

CSCE604135 | Perolehan Informasi (Information Retrieval) An Intro to Information Retrieval

Radityo Eko Prasojo, PhD

Contents

- Why IR?
- What is IR? What are the components?

Why IR?

In 2021: unstructured data becomes more and more common

A trick: metadata - but what if there are none?

Ol Medium

No metadata - just content

How do we obtain relevant information effectively?

Here comes Information Retrieval (IR)!

In essence: finding relevant materials (e.g. <u>documents</u>) of an unstructured nature (e.g. <u>texts</u>), according to some criteria (e.g. <u>query</u>, or <u>keywords</u>), from a large collection of resources (e.g. millions of documents stored in a computer).

*applies to many kinds of unstructured data, but in this course we focus on text

Contemporarily, the most typical use case of an IR is a search engine, e.g.:

- On your email
- On your PC folder
- On your company/university shared repository
- Web search engine

IR application: Search Engines

It's just string matching right? What's the big deal

```
# criteria like year, etc.
def process(query,criteria):
    relevantdocs = []
    for doc in docs:
        # check if doc contains q
        if query in doc
        and doc matches criteria:
            relevantdocs.add(doc)
    return relevantdocs
# Boom! I have an IR system?
```

- Syntax/textual problem: typo, word order, etc.: "Efektivitas vaksin" vs "vaksin efektifitas"
- Semantic problem: polysemy, homonymy: "milk", "hak", "bunga"
- Relevancy order: which doc comes first?
- Performance: what if there are billions of documents?

prolehan informasi Q All ■ News Images Maps Videos About 10,800,000 results (0.44 seconds) Showing results for *perolehan* informasi Search instead for prolehan informasi

Semantic problem: I meant the animal!

As an expert googler, I can do:

Why in this order, Google?

About 180,000,000 results (0.87 seconds)

https://en.wikipedia.org > wiki > Jaguar *

Jaguar - Wikipedia

The **jaguar** is a compact and well-muscled **animal**. It is the largest **cat** native to the Americas and the third largest in the world, exceeded in size only by the ...

Family: Felidae Genus: Panthera Kingdom: Animalia Order: Carnivora

North American jaguar · Jaguar Cars · South American jaguar · El Jefe

https://www.wwf.org.uk → learn → fascinating-facts → jag... ▼

Top 10 facts about Jaguars | WWF

3. They're on the chunky side. The **jaguar** is the third biggest **cat** in the world - after the tiger and the lion - and is ...

And how is it so blazing fast?

About 180,000,000 results (0.87 seconds)

https://en.wikipedia.org → wiki → Jaguar ▼

Jaguar - Wikipedia

The **jaguar** is a compact and well-muscled **animal**. It is the largest **cat** native to the Americas and the third largest in the world, exceeded in size only by the ...

Family: Felidae Genus: Panthera Kingdom: Animalia Order: Carnivora

North American jaguar · Jaguar Cars · South American jaguar · El Jefe

https://www.wwf.org.uk > learn > fascinating-facts > jag... 🔻

Top 10 facts about Jaguars | WWF

3. They're on the chunky side. The **jaguar** is the third biggest **cat** in the world - after the tiger and the lion - and is ...

Overview of an IR System

Boolean Model

- Document either <u>matches</u> a query or does not match, no inbetween
- Can add boolean operators between keywords

"Information **AND** retrieval"

"Information **AND NOT** retrieval"

"Information **OR** retrieval"

"Information AND retrieval"

Doc1 Doc2 Doc3 The **retrieval** of the Rendang is one of the most Information retrieval is a shipwreck was difficult ... popular dishes in Indonesia. branch of computer science **Information** about its It has a savoury, sweet that ... taste, with mild spiciness ... location was not precise ... Relevant documents Ranker still needs be ordered!

Vector Space Model

 Let A and B be two points in a 2D space, what would be the distance?

Euclidean Distance

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

p, q = two points in Euclidean n-space

 q_i, p_i = Euclidean vectors, starting from the origin of the space (initial point)

n = n-space

 Note that this is extendable to any big dimension n

Manhattan Distance

$$d(p,q) = \sum_{i=1}^n \, |q_i| - p_i \, |$$

- **Purple** = manhattan distance
- Red = euclidean distance
- Note that this is also extendable to any big dimension n

Cosine Similarity

$$d(p,q) = cos(heta) = rac{p \cdot q}{\|p\| \|q\|}$$

$$= \; rac{\sum_{i=1}^{n} \; p_{\,i} \; q_{\,i}}{\sqrt{\sum_{i=1}^{n} \; p_{\,i}^{\,2}} \; \sqrt{\sum_{i=1}^{n} \; q_{\,i}^{\,2}}}$$

- Note again: this is extensible to any large n
- In n = 5, a point C can be [1,2,6,3,-2]
- In n = 1000, a point D = [6,100,2.5,...]
- This representation of points as list of numbers is referred to as vector
- In any dimension n, we can compute the distance between any two points P1 and P2.

- Suppose that we have a mechanism to map queries and documents into points in a dimension of n.
- Then, selecting and ranking relevant documents can be done by simply computing the distances between the query and each document.
- The closer the document to a query is, the higher it ranks!
- In this course, we will study several of such **mechanisms**.

Ranker

- In the context of search engine, there are at least two factors in ranking: document relevance and document importance.
- In IR, document relevance is the focus.
- In commercial search engine though, algorithms such as PageRank are implemented to measure document importance or popularity in order to influence the final ranking.

Nasi padang yang enak

If we count pure word occurrences, Doc 4 would rank higher, *is that correct*?

We will learn the fact that not every word carries the same **weight**, which can be leveraged for ranking

Top 5 results

Evaluation

- How good are the resulted documents?
- Precision: among the returned documents, how are relevant?
- Recall: among the documents that should be relevant, how many are returned?
- Q: Suppose there are 4 relevant documents in our collection, what is the precision and recall of the figure on the left?
- We will learn these evaluation metrics in more detail

Feedback, refinement, and query rewriting

- User may give feedback on certain pages, e.g. by clicking.
- This feedback can be used to affect the ranking in the future (though, because this is metadata, it is outside the scope of this course)

- Refinement can be done automatically, e.g. by detecting that a query resulted in very few documents, due to typos or unusual keyword, which can be rewritten.
- E.g. "nasi <u>dimasakkan</u>" can be rewritten into "nasi masak", which potentially yield more results.

Indexing

- No indexes no scalable IR system!
- IR systems employs inverted indexing

```
"Nasi" → {doc5, doc6, doc13, ...}

"Retrieval" → {doc1, doc2, doc9, ...}
```

- This works well with the boolean model, making use of boolean operators.
- To achieve this, the documents need to be tokenized, preprocessed and sometimes annotated

Information Retrieval In other applications

Chatbots

Expert systems

prixa

Apakah keluhan utama yang Anda rasakan saat ini?

Kepala saya sakiittttt

- We will learn how to tokenize, preprocess, and annotate text data, as this is an important prerequisite for both query processing and document processing for indexing.
- We will learn how to build inverted index and how to make them efficient and compact.
- We will learn about boolean models and vector space models, and how to improve them with query rewriting (such as typo detection)
- We will learn about how to rank documents
- We will learn how to evaluate IR models, and
- We will learn several technologies that are relevant to IR

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science Universitas Indonesia