Process for the telomerization of non cyclic olefins having at least two conjugated double bonds or mixtures containing olefins, with nucleophiles comprises use of palladium carbene complexes

Patent number:

DE10128144

Publication date:

2002-12-12

Inventor:

ROETTGER DIRK (DE); BELLER MATTHIAS (DE);

JACKSTELL RALF (DE); KLEIN HOLGER (DE); WIESE

KLAUS-DIETHER (DE)

Applicant:

OXENO OLEFINCHEMIE GMBH (DE)

Classification:

- international:

C07B61/00; C07B41/12; C07B41/04; C07B41/02; C07C43/15; C07C43/205; C07C41/05; C07C33/02;

C07C29/04; C07C69/145; C07C67/04; B01J31/12

- european:

C07B41/04; C07B43/04; C07C41/06

Application number: DE20011028144 20010609 Priority number(s): DE20011028144 20010609

Also published as:

WO02100803 (A3) WO02100803 (A2) EP1406852 (A3) EP1406852 (A2) US2005038273 (A1

more >>

Report a data error he

Abstract of DE10128144

The invention relates to a method for telomerizing non-cyclic olefins with at least two conjugated double bonds (I) or mixtures, which contain olefins of this type, with nucleophiles (II), whereby a palladium carbene complex is used as a catalyst.

A process for the telomerization of non cyclic olefins (I) having at least two conjugated double bonds or mixtures containing olefins, with nucleophiles (II) comprises use of palladium carbene complexes.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 101 28 144 A 1

(2) Aktenzeichen:

101 28 144.7

Anmeldetag:

12. 12. 2002

(3) Offenlegungstag:

9. 6.2001

(5) Int. Cl.⁷: C 07 B 61/00

C 07 B 41/12 C 07 B 41/04 C 07 B 41/02 C 07 C 43/15 C 07 C 43/205 C 07 C 41/05 C 07 C 33/02 C 07 C 29/04 C 07 C 69/145 C 07 C 67/04 B 01 J 31/12

(7) Anmelder:

Oxeno Olefinchemie GmbH, 45772 Marl, DE

② Erfinder:

Röttger, Dirk, Dipl.-Chem. Dr., 45657 Recklinghausen, DE; Beller, Matthias, Prof. Dipl.-Chem., 18119 Rostock, DE; Jackstell, Ralf, Dipl.-Chem. Dr., 06886 Lutherstadt Wittenberg, DE; Klein, Holger, Dipl.-Chem., 18069 Rostock, DE; Wiese, Klaus-Diether, Dipl.-Chem. Dr., 45721 Haltern, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- W Verfahren zur Telomerisation von nicht cyclischen Olefinen
- Gegenstand der Erfindung ist ein Verfahren zur Telomerisation von nicht cyclischen Olefinen mit mindestens zwei konjugierten Doppelbindungen (I) oder Mischungen, die solche Olefine enthalten, mit Nukleophilen (II), wobei als Katalysator ein Palladiumcarbenkomplex verwendet wird.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Telomerisation von nicht cyclischen Olefinen mit mindestens zwei konjugierten Doppelbindungen (I) mit Nukleophilen (II), wobei als Katalysator ein Palladiumkomplex einge-

[0002] Unter Telomerisation wird im Rahmen dieser Erfindung die Umsetzung von Olefinen mit konjugierten Doppelbindungen (konjugierte Diene) in Gegenwart eines Nucleophils (Telogens) verstanden. Als Hauptprodukte werden dabei Verbindungen erhalten, die sich aus zwei Äquivalenten des Diens und einem Äquivalent des Nucleophils aufbauen.

[0003] Die Produkte der Telomerisationsreaktion haben technische Bedeutung als vielseitig einsetzbare Vorstufen für Lösemittel, Weichmacher, Feinchemikalien und Wirkstoffvorprodukte. Die aus Butadien erhältlichen Verbindungen Octadien, Verbindungen Octadien, Octadien, Verbindungen Octadien, Octadien, octadien, octadien, von entstallen der Albert er d

[0004] Die Telomerisation von Dienen mit Nukleophilen ist eine technisch interessante Methode zur Veredelung von kostengünstigen, industriell verfügbaren Dienen. Von besonderem Interesse ist aufgrund der guten Verfügbarkeit die Verwendung von Butadien, Isopren oder von diese Diene enthaltenden Cracker-Schnitten. Bis dato wird die Telomerisation von Butadien jedoch lediglich von der Firma Kuraray im Feinchemikalienbereich zur Synthese von 1-Octanol praktion von Butadien jedoch lediglich von der Firma Kuraray im Feinchemikalienbereich zur Synthese von 1-Octanol praktisch angewendet. Gründe, die den breiteren Einsatz von Telomerisationsprozessen verhindern, sind unter anderem mantisch angewendet. Katalysatorproduktivitäten und Selektivitätsprobleme von Telomerisationskatalysatoren. gelnde Katalysatoraktivitäten, Katalysatorproduktivitäten und Selektivitätsprobleme von Nebenprodukten, die eine sprofitesche Realisierung verhindern.

großtechnische Realisierung verhindern.

[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(O)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(O)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)- sowie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(I)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die Telomerisation haben sich halogenfreie Palladium(II)[0005] Als wirksame Katalysatoren für die

[0006] Die Telomerisation ist in der Fachliteratur ausführlich beschrieben. Die bekannten oben genannten Katalysatoren liefern beispielsweise bei der Telomerisation von Butadien mit Methanol generell Gemische der aufgeführten Produkte 1a, 1b, 2, 3 mit X = O, R¹ = Me. Hauptprodukte sind dabei die gewünschten technisch wichtigen linearen Telomere 1a und 1b. Jedoch entstehen signifikante Anteile des verzweigten Telomers 2 und von 1,3,7-Octatrien 3.

50

[0007] Weiterhin entstehen 4-Vinyl-1-cyclohexen (Diels-Alder-Produkt des Butadiens) in variablen Ausbeuten sowie – in der Regel in nur geringen Mengen – weitere Nebenprodukte. Dieses Spektrum von Produkten findet man generell auch bei Einsatz anderer Nucleophile mit aktiven H-Atomen, wobei an Stelle der Methoxygruppe die entsprechenden Poete der jeweiligen Nucleophils treten.

[0008] Die signifikante Bildung der genannten Nebenprodukte ist ein weiterer Grund, der eine Umsetzung eines wirtschaftlichen und umweltfreundlichen Verfahrens außerordentlich schwierig macht. So konnten, obwohl die Telomerisaschaftlichen und umweltfreundlichen Verfahrens außerordentlich schwierig macht. So konnten, obwohl die Telomerisation von Butadien mit Methanol bereits von mehreren Firmen intensiv bearbeitet und patentiert wurde, die oben genannten Perklame nicht befriedigend gelöst werden.

