Science-1

Assignment-1

Moida Praneeth Jain, 2022010193

Question 1

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(a)

$$\begin{split} [\sigma_1,\sigma_2] &= \sigma_1\sigma_2 - \sigma_2\sigma_1 \\ [\sigma_1,\sigma_2] &= \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} - \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \\ [\sigma_1,\sigma_2] &= \begin{pmatrix} 2i & 0 \\ 0 & -2i \end{pmatrix} \\ [\sigma_2,\sigma_1] &= \begin{pmatrix} -2i & 0 \\ 0 & 2i \end{pmatrix} \end{split}$$

Therefore, σ_1 and σ_2 do not commute.

$$\begin{split} [\sigma_2,\sigma_3] &= \sigma_2\sigma_3 - \sigma_3\sigma_2 \\ [\sigma_2,\sigma_3] &= \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \\ [\sigma_2,\sigma_3] &= \begin{pmatrix} 0 & 2i \\ 2i & 0 \end{pmatrix} \\ [\sigma_3,\sigma_2] &= \begin{pmatrix} 0 & -2i \\ -2i & 0 \end{pmatrix} \end{split}$$

Therefore, σ_2 and σ_3 do not commute.

$$\begin{split} [\sigma_1,\sigma_3] &= \sigma_1\sigma_3 - \sigma_3\sigma_1 \\ [\sigma_1,\sigma_3] &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ [\sigma_1,\sigma_3] &= \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} \\ [\sigma_3,\sigma_1] &= \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \end{split}$$

Therefore, σ_1 and σ_3 do not commute.

Note that trivially, σ_1 commutes with σ_1 , σ_2 commutes with σ_2 and σ_3 commutes with σ_3 ($[\sigma_i, \sigma_i] = \mathbf{0}$)

For
$$\sigma_1, \det(\sigma_1 - \lambda I) = 0$$

$$\det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda_1 = -1, \lambda_2 = 1$$

$$\sigma_1 x_1 = \lambda_1 x_1$$

$$\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{11}\\ x_{12} \end{pmatrix} = \begin{pmatrix} -x_{11}\\ -x_{12} \end{pmatrix}$$

$$x_{12} = -x_{11}$$

$$x_1 = \begin{pmatrix} \alpha\\ -\alpha \end{pmatrix}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_1 \mid x_1 \rangle} = \sqrt{2\alpha}$

$$\begin{aligned} |x_1\rangle &= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \\ \sigma_1 x_2 &= \lambda_2 x_2 \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix} &= \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix} \\ x_{22} &= x_{21} \\ x_2 &= \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \end{aligned}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_2|x_2\rangle}=\sqrt{2\alpha}$

$$|x_2\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

 $\text{$\stackrel{.}{\sim}$ for σ_1, eigenvalues are -1, 1, and corresponding orthogonal eigenvectors are $\binom{\alpha}{-\alpha}$, $\binom{\beta}{\beta}$, which upon normalizing give $\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$, $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$. }$

For σ_2 , $\det(\sigma_2 - \lambda I) = 0$

$$\det \begin{pmatrix} -\lambda & -i \\ i & -\lambda \end{pmatrix} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda_1 = -1, \lambda_2 = 1$$

$$\sigma_2 x_1 = \lambda_1 x_1$$

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{12} \end{pmatrix} = \begin{pmatrix} -x_{11} \\ -x_{12} \end{pmatrix}$$

$$x_{12} = -ix_{11}$$

$$x_1 = \begin{pmatrix} \alpha \\ -i\alpha \end{pmatrix}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_1 \mid x_1 \rangle} = \sqrt{2\alpha}$

$$|x_1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} \end{pmatrix}$$

$$\sigma_2 x_2 = \lambda_2 x_2$$

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix} = \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix}$$

$$x_{22} = ix_{21}$$

$$x_2 = \begin{pmatrix} \alpha \\ i\alpha \end{pmatrix}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_2 \mid x_2 \rangle} = \sqrt{2\alpha}$

$$|x_2\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$

 \therefore for σ_2 , eigenvalues are -1, 1, and corresponding orthogonal eigenvectors are $\binom{\alpha}{-i\alpha}$, $\binom{\beta}{i\beta}$, which upon normalizing give $\binom{\frac{1}{\sqrt{2}}}{-\frac{i}{\sqrt{2}}}$, $\binom{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}$.

