Chapitre 1 : Nombres et calculs l'Ensembles de nombres

Notations (les symboles \in et \subset)

Prenons deux ensembles C et F avec, par exemple, C les élèves de la classe et F les filles de la classe.

- F est un sous-ensemble de C. On dit que **F est inclus dans C** et on note cela $F \subset C$.
- Si Paul est un élève de la classe, on dit que « **Paul appartient à C** » et on note cela $Paul \in C$.

Définition:

- L'ensemble des **entiers naturels** est noté N . C'est l'ensemble des entiers positifs ou nuls : 0 ; 1 ; 2 ; 3 ; ...
- L'ensemble des **nombres relatifs** est noté $\mathbb Z$. C'est l'ensemble des entiers positifs ou négatifs : ... ; -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; ... On a donc $\mathbb N \subseteq \mathbb Z$.
- L'ensemble des **nombres rationnels** est noté $\mathbb Q$. C'est l'ensemble des nombres qui peuvent s'écrire sous la forme d'une fraction $\frac{a}{b}$ où a et b sont deux éléments de $\mathbb Z$ avec b différent de zéro ($b \neq 0$).
- L'ensemble des **nombres décimaux** est noté \mathbb{D} . Ce sont les nombres rationnels que l'on peut écrire sous la forme $\frac{a}{10^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$. Par exemple $\frac{25}{100}$; $\frac{345}{10}$; 1,304; $\frac{-1304}{1000}$
- Enfin, l'ensemble des **nombres réels** est noté $\mathbb R$. C'est l'ensemble $\mathbb Q$ des rationnels auquel il faut ajouter tout les nombres irrationnels comme π , $\sqrt{2}$, $\sqrt{5}$, le nombre d'or ...

Propriété:

Ces ensembles sont «de plus en plus gros»:

$$\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$$

Propriété: Le nombre rationnel $\frac{1}{3}$ n'est pas un nombre décimal ($\frac{1}{3} \notin \mathbb{D}$).

Démonstration:

Raisonnons par l'absurde et supposons que $\frac{1}{3} \in \mathbb{D}$. Alors $\frac{1}{3}$ peut s'écrire $\frac{a}{10^n}$ avec $a \in \mathbb{N}$ et $n \in \mathbb{N}$. Donc $\frac{1}{3} = \frac{a}{10^n}$ et avec le produit en croix $10^n = 3a$. Ainsi, comme 3a est un multiple de 3, 10^n est aussi un multiple de 3. Or, aucun des nombres 1, 10, 100, 1000, 1000 ... n'est un multiple de 3 donc c'est absurde et $\frac{1}{3}$ n'est pas décimal.

Il Intervalles et valeur absolue

Rappel: Un nombre réel est représenté par l'abscisse d'un point sur la droite numérique

(placer les points d'abscisses : -2.5 ; -0.25 ; $\frac{2}{3}$; 1.6 ; π)

Définition (valeur absolue):

- Soit x un nombre réel, la **distance entre x et zéro** sur la droite graduée est un nombre **positif**, noté |x|. On appel ce nombre la valeur absolue de x.
- Soient a et b deux nombres réels. On appelle distance entre a et b le nombre |b-a|. C 'est la distance entre les deux nombres sur la droite graduée.

Exemples:

$$|-2| = 2$$

$$|-2| = 2$$
 $|5-3| = 2$

$$|5 - (-2)| = 7$$

$$|-5| =$$

$$|10| = |12,1-10| =$$

$$|-0,5-2|=$$

Propriété : Soit $x \in \mathbb{R}$. On a $|x| = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x < 0. \end{cases}$

Remarque : La valeur absolue est une fonction $x \longrightarrow |x|$. Par exemple $-3 \longrightarrow |-3| = 3$

Définitions (intervalle): Soient a et b deux nombres réels

On appelle **intervalle fermé** [a : b] l'ensemble des nombres réels x tels que $a \le x \le b$. On appelle intervalle ouvert]a; b[l'ensemble des nombres réels x tels que a < x < b. De la même manière, [a; b[est l'ensemble des nombres réels x tels que $a \le x < b$.

Représentation graphique:

On note [a; $+\infty$ [l'ensemble des nombres réels x tels que $x \ge a$. De même, $] -\infty$; a] est l'ensemble des nombres réels x tels que $X \le a$.

