PREDICTIVE ANALYTICS USING SAS BUAN 6337.003

FINAL PROJECT REPORT GROUP 9

NAVIN KARTHIK MURUGIAH (nxm171030)

DEEPAK ANTONY (dxa171830)

ARAVINDH SESHADRI (axs170332)

MAHAARAJAN MURUGAN GUNASEKARAN (mxm176530)

SWAMINATHAN SADANANDAM MULLAIVANANATHA (sxs172932)

INTRODUCTION

Facial tissue is one of the most commonly used products in the United States. Among all brands of facial tissues in the market, Kleenex is a pioneer with a relatively high market share. From the perspective of the brand manager of Kleenex, we have captured various insights in this report which would help Kleenex further consolidate its position in the market. We have also utilized analytical techniques to understand the prevailing market conditions of Kleenex facial tissues.

SALES TREND ACROSS WEEKS FOR THE YEAR 2001

To observe the sales trend across weeks for the year 2001 in both drug and grocery stores, we considered the top three brands in the market which are as follows,

- Kleenex
- Puffs
- Private Label

It can be clearly observed that Kleenex has the highest market share. Sales trend seems to increase at the start of winter season for Kleenex tissues. This may be because people are more prone to cold/flu during the winter season.

This is reiterated by the fact that sales of Kleenex variants - "Coldcare" and "Coldcare Ultra Comfort" increases from August and slowly drops as summer season approaches.

BUSINESS OBJECTIVES

- Recommend promotional strategies based on price, display and feature elasticities.
- To segment customers based on monetary value.
- To study brand choice preference of customers and understand customer characteristics.

PROBLEM STATEMENT - 1

Apply panel regression

- To determine the effects of price, display, feature and price reduction on the sales of Kleenex tissues.
- To determine price elasticity, display elasticity and feature elasticity of Kleenex tissues.
- To determine the effects of cross price elasticity and cross display elasticity of Puffs tissues on sales of Kleenex tissues.

Data Preparation:

Data of 1217 stores which sold Kleenex tissues for all 52 weeks were considered to get a balanced panel dataset.

Since the count of tissues may vary with respect to different UPCs across Kleenex brand, number of sheets was considered instead of number of units to ensure standardization. The number of sheets in a unit is calculated as follows.

Number of sheets in a unit = (Volume Equivalent corresponding to that unit) * 100

Average price per sheet was calculated for store, week and UPC combination.

To run panel regression, data had to be aggregated for store, week combination. For this purpose, the categorical variables such as display, feature and price reduction had to be made continuous by multiplying these variables with a weight.

Weighted Price is calculated as follows

Weighted Price =

Number of sheets of a Kleenex product sold in a week at a store

Number of sheets of all Kleenex products sold in the same week at the same store

X

Average Price Per Sheet of that product

Weighted Display is calculated as follows

Weighted Display =

Number of sheets of a Kleenex product sold in a week at a store Number of sheets of all Kleenex products sold in the same week at the same store

X

Display Indicator of that product

Weighted Feature is calculated as follows

Weighted Feature =

Number of sheets of a Kleenex product sold in a week at a store Number of sheets of all Kleenex products sold in the same week at the same store

X

Feature Indicator of that product

Weighted Price Reduction is calculated as follows

Weighted Price Reduction =

Number of sheets of a Kleenex product sold in a week at a store Number of sheets of all Kleenex products sold in the same week at the same store

X

Price Reduction Indicator of that product

After these calculations, data was aggregated for store, week combination.

Multicollinearity Check:

