Formelsammlung

Eike Osmers

5. November 2020

Inhaltsverzeichnis

1 Darstellungskonvention

Skalare Variablen in Kursivschrift: $\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}$

Vektorielle Variablen mit einem Pfeil über der Variable: \vec{a}

Variablen für Matrizen in fetter Schrift: A

Komplexe Variablen unterstrichen:

2 Analysis

3 Vektoranalysis

3.1 Vektoralgebra

Skalar produkt

 φ ist der kleinere von \vec{A} und

 \vec{B} eingeschlossene Winkel.

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \cos \varphi$$

 $\vec{A}\bot\vec{B}$: $\vec{A}\cdot\vec{B}$ =0

${\bf Kreuzprodukt}$

 φ ist der kleinere von \vec{A} und

 \vec{B} eingeschlossene Winkel.

 \vec{n} zeigt in Richtung der

Rechte-Hand-Regel.

$$\vec{A}\times\vec{B}=||\vec{A}||\cdot||\vec{B}||\cdot\sin\varphi\cdot\vec{n}$$

 $\vec{A} \parallel \vec{B} : \vec{A} \times \vec{B} = \vec{0}$

Richtungsvektor

Zeigt von \vec{A} auf \vec{B} .

$$\vec{r} = \vec{B} - \vec{A}$$

Tangentenvektor

 $\frac{\partial \vec{x}}{\partial u}$

Fächennormal

Steht immer senkrecht auf der Fläche.

$$\vec{n} = \frac{\partial \vec{x}}{\partial u} \times \frac{\partial \vec{x}}{\partial v}$$

3.2 Koordinatensysteme

	Kartesische Koordinaten	Zylinderkoordinaten	${\bf Kugelkoordinaten}$
Parametrisierung	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos(\varphi) \\ \rho \cos(\varphi) \\ z \end{pmatrix} $ $ \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \operatorname{atan2}(\frac{y}{x}) \\ z \end{pmatrix} $	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cos(\varphi) \sin(\theta) \\ r \sin(\varphi) \sin(\theta) \end{pmatrix} $ $ \begin{pmatrix} \theta \\ \theta \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \\ \arccos(2 \frac{x^2 + y^2 + z^2}{2}) \end{pmatrix} $
Definitionsbereich	$\begin{array}{l} -\infty < x < \infty \\ -\infty < y < \infty \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq \rho < \infty \\ 0 \leq \varphi \leq 2\pi \\ -\infty < z < \infty \end{array}$	$\begin{array}{l} 0 \leq r < \infty \\ 0 \leq \theta \leq \pi \\ 0 \leq \varphi \leq 2\pi \end{array}$
Transformationsmatrix	$\mathbf{S} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \cos(\varphi)\cos(\theta) & -\sin(\varphi) \\ \sin(\varphi)\sin(\theta) & \sin(\varphi)\cos(\theta) & \cos(\varphi) \\ \cos(\theta) & -\sin(\theta) & 0 \end{bmatrix}$
inverse Transformationsmatrix	$\mathbf{S^{-1}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi) & \sin(\varphi) & 0 \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\mathbf{S^{\text{-}1}} = \begin{bmatrix} \cos(\varphi)\sin(\theta) & \sin(\varphi)\sin(\theta) & \cos(\theta) \\ \cos(\varphi)\cos(\theta) & \sin(\varphi)\cos(\theta) & -\sin(\theta) \\ -\sin(\varphi) & \cos(\varphi) & 0 \end{bmatrix}$
Transformation von Vektoren	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$	$ \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} $ $ \begin{pmatrix} a_p \\ a_{\varphi} \\ a_z \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} $	$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \mathbf{S} \cdot \begin{pmatrix} a_r \\ a_\theta \\ a_{\varphi} \end{pmatrix}$ $\begin{pmatrix} a_r \\ a_{\theta} \\ a_{\varphi} \end{pmatrix} = \mathbf{S}^{-1} \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$
Einheitsvektoren in kart. Koordinaten Bogenlängen-Element Linienelement entlang der Koordinatenlinie	$\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}\rho^2 + \rho^2\mathrm{d}\varphi^2 + \mathrm{d}z^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2 + r^2\sin^2(\theta)\mathrm{d}\varphi^2$
Flächenelement der Koordinatenseitenfläche			
Volumenelement	$\mathrm{d}V = \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z$	$\mathrm{d}V = \rho\mathrm{d}\rho\mathrm{d}\varphi\mathrm{d}z$	$\mathrm{d}V = r^2 \sin^2(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi$

