmol) was dissolved in McOH (20 ml.) and 5% Pd.CC (200 g) was added. Hydrogen was then introduced via balloon. After 3 h, the reaction was filtered through Celtie, rinsed with McOH and the 30 mmol, 89% compound 18 as a white solid, HPLC: 100% at 1.80 min (retention time) (YMC SS ODS column 4.6x50 mm letting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA. 4 ml/min, monitoring at 220 nm). 38 MS (ES): miz 20.20 [M-H1].

EXAMPLE 19

(3ac,4c,4β,5aβ,6α,6aα)-4-[Decahydro-7-methyl-1, 3-dioxo-4,6-(iminomethano)cycloprop[f]isoindol-2yl]-2-(trifluoromethyl)benzonitrile (19)

Compound 18 (0.100 g, 0.277 mmol) was dissolved in CH, CN (20 m.) TEO (a) 9 m.l., 14 mmol) and Mel (0.652 ml., 0.83 mmol) were then added and the reaction was stirred at 25° C. for 14 h. The reaction was concentrated of under reduced pressure and the enden material was partinoned between CH₂Cl₃-water and the aqueous layer was extracted with CH₂Cl₂ (245 fm.). The combined organics were dried over anhydrous Na₂SO₄. The crude material was purified by lifash chromatography cluting with 5% McOH/CH₂Cl₃ to 65 give 0.030 g (0.080 mmol, 29%) of compound 19 as a light yellow solid. HPLC: 100% at 1.720 min (retention time)

(YMC S5 ODS column 4.6x50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 376.11 [M+H]*.

EXAMPLE 20

(3aα,4β,7β,7aα)-4-(Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (20B)

A. (3aα,4β,7β,7aα)-Hexahydro-4,7epoxyisobenzofuran-1,3-dione (20A)

Freshly distilled dimethyl furan (1.60 ml., 15.3 mmol) was dissolved in CH₂Cl₂ (2.0 ml.) and maleic anhydride (1.00 g., 10.2 mmol) was added. The reaction was stirred at 40 25° C. for 16 h and was then concentrated in vacuo to give a yellow solid. This solid was dissolved in ethyl acetate (20 ml.) and 10% PMC (2.000 g. cat.) was added. Hydrogen was then introduced via a balloon and the reaction stirred for 24 b. The reaction mixture was filtered through Celtic insing with EtOAc followed by concentration in vacuo to give 1.69 (8.61 mmol, 84%) of compound 20A as a white solid. 2-Dimensional NOE experiments confirmed the structural assignment to be that of compound 20A.

B. (3αα,4β,7β,7αα)-4-(Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (20B)

A solution of compound 20A (608 mg, 3.21 mmoh), 5-amino-2-y-amoheroartifluoridic (640 mg, 3.44 mmoh) and TsOH (10 mg, cat.) in tolucne (5 mL) was heated in a sealed tube for 2 days. The reaction mixture was cooled to row temperature and then concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 50% E10A-checknears gave 400 mg (1.10 mmoh, 34%) of compound 20B as a white solid. HPIC: 99% at 3.04 min (retention time) (YMC SS ODS column 4.650 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ESI): m/z 382.2 [M+NHL].

(3αα,4β,7β,7αα)-N-[4-[[2-[2-[4-Cyano-3-(trifluoromethyl)phenyl]octahydro-7-methyl-1,3dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl]thio]phenyl] acetamide (21E)

A. 5-Methyl-2-furanethanol (21A)

A solution of n-BuLi (83.0 mL, 133 mmol, 1.6 M in becames) was added to a stirred solution of 2-meltyffuran 35 (10.0 mL, 111 mmol) in THF (85 mL) at 0° C. under inert atmosphere. The reaction mixture was stirred for 4 nt room temperature then cooled to 0° C. Ethylene oxide (8.30 mL, 166 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature overnight. After quenching with saturated aqueous NI₄C, the resulting layers were separated and the aqueous layer was extracted with E₂C (22-25 mL). The combined organic layers were dried over Na₂SO₂ and concentrated under reduced pressure. Distillation at atmospheric pressure (170-18° C) gave 10.1 g (80.3 mmol, 72%) of compound 21A as a light vellow 0i.

B. 2-(2-Bromoethyl)-5-methylfuran (21B)

Ph. Br. (3.68 g, 8.72 mmol) was added to a solution of compound 21.64 to 0.9 g, 9.39 mmol) in DHF (6 m 1), and the 60 reaction mixture was stirred at room temperature for 1 h. The reaction mixture was added to Br. (3 m 1) and extracted with Br. (20.24), dried over Na₂SO₄ and concentrated under reduced pressure, Purification by Bash chromatography on 65 silica gel clutting with 10% EtOAchexanes gave 0.507 g (2.68 mmol. 34%) of compound 21B.

To a solution of 4-acetamidothiophenol (442 mg., 2.64 mmol) in THF (In Ja 16" C: under inert atmosphere was added a solution of n-Bui (2.00 ml, 3.17 mmol), 1.6 M in heart solution mass alired to a solution of n-Bui (2.00 ml, 3.17 mmol), 1.6 M in heart solution was suired to the material was consumed (as determined by Th.C.), the reaction was quenched with H₂O and the mixture was extracted with EloOa (22), dried over N-SyO, and concentration of the Control of the

D. (3aα,4β,7β,7aα)-N-[4-[[2-[2-[4-Cyano-3-(trifluoromethylpheny]]-1,2,3,3a,7,7a-hexahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl] thio]phenyl[acetamide (21D)

A solution of compound 21C (195 mg, 0.708 mmol) and 48 4-(2,5-4) flayfor-2,5-4) is xo-1 H- pytrrol-1-yl)-2-trifluroromethylbenzonitile (377 mg, 1.416 mmol, prepared as described for Example 1B) in GH₂G, (1.5 mL) was sirred at room temperature for two days. The reaction mixture was concentrated under reduced pressure to yield 50 compound 21D as determined by NMR analysis. Compound 21D was used directly in the next step without purification.

E. (3αα,4β,7β,7αα)-N-[4-[[2-[2-[4-Cyano-3-(trifluoromethyl)phenyl]-octahydro-7-methyl-1,3dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl]thio]phenyl [acetamide (21E)

A solution of crude compound 21D (0.708 mmol) and 10% PdV. COD mg) in Mo-0H (20 mt) was stirred under a bydrogen atmosphere overnight. Purification by reverse phase HPLC. [34.4 min (retention time) (YMC SS ODS column 0.82-05 mm, 0-100% aqueous methanol over 30 minutes containing 0.1% TFA, 10 ml/min, monitoring at 220 mm) [followed by flash chromatography on silica gel cluting with 1% McOHCH_CL_CL, gave 29 mg (0.053 mmon) 278% of compound 21E as a yellow powder. HPLC. 99% at 3.44 min (retention time) (YMC SS ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing

0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 544.01 [M+H]⁺.

EXAMPLE 22

(3aα,4β,7β,7aα)-N-[4-[[2-[2-[4-Cyano-3-(trifluoromethyl)phenyl]octahydro-7-methyl-1,3dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl]sulfinyl] phenyl]acetamide (22)

mCPBA (12 mg, 0.050 mmol) was added portionwise to a solution of raude compound 211 (65 mg, 0.12 mmol) in CH₂CL₂ (6 mL) until the starting material was consumed 29 purification by reversee phase IPBC (20.5 min (teetuien time) (YMC SS ODS column 30x250 mm, 0-100% squeous methanol over 30 minutes containing 0.1% TFA, 25 mL/min, monitoring at 220 nm 13 gave 27.5 mg (0.0931 mmol, 41%) of compound 22 as a tan solid (-1:1 mixture of 3 dissertements). BPLC: 99% at 2.28 min (retention time) (YMC SS ODS column 46x50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 559.97

EXAMPLE 23

(3ac,4β,7β,7ac)-N-[4-[[2-[2-1-[4-Cyano-3-(trifluoromethyl)phenyl]octahydro-7-methyl-1,3dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl]sulfonyl] phenyl]acetamide (23)

mCPBA (26 mg, 0.11 mmol) was added to a solution of compound 21E (19 mg, 0.035 mmol) in CH₂Cl₂ (6 mL) and

the reaction was stirred at 1 until starting material and the intermediate sulfoxide (compound 22) were consumed as was apparent by TLC. Purification by reverse phase preparative HPLC [53.3 min (retention time) (YMC SS ODS column 30.250 min, 0-70% aqueous methanol over 45 minutes containing 0.1% TFA, 25 mL/min, monitoring at 220 nm)] gave 8.0 mg mg (0.014 mmol, 40%) of compound 23 as a white solid. HPLC: 99% at 2.94 min (retention time) 10 (YMC SS ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phasphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m'z 575.95 [M+H]².

EXAMPLE 24

(3αα,4β,7β,7αα)- and (3αα,4α,7α,7αα)-N-[2-[2-[4-Cyano-3-(trifluoromethyl)phenyl]octahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl] benzenesulfonamide (24Ci and 24Cii, Respectively)

A. 5-Methyl-2-furanethanol 4methylbenzenesulfonate (24A)

4-Methylbenzenesulfonyl chloride (907 mg, 4.76 mmol)
 was added to a solution of compound 21A (500 mg, 3.96 mmol) in 6 mL of dry pyridine. The reaction was stirred at room temperature for 4 h and then quenched with ice. The

20

reaction mixture was extracted with CH₂Cl₂ and the combined organic layers were washed with saturated aqueous sodium bicarbonate and water, dried and concentrated under reduced pressure to give 900 mg (81%) of compound 24A as a yellow oil.

B. N-[2-(5-Methyl-2-furanyl)ethyl] benzenesulfonamide (24B)

Benzensulfonamide (157 mg. 1.00 mmol) was added to a 10% aqueous solution of sodium hydroxide (0.40 ml., 1.0 mmol). A solution of compound 24A (280 mg. 1.00 mmol) is acction (1 ml.) was then added. The reaction mixture was peaked at 90° C. for 8 then cooled to room temperature. Ice was added and the mixture was extracted with CH_CL. The combined organic layers were washed with water, dried and concentrated under reduced pressure. Purification by flash oltromatography on silica gel, eluting with CH_CL, gave 60 30 mg (0.23 mmol. 23%) of compound 24B as vellow oil.

C. (3αα,4β,7β,7αα)- and (3αα,4α,7α,7αα)-N-[2-[2-[4-(Σyano-3-(trifluoromethyl)phenyl]octahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-yl]ethyl] benzenesulfonamide (24Ci and 24Cii, Respectively)

4-(2.5-Dihvdro-2.5-dioxo-1H-pyrrol-1-yl)-2trifluoromethylbenzonitrile (129 mg, 0.485 mmol, prepared as described in Example 1B) was added to a solution of compound 24B (60 mg, 0.23 mmol) in CH₂Cl₂ (2 mL). The 45 reaction mixture was stirred at room temperature for 2 days, concentrated under reduced pressure and purified by flash chromatography on silica gel, eluting with 70% EtOAc/ hexanes, to give 20 mg (0.038 mmol, 16%) of the unsaturated Diels-Alder product. The unsaturated product (20 mg) was immediately dissolved in ethanol (2 mL) and 10% Pd/C (10 mg, cat.) was added. The solution was stirred at room temperature overnight under a hydrogen atmosphere. The mixture was filtered and the filtrate was concentrated under 55 reduced pressure. Purification by reverse phase preparative HPLC gave 7.0 mg (0.013 mmol, 34%) of compound 24Ci and 2.0 mg (0.0037 mmol, 10%) of compound 24Cii. Compound 24Ci: IIPLC: 96% at 3.17 min (retention time) (YMC ODSA S5 C18 4.6×50 mm, 10%-90% aqueous methanol over 4 min gradient with 0.1% TFA, monitoring at 220 nm). MS (ES): m/z: 533.99 [M+H]+. Compound 24Cii: HPLC: 99% at 38.95 min (retention time) (YMC ODS S5 20×250 mm, 10%-90% aqueous methanol over 40 min 65 gradient with 0.1% TFA, monitoring at 220 nm). MS (ES): m/z 533.99 [M+H1+.

EXAMPLE 25 (3aα,4β,7β,7aα)-4-{Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (25B)

A. (3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-4-[1,3, 3a,4,7,7a-Hexahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (25Ai and 25Aii, Respectively)

A solution of compound 21A (252 mg, 2.00 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-2-trifluoromethylbenzonitrile (798 mg, 3.00 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature for 2 days. The reaction mixture was concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 65% EtOAc/hexanes gave 217 mg of pure compound 25Ai, 73 mg of pure compound 25Aii and 310 mg of a mixture of both compound 25Ai and 25Aii. All three fractions were isolated as white solids with a total isolated yield of 600 mg (1.53 mmol, 76.5%). Compound 25Ai: HPLC: 90% at 2.56 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). Compound 25Aii: HPLC: 90% at 2.56 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

B. (3aα,4β,7β,7aα)-4-[Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (25B)

A solution of compound 25Ai (0.20 g, 0.51 mmol) and 10% Pd/C (43 mg, cat.) in EtOH (12 mL) was stirred under

25

a hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through Celite and concentrated under reduced pressure to give 0.20 g (0.51 mmol, 100%) of compound 25B as a white solid, HPLC: 95% at 2.59 min (retention time) (YMC S5 ODS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm) MS (ESI): m/z 394.97 [M+H]+.

EXAMPLE 26

(3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-N-[4-[2-[2-[4-Cvano-3-(trifluoromethyl)phenyl loctahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-yl) ethoxy]phenyl]acetamide (26Ci and 26Cii, Respectively)

A. 2-[4-[2-(5-Methyl-2-furanyl)ethoxylphenyl] acetamide (26A)

solution of compound 21A (252 mg, 2.00 mmol) and 4-acetamidophenol (302 mg, 2.00 mmol) in CH-Cl. (4 mL). THF (5 mL) was added to make the reaction mixture homogeneous and the mixture was then cooled to 0° C. DEAD (0.41 mL, 2.6 mmol) was added dropwise and the reaction mixture was stirred at room temperature overnight, then concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 60% EtOAc/ hexanes followed by reverse phase preparative HPLC gave 65 10-90% aqueous methanol over 4 minutes containing 0.2% 270 mg (1.04 mmol, 52%) of compound 26A as a light brown solid. MS (ESI): m/z 260.09 [M+H]+.

B. (3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-N-[4-[2-[2-[4-Cyano-3-(trifluoromethyl)phenyl]-1,2,3,3a,7 7a-hexahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindol-4-yl]ethoxy]phenyl]acetamide (26Bi and 26Bii, Respectively)

A solution of compound 26A (40 mg, 0.15 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-y1)-2trifluoromethylbenzonitrile (88 mg, 0.31 mmol) in CH2Cl2 35 (2 mL) was stirred at room temperature for 2 days. The reaction mixture was concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 75% EtOAc/hexanes gave 55 mg (0.105 mmol, 68%) of a 5:1 mixture of compounds 26Bi and 26Bii as a white solid, which was used directly in the next step. HPLC: 90% at 3.28 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. (3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-N-[4-[2-[2-[4-Cvano-3-(trifluoromethyl)phenylloctahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-yl] ethoxy]phenyl]acetamide (26Ci and 26Cii, Respectively)

A solution of a mixture of compounds 26Bi and 26Bii (55 mg, 0.105 mmol) and 10% Pd/C (12 mg, cat.) in EtOH (3 mL) was stirred under a hydrogen atmosphere at room temperature overnight. The reaction mixture was filtered through Celite and concentrated under reduced pressure to Triphenylphosphine (681 mg, 2.60 mmol) was added to a 55 give 50 mg of crude product. Purification by flash chromatography on silica gel eluting with 70% EtOAc/hexanes gave 18 mg (0.034 mmol, 32%) of compound 26Ci [HPLC: 96% at 3.33 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes 60 containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 528.01 [M+H]+; and 2.3 mg (0.0044 mmols, 4%) of an 85:15 mixture of 26Cii and 26Ci respectively as determined by 1H NMR. HPLC: 90% at 3.35 min (retention time) (YMC S5 ODS column 4.6×50 mm. phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 528.12 [M+H]+.

(3aα,4α,7α,7aα)-Hexahydro-2-(2-naphthalenyl)-4, 7-epoxy-1H-isoindole-1,3(2H)-dione (27D)

A. (endo, endo)-7-Oxabicyclo[2.2.1]hept-5-ene-2,3dicarboxylic Acid (27A)

Compounds 27A, 27B and 27C were synthesized in accordance with the approaches described in Sprague et al. 35. J. Med. Chem. 28, 1580-1590 (1985). A mixture of furan (100 mf., 138 mol) and male is acid (160 g., 138 mol) in H₂O (340 mL) was stirred at room temperature for 5 days. The mixture was placed in a separatory funnel and the aqueous layer was sparated from the layer containing the unreacted furan. The aqueous layer was treated with charcoad, filtered through Celite and placed in the refrigerator. The desired product crystallized from solution upon seeding, was filtered, wasthed with cold water and dried over 4s P₂O₅ to give 70 g (0.38 mol, 28%) of compound 27A as a white solid.

B. (endo, endo)-7-Oxabicyclo[2.2.1]heptane-2,3dicarboxylic Acid (27B)

To a solution of compound 27A (69.0 g, 0.375 mol) in EiOH (700 mL) was added 10% PdC (4.5 g, cat.) and the mixture was shaken under a hydrogen atmosphere at 55 psi until gas uptake ceased. The mixture was filtered through Cellie and concentrated in vacuo to give 66.0 g (0.355 mol, 95%) of compound 27B as a white solid.

84

C. (3aα,4α,7α,7aα)-Hexahydro-4,7epoxyisobenzofuran-1,3-dione (27C)

A solution of compound 27B (66.0 g, 355 mol) in acetyl chloride (300 mL) was refluxed for 1 h. The reaction 15 solution was concentrated in vacuo and the resulting residue was recrystallized from benzene to give 49.2 g (0.292 mol, 82%) of compound 27C as a white solid (599% endo by ³H NMR).

D. (3aα,4α,7α,7aα)-Hexahydro-2-(2-naphthalenyl) 4,7-epoxy-1H-isoindole-1,3(2H)-dione (27D)

Compound 27C (45 mg, 0.30 mmol) was combined with a minoraphthalene (47 mg, 0.33 mmol) in acetic acid (1 mL) and heated at 115°C overnight. After the reaction was cooked to rt, a drop of water was added, and the resulting precipitate was filtered. The material was washed with methanol and dried to provide 65.7 mg (0.224 mmol, 7.4.7%) of compound 27D as a white crystalline solid, HPLC: 99% of compound 27D as a white crystalline solid, HPLC: 99% of mm, 19–90% agueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (183): mc 294.0 [M-HI].

EXAMPLE 28

(1aα,2β,2aα,5aα,6β,6aα)-Hexahydro-4-(2naphthalenyl)-2,6-epoxy-3H-oxireno[f]isoindole-3,5 (4H)-dione (28B)

A. (1aα,2β,2aα,5aα,6β,6aα)-Tetrahydro-2,6epoxyoxireno[f]isobenzofuran-3,5(2aH,5aH)-dione (28A)

As described in Yur'ev et al. J. Gen. Chem. U.S.S.R. (Engl. Transl.) 31, 772–775 (1961), a solution of exo-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride (5.00

g, 30.1 mmol), formic acid (10 mL) and hydrogen peroxide (10 mL) and hydrogen peroxide (10 mL) are simple of min, the reaction was placed in an ice bath (it became exothermic along with gas continon) and was allowed to warm to room temperature slowly. After stirring overnight, the resulting 5 precipitate was collected by filtration and washed with glacial acetic acid and dried to yield 3.02 g of a white powder. The crude soll was boiled in acetyl chloride (100 mL) for 10 bours and the mixture was concentrated to ~20 mL under reduced pressure. The resulting precipitate was in filtered, washed with discanses and dried to give 2.37 g (13.0 mmol, 43%) of compound 28A as a white powder.

B. (1aα,2β,2aα,5aα,6β,6aα)-Hexahydro-4-(2naphthalenyl)-2,6-epoxy-3H-oxireno[f]isoindole-3,5 (4H)-dione (28B)

Compound 28A (100 mg, 0.520 mmol) was combined with 2-aminonaphitalene (62.1 mg, 0.434 mmol) n acetic acid (2 mL) and heated at 115° C. overnight. After the reaction was allowed to cool to rt, water was added, and the resulting precipitate was filtered. The material was washed sequentially with aqueous K,CO, and water and then dried in a vacuum oven to provide 113.7 mg (0.371 mmol, 85.5%) of compound 28B as an off-white crystalline soild. HPLC: 99% at 1.76 min (retention time) (YMC 55 ODS column 46.550 mm, 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ESI): m2.780.6 (MHT).

EXAMPLE 29

(3aa,4a,7a,7aa)-2-[4-Bromo-3-(trifluoromethyl) phenyl]-3a,4,7,7a-tetrahydro-4,7-dimethyl-4,7epithio-1H-isoindole-1,3(2H)-dione 8-oxide (29)

 2.5-Dimethylthiophene (0.048 mL, 0.42 mmol) and 4-(2. 5-dihydro-2,5-dioxo-1H-pyrro1-1-y1)-2trifluoromethylbenzonitrile (0.290 g, 0.625 mmol, prepared as described for Example 1B) were dissolved in CH2Cl2 (8.0 mL) and cooled to -20° C. BF₃.Et₂O (0.412 mL, 3.36 mmol) 55 was added slowly followed by addition of mCPBA (~50%, 0.29 g, 0.84 mmol). After 2 h at -20° C., the reaction mixture was poured into saturated aq. NaHCO3 and extracted with CH2Cl2 (3×20 mL) and the organics dried over anhydrous Na SO4. The crude product was purified by 60 flash chromatography on SiO2 eluting with 5%-10%-20% EtOAc in CH-Cl. to give 0.119 g (0.265 mmol, 63%) of compound 29 as a white solid. HPLC: 91% at 3.303 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% 65 phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES1): m/z 480.2 [M+H]+.

(3aa,4a,7a,7aa)-2-[4-Bromo-3-(trifluoromethyl) phenyl]-3a,4,7,7a-tetrahydro-4,7-epithio-1Hisoindole-1.3(2H)-dione 8-oxide (30)

Thiophene (0.375 mL, 4.69 mmol) and 4-(2,5-dihydro-2, 5-dioxo-1H-pyrrol-1-yl)-2-trifluoromethylbenzonitrile (0.100 g, 0.313 mmol, prepared as described for Example 1B) were dissolved in CH2Cl2 (50 mL), mCPBA (~50%, 1.62 g, 4.69 mmol) was added and the resulting mixture was 30 stirred at 25° C. for 3 h. Triphenylphosphine (2.0 g) was then added. After 15 min, the volatiles were removed in vacuo and the resulting residue was dissolved in CH2Cl2 (200 mL) and washed with saturated aq. NaHCO₂ (3×50 mL) and dried over Na3SO4. The crude material was then purified by 35 flash chromatography on SiO₂ eluting with 1%-3%-5% methanol in CH2Cl3 to give 0.059 g (0.14 mmol, 45%) compound 30 as a white powder. NMR and LC analysis showed a single diastereomer, HPLC: 100% at 3.437 min 40 (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 443.2 [M+H]+.

EXAMPLE 31

(3aa,4a,7a,7aa)-Hexahydro-2-[3-(trifluoromethyl) phenyl]-4,7-imino-1H-isoindole-1,3(2H)-dione (31D)

A. 7-Azabicyclo[2.2.1]hepta-2,5-diene-2,3,7tricarboxylic Acid 2,3-dimethyl 7-(1,1dimethylethyl)ester (31A)

Freshly distilled acetylenedicarboxylic acid dimethyl ester (6.7 ml., 54 mmol) and N-(tert-butyloxycarbony)-H1-pyrrole (9.0 ml., 54 mmol) were combined and heated at 120° C. for 3 h. Purification by flash chromatography on \$100_c luting with EiOAc/CH₂Cl₂ gave 8.3 g (27 mmol, 50%) of compound 31A as a vellow solid.

B. (exo,endo)-7-Azabicyclo[2.2.1]hept-2,5-diene-2, 3,7-tricarboxylic Acid 7-(1,1-dimethylethyl)ester (31B)

Compound 31A (1.0 g, 3.5 mmol) was dissolved in MOHO (20 mL) and as, KOH (1 g in 5 mL H,O) was added. The reaction was heated at 50° C. for 1 h. The reaction was heated at 50° C. for 1 h. The reaction was then cooled to 25° C. and 10% PRUC (0.5 g, cat.) was added and the mixture was placed in a Parr apparatus for 14 h at 25° C. The reaction was then filtered through Celtic insing 45° C. The reaction was then filtered through Celtic insing 45° children of the MIC and then extracted with EIOAC (2x100 mL). Concentration of the organics gave the compound 31B as a pale wellow solid.

C. (3aα,4α,7α,7aα)-Hexahydro-1,3-dioxo-4,7iminoisobenzofuran-8-carboxylic Acid 1,1dimethylethyl Ester (31C)

Crude compound, 31B, was heated to 120° C. in vacuo in a sublimation chamber, resulting in sublimation of 0.051 g

(0.19 mmol, 5.4%) of compound 31C as a white solid, which was collected directly and used in the next step without further purification.

D. (3aα,4α,7α,7aα)-Hexahydro-2-[3-(trifluoromethyl)phenyl]-4,7-imino-1H-isoindole-1,3 (2H)-dione (31D)

Compound 31C (0.050 g. 0.19 mmol) and the 1-amino3-(influoromethylbenzere (0.030 g. 0.19 mmol) were dis10 solved in AcOH (2.5 mL) and beated at 115° C. for 4.5 h.
The reaction was quenched by addition of saturated aqueous
NaHCO₃ and the mixture was extracted with methylene
chloride (3.15 mL). The crude material was purified by
reverse phase preparative HPLC to give 0.030 g (0.079
5 mmol, 15°905 compound 310 as a white solid. HPLC 99%
at 2.33 min (retention time) (YMC S5 ODS column 4.6x50
mm, 10–90% aqueous methanol over 4 minutes containing
0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).
MS (ISS): mr. 23.11.15 [M+H]

EXAMPLE 3

(3αα,4β,7β,7αα)- and (3αα,4α,7α,7αα)-3a,4,7,7a-Tetrahydro-4,7-dimethyl-2-[3-(trifluoromethyl) phenyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione (32i and 32ii, Respectively)

Freshly distilled 2,5-dimethylfuran (0.32 mL, 2.6 mmol) was dissolved in CH2Cl2 (2.0 mL) and 1-[3-(trifluoromethyl)phenyl]-1H-pyrrole-2,5-dione (0.5 g, 2.5 mmol, prepared as described in Example 1B) was added. The reaction was stirred at 25° C. for 16 h and was then 55 concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 0.5% MeOH/ CH2Cl2 gave 250 mg (0.741 mmol, 30%) of compound 32i, and 50 mg (0.15 mmol, 6%) of compound 32ii as white solids. Compound 32i: HPLC: 98% at 3.080 min (retention 60 time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 338.30 [M+H]+. Compound 32ii: HPLC: 92% at 3.047 min (retention time) (YMC S5 ODS column 4.6×50 mm, 65 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES): m/z: 338.15 [M+H]+.

EXAMPLE 33

(3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[3-(trifluoromethyl)phenyl]-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (33)

Compound 32i (0.080 g, 0.24 mmol) was dissolved in EtOAc (2 mL) and EtOH (1 mL) and 10% Pd/C (0.050 g, cat.) was added. Hydrogen was then introduced by a balloon 20 and the reaction was stirred for 24 h. The mixture was filtered through Celite, rinsed with EtOAc and concentrated in vacuo to give 0.075 g (0.22 mmol, 93%) of compound 33 as a white solid. No further purification was needed. HPLC: 90% at 3.233 min (retention time) (YMC S5 ODS column 25 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 340.40 [M+H]+.

EXAMPLE 34

(3aα,46,7β,7aα)-Tetrahydro-5-methyl-2-(4-nitro-1naphthalenvl)-4,7-etheno-1H-pyrrolof 3,4-c pyridine-1,3,6(2H,5H)-trione (34B)

A. 4,5,7,7a-Tetrahydro-5-methyl-4,7-ethenofuro[3,4c]pyridine-1,3,6(3a H)-trione (34A)

methods described by Tomisawa et al. Heterocycles 6, 1765-1766 (1977) & Tetrahedron Lett. 29, 2465-2468

(1969). Maleic anhydride (2.00 g, 20.4 mmol) and 1-methyl-2-pyridone (2.22 g, 20.4 mmol) were suspended in 30 mL of anhydrous toluene. The reaction vessel was fitted with a Dean Stark trap and refluxed for 48 hours. The dark colored 5 solution was allowed to cool to rt and then the volatiles were removed in vacuo. The resulting brown paste (4 g) was dissolved in 10 mL of boiling toluene and the hot solution was filtered under a nitrogen flow to remove particulates. On standing at 25° C. the desired product precipitated from 10 solution. The solid was isolated by filtration and washed with cold toluene to give 1.0 g (4.8 mmol, 24%) of compound 34A, which was used without further purification.

B. (3aα,4α,7α,7aα)-Tetrahydro-5-methyl-2-(4-nitro-1-naphthalenyl)-4,7-etheno-1H-pyrrolo[3,4-c] pyridine-1,3,6(2H,5H)-trione (34B)

1-Amino-4-nitronaphthalene (0.094 g, 0.50 mmol) and compound 34A (0.130 g, 0.627 mmol) were dissolved in AcOH (2.0 mL) and heated at 110° C. for 11 h. The reaction was then cooled to 25° C, and poured into cold saturated aqueous K2CO2 and stirred vigorously for 10 min. The solution was filtered and rinsed with water. The resulting filtrate was concentrated in vacuo and purified by flash chromatography on silica gel eluting with 4:6 EtOAc hexanes to give 0.172 g (0.456 mmol, 91%) of compound 34B as a white solid. HPLC: 92% at 2.472 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% 30 TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 378.29 [M+H]+.

EXAMPLE 35

(3aα,4β,7β,7aα)-4-[4-[2-(4-Fluorophenoxy)ethyl] octahydro-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-2-(trifluoromethyl)benzonitrile (35)

DEAD (0.060 mL, 0.38 mmol) was added to a solution of triphenylphosphine (100 mg, 0.380 mmol) in THF (1.3 mL) at room temperature under an inert atmosphere. After stirring for 10 min, 4-fluorophenol (43 mg, 0.380 mmol) was 55 added in one portion. The reaction mixture was stirred for 5 min, compound 25B (100 mg, 0.254 mmol) was added and stirring was continued for 3.5 h. Purification by flash chromatography on silica gel eluting with 50% EtOAc/hexanes followed by reverse phase preparative HPLC [11.93 min 60 (retention time) (YMC S5 ODS column 20×100 mm, 0-100% aqueous methanol over 10 minutes containing 0.1% TFA, 20 mL/min, monitoring at 220 nm) gave 72 mg (58%) of compound 35 as a solid. HPLC: 99% at 3.74 min (retention time) (YMC S5 ODS column 4.6×50 mm, Compound 34A was synthesized by a modification of the 65 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 487.1 [M-H].

EXAMPLE 36

(3aα, 4β, 7β, 7aα)-4-[4-(2-Bromoethyl loctahydro-7methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (36)

A solution of 25B (495 mg, 1.26 mmol) and pyridine (100 μL, 1.26 mmol) in CH₂Cl₂ (2 mL) was added to a solution of PhaPBra (636 mg, 1.51 mmol) in CHaCla (2 mL) at 0° C. 20 The reaction mixture was stirred at room temperature for 3 hr, then the solvent was removed under reduced pressure. The resulting residue was washed 2x with 10 mL portions of EtOAc-hexane (6:4) and the combined washings were purified by flash chromatography on silica gel cluting with 60% 25 The compounds of Examples 38 to 121 have the following EtOAc/hexane to give 390 mg (0.853 mmol, 67.7%) of compound 36 as a white solid. HPLC: 99% at 3.51 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS 30 (ESI): m/z 456.7 [M-H]-.

EXAMPLE 37

(3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-(3methyl-4-nitrophenyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (37)

92

A combination of 4-nitro-3-methylaniline (0.050 g, 0.33 mmol), compound 20A (0.083 g, 0.43 mmol), TEA (0.2 mL), MgSO, (0.075 g) and toluene (0.8 mL) were combined in a sealed tube and the mixture was heated at 120° C, for 14 h. After cooling to 25° C., the reaction was filtered, rinsed with CH,Cl, and concentrated under reduced pressure. The crude product was purified by preparative TLC on SiO, cluting with CH2Cl2 to give 0.075 g (0.23 mmol, 69%) of 10 compound 37 as a pale yellow solid. HPLC: 100% at 2.733 min (retention time) (YMC S5 ODS column, 4.6×50 mm; 10-90% MeOH/H2O gradient,+0.1% TFA; 4 mL/min, 220 nm detection). MS (ES): m/z 348.2 [M+NH₄]*.

EXAMPLES 38 TO 121

Additional compounds of the present invention were prepared by procedures analogous to those described above. structure (L is a bond):

where G, the compound name, retention time, molecular mass, and the procedure employed, are set forth in Table 2. The chromatography techniques used to determine the compound retention times of Table 2 are as follows: LCMS= YMC S5 ODS column, 4.6×50 mm eluting with 10-90% MeOH/H2O over 4 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 nm. The molecular mass of the compounds listed in Table 2, where provided, were determined by MS (ES) by the formula m/z.

TABLE 2

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro. of Ex.
38	$\overline{\langle}$	(3ac,4β,7β,7ac)-2-(2- Fluoreny)hexahydro-4,7-epoxy-1H- isoindole-1,3(2H)-dione	3.72 LCMS/ 332.20 [M + H]*	8

TABLE 2-continued

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro. of Ex.
39	O CI	(3α, 4β, 7β, 7αα)-2-{3·Chloro-4-(4- morpholinyl)phenyl Bexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.20 LCMS/ 363.20 [M + H]*	8
40		(3αα,4β,7β,7αα)-2-(2,3-Dihydro-1H- inden-5-yl)hexahydro-4,7-epoxy-1H- isoindole-1,3(2H)-dione	3.26 LCMS/ 284.22 [M + H]*	8
41	Br	(30a,4β,7β,7aa)-2-(4-Bromo-1- mphthalenyl)hexahydro-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.73 1.CMS/ 404.11 [M + CH ₂ OH + H]*	8
42	cl	(36a,4β,7β,7aa)-2-(4-Chloro-1- naphthalenyl)hexahydro-4,7-epoxy- III-isoindole-1,3(2II)-dione	3.63 LCMS/ 328.14 [M + H]*	8
43	H ₂ N	(364,4β,7β,764)-2-(5-Amino-1- naphthalenyl)hexahydro-4,7-epoxy- 1H-isoindole-1,3-(2H)-dione	1.64 LCMS/	8
44	OH	(3aa, 4β, 7β, 7aa)-Hexahydro-2-(7- hydroxy-1-asphthaleny)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	2.54 LCMS/ 308.23 [M - H]	8
45	0,1\(\sigma\)	(3aa, 4β, 7β, 7aa)-Hexahydro-2-(4- nitro-1-aaphthalenyl)-4,7-epoxy-1H- isoindole-1,3(2H)-dione	3.117 LCMS/ 404.11 [M + CH ₂ OH + H]*	8
46	HIN	(3aa,4B,7B,7aa)-Hexahydro-2-(1H- indol-5-yl)-4,7-epoxy-1H-isoindole- 1,3(2H)-dione	2.39 LCMS/ 282.23 [M + H]*	8
47	N-NH	(3acı,4β,7β,7acı)-Hexahydro-2-(1H- indazol-6-yl)-4,7-epoxy-1H- isoindole-1,3(2H)-dione	2.35 LCMS/ 282.23 [M - H]*	8

TABLE 2-continued

Ex.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
48		(3aa,4β,7β,7aa)-2-(1,3- Benzodioxol-5-yl)hexahydro-4,7- epoxy-IH-isoindole-1,3(2H)-dione	2.47 LCMS/ 288.20 [M + H]*	8
49	H_2N CF_3	(3acı,4β,7β,7acı)-2-[4-Amino-3- (trifluoromethyl)phenyl]hexshydro- 4,7-epoxy-1H-isoindole-1,3(2H)- dione	2.71 LCMS/ 327.20 [M + H]*	8
50	ı	(3ea,4β,7β,7aa)-2-(3-Chloro-4- iodopheny)hexahydro-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.70 LCMS/ 435.2 [M + CH ₂ OH]*	8
51		(3ea, 4β,7β,7act)-Hexahydro-2-(8-quinolinyl)-4,7-epoxy-1H-isoindole- 1,3(2H)-dione	2.28 LCMS/ 295.22 [M + H]*	8
52		$\begin{array}{l} (3\alpha\alpha_34\beta_17\beta_17\alpha\alpha)\text{-}2\text{-}(2,3\text{-}Dihydro\text{-}1,4\text{-}benzodioxin\text{-}6\text{-}yl)hexahydro\text{-}4,7\text{-}\\ epoxy\text{-}1H\text{-}isoindole\text{-}1,3(2H)\text{-}dione \end{array}$	2.55 LCMS/ 302.23 [M + H]*	8
53		(3aa,4β,7β,7aa)-Hexahydre-2-[2- oxo-4-(trifluoromethyl)-2H-1- benzopyraa-7-yi]-4,7-epoxy-1H- isoindole-1,3(2H)-dione	3.38 LCMS/ 412.17 [M + CH ₂ OH + H]*	8
54	\bigcap_{CH_3}	(30a,4β,7β,7aa)+Hexahydre-2-(4- methyl-2-oxo-2H-1-benzopyran-7- yl)-4,7-epoxy-1H-isoindole-1,3(2H)- dione	2.74 LCMS/ 326.20 [M + H]*	8
55	O ₂ N OCH ₃	(3aa, 4β, 7β, 7aa) -2 ·(2,5-Dimethoxy- 4-nitrophenyl)hexahydro-4,7 ·(poxy- HI-isoindole-1,3(2H)-dione	2.70 LCMS/ 349.23 [M + H]*	8

TABLE 2-continued

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro. of Ex
56	F F	(3ac, 48,78,7ac)-2,3,5,6- Tetrafluoro-4-(octabydro-1,3-dioxo- 4,7-epoxy-2H-isoindol-2- yl)benzonitrile	2.97 LCMS	8
57	F	(3ac,48,7β,7ac)-Hexahydro-2- (2,4,5-trifluorophenyl)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	2.90 LCMS	8
58	ci da	(3ea,48,78,7ea)-Hexahydre-2- (2-4,5-trichlorophenyl)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.64 LCMS/ 346.39 [M]*	8
59	CI CI	(3acı,4β,7β,7acı)-2-(2-Amino-4,5- dichlorophenyl)bexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.23 LCMS	8
60	$F \leftarrow F$	(3aa,4β,7β,7aa)-2-(3,4- Diffucophenyl)hexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	2.91 LCMS/ 280.23 [M + H]*	8
61	\sim	(3at, 4β, 7β, 7at)-1-Acetyl-2,3-dihydro-6-(ostahydro-1,3-dixxx-4,7-epxxy-2H-isoindol-2-yf)-1H-indole	2.43 LCMS/ 359.26 [M + CH ₂ OH + H]*	8
62	F	(3aa,4β,7β,7aa)-2-(3-Chloro-4- fluorophenyl)hexahydro-4,7-epoxy- HH-isoindole-1,3(2H)-dione	3.21 LCMS/ 328.14 [M + CH ₂ OH + H]*	8
63	cı d	(3aa,48,7β,7aa)-2-(3,4- Dichlorophenyl)hexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.54 LCMS/ 311.79 [M - H]*	8

TABLE 2-continued

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro. of Ex.
64	CI	(3ac,4β,7β,7ac)-Hexahydro-2- (34,5-trichloropheny))-4,7-spoxy- HH-isoindole-1,3(2H)-dione	4.05 LCMS/ 378.10 [M + CH ₂ OH + H]*	8
65	н,со СС	(3ac, 48,7β,7act)-2-(3-Chloro-4- methoxyphenyl)hexahydro-4,7- epoxy-HH-isoindole-1,3(2H)-dione	2.99 LCMS/ 308.11 [M + H]*	8
66	H ₃ C Cl	(3act, 4β, 7β, 7act)-2-(3-Chloro-4- methylphenyl)hexahydro-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.39 LCMS/ 292.20 [M + H]*	8
67	CH ₅	(3aa,4),7],7aa)-Hexahydro-2-(2- methyl-1-asphthalenyl)-4,7-epoxy- III-isoindole-1,3(2H)-dione	3.28 LCMS/ 308.23 [M + H]*	8
68	CI	(38a,4β,7β,7aa)-2-(4-Chloro-3- methylpheny)]hexahydro-4,7-epoxy- 1H-isroindole-1,3(2H)-dione	3.40 LCMS/ 292.20 [M + H]*	8
69	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$	(3aa,4β,7β,7aa)-2-(3,4- Dimethylphenyl)hexahydro-4,7- epoxy-1H-isoindole-1,5(2H)-dione	3.11 LCMS/ 272.23 [M + H]*	8
70	Br CF3	(3aa, 48,78,7aa)-2-[4-Bromo-3- (influoromethyl)phenyl]bexahydro- 4,7-epoxy-1H-isoindole-1,3(2H)- dione	3.76 LCMS/ 421.98 [M + CH ₂ OH + H]*	8
71	B_1 CH_3	(3aa,48,7β,7aa)-2-(4-Bromo-3- methylphenyl)hexahydro-4,7-epoxy- HH-iscindole-1,3(2H)-dione	3.50 LCMS/ 336.05 [M + H]*	8

TABLE 2-continued

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
72	F NO ₂	(3aa,4β,7β,7aa)-2-(4-Fluoro-3- nitropicny))hexahydro-4,7-epoxy- 1H-iscindole-1,3(2H)-dione	2.80 I.CMS/ 305.25 [M - H]*	8
73	$_{\mathrm{F}}$ $_{\mathrm{CF}_{3}}$	(3a4,4β,7β,7a4)-2-[4-Fluoro-3- (trifluoromethyl)phenyl]hexshydro- 4,7-epoxy-1H-isoindole-1,3(2H)- dione	3.45 LCMS/ 362.26 [M + CH ₂ OH + H]*	8
74	CI NO ₂	(3aa, 4β, 7β, 7aa) - 2-(4-Chloro-3- nitrophenyl)hexahydro-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.19 LCMS/ 322.86 [M]*	8
75	CI CF3	$\begin{array}{l} (3\alpha \zeta_1^4\beta_1^5/\beta_1^5/\alpha \zeta)^2 \cdot [4+Chloro\cdot 3+(influoromethyl)phenyl]hexahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione \end{array}$	3.68 LCMS/ 345.83 [M]*	8
76	CI CH ₃	$\label{eq:continuous} (3\alpha,4\beta,7\beta,7\alpha_0) \cdot 2\cdot (4-\text{Chioro-}2-\text{methosy.}5-\text{methoys},5-\text{methoylhen})) hexahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione$	3.31 LCMS/ 322.20 [M + H]*	8
77	H_2N NO_2	(30a,4β,7β,7ac)-2-(4-Amino-3- nitrophenyl)hexahydro-4,7-epoxy- 1H-iscindole-1,3(2H)-dione	2.34 LCMS/ 302.27 [M - H]	8
78	H_3C NO_2	$(3a\alpha,4\beta,7\beta,7a\alpha) + Hexahydro-2-(4-methyl-3-nitrophenyl)-4,7-e-poxy-1 Hisoindole-1,3(2H)-dione$	3.02 LCMS/ 335.20 [M + CH ₂ OH + H]*	8
79	H ₃ CO OCII ₃	(3aa,4β,7β,7aa)-2-(3,4+ Dimethoxypheny)]hexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dioae	2.35 LCMS/ 304.25 [M + H]*	8
80	H ₃ CO OH	(3aa,4β,7β,7aa)-Hexahydre-2-(3- hydroxy-4-methoxyphenyl)-4,7- epoxy-1H-isoindole-1,3(2H)-dione	0.98 LCMS/ 321.19 [M + CH ₂ OH]*	8

TABLE 2-continued

Ex.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
81	O ₂ N CH ₃	(3sa,4β,7β,7aa)-Hexahydre-2-(4- methyl-5-nitro-2-pyridinyl)-4,7- epoxy-1H-isoindole-1,3(2H)-dione	0.54 LCMS/ 304,20 [M + H]*	8
82	NC CI	(301,4β,7β,7ast)-2-Chloro-4- (octhydro-1,3-dioxo-4,7-epoxy-2H- iosidol-2-9)-iosidol-2-9-phenylbenzeneacetonitrile	3.67 LCMS/ 423.8 [M + CH ₂ OH]*	8
83	OCH ₃	(30x,4),7),7ac)-Hexahydre-2-(2-methoxy-3-dibenzofurany)-4,7-epoxy-1H-isoindole-1,3(2H)-dione	3.66 LCMS/ 364.25 [M + H]*	8
84	$F \xrightarrow{F} F$	(3αα,4β,7β,7αα)-Hexahydre-2- (2,3,4-trifluorophenyl)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.06 LCMS/ 298.14 [M + H]*	8
85	O H ₃ C	(3aa,4β,7β,7aa)-2-(2,3-Dihydro-2- methyl-1,3-dioxo-1H-isoindol-5- yl)bexahydro-4,7-epoxy-1H- isoindole-1,3(2H)-dione	2.70 LCMS/ 359.22 [M + CH ₃ OH + H]*	8
86	F F	(3an, 4β, 7β, 7an)-2-(4-Bromo- 2,3,5,6- tetrafilorophenyl)hexabydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.72 LCMS/ 426.07 [M + CH ₃ OH + H] ⁺	8
87	OH OH	(3ας,4β,7β,7ας)-Hexahydre-2-(2- hydroxy-1-naphthalenyl)-4,7-epoxy- III-isoindole-1,3(2H)-dione	2.52 LCMS/ 308.26 [M - H]	8

TABLE 2-continued

Ex.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
88	a a	(3αα,4β,7β,7αα)·2-{2,5-Dichloro-4 (III-pyrrol-1-yl)phenyl hexahydro- 4,7-epxy-1H-isoindole-1,3(2H)- dione	3.70 LCMS/ 376.64 [M - H]*	8
89		(3at, 4β, 7β, 7at) Hexnhydre-2-[4- (methoxymethyl)-2-oxo-2H-1- benzopyran-7-yl-4,7-epoxy-1H- isoiadole-1,3(2H)-dione	2.79 LCMS/ 356.26 [M + H]*	8
90		(3ac, 4β, 7β, 7ac)-2-(6- Benzethinzoly)hexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	2.46 LCMS/ 301.19 [M + H]*	8
91	H ₃ COOC OCH ₃	(3aa,4β,7β,7aa)-2-Methoxy-4- (octahydro-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzoic acid methyl ester	2.75 LCMS/ 332.25 [M + H]*	8
92	II ₃ C CN	(3aa, 4β, 7β, 7aa)-2-Methyl-5- (octahydro-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzonitrile	2.80 LCMS/ 315.26 [M + CH ₂ OH + H]*	8
93		(3αα, 4β,7β,7αα)-Hexahydro-2-(2- oxo-2H-1-benzopyran-6-yl)-4,7- epoxy-1H-isoindole-1,3(2H)-dione	2.45 LCMS/ 312.20 [M + H]*	8
94	$\begin{array}{c} H_3C \\ \\ O_2N \\ \\ CH_3 \end{array} CH_3$	(3aa,4β,7β,7aa)-Hexahydro-2- (2,3,56-tetramethyl-4-nitrophenyl)- 4,7-epoxy-1H-isoindole-1,3(2H)- dione	3.59 LCMS/ 377.25 [M + CH ₂ OH + H]*	8
95	H ₃ C CH ₃	(3aa,4β,7β,7aa)-Hexahydro-2- (24,5-trimethylpheny)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.33 LCMS/ 286,30 [M + H]*	8

TABLE 2-continued

Ex.	6	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
96	F CH ₃	(3ecs,48,78,7act)-2-(4-Fluoro-3- methylphenyl)hexahydro-4,7-epoxy- IH-isoindole-1,3(2H)-dione	3.00 LCMS/ 276.23 [M + H]*	8
97	H ₃ C OCH ₃	(3ac,4β,7β,7ac)-Hexahydre-2-(3- methoxy-4-methylphenyl)-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.05 LCMS/ 288.23 [M + H]*	8
98	H ₃ C 0=5=0 H ₃ C N	(3at.4B,7B,7at)-N-Ehyl-2-methyl-5-(exthylvio-1,3-diax-0,4-repoxy-2H-sindiat-2-y)-xy-phenylbenzznesulfonamide	3.56 LCMS/ 441.26 [M + H]*	8
99	Br O Br	(3aa,4β,7β,7aa)-2,6-Dibromo-4- (octahydro-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzenesulfonamide	2.25 LCMS	8
100	H ₃ C N	(3ac, 4β, 7β, 7ac)-2,4-Dimethyl-6- (octahydro-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)-3-pyridinecarbonitrile	2.75 LCMS/ 298.23 [M + H]*	8
101	HN CH3	(3aq.4B,7B,7aq.)-2-(2,3-Dimethyl- 1H-indol-5-yl)hexahydro-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.00 LCMS/ 311.26 [M + H]*	8
102		(3aa,4β,7β,7aa)-2-(3- Dibenzoluranyl)hexahydro-4,7- epoxy-1H-isoindole-1,3(2H)-dione	3.72 LCMS/ 366.23 [M + CH ₃ OH + H]*	8

TABLE 2-continued

Ex.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
103	HO HO	(Sat,4B,7B,7at)-Hexahydre-2-(2- hydrox)f,1;3;1'-4crphenyf-5-yf- 4,7-qoxy-IH-isoindole-1,3(2H)- dione	3.70 1.CMS/ 412.23 [M + H]*	8
104	ОН	(3act,4β,7β,7act)-Hexnhydro-2- (5,6,7,8-teitnhydro-3-hydroxy-2- naphthalenyl)-47-epoxy-1H- isoindole-1,3(2H)-dione	3.24 LCMS/ 312.32 [M + H]*	8
105	NH	(30a,4β,7β,7ac)-2-(2,3-Dihydro-1H- indol-6-y]hlexahydro-4,7-epoxy-1H- isoindole-1,3(2H)-dione	2.42 LCMS/ 285.29 [M + H]*	8
106		(3αα,4β,7β,7αα)-2-(1,3-Dihydro-2,2-dioxidobenzo[-phiophen-5-yt)beanhydro-4,7-epoxy-IH-isoindole-1,2(2H)-dione	1.99 LCMS/ 366.26 [M + CH ₂ OH + H]*	8
107	H ₃ C CH ₃	(3αα,4β,7β,7αα)-Hexahydro-2-(2- hydroxy-4,5-dimethylphenyl)-4,7- epoxy-1H-isoindole-1,3(2H)-dione	2.78 LCMS/ 286.32 [M - H]*	8
108	F O F O	(3aa,4β,7β,7aa)-2-(2,3-Dihydro- 2,2,3,3-tetrafluoro-1,4-benzodioxin- 6-yl)hexahydro-4,7-epoxy-IH- isoindole-1,3(2H)-dione	3.82 LCMS/ 406.19 [M + CH ₂ OH + H] ⁺	8
109	HN	(300,4β,7β,7a0)-Hexahydre-2-(1H- indazol-5-yl)-4,7-epoxy-1H- isoiadole-1,3(2H)-dione	2.13 LCMS/ 284.23 [M + H]*	8

TABLE 2-continued

Ex.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro.
110	F F F	(3aq.4β,7β,7aq)-2-(4-Amino- 2,3.5,6-tetraffuorophenyl)- hexahydro-4,7-epoxy-1H-isoindole- 1,3(2H)-dione	2.60 LCMS/ 363.22 [M + CH ₂ OH + H] ^b	8
111	Br	(3aa, 4β, 7β, 7aa)-2-(4-Bromo-3- chlorophenyl)hexahydro-4,7-epoxy- 1H-isoindole-1,3(211)-dione	3.64 LCMS/ 389.64 [M + CH ₂ OH + H]*	8
112	HO	(3aa,4),7),7aa)-Hexahydro-2-(5- hydroxy-1-naphthalenyl)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	2.48 LCMS/ 308.27 [M - H]	8
113	NC CF3	$\begin{array}{l} (3\alpha_4\beta_17\beta_17\alpha_4) - (-1,3-4)\\ (3\alpha_5\beta_17\beta_27\alpha_5) - (-1,3-4)\\ (4\alpha_5\beta_17\alpha_5) - (-1,3-4)\\ (4\alpha$	3.28 LCMS/ 337.16 [M + H]*	8
114	COOCH ₃	(2ac,4β,7β,7ac)-2-(+Morpholinyl)- 5-(octahydro-1,3-dioxo-4,7-epoxy- 2H-isoindol-2-yf)benzoic acid methyl ester	2.72 LCMS/ 387.17 [M + H]*	8
115	F CN	(3aq.4β,7β,7aq)-2-Fluoro-5- (octahydro-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzonitrile	2.69 LCMS/ 319.26 [M + CH ₃ OH + H]*	8
116	Br	$\begin{array}{l} (3\alpha\alpha,4\beta,7\beta,7\alpha\alpha) - 2 \cdot (4 + \\ Bromophenyl) hexahydro-4,7-epoxy-1H-isoindole-1,3(2H)-dione \end{array}$	5.80 LCMS/ 393.0 [M + H]*	8
117		(3aa,4β,7β,7aa)-Hexahydre-2-(2-naphthalenyl)-4,7-epoxy-1H- isoiadole-1,3(2H)-dione	6.92 LCMS/ 333.7 [M + H]*	8
118	\bigcap_{CF_3}	(3aa,4B,7B,7aa)-Hexahydro-2-{3- (trifluoromethyl)phenyl]-4,7-epoxy- 1H-isoindole-1,3(2H)-dione	3.27 LCMS/ 312.2 [M + H]*	8

TABLE 2-continued

Ex. No.	G	Compound Name	Retention Time (Min.)/ Molecular Mass	Pro. of Ex
119	O ₂ N	(3αα,4β,7β,7αα)-Hexahydro-2-(4- nitrophenyl)-4,7-epoxy-1H- isoindole-1,3(2H)-tione	2.88 LCMS/ 343.2 [M + H]*	8
120	N _N	(Satz, 49,78,7ac) - 2-(9-Ehyl-9H- curbasel-3-(J)hexahydro-4, 7-goay- HI-isoindole-1,3(2H)-dione	3.73 LCMS/ 360.1 [M + H]*	8

EXAMPLES 122 TO 164

Further compounds of the present invention were prepared by procedures analogous to those described above. Table 3 provides the compound name and structure, retention time, as well as the Example number of the procedure on which the preparation of Table 3 was based, for the 40 compounds of Examples 122 to 164. The chromatography

35 techniques used to determine the compound retention times of Table 3 are as follows:

LCMS=YMC S5 ODS column, 4.6×50 mm eluting with 10-90% MeOH/H₂O over 4 minutes containing 0.1% TFA: 4 ml/min monitoring at 220 nm

TFA; 4 mL/min, monitoring at 220 nm. LC=YMC S5 ODS column 4.6x50 mm eluting with 10–90% MeOH/H₂O over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm.

TABLE 3

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro of E
122	ů, i	(\$aa,4a,7a,7aa)-Hexahydro- 2-[3-(affluoromethylpheay]]- 4,7-epoxy-[H-isoindole- 1,3(2H)-dione	2.66 LCMS	27

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
123	II O NO2	(Sur,Aa,7a,7ac)-Hexahydro- 2-(4-niro-1-esphthalenyi)- 4,7-epsys-Hi-soindole- 1,8/CH)-dione	2.76 LCMS	27
124	Br O O O O O O O O O O O O O O O O O O O	(3arc,4f),7f),7ac)-2-(4 Brono-3-methylphenyl)- 3a,4,7,7a-ethylphenyl)- 5a,4,7,7a-ethylphenyl-2-(7-epoxy-1H-isoindole-1,3(2H)- dione	6.36 LCMS	8
125	B. O O O O O O O O O O O O O O O O O O O	(380,4B,7B,780)-2-(4- Bromophenyl)-34,4,7,7a- ternhydro-4,7-epoxy-1H- isoindole-1,3(2H)-dione	5.72 LCMS	8
126		(3ac,48,78,7ac)-3a,4,7,7a- Tetrahydro-2-(2- naphthalenyl-4-repoxy-1H- isoindole-1,3(2H)-dione	5.92 LCMS	8
127		(Suc.4B, 7B, 7ac) -2 (9-Elay)- 91 carbasel -3 yl) -3a, 4.77a- carbasel -2 yel) -3a, 4.77a- carbasel -1, 2(H) dione	3.73 LCMS	8

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
128	CF ₃	(3aq.4 j.7 j.7aq.)-2 4-Fluoro- 3-(rifluoromethylyhenyl)- 3a,4,7,7a-telluydro-4,7- epoxy-1H-isoindole-1,3(2H)- dione	3.40 LCMS	8
129	CF5	(3aa,4β,7β,7aa)-2{1,2- Dibydro-8-methyl-2-oxx0-4 (trifluoromethyl-7-quinolinyl)-7-quinolinyl 3a,47,7a-tetrabydro-4,7- epoxy-1H-isoindole-1,3(2H)- dione	3.14 LCMS	8
130	O H O Br	(Suc. 4a. 7a. 7a.) 4- [Acceptors] (Acceptors) membry 12- (4- branch - 2- branch phenol) - 3a. 47.7b-tettahydro-4.7- epoxy-11I-isoindole-1,3(21I)-dione	2.95 LC	4
131	Br CTh	(Sacu, 48, 78, 7an) + (Casculor, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	2.97 LCMS	5
132	F,C N O O O O O O O O O O O O O O O O O O	(3ac, 4β, 7β, 7ac)-Hexahydro- 4,7-dimethyl:2-[3- (trifluoromethyl)phenyl]-4,7- epoxy-1H-isoindole-1,3(2H)- dione	3.08 LC	20

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
133	NC July and The Control of the Contr	(Sec. 4B, 7B, 7ac).d. (Octahydro-4, 7-di-dimethyl-1,3-dim	3.00 LC	20
134	S N N N N N N N N N N N N N N N N N N N	(Sact, 4β, 7β, 7act)- (Benzed bjhåiephen: 3- yb)hexahydro-4,7-dimethyl- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione	3.61 LC	20
135	O ₂ N O O O O O O O O O O O O O O O O O O O	(3str,4β,7β,7at)-Hexahydro- 4,7-dimethyl-2-[4-nitro-3- (trifluoromethyl)phenyl-4,7- epoxy-1H-isoindole-1,3(2H)- dione	3.21 LC	20
136	NC C C C C C C C C C C C C C C C C C C	(Sax,4),7,7as), technydro- ty,3,3a,4,7,7a-Hecahydro- ty,3,5a,4,7,7a-Hecahydro- ty,4,7as,4,	2.94 LC	32
137		(3aa,4a,7a,7aa)-Hexahydro- +mechyl-2-(2-apphilaienyl)- 4,7-epoxyl-Hi-soindole- 1,3(2H)-dione	2.88 IC	3
138	Br O O O O O O O O O O O O O O O O O O O	(3act,4β,7β,7act)-2-(4- Bromo-3- methylphenyl)hexahydro-4- methyl-4,7-epoxy-11F- isoindole-1,7(2H)-dione	3.11 LC	3

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro.
139	CF5 S	(3ac, 4], 7], 7ac)-Hexahydro- 4-methyl-2-[3- (triflacomethylypheny]-4,7- epoxy-111-isoindole-1,3(2H)- dione	2.90 LC	3
140		(3st.4β,7β,7str)-2-(3,5- Dichlorophenyi)hexalaydro-4- methyl-4,7-epoxy-1H- isonadole-1,3(2H)-dione	3.31 LC	3
141	F O O O O O O O O O O O O O O O O O O O	(3au, 4β, 7β, 7au) - 2-(3- Chioro-4-fluoropheny) benahydro-4-methyl-4,7- epoxy-1H-isoindole-1,3(2H)- dione	2.72 IC	3
142	NC CCII ₃	(Suc.4β,7β,7ac)-2-Methoxy- 4-(octalydro-1,3-disco-4- methy4-4,7-expx-2H- isoindol-2-yly-1- naphthalene-orbonitrile	2.72 LC	3
143	0,N (F ₃)	(3sr.,4β,7β,7ar)-Haxahydro- 4-methyl-2-[4-nitro-3- (trifluoromethyl)phenyl]-4,7- epoxy-1H-isoindole-1,3(2H)- dione	3.10 LC	3

TABLE 3-continued

	II III II V			
Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
144	N CO	(3ac, 4β, 7β, 7ac). Hexahydro- 2-[4-(H-imidazed-1- yl)phenyll-4-methyl-4,7- epoxy-1H-isoindole-1,3(2H)- dione	1.16 LC	3
145		(3ac,4l),7l),7ac)-2{3-Chloro- 4-(2-Vhloro- 4-(2-Vhloro- 4-(2-Vhloro- 4-7-epoxy-1H- isoindole-1,3(2H)-dione	2.81 LC	3
146		(3ac, 4a, 7a, 7ac) 2-(3.5) Dichlorophory) benchydro- Dichlorophory) benchydro- 4,7-imino-1H-isoindole- 1,3(2H)-dione	2.72 LC	31
147	II O Be	(Suc. 4c. 7a.7ac) -2. (4 Browns -1. apshbaleny) hczubydro-4,7- imino-III-isoindole-1,3(2II)- dione	2.95 LC	31
148		(3aq,4aq,7aq,7aq)-2/4 Bromo-3- methylpheanyl)hexahydro-4,7- imino-1H-isoindole-1,3(2H)- dione	2.65 LC	31

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
149	H O NO2	(3sn.4c,7c,7sc)-Hexabydro- 2-(4-ultro-1-asphthaknyl)- 4,7-imino-1H-isoindole- 1,3(2H)-dione	2.49 LC	31
150	H CO	(Sac, Ast., Tat, Tat). S-Acceyl-2- (Sac, Ast., Tat, Tat). See Control of the Cont	3.53 LC	31, 12
151	$\begin{array}{c} \\ \\ \\ \\ \\ \end{array}$	(3aa,4a,7a,7aa)-Octahydro- 1,3-dioxo-243. (trifluoromethyl)phenyl]-4,7- ethano-5H-pyrrold[3,4- elpyridine-5-carboxylie acid phenyl ester	3.397 LC	9
152	II O O O O O O O O O O O O O O O O O O	(3aa,4a _c 7a,7aa)-4 (Octabydro-1,3-dioxo-4,7- ethano-2H-pyrriol{3,4- elpyridin-2-yl)-1- naphthalencearbonitrile	1.74 LC	11
153	II CN	(3aq.4q.7q.7aq) 4 (Octahydro-5-methy)-1,3- dioxo-4,7-ethano-2H- pyrrold/3,4-etyrdin-2-yl)-1- naphthalencearbonitrile	1.71 LC	14

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
154		(30x,4x,7x,7ax)-2/4- Cyano-1- naphthaleayi)octahydro-1,3- dixxx-4,7-etheno-5H- pyrolo[3,4-byrdime-5- carboxylic acid phenylmethyl ester	3.40 LC	10
155	III O CF5	(30r,40r,70r,70r)+ (Octabydro-1,3-dixxo-4,7- ethano-2H-pyrnol(3,4- c)pyridin-2-yl)-2- (irifluoromethyl)benzonitrile	1.74 LC	11
156	H CF ₃	(3act,4ct,7ct,7ac)-4. (Octahydro-5-methyl-1,3- dioxo-4,7-cthano-2H- pyrrolof 3.4-c bytidin-2-yl)-2- (trifluoromethyl)benzonitrile	1.65 LC	14
157		(3ac,4c,7c,7ac)-2{4-Cyano- 3- (trifluoromethyl)phenyl}c-ta- hydro-1,3-diszo-4,7-etheno- 5H-pyrrol(3,4-cypridinc-5- carboxylic acid phenylmethyl ester	3.53 LC	10
158	H O CF ₃	(3ar,4a,7a,7aa)2-[4- Brono-3- (uffluoromethyl)plenyl leta- hydro-5-methyl+4-7-etheno- HF-pyrrolo[3,6-Epyridine- 1,5,6(2H,5H)-trione	2.95 LCMS	34

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro.
159	II O CF5	(3srt,4ct,7ct,7sct)-Tetrahydro- 5-methyl-2-[3- (trilluoromethyl)phenyl-4,7- ethen-1H-pyrrole[3,4- e]pyridine-1,3,6(2H,5H)- trione	2.53 LCMS	34
160		(3sr.,4s.,7s.,7sc). Fetrahydro- 5-methyl-2-(2-naphthaleny)- 4,7-etheo-11-pyrole[3,4- c)pyridine-1,3,6(2H,5H)- trione	2.58 LCMS	34
161	CF5	(1ac,2β,2ac,5ac,6β,6ac)- Hexahydro-44-3- (trifluoromethy)phenyl]-2,6- epoxy-3H-oxirene(fiso- indole-3,5(4H)-dione	1.80 LCMS	28
162		(1st.2f),2st.5st.6f),6st.)-4- (3.5-Dichlorophesy)- bexalytor-2,6-epsy-3H- oxirent (f)soindole-3,5(4H)- dione	1.45 LCMS	28
163	0.5N	(laa,2β,2aa,5aa,6β,6aa)- Hexahydro-4-(4-nitro-1- naphthalenyl)-2,6-epoxy-3H- oxireno[f]isoindole-3,5(4H)- dione	1.52 LCMS	28

TABLE 3-continued

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
164		(Jan. 2]P.2-or., Sac.(J.), Sac.(J.)-((3.4-1)bellospheny); bezaltytic-2,e-epony-3H- oxirene [fjisoindole-3,5(4H)- dione	3.21 LCMS	28

EXAMPLES 165 TO 203

4 sets forth the compound name and structure, as well as the Example number of the procedure on which the preparation of Table 4 was based, for the compounds of Examples 165 to 203.

