

GBI Tutorium Nr. 41

Foliensatz 14

Vincent Hahn - vincent.hahn@student.kit.edu | 7. Februar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Statistik

Kongruenzrelationen

Halbordnungen

Wiederholung

Kongruenzrelationen

Halbordnungen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Statistik

Kongruenzrelationen

2 Wiederholung

Halbordnungen

3 Kongruenzrelationen

Statistiken

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Die folgenden Grafiken beziehen sich

- bei den Übungsblättern auf diejenigen, die den Übungsschein erhalten haben und
- bei der Übungsklausur auf diejenigen, die abgegeben haben.

Verlauf des Punktestands

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Verlauf der Punkteverteilung

Verlauf des Punktestands

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Mittelwert und Median des Punktestands

blau: Mittelwert, rot: Median

Punkteverteilung in der Probleklausur

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

4 Halbordnungen

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
 Nein.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum? Siehe Halteproblem.
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$? Ja.
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen?

Wiederholung - Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

- Jedes Problem kann von einer Turingmaschine entschieden werden.
- Warum?
- Gilt $P \subset PSPACE$?
- Gibt es endliche Akzeptoren für Sprachen L, die weniger Zustände haben als L Nerode-Äquivalenzklassen? Nein.

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

Wiederholung

Halbordnungen

3 Kongruenzrelationen

Verträglichkeit

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Definition: Verträglichkeit

Es sei \equiv eine Äquivalenzrelation auf einer Menge M und $f:M\to M$ eine Abbildung. Man sagt, dass \equiv mit f verträglich ist, wenn für alle $x_1,x_2\in M$ gilt:

$$x_1 \equiv x_2 \Longrightarrow f(x_1) \equiv f(x_2)$$

Was bedeuted das anschaulich? Fallen euch Beispiele ein?

GBI Tutorium Be

Vincent Hahn - vincent.hahn@student.kit.edu

Beispiel modulo n

Statistik

Wir kennen noch vom letzten Mal:

$$x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$$
 (1)

Kongruenzrelationen

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest haben.

Halbordnungen

Wiederholung

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn \tag{2}$$

Ich behaupte es gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Bewei

Statistik

Beispiel modulo n

(1)

12/15

Vincent Hahn - vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

Kongruenzrelationen

Halbordnungen

Wiederholung

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest haben.

 $x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n} \tag{3}$$

$$\cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Statistik

Beispiel modulo n

(1)

Vincent Hahn - vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

Kongruenzrelationen

Halbordnungen

Wiederholung

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest haben.

 $x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

Ich behaupte es gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$\cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Bewei:

Statistik

Beispiel modulo n

(1)

Vincent Hahn - vincent.hahn@student.kit.edu

Wir kennen noch vom letzten Mal:

Kongruenzrelationen

Halbordnungen

Wiederholung

Das heißt auch, dass x_1 und x_2 bei einer Division mit n den gleichen Rest

 $x_1 \equiv x_2 \pmod{n} \Leftrightarrow x_1 - x_2 = kn$

$$y_1 \equiv y_2 \pmod{n} \Leftrightarrow y_1 - y_2 = mn$$
 (2)

Ich behaupte es gilt:

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$
 (3)

$$x_1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n} \tag{4}$$

Beweis.

haben.

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

Und wir sehen, dass gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

Und wir sehen, dass gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$

Beweis von (3)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Addieren nun die beiden Gleichungen (1) und (2):

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m) n$$

Und wir sehen, dass gilt

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}$$

Beweis von (4)

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Löse Gleichung (1) nach x_1 auf und Gleichung (2) nach y_1 und multipliziere beide Seiten:

$$x_{1} \cdot y_{1} = (x_{2} + kn) \cdot (y_{2} + mn)$$

$$= x_{2} \cdot y_{2} + n(mx_{2} + ky_{2} + kmn)$$

$$x_{1} \cdot y_{1} - x_{2} \cdot y_{2} = n(mx_{2} + ky_{2} + kmn)$$

$$\iff x_{1} \cdot y_{1} \equiv x_{2} \cdot y_{2} \pmod{n}$$

Kongruenz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Damit können wir auch "nur mit Repräsentanten" der Äquivalenzklasse rechnen:

$$[2] + [3] = [2+3] = [5] = [0]$$

$$[2]\cdot[3]=[2\cdot3]=[6]=[1]$$

Nennt weitere Beispiele für die Äguivalenzrelation Kongruent Modulo i, wobei sich *i* bei jedem von euch erhöht.

Verträglichkeit und Kongruenzrelationen

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Die Operationen + und · sind also verträglich mit unserer Relation "kongruent modulo n".

Definition: Kongruenzrelation

Eine Funktion, die mit allen gerade interessierenden Funktionen oder/und Operationen verträgich ist, nennt man auch Kongruenzrelation.

Kongruenz und die Nerode-Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

Kongruenzrelationen

Halbordnungen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Statistik

Wiederholung

1 Statistik

Kongruenzrelationen

2 Wiederholung

Halbordnungen

3 Kongruenzrelationen