## Interrogation

7 novembre 2017

[ durée : 2 heures ]



⚠ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

## **Exercice 1** (Espaces euclidiens)

a) (Question de cours) Démontrer le résultat suivant vu en cours :

Soient  $\mathcal{A}$  et  $\mathcal{B}$  deux sous-espaces affines d'un espace affine euclidien  $\mathcal{E}$ dont la distance est notée d.

Montrer que si  $M \in \mathcal{A}$  et  $N \in \mathcal{B}$  vérifient  $\overrightarrow{MN} \perp (\overrightarrow{\mathcal{A}} \oplus \overrightarrow{\mathcal{B}})$ , alors  $d(\mathcal{A}, \mathcal{B}) = d(M, N).$ 

b) Parmi les trois sous-ensembles de  $\mathbb{R}^3$  suivants

$$\mathcal{A} = \{ (x, y, z) \in \mathbb{R}^3 \mid (x - y)(y - z) = 0 \},$$

$$\mathcal{B} = \{ (x, y, z) \in \mathbb{R}^3 \mid (x - y)^2 = 0 \},$$

$$\mathcal{C} = \{ (1 + t, 2 + t, 3) \in \mathbb{R}^3 \mid t \in \mathbb{R} \},$$

déterminer (en justifiant) lesquels sont des sous-espaces affines.

- c) Trouver un repère cartésien pour chacun des sous-espaces affines de la question précédente.
- d) Déterminer la distance entre les deux sous espaces affines de la question b).

## **Exercice 2** (Transformations affines)

On considère l'espace vectoriel  $\mathbb{R}_2[X]$  des polynômes de degré au plus 2 à coefficients réels.

a) Soit  $\phi(P)(X) = X^2 \left(P(\frac{1}{X}) + 1\right)$  pour  $P \in \mathbb{R}_2[X]$ . Montrer que  $\phi$  est un automorphisme affine de  $\mathbb{R}_2[X]$ .

Étant donnés  $\Omega \in \mathbb{R}_2[X]$  et  $\lambda \in \mathbb{R}$  on note  $h_{\Omega,\lambda}$  l'homothétie de centre  $\Omega$  et de rapport  $\lambda$ .

- **b)** Calculer  $h_{X,2}(X^2 + 1)$ .
- c) Justifier que la composée  $h_{X,2} \circ h_{X^2,\frac{1}{3}}$  est une homothétie. Puis déterminer ses paramètres (son centre et son rapport).
- d) Est-ce que  $h_{X,2} \circ h_{X^2,\frac{1}{2}}$  est une homothétie? Justifier votre réponse.
- e) Justifier que  $h_{X,2}$  est un automorphisme affine et déterminer son inverse.

## Exercice 3 (Géométrie du plan et barycentres)

Soient A, B et C trois points fixes d'un plan affine euclidien. On se propose dans cet exercice de déterminer l'ensemble S des points M qui vérifient

$$\|\overrightarrow{MA} - 2\overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{MA} - 4\overrightarrow{MB} + \overrightarrow{MC}\|.$$

- a) Montrer que  $B \in \mathcal{S}$ .
- **b)** Montrer que  $\overrightarrow{MA} 2\overrightarrow{MB} + \overrightarrow{MC}$  ne dépend pas du choix du point M.
- c) Soit G le barycentre de (A, 1), (B, -4) et (C, 1). Montrer sur un dessin la position de G par rapport à A, B et C (pris en position générale  $^1$ ).
- d) Exprimer  $\overrightarrow{MA} 4\overrightarrow{MB} + \overrightarrow{MC}$  en fonction de  $\overrightarrow{GM}$ .
- e) En déduire que S est un cercle dont on précisera le centre et qu'on représentera sur un dessin.

<sup>1.</sup> C.-à-d. de sorte que le triangle ABC soit non dégénéré.