3.3 Differentialoperatoren

divgradcurl

	Kartesische Koordinaten	Zylinderkoordinaten	${\bf Kugelkoordinaten}$
Nabla	$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$	$\nabla = \begin{pmatrix} \frac{\partial}{\partial \rho} \\ \frac{1}{\rho} \frac{\partial}{\partial \phi} \\ \frac{\partial}{\partial z} \end{pmatrix}$	$\nabla = \begin{pmatrix} \frac{\partial}{\partial \dot{\theta}} \\ \frac{1}{I} \frac{\partial}{\partial \dot{\theta}} \\ \frac{1}{I} \frac{\partial}{\partial \dot{\theta}} \\ \frac{\partial}{\partial \dot{\phi}} \end{pmatrix}$
Gradient (cines Skalarfeldes)	$\nabla a = \operatorname{grad} \ a = \begin{pmatrix} \frac{\partial a}{\partial x} \\ \frac{\partial a}{\partial y} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$\nabla a = \text{grad } a = \begin{pmatrix} \frac{\partial a}{\partial \rho} \\ \frac{1}{\rho} \frac{\partial a}{\partial \theta} \\ \frac{\partial a}{\partial z} \end{pmatrix}$	$ abla a = \operatorname{grad} \ a = egin{pmatrix} rac{\partial_a}{1 rac{\partial_a}{\partial a}} \\ rac{1}{1} rac{\partial_a}{\partial a} rac{\partial_a}{\partial arphi} \end{pmatrix}$
Divergenz $\mathbb{R}^3 \to \mathbb{R}$	$\nabla \cdot \vec{a} = \text{div } \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$	$\begin{split} \nabla \cdot \vec{a} &= \text{div } \vec{a} = \\ \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho a_{\rho}) + \frac{1}{\rho} \frac{\partial a_{\theta}}{\partial \theta} + \frac{\partial a_{z}}{\partial z} \end{split}$	$\begin{split} \nabla \cdot \vec{a} &= \text{div } \vec{a} = \\ \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 a_r) + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) a_\theta \right) + \frac{1}{r \sin(\theta)} \frac{\partial a_\varphi}{\partial \varphi} \end{split}$
Rotation $\mathbb{R}^3 o \mathbb{R}^3$	$\nabla \times \vec{a} = \text{rot } \vec{a} = \begin{cases} \frac{\partial a_x}{\partial y} - \frac{\partial a_y}{\partial z} \\ \frac{\partial a_z}{\partial z} - \frac{\partial a_z}{\partial z} \\ \frac{\partial a_z}{\partial z} - \frac{\partial a_z}{\partial y} \end{cases}$		$\begin{split} \nabla \times \tilde{a} &= \text{rot } \tilde{a} = \\ \frac{1}{r} \begin{pmatrix} \frac{1}{\sin(\varphi)} \left(\frac{\partial}{\partial \varphi} (\sin(\varphi) a_{\theta}) - \frac{\partial a_{\varphi}}{\partial \theta} \right) \\ \frac{\partial}{\partial r} (r a_{\varphi}) - \frac{\partial a_{z}}{\partial \varphi} \\ \frac{1}{\sin(\varphi)} \frac{\partial a_{z}}{\partial \theta} - \frac{\partial}{\partial r} (r a_{\theta}) \end{pmatrix} \end{split}$

