# Algorithmic Human-Robot Interaction

#### Course Content

We will study fundamental topics in robotics and psychology/cognitive science with the objective of introducing robustness to human interaction to the former and automation to the latter.



# **Expected Background**

#### **CS** Foundations

Programming (Python or C++)

Networking

Systems-building

#### Presentation and Written Skills

LaTeX

#### **Bonus Skills**

Debugging (e.g., pdb or gdb)

Artificial Intelligence / Machine Learning

#### Course Content

- Task and Motion Planning
  - Motion Planning
  - Trajectory Optimization
  - Task Planning
  - Human-aware Motion Planning

- Learning from Demonstration
  - Keyframing / Kinesthetic Teaching
  - Imitation Learning
  - Social Scaffolding

- Intent Recognition/Projection
  - Human motion modeling
  - Shared Autonomy
  - Non-verbal Behaviors (Gaze, Deictic Gesture)

- Explainable Al
  - Course of Action Justification
  - Anticipatory Explanation

- Coordination
  - Theory of mind
  - Task Modeling

- Communication
  - Requesting assistance
  - Synchronizing Mental Models

#### Course Format

#### Paper Presentations:

- Each lecture with assigned reading will include two student presentations per paper-
  - **1 PRO** (10 min) and **1 CON** (5 min)
- Presentations can be done via whiteboard or PowerPoint but are expected to be of high quality

#### **Quizzes and Homeworks:**

- A short quiz will be administered at the start of lecture to test high level knowledge and conceptual understanding for assigned readings. They will be graded +,  $\checkmark$ , or -.
- Programming assignments will be given to reinforce algorithmic understanding and familiarity with ROS (Robot Operating System)

#### **Final Project:**

A semester long team-based research effort tackling an unsolved problem in Algorithmic HRI

# Final Projects

Final projects will culminate in a research paper suitable for publication at the workshop or symposium level, such as the Al-HRI Symposium at the AAAI Fall Symposium Series (AAAI-FSS)





# Project Details

Group Project – Teams of 2 – 4

Explore a problem area in depth

 Theoretical and empirical understanding to create generalizable knowledge

Design and conduct experimental studies

Formal writeup of project and results

Final product:

4-6 page research paper Publishable at AI-HRI AAAI Fall Symposium

# Grading

Class Participation – 10%

Attend regularly, engage in discussions!

Paper Presentations – 30%

Make presentations worth your peers' time!

Quizzes and Homework – 20%

Do the reading, and quizzes will be easy!

Attend class, and homework will be straightforward!

Final Project – 40%

This is why you're taking the course, make it count!

# Robotics is Hard, Nobody knows everything



# Things You Will Know by May

- Robot Operating System
- Control on a real robot platform
- Probabilistic Motion Planning
- Task Planning
- Interaction Design
- Experimental Design / User Study Analysis
- Applied Artificial Intelligence and Machine Learning
  - Modeling
  - Active Learning
  - Learning from Demonstration

#### Class Schedule

#### Course Website:

Moodle Link: <a href="https://moodle.cs.colorado.edu/course/view.php?id=1124">https://moodle.cs.colorado.edu/course/view.php?id=1124</a>
Slides posted after each lecture

#### Location:

**ECCR 150** 

#### Time:

12:30pm – 1:45pm

#### Office Hours:

By Appointment (ECES 128)

# Project Phases

**Phase 1**: Idea/Hypothesis Development

Phase 2: Planning and Design

Phase 3: Implementation

Phase 4: Validation and Evaluation

Phase 5: Writing

# Phase 1: Idea Development

#### Identifying an area

Significant but unexplored phenomena / unrealized capability Opportunities for impact (Incorporate your strengths into HRI!)

#### Form a research question

Contextualize your question w.r.t. prior work



# Phase 2: Planning

Goal: Develop plan to answer your research question

Technical roadmap for new capability
Identify key components, technologies required

Develop an evaluation metric and protocol How will you know your contribution works?

