ECON 4360: Empirical Finance Volatility Bounds

Sherry Forbes

University of Virginia

Empirics Lecture #10

What are we doing today?

- Variance Bounds
 - Bounds on the variance of stock prices
 - Bounds on the variance of SDF's
 - The Hansen-Jagannathan Bound: Empirical Implementation

Variance Bounds

- Diagnostic of Model Fit
 - Helps pinpoint where the model is failing
- 2 Types of Variance Bounds
 - First one comes from a very old literature that tries to put bounds on the variance of stock prices
 - Second one is the H-J Bound that takes prices as givens to figure out what SDF would work for the data
- So we're going to have two different kinds of variance bounds for examining the volatility of stock prices...

Variance Bounds for Stock Prices

- Q: Do our models explain the volatility of stock prices? And the answer is going to be no.
 - Paper by Shiller and LeRoy
 - Do lots of versions; but in the end, the story tends to be the same, so we're going to go with the simplest derivation
 - We're not going to go through all the details (e.g., see a recent paper by Charles Engels), but will try to get a flavor for what this literature is trying to do.
- Uses a simple model of stock prices: present discounted value of expected future dividends
 - So we're going to look at a very simple perfect foresight model
 - (Still do this typical way of asset pricing (valuing a stock) in DSGE production economy)
 - This is an easy way of deriving a bounds: a bound where we're going to try and learn something about volatility...

A Simple Model (Shiller, 1981)

Start with a perfect foresight stock price

$$p_t^* = \sum_{j=0}^\infty eta^j d_{t+j}$$

- p* is the perfect foresight stock price
- It's "perfect foresight" because we know what all future dividends are going to be
- $oldsymbol{\circ}$ eta is some constant, fixed discount factor
- The actual stock price, which is going to be the market stock price, is the market's "best guess" of the perfect foresight price, so...

Market (Actual) Price

- The market is always trying to figure out what the perfect foresight stock price actually is
 - ullet So it's going to take an expectation of that, given some "information set", I_t
- That information set that the market has is going to be a very big information set - whatever is observed out there in the real world
- So the market price is

$$p_t = E\left[p_t^* \middle| I_t\right]$$

Results: Shiller (1981); LeRoy and Porter (1981)

- We're going to show that the variance of p_t^* has to be bigger than the variance of p_t
- We'll show this directly based on a derivation for the inequality

$$var\left(p_{t}^{*}\right) \geq var\left(p_{t}\right)$$

- This inequality says that if you take dividends from the data, and calculate a present-discounted sum of those, the variance of that should be greater than the variance of actual stock prices.
 - The perfect foresight price should move more than observed prices
- But...if you actually do this, you find that the stock prices we observe
 in the data are way more volatile than stock prices predicted by the
 model!
 - This is the price volatility puzzle!
- This is where we're heading, but we haven't shown this just yet...

Intuitive Explanation

- Why? A forecast is always smoother than the actual realization of the variable itself
- Let's looks at an example from time-series forecasting:
- Say we want to forecast an AR(1)

$$y_t = \phi y_{t-1} + \varepsilon_t$$

• What's the forecast in period t for tomorrow? The only info you have is y_t , so the forecast is

$$E_t\left[y_{t+1}\big|I_t\right] = \phi y_t$$

Intuitive Explanation

So the variance of the forecasted time-series is

$$var\left(E_{t}\left[y_{t+1}|I_{t}\right]\right) = \phi^{2}var\left(y_{t}\right)$$

- But the variance of the realized time-series is of course $var(y_{t+1})$
- So assuming stationarity, and with $\phi < 1$,

$$\phi^2 var(y) < var(y)$$

- So the variance of the forecast (LHS) is less volatile than the variance of the realization (RHS).
- Why? The actual time-series has the forecast in it which has movement, plus an error term (that is unforecastable and also has volatility in it)

Stock Price Forecasts

- Now, going back to our asset pricing model:
- The actual time-series realization is going to be our forecast plus an error term, so - here, switching back to stock prices -

$$p_t^* = p_t + ext{ forecast error}$$

- So the perfect foresight price is equal to the market forecast + a forecast error (because of some randomness in future dividends).
- The market's forecast is not going to be 'perfect'; but we are going to assume that it is going to be 'optimal'
 - What that means is that there is no systematic forecasting error.
 - If you could predict the forecast error, you could use that information to come up with a better forecast, so the forecasting error is going to be i.i.d.

The Variance Bound

 If the forecast is optimal, there is zero covariance between the market forecast and the forecast error, so

$$E_t[p_t, \text{ forecast error}] = 0$$

And we get that (just applying the variance operator)

$$var\left(p_{t}^{*}\right) = var\left(p_{t}\right) + var\left(\mathsf{forecast\ error}\right)$$

• Therefore, we get the inequality

$$var\left(p_{t}^{*}\right) \geq var\left(p_{t}\right)$$

 And of course we don't know what the forecast error is going to be exactly, which is why we calculate a volatility bound...

