

Приказ Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516 "Об утверждении Методики определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений)"

В соответствии с пунктом 1 Положения о Федеральной службе по экологическому, технологическому и атомному надзору, утвержденного постановлением Правительства Российской Федерации от 30 июля 2004 г. N 401 (Собрание законодательства Российской Федерации, 2004, N 32, ст. 3348; 2020, N 27, ст. 4248), пунктом 2 постановления Правительства Российской Федерации от 3 октября 2020 г. N 1596 "Об утверждении Правил определения величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии гидротехнического сооружения" (Собрание законодательства Российской Федерации, 2020, N 41, ст. 6438) приказываю:

- 1. Утвердить прилагаемую Методику определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений).
  - 2. Настоящий приказ вступает в силу с 1 января 2021 г. и действует до 1 января 2027 г.

Врио руководителя А.В. Трембицкий

Зарегистрировано в Минюсте РФ 24 декабря 2020 г. Регистрационный N 61785



УТВЕРЖДЕНА приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

#### Методика

определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений)

#### І. Введение

- 1. Методика определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений) (далее Методика), разработана в соответствии с пунктом 2 постановления Правительства Российской Федерации от 3 октября 2020 г. N 1596 "Об утверждении Правил определения величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии гидротехнического сооружения" (Собрание законодательства Российской Федерации, 2020, N 41, ст. 6438).
- 2. В Методике применены понятия и термины с соответствующими определениями, регламентированные нормативными правовыми актами Российской Федерации, действующими в сфере безопасности гидротехнических сооружений.

### **II.** Область применения

- 3. Методика предназначена для расчета размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварий гидротехнических сооружений (далее размер вероятного вреда) собственниками гидротехнических сооружений (далее ГТС) или эксплуатирующими организациями (далее владельцы ГТС), а также для оценки органами исполнительной власти субъектов Российской Федерации, на территориях которых может быть причинен вероятный вред, соответствия расчета размера вероятного вреда указанной Методике.
- 4. Методика предназначена для расчета размера вероятного вреда, оцениваемого на основании прогнозных событий (вероятных аварий ГТС), вероятность возникновения которых оценивается в декларации безопасности ГТС.

Положения Методики не применимы к ранее произведенным расчетам, утвержденным в составе действующей декларации безопасности ГТС.

- 5. Методика регламентирует процедуру расчета размера вероятного вреда в результате аварии ГТС.
- 6. Результаты расчетов, выполненные по Методике и сгруппированные согласно показателям социально-экономических последствий аварии ГТС, применяются при:

назначении размера финансового обеспечения гражданской ответственности за вред, причиненный в результате аварий ГТС, в том числе за счет обязательного страхования гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии ГТС в соответствии с Федеральным законом от 27 июля 2010 г. N 225-ФЗ "Об обязательном страховании



гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте" (Собрание законодательства Российской Федерации, 2010, N 31, ст. 4194; 2018, N 52, ст. 8102);

классификации чрезвычайной ситуации в соответствии с постановлением Правительства Российской Федерации от 21 мая 2007 г. N 304 "О классификации чрезвычайных ситуаций природного и техногенного характера" (Собрание законодательства Российской Федерации, 2007, N 22, ст. 2640; 2019, N 52, ст. 7981);

разработке деклараций безопасности ГТС и подготовке материалов для внесения сведений о ГТС в Российский регистр гидротехнических сооружений в соответствии со статьей 7 Федерального закона от 21 июля 1997 г. N 117-ФЗ "О безопасности гидротехнических сооружений" (Собрание законодательства Российской Федерации, 1997, N 30, ст. 3589; 2016, N 27, ст. 4188);

организации деятельности в области защиты населения и территорий от чрезвычайных ситуаций в соответствии с Федеральным законом от 21 декабря 1994 г. N 68-ФЗ "О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера" (Собрание законодательства Российской Федерации, 1994, N 35, ст. 3648; 2020, N 26, ст. 3999);

обосновании организационных и технических мер, направленных на предотвращение аварий ГТС, с учетом размера потенциальных расходов на возмещение ущерба, расходов на восстановление сооружений, а также эффекта от аварийных воздействий;

обосновании решений эксплуатационных и технико-экономических задач, направленных на снижение расходов по возмещению ущерба от аварий ГТС.

- 7. Методика применяется для расчетов размера вероятного вреда и величин, его составляющих.
- 8. Для объектов, в состав которых входят несколько ГТС, расчеты размера вероятного вреда должны выполняться для сценариев наиболее тяжелой и наиболее вероятной аварий из всех аварий, возможных на всех ГТС, входящих в гидроузел.
- 9. Методика не предназначена для определения упущенной выгоды и морального вреда в соответствии с положениями Гражданского кодекса Российской Федерации (Собрание законодательства Российской Федерации, 1994, N 32, ст. 3301; 2020, N 31, ст. 5010).

#### III. Общие положения

- 10. Расчет размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, проводится в целях установления величины финансового обеспечения гражданской ответственности за вред, причиненный в результате аварии ГТС.
- 11. Расчет размера вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, выполняется для сценария наиболее тяжелой аварии ГТС, а также для сценария наиболее вероятной аварии ГТС. Размер вероятного вреда рассчитывается в денежном выражении.
- 12. При определении сценариев аварий ГТС и расчете размера вероятного вреда не подлежат рассмотрению аварии ГТС, вызванные непреодолимой силой, если сила и интенсивность такого воздействия превышают значения, на которые рассчитано ГТС, в соответствии со сводом правил СП 58.13330.2012 "Гидротехнические сооружения. Основные положения. Актуализированная редакция СНиП 33-01-2003", включенным в Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона "Технический регламент о безопасности зданий и сооружений", утвержденный постановлением Правительства Российской Федерации от 4 июля 2020 г. N 985 (Собрание законодательства Российской Федерации, 2020, N 29,



- ст. 4661), и утвержденным проектом ГТС. Не подлежат рассмотрению аварии, вызванные умыслом и противоправными действиями потерпевших или других лиц (за исключением владельца ГТС).
- 13. При определении вероятного вреда проводится расчет ущербов в результате аварии ГТС, денежные выражения которых группируются для каждого сценария аварии ГТС по показателям, характеризующим социально-экономические последствия аварий ГТС.

Основными составляющими по расчету размера вероятного вреда являются прогнозы:

количества людей, которые могут погибнуть и пропасть без вести, кроме физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества людей, которые могут быть травмированы и нуждаться в госпитализации, кроме физических лиц, являющихся работниками  $\Gamma$ TC, при исполнении ими служебных обязанностей на территории  $\Gamma$ TC;

количества людей, у которых могут быть нарушены условия жизнедеятельности;

количества работников ГТС, которые могут погибнуть и пропасть без вести при исполнении ими служебных обязанностей на территории ГТС;

количества работников ГТС, которые при исполнении ими служебных обязанностей на территории ГТС могут быть травмированы и нуждаться в госпитализации;

ущерба основным и оборотным фондам предприятий, кроме основных и оборотных фондов владельца ГТС;

ущерба готовой продукции предприятий, кроме продукции владельца ГТС;

ущерба элементам транспорта и связи, жилому фонду, имуществу граждан, сельскохозяйственному производству, лесному фонду от потери леса как сырья по рыночным ценам, от затопления и гибели лесов по фактическим затратам на восстановление леса, от сброса опасных веществ (отходов) в окружающую среду, а также ущерба, вызванного нарушением водоснабжения из-за аварий водозаборных сооружений;

расходов на ликвидацию последствий аварии.

- 14. При наличии у владельца ГТС двух и более ГТС размер вероятного вреда принимается равным максимальному размеру вероятного вреда, рассчитанному для каждого ГТС.
- 15. В случаях, когда претерпели существенные изменения расчетные параметры состояния гидротехнического сооружения и зоны причинения вероятного вреда, исходя из значения которых произведен расчет размера вероятного вреда и определена величина финансового обеспечения ответственности, размер вероятного вреда и величина финансового обеспечения ответственности определяются повторно.
  - 16. Исходной информацией для расчета размера вероятного вреда являются:

обоснованные сценарии реализации наиболее тяжелой и наиболее вероятной аварии ГТС, в которых приведены данные о возможных зонах воздействия аварии ГТС;

значения величин негативных воздействий аварии ГТС;

сведения о вероятности каждого сценария возникновения аварии;

результаты расчета параметров зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС.

17. Исходные данные, необходимые для расчета размера вероятного вреда, который может быть причинен в результате аварий ГТС, включают:

материалы проекта ГТС, в том числе основные чертежи, картографические материалы, сведения по оценке воздействия ГТС на природную среду (при наличии);

комплект документов декларирования безопасности ГТС, включая декларацию безопасности ГТС и критерии безопасности ГТС (при наличии);

результаты проектных, изыскательских, научно-исследовательских работ, эксплуатационные материалы и результаты обследований, оценок технического состояния ГТС (при наличии);

сведения о составе, классе опасности и объеме отходов, размещенных на накопителях



жидких отходов промышленных предприятий;

основные показатели социально-экономического развития района расположения ГТС.

18. Выполнению расчета вероятного вреда предшествует обоснование сценариев реализации наиболее вероятной и наиболее тяжелой аварии ГТС, на начальном этапе которого производится идентификация опасностей ГТС, включающая:

предварительный анализ опасностей ГТС;

разработку перечня возможных процессов и событий, приводящих к аварии ГТС;

формирование перечня основных возможных сценариев аварий ГТС;

ранжирование основных сценариев возникновения и развития аварий и чрезвычайных ситуаций (далее - ЧС) на ГТС по уровню риска для обслуживающего персонала, населения, имущества физических и юридических лиц, природной среды;

выбор направлений деятельности по анализу риска аварий ГТС.

- 19. Предварительный анализ опасностей (далее ПАО) ГТС следует выполнять с целью выявления опасных элементов и конструкций ГТС и воздействий на них, способных привести к аварии анализируемого ГТС.
- 20. В ходе предварительного анализа опасностей следует учитывать природные опасности (ветровые, волновые, ледовые, температурные, сейсмические воздействия), техногенные опасности (наличие автомобильных или железнодорожных трасс на территории ГТС, производство взрывных работ и пр.) внутренние опасности, присущие самим ГТС (изменение свойств материалов ГТС и их оснований, статические и динамические нагрузки на сооружения и их основания от самих ГТС и их оборудования, суффозионные, деформационные и прочие негативные процессы), а также человеческий фактор (ошибки изысканий, проектирования, строительства и эксплуатации конкретного ГТС).
- 21. При идентификации опасностей аварий конкретного ГТС определяются природные и техногенные опасные факторы, свойственные району его расположения и характерные для данного ГТС, на стадии проектирования, строительства ГТС.
- 22. При анализе риска аварий ГТС также следует учитывать опасные факторы, влияющие на состояние ГТС в процессе эксплуатации, в том числе опасности, уже имевшие место при неполадках и авариях ГТС.
- 23. Перечень основных возможных сценариев аварий ГТС и их негативных воздействий определяется составом ГТС и особенностями их работы.

Рекомендуемый перечень типовых сценариев аварий ГТС для основных видов ГТС приведен в приложении N 1 к Методике. Рекомендуемый перечень типовых сценариев аварии ГТС для основных видов ГТС не учитывает все возможные особенности конкретных ГТС.

В развитие данного перечня типовых сценариев аварий ГТС для конкретных ГТС в ходе декларирования их безопасности целесообразно разработать максимально полный перечень основных сценариев возникновения и развития аварий и их негативных воздействий, включающий все опасности, способные инициировать аварии анализируемого ГТС, учитывающий тип и конструкцию ГТС, его назначение, условия расположения и эксплуатации, природно-климатические, социально-экономические и природные условия территории, а также сведения об авариях и ЧС, имевших место на аналогичных сооружениях.

- 24. Для формирования перечня основных возможных сценариев аварий ГТС необходимо выделить основные конструктивные элементы ГТС, наиболее значимые для анализа и оценки риска. Детальность декомпозиции следует определять целями и задачами анализа риска аварий конкретного ГТС, а также степенью полноты и достоверности исходных данных о ГТС.
- 25. Перечень основных возможных сценариев аварий ГТС формируется по результатам идентификации опасностей аварий в ПАО.
- 26. При анализе риска аварий ГТС следует представлять сведения с качественными оценками вероятностей аварий и их последствий.



- 27. Основной задачей оценки вероятностей аварий ГТС является определение величин среднегодовых частот возникновения и развития аварий ГТС по всем сценариям, идентифицированным в ПАО.
- 28. В качестве исходных данных при оценке вероятностей (среднегодовых частот) аварий должны использоваться результаты расчетов ГТС и механического оборудования по методу предельных состояний.
- 29. Количественная оценка вероятностей аварий ГТС может выполняться в соответствии с требованиями национального стандарта Российской Федерации ГОСТ Р 22.2.09-2015 "Безопасность в чрезвычайных ситуациях. Экспертная оценка уровня безопасности и риска аварий гидротехнических сооружений. Общие положения" (Переиздание)", утвержденного и введенного в действие приказом Федерального агентства по техническому регулированию и метрологии от 2 декабря 2015 г. N 2100-ст "Об утверждении национального стандарта" (М., ФГУП "Стандартинформ", 2019 год).
- 30. Качество анализа риска аварий ГТС на этапах эксплуатации, реконструкции, консервации и ликвидации ГТС должно соответствовать следующим требованиям:

процедура анализа риска аварий ГТС должна проводиться на основе проектной и исполнительной документации по ГТС с учетом результатов их обследований, а также сведений об авариях и повреждениях, имевших место на анализируемых сооружениях и их аналогах;

процедура анализа риска аварий ГТС должна проводиться экспертной группой, включающей персонал, ответственный за эксплуатацию ГТС, и специалистов в области анализа риска аварий ГТС;

идентификация опасностей аварий ГТС должна выполняться с учетом всех возможных природных и техногенных воздействий на анализируемое ГТС, способных привести к авариям ГТС и чрезвычайным ситуациям;

качественные оценки вероятности и последствий аварий ГТС должны выполняться экспертным путем с обработкой экспертных мнений;

количественные оценки вероятности и последствий аварий ГТС должны быть научно обоснованы и воспроизводимы;

неопределенности в оценке вероятности и последствий аварий ГТС должны быть зафиксированы и учтены в результатах анализа риска и расчета размера вероятного вреда от аварий ГТС.

31. Исходными данными для расчета параметров зон аварийного воздействия, полученными по результатам ПАО и ранжирования аварий ГТС по уровню риска, являются:

основные сценарии аварий анализируемого ГТС;

размеры проранов или отверстий, через которые при аварии ГТС начинается неконтролируемый сброс воды (жидких отходов, сточных вод);

отметки уровня воды в водохранилище (емкости накопителя) в начале аварийного процесса; отметки уровня мертвого объема водохранилища;

иные показатели, необходимые для расчета параметров зон аварийного воздействия.

32. Для расчета размера вероятного вреда от затопления территории в результате прохождения волны прорыва (далее - ВП) в общем случае необходимо оценить зону затопления и гидродинамические параметры потока:

максимальные значения глубины и скорости потока в зоне затопления;

время от начала аварии до прихода в данную точку местности прорывной волны;

продолжительность затопления;

границы зоны затопления;

гидрографы излива и график падения уровня воды со стороны верхнего бъефа.

33. Расчет параметров ВП осуществляется методами математического моделирования с использованием уравнений Сен-Венана. Выбор используемой модели (одномерной, двухмерной



(плановой) или гибридной) определяется рядом условий:

возможностью (невозможностью) предсказать направление движения потока;

отсутствием или наличием детальной информации в исходных данных, необходимых для расчета вероятного вреда (топографии, гидрологии, электронные карты);

отсутствием или наличием необходимости использования укрупненного, планшетного или детального методов расчета размера вероятного вреда.

При расчете параметров  $B\Pi$  допускается использовать одномерную модель мелкой воды при следующих условиях:

возможность предсказать направление движения ВП;

отсутствие детальной информации исходных данных, необходимых для расчета вероятного вреда (топографические карты масштаба 1:25000 и мельче, отсутствие детальной информации о дне реки), отсутствие электронных карт крупного масштаба;

существенная длина предполагаемой расчетной зоны возможного затопления и, как следствие, целесообразность использования метода укрупненных показателей для расчета размера вероятного вреда; извилистое узкое русло реки, не позволяющее провести достаточную дискретизацию по плановой модели - недостаточность количества ячеек сетки поперек русла (менее 3).

Использование двухмерной (плановой) модели мелкой воды допускается при следующих условиях:

невозможность предсказать заранее направление движения потока;

наличие детальной информации в исходных данных (топографические карты масштаба 1:25000 и крупнее, отсутствие детальной информации о дне реки), наличие электронных карт;

возможность использования технологии геоинформационной системы; сложное многорукавное русло.

Использование гибридной (одно-, двухмерной (квазидвухмерной) или двух-, трехмерной (квазитрехмерной) модели мелкой воды обосновано в том случае, когда необходимо определить параметры ВП для заданного участка более детально. В данном случае граничные условия для исследуемого детально участка следует принимать по результатам расчета по более упрощенной модели (одномерной для случая использования двухмерной модели или двухмерной - при использовании трехмерной модели), проведенного для всей расчетной области.

- 34. Расчет параметров ВП для проектируемых ГТС повышенного уровня ответственности, отнесенных к таковым в соответствии с пунктом 8 статьи 4 Федерального закона от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений" (Собрание законодательства Российской Федерации, 2010, N 1, ст. 5; 2013, N 27, ст. 3477), следует выполнять с использованием апробированных программных средств.
  - 35. Особенности расчета ВП при разрушении напорного фронта защитных дамб:

расчет должен проводиться до момента выравнивания уровней воды в водохранилище (емкости накопителя) и над затопленной территорией;

при расчете раскрытия прорана необходимо учитывать, что с некоторого момента времени течение в проране становится неподтопленным (для плотин русловых водохранилищ подтопленность истечения, как правило, бывает несущественной).

36. При расчетах ВП, возникающей при разрушении защитной дамбы во время половодий, паводков другого происхождения, ветровых нагонов и других наводнений, необходимо учитывать характерные для этих видов наводнений особенности - временную изменчивость, влияние на ход процесса затопления (наложение гидрографа прорывного потока на гидрограф паводка). Расчет в этом случае необходимо проводить до осушения территории. При существенном влиянии на ход наводнения в целом возникновения аварии (при большой емкости защищаемой низины) следует параллельно рассчитывать течение над защищаемой территорией и в зоне за ее пределами таким образом, чтобы ход аварии мог быть описан с достаточной полнотой.



37. Особенности расчета ВП дамб, ограждающих каналы, проходящие в насыпи или полунасыпи:

при назначении сценариев аварий следует рассмотреть возможность персонала по принятию управляющих решений (отключение питающих канал насосных станций, закрытие затворов), определяющих масштабы аварии;

в тех случаях, когда истечение из прорана будет неподтопленным, движение воды в канале можно прогнозировать с использованием одномерной схематизации.

38. Для плотин водохранилищ и ограждающих дамб накопителей жидких промышленных отходов следует рассматривать сценарии нарушения фильтрационного режима из-за суффозии материала плотины (дамбы) или основания, образования трещин, разгерметизации противофильтрационных элементов.

При приближении фильтрационных вод к поверхности возникает подтопление местности, которое учитывается при расчете ущерба.

39. Результаты расчета по распространению волны прорыва в случае гидродинамической аварии плотин (дамб водохранилищ) следует нанести на топографическую карту до створа, в котором максимальный за время наводнения расход не превышает расчетный максимальный расход обеспеченности, устанавливаемый в зависимости от класса сооружений:

0,1% - для ГТС І класса;

1,0% - для ГТС II класса;

3,0% - для ГТС III класса;

5,0% - для ГТС IV класса.

На карту должны быть нанесены граница области затопления, а также изолинии четырех характеристик прорывного паводка, используемых при расчете размера вероятного вреда: максимальных за время аварии глубины и скорости, времени затопления местности после начала аварии ГТС и продолжительности затопления.

40. Аварии ГТС, приводящие к возникновению ЧС на определенной территории и акватории, разделяются на две основные группы:

аварии ГТС без прорыва напорного фронта;

аварии ГТС с прорывом напорного фронта в результате образования прорана или бреши.

41. К авариям ГТС без прорыва напорного фронта, приводящим к возникновению ЧС на определенной территории и акватории, относятся:

постепенное переполнение водохранилища (накопителя) из-за превышения поступающего расхода, недостаточной пропускной способности ГТС (например, при поступлении в водохранилище или накопитель нерасчетного паводка, неполном открытии водосбросных отверстий из-за поломок затворов или ошибок персонала);

возникновение в водохранилище чрезвычайно больших волн (например, волн вытеснения из-за оползня берега, селевого паводка, волны прорыва из вышележащих водохранилищ, завальных озер или временных водоемов, подпруженных ледниками, волн от крупных взрывов);

аварии ГТС, связанные с повреждением отдельных элементов сооружений - водоводов, механического оборудования водозаборных и водосбросных сооружений.

42. К авариям ГТС с прорывом напорного фронта в результате образования прорана или бреши, приводящим к возникновению ЧС на определенной территории и акватории, относятся:

образование прорана в сооружениях из грунтовых материалов (плотины, дамбы каналов, ограждающие дамбы хранилищ отходов) или бреши в бетонных или железобетонных сооружениях без аварийного повышения уровня воды со стороны верхнего бьефа гидроузла (уровня воды в хранилище опасных отходов, сточных вод);

образование прорана в сооружениях из грунтовых материалов или бреши в бетонных или железобетонных сооружениях при аварийном повышении уровня воды со стороны верхнего бьефа;

образование прорана в сооружениях из грунтовых материалов - ограждающих дамбах



накопителей жидких промышленных отходов (золошлакоотвалы, шламохранилища, хвостохранилища, гидроотвалы, накопители промышленных стоков).

43. При аварии ГТС формируются следующие зоны аварийного воздействия:

верхний бьеф - акватория и участки примыкающей к водохранилищу (накопителю) территории выше створа ГТС;

территория ГТС - земельный участок и (или) участок акватории в границах, устанавливаемых в соответствии с земельным и водным законодательствами;

нижний бьеф - акватория и участки примыкающей к водохранилищу (накопителю) территории ниже створа ГТС.

## IV. Определение размера вероятного вреда

- 44. Использование официальных статистических данных о численности и плотности городского и сельского населения субъектов Российской Федерации позволяет прогнозировать максимально возможное количество потерпевших, жизни или здоровью которых может быть причинен вред в результате аварии ГТС, на основе чего определяется страховая сумма по договору обязательного страхования гражданской ответственности владельца ГТС за причинение вреда в результате аварии ГТС.
- 45. В качестве исходной информации для проведения расчетов вероятного вреда используются следующие результаты расчета параметров последствий аварии ГТС.

Ниже гидроузла (дамбы):

общая площадь зоны затопления с нанесением ее границ на планшеты государственной топографической съемки, карты в масштабе и детализации, достаточных для расчета размера вероятного ущерба;

по характерным створам (не менее 3, исключая створ гидроузла и конечный створ зоны затопления): максимальная глубина затопления, время добегания волны прорыва от начала образования прорана; максимальная скорость течения, продолжительность затопления.

Выше гидроузла (дамбы):

скорость снижения уровня воды; остаточный уровень воды после аварии ГТС;

объемы вытекающей и оставшейся воды;

время опорожнения водного объекта (водохранилища);

количество вынесенных наносов грунта из заиленного водохранилища.

- 46. Метод математического моделирования предполагает расчет натуральных показателей вероятного вреда от аварии ГТС без обследования, на базе доступной информации об освоенности территории зоны затопления и водохранилища. При этом используются данные хозяйственного и социального развития субъектов Российской Федерации, на территории которых располагаются рассматриваемый гидроузел и зона затопления.
- 47. При необходимости выполнения детальных или предварительных расчетов размера вероятного вреда или отдельных составляющих ущерба от аварий ГТС применяются методы детальной оценки или планшетный метод оценки вероятного вреда с обязательным указанием целей и задач такого расчета, и источников информации о социально-экономическом положении территории, попадающей в зону аварийного воздействия ГТС.
- 48. Выбор метода расчета размера вероятного вреда необходимо производить в зависимости от прогнозируемого масштаба вероятных аварий ГТС и их последствий:

метод детальной оценки, предназначенный для аварий ГТС, порождающих локальные последствия, и использующий данные экспедиционных исследований территории возможной чрезвычайной ситуации, вызванной аварией ГТС;

планшетный метод оценки, предназначенный для аварий ГТС, порождающих местные



чрезвычайные ситуации, и использующий информацию об отдельных объектах, содержащуюся в геоинформационных базах данных и системах (далее - ГИС) без проведения экспедиционных исследований;

метод укрупненных показателей, предназначенный для аварий ГТС, порождающих чрезвычайные ситуации в масштабах региона и более, и использующий статистические данные экономического развития регионов и плотности расселения населения в этих регионах без проведения экспедиционных исследований.

- 49. При расчете размера вероятного вреда следует подробно рассматривать и учитывать составляющие, вносящие наибольший вклад в итоговый результат.
- 50. Общим требованием для расчета размера вероятного вреда в денежном выражении является исключение двойного счета, когда оценка одного и того же фактора включается в оценку различных последствий.
- 51. Основные составляющие ущерба от аварий ГТС следует рассчитывать на базе прогнозов следующих показателей:

количества людей, которые могут погибнуть и пропасть без вести, кроме физических лиц, являющихся работниками ГТС, при исполнении ими служебных обязанностей на территории ГТС;

количества людей, которые могут быть травмированы и нуждаться в госпитализации, кроме физических лиц, являющихся работниками  $\Gamma TC$ , при исполнении ими служебных обязанностей на территории  $\Gamma TC$ ;

количества работников  $\Gamma$ TC, которые могут погибнуть и пропасть без вести при исполнении ими служебных обязанностей на территории  $\Gamma$ TC;

количества работников ГТС, которые при исполнении ими служебных обязанностей на территории ГТС могут быть травмированы и нуждаться в госпитализации;

ущерба основным и оборотным фондам предприятий, кроме основных и оборотных фондов владельца ГТС;

ущерба готовой продукции предприятий, кроме продукции владельца ГТС;

ущерба элементам транспорта и связи, жилому фонду, имуществу граждан,

сельскохозяйственному производству, лесному фонду от потери леса как сырья по рыночным ценам, затопления и гибели лесов, ущерба природной среде, а также ущерба, вызванного нарушением водоснабжения из-за аварий водозаборных сооружений, ущерба объектам водного транспорта и рыбному хозяйству;

расходов на ликвидацию последствий аварий ГТС.

- 52. Общая структура ущерба от аварий ГТС приведена в приложении N 2 к Методике. Конкретный перечень основных составляющих ущерба, возможных в результате аварий ГТС, для которого выполняется расчет размера вероятного вреда, разрабатывается на основе данной структуры по результатам анализа характера и величины опасных воздействий на жизнь и здоровье физических лиц, имущество физических и юридических лиц, природную среду с учетом особенностей социально-экономических показателей развития территории, попадающей в зону аварийного воздействия ГТС. Составляющие ущерба, невозможные при аварии конкретного ГТС, для которого выполняется расчет размера вероятного вреда, приравниваются к нулю при соответствующем обосновании (например, если в зоне затопления отсутствуют населенные пункты, составляющая ущерба жилому фонду и имуществу граждан равна нулю).
- 53. Основные этапы расчета размера вероятного вреда от аварий ГТС включают выполнение следующих действий:

идентификация зон аварийного воздействия ГТС в границах субъектов Российской Федерации;

определение основных параметров зон аварийного воздействия ГТС;

районирование зон затопления по степени поражения людей, разрушения промышленных и жилых объектов, транспортных сооружений;



обоснование исключения из расчета вероятного вреда ряда основных составляющих ущерба, не имеющих места в зонах аварийного воздействия ГТС;

расчет размеров составляющих ущерба, возможных в результате аварий ГТС: социального ущерба, имущественного (нанесенного имуществу юридических или физических лиц) ущерба и ущерба природной среде.

- 54. Расчет размеров составляющих ущерба от аварий ГТС производится на базе статистических данных о хозяйственном и социальном положении субъектов Российской Федерации, на территории которых располагаются рассматриваемый гидроузел и зоны возможного аварийного воздействия в верхнем и нижнем бъефах ГТС.
- 55. По данным официальной статистики должны быть определены следующие общие показатели социально-экономического положения субъекта Российской Федерации, территория которого попадает в зону затопления:

общая площадь территории субъекта Российской Федерации; средняя плотность населения субъекта Российской Федерации;

удельный вес городского и сельского населения субъекта Российской Федерации; плотность автомобильных дорог общего пользования с твердым покрытием в субъекте Российской Федерации на тысячу квадратных километров территории; балансовая стоимость основных производственных фондов субъекта Российской Федерации;

валовой региональный продукт за год в субъекте Российской Федерации.

- 56. Если авария ГТС может привести к ЧС межрегионального характера, размеры всех составляющих ущерба должны быть рассчитаны для всех субъектов Российской Федерации, попадающих в зону аварийного воздействия, и сгруппированы по каждой из составляющих ущерба от наиболее тяжелой и наиболее вероятной аварий ГТС.
- 57. Объекты, находящиеся в зоне аварийного воздействия, устанавливаются по топографическим картам местности в масштабе не более 1:100000.
  - 58. В зоне аварийного воздействия ГТС следует выявить:

места нахождения персонала ГТС;

места постоянного проживания и временного пребывания населения; народно-хозяйственные объекты;

элементы транспорта и связи;

земли различного целевого использования.

59. На основании исходных данных об аварии ГТС и топографических планшетов, на которых нанесена зона аварийного воздействия ГТС ниже и выше гидроузла, должны быть выполнены следующие действия:

разбивка общей площади затопления на зоны сильных, средних и слабых разрушений жилых зданий, промышленных и дорожных сооружений;

определение границ и площади зоны катастрофических разрушений для расчета размера социального ущерба;

составление перечня затрагиваемых аварией. ГТС населенных пунктов и сбор сведений о количестве проживающего в них населения и характере жилых строений;

определение участков затрагиваемых аварией транспортных коммуникаций и линий связи; выявление прочих специфических объектов;

выявление населенных пунктов и народнохозяйственных объектов, расположенных вблизи водохранилища;

определение длины судовых ходов, установление объектов водного транспорта, расположенных в акватории водохранилища;

выявление водозаборных устройств в водохранилище;

определение прочих видов водопользования в водохранилище.

60. Социальный ущерб следует рассчитывать исходя из максимально возможного общего



числа погибших и пострадавших при аварии ГТС людей суммированием следующих показателей:

число погибших (безвозвратные потери  $N_{\rm Л11}$ ) и пострадавших (возвратные потери работников ГТС, которые при исполнении своих служебных обязанностей находились в зоне аварийного воздействия;

число погибших (безвозвратные потери  $^{N_{\rm J21}}$ ) и пострадавших (возвратные потери  $^{N_{\rm J22}}$ ) людей среди населения постоянного проживания, находившегося на территориях, попадающих в зоны аварийного воздействия;

число погибших (безвозвратные потери  $^{N}_{\rm Л31}$ ) и пострадавших (возвратные потери  $^{N}_{\rm Л32}$ ) людей среди населения временного нахождения на территориях, попадающих в зоны аварийного воздействия.

Размер социального ущерба  $N_{\rm J}$  в натуральном выражении рассчитывается по формуле:

$$N_{\mathrm{JI}} = N_{\mathrm{JI}11} + N_{\mathrm{JI}21} + N_{\mathrm{JI}31} + N_{\mathrm{JI}12} + N_{\mathrm{JI}22} + N_{\mathrm{JI}32}$$

Порядок расчета размера социального ущерба в денежном выражении приведен в пункте 74 Методики.

61. При расчете размера социального ущерба от аварии ГТС принимается, что:

основной вклад в размер социального ущерба от аварии ГТС вносит возможный социальный ущерб в зоне затопления в нижнем бьефе ГТС; в верхнем бьефе ГТС возвратные и безвозвратные потери людей не ожидаются;

оценка числа погибших и пострадавших не производится, если люди, находящиеся в зоне затопления, в которой время добегания волны прорыва превышает 24 часа, могут быть полностью эвакуированы;

в зоне катастрофических разрушений, когда отсутствует время для эвакуации людей, принимается, что аварийному воздействию подвергается 100% людей, попавших в зону затопления;

в зонах сильных, средних и слабых разрушений, когда эвакуация людей производится частично, принимается, что воздействию подвергается 75% людей, попавших в зону затопления.

Оценка тяжести людских потерь при аварии ГТС производится по показателям, приведенным в приложении N 3 к Методике.

62. Разделение зоны затопления на зоны сильных, средних и слабых разрушений жилых зданий при оценке числа погибших и пострадавших при аварии ГТС следует производить по приведенным в приложении N 4 к Методике критериям, используемым для объектов жилого фонда и имущества граждан. Отнесение территории к какой-либо зоне следует производить, если хотя бы один из критериев превосходит указанные значения. При этом для оценки числа погибших и пострадавших при аварии ГТС людей в зоне сильных разрушений дополнительно должна быть выделена ближайшая к створу гидроузла зона катастрофических разрушений, размеры которой определяются обязательным сочетанием двух факторов: зона располагается в пределах одного часа добегания ВП, и глубина затопления превышает 3 метра.

Площади зон разрушений оцениваются по результатам расчетов параметров ВП для рассматриваемого сценария аварии ГТС с учетом указанных критериев.

63. Число погибших (  $^{N}_{\rm Л11}$  ) и пострадавших (  $^{N}_{\rm Л12}$  ) работников ГТС, которые при исполнении своих служебных обязанностей находились в зоне затопления, определяется численностью работников ГТС  $^{N}_{\rm раб, ГТC}$ , которые могут оказаться в зоне затопления при аварии ГТС.



Все работники ГТС, оказавшиеся в зоне затопления, считаются попавшими в ближайшую к створу гидроузла зону катастрофических разрушений, определяемую в соответствии с пунктом 62 Методики.

Общие потери среди работников ГТС принимаются равными 60% от численности персонала ГТС, находящегося в зоне катастрофических разрушений; из них безвозвратные потери  $N_{\Pi 11}$  составят 40% от общих потерь, возвратные потери  $N_{\Pi 12}$  - 60% от общих потерь в соответствии с показателями, приведенными в приложении N 3 к Методике:

$$N_{\rm JII} = 0.6 \times 0.4 \times N_{\rm pa6.\Gamma TC}$$

$$N_{\rm J112} = 0.6 \times 0.6 \times N_{\rm pa6.\Gamma TC}$$

где:  $N_{\text{раб}.\Gamma TC}$  - численность персонала ГТС, попадающего в зону катастрофических разрушений.

64. Число погибших (  $^{N}_{\rm J21}$  ) и пострадавших (  $^{N}_{\rm J22}$  ) среди населения постоянного проживания, находившегося на территориях, попадающих в зоны аварийного воздействия, определяется по среднестатистическим данным о субъекте Российской Федерации, на территории которого может произойти авария, если в зоне затопления отсутствуют городские и сельские поселения. В этом случае средняя плотность населения постоянного проживания Рзз, которое может оказаться в зоне затопления (рекреации, транспортное сообщение, временные работы), принимается равной 5% от средней плотности населения субъекта Российской Федерации  $P_{\rm cy6} = N_{\rm cy6}/S_{\rm cy6}$  и рассчитывается по формуле:

$$P_{33}=0.05\times N_{\rm cy6}/S_{\rm cy6}$$

где:  $N_{\rm cy6}$  - численность населения субъекта Российской Федерации, определяемая на год проведения расчета размера вероятного вреда;

 $S_{\rm cy6}$  - площадь территории субъекта Российской Федерации.

Общая численность населения постоянного проживания в зоне возможного затопления, определенная по средней плотности населения субъекта Российской Федерации, равна:

$$N_{33} = P_{33} \times S_{33}$$

где:  $S_{33}$  - общая площадь зоны затопления при аварии ГТС, полученная по результатам расчетов ВП.

Численность городского ( $^{N}$ <sub>гор</sub>) и сельского ( $^{N}$ <sub>сел</sub>) населения в зоне затопления определяется с учетом процентного соотношения городских и сельских жителей в субъекте Российской Федерации:

$$N_{\text{rop}} = N_{33} \times Y_{\text{rop}}$$

$$N_{\text{сел}} = N_{33} \times Y_{\text{сел}}$$

14.07.20222 Школа 13/41 Главного



где:  $Y_{\text{гор}}$  - удельный вес городского населения в общей численности населения субъекта Российской Федерации;

 $Y_{\rm cen}$  - удельный вес сельского населения в общей численности населения субъекта Российской Федерации.

65. Численность населения постоянного проживания  $N_{i^{33}}$  в i-ой зоне разрушений определяется по формуле:

$$N_{i33} = P_{33} \times S_i$$
,

где:  $P_{_{33}}$  - плотность населения постоянного проживания в ненаселенной зоне затопления;

і - номер зоны разрушений:

і = 1 - зона катастрофических разрушений;

i = 2 - зона сильных разрушений;

і = 3 - зона средних разрушений;

і = 4 - зона слабых разрушений;

границы зоны катастрофических разрушений определяются по пункту 62 Методики; границы зон сильных, средних и слабых разрушений согласно приложению N 4 к Методике;

 $S_i$  - площадь і-ой зоны разрушений.

66. Возможное число погибших и пострадавших среди населения постоянного проживания, находящегося в зонах катастрофических, сильных, средних и слабых разрушений в дневное или ночное время, в зависимости от сценария аварии ГТС, для которого выполняется расчет размера вероятного вреда, определяется по шкале тяжести людских потерь, приведенной в приложении N 3 к Методике, с учетом принятых допущений, указанных в пункте 61 Методики.

Значения  $N_{\rm J21}$  и  $N_{\rm J22}$  рассчитываются путем суммирования возможного числа погибших и пострадавших среди населения постоянного проживания по всем зонам разрушений.

67. Если в зону затопления при аварии ГТС попадают городские и сельские поселения, оценка численности городского и сельского населения постоянного проживания в зонах разрушений проводится на основе данных о численности и средней плотности населения городов и сельских поселений субъекта Российской Федерации, на территории которого может произойти авария ГТС.

Численность городского населения постоянного проживания  $N_{izop}$  в i-ой зоне разрушений определяется по формуле:

$$N_{i z o p} = \sum \left(N_{\text{ropj}} \times S_{i 33 \text{ ropj}}\right)$$

где:  $S_{\text{горј}}\,$  - площадь j-го города, определяемая по данным статистического сборника;

 $S_{i^{33} \; {
m гopj}} \;$  - площадь j-го города, попадающая в i-ую зону разрушений, определяемая по карте;

 $N_{\text{горј}}$  - численность населения ј-го города,

j - номер города в i-ой зоне разрушений,  $j=1,\,2\,...$  n.

Численность жителей сельского населения постоянного проживания  $N_{icen}$  в i-ой зоне разрушений определяется по формуле:



$$N_{icen} = \sum (N_{\text{селј}} \times S_{i33 \text{ селј}})$$

где:  $S_{\text{селј}}$  - площадь j-го сельского поселения, определяемая по карте;

 $S_{i_{33} \, {\rm cenj}}$  - площадь j-го сельского поселения, попадающая в i-ую зону разрушений;

 $N_{\rm cenj}$  - численность жителей j-го сельского поселения;

j - номер сельского поселения, j = 1, 2 ... n.

68.~B отсутствие данных о численности жителей сельских поселений средняя плотность жителей сельских поселений принимается равной средней плотности сельского населения  $^{\rm P_{cen}}$  в субъекте Российской Федерации:

$$P_{\text{сел}} = P_{\text{суб}} \times Y_{\text{сел}}$$

Численность жителей сельского населения постоянного проживания в і-ой зоне разрушений в этом случае определяется по формуле:

$$N_{icen} = P_{cen} \cdot \sum (S_{i33 cenj})$$

69. Численность населения постоянного проживания в i-ой зоне разрушений  $N_{iconst}$  рассчитывается следующим образом:

$$N_{iconst} = N_{icop} + N_{icen}$$
.

Величины  $N_{icen}$  определяются по формуле, приведенной в пункте 67 Методики, при наличии данных о численности жителей сельских поселений и по формуле, приведенной в пункте 68 Методики, при отсутствии таких данных.

- 70. Число погибших ( $^{N_{\rm J21}}$ ) и пострадавших ( $^{N_{\rm J22}}$ ) среди населения постоянного проживания оценивается в каждой из зон разрушений с помощью шкалы, приведенной в приложении N 3 к Методике, и суммируется по всем зонам разрушений с учетом допущений, приведенных в пункте 61 Методики.
- 71. Число погибших (  $^{N}$ <sub>ЛЗ1</sub> ) и пострадавших (  $^{N}$ <sub>ЛЗ2</sub> ) среди населения временного нахождения на территориях, попадающих в зону затопления, оценивается при наличии предоставленных администрациями муниципальных образований данных о численности населения временного нахождения  $^{N}$ <sub>івр. нас</sub> ., попадающего в зоны катастрофических, сильных, средних и слабых разрушений. К населению временного нахождения относятся:

отдыхающие санаториев, домов отдыха, детских лагерей, туристических баз;

сотрудники геологических партий, экологических служб;

кочующие пастухи, рыболовы, охотники, оленеводы.

72. В зоне катастрофических разрушений численность населения временного нахождения принимается по данным, предоставленным администрациями муниципальных образований. В зонах сильных, средних и слабых разрушений численность населения временного нахождения

Школа Главного Инженера



может быть уменьшена на 25% согласно допущениям, принятым в соответствии с пунктом 61 Метолики.

- 73. В отсутствие данных о характере и численности населения временного нахождения на территории аварийного воздействия ГТС значения составляющих  $N_{\rm J31}$  и  $N_{\rm J32}$  принимаются равными нулю.
- 74. Социальный ущерб в денежном выражении  $II_{\text{соц}}$  . рассчитывается по результатам определения числа погибших и пострадавших среди персонала ГТС, населения постоянного проживания и временного нахождения, попадающего в зоны катастрофических, сильных, средних и слабых разрушений при аварии ГТС.

В расчете социального ущерба в денежном выражении учитываются степень вероятного вреда, причиняемого здоровью пострадавших людей, попадающих в зоны катастрофических, сильных, средних и слабых разрушений, и предельные размеры страховых выплат в части возмещения вреда погибшим и пострадавшим в результате аварии ГТС.

- 75. Степень вероятного вреда, причиняемого здоровью пострадавших людей, принимается равной степени разрушений жилого фонда и имущества граждан:
  - в зоне катастрофических разрушений K1 = 0.9;
  - в зоне сильных разрушений K2 = 0.7;
  - в зоне средних разрушений K3 = 0.3;
  - в зоне слабых разрушений K4 = 0,1.
- 76. Социальный ущерб  $II_{JII}$  персоналу ГТС, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$M_{\rm JII} = C_{\rm cb~6/Bo3Bp} \times N_{\rm JII1} + K_1 \times C_{\rm cb~Bo3Bp} \times N_{\rm JII2}$$

где:  $C_{\text{св б/возвр}}$  - размер страховой выплаты в части возмещения вреда лицам, понесшим ущерб в результате смерти человека, погибшего при аварии  $\Gamma TC$ ;

 $C_{\text{св возвр}}$  - размер страховой выплаты в части возмещения вреда, причиненного здоровью лицам, пострадавшим в результате аварии  $\Gamma TC$ ;

- $N_{\rm Л11}$  число погибших среди персонала ГТС, определяемое по пункту 63 Методики;
- $N_{\rm Л12}~$  число пострадавших среди персонала ГТС, определяемое по пункту 63 Методики;
- $K_1$  степень вероятного вреда, причиняемого здоровью пострадавших людей в зоне катастрофических разрушений, определяемая по пункту 75 Методики.
- 77. Размер страховой выплаты С  $_{\text{св 6/возвр}}$  в части возмещения вреда лицам, понесшим ущерб в результате смерти человека, погибшего при аварии ГТС, и размер страховой выплаты С  $_{\text{св возвр}}$  в части возмещения вреда, причиненного здоровью каждого пострадавшего в результате аварии ГТС, определяются в соответствии со статьей 6 Федерального закона от 27 июля 2010 г. N 225-ФЗ "Об обязательном страховании гражданской ответственности владельца опасного объекта за причинение вреда в результате аварии на опасном объекте" (Собрание законодательства Российской Федерации, 2010, N 31, ст. 4194; 2016, N 11, ст. 1483).
- 78. Социальный ущерб  $^{\rm II}_{\rm J2}$  населению постоянного проживания, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$M_{J12} = C_{cb 6/Bo3Bp} \cdot C_{J121} + \sum (K_i \cdot C_{cb Bo3Bp} \cdot N_{J122i})$$

14.07.20222 Школа 16/41 Главного



где:  $N_{\rm J21}$  - число погибших в результате аварии ГТС среди населения постоянного проживания;

 $N_{{\it Л}22i}$  - число пострадавших среди населения постоянного проживания в i-ой зоне разрушений:

і = 1 - зона катастрофических разрушений;

і = 2 - зона сильных разрушений;

і = 3 - зона средних разрушений;

і = 4 - зона слабых разрушений;

 $K_i$  - степень вероятного вреда, причиняемого здоровью пострадавших людей в i-ой зоне разрушений, определяемая по пункту 75 Методики.

Величины  $N_{\rm JI21}$  и  $N_{\rm JI22}$  для ненаселенных зон затопления определяются по пунктам 64 - 66 Методики, для населенных зон затопления - по пунктам 67-70 Методики.

79. Социальный ущерб  $^{\rm II}_{\rm J3}$  населению временного нахождения, попадающему в зону затопления при аварии ГТС, рассчитывается по формуле:

$$M_{JI3} = C_{cb 6/bo3bp} \cdot N_{JI31} + \sum (K_i \cdot C_{cb bo3bp} \cdot N_{JI32i})$$

где:  $N_{\rm J31}$  - число погибших в результате аварии ГТС среди населения временного нахождения;

 $N_{\rm Л32\it{i}}$  - число пострадавших среди населения временного нахождения в i-ой зоне разрушений.

80. Размер социального ущерба  $^{\rm M}{}_{\rm J}$  в денежном выражении рассчитывается путем суммирования полученных значений денежного выражения социального ущерба персоналу ГТС, населению постоянного проживания и населению временного нахождения:

$$H_{JI} = H_{JI1} + H_{JI2} + H_{JI3}$$

81. Имущественный ущерб  $I_{\text{имущ}}$  . рассчитывается по формуле:

$$H_{\text{MMYIII}} = H_1 + H_2 + H_3 + H_4 + H_5 + H_6 + H_7 + H_8 + H_9$$

где:  $U_1+$ ,  $U_2+$ ,  $U_3+$ ,  $U_4+$ ,  $U_5+$ ,  $U_6+$ ,  $U_7+$ ,  $U_8+$ ,  $U_9-$  соответствующие виды ущербов, приведенные в приложении N 2 к Методике.

82. Ущерб промышленным предприятиям  $^{\text{II}_1}$  от аварии ГТС рассчитывается по формуле:

$$H_1 = H_{oc} + H_{o6} + H_{rr}$$

где: И<sub>ос</sub> - ущерб основным фондам предприятий;

 ${
m H}_{
m o6}\,$  - ущерб оборотным фондам предприятий;



 ${
m II}_{{
m r}{
m n}}$  - ущерб готовой продукции предприятий.

83. Ущерб основным фондам предприятий  $\rm ^{11}\!\! I_{oc}$  от аварии ГТС рассчитывается по формуле:

$$M_{\text{oc}} = C_{\text{фон}} \cdot \sum (S_i \cdot K_i \cdot \Pi_i)$$

где:  $^{\rm C}_{\rm \phi o h}$  - балансовая стоимость основных фондов субъекта Российской Федерации, отнесенная к единице его территории, определяемая как:

$$C_{\phi o H} = C / S_{cy6}$$

где: С - балансовая стоимость основных фондов субъекта Российской Федерации;

 $S_{\text{суб.}}$  - площадь территории субъекта Российской Федерации;

і - зона разрушений (1 - сильных разрушений, 2 - средних разрушений, 3 - слабых разрушений);

 $S_i$  - площадь і-ой зоны разрушений, определенная по критериям шкалы тяжести разрушений промышленных сооружений, приведенной в приложении N 5 к Методике;

 $K_i$  - коэффициент степени утраты основных фондов в i-ой зоне разрушений; для основных фондов K  $_1$  = 0,7; K  $_2$  = 0,3; K  $_3$  = 0,1;

 $\Pi_i$  - коэффициенты концентрации основных фондов на территории і-ой зоны разрушений:

$$\Pi_i = P_i / P_{\text{cy6}}$$

 $P_i$  - плотность населения в i-ой зоне разрушений, определяемая по формуле:

$$P_i = N_{iconst} / S_i$$

Величины  $N_{iconst}$  рассчитываются по формуле, приведенной в пункте 69 Методики. В случае, когда  $\Pi_1 = \Pi_2 = \Pi_3 = \Pi$ , формула приобретает вид:

$$\mathbf{M}_{\mathrm{oc}} \!=\! \mathbf{C}_{\mathrm{\phioh}} \!\cdot\! \boldsymbol{\Pi} \!\cdot\! \sum \! \left( S_i \!\cdot\! K_i \right)$$

84. Для определения величины  $C_{\phi o H}$  на год выполнения расчетов следует использовать коэффициент годового темпа роста основных фондов "А":

$$A = C_x / C_{x-1}$$

где:  $C_x$  - балансовая стоимость основных фондов субъекта Российской Федерации в год выпуска статистического сборника (x);





 $C_{x^{-1}}$  - балансовая стоимость основных фондов субъекта Российской Федерации за предыдущий год (x-1).

Тогда величина  $C_{\phi o H}$  на год выполнения расчета вычисляется по формуле:

$$C_{\phi o H} = A^n \times C_x / S_{cy6}$$

где: n - число лет между годом (x) выпуска статистического сборника и годом выполнения расчетов вероятного вреда.

85. Оценка степени утраты основных фондов при аварии ГТС производится в зонах сильных, средних и слабых разрушений, границы которых определяются по шкале тяжести разрушений промышленных сооружений, приведенной в приложении N 5 к Методике. Отнесение территории к какой-либо зоне разрушений следует осуществлять из условия, чтобы хотя бы один из критериев превосходил указанные значения.

Коэффициент степени утраты основных фондов предприятий принимается равным:

- в зоне сильных разрушений K1 = 0.7;
- в зоне средних разрушений K2 = 0.3;
- в зоне слабых разрушений K3 = 0,1.
- 86. Ущерб оборотным фондам предприятий  $H_{ob}$  (стоимость сырья, запасных деталей, запасов топлива, тары) следует принимать в размере 5% от ущерба основным фондам предприятий:

$$H_{\text{of}} = 0.05 \times H_{\text{oc}}$$

87. Ущерб готовой продукции предприятий  $H_{\Gamma\Pi}$  рассчитывается по формуле:

$$M_{\Gamma\Pi} = M_{\Gamma\Pi\Phi\ThetaH} \cdot m \cdot \sum (S_i \cdot K_i \cdot \Pi_i)$$

где: т - срок хранения готовой продукции на предприятии;

- і зона разрушений основных фондов предприятий (1 сильных разрушений; 2 средних разрушений; 3 зона слабых разрушений);
- $S_i$  площадь і-ой зоны разрушений основных фондов предприятий, определенная по критериям шкалы тяжести разрушений промышленных сооружений, приведенной в приложении N 5 к Методике;
- $K_i$  коэффициент степени утраты основных фондов в і-ой зоне разрушений согласно пункту 85 Методики;
- $\Pi_i$  коэффициент концентрации основных фондов на территории і-ой зоны разрушений, определяемый по формуле, приведенной в пункте 83 Методики;
- $U_{\Gamma\Pi \Phi^{0H}}$  валовой региональный продукт, произведенный за рабочий день в субъекте Российской Федерации и отнесенный к единице его территории, рассчитывается по формуле:

$$N_{\Gamma\Pi\Phi\Theta} = R_i / (S_{\text{cy6}} \times N_p)$$

где:  $B_i$  - валовой региональный продукт субъекта Российской Федерации на год проведения





расчетов;

S<sub>суб</sub> - площадь территории субъекта Российской Федерации;

 $N_p$  - число рабочих дней в году (принимается равным 250 дней).

88. При невозможности определить величину валового регионального продукта  $B_i$  субъекта Российской Федерации на момент выполнения расчетов следует пользоваться формулой:

$$B_i = B \times (E_{\text{врп}}/100)^n$$

- где: В валовой региональный продукт, произведенный в субъекте Российской Федерации на год, указанный в статистическом сборнике;
- n число лет между годом, указанным в статистическом сборнике и годом выполнения расчета вероятного вреда;
- $E_{\rm врп}$  индекс физического объема валового регионального продукта в процентах к предыдущему году по отношению к году выпуска статистического сборника.
- 89. Оценка степени утраты готовой продукции производится для зон сильных, средних и слабых разрушений промышленных сооружений, определяемых по шкале тяжести разрушений промышленных сооружений, приведенной в приложении N 5 к Методике.
- 90. Ущерб элементам транспорта и связи  $\rm H_2$ , попадающим в зону аварийного воздействия, рассчитывается по формуле:

$$\mathbf{H}_{2} = \mathbf{A} \times \left[ \sum_{\text{a.,qop}} \left( \mathbf{H}_{\text{cj}} \times \mathbf{K}_{\text{nep}} \times \mathbf{K}_{\text{per}1} \times \mathbf{L}_{i} \times \mathbf{K}_{i} \right) + \sum_{\text{ж,qop}} \left( \mathbf{H}_{\text{cj}} \times \mathbf{K}_{\text{nep}} \times \mathbf{K}_{\text{per}1} \times \mathbf{L}_{i} \times \mathbf{K}_{i} \right) + \sum_{\text{JEM}} \left( \mathbf{H}_{\text{cj}} \times \mathbf{K}_{\text{nep}} \times \mathbf{K}_{\text{per}1} \times \mathbf{L}_{i} \times \mathbf{K}_{i} \right) \right]$$
, fig.

А - коэффициент темпов роста основных фондов, определяемый согласно пункту 84 Методики;

≥ а.дор - сумма ущербов по автодорогам разного типа (j);

 $\sum_{\text{ж.дор}}$  - сумма ущербов по железным дорогам разного типа (j);

 $\sum_{\rm ЛЭП}$  - сумма ущербов по линиям ЛЭП разного типа (j);

- $L_i$  протяженность автомобильных дорог общего пользования, железных дорог и линий ЛЭП в і-ой зоне разрушений элементов транспорта и связи;
- $K_i$  степень повреждений элементов транспорта и связи в i-ой зоне разрушений, определяемая по пункту 92 Методики;
- $H_{cj}$  укрупненный норматив цены строительства элемента транспорта и связи, утверждаемый федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в сфере строительства, архитектуры, градостроительства, в соответствии с частью 11 статьи 8.3 Градостроительного кодекса Российской Федерации (Собрание законодательства Российской Федерации, 2005, N 1, ст. 16; 2017, N 31, ст. 4740);
- $K_{\text{пер}}$  коэффициенты перехода от базового района (Московской области) к уровню цен субъектов Российской Федерации;
  - $K_{\text{per}1}$  коэффициенты, учитывающие изменение стоимости строительства на территориях



20/41



субъектов Российской Федерации, связанные с климатическими условиями.

Ущерб элементам связи, не являющихся ЛЭП, тоннелям и т.д. учитывается в прочих, непрогнозируемых в расчете размера вероятного вреда ущербах.

91. Протяженность автомобильных дорог общего пользования в і-ой зоне разрушений элементов транспорта определяется по формуле:

$$L_i = S_i \times L_{y_{\pi}}, (i=1, 2, 3),$$

где:  $S_i$  - площадь і-ой зоны разрушений элементов транспорта и связи.

 $L_{
m y_{
m J}}$  - плотность автомобильных дорог общего пользования с твердым покрытием в субъекте Российской Федерации.

Протяженность железных дорог и линий ЛЭП в i-ой зоне разрушений элементов транспорта и связи устанавливается с использованием картографического материала территорий, подлежащих затоплению.

- 92. Для определения стоимости элементов транспорта и связи на год выполнения расчетов следует использовать коэффициент годового темпа роста основных фондов "А" и формулу, приведенные в пункте 84 Методики.
- 93. Оценка степени разрушения элементов транспорта и связи при аварии ГТС производится в зонах сильных, средних и слабых разрушений, границы которых определяются по шкале тяжести разрушений элементов транспорта и связи, приведенной в приложении N 6 к Методике.

Степень повреждений объектов транспорта и связи:

в зоне сильных разрушений K1 = 0.8;

в зоне средних разрушений K2 = 0.4;

в зоне слабых разрушений K3 = 0,1.

94. Ущерб жилому фонду и имуществу граждан И 3 рассчитывается по формуле:

$$H_{3} = S_{\text{жил}} \times \left( \coprod_{\text{пр}} + \coprod_{\text{вр}} \right) / 2 \times \left[ k_{\text{сел}} \times \sum \left( N_{icen} \times K_{i} \right) + k_{\text{rop}} \times \sum \left( N_{icop} \times K_{i} \right) \right]$$

где:  $S_{\text{жил.}}$  - общая площадь жилых помещений, приходящаяся в среднем на одного жителя субъекта Российской Федерации;

Ц<sub>пр</sub> - средние цены на первичном рынке жилья (за 1 квадратный метр общей площади жилого помещения) в субъекте Российской Федерации;

Ц<sub>вр</sub> - средние цены на вторичном рынке жилья (за 1 квадратный метр общей площади жилого помещения) в субъекте Российской Федерации;

 $k_{\text{сел}}$  - коэффициент, учитывающий стоимость имущества одного сельского жителя (принимается  $k_{\text{сел.}} = 1,25$ );

 $k_{\rm rop}$  - коэффициент, учитывающий стоимость имущества одного городского жителя (принимается  $k_{\rm rop}=1,5$ );

 $N_{icen}$  - количество сельских жителей, проживающих в i-ой зоне разрушений жилого фонда, определенное в пунктах 64 - 68 Методики;

 $N_{izop}$  - количество городских жителей, проживающих в i-ой зоне разрушений жилого фонда, 14.07.20222 

Школа 21/41



определенное в пунктах 64 - 68 Методики;

 $K_i$  - степень разрушения жилого фонда и имущества граждан в і-ой зоне.

95. Степень разрушения жилого фонда и имущества граждан:

в зоне сильных разрушений K1 = 0.7;

в зоне средних разрушений K2 = 0.3;

в зоне слабых разрушений K3 = 0,1.

96. Расходы на ликвидацию последствий аварии  $^{\text{И}_4}$  следует рассчитывать в размере 20% от суммы имущественного ущерба на территории населенных пунктов и промышленных объектов:

$$H_4 = 0.2 \times (H_1 + H_2 + H_3)$$

97. Ущерб сельскохозяйственному производству  $U_5$  в зоне затопления при аварии ГТС рассчитывается по формуле:

$$U_5 = 0.5 \times \beta_1 \times S_{cx} \times K_{Hopm cx}$$

где:  $^{\beta_1}$  - доля поврежденных земель в общей площади сельскохозяйственных угодий, попадающих в зону затопления, принимается равной 40%;

 $K_{yд\,cx}$  - удельный показатель утраты стоимости земель сельскохозяйственного назначения;

 $S_{\rm cx}$  - площадь земель сельскохозяйственного назначения, попадающих в зону возможного затопления, определяемая по формуле:

$$S_{\rm cx} = S_{33} \times k_{\rm cx}$$

где:  $S_{33}$  - общая площадь затопления;

 $k_{\rm cx}~$  - доля земель сельскохозяйственного назначения в субъекте Российской Федерации.

Величина удельного показателя утраты стоимости земель сельскохозяйственного назначения определяется как разность величин средних удельных показателей кадастровой стоимости земель первой группы использования  $K_{\rm yдl}$ , куда входят земли сельскохозяйственных угодий, и земель четвертой группы использования  $K_{\rm hopm4}$ , куда входят поврежденные земли:  $K_{\rm yд.cx} = K_{\rm ygl} - K_{\rm yg4}$ 

98. Ущерб лесному фонду от потери леса как сырья  $^{\mathrm{H}_{6}}$  следует рассчитывать по формуле:

$$M_6 = \beta_2 \times C_{\text{nec}} \times S_{\text{nec древ}} \times M_{\text{тд}}$$

где:  $\beta_2$  - доля утраченных земель лесного фонда, подверженных затоплению (принимается (= 0,15);

 $S_{\text{лес древ}}$  - площадь земель лесного фонда в зоне аварийного воздействия, на которых ведется заготовка древесины наиболее ценных пород, определяемая по формуле:





$$S_{\text{лес древ}} = S_{\text{33 сильн разр}} \times k_{\text{лес}} \times k_{\text{древ}}$$

где:  $S_{_{33\ cuль H}\ paзp}$  - площадь зоны сильных разрушений земель лесного фонда, определяемая по критериям: глубина затопления H>3 м, скорость потока V>2 м/с;

 $k_{ ext{nec}}$  - лесистость территории субъекта Российской Федерации;

 $k_{\text{древ}}$  - процент территорий, занятых преобладающими товарными древесными породами в лесах субъекта Российской Федерации;

 $C_{\rm лес}$  - осредненная ставка платы за единицу объема деловой древесины, определяемая с учетом преобладающих пород лесных насаждений лесотаксового района, попадающего в зону затопления, и расстояний вывозки; принимается с учетом индексации ставок на год проведения расчета вероятного вреда в соответствии с постановлением Правительства Российской Федерации от 22 мая 2007 г. N 310 "О ставках платы за единицу объема лесных ресурсов и ставках платы за единицу площади лесного участка, находящегося в федеральной собственности" (Собрание законодательства Российской Федерации, 2007, N 23, ст. 2787; 2020, N 2, ст. 205);

 ${
m M}_{{
m \tiny TZ}}\,$  - средний корневой запас товарной древесины.

99. В отсутствие данных о среднем корневом запасе товарной древесины  $\mathbf{M}_{\text{тд}}$  следует применять следующие значения:

для таежных районов -  $M_{_{T\!\!M}} = 130 \ \text{м}^3/\text{га}$  ;

для районов со смешанными лесами -  $\,{\rm M_{rg}}^{=\,90}\,{\rm M}^{^3/{\rm ra}}\,;$ 

для прочих районов -  $\,{\rm M_{rg}^{=}}50\,{\rm m}^{3}/{\rm ra}\,$  .

100. Ущерб  $^{\mathrm{II}_{7}}$  , вызванный нарушением водоснабжения, рассчитывается по формуле:

$$M_7 = C_{\text{BP}} \times V_{\text{B}} \times (S_{AB}/S_{\text{cy6}}) \times (t_{\text{B}}/T_{\text{год}})$$

где:  $^{\text{C}_{\text{вр}}}$  - ставка платы за забор (изъятие) водных ресурсов из поверхностных водных объектов;

 $V_{_{\rm B}}\,$  - объем использования свежей воды в субъекте Российской Федерации;

 $S_{\rm cy6}$  - площадь территории субъекта Российской Федерации;

 $S_{AB}$  - площадь зоны аварийного воздействия, рассчитанная по формуле:

$$S_{AB} = S_{33} + S_{aB BG}$$

где:  $S_{33}$  - площадь зоны затопления;

 $S_{\text{ав вб}}$  - площадь зоны аварийного воздействия в верхнем бъефе;

 $t_{\rm B}$  - число дней, необходимых на восстановление водоснабжения, принимается равным 25 дням;





 $T_{\text{год}}\,$  - число дней в году расчета вероятного вреда.

101. Ущерб объектам водного транспорта  $H_8$  на водохранилище рассчитывается в случае внесения водохранилища в перечень водных объектов, использующихся в целях водного транспорта. Ущерб объектам водного транспорта рассчитывается по формуле:

$$M_8 = \beta_3 \times C_{akb} \times S_{bt}$$

где:  $^{\beta_3}$  - коэффициент, учитывающий возможные повреждения на объектах водного транспорта при неконтролируемой сработке водохранилища (принимается  $^{\beta_3}$  = 10);

 $C_{\text{акв}}$  - ставка платы за использование акватории водохранилища;

 $S_{\mbox{\scriptsize BT}}$  - площадь акватории водохранилища, используемая водным транспортом, определяется по формуле:

$$S_{\!\scriptscriptstyle \mathrm{BT}} = \mathrm{B}_{\!\scriptscriptstyle \mathrm{yc},\!\scriptscriptstyle \mathrm{I}} \times L_{\!\scriptscriptstyle \mathrm{BJXP}}$$
 ,

где:  $B_{ycn}$  - условная ширина судового хода (принимается  $B_{ycn} = 0.2$  км);

 $L_{\rm вдхр}~$  - длина водохранилища, определяемая по правилам эксплуатации водохранилища.

102. Ущерб рыбному хозяйству  $H_9$  рассчитывается при условии ведения на водохранилище рыбного промысла:

$$M_9 = \beta_4 \times V_{\text{рыб}} \times C_{\text{рыб}} \times T$$

где:  $^{\beta_4}$  - коэффициент учета возможного ущерба рыбному хозяйству от аварии ГТС в нижнем бьефе (принимается  $^{\beta_4=1,2}$  );

 $V_{
m pыб}$  - ежегодный вылов рыбы в водохранилище (принимается по данным, предоставленным местными органами власти);

 $C_{
m pыб}$  - рыночная стоимость пойманной рыбы на год выполнения расчета (определяется по данным Федеральной службы государственной статистики по ценам на отдельные группы продовольственных товаров);

Т - количество лет, необходимое для формирования нового ихтиоценоза.

103. Если данные о ежегодном вылове рыбы в водохранилище  $V_{\rm pыб}$  отсутствуют, ущерб рыбному хозяйству  $M_{\rm 9}$  следует рассчитывать по формуле:

$$M_9 = \beta_4 \times S_{\text{вдхр}} \times G \times C_{\text{рыб}} \times T$$

где:  $S_{\text{вдхр}}$  - площадь зеркала водохранилища при нормальном подпорном уровне; G - осредненная рыбопродуктивность водохранилища.





104. Вероятный ущерб природной среде в результате аварии ГТС должен включать все виды вероятного ущерба компонентам природной среды, которые могут иметь место при затоплении территории в нижнем бьефе и негативных воздействиях в верхнем бьефе ГТС, характерных для аварий ГТС гидроузлов, водохранилищ, накопителей жидких промышленных отходов.

При расчете вероятного вреда от аварий ГТС в качестве отдельной составляющей ущерб атмосферному воздуху и почвам не рассматривается.

Ущерб водным биологическим ресурсам учитывается при расчете размера ущерба рыбному хозяйству. Ущерб остальным объектам животного мира учитывается в прочих видах ущерба от аварии ГТС.

Остальные составляющие ущерба компонентам природной среды, не поддающиеся оценке в связи с отсутствием методик прогнозирования количества объектов животного и растительного мира, подлежащих уничтожению в результате вероятной аварии ГТС, также учитываются в прочих видах ущерба от аварии ГТС.

105. Ущерб природной среде  $I_{10}$  в результате аварии ГТС гидроузлов, дамб (плотин) водохозяйственных объектов рассчитывается по основным составляющим по формуле:

$$H_{10} = H_{\text{Mec}} + H_{\text{BOJ}}$$

где:  ${\rm \textit{V}}_{\rm леc}$  - ущерб от затопления лесов;

И<sub>вод</sub> - ущерб от сброса загрязняющих веществ в природные воды.

106. Ущерб от затопления лесов  $II_{\rm nec}$  рассчитывается, если в зону затопления при аварии ГТС попадают земли лесного фонда. Размер  $II_{\rm nec}$  рассчитывается по формуле:

$$N_{\text{nec}} = \alpha_1 \times S_{\text{nec } 33} \times K_{\text{нopm.nec}} \times \alpha_2$$

где:  $\alpha_1$  - доля утраченных земель из затопленных (принимается равной 0,15);

 $\alpha_2$  - доля земель лесного фонда в зоне затопления, подверженных нарушению, принимается равной 0,4;

 $K_{\text{норм. лес}}$  - средняя стоимость затрат по субъекту Российской Федерации на посадку лесных культур с использованием посадочного материала с закрытой корневой системой;

 $S_{\mbox{\scriptsize лес }33}$  - площадь земель лесного фонда, попадающих в зону затопления, определяется по формуле:

$$S_{\text{nec }33} = S_{33} \times k_{\text{nec}}$$

где:  $S_{33}$  - площадь зоны затопления;

 $k_{\text{лес}}$  - лесистость территории субъекта Российской Федерации.

107. Ущерб от сброса загрязняющих веществ (далее - 3В) в природные воды  $I_{\text{вод}}$  (доминантный вид ущерба природной среде при гидродинамической аварии ГТС гидроузлов и





плотин (дамб) водохозяйственных объектов) складывается из трех основных составляющих:

$$M_{\text{вод}} = M_{\text{ст}} + M_{\text{ск}} + M_{\text{нп}}$$

где:  ${\rm I\!I}_{\rm cT}$  - ущерб природным водам в результате смыва волной прорыва загрязняющих веществ с селитебных территорий;

 ${
m II}_{
m ck}$  - ущерб природным водам в результате затопления и разрушения элементов систем канализации;

 ${
m II}_{
m HII}$  - ущерб от сброса нефтепродуктов из разрушенного при аварии ГТС оборудования гидроэлектростанций или предприятий и хранилищ нефтепромышленного комплекса.

108. Ущерб  $^{\rm И_{cr}}$  природным водам в результате смыва волной прорыва загрязняющих веществ с селитебных территорий:

$$M_{\text{cr}} = \sum (M_{icm} \times C_i) \times K_{\text{or}} \times K_{\text{cp}}$$

где: 
$$i$$
 - вид 3B ( $i = 1, 2 ... n$ );

 $M_{icm}~$  - масса сброса і-го ЗВ в природные воды при смыве с селитебных территорий, т;

 $C_i$  - ставка платы за сброс 1 тонны і-го 3В, определяемая в порядке, установленном пунктом 17 Правил исчисления и взимания платы за негативное воздействие на окружающую среду, утвержденных постановлением Правительства Российской Федерации от 3 марта 2017 г. N 255 (Собрание законодательства Российской Федерации, 2017, N 11, ст. 1572; 2020, N 5, ст. 527), руб./т;

 $K_{\text{от}}$  - повышающий коэффициент к ставкам платы для особо охраняемых природных территорий;

 $K_{cp}\,\,$  - коэффициент к ставкам платы за сброс 3B, превышающих разрешения на сброс.

109. Основными загрязняющими веществами, сброс которых наиболее опасен для природных вод при смыве с селитебных территорий, являются:

взвешенные вещества;

нефтепродукты;

органические вещества (показатель  $\ ^{\ }$  БПК $_{20}$  ).

- 110. Удельный вынос каждого из загрязняющих веществ в результате смыва с селитебных территорий (масса 3В, смываемая с единицы площади селитебных территорий, попадающих в зону затопления) принимается равным 20% от годового удельного выноса 3В с селитебных территорий с дождевым стоком, приведенного в приложении N 7 к Методике.
- 111. Масса сброса 1-го 3В в природные воды  $M_{i\,cr}$  при смыве с селитебных территорий рассчитывается по формуле:

$$M_{\rm i\,cr} = 0.2 \times M_{\rm i\,yg\,cr} \times S_{\rm cr}$$

где:  $M_{i \text{ уд ст}}$  - удельный вынос 3B с селитебных территорий с дождевым стоком за год по





данным, приведенным в приложении N 7 к Методике;

 $S_{\rm cr}~$  - общая площадь селитебных территорий, попадающих в зону затопления.

112. Если селитебные территории, попадающие в зону затопления, существенно различаются по плотности населения и уровню благоустройства, оценку массы сброса каждого из 3В в природные воды следует выполнять раздельно по каждой из селитебных территорий с последующим суммированием полученных результатов по каждому 3В.

Для селитебных территорий городов при плотности населения 100 чел./га и более удельный вынос 3В с селитебных территорий следует принимать по данным, приведенным в приложении N 7 к Методике.

Для городов при плотности населения менее 100 чел./га удельный вынос взвешенных веществ следует принимать на 20% больше по сравнению с данными, приведенными в приложении N 7 к Метолике.

113. Ущерб  $И_{ck}$  природным водам в результате затопления волной прорыва элементов систем канализации рассчитывается по формуле:

$$M_{c\kappa} = \sum (M_{ic\kappa} \times C_i) \times K_{oT} \times K_{cp} \times K_{доп}$$

где: і-й вид ЗВ, поступающего в природные воды в результате затопления элементов систем канализации;

 $M_{ic\kappa}$  - масса і-го 3В, поступающего в природные воды в результате затопления элементов систем канализации, т;

$$C_i$$
 ,  $K_{\text{от}}$  ,  $K_{\text{ср}}$  ,  $K_{\text{доп}}$  - аналогично пункту 108 Методики.

Основными ЗВ, сброс которых наиболее опасен для природных вод при затоплении элементов систем канализации, являются:

взвешенные вещества;

органические вещества (показатель  $^{\text{БПК}_5}$ ); азот аммонийных солей; фосфор фосфатов.

114. Масса і-го загрязняющего вещества  $M_{i ck}$ , поступающего в природные воды в результате затопления элементов систем канализации, рассчитывается по формуле:

$$M_{i ck} = 0.25 \times M_{i y \pi ck} \times N_{33} \times T_{Bocct}$$

где:  $M_{i\,yд\,c\kappa}$  - удельное количество 3B, поступающих в природные воды в результате затопления элементов систем канализации, принимается по данным, приведенным в приложении N 8 к Методике;

 $N_{_{33}}\,$  - численность населения в зоне затопления;

 $T_{\text{восст}}$  - время восстановления работы систем канализации после аварии (принимается равным 25 суткам).

Коэффициент 0,25 учитывает наличие в зоне затопления неканализованных районов и степень утраты элементов систем канализации.



115. Ущерб  $^{\rm II}_{\rm HII}$  от сброса нефтепродуктов из разрушенного при аварии ГТС оборудования ГЭС, рассчитывается, если по сценарию аварии ГТС ожидаются разрушения. Размер  $^{\rm II}_{\rm HII}$  рассчитывается по формуле:

$$\label{eq:HII} \boldsymbol{H}_{HII} \! = \! \sum \! \left( \boldsymbol{M}_{HII} \! \times \! \boldsymbol{C}_{HII} \right) \! \times \! \boldsymbol{K}_{oT} \! \times \! \boldsymbol{K}_{cp} \! \times \! \boldsymbol{K}_{доп} \; .$$

где:  $M_{\rm HII}$  - масса нефтепродуктов, содержащихся в оборудовании, расположенном на площадке ГТС и подлежащем разрушению при аварии, т;

 $C_{\rm HII}$  - ставка платы за сброс 1 т нефтепродуктов в природные воды, определяемая аналогично пункту  $108~{
m Met}$  Методики.

$${
m K_{ot}}$$
 ,  ${
m K_{cp}}$  ,  ${
m K_{доп}}$  - аналогично пункту 108 Методики.

116. Ущерб природной среде  $I_{10}$  в результате аварии хранилищ промышленных отходов (отходов шламонакопителей, шламохранилищ, золошлакоотвалов, накопителей сточных вод) в результате аварии ГТС рассчитывается как сумма ущерба по компонентам природной среды по формуле:

$$N_{10} = N_{\rm B} + N_{\rm H} + N_{\rm F} + N_{\rm of}$$

14.07.20222

где:  ${\rm W_{\scriptscriptstyle B}}$  - ущерб, нанесённый поверхностным водам (водотокам, водоёмам);

И<sub>п</sub> - ущерб, нанесённый почвам, земле, недрам;

 ${
m II}_{
m T}\,$  - ущерб, нанесённый подземным (в т.ч. грунтовым) водам;

И<sub>ох</sub> - ущерб, нанесённый охотничьим ресурсам.

Ущерб, нанесённый природным и природно-антропогенным объектам, растительному, животному миру (за исключением ущерба охотничьим ресурсам), и прочим компонентам природной среды, учитываются в составе прочих, не прогнозируемых при проведении расчета размера вероятного вреда ущербов ( $^{II_{11}}$ ), рассчитываемых по формуле, приведенной в пункте 123.

117. При определении степени загрязнения почвы принимается, что вся масса вредных веществ из профильтровавшейся с поверхности жидкости остается в почвенном слое и распределяется равномерно по глубине слоя и площади затопления.

При расчете не учитывается, что часть вредных веществ из профильтровавшихся стоков, не задерживаясь в почвенном слое, попадает в грунтовые воды.

118. При определении параметров загрязнения поверхностных водоемов необходимо принимать массу вредных веществ, содержащихся в вытекшей или профильтровавшейся из хранилища (накопителя) жидкости, равномерно распределенную:

для замкнутых поверхностных водоемов - по всему объему водоема;

для проточных поверхностных водоемов - по сечению водоема.

119. Ущерб, нанесенный поверхностным водам ( $^{II_{B}}$ ) и подземным водам ( $^{II_{T}}$ ), определяется исходя из массы поступающих в них 3B как соответствующая плата за сброс 3B с учетом экологической ситуации по бассейнам рек и морей региона договора водопользования.

Ущерб, который может быть нанесен поверхностным и подземным водам, рассчитывается





как размер платы за сверхлимитный сброс по формуле:

$$\boldsymbol{H}_{\!\scriptscriptstyle B} \! = \! \sum \! \left( \boldsymbol{M}_{\!\scriptscriptstyle i \; cT} \! \times \! \boldsymbol{C}_{\!\scriptscriptstyle i} \right) \! \times \! \boldsymbol{K}_{\!\scriptscriptstyle OT} \! \times \! \boldsymbol{K}_{\!\scriptscriptstyle CP} \! \times \! \boldsymbol{K}_{\!\scriptscriptstyle ДО\Pi}$$

где: i - вид 3B (i=1, 2 ... n);

 $M_{i\,ct}$  - масса сброса i-кого загрязняющего вещества в природные воды при смыве с селитебных территорий и с территории  $\Gamma TC$ ,  $\tau$ ;

Ci, Кот,  $K_{\rm cp}$  ,  $K_{\rm доп}$  - аналогично пункту 108 Методики.

120. Ущерб, нанесенный почвам ( $^{\rm И_{II}}$ ) в результате несанкционированного размещения отходов, рассчитывается по формуле:

$$M_{\rm n} = \sum (M_i \times C_i) \times K_{\rm cp} \times K_{\rm gon}$$

где: i - класс опасности отходов (i=1, 2 ... n);

 $\mathbf{M}_i$  - фактическая масса отхода і-го класса опасности, т, определяемая исходя из объема отхода, вытекающего из накопителя при аварии;

 $C_i$  - базовый норматив платы за размещение отхода применяемый в зависимости от класса опасности, руб./т;

 $K_{cp}$  ,  $K_{доп}$  - аналогично пункту 108 Методики.

121. Ущерб охотничьим ресурсам ( $^{\text{И}_{\text{ох}}}$ ) рассчитывается укрупненно, с использованием методики, утвержденной приказом Министерства природных ресурсов и экологии Российской Федерации от 8 декабря 2011 г. N 948 "Об утверждении методики исчисления размера вреда, причиненного охотничьим ресурсам" (зарегистрирован Министерством юстиции Российской Федерации 26 января 2012 г., регистрационный N 23030; Российская# газета, 2012, N 20) с изменениями, внесенными приказами Министерства природных ресурсов и экологии Российской Федерации от 22 июля 2013 г. N 252 (зарегистрирован Министерством юстиции Российской Федерации 25 сентября 2013 г., регистрационный N 30032; Российская газета, 2013, N 232), от 17 ноября 2017 г. N 612 (зарегистрирован Министерством юстиции Российской Федерации 31 января 2018 г., регистрационный N 49845; официальный интернет-портал правовой информации www.pravo.gov.ru, 1 февраля 2018 г., N 0001201802010026).

Сведения о численности объектов животного мира принимаются на основе информации, полученной из ежегодного доклада о состоянии природной среды субъекта Российской Федерации. В случае отсутствия в нем соответствующих сведений или недостаточности для производства расчета размера вероятного вреда, ущербы животному миру относятся к прочим видам ущербов.

122. Общий ущерб рассчитывается суммированием размеров имущественного ущерба и ущерба природной среде с учетом прочих видов ущерба - непредвиденных расходов, которые невозможно оценить заранее.

123. Прочие виды ущерба  $^{\mathrm{II}_{11}}$  следует принимать в размере 10% от суммы имущественного ущерба и ущерба природной среде:



$$H_{11} = 0.1 \times (H_1 + H_2 + H_3 + H_4 + H_5 + H_6 + H_7 + H_8 + H_9 + H_{10})$$

В прочие виды ущерба, входят не поддающиеся оценке на стадии расчета вероятного вреда от аварий ГТС составляющие ущерба:

ущерб недрам;

ущербы окружающей среде от накопителей отходов промпредприятий, бензозаправок, хранилищ вредных веществ и т.д., в том числе ущерб от загрязнения (засорения) отходами от разрушенных строений;

ущерб почвам, не относящимся к почвам сельскохозяйственных и лесных угодий; ущерб объектам растительного мира, не относящимся к объектам сельского и лесного хозяйства;

ущерб объектам животного мира, не относящимся к объектам сельскохозяйственного производства, рыболовства и охотничьим ресурсам.

124. Общий ущерб  $\rm ^{11}_{obm}$  рассчитывается по формуле:

$$M_{\text{общ}} = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_7 + M_8 + M_9 + M_{10} + M_{11}$$

где:  $U_1$  ,  $U_2$  ,  $U_3$  ,  $U_4$  ,  $U_5$  ,  $U_6$  ,  $U_7$  ,  $U_8$  ,  $U_9$  ,  $U_{10}$  и  $U_{11}$  - соответствующие виды ущербов, приведенные в приложении N 2 к Методике.

125. Размер вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии ГТС, рассчитывается в денежном выражении как сумма двух показателей - социального ущерба и общего ущерба. Размер социального ущерба рассчитывается по формуле, приведенной в пункте 80 Методики. Размер общего ущерба от аварии ГТС рассчитывается по формуле, приведенной в пункте 124 Методики.

## V. Оформление результатов расчета вероятного вреда

126. По результатам расчетов вероятного ущерба оформляется Расчет вероятного вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварий ГТС (далее - Расчет вероятного вреда), Расчет вероятного вреда оформляется в четырех экземплярах.

127. Расчет вероятного вреда должен содержать:

наименование владельца ГТС, его реквизиты; дату составления;

основание для проведения расчета;

наименование и реквизиты организаций, привлеченных владельцем ГТС к расчету;

указания на используемые нормативные документы и методические рекомендации, обоснование их использования;

перечень использованных исходных данных с указанием источников их получения; принятые допущения; порядок расчета;

описание и обоснование принятых к расчету сценариев аварий гидротехнического сооружения;

оценки вероятного числа погибших и пострадавших при аварии ГТС людей среди персонала ГТС, населения постоянного проживания и населения временного нахождения;

расчет размера социального ущерба от аварий ГТС в денежном выражении;

расчет размера основных составляющих имущественного ущерба от аварий ГТС в денежном выражении;



расчет размера ущерба природной среде от аварии ГТС в денежном выражении; расчет размера общего ущерба от аварий ГТС в денежном выражении; расчет размера вероятного вреда от аварий ГТС в денежном выражении. 128. Приложения к Расчету вероятного вреда должны включать: план ГТС;

планы зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС;

результаты расчетов параметров зон аварийного воздействия при наиболее тяжелой и наиболее вероятной авариях ГТС;

прочие сведения по усмотрению владельца ГТС, в том числе поперечные разрезы ГТС, аварии которых приняты к расчету вероятного вреда.



Приложение N 1 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

# Рекомендуемый перечень типовых сценариев аварий гидротехнических сооружений для основных видов гидротехнических сооружений

| Тип сценария аварии     | Вид ГТС           | Характерные признаки<br>аварии ГТС | Негативные воздействия аварии ГТС |
|-------------------------|-------------------|------------------------------------|-----------------------------------|
| 1                       | 2                 | 3                                  | 4                                 |
| Разрушения напорного    | Плотины           | Образование прорана в              | 1. Опорожнение                    |
| фронта,                 | водохранилищ      | напорном фронте                    | водохранилища.                    |
| сопровождающиеся        |                   |                                    | 2. Затопление                     |
| образованием прорана, в |                   |                                    | местности                         |
| который происходит      |                   | Перелив через плотину              |                                   |
| излив воды или жидких   |                   | без прорыва напорного              |                                   |
| отходов,                |                   | фронта (при                        |                                   |
| неконтролируемый        |                   | переполнении                       |                                   |
| персоналом ГТС, а       |                   | водохранилища,                     | Затопление местности              |
| также                   |                   | возникновении в                    | Затопление местности              |
| неконтролируемый        |                   | водохранилище волн                 |                                   |
| перелив через гребень   |                   | вытеснения или                     |                                   |
| плотины из-за           |                   | экстремальных                      |                                   |
| переполнения            |                   | ветровых волн)                     |                                   |
| водохранилища или       | Здания            | Прорыв напорного                   | 1. Опорожнение                    |
| возникновения           | гидроэлектростанц | фронта                             | водохранилища.                    |
| экстремальных волн      | ий                |                                    | 2. Затопление                     |
|                         |                   |                                    | местности                         |
|                         | Водосбросные,     |                                    | 1. Опорожнение                    |
|                         | водоспускные и    | Прорыв напорного                   | водохранилища.                    |
|                         | водовыпускные     | фронта                             | 2. Затопление                     |
|                         | сооружения        |                                    | местности                         |
| Разрушения напорного    |                   | Прорыв напорного                   |                                   |
| фронта,                 |                   | фронта насыпей (для                | Затопление                        |
| сопровождающиеся        | Каналы            | каналов в насыпи или               | местности                         |
| образованием прорана, в |                   | полунасыпи)                        |                                   |
| который происходит      |                   | Перелив длинных волн               | Затопление местности              |



| излив воды или жидких           |                             | через гребень насыпей |                   |
|---------------------------------|-----------------------------|-----------------------|-------------------|
| отходов,                        |                             | (возможная ситуация   |                   |
| неконтролируемый                |                             | при резком закрытии   |                   |
| персоналом ГТС, а               |                             | затворов и резких     |                   |
| также                           |                             | переключениях         |                   |
| неконтролируемый                |                             | насосных станций)     |                   |
| перелив через гребень           | Туннели                     | Нарушение оболочки    | Подтопление       |
| плотины из-за                   |                             |                       | местности из-за   |
| переполнения                    |                             |                       | избыточной        |
| водохранилища или               |                             |                       | фильтрации        |
| возникновения                   | Сооружения                  |                       | 1. Затопление     |
| экстремальных волн              | (дамбы),                    |                       | местности.        |
| 91.01P 01.1m.121.121.11 2 01.11 | ограждающие                 |                       | 2. Вынос жидких   |
|                                 | хранилища жидких            |                       | отходов           |
|                                 | отходов                     |                       | промышленных      |
|                                 |                             |                       | организаций       |
|                                 | промышленных<br>организаций | Прорыв дамбы          | организации       |
|                                 | 1                           | 1 1                   | 1 Oran aversaying |
|                                 | Сооружения,                 | Образование прорана в | 1. Опорожнение    |
|                                 | предназначенные             | напорном фронте       | водохранилища.    |
|                                 | для защиты от               |                       | 2. Затопление     |
|                                 | наводнений, дамбы           |                       | местности         |
|                                 | обвалования                 | Перелив через дамбу   |                   |
|                                 | польдеров и                 | без прорыва напорного |                   |
|                                 | осушенных                   | фронта (при           |                   |
|                                 | территорий                  | переполнении          |                   |
|                                 |                             | водохранилища,        |                   |
|                                 |                             | возникновении в       |                   |
|                                 |                             | водохранилище волн    |                   |
|                                 |                             | вытеснения или        |                   |
|                                 |                             | экстремальных         | Затопление        |
|                                 |                             | ветровых волн)        | местности         |
| Повреждения отдельных           | Плотины                     | Повреждение плотины,  | 1.0               |
| элементов сооружения,           | водохранилищ                | создающее угрозу      | 1. Опорожнение    |
| приведшие к                     |                             | разрушения напорного  | водохранилища.    |
| необходимости                   |                             | фронта с образованием | 2. Затопление     |
| аварийного понижения            |                             | прорана               | местности         |
| напора на ГТС и                 | Здания                      | Повреждение здания    |                   |
| сопровождавшиеся                | гидроэлектростанц           | гидроэлектростанций,  | 1. Гибель         |
| сбросом воды или                | ий                          | создающее угрозу      | (травмирование)   |
| жидких отходов                  |                             | гибели                | персонала.        |
| жидана отподов                  |                             | (травмирования)       | 2. Опорожнение    |
|                                 |                             | персонала и (или)     | водохранилища.    |
|                                 |                             | разрушения напорного  | 2.1. Затопление   |
|                                 |                             | фронта с образованием |                   |
|                                 |                             |                       | местности         |
| Поредунатура                    | Доло «би» « «———            | прорана               | 1 0               |
| Повреждения отдельных           | Водосбросные,               | Повреждение           | 1. Опорожнение    |
| элементов сооружения,           | водоспускные и              | сооружения,           | водохранилища.    |
| приведшие к                     | водовыпускные               | создающее угрозу      | 2. Затопление     |
| необходимости                   | сооружения                  | разрушения напорного  | местности         |



