Deep Neural Networks for Natural Language Processing (Al6127)

JUNG-JAE KIM

LECTURE 10: SUBWORD MODELS

Lecture Plan

- A tiny bit of linguistics
- Purely character-level models
- Subword-models: Byte Pair Encoding and friends
- Hybrid character and word level models
- fastText

1. Human language sounds: Phonetics and phonology

- Phonetics is the sound stream uncontroversial "physics"
- Phonology posits a small set or sets of distinctive, categorical units:
 phonemes (significant spoken sounds) or distinctive features
 - A perhaps universal typology but language-particular realization
 - Best evidence of categorical perception comes from phonology
 - Within phoneme differences shrink; between phoneme magnified

	Bilabial	Labiode	ental	Dental	A	lveolar	Posta	lveolar	Retr	oflex	Pala	atal	Ve	lar	Uv	ular	Phary	ngeal	Glo	ottal
Plosive	p b				1	t d			t	d	c	J	k	g	q	G			3	
Nasal	m	ľ	m			n				η		ŋ		ŋ		N				
Γrill	В					r										R				
Tap or Flap		1	V			ſ				r										
Fricative	φβ	f	v	θ δ	5	s z	ſ	3	Ş	Z _L	ç	j	X	Y	χ	R	ħ	ſ	h	J
Lateral fricative						łţ														
Approximant		1	υ			Ţ				J		j		щ						
Lateral approximant						1				1		λ		L						

caught / kɔt /
cot / kɒt /

Morphology: Parts of words

- Traditionally, we have morphemes as smallest semantic unit
 - [[un [[fortun(e)]_{ROOT} ate]_{STEM}]_{STEM} ly]_{WORD}

A root is a form which is not further analysable 'fortunate' is the stem of 'unfortunate'

 Deep learning: Morphology little studied; one attempt with recursive neural networks is (Luong, Socher, & Manning 2013)

Morphology

- An easy alternative is to work with character n-grams
 - Wickelphones (Rumelhart & McClelland 1986)
 - Microsoft's DSSM (Huang, He, Gao, Deng, Acero, & Hect 2013)
- Related idea to use of a convolutional layer
- Can give many of the benefits of morphemes more easily??

Words in writing systems

Writing systems vary in how they represent words – or don't

- No word segmentation 美国关岛国际机场及其办公室均接获
- Words (mainly) segmented: This is a sentence with words
 - · Clitics? (have form of affixes, but distribution of function words; e.g. it's, we've)
 - Separated
 Je vous ai apporté des bonbons
 - so+said+we+it = فقلناها = so+said+we+it
 - Compounds?
 - Separated life insurance company employee
 - Joined Lebensversicherungsgesellschaftsangestellter

Models below the word level

- Need to handle large, open vocabulary
 - Rich morphology: nejneobhospodařovávatelnějšímu Czech ("to the worst farmable one")
 - Transliteration: Christopher → Kryštof
 - Informal spelling:

Character-Level Models

- 1. Word embeddings can be composed from character embeddings
 - Generates embeddings for unknown words
 - Similar spellings share similar embeddings
 - Solves OOV problem
- 2. Connected language can be processed as characters
- Both methods have proven to work very successfully!
 - Somewhat surprisingly traditionally, phonemes/letters weren't a semantic unit but DL models compose groups

Below the word: Writing systems

Most deep learning NLP work begins with language in its written form –
 it's the easily processed, found data

But human language writing systems aren't one thing!

Below the word: Writing systems

Phonemic (maybe digraphs) jiyawu ngabulu

graphemes (written symbols) correspond to phonemes

Fossilized phonemic

thorough failure

Syllabic/moraic

- characters represent syllables and are combined to indicate morphemes
- Syllable: a sequence of sounds/phonemes with at least one vowel

Ideographic

去年太空船二号坠毁

- 'ideogram' symbols represent elements of language
- Combination of the above

インド洋の島

Wambaya

English

Inuktitut

Chinese

Japanese

2. Purely character-level models

- Strong results via a deep convolutional stack
 - Very Deep Convolutional Networks for Text Classification
 - Conneau, Schwenk, Lecun, Barrault. EACL 2017

Purely character-level NMT models

- Initially, unsatisfactory performance
 - (Vilar et al., 2007; Neubig et al., 2013)
- Subword-level encoder + Character-level decoder (w/o segmentation)
 - (Junyoung Chung, Kyunghyun Cho, Yoshua Bengio. arXiv 2016).
- Then promising results
 - (Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv 2015)
 - (Thang Luong, Christopher Manning, ACL 2016)
 - (Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016)

