CSE460: VLSI Design

Lecture 7

CMOS DC Characteristics

Contents

- CMOS Inverter DC Characteristics
- Noise Margin
- nMOS & pMOS Pass Transistor DC Characteristics

Static CMOS Inverter

A static CMOS inverter is built using a pMOS and an nMOS

DC Transfer function or DC response: V_{out} vs V_{in}

For the CMOS inverter shown:

•
$$V_{in} = 0$$
 \Rightarrow $V_{out} = V_{DD}$
• $V_{in} = V_{DD}$ \Rightarrow $V_{out} = 0$

- In between these 2 cases, V_{out} depends transistor current
- V_{out} vs V_{in} relationship can be found by setting $I_{dsn} = |I_{dsp}|$
- V_{out} vs V_{in} relationship can also be found via graphical solutions

CMOS Inverter DC response can be determined as:

- 1. Divide the input into 5 different regions:
 - a. **A**: $0 \le V_{in} < V_{tn}$
 - b. **B**: $V_{tn} \le V_{in} < V_{DD}/2$
 - c. **C**: $V_{in} = V_{DD}/2$
 - d. **D**: $V_{DD}/2 < V_{in} \le V_{DD} |V_{tp}|$
 - e. **E**: $V_{in} > V_{DD} |V_{to}|$
- 2. Determine the operating regions of the devices
 - a. Cutoff, Linear or Saturation?
- Approximate V_{out} at A, B, C, D & E regions depending on the pMOS and nMOS operating regions

Region A

Region	Condition	p-device	n-device	Output	
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$	
В	$V_{tn} \le V_{\text{in}} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$	
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply	
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$	
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$	

Region B

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Region C

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Region D

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{\rm out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Region E

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\text{in}} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	Vout drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Complete V_{out} vs V_{in}

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out} = 0$

Practical CMOS Inverter DC response

In reality, the sharp change at region C is not that sharp and has finite slope

Theoretical inverter DC response vs Practical inverter DC response

Supply Current

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the supply current drawn from V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

Region	Condition	p-device	n-device
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear

Power Consumption

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the current drawn from supply V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

That is why we always try to work with strong signals

- A strong 0 falls in the region A where I_{DD} ≈ 0
- A strong 1 falls in the region E where I_{DD} ≈ 0

I_{DD} ≈ 0 or low implies <u>low power consumption!</u>

Power Consumption

If $I_{DD} = I_{dsn} = |I_{dsp}|$ is the current drawn from supply V_{DD}

- I_{DD} is non-zero in regions B, C & D
- I_{DD} is zero in regions A & E

That is also why we try to avoid degraded signals

- A degraded 0 falls in the region B/C where I_{DD} ≠ 0
- A degraded 1 falls in the region D/C where $I_{DD} \neq 0$

I_{DD} ≠ 0 or high implies <u>high power consumption!</u>

Beta Ratio Effects

The crossover point, where $V_{in} = V_{out}$ is called the input threshold, V_{inv}

For $\beta_p = \beta_n$, the inverter threshold voltage, $V_{inv} = V_{DD}/2$

$$\beta_p / \beta_n$$
 is called the beta ratio; $r = \beta_p / \beta_n$

- $r = 1 \Rightarrow$ inverter is un-skewed
- $r > 1 \Rightarrow$ inverter is HI-skewed
- $r < 1 \Rightarrow$ inverter is LO-skewed

Thus, by changing *r* we can shift the response!

Beta Ratio Effects for a Static CMOS Inverter

We would like to know how V_{inv} changes for a CMOS inverter as we change r

For the CMOS inverter shown:

Assume: $V_{tp} = -V_{tn}$

Beta Ratio Effects for a Static CMOS Inverter

For $\beta p \neq \beta n$, we can calculate the inverter threshold voltage by setting $V_{in} = V_{inv}$

- 1. In region C, both pMOS & nMOS are saturated
- 2. So the nMOS and pMOS currents are:

•
$$I_{dsp} = \beta_p (V_{gsp} - V_{tp})^2 / 2 = \beta_p (V_{inv} - V_{DD} - V_{tp})^2 / 2$$

•
$$I_{dsn} = \beta_n (V_{gsn} - V_{tn})^2 / 2 = \beta_n (V_{inv} - V_{tn})^2 / 2$$

