Graph Theory

Beth Novick (Notes by Shuai Wei)

September 25, 2023

Contents

Chapter 1

The Basics

1.1 Graphs

Definition 1.1. A graph is a pair G = (V, E) of sets with $E \subseteq V^2$.

- (a) The order of G is |G| or |V|. The size of G is |G| or |E|.
- (b) $v \in V$ is incident on $e \in E$ if $v \in e$, in which case, we say e is an edge at v.
- (c) e and f are adjacent if they share a vertex.
- (d) The coloring number, $\chi(G)$ is the smallest number of colors required to color each vertex so that no adjacent vertices are colored the same.
- (e) G is a complete graph if all vertices are pairwise adjacent. Let K^n be the complete graph on n vertices.
- (f) Pairwise non-adjacent vertices are called independent. A set of independent vertices is a stable set. $\alpha(G)$ is the size of largest stable set.
- (g) $G' \subseteq G$ if $V' \subseteq V$ and $E' \subseteq E$. Then G' is called a subgraph of G.
- (h) $G' \subseteq G$ and G' contains all edges $xy \in E$ with $x, y \in V'$, then G' is the subgraph induced by V'. Denote it as G' = G[V'].
- (i) An induced subgraph that is complete is a clique.
- (i) $\omega(G)$ is the size of the largest clique of G.
- (k) The complement of G is $\overline{G} = (V, \overline{E})$.
- (l) A path is a non-empty graph P=(V,E) of the form $V=\{x_0,x_1,\ldots,x_k\}, E=\{x_0x_1,x_1x_2,\ldots,x_{k-1}x_k\}$. Or for shorthand, $P=x_0x_1\cdots x_k$. If $P=x_0\cdots x_{k-1}$ is a path with $k\geqslant 3$, then we call $C=P+x_{k-1}x_0$ a cycle.
- (m) For G = (V, E) and G' = (V', E'), $G' \cong G$ if there exists a bijection $\phi : V \to V'$ with $xy \in E \iff \phi(x)\phi(y) \in E'$.

- (n) G is edge maximal with respect to a property if G has the property but G + uv does not for any $uv \notin E$.
- (o) N(v) is the neighbor set of v. N(U) is the set of neighbors of vertices in $V \setminus U$.
- (p) $d_G(v) = d(v)$ is the number of neighbors of v (when G is simple).
- (q) $\delta(G) = \min\{d(v)|v \in V\}. \ \Delta(G) = \max\{d(v)|v \in V\}.$
- (r) When all vertices have the same degree k, G is k-regular.
- (s) The average degree $d(G) = \frac{\sum_{v \in V} d(v)}{V}$.
- (t) G is perfect if and only if it contains no odd hole or antihole if and only if $\chi(G) = \omega(G)$.

Definition 1.2. The line graph L(G) of G = (V, E) is the graph on V with

(a)

$$V(L(G)) = E.$$

(b) $ef \in E(L(G))$ if and only if e and f are adjacent in G.

Remark. The line graph of G represents adjacencies between edges.

Example 1.3. The $\overline{L(K^5)}$, i.e., Peterson graph is as follows.

Since $\chi(\overline{L(K^5)}) = 3 \geqslant 2 = \omega(\overline{L(K^5)})$, Peterson graph is not perfect.

1.2 The degree of vertex

Theorem 1.4. Every simple finite graph with at least one edge has a nonempty subgraph H with

$$\delta(H) > \frac{1}{2}d(H) \geqslant \frac{1}{2}d(G),$$

i.e.,

$$\delta(H) > \epsilon(H) \geqslant \epsilon(G).$$

Proof. Start with G and remove a vertex at a time, obtaining

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_i \supseteq \cdots \supseteq H$$
.

Specifically, if $v_i \in V(G_i)$ with

$$d(v_i) \leq \epsilon(G_i),$$

then

$$G_{i+1} = G_i - v_i.$$

Otherwise, let $H = G_i$ and stop.

Claim 1. We do stop since G is finite.

Claim 2. The average degree is non-decreasing.

Let

$$G_i = (V, E).$$

Then

$$\epsilon(G_{i+1}) = \frac{|E| - d(v_i)}{|V| - 1} \geqslant \frac{|E| - \epsilon(G_i)}{|V| - 1} = \frac{|E| - \frac{|E|}{|V|}}{|V| - 1} = \frac{|E|}{|V|} = \epsilon(G_i).$$

Claim 3. $H \neq \emptyset$.

Suppose not. Then let $H = G_k$, then $G_{k-1} = K^1$ but then $\epsilon(K^1) = 0$.

But $\epsilon(G) > 0$ since we have at least one edge, contradicting Claim 2.

1.3 Path and Cycles

Definition 1.5. A path of length k is a graph P = (V, E) with $V = \{x_0, x_1, \dots, x_k\}$ and $E = (x_0x_1, x_1x_2, \dots, x_{k-1}x_k)$, where x_i 's are all distinct. So The length is the number of edges. Sometimes we denote a path as a sequence of vertices

$$x_0x_1\cdots x_k$$
.

 P^k is a path of length k. $P^0 = K^1$.

Definition 1.6. xPy: x and y are two intermediate points in the path P.

Definition 1.7. Let G = (V, E). In a path $x_0 x_1 \cdots x_k$, if $x_0, x_k \in A$ but $x_1, \dots, x_{k-1} \notin A$, then $P = x_0 x_1 \cdots x_k$ is an A-path.

Definition 1.8. Two u-v paths are independent (or internally disjoint) if they have only u, v in common.

Definition 1.9. A walk is a sequence $W = (v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k)$, where

$$e_i = v_{i-1}v_i, \forall 1 \leqslant i \leqslant k.$$

The length is the number of edges v_0 - v_k walk.

If $v_0 = v_k$, it is a closed walk.

Definition 1.10. A trial is a walk with no repeated edges.

Remark. A path is a walk with no repeated vertices.

Theorem 1.11. Let G be a graph.

- (a) Every u-v walk $(u \neq v)$ contains a u-v path.
- (b) Every closed u-v walk contains a cycle.
- (c) Every closed walk with an odd number of edges contains an odd cycle.

Proof. Let

$$w = (u = v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k = v).$$

Let w' be a subsequence that is itself an u-v walk and is shortest possible. Suppose w' is not a u-v path.

Then \exists a repeated vertex, say $v_j = v_l$ with j < l.

But them

$$(v_0 = u, e_1, v_1, \dots, v_j = v_l, e_l, \dots, e_k, v_k = v)$$

is a shorter subsequence that is also a walk.

Definition 1.12. (a) The girth g(G) is the length of a shortest cycle.

- (b) The circumference of G is length of a longest cycle.
- (c) d(u, v) is length of shortest u-v path.
- (d)

$$\operatorname{diam}(G) = \max_{u,v \in V} d(u,v).$$

(e) The eccentricity

$$e(v) = \max_{u \in V} d(u, v).$$

(f) A vertex with the smallest eccentricity is central. The radius of G is e(z), where z is central.

$$\operatorname{rad}(G) = \min_{v \in V} e(v) = \min_{v \in V} \max_{u \in V} d(u, v).$$

Remark.

$$\operatorname{rad}(G)\leqslant \operatorname{diam}(G)\leqslant 2\operatorname{rad}(G).$$

Theorem 1.13. Every graph G contains (provided that $\delta(G) \geqslant 2$.)

(a) a path of length $\delta(G)$ and

1.4. CONNECTIVITY

5

(b) a cycle of length at least $\delta(G) + 1$.

Proof. Let x_0, \ldots, x_k be a longest path in G. Then all the neighbours of x_i lie on this path, otherwise, if w is a neighbor that is not in the path, then x_0, \ldots, x_k, w is a longer path, a contradiction. Hence $d \ge d(x_k) \ge \delta(G)$.

Let

$$i = \min\{0 \leqslant i < k \mid x_i x_k \in E(G)\}.$$

Then $x_i \cdots x_k x_i$ is a cycle of length at least $\delta(G) + 1$.

Theorem 1.14. Every graph G containing a cycle satisfies $g(G) \leq 2 \operatorname{diam}(G) + 1$.

Proof. Let C be a shortest cycle in G.

If $g(G) \ge 2 \operatorname{diam}(G) + 2$, then C has two vertices whose distance in C is at least $\operatorname{diam}(G) + 1$. In G, these vertices have a lesser distance; any shortest path P between them is therefore not a subgraph of C.

Thus, P contains a C-path xPy.

Together with the shorter of the two x-y paths in C, this path xPy forms a shorter cycle than C, a contradiction.

1.4 Connectivity

Definition 1.15. Let G = (V, E) be nonempty. G is connected if \exists a u-v path for each $u, v \in V$. $U \leq V$ is connected if G[U] is connected.

Theorem 1.16. G is connected, then vertices of G can be ordered as v_1, \ldots, v_k so that each $G_i = [v_1, \ldots, v_i]$ is connected for $i = 1, \ldots, n$.

Proof. Pick any vertex as v_1 and assume inductively that we have picked v_1, \ldots, v_j with G_j connected for $j = 1, \ldots, i$.

Let $v \in G \setminus G_i$. Since G is connected, $\exists v_1 \text{-} v$ path P in G.

Let v_{i+1} be the first vertex on P that is not in G.

Clearly, G_{i+1} is connected.

Definition 1.17. The maximal connected subgraphs of G are its components.

Definition 1.18. Let $X \subseteq V \cup E$ and we call X a separating set if G - X is disconneted. If X is a separating set with $X \subseteq V$, we call X a separator.

Remark. Clearly, the components are induced subgraphs, and their vertex sets partition V. Since connected graphs are non-empty, the empty graph has no components.

Definition 1.19. Let $k \in \mathbb{N}_0$. G is k-connected if |G| > k and G - X is connected for all $X \subseteq V$ with |X| < k.

The connectivity $\kappa(G)$ is the largest k for which G is k-connected.

Remark. $\kappa(G) = 0$ if and only if G is disconnected or a K^1 .

Example 1.20. K^5 is 0-connected since it is connected.

 K^5 is 1-connected since K^4 is connected.

 K^5 is 2-connected since K^3 is connected.

 K^5 is 3-connected since K^2 is connected.

 K^5 is 4-connected since K^1 is connected.

 K^5 is not 5-connected since $|K^1| = 5$.

So $\kappa(G) = 4$.

Since if a graph G is k-connected, then |G| > k,

$$\kappa(K^n) = n - 1, \forall n \in \mathbb{Z}^{\geqslant 1}.$$

Theorem 1.21. The smallest separator of G, X has $|X| = \kappa(G)$.

Definition 1.22. If |G| > 1 and $F \subseteq E$ with G - F connected for all $F \subseteq E$ with |F| < l, then G is l-edge connected.

 $\lambda(G)$ is the largest l for which G is l-edge connected.

Theorem 1.23. If G is non-trivial,

$$\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$$
.

Proof. The second inequality follows from the fact that all edges incident with a fixed vertex separate G.

To prove the first, let F be a set of $\lambda(G)$ edges such that G-F is disconnected, i.e., F is a smallest separating set of edges.

We just need to show

$$\kappa(G) \leq |F|$$
.

Idea is to construct a set $X \subseteq V$ that is a separator having $|X| \leq |F|$.

(a) Suppose first that G has a vertex that is not incident with an edge in F.

Let C be the component of G - F containing v.

Then the vertices of C that are incident with an edge in F separate v from G-C.

Since no edge in F has both ends in C by the minimality of F, there are at most |F| such vertices, giving

$$\kappa(G) \leqslant |F|$$
.

(b) Suppose now that every vertex is incident with an edge in F.

Let v be any vertex, and let C be the component of G - F containing v.

Then the neighbors w of v with $vw \notin F$ lie in C and are incident with distinct edges in F by the minimality of F, giving $d_G(v) \leq |F|, \forall v \in V$.

As $N_G(v)$ separates v from any other vertices in G, this yields $\kappa(G) \leq |F|$, unless there are no other vertices, i.e., unless $\{v\} \cup N(v) = V$.

But v was an arbitrary vertex. So we may assume that G is complete, giving $\kappa(G) = \lambda(G) = |G| - 1$.

1.5 Trees and forests

Definition 1.24. An acyclic graph is a forest.

A tree is a connected acyclic graph.

Example 1.25. List all tress on 6 vertices.

We have 6 tress.

Remark (Cayley's formula). The number of trees on n labeled vertices is $n^{n-2}, \forall n \in \mathbb{Z}^{\geq 0}$.

The formula equivalently counts the number of spanning trees of a complete graph with labeled vertices.

The number of unlabeled trees on n vertices: generating functions.

Theorem 1.26. TFAE.

- (a) T is a tree.
- (b) $\exists ! u \text{-} v \text{ path in } T \text{ for every } u, v \in V(T).$
- (c) T is minimally connected.
- (d) T is maximally acyclic.

Proof. "(i) \Rightarrow (ii)". Suppose there exists two distinct u-v paths in T for some $u, v \in T$. Say

$$P_1 = u = x_0 \cdots x_l = v,$$

$$P_2 = u = y_0 \cdots y_k = v.$$

But then

$$x_0 \cdots x_l y_k \cdots y_0$$

is a walk beginging and ending at u.

Hence it contains a cycle, a contradiction.

"(i) \Rightarrow (iii)". Suppose T is not minimally connected.

Then for some edge uv, T - uv is connected and hence contains a u-v path P.

But then uPvu is a cycle.

"(i) \Rightarrow (iv)". Suppose T is not maximally acyclic.

Then for some edge uv with $u \not\sim v$, we can connect u and v such that T + uv is acylic.

Let P be the unique uv path in T before adding new edge.

Then uPvu is a cycle.

Others will be left as a exercise.

Definition 1.27. A special vertex T is called a root.

A vertex of T other than the root, of degree 1 is called a leaf.

Theorem 1.28. Every nontrivial tree contains a leaf.

Proof. Let P be a longest path.

Let
$$P = x_0 \cdots x_k$$
. Then x_k is a leaf.

Corollary 1.29. The vertices of a tree can be listed $v_0 \cdots v_n$ so that v_i has a unique neighbor in $\{v_0, \dots, v_{i-1}\}, \forall 1 \leq i \leq n$.

Proof. For any connected graph, by previous theorem, there exists an ordering $\{v_0, \ldots, v_n\}$ so that for $1 \leq i \leq n$, $[v_0, \ldots, v_i]$ is connected.

Assume inductively $[v_0, \ldots, v_i]$ is a tree.

Claim the only new edge results $v_i v_{i+1}$ when we add v_{i+1} .