					Pa	rameter Esti	mates				
		Varia	Variable			Parameter Estimate	Standard Error	t Value	Pr > t	Variano Inflatio	
		Interd	Intercept			92253	1430.12498	64.51	<.0001		0
		WEIG	WEIGHTED_PRICE			-5052922	115034	-43.93	<.0001	1.345	33
		WEIG	HTED_FEAT	JRE	1	44405	1157.98823	38.35	<.0001	1.912	19
		WEIG	HTED_DISPL	.AY	1	54648	1552.08750	35.21	<.0001	1.129	29
	WEIGHTED_PRICE_REUDCTION			1	-22884	974.55730	-23.48	<.0001	1.987	41	
					Call	inearity Diag	modics				
					Coll	inearity Diag	produce				
							D				
		Condition					Proportion	of Variati	on		
Number	Eigenvalue	Condition Index	Intercept	WEIGHTED_P	RICI	WEIGHTE	•			PLAY W	EIGHTED_PRICE_REUDCTION
Number 1	Eigenvalue 3.11611		Intercept 0.00192		RICI 00190		•		ED_DISI	PLAY W	
Number 1 2	3.11611	Index		0.0		3	D_FEATURE		ED_DISI		0.02355
1	3.11611 0.98538	1.00000 1.77830	0.00192	0.0	00190	5	0.02384		0.0 0.1	2934	0.02355 0.02675
	3.11611 0.98538 0.65254	1.00000 1.77830 2.18525	0.00192 0.00502	0.0	00190	3 5	0.02384 0.11015		0.0 0.1	2254 24523	EIGHTED_PRICE_REUDCTION 0.02356 0.02675 0.05300 0.79170

For checking the presence of multicollinearity VIF and Condition Index were calculated. VIFs were not over 10 and Condition Index was not over 100 for any of the variables. These checks do not indicate the presence of multicollinearity among the variables.

Panel Regression:

• Hausman Test for Random Effects

The Hausman test is done to determine whether fixed effects model or random effects model is to be used for panel regression

NULL Hypothesis (H₀):

No Correlation between the error term (u_i) and the independent variables in the model. Random effects model is to be used

ALTERNATE Hypothesis (Ha):

Correlation is present between the error term (u_i) and the independent variables in the model. Fixed effects model is to be used

Hausman Test for Random Effects						
Coefficients	DF	m Value	Pr > m			
8	8	455.28	<.0001			

Since p-value of Hausman test is less than 0.05, there is convincing evidence to reject null hypothesis in favour of alternate hypothesis. Thus, fixed effects model needs to be used.

• Panel Regression Model (Two Way Fixed Effects):

Dependent Variable:

SHEETS SOLD PER WEEK AT A STORE

Independent Variables:

WEIGHTED PRICE PER SHEET, SQUARE OF WEIGHTED PRICE PER SHEET, WEIGHTED DISPLAY, WEIGHTED FEATURE, WEIGHTED PRICE REUDCTION, WEIGHTED FEATURE * WEIGHTED PRICE REUDCTION, WEIGHTED DISPLAY * WEIGHTED PRICE REUDCTION, WEIGHTED DISPLAY * WEIGHTED FEATURE * WEIGHTED PRICE REUDCTION

Parameter Estimates									
Variable	DF	Estimate	Standard Error	t Value	Pr > t	Label			
Intercept	1	159494.2	6005.0	26.56	<.0001	Intercept			
WEIGHTED_PRICE	1	-2.301E7	495013	-46.47	<.0001				
WT_PRICESQ	1	8.2992E8	18919024	43.87	<.0001				
WEIGHTED_DISPLAY	1	45859.38	1856.9	24.70	<.0001				
WEIGHTED_FEATURE	1	54302.72	1789.0	30.35	<.0001				
WEIGHTED_PRICE_REUDCTION	1	6006.493	811.4	7.40	<.0001				
WTFEATURE_WTPRRED	1	-45862.5	2532.8	-18.11	<.0001				
WTDISP_WTPRRED	1	-42295	3935.9	-10.75	<.0001				
WTDISP_WTFEATURE_WTPRRED	1	123099	4451.2	27.66	<.0001				

The MEANS Procedure									
Variable	N	Mean	Std Dev	Minimum	Maximum				
SHEETS_SOLD	63284	38141.50	58608.61	45.0000000	1753023.00				
WEIGHTED_PRICE	63284	0.0113843	0.0022203	0.0022976	0.0353333				
WEIGHTED DISPLAY	63284	0.0601911	0.1507541	0	1.0000000				
WEIGHTED_FEATURE	63284	0.1266824	0.2629678	0	1.0000000				
WEIGHTED_PRICE_REUDCTION	63284	0.2406279	0.3185022	0	1.0000000				

Check for Nonlinearity

Square term of weighted price in the panel regression equation is significant indicating the presence of non-linearity. The below residual plot of weighted price against total number of sheets sold confirms the presence of non-linear relationship between weighted price and sheets sold.

