Practical 3

Question 1. Find the amino acid sequence of human mitochondrial beta-barrel membrane protein VDAC1 and its function. How many transmembrane segments are present in the protein?

Solution. Using an advanced query search on the **UniProtKB**, we can find the desired amino acid sequence.

FIGURE 1. Advanced search on UniProtKB

```
Human mitochondrial beta barrel membrane protein VDAC1

# The advanced query used was:

(membrane protein VDAC1) AND (model_organism:9606) AND (proteins_with:7)

AND (keyword:KW-0496)

# The amino acid sequence

MAVPPTYADLGKSARDVFTKGYGFGLIKLDLKTKSENGLEFTSSGSANTETTKVTGSLETKYRWTEYGLTFT

EKWNTDNTLGTEITVEDQLARGLKLTFDSSFSPNTGKKNAKIKTGYKREHINLGCDMDFDIAGPSIRGALVL

GYEGWLAGYQMNFETAKSRVTQSNFAVGYKTDEFQLHTNVNDGTEFGGSIYQKVNKKLETAVNLAWTAGNSN

TRFGIAAKYQIDPDACFSAKVNNSSLIGLGYTQTLKPGIKLTLSALLDGKNVNAGGHKLGLGLEFQA
```

The functions of the human mitochondrial beta-barrel membrane protein VDAC1 are:

- Forms a channel through the mitochondrial outer membrane and also the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane, it is involved in cell volume regulation and apoptosis. It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30–40 mV. The open state has weak anion selectivity, whereas the closed state is cation-selective.
- Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterol cholesterol.
- In depolarized mitochondria, it acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx, which ultimately inhibits apoptosis.

- May participate in the formation of the permeability transition pore complex (PTPC), which is responsible for the release of mitochondrial products that trigger the process of apoptosis.
- May mediate ATP export from cells.

There are 19 transmembrane segments present in the protein.

Question 2. Obtain the sequences of "transcription factors" with 50% sequence identity in FASTA format. List the count of sequences and the count of clusters. http://www.uniprot.org/uniprot/

Solution. I performed an advanced search on the **UniRef** platform and chose the cluster with 50% sequence identity.

FIGURE 2. Advanced search on UniRef with clusters

The count of clusters obtained is **194**. Now, this database with 194 clusters is downloaded in Excel format. The database has a feature called cluster size. This denotes the number of sequences present in each cluster. So, the downloaded database has a column called cluster size. The sum of all entries in this column will give us a count of the number of sequences. Seen below is a screenshot of the Excel file with the summation operation. The count of the number of sequences is **411**.

1	Α	В	С	D	E	F	G	H I
76	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Salix purpurea (Purple osier willow)	201	0.5	1
L77	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Salix purpurea (Purple osier willow)	111	0.5	1
L78	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Salix purpurea (Purple osier willow)	275	0.5	1
179	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Salix purpurea (Purple osier willow)	90	0.5	1
180	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Salix koriyanagi	112	0.5	1
181	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Phrynocephalus forsythii	117	0.5	1
182	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL);	4	Culex quinquefasciatus (Southern house	286	0.5	4
183	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Culex quinquefasciatus (Southern house	311	0.5	1
184	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Culex quinquefasciatus (Southern house	145	0.5	1
185	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	6	Harpegnathos saltator (Jerdon's jumping	199	0.5	6
186	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Daphnia pulex (Water flea)	361	0.5	1
187	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Solenopsis invicta (Red imported fire ant	92	0.5	1
188	UniRef50_	Cluster:	UniProtKB Reviewed (Swiss-Prot)	20	Saccharomyces cerevisiae (strain ATCC 20	629	0.5	20
189	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Rattus norvegicus (Rat)	108	0.5	1
190	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Capitella teleta (Polychaete worm)	308	0.5	1
191	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Capitella teleta (Polychaete worm)	140	0.5	1
192	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Megaselia scalaris (Humpbacked fly)	227	0.5	1
193	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Megaselia scalaris (Humpbacked fly)	80	0.5	1
194	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	1	Corethrella appendiculata	244	0.5	1
195	UniRef50_	Cluster:	UniProtKB Unreviewed (TrEMBL)	2	Necator americanus (Human hookworm);	141	0.5	2
196								
197								411
198								

FIGURE 3. Counting the number of sequences

Question 3. How many protein sequences from Homo sapiens are obtained at identity cutoff of 100%, 90% and 50% sequence identity?