Ex. No.	Compound Structure	Compound Name	Pro. of Ex
165		2-[4-(4-Bromo- phenoxy)phenyl- 3-4,7/7-a-tetrahydro- 4-methyl-4,7-epoxy- 1H-isoiadote-1,3(2H)- dione	32
166	CII, CII,	3a,4.7,7a-Teinhydro- 2-(2-methorysphenyl)- 4.7-dimethyl-4.7, epoxy-1H-iscindole- 1.8(2H)-dione	32

TABLE 4-continued

Ex. No.	Compound Structure	Compound Name	Pro. of Ex.
168	HO CH ₃	2-(2,4- Dimethylphenyl)- 8x,4,7,7a-tetmhydro- 4-(hydroxymethyl)- 4,7-epoxy-1H- isoindole-1,3(2H)- dione	21-26
169	CH	2-(1,3-Benzedioxol-5- yl)-3a,4,7,7a- tetrahydro-4-methyl- 4,7-epoxy-III- isoindole-1,3(2H)- dione	32
170	H,C O CH ₃	4- [Bis(acctyloxy)methyl]- 2-(3-bromophenyl)- 3a, 47,7a-tetmhydro- 4,7-epoxy:HH- isoindole-1,3(2H)- dione	21-26
171	$H_{1G} \subset H_{3}$	N-[1,2,3,3a,7,7a- Hexahydro-2-(2,4,6- trimethylpheny)-4,7- cpoxy-4H-isoindol-4- yl methyl]-2,2- dimethylpropanamide	21-26
172	HO CF ₃	3a,4,7,7a-Tetrahydro- 4-(hydroxymethyl)-2- [2- (trifluoromethyl)phenyl]- 4,7-epoxy-1H- isoindole-1,3(2H)- dione	21-26
173		3a,4,7,7a-Tetrahydro- 4-(hydroxymethyl):2- (1-naphthalenyl):4,7- epoxy-1H-isoindole- 1,3(2H)-dione	21-26

TABLE 4-continued

Fx No.	Compound Structure	Compound Name	Pro. of Ex.
174	CH ₃ O Cl	2-Chloro-5- (1,3,3s,4,7,7s- hexahydro-4,7- dimethyl-4,7-epoxy- 2H-isoindol-2- yl-benzoic acid methyl ester	32
175	Br CII ₅	4- Bis(acctyloxy)methyl - 2-(4-bromo-2- nitrophenyl)- 3,4,7,7a-4-ctamhydro- 4,7-epoxy-1H- isoindole-1,3(2H)- dione	21–26
176	$\bigcup_{CH_5}^{O} \bigcup_{O}^{NO_2} CH_5$	3a,4,7,7a-Tetrahydro- 4-methyl-2-(4-methyl- 3-nitrophenyl)-4,7- epoxy-1H-isoindole- 1,3(2H)-dione	32
177		2-[2-Chloro-5- (trifluoromethyl)phenyl]- 30,4,7,7a- tetrahydro-4-methyl- 4,7-epoxy-1H- isoindole-1,3(2H)- dione	32
178	CF ₅	2-[4-Chloro-3- (trifluoromethyl)phenyl]- 3e,4,7,7a- tetrshydro-4,7- dimethyl-4,7-epoxy- HI-isoindole-1,3(2H)- dione	32
179		2-(1,3,3a,4,7,7a- Hexahydro-4-methyl- 4,7-epoxy-2H- soindol-2- yl)benzonitrile	32
180	CH ₅	2-(4-Fluorophenyl)- 3e,4,7,7a-tetrahydro- 4-methyl-4,7-epoxy- 1H-isoindole-1,3(2H)- dione	32

TABLE 4-continued

Ex. No.	Compound Structure	Compound Name	Pro. of Ex.
181		2,2,2-Trifluoro-N- [(1,2,3,3a,7,7a- baxahydro-2-phenyl- 4,7-epoxy-4H- isoindol-4- yl)methyl jacetamide	21-26
182	CH_5 O CH_6	3s,4.7,7a°TEtrahydro- 4,7-dimethyl-2-(4- methyl-3-nifrophenyl)- 4,7-epoxy-1H- isoindole-1,5(2H)- dione	32
183	IIO O	2-Chloro-5- [1,3,3a,4,7,7a- hexahydro-4- (hydroxynethyl)-4,7- epoxy-2H-isoindol-2- yl penzoic acid	21-26
184	CH ₃ O NO ₂	Sa,4,7,7a-Tetrahydro- 4,7-dimethyl-2-(4- nitrophenyl)-4,7- epoxy-1H-isoindole- 1,3(2H)-dione	32
185	SH SH	3a,4,7,7a-Tetrahydro- 2-(2- mercaptophenyi)-4,7- epoxy-1H-isoindole- 1,3(2H)-dione	32
186		3a,4,7,7a:Tetrahydro- 2-[2- [(phenylmethyl)thio]- phenyl]1-4,7-epoxy-1H- isoindole-1,3(2H)- dione	32

TABLE 4-continued

TABLE 4-continued					
Ex. No.	Compound Structure	Compound Name	Pro. of Ex.		
187	H_1C C C C C C C C C C	[[2-(4-Chlorophenyl)- 1,2,3,3,4,7,3- bexahydro-4,7-epoxy- 4H-isoindol-4- yl] methyl[xarbamic acid 2-methylpropyl ester	21–26		
188	$H_{3}C$ $H_{5}C$ $H_{5}C$ $H_{5}C$ $H_{5}C$	4-(1,1-Dimethylethyl)- N-[1,2,3,3,3,7,7a- bexahydro-2-(4- methylphenyl)-4,7- cpaxy-4H-ioindol-4- yl Jmethyl Jbenzamide	21-26		
189	CI C	2,4-Dichloro-N. [[1,2,3,3,7,7a-bexahydro-2-(4-aitto-phenyl)-4,7-epoxy-4H-isoindol-4-yl]methyl]benzamide	21-26		
190	$H_3C - \underbrace{ \underbrace{ \underbrace{ \underbrace{ CH_3 } }_{CH_3} \underbrace{ CH_3 }_{O} }_{CH_3} \underbrace{ \underbrace{ \underbrace{ CH_3 } }_{O} \underbrace{ CH_3 }_{O} C$	N-[[2-(4 Chlorophenyl)- 1,2,3,3,4,7,7a- hexahydro-4,7-epoxy- 4H-scindol-4- yl]methyl]-2,4,6- trimethylbenzenesulfo- namide	21-26		
191	H,C NO ₃	N-[[1,2,3,3a,7,7a- Hexahydro-2-(4- nitrophenyl)-4,7- cpoxy-4H-isoindol-4- yl]methyl]-2,2- dimethylpropanamide	21-26		

TABLE 4-continued

IABLE 4-conunued					
Ex. No.	Compound Structure	Compound Name	Pro. of Ex.		
192		N-{(1,2,3,3a,7,7a- Hazahytro-2-phenyl- 4,7-epay-41- isoindol-4-yl)methyl- 2-phenoxyacetamide	21-26		
193	H ₅ C CH ₅ O O	[(1,2,3,3a,7,7a-Hexahydro-2-phenyl- 4,7-epoxy-4H-isoindol-4- y)methyl [arbamic acid 1,1-dimethylethyl ester	21–26		
194	NO ₂	2-(2,4- Dichlorophenoxy)-N- [[12,3,3,8,7,7a- bexahydro-2-(4- aitropheny)-4,7- copxy-41f-soindol-4- yl]methyl]acetamide	21–26		
195	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	N-[1,2,3,3a,7,7a- Hexabytro-2-(4- methylphenyl)-4,7- cpxy-4H-isoindol-4- ylmethyl]-5,6 dimethoxybenzamide	21–26		
196		N-[[2-(4- Chlorophenyl)- 1,2,3,3-6,7,7a- bexahydro-4,7-epoxy- 4H-iscindol-4- yl)mothyl]-2- aitrobenzenesulfo- samide	21-26		

TABLE 4-continued

Ex.	Compound Structure	Compound Name	Pro.
197	H CH)	(3ac, 4β, 7β, 7ac)- Hexahydro-2-{(1S)-1- phenylethyl}-4,7- epoxy-1H-isoindole- 1,3(2H)-dione.	8
198	III III III III III III III III III II	(3act,4f),7f),7act)- Hexahydro-2-[(1S)-2- hydroxy-1-] phenytethyl 1-4,7- epoxy-1H-isoindole- 1,3(2H)-dione.	8
199		(3ac, 4β, 7β, 7ac) -2- [(1S)-2-(Acetyloxy)-1- phenylethyl]- 3a, 4, 7, 7a-tetmbyto- 4, 7-epoxy-1H- isoindole-1,3(2H)- dione.	8
200	H CH ₃	(3sa, 4a, 7a, 7sa) 3a, 4, 7, 7s Etrahydro- 21(S)-1 phenylethyl]-4, 7- epoxy-1H-isoindole- 1, 5(2H)-dione.	8
201	H,C H	(3αα, 4β, 7β, 7αα)- Hexahydro-2-[d R)-1- phenylethyl]-4,7- epoxy-H+-isoindole- 1,3(2H)-dione.	8
202	HO O O O O O O O O O O O O O O O O O O	(3ac, 4β, 7β, 7ac) -4 [] (Octahydro-1, 3- dioxo-4, 7-epony-2H- isoindol-2- yl) methyl Jamino Ben- zole acid.	8

TABLE 4-continued

Ex.	Compound	Compound	Pro.
No.	Structure	Name	of Ex.
203		(3ac, 4B, 7B, 7ac)- Hexahydro-2-(4- morpholinylmethyl)- 4,7-epoxy-1H- soindole-1,3(2H)- dione.	8

EXAMPLE 204

(3aα,4β,7β,7aα)-4-[Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (204D/25B)

A. 2-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy] ethyl]-5-methylfuran (204A)

To a solution of compound 21.A (2.00 g, 15.9 mmol) in ⁴⁰ DMF (50 mJ) was added imidatoe (1.03 g, 2.3 mmol), followed by tert-butyldimethylsilyl chloride (2.63 g, 17.5 mmol). After 2 ha 12.5° C, the reaction was poured into dichtyl ether (500 mL) and washed with water (1x100 mL), and dichtyl ether (500 mL) and washed with water (1x100 mL), and diried over analyticous MgSQ. Crude compound 20HA was analyzed by LCMS and NMR and determined to be pure cough to be carried on directly to the next step. HPLC: 100% at 4.347 min (retention time) (YMC S5 ODS column 4.650 mm ellung with 110-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 mm.)

B. (3aα,4β,7β,7aα)-4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]hexahydro-7-methyl-4,7epoxy-1H-isobenzofuran-1,3(2H)-dione (204B)

Compound 204A (4.0 g, 18.9 mmol) and maleic anhydride (1.42 g, 14.5 mmol) were dissolved in dichloroethane

15 (10 mL) and stirred at 25° C. for 60 hours. The volatiles were then removed in vacuo and the resulting orange oil was dissolved in absolute chanol (50 mL) and 10% Pal C (1.00 g. cat.) was added. Hydrogen was then introduced via a balloon. After 3 h, the reaction was filtered through Celie anhydride was purified by rapid flash chromatography on SiO₂ ehtting with acctone/chloroform (0~2–4% acctone) to give 1.30 g. 6328 mmol. 20%) of compound 2048 as a clear oil, in addition to 3.00 g.(12.5 mmol, 66%) of the starting 2 compound 204A. Characterization by proton NMR spectroscopy showed only the exo isomer. III NMR (400 MHz, CDCL) 3–33 x3 (211, 1, 46-0 Hz), 3.22 (III, 4, 14-8.2 Hz), 3.06 (III, d., 18-8.2 Hz), 170–2.25 (611, m), 1.55 (31, s), 0.82 (Pl., s), 0.00 (611, s).

C. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]-oxy]ethyl]cotahydro-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (204C)

Compound 20HB (0.250 g, 0.734 mmol) and 4-amino-2tiflutoromethyl-herazonitric (1.214 g, 0.668 mmol) were suspended in dry toluene (2.0 mL) in a sealed tube. MgSQ, (0.200 g) and triethylamine (0.5 mL) were then added and the tube was sealed and placed in a oil bath at 125° C. After 40 h, the reaction was cooled to 25° C., filtered and concentrated in vacuo. The crude material was purified by flash chromatography on StO₂ cluting with CH₂C₃ to give 50.111 g (0.281 mmol, 30%) of compound 2004 Cas a yellow solid. HPLC: 92% at 4.203 min (retention time) (YMC SS ODS column 4.6550 mm chuting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 mm). MS (58); mr. 25.311 [M-Na]*.

D. (3ac,4β,7β,7ac)-4-[Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (204D)

65 Compound 204C (0.031 g, 0.061 mmol) was dissolved in THF (0.5 mL) and transferred to a polypropylene container followed by cooling to 0° C. HF. pyridine (-47% HF, 0.1

15

20

25

mL) was then added. After 15 min, the reaction was complete as determined by LC and was poured into cold sat. aqueous NaHCO3. The mixture was extracted with CH2Cl2 (3×10 mL). The combined organic layers were washed with 1 N HCl (1×20 mL) and dried over anhydrous Na2SO4. Compound 204D was isolated as a yellow oil and compared to the material prepared in Example 25. No purification was necessary.

EXAMPLE 205

(3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-4-[Octahydro-4-methyl-1,3-dioxo-7-(phenylmethyl)-4, 7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl) benzonitrile (205Ci and 205Cii, Respectively)

A. 2-Methyl-5-(phenylmethyl)-furan (205A)

n-BuLi (1.8 mL, 4.51 mmol, 2.5 M in hexane) was added 50 to a solution of 2-methylfuran (0.37 mL, 4.10 mmol) in anhydrous THF (3 mL) at -25° C. The resulting solution was stirred at room temperature for 3 h and then cooled to -15° C. Benzyl bromide (0.59 mL, 4.92 mmol), which was passed through a plug of aluminum oxide, was added and the 55 solution was warmed to rt and stirred overnight. Saturated NH₄Cl solution (5 mL) was added and the mixture was stirred for 1 h. The reaction mixture was then extracted with ether (2x5 mL) and the combined organic extracts were dried and concentrated under reduced pressure. Purification by flash chromatography on silica gel cluting with hexanes gave 323 mg (1.88 mmol, 46%) of compound 205A as colorless oil, HPLC: 95% at 3.72 min (retention time) (YMC S5 ODS column 4.6x50 mm, 10-90% aqueous methanol monitoring at 220 nm) and about 400 mg mixture of product and benzyl bromide (~2:1 by HPLC).

B. (3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-4-[Octahydro-4-methyl-1,3-dioxo-7-(phenylmethyl)-4, 7-cpoxy-2H-isoindol-2-v11-2-(trifluoromethyl) benzonitrile (205Bi and 205Bii, Respectively)

A solution of compound 205A (124 mg, 0.72 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-2trifluoromethylbenzonitrile (290 mg, 1.09 mmol) in CH2Cl2 (2 mL) was stirred at room temperature. After 4 days, the reaction mixture was concentrated under reduced pressure. 35 Purification by flash chromatography on silica gel eluting with CH,Cl, gave 62 mg (0.14 mmol, 20%) of a mixture of compounds 205Bi and 205Bii as a white solid, which was used directly in the next step. HPLC: 93% at 3.69 min 40 (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. (3aα,4β,7β,7aα)- and (3aα,4α,7α,7aα)-4-[Octahydro-4-methyl-1,3-dioxo-7-(phenylmethyl)-4, 7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl) benzonitrile (205Ci and 205Cii, Respectively)

A solution of a mixture of compounds 205Bi and 205Bii (62 mg, 0.14 mmol) and 10% Pd/C (12 mg, cat.) in EtOH (3.5 mL) was stirred under a hydrogen atmosphere at room temperature for 2 h. The reaction mixture was filtered through Celite and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 35% EtOAc/hexanes gave 22 mg (0.05 mmol, 35%) of compound 205Ci and 12 mg (0.027 mmols, 19%) of compound 205Cii. Compound 205Cii: HPLC: 98% at 3.75 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 458.2 [M+NH.]*. Compound 205Cii: HPLC: 97% at 3.78 min (retention time) (YMC S5 ODS column over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, 65 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 473.45 [M+CH2OH]+.

15

(3αα,4β,7β,7αα)-2-[4-Cyano-3-(trifluoromethyl) phenyl]octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4H-isoindole-4-propanenitrile (206)

A solution of compound 36 (34 mg, 0.074 mmol) and NaCN (24 mg, 0.49 mmol) in DMSO (1 mL) was heated at 100° C. for 0.5 h. After cooling, the reaction mixture was 20 poured into H₂O (5 mL) and the aqueous layer was extracted with EtOAc (2x5 mL). The combined organic layers were washed with H2O (2×5 mL), dried over Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography on SiO2 eluting with 50% EtOAc/hexanes fol- 25 lowed by reverse phase preparative HPLC [30.41 min (retention time) (YMC S5 ODS 30×250 mm, 10-90% aqueous methanol over 30 minutes containing 0.1% TFA, 25 mL/min, monitoring at 220 nm)] gave 6.6 mg (0.016 mmol, 22%) of compound 206 as a white solid. HPLC: 99% at 2.89 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES); m/z 402.1 [M-H]-

EXAMPLE 207

(3aα,4β,7β,7aα)-4-[Octahydro-4-methyl-7-[2-(4morpholinyl)elthyl]-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-2-(trifluoromethyl)benzonitrile, Trifluoroacetate (1:1) (207)

A solution of compound 36 (15.6 mg, 0.0341 mmol) and morpholine (6.0 µl. 0.008 mmol) in tolence (1 ml.) was heated at 100° C. overnight. After cooling, the reaction 58 mixture was concentrated under reduced pressure. Purification by flash chromatography on SiO₃ cluting with 10% McOHLCH, Cl., followed by reverse phase preparative PIPLC [23.6 min (retention time) (VMC SS ODS 30-250 mm, 10-90% auguous methanol over 30 minutes containing of 0.01% TFA, 25 ml/min, monitoring at 220 mm) [gave 8.7 mg (0.015 mmol, 44%) of compound 207 (TFA salt) as a white 50 ml. 40.50 mm cluting with 10-90% auguous methanol over 4 minutes containing 0.2% phosphoric acid, 64 ml./min, monitoring at 220 mm) [McGreat acid, 64 4 ml./min, monitoring at 220 mm), MS (ES): m/x 464.3 [MH-H]*.

150

EXAMPLE 208

(3aα,4β,7β,7aα)-2-(5-Fluoro-1-naphthalenyl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (208C)

A. 1-Fluoro-5-nitronaphthalene (208A)

To a solution of 6 N HCl (12 mL) was added 1.47 g (7.88 mmol) of finely providered 5-nitro-1-naphthylamine, as described in J. Chem. Soc. 1187 (1949). The mixture was coded to 0° C, and a cold solution of NnNO₂ (547 mg, 7.33 mmol) in 2° mL 1½ ow as added slowly so that the temperature was kept near 0° C. After the addition was complete, the reaction mixture was stirred for 30 min and filtered. The filtrate was cooled 0° C. and treated with cold 4.5 M NaBF₄ solution 5 mL) to give complete precipitation of the 35 diazonium borofluoride. The mixture was kept at 0° C. for 30 min before it was filtered and the precipitates were washed with cold 4.5 M NaBF₄ solution (5 mL), ice-coid ethanol (10 mL) and Ep. (20 mL). The obtained solids were air direct to yield 1.74 g (77%) of the corresponding diazonium solutions.

10.170 g (5.92 mmol) of the above diazonium borofluoride was added 5 g of sand and the components were thoroughly mixed. The reaction mixture was heated cautiously under reduced pressure until decomposition set in. Toward the end of the reaction the flask was further beated for 30 min to 130° C. to assure complete conversion. After cooling the reaction mixture was dissolved in acetione and the contents were preabsorbed on silica gel. Purification was achieved by flash chromatography on silica gel, eluting with 50 to 10% EtOAc in hexanes to give 449 mg (2.35 mmol, 40%) of compound 208A as a white solid.

B. 1-Amino-5-fluoronaphthalene (208B)

$$F \longrightarrow NH_2$$

A solution of compound 208A (62 mg, 0.32 mmol) in 1 m. LEOH containing 0.1 mL 12 N HCI was heated to reflux. Iron powder (62 mg, 1.11 mmol) was added in small portions and heating was continued for 2 h. The mixture was cooled, neutralized with 1 N No4H solution and the aqueous

layer was extracted with CH2Cl2. The combined organic phases were dried over MgSO4 and concentrated in vacuo to leave a residue which was purified by flash chromatography on silica gcl cluting with 40 to 80% EtOAc in hexanes to give 42 mg (0.26 mmol, 80%) of compound 208B as a 5 vellow solid.

C. (3aa,48,76,7aa)-2-(5-Fluoro-1-naphthalenyl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (208C)

Compound 208B (42 mg, 0.26 mmol), compound 20A(54 mg, 0.27 mmol), MgSO4 (69 mg, 0.58 mmol) and triethylamine (191 uL, 1.37 mmol) were taken up in 2 mL of toluene and placed in a scaled tube. The sealed tube was heated at 135° C. for 14 h. The cooled reaction mixture was filtered through a short pad of Celite eluting with CH2Cl3 and the solvent was removed under reduced pressure. The residue was purified by reverse phase preparative HPLC 20 (YMC S5 ODS 20×100 mm eluting with 30-100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min) to give 15 mg (0.044 mmol, 17%) of compound 208C as a light vellow solid. HPLC: 16% at 2.96 min & 77% at 3.06 min 50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 340.2 [M+H]+.

EXAMPLE 209

(3aα,4β,7β,7aα)-2-(5-Fluoro-4-nitro-1naphthalenyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (209C)

A. N-(5-Fluoro-1-naphthalenyl)acetamide (209A)

$$F = \bigcup_{\mathbf{H}} \bigcap_{\mathbf{CH}_3}^{O}$$

A solution of 141 mg (0.74 mmol) of compound 208A in 2 mL of AcOH was heated to reflux and treated with small portions of iron powder (118 mg, 2.11 mmol). The mixture 60 was kept at reflux for 15 min before 73 µL (0.78 mmol) of Ac₂O was added. After an additional 15 min at reflux, the mixture was cooled and filtered eluting with CH2Cl2. The filtrate was then concentrated under reduced pressure and the residue was purified by flash chromatography on silica 65 a solution of compound 134 (70.0 mg, 0.214 mmol) in gel eluting with 20 to 50% EtOAc in to give 145 mg (0.71 mmol, 97%) of compound 209A as a white solid.

B. 1-Amino-5-fluoro-4-nitronaphthalene (209B)

Compound 209A (133 mg, 0.645 mmol) was dissolved in 1 mL AcOH and the resulting solution was cooled to 10° C. At this temperature, 80.0 µL (2.00 mmol) of red fuming HNO3 was added and stirring was continued for 15 min before the reaction was quenched by the addition of crushed ice. The aqueous layer was extracted with CH2Cl2 and the combined organic phases were dried over MgSO, and concentrated in vacuo. The resulting residue was dissolved in 3 mL EtOH, heated to reflux and treated with 0.5 mL of 40% aqueous. NaOH solution. Stirring was continued for 15 min before the reaction was cooled and diluted with H₂O. The aqueous layer was extracted with CH2Cl2 and the combined organic phases were dried over MgSO4 and concentrated in vacuo. The resulting residue was purified by (atropisomers, retention time) (YMC S5 ODS column 4.6x 25 flash chromatography on silica gel, eluting with 40 to 70% EtOAc in hexane to afford 36 mg (0.17 mmol, 27%) of compound 209B as a yellow solid.

C. 3aα,4β,7β,7aα)-2-(5-Fluoro-4-nitro-1naphthalenyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (209C)

Compound 209B (36 mg, 0.18 mmol) was reacted in a sealed tube with compound 20A (38 mg, 0.19 mmol), 35 MgSO₄ (46 mg, 0.39 mmol) and Et₃N (128 µL, 0.920 mmol) in 250 µL toluene according to the above procedure described in example 208C to give, after purification by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm eluting with 30-100% aqueous methanol over 10 min 40 containing 0.1% TFA, 20 mL/min), 27 mg (0.070 mmol, 39%) of compound 209C as a vellow solid, HPLC: 8% at 2.88 min & 84% at 3.06 min (atropisomers, retention time) (YMC S5 ODS column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phos-45 phoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 402.0 [M+H]+.

EXAMPLE 210

(3aα,4β,7β,7aα)-2-(1,1-Dioxidobenzo[b]thiophen-3yl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (210)

mCPBA (160 mg, 0.641 mmol, 70% pure) was added to CH,Cl, (2 mL) at rt. After the starting material was consumed, the reaction was quenched with sat. NaHCO3,

and extracted with CH₂Cl₂. The organic layer was washed with 1 N NaOH, dried over Na₂SO₄ and concentrated under reduced pressure to give 6.3 pm (0.178 mm), 83% of compound 210 as a white solid. HPLC: 99% at 3.81 min (retention time) (YMC S5 ODS column 4.6x50 mm eluting 5 with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/2 3600 [M+H]².

EXAMPLE 211

4-(1,3,3a,4,7,7a-Hexahydro-4,6,7-trimethyl-1,3-dioxo-4,7-epoxy-2H-pyrrolo[3,4-c]pyridin-2-yl)-2-(trifluoromethyl)benzonitrile (211)

24,5-Timenthyl oxazole (0.48 ml., 4.14 mmol) was dissolved in toluen (20 ml.) and 4c/2-dishydro-2-diston-111-pyrrol-1-yl)-2-triflucomethylbenzonirite (1.00 g, 3.76 mmol) was added. The reaction mixture was stirred at 78° C. under nitrogen for 2.5 hrs. The solution was cooled to room stemperature and the resulting precipitate was filtered and rinsed with toluene to give 0.51 g (35%) of compound 211 as a light grey solid. NMR analysis revelated that compound 211 was one isomer (exo/endo) however the identity of the isomer could not be determined by NMR analysis. HPLC: 40 100% at 2.85 min (retention time) (YMC S5 ODS column 4.6530 mm cluting with 10–90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 ml./min, nomitoring at 220 mm). MS (GS): mg. 378.42 [MHI]*.

EXAMPLE 212

(3ac,4β,7β,7ac)-Tetrahydro-4,7-dimethyl-2-[3-(trifluoromethyl)phenyl]-4,7-epoxy-1H-isoindole-1, 3,5(2H,4H)-trione & (3ac,4α,7α,7ac)-Tetrahydro-4, 7-dimethyl-2-[3-4(trifluoromethyl)phenyl]-4,7-epoxy-1H-isoindole-1,3,5(2H,4H)-trione (212i & 212ii, Respectively)

. .

2,2-Dimethyl-3(H)-furanone (0.500 g, 4.46 mmol) and 1-[3-(trifluoromethyl)phenyl]-1H-pyrrole-2,5-dione (1.07 g, 4.46 mmol, prepared as described in Example 1B) were suspended in toluene (20 mL) in a sealed tube. The mixture 20 was heated at 110° C. for 4 h and then cooled to 25° C. followed by concentration in vacuo. The resulting residue was purified by flash chromatography on SiO2 eluting with methylene chloride to yield 0.411 g (26%) of compound 212i as a white solid and 0.193 g (12%) of compound 212ii 25 as a white solid. The structural assignments were confirmed by. 1-D NOE proton NMR experiments. Compound 212i: HPLC: 100% at 2.817 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring 30 at 220 nm). MS (ES): m/z 376.0 [M+Na]*. Compound 212ii: HPLC: 100% at 3.013 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 354.02 [M+H]+.

EXAMPLE 213

(3aα,4β,7β,7aα)-2-(5-Chloro-1-naphthalenyl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (213B)

A. 1-Amino-5-chloronaphthalene (213A)

To a solution of 1.74 g (6.06 mmol) of the diazonium borofluoride (described in Example 208A) in acctone (7 mL) was added 693 mg (7.00 mmol) of CuCl in small portions. After the evolution of nitrogen had ceased the acctone was 65 removed under reduced pressure and the residue was taken up in CH₂Cl₃ (30 mL). The organic phase was washed with H₂O (30 mL), dried over MgGA₂ concentrated in vacuo and

finally purified by flash chromatography (silica gel, EtOAc in hexane 0 to 15%) to give 754 mg (70%) of 1-chloro-5-nitronaphthalene.

The above synthesized 1-chloro-5-nitronaphthalene (540 mg, 2.6 mmol) was dissolved in 10 mL AcOH, followed by 5 treatment with 415 mg (7.43 mmol) iron powder and subsequently acylated with Ac₂O (0.26 mL, 2.73 mmol) according to the procedure described in Example 209A to give 543 mg (95%) of 1-acetamino-5-chloronaphthalene.

A solution of the above synthesized 1-acetaminos. ¹⁰ chloronaphthalene (52 mg, 0.24 mmol) in 3 mL EOH was heated to reflux and treated with 0.5 mL 40% aqueous NaOH solution. The mixture was refluxed until no more starting material could be detected, cooled and concentrated under reduced pressure. The residue was taken up in CH₂Cl₂ (50 15 mL) and was washed with H₂O (25 mL). The organic layer was dried over MgSO₂ and concentrated in vacuo to leave 44 mg (98%) of compound 213A as a white solid.

B. (3aa,4β,7β,7aa)-2-(5-Chloro-1-naphthalenyl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (213B)

Compound 213A (24 mg, 0.14 mnol) was reacted in a scaled tibe with compound 20.4 (29 mg, 0.15 mmol), 25 MgSO, (36 mg, 0.30 mmol) and El,N (100 µL, 0.710 mmol) in 250 µL, toltiern according to the procedure described in Example 2862 to give, after purification by reverse phase preparative HPLC (YMC S5 ODS 20x100 mm eluting with 30-100% squeezus methanol over 10 min containing 0.1% 30 withis solid. HPLC 98% at 1.82 min (retention timing 0.1% 40 with solid. HPLC 98% at 1.82 min (retention timing (YMC S5 TurboPack Pro column 4.6x33 mm eluting with 10-90% aqueous methanol over 2 minutes containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/2 35 564 fM+HP.

EXAMPLE 214

(3aα,4β,7β,7aα)-2-(5-Chloro-4-nitro-1naphthalenyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (214B)

A. 1-Amino-5-chloro-4-nitronaphthalene (214A)

1-Acetamino-5-chloronaphthalene (150 mg, 0.68 mmol, prepared as described in Example 213A) was dissolved in 1 mL AcOH and treated with 82 µL of red furning HNO₃ and 65 subsequently deacylated with 1 mL 40% aqueous NaOH solution in 3 mL EOH according to the procedure described

in Example 209A to yield 49 mg (32%) of compound 214A as a vellow solid.

B. (3αα,4β,7β,7αα)-2-(5-Chloro-4-nitro-1naphthalenyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (214B)

Compound 214A (27 mg, 0.12 mmol) was reacted in a sealed tube with compound 20A (26 mg, 0.13 mmol), MgSO₄ (32 mg, 0.27 mmol) and Et₃N (88 A₂, 0.63 mmol) in 250 A₁ to lose according to the procedure described in Example 20KC to give, after purification by reverse phase preparative HPLC (YMC S5 ODS 20x100 mm cluting with 30-10We aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min) 22 mg (45%) of compound 214B as a yellow solid. HPLC: 24% at 3.06 min 8 76% at 3.25 min (atropisomers, retention time) (YMC S5 ODS column 4.65 O mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, moining at 220 mm). MS (ES): m74 4180 [M4-NHL].*

EXAMPLE 215

(3aα,4β,7β,7aα)-4-Ethylhexahydro-7-methyl-2-(4nitro-1-naphthalenyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (215B)

 A. (3aα,4β,7β,7aα)-4-Ethylhexahydro-7-methyl-4, 7-epoxyisobenzofuran-1,3-dione (215A)

52-Ehyl-5-methylfuran (1.89 ml., 15.3 mmol) was dissolved in methylene chtorick (0 ml.) and maid each anhydrick (1.00 g, 10.2 mmol) was added. The reaction was stirred at 25° C. for 18 hand then concentrated in vacuo. The resulting crude bicycle was dissolved in EiOAc (50 ml.) and 10% Pdl/C (0.40 g) was added. Hydrogen was then introduced via a Balloon. Alter 4 h, the reaction was filtered through Cellic, rinsing with EiOAc. Concentration in vacuo gave the crude compound 215A (1.93 g) as a white solid. This material was taken on directly to the next reaction without our unification.

B. (3aα,4β,7β,7aα)-4-Ethylhexahydro-7-methyl-2-(4-nitro-1-naphthalenyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (215B)

Compound 215A (0.168 g, 0.798 mmol) and 1-amino-4nitronaphthalene (0.10 g, 0.53 mmol) were suspended in toluene (0.8 mL) and TEA (0.2 mL) and magnesim sulfate (0.1 g) were added. The mixture was heated at 1.55° C. in a scaled tube for 18 h. The reaction was then cooled to rt and

25

35

filtered, rinsing with chloroform. Concentration gave the crude product which was purified by preparative TLC on SiO₂ eluting with methylene chloride. This gave 0.077 g (0.20 mm.) 38%) of compound 215B as a yellow solid. HPLC: 100% at 3.260 min (retention time) (YMC SS ODS 5 column 4.65.00 min with 10–90% apuenos methanol over 4 minutes containing 0.2% phosphoric acid, 4 ml./min, monitoring at 220 ml.) MS (ES). m. 23.10.5 ft/HHT?

EVAMDLE 21.

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-N-(4fluorophenyl)octahydro-7-methyl-1,3-dioxo-4,7cpoxy-4H-isoindole-4-acetamide (216B)

A. N-(4-Fluorophenyl)-5-methyl-2-furanacetamide (216A)

S-Methyl-2-furanaccic acid (1.00 g. 7.14 mmol, synthesized as described WO 9507893, Example 19) was dissolved in CH₂CN/DMF (4:1, 25 mL), 1-[3-(dimethylamino) propyl]-3-ethyl-artoditimide (1.37 g. 7.14 mmol) and an 1-bydrosy-7-azahenzorizaole (0.972 g. 7.14 mmol) were then added followed by 4-fluoroaniline (0.676 mL, 7.14 mmol). After 5 h, the reaction was dituted with ElOAc (150 mL) and washed with 1 N HCI (1x50 mL), sst. aq. NaFtCO₃ (1x30 mL), brite (1x40 mL) and dired over sodium sulface. 45 Compound 216A (1.58 g. 95%)) was isolated as a yellow form after concentration in vacuo. No further purification was necessary. HPLC: 78% at 2.647 min (retention time) (7MC S5 ODS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phoss-50 phoric acid, 4 ml/min, monitoring at 220 mm).

B. 3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-N-(4-fluorophenyl)octahydro-7-methyl-1,3-dioxo-4,7epoxy-4H-isoindole-4-acetamide (216B)

Compound 216A (0.200 g. 0.888 mmol) and 44(2.5cil hyd ro-2,5-cil ox o-111-pyrro1-1-y1)-2trillucromethylbenzonitrile (0.164 g. 0.616 mmol) were dissolved in benzene and heated at 60° C. for 14 h. The reaction was then ecoled and concentrated in vacuo. The 60 resulting orange oil was dissolved in E10Ac (15 ml.) and 10% PdC (0.050 g) was added. Hydrogen was then introduced via a balloon. After 3 h, he reaction was filtered through Cellie finsing with E10Ac and concentrated in vacuo. The resulting rande material was purified by prepara-65 tive TLC on silica cluting with 5% actione in methylene choride to give 0.166 g (54%) of compound 2168 as a white

solid. NMR spectroscopy showed only a single isomer which was determined to be exo by NOE experiments. HPLC: 95% at 3.200 min (retention time) (YMC SS ODS column 4.6x50 mm cluting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 ml/min,

monitoring at 220 nm). MS (ES): m/z 484.0 [M+H]+. EXAMPLE 217

(3aα,4β,7β,7ac). Hexahydro-4-methyl-2-(2naphthalenyl)-4,7-epoxy-1H-isoindole-1,2(2H)dione, Faster Eluting Enantiomer & (3aα,4β,7β, 7aα)-Hexahydro-4-methyl-2-(2-naphthalenyl)-4,7epoxy-1H-isoindol-1,3(2H)-dione, Slower Eluting Enantiomer (217i & 217ii, Respectively)

Racmic compound 137 was separated into the individual antipodes by chiral reverse phase liquid chromatography. A Chiralpak AD-R column (4.6x250 mm) was used eluting with 70% acetonitrile/30% water at 1 mL/min. UV detection at 220 mm was used. The faster eluting isomer, compound 217i (retention time=15.66 min), was found to be 99.9% e and the slower eluting isomer, compound 217ii (retention time=15.66 min) was 99.6% ee by analytical chiral reverse phase chromatography.

EXAMPLE 218

(3aα,4β,7β,7aα)-4-[4-[2-[[(4-Fluorophenyl)methyl] methylamino]ethyl]octahydro-7-methyl-1,3-dioxo-4, 7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl) benzonitrile (218B)

A. (4-Fluorobenzyl)methylamine & Bis(4fluorobenzyl)methylamine (218A & 218A')

Compounds 218A & 218A' were made in accordance with the procedure described by Singer et al. J. Med. Chem. 29, 40-44 (1986). 4-Fluorobenzyl bromide (189 mg, 1.00 mmol) was refluxed in a solution of ethanol (1.5 mL) and methylamine (5 mL, 2 M solution in McOH) for 3 h. An additional portion of methylamine (2 mL) was added and the 30 mixture was refluxed for an additional hour. The solution was cooled and concentrated in vacuo, and the residue was dissolved in a mixture of 2 N HCl (3 mL) and ether (1.5 mL). The layers were separated and the aqueous layer was extracted with an additional portion of ether. The aqueous solution was chilled to 0° C., titrated to pH 11 with NaOH and extracted with CH2Cl2. The extracts were dried over MgSO₄ and concentrated in vacuo to give 120 mg of a 2.5:1 mixture of compounds 218A and compound 218A' respec- 40 tively. The crude mixture was taken on without further purification.

B. (3aα,4β,7β,7aα)-4-[4-[2-[[(4-Fluorophenyl)] methyll-methylaminolethylloctahydro-7-methyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (218B)

A solution of compound 36 (34.3 mg, 0.075 mmol) and 55 compounds 218A & 218A' (21 mg, -0.088 mmol (of 218A)) in toluene (0.4 mL) was heated at 100° C. overnight. The reaction mixture was cooled to room temperature and then concentrated under reduced pressure. Purification by flash 60 chromatography on silica gel eluting with 25% acetone/75% CH2Cl2 gave 30 mg (0.058 mmol, 78%) of 218B as a yellow solid. HPLC: 99% at 2.46 min (retention time) (YMC S5 ODS 4.6x50 mm, 10-90% aqueous methanol over 4 minutes 65 crystals were collected and dried to give 0.26 g (37%) of containing 0.2% phosphoric acid, monitoring at 220 nm). MS (ES): m/z 516.26 [M+H]+.

(3aα,4β,5β,6β,7β,7aα)-4-(Octahydro-4,5,6,7tetramethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (219D)

A. 2,3,4,5-Tetramethylfuran (219A)

Compound 219A was made in accordance with the procedures described in Hancock et al. J. Org. Chem. 42,1850-1856 (1977) & Amarnath et al. J. Org. Chem., 60, 301-307 (1995). 2-Propanone (100 mL, 1.1 mol) was refluxed over PbO2 (26.7 g, 0.112 mol) for 28 h. After cooling to rt, the reaction mixture was filtered and the residue was washed with acetone. The filtrate was concentrated under reduced pressure to remove the acetone and then distilled at 20 Torr. The fraction that came over between 100-120° C. was collected to give 6.75 g (42.5%) of 3,4-dimethylhexane-2,5-dione as a light yellow oil.

A solution of 3,4-dimethylhexane-2,5-dione (3.00 g, 21.1 mmol) and p-toluenesulfonic acid (401 mg, 2.11 mmol) in benzene (30 mL) was heated to reflux in a Dean-Stark trap overnight. The reaction mixture was distilled at atmospheric pressure to remove the excess benzene. The remaining mixture was transferred to a smaller flask and distilled at atmospheric pressure. The fraction that came over between 80-100° C. was collected to give 509 mg (19%) of compound 219A as a light vellow oil.

B. (3aα,4β,7β,7aα)-4-Ethyl-3a,4,7,7a-tetrahydro-4, 5.6.7-tetramethyl-4.7-epoxyisobenzofuran-1.3-dione (219B)

A solution of compound 219A (400 mg, 3.22 mmol) and maleic anhydride (442 mg, 4.51 mmol) in Et₂O (1.5 mL) was stirred at rt overnight. The reaction mixture was then placed in freezer for 5 days, after which time the resulting compound 219B as tan crystals. The crude compound 219B was taken on to the next step without further purification.

50

C. (3aα,4β,5α,6α,7β,7aα)-4-Ethylhexahydro-4,5,6, 7-tetramethyl-4,7-epoxyisobenzofuran-1,3-dione (219C)

-continued

A solution of compound 219B (120 mg, 0.545 mmol) and 10% Pd/C (24 mg, cat.) in EtOAc (2 ml.) was stirred under a balloon of hydrogen at room temperature overnight. The reaction mixture was flettered through Celtic and concentrated under reduced pressure to give 100 mg (0.446 mmol, 82%) of compound 219C as a white solid, which was carried 20 on with no further purification.

D. (3aα,4β,5β,6β,7β,7aα)-4-(Octahydro-4,5,6,7tetramethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (219D)

A solution of compound 219C (44.4 mg, 0.2 mmol), 30-minol-2-cyanobernozrifiluoride (45 mg, 0.24 mmol), TEA 30 (0.04 mL) and MgSO₄ (20 mg) in toluene (0.2 mL) was heated at 135° C. overnight. The reaction mixture was cooled to room temperature, filtered and then concentrated under reduced pressure. Purification by flash chromatograpy on silicage jet cluring with 40% EIOAchexenas Giolowed 30 by washing the resulting solid with McOH gave 17 mg (0.043 mmol, 225%) of compound 219D as a white solid. HPIC: 90% at 3.11 min (retention time) (YMC S5 ODS 4.6550 mm, 10–90% agueous methanol over 4 minutes containing 0.2% phosphoric acid, monitoring at 220 mm). 40 KGS: m; 30.12 [M-H].

EXAMPLE 220

(3a.c.48, 78, 7a.c) + (Octabydro-4-methyl-1.3-dicto-7-2[2-4]-(fillion-centryl)phenosy phylyl-1/4-peopsy2-1/2-4-(fillion-centryl)phenosy phylor-2-pair Eluing Autipode & (3a.c.48, 78, 7a.c.4-[Octabydro-4-methyl-1.3-dicto-7-[2-4-(interpretation-centryl)phenosy lethyl-1, 7-epoxy-2Hsoindol-2-yl-2-(rifliotormethyl)phenositric, Slower Eluing Enaniomer (220 & 220i, Respectively)

15 Racemic compound 35 was separated into the individual antipodes by chiral normal phase liquid chromatographs. Chiralpak AD column (30-500 mm) was used eluting with 85% hexanes/7.5% methanol/7.5% ethanol, at 50 mL/min. UV detection at 220 mm was used: The fisster cluting isomer 200 compound 2201 (retention time-55.86 min) was found to have 95.5% et (GL₃2⁻⁸=4.50.27, C-8.3.14 mg/cs in CH₂Cl₃) and the slower cluting isomer compound 2201 (retention time-62.86 min) was 86% et (GL₃2⁻⁸=4.84.74, C-2.2.42 2 mg/cc in CH₂Cl₃) by analytical chiral normal phase chromatography.

EXAMPLE 221

(3aα,4β,5β,7β,7aα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (221B)

A. (3αc,4β,7β,7αc).4-(hexahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2- (irifluoromethyl)benzonitrile (221A)) & (3αc,4α,7αc,7αc,0-4-(hexahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(irifluoromethyl) benzonitrile (221Aii)

-continued

A solution of 2,5-dimethylfuran (0.800 mL, 7.51 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-2trifluoromethylbenzonitrile (synthesized as described in Example 1B, using 4-cyano-3-trifluoromethylaniline in place of 4-bromo-3-methylaniline) (1.00 g, 3.75 mmol) in benzene (4 mL) was heated at 60° C. overnight. The reaction 20 mixture was concentrated under reduced pressure and placed on a high vacuum pump until the oil solidified to give a 3:1 mixture (determined by LC and NMR) of compounds 221Ai & 221Aii, respectively, as a brown solid, which was used directly in the next step without further purification.

B. (3aα,4β,5β,7β,7aα)-4-(Octahydro-5-hydroxy-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (221B)

BH₂,THF (3.75 mL, 3.75 mmol, 1M in THF) was added to a solution of crude compounds 221Ai & 221Aii (3.75 mmol) in THF (12.5 mL) at 0° C. After the starting material was consumed the reaction mixture was concentrated under 35 reduced pressure. The resulting residue was then dissolved in toluene (12.5 mL), Me₃NO (845 mg, 11.2 mmol) was added and the mixture was heated to reflux overnight. The reaction mixture was then cooled to rt, added to H2O and were dried over MgSO4 and concentrated under reduced pressure. Purification by flash chromatography on SiO, eluting with 75% EtOAc/hexanes gave 0.354 g (25%) of compound 221B as a tan powder. HPLC: 90% at 2.45 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 381.11 [M+H]*.

EXAMPLE 222

(3aα,4β,5α,7β,7aα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (222D)

A. 3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2,5dimethylfuran (222A)

2,5-Dimethyl-3(3H)-furanone (2.00 g, 17.8 mmol) was dissolved in methylene chloride (180 mL). TEA (7.43 mL, 53.5 mmol) was added followed by TBSOTf(4.92 mL, 21.4 mmol) at 25° C. After 1 h, the reaction was concentrated in vacuo and the resulting slurry was run through a silica gel column conditioned with 3% TEA in hexanes. The product was eluted with 3% TEA/hexanes to give 3.6 g (89%) of compound 222A as an orange oil which was used directly in subsequent reactions.

B. (3aα,4β,7β,7aα)-4-[5-[[(1,1-Dimethylethyl) dimethylsilylloxyl-1,3,3a,4,7,7a-hexahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (222B)

4-(2,5-Dihydro-2,5-dioxo-1H-pyrrol-1-yl)-2trifluoromethylbenzonitrile (1.00 g, 3.85 mmol) was dissolved in benzene (5.0 mL) and the compound 222A (1.30 extracted with EtOAc (3x). The combined organic layers 40 g, 5,77 mmol) was added. The reaction mixture was warmed to 60° C. for 2 h and then cooled to 25° C. The solution was then concentrated in vacuo to give compound 222B as a vellow oil which was carried on to the next reaction without purification. HPLC: 60% at 4.013 min (retention time) 45 (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

> C. (3aα,4β,5α,7β,7aα)-4-[5-[[(1,1-Dimethylethyl)] dimethylsilyl]oxy]octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-v11-2-(trifluoromethyl)benzonitrile (222C)

60

Crude compound 222B (3.85 mmol) was dissolved in ethyl acetate (75 mL) and 10% Pd/C (1.20 g) was added. Hydrogen was then introduced via a balloon. After 24 h, the

reaction was filtered through Celtic rinsing with ethyl acetate and concentrated in vacuo to give a yellow oil. The crude product was purified by Bash chromatography on silica gel cluting with methylene chloride/acctone (0%–198–2% acctone) to give 0.710 g (35%) compound 5 222 cs as yellow solid. HPLC: 100% at 4.160 min referention time) (YMC S5 ODS column 46x50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS

D. (3aα,4β,5α,7β,7aα)-4-(Octahydro-5-hydroxy-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (222D)

Compound 222C (0.040 g. 0.081 mmol) was dissolved in 15 THF (1.0 ml.) and HF Pyridine (0.5 ml.) was added. After 2.h, the reaction was carefully poured into oold saturated aq. NaHCO., The mixture was then extracted with methylene chiloride (3×10 ml.). The combined organics were washed with 1 N HCI (1x10 ml.) and diried over anhydrous sodium sulfate. Concentration in vacuo gave 0.031 g (10%) compound 222D as a yellow solid. NOE experiments confirmed the assigned isomer. HPILC: 98% a 2.777 min (retention time) (YMC SS ODS column 4.6x50 mm clutting with 10-90% aqueous methanol over 4 minutes containing 0.2% 25 phosphoric acid, 4 ml./min, monitoring at 220 mm). MS (ESS) mrd 4.03.05 MH-Nal*.

EXAMPLE 223

 (αR)-α-Methoxybenzeneacetic Acid, 2-[(3aα,4β,7β, 7aα)-2-(4-cyano-1-naphthalenyl)octahydro-7methyl-1,3-dioxo-4,7-cpoxy-4H-isoindol-4-y]ethyl Ester (223C)

A. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]octahydro-7-methyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (223A)

A solution of 4-amino-1-naphthalencearbonitrile (19.2 g, of 114 mmol) and makies anhydride (14.0 g, 113 mmol) in AcOH (220 mL) was heated at 115° C. for 12 h. After cooling to rt, the reaction mixture was concentrated under reduced pressure then diluted with CH₂Cl, (2.5 L). The organic layer was washed 3 w with H₂O (3.1), x with sat. 6s aq. Na₂CO₃ (1.1) and 1x with brine (11.), dried over MgSO₃ and concentrated to -200 mL under reduced pressure. Puri-

fication by flash chromatography on cation exchange resis (edg. g. CH8X13M6 from United Chemical Technologies) cluting with CH₂CL₂ gave 25.0 g (88%) of 4-(2,5-dihydro-2,5-dixxo-1H1-iyy)-1-mphthalencearbonitrile as a yellow solid. HPLC: 96% at 2.48 min (retention time) (Phenomenex-prime S5-C18 column 4.6x50 mm, 10-28 a queuous methanol over 4 minutes containing 10-29% phosphoric acid, 4 ml/min, monitoring at 220 mm). MS (ES): miz 249.25 [M+H1]*.

4-(2,5-Dihydro-2,5-dioxo-1H-1-yl)-1naphthalenecarbonitrile (1.00 g, 4.03 mmol) was suspended in benzene (6.0 mL) in a scaled tube and compound 204A (1.11 g, 5.24 mmol) was added. The reaction was heated at 60° C. for 16 h and then cooled to 25° C. The benzene was removed in vacuo to give a yellow solid. The solid was dissolved in ethyl acetate (40 mL) and Pd/C (10% Pd, 0,300 g) was added. Hydrogen was then introduced via a balloon. After 4 h, the reaction was filtered through Celite rinsing with ethyl acetate. Concentration in vacuo gave a pale vellow solid which was purified by flash chromatography on silica gel eluting with acetone/chloroform (0% -1.5%-3% acetone) to give 1.53 g (77%) compound 223A as a vellow foam. HPLC: 86% at 4.173 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

> B. (3aα,4β,7β,7aα)-4-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (223B)

Compound 223A (1.37 g. 2.97 mmol) was dissolved in THF (8.0 mL) and transferred to a polypropylene bottle and cooled to 0° C. HF-Pyrdine (2.0 mL) was then added. After 45 20 min, the reaction was carefully poured into cold sat aq. sodium bicarbonate and extracted with methylene chloride (3x30 mL). The organics were then washed with 1 N HCI and dried over anhydrous sodium suifate. Concentration in vacuo gave 0.99 g (89%) the compound 223B as a yellow 50 feath with was not purified further. HPLC -96% at 2.443 and 2.597 min (atropisomers, retention time) (YMC S5 ODS column 4.6x50 cm nelting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (58); mz 399.02 [M-N-a].

C. (αR)-α-Methoxybenzeneacetic Acid, 2-[(3aα,4β, 7β,7aα)-2-(4-cyano-1-naphthalenyl)octahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-y]ethyl Ester (223C)

Compound 223B (0,200 g, 0,575 mmol) was added to a solution of WSDCC (0.18 g, 0,719 mmol) and (R)-mandelic acid (0,096 g, 0,57 mmol) in dichloromethane (0,0 mmol). 4 mmol (0,005 g) was then added and the reaction was stirred at 25° C. for 4 h. The mixture was then diluted with dichloromethane, washed with 1 N HCl (2x10 mL) followed by sodium bicarbonate (1x10 mL) and dried over analydrous sodium salfate. Concentration in vacuo gave

0.220 g (71%) compound 223C as a yellow solid which was not purified further. HPLC: 100% at 3.283 min (retention time) (YMC S5 0DS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phespioric acid, 4 ml/min, monitoring at 220 mm). MS 5 (ES): m/z 547.26 [M4Na]*

EXAMPLE 224

(3aα,4β,7β,7aα)-2-(Methylthio)-4-(octahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl) benzonitrile (224)

4-Amino-2-(methylthio)beazonitrile (100 mg, 0.609 38 mone), synthesized as described in EP 40931 Al) was reasted in a scaled tube with compound 20A(131 mg, 0.668 mm)), MgSO, (fd 1 mg, 1.34 mmol) and EL, N(0.444 m II, 3.17 mmol) in 0.50 mL tollene according to the procedure described in Example 208C to give, after purification by reverse phase preparative HPLC (YMC SS ODS 20x100 mm eluting with 304-100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min), 137 mg (0.400 mmol, 60%) of compound 224 as a white solid. HPLC 100% at 32.73 min (retention time) (YMC SS ODS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm), MS (ES); miz 4010, PM-H-OAG².

EXAMPLE 225

(3αα,4β,7β,7αα)-2-(Methylsulfilnyl)-4-(octahydro-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl) benzonitrile (225)

To an ice-cold suspension of compound 224 (30 mg, 0088 mmol) n.2 mL of H_0,0MeOH (1:1) was added oxone (80 mg, 0.26 mmol) in one solid portion. The resulting on mixture was stirred for 4 hat 0° C. before it was diltuted with H_0 (10 mL) and extracted with CH_1C1, (2×20 mL). The combined organic layers were dried and concentrated in vacuo to leave a residue which was purified by filtering the material through a short pad of slice age letting with 65 CH_1C1, to yield 32 mg (0.088 mmol, 100%) of compound 225 sa a colorless oil. HPLC: 99% at 2.01 min (retention

time) (YMC S5 ODS column 4.6x50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 376.0 [M+NH_a]*.

EXAMPLE 226

(3aa,4β,7β,7aa)-2-(Methylsulfonyl)-4-(octahydro-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl) benzonitrile (226)

To a solution of compound 225 (48 mg, 0.14 mmol) in 30 CH,Cl2 (2 mL) was added mCPBA (145 mg, 50% mixture, 0.420 mmol) in one solid portion. The resulting mixture was allowed to warm to room temperature and was stirred for 60 h at which time no more starting material could be detected by HPLC. The reaction was quenched by the addition of sat. NaHCO3 solution (5 mL), the layers were separated and the aqueous layer was extracted with CH2Cl2 (20 mL). The combined organic phases were dried over MgSO, and concentrated in vacuo. The remaining residue was purified 40 by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm eluting with 30-100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min) to afford 48 mg (0.13 mmol, 92%) of compound 226 as a white solid. HPLC: 100% at 2.07 min (retention time) (YMC S5 ODS column 45 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES); m/z 392.0 fM+NH.1+.

EXAMPLE 227

(3αα,4β,5β,7β,7αα)-7-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxylethyl]lbexshydro-5-hydroxy-4methyl-2-(4-nitro-1-naphthalenyl)-4,7-epoxy-1Hisoindole-1,3(2H)-dione (227B)

A. (3αα,4β,7β,7αα).4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxylethyl]-3α,4,7,7a-tetrahydro-7methyl-2-(4-nitro-1-naphthalenyl)-4,7-epoxy-1Hisoindole-1,3(2H)-dione (227A)

A solution of compound 204A (455 mg, 1.89 mmol) and 1,4-nitronaphthalene-IH-pyrrole-2,5-dione (254 mg, 0.947 mmol), prepared as described for 4+(2,5-dihydro-2,5-dioxo-IH-1-yl)-1-naphthalencearbonitrile, Example 223A) in benzene (2 mL) was beated at 60° C. overnight. The reaction mixture was concentrated under reduced pressure to give crude compound 227A as a brown solid, which was used directly in the next see without further purification.

B. (3αα,4β,5β,7β,7αα)-7-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]hexahydro-5-hydroxy-4methyl-2-(4-nitro-1-naphthalenyl)-4,7-epoxy-1Hisoindole-1,3(2H)-dione (227B)

BH2. THF (0.95 mL, 0.95 mmol, 1M in THF) was added to a solution of crude compound 227A (0.48 g, 0.95 mmol) in THF (2 mL) at 0° C. After compound 227A was consumed, as was evident by HPLC, the reaction mixture was concentrated under reduced pressure. The resulting residue was then dissolved in toluene (2 mL), Me₂NO (71.0 mg, 2.84 mmol) was added and the mixture was heated to reflux overnight. The reaction mixture was then cooled to rt. added to H2O and extracted with EtOAc (3x). The combined organic layers were dried over MgSO, and concentrated under reduced pressure. Purification by flash chromatography on SiO2 eluting with 75% EtOAc/hexanes, gave 130 mg (26%) of compound 227B as a brown solid, HPLC: 94% at 3.92 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 527.5 [M+H]+.

EXAMPLE 228

(3aα,4β,5β,7β,7aα)-Hexahydro-5-hydroxy-7-(2hydroxyethyl)-4-methyl-2-(4-nitro-1-naphthalenyl)-4,7-epoxy-1H-isoindole-1,3(2H)-dione (228)

A mixture of TBAF (0.3 mL, 0.3 mmol, 1 M solution in THF) and HF (0.3 mL, 50% in H₂O) in CH₃CN (6 mL) was

added to a solution of 227B (104 mg, 0.197 mmol) in THE (2 mL) at 0° C. The reaction mixture was stirred overnight at rt. After the starting material was consumed, as was evident by TLC, H₂O and EtOAc were added and the layers were separated. The aqueous layer was extracted with EtOAc (1x) and the combined organic layers were washed with H₂O (1x) and brine (1x), dried over Na_SOO, and concentrated under reduced pressure. Prrification by flash of chromatography on SiO₂ eluting with 5% McOHLCH₂Cl₂ gave 61 mg (75%) of compound 228 as a yellow solid. HPLC: 99% at 2.47 min (retention time) (YMC S5 ODS column 4.06.50 mm eluting with 10–90% aqueous methanol or 4 minutes containing 0.2% phosphoric acid, 4 mL/min. 5 monitoring at 220 mm). MS (ESS) mz 4.11.2 (M-11).

EXAMPLE 229

(3αα,4β,5β,7β,7αα)-7-[2-(4-Fluorophenoxy)ethyl] hexahydro-5-hydroxy-4-methyl-2-(4-nitro-1naphthalenyl)-4,7-epoxy-1H-isoindole-1,3(2H)dione (229)

DBAD (37.7 mg, 0.164 mmol) was added to a solution of 45 PPh₂ (43.0 mg, 0.164 mmol) in THF (1 mL). After stirring for 10 min, 4-fluorophenol (18.3 mg, 0.164 mmol) was added and the reaction mixture was stirred for a further 5 min. A solution of compound 228 (45.0 mg, 0.109 mmol) in THF (1 mL) was added and the mixture was stirred at rt overnight. HPLC showed the crude reaction mixture to contain mostly starting diol (compound 228), so this mixture was added to a preformed mixture as before of PPh2 (86 mg), DBAD (75.4 mg) and phenol (36.6 mg) in THF (4 mL) 55 at rt. Stirring was continued until all of compound 228 was consumed. The reaction was then concentrated under reduced pressure. Purification by reverse phase preparative HPLC [15.2 min (retention time) (YMC S5 ODS A column 20×100 mm, 10-90% aqueous methanol over 15 minutes 60 containing 0.1% TFA, 20 mL/min, monitoring at 220 nm)] gave 25.0 mg (45%) of compound 229 as a light vellow solid. HPLC: 99% at 3.53 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous 65 methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES); m/z 505.2 [M-H]-.

25

35

(3ac,4p,5c,5p,7ac)-4-(Octanydro-3,6dihydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl)-2-(trifluoromethyl)benzonitrile (230Bi & 230Bii. Respectively)

NC CF3

A. $(3a\alpha,4\beta,7\beta,7a\alpha)-4-(1,3,3a,4,7,7a-Hexahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (230A)$

2,5-Dimethyl furan (1,23 mL, 11.5 mmol) and 4(2,5-dihyl dro-2,6-dio xo-114-pyrrol-1-yl)-2-d-tifluoromethylbenzonitrile (2,00 g, 7,69 mmol) were dissolved in beznace (1 om L) and headed at 60°C. for 18 k. The voltatile organics were then removed in vacno. The resulting so crude compound 230A was carried on without purification. HPI-C: 71% at 3.007 min (retention time) (YMC SS ODS column 4.6-S00 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, moniforing at 220 mm).

B. (3αc.4|i.5β.6β.7β.7αc)-4-(Octahydro-5,6dihydroxy-4.7-dimehyl-1,3-dioxo-4.7-pcopy-2Hisoindol-2-yl)-2-(trifluoromethyl)benzonitrile & (3αc.4β.5α.6α.7β.7αc)-4-(Octahydro-5,6dihydroxy-4.7-dimehyl-1,3-dioxo-4,7-poxy-2Hisoindol-2-yl)-2-(trifluoromethyl)benzonitrile (230Bi & 230Bi)

Compound 230A (0.100 g, 0.281 mmol) was dissolved in solid. HPIC: 95% at 4.227 min (retention time) (YMC SS acctone and N-methylmorpholine-Noxide (50% aq. as 50D Scolum 4.655 mm eluting with 10–90% agoss solution, 0.10 m1, 0.42 mmol) was added. ORG 1, 46 as 25° C., and Imitudes containing 0.2% phosphoric acid, solution, 0.014 mmol) was then added. After 3 h a 25° C., and Im/imi, monitoring at 220 mm).

172

the reaction was complete and sodium sulfite (0.250 g) was added with vigorous stirring. After 15 min, brine (10 mL) was added and the solution was extracted with EtOAc (3×15 mL). The organics were dried over anhydrous sodium sul-5 fate and then concentrated in vacuo. The crude diol mixture was purified by preparative TLC eluting with 18% acetone in chloroform to give 0.038 g (34%) of compound 230Bi (beta face) and 0.012 g (11%) of compound 230Bii (alpha face) as pale yellow solids. Compound 230Bi: HPLC: 100% 10 at 2.567 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES): m/z 397.08 [M+H]*, Compound 230Bii; HPLC: 100% at 2.417 min (retention time) (YMC S5 ODS 15 column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min. monitoring at 220 nm). MS (ES): m/z 397.08 [M+H]+.

EXAMPLE 231

(3αα,4β,5β,6β,7β,7αα)-4-[Octahydro-5,6-dihydroxy-4-(hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile, (231C)

A. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]-1,3,3a,4,7,7a-hexahydro-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalencearbonitrile (231A)

Compound 204A (29.0 g, 120 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-1-vl)-1-naphthalenecarbonitrile (20.0 g, 80.6 mmol) were suspended in benzene (80 mL) and heated at 60° C. for 14 h. The mixture was then concentrated in vacuo at 40° C. for 40 min. The resulting slurry was cooled to 25° 55 C. and then suspended in MeOH (200 mL) and stirred at rt for 30 min. The solution was then cooled, to 0° C, for 30 min and then filtered rinsing with cold MeOH. The resulting solid was dried in vacuo to give 26.1 g (55%) of crude compound 231A as a white solid. The methanol solution was 60 concentrated in vacuo and resuspended in MeOH (50 mL) and cooled to -20° C, for 4 h, The solution was then filtered rinsing with cold MeOH. The resulting solid was dried in vacuo to give 3.8 g (10%) of compound 231A as a white solid, HPLC: 95% at 4,227 min (retention time) (YMC S5 methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

Compound 231A (0.400 g, 0.851 mmol) was dissolved in 20 acetone (9.0 mL) and N-methylmorpholine-N-oxide (50% aq. solution, 0.150 mL, 1.28 mmol) was added. OsO4 (4% aq. solution, 0.043 mmol) was then added. After 3 h at 25° C., the reaction was complete and sodium sulfite (1.0 g) was added with vigorous stirring. After 15 minutes, brine (30 25 mL) was added and the solution extracted with EtOAc (3×50 mL). The organics were dried over anhydrous sodium sulfate and then concentrated in vacuo. The crude diol was purified by flash chromatography on silica eluting with 30 5-25% acetone in chloroform to give 0.355 g (80%) of compound 231B as a vellow solid. HPLC: 93% at 3.903 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 522.00 [M+H]+.

C. (3aα,4β,5β,6β,7β,7aα)-4-[Octahydro-5,6dihydroxy-4-(hydroxyethyl)-7-methyl-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (231C)

Compound 231B (0.400 g, 0.766 mmol) was dissolved in THF (5.0 mL) and transferred to a polypropylene bottle and cooled to 0° C. HF-Pvridine (1.0 mL) was then added. After 20 min, the reaction was carefully poured into cold sat. aq. 55 dihydro-2,5-dioxo-1H-pyrrol-1-y1)-2sodium bicarbonate and extracted with methylene chloride (3×30 mL). The organics were then washed once with 1 N HCl and dried over anhydrous sodium sulfate. Concentration in vacuo gave 0.290 g (93%) compound 231C (0.290 g) 60 as a yellow foam which was not purified further. HPLC: 92% at 2.273 and 2.423 min (atropisomers, retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 409.10 [M+H]+.

174 EXAMPLE 232

(3aα,4β,5β,6β,7β,7aα)-4-[Octahydro-5,6dihydroxy-4-methyl-1,3-dioxo-7-[2-[4-(trifluoromethyl)phenoxy[ethyl]-4,7-epoxy-2Hisoindol-2-yl]-2-(trifluoromethyl)benzonitrile, (232C)

A. 2-Methyl-5-[2-[4-(trifluoromethyl)phenoxy] ethyl]furan (232A)

To a solution of triphenylphosphine (1.56 g, 5.95 mmol) in THF (40 mL) was added DBAD (1.37 g, 5.95 mmol). After 10 min, 4-trifluoromethylphenol (0.964 g, 5.95 mmol) was added. After 10 additional minutes, compound 21A (0.500 g, 3.97 mmol) was added. After 14 h at 25° C., the reaction was concentrated in vacuo and purified by flash chromatography on silica eluting with chloroform to give 0.713 g (44%) of compound 232A as a clear oil.

B. (3aα,4β,7β,7aα)-4-[1,3,3a,4,7,7a-hexahydro-4methyl-1,3-dioxo-7-[2-[4-(trifluoromethyl)phenoxy] ethyl]-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (232B)

Compound 232A (0.301 g, 1.15 mmol) and 4-(2,5trifluoromethylbenzonitrile (0,220 g, 0.846 mmol) were suspended in benzene (1.5 mL) and heated at 60° C. for 14 h. The mixture was then concentrated in vacuo at 40° C. for 40 minutes. The crude product was purified by flash chromatography on silica cluting with 10-0% hexanes in methylene chloride to give 0.199 g (44%) of compound 232B as a vellow solid. Compound 232B was characterized as the exo diastereomer by NOE experiments. HPLC: 94% at 3.993 min (retention time) (YMC S5 ODS column 4.6x50 65 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

50

C. (3aα,4β,5β,6β,7β,7aα)-4-[Octahydro-5,6dihydroxy-4-methyl-1,3-dioxo-7-[2-[4-(trifluoromethyl)phenoxylethyl]-4,7-cpoxy-2Hisoindol-2-yl]-2-(trifluoromethyl)benzonitrile, (232C)

Compound 232B (0.075 g, 0.14 mmol) was dissolved in acctone (2.0 mL) and N-methylmorpholine-N-oxide (50% ag, solution, 0.025 mL, 0.21 mmol) was added, OsO, (4% aq. solution, 0.007 mmol) was then added. After 3 h at 25° C., the reaction was complete and sodium sulfite (0.25 g) was added with vigorous stirring. After 15 minutes, brine (5 15 mL) was added and the solution extracted with EtOAc (3×10 mL). The organics were dried over anhydrous sodium sulfate and then concentrated in vacuo. The crude diol was purified by preparative TLC on silica gel, cluting with 10% acetone in chloroform to give 0.038 g (48%) of compound 232C as a vellow solid. HPLC: 98% at 3.747 min (retention time) (YMC S5 ODS column 4.6x50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS 25 (ES): m/z 593.08 [M+Na]+.

EXAMPLE 233

(3aα,4β,5β,5aβ,8aβ,8bα)-4-(Decahydro-5-hydroxy-4-methyl-1,3-dioxo-4,8a-epoxy-2H-furo[3,2-e] isoindol-2-yl)-1-naphthalenecarbonitrile, (233)

To a solution of triphenylphosphine (0.072 g, 0.28 mmol) in THF (3.0 mL) was added DBAD (0.063 g, 0.28 mmol). After 10 min, 4-cyanophenol (0.033 g, 0.28 mmol) was added. After 10 additional minutes, compound 231C (0.075 g, 0.18 mmol) was added. After 3 h at 25° C., the reaction was concentrated in vacuo and purified by preparative TLC on silica gel, eluting with 15% acetone in chloroform to give 60 0.068 g (95%) of compound 233 as a white solid. HPLC: 95% at 2.430 and 2.560 min (atropisomers, retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 65 10-90% aqueous methanol over 4 minutes containing 0.2% 4 mL/min, monitoring at 220 nm). MS (ES): m/z 391.09 [M+H]+.

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindole-4-acetic Acid, (234B)

A. (3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-1, 2,3,3a,7,7a-hexahydro-7-methyl-1,3-dioxo-4,7epoxy-4H-isoindole-4-acetic Acid (234A)

5-Methyl-2-furanacetic acid (0.500 g, 3.57 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-1-v1)-1naphthalenecarbonitrile (0.899 g, 3.57 mmol) were dis-

40 solved in benzene (3.0 mL) and heated at 60° C. for 2 h and then cooled to 25° C. After 12 h, a white solid precipitated out of solution which was collected and rinsed with diethyl ether to yield 1.20 g (87%) of compound 234A as a light yellow solid. NMR analysis showed only one diastercomer. 45 HPLC: 86% at 2.767 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 389.45 [M+H]*.

> B. (3aα,4β,7β,7aα)-2-(4-Cvano-1-nanhthalenvl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindole-4-acetic Acid, (234B)

Compound 234A (1.10 g, 2.82 mmol) was dissolved in EtOH/EtOAc (1:1, 50 mL) and 10% Pd/C (0.4 g, cat.) was added. H2 was introduced via a balloon. After 5 h at 25° C., the reaction was filtered through Celite rinsing with EtOAc and concentrated in vacuo to yield 1.00 g (91%) of compound 234B as a yellow solid. HPLC: 80% at 2.84 min (retention time) (YMC S5 ODS column 4.6×50 mm, phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 391.1 [M+H]+.

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindole-4-acetic Acid, Methyl Ester, (235)

Compound 234B (0.050 g, 0.13 mmol) was dissolved in acetonitrile (2.0 mL), then DCC (0.025 g, 0.13 mmol) was added followed by HOAc (0.018 g, 0.13 mmol). 4-Fluorobenzyl alcohol (0.014 mL, 0.13 mmol) was then added and the reaction was stirred for 3 h. The reaction mixture was concentrated in vacuo and purified by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 25 10-90% aqueous methanol over 15 min containing 0.1% TFA, 20 mL/min, monitoring at 220 nm). Purification vielded 0.040 g (82%) of compound 235 as a white solid. rather than the expected benzyl ester. None of the anticipated benzyl ester was observed by NMR or LC-MS. HPLC: 100% at 3.033 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 405.51 [M+H]+.

EXAMPLE 236

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-N-[(4fluorophenyl)methyl]octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4H-isoindole-4-acetamide, (236)

Compound 234B (0.10 g, 0.27 mmol) was dissolved in acetonitrile (4.0 mL), HOAc (0.035 g, 0.27 mmol) and DCC (0.049 g, 0.27 mmol) were then added followed by 4-fluorobenzylamine (0.030 mL, 0.27 mmol). After 4 h at 25° C., the reaction was concentrated in vacuo and purified by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 10-90% aqueous methanol over 15 minutes containing 0.1%. TFA, 20 mL/min, monitoring at 220 nm) to yield 0.085 g (67%) of compound 236 as a white solid. HPLC: 100% at 3.277 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes 65 column 4.6×50 mm eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 498.43 [M+H]+.

