This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Basic Patent (Number, Kind, Date): CA 2019633 AA 19901229

Patent Family:

Patent Number	Kind	Date	Application Number	Kind	Date
AT 100464	E	19940215	EP 90401877	Α	19900629
AU 9057911	A1	19910103	AU 9057911	A .	19900628
AU 627898	B2	19920903	AU 9057911	Α	19900628
CA 2019633	AA	19901229	CA 2019633	Α	19900622 (Basic)
DE 69006116	C0	19940303	EP 90401877	\mathbf{A}_{\cdot}	19900629
DE 69006116	T2	19940728	DE 69006116	Α	19900629
DK 406119	T3	19940321	DK 9090401877	Α	19900629
EP 406119	A1	19910102	EP 90401877	Α	19900629
EP 406119	B1	19940119	EP 90401877	Α	19900629
ES 2062443	T3	19941216	ES 90401877	EP	19900629
FR 2649110	A1	19910104	FR 898672	Α	19890629
FR 2649110	B1	19941021	FR 898672	Α	19890629
JP 3048695	A2	19910301	JP 90168632	Α	19900628
NZ 233908	Α	19920625	NZ 233908	Α	19900601
PT 94537	Α	19910208	PT 94537	Α	19900628
<u>US 5098888</u>	Α	19920324	US 536193	Α	19900611
ZA 9004495	Α	19910327	ZA 904495	A	19900611

Priority Data:

Patent Number	Kind	Date
EP 90401877	Α	19900629
FR 898672	Α	19890629
US 384429	B2	19890724

PATENT FAMILY:

Austria (AT)

Patent (Number, Kind, Date): AT 100464 E 19940215

PEPTÌD-DERIVATE, VÉRFAHREN ZUDEREN HERSTELLUNG UND DIESE ENTHALTENDE PHARMAZEUTISCHE ZUSAMMENSETZUNGEN.(German)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL; REMOND GEORGES; PORTEVIN BERNARD; HERVE YOLANDE; LEPAGNOL JEAN; BITON CATHERINE

Priority (Number, Kind, Date): EP 90401877 A 19900629; FR 898672 A 19890629

Applic (Number, Kind, Date): EP 90401877 A 19900629

Addnl Info: 00406119 19940119

IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: French

Austria (AT) - Legal Status

Number	Type	Date .	Code	Text	
AT 100464	R	19940215	AT REF	CORRESPONDS TO EP-PATENT	(ENTSPRICHT EP-PATENT)
				EP 406119 P 19940119	
AT 100464	R	19941015	AT UEP	PUBLICATION OF TRANSLATION OF EUROPEEN PATENT SPECIFICATION	(UEBERSETZUNG DER EUROPAEISCHEN PATENTSCHRIFT AUSGEGEBEN)
AT 100464	R	19970315	AT REN	CEASED DUE TO NON-PAYMENT OF THE ANNUAL FEE	(ERLOSCHEN INFOLGE NICHTZ. D. JAHRESGEB.)

Australia (AU)

Patent (Number, Kind, Date): AU 9057911 A1 19910103

THYROTROPIN-RELEASING HORMONE ANALOGS (English)

Patent Assignee: ADIR

Author (Inventor): VINCENT MICHEL; REMOND GEORGES; PORTEVIN BERNARD; HERVE

YOLANDE; LEPAGNOL JEAN; BITON CATHERINE Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): AU 9057911 A 19900628

IPC: * C07K-005/08; A61K-037/02 Language of Document: English

Patent (Number, Kind, Date): AU 627898 B2 19920903

THYROTROPIN-RELEASING HORMONE ANALOGS (English)

Patent Assignee: ADIR

Author (Inventor): VINCENT MICHEL; REMOND GEORGES; PORTEVIN BERNARD; HERVE

YOLANDE: LEPAGNOL JEAN; BITON CATHERINE Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): AU 9057911 A 19900628

IPC: * C07D-453/02; C07D-403/12; C07D-401/12; C07K-005/08; A61K-037/02; C07D-403/14;

C07D-401/14

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: English

Canada (CA)

Patent (Number, Kind, Date): CA 2019633 AA 19901229

PEPTIDE DERIVATIVES, PROCESSFOR THEIR PREPARATION AND PHARMACEUTICAL

COMPOSITIONS CONTAINING THE SAME (English; French)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): CA 2019633 A 19900622

National Class: * D3530000508 M; 16701038 S

IPC: * C07K-005/08; A61K-037/02 CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: French

Germany (DE)

Patent (Number, Kind, Date): DE 69006116 C0 19940303

PEPTÌD-DERÍVATE, VÉRFAHREN ZU DEREN HERSTELLUNG UND DIESE ENTHALTENDE PHARMAZEUTISCHE ZUSAMMENSETZUNGEN. (German)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): EP 90401877 A 19900629

IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: German

Patent (Number, Kind, Date): DE 69006116 T2 19940728

PEPTID-DERÍVATE, VÉRFAHREN ZU DEREN HERSTELLUNG UND DIESE ENTHALTENDE

PHARMAZEUTISCHE ZUSAMMENSETZUNGEN. (German)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): DE 69006116 A 19900629

IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: German

Germany (DE) - Legal Status

Number	Type	Date	Code	Text	
DE 69006116	P	19940303	DE REF	CORRESPONDS TO	(ENTSPRICHT)
				EP406119 P 19940303	
DE 69006116	P	19940728	DE 8373	TRANSLATION OFPATENT DOCUMENT OF EUROPEAN PATENT WAS RECEIVED AND HAS BEEN PUBLISHED	(UEBERSETZUNG DER PATENTSCHRIFT DES EUROPAEISCHEN PATENTES IST EINGEGANGEN UNDVEROEFFENTLICHT WORDEN)
DE 69006116	P	19950223	DE 8364	NO OPPOSITION DURING TERM OF OPPOSITION	(EINSPRUCHSFRIST ABGELAUFEN OHNE DASS EINSPRUCH ERHOBEN WURDE)
DE 69006116	P	19970612	DE 8339	CEASED/NON-PAYMENT OF THE ANNUAL FEE	(WEGEN NICHTZ. D. JAHRESGEB. ERLOSCHEN)

Denmark (DK)

Patent (Number, Kind, Date): DK 406119 T3 19940321

HIDTIL UKENDTE PEPTIDDERIVATER, FREMGANGSMAADE TIL FREMSTILLING HERAF OG FARMACEUTISKE MIDLER INDEHOLDENDE DEM (Danish)

Patent Assignee: ADIR (FR) .

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); LEPAGNOL

JEAN (FR); PORTEVIN BERNARD (FR); HERVE YOLANDE (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): DK 9090401877 A 19900629

IPC: * C07K-005/08; A61K-031/435; C07D-209/52; A61K-031/41; C07D-453/00; C07K-001/08; C07D-403/14

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: Danish

European Patent Office (EP)

Patent (Number, Kind, Date): EP 406119 A1 19910102

NEW PEPTIDE DERIVATIVES, PROCESS OF THEIR PREPARATION AND

PHARMACEUTICAL COMPOSITIONS CONTAINING THEM (English; French; German)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENTMICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): EP 90401877 A 19900629

Designated States: (National) AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; LU; NL; SE IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: ; 115(05)050305S Derwent WPI Acc No: ; C 91-009420 Language of Document: French

Patent (Number, Kind, Date): EP 406119 B1 19940119

NEW PEPTIDE DERIVATIVES, PROCESS OF THEIR PREPARATION AND

PHARMACEUTICAL COMPOSITIONSCONTAINING THEM (English; French; German)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): EP 90401877 A 19900629

Designated States: (National) AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; LU; NL; SE

IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: French

European Patent Office (EP) - Legal Status

P		,	,	J 14145	
Number	Type	Date	Code	Text	
EP 406119	P	19890629	EP AA	PRIORITY (PATENT APPLICATION)	(PRIORITAET (PATENTANMELDUN
				FR 898672 A 19890629	
EP 406119	P	19900629	EP AE	EP-APPLICATION	(EUROPAEISCHE ANMELDUNG)
				EP 90401877 A 19900629	
EP 406119	P	19910102	EP AK	DESIGNATED CONTRACTING STATES IN AN APPLICATION WITH SEARCH REPORT	(IN EINER ANMELDUNG BENANNTEVERTRAGSSTAATEN)
				AT BE CH DE DK ES	

				FR GB GR IT LI LU NL SE	
EP 1 406119	P	19910102 E		APPLICATION WITH	(VEROEFFENTLICHUNG DER ANMELDUNG MIT RECHERCHENBERICHT)
EP 406119	P	19910102 E		REQUEST FOR EXAMINATION FILED	(PRUEFUNGSANTRAG GESTELLT)
			!	900705	
EP 406119	P	19930310 E		EXAMINATION REPORT	(ERSTER PRUEFUNGSBESCHEID)
				930127	
EP 406119	P	19940119 I		DESIGNATED CONTRACTING STATES MENTIONED IN A PATENT SPECIFICATION	(IN EINER PATENTSCHRIFT ANGEFUEHRTE BENANNTE VERTRAGSSTAATEN)
				AT BE CH DE DK ES FR GB GR IT LI LU NL SE	
EP 406119	P	19940119	EP B1	PATENT SPECIFICATION	(PATENTSCHRIFT)
	P	19940119	EP REF	IN AUSTRIA REGISTERED AS:	(IN AT EINGETRAGEN ALS:)
				AT 100464 R 19940215	
EP 406119	P	19940121	EP ITF	IT: TRANSLATION FOR AN EP PATENT FILED	(IT: DEPOSITO TRADUZIONE DI BREVETTO EUROPEO)
				SOCIETA' ITALIANA BREVETTI S.P.A.	
EP 406119	P .	19940303	EP REF	CORRESPONDS TO:	(ENTSPRICHT)
			•	DE 69006116 P 19940303	
EP 406119	P	19940321	DK T3/REG	TRANSLATION OF EP PATENT	•
EP 406119	P	19940525	EP GBT	GB: TRANSLATION OF EP PATENT FILED (GB SECTION 77(6)(A)/1977)	(GB: TRANSLATION OF EP PATENT FILED (GB SECT. 77(6)(A)/1977))
				940421	
EP 406119	P	19940729	EP EPTA	LU: LAST PAID ANNUAL FEE	(LU: DERNIER PAYEMENT D'UNE T ANNUELE)
EP 406119	P	19941216	ES FG2A/REG	DEFINITIVE PROTECTION	(PROTECCION DEFINITIVA)
				2062443T3	

EP 406119	P	19950111	EP 26N	NO OPPOSITION FILED	(KEIN EINSPRUCH EINGELEGT)
EP 406119	P	19950131	EP EAL	SE: EUROPEAN PATENT IN FORCE IN SWEDEN	(SE: EUROPEISKT PATENT GAELLANDE I SVERIGE)
		•		90401877.7	
EP 406119	P	19950630	EP ITTA	IT: LAST PAID ANNUAL FEE	(IT: TASSA ANNUALE ULTIMO PAGAMENTO)
EP 406119	P	19960629	DK EBP/REG	PATENT LAPSED	
EP 406119	P	19961231	EP BERE	BE: LAPSED	(BE: DECHU)
			<i>,</i>	960630 ;ADIR ET CIE	
EP 406119	P	19970214	CH PL/REG	PATENT CEASED	(LOESCHUNG/RADIATION/RADIAZ
EP 406119	P	19970219	EP GBPC	GB: EUROPEAN PATENT CEASED THROUGH NON-PAYMENT OF RENEWAL FEE	
	•			960629	
EP 406119	P	19970303	EP EUG	SE: EUROPEANPATENT HAS LAPSED	(SE: EUROPEISKT PATENT HAR UPPHOERT ATT GAELLA)
				90401877.7	
EP 406119	. P	19970303	EP NLV4	NL: LAPSED OR ANNULED DUE TO NON-PAYMENT OF THE ANNUAL FEE	(NL: WEGENS NIET BETALEN VAN JAARCIJNS VERVALLEN)
				970101	
EP 406119	P	19970430	FR ST/REG	LAPSED	(CONSTATATION DE DECHEANCES

Spain (ES)

Patent (Number, Kind, Date): ES 2062443 T3 19941216

NUEVOS DERIVADOS PEPTIDICOS, SU PROCEDIMIENTO DE PREPARACION Y LAS

COMPOSICIONES FARMACEUTICAS QUE LOS CONTIENEN. (Spanish)

Patent Assignee: ADIR

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): ES 90401877 EP 19900629

Addnl Info: 0406119 EP patent valid in AT

IPC: * C07K-005/08; C07K-001/08; C07D-403/14; C07D-453/00; C07D-209/52; A61K-031/41;

A61K-031/435

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: Spanish

Spain (ES) - Legal Status

(PROTECCIONDEFINITIVA)

Number Type Date Code Text
P 19941216 FS FG24 DEFIN

ES 2062443 P 19941216 ES FG2A DEFINITIVE PROTECTION

406119

France (FR)

Patent (Number, Kind, Date): FR 2649110 A1 19910104

NOUVEAUX DERIVES PEPTIDIQUES, LEUR PROCEDE DE PREPARATION ET LES

COMPOSITIONS PHARMACEUTIQUES QUI LES CONTIENNENT (French)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL; REMOND GEORGES; PORTEVIN BERNARD; HERVE

YOLANDE; LEPAGNOL JEAN; BITON CATHERINE
Priority (Number Kind Date): FR 898672 A 198006

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): FR 898672 A 19890629

IPC: * C07K-005/08; C07K-005/06; A61K-037/02; C07D-453/06; C07D-471/08

Language of Document: French

Patent (Number, Kind, Date): FR 2649110 B1 19941021

NOUVEAUX DERIVES PEPTIDIQUES, LEUR PROCEDE DE PREPARATION ET LES

COMPOSITIONS PHARMACEUTIQUES QUI LES CONTIENNENT (French)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL; REMOND GEORGES; PORTEVIN BERNARD; HERVE

YOLANDE; LEPAGNOL JEAN; BITON CATHERINE Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): FR 898672 A 19890629

IPC: * C07K-005/08; C07K-005/06; A61K-037/02; C07D-453/06; C07D-471/08

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: French

France (FR) - Legal Status

Number Type Date Code Text 19910104 FR FIRST PUBLICATION (DELIVRANCE (PREM. PUB. FR 8908672 AGA OF APPLICATION DEMANDE DE BREVET)) FR 2649110 A1 19910104 FR 8908672 AN 19941021 FR SECOND PUBLICATION (DELIVRANCE (DEUX. PUB. AGA OF PATENT BREVET)) FR 2649110 B1 19941021 FR 8908672 AN 19960419 FR ST LAPSED (CONSTATATION DE DECHEANCES) FR 2649110 PN 19890629 FR AE APPLICATION DATE (DATE DE LA DEMANDE) FR 898672 A 19890629

Ireland (IE)

Japan (JP)

Patent (Number, Kind, Date): JP 3048695 A2 19910301

PEPTIDE DERIVATIVE (English)

Patent Assignee: ADIR

Author (Inventor): MISHIERU BINSEN; JIYORUJIYU RUMON; BERUNAARU PORUTOUBAN;

YORANDOU URUBU; JIYAN RUPAGUNORU; KIYASARIINU BITON

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): JP 90168632 A 19900628

IPC: * C07K-005/08; A61K-037/43; C07K-001/02; C07K-001/06; C07K-005/06

Language of Document: Japanese

New Zealand (NZ)

Patent (Number, Kind, Date): NZ 233908 A 19920625

PYROGLUTAMYL-HISTIDYL-2-AZABICYCLO DERIVATIVES, THEIR PROCESS FOR

PREPARATION AND PHARMACEUTICAL COMPOSITIONS (English)

Patent Assignee: ADIR

Author (Inventor): VINCENT MICHEL; PORTEVIN BERNARD; HERVE YOLANDE;

REDMOND GEORGES; LEPAGNOL JEAN; BITON CATHERINE

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): NZ 233908 A 19900601

IPC: * C07K-005/08; C07K-001/06; C07K-001/08; A61K-037/02

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: English

Portugal (PT)

Patent (Number, Kind, Date): PT 94537 A 19910208

PROCESSO PARA A PREPARACAO DE NOVOS DERIVADOS PEPTIDIDOS (English; French;

German; Portugese)

Patent Assignee: ADIR (FR)

Author (Inventor): LEPAGNOL JEAN (FR); VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN BERNARD (FR); HERVE YOLANDE (FR); BITON

CATHERINE (FR)

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): PT94537 A 19900628

IPC: * C07K-005/12

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: Portugese

Portugal (PT) - Legal Status

Number Type Date Code Text

PT 94537 P 19960830 PT FC3A REFUSAL (RECUSAS)

960502

United States of America (US)

Patent (Number, Kind, Date): US 5098888 A 19920324

NEW HETEROCYCLIC TRIPEPTIDE COMPOUNDS (English)

Patent Assignee: ADIR (FR)

Author (Inventor): VINCENT MICHEL (FR); REMOND GEORGES (FR); PORTEVIN

BERNARD (FR); HERVE YOLANDE (FR); LEPAGNOL JEAN (FR); BITON CATHERINE (FR)

Priority (Number, Kind, Date): US 384429 B2 19890724; FR 898672 A 19890629

Applic (Number, Kind, Date): US 536193 A 19900611 National Class: * 514018000; 514019000; 530331000

IPC: * A61K-037/02; C07K-005/08 CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420

Language of Document: English

United States of America (US) - Legal Status

Number	Type	Date	Code	Text	
US 5098888	P	19890629	US AA	PRIORITY (PATENT)	
•				FR 898672 A 19890629	
US 5098888	P	19890724	US AA	PRIORITY	
				US 384429 B2 19890724	
US 5098888	P	19900611	US AE	APPLICATION DATA (PATENT)	(APPL. DATA (PATENT))
٠.				US 536193 A 19900611	
US 5098888	P	19900716	US AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST	
•				ADIR ET COMPAGNIE, 1 RUE CARLE HEBERT F-92415	
				COURBEVOIE CEDEX, FRANCE;	
				VINCENT, MICHEL: 19900522;	
				REMOND, GEORGES: 19900522; PORTEVIN, BERNARD: 19900522;	
				HERVE, YOLANDE: 19900522;	
~				LEPAGNO: 19900522;	
US 5098888	P	19920324	US A	PATENT	,
US 5098888	P	19931221	US CC	CERTIFICATE OF CORRECTION	

South Africa (ZA)

Patent (Number, Kind, Date): ZA 9004495 A 19910327

PEPTÌDE DERIVATIVES, PROCESS FOR PREPARING THEM AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM (English)

Patent Assignee: ADIR

Author (Inventor): VINCENT MICHEL; MICHEL VINCENT; REMOND GEORGES; GEORGES REMOND; PORTEVIN BERNARD; BERNARD PORTEVIN; HERVE YOLANDE; YOLANDE HERVE; LEPAGNOL JEAN; JEAN LEPAGNOL; BITON CATHERINE; CATHERINE BITON

Priority (Number, Kind, Date): FR 898672 A 19890629 Applic (Number, Kind, Date): ZA 904495 A 19900611

IPC: * C07D; A61K; C07K

CA Abstract No: * 115(05)050305S Derwent WPI Acc No: * C 91-009420 Language of Document: English

INPADOC/Family and Legal Status

© 2000 European Patent Office. All rights reserved. Dialog® File Number 345 Accession Number 9596027

1 Numéro de publication : 0 406 119 B1

(12)

FASCICULE DE BREVET EUROPEEN

(45) Date de publication du fascicule du brevet : 19.01.94 Bulletin 94/03

(21) Numéro de dépôt : 90401877.7

22) Date de dépôt : 29.06.90

(f) Int. CI.⁵: **C07K 5/08,** C07K 1/08, C07D 403/14, C07D 453/00, C07D 209/52, A61K 31/41, A61K 31/435

Su Nouveaux dérivés peptidiques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent.

