Time Series Models

Forecasting Method	Applicability
Moving average	No trend or seasonality
Simple exponential smoothing	No trend or seasonality
Holt's model	Trend but no seasonality
Winter's model	Trend and seasonality

Measures of Forecast Error

$$MSE_n = \frac{1}{n} \stackrel{n}{\underset{t=1}{\overset{n}{\bigcirc}}} E_t^2$$

$$A_t = \left| E_t \right|$$
 $MAD_n = \frac{1}{n} \mathop{\circ}_{t=1}^n A_t$ $S = 1.25MAD$

$$MAPE_{n} = \frac{\sum_{t=1}^{n} \left| \frac{E_{t}}{D_{t}} \right| 100}{n}$$

Why do Buffers Build? Why hold Inventory? Economies of scale - Fixed costs associated with batches Cycle/Batch stock Quantity discounts - Trade Promotions Uncertainty - Information Uncertainty Safety stock - Supply/demand uncertainty Seasonal Variability Seasonal stock Strategic Strategic stock - Flooding, availability

Radical Waves: evaluation of current policy of ordering Q = 100 boards each time

- 1. What is average inventory *I*?
 - \Box I = Q/2 =
 - \Box Annual cost to hold one unit H =
 - \square Annual cost to hold $I = Holding \ cost \times Inventory$
- 2. How often do we order?
 - \Box Annual throughput R =
 - \Box # of orders per year = Throughput / Batch size
 - ☐ Annual order cost = $Order cost \times \# of orders$
- 3. What is total cost?
 - \Box TC = Annual holding cost + Annual order cost + Annual purchasing cost =
- 4. What happens if order size changes?

7

Economies of Scale: Economic Order Quantity *EOQ*

R: Demand per year,

Setup or Order Cost (\$/setup; \$/order),

H: Marginal annual holding cost (\$/per unit per year),

Q: Order quantity.

C: Cost per unit (\$/unit),

r : Cost of capital (%/yr),

H = r C.

The order quantity that minimizes total

Optimal Economies of Scale:

For Radical Waves DB

R = 800 units/ year

C = \$ 250 / unit

r = 0.20/year

S = \$2,500 / order

Unit annual holding $cost = H = 0.20/yr \times $250 = $50/yr$

Optimal order quantity = $Q = \text{sqrt}(2 \times 800 \times 2500/50) = 283$

Number of orders per year = R/Q = 2.8

Time between orders = Q/R = 0.35 yr = 4.2 months

Annual order cost = (R/Q)S = \$7071/yr

Average inventory I = Q/2 = 141.5

Annual holding cost = (Q/2)H = \$7071/yr

Average flow time T = I/R = 0.18 yr = 2.1 months

9

Optimal Economies of Scale:

Managerial Insights

$$Q_{EOQ} = \sqrt{\frac{2SR}{H}} \qquad C_{EOQ} = \sqrt{2SRH}$$

- ☐ How to grow: Amazon vs. Costco
- ☐ How cut inventories (economically smart)?

Basic Batching: Lessons

- In deciding the optimal lot / batch size, the trade off is between fixed order (setup) cost and holding cost. It is changeover / setup cost and not time that is relevant.
- ☐ Aim for smaller batch sizes for products that have high value or become obsolete quickly.
- □ If demand increases by a factor of k, it is optimal to increase batch size by a factor of \sqrt{k} and produce (order) \sqrt{k} as often. Flow time (and cycle inventory measured in days of demand) should decrease as demand increases without change in variety.
- \Box If lot size is to be reduced *without hurting total cost*, one has to reduce fixed order cost. To reduce lot size by a factor of k, order cost has to be reduced by a factor of k^2 .

11

Role of Leadtime *L*: **Radical Waves DB cont.

- The lead time from when a *Radical Waves DB* places an order to when the order is received is **one month**. If demand is stable as before, when should the retailer place an order?
- □ I-Diagram:

- ☐ The two key decisions in inventory management are:
 - How much to order?
 - When to order?

Radical Waves DB: Service levels & inventory management

- In reality, a *Radical Waves* DB's demand fluctuates from month to month. Monthly demand data for the past 10 years are uploaded in Canvas. The average monthly demand is about 67 boards (=800/12); the order lead time is a month; fixed order costs are \$2,500/order and it costs \$50 to hold one board in inventory during one year.
- Ouestions:
 - 1. If the Radical Waves uses the ordering policy discussed before, what will the probability of running out of stock in a given cycle, based on the past 10 years of data?
 - 2. They would like the stock-out probability to be smaller. How can they accomplish this?
 - 3. Specifically, how does it get the service level up to 95%?

13

Example: say we increase ROP to 87 (and keep order size at Q = 283)

- 1. On average, what is the stock level when the replenishment arrives?
- 2. On average, what is the *inventory profile*?