3.4 Integralsätze

$$\begin{array}{ll} \textbf{Stokes} & \displaystyle \oint_{\partial A} \vec{F} \, \mathrm{d}\vec{x} = \iint_A \nabla \times \vec{F} \, \mathrm{d}\vec{A} \\ \\ \textbf{GauB} & \displaystyle \oint_{\partial V \ ist \ die \ Oberfläche \ des \ Volumens \ V} & \displaystyle \oint_{\partial V} \vec{F} \, \mathrm{d}\vec{A} = \iiint_V \nabla \cdot \vec{F} \, \mathrm{d}V \\ \end{array}$$

3.5 Was noch?

(Wie löst man Kurven- und Oberflächenintegrale)

4 Komplexe Funktionen

5 Lineare Algebra

5.1 Basiswechsel

6 Signale und Systeme

6.1 Kontinuierliche Signale

Energie eines Signals

Energiesignal:

endl. Energie, keine Leistung

$$E_x = \int_{\vec{x}_1}^{\vec{x}_2} |x(t)|^2 \,\mathrm{d}t$$

(mittlere) Leistung eines Signals

Leistungssignal:

endl. Leistung, unendl. Energie

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

6.1.1 Fourier-Transformation

	$f(t) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kt}{T}\right) + b_k \sin\left(\frac{2\pi kt}{T}\right) \right)$
Relle Fourierreihe	$a_0 = \frac{1}{T} \int_0^T f(t) \mathrm{d}t$
i.d.R.: $T=2\pi$	$a_k = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi kt}{T}\right) dt$
	$b_k = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi kt}{T}\right) dt$
Symmetrieeigenschaften	$a_k = 0 \Leftrightarrow f(t)$ ungerade $b_k = 0 \Leftrightarrow f(t)$ gerade
Komplexe Fourierreihe	$f(t) = \sum_{k=1}^{\infty} \left(c_k e^{\frac{j2\pi kt}{T}} \right)$
i.d.R.: $T=2\pi$	$c_k = \frac{1}{T} \int_0^T f(t) e^{-\frac{j2\pi kt}{T}} dt$

Fourier-Transformation
$$F(\mathrm{j}\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t) \cdot \mathrm{e}^{-\mathrm{j}\omega t} \, \mathrm{d}t$$
 inverse Fourier-Transformation
$$f(t) = \mathcal{F}^{-1}\{F(\mathrm{j}\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\mathrm{j}\omega) \cdot \mathrm{e}^{\mathrm{j}\omega t} \, \mathrm{d}\omega$$

$$f(t) \text{ reell: } \Re\{F(\mathrm{j}\omega)\} \text{ gerade, } \Im\{F(\mathrm{j}\omega)\} \text{ ungerade}$$

$$f(t) \text{ gerade: } \Im\{F(\mathrm{j}\omega)\} = 0$$

$$f(t) \text{ ungerade: } \Re\{F(\mathrm{j}\omega)\} = 0$$

$$Konvergenzbedingung \\ f(t) \text{ muss mind. quadratintegrierbar sein.}$$

$$\int_{-\infty}^{\infty} |f(t)|^2 \, \mathrm{d}t < \infty$$

$$f(bt) \longrightarrow \frac{1}{|b|} F\left(\frac{\mathrm{j}\omega}{b}\right)$$

$$Verschiebungssatz$$

$$f(t-t_0) \longrightarrow \mathrm{e}^{-\mathrm{j}\omega t_0} F(\mathrm{j}\omega)$$

$$Phasenverschiebung im Zeitbereich$$

$$f(t-t_0) \longrightarrow \mathrm{e}^{-\mathrm{j}\omega t_0} F(\mathrm{j}\omega)$$

$$Modulationssatz$$

$$Modulationssatz$$

$$\mathrm{e}^{\mathrm{j}\omega_0 t} f(t) \longrightarrow \mathrm{e}^{-\mathrm{j}\omega t_0} F(\mathrm{j}\omega - \omega_0)$$

