Siddharth Maddali, Ph.D Computational scientist/engineer

💲 Fremont, CA

smaddali@alumni.cmu.edu

Research Scientist

4 +1 (412) 576-2406

in siddharthmaddali

Nov 2022 - Jan 2024

Chicago, IL, USA

Experience

Independent Fremont, CA, USA Scientific Consultant Feb 2024 - present

- Provided technical consulting for investors in emerging semiconductor technologies.

- Built an Al-powered dashboard for automated land area survey trained on drone-based multi-spectral images.

KLA Corporation (KLA-Tencor) Milpitas, CA, USA

- Developed methods for sensitivity enhancement in semiconductor wafer inspection processes.

Argonne National Laboratory

Staff Scientist Oct 2019 - Sep 2022

1. Led the computational development and worked on the first demonstration of the X-ray MR-BCDI imaging technique.

2. Led the design of future imaging experiments at DoE facilities with physics-based signal processing techniques.

3. Led the multi-scale X-ray diffraction imaging approach for materials in difficult-to-access environments.

4. Raised \$900k seed funding for computational R&D and novel microscopy infrastructure.

5. Proposed, executed novel proofs of concept in materials research (US, France).

6. Published work in high-impact scientific journals, mentored junior researchers, organized/chaired international workshops.

- Postdoctoral researcher Jan 2017 - Sep 2019

1. First demonstration of multi-scale, high-energy coherent diffraction imaging (HEDM) of 3D materials.

National Energy Technology Laboratory Pittsburgh, PA, USA

Postdoctoral Researcher: ORISE Fellow

1. Developed guidelines for machine learning-driven materials discovery of novel, function-optimized alloys.

Carnegie Mellon University - Graduate teaching/research assistant

1. Dissertation on mining meso-scale materials physics from high-energy synchrotron data.

2. Created HierarchicalSmooth: mesh smoothing software for physical interface networks.

3. Taught mechanics & electromagnetism to undergraduate science majors.

Education

Ph.D, & **M.S.**, Physics (Dissertation area: materials science)

- Carnegie Mellon University

M.Sc, Physics

Indian Institute of Technology Madras (IIT-M)

B.Sc. Physics, mathematics, electronics

— Bangalore University

Pittsburgh, PA, USA

May 2016 - Nov 2016

Pittsburgh, PA, USA

Aug 2009 - Feb 2016

Aug 2009 - Feb 2016

Chennai, TN, India

Aug 2007 - May 2009

Bengaluru, KA, India

June 2004 - May 2007

🥷 Technical skills

- AI/ML: LLMs, retrieval augmented generation (RAG), data science, applied statistics, machine learning, deep learning for computer vision, CNNs, prompt engineering
- Software: Python scientific stack (numpy, scipy, matplotlib, scikit-learn, pandas + more), Matlab, Linux, git, bash, Later, HPC + parallel computing (MPI), GPU development, PyTorch, Tensorflow, C++, Docker, Qiskit
- Math/computation: Linear algebra, imaging + reconstruction, optimization, signal processing, inverse problems, simulations, statistics, probability, FDTD (meep), RCWA, computational geometry, differential equations
- Science: Geometric + Fourier optics, microscopy, X-ray science, condensed matter + materials physics, electromagnetics, mechanics, statistical physics, semiconductors, experimental design, quantum sciences

🥇 Awards & Grants

- 1. ANL LDRD Research grant: Coherence-enhanced dark-field X-ray microscopy (Role: PI; \$930,000).
- 2. ANL LDRD Research grant: detecting critical microstructural processes with AI (Role: PI; \$100,000).
- 3. Oak Ridge Institute for Science & Education (ORISE) post-doctoral fellowship (2016).
- 4. Indian Institute of Technology Madras Academic Merit Scholarship (2007 2009).
- 5. IIT Joint Admission to M.Sc (IIT-JAM) All-india rank 5 (out of $\simeq 4000$) (2007).
- 6. Bangalore University undergraduate rank 5 (2007).

♣ Professional Activities & Outreach (link to full CV)

- Editorship: Crystals special issue: Synchrotron Studies of Materials
- Select invited talks: The Minerals, Metals, Materials Society (TMS), Advanced Photon Source.
- Society membership: American Physical Society, Materials Research Society, TMS.
- Select peer review: US Department of Energy, American Physical Society, Optica.
- **Select workshop organization**: Advanced Photon Source User Meetings.

