Foundations of Machine Learning Multi-Class Classification

Mehryar Mohri
Courant Institute and Google Research
mohri@cims.nyu.edu

Motivation

- Real-world problems often have multiple classes: text, speech, image, biological sequences.
- Algorithms studied so far: designed for binary classification problems.
- How do we design multi-class classification algorithms?
 - can the algorithms used for binary classification be generalized to multi-class classification?
 - can we reduce multi-class classification to binary classification?

Multi-Class Classification Problem

■ Training data: sample drawn i.i.d. from set X according to some distribution D,

$$S = ((x_1, y_1), \dots, (x_m, y_m)) \in X \times Y,$$

- mono-label case: Card(Y) = k.
- multi-label case: $Y = \{-1, +1\}^k$.
- Problem: find classifier $h: X \rightarrow Y$ in H with small generalization error,
 - mono-label case: $R(h) = E_{x \sim D}[1_{h(x) \neq f(x)}]$.
 - multi-label case: $R(h) = E_{x \sim D} \left[\frac{1}{k} \sum_{l=1}^{k} 1_{[h(x)]_l \neq [f(x)]_l} \right]$.

Notes

- In most tasks considered, number of classes $k \le 100$.
- For k large, problem often not treated as a multiclass classification problem (ranking or density estimation, e.g., automatic speech recognition).
- \blacksquare Computational efficiency issues arise for larger ks.
- In general, classes not balanced.

Multi-Class Classification - Margin

- \blacksquare Hypothesis set H:
 - functions $h: X \times Y \to \mathbb{R}$.
 - label returned: $x \mapsto \underset{y \in Y}{\operatorname{argmax}} h(x, y)$.
- Margin:
 - $\rho_h(x,y) = h(x,y) \max_{y' \neq y} h(x,y')$.
 - error: $1_{\rho_h(x,y)\leq 0} \leq \Phi_{\rho}^{g, -g}(\rho_h(x,y))$.
 - empirical margin loss:

$$\widehat{R}_{\rho}(h) = \frac{1}{m} \sum_{i=1}^{m} \Phi_{\rho}(\rho_h(x, y)).$$

Multi-Class Margin Bound

(MM et al. 2012; Kuznetsov, MM, and Syed, 2014)

Theorem: let $H \subseteq \mathbb{R}^{X \times Y}$ with $Y = \{1, \dots, k\}$. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification bound holds for all $h \in H$:

$$R(h) \le \widehat{R}_{\rho}(h) + \frac{4k}{\rho} \mathfrak{R}_m(\Pi_1(H)) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

with
$$\Pi_1(H) = \{x \mapsto h(x,y) : y \in Y, h \in H\}.$$

Kernel Based Hypotheses

- **A** Hypothesis set $H_{K,p}$:
 - ullet feature mapping associated to PDS kernel K.
 - functions $(x,y) \mapsto \mathbf{w}_y \cdot \mathbf{\Phi}(x)$, $y \in \{1,\ldots,k\}$.
 - label returned: $x \mapsto \operatorname{argmax} \mathbf{w}_y \cdot \mathbf{\Phi}(x)$.
 - for any $p \ge 1$,

$$H_{K,p} = \{(x,y) \in X \times [1,k] \mapsto \mathbf{w}_y \cdot \mathbf{\Phi}(x) \colon \mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_k)^\top, \|\mathbf{W}\|_{\mathbb{H},p} \le \Lambda \}.$$

 $y \in \{1,...,k\}$

Multi-Class Margin Bound - Kernels

(MM et al. 2012)

Theorem: let $K: X \times X \to \mathbb{R}$ be a PDS kernel and let $\Phi: X \to \mathbb{H}$ be a feature mapping associated to K. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multiclass bound holds for all $h \in H_{K,p}$:

$$R(h) \le \widehat{R}_{\rho}(h) + 4k\sqrt{\frac{r^2\Lambda^2}{\rho^2 m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}},$$

where
$$r^2 = \sup_{x \in X} K(x, x)$$
.

Approaches

- Single classifier:
 - Multi-class SVMs.
 - AdaBoost.MH.
 - Conditional Maxent.
 - Decision trees.
- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.

Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

Optimization problem:

$$\min_{\mathbf{w}, \boldsymbol{\xi}} \frac{1}{2} \sum_{l=1}^{k} \|\mathbf{w}_l\|^2 + C \sum_{i=1}^{m} \xi_i$$
subject to: $\mathbf{w}_{y_i} \cdot \mathbf{x}_i + \delta_{y_i, l} \ge \mathbf{w}_l \cdot \mathbf{x}_i + 1 - \xi_i$

 $(i,l) \in [1,m] \times Y.$

Decision function:

$$h: x \mapsto \underset{l \in Y}{\operatorname{argmax}} (\mathbf{w}_l \cdot \mathbf{x}).$$

Notes

- Directly based on generalization bounds.
- Comparison with (Weston and Watkins, 1999): single slack variable per point, maximum of slack variables (penalty for worst class):

$$\sum_{l=1}^k \xi_{il} \to \max_{l=1}^k \xi_{il}.$$

- PDS kernel instead of inner product
- $lacktrel{lacktrel{\square}}$ Optimization: complex constraints, mk-size problem.
 - specific solution based on decomposition into *m* disjoint sets of constraints (Crammer and Singer, 2001).

Dual Formulation

lacksquare Optimization problem: α_i ith row of matrix $\alpha \in \mathbb{R}^{m \times k}$

$$\max_{\boldsymbol{\alpha}=[\alpha_{ij}]} \sum_{i=1}^{m} \boldsymbol{\alpha}_{i} \cdot \mathbf{e}_{y_{i}} - \frac{1}{2} \sum_{i=1}^{m} (\boldsymbol{\alpha}_{i} \cdot \boldsymbol{\alpha}_{j}) (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$
subject to: $\forall i \in [1, m], (0 \leq \alpha_{iy_{i}} \leq C) \land (\forall j \neq y_{i}, \alpha_{ij} \leq 0) \land (\boldsymbol{\alpha}_{i} \cdot \mathbf{1} = 0).$

Decision function:

$$h(x) = \underset{l=1}{\operatorname{argmax}} \left(\sum_{i=1}^{m} \alpha_{il} (\mathbf{x}_i \cdot \mathbf{x}) \right).$$

AdaBoost

(Schapire and Singer, 2000)

Training data (multi-label case):

$$(x_1, y_1), \ldots, (x_m, y_m) \in X \times \{-1, 1\}^k.$$

- Reduction to binary classification:
 - each example leads to k binary examples:

$$(x_i, y_i) \to ((x_i, 1), y_i[1]), \dots, ((x_i, k), y_i[k]), i \in [1, m].$$

- apply AdaBoost to the resulting problem.
- choice of α_t .
- Computational cost: mk distribution updates at each round.

AdaBoost.MH

```
H \subseteq (\{-1,+1\}^k)^{(X\times Y)}.
ADABOOST.MH(S = ((x_1, y_1), \dots, (x_m, y_m)))
        for i \leftarrow 1 to m do
                 for l \leftarrow 1 to k do
                         D_1(i,l) \leftarrow \frac{1}{mk}
        for t \leftarrow 1 to T do
                 h_t \leftarrow \text{base classifier in } H \text{ with small error } \epsilon_t = \Pr_{D_t}[h_t(x_i, l) \neq y_i[l]]
   5
                \alpha_t \leftarrow \text{choose} \quad \triangleright \text{ to minimize } Z_t
                Z_t \leftarrow \sum_{i,l} D_t(i,l) \exp(-\alpha_t y_i[l] h_t(x_i,l))
                for i \leftarrow 1 to m do
                         for l \leftarrow 1 to k do
                                  D_{t+1}(i,l) \leftarrow \frac{D_t(i,l) \exp(-\alpha_t y_i[l]h_t(x_i,l))}{Z_t}
 10
11 f_T \leftarrow \sum_{t=1}^T \alpha_t h_t
        return h_T = \operatorname{sgn}(f_T)
 12
```

Bound on Empirical Error

Theorem: The empirical error of the classifier output by AdaBoost. MH verifies:

$$\widehat{R}(h) \le \prod_{t=1}^{T} Z_t.$$

- Proof: similar to the proof for AdaBoost.
- Choice of α_t :
 - for $H \subseteq (\{-1,+1\}^k)^{X \times Y}$ as for AdaBoost, $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$.
 - for $H \subseteq ([-1,1]^k)^{X \times Y}$ same choice: minimize upper bound.
 - other cases: numerical/approximation method.