|                        | T                 |                       | I                    |
|------------------------|-------------------|-----------------------|----------------------|
| аварийного понижения   |                   | фронта с образованием |                      |
| напора на ГТС и        |                   | прорана               |                      |
| сопровождавшиеся       | Каналы            | Повреждение насыпи    |                      |
| сбросом воды или       |                   | канала, создающее     |                      |
| жидких отходов         |                   | угрозу разрушения     |                      |
|                        |                   | напорного фронта с    |                      |
|                        |                   | образованием прорана  |                      |
|                        |                   | (для каналов в насыпи |                      |
|                        |                   | или полунасыпи)       | Затопление местности |
|                        | Туннели           | Разрушение запорных   | Прохождение по       |
|                        |                   | устройств             | туннелю в нижний     |
|                        |                   | -                     | бьеф нерасчетного    |
|                        |                   |                       | расхода воды         |
|                        |                   |                       | (затопление          |
|                        |                   |                       | местности,           |
|                        |                   |                       | возможные            |
|                        |                   |                       | дальнейшие           |
|                        |                   |                       | разрушения)          |
| Аварии ГТС,            |                   | Нарушение режима      | Загрязнение          |
| золошлакоотвалов и     |                   | фильтрации            | территории,          |
| шламонакопителей,      | Сооружения        |                       | поверхностных и      |
| содержащих в отходах   | (дамбы),          |                       | грунтовых вод        |
| опасные вещества,      | ограждающие       |                       | вредными             |
| связанные с нарушением | хранилища жидких  |                       | веществами           |
| фильтрационной         | отходов           |                       |                      |
| прочности ГТС и его    | промышленных и    |                       |                      |
| основания и приведшие  | сельскохозяйствен |                       |                      |
| к загрязнению опасными | ных организаций   |                       |                      |
| веществами территории  | •                 |                       |                      |
| вне ГТС                |                   |                       |                      |



Приложение N 2 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

### Общая структура ущерба от аварий гидротехнических сооружений

| Составляющая ущерба от аварий ГТС:           | Обозначение      |
|----------------------------------------------|------------------|
| социальный ущерб                             | Исоц             |
| ущерб промышленным предприятиям              | $\mathbf{M}_{1}$ |
| ущерб элементам транспорта и связи           | И <sub>2</sub>   |
| ущерб жилому фонду и имуществу граждан       | $M_3$            |
| расходы на ликвидацию последствий аварии     | $H_4$            |
| ущерб сельскохозяйственному производству     | И <sub>5</sub>   |
| ущерб лесному фонду от потери леса как сырья | И <sub>6</sub>   |
| ущерб, вызванный нарушением водоснабжения    | И <sub>7</sub>   |
| ущерб объектам водного транспорта            | И <sub>8</sub>   |
| ущерб рыбному хозяйству                      | И <sub>9</sub>   |
| ущерб природной среде                        | И <sub>10</sub>  |
| прочие виды ущерба                           | И <sub>11</sub>  |



Приложение N 3 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

### Оценка тяжести людских потерь при аварии гидротехнических сооружений

| Зона воздействия                | Общие п | Общие потери (%) |                   | Из общего числа потерь |        |       |  |  |
|---------------------------------|---------|------------------|-------------------|------------------------|--------|-------|--|--|
|                                 | днем    | ночью            | безвозвратные (%) |                        | возвра | тные  |  |  |
|                                 |         |                  |                   |                        | (%     | o)    |  |  |
|                                 |         |                  | днем              | ночью                  | днем   | ночью |  |  |
| 1 - катастрофические разрушения | 60      | 90               | 40                | 75                     | 60     | 25    |  |  |
| 2 - сильные разрушения          | 13      | 25               | 10                | 20                     | 90     | 80    |  |  |
| 3 - средние разрушения          | 5       | 15               | 7                 | 15                     | 93     | 85    |  |  |
| 4 - слабые разрушения           | 2       | 10               | 5                 | 10                     | 95     | 90    |  |  |



Приложение N 4 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

### Шкала тяжести разрушений жилых зданий

| Жилые здания                                      | Сильные |                 |     | Средние |            |     | Слабые |            |     |  |
|---------------------------------------------------|---------|-----------------|-----|---------|------------|-----|--------|------------|-----|--|
|                                                   | pa      | азрушені        | ЯΝ  | pa      | разрушения |     |        | разрушения |     |  |
|                                                   | Н,      | V,              | Т,  | Н,      | V,         | Τ,  | Н,     | V,         | Τ,  |  |
|                                                   | M       | <sub>M</sub> /c | час | M       | м/с        | час | M      | м/с        | час |  |
| Сборные деревянные жилые дома                     | 3       | 2               | 48  | 2,5     | 1,5        | 24  | 1      | 1          | 12  |  |
| Деревянные дома (1-2 этажа)                       | 3,5     | 2               | 48  | 2,5     | 1,5        | 24  | 1      | 1          | 12  |  |
| Легкие 1 - 2-этажные бескаркасные постройки       | 3,5     | 2               | 72  | 2,5     | 1,5        | 48  | 1      | 1          | 24  |  |
| Кирпичные дома малой этажности (1-3 этажа)        | 4       | 2,5             | 50  | 3       | 2          | 100 | 2      | 1          | 50  |  |
| Дома повышенной<br>этажности (4 этажа и<br>более) | 6       | 3               | 240 | 4       | 2,5        | 170 | 2,5    | 1,5        | 100 |  |



Приложение N 5 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

### Шкала тяжести разрушений промышленных сооружений

| Тип зданий             |            | Сильны   | e         |            | Средни | e         |            | Слабые |     |
|------------------------|------------|----------|-----------|------------|--------|-----------|------------|--------|-----|
|                        | разрушения |          | p         | разрушения |        |           | разрушения |        |     |
|                        | Н,         | V,       | Τ,        | Н,         | V,     | Т,        | Н,         | V,     | Τ,  |
|                        | M          | м/с      | час       | M          | м/с    | час       | M          | м/с    | час |
| Кирпичные              |            | 2,5      | 170       | 3          | 2      | 100       | 2          | 1      | 50  |
| малоэтажные здания     | 4          |          |           |            |        |           |            |        |     |
| (1-3 этажа)            |            |          |           |            |        |           |            |        |     |
| Промышленные           |            | 2,5      | 170       | 3,5        | 2      | 100       | 2          | 1,5    | 50  |
| здания с легким        | 5          |          |           |            |        |           |            |        |     |
| металлическим          | 3          |          |           |            |        |           |            |        |     |
| каркасом               |            |          |           |            |        |           |            |        |     |
| Кирпичные и            |            | 3        | 240       | 4          | 2,5    | 170       | 2,5        | 1,5    | 100 |
| панельные дома         | 6          |          |           |            |        |           |            |        |     |
| средней этажности (4   | U          |          |           |            |        |           |            |        |     |
| этажа и более)         |            |          |           |            |        |           |            |        |     |
| Промышленные           |            | 4        | 240       | б#         | 3      | 170       | 3          | 1,5    | 100 |
| здания с тяжелым       |            |          |           |            |        |           |            |        |     |
| металлическим или      |            |          |           |            |        |           |            |        |     |
| железобетонным         |            |          |           |            |        |           |            |        |     |
| каркасом (стены из     |            |          |           |            |        |           |            |        |     |
| керамзитобетонных      |            |          |           |            |        |           |            |        |     |
| панелей)               | 7,5        |          |           |            |        |           |            |        |     |
| Бетонные и             |            | 4        | -         | 9          | 3      | 240       | 4          | 1,5    | 170 |
| железобетонные         |            |          |           |            |        |           |            |        |     |
| здания                 |            |          |           |            |        |           |            |        |     |
| антисейсмической       |            |          |           |            |        |           |            |        |     |
| конструкции            | 12         |          |           |            |        |           |            |        |     |
| Н - глубина затопления | , V - ско  | рость по | тока воді | ы, Т - пр  | одолжи | тельности | затопле    | ения   |     |



Приложение N 6 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

# Шкала тяжести разрушений элементов транспорта и связи

| Типы элементов          | Сильные                                                                            |            |     |    | Средние    |     |     | Слабые     |     |  |
|-------------------------|------------------------------------------------------------------------------------|------------|-----|----|------------|-----|-----|------------|-----|--|
| транспортных            | p                                                                                  | разрушения |     | pa | разрушения |     |     | разрушения |     |  |
| магистралей             | Н,                                                                                 | V,         | Т,  | Н, | V,         | T,  | Н,  | V,         | Т,  |  |
|                         | M                                                                                  | м/с        | час | M  | м/с        | час | M   | м/с        | час |  |
| Деревянные мосты        | 1                                                                                  | 2          | 1   | 1  | 1,5        | _   | 0,5 | 0,5        | -   |  |
| Железобетонные          | 2                                                                                  | 3          | 50  | 1  | 2          | 30  | 0,5 | 0,5        | 10  |  |
| мосты                   |                                                                                    |            |     |    |            |     |     |            |     |  |
| Металлические мосты     | 2                                                                                  | 3          | 50  | 1  | 2          | 30  | 0,5 | 0,5        | 10  |  |
| и путепроводы с         |                                                                                    |            |     |    |            |     |     |            |     |  |
| пролетом 30 - 100 м,    |                                                                                    |            |     |    |            |     |     |            |     |  |
| линии                   |                                                                                    |            |     |    |            |     |     |            |     |  |
| электропередач,         |                                                                                    |            |     |    |            |     |     |            |     |  |
| линии связи             |                                                                                    |            |     |    |            |     |     |            |     |  |
| Металлические мосты     | 2                                                                                  | 2          | 50  | 1  | 1          | 30  | 0,5 | 0,5        | 10  |  |
| и путепроводы с         |                                                                                    |            |     |    |            |     |     |            |     |  |
| пролетом более 100 м    |                                                                                    |            |     |    |            |     |     |            |     |  |
| Железнодорожные         | 2                                                                                  | 2          | 100 | 1  | 1,5        | 50  | 0,5 | 0,5        | 30  |  |
| пути                    |                                                                                    |            |     |    |            |     |     |            |     |  |
| Дороги с гравийным      | 2,5                                                                                | 2          | 100 | 1  | 1,5        | 50  | 0,5 | 0,5        | 30  |  |
| (щебеночным)            |                                                                                    |            |     |    |            |     |     |            |     |  |
| покрытием               |                                                                                    |            |     |    |            |     |     |            |     |  |
| Шоссейные дороги с      | 4                                                                                  | 3          | 240 | 2  | 1,5        | 170 | 1   | 1          | 100 |  |
| асфальтовым             |                                                                                    |            |     |    |            |     |     |            |     |  |
| покрытием               |                                                                                    |            |     |    |            |     |     |            |     |  |
| Н - глубина затопления, | I - глубина затопления, V - скорость потока воды, Т - продолжительность затопления |            |     |    |            |     |     |            |     |  |



Приложение N 7 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

## Удельный вынос загрязняющих веществ с селитебных территорий с дождевым стоком

| Загрязняющее вещество                          | Удельный вынос с дождевым стоком, кг/(га год) |
|------------------------------------------------|-----------------------------------------------|
| Взвешенные вещества                            | 2500                                          |
| Органические вещества ( $^{\text{БПК}_{20}}$ ) | 140                                           |
| Нефтепродукты                                  | 40                                            |



Приложение N 8 к Методике определения размера вреда, который может быть причинен жизни, здоровью физических лиц, имуществу физических и юридических лиц в результате аварии гидротехнического сооружения (за исключением судоходных и портовых гидротехнических сооружений), утвержденной приказом Федеральной службы по экологическому, технологическому и атомному надзору от 10 декабря 2020 г. N 516

# Удельное количество загрязняющих веществ, поступающих в природные воды в результате затопления систем канализации

| Загрязняющее вещество | Масса загрязняющего вещества на одного |
|-----------------------|----------------------------------------|
|                       | жителя, г/сутки                        |
| Взвешенные вещества   | 65                                     |
| БПК₅                  | 60                                     |
| Азот аммонийных солей | 10,5                                   |
| Фосфор фосфатов       | 1,5                                    |