(3aα,4β,7β,7aα)-N-[2-[2-(4-Cyano-1-naphthalenyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindol-4-yl]ethyl]-4-fluorobenzamide, (237B)

A. 4-Fluoro-N-[2-(5-methyl-2-furanyl)ethyl] benzamide (237A)

4-Fluorophenylacetyl chloride (0.290 mL, 2.44 mmol) was added dropwise to a solution of β-(5-methyl-2-furanyl) ethanamine (300 mg, 2.44 mmol, made according to the procedure of Yur'ev et al. J. Gen. Chem. USSR (Engl. Transl.) 33, 3444-8 (1963)) in THF (2.5 mL) at rt. followed 35 by the dropwise addition of Et3N (0.340 mL, 2.44 mmol). Once the starting material was consumed, as was evident by HPLC, the reaction was quenched with H₂O and extracted with CH2Cl2. The combined organic lavers were dried over MgSO4 and concentrated under reduced pressure. Purifica-40 tion by flash chromatography on silica gel eluting with a gradient of 0-50% EtOAc/hexane gave 523 mg (95%) of compound 237A as a white solid, HPLC: 99% at 2.84 min (retention time) (Phenomenex-prime S5-C10 column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 248.15 [M+H]*.

B. (3aα,4β,7β,7aα)-N-[2-[2-(4-Cyano-1naphthalenyl)octahydro-7-methyl-1,3-dioxo-4,7epoxy-4H-isoindol-4-yl]ethyl]4-fluorobenzamide, (237B)

A solution of compound 237A (221 mg, 0.896 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-1-yl)-1naphthalenecarbonitrile (222 mg, 0.896 mmol) in benzene (4 mL) was heated at 60° C. overnight. The reaction mixture was concentrated under reduced pressure and dissolved in EtOAc (30 mL). 10% Pd/C (50 mg) was added and the mixture was stirred under a hydrogen balloon overnight. The reaction mixture was filtered through a pad of Celite and 60 concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 25%-75% EtOAc/hexane (gradient) gave 160 mg (36%) of compound 237B as an off-white solid. HPLC: 97% at 3.13 & 3.23 min (atropisomers, retention time) (Phenomenex-prime S5-C18 over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 498.11 [M+H]+.

50

[3aR-(3aα,4β,7β,7aα)]-4-{Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile & [3aS-(3aα,4β,7β,7aα)]-4-{Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile. (23i & 23i)

Racemic compound 223B was separated into its enantiomers by normal phase preparative chiral HPLC (CHIRALPAK AD 5×50 cm column; eluting with 20% MeOH/EtOH (1:1) in heptane (isocratic) at 50 mL/min, monitoring at 220 nm) to give the faster eluting compound 238i (Chiral HPLC: 13.54 min; CHIRALPAK AD 4.6×250 mm column; eluting with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min) and the slower eluting compound 238ii (Chiral HPLC: 14.99 min; CHIRALPAK AD 4.6×250 mm column; eluting with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min). The absolute conformation for compounds 238i & 238ii was not established. For simplicity in nomenclature, 40 compound 238i is designated herein as having an "R" configuration and compound 238ii as having an "S" configuration. Enantiomerically pure products derived from compound 238i are designated herein as having a "R" configuration and enantiomerically pure products derived 45 from compound 238ii are designated herein as having an "S" configuration.

EXAMPLE 239

[3ak (3a.4.4);/B/3ao])-4[4]-2(3-Fluorophenoxy) ethyl]octabydro-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalencearbonitrile & [3aS-(-(3ac.4);7];/Zao])-4[4]-2(3-Fluorophenoxy)ethyl octabydro-7-methyl-1,3-diox-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalencearbonitrile, (239i & 239ii)

To a solution of triphenylphosphine (0.052 g, 0.20 mmol) in THF (2.0 mL) was added DBAD (0.046 g, 0.20 mmol). After 10 min, 3-fluorophenol (0.018 mL, 0.20 mmol) was 15 added. After 10 additional minutes, compound 238i (0.050 g, 0.13 mmol) was added. After 3 h at 25° C., the reaction was concentrated in vacuo and purified by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 10-90% aqueous methanol over 15 minutes containing 0.2% TFA, 20 mL/min, monitoring at 220 nm) to give 0.031 g (33%) of compound 239i as a white solid. This process was repeated with compound 238ii to yield compound 239ii. Compound 239i: HPLC: 100% at 3.80 min (retention time) (YMC S5 25 ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 471.65 [M+H]+, $[\alpha]_0^{25} = -47.371$ (c=4.412 mg/cc, CH₂Cl₂). Compound 239ii: HPLC: 100% at 3.80 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 471.65 [M+H]+, $[\alpha]_D^{25}$ =+24.3 (c=4.165 mg/cc, CH₂Cl₂).

EXAMPLE 240

(4-Fluorophenyl)carbamic Acid, 2-[(3αα,4β,7β, 7aα)-2-(4-cyano-1-naphthalenyl)cctahydro-7methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-y]ethyl Ester, (240)

Compound 223B (0.100 g, 0.279 mmol) was dissolved in dichrorethane (3.0 ml.) and 4-Bucrophenylisocyanate (0.048 ml., 0.42 mmol) was added followed by beating to 60° C. After 2 h, the reaction was cooled to 25° C. and diluted with methylace chloride. The mixture was washed once with sat. aq, sodium bicarbonate (20 ml.) and then the organics were dried over anhytous sodium sulfate. The orarde material was purified by flash chromatography on silica gel clutting with 15% accessor and under the orarde was preferred to the orarde orar

15

50

(3aa,4β,7β,7aa)-4-[Octahydro-4-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalencearbonitrile. (241D)

 Λ. 2-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy] ethyl]furan (241A)

2-(2-1)ydroxyethyl/hran (1.00 g, 8.93 mmol, Example 255A) was dissolved in DMF at 25° C. and imidazole (0.700 g, 11.6 mmol) was added. TBSCl (1.35 g, 8.93 mmol) was then added in portions over 5 minutes. After 2 h, the reaction was poured into diethyl ether (200 mL), and washed sequencially with water (1x100 mL), 1 N HCl (1x100 mL), and brine (1x100 mL). The combined organies were then dried over magnesium sulfate and concentrated in vacuo. Compound 241A was isolated as a clear oil (1.77 g) and was taken on without purification. HPLC: 100% at 4.233 min 35 (retention time) (YMC S5 ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phossbories aich, 4 mL/min, monitoring at 220 mm).

B. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]-1,3,3a,4,7,7a-hexahydro-1, 3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (241B)

4+(2,5-Dihydro-2,5-dioxo-1H-1-y1)-1anphthalencarbonitie (0.721 g. 3.40 mmol) was sussspended in benzene (5.0 ml.) in a sealed tube and compound
241A (1.00 g. 4.24 mmol) was added. The reaction was
heated at 60° C. for 16 h and then cooled to 25° C. The
benzene was removed in vacuo to give a yellow solid. The
crude material was purified by flash chromatography on oi
silica gel eluting with 1-5% acctone in chloroform to give
1.37 g (55%) of compound 241B as a yellow solid. MMR
experiments confirmed the xos isomer assignment. HPLC:
100% at 4.030 & 4.110 min (atropsiomers, retention time)
(VMC \$5 OSD column 4.6-50 mm, 10-90% aqueous 65
methanol over 4 minutes containing 0.5% phosphoric acid,
4 ml/min, monitoring at 220 mm.

182

C. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsitly].oxy]ethyl]octahydro-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (241C)

Compound 241B (0.500 g, 1.14 mmol) was dissolved in cultural actate (40 mL) and 10% PdC (0.200 g) was added. 20 Hydrogen was then introduced via a balloon. After 4 h, the reaction was filtered through Celite, finsed with chlyl acetate and concentrated in vacuo to yield a pale yellow solid, which was purified by flash chromatography on silice gel cluting was purified by flash chromatography on silice gel cluting was purified by flash chromatography on silice gel cluting consideration of the control of the contro

D. (3aα,4β,7β,7aα)-4-[Octahydro-4-(2hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl]-1-naphthalenecarbonitrile, (241D)

35 Compound 241C (0.283 g, 0.594 mmol) was dissolved in a solution of 2% cone. HCl in absolute ethanol (10 mL). After 1 h, the reaction was quenched with sat, as, sodium bicarbonate and extracted with methylene chloride (4x20 mL). The combined organise were dried over sodium sulfate and concentrated in vacuo to give 0.211 g (98%) of compound 241D as a white solid. HPLC: 109% at 2.14 min (retention time) (YMC S5 ODS column 4.6x50 mm, 10–90% aqueous methanol over 4 minutes containing 0.2% 45 phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m2 363.54 [M-H]T.

EXAMPLE 242

(3aα,4β,6β,7β,7aα)-4-[4-[2-(4-Cyanophenoxy) ethyl]octahydro-6-hydroxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile, (242C)

50

A. (3aα,4β,6β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl)dimethylsily].pxy.jethyl]octahydro-6hydroxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (242A)

Compound 241B (1.00 g, 2.28 mmol) and Wilkinson's 15 catalyst (0.105 g, 0.114 mmol) were stirred rapidly under vacuum at 25° C. for 1 h and then purged with N₂. THF (30 mL) was then added followed by catecholborane (0.487 mL, 4.57 mmol) after the olefin was completely dissolved. After 1 h, the reaction was cooled to 0° C. and a pH 7.2 phosphate 20 buffer (33 mL) was added followed by EtOH (13 mL) and H₂O₂ (30% ag, soln, 3.0 g). After 3 h at 0° C, the reaction was complete by LC and the mixture was extracted with methylene chloride (3×50 mL). The combined organics were washed with a 1:1 mixture of 10% sodium sulfite/1 N NaOH (50 mL) and once with brine (50 mL). All aqueous phases were combined and extracted with methylene chloride (50 mL) and the organic phase combined with the previous extractions. All the organics were then dried over anhydrous sodium sulfate and then concentrated in vacuo. The crude material was purified by flash chromatography on silica gel eluting with 10-20% acetone in chloroform to give 0.634 g of compound 242A as a white foam. HPLC: 96% at 3.797 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 493.13 [M+H]+.

B. (3aα,4β,6β,7β,7aα)-4-[Octahydro-6-hydroxy-4-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (242B)

Compound 242A (0.400 g. 0.813 mmol) was dissolved in a solution of 29 i 29 M EU in absolute orthanol (10 mL). After 1 h, the reaction was quenched with sat. aq. sodium bicarbonate and extracted with EUOAc (4x20 mL). The combined organics were dried over sodium sulfate and 55 concentrated in vacuo to give 0.305 g of compound 242B as a white solid. HPLC 90% at 2,043 min (relention time) (YMC S5 ODS column 4.6x50 mm, 10–90% aqueous methanol over 4 milutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 379.09 60 [M4.11]*

C. (3aα,4β,5β,7β,7aα)-4-[4-[2-(4-Cyanophenoxy) ethyl]octahydro-6-hydroxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile, (242C)

To a solution of triphenylphosphine (0.054 g, 0.207 mmol) in THF (2.0 mL) was added DBAD (0.048 g, 0.207

mmol). After 10 min, 4-cyanophenol (10.25 g. 0.207 mmol) was added. After 10 additional minutes, compound 242B (0.050 g. 0.138 mmol) was added. After 3 h at 25° C., the reaction was concentrated in vacuo and purified by prepara-5 tive TLC on silica eluting with 25% acetone/chloroform to give 0.056 g of compound 242C as a white solid. HPLC: 99% at 2.987 min (retention time) (YMC SS 0DS column 4.6x50 mm, 10-99% auguous methanol over 4 minutes containing 0.2% phesphoric acid, 4 ml/min, monitoring at 10.220 mm). MS (ESS m/z 480.10 fM+H).

EXAMPLE 243

[3as.(4,5,5,7,7,ac)]-4-[Octahydro-5-hydroxy-7-(2-hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindoi-2-yl]-1-asphthalenearbonitrile & [3aR.(3ac,4|5,5),7,7,ac)]-4-[Octahydro-5-hydroxy-7-(2-hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindoi-2-yl]-1-asphthalenearbonitrile, (243Di & 243Dii)

A. (3ac,4β,7β,7ac)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsitlyl]oxy]ethyl]-1,3,3a,4,7,7a-hexahydro-1, 3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (243A)

4-(2,5-Dihydro-2,5-dioxo-H1-1-yl)-1snaphthaleneorhontine (183, 6.87 mmol) was added to a solution of compound 204A (26.6 g. 110.6 mmol) in benzen (75 m.1) and heated at 60° covernight. After cooling to rt, the reaction mixture was concentrated under reduced pressure. The residue was treated with McOH (250 m.1) with 60 stirring at 0° C. for 10 min. The resulting solid was filtered, washed with cold McOH (24.0 m.1) and dried to give 26.7 g (79.5%) of compound 243A as a yellow solid. HPLC conditions: 95% at 2.48 min (retention time) (Phenomeners of prime \$5.5 Clis column, 4.65.0 mm, 105-90% aqueous methanol over 4 minute gradient with 0.2% II, JPO,, detecting at 220 mm). The filtrate was then concentrated under

reduced pressure and the resulting solid was chromatographed, eluting with 3% acetone/CHCl₃, to give an additional 4.36 g of compound 243A(13%), giving a total final yield of 92.5%.

B. (3aα,4β,5β,7β,7aα)-4-[7-[2-[[(,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (243B)

A mixture of 243A (10 g, 20.46 mmol) and RhCl(PPh₃)_{3 20} (0.947 mg, 1.02 mmol) was evacuated and filled with argon (3x). THF (200 mL) was added and once all particulates had dissolved, catecholborane (4.4 mL, 40.93 mmol) was slowly added dropwise. When the formation of product ceased, as was determined by HPLC, the reaction mixture was cooled to 0° C. and quenched with phosphate buffer (330 mL, pH 7.2) then EtOH (130 mL) and H2O2 (300 mL, 30% aq. sol) were added. Once boronate was consumed, the mixture was extracted with CH2Cl2 (3x) and the combined organic layers were washed with 1 N NaOH, 10% aq. NaHSO3 (1:1, 1x) and brine (1x). The combined washes was extracted with CH2Cl2 (1x) and the combined organic layers were dried over Na-SO., Purification by flash chromatography on silica gel eluting with 10% to 30% acetone/CHCl, gradient over 25 min gave 7.1 g (68%) of 243B as a light yellow solid. HPLC conditions: 98% at 3.82 min (retention time) (Phenomenex-prime S5-C18 column 4.6×50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H₃PO₄, detecting at 220 nm).

dimethylsilyl]oxy]ethyl]octahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (243Ci & 243Cii)

The racemic compound 243B was separated into the individual enantiomers by chiral normal phase liquid chro-

matography. A Chiralpak OD column (50x500 mm) was used, eluting with 13% ElOH/hexanes over 99 min at 50 mL/min detecting at 220 m. The faster eluting isomer compound 243Ci had a retention time=45 min and the 5 slower eluting isomer compound 243Cii had a retention time=66 min and the 5 slower eluting isomer compound 243Cii had a retention time=66 min.

D. [3aS-(3ac,4β,5β,7β,7ac)]-4[Octahydro-5-hydroxy-7c2-hydroxyethy)]-4-methyl-1,3-dioxo-1,-epoxy-2H-sioindol-2-yl-1-maphthalencearbonitrile & [3aR-(3ac,4β,5β,7β,7ac)]-4 (Octahydro-5-hydroxy-7c2-hydroxyethyl-)-4-methyl-1,3-dioxo-4,-7-epoxy-2H-sioindol-2-yl]-1-aaphthalencarbonitric (243b) & 243bii)

Compound 243Ci (0.84 g, 2.14 mmol) was dissolved in 2% 12 N HCUEIOH (20 mL), stirred for 5 minutes and concentrated under reduced pressure. Purification by flash chromatography on silica gel cluting with 5-10% McOH/O, CH₂Cl₂ gave 0.57 g (88%) of 243Di. Compound 243Di which came from the faster cluting isomer (243Ci) was found to be 99% ee by analytical normal phase chiral chromatography. HPLC conditions: 99.7% at 2.17 min (retention time) (Chiraleci Ol4 46.250 mm, 10 micron, 40° 5, c. isocratic 80% Heptane 20% EiOH/McOH (1:1), 1.0 ml/min. detection at 288 mm).

Compound 243Cii (0.86 g., 2.19 mmol) was dissolved in 2% 12 N HC/E/GH (20 mL), stirred for 5 minutes and concentrated under reduced pressure. Purification by flash 30 chromatography on sities agel cluting with 5–10% McOH, CH₂Cl₂ gave 0.06 g (90%) of 243Dii. Compound 243Dii which came from the slower cluting isomer (243Cii) was found to have 87.1% ee by analytical chiral phase chiral chromatography. HPLC conditions: 87.1% at 18.4 min 5c (tetation time) (Chiralcal Ol 446.250 mm, 10 micron, 40° C., isocratic 80% heptane 20% E/OHMcOH (1:1), 1.0 mL/min, detection at 288 mm.

The absolute conformation for compounds 243Di & 243Dii was not determined. For simplicity in nomenclature, compound 243Di is designated herein as having an "S" configuration and compound 243Dia as having an "S" configuration. Enantiomerically pure products derived from compound 243Di are designated herein as having an "S" configuration and enantiomerically pure products derived 45 from compound 243Dii are designated herein as having an "R" configuration.

EXAMPLE 244

[38S-(3ac.4β.5β.7β.7ac.)]-4[7-[2-(4-Cyanophenoxy.elty][cathydro-5-shydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1acl)-4[7-[2-(4-Cyanophenoxy)ethyl]-cathydro-5hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-mphthalencarbonitrile (244 iš. 244ii)

DBAD (26 mg, 0.115 mmol) was added to a solution of Pbb, (30 mg, 0.115 mmol) in TIF (0.65 mL). After stirring for 10 min, 4-cyanophenol (13.6 mg, 0.115 mmol) was added and the caction mixture was stirred for a further 5 min. Compound 243D (30 mg, 0.076 mmol) was added and the mixture was stirred or 1 for 1 h. The reaction was concentrated under reduced pressure. Purification by flash chromatography on silice age letting with 30% excetone 70% CHCl, gave 23.1 mg (0.047 mmol, 6.17%) of compound 244, HPLC conditions: 95% at 3.06 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%—90% aqueous methanol over 4 minute gradient with 0.25 H,Pod, detecting at 220 mm). MS (ES): m/z 494.09 [M+H]?. [α]_D=53.30°, C=4.5 mg/cc in THF, @ S89 mm).

DBAD (26 mg, 0.115 mmol) was added to a solution of Pbb, (30 mg, 0.115 mmol) a THE (0.65 mL). After stirring for 10 min, 4-cyanophenol (13.6 mg, 0.115 mmol) was added and the reaction mixture was stirred for a further 5 30 min. Compound 243Dii (30 mg, 0.076 mmol) was added and the reaction mixture was stirred for a for 1 h. The reaction was concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 50% action concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 50% actioner 70% CIIC1, gave 20.3 mg (0.041 mmol, 54.2%) of compound 32 concentrated under reduced pressure. Purification in the CV44ii. IPIC conditions 90% at 3.07 min (retention time) (YMC SS ODS 4.6x50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H.P.O., detecting at 220 mm). MS (ES): m/z 494.09 [M-HI]. [cl_p-=42.870°, C-6.6 mg/cc in THE, 6x 589 mm).

EXAMPLE 245

(3aα,4β,7β,7aα)-4-[4-[2-(4-Cyanophenoxy)ethyl]-7ethyloctahydro-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl]-1-naphthalenecarbonitrile, (245D)

A. 2-Ethyl-5-(2-hydroxyethyl)furan (245A)

n-BuLi (2.5 M in hexane, 4.4 mL, 11 mmol) was added 65 to a solution of 2-ethylfuran (1.05 mL, 10 mmol) in THF (10 mL) at -25° C. The solution was warmed to rt and stirred for

3 h. Ethylene oxide (0.75 mL) was added at -78° C. The reaction was stirred for 0.5 h at -15° C. and overnight at rt. Aqueous sat. NH_Cl was added and the mixture was extracted with ether (3s). The combined extracts were extracted with thether (3s). The combined extracts were washed with water (1s) and brine (1s) and dried over washed with water (1s) and brine (1s) and dried over Na_SO_p. Purification by Bash chromatography on silica gel eluting with 30% EtiOAc/70% hexane gave 1.12 g. (8.02 mmo, 8.02-%) of compound 425A as a vellow 1s.

B. (3aα,4β,7β,7aα)-4-[4-Ethyl-1,3,3a,4,7,7a-hexahydro-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (245B)

A solution of compound 245A (280 mg, 2.00 mmol) and the $4 \cdot (2, 5 \cdot \text{di h}) \text{ d} \text{ro} - 2, 5 \cdot \text{di n} \times \text{n} \cdot \text{l} \text{l} \cdot \text{l} \cdot \text{l} + \text{l} \cdot \text{l} + \text{l} \cdot \text{l}) \cdot \text{l} \cdot \text{n}$ maphthalenecarbonitzile (496 mg, 2.00 mmol) in benzene (2 mL) was stirred at 60° C. for 2 h. The reaction mixture was concentrated under reduced pressure. The yellow solid, compound 245B, was used directly in the next step.

C. (3aα,4β,7β,7aα)-4-[4-Ethyloctahydro-7-(2hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl]-1-naphthalenecarbonitrile (245C)

A mixture of compound 245B (764 mg, 1.97 mmol) and 45 10% PdlC (115 mg, cat.) in EtOAc (36 mL) was stirred under a hydrogen atmospher at rt for 2 h. The reaction mixture was filtered through Celite and concentrated under reduced pressure to give 779 mg of crude compound 245C. Purification of this crude product by flash chromatography 50 on silica gel eluting with 70% EtOAc30% became gave 235 mg (10.6 mmol, 30.1%) of compound 245C. HPLC conditions: 99% at 2.84 min (retention time) (YMC S5 ODS 4.6x50 mm, 10%–90% aqueous methanol over 4 minute gradient with 0.2% H₂PO₄, detecting at 220 nm). MS (ES): 5m/z 39.1L2 [JM-H1]².

D. (3aα,4β,7β,7aα)-4-[4-[2-(4-Cyanophenoxy) ethyl]-7-ethyloctahydro-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (245D)

30 DBAD (44.2 mg, 0.192 mmol) was added to a solution of PPbs, (50.4 mg, 0.192 mmol) in IHH (1 ml). After stirring for 10 min, 4-eyanophecol (23 mg, 0.192 mmol) was added and and the reaction mixture was stirred for an additional 5 min. Compound 245C (50 mg, 0.128 mmol) was added and the smixture was stirred at r for 2 fb. The reaction may concentrated under reduced pressure. Purification by flash chromatography on sligic and leutine with 40% EIOA-669% became

45

gave 43 mg (0.087 mmol, 68.4%) of compound 245D as a white solid. HPLC conditions: 99% at 3.65 min (retention time) (YMC S5 ODS 4.6x50 mm, 10%–90% aqueous methanol over 4 minute gradient with 0.2% H₂PO₄ detecting at 220 mm). MS (ES): m/z 492.16 (M+H)².

EXAMPLE 246

(3aα,4β,7β,7aα)-4-[2-(Acetyloxy)ethyl]-2-(4-cyano-1-naphthalenyl)hexahydro-7-methyl-4,7-epoxy-1Hisoindole-1,3(2H)-dione, (246)

Compound 223B (0.100 g, 0.279 mmol) was dissolved in methylene chloride (3.0 mL) at 25° C. and pyridine (0.071 mL, 0.837 mmol) and 4-DMAP (1.0 mg) were added. Acetic anhydride (0.053 mL, 0.559 mmol) was then added and the reaction was stirred for 20 h at 25° C. After 20 h, sat. aq. sodium bicarbonate was added and the reaction was stirred for 30 min. The mixture was then extracted with methylene chloride (2x20 mL). The organics were then washed once with 1 N HCl (10 mL) and then dried over anhydrous sodium sulfate. After concentration in vacuo, the crude material was purified by preparative TLC on silica eluting with 12% acetone in chloroform to give 0.073 g of compound 246 as a yellow foam. HPLC: 95% at 2.837 and 3.027 min (atropisomers, retention time) (YMC S5 ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 441.10 [M+Na]*.

EXAMPLE 247

(3aα,4β,7β,7aα)-4-[Octahydro-4-methyl-1,3-dioxo-7-(2-oxoethyl)-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile, (247)

Oxaly! ethorice (2.0 M soln, 1.73 mL, 3.5 mmol) was added to dry methylene chloride (10 mL) and cooled to 1—8° exhibition (2.0 M soln, 1.35 mL) with the evolution of gas. After 15 min, compound 223B (1.00 g, 2.66 mmol) was then added dropwise (1.00 g, 2.66 mmol) was then added in methylene chloride of (1.00 mL). After 15 min, TePA (1.10 mL, 7.98 mmol) was added and the reaction was slowly warmed to 25° C. Water (2.00 mL) was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was slowly warmed to 25° C. Water was added and the reaction was added and the

by concentration in vacuo to yield compound 247 as an orange foam. Crude compound 247 was taken on directly to the next reaction. HPLC: 100% at 2.70 min (retention time) (YMC S3 ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 483.65 [M+H]⁺.

EXAMPLE 248

[3ac,4k(E),7k,7ac]-4[44[34(4-Yanopheny))-2propenyl[octabydro-7-methyl-1,3-dioxo-4,7-epoxyy-14-isoindol-2-yi]-1-naphthalenecarbonitrile & [3ac, 4k(Z),7k,7ac]-4[44[34(4-Yanopheny)-2-propenyl) octabydro-7-methyl-1,3-dioxo-4,7-epoxy-2ilisoindol-2-yi]-1-naphthalenecarbonitrile (248i & 248ii)

(4-cyanobenzyl)-triphenylphosphonium chloride (0.072 50 g, 0.174 mmol) was suspended in THF (2.0 mL) and cooled to 0° C. n-BuLi (1.6 M soln, 0.092 mL, 0.147 mmol) was then added dropwise resulting in a homogenous solution. The solution warmed to 25° C, for 15 min and then cooled to 0° C. Compound 247 (0.050 g, 0.134 mmol) was then added in THF. After 1 h, the reaction was quenched with sat. ag, ammonium chloride and then extracted with methylene chloride (3×20 mL). The combined organics were dried over anhydrous sodium sulfate and then concentrated in vacuo. The crude material was purified by preparative TLC eluting with 5% acetone in chloroform to give 0.010 g of a mixture of compounds 248i & 248ii as a white solid. A 1:1 mixture of E and Z olefin isomers characterized by NMR spectroscopy. HPLC: 100% at 3.517 min (retention time) (YMC S5 ODS column 4.6x50 mm, 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 474.2 [M+H]+.

(3aα,4β,7β,7aα)-4-[4-[3-(4-Cyanophenyl)propyl] octahydro-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-vl]-1-naphthalenecarbonitrile, (249)

The mixture of compounds 248i & 248ii (0.008 g, 0.017 mmol) was dissolved in EtOH (3.0 mL) and Pd/C (10% Pd. After 18 h, the reaction was filtered through Celite, eluting with EtOAc, followed by concentration in vacuo. Compound 249 was isolated as a white solid (0.007 g). HPLC: 90% at 3.520 min (retention time) (YMC S5 ODS column 4.6×50 mm, 10-90% aqueous methanol over 4 minutes 25 containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 476.13 [M+H]+.

EXAMPLE 250

(3aα,4β,7β,7aα)-4-[4-[2-[(6-Chloro-1,2benzisoxazol-3-yl)oxy]ethyl]octahydro-7-methyl-1, 3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile, (250)

To a solution of PPh3 (52 mg, 0.20 mmol) in 0.5 mL THF was added DBAD (46 mg, 0.20 mmol) as one solid portion. The resulting mixture was stirred for 10 min before 50 6-chloro-3-hydroxy-1,2-benzisoxazole (34 mg, 0.20 mmol) was added. Stirring was continued for 10 min before a solution of compound 223B (50 mg, 0.13 mmol) in 0.5 mL THF was introduced via canula. The resulting mixture was stirred at ambient temperature for 24 h, concentrated in vacuo and purified by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm column; cluting with 30-100% aqueous MeOH containing 0.1% TFA over 10 min at 20 mL/min) to yield a white solid. The obtained solids were dissolved in CH2Cl2, washed with sat. NaHCO3 solution, dried over Na2SO4 and concentrated in vacuo to yield 50 mg (71%) of compound 250 as a colorless oil. HPLC: 3.89 min & 4.02 min (atropisomers, retention time) (YMC S5 ODS column 4.6×50 mm Ballistic, 10-90% aqueous methanol 65 over 4 minutes containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 528.4 [M+H]+.

(3aα,4β,7β,7aα)-4-[Octahydro-4-methyl-7-[2-[(6nitro-1H-indazol-3-yl)oxy]ethyl]-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile, (251)

To a solution of compound 223B (50 mg, 0.13 mmol) in 0.008 g) was added H2 was then introduced via a balloon. 20 toluene (1 mL) was added ADDP (50 mg, 0.20 mmol), 6-nitro-3-indazolinone (36 mg, 0.20 mmol) and n-Bu₃P (50 μL, 0.2 mmol). The resulting mixture was heated at 80° C. for 24 h, concentrated in vacuo and purified by a combination of reverse phase preparative HPLC (YMC S5 ODS 20×100 mm column; eluting with 30-100% aqueous MeOH containing 0.1% TFA over 10 min at 20 mL/min) and flash chromatography (silica gel, 25% acetone in CHCl3) to give 17 mg (25%) of compound 251 as a yellow solid. HPLC: 3.60 min & 3.74 min (atropisomers, retention time) (YMC 30 S5 ODS column 4.6×50 mm Ballistic, 10-90% aqueous methanol over 4 minutes containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 537.6 [M+H]+.

EXAMPLE 252

 $[3aS-(3a\alpha,4\beta,5\beta,7\beta,7a\alpha)]-4-[7-[2-(1,2-$ Benzisoxazol-3-yloxy)ethyl]octahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile, (252)

PPh3 (47 mg, 0.18 mmol), DBAD (41 mg, 0.18 mmol), 3-hydroxy-1,2-benzisoxazole (24 mg, 0.18 mmol) and compound 243Di (35 mg, 0.09 mmol) were reacted according to the procedure given for compound 250. Purification was achieved by reverse phase HPLC (YMC S5 ODS 20×100 mm column; eluting with 30-100% aqueous MeOH containing 0.1% TFA over 10 min at 20 mL/min) to yield a white solid. The obtained solids were dissolved in CH2Cl2, washed with sat. NaHCO2 solution, dried over Na2SO4 and concentrated under reduced pressure to furnish 29 mg (64%) of compound 252 as a colorless oil. HPLC: 96% at 3.29 min (atropisomers, retention time) (YMC S5 ODS column 4.6x 50 mm Ballistic, 0-100% aqueous methanol over 4 minutes containing 0.2% H2PO4, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 510.2 [M+H]+.

45

50

EXAMPLE 253

[3aR-(3aα,4β,5β,7β,7aα)]-4-[7-[2-(1,2-Benzisoxazol-3-yloxy)ethyl]octahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile. (253)

PPh₂ (47 mg, 0.18 mmol), DBAD (41 mg, 0.18 mmol), 3-bydroxys1-2-branizoxazok (24 mg, 0.18 mmol) and compound 243Dii (35 mg, 0.09 mmol) were reasted according to the procedure given for compound 250. Parification was achieved by reverse phase IPI/C (YMC SS ODS 20x100 mm column; cluting with 30-100% aqueous McOH containing 0.1% TFA over 10 min at 20 mL/min) to yield a white solid. The obtained solids were dissolved in CH₂20 washed with sat. NaHCO₃ solution, dired over Na₂SO₃ and concentrated under reduced pressure to furnish 23 mg (51%) of compound 253 as a colorless oil. IPI/C 1.05% at 3.29 min (atropisomers, retention time) (YMC SS ODS column 4.6x OS mm Ballistic, 0.100% squeous methanol over 4 minutes containing 0.2% 11₃PO₃, 4 in mL/min, monitoring at 220 m.) MS (ES): mz 510.4 [MHI]?

EXAMPLE 254

[3aR-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile & [3a5-(3ac,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile, (254) & 254ij)

Racemic compound 221B was separated into its enanti-of omers by normal phase preparative chiral HPLC (CHIRALPAK AD 5x50 cm column; eluting with 20% MeOHEOH (1.1) in heptane (secretic) at 50 mL/min) to give the faster eluting compound 254 (Chiral HPLC: 10.02 min; CHIRALPAK AD 4x6x250 mm column; eluting with 6x 500 MEOHEOH (1:1) in heptane at 1 mL/min) and the slower eluting 2549 (Chiral HPLC: 11.474 min; CHIRALPAC)

PAK AD 4.6×250 mm column; eluting with 20% MeOH/ EiOH (1:1) in heptane at 1 mL/min). (Names of title compounds based on absolute stereochemistry determination).

EXAMPLE 255

(3αα,4β,7β,7αα)-2-(4-Cyano-1-naphthalenyl) octahydro-1,3-dioxo-7-[2-(phenylmethoxy)ethyl]-4, 7-epoxy-4H-isoindole-4-propanenitile & (3αα,4αα, 7α,7αα)-2-(4-Cyano-1-naphthalenyl)octahydro-1,3dioxo-7-[2-(phenylmethoxy)ethyl]-4,7-epoxy-4H-i isoindole-4-propanenitile (255H) & 255Hii)

A. 2-(2-Hydroxyethyl)furan (255A)

2-(2-Hydroxyethy)fluran was made in accordance with the following reference: Harmata, M, et al. J. O'g. Chem. 60, 55 5077–5092 (1995). n-BuLi (2.5 M in hexane, 44 mL, 110 mmol) was added to a solution of furan (8 mL, 110 mmol) in 100 mL. of THF at -78° C. The to-solution was stirred at 0° C. for 4 h and then ethylene oxide (7.5 mL) was added at -78° C. The caction mixture was stirred at -15° C. for 1 h and then overnight at n. The reaction was squenched with state twee washed with water (1x) and brine (1x). The ether solution was dried over Na₂SO₄ and concentrated under a reduced pressure. Purification by flash chromatography on silice age clutting with 40% EtOAc60% hexane gave 5.4 g (48.2 mmol. 43.8%) of compound 255A as a light brown oil.

B. 2-[2-[[(1,1-Dimethlethyl)dimethylsilyl]oxy]ethyl] furan (255B)

Imidazole (3.65 g. 53.6 mmol) and TBSCI (6.47 g. 42.9 mmol) were added to the solution of compound 255 A (4.00 g. 35.7 mmol) in 50 ml of DMF. The mixture was sirred at rt for 2 h and then the reaction mixture was poured into ether. The ether solution was washed with water (1x). In HCI (1x), water (1x) and brine (1x). The organic layer was dried over Na;50, and concentrated under reduced pressure. Purification by flash chromatography on silica gel cluting with 30% C11;C1;70% hexane gave 7.4 g (32.7 mmol., 20 g.) (1.7%) of 2558 as a coofress of the concentration of the co

t-Bul.i (1.2 M in pentane, 10 ml., 16.99 mmol) was added to a stirred solution of 255B (3.49, §1.544 mmol) in 3 ml. as of THF at -78° C. dropwise. The mixture was stirred for an additional 4 h a '0° C. Ethylene oxide (1.05 ml.) was added at -78° C. to the reaction solution. The mixture was warmed to rt and stirred overnight. Aqueous sait. NH₂Cl was added and most of the THF was removed under reduced pressure. ⁴⁰ The mixture was extracted with ether (3.8) and the combined organic layers were washed with water (1.1) and brine (1x) and dried over, NH₂SO_x Purification by flash chromatography on silica gel cluting with 5% E1OA-29'5% CH₂Cl, gave 2.8 g (10.4 mmol, 67%) of compound 255°C as a yellow oil. ⁴⁵

D. 2-[2-[[(1,1-Dimethlethyl)dimethylsilyl]oxy] ethyl]-5-[2-(phenylmethoxy)ethyl]furan (255D)

The alcohol 255C (1,00 g, 3.7 mmol) in 12 mL of THF was treated with 60% NaH (1778 mg, 4.4 mmol), hearly 10 bromide (0.53 mL, 4.44 mmol) and tetrabutylammonium iodide (50 mg, 5%) for 3 h at rt. Water was added and the mixture was extracted with EtOAc (3x). The combined extracts were washed with water (1x) and brine (1x) and dried over Na₂O₄, praffication by flash chromatography on 65 silica gel eluting with 20% hexane/80% CH₂Cl₃Cl₃ zave 1.10 g (3.05 mm.) 8.26% of compound 255D as a yellow oil.

E. 2-(2-Hydroxycthyl)-5-[2-(phenylmethoxy)cthyl] furan (255E)

Tetrabutylammonium fluoride (1.0M in THF, 3.06 mL, 3.06 mmol) was added to the solution of compound 255D (1.1 g, 3.06 mmol) in 10 mL of THF at 0° C. The reaction mixture was stirred at rf for 10 minutes, quenched by so NH,Cl and extracted with ether (3a). The combined extracts were dried over Na₂SO₂, Purification by flash chromatography on silica gel cluting with 10% E10Acc99% CH₂Cl₂ gave 750 mg (3.05 mmol, 99.6%) of compound 255E as a light yellow oil.

F. 5-[2-(Phenylmethoxy)ethyl]furan-2-propanenitrile (255F)

DEAD (1.285 mL, 8.17 mmol) was added to a stirred solution of Phyle (2.14 g, 8.17 mmol) in 12 mL of dry THF at 0° C. The solution was stirred for 30 min at rt and compound 255E (670 mg, 2.72 mmol) was added. The reaction was stirred for 15 min and actone cyanohydrin (0.745 mL, 8.17 mmol) was added at 1-15° C. The reaction was stirred for 30 min at 1-5° C., then at it overright. The Purification by flash chromatography on siting all cluting with 100% CH₂Cl₂ gave 180 mg (0.705 mmol, 26%) of compound 255° fla as colorless oil.

G. (3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-1, 2,3,3a,7,7a-liexahydro-1,3-dioxo-7-[2-(phenylmethoxyethyl]-4,7-epoxy-4H-isoindole-4propanenitrile (255G)

A solution of compound 255F (180 mg, 0.706 mmol) and 0.4 (2.5.3 dilyd or 0.2.5.4 city or 1.11-1.7) -1 -1 naphthalenecarbonitrile (263 mg, 1.06 mmol) in CH₂CL₂ (3 ml.) was stirred at r1 for 3 days. The reaction mixture concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 5% ElOAc CH₂Cl₃ gave 318 mg (0.63 mmol, 59.6%) of compound 255G as a light gray solid which was used directly in the next step.

H. (3αα,4β,7β,7αα)-2-(4-Cyano-1-naphthaleny) octahydro-1,3-dioxo-7-[2-(phenylmethoxy)ethy]-4, 7-epoxy-4H-isoindole-4-proanentirile & 3αα,4α, 7α,7αα)-2-(4-Cyano-1-naphthalenyl)octahydro-1,3dioxo-7-[2-(phenylmethoxy)ethy]-4,7-epoxy-4H-isoindole-4-propanentirile (255Hi & 255Hii)

A mixture of compound 255G (318 mg, 0.63 mmol) and 10% Pd/C (64 mg) in EtOH (10 mL) and EtOAc (5 mL) was stirred under a hydrogen atmosphere at rt overnight. The reaction mixture was filtered through Celite and concentrated under reduced pressure to give 320 mg of crude compounds 255Hi & 255Hii. Purification of 25 mg of this crude product by flash chromatography on silica gel eluting with 55% EtOAc/hexane gave 6.5 mg (0.013 mmol, 26% (based on 25 mg)) of compound 255Hi & 8.1 mg (0.016 mmol, 32.4% (based on 25 mg)) of compound 255Hii. Compound 255Hi: HPLC conditions: 98% at 3.57 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H₃PO₄, detecting at 220 nm, MS (ES): m/z 506.15 [M+H]*. Compound 255Hii: HPLC conditions: 98% at 3.51 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H2PO4, detecting at 220 nm). MS (ES): m/z 506.15 [M+H]+.

EXAMPLE 256

(3ac,4fi,7fi,7ac)-2(4-Cyano-1-naphthaleny) octahydro-7(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-4H-isoindole-4-propanentirile & (3ac,4c,7c,7ac)-2-(4-Cyano-1-naphthalenyl)octahydro-7-(2hydroxyethyl)-1,3-dioxo-4,7-epoxy-4H-isoindole-4propanentirile, (256) & 256ii

A mixture of compounds 255H & 255Hi (200 mg, 0.396 mmol) and PdC1, (8.4 mg, cat) in EtOH (1 mL) and EtOAc (3 mL) was stirred under a hydrogen atmosphere (30 ps) at or coernight. The reaction mixture was filtered through of Cellic and concentrated under reduced pressure. Purification by flash chromatography on silica gel cluting with 5% MoHCH_CH, Glodword by a scoon column cluting with 100% EtOAc gave 28.9 mg (0.0696 mmol, 17.6%) of compound 256i and 26.5 mg (0.039 mmol, 16.1%) of es compound 256i and 26.5 mg (0.039 mmol, 16.9%) of es compound 256i. Compound 256ii. HPLC conditions: 90% at 2.44 min (redention time) (YMC S5 DO 8 4.6-S0 mm,

10%–90% aqueous methanol over 4 minute gradient with 0.2% H₃PO₃₀ detecting at 220 nm.), MS (ES): m/z 416.11 [M+H]*. Compound 256: IPILC conditions: 99% at 247 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%–90% 5 aqueous methanol over 4 minute gradient with 0.2% H₃PO₃₀ detecting at 220 nm), MS (ES): m/z 416.11 [M+H]*.

EXAMPLE 257

(3αα,4β,7β,7αα)-2-(4-Cyano-1-naphthalenyl)-7-[2-(4-fluorophenoxy)ethyl]octahydro-1,3-dioxo-4,7epoxy-4H-isoindole-4-propanenitrile. (257)

DBAO (15 mg, 0.065 mmol) was added to a solution of PBh₃ (17 mg, 0.065 mmol) in THF (0.3 m.). After stirring for 10 min, 4-fluorophenol (7.33 mg, 0.085 mmol) was added and the reaction mixture was stirred for a further 5 an in. Compound 256 (18.1 mg, 0.044 mmol) was added and the mixture was stirred at rt for 3 h. The reaction was concentrated under reduced pressure. Purification by flash chromatography on silica gel clutting with 60% E10 Ac; 20% became gave 5.9 mg (0.0116 mmol, 26.34%) of compound 32 237. HPLC conditions: 98% at 3.59 min (retention time) (YMC SS 0.08 4.655 mm, 10%–99% aqueous methanol over 4 minute gradient with 0.2% H₂PO₆ detecting at 220 mm). MS (ES; mix 25.10.14 M+HT).

EXAMPLE 258

(3aα,4β,7β,7aα)-2-(7-Chloro-2,1,3-benzoxadiazol-4-yl)hexahydro-4,7-dimethyl-4,7-epoxy-1Hisoindole-1,3(2H)-dione, (258)

A. 4-Amino-7-chloro-2,1,3-benzoxadiazole (258A)

A solution of 1.0 g (5.02 mmol) of 4-chloro-7nitrobenzofurazan in 20 mL AcOH, 10 mL EtOAc and 2 mL

H₂O was heated at 50° C, and treated with iron powder (1.4 dg, 251 mmol). The mixture was heated at 80° C, for 30 min and then allowed to cool to rt. The mixture was filtered through Celific clutting with EtOAs. The filtrate was washed with sat, an, NaICO₂ dried over MgO₃ and concentrated ⁵ under reduced pressure to give compound 258A (0.80 g, 94%) as a red so solid.

B. (3aα,4β,7β,7aα)-2-(7-Chloro-2,1,3benzoxadiazol-4-yl)hexahydro-4,7-dimethyl-4,7epoxy-1H-isoindolc-1,3(2H)-dione, (258B)

Compound 258A (42 mg, 0.25 mmol) was reacted in a seaked tube with compound 20A (735 mg, 0.375 mmol). MgSO₄ (75 mg, 0.625 mmol) and El₂N (170 µL, 1.25 mmol) in 250 µL toluten a secording to the above procedure 20A continued to example 208C to give after partification by reverse phase preparative HPLC (YMC S5 ODS 20x100 mm cluting with 30–100% augucous methanol containing 0.1% TFA over 12 min, 20 mL/min) 23 mg (26%) of compound 258B as a yellow solid HPLC 9.76% at 2.87 25 min (retention time) (YMC S5 ODS column 4.6x50 mm cluting with 10–90% augucous methanol containing 0.2% phosphoric acid over 4 minutes 4 mL/min, monitoring at 220 mm). MS (OCI), miz 347.9 [MT].

EXAMPLE 259

(3aα,4β,7β,7aα)-2-(7-Chloro-2-methyl-4benzofuranyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione, (259)

7-Chioro-2-methyl-4-benzofuranamine (38 mg, 0.25 mmol, prepared in accordance with the procedure described by Enomoto and Takemura in EP 0476697 Al) was reacted in a scaled tube with compound 200, (735 mg, 0.375 mmol), MgSO, (75 mg, 0.625 mmol) and El₃N (170 µL, 1.25 mmol) in 250 µL toluene according to the procedure described in example 280c to give, after purification by reverse phase preparative IIPLC (YMC S5 ODS 20c.100 nm cluting with 30-100 aqueous methanol containing 0.1% TAC over 12 min, 20 mL/min), 42 mg (47%) of compound 259 as a white in Solid. IPLC: S9% at 3.45 min (retention time) (YMC S5 ODS column 4.6x50 nm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (DC1): m/z 359.9 [Ml*].

EXAMPLE 260

(3aα,4β,7β,7aα)-2-(7-Chloro-2-methylbenzo[b] thiophen-4-yl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione, (260)

A. 1-Chloro-2-(2-chloro-allylsulfanyl)-4-nitrobenzene (260A)

A solution of 2-chloro-5-nitro-benzenethiol (1.0 g, 5.27 20 mmol, prepared in accordance with the procedure described by Still et al. Synth. Comm. 13, 1181 (1983) in 15 ml. DMF was treated with 2,3-dichloropropene (693 µl., 7.52 mmol) and K₂CO₃ (433 mg, 3.13 mmol). The mixture was heated at 80° C. for 2 h and then allowed to cool to rt. ElOAc (200 35 ml.) and 11,0 (100 ml.) were added. The organic phase washed with 11,0 (2>250 ml.), surtrated appeacus NaCl (100 ml.), dried over MgSO₃, and concentrated in vacuo. The crude material was purified by this column chromatography on sities gel eluting with 20% EiOAc in hexanes to give 4 compound 2600 (1.00 g, 80%) as an orange of 150 ml.

B. 4-Amino-7-chloro-2-methylbenzo[b]thiophene (260B)

5. A solution of 1.09 g (4.67 mmol) of compound 260A in \$2 0 mL Acol I with 10 mL 160A cand 2m. It.1 (b) was heated to 80° C and teated with iron powder (1.3 g; 23.4 mmol). The mixture was hittened through Celile cluting with EDAC. The littene was weshed with sat aq. 80 NaILCO₂, dried over MgSO₂, and concentrated in vacuo. N.N-diethylamline (10 mL) was added, and the reaction was heated at 215° C. for 6 h. After cooling to rt, 1. N aqueous. HCI(20 mL) was added, and the reaction was heated at 215° C. for 6 h. After cooling to rt, 1. N aqueous. CG (3.30 mL). The organic phase was was shed with sturrated aqueous NaILCO₂ dried over MgSO₂, and concentrated in vacuo. The crude material was purified by Jasks column vacuo. The crude material was purified by Jasks column.

50

chromatography on silica gel eluting with 25% EtOAc in hexanes to give compound 260B (320 mg, 35%) as a beige solid.

C. (3aα,4β,7β,7aα)-2-(7-Chloro-2-methylbenzo[b] thiophen-4-yl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione, (260C)

Compound 260B (49 mg, 0.25 mmol) was reacted in a sealed tube with compound 20A (73.5 mg, 0.38 mmol), 15 MgSO₄ (75 mg, 0.63 mmol) and Et₃N (170 µL, 1.25 mmol) in 0.250 µL toluene according to the procedure described in example 208C to give, after purification by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm eluting with 30-100% aqueous methanol over 12 min containing 0.1% TFA, 20 mL/min), 28 mg (30%) of compound 260C as a pale yellow solid. HPLC: 96% at 3.18 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% phoric acid, 4 mL/min, monitoring at 220 nm), MS (DCI): m/z 376.0. [M]+.

EXAMPLE 261

[3aα,4β(E),7β,7aα]-4-[2-(4-Cyano-1-naphthalenyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindol-4-yl]-2-butenoic Acid Phenylmethyl Ester, (261)

Compound 247 (0.500 g, 1.34 mmol) was dissolved in THF (20 mL) and benzyl(triphenylphosphoranylidene) (0.55 g. 1.34 mmol) was added. The reaction mixture was stirred at 67° C. for 2 h and then concentrated under reduced pressure. Purification by flash chromatography on SiO₂ 60 eluting with 5% acetone/95% CHCl3 gave 0.65 g of compound 261 as a yellow solid. HPLC: 99% at 3.717 min (retention time) (YMC S5. ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 65 aqueous methanol over 4 minutes containing 0.2% phos-0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES): m/z 507.1 [M+H]*.

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)

octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindole-4-butanoic Acid, (262)

Compound 261 (0.60 g, 1.19 mmol) was dissolved in EtOH/EtOAc (5 mL/5 mL) and 10% Pd/C (0.30 g) was added. Hydrogen was then introduced via a balloon. After 8 h the reaction was filtered through Celite and then concenaqueous methanol over 4 minutes containing 0.2% phos- 25 trated under reduced pressure to give compound 262 (0.47 g) as a white solid, HPLC: 98% at 2.81 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 419.1 [M+H]+.

EXAMPLE 263

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl)-N-(4fluorophenyl)octahydro-7-methyl-1,3-dioxo-4,7epoxy-4H-isoindole-4-butanamide (263)

Compound 262 (0.030 g, 0.072 mmol) was dissolved in CH3CN (1 mL). DCC (0.014 g, 0.072 mmol) and HOAc 55 (0.0098 g, 0.072 mmol) were then added, followed by 4-flouroaniline (0.007 mL, 0.072 mmol). The reaction mixture was stirred under argon for 14 h and the crude material was dissolved in McOH, purified by reverse phase preparative HPLC (YMC VP-ODS column, 20×100 mm, cluting with 20% B to 100% B in 15 minutes and hold @ 100% B for 10 minutes). Compound 263 (0.020 g) was isolated as white solid. HPLC: 100% at 3.217 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% phoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 512.1 [M+H]+.

A racemic mixture of compounds 243Di & 243Dii (1.90 30 gram) were dissolved in 100 mL of anhydrous THF in a 2 L flask. Anhydrous tert-butyl-methyl ether (900 mL) and vinyl acetate (40 mL) were transferred into the flask with stirring and lipase (20 g, typeII, crude, from porcine pancreas; Sigma, Cat# L3126) was added. The reaction mixture was 35 stirred for 21 hr at rt at which point an additional 5 grams of the lipase and 20 mL of vinvl acetate were added. The reaction was stirred at rt for an additional 19 h, stored at 4° C. without stirring for 36 h and then stirred at rt for another 22 h (until the desired % ee was apparent by chiral HPLC). 40 stirred at 67° C. for 24 h and then cooled to 23° C. and To monitor the reaction, 200 uL of the mixture was withdrawn and centrifuged. The supernatant (100 uL) was dried under nitrogen and the resulting residue was dissolved in 100 uL of EtOH and subjected to HPLC analysis:

Reverse phase HPLC: Column, YMC-ODS AQ 150×4.6; flow rate, 1.2 mL/min; sample size, 10 uL

solvent A,: 1 mM HCl in water; solvent B, MeCN; monitored at 300 nm

Time(min) 0 8 8.5 9.5 10 12

B % 30 60 85 85 30 30

2) Chiral-HPLC: Column, CHIRALCEL OJ 4.6×250 mm mobile phase, hexanes/MeOH/EtOH (8:1:1) flow rate, 1 55 mL/min; sample size, 20 uL monitored at both 220 and 300 nm performed at 25° C. & 40° C. (for ee % determination of reaction mixture).

The enzyme was removed by filtration and filtrate was concentrated under reduced pressure. The resulting mixture 60 was dissolved in CHCl3 and adsorbed onto silica gel (63-200 microns). These solids were applied to a VLC funnel (3 cm 1.D., VLC is vacuum liquid chromatography using glass funnels having 24/40 joints at the bottom) containing a 5 cm bed height of silica gel (25-40 microns) 65 and a step gradient was carried out. The gradient was 100% CHCl2 in the first 3 fractions), followed by CHCl2-1%

204

McOH (3 fractions), CHCl₃-2% McOH (3 fractions), CHCl3-3% McOH (3 fractions), CHCl3-4% McOH (3 fractions), and finally with CHCl3-5% MeOH (3 fractions). The volume of the fractions was 100 mL until reaching 5 CHCl₃-3% MeOH and from that point on it was 200 mL. Compound 264 clutes in the last two fractions of 100% CHCl., and until the first fraction of CHCl.-2% MeOH. Compound 243Dii elutes starting with the second fraction of CHCl3-2% MeOH, and continues to the first fraction of 10 CHCl₂-5% MeOH. The crude compound 243Dii contained a small amount of a colored impurity which was removed by a Sephadex column [LH-20 swollen in CHCl3-MeOH (2:1), column (2.5 cm I.D. & 90 cm long) to yield 632 mg of compound 243Dii. Compound 264: HPLC conditions: 15 98% at 7.2 min (retention time) (method 1), chiral HPLC conditions: 29.0 min @ 25° C. (method 2). Compound 243Dii: HPLC conditions: 98% at 4.6 min (retention time) (method 1), chiral HPLC conditions: 96% ee at 25.7 min (retention time) (@25° C.) & 19.8 min (retention time) (@

EXAMPLE 265

20 40° C.) (method 2).

25

(3aα,4β,7β,7aα(E)]-4-[Octahydro-4-methyl-1,3dioxo-7-(4-oxo-4-phenyl-2-butenyl)-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile, (265)

The compound 247 (0.050 g, 0.134 mmol) was dissolved in THF (1.5 mL) and (phenacylidene)triphenylphosphorane (0.051 g, 0.134 mmol) was added. The reaction mixture was concentrated in vacuo. The crude material was then purified by reverse phase preparative HPLC. (YMC VP-ODS column, 20×100 mm, cluting with 20% B to 100% B in 15 minutes and hold @ 100% B for 10 minutes) to give 45 compound 265 (0.040 g) as white solid. HPLC: 100% at 3.503 min (retention time) (YMC S5 ODS column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 477.1 [M+H]*.

EXAMPLE 266

(3aα,4β,7β,7aα(E)]-4-[Octahydro-4-methyl-1,3dioxo-7-(4-hydroxy-4-phenyl-2-butyl)-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile, (266)

Compound 265 (0.010 g, 0.021 mmol) was dissolved in EtOH (2.0 mL) and Pd/C (10% Pd, 0.005 g) was added. Hydrogen was then introduced via a balloon and the reaction was stirred at 25°°C for 3 h. The reaction was them filtered through. Cellier finsing with EffOAc and concentrated in vacuo to give compound 266 as a tan solid (1009 eg). No purification was necessary. HPLC: 100% at 3.38 min 5 (centrion time) (YMC SS ODS column 4.6x50 mm elining with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/x 503.2 [M+Na]*. (Where this reaction was run for 1 hour, the resulting product was compound 455).

EXAMPLES 267 TO 378

Additional compounds of the present invention were 15 prepared by procedures analogous to those described above. The compounds of Examples 267 to 378 have the following structure (L is a bond):

where G, R², the compound name, retention time, molecular mass, and the procedure employed, are set forth in Table 5. The absolute configuration for the following compounds was not determined. For similitity in nomenclature, compound 238i is designated herein as having an "8" configuration and compound 238ii as having an "8" configuration. Enantionnerically pure products derived from compound 238i are designated herein as having an "R" configuration and enantiomerically pure products derived from compound 238ii are designated herein as having an "S" configuration.

The chromatography techniques used to determine the compound retention times of Tabbé S are as follows: LCMS-YMC S5 ODS column, 4.6x50 mm cluting with 10-90% McOH/H₂O over 4 minutes containing 0.1% TFS; 4 of ml/min, monitoring at 220 ml.CMS*-yMC S5 ODS column, 4.6x50 mm cluting with 10-90% McOH/H₂O over 2 minutes containing 0.1% TFX; 4 ml/min, monitoring at 220 mm. LCSYMC S5 ODS column 4.6x50 mm cluting with 25 10-90% McOH/H₂O over 4 minutes containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 mm. The molecular mass of the compounds listed in Tablé 5 were determined by MS (ES) by the formula m/s.

TABLE 5

Ex.	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
267	NC CF3	O	(3ac,4β,7β,7ac)-(4/7-(2-(4- Bromspheaxy)city)] octalydro-4-methyl- 1,3-dioxo-4,7- epaxy-2H- isonadol-2-yl-2- (influoromethy)]beazonlirile.	3.97 LCMS 549.0 [M + H]*	204, 35
268	NC CF3		(3ac,4β,7β,7ac)-4 (Octabyter-7/2-(4- iodophenoxy)ethyll-4 methyl-1,3-diox-4,7- epoxy-2H_sindod-2-yll-2- (trifluoromethyl)benzonitrile.	4.09 LCMS 597.0 [M + H]*	204, 35

TABLE 5-continued

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
269	NC CF3	0 CF3	(Soz,4β,7β,7ac)-4 (Octa)ykin-4-methyl-1,2- dioxo-7]2-ft-(trifluoromethyl) phenoxy lethyl-4,7- epsay 2H-sindal-2-yl-12- (trifluoromethyl)be nzonitrile.	3.95 LC	204, 35
270	NC CF3		(Soc.4), 7), 7ac.) 4 [Ostalydro-7]-2-(4- methoxy)beoxy; (styl)-4- methy-1; 3-dioxo-4; 7- epacy 2H-i-dioxb-2; 1]-2- (trilluoromethy) be azonitrile.	3.66 LC	204, 35
271	NC CF3		(Sec. 48, 78, 78, 70)—4 [74]. (4). (Biscoppleasy, while pleashy dro- 4-methy 1,3-diox 4,7-diox 4,7-dio	3.81 LC	204, 35
272	NC CF3		(300,48,78,7au)+4]7{2·(4- Chlorophenoxy)ethyl cetahydro-4-methyl 1,3-dixx0-4,7-epoxy-2H- iosindol-2-yll; (trifluoromethyl)benzonitrile.	3.97 LCMS 522.2 [M + H]*	204, 35
273	NC CF3		(Suc.4B, 7B, 7ac)-412-12-14 Cyano-5-(trifuoronethy)) phasylpeathyloid-7-7, peny-4H-isoindel-4- ylkhoxylpeachidel-4- ylkhoxylpeachidel-4- ylkhoxylpeachidel-4- ylkhoxylpeachidel-4- methyl caser.	3.77 LCMS 529.12 [M + H]*	204, 35

TABLE 5-continued

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
274	O ₂ N CH ₃	ОН	(3ea,4β,7β,7ac)- Hexahydro-4-(2- hydroxyethy)-7-methyl-2- (3-methyl-4-nitrophenyl)- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.44 LC	204, 35
275	NC CF3	CF ₃	(Sut. 4B, 7B, 7au) - 4 [Octalywio-4-methyl-1,3- (riffhoremethysylpenexy] ethyl-4,7-epoxy-2H isoindol-2-9/j-2 (trifluoromethyl)benzonitrile.	3.97 LC	204, 35
276	CI C	CH ₃	(3ea,4B,7B,7ac)-2-(3,5- Dichleropheny)lhexhlydro- 4,7-dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	3.31 LCMS 341.2 [M + H]*	20
277	O ₂ N ₂ O ₃	CH ₃	(3αα,4β,7β,7αα)· Hexahydro-4,7-dimethyl- 2-(4-nitro-1-naphthalenyl)-4,7- epoxy-1H-isoindole- 1,3(2H)-dione.	3.04 LCMS	20
278	NC CF3		(3nc, 4β, 7β, 7nc) 4- [Octalysten-4-methyl-1,3- disco-7,12-l4-(blenylimethoxy) methods (3nc) 4-12-l4-(blenylimethoxy) epoxy-2H-isoindol-2-yl-2- (trifluoromethyl)benzonitrile.	4.06 LC	204, 35
279	02N	ОН	(3sa,4β,7β,7sa;)- Hexahydro-4-(2- hydroxyethyl)-7-methyl-2- (4-nitro-1-saphthalenyf)- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.607 & 2.743 rotational isomers LC	204, 35

TABLE 5-continued

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
280	O ₂ N CH ₃		(3ea,4h,7h,7sa)-4-[2-(4 Fluorophensy)uthyl] benkhylor-7-methyl-2-(3 methyl-4-nitrophenyl)-4,7- epoxy-1H-ioindole- 1,3(2H)-dione.	3.68 LC	204, 35
281	NC CF3	o F ₃ C	(300,4β,7β,7αc)-4 [Oxtalydro-4-methyl-1,3- droso-74;24-1 [(fullucoronethyl)hin] phenoxy[hiyl-j-7, ory ory ory ory ory ory ory ory ory ory	4.11 LC	204, 35
282	NC CF3	O NO2	(Sot.4β,7h,7ac)-4 [Oxthy/dro-4-methyl-7- [2-(4-nitrophenoxy) ethyl]-1,3-dioxs-4,7- epsys-2H-sionido-2-yl-2- (trifluoromethyl)benzonitrile.	3.68 LC	204, 35
283	OpN		(3sa,4β,7h,7sa)+4[2-(4 Fluorophenoxy,ethyl] hexahydro-7-methyl-2(4- nitro-i-naphthalenyl)-4,7- epoxy-1H-isoindole-1,3(YH)-dione.	3.68 & 3.80 rotational isomers LC	204, 35
284	NC CF3	FyC	(3aa,4β,7β,7aa)-4 [Octahydro-7-methyl-1,3- dioxo-7½-22-(trifluoromethyl) phenoxylethyl-4,7-epoxy-2H- isoindol-2-yl-2- (trifluoromethyl)benzonitrile.	3.89 LC	204, 35

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
285	NC CF3	Br	(3ac, 4B, 7B, 7ac).+4[4]2-(2- Bromophenoxy)ethyl] octalystor 7-methyl- 1,3-disco-4,7-epoxy-2H- isoindol-2-yl-2-2- (trifluoromethyl)benzonitrile.	3.91 LC	204, 35
286	NC CF3	, o	(3οα,4β,7β,7αα).+{4-{2-(3- Fluorophenoxy)ethyl] octahydro-7-methyl- 1,3-dioxo-4,7-epoxy-2H- ioniodo-2-γβ-2- (trifluoromethyl)benzonitrile.	3.78 LC	204, 35
287		н	(3acı,4β,7β,7acı)- Hexahydro-2-[4-(1H- imidazol-1-ylphenyl]-4- methyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	1.16 LC	3
288		н	(3aa,4β,7β,7aa)-2-[3- Chloro-4-(2-thiazolyi) phenyi [hexahydro-4-methyl- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.81 IC	3
289	O ₂ N CH ₀	CH ₃	(3ac,4β,7β,7ac)- Hexahydro-4,7-dimethyl- 2-(3-methyl-4-nitrophenyl)- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.74 LC	20
290	O ₂ N CH ₃	CH_3	(3aa,48,78,7aa)- Hexahydro-4,7-dimethyl- 2-(2-methyl-4-nitrophenyl)- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.71 LC	20
291	a d	ОН	(3αα,4β,7β,7αα)·2-(3,5- Dichlorophenyl)hexshydro- 4-(2-hydroxyethyl)-7- methyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.98 LC	204

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
292	a a	O F	(36a,4β,7β,7ac)-2-(3,5- Dichlorophenyl)-4/2-(4- flucrophencyl)-4/2-(4- flucrophency)-(xtvi)- flucrophency-(xtvi)- flucrophency-(xtvi)- flucrophency-(xtvi)- flucrophency-(xtvi)- dicade-(xtvi)-4- (xtvi)-4- (xtvi)-4-(xtvi)-4- (xtvi)-4-(xtvi	4.03 LC	204, 35
293	NC CF5	OH	(3ea.4β,7B,7sa;)-4- [Octahydro-4-[2-(4- hydroxyhearo;)telyl]-7- methyl-1,3-diox-4,7- epsy-2H-isoind-2-yl]-2- (trifluoromethyl)benzonitrile.	3.25 LC	204, 35
294	NC CF3	O CX	(30a,4β,7B,7aa)-+[+{2-(4- Cyanophenoxy)ethyl) octahydro-7-methyl-1,3- dioxo-4,7-epoxy-2H- isoindol-2-yl-2- (trifluoromethyl)beazoaitrile.	3.51 LC	204, 35
295	NC CF3	Fyc	(3an,48,78,7an)+ [Ostabykon-e-methyl-1,3- droto-74,24-(citharomethyl) phenoxykthyl-4,7- epoxy-2H-istended-2-yl-2- (trilluoromethyl) beautomirile.	3.85 LC	204, 35
296	NC CF3		(3sa,4β,7β,7sa)·+[4]2·(3- Bromophenoxy)ethyl] octahydro-7methyl-1,3-dioxo-4,7- epoxy-2H-isoindol-2-yl}2· (trilluoromethyl)beazonitrile.	3.84 LC	204, 35

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
297	NC CF3	NC O	(3ac, 4β, 7β, 7ac) + [4+[(4- Fluorophenyl)methyl] octahydro-7-methyl-1,3- dioxo-4,7-epoxy-2H- isoindol-2-yl]-2- (trilluoromethyl)benzonitrile.	3.73 LC	205
298		CH ₃	(30a,4β,7β,7aa)-2-(1,6- Dhydro-1-methyl-6-0xo-3- pyridisylhemidyl-6-4,7- disindole-1,3(2H)-dione.	1.61 LC	20
299		CH ²	(3ac, 4β, 7β, 7ac) Hexahydro-4,7-dimethyl- 2-(1-methyl-6-xox-3- piperidinyl)-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	1.73 LC	20
300	NC CF3	NC NC	(3ac,4β,7β,7ac)-4-[4-[2-(3- Cyanophenoxy)ethyl] octahydro-7-methyl- 1,3-dioxo-4,7-epoxy-2H- isoiadol-2-yl}-2- (trifluoromethyl)benzonitrile.	3.46 LC	204, 35
301	NC CF3	O Ph	(3xx,4β,7β,7ax)+4[-2.44 Cyano-3-(trifluoromethy) phasyly-cathydro-7-, apoxy-4H-ioindel-4-yl ethoxy-bearsic acid, phenylmethyl ester.	4.01 LC	204, 35

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
302	NC CF3		(3nc,4β,7β,7ac)-4. [Ostalydro-4-methyl-1,3-dioxo-7(-2-phenoxyethyl)-4,7-epoxy-2H-isoindol-2-yl-2-(trifluoromethyl)benzonitrile.	3.57 LC	204, 35
303	CI NO2	CH ₅	(36t, 4β, 7β, 7au) 2-(3,5- Dichloro-4-nitropheny) benahydno-4-7-dimethyl-4,7- epaxy-III-isoindole- I,X(2H)-diose.	3.40 LC	20
304	CI	CH ₃	(3ac, 4β, 7β, 7ac) -2-(3,5- Dichloro-4-hydroxypheny) hexahydro-4,7-dimethyl- 4,7-epoxy-1H-isoindole- 1,8(2H)-dione.	2.58 LC	20
305		CH ₀	(3ac, 4β, 7β, 7ac)·2·(5- Fluoro-1-naphthalenyl) hexahydro-4,7-dimethyl- 4,7-epoxy-1H-isoindole- 1,4(2H)-dione.	2.96 & 3.06 rotational isomers LC	20
306		CH ₃	(3aa,4B,7B,7aa)- Hexahydro-4,7-dimethyl-2-(1- naphthalenyl)-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.60 & 2.73 rotational isomers LC	20
307	CH ₃	CH ₃	(3ac, 4β, 7β, 7ac) Hexahydro-2-[3-methoxy-4-(5- ozazolyf)phospyl-4,7- dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.62 LC	20

TABLE 5-continued

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
308	NO ₂	H _J C O	(3scz.48,78,7ac)- Hexalydro-4{-2,4- methoxyphemorylethyl]-7- methoxyphemorylethyl]-7- naphthalentyl)-4,7-epoxy- 1H-isoindole-1,3(2H)-dione.	3.42 & 3.55 rotational isomers IC	204, 35
309	\bigvee_{NO_2}	O CF3	(2ea,4β,7β,7ac). Hexalydro-4-methyl-2-(4-mino-1-apphila-pul)-7-[2]-4- (tifflucromethyl)phenoxyl ethyl-3-7-[2-pul)phenoxyl ethyl-3-7-[2-pul)phenoxyl-11- isoindole-1,3(2H)-dione.	3.81 & 3.93 rotational isomers LC	204, 35
310	\bigvee_{NO_2}	O NO2	(26a,4β,7B,7ac) Hexnlydro-4-methyl-2-(4- nitro-1-asphtharony)-7[2-(4- nitrophenoxy)ethyl-4,7- epoxy-IH-isoindole- 1,3(2H)-dione.	3.48 & 3.61 rotational isomers LC	204, 35
311	NC CN	CH ₃	(3aa,4β,7β,7aa)-2-(1,6- Dihydro-1,4-dimethyl-6-oxo-3- pyridinyl)hexahydro-4,7- dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	1.89 LC	20
312	NO ₂	NC NC	(3ac, 4β, 7β, 7ac).+ [Octahydro-7-methyl-2-(4- nino-1-anghhelonyl-1,3- dioxo-4,7-epoxy-4H-isoindol-4- yf)Ethoxy Benzonitrile.	3.63 1C	204, 35
313	NC CN	CH ₃	(3aa,4B,7B,7aa).4 (Octabydro-4,7-dimethyl- 1,3-diaxo-4,7-epoxy-2H- isoindol-2-yl)-1,2- benzenedicarbonitrile.	2.38 LC	20

