Redes de Computadores

Encaminhamento com Base em Difusão (broadcasting)

Parte 1 — Canais Ethernet

Departamento de Informática da FCT/UNL

Objetivos do Capítulo

- Do ponto de vista do endereçamento, isto é, do número de interfaces que ligam, os canais podem ser classificados em
 - Canais ponto a ponto só ligam duas interfaces e só precisam de
 2 endereços ou mesmo de nenhum
 - Canais multi-ponto canais que necessitam de mais do que 2 endereços e que muitas vezes se baseiam na difusão do sinal (broadcast)
 - Necessitam de um mecanismo de endereçamento
 - Um canal baseado em difusão constituí por si uma rede de interligação de N nós, com N ≥ 2
- Como os canais baseados em difusão suportam mais do que um emissor, potencialmente simultâneos, é necessário estabelecer uma ordem pela qual estes podem emitir
- Neste capítulo veremos como funciona uma classe de canais deste tipo que resolve este problema com base em aleatoriedade

Metcalfe's Law: "The value of a network grows as the square of the number of its users."

Autor: Robert Metcalfe, inventor of the Ethernet network

Canais Ponto-a-Ponto

- · Exemplos de canais ponto-a-ponto
 - Canais ponto-a-ponto em fibra ótica entre dois nós de comutação
 - Canais ponto-a-ponto entre um comutador Ethernet e um computador
- Os canais ponto-a-ponto são geralmente full-duplex, isto é, o canal pode transmitir simultaneamente nos dois sentidos
- Um canal ponto-a-ponto é equivalente a dois canais simplex, um em cada sentido
 - Os dois canais simplex são uni-directionais, cada um num sentido, e independentes um do outro

Canais Multi-Ponto

- Os canais multi-ponto são geralmente baseados em difusão - broadcasting (shared medium)
- Exemplos: Ethernet tradicional (IEEE 802.3 Ethernet com fios), WIFI (IEEE 802.11 WiFi)
- · Em cada momento só pode existir um único emissor
- Um canal baseado em difusão é half-duplex pois só há uma comunicação de cada vez:
 - um emissor para um recetor específico
 - um emissor para todos os outros
- Os canais baseados em difusão introduzem o problema do controlo de acesso ao meio (Medium Access Control)

Canal Multi-Ponto - A Abstração

Canais Multi-Ponto e Colisões

Controlo de Acesso ao Meio

· Controlo centralizado

- uma interface pode começar a transmitir quando um árbitro centralizado lhe afeta esse direito (como a mesa de uma assembleia).
- Característico do antigo sistemas de telefones móveis

· Controlo distribuído

- uma interface pode começar a transmitir quando recebe o direito de o fazer através de um testemunho ("token"); a gestão do testemunho é feita por um algoritmo distribuído (exemplo: rede Token Ring)

· Controlo aleatório

 uma interface pode começar a transmitir logo que o canal esteja livre, ou pelo menos desde que lhe pareça que o canal está livre (exemplo: rede Ethernet)

Ethernet com Fios (e.g. IEEE 802.3)

É a tecnologia dominante nos canais "guiados" (com fios) atuais

- Tem imensas variantes que partilham entre si o formato dos frames e o endereçamento
- Não pára de evoluir: 10, 100, 1000 Mbps (1 Gbps), 10 Gbps, ...
- Os Switches Ethernet transformam-na numa rede completa e mais abrangente que funciona hoje em dia predominantemente ponto-a-ponto e não baseada num cabo único

O diagrama inicial do inventor da Ethernet:

Metcalfe's Ethernet

Canal de Difusão em Bus (old Ethernet)

Ethernet sobre Cabo Coaxial

"bus" baseado em cabo coaxial

Canal de Difusão Ethernet em Estrela

Ethernet sobre cabo entrançado

Hubs — Repetidores de Nível Físico

- Os sinais que chegam por uma porta são retransmitidos para todos as outras portas
- Os repetidores, ou hubs, não "interpretam" pacotes, só sinais eléctricos

Ideias chave do controlo aleatório

· Carrier sense

- Verificar o estado do meio de transmissão
- Transmitir se o mesmo está livre

Detecção das colisões

- Se alguém transmitir ao mesmo tempo, stop
- Detecta-se a colisão verificando a qualidade do sinal que circula; em caso de colisão o sinal está distorcido

Aleatoriedade

- Não recomeçar a transmitir imediatamente
- Esperar um compasso de espera aleatório antes de tentar de novo para permitir desempatar

CSMA/CD (Carrier Sense Multiple Access / Collision Detection)

Com tempo de propagação nulo, as colisões seriam mais raras

Colisões e Tempo de Propagação

Durante quanto tempo é necessário emitir para ter a certeza de que se já não houve, então não haverá colisão?

A dimensão do menor frame é condicionada pelo tempo de propagação máximo ou worst case path delay

Algoritmo CSMA/CD na Ethernet

```
CST = 0.000051= 51 µs; // CST - Collision Slot Time - 10 Mbps
k = 1; // transmission attempts
frame = getNextFrameToTransmit();
while ( k < 16 ) {
        wait for free media (); // carrier sense phase
        transmit (frame);
        if ( success ) break;
        // else collision
        transmit (jam signal);
        cw = min(2^{K} - 1, 1023); // collision window < = 1023
        n = random (0..cw);
        k++;
        wait ( n*CST );
if ( k < 16 ) report success else abort transmission;
```

Funcionamento

Binary Exponential Backoff

Exponential Backoff = Recuo Exponêncial

O tempo é dividido em slots de dimensão superior a 2xT_p ditos collision windows ou collision slots.