• Effects of Price, Display, Feature and Price Reduction on Sales

O WEIGHTED PRICE PER SHEET:

Nonlinear relationship between WEIGHTED PRICE PER SHEET and SHEETS SOLD PER WEEK AT A STORE indicates that sheets sold will decrease as price increases up to a certain price. Then the sheets sold will start to increase, as the price increases.

o WEIGHTED DISPLAY:

For every 1% increase in WEIGHTED DISPLAY, SHEETS SOLD PER WEEK AT A STORE increases by 54304 keeping other explanatory variables constant.

O WEIGHTED FEATURE:

For every 1% increase in WEIGHTED FEATURE, SHEETS SOLD PER WEEK AT A STORE increases by 45859 keeping other explanatory variables constant

O WEIGHTED PRICE REDUCTION:

If WEIGHTED PRICE REDUCTION increases by 1%, SHEETS SOLD PER WEEK AT A STORE increases by 6006 keeping other explanatory variables constant

o <u>Interaction between WEIGHTED FEATURE and WEIGHTED PRICE REDUCTION:</u>

Interaction between WEIGHTED FEATURE and WEIGHTED PRICE REDUCTION produces a cancellation effect on SHEETS SOLD PER WEEK AT A STORE.

o <u>Interaction between WEIGHTED DISPLAY and WEIGHTED PRICE REDUCTION:</u>

Interaction between WEIGHTED DISPLAY and WEIGHTED PRICE REDUCTION produces a cancellation effect on SHEETS SOLD PER WEEK AT A STORE.

Interaction between WEIGHTED DISPLAY, WEIGHTED FEATURE and WEIGHTED PRICE REDUCTION

Interaction between WEIGHTED DISPLAY, WEIGHTED FEATURE and WEIGHTED PRICE REDUCTION produces a synergistic effect on SHEETS SOLD PER WEEK AT A STORE.

• SELF ELASTICITIES:

O PRICE ELASTICITY:

Price Elasticity is given by

Price Elasticity =
$$\frac{\partial \text{ (SHEETS SOLD)}}{\partial \text{ (WEIGHTED PRICE)}}$$
 * Mean of SHEETS SOLD

= -1.22

Price Elasticity of -1.22 indicates that Kleenex tissues are price elastic. Thus, one percentage increase in price per sheet may bring down the sales of facial tissues by 1.22%

O DISPLAY ELASTICITY:

Considering only the individual effect of display

Display Elasticity is given by

Display Elasticity = ($\beta_{WEIGHTED\ DISPLAY}$) * (Mean of WEIGHTED DISPLAY/Mean of SHEETS SOLD)

```
= (45859.38) * (0.0601911/38141.50)
```

= 0.072

Considering the interaction effects of display and price reduction

Display Elasticity is given by

```
Display Elasticity = (\beta \text{ WEIGHTED DISPLAY/Mean of SHEETS SOLD}) * (Mean of WEIGHTED DISPLAY/Mean of SHEETS SOLD)
```

```
= (45859.38+6006.493) * (0.0601911/38141.50)
```

= 0.086

Display Elasticity is 0.072 considering the effect of only the display. On considering the effects of display and price reduction, display elasticity is 0.086. In both cases, Kleenex tissues were display inelastic. Thus, sales of Kleenex tissues is insensitive to its display.

o FEATURE ELASTICITY:

Considering only the individual effect of feature

Feature Elasticity is given by

```
Feature Elasticity = (\beta_{\text{WEIGHTED FEATURE}})* (Mean of WEIGHTED FEATURE/Mean of SHEETS SOLD)
```

```
= (54302.72) * (0.1266824/38141.50)
```

= 0.180

Considering the interaction effects of feature and price reduction

Feature Elasticity is given by

```
Feature Elasticity = (\beta_{\text{WEIGHTED FEATURE}} + \beta_{\text{PRICE REDUCTION}})^* (Mean of WEIGHTED FEATURE/Mean of SHEETS SOLD)
```

```
= (54302.72 + 6006.493) * (0.1266824/38141.50)
```

= 0.2

Feature Elasticity is 0.180 considering the effect of only the display. On considering the effects of feature and price reduction, feature elasticity is 0.2. In both cases, Kleenex tissues were feature inelastic. Thus, sales of Kleenex tissues is insensitive to its feature ads.