English-Czech WMT 2015 Results

- Luong and Manning tested as a baseline a pure character-level seq2seq (LSTM) NMT system
- It worked well against word-level baseline
- But it was ssllooooww
 - 3 weeks to train ... not that fast at runtime

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

English-Czech WMT 2015 Example

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila, že je to trochu zvláštní
char	Její jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu <i>divn</i> ě
	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>
word	Její 11-year-old dcera Shani , řekla , že je to trochu <i>divn</i> é

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

Fully Character-Level Neural Machine Translation without Explicit Segmentation

• Jason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017. Encoder as below; decoder is a char-level GRU

CS-En	WMT 15	Test
Source	Target	BLEU
Bpe	Bpe	20.3
Bpe	Char	22.4
Char	Char	22.5

Stronger character results with depth in LSTM seq2seq model

 Revisiting Character-Based Neural Machine Translation with Capacity and Compression. 2018. Cherry, Foster, Bapna, Firat, Macherey, Google

Al

X-axis: E.g. 1x2+2 indicates
 1 BiLSTM encoder layer and

2 LSTM decoder layers

Y-axis: bleu scores

3. Sub-word models: two trends

- Same architecture as for word-level model:
 - But use smaller units: "word pieces"
 - [Sennrich, Haddow, Birch, ACL'16a], [Chung, Cho, Bengio, ACL'16].

- **Hybrid** architectures:
 - Main model has words; something else for characters
 - [Costa-Jussà & Fonollosa, ACL'16], [Luong & Manning, ACL'16].

- Originally a compression algorithm:
 - Most frequent byte pair → a new byte.

Replace bytes with character ngrams

(though, actually, some people have done interesting things with bytes)

- Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword Units. ACL 2016.
 - https://arxiv.org/abs/1508.07909
 - https://github.com/rsennrich/subword-nmt
 - https://github.com/EdinburghNLP/nematus

A word segmentation algorithm: Though done as bottom up clustering

- Start with a unigram vocabulary of all (Unicode) characters in data

A word segmentation algorithm:

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs → a new ngram

Dictionary

5 low

2 lower

6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d

Start with all characters in vocab

A word segmentation algorithm:

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs → a new ngram

Dictionary

5 low

2 lower

6 new**es**t

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e, s) with freq 9

A word segmentation algorithm:

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs → a new ngram

Dictionary

5 low

2 lower

6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

A word segmentation algorithm:

- Start with a unigram vocabulary of all (Unicode) characters in data
- Most frequent ngram pairs → a new ngram

Dictionary

5 **lo** w

2 **lo** w e r

6 newest

3 widest

Vocabulary

I, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

Add a pair (I, o) with freq 7

- Have a target vocabulary size and stop when you reach it
- Do deterministic longest piece segmentation of words
- Segmentation is only within words identified by some prior tokenizer (commonly Moses tokenizer for MT)
- Automatically decides vocab for system
 - No longer strongly "word" based in conventional way

Top places in WMT 2016! Still widely used in WMT 2018

https://github.com/rsennrich/nematus

Wordpiece/Sentencepiece model

- Google NMT (GNMT) uses a variant of this
 - V1: wordpiece model
 - V2: sentencepiece model
- Rather than char n-gram count, uses a greedy approximation to maximizing language model log likelihood to choose the pieces
 - Add n-gram that maximally reduces perplexity

Wordpiece/Sentencepiece model

- Wordpiece model tokenizes inside words
 - Issue: original input and tokenized sequence are NOT reversibly convertible
 - E.g. "World." vs "World."
- Sentencepiece model works from raw text
 - Treats raw text just as a sequence of Unicode characters
 - Whitespace is handled as normal symbol
 - You can reverse things at end by joining pieces
 - https://github.com/google/sentencepiece
 - https://arxiv.org/pdf/1804.10959.pdf

Wordpiece/Sentencepiece model

- BERT uses a variant of the wordpiece model
 - (Relatively) common words are in the vocabulary:
 - o at, fairfax, 1910s
 - Other words are built from wordpieces:
 - hypatia = h ##yp ##ati ##a Have word vectors for four word pieces.
- If you're using BERT in an otherwise word based model, you have to deal with this
- The simplest and quite common way is: averagine these four.

 Also. can ConvNet & maxpool. / LSTM

- 4. Character-level to build word-level Learning: Character-level Representations for Part-of-Speech Tagging (Dos Santos and Zadrozny 2014)
- Convolution over characters to generate word embeddings
- Fixed window of word embeddings used for PoS tagging

Character-based LSTM to build word representations

Bi-LSTM builds word representations

Ling, Luís, Marujo, Astudillo, Amir, Dyer, Black, Trancoso. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP'15.

