Прибор ПНВ-57Е

Семпя и Wentung

Техническое описание

В Sch 3.803.053 ТС

БШ 3.803.053 ТО

ПРИБОР ПНВ-57Ё Техническое описание БШ 3.803.053 ТО

СОДЕРЖАНИЕ

	Стр
1. Назначение	3
2. Технические данные	4
3. Состав прибора	4
4. Устройство и работа прибора	5
4.1. Бинокуляр	5
4.2. Блок питания	7
4.2.1. Ограничитель напряжения (ОГН)	9
1.2.2. Стабилизатор напряжения (СТН)	10
4.2.3. Преобразователь напряжения	11
4.2.4. Выпрямитель напряжения	14
4.3. Устройство блока питания	15
4.4. Переходной кабель	18
1.5. Петочники искусственной подсветки	19
5. Размещение и монтаж	19

1. НАЗНАЧЕНИЕ

Прибор ПНВ-57Е предназначен для вождения автомобилей, гусеничных тягачей, инженерных машин, десантно-переправочных средств и катеров ночью в условиях естественной освещенности ог небосвода, луны и звезд от $(3-5) \cdot 10^{-3}$ лк и выше.

Действие прибора основано на усилении слабого света почного неба и невидимых глазом лучей, отраженных от дороги и местных предметов и преобразованных в видимое глазом изображение. Слабый свет, отраженный от дороги или предметов, проектируется при номощи объективов бинокуляра на фотокатоды электронно-оптических преобразователей (ЭОПов). Фотокатоды имеют очень высокую чувствительность к свету.

Изображение на фотокатоде каждого ЭОПа вследствие излучения катодом электронов превращается в электронное изображение. В свою очередь, электронное изображение под действием электрического поля высокого напряжения перепосится на люминесцентный экран и фокусируется на нем, электроны, ударяясь о люминесцентный экран, вызывают его свечение в соответствии с очертанием предметов, воспринятых оптикой объективов.

Таким образом, электронное изображение превращается на экране ЭОПа в видимое изображение, которое рассматривается глазом наблюдателя через окуляр.

Наличие двух трубок в бинокуляре позволяет наблюдателю вести наблюдение обоими глазами с естественной перископичностью и нормально ощутимой глубиной перспективы.

Высокое напряжение на экран ЭОПа создается высоковольт-

При уровнях естественной ночной освещенности значительно ниже $(3-5) \cdot 10^{-3}$ лк может применяться искусственная подсветка полотна дороги, создающая освещенность, не превышающую $(3-5) \cdot 10^{-3}$ лк.

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Поле зрения прибора не менее	35°
2.2. Увеличение	$1-1,2^{x}$
2.3. Максимальная разрешающая способность	
в центре поля зрения. штр/мм, не менее	33
2.4. Рабочая разрешающая способность	
в центре поля зрения, штр/мм, не менее	26
2.5. Диоптрийное перемещение окуляра, дптр.	+ 5
	— 5
2.6. Входное напряжение, В	12 - 15,5
	24 - 30,5
2.7. Выходное напряжение, кВ	19,5+1
	-3
2.8. Время непрерывной работы прибора, ч., не менее	3
3. СОСТАВ ПРИБОРА	
3.1. В состав прибора входят:	
Бинокуляр и высоковольтный блок питания,	
укрепленные на танковом шлеме	1 шт.
Вставка (УФС-8)	2 шт.
Вставка (КС-19)	2 шт.
Переходной кабель	1 шт.
Прибор ПНВ-57Е. Техническое описание	1 экз.
Прибор ПНВ-57Е. Комплект ПНВ-57ЕТ.	
Комплект ПНВ-57ЕТС. Инструкция по эксплуатации	1 экз.
Формуляр	1 экз.
Футляр	1 шт.
3.2. Запасные части и принадлежности	
Ключ 5,5 × 7	1 шт.
Ключ 7 × 12	1 шт.
Пружина	3 шт.
A	

Illайба (толщ. 0,2 мм)	3	шт.
Светофильтр (УФС-8)	1	шт.
Светофильтр (КС-19)	1	HIT.
Отвертка	1	шт.
Шайба (толщ. 0,8 мм)	2	шт.
Салфетка	5	шт.
Щетка	1	шт.