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
314	NO ₂	Br	(3aq,4β,7β,7aq)-4-(2- Bromeelny)hexahydro-7- methyl-2-(4-nitro-1- naphthaleny))-4,7-epoxy- 1H-isoindole-1,3(2H)-dione.	3.52 LC	36
315		o d	(380,48),78,780;+4[4-[2-(4- Cyanophenoxy)elbyl] occialyduo 7-methyl-1,3- dicto-4,7-poxy-2/1- lioidaby-2-yl-1- mpathisko-ecribonitrile.	3.19 & 3.35 rotational isomers LC	223, 35
316		H ₃ C	(364,4β,7β,7αc)-4 [Octalydro-4]-2(4- methoxyphenoxyletyl]-7- methyl-1,3-dioxo-4,7-epoxy- 2H-soindol-2-yl- naphthale neentronitrite.	3.34 & 3.50 rotational isomers LC	223, 35
317		O CII ₃	(3ac, 4β, 7β, 7ac)-4 (Oscia)ydo-4-[2-(3- methoxypheoxylety]-7- methy-1,3-diox-4,7-epoxy-2H- ioxindol-2-yll-1- naphthule necurbonitrile.	3.34 & 3.50 rotational isomers LC	223, 35
318	ĊN CN		(3act.48,78,7act)-4-[4-[2-(3- Fluorophenoxy)ethyl] octabythor-7-methyl-].3- dioxo-4,7-epoxy-2H-isoindol- 2-yl]-1-naphthalenecarbonitrile.	3.46 & 3.61 rotational isomers LC	223, 35

Ex.	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
319	CN CN		(Soc.48,78,7sc)-4 (Soc.48,78,7sc)-4 (Octalydro-4-methyl-74,243-(4-morpholinyl)phenoxyletyl-1 1,3-dato-4,7-geovy-2H- iorizob(2-2yl)-1 naphthelencombenittle.	3.01 & 3.18 rotational isomers	223, 35
320		F ₃ C NO ₂	(San.4), 70,7ac) 4 (Octabyto-4-meth)-742- f-atiro-3-(influoronethy) phenoxyjethyl-j.3-dioxy- 4/7-epoxy-2l-ta-inobi-2-yl-1-naphthaleaecurbonitile.	3.70 & 3.83 rotational isomers LC	223, 35
321	↓ CN	NC O	(3an,4β,7β,7ac)+4+12-(3- Cyanophenoxy)ethyl-cathydro-7- methyl-1,3-dioxo-4,7-epoxy-2H- iosindo-12-yH- naphthaleneoutbonitrile.	3.39 & 3.55 rotational isomers LC	223, 35
322	H ₃ C	CH ₃	(3att.4B, 7B, 7act) -2-(2,3- Dihydro-3-methyl-2-oxo-6- benzohliazolyhk-cahydro- 4,7-dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.34 LC	20
323		CH ₃	(3sc, 4β, 7β, 7sc)-2-(2,3- Dihydro-2-oxo-6- benzoihiazolyl)hexahydro- 4,7-dimethyl-7-epoxy-1H- isoindole-1,3(2H)-dione.	2.16 LC	20

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
324	↓ N	H ₂ C H ₃ C	(Soc.49,79,7so)+4 412 3- (Dineshylamino)phenoxyl 1,3-disox-4,7-groxy 2H- isoindo-2-ylp1- naphthelencent-onitrile.	2.63 & 2.79 rotational isomers LC	223, 35
325	↓ CN	NC CN	(3ac,45,79,7ac)-4{2-{4- Cyano-5-(tifilucromethy) phenylyctalycho-7-epoxy-4H- iosiadol-4-ylktoxy3-[1,2- benzenedleartomitrile.	3.42 LC	223, 35
326	o F ₃ C	CH ₅	(3ac, 4), 7), 7ac) -N{2- Cyano-Soxhaydro-4, 7- dimethyl-1, 3 discon-4, 7- eposy-11, 8 dimeth-2-yt) phenyl jocatimide.	1.94 LC	20
327	CF ₂ O CN	CH ₃	(30c, 4B, 7B, 7ac)-4 (Octabydro-4, 7-dimethyl- 1,3-dioxo-4, 7-epoxy-2H- isoladol-2-tyl)-2 (triflooromethoxy)benzonitrile.	3.52 LC	20
328	CH ₃ CN	CH ₃	(30x,4β,7β,7ax)-2-Methoxy- 4-(extahydro-4,7-dimethyl- 1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzositrile.	2.47 LC	20

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.			
329		CH,	(Satt,4B,7B,7ac)-2[4-(4,5- Dichloro-Hi-imdizoel-1- ylphenylp	3.09 LC	20			
330	Br CH ₃	CH ₃	(Sec. 48, 78, 7ac) -244-(4 Bonne-1-mestly) Hepymool-3- ylphen) plenshydro-4,7- ylphen) plenshydro-4,7- dimethy4-7, regover 111- isoindole-1,3 (211)-dione.	3.04 LC	20			
331		он	(3st.48,78,7st)+ [Oxthy/tro-4(2-hydro-yt-yt-yt-yt-yt-yt-yt-yt-yt-yt-yt-yt-yt-	2.44 & 2.60 rotational isomers LC	223			
332	ı	CH ₃	(3ac,4β,7β,7ac)-2-lodo-4 (Octabydro-4,7-dimethyl- 1,3-dioxo-4,7-epoxy-2H- isoindol-2-yl)benzositrile.	2.78 IC	20			
333	↓ CN		(3aa,4β,7β,7aa)-4-[4-[2-(4- Fluorophenoxy)chyl] octahydro-7-mehlyl-1,3-dioxo-4,7- epoxy-21-isoindol-2-γi-β-1 naphthalenecarbonitrile.	3.39 & 3.53 rotational isomers LC	223, 35			

Ex.	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
334	CN CN	O CF3	(3ca,4b,7b,7ac)+{Cetahydro-thethyl.1,3-dioxo-7424-thethyl.1,3-dioxo-7424-thethyl.1,3-dioxo-7424-thethyl.1,3-dioxo-7424-thethyl.1,3-dioxo-7424-thethyl.1,3-dioxo-1424-thethyl.1,3-dioxo-	3.66 & 3.78 rotational isomers LC	223, 35
335	ĊN CN	o F CN	(2sar,4f),7f3,7ac)-4-[4-[2-(4- Cyano-5-fluorophemoxy) ethyl jectalydro-7-methyl- 1,2-idxx-4,7-epoxy-2H isoinabl-2-yH- napthalenecurbonitrile.	3.26 & 3.41 rotational isomers LC	223, 35
336	ĊN CN	F F CF_3	(2ac,4),7),7ac)-4 [Octalydro-4-methyl-1,2- droso-74(24,5)-6-tenfluoro- 4-(trifloromethyl)phenoxyl ethyl-1,7-epoxy2H isoinabl-2-yl-1- naphthsienecurbonitrile.	3.94 & 4.01 rotational isomers LC	223, 35
337	HNNN	CH ₃	(3ac,4β,7B,7ac)- Hexalydro-4,7-dimethyl- 24-(41H-1,24-dimzol- 3-ylphenyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.06 LC	20
338	HN N	CH ₃	(3ac,48,78,7ac)-2-{4-(4,5-) Dibytor-5-0xo-1,2,4-coadiazol-3- ylybenyl/hearlyto-4,7- dimethyl-1,7-epoxy-11- inoindole-1,2(2H)-done.	2.42 LC	20

TABLE 5-continued

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
339	O CH ₃	CH ₃	(3aa,4β,7β,7aa)- Hexahydro-2/3-methoxy-4-(2- oxazolyl)plenyll-4,7- dimethyl-4,7-epcay-1H- isoindole-1,3(211)-dione.	2.51 I.C	20
340	OH.	CH ₃	(3ea,4β,7β,7aa)- Hexahydro-2-(4-hydroxy-1- naphthaleny)-4,7-dimethyl- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	2.30 LC	20
341	OH	CH ₃	(36a,4β,7β,7ac)- Hexahydro-2-(8-hydroxy-5- quinoliny)-4,7-dimethyl- 4,7-epoxy-Hisoindole- 1,3(21I)-dione, trifluoroscetate (1:1).	1.49 LC	20
342	F ₅ C CN	Ph. CH ₃	(3ea,4b,7b,7ac).4 [Octalydro-4-methyl-1,3-down-74] methyl-1,3-down-742 methyl-1,4-down-742 methyl-1,4-pcxy-2H-isindal-2y-1]-2; (irifluoromethyl)-benzonitrile.	2.42 LC	204, 35
343		CH ²	(3aa,4β,7β,7aa)- Hexahydro-4,7-dimethyl- 2-(5-quinolinyi)-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	1.69 LC	20
344	N CN	CH ₃	(3aa,4β,7β,7aa)-5- (Octalydro-4,7-dimethyl- 1,3-dioxo-4,7-epoxy-2H- isoindol-2/yl)-2- pyridinecarbonitrile.	2.18 LC	20
345	↓ CN	CH ₃	(3aa,4B,7B,7aa)-5- (Octabydro-4,7-dimethyl- 1,3-dioxo-4,7-epmy-2H- isoindol-2-yl)-8- quinolinecarbonitrile.	2.31 LC	20

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
346	NO ₂ Br	CH ²	(3scs,4B,7B,7scs)-2-(5- Bromo-4-nitro-1-asphthalenyi) hexahydro-4,7-dimethyl-4,7- epoxy-1H-isoindole-1,3(2H)-dione.	3.10 & 3.29 rotational isomers LC	20
347	J. Br	CH ₂	(30x,4β,7β,7ax)-2-(5- Bromo-1-naphthaleny) hexahydro-4,7-dimethyl- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	3.28 & 3.40 rotational isomers LC	20
348	$\bigvee_{N} \bigvee_{CF_3}$	CH_3	(3ex,4]b,7]b,7ax)· Hexahydro-4,7-dimethyl-2-{8- (trifluoromethy)-4- quinolinyl]-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	3.08 LC	20
349			4-Fluorobezzoic neid, 2 [Rou.4,87], 75:02-(4-syuno-1- naphthelenyl)cetahydro-7. naphthelenyl)cetahydro-7. naphthelenyl-1,3-diox-0-4,7-posy-4H- isoindol-4-y kthyl ester.	3.64 & 3.77 rotational isomers LC	223
350	CN CN		Benzeneacetic acid, 2-[(3art, 44);7]; 7art) 2-(4-cyane-1-apshalaeny) chaolydor, 7-methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-4-y kthyl ester.	3.53 & 3.67 rotational isomers LC	223
351	ĊN CN		4-Fluorobenzeneaccic acid, 2{\(\frac{1}{3}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\frac{9}{1}\text{ca}\deta\deta\frac{9}{1}\text{ca}\deta\deta\deta\deta\deta\deta\deta\deta	3.53 & 3.66 rotational isomers LC	223

			Continued		
Ex.	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
352	NO ₂	H ₅ C O	(3act.4B,7B,7act)- Hexabydro-4-methyl:74,244 Hexabydro-4-methyl:74,244 Hexabydro-1-methyl:74,7act,244 J7-epoxy:1H-faoindole- 1,3(2H)-dione.	3.31 LC	204, 35
353		CH ₃	(30c,4f),7f),7aci)- Hexahydro-2-(2-naphthalenyl)- 4,7-dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-diose.	2.94 LC	20
354		CH_3	(3εα,4β,7β,7αα)·2-(4- Chloro-1-naphthalenyl) hexahylaro-4,7-dimethyl- 4,7-epxy-1H-isoindole- 1,3(2H)-dione.	3.22 & 3.34 rotational isomers LC	20
355	↓ CN	NH CI	(3ac.4β,7β,7ac)·N4(4- Chloropheny)methyl}-2(4- cyano-1-naphhaleny) octahydro-7-methyl-1,3- dioxo-4,7-epoxy-4H- isoindole-4-acetamide.	3.52 LC	237
356	CN CN		4,7,7-Trimethyl-3-oxo-2- oxabicyclo[2,2,1] persane-1- cintoxylis acid, 2; [(Sar, 4),7,7,2m)-2/4-cyano-1- naphthienyl) octahydro-7- methyl-1,3-dioxo-4,7- epoxy-4H-isoindol-4- y sthyl-cster.	3.45 LC	223

TABLE 5-continued

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
357	CX CX	O O O O O O O O O O O O O O O O O O O	(aS)-a-Methoxy-a- (trifluoromethy)/benzeneoeetic sexi, 24(3sa,4/8,7km,0-2- (4-cynao-1-naphithaleny) catalydro-7-methyl-3,-dicxo-4,7- epoxy-4H-isoindol-4- y)ethyl cater.	3.91 LC	223
358	ĊN CN	C _C CIPIO C	(GR)-G-Methoxy-G- (triflucomethy)/beazeneecetic exid, 24(8ax,4/R/7ac)-2- (4-cynno-1-asphithikeny) cathydro-7-methyl-1,3-dixxo-4,7- epxy-4H-isoindol-4- y/sthyl ester.	2.00 LC	223
359	↓ CN		(3sct,4β,7β,7sct)-4 [Octahydro-4-methyl-7,{2- [(7-methyl-1,2-benzisoxzol-3- yl)oxy [sthyl],3-dioso-4,7- epoxy-2H-isoindol-2-yl]-1- naphthalenecarbonitrile.	3.79 & 3.92 LC Rotationale isomers	250
360	Ċ _N		(3an,4β,7β,7an)+4 4- 2-(1,2- Benzisonzaol-3-yloxy) ethylpctahydro-7- methyl-1,2-dioxo-4,7-epoxy-2H- isoindol-2-yl-1- naphthalenecurbonitrile.	3.55 & 3.70 LC Rotationale Isomers	250
361	↓ CN		(3acı,4β,7β,73cı)·4-[2- (Benzoyloxy)cthyl]-2-(4-cyano-1- naphthalenyi)bexahytin-7- methyl-4,7-epoxy-IH-isoinidole- 1,3(2H)-dione.	3.51 & 3.66 LC Rotationale isomers	223
362	↓ CN	O _N	(3sq.4B,7B,7sq)-2-{4 Cyano-1 naphthaleay)-4-{2-{(4- Cyano-1 naphthaleay)-4-{2-{(4- nitrobenzoyl)oxy}ethyl] hexahyino-7-methyl-4,7- epoxy-1H-isoindole- 1,3(2H)-dione.	3.52 & 3.67 LC Rotationale Isomers	223

TABLE 5-continued

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
363		CI	4-Chlorobenzoic acid, 2- [(3sx,4h,7h,7ac)-2-(4-cyano-1- naphthalenyl) octahydro-7- nethyl-1,3-dioxo-4,7-epoxy-4H- isoindol-4-y lethyl ester.	3.79 LC	223
364	ĊN CN		[Sea, 4B, 7B, 7aa(E)]-4 [Octahydro-4-methy]-7-[3-(1-naphthalen)/2-propenyl- 1,3-disco-4,7-epoxy-221- isoindol-2-yl-1- naphthalenecurbonitrile.	4.14 LC 499.13 [M + H]*	248
365	ĊN CN		(30a,4β,7β,7ac).4 [Octabydro-4-methyl-7-[3-(1-naphthaleny))propyl-1,3- dioxo-4/7-epoxy-2H- isoindol-2-yl -1- naphthalencentronitrile.	4.14 LC 501.14 [M + H]*	248, 249
366		CH ₃	(3αα,4β,7β,7αα)- Hexabydro-4,7-dimethyl- 2-(2-methyl-6-quinclinyl)- 4,7-epoxy-1H-isoindole- 1,3(2H)-dione.	1.25 LC 337.0 [M + H]*	20
367		CH ₃	(3αα,4β,7β,7αα)- Hαxahydro-2-(5- isoquinoliny))-4,7- dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	1.06 & 1.29 LC Rotationale Isomers 323.0 [M + H] ⁺	20
368		CH ₃	(3aa,4β,7β,7sa)-2-(6 Benzothiszoly])hexahydro- 4,7-dimethyl-4,7-epoxy-1H- isoindole-1,3(2H)-dione.	2.15 LC 329.0 [M + H]*	20
369	↓ CN		[Satz,4B,7B,7ac(E)]4- [Oxtlayine4-methyl-1,3- dixxo-7-(4-ox-4-phenyl- 2-butenyl-4,7-epoxy-2H- isoindol-2-yH- naphthale-necarbonitrile.	3.50 LC 477.1 [M + H]*	265

Ex.	G	R^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
370	Ç _N	OH NH	(3ec, 4β, 7β, 7ac)-2-(4- Cyano-1-asphthalenyl)octahydro- N-(2-hydroxyhenyl)-7-methyl- 1,3-dioxo-4,7-epoxy-4H- isoindole-4-acetamide.	3.07 LC 482.14 [M + H]*	236
371	CN	Hyc	[3ca,49(E),7B,7ac]+ [Octabydro4-methyl-7-[3- (o-methyl-2-yrdidnyl-2- ptopenyl) 1,3-dioxo-4,7- ptopenyl) 1,3-dioxo-4,7- ptopenyl-2,6-ionial-2-yl-1- napshtulenesstbonitrile.	2.28 LC 464.19 [M + H]*	248
372		H ₂ C	(30x,4β,7B,7ax)-4 [Octalydro-4-methyl-7 ₄]- (Octalydro-4-methyl-7 ₄]- (o-methyl-2-ydridnyl)propyl- 1 _e 3-dexo-4 _e 7-spexy-2H maphthalencenthonitrile.	2.19 LC 466.32 [M + H]*	248, 249
373	ĊN CN	H ₂ C 0	[3aR-(3ao,4);7];,7ao]+1 [Octahydro-4-[2-(3- methoxyhenoxy)ethyl]-7- methyl-1,3-dioo-47-cpoxy-2H- isoindol-2-yl]-1- naphthalencearbonitrile.	3.73 LC 483.65 [M + H]*	238i, 239i
374		H ₃ C O	[36S-(36x,4K)-7B,7ax)]-4 [Octalydro-4-[2-(3-methox) phenoxy)elthy]-7: methyl-1,3-dioxo-4,7-epoxy-2H- isoindol-2-yll-1- naphthalenecarbonitrile.	3.73 LC	238ii, 239ii

TABLE 5-continued

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
375	↓ CN		[3aR-(3az.4fr,7fr,7ax)]-4[4]-2(4 Cyanophenoxylethylactahydro-7- nethyl-1-3-dam-4,7-qoax)-2H- isoladol-2-yl-1- mphihalencearbonitrile.	3.33 & 3.49 LC Rotationale Isomers	238i, 239i
376	↓ CN		[385-(38c,4β,7β,7ac)]+1[4-[2-(4- Cyanophenoxy)ethyl Jecthydro-7- methyl-1,3-dixxx-4,7-epxxy-2H- isofadsi-2-yl]+1- naphthaleneourbonitrite.	3.73 LC 483.65 [M + H]*	238ii, 239ii
377	↓ CN	NH	[30c, 4β/E),7β,7sci]-4.[4-[3- (1H-Benzimidszol-2-yly-2- propenyl jostalydro-7-methyl- 1,7-dixxo-4,7-epoxy-2H- isoindol-2-yl]-1- maphthalenecurbonitrile.	2.48 LC 489,26 [M+H]*	248
378	ÇN CN	NH	(3aa,4β,7B,7aa).+[4-[3 (IH-Benzimidacol-2-yi) proyl) festahyin-7-nethyl- 1,3-diaco-1,7-epoxy-2H- isoindol-2-yH- naphthale-meant-onlirile	2.37 LC 491.26 [M + H]*	249

EXAMPLES 379 TO 381

Additional compounds of the present invention were prepared by procedures analogous to those described above. 55 The compounds of Examples 379 to 381 have the following structure (L is a bond):

where G, R², the compound name, retention time, molecular mass, and the procedure employed, are set forth in Table 6. The chromatography techniques used to determine the compound retention times of Table 6 are as follows: LCMS=YMC SS ODS column, 4.6x50 mm eluting with 10–90% MeOH/H₂O over 4 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 mm. LCMS=YMC SS ODS 60 column, 4.6x50 mm eluting with 10–90% MeOH/H₂O over 2 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 mm. LCSYMC SS ODS column 4.6x50 mm eluting with 10–90% MeOH/H₂O over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 ms.

The molecular mass of the compounds listed in Table 6 were determined by MS (ES) by the formula m/z.

TABLE 6

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
379	NC CF3		(3aa,4a,7a,7aa)- 414-1(4- Fluorophenyl)- methyl]octahydro- 7-methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl]-2- (trifluoromethyl) benzonitrile.	3.75 LC	205
380	O CH3	CH ₂	(3acı,4cı,7cı,7acı- Hexahydro-4,7- dimethyl-2-(1- methyl-6-cxo-3- piperidinyl)-4,7- epoxy-HI- isoindole- 1,3(2H)-dione.	1.88 1.C	27
381	H ₃ C CH ₃	CH ₃	(3ac, 4c, 7c, 7ac), 2-(1,6-Dihydro- 1,4-dimethyl-6- oxo-3- pyridinyl)bxa- hydro-4,7- dimethyl-4,7- epoxy-1H- isoindole- 1,3(2H)-dione.	1.91 LC	27

EXAMPLES 382 TO 383

Additional compounds of the present invention were prepared by procedures analogous to those described above. 40 The compounds of Examples 382 to 383 have the structure, compound name, retention time, molecular mass, and were prepared by the procedure employed, set forth in the following Table 7. The chromatography techniques used to determine the compound retention times of Table 7 are as 45 follows: LCMS-YMC SS ODS column, 4.6-50 mm eluting

with 10-90% McOHH₂O over 4 minutes containing 0.1% TEA; 4 mL/min, monitoring at 220 mm. LCMS*~VMC S5 ODS column, 4.6x50 mm eluting with 10-90% McOHH₂O over 2 minutes containing 0.1% TEA; 4 mL/min, monitoring at 220 mm. LC-YMC S5 ODS column 4.6x50 mm eluting with 10-90% McOHH₂O over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm. The molecular mass of the compounds listed in Table 7 were determined by MS (ESI) by the formula m/z.

TABLE 7

Ex. No.	Structure	Compound Name	Retention Time Min.	Procedure of Example
382 NC F ₃ C	O O O O O O O O O O O O O O O O O O O	(3aα,4β,7β,7aα)- 2-[4-Cyano-3- (trifluoromethyl) phenyl Jextahydro- 1,3-dioxo-7-[2- (phenylmethoxy) ethyl]-4,7-epoxy- 4H-isoindole-4- propanenitrile.	3.63 LC	255

TABLE 7-continued

Ex. No.	Structure	Compound Name	Retention Time Min.	Procedure of Example
383		(3sc, 4β, 7β, 7sac)- 244-Cyano-3- (trifluoromethyl) phenyl loctahydro- 1,3-dixox-742- (phenylmethoxy) ethyl [4,7-epoxy- 4H-isoindole-4- propanenitrile	LC	255

EXAMPLES 384 TO 418

Additional compounds of the present invention were prepared by procedures analogous to those described above. 25 The compounds of Examples 384 to 418 have the following structure (L is a bond):

molecular mass, and the procedure employed, are set forth in Table 8. The absolute configuration for the

following compounds was not determined. For simplicity in nomenclature, compound 243Di is designated herein as having an "S" configuration and compound 243Dii as having an "R" configuration. Enantiomerically pure products derived from compound 243Di are designated herein as having an "S" configuration and enantiomerically pure products derived from compound 243Dii are designated herein as having an "R" configuration.

The chromatography techniques used to determine the compound retention times of Table 8 are as follows: LCMS= YMC S5 ODS column, 4.6×50 mm eluting with 10-90% MeOH/H₂O over 4 minutes containing 0.1% TFA; 4 35 mL/min, monitoring at 220 nm. LCMS*=YMC S5 ODS column, 4.6×50 mm eluting with 10-90% MeOH/H₂O over 2 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 nm. LC=YMC S5 ODS column 4.6×50 mm eluting with 10-90% MeOH/H2O over 4 minutes containing 0.2% phoswhere G, R7, the compound name, retention time, an phoric acid, 4 mL/min, monitoring at 220 nm. The molecular mass of the compounds listed in Table 8 were determined by MS (ES) by the formula m/z.

TABLE 8

Ex. No G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
384 CN		(3aa,4β,7β,7aa) 4[7-{2-(4- Cyanophenoxy) ethyl joetahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isosindol-2- yl-1- naphtalene- carbonitrile.	3.18 LC 494.40 [M + H]*	227, 228, 229

Ex. No	G	\mathbf{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
385	ĊN CN		[3a5. (3ac,4β,β,7ac)]. 4[7-[2-(1,3-Benzodioxol-5- yloxylethyl Jecta hydro-5- hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 21-isoindol-2- yl-1- naphthalene- carbonitrile.	3.19 LC 571.3 [M - H + OAc]	243Di, 244i
386	ĊN CN		[3aR- (3ac.4β,7β,7ac)]- 4[7[2-(1,3- Benzodioxol-5- bydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-1- naphthalene- carbonitrile.	3.22 LC 571.2 [M - H+OAc]	234Dii, 244ii
387	ĊN CN	O N	[3aS. (3ac,4β,7β,7ac)]. 4[7-[2-2(5- Chloro-2- pyridiny)coxy] ethyl]ectahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-1- naphbhalene- carbonitrile.	3.37 LC 562.2 [M - H + OAc]	243Di, 244i
388	ĊN CN	, N	[3aR- (3ac.4β,7β,7ac)]+ 4-[7-[2-(5- Chlore-2- pyridinyl)oxy]- chtyl-betahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yi]-1- naphthalene- carbonitrile.	3.37 LC 504.0 [M + H]*	243Dii, 244ii
389	Ç _N	, c	[3aS- (3ac,4β,7β,7aα)]- 41742-(4- Chlorophenoxy) ethyloctahydro- 5-hydroxy-4- methyl-1,3- diox-4,7-epxy- 2H-isoiadol-2- yl-1- naphthalene- carbonitrile.	3.51 LC 503.08 [M+H]*	243Di, 244i

Ex.	G	\mathbf{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
390		o c	[3aR, 4β, 7β, 7aα)] 4474[2-(4 Chlorophenoxy) ethyl[3etahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 21i-isoindol-2- yl]-1- naphthalene- carbonitrile.	3.51 LC 503.08 [M + H]*	243Dii, 244ii
391	ĊN CN	II ₉ C O	[3aS- (3aC,4β,7β,7ac)]- 44742(4 Acetylphenoxy) ethylpochalydro- 5-hydroxy-4- methyl-1,3- dixxo-4,7-epoxy- 21-lisoindol-2- yl]-1- naphtlalene- carbonitrile.	3.05 LC 511.13 [M + H]*	243Di, 244i
392		HyC	[3aR- (3aA4β,7β,7ac)]- 4/7/12/44 Acetylphenoxy) thyl joethyldroxy-4- methyl-1,3- dioxo-4,7-epoxy- 21-isoindol-2- yl-1- naphthalene- carbonitile.	3.05 LC 503.13 [M + H]*	243Dii, 244ii
393		NC NC	[3aS, 4β,7β,7aα)]- 447-[2-(3- Cyanophenoxy) cibyl joctahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- njhthalene- carbonitrile.	3.09 LC 494.13 [M + H]*	243Di, 244i
394		NC NC	[3aR, -[3ac,4β,7β,7ac)], 447-[2-(3- Cyanophenoxy) ethyljectnhydro 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-1- naphthalene- carbonitrile.	3.09 LC 494.13 [M + H]*	243Dii, 244ii

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
395	Ç _N		[3aS- (3aC,4β,7β,7ac)]- 4-[Octahydro- 5-hydroxy-4- methyl-1,3- dioxo-74/2- [(5,6,7,8- tetrahydro-1- naphthaleny) oxy]ethyl-4,7- epoxy-2H- isoindol-2-yl-1- naphthalene- carbonitrile.	3.85 LC 523.17 [M + H]*	243Di, 244i
396	c _x		[3aR- (3ac,4β,7β,7ac)]- 4-[Octahydro- 5-hydroxy-4- methyl-1,3- dioxo-7-[2- [(5,6,78- tetrahydro-1- naphthaleny) oxylethyl-[4,7- epoxy-2H- isoindol-2-yl-]1- naphthalene- carbonitrile.	3.85 LC 523.17 [M + H]*	243Dii, 244ii
397	ĊN CN		[3aS-(3aC,4β,7β,7aO)]- 4[Octahydro-5-bydroxy-4- methyl-1,3- dioxo-7-4[2- [(5,6,7,8- tetrahydro-5- oxo-1- naphthalenyl) oxylethyl]-4,7- cpoxy-2H- isoindol-2-yl]-1- naphthalene- carbonitrile.	3,29 LC 537.13 [M + H]*	243Di, 244i
398	CX CX		[3aR- (3ac,4β,7β,7ac)]- 4-[Octahydro- 5-hydroxy-4- methyl-1,3- dioxo-7-[2- [(5,67,78- oxo-1- naphthalenyl) oxylethyl-4,7- epoxy-2H- isoindol-2-yl-1- naphthalene- carbonitrile.	3.29 LC 537.13 [M + H] ⁺	243Dii, 244ii

Ex.	G	R ⁷	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
399	, a	O F	[3aS- (3aa,4β,7β,7aa)]- 4[742-(4- Fluorophenoxy) ethyljectahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-cpoxy- 2H-isoindol-2- yl]1- naphthalene- carbonitrile.	3.28 LC 487.11 [M + H]*	243Di, 244i
400		O	[3aR- (3aα,4β,7β,7aα)]- 4[74]2-(4- Fluorophenoxy) ethyl-loctahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-naphthalene- curbonitrile.	3.27 LC 487.11 [M + H]*	243Dii, 244ii
401		H,c—	[3aS- (3ac,4β,7β,7ac)]- 4[Octahydro- 5-hydroxy-4- methyl-7-2co- 2l-1- benzopyna-7- yloxy kthyl- 1,3-drox-4,7- epoxy-2H- isoindol-2-yl-l- naphthalen- carbonitrile.	3.15 LC 551.15 [M + H]*	243Di, 244i
402	Ç _S	H ₂ C—	[3aR- (3aa,4β,7β,7aa)]- 4[Octahydro- 5 hydroxy-4- methyl-7[2-[4]- methyl-2-oxo- 2H-1- benzopyran-7- y]oxylethyl- 1,3-dixxo-4,7- opoxy-2H- isonide/2-y]-1- naphthalene- carbonitrile.	3.16 LC 551.10 [M + H]*	243Dii, 244ii

		X 1000 0 4000			
Ex.	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
403	CN CN	O CIII	[3aS- (3acc,4β,7β,7acc)]- 4/74/2-(3,5- Dimethoxyphen oxypletty]lecta hydro-5-hydroxy- methyl-1,3- dioxo-4,7-epoxy- 2I-isoindol-2- yl-1- nsphthalene- carbonitrile.	3,28 LC 529,19 [M + H]*	243Di, 244i
404	CN CN	O CII5	[3aR- (3ax,4β,7β,7ax)]- 44742-(3,5- Dimethoxyphen oxyplety]-feta hydro-5-hydroxy- methyl-1,3- dixxo-4,7-epoxy- 2H-isoindol-2- H-	3.26 LC 529.12 [M + H]*	243Dii, 244ii
405	¢ _{CN}	Hyc	[3aR- (3ac,4β,7β,7ac)] 1-4/7/2-(4- Chloro-3- methylphenoxy) ethyl octahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-is-indol-2- yi]-1- naphthalene- carbonitrile.	3.68 LC 517.33 [M + H]*	243Dii, 244ii
406	CN CN	F CN	[3aR- (3ac4β,7β,7ac)]- 4-[7-12-(4- Cyane-2,3- difluorophenoxy) ethyl-estalydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yi]-1- naphthalene- carbonitrile.	3,23 LC 530,13 [M + H]*	243Dii, 244ii
407	CN	N CI	[3aS- (3aC4β,7β,7aG)]+ 4/74/2-[(5- Chloro-1,2- benzisozzol-3- yl)oxyl-thyl jez- alvydro-5- hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-1- naphthalene- carbonitile.	3.59 LC 602.1 [M - H + OAc]	243Di, 252

Ex.	G	\mathbf{R}^{τ}	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
408	, N	N Cd	[3aR- (3ac,4β,7β,7ac)]- 4-742-(5- Chloro-1,2- benzisoxazol-3- yl)oxy lethylloet ahydro-5- hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yyl1- naphthalene- carbonitrile.	3.57 LC 602.0 [M - H + OAc]	243Dii, 253
409	LN CN		[3aR- (3aa,4β,7B,7aa)]- 3-[2-42-(4- Cyano-1)- naphthalenyl)- octahydro-6- hydroxy-7- methyl-1-3- dioxo-4,7-epoxy- 4H-isoindol-4- yl[ethoxy]-5- isoxazolecarboxylic acid, methyl esser.	2.90 LC 518-27 [M + H]*	243Dii, 253
410	CN		[3aR- (3ac,4β,7β,7ac)]- 4-[Octahydro- 5-hydroxy-4- methyl-1,3- dioxo-7-[2-44- (H-1,2,4- trinzol-1-ylphenoxy]-thyl- 4,7-cpoxy-2th- isoindol-2-yl]-1- naphthalene- carbonitrile.	2.93 LC 536.30 [M + H]*	243Dii, 244ii
411	CN		[3aS- (3ac,4β,7β,7ac)]- 4[7424(7- Chloro-4- quinolinyl)oxy]- ethyloctalnyloxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl-1- naphthalene- carbonitrile, trifluroacetate (1:1).	2.52 LC 554.13 [M + H]*	243Di, 244i

Ex. No	G	R^{7}	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
412	CN CN		[3nR- (3ocq,4),75p,70c)]+ 4-[74]-24(7- Chlore-4- quinolinyloxy) ethyll-ectahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epxy- 2H-isoindol-2- yl-1- naphthalene- carbonitrile, trifluoroscetate (1:1),	2.53 LC 554.27 [M + H]*	243Dii, 244ii
413	↓ N		[3aR- (3a,4β,58,7β,7aα)]- 4[742-(2- Benzoszacylóxy) ethyl]octahydro- 5-hydroxy-4- methyl-1,3- drox-4,7-cpoxy- 2H-isoindol-2- yl-1- naphthalene- carbonitrile.	3.13 LC 568.1 [M - H+OAc]	243Dii, 244ii
414	CN	H ₂ C N	[3aR- (3a,4β,5β,7β,7aα)]- 4-[Octahydro- 5-hydroxy-4- methyl-7-[2-4[0- methyl-7-[2-4[0- purin-8- yl)oxy]ethyl- 1,3-dioxo-4,7- epoxy-2H- isoindol-2-yi]-1- naphthalene- carbonitrile.	2.34 LC 525.2 [M+H]*	243Dii, 244ii
415	ĊN CN		[3aR- (3ct,48,58,78,7au)]. 4-[Octahydros-4- methyl-7[2-{[1- methyl-7]2-{[1- methyl-1-H- indszol-3- yl)oxylehyl- 1,3-dioxo-4,7- epoxy-2H- isoindol-2-yl]-1- naphthalene- carbonitrile.	3.33 LC	251, 253

Ex.	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
416	J.		[3aS- (3a,45,58,78,7ac)]+[Octahydro- 5-hydroxy-4- methyl-7/24- (1,2-3- thiadizezl-5- ylphenoxylethyl- 1,3-dixox-4,7- epoxy-2H- isoindol-2-ylpl- naphthaleno- curbonitrile.	3.17 LC 553.10 [M + II]*	243Dii, 244ii
417	₩ CN		[3aR- (3a.4β.5β.7β.7aa)]+ {Octahydro- 5-hydroxy-4- methyl-74.2/4- (1.2,2- 5- ty),phenoxy fshy]- 1,3-dicco-4,7- epoxy-21]-1- saphdaleac- carbonitrile.	3.20 LC 553.25 [M + H] [†]	243Dii, 244ii
418	ĊN CN	$\bigcup_{CF_3}^{O}$	[3a8- (3a,4β,5β,7β,7aα)]- 4-[Octahydro- 5-hydroxy-4- methyl-1,3- dixxo-7-[2-1[5- (trifluoromethyl)-2- pyridiayl]oxy] ethyl-4,7-epoxy- 2H-isoindol-2- yl]-1- naphthalene- carbonitrile.	3.45 LC 538.23 [M + H]*	243Dii, 244ii
419	CN CN	$\bigcup_{CF_3}^{O}$	[3αR- (3α,4β,Sβ,7β,7αα)]- 4[Octabydro- 5-bydroxy-4- methyl-1,3- dixxo-7-[2-1]E- (trifluoromethyl)-2- pyridinyl [bxy] ethyl [4,7-epoxy- 2H-isoindol-2- yl]-1- naphthalene- carbonitrile.	3.45 LC 538.23 [M + H]*	243Dii, 244ii

TABLE 8-continued

Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
420	CN	H _S C N	[3aS- (3a,4B,SB,7B,7aa)]- 4-[74]-24[o- Chloro-2- methyl-4- pyrimidinyl)oxyl- ethyl-ectahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-12- uphthalene- carbonitrile.	3.02 LC	243Dii, 244ii
421	ĊN CN	H ₃ C N	[3alt- (3a,48,58,78,7au)]- 4-[74]-24[6- Chloro-2- methyl-4- pyrimidinyl)oxyl- ethyl-cstahydro- 5-hydroxy-4- methyl-1,3- dioxo-4,7-epoxy- 2H-isoindol-2- yl]-1- naphthalene- carbonitide.	3.02 LC	243Dii, 244ii

EXAMPLE 422

(3aα,4β,7β,7aα)-2-(7-Bromo-2,1,3-benzoxadiazol-4-yl)hexahydro-4,7-dimethyl-4,7-epoxy-1Hisoindole-1,3(2H)-dione (422C)

A. 4-Bromo-7-nitrobenzofurazan (422A)

To a solution of 2,6-dibromosniline (1,0 g, 40 mmol) in CHCl, (8 mL) was added a suspension of mCPBA (70% by HPLC, 1.4 g, 8.0 mmol) in CHCl, (8 mL) and the resulting mixture was stirred for 24 h at rt. The reaction mixture was diduced with CHCl, and washed successively with 2% Na₂SC₃, solution, 5% Na₂CO₃, solution and brine. The organic laver was dried over Na₂SO₃, and concentrated

32 suspended, into DMSO (15 m.l.). To this suspension was added a solution of NaN₂ (2.7 mg, 4.19 mmol) in DMSO (15 m.l.) at rt. The resulting mixture was stirred at rt until of most of the introgen had evolved and was then quickly heated to 120° C. for 3 min. The reaction mixture was cooled any and poured onto crushed ice (100 g). After standing for 1 h the precipitates were filtered off, dried in vacuo and refisionly of the control of the control

under reduced pressure to leave a solid, which was

EIOAc was added, the layers were separated and the aqueous layer was extracted with EIOAc. The combined organic layers were dried over Na, SOQ, and concentrated under for reduced pressure to leave a solid which was purified by flash chromatography (silica gel, EIOAc (20%) in beanes) affording compound 422A (785 mg, 81%) as a tan solid.

B. 4-Bromo-7-aminobenzofurazan (422B)

A solution of compound 422A (563 mg, 2.31 mmol) in AcOH (5 mL) was heated to 70° C. and Fe^o powder (258 mg, 4.62 mmol) was added in one portion. The resulting

50

dark reaction mixture was stirred for 15 min, cooled to rt and concentrated under reduced pressure. The residue was taken up in EtOAc and the resulting solution was washed with sat. Na2CO3 solution. The organic layer was dried over Na2SO4, concentrated in vacuo and purified by flash chromatography on silica gel eluting with 10-60% EtOAc in hexanes to give 470 mg (95%) of compound 422B as a red solid.

C. (3aα,4β,7β,7aα)-2-(7-Bromo-2,1,3benzoxadiazol-4-yl)hexahydro-4,7-dimethyl-4,7epoxy-1H-isoindole-1,3(2H)-dione (422C)

A mixture of compound 422B (43 mg, 0.20 mmol), compound 20A (45 mg, 0.23 mmol), MgSO₄ (60 mg, 0.50 mmol), Et2N (139 ul., 1.0 mmol) and 1.2-dimethoxyethane (300 μL) were placed in a scaled tube and heated at 135° C. for 14 h. After cooling to rt the mixture was filtered through 20 Celite eluting with MeOH to yield a dark solid which was purified by flash chromatography on silica gel cluting with 5-40% EtOAc in hexanes to give 42 mg (54%) of compound 422C as a yellow solid. HPLC: 99% at 2.96 min (retention 25 time) (YMC S5 ODS column 4.6×50 mm Ballistic, 10-90% aqueous methanol over 4 minutes containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). 1H NMR (acetone-d₆, 400 MHz): δ=8.00 (d, J=7.5 Hz, 1H), 7.45 (d, J=7.5 Hz, 1H), 3.31 (s, 2H), 1.98-1.93 (m, 2H), 1.74-1.69 (m, 2H), 1.57 (s, 30 (2 mL) was heated to reflux for 3 h. The resulting mixture 6H).

EXAMPLE 423

(3aα,4β,7β,7aα)-7-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-vI]-2,1,3benzoxadiazole-4-carbonitrile (423)

To a solution of compound 422C (42 mg, 0.11 mmol) in DMA (1 mL) was added CuCN (20 mg, 0.22 mmol) and the resulting mixture was heated at 150° C. for 5 h. The mixture 55 was allowed to cool to rt and partitioned between EtOAc and aqueous NaCN solution (5 g/50 mL). The layers were separated and the aqueous layer was extracted once with EtOAc. The combined organic phases were dried over Na2SO4, concentrated in vacuo and purified by flash chromatography on silica gel eluting with 20-70% EtOAc in hexanes to give 13 mg (35%) of compound 423 as a yellow oil. HPLC: 99% at 2.66 min (retention time) (YMC S5 ODS column 4.6×50 mm Ballistic, 10-90% aqueous methanol 65 over 4 minutes containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 396.9 [M-H+OAc].

(3aα,4β,7β,7aα)-7-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-v1]-2,1,3benzothiadiazole-4-carbonitrile (424B)

A. 4-Cvano-7-amino-benzothiadiazole (424A)

A solution of 2-evano-5-nitrophenylenediamine (78 mg, 0.44 mmol, prepared as described in WO 0076501) in SOCl, was allowed to cool to rt and was then poured into ice/water. CH2Cl2 was added, the layers were separated and the aqueous layer was extracted twice with CH2Cl2. The combined organic phases were dried over MgSO4, concentrated 35 in vacuo and purified by flash chromatography on silica gel eluting with 50% EtOAc in hexanes to give 4-evano-7nitrobenzothiadiazole. This material was dissolved in AcOH (2 mL) containing EtOAc (1 mL) and H2O (0.2 mL) and heated to 70° C. At this temperature Fe⁰ powder (78 mg, 40 1.41 mmol) was added in one solid portion and the dark mixture was stirred for 20 min and then cooled to rt. The reaction mixture was filtered through Celite eluting with EtOAc, washed with sat. Na2CO3 solution, dried over MgSO4 and concentrated in vacuo. Purification by flash 45 chromatography on silica gel eluting with 20-70% EtOAc in hexanes to yield 47 mg (67%) of compound 424A as a brown solid.

B. (3aα,4β,7β,7aα)-7-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3benzothiadiazole-4-carbonitrile (424B)

A mixture of compound 424A (35 mg, 0.20 mmol), compound 20A (45 mg, 0.23 mmol), MgSO₄ (60 mg, 0.50 mmol), Et₃N (139 μL, 1.0 mmol) and DME (200 μL) was placed in a scaled tube and heated at 135° C, for 14 h, After cooling to rt the mixture was filtered through Celite eluting with MeOH to yield a dark solid which was purified by a combination of flash chromatography on silica gel eluting with 10-50% EtOAc in hexanes reverse phase preparative HPLC (YMC S5 ODS 20×100 mm cluting with 27-100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min) to give 36 mg (51%) of compound 424B as a yellow solid. HPLC: 98% at 2.45 min (retention time) (YMC S5 ODS column 4.6×50 mm Ballistic, 10-90% aqueous methanol over 4 minutes containing 0.2% H2PO4, 4 mL/min, monitoring at 220 nm). MS (DCI): m/z 355.0 [M+H]*.

20

(3aα,4β,7β,7aα)-N-2-[2-(4-Cyano-1-naphthalenyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-4Hisoindol-4-yl]ethyl]-4-fluoro-N-methylbenzamide

A. 4-Fluoro-N-methyl-N-[2-(5-methyl-furan-2-yl)ethyll-benzamide (425A)

NaH (60% dispersion in oil, 65 mg, 1.63 mmol) was added portionwise to a solution of 4-fluoro-N-[2-(5-methyl-2-furanyl)ethyl]benzamide (269 mg, 1.09 mmol, 237A) in THF (5 mL). After gas evolution ceased, iodomethane (0.14 mI., 2.18 mmol) was added drop-wise. Once HPLC analysis 35 showed the reaction to be 50% complete, the mixture was concentrated under reduced pressure and resubjected to the above conditions. After all the starting material was consumed, H₂O was added and the resulting mixture was layers were dried over Na2SO4 and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 20% acetone/CHCl3 gave 238 mg (84%) of compound 425A. HPLC: 98% at 2.94 min (retention time) (Phenomenex-prime S5-C18 column 4.6x 50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z [M+H]=262.38.

B. (3aα,4β,7β,7aα)-N-[2-[2-(4-Cyano-1naphthalenyl)octahydro-7-methyl-1,3-dioxo-4,7epoxy-4H-isoindol-4-yl]ethyl]-4-fluoro-Nmethylbenzamide (425B)

A solution of compound 425A (183 mg, 0.75 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-1-yl)-1naphthalenecarbonitrile (174 mg, 0.75 mmol) in benzene (1 mL) was heated at 60° C. for 15 hr. The reaction mixture was concentrated under reduced pressure to give 357 mg crude intermediate. The crude intermediate (156 mg) was dissolved in EtOAc (6 mL) and 10% Pd/C (16 mg) was added and the mixture was stirred under a hydrogen balloon overnight. The reaction mixture was filtered through a pad of Celite and concentrated under reduced pressure. Purification by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 20-100% aqueous methanol over 15 minutes contain- 65 ing 0.1% TFA, 20 mL/min, monitoring at 220 nm) gave 160.3 mg (72%) of compound 425B as an off-white solid.

272

HPLC: 99% at 3.23 min (retention time) (Phenomenexprime S5-C18 column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): 5 m/z [M+H]=512.19.

EXAMPLE 426

(3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[4-(2,2, 2-trifluoro-1-hydroxyethyl)phenyll-4,7-epoxy-1Hisoindole-1,3(2H)-dione (426B)

A. 1-(4-Amino-phenyl)-2,2,2-trifluoro-ethanol (426A)

Compound 426A was made according to the procedure extracted with EtOAc (2x5 mL). The combined organic 40 (1980). NaBH₄ (47 mg, 1.235 mmol) was added to a solution of p-aminotrifluoroacetophenone (155.7 mg, 0.823 mmol, synthesized as described by Klabunde, K. J. et al. J. Org. Chem. 35, 1711-1712 (1970)) in isopropanol (3 mL) at rt. After 30 min the reaction was quenched with phosphate buffer (pH 7.2), diluted with H2O and extracted with EtOAc (2×10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to give 154 mg (98%) of compound 426A as a tan solid. The material was used directly in the next step without purifi-50 cation. HPLC: 99% at 0.42 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z [M+H]= 192.13.

B. (3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[4-(2,2,2-trifluoro-1-hydroxyethyl)phenyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione (426B)

A mixture of compound 426A (75.3 mg, 0.394), compound 20A (51.5 mg, 0.262 mmol), triethylamine (0.15 mL) and MgSO4 (50 mg) in toluene (1 mL) was heated in a sealed tube to 135° C, for 15 hr. The mixture was filtered and concentrated under reduced pressure. Purification by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 20-100% aqueous methanol over 15 minutes containing 0.1% TFA, 20 mL/min, monitoring at 220 nm) gave 63.1 mg

20

25

30

(65%) of compound 426B as a white solid. HPLC: 98% at 2.49 min (retention time) (Phenomenex-prime S5-C18 column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z [M+H]=370.16.

EXAMPLE 427

(3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl oxy ethyl -1,3,3a,4,7,7a-hexahydro-7methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile & (3a α,4α,7α,7aα)-4-[4-[2-[[(1.1-Dimethylethyl)klimethylsilyl]oxylethyl]-1,3,3a,4,7,7a-hexahydro-7-methyl-1,3-dioxo-4,7epoxy-2H-isoindol-2-vl]-2-(trifluoromethyl) benzonitrile (427i & 427ii)

Compound 204A (2.00 g, 8.50 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-2-trifluoromethylbenzonitrile (1.50 g, 5.60 mmol) were mixed in benzene (5.0 mL) and heated at 60° C. for 14 h, then cooled to 25° C. The solvent was removed at 40° C, under vacuum for 1 h to give the crude material which was purified by flash chromatography 55 on SiO2 eluting with 0.5% EtOAc/CH2Cl2 to give 2.0 g of compound 427i and 1.3 g of compound 427ii, both as light brown solids. Compound 427i: HPLC: 95% at 4.200 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 507.1 [M+H]+. Compound 427ii: HPLC: 0.95% at 4.20 min (retention time) (YMC S5 ODS column minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 507.1 [M+H]+.

[3aR-(3aα,4β,5β,7β,7aα)]-4-[7-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxylethyl]octahydro-5hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile & [3aS-(3act, 4β,5β,7β,7aα)]-4-[7-[2-[[(1,1-Dimethylethyl) dimethylsilyl loxylethyl loctahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (428i & 428ii)

Compound 427i (1.40 g, 2.77 mmol) and RhCl(PPh₂)₂ (0.128 g, 0.14 mmol) were mixed in a flask. The flask was then evacuated and filled with argon three times, followed by the syringe addition of THF (3.0 mL). Once all particulates were dissolved, catecholborane (0.59 mL, 5.54 mmol) 40 was added dropwise. The reaction mixture was stirred at 25° C. under argon for 30 min, then cooled to 0° C. Phosphate buffer (pH 7, 20 mL) was added, followed by EtOH (10 mL), 30% H2O2/H2O (2 mL). The reaction mixture was stirred at 0° C. for 3 h, then extracted with dichloromethane (3×25 mL). The combined organic layers were washed with 1 N NaOH (25 mL), 10% Na, SO, (25 mL) and brine (25 mL). The crude material was then concentrated in vacuo and purified by flash chromatography on SiO2 eluting with 2% 50 EtOAc/CH,Cl, to 10% EtOAc/CH,Cl, to give 0.63 g of a racemic mixture of compounds 428i & 428ii as a light vellow solid, HPLC: 99% at 3.867 min (retention time) (YMC S5 ODS column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES): m/z 525.1 [M+H].

The racemic mixture of compounds 428i & 428ii was separated by normal phase preparative chiral HPLC using a Chiracel OD column (5 cm×50 cm), eluting with 13% solvent B (EtOH) in solvent A (hexanes), flow rate: 50 mL/min. Compound 428i eluted from 34 min to 38 min and compound 428ii eluted from 44 min to 49 min. Enantiomeric 4.6x50 mm cluting with 10-90% aqueous methanol over 4 65 excess was determined by chiral HPLC. Compound 428i: >99% ee (12.576 min (retention time) (Chiralcel OJ column 4.6×250 mm eluting with isocratic 85% heptane 15%

MeOH/cthanol (1:1), 1 mL/min, monitoring at 220 nm, 40° C.). Compound 428ii: 99% ec (18.133 min (retention time) (Chiralcel OJ column 4.6x250 mm cluting with isocratic 85% heptane/15% MeOH/ethanol (1:1), 1 mL/min, monitoring at 220 nm, 40° C.).

The absolute configurations for compounds 428i & 428ii are designated herein as having an "R" configuration and compound 428i is designated herein as having an "R" configuration and compound 428ii as having an "S" configuration. Enantiomerically pure products derived from compound 428i are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 428i are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 128ii are designated herein as having an "S" configuration.

EXAMPLE 429

[3aR.{3ac.4β,Sf,R/R/ao]}+-[Octabydro-5-hydroxy-+(2-hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(influoromethyl)beazonitrile & [3aS.{3ac.4β,Sf,R/R/ao]}+-[Octabydro-5-hydroxy-/2-hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(influoromethyl)beazonitrile (429) & 429ii)

Compound 428i (180 mg, 0.34 mmol) was dissolved in 28 HCIEOH (150 mL). After 30 min, saturated NaHCO, was added and the aqueous layer was extracted with dichloromethane (20 mL-30), washed with brine and dried over Na,SO₄ to give 135 mg of compound 429i as a white solid. HPLC: 99% at 2.257 min (retention time) (YMC S5 ODS Column 4.6x50 mm eluting with 10–90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): miz 4111. [Hw-H]T.

The above procedure was repeated with compound 428ii to yield the desired diol compound 429ii in similar yield.

20 Triphenylphosphine (0.026 g. 0.098 mmol) and DBAD (0.023 g. 0.098 mmol) were mixed in THF (0.5 mL). After allowing the previous mixture to react for 1.5 min, 2 mly added, the mixture was allowed to stir for 1.0 min and 25 compound 429 (0.020 g. 0.049 mmol) was added. The reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was sirred at 25° C. for 2 h and then the reaction mixture was a light brown solid. HPLC: 100% at 3.370 min (retention 30 time) (YMC SS ODS column 4.6×50 mm eluting with 10-90% acqueous methanol over 4 minutes containing 0.1% TFA, 4 ml/min, monitoring at 220 mm). MS (ISS): m/z 522.08 [MHT].

EXAMPLE 431

[3aS-(3aα,4β,5β,7β,7aα)]-4-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (431)

Triphenylphosphine (0.026 g. 0.098 mmol) and DBAD 5 (0.023 g. 0.098 mmol) were mixed in HH (0.5 mL). After allowing the previous mixture to react for 15 min, 2-bydroxy-6-chloropyridine (0.016 g. 0.100 mmol) was added, the 420 (0.020 g. 0.000 mmol) was added, the 420 (0.020 g. 0.000 mmol) was added, the 420 (0.020 g. 0.000 mmol) was taded. The 420 (0.020 g. 0.000 mmol) was taded the reaction mixture was stirred at 25° C. for 2 h and then the crude material was purified by preparative TLC, elating with 10% acctone(CHCl, to give 0.015 g of compound 431 as a light brown soid. HPLC 1.00% at 3.370 min (retention time) (YMC SS 0.08 column 4.6x50 mm clutting with 510–90% auguous methanol over 4 minutes containing 0.1% TFA, 4 mt/min, monitoring at 220 mm). MS (ES): m/z 522.08 [MH]T.

35

EXAMPLE 432

(3aα,4β,7β,7aα)-2-(4-Cyano-1-naphthalenyl) octahydro-N-(2-hydroxyphenyl)-7-methyl-1,3dioxo-4,7-epoxy-4H-isoindole-4-butanamide (432)

Compound 262 (0.100 g, 0.239 mmol) was dissolved in 20 bMF (anhydrost 1.5 ml.), BOF (0.211 g, 0.478 mmol) was added followed by 2-aminophenol (0.052 g, 0.478 mmol). An Amethyl morpholine (0.052 g, 0.478 mmol). The reaction mixture was stirred at 25° C, under argon for 3 h, then the crude material was purified by reverse phase 25° preparative HPLC (YMC S5 ODS 20x100 mm, 20-100% argueous methanol over 15 minutes containing 0.1% TFR, 20 ml./min, monitoring at 220 mm) to give 0.060 g of compound 432 as a light brown solid. HPLC: 100% at 3.037 min (retention time) (YMC S5 ODS column 4.650 mm cluting with 10-90% argueous methanol over 4 minutes containing 0.1% TFA, 4 ml./min, monitoring at 220 nm). MS (ES): m/z 510.34 [M-HIT].

EXAMPLE 433

(3aα,4β,7β,7aα)-4-[4-[3-(2-Benzoxazolyl)propyl] octahydro-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (433)

Iriphenylphosphine (1031 g. 0.118 mmol) and DBAD (1027 g. 0.118 mmol) were mixed in THF (0.5 m in). After allowing the previous mixture to react for 15 min, compound 322 (0.030 g. 0.059 mmol) was added. The reaction mixture of was stirred at 25° °C. for 2 h and then the crude material was purified by reverse phase preparative HPLC (YMC SS OD2 0.0100 mm, 20–100% auguous methanol over 15 minutes containing 0.1% TFA, 20 ml/min, monitoring at 220 mm) to give 0.018 g of compound 433 as a light brown solid. HPLC: 65 (100% at 3.357 min (retention time) (YMC SS ODS column 4.655 mm elluting with 10–90% aqueous methanol over 4

minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 492.37 [M+H]⁺.

EXAMPLE 434

(3αα,4β,5β,7β,7αα)-4-[4-Ethyloctahydro-5-hydroxy-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (434C)

A. tert-Butyl-[2-(5-ethyl-furan-2-yl)-ethoxy]dimethyl-silane (434A)

amickacole (255 mg, 3.75 mmol) and TBSC1 (414 mg, 2.75 mmol) were added to the solution of 245A (350 mg, 2.5 mmol) in DMF (4 mL). The mixture was stirred at n for 15 hr and then 100 mg (0.66 mmol) of additional TBSC1 was added to drive the reaction to completion. After stirring for an additional hour, the reaction mixture was diluted with 45 dethylether (100 mL) and washed with water (20 mL), 1 N HC1 (20 mL), water (20 mL) and brine (20 mL). The organic layer was dried over Na₂SO₂, and concentrated under reduced pressure to give 509 mg of compound 434A (80.3%) as a yellow oil.

B. (3aα,4β,7β,7aα)-4-[4-[2-[[(1,1-Dimethylethyl)-dimethylsily]oxy]ethyl]-4-ethyl-1,3-3a,4,7,7a-hexahydro-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (434B)

A solution of compound 434A (509 mg, 2.00 mmol) and +(2.5-4 in y dro -2.5-4 in xo -111-1 y) 1-1 -naphthalencarbonitrile (498 mg, 2.00 mmol) in benzene (2 mL) was heated at 60°C. For 18 h. The reaction mixture was concentrated under reduced pressure to give 992 mg (99%) 5 of crude compound 434B, which was used directly in the next sep without further purification.

C. $(3\alpha\alpha,4\beta,5\beta,7\beta,7\alpha\alpha)$ -4-[7-[2-[[(1,1-Dimethylethyl)-dimethylsityl]oxy]ethyl]-4-ethyloctahydro-5-hydroxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecartoonitrile (434C)

A mixture of compound 434B (992 mg, 1.98 mmol) and RhCl_(PPh_), (183 mg, 0.198 mmol) was evacuated and filled with argon (3x). THF (20 mL) was added and once all particulates had dissolved, catecholborane (0.42 mL, 3.96 product ceased, as was determined by HPLC, the reaction mixture was cooled to 0° C. and quenched with phosphate buffer (34 mL, pH 7.2) followed by the addition of EtOH (19 mL) and 30% H₂O₂ (2.9 mL). After 2 h, additional phos- 35 phate buffer (6.8 mL, pH 7.2), EtOH (3.8 mL) and H2O2 (0.6 mL) were added. The reaction mixture was stirred at rt for 3 h. Once the boronate intermediate was consumed, the mixture was extracted with CH2Cl2 (300 mL) and the combined organic layers were washed with 1 N NaOH, 10% 40 ag. NaHSO, and brine and then dried over NaSO, Purification by flash chromatography on silica gel eluting with 10% MeOH/CH2Cl2 gave 75 mg (9.3%) of compound 434C as a gray solid. HPLC conditions: 97% at 2.43 min (retention 45 time) (Phenomenex-prime S5-C18 column 4.6×50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H₃PO₄, detecting at 220 nm). MS (ES): m/z 407.18 [M+H]+.

D. (3aα,4β,5β,7β,7aα)-4-[4-Ethyloctahydro-5hydroxy-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-vl]-1-naphthalenecarbonitrile (434D)

Compound 434C (24 mg, 0.046 mmol) was dissolved in 25° onc. HCDE(D1 (0.8 ml) and the misture was sirried at rt for 20 min. Cold sat. NaHCO, was added to the misture until the solution was basic (p11 8). The reaction was of extracted with EtOAc (3x2 ml) and the combined organic layers were washed with brine (2x5 mL) and dried over anylytous sodium sulfate. Concentration in vacuo gave 14 mg (75°) of compound 434D as a white solid. HPLC: 95° at 2.40 min (retention time) (VMC SS ODS 4.650 mm, 45 105°—95° aqueous methanol over 4 minute gradient with 0.26° H,PO₃ monitoring at 220 mm).

(3αα,4β,5β,7β,7αα)-4-[7-[2-(4-Cyanophenoxy) ethyl]-4-ethyloctahydro-5-hydroxy-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (435)

DBAD [396 mg, 0.172 mmol) was added not a Solution of Phh, {45.1 mg, 0.172 mmol) was added not a Solution of Phh, {45.1 mg, 0.172 mmol) in HH (0.8 mL). After stirring for 10 min, 4-cyanophenol (20.5 mg, 0.172 mmol) was added and the reaction mixture was stirred for an additional a min. Compound 434H (25.0 mg, 0.062 mmol) was added and the mixture was stirred at rif for 2 h. The reaction was added and the reaction mixture was stirred for an additional at min. Compound 434H (25.0 mg, 0.062 mmol) was added and the reaction mixture was stirred at rif for 2 h. The reaction was added and the reaction mixture was stirred for an additional at min. Compound 43.4 HPLC conditions: 906 at a particulates had dissolved, catecholbreane (0.42 mL, 3.96 ml), 57.6% of proposed 43.15 min (retention time) (YMC S5 ODS 4.65.50 mm) was slowly added dropwise. When the formation of product ceased, as was determined by HPLC, the reaction was added and the reaction mixture was stirred for an additional standard the mixture was stirred at rife of 2 h. The reaction was added and the mixture was stirred at rife or 2 h. The reaction was added and the mixture was stirred at rife or 2 h. The reaction was added and the mixture was stirred at rife or 2 h. The reaction was added and the mixture was stirred at rife or 2 h. The reaction was added and the mixture was stirred at rife or 2 h. The reaction was added and the mixture was stirred at rife o

EXAMPLE 436

(3αα,4β,7β,7αα)-2-(4-Cyano-1-naphthyalenyl) octahydro-N-(2-hydroxyphenyl)-7-methyl-1,3dioxo-4,7-expoxy-4H-isoindole-4-ethanamide (436)

Compound 248B (0.100 g, 0.256 mmol) was dissolved in 5 DMF (unhydrous, 1.5 ml), BOP (22 g, 0.51 mmol) was added followed by 2-minophenol (0.056 g, 0.51 mmol) and N-methyl morpholine (0.056 ml, 0.51 mmol). The reaction mixture was stirred at 25° C, under agon for 3 h, then the crude material was purified by reverse phase preparative 60 HPLC (YMC S5 ODS 20x100 mm, 20-100% appects) methanol over 15 minutes containing 0.1% TFA, 20 ml/min, monitoring at 220 mm) to give 0.078 g of compound 345 as a light brown soild. HPLC: 100% at 3.037 min (retention time) (YMC S5 ODS column 4.6x50 mm elluting 5 with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 ml/min, monitoring at 220 nm). MS (ES): mZ 482.34 [MHI].

(3aα,4β,7β,7aα)-4-[4-(2-Benzoxazolylmethyl) octahydro-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (437)

Triphenylphosphine (0.082 g, 0.312 mmol) and DBAD (0.072 g, 0.312 mmol) were mixed in THF (0.5 mL). After allowing the previous mixture to react for 15 min, compound 436 (0.075 g, 0.156 mmol) was added. The reaction mixture was stirred at 25° C. for 2 h and then the crude material was purified by reverse phase preparative HPLC (YMC S5 ODS 30 20×100 mm, 20-100% aqueous methanol over 15 minutes containing 0.1% TFA, 20 mL/min, monitoring at 220 nm) to give 0.052 g of compound 437 as a light brown solid. HPLC: 100% at 3.443 min (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 464.18. [M+H]+.

EXAMPLE 438

(3act, 46, 76, 7act)-Hexahydro-4, 7-dimethyl-2-[4-[2,2, 2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl] phenyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione (438)

$$\bigcap_{i=1}^{OH}\bigcap_{CF_{j}}$$

A mixture of 2-(4'-aminophenyl)-1.1.1.3.3.3-hexafluoro-2-propanol (95.7 mg, 0.369), compound 20A (48.3 mg, 65 phoric acid, 4 mL/min, monitoring at 220 nm. The molecular 0.246 mmol), triethylamine (0.15 mL) and MgSO₄ (50 mg) in toluene (1 mL) was heated in a sealed tube to 135° C.

overnight. The mixture was filtered and concentrated under reduced pressure. Purification by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, 20-100% aqueous methanol over 15 minutes containing 0.1% TFA, 20 mL/min, monitoring at 220 nm) gave 44.0 mg (41%) of compound 438 as a white solid. HPLC: 99% at 3.10 min (retention time) (Phenomenex-prime S5-C18 column 4.6× 50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm), MS (ES): m/z [M+H]=438.14.

EXAMPLES 439 TO 454

Additional compounds of the present invention were prepared by procedures analogous to those described above. The compounds of Examples 439 to 454 have the following structure (L is a bond):

35 where G, R7, the compound name, retention time, molecular mass, and the procedure employed, are set forth in Table 9. The absolute configuration for the following compounds was not determined. For simplicity in nomenclature, compound 243Di is designated herein as having an "S" configuration and compound 243Dii as having an "R" configuration. Enantiomerically pure products derived from compound 243Di are designated herein as having an "S" configuration and enantiomerically pure products derived 45 from compound 243Dii are designated herein as having an "R" configuration. Similarly, compound 428i is designated herein as having an "S" configuration and compound 428ii as having an "R" configuration. Enantiomerically pure products derived from compound 428i are designated herein as having an "S" configuration and enantiomerically pure products derived from compound 428ii are designated herein as having an "R" configuration.

The chromatography techniques used to determine the compound retention times of Table 9 are as follows: LCMS= YMC S5 ODS column, 4.6×50 mm eluting with 10-90% McOH/H₂O over 4 minutes containing 0.1% TFA; 4 ₆₀ mL/min, monitoring at 220 nm. LCMS*=YMC S5 ODS column, 4.6×50 mm eluting with 10-90% MeOH/H2O over 2 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 nm. LC=YMC S5 ODS column 4.6×50 mm eluting with 10-90% MeOH/H2O over 4 minutes containing 0.2% phosmass of the compounds listed in Table 9 were determined by MS (ES) by the formula m/z.

