TESTOWANIE HIPOTEZ - MODELE; poziom istotności $\alpha \in (0; 1)$

Model 1. Test istotności dla wartości średniej μ

Cecha $X \sim N(\mu, \sigma)$, σ - znane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu = \mu_0, \qquad H_1: \quad \mu \neq \mu_0 \\ \mu < \mu_0; \\ \mu > \mu_0$$

Statystyka testowa:

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim_{|H_0} N(0, 1);$$

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 2. Test istotności dla wartości średniej μ

Cecha $X \sim N(\mu, \sigma)$, σ - nieznane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu = \mu_0, \qquad H_1: \quad \mu \neq \mu_0 \\ \mu < \mu_0; \\ \mu > \mu_0$$

Statystyka testowa:

$$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim_{|H_0} t_{n-1};$$

Zbiór krytyczny:

$$C = (-\infty, -t_{1-\frac{\alpha}{2}, n-1}) \cup \langle t_{1-\frac{\alpha}{2}, n-1}, \infty)$$

$$C = (-\infty, -t_{1-\alpha, n-1})$$

$$C = \langle t_{1-\alpha, n-1}, \infty);$$

Decyzja:

Jeżeli $T_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $T_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 3. Test istotności dla wartości średniej μ , gdy liczebność próby $n \ge 100$

Cecha X ma dowolny rozkład, μ , σ - nieznane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu = \mu_0, \qquad H_1: \quad \mu \neq \mu_0 \\ \mu < \mu_0; \\ \mu > \mu_0$$

Statystyka testowa:

$$Z = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim_{|H_0}$$
 bliski $N(0, 1)$;

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 4. Test istotności dla wariancji σ^2

Cecha $X \sim N(\mu, \sigma)$;

Sformułowanie hipotezy zerowej i alternatywnej:

$$\begin{aligned} \mathbf{H}_0: \sigma^2 &= \sigma_0^2, \qquad \mathbf{H}_1: \quad \sigma^2 \neq \sigma_0^2 \\ & \quad \sigma^2 < \sigma_0^2 \ ; \\ & \quad \sigma^2 > \sigma_0^2 \end{aligned}$$

Statystyka testowa:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim_{|H_0} \chi_{n-1}^2;$$

Zbiór krytyczny:

$$C = (0, \chi_{\frac{\alpha}{2}, n-1}^2) \cup \langle \chi_{1-\frac{\alpha}{2}, n-1}^2, \infty)$$

$$C = (0, \chi_{\alpha, n-1}^2)$$

$$C = \langle \chi_{1-\alpha, n-1}^2, \infty);$$

Decyzja:

Jeżeli $\chi^2_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $\chi^2_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 5. Test istotności dla równości średnich jednej cechy w dwóch populacjach

Cecha X ma w dwóch populacjach rozkłady $N(\mu_1, \sigma_1)$ i $N(\mu_2, \sigma_2)$, σ_1, σ_2 - znane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu_1 = \mu_2, \qquad H_1: \quad \mu_1 \neq \mu_2 \\ \mu_1 < \mu_2; \\ \mu_1 > \mu_2$$

Statystyka testowa:

$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim_{|H_0} N(0, 1);$$

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 6. Test istotności dla równości średnich jednej cechy w dwóch populacjach

Cecha X ma w dwóch populacjach rozkłady $N(\mu_1, \sigma_1)$ i $N(\mu_2, \sigma_2)$, gdzie $\sigma_1 = \sigma_2$ są nieznane, ale równe;

Sformułowanie hipotezy zerowej i alternatywnej:

$$\mathbf{H}_0: \mu_1 = \mu_2, \qquad \mathbf{H}_1: \quad \mu_1 \neq \mu_2 \\ \mu_1 < \mu_2 ; \\ \mu_1 > \mu_2$$

Statystyka testowa:

$$T = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim_{|H_0} t_{n_1 + n_2 - 2}, \quad \text{gdzie} \quad S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2};$$