4. УСТРОЙСТВО И РАБОТА ПРИБОРА

4.1. Бинокуляр

Бинокуляр представляет собой два параллельно расположенных и соединенных при помощи шарнирного устройства монокуляра. На рис. 1 показан в разрезс один из монокуляров, в котором имеются объектив 1. электронно-оптический преобразователь 2 и окуляр 3. Корпус 4 каждого монокуляра представляет собой трубку с приливом в окулярной части и двумя приливами-ушками для шарипра. В приливе корпуса имеется отверстие для ввода высоковольтного кабеля 6. Кабель заканчивается втулкой 7 из резины. Втулка надевается на штенгель преобразователя 2.

Такая конструкция вызвана особенностями преобразователя и не позволяет отсоединять кабель от бинокуляра, не нарушая юстировки.

Корнус закрывается крышкой 5 с цилиндрическим приливом. Крышка соединяется с корпусом 6-ю винтами и уплотияется водонепроницаемой замазкой. В цилиндрическую часть корпуса ввернут на резьбе объектив 1.

Объектив имеет фокусное расстояние 37 мм и состоит из девяти линз. Электронно-оптический преобразователь 2 закрепляется в корпусе при номощи колпачка 8 и четырех винтов. Колпачок изготовлен из изоляционного материала. К крышке тремя винтами крепится окуляр 3. Окуляр имеет фокусное расстояние 15 мм и состоит из четырех линз.

Для окончательной выставки параллельности оптических осей бинокуляра предусмотрено плавающее соединение окуляра с крышкой. Настройка окуляров по глазам наблюдателя осуществляется

Рис. 1

вращением окуляров вместе с наглазниками 9. Положение окуляров автоматически фиксируется пружинным фиксатором 10, скользящим по накатке кольца 11. Для обеспечения установки окуляров по базе глаз наблюдателя бинокуляр имеет шарнирное устройство. База может изменяться от 58 до 74 мм.

4.2. Блок питания

Блок питания ПНВ-57Е преобразует постоянное напряжение бортовой сети в постоянное высокое напряжение, необходимое для питания электронно-оптического преобразователя.

Блок работает в двух диапазонах напряжений 12 — 15,5 В и 24 — 30,5 В. Номинальное выходное напряжение равно 19,5 кВ. Максимальная потребляемая мощность не более 6 Вт. Переключение на 24 и 12 В производится автоматически.

Структурная схема блока питания (рис. 2) включает в себя следующие узлы:

ОГН — органичитель напряжения;

СТН — стабилизатор напряжения;

ППН — преобразователь напряжения;

В — выпрямитель.

Напряжение бортовой сети машины через ограничитель напряжения подается на стабилизатор, который поддерживает постоянное напряжение на входе преобразователя напряжения.

В преобразователе это стабилизированное напряжение преобразуется в переменное, затем повышается высоковольтным трансформатором и поступает на выпрямитель. В выпрямителе переменное напряжение преобразуется в постоянное высокое напряжение, питающее электронно-оптический преобразователь.

Рис. 3. Схема электрическая принципиальная блока питания

R1 — conpotubaehue балластное — 80 Om
R2 — резистор 0,5 — 390 Om
R3 — резистор 0,5 — 430 Om
R4 — резистор 0,5 — 200 Om
R5 — резистор 0,125 — 1,3 к
R6 — резистор переменный 33 Ом
R7 — резистор 0,125 — 91 Om
R8 — резистор 0,125 — 91 Om
R9 — резистор 0,125 — 91 Om
R9 — резистор 0,125 — 91 Om
R10 — резистор 0,125 — 82 Om
R11 — резистор 0,125 — 2 к

С1 — С4 — конденсатор 16 — 150 пФ С5 — конденсатор 50 — 10000 пФ С6 — конденсатор 0,068 мкФ Т1, Т3, Т4 — транзисторы МП25Б Т2 — транзистор П217Г Д1 — днод Д226А Д2 — стабилитрон Д814В Д3 — Д12 — выпрямители селеновые 3ГЕ220АФ Р1 — реле РЭС-34 Тр1 — трансформатор

4.2.1. Ограничитель напряжения (ОГН)

Рис. 4. Схема принциппальная электрическая ограничителя напряжения

Ограничитель напряжения (рис. 4) предназначен для ограничения входного напряжения стабилизатора при работе блока от бортовой сети 24 — 30,5 В. Он построен на сопротивлениях R1, R2 и реле P1.

Принции работы заключается в следующем: при работе блока от сети 12—15,5 В нормально замкнутые контакты 3—4 реле Р1 шунтируют сопротивление R1 и все напряжение сети подается на стабилизатор. При подключении блока к сети 24—30,5 В реле Р1 срабатывает, контакты 3—4 размыкаются и сопротивление R1 включается в цепь питания блока. На сопротивлении R1 часть напряжения сети гасится и на стабилизатор подается напряжение в пределах 12—17 В. Замкнувшиеся контакты 3—5 реле Р1 шунтируют сопротивление R2, которое обеспечивает срабатывание реле Р1 в пределах 16,5—22 В.