TABLE 9

Ex. No G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.
439 CN	H ₃ C	[3aR- (3at.4β.5β.7β, 7at.)]+4 [Octahydro-5- hydroxy-4- methyl-7-[2- [(1-methyl- 11-indazol-3- yl)oxy]ethyl]- 1,3-dioxo-4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- carbonitrile	3.33 LC 523.3 [M + H]*	251, 253
440 CN	H,C N N	[3aR- (3ac,4β,5β,7β, 7ac)]-4- (Octahydro-5- hydroxy-4- methyl-7-12- (9-methyl-9- 1)-3-dioxo-4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- carbonitrile	2.34 I.C 525.2 [M + H]*	251, 253
441 CN		[3aR- (3ac.4β,5β,7β,7ac)]4- (Octahydro-5- hydroxy-4- methyl-1,3- dioxo-74-[4]1- (phenylmethyl)- Hi-indazol-3- yl]oxy khyl]- 4,7-epoxy-2H- isoindol-2-yl]- 1- naphthalene- carbonitrile	3.73 LC	251, 253
442 CN		[3aR- (3ac,4β,5β,7β, 7ac)]4+ [Ocahydro-5- hydroxy-4- methyl-1,3 dioxo-742-[1]- (phenyimethyl)- HH- yprazolo[3,4- N dlyyrimidin-3- ylloxy jethyl- 4,7cpoxy-2H- isoindol-2-yl]- 1- maphthalene- carbositrile	3.37 LC	251, 253

TABLE 9-continued

TABLE 9-continued						
Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.	
443		$\bigcup_{CF_3}^{O}$	[3aS- (3ac,4,58,78, 7ac)]-4- 7ac)]-4- [Octahydro-5- hydroxy-4- methyl-1,3- dioxo-712-[[5- (trifluorometh- yi)-2- pyridinyloxy] ethyl-4,7- epoxy-2H- isoindol-2-yl]- 1- mphthalene- carbonitrile	3.45 LC 538.23 [M + H]*	243Di, 244i	
444	L _{CN}	O N CF3	[3aR- (3ac,4β,5β,7β, 7ac)]+4 [Octabydro-5- hydroxy-4- hydroxy-4- (irfilluorometh- yi)-2- pyridinyl[oxy] ethy]+4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- carbonitrile	3.46 LC 538.24 [M+H]*	243Dii, 244ii	
445	CN	O CH ₃	[3aR- (3ac,4,5,8,7], 7ac) [N] [4] [2- [2-(4-Cyano-1- maphthalenyi) octahydro-5- hydroxy-4- methyl-1,3- dioxo-4,7- epoxy-7H- iocitadot-7- yl];thoxy]phen- yi pectamide	2.747 LC 526.28 [M + H]*	243Dii, 244ii	
446	CN		[3aR- (3ac4,45,5/8,78, 7ao)]-4-{7-{2- (2,4- Dichlorophen- oxy)-ethylpcta- hydroxy-4- methyl-1,3- dioxo-4,7- epoxy-2H- isoindol-2-yl]- 1- naphhalene- carbonitrile	3.71 LC 537.17 [M + H]*	243Dii, 244ii	

TABLE 9-continued

IABLE 9-continued						
Ex. No	G	\mathbb{R}^7	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.	
447	CN CN	F ₃ C CF ₃	[3aR- (3ac,4β,5β,7β, 7ac)]+4[7+[2- [3,5- Bis(trifluoro- methyl)ptenoxy]- ethyl)ptenoxy]- 4-methyl-1,3- dioxo-4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- carbonitrile	3.89 LC 605.25 [M+H] ⁺	243Dii, 244ii	
448	ÇN CN		[3aS- (3ac,4β,5β,7β, 7ac)]44 [Octabydro-5- hydroxy-4- methyl-1,3- dioxo-7/2-14- (1,2,3- thiadiazol-5- yi)phenoxyeth- yi]-4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- earbonitrile	3.14 LC 553.1 [M + H] ⁺	243Di, 244i	
449	ÇN CN		[3aR- (3ac,46,58,78), 7ac)]-4 [Octabydro-5- hydroxy-4- methyl-1,3- dioxo-742-14- (1,2,3- thiadiazol-5- yl)phenoxyleth- yl-4,7- epoxy-2H- isoindol-2-yl]- 1- mphhalene- carbonitrile	3.15 LC 553.23 [M+H]*	243Dii, 244ii	
450	CN CN		[3aR- (3ac,4β,5β,7β, 7ac)]+4[74]2- [(5,7-Dichloro- 8- quinoliny]oxy]- ethy]betahy- dro-5-hydroxy- 4-methyl-1,3- dioxx-4,7- epoxy-2H- isoindol-2-yl]- 1- naphthalene- earbonitrile, trifluoroacetale (1:1)	3.70 LC 588.26 [M + H]*	243Dii, 244ii	

TABLE 9-continued

TABLE 9-continued						
Ex. No	G	\mathbf{R}^{7}	Compound Name	Retention Time Min./ Molecular Mass	Procedure of Ex.	
451	CF ₃		[3aS- (3ac,4β,5β,7β, 7aα)]+4[7-[2- (4- Cyanophen- oxy)ethyl]ceta- hydrox-5- hydroxy-4- dioxo-4,7- epoxy-2H- isoindol-2-yl]- 2- (trifluorometh- yl)benzonitrile	3.087 LC 512.13 [M + H]*	431	
452	CF ₃		[3aS., 4β,5β,7β, (3aC,4β,5β,7β, 7ac)]4-[742- [(S-Chloro-1,2- benzisoxazol- 3- yl)oxy [sthyl]octa- hydroxy-4- methyl-1,3- dioxo-4,7- epoxy-2H- isoindol-2-yl]- 2- (trifluorometh- yl)benzonitrile	3.563 LC 562.08 [M + H]*	431	
453	CN N	o a	[3aR- (3ac,4β,5β,7B, 7ac)]-4/7-[2- ([5-Chloro-1,2- benzisoxazol-3- yl)oxy lethyl cta- hydro-5- hydroxy-4- methyl-1,3- dioxo-4/7- epoxy-2H- isoindol-2-yl]- 2- (trilluorometh- yl)benzonitrile	3.57 LC 562.08 [M + H]*	430	
454	CF ₃		[3aR- (3ac,48,58,78, 7aa)]-4-[7-[2- (4- (2yanophen- oxy)ethyl]octa- hydrox-4- methyl-1,3- dioxo-4,7- epoxy-2H- isoindol-2-yl]- 2- (trifluorometh- yl)benzonirile	3.087 LC 512.08 [M + H]*	430	

Additional compounds of the present invention were prepared by procedures analogous to those described above. The compounds of Examples 455 to 457 have the following structure (L is a bond):

where G, R⁷, the compound name, retention time, molecular mass, and the procedure employed, are set forth in Table 10. The absolute configuration for the following compounds was not determined. For simplicity in nomenclature, compound 238t is designated herein as having an "R" configuration and compound 28sii as having an "S" configuration. Enantiomerically pure products derived from compound 23si are designated herein as having an "R" configuration and enantiomerically pure products derived from compound 23sii are designated herein as having an "S" configuration.

The chromatography techniques used to determine the compound retention times of Table 10 are as follows:

1 CMS=VMC SS ODS column, 4.6×50 mm eluting with 10-90% McOHLI, 0 over 4 minutes containing 0.1% TFA;

4 mL/min, monitoring at 220 mm. LCMS*=VMC SS ODS column, 4.6×50 mm eluting with 10-90% McOHLI, 0 over 2 minutes containing 0.1% TFA; 4 mL/min, monitoring at 220 mm. LCMS*WMC SS ODS column 4.6×50 mm eluting with 10-90% McOHLI, 0 over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm. The molecular mass of the compounds listed in Table 10 were determined by MS (ES) by the formula mJ.

TABLE 10

Ex. No	G	R ⁷	Compound Name	Retention Time Min./ Motecular Mass	Procedure of Ex.
455	ĊN CN		(3aca,4β,5β,7β, 7act)-4- [Octahydro-4- methyl-1,3- dioxo-7-(4- oxo-4- phenylbutyl)- 4,7-epoxy- 2H-isoindol- 2-yl]-1- naphthalene- carbonitrile	3.53 LC 479.35 [M+H]*	265, 266
456	ĊN CN		(3acı,4β,5β,7β, 7acı)-4- [Octahydro-4- methyl-7-{3- [5-(1- methylethyl)-2- oxazolyl]pro- pyl]-1,3-dioxo- 4,7-epoxy- 2H-isoindol- 2-yl]-1- naphthalene- carbonitrile	3.547 LC 484.28 [M+H]*	248, 249
457			[3sci,4ß,5ß,7ß, 7sci(E)]-4- [Octahydro-4- methyl-7-{3- [5-(1- methylethyl)- 2-oxazolyi]-2- propenyi]- 1,3-dioxo-4,7- epoxy-2H- isoindol-2-yi]- 1- naphthalene- carbonitrile	3.66 LC 482.28 [M+H]*	248, 249

25

293 EXAMPLE 458

(3aα,4β,5β,7β,7aα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile & (3aα,4β,5α,7β,7aα)-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,

7-epoxy-2H-isoindol-2-vl)-2-(trifluoromethyl) benzonitrile (221B & 222D)

Compound 20B was converted to compounds 221B and 222D (also synthesized as compounds 221B and 222D) by biotransformation.

Compound 20B was hydroxylated by Amycolatopsis ori- 35 entalis (ATCC 43491). A 1 mL culture from a frozen vial was used to inoculate 100 mL medium in a 500 mL portion Erlenmeyer flask and the flask was incubated at 28° C., at 200 rpm for 3 days. A 10 mL portion of this culture was used to inoculate 100 mL medium in a 500 mL Erlenmeyer flask 40 and the flask was incubated at 28° C., at 200 rpm for 1 day. 10 mL portions of the 1-day culture were distributed to each of three 5.0 mL flasks, Compound 20B (3 mg in 0.1 mL methanol) was added to each culture and the incubations were continued for 3 days. The culture broth in each flask 45 was extracted with 20 mL ethyl acetate, and the pooled ethyl acetate extracts were evaporated to dryness at 40° C. under a nitrogen stream. The residue was dissolved in 1.2 mL methanol and analyzed by HPLC, LC/MS and LC/NMR. The solution contained 2.5 mg of remaining Compound 50 20B, 1.6 mg of compound 221B, and 1.3 mg of compound 222D. MS and NMR analyses were in agreement with the structures shown above.

Medium: 0.5% toasted nutrisoy, 2% glucose, 0.5% yeast extract, 0.5% K., HPO4, 0.5% NaCl, adjusted to pH 7 with HCl (R. V. Smith and J. P. Rosazza, Arch. Biochem. Biophys., 161, 551-558 (1974)

HPLC Analysis

Column: Phenomenex Luna C18, 150×2 mm, 5µ mobile phase:

solvent A: 95% 20 nM ammonium acetate pH 5.1, 5% acetonitrile

solvent B: 95% acetonitrile, 5% 20 mM ammonium acetate pH 5.1 linear gradient going from 100% solvent 65 A to 5% solvent A in 25 minutes followed by equilibration at 100% solvent A for 8 minutes.

temperature: 40° C. detection: 250 nm

injection volume: 1 uL

retention times: compound 20B, 20.8 min; compound 221B, 16.5 min; compound 222D, 17.8 min

HPLC Conditions

Chiral HPLC conditions were employed for the separation of enantiomers and achiral HPLC conditions were employed for the separation of diastereomers of the hydroxylated analogs of compound 20B (i.e., compounds 221B and 222D and compounds 254i and 254ii)

Two methods were used under chiral HPLC conditions, 15 reverse phase (RP) for chiral analysis of biotransformation products in biological samples and normal phase (NP) for non-biological samples.

Chiral RP-HPLC Condition

Column: CHIRALPAK AD-R 4.6 × 250 mm, 10 u 40° C. Injection Volume: 5 or 20 µL Mobile Phase: A: McCN B: H₂O Isocratic, 30% of A, 18 min. Flow Rate:

1 mL/min. 242 nm UV Detection Chiral NP-HPLC Condition

Column CHIRALPAK AD

4.6 × 250 mm, 10 µ Temperature: 25° C. Injection Volume: 5 or 20 uL Mobile Phase: A: Heptane B: McOH/Ethanol

Isocratic, 80% of A, 20 min. Flow Rate: 1 ml/min UV Detection: 242 nm

Under these conditions compounds 254i and 254ii had retention times of 8.5 minutes and 9.85 minutes, respectively.

Reverse phase HPLC was employed for the separation of the diastereomeric compounds 221B and 222D: Mobile Phase:

Solvent A: 95% 20 mM ammonium acetate pH 5.1, 5% acetonitrile

Solvent B: 95% acetonitrile, 5% 20 mM ammonium acetate pH 5.1

Gradient:

Linear gradient going from 100% solvent A to 5% solvent A in 25 minutes followed by equilibration at 100% solvent A for 8 minutes. Total run time of 36 minutes.

Flow Rate:

0.2 mL/min Column:

Phenomenex Luna 5 micron C18 150×2.0 mm id Detections

UV detection at 242 nm

Under these conditions, compounds 221B and 222D had retention times of 18.983 min and 20.362 min, respectively. (3aα,4β,5β,7β,7aα)-4-[Octahydro-5-hydroxy-7-(2hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (459)

Compounds 223A and 331 were converted to compound 459 by biotransformation.

Microbial Hydroxylation of Compound 223A 1. Reaction

down to room temperature before use.

10 a 500 mL flask containing 100 mL of the transformation medium was added one frozen vial (approximately 2 mL) of Streptempress grisus ATCC 10137. The transformation medium was prepared as follows: to a 2 L plassic beaker 2 was added 20 g of dectroes, 5.0 g of yeast extract, 5.0 g of sosylvan meal, 5.0 g of sosilvan phosphate (diabasic) and 1 L of desionized water, and the mixture was stread at room temperature for 3 to 30 min. The pH of the mixture was stread at room temperature for 3 to 30 min. The pH of the mixture was steps adjusted to 7.0 with 1 N HCl of 30 mL flassks (100 mL per flassk). The flassks were covered with Bio-Wrap and autocleaved at 121°C. C for 15 min, and cooled

The culture was incubated at 28°C, and at 250 rpm for 24 hours. Ten m.f. of the resulting culture was transferred to a 50 m.f. flask, to which 1 mg of compound 223A in 0.2 m.f. culture was transferred to a 50 m.f. flask, to which 1 mg of compound 223A in 0.2 m.f. 250 rpm for 24 hours, and the reaction culture was extracted ago with E10Ac (10 m.f.). The E10Ac extract was dried under N, and the residue was dissolved in 1 ml. of MeOH (reaction extract).

2. Product Analysis

HPLC

10 AL of the reaction extract was injected into HPLC column (YMC ODSAQ C-18 column, 1506.60 mm i.d.). The column was cluted with 1 mM HCl in water/CH₂CN at 12 mL/min flow rate 30 to 60° CH₂CN over 8 min, 60 to 885° CH₂CN over 0.5 min, 85° CH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° CH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° cH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° cH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° cH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° cH₂CN for 1 min, 85 olds (H₂CN over 0.5 min, 150° cH₂CN for 1 min, 150° cH₂CN for 1

LC/MS

The reaction extract: two major UV peaks. Peak 1, Tr 4.68 min: 391 [M+H]⁺, 343, 319, 303, 289 Peak 2, Tr 5.35 min: 375 [M+H]⁺, 345

Authentic Samples

Compound 459, Tr 4.82 min: 391. [M+H]⁺, 343, 319, 289 Compound 331, Tr 5.48 min: 375 [M+H]⁺, 345

To a 500 m.f. flask containing 100 ml. of the transformation medium was added one frozen vial (approximately 2 ml.) of *Streptomycen griseus* ATCC 10137. The transformation medium was prepared as follows: to a 2 L plassic bears was added 20 g of dextrose, 5.0 g of y yeast extract, 5.0 g of soybean meal, 5.0 g of sodium othoride, 5.0 g of potassium phosphate (dibassi) and one L of deionized water, and the mixture was stirred at room temperature for 3 to 30 min. The pH of the mixture was the stirred at room temperature for 3 to 30 min. The mixture was the stirred at room temperature for 3 to 30 min. The MI of the mixture was dispensed into 500 m. fl. flass flow flow the Total flass was covered with 15 Bio/Wrap and autoclaved at 121° C. for 15 min. and cooled down to room temperature before use.

The culture was incubated at 28° C. and 250 rpm for 3 20 days. One m.l. of the resulting culture was added to a 500 m.l. flask containing 100 m.l. of the transformation medium and the flask was incubated at 28° C. and 250 rpm for 24 hours. Ten m.l. of the resulting culture was transferred to a 50 m.l. flask, to which 1 mg of compround 331 in 0.2 m.l. etianol was added. The flask was incubated at 28° C. and 250 rpm for 25 hours. HPLC analysis showed that the peak area ratio of compound 459 to compound 331 in the reaction culture was about 1.11.

EXAMPLE 460

(1αα,2β,2αα,5αα,6βb,6αα)-4-[2-[2-[[(1,1-Dimethylethyl)dimethylsily][oxy]ethyl]octahydro-6methyl-3,5-dioxo-2,6-epoxy-4H-oxireno[f]isoindol-4-yl]-1-naphthalenecarbonitrile (460)

Compound 231A (200 g, 4.10 mmos) was dissolved in dicholomethane (40 ml) and cooled to 0° C. mCPBA (2.36 g, 8.20 mmol) was added. The reaction mixture was then warmed up to room temperature and sirred under argon for list hours, followed by the addition of 10% Na₂SO₃ (25 ml), and saturated NaHCO₃ (25 ml). After stirring for 20 minutes, the organic layer was exparated and the aqueous 60 layer was extracted with dicholomethane (3-50 ml). The combined organic layers were washed with brine, dried over Na₂SO₃ and concentrated under reduced pressure to give 2.0 g compound 460 as light yellow sold. HPLC: 9% at 4.00 min (retention time) (Phenomene-s-prime S5-C18 column 54.65-50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (85): mr. [M HeH]= 50.51.

EXAMPLE 461

[3aR-(3aα,4β,7β,7aα)]-4-[4-Ethyloctahydro-7-(2hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl]-1-naphthalenecarbonitrile & [3aS-(3aα,4β,7β, 7aα)]-4-[4-Ethyloctahydro-7-(2-hydroxyethyl)-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitril (461i & 461ii)

The racemic mixture of compounds 245C was separated by normal phase preparative chiral HPLC using a Chiracel AD column (5 cm×50 cm), eluting with 20% solvent B (50% MeOH/EtOH) in solvent A (Heptane), flow rate: 50 mL/min. 30 Compound 461i eluted from 80 min to 100 min and compound 461ii eluted from 125 min to 150 min.

The absolute conformation for compounds 461i and 461ii was not determined. For simplicity in nomenclature, compound 461i is designated herein as having an "R" configu- 35 ration and compound 461ii as having an "S" configuration. Enantiomerically pure products derived from compound 461i are designated herein as having an "R" configuration and enantiomerically pure products derived from compound 461ii are designated herein as having an "S" configuration. 40

EXAMPLE 462

[3aR-(3aα,4β,7β,7aα)]-4-[4-[2-(4-Cyanophenoxy) ethyl]-7-ethyloctahydro-1,3-dioxo-4,7-epoxy-2Hisoindol-2-vl]-1-naphthalenecarbonitrile (462)

DBAD (29.5 mg, 0.128 mmol) was added to a solution of PPh₃ (33.6 mg, 0.128 mmol) in THF (0.5 mL). After stirring for 10 min, 4-cyanophenol (15.2 mg, 0.128 mmol) was added and the reaction mixture was stirred for an additional 5 min. Compound 461i (18.3 mg, 0.047 mmol) was added and the mixture was stirred at rt for 2 h. The reaction was concentrated under reduced pressure. Purification by flash chromatography on silica gel cluting with 40% EtOAc/ hexane gave 16.9 mg (0.034 mmol, 73.2%) of compound 65 462. HPLC conditions: 98% at 3.64 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol

over 4 minute gradient with 0.2% H₃PO₄, detecting at 220 nm). MS (ES): m/z 492.23 [M+H]+.

EXAMPLE 463

[3aS-(3aβ,4β,7β,7aα)]-4-[4-[2-(4-Cyanophenoxy) ethyl]-7-ethyloctahydro-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (463)

DBAD (29.5 mg, 0.128 mmol) was added to a solution of 20 PPh₃ (33.6 mg, 0.128 mmol) in THF (0.5 mL). After stirring for 10 min, 4-cyanophenol (15.2 mg, 0.128 mmol) was added and the reaction mixture was stirred for an additional 5 min. Compound 461ii (18.3 mg, 0.047 mmol) was added and the mixture was stirred at rt for 2 h. The reaction was 25 concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with 40% EtOAc/ hexane gave 18.1 mg (0.037 mmol, 78.4%) of compound 463. HPLC conditions: 97% at 3.63 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 minute gradient with 0.2% H3PO4, detecting at 220 nm). MS (ES): m/z 492.17 [M+H]*.

EXAMPLE 464

(1aα,2β,2aα,5aα,6β,6aα)-5-[2-[2-[(5-Chloro-2pyridinyl)oxylethylloctahydro-6-methyl-3,5-dioxo-2,6-epoxy-4H-oxireno[f]isoindol-4-yl]-8quinolinecarbonitrile (464H)

A. 8-Bromo-5-nitro-quinoline (464A)

8-Bromoquinoline (25.00 g, 120.2 mmol) was dissolved in sulfuric acid (82.5 mL) at rt and then cooled to 0° C. HNO₃ (fuming, 32.5 mL) was then slowly added over a 10 minute period. The reaction was then warmed to rt and then to 65° C. After 48 h at 65° C., the reaction was cooled to rt and poured onto 500 g of ice. This solution was extracted with methylene chloride (5×200 mL). The organic layers were washed once with brine and dried over anhydrous

sedium sulfate. Concentration gave the crude compound 464A as a light yellow solid (28.6 g, 94%). HPLC: 98% at 2.717 min (retention time) (YMC SS ODS column, 4.6x50 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 5220 mm).

B. 5-Nitro-quinoline-8-carbonitrile (464B)

$$O_2N$$
 B_f

Compound 464A (15.0 g, 59.3 mmol) was dissolved in DMF (120 mL) and zinc cyanide (4.20 g, 35.9 mmol) was 20 added. Bis(diphenylphosphino)ferrocene (3.00 g, 5.40 mmol) and tris(benzylidineacetone)dipalladium (3.00 g, 3.30 mmol) were then added and the reaction was heated to 100° C. for 1.5 h. The reaction was cooled to 22° C. and then poured into concentrated ammonium hydroxide (900 mL) 25 resulting in an orange precipitate which was filtered and rinsed with cold water (1 L). The resulting precipitate was dissolved in methylene chloride, washed with brine (1x300 mL) and then dried over anhydrous sodium sulfate. Concentration in vacuo gave the crude material as an orange solid which was purified by flash chromatography on silica gel eluting with methylene chloride to give 6.01 g (51%) of compound 464B as a yellow solid. HPLC: 99% at 1.900 min (retention time) (YMC S5 ODS column, 4.6x50 mm, eluting 35 with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. 5-Amino-quinoline-8-carbonitrile (464C)

Compound 464B (6.00 g, 30.1 mmol) was dissolved in 50 THF (150 mL) at reflux with mechanical stirring. EtOH (150 mL) was then added followed by aqueous ammonium chloride (2.4 g/225 mL water). The mixture was heated at 70° C. and then iron powder (325 mesh, 6.75 g, 120 mmol) was added with vigorous mechanical stirring. After 1 h, the 55 reaction was cooled to 22° C. and filtered through Celite rinsing with methylene chloride. The filtrate was then concentrated to ~250 mL and the pH was adjusted to 10 by addition of 1N NaOH. The solution was then extracted with ethyl acetate (5×150 mL). The combined organic layers 60 were washed once with brine (250 mL) and then dried over anhydrous magnesium sulfate. Concentration in vacuo gave 5.09 g (100%) of compound 464C as a vellow solid. HPLC: 99% at 1.143 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 65 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 170.16 [M+H]+.

D. 5-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-quinoline-8-carbonitrile (464D)

Compound 464C (7.00 g, 41.4 mmol) and maleic antlychick (6.00 g, 62.1 mmol) were combined in a scaled tube and THF (10 mL) was added. The reaction mixture was heated to 115° C. for 15 min then cooled to room temperature, resulting in the precipitation of the intermediate acid amide. The solid was filtered and rinsed with cold THF to give 11.0 g of the acid as yellow solid. To the above acid amide was added Ac₂O (25 mL) in a sealed tube and the mixture was heated at 100° C. for 15 min then cooled to room temperature. The resulting solid was filtered and rinsed with cold diethyl their to give 8.30 g (60%) of compound 464D as a yellow solid. HPLC: 97% at 1.783 min (retention time) (YMC S5 ODS column, 4.6550 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm).

E. (3aα,4β,7β,7aα)-5-[4-[2-[[(1,1-Dimethylethyl) dimethylsityl]oxy]ethyl]-1,3,3a,4,7,7a-hexahydro-7methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (464E)

Compound 464D (6.00 g, 24.1 mmol) was dissolved in a mixture of benzene (80 mL) and accone (20 mL) followed by addition of compound 204A (14.6 g, 6.01.5 mmol). The mixture was heated at 80° C. for 14 h and then cooled to 2° C. Concentration in vacuo at 40° C. followed by addition of acctone (40 mL) and concentration again at 40° C. The resulting yellow oil was purified by Bash column chromatography on silica gel cluting with 0–10% acctone in chloroform to give 9.98 g (85%) of compound 464E as a yellow oil. Compound 464E as as 400 mt to a single isomer by NMR spectroscopy. HPLC: 97% at 3.553 min (retention time) (YMC S5 ODS column, 4.650 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (85) mt 490.35 [M+HI]*.

F. (1aα,2β,2aα,5aα,6β,6aα)-5-[2-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]ethyl]octahydro-6methyl-3,5-dioxo-2,6-epoxy-4H-oxireno[f]isoindol-4-yl]-8-quinolinecarbonitrile (464F)

To a solution of compound 464E (0.050 g, 0.10 mmol) in dichlormentance (2 ml.) was added mCPBA (0.09 mixture, 0.063 g, 0.22 mmol). The reaction mixture was stirred at room temperature for 16 h and then additional dichloromentane (20 ml.), saturated NaHCO₂ (10 ml.) and 10% Na,SO₃ (10 ml.) were added. The mixture was stirred vigorously for 40 min, the organic layer was then separated, washed once with brine, and dried over Na,SO₃. Concentration in vacuo gave 48 mg (96%) of compound 464F as a light-yellow solid. HPLC 98% at 3.783 min (retention time) (YMC S5 ODS column, 4.6x50 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 506.25 [M-H1]0.

G. (1αα,2β,2αα,5αα,6β,6αα)-5-[Octahydro-2-(2hydroxyethyl)-6-methyl-3,5-dioxo-2,6-epoxy-4Hoxireno[f]isoindol-4-yl]-8-quinolinecarbonitrile (464G)

Compound 464F (1.30 g, 2.57 mmol) was dissolved in 2% as cone. HCLEfol (60 mL). The reaction mixture was stirred at room temperature for 1 h and then saturated NaHCO, (50 mL) and dichloromethane (100 mL) were added. The organic layer was separated, washed once with brine and dried over Na, SO₄. Concentration in vacuo gave 930 mg of 95%) of compound 464G as a yellow solid. HPLC 98% at 1.863 (relention time) (YMC S5 ODS column, 4.6x50 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 m.) MS (ESS) mr. 39 2220 (MHI).

H. (1αα,2β,2αα,5αα,6β,6αα)-5-[2-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-6-methyl-3,5-dioxo-2,6-dioxo-2,6-epoxy-4H-oxireno[ſ]isoindol-4-yl]-8quinolinecarbonitrile (464H)

Iriphenylphosphine (25 mg. 0.096 mmol) and DBAD (22 mg. 0.096 mmol) were mixed in THF (0.5 ml.) under argon. After 5 min, 5-chlioro-2-pyridinol (13 mg. 0.096 mmol) was added. The reaction mixture was stirred at 22° C. for another 10 min, then compound 4646 (25 mg. 0.064 mmol) was 63 added. The reaction mixture was stirred at 22° C. under appno for 3 h, and then concentrated in vacuo. The crude

material was purified by preparative TLC on silica geleluting with 10% acctone in chloroform to give 11 mg (25%) of compound 464fl as a white solid. HPLC: 100% at 3.177 (reduction time) (YMCSS ODS column, 46x50 mm, cluting 5 with 10-90% aqueous methano over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 503.14 [M-H]F.

EXAMPLE 465

(3αα,4β,7β,7αα)-5-[4-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]octahydro-7-methyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (465)

Compound 464E (2.40 g. 491 mmol) was dissolved in ethyl acetate and PMC (10F PM, 0.50 g) was subded. Hydrogon was then introduced via a balloon. After 3 h, the reaction was purged with nitrogen and filtered through Celific rinsing with ethyl acetate. Concentration in vacuo gave 2.30 g (99%) of compound 465 ss a yellow oil. HPIC. 59% at 4013 min (retention time) (YMC SS ODS column, 4.6x50 mm, eluting with 10–90% augueous methanol over 4 min as containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 mm). MS (ES) m/d 492.22 [M+H]F.

EXAMPLE 466

(3aα,4β,7β,7aα)-5-[Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (466)

Compound 465 (1.40 g, 2.88 mmol) was dissolved in 2% scone. HCMA00 H(20 ml.) and stirred at 22° C. for 3 h. The reaction was then concentrated to ~5 ml., volume and quenched with a minimum amount of sal. aq, sedium bicarbonate. This solution was then extracted with methylene chloride (3.30 ml.) and the combined organic layers on which was the combined organic layers of which was the combined organic layers on which was the combined organic layers of which was the combined organic layers of the was the layers of the was the layers of the was the layers of the la

50

A. [3aR-(3ax.4β,7R,7ax)]>5[4]-2[1[1.1] Dimethylethylylimethylsiyl loyylethylgostahydro-7methyl-1.3-dioxo-4.7-epoxy-2H-isoindol-2-yl]8quinolinecarbonitrile (467A) & [3a8-(3ax.4β,7β, 7ax)]-5[4]-[4]-[4]-1-Dimethylethyldimethylsiyl] oxylethylocathydro-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]8-quinolinecarbonitrile (467Aii)

Compounds 465 was separated into its individual antipodes by normal phase preparative chiral HPLC. A Chiralcel OD column (50×500 mm) was used with a flow rate of 50 mL/min (16% EtOH/hexanes) monitoring at 220 nm. The 55 faster eluting antipode compound 467Ai had a retention time of 40.85 min (>99% ee) and the slower antipode compound 467Aii had a retention time of 62.81 min (>99% ee). Both antipodes were isolated as white solids after separation. The absolute conformation for compounds 467Ai & 467Aii was 60 not established. For simplicity in nomenclature, compound 467Ai is designated herein as having an "R" configuration and compound 467Aii as having an "S" configuration. Enantiomerically pure products derived from compound 467Ai are designated herein as having a "R" configuration 65 and enantiomerically pure products derived from compound 467Aii are designated herein as having an "S" configuration.

304

B. [3aR-(3ac,4β,7β,7ac)]-5-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-8-quinolinecatronlirtile (467Bi) & [3 aS-(3ac,4β,7β,7ac)]-5-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yll-8-quinolinecatronlirtile (467Bii)

Both antipodes were deprotected as described in example
464G to give the corresponding alcohols, compounds 467Bi
and 467Bii as white solids:

Compound 467Bi: HPLC: 98% at 2.110 min (retention time) (YMC SS ODS column, 4.6x50 mm, cluting with 15 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 378.21 [M+H]

Compound 467Bii: HPLC: 98% at 2.117 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/s 378.20 [M+H]?

EXAMPLE 468

(3αα,4β,7β,7αα)-8-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-5quinoxalinecarbonitrile (468C)

A. 8-Nitro-quinoxaline-5-carbonitrile (468A)

2.3-Diamino-4-nitro-benzonitrile (0.050 g, 0.28 mmol, as (40% in water, 0.032 mt, 0.28 mmol) in acetic acid (0.75 mL) and stirred at 22° C. for 3 h. The reaction was cooled to 0° C. and water (2.0 mL) was added and the pH was adjusted to 9.0 by addition of ammonium hydroxide which caused the product to precipitate. The mixture was then filtered and rinsed with cold water. Dyring in vacuo gave 0.039 g (70%) of compound 468A as a norange solid. HPLC: 100% at 2.037 min (retention time) (YMC SS ODS column, 46.650 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

50

60

B. 8-Amino-quinoxaline-5-carbonitrile (468B)

A. 8-Amino-1,2,3,4-tetrahydro-quinoxaline-5carbonitrile (469A)

Compound 468A (0.200 g, 1.00 mmol) was suspended in acetic acid (5.0 mL) and iron powder (325 mesh, 0.112 g, 15 2.00 mmol) was added. The reaction was then heated at 70° C. for 20 min and then cooled to 22° C. The reaction was filtered through Celite, rinsing with ethyl acetate. The ethyl acetate rinse was collected and washed with sat. aq. K2CO2. The aqueous layer was extracted with ethyl acetate (3×20 20 mL) and the combined organic layers were dried over anhydrous magnesium sulfate. Concentration in vacuo gave 0.170 g (100%) of compound 468B as a yellow solid. HPLC: 88% at 1.677 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 25 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 171.29 [M+H]+.

Compound 468A (0.037 g, 0.18 mmol) was dissolved in a mixture of ethyl acetate (1.0 mL)/ethanol (1.0 mL) and 10% Pd/C (0.050 g) was added. Hydrogen was then introduced via a balloon. After 2 h, the reaction was purged with nitrogen and filtered through Celite, rinsing with ethyl acetate. Concentration in vacuo gave 0.029 g (90%) of compound 469A as a red oil, which was taken on without further purification. HPLC: 97% at 3.217 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. (3aα,4β,7β,7aα)-8-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-vl1-5quinoxalinecarbonitrile (468C)

B. (3aα,4β,7β,7aα)-1,2,3,4-Tetrahydro-8-(octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl)-5-quinoxalinecarbonitrile (469B)

Compound 468B (0.060 g, 0.35 mmol) was suspended in 35 toluene (1.0 mL) with magnesium sulfate (0.060 g) and compound 20A (0.104 g, 0.529 mmol). TEA (0.2 mL), was then added and the mixture was heated to 145° C. in a sealed tube. After 16 h the reaction was cooled to 22° C. and filtered centrated in vacuo and then purified by preparative TLC on silica gel eluting with 7% ethyl acetate/methylene chloride. This gave 0.018 g (15%) of compound 468C as a vellow solid. HPLC: 100% at 2.040 and 2.133 min (atropisomers, retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 349.33 [M+H]+.

Compound 469A (0.029 g, 0.17 mmol) was suspended in toluene (1.0 mL) with magnesium sulfate (0.030 g) and compound 20A (0.050 g, 0.256 mmol). TEA (0.2 mL) was then added and the mixture was heated at 145° C. in a sealed tube. After 48 h the reaction was cooled to 22° C. and filtered through Celite, rinsing with acetone. The mixture was concentrated in vacuo and then purified by preparative TLC eluting with 20% acetone in chloroform. This gave 0.014 g (24%) of compound 469B as a vellow solid. HPLC: 85% at 2.267 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 353.19 [M+H]*.

EXAMPLE 469

EXAMPLE 470 (3aα,4β,7β,7aα)-4-(Octahydro-4,7-dimethyl-1,3-

dioxo-4,7-cpoxy-2H-isoindol-2-vl)-1-

(3aα,4β,7β,7aα)-1,2,3,4-Tetrahydro-8-(octahydro-4, 7-dimethyl-1,3-dioxo-4,7-cpoxy-2H-isoindol-2-vl)-5-(quinoxalinecarbonitrile (469B)

A. 4-Bromo-isoquinoline 2-oxide (470A)

A solution of 4-bromoisequinoline (4.16 g, 18.6 mmol) in 100 mL of chloroform was added dropwise over 1 h to a solution of 70% mCPBA (12.4 g, 50.3 mmol) in 100 mL of $_{15}$ chloroform at room temperature. After stirring 18 h, the reaction mixture was washed with 1N NaOH (2×150 mL), dried over magnesium sulfate and concentrated in vacuo to afford 4.25 g(49%) of compound 470As as noff-white solid. 2 1 NMR-400 MHz (CDCl₃): 2 8.71 (s, 1H), 8.43 (s, 1H), 20.80 (d, 1H, 3-8 Hz), 7.70 (m, 31H).

B. 4-Bromo-isoquinoline-1-carbonitrile (470B)

1,8-Diazabicyclo[5.4.0]undec-7-ene (1.67 ml., 11.2 mm)) was added to a mixture of compound 470/4.112 g, 500 mm0) and evanortimethylsilane (0.75 ml., 5.5 mmo) as 5m Lo f THE. The resulting homogeneous mixture was refluxed for 20 min. After concentrating in vacuo, the residue was purified by flash chromatography on a 5x15 cm silica get column, cluting with 3:1 hexance-thyl acetate to give 0.95 g (82%) of compound 470B as a white powder. H MXR (400 MHz, COCL); 8.85 (s. HJ), 8.36 (d. HJ, 1-8.5 Hz), 7.96 (t, HJ, J-8.5 Hz), 7.89 (t, HJ, J-8.5 Hz), 7.99 (t, H

C. 4-(2,4-Dimethoxy-benzylamino)-isoquinoline-1carbonitrile (470C)

A mixture of compound 470B (699 mg, 3.00 mmol) and 2,4-dimethoxybernylamine (4.8 mL, 30 mmol) in 15 mL of 60 acetonitrile was refluxed for 16 h. After concentration in vacoo, the residue was purified on a 5x15 cm silicate gel column, cluting with 32: be xane-enthyl acetate to afford 290 mg (30%) of 470C as a light yellow solid. HPLC: 1.76 min (retention time) (Phenomenex C-118, 5 micron column, 46x es 30 mm, cluting with 110-90% aqueous methanol over 2 min containing 0.19 TRA, 4 ml. ml., monitoring at 254 mm).

D. 4-Amino-isoquinoline-1-carbonitrile (470D)

Compound 470C (50 mg, 0.16 mmol) was treated with trifluoroacetic acid (0.5 mL) for 1 h. The highly colored insture was partitioned between ethyl accetace (30 mL) and 11N NaOH (30 mL). After washing with brine (1.5 mL), the organic layer was dried over magascism suffare and concentrated in vacuo to afford 24 mg (02%) of compound 470D as a yellow solid. HILC: 99% at 1.09 min (retention clim) (Phenomenex C:18, 5 micron column, 4.6×30 mm, ething with 10–90% aquoon methanol over 2 min containing 0.1% TPA, 4 mL/min, monitoring at 254 mm). MS (EST): m/x 170.2 (N4-HI)*

An alternative route to the synthesis of compound 470D is as follows. A mixture of compound 470B (1.17 g, 5.02 mmol), benzophenone imine (1.05 mL, 6.26 mmol), palladium acetate (25 mg, 0.11 mmol), rac-2,2'-bis 30 (diphenylphosphino)-1,1'binaphthyl (100 mg, 0.161 mmol) and cesium carbonate (2.30 g, 7.06 mmol) in 20 mL of toluene was heated at 100° C, for 20 h. The reaction mixture was diluted with ethyl ether (200 mL) and filtered through Celite. After concentrating the filtrate, the residue was dissolved in 120 mL of THF and treated with 40 mL of 1N HCl. After standing for 2 h at room temperature, the mixture was partitioned between ethyl acetate (150 mL) and 0.25 N NaOH (160 mL). After washing with brine (100 mL), the organic layer was dried over magnesium sulfate. The organic layer was filtered and ~50 g of celite was added to the filtrate. After concentration in vacuo, the powdery residue was purified by flash chromatography on a 5×15 cm silica gel column eluting with 1 L each of 1:1 ethyl 4s acetate:hexane, 6:4 ethyl acetate:hexane and 8:2 ethyl acetate:hexane to give 450 mg (53%) of 470D as a yellow powder.

E. (3αα,4β,7β,7αα)-4-(Octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-1-isoquinolinecarbonitrile (470E)

A mixture of compound 470D (24 mg, 0.14 mmon), compound 20x4 (55 mg, 0.28 mmon), richlynlamine (0.1 mL), 55 magnesium sulfate (100 mg); 2-methoxyethylether (0.5 mL), and DMF (0.1 mL) was heated in a sealet vessel to 250° C. for a total of 2.5 h using a microwave heating device. After partitioning the reaction mixture between ethyl acetate (25 mL), and water (25 mL), the organic layer was dried over magnesium sulfate and concentrated in vacuo. Approximately half of the residue was purified by reverse phase preparative HPLC CYMC'S 500 25 0.50 mm, culting with 10–100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min). Concentration of the pure fraction afforded 6 mg (12%) of compound 470E as a white powder. HPLC: 99% at 1.42 min (recention time) (Phenomenex

45

C-18, 5 micron column, 4.6×30 mm, cluting with 10-90% aqueous methanol over 2 min containing 0.1% TFA, 4 mL/min, monitoring at 254 nm). MS (ES+): m/z 348.23 [M]+.

EXAMPLE 471

[3aR-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl)-2-(trifluoromethyl)benzonitrile (471Di) & [3aS-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-cpoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (471 Dii)

A. 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-2trifluoromethyl-benzonitrile (471 A)

A mixture of 3-trifluoromethyl-4-cyano-aniline (24.0 g, 55 129 mmol) and maleic anhydride (14.0 g, 143 mmol) in 50 mL of acetic acid was heated at 115° C. overnight. A precipitate was obtained during the heating period. The reaction was allowed to stand at rt for an additional overnight period. The solid was removed by filtration, the filter cake was washed with diethyl ether and dried to give 21 g (79 mmol, 61%) of compound 471A as an off white solid. HPLC: 100% at 2.11 min (retention time) (YMC S5 ODS column, 4.6x50 mm, eluting with 10-90% aqueous metha- 65 sulfite (1x500 mL) and brine (2x300 mL) and dried over nol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

B. (3aα,4β,7β,7aα)-4-(1,3,3a,4,7,7a-Hexahydro-4,7dimethyl-1,3-dioxo-4,7-cpoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (471B)

A suspension of compound 471A(13.0 g. 48.8 mmol) and 2.5-dimethylfuran (10.5 mL, 98.6 mmol) in 50 mL of toluene was heated at 60° C., under argon. A solution was obtained on initial heating and a precipitate was observed 20 after approximately 1 h. Heating was continued overnight. After cooling to rt, the suspension was allowed to stand at 4° C, overnight. The resulting solid was filtered and the filter cake was washed with cold toluene followed by air drying to give 13.2 g of pure compound 471B as a white solid. The 25 filtrate volume was reduced in vacuo by one half and the resulting solution was treated as above to yield an additional 2.8 g of pure compound 471B (total 16.0 g, 90%). HPLC: 90% at 3.65 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 30 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. (3aa,46,56,76,7aa)-4-(Octahydro-5-hydroxy-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (471C)

A solution of compound 471B (25 g, 69 mmol) in 125 mL of THF, in a dry flask under nitrogen, was cooled to 10° C. 50 with an ice bath. To this solution was added neat boranedimethylsulfide complex (13.0 mL, 138 mmol) dropwise over 10 min, while maintaining a reaction temperature of <15° C. The reaction mixture was stirred for 30 min at rt and then in an ice bath cooled to 10° C. To the cool solution was slowly added 480 mL of pH 7 phosphate buffer, which resulted in a strong exothermic reaction and vigorous gas evolution. The solution was maintained at <21° C. throughout the addition by means of an ice bath. To the resulting solution was added 240 mL of ethanol and the resulting mixture was cooled to 5° C. with an ice bath. To the cooled solution was added 50 mL of 30% hydrogen peroxide and the resulting mixture was stirred at 10-20° C, for 1.5 h. The mixture was extracted with ethyl acetate (2×1 L) and the combined organic layers were washed with 10% sodium MgSO₄. Concentration in vacuo afforded 29 g of crude product as a white solid. This material was subjected to flash chromatography on a 1.2 L column of silica gel equilibrated with 100% CH2Cl2. The material was applied to the column as a solution consisting of 100 mL EtOAc (warm) and 400 mL CH2Cl2. Initial elution with CH2Cl2 (3 L), followed by 25% EtOAc/75% CH₂Cl₂ (3 L) and finally 50% EtOAc/50% CH2Cl2 (6 L) gave 11.8 g (45%) of compound 471C which is a racemic mixture

Alternatively compound 471C can be made by the following approach: A dry flask containing compound 471B (8.90 g, 24.6 mmol) and Wilkinson's catalyst (0.57 mg, 0.62 10 mmol) was degassed 4x with vacuum/argon. THF (40 mL) was added to the flask and the mixture was stirred until a clear brown solution was obtained. Catecholborane (49 mL, 49 mmol, 1 M in THF) was then added dropwise over 20 min and a slight exotherm was observed. Stirring was 15 continued for 45 min followed by cooling of the reaction mixture with an ice bath. pH 7 phosphate buffer (175 mL) was slowly added, followed by the consecutive addition of ethanol (87 mL) and 30% hydrogen peroxide (18 mL). Stirring was continued with cooling and the reaction 20 progress was monitored by HPLC for 4 h. The reaction was extracted with CH2Cl2 (3×250 mL). The combined extracts were washed with 1:1 1N NaOH:15% sodium sulfite (300 mL) and brine, dried over MgSO4, and the solvent was removed in vacuo to afford 8.5 g of a tan solid. The crude 25 further dried at 70° C., (12 h, 0.5 Torr). product was subjected to flash chromatography on a 500 cm3 silica gel column eluting with a gradient of 25-50% EtOAc/ CH2Cl2 to give 6.00 g compound 471C (15.8 mmol, 64%) as a white solid. HPLC: 90% at 2.45 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% 30 aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 381.11 [M+H]*.

D. [3aR-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl)-2-(trifluoromethyl)benzonitrile (471Di) & [3aS-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl)-2-(trifluoromethyl)benzonitrile (471 Dii)

The individual antipodes of compound 471C were separated by normal phase preparative chiral HPLC (CHIRALPAK AD, 5×50 cm column). A 2.5 g portion of 471C was dissolved into 25 mL of warm acetone and diluted 45 to 50-75 mL with hexane for injection. Isocratic elution with 20% MeOH/EtOH (1:1) in heptane at 50 mL/min gave the faster eluting compound 471Di (Chiral HPLC: 10.02 min; CHIRALPAK AD 4.6×250 mm column; isocratic elution with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min) and 50 the slower eluting compound 471Dii (Chiral HPLC: 14.74 min; CHIRALPAK AD 4.6×250 mm column; isocratic elution with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min). Compounds 471Di & 471Dii: HPLC: 90% at 2.45 min (retention time) (YMC S5 ODS column, 4.6×50 min, cluting 55 with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 381.11 [M+H]+. The absolute stereochemistry of compounds 471Di & 471Dii was determined by single crystal X-ray diffraction studies and is as described by the 60 designated nomenclature.

The resulting HPLC purified fractions of compounds 471Di & 471Dii were further purified by crystallization using any one of the procedures described below.

A 700 mg portion of compound 471Di, obtained after chiral chromatography as described above, was dissolved in

1) From Ethyl Acetate

ethyl acetate (10 mL) at rt. The solution was diluted with small portions of hexane (20 mL) until cloudiness was observed. The solution was allowed to stand overnight at rt. The resulting white solid was filtered and air dried to afford 430 mg of compound 471Di as a white powder. This sample was further dried at 60° C. (3 h, 0.5 Torr), then at 70° C., (12 h, 0.5 Torr).

2) From Acetone

A 500 mg portion of compound 471Di, obtained after chiral chromatography as described above, was dissolved in a minimal amount of acetone (3 mL) and slowly diluted with hexane (1 mL). The clear colorless solution was allowed to stand overnight at rt. The resulting white solid was filtered and air dried to afford 440 mg of compound 471Di as a white powder. This sample was further dried at 60° C., (3 h, 0.5 Torr) then at 70° C., (12 h, 0.5 Torr). From Methanol

A 500 mg portion of compound 471Di, obtained after chiral chromatography as described above, was dissolved in 5 mL of hot (steam bath) methanol. The clear colorless solution was allowed to stand at rt for 2 h, then at 4° C. overnight. The resulting solid was filtered, washed with minimal cold methanol and air dried for to afford 360 mg of compound 471Di as a white powder. This sample was

4) From CH2Cl2

A 7.00 g portion of compound 471Di, obtained after chiral chromatography as described above, was dissolved in 75 mL of CH2Cl2 at rt. The clear and colorless solution was slowly diluted with hexane (48 mL) until crystallization was observed. The solution was allowed to stand at rt for 1 h, then at 4° C. overnight. The resulting crystalline material was filtered and then washed with a minimal amount of cold 2:1 CH2Cl2:hexane. The large crystals were ground to a fine powder and dried at 50° C. (12 h, 0.5 Torr) to yield 5.96 g of compound 471Di as a white powder.

EXAMPLE 472

(3aα,4β,7β,7aα)-4-(Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-vl)-2-(trifluoromethyl)benzonitrile (472)

A solution of compound 471B (500 mg, 1.38 mmol) in ethyl acetate (10 mL), containing 10% Pd/C (25 mg, cat.) was stirred at rt under an atmosphere of hydrogen introduced via a balloon. After 2 h the reaction was filtered through Celite and the filter cake was washed with EtOAc. The clear, colorless filtrate was concentrated in vacuo to yield 501 mg (1.38 mmol, 100%) of compound 472 as a white solid. No further purification was required. HPLC: 99% at 3.04 min (retention time) (YMC S5 ODS column, 4.6×50 mm, 65 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ESI): m/z 382.2 [M+NH₄]+.

45

50

(3aa,4β,5β,7β,7aa)-4-[5-(Acetyloxy)octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethylbenzonitrile (473)

To a solution of compound 471C (1.50 g. 3.95 mmol) in 20 mL of pyridine, cooled to 0° C. under argon, was added acetic ambythide (0.42 ml., 44 mmol) dropwise, followed by DMAP (S mg., 0.04 mmol). Stirring was continued at rt for 4 h. The solution was concentrated in vacuo and the zenatting residue was diluted with ethyl acetate, and washed 25 consecutively with IN HCl (2.95, brine (2.95, st. HaHCO₃, and brine (2.9). The organic layer was dried over MgSO, and concentrated in vacuo. The resulting solid was dried at 60° C. (20 h. 0.5 Tor) to yield 1.55 g (3.67 mmol, 93%) of compound 473 as a white crystalline solid. HPLC: 99% at 30 2.10 min (retention time) (Phenomenex Luna C18 column, 2-230 mmol, 1-00% aqueous acciontific over 3 min containing 10 mM NH,OAc at 1 mL/min, monitoring at 220 mm). MS (ESIb): mr. 4214 1 M.—Hr.

EXAMPLE 474

(3aβ,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-(2methyl-4-benzoxazolyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (474F)

A. 2-Methyl-4-nitrobenzoxazole (474A)

To 2-amino-3-nitrophenol (6.17 g, 40.0 mmol) was added triethylorthoacetate (25.96 g, 160.0 mmol) and the mixture 65 was heated at 100° C. for 12 h to give a dark red solution. Cooling to room temperature produced a crystalline mass

which was filtered and washed with hexane to give compound 474A (6.78 g, 95%) as light amroon needles. HPLC: 98.1% at 1.86 min (retention time) (YMC SS ODS column, 4.6x50 mm, eluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 179.08 [M+H]^{*}:

B. 4-Amino-2-methylbenzoxazole (474B)

Compound 474A (6.78 g, 38.1 mmol) was dissolved in a 1:1 mixture of 10% acetic acid/ethyl acetate (100 mL total volume) and heated to 65° C. Iron powder (10.63 g, 190.2 mmol) was added portionwise. After stirring for 3 h, TLC indicated complete consumption of starting material. The cooled reaction mixture was filtered through a pad of Celite and the pad was washed with 50 mL of ethyl acetate. The organic layer was separated, washed with water (2×25 mL), brine (1×25 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel eluting with 25% ether/ CH,Cl, to give 3.90 g (69%) of compound 474B as a light brown solid. HPLC: 95.8% at 2.43 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 149.11 [M+H]+.

C. 4-Amino-7-bromo-2-methylbenzoxazole (474C)

Compound 474B (3.90 g, 26.3 mmol) was dissolved in DMF (4.5 mL) and cooled to -5° C. and N-bromssuccinimide (4.68 g, 26.3 mmol) was added in small portions and the reaction stirred for 5 h. The mixture was poured into 150 mL of its water to give a cream colored solid which was filtered, washed with water, dissolved in 60 CH₂Cl₃, dried over MgSO₆, filtered and concentrated in 60 cace. Purification of the crude material by flash chromatography on silica gel eluting with 20% ether/CH₂Cl₂ gave compound 474C (3.36 g, 56%) as a beige soild. HPLC: 95.4% at 2.583 min (retention time) (YMC SS ODS column) 54.6550 mn, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mn.) MS (ESS) m.2 28.80 3 [M-H]T.

D. 1-(7-Bromo-2-methyl-benzoxazol-4-yl)-pyrrole-2,5-dione (474D)

Compound 474C (I.40 g, 6.17 mmol) was dissolved in 20 mL of acetic acid, maleic anhydride (0.635 g, 6.47 mmol) was added and the reaction was heated at reflux under nitrogen for 5 h. The solvent was removed in vacuo and the crude product was purified by flash chromatography on 20 silica gel etuling with 10% ether/CHI₂Cl, to give compound 474D (1.73 g, 91%) as a pale yellow solid. HPI.C: 93.6% at 1.36 min. (Phenomenex column) 30-446 mm. In-90% squeous methanol over 2 min containing 0.1% TFA, 5 mI/min, 20 min. QH (SE) mt. 20 ME.QH (JMHI)*.

E. (3aα,4β,7β,7aα)-2-(7-Bromo-2-methyl-4benzoxazolyl)-3a,4,7,7a-tetrahydro-4,7-dimethyl-4, 7-epoxy-1H-isoindole-1,3(2H)-dione (474E)

Compound 474D (0.307 g_1 1.00 mmol) was dissolved in benzene (2 mL) and 2,5-dimethylfuran (0.154 g_1 1.60 mmol) was added via syringe. The reaction mixture was heated to 60° C. for 12 h. The cooled reaction mixture was concentrated in vacuo at 40° C. to give compound 474E as an off-white foam which was used directly in the next reaction without unification.

F. (3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-(2methyl-4-benzoxazolyl)-4,7-epoxy-1H-Isoindole-1,3 (2H)-dione (474F)

Compound 474E (0.403 g, 1.00 mmol) was dissolved in ECHIELOAC, et ml/4 ml., and 10% Ful/C (100 mg) was 53 added. The reaction mixture was stirred at room temperature for 6 h under an atmosphere of IL supplied by a blalloon and then filtered through Celia. Concentration of the filtrate in vacuo gave a brown solid. Purification by flash chromatography on silica gel cluting with 10% acctone/CHC1, (250 on ml.), 15% acctone/CHC1, (250 on ml.), 15% acctone/CHC2, (250 on ml.), 50% acctone/CHC3, (250 on ml.), 60% acctone/CHC3, (250 on ml.), 60%

(3αα,4β,7β,7αα)-2-(7-Bromo-2-methyl-4benzoxazolyl)hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (475)

Compound 474E (0.202 g. 0.501 mmos) was dissolved in JL EGOAction (1 of m) and 10% FMC (100 mg) was added. The reaction mixture was stirred at room temperature under an H₂ balloon for 6 h. The reaction was filtered through Cellie and concentrated in vacoo. Purification by Hash chromatography on silice age letuling with 10% ether CH₂Cl₂ gave 0.063 g (31%) of compound 475 as a colorless oil which solidified upon standing to give a white solid. HPIC: 92.5% at 2.83 min (retention time) (YMC \$5 ODS column, 4.65.05 mm, futuring with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml. /min. monitoring at 220 mm). MS (ES): mr2 406.2 [10411].

EXAMPLE 476

(3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[2-(trifluoromethyl)-4-benzoxazolyl]-4,7-epoxy-1Hisoindole-1,3(2H)-dione (476D)

A. 4-Nitro-2-trifluoromethylbenzoxazole (476A)

2-Amino-3-nitrophenol (10.00 g, 64.88 mmol) was added to 100 mL of vigorously stirring rifulouroactic anhydride and the resulting mixture was stirred at room temperature for 2b. The solvent was removed in vacuo to give a dark blue solid which was dissolved in 200 mL of CH_Cl₂ and washed sequentially with 10% NaOH (2x100 mL), water (100 mL), bine (100 mL), and dried over MgSQ., Filtration and concentration in vacuo gave compound 476A (10.78 g, 72%) as a brown solid. No further purification was required. HPIC: 92.9% at 2.43 min (retention time) (YMC SS ODS column, 4.650 mm, childing with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm).

benzoxazolecarbonitrile (477E)

B. 4-Amino-2-trifluoromethylbenzoxazole (476B)

Compound 476A (10.75 g, 46.30 mmol) was dissolved in 1:1 EtOAc/10% HOAc (250 mL) and heated to 65° C. Iron powder (12.93 g, 231.5 mmol) was added portionwise and the reaction was stirred for 6 h at 65° C. After cooling, the mixture was filtered through Celite rinsing with EtOAc. The organic layer was senarated, washed with H₂O (3×100 mL). brine (100 mL), dried over MgSO4, and concentrated in vacuo to give a brown oil. The crude material was purified by flash chromatography on silica gel eluting with 70/30 CH, Cl,/hexanes to give compound 476B (7.02 g, 75%) as a vellow crystalline solid. HPLC: 96.7% at 2.68 nin (retention time) (YMC S5 ODS column, 4.6×50 mm, cluting with 10-90% aqueous methanol over 4 nin containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

C. 1-(2-Trifluoromethyl-benzoxazol-4-yl)-pyrrole-2, 5-dione (476C)

Compound 476B (0.500 g, 2.48 mmol) was dissolved in acetic acid (10 mL) and maleic anhydride (0.267 g, 2.72 mmol) was added. The mixture was heated at reflux for 3 h, 40 over sodium sulfate and concentrated in vacuo. Purification cooled and the solvent removed in vacuo to give a tan solid. The crude product was purified by flash chromatography on silica gel eluting with 2% MeOH/CH2Cl2 to give compound 476C (0.40 g, 57%) as an off-white solid. HPLC: 89.7% at 2.38 min (retention time) (YMC S5 ODS column, 4.6×50 45 methanol over 2 min containing 0.1% TFA, 5 mL/min, mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 283.21 [M+H]+.

D. (3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[2-(trifluoromethyl)-4-benzoxazolyl]-4,7-epoxy-1Hisoindole-1,3(2H)-dione (476D)

Compound 476C (0.24 g, 0.85 mmol) and 2,5dimethylfuran (0.132 g, 1.37 mmol) were combined in 3 mL of benzene in a scaled tube and heated at 60° C, for 12 h, The 55 mixture was cooled and concentrated in vacuo to give a yellow oil which was dissolved in 1/1 EtOAc/EtOH (6 mL). 10% Pd/C (100 mg) was added and the mixture was stirred under an H2 balloon for 3.5 h. The reaction was filtered through Celite and the solvent removed in vacuo to give the 60 25 mL of DMSO and trimethylhydrazinium iodide (0.534 g, crude product as a pale yellow oil. Purification by flash chromatography on silica gel eluting with 2% Et₂O/CH₂Cl₂ gave 0.107 g (33%) of compound 476D as a white foam. HPLC: 96.5% at 2.80 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous metha- 65 nol over 4 min containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 381.17 [M+H]+.

(3aα,4β,7β7aα)-2-Methyl-4-(octahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-7-

A. 2-Cvano-5-nitrophenol (477A)

3,4-Methylenedioxynitrobenzene (1.67 g, 10.0 mmol) was dissolved in 20 mL of HMPA and sodium cvanide (0.49 30 g, 10.0 mmol) was added. The reaction was heated to 150° C. under nitrogen and three portions of sodium cyanide (0.245 g, 5.00 mmol, total) were added over 15 min. The reaction was maintained at 150° C. for 45 min, cooled, and poured into 50 mL of H₂O followed by the addition of 50 mL 35 of 5% NaOH. The aqueous layer was extracted with ether (2×25 mL) and the organic layer was discarded. The basic aqueous layer was carefully acidified to pH 4 by addition of 10% HCl and extracted with ether (3x25 mL). The combined organic layers were washed with brine (25 mL), dried by flash chromatography on silica gel eluting with 5% MeOH/CH2Cl2 gave 1.05 g (64%) of compound 477A as a vellow-brown solid. HPLC: 91.6% at 1.03 min (retention time) (Phenomenex column, 30×4.6 mm, 10-90% aqueous monitoring at 220 nm. MS (ES): m/z 165.23 [M+H]+.

B. 2-Amino-4-cyano-3-hydroxynitrobenzene (477B)

Compound 477A (0.438 g, 2.67 mmol) was dissolved in 2.67 mmol) was added. Sodium pentoxide (0.880 g, 8.01 mmol) was added under N, to give a deep red solution and stirring was continued overnight at rt. The reaction mixture was poured into 50 mL of 10% HCl and extracted with EtOAc (2x25 mL). The combined organic layers were washed with water (25 mL), brine (25 mL), dried over sodium sulfate and concentrated in vacuo to give compound

477B as an oily red solid which was used directly in the next reaction without further purification.

C. 7-Cyano-2-methyl-4-nitrobenzoxazole (477C)

Compound 477B (0.360 g. 2.01 mmol) and trichyl ¹⁵ orthosectast (1.30 g. 8.04 mmol) were combined and heated at reflux under nitrogen for 1 h. The solvent was removed in vacuo and the resulting residue purified by flash chromatography eluting with ^{5%} ether/CH₂CJ₂ to give 0.255 g (63%) of Compound 477C as a brown solid. HPLC: 98.4% 20 at 1.80 min (retention time) (YMC SS ODS column, 4.6x50 mm, eluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 mm). MS (ESS: mr. 20.24.85 M+H]^{*}.

D. 4-Amino-7-cyano-2-methylbenzoxazole (477D)

$$\bigvee_{CN}^{NH_2} \bigvee_{CH_3}$$

Compound 477C (0.156 g, 0.77 mmol) was dissolved in a 1:1 mixture of EloAc/10th H/OAc (20 ml.) and heated to 65° C. Iron powder (325 mesh, 0.214 g, 3.83 mmol) was added and the reaction was sirred for 4 h. The cooked mixture was filtered through Celite and the resulting filtrate was washed with water (25 ml.), brine (25 ml.), dried over MgSO₃, and concentrated to give compound 477D (0.118 g, 89%) as an orange solid. HPLC: 87% at 2.03 min (retention time) (YMC S5 ODS column, 4.6x50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml./min, monitoring at 220 nm). MS (ES): mz.174.05 [M+H]².

E. (3aα,4β,7β,7aα)-2-Methyl-4-(octahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-7benzoxazolecarbonitrile (477E)

Compound 477D (0.060 g, 0.35 mmol) and compound 2DA(0.071 g, 0.37 mmol) were combined in a scaled tube 58 with toluene (2 mL), triethylamine (0.24 mL, 1.7 mmol), and MgSO, (0.104 g, 0.866 mmol). The scaled tube was heated at 135° C. for two days. The cooled reaction mixture was diluted with ElOAce, filtered, and concentrated in vacuo to give crude product as a brown oil. Purification by flash of contromatography on silica gel cluting with 11 ElOAc/ hexanes gave 0.014 g (12%) of compound 477E as an off-white solid. HPLC: 96.5% at 2.27 min (recentor time) (YMC SS ODS column, 46.500 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2%) phosphoric cs acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 382.23 [MsHT].

EXAMPLE 478

(3ac,4β,5β,7β,7ac)-4-[7-[2-(4-Cyanophenoxy) ethyl]octahydro-5-methoxy-4-methyl-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile, Slow Eluting Enantiomer (478)

n-BuLi (0.050 mL, 1.6 M, 0.075 mmol) was added to a solution of compound 244ii (33.7 mg, 0.0683 mmol) in THF (1.0 mL) at -78° C. under argon. The reaction mixture was warmed to room temperature and methyl fluorosulfonate (0.010 mL, 0.12 mmol) was added dropwise. Once starting material was consumed, as was evident by HPLC, the reaction was quenched with H₂O and the resulting aqueous mixture was extracted with CH2Cl2 (3x5 mL). The com-25 bined organic layers were dried over MgSO4 and concentrated under reduced pressure. Purification by reverse phase preparative HPLC [22.09 min (YMC S5 ODS column, 20×100 mm, 0-100% aqueous methanol over 25 min containing 0.1% TFA, 20 mL/min, monitoring at 220 nm)] gave 30 13.0 mg (38%) of compound 478 as a white solid. HPLC: 93% at 3.35 min (YMC S5 ODS column, 4.6×50 mm, 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 508.17 [M+H]+.

EXAMPLE 479

(3ac,4β,7β,7ac)-Hexahydro-4,7-dimethyl-2-(2methyl-6-benzoxazolyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (479B)

A. 2-Methyl-6-aminobenzoxazole (479A)

$$_{H_{2}N} - \bigvee ^{O} \bigvee _{N}$$

To a solution of 2-methyl-6-nitrobenzostzole (100 mg. 0.560 mmol) in AcOH Ω cml Ω) was added iron powder (325 mesh, 63.0 mg. 1.12 mmol) at T^{00} Γ . in a single portion. After 15 m in a T^{00} Γ . additional iron powder (325 mesh, 63.0 mg. 1.12 mmol) was added and stirring was continued for 15 min. The mixture was cooled and concentrated under reduced pressure. The resulting residue was taken up into EloAc and washed with San Na-CQ. followed by H_Q. The

organic layer was dried over MgSO_a, concentrated under reduced pressure and purified by flass thermatography on slike age letting with a gradient of 0 to 25% EtOAc in CHC.1; to yield 69 mg (83%) of compound 479A as a solid. HPIC: 97% at 0.24 min (retention time) (YMC S5 ODS column, 4.6×50 mm Ballistic, 10–90% sugeous methanol over 4 min containing 0.2% II,PO_b, 4 mI./min, monitoring at 220 mm). MS (ES) mg/ 149.2 [M+H]^T.

B. (3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-(2methyl-6-benzoxazolyl)-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (479B)

Compound 479A (30 mg, 0.20 mmol), MgSO, (60 mg, 0.50 mmol), triethylamine (140 dt, 1.00 mmol) and compound 20A (45 mg, 0.23 mmol) were taken up in 0.25 ml. 15 of tolunen and placed in a seaded tube. The sealed tube was heated at 1.35° C. for 14 h and the reaction was allowed to cool to rt. The mixture was filtered through a short pad of Cellic, cluting with MeOH and the solvent was removed in vacoo. The residue was purified by flash chromatography on 20 silice gel eluting with a gradient of 0 to 50% EtOAc in CH₂Cl₂ to give 49 mg (65%) of compound 479B as a tan solid. HPLC: 98% at 2.30 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 42 mL/min, monitoring at 220 mm). MS (ES): m/Z 326.9 [M+H]*.

EXAMPLE 480

(3aα,4β,7β,7aα)-2-(2,1,3-Benzoxadiazol-5-yl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (480B)

A. 5-Amino-2.1.3-benzoxadiazole (480A)

50

To a solution of 2,1,3-benzoxadiazole-5-carboxylic acid (102 mg., 06.21 mmol) in THF (8 m.l.) was aded triethy-lamine (103 µL, 0.739 mmol) fallowed by DPPA (160 µL, 0.739 mmol) are nown temperature. The mixture was stirred for 4 h, diluted with CH₂Cl₃ and washed with water. The organic layer was dried over MgSO₀, concentrated and purified by Hash chromatography on silica gel with 0 to 50% (100 km cm) and water (0.7 mL) was added dropwise yielding a slightly cloudy solution which was heated at 105° C. for 30 min. The mixture was cooled, made basic with sat. Na₂CO, solution and extracted several times with THF. The combined organic layers were dried over MgSO₀, concentrated and purified by flash chromatography on silica gel cluting with 0 to 15% McOH in CH₂Cl₃ to give 34 mg (41%)

of compound 480A as a yellow solid. HPLC: 100% at 1.27 min (retention time) (YMC S5 ODS column, 4.6×50 mm Ballistic, 10–90% aqueous methanol over 4 min containing 0.2% H₂PO₃, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 136.0 [WH-H]².

B. (3αα,4β,7β,7αα)-2-(2,1,3-Benzoxadiazol-5-yl) hexahydro-4,7-dimethyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (480B)

Compound 480A (34 mg, 0.25 mmol), MgSO₄ (76 mg, 0.63 mmol), triethylamine (180 µL, 1.26 mmol) and compound 20A (74 mg, 0.38 mmol) were dissolved in 0.25 mL of toluene and placed in a scaled tube. The scaled tube was heated at 135° C. for 14 h. The cooled reaction mixture was filtered through a short pad of Celite, eluting with acetone and the solvent was removed in vacuo. The residue was purified by reverse phase preparative HPLC (YMC S5 ODS 20×100 mm, eluting with 30-100% aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min). Concentration of the desired fractions afforded a residue which was partitioned between CH2Cl2 and sat. NaHCO3 solution. The aqueous layer was extracted once with CH2Cl2 and the combined organic phases were dried over Na₂SO₄. Concentration under reduced pressure gave 42 mg (53%) of com-30 pound 480B as a yellow solid. HPLC: 100% at 2.62 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). 1H NMR (400 MHz, CDCl₃) 8=7.91 (d, 1H), 7.90 (dd, 1H), 35 7.37 (dd, 1H), 3.09 (s, 2H), 1.85 (s, 4H), 1.67 (s, 6H).

EXAMPLE 481

[3aR,4(3aβ,4β,5β,7β,7aα)]-2(6-Benzothiazoly)-7-[2-[(5-chlore-2-pyridiny)]oxy]ehyt]]bexahydro-5hydroxy-4-mehyt-4,7-epoxy-1H-isoindole-1,3(2H)dione (481D) & [3a5-(3ac,4β,5β,7β,7aα)]-2(6-Benzothiazoly)-7-[2-[(5-chlore-2-pyridiny)]oxy]ethyl]bexahydro-5-hydroxy-4-methyt-4,7-epoxy-1Hisoindole-1,3(2H)-dione (481E)

A. 1-Benzothiazol-6-yl-pyrrole-2,5-dione (481A)

A mixture of 5-aminobenzothiazole (200 g, 13.3 mmol) js and maleic anhytide (1.96 g, 200 mmol) in AcOH (27 mL) was heated at 115° C. for 20 h. The mixture was cooled and concentrated under reduced pressure. The residue was taken up in THF and washed with saturated Na₂CO₃. The agrous 20 layer was extracted several times with THF and the combined organic layers were dried over MgSO₄. Purification by flash chromatography on silica gel eluting with 0 to 50% ElOAo in CH₂CI₃ seve 1.37 g 645%) of compound 481A as a pale yellow solid. HPLC: 100% at 2.62 min (retention 25 min) (YMC S5 ODS column, 4.650 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): mc 22.10 (M-HI).

B. (3αα,4β,7β,7αα)-2-(6-Benzothiazolyl)-4-[2-[[(1, 1-dimethylethyl)dimethylsityl]oxy jethyl]-3a,4,7,7atetrahydro-7-methyl-4,7-epoxy-1H-isoindole-1,3 (2H)-dione (481B)

A suspension of compound 481A (445 mg, 1.93 mmol) and compound 204A (929 mg, 387 mmol) in honzone (2 mL) was heated to 60° C. and acetone was added until a clear solution was obtained. The resulting mixture was stirred at 60° C. for 24 h and was then slowly concentrated in vacue. This process was repeated a total of three times, Purification by flash chromatography on silica gel cluting with 0 to 30% acetone in hexanes gave 820 mg (90%) of compound 481 Bs as white solid. IPILC: 100% at 2.62 min (retention time) (YMC \$5 ODS column, 4.65% orm, cluting with 10–90% aqueons methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): mz 4.71.3 iM-HI]*.

