# СЕРДЕЧНИКИ ИЗ МАГНИТНЫХ МАТЕРИАЛОВ

Магнитные материалы применяются для изготовления индуктивных элементов радиоэлектронной аппаратуры - трансформаторов, дросселей, катушек, магнитных головок, преобразователей, устройств согласования и симметрирования антенн, датчиков температуры, магнитных экранов и др.

*Металлические магнитные* материалы обладают наивысшими значениями магнитной проницаемости (µ<sub>н</sub> до 10<sup>s</sup>), магнитной индукцией насыщения и температурной стабильностью, но имеют низкое удельное сопротивление (p<10° Ом\*м), что приводит к резкому возрастанию вихревых токов и снижению параметров при повышении частот.

Ферриты и магнитодиэлектрики являются магнитными материалами с менее высокой, чем у металлов магнитной проницаемостью (µ<sub>н</sub> до 5\*10⁴) и магнитной индукцией насыщения, но с значительно более высоким удельным сопротивлением (ρ ~10¹⁴Ом\*м).

По значению коэрцитивной силы эти материалы делятся на магнитомягкие (H<sub>C</sub>~5 A/м), имеющие самое широкое применение, и магнитотвердые (H<sub>C</sub> до 3\*10<sup>s</sup> A/м), используемые в магнитных системах громкоговорителей, гистерезисных двигателей, устройств магнитной записи и др.

## ФЕРРИТОВЫЕ МАТЕРИАЛЫ

Ферриты - это соединения двойных окислов железа и одно-двухвалентных металлов (никеля, цинка, марганца, бария, лития и др.), обладающие свойствами ферромагнетизма. Технология их изготовления позволяет получать материалы с различными заданными параметрам, что наряду с высокими эмектромагнитными параметрами и простотой изготовления деталей из ферритов обусловило их применение практически во всех областях электроники.

| Марки<br>магнито-<br>мягких<br>ферритов | 1000НМ,<br>1500НМ,<br>2000НМ,<br>3000НМ,<br>100НН,400НН,<br>400НН1, 600НН,<br>1000НН, 2000НН               | 700HM,<br>1000HM3,1500HM-1,<br>1500HM3,<br>2000HM1<br>7BH, 20BH,<br>50BH, 100BH,<br>150BH | 4000HM,<br>600HM1,<br>6000HM1,<br>10000HM,<br>2000HM                                               | 2500НМС1,<br>3000НМС                                                                                                                     | 300ННИ,<br>300ННИ1,<br>350ННИ,<br>450ННИ,<br>1000ННИ,<br>1100ННИ,<br>1100НМИ         | 10DBHП,<br>35DBHП, 55BHП,<br>60BHП, 65BHП,<br>90BHП,<br>150BHП,<br>200BHП,300BHП       | 50ВНС, 90ВНС,<br>200ВНС,<br>300ВНС                                                                                   | 500MT, 500HT,<br>500HT1,<br>1000HT,<br>1000HT,<br>2000HT,<br>1000MT,<br>2000MT,<br>5000MT                      | 800HH,<br>1200HH,<br>1200HH1,<br>1200HH2,<br>1200HH3                   | 200ВНРП,<br>800ВНРП                                                                     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Свойства                                | Высокие <b>µн</b> и <b>tgα</b> .<br>Для слабых и<br>сильных<br>магнитных полей<br>на частотах до<br>30МГц. | Термостабильные<br>ферриты с высокими<br><b>µ</b> н и добротностью.                       | Высокая <b>Дн</b> .                                                                                | Малый <b>tg</b> α<br>в сильных электро-<br>магнитных полях,<br>повышенная <b>Дн</b><br>при высоких<br>температурах.                      | Повышенное значение и температурная стабильность импульсной магнитной проницаемости. | Повышенный коэффициент перестройки по частоте, малый <b>tga</b> на частотах до 250МГц. | Малые <b>tgα</b> и<br>амплитудная<br>нестабильность<br>магнитной проница-<br>емости, высокое<br>значение <b>T</b> k. | Высокая механическая прочность и износоустойнивость, однородная структура, высокие электроматнитные параметры. | Прямопропорциональная зависимость <b>µн</b> от окружающей температуры. | Высокое<br>значение<br>магнитных<br>потерь в<br>достаточно<br>широкой<br>полосе частот. |
| Применение                              | Сердечники для<br>бытовой и<br>специальной РЭА<br>и аппаратуры<br>проводной дальней<br>связи.              | Кольцевые, стер ж-<br>невые и броневые<br>сердечники и сер-<br>дечники для антенн.        | Сердечники<br>для<br>трансформато-<br>ров, делителей<br>напряжения,<br>преобразова-<br>телей и др. | Сердечники для<br>телевизионной<br>аппаратуры - ТВ С,<br>импульсных<br>трансформаторов,<br>преобразователей<br>постоянного<br>напряжеия. | Кольцевые и<br>стержневые<br>сердечники<br>импульсных<br>трансформаторов.            | Седечники для<br>перестраиваемых<br>контуров РЭА.                                      | Стержневые,<br>кольцевые<br>сердечники для<br>широкополосных<br>согласующих<br>трансформаторов.                      | Сердечники для<br>магнитных<br>головок.                                                                        | Сердечники для<br>бесконтактных<br>датчиков<br>температуры.            | Для<br>магнитного<br>экранирования<br>и поглощения<br>радиопомех.                       |