Verschiebung im Frequenzbereich

6.1.2 Laplace-Transformation

komplexe Frequenz

σ: Dämpfung/Verstärkung

 ω : Frequenz

$$s=\sigma+\mathrm{j}\omega$$

Einseitige Laplace-Transformation

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) e^{-st} dt$$

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$$

inverse Laplace-Transformation

Alternativ: Rücktransformation mittels Korrespondenz-Tabelle

ggf. Polydivision oder Partialbruchzerlegung notwendig

Konvergenzbedingung

$$\int_{-\infty}^{\infty} |f(t) e^{-st}|^2 dt < \infty$$

Verschiebungssatz

$$f(t-t_0) \circ - \bullet e^{-st_0} F(s)$$

Dämpfungssatz

$$e^{bt} f(t) \circ - F(s-b)$$

Integrationssatz

$$\int_0^t f(\tau) \, \mathrm{d}\tau \circ - \bullet \frac{1}{s} F(s)$$

Differentiationssatz

$$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} \circ - \bullet s^n F(s) - \sum_{k=0}^{n-1} s^{n-k-1} \frac{\mathrm{d}^k f(0)}{\mathrm{d}t^k}$$

Multiplikationssatz

$$t^k f(t) \circ - \bullet (-1)^k \frac{\mathrm{d}^k F(s)}{\mathrm{d}s^k}$$

Anfangswertsatz

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$$

Endwertsatz

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s)$$

6.2 Zeitdiskrete Signale

$$N = N_2 - N_1 + 1$$

Faltungssumme

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[h-k]$$
$$= \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Zirkulare Zeitumkehr

entlang eines Kreises mit Umfang $N\,-\,1$

$$y[n] = x [-n \mod N]$$

Zirkulare Verschiebung

$$y[n] = x \left[(n - n_0) \bmod N \right]$$

Energie eines Signals

Energiesignal:

endl. Energie, keine Leistung

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

mittlere Leistung einer periodischen Folge

Leistungssignal:

endl. Leistung, unendl. Energie

$$P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$$

mittlere Leistung einer aperiodischen Folge

Leistungssignal:

endl. Leistung, unendl. Energie

$$P_x = \lim_{k \to \infty} \frac{1}{2k+1} \sum_{n=-k}^{k} |x[n]|^2$$

6.2.1 z-Transformation

Zur Angabe der z-Transformierten gehört immer die Angabe des Konvergenzgebietes (Region of Convergence, RoC), da es sonst keine eindeutige Umkehrung der z-Transformation gibt.

	Transformation	Konvergenzgebiet	
z-Transformation Geometr. Reihe hilft oft	$X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$	R_x	
inverse z-Transformation $\it C$ muss um den Ursprung und im Konvergenzgebiet von $\it X(z)$ liegen.	$x[n] = \mathcal{Z}^{-1}{X(z)} = \frac{1}{j2\pi} \oint_C X(z) z^{n-1} dz$		
Zeitverschiebung	$x[n-n_0] \circ - \bullet z^{-n_0} X(z)$	$R_x, \mathrm{evtl.}$ Änderung bei $z=0$ und $z=\infty$	
Zeitumkehr	$x[-n] \circ - \bullet X\left(\frac{1}{z}\right)$	$\frac{1}{Rx}$	
Dämpfungssatz	$a^n x[n] \circ \longrightarrow X\left(\frac{z}{a}\right)$	$ a R_x$	
Multiplikations satz	$nx[n] \circ - z \frac{\mathrm{d}X(z)}{\mathrm{d}z}$	$R_x, {\rm evtl.}$ Änderung bei $z=0$ und $z=\infty$	
Anfangswertsatz	$\lim_{n\to 0} x[n] \circ -\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!- \lim_{z\to \infty} X(z)$		
Endwertsatz	$\lim_{n\to\infty}x[n] \circ \longrightarrow \lim_{z\to 1}(z-1)X(z)$		

to-do: Stabilität der z-Transformation

6.3 Zeit- & Wertediskrete Signale

7 Elektrische Netzwerke

Modified Node Analysis (PaBe Kochrezept im Ordner)