Corollary 1.30. Let G be acyclic. Then G is a tree if and only if ||G|| = n - 1.

Proof. " \Rightarrow ". Induction on i shows that the subgraph spanned by the first i vertices in previous corollary has i-1 edges.

" \Leftarrow ". Let G be any connected graph with n vertices and n-1 edges.

Let G' be a spanning tree in G.

Since G' has n-1 edges by the first implication, it follows G=G'.

Theorem 1.31. A graph T with |T| = n is a tree if and only if any 2 of the following hold.

- (a) T is a cyclic.
- (b) T is connected.
- (c) ||T|| = n 1.

Corollary 1.32. Let T be any tree of order n and let G be any graph with $\delta(G) = n - 1$. Then G contains a tree isomorphic to T as a subgraph.

Proof. List the tree $v_0 \cdots v_n$.

Induction. $[v_0]$ is in G. Assume $[v_0, \ldots, v_i]$ is a subgraph of G.

WTS

$$[v_0,\ldots,v_i,v_{i+1}]\subseteq G.$$

1.6 Bipartite

Definition 1.33. A graph G = (V, E) is r-partite if there exists an r-partition of V so that every edge of G has ends in distinct partite class.

If r = 2, G is called bipartite.

Definition 1.34. If G and G' are disjoint, then G * G' is obtained by taking the disjoint union of G and G' and joining every vertex in V(G) with every vertex in v(G') with an edge.

Example 1.35. $P^1 * P^2$.

Definition 1.36.

Definition 1.37. An r-partite graph in which every two vertices from different partition classes are adjacent is called complete.

The complete r-partite graph $\overline{K^{n_1}} * \cdots * \overline{K^{n_r}}$ is written as

$$K_{n_1 \cdots n_k}$$
.

Example 1.38. $K_{1,5}$ is a star.

Theorem 1.39. A graph is bipartite if and only if it contains no odd cycles.

Proof. " \Rightarrow ". Let G = (V, E) be bipartite with $V = V_1 \cup V_2$.

Suppose G contains and odd cycle $v_0 \cdots v_k$ with k even.

Wlog, let $v_0 \in V_1$, so

$$v_1 \in V_2, \ v_2 \in V_1, \dots, v_k \in V_1.$$

But $v_0 \sim v_k$, a contradiction.

" \Leftarrow ". Suppose G contains no odd cycle.

Fix $v_0 \in G$. Let

$$V_1 = \{ v \in V(G) | d(v_0, v) \text{ is odd} \}.$$

$$V_2 = \{ v \in V(G) | d(v_0, v) \text{ is even} \}.$$

If $u \in V_1$ and $w \in V_1$ and $u \sim w$, then we have an odd cycle.

If $u \in V_2$ and $w \in V_2$ and $u \sim w$, then we have an odd cycle.

1.7 Contraction and minors

Definition 1.40. Let G = (V, E) and $e \in E$ so that $\{e\}$ is not a separating set, i.e., e is not a brige or cut edge. Then G - e is the graph obtained from G by removing e.

Definition 1.41. An edge contraction $G \setminus e$ is obtained by removes an edge from a graph while simultaneously merging the two vertices that it previous joined and removing any resulting loops on multiple edges.

Definition 1.42. Any graph obtained from G by a series of deletions and contractions is called a minors of G.

Note we define the deletion of a cut edge to be the contraction of that edge.

To undo a deletion, we add the edge back.

Definition 1.43. Let X be a fixed graph. Replacing the vertices x of X with disjoint connected graphs G_x and replacing the edges xy of X with non-empty sets of $G_x - G_y$ edges, yields a graph that we shall call an IX, where $G_x - G_y$ is the set of all edges with an end in G_x and the other in G_y .

More formally, a graph G is an IX if its vertex set admits a partition $\{V_x|x\in V(X)\}$ into connected subsets V_x such that distinct vertices $x,y\in X$ are adjacent in X if and only if G contains a V_x-V_y edge.

Definition 1.44. If a graph G contains an IX as a subgraph, then X is a minor of G.

Example 1.45. Peterson has a K^5 minor.

Definition 1.46. A subdividing of X, informally, any graph obtained from X by 'subdividing' some or all its edges by drawing new vertices on those edges. In other words, replace some edges of X with new paths between their ends, so that none of these paths has an inner vertex in V(X). When G is a subdivision of X, we also say that G is a TX.

The original vertices of X are the branch vertices of the TX and its new vertices are called subdividing vertices.

Note that subdividing vertices have degree 2 while branch vertices retain their degree from X.

Definition 1.47. If a graph G contains a TX as a subgraph, then X is a topological minor of Y.

1.8 Euler tours

Definition 1.48. Let G = (V, E) be connected, simple and finite.

An Euler tour is G is a closed walk that uses each edge exactly once.

A graph is Eulerian if it contains an Euler tour.

Theorem 1.49. A connected graph G is Eulerian if and only if $\forall v \in V$, $d_G(v)$ is even.

Proof. " \Rightarrow ". Let W be an Euler tour. Then

$$d_W(v) = d_G(v).$$

Since $d_W(v)$ is even, $d_G(v)$ is even.

" \Leftarrow ". Let W be a longest walk that uses each edge at most once.

Claim W is closed.

Else $d_W(G)$ is odd for the last vertex u in W. But then W is not largest possible.

Claim $\forall u, v \in W$, the edge $uv \in W$, provided $uv \in E$. Else W is not longest possible.

Claim $\forall v \in V, v \in W$.

Suppose not. Then $v \in V$ but $v \notin W$.

Wlog, $v \sim u$ with $u \in W$. uWuv is a longer walk.

1.9 Some linear algebra

Definition 1.50. Let G = (V, E) with $V = \{c_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_n\}$. Associated any $U \subseteq V$ a vector $X_U \in \mathbb{F}_2^n$ with

$$X_U(v) = \begin{cases} 1 & \text{if } v \in U \\ 0 & \text{otherwise} \end{cases}.$$

Similarly, for $F \subseteq E$, $X_F \in \mathbb{F}_2^m$.

Remark. Add two vectors in \mathbb{F}_2^m means taking the symmetric differences.

We abuse notation slightly and refer to X_U as U and X_F as F.

Definition 1.51. Let $\mathcal{C}(G)$ be the subspaces of \mathbb{F}_2^m , spanned by the cycles of G. We call it the cycle space.

Definition 1.52. $F \subseteq E$ is a cut if V has a partition $\{V_1, V_2\}$ so that every edege $f \in F$ has one end in V_1 and one end in V_2 .

A minimal cut is a bond.

Definition 1.53. Let $\mathcal{C}^*(G)$ be the subspace of \mathbb{F}_2^n generated by all the bonds.

Special case of a bond: $V_1 = 1$ or $|V_2| = 1$, say $V_1 = \{v\}$, then the cut F is denoted as E(v).

Theorem 1.54. Let $\{V_1, V_2\}$ partition V. Let F be corresponding cut. Then in \mathbb{F}_2^n

$$F = \sum_{v \in V_1} E(v).$$

Proof. Every edge in the sum appears twice if both ends are in V_1 and once if exactly one end is in V_1 .

Lemma 1.55. $\{E(V)|v\in V\}$ generates $\mathcal{C}^*(G)$.

Example 1.56. Consider the following graph.

The vertex-edge incident matrix is

$$M = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ E(v_1) & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ E(v_2) & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ E(v_3) & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ E(v_4) & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ E(v_5) & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ E(v_6) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Definition 1.57. A tree T is spanning tree of G if

- (a) T is a subgraph of G.
- (b) V(T) = V(G).

Theorem 1.58. The rank of the incident matrix is n-1.

Proof. Find n-1 linearly independent columns, equivalently, an spanning tree T in G. Then |T|=n-1.

Theorem 1.59. Let M be the incident matrix. Then for any set of (n-1) linearly independent columns of M, the edges corresponding to these columns make up a spanning tree of G.

The columns corresponding to any tree are linearly indep.

The fundamental cycle are minimally linearly dependent.

Proof.
$$\{v|E(v)\}$$
 generates $\mathcal{C}^*(G)$.

Corollary 1.60.

$$\dim(\mathcal{C}^*(G)) = n - 1.$$

Definition 1.61. For $F, F' \in \mathbb{F}_2^m$, the inner product is

$$\langle F, F' \rangle = \sum_{i=1}^{m} F(e_i) F'(e_i) \in \mathbb{F}_2.$$

Theorem 1.62. The inner product is zero if and only if F and F' have an even number of edges in common.

Example 1.63. Let

$$F = (1, 0, 0, 0, 0, 1),$$

$$F' = (1, 1, 0, 0, 0, 1),$$

Then

$$\langle F, F' \rangle = 1 + 0 + 0 + 0 + 0 + 1 = 0.$$

Definition 1.64. For any subspace \mathfrak{F} os \mathbb{F}_2^m , we define

$$\mathfrak{F}^{\perp} = \{ D \in \mathbb{F}_2^m | \langle F, D \rangle = 0, \forall F \in \mathfrak{F} \}.$$

Lemma 1.65. Every cut $C \in \mathcal{C}$ is a (possibly empty) disjoint union of edge of cycles in G.

Proof.

Theorem 1.66.

$$\mathcal{C} = \mathcal{C}^{*\perp}$$
 and $\mathcal{C}^* = \mathcal{C}^{\perp}$,

i.e.,

$$C \oplus C^* = \mathbb{F}_2^m$$
.

Proof. Let $C \in \mathcal{C}(G)$ and $D \in \mathcal{C}^*(D)$.

Then C intersects D an even number of times. So

$$\mathcal{C} \subseteq \mathcal{C}^{*\perp}$$
 and $\mathcal{C}^* \subseteq \mathcal{C}^{\perp}$.

Exercise.

Corollary 1.67.

$$\dim(\mathcal{C}(G)) = m - n + 1.$$

1.9.1 Basis

Theorem 1.68. (a) A basis for the cycle space C is obtained as follows: for any spanning tree T of G, each out of tree edge ij creates a unique cycle if edge ij is concatednated to the unique in-tree ji path and there are exactly m - n + 1 such cycles.

The basis obtained in this way is called a fundamental cycle basis.

(b) Let T be a spanning tree. For every edge $f \in T$, the forest T - f has exactly two component. The set $D_f \subseteq E$ of edges of G between these components is a bond in G, the fundamental cut of f with respect to T.

Then a fundamental cut of G with respect to T form a basis of $C^*(G)$.

Theorem 1.69.

$$Ker(M) = \mathcal{C}(G).$$

$$\operatorname{Im}(M^T) = \mathcal{C}^*(G).$$

Example 1.70. If we put M into standard form, we'd get

$$[I_{n-1} | A],$$

where A is $(n-1) \times (m-n+1)$ matrix.

Then the matrix

$$[A^T \mid I_{m-n+1}]$$

generates $C^*(G)$.

Example 1.71. Consider the following graph.

The vertex-edge incident matrix is

$$M = \begin{pmatrix} E(v_1) \\ E(v_2) \\ E(v_3) \\ E(v_4) \\ E(v_5) \\ E(v_6) \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Add e_5 , there is a cycle $\{e_1, e_2, e_3, e_5\}$, which is a min. dependent set and also a fundamental cycle. So the e_5 column has a column vector $(1, 1, 1, 0, 0)^T$.

 $a_{ij} = 1$ if and only if e_i is used in the fundamental cycle associated with e_j . Note

$$[A^T|I_{m-n+1}] = \begin{pmatrix} e_5 \\ e_6 \\ e_7 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Note every row is a fundamental cycle.

Remark. Let the edges of T be the basic elements and non-basic elements is called non-tree edges. Fundamental cycle is the unique cycle containing exactly one non-tree edge.

Theorem 1.72. Any collection of edges that induces a subgraph H with $d_H(v)$ even for all $v \in V(H)$ is a disjoint union of cycles.

Chapter 2

Matching Covering and Packing

Definition 2.1. A matching M in a simple graph G = (V, E) is a set of independent edges. These vertices incident with the edges of a matching M are said to be saturated by M, the others are unsaturated.

Definition 2.2. A perfect matching in a graph is a matching that saturated every vertex, that is, a matching of size exactly $\frac{n}{2}$.

Remark. A perfect matching can only occur in a graph with evenly many vertices.

Remark. maximum: largest possible.

maximal: whether it can be extended by simply adding an edge.

Example 2.3. In P^3 ,

$$a - - b - - c - d$$

 $\{ab,cd\}$ is maximal matching and a maximum matching $(\lfloor \frac{4}{2} \rfloor = 1 \text{ since it contains } 2 \text{ edges in } 4 \text{ vertices.}).$

 $\{bc\}$ is a maximal mathching but not a maximum matching.

Definition 2.4. An M-alternating path is a path that alternates between edges in $E \setminus M$ and edges in M (in order).

Definition 2.5. An M-augmenting path $P=(v_1,\ldots,v_k)$ is an M-alternating path s.t. $v_1,v_k\not\in V(M)$

Example 2.6. Let $M = \{BF, CG\}.$

EBFD and AFBGCH are M alternating paths.

Lemma 2.7. Let M_1 and M_2 be matching of G. The degree of every vertex in $[M_1 \Delta M_2]$ is 1 or 2, Hence, $[M_1 \Delta M_2]$ is the disjoint union of paths and cycles.

Furthermore, each such cycle or path alternates in edges in M_1 and M_2 .

Theorem 2.8 (Berge). A matching M in G is maximum if and only if G does not contain an M-augmenting path.

Proof. " \Rightarrow ". By contrapositive.

" \Leftarrow ". Again, by contrapositive. Suppose M is not maximum.

Let M' be a larger matching.

Then $M'\Delta M$ is a collection of paths and even cycles that alternate between M and M'.

At least one such path begins at M' and ends at M'. But this is an M-augmenting path.

2.1 Matching, vertex covering in bipartite graph

Let G = (V, E) be bipartite with $V = \{A, B\}$.

Definition 2.9. A vertex cover U is a subseteq of V s.t. for all eges e, there is a vertex, say $u \in U$ with u incident with e.

Remark. For now, an alternating path w.r.t. a matching M begins at an unsaturated vertex in A, and contains, alternately edges from $E \setminus M$ and from M.

An alternating path that ends in an unmatched vertex of B is called an augmenting path.

Definition 2.10. $\tau(G) = \text{size of a smallest vertex cover.}$ $\nu(G) = \text{size of a maximum matching.}$

Theorem 2.11 (König).

$$\tau(G) = \nu(G).$$

Proof. Consider

with $M = \{xy, cd, de, fg\}$ being maximum. So a is the only unsaturated vertex. Clearly,

$$\tau(G) \geqslant \nu(G)$$
.

