```
In [1]: import pandas as pd
    from sklearn.cluster import KMeans
    from sklearn.preprocessing import MinMaxScaler
    import matplotlib.pyplot as plt
    %matplotlib inline
```

In [2]: df=pd.read_csv('salary.csv')

In [3]: df.head(3)

Out[3]:

	Name	Age	Income(\$)
0	Rob	27	70000
1	Michael	29	90000
2	Mohan	29	61000

In [4]: plt.scatter(df.Age,df['Income(\$)'])

Out[4]: <matplotlib.collections.PathCollection at 0x2f74860b490>


```
In [5]: km=KMeans(n_clusters=3)
y_predict=km.fit_predict(df[['Age','Income($)']])
y_predict
```

Out[5]: array([0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2])

In [6]: df['cluster']=y_predict

```
In [7]: df.head()
```

Out[7]:

	Name	Age	Income(\$)	cluster
0	Rob	27	70000	0
1	Michael	29	90000	0
2	Mohan	29	61000	2
3	Ismail	28	60000	2
4	Kory	42	150000	1

```
In [10]: plt.scatter(df1.Age,df1['Income($)'],color='r')
    plt.scatter(df2.Age,df2['Income($)'],color='g')
    plt.scatter(df3.Age,df3['Income($)'],color='black')
    plt.xlabel('Age')
    plt.ylabel('Income')
```

Out[10]: Text(0, 0.5, 'Income')


```
In [12]: scaler=MinMaxScaler()
    scaler.fit(df[['Income($)']])
    df['Income($)']=scaler.transform(df[['Income($)']])

In [14]: scaler.fit(df[['Age']])
    df['Age']=scaler.transform(df[['Age']])
```

```
In [15]: df.head(4)
```

Out[15]:

	Name	Age	Income(\$)	cluster
0	Rob	0.058824	0.213675	0
1	Michael	0.176471	0.384615	0
2	Mohan	0.176471	0.136752	2
3	Ismail	0.117647	0.128205	2

```
In [16]: y_predicted=km.fit_predict(df[['Age','Income($)']])
```

```
In [18]: | df.drop('cluster',axis=1,inplace=True)
```

In [19]: df.head()

Out[19]:

	Name	Age	Income(\$)
0	Rob	0.058824	0.213675
1	Michael	0.176471	0.384615
2	Mohan	0.176471	0.136752
3	Ismail	0.117647	0.128205
4	Kory	0.941176	0.897436

In [20]: df['cluster']=y_predicted

In [21]: df.head()

Out[21]:

	Name	Age	Income(\$)	cluster
0	Rob	0.058824	0.213675	0
1	Michael	0.176471	0.384615	0
2	Mohan	0.176471	0.136752	0
3	Ismail	0.117647	0.128205	0
4	Kory	0.941176	0.897436	1

```
In [23]: plt.scatter(df1.Age,df1['Income($)'],color='r')
    plt.scatter(df2.Age,df2['Income($)'],color='g')
    plt.scatter(df3.Age,df3['Income($)'],color='black')
```

Out[23]: <matplotlib.collections.PathCollection at 0x2f749748d00>


```
In [27]: sse=[]
    k_rng=range(1,10)

for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[['Age','Income($)']])
    sse.append(km.inertia_)
```

```
In [28]: plt.plot(k_rng,sse)
    plt.xlabel("k")
    plt.ylabel('sse')
```

Out[28]: Text(0, 0.5, 'sse')

In []:	