Le dossier contient des informations techniques présentées postérieurement au dépôt de la demande et ne figurant pas dans le présent fascicule.

- 30 Priorité: 29.06.89 FR 8908672
- (3) Date de publication de la demande : 02.01.91 Bulletin 91/01
- (45) Mention de la délivrance du brevet : 19.01.94 Bulletin 94/03
- (A) Etats contractants désignés:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- 60 Documents cités:
 FR-A- 2 460 291
 FR-A- 2 585 709
 BIOCHEMICAL AND BIOPHYSICAL
 RESEARCH COMMUNICATIONS, vol. 84, no. 4,
 30 octobre 1978, pages 1097-1102, Academic
 Press, inc., New York, US; C. OLIVER et al.:
 "Degradation of TRH and its analogues by rat
 serum and brain homogenate"

(3) Titulaire : ADIR ET COMPAGNIE 1 rue Carle Hébert F-92415 Courbevole Cédex (FR)

(72) Inventeur: Vincent, Michel 8 ailée du Prunier Hardy F-92220 Bagneux (FR) Inventeur: Remond, Georges 9 avenue des Etats-Unis F-78000 Versailles (FR) Inventeur: Portevin, Bernard 6 rue Frédéric Passy F-78990 Elancourt (FR) Inventeur: Hervé, Yolande 16 rue Eichenberger F-92800 Puteaux (FR) Inventeur: Lepagnol, Jean 5 rue de Vlaminck F-78400 Chatou (FR) Inventeur: Biton, Catherine 121 rue de Saint-Cloud F-92200 Nanterre (FR)

Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance du brevet européen toute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition (Art. 99(1) Convention sur le brevet européen).

Description

5

10

15

25

30

35

45

50

La présente invention concerne de nouveaux dérivés peptidiques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent.

Parmi les tripeptides naturels, certains tripeptides à structure cycloamidique exercent des effets centraux intéressants notamment vis-à-vis de la neurotransmission cholinergique. C'est le cas, en particulier, de la TRH (Thyrotropin-Releasing-Hormone) de structure pyroglutamyl - histidyl - prolinamide, qui est capable de s'opposer à la baisse de synthèse d'acétylcholine induite expérimentalement par narcose. Elle est également capable de potentialiser les symptômes cholinergiques centraux induits par les agonistes cholinergiques.

Cependant, la TRH est de par son métabolisme rapidement inactivée dans l'organisme. De même, elle est inactive par voie orale du fait de sa dégradation casi instantanée au niveau gastrique.

D'autres tripeptides ont été décrits (brevets FR 2.187.155, 2.287.916, 2.266.515 et 2.345.448) dans lesquels le reste pyroglutamyle est remplacé par un autre reste d'acide hétérocyclique carboxylique et qui possèdent des propriétés anti-convulsivantes et anti-dépressives. Enfin, le brevet FR 2.585.709 décrit des peptides dans lesquels le reste prolinamide est remplacé par une structure bicyclique saturée et qui sont capables de stimuler la synthèse d'AMP cyclique au niveau du tissu cérébral. Toutefois, ces dérivés n'ont pratiquement aucune activité lorsqu'administrés par voie orale.

Les composés de la présente invention, dans lesquels le reste prolinamide est remplacé par une structure bicyclique saturée nouvelle, se sont montrés très intéressants notamment par leurs propriétés à mimer et à exacerber les activités de la TRH dont ils constituent des analogues comme le démontre une étude effectuée en autoradiographie. Toutefois, le niveau d'activité des dérivés de l'invention est nettement supérieur à celui de la TRH elle-même.

En outre et de façon surprenante la nouvelle structure bicyclique saturée caractéristique des composés de l'invention rend ces dérivés actifs par voie orale contrairement aux dérivés de structure voisine précédemment connus. Cette caractéristique rend les dérivés de l'invention beaucoup plus aptes à une utilisation thérapeutique que ceux de structure proche décrits dans l'Art antérieur.

L'invention concerne plus particulièrement de nouveaux dérivés à structure cycloamidique répondant à la formule générale (I) :

$$\frac{A}{HN} - CH - CO - NH - CH - CO - N - CH - CO - NH2$$
 (I)

dans laquelle :

A représente avec les atomes d'azote et de carbone avec lesquels il est lié :

- un groupement oxo-2 pyrrolidinyle-5,
- un groupement oxo-2 pipéridinyle-6,
- un groupement dioxo-2,6 tétrahydro-1,2,3,6 pyrimidinyle-4,
- un groupement oxo-2 thiazolidinyle-4,
- un groupement oxo-2 azetidinyle-4 ,
- un groupement oxo-1 tétrahydro-1,2,3,4 isoquinolyie-3,
- B représente avec les atornes d'azote et de carbone avec lesquels il est lié une structure polycyclique saturée choisie parmi l'aza-2 bicyclo [2.2.1] heptane ou les (dialkyl inférieurs linéaires ou ramifiés)-1,4 aza-2 bicyclo [2.2.2] octane,
- R représente un atome d'hydrogène, un groupement alkyle inférieur linéaire ou ramifié, un groupement (imidazolyl-4) méthyle éventuellement substitué sur l'un des atomes d'azote par un radical alkyle inférieur, linéaire ou ramifié.

le terme inférieur indiquant que les groupements ainsi qualifiés comptent de 1 à 6 atomes de carbone, leurs énantiomères, diastéréoisomères et épimères, ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.

Parmi les acides pharmaceutiquement acceptables, on peut citer à titre non limitatif, les acides chlorhydrique, sulfurique, tartrique, maléïque, fumarique, oxalique, méthane sulfonique, camphorique, etc...

L'invention s'étend aussi au procédé de préparation des dérivés de formule (I), caractérisé en ce que l'on protège la fonction amine d'un amino-acide de formule (II), dont on a éventuellement séparé les isomères par une technique classique de séparation :

$$\begin{array}{c} HN - CH - CO_2H \\ \downarrow B \end{array}$$
 (II)

5

dans laquelle B a la même signification que dans la formule (I), par un radical protecteur (P) tel que le tert.butoxycarbonyle (tBOC) ou le benzyloxycarbonyle (Z) sous l'action d'un réactif approprié pour conduire à un dérivé de formule (III) :

10

$$P - M - CH - CO2H$$
 (III)

dans laquelle B et P ont la même signification que précédemment, sur lequel on fait réagir, à une température comprise entre -15 et 0°C, en présence de triéthylamine, le chloroformiate d'éthyle puis l'ammoniaque, pour conduire à un dérivé de formule (IV) :

20

$$P - N - CH - CO - NH2$$
 (IV)

dans laquelle B et P ont la même signification que précédemment,

que l'on déprotège par un procédé approprié comme par exemple l'action de l'acide chlorhydrique gazeux dans un solvant anhydre tel que le dioxanne ou l'acétate d'éthyle dans le cas où P = tBOC ou par hydrogénation catalytique dans le cas où P = Z,

pour conduire à un dérivé de formule (V) :

$$\frac{\text{HN} - \text{CH} - \text{CO} - \text{NH}_2}{\text{B}} \tag{V}$$

dans laquelle B a la même signification que dans la formule (i),

dont on sépare, si on le souhaite, les isomères par une technique classique de séparation, qui est couplé avec un deuxième amino-acide protégé de formule (VI) selon la technique de couplage peptidique décrite par W. KONIG et R. GEIGER (Ber. 103, 788, 1970) :

dans laquelle R a la même signification que dans la formule (I), pour conduire à un dérivé de formule (VII) :

50

55

dans laquelle R et B ont la même signification que dans la formule (I) dont on sépare, si on le souhaite, les diastérécisomères ou énantiomères par une technique classique de séparation,

que l'on déprotège ensuite par action de l'acide chlorhydrique gazeux dans un solvant anhydre comme par exemple le dioxanne ou l'acétate d'éthyle pour conduire à un dérivé de formule (VIII) :

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

dans laquelle R et B ont la même signification que dans la formule (I), qui est couplé avec un troisième aminoacide, éventuellement protégé, de formule (IX), selon la technique de couplage peptidique décrite précédemment :

$$A \setminus R' - N - CH - CO_2H$$
 (IX)

dans laquelle R' est un hydrogène, ou un groupement protecteur tel que par exemple un benzyloxycarbonyle (Z),

ou avec un ester de cet amino-acide éventuellement protégé, pour conduire:

- ou bien à un dérivé de formule (I) dans le cas où R' est un hydrogène, qui est, si on le désire, transformé en son sel d'addition à un acide pharmaceutiquement acceptable,
- ou bien à un dérivé de formule (X) :

5

10

15

20

25

30

35

50

55

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

dans le cas où R' est un groupement protecteur, R et B ayant la même signification que dans la formule (I), qui est déprotégé par une technique de déprotection comme par exemple une hydrogénation catalytique pour conduire à un dérivé de formule (I), que l'on transforme, si on le désire en sel d'addition à un acide pharmaceutiquement acceptable ou dont on sépare les isomères selon une technique classique de séparation puis, si nécessaire, que l'on salifie par un acide pharmaceutiquement acceptable.

Les composés de formule (II) dans lesquels B représente avec les atomes d'azote et de carbone avec lesquels il est lié une structure (dialkyl)-1,4 aza-2 bicyclo [2.2.2] octane ainsi que les composés de formules (III), (IV), (VI), (VII) et (VIII) sont nouveaux et font partie de l'invention au même titre que les composés de formule (I) dont ils constituent les intermédiaires de synthèse.

Les composés de formule (I) possèdent des propriétés pharmacologiques très intéressantes. Ces effets, s'ils sont de même nature que ceux de la TRH, s'exercent avec une intensité nettement supérieure. Ceci est confirmé par leur interaction avec les récepteurs TRHergiques observée en autoradiographie quantifiée.

D'une part, vis-à-vis du système cholinergique central, les dérivés de l'invention sont capables de restaurer les capacités neuronales de capture à haute affinité de choline lorsque cette capture qui est le facteur limitant de la synthèse d'acétylcholine, est effondrée expérimentalement par narcose barbiturique.

D'autre part, vis-à-vis du système noradrénergique central, ils sont capables de s'opposer à l'action sédative et hypotensive d'un agoniste a_2 , la cionidine, lors d'ischémie aigüe.

Ainsi, ils facilitent conjointement la neurotransmission cholinergique impliquée dans la mémoire et l'éveil, et la neurotransmission noradrénergique impliquée dans l'attention et la motivation.

Ces propriétés présentent l'avantage d'être maintenues après administration orale, ce qui rend les dérivés de l'invention beaucoup plus apte à une utilisation thérapeutique.

En particulier, cette dernière caractéristique jointe à un haut niveau d'activité rend les composés de la présente invention utilisables dans le traitement des troubles neurocomportementaux associés au vieillissement normal ou pathologique et aux maladies dégénératives aigues ou chroniques du système nerveux central comme la maladie d'Alzheimer, les désordres de conscience et de langage, schizophrénie, dépression, démence sénile, traumatisme spinal, la schlérose amiotrophique latérale, ou l'accident vasculaire cérébral.

La présente invention a également pour objet les compositions pharmaceutiques renfermant comme principe actif au moins un composé de formule générale (I) ou un de ses sels d'addition à un acide pharmacologiquement acceptable seul ou en combinaison avec un ou plusieurs excipients ou véhicules inertes, non toxiques.

Parmi les compositions pharmaceutiques selon l'invention, on pourra citer plus particulièrement celles qui

conviennent pour l'administration orale, parentérale, nasale, les comprimés simples ou dragéifiés, les comprimés sublinguaux, les sachets, les paquets, les gélules, les glossettes, les tablettes, les suppositoires, les crèmes, pommades, gels dermiques, etc...

La posologie utile varie selon l'âge et le poids du patient, la nature et la sévérité de l'affection ainsi que la voie d'administration. Celle-ci peut être orale, nasale, rectale ou parentérale. D'une manière générale, la posologie unitaire s'échelonne entre 0,05 et 300 mg pour un traitement en 1 à 3 prises par 24 heures.

Les exemples suivants illustrent l'invention et ne la limitent en aucune façon.

Les abréviations utilisées dans les exemples sont les suivantes :

- PyroGlu à la piace du radical pyrrolidone-2 carbonyle-5,
- (N⁴-Me)His à la place de méthyi-1 histidyle dont la formule développée est la suivante :

- (NT-Me)His à la place de méthyl-3 histidyle dont la formule développée est la suivante :

- ABH à la place de l'aza-2 carbonyl-3 bicyclo [2.2.1] heptane,

- tBOC à la place de tert-butoxycarbonyle,

- Z à la place de benzyloxycarbonyle,
- Leu à la place de leucyle,

5

10

15

20

25

30

35

45

50

55

- HomoPyroGlu à la place de pipéridinone-2 carbonyle-6,
- His à la place de Histidyle,
- OTh à la place de oxo-2 thiazolidine carbonyle-4,
- dOPyr à la place de dioxo-2,6 tétrahydro-1,2,3,6 pyrimidine carbonyle-4,
- OAz à la place de oxo-2 azétidine carbonyle-4,
- OiQ à la place de oxo-1 tétrahydro-1,2,3,4 isoquinoléine carbonyle-3,
- MIABO à la place de méthyl-4 isopropyl-1 aza-2 carbonyl-3 bicyclo [2.2.2] octane,
- dMABO à la place de diméthyl-1,4 aza-2 carbonyl-3 bicyclo [2.2.2] octane.

Les préparations indiquées ci-dessous ne permettent pas d'obtenir les produits de l'invention. En revanche, elles conduisent à l'obtention d'intermédiaires utiles dans la synthèse des produits de l'invention.

PREPARATION A : MIABO-OH "isomères αβ"

STADE A: ISOPROPYL-5 METHYL-8 ETHANO-5,8 (CHLORO-4 PHENYL)-2 PENTAHYDRO-1,3,5,8,8a DIOXO-1,3 2H-IMIDAZO [1,5-a] PYRIDINE

Dans une solution de 98 g (0,72 mole) de méthyl-1 isopropyl-4 cyclohexadiène-1,3 dans 220 ml de toluène anhydre, on ajoute 43 g (0,18 mole) de pchlorophényl-3 méthoxy-5 hydantoīne (préparée selon D. BENI-, SHAI et E. GOLDSTEIN, TETRAHEDRON, 1971, 27, 3119-3127).

Ce mélange est porté à 160-170 °C en autoclave pendant 3 jours.

Le précipité formé est essoré puis recristallisé dans de l'oxyde d'isopropyle.

Rendement: 35 % Point de fusion: 120 °C

Microanalyse élémentaire :

,	C 💈	Н 🖇	N \$	C1 \$
Calculé	66,18	6,14	8,12	10,28
Trouvé	65,93	6,02	8,11	10,22

STADE B: ISOPROPYL-1 METHYL-4 CARBOXY-3 AZA-2 BICYCLO [2.2.2] OCTENE -5

6,9 g (0,02 mole) du composé préparé au stade A sont hydrolysés par chauffage à reflux dans 60 ml de soude 4N. Après acidification par HCl 6N, le composé est fixé sur une résine échangeuse d'ions puis élué par une solution ammoniacale 1N.

Le produit attendu est obtenu après concentration des solvants.

Rendement: 69 %

STADE C : ACIDE METHYL-4 ISOPROPYL-1 AZA-2 BICYCLO [2.2.2] OCTANE CARBOXYLIQUE-3 (MIA-BO-OH)

20 10 g (0,047 mole) du composé préparé au stade B sont hydrogénés dans 165 ml d'une solution éthanolique contenant du charbon palladié à 10 % à la pression normale.
Le produit attendu est alors obtenu sous forme de deux isomères appelés arbitrairement α, β avec un rendement de 96 %.