Let M be a maximum matching.

Construct a vectex cover U as follows.

For each matching edge $xy \in M$ with $x \in A$ and $y \in B$, do the following: if y is reachable via an alternating path, then put y into U, otherwise, put x into U.

Claim: every edge is incident with a vertex in U.

Let $ab \in E$ with $a \in A$ and $b \in B$.

If $ab \in M$, done.

Suppose $ab \notin M$.

Case 1: a is unsaturated. Then b is saturated. Else M is not maximum.

Say $a'b \in M$.

Then a, ab, b is an alternating path ending at b.

So b is reachable from a and then $b \in U$.

Case 2: a is saturated.

Say $ab' \in M$.

If $a \in U$, we are done.

Else $b' \in U$ and so b' is reachable via an alternating path P.

Let

$$P' = \left\{ \begin{array}{ll} Pb & \text{if } b \in P \\ Pb'ab & \text{if } b \not \in P \end{array} \right. .$$

Then b must be reachable and so $b \in U$.

Definition 2.12.

$$N(S) = \{u \in N(s) \text{ for all } s \in S\}.$$

Theorem 2.13. A necessary (marriage) condition for a matching saturating A is

$$|S| \leq |N(s)|, \forall S \subseteq A.$$

Theorem 2.14 (Hall 1935). A bipartite graph G = (V, E) with $V = \{A, B\}$ has a matching saturating A if and only if

$$|S| \leq |N(S)|, \forall S \subseteq A.$$

Proof. " \Rightarrow ". By the marriage condition.

" \Leftarrow ". Assume G contains no A matching. Then

$$\nu(G) < |A|$$
.

Let U be a minimum vertex cover, say $U = A_1 \cup B_1$.

By König theorem,

$$|A_1| + |B_1| = |U| = \tau(G) = \nu(G) < |A|.$$

Then

$$|B_1| < |A| - |A_1| = |A \setminus A_1|.$$

Notice that there are no edges between $A \setminus A_1$ and $B \setminus B_1$. So

$$N(A \setminus A_1) \subseteq B_1$$
.

Thus,

$$|N(A \setminus A_1)| \leqslant |B_1| < |A \setminus A_1|,$$

which is contradicted by the assumption.

Definition 2.15. A k-regular spanning subgraph is called a k-factor.

Corollary 2.16. 1-factor: a matching that saturates all vertices (perfect). A subgraph $H \subseteq G$ is a 1-factor of G if and only if E(H) is a matching of V.

Corollary 2.17. Every *k*-regular bipartite graph has a 1-factor. (Or every regular bipartite graph has a perfect matching.)

Proof. Let G = (V, E) be k-regular with $V = \{A, B\}$.

Since
$$k|A| = k|B|$$
,
$$|A| = |B|$$
.

Let $S \subseteq A$.

Then S is joined to N(S) by a total of k|S| edges.

These are among the k|N(S)| edges of G incident with N(S). So

$$k|S| \leq k|N(S)|$$
.

Then

$$|S| \leq |N(S)|$$
.

So Hall's condition is satisfied.

Thus, G has a matching saturating A and so has a 1-factor.

Definition 2.18. For $X \subseteq A$,

$$\operatorname{def}_{G}(X) = |X| - |N(X)|.$$

We have

$$\operatorname{def}(G) = \max_{X \subseteq A} \operatorname{def}_G(X).$$

Theorem 2.19 (Refinement of Hall's theorem). Let G = (V, E) with $V = \{A, B\}$, then

$$\nu(G) = |A| - \operatorname{def}(G).$$

Proof. Let $d = \operatorname{def}(G)$ and $\nu = \nu(G)$. Clearly,

$$\nu \leqslant |A| - d$$
.

Construct G':

$$\begin{cases} add b_1, \dots, b_d \text{ to } B\\ add \text{ edges } ab : \forall a \in A \end{cases}.$$

By Halls' theorem, G' has a matching M of A. Note M use previously edges in $E(G) \setminus E(G')$.

2.2 Matching in general graphs

Definition 2.20. Let C_G be the set if its components.

Definition 2.21. Let q(G) be the number of components of G of odd order.

Theorem 2.22. The necessary condition for the existence of a 1-factor (Tutte's condition) is:

$$q(G-S) \leq |S|, \forall S \subseteq V(G).$$

Theorem 2.23 (Tutte). A graph G has a 1-factor if and only if

$$q(G-S) \leq |S|, \forall S \subseteq V(G).$$

Proof. Say G satisfies Tutte condition but has no 1-factor. In fact, let G be edge maximal w.r.t. these property. Let

$$K = \{ v \in V : u \sim v, \forall u \neq v \}.$$

Claim: Every component of G-K is a complete graph. Suppose not. Then $\exists a, b, c \in V-K$ with

$$a \sim b, b \sim c$$
, but $a \not\sim c$.

Then since $b \notin K$, $\exists d \in V$ such that

$$d \nsim b$$
.

By edge maximality, there exists a matching M_1 , saturating all vertices except a and c, and a matching M_2 saturating all vertices except b and d.

Consider $M_1 \Delta M_2$: alternating cycles and paths.

Then we construct an augmenting path P: start d, alternating between edges in M_1 and edges in M_2 .

- (a) P ends at b. But then P is an M_2 -augmenting path, a contradiction since M_2 is maximum.
- (b) P ends at a or c. Consider Pab. Then Pab is an M_2 -augmenting path, a contradiction.

So every component of G - K is a complete graph.

Thus, we have a 1-factor, a contradiction.

Corollary 2.24 (Peterson 1891). Every cubic bridgeless graph has a 1-factor.

Proof. We show that every graph satisfies Tutte's condition.

Let $S \subseteq V$.

Consider an odd component C of G - S.

Then $\partial(C)$, coboundary of C, is the set of all edges in G with exact one end in C.

Note

$$3|C| = \sum_{v \in C} d(v) = 2|E(C)| + |\partial(C)|.$$

So $|\partial(C)|$ is odd.

Since G is bridgeless,

$$|\partial(C)| \geqslant 3.$$

This is true for each odd component.

So with $\overline{S} = V - S$,

$$|\partial(\overline{S})| \geqslant 3 \cdot q(G - S).$$

Also,

$$\left|\partial(\overline{S})\right| = \left|\partial(S)\right| \leqslant 3|S|.$$

So

$$3|S| \geqslant |\partial(\overline{S})| \geqslant 3q(G-S).$$

Thus,

$$|S| \geqslant q(G - S)$$
.

2.3 Complementary

Definition 2.25. G is factor critial if it has no 1-factor but G - u has a 1-factor for any $u \in V$.

Definition 2.26. A near factor is a matching in which only 1 vertex is unsaturated.

Definition 2.27. A vertex v is essential if every maximum matching covers v

Lemma 2.28. If G is connected and $\nu(G-u)=\nu(G), \forall u\in V$, then G is factor critical.

Proof. Let G be connected with $\nu(G) = \nu(G - u), \forall u \in V$.

So G has no 1-factor.

It suffices to show no maximum matching leaves two distinct vertices unmatched.

Suppose we have a maximum matching M s.t. x and y are unmatched and d(x, y) is as smallest as possible.

Clearly,

$$d(x,y) \geqslant 2$$
.

Let P be a shorstest x-y path. Then there is a vertex v that is in the interior of P.

By the minimality of d, v is matched by M.

Since $\nu(G-v)=\nu(G)$, v is inessential. (All vertices of G is inessential.)

Then there exists a maximum matching M' missing v.

By the minimality of d, x, y is matched by M'.

In above graph, red edges are in M and blue edges are in M' and black edges are neither in M nor in M'.

In $M\Delta M'$, since each path alternates in edges in M_1 and M_2 , the paths in it starting at x and y are distinct.

Le Q be the path in $M\Delta M'$ starting at x, wlog, Q does not end at v?

Then $Q\Delta M'$ is a maximum matching avoiding x and v?

Definition 2.29. Let G = (V, E) be a graph with no 1-factor. Define

 $D(G) = \{v \in V : v \text{ is an inessential vertex}\},\$

$$A(G) = \{ v \in V \setminus D(G) : v \in N(D(G)) \},$$

$$C(G) = V \setminus \{ D(G) \cap A(G) \}.$$

Theorem 2.30. Consider

Since D(G) is in the bottom, A(G) is in the middle and then C(G) is the left ones.

Lemma 2.31 (Stability lemma). Let G = (V, E) be a graph with no 1-factor. Then $\forall u \in A$, we have

$$D(G - u) = D(G),$$

$$A(G - u) = A(G) - u,$$

$$C(G - u) = C(G).$$

Proof. Claim

$$\nu(G - u) = \nu(G) - 1, \forall u \in A.$$

Since $u \in A$ is essential, no matching of G-u has cardinality $\nu(G).$ So

$$\nu(G-u) < \nu(G).$$

Furthermore, let M be a maximum matching of G, then

$$|M| = \nu(G),$$

and $u \in A$ is saturated by M, say by $\alpha \in M$.

Then $M - \alpha$ is a matching of G - u and $|M - \alpha| = \nu(G) - 1$.

$$\nu(G - u) \geqslant |M - \alpha| = \nu(G) - 1.$$

Thus,

$$\nu(G - u) = \nu(G) - 1.$$

Claim

$$D(G) \subseteq D(G-u), \forall u \in A.$$

Let

$$o \in D(G)$$
.

Let M_o be a maximum matching of G leaving o unmatched.

$$|M_o| = \nu(G).$$

Let $\beta \in M_o$ be incident with $u \in A$.

Then $M_o - \beta$ is a matching of G - k of size $|M_o - \beta| = \nu(G) - 1$, and hence, by previous claim, a maximum matching of G - u leaving o unmatched. So

$$o \in D(G-u)$$
.

Next,

$$D(G-u) \subseteq D(G)$$
.

Choose $v \in D(G-u)$. Let M' be a maximum matching of G-u missing v.

Let $w \in D(G)$ with $w \sim u$ and let M be a maximum matching of G missing w.

We need to construct a maximum matching of G missing v, (this would imply that $v \in D(G - u)$ as required.)

If M misses v, then we are done. So assume not.

Then v is matched by M.

Let P be the path of $M\Delta M'$ starting at v.

Case 1: P_1 ends with an edge of M'. Then $M\Delta P$ is a matching in G missing v, and it is the same cardinality as M, hence maximum. So we are done.

Case 2: P ends with an edge of M. Consider $M'\Delta P$. It is maximum. Hence it must match u. So M ends at u. But then $M\Delta(P+uw)$ is a maximum matching avoiding v as required.

Corollary 2.32. Let G = (V, E) be no 1-factor.

- (a) Let M be a maximum matching in G, let $u \in A(G)$ and let f be the unique edge in M incident with u. Then M f is a maximum matching of G u.
- (b) Let M be a maximum matching in G. Then if f is an edge of M with one end in A(G), then the other end of f is necessarily in D(G).

Theorem 2.33 (Edmond's Gallai's structure theorem). Let G = (V, E) be a graph with no 1-factor and D, A, C be defined before. Then

- (a) Every component of [D] is factor critical (odd).
- (b) Every component of [C] has a 1-factor (even).
- (c) Define a bipartite graph $\{A, B\}$, where A = A(G) and a vertex of B is a component of [D], with ab an edge if and only if a is adjacent to at least one vertex in B. Hall's condition holds with a surplus,

$$|N(X)| \geqslant |X| + 1, \forall X \subseteq A.$$

(d) Let M be a maximum matching of G. Then M contains a near-factor of each component of [D].

A 1-factor of each component of [C] and vertices in A are matched to vertices in distinct component of [D].

(e)

$$\nu(G) = \frac{1}{2}(|V| - q(G - A) + |A|).$$

Proof. Delete vertex of A one at a time.

$$D(G - A) = D(G),$$

$$A(G - A) = \emptyset,$$

$$C(G - A) = C(G).$$

(a) Since any matching M of G saturating A, $M \cap E(G - A)$ has cardinality $\nu(G) - |A|$ and is a maximum matching of G - A.

Use Gallai's lemma, it is enough to show

$$\nu(G_i - v) = \nu(G_i), \forall v \in V(G_i),$$

where G_i is a component of [D].

$$v \in V(G_i)$$
.

Let M_v be a maximum matching of G, leaving v unsaturated.

Remove all edges of M_v incident with A and then the part left has cardinality $\nu(G) - |A|$ and is a maximum matching of G - A.

Since the component of [D] are disjoint, **restricting** $M_v - E[A]$ is a maximum matching of G_i avoiding v.

So

$$\nu(G_i) = \nu(G_i - v).$$

By Gallai's lemma, G_i is factor critical.

(b) Note that [C] has 1-factor (start with a maximum matching M of G and remove all edges incident with A.) (Again we used consequence (2) above).

(d) (Key point: every vertex $k \in A$ is saturated by any maximum matching M of G, say $\beta \in M$ is incident with k and the other end of β must be in D. Else remove k and β to get a maximum matching of G - k?)

From (a) and (b), it follows that a maximum matching in G-A consists of a 1-factor of [C] and a near factor of each component of [D], i.e., we can do better than this, so this must be largest possible. We also know that removing all edges incident with A from any maximum matching of G results in a maximum matching of G-A, and hence leaves exactly 1 vertex unsaturated in each component G_i of G-A in D.

(e) Clearly now.

(c) Let $C \subseteq A$. Let $u \in X$ and let $u \sim v$ with $v \in b$, where b is some component of [D]. Let M be a maximum matching of G avoiding v. By (d), the rest of the vertices in b are matched to vertices also in b. Hence no vertex in X is matched to a vertex of b. It follows that each of the |X| vertices in X is matched to a distinct component other than b in [D]. These |X| distinct components, together with b form our requisite set of size at least |X| + 1 elements in B in the neighbor set of X.

Chapter 3

Connectivity

3.1 2-connected graphs and subgraphs

Definition 3.1. A cut vertex is one that separates of two other vertices.

Definition 3.2. G is 2-connected if it contains at least 3 vertices and has no cut vertex.

Definition 3.3. Ear decomposition is a simple recursive procedure for generating any 2-connected graph starting with a cycle.

Definition 3.4. An F-path is also called an ear of F in G.

Theorem 3.5. Let F be a nontrivial subgraph of a 2-connected graph G. Then F has an ear in G.

Proof. Case 1: F spans G. Then $\exists e \in E(G - F)$. Then e is an ear.

Case 2: F is not spanning.

Since G is connected, $\exists xy \in E(G)$ with $x \in V(F)$ and $y \in V(G - F)$.