• **CROSS ELASTICITIES**

For calculating cross elasticities, data of PUFFS brand is considered as it has the second largest market share after KLEENEX.

Parameter Estimates									
Variable	DF	Estimate	Standard Error	t Value	Pr > t	Label			
Intercept	1	172284	6291.1	27.39	<.0001	Intercept			
WEIGHTED_PRICE	1	-2.428E7	530028	-45.81	<.0001				
WT_PRICESQ	1	8.8054E8	20462471	43.03	<.0001				
WEIGHTED_DISPLAY	1	46418.12	1942.9	23.89	<.0001				
WEIGHTED_FEATURE	1	55596.68	1852.5	30.01	<.0001				
WEIGHTED_PRICE_REUDCTION	1	6050.822	840.2	7.20	<.0001				
WTFEATURE_WTPRRED	1	-47575	2625.4	-18.12	<.0001				
WTDISP_WTPRRED	1	-42292.1	4108.4	-10.29	<.0001				
WTDISP_WTFEATURE_WTPRRED	1	135279.2	4674.1	28.94	<.0001				
WEIGHTED_PRICE_PG	1	-364376	77837.4	-4.68	<.0001				
WEIGHTED_FEATURE_PG	1	-15.9887	912.1	-0.02	0.9860				
WEIGHTED_DISPLAY_PG	1	-2725.79	1147.5	-2.38	0.0175				
WEIGHTED_PRRED_PG	1	830.4426	653.9	1.27	0.2041				

The MEANS Procedure							
Variable	N	Mean					
SHEETS_SOLD	60495	38389.71					
WEIGHTED_PRICE	60495	0.0113413					
WT_PRICESQ	60495	0.000133351					
WEIGHTED_DISPLAY	60495	0.0578660					
WEIGHTED_FEATURE	60495	0.1245820					
WEIGHTED_PRICE_REUDCTION	60495	0.2396853					
WEIGHTED_PRICE_PG	60495	0.0134553					
WEIGHTED_FEATURE_PG	60495	0.0689938					
WEIGHTED_DISPLAY_PG	60495	0.0362001					
WEIGHTED_PRRED_PG	60495	0.1781003					

O CROSS PRICE ELASTICITY:

Cross Price Elasticity is given by

Cross Price Elasticity =

(β $_{\text{WEIGHTED PRICE PG}}$ * (Mean of WEIGHTED PRICE PG/Mean of SHEETS SOLD of KLEENEX)

= (-364376) * (0.0134553/38389.71)

= - 0.1277

Cross Price Elasticity of -0.1277 indicates that sales of KLEENEX tissues is price inelastic with respect to PUFFS. Thus, sales of KLEENEX tissues is insensitive to increase or decrease in prices of PUFFs tissues.

O CROSS DISPLAY ELASTICITY:

Cross Display Elasticity is given by

Cross Display Elasticity =

(β WEIGHTED DISPLAY PUFFS) * (Mean of WEIGHTED DISPLAY PUFFS/Mean of SHEETS SOLD of KLEENEX)

= (-2872.52) * (0.0362001/38389.71)

= -0.0027

Display Elasticity of -0.0027 indicates that sales of KLEENEX tissues is display inelastic with respect to PUFFS. Thus, sales of KLEENEX tissues is insensitive to display of PUFFs tissues.

PROBLEM STATEMENT – 2

- Determine the most valuable customers of Kleenex by segmenting them using RFM technique.
- Analyse the demographic characteristics of these customers to gain insights.

RFM analysis is performed on the panelists of Grocery, Drug and MA stores. From the purchase information of each panelist across weeks for Kleenex tissues, the following metrics were calculated.

- Recency Difference between last purchase date and most recent date in the dataset for each customer.
- Frequency Count of number of weeks of purchase made by each customer in the dataset.
- Monetary Total dollar amount paid by each customer in the dataset.