7.1 passive Bauelemente

Ersatzschaltbilder von R und C und L

0. Ordnung R: R

1. Ordnung R: L+R oder C——R

2. Ordnung R: (R——C)+L oder (L+R)——C

1. Ordnung C: C+R oder C——R

1. Ordnung L: L + R

Güte Reihen- und Parallelschwingkreis

7.2 Netzwerkparameter

siehe PaBe Kapitel 5

8 Klassische Elektrodynamik

Georg.Felder Marinescu

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Skalare Größe	Vektorielle Größe	
Coulomb wheek Kraft genetz Coulomb wheek Kraft genetz Coulomb wheek Kraft genetz $F_{C} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\eta \cdot Q}{r^2} \qquad \qquad F_{C_{12}} = \frac{\eta \cdot Q}{4\pi\epsilon_0} \cdot \frac{\mathcal{F}_{C_{12}}}{ \mathcal{F}_{C_{12}} } = \frac{\eta \cdot Q}{4\pi\epsilon_0} \cdot$				Differentielle Form	Integrale Form
Coulomb Sches Kraftgesetz $F_{C} = \frac{1}{4\pi c_0} \cdot \frac{q_i q_2}{r^2} \qquad \qquad$		Maxwell Gleichungen			
Elektrische Spannung		Elektrostatik			
Elektrische Felstlicke $ \vec{E}(\vec{x}) = -\operatorname{grad}(\varphi_{n}) \qquad \vec{E}(\vec{x}) = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{q_{1}}{4\pi \epsilon_{0}}. \vec{x} ^{2} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}}. \vec{F}_{Cii} ^{2} = \frac{\vec{F}_{Cii}}{q_{2}}. \vec{F}$					
Elektrische Felstlicke $ \vec{E}(\vec{x}) = -\operatorname{grad}(\varphi_{n}) \qquad \vec{E}(\vec{x}) = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{q_{1}}{4\pi \epsilon_{0}}. \vec{x} ^{2} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}} = \frac{\vec{F}_{Cii}}{q_{2}}. \vec{F}_{Cii} ^{2} = \frac{\vec{F}_{Cii}}{q_{2}}. \vec{F}$			$F_C = \frac{1}{4-\epsilon} \cdot \frac{q_1q_2}{2}$		$\vec{F}_{C_{12}} = \frac{q_1q_2}{q_1} \cdot \frac{x_2 - x_1}{ x - x_1 _3}$
$\begin{split} \left[\mathcal{E}\right] &= \frac{V}{m} & \tilde{\mathcal{E}}(\vec{x}) = -\operatorname{grad}(\varphi_{r}) \tilde{\mathcal{E}}(\vec{x}) = \frac{\varphi_{r_{0}}}{q_{2}} = \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}$	n-igen von einander weg. n > 2: Superposition		$4\pi\varepsilon_0$ r^-		$4\pi\varepsilon_0 x_2 - x_1 ^{\alpha}$
$\begin{split} \left[\mathcal{E}\right] &= \frac{V}{m} & \tilde{\mathcal{E}}(\vec{x}) = -\operatorname{grad}(\varphi_{r}) \tilde{\mathcal{E}}(\vec{x}) = \frac{\varphi_{r_{0}}}{q_{2}} = \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{4\pi \varepsilon_{0}} \ \mathbf{E}(\vec{x})\ _{2} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}}{q_{2}} \\ &= \frac{\varphi_{r_{0}}}{q_{2}} + \frac{\varphi_{r_{0}}$					