5 PREPARATION B : dMABO-OH "isomères αβ"

STADE A: DIMETHYL-5,8 ETHANO-5,8 (CHLORO-4 PHENYL)-2 PENTAHYDRO-. 1,3,5,8,8a DIOXO-1,3 2H-IMIDAZO [1,5-a] PYRIDINE

30 En procédant comme au stade A de la préparation A, mais en remplaçant le méthyl-1 isopropyl-4 cyclohexadiène-1,3 par le diméthyl-1,4 cyclohexadiène-1,3 (préparé selon W. BRADY et S.J. NORTON, Synthesis, 1985, 704-705), on obtient le produit attendu.

Rendement: 56 %
Point de fusion: 178 °C

35

50

5

10

15

Microanalyse élémentaire :

		C 🐒	Н 🐒	N 🖇	C1 🕏
	Calculé	64,46	5,41	8,84	11,19
	Trouvé	64,56	5,42	8,64	10,99

STADE B: DIMETHYL-1,4 CARBOXY-3 AZA-2 BICYCLO [2.2.2] OCTENE-5

En procédant comme au stade B de la préparation A, on obtient le produit attendu.

Rendement : 60 %

Microanalyse élémentaire :

•	C 💈	H 🖇	n \$
Calculé	66,27	8,34	7,73
Trouvé	66.22	7.98	7.89

STADE C: ACIDE DIMETHYL-1,4 AZA-2 BICYCLO [2.2.2] OCTANE CARBOXYLIQUE-3 (dMABO - OH)

En procédant comme au stade C de la préparation A, on obtient le produit attendu sous forme de deux isomères arbitrairement appelés α, β avec un rendement de 80 %.

EXEMPLE 1: (S)PyroGlu-(S)(N~Me)His-(1S,3S,4R)ABH-NH2

STADE A : tBOC-ABH-OH (mélange de quatre isomères)

La matière première utilisée est l'aza-2 carboxy-3 bicyclo [2.2.1] heptane, en abrégé ABH-OH, obtenu seion le mode opératoire décrit dans le brevet Fr 2525604. Ce mode opératoire permet l'obtention simultanée des quatre isomères pour lesquels la jonction de cycle est cis.

Dans un mélange contenant 70 ml de dioxanne et 30 ml d'eau, dissoudre 0,039 mole d'ABH-OH (mélange de quatre isomères), refroidir à 0°C, ajouter 39 ml de soude N puis goutte à goutte une solution de 0,039 mole de dicarbonate de ditertiobutyle dans 100 ml de dioxanne.

Laisser sous agitation 30 minutes à une température comprise entre 0 et 5°C puis 2 heures à température ambiante. Evaporer les solvants sous pression réduite.

Reprendre le résidu par de l'eau, acidifler par de l'acide citrique jusqu'à pH=4 et extraire la phase aqueuse avec de l'acétate d'éthyle. Laver la phase organique par une solution aqueuse de chlorure de sodium à 10 %, sécher sur sulfate de calcium anhydre, filtrer et concentrer sous pression réduite.

Recristalliser dans le n-pentane.

Rendement: 71 %

infrarouge (nujol):

vCO (acide) : 1740 cm⁻¹

v CO (carbamate): 1640 cm-1

Microanalyse élémentaire :

25

20

5

C \$ H \$ N \$ calculé : 59,73 7,94 5,80 trouvé : 59,56 7,72 5.80

30

35

STADE B : tBOC-ABH-NH₂(mélange de quatre isomères)

Dans une solution de 6,7 g (0,028 mole) de tBOC-ABH-OH obtenus au stade A dans 80 mi de tétrahydrofuranne refroidie dans un mélange glace/sel (température:-10°C), on ajoute 4,27 ml de triéthylamine puis 2,97 ml de chloroformiate d'éthyle fraîchement distillé en solution dans 20 ml de tétrahydrofuranne. Il se forme un précipité que l'on laisse sous agitation pendant un quart d'heure à -10 °C. 5,27 ml de solution d'ammoniaque concentrée sont alors ajoutés et l'ensemble est laissé sous agitation 30 minutes à -10 °C. On laisse revenir à température ambiante. Après évaporation des solvants sous pression réduite, le résidu est repris par une solution aqueuse d'acide citrique à pH=4.

La phase aqueuse acide est extraite par de l'acétate d'éthyle. La phase organique est alors lavée par une solution aqueuse de bicarbonate de soude, puis par de l'eau et enfin séchée sur sulfate de calcium anhydre. Filtrer et concentrer sous pression réduite.

Rendement: 90 %

Résonance magnétique nucléaire du proton (CDCIs):

45

50

E COS - C (CH3)3

55

<u>a</u> δ entre 6,2 et 5,7 ppm (2H,m)

 $\underline{b} \delta = 4.5 \text{ ppm (1H,m)}$

 $\underline{c} \delta = 4,1 \text{ ppm (1H,m)}$

 $d \delta = 2.9 \text{ ppm (1H,m)}$

$$e^{\delta} = 1.6 \text{ ppm (6H,m)}$$

 $f^{\delta} = 1.4 \text{ ppm (9H,s)}$

STADE C : ABH-NH₂, HCl (mélange de quatre isomères)

Saturer de gaz chlorhydrique une solution de 87,5 g (0,365 mole) de tBOC-ABH-NH₂ dans 1 litre de dioxanne anhydre et laisser sous agitation 18 heures à température ambiante.

Evaporer le dioxanne et reprendre le résidu par 300 ml d'éther anhydre. Essorer, laver et sécher le produit obtenu.

Rendement: 86 %

Résonance magnétique nucléaire du proton (CDCI3):

d d a conh2 , HC1

20

30

10

15

 $a \delta = 4.4 \text{ ppm (1H,m)}$

 $b \delta = 4,1 \text{ ppm (1H,m)}$

 $c\delta = 3.0 \text{ ppm (1H,m)}$

 $d \delta$ entre 2 et 1,3 ppm (6H,m)

STADE D: tBOC (S)(N~Me)His-ABH-NH2 (mélange d'isomères)

En utilisant la méthode de couplage peptidique (DCC/HOBT) décrite par W. KONIG et R. GEIGER (Ber, 103, 788, 1970) et le diméthylformamide comme solvant, on prépare à partir de 0,0181 mole de ABH-NH₂ obtenu au stade précédent et de 0,0181 mole de tBOC(S)(N^cMe)His-OH, le tBOC(S)(N^cMe)His-ABH-NH₂.

Rendement: 85 %

Le mélange de diastéréoisomères obtenu est séparé par chromatographie sur colonne de silice en éluant par un mélange dichlorométhane/méthanol/ammoniaque dans les proportions 9/1/0,1. La condensation de Diels-Alder utilisée pour l'obtention d'ABH-OH (brevet FR 2525604) implique qu'il est obtenu avec des jonctions de cycle cis, c'est-à-dire sous forme de deux couples d'énantiomères. Le couplage avec la tBOC(S)(N-Me)His-OH donne donc lieu à 4 diastéréoisomères qui sont séparés dans les conditions décrites précédemment et dont les configurations absolues ont été déterminées par rayons X.

40 STADE E : (S)(N~Me)His-(18,38,4R) ABH-NH2, dichlorhydrate

L'isomère tBoc-(S)(N~Me)His-(1S,3S,4R)ABH-NH₂ est déprotégé selon la méthode décrite au stade C. Rendement : 95 %

Ce composé peut également être obtenu en remplaçant au stade D l'ABH-NH₂ (mélange d'isomères) par l'isomère (1S,3S,4R)ABH-NH₂ obtenu au stade E de l'exemple 5, (dans ce cas, la séparation des diastéréoisomères décrite au stade précédent est inutile).

STADE F: Z (S)PyroGlu-(S)(N-Me)His-(18,38,4R)ABH-NH2

En utilisant la méthode de couplage peptidique décrite par G.W. Anderson et J.E. Zimmerman (JACS,85,3039, 1963), on fait réagir 0,033 mole de (S)(Nt-Me)His-(1S,3S,4R)ABH-NH₂ obtenu au stade précédent avec 0,033mole de l'ester activé de N-hydroxysuccinimide de Z-(S)PyroGlu-OH dans 100 mi de diméthylformamide et 0,066 mole de triéthylamine.

On obtient, après traitement usuel et chromatographie sur colonne de silice en utilisant comme éluant le mélange acétone/eau dans les proportions 95/5, le produit attendu.

Rendement: 57 %

STADE G: (S)PyroGlu-(S)(N-Me)His-(1S,3S,4R)ABH-NH2

Le produit obtenu au stade précédent est déprotégé par hydrogénation catalytique dans l'éthanoi en présence de palladium sur charbon utilisé comme catalyseur.

Après filtration du catalyseur, évaporation du solvant, le produit est chromatographié sur silice en utilisant comme éluant un mélange dichlorométhane/méthanol/ammoniaque dans les proportions 80/20/1.

Microanalyse élémentaire :

C \$ H \$ N \$ <u>calculé</u> : 56,70 6,51 20,88 <u>trouvé</u> : 56,35 6,08 20,80

Résonance magnétique nucléaire du proton (D₂O) :

 $\underline{a} \delta = 7.6 \text{ ppm (1H,s)}$ $\underline{b} \delta = 7.0 \text{ ppm (1H,s)}$ $\underline{c} \delta = 3.7 \text{ ppm (3H,s)}$ $\underline{d} \delta = 5 \text{ ppm (1H,t)}$ $\underline{e} \delta = 3.1 \text{ ppm (2H,d)}$ $\underline{f+g} \delta \text{ entre 2,3 et 2,9 ppm (4H,s)}$ $\underline{h} \delta \text{ entre 1,1 et 2,1 ppm (7H,m)}$

5

10

15

20

25

30

40

50

55

EXEMPLE 2: (S)PyroGlu-(S)(N-Me)His-(1R,3S,4S)ABH-NH2

En procédant comme dans l'exemple 1, mais en remplaçant au stade E l'isomère tBoc-(S)(N⁻-Me)His-(1S,3S,4R)ABH-NH₂ par l'isomère tBOC-(S)(N⁻-Me)His-(1R,3S,4S)ABH-NH₂ obtenu au stade D, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (D2O) :

 $a \delta = 8.0 \text{ ppm (1H,s)}$

 $\frac{b}{c} \delta = 7.3 \text{ ppm (1H,s)}$ $\frac{c}{c} \delta = 3.9 \text{ ppm (3H,s)}$ $\frac{e}{c} \delta = 3.3 \text{ ppm (2H,d)}$ $\frac{d}{d} \delta = \text{entre 4,2 et 5,3 ppm (1H,m)}$ $\frac{6}{1} \frac{6}{1} \frac{6}{1}$

. .10

15

25

EXEMPLE 3: (S)PyroGiu-(S)(N~Me)His-(1S,3R,4R)ABH-NH2

En procédant comme dans l'exemple 1, mais en remplaçant au stade E l'isomère tBoc-(S)(N-Me)His-(1S,3S,4R)ABH-NH₂ par l'isomère tBOC-(S)(N-Me)His-(1S,3R,4R)ABH-NH₂ obtenu au stade D, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (D2O) :

$$O = \underbrace{\begin{array}{c} \underline{d} \\ \text{CONH} - CH - CO - N \\ \underline{h} \\ \text{M} \\ \underline{d} \\ \text{CH2} \\ \underline{h} \\ \text{H} \\ \text{M} - CH3 \\ \underline{g} \\ \text{CH3} \\ \underline{h} \\ \text{M} \\ \underline{h} \\ \underline{h}$$

a δ = 7,6 ppm (1H,s)
b δ = 6,0 ppm (1H,s)
c δ = 3,7 ppm (3H,s)
d δ = 4,9 ppm (1H,m)
e δ = 3,0 ppm (2H,m)
f+g δ entre 2,3 et 2,8 ppm (4H,m)
h δ entre 1,3 et 2,1 ppm (7H,m)

EXEMPLE 4: (S)PyroGlu-(S)(N-Me)His-(1R,3R,4S)ABH-NH2

En procédant comme dans l'exemple 1, mais en remplaçant au stade E l'isomère tBoc-(S)(N-Me)His-(1S,3S,4R)ABH-NH₂ par l'isomère tBoc-(S)(N-Me)His-(1R,3R,4S)ABH-NH₂ obtenu au stade D, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (D2O) :

 $\underline{\underline{a}} \delta = 7.7 \text{ ppm (1H,s)}$ $\underline{\underline{b}} \delta = 7.0 \text{ ppm (1H,s)}$ $\underline{c} \delta = 3.7 \text{ ppm (3H,s)}$

 $e \delta = 3.0 \text{ ppm (2H,d)}$ \overline{d} δ entre 4,1 et 5 ppm (1H,m) f+g δ entre 2,3 et 2,9 ppm (4H,m) h δ entre 1,5 et 2,2 ppm (7H,m)

EXEMPLE 5: (S)PyroGlu-(S)Leu-(1S,3S,4R)ABH-NH2

STADE A: ABH-OH [mélange d'Isomères (19,38,4R)/(1R,3R,48)]

100 g du mélange racémique des quatre isomères d'ABH-OH obtenu selon la méthode décrite dans le brevet Fr. 2525604 sont dissous à chaud dans 1400 cm3 de méthanol anhydre. On laisse cette solution refroidir lentement et sous agitation pendant 20 heures. Le précipité formé est alors filtré et rincé par 50 cm³ de méthanol anhydre puis séché; 31,5 g d'ABH-OH (mélange d'Isomères (1S,3S,4R)/1R,3R,4S)) sont ainsi obtenus. Le filtrat est alors amené à sec ; le résidu obtenu est recristallisé dans de l'éthanol anhydre puis dans du méthanol anhydre et conduit à 15 g supplémentaires de produit attendu.

La pureté de ce mélange d'isomères est suivie par chromatographie liquide dans les conditions suivantes :

Colonne:

10

25

30

35

45

50

longueur: 25 cm

diamètre intérieur : 4,5 mm

20 Phase stationnaire: Ultra Base (taile des particules : 5 µm)

Phase mobile:

phase aqueuse contenant

1,25 % d'acide trifluoroacétique

: 200 volumes

acétonitrile

: 5 volumes

Débit :

1 ml/min

Température :

20 °C

Temps de rétention :

ABH - OH [mélange d'isomères (1S,3S,4R)/(1R,3R,4S)]* : 5,5 min ABH - OH [mélange d'Isomères (1R,3S,4S)/(1S,3R,4R)]* : 6,1 min

De même, si on utilise, le mélange de 2 isomères ayant un temps de rétention de 6,1 minutes comme matière première dans le stade A de l'exemple 1, on obtient au stade D de l'exemple 1, les isomères (1R,3S,4S) et (1S,3R,4R) du tBoc-(S)(Nt-Me)His-ABH-NH2.

STADE B: tBOC-ABH-OH [mélange d'Isomères (18,38,4R)/(1R,3R,48)]

En procédant comme au stade A de l'exemple 1, on obtient le produit attendu.

Rendement: 91 %

Infrarouge (nujol):

vCO (acide): 1740 cm⁻¹

v CO (carbamate): 1640 cm-1

STADE C: tBOC-ABH-NH2[mélange d'isomères (18,38,4R)/(1R,3R,48)]

En procédant comme au stade B de l'exemple 1, on obtient le produit attendu.

Rendement: 97 %

Résonance magnétique nucléaire du proton (CDCI₃):

• Définition : Le premier mélange d'isomères (temps de rétention 5,5 minutes) ainsi obtenu, lorsqu'il est utilisé comme matière première dans le stade A de l'exemple 1, (au lieu du mélange des quatre isomères obtenus selon le brevet Fr 2525604) permet, en procédant selon les protocoles décrits aux stades A, B, C, D de l'exemple 1, d'obtenir les deux seuls isomères (1S,3S,4R) et (1R,3R,4S) du tBoc-(S)(N°-Me)His ABH-NH₂.

$$\frac{d}{d} \underbrace{\frac{d}{d} \underbrace{\frac{a}{N}}_{CONH_2}}_{CO_2 - C (CH_3)_3}$$

 $\frac{a}{b}\delta = 4,5 \text{ ppm (1H,m)}$ $\frac{b}{b}\delta = 4,1 \text{ ppm (1H,m)}$

 $c \delta = 2.9 \text{ ppm (1H,m)}$

 $\bar{d} \delta = 1.6 \text{ ppm (6H,m)}$

 $e \delta = 1,4 ppm (9H,s)$

STADE D: ABH-NH₂, HCI [mélange d'Isomères (1S,3S,4R)/(1R,3R,4S)]

20 En procédant comme au stade C de l'exemple 1, on obtient le produit attendu. Rendement : 86 %

Microanalyse élémentaire :

25

30

35

5

10

•	C 🕉	Н 🕻	N S	C1 \$
Calculé	47,60	7,42	15,86	20,07
Trouvé	47,90	7,40	15,83	19,82

STADE E: (18,38,4R)ABH-NH2

25,5 g (0,155 mole) d'ABH - NH₂, HCI [mélange d'isomères (1S,3S,4R)/(1R,3R,4S)] obtenus au stade précédent sont dissous dans 250 cm³ d'eau. Cette solution est neutralisée par de la soude 10 N et amenée à sec. Le résidu agité dans 200 cm³ d'isopropanol anhydre est filtré. Le filtrat est alors évaporé, repris par 250 cm³ de chlorure de méthylène, filtré pour éliminer les traces de chlorure de sodium puis évaporé à sec. Après dissolution dans 400 cm³ de méthanol anhydre, 20,8 g (0,139 mole) d'acide D(-) tartique sont ajoutés à cette solution puis l'ensemble est porté à reflux sous agitation jusqu'à dissolution complète. L'ensemble est refroidi lentement et sous agitation pendant 18 heures. Le précipité formé est filtré et rincé par 25 cm³ de méthanol. Cette opération de purification sera renouvelée jusqu'à obtention d'un isomère optiquement pur. La pureté énantiomérique est suivie par chromatographie liquide dans les conditions suivantes après dérivation par le réactif de MOSHER.

