$$\widehat{M} = \frac{1}{2} \frac{\widehat{Z}_{i}^{2} Y_{i} \cdot W_{i}}{\frac{1}{2} \widehat{Z}_{i}^{2} W_{i}} = \frac{\widehat{g}}{\widehat{p}} = M + 1 \cdot (\widehat{g} - g) - M \cdot (\widehat{p} - p) + O_{p}(\frac{1}{N})$$

$$= \gamma + \frac{1}{p} \cdot \frac{N}{N} \left(Y_i - \gamma \right) \cdot W_i + O_p \left(\frac{1}{N} \right)$$

$$E[(Y_i-M)\cdot W_i) = E_W[(E[Y|W=1]-M)\cdot W]$$

$$\overline{W}(\widehat{M}-M) = \frac{1}{f} \cdot \frac{1}{f} \cdot \frac{2}{f} \cdot (Y_{f} M) \cdot W_{f} + O_{f} \cdot (\frac{1}{f} M)$$

$$\frac{1}{f} \cdot \frac{1}{f} \cdot \frac{2}{f} \cdot (Y_{f} M) \cdot W_{f} + O_{f} \cdot (\frac{1}{f} M)$$

$$\mathcal{M}(\hat{\theta}^{\ell}-\theta^{\ell}) \xrightarrow{d} \mathcal{N}(0, P \cdot \sigma^{2})$$

$$\mathcal{M}(\hat{\theta}^{\prime\prime}-\theta^{\prime\prime}) \xrightarrow{d} \mathcal{N}(0, P \cdot \sigma^{2})$$

a) Confidence interval that contains the identified set [te, Ou] with pre-specified proh 2%

$$[\theta', \theta''] \in (I_{\lambda}^{l}, \theta''] \qquad \text{and} \qquad \begin{cases} \hat{\theta}'' + (\lambda'') \geq \theta'' \\ \hat{\theta}'' + (\lambda'') \geq \theta'' \end{cases}$$

$$\frac{\partial^{2} - \partial^{2} = \rho \cdot (M - M)}{\partial x^{2} - \partial x^{2}} = \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2} - \partial x^{2}} + O_{1}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2} - \partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2} - \partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2} - \partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{1}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} + O_{2}(\frac{1}{M})$$

$$= \frac{\partial^{2} (4r - M) \cdot W_{2}}{\partial x^{2}} +$$

$$-\frac{1}{N\rightarrow p}\left[\frac{1}{N}\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)>\frac{1}{N}\cdot\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)>\frac{1}{N}\cdot\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)}>\frac{1}{N}\cdot\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)=\frac{1}{N}\cdot\left(\frac{1}{N}\cdot\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)-\frac{1}{N}\cdot\left(\frac{N}{N}\cdot\left(\frac{\hat{b}^{\prime}\cdot\hat{b}^{\prime}}{\hat{p}\cdot\hat{b}^{\prime}}\right)\right)-\frac{1}{N}\cdot\left(\frac{N}{N}\cdot\left(\frac{N}{N}\cdot\left(\frac{N}{N}\cdot\frac{N}{N}\right)\right)-\frac{1}{N}\cdot\left(\frac{N}{N}\cdot\left(\frac{N}{N}\cdot\frac{N}{N}\right)\right)}$$

$$=$$

$$\approx \overline{\Phi}\left(\frac{\nabla \overline{\nabla} \cdot C_{1}}{P \cdot \delta}\right) - \overline{\Phi}\left(\frac{-\nabla \overline{\nabla} \cdot C_{1}}{P \cdot \delta}\right)$$

since it's the same variance, we and set the the such put

CN = Zun · P. B = (N = (N)

$$(I_{d}^{[\theta^{l},\theta^{u}]} = [\widehat{\theta}^{l} - \underline{P},\widehat{\theta}^{l}, \underline{z}_{\underline{u}\underline{u}}], \widehat{\theta}^{u} + \underline{P},\widehat{\theta}^{l}, \underline{z}_{\underline{u}\underline{u}}]$$

as $p \rightarrow 1$, $(I_{\alpha}^{(b)}, D_{\alpha}^{(a)}) \rightarrow [\widehat{M}, \overline{L}_{\alpha}^{(b)}, \overline{L}_{\alpha}^{(b)}, \overline{L}_{\alpha}^{(b)}]$

the contect of % confidence internal for of in the identified once.