- 3. What is the probability that we run out of stock?
- 4. How do we get that stock-out probability down to 5%?

15

Safety stock: How find s of lead time demand? A Fundamental Statistics Result: The Portfolio Effect

Sum of N independent random variables, each with identical standard deviation $\sigma_{R'}$ has standard deviation =

Applications:

Demand over the leadtime L has standard deviation = $s_R \times \sqrt{L}$

Pooled demand over N regions or products has standard deviation =

$$\mathbf{s_R} \times \sqrt{N}$$

Safety Stocks & Service Levels: The relationship

- Raise ROP until we reach appropriate SL
- To do numbers, we need:
 - Mean μ and stdev s of demand during lead time
 - Either Excel or tables with z-value such that CSL = F(z)

17

- 1. How to find service level (given ROP)?
- 2. How to find re-order point (given SL)?

L	Lead time		
D	Demand per unit time	Mean: R Std. Dev.: σ_{R}	
D _L	Demand during lead time	Mean: $μ$ _L Std. Dev.: $σ$ _L	$\mu_{L} = RL$ $\sigma_{L} = \sigma_{R} \sqrt{L}$

Given ROP, find SL = P(no stock out)

$$= P(\text{demand during lead time } \le ROP)$$

$$= F(z^* = (ROP - m_I)/s_I)$$

2. Given SL, find ROP = $m_L + I_s$

$$= \mathbf{m}_L + z^* \mathbf{s}_L$$

[use table to get z^*]

Safety stock $I_s = z^* s_L$; Reorder point $ROP = m_L + I_s$

Learning Objectives: Batching & Economies of Scale

- \square Increasing batch size Q of order (or production) increases average inventories (and thus flow times).
 - Average inventory for a batch size of Q is Q/2.
- ☐ The optimal batch size minimizes supply chain costs by trading off setup cost and holding cost and is given by the EOQ formula.
- To reduce batch size, one must *reduce setup cost (time)*.
- □ **Economies of scale** are manifested by **the square-root relationship** between Q_{EOO} and (R, S):
 - If demand increases by a factor of 4, it is optimal to increase batch size by a factor of 2 and produce (order) twice as often.
 - To reduce batch size by a factor of 2, setup cost has to be reduced by a factor of 4.

19

Learning Objectives safety stocks

$$I_s = z^* \sigma_R \sqrt{L}$$

- □ Safety stock is a hedge against uncertainty
- □ Which factors drive safety stock?
 - level of service z
 - » Impact of increased service level on required safety stock
 - demand variability or forecast error s_R
 - delivery lead time L for the same level of service,
 - delivery lead time variability for the same level of service.
- Applications:
 - How measure safety stock in practice?
 - What is the value of a better information system?

Replenishment Policies

1. Continuous review

- Inventory is continuously tracked
- Order for a lot size Q is placed when the inventory declines to the reorder point (ROP)

2. Periodic review

- Inventory status is checked at regular periodic intervals
- Order is placed to raise the inventory level to a specified threshold

21

Periodic Review Policy

Periodic Review Policy with Replenishment Lead time L=4 days, and Review Interval T=7 days

Cycle Inventory & Safety Inventory

Average Inventory Profile

23

Radical Waves DB: Periodic Review Policy

- □ In reality, a Radical Waves DB's demand fluctuates from month to month. In fact, monthly demand at a store had a standard deviation of about 15 boards → assume roughly normally distributed. Recall that average monthly demand was about 67 boards (=800/12); the order lead time is a month; fixed order costs are \$2,500/order and it costs \$50 to hold one board in inventory during one year. Instead of continuously reviewing the inventory level, Radical Waves reviews inventory every two months.
- Questions:
 - 1. When reviewed, the current inventory level was 100 boards, how many boards they have to order to have 95% service level?

Measuring Product Availability

1. Product fill rate (fr)

Fraction of product demand satisfied from product in inventory

2. Order fill rate

- Fraction of orders filled from available inventory

3. Cycle service level (CSL)

- Fraction of replenishment cycles that end with all customer demand being met
- Replenishment cycle the interval between two successive replenishment deliveries

25

Evaluating Fill Rate

- Expected shortage per replenishment cycle (ESC) is the average units of demand that are not satisfied from inventory in stock per replenishment cycle
- Product fill rate

$$fr = 1 - \frac{ESC}{Q} = \frac{(Q - ESC)}{Q}$$

□ If you know the Fill Rate: ESC = (1 - fr)Q

Example: Periodic Review Policy

Periodic Review Policy with Replenishment Lead time L = 4 days, and Review Interval T = 7 days

Daily demand is given in Canvas for the past 1000 days.

Target cycle service level is 90%.

Calculate the following:

OUL:

Average Order Quantity:

Average Cycle Stock:

Average Safety Stock:

Average Inventory

Average Flow Time:

Annual Inventory Turn-over":

Average Fill rate: