Voith Paper Patent GmbH

P-1703 WO

### MARKED-UP COPY OF SUBSTITUTE SPECIFICATION

## Method and Apparatus for Heating a Roller.

### CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application is the National Stage Application of International Application No. PCT/EP2005/050258, filed January 21, 2005, which claims priority to DE 10 2004 006 515.2, filed on February 10, 2004.

### **BACKGROUND OF THE INVENTION**

[0002] This The present invention relates to a method <u>and apparatus</u> for heating a roller used in the production and/or finishing of a web, of material, particularly a paper web or paperboard web.

[0003] The object of the present invention is to create creates an improved method and apparatus of the type initially referred to. In particular the use of by use of renewable fuels, should also be possible.

[0004] This object is accomplished in accordance with the invention in that In various embodiments, the roller is heated from the outside by a heated gas. In this case the The heat heated gas is can be generated preferably by means of at least one burner arranged near the a surface of the roller

surface. The heat heated gas emerging from the burner can then act on the surface of the rotating roller.

[0005] Hence, the heat is generated <u>near the location of the roller</u> where it is required. Furthermore, renewable energies <u>fuels</u> can <del>now</del> be used to generate the <u>required</u> heat required.

#### SUMMARY OF THE INVENTION

[0006] According to <u>various a preferred practical</u> embodiments of the method according to the <u>of the present</u> invention, the roller is heatable on a zone basis viewed in the direction of the roller axis, with the various zones being heatable independently of each other at least in part. As such, differentiation across the width of the respective web is also possible if required. axial heat zones can be used to achieve distinct axial temperatures along the roller. The distinct axial temperatures can be transferred to the web during production and/or finishing.

[0007] For example, provision can be made for several burners can be distributed over the length of the roller.

[0008] According to <u>various an advantageous practical</u> embodiments of the <u>method according to</u> the <u>present</u> invention, the burner used is a catalytic burner by <u>means</u> of which the <u>heat heated</u> gas is generated through combustion of a fuel with air or oxygen.

[0009] A burner can thus comprise, for example, a carrier with a catalytic coating.

[0010] The fuel used can be particularly a fuel gas. Hence the burner can be fed, for example, with an in particular adjustable fuel gas/air mixture. In this case, preferably fuel and air are fed to a mixing element upstream from the respective burner.

[0011] Preferably In one exemplary embodiment, supplied air is distributed by an air distributor among several burners.

[0012] The reaction or roller temperature is <u>can be</u> set or controlled <del>preferably</del> by <del>means of</del> the fuel/air mass flow ratio.

[0013] For example, the fuel gas mass flow and/or the fuel gas concentration in the air can be controlled <u>for each axial heat zone</u>. The control in question is performed preferably on a zone basis.

[0014] The In an exemplary embodiment, the fuel used can be, for example, hydrogen, hydrogen-rich gas (reformat) or natural gas.

[0015] According to another advantageous embodiment of the method according to the invention, a respective burner is arranged in an air-moving chamber and the air flowing over the burner is mixed with the burner waste gas. In this case the air flowing over the burner can be expediently mixed with the waste gas from the burner by means of a mixing element. The mixing element may be located near a terminus of the air moving chamber.

The terminus of the air moving chamber may be adjacent the roller. in the region of the end of the air-moving chamber facing the roller.

[0016] In this case the air flowing over the burner can be heated by said the burner. It is also conceivable, however, for In another exemplary embodiment, the burner to may work adiabatically, meaning that there is no transfer of heat to the "bypass flow". The cold bypass flow is then mixed with the hot burner waste gas, resulting downstream from the mixing element in a mixture with an adequate a desired temperature.

[0017] Such an embodiment makes sense in particular may be advantageous when using a fuel that reacts with air only at high temperatures. Natural gas, for example, does not react fully with air until in it reaches a higher temperature range of (600°C – 800°C).

[0018] The hot gas temperatures would may be too high for the roller surface. Therefore, the hot gas is mixed with the "cold" bypass flow.

[0019] According to another advantageous embodiment of the method according to the present invention, heated gas generated by means of a the burner is mixed with supplied cold air in at least one mixing element in order to generate the heat gas for acting on the roller. In this case it is advantageous for the mass flow of the cold air supplied to the mixing element to be adjustable or controllable. Again, the burner is preferably supplied with air and fuel, particularly fuel gas. The fuel gas used in this case can be natural gas for example.

[0020] <u>In one exemplary embodiment</u>, <u>The hot heated</u> gas generated by means of the burner is preferably <u>can be</u> distributed by a gas distributor among several mixing elements that are <u>distributed arranged</u> over the length of the roller. The mass flows of cold air supplied to the various mixing elements <u>are preferably can be</u> individually adjustable or controllable <u>at least in part</u>.

[0021] Again, differentiation across the web width is thus possible in the latter case too. As stated previously, axial heat zones may be used to achieve distinct axial temperatures along the roller.