Elektrische Potential(feld) $ \varphi_{c} = V $ $ \varphi_{c}(\vec{x}) = \frac{q_{1}}{4\pi g_{0}} \cdot \frac{1}{ \vec{x} - \vec{x}_{1} } $ Elektrische Spannung $ U_{12} = \varphi_{c}(\vec{x}_{2}) - \varphi_{c}(\vec{x}_{1}) $ $ = -\int_{\beta_{c}}^{\beta_{c}} E d\vec{x} $ Linienladungsdichte $ \lambda = \frac{dq_{c}}{ds} $	Elektrische Feldstärke			Ē(₫) — weed()	$\vec{F}_{C(\vec{x})} = \vec{F}_{C_{12}} = q_1 = \vec{x} - \vec{x}_1$
Elektrische Potential(feld) $ \varphi_{s}[=Y] = \frac{q_{1}}{4\pi n_{0}} \cdot \frac{1}{\ \mathcal{I} - \mathcal{I}_{s}\ } $ Elektrische Spannung $ \psi_{s}(\mathcal{I}) = \frac{q_{1}}{4\pi n_{0}} \cdot \frac{1}{\ \mathcal{I} - \mathcal{I}_{s}\ } $ Elektrische Spannung $ U_{1} = \varphi_{s}(\mathcal{I}_{2}) - \varphi_{s}(\mathcal{I}_{1}) $ $ = -\int_{\mathcal{I}_{s}}^{d_{s}} \mathcal{E} dx $ Linienladungsdichte $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \int \lambda ds $ Elektrische Spannung $ \lambda = \frac{dq_{s}}{ds} \qquad q_{s} = \frac$	$ \vec{E} = \frac{v}{m}$			$E(x) = -\operatorname{grad}(\varphi_e)$	$E(x) = \frac{1}{q_2} = \frac{1}{4\pi \epsilon_0} \cdot \frac{1}{ \vec{x} - \vec{x}_1 }$
$\begin{aligned} \varphi_{\epsilon} &= V \\ \text{Window Parametric and Associated Higher Spanning} \\ & & \varphi_{\epsilon}(\vec{x}) = \frac{q_1}{4\pi g_0} \cdot \frac{1}{ \vec{x} - \vec{x}_1 } \\ & & U_{12} = \varphi_{\epsilon}(\vec{x}_2) - \varphi_{\epsilon}(\vec{x}_1) \\ & & U_{12} = \varphi_{\epsilon}(\vec{x}_2) - \varphi_{\epsilon}(\vec{x}_1) \\ & & - \int_{\beta_{\epsilon}}^{\beta_{\epsilon}} \mathcal{E} d\vec{x} \end{aligned}$ Linicelladungsdichte $ & \lambda = \frac{dq_{\epsilon}}{ds} \qquad q_{\epsilon} = \int \lambda ds $ Elächendungsdichte $ & \beta = \frac{dq_{\epsilon}}{ds} \qquad q_{\epsilon} = \int \sigma dA $ Volumenladungsdichte $ & \sigma = \frac{dq_{\epsilon}}{dA} \qquad q_{\epsilon} = \int \sigma dA $ Volumenladungsdichte $ & \theta = \frac{dq_{\epsilon}}{ds} \qquad q_{\epsilon} = \int \sigma dA $					
Elektrische Spannung $ \begin{aligned} & \varphi_{c}(\vec{r}) = \frac{q_{r_{0}}}{ \vec{x}-\vec{x}_{1} } \\ & U_{1} = \varphi_{c}(\vec{x}_{2}) - \varphi_{c}(\vec{x}_{1}) \\ & U_{1} = \varphi_{c}(\vec{x}_{2}) - \varphi_{c}(\vec{x}_{1}) \\ & = -\int_{z_{1}}^{z_{2}} \mathcal{E} d\vec{x} \end{aligned}$ Linienladungsdichte $ \lambda = \frac{dq_{c}}{ds} \qquad q_{c} = \int \lambda ds $ Elikchenladungsdichte $ \varphi = \frac{dq_{c}}{ds} \qquad q_{c} = \iint \sigma dA $ Volumenladungsdichte $ dq_{c} \qquad \iiint_{z=z_{c}} \sigma dA $					
Elektrische Spannung			q ₁ 1		
