Model Checking and Strategy Synthesis for Multi-Agent Systems for Resource Allocation – Proofs

Nils Timm and Josua Botha

Department of Computer Science, University of Pretoria, Pretoria, South Africa ntimm@cs.up.ac.za

Here we provide the proofs of the theorems of the paper Model Checking and Strategy Synthesis for Multi-Agent Systems for Resource Allocation, submitted to the 24th Brazilian Symposium on Formal Methods, 2021.

Theorem 1 (Model Checking). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi]$ be a strategic bounded model checking problem and let $[M, \langle \langle A, \Sigma \rangle \rangle \varphi, k]$ be its encoding over Vars. Then:

$$[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi] \equiv \mathbf{sat}([M, \langle \langle A, \Sigma \rangle \rangle \varphi, k])$$

Theorem 2 (Strategy Synthesis). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi]$ be a strategic bounded model checking problem, let $[M, \langle \langle A, \Sigma \rangle \rangle \varphi, k]$ be its encoding over Vars and let $\alpha : Vars \rightarrow \{0, 1\}$ with $\alpha([M, \langle \langle A, \Sigma \rangle \rangle \varphi, k]) = 1$. Then for the strategy

$$\alpha_A = (\{(s_a, act^a) \mid s_a \in S_a \land act^a \in Act \land \alpha([s_a.act^a]) = \mathbf{1}\}_{a \in A})$$

the following holds: $\forall \pi \in \Pi(s, \alpha_A, \Sigma) : [M, \pi \models_k \varphi].$

The correctness of Theorem 1 and Theorem 2 is closely linked. The correctness follows from the subsequent lemmas.

Proof of Theorem 1 and Theorem 2.

Firstly, we show that the part [M, k] of the overall encoding characterises k-bounded paths of M that are conform with the evolution.

Lemma 1 (Evolution Paths). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi]$ be a strategic bounded model checking problem and let $[M, k] = [Init]_0 \wedge \bigwedge_{t=0}^{k-1} [Evolution]_{t,t+1}$ be the encoding of all k-bounded paths of M over Vars. Then for each truth assignment $\alpha: Vars \to \{true, false\}$ with $\alpha([M, k]) = true$ there exists a sequence of states $\pi = s_0 \dots s_k$ and a sequence of action profiles $(act_t^{a_1}, \dots, act_t^{a_n}), 0 \leq t < k$ in M such that

$$\forall 0 \leq t \leq k : \forall a \in Agt^+ : \forall r \in Res : s_t(r) = a \text{ iff } \alpha([r = a]_t) = true$$

and

$$\forall 0 \leq t < k : \delta(s_t, (act_t^{a_1}, \dots, act_t^{a_n}), s_{t+1}) = true \ iff \ \forall a \in Agt : \alpha([act_t^{a_i}]_t) = true$$

Proof of Lemma 1.

We have that s_0 is the initial state of M, where $s(r) = a_0$ for each $r \in Res$, i.e.

initially all resources are unallocated. According to Definition 12, the encoding of the initial state is $[Init]_0 = \bigwedge_{r \in Res} [r = a_0]_0$. Hence, any truth assignment α that satisfies [M,k] must have the property that $\alpha([r = a_0]_0) = true$ for each $r \in Res$. Moreover, we have that the evolution of an MRA is a relation $\delta \subseteq S \times AP \times S$ where $(s, ap, s') \in \delta$ iff ap is executable in s and for each $r \in Res$:

- 1. if $s(r) = a_0$ then:
 - (a) if $\exists a : ap(a) = req_r^a \land \forall a' \neq a : ap(a') \neq req_r^{a'}$ then s'(r) = a;
 - (b) otherwise $s'(r) = a_0$;
- 2. if s(r) = a for some $a \in Agt$ then:
 - (a) if $ap(a) = rel_r^a \vee rel_{all}^a$ then $s'(r) = a_0$;
 - (b) otherwise s'(r) = a.