[0009] In einem von Dow Chemical in WO 91/09822 im Jahr 1989 beschriebenen kontinuierlichen Verfahren mit Palladiumacetylacetonat/2 Äquivalenten Triphenylphosphan als Katalysator wurden Katalysatorproduktivitäten (turnover numbers) bis zu 44000 erzielt. Allerdings sind die Chemoselektivitäten bei derartigen Katalysatorumsatzzahlen für das Zielprodukt 1 < 85%.

[0010] National Distillers and Chem. Corp. (US 4,642,392, US 4,831,183) beschrieben 1987 ein diskontinuierliches Verfahren zur Herstellung von Octadienylethern. Dabei wurde das Produktgemisch destillativ vom Katalysator (Palladi-umacetat/5 Äq. Triphenylphosphan) abgetrennt, der in Tetraglyme gelöst zurückbleibt. Der Katalysator kann bis zu zwölfmal wiederverwendet werden, wobei jeweils Phosphan ergänzt wird. Der Startansatz lieferte den linearen Ether alzwölfmal wiederverwendet werden, wobei jeweils Phosphan ergänzt wird. Der Startansatz lieferte den linearen Ether alzwölfmal wiederverwendet (entspricht TON 2000). Das n/iso-Verhältnis von Produkt 1 zu Produkt 2 beträgt in diesem lerdings in nur 57% Ausbeute (entspricht TON 2000). Das n/iso-Verhältnis wurde das Produktgemisch durch Extraktion mit He-Fall nur 3.75: 1. In einem weiteren Patent von National Distillers wurde das Produktgemisch durch Extraktion mit He-

xan von der Reaktionslösung abgetrennt. Die Telomerisation wurde dabei in Dimethylformanid oder Sulfolan mit dem Katalysatorgemisch Palladim(II)acetat/3 Äq. Triphenylphosphinmonosulfonat durchgeführt. Der erste Ansatz lieferte das lineare Telomer mit einer TON von 900. Die Selektivität bezüglich des linearen Alkohols betrug geringe 40%. [0011] Auch längerkettige primäre Alkohole wie Ethanol, Propanol und Butanol (J. Beger, H. Reichel, J. Prakt. Chem. 1973, 315, 1067) bilden mit Butadien die entsprechenden Telomere. Allerdings ist die Katalysatoraktivität der bekannten Katalysatoren hier noch geringer als in den oben genannten Fällen. So wurden unter identischen Reaktionsbedingungen [Pd(acetylacetonat)₂/PPh₃/Butadien/Alkohol = 1:2:2000:5000; 60°C/10 h] die Telomere von Methanol mit 88% Ausbeute, diejenigen von Propanol mit 65% Ausbeute und von Nonanol nur noch mit 21% Ausbeute gebildet. [0012] Zusammenfassend kann man sagen, dass die bekannten Palladiumphosphankatalysatoren für Telomerisationsreaktionen von Butadien mit Alkoholen keine befriedigenden katalytische Wechselzahlen (Katalysatorproduktivitäten, "turnover numbers" = TON) aufweisen. Technisch angestrebte Produktivitäten von >100.000 sind mit bekannten Systemen nicht oder kaum beschrieben. Dabei sollten gleichzeitig hohe Selektivitäten von >95% Chemo- und Regioselektivität erreicht werden, um ein ökologisch vorteilhaftes Verfahren zu erzielen. [0013] Carbonsäuren sind wie Alkohole geeignete Nucleophile in Telomerisationsreaktionen. Aus Essigsäure und Butadien crhält man in guten Ausbeuten die entsprechenden Octadienylderivate 1a, 1b und 2 mit R = Me-CO, X = O (DE 21 37 291). Das Verhältnis der Produkte 1/2 kann über die Liganden am Palladium beeinflusst werden (D. Rose, H. Lepper, J. Organomet. Chem. 1973, 49, 473). Mit Triphenylphosphin als Ligand wurde ein Verhältnis 4/1 erreicht, bei Einsatz von Tris(o-methylphenyl)phosphit konnte das Verhältnis auf 17/1 gesteigert werden. Andere Carbonsäuren wie Pivalinsäure, Benzoesäure oder Methacrylsäure, aber auch Dicarbonsäuren lassen sich ebenfalls mit Butadien umsetzen. [0014] Shell Oil hat aufbauend auf die Telomerisation von konjugierten Dienen mit Carbonsäuren ein Verfahren zur Herstellung von α-Olefinen in der US 5 030 792 beschrieben. [0015] Telomerisationsreaktionen, bei denen Wasser als Nucleophil eingesetzt wird, sind unter anderem von der Firma Kuraray intensiv untersucht worden (US 4 334 117, US 4 356 333, US 5 057 631). Dabei werden Phosphine, meistens wasserlösliche Phosphine, oder Phosphoniumsalze (EP 0 296 550) als Liganden eingesetzt. Der Einsatz von wasserlöslichen Diphosphinen als Ligand wird in WO 98 08 794 beschrieben, DE 195 23 335 schützt die Umsetzung von Alkadienen mit Wasser in Gegenwart von Phosphonit oder Phosphinitliganden. [0016] Die Telomerisation von Butadien mit Nucleophilen, wie Formaldehyd, Aldehyden, Ketonen, Kohlendioxid, Schwefeldioxid, Sulfinsäuren, β-Ketoestern, β-Diketonen, Malonsäureestern, α-Formylketonen und Silanen ist ebenfalls [0017] Der größere Teil der Arbeiten zur Telomerisation wurde mit Butadien durchgeführt. Die Reaktion ist aber auch auf andere Diene mit konjugierten Doppelbindungen anwendbar. Diese kann man formal als Derivate des Butadiens betrachten, in dem Wasserstoffatome durch andere Gruppen ersetzt sind. Technisch bedeutsam ist vor allem Isopren. Da Isopren im Gegensatz zum Butadien ein unsymmetrisches Molekül ist, kommt es bei der Telomerisation zur Bildung von weiteren Isomeren (J. Beger, Ch. Duschek, H. Reichel, J. Prakt. Chem. 1973, 315, 1077-89). Das Verhältnis dieser Isomeren wird dabei erheblich durch die Art des Nucleophils und auch die Wahl der Liganden beeinflusst. [0018] Aufgrund der genannten Bedeutung Telomerisationsprodukte und den Problemen des derzeitigen Stands der Technik, besteht ein großer Bedarf nach neuen Katalysatorsystemen für Telomerisationsreaktionen, die kostengünstige stabile Liganden aufweisen, die nicht die Nachteile der bekannten katalytischen Verfahren zeigen, die für die großtechnische Durchführung geeignet sind und die Telomerisationsprodukte in hoher Ausbeute, Katalysatorproduktivität und [0019] Diese Aufgabe wird gelöst durch ein Verfahren zur Telomerisation von nicht cyclischen Olefinen mit mindestens zwei konjugierten Doppelbindungen (I) oder Mischungen, die solche Olefine enthalten, mit Nukleophilen (II), wobei als Kalalysator ein Palladiumcarbenkomplex verwendet wird. [0020] In einer bevorzugten Ausführungsform werden als Nucleophile (II) Verbindungen der allgemeinen Formel (IIa) 45 oder (IIb) eingesetzt, (IIb) R1-0-H (lla), 50 worin R^1 , $R^{1'}$ unabhängig voneinander ausgewählt sind aus Wasserstoff, einer linearen, verzweigten oder cyclischen C_1 bis C22-Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Carboxylgruppe oder einer C6 bis C18 Arylgruppe,