Since high correlation of 0.89 is observed between Monetary and Frequency metrics, the customers were segmented based on their Monetary Value.

Customers who spent more than 80th percentile of monetary value were filtered and their characteristics were examined. These top 20% customers could be categorized as the most valuable customers, as they contribute to 54% of Kleenex's revenue.

To understand the demographics of these customers, buckets were created as follows.

Cutomer Demographics	Levels	Buckets	Dummy variable
	1,2,3	School	EDUC_MS
Male Education	4,5,6	College	EDUC_MC
	7,8	Graduate	EDUC_MG
	1,2,3	School	EDUC_FS
Female Education	4,5,6	College	EDUC_FC
	7,8	Graduate	EDUC_FG
Family Size	1,2,3	Regular	FAM_SIZE_L
railily size	4,5,6	Large	FAM_SIZE_R
	1	Young	AGE_MY
Male Age	2,3,4	Mid-Age	AGE_MM
	5,6	Elder	AGE_ME
	1	Young	AGE_FY
Female Age	2,3,4	Mid-Age	AGE_FM
	5,6	Elder	AGE_FE
	1,2,3	White Collar - High	OCC_MWH
	4,5	White Collar - Low	OCC_MWL
Male Occupation	6,7,8,9	Blue Collar	OCC_MB
	10,13	Unemployed	OCC_MNO
	0	Other	OCC_MO
	1,2,3	White Collar - High	OCC_FWH
	4,5	White Collar - Low	OCC_FWL
Female Occupation	6,7,8,9	Blue Collar	OCC_FB
	10,13	Unemployed	OCC_FNO
	0	Other	OCC_FO
	1,2,3,4	Low	FAM_INCOME_L
Income	5,6,7,8	Medium	FAM_INCOME_M
ilicome	9,10,11	High	FAM_INCOME_H
	12	Very High	FAM_INCOME_VH
	1,2,3	One	CHILD_1
Child	4,5,6	Two	CHILD_2
Ciliu	7	Three	CHILD_3
	8	Zero	CHILD_0
Pets	0	No Pets	PETS_0
Pets	>0	Pets (Dog/Cat)	PETS_GR_1

Variable	N	Mean	Std Dev	Minimum	Maximum
PANID	448	2028035.8	1039875.7	1100016	3842740
MONETARY	448	37.042701	23.942909	19.41	320.66
FREQUENCY	448	15.828125	9.189743	3	73
DAY	448	27.125	34.55874	0	308
FAM_SIZE_L	448	0.3125	0.4640306	0	1
FAM_SIZE_R	448	0.6875	0.4640306	0	1
FAM_INCOME_L	448	0.046875	0.2116074	0	1
FAM_INCOME_M	448	0.4441964	0.4974317	0	1
FAM_INCOME_H	448	0.3995536	0.4903542	0	1
FAM_INCOME_V	448	0.109375	0.3124581	0	1
AGE_MY	448	0.0044643	0.0667405	0	1
AGE_MM	448	0.3995536	0.4903542	0	1
AGE_ME	448	0.5959821	0.4912495	0	1
AGE_FY	448	0	0	0	0
AGE_FM	448	0.4464286	0.4976776	0	1
AGE_FE	448	0.5535714	0.4976776	0	1
EDUC_MS	448	0.0290179	0.1680442	0	1
EDUC_MC	448	0.59375	0.4916814	0	1
EDUC_MG	448	0.3772321	0.4852356	0	1
EDUC_FS	448	0.0245536	0.1549331	0	1
EDUC_FC	448	0.6808036	0.4666864	0	1
EDUC_FG	448	0.2946429	0.4563917	0	1
OCC_MWH	448	0.3883929	0.4879296	0	1
OCC_MWL	448	0.046875	0.2116074	0	1
OCC_MB	448	0.2165179	0.4123316	0	1
OCC_MNO	448	0.3415179	0.4747489	0	1
OCC_MO	448	0.0066964	0.0816484	0	1
OCC_FWH	448	0.4107143	0.4925135	0	1
OCC_FWL	448	0.1607143	0.3676778	0	1
OCC_FB	448	0.0691964	0.2540716	0	1
OCC_FNO	448	0.3549107	0.4790212	0	1
OCC_FO	448	0.0044643	0.0667405	0	1
CHILD_1	448	0.1852679	0.388949	0	1
CHILD_2	448	0.0803571	0.2721492	0	1
CHILD_3	448	0.0044643	0.0667405	0	1
CHILD_0	448	0.7299107	0.4445021	0	1
PETS_0	448	0.5066964	0.5005141	0	1
PETS_GR_1	448	0.4933036	0.5005141	0	1

