Bases de Dados

Parte I

Introdução: conceitos básicos

Alguns Conceitos

- Base de dados (BD): conjunto de dados que se relacionam entre si.
- Dados: factos conhecidos que têm algum significado e que podem ser guardados.
- Universo: parte do mundo real sobre o qual os dados guardados na base de dados dizem respeito.
 - ★ Empresa: empregados, departamentos, projetos, ...
 - ★ Universidade: alunos, professores, unidades curriculares, inscrições, horários, ...
 - ★ Contactos: nomes, endereços, telefones, ...
 - ★ Bancos: clientes, contas, movimentos, todas as transações, ...
 - ★ Companhia Aérea: reservas, horários, frota, ...
 - ★ Vendas: clientes, produtos, compras, ...

Sistemas de Gestão de Bases de Dados (SGBDs)

Software que permite criar e manipular uma base de dados.

- ★ Coleção de dados inter-relacionados (base de dados)
- ★ Conjunto de programas para aceder aos dados
- ★ Ambiente de utilização conveniente e eficiente.
- ★ e.g. MySQL, MariaDB, SQLite, PostGreSQL, Oracle, SQL-Server, ...

Os SGDBs visam ultrapassar os inconvenientes de se representar uma BDs diretamente sobre o sistemas de ficheiros, como sejam:

- Multiplicidade de ficheiros e formatos
- Atomicidade das alterações
- Acessos concorrentes de múltiplos utilizadores
- Problemas de segurança

Sistema de Base de Dados

Características de um Sistema de Base de Dados

Abstração dos dados

- ★ Num sistema tradicional de ficheiros, a estrutura do ficheiro de dados está espelhada (inserida) nos programas que manipulam esses ficheiros.
- ★ Dificuldade em alterar a organização dos dados. A alteração de um ficheiro de dados, obriga à alteração de todos os programas que manipulam esse ficheiro.
- ★ Num sistema de BD, a estrutura dos ficheiros está no catálogo do SGBD e portanto separada dos programas de acesso. Conduz à independência dados/programa.

Independência dos dados

- ★ O catálogo do sistema guarda a descrição da BD (os meta-dados).
 - Estrutura de cada ficheiro usado para a BD.
 - o Tipo e formato de cada item de dados.
 - Restrições sobre os dados.
- ★ Torna o SGBD independente da BD.
- ★ Permite que o SGBD funcione com diferentes BDs.

Características de um Sistema de Base de Dados

Suporte de visões (ou vistas) múltiplas dos dados

- ★ Permite fornecer diferentes perspetivas (visões) dos dados para diferentes utilizadores.
- ★ Uma visão pode ser um subconjunto de dados da BD, ou um subconjunto de dados (virtuais) derivados a partir de dados da BD.

Partilha de dados e acesso multiutilizador

- ★ O SGBD tem de garantir que cada transação ou é executada corretamente ou é abortada por completo.
 - Restaurar o estado da BD quando ocorrem falhas durante a execução de uma transação.
- ★ Controlar concorrência para garantir consistência e correção nas atualizações da BD.
 - Vários agentes de viagens a tentarem reservar um lugar num mesmo avião. O SGBD tem de garantir que cada lugar só pode ser reservado por apenas um agente.

Exemplo de uma Base de Dados

CADEIRA	CodCad	Nome	Docente
	12347	Bases de Dados	José Aguiar Mota
	34248	Álgebra	Maria das Dores
	32439	Introdução aos Computadores	Carlos Duarte

ALUNO	NumMec	Nome	Curso
	798764544	João Pinto	LCC
	345673451	Carlos Semedo	MIERSI
	487563546	Maria Silva	LBIO
	452212348	Pedro Costa	LMAT

INSCRIÇÃO	NumMec	CodCad
	798764544	12347
	345673451	12347
	798764544	34248
	452212348	32439