wobei diese Gruppen Substituenten ausgewählt aus der Gruppe -CN, -COOH, -COO-Alkyl-(C1-C8), -CO-Alkyl-(C1-C8), $-Aryl-(C_6-C_{10}), -COO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -O-Alkyl-(C_1-C_8), -O-CO-Alkyl-(C_1-C_8), -N-Alkyl-(C_1-C_8), -O-CO-Alkyl-(C_1-C_8), -O-CO$ -CHO, -SO₃H, -NH₂, -F, -Cl, -OH, -CF₃, -NO₂ enthalten können wind wobei die Reste R¹, R¹ über kovalente Bindungen miteinander verknüpft sein können.

[0021] Als Katalysator wird bevorzugt ein Palladiumkomplex mit Carbenliganden der Formeln (III) oder (IV) verwen-

65

wobei R² und R³ unabhängig voneinander eine lineare, verzweigte oder cyclische C₁ bis C₂₄-Alkyl- oder C₅ bis C₁₈-Arylgruppe sind und die Alkyl- und Arylgruppe unabhängig voneinander die Substituenten -CN, -COOH, COO-Alkyl- (C_1-C_2) , $-CO-Alkyl-(C_1-C_3)$, $-Aryl-(C_5-C_{18})$, $-Alkyl-(C_1-C_{24})$, $-COO-Aryl-(C_6-C_{10})$, $-CO-Alkyl-(C_6-C_{10})$, $-O-Alkyl-(C_1-C_2)$, $-CO-Alkyl-(C_1-C_3)$, $-O-CO-Alkyl-(C_1-C_3)$, $-N-Alkyl-(C_1-C_3)$, -CHO, $-SO_3H$, $-NH_2$, -F, -Cl, -OH, $-CF_3$, $-NO_2$, Ferrocenyl enthalten $-C_3$, $-O-CO-Alkyl-(C_1-C_3)$, $-N-Alkyl-(C_1-C_3)$, -CHO, $-SO_3H$, $-NH_2$, -F, -Cl, -OH, $-CF_3$, $-NO_2$, Ferrocenyl enthalten $-C_3$, $-CO-Alkyl-(C_1-C_3)$

und wobei R⁴ bis R⁷ unabhängig voneinander Wasserstoff, -CN, -COOH, -COO-Alkyl-(C₁-C₈), -CO-Alkyl-(C₁-C₈), $-COO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -O-Alkyl-(C_1-C_8), -O-CO-Alkyl-(C_1-C_8), -N-Alkyl_2-(C_1-C_8), -CHO, -SO_3H, -COO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -O-Alkyl-(C_1-C_8), -O-CO-Alkyl-(C_1-C_8), -N-Alkyl_2-(C_1-C_8), -CHO, -SO_3H, -CO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -O-Alkyl-(C_1-C_8), -O-CO-Alkyl-(C_1-C_8), -N-Alkyl-(C_1-C_8), -CHO, -SO_3H, -CO-Aryl-(C_6-C_{10}), -CO-Aryl-(C_6-C_{10}), -CO-Alkyl-(C_1-C_8), -C$ -NH₂, -F, -Cl, -OH, -CF₃, -NO₂ oder eine lineare, verzweigte oder cyclische C₁ bis C₂₄-Alkyl- oder C₆ bis C₁₈-Arylgruppe ist und die Alkyl- und Arylgruppe unabhängig voneinander die Substituenten -CN, -COOH, -COO-Alkyl-(C1-C₈), -CO-Alkyl-(C₁-C₈), -Aryl-(C₆-₁₀), -COO-Aryl-(C₆-C₁₀), -CO-Aryl-(C₆-C₁₀), -O-Alkyl-(C₁-C₈), -O-CO-Alkyl-(C₁-C₈), -N-Alkyl₂-(C₁-C₈), -CHO, -SO₃H, -NH₂, -F, -Cl, -OH, -CF₃, -NO₂, enthalten können, wobei die Reste R⁴ und R⁵ auch Teil eines verbrückenden aliphatischen oder aromatischen Ringes sein können.

[0022] In der Telomerisation können prinzipiell alle nicht cyclischen Olefine mit mindestens zwei konjugierten Doppelbindungen eingesetzt werden. Im Rahmen dieser Erfindung ist der Einsatz von 1,3-Butadien und Isopren (2-Methyl-1,3-butadien) bevorzugt. Dabei können sowohl die reinen Diene als auch Mischungen, die diese Diene enthalten, einge-

[0023] Als 1,3-Butadien enthaltende Mischungen kommen vorzugsweise Mischungen von 1,3-Butadien mit anderen C₄-Kohlenwasserstoffen und/oder C₅-Kohlenwasserstoffe zum Einsatz. Solche Mischungen fallen beispielsweise bei Spalt(Crack)-Prozessen zur Produktion von Ethen an, in denen Raffineriegase, Naphtha, Gasöl, LPG (liquified petroleum gas), NGL (natural gas liquid) usw. umgesetzt werden. Die bei diesen Prozessen als Nebenprodukt anfallenden Ca-Schnitte enthalten je nach Crack-Verfahren unterschiedliche Mengen an 1,3-Butadien. Typische 1,3-Butadienkonzentrationen im C4-Schnitt, wie sie aus einem Naphtha-Steamcracker erhalten werden, liegen bei 20-70% 1,3-Butadien. [0024] Die C₄-Komponenten n-Butan, i-Butan, 1-Buten, cis-2-Buten, trans-2-Buten und i-Buten, die ebenfalls in die-

sen Schnitten enthalten sind, stören die Umsetzung im Telomerisationsschritt nicht oder nur unwesentlich. [0025] Diene mit kumulierten Doppelbindungen (1,2-Butadien, Allen usw.) und Alkine, insbesondere Vinylacetylen, können hingegen als Moderatoren in der Telomerisationsreaktion wirken. Es ist daher vorteilhaft, die C4-Alkine und ggf. das 1,2-Butadien vorher zu entfernen (DE 195 23 335). Dies kann, falls möglich, über physikalische Verfahren wie Destillation oder Extraktion erfolgen. Auf chemischem Weg können die Alkine über Selektivhydrierungen zu Alkenen oder Alkanen und die kumulierten Diene zu Monoenen reduziert werden. Verfahren für derartige Hydrierungen sind Stand der

