

What is claimed is:

1. A compound of formula I or a pharmaceutically acceptable salt thereof:

5

I

wherein

R^{F1} and R^{F2} are independently C₁₋₆alkyl substituted by one or more groups selected from -F, -Cl, -Br, -NO₂, -CN, -OH, -CHO, -C(=O)-R' and -OR', wherein R' is a C₁₋₃alkyl;

Z is selected from O= and S=;

10 R¹ is selected from C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, R³R⁴N-C₁₋₆alkyl, R³O-C₁₋₆alkyl, R³C(=O)N(-R⁴)-C₁₋₆alkyl, R³R⁴NS(=O)₂-C₁₋₆alkyl, R³CS(=O)₂N(-R⁴)-C₁₋₆alkyl, R³R⁴NC(=O)N(-R⁵)-C₁₋₆alkyl, R³R⁴NS(=O)₂N(R⁵)-C₁₋₆alkyl, C₆₋₁₀aryl-C₁₋₆alkyl, C₆₋₁₀aryl-C(=O)-C₁₋₆alkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₆heterocyclyl-C₁₋₆alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₆alkyl, R³R⁴N-, R³O-, R³C(=O)N(-R⁴)-, R³R⁴NS(=O)₂-, R³CS(=O)₂N(-R⁴)-, R³R⁴NC(=O)N(-R⁵)-, R³R⁴NS(=O)₂N(R⁵)-, C₆₋₁₀aryl, C₆₋₁₀aryl-C(=O)-, C₃₋₁₀cycloalkyl, C₄₋₈cycloalkenyl, C₃₋₆heterocyclyl and C₃₋₆heterocyclyl-C(=O)-; wherein said

15 C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₆₋₁₀aryl-C₁₋₆alkyl, C₆₋₁₀aryl-C(=O)-C₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₄₋₈cycloalkenyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₆alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₆alkyl, C₁₋₁₀hydrocarbyl amino, C₆₋₁₀aryl, C₆₋₁₀aryl-C(=O)-,

20 C₃₋₁₀cycloalkyl, C₄₋₈cycloalkenyl, C₃₋₆heterocyclyl or C₃₋₆heterocyclyl-C(=O)- used in defining R¹ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and R³R⁴N-;

25 R² is selected from the group consisting of C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₆heterocycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, R³R⁴N-, C₃₋₅heteroaryl, C₆₋₁₀aryl and C₃₋₆heterocycloalkyl, wherein said C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl-C₁₋₆alkyl, C₃₋₆heterocycloalkyl-C₁₋₆alkyl, C₄₋₈cycloalkenyl, C₃₋₅heteroaryl, C₆₋₁₀aryl or C₃₋₆heterocycloalkyl used in defining R² is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and

30 R³R⁴N-; and

- 25 -

R^3 and R^4 and are independently selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, and a divalent C₁₋₆ group that together with another divalent C₁₋₆ group selected from R^3 and R^4 forms a portion of a ring.

5 2. A compound as claimed in claim 1, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CHFCH₂F, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, -CF₃, -CH₂CCl₃, -CH₂CHCl₂, -CH₂CBr₃, -CH₂CHBr₂, -CH₂NO₂, -CH₂CH₂NO₂, -CH₂CN, -CH₂CH₂CN, and -CH₂CH₂OCH₃;

10 Z is O=;

R^1 is selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, R^3R^4N -C₁₋₄alkyl, R^3O -C₁₋₄alkyl, $R^3C(=O)N(-R^4)$ -C₁₋₄alkyl, phenyl-C₁₋₄alkyl, phenyl-C(=O)-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, R^3R^4N -, R^3O -, $R^3R^4NS(=O)_2$ -, C₆₋₁₀aryl, C₆₋₁₀aryl-C(=O)-, C₃₋₁₀cycloalkyl, C₄₋₆cycloalkenyl, C₃₋₆heterocyclyl and C₃₋₆heterocyclyl-C(=O)-; wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, phenyl-C₁₋₄alkyl, phenyl-C(=O)-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C₁₋₄alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₄alkyl, C₆₋₁₀aryl, C₆₋₁₀aryl-C(=O)-, C₃₋₁₀cycloalkyl, C₄₋₆cycloalkenyl, C₃₋₆heterocyclyl or C₃₋₆heterocyclyl-C(=O)- used in defining R^1 is optionally substituted by one or more groups

15 20 selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N -;

R^2 is selected from the group consisting of C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl, C₃₋₅heteroaryl, R^3R^4N -, phenyl and C₃₋₆heterocycloalkyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl,

25 C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl, C₃₋₅heteroaryl, phenyl or C₃₋₆heterocycloalkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N -; and

R^3 and R^4 are independently selected from -H, C₁₋₆alkyl and C₂₋₆alkenyl.

