Université Ferhat Abbas, Sétif I Département de mathématiques

<u>Īntroduction aux Probabilites</u>

§3. Variables aléatoires discrètes

$$E(X) = -2\left(\frac{1}{8}\right) - 1\left(\frac{1}{4}\right) + 0\left(\frac{1}{5}\right) + 1\left(\frac{1}{8}\right) + 2\left(\frac{3}{10}\right) = \frac{9}{40}$$

$$E(X^{2}) = (-2)^{0} \left(\frac{1}{8}\right) + (-1)^{2} \left(\frac{1}{4}\right) + 0 \left(\frac{1}{5}\right) + (1)^{2} \left(\frac{1}{8}\right) + (2)^{2} \left(\frac{3}{10}\right) = \frac{17}{10}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{17}{10} - \left(\frac{9}{40}\right)^2 = \frac{2639}{1600} = 1.6494$$

3. (i)
$$x_i$$
 x_i x_i

$$11.7, \sigma_x = \sqrt{11.7} = 3.4$$

(ii)
$$y_i = 1 \ 3$$
 $\mu_y = 2, E(Y^2) = 5, \sigma_x^2 = E(X^2) - (\mu_x)^2 = 1, \sigma_x = 1$

$$(\mu_z)^2 = 14.7, \sigma_z = 3.8$$

(iv)
$$\frac{w_i}{P(w_i)} = \frac{2}{6} = \frac{10}{10} = \frac{12}{24} = \frac{36}{36}$$
, $\mu_W = 15$, $E(W^2) = \frac{2156}{6} = 359.3$, $\sigma_W^2 = E(W^2) - (\mu_W)^2 = 134.3$, $\sigma_W = 11.6$

4.
$$x_i$$
 0 1 2 3 4 5 $P(w_i)$ $\frac{6}{36}$ $\frac{10}{36}$ $\frac{8}{36}$ $\frac{6}{36}$ $\frac{4}{36}$ $\frac{2}{36}$ $\frac{2}{36}$ $E(X) = 2.5, Var(X) = 2.92$

y_i	2	3	4	5	6	7	8	9	10	11	12	E(Y) = 7, Var(Y) = 5.83
$P\left(y_{i}\right)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	E(T) = T, Var(T) = 5.65

5.
$$P(X=i) = \frac{\binom{3}{i}\binom{9}{3-i}}{\binom{12}{3}}, i = 0, 1, 2, 3$$

x_i	0	1	2	3] ,,	108+54+3	_ 3
$P\left(x_{i}\right)$	84	$\frac{108}{220}$	$\frac{27}{220}$	$\frac{1}{220}$	μ_X –	220	$-\overline{4}$

UFAS: El-Bachir Yallaoui

6.	x_i	1	2	-5	$\mu_X = rac{1}{2} + rac{2}{4} - rac{5}{4} = -rac{1}{4}$ donc le jeux est defavorable pour le joueur.
	$P\left(z_{i}\right)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\mu_{\chi} = \frac{1}{2} + \frac{1}{4} = \frac{1}{4} = -\frac{1}{4}$ done ie jeux est deravorable pour le joueur.

8.
$$\begin{vmatrix} x & x < 1 & 1 \le x < 3 & 3 \le x < 4 & 4 \le x < 6 & 6 \le x < p & x \ge 9 \\ \hline F(x) & 0 & 2/10 & 4/10 & 5/10 & 7/10 & 1 \\ \end{vmatrix}$$

9.
$$\sum_{k=1}^{\infty} P(X=k) = \sum_{k=1}^{\infty} \frac{c}{k^2} = c \sum_{k=1}^{\infty} \frac{1}{k^2} = c^{\frac{\pi^2}{2}} = 1 \Longrightarrow c = \frac{6}{\pi^2}$$
 $E(X) = \sum_{k=1}^{\infty} k P(X=k) = \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{k}$ qui la series harmonic qui diverge.