Next, a confidence internal furt includes the true value of with pre-spec. proh 2%: +

· Three cases:

a) $\theta = \theta e$, b) $\theta = \theta''$, c) $\theta \in (\theta e_i \theta u)$

· (Ix is of the firm:

1) O=Oci

 $Pr\left[\Theta \in CI_{x}^{2}\right] = Pr\left[\widehat{\Theta}^{e} - D_{N}^{e} \leq \widehat{\Theta}^{u} + D_{N}^{u}\right]$ $= Pr\left[\Theta \in \widehat{\Theta}^{u} + D_{N}^{u}\right] - Pr\left[\Theta \in \widehat{\Theta}^{e} - D_{N}^{e}\right]$ $= Pr\left[\Theta \in \widehat{\Theta}^{u} + D_{N}^{u}\right] - Pr\left[\Theta \in \widehat{\Theta}^{e} - D_{N}^{e}\right]$ $= Pr\left[\widehat{\Theta}^{e} - D_{N}^{u}\right] \leq \widehat{\Theta}^{u} - Pr\left[\Theta \in \widehat{\Theta}^{e} - D_{N}^{e}\right]$ $= Pr\left[\widehat{M}\left(\Theta - D_{u}\right) - \widehat{M}\right] \cdot \underbrace{D_{N}^{u}}_{P:\widehat{O}} \leq \widehat{M}\left(\widehat{\Theta}^{u} - \Theta^{u}\right)$ $= Pr\left[\widehat{M}\left(\Theta - D_{u}\right) - \widehat{M}\right] \cdot \underbrace{D_{N}^{u}}_{P:\widehat{O}} \leq \widehat{M}\left(\widehat{\Theta}^{u} - \Theta^{u}\right)$

- Pr [DN: IN S IN (B) De)]

$$= \left(\frac{1 - \overline{\Phi} \left(\overline{DN} \left(\overline{\partial e} - \overline{\partial u} \right) - \overline{NN} \cdot \overline{DN} \right)}{P \cdot \overline{O}} \right)$$

$$= \left(1 - \overline{\Phi} \left(\overline{DN} \cdot \overline{NN} \right) \right)$$

$$= \overline{\mathbb{P}\left(\sqrt{N'\cdot N'}\right)} - \overline{\mathbb{P}\left(N'\cdot (P-1) - N'\cdot \frac{N'}{P\cdot F}\right)}$$

of the set $DN = Op(\frac{1}{N})$, then the second term converges to $\overline{P}(-\infty) = 0$ using Cif P(1)

and the whole thing becomes

 $\approx \overline{\Phi}\left(\frac{\sqrt{N}\cdot N_A}{\rho\cdot \hat{\kappa}}\right)$

uled: (NI.DN = ZX (=) PDN = P.D. ZX

1-1111

E TRE

I(Z) Z I(Zu)

1-(2-22) 1-(2-22) 5% 10% 5%

For as d=de, we

b) θ= θu;

Pr[OGCIA] = Pr[Ge-DNE OUS GU+DN]

= PI [-DN' = G' - Ou] - PI [Ou = Ge-not]

 $= Pr\left[-\frac{N}{p\cdot\delta}\right] \leq N\left(\frac{b^{4}-b_{a}}{p\cdot\delta}\right) - Pr\left[\frac{N}{p\cdot\delta}\left(\frac{b_{a}-b_{e}}{p\cdot\delta}\right)\right] + N\frac{N}{p\cdot\delta}$

+ [N.] P. D. P. D.