Funcionalidades Típicas de um SGBD

- Definição: tipo de dados, tipo de relações e conjunto de restrições.
- Manipulação: inserir dados, apagar dados, alterar dados, fazer consultas, garantir a satisfação das restrições de integridade.
- Construção: representação simples e eficientes de relações complexas entre os dados, guardar os dados num local controlado pelo próprio SGBD, persistência dos dados.
- Rentabilidade: minimizar o esforço de desenvolvimento e manutenção, controlar a redundância nos dados, mecanismos eficientes para processamento de consultas.
- Concorrência e partilha: permitir que vários utilizadores e/ou programas acedam em simultâneo à base de dados, mantendo a consistência dos dados.
- **Proteção:** mecanismos de backup e recuperação para prevenir situações de avaria do hardware e/ou do software.
- Segurança: mecanismos para prevenir acessos não autorizados (passwords, permissões, diferentes níveis de acesso).
- Visualização: ferramentas gráficas para operações mais comuns.
- Interação com outras aplicações: providenciar múltiplas interfaces com o utilizador.

Modelos de Dados

Modelo de Dados

- ★ Conjunto de conceitos que descrevem a estrutura da BD.
 - o relações entre dados
 - o semântica dos dados
- ★ Conjunto de restrições que a BD deve obedecer.
 - Restrições dos dados

Exemplos:

- ★ Modelos Entidade-Relações
- ★ Modelo Relacional
- ★ Modelo de dados baseado em objectos
- ★ Modelo de dados semi-estruturados (XML)
- ★ Outros modelos: hierárquico, rede, etc.

Modelos de Dados (cont.)

- Modelo Conceptual: permite que os utilizadores percebam melhor os dados, envolvem conceitos como entidades, atributos, e relacionamentos.
 - ★ Modelos ER, EER, ODL, UML.
- Modelo Lógico: tipo de modelo normalmente utilizado pelos SGBDs.
 - ★ Modelos relacional, hierárquico, rede.
- Modelo Físico: tipo de modelo que descreve como os dados estão organizados e guardados no computador.
 - ★ Formato dos registos, ordem dos registos, caminhos para acesso aos dados.

Desenho de uma Base de Dados

Fase I: Requisitos e análise

- ★ Entrevistas com os potenciais utilizadores da BD.
- ★ Compreender e documentar os seus requisitos.

Fase II: Desenho conceptual (ou modelação)

- ★ Definir um modelo de dados conceptual que inclua a descrição das entidades da BD, dos atributos das entidades, dos relacionamentos entre entidades e das possíveis restrições.
- ★ Evitar detalhes de implementação.

Fase III: Desenho lógico (ou implementação)

- ★ Mapear o modelo de dados conceptual no modelo de dados lógico concreto.
- ★ Implementação da BD usando um SGBD.

Fase IV: Desenho físico

- ★ Mapear o modelo de dados lógico no modelo de dados físico.
- ★ Estruturas em memória e organização dos ficheiros da BD (ficheiros de índices).

Desenho de uma Base de Dados

Independente do SGBD

★ Fase I: Requisitos e análise

★ Fase II: Desenho conceptual

★ Fase III: Desenho lógico

Dependente do SGBD

★ Fase III: Desenho lógico

★ Fase IV: Desenho físico

Porquê a Fase de Modelação?

- Para ponderar uma boa estrutura da BDs antes de se enveredar por uma implementação.
 - ★ Facilita o entendimento dos dados por parte de não-especialistas.
 - ★ Facilita a detecção de conflitos.
 - ★ Simplifica eventuais correções a fazer.
 - ★ Simplifica a posterior implementação.
- Maior ênfase na especificação das propriedades dos dados, menos ênfase nos detalhes de como os dados devem ser guardados.
- Envolve determinar:
 - ★ Quais as entidades a modelar
 - ★ Como é que as entidades se relacionam entre si
 - ★ Que restrições existem no domínio
 - ★ Como conseguir um bom modelo de dados

Arquitecturas de Aplicação de BDs

- Arquitectura de 2 camadas:
 - ★ a aplicação acede diretamente à camada de dados da BDs.
- Arquitectura de 3 camadas:
 - ★ uma camada lógica medeia a interação entre a aplicação cliente e a BDs, possibilitando, em princípio, alterar a BDs sem afectar grandemente a aplicação.