

Neural Networks, Optimization and Backpropagation 10.10.2019

Alexander Pacha

Recap - Terminology

Recap - How Can a Machine Learn?

Model

Loss

Optimization function

Inference

P(dog|x) = 0.7P(cat|x) = 0.3

How can a model work on unseen data?

Both datasets must have similar distribution

Source: https://github.com/cpra/dlvc2016

Does it generalize?

Image Classification

Source: Lopez et al. Skin lesion classification from dermoscopic images using deep learning techniques. 2017

Classes of models

Discriminative models learn decision boundaries where $argmax_w P(w|x)$ changes

Generative models learn class-conditional densities P(x|w)

Source: http://cs231n.github.io

Output

Classification problem with finite number of different labels

• Regression problem with a continuum of output values

Neural Networks

Biological Neuron

Source: http://cs231n.github.io/neural-networks-1/

Artificial Neuron

Source: http://cs231n.github.io/neural-networks-1/

Parametric Models, MLP, Feedforward NN

Neurons are controlled by parameters:

- Weight matrix W
- Bias vector b

Joining multiple neurons creates a parametric model $w = f(x; \theta) = Wx + b$ with parameters $\theta = (W, b)$

Activation Function

- Also called non-linearities
- Decide whether neuron should be activated or not

```
Y = Activation(\Sigma(weight*input) + bias)
```

 A neural network without activation function is essentially just a linear regression model.

Popular Activation Functions

- Sigmoid inspired by nature
- ReLU very efficient to compute but has problem of dying neurons
- Leaky ReLU tries to mitigate dying neurons issue by propagating a small signal

Recommendation: Never use sigmoid, try ReLU, if dying neurons are a concern, use LeakyReLU or other activation functions.

Neural Network

Common Neural Network Structure

Loss Functions

How are we doing?

Loss Function

Depending on problem, different loss functions are required

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n} \qquad MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Mean Squared Error

Mean Absolute Error

Regression

$$CrossEntropyLoss = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$

Classification

Cross Entropy Loss Example

$$CrossEntropyLoss = -(y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i))$$

```
target = [0,0,0,1]
good_prediction = [0.01, 0.01, 0.01, 0.96]
poor_prediction = [0.25, 0.25, 0.25, 0.25]

cross_entropy(good_prediction, target) = 0.04
cross entropy(poor prediction, target) = 1.39
```

Loss Function

Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/model_optimization.html

Optimization

How to get to the valley?

Gradient Descent

- Nonlinear optimization algorithm
- Most popular algorithm in Deep Learning

Gradient Descent

Iterative algorithm on loss function $L(\theta)$:

- Compute gradient θ ' = $\nabla L(\theta)$
- Update parameters $\theta = \theta \alpha \theta$

with learning rate $\alpha > 0$

Requires that loss function is differentiable and real-valued

Global and Local Minima

Gradient Descent

Batch gradient descent: $\mathbf{\theta} = \mathbf{\theta} - \alpha \nabla L(\mathbf{\theta})$

Stochastic gradient descent: $\theta = \theta - \alpha \nabla L(\theta; x^{(i)}, y^{(i)})$

Mini-batch gradient descent: $\theta = \theta - \alpha \nabla L(\theta; x^{(i;i+n)}, y^{(i;i+n)})$

Challenges:

- Finding a proper learning rate
- Same learning rate applied to all parameter updates
- Potential critical points

Critical points

Gradient descent often does not arrive at a critical point of any kind.

Gradient Descent Optimizations - Momentum

Loss function can have canyon-like curvature Gradient bounces between canyon walls

Source: http://www.deeplearningbook.org/

Gradient Descent Optimizations - Momentum

Gradient descent with momentum by introducing a velocity v:

- Update parameters $\theta = \theta + v$
- With momentum

Update velocity
$$\mathbf{v} = \beta \mathbf{v} - \alpha \nabla L(\mathbf{\theta})$$

$$\theta = \theta + v$$

$$\beta \in [0,1)$$

Source: http://www.deeplearningbook.org/

Adaptive Algorithms for Gradient Descent

- Adagrad: Adapts learning rate to the parameters (low learning rate for frequent events, high learning rate for infrequent events)
- Adadelta: Extension of Adagrad + aggressively decrease learning rate
- RMSprop: Very similar to Adadelta
- Adam: Adapts learning rate + stores decaying average of past gradients, similar to momentum
- AMSGrad: Adapts learning rate + maximum of past squared gradients instead of exponential average to update parameters

Source: http://ruder.io/optimizing-gradient-descent/

Adaptive Algorithms for Gradient Descent

Source: http://ruder.io/optimizing-gradient-descent/

Big question: How to compute $\nabla L(\theta)$?

- Function f is composed of other functions
- Loss function is again a graph for which we need the derivatives

Backpropagation recursively applies the chain rule to compute the derivatives for that graph.

$$f^1(x_1,x_2) = x_1x_2 \qquad \qquad f^1_{x_1}(x_1,x_2) = x_2 \text{ and } f^1_{x_2}(x_1,x_2) = x_1 \\ f^2(x_1,x_2) = x_1 + x_2 \qquad \qquad f^3_{x_1}(x_1,x_2) = 1 \text{ and } f^2_{x_2}(x_1,x_2) = 1 \\ f^3(x_1,x_2) = \max(x_1,x_2) \qquad f^3_{x_1}(x_1,x_2) = 1 \text{ if } x_1 \geq x_2 \text{ else } 0 \\ f^3(x_1,x_2) = \max(x_1,x_2) \qquad f^3_{x_2}(x_1,x_2) = 1 \text{ if } x_2 \geq x_1 \text{ else } 0$$

Source: https://github.com/cpra/dlvc2016

Sample expression e(a,b) = (a+b)(b+1)

Sample expression e(a,b) = (a+b)(b+1), for a=2 and b=1

Compute local gradients independently

Compute remaining gradients from local ones using multivariate chain rule

Source: https://colah.github.io/posts/2015-08-Backprop/

$$e_{a}(2,1) = c_{a}(2,1) \cdot e_{c}(2,1) = 1 \cdot 2 = 2$$

$$e_{b}(2,1) = \cdots = 1 \cdot 2 + 1 \cdot 3 = 5$$

$$e = c * d$$

$$e = 6$$

$$\frac{\partial e}{\partial c} = 2$$

$$\frac{\partial e}{\partial d} = 3$$

$$\frac{\partial e}{\partial d} = 3$$

$$\frac{\partial e}{\partial d} = 1$$

Path Factorization

Summing over all paths leads to combinatorial explosion

$$\frac{\partial Z}{\partial X} = \alpha \delta + \alpha \epsilon + \alpha \zeta + \beta \delta + \beta \epsilon + \beta \zeta + \gamma \delta + \gamma \epsilon + \gamma \zeta$$

$$\frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma)(\delta + \epsilon + \zeta)$$

Source: https://colah.github.io/posts/2015-08-Backprop/

Forward-mode and Reverse-mode differentiation

Algorithmic performance

Two factors:

- Ability to minimize training error
- Ability to minimize gap between training and test error

Two challenges:

- Underfitting: Unable to reach low training error
- Overfitting: Large gap between training and test error

Summary

- Neural Networks are inspired by the way how human brain works
 - Parametric model
 - Put a weight on each input
 - Activation function to introduce non-linearity
- Model learns on training set to predict samples from test set
 - Both sets must have the same underlying distribution
- Loss function tells us "how good we are doing"
 - Computing derivatives wrt. parameters creates topology
- Gradient descent is an efficient way to navigate through that terrain

