Systemd

Servizos en GNU/Linux

Un servizo é un programa se executa en segundo plano e que realiza unha función de xeito transparente para o usuario. Non soen ser iterativos.

Tamén son chamados **daemons** (deimons), non hai que confundir coa imaxe do demo cristiano, ven do grego antigo onde os daemons eran unha especie de anxos da garda dos humanos.

Esta é a razón pola que moitos servizos rematan o seu nome en d

```
root@debianTesting:~# netstat -lpn
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address State PID/Program name
tcp 0 0 0.0.0.0:22 LISTEN 382/sshd
tcp 0 0 127.0.0.1:631 LISTEN 336/cupsd
```

Systemd

É, entre outras cousas, o **sistema encargado de xestionar o inicio de GNU/Linux**. É o primeiro proceso, e polo tanto o encargado de iniciar os servizos.

É o sistema de inicio estándar de Debian dende Debian 8 (2015), pero sufriu un importante rechazo por parte da comunidade xa que rompe o enfoque **KISS (Keep It Simple Stupid!)** tradicional das aplicacións GNU/Linux. A idea é que os programas fagan unha soa cousa, pero que a fagan ben.

Systemd realiza moitas tarefas e é moi dependente do kernel.

Optimizando o inicio do equipo

Os sistemas intentan cada vez máis facilitarlle a vida ó usuario, polo que durante o inicio do sistema inician servizos por se os necesitamos. Pero que en caso de non necesitalos están ocupando recursos innecesarios e retrasando o inicio do sistema.

Podemos examinar o arranque con systemd-analyze

- systemd-analyze: Amosa o tempo empregado no inicio do sistema
- **systemd-analyze blame:** Amosa o tempo empregado por cada servizo durante o inicio

```
systemd-analy blame

17.492s apt-daily.service
15.073s apt-daily-upgrade.service
7.926s libvirtd.service
6.827s networking.service
4.620s nmbd.service
4.242s accounts-daemon.service
3.874s winbind.service
3.874s vboxdrv.service
3.864s smbd.service
3.864s smbd.service
3.625s ModemManager.service
```

Podemos demorar o inicio de algúns servizos ou desactivar servizos innecesarios

Xestionando os servizos

Temos dúas alternativas: service OU systemctl.

Realmente Service é un front-end que chama a systemetl.

	Service	Systemctl
Listar servizos activos	servicestatus-all	systemctl list-unitstype=servicestate=running
Información dun servizo	service servicio status	systemctl status servicio
Iniciar un servizo	service servicio start	systemctl start servicio
Deter un servizo	service servicio stop	systemctl stop servicio
Deshabilitar servizo		systemctl disable servicio
Habilitar servizo		systemctl enable servicio

Exemplos:

```
root@debian:~# service --status-all
[ - ] anacron
[ + ] avahi-daemon
[ - ] bluetooth
[ - ] console-setup.sh
[ + ] cron
[ + ] cups
[ - ] cups-browsed
root@debian:~# service cups stop
root@debian:~# service --status-all
[ - ] anacron
[ + ] avahi-daemon
[ - ] bluetooth
[ - ] console-setup.sh
[ + ] cron
[ - ] cups
[ - ] cups-browsed
```


Identificando os servizos

Os seguintes son algúns servizos que poderíamos desactivar

Nome	Función	
apt-daily	Actualizacións automáticas	
avahi	É un sistema que facilita o descubrimento de servizos nunha rede local	
Bluetooth	Dispositivos Bluetooth	
Cups	Servidor de impresión	

Podemos atopar un listado máis completo aquí

Unidades (Systemd Units)

Systemd pode configurar moitos aspectos do sistema: servizos, puntos de montaxe, logs. A súa xestión esta baseada no concepto de Unidade.

Unha unidade é un obxecto que representa un obxecto do sistema manexado por Systemd.

A súa configuración faixe mediante os **unit files**. Teremos distintos tipos de units dependendo do recurso a xestionar, por exemplo as units relacionadas con servizos teñen o sufixo **.service.**

Para amosar as units relacionadas con servizos que se inician no sistema

Para obter información dun servizo concreto

Agora xa sabemos a ruta do seu UNIT File, o seu arquivo de configuración

```
usuario@debian:~$ more /lib/systemd/system/ssh.service
[Unit]
Description=OpenBSD Secure Shell server
After=network.target auditd.service
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run
EnvironmentFile=-/etc/default/ssh
ExecStartPre=/usr/sbin/sshd -t
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS
ExecReload=/usr/sbin/sshd -t
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartPreventExitStatus=255
Type=notify
[Install]
WantedBy=multi-user.target
Alias=sshd.service
```

Creando o noso propio servizo que inicie co inicio do equipo.