== [- [- [] - [

 $= \overline{\Phi}\left(\overline{M}(1-P) + Z\lambda\right) - \overline{\Phi}\left(-\overline{M},\overline{D}_{N}^{N}\right)$

IF PC1, first term converges to 1, so

1- \$(-10.00)= X (=> 10.00= 2

$$CI_{\alpha}^{b} = \begin{bmatrix} \widehat{\theta}_{1} - \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} - \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda} \\ \widehat{\theta}_{1} + \frac{\rho \cdot \widehat{\theta}}{\rho \cdot \widehat{\theta}} \cdot Z_{\lambda}$$

Prob(em: What if p=17 (i.e, almost => 1+ Ol, coverage proability is $2 \quad \mathbb{P}(z_{\alpha}) - \mathbb{P}(-z_{\alpha}) = 1 - 2 \cdot \alpha$ => at 0", it becomes - I (- Zx) = HAMX $\approx \Phi(z_1)$ prohility! (it's strictly smaller)

based on the worst-case scenario

for De De, we use $\overline{\Phi}(\overline{M},\overline{D}) - \overline{\Phi}(\overline{M},\overline{D}) = \alpha$ -> DN= DN' = ZHA, B would satisfy Mis. But we want it to be (adaptive) Make Du & Du solve: $\overline{\mathbb{P}\left(\overline{\mathbb{N}},\overline{\mathbb{N}}\right)} - \overline{\mathbb{P}\left(\overline{\mathbb{N}},\overline{\mathbb{N}},\overline{\mathbb{N}}\right)} - \overline{\mathbb{N}}\left(\overline{\mathbb{N}},\overline{\mathbb{N}}\right) = 0$ That is, make them fructions of p so as to avoid being conservative if pel o For a symmetric internal: DN = DN = DN

1) Solve (for RN): \$\P(RN) - \$P(\frac{1}{p.0} - PN) = d

Steps:

$$\overline{\mathbb{D}(-x)} = 1 - \overline{\mathbb{D}(x)}$$

$$\overline{\mathbb{P}}\left(\overline{\mathbb{P}}(P-1) - \mathbb{P}(P)\right) = \overline{\mathbb{P}}\left(-\overline{\mathbb{P}}(P-1) - \overline{\mathbb{P}}(P)\right)$$

$$(T_{\alpha} = \{\hat{\theta}_{e} - D_{N}, \hat{\theta}_{e} + D_{N}\}$$

General Case [Section 4 in Paper)

· Identified set: [De, Du] [] = Qu-De

· We have estimators De, Du ultich

are JN-consistent, asymphtically

normal. normal,

JN (de-Oe) d N (O) (oe, coe ou))

(we am hue f=1 the e.g., if width of ident region $\Delta \equiv \theta u - \theta e$ is known).

CIL=[Ge-DN, Gu+DN]

such that

Pr(Ge-DN = O = O = Out DN) Y O = [Oe, Ou]

Uniformly.

a) 0 = 0".

Pr(be-Dn Sout Dn")

= Pr (Ou < Ou + Dn") - Pr (Ou < Ou - Dn)

TD

$$= Pr\left(\overline{M}\left(\frac{\partial e - \partial u}{\partial u}\right) - \overline{M}\cdot \underline{D}_{u}^{n} \leq \overline{M}\left(\frac{\partial u}{\partial u} - \partial u\right)\right)$$

$$= |-Pr(\overline{M(\widehat{\theta}_{u}-\theta_{u})} \leq -\overline{M}\cdot\underline{A} - \overline{M}\cdot\underline{D}_{u}^{n})$$

$$-\left(1-P\left(\sqrt{N}\left(\frac{\partial e}{\partial e}-\theta e\right)\leq \sqrt{N}\cdot\frac{DN^{\ell}}{\partial e}\right)\right)$$

$$= \Pr\left(\sqrt{N}\left(\frac{\hat{\theta}_{e} - \theta_{e}}{\hat{\theta}_{e}}\right) \leq \sqrt{N}\cdot\frac{\hat{\theta}_{e}}{\hat{\theta}_{e}}\right)$$

$$-Pr\left(\overline{M}\left(\frac{\partial u}{\partial u}\right)\leq -\overline{M}\cdot\frac{\partial u}{\partial u}-\overline{M}\cdot\frac{\partial u}{\partial u}\right)$$

=> need;

$$\Phi(\mathcal{R}) = (-\mathcal{R}) = (-\mathcal{R})$$

(an we make RN = RN = RN ?It would have to satisfy at least one of these two as equality, and the other one as |Z|d

(17)

=> Steps;

1) Solve (in RN):

b) Let Dr. Fr. RN & Dr. Pr.

$$CI_{x}^{0} = [\hat{\theta}_{e} - D_{N}^{u}, \hat{\theta}_{u} + D_{N}^{u}]$$

Dunknown:

-> Proceed analogously: Let RN solve

$$\Phi\left(\overline{N},\widehat{\Delta}+\overline{R}N\right)-\Phi\left(-\overline{R}N\right)=d$$

(L)
$$(\overline{L}_{\lambda}^{\dagger} = [\widehat{\theta}_{\ell} - \overline{D}_{N}^{\ell}, \widehat{\theta}_{M} + \overline{D}_{N}^{M})$$

where $|\vec{D}_{N}| = \vec{\sigma}_{e}$, $R_{N} \notin \vec{D}_{N}' = \vec{\sigma}_{u}$, R_{N}

$$\overline{\Phi}\left(\frac{\sqrt{N}\cdot\Lambda}{m\times 10^{2}\cdot 5^{2}\cdot 1} + R_{N}\right) - \overline{\Phi}\left(\frac{\sqrt{N}\cdot\Lambda}{m\times 20^{2}\cdot 0^{2}\cdot 1} + R_{N}\right)$$

$$= \oint \left(\frac{\sqrt{N} \widetilde{\Delta}}{u_{NX}} + R_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{NX}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{N} \left(\frac{\widetilde{\Delta} - \Delta}{2} \right) \left(\frac{u_{NX}}{u_{N}} + \sqrt{2} u_{N} \right) \cdot \sqrt{$$

t equals converges in probability to

 $\phi(RN).JN(\Delta-\Delta)$ f(A=0) $f(RN).JN(\Delta-\Delta)$ f(A=0) f(RN) f(A=0) f(RN) f

If it his in asympt. Normal distribution

Cases:

(A) $[\hat{\theta}_{e} - D_{A}^{e}, \hat{\theta}_{u} + D_{A}^{u}] \leq [\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + \bar{D}_{A}^{u}]$ (A) $[\hat{\theta}_{e} - D_{A}^{e}, \hat{\theta}_{u} + D_{A}^{u}] \leq [\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + \bar{D}_{A}^{u}]$ (A) $[\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + D_{A}^{u}] \leq [\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + \bar{D}_{A}^{u}]$ (A) $[\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + \bar{D}_{A}^{u}] \leq [\hat{\theta}_{e} - \bar{D}_{A}^{e}, \hat{\theta}_{u} + \bar{D}_{A}^{u}]$

 $\sqrt{N \cdot \Delta} = \sqrt{N \cdot \Delta} \cdot \sqrt{\frac{m \times 3 \sqrt{2} \sqrt{2}}{un \times 1 \sqrt{2} \sqrt{2} \sqrt{2}}} \cdot \sqrt{\frac{m \times 3 \sqrt{2} \sqrt{2} \sqrt{2}}{un \times 1 \sqrt{2} \sqrt{2} \sqrt{2}}}$

mx (Te, Ty) (mx ? Fe, Gy?)

+ M. (D-D) (mx 10e, ou) unx30e, ou} (mx38e, ou)

Shrinkage: $\tilde{\Delta} = \begin{cases} \hat{\Delta} & \text{if } \hat{\Delta} \geq b_A \\ \hat{\Delta} & \text{otherwise} \end{cases}$

where by is a sequence: JN'ha-sia

The second of t

= $Pr(\hat{\theta}_{e} \leq \theta_{u} + D_{n}^{e}) - Pr(\hat{\theta}_{e} \leq \theta_{u} + D_{n}^{e})$ and $\hat{\theta}_{u} \leq \theta_{u} - D_{n}^{e}$ = $Pr(\hat{\theta}_{e} \leq \theta_{u} + D_{n}^{e}) - Pr(\hat{\theta}_{u} \leq \theta_{u} - D_{n}^{u})$, $Pr(\hat{\theta}_{e} \leq \theta_{u} + D_{n}^{e})$

IF Des Du wp.1, then.

Pr(fred to the start of 1 for start) = 1

=> Queda;

P(fees the +DN) - N(finstend)

= N(Mfe-te) < N(fin-te) + N(DN)

- Pr(N(fin-tu) < N(fin-tu) = N(fin) = P(N(fin))

Next:
$$\theta_0 \in (\theta_e, \theta_n)$$
 Einterior of θ_{\perp} .

For any $\theta \in (\theta_e, \theta_n)$

$$= \Pr\left(\hat{\theta}_e \leq \theta + \Omega_s^e\right) - \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_e \leq \theta + \Omega_s^e\right) - \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) - \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) - \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^u\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta - \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right) + \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right)$$

$$= \Pr\left(\hat{\theta}_u \leq \theta + \Omega_s^e\right)$$

* Therefore: If
$$\Delta > 0$$
,

$$\frac{\int \mathcal{D}(\frac{\omega \cdot D^{2}}{\partial e}) \cdot f}{\mathcal{D}(\frac{\omega \cdot D^{2}}{\partial u}) \cdot f} \cdot f \cdot \theta_{0} = \theta_{u}$$

$$\frac{\int (\sqrt{N^{1} \cdot D^{2}}) \cdot f}{\partial u} \cdot f \cdot \theta_{0} = \theta_{u}$$

$$1 \cdot (f \cdot \theta_{0} \in (\theta_{e}, \theta_{u}))$$

$$\mathbb{P}\left(\frac{JN\cdot DJ'}{JN}\right) = 1-\lambda$$

$$= > \left| D_{i} = D_{i} \cdot Z_{i} \right| \left| D_{i} \cdot Z_{i} \right|$$

(5)

$$= \overline{\Psi}(\overline{z}_{\alpha}) - \left[1 - \overline{\Psi}(\overline{z}_{\alpha})\right]$$

$$= 2 \cdot \overline{p(2x)} - 1 = 2 \cdot (1 - x) - 1$$

1-24 C 1 d 1

Under-coverage

· · · · · · · · · · · · · · · · · · ·	Econ 589 Imbins & Manski (1) (complement)
	Or [Or On]
	CS = [êe-ce, êureu] such that:
Lj.n.	Pr(Pe-Ce & De and Dy+Eu > Du) > +x
= li	Pr(IN (be-de) < 10' ce and N' (bu tu) > Noi) Ze 20
**************************************	M(Be-De) do N(O) (Ze, Zuie) N(Bu-Du) (U) (Zuie, Zu)
	$\frac{2}{1}$
	M. Ĉu
	D.Ĉe Ze
Admy bright Halland	

Assumption: $\exists \delta c_1 \delta u \text{ such } \beta u_1$: $\exists \delta c_1 \delta u \text{ such } \beta u_2$: $\exists \delta c_1 \delta u \text{$

 $(z_n) \sim \mathcal{N}([0], (v_i, v_i, v_i))$

Ze 12n=2 ~ N (De p. Z, (1-e2). 0,2)

Absslua Imbus & Muski CI:

(So (1-d) = (Ge-Cade, But Ca.ou)

where Cx solves:

