Guiões de Cálculo II - Agrupamento 2

Guião 2

Equações Diferenciais Ordinárias

Transformada de Laplace

Paula Oliveira

2019/20

Universidade de Aveiro

Conteúdo

4	Equ	ações Diferenciais Ordinárias - EDO's	1
	4.1	Conceitos Básicos	
	4.2	EDO's de $1^{\underline{a}}$ ordem	2
		4.2.1 EDOs de Variáveis Separáveis	3
		4.2.2 EDOs Homogéneas	
		4.2.3 EDOs lineares de 1 ^a ordem	6
		4.2.4 EDOs redutíveis a EDOs homogéneas	7
		4.2.5 Equações de Bernoulli	9
	4.3	EDOs lineares de ordem n	11
		4.3.1 Equações lineares homogéneas	12
		4.3.2 Princípio da Sobreposição dos Efeitos	14
		4.3.3 Determinação da solução geral de uma EDO linear homogénea de coeficientes constantes .	15
		4.3.4 Método dos coeficientes indeterminados	17
		4.3.5 Método da variação das constantes	19
	4.4	Exercícios do capítulo	23
	4.5	Soluções dos exercícios	27
5	Trai	nsformada de Laplace	29
•	5.1	Definição da transformada de Laplace	
	5.2	Existência da Transformada de Laplace	
	5.3	Linearidade da transformada de Laplace	
	5.4	Transformadas de Laplace fundamentais	
	5.5	Deslocamento na transformada	
	5.6	Transformada do deslocamento	
	5.7	Transformada da contração/expansão de uma função	
	5.8	Derivada da transformada	
	5.9	Transformada da derivada	
	5.10	Transformada de Laplace Inversa	
	5.11	Problemas de Valor Inicial ou de Cauchy	
		Exercícios do capítulo	
		Soluções dos exercícios	43

Capítulo 4

Equações Diferenciais Ordinárias -EDO's

4.1 Conceitos Básicos

Definição 4.1. Chama-se equação diferencial ordinária (EDO) a toda a equação da forma

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

ou, equivalentemente.

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^ny}{dx^n}\right) = 0$$

onde x é uma variável independente e $y \equiv y(x)$ é uma função desconhecida que depende de x.

São exemplos de equações diferenciais

$$xy' + y = 0;$$
 $\frac{d^2y}{dx^2} + 2xy = x^2 \operatorname{sen}(x);$ $(y')^2 + y = \cos(x).$

Definição 4.2. Chama-se ordem de uma EDO, à maior ordem de derivada existente na equação.

Definição 4.3. Dizemos que uma EDO está na forma normal quando está escrita na forma

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

ou seja, em relação à derivada de maior ordem.

Exercício 4.1.1 Indique a ordem das seguintes EDOs e diga se estão escritas na forma normal:

- 1. xy' + y = 0;
- 2. $\frac{d^2y}{dx^2} = x^2 \operatorname{sen}(x) 2xy;$
- 3. $(y')^2 + y = \cos(x)$.

Definição 4.4. Chama-se **solução** da EDO $F(x, y, y', y'', \ldots, y^{(n)}) = 0$ num intervalo $I \subseteq \mathbb{R}$ a toda a função $\varphi: I \to \mathbb{R}$ que admite derivadas finitas até à ordem n em I e tal que

$$F(x, \varphi(x), \varphi'(x), \varphi''(x), \dots, \varphi^{(n)}(x)) = 0, \quad \forall x \in I.$$

Exemplo 4.1.1. Considere a EDO $y'' - \cos(x) = 0$, $x \in \mathbb{R}$.

Esta equação pode ser escrita na forma $y'' = \cos(x)$. Por integração obtemos que

$$y' = \int \cos(x) \, dx = \sin(x) + C_1$$

Integrando novamente, temos,

$$y = \int (\sin(x) + C_1) dx = -\cos(x) + C_1 x + C_2$$

onde C_1 e C_2 são constantes reais arbitrárias.

A família de funções $\varphi(x) = -\cos(x) + C_1x + C_2$, com C_1 e C_2 constantes reais arbitrárias, é a solução geral da equação diferencial.

Exercício resolvido 4.1.1. Considere a EDO de primeira ordem $(y')^2 - 4y = 0$.

- 1. Verifique que $\varphi = x^2$ é uma solução da EDO.
- 2. Verifique que a família de funções $\psi=(x+C)^2,\,C\in\mathbb{R}$ é solução da EDO.
- 3. Mostre que a função $\phi = 0$ é solução da EDO, mas não se obtém da família de funções $\psi = (x + C)^2$.

Resolução:

1. Verificar que $\varphi = x^2$ é uma solução da EDO, é mostrar que $(\varphi')^2 - 4\varphi = 0$. Derivando φ temos, $\varphi' = 2x$ e substituindo na EDO, vem:

$$(2x)^2 - 4x^2 = 0$$

e portanto $\varphi=x^2$ é solução da equação.

2. Procedendo como na alínea anterior, $\psi' = 2(x+C)$ e substituindo na equação diferencial temos

$$(\psi')^2 - 4\psi = 0 \Leftrightarrow (2(x+C))^2 - 4(x+C)^2 = 0$$

portanto ψ é também solução da EDO.

3. A função $\phi=0$ é solução da EDO já que $\phi=\phi'=0$. Contudo, ela não se pode obter da família de funções $\psi=(x+C)^2$, já que $(x+C)^2=0$ só se verifica se x=-C e portanto não teríamos uma função definida num intervalo mas apenas num ponto...

As soluções de uma equação diferencial ordinária de ordem n classificam-se da seguinte forma:

Integral geral: família de soluções dependente de n constantes arbitrárias obtida através de técnicas de integração adequadas.

Solução particular: solução obtida do integral geral por concretização das constantes arbitrárias.

Solução singular: solução da EDO que não se obtém do integral geral.

Solução geral: conjunto de todas as soluções de uma EDO.

Assim, no exercício resolvido 4.1.1 a primeira é uma solução particular, que resulta de fazer C=0 no integral geral, que é a solução $y=(x+C)^2, C \in \mathbb{R}$ e y=0 é uma solução singular.

Exercício 4.1.2 Considere a EDO $y'' + 2y' - 8y = 12e^{2x}$.

- 1. Mostre que $\varphi(x) = C_1 e^{2x} + C_2 e^{-4x} + 2x e^{2x}$ satisfaz a EDO $\forall x \in \mathbb{R}$ e $\forall C_1, C_2 \in \mathbb{R}$.
- 2. Indique uma solução particular desta EDO.

4.2 EDO's de $1^{\underline{a}}$ ordem

As EDOs de 1^a ordem tomam a forma (normal)

$$y' = f(x, y)$$

Se f não depender de y então a equação anterior simplifica para

$$y' = f(x)$$

cujo tratamento já foi estudado no âmbito do Cálculo 1. De facto, neste caso,

$$y(x) = F(x) + C, C \in \mathbb{R}$$

onde F é uma primitiva para f.

E se f depender de y? Vamos estudar alguns tipos de EDO's de 1^a ordem e respetivos métodos de resolução.

4.2.1 EDOs de Variáveis Separáveis

Definição 4.5. Uma EDO de 1ª ordem diz-se de variáveis separáveis se puder ser escrita na forma

$$y' = f(x, y) = \frac{p(x)}{q(y)}$$

onde p e q são funções contínuas e $q(y) \neq 0$.

Observação 4.1. Esta equação é equivalente a

$$q(y)y' = p(x)$$

que se designa de EDO de variáveis separadas, ou, na sua forma diferencial

$$q(y)dy = p(x)dx$$

Note que $y' = \frac{dy}{dx}$.

O integral geral deste tipo de EDOs obtém-se integrando ambos os membros da equação anterior, o 1^{0} em ordem a y e o 2^{0} em ordem a x, obtendo-se

$$\int q(y)dy = \int p(x)dx.$$

Exemplo 4.2.1. Considere a equação diferencial

$$yy' = -x$$

O seu integral geral é

$$x^2 + y^2 = k, \ k \in \mathbb{R}^+$$

Resolução:

A equação dada é de variáveis separáveis e pode ser escrita na forma:

$$ydy = -xdx$$

Integrando ambos os membros da equação diferencial obtemos

$$\frac{1}{2}y^2 = -\frac{1}{2}x^2 + c$$

A solução pode também ser escrita na forma $x^2 + y^2 = k$ com k constante real positiva.

Exercício 4.2.1 Determine o integral geral das EDOs:

- 1. $y + y'\operatorname{cosec}(x) = 0$
- 2. $y^2 + y = (x^2 x)y'$
- $3. y' \operatorname{sen}(x) + y \cos(x) = 0$
- 4. $(1+y^2)dx + (1+x^2)dy = 0$

Exercício 4.2.2 Determine a solução do problema

$$\begin{cases} y' \cot(x) + y = 2\\ y(\pi/4) = -1 \end{cases}$$

4.2.2 EDOs Homogéneas

Definição 4.6. Uma EDO de 1ª ordem y' = f(x,y) diz-se **homogénea** se a função f é homogénea de grau zero, isto é, se

$$f(\lambda x, \lambda y) = f(x, y),$$

 $\forall (x,y) \in D, \ \lambda \in \mathbb{R}, \ tais \ que \ (\lambda x, \lambda y) \in D, \ onde \ D \ \'e \ o \ domínio \ da \ função \ f.$

Uma equação homogénea pode ser escrita na forma

$$y' = f\left(1, \frac{y}{x}\right) = g\left(\frac{y}{x}\right)$$

em que g é uma função de "uma só variável".

Basta tomar $\lambda = \frac{1}{x}$ e temos

$$f(\lambda x, \lambda y) = f\left(1, \frac{y}{x}\right) = f(x, y)$$

Como obter o integral geral de uma equação diferencial de 1^a ordem homogénea?

- 1. Considerar a substituição y = zx e y' = z'x + z (z é função de x);
- 2. Substituir na EDO original, obtendo uma nova EDO nas variáveis x e z. Esta equação é de variáveis separáveis.
- 3. Obter o integral geral desta EDO usando a técnica anterior.
- 4. Obter o integral geral da EDO original aplicando a subtituição inversa $z = \frac{y}{x}$.

Exemplo 4.2.2. Considere a equação diferencial

$$-(3x^2 - 4y^2)y' + 2xy = 0, \text{ com } x > 0$$
(4.1)

A sua solução geral é dada por

$$\ln\left(\frac{2y}{x} - 1\right) + \ln\left(\frac{2y}{x} + 1\right) - 3\ln\left(\frac{y}{x}\right) = \ln(x) + k, \text{ com } k \in \mathbb{R}$$

Resolução:

A equação 4.1 é equivalente a

$$y' = \frac{2xy}{3x^2 - 4y^2} \tag{4.2}$$

A função $f(x,y) = \frac{2 xy}{3 x^2 - 4 y^2}$ é uma função homogénea:

$$f(\lambda x, \lambda y) = \frac{2 \lambda x \lambda y}{3 (\lambda x)^2 - 4 (\lambda y)^2} = \frac{2 \lambda^2 x y}{\lambda^2 (3 x^2 - 4 y^2)} = \frac{2 x y}{3 x^2 - 4 y^2} = f(x, y), \ \lambda > 0$$

portanto, para resolver a equação diferencial faz-se a mudança de variável y=zx, resultando daqui que y'=z'x+z. Substituindo agora na equação diferencial 4.2 obtemos

$$z'x + z = \frac{2xzx}{3x^2 - 4(zx)^2} \Leftrightarrow z'x + z = -\frac{2z}{4z^2 - 3} \Leftrightarrow z'x = -\frac{4z^3 - z}{4z^2 - 3}$$

Temos agora uma equação de variáveis separáveis

$$-\frac{4z^2 - 3}{4z^3 - z} \, dz = \frac{dx}{x}$$

Para integrar $-\frac{4z^2-3}{4z^3-z}$ vamos decompor a fração em elementos simples. Atendendo a que $4z^3-z=(2z-1)(2z+1)z$, temos

$$-\frac{4z^2-3}{4z^3-z} = \frac{A}{2z-1} + \frac{B}{2z+1} + \frac{C}{z} = \frac{2}{2z-1} + \frac{2}{2z+1} - \frac{3}{z}$$

Integrando vem

$$\ln(2z-1) + \ln(2z+1) - 3\ln(z) = \ln(x) + k, \text{ com } k \in \mathbb{R}$$

Ou seja, regressando à variável y:

$$\ln\left(\frac{2y}{x} - 1\right) + \ln\left(\frac{2y}{x} + 1\right) - 3\ln\left(\frac{y}{x}\right) = \ln(x) + k, \text{ com } k \in \mathbb{R}$$

Esta expressão pode ainda ser simplificada usando a função exponencial (verifique!)

$$\frac{\left(\frac{2y}{x}-1\right)\left(\frac{2y}{x}+1\right)x^3}{y^3} = kx$$

Exercício resolvido 4.2.1. A equação diferencial homogénea

$$(3x^2 - 2y^2)y' - 3xy = 0, x > 0$$

tem como solução geral

$$-\frac{3x^2}{4y^2} - \ln\left(\frac{y}{x}\right) = \ln(x) + k, \ k \in \mathbb{R}$$

Resolução:

A equação dada é equivalente a

$$y' = \frac{3\,xy}{3\,x^2 - 2\,y^2}$$

A função $f(x,y)=\frac{3\,xy}{3\,x^2-2\,y^2}$ é uma função homogénea $(f(\lambda x,\lambda y)=f(x,y),$ para todo o $\lambda\in\mathbb{R},$ desde que $(\lambda x,\lambda y)$ pertença ao domínio de f), portanto, para resolver a equação diferencial faz-se a mudança de variável y=zx, resultando daqui que y'=z'x+z. Substituindo agora na equação diferencial obtemos

$$z'x + z = -\frac{3z}{2z^2 - 3} \Leftrightarrow z'x = -\frac{2z^3}{2z^2 - 3}$$

Temos agora uma equação de variáveis separáveis

$$-\frac{2z^2 - 3}{2z^3} \, dz = \frac{dx}{x}$$

Para integrar $-\frac{2\,z^2-3}{2\,z^3}$ vamos decompor a fração em elementos simples de primitivar:

$$-\frac{2z^2-3}{2z^3} = -\frac{1}{z} + \frac{3}{2z^3}$$

Integrando vem

$$-\frac{3}{4z^{2}} - \ln(z) = \ln(x) + k$$

Ou seja, regressando à variável y:

$$-\frac{3x^2}{4y^2} - \ln\left(\frac{y}{x}\right) = \ln\left(x\right) + k$$

Esta expressão pode ainda ser simplificada usando a função exponencial (Verifique!):

$$\frac{xe^{-\frac{3}{4}\frac{x^2}{y^2}}}{y} = kx$$

Exercício 4.2.3 Considere a equação diferencial

$$-\left(\ln\left(-\frac{5y}{8x}\right) + 1\right)dy + \frac{ydx}{x} = 0$$

Prove que a sua solução geral é

$$-\ln\left(-\frac{5y}{8x}\right) - \ln\left(\ln\left(-\frac{5y}{8x}\right)\right) = \ln(x) + k, \ k \in \mathbb{R}$$

Exercício 4.2.4 Verifique que cada uma das seguinte EDOs é homogénea e determine o seu integral geral:

- 1. $xe^{\frac{y}{x}}y' = ye^{\frac{y}{x}} + x$
- 2. $(x^3 + y^3)dx 3y^2xdy = 0$;
- 3. (x+y)dx + (y-x)dy = 0:

4.2.3 EDOs lineares de 1^a ordem

Definição 4.7. Uma EDO linear de 1ª ordem é uma equação do tipo

$$a_0(x)y' + a_1(x)y = b(x),$$

onde a_0, a_1, b são funções definidas num intervalo I com $a_0(x) \neq 0$, para todo o $x \in I$. Equivalentemente, pode ser escrita na forma

$$y' + p(x)y = q(x),$$

$$com \ p(x) = \frac{a_1(x)}{a_0(x)} \ e \ q(x) = \frac{b(x)}{a_0(x)}.$$

Se b(x) = 0 a EDO diz-se linear homogénea ou incompleta (não confundir com as EDOs homogéneas já estudadas).

Notar que uma EDO linear de 1ª ordem homogénea

$$y' + p(x)y = 0$$

isto é, onde q(x)=0, é uma EDO de variáveis separáveis pois pode ser escrita na forma $\frac{1}{u}y'=-p(x)$.

Se $b(x) \neq 0$ a EDO diz-se linear não-homogénea ou completa.

Para obter a solução de uma EDO linear de 1ª ordem:

- 1. Escreve-se a EDO na forma y' + p(x)y = q(x).
- 2. Determina-se um fator, chamado fator integrante, $\mu(x) = e^{\int p(x)dx}$.
- 3. Multiplica-se a EDO por esse fator $\mu(x)$

$$\mu(x)y' + \mu(x)p(x)y = \mu(x)q(x)$$
(4.3)

Observando que

$$(\mu(x)y)' = \mu'(x)y + \mu(x)y' = \mu(x)p(x)y + \mu(x)y'$$

pois

$$\mu'(x) = \left(e^{\int p(x)dx}\right)' = e^{\int p(x)dx}p(x) = \mu(x)p(x),$$

a equação 4.3 pode ser escrita na forma

$$(\mu(x)y)' = \mu(x)q(x) \tag{4.4}$$

4. Integra-se a equação 4.4 em ordem a x

$$\mu(x)y = \int \mu(x)q(x)dx \Leftrightarrow y = \frac{1}{\mu(x)} \int \mu(x)q(x)dx$$

Exemplo 4.2.3. Considere a equação diferencial

$$-4x^2 - \frac{2xy}{x^2 + 6} + y' = 0$$

A sua solução geral é

$$y = -(x^2 + 6)\left(4\sqrt{6}\arctan\left(\frac{1}{6}\sqrt{6}x\right) - k - 4x\right), \text{ com } k \in \mathbb{R}$$

Resolução:

Uma equação diferencial linear de 1^a ordem é do tipo

$$a_0(x)y' + a_1(x)y = b(x)$$

onde a_0 é uma função não nula. Pode ser também escrita na forma y' + p(x)y = q(x). A equação dada é equivalente a

$$-\frac{2x}{x^2+6}y+y'=4x^2\tag{4.5}$$

que é uma equação do tipo y'+p(x)y=q(x), onde $p(x)=-\frac{2\,x}{x^2+6}$ e $q(x)=4\,x^2.$

Procuremos um fator $\mu(x)$ que transforme a equação 4.5 numa equação diferencial fácil de integrar:

$$\mu(x)(y' + p(x)y) = \mu(x)q(x)$$

este fator será dado por $\mu(x) = e^{\int p(x)dx}$.

$$\int p(x)dx = \int -\frac{2x}{x^2 + 6} \, dx = -\ln(x^2 + 6) + C, \ C \in \mathbb{R}$$

Assim, μ pode ser, fazendo C = 0,

$$\mu(x) = e^{-\ln(x^2+6)} = e^{\ln(x^2+6)^{-1}} = \frac{1}{x^2+6}$$

Multiplicando a equação diferencial 4.5 pelo fator integrante teremos

$$\frac{y'}{x^2+6} - \frac{2xy}{(x^2+6)^2} = \frac{4x^2}{x^2+6}$$

Como

$$\frac{y'}{x^2+6} - \frac{2xy}{(x^2+6)^2} = \left(\frac{y}{x^2+6}\right)'$$

podemos afirmar que

$$\frac{y}{x^2 + 6} = \int \frac{4x^2}{x^2 + 6} \, dx$$

Integrando o 2º membro,

$$\int \frac{4x^2}{x^2 + 6} dx = 4 \int \left(1 - \frac{6}{x^2 + 6} \right) dx = -4\sqrt{6}\arctan\left(\frac{1}{6}\sqrt{6}x\right) + 4x + k$$

Então

$$y = (x^2 + 6)\left(-4\sqrt{6}\arctan\left(\frac{1}{6}\sqrt{6}x\right) + 4x + k\right), \ k \in \mathbb{R}$$

Exercício 4.2.5 Resolva as seguintes EDOs

- 1. xy' y = x 1, x > 0
- 2. $xy' + y e^x = 0$, x > 0
- $3. \ y' y = -e^x$

4.2.4 EDOs redutíveis a EDOs homogéneas

As equações da forma

$$y' = h\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

onde h é uma função real de variável real e a_i, b_i, c_i são constantes reais tais que $a_1b_2 - a_2b_1 \neq 0$, são redutíveis a EDOs homogéneas realizando a mudança de variáveis

$$\begin{cases} x = u + \alpha \\ y = z + \beta \end{cases}$$

onde zé uma função de $u,\,z=z(u)$ e α e β são constantes que se determinam a partir de

$$\begin{cases} a_1 \alpha + b_1 \beta + c_1 = 0 \\ a_2 \alpha + b_2 \beta + c_2 = 0 \end{cases}$$

Para este sistema de equações lineares ser possível e determinado, deve ser satisfeita a condição $a_1b_2 - a_2b_1 \neq 0$, caso contrário o sistema pode ser impossível ou possível mas indeterminado.

Exercício resolvido 4.2.2. Resolva a equação diferencial

$$y' = \frac{x+y+4}{x-y-6}, \ x > 1 \tag{4.6}$$

Resolução:

Neste caso, temos $a_1 = b_1 = 1$, $a_2 = 1$ e $b_2 = -1$. Assim, $a_1b_2 - a_2b_1 = -1 - 1 = -2 \neq 0$. Fazemos então a mudança de variável:

$$\begin{cases} x = u + \alpha \\ y = z + \beta \end{cases}$$

onde α e β satisfazem o sistema de equações:

$$\begin{cases} \alpha + \beta + 4 = 0 \\ \alpha - \beta - 6 = 0 \end{cases}$$

Resolvendo o sistema obtemos:

$$\begin{cases} \alpha = 1 \\ \beta = -5 \end{cases}$$

A mudança de variáveis é então

$$\begin{cases} x = u + 1 \\ y = z - 5 \end{cases}$$

Substituindo agora na equação 4.6 vem:

$$z' = \frac{u+1+z-5+4}{u+1-z+5-6} = \frac{u+z}{u-z}$$

$$\tag{4.7}$$

Nota: Repare-se que $\frac{dy}{dx} = \frac{dz}{du}$. Na equação 4.7 $z' = \frac{dz}{du}$.

Temos uma equação homogénea nas variáveis u e z. Vamos considerar uma nova mudança de variável, z = wu, e substituir em 4.7. Note-se que z' = w'u + w e, portanto

$$w'u + w = \frac{1+w}{1-w} \tag{4.8}$$

que é uma equação de variáveis separáveis. Simplificando vem:

$$w'u = \frac{1+w^2}{1-w} \Leftrightarrow \frac{1-w}{1+w^2} dw = \frac{1}{u} du \Leftrightarrow \left(\frac{1}{1+w^2} - \frac{w}{1+w^2}\right) dw = \frac{1}{u} du^1$$
 (4.9)

Integrando temos,

$$\arctan w - \frac{1}{2}\ln(1+w^2) = \ln u + C, \ C \in \mathbb{R}$$

ou ainda,

$$e^{\arctan w} = ku\sqrt{1+w^2}, \ k \in \mathbb{R}^+$$
(4.10)

Regressando agora à variável z, vem

$$e^{\arctan\left(\frac{z}{u}\right)} = ku\sqrt{1 + \left(\frac{z}{u}\right)^2} = k\sqrt{u^2 + z^2}, \ k \in \mathbb{R}^+$$
(4.11)

Finalmente, regressando às variáveis x e y, teremos:

$$e^{\arctan\left(\frac{y+5}{x-1}\right)} = k\sqrt{(x-1)^2 + (y+5)^2}, \ k \in \mathbb{R}^+$$
(4.12)

Caso na equação diferencial

$$y' = h\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

a condição $a_1b_2-a_2b_1=0$ se verifique, teremos uma equação de variáveis separáveis, fazendo a substituição $z=a_1x+b_1y$ (ou $z=a_2x+b_2y$).

Vamos ver um exemplo.

¹Como x > 1 e u = x - 1, podemos garantir que u > 0.

Exemplo 4.2.4. Considere a equação

$$y' = \frac{x - 2y - 3}{-3x + 6y - 1} \tag{4.13}$$

onde $a_1 = 1$, $a_2 = -3$, $b_1 = -2$ e $b_2 = 6$. Como facilmente se verifica, $a_1b_2 - a_2b_1 = 0$. Vamos fazer a mudança de variável z = x - 2y. Observemos que z é ainda uma função de x e

$$\left(\frac{dz}{dx} = \right)z' = 1 - 2y'$$

Como $y' = \frac{z'-1}{-2}$ e -3x + 6y = -3(x-2y), substituindo em 4.13 vem

$$\frac{z'-1}{-2} = \frac{z-3}{-3z-1} \tag{4.14}$$

Efetuando alguns cálculos chegamos a

$$z' = \frac{5z - 5}{3z + 1}$$

que é uma equação de variáveis separáveis, já que se pode escrever na forma

$$\frac{3z+1}{5z-5}dz = dx$$

Como

$$\frac{3z+1}{5z-5} = \frac{3}{5} + \frac{4}{5z-5}$$

a integração é simples

$$\int \left(\frac{3}{5} + \frac{4}{5z - 5}\right) dz = \int dx$$

ou seja,

$$\frac{3}{5}z + \frac{4}{5}\ln|5z - 5| = x + c, \ c \in \mathbb{R}$$

Regressando às variáveis x e y, temos

$$\frac{3}{5}(x-2y) + \frac{4}{5}\ln|5(x-2y) - 5| = x + c, \ c \in \mathbb{R}$$

Exercício 4.2.6 Resolva as seguintes equações diferenciais:

1.
$$\frac{dy}{dx} = \frac{x+y-3}{x-y-1}, x > 2;$$

2.
$$y' = \frac{y-x}{y-x+2}$$
.

4.2.5 Equações de Bernoulli

Definição 4.8. Uma equação diferencial de Bernoulli é uma equação do tipo

$$y' + a(x)y = b(x)y^{\alpha},$$

onde $\alpha \in \mathbb{R}$.

Notar que se $\alpha=0$ ou $\alpha=1$ a EDO é linear:

$$\begin{cases} y' + a(x)y = b(x) & \text{se } \alpha = 0 \\ y' + a(x)y = b(x)y \Leftrightarrow y' + (a(x) - b(x))y = 0 & \text{se } \alpha = 1 \end{cases}$$

Para outros valores de α , a resolução passa por:

1. Considerar a EDO escrita na forma

$$y^{-\alpha}y' + a(x)y^{1-\alpha} = b(x), \ y \neq 0$$

- 2. Considerar a mudança de variável $u=y^{1-\alpha}$ (note que u é também função de x!) e, consequentemente, $u'=(1-\alpha)y^{-\alpha}y'$.
- 3. Substituir para obter a EDO linear

$$\frac{u'}{1-\alpha} + a(x)u = b(x) \Leftrightarrow u' + (1-\alpha)a(x)u = (1-\alpha)b(x)$$

4. Usar a técnica do fator integrante para obter a solução da EDO anterior e realizar, no final, a transformação inversa.

Exemplo 4.2.5. Considere a equação diferencial

$$-2y + y' = 4y^2$$

A sua solução pode ser dada por

$$y = \frac{1}{ke^{-2x} - 2}$$
, com $k \in \mathbb{R}$

Resolução:

Uma equação de Bernoulli é do tipo $y' + p(x)y = q(x)y^{\alpha}$ com $\alpha \in \mathbb{R}$. Estamos assim perante uma equação de Bernoulli com $\alpha = 2$, p(x) = -2 e q(x) = 4.

Dividindo ambos os membros da equação por y^2 obtemos:

$$-\frac{2}{y} + \frac{y'}{y^2} = 4 (4.15)$$

Para resolver estas equações faz-se a mudança de variável $u = y^{1-\alpha}$.

Neste caso $\alpha=2$ e portanto a mudança de variável será $u=y^{-1}=\frac{1}{y}$. Assim, $u'=-\frac{y'}{y^2}$ e podemos reescrever a equação 4.15 na variável u:

$$-2u - u' = 4 \Leftrightarrow 2u + u' = -4 \tag{4.16}$$

que é uma equação linear do tipo u' + p(x)u = q(x). Procuremos um factor integrante $\mu(x)$, que neste caso é dado por

$$\mu(x) = e^{\int 2 \, dx} = e^{2 \, x}$$

Multiplicando ambos os membros da equação diferencial 4.16 pelo fator integrante obtemos

$$2ue^{2x} + u'e^{2x} = -4e^{2x} (4.17)$$

Observando que

$$2ue^{2x} + u'e^{2x} = (ue^{2x})'$$

a equação dada é equivalente a

$$(ue^{2x})' = -4e^{2x}$$

e integrando o 2^{o} membro vem

$$ue^{2x} = \int -4e^{2x} dx = -2e^{2x} + k$$
, com $k \in \mathbb{R}$

Então,

$$u = ke^{-2x} - 2$$
, com $k \in \mathbb{R}$

e, como $u = \frac{1}{y}$, vem

$$y = \frac{1}{ke^{-2x} - 2}$$
, com $k \in \mathbb{R}$

Exercício 4.2.7 Resolva as seguintes EDOs:

1.
$$y' + \frac{1}{x}y = xy^2$$

2.
$$\begin{cases} x^2y' - 2xy = 3y^4 \\ y(1) = \frac{1}{2} \end{cases}$$

4.3 EDOs lineares de ordem n

Definição 4.9. Chama-se equação diferencial linear de ordem n a uma equação do tipo

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x),$$

onde $a_j(x)$, com $j \in \{0, 1, \ldots, n\}$ e b(x) são funções contínuas num intervalo I e $a_0(x) \neq 0$, para todo o $x \in I$.

Se b(x) = 0 a EDO diz-se linear homogénea ou incompleta.

Se $b(x) \neq 0$ a EDO diz-se linear não homogénea ou completa.

Se $a_j(x) = \alpha_j \in \mathbb{R}$, isto é, são constantes, então a EDO diz-se linear de coeficientes constantes.

Exercício 4.3.1 Indique quais das seguintes EDOs são lineares. Se o forem, são homogéneas ou não? E são de coeficientes constantes?

- 1. $y'' + \frac{1}{x}y' + 3y = 1$
- 2. $y'''y + 2xy'' + \log(x)y = 0$
- 3. $y^{(5)} + y = 0$

O próximo resultado indica-nos como podemos obter a solução geral de uma EDO linear completa.

Teorema 4.1. A solução geral de uma EDO linear completa é igual à soma de uma sua qualquer solução particular com a solução geral da EDO homogénea que lhe está associada.

Se considerarmos a EDO homogénea

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$

e designarmos por y_h a sua solução geral, e ainda se y_p for uma solução particular da equação completa,

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x)$$

a solução geral desta equação será

$$y = y_h + y_p$$

Exemplo 4.3.1. Considere a EDO $y' + y = 2e^x$. Uma solução particular é $y_p = e^x$.

$$y_p' = e^x = y_p$$
 e portanto, $y' + y = 2e^x$.

Vamos determinar a solução geral da equação homogénea associada, y' + y = 0. A equação homogénea é de variáveis separáveis e pode ser escrita na forma

$$y' + y = 0 \Leftrightarrow y' = -y \Leftrightarrow \frac{dy}{y} = -dx$$

Integrando ambos os membros temos,

$$\ln |y| = -x + C \Leftrightarrow y = Ke^{-x}, K \in \mathbb{R} \setminus \{0\}$$

Mas a função y=0 também é solução da equação y'+y=0, portanto a solução geral da equação homogénea é

$$y_h = Ke^{-x}, K \in \mathbb{R}$$

Assim, a solução geral da equação completa $y' + y = 2e^x$ é

$$y = y_h + y_p = Ke^{-x} + e^x, K \in \mathbb{R}$$

Exercício 4.3.2 Determine a solução geral da EDO $y' - 2y = e^{5x}$.

Se a ordem da equação for superior a 1, torna-se, em geral, mais difícil encontrar a solução geral da equação homogénea, bem como uma solução particular da equação completa.

4.3.1 Equações lineares homogéneas

Uma EDO linear homogénea de ordem n é dada por

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = 0$$

onde $a_0, a_1, \ldots a_n$ são funções contínuas num dado intervalo $I \subseteq \mathbb{R}$ e $a_0(x) \neq 0, \forall x \in I$. O seguinte resultado permite-nos saber o número de soluções independentes de uma EDO linear de ordem n.

Teorema 4.2. Uma EDO linear homogénea de ordem n

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = 0$$

admite n soluções linearmente independentes, $\varphi_1, \varphi_2, \ldots, \varphi_n$. Ao conjunto

$$\{\varphi_1, \varphi_2, \dots, \varphi_n\}$$

damos a designação de sistema fundamental de soluções (SFS).

Qualquer outra solução φ da EDO se pode escrever como combinação linear destas, isto \acute{e} ,

$$\varphi = C_1 \varphi_1 + C_2 \varphi_2 + \ldots + C_n \varphi_n$$

 $com C_1, \ldots, C_n$ constantes reais determinadas de modo único para φ .

Observação 4.2. As soluções $\varphi_1, \varphi_2, \ldots, \varphi_n$ dizem-se linearmente independentes porque nenhuma delas pode ser obtida como combinação linear das restantes.

Esta afirmação pode traduzir-se matematicamente da seguinte forma:

$$C_1\varphi_1 + C_2\varphi_2 + \ldots + C_n\varphi_n = 0 \Leftrightarrow C_1 = C_2 = \ldots C_n = 0.$$
 (4.18)

Para os alunos que tiveram a unidade curricular de ALGA, poderão usar determinantes para provar a independência linear de funções, usando o teorema seguinte.

Teorema 4.3. n funções $\varphi_1, \varphi_2, \ldots, \varphi_n, n-1$ vezes diferenciáveis (isto é, admitindo derivadas até à ordem n-1 contínuas) são linearmente independentes se e só se o determinante,

$$\begin{vmatrix} \varphi_1 & \varphi_2 & \dots & \varphi_n \\ \varphi_1' & \varphi_2' & \dots & \varphi_n' \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \dots & \varphi_n^{(n-1)} \end{vmatrix}$$

for diferente de zero.

A este determinante dá-se a designação de **wronskiano** e denota-se vulgarmente por W(x).

Exemplo 4.3.2. Considerem-se as funções e^x , x e sen x definidas em \mathbb{R} . Estas funções são linearmente independentes já que não conseguimos escrever nenhuma delas como combinação linear das restantes. Suponhamos que existiam constantes C_1 e C_2 tais que

$$e^x = C_1 x + C_2 \sin x$$

Se esta afirmação fosse verdadeira, a igualdade verificar-se-ia para todos os valores de $x \in \mathbb{R}$, contudo, se x = 0 teríamos a igualdade $e^0 = 0$, que é impossível.

Para mostrar a independência linear deste conjunto de funções usamos a equivalência 4.18

$$C_1 e^x + C_2 x + C_3 \operatorname{sen} x = 0 \Leftrightarrow C_1 = C_2 = C_3 = 0$$

Comecemos por notar que

$$C_1 = C_2 = C_3 = 0 \Rightarrow C_1 e^x + C_2 x + C_3 \operatorname{sen} x = 0$$

Para provar que a implicação recíproca se verifica, isto é,

$$C_1e^x + C_2x + C_3 \operatorname{sen} x = 0 \Rightarrow C_1 = C_2 = C_3 = 0$$

podemos atribuir valores a x de modo a conseguir provar que a única solução é mesmo $C_1 = C_2 = C_3 = 0$. Assim, se x = 0 temos

$$C_1 e^0 + C_2 \times 0 + C_3 \operatorname{sen} 0 = 0 \Leftrightarrow C_1 = 0$$

Se $x = \pi$

$$C_1 e^{\pi} + C_2 \times \pi + C_3 \operatorname{sen} \pi = 0 \Leftrightarrow C_1 e^{\pi} + C_2 \times \pi = 0 \text{ (porque } \operatorname{sen} \pi = 0\text{)}$$

Como já tínhamos visto que $C_1=0$ resulta desta segunda equação que $C_2=0$. Neste momento, como já vimos que $C_1=C_2=0$, a igualdade $C_1e^x+C_2x+C_3\sin x=0$ reduz-se a $C_3\sin x=0$, que apenas é verdadeira, se $C_3=0$ (basta notar que, por exemplo, se $x=\frac{\pi}{2},\ C_3\sin\frac{\pi}{2}=0 \Leftrightarrow C_3=0$). Acabámos de mostrar que $C_1e^x+C_2x+C_3\sin x=0 \Rightarrow C_1=C_2=C_3=0$, ou seja, que as funções e^x , x e sen x são linearmente independentes.

Usando o wronskiano, esta prova de que as funções são linearmente independentes é muito mais simples. Sejam $\varphi_1 = e^x$, $\varphi_2 = x$ e $\varphi_3 = \sin x$. Estas funções admitem derivadas de 1^a e 2^a ordens contínuas,

$$\varphi_{1}' = e^{x} = \varphi_{1}''; \ \varphi_{2}' = 1, \ \varphi_{2}'' = 0; \ \varphi_{3}' = \cos x \ e \ \varphi_{3}'' = -\sin x$$

Podemos agora escrever o wronskiano deste conjunto de funções

$$\begin{vmatrix} e^x & x & \sin x \\ e^x & 1 & \cos x \\ e^x & 0 & -\sin x \end{vmatrix}$$

Para o cálculo deste determinante, como é de ordem 3, podemos usar a regra de Sarrus:

$$\begin{vmatrix} e^x & x & \sin x \\ e^x & 1 & \cos x \\ e^x & 0 & -\sin x \end{vmatrix} = e^x(-2\sin x + x\sin x + x\cos x)$$

$$e^x & x & \sin x$$

$$e^x & 1 & \cos x$$

O valor do determinante obtém-se da seguinte forma (no sentido azul as parcelas têm sinal + e no sentido vermelho as parcelas têm sinal -)

$$e^x \times 1 \times (-\sin x) + e^x \times 0 \times \sin x + e^x \times x \times \cos x - e^x \times 1 \times \sin x - e^x \times 0 \times \cos x - e^x \times x \times (-\sin x)$$

Este determinante é diferente de zero, já que

$$e^{x}(-2 \operatorname{sen} x + x \operatorname{sen} x + x \operatorname{cos} x) = 0 \Leftrightarrow -2 \operatorname{sen} x + x \operatorname{sen} x + x \operatorname{cos} x = 0$$

e a segunda igualdade só se anula para valores de x específicos, como por exemplo para x=0. Contudo se $x=\frac{\pi}{2},$

$$-2\sin\frac{\pi}{2} + \frac{\pi}{2}\sin\frac{\pi}{2} + \frac{\pi}{2}\cos\frac{\pi}{2} = -2 + \frac{\pi}{2} \neq 0$$

Podemos então afirmar que $W(x) \neq 0$ em que este 0 representa a função nula.

Exemplo 4.3.3. Considere-se a equação linear $x^2y' + xy = 0$ no intervalo $I =]0, +\infty[$. É uma EDO linear de ordem 1, onde $a_0(x) = x^2$ e $a_1(x) = x$, ambas funções contínuas em I. Trata-se de uma EDO de variáveis separáveis

$$x^{2}y' + xy = 0 \Leftrightarrow \frac{dy}{y} = -\frac{x}{x^{2}}dx \Leftrightarrow \frac{dy}{y} = -\frac{1}{x}dx$$

Integrando, vem

$$y = \frac{C}{x}, C \in \mathbb{R}, x \in I$$

Neste caso, como n=1, o sistema fundamental de soluções é constituído apenas por uma solução, $SFS=\left\{\frac{1}{x}\right\}$ Uma qualquer solução da EDO obtém-se a partir desta multiplicando-a por uma constante.

$$y = C\frac{1}{x}$$

Exemplo 4.3.4. Considere-se a EDO y'' + y = 0 (é uma EDO linear homogénea). Mostre que sen(x) e cos(x) formam um SFS para esta EDO e determine a sua solução geral.

Comecemos por provar que as funções $\varphi_1(x) = \sin x$ e $\varphi_2(x) = \cos x$ são soluções da EDO:

$$\varphi_{1}^{'} = \cos x; \; \varphi_{1}^{''} = -\sin x; \; \varphi_{2}^{'} = -\sin x \; e \; \varphi_{2}^{''} = -\cos x$$

Substituindo na EDO, vem,

$$\varphi_1'' + \varphi_1 = -\sin x + \sin x = 0 \text{ e } \varphi_2'' + \varphi_2 = -\cos x + \cos x = 0$$

Assim, φ_1 e φ_2 são soluções da EDO y'' + y = 0.

Falta agora verificar que são linearmente independentes. Usando o wronskiano teremos

$$\begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix} = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = \sin x \times (-\sin x) - \cos x \times \cos x = -\sin^2 x - \cos^2 x = -1$$

Como o determinante é diferente de zero, as funções são linearmente independentes.

Como temos duas soluções linearmente independentes de uma equação linear de 2^a ordem, podemos dizer que estas duas soluções formam uma sistema fundamental de soluções. Qualquer solução, φ , da equação diferencial y'' + y = 0 pode ser obtida como combinação linear destas duas soluções:

$$\varphi = C_1 \operatorname{sen} x + C_2 \operatorname{cos} x, \ C_1, \ C_2 \in \mathbb{R}$$

Exercício 4.3.3 Considere a EDO y''' + 4y'' - 5y' = 0.

- 1. Será que $\{1, e^x\}$ constitui um SFS para esta EDO?
- 2. Será que $\{1, e^x, 2e^x\}$ constitui um SFS para esta EDO?
- 3. Será que $\{1, e^x, e^{-5x}\}$ constitui um SFS para esta EDO?

Exercício 4.3.4 Determine a solução da EDO y' + xy = 0.

4.3.2 Princípio da Sobreposição dos Efeitos

Vimos nas secções anteriores EDOs em que o 2° membro era uma função. Contudo, o 2° membro pode ser a soma de várias funções e neste caso é útil o **Princípio da Sobreposição dos Efeitos**.

No caso em que $b(x) = b_1(x) + b_2(x) + \ldots + b_k(x)$ este princípio permite-nos afirmar que uma solução particular da equação diferencial

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = b_1(x) + b_2(x) + \ldots + b_k(x)$$

pode ser obtida considerando a soma de soluções particulares, y_{p_i} , de cada um dos problemas

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = b_i(x)$$
, com $i = 1, \ldots, k$

ou seja,

$$y_p = y_{p_1} + y_{p_2} + \ldots + y_{p_k}$$

Exemplo 4.3.5. Consideremos a EDO

$$y' + y = 2e^x + 3e^{2x}$$

Podemos determinar uma solução particular desta equação obtendo soluções particulares das EDOs

$$y' + y = 2e^x$$
 e $y' + y = 3e^{2x}$

Temos $y_{p_1}=e^x$ (solução de $y'+y=2e^x$) e $y_{p_2}=e^{2x}$ (solução de $y'+y=3e^{2x}$). Uma solução particular da EDO $y'+y=2e^x+3e^{2x}$ é

$$y_p = y_{p_1} + y_{p_2} = e^x + e^{2x}$$

4.3.3 Determinação da solução geral de uma EDO linear homogénea de coeficientes constantes

Um dos problemas que surge com as EDOs lineares de ordem n é a determinação da solução geral da equação homogénea, já que a solução da equação completa pode ser obtida pela soma da solução geral da homogénea com uma solução particular da equação completa.

O processo que a seguir se descreve só pode ser utilizado nas EDOs de coeficientes constantes!!!

No caso das EDO's lineares de 1ª ordem, $a_0y' + a_1y = 0$, a solução geral da equação homogénea é da forma

$$y_H = Ce^{-Ax}, \quad C \in \mathbb{R}.$$

já que $a_0y' + a_1y = 0$, é uma EDO de variáveis separáveis, onde

$$\varphi(x) = e^{-\int \frac{a_1}{a_0} \, dx}$$

é uma sua solução.

Vamos procurar soluções deste tipo, $y = e^{rx}$, para EDOs de ordem superior a 1. Uma EDO linear homogénea de ordem n com coeficientes constantes é da forma

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$
(4.19)

com a_i constantes reais e $a_0 \neq 0$.

Se pretendermos uma solução do tipo $y=e^{rx}$, então, r deverá satisfazer algumas condições. Quais? Derivando a função y, temos

$$y' = re^{rx}, \quad y'' = r^2 e^{rx}, \quad \dots, \quad y^{(n)} = r^n e^{rx}$$

e substituindo em 4.19 obtemos

$$a_0 r^n e^{rx} + a_1 r^{n-1} e^{rx} + \dots + a_{n-1} r e^{rx} + a_n e^{rx} = 0 \Leftrightarrow a_0 r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n = 0$$
 (4.20)

ou seja, r é solução da equação, chamada equação caraterística associada à EDO homogénea.

Para obter um SFS (e posteriormente construir a solução geral) é necessário resolver a equação caraterística associada à EDO:

$$\underbrace{a_0r^n + a_1r^{n-1} + \ldots + a_{n-1}r + a_n}_{polin\'omio\ carater\'atico} = 0$$

Da resolução desta equação resultam n raízes² (entre reais e complexas) que vão definir o sistema fundamental de soluções.

Vamos analisar os vários tipos de raízes e as respetivas soluções.

r raiz real simples Neste caso, uma solução que integra o Sistema Fundamental de soluções é e^{rx} .

r raiz real de multiplicidade k > 1 Neste caso, do sistema fundamental de soluções fazem parte as funções

$$e^{rx}$$
, xe^{rx} , x^2e^{rx} , ..., $x^{k-1}e^{rx}$

r raiz complexa simples Seja $r = \alpha + i\beta$ uma raiz complexa simples. Neste caso, $\alpha - i\beta$ também será raiz simples da equação característica. Então, do sistema fundamental de soluções fazem parte as funções³

$$e^{\alpha x}\cos(\beta x)$$
 e $e^{\alpha x}\sin(\beta x)$

 3 As raízes complexas simples $\alpha + i\beta$ e $\alpha - i\beta$ dão origem às funções complexas $e^{(\alpha + i\beta)x}$ e $e^{(\alpha - i\beta)x}$. Recorrendo à fórmula de Euler, $e^{i\theta} = \cos\theta + i \sin\theta$, resulta que

$$e^{(\alpha+i\beta)x} = e^{\alpha x}e^{i\beta x} = e^{\alpha x}(\cos\beta x + i\sin\beta x)$$

е

$$e^{(\alpha-i\beta)x} = e^{\alpha x}e^{-i\beta x} = e^{\alpha x}(\cos\beta x - i\sin\beta x)$$

 $^{^2}$ Toda a equação polinomial de grau n possui n raízes complexas. Note-se que um número real é um número complexo com parte imaginária nula. Observe-se ainda que se a+bi é raiz da equação, o seu conjugado, a-bi também é solução da mesma equação.

As n raízes não têm que ser necessariamente distintas, daí que se refira o conceito de multiplicidade de uma raiz. Uma raiz c de um polinómio de grau n tem multiplicidade p se pudermos fatorizar o polinómio da seguinte forma $(x-c)^pQ_{n-p}(x)$ mas não o conseguimos fatorizar na forma $(x-c)^{p+1}R_{n-(p+1)}(x)$, onde Q_{n-p} é um polinómio de grau n-p e $R_{n-(p+1)}$ é um polinómio de grau n-(p+1).

r raiz complexa de multiplicidade k>1 Seja $r=\alpha\pm i\beta$ um par de raízes complexas com multiplicidade k>1 obtidas da equação característica. Então, do sistema fundamental de soluções fazem parte as funções

$$e^{\alpha x}\cos(\beta x), xe^{\alpha x}\cos(\beta x), \dots, x^{k-1}e^{\alpha x}\cos(\beta x)$$

 $e^{\alpha x}\sin(\beta x), xe^{\alpha x}\sin(\beta x), \dots, x^{k-1}e^{\alpha x}\sin(\beta x)$

Exemplo 4.3.6. Vamos determinar a solução geral da equação y'' + 4y' + 3y = 0. A sua equação caraterística é

$$r^2 + 4r + 3 = 0$$

As suas raízes são

$$r = \frac{-4 \pm \sqrt{16 - 12}}{2} \Leftrightarrow r = -1 \lor r = -3$$

A cada raiz vamos fazer corresponder uma função, solução da EDO:

$$\varphi_1(x) = e^{-x}, \quad \varphi_2(x) = e^{-3x}$$

Assim, um sistema fundamental de soluções da EDO é

$$\{e^{-x}, e^{-3x}\}$$

e a sua solução geral é

$$y = C_1 \varphi_1(x) + C_2 \varphi_2(x) = C_1 e^{-x} + C_2 e^{-3x}, C_1, C_2 \in \mathbb{R}$$

Exemplo 4.3.7. Consideremos a equação diferencial $y^{(4)} + 8y'' + 16y = 0$.

A sua equação caraterística é:

$$r^4 + 8r^2 + 16 = 0$$

Para determinar as suas soluções vamos fazer uma mudança de variável para reduzir esta equação a uma do segundo grau, tomando $z=r^2$. Reescrevendo a equação caraterística teremos:

$$z^2 + 8z + 16 = 0$$

Aplicando a fórmula resolvente a esta equação, obtemos z=-4, raiz dupla (reparemos que $z^2+8z+16=(z+4)^2$). Temos então que $r^2=-4$, ou seja, $r=\pm 2i$ cada uma destas raízes com multiplicidade 2. Assim, as soluções associadas a estas raízes são

$$e^{0x}\cos(2x)$$
, $xe^{0x}\cos(2x)$, $e^{0x}\sin(2x)$, $xe^{0x}\sin(2x)$

(notar que 2i = 0 + 2i)

Como $e^{0x} = 1$ o sistema fundamental de soluções é

$$\{\cos(2x), x\cos(2x), \sin(2x), x\sin(2x)\}\$$

e a solução geral da equação diferencial é

$$y = C_1 \cos(2x) + C_2 x \cos(2x) + C_3 \sin(2x) + C_4 x \sin(2x), C_1, C_2, C_3, C_4 \in \mathbb{R}$$

Exercício 4.3.5 Determine a solução geral das EDOs lineares homogéneas seguintes

- 1. $u^{(4)} + v'' = 0$
- 2. $y^{(4)} 3y''' y'' + 3y' = 0$
- 3. y'' + 2y' + 5y = 0
- 4. $2y^{(5)} 8y^{(4)} + 8y''' = 0$

Se considerarmos duas combinações lineares específicas destas duas soluções em $\mathbb C$ obtemos duas funções reais, linearmente independentes que ainda são solução da EDO homogénea:

$$\frac{1}{2}e^{\alpha x}\left(\cos\alpha x+i\sin\beta x\right)+\frac{1}{2}e^{\alpha x}\left(\cos\beta x-i\sin\beta x\right)=e^{\alpha x}\cos(\beta x)$$

$$-\frac{i}{2}e^{\alpha x}\left(\cos\beta x+i\sin\beta x\right)+\frac{i}{2}e^{\alpha x}\left(\cos\beta x-i\sin\beta x\right)=e^{\alpha x}\sin(\beta x)$$

4.3.4 Método dos coeficientes indeterminados

Seja

$$a_0 y^{(n)} + \ldots + a_n y = b(x)$$

uma equação diferencial linear de ordem n onde a_0, a_1, \ldots, a_n são constantes reais, com $a_0 \neq 0$. Se a função b(x) for da forma

$$b(x) = P_m(x)e^{\alpha x}\cos(\beta x)$$
 ou $b(x) = P_m(x)e^{\alpha x}\sin(\beta x)$

onde $P_m(x)$ é um polinómio de grau $m \in \mathbb{N}_0$ e $\alpha, \beta \in \mathbb{R}$, o **método dos coeficientes indeterminados** é uma técnica para obtenção de uma solução particular y_P desta classe de equações. Este método permite-nos encontrar uma solução particular do tipo

$$y_P(x) = x^k e^{\alpha x} [P(x)\cos(\beta x) + Q(x)\sin(\beta x)]$$

onde

- $k \in \mathbb{N}$ é a multiplicidade de $r = \alpha + i\beta$ se esta for raiz do polinómio caraterístico; k = 0 se $r = \alpha + i\beta$ não é raiz do polinómio caraterístico
- P(x), Q(x) são polinómios de grau m genéricos cujos coeficientes são posteriormente determinados.

Vejamos alguns exemplos.

Exemplo 4.3.8. A solução da EDO

$$-2y - 4y' - 2y'' = 7e^{-t} (4.21)$$

é dada por

$$y = Ae^{-t} + Bte^{-t} - \frac{7}{4}t^2e^{-t}, \cos A, B \in \mathbb{R}$$

Estamos perante uma EDO linear de 2^a ordem, de coeficientes constantes ($a_0 = -2$, $a_1 = -4$ e $a_2 = -2$), onde o 2^o membro é $b(t) = 7e^{-t}$.

Repare-se que $b(t) = P_m(t)e^{\alpha t}\cos(\beta t)$ com $P_m(t) = 7$ (polinómio de grau 0, m = 0), $\alpha = -1$ e $\beta = 0$. A solução particular, y_p a procurar será da forma

$$y_p(t) = t^k e^{-t} [C\cos(0t) + D\sin(0t)] = Ct^k e^{-t}$$

Para determinarmos k precisamos saber se $\alpha + i\beta = -1 + 0i = -1$ é raiz da equação caraterística associada à EDO.

A equação caraterística associada à equação diferencial é $-2r^2 - 4r - 2 = 0$. Esta equação tem uma raiz dupla, r = -1. Portanto, sendo -1 raiz de multiplicidade 2, podemos afirmar que k = 2 e

$$y_p = Ct^2 e^{-t}$$

Para determinar a constante C vamos substituir em 4.21 y por y_p :

$$-2y_p - 4y_p' - 2y_p'' = 7e^{-t} (4.22)$$

Derivando y_p vem

$$y'_p = -Ct^2e^{-t} + 2Cte^{-t}$$
 e $y''_p = Ct^2e^{-t} - 4Cte^{-t} + 2Ce^{-t}$

e substituindo em 4.22, vem

$$-2Ct^{2}e^{-t} - 4(-Ct^{2}e^{-t} + 2Cte^{-t}) - 2(Ct^{2}e^{-t} - 4Cte^{-t} + 2Ce^{-t}) = 7e^{-t} \Leftrightarrow -4Ce^{-t} = 7e^{-t}$$

ou seja, $C=-\frac{7}{4}$. Então, a solução particular encontrada é

$$y_p = -\frac{7}{4} t^2 e^{-t}$$

Para determinar a solução geral da equação homogénea -2y-4y'-2y''=0 basta ter em conta as soluções da equação caraterística. Como r=-1 é uma raiz dupla, duas soluções linearmente independentes desta equação são, $y_1=e^{-t}$ e $y_2=te^{-t}$. Então a sua solução geral é

$$y_H = Ae^{-t} + Bte^{-t}, A, B \in \mathbb{R}$$

A solução geral da equação completa é a soma da solução geral da equação homogénea com uma solução particular da equação completa:

$$y = Ae^{-t} + Bte^{-t} - \frac{7}{4}t^2e^{-t}, A, B \in \mathbb{R}$$

Exercício 4.3.6 Mostre que a solução da equação diferencial

$$-2y + 4y' - 2y'' = -2e^t$$

é

$$y = Ae^t + Bte^t + \frac{1}{2}t^2e^t, \operatorname{com} A, B \in \mathbb{R}$$

Exercício 4.3.7 Mostre, usando o método dos coeficientes indeterminados, que

1. A solução da equação diferencial 25y + 12y' + 4y'' = -2 é

$$y = (A\cos(2t) + B\sin(2t))e^{-\frac{3}{2}t} - \frac{2}{25}, \cos A, B \in \mathbb{R}$$

2. A solução da equação diferencial $10\,y-2\,y'+y''=4\,t$ é

$$y = (A\cos(3t) + B\sin(3t))e^t + \frac{2}{5}t + \frac{2}{25}, A, B \in \mathbb{R}$$

3. A solução geral da equação diferencial 5 $y+2\,y'+y''=2\,e^{-2\,t}$ é

$$y = (A\cos(2t) + B\sin(2t))e^{-t} + \frac{2}{5}e^{-2t}, A, B \in \mathbb{R}$$

Exercício resolvido 4.3.1. A solução da equação diferencial

$$10y - 6y' + y'' = -3 \operatorname{sen}(-2t) \tag{4.23}$$

é

$$y = (A\cos{(-t)} + B\sin{(-t)})e^{3\,t} - \frac{1}{10}\,\sin{(-2\,t)} + \frac{1}{5}\,\cos{(-2\,t)}\,,\, \cos{A}, B \in \mathbb{R}$$

A equação caraterística associada à EDO é $r^2 - 6r + 10 = 0$ cujas soluções são -i + 3 e i + 3. Assim, a solução geral da equação homogénea 10y - 6y' + y'' = 0 é dada por

$$y_H = (A\cos(-t) + B\sin(-t))e^{3t}$$
, com $A, B \in \mathbb{R}$

A função do 2^{0} membro da equação completa 4.23, b(t)=-3 sen $(-2\,t)$ é do tipo $b(t)=P_{m}(t)e^{\alpha t}$ sen (βt) , com $P_{m}(t)=P_{0}(t)=-3$, $e^{\alpha t}=e^{0t}=1$ $(\alpha=0)$ e sen $(\beta t)=\sin(-2\,t)$ $(\beta=-2)$.

Como -2i não é solução da equação caraterística (portanto k=0), uma solução particular da equação completa 4.23 é

$$y_p = t^k e^{\alpha t} [P(t)\cos(\beta t) + Q(t)\sin(\beta t)] = C\sin(-2t) + D\cos(-2t)$$

com C e D constantes reais. Derivando y_p temos

$$y_p' = -2\,C\cos{(-2\,t)} + 2\,D\sin{(-2\,t)} \quad \text{e} \quad y_p'' = -4\,C\sin{(-2\,t)} - 4\,D\cos{(-2\,t)}$$

Substituindo na equação completa vem

$$6C \operatorname{sen}(-2t) + 12C \cos(-2t) - 12D \operatorname{sen}(-2t) + 6D \cos(-2t) = -3 \operatorname{sen}(-2t)$$

Para determinar as constantes C e D resolve-se o sistema de equações

$$\begin{cases} 6C - 12D = -3\\ 12C + 6D = 0 \end{cases}$$

obtendo-se $C=-\frac{1}{10}$ e $D=\frac{1}{5}.$ A solução particular da equação diferencial completa é

$$y_p = -\frac{1}{10} \operatorname{sen}(-2t) + \frac{1}{5} \cos(-2t)$$

A solução geral da equação completa é a soma da solução geral da equação homogénea com a solução particular da equação completa:

$$y = (A\cos(-t) + B\sin(-t))e^{3t} - \frac{1}{10}\sin(-2t) + \frac{1}{5}\cos(-2t), A, B \in \mathbb{R}$$

Exercício 4.3.8 Mostre, usando o método dos coeficientes indeterminados, que

1. a solução da equação diferencial $21 y - 8 y' + y'' = 4 \operatorname{sen}(3 t)$ é

$$y = \left(A\cos\left(\sqrt{5}t\right) + B\sin\left(\sqrt{5}t\right)\right)e^{4t} + \frac{1}{15}\sin\left(3t\right) + \frac{2}{15}\cos\left(3t\right), \cos A, B \in \mathbb{R}$$

2. a solução da equação diferencial $4\,y-4\,y'+4\,y''=-5\,\cos{(-2\,t)}$ é

$$y = \left(A\cos\left(\frac{1}{2}\sqrt{3}t\right) + B\sin\left(\frac{1}{2}\sqrt{3}t\right)\right)e^{\frac{1}{2}t} - \frac{5}{26}\sin\left(-2t\right) + \frac{15}{52}\cos\left(-2t\right), \, \cos A, B \in \mathbb{R}$$

3. A solução da equação diferencial -4y + 8y' - 4y'' = sen(t) é

$$y = Bte^{t} + Ae^{t} - \frac{1}{8}\cos(t), \cos A, B \in \mathbb{R}$$

Em jeito de algoritmo, temos:

- 1. Analisar b(x) e determinar $m, \alpha \in \beta$
- 2. Verificar se $r=\alpha+i\beta$ é raiz do polinómio característico da EDO homogénea associada e determinar a sua multiplicidade k (k=0 se $r=\alpha+i\beta$ não é raiz)
- 3. Escrever a fórmula genérica para $y_P(x)$ tendo em atenção os valores de $m, k, \alpha \in \beta$
- 4. Substituir y_P na EDO completa para determinar os coeficientes dos polinómios P(x) e Q(x)

Exercício 4.3.9

Determine a solução geral das EDOs seguintes:

- 1. $y''' + y' = \operatorname{sen}(x)$
- 2. $2y'' 4y' 6y = 3e^{2x}$
- 3. $y' + y = (x+1)e^{2x}$

4.3.5 Método da variação das constantes

Se conhecermos a solução geral da equação diferencial linear homogénea associada à equação completa, podemos, utilizando o método da variação das constantes, determinar uma solução particular da equação completa.

4.3.5.1 EDO's lineares de $1^{\underline{a}}$ ordem

Uma EDO linear homogénea de $1^{\underline{a}}$ ordem (n=1) é da forma

$$a_0(x)y' + a_1(x)y = 0$$

Neste caso, procuramos diretamente a sua solução. Recorde-se que, por definição, $a_0(x) \neq 0$, pelo que esta EDO é de variáveis separáveis. Assim, a sua solução é dada por

$$y = Ce^{-A(x)} = Ce^{-\int \frac{a_1(x)}{a_0(x)}dx}, \quad C \in \mathbb{R}$$

Vamos descrever o Método da Variação das Constantes para este caso. Consideremos em primeiro lugar uma EDO linear completa de 1^a ordem (n = 1)

$$a_0(x)y' + a_1(x)y = b(x)$$

Já vimos atrás que a solução geral da EDO homogénea associada $a_0(x)y' + a_1(x)y = 0$ é dada por

$$y_H = Ce^{-A(x)}, \quad C \in \mathbb{R}.$$

O método da variação das constantes assume que uma solução particular é da forma:

$$u_P(x) = C(x)e^{-A(x)}$$

sendo a função C(x) determinada por substituição de $y_P(x)$ e $y_P'(x)$ na equação completa, ou seja, resolvendo a equação

$$a_0(x)y_P' + a_1(x)y_P = b(x). (4.24)$$

isto é,

$$a_0(x) \left(C(x)e^{-A(x)} \right)' + a_1(x)C(x)e^{-A(x)} = b(x)$$

Como.

$$\left(C(x)e^{-A(x)}\right)' = C'(x)e^{-A(x)} - C(x)A'(x)e^{-A(x)} = C'(x)e^{-A(x)} - C(x)\frac{a_1(x)}{a_0(x)}e^{-A(x)}$$

porque

$$A'(x) = \left(\int \frac{a_1(x)}{a_0(x)} dx\right)' = \frac{a_1(x)}{a_0(x)}$$

temos, substituindo em 4.24,

$$a_0(x) \left(C'(x)e^{-A(x)} - C(x)\frac{a_1(x)}{a_0(x)}e^{-A(x)} \right) + a_1(x)C(x)e^{-A(x)} = b(x) \Leftrightarrow a_0(x)C'(x)e^{-A(x)} = b(x)$$

Podemos agora determinar C'(x):

$$C'(x) = \frac{b(x)}{a_0(x)e^{-A(x)}}$$

Integrando, obtém-se C(x):

$$C(x) = \int \frac{b(x)}{a_0(x)e^{-A(x)}} dx$$

Exercício resolvido 4.3.2. Determine a solução geral da EDO linear de 1ª ordem $y' - \frac{2}{x}y = \frac{x-1}{x}$. Resolução:

Comecemos por considerar a equação homogénea associada.

$$y' - \frac{2}{r}y = 0$$

que é uma equação de variáveis separáveis:

$$\frac{dy}{y} = \frac{2}{x}dx$$

Integrando vem,

$$\ln |y| = 2 \ln |x| + k, k \in \mathbb{R}$$

ou seja,

$$y = Cx^2, C \in \mathbb{R} \setminus \{0\}$$

Mas como y=0 é solução, podemos escrever

$$y = Cx^2, C \in \mathbb{R}$$

Para determinar uma solução particular da equação completa $y'-\frac{2}{x}y=\frac{x-1}{x}$ vamos usar o Método da Variação das Constantes, começando por supor que C é uma função de x e que uma solução particular da equação completa é

$$y_p = C(x)x^2$$

Vamos substituir y_p na equação completa, mas para isso precisamos de calcular y_p' :

$$y_p' = C'(x)x^2 + 2xC(x)$$

Substituindo agora na equação completa vem:

$$y_p' - \frac{2}{x}y_p = \frac{x-1}{x} \Leftrightarrow C'(x)x^2 + 2xC(x) - \frac{2}{x}C(x)x^2 = \frac{x-1}{x} \Leftrightarrow C'(x)x^2 = \frac{x-1}{x} \Leftrightarrow C'(x) = \frac{x-1}{x^3}$$

Vamos agora integrar para obter C(x):

$$C(x) = \int \frac{x-1}{x^3} dx = \int \left(\frac{1}{x^2} - \frac{1}{x^3}\right) dx = -\frac{1}{x} + \frac{1}{2x^2} + C_1, C_1 \in \mathbb{R}$$

Como apenas precisamos de uma solução particular, podemos tomar $C_1 = 0$ e assim,

$$y_p = \left(-\frac{1}{x} + \frac{1}{2x^2}\right)x^2 = -x + \frac{1}{2}$$

Finalmente, a solução geral da equação completa, $y' - \frac{2}{x}y = \frac{x-1}{x}$ é

$$y = y_h + y_p = Cx^2 - x + \frac{1}{2}, \ C \in \mathbb{R}$$

Exercício 4.3.10 Determine a solução geral das seguintes equações diferenciais:

- 1. $y' \operatorname{sen} x + y \operatorname{cos} x = \operatorname{sen}^2 x$;
- 2. xy' y = x 1, x > 0;
- 3. $xy' + y e^x = 0$, x > 0.

4.3.5.2 Método da variação das constantes para n > 1

Para uma EDO linear completa de ordem n > 1,

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = b(x)$$
 (4.25)

sabemos que

$$y_H(x) = C_1 \varphi_1(x) + C_2 \varphi_2(x) + \dots + C_n \varphi_n(x)$$
 (4.26)

em que $C_1, \ldots, C_n \in \mathbb{R}$ e $\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ é um SFS da EDO homogénea associada.

$$a_0(x)y^{(n)} + \ldots + a_n(x)y = 0$$
 (4.27)

O método da variação das constantes assume que uma solução particular é da forma:

$$y_P(x) = C_1(x)\varphi_1(x) + C_2(x)\varphi_2(x) + \ldots + C_n(x)\varphi_n(x)$$

onde as funções de x, $C_i(x)$, $i=1,\ldots,n$ são diferenciáveis e $C_i'(x)$, $i=1,\ldots,n$ são soluções do sistema seguinte

$$\begin{cases}
C'_{1}(x)\varphi_{1}(x) + C'_{2}(x)\varphi_{2}(x) + \dots + C'_{n}(x)\varphi_{n}(x) &= 0 \\
C'_{1}(x)\varphi'_{1}(x) + C'_{2}(x)\varphi'_{2}(x) + \dots + C'_{n}(x)\varphi'_{n}(x) &= 0 \\
\vdots &\vdots &\vdots \\
C'_{1}(x)\varphi_{1}^{(n-1)}(x) + C'_{2}(x)\varphi_{2}^{(n-1)}(x) + \dots + C'_{n}(x)\varphi_{n}^{(n-1)}(x) &= \frac{b(x)}{a_{0}(x)}
\end{cases}$$
(4.28)

onde as primeiras (n-1) igualdades são escolhidas para simplificar a expressão das sucessivas derivadas de $y_p(x)$ (até à ordem (n-1) e a última é escolhida por forma a que y_p seja, efetivamente, uma solução da equação 4.25. Resolvido o sistema anterior obtemos

$$\begin{cases} C'_1(x) &= g_1(x) \\ C'_2(x) &= g_2(x) \\ \vdots &\vdots \\ C'_n(x) &= g_n(x) \end{cases} \Rightarrow \begin{cases} C_1(x) &= \int g_1(x) \, dx = G_1(x) + A_1 \\ C_2(x) &= \int g_2(x) \, dx = G_2(x) + A_2 \\ \vdots &\vdots \\ C_n(x) &= \int g_n(x) \, dx = G_n(x) + A_n \end{cases}$$

Como se pretende apenas uma solução escolhemos as primitivas com constante nula, $A_1 = A_2 = \dots = A_n = 0$. Assim, uma solução particular da equação completa 4.25 é

$$y_n = G_1(x)\varphi_1(x) + G_2(x)\varphi_2(x) + \ldots + G_n(x)\varphi_n(x)$$
(4.29)

A solução geral da equação completa 4.25 obtém-se adicionando a solução geral da equação homogénea, 4.26, com a solução particular da equação completa obtida em 4.29:

$$\varphi = y_h + y_p = C_1 \varphi_1(x) + C_2 \varphi_2(x) + \ldots + C_n \varphi_n(x) + G_1(x) \varphi_1(x) + G_2(x) \varphi_2(x) + \ldots + G_n(x) \varphi_n(x)$$

onde $C_1, C_2, \ldots, C_n \in \mathbb{R}$.

Observação 4.3. Os sistemas de equações 4.28 nos casos particulares de n=2 e n=3, são respetivamente,

$$\begin{cases} C_1'(x)\varphi_1(x) + C_2'(x)\varphi_2(x) &= 0 \\ C_1'(x)\varphi_1^{'}(x) + C_2'(x)\varphi_2^{'}(x) &= \frac{b(x)}{a_0(x)} \end{cases}$$
 e
$$\begin{cases} C_1'(x)\varphi_1(x) + C_2'(x)\varphi_2(x) + C_3'(x)\varphi_3(x) &= 0 \\ C_1'(x)\varphi_1^{'}(x) + C_2'(x)\varphi_2^{'}(x) + C_3'(x)\varphi_3^{'}(x) &= 0 \\ C_1'(x)\varphi_1^{''}(x) + C_2'(x)\varphi_2^{''}(x) + C_3'(x)\varphi_3^{''}(x) &= \frac{b(x)}{a_0(x)} \end{cases}$$

Exemplo 4.3.9. Considere a EDO

$$y'' + y = \sin x \tag{4.30}$$

Use o método da variação das constantes para determinar y_P e escreva a solução geral da EDO dada.

Etapa 1 A equação homogénea associada a esta é y'' + y = 0 e obtivemos a sua solução geral no Exemplo 4.3.4,

$$y_h = C_1 \operatorname{sen} x + C_2 \operatorname{cos} x, \ C_1, C_2 \in \mathbb{R}$$

Etapa 2 Vamos agora aplicar o método da variação das constantes, assumindo que

$$y_p = C_1(x) \sin x + C_2(x) \cos x$$

onde C_1 e C_2 são funções diferenciáveis.

Designando as soluções independentes da equação homogénea por φ_1 e φ_2 ,

$$\varphi_1 = \operatorname{sen} x \ \operatorname{e} \ \varphi_2 = \operatorname{cos} x$$

teremos.

$$\varphi_{1}^{'} = \cos x; \; \varphi_{1}^{''} = -\sin x; \; \varphi_{2}^{'} = -\sin x \; e \; \varphi_{2}^{''} = -\cos x$$

Atendendo à equação dada, 4.30, $a_0(x) = 1$ e $b(x) = \sin x$. Substituindo agora no sistema 4.28 onde n = 2 temos

$$\begin{cases} C_1'(x)\varphi_1(x) + C_2'(x)\varphi_2(x) &= 0\\ C_1'(x)\varphi_1'(x) + C_2'(x)\varphi_2'(x) &= \frac{b(x)}{a_0(x)} \end{cases} \Leftrightarrow \begin{cases} C_1'(x)\sin x + C_2'(x)\cos x &= 0\\ C_1'(x)\cos x - C_2'(x)\sin x &= \sin x \left(= \frac{\sin x}{1}\right) \end{cases}$$
(4.31)

Etapa 3 Para resolver o sistema pode usar-se o processo de substituição ou recorrer aos conhecimentos de ALGA já que se trata de um sistema de Cramer.

Resolução por substituição:

$$\begin{cases} C_1'(x) \sin x + C_2'(x) \cos x = 0 \\ C_1'(x) \cos x - C_2'(x) \sin x = \sin x \left(= \frac{\sin x}{1} \right) \end{cases} \Leftrightarrow \begin{cases} C_1'(x) = -\frac{C_2'(x) \cos x}{\sin x} \\ -\frac{C_2'(x) \cos x}{\sin x} \cos x - C_2'(x) \sin x = \sin x \end{cases}$$

$$\Leftrightarrow \begin{cases} C_1'(x) = -\frac{C_2'(x)\cos x}{\sin x} \\ -C_2'(x)\cos^2 x - C_2'(x)\sin^2 x = \sin^2 x \end{cases} \\ \Leftrightarrow \begin{cases} C_1'(x) = -\frac{C_2'(x)\cos x}{\sin x} \\ C_2'(x) = -\sin^2 x \end{cases} \\ \Leftrightarrow \begin{cases} C_1'(x) = -\frac{-\sin^2 x\cos x}{\sin x} \\ C_2'(x) = -\sin^2 x \end{cases}$$

A solução do sistema é portanto

$$\begin{cases} C_1'(x) &= \operatorname{sen} x \cos x \\ C_2'(x) &= -\operatorname{sen}^2 x \end{cases}$$

Resolução de um sistema de Cramer: A solução do sistema é dada por

$$C_1'(x) = \frac{\begin{vmatrix} 0 & \cos x \\ \sin x & -\sin x \end{vmatrix}}{\begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}} = \frac{-\sin x \cos x}{-\sin^2 x - \cos^2 x} e C_2'(x) = \frac{\begin{vmatrix} \sin x & 0 \\ \cos x & \sin x \end{vmatrix}}{\begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix}} = \frac{\sin^2 x}{-\sin^2 x - \cos^2 x}$$

ou seja,

$$C'_1(x) = \sin x \cos x \ e \ C'_2(x) = -\sin^2 x$$

Etapa 4 Vamos agora determinar as funções C_1 e C_2 por primitivação.

$$C_1(x) = \int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + A_1, \ A_1 \in \mathbb{R}$$

$$C_2(x) = \int -\sin^2 x \, dx = \int -\frac{1 - \cos(2x)}{2} \, dx = -\frac{x}{2} + \frac{1}{4} \sin(2x) + A_2, \ A_2 \in \mathbb{R}$$

Etapa 5 Determinação da solução particular da equação completa (consideramos $A_1 = A_2 = 0$ já que apenas precisamos de uma solução).

$$y_p = C_1(x)\varphi_1(x) + C_2(x)\varphi_2(x) = \frac{1}{2}\sin^2 x \sin x + \left(-\frac{x}{2} + \frac{1}{4}\sin(2x)\right)\cos x$$

Como sen $(2x) = 2 \operatorname{sen} x \cos x$, vem,

$$y_p = \frac{1}{2} \sin^3 x - \frac{x}{2} \cos x + \frac{1}{2} \sin x \cos^2 x$$

Etapa 6 Finalmente, a solução da equação completa é

$$\varphi = y_h + y_p = C_1 \sin x + C_2 \cos x + \frac{1}{2} \sin^3 x - \frac{x}{2} \cos x + \frac{1}{2} \sin x \cos^2 x, \ C_1, C_2 \in \mathbb{R}$$

Para utilizar o Método da Variação das Constantes, é necessário conhecer a solução geral da EDO homogénea. Caso a equação seja de coeficientes constantes, já vimos um processo de a determinar. Noutras situações que ocorram neste curso, é geralmente dado o sistema fundamental de soluções da equação homogénea.

Exercício 4.3.11 Considere a EDO $y''' - y'' - 4y' + 4y = e^{-2x}$ da qual se sabe que $y_H = C_1 e^x + C_2 e^{2x} + C_3 e^{-2x}$, $C_1, C_2, C_3 \in \mathbb{R}$. Determine, usando o método da variação das constantes, uma solução particular y_P da EDO dada e escreva a sua solução geral.

Exercício 4.3.12 Escolha o método mais adequado (MCI ou MCV) para determinar a solução geral das EDOs seguintes:

- 1. $y'' + 2y' = 4\operatorname{sen}(2x)$
- 2. y''' + 4y' = x
- 3. y''' + y'' + y' + y = 4x
- 4. $y''' y = 2\operatorname{sen}(x)$
- 5. $y^{(4)} y'' = x^2 + e^x$
- 6. $y'' = y 2\cos x$
- 7. $y'' 2y' + y = \frac{e^x}{x}$
- 8. $y'' + y = \operatorname{cosec}(x)$
- 9. $y'' 3y' + 2y = \frac{e^{2x}}{e^x + 1}$

4.4 Exercícios do capítulo

Exercício 4.4.1 Verifique se as seguintes funções são solução (em \mathbb{R}) das equações diferenciais dadas:

- 1. $y = \sin x 1 + e^{-\sin x}$
- EDO: $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin(2x);$

 $2. \ z = \cos x$

EDO: z'' + z = 0;

3. $y = \cos^2 x$

- EDO: y'' + y = 0;
- 4. $y = Cx C^2 \ (C \in \mathbb{R})$
- EDO: $(y')^2 xy' + y = 0$.

Exercício 4.4.2

- 1. Mostre que a função y, definida implicitamente pela equação $x^2 + 2y^2 = 1$, é solução da equação diferencial $y' = xy/(x^2 1)$.
- 2. Mostre que a função y, definida implicitamente pela equação $2\,y^2\,\ln\,y-x^2=0$, é solução da equação diferencial $y'=x\,y/(x^2+y^2)$.

Exercício 4.4.3 Indique uma equação diferencial cujo integral geral é a família de curvas indicada:

- 1. y = Cx, $C \in \mathbb{R}$ (retas do plano não verticais que passam pela origem);
- 2. y = Ax + B, $A, B \in \mathbb{R}$ (retas do plano não verticais);
- 3. $y = e^{Cx}$, $C \in \mathbb{R}$.

Exercício 4.4.4 Indique uma EDO de terceira ordem para a qual as funções sinusoidais definidas por

$$y = A \operatorname{sen}(x+B), \quad \operatorname{com} \quad A, B \in \mathbb{R}$$

constituem uma família de soluções.

Exercício 4.4.5 Determine a solução geral das seguintes EDOs:

1.
$$y' - \frac{1}{(1+x^2)\arctan x} = 0;$$

2.
$$y' - \sqrt{1 - x^2} = 0$$
;

3.
$$y' - \frac{x^4 + x^2 + 1}{x^2 + 1} = 0$$
.

Exercício 4.4.6 Usando o método de separação de variáveis, resolva as seguintes equações diferenciais:

1.
$$x + yy' = 0$$
;

2.
$$(t^2 - xt^2)\frac{dx}{dt} + x^2 = -tx^2$$
;

3.
$$xy' - y = 0$$
;

4.
$$(x^2 - 1)y' + 2xy^2 = 0$$
.

Exercício 4.4.7 Idem:

1.
$$y' = (x+1)^2$$
;

2.
$$e^x y y' = e^{-y} + e^{-2x-y}$$
;

3.
$$y' = \left(\frac{2y+3}{4x+5}\right)^2$$
.

Exercício 4.4.8 Verifique que as seguintes equações diferenciais são homogéneas e determine o seu integral geral.

1.
$$(x^2 + y^2)y' = xy$$
;

2.
$$y'(1 - \ln \frac{y}{x}) = \frac{y}{x}, \quad x > 0$$

Exercício 4.4.9 Considere a equação diferencial $y' = \frac{y}{x} (1 + \ln y - \ln x), \quad x > 0.$

- 1. Verifique que se trata de uma equação diferencial homogénea.
- 2. Determine o integral geral desta EDO.

Exercício 4.4.10 Prove que as seguintes equações diferencias são homogéneas e determine as suas soluções gerais:

1.
$$2t^2 + y^2 - tyy' = 0, t > 0.$$

2.
$$ty' = y + te^{y/t}$$
, $0 < t < 1$.

3.
$$(y' - y/x) \ln y/x = 1, x > 0.$$

4.
$$(t-y) dt + (t+y) dy = 0, t > 0.$$

Exercício 4.4.11 Resolva as seguintes equações diferenciais:

1.
$$\frac{dy}{dx} = \frac{x+y-3}{x-y-1}$$
;

2.
$$y' = \frac{y-x}{y-x+2}$$
.

(Sugestão: Efetue a mudança de variável dada por z = y - x.)

Exercício 4.4.12 Determine a solução geral das seguintes equações diferenciais lineares de primeira ordem, indicando o maior intervalo onde está definida a solução:

1.
$$x^2y' + xy = 1$$
;

2.
$$y dx = (y e^y - 2x) dy$$
;

3.
$$xy' - y = x^2 \operatorname{sen} x$$
;

4.
$$(x^2 - 1)y' + 2y = (x + 1)^2$$
.

Exercício 4.4.13 Resolva cada uma das seguintes equações diferenciais usando fatores integrantes:

- 1. $y' + 2y = \cos x$;
- 2. $x^3y' y 1 = 0$;

3.
$$\frac{1}{x}y' - \frac{1}{x^2 + 1}y = \frac{\sqrt{x^2 + 1}}{x}, \quad x \neq 0.$$

Exercício 4.4.14 Considere uma equação diferencial do tipo $y' + p(x)y = q(x)y^n$, $n \neq 1$ e $n \neq 0$, dita de Bernoulli, com p e q funções contínuas nalgum intervalo $I \subseteq \mathbb{R}$.

- 1. Mostre que, efectuando a mudança de variável, definida por $y^{1-n}=z$, com $n\neq 1$ se obtém uma equação diferencial linear de primeira ordem.
- 2. Em cada uma das seguintes alíneas, verifique que a equação é do tipo referido na alínea anterior. Determine a solução geral fazendo a mudança de variável indicada:

(a)
$$y' + \frac{1}{x}y = x^2y^2$$
, $x > 0$;

(b)
$$y' - y = e^x/y$$
;

(c)
$$y' = [(1-2t)y^4 - y]/3;$$

(d)
$$(1-x^2) y' - xy - xy^2 = 0$$
.

Exercício 4.4.15 Resolva as seguintes equações diferenciais de Bernoulli:

1.
$$xy' + y = y^2 \ln x$$
, $x > 0$;

2.
$$y' - \frac{y}{2x} = 5x^2y^5$$
, $x \neq 0$.

Exercício 4.4.16 Usando o método da variação das constantes, determine a solução geral das seguintes EDOs lineares:

1.
$$y' - \frac{2y}{x} = x^3$$
;

$$2. y' \sin x + y \cos x = \sin^2 x;$$

3.
$$\frac{1}{x}y' - \frac{1}{x^2 + 1}y = \frac{\sqrt{x^2 + 1}}{x}, \quad x \neq 0.$$

Exercício 4.4.17 Determine a solução geral das seguintes EDOs lineares:

1.
$$y' + y = \sin x$$
;

2.
$$y'' - y + 2\cos x = 0$$
;

3.
$$y'' + y' = 2y + 3 - 6x$$
;

4.
$$y'' - 4y' + 4y = x e^{2x}$$
;

5.
$$y'' + y' = e^{-x}$$
;

6.
$$y'' + 4y = tg(2x)$$
;

7.
$$y''' + y' = \sin x$$
;

8.
$$y'' + 9y = \sin x - e^{-x}$$
.

Exercício 4.4.18 Considere o problema de valores iniciais

$$y'' + 4y' + 4y = \cos(2x), \quad y(\pi) = 0, \quad y'(\pi) = 1.$$

Justifique que este problema possui uma única solução (em \mathbb{R}) e determine-a.

Exercício 4.4.19 Verifique se as funções $y_1(x) = e^x$ e $y_2(x) = e^{2x}$ constituem um sistema fundamental de soluções para as seguintes equações diferenciais:

1.
$$y'' - 3y' + 2y = 0$$
;

2.
$$y''' - 4y'' + 5y' - 2y = 0$$
.

Exercício 4.4.20

- 1. Mostre que as funções $x_1(t)=\cos{(\omega\,t)}$ e $x_2(t)=\sin{(\omega\,t)}$, $\omega\neq 0$, constituem um sistema fundamental de soluções para a equação $x''(t)+\omega^2\,x(t)=0$.
- 2. Determine a solução particular da equação referida na alínea anterior, que satisfaz as seguintes condições iniciais x(0) = 1 e $x'(0) = \omega$.

Exercício 4.4.21 Determine a solução geral das seguintes equações diferenciais:

- 1. $(1+x^2)y' + 4xy = 0$;
- 2. $y'' + y + 2 \operatorname{sen} x = 0$.

Exercício 4.4.22 Resolva as seguintes equações diferenciais:

- 1. $(1+x^2)y'-y=0$;
- 2. $y''' + 4y' = \cos x$.

Exercício 4.4.23 Determine a solução geral da equação diferencial $y' - 3x^2y = x^2$.

Exercício 4.4.24 Determine a solução geral da equação diferencial $y''' - 3y' + 2y = 12e^x$.

4.5 Soluções dos exercícios

Exercício 4.1.1

- 1. Ordem 1 e não está na forma normal.
- 2. Ordem 2 e está na forma normal.
- 3. Ordem 1 e não está na forma normal.

Exercício 4.1.2

2 Por exemplo, $\varphi(x) = 2xe^{2x}$

Exercício 4.2.1

- 1. $y = Ce^{\cos(x)}, C \in \mathbb{R}$
- $2. \quad \frac{y}{y+1} = C \frac{x-1}{x}, C \in \mathbb{R}$
- 3. $y = \frac{C}{\operatorname{sen}(x)}, C \in \mathbb{R}$
- 4. $y = \operatorname{tg}(-\arctan(x) + C), C \in \mathbb{R}$

Exercício 4.2.2 $y = 2 - 3\sqrt{2}\cos(x)$

Exercício 4.2.4

- 1. $y = x \ln(\ln|x| + C), C \in \mathbb{R}$
- 2. $y^3 = \frac{x^3}{2} Cx, C \in \mathbb{R}$
- 3. $\arctan(\frac{y}{x}) \frac{1}{2}\ln|1 + \frac{y^2}{x^2}| = \ln|x| + C, C \in \mathbb{R}$

Exercício 4.2.5

- 1. $y = x \ln(x) + 1 + Cx, C \in \mathbb{R}$
- 2. $y = \frac{e^x}{x} + \frac{C}{x}, C \in \mathbb{R}$
- 3. $y = -xe^x + Ce^x, C \in \mathbb{R}$

Exercício 4.2.6

- 1. $\arctan \frac{y-1}{x-2} = \ln \sqrt{(x-2)^2 + (y-1)^2} + C$, $C \in \mathbb{R}$
- 2. $\frac{(y-x)^2}{2} + 2y = C, C \in \mathbb{R}$

Exercício 4.2.7

- 1. $y = \frac{1}{-x^2 + Cx}, C \in \mathbb{R}$
- 2. $\frac{1}{u^3} = -\frac{9}{5x} + \frac{49}{5x^6}$

Exercício 4.3.1

- Linear; não homogénea; não é de coef. constantes
- 2. Não é linear
- 3. Linear; homogénea; coef. constantes

Exercício 4.3.2
$$y = Ce^{2x} + \frac{1}{3}e^{5x}, C \in \mathbb{R}.$$

Exercício 4.3.3

- 1. Não; número insuf. de funções
- 2. Não; funções lin. dependentes
- 3. Sim

Exercício 4.3.4
$$y=ke^{-\dfrac{x^2}{2}}$$
 , $k\in\mathbb{R}$.

Exercício 4.3.5

- 1. $y = C_1 + C_2 x + C_3 \cos(x) + C_4 \sin(x)$;
- 2. $y = C_1 + C_2 e^x + C_3 e^{3x} + C_4 e^{-x}$;
- 3. $y = C_1 e^{-x} \cos(2x) + C_2 e^{-x} \sin(2x)$;
- 4. $y = C_1 + C_2 x + C_3 x^2 + C_4 e^{2x} + C_5 x e^{2x}$,

onde C_i são constantes reais.

Exercício 4.3.9

- 1. $y = C_1 + C_2 \operatorname{sen}(x) + C_3 \cos(x) \frac{1}{2} x \operatorname{sen}(x)$
- 2. $y = C_1 e^{-x} + C_2 e^{3x} \frac{1}{2} e^{2x}$
- 3. $y = C_1 e^{-x} + e^{2x} (\frac{x}{3} + \frac{2}{9})$

onde C_i são constantes reais.

Exercício 4.3.10

- 1. $y = \frac{C}{\text{sen}(x)} + \frac{x}{2 \text{sen}(x)} \frac{1}{2} \cos(x), C \in \mathbb{R}$
- $2. \ y = Cx + x \ln(x) + 1, \ C \in \mathbb{R}$
- 3. $y = \frac{C}{a} + \frac{e^x}{a}, C \in \mathbb{R}$

Exercício 4.3.11
$$y = C_1 e^x + C_2 e^{2x} + C_3 e^{-2x} + \left(\frac{7}{144} + \frac{x}{12}\right) e^{-2x}$$
, com C_1 , C_2 e C_3 constantes reais.

Exercício 4.3.12

- 1. $y = C_1 + C_2 e^{-2x} \frac{\cos(2x)}{2} \frac{\sin(2x)}{2}$;
- 2. $y = C_1 + C_2 \cos(2x) + C_3 \sin(2x) + \frac{x^2}{8}$;
- 3. $y = C_1 e^{-x} + C_2 \sin x + C_3 \cos x + 4x 4$;
- 4. $y = C_1 e^x + C_2 e^{-\frac{1}{2}x} \operatorname{sen}(\sqrt{3}x) + C_3 e^{-\frac{1}{2}x} \cos(\sqrt{3}x) \operatorname{sen} x + \cos x;$
- 5. $y = C_1 + C_2 x + C_3 e^x + C_4 e^{-x} \frac{1}{12} x^4 x^2 + \frac{1}{2} x e^x;$
- 6. $y = C_1 e^x + C_2 e^{-x} + \cos x, C_1, C_2 \in \mathbb{R}$
- 7. $y = e^x(C_1 x) + xe^x(C_2 + \ln|x|);$
- 8. $y = C_1 \cos(x) + C_2 \sin(x) x \cos(x) + \ln|\sin(x)| \sin(x);$
- 9. $y = C_1 e^x + C_2 e^{2x} \ln(e^x + 1)e^x + (x \ln(e^x + 1))e^{2x}$.

com C_i são constantes reais.

Exercício 4.4.1

- 1. Sim;
- $2. \sin;$
- 3. não;
- 4. sim.

Exercício 4.4.3

- 1. xy' y = 0
- 2. y'' = 0;
- 3. $xy' y \ln(y) = 0$.

Exercício 4.4.4 y''' + y' = 0

Exercício 4.4.5

- 1. $y = \ln(\arctan x) + C, C \in \mathbb{R};$
- 2. $y = \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\arcsin x + C, C \in \mathbb{R};$

3.
$$y = \frac{x^3}{3} + \arctan x + C, C \in \mathbb{R}$$
.

Exercício 4.4.6

1.
$$x^2 + y^2 = C, C \in \mathbb{R}^+$$
;

2.
$$\frac{x}{t} = Ce^{-\frac{1}{x} - \frac{1}{t}}, C \in \mathbb{R};$$

3.
$$y = Cx, C \in \mathbb{R}$$
;

4.
$$y = \frac{1}{\ln|x^2 - 1| + C}, C \in \mathbb{R}$$
.

Exercício 4.4.7

1.
$$y = \frac{(x+1)^3}{3} + C, C \in \mathbb{R};$$

2.
$$e^{y}(y-1) = -\left(e^{-x} + \frac{e^{-3x}}{3}\right) + C, C \in \mathbb{R};$$

3.
$$\frac{1}{2(2y+3)} = \frac{1}{4(4x+5)} + C, C \in \mathbb{R}.$$

Exercício 4.4.8

1.
$$\ln |y| - \frac{x^2}{2y^2} = C, C \in \mathbb{R};$$

2.
$$y = xe^{Ky}, x > 0, K \in \mathbb{R}$$
.

Exercício 4.4.9

1.

2.
$$y = xe^{Cx}, x > 0, C \in \mathbb{R}$$

Exercício 4.4.10

1.
$$y^2 = 4t^2(\ln|t| + C), C \in \mathbb{R}$$
.

2.
$$e^{-\frac{y}{t}} = -\ln(t) + C, C \in \mathbb{R}$$
.

3.
$$\frac{y}{x}(\ln(y/x)-1) = \ln x + C, C \in \mathbb{R}.$$

4.
$$\frac{1}{2}\ln(1+(y/t)^2) + \arctan(y/t) = -\ln(t) + C, C \in \mathbb{R}.$$

Exercício 4.4.11

1.
$$\arctan\left(\frac{y-1}{x-2}\right) - \frac{1}{2}\ln\left(1 + \left(\frac{y-1}{x-2}\right)^2\right) = \ln(x-2),$$

 $\operatorname{com} C \in \mathbb{R};$

2.
$$(y-x)^2 + 4y = C, C \in \mathbb{R}$$
.

Exercício 4.4.12

1.
$$y = \frac{\ln x + C}{x}$$
, $C \in \mathbb{R}$ e $x > 0$;

2.
$$x = e^y - \frac{2e^y}{y} + \frac{2e^y + C}{y^2}, C \in \mathbb{R} \text{ e } y > 0;$$

3.
$$y = -x\cos x + Cx$$
, $C \in \mathbb{R}$ e $x > 0$;

4.
$$y = \frac{(x+C)(x+1)}{x-1}$$
, $C \in \mathbb{R}$ e $x > 1$.

Exercício 4.4.13

1.
$$y = \frac{2}{5}\cos x + \frac{1}{5}\sin x + Ce^{-2x}, C \in \mathbb{R};$$

2.
$$y = -1 + Ce^{-\frac{1}{2x^2}}, x \neq 0, C \in \mathbb{R}$$
;

3.
$$y = (C+x)\sqrt{x^2+1}, C \in \mathbb{R}$$
.

Exercício 4.4.14

2 (a)
$$y = \frac{2}{-x^3 + 2Cx}, C \in \mathbb{R};$$

(b)
$$y^2 = -2e^x + Ce^{2x}, C \in \mathbb{R};$$

(c)
$$y^3 = \frac{1}{-(2t+1) + Ce^t}, C \in \mathbb{R};$$

(d)
$$y = \frac{1}{C\sqrt{x^2 - 1} - 1}, C \in \mathbb{R}.$$

Exercício 4.4.15

1.
$$y = \frac{1}{1 + Cx + \ln x}, x > 0, C \in \mathbb{R};$$

2.
$$y^4 = \frac{x^2}{C - 4x^5}, C \in \mathbb{R}.$$

Exercício 4.4.16

1.
$$y = \frac{x^4}{2} + Kx^2, K \in \mathbb{R};$$

2.
$$y = \frac{x}{2} \csc x - \frac{\cos x}{2} + K \csc x, K \in \mathbb{R};$$

Exercício 4.4.17 C_1, C_2, C_3 são constantes reais arbitrárias.

1.
$$y = C_1 e^{-x} + \frac{\sin x}{2} - \frac{\cos x}{2}$$
;

2.
$$y = C_1 e^x + C_2 e^{-x} + \cos x;$$

3.
$$y = C_1 e^x + C_2 e^{-2x} + 3x;$$

4.
$$y = \left(C_1 + C_2 x + \frac{x^3}{6}\right) e^{2x};$$

5.
$$y = C_1 + (C_2 - x)e^{-x}$$
;

6.
$$y = C_1 \operatorname{sen}(2x) + C_2 \cos(2x) - \frac{1}{4} \cos(2x) \ln \left| \frac{\operatorname{tg} x + 1}{\operatorname{tg} x - 1} \right|;$$

7.
$$y = C_1 + C_2 \cos x + C_3 \sin x - \frac{x}{2} \sin x$$
;

8.
$$y = C_1 \operatorname{sen}(3x) + C_2 \cos(3x) + \frac{\operatorname{sen} x}{8} - \frac{e^{-x}}{10}$$
.

Exercício 4.4.18 $y = \frac{3}{4}(x-\pi)e^{2(\pi-x)} + \frac{\sin(2x)}{8}$

Exercício 4.4.19

- 1. Sim;
- 2. Não.

Exercício 4.4.20

$$2 x = \cos(\omega t) + \sin(\omega t).$$

Exercício 4.4.21

1.
$$y = \frac{K}{(x^2+1)^2}, K \in \mathbb{R};$$

2.
$$y = C_1 \cos x + C_2 \sin x + x \cos x$$
, $C_1, C_2 \in \mathbb{R}$.

Exercício 4.4.22

1.
$$y = Ce^{\arctan x}, C \in \mathbb{R};$$

2.
$$y = C_1 + C_2 \cos(2x) + C_3 \sin(2x) + \frac{1}{2} \sin x$$
, $C_1, C_2 \in \mathbb{R}$.

Exercício 4.4.23 $y = Ke^{x^3} - \frac{1}{3}, K \in \mathbb{R}.$

Exercício 4.4.24
$$y = C_1 e^{-2x} + (C_2 + C_3 x + 2x^2) e^x$$
, $C_1, C_2, C_3 \in \mathbb{R}$.

Capítulo 5

Transformada de Laplace

5.1 Definição da transformada de Laplace

A transformada de Laplace de uma função $f:[0,+\infty[\to\mathbb{R}$ é a função $\mathcal{L}\{f\}$ definida por

$$\mathcal{L}{f}(s) = \int_0^{+\infty} f(t)e^{-st}dt,$$

para os valores de $s \in \mathbb{R}$ onde o integral converge.

Exemplo 5.1.1. Determinar a transformada de Laplace da função f(t) = t. Calcula-se o integral impróprio de 1^a espécie

$$\int_0^{+\infty} te^{-st} dt = \lim_{x \to +\infty} \int_0^x te^{-st} dt$$

Usando a integração por partes, considerando $u' = e^{-st}$ e v = t (consequentemente, $u = -\frac{1}{s}e^{-st}$ e v' = 1) vem

$$\int_0^x t e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \int_0^x -\frac{1}{s} e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \left[\frac{1}{s} e^{-st} \, t \right]_0^x + \left[\frac{1}{s} e^{-$$

Substituindo agora t pelos valores 0 e x vem,

$$\int_0^x t e^{-st} dt = \left(-\frac{1}{s} e^{-sx} \, x + \frac{1}{s} e^0 \, 0 \right) - \left(\frac{1}{s^2} e^{-sx} - \frac{1}{s^2} e^0 \right) = -\frac{1}{s} e^{-sx} \, x - \frac{1}{s^2} e^{-sx} + \frac{1}{s^2} e$$

Tomando agora o limite,

$$\lim_{x \to +\infty} \int_0^x t e^{-st} dt = \lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} \, x - \frac{1}{s^2} e^{-sx} + \frac{1}{s^2} \right) = \frac{1}{s^2}, \ s > 0$$

Note-se que se s > 0

$$\lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} x - \frac{1}{s^2} e^{-sx} \right) = -\frac{1}{s} \lim_{x \to +\infty} \frac{x + \frac{1}{s}}{e^{sx}} = 0(1)$$

Se s < 0, -sx tende para $+\infty$ e portanto

$$\lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} x - \frac{1}{s^2} e^{-sx} \right) = -\frac{1}{s} \lim_{x \to +\infty} \left(x + \frac{1}{s} \right) e^{-sx} = +\infty$$

Por último, se s=0

$$\int_0^{+\infty} t e^{-st} dt = \int_0^{+\infty} t e^0 dt = \int_0^{+\infty} t dt$$

Este integral é divergente, já que

$$\lim_{x \to +\infty} \int_0^x t dt = \lim_{x \to +\infty} \left[\frac{t^2}{2} \right]_0^x = \lim_{x \to +\infty} \frac{t^2}{2} = +\infty$$

¹Podem usar a regra de Cauchy para levantar a indeterminação

Se $s \le 0$ o integral impróprio é divergente. Se s > 0 o integral impróprio é convergente e o seu valor é $\frac{1}{s^2}$. Podemos então concluir que a transformada de Laplace de f(t) = t é

$$\mathcal{L}{t}(s) = \frac{1}{s^2}, \ s > 0$$

Exercício 5.1.1 Calcule as transformadas de Laplace das seguintes funções, indicando os respetivos domínios.

- 1. f(t) = 1.
- 2. $f(t) = e^t$.

5.2 Existência da Transformada de Laplace

Seja $f:[0,+\infty[\to\mathbb{R}.$ Suponhamos que

- 1. f é seccionalmente contínua em $[0, +\infty[; ^2$
- 2. f é de **ordem exponencial à direita**, isto é, existem $a \in \mathbb{R}$, M > 0 e T > 0 tais que

$$|f(t)| \le Me^{at}, \quad \forall t \ge T.$$

Então $\mathcal{L}{f}(s)$ existe para s > a.

Exemplo 5.2.1. Vamos mostrar que a transformada de Laplace da função

$$f(x) = \begin{cases} 8 & \text{se} \quad x \ge 1\\ -3x & \text{se} \quad 0 \le x < 1 \end{cases}$$

é

$$\mathcal{L}{f}(s) = \frac{(11s - 3e^s + 3)e^{-s}}{s^2}$$

Note-se que f é seccionalmente contínua (apenas apresenta um ponto de descontinuidade em x=1 e é limitada em qualquer intervalo [0,b], b>0) e ainda que $f(x) \le 8, \forall x \ge 0$.

Assim, tomando M=8 e a=0, para qualquer T>0 se verifica a desigualdade

$$|f(x)| \le Me^{ax}, \quad \forall x \ge T$$

²Uma função $f:[0,+\infty[\to\mathbb{R}$ diz-se seccionalmente contínua em $[0,+\infty[$ se o conjunto dos seus pontos de descontinuidade é um conjunto numerável e a função é limitada em qualquer intervalo [0,b], b>0.

seccionalmente contínua

não seccionalmente contínua

Figura 5.1: Gráfico da função f.

portanto, f admite transformada de Laplace.

Dada uma função f definida em $I = [0, +\infty[$, a sua transformada de Laplace é uma função de s, F(s), dada pelo integral impróprio

$$\int_0^{+\infty} e^{-sx} f(x) \, dx$$

para os valores de s para os quais o integral é convergente.

Como f é uma função definida por ramos, vem

$$\int_0^{+\infty} e^{-sx} f(x) dx = \int_0^1 -3x e^{-sx} dx + \int_1^{+\infty} 8e^{-sx} dx$$

O primeiro integral é dado por

$$\int_0^1 -3xe^{-sx} dx = \left[\frac{3(sx+1)e^{-sx}}{s^2} \right]_0^1 = \frac{3(s+1)e^{-s}}{s^2} - \frac{3}{s^2}$$

A convergência do segundo integral pode ser estudada pela existência do limite

$$\lim_{t \to +\infty} \int_{1}^{t} 8e^{-sx} dx = \lim_{t \to +\infty} \left[-\frac{8e^{-sx}}{s} \right]_{1}^{t} = \lim_{t \to +\infty} \left[-\frac{8e^{-st}}{s} + \frac{8e^{-s}}{s} \right]$$

Este limite só existe em \mathbb{R} se s>0 e neste caso

$$\lim_{t\to +\infty} \left[-\frac{8\,e^{-st}}{s} + \frac{8\,e^{-s}}{s} \right] = \frac{8\,e^{-s}}{s}$$

Se s < 0 o limite é $+\infty$. Observe-se que se s = 0 temos o integral

$$\int_{1}^{+\infty} 8 \, dx$$

que é divergente (para $+\infty$).

Assim, para s > 0 temos

$$F(s) = \frac{11e^{-s}}{s} + \frac{3e^{-s}}{s^2} - \frac{3}{s^2} = \frac{(11s - 3e^s + 3)e^{-s}}{s^2}$$

Exercício 5.2.1 Considere a função

$$f(x) = \begin{cases} -1 & \text{se} \quad x \ge 5\\ 9x & \text{se} \quad 0 \le x < 5 \end{cases}$$

Justifique que a função f admite transformada de Laplace e mostre que

$$\mathcal{L}{f}(s) = -\frac{46e^{-5s}}{s} - \frac{9e^{-5s}}{s^2} + \frac{9}{s^2}$$

para todos os valores de $s \in \mathbb{R}^+$.

5.3 Linearidade da transformada de Laplace

Sejam $\alpha \in \mathbb{R}$ e duas funções $f,g:[0,+\infty[\to\mathbb{R}.$ Suponhamos que existem $\mathcal{L}\{f\}(s), \text{ para } s>s_f \quad \text{e} \quad \mathcal{L}\{g\}(s), \text{ para } s>s_g$

Então:

1.
$$\mathcal{L}{f+g}(s) = \mathcal{L}{f}(s) + \mathcal{L}{g}(s), \ s > \max{s_f, s_g}$$

2.
$$\mathcal{L}\{\alpha f\}(s) = \alpha \mathcal{L}\{f\}(s), \ s > s_f.$$

Exemplo 5.3.1. A transformada de f(t) = 5 + 3t é dada por

$$\mathcal{L}\{5+3t\}(s) = 5\mathcal{L}\{1\}(s) + 3\mathcal{L}\{t\}(s) = \frac{5}{s} + \frac{3}{s^2}$$

com s > 0.

5.4 Transformadas de Laplace fundamentais

1.
$$\mathcal{L}\lbrace e^{at}\rbrace(s) = \frac{1}{s-a}, \ s > a, a \in \mathbb{R}$$

2.
$$\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

3.
$$\mathcal{L}\{\text{sen}(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

4.
$$\mathcal{L}\lbrace t^n \rbrace(s) = \frac{n!}{s^{n+1}}, \ s > 0, n \in \mathbb{N}_0$$

5.
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\{\frac{e^{at} + e^{-at}}{2}\}(s) = \frac{s}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

6.
$$\mathcal{L}\{\operatorname{senh}(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

Exercício 5.4.1 Determine a transformada de Laplace das funções, indicando os respetivos domínios:

1.
$$f(t) = t^2 + \cos(3t) + \pi$$

2.
$$g(t) = 3e^{-2t} + \sin\left(\frac{t}{6}\right) + \cosh(4t)$$

3.
$$h(t) = t^{10} + \frac{e^t}{3} + \cos^2(t)$$

4.
$$j(t) = \operatorname{senh}(\sqrt{2}t) + \left(\frac{t}{2}\right)^2$$

5.5 Deslocamento na transformada

Sejam $f:[0,+\infty[\to\mathbb{R}$ integrável em [0,b], para qualquer b>0 e $\lambda\in\mathbb{R}$. Se $\mathcal{L}\{f\}(s)=F(s)$ existe para $s>s_f$, então

$$\mathcal{L}\{e^{\lambda t}f(t)\}(s) = F(s-\lambda), \quad s > s_f + \lambda.$$

Exemplo 5.5.1. Para calcular a transformada de Laplace da função $g(t) = e^{-3t} \operatorname{sen}(2t)$ começamos por determinar a transformada

$$\mathcal{L}\{\text{sen}(2t)\}(s) = \frac{2}{s^2 + 4}, \ s > 0$$

Aplicamos agora a propriedade acima referida

$$\mathcal{L}\left\{e^{-3t}\operatorname{sen}(2t)\right\}(s) = \frac{2}{(s-(-3))^2 + 4} = \frac{2}{(s+3)^2 + 4}, \ s > -3$$

Exercício 5.5.1 Calcule as transformadas de Laplace de:

1.
$$f(t) = e^{2t}t^2$$

2.
$$h(t) = e^{-t} \cosh(4t)$$

5.6 Transformada do deslocamento

Seja $f: \mathbb{R} \to \mathbb{R}$, integrável em [0, b], para qualquer b > 0 e nula em \mathbb{R}^- . Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então

$$\forall a \in \mathbb{R}^+, \quad \mathcal{L}\{f(t-a)\}(s) = e^{-as}F(s), \quad s > s_f$$

Demonstração. A transformada $\mathcal{L}\{f(t-a)\}(s)$ é dada por

$$\mathcal{L}\{f(t-a)\}(s) = \int_0^{+\infty} e^{-st} f(t-a)dt = \int_{-a}^{+\infty} e^{-s(t_1+a)} f(t_1)dt_1$$

fazendo a mudança de variável $t = t_1 + a$. Aplicando agora as propriedades do integral, temos

$$\int_{-a}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1 = \int_{-a}^{0} e^{-s(t_1+a)} f(t_1) dt_1 + \int_{0}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1$$

O primeiro integral é nulo já que f(t) = 0 em \mathbb{R}^- . Então,

$$\int_{-a}^{+\infty} e^{-s(t_1+a)} \, f(t_1) dt_1 = \int_{0}^{+\infty} e^{-s(t_1+a)} \, f(t_1) dt_1 = e^{-sa} \int_{0}^{+\infty} e^{-st_1} \, f(t_1) dt_1 = e^{-sa} \mathcal{L}\{f(t_1)\}(s) = e^{-sa} F(s).$$

Exercício resolvido 5.6.1. Use o resultado anterior para calcular a seguinte transformada de Laplace:

$$f(t) = \begin{cases} 0 & \text{se } t < 2\\ 1 & \text{se } t \ge 2 \end{cases}$$

Resolução:

Comecemos por considerar os gráficos da função f e da função g:

onde g é dada por

$$g(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

Observe-se que f(t) = g(t-2). Como a transformada de Laplace de g é

$$\mathcal{L}{g}(s) = \frac{1}{s}, \ s > 0$$

resulta que a transformada de Laplace de f é dada por

$$\mathcal{L}{f}(s) = e^{-2s} \frac{1}{s}, \ s > 0$$

Exercício 5.6.1 Use o resultado anterior para calcular a transformada de Laplace:

$$f(t) = \begin{cases} 0 & \text{se } t < \pi \\ \text{sen}(t - \pi) & \text{se } t \ge \pi \end{cases}$$

Ajuda:

5.7 Transformada da contração/expansão de uma função

Seja $f:[0,+\infty[\to\mathbb{R}$, integrável em [0,b], para qualquer b>0 e $a\in\mathbb{R}^+$. Se $\mathcal{L}\{f\}(s)=F(s)$ existe para $s>s_f$, então

$$\mathcal{L}{f(at)}(s) = \frac{1}{a}F\left(\frac{s}{a}\right), \quad s > as_f$$

Exemplo 5.7.1. Sabendo que a transformada de $f(t) = \cos t$ é $\mathcal{L}\{\cos(t)\}(s) = \frac{s}{s^2 + 1}$, podemos determinar a transformada de $\mathcal{L}\{\cos(4t)\}(s)$, onde a = 4. Assim,

$$\mathcal{L}\{\cos{(4t)}\}(s) = \frac{1}{4} \frac{\frac{s}{4}}{\frac{s^2}{16} + 1} = \frac{s}{s^2 + 16}$$

Exercício 5.7.1 Use a propriedade anterior para obter a Transformada de Laplace de:

- 1. $n(t) = \frac{t^2}{2}$
- 2. $p(t) = e^{3t}$

5.8 Derivada da transformada

Seja $f: [0, +\infty[\to \mathbb{R}$, integrável em [0, b], para qualquer b > 0. Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então

$$\forall n \in \mathbb{N}, \quad \mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n F^{(n)}(s), \quad s > s_f.$$

Exemplo 5.8.1. Para calcular $\mathcal{L}\{t^2\cos(t)\}$, consideramos a transformada $\mathcal{L}\{\cos(t)\} = \frac{s}{s^2+1}$; a transformada de $t^2\cos(t)$ é dada por

$$\mathcal{L}\lbrace t^2 \cos(t)\rbrace = (-1)^2 \left(\frac{s}{s^2 + 1}\right)'' = \left(\frac{-s^2 + 1}{(s^2 + 1)^2}\right)' = \frac{2s^3 - 6s}{(s^2 + 1)^3}$$

Exercício 5.8.1 Use a propriedade anterior para obter a Transformada de Laplace de:

- 1. $f(t) = te^{2t}$
- 2. $h(t) = (t^2 3t + 2)\operatorname{sen}(3t)$.

5.9 Transformada da derivada

Seja $f:[0,+\infty[\to\mathbb{R}]$ seccionalmente contínua. Admita-se que as derivadas $f', f'', \ldots, f^{(n-1)}$ são de ordem exponencial e que $f^{(n)}$ é seccionalmente contínua. Se existem

$$\mathcal{L}{f}(s) = F(s), \ \mathcal{L}{f'}(s), \ \dots, \ \mathcal{L}{f^{(n-1)}}(s)$$

para $s > s_f$, $s > s_{f'}$, ..., $s > s_{f^{(n-1)}}$, respetivamente, então

$$\mathcal{L}\lbrace f^{(n)}\rbrace(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-3} f''(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0),$$

para $s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}.$

Exemplo 5.9.1. Supondo que y = f(x) e as suas derivadas satisfazem as condições do Teorema anterior, vamos determinar $\mathcal{L}\{f'''(t)\}$ em função de $F(s) = \mathcal{L}\{f\}$ sabendo que f(0) = -2, f'(0) = 0 e f''(0) = 1.

$$\mathcal{L}\lbrace f'''(t)\rbrace = s^3 F(s) - s^2 f(0) - sf'(0) - f''(0) = s^3 F(s) + 2s^2 - 1$$

Exercício 5.9.1 Supondo que y = f(x) e as suas derivadas satisfazem as condições do Teorema anterior, determine em função de $F(s) = \mathcal{L}\{f\}$

- 1. $\mathcal{L}\{f''(t)\}\$ sabendo que f(0) = 1 e f'(0) = 2.
- 2. $\mathcal{L}\{f''(t) + 3f'(t) f(t)\}\$ sabendo que f(0) = 3 e f'(0) = 0.
- 3. $\mathcal{L}\lbrace f'''(t) 2f''(t) f'(t) \rbrace$ sabendo que f(0) = 0, f'(0) = 1 e f''(0) = 0.

Exercício 5.9.2 Determine $Y(s) = \mathcal{L}\{y(t)\}$ sabendo que

$$\begin{cases} y'' + y' = \cos(t) \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$

5.10 Transformada de Laplace Inversa

Seja F(s) uma função definida para $s > \alpha$.

Chama-se transformada de Laplace inversa de F, que se representa por $\mathcal{L}^{-1}\{F\}$ ou $\mathcal{L}^{-1}\{F(s)\}$, à função f, caso exista, definida em \mathbb{R}_0^+ tal que $\mathcal{L}\{f\}(s) = F(s)$, para $s > \alpha$.

Observação 5.1. Dada F definida para $s > \alpha$, nem sempre existe $\mathcal{L}^{-1}\{F\}$; no caso de existir, a transformada inversa pode não ser única e nesse caso escolhemos a solução que origina uma função contínua (o que é justificado pelo resultado seguinte)

Teorema 5.1. Sejam f e g duas funções seccionalmente contínuas em \mathbb{R}^+_n tais que

$$\mathcal{L}{f}(s) = F(s) = \mathcal{L}{g}(s),$$

para $s > \alpha$. Se f e g são contínuas no ponto $t \in \mathbb{R}^+$, então f(t) = g(t).

Por outras palavras, o resultado diz que não podem existir duas funções contínuas distintas com a mesma transformada de Laplace.

Exemplo 5.10.1. A função contínua cuja transformada de Laplace é $\frac{2}{s^2+4}$ é

$$\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\} = \text{sen}(2t), \ t \ge 0$$

Para calcularmos transformadas de Laplace inversas convém referir algumas propriedades.

Teorema 5.2. Suponha-se que existem $\mathcal{L}^{-1}\{F\}$ e $\mathcal{L}^{-1}\{G\}$. Então

1.
$$\mathcal{L}^{-1}{F + G} = \mathcal{L}^{-1}{F} + \mathcal{L}^{-1}{G};$$

2.
$$\mathcal{L}^{-1}\{\alpha F\} = \alpha \mathcal{L}^{-1}\{F\}.$$

Teorema 5.3. Se existe $\mathcal{L}^{-1}\{F\}$, então

$$\forall \lambda \in \mathbb{R}, \quad \mathcal{L}^{-1}\{F(s-\lambda)\} = e^{\lambda t} \mathcal{L}^{-1}\{F(s)\}.$$

Estas propriedades e a tabela de transformadas (tomada agora no sentido inverso) serão usadas para determinar transformadas inversas.

Exercício resolvido 5.10.1. Vamos mostrar que a inversa da transformada de Laplace da função

$$F(s) = \frac{-0.2 \, s + 2}{s^2 + 0.04}$$

é

$$f(x) = 10 \operatorname{sen}\left(\frac{1}{5}x\right) - \frac{1}{5}\cos\left(\frac{1}{5}x\right)$$

Resolução:

A lineariedade permite-nos escrever

$$\mathcal{L}^{-1}\left[\frac{-0.2\,s+2}{s^2+0.04}\right] = \mathcal{L}^{-1}\left[-\frac{0.2\,s}{s^2+0.04}\right] + \mathcal{L}^{-1}\left[\frac{2}{s^2+0.04}\right]$$

Recordando a transformada de laplace das funções seno e cosseno:

$$\mathcal{L}[\cos{(ax)}](s) = \frac{s}{s^2 + a^2}$$
 e $\mathcal{L}[\sin{(ax)}](s) = \frac{a}{s^2 + a^2}$

basta observar que

$$-\frac{0.2\,s}{s^2+0.04} = -0.2\,\frac{s}{s^2+0.2^2} \quad \text{e} \quad \frac{2}{s^2+0.04} = 10\,\frac{0.2}{s^2+0.2^2}$$

Portanto,

$$\mathcal{L}^{-1}\left[-\frac{0.2\,s}{s^2+0.04}\right] = -\frac{1}{5}\mathcal{L}^{-1}\left[\frac{s}{s^2+0.2^2}\right] = -\frac{1}{5}\cos\left(\frac{1}{5}\,x\right)$$

е

$$\mathcal{L}^{-1} \left[\frac{2}{s^2 + 0.04} \right] = 10 \mathcal{L}^{-1} \left[\frac{0.2}{s^2 + 0.2^2} \right] = 10 \operatorname{sen} \left(\frac{1}{5} x \right)$$

Efetuando os cálculos tem-se

$$\mathcal{L}^{-1} \left[\frac{-0.2 \, s + 2}{s^2 + 0.04} \right] = 10 \, \text{sen} \left(\frac{1}{5} \, x \right) - \frac{1}{5} \, \cos \left(\frac{1}{5} \, x \right)$$

Exercício resolvido 5.10.2. Determine a função y sabendo que a sua transformada de Laplace é

$$\mathcal{L}{y} = \frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)}, \ s > \frac{2}{3}$$

Resolução:

Vamos decompor esta fração em elementos simples:

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{As + B}{s^2 + 4} + \frac{C}{9 s - 6}$$

Para determinar os coeficientes A, B e C podemos atender apenas aos numeradores

$$(As + B)(9s - 6) + C(s^{2} + 4) = -36s^{2} + 5s - 144$$

Fazendo s igual a $\frac{2}{3}$ vem $\frac{40}{9}C=-\frac{470}{3}\Leftrightarrow C=-\frac{141}{4};$ se fizermos s=0 obtemos imediatamente o valor de B: $-6B-141=-144\Leftrightarrow B=\frac{1}{2}.$ Para determinar o valor de A, toma-se, por exemplo, s=1 e vem $3A-\frac{699}{4}=-175\Leftrightarrow A=-\frac{1}{12}.$ Assim,

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{-\frac{1}{12} s + \frac{1}{2}}{s^2 + 4} + \frac{-\frac{141}{4}}{9 s - 6}$$

Aplicando a inversa da transformada de Laplace, temos

$$y = \mathcal{L}^{-1} \left\{ \frac{-\frac{1}{12} s + \frac{1}{2}}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{-\frac{141}{4}}{9 s - 6} \right\}$$

Calculando as inversas das transformadas de Laplace, temos

$$\mathcal{L}^{-1}\left\{\frac{-\frac{1}{12}\,s+\frac{1}{2}}{s^2+4}\right\} = \frac{1}{4}\,\mathrm{sen}\,(2\,t) - \frac{1}{12}\,\cos{(2\,t)} \quad \mathrm{e} \quad \mathcal{L}^{-1}\left\{\frac{-\frac{141}{4}}{9\,s-6}\right\} = -\frac{47}{12}\,e^{\frac{2}{3}\,t}$$

Finalmente, a função y é dada por:

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Exercício 5.10.1 Determine a transformada de Laplace inversa das seguintes funções:

1.
$$\frac{5}{s^2 + 25}$$

2.
$$\frac{3}{s-4}$$

3.
$$\frac{4}{s^7}$$

$$4. \ \frac{s+2}{s^2+4s+40}$$

5.
$$\frac{5}{s^2 - 6s - 7}$$

6.
$$\frac{1}{s^2 - 3s}$$

7.
$$\frac{1}{(s-2)^2}$$

8.
$$\frac{s^2 + 20s + 9}{(s-1)^2(s^2+9)}$$

5.11 Problemas de Valor Inicial ou de Cauchy

Chamamos Problema de Cauchy ou problema de valores iniciais ao sistema

$$\begin{cases} F(x, y, y', y'', \dots, y^{(n)}) = 0 \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \\ \vdots \\ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

Às n condições $y(x_0) = y_0, \dots, y^{(n-1)}(x_0) = y_{n-1}$ chamamos **condições iniciais**. Se estas condições respeitarem a pontos diferentes, designam-se **condições de fronteira** e ao problema chamamos **problema de valores de fronteira**.

Exemplo 5.11.1. O problema

$$\begin{cases} y'' = 3t + 4y \\ y(0) = 0 \\ y(1) = 0 \end{cases}$$

é um problema de valores de fronteira. Contudo,

$$\begin{cases} y'' = 3t + 4y \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

é um problema de valores iniciais ou de Cauchy.

A determinação da solução de um problema de Cauchy, passa pela resolução de uma equação diferencial e pela solução dessa equação que satisfaz as condições iniciais.

Vimos já algumas técnicas de resolução de EDOs, que podem ser aplicadas nestas situações.

Consideremos o problema de Cauchy

$$\begin{cases} y' - y = -e^x \\ y(0) = 0 \end{cases}$$

A equação diferencial $y'-y=-e^x$ é uma equação linear e podemos resolvê-la usando a técnica do fator integrante (ver secção 4.2.3). A sua solução é

$$y = (-x+c)e^x, c \in \mathbb{R}$$

Pretendemos a solução que satisfaz a condição y(0) = 0. Vamos determinar o valor da constante c que satisfaz esta condição:

$$y(0) = 0 \Leftrightarrow (-0+c)e^0 = 0 \Leftrightarrow c = 0$$

Assim, a solução do problema de Cauchy será

$$y = -xe^x$$

Este exemplo pode também ser resolvido recorrendo à Transformada de Laplace.

Como $y' - y = -e^x$, se aplicarmos a transformada de Laplace a ambos os membros da equação, continuamos a obter uma igualdade:

$$\mathcal{L}\lbrace y' - y \rbrace(s) = \mathcal{L}\lbrace -e^x \rbrace(s) \tag{5.1}$$

Sabemos que

$$\mathcal{L}{y'} = s\mathcal{L}{y} - y(0) = s\mathcal{L}{y} - 0 = s\mathcal{L}{y}$$
 e $\mathcal{L}{-e^x} = -\frac{1}{s-1}, s > 1$

Substituindo agora estas igualdades em 5.1 temos a equação

$$s\mathcal{L}{y} - \mathcal{L}{y} = -\frac{1}{s-1} \tag{5.2}$$

ou seja,

$$(s-1)\mathcal{L}{y} = -\frac{1}{s-1} \Leftrightarrow \mathcal{L}{y} = -\frac{1}{(s-1)^2}$$

Para determinar a função y basta saber a transformada de Laplace inversa de $\mathcal{L}^{-1}\left\{-\frac{1}{(s-1)^2}\right\}$. Como

$$\mathcal{L}^{-1}\left\{-\frac{1}{s^2}\right\} = -x$$

aplicando o deslocamento da transformada, vem

$$y = \mathcal{L}^{-1} \left\{ -\frac{1}{(s-1)^2} \right\} = -xe^x$$

Exercício 5.11.1. Resolva o seguinte problema de Cauchy usando duas técnicas diferentes:

$$\begin{cases} 3y' - 4y = x \\ y(0) = \frac{1}{3} \end{cases}$$

Quando, num problema de Cauchy temos uma equação linear de coeficientes constantes e o 2^{0} membro é uma função que admite transformada de Laplace, podemos utilizar a transformada de Laplace para determinar a sua solução, recorrendo à transformada de Laplace inversa. Contudo, podemos também resolver a EDO recorrendo a outras técnicas e no final, escolher a solução que satisfaz as condições iniciais.

No caso particular das equações lineares o seguinte teorema permite-nos afirmar que um problema de Cauchy tem solução única.

Teorema 5.4. Se a_0, a_1, \ldots, a_n e b são funções contínuas num intervalo I, $a_0(x) \neq 0$, $\forall x \in I$, $x_0 \in I$ e $\beta_i \in \mathbb{R}$, $i = 0, \ldots, n-1$, então o problema de Cauchy

$$\begin{cases} a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x) \\ y(x_0) = \beta_0, y'(x_0) = \beta_1, \dots, y^{(n-1)}(x_0) = \beta_{n-1} \end{cases}$$

tem nesse intervalo uma e uma só solução.

No caso particular de n=1 (equação linear de 1^a ordem), este teorema pode enunciar-se da forma

Teorema 5.5. Se p e q são funções contínuas num intervalo I, então o problema de Cauchy

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

Apresentamos de seguida alguns exemplos de problemas de valor inicial, recorrendo à transformada de Laplace.

Exercício resolvido 5.11.1. Considere o problema de valor inicial

$$\begin{cases} -6y + 9y' = 5\cos(-2t) \\ y(0) = -4 \end{cases}$$

Mostraremos que a solução deste problema é

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Resolução:

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$9\mathcal{L}{y'} - \mathcal{L}{6y} = \mathcal{L}{5\cos(-2t)}$$

Como a transformada de Laplace da derivada é dada por $\mathcal{L}\{y'\} = s\mathcal{L}\{y\} - y(0) = s\mathcal{L}\{y\} + 4$ e a transformada de Laplace do 2^{0} membro é $\mathcal{L}\{5\cos{(-2t)}\} = \frac{5s}{s^{2}+4}$, vem

$$9(s\mathcal{L}{y} + 4) - 6\mathcal{L}{y} = \frac{5s}{s^2 + 4} \Leftrightarrow (9s - 6)\mathcal{L}{y} = \frac{5s}{s^2 + 4} - 36$$

Portanto,

$$\mathcal{L}{y} = \frac{\frac{5 s}{s^2 + 4} - 36}{9 s - 6} = \frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)}$$

Vamos decompor esta fração em elementos simples:

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{As + B}{s^2 + 4} + \frac{C}{9 s - 6}$$

Para determinar os coeficientes $A, B \in C$ podemos atender apenas aos numeradores

$$(As + B)(9s - 6) + C(s2 + 4) = -36s2 + 5s - 144$$

- Fazendo s igual a $\frac{2}{3}$ vem $\frac{40}{9}C = -\frac{470}{3} \Leftrightarrow C = -\frac{141}{4}$.
- Se fizermos s=0 obtemos imediatamente o valor de B: $-6B-141=-144 \Leftrightarrow B=\frac{1}{2}$.
- Para determinar o valor de A, toma-se, por exemplo, s = 1 e vem $3A \frac{699}{4} = -175 \Leftrightarrow A = -\frac{1}{12}$.

Assim,

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{-\frac{1}{12} s + \frac{1}{2}}{s^2 + 4} + \frac{-\frac{141}{4}}{9 s - 6}$$

Aplicando a inversa da transformada de Laplace, temos

$$y = \mathcal{L}^{-1} \left\{ \frac{-\frac{1}{12}s + \frac{1}{2}}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{-\frac{141}{4}}{9s - 6} \right\}$$

Calculando as inversas das transformadas de Laplace, temos

$$\mathcal{L}^{-1}\left\{\frac{-\frac{1}{12}s + \frac{1}{2}}{s^2 + 4}\right\} = \frac{1}{4}\operatorname{sen}(2t) - \frac{1}{12}\cos(2t) \quad \text{e} \quad \mathcal{L}^{-1}\left\{\frac{-\frac{141}{4}}{9s - 6}\right\} = -\frac{47}{12}e^{\frac{2}{3}t}$$

Finalmente, a solução da equação diferencial é

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Exercício resolvido 5.11.2. Determine a solução do problema de valor inicial

$$\begin{cases} 2y - 4y' + 2y'' = \cos(-3t) \\ y(0) = 6 \\ y'(0) = 1 \end{cases}$$

Resolução:

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$2\mathcal{L}\{y''\} - 4\mathcal{L}\{y'\} + 2\mathcal{L}\{y\} = \mathcal{L}\{\cos(-3t)\}$$

Atendendo às transformadas de Laplace das derivadas:

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} - sy(0) - y'(0)$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} - y(0)$

obtemos

$$\mathcal{L}\{y''\} = s^2 \mathcal{L}\{y\} - 6s - 1$$
 e $\mathcal{L}\{y'\} = s\mathcal{L}\{y\} - 6$

Como a transformada de Laplace de $\cos(-3t)$ é $\frac{s}{s^2+9}$, efetuando os cálculos temos

$$(2s^2 - 4s + 2)\mathcal{L}{y} = 12s + \frac{s}{s^2 + 9} - 22 \Leftrightarrow \mathcal{L}{y} = \frac{12s + \frac{s}{s^2 + 9} - 22}{2s^2 - 4s + 2}$$

vem,

$$\mathcal{L}{y} = \frac{12s^3 - 22s^2 + 109s - 198}{(s^2 + 9)(2s^2 - 4s + 2)}$$

Vamos decompor esta fração em elementos simples. Para isso vejamos se $2s^2 - 4s + 2$ se pode decompor em elementos de 1º grau. Como a equação $2s^2 - 4s + 2 = 0$ só tem uma raiz, 1, podemos escrever

$$2s^2 - 4s + 2 = 2(s-1)^2$$

Assim,

$$\frac{12\,s^3 - 22\,s^2 + 109\,s - 198}{(s^2 + 9)(2\,s^2 - 4\,s + 2)} = \frac{12\,s^3 - 22\,s^2 + 109\,s - 198}{2\,(s - 1)^2(s^2 + 9)}$$

A fração decomposta em elementos simples é:

$$\frac{12\,{s}^{3}-22\,{s}^{2}+109\,s-198}{2\,{\left(s-1\right) }^{2}{\left(s^{2}+9\right) }}=-\frac{4\,s+9}{100\,{\left(s^{2}+9\right) }}+\frac{151}{25\,{\left(s-1\right) }}-\frac{99}{20\,{\left(s-1\right) }^{2}}$$

Nota: Recorde a decomposição em elementos simples estudada na determinação de primitivas. Para determinar a solução da equação diferencial basta calcular a inversa da transformada de Laplace

$$y = \mathcal{L}^{-1} \left\{ -\frac{4s+9}{100(s^2+9)} + \frac{151}{25(s-1)} - \frac{99}{20(s-1)^2} \right\}$$

Usando a lineariedade vem:

$$y = -\frac{99}{20}te^{t} + \frac{151}{25}e^{t} - \frac{3}{100}\sin(3t) - \frac{1}{25}\cos(3t)$$

que é a solução do problema de valor inicial dado.

Exercício resolvido 5.11.3. Determine a solução do problema de valor inicial

$$\begin{cases}
-3y - 6y' - 3y'' = 5e^{-t} \\
y(0) = -4 \\
y'(0) = -9
\end{cases}$$

Resolução

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$-3\mathcal{L}\lbrace y''\rbrace - 6\mathcal{L}\lbrace y'\rbrace - 3\mathcal{L}\lbrace y\rbrace = \mathcal{L}\lbrace 5e^{-t}\rbrace$$

Atendendo às transformadas de Laplace das derivadas:

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} - sy(0) - y'(0)$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} - y(0)$

obtemos

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} + 4s + 9$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} + 4$

Como a transformada de Laplace de $5e^{-t}$ é $\frac{5}{s+1}$, efetuando os cálculos temos

$$(-3s^2 - 6s - 3)\mathcal{L}{y} = 12s + \frac{5}{s+1} + 51 \Leftrightarrow \mathcal{L}{y} = \frac{12s + \frac{5}{s+1} + 51}{-3s^2 - 6s - 3} \Leftrightarrow \mathcal{L}{y} = \frac{12s^2 + 63s + 56}{(s+1)(-3s^2 - 6s - 3)}$$

Vamos decompôr esta fração em elementos simples. Para isso vejamos se $-3s^2 - 6s - 3$ se pode decompôr em elementos de 1° grau. Como a equação $-3s^2 - 6s - 3 = 0$ só tem uma raiz, -1, podemos escrever

$$-3s^2 - 6s - 3 = -3(s+1)^2$$

Assim,

$$\frac{12\,s^2 + 63\,s + 56}{(s+1)(-3\,s^2 - 6\,s - 3)} = \frac{12\,s^2 + 63\,s + 56}{-3\,(s+1)^3}$$

A fração decomposta em elementos simples é:

$$\frac{12 s^2 + 63 s + 56}{-3 (s+1)^3} = -\frac{4}{s+1} - \frac{13}{(s+1)^2} - \frac{5}{3 (s+1)^3}$$

Nota: Recorde a decomposição em elementos simples estudada na determinação de primitivas. Para determinar a solução da equação diferencial basta calcular a inversa da transformada de Laplace

$$y = \mathcal{L}^{-1} \left\{ -\frac{4}{s+1} - \frac{13}{(s+1)^2} - \frac{5}{3(s+1)^3} \right\}$$

Usando a lineariedade vem:

$$y = -\frac{5}{6}t^2e^{-t} - 13te^{-t} - 4e^{-t}$$

que é a solução do problema de valor inicial dado

Exercício 5.11.1 Considere os seguintes problemas de Cauchy e determine as suas soluções.

1.
$$\begin{cases} y' - e^{ax} = 0, \ a \in \mathbb{R} \setminus \{0\} \\ y(0) = 0 \end{cases}$$

2.
$$\begin{cases} y'' + 2y' - 8y = 12e^{2x} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

3.
$$\begin{cases} y'' + y' = \cos(t) \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$

5.12 Exercícios do capítulo

Exercício 5.12.1 Para cada uma das funções seguintes, determine $F(s) = \mathcal{L}\{f(t)\}$:

1.
$$f(t) = 2\operatorname{sen}(3t) + t - 5e^{-t}$$
;

2.
$$f(t) = e^{2t}\cos(5t)$$
;

3.
$$f(t) = te^{3t}$$
;

4.
$$f(t) = \pi - 5e^{-t}t^{10}$$
;

5.
$$f(t) = (3t - 1) \operatorname{sen} t$$
.

Exercício 5.12.2 Para cada uma das funções seguintes, determine $\mathcal{L}^{-1}{F(s)}$:

1.
$$F(s) = \frac{2s}{s^2 - 9}$$
;

2.
$$F(s) = \frac{4}{s^7}$$
;

3.
$$F(s) = \frac{1}{s^2 + s - 2}$$
;

4.
$$F(s) = \frac{1}{s^2 + 4s + 6}$$
;

Exercício 5.12.3 Calcule o valor do integral impróprio $\int_0^{+\infty} t^{10} e^{-2t} dt$.

Exercício 5.12.4 Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável. Sabendo que $f'(t) + 2f(t) = e^t$ e que f(0) = 2, determine a expressão de f(t).

Exercício 5.12.5 Calcule:

1.
$$\mathcal{L}\{(t-2+e^{-2t})\cos(4t)\};$$

2.
$$\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2-4s+6}\right\};$$

Exercício 5.12.6 Calcule $\mathcal{L}^{-1} \left\{ \frac{2s}{(s-1)(s^2+2s+5)} \right\}$

Exercício 5.12.7 Resolva os seguintes problemas de Cauchy:

1.
$$xy' + y = y^2$$
, $y(1) = \frac{1}{2}$;

2.
$$xy + x + y'\sqrt{4 + x^2} = 0$$
, $y(0) = 1$;

3.
$$(1+x^3)y' = x^2y$$
, $y(1) = 2$.

Exercício 5.12.8 Resolva cada um dos seguintes problemas de Cauchy usando a transformada de Laplace.

1.
$$3x' - x = \cos t$$
, $x(0) = -1$;

2.
$$\frac{d^2y}{dt^2} + 36y = 0$$
, $y(0) = -1$, $\frac{dy}{dt}(0) = 2$;

3.
$$y'' + 2y' + 3y = 3t$$
, $y(0) = 0$, $y'(0) = 1$;

4.
$$y'' + y = t^2 + 1$$
, $y(\pi) = \pi^2$, $y'(\pi) = 2\pi$. (Sugestão: Efetue a substituição definida por $x = t - \pi$.)

Exercício 5.12.9 Resolva o problema de Cauchy $\begin{cases} y' + y \cos x = \cos x \\ y(0) = 2 \end{cases}$

Exercício 5.12.10 Determine uma solução contínua para os seguintes problemas de valor inicial, e represente-a graficamente:

1.
$$y' + 2y = f(x)$$
, $f(x) = \begin{cases} 1 & \text{se } 0 \le x \le 3 \\ 0 & \text{se } x > 3 \end{cases}$, $y(0) = 0$;

2.
$$(x^2 + 1)y' + 2xy = f(x)$$
, $f(x) = \begin{cases} x & \text{se } 0 \le x < 1 \\ -x & \text{se } x \ge 1 \end{cases}$, $y(0) = 0$.

Exercício 5.12.11 Determine uma solução contínua para o problema de valor inicial y' + P(x) y = 4 x, y(0) = 3, onde $P(x) = \begin{cases} 2 & \text{se } 0 \leq x \leq 1 \\ -2/x & \text{se } x > 1 \end{cases}$, e represente-a graficamente.

5.13Soluções dos exercícios

Exercício 5.1.1

- 1. $\mathcal{L}{f}(s) = \frac{1}{s}, s > 0.$
- 2. $\mathcal{L}f(s) = \frac{1}{s-1}, s > 1.$

Exercício 5.2.1

Exercício 5.4.1

- 1. $\mathcal{L}{f}(s) = \frac{2}{s^3} + \frac{s}{s^2+9} + \frac{\pi}{s}, s > 0$
- 2. $\mathcal{L}{g}(s) = \frac{3}{s+2} + \frac{6}{36s^2+1} + \frac{s}{s^2-16}, s > 4$
- 3. $\mathcal{L}\{h\}(s) = \frac{10!}{s^{11}} + \frac{1}{3s-3} + \frac{1}{2s} + \frac{s}{2s^2+8}, s > 1$
- 4. $\mathcal{L}\{j\}(s) = \frac{\sqrt{2}}{2^2 \cdot 2} + \frac{1}{2 \cdot 3}, s > \sqrt{2}$

Exercício 5.5.1

- 1. $\mathcal{L}{f}(s) = \frac{2}{(s-2)^3}, s > 2$
- 2. $\mathcal{L}{h}(s) = \frac{s+1}{(s+1)^2-16}, s > 3$

Exercício 5.6.1

- 1. $\mathcal{L}{f}(s) = \frac{e^{-2s}}{s}, s > 0$ 2. $\mathcal{L}{g}(s) = \frac{e^{-\pi s}}{s^2 + 1}, s > 0$

Exercício 5.7.1

- 1. $\mathcal{L}\{n\}(s) = \frac{1}{s^3}, s > 0$
- 2. $\mathcal{L}\{p\}(s) = \frac{1}{s-3}, s > 3$

Exercício 5.8.1

- 1. $\mathcal{L}{f}(s) = \frac{1}{(s-2)^2}, s > 2$
- 2. $\mathcal{L}{h}(s) = \frac{18s^2 54}{(s^2 + 9)^3} \frac{18s}{(s^2 + 9)^2} + \frac{6}{s^2 + 9}, \ s > 0.$

Exercício 5.9.1

- 1. $s^2F(s) s 2$
- 2. $(s^2 + 3s 1)F(s) 3s 9$
- 3. $(s^3 2s^2 s)F(s) s + 2$

Exercício 5.9.2 $Y(s) = \frac{1}{(s+1)(s^2+1)} + \frac{2}{s}$

Exercício 5.10.1

- 1. $y(x) = \text{sen}(5x), x \ge 0$
- 2. $y(x) = 3e^{4x}, x \ge 0$
- 3. $y(x) = \frac{x^6}{180}, x \ge 0$ 4. $y(x) = e^{-2x} \cos(6x), x \ge 0$
- 5. $y(x) = \frac{5}{4}e^{3x} \operatorname{senh}(4x), x \ge 0$
- 6. $y(x) = -\frac{1}{3} + \frac{1}{3}e^{3x}, x \ge 0$
- 7. $y(x) = e^{2x}x, x \ge 0$
- 8. $y(x) = \frac{8}{5}e^{-x} + 3e^{x}x \frac{8}{5}\cos(3x) \frac{18}{15}\sin(3x), x \ge 0$

Exercício 5.11.1

- $\begin{aligned} &1. \ \ y(x) = \frac{1}{a}e^{ax} \frac{1}{a}; \\ &2. \ \ y(t) = -\frac{1}{6}e^{2t} + 2te^{2t} + \frac{1}{6}e^{-4t}; \end{aligned}$
- 3. $y(t) = \frac{e^{-t}}{2} \frac{\cos(t)}{2} + \frac{\sin(t)}{2} + 2$.

- Exercício 5.12.1 $1. \ \ \, \frac{6}{s^2+9} + \frac{1}{s^2} \frac{5}{s+1} \, , \quad s>0;$ $2. \ \ \, \frac{s-2}{(s-2)^2+25} \, , \quad s>2;$

- $3. \ \frac{1}{(s-3)^2} \,, \ s>3;$
- 4. $\frac{\pi}{s} \frac{5 \cdot 10!}{(s+1)^{11}}, \quad s > 0;$ 5. $\frac{6s}{(s^2+1)^2} \frac{1}{s^2+1}, \quad s > 0.$

Exercício 5.12.2

- 1. $2\cosh(3t) = e^{3t} + e^{-3t}, t \ge 0;$
- 2. $\frac{t^6}{180}$, $t \ge 0$;
- 3. $\frac{1}{3}e^t \frac{1}{3}e^{-2t}$, $t \ge 0$;
- 4. $\frac{e^{-2t}}{\sqrt{2}} \operatorname{sen}(\sqrt{2}t), \ t \ge 0.$

Exercício 5.12.3 $\frac{10!}{211}$

Exercício 5.12.4
$$f(t) = \frac{1}{3}e^t + \frac{5}{3}e^{-2t}$$
.

- $\begin{array}{l} \textbf{Exercício 5.12.5} \\ 1. \ \ \, \frac{s^2-16}{(s^2+16)^2} \frac{2s}{s^2+16} + \frac{s+2}{(s+2)^2+16} \,, \ \ \, s>0; \end{array}$
 - 2. $e^{2t} \left(2\cos(\sqrt{2}t) + \frac{3}{\sqrt{2}} \sin(\sqrt{2}t) \right), \ t \ge 0.$

Exercício 5.12.6
$$\frac{1}{4}e^t - \frac{1}{4}e^{-t}\cos(2t) + \frac{3}{4}e^{-t}\sin(2t), \quad t \ge 0.$$

Exercício 5.12.7

- 1. $y = \frac{1}{x+1}$;
- 2. $y = -1 + 2e^{2-\sqrt{4+x^2}}$;
- 3. $y = \sqrt[3]{4(1+x^3)}$.

Exercício 5.12.8

- 1. $x(t) = \frac{3}{10} \operatorname{sen} t \frac{1}{10} \cos t \frac{9}{10} e^{\frac{t}{3}};$
- 2. $y(t) = \frac{1}{3} \operatorname{sen}(6t) \cos(6t);$
- 3. $y(t) = t \frac{2}{3} + \frac{2}{3\sqrt{2}}e^{-t}\operatorname{sen}(\sqrt{2}t) + \frac{2}{3}e^{-t}\cos(\sqrt{2}t);$
- 4. $y(t) = (t \pi)^2 + 2\pi(t \pi) + \pi^2 1 + \cos(t \pi)$

Exercício 5.12.9 $y = 1 + e^{-\sin x}, x \in \mathbb{R}.$

- tercicio 5.12.10

 1. $y = \begin{cases} \frac{1 e^{-2x}}{2}, & \text{se } 0 \le x \le 3 \\ -\frac{e^{-2x}}{2} + \frac{e^{-2(x-3)}}{2}, & \text{se } x > 3 \end{cases}$ 2. $y = \begin{cases} \frac{x^2}{2} \\ \frac{1}{x^2 + 1}, & \text{se } 0 \le x < 1 \end{cases}$

Exercício 5.12.11
$$y = \begin{cases} 2x - 1 + 4e^{-2x}, \text{ se } 0 \le x \le 1 \\ 4x^2 \ln x + (1 + 4e^{-2})x^2, \text{ se } x > 1 \end{cases}$$
.