Department of Mathematics and Statistics MATH 375 - Outline # 2

Second Order Differential Equations

General Theory

Consider the linear equation

$$y'' + p(x)y' + q(x)y = 0.$$
 (1)

- 1. (existence and uniqueness) If p and q are continuous in an open interval I and $x_0 \in I$ then the initial value problem (1), $y(x_0) = y_0$, $y'(x_0) = y'_0$ has a unique solution for any y_0, y'_0 .
- 2. (superposition) If y_1 and y_2 are solutions of (1), then $y = C_1y_1 + C_2y_2$ is also a solution of (1) for any constants C_1 and C_2 .
- 3. (general solution) If y_1 and y_2 are linearly independent (fundamental) solutions of (1) then $y = C_1y_1 + C_2y_2$ is the general solution of (1). The functions y_1 and y_2 are linearly independent if the Wronskian

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1' \neq 0.$$

4. (Abel's Theorem) If p(x) and q(x) are continuous, then

$$W(x) = Ce^{-\int p(x) \, dx}.$$

Thus the Wronskian either identically equal to zero or never vanishes.

5. The difference of any two solutions of the nonhomogeneous equation

$$y'' + p(x)y' + q(x)y = f(x)$$
 (2)

satisfies (1).

If y_1 and y_2 are linearly independent solutions of (1) and Y(t) is a particular solution of (2) then the general solution of (2) is

$$y = C_1 y_1 + C_2 y_2 + Y.$$

Homogeneous Equations with Constant Coefficients ay'' + by' + cy = 0 (3)

Method of solution: Let us write the characteristic equation $ar^2 + br + c = 0$. (4)

Case 1. $\Delta = b^2 - 4ac > 0$, the characteristic equation (4) has two real roots:

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Then the fundamental solutions of (3) are $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$; the general solution of (1) is $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.

Case 2. $\Delta = b^2 - 4ac < 0$, the characreristic equation (4) has two complex roots:

$$r_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-b}{2a} + \frac{\sqrt{-\Delta}}{2a}i = \alpha + \beta i, \ r_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-b}{2a} - \frac{\sqrt{-\Delta}}{2a}i = \alpha - \beta i.$$

Then the basic solutions of (1) are $y_1 = e^{\alpha x} \cos(\beta x)$, $y_2 = e^{\alpha x} \sin(\beta x)$; the general solution of (1) is $y = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$.

Case 3. $\Delta = b^2 - 4ac = 0$, the characreristic equation (4) has two equal real roots $r_1 = r_2 = r = -\frac{b}{2a}$. Then the basic solutions of (1) are $y_1 = e^{rx}$, $y_2 = xe^{rx}$; the general solution of (1) is $y = C_1e^{rx} + C_2xe^{rx}$.

Higher order equations

For a higher order equation with constant coefficients

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_{n-1} y' + a_n y = 0$$

we find roots of the characteristic equation

$$a_0r^n + a_1r^{n-1} + \ldots + a_{n-1}r + a_n = 0.$$

Then distinct real roots r_1, r_2, r_3 correspond to basic solutions $y_1 = e^{r_1 x}, y_2 = e^{r_2 x}, y_3 = e^{r_3 x},$ equal real roots $r_1 = r_2 = r_3 = r$ correspond to basic solutions $y_1 = e^{rx}, y_2 = xe^{rx}, y_3 = x^2 e^{rx},$ complex roots $r_{1,2} = \alpha \pm \beta i$ - to $y_1 = e^{\alpha x} \cos(\beta x), y_2 = e^{\alpha x} \sin(\beta x),$ equal complex roots $r_1 = r_2 = \alpha + \beta i, r_3 = r_4 = \alpha - \beta i$ correspond to $y_1 = e^{\alpha x} \cos(\beta x), y_2 = e^{\alpha x} \sin(\beta x), y_3 = xe^{\alpha x} \cos(\beta x), y_4 = xe^{\alpha x} \sin(\beta x).$

Nonhomogeneous Equations with Constant Coefficients ay'' + by' + cy = f(x) (5) The general solution of (5) is a sum of a general solution of the corresponding homogeneous equation (5) y_{gen} and a particular solution y_{part} of (5).

The method of undetermined coefficients

If the right hand side is a polynomial function

$$P_n(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

multiplied by one of the functions e^{kx} , $\cos(kx)$, $\sin(kx)$, then the particular solution of (3) has a similar form (see the table below), only the polynomial has unknown coefficients $Q_n(x) = A_n x^n + A_{n-1} x^{n-1} + \dots A_1 x + A_0$, where A_i are determined by substitution in (3).

f(x) in (3)	y_{part}	Comment
$P_n(x)$	$Q_n(x)$	r = 0 is not a root of (4)
$P_n(x)e^{kx}$	$Q_n(x)e^{kx}$	r = k is not a root of (4)
$P_n(x)e^{kx}\cos(bx)$	$e^{kx}[Q_n(x)\cos(bx) + R_n(x)\sin(bx)]$	r = k + bi is not a root of (4)
$P_n(x)e^{kx}\sin(bx)$	$e^{kx}[Q_n(x)\cos(bx) + R_n(x)\sin(bx)]$	r = k + bi is not a root of (4)
$P_n(x)$	$x^sQ_n(x)$	r = 0 is a root, multiplicity s
$P_n(x)e^{kx}$	$x^s Q_n(x) e^{kx}$	r = k is a root, multiplicity s
$P_n(x)e^{kx}\cos(bx)$	$x^{s}e^{kx}[Q_{n}(x)\cos(bx) + R_{n}(x)\sin(bx)]$	r = k + bi is a root, multiplicity s
$P_n(x)e^{kx}\sin(bx)$	$x^s e^{kx} [Q_n(x)\cos(bx) + R_n(x)\sin(bx)]$	r = k + bi is a root, multiplicity s

The method of the variation of parameters

If the general solution of (3) is $y = C_1y_1 + C_2y_2$, then the general solution of (5) is $y = C_1(x)y_1 + C_2(x)y_2$, where $C_1(x)$, $C_2(x)$ are found from the following system of equations:

$$C'_1y_1 + C'_2y_2 = 0,$$

 $a(C'_1y'_1 + C'_2y'_2) = f(x).$