Конденсатор С6 конструктивно размещен в переходном кабеле и служит для снижения уровня раднономех, создаваемых работающим блоком питания.

Рис. 5a. Составной транзистор

Рис. 5. Схема электрическая принципиальная стабилизатора напряжения

Стабилизатор напряжения представляет собой эмиттерный повторитель с фиксированным напряжением на базе.

В качестве регулирующего элемента в стабилизаторе используется составной транзистор, состоящий из транзисторов Т1 и Т2 (рис. 5a).

Источником опорного напряжения «Uoп» является стабилитрон Д2, задающий величину напряжения на выходе стабилизатора. Напряжение на выходе стабилизатора определяется: Uвых = Uoп — Uэ-б, где Uэ-б — управляющее напряжение между эмиттером и базой составного транзистора.

При изменении напряжения в бортовой сети изменяется ток, протекающий через стабилитрон Д2 в пределах (ограниченных резистором R3), при которых напряжение на стабилитроне практически не изменяется, т. е. Uon — Const. Поэтому при всяком изменении выходного напряжения стабилизатора изменяется управляющее напряжение Uэ-б составного транзистора. При увеличении выходного напряжения стабилизатора Uэ-б уменьшается, вызывая большее запирание транзистора и увеличение сопротивления на переходе эмиттер—коллектор. При уменьшении напряжения на выходе стабилизатора сопротивление перехода эмиттер—коллектор уменьшается.

Таким образом, составной транзистор работает как управляемое сопротивление, поддерживающее на выходе стабилизатора постоянное напряжение. Диод Д1 защищает электросхему блока при песоблюдении полярности входного напряжения.

4.2.3. Преобразователь напряжения

Преобразователь постоянного напряжения построен по двухтактной схеме с общим эмиттером на двух транзисторах МП25Б, работающих поочередно в режиме ключа.

Принципиальная электросхема преобразователя показана на рис. 6.

Принцип работы преобразователя заключается в следующем: при подключении преобразователя к источнику напряжения на базах транзисторов ТЗ, Т4 (рис. 6) появится незначительное отрицательное смещение, создаваемое делителем напряжения R9, R10. в результате чего выходное сопротивление транзистора понизится и в цепях коллектора появится ток. Вследствие неидентичности

Рис. 6. Схема электрическая принциппальная преобразователя напряжения

электрических параметров транзисторов токи $I\kappa_3$, $I\kappa_4$ в обмотках W_1' , W_1'' будут неодинаковы и появится разпостный ток, который вызовет изменение магнитного потока трансформатора Tp1, поэтому на обмотках обратной связи W ос и W ос трансформатора появится электродвижущая спла (ЭДС). Обмотки обратной связи включены так, что при токе $I\kappa_3$ больше тока $I\kappa_4$ ЭДС, создаваемая в обмотке обратной связи W ос, будет приложена отрицательным потенциалом к базе транзистора T3. Эта ЭДС еще больше откры-

вает транзистор, сопротивление перехода эмитгер—коллектор падает, а ток через коллекторную обмотку W_1' возрастает. Возрастающий при этом магинтный поток еще больше увеличивает ЭДС в обмотке обратной связи, а следовательно еще больше увеличивает ток $I\kappa_3$. Увеличение тока будет происходить до тех пор, пока транзистор T3 не будет полностью открыт, τ . е. не наступит режим насыщения.

Одновременно с ростом тока Ік₃ происходит уменьшение тока Ік₄ за счет увеличения ЭДС в обмотке обратной связи W'ос, так как в этом случае ЭДС в обмотке обратной связи приложена положительным потенциалом к базе транзистора Т4.

В результате вышеизложенных процессов происходит отпирание транзистора ТЗ и запирание транзистора Т4. С достижением пасыщения транзистора ТЗ магнитный поток перестает изменяться. Напряжение в обмотке обратной связи падает до минимума. Сопротивление перехода эмиттер—коллектор возрастает, ток через W'1 уменьшается. Уменьшение тока Ік3 приводит к появлению магнитного потока обратной полярности. При этом произойдет запирание транзистора ТЗ. ЭДС, индуктируемая в обмотке обратной связи W"ос, открывает транзистор Т4, ток Ік4 увеличивается. Вышеописанный процесс повторяется.

Таким образом, в схеме преобразователя напряжения установится режим незатухающих колебаний. Переменное напряжение с коллекторной обмотки трансформируется в высоковольтную обмотку WB и подается на однополупериодный выпрямитель с умножителем напряжения.