P(Ca + PA) = T(-Ca) = 1-2

Let (Ce3, Cu3) uninimire (Be-le + Du (u) Mu't subject to the constraint: Calibrate trough Pr (-ce = 2, P2, < cu + IN' A" + JIPA. 22 SINGLE Pr (-ce - 500 A + 11-P21, 72 < P24, 2450 (SIX =) [be-be (e), Bu + Bucus) If

Populariose Proposition 3: lim in 1 1/ (to E ES) = 1-2 81 00(P)=0 PEP

Chernozhukov, Hang & Tamer (2007) E[m(x, b)] $Q(\phi) = E[m(X, \phi)] + W(\phi) E[m(X, \phi)]_{+}$ W(.) => diryord m(r) >> 0 D== set of untimizers of Q(+) diag. - usual (x)=mx{x,0}

E[m(x,4)]=0 case, rep Q(b) = / (w/mont the "t") and OI= Set of ununitiers Proposal: countour sets of level C, denoted as (n(c)= } DED: an. Quity SC) for some normalizing sequence "an selected so that

So that

(No = Sup an On (b) bounded with Of ET and of a serupt.

· The level C=2 Cpossibily duta-dependent shald so selected efficiently, at fastest possible rate. Itow? -> Select & as smll as possible cout not smller trun CN, and let it grow very slawly with N off degeneragy property welds, Housdorff distance: d+(A,B)= unx 2 supd(b,A) {
acA beB with d(b,A)=inf 115-911 dr(A,B)= of if A or B are cupty o Consistency means: d. H. (G(C), D)-B.O will follow from our form convergence of

over 7

rates of convergence

dH (Cu(E), F=)= Cp (Junx(Ex))

if degeneracy >> Kirs is Op (Jm)

· (NCC) also needs to be a confidence region for ET, That is

lin (D=C(CC))=d

XE(6,1)

Note: 30 = CNCO 30=> 3 CN SC3

therefore, & should be a consistent estimator of the 2th quantile of Cur

· Hw can & be obtained?

· By characterizing the analytical limiting distribution of Cx.
· Or by subsampling.

Process an Qu(t) is obsticle. Reported it with

Pointwise approach .-Pointwise confidence regions - Inversion of hypotheses tests Suppose (N(t) = an. QN(t) and Pr[(N(O) SC) -> Pr(((O) SC) for ench coo + DEBI · Let ((d, t) denote the 2th quantile of ((+) · Let ((+)=((d,+)+0p(4) and & = estrute of 2 34p ((dp) + 0p(1) such that &= Op(1). Let COUTS ROOM man } C C(0)= min -3 (6) (23

(N(((0))=}0+0:9NQN(6)5=(0)?

Fcon 589 Andrews & Sonres [GMS] (Francounetrica 2010) · Model: OOE & e 12° 13 assound to 20 Par jei...p Eto [W; (W; (w))]) = 0 for j: par. . . . par The nominal level 1-2 (5) for this (S,= 346 5: In 16) 5 (1-1/6) 1 cutial · They consider:) GMS · plug-in as quipletic · Uniforunity: -> Preguned for the extrem le me finite may/ sir e (15)

,	Marie .
	つ `
	C)

· Exact Confidence Size of CSi is:
ExCSu = inf P= (Tulto> < (1-2(6)) (0,7) < 4
· Asymptotic controlline size of csy is:
Asy (S= lin (-(Sy) - ses HUri franch
· Let more donote the sample
Mall)= 1 2 m/w; (6)
· ZNHO) -> estimber of the asymptotic varcine of no many).
· They look of test som statistics of the form
[NHO) = 5 (Nt MNHO), (NHO)

ulleve:

1) S((m,m,), 2) 15 moninerensing in m,

b) S(m,Z)= S(Om, OZO)

0 5 (M, 12) 20 4 MERICK

d) S (m, A) is continuous at all.

m & 12°

I xample:

5, (M,Z)= Z [Mj] + Z (Mj)

5, (M,Z)= Z [Mj] + Z (Mj)

 $\begin{array}{c} (X) = \\ 0 \\ 0 \\ \end{array}$

D? 15 jth object element of Z.