- 3. Set the currents $I_{dsp} = -I_{dsn}$
- 4. Solve for V_{inv} :

$$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

Beta Ratio Effects

So thus for $\beta_p \neq \beta_n$, we can calculate the inverter threshold voltage as a function of "r", where $r = \beta_p / \beta_n$

$$V_{\text{inv}} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{1}{r}}}{1 + \sqrt{\frac{1}{r}}}$$

Other CMOS Gates

DC transfer characteristics of other static CMOS gates can be understood by collapsing the gates into an equivalent inverter

- Series transistors can be viewed as a single transistor of greater length
- If only one of several parallel transistors is ON, the other transistors can be ignored
- If several parallel transistors are ON, the collection can be viewed as a single transistor of greater width

Noise Margin (Noise Immunity)

Noise margin is closely related to the DC voltage characteristics

Helps determine the allowable noise voltage on the input of a gate so that the output will not be corrupted

The specification most commonly used to describe noise margin uses two parameters:

- 1. The LOW noise margin, NM₁
- The HIGH noise margin, NM_H

Noise Margin

Voltage definitions:

 V_{IH} = minimum HIGH input voltage

 V_{II} = maximum LOW input voltage

 V_{OH} = minimum HIGH output voltage

 V_{OI} = maximum LOW output voltage

NM, = The LOW noise margin

 NM_{H} = The HIGH noise margin

Low Noise Margin

The LOW noise margin (NM_L)
 is the difference in maximum
 LOW input voltage recognized by
 the receiving gate and the
 maximum LOW output voltage
 produced by the driving gate

$$NM_L = V_{IL} - V_{OL}$$

High Noise Margin

The HIGH noise margin (NM_H)
 is the difference between the
 minimum HIGH output voltage of
 the driving gate and the
 minimum HIGH input voltage
 recognized by the receiving gate

$$NM_H = V_{OH} - V_{IH}$$

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

How to choose the logic levels V_{IL} , V_{IH} , V_{OL} & V_{OH} such that the noise margins NM_{I} & NM_{H} are maximized?

Use the DC transfer characteristics!

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

How to choose the logic levels V_{IL} , V_{IH} , V_{OL} & V_{OH} such that the noise margins NM_L & NM_H are maximized?

- Use the DC transfer characteristics!
- Logic levels are defined at the unity gain point where the slope is -1
- This gives a conservative bound on the worst case static noise margin

Selecting V_{IL} , V_{IH} , V_{OL} & V_{OH}

Logic levels of typical 5 V and 3.3 V logic families

Logic Family	V_{DD}	$V_{I\!L}$	$V_{I\!H}$	V_{OL}	V_{OH}
TTL	5 (4.75-5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5-6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3-3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3-3.6)	0.9	1.8	0.36	2.7

Noise Margin: Summary

- NM_L or NM_H too small: the gate may be disturbed by noise that occurs on the inputs
- An unskewed gate has equal noise margins: which maximizes immunity to arbitrary noise sources
- If a gate sees more noise in the high or low input state: the gate can be skewed to improve that noise margin at the expense of the other

Noise Margin: Summary

 Noise sources tend to scale with the supply voltage: so noise margins are best given as a fraction of the supply voltage; for example 0.3V_{DD}

A noise margin of 0.4 V is quite comfortable in a 1.8 V process, but marginal in a 5 V process

Pass Transistor DC Characteristics

Recall from our previous lectures that

- nMOS transistors pass '0's well but '1's poorly
- pMOS transistors pass '1's well but '0's poorly

We are now better prepared to define how "poorly"

nMOS Pass Transistor DC Characteristics

To keep an nMOS transistor ON, we need

•
$$V_{gs} \ge V_{tn}$$

$$\bullet \Rightarrow V_{q} - V_{s} \ge V_{tn}$$

$$\bullet \Rightarrow \bigvee_{s} \leq \bigvee_{q} - \bigvee_{tn}$$

•
$$V_{gs} \ge V_{tn}$$

• $\Rightarrow V_g - V_s \ge V_{tn}$
• $\Rightarrow V_s \le V_g - V_{tn}$
• $\Rightarrow V_{s(max)} = V_g - V_{tn}$

nMOS Pass Transistor DC Characteristics

To keep an nMOS transistor ON, we need

•
$$V_{s(max)} = V_g - V_{tn}$$

nMOS transistors passing '1' ($V_{in} = V_{DD}$; $V_{out} = ?$)