Technik und zum Beispiel in WO 98/12160, EP-A-0 273 900, DE-A-37 44 086 oder US 4 704 492 beschrieben. [0026] Als Nucleophile werden bevorzugt alle Verbindungen eingesetzt werden, die der allgemeinen Formel II genü-

gen. Beispiele für Telogene nach der allgemeinen Formel II sind

45

55

- Monoalkohole und Phenole wie zum Beispiel Methanol, Ethanol, n-Propanol, Isopropanol, Allylalkohol, Butanol, Octanol, 2-Ethylhexanol, Isononanol, Benzylalkohol, Cyclohexanol, Cyclopentanol, 2-Methoxyethanol, Phenol, Octanol, 2-Methoxyethanol, 2-Meth
- Dialkohole wie zum Beispiel Ethylenglycol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, 1,2-Butandiol, 2,3nol oder 2,7-Octadien-1-ol Butandiol und 1,3-Butandiol

- Polyole wie zum Beispiel Glycerin, Glucose, Saccharose,

Hydroxyverbindungen wie zum Beispiel α-Hydroxyessigsäureester

Carbonsäuren wie zum Beispiel Essigsäure, Propansäure, Butansäure, Isobutansäure, Benzoesäure, 1,2-Benzoldicarbonsäure, 1,3-Benzoldicarbonsäure, 1,4-Benzoldicarbonsäure, 1,2,4-Benzoltricarbonsäure, Ammoniak, - primäre Amine wie zum Beispiel Methylamin, Ethylamin, Propylamin, Butylamin, Octylamin, 2,7-Octadienylamin, Dodecyclamin, Anilin, Ethylendiamin oder Hexamethylendiamin

- sekundäre Amine wie Dimethylamin, Diethylamin, N-Methylanilin, Bis(2,7-Octadienyl)amin, Dicyclohexylamin, Methylcyclohexylamin, Pyrrolidin, Piperidin, Morpholin, Piperazin oder Hexamethylenimin.

[0027] Telogene, die selbst über eine Telomerisationsreaktion erhalten werden können, können direkt eingesetzt oder aber in situ gebildet werden. So kann beispielsweise 2,7-Octadien-1-ol aus Wasser und Butadien in Anwesenheit des Telomerisationskatalysators in situ gebildet werden, 2,7-Octadienylamin aus Ammoniak und 1,3-Butadien usw. [0028] Besonders bevorzugt eingesetzte Telogene sind Wasser, Methanol, Ethanol, n-Butanol, Allylalkohol, 2-Methoxyethanol, Phenol, Ethylenglycol, 1,3-Propandiol, Glycerin, Glucose, Saccharose, Essigsäure, Butansäure, 1,2-Ben-

zoldicarbonsäure, Ammoniak, Dimethylamin und Diethylamin.

Als Cosemittel findet im allgemeinen das eingesetzte Nucleophil Verwehlung, wenn es bei Reaktionsbedingungen als Plissigkeit vorliegt. Es können jedoch auch andere Lösemittel eingesetzt werden. Die eingesetzten Lösemittel sollten dabei weitgehend inert sein. Bevorzugt wird der Zusatz von Lösemitteln bei Einsatz von Nucleophilen, die unter

Reaktionsbedingungen als Feststoffe vorliegen oder bei Produkten, die unter den Reaktionsbedingungen als Feststoffe anfallen würden. Geeignete Lösemittel sind unter anderem aliphatische, cycloaliphatische und aromatische Kohlenwasserstoffe wie zum Beispiel C3-C20-Alkane, Mischungen niederer Alkane (C3-C20), Cyclohexan, Cyclooctan, Ethylcyclohexan, Alkene und Polyene, Vinylcyclohexen, 1,3,7-Octatricn, die C4-Kohlenwasserstoffe aus Crack-C4-Schnitten, Benzol, Toluol und Xylol; polare Lösemittel wie zum Beispiel tertiäre und sekundäre Alkohole Amide wie zum Beispiel Acetamid, Dimethylacetamid und Dimethylformamid, Nitrile wie zum Beispiel Acetonitril und Benzonitril, Ketone wie zum Beispiel Aceton, Methylisobutylketon und Diethylketon; Carbonsäureester wie zum Beispiel Essigsäureethylester, Ether wie beispielsweise Dipropylether, Diethylether, Dimethylether, Methyloctylether, 3-Methoxyoctan, Dioxan, Tetrahydrofuran, Anisol, Alkyl, und Arylether von Ethylenglycol, Diethylenglycol und Polyethylenglycol und andere polare Lösemittel wie zum Beispiel Sulfolan, Dimethylsulfoxid, Ethylencarbonat, Propylencarbonat und Wasser. Auch Ionische Flüssigkeiten, beispielsweise Imidazolium oder Pyridiniumsalze, können als Lösemittel eingesetzt werden. Die Lösemittel kommen allein oder als Mischungen verschiedener Lösemittel zum Einsatz. [0030] Die Temperatur, bei der die Telomerisationsreaktion ausgeführt wird, liegt zwischen 10 und 180°C, bevorzugt zwischen 30 und 120°C, besonders bevorzugt zwischen 40 und 100°C. Der Reaktionsdruck beträgt 1 bis 300 bar, bevorzugt 1 bis 120 bar, besonders bevorzugt 1 bis 64 bar und ganz besonders bevorzugt 1 bis 20 bar. 15 [0031] Essentiell für das erfindungsgemäße Verfahren ist, dass die Telomerisationsreaktion mit Katalysatoren auf Basis von Palladium-Komplexen mit Carbenliganden durchgeführt wird.

[0032] Beispiele für Carbenliganden, die den allgemeinen Formeln III oder IV entsprechen, und Komplexe, die derartige Liganden enthalten sind in der Fachliteratur bereits beschrieben (W. A. Herrmann, C. Köcher, Angew. Chem. 1997, 109, 2257; Angew. Chem. Int. Ed. Engl. 1997, 36, 2162; V. P. W. Böhm, C. W. K. Gstöttmayr, T. Weskamp, W. A. Herrmann, 1 Organomet. Chem. 2000, 595, 186; DE 44 47 066).

[0033] Im Rahmen dieser Erfindung werden unter Carbenliganden sowohl freie Carbene, die als Ligand fungieren können, als auch an Palladium koordinierte Carbene verstanden.

[0034] Das Katalysatormetall Palladium, aus dem die sich unter Reaktionsbedingungen die aktiven Katalysatoren bilden, kann auf verschiedene Weisen in den Prozess eingebracht werden.

a) Als Palladium-Carbenkomplexe, wobei das Palladium bevorzugt in den Oxidationsstufen (II) oder (0) vorliegt.

b) In Form von Palladiumvorstufen, aus denen in situ die Katalysatoren gebildet werden.

30

40

50

60

65

[0035] Beispiele sind Palladium(0)carben-olefin-Komplexe, Palladium(0)dicarbenkomplexe und Palladium(II)dicarbenkomplexe, Palladium(0)carben-1,6-dien-Komplexe. Als 1,6-Dien können beispielsweise Diallylamin, 1,1'-Divinyltetramethyldisiloxan, 2,7-Octadienyiether oder 2,7-Octadienylamine fungieren. Weitere Beispiele zeigen die nachfolgenden Formeln I-a bis I-e.