Высокие частоты - частоты более 5 МГц

Слабые поля - напряженность которых на порядок меньше коэрцитивной силы магнитомягкого материала.

Сильные поля - поля, при которых значение магнитной индукции более 0,05-0,1 Тл

#### Характеристики:

µн - начальная магнитная проницаемость; Тк - температура Кюри:

taa - тангенс угла магнитных потерь:

Нс - коэрцитивная сила.

### СИСТЕМА ОБОЗНАЧЕНИЙ ФЕРРИТОВЫХ СЕРДЕЧНИКОВ



Для отмеченных в таблице материалов вместо начальной магнитной проницаемости в обозначении изделия указывается:

- Марганец-цинковые НЧ для слабых магнитных полей Никель-цинковые ВЧ радиопоглощающие СВЧ нм рирп СЧ Никель-цинковые НЧ для Барий-кобальтовые ВЧ со СВЧ нн счк вьф слабых магнитных по структурой ферросплава онокристаллическ СВЧ анизотропные Никель-цинковые НЧ для Никель-цинковые НЧ для ннп СЧА перестройки частоты сильных магнитных полей поликристаллические Марганец-цини твердые Ларганец-цинковые НЧ для сильных магнитных полей мт нмс лфми Никель-цинковые ВЧ для сильных магнитных полей нт Никель-пинковые твеолые RHC БИ Бапиевые изотполные Марганец-цинковые Марганец-цинковые НЧ для Бариевые мк нми БΔ анизотропные монокристалические импульсных полей Никель-цинковые ВЧ для слабых магнитных полей Никель-цинковые НЧ для импульсных полей <sup>1</sup> Стронциевые изотропные вн Литий-цинковые ВЧ для слабых магнитных полей Никель-цинковые ВЧ для импульсных полей <sup>1</sup> ВΠ внни CA Никелевые и Литий-цинковые ВЧ для Кобальтовые внп вли никель-цинковые для импульсных полей перестройки частоты
  - импульсная магнитная проницаемость:
  - первоначальная длина волны, для которой применяется материал;
  - максимальное значение произведения остаточной индукции на коэрцитивную силу, а после обозначения марки феррита значение коэрцитивной силы намагниченности.

# МАГНИТОДИЭЛЕКТРИКИ

К магнитодиэлектрикам относятся композиционные материалы, изготовленные из смеси порошкообразного ферромагнетика с изоляционным связующим материалом и именуемые по типу входящего ферромагнетика - альсиферовый (рабочая частота до 20 МГц), карбонильный (до 100 МГц) и молибден-пермаллоевый (до 0,3 МГц).

Благодаря высоким значениям удельного сопротивления и температуры Кюри магнитодиэлектрики обладают высокой временной и температурной стабильностью магнитной проницаемости и частоты перемагничивания и применяются в индуктивных элементах фильтров, многозвенных линий задержки, линий многоканальной проводной связи, радиоаппаратуре, там где необходимо обеспечение высокой стабильности и надежности устройств.

- Вместо начальной магнитной проницаемости в обозначении указана рабочая

|   |                                                        | Наименование магнитодиэлектрика                   |  |  |  |  |  |  |
|---|--------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| 1 | TЧ                                                     | ТЧ Тонально-частотный состав                      |  |  |  |  |  |  |
|   | ВЧ                                                     | Высокочастотный состав                            |  |  |  |  |  |  |
| ' | П Прессованный Мо-пермаллой                            |                                                   |  |  |  |  |  |  |
|   | Р Карбонильное железо для радиоаппаратуры <sup>1</sup> |                                                   |  |  |  |  |  |  |
|   | ПС                                                     | Карбонильное железо для аппаратуры электросвязи 1 |  |  |  |  |  |  |

СИСТЕМА ОБОЗНАЧЕНИЙ СЕРДЕЧНИКОВ ИЗ МАГНИТНЫХ ДИЭЛЕКТРИКОВ

М П К 140-4 КП 24х13х7

Типоразмер Конфигурация сердечника Порядковый номер разработки Начальная магнитная проницаемость Наличие температурной компенсации Изделие из магнитных материалов



# ТИПЫ СЕРДЕЧНИКОВ



### КОЛЬЦЕВЫЕ СЕРДЕЧНИКИ

Применение: в импульсных, согласующих, симметрирующих и широкополосных трансформаторах, линейных фильтрах, катушках индуктивности, дросселях и трансформаторах вторичных источников питания.

Свойства: обеспечивает необходимое напряжение при малой потребляемой мощности с минимальными потерями на рассеяние, дешев в изготовлении, возможно одновременное использование нескольких сердечников с вертикальной сборкой.

# <u>КОНФ</u>ИГУРАЦИИ

| ШИ | ΙФР | Размеры в обозначении | Наименование сердечника |
|----|-----|-----------------------|-------------------------|
| 1  | K   | Dxdxh                 | Кольцевой               |

Выпускается большой ряд типоразмеров с D от 3 до 180 мм. Имеются модели со скругленными кромками и с защитным покрытием.





## Ш-ОБРАЗНЫЕ СЕРДЕЧНИКИ

#### Применение

в трансформаторах статических преобразователей постоянного напряжения, строчных трансформаторах и др РЭА в диапазоне 1-100 кГц.

#### Свойства:

обеспечивает наибольшее полное сопротивление в параллельной схеме на нижней частоте рабочего диапазона при минимальном количестве витков в обмотке, что предотвращает дополнительные потери, вызванные собственной емкостью, а также уменьшает индуктивность рассеяния.



Выпускаются ШП-образные сердечники с зазором для снижения влияния подмагничивающего поля и расширения рабочего диапазона частот, а также низкопрофильные сердечники типа Ш и ШП для изготовления малогабаритных источников питания с частотой до 1 МГц.

### КОНФИГУРАЦИИ

| ШИФР | Размеры<br>в обозн. | Наименование<br>сердечника |
|------|---------------------|----------------------------|
| ш    | axs                 | Ш-образный                 |
| ШП   | axs                 | Ш-образный<br>замкнутый    |



## ГАБАРИТНЫЕ РАЗМЕРЫ

| Типоразмер | Размер, мм |      |      |     | Эффект. длина                               | Эффект. площадь                         |  |
|------------|------------|------|------|-----|---------------------------------------------|-----------------------------------------|--|
| Ш ахѕ, мм  | L          | н    | h    | b   | пути маг.<br>линии<br>І <sub>эфф</sub> , мм | попер.<br>сеч.<br>Sэфф, мм <sup>2</sup> |  |
| Ш2.5х2.5   | 10         | 5    | 3.2  | 2.5 | 21,5                                        | 7,63                                    |  |
| шзхз       | 12         | 6    | 4    | 2.5 | 26,4                                        | 10,5                                    |  |
| Ш4х4       | 16         | 8    | 5.2  | 3.2 | 34,5                                        | 19,3                                    |  |
| Ш5х5       | 20         | 10   | 6.5  | 4.0 | 43,1                                        | 30                                      |  |
| Ш6х6       | 24         | 12   | 8    | 5.0 | 52,9                                        | 42,4                                    |  |
| Ш7х7       | 30         | 15   | 9.5  | 6.0 | 62,9                                        | 62                                      |  |
| Ш8х8       | 32         | 16   | 11.5 | 7.5 | 75,2                                        | 69,2                                    |  |
| Ш12х15     | 42         | 21   | 15   | 9.0 | 96,7                                        | 180                                     |  |
| Ш12х20     | 42         | 32.5 | 15   | 9.0 | 96,7                                        | 240                                     |  |
| Ш20х28     | 65         | 32.5 | 22   | 12  | 144                                         | 577                                     |  |

# П-ОБРАЗНЫЕ СЕРДЕЧНИКИ

#### Применение:

в импульсных трансформаторах, в выходных трансформаторах строчной развертки.

### Свойства

обладая высокой магнитной проницаемостью, обеспечивает необходимое напряжение при малой потребляемой мощности.







### КОНФИГУРАЦИИ

| ШИФР | Разме-<br>ры в<br>обозн. | Наименование<br>сердечника                               |  |  |  |
|------|--------------------------|----------------------------------------------------------|--|--|--|
| пп   | Ixaxs                    | П-образный (А)                                           |  |  |  |
| ппп  | Ixaxs                    | П-образный замкнутый                                     |  |  |  |
| пк   | lxd                      | П-образный круглого<br>сечения диаметром <b>d</b> (B)    |  |  |  |
| пкп  | lxd                      | П-образный замкнутый круглого сечения диаметром <b>d</b> |  |  |  |

<u>Исключение</u>: в сердечнике ТВС кинескопа с углом отклонения 70° первый размер - "53" указывает ширину **S**.

### ГАБАРИТНЫЕ РАЗМЕРЫ

|            | Размер, мм |    |    |    |    | Эффект.<br>длина                | Эффект.<br>площадь           |
|------------|------------|----|----|----|----|---------------------------------|------------------------------|
| Типоразмер | d(a)       | L  | н  | ı  | h  | пути маг.<br>линии,<br>Іэфф, см | попер.<br>сеч.,<br>Ѕэфф, см² |
| ПК20Х16    | 16         | 50 | 30 | 20 | 15 | 16                              | 1,82                         |
| ПК26Х13    | 13         | 51 | 21 | 26 | 11 | 12,8                            | 1,11                         |
| ПК30Х16    | 16         | 60 | 30 | 30 | 20 | 16,5                            | 1,82                         |
| ПК38Х14    | 14         | 65 | 34 | 38 | 19 | 18,7                            | 1,37                         |
| ПК40Х16    | 16         | 70 | 33 | 40 | 20 | 19,9                            | 1,71                         |
| ПК40Х18    | 18         | 74 | 36 | 40 | 20 | 20,8                            | 2,32                         |
| ПК48Х20    | 20         | 86 | 46 | 48 | 28 | 26                              | 2,89                         |
| ПП24Х15Х15 | 15         | 54 | 33 | 24 | 19 | 17,2                            | 1,67                         |

# БРОНЕВЫЕ И ЧАШЕЧНЫЕ СЕРДЕЧНИКИ

Собираются из 2 чашек и стержня подстройки индуктивности

Применение: универсально.

Свойства: высокая добротность в заданной полосе частот, низкий вносимый коэффициент нелинейных искажений, отсутствие полей рассеяния, возможность подстройки, малые габариты.

# КОНФИГУРАЦИИ

| ШИФР           | Размеры в<br>обозначении                      | Наименование<br>сердечника                                                                                    |  |  |  |  |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Б<br>Ч         | d1                                            | Броневой цилиндрический<br>Чашка к сердечнику Б (A)                                                           |  |  |  |  |
| 64             | <b>d1</b> х2 <b>h1(</b> а, б)                 | Чашечный<br>с 2 верт. сквозными пазами<br>а - с 1 верт. сквозным пазом<br>б - с 2 гориз. закругленными пазами |  |  |  |  |
| ч              | d1xh1(a, б)                                   | Чашка к сердечнику БЧ (В)                                                                                     |  |  |  |  |
| СБ<br>ЧГ<br>ЧР | d1 или d1x2h1<br>d1 или d1xh1<br>d1 или d1xh1 | Броневой чашечный<br>"Гладкая чашка" к СБ<br>"Гладкая чашка" к СБ с резьбой (С)                               |  |  |  |  |





### ГАБАРИТНЫЕ РАЗМЕРЫ

| Типо-  | Размер,мм |      |      |     |      |      |  |  |  |
|--------|-----------|------|------|-----|------|------|--|--|--|
| размер | d1        | d2   | d3   | d4  | h1   | h2   |  |  |  |
| Ч6     | 6,6       | 5    | 2,8  | 1,0 | 2,7  | 1,8  |  |  |  |
| 49     | 9,3       | 7,5  | 3,9  | 2,0 | 2,7  | 1,8  |  |  |  |
| 411    | 11,3      | 9,0  | 4,7  | 2,0 | 3,3  | 2,2  |  |  |  |
| Ч14    | 14,4      | 11,6 | 6,0  | 3,0 | 4,2  | 2,8  |  |  |  |
| Ч18    | 18,4      | 14,9 | 7,6  | 3,0 | 5,3  | 3,6  |  |  |  |
| 422    | 22,0      | 17,9 | 9,4  | 4,4 | 6,8  | 4,6  |  |  |  |
| Ч26    | 26,0      | 21,2 | 11,5 | 5,4 | 8,1  | 5,5  |  |  |  |
| 430    | 30,5      | 25,0 | 13,5 | 5,4 | 9,5  | 6,5  |  |  |  |
| Ч36    | 36,2      | 29,9 | 16,2 | 5,4 | 11,0 | 7,3  |  |  |  |
| 442    | 43,1      | 35,6 | 17,7 | 5,4 | 14,9 | 10,1 |  |  |  |
| 448    | 48,7      | 39,5 | 20,4 | 7,3 | 15,9 | 10,3 |  |  |  |



# ТИПЫ СЕРДЕЧНИКОВ

### СТЕРЖНЕВЫЕ СЕРДЕЧНИКИ

**Применение:** в качестве элементов подстройки, в ВЧ-дросселях, антеннах (400HH, 150BH).

Свойства: технологичны.

### КОНФИГУРАЦИИ

| ШИФР | Размеры в<br>обозначении | Наименование<br>сердечника     |  |
|------|--------------------------|--------------------------------|--|
| С    | DxL                      | Стержневой (А)                 |  |
| пс   | DxL                      | Стержневой<br>подстроечный (A) |  |
| Т    | DxdxL                    | Трубчатый (В)                  |  |
| ПТ   | DxdxL                    | Трубчатый<br>подстроечный (В)  |  |
| ПР   | DxsxL                    | Резьбовой<br>подстроечный (C)  |  |

Размеры и тип подстроечных стержневых сердечников указываются в технических характеристиках основного сердечника.





## **МНОГООТВЕРСТНЫЕ СЕРДЕЧНИКИ**

Применение: в разветвителях, ответвителях, сумматорах, высокочастотных фильтрах кабельных сетей и аппаратуры приема и обработки телевизионного сигнала. Свойства: обеспечивают необходимое напряжение при малой потребляемой мощности с минимальными потерями на рассеяние, технологически эффективны для суммирования и разделения сигнала.



#### КОНФИГУРАЦИИ

| ШИФР | Размеры в<br>обозначении | Наименование<br>сердечника |
|------|--------------------------|----------------------------|
| Тр   | <u>LxBxS</u><br>d-n      | n-отверстный               |

Производятся сердечники эллиптические и цилиндрические с количеством отверстий 2, 4. 6 и более.