30 3. A compound as claimed in claim 1, wherein

R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CHFCH₂F, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, and -CF₃;

Z is O=;

- 26 -

R^1 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, R^3R^4N- , $R^3R^4N-C_{1-4}$ alkyl, R^3O-C_{1-4} alkyl, $R^3C(=O)N(-R^4)-C_{1-4}$ alkyl, phenyl- C_{1-4} alkyl, phenyl- $C(=O)-C_{1-4}$ alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-4}$ alkyl, phenyl, C_{3-10} cycloalkyl, C_{3-6} heterocyclyl and C_{3-6} heterocyclyl- $C(=O)-$; wherein said
5 C_{1-6} alkyl, C_{2-6} alkenyl, $R^3R^4N-C_{1-4}$ alkyl, R^3O-C_{1-4} alkyl, $R^3C(=O)N(-R^4)-C_{1-4}$ alkyl, phenyl- C_{1-4} alkyl, phenyl- $C(=O)-C_{1-4}$ alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-4}$ alkyl, phenyl, C_{3-10} cycloalkyl, C_{3-6} heterocyclyl or C_{3-6} heterocyclyl- $C(=O)-$ used in defining R^1 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy
10 and R^3R^4N- ;
 R^2 is selected from the group consisting of C_{1-6} alkyl, C_{3-10} cycloalkyl, R^3R^4N- , C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl, C_{3-5} heteroaryl, and phenyl wherein said C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl,
15 C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl, C_{3-5} heteroaryl, and phenyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and R^3R^4N- ; and
 R^3 and R^4 are independently selected from -H, C_{1-6} alkyl and C_{2-6} alkenyl.

4. A compound as claimed in claim 1, wherein
20 R^{F1} and R^{F2} are $-CH_2CF_3$;
 Z is $O=$;
 R^1 is selected from cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl, ethyl, propyl, adamantyl, adamantylmethyl, allyl, isopentyl, benzyl, methoxyethyl, tetrahydropyranylmethyl, tetrahydrofuranylmethyl, cyclohexyloxy, cyclohexylamino, dimethylaminoethyl, 4-pyridylmethyl, 2-pyridylmethyl, 1-pyrrolylethyl, 1-morpholinoethyl, 4,4-difluorocyclohexylmethyl, cyclohexylmethyl, 2-pyrrolidylmethyl, N-methyl-2-pyrrolidylmethyl, 2-piperidylmethyl, N-methyl-2-piperidylmethyl, 3-thienylmethyl, (2-nitrothiophene-5-yl)-methyl, (1-methyl-1H-imidazole-2-yl)methyl, (5-(acetoxymethyl)-2-furyl)methyl, (2,3-dihydro-1H-isoindole-1-yl)methyl, and 5-(2-methylthiazolyl); and
25
30 R^2 is selected from t-butyl, n-butyl, 2-methyl-2-butyl, cyclohexyl, cyclohexylmethyl, n-pentyl, isopentyl, trifluoromethyl, 1,1-difluoroethyl, N-piperidyl, dimethylamino, phenyl, pyridyl, tetrahydrofuranyl, tetrahydropyranyl, 2-methoxy-2-propyl, and N-morpholinyl.

- 27 -

5. A compound selected from 2-*tert*-Butyl-1-(cyclohexylmethyl)-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide and pharmaceutically acceptable salts thereof.

5 6. A compound according to any one of claims 1-5 for use as a medicament.

7. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the therapy of pain.

10 8. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of anxiety disorders.

9. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of cancer, multiple sclerosis, Parkinson's disease, Huntington's 15 chorea, Alzheimer's disease, gastrointestinal disorders and cardiovascular disorders..

10. A pharmaceutical composition comprising a compound according to any one of claims 1-5 and a pharmaceutically acceptable carrier.

20 11. A method for the therapy of pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to any one of claims 1-5.

12. A method for preparing a compound of formula I,

25

I

comprising the step of reacting a compound of formula II,

- 28 -

II

with a compound of $R^2C(=O)-X$ to form the compound of formula I,

wherein

- 5 R^{F1} and R^{F2} are independently selected from $-CF_3$, $-CH_2CF_3$, $-CH_2CHF_2$, $-CHFCF_3$, $-CHFCHF_2$, $-CHFCH_2F$, $-CF_2CF_3$, $-CF_2CH_3$, $-CF_2CH_2F$, $-CF_2CHF_2$, and $-CF_3$;
- Z is selected from $O=$ and $S=$;
- X is selected from $-Cl$, $-Br$, $-I$, $-OH$, $-OCH_3$, and $-OCH_2CH_3$;
- R^1 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, $R^3R^4N-C_{1-4}$ alkyl, R^3O-C_{1-4} alkyl,
- 10 $R^3C(=O)N(-R^4)-C_{1-4}$ alkyl, phenyl- C_{1-4} alkyl, phenyl- $C(=O)-C_{1-4}$ alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-4}$ alkyl, phenyl, C_{3-10} cycloalkyl, C_{3-6} heterocyclyl and C_{3-6} heterocyclyl- $C(=O)-$; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, $R^3R^4N-C_{1-4}$ alkyl, R^3O-C_{1-4} alkyl, $R^3C(=O)N(-R^4)-C_{1-4}$ alkyl, phenyl- C_{1-4} alkyl, phenyl- $C(=O)-C_{1-4}$ alkyl, C_{3-10} cycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- C_{1-4} alkyl, C_{3-6} heterocyclyl- $C(=O)-C_{1-4}$ alkyl, phenyl, C_{3-10} cycloalkyl, C_{3-6} heterocyclyl or C_{3-6} heterocyclyl- $C(=O)-$ used in defining R^1 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and R^3R^4N- ;
- R^2 is selected from the group consisting of C_{1-6} alkyl, C_{3-6} cycloalkyl, R^3R^4N- ,
- 20 C_{3-6} cycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl, C_{3-5} heteroaryl, and phenyl wherein said C_{1-6} alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{3-6} heterocycloalkyl, C_{3-5} heteroaryl, and phenyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and amino; and
- 25 R^3 and R^4 are independently selected from $-H$, C_{1-6} alkyl and C_{2-6} alkenyl.