Для снижения уровня поля радиопомех в блоке питания между плюсовым контактом низковольтного разъема и корпусом блока включен развязывающий конденсатор С5 (рпс. 3). Переменные ЭДС, наводимые на корпусе при работе преобразователя, отфильтровываются через конденсатор С5.

Рис. 7. Схема электрическая принципиальная выпрямителя напряжения

Выпрямитель (рис. 7) состоит из 4-х конденсаторов (C1 — C4) типа K74-Т и десяти селеновых выпрямителей $3\Gamma E220$ $A\Phi$

(Д3 — Д12).

В выпрямителе применена однополупериодная схема выпрямления с умножением (учетверением) напряжения. Умножение напряжения происходит следующим образом: в отрицательный полупериод переменного напряжения через выпрямители Д3—Д5 в проводящем направлении заряжается донденсатор С1 примерно до амплитудной величны напряжения UA высоковольтной обмотки трансформатора Тр1.

В следующий полупериод, когда полярность переменного напряжения на обмотке трансформатора изменится, к конденсатору С2 через выпрямители Д6—Д8 в проводящем паправлении будет приложено напряжение Uc2, равное сумме напряжений на конденсато-

ре C1 и на обмотке трансформатора $Uc_2 = Uc_1 + UA \approx 2UA$.

Конденсатор С2 зарядится до двойного амплитудного напряжения высоковольтной обмотки трансформатора. В последующий от-

рицательный полупериод напряжение на выходной обмотке трансформатора будет противоположно по фазе напряжению на конденсаторе C1. Сумма их будет равна нулю. $Uc_1 - UA = 0$, а к конденсатору C3 через выпрямители Д9 — Д10 будет приложено напряжение $Uc_2 \approx 2UA$.

Конденсатор С3 также зарядится до величины 2UA. Аналогично в последующий положительный полупериод через выпрямители Д11 — Д12 заряжается конденсатор С4 до напряжения

 $Uc_4 = Uc_3 \approx 2UA$.

Напряжение на выходе выпрямителя равно сумме папряжений на конденсаторах С2 и С4:

 $UBX = Uc_2 + Uc_4 \approx 2UA + 2UA = 4UA$,

т. е. равно почти учетверенному амплитудному значению напряжения на высоковольтной обмотке трансформатора Тр1.

4.3. Устройство блока питания

Блок питания внешне представляет собой литой кожух 1 (рис. 8) прямоугольной формы с закругленными углами, закрытый сверху крышкой 2. Крышка соединяется с кожухом 4-мя винтами и уплотияется водонепроницаемой замазкой. На кожухе с боков приклепаны две пряжки 4 для крепления блока к шлему, третья пряжка такого же пазначения лриклепана к крышке. На крышке с наружной стороны имеются два прилива: в одном смонтирован низковольтный кабель 14, подающий напряжение на блок питания от машины, в другой вводится высоковольтный кабель, подающий напряжение на электронно-оптические преобразователи бинокуляра. На внутренней стороне крышки винтами крепятся три электроузла блока, в которых смонтированы все элементы электросхемы:

плата 5 с элементами стабилизатора и преобразователя; трансформатор **6**;

высоковольтный выпрямитель 7.

Электрический контакт между узлами осуществляется разыемами.

Плата изготовлена из фольгированного стеклотекстолита и имеет печатный монтаж. На плате с одной стороны смонтированы: реле P1, резистор R2; переменный резистор R6; конденсатор C5 и элементы стабилизатора напряжения: диод Д1; резисторы R3, R4, R5; стабилитрон Д2; транзисторы Т1, Т2; с другой стороны — колодка разъема 9 для соединения с разъемом трансформатора и элементы преобразователя: транзисторы Т3, Т4; резисторы R7, R8, R9, R10, R11. В центре платы имеется окно прямоугольной формы, в которое своим выступом входит высоковольтный трансформатор 6.

Трансформатор выполнен на стержневом сердечнике из пермаллоя, собранном в перекрышку. Высоковольтная обмотка трансформатора состоит из двух полуобмоток, каждая из которых намотана на отдельном каркасе из полнамидной смолы. Под одной из полуобмоток непосредственно на каркас намотаны коллекторная обмотка и обмотка обратной связи. Выводы всех обмоток заканчиваются штырями. Интыри служат для соединения с колодкой разъема 9. Все элементы трансформатора залиты высоконзоляционным компаундом.