11.
$$P(X=2) = {4 \choose 2} \left(\frac{3}{7}\right)^2 \left(\frac{4}{7}\right)^2 = 0.35985$$

12.
$$P(X \ge 4) = P(X = 4) + P(X = 5) = {5 \choose 4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^1 + {5 \choose 5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)^0 = 0.045267$$

13. (a)
$$P(X=2) = {4 \choose 2} \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 = \frac{8}{27}$$

(b)
$$P(X \ge 1) = 1 - P(X = 0) = 1 - {4 \choose 0} \left(\frac{2}{3}\right)^0 \left(\frac{1}{3}\right)^4 = \frac{80}{81}$$

(c)
$$P(X > 2) = P(X = 3) + P(X = 4) = {4 \choose 3} (\frac{2}{3})^3 (\frac{1}{3})^1 + {4 \choose 4} (\frac{2}{3})^4 (\frac{1}{3})^0 = \frac{16}{27}$$

14. (a)
$$X \sim B(10, 0.1)$$

(b)
$$E(X) = np = 10 \times 0.1 = 1$$
 et $Var(X) = npq = 10 \times 0.1 \times 0.9 = 0.9$

(c)
$$P(X \le 1) = P(X = 0) + P(X = 1) = \binom{10}{0} (0.1)^0 (0.9)^{10} + \binom{10}{1} (0.1)^1 (0.9)^9 = 0.7361$$

(d) Puisque
$$p=0.1$$
 est petit on peut approximer $X=B\left(10,0.1\right)\approx Y=Poi\left(1\right)$. $P\left(X\leq1\right)\approx P\left(Y\leq1\right)=P\left(Y=0\right)+P\left(Y=1\right)=e^{-1}\frac{1}{0!}+e^{-1}\frac{1}{1!}=2e^{-1}\approx0.7358$

15. (a)
$$P(X \ge 3) = 1 - P(X \le 2) = 1 - e^{-3\frac{3^0}{0!}} - e^{-3\frac{3^1}{1!}} - e^{-3\frac{3^2}{2!}} = 1 - \frac{17}{2}e^{-3} \approx 0.5768$$

(b)
$$P(X \ge 3|X \ge 1) = \frac{P(X \ge 3)}{P(X \ge 1)} = \frac{1 - \frac{17}{2}e^{-3}}{1 - e^{-3}} = 0.6070$$

16. X est une Bernoulli avec
$$p=\frac{1}{3}$$
. $E(X)=p=\frac{1}{3}$ et $Var(X)=pq=\frac{2}{9}$.

17. (a)
$$X = B\left(7, \frac{1}{4}\right)$$
, $P\left(X \ge 2\right) = 1 - P\left(X \le 1\right) = 1 - P\left(X = 0\right) - P\left(X = 1\right) = 1 - \binom{7}{0} \left(\frac{1}{4}\right)^0 \left(\frac{3}{4}\right)^7 - \binom{7}{1} \left(\frac{1}{4}\right)^1 \left(\frac{3}{4}\right)^6 = \frac{4547}{8192} \approx 0.5550$

(b)
$$P(X \ge 1) = 1 - P(X = 0) = 1 - \binom{n}{0} \left(\frac{1}{4}\right)^0 \left(\frac{3}{4}\right)^n = 1 - \left(\frac{3}{4}\right)^n \ge \frac{2}{3} \Leftrightarrow n \ge \frac{-\ln 3}{\ln 3 - \ln 4} \approx 4$$

18. Soit $X \sim \mathcal{B}(n,p)$ une variable aléatoire suivant la loi binômiale. Demontrer que E(X) = np et Var(X) = npq.

$$M_X(t)$$
 $E(e^{tX}) = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^k q^{n-k} = \sum_{k=0}^{n} \binom{n}{k} (pe^t)^k q^{n-k} = (pe^t + q)^n$

$$M'_{X}(t) = npe^{t} (pe^{t} + q)^{n-1} \text{ et } M'_{X}(0) = E(X) = np$$

$$M_Y''(t) = n(n-1)(pe^t)^2(pe^t+q)^{n-2} + npe^t(pe^t+q)^{n-1}$$
 et

$$M_X''(0) = E(X^2) = n^2 p^2 - np^2 + np$$

$$Var(X) = E(X^2) - [E(X)]^2 = n^2p^2 - np^2 + np - n^2p^2 = np(1-p) = npq$$

19.
$$X = B\left(8, \frac{1}{2}\right), \mu = np = 8 \times \frac{1}{2}4, P\left(X = 4\right) = \binom{8}{4}\left(\frac{1}{2}\right)^4\left(\frac{1}{2}\right)^4 = \frac{35}{128}$$

20.
$$X = B\left(10, \frac{1}{2}\right), P\left(X \ge 7\right) = \sum_{k=7}^{10} {10 \choose k} \left(\frac{1}{2}\right)^{10} = \frac{11}{64} = 0.1719$$