Stock Price Volatility: Results

- So what can we do with this?
 - Note, we aren't doing formal estimation here; but our theory makes a clear prediction as to which has to be more volatile.
- We can go to the data, take a discounted sum of dividends, and calculate $var\left(p_{t}^{*}\right)$ and $var\left(p_{t}\right)$
 - Note that this is generally applied to a broad index, like the S&P 500.
- Dividends in data are very predictable; they are not very volatile, so a discounted sum of them is even less volatile
 - So $var\left(p_{t}^{*}\right)$ turns out to be pretty small
 - But $var\left(p_{t}\right)$ is way more volatile! And we violate our (theoretical) bound..
- Prices are way more volatile than what is predicted by our perfect foresight bounds.
 - Puzzle: Why are prices so volatile?

Plot from Shiller (1981)

What to do Next?

- The price volatility puzzle leads us to the conclusion that either something is wrong with our model, or that something is wrong with our test.
- Some ideas are to look at stationarity assumptions and/or information sets.
 - Another way to derive an alternative bounds is to assume an information set other than the market information set - e.g., the econometrician's information set, which is smaller. (But important to keep this relatively simple!)

What to do Next?

- A promising approach (that you are already familiar with!) is to drop the assumption of a constant discount factor.
 - The natural way is to use an agent's IMRS (using consumption data) as a discount factor...
 - Why? The IMRS varies over time, so using it as a discount factor puts more volatility into the discounted sum of dividends than just using a constant discount factor.
 - Of course, it turns out that this alone (e.g., using the CRRA discount factor) is not enough to solve the puzzle it makes p^* more volatile, but still not volatile enough.

Hansen and Jagannathan

- HJ thought that an SDF constructed with the habit model or Epstein-Zin preferences might work
 - But it's difficult to keep testing the model in this way, because you
 don't know exactly how much volatility you need in a discount factor to
 rationalize what we see in prices, and this is what motivated HJ.
- HJ suggested that instead of using returns (prices) to check the reasonableness of a model,
 - We can instead take returns as givens and construct bounds on what the stochastic discount factor should look like.
 - Gives some direction on the construction of an SDF, once you know some of the properties that we think the SDF needs to have to rationalize the data
- The HJ Bound is of course also motivated by the equity premium puzzle, which is related to these sorts of questions.

H-J Bounds: Interpretation Review

• Recall, that we used the equation

$$\frac{\left|E\left(R^{e}\right)\right|}{\sigma\left(R^{e}\right)} \leq \frac{\sigma\left(m\right)}{E\left(m\right)}$$

 To Ask: Given a set of returns, what are the bounds on all possible discount factors?

Hansen and Jagannathan

• Recall, our key asset pricing equation is

$$E_t\left[m_{t+1}R_{t+1}\right]=1$$

where R is a vector of risky returns and $m_{t+1} = \beta \left(u'\left(c_{t+1}\right) \right) / \left(u'\left(c_{t}\right) \right)$ is a scalar discount factor.

• HJ want to use the properties of R (i.e., mean, variance, and covariance) to bound the mean and variance of m.

Returns: Which Ones?

- Can typically take R to comprise a T-bill return (which has a low mean and low volatility) and the S&P 500 return (which has a higher mean and volatility)
 - How high the bound is depends on which returns you use to construct it - the previous two gives a large bound (i.e., the SDF has to be very volatile)
 - If instead you take a couple of returns that look very similar e.g., the S&P 500 and Nasdaq indices - you might not come up with a very strong bound.
- In practice, want to find a SDF that prices all assets, but can't use all the returns in the world... So we pick returns that are very different from each other.

Where to Start

HJ work with the unconditional version

$$E[mR] = 1$$

and derive a bound by constructing a 'candidate' IMRS, which is called a bounding IMRS.

- The SDF *m* is the 'true' SDF in the world, which we don't observe; so we want to start learning about its properties.
- First, we construct a candidate SDF, m_{ν} .
 - The idea is that m_V , the candidate IMRS, should be consistent with the unconditional asset pricing equation.
 - Consistent here means that the candidate m_V should provide a lower bound for the mean and variance of the true SDF, m, as a necessary condition.

What's the Point?

- Objective is to hypothesis about a model that can get into the bound.
- Note that just because you get into the HJ bound does not mean that you have the right SDF
 - It just means that you don't have the wrong SDF.
 - So it's just a necessary condition; but it allows us to get rid of a lot of models quickly.
- If you do satisfy the bound, then want to look at other things like formal tests and GMM.

The Derivation

- First, note that we don't have a risk-less asset in our vector R. (Why?)
 - If we had a truly riskless asset, that would be valuable, because it would tell us the true mean of the SDF
- So we're going to augment our return vector with a (fictitious) riskless asset with riskless return 1/v, so

$$R_{
m v}=\left[egin{array}{c} 1/v \ R_1 \ dots \ R_n \end{array}
ight]$$
 , $E\left[R_{
m v}m_{
m v}
ight]=1$, and $Em_{
m v}=Em=v$

- And then we look for many v's that seem reasonable (the possible riskless rates that are out there).
 - By varying the v's, we get (i.e., can trace out) the entire possible bound/frontier.