Since G is 2-connected, there is a (y, F - x)-path Q in G - x.

So P = xyQ is an ear in F.

Theorem 3.6. Let F be an 2-connected subgraph of G. Let P be an ear of F. Then $F \cup P$ is 2-connected.

Proof. Exercise.

Definition 3.7. A nested sequence of graphs is a (finite) sequence (G_0, \ldots, G_k) with $G_i \subsetneq G_{i+1}$ for $0 \leqslant i \leqslant k-1$.

Definition 3.8. An ear decomposition of 2-connected graph is a nested sequence (G_0, \ldots, G_k) of a 2-connected so that

- (a) G_0 is a cycle;
- (b) $G_{i+1} = G_i \cup P_i$, where P_i is an ear of G_i in $G, 0 \leq i \leq k-1$.

Example 3.9. Consider

Lemma 3.10. Every 2-connected graph G has a cycle.

Proof. Since G is 2-connected, G is connected.

Suppose G is acyclic, then G is a tree.

So G contains a leaf x.

Let y be the unique vertex adjoint to x, then y is a cut vertex, a contradiction.

Lemma 3.11. G is 2-connected if and only if it has an ear decomposition.

Proof. " \Leftarrow ". Induction on the number of ears.

 G_0 is a cycle and 2-connectd.

Then inductively apply previous theorem that the union of 2-connected graph and an ear is still 2-connected.

"⇒". Use previous lemma and the following theorem.

Theorem 3.12. Let F be a nontrivial proper subgraph of a 2-connected graph G. Then F has an ear in G.

Definition 3.13. A block of a graph G is a maximal connected subgraph without a cut vertex.

Figure 3.3: G_6

Remark. Types of blocks.

- (a) maximal 2-connected graph.
- (b) a bridge.
- (c) an isolated vertex.
- (d) If different blocks overlap, then they overlap in one vertex (a cut vertex).
- (e) Every edge lies in a unique block.
- (f) G is the union of its blocks.

Definition 3.14. A bond is a minimal cut. Assume G is cut into two parts A and B, then either A or B is connected.

Theorem 3.15. If F is a cut with $xy \in F$, then F is a bond if and only if it is a minimal intersection set of all x-y path.

Lemma 3.16. (a) cycles of G are cycles of the blocks.

(b) bonds of G are bonds of the blocks.

Proof. (a) A cycle is 2-connected. So it must be part of some maximal 2-connected subgraphs.

(b) Let F be a bond of G, let $xy \in F$. So F separates x and y in G.

Let B be the block containing xy, by the maximality of B, G contains no B-path.

Hence B contains all x-y paths (or use previous theorem).

So $F \cap E(B)$ separates x and y in B.

Thus, F is also a bond in B.

Lemma 3.17. For distinct edges e and f of G, TFAE.

(a) e and f belong to the same block;

- (b) e and f belong to the same cycle;
- (c) e and f belong to the same bond;

Proof. "(i) \Rightarrow (ii)". Let e and f be in the same block B.

Let B be 2-connected.

Claim in any 2-connected graph, any two edges are in the same cycle.

It suffices to show that for any two distinct pairs $\{u_1, u_2\}$ and $\{v_1, v_2\}$ of vertices, there are two disjoint paths.

Since B is 2-connected, it has an ear decomposition $\{B_0, \ldots, B_k\}$.

If k = 0, then B is a cycle, done.

Then induct on k.

Let

$$0 \leqslant i \leqslant k - 1$$
.

Case 1: both $\{u_1, u_2\}$ and $\{v_1, v_2\}$ are in B_i . True by inductive assumption.

Case 2: both are in P, which is an ear of B_i , since G_i is connected, they are in the same cycle.

Case 3: one pair is in B_i and the other is in P_k .

Use induction with the pairs $\{u_1, u_2\}$ in G_i and $\{u, v\}$ in G_i (By symmetry).

"(iii) \Rightarrow (ii)". Let e and f be in the same cycle C.

Removing e and f from C leaving two paths P_1 and P_2 .

Grow P_1 and P_2 into a partition V_1, V_2 of G so that $e, f \in V_1 - V_2$, so that $[V_2]$ is connected?

Then edges between V_1 and V_2 form a bond of G?

Le V_2 be the connected componet of $G - P_1$ containing P_2 and V_2 ?

Let

$$V_1 = V(G) - V_2$$
.

"(iii) \Rightarrow (i)". Assume e and f are in the same bond of G.

That bond is also a bond of some block B of G.

Then B contains e and f.

Definition 3.18. Bipartite $\{A, B\}$, where A is the set of cut vertices and B is the set of blocks. $a \sim B$ in this block graph if $a \in B$.

Definition 3.19. The block graph of a connected graph is a tree.

3.2 The structure of 3-connected graphs

Example 3.20. Consider G

Then G/e is

So it is not 3-connected since it contains a 2-vertex cut $\{x,c\}.$ G/f is

It is 3-connected.

Lemma 3.21. Let G be a 3-connected with $|G| \geqslant 5$ and let $e = xy \in E(G)$ s.t. G/e is not 3-connected. Then $\exists z \in V$ such that $\{x, y, z\}$ is a 3-vertex cut of G.

Proof. Let G be

Let $\{z, w\}$ be a 2-vertex cut of G/e.

Both z and w cannot be the result of contracting e, say z is that vertex. Set

(Since G is 3-connected, F is 2-connected.) However,

Note G/e-z has a 1-vertex cut $\{w\}$. Hence w must be the result of contracting e. Thus, $\{x, y, z\}$ is a 3-vertex cut of G. (z is not the resulting of contracting xy.)

Lemma 3.22. If G is 2-connected and $\{x,y\}$ is a 2-vertex cut of G with $x \sim y$ and C is any component of $G - \{x,y\}$, then $H = [V(C) \cup \{x,y\}]$ is also 2-connected.

Proof. Suppose not. Then there is a cut vertex $u \in V(H)$. Case 1. u = x or y. Wlog, let u = x. Then G looks like

So there is no y-C edges?

Then G-x contains C as a component, a contradiction? Case 2. $u \in C$. Let C' be component of $H - \{u\}$.

C'

Then v is a cut vertex of G, a contradiction.

Theorem 3.23 (Thomason 1981). Let G be a 3-connected graph with at least 5 vertices. Then G contains an edge such that G/e is 3-connected.

Proof. Suppose not.

Then for any edge e = xy of G, G/e is not 3-connected.

By previous lemma, $\exists z \in V$ associated with xy such that $\{z, x, y\}$ is a 3-vertex cut of G.

Choose e and z such that $G - \{x, y, z\}$ has a component F with as many vertices as possible.

Consider G-z.

Since G is 3-connected, G-z is 2-connected.

Also G - z has the 2-vertex cut $\{x, y\}$.

Hence $H = [V(F) \cup \{x, y\}]$ is 2-connected by previous lemma.

Let u be a neighbor of z in a component of $G - \{x, y, z\}$, other than F.

Since $f = zu \in E(G)$, by our assumption, $\exists v \in V$ such that $\{z, u, v\}$ is a 3-vertex cut of G. Since H is 2-connected, H - v is connected and is thus contained in component of $G - \{z, u, v\}$. But the order of H - v is larger than |F|, which is contradicted by the maximality of F.

3.3 Menger's theorem

Theorem 3.24 (Menger 1927). Let G = (V, E) and $A, B \subseteq V$. Then the minimum number of vertices separating A from B in G is equal to the largest collection of disjoint A-B path in G.

Proof. Let

 $k = \kappa(G, A, B) = \text{minimum number of vertices separating } A \text{ from } B.$

Clearly, the cardinality of the largest collection of vertex disjoint A-B path $\leq k$. Induct on $\|G\|$.

If ||G|| = 0, the only A-B paths are the singletons $|A \cap B|$, which is the largest number of disjoint A-B path.

Also, the smallest separating set is $A \cap B$.

Assume

 $||G|| \geqslant 1$.

Then there exists

with $A = \{b, c, e, f\}$ and $B = \{a, b, e, d\}$.

Inductively, assume statement holds for graphs of smallest size.

Suppose G has no k disjoint A-B paths, then neither does G/e.

Let v_e be the contracted vertex. Replace A with A' and B with B'.

Put v_e into A' if $\{x,y\} \cap A \neq \emptyset$. Put V_e into B' if $\{x,y\} \cap B \neq \emptyset$.

By the induction hypothesis, G/e contains an A-B speparator Y of fewer than k vertices. Note

$$v_e \in Y$$
,

otherwise, $Y \subseteq V$ would be an A-B separater.

Hence $X := (Y - \{v_e\}) \cup \{xy\}$ is an A-B separators in G of cardinality k.

Let

$$k = \kappa(G, A, B)$$
 and $p = \text{maximum number of } A\text{-}B$ disjoint paths in G ;

$$k' = \kappa(G, A', B')$$
 and $p' = \text{maximum number of } A' - B'$ disjoint paths in G.

Then

$$p' \leqslant p$$
, $p < k$ and $p' = k'$.

Also,

$$k' = k \text{ or } k - 1.$$

So

$$p = k - 1$$
,

$$p' = k - 1 = k'.$$

Consider G - e.

Since $x, y \in X$, every A-X separator in G - e is also an A-B separator in G and hence contains at least k vertices.

So by induction there are k disjoint A-X paths in G - e, and similarly there are k disjoint X-B paths in G - e.

As X separates A from B, these two path systems do not meet outside X, and can thus be combined to k disjoint A-B paths.

Remark. We have the following stronger statement.

If P is any set of fewer than k disjoint A-B paths in G, then G contains a set of |P| + 1 disjoint A-B paths exceeding P.

Corollary 3.25 (König theorem). Let G = (V, E) be a bipartite with bipartition $\{A, B\}$. Every A-B path is an edge in G. Every vertex cover is an A-B separating set.

Definition 3.26. Let G = (V, E). If $a \in V$ and $B \subseteq V$ with $a \notin B$, then an a-B fan is a collection of paths with pairwise intersection at a.

Corollary 3.27 (To Menger). For $B \subseteq V$ and $a \in V \setminus B$, the size of a smallest a-B separation not containing a is equal to the maximum number of paths in an a-B fan.

Proof. Apply Menger to G-a with $A = N_G(a)$.

Corollary 3.28. Let $a, b \ (s, t)$ be two distinct vertices of G = (V, E).

If $ab \notin E$, then the minimum number of vertices not containing $\{a,b\}$ separating a from b in $G(\kappa(a,b))$ is equal to the maximum number of independent (internally disjoint) a-b paths in $G(\lambda(a,b))$.

Corollary 3.29 (Edge a-b version). The minimum number of edges separating a from b ($\kappa'(a,b)$) is equal to the maximum number of edge disjoint a-b paths in G ($\lambda'(a,b)$).

Proof. Apply Menger' a-b version of the line graph of G.

Theorem 3.30 (Menger's global version). (a) A simple graph is k-connected if and only if it contains k independent paths between any 2 distinct vertices.

(b) A simple graph is k-edge-connected if and only if it contains k edge-disjoint paths between any 2 distinct vertices.

Proof. (a) " \Leftarrow ". Say G contains k-independent paths between 2 distinct vertices.

Then |G| > k.

Furthermore, G connot be separated by fewer than k vertices.

Hence G is k-connected.

" \Rightarrow ". Assume G is k-connected.

Then |G| > k and any separating set has size at least k.

Assume $\exists a, b \in V$ s.t. there are at most k-1 independent paths between a and b.

If $ab \notin E$, by previous corollary, the minimum number of vertices separating a from b is at most

k-1, which is contradicted by that G is k-connected.

$$ab \not\in E$$
.

Set

$$G' = G - ab$$
.

Since ab is a-b path, which must be independent of any other a-b paths, G' contains at most k-2 independent a-b paths.

Then G' has an a-b separators X with at most k-2 vertices.

Since |G'| > k, $|G'| \ge k$.

Also,

$$|X| \leqslant k - 2.$$

So $\exists v \in V$ such that $v \not \in X \cup \{a,b\}$ in G'.

It must be the case that in G' either X separates a from v or X separates b from v, wlog, say a.

But then $X \cup \{b\}$ is a set of at most k-1 vertices separating v from a in G.

Thus, G is not k-connected, a contradiction.

Chapter 4

Planar Graphs

Remark (Problem). Given distinct vertices x_1, \ldots, x_k and y_1, \ldots, y_k , find k independent paths P_1, \ldots, P_k , where P_i is an x_i - y_i path, called an x-y linkage. This is a NP-hard problem even if k = 2.

4.1 Topological prerequisites

Definition 4.1. A topological is a collection of subsets called open sets of a ground set X that is closed under arbitrary union and finite intersection. X is called a topological space.

Example 4.2. The smallest topology on X is

$$\{\emptyset, X\}.$$

Example 4.3. In discrete topology, every subset is open.

Example 4.4. In metric space, open sets are generated by open sets.

Definition 4.5. A function between two topological spaces is continuous if the preimage of every open set is open.

Definition 4.6. A homeomorphism is a continuous bijection between two topological spaces for which the inverse function is continuous.

Example 4.7.

$$(\mathbb{R}, d_{\mathrm{disc}}) \xrightarrow{\mathrm{id}} (\mathbb{R}, |\cdot|),$$

is bijection continuous but not a homeomorphism since the inverse

$$(\mathbb{R}, |\cdot|) \xrightarrow{\mathrm{id}} (\mathbb{R}, d_{\mathrm{disc}}),$$

is not continuous since the open set $\{x\}$ in $(\mathbb{R}, d_{\text{disc}})$ is not open in $(\mathbb{R}, |\cdot|)$ (closed).

Lemma 4.8. A continuous bijective map is a homeomorphism if and only if the image of every open is open.

Definition 4.9. A set is closed if it is the complement of an open set.

Remark. In a metric space, closed sets contain all limit points.

Definition 4.10. A set is compact if every open cover has an finite subcover.

Remark. In \mathbb{R} , closed and bounded sets are compact.

Remark. Topological studies properties of objects that does not change under homeomorphism.

Example 4.11. [0,1] is homeomorphic to a polygonal arc in \mathbb{R}^2 .

Remark. Topological graph theory was studied first to address 4-color theorem.

Remark. Two homeomorphic spaces share the same topological properties. For example, if one of them is compact, then the other is as well; if one of them is connected, then the other is as well; if one of them is Hausdorff, then the other is as well; their homotopy and homology groups will coincide.

Definition 4.12. In \mathbb{R}^2 , a set S is open if $\forall x \in S, \exists r > 0$ such that the open disk $B_r(x) \subseteq S$, where $B_r(x)$ is called a neighborhood of x.