Zu a)

10	SiMe ₂ SiMe ₂	i-Pr SiMe ₂ i-Pr SiMe ₂ i-Pr SiMe ₂	i-Pr SiMe ₂ C=Pd O i-Pr SiMe ₂
20	l-a	l-b	l-c
25	R SiMe ₂		
30	C=Pd	C=Pá NH	C=Pd=C
35	R = Adamantyl		T T
40	I-d	l-e	l-f

-2:4:2

[0036] Die Carbenkomplexe des Palladiums können auf verschiedenste Weisen dargestellt werden. Ein einfacher Weg ist beispielsweise die Anlagerung von Carbenliganden oder der Austausch von Liganden an Palladiumkomplexen durch Carbenliganden. So sind beispielsweise die Komplexe I-f bis I-i durch Austausch der Phosphortiganden des Komplexes Bis(tri-o-tolylphosphin)palladium(0) erhältlich (T. Weskamp, W. A. Herrmann, J. Organomet. Chem. 2000, 595, 186).

[0037] Als Palladiumvorstufen können beispielsweise eingesetzt werden: Palladium(II)acetat, Palladium(II)chlorid, Palladium(II)bromid, Lithiumtetrachloropalladat, Palladium(II)acetylacetonat, Palladium(II)-dibenzylidenaceton-Komplexe, Palladium(II)propionat, Palladium(II)chloridbisacetonitril, Palladium(11)-bistriphenylphosphandichlorid, Palladium(II) dium(II)chloridbisbenzonitril, Bis(tri-o-tolylphosphin)-palladium(0) und weitere Palladium(0)- und Palladium(II)-Kom-

Zu b)

Die Carbene nach den allgemeinen Formeln III und IV werden in Form freier Carbene oder als Metallkomplexe plexe.

[0039] Als Carbenvorstufen eignen sich beispielsweise Salze der Carbene gemäß den allgemeinen Formeln V und VI,

wobei R², R³, R⁴, R⁵, R⁶, R⁷ dieselbe Bedeutung haben wie in Formeln III und IV und Y für eine einfach geladene anionische Gruppe oder entsprechend der Stöchiometrie anteilig für eine mehrfach geladene anionische Gruppe steht. [0040] Beispiele für Y sind Halogenide, Hydrogensulfat, Sulfat, Alkylsulfate, Arylsulfate, Borate, Hydrogencarbonat,

[0041] Aus den Salzen der Carbene können die entsprechenden Carbene beispielsweise durch Umsetzung mit einer Carbonat, Alkylcarboxylate, Arylcarboxylate.

[0042] Die Konzentration des Katalysators, formal angegeben in ppm (Masse) an Palladium-Metall bezogen auf die Gesamtmasse, beträgt 0.01 ppm bis 1000 ppm, bevorzugt 0.5 bis 100 ppm, besonders bevorzugt 1 bis 50 ppm. Das Verhältnis [Mol/Mol] von Carben zu Pd beträgt 0.01: 1 bis 250: 1, bevorzugt 1: 1 bis 100: 1, besonders bevorzugt 1: 1 bis 50: 1. Neben den Carbenliganden können noch weitere Liganden, beispielsweise Phosphorliganden wie Triphenylphos-

[0043] Aufgrund der Katalysatoraktivitäten und -stabilitäten ist es bei dem erfindungsgemäßen Verfahren möglich, extrem kleine Mengen an Katalysator zu verwenden. Neben einer Verfahrensführung, bei der der Katalysator wiederverwendet wird, wird so auch die Option eröffnet, den Katalysator nicht zu recyceln. Beide Varianten sind in der Patentlite-

[0044]. Oftmals ist es vorteilhaft, die Telomerisationsreaktion in Gegenwart von Basen durchzuführen. Bevorzugt werden basische Komponenten mit einem pKb-Wert kleiner 7, insbesondere Verbindungen ausgewählt aus der Gruppe

[0045] Als basische Komponente sind beispielsweise geeignet Amine wie Trialkylamine, die alicyclisch oder/und offenkettig sein können, Amide, Alkali- oder/und Erdalkalisalze aliphatischer oder/und aromatischer Carbonsäuren, wie Acetate, Propionate, Benzoate bzw. entsprechende Carbonate, Hydrogencarbonate, Alkoholate von Alkali- und/oder Erdalkalielementen, Phosphate, Hydrogenphosphate oder/und Hydroxide bevorzugt von Lithium, Natrium, Kalium, Calcium, Magnesium, Cäsium, Ammonium- und Phosphoniumverbindungen. Bevorzugt sind als Zusatz Hydroxide der Al-

kali- und Erdalkalielemente und Metallsalze des Nucleophils nach der allgemeinen Formel II. [0046] Im allgemeinen wird die basische Komponente zwischen 0.01 mol% und 10 mol% (bezogen auf das Olefin), bevorzugt zwischen 0.1 mol% und 5 mol% und ganz besonders bevorzugt zwischen 0.2 mol% und 1 mol% eingesetzt. [0047] In dem erfindungsgemäßen Verfahren beträgt das Verhältnis [Mol/Mol] zwischen eingesetztem Dien und Nucleophil 1: 100 bis 100: 1, bevorzugt 1: 50 bis 10: 1, besonders bevorzugt 1: 10 bis 2: 1. [0048] Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich betrieben werden und ist nicht auf

den Einsatz bestimmter Reaktortypen begrenzt. Beispiele für Reaktoren, in denen die Reaktion durchgeführt werden kann, sind Rührkesselreaktor, Rührkesselkaskade, Strömungsrohr und Schlaufenreaktor. Auch Kombinationen verschiedener Reaktoren sind möglich, beispielsweise ein Rührkesselreaktor mit nachgeschaltetem Strömungsrohr.

[0049] Bei dem erfindungsgemäßen Verfahren werden erstmalig Carbenliganden bei Telomerisationsreaktionen eingesetzt. Überraschenderweise übertreffen die erfindungsgemäßen Katalysatoren die bekannten Palladium-Phosphan-Katalysatoren sowohl in der Selektivität als auch Produktivität. Bei dem erfindungsgemäßen Verfahren können beispielsweise bei der Telomerisation von Butadien mit Alkoholen problemlos Turnover-Werte der Katalysatoren (Katalysatorproduk-

[0050] Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne den Schutzbereich der Patentanmeldung zu

beschränken.

Beispiele

Allgemeine Arbeitsvorschrift; zur Telomerisation von Butadien mit Methanol

[0051] In einem 100-ml-Schienkrohr werden unter Schutzgas eine entsprechende Menge Katalysator (zwischen 0.01 und 0.0001 mol%) in 56 g (1.75 mol) Methanol gelöst. Die Lösung wird mit 5 mmol Triethylamin oder Natriumhydroxid versetzt. Anschließend wird die Reaktionslösung in den evakuierten Autoklaven eingesaugt, der Autoklav auf 55 T < -10°C gekühlt und Butadien einkondensiert (Mengenbestimmung durch Massenverlust in der Butadienvorratsflasche). Der Autoklav wird auf Reaktionstemperatur erwärmt und nach der Reaktion auf Raumtemperatur abgekühlt. Nicht umgesetztes Butadien wird in eine mit Trockeneis gekühlte Kühlfalle zurückkondensiert. Aus der Massenzunahme der Reaktionslösung wird der Umsatz bestimmt. Zur Isolierung des Produktes wird die Lösung im Vakuum destilliert.