Select publications (link to full CV)

- 1. **Maddali, S.**, Frazer, T.D., Delegan, N. et al, Concurrent multi-peak Bragg coherent x-ray diffraction imaging of 3D nanocrystal lattice displacement via global optimization, npj Computational Materials 9, 77 (2023).
- 2. Wilkin, M., **Maddali, S.**, Hruszkewycz, S., Pateras, A., Sandberg, R., Harder, R., Cha, W., Suter, R., & Rollett, A. *Experimental demonstration of coupled multi-peak Bragg coherent diffraction imaging with genetic algorithms*, **Phys. Rev. B**, 103, 214103. (2021).
- 3. **Maddali, S.**, Allain, M., Cha, W., Harder, R., Park, J.S., Kenesei, P., Almer, J., Nashed, Y., & Hruszkewycz, S., *Phase retrieval for Bragg coherent diffraction imaging at high x-ray energies*, **Phys. Rev. A**, 99, 053838 (2019).
- 4. **Maddali, S.**, Park, J.S., Sharma, H., Shastri, S., Kenesei, P., Almer, J., Harder, R., Highland, M., Nashed, Y., & Hruszkewycz, S., *High-Energy Coherent X-Ray Diffraction Microscopy of Polycrystal Grains: Steps Toward a Multiscale Approach*, **Phys. Rev. Appl.**, 14, 024085 (2020).
- 5. Kandel, S., **Maddali, S.**, Allain, M., Hruszkewycz, S. O., Jacobsen, C., & Nashed, Y. S. G., *Using automatic differentiation as a general framework for ptychographic reconstruction*, **Opt. Express**, 27(13):18653–18672 (2019).

Languages

English (fluent), Hindi (fluent), Tamil (intermediate), Telugu (intermediate), Marathi (intermediate), Kannada (intermediate), French (beginner)

Curriculum Vitae

Siddharth Maddali, Ph.D

Computational scientist/engineer

M Fremont, CA

≥ smaddali@alumni.cmu.edu

2 +1 (412) 576-2406

in siddharthmaddali

Links (clickable in PDF):

| Google Scholar | arXiv | ORCID | Researchgate | Web of Science | Scopus |

Education

1. Ph.D (physics)

Carnegie Mellon University, 2016

2. M.S (physics) Carnegie Mellon University, 2011

3. M.Sc (physics) Indian Institute of Technology Madras, 2009

4. B.Sc (physics, mathematics, electronics)

👜 Experience

1. Scientific consultant 2024 - present

2. Research Scientist, KLA Corporation (KLA-Tencor)

2022 - 2024 2019 - 2022

3. Staff Scientist, Argonne National Laboratory

2017 - 2019

4. Post-doctoral researcher, Argonne National Laboratory

2017 - 2019

Bangalore University, 2007

5. Post-doctoral researcher (ORISE fellow), National Energy Technology Laboratory

May 2016 - Nov 2016

6. Graduate Teaching/Research Assistant, Carnegie Mellon University

2009 - 2016

7. Intern, Physics department, National University of Singapore

May-Jun 2008

Interests

- 1. **Computational methods**: Inverse problems, phase retrieval, holography, wavefront engineering, signal processing, optimization, data science, deep learning, high-performance computing, algorithms, scientific software development, quantum computing
- 2. **Optics/imaging**: Scattering theory, computational electromagnetics, microscopy, X-ray science, inspection/metrology/detection/sensing, spectroscopy, dynamic light scattering
- 3. **Physics**: Materials characterization, light-matter interaction, crysallography, interfacial dynamics, time-resolved phenomena, photonics, metastructures/metamaterials

Presentations

- 1. Advanced Photon Source Scientific Computation Seminar, Argonne National Laboratory, Lemont, IL (March 2022)
- 2. Materials Science Division Colloquium, Argonne National Laboratory, Lemont, IL (October 2021) &
- 3. Workshop on Advanced Probes & Data Analytics for Enabling Single-Pulse Imaging under Dynamic Conditions, Santa Fe, NM (August 2019)
- 4. The Minerals, Metals & Materials Society (TMS), San Antonio, TX (March 2019)
- 5. LANS seminar series, Mathematics & Computer Science Division, Argonne National Laboratory, Lemont, IL (Sept 2018)
- 6. Department of physics, Carnegie Mellon University, Pittsburgh, PA (May 2018)