Colonne:

longueur: 15 cm

diamètre intérieur : 6,0 mm

45 Phase stationnaire:

ASAHI PAK ODP-50 (taille des particules : 5 mm)

Phase mobile:

acétonitrile: 65 volumes

eau :

35 volumes

H2SO4:

0,5 volumes

Débit :

50

1 ml/min

Temps de rétention :

(1S,3S,4R)ABH-NH₂: 6,4 min (1R,3R,4S)ABH-NH₂: 6,8 min

Le tartrate d'(1S,3S,4R)ABH-NH₂ est alors dissous dans l'eau, fixé sur une résine échangeuse d'ions puis élué par une solution ammoniacale à 10 %.

55 Après évaporation, on obtient le produit attendu.

Rendement: 60 %

STADE F: tBOC-(S)Leu-(1S,3S,4R)ABH-NH2

En procédant comme au stade D de l'exemple 1, mais en remplaçant la tBOC-(S)(Nt-Me)His-OH par la tBOC-(S)Leu-OH, on obtient le produit attendu.

STADE G: (S)Leu-(18,38,4R)ABH-NH2 chlorhydrate

En procédant comme au stade E de l'exemple 1, on obtient le produit attendu. Rendement : 87 %

STADE H: Z(S)PyroGlu-(S)Leu-(18,38,4R)ABH-NH2

En procédant comme au stade F de l'exemple 1, mais en remplaçant le (S)(N-Me)His-(1S,3S,4R)ABH-NH₂ par le (S)Leu-(1S,3S,4R)ABH-NH₂ obtenu au stade précédent, on obtient le produit attendu.

Rendement: 72 %

10

25

30

35

40

55

STADE I: (S)PyroGlu-(S)Leu-(1S,3S,4R)ABH-NH,

20 En procédant comme au stade G de l'exemple 1, mais en remplaçant le Z(S)-PyroGlu(S)(N-Me)His-(1S,3S,4R)ABH-NH₂ par le Z(S)PyroGlu-(S)Leu-(1S,3S,4R)ABH-NH₂ obtenu au stade précédent, on obtient le produit attendu.

Rendement: 57 %

Microanalyse élémentaire :

	C 💈	H 🖇	N Z
Calculé	59,32	7,74	15,37
Trouvé	59,11	7,93	15,66

EXEMPLE 6: (S)PyroGlu-(S)(NILMe)His-(18,38,4R)ABH-NH2

Les stades A à E sont identiques aux stades A à E de l'exemple 5.

STADE F: tBOC(S)(NILMe)His-(18,38,4R)ABH-NH2

En procédant comme au stade F de l'exemple 5, mais en remplaçant la tBOC-(S)Leu-OH par la tBOC-(S)(N^{II}-Me)His-OH, on obtient le produit attendu.

Rendement: 83 %

STAGE G: (S)(NT-Me)His-(18,38,4R)ABH-NH₂, dichlorhydrate

En procédant comme au stade G de l'exemple 5, mais en remplaçant le tBOC-(S)Leu-(1S,3S,4R)ABHNH₂ par le tBOC-(S)(N^{TL}Me)His-(1S,3S,4R)ABH-NH₂ obtenu au stade précédent, on obtient le produit attendu.
Rendement : 81 %

STADE H: Z (S)PyroGiu-(S)(NT-Me)His-(18,38,4R)ABH-NH,

En procédant comme au stade H de l'exemple 5, mais en remplaçant le (S)Leu-(1S,3S,4R)ABH-NH₂ par le (S)(N^{III}-Me)His-(1S,3S,4R)ABH-NH₂, dichlor hydrate obtenu au stade précédent, on obtient le produit attendu.

STADE I: (S) PyroGlu-(S)(NT-Me)HIS-(18,38,4R)ABH-NH2

En procédant comme au stade I de l'exemple 5, mais en remplaçant le Z(S)PyroGlu-(S)Leu-(1S,3S,4R)ABH-NH₂ par le Z(S)PyroGlu-(S)(N^{III}-Me)His-(1S,3S,4R)ABH-NH₂ obtenu au stade précédent, on obtient le produit attendu.

Rendement: 68 %

Résonance magnétique nucléaire du proton (D₂0):

 $a \delta = 7.5 \text{ ppm (1H,e)}$ $b \delta = 6.8 \text{ ppm (1H,m)}$ $c \delta = 5.0 \text{ ppm (1H,m)}$ $d \delta = 4.5 \text{ ppm (1H,m)}$ $e \delta = 4.3 \text{ ppm (1H,m)}$ $f \delta = 3.6 \text{ ppm (3H,s)}$ $g \delta = 3.0 \text{ ppm (2H,m)}$ $h \delta = 2.5 \text{ ppm (4H,m)}$ $i \delta = 2.7 \text{ ppm (1H,m)}$ $k \delta = 1.6 \text{ ppm (6H,m)}$

5

10

15

30

35

50

55

EXEMPLE 7: (S)HomoPyroGlu-(S)(NT-Me)HIs-(1S,3S,4R)ABH-NH2

Les stades A à G sont identiques aux stades A à G de l'exemple 6.

STADE H: (S)HomoPyroGlu-(S)(NIL-Me)His-(1S,3S,4R)ABH-NH2

En procédant comme au stade H de l'exemple 6, mais en remplaçant l'ester activé de N-hydroxysuccinimide de Z(S)PyroGlu-OH par l'ester activé d'hydroxysuccinimide de (S)HomoPyroGlu-OH, on obtient le produit attendu.

Rendement: 83 %

Microanalyse élémentaire :

C \$ H \$ N \$ Calculé 57,68 6,78 20,18 Trouvé 57,60 6,75 19,88

EXEMPLE 8: (S)HomoPyroGiu-(S)Leu-(18,38,4R)ABH-NH2

Les stades A à G sont identiques aux stades A à G de l'exemple 5.

STADE H: (S)HomoPyroGlu-(S)Leu-(18,38,4R)ABH-NH2

En procédant comme au stade H de l'exemple 5 mais en remplaçant l'ester activé d'hydroxysuccinimide de Z (S)PyroGiu-OH par l'ester activé de N-hydroxysuccinimide de (S)HomoPyroGiu-OH, on obtient le produit attendu.

Rendement: 64 %

Résonance magnétique nucléaire du proton (DMSO da) :

 $a \delta$ entre 4 et 4,6 ppm (4H,m) $b \delta = 2,6$ ppm (2H,m) $c \delta$ entre 2,2 et 1,4 ppm (14H,m) $d \delta = 0,9$ ppm (6H,d)

5

10

15

30

35

40

EXEMPLE 9: (S)PyroGlu-(S)His-(15,35,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade F la tBOC-(S)Leu-OH par la tBOC(S)Hie-OH, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (DMSO da):

<u>a</u> δ = 7,65 ppm (1H,a) <u>b</u> δ = 6,95 ppm (1H,a) <u>c</u> δ = 4,75 ppm (1H,m) <u>d</u> δ = 4,55 ppm (1H,m) <u>e</u> δ = 4,05 ppm (2H,m) <u>f</u> δ entre 3,2 et 2,8 ppm (2H,m) <u>g</u> δ = 2,7 ppm (1H,m) i δ entre 2,4 et 1,7 ppm (4H,m) <u>k</u> δ entre 1,7 et 1,3 ppm (6H,m)

EXEMPLE 10: (8)HomoPyroGiu-(8)His-(18,38,4R)ABH-NH2

En procédant comme dans l'exemple 9, mais en remplaçant au stade H le Z(S)PyroGlu-OH par le (S)Ho-moPyroGlu-OH, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (DMSO de) :

 $\begin{array}{c} \underline{a} \ \delta = 7,7 \ ppm \ (1H,s) \\ \underline{b} \ \delta = 6,95 \ ppm \ (1H,s) \\ \underline{c} \ \delta = 4,75 \ ppm \ (1H,m) \\ \underline{d} \ \delta = 4,55 \ ppm \ (1H,m) \\ \underline{e} \ \delta = 4,00 \ ppm \ (1H,d) \\ \underline{f} \ \delta = 3,90 \ ppm \ (1H,m) \\ \underline{g} \ \delta \ entre \ 3,1 \ et \ 2,8 \ ppm \ (2H,m) \\ \underline{h} \ \delta = 2,75 \ ppm \ (1H,m) \\ \underline{i} \ \delta = 2,1 \ ppm \ (2H,t) \\ \underline{k} \ \delta \ entre \ 2,0 \ et \ 1,2 \ ppm \ (10H,m) \end{array}$

10

15

35

45

EXEMPLE 11: (S)HomoPyroGlu-(S)(N~Me)His-(18,38,4R)ABH-NH2

30 En procédant comme dans l'exemple 7, mais en remplaçant au stade F la tBOC-(S)(N⁻⁻Me)His-OH par la tBOC-(S)(N⁻⁻Me)His-OH, on obtient le produit attendu.

Résonance magnétique nucléaire du proton (CDCI₃):

50 $\underline{a} \ \delta = 7,3 \text{ ppm (1H,s)}$ $\underline{b} \ \delta = 6,7 \text{ ppm (1H,s)}$ $\underline{c} \ \delta = 4,9 \text{ ppm (1H,m)}$ $\underline{d} \ \delta = 4,5 \text{ ppm (1H,m)}$ $\underline{e} \ \delta = 4,3 \text{ ppm (1H,m)}$ $\underline{f} \ \delta = 4,0 \text{ ppm (1H,m)}$ $\underline{g} \ \delta = 3,6 \text{ ppm (3H,s)}$ $\underline{h} \ \delta \text{ entre 3,3 et 1,5 ppm (15H,m)}$

EXEMPLE 12: (S)PyroGlu-(S)His-(1R,3R,4S)ABH-NH2

En procédant comme dans l'exemple 9, mais en remplaçant au stade F, le (1S,3S,4R)ABH-NH₂ par le (1R,3R,4S)ABH-NH₂ obtenu au stade précédent, on obtient le produit attendu.

EXEMPLE 13: OTh-(S)(N'-Me)His-(18,38,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade F la tBOC-(S)Leu-OH par la tBOC-10 (S)(N-Me)His-OH et au stade H le Z-(S)PyroGlu-OH par le Z-OTh-OH, on obtient le produit attendu. Rendemement : 68 %

Microanalyse élémentaire :

C \$ H \$ N \$ S \$

Calculé 51,42 5,75 19,99 7,63

Trouvé 51,33 5,76 20,09 7,98

O EXEMPLE 14: dOPyr-(S)(N-Me)His-(1S,3S,4R)ABH-NH2

En procédant a comme dans l'exemple 13, mais en remplaçant au stade H la Z-OTh-OH par le Z-dOPyr-OH, on obtient le produit attendu.

Rendement: 53 %

15

25

30

35

55

Résonance magnétique nucléaire du proton (DMSO de):

O HN CO - NH - CH - CO - N
$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

45 $\frac{a}{b} \delta = 7.4 \text{ ppm (1H,s)}$ $\frac{b}{b} \delta = 6.9 \text{ ppm (1H,s)}$ $\frac{c}{c} \delta = 6.0 \text{ ppm (1H,s)}$ $\frac{d}{d} \delta = 4.8 \text{ ppm (1H,m)}$ $\frac{e}{d} \delta = 4.6 \text{ ppm (1H,d)}$ $\frac{e}{d} \delta = 4.0 \text{ ppm (1H,d)}$ $\frac{e}{d} \delta = 3.6 \text{ ppm (3H,s)}$ $\frac{e}{d} \delta = 2.9 \text{ ppm (2H,m)}$ $\frac{e}{d} \delta = 2.7 \text{ ppm (1H,m)}$ $\frac{e}{d} \delta = 1.5 \text{ ppm (6H,m)}$

EXEMPLE 15: OAz-(S)Leu-(18,38,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade H le Z(S)PyroGlu-OH par le Z-OAz-OH préparé selon K. TANAKA, S. YOSHIFUZI et Y. NITTA, Hétérocycles, 1986, <u>24</u> (9), 2539, on obtient le pro-

duit attendu.

Rendement: 43 %

Résonance magnétique nucléaire du proton (DMSO de):

15

5

20 $\underline{a} \delta = 4.5 \text{ ppm (2H,m)}$ $\underline{b} \delta = 4.0 \text{ ppm (2H,m)}$

 \overline{c} = entre 3,1 et 2,6 ppm (2H,m)

 $\underline{d} \delta = 2.7 \text{ ppm (1H,m)}$

 $e \delta = 1.6 ppm (9H,m)$

25 $f \delta = 0.9 \text{ ppm (6H,m)}$

EXEMPLE 16: OIQ-(S)Leu-(1S,3S,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade H le Z(S)PyroGlu-OH par le Z-OIQ-OH préparé selon H. MAEDA et M. SUZUKI, Chem. Pharm. Bull. 1988, 36(1), 190, on obtient le produit attendu.

EXEMPLE 17: (S)HomoPyroGlu-(S)Leu-MIABO-NH2 "Isomère a"

En procédant comme dans l'exemple 8, mais en remplaçant au stade A l'ABH-OH "isomères αδ" par le 35 MIABO-OH "isomères αβ" obtenu dans la préparation A, on obtient le produit attendu.

EXEMPLE 18 : (S)PyroGiu-(S)(N $^{\text{II}}$ -Me)His-dMABO-NH $_2$ "isomère α "

En procédant comme dans l'exemple 6, mais en remplaçant au stade A l'ABH-OH "isomères αδ" par le dMABO-OH "isomères αβ" obtenu dans la préparation B, on obtient le produit attendu.

EXEMPLE 19: (S)PyroGlu-(S)Leu-dMABO-NH2 "isomère a"

En procédant comme dans l'exemple 5, mais en remplaçant au stade A l'ABH-OH "isomères αδ" par le dMABO-OH "isomères αβ" obtenu dans la préparation B, on obtient le produit attendu.

Rendement: 53 %

Microanalyse élémentaire

50

55

40

	C %	нъ	N'3
Calculé	62,05	8,43	13,78
Trouvé	62,20	8,66	13,33

EXEMPLE 20 : (8)PyroGlu-(8) Leu-MIABO-NH2 "Isomère α"

En procédant comme dans l'exemple 5, mais en remplaçant au stade A l'ABH-OH "isomères αδ" par le MIABO-OH "isomères αβ" obtenu dans la préparation A, on obtient le produit attendu.

EXEMPLE 21 : OIQ-(S)(N-Me)HIs-(1S,3S,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade F la tBOC-(S)Leu-OH par la tBOC-(S)(N-Me)His-OH et au stade H le Z-(S)PyroGlu-OH par le Z-OiQ-OH préparé selon M.MAEDA et M.SUZUKI, Chem.Pharm.Buli.1988, 36 (1), 190, on obtient le produit attendu.

Microanalyse élémentaire :

C \$ H \$ N \$ Calculé 62,06 6,08 18,09 Trouvé 61,71 6,55 18,44

EXEMPLE 22: (S)OAz-(S)(N'-Me)His-(18,38,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en remplaçant au stade F la tBOC-(S)Leu-OH par la tBOC-(S)(N-Me)His-OH et au stade H le Z(S)PyroGlu-OH par le Z-OAz-OH préparé selon K.TANAKA, S.YOSHIFUZI et Y.NITTA, Héterocycles, 1986, <u>24</u> (9), 2539, on obtient le produit attendu.

Rendemnent: 51 %

5

10

15

20

25

30

35

50

Microanalyse élémentaire :

C \$ H \$ N \$

Calculé 55,66 6,23 21,64

Trouvé 56,03 6,51 21,61

EXEMPLE 23: (S)OAz-(S)HIs-(1S,3S,4R)ABH-NH2

En procédant comme dans l'exemple 5, mais en rempiaçant au stade F la tBOC-(S)Leu-OH par la tBOC-(S)His-OH et au stade H le Z(S)PyroGlu-OH par le Z-OAz-OH préparé selon K.TANAKA, S.YOSHIFUZI et Y.NITTA, Hétérocycles, 1986, <u>24</u> (9), 2549, on obtient le produit attendu.

Rendement: 61 %

Résonance magnétique nucléaire du proton (DMSO da)

a δ entre 8,2 et 7,0 ppm (6H,m)

 $\bar{b} \delta = 4.8 \text{ ppm (1H,m)}$

 $c\delta = 4.6 ppm (1H,m)$

 $d \delta = 4.0 \text{ ppm (2H,m)}$

 \bar{e} δ = entre 3,1 et 2,5 ppm (5H,m)

 $\bar{f}\delta \simeq 1.5 \text{ ppm (6H,m)}$

ETUDE PHARMACOLOGIQUE DES DERIVES DE L'INVENTION

EXEMPLE 24 : Déficit cholinergique aux barbituriques chez le Rat

Chez le Rat, la narcose au pentobarbital (60 mg/kg ip) entraîne un hypofonctionnement marqué de la neurotransmission cholinergique qui se manifeste notamment par la baisse (- 48 %) de la capture synaptosomale
de choline à haute affinité (HACU) mesurée après 20 minutes de narcose. Cette capture sodium-dépendante
constitue normalement le facteur limitant de la synthèse d'acétylcholine. L'administration de TRH (10 mg/kg
ip) simultanément à celle de pentobarbital n'inhibe pas la narcose mais s'oppose (- 35 %) à la baisse d'HACU
induit par le barbiturique.

Dans les mêmes conditions et à la dose de 10 mg/kg ip, le composé de l'exemple 1 inhibe de 66 % la baisse de l'HACU.

EXEMPLE 25 : Tremblements à l'oxotrémorine chez la Souris

L'administration d'oxotrémorine (0,5 mg/kg ip) chez la Souris entraîne des symptomes neurologiques muscariniques d'origine centrale dont les tremblements en sont l'expression la plus marquée. Ceux-ci atteignent leur maximum d'intensité après 15 minutes et disparaissent en une heure. L'administration de TRH (10 mg/kg ip) 30 minutes avant l'oxotrémorine entraîne une potentialisation (+ 90 %) des tremblements mesurés à l'acmée d'action de l'agoniste muscarinique. Mais cet effet n'apparaît plus à la dose de 3 mg/kg ip.