GC Analytik

[0052] Die Reaktionslösung wurde mit 5 ml Isooctan (a) oder 5 ml Diethylenglycoldimethylether (b) (GC-Standard) versetzt.

2,7-Octadienyl-1-methylether

GC (Säule HP 5/30 m, Temp.-Programm: 35°C, 10 min. mit 8°C min⁻¹ auf 280°C, Inj.: 250°C, konst. Fluß, a). t_R (Vinyleyclohexen) = 12.3 min. t_R (Octatrien) = 11.6 min und 11.7 min. t_R (1) = 19 min. t_R (Isooctan) = 4.5 min.

7 5 3 1 OMe

¹H NMR (CDCl₃, 400 MHz) δ = 1.39 (quint, ³J_{5,4 und 6} = 8 Hz, 2H, 5-H), 1.9 (m, 4H, 4-H und 6-H), 3.2 (s, 3H, OCH₃), 3.7 (d, ³J_{1,2} = 6 Hz, 2H, 1-H), 4.754.9 (m, 2H, 8-H), 5.35–5.45 (m, 1 H, 7-H), 5.5–5.7 (m, 2H, 2-H und 3-H).

 13 C NMR (CDCl₃, 100 MHz): δ = 28.6 (C-5), 32.0 (C-4), 33.5 (C-6), 57.9 (OCH₃), 73.5 (C-1), 114.9 (C-8), 126.9 (C-2), 134.8 (C-3), 138.8 (C-7).

2,7-Octadienyl-1-butylether

GC (Säule HP 5/30 m, Temp.-Programm: 35°C, 10 min, mit 8°C min⁻¹ auf 280°C, Inj.: 250°C, konst. Fluß, b). t_R (Vinyl-cyclohexen) = 12 min. t_R (Octatrien) = 11.6 min und 11.7 min. t_R (2) = 24.1 min. t_R (Diglyme) = 17.1 min.

¹H NMR (CDCl₃, 400 MHz) $\delta = 0.75$ (t, J = 7.3 Hz, 3H, 12-H), 1.25 (sext, J = 7.1 Hz, 2H, 11-H), 1.39 (q, $^3J_{5,4 \text{ und } 6} = 7 \text{ Hz}$, 2H, 5-H), 1.42 (quint, J = 0.75 (t, J = 7.3 Hz, 3H, 12-H), 1.26 (sext, J = 7.1 Hz, 2H, 11-H), 1.39 (q, $^3J_{5,4 \text{ und } 6} = 7 \text{ Hz}$, 2H, 5-H), 1.42 (quint, J = 0.75 (Hz, 2H, 10-H), 1.9 (m, 4H, 4-H und 6-H), 3.26(t, J = 0.75 Hz, 2H, 9-H), 3.7(dd, J = 0.75 Hz, 2H, 1-H), 4.76–4.9 (m, 2H, 8-H), 5.36–5.45 (m, 1 H, 7-H), 5.5–5.7 (m, 2H, 2-H und 3-H).

 $^{13}\text{C NMR (CDCl}_3,\,100\,\text{MHz}):$ $\delta=13.6$ (C-12), 19.1 (C-11), 28.05 (C-5), 31.4 (C-10), 31.6 (04), 32.9 (C-6), 69.1 (C-9), 71.3 (C-1), 114.3 (C-8), 126.7 (C-2), 133.5 (C-3), 138.2 (C-7).

MS m/z (%): 182 [M⁺] (1.4), 139 (4.3), 126 (10.6), 108 (24), 101 (3.9), 97 (11), 93 (27), 82 (35), 67 (72), 57 (100); HRMS: berechnet für $C_{12}H_{22}O$: 182.16707, gefunden: 182.16460.

Versuchsbeispiele 1-17

[0053] Die Telomerisation erfolgte analog zu der allgemeinen Arbeitsvorschrift zur Telomerisation von Butadien mit Methanol als Alkohol. Bei Einsatz anderer Alkohole wurde die Masse an Alkohol beibehalten und die Menge an Butadien, Katalysator usw. entsprechend den Angaben in der Tabelle angepaßt. Als Palladiumverbindungen wurden die Komplexe A-E zugegeben. Als Base wurde Natriumhydroxid eingesetzt, die Reaktionsdauer betrug jeweils 16 Stunden.

50

5

10

15

20

25

30

35

40

55

60

Beispiel 18

Synthese des Palladiumkomplexes E

[0054] Zu einer Suspension von 1 g Bis(tri-o-tolylphosphin)palladium(0) in 20 ml Toluol gibt man eine Lösung von vom 915 mg 1,3-Dimesitylimidazolin-2-yliden gelöst in 20 ml Toluol. Die Reaktionsmischung wird bei Raumtemperatur eine Stunden gerührt und anschließend wird das Lösungsmittel im Vakuum entfernt. Nach Waschen des Rückstands mit Hexan (3 × 10 ml) und Trocknung im Vakuum erhält man den Komplex E, der ohne weitere Reinigung in den Telomerisationsreaktionen eingesetzt wurde.

Ausbeute 65%, ¹³C NMR (C₆D₃, 100 MHz): δ = 186.2 (Pd-CN2).

Beispiele 19-20

[0055] Der Katalysator wird in situ aus einer Palladiumvorstuse und der Carbenvorstuse F generiert [Pd(OAc)₂ = Palladium(II)acetat, Pd₂(dba)₃ = Di(dibenzylidenaceton)-palladium(0)]. Verbindung F kann über bekannte Vorschristen erhalten werden (beispielsweise WO 0001739) und ist auch kommerziell erhältlich (Strem). Die Telomerisation erfolgte nach der allgemeinen Arbeitsvorschrist zur Telomerisation von Butadien mit Methanol. Als Base wurde Natriumhydroxid eingesetzt, die Reaktionsdauer betrug jeweils 16 Stunden.