Character-based LSTM

Recurrent Language Model

Bi-LSTM builds word representations

Use as LM and for POS tagging

Ling, Luís, Marujo, Astudillo, Amir, Dyer, Black, Trancoso. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP'15.

Character-Aware Neural Language Models Year Kim Yasing Jamita David Sonton Alexa

Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush. 2015

A more complex/sophisticated approach

Motivation

- Derive a powerful, robust language model effective across a variety of languages.
- Encode subword relatedness: eventful, eventfully, uneventful...
- Address rare-word problem of prior models.
- Obtain comparable expressivity with fewer parameters.

Technical Approach

Convolutional Layer

conv1d, padded with max pooling over time

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
	0.0	1 (4 4

Apply 3 **filters** of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

1	0	0	1
1	0	-1	-1
0	1	0	1

1	-1	2	-1
1	0	-1	3
0	2	2	1

Highway Network (Srivastava et al. 2015)

Transform Gate Input

- Apply transformation while carrying over original information.
- Functions akin to an LSTM memory cell.

$$\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H \mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$$

Carry Gate

CNN Output

Long Short-Term Memory Network

- Hierarchical Softmax to handle large output vocabulary (V).
- Trained with truncated backpropagation through time.

Highway Network Output

Long Short-Term Memory Network

- Hierarchical Softmax to handle large output vocabulary (V).
 - O(V) -> O(log₂V)

Long Short-Term Memory Network

Trained with truncated backpropagation through time.

A modified version of the BPTT training algorithm for recurrent neural networks where the sequence is processed one timestep at a time and periodically and the BPTT update is performed back for a fixed number of timesteps

Quantitative Results

				DAT	A-S		
		Cs	DE	Es	FR	RU	AR
Dotho	KN-4	545	366	241	274	396	323
Botha	MLBL	465	296	200	225	304	_
	Word	503	305	212	229	352	216
Small	Morph	414	278	197	216	290	230
	Char	401	260	182	189	278	196
	Word	493	286	200	222	357	172
Large	Morph	398	263	177	196	271	148
	Char	371	239	165	184	261	148
				DAT	A-L		
		Cs	DE	Es	FR	RU	En
D -41	KN-4	862	463	219	243	390	291
Botha	MLBL	643	404	203	227	300	273
	Word	701	347	186	202	353	236
Small	Morph	615	331	189	209	331	233
	Char	578	305	169	190	313	216

Test set perplexity

Comparable performance with fewer parameters!

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	$7 \mathrm{m}$
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

Qualitative Insights

			In Vocabular	у	
	while	his	you	richard	trading
LSTM-Word	although	your	conservatives	jonathan	advertised
	letting	her	we	robert	advertising
	though	my	guys	neil	turnover
	minute	their	i	nancy	turnover
LSTM-Char (before highway)	chile	this	your	hard	heading
	whole	hhs	young	rich	training
	meanwhile	is	four	richer	reading
	white	has	youth	richter	leading
LSTM-Char (after highway)	meanwhile	hhs	we	eduard	trade
	whole	this	your	gerard	training
	though	their	doug	edward	traded
	nevertheless	your	i	carl	trader

Qualitative Insights

Out-of-Vocabulary					
computer-aided	misinformed	looooook			
_	_	_			
_	_	_			
_	_	-			
_	_	-			
computer-guided computerized disk-drive computer	informed performed transformed inform	look cook looks shook			
computer-guided computer-driven computerized computer	informed performed outperformed transformed	look looks looked looking			

Plot of character n-gram representations via PCA for English. Prefixes (red), suffixes (blue), hyphenated (orange), and all others (grey). Prefixes refer to character n-grams which start with the start-of-word character. Suffixes like-wise refer to character n-grams which end with the end-of-word character

Take-aways

- Paper questioned the necessity of using word embeddings as inputs for neural language modeling.
- CNNs + Highway Network over characters can extract rich semantic and structural information.
- Key thinking: you can compose "building blocks" to obtain nuanced and powerful models!

Hybrid NMT

- A best-of-both-worlds architecture:
 - Translate mostly at the word level
 - Only go to the character level when needed (rare words)

 More than 2 BLEU improvement over a copy mechanism (exact word string from source to target sentence) to try to fill in unknown words

Thang Luong and Chris Manning. **Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models**. ACL 2016.