And we have that evolution of an MRA M from time step t to t+1 is encoded as $[Evolution]_{t,t+1} = \bigwedge_{r \in R} [r.evolution]_{t,t+1}$ where $[r.evolution]_{t,t+1} =$

$$\bigvee_{a \in Acc^{-1}(r)} \left(\begin{array}{c} \left([r = a]_{t+1} \ \wedge [req_r^a]_t \wedge \bigwedge_{a' \neq a} \neg [req_r^{a'}]_t \right) \\ \vee \left([r = a]_{t+1} \ \wedge [r = a]_t \wedge \neg [rel_r^a]_t \wedge \neg [req_{all}^a]_t \right) \\ \vee \left([r = a_0]_{t+1} \wedge [rel_r^a]_t \right) \\ \vee \left([r = a_0]_{t+1} \wedge [r = a]_t \wedge [rel_{all}^a]_0 \right) \\ \rangle \\ \vee \left([r = a_0]_{t+1} \wedge [r = a_0]_t \wedge \bigwedge_{a \in Acc^{-1}(r)} \neg [req_r^a]_t \right) \\ \vee \left([r = a_0]_{t+1} \wedge [r = a_0]_t \wedge \bigvee_{a,a' \in Acc^{-1}(r), a \neq a'} ([req_r^a]_t \wedge [req_r^{a'}]_t \right) \\ \end{array}$$

Consequently, we get that $[Init]_0 \wedge [Evolution]_{0,1}$ only evaluates to true for assignments α such that for all $r \in Res$ $\alpha([r=a]_1) = true$ if and only if there is a prefix s_0s_1 in M and $s_1(r) = a$. Moreover, if according to the evolution, the agents $a \in Agt$ have chosen the actions act^a in state s_0 , then $\alpha([act^a]) = true$ must hold exactly for these actions. This argumentation can be extended to all prefixes $s_0 \dots s_k$ of length k, which completes the proof of Lemma 1 \square

We now consider Lemma 2 which shows that there is an exact correspondence between k-prefixes of M for which the goal-achievability property φ holds and satisfying assignments of $[M,k] \wedge [\varphi,k]$.

Lemma 2 (Evolution Paths Satisfying φ). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi]$ be a strategic bounded model checking problem and let $[M, k] \wedge [\varphi, k]$ be the encoding of all k-bounded paths of M over Vars that satisfy φ . Then for each truth assignment $\alpha : Vars \to \{true, false\}$ with $\alpha([M, k]) = true$ there exists a sequence of states $\pi = s_0 \dots s_k$ and a sequence of action profiles $(act_t^{a_1}, \dots, act_t^{a_n}), 0 \le t < k$ in M such that all properties of Lemma 1 hold and additionally

$$\forall a \in A : \exists 0 \le t \le k : \alpha([a.goal]_t) = true$$

Proof of Lemma 2.

The goal-achievability property is $\varphi = (\bigwedge_{a \in A} (\mathbf{F}a.goal))$ where $\mathbf{F}a.goal$ holds

for a k-bounded path π if $\exists 0 \leq t \leq k : |\pi(t)^{-1}(a)| = d(a)$. The corresponding k-bounded encoding is $[\varphi, k] = \bigwedge_{a \in A} (\bigvee_{t=0}^k [a.goal]_t)$ where $[a.goal]_t = \bigvee_{\substack{R \subseteq Acc(a) \\ |R| = d(a)}} (\bigwedge_{r \in R} [r = a]_t)$. If in some state $\pi(t)$ some agent a has reached its de-

mand, then there must be some subset $R \subseteq Acc(a)$ such that the size of R equals the agent's demand and a holds all resources of R in state $\pi(t)$. So if there is a path $s_0 \ldots s_k$ in M that satisfies $(\bigwedge_{a \in A} (\mathbf{F}a.goal))$, then the truth assignment α corresponding to $s_0 \ldots s_k$ must also have the following property: $\alpha(\bigwedge_{a \in A} (\bigvee_{t=0}^k [a.goal]_t)) = true$. This complete the proof of Lemma 2. \square

We now consider Lemma 3 which shows that there is an exact correspondence between k-prefixes of M for which the goal-achievability property φ holds and where the opposition B follows the fixed strategy β , and satisfying assignments of $[\beta, k] \wedge [M, k] \wedge [\varphi, k]$.