Dans les mêmes conditions, le composé de l'exemple 1 exerce la même potentialisation (+ 90 %) à la dose de 10 mg/kgip sans induire de tremblements par lui-même.

Cet effet est encore marqué (+ 60 %) et significatif à la dose de 3 mg/kg ip. Il se manifeste encore 60 minutes après l'administration d'oxotrémorine alors que les animaux témoins ne présentent plus de tremblements.

Par voie orale, à la dose de 10 mg/kg, le composé de l'exemple 1 exerce un effet identique à celui observé par voie IP à la dose de 3 mg/kg. La TRH administrée par voie orale n'exerce aucun effet potentialisateur.

L'origine de cet effet potentialisateur des actions centrales de l'oxotrémorine apparaît différente dans nos conditions expérimentales, entre la TRH et le composé pris en exemple. En effet, en présence d'une très faible dose (0,01 mg/kg) de scopolamine qui ne s'oppose pas aux tremblements chez les animaux témoins, l'effet potentialisateur du composé de l'exemple 1 disparaît alors que celui de la TRH subsiste.

Le composé de l'exemple 1 apparaît donc comme un agent facilitateur cholinergique tandis que la TRH pourrait exercer cet effet potentialisateur par agonisme dopaminergique.

EXEMPLE 26: Interaction avec la cionidine

Chez la Souris, la cionidine, agoniste α_2 central, entraîne un effet sédatif hypométabolisant cérébral qui conduit à une augmentation (+ 60 %) du temps de survie cérébrale lors d'arrêt cardiaque brutal provoqué par l'injection intraveineuse d'une dose massive de MgCl₂.

Administrée simultanément à la clonidine, la TRH antagonise l'effet de l'agoniste α_2 (1 mg/kg ip : - 20 %; 3 mg/kg ip : - 80 %) sans avoir d'effet propre dans le test utilisé.

Dans les mêmes conditions, le composé de l'exemple 1 antagonise l'effet sédatif de la cionidine (0,3 mg/kg ip : -20%; 1 mg/kg ip : -70%).

Le composé de l'exemple 1 facilite donc la neurotransmission noradrénergique et s'oppose à la sédation provoquée par l'inhibition de cette neurotransmission.

Revendications

Revendications pour les Etats contractants suivants : AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

Composés de formule générale (I) :

55

5

15

25

35

40

45

50

$$\begin{pmatrix} A \\ HN - CH - CO - NH - CH - CO - N - CH - CO - NH_2 \\ R \end{pmatrix}$$
 (1)

dans laquelle:

5

10

15

20

25

30

45

50

55

A représente avec les atomes d'azote et de carbone avec lesquels il est lié :

- un groupement oxo-2 pyrrolidinyle-5,
- un groupement oxo-2 pipéridinyle-6,
- un groupement dioxo-2,6 tétrahydro-1,2,3,6 pyrimidinyle-4,
- un groupement oxo-2 thiazolidinyle-4,
- un groupement oxo-2 azetidinyle-4 ,
- un groupement oxo-1 tétrahydro-1,2,3,4 isoquinolyle-3,
- B représente avec les atomes d'azote et de carbone avec lesquels il est lié une structure polycyclique saturée choisie parmi l'aza-2 bicyclo [2.2.1] heptane, les (dialkyl (C₁-C₆) linéaires ou ramifiés)-1.4 aza-2 bicyclo [2.2.2] octane.
- R représente un atome d'hydrogène, un groupement alkyle inférieur linéaire ou ramifié, un groupement (imidazolyi-4) méthyle éventuellement substitué sur l'un des atomes d'azote par un radical alkyle inférieur, linéaire ou ramifié,
 - le terme inférieur indiquant que les groupements ainsi qualifiés comptent de 1 à 6 atomes de carbone.

leurs énantiomères, diastéréoisomères et épimères, ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.

- 2. Composés selon la revendication 1 tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle aza-2 bicyclo [2.2.1] heptane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 3. Composés selon la revendication 1 tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle dialkyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi leurs sels d'addition à un acide pharmaceutiquement acceptable.
- Composés selon les revendications 1 et 3 tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle diméthyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
 - 5. Composés selon les revendications 1 et 3 tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle méthyl-4 isopropyl-1 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
 - 6. Composé selon les revendications 1 et 2 qui est le PyroGlu-(N⁻-Me)His-ABH-NH₂, ses énantiomères, diastéréoisomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrrolidone-2 carbonyle-5, (N⁻-Me)His représentant le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
 - 7. Composé selon les revendications 1 et 2 qui est le PyroGlu-Leu-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrolidone-2 carbonyle-5, Leu représentant le radical leucyle et ABH le radical azacarbonyl-3 bicyclo [2.2.1] heptane.
 - 8. Composé selon les revendications 1 et 2 qui est le PyroGlu-(N[™].Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrrolidone-2 carbonyle-5, (N[™].Me)His le radical méthyl-3 histydile et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
 - 9. Composé selon les revendications 1 et 2 qui est le HomoPyroGlu-(N^{III}-Me)His-ABH-NH₂ ses diastétéoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-8, (N^{III}-Me)His le radical méthyl-3

histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.

5

10

20 .

25

30

35

50

55

- 10. Composé selon les revendications 1 et 2 qui est le HomoPyroGlu-Leu-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 11. Composé selon les revendications 1 et 2 qui est le PyroGlu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrrolidone-2 carbonyle-5, His représentant le radical histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 12. Composé selon les revendications 1 et 2 qui est le HomoPyroGlu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, His le radical histidyle et ABH le radical aza-2 carbonyle-3 bicyclo [2.2.1] heptane.
 - 13. Composé selon les revendications 1 et 2 qui est le HomoPyroGlu-(N*-Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, (N*-Me)His le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
 - 14. Composé selon les revendications 1, 3 et 5 qui est le HomoPyroGiu-Leu-MiABO-NH₂ ses diastérécisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGiu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle, MIABO le radical méthyl-4 isopropyl-1 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
 - 15. Composé selon les revendications 1, 3 et 4 qui est le PyroGlu-(N[™]-Me)His-dMABO-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrolidinone-2 carbonyie-5 (N[™]-Me)His le radical méthyl-1 histidyle et dMABO le radical diméthyl-1,4 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
 - 16. Procédé de préparation des dérivés de formule (I) caractérisé en ce que l'on protège la fonction amine d'un amino-acide de formule (II) dont on a éventuellement séparé les isomères par une technique classique de séparation :

$$\begin{array}{c} HN - CH - CO_2H \\ \downarrow \\ D \end{array}$$
 (11)

dans laquelle B a la même signification que dans la formule (I), par un radical protecteur (P) tel que le tert.butoxycarbonyle (tBOC), ou le benzyloxycarbonyle (Z) sous l'action d'un réactif approprié pour conduire à un dérivé de formule (III) :

$$P - N - CH - CO2H.$$
 (III)

dans laquelle B et P ont la même signification que précedemment, sur lequel on fait réagir, à une température comprise entre -15 et 0°C, en présence de triéthylamine, le chicroformiate d'éthyle puis l'ammoniaque, pour conduire à un dérivé de formule (IV) :,

$$P - N - CH - CO - NH_2$$
 (IV)

dans laquelle B et P ont la même signification que précedemment, que l'on déprotège par un procédé approprié comme par exemple par action de l'acide chlorhydrique gazeux dans un solvant anhydre tel que le dioxanne ou l'acétate d'éthyle dans le cas où P = t.BOC ou par hydrogénation catalytique dans le cas où P = Z. pour conduire à un dérivé de formule (V) :

5

$$HN - CH - CO - NH2$$
 (V)

10

dans laquelle B a la même signification que dans la formule (I), dont on sépare, si on le souhaite, les isomères par une technique classique de séparation, qui est couplé avec un deuxième amino-acide protégé de formule (VI) :

15

20

dans laquelle R a la même signification que dans la formule (I), pour conduire à un dérivé de formule (VII) :

25

30

dans laquelle R et B ont la même signification que dans la formule (I) dont on sépare, si on le souhaite, les diastéréoisomères ou énantiomères par une technique classique de séparation, que l'on déprotège ensuite par action de l'acide chlorhydrique gazeux dans un solvant anhydre comme par exemple le dioxanne ou l'acétate d'éthyle pour conduire à un dérivé de formule (VIII) :

35

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

dans laquelle R et B ont la même signification que dans la formule (I), qui est couplé avec un troisième amino-acide éventuellement protégé de formule (IX) :

40

$$A \setminus R' - N - CH - CO2H$$
 (IX)

dans laquelle R' est un hydrogène, ou un groupement protecteur tel que par exemple un benzyloxycarbonyle (Z),

ou avec un ester activé de cet amino-acide éventuellement protégé, pour conduire :

- ou bien à un dérivé de formule (I) dans le cas où R' est un hydrogène, qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable,
- ou bien à un dérivé de formule (X) :

55

50

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

dans le cas où R' est un groupement protecteur, R et B ayant la même signification que dans la formule (1),

qui est déprotégé par une technique de déprotection comme par exemple une hydrogénation catalytique pour conduire à un dérivé de formule (I),

- qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable, ou séparé en ses isomères selon une technique classique de séparation que l'on salifie si on le désire par un acide pharmaceutiquement acceptable.
- 17. Composés de formule (II) selon la revendication 16, qui sont les acides dialkyl-1,4 aza-2 bicyclo [2.2.2] octane carboxyliques-3, utiles dans la préparation des composés de formule (I).
- 18. Composés de formule (III) selon la revendication 16, utiles dans la préparation des composés de formule (I).
- 19. Composés de formule (IV) selon la revendication 16, utilies dans la préparation des composés de formule (I).
 - 20. Composés de formule (V) selon la revendication 16, utiles dans la préparation des composés de formule (I).
- 21. Composés de formule (VII) selon la revendication 16, utiles dans la préparation des composés de formule
 (I).
 - 22. Composés de formule (VIII) selon la revendication 16, utiles dans la préparation des composés de formule (I).
 - 23. Compositions pharmaceutiques contenant comme principe actif au moins un composé selon l'une quelconque des revendications 1 à 15, seul ou en combinaison avec un ou plusieurs excipients ou véhicules inertes, non toxiques, pharmaceutiquement acceptables.
- 24. Compositions pharmaceutiques selon la revendication 23 contenant au moins un principe actif selon l'une des revendications 1 à 25 utiles pour le traitement des désordres constitutifs et des troubles neurocomportementaux associés au vieillissement et aux maladies dégénératives du système nerveux, aigües ou chroniques comme la maladie d'Alzheimer, l'accident vasculaire cérébral, le traumatisme spinal ou la sciérose amyotrophique latérale.

Revendications pour l'Etat contractant suivant: GR

1. Procédé de préparation des composés de formule générale (I) :

$$A = CH - CO - NH - CH - CO - N - CH - CO - NH2$$
(1)

dans laquelle :

5

10

25

35

45

50

55

- A représente avec les atomes d'azote et de carbone avec lesquels il est lié :
 - un groupement oxo-2 pyrrolidinyle-5,
 - un groupement oxo-2 pipéridinyle-6,
 - un groupement dioxo-2,6 tétrahydro-1,2,3,6 pyrimidinyle-4,
 - un groupement oxo-2 thiazolidinyle-4,
 - un groupement oxo-2 azetidinyle-4,
 - un groupement oxo-1 tétrahydro-1,2,3,4 isoquinolyle-3,
- B représente avec les atomes d'azote et de carbone avec lesquels il est lié une structure polycyclique saturée choisie parmi l'aza-2 bicyclo [2.2.1] heptane, les (dialkyl (C₁-C₆) linéaires ou ramifiés)-1,4 aza-2 bicyclo [2.2.2] octane,
- représente un atome d'hydrogène, un groupement alkyle inférieur linéaire ou ramifié, un groupement (imidazolyl-4) méthyle éventuellement substitué sur l'un des atomes d'azote par un radical alkyle inférieur, linéaire ou ramifié,

5

10

15

20

25

30

35

45

50

55

le terme inférieur indiquant que les groupements ainsi qualifiés comptent de 1 à 6 atomes de carbone, leurs énantiomères, diastéréoisomères et épimères, ainsi que leurs sels d'addition à une acide pharmaceutiquement acceptable,

caractérisé en ce que l'on protège la fonction amine d'un amino-acide de formule (II) dont on a éventuellement séparé les isomères par une technique classique de séparation :

$$\begin{array}{c} HN - CH - CO_2H \\ \downarrow R \end{array}$$
 (11)

dans laquelle B a la même signification que dans la formule (I), par un radical protecteur (P) tel que le tert.butoxycarbonyle (tBOC), ou le benzyloxycarbonyle (Z) sous l'action d'un réactif approprié pour conduire à un dérivé de formule (III):

$$P - N - CH - CO2H$$
 (III)

dans laquelle B et P ont la même signification que précedemment, sur lequel on fait réagir, à une température comprise entre -15 et 0°C, en présence de triéthylamine, le chloroformiate d'éthyle puis l'ammoniaque, pour conduire à un dérivé de formule (IV) :

$$B - M - CH - CO - NH5$$
 (IA)

dans laquelle B et P ont la même signification que précedemment,
que l'on déprotège par un procédé approprié comme par exemple par action de l'acide chlorhydrique gazeux dans un solvant anhydre tel que le dioxanne ou l'acétate d'éthyle dans le cas où P = t.BOC ou par
hydrogénation catalytique dans le cas où P = Z,
pour conduire à un dérivé de formule (V):

$$\frac{HN - CH - CO - NH_2}{R}$$

dans laquelle 8 a la même signification que dans la formule (I), dont on sépare, si on le souhaite, les isomères par une technique classique de séparation, qui est couplé avec un deuxième amino-acide protégé de formule (VI):

dans laquelle R a la même signification que dans la formule (I), pour conduire à un dérivé de formule (VII) :

dans laquelle R et B ont la même signification que dans la formule (I) dont on sépare, si on le souhaite, les diastéréoisomères ou énantiomères par une technique classique de séparation,

que l'on déprotège ensuite par action de l'acide chlorhydrique gazeux dans un solvant anhydre comme par exemple le dioxanne ou l'acétate d'éthyle pour conduire à un dérivé de formule (VIII) :

$$H_{2N} - CH - CO - N - CH - CO - NH_{2}$$
 (VIII)

dans laquelle R et B ont la même signification que dans la formule (I), qui est couplé avec un troisième amino-acide éventuellement protégé de formule (IX):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

dans laquelle R' est un hydrogène, ou un groupement protecteur tel que par exemple un benzyloxycarbonyle (Z),

ou avec un ester activé de cet amino-acid éventuellement protégé, pour conduire :

- ou bien à un dérivé de formule (I) dans le cas où R' est un hydrogène, qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable,
- ou bien à un dérivé de formule (X):

10

15

20

25

30

35

40

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

dans le cas où R' est un groupement protecteur, R et B ayant la même signification que dans la formule (I), qui est déprotégé par une technique de déprotection comme par exemple une hydrogénation catalytique pour conduire à un dérivé de formule (I),

qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable, ou séparé en ses isomères selon une technique classique de séparation que l'on salifie si on le désire par un acide pharmaceutiquement acceptable.

- 2. Procédé de préparation selon la revendication 1 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle aza-2 bicyclo [2.2.1] heptane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 3. Procédé de préparation selon la revendication 1 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle dialkyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 4. Procédé de préparation selon les revendications 1 et 3 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle diméthyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 5. Procédé de préparation selon les revendications 1 et 3 de composés tels que 8 forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle méthyl-4 isopropyl-1 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 6. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGiu-(N'-Me)His-ABH-NH₂, ses énantiomères, diastéréoisomères et épimères ainsi que ses sels d'addition à un acide pharma-ceutiquement acceptable, PyroGiu représentant le radical pyrrolidone-2 carbonyle-5, (N'-Me)His représentant le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 blcyclo [2.2.1] heptane.

5

10

15

20

25

- 7. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGlu-Leu-ABH-NH₂ ses diastérécisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrolidone-2 carbonyle-5, Leu représentant le radical leucyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 8. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGlu-(N^{III}-Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrrolidone-2 carbonyle-5, (N^{III}-Me)His le radical méthyl-3 histydile et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 9. Procédé de préparation selon les revendications 1 et 2 du composé qui est le HomoPyroGlu-(N^{III}-Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, (N^{III}-Me)His le radical méthyl-3 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 10. Procédé de préparation seion les revendications 1 et 2 du composé qui est le HomoPyroGlu-Leu-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle et ABH le radical aza-2 carbonyl-3 blcyclo [2.2.1] heptane.
- 11. Procédé de préparation selon les revendications 1 et 2 du composé du est le PyroGiu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGiu représentant le radical pyrrolidone-2 carbonyle-5, His représentant le radical histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 12. Procédé de préparation selon les revendications 1 et 2 du composé qui est le HomoPyroGlu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyl-6, His le radical histidyle et ABH le radical aza-2 carbonyle-3 bicycle [2.2.1] heptane.
- 13. Procédé de préparation selon les revendication 1 et 2 du composé qui est le HomoPyroGiu-(Nº-Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGiu représentant le radical pipéridinone-2 carbonyle-8, (Nº-Me)His le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 14. Procédé de préparation selon les revendications 1, 3 et 5 du composé qui est le HomoPyroGlu-Leu-MIA-BO-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle, MIABO le radical méthyl-4 isopropyl-1 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
- 15. Procédé de préparation selon les revendications 1, 3 et 4 du composé qui est le PyroGiu-(N^{III}-Me)His-dMA-BO-NH₂ ses diastérécisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGiu représentant le radical pyrolidinone-2 carbonyie-5 (N^{III}-Me)His le radical méthyl-1 histidyle et dMABO le radical diméthyl-1,4 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
- 16. Procédé de préparation selon la revendication 1 des composés de formule (II) utiles dans la préparation des composés de formule (I).
- 17. Procédé de préparation selon la revendication 1 des composés de formule (III) utiles dans la préparation des composés de formule (I).
 - 18. Procédé de préparation selon la revendication 1 des composés de formule (IV) utiles dans la préparation des composés de formule (I).
- 19. Procédé de préparation selon la revendication 1 des composés de formule (V) utiles dans la préparation des composés de formule (I).
 - 20. Procédé de préparation selon la revendication 1 des composés de formule (VII) utiles dans la préparation des composés de formule (I).