C. [3aR-(3ac,4β,5β,7β,7ac)]-2-(6-Benzothiazolyl)-7-[2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]ethyl] hexahydro-5-hydroxy-4-methyl-4,7-epoxy-1Hisoindole-1,3(2H)-dione (481Ci) & [3aS-(3ac,4β,

5β,7β,7ac)]-2-(6-Benzothiazolyl)-7-[2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]ethyl]hexahydro-5-hydroxy-4-methyl-4,7-epoxy-1H-isoindole-1,3(2H)-dione (481Cii)

To a solution of compound 481B (75 mg, 0.16 mmol) in THF (1 mL) was added Wilkinson's catalyst (32 mg, 0.030 mmol) and catecholborane (1.0 M in THF, 1.6 mL, 1.6 mmol) at room temperature under nitrogen. The resulting 35 mixture was stirred for 2.5 h before it was cooled to 0° C. EtOH (5 mL), 3 N NaOH (2 mL) and H₂O₂ (30%, 1 mL) were added sequentially, and the mixture was stirred for 2 h at 0° C. The reaction was quenched by the addition of cold 10% Na2SO3 solution (excess) followed by water. The 40 aqueous layer was extracted several times with CH, Cl, and the combined organic layerss were dried over Na2SO4 Concentration under reduced pressure followed by purification by flash chromatography on silica gel eluting with 0 to 100% EtOAc in hexanes gave 13 mg (17%) of a racemic 45 mixture of compounds 481Ci & 481Cii as a tan solid. HPLC: 96% at 3.58 min (retention time) (YMC S5 ODS column, 4.6×50 mm Ballistic, 10-90% aqueous methanol over 4 min containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 489.3 [M+H]+. The racemic 50 mixture was separated into its individual enantiomers by normal phase preparative chiral HPLC (CHIRALPAK AD 5x50 cm column; eluting with 20% MeOH/EtOH (1:1) in heptane (isocratic) at 50 mL/min) to give the faster eluting enantiomer, compound 481Ci: (Chiral HPLC: 9.40 min; 55 CHIRALPAK AD 4.6×250 mm column; eluting with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min) and the slower cluting enantiomer, compound 481Cii: (Chiral HPLC: 10.47 min; CHIRALPAK AD 4.6×250 mm column; eluting with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min). The absolute conformation for compounds 481Ci & 481Cii was not established. For simplicity in nomenclature, compound 481Ci is designated herein as having an "R" configuration and compound 481Cii as having an "S" configuration. Enantiomerically pure products derived from compound 65 481Ci are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 481Cii are designated herein as having an "S" configuration.

D. [3aR-(3ac,4β,5β,7β,7ac)]-2-(6-Benzothiazolyl)-7-[2-{(5-chloro-2-pyridinyl)oxy]ethyl]hexahydro-5hydroxy-4-methyl-4,7-epoxy-1H-isoindole-1,3(2H)dione (481D)

Compound 481Ci (84 mg, 0.17 mmol) was suspended into EtOH (2 mL) and conc. HCl (40 µL) was added at 10 roomtemperature. The mixture was stirred for 15 min before several drops of sat. NaHCO3 solution were added. Concentration under reduced pressure yielded a residue which was partitioned between CH2Cl2 and sat. NaHCO3 solution. The aqueous layer was extracted several times with CH2Cl2 and finally with EtOAc. The combined organic phases were dried over Na-SO., concentrated and purified by preparative TLC cluting with 50% acctone in CHCl3. This procedure served to remove the TBS group from compound 481Ci, 20 viciding the free primary alcohol. A 12 mg (0.03 mmol) portion of the free alcohol of compound 481Ci was reacted with 5-chloro-2-pyridinol (8 mg, 0.06 mmol), PPh3 (17 mg, 0.060 mmol) and di-tert-butylazodicarboxylate (15 mg, 25 0.060 mmol) in THF (0.5 mL) according to the general procedure described in Example 244. The mixture was stirred for 24 h at room temperature, diluted with 1N NaOII and the aqueous layer was extracted several times with 30 CH2Cl2. The combined organic layers were dried over Na2SO4, concentrated and purified by preparative TLC, eluting with 25% acetone in CHCl3 to give 9 mg (58%) compound 481D as a white solid. HPLC: 98% at 2.94 min 35 (retention time) (YMC S5 ODS column, 4.6×50 mm Ballistic, 10-90% aqueous methanol over 4 min containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 486.2 [M+H]+.

E. [3aS-(3aα,4β,5β,7β,7aα)]-2-(6-Benzothiazolyl)-7-[2-[(5-chloro-2-pyridinyl)oxy]ethyl]hexahydro-5hydroxy-4-methyl-4,7-epoxy-1H-isoindole-1,3(2H)dione (481E)

As described in Example 481D, compound 481Cii (88 mg, 0.12 mmol) was treated with EiOH (2 mL) containing 12 N HCl (40 µL) to yield the free primary alcohol product 55 of compound 481Cii. A 15 mg (0.040 mmol) of the free alcohol of compound 481Cii was reacted with 5-chloro-2-pyridinol (10 mg, 0.080 mmol), was reacted with 5-chloro-2-pyridinol (10 mg, 0.080 mmol)) and di-tert-huylazoficarboxylazof (18 mg, 0.080 mmol) in THF (0.5 mL) in the manner described above and the 60 resulting product was purified as described above to yield 8 mg (41%) of compound 481E as a white solid. HPLC: 99% at 2.93 min (retention time) (YMC S5 ODS column, 4.650 mm Ballistic, 10–99% aqueous methanol over 4 min con-62 taining 0.2% H₂PO₄, 4 mL/min, monitoring at 220 nm). MS (853: mz, 4862 [M+H]².

[3aR-(3a\alpha,4\beta,5\beta,7\beta,7a\alpha)]-7-[7-[2-[(5-Chloro-2-pyridinyl)\cxy]ethyl]\cxt{octahydro-5-hydroxy-4-methyl-

1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3convolthiadiazole-4-carbonitrile (482F) & [3aS-(3ac,4β,5β,7β,7ac)]-7;772-4[5-Chloro-2-pyridinyl) oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3-benzothiadiazole-4-carbonitrile (482G)

A. 7-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-benzo[1,2, 5]thiadiazole-4-carbonitrile (482A)

Maleic anlydride (667 mg, 6.80 mmol) was added to a solution of compound 424A (600 mg, 3.41 mmol) in THF (9 mL). The mixture was heated at 110° C. for 10 h. The reaction was concentrated under reduced pressure and acetic anlydride (1 ml) was added to the residue. The reaction mixture was heated at 75° C. for 30 min and then cooled to the Purification by flash chromatography on silica gel luting with 3% acetone/CHCL, gave 758 mg (2.96 mmol, 67%) of (70° MC SS 0DS 4.6×50 mm, 10%—90% aqueous methanol over 4 min gradient with 0.2% H₂PO₂, monitoring at 220 m₂) MS (ESS) m/z 2570 [M+H]†.

B. (3aα,4β,7β,7aα)-7-[4-[2-[[(1,1-Dimethylethyl) dimethylsily]]oxy]ethyl]-1,3,3a,4,7,7a-hexahydro-7methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1, 3-benzothiadiazole-4-carbonitrile (482B)

A solution of compound 482A (758 mg, 2.96 mmol) and compound 204A (711 mg, 2.96 mmol) in benzene (2 mL) and acctone (2 mL) was heated at 60° C. for 6 h. The reaction mixture was concentrated in vacuo at 42° C. for 40 min to give 1.5 g of crude compound 482B, which was used directly in the next see without further purification.

C. $(3\alpha\alpha,4\beta,5\beta,7\beta,7\alpha\alpha)$ -7-[7-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3-benzothiadiazole-4-carbonitrile (482C)

Borane-dimethylsulfide complex (0.66 mL, 6.96 mmol) was added to a solution of compound 482B (1.15 g, 2.32 50 mmol) in THF (6 mL) at 0° C. After stirring at 0° C. for 2 h, the reaction mixture was quenched with phosphate buffer (60 mL, pH 7.2) and then EtOH (35 mL), H2O2 (8 mL, 30% aq.) and THF (4 mL) were added. The reaction mixture was 55 stirred at 0° C. for 1 h and was then extracted with CH2Cl3 (4×100 mL). The combined organic layers were washed with 10% au. Na.SO. (1×160 mL) followed by brine (1×160 mL) and dried over Na-SO.. Purification by flash chroma- 60 tography on silica gel eluting with 10% acetone/CHCl, gave 250 mg (0.486 mmol, 21%) of compound 482C as an orange solid, HPLC: 85% at 3.70 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 min gradient with 0.2% HaPOa, monitoring at 220 nm). MS (ES): m/z 515.27 [M+H)+.

D. [33K-[33x,4];5,8];7,3(2)],7,47,2[4](1,1) Dimethylethylphimethylstyl hyyykethylocathydro-5bydroxy-4-methyl-1,3-dixxx-4,7-pxxy-241-soindol-2-y]-2,1,3-broxuthaliazioe4-carbonitris (8,1-3), (3ac,44,54,77,3-a)]-7,47,2-[4](1,1-Dimethylethyl)dimethylstyl)-xyykthylocathydro-5-hydroxy-4methyl-1,3-dixxx-4,7-epxxy-214-soindol-2-y]-2,1 -benzothiadisod-4-arbonitri (482) (8,482)iii

The racemic compounds 482C was separated by normal phase preparative chiral HPLC using a Chiracel OD column (5 cm×50 cm), eluting with 10% EtOH in hexane at 50 mL/min to give the faster eluting compound 482Di (Chiral 30 HPLC: 11.89 min; CHIRALCEL OD 4.6×250 mm column; isocratic elution with 12% EtOH in hexane at 2 mL/min) and the slower eluting compound 482Dii (Chiral HPLC-16.10 min: CHIRALCEL OD 4.6×250 mm column: isocratic elution with 12% EtOH in hexane at 2 mL/min). The absolute 35 conformation for compounds 482Di & 482Dii was not established. For simplicity in nomenclature, compound 482Di is designated herein as having an "R" configuration and compound 482Dii as having an "S" configuration. Enantiomerically pure products derived from compound 40 482Di are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 482Dii are designated herein as having an "S" configuration.

> E. [3aR-(3aα,4β,5β,7β,7aα)]-7-[Octahydro-5hydroxy-7-(2-hydroxyethyl)-4-methyl-1,3-dioxo-4, 7-epoxy-2H-isoindol-2-yl]-2,13-benzohiadiazole-4carbonitrile (482Ei) & [3aR-(3aα,4β,5β,7β,7aα)]-7-[Octahydro-5-hydroxy-7-(2-hydroxyethyl)-4-methyl-1,3-dioxo-4,7-epoxy-2-H-isoindol-2-yl]-2,1,3-

benzothiadiazole-4-carbonitrile (482Eii)

Compound 482Di (91 mg, 0.18 mmol) was dissolved in 2% 12 N HCl/EtOH (3.0 mL) and the mixture was stirred at rt for 20 min. Cold sat. NaHCO3 was added to the mixture until it was basic (pH 8). The reaction was extracted with EtOAc. The organic layers were then washed with brine and 5 dried over anhydrous sodium sulfate. Concentration in vacuo gave 73 mg (0.18 mmol, 100%) compound 482Ei as a yellow solid which was not purified further. HPLC: 95% at 1.73 min (retention time) (YMC S5 ODS 4.6×50 mm, 10 10%-90% aqueous methanol over 4 min gradient with 0.2% H₃PO₄, monitoring at 220 nm). MS (ES): m/z 401.13 [M+H]+.

Compound 482Dii (90 mg, 0.17 mmol) was dissolved in 15 2% 12 N HCl/EtOH (3.0 mL) and the mixture was stirred at rt for 20 min. Cold sat. NaHCO2 was added to the mixture until it was basic (pH 8). The reaction was extracted with EtOAc. The organic layers were then washed with brine and dried over anhydrous sodium sulfate. Concentration in 20 vacuo gave 70 mg (0.17 mmol, 100%) compound 482Eii as an orange solid which was not purified further. HPLC: 90% at 1.74 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 min gradient with 0.2% H₃PO₄, monitoring at 220 nm). MS (ES): m/z 401.14 [M+H]+.

F. [3aR-(3aα,4β,5β,7β,7aα)]-7-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3benzothiadiazole-4-carbonitrile (482F)

DBAD (21 mg, 0.090 mmol) was added to a solution of PPh, (24 mg, 0.090 mmol) in THF (0.4 mL). After stirring for 10 min, 5-chloro-2-pyridinol (12 mg, 0.090 mmol) was added and the reaction mixture was stirred for an additional 5 min. Compound 482Ei (18 mg, 0.045 mmol) was added then concentrated under reduced pressure. Purification by preparative TLC eluting with 20% acetone/CHCl3 gave 12 mg (0.023 mmol, 52%) of compound 482F. HPLC: 98% at 3.15 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 min gradient with 0.2% 45 H₂PO₄, monitoring at 220 nm). MS (ES): m/z 512.11 [M+H]+.

G. [3aS-(3aα,4β,5β,7β,7aα)]-7-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2,1,3benzothiadiazole-4-carbonitrile (482G)

DBAD (21 mg, 0.090 mmol) was added to a solution of PPh. (24 mg, 0.090 mmol) in THF (0.4 mL). After stirring for 10 min, 5-chloro-2-pyridinol (12 mg, 0.090 mmol) was added and the reaction mixture was stirred for an additional 5 min, Compound 482Eii (18 mg, 0.045 mmol) was added and the mixture was stirred at rt for 1 h. The reaction was then concentrated under reduced pressure. Purification by preparative TLC cluting with 20% acctone/CHCl3 gave 11 mg (0.021 mmol, 47.0%) of compound 482G. HPLC: 98% at 3.15 min (retention time) (YMC S5 ODS 4.6×50 mm, 10%-90% aqueous methanol over 4 min gradient with 0.2% H₃PO₄, monitoring at 220 nm). MS (ES): m/z 512.15 $[M+H]^+$.

(1S,4R)-4,7,7-Trimethyl-3-oxo-2-oxabicyclo[2.2.1] heptane-1-carboxylic Acid, [3aS-(3aB,4B,5B,7B, 7act)]-2-[4-cyano-3-(trifluoromethyl)phenyl] octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-1Hisoindol-5-vl Ester (483)

To a solution of compound 471Di (25 mg, 0.066 mmol) in 0.25 mL of CH₂CL₃ at rt and under argon, was added a solution of (1S)-(-)-camphanic acid (20 mg, 0.10 mmol) in 0.2 mL of CH2Cl2. A solution of DCC (20 mg, 0.10 mmol) in 0.25 mL of CH2Cl2 was then added followed by DMAP (4.0 mg, 0.034 mmol). A white precipitate was obtained immediately and stirring was continued overnight. The precipitate was removed by filtration and the filtrate was diluted with EtOAc. The resulting solution was washed with IN HCl, brine, sat. NaHCO2, and brine then dried over 30 MgSO₄. Concentration in vacuo afforded a viscous oily residue. The crude material was subjected to flash chromatography on a 20 cm3 column of silica gel eluting with 50% EtOAc in hexanes to 32 mg of a white solid. Recrystallization from CH2Cl2/hexane yielded 20 mg (86%) of compound 483 as large crystals. This material was subjected to X-ray crystal diffraction studies to elucidate the exact stereochemistry of compound 471Di as referenced to the known fixed stereochemistry of the (1S)-(-)-camphanic acid appendage. LCMS: 100% at 1.9 min (retention time) and the mixture was stirred at rt for 1 h. The reaction was 40 (Phenomenex Luna C18 column, 2×30 mm, 0-100% aqueous acetonitrile over 3 min containing 10 mM NH₄OAc at 1 mL/min, monitoring at 220 nm), MS (EST); m/z 559.3 [M-H]-.

EXAMPLE 484

(3aα,4β,5β,7β,7aα)-5-[7-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]octahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (484)

To a dry, 3-necked, 25 mL round-bottom was added TiCl-Cp., (0.500 g, 2.01 mmol) and THF (4 mL) to give a deep red solution. Activated zinc dust (0.392 g, 6 mmol, prepared as described in Fieser and Fieser, Volume 1, p. 1276) was added and the suspension was stirred for 30 min during which time the color changed from brick-red to emerald-green. The unreacted zinc dust was allowed to settle. In a separate 3-necked, 25 mL round-bottom flask was added compound 464F (0.202 g, 0.399 mmol), THF (1 mL) and 1,4cyclohexadiene (0.380 mL, 4.02 mmol). The Ti(III) reagent (0.90 mL, 0.45 mmol) was added via an addition funnel with a cotton plug at the bottom rinsing with THF (1 mL). After 5 1 h, HPLC showed ~50% conversion and an additional 0.9 mL (0.45 mmol) of the titanium reagent was added. After 1 h, HPLC showed complete consumption of starting material. Saturated ammonium chloride (5 mL) was added, followed by 10 mL of EtOAc. The organic layer was separated, 10 washed with brine (5 mL), dried over Na2SO4, and concentrated in vacuo to give the crude product as an orange semi-solid. The crude material was purified by flash chromatography on silica gel eluting with 50% CH2Cl3/48% EtOAc/2% MeOH to give 0.10 g (59%) of compound 484 as 15 a light yellow foam. HPLC: 91% at 3.65 min (retention time) (YMC S5 ODS column, 4.6×50 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 508.27 [M+H]+.

EXAMPLE 485

$$\label{eq:continuous} \begin{split} & \left[3aR\cdot(3a\alpha,4\beta,5\beta,7\beta,7a\alpha)\right]\cdot 5\cdot \left[7\cdot\left[2\cdot\left[\left(1,1\right)\right]\right] \\ & \text{Dimethylethyl)dimethylsilylloxylethyllocathydro-5-hydroxy-4-methyl-1,3-diox-4,7-epoxy-2H-isoindol-2-yl]-8-quinolinecarbonitrile (485i) & [3aS-(3a\alpha,4)] \\ & \left[3aS\cdot(3a\alpha,4)\right] \end{aligned}$$

4β,5β,7β,7αα)]-5-[7-[2-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]ethyl]octahydro-5-hydroxy-4methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (485ii)

The racemic compound 484, was separated into its individual antipodes by normal phase preparative chiral HPLC. 50 A Chiralcel OD column (50×500 mm) was used with a flow rate of 50 mL/min (20% EtOH/hexanes) monitoring at 220 nm. The faster eluting antipode, compound 485i had a retention time of 35.8 min and the slower antipode, compound 485ii had a retention time of 49.7 min. Both antinodes 55 were isolated as white solids after separation. Compound 485i: HPLC: 100% at 4.980 min (retention time) (Chiracel OD column (5x50 mm), 2.0 mL/min, 20% EtOH/hexanes, monitoring at 220 nm), >99% ec. MS (ES): m/z 508.23 [M+H]*. Compound 485ii: HPLC: 98.6% at 7.357 min 60 (retention time) (Chiracel OD column (5×50 mm), 2.0 mL/min, 20% EtOH/hexanes, monitoring at 220 nm), 97.2% ce. MS (ES): m/z 508.21 [M+H]*. The absolute conformation for compounds 485i & 485ii was not established. For simplicity in nomenclature, compound 485i is designated herein as having an "R" configuration and compound 485ii as having an "S" configuration. Enantiomerically pure prod-

ucts derived from compound 4851 are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 485ii are designated herein as having an "S" configuration.

EXAMPLE 486

[3aR-(3aα,4β,5β,7β,7aα)]-5-[Octahydro-5-hydroxy-7-(2-hydroxyethy)]-4-methyl-1,3-dioxo-4,7-epoxy-4H-isoindol-2-yl]-8-quionlionecarbonitile (486i) & [3a8-(3aα,4β,5β,7β,7aα)]-5-[Octahydro-5-hydroxy-7-(2-hydroxyethy)]-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8-quionlionecarbonitile (486ii)

Compounds 485i & 485ii were converted to the free primary alcohol products as described in example 466 to give compounds 486i and 486ii as white solids.

(55 Compound 486i: HPLC: 98% at 1.650 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): mt/s 394.2 I [M+H]?

Compound 486ii: HPLC: 98% at 1.663 min (retention time) (YMC S5 ODS column, 4.6x50 mm, eluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES: m/z 394.20 [M+H]T.

EXAMPLE 487

[3aR-(3aα,4β,7β,7aα)]-5-[7-[2-[(5-Chloro-2pyridiny])oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (487)

DBAD (0.088 g, 0.38 mmol) was added to a solution of triphenylphosphine (0.100 g, 0.382 mmol) in THF (1.0 m]L) at 22° C. and stirred for 10 min. 5-Chloro-2-pyridinol (0.049 g, 0.38 mmol) was added as a solid and stirring was continued for 10 min. The reaction mixture was added to compound 486i (0.100 g, 0.250 mmol) in THF (1.0 mL).

After stirring for 3 h, the reaction was consentrated in vacuo and purified by flash chromatography on silica gel cluting with 20-50% acetone/chloroform to give 0.080 g (63%) of compound 45% as a white solid, IPILC: 100% at 30:23 min (releation time) (YMC'SS ODS column, 4.6-50 mm, cluting swith 10-90% acqueum sethand over 4 min containing 0.2% phosphoric acid, 4 ml./min, monitoring at 220 mm). MS (ES): mlx 50.5.10 flw-HI^{*}.

EXAMPLE 488

[3aS-(3aα,4β,7β,7aα)]-5-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-8quinolinecarbonitrile (488)

DBAD (0.088 g, 0.38 mmol) was added to a solution of triphenylphenyline (0.100 g, 0.32 mnd) in THE (1.0 mL) at 22° C. and stirred for 10 min. 5-Chloro-2-pyridinot (0.049 g, 0.38 mmol) was added as a solid and stirring was continued 30 for 10 min. The reaction mixture was added to compound 486i (0.010 g, 0.250 mmol) in THF (1.0 mL). After stirring for 3 h, the reaction was concentrated in vacuo and purified by flash chromatography on siting gel eluting with 10–50% accione/chloroform to give 0.080 g (6.0%) of compound 488 3s as white solid. HPLC 9.5% at 3.030 min (returnion time) (YMC SS ODS column, 4.6x50 mm, eluting with 10–90% adqueous methanol over 4 min containing 0.2% phosphoric acid. 4 mL/min, monitoring at 220 mm). MS (ES): m/z

EXAMPLE 489

[3aR-(3ac.4β,5β.7β,7aca)]-4-(Octahydro-5-hydroxy-4,7-di methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl)-2-iodobenzonitrile (489Gi) & [3as-(3ac.4β,5β, 7β,7aca)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl)-2iodobenzonitrile (489Gi)

A. 2-Iodo-4-nitro-phenylamine (489A)

To a mixture of iodine (46.0 g. 0.180 mol) and silver sulfate (56.3 g. 0.180 mol) in anhydrous chanol (500 mL) was added 4-nitroanline (25.0 g. 0.180 mol) and the reaction mixture was stirred for 5 h at nt. The resulting yellow solution was filtered and concentrated in vacuo. The resultance with 1N social mydroxide solution (2-250 mL), dried over sedims sulfate, filtered, and concentrated in vacuo to yield 45.5 (95%) of compound 489A, as a yellow solid. IHPLC 98% at 2.837 min (retention time) (Shimadzu VP-ODS column, 4.6x50 mm, cluting with 10-90% aqueous methanol over 4 min containing of.)% triflooractic acid, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 265.08 IM-HIP.

B. 2-Iodo-4-nitro-benzonitrile (489B)

Compound 489A (10.0 g, 37.9 mmol) was dissolved in a mixture of 20 mL 12 N HCl/40 mL water and then cooled to 0° C. To this mixture was slowly added a solution of sodium nitrite (5.23 g, 75.8 mmol) in 10 mL water while 50 maintaining the reaction temperature at 0° C. The reaction was stirred for 1 h at 0° C, and then slowly added to a mechanically stirred solution of freshly prepared cuprous cyanide (3.0 g, 33 mmol, prepared as described in Vogel's Textbook of Practical Organic Chemistry, 5th edition, pg. 429) and potassium cyanide (6.30 g, 96.7 mmol) in water (50 mL) at 50° C. The reaction was stirred for 1 h at 50° C., cooled to 25° C. and extracted with methylene chloride (2×200 mL). The organic portion was dried over sodium 60 sulfate, filtered and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel eluting with 4:1 hexane:ethyl acetate to yield 4.6 g (44%) of compound 489B as an orange solid. HPLC: 98% at 2.647 min (retention time) (YMC S5 ODS column, 4.6×50 mm, 65 cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm).

35

C. 4-Amino-2-iodo-benzonitrile (489C)

A mixture of compound 489B (4.60 g, 16.8 mmol), tetrahydrofuran (75 mL), ethanol (100 mL), ammonium chloride solution (1.51 g. 28.3 mmol, dissolved in 100 mL of water), and iron (325 mesh, 4.21 g, 75.4 mmol) was mechanically stirred. The reaction mixture was heated to 20 reflux for 3 h or until all starting material was consumed. The reaction mixture was cooled, filtered through Celite and concentrated in vacuo. The resulting residue was dissolved in ethyl acetate (200 mL) and washed with 1N sodium 25 421.05[M+H]* hydroxide (2x150 mL), dried over sodium sulfate, filtered and concentrated in vacuo to vield 3.97 g (97%) of compound 489C as a dark solid. HPLC: 95% at 1.877 min (retention lime) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 245.13 [M+H]+.

D. 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-2-iodobenzonitrile (489D)

Compound 489°C (3.97 g, 16.3 mmol) and maleic anhydrick (2.41 g, 2.4 mmol) were refluxed in glacial actic acid (1.5 mL) for 5 h. The reaction was cooled to 25° C. and then poured orto tice (100 mL). The resulting precipitate was isolated by filtration and washed with water (2.25° anL) and of dried under vacuum to yield 4.78 g (90%) of compound 4890 as at an Soldi HPLC. 82% at 2.68 min (retention time) C Shimadzu VP-ODS column, 4.6x50 mm, clutting with 10–90% aquous methanol over 4 min containing 0.11% (5E); may 25.04 fM-HP. E. (3aα,4β,7β,7aα)-4-(1,3,3a,4,7,7a-Hexahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile (489E)

A solution of compound 489D (0.40 g. 1.2 mmol) in 2.5-dimethylluma (2.6 g) was strived at 75° (.67 z h. The reaction was decanted from any insoluble materials and the particulates were washed with dielthyl cher. The combined decant and either washes were combined and concentrated in vacuo while maintaining a temperature of <50° C. The resulting residue was triurated with hexanes to yield 0.50° g (49% based on purity) of compound 489E as a tansolid. Due to the propensity of the product to undergo a retro-Diels-Adder reaction, no further purification was attempted. HPLC: \$5% at 3.01 min (retention time) (Shimadzu 1.40° C. 1.00° C. 1.00°

F. (3αα,4β,5β,7β,7αα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2iodobenzonitrile (489F)

To a solution of compound 489E (0.40 g, 0.95 mmol) in dry THF (5 mL) cooled to 0° C. was added boranedimethylsulfide complex (0.2 mL, 1.9 mmol, 10 M) and the 40 reaction solution was allowed to warm to 25° C. After stirring for 30 min, the reaction was cooled to 0° C. and pH 7 phosphate buffer (6.6 mL) was slowly added, followed by the addition of 30% hydrogen peroxide (0.7 mL). The reaction was stirred at 25° C. for 1 h and then partitioned 45 between ethyl acetate (100 mL) and water (100 mL). The organic portion was isolated, dried over sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by silica gel eluting with 3:1 methylene chlorideethyl acetate to yield 0.11 g (25%) of compound 489F as a white solid. HPLC: 99% at 2.527 min (retention time) 50 (Shimadzu VP-ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% trifluoroacetic acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 439.09 [M+H]

G. [3aR-(3αα,4β,5β,7β,7αα)]-4-(Octahydro-5hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl)-2-iodoberzonitrile (489Gi) & [3aS-(3αα,4β,5β,7β,7αα)]-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2iodoberzonitrile (489Gi)

The racemic compounds 4897, was separated into its and the racemic compounds 4891, was separated into its HILC. A Chiralcel AD column (0.0500 mm) was used with a flow rate of 50 mL/min (70% Isopropanol/hexanes) monitoring at 220 mm. The faster clutting antipode, compound 489Gi had a retention time of 4.587 min and the slower clutting antipode, compound 489Gi had a retention time of 6.496 min. Both antipodes were isolated as white solids after separation. The absolute conformation for compounds were formed to the compound 489Gi had a retention time of 6.496 min. Both antipodes were isolated as white solids after separation. The absolute conformation for compounds

15

20

35

489Gi & 489Gii was not established. For simplicity in nomenclature, compound 489Gi is designated herein as having an "R" configuration and compound 489Gii as having an "S" configuration.

EXAMPLE 490

(3αα,4β,5β,7β,7αα)-4-[7-[2-[(5-Chloro-2-pyridinyl) oxy]ethyl]octahydro-5-methoxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (490B)

 Λ. (3αα,4β,7β,7αα)-4-[7-[2-[(5-Chloro-2-pyridinyl) oxy]ethyl]octahydro-5-hydroxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1 nabthtalenecarbonitrile (490A)

A mixture of triphenylphosphine (166 mg, 0.633 mmol) and DBAD (146 mg, 0.633 mmol) was dissolved in THF (4 mL) under nitrogen and the yellow solution was stirred for 10 min. 5-Chloro-pyridin-2-ol (82 mg, 0.63 mmol) was added and the mixture was stirred for 5 min after which compound 242B (165 mg, 0.327 mmol) was added. The mixture was stirred for 12 h and the solvent was removed under a stream of nitrogen. The resulting oil was adsorb onto silica gel (1 g) and purified by flash chromatography on a Jones Chromatography silica cartridge (5 g/25 mL) eluting with a gradient of 0-50% acetone in chloroform to give 79.4 mg (47%) of compound 490A as a white foam. HPLC: 99% at 3.48 min (retention time) (Phenomenex ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 504.17 [M+H]*.

B. (3aα,4β,5β,7β,7aα)-4-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-5-methoxy-4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalencarbonitrile (490B)

Compound 490A (24 mg, 0.048 mmol) was dried into a I dram vala with a magnetic sit in Silver oxide (57 mg, 0.24 mmol), CH₃CN (500 µL) and iodomethane (20 µL, 0.32 mmol) were added under nitrogen and the mixture was in a heated block (82° C) and stirred for 14 h. The mixture turned brown after 20 min then green. The mixture was filtered through Cellie and Florisi and was purified by reverse phase preparative IIPLC (Shimadzu Shimpac VP ODS colum., 20.550 mm, 0–100% auncous methanol over

6 min containing 0.1% TFA, monitoring at 220 nm) to give 6. gp. (28%) of compound 490B as a white foam: HPLC: 99% at 3.64 min, 3.76 min (atropisomers, retention time) (Phenomenex ODS column, 4.6x50 mm, cluting with 510-90% aqueous methanol over 4 min containing 0.1% TFA, 4 ml/min, monitoring at 220 nm). MS (ES): m/z 18.19 [MH]².

EXAMPLE 491

[3aR.43ac.48,58,78,7aco])+4/742(5c.*Chloro-2pyridiny)oxy; birty)[catshydro-5-methoxy-4-methy-1,3-dioxo-4/z-epoxy-211-isoindol-2yi]-1mphthalencarbonirile, (4910); & [3aR.43ac.48], 58,78/7ac)]+4/74/2-5c.*Chloro-2-oxo-1/211yridiny)[ethy][betalytof-5-methoxy-4-methy1-1,3dioxo-4/z-epoxy-211-isoindol-2yi]-1mphthalencarbonirile (491Cii)

A. (3aα,4β,5β,7β,7aα)-4-[7-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]ethyl]octahydro-5methoxy-4-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-vl]-1-naphthalenecarbonitrile (491A)

Compound 243Cii (142 mg, 0.280 mmo) was dried into 5 and 1 dram vial equipped with a magnetic stir-bar and a Tellon lined cap. Silver oxide (324 mg, 1.40 mmol), CTL,CN (3 mL) and iockmechane (90 /d., 1.4 mmol) were added under the control of the control oxide oxide and the control oxide oxide and the control oxide ox

35

B. 3aα,4β,5β,7β,7aα)-4-[Octahydro-7-(2hydroxyethyl)-5-methoxy-4-methyl-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (491B)

Compound 491A (62.2 mg, 0.119 mmol) was dissolved in ethanol (2 ml.) and 12 N hydrochloric acid (50 g/L) was added and the mixture was stirred for 10 min. The solvent was removed in vacuo and the product was purified by flash chromatography on silica gel eluting with a gradient of 0–20% acetone in chloroform to yield 40.3 mg (83%) of compound 4918 has a white solid. HPLC 196% a 22.30 & 2.45 min (atropisomers, retention time) (Phenomenex ODS column, 4.65.50 mm, eluting with 10–90% aqueous methanol over 4 min containing 0.1% TFA, 4 ml./min, monitoring at 220 mm). MS (ES) m/k 407.22 [M+11]?

C. [3aR-(3ac,4β,5β,β/h,7ac)]+4-[74-2[6-C.thloro-2pyridiny)xyy [stuly] otalythyc-5-methoxy-4-methyl-13-dioxo-4/7-epoxy-2H-isoindol-2-yl]-1-naphthalencarbonirite, Slow Bluing Enantomer (491C) & [3aR-(3ac,4β,5β,7β,7ac)]+4/74-2-6methoxy-4-methyl-1,3-dioxo-4/7-epoxy-2H-isoindol-2-yl]-naphthalencarbonirite (491Ci)

Triphenylphosphine (40 mg, 0.15 mmol) and DBAD (35 mg, 0.15 mmol) were dissolved in THF under nitrogen and stirred 10 min. 5-Chloropyridin-2-ol (20 mg, 0.15 mmol) 40 was added and the mixture was stirred for 5 min. Compound 491B (40.3 mg, 0.0991 mmol) was added and the resulting mixture was stirred for 2.5 h. The solvent was concentrated in vacuo and the resulting residue was purified by chromatography over Florisil (1.3 g) eluting with a gradient of 45 0-40% acetone in chloroform to give 140 mg of a mixture of 491Ci, 491Cii and DBAD. The oil was suspended in dichloromethane (3 mL) and trifluoroacetic acid (2 mL) was added. After 45 min, the solvent was removed in vacuo and the resulting oil was partitioned between saturated sodium 50 bicarbonate (20 mL) and EtOAc (20 mL). The aqueous layer was extracted with EtOAc (2×20 mL) and the combined organic layers were dried over magnesium sulfate. Purification by reverse phase preparative HPLC (Shimadzu Shimpac VP ODS column, 20x50 mm, 0-100% aqueous metha- 55 nol over 6 min containing 0.1% TFA, monitoring at 220 nm) gave 22 mg (44%) of compound 491Ci and 4.6 mg (9% vield) of compound 491Cii. Compound 491Ci: HPLC: 95% at 3.50 min (retention time) (Phenomenex ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 60 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 518.28 [M+H]*. Compound 491Cii: HPLC: 85% at 2.94 & 3.07 min (atropisomers, retention time) (Phenomenex ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 518.27 [M+H]+.

EXAMPLE 492

[3aR (3aa,4β,5β,7β,7aa)]-4-[5-(Acetyloxy)-7-[2-[(5-chloro-2-pyridinyl)oxy]ethyl]octahydro-4methyl-1,3-diox-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile, Slow Eluting Enantiomer

Acetyl chloride (25 nL, 0.35 mmol) was added to a 20 solution of compound 490A (30 mg, 0.060 mmol) in pyridine (600 nL). The mixture was stirred overnight, diluted with hydrochloric acid (0.5 N, 10 mL), extracted with chloroform (3×7 mL). The organic layers were combined, washed with water (3×4 mL) and brine (4 mL), dried over 25 magnesium sulfate and concentrated in vacuo. Purification by flass hormatography on silica gel cluting with a gradient of 0-50% acetone in chloroform gave 17 mg (53%) of compound 492. IIPLC: 99% at 3.48 & 3.63 min (atropisomers, reteniton time) (Phenomenex ODS column, 30 4.6x50 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.1% TEA, 4 mL/min, monitoring at 220 nm), MS (ES) mz 2546.15 [M+11]*.

EXAMPLE 493

Dimethylcarbamic Acid, [3aR-(3ac,4β,5β,7β,7ac)]-7-[2-{(5-chloro-2-pyridinyl)oxy]ethyl]-2-(4-cyano-1-naphthalenyl)octahydro-4-methyl-1,3-dioxo-4,7-epoxy-1H-isoindol-5-yl ester, Slow Eluting Enantiomer (493)

To a solution of compound 490A (30 mg, 0.060 mmol) in pyridine (300 µl) was added dimethylcarbamyl chloride (28 μl, 0.30 mmol) and the mixture was stirred at 25° C. for 12 h. An additional portion of dimethylcarbamyl chloride (28 uL, 0.30 mmol) was added and the reaction was heated at 70° C. for 12 h. A third portion of dimethylcarbamoyl chloride (28 µl, 0.30 mmol) as well as pyridine (300 µl) were added and the mixture was stirred at 100° C. for 24 h. The solution was diluted with 0.5 N HCl (10 mL) and extracted with chloroform (3×7 mL). The organic layers were combined and washed with water (3x4 mL) and brine (4 mL), dried over magnesium sulfate and concentrated in vacuo. Purification by reverse phase preparative HPLC (Shimadzu Shimpac VP ODS column, 20x50 mm, 0-100% aqueous methanol over 6 min containing 0.1% TFA, monitoring at 220 nm) gave 15.7 mg (46%) of compound 493 as a white solid. HPLC: 99% at 3.52 min & 3.69 min (atropisomers, retention time) (Phenomenex ODS column, 4.6x50 mm, eluting with 10–90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/x 575.10 fM+Hl³.

EXAMPLE 494

[3aR-{3aα,4β,5β,7β,7aα)] 4-{7-{2-{(5-Chloro-2-pyridinyl)oxy}ethyl]octahydro-4-methyl-5-[[(methylamino)carbonyl]oxy]-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitile, Slow Eluting Enantiomer (494)

Methyl isocyanate (36 µL, 0.60 mmol) was added to a 25 solution of compound 490A(30 mg, 0.060 mmol) in dioxane (600 µL) and was heated at 80° C. overnight. An additional portion of methyl isocyanate (36 µL, 0.60 mmol) was added and the mixture was heated at 100° C, for 24 h, A third portion of methyl isocyanate (36 µL, 0.60 mmol) was added and the mixture was stirred at 100° C, for 24 h. The solvent was removed in vacuo and the oil was purified by reverse phase preparative HPLC (Shimadzu Shimpac VP ODS column, 20x50 mm, 0-100% aqueous methanol over 6 min containing 0.1% TFA, monitoring at 220 nm) to give 20 mg 35 (59%) of compound 494 as a clear glass. HPLC: 99% at 3.33 min & 3.42 min (atropisomers, retention time) (Phenomenex ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 561.08 [M+H]+.

EXAMPLE 495

[3aR(3ac,4β,5β,7k,7ac)]4-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (495Ai) & [3aS(3ac,4β,5β,7β,7ac)]-4-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (495B)

A. [3aS-(3ac,4β,5β,7β,7ac)]-4-[Octahydro-4-(2hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalencarbonitrile (495Ai) & (3ac,4β,5β,7β,7ac)-4-[2-(Acetyloxy)ethyl]-2-(4cyano-1-naphthalenyl)hexahydro-7-methyl-4,7epoxy-HI-isoindole-1,3(2H)-dione (495Aii)

Racemic compound 223B (10.26 g, 27.26 mmol) was dissolved in anhydrous THF (500 mL) in a 10 L bottle. tert-Butyl methyl ether (4.86 L), vinyl acetate (216 mL) and Lipase (108 g, Sigma, Lipase type II, crude from Porcine pancreas, product No. L3126, Lot No. 021K1445]) were 30 added. The reaction mixture was agitated for 24 h at rt and the reaction was monitored by HPLC using the following conditions: A 200 µL sample of the reaction mixture was filtered, dried under a stream of nitrogen and subjected to HPLC analysis (YMC ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). The reaction was stopped after 60% of the starting material was consumed. The enzyme was removed by filtration and the filtrate was concentrated it vacuo. The resulting residue was dissolved in 40 CHCl2 and absorbed onto silica gel. Purification by flash chromatography on silica gel eluting with a gradient of 1-5% MeOH in CHCl3 gave 3.78 g (37%) of compound 495Ai and 6.84 g (60%) of compound 495Aii, both as white solids. Compound 495Ai: HPLC: 99% at 3.47 min (retention 45 time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 377.09 [M+H]+. Normal phase preparative chiral HPLC: 37.8 min (retention time) (chiralpak AD column, 4.6×250 50 mm, 10 micron, 40° C., isocratic elution with 8% EtOH/ MeOH (1:1) in heptane, monitoring at 220 nm), 99% ee. Compound 495Aii; HPLC: 99% at 2.92 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 55 mL/min, monitoring at 220 nm).

B. [3aR-(3aα,4β,5β,7β,7aα)]4-[Octahydro-4-(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (495B)

60 Lipase (134 g. [Sigma, Lipase type II], crude from Porcine pancreas, product No. 13126, Lot No. (2013/1445) was added to 3.5 L. of decionized water. The mixture was centringed to remove most of the suspended material. The pH of the supernatant was adjusted to 7.06 with 1N sodium of hydroxide and a solution of compound 495Aii (8.04 g. 19.2 mm0) in TBME (1.5 L) was added. The pH was increased to 7.16 by addition of IN sodium hydroxide. The reaction

mixture was agitated at rt and was monitored by analytical HPLC as described in Example 495A. After 30 min, the reaction was filtered through Celite and the filtrate was extracted with ethyl acetate (4×1 L) until HPLC showed that all the alcohol has been removed. The organic fractions were 5 combined, dried over magnesium sulfate, filtered and concentrated in vacuo. Purification by flash chromatography on silica gel (Jones, 50 g column) using a gradient of 0-70% acetone in chloroform followed by 5% MeOH in chloroform gave 2.44 g (33%) of compound 495B as a white solid. HPLC: 99% at 2.89 min (retention time) (YMC S5 ODS column, 4.6×50 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 377.09 [M+H]+. Normal phase preparative chiral HPLC: 11.1 min (retention time) 15 (chiralpak AD column, 4.6×250 mm, 10 micron, 40° C., isocratic elution with 8% EtOH/MeOH (1:1) in heptane, monitoring at 220 nm), 95% ee.

EXAMPLE 496

[3aR-(3ac,4β,7β,7ac)]-4-[4+[2-{(5-Chloro-2pyridiny)boxy]ebty]loctahydro-7-methyl-1,3-dioxopyridiny)boxy[5]-5,000-2-1,1-1,000-2-1,1-1,000-2-1,1-1,000-2-1,1-1,000-2-1,1-1,000-2-1,0

A. Preparation of Solid Support (496A)

A mixture of anhydrous CH₂CL₂ (10 mL) and pyridine (10 mL) was added under nitrogen to chhorosulfonylopskyrene 60 (Argonaut, 1.70 mmol/g, 3.0 g, 5.1 mmol) and compound 495Ai (3.78 g, 10.0 mmol) in a polymer synthesis tube. The mixture turned into a yellow gel open was vigorously shaken (wrist action shaker for 4 h.). All the solvents were absorbed by the resin and it looked dry. The resin was washed in 65 portions with CH₂CL₂ (200 mL) and the washes were combined and extracted with 200 mL 1N HCL. The HCl

fraction was re-extracted with ethyl acetate (200 mL). The organic fractions were combined and extracted with water (50 mL), brine (50 mL) and the organic fractions were dried over sodium sulfate, filtered and concentrated to give 2.1 g of resin bound compound 496A (89% loaded based on recovered unbound compound 495Ai). The resin was washed consecutively with DMF (5x), DMF:water (3:1, 5x), THF (3x) and CH2Cl2 (3x) (-30 mL each wash). The resin 10 was dried in vacuo for 1 h to yield 5.35 g of resin. The resin was still wet and was re-treated with the alcohol. The above described loading process was repeated using the recovered un-reacted compound 495Ai from the above procedure. Recovered compound 495Ai (2.1 g, 5.6 mmol) and anhydrous dichloromethane (15 mL) and pyridine (15 mL) and the resin were combined and subjected to the reaction conditions described above. The resulting resin was washed as described previously and dried in vacuo overnight to yield 20 4.49 g of resin (87% loaded based on recovered unbound compound 495Ai). The starting alcohol was recovered from the dichloromethane:pyridine mixture as described previously (2.04 g of white solid, which would suggest a 92% loading based on recovered alcohol). The resin weigh 25 increase is usually more accurate for loading assessment. The resin loading was calculated to be 0.87 (determined by resin weight increase)×1.08 mmol/g (calculated 100% loading)=0.94 mmol/g. The resin was used as is for the next 30 step.

B. [SaR.(3ac,4β; //B,7ac)]+4[4-2]-(5-Chioro-2pyridiny)/oxyl-thy]octahydro-7-methyl-1,3-dioxoyridiny)/oxyl-thy]octahydro-7-methyl-1,3-dioxo-(47-2)-2,3-dioxo-1,3-dioxo-4,7-dioxo-4,7-dioxo-4,7-dioxo-4,7-dioxo-4,7-qioxy-2]-1, gh-7-ac)]+4[4-2]-5-Chioro-2-con-1 (2H)-pyridiny) ethyl[octahydro-7-methyl-1,3-dioxo-4,7-qeoxy-2]+ isoindol-2-yl-1-naphthale ocentrointifie (496Bi)

The following procedure describes a general process by which arrays of compounds of Formula I can be made using automated approaches. Additional information on such auto-45 mated synthetic approaches can be found in Example 8. Compounds 496Bi & 496Bii are an example of compounds made by such a procedure. For compounds 496Bi & 496Bii, 4-chloropyridinol represents the nuceophile reagent. A 50 broader definition of the term nucleophile is contained in the body of this document and is well understood by one skilled in the art. A Bohdan MiniReactor equipped with a heating cooling block was used with 0.5 Dram vials stacked over one another to achieve the same level as the reactor tubes. 55 Resin (compound 496A) was measured into the individual vials by using each Bohdan resin Transfer module plate "10 mg" and "20 mg" once. The weights of resin delivered ranged from 17-23 mg (0.016-0.022 mmol). Cesium carbonate was added using the Bohdan "20 mg" plate which delivered ~57-60 mg (0.17-0.18 mmol). The nucleophiles were weighted into 1 Dram vials and were diluted in THF to 0.06 M using a Tecan eight channel liquid handler. The resulting solutions (250 µL, 0.015 mmol) were added manually via a micro-pipette to each of the reaction vials containing resin and the resulting array of reaction vials were placed in a Bohdan reactor. When the nucleophiles are amines, ~13 µL of disopropylethylamine was added to the THF solution of the amine. The vials were capped (Tellon-lined) and the reactions were heated with orbital shaking (short stroke 500 rpm) at 70° C. for 24 h. The reactions were cooled to 25° C. and 1 ml. of a mixture of heptane and ethyl acetate (1:1) was added followed by 0.5 ml. of water. The organic layer was extracted manually and individually transferred to a synthesis block tube containing magnesium sulfate (~150 mg). The array of synthesis block tubes were resimultaneously filtered and the filtrates were individually collected into microtubes (96 well block). The aqueous layer was re-extracted with 1 ml. of a mixture of heptane and ethyl acetate (1:1), the organic layer was filtered as described above and the filtrate was individually collected as described above and the civiling microtubes.

Analysis of the array of compounds prepared by the above procedure was performed using the following automated approach. A 120 µl portion of each of the above reaction (filtrates) was aliquoted into two 96 deep well blocks for analysis. The solvent was concentrated in vacuo and the plates were re-diluted with methanol (500 µL). One plate was analyzed by LCMS (Phenomenex ODS column, 4.6×50 mm, 4 mL/min, gradient 0% A to 100% B (A: 90% water, 25 10% McOH, 0.1% TFA; B: A: 90% McOH, 10% water, 0.1% TFA) and the other by flow-NMR (Varian Inova-500 MHz, MeOH, WET solvent suppression pulse sequence, 128 scans, 60 µl flow cell probe). The criteria for submission was: correct molecular ion present and HPLC/NMR purity >70%. Compounds which did not meet the desired criteria were purified by reverse phase preparative HPLC (Shimadzu UP-ODS column, 20x50 mm, 20 mL/min, gradient 40% B to 100% B in 6 min with 2 min hold (A: 90% water, 10% McOH, 0.1% TFA; B: A: 90% McOH, 10% water, 0.1% TFA). HPLC purification vielded 3.4 mg (21%) of compound 496Bi as a glassy solid and 6.8 mg (41%) of compound 496Bii as a glassy solid. Compound 496Bi: HPLC: 96% at 3.47 min & 3.62 min (atropisomers, retention time) (Phenominex ODS column, 4.6×50 mm, 4 mL/min, gradient 0% A to 100% B (A: 90% water, 10% MeOH, 0.1% TFA; B: A: 90% MeOH, 10% water, 0.1% TFA), monitoring at 220 nm). MS (ES): m/z 487.94 [M+H]+. Compound 496Bii: HPLC: 96% at 3.00 min & 3.12 min (atropisomers, retention 45 time) (Phenominex ODS column, 4.6×50 mm, 4 mL/min, gradient 0% A to 100% B (A: 90% water, 10% MeOH, 0.1% TFA; B: A: 90% MeOH, 10% water, 0.1% TFA), monitoring at 220 nm). MS (ES): m/z 488.12 [M+H]*. Additional compounds made by this procedure are set forth in Table 17. 50

EXAMPLE 497

(3aα,4β,5β,7β,7aα)-Hexahydro-4,7-dimethyl-2-(7-methyl-6-benzothiazolyl)-4,7-epoxy-1H-isoindole-1, 3(2H)-dione (497B)

A. 6-Amino-7-methylbenzothiazole (497A)

$$\underset{H_2N}{\longrightarrow} S$$

7-Methyl-6-nitrosobenzothiazole was prepared from 6-nitrobenzothiazole according to the general procedure described by Bartoli et al. Synlett 270 (1976). To a solution of 7-methyl-6-nitrosobenzothiazole (889 mg, 5.00 mmol) in AcOH (40 mL) at 70° C, was added iron powder (325 mesh. 559 mg, 10.0 mmol) in a single portion. The resulting dark reaction mixture was stirred for 15 min before it was cooled and concentrated in vacuo to leave a residue which was partitioned between 1N HCl (50 mL) and CH-Cl. (50 mL). The layers were separated and the organic layer was washed once with 1N HCl (25 mL). The combined aqueous lavers were made basic by the addition of solid NaHCO2 and were extracted twice with EtOAc. The organic phases were combined, dried over MgSO, and concentrated in vacuo to give 534 mg (65%) of compound 497A as a light brown solid. HPLC: 96% at 0.55 min (retention time) (YMC S5 ODS column, 4.6×50 mm Ballistic, 10-90% aqueous methanot over 4 min containing 0.2% H₃PO₄, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 165.0 [M+H]*.

B. (3aa,4β,5β,7β,7aa)-Hexahydro-4,7-dimethyl-2-(7-methyl-6-benzothiazolyl)-4,7-epoxy-1Hisoindole-1,3(2H)-dione (497B)

6-Amino-7-methylbenzothiazole (29 mg, 0.18 mmol), MgSO₄ (54 mg, 0.45 mmol), triethylamine (125 μL, 0.897 mmol) and compound 20A (52 mg, 0.26 mmol) were taken up in 0.18 mL of DME and placed in a sealed tube. The sealed tube was heated at 135° C. for 14 h. The cooled reaction mixture was filtered through a short pad of Celite eluting with EtOAc and the solvent was removed in vacuo. The residue was purified by reverse phase preparative HPLC (YMC S5 ODS column, 20×100 mm, eluting with 30-100% 55 aqueous methanol over 10 min containing 0.1% TFA, 20 mL/min, monitoring at 220 nm). Concentration of the desired fractions afforded a residue which was partitioned between CH2Cl2 (10 mL) and sat. NaHCO3 solution (10 mL). The aqueous layer was extracted once with CII2Cl2 and the combined organic phases were dried over Na2SO4 and concentrated in vacuo to give 42 mg (68%) of compound 497B as a tan solid. HPLC: 2.36 min & 2.55 min (atropisomers, retention time) (YMC S5 ODS column, 4.6x 65 50 mm, cluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 343.3 [M+H]*.

20

25

 $(3ac,4\beta,5\beta,7\beta,7ac).5-\{Octahydro.5-hydroxy-7-(2-hydroxy-thy)+4-methyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yll-8-quinoline-aromitrile (498) & (3ac,4\beta,5\beta,7\beta,7ac).5-\{Octahydro-5-hydroxy-4(2-hydroxyethyl)-7-methyl-1,3-dioxo-4,7-enoxy-2H-isoindol-2-yll-8-quinoline-aromitrile (498).$

Compound 464E (0.500 g, 102 mmol) was dissolved in THF (5.00 mL) and cooled to 0°C. BH₂,DMS (0.193 mL, 2.04 mmol) was then added slowly followed by warming to 35°C. After 1 h, the reaction was cooled to 0°C. and pH 7°C phosphate buffer (15.0 mL) was added resulting in the evolution of gas. EiOH (7.0 mL) and hydrogen peroxide (30%, 1.5 mL) were then added and the reaction was warmed to 25°C. over 2 h. After 3 h, the mixture was 40°C extracted with methylene chloride (3x50 mL). The combined organic layers were washed once with brine and dried over anhydrous sodium sulfate. The product was complexed to broon after wordpa. All attempts to break up this complex failed to give the free product. The crude material was taken 45°c not to the next step without further purification.

The crude reaction mixture was dissolved in 2% conc. HCl/MeOH (5.0 mL) at rt. After 1 h, the volatiles were 50 removed in vacuo and the resulting residue was dissolved in methylene chloride and washed once with sat, ag, sodium bicarbonate and dried over anhydrous sodium sulfate. Solvent removal in vacuo gave the crude mixture of compounds 498i and 498ii as a vellow solid. The mixture of compounds was separated by reverse phase preparative HPLC: Compound 498i: 17.994 min (retention time) & compound 498ii: 19.767 min (retention time) (YMC S5 ODS column, 30×250 mm, 25 mL/min, 10-90% aqueous methanol over 35 min 60 containing 0.1% TFA, monitoring at 220 nm). Solvent removal in vacuo gave 0.012 g (3%) of compound 498i as a white solid and 0.009 g (2%) of compound 498ii as a white solid. Compound 498i: HPLC: 85% at 1.843 min (retention time) (YMC S5 ODS column, 4.6x50 mm, eluting with 65 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS

(ES): m/z 394.21 [M+H]*. Compound 498ii: HPLC: 98% at 1.650 min (retention time) (YMC S5 ODS column, 4.6x50 mm, cluting with 10–90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 394.21 [M+H]*.

EXAMPLE 499

[3ak-(3ac4β,5β,7k,7ac)]+4-[724](1,1-Dimethylethylkimethylsilyllox]ethyl]+4ethyloctahydro-5-hydroxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalencearbontiritie (499) & [3as-(3az,46,5β,7k,7ac)]+4-[72-2](1,1-Dimethylethylkimethylsilylloxy]ethyl]-4ethyloctahydro-5-hydroxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalencearbontiritie (499i)

The racemic compound 434C was separated into its individual antipodes by normal phase preparative chiral HPLC using a Chiracel AD column (5 cm×50 cm), eluting with 8% EtOH in hexane at 50 mL/min to give the faster eluting compound 499i (Chiral HPLC: 6.74 min; CHIRAL-CEL AD 4.6×250 mm column; isocratic elution with 10% EtOH in hexane at 2 mL/min) and the slower eluting compound 499ii (Chiral HPLC: 9.99 min; CHIRALCELAD 4.6×250 mm column; isocratic elution with 10% EtOH in hexane at 2 mL/min). For either compound 499i or 499ii: HPLC: 100% at 3.96 min (retention time) (YMC CombiSreen ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 4 min. 4 mL/min, monitoring at 220 nm), MS (ES): m/z 521.25 [M+H]*. The absolute stereochemistry for compounds 499i & 499ii was not established. For simplicity in nomenclature, compound 499i is designated herein as having an "R" configuration and compound 499ii as having an "S" configuration. Enantiomerically pure products derived from compound 4991 are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 499ii are designated herein as having an "S" configuration.

[3aR-(3ac,4β,5β,7β,7ac)]-4[4-Ethyloctahydro-5bydroxy-7(2-hydroxydry)]-1,3dioxo-4,7-epoxy-2H-isoindol-2y]-1-aphthalencearbonitrile (500i) & [3aS-(3ac,4β,5β,7β,7ac)]-4-[4-Ethyloctahydro-5hydroxy-7-(2-hydroxydry)]-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl-1]-anathhalencearbonitrile (500ii)

Compound 499i (24.0 mg, 0.0461 mmol) was dissolved in 2% cone. HCLEUH (0.8 mL) and the mixture was stirred at 40 to 76 mL. Odd sat. NaHCO, was added to the mixture until the solution reached pH 8, then extracted with EtOAc. The organic layers were combined, washed with brine and dried over anhydrous sodium sulfate. Concentration in 45 vacuo gave 14.7 mg (78%) of compound 500i as a white solid which did not require further purification. HPIC: 95% at 2.40 min (retention time) (YMC S5 ODS 4.6x50 mm, 10%–90% aqueous methanol over 4 min gradient with 0.2% 50 H,PO, monitoring at 220 mm).

Compound 499ii (18.0 mg, 0.0346 mmol) was dissolved 35 in 2% cone. HCUEOH (0.6 mL) and the mixture was stirred at rt for 20 min. Cold sat. NaHCO, was added to the mixture until the solution reached pH 8, then extracted with EiOAc. The organic layers were combined, washed with brine and 60 dried over anhydrous sodium sulfate. Concentration in vacuo gave 14.1 mg (099%) of compound 500ii as a white soil which did not require further purification. HPC: 059% at 2.40 min (retention time) (YMC S5 ODS 4.6x50 mm, 65 HpC), monitoring at 220 mm).

[3aR-(3α,4β,7β,7aα)]-4-[4-[2-[(5-Chloro-2pyridinyl)oxy hethyl]octahydro-1,3-dioxo-7-propyl-4, 7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (501D)

A. 2-(5-Propyl-furan-2-yl)-ethanol (501A)

To a solution of 2-propylfuran (3.00 g, 31.2 mmol) in THF (31 mL) at -78° C. was added n-Bul1 (15.0 mL, 25 M, 37.4 mmol) drophysics over 10 min. The reaction was warmed to rt and stirred for 35 h. After cooling to 0° C., ethylene oxide (2.33 mL, 46.5 mmol) was added, the reaction was warmed to rt and stirring was continued for 19 h. The reaction was 100 rt and stirring was continued for 19 h. The reaction was 100 rt and stirring was continued for 19 h. The reaction was 100 rt and stirring was expensed as 100 rt and stirring was reaction with Eq. (2.540 mL). The combined organic layers were washed with brine, dried over Na, SO₀, filtered, and concentrated to give 4.38 g (21%) of compound 501A as a bright orange oil. This material was used without further princiption. The ICa when 2.5 ml and 100 rt and

B. (3aα,4β,7β,7aα)-4-[1,3,3a,4,7,7a-Hexahydro-4-(2-hydroxyethyl)-1,3-dioxo-7-propyl-4,7-cpoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (501B)

A suspension of 2.45-propyl-furan-2.91)-ethanol (2.50 g. 16.2 mmol) and 4-(2,5-dihydro-2,5-dioxo-1H-1-yl)-1-naphthalencearbonirile (402 g. 16.2 mmol) in benzene (16 nd.) was warmed to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was considered to 60° C. Alter 3 h, the reaction was supermantal. Filtration gave 1.75 g. (27%) of compound 501B as an off-white solid. This material was used without further purification. HPLC: S5% at 30°20° mis 4.31 min (atopiosmers, retention time) (YMC Combiscreen ODS-A column, 4.6x50 mm, eluting with 10–90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 ml./min, monitoring at 220 nm). MS (ES): m/x 40.331 [M+H].

C. [3aR-(3aα,4β,7β,7aα)]-4-[Octahydro-4-(2hydroxyethyl)-1,3-dioxo-7-propyl-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (501Ci) &

[3aS-(3aα,4β,7β,7aα)]-4-[Octahydro-4-(2hydroxyethyl)-1,3-dioxo-7-propyl-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (501Cii)

To a suspension of compound 501B (1.60 g, 3.97 mmol) in ethyl acetate (79.5 mL) was added 10% Pd/C (0.422 g, 0.397 mmol). Hydrogen gas was bubbled through the reac- 30 tion for several minutes and the reaction was allowed to stir under a hydrogen atmosphere for 3 h. The reaction was filtered through Celite and the filtrate was concentrated in vacuo to give a white solid (1.74 g). The crude material was dissolved in minimum amount of methylene chloride and 35 loaded on a 120 g silica gel ISCO cartridge. Elution with a step gradient of 0 to 100% ethyl acetate/hexane gave 1.06 g (66%) of the racemic mixture of compounds 501Ci & 501Cii as a white foam. A 500 mg portion of the racemic mixture was separated by normal phase preparative chiral 40 HPLC (Chiralpak AD; 5x50 cm column; isocratic elution with 13% MeOH/EtOH (1:1) in heptane at 50 mL/min, monitoring at 220 nm) to give 245 mg of the faster cluting enantiomer, compound 501Ci and 245 mg of the slower eluting enantiomer, compound 501Cii, both as a white 45 foams. Compound 501Ci: Normal phase preparative chiral HPLC: 28.0 min (retention time), >95% ee (Chiralpak AD) 4.6×250 mm column, eluting with 12% MeOH/EtOH (1:1) in heptane at 1.0 mL/min). HPLC: 99% at 3.04 & 3.17 min (atropisomers, retention time) (YMC Combiscreen ODS-A 50 column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). HRMS m/z Calc'd for C24H23N2O4 [M-H]: 403.1658. Found 403.1644. Compound 501Cii: Chiral HPLC: 65.7 min (retention time), >95% ee (Chiral 55 (24 mL) at -78° C. was added n-BuLi (11.6 mL, 2.5 M, 29.0 HPLC: 65.7 min; >95% ee; Chiralpak AD 4.6×250 mm column; eluting with 12% MeOH/EtOH (1:1) in heptane at 1.0 mL/min). HPLC: 98% at 3.02 & 3.15 min (atropisomers, retention time) (YMC Combiscreen ODS-A column, 4.6x50 mm, eluting with 10-90% aqueous methanol over 4 min 60 containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). The absolute stereochemistry for compounds 501Ci & 501Cii was not established. For simplicity in nomenclature, compound 501Ci is designated herein as having an "R" configuration and compound 501Cii as hav- 65 ing an "S" configuration. Enantiomerically pure products derived from compound 501Ci are designated herein as

having a "R" configuration and enantiomerically pure products derived from compound 501Cii are designated herein as having an "S" configuration.

D. [3aR-(3aα,4β,7β,7aα)]-4-[4-[2-[(5-Chloro-2pyridinyl)oxy lethyl loctahydro-1,3-dioxo-7-propyl-4, 7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile

To a solution of DBAD (17.1 mg, 0.0741 mmol) in THF 10 (0.5 mL) was added PPh₃ (19.4 mg, 0.0741 mmol). After 10 min, 5-chloro-2-pyridinol (9.6 mg, 0.074 mmol) was added. After 5 min, compound 501Ci (20.0 mg, 0.0494 mmol) was added. After 1 h, DBAD (17.1 mg, 0.0741 mmol), PPh (19.4 mg, 0.0741 mmol), and 5-chloro-2-pyridinol (9.6 mg, 15 0.074 mmol) were added. After 3 h, the solvent was removed in vacuo to give a yellow residue. Preparative reverse phase HPLC (YMC ODS column, 20×100 mm, cluting with 40-100% aqueous methanol containing 0.1% TFA over 30 min, 25 mL/min, monitoring 220 nm) gave 9.5 mg (37%) of 20 the trifluoracetic acid salt of compound 501D as a clear, colorless residue. HPLC: 99% at 7.88 min & 8.11 min (atropisomers, retention time) (Zorbax SB C18 4.6×75 mm, eluting with 10-90% aqueous methanol over containing 0.2% phosphoric acid over 8 min, 2.5 mL/min, monitoring 25 at 220 nm). HRMS m/z Calc'd for C₂₉H₂₇N₃O₄Cl [M+H]*: 516.1690. Found 516.1676.

EXAMPLE 502

[3aR-(3aa,46,76,7aa)]-4-[4-Butvl-7-[2-[(5-chloro-2-pyridinyl)oxy ethyl octahydro-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (502D)

A. 2-(5-Butyl-furan-2-vl)-ethanol (502A)

To a solution of 2-butylfuran (3.00 g, 24.2 mmol) in THF mmol) dropwise over 10 min. The reaction was warmed to rt and stirred for 3.5 h. After cooling to 0° C., ethylene oxide (1.81 mL, 36.2 mmol) was added, the reaction was warmed to rt and stirring was continued for 19 h. The reaction was then cooled to 0° C. and quenched with sat. NHaCl (20 mL), followed by extraction with diethyl ether (2x50 mL). The combined organic layers were washed with brine, dried over Na.SO., filtered, and concentrated in vacuo to give 4.07 g (100%) compound 502A as a bright orange oil. This material was used without further purification. HPLC: 96% at 3.23 min (retention time) (YMC Combiscreen ODS-A column, 4.6×50 mm, cluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 169.22 [M+H]*.

B. (3aα,4β,7β,7aα)-4-[4-Butyl-1,3,3a,4,7,7a-hexahydro-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (502B)

A suspension of compound SO2A (2.50 g, 1.49 mmol) and 20 4 (-2.5 -6 d) hy dro - 2.5 -6 (10 co - 1 H-1 - 1 y) 1 - 1 naphthalencearbonitrile (3.70 g, 1.49 mmol) in benzene (15 mL) was warmed to 60° C. Alter 3 h, the reaction was concentrated in vacuo to give a brown foam Methanol (17 mL) was added and he mixture was sonicated to give a fine beige solid with an orange-brown supernatant. Filtration of 25 solid with an orange-brown supernatant. Filtration of 25 solid with an orange-brown supernatant in the precipitate gave 2.64 g (444%) of compound 502B as an off-white solid. This material was used without further purification. IPILC: 95% at 3.25 min & 3.35 min (atropisomers, retention time) (YMC Combiscreen ODS-A 20 column, 4.650 mm, clutting with 10–90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 mm). MS (ES); mtz 417.29 (M+H1)*.

C. [3aR-(3aα,4β,7β,7aα)]-4-[4-Butyloctahydro-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-anβhalencearbonitrile (502C) & [3as,4β,7β,7aα)]-4-[4-Butyloctahydro-7-(2-hydroxyethyl)-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1-anβhthalencearbonitrile (502Cii)

To a suspension of compound 502C (1.47 g, 3.52 mmol) in ethyl acetate (70 mL) was added 10% Pd/C (0.375 g, 0.352 mmol). Hydrogen was bubbled through the reaction for several minutes and the reaction was allowed to stir under a hydrogen atmosphere for 3 h. The reaction was

filtered through Celite®, rinsing with ethyl acetate (2×70 mL). The filtrate was concentrated in vacuo to give a white foam (1.50 g). The crude material was dissolved in a minimum amount of methylene chloride and loaded on a 120 g silica gel ISCO cartridge. Elution with a step gradient of 0 to 100% ethyl acetate/hexane gave 1.05 g (74%) a racemic mixture of compounds 502Ci & 502Cii as a white foam. A 438 mg portion of racemic mixture of compounds 10 502Ci & 502ii was separated by normal phase preparative chiral HPLC (Chirapak AD column, 5x50 cm, isocratic elution with 12% MeOH/EtOH (1:1) in heptane at 50 mL/min, monitoring at 220 nm) to yield 178 mg of the faster cluting enantiomer, compound 502Ci as a white foam and 15 132 mg of the slower eluting enantiomer, compound 502Cii, as a clear, viscous oil. Compound 502Ci: Chiral HPLC: 25.5 min (retention time), >95% ee (Chiral HPLC: Chiralpak AD 4.6×250 mm column, eluting with 12% MeOH/EtOH (1:1) in heptane at 1.0 mL/min) and HPLC: 99% at 6.50 min & 6.71 min (atropisomers, retention time) (YMC Combiscreen ODS-A column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 nm) HRMS m/z Calc'd for 25 C25H25N2O4 [M-H]: 417.1814. Found 417.1800. Compound 502Cii; HPLC: 55.6 min (retention time), >95% ee (Chiral HPLC: Chiralpak AD 4.6×250 mm column; eluting with 12% MeOH/EtOH (1:1) in heptane at 1.0 mL/min). HPLC: 99% at 3.26 min & 3.38 min (atropisomers, retention time) (YMC Combiscreen ODS-A column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 nm). The absolute stereochemistry for compounds 502Ci & 35 502Cii was not established. For simplicity in nomenclature, compound 502Ci is designated herein as having an "R" configuration and compound 502Cii as having an "S" configuration. Enantiomerically pure products derived from compound 502Ci are designated herein as having a "R" configuration and enantiomerically pure products derived from compound 502Cii are designated herein as having an "S" configuration.

D. [3aR-(3aα,4β,7β,7aα)]-4-[4-Butyl-7-[2-[(5-chloro-2-pyridinyl)oxy]ethyl]octahydro-1,3-dioxo-4, 7-epoxy-2H-isoindol-2-yl]-1-naphthalenecarbonitrile (502D)

To a solution of compound 502Ci (20.0 mg, 0.0478 mmol), PPh3 (37.6 mg, 0.143 mmol) and 5-chloro-2pyridinol (18.6 mg, 0.143 mmol) in THF (0.5 mL) was added DBAD (33.0 mg, 0.143 mmol). The resulting solution was stirred at rt for 15.5 h. The solvent was removed in vacuo to give a vellow residue. Preparative HPLC (Shimadzu VP ODS column, 20x250 mm, eluting with 40-100% aqueous methanol containing 0.1% TFA over 30 60 min and 100% for 25 min, 25 mL/min, monitoring at 220 nm) gave 9.4 mg (37%) of the trifluoracetic acid salt of compound 502D as a clear, colorless residue. HPLC: 99% at 8.14 min & 8.36 min (atropisomers, retention time) (Zorbax SB C18 column, 4.6×75 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 8 min, 2.5 mL/min, monitoring at 220 nm). HRMS m/z Calc'd for C20H20N2O4C1 [M+H]+: 530.1847. Found 530.1855.

20

25

EXAMPLE 503

(3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[4-(5oxazolyl)-1-naphthalenyl]-4,7-epoxy-1H-isoindole-1,3(2H)-dione (503E)

A. (4-Cyano-naphthalen-1-yl)-carbamic Acid Tert-Butyl Ester (503A)

To a solution of 4-amino-1-naphthalenecarbonitrile (9.67) g, 57.5 mmol) in THF (100 mL) at rt was added, over 10 min, sodium hexamethyldisilazane (1.0 M in THF, 133 mL, 133 mmol). After stirring for 15 min, a solution of di-tbutyldicarbonate (15.1 g, 69.0 mmol) in THF (20 mL) was 35 added. After stirring for 18 h at rt, the reaction mixture was partitioned between Et-O (400 mL) and saturated potassium bisulfate solution (200 mL). The organic layer was washed with saturated potassium bisulfate solution (200 mL), saturated sodium bicarbonate solution (200 mL) and brine (100 40 mL). Drying over anhydrous magnesium sulfate, treatment with decolorizing carbon and concentration in vacuo, afforded a residue that was partially purified by flash chromatography on silica gel eluting with 20% ethyl acetate in hexane. The partially purified material was crystallized from 45 ethyl acetate/hexane to give 5.26 g of compound 503A as a colorless crystals. The mother liquor was concentrated and crystallized from ethyl acetate/hexane to give an additional 2.8 g of compound 503A to yield a total of 8.06 g (52%) of compound 503A. 4HNMR (400 MHz, DMSO-d6): 8 9.81 (s. 50 1H), 8.36 (Id, 1H, J=8.5 Hz), 8.11 (m, 2H), 7.92 (d, 1H, J=8 Hz), 7.78 (m, 1H), 7.67 (m, 1H), 1.53 (s, 9H).

B. (4-Formyl-naphthalen-1-yl)-carbamic Acid Tert-Butyl Ester (503B)

A mixture of compound 503A (4.02 g, 15.0 mmol), Raney nickel (1.5 g), sodium hypophosphite (9.00 g, 86.5 mmol),

pyridine (50 mL), water (25 mL) and actic actid (25 mL) was sittered 4.45° C for 5 h. The mixture was filtered through celite and the filter cake was rinsed with warm clahaol (100 mL). After adding water (600 mL) to the filtrate 5 and allowing it to stand for 1 h. the resulting precipitate was g of a white solid which was a 3:1 mixture of compounds 503B & 503A. The material was used in the next step without further purification. HNMR (400 MHz, DMSO-10 d'\$): 6 10.26 (s. 11h), 9.77 (s. 11h), 9.27 (d. 11h, 3-85 Hz), 8.31 (m. 11h), 8.13 (m. 11h), 8.00 (d. 11l, J=8 Hz), 7.80 (m. 11h), 7.70 (m. 11h), 1.54 (s. 11h), 7.75 (m. 11h), 1.54 (s. 11h).

C. (4-Oxazol-5-yl-naphthalen-1-yl)-carbamic Acid Tert-Butyl Ester (503C)

The above mixture of compounds 50A. & 503B (3.37 g. 10.0 mmol; corrected for presence of compound 503A, to them-s-sufforylisecyanide (2.15 g. 11.0 mmol) and potassian cancer (4.6 m. 12.0 mixture) mixture of presence of compound 503A, to the control of the contr

D. 4-Oxazol-5-vl-naphthalen-1-vlamine (503D)

Compound 503C (1.34 g, mol) was dissolved in trifluoroacctic acid (10 mL) and the resulting mixture was allowed to stand for 1 h at room temperature. After removing the 60 volatiles in vacuo, the residue was co-evaporated from ethyl acetate-hypaton (250 mL), to remove traces of trifluoroacctic acid. After partitioning the residue between ethyl acetate (100 mL) and 1N A0H (75 mL), the organic layer was washed with brine (50 mL), dried over magnesium sulfate and concentrated in vacuo to afford 900 mg (99%) of compound 503D as a yellow crystalline solid. HPLC conditions: 95% at 0.92 min (retention time) (Phonomenex 5 micron ODS column, 4.6×30 mm, 10%–90% aqueous methanol over 2 min gradient with 0.1% TFA, monitoring at 254 nm.). MS (ES): m/z 211.22 [M+H]*.

E. (3aα,4β,7β,7aα)-Hexahydro-4,7-dimethyl-2-[4-(5-oxazolyl)-1-naphthalenyl]-4,7-epoxy-1Hisoindole-1,3(2H)-dione (503E)

A mixture of compound 503D (42 mg, 0.020 mmol) and 200 (78 mg, 0.40 mmol) in actic acid (1.0 mL) was refluxed for 18 h. The reaction mixture was cooked to rt, concentrated in vaceo and the residue was partitioned 15 between ethyl acetate (30 mL) and saturated sodium bicarboate solution (30 mL). The organic layer was isolated, dried over magnessium sulfate and concentrated in vacuo. Purification by flash chromatography on a 2.5x15 cm silica gel column, using a gradient of 40-60% ethyl acetate in 20 became gave 28 mg (37%) of compound 503E as a white powder. HPLC: 99% at 1.46 min & 1.36 min (atropisomers, retention time) (Phenomenex 5 micron ODS 4.6x30 mm, 10%–50% aqueous methanol over 2 min gradient with 0.1% TRA, monitoring at 254 mn.). MS (585; mz 2850.106/mH)? 25

EXAMPLE 504

[3aS-(3aα,4β,5β,7β,7aα)]-4-[7-[2-(4-Cyanophenoxy)ethyl]-4-ethyloctahydro-5-methoxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (504C)

A. [3aS-(3aα,4β,5β,7β,7aα)]-4-[7-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]ethyl]-4ethyloctahydro-5-methoxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (504A)

To a solution of compound 499ii (0.235 g, 0.451 mmol) in CH₂CN (6 mL) was added silver oxide (0.523 g, 2.26

mmol) and isolomethane (0.56 mL, 9.0 mmol, stirred over K₂CO, before addition). The resulting suspension was placed in a preheated oil bath (80° C.). After 24 h, the reaction was cooled to rt, diluted with CH₂CN. (20 mL), filtered through a plug of Cellie, and consentrated in vacuo to give a brown gum. Purification by flash chromatograpion on silica gel cluting with 30% ethyl acetate hexanes gave 0.15e g (65%) of compound 504A as a white solid. HPLC: 19.5% at 4.17 mm & 4.25 min detropisomers, retention time) (YMC CombiSreen ODS column, 4.6-50 mm, cluting with 10–90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 mm). MS (ES): m/z 521.25 [MHI].

> B. (3aα,4β,5β,7β,7aα)-4-[4-Ethyloctahydro-7-(2hydroxyethyl)-5-methoxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1-naphthalenecarbonitrile (504B)

To a solution of compound 504A (0.156 g, 0.292 mmol) in ethanol (6 mL) was added 1N HCl (0.44 mL, 0.44 mmol). After 20 min, the reaction was cooled to 0° C. and quenched with sat. aq. NaHCO2 (2 mL) to give a white suspension. Added H2O until the solid dissolved. The mixture was extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (20 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a white solid. Purification by flash chromatography on silica gel 45 cluting with 5% McOH/CH2Cl2 gave 120 mg (99%) of compound 504A as a white solid, HPLC: 98% at 5.17 and 5.44 min (atropisomers, retention time) (YMC CombiSreen ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 8 min, 2.5 50 mL/min, monitoring at 220 nm). HRMS m/z Calc'd for C24H24N2O5 [M-H]+: 419.1607. Found 419.1611.

> C. [3aS-(3aα,4β,5β,7β,7aα)]-4-[7-[2-(4-Cyanophenoxy)ethyl]-4-ethyloctahydro-5-methoxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (504C)

60

To a solution of compound 504B (20 mg, 0.048 mmol) in anhydrous THF (0.5 mL) was added PPh₃ (37.0 mg, 0.143 mmol), para-cyanophenol (17.0 mg, 0.143 mmol) and DBAD (32.0 mg, 0.143 mmol). After 30 min, the solution was concentrated to give a brown gum. Purification by

50

reverse phase preparative HPLC (YMC S5 ODS column, 200-250 mm, cluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 35 min, 20 ml./min, mortioning at 220 more acid over 35 min, 20 ml./min, mortioning at 220 more acid over 35 min, 20 ml./min, mortioning at 220 more acid over 10 cs. 44 md 701 min (atrop/stowners, retention into HPLC 0.9% a (16.84 md 701 min (atrop/stowners, retention into (20 pts.) 8 G18 column, 4.6x75 mm, cluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 8 min, 2.5 ml./min, monitoring at 220 mm). HRMS m/z Calci d for C₃/H₂7N₅O₅ MW-NRI, 17: 530 2295. Found 539 2302.

EXAMPLE 505

(3ac.4β,5β,7β,7ac)+4772-[[(1,1-Dimethylethy) dimethylsily) xy [sthy]-tethyloctahydro-5hydroxy-1,3-dioxo-4,7-epoxy-2H-isoindol-2y|1naphthalenceatomitril (6508b) & (3ac.4β,5β,7β, 7ac)+4(4/2-[[(1,1-Dimethylethyl/dimethylsily] oxy [sthy])-7-ehydrocatlydro-5-bydroxy-1,3-diox 7-epoxy-2H-isoindol-2y|1-naphthalencearbonitrile (508b)

A. (1aα,2β,2aα,5aα,6β,7aα)-4-[2-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy hthyl]-6-ethyloctahydro-3,5-dioxo-2,6-epoxy-4H-oxireno[f] isoindol-4-yll-1-naphthalenecarbonitrile (505A)

To a solution of compound 434B (1.01 g, 2.01 mmol) in 5 methylane chloride (20 m.l.) was added 60% m-CPBA (0.863 g, 3.00 mmol). After 48 h, the reaction was diluted (0.863 g, 3.00 mmol). After 48 h, the reaction was diluted Na_SO₃ (20 m.l.) and sat. NaHCO₃ (20 m.l.) The combined aqueous layers were extracted with CH₂C₃ (20 m.l.). The combined organic layers were asshed with brine (30 m.l.), dried over Na_SO₃, filtered, and concentrated in vacuo to give 1.01 g (97%) of compound 505.As a yellow solid. This material used without further purification. HPLC: 95% at 4.22 min (rectain time) (Phenomine Luna CHS column, 68 4.650 mm, cluting with 10-90% aqueous methanol containing 0.2%) hossoberic said over 4 min. a mL/min. moni-

toring at 220 nm). HRMS m/z Cale'd for $C_{20}H_{34}N_2O_5Si[M-H]^*$: 517.2159. Found 517.2163.

B. (3ac.4β,58,Rβ,7ac) +4/74/2-[[(1,1-Dimethylethyl)himethylsily]oxy lethyl+ethylocathylor-5-hydroxy-1,3-dioxo-4,7-epoxy-11siondol-2-yl]-naphthalencerbonitriie (605Bi) & (3ac.4β,58,Rβ,7ac)+4[4/2-[[(1,1-Dimethylethyl)dimethylsily)bxyyltyl]-7-ethylocathydro-5hydroxy-1,3-dioxo-4,7-epoxy-2l+isoindol-2-yl]-1naphthalencearbonitrii (605Bi)

To a red solution of titanocene dichloride (0.500 g, 2.00 15 mmol) in anhydrous THF (4.0 mL) was added zinc dust (0.392 g, 6.00 mmol). The resulting suspension was vigorously stirred for 1 h under an argon atmosphere to give a green suspension. Excess zinc was removed by filtration through a 0.45 µm microfilter to give a green solution of 20 dievelopentadienyl titanium (m) chloride. To a solution of compound 505A (0.207 g, 0.399 mmol) and 1,4cyclohexadiene (0.380 mL, 4.02 mmol) in anhydrous THF (1 mL) was added dropwise a 0.5 M solution of the above described dicyclopentadienyl titanium (III) chloride (0.9 25 mL, 0.45 mmol). After 1 h, an additional aliquot of the 0.5 M solution of dicyclopentadienyl titanium (III) chloride (0.9 mL, 0.45 mmol) was added and stirring was continued for 1 h. The reaction was then quenched with water (2 mL) and diluted with ethyl acetate (10 mL). The layers were sepa-30 rated and the organic layer was washed with brine (5 mL), dried over Na2SO4, filtered, and concentrated in vacuo to give a vellow gum. The crude material was dissolved in a minimum amount of methylene chloride and loaded on a 35 g silica gel ISCO column. Gradient elution with 0-80% ethyl acetate in hexane gave 0.043 g (21%) of compound 505Bi as a white solid and 0.023 g (11%) of compound 505Bii as a white solid. Compound 505Bi: HPLC: 3.92 min (retention time) (YMC CombiSreen ODS-A column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 40 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 521.36 [M+H]*. Compound 505Bii: HPLC: 91% at 3.97 min (retention time) (YMC CombiScreen ODS-A column, 4.6×50 mm, eluting with 10-90% aqueous methanol containing 0.2% phosphoric acid over 4 min, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 521.34 [M+H]+.

EXAMPLE 506

4-[[3aS-(3aβ,4β,5β,7β,7aα)]-5-(α-D-Glucopyranosyloxy)octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (506B)

A. [3aS-(3aα,4β,5β,7β,7aα)]-4-[Octahydro-4,7dimethyl-1,3-dioxo-5-[[2,3,4,6-tetrakis-O-(phenylmethyl)-α-D-glucopyranosyl]oxy]-4,7epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl) benzonitrile (506A)

2,3,4,6-Tetra-O-benzyl-α-D-glucopyranosyl bromide was made according to the procedure by Spohr et al. Can. J. Chem. 71, 1928-42 (1993). Oxalyl bromide (0.48 mL, 0.95 25 mmol, 2 M in CH2Cl2) was added dropwise to a solution of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (412 mg, 0.763 mmol) in CH2Cl2 (5 mL) and DMF (0.28 mL) at rt under Ar. The reaction mixture was stirred for 20 min, poured onto a mixture of ice and H2O (1:1, 30 mL) and diluted with 30 CH₂Cl₂ (30 mL). The layers were separated and the organic layer was washed with cold H2O (2x30 mL) and brine (1x30 mL) and dried over MgSO4. Concentration in vacuo gave the desired bromide as a brown oil. This oil was taken up in CH, Cl, (2 mL) and DMF (1 mL). Compound 471Dii (100 35 mg, 0.763 mmol), tetrabutylammonium bromide (111 mg, 0.526 mmol) and 4 Å sieves (600 mg) were added to this solution and the reaction was stirred under Ar for 4 d. The reaction was quenched with MeOH (2 mL), stirred for 0.5 h, diluted with CH2Cl2 (10 mL) and then filtered through a 40 Volume: 5 µL). medium porosity fritted funnel, rinsing with CH2Cl2 (5 mL). The solvent was removed in vacuo and the resulting residue was dissolved in CH2Cl2 (25 mL). The organic solution was washed with sat. aq. NaHCO2 (1×20 mL) and H2O (1×20 mL) and dried over MgSO4. Purification by flash chroma- 45 tography on SiO2 eluting with 50% EtOAc/hexanes gave 79 mg (33%) of 506A as a white solid. HPLC: 99% at 4.56 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS 50 (ES): m/z 902 [M+H]+.

B. 4-[[3aS-(3aα,4β,5β,7β,7aα)]-5-(α-D-Glucopyranosyloxy)octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (506B)

Palladium hydroxide (62 mg, 20 ut., *Ptd (dry basis) on carbon, wel) was added to a solution of 506A (65 mg, 007 mmol) in EtOAc (2 mL) and the mixture was stirred under a hydrogen atmosphere introduced via a balloon. After 5 h, 60 the reaction was complete as was evident by HPLC, so the mixture was filtered through a medium prossily fritted funed rinsing with MeOH (2 mL) and concentrated in vacuo. The resulting residue was dissolved in MeOH (2 mL) and filtered through a Gelman Arcodise CR 13 mm syringe 65 filter with a 0.45 µM PTFE membrane. Concentration vickled 38 mg of 506B as a white solid. HPLC: 99% at 2.16

min (retention time) C/MC SS ODS column, 4.6x50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 ml/min, monitoring at 220 mm), MS (SS) m/c 543.20 MH/ll. A 10 mg pertion was 5 recrystallized from McOlEH,O to give crystals suitable for X-ray crystal diffraction studies to elucidate the exact stereochemistry of compound 506B as referenced to the known fixed stereochemistry of the p-pleucoside appendage.

EXAMPLE 507

(3αα,4β,7β,7αα)-4-(1,3,3α,4,7,7α-Hexahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (507)

To 25 g (94.2 mmol) of compound 471.A was added near 2.5-dimelhylinar (30 ml., 280 mmol), and the resulting slurry was heated to 60° C. for 1 to 3 h with mechanical agitation. The resulting slurry was cooled to 0-5° C, and diluted with cold toluene (25 ml., 0-10° C.). The cold slurry was filtered under vacuum. The heats and filter cake were washed with cold toluene (2×25 ml.), and the cake was deliquored with bouse vacuum. The precipitate was dried in vacuo to yield 31.5 g (91.6%) of a compound 50° as a tan solid. HFLC: 99.0%, 10.43 min (retention time) (Coburt 20 ml. 2

EXAMPLE 508

(3aα,4β,5β,7β,7aα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (508)

To THF (275 mL) that had been cooled to -3° C, was added compound 507 (55.0 g, 152 mmol), which resulted in a slurry. To the slurry was added barane methylsulfide (14.4 mL, 152 mmol), at a rate such that the temperature did not exceed 0° C. The reaction mixture was slowly warmed to 20° C, over 2.5 h. The temperature of the reaction mixture was then returned to 0° C, where upon phosphate buffer (1056 mL, pH 7) was carefully added at a rate to control the whydrogen gas evolution and mixturia a temperature $\leq 20^\circ$ C.

45

The resulting suspension was dissolved by adding ethanol (528 mL, 190 proof). At 15° C., hydrogen peroxide (55 mL, 30 wt %) was added at a rate to maintain the temperature ≤20° C. The homogeneous solution was left stirring for 12 h at 20° C. and pH 7.8, whereby crystallization occurred. The resulting slurry was collected by filtration and washed with water (4×100 mL) and methyl-tert-butyl ether (2×100 mL). Drving in vacuo afforded 37.3 g (64.6%) of compound 508. The aqueous mother liquor was extracted with ethyl acetate (3x500 mL). The combined rich organics were 10 washed with 10 wt % aqueous sodium sulfite (1×100 mL), and 25 wt % aqueous sodium chloride (1×100 mL). The organics were dried over sodium sulfate, filtered, and concentrated to recover 8.9 g (15.4%) of compound 508, and a third 11.5 g (20%) fraction of compound 508 was recovered 15 from the methyl-tert-butyl ether cake wash. The above three solid samples of crude material were separately recrystallized from 190 proof ethanol (1 g/10 mL) to afford a total of 35.6 g (61.7%) of compound 508 having a purity level of 98.7% as determined by HPLC analysis (conditions as 20 below). A second crop of compound 508 was isolated from the mother liquor to afford 9.3 g (16.1%) of solid having a purity level of 98.4% as determined by HPLC analysis. The remaining mother liquor was purified by silica gel chromatography using 200 g of SiO2 and eluting with 4 L of 50V 25 % ethyl acetate and 50 V % heptane to yield 5.6 g (9.7%) of compound 508, having a purity level of 94.0% as determined by HPLC analysis. HPLC conditions: 9.74 minute retention time on a YMC S5 ODS-AO column (4.6×150 mm) using a gradient elution from 100% solvent A to 100% 30 solvent B over 15 minutes at 1.0 mL/min. Solvent A=95 V % water (0.01 M NH, OAc); 5 V % acetonitrile. Solvent B=5 V % water (0.01 M NH4OAc); 95 V % acetonitrile. Duel wavelength detector set at 210 and 245 nm, MS (ES); m/z 381.11 [M+H]+.

EXAMPLE 509

(3aα,4β,5β,7β,7aα)-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (509)

Compound 471A (0.37 g, 1.4 mmol) and 2.5-dimelhylfara (0.73 mL, 6.9 mmol) were combined to form a slurry which was heated to 60° C. for 1.h. The reaction mixture was could to -10° C and THE (1.0 mL) was added followed by the addition of borane textahydrofuran (2.1 mL, 1 M). The reaction mixture was soirred for 30 minutes at 0° C, and 30 minutes at 1° C. and 30 minutes at 1° C. and 30 minutes at 1° C. and 10 minutes at 1° L. and 10 minutes at 1° C. and 10 minutes at 10 minutes at 1° C. and 10 minutes at 10 minutes at 10 minutes at 1° C. and 10 minutes at 10 minutes at 10 minutes at 10 minutes at 10 m

at 20° C. resulting in an exotherm to 30° C. The biphasic mixture was allowed to stand at 25° C, for 12 h. After the phases were separated, the aqueous waste was back extracted twice with ethyl acetate (5 mL) and the combined organic layers were washed with water (2 mL) followed by sodium chloride (2 mL, 25 wt %). The organic layers were concentrated in vacuo to yield a yellow oil which rapidly crystallized. To the crude product was added 190 proof ethanol (5.0 mL) and the mixture was heated to 60° C. to afford complete dissolution. Cooling to 20° C. for 17 h resulted in crystallization. The crystal slurry was collected by filtration, washed with heptane (5 mL), and dried at 60° C. under vacuum (30 in/Hg) to afford 0.23 g (44%) of compound 509 having 93.1 HPLC Area %. HPLC conditions: 9.74 minute retention time on a YMC S5 ODS-AQ column (4.6×150 mm) using a gradient elution from 100% solvent A to 100% solvent B over 15 minutes at 1.0 mL/min. Solvent A=95 V % water (0.01 M NH.OAc); 5 V % acetonitrile. Solvent B=5 V % water (0.01 M NH.OAc); 95 V % acetonitrile. Detector set at 245 nm. MS (ES): m/z 381.11 [M+H]+.

EXAMPLE 510

[3aR, (3ac,4β,5β,7β,7ac)]-4 (Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl)-2 (trifluoromethyl)benzonitrile (510) & [3aS-(3ac,4β5β,7β,7ac)-4f5-(Acetyloxy)octahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-2-(trifluoromethyl)benzonitrile (510)

Compound 509 (4 mg), vinyl acetate (0.1 mL) and toluces shown in Table 12 were audited and 20 mg of each of the enzymes shown in Table 12 were added. The mixture was stirred with a magnetic stirring bar at rt in a 16x100 mm capped tube for the time period listed in Table 12. The enantineselective acetylation of the racemic mixture resulted in the formation of compound 510 in afth the acetylated compound 510 in the cantiomeric purity of compound 510 in was determined by chiral HPLC (method below) and the results for each enzyme are as shown in Table 12. The resulting information was used to prepare a large scale batch of compounds 510 & 510 in setseribed below.

TABLE 12

Enzyme	Supplier	Source	Time H	Comp. 510i mg/mL	Comp. 510i % yield	Comp. 510i % ec	Comp. 510ii mg/mL
AK-20	Amano	Pseudomonas fluorescens	15	0.74	39	100	1.02
AP-12	Amano	Aspergillus niger	144	1.10	58	55.4	0.74
PS-30	Amano	Pseudomonas cepacia	15	0.46	24	100	1.24
Acylase 30000	Amano	Aspergillus	15	0.51	27	12.2	1.26
Chirazyme L3	Boehringer	Candida rugosa	144	0.81	42	87.2	1.04
Lipase type VII	Sigma	Candida rugosa	144	0.74	39	100	1.06

To a 500 mL jacketed flask were added Amano lipase AK20 from Pseudomonas fluorescens (25 g), compound 509 (25 g), methyl-isobutyl-ketone (475 mL) and vinyl acetate (25 mL). The flask was maintained at 25° C. with a circu- 20 lating water bath and stirred with a magnetic stir bar. The incubation was continued for 42 h, at which point the enantiomeric excess of compound 510i reached 100%. The solution was filtered through Whatman 4 filter paper to remove enzyme and the filter cake was washed with 50 mL 25 methyl isobutyl ketone. The filtrate was concentrated in vacuo and the resulting residue was dissolved in EtOAc (50 mL) followed by the addition of heptane (50 mL). This solution was loaded onto a Phenomenex cartridge column (silica 800 g) in a Biotage 75L system and the column was eluted with 75% EtOAc/heptane at flow rate 110 mL/min. Fractions were collected (500 mL) which contained compound 510ii and then the cluting solvent was changed to 100% EtOAc to elute off compound 510i. The desired fractions were pooled and the solvent was removed in vacuo to yield 11.0 g of compound 510i, (44%, 100% ee) and 12.10 g of compound 510ii (44%). Compound 510i was recrystallized from 95% EtOH (5 mL/g) in two crops to afford 9.61 g (38%) of compound 510i as a white crystalline solid. Compounds 510i: Chiral HPLC: 10.02 min (retention time) (CHÎRALPAK AD 4.6×250 mm column; isocratic elution with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min). HPLC: 99% at 2.45 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 381.11 [M+H]*.

EXAMPLE 511

[3aR, 43ac.4β, 5β, 7β, 7ac])4+(Octahydro-S-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2yl)-2-(tiffluoromethyl)benzoniirile (511), & Butanedioic Acid, mono[3aS-(3ac.4β, 5β, 7β, 7ac]) [2-[4-exyan-3-(rifluoromethyl)benzy]locathydro-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-1H-isoindol-5-yl] ester=(5111)

-continued

A mixture of the racemic compound 509 (10 mg), succinic anhydride (100 mg) and lipase AK-20 Amano (50 mg) in toluene or MTBE (5 mL) was stirred at rt for 20 hours. After 16 and 20 h, samples (0.1 mL) were taken out from each reaction mixture, evaporated, redissolved in acetonitrile (1 mL) and analyzed by reversed phase HPLC (YMC Pro-pack ODS-A, 3µ, 15×0.6 cm, acetonitrile: water 20:80 to 90:10 in 40 12 min) to determine the area ratio of products compound 511i (RT=8.8 min) and compound 511ii (RT=9.9 min). A second sample (0.1 mL) of each reaction mixture was removed, evaporated and redissolved in 1 mL isopropyl alcohol-heptane (1:1) and analyzed by Chiral HPLC (Chiralpak AD, 25×0.46 cm, 20° C., heptane:ethanol 85:15, 0.5 mL/min, UV 210 nm) to determine the % ee of compound 511i (RT=32.2 min) and compound 471Dii (RT=34.8 min). After 20 h, the reaction mixtures were filtered off to 50 separate the insoluble components (enzyme, etc.). The filtrates were washed with 5% aqueous NaHCO3 (3×1 volume) and water (3×1 volume), evaporated in vacuo and analyzed by HPLC as described above. The results showed an average yield of 48% (theoretical max yield is 50%) and 100% ee for compound 511i. Complete separation of compound 511ii was achieved via the above described NaHCO, extraction. Table 13 gives the details of each reaction as determined by the methods described above. Compound 511i: Chiral 60 HPLC: 10.02 min; CHIRALPAK AD 4.6x250 mm column; isocratic elution with 20% MeOH/EtOH (1:1) in heptane at 1 mL/min, 100% ee. HPLC: 99% at 2.45 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% 65 phosphoric acid, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 381.11 [M+H]+.

TABLE 13

Solvent	Solvent Vol., ml	Comp. 509 mg	Lipase AK-20 mg	Succinic Anhydride mg	Time Hr	Comp. 511i 8.8 min Area Ratio	Comp. 511ii 9.9 min Area Ratio	Comp 511i 32.2 min %	Comp 471Dii 34.8 min %	Comp. 511i ee %
Toluene	5	10	50	100	16	53%	47%	93.1%	6.9%	86.2%
					20	54%	46%	96.0%	4.0%	92.0%
Toluene						100%	0%	96.1%	3.9%	92.2%
Wash										
NaHCO3										
MTBE	5	10	50	100	16	49%	51%	100.0%	0.0%	100.0%
					20	50%	50%	100.0%	0.0%	100.0%
MTBE						100%	0%	100,0%	0.0%	100,0%
Wash										
NaHCO3										

EXAMPLE 512

[3aR-(3aα,4β,5β,7β,7aα)-4-[5-(Acetyloxy) octahydro-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-iosindol-2-y]-2-(trifluoromethy)benzonitrile (512) & [3 aS-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-iosindol-2-y)-2-(trifluoromethyl-benzonitrile (512i))

A series of 50 mL flasks were arranged and enzymes (see Dable 14 for enzyme type and amounts) were weighed into each followed by the addition of phosphate buffer (BF45, 5 mL, 100 mM, pH 7). A solution of compound 473 (5 mg) in

- DMSO (50 µL) was added to each flask. The flasks were 25 shaken at 200 rpm at 28° C. for 24 hours, After 24 hours, the reaction mixtures were extracted with ElOAc (10 mL). A portion of the ElOAc extract (1 mL) was evaporated, redis-
- 30 solved in acetonitrile (1 mL) and analyzed by reversed phase HPLC (C-18, acetonitrile:water 20:80 to 90:10 in 12 min) to determine the area ratio of compound 512i (RT=11.0 min)
- and compound 512ii, (RT=8.9 min). Another portion of EiOAc extract (4 mL) was evaporated, redissolved in 1 mL isopropyl alcohol-heptane (1:1) and analyzed by chiral HPLC (Chiralpak AD, heptane:ethanol 85:15, 0.5 mL/min)
- to determine the % ee of the compound 512ii (RT=34.8 min) and compound 471Di (RT=32.2 min) in this system. Table 14 gives details for an array of different enzymes examined and the resulting yields and % ee for the desired products.

TABLE 14

		Enz Amt	Area Ratio	by HPLC	Exo-Alcohol	Exo-Alcohol	% ee of
Enzyme	Supplier Source	mg	Comp. 512ii	Comp. 512i	Comp 471Di	Comp. 511ii	Comp 512ii
Lipase AP-12	Amano Aspergillus niger	5	18%	82%	18.8%	81.2%	62.5%
Lipase AP-12	Amano Aspergillus niger	25	50%	50%	41.0%	59.0%	17.9%
Lipase PS	Amano Pseudomonas cepacia	5	20%	80%	31.3%	68.7%	37.4%
Lipase PS	Amano Pseudomonas cepacia	25	46%	54%	40.2%	59.8%	19.6%
Acylase 150000	Amano Aspergillus sp	5	30%	70%	52.0%	48.0%	-3.9%
Acylase 150001	Amano Aspergillus sp	25	71%	29%	50.4%	49.6%	-0.8%
Newlase F	Amano Rhizopus niveus	50	3%	97%	31.3%	68.7%	37.5%
Newlase F	Amano Rhizopus niveus	100	3%	97%	25.7%	74.3%	48.5%
Acylase I	Sigma Apergillus melleus	5	10%	90%	9.7%	90.3%	80.6%
Acylase I	Sigma Apergillus melleus	25	38%	62%	10.9%	89.1%	78.3%
Esterase	Sigma Porcine liver	5	78%	24%	36.0%	64.0%	27.9%

EXAMPLE 513

[3aR-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2vI)-2-(trifluoromethyl)benzonitrile (513i) & [3aS-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile & (513ii) & (3aa,4B, 5α,7β,7aα)-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (513iii)

A series of microbial biotransformation reactions were set up to generate compounds 513i, 513ii & 513iii. The details 15 of the reactions for several microorganisms are shown in Table 15 and a general procedure is described below. One thawed vial of the microbe (1 m/L culture) was inoculated into sterile soybean-glucose media (10 mL) in a 50 mL flask. The microbes were grown by shaking at 200 rpm at 28° C for 40 h. A solution of compound 472 (10 mg in 100 µL DMSO) was added to each flask and the flasks were shaken at 200 rpm at 28° C. At 24 and 48 h, 5 mL of the reaction mixtures were extracted by EtOAc (10 mL). A portion of EtOAc extract (1 mL) was evaporated, redissolved in acetonitrile (1 mL) and analyzed by reversed phase HPLC (C-18, 25 acetonitrile: water 20:80 to 90:10 in 12 min) to determine the area ratio of compound 472 (RT=11.2 min) and the product compounds 513i (RT=8.9 min), 513ii (RT=8.9 min) & 513iii (RT=9.6 min). A second portion of the EtOAc extract (4 mL) was evaporated, redissolved in isopropyl alcohol-heptane 30 (1:1, 1 mL) and analyzed by chiral HPLC (Chiralpak AD, Heptane: Ethanol 85:15, 0.5 mL/min) to determine the % ee

of compounds 513i (RT=32.2 min) compound 513ii (RT=

34.8 min) in this system. TABLE 15

		Time	Analysis	by Reversed Ph (Area Ratio)	ase HPLC	Analysis for	6 cc by HPLC	% cc of
Microorganism	ID	Hrs	Comp 513i	Comp 513ii	Comp 472	Comp 513i	Comp 513ii	Comp 513
Streptomyces sp	SC1754	24	7%	0%	93%	96.9%	3.1%	93.9%
		48	12%	0%	88%	96.7%	33%	93.3%
Streptomyces sp	SC3740	24	1%	0%	99%	88.0%	12.0%	76.0%
		48	2%	0%	98%	85.8%	14.2%	71.7%
Nocardia	ATCC	24	5%	0%	95%	93.2%	6.8%	86.3%
interforma	21072							
		48	8%	0%	92%	92.6%	7.4%	85.1%
Streptomyces	ATCC	24	11%	1%	88%	95.7%	4.3%	91.4%
antibioticus	14890							
		48	48%	13%	39%	94.1%	5.9%	88.2%
Streptomyces	TCC	24	1%	0%	99%	82.0%	18.0%	64.1%
mediocidicus	13278							
		48	7%	0%	93%	79.4%	20.6%	58.8%
Streptomyces	NRRL	24	23%	0%	77%	85.0%	15.0%	70.0%
griseus	B8090							
		48	28%	0%	72%	85.9%	14.1%	71.8%
Amycolatopsis	ATCC	24	12%	1%	86%	81.3%	18.7%	62.5%
orientalis	43490							
		48	25%	4%	71%	77.4%	22.6%	54.9%

[3aR-(3ac,4 β ,5 β ,7 β ,7ac)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-21-isoindol-2-y)-2-(trillucomethyl)benzonitrile (514) & [3aS-(3ac,4 β ,5 β ,7 β ,7ac)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-21-isoindol-2-y))-2-(trillucormethyl)benzonitrile & (514i) & (Sac,4 β , α ,7 β ,7ac)-4/Octahydro-5-hydroxy-4,7-dimethyl-3-(dimethyl-3-dimethyl

1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-(trifluoromethyl)benzonitrile (514iii)

A series of microbial biotransformation reactions were set up to generate compounds 5141,514ii & 514iii. The details of the reactions for several microorganisms are shown in 5 Table 16 and a general procedure is described below. A 1 mL culture of Streptomyces griseus SC13971 from a frozen vial was used to inoculate 100 mL of medium (0.5% toasted nutrisov, 2% glucose, 0.5% veast extract, 0.5% K-HPO... 10 0.5% NaCl, adjusted to pH 7 with 1N HCl (R. V. Smith and J. P. Rosazza, Arch. Biochem. Biophys., 161, 551-558 (1974)) in a 500 mL Erlenmeyer flask and the flask was incubated at 28° C. at 200 rpm for 3 days. 10 mL of this 15 culture was used to inoculate 100 mL of medium (as above) in a 500 mL Erlenmeyer flask and the flask was incubated at 28° C. at 200 rpm for 1 day. For the filamentous fungi Mucor rouxii and Cunninghamella echinulata, 1 mL of spore 20 suspension, prepared by washing a slant with 10 mL water, was used to inoculate 100 mL of medium (as above) in a 500 mL Erlenmeyer flask and the flask was incubated at 28° C. at 200 rpm for 1 day. Compound 472 (30 mg in 1 mL methanol) was added to each culture and the incubations were continued for 6 to 10 days. Samples of 10 mL of the culture broth in each flask were removed and extracted with ethyl acetate (20 mL). Samples of 10 mL of the organic layers were each individually evaporated to dryness at 40° C. under a nitrogen stream. The residues were dissolved in 1.2 mL isopropanol and analyzed by reversed phase HPLC (YMC Pak ODS 150×6 mm, 3u C-18, acetonitrile: water 20:80 to 90:10 in 12 min, 1 mL/min, 40° C.) to determine the 35 concentration of compound 472 (RT=11.2 min) and product compounds 514i (RT=8.9 min), 514ii (RT=8.9 min) & 514iii (RT=9.6 min). The same samples were analyzed by chiral HPLC (Chiralpak AD, heptane:ethanol 85:15, 0.5 mL/min) 40 to determine the % ee of compound 514i (RT=32.2 min)

TABLE 16

strain	SC	ATCC	time days	Comp. 472 mg/ml	Comp. 514i mg/ml	Comp 514i ec %	Comp 514iii mg/ml
1. Mucor rouxii	13920	24905	3	0.30	0.01	100.00	0.000
			6	0.27	0.01	100,00	0,000
2. Streptomyces griseus	13971	13273	3	0.29	0.01	100.00	0.000
			6	0.30	0.01	100,00	0.000
3. Cunninghamella echinulata	16027	9244	3	0.34	0.02	100,00	0.002
9			6	0.06	0.02	100.00	0.001
			10	0.16	0.02	100.00	0.001

55

EXAMPLE 515
[3aR-(3aα,4β,5β,7β,7aα)]-4-(Octahydro-5-hydroxy-4,7-dimethyl-1,3-diox-4,7-fluoromethyl)
benzonitrile (515)

compound 514ii (RT=34.8 min) in this system.

Microbial transformation of compound 472 to compound 515 was conducted on a 3 L scale in a 5 L fermentor, using Cunninghamella echinulata SC 16027 (ATCC 9244) and a medium consisting of the following: 0.5% toasted nutrisov. 2% glucose, 0.5% yeast extract, 0.5% K2HPO4, 0.5% NaCl, 5 adjusted to pH 7 with 1N HCl (R. V. Smith and J. P. Rosazza, Arch. Biochem. Biophys., 161, 551-558 (1974)). The fermentor was batched with 0.05% SAG antifoam before sterilization. Spore inoculum was prepared by washing the spores from a 10 day slant culture of Cunninghamella 10 echinulata SC 16027 (ATCC 9244) with 0.9% saline/0.1% Tween 80. The inoculum stage was prepared by adding 1 mL of spore inoculum into 100 mL medium in a 500 mL flask, then the cultures were grown at 28° C. at 200 rpm for 1 day. 10% inoculum from the flask was blended in a sterile Waring 15 blender and used to inoculate the sterile fermentor, containing 3 L of sterile media. The fermentor was run at 28° C. at 600 rpm and 1 vvm aeration. A sterile solution of three antibiotics was added to the fermentor after inoculation; 12 mg of tetracycline chloride, 12 mg of kanamycin sulfate, and 20 60 mg of cephalexin hydrate in 10 mL of deionized water. After 22 hours of growth in the fermentor, a sterile substrate solution was added containing 0.75 g of compound 472 dissolved in 30 mL of methanol, this step was repeated two hours later for a total of 0.5 g/L of compound 472 in the 25 HPLC: CHIRALPAK OD 25x0.46 cm column; isocratic bioconversion. The fermentation conditions were maintained at 28° C. at 600 rpm and 1 vvm aeration. pH 6.5 was maintained by the automatic addition of 10% H2SO4 or 10% NaOH. Periodically, 10 mL aseptic samples were taken and extracted with two 10 mL portions of ethyl acetate. The ethyl 30 acetate layer was isolated, dried under a nitrogen stream at 40° C., and the residue was dissolved in 2.0 mL of isopropyl alcohol. The samples were analyzed by reverse phase HPLC (method below) to determine the ratio of compound 472 and the product compound 515. In addition, each sample was 35 analyzed by chiral HPLC (method below) in order to determine the % ee of compound 515. During the bioconversion process, a sterile solution of 30% cerelose and 1.5% yeast extract was fed into the reaction at ~5 mL/hour. After 114 h from the time of substrate addition, reverse phase HPLC 40 analysis indicated the production of a 78% yield of compound 515. Chiral HPLC analysis measured the % e.e. of compound 515 at 94.9%. The above process was repeated in another 3 L bioconversion, and the reaction was conducted at 28° C. at 600 rpm, 1 vvm acration, with 0.5 g/L of 45 compound 472 input. After 44 h, this reaction gave a 80% vield of compound 515 with 95% e.e. The broth was flittered through a pad of HyFlo™ to provide a clarified fermentation broth. The broth was flittered through a pad of HyFlo™ to provide a clarified fermentation broth. Compound 515 was 50 completely adsorbed onto 55 g of XAD-16 and extracted back into a 1:1 mixture of EtOAc and acetone (3×100 mL) or methyl-tert-butyl ether (3×100 mL). The solvent was removed in vacuo and the resulting residue was purified by silica pad (5 g), eluting with EtOAc. The desired fractions 55 were collected and treated with activated carbon (0.5 g) to declorize the solution and the solvent was removed in vacuo to yield 1.27 g of compound 515. Re-crystallization of this material from EtOAc/heptane (10 mL/20 mL) resulted 950 mg of crystalline compound 515 having 97% purity by 60 reverse phase HPLC and 95% ee by chiral HPLC. Reverse Phase HPLC: YMC Pak ODS-A C18 column, 4.6×50 mm, cluting with a gradient of: 0 min 20% acetonitrile/80% 0.1% TFA in water, 12 min 90% acetonitrile/10% 0.1% TFA in water, 12.01-15 min 20% acetonitrile/80% 0.1% TFA in 65 water, monitoring at 250 nm, 40° C., 5 µL injection volume). Compound 515: RT=8.86 min. Chiral HPLC: CHIRALPAK

OD 25×0.46 cm column; isocratic elution with 15% ethanol/ 85% heptane at 0.5 mL/min, 18° C., monitoring at 220 nm, injection volume: 20 µL. Compound 515: RT=36.5 min.

In an alternate recovery process, the fermentation broth (1L) from the above biohydroxylation reaction was filtered and the cake of cells was washed with 100 mL of water. Clear broth was extracted with ethyl acetate (2x600 mL) and the cake of cells was extracted with 400 mL of ethyl acetate. The combined ethyl acetate layers were concentrated and the resulting residue was dissolved in 5 mL of 1:1 heptane/ethyl acetate and loaded on to silica gel pad pad (70 g in 250 mL fritted glass filter). The silica gel pad was cluted with a gradient of 80 to 90% EtOAc/heptane. Fractions were collected and the fractions containing compound 515 were pooled. The solvent was removed in vacuo and resulting product was crystallized from EtOAc/heptane to give a 90% yield of compound 515 with 98% purity by reverse phase HPLC and 95% ee by chiral HPLC. Reverse Phase HPLC: YMC Pak ODS-A C18 column, 4.6×50 mm, cluting with a gradient of: 0 min 20% acetonitrile/80% 0.1% TFA in water, 12 min 90% acetonitrile/10% 0.1% TFA in water, 12.01-15 min 20% acetonitrile/80% 0.1% TFA in water, monitoring at 250 nm, 40° C., 5 µL injection volume). Compound 472: RT=111.12 min. Compound 515: RT=8.86 min. Chiral elution with 15% ethanol/85% heptane at 0.5 mL/min, 18° C., monitoring at 220 nm, injection volume: 20 uL. Compound 472: RT=27.4 min. Compound 515: RT=36.5 min. Compound (514iii) RT=39.1 min.

EXAMPLE 516

4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-2trifluoromethylbenzonitrile (516B)

The following Example demonstrates preparation of an intermediate useful for preparing compounds of the formula I of the present invention.

A. 3-(4-Cyano-3-trifluoromethylphenylcarbamoyl) acrylic Acid (516A)

5-amino-2-cyanobenzotrifluoride (210.6 mmoles; 40.00 g) and butyl acetate (80 mL) were added to a 250 mL round bottom flask, followed by the addition of maleic anhydride (231.9 mmoles, 23.20 g). The resulting suspension was heated to 60° C. for 3.5 h. The reaction mixture was cooled to 25° C, and then beptane (160 mL) was added dropwise over a period of 25 minutes. The resulting suspension was 5 filtered and washed with a mixture of 4:1, hepatane:butyl acetate (30 mL) and heptane (45 mL). The cake was dried in vacuo to give 60 g (95% vield) of compound 516A.

B. 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)-2trifluoromethyl-benzonitrile (516B)

Compound 516A (17.42 mmoles, 5.000 g) was added to the reaction flask followed by the addition of zinc bromide (17.58 mmoles, 3.960 g) and then toluene (50.00 mL, 43.25 15 g) was added to the mixture. The resulting suspension was stirred for 20 min. Hexamethyldisilazane (26.35 mmoles, 5.560 mL, 4.253 g) was added to this suspension which was then heated to 60° C. for 4.5 h. The reaction mixture was solution (30 mL) at 25° C. The organic phase was collected and the aqueous phase was extracted with EtOAc (15 mL). The organic phase was isolated, combined with the earlier organic phase and washed consecutively with saturated NaHCO₃ (15 mL), a mixture of 1:1 water; brine solution (15 mL) and brine (15 mL). The resulting solution was dried

over MgSO4, filtered and concentrated in vacuo to a 50 mL suspension. Heptane (125 mL) was added dropwise to this suspension with agitation. The resulting thicker suspension was filtered and washed with a mixture of 2:1 heptane:toluene (15 mL) and then heptane (15 mL) to give 4 g (85% vield) of compound 516B, HPLC: 100% at 2.11 min (retention time) (YMC S5 ODS column, 4.6×50 mm, eluting with 10-90% aqueous methanol over 4 min containing 0.2% 10 phosphoric acid, 4 mL/min, monitoring at 220 nm).

EXAMPLES 517 TO 746 AND 751 TO 753

Additional compounds of the present invention were prepared by procedures analogous to those described above. The compounds of Examples 517 to 746 and 751 to 753 have the structures shown in the following Table 17.

Table 17 also provides the compound name, retention diluted with EtOAc (25 mL) and then poured into a 1N HCl 20 time/molecular mass, and the procedure employed for preparation of these compounds. The chromatography techniques used to determine the compound retention times of Table 17 are as follows: LC and LCMS were described in Examples 439 to 454 (Table 9). The molecular mass of the compounds listed in Table 17, where provided, was determined by MS (ES) by the formula m/z.

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
S17 OH ON ON	[SR 8, 47,76,7co] 444- Elaylocalydin-7-(2- tydoxychiy)-1,2- dox-0-7-(2-cycy-2H- condat-2-yl)-1- asphalatenes/boutrile	2.84 LC [M + H]' = 391.16	245 & 461
\$18 CN	[3aS- (3ac,4β,7β,7ac)]-4-[4- Ehylocathydro-7-(2- hydroxyethyl)-1,3- dioxo-4,7-epoxy-2H- isoindol-2-yl]-1- naphthalenecarbonitrile	2.84 LC [M+H]* = 391.16	245 & 461

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
HO CN	[365- (364,46,58,78,7ac)]- 4[7]-2[(6-Chloro-2- 4]-7]-2[(6-Chloro-2- pytimidisy)loxy ethyl] octahydro-5- hydroxy-4-methyl- 1,3-dixox-4/-7-cpaxy- 2H-isoindo-2-yl]-1- naghthal-necurbonitrie	3.04 LC [M+H]" = 519.0	243 & 244
520 0 160 160 160 160 160 160 160 160 160	[3ak- Cond-4557/27au]- Cond-4557/27au]- Feld-15 (C. Chinn-2- melly-1- grimidity Ossyl shyl octaly-dos- pyrimidity Ossyl- phyloxy-4-melly- phyloxy-4-melly- 2H-double-2-yl-1- miphthalencem'onitrile	3.04 LC [M+H]" = 519.0	243 & 244
521 CN	[3aR- (3at,46,78,7at)]+[4 [2-[45-Chleeo-2- pyridiny)axy;ehyi]- 7-enhyscahyi0-1,5- dicto-4,7-epoxy-2H- asphthalencearbonitrile	3.90 LC [M+H]* = 502.28	245 & 461
522 N CN	[38K-4], [5, 7], 7mol.] (38K-4], [5, 7], 7mol.] [31, 5, 7], 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	3.37 LC [M+H]" = 518.28	435, 499 & 500

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
523 CX	[3as-4,8,78,7act]}4-[4 [24(5-Chloro-2- pyridiny)oxy]sthyl]- 7-chlylocahylyto-1,3- dixxx-4,7-cpxy-2H- sociadol-2-yl]-1- naphthalenecationitrile	3.90 LC [M+H]* = 502.27	245 & 461
N CI	[3aS-	3.40	435, 499
HO	(3ac,4β,5β,7β,7ac)} 4-[7-[2-4(5-Chioro-2- pyridinyl)oxy jethyl] 4-ethyloctahydro-5- hydroxy-1,3-dioxo- 4,7-epoxy-2H- isoindol-2-yl]-1- naphthalencearbonitrile	LC [M + H]* = 518.27	& 500
525 CN	(3αc,4β,7β,7αc)-5-[4- [2-[(5-Chloro-2- pyridiny)λoxy]ethy] octahydro-7-methyl- 1,3-dioxo-4,7-epxy- 2H-soindol-2-yl-8- quinolinecarboaitrile	3.32 LC [M + H]* = 489.26	467
N d			
526 N S S	[3aR- (3ac,4β,5β,7B,7act)+ 4 Octabydro-5- hydroxy-4-methyl-7- [24[2-methyl-5- beazeothiazoly]oxy] ethyl-1,3-dioxo-47- epoxy-2H-isoindol-2- y]-1-1 asphthalenecarbonitrile	3.36 LC [M + H]* = \$40.0	243 & 244
HO			

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
527 N N N O N O N	[SaR- (San-4f-Sp.7b,7no)- (San-4f-Sp.7b,7no)- hydrox-4-mediy- hydrox-4-mediy- proxed [4, 4- 4)-show hydrol,4-7- proxy-2H-shoids-2- yl-1- mphhalencenbonitrie	3.35 LC [N+OAc] = 644.8	243 & 244
528	[5aR- (5ar.46.58/7b.7mo)]+ 4 P[2 (2.64.5bhydro- 2.2.5 dimeth)+4-cos- 1.2.5 dimeth)+4-cos- 1.2.5 dimeth)+4-cos- 1.5 dimeth)+5-chydro- 5-hydroxy-4- methy1.3-dioxo-2- phy-11-south-2-pl]-1- anguistic according to	3.37 I.C [M+OAe] = 391.10	243 & 244
539 S N N N N N N N N N N N N N N N N N N	[3aR-4,5,5,76,7au] 4 (Octalydin-5-1-1-2-1-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1	3.47 LC [M+H]* = 566.9	243 & 244

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
550	[34]. [364,65,87,75,75]. [4172,41]. [4172,41]. [364), animo-4- methyl-4- methyl-4- pytimidinyl-ksy ketsyl sylvinosy-4-methyl 1,3-dioxo-4,7-epoxy- 2H-ionindol-2-yl)1- mphhalencom-omitrile	3.47 LC [M + H]' = \$56.1	243 & 244
531	[3aR- (3ara,48,5%,7k,7k7acs))- 4-(Octalyadro-5- hydroxy-4-meltyl- 1,3-dioxy-7±2/c2- qual-nosatin/proxydryl- 5-(3ara)-(2-yt)-1- nophthal-encuri-onitrite	3.39 LC [M + H]* = \$30.6	243 & 244
512 S O	[3aR (3ax,4β,5β,7β,7ac)} +[Octahydro-5- hydroxy-4-methyl- 1,3-diazo-7[24]Cal- construction of the construction of the con- 5-ytoxylehyl-4,7- epoxy-2f-isiorindol-2-yl)- naphthalenceur-onitrile	3.35 LC [M + OAc] = 600.8	243 & 244
5.53 O O O O O O O O O O O O O O O O O O O	[SaR- (Sar-4); Th. Nat) - 4 (4- [Sar-4]; Th. Nat) - 4 (4- [Sar-4]; Th. Nat) - 4 (4- Sar-4); Th. Nat) - 4 (4- callydro-7; methyl-1,3-dicor-4; page 2H-sariadol-2-yl-1- aghthalesecurbenitis	3.28 LC [M + OAc] = 566.6	223 & 250

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
534	HO CN	1847. (San 49.89, 78, 2no.)- 4 72.42 (S. Chom-s- 4 72.42 (S. Chom	3.18 LC LC HM + HP = 553.6	243 & 244
535	HO CX	[Salk (Gos.48,58,78,7ac)]- 4-[Octshydrn-5- hydroxy-4-methyl- 1,3-dioxo-7-12-(5- pheny)-1H-4-fazzol- 1-yl-tshyl-14-7-epoxy- 24-isochado-5-yl-1- naphibalencentronifrile	3.32 LC LC M + H * - 521.5	243 & 244
536	HO N	[3aR. (3a.4f,5],7g,7a()]- 4-[742-(1H-1.2.3- Benzotrinos-1- y), thy [beathydro-5- hydroxy-4-methyl- y-2-1-3-2	3.15 LC LC H+ HJ' = 493.8	243 & 244
537	HO CN	[3ak- (3ac,4h/54),7h,7ac]}- hylroxy-72 (2)H- indo-1+yloxy)cthyl}- 4-methyl-1,3-disco- 4,7-epoxy-2H- isoindo-1-2ylf-philiphihalenecarbonitrile	3.05 LC LM* = 507.6	243 & 244

	 Sillinaca		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
536 C1	Date Supplies of the Control of the	3.33 L1 L2 L3 L4 L4 L5 L5 L5 L5 L5 L5 L5 L5 L5 L5 L5 L5 L5	243 & 244
539	[auk.] [a	3.48 LC [M • H] • - SS2.2	243 & 244
S40	[3aR- (3ac,44,54),7b,7ac,1)- 4-(Octahydro-5- hydroxy-4-methyl-7- [2-[4]-methyl-1H- Dlyridin-3- yl)xxy[htyl]+1,3- dioxo-4,7-epoxy-2H- isoinde/2-yl-1;- naphthale-mecarbonitrile	3.08 LC LC [M+H]* = 524.2	243 & 244

Ex. Compound No. Structure 541 HO N N N N N N N N N N N N N	Compound Name [Salt. Gas.49,53,79,701)- 4174,54c (Shiro-He- print-9- yikaty) Sestivative-5- yikaty) Sestivative-5- yikaty) Sestivative-5- yikaty) Sestivative-10- 2H-locinded-2-9[]-1- naphthalenecurbonitrile	Retention Time Min/ Molecular Mass 2,70 LC IM+11] = 529,0	Pro. of Ex. 243 & 244
542 C1 N HO CN	[3a8-4,58,78,7axi]- 47[42](5-Chloro-3- pyrilany)sos-jehly] 4-richyl-1,3-diron 4,7-qooy-2H- ison-4,7-qooy-2H- ison-4,7-qo	3.17 LC [M+H]" = 594.1	243 & 244
543	[3aR- (3ax,4b,5b,7B,7au)] 4{Octalyane-Suh 4{Octalyane-Suh 5am-24[3-4]-cos- pyrroldistylphenoxy] coship4[4-7-epox-2H- isonabd-2-yl]-: naphthalencentronittle	3.10 LC LC LM + H [*] = 552.3	243 & 244

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
S44	[Sak- (Sat-4)5-5, 7, 7au]- (Sat-4)5-5, 7, 7au]- (Directlyshanino) 5, 6- dimethyl-id- syriandiny [saysthyl] oxinjytoi- y- y- shanino- shani	2.40 LC [M+H]* = \$42.3	243 & 244
545 CN	(Sac. 48, 71, 7m.) 7-14- [2-16]-Cabos-2- pyridinyloxylehyl] ocahydro-7-methyl- 1,3-diox-4,7-epoxy- 21-isoinde-2-yl-j/2,j ₂ - bearothidiazote-4- carboninic	3.52 LC M + H]* - 495.6	424A, 204, 482F & 482G
OH OH CN	(1ac.2β,2ac,5ac,6β,6ac) +(Octabydro-2- (2-hydroxychthylo- methyl-3,5-dixxo-2,6- cpoxy-4H oxirend(Escindol-4-yl)-1- naphthalencearbonitrile	2.36 LC [M+H]* = 391.31	460 & 228
547	[3ak, 45,6,78,7au]+ (40xak,94,7au)+ (40xak,94,7au)+ (40xak,94,7au)+ (13-dions-12,4- 13-dions-12,4- 13-dions-12,4- 13-dions-12,4- 13-dions-12,4- 14-dions-12,4- 14-dions-12,	2.92 LC [M + OAc]' = 568.6	243 & 244

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
548 CF ₅	[3aR- (3ac4§5§7,7k7ne1)+ 4[Octalysion-5- 1- 1-4]Octalysion-5- 1-4]Octalysion-7[24]G- (riffuscomethyl-4- pyrimidinyl-ay-pkstyl- 4,7-epasy-2H- isoindol-2-yl-1- aphthaleaccuro-ontrile	3.18 LC [M + OAc] = 596.7	243 & 244
546 (F)	[3alk- (3ac4[5,5],7[1,7ac1)] 4 (Octolysion-G- 1) 13-dioxo-71-7[6-vion- 4-(cilinocomely)-1(olto- pyrimdiny)ciby)† 5,7-pays-21b; bit of the composition of the composition mphthelenecuromitrie	2.94 LC [M + OAc] = 596.5	243 & 244
FyC CI	[Salk, 19, 78, 76.0] day (4, 59, 78, 76.0) day [1/2, 4] «Chiloro-Sonos-6, (irillacconachy)» (1/2H) pyvidiny [Juhy] [szhalydro- s-hydrocy-6, 200-6, 47, consy-2H isolated-2-yy]-1 naphihalen cearonirile	3.39 LC [M + OAe] = 629.3	243 & 244
S51 CI CF ₃	[3aR- (3ac4[55,7]h,7ac1)]- 4 [74]2 [] *Chloro-5- (174] *Chloro-5- (174) *C	3.76 LC [M + OAc] = 629.6	243 & 244

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
HO CN	[bath Got 48,58,70,7to1]- [Got 48,58,70,7to1]- [474.24,Ca.2Dhlydre- 2.2-dimethyl-3-coc.7- bencofurany loxy, lethyl cetalydro-5- allows-4.7-epoxy- 11-addrox-4.7-epoxy- 21-bioinols-2-yll-1- niphthalenceurbonitrile	3.26 LG LG LG + OAe] - 611.5	243 & 244
HO NH	[3aR- (3ac,4),5β,7β,7ac)]- 4-{Cotahydro.5- hydroxy-4methydr- 1- hydroxy-4methydr- 1-adol-4-yhyoxy-glahyl- 1,3-dioxe-4,7-epoxy- 2H-siodad-5-yhj niphihalencesty-mirila	3.16 LC JM+HJ* = 522.5	243 & 244
554 NH	[3aR- (3a,4,45,5p,7b,7a,\alpha)]- 4-[Octahydro-S- hydroxy-72(2)H indols-yloxyyethyl- -methyl-1,3-dixox- 4,7-epoxy-2H- isoindol-2-yl]-1- naphthalenecarbonitrile	3.03 LC [M+H]* = 506.3	243 & 244

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
HO N CN	[Bak.] (San 49 Sp. 7h. 7m)]- 47 [74 [45 Cabor- 1.2 dillhydro-2 exco-3- pyridinyloxy-lahyl] octaloginos-5-hydroxy- 4-mohyl-1.2-discor- 6-fine for the fine fine for the fine fine for the fine fine fine for the fine fine fine fine fine fine fine fin	2.85 LC [M + H] = \$20.5	243 & 244
SS6 CI NOTE OF THE CONTRACT OF	[3ak- (3ac.4[6.5], 7], 7aca]- 447[2-(5.5] (alto-2H- 2), 24, 25, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	3.53 LC [M+0Ac] = 596.3	243 & 244
557	[3ak- (3ax,4f,5f,7f,7au)- 4-[Octahydro-5- hydroxy-4-methyl-7- [2-(5-methyl-2H- 1,2-3-benzonimo-2- yluthyl]-1,3-doxo- 4,7-epoxy-2H- isonobi-2-yli-1- naphibalsenc-en-Ponitrile	3.35 LC [M+H]* = 508.5	243 & 244

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
559 CV N N N N N N N N N N N N N N N N N N	[20]2. [20]3. [3]. [3]. [3]. [4]. [4]. [4]. [4]. [4]. [4]. [4]. [4	3.32 LC [M+H]" = 528.3	243 & 244
559 HO CN	[348-46-58,78,7ma)]- (340-48-58,78,7ma)]- (340-48-58)-6- 12-(6-methy-1-11- 12-(6-methy-1-11- 12-(3-bezzorizon-1- yylethy-1]-3-elacor- yolethy-1]-1- naphthalenecarioonitrile	2.97 LC M+H " = 508.4	243 & 244
560 CI	[348-48,58,78,7ax] (247-54,53-bishloro- 2-cox-1(2H) pytidinyichyl Jexthydro- 5-hydrony-4- methyl-1,2-dioxed-2-yl-1- naphthalenecationitrile	3.22 LC JM + HJ' = 538.3	243 & 244
S61 CN	[Jakk (16, 78, 70, 700)]. (2004, 46, 56, 70, 700)]. (2004, 46, 56, 70, 700)]. (2004, 46, 56, 700)]. (2004, 47, 47, 47, 47, 47, 47, 47, 47, 47, 4	3.30 LC [M+H]* = 504.3	243 & 244

Ex.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
562	HO CN	Date [Suc.48, 59, 58, 7m] [Suc.48, 59, 58, 7m] [Suc.48, 59, 58, 7m] [Suc.48, 50, 50, 50] [Suc.48, 50, 50] [Suc.48, 50, 50] [Suc.48, 50] [Suc.4	3.67 LC [M + H] = 596.3	243 & 244
563	HO NHI	Jack (Suz. 46, 57, 17). stoil (Suz. 46, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57	2.82 LC LC LS + 1T - SOp.1	243 & 244
564		[3aR- (3ac,4β,5β,7β,7ac)]- 4-[Octahydro-5- hydrawy- ¹ /2(H- indazoi-3-yloxyyethy]]+ methyl-1,3-dioxo-4,7- epoxy-2H-isoindol-2-yl[-1- naphthalenecarbonitrile	3.19 LC [M+H]* = 509.2	243 & 244

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
565 CI	[Suk-AS, P.(T), P.(C)] 2-(a-Henrollinovly)- 2-(a-Henrollinovly)- 7-2-(a-S-henrollinovly)- 7-2-(a	3.21 LL [M+H]' – 576.2	481
565	[3ak. (Sus. 46,58,7k7na)]- 2-(6-Benzothizolyl)- 7-2-(5-shiron-3-cros- 1-2-benzionzon-2-(2H)- yhthylpexhylor-5- shydray-4-melyl- 4-frequery H- tomatole-1,7(H)-dione	2.81 LC [M + H] ⁺ = \$26.2	481
567 S	[3aR- (3as,4],56,7],7n(a)}- 7-2c-(1,3-beardines)-5- 7-2c-(1,3-beardines)-5- beardines(9) bearlytes- 5-sydrosy-4- methyl-1,7-epasy- 1H-nointsle-1,2(3H)-dione	2.80 LC [M + H]' - 495.2	481

Ex.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
568	HO S	lass: (Sat. 49-57-78-2m)]- (Sat. 49-57-78-2m)]- (Sat. 49-57-78-2m)]- (Sat. 49-58-78-2m)]- (Sat. 49-58-78-2m)- (Sat. 49-58-78-2m)-	3.21 [M+H]" - \$26.1	481
569	HO S	[3aS- (Sac,4hS,9,7g/kac)]- 2-(e-Benzothianolyl)- 7-[2-(s-bluro-3-con- 7-2-benzi-con-2-2(H)- ylshih]-benziyeto-5- ylshih]-benziyeto-5- (A-7-quoy-1H- isoindole-1,3(2H)-diene	2.84 LC [M + H] = 391.16	481
570	HO S	[3aS- (3ac,4),5(β,5β,7β,7aα)] Beznodoxal-5. Voxy yehrly [2-(6- bearothiazely] bexahydro-5-hydroy-4- methyl-4,7-epoxy- 1H-isoindole-1,3(2H)-diose	2.82 LC [M+H]* = 495.2	481

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
571 CN	(3ax.4β.5β.7β.7ac)- 4[7]2((5-Ch)tor-2- proting by a sky by proting by a sky by 4-methyl-1,3-disco- 4-repay-2H- isotnolol-2-yl)-1- mphilalenecurbonitile	3.64 & 3.76 atropisomers LCMS [M + H]* = 518.19	491
572 CT	[JaR. 45, 78, 78, 7ao]). 4-174-2(5-Cahore-5- pyidinylooy, kthyl] octahydro-5-methoxy- 4-methyl-1,-3-doco- 4,7-epoxy-2H- isoniad-6-yli naphthaleaccurronirile	3.50 LC [M+H]' = 518.28	491
573	[3ak- (3ac4)/F,7ac0]-4[4- Ethylocahydro-72-(2-fr- methoryhenov)-thtyl- [3-4/dox-4]- er- constant (3-4/dox-4)- mphhalenecaronitrile	7.49 & 7.75 atropisomers LC HRMS [M * CH ₃ CO ₂]" = 555.2144	245C, 461 & 462
574 O CN	[3aR- (3ac,4p,7p,7ac)]-4[4] [2,6,5-Dimehyphenoxy) [2,6,5-Dimehyphenoxy] ethylenshylen-],- dison-47-qony-3H- isoindo-2-p[+]- mphilalon-carbonirile	8.10 & 8.31 atropisomers IRMS [M + CH ₂ CO ₂]" = 553,2363	245C ₅ 461 & 462

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
575	[3a]k- (3aa,[4],78,7aa)]+4[4 [2-(2,3-1)hydn-1]-1]- [2-(2,3-1)hydn-1]-1]- [2-(2,3-1)hydn-1]-1]- [3aa-4,7-qoy-2]-1 isoindo(2-yl-1)- myhthelen-euroonidib	8.17 & 8.37 atropisomers HRMS [M + CH ₂ CO ₂]" = 565.2326	245C, 461 & 462
576 CN	[3aR- (3at,46,78,7ac)]-5[4]- 5-[46-Chlevo-2- 5-[4]- [3at,46]- [4]- joctahydro-7-methyl- 1,3-dixox-4,7-epsy- 2H-isoindol-2-yl-B- quinolinecurbonitile	3.45 LC [M+H]" = 489.0	467 & 487
577	[385, 48, 78, 780] 5-[4 [7-[6-Chlevo-2- 17-[6-Chlevo-2-	3.45 LC [M + H]" = 488.59	467 & 487
578 CF ₃ N	[3aR- (3ac,R-7R, 7ac)] S- [Osahydro-4-recht]- (Osahydro-4-recht)- (ordinosomolydro- pyrimidiny locy laby)- 4,7-epoxy-2H- isomolydro-2H- jes quinolineas troubline quinolineas troubline	3.25 LC [M+H]" = 524.0	467 & 487

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
570 CN CN CF ₃	Esse. (Suc.44): To 7 ani) 5- (Suc.44): To 7 a	3.45 LM + HT = 522.598	467 & 487
580 CI	Data— Cane 48, 78, 7no.) \$ -{4 (an. 48, 78, 7no.) \$ -{4 (an. 48, 78, 7no.) \$ -{4 (an. 48, 7no	3.66 10: 10: 10: 11: 11: 11: 12: 13: 14: 14: 14: 14: 14: 14: 14: 14: 14: 14	467 & 487
581 CN	[3aS, 4β,7β,7ac)]-5{4 [-2](5/Chloro-1;2- benriacouzol-3- chloro-1,2-benriacouzol-3- 7-pachly-1,3-disco- 4,7-epoxy-2H- isoindol-2-yl]-3- quinolinecarbonirile	3.66 LC [M+H]* = 529.16	467 & 487