Définitions:

Soient I et J deux intervalles

- L'intersection de I et J est notée $I \cap J$.

C'est l'ensemble des réels qui appartiennent à la fois à I et à J. - La réunion de I et J est notée $I \cup J$. C'est l'ensemble des réels qui appartiennent à I ou a J.

Exemples:

La réunion des intervalles [2; 5] et [4; 7] est l'intervalle [2; 7]. Cela s'écrit aussi $[2; 5] \cup [4; 7] = [2; 7]$ L'intersection des intervalles [2;5] et [4;7] est [4;5]. On écrira $[2;5] \cap [4;7] = [4;5]$

$$[1; 4.8] \cup [4; 7] =$$

$$[1; 4.8] \cup [4; 7] =$$

Propriété (intervalle et valeur absolue) :

Soient a un nombres réels, et r un réel positif. Les nombres x qui sont à une distance de a inférieure à r sont exactement ceux de l'intervalle [a-r;a+r]

En terme mathématique, on écrira plutôt $|x-a| \le r$ si et seulement si $x \in [a-r; a+r]$.

Exemple:

$$|x-3| \le 2 \Leftrightarrow x \in [3-2;3+2] \Leftrightarrow x \in [1;5]$$

$$x \in [-2; 4] \Leftrightarrow x \in [1-3; 1+3] \Leftrightarrow |x-1| \le 3$$

$$|x-10| \le 2 \Leftrightarrow$$

$$|x - (-5)| \le 5 \iff$$

III Arithmétique.

Définition : Soient a et b deux nombres entiers relatifs. On dit que a est un **diviseur** de b lorsqu'il existe $k \in \mathbb{Z}$ tel que $b = k \times a$. On dit aussi que b est un **multiple** de a ou encore que b est **divisible** par a.

Exemples: 3 est un diviseur de 36 car $36 = 3 \times 12$.

5 ne divise pas 21 car il est impossible d'avoir $21 = 5 \times k$ avec $k \in \mathbb{Z}$,

le mieux qu'on puisse avoir est $21 = 5 \times 4 + 1$ (il reste 1).

Exemple: Les diviseurs du nombre 30 sont :

Définition: Soit $a \in \mathbb{Z}$ un nombre entier. a est un nombre :

- pair lorsqu'il existe $k \in \mathbb{Z}$ tel que $a = 2 \times k$

- **impair** lorsqu'il existe $k \in \mathbb{Z}$ tel que $a = 2 \times k + 1$

Exemple: $31 = 2 \times 15 + 1$ est un nombre impair et $36 = 2 \times 18$ est un nombre pair.

Théorème:

Soit $a \in \mathbb{Z}$. Si b et b' sont deux multiples de a alors b + b' est un multiple de a.

Démonstration:

Remarque : Une nombre entier k admet toujours au moins deux diviseurs : 1 et lui même. En effet, on a toujours $k = 1 \times k$. Pour certains nombres ce sont les seuls diviseurs possibles...

Définition:

Un nombre premier est un entier naturel possédant exactement deux diviseurs distincts : 1 et lui même.

Exemples: Les nombres 2; 5; 7; 11 et 13 sont des nombres premiers. Le nombre 12 n'est pas premier car ses diviseurs sont 1, 2, 3, 4, 6 et 12.

Définition : Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$. Ces deux nombres peuvent avoir des diviseurs en commun. Le plus grand diviseur commun de a et b est noté PGCD(a,b) (PGCD signifie «Plus Grand Commun Diviseur»).

Exemple: Cherchons le PGCD de 18 et 24.

Les diviseur de 18 sont : 1, 2, 3, 6, 9, et 18.

Les diviseurs de 24 sont :

Les diviseurs communs sont :

On peut donc écrire PGCD(18,24) =

Définition : Quand deux nombres n'ont pas de diviseur communs autre que le nombre 1, on dit qu'il sont premiers entre eux.

Exemple: - 4 et 9 sont premiers entre eux

- 12 et 11 sont premiers entre eux
- 15 et 6 ne sont pas premier entre eux (ils sont tous les deux divisibles par 3).
- 30 et 5 ne sont pas premier entre eux (ils sont tous les deux divisibles par 5).