- 21. Procédé de préparation selon la revendication 1 des composés de formule (VIII) utiles dans la préparation des composés de formule (I).
- 5 Revendications pour l'Etat contractant suivant : ES
 - 1. Procédé de préparation des composés de formule générale (I) :

$$/A$$
HN - CH - CO - NH - CH - CO - N - CH - CO - NH2

| R | B |

15 dans laquelle

10

20

25

30

35

45

55

A représente avec les atomes d'azote et de carbone avec lesquels il est lié :

- un groupement oxo-2 pyrrolidinyle-5,
- un groupement oxo-2 pipéridinyle-6,
- un groupement dioxo-2,6 tétrahydro-1,2,3,6 pyrimidinyle-4,
- un groupement oxo-2 thiazolidinyle-4,
- un groupement oxo-2 azetidinyle-4,
- un groupement oxo-1 tétrahydro-1,2,3,4 isoquinolyle-3,
- B représente avec les atomes d'azote et de carbone avec lesquels il est lié une structure polycyclique saturée choisie parmi l'aza-2 bicyclo [2.2.1] heptane, les (dialkyl (C₁-C₆) linéaires ou ramifiés)-1,4 aza-2 bicyclo [2.2.2] octane,
- R représente un atome d'hydrogène, un groupement alkyle inférieur linéaire ou ramifié, un groupement (imidazolyl-4) méthyle éventuellement substitué sur l'un des atomes d'azote par un radical alkyle inférieur, linéaire ou ramifié,

le terme inférieur indiquant que les groupements ainsi qualifiés comptent de 1 à 6 atomes de carbone, leurs énantiomères, diastéréoisomères et épimères, ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.

caractérisé en ce que l'on protège la fonction amine d'un amino-acide de formule (II) dont on a éventuellement séparé les isomères par une technique classique de séparation :

$$HN - CH - COSH$$
 (11)

dans laquelle B a la même signification que dans la formule (I), par un radical protecteur (P) tel que le tert.butoxycarbonyle (tBOC), ou le benzyloxycarbonyle (Z) sous l'action d'un réactif approprié pour conduire à un dérivé de formule (III) :

$$P - N - CH - CO2H$$
 (III)

dans laquelle B et P ont la même signification que précedemment,

sur lequel on fait réagir, à une température comprise entre -15 et 0°C, en présence de triéthylamine, le chloroformiate d'éthyle puis l'ammoniaque,

pour conduire à un dérivé de formule (IV) :

$$P - N - CH - CO - NH2$$
 (IV)

dans laquelle B et P ont la même signification que précedemment,

que l'on déprotège par un procédé approprié comme par exemple par action de l'acide chlorhydrique gazeux dans un solvant anhydre tel que le dioxanne ou l'acétate d'éthyle dans le cas où P = t.BOC ou par hydrogénation catalytique dans le cas où P = Z,

pour conduire à un dérivé de formule (V) :

5

10

15

20

25

30

35

45

50

55

$$\begin{array}{c} HN - CH - CO - NH_2 \\ \downarrow \\ R \end{array}$$

dans laquelle B a la même signification que dans la formule (I), dont on sépare, si on le souhaite, les isomères par une technique classique de séparation, qui est couplé avec un deuxième amino-acide protégé de formule (VI):

dans laquelle R a la même signification que dans la formule (I), pour conduire à un dérivé de formule (VII) :

tBOC - NH - CH - CO - N - CH - CO - NH₂ (VII)
$$R$$

dans laquelle R et B ont la même signification que dans la formule (I) dont on sépare, si on le souhaite, les diastéréoisomères ou énantiomères par une technique classique de séparation, que l'on déprotège ensuite par action de l'acide chlorhydrique gazeux dans un solvant anhydre comme par exemple le dioxanne ou l'acétate d'éthyle pour conduire à un dérivé de formule (VIII):

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

dans laquelle R et B ont la même signification que dans la formule (i), qui est couplé avec un troisième amino-acide éventuellement protégé de formule (IX) :

$$\begin{pmatrix} A \\ R' - N - CH - CO2H \end{pmatrix}$$
 (IX)

dans laquelle R' est un hydrogène, ou un groupement protecteur tel que par exemple un benzyloxycarbonyle (Z),

ou avec un ester activé de cet amino-acid éventuellement protégé, pour conduire :

- ou bien à un dérivé de formule (I) dans le cas où R' est un hydrogène, qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable,
- ou bien à un dérivé de formule (X) :

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

dans le cas où R' est un groupement protecteur, R et B ayant la même signification que dans la formule (I), qui est déprotégé par une technique de déprotection comme par exemple une hydrogénation catalytique pour conduire à un dérivé de formule (I),

qui est, si on le désire transformé en son sel d'addition à un acide pharmaceutiquement acceptable, ou séparé en ses isomères selon une technique classique de séparation que i'on salifie si on le désire par

un acide pharmaceutiquement acceptable.

10

15

20

25

- 2. Procédé de préparation selon la revendication 1 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle aza-2 bicyclo [2.2.1] heptane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 3. Procédé de préparation selon la revendication 1 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle dialkyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 4. Procédé de préparation selon les revendications 1 et 3 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle diméthyl-1,4 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 5. Procédé de préparation selon les revendications 1 et 3 de composés tels que B forme avec les atomes d'azote et de carbone avec lesquels il est lié un cycle méthyl-4 isopropyl-1 aza-2 bicyclo [2.2.2] octane, leurs énantiomères, diastéréoisomères et épimères ainsi que leurs sels d'addition à un acide pharmaceutiquement acceptable.
- 6. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGiu-(N'-Me)His-ABH-NH₂, ses énantiomères, diastéréoisomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGiu représentant le radical pyrrolidone-2 carbonyie-5, (N'-Me)His représentant le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 7. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGlu-Leu-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrolidone-2 carbonyle-5, Leu représentant le radical leucyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 8. Procédé de préparation selon les revendications 1 et 2 du composé qui est le PyroGlu-(N^{TL}Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrrolldone-2 carbonyle-5, (N^{TL}Me)His le radical méthyl-3 histydile et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 9. Procédé de préparation selon les revendications 1 et 2 du composé qui est le HomoPyroGiu-(N^{III}-Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGiu représentant le radical pipéridinone-2 carbonyle-6, (N^{III}-Me)His le radical méthyl-3 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 10. Procédé de préparation selon les revendications 1 et 2 du composé qui est le HomoPyroGiu-Leu-ABH-NH2 ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 11. Procédé de préparation selon les revendications 1 et 2 du composé du est le PyroGiu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGiu représentant le radical pyrrolidone-2 carbonyle-5, His représentant le radical histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.
- 50 12. Procédé de préparation selon les revendications 1 et 2 du composé qui est le HomoPyroGlu-His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyl-6, His le radical histidyle et ABH le radical aza-2 carbonyle-3 bicycle [2.2.1] heptane.
- 13. Procédé de préparation selon les revendication 1 et 2 du composé qui est le HomoPyroGlu-(N⁻Me)His-ABH-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, (N⁻Me)His le radical méthyl-1 histidyle et ABH le radical aza-2 carbonyl-3 bicyclo [2.2.1] heptane.

- 14. Procédé de préparation selon les revendications 1, 3 et 5 du composé qui est le HomoPyroGlu-Leu-MIA-BO-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, HomoPyroGlu représentant le radical pipéridinone-2 carbonyle-6, Leu représentant le radical leucyle, MIABO le radical méthyl-4 isopropyl-1 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
- 15. Procédé de préparation selon les revendications 1, 3 et 4 du composé qui est le PyroGiu-(N^{III}-Me)His-dMA-BO-NH₂ ses diastéréoisomères, énantiomères et épimères ainsi que ses sels d'addition à un acide pharmaceutiquement acceptable, PyroGlu représentant le radical pyrolidinone-2 carbonyle-5 (N^{III}-Me)His le radical méthyl-1 histidyle et dMABO le radical diméthyl-1,4 aza-2 carbonyl-3 bicyclo [2.2.2] octane.
- Procédé de préparation selon la revendication 1 des composés de formule (II) utiles dans la préparation des composés de formule (I).
- 17. Procédé de préparation selon la revendication 1 des composés de formule (III) utiles dans la préparation des composés de formule (I).
 - 18. Procédé de préparation selon la revendication 1 des composés de formule (IV) utiles dans la préparation des composés de formule (I).
 - 19. Procédé de préparation selon la revendication 1 des composés de formule (V) utiles dans la préparation des composés de formule (I).
- 20. Procédé de préparation selon la revendication 1 des composés de formule (VII) utiles dans la préparation des composés de formule (I).
 - 21. Procédé de préparation selon la revendication 1 des composés de formule (VIII) utiles dans la préparation des composés de formule (I).

Patentansprüche

5

10

20

35

45

. 50

55

Patentansprüche für folgende Vertragsstaaten: AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

1. Verbindungen der allgemeinen Formel (i):

$$A$$
HN - CH - CO - NH - CH - CO - N - CH - CO - NH₂
(I)

in der

- A zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist,
 - eine 2-Oxo-pyrrolidin-5-yl-gruppe,
 - eine 2-Oxo-piperidin-6-yl-gruppe,
 - eine 2,6-Dioxo-1,2,3,6-tetrahydro-pyrimidin-4-yl-gruppe,
 - eine 2-Oxo-thiazolidin-4-yl-gruppe,
 - eine 2-Oxo-azetidin-4-yl-gruppe,
- eine 1-Oxo-1,2,3,4-tetrahydro-isochinol-3-yl-gruppe,
- B zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist, eine gesättigte polycyclische Struktur ausgewählt aus 2-Aza-bicyclo-[2.2.1]heptan und 1,4-(geradkettige oder verzweigte (C₁-C₈)-dialkyl)-2-aza-bicyclo[2.2.2]octanen,
- R ein Wasserstoffatorn, eine geradkettige oder verzweigte Niedrigalkylgruppe, eine (Imidazol-4yl)-methylgruppe, die gegebenenfalls an einem der Stickstoffatorne durch eine geradkettige oder verzweigte Niedrigalkylgruppe substituiert ist,

bedeuten, wobei der Begriff "Niedrig" darauf hinweist, daß die in dieser Weise bezeichneten Gruppen 1 bis 6 Kohlenstoffatome aufweisen, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.

5

45

- Verbindungen nach Anspruch 1, worin B mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 2-Aza-bicyclo[2.2.1]heptanring bildet, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssaize mit einer pharmazeutisch annehmbaren Säure.
- 3. Verbindungen nach Anspruch 1, worin B zusammen mit dem Stickstoffund dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dialkyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 4. Verbindungen nach den Ansprüchen 1 und 3, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dimethyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 5. Verbindungen nach den Ansprüchen 1 und 3, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 4-Methyl- 1-isopropyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 6. Verbindung nach den Ansprüchen 1 und 2, nämlich PyroClu-(N-Me)-His-ABH-NH₂, deren Enantiomere, Diastereoisomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGiu den 2-Pyrrolidon-5-carbonylrest. (N-Me)His den 1-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- Verbindung nach den Ansprüchen 1 und 2, n\u00e4mlich PyroGlu-Leu-ABH- NH₂, deren Diastereoisomere,
 Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren S\u00e4ure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 8. Verbindung nach den Ansprüchen 1 und 2, nämlich PyroClu-(N'-Me)-His-ABH-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, (N'-Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 9. Verbindung nach den Ansprüchen 1 und 2, nämlich HomoPyroClu-(N[∞] Me)His-ABH-NH₂, deren Diastereoisomere. Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, (N[∞]-Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 10. Verbindung nach den Ansprüchen 1 und 2, n\u00e4mlich HomoPyroGlu-Leu- ABH-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren S\u00e4ure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
 - 11. Verbindung nach den Ansprüchen 1 und 2, nämlich PyroGluHis-ABH-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolldon-5-carbonylrest, His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2,2,1]heptanrest bedeuten.
- 12. Verbindung nach den Ansprüchen 1 und 2, nämlich HomoPyroGlu-His-ABH-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGiu den 2-Piperidinon-6-carbonylrest, His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
 - 13. Verbindung nach den Ansprüchen 1 und 2, nämlich HomoPyroGlu-(N*-Me)His-ABH-NH₂, deren Diastereoisomere, Enantlomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, (N*-Me)His den 1-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
 - 14. Verbindung nach den Ansprüchen 1, 3 und 5, nämlich HomoPyroGlu- Leu-MIABO-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren

Săure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, Leu den Leucylrest und MIABO den 4-Methyl-1-isopropyl2-aza-3-carbonyl-bicyclo[2.2.2]octanrest bedeuten.

15. Verbindung nach den Ansprüchen 1, 3 und 4, nämlich PyroGiu-(N*-Me)-His-dMABO-NH₂, deren Diastereoisomere, Enantiomere und Epimere sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGiu den 2-Pyrrolidinon-5-carbonylrest, (N*-Me)His den 3 -Methyl-histidylrest und dMABO den 1,4-Dimethyl-2-aza-3-carbonyl-blcyclo[2.2.2]octanrest bedeuten.

5

15

20

25

30

35

40

45

50

55

16. Verfahren zur Herstellung der Derivate der Formel (1), dadurch gekennzeichnet, daß man die Aminogruppe einer Aminosäure der Formel (II), die man gegebenenfalls mit Hilfe einer klassischen Trennmethode in die Isomeren aufgetrennt hat:

$$HN - CH - CO_2H$$
 (II)

in der B die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, unter der Einwirkung eines geeigneten Reagens mit einer Schutzgruppe (P), wie der tert.-Butoxycarbonylgruppe (tBOC) oder der Benzyloxycarbonylgruppe (Z) schützt, so daß man ein Derivat der Formel (III) erhält:

$$P - N - CH - CO_2H$$
 (III)

in der B und P die oben angegebenen Bedeutungen besitzen, welches bei einer Temperatur zwischen -15 und 0°C in Gegenwart von Triethylamin mit Chlorameisensäurethylester und dann mit Ammoniak umsetzt, so daß man ein Derivat der Formel (IV) erhält:

$$P - N - CH - CO - NH_2$$
 (IV)

in der B und P die oben angegebenen Bedeutungen besitzen, von dem man mit Hilfe eines geeigneten Verfahrens, beispielsweise durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie Dioxan oder Ethylacetat. dann, wenn P = tBOC bedeutet, oder durch katalytische Hydrierung, wenn P = Z bedeutet, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (V) erhält:

$$HN - CH - CO - NH_2 \qquad (V)$$

in der B die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, das man gewünschtenfalls mit Hilfe klassischer Trennmethoden in die Isomeren auftrennt, welches mit einer zweiten geschützten Aminosäure der Formel (VI):

in der R die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, gekuppeit wird, so daß man ein Derivat der Formel (VII) erhält:

in der R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, welches man gewünschtenfalls mit Hilfe einer klassischen Trennmethode in die Diastereoisomeren oder Enantiomeren trennt.

von welchen man anschließend durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie beispielsweise Dioxan oder Ethylacetat, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (VIII) erhält:

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

10

15

20

25

30

35

45

50

in der R und B die bezüglich der Formei (I) angegebenen Bedeutungen besitzen, welches mit einer dritten, gegebenenfalls geschützten Aminosäure der Formei (IX):

$$A \setminus R' - N - CH - CO_2H$$
 (IX)

in der R' ein Wasserstoffatom oder eine Schutzgruppe, wie beispielsweise eine Benzyloxycarbonylgruppe (Z) bedeutet, oder mit einem aktivierten Ester dieser gegebenenfalls geschützten Aminosäure gekuppelt wird, so daß man

- dann, wenn R' ein Wasserstoffatom bedeutet, ein Derivat der Formel (I) erhält, welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz überführt wird,
- oder wenn R' eine Schutzgruppe darstellt, ein Derivat der Formel (X) erhält

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

worin R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, von welchem man mit Hilfe einer Methode zur Abspaltung von Schutzgruppen, beispielsweise durch katalytische Hydrierung, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (I) erhält, welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz umgewandelt wird, oder mit Hilfe einer klassischen Trennmethode in seine Isomeren aufgetrennt wird, die man gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in ein Salz überführt.

- Verbindungen der Formei (II) nach Anspruch 16, n\u00e4mlich die zur Herstellung der Verbindungen der Formei
 geeigneten 1,4-Dialkyl-2-aza-bicyclo-[2.2.2]octan-3-carbons\u00e4uren.
 - 18. Verbindungen der Formel (III) nach Anspruch 16, die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 19. Verbindungen der Formei (IV) nach Anspruch 16, die zur Herstellung der Verbindungen der Formei (I) geeignet sind.
 - 20. Verbindungen der Formel (V) nach Anspruch 16, die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 21. Verbindungen der Formel (VII) nach Anspruch 16. die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 22. Verbindungen der Formel (VIII) nach Anspruch 16, die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 23. Pharmazeutische Zubereitungen enthaltend als Wirkstoff mindestens eine Verbindung nach einem der Ansprüche 1 bis 15 allein oder in Kombination mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch annehmbaren Bindemitteln oder Trägermaterialien.