6) 52(m,2)= inf (m-t) 2 (m-t) = t=(t,0):(101);(1

Tn (+0)= S (n2 m/10), Z/60) = S(D,-16) N, m, 16), (1)) where Onthe Drag (Exto) - NX(6)= 07 465 2 465 0 3 (0) o Under approprite Sequence of null distributions IFN, NZAZ, the asymptotic Null distribution of Tabo) is tal of

S(Ao Z* + (h, 0,), Ao), 2*~N10x, In M, & 1/2, s) -> degree of slackness:

12 (+, 0) vectors which as be either real, or + 0.

of a DGP of the asymptotic Null distribution of School 24 + (h, Ox), No), where No is replaced with it and ha with a pover by in mensure of stackings of the manual magnetis

t transier der der der der der der der der der d	
The second of the second secon	ulieve Brainzai, Kn -> +00 slowly
	Law of Heinted logarithm -> operates
	In-helpocea
	Let Sui Yit . + Yo . They me LLN and
	PULCUT
	ITM SAP : SN : 12' 915
	N-SO (N.ly lyla)
	SN PSD but SN -13 a.5 D
	JN. log login PSO, but SN (5 a. 50)
	J. W. Maringro
	Law of Heyfed logarithm:
	KN= JugliogN
80 Parties	· or BIC choice:) prefente 14
en e	or BIC charce: preferble 19 simulations
And the second s	Ki Slog (N)
annicament and an annicament a	BIC-> model solection
And the second s	
A marine and a mar	
The second secon	

Replace 11; with: 4; (Exto), No (Oa))
(i) lj (3.1)=0 + 2 (2, -, 2, 4)' where
(ii) ly (3,1) -> 0 as (3,1) -> (5x,1) + {x = (2x,4,, 2x,u)' where {x,5,0}
Example: Life (IM) L
J (2) 1 (2) 1 (1) 31.
NiA-1: 3:51
$\frac{1}{2} \frac{1}{2} \frac{1}$
GMS qualités voices some Dr. Hoi 6:00:
(1) Compose MN(6) and ZJ(60) ((1) (comple TN(60) S(N) MJ(6), Z(10))
(1711) ENHO) = Ko N' Proj' (ZN(60) in N(60) white KN = (IN (N)) . lomple ((EN(4), IN (0)) (IN) Simulate Riid random vechs 127 i V. I
(IV) Simulate Riid random ver his
12/iv.1(1) (21-1.10/11)

(v) Tuke Ex(Goded) es me 1-d sample quintile of: 5 (1 (60). Zt + (2 (EN (CO), S(N(CO)), AM Neject Ho: 0:60 11 Tail(a) > (a (Co.12)

M

Andrews & Shi

E[m,(W;00)1x]50 q.s , j=1,...,p

· Space of Functions G; 920 tg & G

=> E[M; (W;00).9; (X;)]50 +9; EG

· Let:

9=(9,-,9p)

M, (0,9) = 1 2 m (Wi, 0,9) for gea

where

M, (Wi, 6)9, (Xi) m (Wi, t, g) = | m2 (Wi, t) g2(Xi)

(Wit) gu(Xi)

of AND No WN (6,9) 15. · Sample Var-lov

 $\sum_{N}(\theta,g) = \frac{1}{N} \sum_{i=1}^{N} \left(m(W_{i},\theta,g) - m_{N}(\theta,g) \right),$ $\left(m(W_{i},\theta,g) - m_{N}(\theta,g) \right),$

USE)

ZN(6,9) = 2N(0,9) + E. DIAJ (ZN(6, 4m)) to19t6

They propose Crawler-von Wises - type (Com) sontisties:

TN (6)= (5(N/2 MN(6,9), ZN(6,9)) d Q(9)

allere Sis a non-negative function a is a weight buntour

or-Ks-Mpo!