Solution. I performed an advanced search on the **UniRef** platform, where I filtered by taxonomy. In the taxonomy field, I entered **Homo sapiens**.

FIGURE 4. Filter search by taxonomy

On filtering by taxonomy, I obtained the number of protein sequences at identity cutoffs of 100%, 90% and 50% sequence identity.

100%	90%	50%
236,474	106,848	54,154

FIGURE 5. Filter search by taxonomy

Question 4. In UniProt, how many mouse (*Mus musculus*) protein sequences are manually annotated? And how many of these manually annotated protein sequences are associated with **PDB** (3D structures)?

Hint: Use "Advanced" search

FIGURE 6. UniProt search for Mus musculus

Solution. Firstly, I obtained the number of manually annotated protein sequences in mouse, by searching for **Mus musculus** in the UniProtKB. This gave me the result that there are **116,275** manually annotated protein sequences of *Mus musculus* in UniProt.

In order to obtain the number of protein sequences associated with 3D structures, I used an advanced search. Along with the search of *Mus musculus*, I added another field called **3D structure** and set it to **Yes**. This gave me the number of manually annotated protein sequences that are associated with 3D structures. This number is **2,610**.

FIGURE 7. UniProt advanced search for Mus musculus 3D structures

FIGURE 8. UniProt search for Mus musculus 3D structures

Mus Musculus

The number of manually annotated protein sequences: 116,275

The number of manually annotated protein sequences associated with 3D structures: 2,610

Question 5. Map first 10 UniProt IDs of above manually curated mouse protein sequences with 3D structures to the STRING database. How many STRING IDs are mapped? Hint: Use "Retrieve/ID mapping" and upload Uniprot IDs as text file

Solution. From the previous result, we have the top 10 UniProt IDs of manually curated mouse protein sequences with 3D structures.

FIGURE 9. Top 10 UniProt IDs satisfying criteria

I went to the **Retrieve/ID mapping** section of the UniProt. Here, I entered the top 10 UniProt IDs from above in the form of a text file separated by commas.

FIGURE 10. Input to the ID Mapping

I set the **From database** to **UniProtKB AC/ID**. I also set the **To database** to **STRING**. Then I ran the command **Map IDs**. Out of the 10 IDs, 9 IDs were mapped to 9 results, and 1 ID was not mapped.

	UniProtKB to STRING database	ID Mapping
1	Q920Q2	10090.ENSMUSP00000027251
2	Q64288	10090.ENSMUSP00000095882
3	P08882	10090.ENSMUSP0000015585
4	Q99P87	10090.ENSMUSP00000133024
5	Q91YN5	10090.ENSMUSP00000106983
6	Q99JT9	10090.ENSMUSP00000020957
7	Q8VHC3	10090.ENSMUSP00000092041
8	Q9JMG7	10090.ENSMUSP00000102926
9	088188	10090.ENSMUSP00000021860

FIGURE 11. ID Mapping Output

Question 6. Using UniProt Statistics data, answer the following

- a) What do you infer from the distribution of sequence length in UniProt?
- b) The shortest and longest sequence in UniProtKB
- c) Amino acid composition in percent for the complete database

Solution. Following are the solutions using the UniProt Statistics data

- (a) This indicates the number of **amino acids** in the **canonical sequence** displayed by default in the entry's Sequence section.
- (b) Shortest sequence in UniProtKB is the **P0DPR3**, **T** cell receptor delta diversity **1**, belonging to *Homo sapiens*. It is **2 amino acid** long.

 Longest sequence in UniProtKB is the **A2ASS6**, **Titin**, **2.7.11.1**, **Connectin**. It belongs to *Mus musculus*. It is **35,213 amino acid** long.

FIGURE 12. Shortest sequence in UniProtKB

FIGURE 13. Longest sequence in UniProtKB

• (c) The table below shows the percentage composition of every amino acid.

FIGURE 14. Amino Acid Composition

• (c) Along with the above 20 amino acids, there are also a few other non-trivial amino acids as shown in table below.

AMINO_ACID_X	8,041	<0.01%	2,273	0.01
AMINO_ACID_U	329	<0.01%	254	0.00
AMINO_ACID_B	276	<0.01%	113	0.00
AMINO_ACID_Z	249	<0.01%	87	0.00
AMINO_ACID_O	29	<0.01%	29	0.00

Figure 15. Non-Trivial Amino Acid Composition