Высоковольтный выпрямитель представляет собой отливку из компаунда. В отливке залиты селеновые выпрямители Д3 — Д12, конденсаторы С1 — С4, детали для контакта с трансформатором и корпусом, а также арматура для крепления. Соединение селеновых выпрямителей последовательное.

Монтаж всех элементов и деталей, входящих в схему выпрямителя напряжения, осуществляется пайкой.

В цилиндрической части отливки имеется резьбовой прилив с отверстием для ввода высоковольтного кабеля.

Крепление высоковольтного выпрямителя 7 к крышке 2 блока осуществляется двумя винтами 10, проходящими через приливы отливки, винтом 15 и гайкой 11. Соединение высоковольтного выпрямителя с трансформатором производится через пружинный контакт 12.

Сопротивление R1 выполнено проводом ПЭВНХ Ø 0,3 на каркасе 13 из изоляционного материала и вынесено в штепсельную вилку низковольтного кабеля с целью улучшения температурного режима блока.

4.4. Переходной кабель

Переходной кабель (рис. 9) предназначен для подключения высоковольтного блока питания к электрической сети мащины. Он состоит из штепсельной вилки 1, кабеля 2, двухместной розетки 3 и переходника 4.

При работе с прибором на машинах, оборудованных автомобильной штепсельной розеткой, подключение кабеля в сеть осуществляется непосредственно штепсельной вилкой 1.

При работе на машинах, оборудованных штеккерной системой включения (гусеничные тягачи), штепсельная вилка 1 соединяется с переходником 4, который включается в штеккерную розетку ма-

шины. Двухместная розетка 3 дает возможность включать, при необходимости, от одного переходного кабеля одновременно два прибора (один — для водителя, второй — для командира).

Рис. 9

4.5. Источники искусственной подсветки

Для обеспечения движения машины при уровнях естественной почной освещенности ниже (3—5) 10⁻³ лк используется свет фар со светомаскировочными насадками в режиме «ЧЗ» (МЗ), в которые устанавливаются специальные вставки со светофильтрами 4, 5 (рис. 10).

Вставка состоит из корпуса, в котором в резпиовой обойме

удерживается светофильтр трапецеидальной формы.

Вставки в светомаскировочных пасадках фар удерживаются с помощью пластинчатых пружин. В светомаскировочных насадках, у которых верхняя линза из стекла СЭС-5, применяются вставки из стекла КС-19. При верхней линзе из бесцветного стекла применяются вставки из стекла УФС (фиолетового цвета). Вставки укладываются в футляр.

5. РАЗМЕЩЕНИЕ И МОНТАЖ

Комплект прибора укладывается и перевозится в металлическом футляре. Узлы комплекта прибора показаны на рис. 10.

Рис. 10

тереходной кабель,12, 11 — пружина, 1—бинокуляр, 2—блок питания, 3—шлем, 4—вставка (УФС-8), 5—вставка (КС-19), 6—7—светофильтр (УФС-8), 8—светофильтр (КС-19), 9—ключ 5,5 × 7, 10—ключ 7—12—шайба (толщ. 0,2 мм), 13— шайба (толщ. 0,2 мм), 13— шайба (толщ. 0,8 мм), 14— отвертка. Размещение основных частей комплекта на шлеме в рабочем положении показано на рис. 11.

Рис. 11

Бинокуляр 1 укрепляется на палобной части шлема 3 с помощью шарнира 4. Звенья шарнира имеют подвижные сочленения. Это позволяет водителю установить бинокуляр в наиболее удобное для наблюдателя положение. Бинокуляр удерживается в заданном положении за счет зубчатых муфт в сочленениях шарнира. Зубчатые муфты поджаты спиральными пружинами. При необходимости водитель может откинуть бинокуляр вверх, в нерабочее положение, как показано на рис. 11 пунктиром.

Высоковольтный блок питания 2 укрепляется на затылочной части шлема с помощью трех пряжек и уравновешивает массу бинокуляра. Блок питания соединяется с бинокуляром с помощью вы-

соковольтного кабеля 6, по которому подается высокое напряжение

для питания электронно-оптических преобразователей.

Во время работы прибора вилка 8 низковольтного кабеля 7 блока питания соединяется с двухместной розеткой переходного кабеля, по которому подается напряжение питапия от розетки бортовой сети машины.

В Н И М А Н И Е!

Запрещается включать прибор при дневном свете или в осве-

щенном помещении при освещенности более 1 лк.

Правила установки прибора, обращения с прибором, эксплуатации, хранения, транспортирования, а также сведения о возможных ненсправностях и способах их устранения изложены в инструкции по эксплуатации прибора.

