Aim - Build a simple linear regression model to predict house prices based on features like the number of bedrooms and square footage

Import Statements and Their Purposes

1. import numpy as np

Purpose: Provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.

2. import pandas as pd

Purpose: Used for data manipulation and analysis, including reading data from files like CSV and handling DataFrameoperations.

3. import matplotlib.pyplot as plt

Purpose: Essential for creating visualizations such as line charts, scatter plots, and histograms.

4. from sklearn.model_selection import train_test_split

Purpose: Provides a method to split the dataset into training and testing subsets, ensuring a controlled and reproducible division.

5. from sklearn.preprocessing import StandardScaler

Purpose: Used for feature scaling, ensuring all numerical features have the same scale, typically necessary for machine learning algorithms sensitive to feature magnitudes.

6. from sklearn.linear_model import LinearRegression

Purpose: Contains the implementation of linear regression, a simple and widely-used predictive modeling algorithm.

7. import seaborn as sns

Purpose: Used for creating visually appealing statistical plots, such as scatter plots with regression lines or heatmaps.

Functions Used and Their Purposes

- 1. pd.read_csv()
- Reads a CSV file into a Pandas DataFrame.
- Allows for easy manipulation and analysis of structured data.
- 2. dataset.iloc[:,:-1].values
- Extracts all columns except the last one (independent variables) as a NumPy array.
- \circ This isolates the features (X).

3. dataset.iloc[:, -1].values

• Extracts the last column (dependent variable or target variable) as a NumPy array (y).

4. train test split(X, y, test size=0.2, random state=42)

- Splits the dataset into training (80%) and testing (20%) sets.
- The random state ensures reproducibility of the split.

5. StandardScaler()

• Initializes the standard scaler, which normalizes features by removing the mean and scaling to unit variance.

6. sc.fit transform(X train)

• Computes the scaling parameters (mean and standard deviation) from the training set and applies scaling to it.

7. sc.transform(X test)

• Applies the scaling parameters (computed from training data) to the test data, ensuring consistent scaling.

8. LinearRegression()

• Initializes the linear regression model.

9. regressor.fit(X train, y train)

• Trains the linear regression model on the training data (X train and y train).

10. regressor.predict(X test)

• Uses the trained model to predict outcomes for the test data.

11. plt.figure(figsize=(10, 6))

• Initializes a new figure for the plot with specified dimensions.

12. sns.scatterplot()

• Creates a scatter plot to visualize the relationship between the actual and predicted prices.

13. **plt.plot()**

 \circ Plots a reference line representing perfect prediction (y = x).

14. plt.title(), plt.xlabel(), plt.ylabel(), plt.grid()

• Adds a title, axis labels, and gridlines to the plot for better readability.

15. sc.transform(test input)

• Scales the new input data using the same parameters as the training data.

16. regressor.predict(scaled input)

• Predicts the house price for the scaled input.

17. **print()**

• Outputs the predicted price in a human-readable format.

Why Each Step is Necessary

1. Data Reading and Preparation:

• Essential for loading and isolating the features and target variables for analysis.

2. Splitting the Dataset:

• Ensures the model is evaluated on unseen data, avoiding overfitting.

3. Feature Scaling:

• Brings all features to the same scale, crucial for ensuring the algorithm performs optimally and weights features appropriately.

4. Training the Model:

• Builds the predictive relationship between features (X train) and the target variable (y train).

5. Prediction and Visualization:

o Provides insights into the model's performance and allows you to predict new, unseen values.

6. Single Input Prediction:

• Demonstrates how to use the trained model to make predictions for custom data.