24. Pharmazeutische Zubereitungen nach Anspruch 23, enthaltend als Wirkstoff mindestens einen Wirkstoff nach einem der Ansprüche 1 bis 15 zur Behandlung von Verhaltensstörungen und Nervenverhaltensstörungen, die mit dem Altern und akuten oder chronischen degenerativen Erkrankungen des Nervensystems verbunden sind, wie die Alzheimer'sche Krankheit, Hirngefäßtraumata, Rückgrattraumata oder amyotrophische Lateralskierose.

Patentansprüche für folgenden Vertragsstaat : GR

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I):

HN - CH - CO - NH - CH - CO - N - CH - CO - NH₂ (I)
$$R$$

in der

10

15

20

25

30

35

40

45

50

A zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist,

- eine 2-Oxo-pyrrolidin-5-yl-gruppe,

- eine 2-Oxo-piperidin-6-yl-gruppe,

- eine 2,6-Dioxo-1,2,3,6-tetrahydro-pyrimidin-4-yl-gruppe,

- eine 2-Oxo-thlazolidin-4-yl-gruppe,

- eine 2-Oxo-azetidin-4-yl-gruppe,

- eine 1-Oxo-1,2,3,4-tetrahydro-isochinol-3-yl-gruppe,

B zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist, eine gesättigte polycyclische Struktur ausgewählt aus 2-Aza-bicyclo-[2.2.1]heptan und 1,4-(geradkettige oder verzweigte (C₁-C₆)-dialkyl)-2-aza-bicyclo[2.2.2]octanen,

R ein Wasserstoffatom, eine geradkettige oder verzweigte Niedrigalkylgruppe, eine (Imidazol-4yl)-methylgruppe, die gegebenenfalls an einem der Stickstoffatome durch eine geradkettige oder verzweigte Niedrigalkylgruppe substituiert ist,

bedeuten, wobel der Begriff "Niedrig" darauf hinweist, daß die in dieser Weise bezeichneten Gruppen 1 bis 6 Kohlenstoffatome aufweisen, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalzen mit einer pharmazeutisch annehmbaren Säure, dadurch gekennzeichnet, daß man die Aminogruppe einer Aminosäure der Formel (II), die man gegebenenfalls mit Hilfe einer klassischen Trennmethode in die Isomeren aufgetrennt hat:

$$HN - CH - CO_2H$$
 (II)

in der B die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, unter der Einwirkung eines geeigneten Reagens mit einer Schutzgruppe (P), wie der tert.-Butoxycarbonylgruppe (tBOC) oder der Benzyloxycarbonylgruppe (Z) schützt, so daß man ein Derivat der Formel (III) erhält:

$$P - N - CH - CO2H$$
 (III)

in der B und P die oben angegebenen Bedeutungen besitzen, welches man bei einer Temperatur zwischen -15 und 0°C in Gegenwart von Triethylamin mit Chlorameisensäurethylester und dann mit Ammoniak umsetzt, so daß man ein Derivat der Formel (IV) erhält:

$$P - N - CH - CO - NH_2$$
 (IV)

in der B und P die oben angegebenen Bedeutungen besitzen,

von dem man mit Hilfe eines geeigneten Verfahrens, beispielsweise durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie Dioxan oder Ethylacetat, dann, wenn P = tBOC bedeutet, oder durch katalytische Hydrierung, wenn P = Z bedeutet, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (V) erhält:

$$HN - CH - CO - NH_2$$
 (V)

10

5

in der B die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, das man gewünschtenfalls mit Hilfe klassischer Trennmethoden in die Isomeren auftrennt, welches mit einer zweiten geschützten Aminosäure der Formel (VI):

15

20

in der R die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, gekuppelt wird, so daß man ein Derivat der Formel (VII) erhält:

25

30

in der R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, welches man gewünschtenfalls mit Hilfe einer klassischen Trennmethode in die Diastereoisomeren oder Enantiomeren trennt.

von welchen man anschließend durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie beispielsweise Dioxan oder Ethylacetat, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (VIII) erhält

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

35

in der R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, welches mit einer dritten, gegebenenfalls geschützten Aminosäure der Formel (IX):

$$R' - N - CH - CO2H$$
 (IX)

45

40

in der R' ein Wasserstoffatom oder eine Schutzgruppe, wie beispielsweise eine Benzyloxycarbonylgruppe (Z) bedeutet,

oder mit einem aktivierten Ester dieser gegebenenfalls geschützten Aminosäure gekuppelt wird, so daß

- (
- dann, wenn R' ein Wasserstoffatom bedeutet, ein Derivat der Formei (I) erhält, welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz überführt wird,
- oder wenn R' eine Schutzgruppe darstellt, ein Derfvat der Formel (X) erhält

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

55

. 50

worin R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, von welchem man mit Hilfe einer Methode zur Abspaltung von Schutzgruppen, beispielsweise durch katalytische Hydrierung,

5

10

15

20

25

die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (I) erhält, welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz umgewandelt wird, oder mit Hilfe einer klassischen Trennmethode in seine Isomeren aufgetrennt wird, die man gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in ein Salz überführt.

- Verfahren nach Anspruch 1 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoffund dem Kohlenstoffatom, an die es gebunden ist, einen 2-Aza-bicyclo[2.2.1]heptanring bildet, deren Enantiomeren, Diastereoisomeren, Epimeren sowie deren Additionssalzen mit einer pharmazeutisch annehmbaren Säure.
- 3. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoffund dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dialkyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 4. Verfahren nach den Ansprüchen 1 und 3 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dimethyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 5. Verfahren nach den Ansprüchen 1 und 3 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 4-Methyl-1-isopropyl-2-aza-bicycio[2.2.2]octanring bildet, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
- 6. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGiu- (N-Me)His-ABH-NH₂, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGiu den 2-Pyrrolidon-5-carbonylrest, (N-Me)His den 1-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 7. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-Leu-ABH-NH₂, deren Diastereoisomeren, Enantlomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 8. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-(N*-Me)His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolldon-5-carbonylrest, (N*-Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
 - 9. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-(N*-Me)His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonyirest, (N*-Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2,2,1]heptanrest bedeuten.
- 10. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-Leu-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 11. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGluHis-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolldon-5-carbonylrest. His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 12. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-Hia-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren S\u00e4ure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.

- 13. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Giu-(Nr-Me)His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worln HomoPyroGlu den 2-Plperidinon-6-carbonylrest, (Nr-Me)His den 1-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 14. Verfahren nach den Ansprüchen 1, 3 und 5 zur Herstellung von HomoPyroGlu-Leu-MiABO-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomcPyroGlu den 2-Piperidinon-6-carbonylrest, Leu den Leucylrest und MIABO den 4-Methyl- 1 -isopropyl2-aza-3-carbonyl-bicyclo[2.2.2]octanrest bedeuten.
- 15. Verfahren nach den Ansprüchen 1, 3 und 4 zur Herstellung von PyroGlu-(N~Me)His-dMABO-NH₂. deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidinon-5-carbonylrest, (N~Me)His den 3-Methyl-histidylrest und dMABO den 1.4-Dimethyl-2-aza-3-carbonyl-bicyclo[2.2.2]octanrest bedeuten.
- 16. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (II), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 17. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (III), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 18. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (IV), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 25 19. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (V), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 20. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (VII), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (VIII), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.

Patentansprüche für folgenden Vertragsstaat : E8

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I):

$$HN - CH - CO - NH - CH - CO - N - CH - CO - NH2 (I)$$

in der

5

10

15

20

35

55

A zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist,

- eine 2-Oxo-pyrrolidin-5-yl-gruppe,
- eine 2-Oxo-piperidin-6-yl-gruppe,
- eine 2,6-Dioxo-1,2,3,6-tetrahydro-pyrimidin-4-yl-gruppe,
- eine 2-Oxo-thiazolidin-4-yl-gruppe,
- eine 2-Oxo-azetidin-4-yl-gruppe,
- eine 1-Oxo-1,2,3,4-tetrahydro-isochinol-3-yl-gruppe,
- B zusammen mit dem Stickstoff- und Kohlenstoffatom, an die es gebunden ist, eine gesättigte polycyclische Struktur ausgewählt aus 2-Aza-bicyclo-[2.2.1]heptan und 1,4-(geradkettige oder verzweigte (C₁-C₆)-dialkyl)-2-aza-bicyclo[2.2.2]octanen,
- R ein Wasserstoffatom, eine geradkettige oder verzweigte Niedrigalkylgruppe, eine (Imidazol-4yl)-methylgruppe, die gegebenenfalls an einem der Stickstoffatome durch eine geradkettige oder
 verzweigte Niedrigalkylgruppe substituiert ist,

bedeuten, wobei der Begriff "Niedrig" darauf hinweist, daß die in dieser Weise bezeichneten Gruppen 1 bis 6 Kohlenstoffatome aufweisen, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren

Additionssalzen mit einer pharmazeutisch annehmbaren Säure, dadurch gekennzelchnet, daß man die Aminogruppe einer Aminosäure der Formel (II), die man gegebenenfalls mit Hilfe einer klassischen Trennmethode in die Isomeren aufgetrennt hat:

$$HN - CH - CO_2H$$
 (II)

5

10

15

20

25

30

35

45

50

55

in der B die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, unter der Einwirkung eines geeigneten Reagens mit einer Schutzgruppe (P), wie der tert.-Butoxycarbonylgruppe (tBOC) oder der Benzyloxycarbonylgruppe (Z) schützt, so daß man ein Derivat der Formel (III) erhält:

$$P - N - CH - CO_2H$$
 (III)

in der B und P die oben angegebenen Bedeutungen besitzen, welches man bei einer Temperatur zwischen -15 und 0°C in Gegenwart von Triethylamin mit Chlorameisensäurethylester und dann mit Ammoniak umsetzt, so daß man ein Derivat der Formel (IV) erhält:

$$P - N - CH - CO - NH2$$
 (IV)

in der B und P die oben angegebenen Bedeutungen besitzen, von dem man mit Hilfe eines geeigneten Verfahrens, beispielsweise durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie Dioxan oder Ethylacetat, dann, wenn P = tBOC bedeutet, oder durch katalytische Hydrierung, wenn P = Z bedeutet, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (V) erhält:

$$HN - CH - CO - NH2$$
 (V)

in der B die bezüglich der Formei (I) angegebenen Bedeutungen besitzt, das man gewünschtenfalls mit Hilfe klassischer Trennmethoden in die Isomeren auftrennt, welches mit einer zweiten geschützten Aminosäure der Formei (VI):

in der R die bezüglich der Formel (I) angegebenen Bedeutungen besitzt, gekuppelt wird, so daß man ein Derivat der Formel (VII) erhält:

in der R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, welches man gewünschtenfalls mit Hilfe einer klassischen Trennmethode in die Diastereoisomeren oder Enantiomeren trennt,

von welchen man anschließend durch Einwirkung von gasförmiger Chlorwasserstoffsäure in einem wasserfreien Lösungsmittel, wie beispielsweise Dioxan oder Ethylacetat, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (VIII) erhält

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

in der R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, welches mit einer dritten, gegebenenfalls geschützten Aminosäure der Formel (IX):

$$R' - N - CH - CO2H$$
 (IX)

5

10

15

20

25

30

45

50

55

in der R' ein Wasserstoffatom oder eine Schutzgruppe, wie beispielsweise eine Benzyloxycarbonylgruppe (Z) bedeutet,

- oder mit einem aktivierten Ester dieser gegebenenfalls geschützten Aminosäure gekuppeit wird, so daß man
 - dann, wenn R' ein Wasserstoffatom bedeutet, ein Derivat der Formel (I) erhält, welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz überführt wird,
 - oder wenn R' eine Schutzgruppe darstellt, ein Derivat der Formel (X) erhält

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

worin R und B die bezüglich der Formel (I) angegebenen Bedeutungen besitzen, von welchem man mit Hilfe einer Methode zur Abspaltung von Schutzgruppen, beispielsweise durch katalytische Hydrierung, die Schutzgruppe abspaltet, so daß man ein Derivat der Formel (I) erhält,

- welches gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in sein Additionssalz umgewandelt wird, oder mit Hilfe einer klassischen Trennmethode in seine Isomeren aufgetrennt wird, die man gewünschtenfalls mit einer pharmazeutisch annehmbaren Säure in ein Salz überführt.
- Verfahren nach Anspruch 1 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoffund dem Kohlenstoffatom, an die es gebunden ist, einen 2-Aza-bicyclo[2.2.1]heptanring bildet, deren
 Enantiomeren, Diastereoisomeren, Epimeren sowie deren Additionssalzen mit einer pharmazeutisch annehmbaren Säure.
 - 3. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoffund dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dialkyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
 - 4. Verfahren nach den Ansprüchen 1 und 3 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 1,4-Dimethyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantlomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
 - 5. Verfahren nach den Ansprüchen 1 und 3 zur Herstellung von Verbindungen, worin B zusammen mit dem Stickstoff- und dem Kohlenstoffatom, an die es gebunden ist, einen 4-Methyl-1-isopropyl-2-aza-bicyclo[2.2.2]octanring bildet, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure.
 - 6. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-(N-Me)His-ABH-NH₂, deren Enantiomeren, Diastereoisomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, (N-Me)His den 1-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
 - Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-Leu-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehm-

baren Säure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.

- 8. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-(N™Me)His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolldon-5-carbonylrest, (N™Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 9. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-(N~Me)His-ABH-NH₂. deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperklinon-6-carbonylrest, (N~Me)His den 3-Methyl-histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 10. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-Leu-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren S\u00e4ure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, Leu den Leucylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 11. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von PyroGlu-His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidon-5-carbonylrest, His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 12. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-His-ABH-NH₂, deren Diastereolsomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, His den Histidylrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 13. Verfahren nach den Ansprüchen 1 und 2 zur Herstellung von HomoPyro-Glu-(N⁻Me)His-ABH-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGlu den 2-Piperidinon-6-carbonylrest, (N⁻Me)His den 1-Methyl-histidytrest und ABH den 2-Aza-3-carbonyl-bicyclo[2.2.1]heptanrest bedeuten.
- 14. Verfahren nach den Ansprüchen 1, 3 und 5 zur Hersteilung von HomoPyroGiu-Leu-MiABO-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin HomoPyroGiu den 2-Piperidinon-8-carbonylrest, Leu den Leucylrest und MIABO den 4-Methyl-1-isopropyl2-aza-3-carbonyl-bicyclo[2.2.2]octanrest bedeuten.
 - 15. Verfahren nach den Ansprüchen 1, 3 und 4 zur Herstellung von PyroGlu-(N™ Me)His-dMABO-NH₂, deren Diastereoisomeren, Enantiomeren und Epimeren sowie deren Additionssalze mit einer pharmazeutisch annehmbaren Säure, worin PyroGlu den 2-Pyrrolidinon-5-carbonytrest, (N™Me)His den 3-Methyl-histidylrest und dMABO den 1,4-Dimethyl-2-aza-3-carbonyl-bicyclo[2.2.2]octanrest bedeuten.

40

- 18. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (II), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 17. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (III), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 18. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (IV), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 19. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (V), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
- 20. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (VII), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.
 - 21. Verfahren nach Anspruch 1 zur Herstellung von Verbindungen der Formel (VIII), die zur Herstellung der Verbindungen der Formel (I) geeignet sind.

Claims

5

20

25

30

35

50

55

Claims for the following Contracting States: AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, SE

1. Compounds of the general formula (I):

$$_{10}$$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10}$
 $_{10$

15 in which:

A represents, together with the nitrogen and carbon atoms to which it is bonded:

- a 2-oxopyrrolidin-5-yl grouping,
- a 2-oxopiperidin-6-yl grouping,
- a 2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl grouping,
- a 2-oxothiazolidin-4-yl grouping,
- a 2-oxoazetidin-4-yl grouping, or
- a 1-oxo-1,2,3,4-tetrahydroisoquinol-3-yl grouping,
- Prepresents, together with the nitrogen and carbon atoms to which it is bonded, a saturated polycyclic structure selected from 2-azabicyclo-[2.2.1]-heptane and the 1,4-di-(linear and branched (C₁-C₆)alkyl)-2-azabicyclo[2.2.2]-octanes, and
- R represents a hydrogen atom, a linear or branched lower alkyl grouping, or a 4-imidazolylmethyl grouping optionally substituted at one of the nitrogen atoms by a linear or branched lower alkyl radical, the term "lower" indicating that the groupings so described have from 1 to 6 carbon atoms.
- their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- Compounds according to claim 1 such that B forms, together with the nitrogen and carbon atoms to which
 it is bonded, a 2-azabicyclo[2.2.1]heptane ring, their enantiomers, diastereoisomers and epimers and also
 their addition salts with a pharmaceutically acceptable acid.
- Compounds according to claim 1 such that B forms, together with the nitrogen and carbon atoms to which
 it is bonded, a 1,4-dialkyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 4. Compounds according to claims 1 and 3 such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 1,4-dimethyl-2-azabicyclo[2.2.2]-octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 5. Compounds according to claims 1 and 3 such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 4-methyl-1-isopropyl-2-azabicyclo-[2.2.2]octane ring, their enantiomers, diaster-ecisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
 - 6. Compound according to claims 1 and 2 which is PyroGiu-(N⁻Me)His-ABH-NH₂, its enantiomers, diaster-eoisomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGiu representing the radical 2-pyrrolidone-5-carbonyl, (N⁻Me)His representing the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 7. Compound according to claims 1 and 2 which is PyroGlu-Leu-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, Leu representing the radical leucyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 8. Compound according to claims 1 and 2 which is PyroGlu-(N*-Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu rep-

resenting the radical 2-pyrrolidone-5-carbonyl, (N=Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.