If necessary: Seek IRB approval



# Phase 3: Implementation

The bulk of your project time will be spent here!

# What is the most used language in programming?

# **Profanity**

#### Phase 4: Validation and Evaluation

Design your experimental protocol

Define your metrics for evaluation

Collect data

Analyze data

Draw conclusions

# Phase 5: Writing

#### **Project Report**

4-8 page account of project progress
Written in ACM/IEEE conference paper format

#### **Project Presentations**

15 minute presentations in class

# CSCI 7000 :: Roadmap



# Algorithmic Human-Robot Interaction

# Motion Planning I

**CSCI 7000** 

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

# Motion Planning



# Motion Planning



# Motion Planning

Robot Motion Planning: Find a path from point A to point B

All complete search algorithms scale exponentially

Motion planning problems are high dimensional, e.g., big exponent.

#### But First...



# Sample Problem



# Sample Problem Terminology



A **state** is a representation of the world

An **action** is something that transitions you from one state to another (can also be a self-transition!)

A **transition function** T(s,a,s') provides the probability that a particular action **a** taken in a particular state **s** will bring the system to state **s'** 

A **reward function** R(s, a) provides the value of taking a particular action **a** in state **s** 

# Sample Solutions



# State Representation is Critical













Classified activity move\_to\_dash with likelihood 0.84811 Classified activity move to dash with likelihood 0.86419
Classified activity move to dash with likelihood 0.867
Classified activity move to dash with likelihood 0.867

Elapsed Time: 0.1sec

Elapsed Time: 0.13sec

Elapsed Time: 0.17sec

Elapsed Time: 0.2sec



Ground Truth: None

Ground Truth: None

Ground Truth: None

# The Real World Brings Uncertainty



"All models are wrong but some are useful."
- George Box

# Recurring Theme: Robotics is Challenging

Actions in the world must be coordinated with perception of and models of the world

Physical world is continuous, dynamic, and accessible only through sensing

Sensors and actuators are uncertain, exhibiting noise, and are subject to error

Communicating intent often requires comprehensive knowledge about the world

It's not enough for robots to be functional, they must also be tolerable

#### Kinematics

- Kinematics
  - The way parts of a robot move with respect to each other and the environment
  - Position (x)
  - Speed (x')
- Dynamics

Acceleration (x'')

• Jerk (x''')



# Degrees of Freedom: X, Y, Z, Yaw, Pitch, and Roll



# Degrees of Freedom (cont.)

- Most robot arms have 6-DoF at their end effector
- Can also measure DoF at the robot's base
  - DoF = Number of controllable points of actuation
  - Can have redundant degrees of freedom (Robot DoF > Environment DoF)
    - Why would you want this?
- Control paradigms
  - Position control
  - Torque control
  - Force control



# Manipulator DoF



### Forward Kinematics



# Nested Coordinate Systems



# Transformations in Practice: Forward Kinematics (Arm)



$$x_1 = \cos \alpha l_1$$

$$y_1 = \sin \alpha l_1$$

$$x_2 = \cos(\alpha + \beta)l_2 + x_1$$

$$y_2 = \sin(\alpha + \beta)l_2 + z_1$$

$$x = \cos(\alpha + \beta)l_2 + \cos\alpha l_1$$
  
$$y = \sin(\alpha + \beta)l_2 + \sin\alpha l_1$$

#### Inverse Kinematics

Known:  $l_1$ ,  $l_2$ 



$$x = \cos(\alpha + \beta)l_2 + \cos\alpha l_1$$
  
$$y = \sin(\alpha + \beta)l_2 + \sin\alpha l_1$$

Forward Kinematics (Given  $\alpha$ ,  $\beta$  find x, y)

What angles do I need to set my joints to reach a desired pose?

