

Ensayo N°14

Laboratorio de Máquinas: "Ensayo Curvas Bomba"

Felipe Andres Olivares Acevedo Escuela de Ingeniería Mecánica Profesor: Cristóbal Galleguillos Ketterer

Pontificia Universidad Católica de Valparaíso

14 de diciembre del 2020

${\rm \acute{I}ndice}$

L.	Introducción	bollo cocedimiento
	Desarrollo	4
	2.1. Procedimiento	
	2.3. Valores medidos	
	2.4. Valores Calculados	10
3.	Resultados y Gráficas	12
1.	Conclusiones	15

1. Introducción

Este ensayo tiene como objetivo analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

2. Desarrollo

2.1. Procedimiento

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n Velocidad de ensayo, (rpm).
- nx Velocidad de la bomba, en (rpm).
- pax % Presión de aspiración.
- pdx % Presión de descarga.
- hx caudal de la bomba, en presión diferencial en el venturímetro en, (mmhg).
- Fx Fuerzas medidas en la balanza, en (kp).
- ta Temperatura de agua en el estanque, en $({}^{\circ}C)$.
- Patm Presión atmosférica, en (mmhg).

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo. Mida los valores siguientes:

- cpax altura piezómetro del manómetro de aspiración respecto del eje de la bomba, en (mm).
- cpdx altura piezómetro del manómetro de descarga respecto del eje de la bomba, en (mm).

Se utiliza un motor basculante para accionar una bomba centrifuga que aspira agua desde un estanque, marca Leader modelo M18. Se utilizan dos valvulas. La primera ubicada a la salida del estanque se encuentra abierta durante todo el ensayo mientras que la segunda, al lado de la bomba va estrangulando el flujo a medida que se realiza el ensayo.

2.2. Formulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left\lceil \frac{m^3}{h} \right\rceil$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

cpdx=165 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \left[m_{ca} \right]$$

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \quad [m_{ca}]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3 \quad [kW]$$

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600} \quad [kW]$$

 γ peso específico del agua en $[{
m N/m^3}]$

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete B₂ ancho exterior del rodete Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete B₂ ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

2.3. Valores medidos

	VALORES MEDIDOS												
					3070	[rpm]							
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	T	P _{atm}			
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
			6	2	á	9			6				
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7			
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7			
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7			
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7			
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7			
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7			
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7			
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7			
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7			
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7			
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7			
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7			
13													

Figura 1: Valores medidos a 3070 rpm

					VALORES	MEDIDOS				
					2900	[rpm]				
	n	cpax	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
			7			1177				
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7
13										

Figura 2: Valores medidos a 2950 rpm

			V.					0.					
	VALORES MEDIDOS												
		<u></u>			2700	[rpm]		70					
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}			
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
				54									
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7			
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7			
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7			
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7			
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7			
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7			
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7			
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7			
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7			
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7			
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7			
0	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7			

Figura 3: Valores Medidos a 2700 rpm

2.4. Valores Calculados

ja Ni	n = 3070 [RPM]												
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	Φ	Ψ
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
111,6	107,0634	-1,165	2,765	3,93	3,616982	3,48296	3,075241	1,075685	34,97887	21,73589	2,885683	0,132761	0,150156
105,12	100,814	-0,915	5,605	6,52	5,996792	3,800829	3,352628	1,679336	50,09013	21,74296	2,717244	0,124971	0,24879
100,8	96,671	-0,635	7,925	8,56	7,873089	4,049692	3,572145	2,114165	59,18474	21,74296	2,605576	0,119835	0,326632
96,48	92,52796	-0,415	9,965	10,38	9,54704	4,185436	3,691882	2,4538	66,46476	21,74296	2,493909	0,1147	0,396079
88,2	84,55964	-0,175	11,805	11,98	11,01148	4,277322	3,769255	2,586464	68,62003	21,75003	2,279138	0,104788	0,456538
83,16	79,70175	0,055	13,925	13,87	12,74041	4,32399	3,806667	2,820646	74,09754	21,7571	2,148204	0,098736	0,527876
75,24	72,11111	0,405	16,685	16,28	14,95413	4,346628	3,826597	2,995442	78,27952	21,7571	1,943613	0,089332	0,619598
70,92	67,97076	0,645	18,645	18	16,53405	4,278712	3,766806	3,121756	82,8754	21,7571	1,832018	0,084203	0,685059
61,2	58,65497	0,885	19,845	18,96	17,41587	4,14288	3,647225	2,837576	77,80094	21,7571	1,580929	0,072663	0,721595
54,36	52,11635	1,135	21,925	20,79	19,10925	3,824696	3,370392	2,7664	82,07947	21,75003	1,404693	0,064584	0,792272
46,08	44,16374	1,315	22,925	21,61	19,85005	3,508997	3,08918	2,435146	78,82822	21,7571	1,190347	0,054711	0,822451
36	34,50292	1,935	25,005	23,07	21,19114	2,558172	2,252112	2,03099	90,18158	21,7571	0,929958	0,042743	0,878017