55

NOL			200	>98.000	00.	3	256.667	91.000	233.333	250.000	87.000	290.000	270.000	300.000	250.000	79000	246666	16700	90000	254000	86000	94700					5
		-	>9.800 -	>98	56 500	3	526	91.0	233	250	.78	736	27	8	32	79	24		196								
OT+OD+VCH		<u>s</u>	1.8	1.2		٠	1.8	3.5	4.2	2.4	8.0	1.8	1.5	2.2	2.4	9.2	9.5	31.2	1.8	2.5	13	1 2	!				10
T				-	+		-	-	-	+		-	8	8			+	1	9	4		_	e				15
) 	[%]:[%]	96.5:3.5	97.3.2.7		98.8:1.2	98:2	98.1:1.9	97.2:2.8	97:3	98.2:1.8	99:1	98.2:1.8	97.2:2.8	97.5:2.5	92.2.7.8	93:7	9	97.4.2.6	07.8.2 4	7 0.0 20	31.3.2	97.2.2.0				20
	n+iso	Telomer [%]	> 98	1		56.5	11	16	02	75	87	. 87	8	06	75	62	2/4/	187	6	200	207	98	94.7				25
	Temp.	[C]	8	1 8	<u></u>	20	06	8	3 8	8 8	2 2	9	3 8	8 8	3 8	26	2 8	2 6	98	3	8	90	8		n dohexen	er number	30
	Base	[mol%]			-	-	-	.	-	- -	- -	- -	- \. -\	- -	-	- -	-	-	-	-	-	-	-	OT = Octatrien	OD = Octaadien VCH = Vinvlcvclohexen	TON = Tumover number	35
	þd	[% 0m]	200	0.0	0.001	0.00	2003	0.000	0.001	0.0003	0.0003	100.0	0.0003	0.0003	0.0003	0.0003	0.001	0.0003	0.001	0.001	0.0003	0.001	0.00	=T0	= QO	NO.	40
	-	saior				1											Pd(OAc) ₂ /3PPh ₃	Pd(Oac)2/3PPh3	Pd(OAc) ₂ /3PPh ₃			Pd(OAc)2/3F	Dalidhal/ 3 F	C (ppg)			45
		Katalysalor		٨	4		4	⋖_	∢	A	4	٨	4	B	ပ	0	Pd	Pd	Pd	ш	<u> </u>	Pa	70			ZI 12	50
		Nu/Butadien	[non/mon]	1:2	4.5	4	1:2	1:2	1:2	1:2	1:2	=======================================	1:2	1:2	1:2	1:2	1:2	1:2	1:2	1:2	1:2	1.2	i di	1:2	Nu = Nucleopnii n + iso = Summe Produkt 1 +2	n : iso = Verhältnis Produkt 1 zu 2	55
		sophil		Ē	+		F	¥	E	E	Ī	H	2-ЕНОН	동	MeOH	MeOH	MeOH	MeOH	BuOH	MaOH	1001	L C	MeOaw	MeOH	Nu = Nucleophili n + iso = Summe	= Verhältni	6
		Nr. Nucleophil		1 MeOH		2 MeOH	3 MeOH	4 MeOH			7 EIOH	8 MeOH								\neg			S.	20 M	N= N + iso	n : iso =	ć

Beispiele 21-22

[0056] In einem 100-ml-Schlenkrohr werden unter Schutzgas 70.6 g (0,75 mol) Phenol und die entsprechende Menge des Katalysators A (mol% Pd bezogen auf mol Butadien) in 70 ml Tetrahydrofuran gelöst. Als Base wird Natriumphenolat hinzugegeben, 1 mol% bezogen auf die eingesetzte Menge an Phenol. Anschließend wird die Reaktionslösung in den evakuierten Autoklaven eingesaugt, der Autoklav auf T < -10°C gekühlt und Butadien einkondensiert (Mengenbestimmung durch Massenverlust in der Butadienvorratsflasche). Das molare Verhältnis Phenol zu Butadien betrug 2 zu 1. [0057] Der Autoklav wird auf 90°C erwärmt und nach 16 Stunden auf Raumtemperatur abgekühlt. Nicht umgesetztes Butadien wird in eine mit Trockeneis gekühlte Kühlfalle zurückkondensiert. Aus der Massenzunahme der Reaktionslösung wird der Umsatz bestimmt. Zur Isolierung des Produktes wird die Lösung im Vakuum destilliert.

	Nr.	Base	Pd [mol%]	n+iso	n :iso	OT+VCH	TON
15				Telomer [%]	[%]:[%]	[%]	
	21	NaOPh	0.005	56	89 :11	. 1.3	11200
20	22	NaOPh	0.001	6.4	95 :5	3.4	6400

2,7-Octadienyl-1-phenylester

 1H NMR (CDCl₃, 400 MHz) $\delta=1.8$ (quin, J = 7.5, 5-H), 2.3–2.4 (m, 4H, 4-H, und 6-H), 4.74 (dd, J = 5.5, J = 1, 2H, 1-H) 5.2–5.35 (m, 2H, 8-H), 5.9–6.2 (m, 3H, 7-H, 2-H, 3-H), 7.18–7.21 (m, 3H, 10-H, 12-H), 7.5–7.6 (m, 2H, 11-H)

 ^{13}C NMR (CDCl₃, 100 MHz): d = 28.0 (C-5), 31.6 (C-4), 33.0 (C-6), 68.4 (C-1), 114.53 (C-8), 120.5 (C-11), 125.1 (C-2), 129.1 (C-12), 129.2 (C-10), 134.8 (C-3), 138.3 (C-7), 158.5 (C-9) MS m/z (%): [M⁺] 202 (2.5), 108 (9.9), 94 (100), 79 (11), 67 (55), 58 (11), 55 (24), 43 (40), HRMS: berechnet für C₁₄H₁₈O: 202.13577, gefunden: 202.13485

$$7$$
 5 3 1 0 9 10 11

25

30

35

60

Beispiel 23

45 [0058] Die Telomerisation erfolgte analog zu der allgemeinen Arbeitsvorschrift zur Telomerisation von Butadien mit Methanol. Als Palladiumverbindung wurden der Komplex A zugegeben. Als Base wurde Natriumisopropylat, 1 mol%, eingesetzt. Die Reaktionsdauer betrug 16 Stunden bei 90°C, das molare Verhältnis i-Propanol zu Butadien betrug 2 zu 1.

50	Nr.	Kataly- sator	Pd [mol%]	n+iso Telomer [%]	n :iso [%]:[%]	OT+VCH [%]	TON
55	23	A	0.005	72.5	82 :18	26.5	14500

2.7-Octadienyl-1-isopropylether

GC (Säule HP 5/30 m, Temp.-Programm: 35°C, 10 min. mit 8°C min auf 280°C, Inj.: 250°C, konst. Fluß, b). $t_R(Vinyl-cyclohexen) = 12$ min. $t_R(Octatrien) = 11.6$ min und 11.7 min. $t_R(2) = 19.2$ min. $t_R(1) = 16.51$, $t_R(Diglyme) = 17.1$ min.