- Gate is connected to V_{DD} : $V_{q} = V_{DD}$
- Current flowing from drain to source
- $V_{in} = V_{d} = V_{DD}$; $V_{out} = V_{s} = ?$
- But we know $V_{s(max)} = V_g V_{tn} \Rightarrow V_{out(max)} = V_{DD} V_{tn}$

nMOS transistors attempting to pass a '1' never pass above $V_{\scriptscriptstyle DD}$ - $V_{\scriptscriptstyle tn}$

$$V_{DD}$$
 $V_{DD} \perp V_{S} = V_{DD} - V_{tn}$

pMOS Pass Transistor DC Characteristics

To keep a pMOS transistor ON, we need

- $V_{sg} \ge |V_{tp}|$ $\Rightarrow V_{s} V_{g} \ge |V_{tp}|$
- $\Rightarrow \bigvee_{s} \ge \bigvee_{g} + |\bigvee_{tp}|$ $\Rightarrow \bigvee_{s(min)} = \bigvee_{g} + |\bigvee_{tp}|$

pMOS Pass Transistor DC Characteristics

To keep a pMOS transistor ON, we need

•
$$V_{s(min)} = V_g + |V_{tp}|$$

pMOS transistors passing '0' ($V_{in} = 0$; $V_{out} = ?$)

- Gate is connected to GND: $V_a = 0$
- Current flowing from source to drain
- $V_{in} = V_{d} = 0$; $V_{out} = V_{s} = ?$
- But we know $V_{s(min)} = V_g + |V_{tp}| \Rightarrow V_{out(min)} = |V_{tp}|$

pMOS transistors attempting to pass a '0' never pass lower than $|V_{to}|$

nMOS Pass Transistor DC Characteristics

Series nMOS transistors passing '1' (V_{DD})

- $V_{in(T1)} = V_{DD}$; $V_{out(T3)} = ?$

Series nMOS transistors passing '1'
$$(V_{DD})$$
 T1 T2 T3

• If all of the transistors have gates tied to V_{DD} V_{DD}

- Output of Transistor T1: $V_{out(max), T1} = V_{g(T1)} V_{tn(T1)} = V_{DD} V_{tn}$
- Output of Transistor T2: $V_{out(max), T2} = V_{g(T2)} V_{tn(T2)} = V_{DD} V_{tn}$
- Output of Transistor T3: $V_{out(max), T3} = V_{g(T3)} V_{tn(T3)} = V_{DD} V_{tn}$

nMOS Pass Transistor DC Characteristics

nMOS transistor driven by degraded output

- If T1 transistor has gate tied to V_{DD}
- $V_{g(T1)} = V_{DD}$; $V_{in} = V_{DD}$; $V_{out} = ?$

Output of Transistor T1:
$$V_{out(max), T1} = V_{g(T1)} - V_{tn(T1)} = V_{DD} - V_{tn}$$

- Output of transistor T1 is now driving the gate of transistor T2
- T2 transistor has gate tied to V_{DD} V_{tn}
- $V_{g(T2)} = V_{DD} V_{tn}$; $V_{in} = V_{DD}$; $V_{out} = ?$

$$\underline{\text{Output of Transistor T2}} : V_{\text{out(max), T2}} = V_{g(T2)} - V_{\text{tn}(T2)} = (V_{DD} - V_{\text{tn}}) - V_{\text{tn}} = V_{DD} - 2V_{\text{tn}}$$

Pass Transistor DC Characteristics: Summary

nMOS pass transistor

nMOS pass transistor

•
$$V_{in} = GND$$
 $\Rightarrow V_{out} = GND$ (strong 0)

• $V_{in} = V_{DD}$ $\Rightarrow V_{out(max)} = V_{g} - V_{tn}$ (degraded 1)

• $V_{in} = V_{DD}$ $\bigvee_{out} = V_{g} - V_{tn}$

pMOS pass transistor

- $V_{in} = GND$ $\Rightarrow V_{out(min)} = |V_{tp}|$ (degraded 0) $V_{in} = V_{DD}$ $\Rightarrow V_{out} = V_{DD}$ (strong 1)

$$V_{in} = 0$$
 $V_{out} = |V_{tp}|$

$$V_{in} = V_{DD}$$
 $V_{out} = V_{DD}$

Pass Transistor DC Characteristics: Summary

- nMOS/pMOS pass transistors sometimes produce degraded outputs
- The loss is sometimes called a threshold drop
- In old processes where V_{DD} was high and Vt was a small fraction of V_{DD}, the threshold drop was tolerable
- In modern processes V_{DD} is significantly lower and Vt is almost $\frac{1}{3}$ of V_{DD} , the threshold drop can produce an invalid or marginal logic at the output

To solve this problem we use CMOS transmission gates

Thank You!