Interrupted Time Series Analysis for Single Series and Comparative Designs: Using Administrative Data for Healthcare Impact Assessment

Joseph M. Caswell, Ph.D.

Lead Analyst

Institute for Clinical Evaluative Sciences (ICES) North and Epidemiology, Outcomes & Evaluation Research Health Sciences North Research Institute (HSNRI)

Northeast Cancer Centre

Presentation Overview

- Quasi-experimental research
- Interrupted time series (ITS)
- ITS single series with example
- ITS comparative with example
- Autocorrelation
- Adjusting standard errors (SE) in SAS
- Guide and macro

Quasi-Experimental Research

Experimental research:

- "Gold-standard" is randomized controlled trial (RCT)
- i.e., drug trials (random assignment to treatment and placebo groups)
- Treatment and control groups balanced on baseline measures
- Can be time-consuming, expensive, and even unethical (i.e., withholding care)

Quasi-experimental research:

- Alternative(s) available when RCT is not an option
- Quickly implemented, cost-efficient
- Often times, observational data are already available
- Various statistical methodologies for observational studies (i.e., propensity scores, ITS, instrumental variables, etc)

Observational Studies

- Administrative data:
 - Routinely collected by hospitals and other healthcare facilities
 - Great source for conducting observational health studies
- ICES data holdings:
 - Examples:
 - Ontario Cancer Registry (OCR)
 - Registered Persons Database (RPDB)
 - Discharge Abstract Database (DAD)
 - Ontario Health Insurance Plan (OHIP)
 - Many, many more
- We can use administrative data to build a study cohort and create various indicator variables

What is ITS Analysis?

- Increasingly popular quasi-experimental alternative
- Analysis of time series data (i.e., an outcome measured over time)
- Comparison before and after an intervention or interruption
- Particularly useful for assessing impact of policy or some other healthcare initiative

Time Series Caveats

Example where simple pre- to post- comparison would be misleading

- Must control for pre-interruption trend
- Must also control for any autocorrelation (will get to this later!)

ITS Analysis

- Can identify different effects:
 - Level change (immediate effect)
 - Slope change (sustained effect)
 - Both

Single Series ITS Analysis

- Single time series for outcome variable
 - Example: annual rates of influenza, monthly counts of administered chemotherapy, etc

- Measured before and after some intervention
 - Example: implementing a new hand hygiene regimen, changing policy for use of chemotherapy, etc
- Are there significant changes in level and/or slope following the intervention?

Some Statistical Methodology

- ITS analyses use regression-based techniques
- Added dummy variables for ITS
- Standard linear regression:

$$y = \alpha + \beta x + \varepsilon$$

where α = intercept, β = coefficient, x = independent
variable, ε = residual (error)

Single ITS based on segmented linear regression:

$$y = \alpha + \beta_1 T + \beta_2 X + \beta_3 XT + \varepsilon$$

where $T = \text{time}$,
 $X = \text{study phase}$,
 $XT = \text{time after interruption}$

Year	Rate	T	X	XT
2001	31.67	1	0	0
2002	30.19	2	0	0
2003	32.44	3	0	0
2004	31.50	4	0	0
2005	29.62	5	0	0
2006	30.18	6	0	0
2007	29.76	7	0	0
2008	29.89	8	0	0
2009	25.42	9	1	1
2010	24.26	10	1	2
2011	25.11	11	1	3
2012	24.07	12	1	4
2013	23.95	13	1	5
2014	22.78	14	1	6
2015	21.12	15	1	7

Single ITS Example

What do the results tell us?

- Fictional example:
 - The town of Squaresville kept records of % population eating candy at least once per day
 - Implemented new candy tax in 2008 (interruption)
 - Data from before and after candy tax analyzed

Single ITS Example

RESULTS

Parameter	Interpretation	Estimate	Standard Error	Probability
eta_1	Pre- Trend	-0.27702	0.1242	0.0475
β_2	Post- Level Change	-3.43952	0.8562	0.0020
β ₃	Post- Trend Change	-0.33083	0.1964	0.1202
$\beta_1 + \beta_3$	Post- Trend	-0.60786	-	<.0001

Comparative Design ITS Analysis

- We can strengthen ITS approach by including comparable "control" series (i.e., no interruption)
- Outcome measured from two sources (treatment and control) during same time period
- Were level and/or slope changes of treatment series significantly different from control series?
- Used far less often compared to single series ITS, even when control series are available

Building on Single Series Method

- Treatment and control time series are appended
- Regression equation is expanded:

control

y =
$$\alpha + \beta_1 T + \beta_2 X + \beta_3 XT + \beta_4 Z + \beta_5 ZT + \beta_6 ZX + \beta_7 ZXT + \epsilon$$

where Z = treatment or control,
ZT = time for treatment and 0 for control,
ZX = study phase for treatment and 0 for control,
ZXT = time after interruption for treatment and 0 for