Means of the dummy variables created were studied to get insights on customer demographics. The following characteristics were observed in the top 20% customers,

- Family with size ranging from 1 to 3.
- Family with income ranging from \$20,000 to \$55,000 per year.
- People with age greater than 55 (includes both male and female).
- College Students (includes both male and female).
- Professional/Manager/Administrator/Sales Person (includes both male and female).
- Family with no children and whose size is 2.

We also examined the customers having low recency (less than 20th percentile of recency value) and high monetary (greater than 60th Percentile of monetary value) values. There were 55 customers in this category. These customers may be brought into the high recency fold by targeting them with coupons, offers and special discounts.

PROBLEM STATEMENT – 3

• To study brand preferences of customers and the factors affecting their preferences.

The market for facial tissues is majorly dominated by three brands – Kleenex, Puffs and Private Label. They have a combined market share of around 86%. The multinomial logit model is used to analyse the factors that influence the brand choice of customers across these three brands across drug and grocery stores.

The dependent variable is the "decision of brand" and the independent variables are as follows:

- Weighted Price Price
- Weighted Display D
- Weighted Promotion of product PR
- Weighted Feature F
- Family Size
- Income of Head of Household
- Age group of male head of household
- Age group of female head of household
- Number of pets owned (cats and dogs)

Weighted Price, Weighted Display, Weighted Feature and Weighted Promotion were calculated for store, week combination across all the three brands.

The following dummy variables were created to study the customer demographics, which will help in getting insights about the factors affecting their preferences. Private Label brand is taken as reference.

Demographics	Dummy Variables	Meaning		
	BC1	Kleenex		
Brand Choice of Customer	BC2	Puffs		
	BC3	Private Label		
	FAM1	Family Size of customers choosing Kleenex		
Family Size	FAM2	Family Size of customers choosing Puffs		
	FAM3	Family Size of customers chosing Private Label		
	INC1	Income of Head of Household choosing Kleenex		
Income of Head of Household	INC2	Income of Head of Household choosing Puffs		
	INC3	Income of Head of Household choosing Private Label		
	FAGEGP1	Age group of female head of household choosing Kleenex		
Age group of female head of household	FAGEGP2	Age group of female head of household choosing Puffs		
	FAGEGP3	Age group of female head of household choosing Private Label		
	MAGEGP1	Age group of male head of household choosing Kleenex		
Age group of female head of household	MAGEGP2	Age group of male head of household choosing Puffs		
	MAGEGP3	Age group of male head of household choosing Private Label		
	NPETS1	Number of pets owned by customers choosing Kleenex		
Number of pets owned (cats and dogs)	NPETS2	Number of pets owned by customers choosing Puffs		
	NPETS3	Number of pets owned by customers choosing Private label		

Goodness-of-Fit Measures					
Measure Value Formula					
Likelihood Ratio (R)	11207	2 * (LogL - LogL0)			
Upper Bound of R (U)	58490	- 2 * LogL0			
Aldrich-Nelson	0.2963	R / (R+N)			
Cragg-Uhler 1	0.3436	1 - exp(-R/N)			
Cragg-Uhler 2	0.3866	(1-exp(-R/N)) / (1-exp(-U/N))			
Estrella	0.3733	1 - (1-R/U)^(U/N)			
Adjusted Estrella	0.3724	1 - ((LogL-K)/LogL0)^(-2/N*LogL0)			
McFadden's LRI	0.1916	R/U			
Veall-Zimmermann	0.4311	(R * (U+N)) / (U * (R+N))			

According to McFadden's LRI, 19% of variation in the brand choice is explained by the independent variables. Discrete Response Profile indicates that, Kleenex is bought by the highest number of panelists followed by Puffs and Private Label.