-continued			
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
582	[Bull- Close, 44, 77, 760] \(\) \(\) 4.4 (-24, 2.0 bethy lamino)-6- methy-4- pyrimidiny [losy] bethy [losy] - c-ethylecus hydro- 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25	5.85 & 6.06 steptionaxes (TM+H)" = \$54.26	245C, 461 & 462
583 P CN	[3aR- (bac49,7h,7ac)]+4[4 (bac49,7h,7ac)]+4[4 (bac9pheros), eth)] 7-ctilylectalydro-1,3- deco-4,7-govy-2H- isomotiv-2,y]) asphilatenessmonitrile	7.23 & 7.50 sitopicantra (H) M - H] = 508.1682	245C, 461 & 462
584	[3aR- (3ac,4β,5β,7β,7ac)]- 4[7{2-(5-Chloro-2- pytidiayl)oxylethylf- 5-cthoxyocthyltro-4- methyl-1,3-dioxo-4,- poxy241-sioridol-2-yl-1- naphthalenecarbonitrile	3.60 LC [M + H]* = 532.23	223, 495 & 496

Ex.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
585		[Safe: Cas.4(§-\$\fo,\$\fo,\$\fo,\$\fo,\$\fo,\$\fo,\$\fo,\$\fo,	3,68 1.0 1.0 1.+ 1]] = 544.23	491
586		[Sas B, S, B, Tan). (Sas AB, S, B, Tan). 4/12/(S-Caline-2-pyridary).exp-latyl- contabylor-4-methyl- (phenylachony)-4.7- (pony)-H-ionical-2-yl-1- naphthal-caccuronatrie	3.63 LC [M+H]* = 594.26	491
587		[3aS- (3ac,4β,7β,7ac)]-4- [Octabytro-4[2-l]-6- (methoxymethyl)-2- (2-propsythio)-4- (7-prosphyl)-3-doco- 4,7-epoxy2H- sionidol-2-yl]-1- naphthalenecarbonitrile	402 LC [M + H]" = 567.31	491

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
555	[Sunt. Apr. Apr. Apr. Apr. Apr. Apr. Apr. Apr	3.37 1.0 104 - HJT = 495.24	467 & 487
589	[385-(30c,4β,7β,76c)]-5-(Octalydro-4-nethyl-7-12-5-mothyl-21-1-12-5-mothyl-21-1-12-5-mothyl-21-1-12-5-mothyl-21-12-5-mothyl-21-3-mothyl-2-y-12-sociado-2-y-1	3.37 LC M+H '= #93.24	467 & 487
590	[3aR- (3ac,4B,7B,7aa)]-5-[4-[2-(4- Cynaophenoxyethyl) octabydro-7-methyl- 1,3-dioxo-7-repoxy- 2H-isoindol-2-yl-8- quinolisecutbonitile	3.14 LC [M + H]' = 479.22	467 & 487

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
591 CN	[365-48] 78,7mo] 5-f4-[2-(4-(5mo)phenoxy)ethyl (5mo,phenoxy)ethyl octalhydro. 7methyl- 1,3-dioxo-4,7-epoxy- 2H-isoindo-2-yll-8- quinolinecurbonitrile	3.14 IC IM + HT = 479.22	467 & 487
592 CI N N N N N N N N N N N N N N N N N N	[3ar, 46, 55, 76, 7m]); -[3ar, 46, 55, 76, 7m]); -[3-bearisoxol-3- y)oxy,ghty Sctabydro-5-hydroy-4- methy-1,3-dioro-4,7- epoxy-21-hondod-2- y)12,9-2-hondod-2- xdrontine	3.38 LC LC LC LC + HP = 352.12	482
593 HO	[3aS- (3ac.4f, 5f, 7g, 7ac)]- 7-[74]24[(5-Chloro- 1)-b-enziorezoi-3- 7-174]24[(5-Chloro- 1)-b-droxy-4 -methyl-1,3-dioxo-4,7- poxy-2H -indiod-2- yl[2,1,3-b-enzoshindiazole-4- carbonittle	3.39 LC [M+H]" = 552.10	482

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[3aR. (3ac.4β,58,78,7ao)]; 7-17-[2-(1,3-8) Benzodiozol-5- yids yia hij betahydro- sids yia hij betahydro- sids yia hij betahydro- sids yia hij betahydro- sids yia hij betahydro- yil 2,1,3-benzoshindiozol-2- yil 2,1,3-benzoshindiozol-4- carbonitrile	3.00 LC [M + H]' = \$21.15	482
HO N S	[365-4], Sp., Tp., Tao.) + 7-17-2(-1), Sp. Tp., Tp., Tp., Tp., Tp., Tp., Tp., Tp	2.99 LC [M+H]* = 521.14	482
596 F CN	[3ak- (Sn.44-N.707m)+44- (Sn.44-N.707m)+44- (Sn.44-N.707m)-44- Bhoropkeary skup)- 1,3-disou-47-epoxy- 12-k-anishe 2-ph-1- mphilateneear/omitile	3.76 LCMS [M + H]" = 496.2	496
597	[3aR. (3ac,4/,7k,7ac)]+ (Octahydro-4-methyl-7/2-(3- methylphenoxy)ethyl-1,3-dixxo-4/-7copxy- 2H-isoriado-2-yrj-1- naphilalenecarionitrie	1.79 LCMS [M+H]* = 467.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
598 F	[3aR-4], 7(b7ma)] 44[4]2-(3- Gaz, 4], 7(b7ma)] 44[4]2-(3- Faserphenoxy)ethyl] ociahydro-7-methyl 1.3-dioxo-4,7-epoxy- 2H-isoindol:2-yl-1- naphthalenecarbonitrile	2.01 LCMS [M + H]* = 471.2	496
599 r	[3aR- (3ax,4β,7β,7ac)]+4[4[2-(4- Floorophenoxy)ethyl] cotahydro-7-methyl- 1,3-dioxo-4,7-epoxy- 2H-isoindol-2-yll-1- naphthalens-carbonitrile	1.98 LCMS [M+H]* = 471.2	496
500 CS	[3ak. Co. 48, 78, 7m]+1442-(3- Composition workship) control or multiple 1,3-diox-4,7-qrosy- 2H-isoinds-2-yl)-1- mphilatan-euroonirile	1.88 LCMS [M + H]" = 478.2	496
501 NC	[3aR. (3ax,46,78,7aa)]+4[4]2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2-(2	3.42 LCMS [M+H]* = 478.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
602	[3aR- (3ar,46,7b,7as)]+4- [Octalyntu-4 {2-(2- Continue 1, 2- 7-meth+1,3- disso-3,7-copy-2H- isoindol-2-y]+]- naphthalencurboniirile	1.83 LCMS [M+H]* = 483.2	496
60.3	[3aR- (3ac,4β,7β,7ac)]-4- (Octalydro-42-(3- methoxyhenoxy)ethyl]- 7-methyl-1,3- dixxo-4,7-epoxy-2H- isoindol-2-yl -1- naphthalenecarbonitrile	2.14 LCMS [M+H]* - 483.2	496
504	[3aR- (3ac,4β,7β,7ac)]+4[4[2-(3- Chlorophenoxy)ethyl] octahydro-7-methyl- 1,3-dioxo-4,7-epoxy- 2H-isoindol-2-yl]-1- naphthalencearbonitrile	2.09 LCMS [M + H]* = 487.2	496
905	[3aR- (3aC,4β,7β,7aC)]-4-[4-[2-(3- Acetylphenoxy)ethyl] octahydro-7-methyl- 13-dioxo-47-epoxy- 2H-isoindol-2-yl]-1- naphthalenecurbonitrile	2.20 LCMS [M + H] ⁺ = 495.2	496
X-CN			

	npound	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
606		[3aR- (3ac,4B,7B,7ac)]-4-[4-[2-[3- (Dimethylamino)phenoxy] ethyl betahydro- 7-methyl-13-dioxo-	1.94 LCMS [M + H]* = 496.2	496

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
609	[Jank 6, 7th, 7cm)]4- [Joschydro-4]2-14- [Ostinydro-4]2-14- (H-Hindoor)-1- yiphenoxy lethyl 7- methyl 1,2-dinac-6,	3.81 LCMS [M + H]" = 519.6	496
610 N N N N N N N N N N N N N N N N N N N	[3ak- (3ac.4β,7β,7ac.)]-4 (3ac.4β,7β,7ac.)]-4 (3ac.4β,7β,7ac.)]-4 (3ac.4β,7g,7ac.4β,7a	2.10 LCMS [M + II]" = S38.2	496
611	[3aR- (3ac.4β,7β,7ac)]+4 (Ostahytin-4-readhyt- pheroxybearny) edny)-4,7-epoxy-2H- 4,7-epoxy-2H- isoindol-2-yl-1- naphthalencearbonistile	1.89 LCMS [M + II] = 545.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
612	[Dath.] [Osci47,73,7co] 4- [Osci47,73,7co] 4- [Osci47,74,75,7co] 4- [Osci47,74,75,72] 4- [Osci47,74,75,72] 1- [Osci47,74,75,72] 1- [Osci47,74,75,74] 1- [Osci47,74,74] 1- [Osci	151 LCMS [M+H] = 469.6	496
	[3sik- (3so,4),7]k,7na)}+4[4 [24,6]copplessylthio] olly]S-talkydio-7- enelyl-1,3-dicos-4,7- epoxy-21-isoindoi-2-yl}-1- suphthateneconoutrile	1.53 LCMS [M + II] - 537.1	496
CF ₃	[3aR- (3ac,4β,7β,7ac)]+4 (Octahydro-4-methyl- 1,3-dioco-7-[2-[17- (triflucromethyl)-4- quinolinyl [sho], ethyl- 4,7-epoxy-2H- isoindd-2-yl-1- naphthalencearbonitrile	1.49 LCMS [M + H]* = 588.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
615 CN	[3ak (Np, 7ac)]+ (Sua (Np, 7ac)]+ (Sua) (Mp, 7ac)]+ (Sua) (Mp, 7ac) (Sua) (Mp, 7ac) (Sua) (Mp, 7ac) (Mp, 7	1.79 LCMS [M + H]* = 467.5	496
616	[3uR-47,78,7ao].44[4]2-(4- County-Renewsychty] cotahydro-7-mshyi- 1,3-dioxo-47-epoxy- 2H-isoindoi-2-yll-1 naphthalenecurbonitrile	1.98 LCMS [M + H]" = 478.2	496
617	[3aR-4β,7β,7ao]-4-[4-[2-(3,5- Dinethylphenexylethyl] Dinethylphenexylethyl methyl-13-dicoc-4,7- govy-2H-ionioth-2-yl-1- naphthalenecarbonitrile	1.80 LCMS [M+H]' = 481.2	496
618	[3aR- (3ac.4β,7β,7ac)]-4[4]2-(2,6- Dimethylphenexy)ethyl octahydro-7: methyl-1;2-dixo-4;7- yryhlalenecarbonitrile maphthalenecarbonitrile	1.88 LCMS [M+H]* - 481.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
619 CN	[Sak, Ag. Ry. Am.]) 4 [Oculaydro 4 2 /4 Ag. Am.] 5 Penchyl-1, 2 Ag.	1.50 LOMS [M+H] = 483.2	496
620 O O O O O O O O O O O O O	[3aR. (3ar. 4β, 7tp. 7ac)]+4 { (24(2,3-7b)y/nov-1H- index-5- thyl) [estalyy/no- 7-methyl), 3-discor- 4, 2-poxy-2H- ioxinds-2-yl- polyhelia necurbouit/ile	2.14 I.CMS [M+II]* - 493.3	496
621	[34/24[3aR- (3ac,48/7]b,7ac)}-2-(4- Cyano-1- naphthaleayl)octabydro- 7-methyl-1,3- dioxo-47-epony-411- isoindol-4- y]ethoxy penzoic acid, methyl ester	3.99 LCMS [M+H]* = 511.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
OF THE STATE OF TH	[3aR- (3ar,4β,7β,7ar)]+44- [2-(4+formyl-2- 2-(4+formyl-2- y)-shyll-graphyl-graphyl-graphyl- octalyd-o-7- melhyl-1,3-dioco-4,7- epoxy-214-isoiado-2-yl-1- naphthalemecar-onltrile	2.01 LCMS [M + H]" = 511.2	496
OH OH	[3aR- (3ar,4β,7β,7ar)]+ [5cataydro-4/2]4-(3- (5cataydro-6/2)4-(3- cataydro-6/2)4-(3- cataydro-6/2)4-(3- (3-dixx-4/7-poxy- 2H-isoindol-2-yl]-1- asphilasienecarooilirie	1.93 LCMS [M+H]" = 511.3	496
G24 G CN CN	[3aR- (3ac,4b,7b,7ac)]+4]+4[2-(2,3- Delthoropheuxy)ethyl] Delthoropheuxy)ethyl] methyl-1,3-dioxo-4,7- epoxy-22H-isoidol-2yi]-1- naphthalenecurbonitrile	1.79 LCMS [M + H]" - 521.1	496
	Jak. (Sur., 40.7), "no.) 1-44- (Sur., 40.7), "no.) 1-44- (Sur., 40.7), "no.) 1-44- (Sur., 40.7), "no.) 1-44- (Sur., 40.7), "no., "no.) 1-44- (Sur., 40.7), "no., "	1.69 LCMS [M + H]" - 504.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
616 F	[34R. 3-78,740]]-41-4[24]-4. [3-84,78,740]-41-4[24]-4. [3-84,78,740]-4. [3-84,78]	2.03 LCMS [M+H]* = 487.2	496
627	1848. (Con. 44, 17, 7ao) 4. (Con. 44, 17, 7ao) 4. (Con. 44, 17, 7ao) 4. (Con. 47, 7a	2.02 LCMS [M+H]" = 499.2	496
628	[3aR- (3ac.4f.7ft,7ac)]++ [Octahydro-4-[2-[(4- methoxyphenyl)thio] chyll-7-methyl-1.3- dioxo-4,7-epoxy-2H- sionidol-2-yll-1- naphthalencearbonitrile	1.99 LCMS [M+H]" = 499.2	496
OH OH	[38R. (Act, 4]), 7(7,701)]+ (Act, 4]), 7(7,701)]+ (Act, 4]), 7(1,101), 4]; (Act, 4]), 7(1,101), 4]; (Act, 4], 7(1,101), 4]; (A	2.27 I.CMS [M + H]" = 469.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
630 N N N O N CN	[3aR, 48,78,7ao]-4-[4+2-[4- Cyanophenylumino] chyl)betahydro-7- methyl-1,3-diox-4,7- gozy-244-ioind-2-yl]-1- naphthalenecurionitrile	3.56 LCMS [M+H]" = 477.2	496
651 CN	[365] Suc.4ft,Ph.7nor)-4[44]2-(3,5- Dimethylphacosyldsyl] Dimethylphacosyldsyl methyl-1,3-diox-47- epoxy-2H-isolide/2-yll-1- methyl-1-meth	4.10 LCMS [M + H]" = 481.2	496
632 OH	[365] (364, 40, 70, 70a) + [Octalysto-4]-2-[hystexys-thy]- methylphenoxylchy]- methylphenoxylchy]- methylphenoxylchy]- 4, 7-epoxy-2-[1]- suphthalenecurbonirile	3.56 LCMS [M+H]" = 483.2	496
633 O O O O O O	[3a6- Glast 4]: 78.7m.)-44 [4]: 2-(3- Chlorophanoxyuthyl) octalysto-7-methyl- 1,3-dinos-47-pesty- 2H-moinde-2-yl-1- maphibalencearoonitile	4.03 LCMS [M+H]* = 487.1	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
634 CN	[365, 48,78,76c])+4[4 (24(2,3-1)h)ydro-1H- inden-5- y)oxy-ghtyl-gictalydro- 7-methyl-1,3-dioco- 4,7-epoxy-2H- inaphthalenecubonirile	4.15 LCMS [M + H]* = 493.2	496
0.35 CN	[3aS- (3at,4β,7β,7ac)]-4[4]2-(3- Acetylphenoxy)ethyl] octahydro-7-methyl- 1,3-dioxo-4/-repray- 21f-sociatel-2-yl-pl- naphthalenecurbonirile	3.65 LCMS [M + II]" = 495.2	496
636 CN	[3aS-46/7[7-7at])+ (Society 10-42-6- (Society 10-42-6- is coquion [1000xyx ship] -7-methyl-1,3-disco- 4,7-pony-2H- is ceindel-2-yl-1- is ceindel-2-yl-1- trilhoroxectate (1:1)	3.67 LCMS [M + II]" = 504.2	496
637 CN	[365] (36c.48/17,7ac.)+44 F.(2.2-17)(ydoc-5-co-6-co-6-co-6-co-6-co-6-co-6-co-6-	2.90 LCMS [M + H]" = 509.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
638 CN	[3a5- (3ac,4β,7β,7ac)]+[4-[2-(2,3- Dichlorophenoxy)ethyl] octabyl-1,3-dimo-4,7 cpoxy-2Hi-india-12-yl-1- naphthalenecurbonitrije	2.80 LCMS [M + H]' = 521.1	496
639 CN	[385-(8,78,78c)]-4 [Octahydro-4-reethyl- 1,2-droxo-7-[2-(3- 1),2-droxo-7-[2-(3- 1),2-droxo-7-[2-(3- 1),2-droxo-7-[2-(3- 1),2-droxo-7-[2-(3- 1),2-droxo-7-[2-(3-(3-1),2-droxo-7-[2-(3-(3-1),2-droxo-7-[2-(3-(3-1),2-droxo-7-[2-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-	3.54 LCMS [M + H]' = 545.2	496
640 CN	[3a5- (3ac,4β,7β,7ac)]+1 (Octahydro-I-nethyl- 1,3-dicxo-7,12-(4+ pylimidinylocylethyl- 4,7-epoxy-21t- standay-2- thanay-2- thanay-2- thanay-2-thana	4.13 LCMS [M + H]" = 455.2	496
641 CN	[3a8- (3ac.46,78,7an)]-4 [4]2-(3,4- Dimethylphenexy)ethyl] octalydro-7- nethyl-13-dioxo-4,7- epoxy-2H-isoindol-2-yl] 1- naphthalenecarôontrile	4.19 LCMS [M+H]" = 481.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
642 CN	[3as, 4β,7β,7ac)] + [4] 2-(2,3- Dimethylphency)ethyl octalydro-7 octalydro-7 octalydro-7 ocy 241-sicked-2-y] - epoxy 241-sicked-2-y] - naphthalenecarbonitrile	2.80 LCMS [M + II]* - 481.2	496
643 CN	[365-(40/7),7ma)]+4- (500/4)(10-4)2-[(4- methoxy-2- pyridiny)oxy]sthyl]- 7-methyl-1,3-disox- 4,7-goxy-2H- isoindol-2-yl)- isoindol-2-yl)- mphthaleneenroonirile	2.72 LCMS M + H * = 484.2	496
644 CN	[3aS- (3ac,4k,7k,7ac)]+4 4 2-(2- Chlorophenoxy);chyl] ocahydro-7-mchyl- 1,3-diox-4,7-cpoxy- 2H-isoindo-2-yl-)- naphthalencoxhonirile	2.63 LCMS [M+H]* = 487.1	496
645 CN	[365- (364-4)-7,8-7a0.]-4 [4]-2 (4- Chirophenoxy)-thy] ocalydro-7-acthyl- 1.2-dione-4,7-qory- 1.2-dione-4,7-qory- naphtheleaccarbonirile	4.07 LCMS M+H ' = 487.1	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
646 CN	[385] (Str. 4B, 7B, 7an.) +4 [4 [2 (6 Chlora 2 caso - [211) pyridiny) (steh) ylexthydro- 7-methy -1,2 caso	4.13 LCMS [M+H] [*] - 488.1	496
647 N N N N	[3a5-44,70,7a0]+4 4 Clark Clark Clark Democratical Section of the Control Personal Control Company of the Control Cont	3.15 LCMS [M+H]* = 495.2	496
648 CN	[3aS- (3ax,44,78,7ac)]+4 (Octahydro-4-neithyl- 1,3-dioxo-7/2-7- quinolinjway,tehy]- 4,7-cpony-2H: sceindol-2-pH: naphthal encenbonitrile, tribhovonectate (1:1)	3.93 LCMS [M+H] [*] = 504.2	496
649 CN	[3aS- (3ax,4f,7f,7an)]+4 (Octabydro-4-nethyl- 1,3-dioco-7 [2-(6- quinolinyloxy,ghty]- 4,7-cpoxy-2H: isoindol-2-yll- aphthalenecarbonistile, tritheronacetate (111)	4.01 LCMS [M+H]* = 504.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
650 CN	[366] (So.4.(4), 78, 70:1)-1 [Octaly, 60:-4, exply-1 [J4] (co.7-1/2, 62-cxc) (211)- quinconiin/yelshyl- 4 (scindol-2-4)]: aphthalencearoniiris, trifluoroscetate (1:1)	3.33 LCMS [M+11] - 505.2	496
osi O CN	[bas] (Sur. 4(F)T, Parch) +- (Costa) (Sur. 4(F)T, Parch) +- (Costa) (Sur. 4(F)T, Parch) +-	3.39 LCMS [M + II]* = 305.2	496
652 CN	[3aS-(3aC,4β,7β,7ac)]+4 [Ostalyylor-4-mathyl-7-[2-4-mathyl-2-(1-mathyl-2-(1-mathyl-2-(1-mathyl-2-(1-mathyl-2-(1-1-y-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	3.72 LCMS [M+H]" = 511.3	496

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
653 CN	[364]. (78,7m1) + (Oxtalydro-1-restly) (Oxtalydro-1-restly) 1,3-dion-7-[24]: pheny-1-11-proxo-1-24]: pheny-1-11-proxo-1-3-y-1-y-1-y-1-y-1-y-1-y-1-y-1-y-1-y-1	3.48 LCMS [M] = \$19.2	496
054 CN	[365] (564,4f),Th/Tn()+142-(2,4- Dichlorophenoy)chyll ochsyldo ² -(2,6- nethyl-1,3-dion-6,7- ochyll-1,3-dion-6,7- ochyll-1,3-dion-6,7- ochyll-1,3-dion-6,7- nethyll-1,3-dion-6,7	2.85 LCMS [M + H]" = 521.1	496

[3aS-(3aα,4β,7β,7aα)]-4-[4-[2-(3,4-Dichlorophenoxy)ethyl] octahydro-7methyl-1,3-dioxo-4,7epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile

2.86 LCMS [M + H]* = 521.1

496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
656 CN	[385] Gaz, (A. F.), Zuci), 4-[4-[2-(3,5-)bichlorephenoxy) ethall contalpoint—7. methyl-1,3-denos-4.7. methyl-1,3-denos-4.7. mphilalencembonitrie	3.47 ICMS [M+H]" - \$21.1	496

[3aS-(3at,4B,7B,7ac)]+4-[4-[2-(2-5-Dichlorophenoxy)ethyl] octahydro-7methyl-1,3-dioxo-4,7epoxy-2H-ioridol-2-yl]-1naphthalenecarbonitrile 3.33 496 LCMS [M + H]* = 521.1

[3aS-(3aG,4β,7β,7aα)]-4 [Octahydro-4-methyl-7-[2-{[]-methyl-5-(trifluoromethyl-1Hpyrazol-3y[oxy]ethyl]-1,3dioxo-4,7-epoxy-2Hison-04-2-yl]-1naphthalencearbonitrile, trifluoroacetate (1:1)

3.87 496 LCMS [M+H]* – \$25.2

	Jilliaca		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
659 N N N N N N N N N N N N N N N N N N N	[385] Gan,4[4,76,7an]) 4[4-[3-[2-(Dirachylopino) 5,6-dirachyl-4-(dirachyl-4-dirachyl-4-dirachyl-4-dirachyl-4-dirachyl-4-dirachyl-1] problyto-1,3-dirachyl-1,2-dirachyl-1,3-dirachyl-1,3-dirachyl-3-dirachyl-1,3-dirachyl-1,3-dirachyl-1,3-dirachyl-3-dirachyl-1,3-dirachyl-3-dirachyl-1,3-dirachyl-3-dira	2.71 ICMS [M+1]] - 526.2	496
	[365- (3ac,46,76,7ac)]+ (Cashydro-4-rachyl-74]-24- (mathyinidisylyhazox) (mathyinidisylyhazox) (A-7-pasy-21- isoindol-2-yl) naphthalenevn'o oiirile	2.91 LCMS [M + II] - 531.2	496
661 CN	[3aS- (3as,4β,7β,7ac)]-4- [Octalysto-4-rachyl-7-[2-[3-(4-racpolisity)]-β-discos-f,2- chyl]-β-discos-f,2- [3-f]-g-discos-f,2- psphalace-achositile, trifluoroacetate (1:1)	3.78 LCMS [M+H]' = 538.2	496

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
662 O N N	[386,44,7],7aa)]4- [Octabydro-4-[2]4- (methoxymethyl)-6- oxo-2-(2-bp)-1,000-1,	4.18 LCMS [M + II]" = 569.2	496
663 N———————————————————————————————————	[3aS-(3ac4),7B,7ac)]+ [Octahydro-4-methyl- 1,3-doxe-7-[2-(3-cac- 1),2-doxe-7-[2-(3-cac- 1),2-doxe-7-[2-(3-cac- 1),2-doxe-7-[2-(3-cac-),2-doxe-7-(3-cac-),2-doxe-7-(3-cac-),2-doxe-7-(3-cac-),3-doxe-7-(4.18 LCMS [M + II] = 494.2	496
0 N CN	[3aS- (3ax,46,78,7ax)]+4[2- [2-(4-Cyan-1- asphthateay)xctahydro- 7-mchyl-1,3- dixxx-47-cpxx+4H- isoindo4-49[theaxy]-1,2- benzenedicarbonitrile	4.30 LCMS [M+H]* = 503.1	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
665 CN	[bas (2,7),7(c)]+[4]- [2-64,7(m-2,5-) (methylphenovyshyl] octalydo-7, epocy-2H-ionach-2-y[-1- amphilalen-exurbouthrie	4.13 LCMS [M + H]' = 506.2	496
666 CN	[3eS- (3ex,4β,7g,7aci)]-5-[2- [2-(4-Cyano-1- naphthaleny)]octahydro- 7-methyl-1,3- dixxo-47-geoxy-HI- isonidol-4-9(j-theoxy)- iaectonitrile, trifluoroacetate (1:1)	3.36 LCMS [M + II]" = 531.2	496
667 H	[3aS- (3aC,4k,7k,7ac)]+4 (Octabydro-4-reshyl- 1,3-dioro-7-[2,4-(1- piperaziny)phenoxy] chyl-4,7-epoxy-2H- siendol-2-yl-1;- asphihalenecario-mirile, trifluerosecutae (1:1)	3.81 LCMS [M+H]" = 537.2	496
668 CN	[365] (364,4),7(3,763)-414 [244,5),905-9-10401] (364,5),905-9-10401] (364,5),905-9-10401 (364,6),905-9-104	2.89 LCMS [M + H]* - 496.2	496

Ex.	Compound Structure		Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
669		, ()	[3aS- (3aα,4β,7β,7aα)]-4-[4-[2-[3- (Dimethylamino)phenoxy]	3.37 LCMS [M + H]* =	496

Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
672		[365] (Sun,440,78,7ac)]+(1) (Oxida)dra-4 methyl-7-[2-[(5-methyl1,2-4 frince) (J.5-kpyltindin-7-)-(shyltindin-7-)-(shoc)-4-7-(shyltindin-7-)-(shoc)-4-7-(shyltindin-7-)-(shoc)-4-7-(shyltindin-7-)-(shoc)-4-7-(shyltindin-7-)-(shyltindin-7-(shyltindin-7-)-(shyltindin-7-(shyltindin-7-)-(shyltindin-7-(shyltindin-7-)-(shyltindin-7-(shyltindin-7-)-(shyltindin-7-(shyltindin-7-)-(shyltindin-7-)-(shyltin-7-)-(shyltin-	3.45 LCMS [M+H]" - 509.2	496

[3aS-(3aC,4β,7β,7ac)]-4-[4-[2-[(4,5-Dichloro-3pyridaziny)]oxy]ethyll octahydro-7-methyl-1,3-dioxx-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile 3.79 LCMS [M + H]* = 523.1

496

496

[3aS-(3aG,4β,7β,7aG)]-4-[4-[2-](5-Chloro-2pyridinyloxy]ethyl] octahydro-7-methyl-1,3-dixox-4/7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile

3.86 LCMS [M + H]* = 488.4

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
675 CN	[365]. Th. 7no.] 4 [4 [2-(1.2-Henrisoxano)-3- ylax ylath ylathydro- 7-methyl-1,3-dixxo- 4-Pepasy-21-1- in aphthalenecuronitrile	3.79 LCMS [M + II]" = 494.41	496
676 O CN	[365] (Sac, 49, 78, 7ao)} (Cotalydro-4-restlyi 1,3-dioo-7-12-2- quinoxalayloxyiethyi 4,7-eyoxy-14- sachusi-2-yi myhdalatesenbonitrile	3.83 LCMS [M+ R] [*] = 505.43	496
677 CN	[3aS- (3ac,4β,7β,7ac)]-4- (Octabydro-4-methyl- 7-[2-{[6-methyl-2-(1- methyl-thyl)-4- pyrimidinyl xxy sthyl]- 13-dioxo-47- cpoxy-2H-isoirdol-2-yl]-1- naphthalenecarbonitrile	3.52 LCMS [M + H]* = 511.49	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
678 P	[365- (361,5-17),701)5-[4- (361,5-18),000-360-05- ylovy,8-thy [be-alty/fer- 7-methyl-1,3-disto- 4,7-epoxy-18- jeondol-2-yl-18- quinolineant/onitrile	3.327 LC [M+II]* = 498.24	467 & 487
979 0 0 0 0 0	[3nR- (2nc,4f,7f,7ta)]+1 (2nc,4f,7ta)+1 (2nc,4f,7ta	7.77 & 8.01 atopisomers LC [M + H]* = 481.4	501
580 CN	[3aR- (3ac,4β,7β,7ac)]-4-[4-[2-(4- Cyanophenoxy)ethyl] octahydro-1,3-dioxo- 7-propyl-4,7-epoxy- 2H-isoinded-2-yl]-1- naphthalenecarbonitrile	7.42 & 7.68 atropisomers LC [M+H]* = 506.38	501

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
- 681 - CN	[Jack. (Sust.467-187.0a)]+4-[4- Bityl-7-[2-(4- cyanophenoxy)sithyl] cestshydro-1,3-dioxo- docodicy-3-di-ioxo- docodicy-3-yli-1 naphthalenecur-onitrile	7.60 & 7.92 atophomens IM + III = 520.38	502

[3aR-(3ac,4β,7B,7ac)]-4-[4-Butyloctahydro-1,3dioxo-7-(2phenoxyethyl)-4,7epoxy-2H-isoirdol-2-yl]-1naphthalencearbonitrile

8.02 & 8.23 502 atropisomers LC [M+H]" = 495.33

[3aR-(3ac,4β,5β,7β,7ac)]-4-[7/2-{(5-Chiore-2pyridinyl)oxylethyl-4-cthyloctahydro-5methoxy-1,3-dioxo-4,7-epoxy-2Hisoindol-2-yl]-1naphthalencarbonitrile, trifluoroacetate (1:1)

7.31 & 7.55 504 atropisomers LC [M + H]* = 532.3

Ex. Compound		Retention Time Min./ Molecular	Pro. of
No. Structure 684 Output Ou	Compound Name [385: 48-58,78,760] 417[24](5-Chlore-2-4) 4-th/24](5-Chlore-2-4) 4-th/24](5-Chlore-2-4) 5-th/24](5-Chlore-2-4) 6-th/24](5-th/24) 6-th/24](5-th/24) 6-th/24](5-th/24) 6-th/24](6-th/24) 6-th/24) 6-th	Mass 7.31 & 7.55 atopisomers LC [M + 1]] - 552.3	Ex. 504
085	[3aR. (3ac.44,58,78,7aca)] +1742-(4c) Cynaophenoxyjethyl] +chlyicathylio-5- athylio-5- 4,7epoxy-2H- isoindol-2-yl]-1- naphthalenecarbonitrile	6.84 & 7.10 atopisomers 11 [M + H]* = \$22.33	504
086 O O O O O O O O O O O O O O O O O O O	[3as- (3ax-6,58,78,7a-7au)] +(74,24(5-Chloro-2- pyridin) boxykity(1 	3.37 & 3.52 atropisomers LC [M + H]* = 518.16	491
087 O O O O O O O O O O O O O O O O O O O	[3as- (3xx.46.5β.7g.7a.0a)- 4-[Octabyde-5- methoxy-7-{2- methoxy-4y-4- methy-1,3-dioxo-4,7- epoxy-21-dioxide-2-y 1- naphthalenecarbonitrile	2.57 & 2.75 atropisomers LC [M + H]* = 421.18	491

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
OH OH	[365] Consell, 73, 700) 4- (Scangle, 74, 700) 4-(Scangle, 700) 4-(Scangle, 700) 5-(Scangle, 700) 4-(Scangle, 700) 4-(Scangle, 700) 5-(Scangle, 700) 5-(3.50 I M + HJ = 460.35	406
HO N N N N N N N N N N N N N N N N N N N	[Ass Checa(h. 5), 7(h. 7no.); 5-(Octalydes - 5, 10-2); 1-(Octalydes - 5, 10-2); 1-(Octalydes - 1, 13-(locor-1-2); 1-(locor-1-2); 1-(locor-1-2	2-263 LC IM + HJ - 540.17	495, 486, 487 & 488
690 HO	[3aS- (3ac,4β,5β,7β,7aa)] 5-{Octahydro-5- hydroxy-4-methyl- 1,3-dioso-7-[24 coro- 4-(rifluoromethyl)-1(6H)- pyrimidnyl ylaty- 4,7-cpoxy-2H- socindol-2-yt 3- quinolinecurbonitrile	2.59 LC [M + H]* = 540.16	485, 486, 487 & 488

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
691 0 N N	[348] (C) (A) (T) (To()) + (1 + (2 + (3 + (3 + (3 + (3 + (3 + (3 + (3	7.91 & 8.15 atophones [M+1]] - 516.25	501
692 O N CN	1368. Suc.,48,78,70:14-14. Suc.,48,78,76:14-15. Suc.,48,78,76:14-15. Suc.,48,78,76:14-15. Suc.,48,78,76:14-16. Suc.,48,78,76:14-16. Suc.,48,76:14-16. Suc.,48,76:14-16. Suc.,48,76:16. Suc.,48,76:16	8.18 & 8.39 autophomes [M+11] - 530.28	502
693 CN	[3aS- (3ac,4,78,7ac)]+ (Octabydro-4]2-(3- methoxyphenoxy)ethyl]- 7-methyl-1,3- dioxo-4,7-epoxy-2H- isoindol-2-9/H- anphthalenecarbonitrile	3.97 LCMS [M + H]" - 483.1	496

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
654 O O O O O O O O O	N-I 3-I-3-18/S Conc.48/T/R,70(a) -2-(4- Cyano.3-1, mphthalenylyoctahydro- 7-methyl-1,3- dioxo-4,7-epoxy-HI- iotisticl-4- ylyishovyjbbenylacetamide	3-42 LCMS [M+H]" = 510.1	496
595 CN	[See, 445, 78, 76c)]+- [Octalydo-1-mathyl- [Octalydo-1-mathyl- 1,3-diox-7,79],6-aoxyl- cythyl- cythyl- cythyl- cythyl- cythyl- naphthalenceuronitriie	3.83 LCMS [M+H]* - 52.1.1	496
696 P	[3aS- (3ac,4β.7β.7ac)]- (Octahydro-4-methyl- 1.3-dioxo-7-[2]4 (triflucomethylphenoxy] chyl [4.7- epoxy-2H-isoindol-2-yl-1- naphthalenccarbonitrile	3.86 LCMS [M + H]* = 521.2	496

-continued			
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
0 0 0 0 N N	[365-46,78,76c]] 4 [4 [2]]2- (Diethylamino)-é-methyl-4 pyrimdiring (lovy blyvl) octabydro-7- sory-7-7-yeoly-2-1-diethylamino-1-yeoly-2-1-diethyl-1-yeoly-2-1-diethyl-1-mphhalencearbontrile	3.63 LCMS [M + H]" = 540.2	496
698 N N N N N N N N N N N N N	[bas-46,70,7an])+4+ [24(6-Chiero-2- benzoffino-3/klibi-ghty] octalydro-7- orelyd-12-disen-7- orelyd-12-disen-7- phthalenceuronitrie	4.15 LCMS [M]*- 560.0	496
699 CN	[3aS- (3ax,48,78,7ax)]+14 [2]{0-Ethoxy-2- bezzothiazolyl)hio] ethylectalydro-7- methyl-1,3-dioxo-4,7- epoxy-2H-isoriadol-2-yl]-1- naphibatencearbonitrile	4.15 1.CMS [M + H]* = 570.1	496

		Retention	
		Time Min./	
Ex. Compound		Molecular	Pro. of
No. Structure	Compound Name	Mass	Ex.
700 O CN	[362-68-70,700]+4[4]-(2-(3-4-68-70,700)]+4[4]-(2-(3-4-68-70,700)]+4[4]-(3-(3-4-68-70,700)]+4[4]-(3-(3-4-68-70,700)]+3-(3-(3-4-70))+3-(3-(3-4-	3.71 LCMS [M + H]" = 481.2	496
701 CN	[385-(4)-70-720]]+4[4]-(2,5- (Sundy)phanexy)ethy] octahydro-7, methyl-1,3-diox-4,7- metyl-1,3-diox-4,7- proxy-2H-iorido-2-yl-1- nphthalenecurooniride	3.79 LCMS [M + H]" = 481.2	496
702 - N	[3a5-4],7B,7a0]-4 (Satz,4B,7B,7a0]-4 (Cotalystro-4-resthyl-7-[2-(2- 	2.66 LCMS [M+H]" = 503.2	496
70.3 CN	[3aS- (3ar,46,78,7an)]-4 (Octabydro-4-recityl- 1,3-dioxo-742- (36,67,8-tetrahydro-2- naphritaleny/Dovy lethyl- tosindol-24y])- (accidol-24y]- (accidol-24y]- (accidol-24y]-	2.72 LCMS [M+H]* = 507.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
704 CN	Face. (Sun, 44) Th. 7mi)1-4/4. (Sun, 44) Th. 7	271 LSAS JM + HT = 528.1	496
705 CN	[368]—[37], 7an]—[44]—[2-[1], 1-[5], 2-[5],	3.03 LCMS [M + II] = 529.2	496
706 CN	[386-4], 78, 7am] 4442-(2-Co- benzofunny) oxyohyl] oxadybo-2, 100-4, 100	3.51 LCMS [M+II] = 543.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
707 P CN	[365-46,78,76c)]+ (365-46,78,76c)]+ (365-46,76,76c)]+ (365-46,76c)	3.73 LCMS [M+H]" = 545.2	496
708 CN O O CF ₃	[SuS-(8,715,7nc)]+41+41-3[[2-(Sun-48,715,7nc)]+41+41-3[[2-(Sun-48,8)]-41+41-3[[2-(Sun-48,8)]-41-4[[2-(Sun-48,8)]-41-4[[2-(Sun-48	4.15 LCMS [M + II]" = 566.2	496
709 P CN	[3aS- (3az,4β,7β,7ac)]-4- (Seashydro-4-redhyl-72-(3- 	3.17 LCMS [M+H]' = 466.5	496
710 O O O O O O O O O O O O O O O O O O O	[3aS- (3ac,4β,7β,7aα)]+ (Octabydro-4-methyl- 7-[2-6-methyl-2-con-1/2II)- pyridinylydhyl [3-2- isionidol-2-yl]-: naphthalenecurbonirile	3.41 LCMS [M+H]* = 468.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
711 CN	[365-46,78,700] +4 [4] (-(4- (364,46,78,700)) +4 [4] (-(4- (364,46,700)) + (364,46,700) -(364,46,700) +	4.10 1.CMS [M + H]* = 471.2	496
712 N CN	[3aS- (3ar,4p,7p,7ao)]+4[4]-(3- Fluorophenoxyychyl) 1,3-dious 4,7-epoxy- 2H-isoindo-2,7-epoxy- 2H-isoindo-2,7-epoxy- 1)-1,3-dious 4,7-epoxy- 2H-isoindo-2,7-epoxy- 1)-1,3-dious 4,7-epoxy- 1,3-dious 4	3.56 LCMS [M + H]" = 471.2	496
713 CN	[3aS- (3ac,4p,7p,7ao)]+4[4]:(3- (ymophenexyethyl) (2- 1,3-dinov-4,7-epoxy- 2H-isoindo-2-pi)1- aphthalenecuronitrile	4.28 LCMS [M+H]* = 478.2	496
714 CN	[3aS- (3ac,4p,7p,7ao)]+f (Ocalaydro-4f-2c/4- (Ocalaydro-4f-2c/4- 7-meshyl-1,3- dioxo-4,7-epoxy-2H- isoindol-2-yf-1- aphthalenecarioonirile	3.58 LCMS [M + H]" = 483.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
71S O CN	[385] Cox., 4[h, 7]h, 7a(s)].4- (Cox.) 4[h, 7]h,	3.40 LCMS [M + H]" = 492.2	496
716 P CN	[3a5, 4[5,7],7a0] + [4] [24(2,3-Dhydro-1- cos-III-inden-5- 7-methyl-1,3-distro- 4,7-epoxy-2H- isolindol-2yl]-1- naphthalenecarbonitrile	3.20 LCMS [M + H]" = 507.2	496
717 O CN	[3aS- (3aC,4[7,7],7ac)]+{2- [2-(4-Cynno-1- anghthaleny)-e-tahydro- rosid (3aC,4)-yengy-4H- isoindol-4-yighthoxy] benzenescetamide	3.26 LCMS [M+H]" = 510.2	496
718 ON	[365] (304.4),77,76.0]-4[4.5] (-2)(-2,-1)(-2	2.77 LCMS [M + H] [*] = 519.2	496

Ex. Compound No. Structure	Conpound Name [3aiS-(3m;A)7,7m]-4- [Octalydro-4-neisly-1- [1-64,3m-2-4-hydro-5-cox-2- amphilacing/sys-by-1- [4-7-epsy-21f- is-indu/2-2-y]-1- maphilacing-sys-by-1- maphilacing-	Retention Time Min/ Melecular Mass 2.88 LCMS [M+H]' = 521.2	Pro. of Ex. 496
720 P CN	[ass: Sure of 70, 7no) 11- Acety 1-2[-2]-(- yame-1- nethyl-1-2]-(- yame-1- nethyl-1-2)-(- yame-1- nethyl-1-2)-(- yame-1- nethyl-1-2)-(- yame-1- nethyl-1-2)-(- yame-1- nethyl-1-2)-(- yame-1-	403 1CMS [M+H]* = 5542	496
721 O CN	[3aS- (3aS-4b,7b,7ac)]+ (Ocashydro-4-neshyd-7- 7-[2-4]S-mekhyd-2(4- pyridiny)-4- hiszoly) (say ykhyl)- 1,3-dioxo-4,7-epoxy- 2H-sionido-2-yll-1- maphibla neconboolinie, trilliserosectale (11)	4.02 LCMS [M+H]* = 551.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
722 0 CN	[385, 46,78,761] ±44+ [4(2,6-1)mmbp+4- [4(2,6-1)mmbp+4- [4(2,6-1)mmbp+4- constyleto,7- mbp+1,1-3(mox-47- epoxy-2H-isoindol-2-yt]+1- naphthalenceur-ontriie	3.74 LCMS [M+H]" = 483.2	496
72.3 O N NH2	[385- (38c,4β,7β,78c)]+44 [2-{(2-Amino-6- methyl-4- pyrimidiny)cxy [sthyl] methyl-1,3-dicxx-4,7- epoxy-21-bixoid-2-yl-1- naphthalenccarbonitriic	3.71 LCMS [M+H]* = 484.2	496
724 O N CN	[385-(38c,4],7],7,8c)]-4- [Octalyduo-4]-2(III- indol-7-yloxyyethyl)- 7-methyl-1,5-dietoc- iocindol-2-yl)-1, iocindol-2-yl)-1, naphthalencearbonitrile	4.23 LCMS [M+H]" = 492.2	496
725 O CN	[385-(3ac,4b,7b,7ac)]-4-(Coshydro-4-nethyl-7-12-(7-methyl-3-cosh-7-12-(7-methyl-3-cosh-7-12-dixto-4-7-epoxy-21-isoindo-2-yl-1-	3.02 LCMS [M + H]" - 508.2	496

Ex. Compound No. Structure 726	Compound Name [3a5-6] [3a6-48,7]8,7aa]]4- [Oxtahylno-4-[2-15- hydroxyselhyl-12- hydroxyselhyl-17- malob-lyl-platy]7- epoxy-2H-isoindol-2-yl-1- maphthalenecuronitrile	Retention Time Min./ Molecular Mass 2-94 LCMS [M + H]" - 536.2	Pro. of Ex. 496
727 OH	N-[3-[2-[13-65] (Sur.48/18/18/nc)]-2-(4 Cyano-1- naphibaleny/postahydro- disso-4-7-epoxy-441- isoindol-4- yf jethoxy lybenyi Jarea	4.26 I.CMS [M + H]" = \$11.2	496
728 O NH ₂ 728 O N NH ₂	[3a5- (3a4,46,78,7a2)]4-[4- (2-[2-Amino-6- (methoxymethyl)-4- pyrimiding) lays Jehyl ocalolydro-7- methyl-1-acar-4-7- ero-1-acar-4-7- ro-1-acar-4-7- maphthalenecarbonitrile	4.18 LCMS [M + H]" = 514.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
725 CN	[N-1-1-]] No. Good, ph. Part J. C. (Son, ph. Ph. Part J. C. (Son, ph. Ph. Part J. C. (Son, ph. Part J.). The Manney of the Mann	3.13 (CAS) [M+II]* - 567.2	496
730 CN CN OH	[365] (Suz.4], [7], 7an]] + [60ahytin-4] 2-[2-] (Sunhytin-4] 2-[2-] (Sunhytin-4] 2-[2-] dinos-[3-] dinos-[3-] dinos-[3-] aphthalencentronitrie	4.22 LCMS [M+ II]* - 499,2	496
751 CN	[3aS- (3ac,4β,7β7ac)]+4[4- [2-(6-Amino-2- methyl-4- pytimidisty)xxy]ethyl] octahydro-7- methyl-13-diox-4,7- qoxy-2H-isoidol-2-yl]-1- naphthalenecarionitrile	4.19 LCMS [M + H]* = 484.2	496

	Animaca .		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
732 OH	13a5- (Suc.4,0,7b,7ac). 44.42-(3,5- Dibydraxyphexoxy) cutylestylestylestylestylestylestylestyles	3.73 ICMS [M + H] = 485.1	496
733 O NH ₂	[3a5- (3a4-4)-7[h-7a5]+4[2- [2-(4-C)van-1- mplthilsen'j Krathydro- dison-4-7-epory-4H- iscitable-4- y] kitosy Pennmide	4.11 LCMS [M + II]* - 496.2	496

Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
TES CF1 CN	[Suk- Gaz, 44,59,78,7an]- S[Oxthaydro-5- hydroxy-denthyl- 13-dioxo-7{2,46-cm,104}- 13-dioxo-7{2,46-cm,104}- 13-dioxo-7{2,46-cm,104}- 13-dioxo-7{2,46-cm,104}- 13-dioxo-7{2,46-cm,104}- 13-dioxo-7{2,46-cm,104}- gaz, 104-cm,104-cm	2.577 ICMS [M+H]" = 540.14	485, 486, 487 & 488

		himuca		
Ex. No.	Compound Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
738		[Salk. (Asc.46,87,78,7an)+ 5-17-21(-5-Chore-1-2-bendinous-de- 1-bendinous-de- 1-bendinous-de- 1-bendinous-de- shydron-security-li-dioco-d- r-q-cov-2-H-isotobl-2-yl-d- quinolineau/bothril-	3.25 LCAS [M+H]" = \$45.22	485, 486, 487 & 488
739	HO CS	[365] (Suc, [46, 56, 17), heal) (Suc, [46, 56, 17), heal) (Suc, [46, 56, 180-18) (Suc, [46,	2.863 LCMS [Fe-14]" = 345.12	485, 486, 487 & 488
740		[3a5- (3a4,47,17,2ac)]+4 [4 [24](6-Chloro-1,2- benzionazol-3- y),oxy [athy] benhylro- ?-methyl-1,3-dioxo- 4,7-epaxy24- iosindul-2-yll-1- iosindul-2-yll-1- naphthalenecasbonitrile	4.04 LCMS [M + H]' = 528.1	496

-	continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
741 O N N N N N N N N N N N N N N N N N N	[186. (Sac.44), 78, 7ac.)] +- (Csc.44), 78, 7ac.)] +- (Csc.44), 7ac. (Particle 1, 22), 7ac. Particle 1, 22, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24	304 LCMS [M+H] ² = 508.1	496
742 O C C C C C C C C C C C C C C C C C C	[(aS)-6-Methoxy-c- methyl-2- methyl-2-mesocie mybhale mesocie (Sac,44,5-8,76,7a(a)) - 2-(4-syan-2- (triflocomethyl)penyl] common penyl-1-3-dioxo- 4,7-epoxy-111- isoindol-5-yl enter	[M - H]" - 591.3	483
743 HO CN	[3aS- (3ac,4β,5β,7β,7ac)]- S-[Octahydro-S- hydroxy-4-meisyl-7- [2-[(4-methyl-2-cxo- 2H-1-leazoyynan-7- yloxy-glulyl]-1,3- dixxo-f-f-groxy-2H- isoindol-2-yl-B- quinoline-arboairile	2.89 LCMS [M + H]* = 552.19	485, 486, 487 & 488

		Retention	
Ex. Compound		Time Min./ Molecular	Pro. of
No. Structure	Compound Name	Mass	Ex.
744 HO CN CF ₃	[3aS- (3aC,45,5R,7aci) 5-[74]-[1]-Chloro-5- (triflucronicity)-2- pyridiny [ba-]-2- pyridiny [ba-]-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	3.46 LCMS [M+H]* = 573.12	485, 486, 487 & 488
745 HO O O O O O O O O O O O O O O O O O O	[36S-4], SB, 7B, 7ac)] \$[74], 2-3. Fluorophenoxy)ethy] octahydro-5-hydroxy- 4-methyl-1,3-dioxo- 4,7-epoxy-2H- isoindol-2-yl-8- quinolinecarbonirile	3.05 LCMS [M+H]* = 488.03	485, 486, 487 & 488
746 HO CN	[3cs] (3cs), 4[55], 7[5 Tu)) (3cs), 4[55], 7[5 Tu)) (3cs), 4[55], 7[5 Tu)) (3cs), 4[5], 7[2.98 LCMS [M+H] = 538.23	485, 486, 487 & 488
HO N CN	[3aS- (3aC,45,5R,7B,7ao)]- 517{2-(1,3- 5)-17(2-(1,3- 5)-17(2-(1,3- 5)-17(2-1,3- 10)-17(2-1,3-10)-17(2-10)-17(2- poxy-2H-iodol-2-y)}- quinolinecurbositrile	2.86 LCMS [M+H]' = 514.16	485, 486, 487 & 488

	-continued		
Ex. Compound No. Structure	Compound Name	Retention Time Min./ Molecular Mass	Pro. of Ex.
110 CN	[38c5] (-55,78,70a)) - (3cc,48,55,78,70a)) - (7-[2-(4-1)] - (7-[2-	3.02 LCMS [M+II]" = 488.2	485, 486, 487 & 488
753 HO O O O O O O O O O O O O O O O O O O	[365-(36,78,78,703)] -(30,445,(37,704)) -(17,42,(37,704)) -(17,42,(37,704)) -(37,42,(37,44)) -(37,44)	2.94 LCMS [M+H]* = 511.2	485, 486, 487 & 488

EXAMPLE 747

[3aR-(3aα,4β,7β,7aα)]-4-[7-[2-[(5-Chloro-2pyridinyl)oxy]ethyl]octahydro-4-methyl-1,3,5trioxo-4,7-epoxy-2H-isoindol-2-yl]-1naphthalenecarbonitrile (747)

Dess-Martin periodinane (122 mg, 0.29 mmol, prepared 60 sa described in Ishiharaa, J. F. Irbuxalia, et al. Reirhaderon Letters 40(10), 1907–1910 (1999)) was added to a solution of the compound 490A (120 mg, 0.24 mmol) in dichloromethane (2.5 ml.) under nitrogen and the mixture was stirred for 4 h. The reaction was half concentrated under a 6 stream of nitrogen and was applied on a flash cartridge (lones 2 g) with cellies on to pand was eithed with chloro-

form:heptane (9:1) to chloroform:acetone (4:1) to give 148 45 mg of a still impure white solid. The solid was disolved in dichloromethane (5 mL) and heptane (3 mL) and the precipitate was filtered over 1 g silica and was eluted with dichloromethane to chloroform:acetone (4:1). Fractions 3-9 50 (58.8 mg white solid) was almost pure and fractions 10-13 (68 mg white foam) were still impure. Fractions 3-9 were purified over silica (1 g) using heptane to heptane:ethyl acetate (1:1) as eluant to give 35.8 mg (30% yield) compound 747 as a white solid. Fractions 10-13 were purified by 55 adding ~400 mg of silica to an excess solution of crude compound 747 in ethyl acetate and heptane and concentrating it. The silica was then put on top of a preconditioned (heptane) silica column (1 g) and was eluted with a gradient from heptane to heptane ethyl acetate (1:1) to give an additional 36.7 mg (31% yield) of compound 747 as a white solid. HPLC: 94% at 3.46 & 3.59 min (atropisomers, retention time) (YMC S5 ODS 4.6x50 mm, 4 mL min, 4 min gradient 100% A to 100% B (A: 10% methanol, 89.1% water, 0.1% TFA; B: 10% water, 89.1% methanol, 0.1% TFA, 4 mL/min, monitoring at 220 nm). MS (ES): m/z 502.11 [M+H]+.

10

15

EXAMPLE 748

(3aα,4β,5β,7β,7aα)-4-[Octahydro-5-hydroxy-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl]-1isoquinolinecarbonitrile (748D)

A. 4-(2,5-Dioxo-2,5-dihydro-pyrrol-1-yl)isoquinoline-1-carbonitrile (748A)

A mixture of compound 470D (200 mg, 1.18 mmol) and maleic anhydride (470 mg, 4.7 mmol) in glacial acetic acid (5 mL) was heated to reflux for 4 hours. After removing the volatiles in vacuo, the residue was partitioned between ethyl acetate (50 mL) and water (50 mL). The organic layer was 35 washed with saturated sodium bicarbonate solution (2×50 mL) and brine (50 mL). After drying over magnesium sulfate, the organic layer was filtered through a 1x5 cm plug of silica gel. The filtrate was concentrated to afford 263 mg (90%) of 748a as an off-white solid. HPLC: 99% at 1.12 nin 40 (Phenomenex 5 micron ODS 4.6×30 mm, 10%-90% aqueous methanol over 2 minute gradient with 0.1% TFA, detecting at 254 nm). MS (ES): m/Z 250.2 [M+H]+

B. (3aα,4β,7β,7aα)-4-(1,3,3a,4,7,7a-Hexahydro-4,7dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-1isoquinolinecarbonitrile (748B)

A mixture of compound 748A (250 mg, 1 mmol) and 2.5-dimethylfuran (4 mL) was heated to 60° C. for 2 h. At 15 min, the reaction mixture became homogeneous. A 60 precipitate formed at 45 minutes. After cooling to 25° C., the reaction mixture was diluted with hexane and the filter cake was washed with ethyl ether:hexane, 1:1. Drying under high vacuum afforded 270 mg (78%) of compound 748B as a 1H), 8.54 (m, 1H), 7.86 (m, 3H), 6.45 (s, 2H), 3.18 (s, 2H), 1.81 (s. 6H).

C. (1aα,2β,2aα,5aα,6β,6aα)-4-[Octahydro-2,6dimethyl-3,5-dioxo-2,6-epoxy-4H-oxireno[f] isoindol-4-vll-1-isoquinolinecarbonitrile (748C)

m-CPBA, (70%, 110 mg, 0.45 mmol) was added to a solution of compound 748B (100 mg, 0.29 mmol) in 3 mL of dichloromethane at 25° C. After 1 h, additional m-CPBA, 20 (70%, 110 mg, 0.45 mmol) was added and the reaction mixture was stirred an additional 18 h. After partitioning the reaction mixture between ethyl acetate (30 mL) and water (30 mL), the organic layer was washed with saturated sodium bisulfite solution (30 mL), saturated sodium bicarbonate solution (2×30 mL) and brine (30 mL). The sample was dried over magnesium sulfate and concentration to vield 103 mg (98%) of compound 748C as an off-white solid. HPLC: 99% at 1.09 & 1.22 min (atropisomers, retention 30 time) (Phenomenex 5 micron ODS 4.6×30 mm, 10%-90% aqueous methanol over a 2 min gradient with 0.1% TFA. detecting at 254 nm), MS (ES); m/z 362.07 [M+H]+,

> D. (3aα,4β,5β,7β,7aα)-4-[Octahydro-5-hydroxy-4, 7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl] 1-isoquinolinecarbonitrile (748D)

A 0.5 M solution of bis(cyclopentadienyl)titanium chloride in THF (1.2 mL, 0.6 mmol) was added dropwise over 20 min to a well stirred suspension of compound 748C (103 45 mg, 0.29 mmol) in THF (2.5 mL) and 1.4-cyclohexadiene (1.2 mL) at 60° C. After stirring 1 h at 60° C., the reaction mixture was partitioned between 1N HCl (40 mL) and ethyl acetate (50 mL). The pH of the aqueous layer was adjusted to 7 with solid sodium bicarbonate. After extracting the 50 aqueous with ethyl acetate, the combined organic layers were dried over sodium sulfate. Decolorizing carbon (~1 g) was added and the mixture was allowed to stand for 18 h. Filtration and concentration of the filtrate in vacuo afforded a vellow oil that was chromatographed on a 2.5×15 cm silica gel column, using dichloro-methane:acctone, 6:4 as the mobile phase. Concentration of the product containing fractions in vacuo gave a partially purified residue that was subjected to preparative thin laver silica gel chromatography, using dichloromethane:acetone, 6:4 as the mobile phase. Extraction of the desired band with CH2Cl2, filtration and concentration of the filtrate in vacuo yielded 3 mg (31%) of compound 748D as an off-white solid. HPLC conditions: 95% at 1.46 min (Phenomenex 5 micron ODS light yellow solid. ¹HNMR-400 MHz (CDCl₃): 88.55 (s, 65 4.6×30 mm, 10%-90% aqueous methanol over 2 minute gradient with 0.1% TFA, detecting at 254 nm). MS (ES): m/z 364.19 [M+H]+.

515 EXAMPLE 749 (3aα,4β,7β,7aα)-4-[Octahydro-4,7-dimethyl-1,3-

dioxo-4,7-epoxy-2H-isoindol-2-yl]-2thiophenecarbonitrile (749C)

A. 2-Cyano-4-nitrothiophene (749Ai) & 2-Cyano-5nitrothiophene (749Aii)

$$NC$$
 NC
 NO_2
 NC
 NO_2

Furning nitric acid (21 mL) was slowly added to glacial acetic acid (105 mL) and the mixture was then cooled in an ice-bath. 2-Cyanothiophene (7.98 g, 73.1 mmol) was dissolved in 20 mL of acetic anhydride and added dropwise to the above acid mixture such that the temperature did not exceed 25° C. Upon completion of the addition, the reaction mixture was warmed to 22° C. and stirred for 48 h. The reaction was poured over 400 mL of ice and extracted with 200 mL of diethylether. The ether layer was isolated, washed with water, followed by brine and dried over MgSO4. Filtration and concentration in vacuo gave a sticky, orange residue which was purified by column chromatography using 1:1 hexanes/methylene chloride as the eluent to give 1.69 g (15%) of compound 749Ai as a white solid and 1.71 g (15%) of compound 749Aii as a yellow crystalline substance. Compound 749Ai: HPLC: 0.73 minutes (retention time) (Phenomenex column 30x4.6 mm eluting with 10-90% aqueous methanol over 2 minutes containing 0.1% TFA, 5 mL/min, monitoring at 220 nm). Compound 749Aii: HPLC: 99% at 0.89 minutes (retention time) (Phenomenex 45 column 30x4.6 mm eluting with 10-90% aqueous methanol over 2 minutes containing 0.1% TFA, 5 mL/min, monitoring at 220 nm).

B. 4-Amino-2-cyanothiophene (749B)

To a 100 mL 3-necked flask was added compound 749Ai (1.42 g, 9.21 mmol) dissolved in ethyl acetate (20 mL) followed by a 10% acetic acid solution (20 mL). The biphasic mixture was heated to 65° C. and then iron powder (2.95 g, 52.9 mmol) was added portion-wise over 5 minutes. After stirring for 1.5 h at 65° C., the reaction was filtered through a bed of Celite and the pad was washed with ethyl 65 acetate. The organic layer was separated, washed with water (3×20 mL), brine and dried over MgSO₄. Filtration and

concentration in vacuo gave a dark amber residue which was purified by column chromatography using 30% diethyl ether/methylene chloride as the eluent to give 84 mg (73%) of compound 749B as a brown solid. HPLC: 93.4% at 0.26 minutes (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm)

C. (3aα,4β,7β,7aα)-4-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-v11-2thiophenecarbonitrile (749C)

To a Pyrex tube was added compound 749B (0.06 g, 0.5 mmol), toluenc (1 mL), triethylamine (0.25 g, 0.35 mL, 2.5 mmol), MgSO₄ (0.15 g, 1.3 mmol), and compound 20A. The tube was sealed with a teflon cap and heated overnight at 15 145° C. The reaction was cooled, diluted with methylene chloride and filtered through Celite. The filtrate was concentrated in vacuo and the residue was purified by column chromatography using 10% ether/methylene chloride as the eluent to give 14 mg (95%) of compound 749C as a light 20 yellow crystalline solid. HPLC: 94.6% at 2.6 minutes (retention time) (YMC S5 ODS column 4.6×50 mm eluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at 220 nm. MS (ES): m/z 303.05 [M+H]+.

EXAMPLE 750

(3aα,4β,7β,7aα)-5-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-epoxy-2H-isoindol-2-v1]-2thiophenecarbonitrile (750B)

A. 5-Amino-2-cyanothiophene (750A)

$$\stackrel{NC}{\underbrace{\hspace{1cm}}^S} \stackrel{NH_2}{\underbrace{\hspace{1cm}}^{NH_2}}$$

To a 100 mL 3-necked flask was added compound 749Aii (1.63 g, 10.1 mmol) dissolved in cthyl acctate (20 mL) followed by a 10% solution of acetic acid (20 mL). The biphasic mixture was heated to 65° C. and then iron powder 50 (2.95 g, 52.9 mmol) was added portion-wise over 5 minutes. After stirring for 1.5 h at 65° C., the reaction was filtered through a bed of Celite and the pad was washed with ethyl acetate. The organic layer was separated, washed with water (3×20 mL), brine and dried over MgSO. Filtration and 55 concentration in vacuo gave a dark amber residue which was purified by column chromatography using 10% diethyl ether/methylene chloride as the eluent to give 87 mg (66%) of compound 750A as a brown solid, HPLC: 94.2% at 1.05 minutes (retention time) (YMC S5 ODS column 4.6×50 mm cluting with 10-90% aqueous methanol over 4 minutes containing 0.2% phosphoric acid, 4 mL/min, monitoring at

> B. (3aα,4β,7β,7aα)-5-[Octahydro-4,7-dimethyl-1,3dioxo-4,7-cpoxy-2H-isoindol-2-yl]-2thiophenecarbonitrile (750B)

To a Pyrex tube was added compound 750A (0.06 g, 0.5 mmol), toluene (1 mL), triethylamine (0.25 g, 0.35 mL, 2.5

mmol), MgSO₄ (0.15 g, 1.3 mmol), and compound 20B. The tube was scaled with a tellon cap and heated overnight at 145° C. The reaction was cooled, diluted with methylene chloride and filtered through Celtie. The filtrate was concentrated in vacuo and the residue was purified by column 5 chromatography using 10% ether/methylene chloride as the eluent to yield 143 mg (96%) of compound 750B as a light yellow crystalline solid. HPLC: 92.7% at 2.93 minutes (retention time) (7MC SS 0DS column 46.550 mm eluting with 10-90% aqueous methanol over 4 minutes containing 10 0.2% phosphoric acid,4 mL/min, monitoring at 220 nm. MS (ES): m/x 303.21 [M+H]*.

1. A method for preparation of a compound of the following formula XVI, or salt thereof:

where

- G is an aryl or heterocyclo group, where said group is mono- or polycyclic, and which is optionally substituted at one or more positions;
- Z1 is O or S;
- Z is O or S;
- A₁ is CR⁷;
- A₂ is CR⁷:
- Y is J—J'—J" where J is (CR⁷R⁷)n and n=0-3, J' is O, S, 35 S=O, SO₂, NH, NR⁷, OP=OOR², OC=O, NR³C=O, OP=ONHR², OSO₂, NHNH, NHNR⁸, NR⁸NH, or N=N, and J' is (CR⁷R²N and n=0-3;
- Q, is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, eycloally or substituted eycloally, evcheallt-and alkenyl, eycloally or substituted eycloallkyl, evcheallt-and arylalkyl, alkynyl or substituted heterocycloalkyl, arylalkyl or substituted arylalkyl, alkynyl or substituted alkynyl, aryl or substituted aryl, heterocyclo or substituted heterocyclo, halo, CN, R¹OC=O, R²C=O, R²C=NC=O, 6, R¹CNC=O, 6, R¹CNC=O, 6, R¹CNC=O, 6, R¹CNC=O, 6, R¹CNC=O, R¹CNC=O,
- Q₂ is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, cycloalky or substituted cycloalkyl, cycloalky or substituted cycloalkyl, heterocycloalkyl or substituted heterocycloalkyl, arylalkyl or substituted arylalkyl, alkynyl or substituted alkynyl, aryl or substituted arylalkyl, alkynyl or substituted alkynyl, aryl or substituted aryl, heterocyclo or substituted heterocyclo, halo, CN, R¹OC=O, R²C=O, R³CN=CO, O, HOCRR², nitro, R³OCH₂, R¹O, NH₂, C=OSR², 55 SO,R¹ or NR¹s².
- L is a bond, (CR^7R^7) n, NH, NR⁵ or NR⁵ (CR^7R^7) n, where n=0-3;
- R² and R² are each independently H, allsyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkynyl, heterocyclo or substituted heterocyclo, cycloalkynlyl or substituted cycloalkynlylkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted substituted arylalkyl.

- R² is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, yccloalkenyl or substituted cycloalkenyl, heterocyclo or substituted heterocyclo, cycloalkylalkyl or substituted cycloalkenylalkyl, cycloalkenylalkyl or substituted cycloalkenylalkyl, heterocycloalkyl or substituted heterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl;
- R⁴ is H, alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkylakyl or substituted cycloalkylakyl, cycloalkylakyl or substituted cycloalkylakyl, cycloalkenylakyl, or substituted cycloalkyalkyl, ayl or substituted aryl, arylakyl or substituted arylakyl, ayl or substituted aryl, arylakyl or substituted arylakyl, R²C—O, R²NIIC—O, SO₂OR², or SONR²R².
- R⁵ is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkynyl, cycloalkyl or substituted cycloalkyl, cycloalkenyl or substituted cycloalkenyl, heterocyclo or substituted beterocyclo, cycloalkylalkyl or substituted cycloalkylalkyl, cycloalkenylalkyl or substituted cycloalkylalkyl, hetcrocycloalkyl or substituted beterocycloalkyl, aryl or substituted aryl, arylalkyl or substituted arylalkyl, krl c−o, R¹NHC=o, So₂R¹, So₂OR¹, or SO_NR¹R².
- R⁶ is alkyl or substituted alkyl, alkenyl or substituted alkenyl, alkynyl or substituted alkenyl, cycloalkyl or substituted cycloalkyl, ycycloalkyl or substituted cycloalkyn in substituted cycloalkyn substituted cycloalkyn substituted cycloalkyn substituted cycloalkyn substituted cycloalkyn substituted cycloalkyn substituted aryl, aryl or substituted aryl, aryl or substituted aryl, aryl or substituted aryl, aryl or substituted aryl, aryl aryl or substituted aryla aryla substituted aryla subst

comprising the steps of contacting a compound of the following formula XV, or salt thereof:

$$Z_1$$
 Z_2
 Z_3
 Z_4
 Z_4

where the symbols are as defined above;

with an enzyme or microorganism capable of catalyzing the hydroxylation of said compound XV to said compound XVI, and effecting said hydroxylation.

2. The method of claim 1 wherein a microorganism is incubated with the compound of formula XV to effect the hydroxylation.

 The method of claim 1 wherein the reaction mixture, after hydroxylation, is separated by chiral HPLC.

4. The method of claim 1 wherein R⁷ is alkyl or substituted alkyl; L is a bond; and G is selected from the group consisting of;

-continued
CH₅
NO₂
NO₂
NO₂

$$\stackrel{\text{CN}}{\longleftarrow}$$
 $\stackrel{\text{CN}}{\longleftarrow}$ and $\stackrel{\text{CE}_3}{\longleftarrow}$ $\stackrel{\text{CN}}{\longleftarrow}$