Lemma 3 (Evolution Paths Satisfying φ and β). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \varphi]$ be a strategic bounded model checking problem and let $[\beta, k] \land [M, k] \land [\varphi, k]$ be the encoding of all k-bounded paths of M over Vars that satisfy φ and where the opposition B adheres to the strategy β . Then for each truth assignment α : Vars $\rightarrow \{true, false\}$ with $\alpha([M, k]) = true$ there exists a sequence of states $\pi = s_0 \dots s_k$ and a sequence of action profiles $(act_1^{a_1}, \dots, act_n^{a_n}), 0 \le t < k$ in M such that all properties of Lemma 1 and Lemma 2 hold and additionally

$$\forall b \in B : \forall act^b \in Act : \forall 0 \le t \le k : \beta((s_t)_b) = act^b \text{ iff } \alpha([s_b]_t \to [act^b]_t) = true$$

where $(s_t)_b$ denotes the observation of agent b in state s_t .

Proof of Lemma 3.

From the Encoding of Strategies definition we get the following:

Let $B = \{b_1, \ldots, b_r\} \subseteq Agt$, let $\beta(\beta_{b_1}, \ldots, \beta_{b_r})$ be a joint strategy for B and let $k \in \mathbb{N}$. Then the prescription of the strategy β to B at all time steps up to k is encoded as

$$[\beta, k] = \bigwedge_{t=0}^{k} \bigwedge_{b \in B} \bigwedge_{(s_b, act^b) \in \beta_b} ([s_b]_t \to [act^b]_t)$$

Hence, for a truth assignment α with $\alpha([\beta, k]) = true$, we get that also $\alpha([s_b]_t) \to [act^b]_t) = true$ holds for each time step, each agent $b \in B$ and each $(s_b, act^b) \in \beta_b$. Thus, we have for all time steps along the path characterised by α that if the current state observation of some agent b is s_b , then the agent will perform action act^b , which means the agent adheres to the strategy β in all states of the path characterised by α . This completes the proof of Lemma 3. \square

We now consider Lemma 4 which states that if we have the encoding of a strategic bounded model checking problem with $\Sigma = \{\beta\}$ where β is some strategy of the opposition, then only if there exists a satisfying assignment α there exists a uniform succeeding strategy for A and this strategy can be derived from α .

Lemma 4 (Evolution Paths Satisfying φ , β and Uniform Protocol Behaviour of A). Let $[M, s \models_k \langle A, \{\beta\} \rangle\rangle \varphi]$ be a strategic bounded model checking

problem and let $[\langle A \rangle, k] \wedge [\beta, k] \wedge [M, k] \wedge [\varphi, k]$ be the encoding of all k-bounded paths of M over Vars that satisfy φ where the opposition B adheres to the strategy β and A follows the protocol in a uniform manner. Then for each truth assignment $\alpha: Vars \rightarrow \{true, false\}$ with $\alpha([M, k]) = true$ there exists a sequence of states $\pi = s_0 \dots s_k$ and a sequence of action profiles $(act_t^{a_1}, \dots, act_t^{a_n}), 0 \leq t < k$ in M such that all properties of Lemma 1, 2 and 3 hold and additionally for the strategy

$$\alpha_A = (\{(s_a, act^a) \mid s_a \in S_a \land act^a \in Act \land \alpha([s_a.act^a]) = true)$$

the following holds: $\forall \pi \in \Pi(s, \alpha_A, \{\beta\}) : [M, \pi \models_k \varphi].$

Proof of Lemma 4.

