Information Security Engineering

Bitcoin II

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

主要内容

- 密码学和加密货币
- 比特币如何去中心化
- 比特币的机制
- 如何存储和使用比特币
- 比特币挖矿
- 比特币和匿名性
- 社区、政治和监管
- 其余挖矿难题
- 比特币作为平台
- 其余代币和加密货币生态系统
- 比特币未来

比特币如他去中心

贪心币是中心化的

• 比特币如何要去中心?

中心化 vs. 去中心

神话

- 没有纯粹的中心化系统或者分布式系统
- 各有优缺点

Internet, Email, IM, SNS

● 大多数系统都是混合类型的

比特币?

比特币如何实现去中心

- 谁维护交易账本?
- 谁有权限验证交易的有效性?
- 谁创造新的比特币?

技术

• 谁决定系统如何改变规则?

激励

• 比特币如何获得交易价格

用户:对等网络 / 矿工 挖矿 / 开发人员:软件更新

分布共识

- 在一个有n个节点的系统中,每一个节点都有一个输入值, 其中有一些节点是错误的或者恶意的。一个分布式共识协 议具有如下两个属性:
 - * 结束时所有诚实的节点均认同该值;
 - * 该值由诚实节点产生

Distributed DB, Email, PKI

比特币的分布共识

- 比特币是一个P2P网络
- Alice 需要广播她完成的交易給所有的节点
- Bob计算机当时可以不在P2P网络中
- A single, global ledger for the system
- 等待共识的业务、已共识的业务

比特币的分布共识

● 每一个节点输出它的未共识的业务竞争下一个Block

拜占庭将军问题和Paxos

The Byzantine Generals Problem

982

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE SRI International

LESLIE LAMPORT

2013图灵奖

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat

Paxos Made Simple Abstract

2001

The Paxos algorithm, when presented in plain English, is very simple.

比特币的共识

- 理论落后于实践
- 引入了Incentive
 - * 是电子货币
- 利用了随机性
 - * 很长时间后才取得共识, /小时
 - * 随着时间的增加,对某一块的共识的概率越来越大

比特币和身份

- 比特币节点需要身份 (ID)
- 比特币假设恶意节点小于50%
- 但是P2P系统中,ID面临很大问题
 - * Sybil Attack
- Pseudonymity是比特币的目的

- 比特币跟踪和验证ID是困难的
- 比特币采用的应对方法: 随机的选择节点

比特币的共识机制

- 新的交易被广播到所有节点
- 每个节点将新的交易放进一个区块
- 在每一轮中,一个随机的节点被选择可以广播它的区块
- 其余节点可以选择接受这个区块,前提是区块的教育是可验证的
- 节点将以上区块的Hash放进自己的区块,表示它认可这个新区块

隐形共识:接受该块并扩展 vs. 拒绝该块,扩展前面的块

恶意节点

● 窃取比特币 ● 拒绝服务攻击 ● 双重支付攻击

图2.2 双重支付攻击

注: 爱丽丝创建了两笔交易: 一笔是她付给鲍勃比特币的交易, 另一笔是她将这笔比特币重复支付到她控制的另一个地址。 因为这两笔交易用相同的比特币支付, 所以只有一笔会被放进区块链。图中的箭头表示一个区块链接到前一个区块的指针, 通过在前一个区块自己的内容中包含了一个哈希值进行了扩展。CA代表爱丽丝拥有的币。

双重攻击防止: 等待多次确认

图2.3 从鲍勃立场来看双重支付

注:这是一个从商家鲍勃的立场来看爱丽丝做的双重支付尝试。为了保护自己免受双重支付攻击,鲍勃应当等爱丽丝向他支付的交易被区块链包含进去,并且多等几次确认。

激励节点诚实

区块奖励 vs. 交易费奖励

交易费: 输入和输出不等

比特币奖励

挖矿

限定Hash的 输出范围 临时随机数

PoW:

工作量证明

PoS:

权益证明

总结

- 身份
- 交易
- P2P网络
- 区块链
- 共识
- Hash难题
- 挖矿
- 经济

- 51%攻击
 - → 窃取币、操纵交易、改变激励、破坏信心

思考

- 比特币现在的情况
- 比特币是分布式电子货币吗?
- 比特币实现匿名了吗?
- 比特币安全吗?
- 比特币不能操控吗?