Contributed

- 1. Gordon X-ray Science Seminar, Easton, MA (July-August 2019: seminar & poster; July-August 2017: discussion leader)
- 2. Coherence: International workshop on phase retrieval and coherent scattering, Port Jefferson, NY (June 2018)
- 3. Materials Research Society Spring Meeting & Exhibit, Phoenix, AZ (April 2018) 🔗
- 4. The Minerals, Metals & Materials Society (TMS), Orlando, FL (March 2015: Poster)

5. Materials Science & Technology (MS&T), Pittsburgh, PA (October 2014: seminar; October 2012: poster)

Misc. (co-author)

- 1. The Minerals, Metals & Materials Society (TMS) 2023, San Diego, CA, 2023 &
- 2. The American Physical Society (APS) March Meeting, Chicago, IL, 2022 &
- 3. The Materials Research Society (MRS) Spring Meeting & Exhibit, Phoenix, AZ, 2018 &
- 4. The American Physical Society (APS) March Meeting, New Orleans, LA, 2017 &

🏆 Awards & honors

- Oak Ridge Institute for Science & Education (ORISE) post-doctoral fellowship (2016)
- Indian Institute of Technology Madras Academic Merit Fellowship (2007 2009)
- Indian Institutes of Technology Joint Admission to M.Sc: AIR 5 (2007)
- Bangalore University undergraduate rank 5

Research grants

ANL LDRD 2019-0042: Finding Critical Processes of Deformation in Structural Materials with Artificial Intelligence

Role: Principal investigator

Funding: Argonne Laboratory-Directed Research & Development (LDRD)

Period: 1st Oct 2020 – 30th Sept 2021 (1 year)

Amount: \$100,000

- ANL LDRD 2021-0012: Coherence-enhanced dark-field imaging for structural heterogeneity in materials

Role: Principal investigator

Funding: Argonne Laboratory-Directed Research & Development (LDRD)

Period: 1st Oct 2020 – 30th Sept 2023 (3 years)

Amount: \$900,000

👤 Professional activity & outreach

- Society membership: American Physical Society (APS), the Materials Research Society (MRS), the Minerals, Metals
 & Materials Society (TMS)
- Peer review: US Department of Energy: Basic Energy Sciences (BES), Philosophical Magazine, Computational Materials
 Science, New Journal of Physics, Optics Letters, Crystals Research & Technology, Journal of Applied Physics, Physical
 Review {Letters, B, X}, Optics Letters, Journal of Applied Crystallography, Integrating Materials & Manufacturing
 Innovation
- Organization:
 - Workshop (Session chair): Dark field x-ray microscopy for mesoscale phenomena in ordered materials at APS-U: APS/CNM Users Meeting, Lemont, IL, USA (May 2022)
 - 2. Workshop: Advances in Phase Retrieval Methods for High-Resolution X-ray Imaging, APS/CNM Users Meeting, Argonne National Laboratory, Lemont, IL, USA (August 2020)
 - 3. Workshop: Advanced Probes and Data Analytics for Enabling Single Pulse Imaging Under Dynamic Conditions, Santa Fe, NM, USA (August 2019)
- Training: Multiphysics simulations with the MOOSE (Multiphysics Object-Oriented Simulation Environment) Framework,
 Idaho National Laboratory
- Editorship: Crystals special issue: Synchrotron Studies of Materials

Technical reports

- 1. R. Pokharel, C. Bolme, J. Bohon, A. Mandal, D. Pagan, F. Hofmann, **S. Maddali**, A. Rack, *Advanced probes & data analytics for enabling 3-D imaging under dynamic conditions*, LAUR-19-31832, Los Alamos National Laboratory, 2019.
- 2. N. Krishnamurthy, **S. Maddali**, A. Verma, L. Bruckman, J. Carter, R. French, V. Romanov, J. Hawk, *Data analytics for alloy qualification*, NETL-PUB-21550, National Energy technology Laboratory, 2017.

