Closure under Union

- Theorem: If A and B are regular languages, then $A \cup B$ is also regular language
- Proof.

1

5

Let A be accepted by finite automata N1, and B be accepted by finite automata N2

Find another finite automata N to accept $A \cup B$

Closure under Catenation

- Theorem: If A and B are regular languages, then $A \circ B$ is also a regular language
- Proof.

6

Let A be accepted by finite automata N1, and B be accepted by finite automata N2

Find another finite automata N to accept $A \circ B$

3

Construct N N_1 \mathcal{E} N_2 is linked to the accept state of N1

Problem

- Design an automata for 10*1.
- Design an automata for recognizing all strings 1^{2k+1}
- Link the above two automatas for recognizing

 $10^*1 \bigcup \{1^{2k+1} : k \ge 0\}.$

1