Notes

Objective function:

$$F(\boldsymbol{\alpha}) = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l]f_n(x_i,l)} = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l] \sum_{t=1}^{n} \alpha_t h_t(x_i,l)}.$$

- All comments and analysis given for AdaBoost apply here.
- Alternative: Adaboost.MR, which coincides with a special case of RankBoost (ranking lecture).

Decision Trees

Different Types of Questions

- Decision trees
 - $X \in \{\text{blue}, \text{white}, \text{red}\}$: categorical questions.
 - $X \le a$: continuous variables.
- Binary space partition (BSP) trees:
 - $\sum_{i=1}^{n} \alpha_i X_i \leq a$: partitioning with convex polyhedral regions.
- Sphere trees:
 - $||X a_0|| \le a$: partitioning with pieces of spheres.

Hypotheses

- In each region R_t ,
 - classification: majority vote ties broken arbitrarily,

$$\widehat{y}_t = \underset{y \in Y}{\operatorname{argmax}} |\{x_i \in R_t : i \in [1, m], y_i = y\}|.$$

regression: average value,

$$\widehat{y}_t = \frac{1}{|S \cap R_t|} \sum_{\substack{x_i \in R_t \\ i \in [1, m]}} y_i.$$

Form of hypotheses:

$$h \colon x \mapsto \sum_{t} \widehat{y}_{t} 1_{x \in R_{t}}.$$

Training

- Problem: general problem of determining partition with minimum empirical error is NP-hard.
- Heuristics: greedy algorithm.
 - for all $j \in [1, N]$, $\theta \in \mathbb{R}$, $R^+(j, \theta) = \{x_i \in R : x_i[j] \ge \theta, i \in [1, m]\}$ $R^-(j, \theta) = \{x_i \in R : x_i[j] < \theta, i \in [1, m]\}.$

```
DECISION-TREES(S = ((x_1, y_1), \dots, (x_m, y_m)))

1 P \leftarrow \{S\} > initial partition

2 for each region R \in P such that Pred(R) do

3 (j, \theta) \leftarrow \operatorname{argmin}_{(j,\theta)} \operatorname{error}(R^-(j,\theta)) + \operatorname{error}(R^+(j,\theta))

4 P \leftarrow P - R \cup \{R^-(j,\theta), R^+(j,\theta)\}

5 return P
```

Splitting/Stopping Criteria

- Problem: larger trees overfit training sample.
- Conservative splitting:
 - split node only if loss reduced by some fixed value $\eta > 0$.
 - issue: seemingly bad split dominating useful splits.
- Grow-then-prune technique (CART):
 - grow very large tree, $\operatorname{Pred}(R)$: $|R| > |n_0|$.
 - prune tree based on: $F(T) = \hat{L}oss(T) + \alpha |T|$, $\alpha \ge 0$ parameter determined by cross-validation.

Decision Tree Tools

- Most commonly used tools for learning decision trees:
 - CART (classification and regression tree) (Breiman et al., 1984).
 - C4.5 (Quinlan, 1986, 1993) and C5.0 (RuleQuest Research) a commercial system.
- Differences: minor between latest versions.

Approaches

- Single classifier:
 - SVM-type algorithm.
 - AdaBoost-type algorithm.
 - Conditional Maxent.
 - Decision trees.
- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.

One-vs-All

Technique:

- for each class $l \in Y$ learn binary classifier $h_l = \operatorname{sgn}(f_l)$.
- combine binary classifiers via voting mechanism, typically majority vote: $h: x \mapsto \operatorname*{argmax} f_l(x)$.
- Problem: poor justification (in general).
 - calibration: classifier scores not comparable.
 - nevertheless: simple and frequently used in practice, computational advantages in some cases.

One-vs-One

Technique:

- for each pair $(l, l') \in Y, l \neq l'$ learn binary classifier $h_{ll'}: X \rightarrow \{0, 1\}$.
- combine binary classifiers via majority vote:

$$h(x) = \underset{l' \in Y}{\operatorname{argmax}} |\{l : h_{ll'}(x) = 1\}|.$$

Problem:

- computational: train k(k-1)/2 binary classifiers.
- overfitting: size of training sample could become small for a given pair.