Definition 4.13. A straight line segment in \mathbb{R}^2 between p and q is of the form

$${p + \lambda(p - q) : 0 \leq \lambda \leq 1}.$$

Definition 4.14. A polygonal arc P is a set $A \subseteq \mathbb{R}^2$ and is a union of finitely many line segment and is homeomorphic to [0,1] in \mathbb{R}^1 . The images of 0 and 1, say x and y are called the ends of P. Say P links x and y, define

$$\overset{o}{P} = P \setminus \{x, y\}.$$

Definition 4.15. A polygon is a subset of \mathbb{R}^2 , which is the union of finitely many straight line segment and is homeomorphic to the unit cycle $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.

Definition 4.16. A bond of a polygonal arc or a polygon P is a point in P where line segments meet. Note there are just finitely many bonds.

Theorem 4.17. Complement of finite union of (polygon) arcs is open.

Definition 4.18. Let $\Omega \subseteq \mathbb{R}^2$ be an open set. Define $x \sim y$ if $x, y \in \Omega$ and there is a polygonal arc $A \subseteq \Omega$ having ends x and y. Note " \sim " is an equivalent relation and equivalence classes are called arcwise connected components of Ω , or region of Ω .

Definition 4.19. If $x \sim y$, for any $x, y \in \Omega$, we say that Ω is arcwise connected.

Definition 4.20. If $X \subseteq \mathbb{R}^2$ is closed, we call an arcwise connected component of $\mathbb{R}^2 - X$ a face of X.

Definition 4.21. The frontier or (boundary) of a set $X \subseteq \mathbb{R}^2$ is the set Y of all points in \mathbb{R}^2 such that every neighbor of u meets both X and $\mathbb{R}^2 - X$.

Theorem 4.22. If X is open, frontier of X is in $\mathbb{R}^2 - X$.

Theorem 4.23 (Jordan curve theorem for polygon). Every polygon $P \subseteq \mathbb{R}^2$ has exactly two faces of which exactly one is bounded. The boundary of each of the two faces is P.

Proof. Let $x \in \mathbb{R}^2 - P$ and L be an half line starting at x and containing no bonds of P. Let

$$\pi(x, L) = |L \cap P| \pmod{2}.$$

Check if L_1 and L_2 are two such lines starting at x, then

$$\pi(x, L_1) = \pi(x, L_2).$$

Call this number $\pi(x)$.

Check π is a continuous function.

Then π is constant on each arcwise connected component of $\mathbb{R}^2 - P$.

Choose two points x_1 and x_2 close to each other but on opposite side of a line segment of P. Then

$$\pi(x_1) \neq \pi(x_2).$$

So P has at least two faces.

Suppose P has at least 3 faces.

Choose x_1, x_2, x_3 on each faces.

Let x be on the boundary of P (but not a bound).

So x is on a line segment S.

Pick O a small open neighborhood of x with

$$O \cap P = O \cap S$$
.

For each of x_1, x_2, x_3 , shoot a half line towards P but not on the way.

Travel on the line segment along lots of neighbors of P to O from there.

Going backwards, we get a polygonal arc from O to x_1 .

So each of x_1, x_2, x_3 can be reached from a point in O by a polygonal arc not intersecting P.

But O - P has at most two arcwise connected components.

So by PHP and the def. of face, at least two of x_1, x_2, x_3 are in the same region of $\mathbb{R}^2 \setminus P$.

Hence P has at most 2 faces.

Furthermore, every point of $O \cap S$ belongs to the boundary of both faces.

Also, since x is arbitrary, P is the boundary of both faces.

Check one region is unbounded.

Lemma 4.24. Let P_1, P_2, P_3 be 3 (polygonal) arcs between the same two end points and are otherwise disjoint. Then $\mathbb{R}^2 \setminus (P_1 \cup P_2 \cup P_3)$ has exactly 3 regions with

- (a) fontier $P_1 \cup P_2, P_2 \cup P_3$ and $P_1 \cup P_3$.
- (b) If P is an arc between a point in $\stackrel{\circ}{P}_1$ and $\stackrel{\circ}{P}_3$ whose intersection lies in the region of $\mathbb{R}^2 \setminus (P_1 \cup P_3)$ that contains P_2 , then $\stackrel{\circ}{P} \cap \stackrel{\circ}{P}_2 \neq \emptyset$.

Proof. (Sketch) $\stackrel{\circ}{P}_i$ is entirely contained in one of the 2 faces in $\mathbb{R}^2 \setminus \{P_j \cup P_k\}$.

- (1) follows from PJCT, too.
- (2) P_2 separates one of the two regions defined by $P_1 \cup P_3$ into two parts.

Consider Pab stated. a is in one of these regions, the one bounded by $P_1 \cup P_2$ and b is in the one bounded by $P_2 \cup P_3$. Let c be the first point on P that is in both. Then $c \in P_2$.

Definition 4.25. A closed set X separates an open region O if $O \setminus X$ has more than 1 region.

4.2 Drawing graphs

Definition 4.26. A drawing of a graph G = (V, E) is a function f that maps each $v \in V$ to $f(v) \in \mathbb{R}^2$. f maps each edge $e = uv \in E$ to f(e), a polygonal arc, with ends f(u) and f(v).

Definition 4.27. A point in $f(e) \cap f(e')$ other than the common ends is a crossing.

Remark (Perturbation assumption for planar graph). • The interior of an edge contains no vertex and no point of any other edge.

- If 2 edges cross more than once, we can reduce the number of crossings.
- No pair of edges is parallel.

Definition 4.28. A graph is *planar* if it has a drawing with no crossings. Such a drawing is a plane embedding of G. A *plane graph* is a particular drawing of a planar graph with no crossing.

Definition 4.29. Let G be a planar and consider a **plane drawing** of G. The (open) regions of $\mathbb{R}^2 \setminus G$ are the faces of G.

Remark (Fact). • If G is finite and so bounded, then we can construct a big desk containing all of G and so G has only one unbounded face.

- The faces of G are pairwise disjoint.
- The points p, q not on an edges of a plane graph are in the same face if and only if there exists a p-q arc crossing no edges of G.

Definition 4.30. A chord of a cycle C is an edge e joining two vertices on C but with $e \notin C$.

Theorem 4.31. Neither K^5 nor $K_{3,3}$ are planar.

Proof. Consider a drawing of $G = K^5$ or $K_{3,3}$ in the plane. Let C be a spanning cycle in $G = K_{3,3}$.

Then we can draw C as a polygon:

By PJCJ, $\mathbb{R}^2 - C$ has exactly 2 faces.

Let e be a chord of C, then by definition, $\stackrel{o}{e}$ is entirely contained in one of these two faces.

We will say that two chords of C conflict if their endpoints on C occur in alternating order, for example, the chords fc and eb conflict.

Conflicting chords must be drawn in different faces. But $K_{3,3}$ has 3 pairwise conflicting chords and $\mathbb{R} \setminus C$ has only 2 faces, so $K_{3,3}$ cannot be drawn in the plane.

A similar argument holds for K_5 .

The following Lemmas are used for proving Kuratowski's theorem.

Lemma 4.32. Let G be a planar graph and E be the edge set of a face F of G. Then there is an embedding in which F is the unbounded face.

Lemma 4.33. Every minimal nonplanar graph is 2-connected.

Proof. Let G be minimal nonplanar.

Suppose G were not connected, then one of the component would be a nonplanar, which is contradicted by the minimality and so G is connected.

Suppose v were a cut vertex and let C_1, \ldots, C_k be the components of G - v with $k \ge 2$.

For i = 1, ..., k, let H_i be the subgraph of G induced by $C_i \cup \{v\}$.

By the minimality of G, each H_i is planar for i = 1, ..., k.

Squeeze each to fit an angle less than $\frac{360^{\circ}}{k}$ at v and merge.

But then G is planar, a contradition and so G is 2-connected.

Definition 4.34. A minimal nonplanar graph is a nonplanar graph for which every proper subgraph is planar.

Lemma 4.35. Let G be minimal nonplanar and has a separator S of size 2, say $S = \{x, y\}$.

Let C_1 be one component of $G - \{x, y\}$ and let $C_2 = G - \{x, y\} - C_1$.

Let G_i be the subgraph of G induced by $C_i \cup \{x, y\}$ for i = 1, 2.

Note

$$V(G_1) \cap V(G_2) = \{x, y\}.$$

Define for i = 1, 2,

$$H_i = G_i \cup xy$$
.

Then at least one of H_1, H_2 is nonplanar, otherwise we could glue H_1 and H_2 at xy and remove xy to obtain a planar graph G, a contradiction.

Definition 4.36. A Kuratowski graph is a subdivision of K^5 or $K_{3,3}$.

Lemma 4.37. A minimal nonplanar graph with no Kuratowski subgraph is 3-connected.

Proof. Assume G is minimal non-planar. Then G is 2-connected by previous Lemma. Suppose G were not 3-connected.

Then by last Lemma, H_1 or H_2 defined in last Lemma is nonplanar, say H_1 .

Since H_1 has fewer edges than G, H_1 must contain a Kuratowski subgraph.

Replace xy with an x-y path using only edges in H_2 and this gives a Kuratowski subgraph of G, a contradiction.

Lemma 4.38. A 3-connected graph with at least 5 vertices has an edge whose contraction leaves the graph 3-connected.

Lemma 4.39. If G/e has a Kuratowski subgraph, then G also does.

Proof. Let H be the Kuratowski subgraph of G' = G/e.

Let e = xy and z be the vertex resulting from contracting the edge e.

Case 1: z is a nonbranching vertex of H. Uncontracted to get a Kuratowski subgraph of G, for example z is on ab.

Case 2: If when we uncontract z (inflation), at least one of the vertices $\{x,y\}$ has degree 2 in the subgraph of G induced by $(V(H)-z)\cup\{x,y\}$. Still, we have a Kuratowski subgraph after expanding z.

Case 3: x and y have degree greater than 2 in this same subgraph, i.e., $\deg_H(z) = 4$.

Remark. Sometimes, the contrapositive statement is more useful.

Theorem 4.40 (Kuratowski, 1930). G is planar if and only if G contains no subdivision of K^5 or $K_{3,3}$ (no Kuratowski subgraph).

Proof. The goal is to show

- (a) Show that a minimal nonplanar graph with no Kuratowski subgraph must be 3-connected.
- (b) Prove that a 3-connected graph with no Kuratowski subgraph must in fact be planar.

Remark (Fact). • Subdividing edges does not affect planarity.

- Deletion and contraction preserve planarity.
- So it makes sense to seek minimal non-planar graphs with respect to these operations.

Theorem 4.41 (Wagner,1937). G is planar if and only if it has no subgraph contractible to K^5 or $K_{3,3}$.

Remark (Fact). A graph contains K^5 or $K_{3,3}$ as a minor if and only if it contains K^5 or $K_{3,3}$ as a topological minor.

Theorem 4.42 (Fary's Theorem, 1948). Every finite planar graph has an embedding in which all edges are straight line segments.

Remark (Recall). An embedding is a drawing of the graph in the plane.

Remark (Fact). If each face boundary is convex, we say the representation is convex.

Definition 4.43. A set A is convex if for any $x, y \in A$ and $\forall 0 \le \lambda \le 1$,

$$(1 - \lambda)x + \lambda y \in A$$
.

Definition 4.44. A convex embedding of G is a planar embedding in which each inner face is convex.

Theorem 4.45 (Tutte, 1969, 1963). Every 3-connected planar graph has a convex embedding in the plane.

Remark (Fact). $K_{2,n}$ for $n \ge 4$ has no convex representation.

Theorem 4.46 (Tutte). If G is 3-connected with no Kuratowski subgraph, then G has a convex embedding in the plane.

Proof. Induction on |G|.

If $|G| \leq 4$, then $G = K^4$ and K^4 has a convex embedding.

Assume $|G| \ge 5$. Assume the statement holds for all graphs with fewer vertices.

By previous Lemma, there exists e = xy with G/e 3-connected.

Let z be the vertex resulting from contracting e.

Previous lemma implies that G/e has no Kuratowski subgraph.

So by inductive hypothesis, there exists a convex embedding of G' = G/e.

Consider removing all edges in G' incident with z.

The resulting graph has a face containing z.

A cycle of G'-z bounds the face.

There exists straight line segments from z to each of its neighbors on C.

Some connect x to C. Some connect y to C.

Let x_1, \ldots, x_k be the neighbors of x in order on C.

Case 1: All neighbors of y lie between x_i and x_{i+1} for some $1 \le i \le k-1$ or between x_1 and x_k .

Case 2: Consider subcases (2a) and (2b). We claim that both of these subcases allow us to conclude that we have a Kuratowski subgraph.

- (2a) y shares 3 neighbors with x. Then we have a K^5 subdivision.
- (2b) y has two neighbors u and v in C (breaking C into two segments) and x has two neighbors u' and v' that are in different segments of C.

Then we have a $K_{3,3}$ subdivision.

Remark (Interesting Fact). excluded minors characterization for our planar graphs: K^4 and $K_{2,3}$.

Theorem 4.47.

$$2\|G\| = \sum_{i} l(F_i).$$

Lemma 4.48 (Euler's formula,1258). If G is planar and connected with n vertices, m edges and l faces, then

$$n-m+l=2$$
.

Corollary 4.49. A simple 2-connected planar graph has at most 3|G|-6 edges.

Proof. Let G has n vertices, m edges and l faces.

Since G is simple and 2-connected, every face has length at least 3.

So

$$2m = \sum_{i} l(F_i) \geqslant 3l.$$

Also, by Euler's formula,

$$3m = 3n + 3l - 6 \leqslant 3n + 2m - 6.$$

So

$$m \leqslant 3n - 6$$
.

Remark (Exercise). Use this to show K^5 is not planar.

Corollary 4.50. Let G be a planar, simple and 2-connected. Then the average degree of G

$$d(G) = \frac{\sum_{v} d(v)}{n} = \frac{2\|G\|}{n} = \frac{2m}{n} \leqslant \frac{6n - 12}{n} = 6 - \frac{12}{n} < 6.$$

We conclude that every simple 2-connected planar graph has a vertex of degree ≤ 5 .

Chapter 5

Coloring

Remark. How many colors do we need to color the countries of a map in such a way that adjacent countries are colored differently? How many days have to be scheduled for committee meetings of a parliament if every committee intends to meet for one day and some members of parliament serve on serveral committees? How can we find a school timetable of minimum total length, based on the information of how often each teacher has to teach each class?

