EXERCISES 2 (INTERSECTION THEORY)

Exercise 1. Let M be a finitely generated A-module (A noetherian), and $x \in A$.

- (i) The element x is a nonzerodivisor in M if and only it belongs to no prime of $\mathrm{Ass}(M)$.
- (ii) The multiplication by x map $x_M : M \to M$ is nilpotent if and only if x belongs to every prime of Ass(M).

Exercise 2. When \mathcal{F} is a coherent \mathcal{O}_X -module, we define

$$Ass(\mathcal{F}) = \{ x \in X | \mathfrak{m}_x \in Ass_{\mathcal{O}_{X,x}}(\mathcal{F}_x) \}.$$

A closed embedding $Z \to X$ is called *locally principal* if there is a covering by open affine subschemes $U_i = \operatorname{Spec} A_i$ and elements $s_i \in A_i$ such that $Z \cap U_i = \operatorname{Spec}(A_i/s_iA_i)$.

- (i) If $X = \operatorname{Spec} A$, and $M = H^0(X, \mathcal{F})$, show that $\operatorname{Ass}(M) = \operatorname{Ass}(\mathcal{F})$.
- (ii) Show that a closed embedding $D \to X$ is an effective Cartier divisor if and only if:
 - $D \to X$ is locally principal,
 - and $D \cap \mathrm{Ass}(\mathcal{O}_X) = \emptyset$.
- (iii) Let $f: Y \to X$ be a morphism, and $Z \to X$ a locally principal closed embedding. Then show that $f^{-1}Z \to Y$ is a locally principal closed embedding.
- (iv) Let $f: Y \to X$ be a morphism, and $D \to X$ an effective Cartier divisor. Show that $f^{-1}D \to Y$ is an effective Cartier divisor if and only if $f(\operatorname{Ass}(\mathcal{O}_Y)) \cap D = \emptyset$.
- (v) Assume that f is flat. Show that $f(Ass(\mathcal{O}_Y)) \subset Ass(\mathcal{O}_X)$.
- (vi) Explain how we can reprove the lemma concerning pull-backs of effective Cartier divisors.

Exercise 3. (i) Let M be a finitely generated A-module (A noetherian). Show that the following morphism is injective:

$$M \to \bigoplus_{\mathfrak{p} \in \mathrm{Ass}(M)} M_{\mathfrak{p}}.$$

Let X be a variety.

- (ii) Show that every generic point of X is in $Ass(\mathcal{O}_X)$.
- (iii) Show that X is reduced if and only if:
 - for every generic point $x \in X$, the ring $\mathcal{O}_{X,x}$ is reduced,
 - and $Ass(\mathcal{O}_X)$ is the set of generic points.

Exercise 4. Let $f: Y \to X$ be a flat morphism, with X irreducible and Y equidimensional. Show that f has relative dimension dim $Y - \dim X$.

Exercise 5. Let A be a noetherian local domain of dimension one. Show that A is a discrete valuation ring if and only if it is integrally closed (in its fraction field).