Remarque: deux nombres a et b sont premiers entre eux si et seulement si PGCD(a,b) = 1

Définition : Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$ avec $b \neq 0$. On dit que la fraction $\frac{a}{b}$ est sous forme irréductible si a et b sont premiers entre eux.

Exemple : Mettre sous forme irréductible la fraction $\frac{12}{18}$

Exemple : Mettre sous forme irréductible la fraction $\frac{21}{35}$

Exemple: Mettre sous forme irréductible la fraction $\frac{72}{120}$

Nous allons voir que la parité d'un nombre (le fait qu'il soit pair ou impair) ne change pas quand on le met au carré.

Pro	pri	été	Α	:
	P			•

Soit $a \in \mathbb{Z}$. Si a est impair alors a^2 est impair.

Démonstration:

Propriété B:

Soit $a \in \mathbb{Z}$. Si a est pair alors a^2 est pair. (Démonstration : c'est quasiment la même)

Contraposée de la propriété B:

Finalement, en réunissant A et la contraposée de B, on a deux théorèmes :

Un nombre est impair si et seulement si sont carré est impair.

ET

Un nombre est pair si et seulement si sont carré est pair.

Le « si et seulement si » signifie que ça marche dans les deux sens :

a est impair $\iff a^2$ est impair

Nous avons désormais tous les outils pour démontrer le théorème suivant :

Théorème : Le nombre $\sqrt{2}$ est irrationnel. En d'autres termes $\sqrt{2} \notin \mathbb{Q}$

Démonstration:

V Racine carrée d'un nombre.

Définition : Soit x un nombre réels positif. La racine carré de x est l'unique nombre réel positif dont le carré est égal à x. Elle est notée \sqrt{x} .

On a donc, pour tout $x \ge 0$, $(\sqrt{x})^2 = x$.

Exemples: $\sqrt{0} = 0$, $\sqrt{1} = 1$, $\sqrt{25} = 5$

Propriétés: Soient a et b deux nombre réels positifs. On a alors:

- 1) $\sqrt{ab} = \sqrt{a}\sqrt{b}$. Donc, si $b \neq 0$, alors $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.
- 2) Si a < b alors $\sqrt{a} < \sqrt{b}$
- 3) Si a et b sont strictement positifs, alors $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

Démonstration du point 1):

Considérons a et b deux nombres réel positifs. On sait que $ab \ge 0$ et que $(\sqrt{ab})^2 = ab$ De plus $(\sqrt{a}\sqrt{b})^2 = (\sqrt{a}\sqrt{b})(\sqrt{a}\sqrt{b}) = (\sqrt{a})^2(\sqrt{b})^2 = ab$.

Ainsi, \sqrt{ab} et $\sqrt{a}\sqrt{b}$ sont deux nombres positifs qui ont le même carré : ils sont donc égaux.

Démonstration du point 2):

On rappel d'abord qui si on a deux nombre positif x et y avec $x \ge y$ alors forcément $x^2 \ge y^2$.

Considérons deux nombres positifs a et b tels que a < b et essayons de montrer que $\sqrt{a} < \sqrt{b}$. Raisonnons par l'absurde en supposant que $\sqrt{a} \ge \sqrt{b}$ (c'est le contraire de ce qu'on veut montrer). D'après le rappel, on en déduit que $(\sqrt{a})^2 \ge (\sqrt{b})^2$ et donc que $a \ge b$. C'est le contraire de a < b donc c'est absurde. Finalement on a forcément $\sqrt{a} < \sqrt{b}$.

Exemples:

$$\sqrt{36}=6$$
 car $6^2=36$, mais on peut aussi écrire que $\sqrt{36}=\sqrt{9\times4}=\sqrt{9}\times\sqrt{4}=3\times2=6$ $\sqrt{18}=\sqrt{9\times2}=\sqrt{9}\times\sqrt{2}=3\times\sqrt{2}$ 81<100 donc $\sqrt{81}<\sqrt{100}$ (ici c'est clair car $\sqrt{81}=9$ et $\sqrt{100}=10$)

Propriété:

Pour tout nombre réel a, on a $\sqrt{a^2} = |a|$.