The Derivation

- We know we can construct the true discount factor as a linear combination of returns
 - So the goal is to try and construct a candidate $m_{\rm V}$ by figuring out what that linear function is.
 - ullet And the candidate m_V is going to tell us something about the true one.
- So we start out with the fact that even though m_{ν} is not the true SDF, we construct it to be related to the true SDF

$$m = m_v + \varepsilon$$

where ε is an error term with $E(\varepsilon) = 0$ and $E(R_v \varepsilon) = 0$.

• Why? ...

(Justification)

• Since we introduced a risk-less asset, we pin down the mean ensuring that $Em_v = Em = v$ holds, so

$$E\left(m-m_{v}\right)=0$$

• This implies $E\left(\varepsilon\right)=0$, and since $E\left[R_{v}m_{v}\right]=1$,

$$E\left[R_{v}\left(m-m_{v}\right)\right]=0$$

so

$$E[R_{v}\varepsilon]=0$$

The True SDF...

- Recall that we can construct a discount factor that prices assets through a linear combination of returns
 - (Remember x^* ?)
 - (Originally, Hansen and Richards (1987) Econometrica paper)
 - But we can't get to the true m through a projection in practice.
 (Why?)
- So we revert to calculating a lower bound on m...

The Derivation: The Basic Equation

Now go back to

$$m = m_v + \varepsilon$$

and apply the variance operator

$$var(m) = var(m_v) + var(\varepsilon)$$

So

$$var(m) \geq var(m_v)$$

and m_{ν} then provides a lower bound on m.

The Derivation: A Note

Note that

$$\mathit{var}\left(\mathit{m}\right) = \mathit{var}\left(\mathit{m}_{\mathit{v}}\right) + \mathit{var}\left(\varepsilon\right) + 2\mathit{cov}\left(\mathit{m}_{\mathit{v}},\varepsilon\right)$$

so if the covariance term was not zero, we wouldn't be able to construct a lower bound!

Constructing a Candidate

- How do we construct m_v ?
 - We've already gone through one derivation (the hard work)...
 - (See Lecture 12 from the theory half of the course)
- But now, we've already pinned down the mean of m_{ν} by assuming a risk-free rate, so all we have to worry about is the variance...
 - Once the bound is derived, using it is pretty easy...

Constructing a Candidate

Using returns, we get for the HJ Bound

$$var\left(m_{v}
ight)=\left(1-vE\left(R
ight)
ight)'\Omega^{-1}\left(1-vE\left(R
ight)
ight)$$

where

- \bullet E(R) is the vector of mean returns
- $oldsymbol{\Omega}$ is the variance-covariance matrix of returns
- and 1/v is the candidate risk-free rate that we vary (to construct the whole frontier).
- So our lower bound requires knowledge of the mean and VCV matrix of asset returns.

Then what?

- Since we don't know v, we construct a bound for a sequence of v's.
 - Once we have a bound, we calculate the variance of the SDF
- Example: The power utility model with the T-bill and the S&P500 Returns
 - The SDF does not satisfy the HJ bounds (for reasonable parameters)
 - The distance to the bound is statistically significant
 - Note that since we have uncertainty, we will have confidence bounds for these point estimates we get.
 - GMM will let us estimate the distance between the model and the bound!

Why does Habit help?

- What's wrong with power utility for calculating the SDF?
 - The power utility SDF is not volatile enough; higher (too high) risk aversion increases the SDF volatility
- Habit gets us higher SDF volatility
- If the habit parameter is very big, it's like applying the first-difference operator to consumption
 - We know that filtering data in this way (getting to higher frequencies)
 makes a time series more volatile

Now what?

- For models that are rejected, we have some guidance on how to proceed in building new models
- Increase the volatility of the SDF
 - Habit Formation; Epstein-Zin (see Cochrane and Hansen, 1992)
 - Note that Habit model still not very good
 - If you look at volatility bounds in the frequency domain, it actually generates the wrong kind of volatility (high frequency instead of business cycle)
 - Campbell and Cochrane (1999) best version from this literature
 - But the utility function is very complicated (and bizarre) i.e., too incredible to use.

What else?

- We can also make alterations to the model that lower the bound
- E.g., financial/trading frictions (see He and Modest, 1995; Luttmer, 1996)
 - For example, if there is a cost associated with buying and selling or something that restricts short sales, that gives us lower volatility.
 - But can get all the way down to zero, so in most cases these modifications aren't very interesting
 - Popular in the early 1990s, but people didn't really buy into it

Final Note of Caution...

- If you want to see how well the volatility bound does in the real world...
 - Generate data in a fake world and see how well it does.
- If you simulate data from an asset pricing model and then calculate the volatility bounds, does the model SDF actually get into those bounds?
 - Surprisingly enough, there are cases where you can simulate data from a true model, apply the HJ bounds, and reject the model most of the time
- So you want to be aware of those possibilities...
 - When that happens, you can make adjustments to statistics to make sure it doesn't happen too often.

End of Today's Lecture.

That's all for today.