[0022] According to one apsect of the invention, a method for heating a roller is provided, the method including: heating a first gas in a first axial zone; directing the first gas toward the roller to achieve a first surface temperature; heating a second gas in a second axial zone; and directing the second gas toward the roller to achieve a second surface temperature, wherein the first axial zone and the second axial zone are located exterior to the roller and along distinct axial locations adjacent the roller. The first gas can be produced by a fuel supplied to a burner. The first surface temperature can be distinct from the second surface temperature. The method can include heating a third gas in a third axial zone; and directing the third gas toward the roller to achieve a third surface temperature. The burner can include one of a catalytic burner or a carrier having a catalytic coating. The fuel can be a fuel gas. The fuel gas to air ratio can be adjustable. The fuel gas and air can enter a mixing element prior to entering the burner. An air distributor can supply air for at least the first and second axial zones.

The fuel gas can have a variable mass flow rate. The fuel gas can include one of hydrogen or natural gas. The first gas can include an output from the burner and burner waste gas. The output from the burner can be combined in a mixing element with the burner waste gas. The first gas can be mixed in a mixing element with a first air input to produce a first heat gas. The first air input can be variable. The gas distributor can direct the first heat gas through a first axial mixing element.

[0023] According to another aspect of the invention, an apparatus for heating a roller is provided, the apparatus including: a first axial zone for heating a first gas; a first exit zone defining a portion of the first axial zone; a second axial zone for heating a second gas; and a second exit zone defining a portion of the second axial zone, wherein the first and second exit zones are located exterior to the roller and define distinct axial locations along the roller. The apparatus can further include a first burner for producing the first gas, whereby fuel is input to the first burner. The apparatus can further include at least one of an adjustable fuel to air ratio, a mixing element for the fuel and air, and an air distributor for supplying air to the burner.

### BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The <u>present</u> invention will be described in more detail in the following text using exemplary embodiments and with reference to the drawing, in which:

[0025] <u>F</u>figure 1 <u>is a schematic representation</u> <u>illustrates one exemplary</u> <u>embodiment</u> of a device for heating a roller with several catalytic burners that

are arranged in succession in the direction of the roller axis and enable differentiation,.

[0026] <u>F</u>figure 2 <u>is a schematic representation of illustrates</u> another embodiment of the heating device in which the catalytic burners are arranged in each <u>ease axial heat zone</u> in an air-moving chamber and the air heated by a respective burner is used to generate the <u>heat heated</u> gas which acts on the roller, and.

[0027] <u>Ffigure 3 is a schematic representation of illustrates</u> another embodiment in which the <u>hot heated</u> gas generated by <u>means of</u> a gas burner is distributed by a gas distributor among several mixing elements, <u>located that are distributed</u> over the axial length of the roller, and <u>are fed in addition</u> with cold air, whereby the mass flows of cold air supplied to the various mixing elements are <u>separately individually</u> adjustable or controllable.

### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0028] Figure 1 shows in a schematic representation illustrates an embodiment of a device 10 for heating a roller 12 that is used in particular for producing and/or finishing a web of material, particularly a paper web or paperboard web.

[0029] The roller 12 can be heated from the outside by means of the device 10 using a heated gas 14. For this purpose the device 10 comprises several burners 18 which are distributed over the length of the roller 12 and arranged near the roller surface 16.

[0030] The heat heated gas 14 emerging from the burners 18 acts accordingly on the surface 16 of the rotating roller 12.

[0031] In this case According to an exemplary embodiment, the roller 12 is heatable on a zone basis in the direction of the roller axis, thus enabling differentiation in the transverse direction of the web, meaning transverse to the running direction of the web. Axial heat zones can be used to achieve distinct axial temperatures along the roller 12. The distinct axial temperatures can be transferred to the web during production and/or finishing.

[0032] In the case under consideration According to an exemplary embodiment, the burners 18 are catalytic burners by means of which the heat gas for heating the gas 14 is generated through combustion of a fuel 20 with air 22 or oxygen.

[0033] Hence the burners 18 can each comprise a carrier 24 with a catalytic coating.

[0034] The fuel 20 provided can be in particular a fuel gas such as, for example, hydrogen (H<sub>2</sub>) or hydrogen-rich gas (reformat). In principle, fuels other than hydrogen are also conceivable however. Other fuels can also be used within the scope of the present invention.

[0035] An adjustable fuel gas/air mixture is fed in each case to the various catalytic burners 18. In this case a mixing element 26, to which fuel 20 and air 22 are fed, is installed respectively upstream from the burners 18.

[0036] Also, provision is made for In one exemplary embodiment, an air distributor 28 by means of which distributes supplied air 22 is distributed among the various catalytic burners 18.

[0037] In the case under consideration the reaction or In one exemplary embodiment, the roller temperature is adjustable or controllable on a zone basis by means of the respective within axial zones by adjusting individual fuel/air mass flow ratio ratios. For this purpose provision Provisions can be made, for example, for controlling the respective fuel gas mass flow and/or the respective fuel gas concentration in the air.