比特币机制

普通账本

时间

一个块包含一个交易

交易验证需要扫描以前所有的块

比特币

一个块包含一个交易

交易验证需要扫描以前所有的相关块

合并

时间

一个块包含一个交易

交易验证需要扫描以前所有的相关块

联合支付

时间

```
Inputs: ...
      Outputs: 17.0 \rightarrow Bob, 8.0 \rightarrow Alice
                                                                SIGNED(Alice)
      Inputs: 1[1]
      Outputs: 6.0 \rightarrow Carol, 2.0 \rightarrow Bob
                                                                SIGNED(Carol)
      Inputs: 2[0], 2[1]
3
                                                     two signatures!
      Outputs: 8.0→David
                                                     SIGNED(Carol), SIGNED(Bob)
```

一个块包含一个交易

比特币交易

```
"hash": "5a42590fbe0a90ee8e8747244d6c84f0db1a3a24e8f1b95b10c9e050990b8b6b",
           "ver":1,
           "vin sz":2,
元数据
           "vout sz":1,
           "lock time":0,
           "size":404,
           "in":[
               "prev out":{
               "hash": "3be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260",
               "n":0
                "scriptSig": "30440..."
            },
  输入
               "prev out":{
               "hash": "7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91ff6b34e",
               "n":0
              "scriptSig": "3f3a4..."
            "out":[
               "value": "10.12287097",
  输出
               "scriptPubKey": "OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e
                      OP EQUALVERIFY OP CHECKSIG"
                                图3.3 一个真实的比特币交易程序段
```

比特币脚本

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY
OP_CHECKSIG

图3.4 P2PH脚本范例

<sig>
<pubKey>
OP_DUP
OP_HASH160
<pubKeyHash?>
OP_EQUALVERIFY
OP_CHECKSIG

图3.6 比特币脚本的执行堆栈状态图

注:图中底部列出了相对应的指令:尖括号里的是数据指令,以OP开头的是工作码指令,指令上方对应的是指令执行之后的 堆栈状态。

多重签名问题

Pay for Script

托管

绿色地址

小额多次交易

锁定时间

```
"hash": "5a42590...b8b6b",
 "ver":1,
 "vin_sz":2,
 "vout_sz":1,
 "lock_time":315415,
 "size":404,
                    Block index or real-world timestamp before
                    which this transaction can't be published
```

比特币的区块结构

图3.7 比特币的区块链有两个哈希结构

注:一个就是把区块联结在一起的哈希链,另一个就是区块内部的交易哈希值梅克尔树。

比特币输入输出

```
"in":[
          "prev_out":{
            "hash":"000000....00000000",
            "n":4294967295
          "coinbase":"..."
"out":[
         "value": "25.03371419",
         "scriptPubKey": "OPDUP OPHASH160 ... "
                   图3.8 币基交易
```

比特币网络

比特币网络交易消息传播

块传播

存储花费

比特币限制

- 10分钟:产生块的间隔
- /M: 一个快大小
- 2万签名:每个快
- 100M satoshi: 每个币
- 23M: 比特币再大
- 50、25、12.5....: 挖矿奖励
- 250bytes: 每个业务
- 7交易: 每秒(visa 2千到1万, Paypal 50-100)

分叉

如何存储和使用比特币

比特币存储

payments

Hot storage

online

hot secret key(s)

cold address(es)

Cold storage

offline

威胁

Charles Ponzi

交易所

● 要求阅读如下论文:

Bitcoin: Under the Hood. In CACM 2015.

下次上课测试!

谢谢!

孙惠平 sunhp@ss.pku.edu.cn