Name	Relation	Organization	E-mail	Phone
Dr. Stephan Hruszkewycz	Supervisor	Argonne National Laboratory	shrus@anl.gov	+1 (630) 252-3214
Dr. Robert M. Suter	Ph.D advisor	Carnegie Mellon University	suter@cmu.edu	-
Dr. Anthony D. Rollett	Collaborator	Carnegie Mellon University	rollett@cmu.edu	+1 (412) 268-3177
Dr. Marc Allain	Collaborator	Aix-Marseille Univ/Inst. Fresnel	marc.allain@fresnel.fr	-

Publications

- [1] K. J. Harmon, T. D. Frazer, P. Donahue, C. G. Carr, Y. Liu, A. Popescu, W. Cha, **S. Maddali**, S. M. Haile, Y. Cao, and S. O. Hruszkewycz. Operando ceria strain evolution via bragg coherent diffraction imaging (**in preparation**), 2024.
- [2] S. Kandel, **S. Maddali**, X. Huang, Y. S. G. Nashed, C. Jacobsen, M. Allain, and S. O. Hruszkewycz. Imaging extended single crystal lattice distortion fields with multi-peak bragg ptychography. *Opt. Express*, 32(11):19594–19610, May 2024.
- [3] **S. Maddali**, T. D. Frazer, N. Delegan, K. J. Harmon, S. E. Sullivan, M. Allain, W. Cha, A. Dibos, I. Poudyal, S. Kandel, Y. S. G. Nashed, F. J. Heremans, H. You, Y. Cao, and S. O. Hruszkewycz. Concurrent multi-peak bragg coherent x-ray diffraction imaging of 3d nanocrystal lattice displacement via global optimization. *npj Computational Materials*, 9(1):77, May 2023.
- [4] Z. Xu, Y.-F. Shen, S. K. Naghibzadeh, X. Peng, V. Muralikrishnan, S. Maddali, D. Menasche, A. R. Krause, K. Dayal, R. M. Suter, and G. S. Rohrer. Grain boundary migration in polycrystalline α-fe. Acta Materialia, 264:119541, Nov 2023.
- [5] M. O. Hill, P. Schmiedeke, C. Huang, S. Maddali, X. Hu, S. O. Hruszkewycz, J. J. Finley, G. Koblmuller, and L. J. Lauhon. 3d bragg coherent diffraction imaging of extended nanowires: Defect formation in highly strained ingaas quantum wells. ACS Nano, Nov 2022.
- [6] M. J. Wilkin, S. Maddali, S. O. Hruszkewycz, A. Pateras, R. L. Sandberg, R. Harder, W. Cha, R. M. Suter, and A. D. Rollett. Experimental demonstration of coupled multi-peak bragg coherent diffraction imaging with genetic algorithms. *Phys. Rev. B*, 103:214103, Jun 2021.
- [7] S. Kandel, **S. Maddali**, Y. S. G Nashed, S. O. Hruszkewycz, C. Jacobsen, and M. Allain. Efficient ptychographic phase retrieval via a matrix-free levenberg-marquardt algorithm. *Opt. Express*, 29(15):23019–23055, Jul 2021.
- [8] N. Bertaux, M. Allain, J. Weizeorick, J. S. Park, P. Kenesei, S. D. Shastri, J. Almer, M. J. Highland, S. Maddali, and S. O. Hruszkewycz. Sub-pixel high-resolution imaging of high-energy x-rays inspired by sub-wavelength optical imaging. *Opt. Express*, 29(22):35003–35021, Oct 2021.
- [9] **S. Maddali**, P. Li, A. Pateras, D. Timbie, N. Delegan, A. L. Crook, H. Lee, I. Calvo-Almazan, D. Sheyfer, W. Cha, F. J. Heremans, D. D. Awschalom, V. Chamard, M. Allain, and S. O. Hruszkewycz. General approaches for shear-correcting coordinate transformations in bragg coherent diffraction imaging. part i. *Journal of Applied Crystallography*, 53(2), Apr 2020.
- [10] P. Li, S. Maddali, A. Pateras, I. Calvo-Almazan, S.O. Hruszkewycz, W. Cha, V. Chamard, and M. Allain. General approaches for shear-correcting coordinate transformations in bragg coherent diffraction imaging. part ii. *Journal of Applied Crystallography*, 53(2), Apr 2020.
- [11] **S. Maddali**, M. Allain, P. Li, V. Chamard, and S. O. Hruszkewycz. Detector tilt considerations in bragg coherent diffraction imaging: A simulation study. *Crystals*, 10(12):1150, December 2020.
- [12] **S. Maddali**, J.-S. Park, H. Sharma, S. Shastri, P. Kenesei, J. Almer, R. Harder, M. J. Highland, Y. Nashed, and S. O. Hruszkewycz. High-energy coherent x-ray diffraction microscopy of polycrystal grains: Steps toward a multiscale approach. *Phys. Rev. Applied*, 14:024085, Aug 2020.
- [13] Y. Cao, D. Sheyfer, Z. Jiang, **S. Maddali**, H. You, B. X. Wang, Z. G. Ye, E. M. Dufresne, H. Zhou, G. B. Stephenson, and S. O. Hruszkewycz. The effect of intensity fluctuations on sequential x-ray photon correlation spectroscopy at the x-ray free electron laser facilities. *Crystals*, 10(12):1109, December 2020.
- [14] S. Maddali, M. Allain, W. Cha, R. Harder, J.-S. Park, P. Kenesei, J. Almer, Y. Nashed, and S. O. Hruszkewycz. Phase retrieval for bragg coherent diffraction imaging at high x-ray energies. *Phys. Rev. A*, 99:053838, May 2019.