Definition 5.1. A (vertex) coloring of a graph is an assignment of colors to vertices. Specifically, let G = (V, E). Let S be the set of colors and be finite. A vertex coloring of G is a map

$$c:V\to S$$
.

A coloring is proper if $c(v) \neq c(u)$ when $v \sim u$.

Definition 5.2. An edge coloring of G = (V, E) is map $c : E \to S$ with $c(e) \neq c(f)$ for any adjacent edges e, f.

Remark. Clearly, every edge coloring of G is a vertex coloring of its line graph L(G), and vice verce; in particular,

$$\chi'(G) = \chi(L(G)).$$

Remark. Often $S = \{1, ..., k\}$. If there is a coloring using only elements in [k], we say G is k-colorable and the associated coloring is a k-coloring.

Definition 5.3. Let $\chi(G)$ be the chromatic number of G, which is the smallest integer k so that G is k-colorable.

Definition 5.4. Let $\chi'(G)$ be the edge chromatic number of G or called chromatic index of G, which is the smallest integer k so that G is k-edge-colorable.

Remark. If $\chi(G) \leq k$, we say G is k-colorable. If $\chi(G) = k$, we say G is k-chromatic.

Remark. Note that a k-coloring is nothing but a vertex partition into k independent sets, now called color classes. The non-trivial 2-colorable graphs, for example, are precisely the bipartite graphs.

Remark. How many colors are needed to color the regions of a planar graph? Equivalent to the vertex coloring problem of the dual. Find $\chi(G^*)$.

Theorem 5.5 (4 color theorem). For any planar graph G, $\chi(G^*) = 4$.

Proof. • 1976, Appel, Haken

- 1997 Robertson, Sanders, Seymour, Thomas
- 1879 Kempe

Kempe's ideal helped prove a weaker theorem, Heawood 1890.

Theorem 5.6. For any planar graph G, $\chi(G) \leq 5$, i.e., every planar graph is 5-colorable.

Proof. Let G be planar graph. Use induction on |G|.

If $|G| \leq 5$, done.

Let $n = |G| \geqslant 6$ and m = ||G||.

Assume that any planar graph with less than n vertices is 5-colorable.

Let v be a vertex with $d(v) \leq 5$ and H := G - v.

By inductive hypothesis, H has a coloring $c: V(H) \to \{1, 2, 3, 4, 5\}$.

If c uses at most 4 colors for the neighbors of v, we can extend it to a 5-coloring for the neighbors of v and done

Assume, therefore, that v has exactly 5 neighbors $\{v_1, \ldots, v_5\}$ and let $c(v_i) = i$ for $i = 1, \ldots, 5$. Let D be an open disc around c, so small that it meets only those five straight edge segments of G that contain v.

Let us enumerate these segments according to their cyclic position in D as s_1, \ldots, s_5 .

Let vv_i be the edge containing s_i for i = 1, ..., 5.

We first show every v_1 - v_3 path $P \subseteq H - \{v_2, v_4\}$ separates v_2 from v_4 in H.

Clearly, this is the case if and only if the cycle $C := vv_1Pv_3v$ separates v_2 from v_4 in G.

We prove this by showing that v_2 and v_4 lie in different faces of C.

Let x_2 be an inner point of s_2 in D and x_4 be an inner point of s_4 in D.

Then in $D \setminus (s_1 \cup s_3) \subseteq \mathbb{R}^2 \setminus C$, every point can be linked by a polygonal arc to x_2 or to x_4 .

This implies x_2 and x_4 (and hence also v_2 and v_4) lie in different faces of C, otherwise, D would meet only one of the two faces of C, which would contradict the fact that v lies on the frontier of

both these faces since by Jordan Curve Theorem for Polygons, any neighbor sets of a point in the boundary will meet two faces of a polygon.

Let H_{ij} be the subgraph of H induced by vertices colored i or j for $i, j \in \{1, 2, 3, 4, 5\}$.

We may assume that the component C_1 containing v_1 of $H_{1,3}$ also contains v_3 . Indeed, if we interchange the colors 1 and 3 at all the vertices of C_1 , we obtain another 5-coloring of H; if $v_3 \notin C_1$, then v_1 and v_3 are both colored 3 in this new coloring, and we may assign remaining color 1 to v and done.

So H_{13} contains a v_1 - v_3 path $P \in H_{13}$.

As shown above, P separates v_2 from v_4 in H.

Since $P \cap H_{2,4} = \emptyset$, v_2 and v_4 lie in different components of $H_{2,4}$.

In the component containing v_2 , we now interchange the colors 2 and 4, thus recoloring v_2 with color 4.

Now v no longer has a neighbor colored 2 and we may give it this color.

Theorem 5.7. Every graph G with m edges satisfies $\chi(G) \leq 1/2 + \sqrt{2m+1/4}$

Proof. Let c be a vertex coloring of G with $k = \chi(G)$ colors.

Then G has at least one edge between any two color classes: if not, we could have used the same color for both classes.

So letting
$$m = ||G||$$
, we have $m \ge {k \choose 2} = \frac{k(k-1)}{2}$, i.e., $2m \ge k(k-1) = (k-1/2)^2 - 1/4$, i.e., $k \le 1/2 + \sqrt{2m+1/4}$.

Theorem 5.8 (Another easy bound).

$$\chi(G) \leqslant \Delta + 1$$
,

where $\Delta = \Delta(G) = \max_{v \in V(G)} d(v)$.

Proof. We can establish this bound algorithmically.

Greedy method: list the vertices of G in any order v_1, \ldots, v_n .

Color v_1 with 1 and at step i, color v_i with the smallest color (positive integer) not used so far by any neighbor of v_i among v_1, \ldots, v_{i-1} .

In this way, we never use more than $\Delta(G) + 1$ colors.

Remark. Can we do better? and how can we make our algorithm better with the same idea? Consider C_n with n odd and for any n,

$$\Delta(K_n) = n - 1.$$

When we come to color the vertex v_i in the above algorithm, we only need a supply of $d_{G[v_1,...,v_i]}(v_i)+1$ rather then $d_G(v_i)$ colors to proceed and the algorithm ignores any neighbors v_j of v_i with j > i. Hence in most graphs, there will be scope for an improvement of the $\Delta + 1$ bound by choosing a particularly suitable vertex ordering to start with: one that picks vertices of large degree early (when most neighbors are ignored) and vertices of small degree last.

Definition 5.9. The last number k such that G has a vertex enumeration in which each vertex is preceded by fewer than k of its neighbors is called the coloring number col(G) of G.

Proposition 5.10.

$$\operatorname{col}(G) = \max_{H \subseteq G} \delta(H) + 1.$$

Proof. The enumeration we just discussed shows that $\operatorname{col}(G) \leq \max_{H \subseteq G} \delta(H) + 1$. But for $H \subseteq G$, clearly $\operatorname{col}(G) \geq \operatorname{col}(H) \geq \delta(H) + 1$.

Theorem 5.11. Every graph satisfies

$$\chi(G) \leqslant 1 + \max_{H \subset G} \{\delta(H)\} = \operatorname{col}(G).$$

Proof. Since the 'back-degree' of the last vertex in any enumeration of H is just its ordinary degree in H, which is at least $\delta(H)$.

Remark. It is tight for G not regular.

Corollary 5.12. Every k-chromatic graph G has a k-chromatic subgraph with minimum degree at least $\chi(G) - 1$.

Proof. Given G with $\chi(G) = k$, let $H \subseteq G$ be minimal with $\chi(H) = k$. If H had a vertex v of degree $d_H(v) \leq k-2$, we could extend a (k-1)-coloring of H-v to one of H, contradicting the choice of H.

Remark. What can we say when G is regular?

If $G = C_n$ with n odd or K^n for any $n \in \mathbb{N}$, then

$$\chi(G) = \Delta + 1.$$

Remark. For G connected and not regular, $\chi(G) \leq \Delta$.

Theorem 5.13 (Brooks 1941). If G is connected and neither an odd cycle or not a complete graph, then

$$\chi(G) \leqslant \Delta$$
.

Proof. Induction on |G|.

If $\Delta(G) \leq 2$, then G is a path or a cycle, and the assertion is trivial.

Assume $\Delta(G) \geq 3$ and that the assertion holds for graphs of smaller order.

Suppose $\chi(G) > \Delta(G)$.

Let $v \in G$ be a vertex and H := G - v. Then $\chi(H) \leq \Delta(G)$.

Also, every component H' of H satisfies $\chi(H') \leq \Delta(H') \leq \Delta(G)$ unless H' is complete or an odd cycle, in which case since every vertex of H' has maximum degree in H' and one such vertex is also adjacent to v in G, we have

$$\chi(H') = \Delta(H') + 1 \leq \Delta(G).$$

Since H can be $\Delta(G)$ -colored but G connot, we have the following:

Every $\Delta(G)$ -coloring of H uses all the colors $1, \ldots, \Delta$ on the neighbors of v; in particular, $d(v) = \Delta(G)$. (1)

Given any Δ -coloring of H, let us denote the neighbor of v colored i by v_i for any $i=1,\ldots,\Delta$.

For all $i \neq j$, let $H_{i,j}$ denote the subgraph of H spanned by all the vertices colored i or j.

For all $i \neq j$, the vertices v_i and v_j lie in a common component $C_{i,j}$ of $H_{i,j}$. (2)

Otherwise we could interchange the colors i and j in one of those components; then v_i and v_j would be colored the same, contrary to (1).

 $C_{i,j}$ is always a v_i - v_j path. (3)

Indeed, let P be a v_i - v_j path in $C_{i,j}$. Since $\Delta(H') + 1 \leq \Delta(G)$, $d_H(v_i) \leq \Delta - 1$ and then the

neighbors of v_i have pairwise different colors: otherwise we could recolor v_i (interchange the color i and the color of its neighbor at all vertices of H), contrary to (1). Hence the neighbor of v_i on $P \in C_{i,j}$ is its only neighbor in $C_{i,j}$, and similarly for v_j . Thus if $C_{i,j} \neq P$, then P has an inner vertex with three identically colored neighbors in H; let u (clearly not v_i or v_j) be the first such vertex on P. Since at least 3 neighbors of u have the same color, at most $\Delta(G) - 2$ colors are used on the neighbors of u and so we may recolor u. But this makes P_u^o into a component of $H_{i,j}$, contradicting (2).

For distinct i, j, k, the paths $C_{i,j}$ and $C_{i,k}$ meet only in v_i . (4)

For if $v_i \neq u \in C_{i,j} \cap C_{i,k}$, then u has two neighbors colored j and two colored k, so we may recolor u. In the new coloring, v_i and v_j lie in different components of $H_{i,j}$, contrary to (2).

The proof of the theorem now follows easily. If the neighbors of v are pairwise adjacent, then each has $\Delta(G)$ neighbors in $N(v) \cup \{v\}$ already, so $G = G[N(v) \cup \{v\}] = K^{\Delta(G)}$. As G is complete, there is nothing to show. We may thus assume that $v_1v_2 \notin G$, where $v_1, \ldots, v_{\Delta(G)}$ derive their names from fixed Δ -coloring c of H. Let $u \neq v_2$ be the neighbor of v_1 on the path $C_{1,2}$; then c(u) = 2. Interchanging the colors 1 and 3 in $C_{1,3}$, we obtain a new coloring c' of H; let $v'_i, H'_{i,j}, C'_{i,j}$ etc. be defined with respect to c' in the obvious way. As a neighbor of $v_1 = v'_3$, our vertex u new lies in $C'_{2,3}$, since c'(u) = c(u) = 2. By (4) for c, however, the path $v_1C_{1,2}$ retained its original coloring, so $u \in v_1^0 C_{1,2} \subseteq C'_{1,2}$. Hence $u \in C'_{2,3} \cap C'_{1,2}$, contradicting (4) for c'.

Theorem 5.14 (Erdös 1959, 1961). For every positive integer k, there exists a graph G having girth g(G) > k and chromatic number $\chi(G) > k$.

Definition 5.15. A k-chromatic graph G is critically k-chromatic or k-critical if $\chi(G-v) < k$ for every $v \in V(G)$. (Obviously, $\chi(G-v) = k-1$ for any $v \in V(G)$.)

Theorem 5.16. Let G be a k-critical graph with a 2-vertex cut $\{u,v\}$. Let C_1 and C_2 be the components of $G - \{u,v\}$. For i = 1, 2, let $G_i = G[V(C_i) + \{u,v\}]$. Then

- (a) $G = G_1 \cup G_2$, and G_1 and G_2 are (k-1)-colorable.
- (b) One of G_1 and G_2 , say G_1 has c(u) = c(v) in all k-1-colorings. G_2 has $c(u) \neq c(v)$ in all k-1-coloring.
- (c) $H_1 := G_1 + e$, where e = uv and $H_2 := (G_2 + e)/e$ are each k-critical.

type 2

Proof. (1)(2) Clearly, Each component of $G - \{u, v\}$ is k - 1-colorable.

In fact, $\chi(G_1) = \chi(G_2) = k - 1$. (Hint: glue).

If there exists a k-1-coloring of G_1 and G_2 where the colors of u and v agree, then glue to get a k-1 coloring of G, a contradiction.

(3) Adding uv forces chromatic number of G_1 up by 1 and similarly for G_2 . Exer: show that the result is k-critical.

Proposition 5.17. If G is k-critical, then G does not contain a cut set consisting of pairwise adjacent vertices.

Proof. Let S be a cut set. Let H_1, \ldots, H_t be the components of G - S.

Since each $H_i \cup S$ is a proper subgraph, $H_i \cup S$ is (k-1)-colorable.

type 1

Suppose S is a clique, then one can permute the colors such that G is (k-1)-colorable, a contradiction.

So S is not a clique.

Theorem 5.18 (Dirac.). Every graph G with $\chi(G) \geqslant 4$ contains a K^4 -subdivision.

Proof. Induction on n = |G|.

If n = 4, then $G = K^4$.

Assume n > 4 with $\chi(G) \ge 4$ and we can let H be a 4-critical subgraph of G.

By previous proposition, H has no cut vertex.

Case 1: $\kappa(H) = 2$. Let $\{x, y\}$ be a cut vertex.

 $x \sim y$, let G_1 and G_2 be as in the lemma.

By previous lemma, $\chi(G_1 + xy) = 4$.

By induction, $H_1 = H_1 + xy$ has a K^4 -subdivision.

If necessary, remove xy from this subdivion and replace it with any x-y path in G_2 .

Case 2: H is 3-connected. Select a vertex $x \in V(G)$.

Since H - x is 2-connected, it has a cycle C of length at least 3.

