Université A.MIRA- Béjaia Faculté de Technologie Département ST, 1ère Année

EXAMEN DE CHIMIE 2

L'état initial (A) d'une mole d'un gaz parfait est caractérisé par : $P_A = 2.10^5$ Pa et $V_A = 14$ litres. On Exercice 1 (9 pts) fait subir à ce gaz successivement:

- 1- Un réchauffement isobare de l'état A vers l'état B (P_B , V_B , T_B) qui double son volume ($V_B = 2 \ V_A$).
- 2 -Une compression isotherme de l'état B vers l'état C qui le ramène à son volume initial ($V_C=V_A$).
- 1/ Déterminer la température à laquelle se fait la compression isotherme. En déduire la pression maximale atteinte à la fin de cette transformation.
- 2/ Représenter le cycle de transformation sur un diagramme de Clapeyron. 3/ Calculer le travail (W), la quantité de chaleur (Q), l'énergie interne (ΔU), l'enthalpie (ΔH) et l'entropie
- (ΔS) échangés par le système au cours de chaque transformation et au cours du cycle.
- On donne les valeurs suivantes : R = 8, 32 J.K^{-1} .mol⁻¹; $Cp = 20,9 \text{ J.K}^{-1}$.mol⁻¹; Cp Cv = R

Exercice 2 (7 pts)

On considère la formation de l'éthanol à l'état liquide ($C_2H_5OH_{(liq)}$), sous une pression de 1 bar.

- 1/ Ecrire la réaction de formation de $C_2H_5OH_{(liq)}$ à 298 K, à partir de ses constituants.
- 2/ Calculer l'enthalpie standard de vaporisation de $C_2H_5OH_{(liq)}$.
- 4/ Calculer l'enthalpie standard de formation de $C_2H_5OH_{(liq)}$ à la température T=350 K, en supposant que 3/ Calculer l'énergie de rupture (dissociation) de la liaison OH. les Cp° sont constants dans le domaine de température entre 298 K et 350 K.

On donne en KJ.mol⁻¹: $\Delta H_f^*(C_2H_5OH_{(liq)}) = -278$; $\Delta H_f^*(C_2H_5OH_{(g)}) = -239,5$; $\Delta H_{sub}^*(C_{(s)}) = 714$

On donne en KJ.m			0-0	C-0	C-H
Constituant	C-C	H-H - 436	- 98	- 351	- 414
$\Delta H_{\mathfrak{s}}^{\mathfrak{s}}(KJ.mol^{-1})$	- 347	- 436	- 90		

On donne les Cp° en J.mol⁻¹.K⁻¹:

On donne les Cp° en	J.1110.	T III	O ₂ (g)	C ₂ H ₅ OH (liq)
Constituant	C(s)	H _{2 (g)} 28,83	29,12	112,3
$C_p^{\circ}(J.mol^{-1}.K^{-1})$	8,51	20,03		

Un calorimètre de capacité calorifique $C=150\ J/K$ contient une masse $m_1=200\ g$ d'eau à la température initiale T_1 = 70 °C. On y place un glaçon de masse m_2 = 80 g sortant du congélateur à la Exercice 3 (4 pts) température T_2 = -23 °C. Déterminer la température d'équilibre du système. On suppose que le glaçon fond

On donne: $C_{p(H_2O(liq))} = 4200 J.K^{-1}.Kg^{-1};$ $C_{p(H_2O(s))} = 2100 J.K^{-1}.Kg^{-1};$ $C_{p(H_2O(s))} = 2100 J.K^{-1}.Kg^{-1};$ dans sa totalité. T_{fus} (eau)= 0°C.

Congi de l'exercise à Etat initial (A) 1= inte > Etat(B) _ = cete = stat(c) FA = I. Wife TC= PA=4MI F=PA=ENTA V4 = 14 l = 14.40-3/m3 VB = 2 VA = 28 D VC= VA TA= 336,5K TB=2TA=673K TC = 2TA = 63 Colcub: Os 10/ PAVA = MRTA => TA = 336, SK PBVB = MRTB => TB = PA. 2V4 = 2TA = 673K PAVA = MRTA et PCVc = MRTC => Pc = Tc.PA.

Pc = &PA = 4. 105 Pa.

