Resolución del Trabajo Práctico Nº 1 Sistemas de Numeración

Nota

El enunciado original de este trabajo práctico se encuentra en el archivo enunciado.pdf incluido en este repositorio.

A continuación, se desarrollan los ejercicios correspondientes.

Ejercicio 1: Sistemas numéricos

Indicar a qué sistemas numéricos (binario, octal, decimal, hexadecimal) pueden pertenecer los siguientes números...

1011 7806 9B4 85A2 1230 567 FFF ABCDE 999

Número	Binario	Octal	Decimal	Hexadecimal	Siguiente(s)
1011	\checkmark	\checkmark	\checkmark	\checkmark	Bin: 1100, Oct: 1012, Dec: 1012, Hex: 1012
7806	X	X	\checkmark	\checkmark	Dec: 7807, Hex: 7807
9B4	X	X	X	\checkmark	Hex: 9B5
85A2	X	X	X	\checkmark	Hex: 85A3
1230	X	\checkmark	\checkmark	\checkmark	Oct: 1231, Dec: 1231, Hex: 1231
567	X	\checkmark	\checkmark	\checkmark	Oct: 570, Dec: 568, Hex: 568
FFF	X	X	X	\checkmark	Hex: 1000
ABCDE	X	X	X	\checkmark	Hex: ABDCF
999	×	×	\checkmark	\checkmark	Dec: 1000, Hex: 99A

Cuadro 1: Verificación de representación numérica en diferentes sistemas

Ejercicio 2: Interpretación del número 10

Dado el número 10, convertirlo a base 10 suponiendo que el mismo está:

- a) En base 2
- b) En base 5
- c) En base 8
- d) En base 16

Resolución:

Interpretado como	Forma de resolución	Resultado en base 10
10_{2}	$1 \times 2^1 + 0 \times 2^0 = 2 + 0$	2
10 ₅	$1 \times 5^1 + 0 \times 5^0 = 5 + 0$	5
108	$1 \times 8^1 + 0 \times 8^0 = 8 + 0$	8
10 ₁₆	$1 \times 16^1 + 0 \times 16^0 = 16 + 0$	16

Cuadro 2: Interpretación del número 10 en diferentes sistemas de numeración

3) Transformar los siguientes números decimales en:

- a) Números binarios
- b) Números octales
- c) Números hexadecimales

384 1259 111 0,175 1024 16 37,25

Realizarlo por el método de las divisiones.

a) Conversión de números decimales a binario

División	Coc.	Res.
$384 \div 2$	192	0
$192 \div 2$	96	0
$96 \div 2$	48	0
$48 \div 2$	24	0
$24 \div 2$	12	0
$12 \div 2$	6	0
$6 \div 2$	3	0
$3 \div 2$	1	1
$1 \div 2$	0	1

División	Coc.	Res.
$1259 \div 2$	629	1
$629 \div 2$	314	1
$314 \div 2$	157	0
$157 \div 2$	78	1
$78 \div 2$	39	0
$39 \div 2$	19	1
$19 \div 2$	9	1
$9 \div 2$	4	1
$4 \div 2$	2	0
$2 \div 2$	1	0
$1 \div 2$	0	1

División	Coc.	Res.
$111 \div 2$	55	1
$55 \div 2$	27	1
$27 \div 2$	13	1
$13 \div 2$	6	1
$6 \div 2$	3	0
$3 \div 2$	1	1
$1 \div 2$	0	1

División	Coc.	Res.
$1024 \div 2$	512	0
$512 \div 2$	256	0
$256 \div 2$	128	0
$128 \div 2$	64	0
$64 \div 2$	32	0
$32 \div 2$	16	0
$16 \div 2$	8	0
$8 \div 2$	4	0
$4 \div 2$	2	0
$2 \div 2$	1	0
$1 \div 2$	0	1

Coc.	Res.
8	0
4	0
2	0
1	0
0	1
	8 4 2 1

División	Coc.	Res.
$37 \div 2$	18	1
$18 \div 2$	9	0
$9 \div 2$	4	1
$4 \div 2$	2	0
$2 \div 2$	1	0
$1 \div 2$	0	1

$ m N\'umero imes 2$	Part E.	Nueva F.
$0.175 \times 2 = 0.35$	0	0.35
$0.35 \times 2 = 0.70$	0	0.70
$0.70 \times 2 = 1.40$	1	0.40
$0.40 \times 2 = 0.80$	0	0.80
$0.80 \times 2 = 1.60$	1	0.60
$0.60 \times 2 = 1.20$	1	0.20
$0.20 \times 2 = 0.40$	0	0.40
$0.40 \times 2 = 0.80$	0	0.80
		•

$ m N\'umero imes 2$	Part E.	Nueva F.
$0.25 \times 2 = 0.50$	0	0.50
$0.50 \times 2 = 1.00$	1	0.00

b) Conversión de números decimales a octales

División	Coc.	Res.
$384 \div 8$	48	0
$48 \div 8$	6	0
$6 \div 8$	0	6

División	Coc.	Res.
$1259 \div 8$	157	3
$157 \div 8$	19	5
$19 \div 8$	2	3
$2 \div 8$	0	2

División	Coc.	Res.
$111 \div 8$	13	7
$13 \div 8$	1	5
$1 \div 8$	0	1

División	Coc.	Res.
$1024 \div 8$	128	0
$128 \div 8$	16	0
$16 \div 8$	2	0
$2 \div 8$	0	2