Inverse Kinematics (Given x, y find  $\alpha$ ,  $\beta$ )

### Inverse Kinematics of a 2-link Arm



$$x_1 = \cos \alpha l_1$$

$$\left[\cos^{-1} \frac{x_1}{l_1}, -\cos^{-1} \frac{x_1}{l_1}\right]$$

$$x = \cos(\alpha + \beta)l_2 + \cos\alpha l_1$$
  
$$y = \sin(\alpha + \beta)l_2 + \sin\alpha l_1$$

$$\alpha \to \cos^{-1} \left( \frac{x^2y + y^3 - \sqrt{4x^4 - x^6 + 4x^2y^2 - 2x^4y^2 - x^2y^4}}{2(x^2 + y^2)} \right)$$

$$\beta \to -\cos^{-1}\left(1/2(-2+x^2+y^2)\right)$$

Easier ways to solve the IK

problems





Just the Euclidean distance between two vectors!

$$f_{x,y}(\alpha,\beta) = \sqrt{(\sin(\alpha + \beta)l_2 + \sin(\alpha)l_1 - y)^2 + (\cos(\alpha + \beta)l_2 + \cos(\alpha)l_1 - x)^2}$$



Figure 2.4:  $C_{obs}$  for a robot R that translates in x-y with a rectangle obstacle O







- Allows us to reduce robot positions to a single point
  - Very convenient for planning!
- One axis of configuration space for each degree of freedom of the robot
  - Again, very convenient for planning as it can occur in the same space as the robot's controllers

## Non-circular Robots in C-Space

Workspace (x, y)

C-space  $(x, y, \theta)$ 





Robot

Path is hard to express

Path is just a space curve

## **End-effector Position Control**



## Motion Planning in EE Space



$$f_{x,y}(\alpha,\beta) = \sqrt{(\sin(\alpha + \beta)l_2 + \sin(\alpha)l_1 - y)^2 + (\cos(\alpha + \beta)l_2 + \cos(\alpha)l_1 - x)^2}$$

## Gradient Descent for Solving IK

Given distance-from-goal function f:

$$\nabla f(\alpha_0,\alpha_1,\alpha_2) = [\nabla f_{\alpha_0}(\alpha_0,\alpha_1,\alpha_2), \nabla f_{\alpha_1}(\alpha_0,\alpha_1,\alpha_2), \nabla f_{\alpha_2}(\alpha_0,\alpha_1,\alpha_2)]$$

$$\nabla f_{a_0} = (\alpha_0, \alpha_1, \alpha_2) = \frac{f(\alpha_0 + \Delta_x, \alpha_1, \alpha_2) - f(\alpha_0, \alpha_1, \alpha_2)}{\Delta x}$$

$$\nabla f_{a_1} = (\alpha_0, \alpha_1, \alpha_2) = \frac{f(\alpha_0, \alpha_1 + \Delta_y, \alpha_2) - f(\alpha_0, \alpha_1, \alpha_2)}{\Delta y}$$

$$\nabla f_{a_2} = (\alpha_0, \alpha_1, \alpha_2) = \frac{f(\alpha_0, \alpha_1, \alpha_2 + \Delta_z) - f(\alpha_0, \alpha_1, \alpha_2)}{\Delta z}$$

## Gradient Descent for Solving IK

#### **Gradient Definition:**

$$\nabla f(\alpha_0, \alpha_1, \alpha_2) = [\nabla f_{\alpha_0}(\alpha_0, \alpha_1, \alpha_2), \nabla f_{\alpha_1}(\alpha_0, \alpha_1, \alpha_2), \nabla f_{\alpha_2}(\alpha_0, \alpha_1, \alpha_2)]$$

$$\nabla f_{a_0} = (\alpha_0, \alpha_1, \alpha_2) = \frac{f(\alpha_0 + \Delta_x, \alpha_1, \alpha_2) - f(\alpha_0, \alpha_1, \alpha_2)}{\Delta x}$$