D. TA (0)25 $P = P = Coste (P_A = P_B)$ $P = P = Coste (P_A = P_B)$ WAB = -2800 3/mol (0,25) PAB = SCPOT =) QAB = QP = GP (TB-TA) 0,25) = CP(2TA-TA); QAB=7082,857/mol 0,25 =/ A LLAB = WAB + QAB = 4232 0/mol 0,25

1 LHAE = C1 = SHE = 7050,850 mal = 7030 5/ml $e/dG = \frac{dG}{dS} = \frac{G}{G} = \frac{G}{$ DS+18 = 14,4 186 8, mad -1, K-1 ~ 14,428. mod 1. K-I) transf (B -> c) ! T= Oxfe Tb= Tc a/WR=(-PdV -> WBC = -MRTB lu Vc 6/25 Wex = RTB lu 2 = 3894, 1 5/mol (725) b/ QBC=? DUBC=O => QBC+WBC=O => QBC = -WBC .; QBC = -3684,1 5/mol. 6,25 C/ DUBC = MCW dT = 0 (25) d/ BHBC = MCpdT=0 (0,00) e/ DSBC = DQBC = -5,82 & , moly K-1. (0,25) If to range (C > A): N=cste (VA = VC). a/ dQcA = CvdT (0/25); Cp-Cv=R =>G1= /2/587. QCA = CV(TA-Te) = -4233, 17 8 | mol = 4233 J/ma b/ oWcA = -PdV = 0 ; WcA = 0 (0,25) 9. DUCA = QCA + WEA = QCA = -4233 F/mal 0/25 1/ NUL - MC NT = CP (TA-TA) = -7032,85 = 7033

Exercise 2. Line molecule Je Ce Hook content 25, 6 h et 2.0

1 2
$$C_{(s)} + 3H_2(s) + \frac{1}{2}O_{2}(s)$$

2/ La reaction de vaporiste him, s'ecret:

 $C_2H_5OH_{(s)}$

ANC: $OH_{vap} = OH_f(C_2H_5OH_{(s)}) - OH_f(C_2H_5OH_{(s)})$

ANC: $OH_{vap} = OH_f(C_2H_5OH_{(s)}) - OH_f(C_2H_5OH_{(s)})$

ANC: $OH_{vap} = OH_f(C_2H_5OH_{(s)}) - OH_f(C_2H_5OH_{(s)})$

2 $C_{(s)} + 3H_2(s) + \frac{1}{2}O_2(s)$
 $OH_f(c_2H_5OH_{(s)}) - OH_f(c_3H_5OH_{(s)})$
 $OH_f(c_3H_5OH_{(s)}) - OH_f(c_3H_5OH_{(s)})$
 $OH_f(c$

-OH (0-4) = OH (0-4) = - 30H (H-H) + 20H - 10H (0-0) + 50H (C-H) + OH (C-H) + OH (C-H) + OH (C-H) + OHe (c-c) - OHuap - OH C2H5OH) DH (0-4) = + 456,5 KJ/mol 4/ Dapies la la la Kirchett AH (T) = AH (To) + J D(recp) dT avec $D(nCp^2) = \frac{\sum (n_i Cp_i)_{prod}}{\sum (n_i Cp_i)_{prod}} - \frac{\sum (n_i Cp_i)_{neactife}}{\sum (n_i Cp_i)_{prod}}$ Les Cp chart constant Laws l'intervalle [To-T] = DAH (T) = AH (To) + D(ncp) J' dT. color $\Delta(ncp^{\circ})$. $\Delta(ncp^{\circ}) = \left[\mathcal{E}_{p}^{\circ} \left(\mathcal{C}_{2}H_{5}GH_{(e)} \right) \right] - \left[\mathcal{E}_{cp}^{\circ} \left(\mathcal{C}_{S} \right) + 3 \mathcal{C}_{p}^{\circ} (H_{2}g) + \frac{1}{2} \mathcal{C}_{p}^{\circ} (O_{c}) \right]$ A:N: D(ncp=) = -5,92. J.K-1. (0,5) columbus OH° (T) de C2HF CH(Rig) a T = 350 K $\Delta H^{\circ}(T) = \Delta H^{\circ}(T_{\circ}) - 5,92 \int_{0}^{\infty} dT = \Delta H^{\circ}(T_{\circ}) - 5,92 \left(T - T_{\circ}\right)$ $DH^{\circ}(T) = -278 - 5,92 lb(350 - 238)$ BH (T) = -278,3 KJ/mol (1) A-N:

EXECUL N 3 (possible)

En suppose que le glason d'and dans su tertellité.

soit G1 la chaleur cédée par l'eau et le calonimètre:

Soit Que la Chalair captée par le bloc de glace: Que = m2 Cp(H2O,s) · (O-T2) + m2 Lfusion + m2 Cp(H2O,E) = O

Le système (can + glorie + calorimètre) est isolée:

(mn cp(H20,0) + C). (Te-Tn)+m2 cp(H20,s)(0-T2)+