21.
$$X = B\left(1000, 0.0014\right)$$
, $P\left(X \ge 2\right) = 1 - P\left(X \le 1\right) = 1 - {1000 \choose 0} \left(0.0014\right)^0 \left(0.9986\right)^{1000} - {1000 \choose 1} \left(0.0014\right)^1 \left(0.9986\right)^{999} = 0.4083$

22. (a) 1 per / min
$$\Longrightarrow$$
 2.5 per / 5 min donc $X = Poi(2.5)$, $P(X = 0) = e^{-2.5} = 0.0821$

(b)
$$P(X \ge 4) = 1 - P(X \le 3) = 1 - e^{-2.5} \left(1 + 2.5 + \frac{(2.5)^2}{2} + \frac{(2.5)^3}{6} \right) = 0.2424$$

23.
$$X = \mathcal{B}(5, 0.3)$$

(a)
$$P(X=0) = \binom{5}{0} (0.3)^0 (0.7)^5 = 0.1681$$

(b)
$$P(X=5) = {5 \choose 5} (0.3)^5 (0.7)^0 = 0.0024$$

(c)
$$\mu = np = 5 \times 0.3 = 1.5$$

24. Soit
$$X \sim \mathcal{G}(p)$$
, $P(X = k) = pq^{k-1}$, $k = 1, 2, 3, ...$

(a)
$$P(X > n) = \sum_{k=n+1}^{\infty} pq^{k-1} = p\frac{q^n}{1-q} = q^n = (1-p)^n$$
.

(b)
$$F(n) = P(X \le n) = 1 - P(X > n) = 1 - (1 - p)^n$$

(c)
$$P(X > n + m | X > m) = \frac{P(X > n + m)}{P(X > m)} = \frac{(1 - p)^{n + m}}{(1 - p)^m} = (1 - p)^n = P(X > n)$$
.

25.
$$M_X(t) = E(e^{tX}) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = \sum_{k=0}^{\infty} e^{-\lambda} \frac{(\lambda e^t)^k}{k!} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}$$

$$M_X'\left(t\right)=\lambda e^t e^{\lambda\left(e^t-1\right)}=\lambda e^{\lambda\left(e^t-1\right)+t},\, \text{et } M_X'\left(0\right)=\lambda.$$

$$M_X''(t) = \lambda e^{\lambda(e^t - 1) + t} (\lambda e^t + 1)$$
, et $M_X''(0) = \lambda (\lambda + 1)$.

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \lambda(\lambda + 1) - \lambda^{2} = \lambda.$$

26. Soit X_1, X_2, \dots, X_n des v.a.i. et $X_i \sim \mathcal{P}(\lambda_i)$ (poisson avec paramètre λ_i) et $X = \sum_{i=1}^n X_i$. Trouver la fonction génératrice de moment de X. Quelle est la loi de probabilité de X?

 $M_X(t) = E\left(e^{tX}\right) = E\left(e^{t(X_1 + X_2 + \dots + X_n)}\right) = E\left(e^{tX_1}\right)E\left(e^{tX_2}\right)\cdots E\left(e^{tX_n}\right)$ parce que les variables sont indépendantes. Donc on aura

$$M_X(t) = e^{\lambda_1 \left(e^t - 1\right)} e^{\lambda_2 \left(e^t - 1\right)} \dots e^{\lambda_n \left(e^t - 1\right)} = e^{(\lambda_1 + \lambda_2 + \dots + \lambda_n) \left(e^t - 1\right)} = e^{(\lambda) \left(e^t - 1\right)}$$

ou $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$. On voit que fonction génératrice des moments de X est celle d'une poisson avec paramètre $\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$.

27. Considérons la fonction $f(\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}, \lambda > 0.$

$$\begin{split} f'\left(\lambda\right) &= -e^{-\lambda}\frac{\lambda^k}{k!} + e^{-\lambda}\frac{k\lambda^{k-1}}{k!} = \frac{e^{-\lambda}}{k!}\lambda^{k-1}\left(-\lambda + k\right) = 0 \text{ quand } \lambda = k. \ f' > 0 \text{ quand } \lambda < k \\ \text{et } f' &< 0 \text{ quand } \lambda > k \text{ qui nous donne un maximum quand } \lambda = k. \end{split}$$