- [15] I. Calvo-Almazan, M. Allain, **S. Maddali**, V. Chamard, and S. O. Hruszkewycz. Impact and mitigation of angular uncertainties in bragg coherent x-ray diffraction imaging. *Scientific Reports*, 9(1):6386, Apr 2019.
- [16] S. Kandel, **S. Maddali**, M. Allain, S. O. Hruszkewycz, C. Jacobsen, and Y. Nashed. Using automatic differentiation as a general framework for ptychographic reconstruction. *Opt. Express*, 27(13):18653–18672, Jun 2019.
- [17] N. Krishnamurthy, **S. Maddali**, J. A. Hawk, and V. N. Romanov. 9cr steel visualization and predictive modeling. *Computational Materials Science*, Mar 2019.
- [18] Yu-Feng Shen, **S. Maddali**, D. Menasche, A. Bhattacharya, G. S. Rohrer, and R. M. Suter. Importance of outliers: A three-dimensional study of coarsening in α -phase iron. *Phys. Rev. Materials*, 3:063611, Jun 2019.
- [19] A. Ulvestad, S. O. Hruszkewycz, M. V. Holt, M. O. Hill, I. Calvo-Almazan, S. Maddali, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, L. J. Lauhon, N. Rodkey, M. I. Bertoni, and M. E. Stuckelberger. Multimodal x-ray imaging of grain-level properties and performance in a polycrystalline solar cell. *Journal of Synchrotron Radiation*, 26(4), Jul 2019.
- [20] I. Calvo-Almazan, A. P. Ulvestad, E. Colegrove, T. Ablekim, M. V. Holt, M. O. Hill, **S. Maddali**, L. J. Lauhon, M. I Bertoni, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, S. O. Hruszkewycz, and M. E. Stuckelberger. Strain mapping of cdte grains in photovoltaic devices. *IEEE Journal of Photovoltaics*, pages 1–10, Oct 2019.
- [21] **S. Maddali**, I. Calvo-Almazan, J. Almer, P. Kenesei, J.-S. Park, R. Harder, Y. Nashed, and S. O. Hruszkewycz. Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high x-ray energies. *Scientific Reports*, 8(1):4959, Mar 2018.
- [22] S. O. Hruszkewycz, **S. Maddali**, C. P. Anderson, W. Cha, K. C. Miao, M. J. Highland, A. Ulvestad, D. D. Awschalom, and F. J. Heremans. Strain annealing of sic nanoparticles revealed through bragg coherent diffraction imaging for quantum technologies. *Phys. Rev. Materials*, 2:086001, Aug 2018.
- [23] A. Ulvestad, W. Cha, I. Calvo-Almazan, **S. Maddali**, S. M. Wild, E. Maxey, M. Dupraz, and S. O. Hruszkewycz. Bragg coherent modulation imaging: Strain- and defect- sensitive single views of extended samples, Jul 2018.
- [24] M. J. Highland, S. O. Hruszkewycz, D. D. Fong, C Thompson, P. H. Fuoss, I. Calvo-Almazan, S. Maddali, A. Ulvestad, E. Nazaretski, X. Huang, H. Yan, Y. S. Chu, H. Zhou, P. M. Baldo, and J. A. Eastman. In-situ synchrotron x-ray studies of the microstructure and stability of in2o3 epitaxial films. Applied Physics Letters, 111(16):161602, Oct 2017.
- [25] S. Maddali, S. Ta'asan, and R. M. Suter. Topology-faithful nonparametric estimation and tracking of bulk interface networks. Computational Materials Science, 125:382–340, Dec 2016.
- [26] L. Renversade, R. Quey, W. Ludwig, D. Menasche, **S. Maddali**, R. M. Suter, and A. Borbely. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy. *IUCrJ*, 3(1):32–42, Jan 2016.