By the Fan version of Menger's theorem, there exists an x, V(C)-Fan of size 3 in H. So we have our K^4 subdivision.

Remark (Question). Can the invarient x have a direct structural effect on a graph in terms of forcing a specific substructure?

Hadwiger 1943, Famous conjecture: For every $r \in \mathbb{Z}^+$,

$$\chi(G) \geqslant r \Longrightarrow G \geqslant K^r$$
,

i.e., every graph G with $\chi(G) \ge 5$ has a K^5 minor.

r = 4

r = 5:

r = 6:

 $r\geqslant 7$:

5.1 k-edge coloring

Theorem 5.19 (kónig 1916). For a bipartite graph G, $\chi'(G) = \Delta(G)$.

Proof. Induction on m = ||G||.

If ||G|| = 0. Done.

Assume $||G|| \ge 1$ and the assertion holds for graphs with fewer edges.

Let $\Delta := \Delta(G)$.

Pick $xy \in E(G)$, by inductive hypothesis, there exists a coloring of the edge of $G - \{xy\}$ using the colors $\{1, \ldots, \Delta\}$.

In G - xy, each of x and y is incident with at most $\Delta - 1$ edges.

So there exists $\alpha, \beta \in \{1, ..., \Delta\}$ such that no edge in N(x) is colored α and no edge in N(y) is colored β .

If $\alpha = \beta$, we can color the edge xy with this color and are done, so assume $\alpha \neq \beta$.

In fact, y is incident with an α edge and x is incident with a β edge.

Let us extend this edge to a maximum walk W from x whose edges are colored β and α alternatively. Since no such walk contains a vertex twice, W exists and is a path. Moreover, W does not contain y: if it did, it would end in y on an α -edge (by the choice of β) and thus have even length, so W + xy would be an odd cycle in G. We now recolor all the edges on W, swapping α with β . By the choice of α and the maximality of W, adjacent of G - xy are still colored differently. We have thus found a Δ -edge-coloring of G - xy in which neither x nor y is incident with a β -edge. Coloring xy with β , we extend this coloring to a Δ -edge-coloring of G.

Remark. If G is an odd cycle, it needs $\Delta + 1$ colors, so $\chi'(G) = \Delta + 1$.

Theorem 5.20 (Vizing 1964). Every simple graph G satisfies $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof. Induction on ||G||.

If ||G|| = 0. Done.

Let $\Delta := \Delta(G) > 0$ and assume the assertion is true for all graphs with fewer edges.

Instead of ' $(\Delta + 1)$ -edge-coloring' let us just say 'coloring'.

Suppose there is not $\Delta + 1$ coloring of G.

Let e = xy and color G - xy with $\{0, 1, \dots, \Delta\}$.

A color is missing at x, wlog., let this missing color be 0.

There exists a missing color at y. Not 0, call it 1, this is a 1 edge at x, let xy be colored 1.

Something missing at y.

If this ", color is 0, else down-shifting, i.e., coloring xy_1 with 0 and xy_0 with 1.

So the missing color is neither 0 nor 1, wlog., let it be 2.

x is incident with a 2-edge, (else recolor xy with 2 and 'downshift' coloring xy_0 with 1).

Continue in this way.

But we have only $\Delta + 1$ colors.

At some point, the missing color has already been used-let k be the smallest index where this happens.

 y_k is missing 0, (else coloring $y_k x$ with 0 and down-shift from y_k .)

Let $p_i = \text{maximal}$ and path of edges using 0 and i.

Case 1: p reaches y_i along a 0 edge. Then continues to x and stops. Down-shift from y and switch on P and coloring $y_i x$ with 0.

Case 2: p doesn't reach y_i but dows reach y_{i-1} .

So stop at $y_i - 1$ since no i at y_{i-1} .

Downshift from y_{i-1} , switch on P and color xy_{i-1} .

Case 3: P reaches neither y_i nor y_{i-1} .

So then P also avoids x (P can only arrive at x via i through y.)

Now down-shift from y_k , then switch on P and color xy_k with 0.

5.2. LIST COLORING 53

Definition 5.21. A lattice square is an $n \times n$ array with n different symbols such that no row or column has 2 of the same symbols.

Example 5.22. Consider lattice squares

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \quad B = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}.$$

Then AB is also a lattice square.

5.2 List coloring

Definition 5.23. Suppose we are given a graph G = (V, E), and for each vertex of G, a list of colors permitted at that particular vertex: when can we color G so that each vertex receives a color from its list? More formally, let $(S_v)_{v \in V}$ be a family of sets. We call a vertex coloring c of G with $c(v) \in S_v$ for all $v \in V$ a coloring from the lists S_v . The graph G is called k-list-colorable, or k-choosable, if for every family $(S_v)_{v \in V}$ with $|S_v| = k$ for all v, there is a vertex coloring of G from the lists S_v . The least integer k for which G is k-choosable is the list-chromatic number or choice number ch(G) of G.

Definition 5.24. The least integer k such that G has an edge coloring from any family of lists of size k is the list-chromatic index ch'(G) of G; formally, we just set ch'(G) := ch(L(G)).

Theorem 5.25 (Dinitz Conjecture,1979). Given an $n \times n$ square array and n^2 arbitrary sets A_{ij} with $1 \leq i, j \leq n$ and $|A_{ij}| = n$, it is aways possible to pick $a_{ij} \in A_{ij}$ such that each row and each column has all n vertices distinct.

Remark. Given G = (V, E) and put a set of allowable colors S_v on each vertex v, can we properly color V(G) so that every vertex gets a color from its list?

Lemma 5.26.

$$ch(G) \geqslant \chi(G)$$
.

Lemma 5.27. $ch(G) \ge \chi(G)$.

Remark. Nobody knows a case where $ch'(G) > \chi'(G)$.

Example 5.28. $L(K_{3,3})$

Theorem 5.29 (List coloring conjecture). $ch'(G) = \chi'(G)$ for all G.

Remark. Dinitz problem can be seen as a special case of LCC.

Same graph as above.

Every ceil has set A_{ij} .

Define G: Let V(G) be the cells $(n^2 \text{ of them})$.

 $(i,j) \sim (i,j')$ for all $j' \neq j$.

 $(i,j) \sim (i',j)$ for all $i' \neq i$.

We want to show that G is n-choosable.

Note: G is the line graph of $K_{n,n}$.

So Dinitz conjecture \iff ch' $(K_{n,n}) = n$.

Also, recall that

$$\chi'(G) = \Delta(K_{n,n}) = n.$$

So Dinitz conjecture \iff LCC for $K_{n,n}$.

F.Galvin 94, LCC holds for all bipartite graphs, $\operatorname{ch}(L(G)) = \chi(L(G))$ for all G.

An orientation of a graph means we put a direction on each edge. $ij: i \to j$.

Definition 5.30.

$$N^{+}(v) = \{ w \in V(G) : v \to w \}.$$
$$d^{+}(v) = |N^{+}(v)|.$$

Definition 5.31. An independent set $U \subseteq V(D)$ is a kernel of D if for every $v \in D - U$, there is a $w \in U$ so that $v \to w$.

Definition 5.32 (Property X). D has this property, for every non-empty induced subgraph D' of D, D has a kernel.

Lemma 5.33. Let H be a graph and let $\{S_v\}$ be a collection of sets. If H has an orientation D so that

- (a) $|S_v| \ge d^+(v)$ for any v;
- (b) D has property X.

Then H can be colored from the lists S_v .

Proof. Induction on |H|.

If |H| = 0, no color needed.

Induction step: let H be a graph with orientation D as stated.

Pick any color α ,

Definition 5.34. Let $U \subseteq D$, if for any $v \notin D - U$, there exists $w \in U$ with $v \to w$, then U is a kernel of D.

Lemma 5.35. Let H be a graph and $\{S_v\}_{v\in V}$ be a collection of sets. If H has a orientation D with

- (a) $|S_v| \ge d^+(v)$ for any $v \in V$.
- (b) Every nonempty induced subgraph D' at D has a kernel.

5.2. LIST COLORING 55

Then H can be colored from the lists (sets) $\{S_v\}_{v\in V}$.

Theorem 5.36 (Galvin 94). LCC holds for all bipartite graph. List chromatic conjecture: $\operatorname{ch}'(G) = \chi'(G)$ fo any G.

Proof. Let G be bipartite with bipartition $\{x,y\}$ and let $\chi'(G)=k$.

We know that $\operatorname{ch}'(G) \geqslant k$. We will show $\operatorname{ch}'(G) \leqslant k$, i.e., we will show L(G) is k-colorable.

Let c be a k-edge coloring of G with $c: E(G) \to [k]$.

We need an orientation D of the line graph of G satisfying

- (a) $d^+(e) \leq k$ for any $e \in E(G)$.
- (b) Every nonempty induced subgraph of D has a kernel.

Define D as follows. If e and e' meet at X and c(e) < c(e'), then $e' \to e$. If e and e' meet at Y and c(e) < c(e'), then $e \to e'$.

Let c(e) = i. For every $e' \in N^+(e)$ meeting e in X, $c(e') \in \{1, \ldots, i-1\}$ and for every $e' \in N^+(e)$ meeting e in Y, $c(e') \in \{i+1, \cdots, k\}$.

None of these can be the same. $d^+(v) = |N^+(v)| \le k - 1 < k$.

Let D' be a nonempty induced subgraph of D.

Interpret direction in D as a preference. $e <_v e'$ if $e \to e'$.

Let M be a stable matching in the graph $(X \cup Y, V(D'))$, then for every edge $e \in E(D') \setminus M$, there exists $f \in M$ such that they have a common vertex with $e <_v f$, i.e., for which $e \to f$, i.e, M is an required kernel.

Example 5.37. Graph.

Let $e \in E(G)$. Compute $d^+(e)$.

Chapter 6

Hamilton Cycles

Definition 6.1. When does a graph G contain a closed walk that contains every vertex of G exactly once? If $|G| \ge 3$, then any such walk is a cycle: a Hamilton cycle of G.

Definition 6.2. A Hamilton path in G is a path in G containing every vertex of G.

Definition 6.3. If G has a Hamilton cycle, it is called Hamiltonian. If G has a Hamilton path, it is called traceable.

Definition 6.4. Define the number of component of H as c(H).

Remark. Look for some sufficient and necessary conditions.

Easy necessary conditions: $\delta(G) \ge 2$. If $G = K_{m,n}$, then m = n.

A necessary condition for Hamiltonicity is $c(G-S) \leq |S|$ for every separator S.

Remark. Consider this example. Not Hamiltonion.

Hint: remove the white vertex, then we left with 4 components.

Definition 6.5. A graph G is tough if $c(G - S) \leq |S|$ for every separator S.

Definition 6.6. For $t \in \mathbb{R}^{>0}$, G is t-tough if $c(G-S) \leqslant \frac{|S|}{t}$ for every separator S.

Remark (Conjecture 1973). There exists $t \in \mathbb{Z}^+$ so that every t-tough graph is Hamiltonian.

Theorem 6.7 (Dirac 1952). Every graph with $n \ge 3$ vertices and $\delta(G) \ge n/2$ is Hamiltonion.

Lemma 6.8. Let G = (V, E) be simple. Let $u, v \in V$ and $u \not\sim v$. If $d(u) + d(v) \geqslant n$, then G is Hamiltonion if and only if G + uv is Hamiltonion.

Theorem 6.9. Let G = (V, E) be simple. Let $u, v \in V$. If $d(u) + d(v) \ge n$ for all $u \not\sim v$, then G is Hamiltonian.

Theorem 6.10 (Bondy and Chóatal 1970). A simple graph is Hamiltonion if and only if its closure is Hamiltonion.

Theorem 6.11. Every graph G with $|G| \ge 3$ and $\alpha(G) \le \kappa(G)$ has a Hamilton cycle.

Chapter 7

Extremal Graph Theory

How many edges can G of order n have and be triangle free?

Theorem 7.1 (Mantel 1907). The maximal number of edges a simple triangle free graph G can have is $\left\lfloor \frac{n^2}{4} \right\rfloor$, where n = |G|.

Proof. Idea:

- (a) Show a simple triangle free graph G has $||G|| \leqslant \left\lfloor \frac{n^2}{4} \right\rfloor$, where |G| = n.
- (b) Exhibit a triangle free graph G with $||G|| = \left\lfloor \frac{n^2}{4} \right\rfloor$.
- (a) Let G be a simple and triangle free.

Let $\Delta(G) = k$. Pick u with $\deg_G(u) = k$.

graph:

Since G is triangle free, N(u) is an independent set.

So every edge is incident with at least one vertex in V(G) - N(u)

Hence

$$||G|| \leqslant |G - N(u)| \cdot k = (n - k)k.$$

Therefore, $||G|| \leq \max_k (n-k)k$, where the equality is attained for n=2k and $n(n-k)=\frac{n^2}{4}$.

(b) The graph we need is $K_{\lceil n/2 \rceil, \lfloor n/2 \rfloor}$.

Remark (Bipartite $K_{n,m}$). Multipartite graphs k-partite graph.

We denote a complete k-partite graph by K_{n_1,\ldots,n_k} , where n_i is cardinality of the i^{th} part.

All edges between distinct parts,

$$K_r^l = K_{r,\dots,r},$$

where the number of r's is l.

Definition 7.2. The Turan graph $T^r(n)$ is the unique *n*-vertex, complete *r*-partite simple graph whose partite sets dif and only ifer in cardinality by at most 1.

Example 7.3.

$$T^3(8) = K_{3,3,2}.$$

Proposition 7.4. Let $n, r \in \mathbb{N}$ and $n \ge r$ and choose l and $0 \le j < r$ so that n = rl + j. Then the Turan graph $T^r(n)$ is defined as follows.

$$T^{r}(n) = K_{l,\ldots,l,l+1,\ldots,l+1},$$

where there are j l + 1 and r - j l.

Definition 7.5.

$$T^1(n) = \overline{K}_n$$

which are n isolates.

Remark (Question). Given n, r, can we find an r-partite graph having more edges than $T^r(n)$?

Lemma 7.6. Among all *n*-vertex simple *r*-partite graphs, $T^r(n)$ has the maximum number of edges.

Proof. Say G is r-partite with |G| = n and $||G|| \ge ||T^r(n)||$.

Then there are parts L and S with $|L| - |S| \ge 2$.

Pick $v \in L$ and move it to S. Then the number of edges changes by $|L| - |S| - 1 \ge 1$.

Remark. Denote

$$||T^r(n)|| = \mathbf{t}_r(n).$$

Remark. Note that $T^2(n)$ is K^3 free.