#### **Update Rule:**

$$\alpha_{0} \leftarrow \alpha_{0} - L\nabla f_{\alpha_{0}}(\alpha_{0}, \alpha_{1}, \alpha_{2})$$

$$\alpha_{1} \leftarrow \alpha_{1} - L\nabla f_{\alpha_{1}}(\alpha_{0}, \alpha_{1}, \alpha_{2})$$

$$\alpha_{2} \leftarrow \alpha_{2} - L\nabla f_{\alpha_{2}}(\alpha_{0}, \alpha_{1}, \alpha_{2})$$

Distance from goal  $f: \mathbb{R}^3 \to \mathbb{R}$ 

Joint angles  $\alpha_i$ 

Learning rate

## Jacobian



#### Linear equations dictate end-effector position:

$$x_e(\alpha, \beta) = l_1 \cos(\alpha) + l_2 \cos(\alpha + \beta)$$
$$y_e(\alpha, \beta) = l_1 \sin(\alpha) + l_2 \sin(\alpha + \beta)$$

Relationship between position change and angle change:

$$dx_{e} = \frac{\delta x_{e}(\alpha, \beta)}{\delta \alpha} d\alpha + \frac{\delta x_{e}(\alpha, \beta)}{\delta \beta} d\beta$$

$$dy_{e} = \frac{\delta y_{e}(\alpha, \beta)}{\delta \alpha} d\alpha + \frac{\delta y_{e}(\alpha, \beta)}{\delta \beta} d\beta$$

$$dx = I \cdot d\mathbf{q}$$

$$\frac{dx_e}{dt} = \boldsymbol{J} \frac{d\boldsymbol{q}}{dt}$$
 or in other terms:  $v_e = \boldsymbol{J} \cdot \dot{\boldsymbol{q}}$ 

### Jacobian

$$\frac{dx_e}{dt} = \boldsymbol{J} \frac{d\boldsymbol{q}}{dt}$$
 or in other terms:  $v_e = \boldsymbol{J} \cdot \dot{\boldsymbol{q}}$ 

$$\dot{q} = J^{-1} \cdot (v_{e,des} + K(x_{e,des} - x))$$

q: Change in C-spaceK: gain

 $v_{e,des}$ : Desired velocity

 $x_{e,des}$ : Desired position

Convergence Problems!



$$\nabla f_{a_0} = (\alpha_0, \alpha_1, \alpha_2) = \frac{f(\alpha_0 + \Delta_x, \alpha_1, \alpha_2) - f(\alpha_0, \alpha_1, \alpha_2)}{\Delta x}$$

$$\alpha_0 \leftarrow \alpha_0 - L \nabla f_{\alpha_0}(\alpha_0, \alpha_1, \alpha_2)$$

Convergence Problems!



## Fast IK Planning



## YCB Task: HERB Stacks Cups

Vinitha Ranganeni Jennifer King Rachel Holladay Siddhartha Srinivasa

The Robotics Institute Carnegie Mellon University





# Motion Planning



#### Holonomic vs. Non-Holonomic



# Holonomic or Non-Holonomic on the 2D plane?



Steering wheel is rotated 90 degrees then acceleration is applied for 1 second vs.

Acceleration is applied for 1 second then steering wheel rotated 90 degrees!

Different ending configuration = Non-holonomic!

## Moving from start to goal state



#### **General Approach:**

Reduce what amounts to an intractable problem in continuous C-space to a tractable problem in a discrete space.

#### **Tools:**

- Environment Representations
- Search Algorithms

## Next Time: Planning across length scales



# Project Inspiration Reading Assignment

Computational Human-Robot Interaction

http://guyhoffman.com/publications/ThomazHoffmanCakmak16.pdf

Survey of recent papers in the field:

Serve as inspiration for final projects

Catalyst for choosing special topics to cover

#### For Next Week:

• Install **Ubuntu 16.04:** <a href="http://releases.ubuntu.com/16.04/">http://releases.ubuntu.com/16.04/</a>

 Install ROS Kinetic: http://wiki.ros.org/kinetic/Installation

 (Optional) Go through the ROS Beginner Tutorials: <u>http://wiki.ros.org/ROS/Tutorials</u>