Elektrische Spannung $U = V$ $= -\int_{B}^{d_{2}} \mathcal{E} d\vec{s}$ $= \int_{B}^{d_{2}} \mathcal{E} d\vec{s}$ Linienladungsdichte $\lambda = \frac{dq_{c}}{ds}$ $q_{c} = \int \lambda ds$ Flächenladungsdichte $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \int_{B}^{d_{2}} \sigma dA$ Wolumenladungsdichte $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \int_{B}^{d_{2}} \sigma dA$	Gleiches Potential auf AquipotentialHicken		$\varphi_e(x) = \frac{1}{4\pi\epsilon_0} \cdot \frac{ \vec{x} - \vec{x}_1 }{ \vec{x} - \vec{x}_1 }$		
Elektrische Spannung $U = V$ $= -\int_{B}^{d_{2}} \mathcal{E} d\vec{s}$ $= \int_{B}^{d_{2}} \mathcal{E} d\vec{s}$ Linienladungsdichte $\lambda = \frac{dq_{c}}{ds}$ $q_{c} = \int \lambda ds$ Flächenladungsdichte $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \int_{B}^{d_{2}} \sigma dA$ Wolumenladungsdichte $\sigma = \frac{dq_{c}}{ds}$ $\sigma = \int_{B}^{d_{2}} \sigma dA$			$U_{rr} = i\alpha (\vec{\pi}_r) = i\alpha (\vec{\pi}_r)$		
Linienladungsdichte $\lambda = \frac{dq_s}{ds}$ $q_s = \int \lambda ds$ Flüchenladungsdichte $\sigma = \frac{dq_s}{ds}$ $\sigma = \frac{dq_s}{ds}$ $\sigma = \int \sigma dA$ (Volumenladungsdichte $\sigma = \frac{dq_s}{ds}$ $\sigma =$	Elektrische Spannung				
$ \lambda = \frac{c}{ds}$ $q_e = \int \lambda ds$ $q_e = \int \lambda ds$ Flächenhadungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$ Volumenladungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$	[U] = V		$= -\int_{-}\vec{E} d\vec{s}$		
$ \lambda = \frac{c}{ds}$ $q_e = \int \lambda ds$ $q_e = \int \lambda ds$ Flächenhadungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$ Volumenladungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$			721		
$ \lambda = \frac{c}{ds}$ $q_e = \int \lambda ds$ $q_e = \int \lambda ds$ Flächenhadungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$ Volumenladungsdichte $\phi = \frac{dq_e}{dA}$ $q_e = \iint_{C} \sigma dA$					
Volumenladungsdichte $\sigma = \frac{dq_s}{dA}$ $q_s = \iint \sigma dA$ Volumenladungsdichte dq_s $ff = g_s$	Linienladungsdichte			dq_e	1
$\langle \sigma = \frac{c}{dA} \qquad \qquad$	$[\lambda] = \frac{C}{m}$			$\lambda = \frac{1}{ds}$	$q_e = \int \lambda ds$
$\langle \sigma = \frac{c}{dA} \qquad \qquad$	Div.l I. d P. b.			da.	"
Volumenladungsdichte dq_s ff_{ns}				$\sigma = \frac{aq_e}{dA}$	$q_e = \int \sigma dA$
Volumenladungsdichte $\rho = \frac{dq_e}{dV}$ $q_e = \iint \rho dV$				421	
$ \phi = \frac{1}{m^2}$ dV dV dV dV dV dV dV dV	Volumenladungsdichte			$\rho = \frac{dq_e}{dt}$	$q_e = \iint \rho dV$
	$ \rho = \frac{v}{m^2}$			· dV	- JJ

- 9 Elektronik
- 9.1 Operationsverstärker
- 10 Hochfrequenztechnik
- 11 Fehlerrechnung