Zbiór krytyczny:

$$C = (-\infty, -t_{1-\frac{\alpha}{2}, n_1+n_2-2}) \cup \langle t_{1-\frac{\alpha}{2}, n_1+n_2-2}, \infty)$$

$$C = (-\infty, -t_{1-\alpha, n_1+n_2-2})$$

$$C = \langle t_{1-\alpha, n_1+n_2-2}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 7. Test istotności dla równości średnich jednej cechy w dwóch populacjach

Cecha X ma w dwóch populacjach rozkłady $N(\mu_1, \sigma_1)$ i $N(\mu_2, \sigma_2)$, gdzie σ_1, σ_2 sa nieznane, ale $n_1, n_2 \ge 100$;

Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu_1 = \mu_2, \qquad H_1: \quad \mu_1 \neq \mu_2$$

 $\mu_1 < \mu_2$
 $\mu_1 > \mu_2$

Statystyka testowa:

$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim_{|H_0} N(0, 1);$$

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 8. Test istotności dla równości średnich jednej cechy mierzonej przed i po wykonaniu operacji - metoda zmiennych połączonych;

X - cecha mierzona przed operacją, Y - cecha mierzona po operacji,

$$D = X - Y \sim N(\mu_D, \sigma_D), \quad \sigma_D$$
 - znane;

Sformułowanie hipotezy zerowej i alternatywnej:

$${\cal H}_0: \mu_D = 0, \qquad {\cal H}_1: \quad \mu_D \neq 0 \\ \mu_D < 0 ; \\ \mu_D > 0$$

Statystyka testowa:

$$Z = \frac{\overline{D}}{\frac{\sigma_D}{\sqrt{n}}} \sim_{|H_0} N(0,1);$$

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 9. Test istotności dla równości średnich jednej cechy mierzonej przed i po wykonaniu operacji - metoda zmiennych połączonych;

X - cecha mierzona przed operacją, Y - cecha mierzona po operacji,

 $D = X - Y \sim N(\mu_D, \sigma_D), \quad \sigma_D$ - nieznane;

Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu_D = 0,$$
 $H_1: \mu_D \neq 0$
 $\mu_D < 0;$
 $\mu_D > 0$

Statystyka testowa:

$$T = \frac{\overline{D}}{\frac{S_D}{\sqrt{n}}} \sim_{|H_0} t_{n-1};$$

Zbiór krytyczny:

$$C = (-\infty, -t_{1-\frac{\alpha}{2}, n-1}) \cup \langle t_{1-\frac{\alpha}{2}, n-1}, \infty)$$

$$C = (-\infty, -t_{1-\alpha, n-1})$$

$$C = \langle t_{1-\alpha, n-1}, \infty);$$

Decyzja:

Jeżeli $T_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $T_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .

Model 10. Test istotności dla proporcji p (założenie: $n\hat{p} \ge 5$, $n(1-\hat{p}) \ge 5$);

$$H_0: p = p_0,$$
 $H_1: p \neq p_0$
 $p < p_0;$
 $p > p_0$

Statystyka testowa:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim_{|H_0} N(0,1);$$

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 . **Model 11.** Test istotności różnicy proporcji dwóch populacji (założenie: $n_i \hat{p}_i \geq 5$, $n_i (1 - \hat{p}_i) \geq 5$ dla i = 1, 2);

$$\mathbf{H}_0: p_1 = p_2, \qquad \mathbf{H}_1: \quad p_1 \neq p_2 \\ p_1 < p_2; \\ p_1 > p_2$$

Statystyka testowa:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})\hat{p}(1 - \hat{p})}} \sim_{|H_0} N(0, 1);$$

gdzie $\hat{p} = \frac{K_1 + K_2}{n_1 + n_2},$ zaś K_i oznacza liczbę elementów w i-tej próbie o zadanej cesze;

Zbiór krytyczny:

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$C = (-\infty, -z_{1-\alpha})$$

$$C = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in C$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin C$, to nie ma podstaw do odrzucenia H_0 .