Figura 4: Valores Calculados a 3070 rpm

	n = 2950[RPM]													
Q_{x}	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	Ψ	
[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]	
101,16	94,08612	-0,965	2,645	3,61	3,122775	2,925164	2,353426	0,816138	34,67873	20,5201	2,535906	0,123582	0,145456	
98,64	91,74234	-0,725	5,245	5,97	5,164256	3,13868	2,525208	1,316058	52,11681	20,5201	2,472734	0,120503	0,240547	
91,08	84,71099	-0,485	6,725	7,21	6,236899	3,309493	2,662635	1,467594	55,11812	20,5201	2,283218	0,111267	0,29051	
84,6	78,68412	-0,245	8,725	8,97	7,75936	3,458954	2,782883	1,69594	60,94184	20,5201	2,120775	0,103351	0,361425	
79,2	73,66173	-0,065	10,605	10,67	9,229919	3,523008	2,834418	1,888588	66,63056	20,5201	1,985407	0,096754	0,429922	
72,72	67,65817	0,225	12,365	12,14	10,50876	3,585827	2,887942	1,975009	68,38812	20,51303	1,823593	0,088899	0,489827	
65,88	61,25207	0,445	14,365	13,92	12,03299	3,609657	2,901132	2,047349	70,57068	20,52717	1,650929	0,080427	0,560101	
59,76	55,60028	0,695	16,245	15,55	13,46056	3,585827	2,887942	2,078919	71,98618	20,51303	1,498596	0,073056	0,627414	
52,92	49,21943	0,885	17,885	17	14,70559	3,41625	2,748526	2,010557	73,15038	20,5201	1,326613	0,064649	0,684974	
46,08	42,85773	1,115	19,405	18,29	15,82148	3,181383	2,559565	1,883536	73,58812	20,5201	1,155146	0,056293	0,736952	
34,2	31,79752	1,345	20,645	19,3	16,68367	2,926172	2,351805	1,473609	62,65865	20,52717	0,85704	0,041751	0,776577	
0	0	1,835	22,605	20,77	17,9544	2,007738	1,613647	0	0 Ár	ea de trazado	0	0	0,835725	

Figura 5: Valores Calculados a 2950 rpm

	n = 2700 [RPM]												
Q _x	Q	pa _x	pd _x	H _x	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	Φ	Ψ
[m ³ /h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
92,16	83,56477	-0,685	2,485	3,17	2,606278	2,305292	1,718574	0,604981	35,20248	19,09931	2,252324	0,117927	0,140132
87,48	79,2919	-0,435	4,365	4,8	3,943495	2,46519	1,835737	0,868576	47,31481	19,10638	2,137157	0,111856	0,211873
83,16	75,37625	-0,265	5,965	6,23	5,118328	2,584473	1,924563	1,071668	55,68368	19,10638	2,031618	0,106332	0,274993
77,76	70,48169	-0,115	7,405	7,52	6,178142	2,663996	1,983781	1,209572	60,97307	19,10638	1,899695	0,099427	0,331934
72,72	65,93782	0,125	9,205	9,08	7,465301	2,742503	2,04451	1,367349	66,87905	19,09931	1,777224	0,093052	0,401386
67,32	61,01887	0,365	10,925	10,56	8,675689	2,783279	2,072607	1,470502	70,94941	19,10638	1,644643	0,086078	0,46612
60,84	55,14539	0,595	13,005	12,41	10,19558	2,783279	2,072607	1,561775	75,3532	19,10638	1,486335	0,077793	0,547779
52,92	47,98446	0,795	14,605	13,81	11,35416	2,742503	2,04451	1,513398	74,02253	19,09931	1,293326	0,067716	0,610478
44,28	40,15026	1,015	16,125	15,11	12,42298	2,583517	1,925988	1,385517	71,93797	19,09931	1,082171	0,05666	0,667946
33,12	30,01998	1,245	17,565	16,32	13,40788	2,345907	1,746911	1,118068	64,00255	19,10638	0,809129	0,042349	0,720367
30,6	27,73585	1,375	18,285	16,91	13,8926	2,087459	1,554455	1,070342	68,85643	19,10638	0,747565	0,039126	0,74641
0	0	1,845	19,805	17,96	14,75524	1,550684	1,154738	0	0	19,10638	0	0	0,792757

Figura 6: Valores Calculados a 2700 rpm

3. Resultados y Gráficas

Figura 7: Isorendimiento vs Caudal

Condiciones óptimas de operación de esta bomba:

La condiciones óptimas de operacion es cuando la bomba funciona a 3070 rpm, alcanzando un rendimiento del $90.18\,\%$

¿Las curvas tiene la forma esperada?

Si presentan un comportamiento normal.

Potencia máxima consumida:

La máxima potencia se alcanza un caudal de 72.11 [m/h], a 3070 [rpm]. La potencia alcanza un valor de 3.82 [kW].

¿Quétipo de curvas son?

Podemos observa en el gráfico de Altura vs caudal un gráfico de tipo ascendente, ya que este alcanza una mayor altura a medida que disminuye el caudal.

Figura 8: Potencia vs Caudal

¿La nube de puntos que conforman esta curva son muy dispersos?

No, son bastante lineales, ya que se mantuvieron las condiciones y los parámetros.

Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es?

Al ser un gráfico de tipo ascendente, se puede concluir que es una bomba centrifuga.

la velocidad específica

Para el calculo de la velocidad especifica se utiliza la siguiente ecuación:

$$v = \frac{n * \sqrt{Q}}{H^{(3/4)}} \tag{1}$$

Siendo:

Q = 67.97 [m3/h] = 299.262 [gpm]

H=16.53 [mca] = 54.232283 [ft]

n=3070 [rpm]

dando una velocidad especifica v= 2657.57

Figura 9: PHI vs PSI

4. Conclusiones

Se concluye que se obtuvieron resultados dentro del rango de lo esperado. A partir de los gráficos se puede concluir que se trata de una bomba centrifuga.