[0038] The control or adjustment in question can be performed on a zone basis within axial zones. In the case under consideration present exemplary embodiment, control valves 32 are provided for this purpose in the various fuel supply lines 30 to the various mixing elements 26.

[0039] The various catalytic burners 18 are arranged respectively in a chamber 32 in which provision is also made respectively for the mixing element 26 that is installed upstream from the burner 18 in question. Using these chambers 32, heating gas 14 can be made to act yield distinct temperature zones on the roller 12 on a zone basis.

[0040] The Another exemplary embodiment of the heating device 10 presented in figure 2 differs from the one in figure 1 firstly in that the various catalytic burners 18 are arranged respectively in an air-moving chamber 34. and the The air flowing over the burners 18 for generating the heat heated gas 14 for acting on the roller 12 is mixed with the burner waste gas.

[0041] In this case the air flowing over the burner <u>18</u> can be heated by <u>said</u> <u>the</u> burner <u>18</u>. It is also conceivable, however, for the burner to work adiabatically, meaning that there is no transfer of heat to the "bypass flow". The cold bypass flow is then mixed with the hot burner waste gas, resulting downstream from the mixing element in a mixture with <u>an adequate a desired</u> temperature. Such an embodiment <u>makes sense in particular is beneficial</u> when using a fuel that reacts with air only at high temperatures. Natural gas, for example, does not react fully with air until <u>in a high until it reaches</u> a temperature range (600°C – 800°C). The hot gas temperatures would <u>may</u> be too high for the roller surface. Therefore, the hot gas is mixed with the "cold" bypass flow.

[0042] According to this exemplary embodiment, the mixing element 36 can be located near a terminus of the air moving chamber 34, whereby the terminus of the air moving chamber 34 is adjacent roller 12. In this case provision is made in a respective air-moving chamber 34 in the region of its end facing the roller 12 for a mixing element 36 by means of which the air Air flowing over and heated by the catalytic burner 18 is mixed with the waste gas from the burner 18. The hot heated air emerging from the mixing elements 36 then acts accordingly on the roller 12.

[0043] Again, a mixing element 26 is installed respectively upstream from the catalytic burners 18 in order to generate the mixture of fuel and air supplied to the respective burner 18.

[0044] <u>According to one exemplary embodiment, natural Natural gas can be</u>, for example, is provided as fuel 20 in the case under consideration.

[0045] Otherwise, this embodiment again has at least substantially the same construction as the one in figure 1, mutually corresponding parts being assigned the same reference symbols. Again, Temperature differentiation across the web width is possible according to the present exemplary embodiment accordingly in the present case too.

[0046] Figure 3 <u>illustrates</u> shows a schematic representation of a further <u>exemplary</u> embodiment of the device 10.

[0047] In the ease under consideration present exemplary embodiment, the hot gas 40 generated by means-of a gas burner 38 is distributed by a gas distributor 42 among several mixing elements 44 that are distributed over the length of the roller 12 and each supplied separately individually with cold air 46. The mass flows of cold air 46 supplied to the various mixing elements 44 are therefore adjustable or controllable for each distinct temperature zone on a zone basis. In the case under consideration, throttle Throttle valves 50 are provided for this purpose in the various fuel supply lines 48 to the various mixing elements 44.

P2327.S02 Marked-up copy

[0048] The hot gas 40 supplied by the gas burner 38 is mixed with the cold air supplied through the cold air supply line 48 in question by means of the to the mixing elements 44, which again are arranged in a chamber 52, in order to generate the hot air 14 in question for acting on the roller 12.

[0049] As is evident in figure 2, a fuel gas 54, in this case natural gas for example, and air 56 are fed to the burner 38.

[0050] Again, the <u>The</u> mass flows of cold air supplied to the various mixing elements 44 are adjustable or controllable on a zone basis by means of the <u>via the</u> throttle valves 50. <u>Differentiation Temperature differentiation</u> in the transverse direction of the web is <u>thus also</u> possible in this case too.

# **Voith Paper Patent GmbH**

# V-3068PDE - Ku/ho

| [0051] | List of reference numerals               |
|--------|------------------------------------------|
|        |                                          |
| 10     | Heating device                           |
| 12     | Roller                                   |
| 14     | Heated gas, heat gas                     |
| 16     | Roller surface                           |
| 18     | Catalytic burner                         |
| 20     | Fuel                                     |
| 22     | Air                                      |
| 24     | Catalytic carrier with catalytic coating |
| 26     | Mixing element                           |
| 28     | Air distributor                          |
| 30     | Fuel supply line                         |
| 32     | Chamber                                  |
| 34     | Air-moving chamber                       |
| 36     | Mixing element                           |
| 38     | Gas burner                               |
| 40     | Hot gas                                  |
| 42     | Gas distributor                          |
| 44     | Mixing element                           |
| 46     | Cold air                                 |
| 48     | Cold air supply line                     |
| 50     | Throttle valve                           |
| 52     | Chamber                                  |

# P2327.S02 Marked-up copy

| 54 | Fuel g | gas |
|----|--------|-----|
|    | /      | ,   |

56 Air

X Roller axis