

LOGISTIC REGRESSION PART-5

LECTURE 50

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Interpretation of Results
 - Odds model
 - Multiplicative factor (e^β)
 - If β < 0, increase in x => decrease in odds
 - If $\beta > 0$, increase in x => increase in odds
 - For any value of x, interpretative statements of results are same
 - Probability model
 - For a unit increase in a particular predictor, corresponding change in the probability value is not a constant, while holding all other predictors constant
 - Depends on the specific values of the predictor
 - Interpretative statements of results depend on specific values of x

- Odds and odds ratios
 - Odds is a ratio of two probability values (prob. of class 1/prob. Of Class 0)
 - Odds ratio is ratio of two odds (odds of class m1/odds of class m2)
 - Odds ratio > 1 => odds of class m1 are higher than class m2

Open RStudio

- Linear Regression for a categorical outcome variable?
 - Can be done by treating the outcome variable as continuous and coding it numerically
 - However, anomalies will lead to spurious modeling
 - Predictions can take any value, not just dummy values {0,1}
 - Outcome variable or residuals don't follow normal distribution
 - binomial distribution
 - Variance of outcome variable is not constant across all records (violation of homoscedasticity)
 - np(1-p)

- Logistic Regression for Profiling Task
 - Apart from model performance on validation partition
 - Model's fit to data is assessed on training partition
 - However, still avoid overfitting
 - · Usefulness of predictors is examined
 - Goodness of fit metrics
 - Overall fit of the model
 - Deviance (equivalent to SSE in linear regression)
 - 1 Deviance/Null Deviance (equivalent to multiple R² in linear regression)
 - Single predictors

- Outcome variable with m classes (m>2)
 - Multinomial logistic regression
 - Separate binary logistic regression model for m-1 classes (one class is treated as reference class)
 - Ordinal logistic regression
 - Large no. of ordinal classes: treat ordinal variable as continuous variable and apply multiple linear regression

- Outcome variable with m classes (m>2)
 - Ordinal logistic regression
 - Small no. of ordinal classes: Proportional odds or cumulative logit method
 - Separate binary logistic regression model for m-1 cumulative probabilities

For a three class case: C1, C2, and C3 and a single predictor x1

$$logit(C1) = \alpha_0 + \beta_1 x_1$$

$$logit(C1or C2) = \beta_0 + \beta_1 x_1$$

RStudio

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...