In general, $T^{r-1}(n)$ is K^r free.

Each complete graph has at most 1 vertex in each part.

Remark. Is $t_r(n)$ best possible? Is it the largest size of a graph of order n having no K^r subgraph? Is $T^{r-1}(n)$ the only such graph?

That is, what is the largest size for a graph G of order n with $G \not\supseteq K^r$.

More generally, let H be a graph with |H| < n. What is the largest size for a graph G on n vertices having $G \not\supseteq H$? Such a graph is called extremal for n and H. Its size is ex(n, H).

Remark (Question). Is $ex(n, K^r) = t_{r-1}(n)$ and is $T^{r-1}(n)$ is the only graph that is extremal for n and K^r ?

Theorem 7.7 (Turan 1941). For all integers r, n with r > 1, every $G \not\supseteq K^r$ with n vertices and $ex(n, K^r)$ edges is $T^{r-1}(n)$.

Proof. Let $G \not\supseteq K^r$ of order n.

We will construct an r-1 partite graph H with V(H)=V(G) and show that $\|G\|\leqslant \|H\|$.

Then the result will follow from the lemma ($||H|| \leq t_{r-1}(n)$).

Induction on r.

r=2. If |G|=n and $G \not\supseteq K^2$, then $G=\overline{K}^n$.

So let $r \geqslant 3$.

Let $k = \Delta(G)$ and pick u with $d_G(u) = k$.

Let $G' = G[N_G(u)].$

Since $G \not\supseteq K^r$, $G' \not\supseteq K^{r-1}$.

By induction, there exists an (r-2)-partite graph H' with $V(H') = N_G(u)$ and $||G'|| \leq ||H'||$. Construct H as follows.

<u>.</u> _

Remark. Uniquely so, $||T^{r-1}(n)|| = t_{r-1}(n)$. This generates Mantel's Theorem.

Definition 7.8. For a graph H with $|H| \leq n$, $\operatorname{ex}(n, H)$ is the largest number of edges of a graph G of order n, can have and still not contain a subgraph H. Such a graph G is called extremal in n and H.

Definition 7.9. Let |G| = n. Let density of a graph G be $\frac{\|G\|}{\binom{n}{2}}$, where n = |G|. If $\|G\|$ is of order n^2 , then G is dense. Otherwise, G is sparse.

Remark. Turan graphs are dense. Specifically,

$$t_{r-1}(n) \leqslant \frac{1}{2}n^2 \frac{r-2}{r-1},$$

with equality when $r-1 \mid n$.

Proof. Hint: choose k and i so that n = (r-1)k + i, where $0 \le i < r-1$. When i = 0, the number of edges in $T^{r-1}(n)$ is

$$\binom{r-1}{2}k^2 = \frac{(r-1)(r-2)}{2} \frac{n^2}{(r-1)^2} = \frac{1}{2}n^2 \frac{r-2}{r-1}.$$

For $i \neq 0$, show that

$$t_{r-1}(n) = \frac{1}{2} \frac{r-2}{r-1} (n^2 - i^2) + \binom{i}{2} < \frac{1}{2} n^2 \frac{r-2}{r-1}.$$

Remark. What happens when we add edges to $T^{r-1}(n)$?

Surprising answer: Just a few more edges not only forces a K^r but forces many copies of K^r in the form of a subgraph $K_s^r = K_{s,...,s}$ for some s.

Any set of vertices with exactly one vertex in each part induces a K^r .

Specifically: fix $\epsilon \in \mathbb{R}^r$, fix $s \in \mathbb{Z}^+$, then there exists r_0 so that for any $n \ge n_0$, adding ϵn^2 edges to $T^{r-1}(n)$ forces a K_s^r .

Theorem 7.10 (Erdós Stone). For all $r \ge 2$ and $s \ge 1$ and every $\epsilon \in \mathbb{R}^+$, there exists an integer n_0 so that every graph with $n \ge n_0$ vertices and at least $t_{r-1}(n) = \epsilon n^2$ edges contains K_s^r as a subgraph.

Definition 7.11. Given a graph H with $|H| \leq n$, $h_n = \frac{\exp(n,H)}{\binom{n}{2}}$, a critical number. This is maximum edge density that an n-vertex graph can have without containing H as a subgraph.

Remark. What happens to this critical number as $n \to \infty$. It converges to a number that depends only on $\chi(H)$.

Lemma 7.12.

$$\lim_{n \to \infty} \frac{\mathbf{t}_{r-1}(n)}{\binom{n}{2}} = \frac{r-2}{r-1}.$$

Corollary 7.13. For every graph H with at least one edge,

$$\lim_{n \to \infty} \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} = \frac{\chi(H) - 2}{\chi(H) - 1}.$$

Proof. Let H be a graph with at least one edge. Let $r := \chi(H)$.

- Note $H \nsubseteq T^{r-1}(n)$ for any $n \in \mathbb{N}$. Otherwise, H would be (r-1)-colorable. Since $T^{r-1}(n)$ has no H-subgraph, $\mathbf{t}_{r-1}(n) \leqslant \mathrm{ex}(n,H)$
- Note $H \subseteq K_s^r$ for sufficiently large s. So $ex(n, H) \le ex(n, K_s^r)$ for sufficiently large s.
- Fix such an s. By Erdós Stone, $\operatorname{ex}(n,K_s^r)<\operatorname{t}_{r-1}(n)+\epsilon n^2$ for n big enough. So

$$t_{r-1}(n) / \binom{n}{2} \leqslant \exp(n, H) / \binom{n}{2} \leqslant \exp(n, K_s^r) / \binom{n}{2} < \frac{t_{r-1}(n)}{\binom{n}{2}} + \frac{\epsilon n^2}{\binom{n}{2}}$$
$$= \frac{t_{r-1}(n)}{\binom{n}{2}} + \frac{2\epsilon n^2}{\binom{n}{2}} = \frac{t_{r-1}(n)}{\binom{n}{2}} + .$$

Remark (Conjecture Hadwiger 1993). For every $r \in \mathbb{N}$ and every graph G, if $\chi(G) = r$, then $G \geqslant K^r$.

r = 1, 2, 3, 4 has been proved.

- r = 1: G contains a vertex.
- r = 2: G contains a edge.
- r=3: G contains a cycle, which implies K^s minor.
- r = 4: need a few work.

Proposition 7.14. A graph G with $|G| \ge 3$ is edge-maximal with no K^4 minor if and only if it can be considered by recursively pasting triangles.

(Note any subgraph has 2|G| - 3 cycles.)

Proof. " \Leftarrow ". Exercise (For |G| > 3).

" \Rightarrow ". WTS if G is maximal with no K^4 , then G is triangle-pasted.

Induction on |G|.

If |G| = 3, done.

Let $|G| \ge 4$ and G is maximal with no K^4 minor but not triangle-pasted.

If G is not complete, done.

Let S be a separator with $|S| = \kappa(G)$.

Case 1: $\kappa(G) \geqslant 3$.

 Graph

There exists $P_1, P_2, P_3, G - \{v_1, v_2, v_3\}$ is connected. There exists a shorstest path P connected two of P_1, P_2, P_3 .

Graph. K^4 minor. So $\kappa(G) \leq 2$. Use fact K^4 minor $\cong TK^4$. (Lemma 4.4.4)

Corollary 7.15. Hadwiger holds for r = 4.

Graph.

 $\chi(G) = \max(\chi(G_1), \chi(G_2)).$

Use induction on |G| and Thm 7.3.1 to show all edge maximal graphs.

Chapter 8

Ramsey Theory for Graphs

Remark. We've see that tr(n) edges forces a K^r in G for |G| = n. What if we want to know how to force a K^r or a \overline{K}^r .

Theorem 8.1 (Ramsey 1930). For every $r \in N$, there exists $n \in \mathbb{N}$ so that if $|G| \ge n$, then G contains either K^r or \overline{K}^r as a subgraph.

Remark. Trivial for $r \leq 1$.

Let $n = 2^{2r-3}$ and |G| = n.

Define a sequence of subsets of V(G) V_1, \ldots, V_{2r-2} with $V_1 \supseteq V_2 \supseteq \cdots \supseteq V_{2r-2}$ and with $v_i \in V_i - V_{i-1}$ as follows: pick $V_1 \subseteq V(G)$ with $|V_1| = 2^{2r-3}$ and let $v_1 \in V_1$.

Let $A = N(v_1) \cap V_1$ and $B = (V_1 - \{v_1\}) - A$.

Then A or B contains at least 2^{2r-4} vertices.

Let V_2 be 2^{2r-4} of the vertices in that set.

So either $v_1 \sim w$ for any $w \in V_2$ or $w \not\sim w$ for any $w \in V_2$.

Pick v_2 arbitrary. Continue the process, $|V_3| = 2^{2r-5}$. Pick v_3 .

So $V_i = 2^{2r-2-i}$ and v_{i-1} is either adjacent to all vertices in V_i or $v_i \not\sim w$ for any $w \in V_i$.

Among the vertices v_1, \ldots, v_{2r-2} , at least r-1 showed the same behavior when viewed as v_{i-1} when choosing V_i .

So this set of r-1 vertices together with the last one either induces a K^r or a \overline{K}^r .

Definition 8.2. Define R(r) to be the least number n so that $|G| \ge n$ so that $G \supseteq K^r$ or $G \supseteq \overline{K}^r$. We showed that $R(r) \le 2^{2r-3}$, can't say much more. We'll show that $R(r) \le 2^{r/2}$ using probabilistic method.

Definition 8.3. Define $R(H_1, H_2)$ to be the least number n so that $|G| \ge n$ so that $G \supseteq H_1$ or $G \supseteq \overline{H}_2$.

Remark.

$$R(r) = R(K^r, K^r).$$

Remark. Trees-an exception-not so hard.

Theorem 8.4. Let s,t be positive integers and let T be a tree of order s. Then $R(T, K^s) = (s-1)(t-1) + 1$.

 ${\it Proof.}$ Prove part of this.

Consider the graph G build as the disjoint union of s-1 copies of K^{t-1} .

Then $G \not\supseteq T$.

graph.

s-1 of these because the largest component of G has order t-1.

 $G \not\supseteq \overline{K}^s$ (if and only if $\overline{G} \not\subseteq K^s$) because the largest independent set of G has cardinality s-1. So $R(T,K^s) > (s-1)(t-1)$.

To show $R(T, K^s) = (s-1)(t-1)+1$, consider a graph G containing no \overline{K}^s , then show that $G \not\supseteq T$. Hint: consider a proper coloring with $\chi(G)$ colors.

Chapter 9

Random Graph

Remark. Intuitively, we build a random graph G on n vertices by performing an experiment for each possible edge e in G. Fix $0 , let <math>P(e \in E(G)) = p$ and $P(e \notin E(G)) = 1 - p$.

Remark. A latter model by Erdós-Renyi, G(n, m). Think of this as a process. Start with $G_{n,0}$ with no edges. At step we add 1 more edge so that all possible new edges are equally likely.

$$G_{n,0} \subseteq G_{n,1} \subseteq \cdots \subseteq G_{r,\binom{r}{2}}$$
.

What kind of questions can we answer?

- (a) Deterministic question.
 - What is a better bound on R(r)? $(2^{r/2})$.
 - What is a bound on the number of crossings in a graph with $||G|| \ge 4|G|$?
- (b) Erdó-Renyi.

How big should m be to ensure $G_{n,m}$ is Hamiltonian? Same question because $\Delta(G_{n,m}) = 2$?

Theorem 9.1 (Erdós 1947). For every integer $k \ge 3$, $R(k) > 2^{k/2}$.

Proof. For k = 3, the statement is $R(3) > 2^{3/2}$. $R(3) = 6 > 2^{3/2}$. So let $k \ge 4$, let $k \le 2^{k/2}$.

We will show there exists a graph of order n with no K^k or \overline{K}^k subgraph.

Take a random graph on n vertices G(n, p).

Let p = 1/2. $P(\alpha(G) \ge k)$ and $P(\omega(G) \ge k)$ are each since $1/k! < 1/2^k$,

$$\leqslant \binom{n}{k} \left(\frac{1}{2}\right)^{\binom{k}{2}} < \frac{n^k}{2^k} 2^{-\frac{1}{2}k(k-1)} \left(\frac{n(n-1)\cdots(n-k+1)}{k!} < \frac{n^k}{2^k}\right) \leqslant \frac{(2^{k/2})^k}{2} 2^{k(k-1)}$$

$$= 2^{k^2/2 - k - k^2/ + k/2} = 2^{-k/2} < 1/2.$$

So $P(\alpha(G) \ge k)$ or $P(\omega(G) \ge k) < 1/2 + 1/2 = 1$.

Then the probability that a graph G(n,p) has either a K^k or \overline{K}^k subgraph is less than 1. So there exists a graph of order n having no K^k or \overline{K}^k subgraph.

Thus, $R(k) > 2^{k/2}$.

Remark (Backgraph). We have

- Euler's formula: For planar graph, n m + l = 2.
- For a planar graph, $m \leq 3n 6$.
- We can embed. any graph in the plane so that each crossing point is incident with at least 2 edges.
- Linearity of expectation E(X + Y) = E(X) + E(Y).
- From any graph G, we can construct a new graph H: Assume G is emdeded in plane. $V(H) = V(G) + \operatorname{crossing} P(G) = 0$ points. E(H) = 0 all pieces of the original edges. N(H) = 0 points. E(H) = 0 0 Hence E(G) = 0 From E(G) = 0 Hence E(G) = 0

Theorem 9.2. If G is simple with n vertices and m edges, where $m \ge 4n$, then $\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Proof. Let 0 . Start with a graph G drawn in the plane with <math>cr(G) crossings.

Generate G_p : Pick vertices independently with probability p and consider the resulting induced subgraph.

Let n_p be the number of G_p and m_p be the number of edges of G_p and X_p be the number of crossing points of G_p .

By previous result, $E(X_p - m_p + 3n_p) \ge 0$, $E(n_p) = pn$, $E(m_p) = p^2m$ and $E(X_p) = p^4 \operatorname{cr}(G)$. We get

$$0 \leqslant E(X_p) - E(m_p) + 3E(n_p),$$

i.e.,

$$0 \leqslant p^4 \operatorname{cr}(G) - p^2 n + 3pn,$$

i.e.,

$$\operatorname{cr}(G) \geqslant \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}.$$

Hence where we pick $p = \frac{4n}{m}$, plugging in it, we get

$$\operatorname{cr}(G) \geqslant \frac{1}{64} \frac{m^3}{n^2}.$$

9.1 Properties of almost all graphs