Fluid Dynamics

Chapter 6

General Flow Equations

Ulrich H. Becker

Frankfurt University of Applied Sciences

Summer Term 2024

Basics

- Conservation of mass, energy and momentum form the basis to describe fluids
- Previous chapters: only simplified description
- Typical simplifications:
 - incompressible and stationary
 - one-dimensional and without friction
- This even allows for analytical solutions.
- The general form is a system of coupled, nonlinear, partial differential equations

Continuity Equation

- Consider a mass flow in the x-direction
- Have a fluid element as CV
- Fluid element centered a x
- Edges Δx , Δy , Δz $\left(\rho u \frac{\partial (\rho u)}{\partial x} \frac{\Delta x}{2}\right) \Delta y \Delta z$

$$(\rho u + \frac{\partial(\rho u)}{\partial x} \frac{\Delta x}{2}) \Delta y \Delta z - (\rho u - \frac{\partial(\rho u)}{\partial x} \frac{\Delta x}{2}) \Delta y \Delta z + \frac{\partial \rho}{\partial t} \Delta x \Delta y \Delta z = 0$$
$$\frac{\partial \rho u}{\partial x} \Delta x \Delta y \Delta z + \frac{\partial \rho}{\partial t} \Delta x \Delta y \Delta z = 0$$

U.H. Becker FRA-UAS: FID Summer Term 2024 3/8

Continuity Equation

Other direction similarly. This gives:

$$\Delta x \Delta y \Delta z \left[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} \right] = 0$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

In the last line we introduced the Nabla-Operator.
 In cartesian coordinates:

$$\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

U.H. Becker FRA-UAS: FID Summer Term 2024 4/8

Momentum Equation - The Navier-Stokes Equation

- The momentum equation is a vector equation.
- Goes back to C.-L. Navier and G.G. Stokes in the middle of the 19th century
- Takes into account mass density ρ , pressure p, the velocity vector $\mathbf{v} = (u,v,w)$, dynamic viscosity μ , and the gravitational acceleration $\mathbf{g} = (g_x,g_v,g_z)$.

x-component:

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho u v)}{\partial y} + \frac{\partial(\rho u w)}{\partial z} \\
= -\frac{\partial p}{\partial x} + \rho g_x + \frac{\partial}{\partial x} \left[\mu \left(2\frac{\partial u}{\partial x} - \frac{2}{3}\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right)\right)\right] \\
+ \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)\right]$$

Momentum Equation - The Navier-Stokes Equation

y-component:

$$\begin{split} &\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v u)}{\partial x} + \frac{\partial(\rho v v)}{\partial y} + \frac{\partial(\rho v w)}{\partial z} \\ &= -\frac{\partial p}{\partial y} + \rho g_y + \frac{\partial}{\partial y} \left[\mu \left(2 \frac{\partial v}{\partial y} - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right) \right] \\ &+ \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] \end{split}$$

z-component:

$$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho w u)}{\partial x} + \frac{\partial(\rho w v)}{\partial y} + \frac{\partial(\rho w w)}{\partial z} \\
= -\frac{\partial p}{\partial z} + \rho g_z + \frac{\partial}{\partial z} \left[\mu \left(2 \frac{\partial w}{\partial z} - \frac{2}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right) \right] \\
+ \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \right]$$

U.H. Becker

Momentum Equation - The Navier-Stokes Equation

- The above notation in "easy" Cartesian coordinates is a nightmare.
- Use vector analysis notation for a better view:

$$\frac{\partial(\rho\mathbf{v})}{\partial t} + \nabla \cdot (\rho\mathbf{v}\mathbf{v}) = -\nabla p + \rho\mathbf{g} + \nabla \cdot \mathbf{T}$$

with stress tensor $\mathbf{T} = \mu (\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathsf{T}} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \mathbf{I})$

and identity matrix I

Energy Equation

- For flows with temperature differences
- Need energy balance ... potentially between many different forms of energy. Potentially lots of physics!
 - e.g. chemistry, radiation, melting, freezing, etc.

$$\frac{\partial(\rho e)}{\partial t} + \frac{\partial(\rho e u)}{\partial x} + \frac{\partial(\rho e v)}{\partial y} + \frac{\partial(\rho e w)}{\partial z} \\
= -\left(\frac{\partial}{\partial x}(\lambda \frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(\lambda \frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(\lambda \frac{\partial T}{\partial z})\right) \\
- p \cdot \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) + \epsilon + \dot{q}$$

• Includes mass density ρ , internal energy density e, velocity vector $\mathbf{v} = (u,v,w)$, pressure ρ , dynamic viscosity ρ , thermal conductivity ρ , temperature ρ , a heat source term \dot{q} and heat produced by friction ϵ