Definir o noso unit file

```
root@debian:~# vi /lib/systemd/system/myservice.service

[Unit]
Description=Example systemd service.

[Service]
Type=simple
ExecStart=/bin/bash /usr/bin/test_service.sh

[Install]
WantedBy=multi-user.target
```


Targets

Os <u>targets</u> son outro tipo de unidades que podemos configurar en Systemd. Os targets agrupan varias unidades e empréganse para definir o estado que debe alcanzar un sistema cando se inicie (servizos que debe executar...)

Podemos listar os targets dispoñibles con

```
rojas@debian:~$ ls /lib/systemd/system/*.target
/lib/systemd/system/basic.target
/lib/systemd/system/printer.target
/lib/systemd/system/bluetooth.target
/lib/systemd/system/reboot.target
```

Podemos comprobar cal é o noso target por defecto

```
rojas@debianRojas:~$ ls -l /lib/systemd/system/default.target
lrwxrwxrwx 1 root root 16 Out 16 15:24 /lib/systemd/system/default.target ->
graphical.target
```

Os targets teñen dependencias entre eles. Para que un target se complete é preciso que outros se complente antes

```
rojas@debian:~$ more /lib/systemd/system/graphical.target
[Unit]
Description=Graphical Interface
Documentation=man:systemd.special(7)
Requires=multi-user.target
```


Podemos cambiar o target

rojas@debian:~\$ systemctl isolate multi-user.target

Para cambiar o target por defecto

rojas@debian:~\$ systemctl set-default multi-user.target

Comandos de información do Sistema

Examinando tiempo de inicio del sistema

```
root@debianTesting:~# systemd-analyze
Startup finished in 1.307s (kernel) + 1.780s (userspace) = 3.088s
```

Información sobre el equipo

```
root@debianTesting:~# hostnamectl
Static hostname: debianTesting
Icon name: computer-vm
Chassis: vm
Machine ID: d22291cfe0cb4a0a929d6e716bbb3fb2
Boot ID: b6c8778fdcf343a1963d222da1756155
Virtualization: oracle
Operating System: Debian GNU/Linux 9 (stretch)
Kernel: Linux 4.9.0-8-amd64
Architecture: x86-64
```

Información sobre a configuración horaria

```
root@debianTesting:~# timedatectl
    Local time: Lun 2019-03-18 00:20:13 CET
Universal time: Dom 2019-03-17 23:20:13 UTC
    RTC time: Dom 2019-03-17 23:20:13
    Time zone: Europe/Madrid (CET, +0100)
Network time on: yes
NTP synchronized: yes
RTC in local TZ: no
```


Examinando os logs do Sistema

Tradicionalmente para examinar os logs do sistema empregábamos a carpeta /var/logs. Nesa carpeta temos distintos arquivos que almacenan información provinte de distintos orixes en formato texto. **rsyslog** era o encargado de xestionar os logs.

Pero a partir de **Debian 12 Bookworm**, rsyslog xa non se instala por defecto e os logs son xestionados por **systemd-journald**. Systemd intenta unificar a información de todos eses arquivos. Agora todos os logs son almacenados nun arquivo binario.

Para examinar a información do sistema dende o último arrangue

```
root@debian:~# journalctl
-- Logs begin at Thu 2020-01-16 18:09:08 CET, end at Thu 2020-01-16 18:55:49
CET
Xan 16 18:55:10 debianRojas kernel: Linux version 4.19.0-6-amd64 (debian-kernel@
Xan 16 18:55:10 debianRojas kernel: Command line:
BOOT_IMAGE=/boot/vmlinuz-4.19.
Xan 16 18:55:10 debianRojas kernel: x86/fpu: Supporting XSAVE feature 0x001:
'x8
```

Podemos movernos polo listado, e procurar unha cadea de texto.

Para filtrar as mensaxes de erro

```
root@debian:~# journalctl -p err
```

Podemos examinar os logs nun periodo de tempo

```
root@debian:~# journalctl --since 'yesterday' --until '00:00'
```

Para ver as entradas máis recentes

```
root@debian:~# journalctl -r
```

- Logs por tipo
 - Logs dende o arranque actual

```
root@debian:~# journalctl -b
```

Logs de sistema

```
root@debian:~# journalctl -k
```

- Para ver os logs dunha unit, por exemplo un servicio
- root@debian:~# journalctl -u ssh
- Para ver os logs do kernel do último arranque

```
journalctl --dmesg
```

Para ver os últimos arrangues

```
journalctl -list-boots
```


Examinando os logs de inicio de sesión

Os inicios de sesión están xestionados por systemd-logind

Para ver quen iniciou sesión localmente

journalctl -u systemd-logind | grep "New session"

Para ver quen iniciou sesión localmente hoxe

journalctl -u systemd-logind --since "today" | grep "New session"

Os inicios de sesión vía ssh están xestionados por ssh

- Para ver os inicios de sesión vía ssh dende onte journalctl -u ssh --since yesterday
 - Para ver os inicios de sesión por ambas vías

journalctl -u systemd-logind -u ssh --since today

Referencias

• https://opensource.com/article/20/8/journals-systemd