División	Coc.	Res.
$16 \div 8$	2	0
$2 \div 8$	0	2

División	Coc.	Res.
$37 \div 8$	4	5
$4 \div 8$	0	4

Número \times 8	Part E.	Nueva F.
$0.175 \times 8 = 1.4$	1	0.4
$0.4 \times 8 = 3.2$	3	0.2
$0.2 \times 8 = 1.6$	1	0.6
$0.6 \times 8 = 4.8$	4	0.8
$0.8 \times 8 = 6.4$	6	0.4
$0.4 \times 8 = 3.2$	3	0.2

Número \times 8	Part E.	Nueva F.
$0.25 \times 8 = 2.00$	2	0.00

c) Conversión de números decimales a hexadecimales

División	Coc.	Res.
$384 \div 16$	24	0
$24 \div 16$	1	8
$1 \div 16$	0	1

División	Coc.	Res.
$1259 \div 16$	78	В
$78 \div 16$	4	${ m E}$
$4 \div 16$	0	4

División	Coc.	Res.
$111 \div 16$	6	F
$6 \div 16$	0	6

División	Coc.	Res.
$1024 \div 16$	64	0
$64 \div 16$	4	0
$4 \div 16$	0	4

División
 Coc.
 Res.

$$16 \div 16$$
 1
 0

 $1 \div 16$
 0
 1

División
 Coc.
 Res.

$$37 \div 16$$
 2
 5

 $2 \div 16$
 0
 2

N úmero \times 8	Part E.	Nueva F.
$0.175 \times 16 = 2.8$	2	0.8
$0.8 \times 16 = 12.8$	\mathbf{C}	0.8
$0.8 \times 16 = 12.8$	С	0.8

Número \times 8	Part E.	Nueva F.
$0.25 \times 16 = 4.00$	4	0.00

Resultado final

Decimal	Binario	Octal	Hexadecimal
384	110000000	600	180
1259	10011101011	2353	4EB
111	1101111	157	6F
1024	10000000000	2000	400
16	10000	20	10
37.25	100101.01	45.2	25.4
0.175	$0,001011\overline{0011}$	$0,1\overline{3}\overline{146}$	$0.2\overline{C}$

4) Pasar al sistema decimal los siguientes números:

Realizarlo por descomposición en el polinomio equivalente.

Interpretado como	Forma de resolución	Resultado en base 10
110111_{b}	$1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$	55
$3AF_h$	$3 \times 16^2 + 10 \times 16^1 + 15 \times 16^0$	943
$223,\!274_{o}$	$2 \times 8^2 + 2 \times 8^1 + 3 + 2 \times 8^{-1} + 7 \times 8^{-2} + 4 \times 8^{-3}$	147.3671875
$F0F0.EA_h$	61440 + 240 + 0.875 + 0.0390625	61680.9140625
2_o	2	2
2_h	2	2
$111101,101101_b$	61 + 0.703125	61.703125
$101F, 25_h$	4127 + 0,14453125	4127.14453125

Cuadro 3: Conversión de varios números en distintas bases a base decimal

5) Convertir a base 2 el número decimal 53,1 hasta seis bits fraccionarios y luego el número binario obtenido volverlo a base 10.

Primero, convertimos el número decimal 53,1 a binario hasta seis bits fraccionarios. ¿Qué conclusión extrae?

Resolución:

• Parte entera: $53_{10} = 110101_2$

• Parte fraccionaria: $0, 1_{10} \approx 0,000110_2$

Por lo tanto, el número binario obtenido es 110101,000110₂. Luego, convertimos este número binario nuevamente a decimal:

• Parte entera: $110101_2 = 53_{10}$

• Parte fraccionaria: $0,000110_2 = 0,1_{10}$

Conclusión: Al convertir el número de decimal a binario y luego volver a decimal, el valor se mantiene igual, siempre y cuando utilicemos una cantidad adecuada de bits para representar la parte fraccionaria. En este caso, al limitar la fracción a seis bits, logramos recuperar el mismo número decimal de manera precisa. Esto muestra que las conversiones entre bases son exactas cuando se consideran suficientes bits para representar el número en la nueva base.

6) Transformar a octal y a hexadecimal los siguientes números binarios:

1001000,0001 10000,0101 11111010 1110100110011111110 10101,11101 11001001

Binario	Agrupación (3 bits)	Conversión (pesos)	Octal
1001000,0001	001 001 000 , 000 100	$1 \times 2^0 = 1, \ 1 \times 2^0 = 1, \ 1 \times 2^2 = 4$	110.04
10000,0101	010 000 , 010 100	$1 \times 2^1 = 2, 1 \times 2^2 = 4$	20.24
11111010	011 111 010	3, 7, 2	372
11101001100111111110	001 110 100 110 011 111 110	1, 6, 4, 6, 3, 7, 6	1646376
10101,11101	010 101 , 111 010	2, 5 , 7, 2	25.72
11001001	011 001 001	3, 1, 1	311

Cuadro 4: Conversión de números binarios a su equivalente en base octal mediante agrupaciones de 3 bits

Binario	Agrupación (4 bits)	Conversión	Hexadecimal
1001000,0001	0100 1000 , 0001	0100=4, 1000=8, 0001=1	48.1
10000,0101	0001 0000 , 0101	0001=1, 0000=0, 0101=5	10.5
11111010	1111 1010	1111=15=F, 1010=10=A	FA
11101001100111111110	0001 1101 0011 0011 1111 1110	0001=1, 1101=D, 0011=3, 0011=3, 1111=F, 1110=E	1D33FE
10101,11101	0001 0101 , 1110 1000	0001=1, 0101=5, 1110=E, 1000=8	15.E8
11001001	1100 1001	1100=12=C, 1001=9	С9

Cuadro 5: Conversión de números binarios a su equivalente hexadecimal mediante agrupaciones de 4 bits