The protocol encoding is defined as follows:

Let M be an MRA, let $A \subseteq Agt$ and let $k \in \mathbb{N}$. Then the protocol of A for all time steps up to k is encoded in propositional logic as $[\langle\langle A \rangle\rangle, k] = \bigwedge_{t=0}^k \bigwedge_{a \in A} [a.protocol]_t$ where $[a.protocol]_t = [a.protocol]_t$

$$\bigvee_{r \in Acc(a)} \left(\begin{array}{c} \left([uniform.req_r^a]_t \wedge \neg [a.goal]_t \wedge [r=a_0]_t \right) \\ \vee \left([uniform.rel_r^a]_t \wedge \neg [a.goal]_t \wedge [r=a]_t \right) \\ \right) \\ \vee \left([uniform.rel_{all}^a]_t \wedge [a.goal]_t \right) \\ \vee \left([uniform.idle^a]_t \wedge \neg [a.goal]_t \wedge \bigwedge_{r \in Acc(a)} \neg [r=a_0]_t \right) \end{array}$$

where

$$[\mathit{uniform}.\mathit{act}^{a_i}]_t := [\mathit{act}^{a_i}]_t \wedge \left(\bigvee_{s_{a_i} \in S_{a_i}, \mathit{act}^{a_i} \in P(s_{a_i})} \left([s_{a_i}]_t \wedge [s_{a_i}.\mathit{act}^{a_i}]\right)\right)$$

for each action $act^{a_i} \in Act$. Hence, if $\alpha([\langle\langle A \rangle\rangle, k]) = true$, then for each $a \in A$ and each t there exists some action act^a such that $\alpha([uniform.act^a]_t) = true$ holds. Let $(s_a)_t$ be the state observation of agent a in the state at time step t along the path characterised by α . Then according to the encoding of actions with uniformity constraints we get $\alpha([s_a.act^a]) = true$. We can synthesise the strategy α_A as outlined in Lemma 4. Since the truth assignment α also satisfies all properties of the Lemmas 1, 2 and 3, we can conclude that the synthesised strategy α_A that the agents in A follow along the path characterised by α is a succeeding strategy for the goal-reachability property against the oppositions strategy β . This completes the proof on Lemma 4. \square

Lemma 4 can be straightforwardly generalised to Theorem 2. Instead of synthesising a strategy α_A that succeeds against a single opposition's strategy β , we can also synthesise a strategy α_A that succeeds against a all opposition's strategies in a set Σ . For this the encoding gets extended to $[\langle\langle A \rangle\rangle, k] \wedge \bigwedge_{\beta \in \Sigma} ([\beta, k] \wedge [M, k]^{\beta} \wedge [\varphi, k]^{\beta})$. A truth assignment α that satisfies this encoding characterises a strategy that is successful against all $\beta \in \Sigma$. We can conclude that Theorem 2 holds: Exactly the satisfying truth assignments α of $[M, \langle\langle A, \Sigma \rangle\rangle \varphi, k]$ characterise strategies α_A such that $\forall \pi \in \Pi(s, \alpha_A, \Sigma) : [M, \pi \models_k \varphi]$. holds. This

immediately implies that $[\langle\!\langle A \rangle\!\rangle, k] \wedge \bigwedge_{\beta \in \Sigma} \left([\beta, k] \wedge [M, k]^\beta \wedge [\varphi, k]^\beta \right)$ is a correct encoding of $[M, s \models_k \langle\!\langle A, \Sigma \rangle\!\rangle \varphi]$ in the sense that $[M, s \models_k \langle\!\langle A, \Sigma \rangle\!\rangle \varphi] \equiv \boldsymbol{sat} \big([M, \langle\!\langle A, \Sigma \rangle\!\rangle \varphi, k] \big)$ holds. Hence, both Theorem 1 and Theorem 2 hold. \square