Sistemas Operacionais

Working Set (Conjunto de Trabalho)

Prof. Jose Paulo . de Oliveira

Eng. da Computação, UPE

jpgo@ecomp.poli.br

Localidade de referências:

Processos normalmente acessam apenas uma pequena fração de suas páginas a cada instante

O conjunto de páginas acessadas na história recente de um processo é chamado *Conjunto de Trabalho* (*Working Set*) [Peter Denning]

Definição:

• É o menor conjunto de informação que deve estar presente na memória principal para garantir uma execução eficiente do processo

Definição:

- É o menor conjunto de informação que deve estar presente na memória principal para garantir uma execução eficiente do processo
- Nem o programador nem o compilador conseguem determinar, a priori, que informações são essas

Definição:

- É o menor conjunto de informação que deve estar presente na memória principal para garantir uma execução eficiente do processo
- Nem o programador nem o compilador conseguem determinar, a priori, que informações são essas
- Cabe ao SO, com base nos padrões de referência das páginas, determinar quais páginas estão em uso

Definição:

- É o menor conjunto de informação que deve estar presente na memória principal para garantir uma execução eficiente do processo
- Nem o programador nem o compilador conseguem determinar, a priori, que informações são essas
- Cabe ao SO, com base nos padrões de referência das páginas, determinar quais páginas estão em uso
- O conjunto de trabalho, portanto, é formado pelas últimas páginas acessadas

- A composição do conjunto de trabalho é dinâmica
- Varia à medida que o processo executa e evolui seu comportamento, acessando novas páginas e deixando de acessar outras
- Ou seja, depende do instante de tempo de execução t

Conceito de localidade

Página 0

Página 1

Página 2

Página 3

Página 4

 O tamanho e a composição do conjunto de trabalho também dependem do número de páginas consideradas em sua história recente

- O tamanho e a composição do conjunto de trabalho também dependem do número de páginas consideradas em sua história recente
- Ou, similarmente, ao período de observação
 τ da história recente

Fig. 2. Definition of $W(t, \tau)$

- O tamanho e a composição do conjunto de trabalho também dependem do número de páginas consideradas em sua história recente
- Ou, similarmente, ao período de observação τ da história recente
- Similarmente: depende da quantidade de acessos observados durante τ

Exemplo:

Cadeia de referências

t	pa	página		ws(n = 3)	
1		0		{0}	Г
2		2		{0, 2}	
3		1		{0, 2, 1}	
4		1 3 5		{2, 1, 3}	
5		5		{1, 3, 5}	
6		4		{3, 5, 4}	
7		6		{5, 4, 6}	
8		3		{4, 6, 3}	
9		7		{6,3,7}	
10		6 3 7 4 7		{3,7,4}	
11		7		{4,7}	
12	7	3 5 5 3		{4,7,3}	
13		3		{7, 3}	
14		5		{3, 5}	
15		5		{3, 5}	
16		3		{5, 3}	
17		1		{5, 3, 1}	
18		1		{3, 1}	
19		1		{1}	
20		1 7		{1, 7}	
21		1		{7, 1}	
22		3		{7, 1, 3}	
23		4		{1, 3, 4}	
24		1		{3, 4, 1}	

Exemplo:

Cadeia de referências

t	pa	ágiı	na	ws(n = 3)	ws(n=4)	
1		0		{0}	{0}	
2		2		{0, 2}	{0, 2}	
3		1		{0, 2, 1}	{0, 2, 1}	
4		3		{2, 1, 3}	{0, 2, 1, 3}	
5		5		{1, 3, 5}	{2, 1, 3, 5}	
6		4		{3, 5, 4}	{1, 3, 5, 4}	
7		6		{5, 4, 6}	{3, 5, 4, 6}	
8		3		{4, 6, 3}	{5, 4, 6, 3}	
9		7		{6,3,7}	{4, 6, 3, 7}	
10		4		{3,7,4}	{6, 3, 7, 4}	
11		7		{4,7}	{3, 4, 7}	
12	7	3		{4,7,3}	{4,7,3}	
13		3		{7, 3}	{4,7,3}	
14		5		{3, 5}	{7,3,5}	
15		5		{3, 5}	{3,5}	
16		3		{5, 3}	{5, 3}	
17		1		{5, 3, 1}	{5, 3, 1}	
18		1		{3, 1}	{5, 3, 1}	
19		1		{1}	{3, 1}	
20		7		{1, 7}	{1,7}	
21		1		{7, 1}	{7, 1}	
22		3		{7, 1, 3}	{7, 1, 3}	
23		4		{1, 3, 4}	{7, 1, 3, 4}	
24		1		{3, 4, 1}	{3, 4, 1}	

Exemplo:

Cadeia de referências

t	pa	ágir	na	ws(n = 3)	ws(n=4)	ws(n = 5)
1		0		{0}	{0}	{0}
2		2		{0, 2}	{0, 2}	{0, 2}
3		1		{0, 2, 1}	{0, 2, 1}	{0, 2, 1}
4		3		{2, 1, 3}	$\{0, 2, 1, 3\}$	{0, 2, 1, 3}
5		5		{1, 3, 5}	{2, 1, 3, 5}	{0, 2, 1, 3, 5}
6		4		{3,5,4}	{1, 3, 5, 4}	{2, 1, 3, 5, 4}
7		6		{5, 4, 6}	{3, 5, 4, 6}	{1, 3, 5, 4, 6}
8		3		{4, 6, 3}	{5, 4, 6, 3}	{5, 4, 6, 3}
9		7		{6,3,7}	{4, 6, 3, 7}	{5, 4, 6, 3, 7}
10		4		{3,7,4}	{6, 3, 7, 4}	{6, 3, 7, 4}
11		7		{4,7}	{3, 4, 7}	{6, 3, 4, 7}
12	7	3		{4,7,3}	{4,7,3}	{4,7,3}
13		3		{7, 3}	{4,7,3}	{4,7,3}
14		5		{3, 5}	{7,3,5}	{4,7,3,5}
15		5		{3, 5}	{3,5}	{7,3,5}
16		3		{5, 3}	{5, 3}	{5,3}
17		1		{5, 3, 1}	{5, 3, 1}	{5, 3, 1}
18		1		{3, 1}	{5, 3, 1}	{5, 3, 1}
19		1		{1}	{3, 1}	{5, 3, 1}
20		7		{1, 7}	{1,7}	{3,1,7}
21		1		{7, 1}	<i>{7, 1}</i>	{3,7,1}
22		3		{7, 1, 3}	{7, 1, 3}	{7,1,3}
23		4		{1, 3, 4}	{7, 1, 3, 4}	{7, 1, 3, 4}
24		1		{3, 4, 1}	{3, 4, 1}	{7, 3, 4, 1}

- O tamanho e a composição do conjunto de trabalho também dependem do número de páginas consideradas em sua história recente
- Em sistemas reais, essa dependência não é linear, mas segue uma proporção logaritmica, devido à localidade de referências

Fig. 3. Behavior of $\omega(t, \tau)$

Isso pode ser observado na tabela:

t	página	ws(n = 3)	ws(n=4)	ws(n = 5)
1	0	{0}	{0}	{0}
2	2	{0, 2}	{0, 2}	{0, 2}
3	1	{0, 2, 1}	{0, 2, 1}	{0, 2, 1}
4	3	{2, 1, 3}	$\{0, 2, 1, 3\}$	{0, 2, 1, 3}
5	5	{1,3,5}	{2, 1, 3, 5}	$\{0, 2, 1, 3, 5\}$
6	4	{3, 5, 4}	{1, 3, 5, 4}	{2, 1, 3, 5, 4}
7	6	{5, 4, 6}	{3, 5, 4, 6}	{1, 3, 5, 4, 6}
8	3	{4, 6, 3}	{5, 4, 6, 3}	{5, 4, 6, 3}
9	7	{6,3,7}	{4, 6, 3, 7}	{5, 4, 6, 3, 7}
10	4	{3,7,4}	{6, 3, 7, 4}	{6, 3, 7, 4}
11	7	{4,7}	{3, 4, 7}	{6, 3, 4, 7}
12	3	{4,7,3}	{4,7,3}	{4,7,3}
13	3	{7, 3}	{4,7,3}	{4,7,3}
14	5	{3, 5}	{7,3,5}	{4,7,3,5}
15	5	{3, 5}	{3,5}	{7,3,5}
16	3	{5, 3}	{5, 3}	<i>{</i> 5 <i>,</i> 3 <i>}</i>
17	1	{5,3,1}	{5, 3, 1}	{5, 3, 1}
18	1	{3, 1}	{5, 3, 1}	{5, 3, 1}
19	1	{1}	{3, 1}	{5, 3, 1}
20	7	{1,7}	{1,7}	{3,1,7}
21	1	{7, 1}	{7, 1}	{3,7,1}
22	3	{7, 1, 3}	{7, 1, 3}	{7,1,3}
23	4	{1,3,4}	{7, 1, 3, 4}	{7, 1, 3, 4}
24	1	{3, 4, 1}	{3, 4, 1}	{7, 3, 4, 1}

t	página	ws(n=3)	ws(n=4)	ws(n = 5)
1	0	{0}	{0}	{0}
2	2	{0, 2}	{0, 2}	{0, 2}
3	1	{0, 2, 1}	{0, 2, 1}	{0,2,1}
4	3	{2, 1, 3}	{0, 2, 1, 3}	{0, 2, 1, 3}

Assim que a localidade de referências se torna mais forte (a partir de t = 12), os três conjuntos de trabalho ficam muito similares

10	4	$\{3,7,4\}$	{6, 3, 7, 4}	{6, 3, 7, 4}
11	7	{4,7}	{3, 4, 7}	{6, 3, 4, 7}
12	3	{4,7,3}	{4,7,3}	{4,7,3}
13	3	{7, 3}	{4,7,3}	{4,7,3}
14	5	{3, 5}	{7,3,5}	{4,7,3,5}
15	5	{3, 5}	{3,5}	{7,3,5}
16	3	<i>{</i> 5 <i>,</i> 3 <i>}</i>	{5, 3}	<i>{</i> 5 <i>,</i> 3 <i>}</i>
17	1	{5, 3, 1}	{5, 3, 1}	{5, 3, 1}
18	1	{3, 1}	{5, 3, 1}	{5, 3, 1}
19	1	{1}	{3, 1}	{5, 3, 1}
20	7	{1, 7}	{1,7}	{3,1,7}
21	1	<i>{7, 1}</i>	{7, 1}	{3,7,1}
22	3	$\{7, 1, 3\}$	{7, 1, 3}	{7,1,3}
23	4	$\{1, 3, 4\}$	{7, 1, 3, 4}	{7, 1, 3, 4}
24	1	{3, 4, 1}	{3, 4, 1}	{7, 3, 4, 1}

Exemplo - gThumb

Exemplo - gThumb

Localidade de referências

Exemplo de aplicativo real (gThumb):

 Se um processo tiver todas as páginas de seu conjunto de trabalho carregadas na memória sofrerá poucas faltas de página

- Se um processo tiver todas as páginas de seu conjunto de trabalho carregadas na memória sofrerá poucas faltas de página
- Essa constatação permite delinear um algoritmo simples para substituição de páginas:
 - Substituir páginas que não pertençam ao conjunto de trabalho de nenhum processo ativo

- Contudo, esse algoritmo é difícil de implementar
 - Exigiria manter atualizado o conjunto de trabalho do processo a cada acesso à memória → custo computacional proibitivo

- Contudo, esse algoritmo é difícil de implementar
 - Exigiria manter atualizado o conjunto de trabalho do processo a cada acesso à memória → custo computacional proibitivo
- Uma alternativa mais simples e eficiente de implementar seria verificar que páginas cada processo acessou recentemente, usando a informação dos respectivos bits de referência (R)

- Contudo, esse algoritmo é difícil de implementar
 - Exigiria manter atualizado o conjunto de trabalho do processo a cada acesso à memória → custo computacional proibitivo
- Uma alternativa mais simples e eficiente de implementar seria verificar que páginas cada processo acessou recentemente, usando a informação dos respectivos bits de referência (R)

Similar ao algoritmo do relógio (segunda chance)

- 1. Uma data de último acesso $t_a(p)$ é associada a cada página p
- 2. Define-se um prazo de validade τ para as páginas
- 3. A "idade" i(p) de uma página p no instante atual t_c é:

$$i(p) = t_c - t_a(p)$$

- 4. Quando há necessidade de substituir páginas:
- 4.1 Ao encontrar uma página referenciada (R = 1):
 - Sua data de último acesso é atualizada com o valor corrente do tempo $(t_a(p) = t_c)$

$$i(p) = t_c - t_a(p) = 0$$

- Seu bit de referência é ressetado (R = 0)
- O ponteiro do relógio avança, ignorando aquela página

- 4. Quando há necessidade de substituir páginas:
- 4.2 Ao encontrar uma página não referenciada (R = 0):
 - Se sua idade for menor que τ, a página está no conjunto de trabalho
 - Não é substituída
 - t_a não é atualizado
 - Caso contrário, ela é considerada fora do conjunto de trabalho e é substituída

Relembrando o Working Set

Fig. 2. Definition of $W(t, \tau)$

Algoritmo WSClock - implementação

 $\tau = 500$

$$2204 - 1213 = 991 > \tau$$

- 5. Caso o ponteiro dê uma volta completa na fila e não encontre páginas com idade maior que τ , a página mais antiga [menor $t_a(p)$] encontrada na volta anterior é substituída
- 6. Em todas as escolhas, dá-se preferência a páginas não-modificadas (M = 0), pois seu conteúdo já está salvo no disco

O algoritmo WSClock pode ser implementado de forma eficiente

- A data do último acesso de cada página não precisa ser atualizada a cada acesso à memória
- Somente quando a referência da página na fila circular é visitada pelo ponteiro do relógio (caso R = 1)

WS: composição de conceitos de vários algoritmos

FIFO e segunda-chance
 estrutura ordenada e percurso do relógio

Conjuntos de trabalho

divisão das páginas em dois grupos conforme a idade

LRU

escolha das páginas com datas de acesso mais antigas

NRU

preferência às páginas não modificadas

Thrashing

Thrashing

"Transferência excessiva de páginas ou segmentos entre a memória principal e a secundária."

Thrashing

"Transferência excessiva de páginas ou segmentos entre a memória principal e a secundária."

Tipos de Thrashing

- 1 Thrashing de processo
- 2 Thrashing de sistema

1 - Thrashing de processo

- Devido ao número elevado de falta de páginas
- ⇒ O processo fica mais tempo esperando a página do que em execução

1 - Thrashing de processo

- Devido ao número elevado de falta de páginas
- ⇒ O processo fica mais tempo esperando a página do que em execução

Causas:

- Dimensionamento incorreto do limite máximo de páginas muito menor que seu working set
 - Causando muitas faltas de páginas
- Ausência do princípio de localidade de referências

2 - Thrashing de sistema

 Ocorre quando existem mais processos do que memória disponível

Soluções:

- Redução do limite máximo de páginas de cada processo
 - Entretanto, causaria *Thrashing* de processo
- Swapping transferência de processos (inteiros) da memória principal para a secundária

2 - Thrashing de sistema

 Ocorre quando existem mais processos do que memória disponível

Soluções:

- Redução do limite máximo de páginas de cada processo
 - Entretanto, causaria *Thrashing* de processo
- Swapping transferência de processos (inteiros) da memória principal para a secundária
- A solução adequada, neste caso, é disponibilizar mais memória