Hybrid NMT

Word-level (4 layers)

2-stage Decoding

Word-level beam search

2-stage Decoding

Word-level beam search

Char-level beam search for <unk>

cat

English-Czech Results

- Train on WMT'15 data (12M sentence pairs)
 - newstest2015

Systems	BLEU	
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8	30x additional data 3 systems (2 MT, 1 post-editing)
Word-level NMT (Jean et al., 2015)	18.3	Large vocab + copy mechanism

English-Czech Results

- Train on WMT'15 data (12M sentence pairs)
 - newstest2015

Systems	BLEU
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8
Word-level NMT (Jean et al., 2015)	18.3
Hybrid NMT (Luong & Manning, 2016)*	20.7

source	The author <i>Stephen Jay Gould</i> died 20 years after <i>diagnosis</i> .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
landani d	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
hybrid	Autor Stephen Jay Gould zemřel 20 let po diagnóze . Perfect

source	The author <i>Stephen Jay Gould</i> died 20 years after <i>diagnosis</i> .					
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					
char	Autor Stepher Stepher zemřel 20 let po diagnóze .					
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po po.					
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					

Char-based: wrong name translation

source	The author <i>Stephen Jay Gould</i> died 20 years after <i>diagnosis</i> .				
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.				
char	Autor Stepher Stepher zemřel 20 let po diagnóze.				
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>				
	Autor Stephen Jay Gould zemřel 20 let po po .				
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>				
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .				

Word-based: incorrect alignment

source	The author <i>Stephen Jay Gould</i> died 20 years after <i>diagnosis</i> .					
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.					
char	Autor Stepher Stepher zemřel 20 let po diagnóze.					
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po po .					
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po diagnóze.					

Char-based & hybrid: correct translation of diagnóze

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird				
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní				
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>				
	Její <mark>11-year-old</mark> dcera Shani, řekla, že je to trochu <i>divné</i>				
hybrid	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>				
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>				

Word-based: identity copy fails

when generate words, although feeding the hidden representation of the word level model in as the starting hidden representation of the character level model, it doesn't have any

Sample English-Czech translations representation further book than that of what's

source Her 11-year-old daughter, Shani Bart, said it felt a little bit weird in the word level Její jedenáctiletá dcera Shani Bartová prozradila, že je to trochu model. Její <unk> dcera <unk> <unk> řekla , že je to trochu divné it tends to not always word Její 11-year-old dcera Shani, řekla, že je to trochu *divné* Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk> Její jedenáctiletá dcera , Graham Bart , řekla , že cítí trochu divný Hybrid >

Hybrid: correct, 11-year-old – jedenáctiletá

Wrong: Shani Bartová

5. Chars for word embeddings

A Joint Model for Word Embedding and Word Morphology (Cao and Rei 2016)

- Same objective as w2v, but using characters
- Bi-directional LSTM to compute embedding
- Model attempts to capture morphology
- Model can infer roots of words

Enriching Word Vectors with Subword Information Bojanowski, Grave, Joulin and Mikolov. FAIR. 2016.

- https://arxiv.org/pdf/1607.04606.pdf
- https://fasttext.cc
- Aim: a next generation efficient word2vec-like word representation library, but better for rare words and languages with lots of morphology
- An extension of the w2v skip-gram model with character n-grams

- Represent word as char n-grams augmented with boundary symbols and as whole word, designated as G(w):
- where = <wh, whe, her, ere, re>, <where>
 - Note that <her> or <her is different from her
 - Prefix, suffixes and whole words are special
- Represent word as sum of these representations (z_q) .
- Word in context (c) score is: $s(w,c) = \sum_{g \in G(w)} z_g^T v_c$

Correlation between human judgement and similarity scores on word

similarity datasets

		sg	cbow	sisg-	sisg
AR	WS353	51	52	54	55
	Gur350	61	62	64	70
DE	Gur65	78	78	81	81
	ZG222	35	38	41	44
En	RW	43	43	46	47
	WS353	72	73	71	71
Es	WS353	57	58	58	59
FR	RG65	70	69	75	75
Ro	WS353	48	52	51	54
RU	НЈ	59	60	60	66

 Spearman's rank correlation coefficient between human judgement and model scores for different methods using morphology to learn (OOV) word representations

	DE		En		Es	FR	
	GUR350	ZG222	WS353	RW	WS353	RG65	
Luong et al. (2013)	-	-	64	34	-	-	Trained on different
Qiu et al. (2014)	-	-	65	33	-	-	
Soricut and Och (2015)	64	22	71	42	47	67	
sisg	73	43	73	48	54	69	
Botha and Blunsom (2014)	56	25	39	30	28	45	datasets
sisg	66	34	54	41	49	52	