TN(+) = Sup S(N"2 MN(+,0), ZN(+,9))

S(m,2)= 2 (m;) = 2 (mx 2 m; ,02)

and a of is the jth dragound element

Let

NN (6,9)= NZ (MN (00)- E[MN (0,9)])

シン

S(N'18 MN 1619), ZN (6,9))=

S(M VN + N2 WN(0,4), ZN(0,4))

presence of this term is day for uniform Asymptotic Coverage probabilities of "stackness"

· Proposoil:

took at those of

[(4)=u (5(VN1013)+41/4), ZN1019)

where Pin is constructed such tent

Unito) ≤ N Mamin(Org) VgEh W.p.a.1

<u> </u>	o Let 3 Bu 3 be a non-decreening
	sequence of 20 conclavits, and let
	KN be a sequence:
	KN -> 0 and BN -> 0
	1et {N(6,9)= NCD) No mN(6,9)
	tuen
· · · · · · · · · · · · · · · · · · ·	(N (6,9)= BN. 11 } {N(0,9)> KN
	+ - Uniform convergence
	+ Wank convergence of
and the second s	VN() => V() OVER DEE
	<u>yeq</u>

and a great and a second and a second	Chernozhokov, Lee & Nosen (2013)
	Procedure introduces an inferential procedure for cases where a paramite of interest; D* belongs within bounds [6(v), 6"(v)], where vev. Specifically, models allere
	$\theta^* \in [\theta'(v), \theta''(v)] \forall v \in V$
·	· And Keire Fore, pu identified set is:
	$ \frac{\partial}{\partial x} = \left(\left(\frac{\partial^{2}(v)}{\partial x^{2}(v)} \right) = \left(\frac{\partial^{2}(v)}{\partial x^{2}(v)} \right), \text{ in } \partial^{2}(v) \\ very \qquad $
	o They analyze both the case alove of (1) and 6'(1) have parametric or nonparametric estimates.
	e They develop any Khods to construct, confi- dence regions that achieve a desired asymptotic level
	the type: suppl(x,v) < p*(x) < puf p"(x,v) < for very
	$\sup_{v \in V} \theta(x,v) \leq \theta^*(x) \leq \inf_{v \in V} \theta^*(x,v) \leq \inf_{v \in V} \sup_{v \in V} \left\{ \frac{\theta(x,v)}{v \in V} \right\}$
	inique le

Example: Conditional moment megvalities - Consider a model that predicts: E[M; (X, Ma)12=2)20 #1-1,-,7,702. - Here, Morepresents me parmueter of - Define V= (Z,j), V=3(Z,j):76Z,je?1.,J? - let: 0(M, V)= E[M; (X, M) 17= 2] - Soppose we want to test: I[mj(x, m) 12=2) 20 tj=1...,], zez; · This becomes the problem of testing inf Ocyv) 30 applied to that published.

,	<	1
/		
Ĺ	2.5	_

Outliv	re of Kerr interportial approach
· Deno	te a an upper bound to on 6th as
	O'E Vo = int O(V)
1 1	confichere regions for Do:
	naive estimater int Bev)
per (ori	us hadly in practice, typ tends: downwards birsed in finite
	d, being propose piecision-corrected to for to of the form:
	6, (p) = Int [6(v) + u(p), s(v)]
and uc	P) is an estimator of the pth
sup ZN(V)	of the standardized process; where ZN(V) = O(V) - B(V)
() ₋	D(V)
[where	Str) -> 4 uniformly in V).

· The goal par is for forp to lim 1/ [00 € 6, (p)] ≥ p · They propose to approximate the quantiles of Encus by using a sequence of Gaussian processes such that for an appropriate sequence zanz, 9N Sup | ZN(V) - ZN(V) | = Op(4) · K(p) is constructed by approximating the quantities of sup 12,*(v) over a set V such that it contains [w.p.a.1] the arguin set They propose preliminary for to. Vo = arg int OCV) . The paper is devoted to showing how to wastruct K(p) et ther by analytical methods or by swillation.