

greatlearning Learning for Life

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Python NumPy

NumPy stands for Numerical python and is the core library for numeric and scientific computing

Creating NumPy Array

Single-dimensional Array

Multi-dimensional Array

Initializing NumPy array with zeros

Initializing NumPy array with same number

Initializing NumPy array within a range

```
In [34]: import numpy as np
    n1=np.arange(10,20)
    n1
Out[34]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])
```

```
In [35]: import numpy as np
    n1=np.arange(10,50,5)
    n1
Out[35]: array([10, 15, 20, 25, 30, 35, 40, 45])
```

Python Pandas

Pandas stands for Panel Data and is the core library for data manipulation and data analysis

Pandas Data-Structures

Single-dimensional

Multi-dimensional

Series Object is one-dimensional labeled array

```
In [2]: import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1

Out[2]: 0   1
1   2
2   3
3   4
4   5
dtype: int64
```

```
In [4]: type(s1)
Out[4]: pandas.core.series.Series
```

Changing Index


```
In [2]: import pandas as pd
s1=pd.Series([1,2,3,4,5])
s1

Out[2]: 0   1
1   2
2   3
3   4
4   5
dtype: int64
```

```
In [5]: import pandas as pd
s1=pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
s1
Out[5]: a    1
b    2
c    3
d    4
e    5
dtype: int64
```

Extracting Individual Elements

Extracting a single element

```
In [15]: s1 = pd.Series([1,2,3,4,5,6,7,8,9])
s1[3]
Out[15]: 4
```

Extracting a sequence of elements

Extracting elements from back

Pandas Dataframe

Dataframe is a 2-dimensional labelled data-structure

Creating a Dataframe

Dataframe In-Built Functions

head()

shape()

describe()

tail()

SeaBorn Line Plot


```
In [10]: import seaborn as sns
    from matplotlib import pyplot as plt
```


Grouping data with 'hue'


```
In [29]: import pandas as pd
    sns.set(style="whitegrid")
    pokemon=pd.read_csv('pokemon.csv')
```


SeaBorn Scatterplot

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

We will have a case study on this census dataset

age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex
90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female
82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female
66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female
54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female
41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female


```
import pandas as pd
census=pd.read_csv('census.csv')
census.head()
```

age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex
90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female
82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female
66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female
54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female
41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female

In [7]: census.shape

Out[7]: (32561, 15)


```
census['age'].min()
17
```

```
census['hours.per.week'].mean()
40.437455852092995
```

```
census['age'].max()
90
```

```
census['hours.per.week'].max()
99
```



```
census['race'].value_counts()

White 27816
Black 3124
Asian-Pac-Islander 1039
Amer-Indian-Eskimo 311
Other 271
Name: race, dtype: int64
```

```
census['income'].value_counts()
<=50K     24720
>50K     7841
Name: income, dtype: int64
```

```
census['sex'].value_counts()
Male     21790
Female     10771
Name: sex, dtype: int64
```

```
census['workclass'].value counts()
Private
                    22696
Self-emp-not-inc
                    2541
Local-gov
                    2093
                    1836
State-gov
                    1298
Self-emp-inc
                    1116
Federal-gov
                      960
Without-pay
                       14
Never-worked
Name: workclass, dtype: int64
```


Renaming Columns

census.rename(columns={'workclass':"employment_type"},inplace=True)

census.rename(columns={'hours.per.week':"hours_worked"},inplace=True)

Extracting Individual Columns

```
unmarried = census[census['relationship']=='Unmarried']
unmarried.head()
```

```
divorced = census[census['marital.status']=='Divorced']
divorced.head()
```



```
old_male = census[(census['age']>50) & (census['sex']=='Male')]
old_male.head()
```

```
white_income = census[(census['race']=='White') & (census['income']=='>50K') ]
white_income.head()
```

```
master_private= census[(census['education']=='Masters') & (census['employment_type']=='Private') ]
master_private.head()
```