Segundo a norma IEEE 802.3 o collision slot vale 51,2 micro segundos ou 512 bits a 10 Mbps. Este valor é característico de uma rede a 10 Mbps com 2.500 metros e 4 repetidores no máximo. Tal rede poderia levar até 1024 interfaces segundo a mesma norma.

Cada frame tem de ter um mínimo de 512 bits ou 64 bytes para ser emitido durante pelo menos o collision slot, daí a necessidade de um campo de pading para o caso em que os dados são inferiores a essa dimensão

Binary Exponential Backoff (2)

Em caso de colisão, cada interface espera um número aleatório N de *collison slots*. O número N é gerado no intervalo 0 a 2^k - 1, em que K toma valores 0, 1, 2, 3, ..., 10 e designa o número de tentativas de resolução da colisão.

Na primeira tentativa espera-se 0 ou 1 *slots*. Na segunda, 0, 1, 2 ou 3 slots. Na décima, esperam-se 0, 1, 2, 3, ... 1023 *slots*. Depois de 16 tentativas considera-se que há erro e o *frame* é rejeitado.

Observações

- Jam signal assegura que todos os emissores detectam a colisão; tem 48 bits
- O algoritmo com exponential backoff tem por objetivo adaptar o compasso de espera à carga da rede; se a carga é elevada, o intervalo para o cálculo do tempo de espera tem de ser superior:
 - primeira colisão: escolher K em $\{0,1\}$; o delay é K x 512 bit *transmission times*
 - segunda colisão: escolher K em {0,1,2,3}......
 - com 10 colisões: escolher K em {0,1,2,3,4,...,1023}.....
 - e assim sucessivamente

Discussão

Caso o intervalo usado para gerar números aleatórios fosse sempre de 0 a 1023, a probabilidade de 2 estações colidirem uma segunda vez seria geralmente baixa mas introduzir-se-ia uma espera inutilmente prolongada no caso geral.

Por outro lado, se 100 estações a tentarem transmitir gerassem números aleatórios no intervalo 0 a 1, para que a colisão fosse resolvida era necessário que saísse 1 em 99 delas e 0 na outra.

O algoritmo tal como está definido tenta adaptar-se à situação real de carga da rede, isto é, à quantidade de interfaces a tentarem de facto emitirem simultaneamente.

Débito e Dimensão do Collision Slot

Mantendo a mesma dimensão máxima da rede, mantem-se a duração do *collision slot*. Se pretendermos introduzir um canal de maior velocidade, o menor *frame* possível seria de 640 bytes para uma rede a 100 Mbps e de 6400 bytes para uma rede de 1 Gbps.

A outra opção é baixar a distância máxima de forma a manter o *collision slot* em termos de bits, mas diminuí-lo em termos de duração temporal

Foi a opção usada na norma *Fast Ethernet*, que corresponde a um canal ethernet que funciona a 100 Mbps, com a distância máxima de 200 metros, para que o mais pequeno *frame* continue a ser de 64 bytes.

Parâmetros

Parâmetro	10/100 Mbps	1 Gbps	10/100 Gbps
Backoff slot time	512 bit times	4096 bit times	Não se aplica
Inter Frame Space	96 bits	96 bits	96 bits
# tentativas máximas	16	16	Não se aplica
Jam size	32 bits	32 bits	Não se aplica
Minimum Frame Size	64 bytes	640 bytes	64 bytes
Masimum Frame Size	1518 bytes	1518 bytes	1518 bytes

Canais Ethernet Half e Full-Duplex

O frame Ethernet

- Preâmbulo: 7 bytes com o padrão 10101010 seguidos de um byte com o padrão 10101011. Este preâmbulo serve para sincronizar os relógios do emissor e do receptor
- Endereços: 6 bytes cada (48 bits); os frames são recebidos por todas as interfaces numa mesma rede mas são ignorados se o endereço não é o endereço da interface receptora (ou um endereço de multicasting / broadcasting)
- · CRC: testado pelo receptor; se está errado o frame é ignorado

MAC Addresses

 Cada placa tem um endereço "dito de canal", ou do nível MAC (Medium Access Control Layer), único e com 48 bits. O MAC address é colocado na fábrica

Os Diferentes Níveis

Encapsulamento

 Os frames contêm na parte de dados mensagens dos níveis superiores (encapsuladas). Frequentemente os frames Ethernet transportam pacotes IP

Conclusões

- Um canal baseado em difusão num meio comum (broadcast) permite a mais do que duas interfaces comunicarem diretamente sem intermediários
 - Para esse efeito necessitam de um sistema de endereçamento ao nível canal (MAC Layer)
- Como suportam vários emissores, potencialmente simultâneos, é necessário estabelecer uma ordem pela qual eles podem emitir
 - Os métodos baseados em ordenação aleatória têm-se revelado como muito interessantes e são bastante populares
- Se o canal é baseado em fios, a qualidade do sinal e o baixo nível de erros permite a deteção de colisões. Nesse caso usa-se o método CSMA/CD