Year	Rate	T	Х	TX	Z	ZT	ZX	ZTX
2001	31.67	1	0	0	1	1	0	0
2002	30.19	2	0	0	1	2	0	0
2003	32.44	3	0	0	1	3	0	0
2004	31.50	4	0	0	1	4	0	0
2005	29.62	5	0	0	1	5	0	0
2006	30.18	6	0	0	1	6	0	0
2007	29.76	7	0	0	1	7	0	0
2008	29.89	8	0	0	1	8	0	0
2009	25.42	9	1	1	1	9	1	1
2010	24.26	10	1	2	1	10	1	2
2011	25.11	11	1	3	1	11	1	3
2012	24.07	12	1	4	1	12	1	4
2013	23.95	13	1	5	1	13	1	5
2014	22.78	14	1	6	1	14	1	6
2015	21.12	15	1	7	1	15	1	7
2001	30.81	1	0	0	0	0	0	0
2002	30.96	2	0	0	0	0	0	0
2003	31.23	3	0	0	0	0	0	0
2004	28.65	4	0	0	0	0	0	0
2005	29.33	5	0	0	0	0	0	0
2006	29.10	6	0	0	0	0	0	0
2007	30.27	7	0	0	0	0	0	0
2008	28.64	8	0	0	0	0	0	0
2009	27.95	9	1	1	0	0	0	0
2010	29.55	10	1	2	0	0	0	0
2011	29.14	11	1	3	0	0	0	0
2012	26.87	12	1	4	0	0	0	0
2013	28.72	13	1	5	0	0	0	0
2014	27.89	14	1	6	0	0	0	0
2015	29.82	15	1	7	0	0	0	0

Comparative ITS Example

- What do the results tell us?
- Fictional example:
 - The town of Squaresville wanted to compare their results to a control series
 - Another nearby town, Sweet Tooth Valley, also kept records of % population eating candy at least once per day
 - Sweet Tooth Valley did not implement a candy tax in 2008 (no interruption)
 - Data sampled at same rate and during same time period as Squaresville time series

Comparative ITS Example

Post-Intervention Level difference 2.88% Δslope difference 0.69%

RESULTS

Parameter	Interpretation	Estimate	Standard Error	Probability
eta_1	Control Pre- Trend	-0.28988	0.1398	0.0500
β ₂	Control Post- Level	-0.56345	0.9632	0.5645
	Change			
β_3	Control Post- Trend	0.356667	0.2210	0.1208
	Change			
β_4	Treatment/Control Pre-	0.724643	0.9981	0.4755
	Level Difference			
β ₅	Treatment/Control Pre-	0.012857	0.1977	0.9487
	Trend Difference			
$oldsymbol{eta_6}$	Treatment/Control Post-	-2.87607	1.3622	0.0463
	Level Difference			
β ₇	Treatment/Control	-0.6875	0.3125	0.0386
	Change in Slope			
	Difference Pre- to Post-			

But Remember...Autocorrelation!

- What is it?
- An outcome measured at some point in time is correlated with past values of itself
- The lag order is "how far back in time" the correlation extends
- Example: monthly data, seasonal cycle (lag order = 12)

autocorrelation)

Temperature in January correlated with temperature in January from previous year, etc

Image source: NOAA

Autocorrelation

- How do we test for it?
- 1. Conduct our ITS regression analysis
- 2. Obtain residuals (error)

3. Identify residual autocorrelation:

Compute autocorrelation functions (ACF) up to specified lag (i.e., monthly data ~12-24) lag 0 always has correlation of 1...series correlated with itself

- 4. Identify optimal lag order:
 - Check partial ACF, use last significant lag before others drop to non-significant
- Note: this is a very general explanation (see <u>Box-Jenkins</u> approach for time series)
- Look for patterns that are guided by theoretical considerations

Adjusting Standard Errors (SE)

What can we do when autocorrelation is present?

Use more complicated models

 (i.e., autoregressive or ARIMA models, generalized linear mixed model)

Or

Use OLS regression as usual, adjust SE

ITS with Adjusted Standard Errors (SE)

- Newey-West autocorrelation adjusted standard errors
- Can do this in SAS with proc model after creating ITS dummy variables (T, X, TX):

```
proc model data=DATASET_NAME;

parms b0 b1 b2 b3;

OUTCOME_VAR = b0 + (b1*t) + (b2*x) + (b3*tx);

fit OUTCOME_VAR /gmm kernel=(bart,LAG+1,0)

vardef=n;

test b1+b3;

run; quit;

Underlined section is for adjusted SE

LAG+1 is a positive integer (lag order + 1)
```

SAS documentation: http://support.sas.com/kb/40/098.html

SAS Macro and Guide for ITS

- I have written a macro to perform ITS analyses in SAS software
- Based on Stata program by <u>Ariel Linden (2015)</u>
- Can perform single series or comparative ITS analyses
- Will create all necessary dummy variables
- Will adjust for autocorrelation (order needs to be determined before analysis) using Newey-West standard errors
- Will test $\beta_1 + \beta_3$ for single series analysis (post-slope)
- Compute residual and predicted values for further model diagnostics
- Produce table of estimates and plot time series
- Companion guide also available

SAS Macro and Guide for ITS

Guide paper and full macro code:

https://www.linkedin.com/pulse/interrupted-time-series-analysis-single-comparative-designs-caswell-1/

Contact me directly:

jcaswell@hsnri.ca

joseph.caswell@ices.on.ca

Thanks for listening!

