L2 Boosting
Uses squared error loss

 $L(y_i, f_{m-i}(x_i) + \beta \beta(x_i; \delta)) = (y_i - (f_{m-i}(x_i) + \beta \beta(x_i; \delta)))^2$

 $= \left(y_i - f_{m-1}(x_i) - \beta \phi(x_i; \delta)\right)^2$

(current residual) Bel

 $= (rim - \phi(xi; 8))^2$

AdaBoost

Uses exponential loss function

$$Lm(\phi) = \underset{i=1}{\overset{N}{\geq}} exp\left[-\widetilde{y}_{i}fm(x_{i})\right]$$

$$= \underbrace{\sum_{i=1}^{N} \exp \left[-\widehat{g}_{i}\left(f_{m+i}\left(x_{i}\right) + \beta \phi\left(x_{i}\right)\right)\right]}_{i=1}$$

=
$$\sum_{i \ge 1}^{N} \exp \left[-\widetilde{y}_i \left(f_{m-1} \left(x_i \right) \right) - \widetilde{y}_i \beta \phi(x_i) \right]$$

$$= \sum_{i=1}^{N} \left[\exp \left[-\frac{\hat{y}_i}{\hat{y}_i} \left(f_{M-1} \left(x_i \right) \right) \right] \cdot \exp \left[-\frac{\hat{y}_i}{\hat{y}_i} p(x_i) \right] \right]$$

Wi,M

is a weight applied to data instance i.

= Z wi, m. exp[-B. ŷ;
$$\phi(x_i)$$
]

gi. $\rho(x_i) = 1$ if the octual and the predicted outputs are the same, otherwise it is -1.

=
$$e^{-\beta} \leq \omega_{i,m} + e^{\beta} \leq \omega_{i,m}$$

 $\tilde{y}_{i} = \phi(\tilde{x}_{i})$ $\tilde{y}_{i} \neq \phi(\tilde{x}_{i})$

$$= e^{-\beta} \left(\sum_{i=1}^{N} w_{i,m} - \sum_{j=1}^{N} w_{i,m} \right) + e^{\beta} \sum_{j=1}^{N} w_{i,m}$$

$$= e^{-\beta} \left(\sum_{i=1}^{N} w_{i,m} - \sum_{j=1}^{N} w_{i,m} \right) + e^{\beta} \sum_{j=1}^{N} w_{i,m}$$

$$= e^{-\beta} \left(\sum_{i=1}^{N} w_{i,m} - \sum_{j=1}^{N} w_{i,m} \right) + e^{\beta} \sum_{j=1}^{N} w_{i,m}$$

$$= (e^{\beta} - e^{-\beta}) \stackrel{\text{N}}{\leq} w_{i,m} \mathbb{I}(\tilde{y}_{i} \neq p(x_{i})) + e^{-\beta} \stackrel{\text{N}}{\leq} w_{i,m}$$