ML Toolbox Etape 2

tl;dr

- RBF Basique 100% (implem dll)
- RBF avec k means (LLoyds) 20% (implem consoleApp)
- SVM avec noyau radial * 0%

Présentation du Dataset choisi

link: https://www.kaggle.com/primaryobjects/voicegender/home

A partir de mesure récolté sur des enregistrements de voix prédire le genre.

Présentation du protocole de test

Resultat fournis par dans la description kaggle

Algo	Result
Baseline (always predict male)	50% / 50%
Logistic Regression	97% / 98%
CART	96% / 97%
Random Forest	100% / 98%
SVM	100% / 99%
XGBoost	100% / 99%

Objectif: vérifier et réussir à reproduire ces resultats

- Minimiser le loss sur le dataset de train pour généraliser sur le dataset de test.
- Maximiser la binary_accuracy sur les dataset train/test à > 95%

Présentation du/des modèles testés

- Classification Linéaire
- MLP Classification

Présentation des résultats obtenus

cf: pa2018/part3/Kera/logs/

- MLP Resulta opti
- dense = 2*64
- dropout = 0.5
- activation = relu
- epochs = 1000

- validation_split = 0.2
- batch_size = 128
- loss = binary_crossentropy
- optimizer = rmsprop()

• MLP test overfitting

4 layer 4096 outputs

- activation = Tanh
- epochs = 200
- validation_split = 0.2
- batch_size = 32
- optimizer = sgd(0.001, momentum=0.9)

- activation = relu
- epochs = 100
- validation_split = 0.2
- batch_size = 32
- optimizer = adam()

Notebook

Keras notebook

• Lib notebook

Script

- _keras.py
- keras_linear_classif.py
- lib.py

QuickStart

Start tensorflow backend

 λ activate tensorflowLatest

Start jupyter noteboob

 λ jupyter notebook

Start tensorboard

λ tensorboard --logdir=result:./Keras/logs/