The SAS System									
The MDC Procedure									
Conditional Logit Estimates									
		Paramete	er Estimates	5					
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr > t				
PRICE	1	-75.3021	4.7581	-15.83	<.0001				
BC1	1	1.4867	0.1594	9.33	<.0001				
BC2	1	0.9334	0.1888	4.94	<.0001				
PR	1	-0.0439	0.0322	-1.36	0.1726				
D	1	0.5890	0.0357	16.50	<.0001				
F	1	0.6249	0.0321	19.48	<.0001				
FAM1	1	-0.1699	0.0182	-9.35	<.0001				
FAM2	1	-0.1560	0.0216	-7.21	<.0001				
INC1	1	0.1153	0.006658	17.31	<.0001				
INC2	1	0.0703	0.007865	8.94	<.0001				
FAGEGP1	1	-0.0280	0.0188	-1.49	0.1355				
FAGEGP2	1	-0.0604	0.0220	-2.75	0.0060				
MAGEGP1	1	-0.0619	0.0182	-3.40	0.0007				
MAGEGP2	1	-0.0211	0.0215	-0.98	0.3257				
NPETS1	1	-0.0303	0.0158	-1.92	0.0544				
NPETS2	1	-0.0310	0.0188	-1.65	0.0985				

Almost all variables are statistically significant at the 95% confidence level except – PR, NPETS2, MAGEGP2, FAGEGP1.

Keeping other independent variables constant, the following insights were obtained from MDC model.

- 1. As the family size increases, the probability of buying private label increases; smaller families choose Kleenex while larger families choose Private Labels
- 2. Households in the high-income category tend to choose Kleenex over the other brands.
- 3. Households having older female as their head prefer Private Labels over Puffs.
- 4. Households having older male as their head prefer Private Label over Kleenex brand
- 5. Households with less number or no pets prefer Kleenex facial tissues over other brands.
- 6. Promotion through price reduction does not seem to have any effect on brand choice.

KLEENEX	PUFFS	PRIVATE LABEL
	KLEENEX	KLEENEX PUFFS

Preference		
	High	
	Medium	
	Low	
	NA	

Frequency Percent Row Pct Col Pct	Table of PREDICT by DECISION			
	PREDICT	DECISION		
		0	1	Total
	0	42955	10285	53240
	1.0	53.79	12.88	66.67
		80.68	19.32	
		80.68	38.64	
	1	10285	16335	26620
		12.88	20.45	33.33
		38.64	61.36	
		19.32	61.36	
	Total	53240	26620	79860
		66.67	33.33	100.00

The accuracy of prediction / Prediction power of the model = ((42955 + 16335) / 79860) * 100

= 74.24%

RECCOMENDATIONS

- From RFM analysis, we observed that 55 panelists have high monetary and low recency values.
 - Coupons and discounts targeting these households may bring them back into Kleenex fold.

An insight gained from RFM analysis is that the top 20% of customers contribute to 54% of Kleenex's revenue.

- A loyalty program for these customers can be devised by Kleenex to retain its prevailing market share.
- From the Multinomial Logit model, we found out that following are the characteristics of customers preferring Kleenex.

It can be observed that small family, high income, younger people and households with less/zero pets prefer Kleenex more than any other brand.

- Periodic feedbacks can be obtained from these customers to understand their level of satisfaction and act appropriately in case of quality or pricing issues. This will aid Kleenex in retaining the market share.
- Performing panel regression gave us the following insights

Sales of Kleenex tissues is sensitive to changes in its price. Decreasing price by 1% may increase sales by 1.22%.

Sales of Kleenex tissues is insensitive to changes in display or feature percentages of Puffs - brand which is trailing Kleenex in the market. This confirms that Kleenex is the undisputed market leader.

Sales of Kleenex tissues is insensitive to changes in its display or feature.

 Though the sales of Kleenex tissues insensitive to changes in its display or feature percentages, Kleenex still needs do a certain level of display or feature promotions.
 This might help them retain their existing market share.