¹H NMR (CDCl₃, 400 MHz)
δ = 1.05 (d of s, 6H, 10-H, 11-H), 1.4 (quint, J = 7.5 Hz, 2H, 10-H), 1.9 (m, 4H, 4-H und 6-H), 3.5 (sept, J = 6.1 Hz, 2H, 9-H), 3.82 (dd, J = 6.2 Hz, J = 1 Hz, 2H, 1-H), 4.764.9 (m, 2H, 8-H), 5.36-5.45 (m, 1 H, 7-H), 5.5-5.75 (m, 2H, 2-H und 3-H).

d = 21.7 (C-11, C-10), 27.9 (C5), 31.3 (C-4), 32.9 (C-6), 69.1 (C-9), 70.8 (C-1), 114.8 (C-8), 127.7 (C-2), 133.5 (C-3),

5

15

30

35

MS m/z (%): [M⁺] 168(0.11), 126 (12.5), 109 (30.6), 97 (13), 93 (25), 82 (68), 67 (95), 55 (76), 43 (100)

EA: berechnet für C₁₁H₂₀O: C: 78.51, H: 11.98, gefunden: C: 78.56, H: 11.95

Patentansprüche

1. Verfahren zur Telomerisation von nicht cyclischen Olefinen mit mindestens zwei konjugierten Doppelbindungen (I) oder Mischungen, die solche Olefine enthalten, mit Nukleophilen (II), wobei als Katalysator ein Palladiumcarbenkomplex verwendet wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Nukleophile solche ausgewählt aus der Gruppe Wasser, Alkohole, Phenole, Polyole, Carbonsäuren, Ammoniak, primäre oder sekundäre Amine eingesetzt werden. 3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass als Nucleophile (II) Verbindungen der allgemeinen Formel (IIa) oder (IIb) eingesetzt werden,

worin R1, R1' unabhängig voneinander ausgewählt sind aus Wasserstoff, einer linearen, verzweigten oder cyclischen C₁ bis C₂₂-Alkylgruppe, einer Alkenylgruppe, einer Alkinylgruppe, einer Carboxylgruppe oder einer C₅ bis C₁₈ Arylgruppe, wobei diese Gruppen Substituenten ausgewählt aus der Gruppe -CN, -COOH, -COO-Alkyl-(C1-C8), -CO-Alkyl-(C₁-C₈), -Aryl-(C₅-C₁₀), -COO-Aryl-(C₆-C₁₀), -O-Alkyl-(C₁-C₈), -O-CO-Alkyl-(C₁-C₈), -N-Alkyl-(C₁-C₈), -CHO, -SO₃H, -NH₂, -F, -Cl, -OH, -CF₃, -NO₂ enthalten können, und wobei die Reste R^1 , R^1 über kovalente Bindungen miteinander verknüpft sein können.

4. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass ein Palladiumcarbenkomplex mit Carbenliganden der Formeln (III) oder (IV) verwendet wird,

wobei \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander eine lineare, verzweigte oder cyclische \mathbb{C}_1 bis \mathbb{C}_{24} -Alkylgruppe oder eine C₅ bis C₁₈-Arylgruppe sind, wobei die Alkylgruppe und die Arylgruppe unabhängig voneinander die Substituenten -CN, -COOH, -COO-Alkyl-(C1-C2), -CO-Alkyl-(C1-C2), -Aryl-(C6-C18), -Alkyl-(C1-C24), -COO-Aryl-(C6-C10), $-\text{CO-Aryl-}(C_6-C_{10}), -\text{O-Alkyl-}(C_1-C_8), -\text{O-CO-Alkyl-}(C_1-C_8), -\text{N-Alkyl-}(C_1-C_8), -\text{CHO}, -\text{SO}_3\text{H}, -\text{NH}_2, -\text{F}, -\text{Cl}, -\text{CO-Aryl-}(C_1-C_8), -\text{CHO}, -\text{CO-Alkyl-}(C_1-C_8), -\text{CO-Alkyl-}(C_1-C_8), -\text{CO-Alkyl-}(C_1-C_8), -\text{CHO}, -\text{CO-Alkyl-}(C_1-C_8), -\text{CO-Alkyl-}(C$

und wobei R⁴ bis R⁷ unabhängig voneinander Wasserstoff, -CN, -COOH, -COO-Alkyl-(C₁-C₈), -CO-Alkyl-(C₁--OH, -CF₃, -NO₂, Ferrocenyl enthalten können, C_8), -COO-Aryl-(C_6 - C_{10}), -CO-Aryl-(C_6 - C_{10}), -O-Alkyl-(C_1 - C_8), -O-CO-Alkyl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_8), -N-Alkyl-(C_1 - C_8), -O-CO-Aryl-(C_1 - C_1 - C_1 - C_1 - C_1 - C_2 - C_1 - C_1 - C_2 - C_2 - C_1 - C_2 - C_2 - C_1 - C_2 - C_2 - C_2 - C_2 - C_1 - C_2

-NH₂, -F, -Cl, -OH, -CF₃, -NO₂ oder eine lineare, verzweigte oder cyclische C₁ bis C₂₄-Alkylgruppe oder C₆ bis C₁₈-Arylgruppe ist und die Alkylgruppe und Arylgruppe unabhängig voneinander die Substituenten -CN, -COOH, -COO-Alkyl-(C₁-C₈), -CO-Alkyl-(C₁-C₈), -Aryl-(C₆-C₁₀), -COO-Aryl-(C₆-C₁₀), -CO-Aryl-(C₆-C₁₀), -O-Alkyl-(C₁-C₈), -O-CO-Alkyl-(C₁-C₈), -O-CO-Alkyl-(C₁-C₈), -CHO, -SO₃H, -NH₂, -F, -Cl, -OH, -CF₃, -NO₂, enthalten kann, und wobei die Reste R⁴ und R⁵ auch Teil eines verbrückenden aliphatischen oder aromatischen Ringes sein können. 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass als nicht cyclisches Olefin 1,3-Butadien

6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass 1,3-Butadien in Mischung mit anderen C4-Kohlenwasserstoffen oder C5-Kohlenwasserstoffen eingesetzt wird.

7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass als Lösemittel das Nucleophil (II) oder inerte organische Lösemittel oder Mischungen derselben eingesetzt werden.

8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Reaktion bei Temperaturen von 10 bis 180°C und einem Druck von 1 bis 300 bar durchgeführt wird.

9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass das Verhältnis von Carbenligand zu Pd

	DE 101 28 144 A 1
5	[Mol/Mol] 0,01: 1 bis 250: 1 beträgt. 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Palladiumcarbenkomplexe als isolierte Komplexe eingesetzt werden. 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Palladiumcarbenkomplexe während der Telomerisationsreaktion in situ erzeugt werden. 12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass der Reaktion katalytische Mengen einer basischen Komponente mit einem pKb-Wert <7 zugesetzt werden. 13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass als basische Komponente Verbindungen ausgewählt aus der Gruppe Amine, Alkalimetallsalze, Erdalkalimetallsalze oder Mischungen derselben eingesetzt werden. 14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass die basische Komponente in Mengen von 0.01 mol% bis 10 mol% bezogen auf die Olefinverbindung eingesetzt wird. 15. Verfahren nach den Ansprüchen 1 bis 14, dadurch gekennzeichnet, dass die Palladiumkonzentration in der Reaktionsmischung 0.01 bis 1000 ppm beträgt.
15	
20	•
25	
30	•
35	
40	
45	
50	
55	