ME101: Engineering Mechanics (3 1 0 8) 2019-20 (II Semester)

LECTURE: 6

(Continued)

When more number of members/supports are present than are needed to prevent collapse/stability

- → Statically Indeterminate Truss
- cannot be analysed using equations of equilibrium alone!
- additional members or supports which are not necessary for maintaining the equilibrium configuration → Redundant

External and Internal Redundancy

Extra Supports than required → External Redundancy

Degree of indeterminacy from available equilibrium equations

Extra Members than required → Internal Redundancy

Internal Redundancy or Degree of Internal Static Indeterminacy

Extra Members than required → Internal Redundancy

Equilibrium of each joint can be specified by two scalar force equations \rightarrow 2j equations for a truss with "j" number of joints

→ Known Quantities

For a truss with "m" number of two force members, and maximum 3 unknown support reactions → Total Unknowns = m + 3 ("m" member forces and 3 reactions for externally determinate truss)

```
m + 3 = 2j \rightarrow Statically Determinate Internally
m + 3 > 2j \rightarrow Statically Indeterminate Internally
m + 3 < 2j \rightarrow Unstable Truss
```


No. of unknown reactions = 3

No. of equilibrium equations = 3

: Statically Determinate (External)

No. of members (m) = 9

No. of joints (j) = 6

No. of unknown reactions (R) = 3

∴m + R = 2j

: Statically Determinate (Internal)

Presence of internal members

: Additional sharing for forces

: Additional Stability

Further addition of internal members

: **Strengthening** of Joints C and F

: Additional Stability and force sharing

: m + R > 2j

: Statically Indeterminate (Internal)

Plane Truss :: Analysis Methods

Zero Force Members

$$+ \sum \Sigma F_y = 0$$
; $F_{DC} \sin \theta = 0$; $F_{DC} = 0$ since $\sin \theta \neq 0$
 $+ \angle \Sigma F_x = 0$; $F_{DE} + 0 = 0$; $F_{DE} = 0$

 \mathbf{F}_{DC}

Plane Truss :: Analysis Methods

Zero Force Members: Simplified Structures

Plane Truss :: Analysis Methods

Zero Force Members: Conditions

- if only two noncollinear members form a truss joint and no external load or support reaction is applied to the joint, the two members must be zero force members
- •if three members form a truss joint for which two of the members are collinear, the third member is a zero-force member provided no external force or support reaction is applied to the joint

Structural Analysis: Plane Truss

Special Condition

 When two pairs of collinear members are joined as shown in figure, the forces in each pair must be equal and opposite.