- 9. Compound according to claims 1 and 2 which is HomoPyroGiu-(N^x-Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGiu representing the radical 2-piperidinone-8-carbonyl, (N^x-Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 10. Compound according to claims 1 and 2 which is HomoPyro-Glu-Leu-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, Leu representing the radical leucyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 11. Compound according to claims 1 and 2 which is PyroGlu-His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, His representing the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 12. Compound according to claims 1 and 2 which is HomoPyroGiu-His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGiu representing the radical 2-piperidinone-6-carbonyl, His the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 13. Compound according to claims 1 and 2 which is HomoPyroGlu-(N⁻Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, (N⁻Me)His the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- Compound according to claims 1, 3 and 5 which is HomoPyroGlu-Leu-MIABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, Leu representing the radical leucyl and MIABO the radical 4-methyl-1-isopropyl-2-aza-3-carbonylbicyclo[2.2.2]-octane.
- 15. Compound according to claims 1, 3 and 4 which is PyroGlu-(N²-Me)His-dMABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidinone-5-carbonyl, (N²-Me)His the radical 3-methylhistidyl and dMABO the radical 1,4-dimethyl-2-aza-3-carbonylbicyclo[2.2.2]octane.
 - 16. Process for the preparation of the compounds of formula (I), characterised in that the amine function of an amino acid of formula (II):

$$HN - CH - CO_2H \qquad (II)$$

40

45

50

in which B has the same meaning as in formula (i), the isomers of which have optionally been separated by a conventional separation technique, is protected by a protecting radical (P), such as tert-butoxycarbonyl (tBOC) or benzyloxycarbonyl (Z), under the action of a suitable reagent to give a compound of formula (III):

$$P - N - CH - CO_2H \qquad (III)$$

in which B and P have the same meanings as given above, on which ethyl chloroformate and then ammonium hydroxide are caused to react, at a temperature of between -15 and 0°C, in the presence of triethylamine, to give a compound of formula (IV):

$$P - N - CH - CO - NH_2$$
 (IV)

5

in which B and P have the same meanings as given above, which is deprotected by a suitable process, such as, for example, by the action of gaseous HCl in an anhydrous solvent, such as dioxane or ethyl acetate, when P = tBOC or by catalytic hydrogenation when P = Z,

to give a compound of formula (V):

$$HN - CH - CO - NH2$$
 (V)

15

10

in which B has the same meaning as in formula (I), the isomers of which are, if desired, separated by a conventional separation technique, which is coupled with a second protected amino acid of formula (VI):

20

tBOC - NH - CH -
$$CO_2H$$
 (VI)

25

in which R has the same meaning as in formula (I), to give a compound of formula (VII):

35

in which R and B have the same meanings as in formula (I), the diastereoisomers or enantiomers of which are, if desired, separated by a conventional separation technique, which is then deprotected by the action of gaseous HCl in an anhydrous solvent, such as, for example, dioxane or ethyl acetate, to give a compound of formula (VIII):

40

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

45

in which R and B have the same meanings as in formula (I), which is coupled with a third optionally protected amino acid of formula (IX):

50

$$R' - N - CH - CO_2H$$
 (IX)

55

in which R' is a hydrogen atom, or a protecting grouping, such as, for example, benzyloxycarbonyl (Z), or with an activated ester of that optionally protected amino acid, to give:

- either a compound of formula (I) when R' is a hydrogen atom, which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid,
- or a compound of formula (X):

$$R' - N - CH - CO - NH - CH - CO - NH_2$$
 (X)

- when R' is a protecting grouping, R and B having the same meanings as in formula (I), which is deprotected by a deprotection technique, such as, for example, catalytic hydrogenation, to give a compound of formula (I),
- which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid or separated into its isomers according to a conventional separation technique, which isomers are, if desired, converted into their salts by means of a pharmaceutically acceptable acid.
- 17. Compounds of formula (II) according to claim 16 which are 1,4-dialkyl-2-azabicyclo[2.2.2]octane-3-carboxylic acids, which can be used in the preparation of compounds of formula (I).
- 20 18. Compounds of formula (III) according to claim 16 which can be used in the preparation of compounds of formula (I).
 - 19. Compounds of formula (IV) according to claim 16 which can be used in the preparation of compounds of formula (I).
- 26. Compounds of formula (V) according to claim 16 which can be used in the preparation of compounds of formula (I).
 - 21. Compounds of formula (VII) according to claim 16 which can be used in the preparation of compounds of formula (I).
 - 22. Compounds of formula (VIII) according to claim 16 which can be used in the preparation of compounds of formula (I).
 - 23. Pharmaceutical compositions containing as active ingredient at least one compound according to any one of claims 1 to 15, alone or in combination with one or more inert non-toxic pharmaceutically acceptable excipients or carriers.
 - 24. Pharmaceutical compositions according to claim 23 containing at least one active ingredient according to one of claims 1 to 15 which can be used in the treatment of constitutive disorders and neurobehavioural disorders associated with ageing and acute or chronic degenerative diseases of the nervous system, such as Alzheimer's disease, cerebral vascular accident, spinal traumatism or lateral amyotrophic sclerosis.

Claims for the following Contracting State: GR

1. Process for the preparation of compounds of the general formula (I):

$$HN - CH - CO - NH - CH - CO - N - CH - CO - NH2 (I)$$

in which:

10

15

30

35

- A represents, together with the nitrogen and carbon atoms to which it is bonded:
 - a 2-oxopyrrolidin-5-yl grouping,
 - a 2-oxopiperidin-6-yl grouping,
 - a 2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl grouping,
 - a 2-oxothiazolidin-4-yl grouping,

- a 2-oxoazetidin-4-yl grouping, or

5

10

15

20

25

30

35

45

50

55

- a 1-oxo-1,2,3,4-tetrahydroisoquinol-3-yl grouping,
- Prepresents, together with the nitrogen and carbon atoms to which it is bonded, a saturated polycyclic structure selected from 2-azabicyclo-[2.2.1]-heptane and the 1,4-di-(linear and branched (C₁-C₆)alkyl)-2-azabicyclo[2.2.2]-octanes, and
- represents a hydrogen atom, a linear or branched lower alkyl grouping, or a 4-imidazolylmethyl grouping optionally substituted at one of the nitrogen atoms by a linear or branched lower alkyl radical, the term "lower" indicating that the groupings so described have from 1 to 6 carbon atoms.

their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid, characterised in that the amine function of an amino acid of formula (II):

$$HN - CH - CO_2H$$
 (II)

in which B has the same meaning as in formula (i), the isomers of which have optionally been separated by a conventional separation technique, is protected by a protecting radical (P), such as tert-butoxycarbonyl (tBOC) or benzyloxycarbonyl (Z), under the action of a suitable reagent to give a compound of formula (III):

$$P - N - CH - CO_2H$$
 (III)

in which B and P have the same meanings as given above, on which ethyl chloroformate and then ammonium hydroxide are caused to react, at a temperature of between -15 and 0°C, in the presence of triethylamine, to give a compound of formula (IV):

$$P - N - CH - CO - NH2$$
 (IV)

in which B and P have the same meanings as given above, which is deprotected by a suitable process, such as, for example, by the action of gaseous HCl in an anhydrous solvent, such as dioxane or ethyl acetate, when P = tBOC or by catalytic hydrogenation when P = Z,

to give a compound of formula (V):

$$HN - CH - CO - NH_2$$
 (V)

in which B has the same meaning as in formula (I), the isomers of which are, if desired, separated by a conventional separation technique, which is coupled with a second protected amino acid of formula (VI):

tBOC - NH - CH -
$$CO_2H$$
 (VI)

in which R has the same meaning as in formula (i), to give a compound of formula (VII):

in which R and B have the same meanings as in formula (i), the diastereoisomers or enantiomers of which are, if desired, separated by a conventional separation technique, which is then deprotected by the action of gaseous HCl in an anhydrous solvent, such as, for example, dioxane or ethyl acetate, to give a compound of formula (VIII):

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

in which R and B have the same meanings as in formula (I), which is coupled with a third optionally protected amino acid of formula (IX):

$$R' - N - CH - CO_2H$$
 (IX)

in which R' is a hydrogen atom, or a protecting grouping, such as, for example, benzyloxycarbonyl (Z), or with an activated ester of that optionally protected amino acid, to give:

- either a compound of formula (I) when R' is a hydrogen atom, which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid,
- or a compound of formula (X):

5

10

15

20

25

30

35

40

45

50

55

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

when R' is a protecting grouping, R and B having the same meanings as in formula (I), which is deprotected by a deprotection technique, such as, for example, catalytic hydrogenation, to give a compound of formula (I),

which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid or separated into its isomers according to a conventional separation technique, which isomers are, if desired, converted into their salts by means of a pharmaceutically acceptable acid.

- Process according to claim 1 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 2-azabicyclo-[2.2.1]heptane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- Process according to claim 1 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 1,4-dialkyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 4. Process according to claims 1 and 3 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 1,4-dimethyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically accept-

able acid.

5

20

25

30

35

40

45

50

- 5. Process according to claims 1 and 3 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 4-methyl-1-isopropyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 6. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-(N~Me)His-ABH-NH₂, its enantiomers, diastereoisomers and epimers, and also its addition saits with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, (N~Me)His representing the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo-[2.2.1]heptane.
- 7. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-Leu-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, Leu representing the radical leucyl and ABH the radical 2-aza-3-carbonylbicyclo(2.2.1]heptane.
 - 8. Process according to claims 1 and 2 for the preparation of the compound PyroClu-(N~Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, (N~Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 9. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-(N*-Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, (N*-Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 10. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-Leu-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, Leu representing the radical leucyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 11. Process according to claims 1 and 2 for the preparation of the compound PyroGiu-His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGiu representing the radical 2-pyrrolidone-5-carbonyl, His representing the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 12. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, His the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 13. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-(N~Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, (N~Me)His the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
 - 14. Process according to claims 1, 3 and 5 for the preparation of the compound HomoPyroGlu-Leu-MIABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, Leu representing the radical leucyl and MIABO the radical 4-methyl-1-isopropyl-2-aza-3-carbonylbicyclo[2.2.2]octane.
 - 15. Process according to claims 1, 3 and 4 for the preparation of the compound PyroGlu-(N=Me)His-dMABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidinone-5-carbonyl, (N=Me)His the radical 3-methylhistidyl and dMABO the radical 1,4-dimethyl-2-aza-3-carbonylbicyclo-[2.2.2]octane.
 - 16. Process according to claim 1 for the preparation of compounds of formula (II) which can be used in the preparation of compounds of formula (I).

- 17. Process according to claim 1 for the preparation of compounds of formula (III) which can be used in the preparation of compounds of formula (I).
- 18. Process according to claim 1 for the preparation of compounds of formula (IV) which can be used in the preparation of compounds of formula (I).
 - 19. Process according to claim 1 for the preparation of compounds of formula (V) which can be used in the preparation of compounds of formula (I).
 - 20. Process according to claim 1 for the preparation of compounds of formula (VII) which can be used in the preparation of compounds of formula (I).
 - 21. Process according to claim 1 for the preparation of compounds of formula (VIII) which can be used in the preparation of compounds of formula (I).

Claims for the following Contracting State: ES

1. Process for the preparation of compounds of the general formula (I):

$$\frac{A}{HN} - CH - CO - NH - CH - CO - NH_2$$
 (I)

in which:

10

15

20

25

30

35

45

50

55

- A represents, together with the nitrogen and carbon atoms to which it is bonded:
 - a 2-oxopyrrolidin-5-yl grouping,
 - a 2-oxopiperidin-6-yl grouping,
 - a 2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl grouping,
 - a 2-oxothiazolidin-4-yl grouping,
 - a 2-oxoazetidin-4-yl grouping, or
 - a 1-oxo-1,2,3,4-tetrahydroisoquinol-3-yl grouping,
- Prepresents, together with the nitrogen and carbon atoms to which it is bonded, a saturated polycyclic structure selected from 2-azabicyclo-[2.2.1]-heptane and the 1,4-di-(linear and branched (C₁-C₆)alkyl)-2-azabicyclo[2.2.2]-octanes, and
- R represents a hydrogen atom, a linear or branched lower alkyl grouping, or a 4-imidazolylmethyl grouping optionally substituted at one of the nitrogen atoms by a linear or branched lower alkyl radical, the term "lower" indicating that the groupings so described have from 1 to 6 carbon atoms,

their enantiomers, diastereoisomers and epimers and also their addition saits with a pharmaceutically acceptable acid, characterised in that the amine function of an amino acid of formula (II):

$$HN - CH - CO_2H$$
 (II)

in which B has the same meaning as in formula (I), the isomers of which have optionally been separated by a conventional separation technique, is protected by a protecting radical (P), such as tert-butoxycarbonyl (tBOC) or benzyloxycarbonyl (Z), under the action of a suitable reagent to give a compound of formula (III):

$$P - N - CH - CO_2H \qquad (III)$$

in which B and P have the same meanings as given above,

on which ethyl chloroformate and then ammonium hydroxide are caused to react, at a temperature of between .15 and 0°C, in the presence of triethylamine, to give a compound of formula (IV):

$$P - N - CH - CO - NH_2$$
 (IV)

in which B and P have the same meanings as given above, which is deprotected by a suitable process, such as, for example, by the action of gaseous HCl in an anhydrous solvent, such as dioxane or ethyl acetate, when P = tBOC or by catalytic hydrogenation when P = Z, to give a compound of formula (V):

$$HN - CH - CO - NH2$$
 (V)

in which B has the same meaning as in formula (I), the isomers of which are, if desired, separated by a conventional separation technique, which is coupled with a second protected amino acid of formula (VI):

tBOC - NH - CH -
$$CO_2H$$
 (VI)

in which R has the same meaning as in formula (I), to give a compound of formula (VII):

5

10

15

20

25

30

35

40

45

50

55

in which R and B have the same meanings as in formula (I), the diastereoisomers or enantiomers of which are, if desired, separated by a conventional separation technique, which is then deprotected by the action of gaseous HCl in an anhydrous solvent, such as, for example, dioxane or ethyl acetate, to give a compound of formula (VIII):

$$H_2N - CH - CO - N - CH - CO - NH_2$$
 (VIII)

in which R and B have the same meanings as in formula (i), which is coupled with a third optionally protected amino acid of formula (IX):

$$R' - N - CH - CO_2H \qquad (IX)$$

in which R' is a hydrogen atom, or a protecting grouping, such as, for example, benzyloxycarbonyl (Z), or with an activated ester of that optionally protected amino acid, to give:

- either a compound of formula (I) when R' is a hydrogen atom, which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid,

or a compound of formula (X):

10

15

20

25

35

50

55

$$R' - N - CH - CO - NH - CH - CO - N - CH - CO - NH2 (X)$$

when R' is a protecting grouping, R and B having the same meanings as in formula (I), which is deprotected by a deprotection technique, such as, for example, catalytic hydrogenation, to give a compound of formula (I),

which is, if desired, converted into its addition salt with a pharmaceutically acceptable acid or separated into its isomers according to a conventional separation technique, which isomers are, if desired, converted into their salts by means of a pharmaceutically acceptable acid.

- 2. Process according to claim 1 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 2-azabicyclo-[2.2.1]heptane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 3. Process according to claim 1 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 1,4-dialkyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 4. Process according to claims 1 and 3 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bended, a 1,4-dimethyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 5. Process according to claims 1 and 3 for the preparation of compounds such that B forms, together with the nitrogen and carbon atoms to which it is bonded, a 4-methyl-1-isopropyl-2-azabicyclo[2.2.2]octane ring, their enantiomers, diastereoisomers and epimers and also their addition salts with a pharmaceutically acceptable acid.
- 6. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-(N~Me)His-ABH-NH₂, its enantiomers, diastereoisomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, (N~Me)His representing the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo-[2.2.1]heptane.
- 7. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-Leu-ABH-NH₂, its disstereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, Leu representing the radical leucyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 8. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-(N~Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, (N~Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 9. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-(N*-Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, (N*-Me)His the radical 3-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 10. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-Leu-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-6-carbonyl, Leu representing the radical

leucyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.

5

10

15

20

25

30

35

40

45

- 11. Process according to claims 1 and 2 for the preparation of the compound PyroGlu-His-ABH-NH₂, its diastereoisomers, enanthomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGlu representing the radical 2-pyrrolidone-5-carbonyl, His representing the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 12. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGlu-His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-8-carbonyl, His the radical histidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 13. Process according to claims 1 and 2 for the preparation of the compound HomoPyroGiu-(N-Me)His-ABH-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGiu representing the radical 2-piperidinone-6-carbonyl, (N-Me)His the radical 1-methylhistidyl and ABH the radical 2-aza-3-carbonylbicyclo[2.2.1]heptane.
- 14. Process according to claims 1, 3 and 5 for the preparation of the compound HomoPyroGlu-Leu-MIABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, HomoPyroGlu representing the radical 2-piperidinone-8-carbonyl, Leu representing the radical leucyl and MIABO the radical 4-methyl-1-isopropyl-2-aza-3-carbonylbicyclo[2.2.2]octane.
- 15. Process according to claims 1, 3 and 4 for the preparation of the compound PyroGiu-(N~Me)His-dMABO-NH₂, its diastereoisomers, enantiomers and epimers, and also its addition salts with a pharmaceutically acceptable acid, PyroGiu representing the radical 2-pyrrolidinone-5-carbonyl, (N~Me)His the radical 3-methylhistidyl and dMABO the radical 1,4-dimethyl-2-aza-3-carbonylbicyclo-[2,2,2]octane.
 - 16. Process according to claim 1 for the preparation of compounds of formula (II) which can be used in the preparation of compounds of formula (I).
 - 17. Process according to claim 1 for the preparation of compounds of formula (III) which can be used in the preparation of compounds of formula (I).
- 18. Process according to claim 1 for the preparation of compounds of formula (IV) which can be used in the preparation of compounds of formula (I).
 - 19. Process according to claim 1 for the preparation of compounds of formula (V) which can be used in the preparation of compounds of formula (I).
- 20. Process according to claim 1 for the preparation of compounds of formula (VII) which can be used in the preparation of compounds of formula (i).
 - 21. Process according to claim 1 for the preparation of compounds of formula (VIII) which can be used in the preparation of compounds of formula (I).