Total No.	of Questions : 9]	SEAT No. :
P6485		[Total No. of Pages: 4
[5868] 101		
F.E. (Semester- I & II)		
ENGINEERING MATHEMATICS - I		
2019 Pattern) (107001)		
Time : 21/2		[Max. Marks: 70]
Instructions to the eardidates;		
1)	Q. 1 is compulsory.	
2)	Attempt Q2 or Q3, Q4 or Q5,Q6 or Q7, Q	Q8 or Q9.
3)	Neat diagrams must be drawn wherever	
4)	Figures to the right indicate full marks.	
5)	Use of electronic pocket calculator is a	llowed.
6)	Assume suitable data, if necessary.	
Q1) Write the correct option for the following multiple choice questions.		
a)	If eigen value of a square matrix A is a	zero then. [1]
	i) A is non-singular ii)	A is orthogonal
	iii) A is singular	None of these
∂u		
b)	If $u = y^x$ then $\frac{\partial u}{\partial x}$ is equal to	[1]
	i) 0 ii)	xy^{x-1}
	iii) $y^x \log y$ iv	• . 0
c)	The orthogonal transformation v = r	y transforms the guadratic form
C)	The orthogonal transformation $x = py$ transforms the quadratic form $Q = x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$ to the canonical form $Q' = y_1^2 + 2y_2^2 + y_3^2$. The rank of quadratic from is i) 2 ii) 3 iii) 1 $u = \sec^{-1} \left[\frac{x^2 + y^2}{x^2} \right]$ Find the value of $x = \frac{\partial u}{\partial x^2} + y = \frac{\partial u}{\partial x^2}$ [2]	
	The rank of quadratic from is [2]	
	The rank of quadratic from is	2 20 8. [2]
	1) 2 11)	3
	111) 1 1V	
$\int_{-1} \left[x^2 + y^2 \right] $ $\partial u = \partial u$		
d) $u = \sec^{-1} \left \frac{x^2 + y^2}{xy^2} \right $. Find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ [2]		
	i) –tan u ii)	-cot u
	iii) tan u iv) cot u

e) If
$$u = x^2 - y^2$$
 and $v = 2xy$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ is [2]

- A system of linear equations Ax = B, where B is a null (zero) matrix is [2] f)
 - Always consistent
 - Consistent only if |A| = 0ii)

Q2) a) If
$$z = \tan(y + ax) + (y - ax)^{3/2}$$
 find value of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2}$. [5]

b) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (1 - 4\sin^{2} u)\sin 2u$$
 [5]

c) If
$$u = f(x^2 - y^2; y^2 - z^2, z^2 - x^2)$$
 find value of $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z}$ [5]

b) If
$$u = \sin^{-1}\left(\sqrt{x^2 + y^2}\right)$$
 then find value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ [5]

ii) Consistent on.
iv) In consistent if ρ (A)

If $z = \tan(y + ax) + (y - ax)^{\frac{1}{2}}$ find value of $\frac{1}{\partial x^2}$.

b) If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$ then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin 2u$ [5]

c) If $u = f\left(x^2 - y^2; y^2 - \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$ find value of $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} + \frac{1}{z} \frac{\partial u}{\partial z}$ [5]

b) If $u = \sin^{-1}\left(\sqrt{x^2 + y^2}\right)$ then find value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2}$ [5]

c) If $u = f\left(r, s\right)$ where $r = x^2 + y^2$; $S = x^2 - x^2$ then show th $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = 4xy \frac{\partial u}{\partial r}$.

Q4) a) If
$$x = \text{uv}$$
 and $y = \frac{u+v}{u-v}$, find $\frac{\partial(u,v)}{x,y}$. [5]

- b) Examine for functional dependence $u = \frac{x y}{1 + xy}$, $v = \tan^{-1} x \tan^{-1} y$ and if dependent find the relation between them. [5]
- c) Discuss maxima and minima of $f(x, y) = x^2 + y^2 + 6x + 12$ [5]

 OR
- **Q5**) a) Prove $y = 1 \text{ for } x = u \cos y, y = u \sin y.$ [5]
 - b) In calculating the volume of a right circular cone, errors of 2% and 1% are made in measuring the height and radius of base respectively find the error in the calculated volume. [5]
 - c) Find maximum value of $u = x^2y^3z^4$ such that 2x + 3y + 4z = a by Langrange's method. [5]
- **Q6)** a) Investigate for what values of μ & λ the equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda$ $z=\mu$ have i) No solution ii) Infinitely many solutions. [5]
 - b) Examine for linear dependence and independence the vectros (1,1,3), (1,2,4), (1,0,2). If dependent, find the relation between them. [5]
 - c) Verify whether matrix $A = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$ is orthogonal or not. [5]
- **Q7**) a) Solve the system of equations x+y+2z = 0, x+2y+3z=0, x+3y+4z=0.[5]
 - b) Examine following vectors for linear dependence and independence (1,-1,1), (2,1,1), (3,0,2). If dependent, find the relation between them.[5]
 - c) Determine the currents in the network given in the figure. [5]

[5868]-101

Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$. **Q8**) a) [5]

Find eigen vector corresponding to the highest eigen value.

- Verify cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Hence find A^{-1} if it exists. b)
- Find the modal matrix p which diagonalises $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$. [5]

[5]

Find the eigen values of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$. [5]

Find eigen vector corresponding to the highest eigen value.

- Verify cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ b) [5]
- $3x_1 + 2x_1x_2$ $3x_1$ Reduce the quadratic form $Q = x_1^2 + 2x_2^2 + x_3^2 + 2x_2x_3 - 2x_3x_1 + 2x_1x_2$ to c) canonical form by congruent transformations.