For σ_3 , $\det(\sigma_3 - \lambda I) = 0$

$$\det\begin{pmatrix} 1-\lambda & 0\\ 0 & -1-\lambda \end{pmatrix} = 0$$

$$\lambda^2 - 1 = 0$$

$$\lambda_1 = -1, \lambda_2 = 1$$

$$\sigma_3 x_1 = \lambda_1 x_1$$

$$\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_{11}\\ x_{12} \end{pmatrix} = \begin{pmatrix} -x_{11}\\ -x_{12} \end{pmatrix}$$

$$x_{11} = 0$$

$$x_1 = \begin{pmatrix} 0\\ \alpha \end{pmatrix}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_1 \mid x_1 \rangle} = \alpha$

$$|x_1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\sigma_3 x_2 = \lambda_2 x_2$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix} = \begin{pmatrix} x_{21} \\ x_{22} \end{pmatrix}$$

$$x_{22} = 0$$

$$x_2 = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

For orthonormal basis, we divide by its magnitude $\sqrt{\langle x_2 \mid x_2 \rangle} = \alpha$

$$|x_2\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

 $\dot{\sigma}$ for σ_3 , eigenvalues are -1,1, and corresponding orthogonal eigenvectors are $\binom{0}{\alpha},\binom{\beta}{0}$, which upon normalizing give $\binom{0}{1},\binom{1}{0}$.

(c)

Since
$$|\varphi\rangle = \sum_i c_i |\lambda_i\rangle, ... \, P(\lambda_i) = |c_i|^2$$

$$P\!\left(\hat{A}\right)$$
 in $|\varphi\rangle$ is $|\langle x_1| \ \varphi\rangle|^2$ for state $|x_1\rangle$

Here, we consider the eigenstate of σ_2

$$\varphi = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}$$

$$P(\sigma_1) = \begin{cases} |\langle x_1 | \varphi \rangle|^2 & \text{for state } |x_1\rangle \\ |\langle x_2 | \varphi \rangle|^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_1) = \begin{cases} |\binom{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}|^2 & \text{for state } |x_1\rangle \\ \\ |\binom{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}|^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_1) = \begin{cases} |\frac{1-i}{2}|^2 & \text{for state } |x_1\rangle \\ |\frac{1+i}{2}|^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_1) = \begin{cases} \left(\frac{1}{\sqrt{2}}\right)^2 & \text{for state } |x_1\rangle \\ \left(\frac{1}{\sqrt{2}}\right)^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_1) = \begin{cases} \frac{1}{2} & \text{for state } |x_1\rangle \\ \frac{1}{2} & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_3) = \begin{cases} |\langle x_1| \ \varphi \rangle|^2 & \text{for state } |x_1\rangle \\ |\langle x_2| \ \varphi \rangle|^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_3) = \begin{cases} |(0 \ 1) * \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}|^2 & \text{for state } |x_1\rangle \\ |(1 \ 0) * \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix}|^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_3) = \begin{cases} \left(\frac{1}{\sqrt{2}}\right)^2 & \text{for state } |x_1\rangle \\ \left(\frac{1}{\sqrt{2}}\right)^2 & \text{for state } |x_2\rangle \end{cases}$$

$$P(\sigma_3) = \begin{cases} \frac{1}{2} & \text{for state } |x_1\rangle \\ \frac{1}{2} & \text{for state } |x_2\rangle \end{cases}$$