Computational Comparison

	Training	Testing		
One-vs-all	$O(kB_{ ext{train}}(m))$ $O(km^{lpha})$	$O(kB_{ m test})$		
One-vs-one	$O(k^2 B_{\text{train}}(m/k))$ (on average) $O(k^{2-\alpha}m^{\alpha})$	$O(k^2 B_{\mathrm{test}})$ smaller N_{SV} per B		

Time complexity for SVMs, α less than 3.

Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

Idea:

• assign F-long binary code word to each class:

$$\longrightarrow \mathbf{M} = [\mathbf{M}_{lj}] \in \{0,1\}^{[1,k] \times [1,F]}.$$

- learn binary classifier $f_j: X \to \{0, 1\}$ for each column. Example x in class l labeled with \mathbf{M}_{lj} .
- classifier output: $(\mathbf{f}(x) = (f_1(x), \dots, f_F(x)))$,

$$h: x \mapsto \underset{l \in Y}{\operatorname{argmin}} d_{\operatorname{Hamming}} \Big(\mathbf{M}_l, \mathbf{f}(x) \Big).$$

Illustration

8 classes, code-length: 6.

codes

			2	3	4	5	6
	_	0	0	0		0	0
classes	2		0	0	0	0	0
	3	0			0		0
	4	l	I	0	0	0	0
	5			0	0		0
	6	0	0	-		0	
	7	0	0		0	0	0
	8	0		0	1	0	0

$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
0	0 1 1		0		—

 $\mathsf{new}\;\mathsf{example}\,x$

Error-Correcting Codes - Design

Main ideas:

- independent columns: otherwise no effective discrimination.
- distance between rows: if the minimal Hamming distance between rows is d, then the multi-class can correct $\left|\frac{d-1}{2}\right|$ errors.
- columns may correspond to features selected for the task.
- one-vs-all and one-vs-one (with ternary codes) are special cases.

Extensions

(Allwein et al., 2000)

- Matrix entries in $\{-1, 0, +1\}$:
 - examples marked with 0 disregarded during training.
 - one-vs-one becomes also a special case.
- \blacksquare Margin loss L: function of yf(x), e.g., hinge loss.
 - Hamming loss: $h(x) = \mathop{\rm argmin}_{l \in \{1,...,k\}} \sum_{j=1}^F \frac{1 \mathop{\rm sgn} \left(\mathbf{M}_{lj} f_j(x)\right)}{2}.$ Margin loss:

$$h(x) = \underset{l \in \{1,...,k\}}{\operatorname{argmin}} \sum_{j=1} L(\mathbf{M}_{lj} f_j(x)).$$

Applications

- One-vs-all approach is the most widely used.
- No clear empirical evidence of the superiority of other approaches (Rifkin and Klautau, 2004).
 - except perhaps on small data sets with relatively large error rate.
- Large structured multi-class problems: often treated as ranking problems (see ranking lecture).

References

- Erin L.Allwein, Robert E. Schapire and Yoram Singer. Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research, 1:113-141, 2000.
- K. Crammer and Y. Singer. Improved output coding for classification using continuous relaxation. In Proceedings of NIPS, 2000.
- Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.
- Koby Crammer and Yoram Singer. On the Learnability and Design of Output Codes for Multiclass Problems. Machine Learning 47, 2002.
- Thomas G. Dietterich, Ghulum Bakiri: Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research (JAIR) 2: 263-286, 1995.
- Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning, the MIT Press, 2012.
- John C. Platt, Nello Cristianini, and John Shawe-Taylor. Large Margin DAGS for Multiclass Classification. In Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 547-553, 2000.

References

- Ryan Rifkin. "Everything Old Is New Again: A Fresh Look at Historical Approaches in Machine Learning." Ph.D. Thesis, MIT, 2002.
- Rifkin and Klautau. "In Defense of One-Vs-All Classification." Journal of Machine Learning Research, 5:101-141, 2004.
- Robert E. Schapire. The boosting approach to machine learning: An overview. In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation and Classification. Springer, 2003.
- Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5): 1651-1686, 1998.
- Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text categorization. *Machine Learning*, 39(2/3):135-168, 2000.
- Jason Weston and Chris Watkins. Support Vector Machines for Multi-Class Pattern Recognition. Proceedings of the Seventh European Symposium On Artificial Neural Networks (ESANN '99), 1999.