DIPARTIMENTO DI INFORMATICA E SISTEMISTICA ANTONIO RUBERTI

Least Squares and SLAM Least Squares

Giorgio Grisetti

Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

Problem

- Given a system described by a set of n observation functions $\{f_i(x)\}_{i=1:n}$
- Let
 - * be the state vector
 - z_i be a measurement of the state x
 - z'_i=f_i(x) be a function which maps x to a predicted measurement z'_i
- We acquire *n* noisy measurements *z*_{1:n} about the state *x*
- We want to estimate the state x which bests explains the measurements $z_{1:n}$

Graphical Explanation

Example:

- x = position of a set of 3d features
- z_i =coordinates of the 3d features projected on an image plane w.r.t. the ith observation point
- Estimate the most likely 3d position of the features in the scene given the images z

Error

 The error e_i is the difference between the predicted measurement and the actual one

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume the error to be zero mean and normally distributed with an information matrix Ω_i
- The squared error of a measurement depends only on the state and it is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \Omega_i \mathbf{e}_i(\mathbf{x})$$

Find the Minimum

 We want to find the state x* which minimizes the error of all measurements

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}) \leftarrow \underset{\mathbf{x}}{\operatorname{Global Error (scalar)}}$$

$$= \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i} e_i(\mathbf{x}) \leftarrow \underset{\mathbf{x}}{\operatorname{Squared Error Terms (scalar)}}$$

$$= \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i} e_i^T(\mathbf{x}) \Omega_i e_i(\mathbf{x})$$

- A general solution is to derive the global error function and find its nulls
- In general it is a complex problem which does not admit closed form solutions

Approximations

- If
 - A good initial guess is available and
 - the measurement functions are "smooth" in the neighborhood of the (hopefully global) minima
- We can solve the problem by iterative local linearizations
 - Linearize the problem around the current initial guess
 - Solve a linear system
 - Determine a set of increments which can be summed to the previous estimate of the state to come closer to the minima

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{e}_i(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_i(\mathbf{x}) + \frac{\partial \mathbf{e}_i}{\partial \mathbf{x}} \Delta \mathbf{x}$$

$$= \mathbf{e}_i + \mathbf{J}_i \Delta \mathbf{x}$$

Squared Error

- With the previous linearization we can fix x and carry out the minimization in the increments Δx
- We replace the Taylor expansion in the squared error:

$$e_i(\mathbf{x} + \Delta \mathbf{x}) = \dots$$

Squared Error

- With the previous linearization we can fix x and carry out the minimization in the increments Δx
- We replace the Taylor expansion in the squared error:

$$e_i(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{e}_i^T(\mathbf{x} + \Delta \mathbf{x})\Omega_i \mathbf{e}_i(\mathbf{x} + \Delta \mathbf{x})$$

$$\simeq (\mathbf{e}_i + \mathbf{J}_i \Delta \mathbf{x})^T \Omega_i (\mathbf{e}_i + \mathbf{J}_i \Delta \mathbf{x})$$

$$= \mathbf{e}_i^T \Omega_i \mathbf{e}_i +$$

$$\mathbf{e}_i^T \Omega_i \mathbf{J}_i \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{J}_i^T \Omega_i \mathbf{e}_i +$$

$$\Delta \mathbf{x}^T \mathbf{J}_i^T \Omega_i \mathbf{J}_i \Delta \mathbf{x}$$

Squared Error (cont)

- All summands are scalar so the transposition has no effect
- We can group the similar terms.

$$e_{i}(\mathbf{x} + \Delta \mathbf{x})$$

$$\simeq \mathbf{e}_{i}^{T} \Omega_{i} \mathbf{e}_{i} + \mathbf{e}_{i}^{T} \Omega_{i} \mathbf{J}_{i} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{J}_{i}^{T} \Omega_{i} \mathbf{e}_{i} + \mathbf{\Delta} \mathbf{x}^{T} \mathbf{J}_{i}^{T} \Omega_{i} \mathbf{J}_{i} \Delta \mathbf{x}$$

$$= \underbrace{\mathbf{e}_{i}^{T} \Omega_{i} \mathbf{e}_{i}}_{C_{i}} + 2 \underbrace{\mathbf{e}_{i}^{T} \Omega_{i} \mathbf{J}_{i}}_{\mathbf{b}_{i}^{T}} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \underbrace{\mathbf{J}_{i}^{T} \Omega_{i} \mathbf{J}_{i}}_{\mathbf{H}_{i}} \Delta \mathbf{x}$$

$$= c_{i} + 2 \mathbf{b}_{i}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H}_{i} \Delta \mathbf{x}$$

Global Error

- The global error is the sum of the squared errors of the measurements
- We can use the new terms for the squared error to a new expression which approximates the global error in the neighborhood of the current solution x

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_{i} (c_i + \mathbf{b}_i^T \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{H}_i \Delta \mathbf{x})$$

$$= \sum_{i} c_i + 2(\sum_{i} \mathbf{b}_i^T) \Delta \mathbf{x} + \Delta \mathbf{x}^T (\sum_{i} \mathbf{H}_i) \Delta \mathbf{x}$$

Global Error (cont)

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_{i} \left(c_{i} + \mathbf{b}_{i}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H}_{i} \Delta \mathbf{x} \right)$$

$$= \sum_{i} c_{i} + 2 \left(\sum_{i} \mathbf{b}_{i}^{T} \right) \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \left(\sum_{i} \mathbf{H}_{i} \right) \Delta \mathbf{x}$$

$$= c + 2 \mathbf{b}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}$$

with

$$\mathbf{b}^T = \sum_{i} \mathbf{e}_i^T \mathbf{\Omega}_i \mathbf{J}_i$$
 $\mathbf{H} = \sum_{i} \mathbf{J}_i^T \mathbf{\Omega} \mathbf{J}_i$

Quadratic form

 The global error turns into a quadratic form in ∆x and can now be minimized

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq c + 2\mathbf{b}^T \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

• The approximated derivative of $F(x+\Delta x)$ with respect to Δx in the neighborhood of the current solution x is:

$$\frac{\partial F(\mathbf{x} + \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \simeq 2\mathbf{b} + 2\mathbf{H}\Delta \mathbf{x}$$

• The optimum Δx^* is

$$\Delta \mathbf{x}^* = -\mathbf{H}^{-1}\mathbf{b}$$

Iterative Solution

- The minimization algorithm proceeds by repeatedly performing the following steps:
 - Linearizing the system around the current guess x and computing the following quantities for each measurement

$$\mathbf{e}_i(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_i(\mathbf{x}) + \mathbf{J}_i \Delta \mathbf{x}$$

Computing the terms for the linear system

$$\mathbf{b}^T = \sum_i \mathbf{e}_i^T \mathbf{\Omega}_i \mathbf{J}_i \qquad \mathbf{H} = \sum_i \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i$$

Solving the system to get a new optimal increment

$$\Delta \mathbf{x}^* = -\mathbf{H}^{-1}\mathbf{b}$$

Updating the previous estimate

$$\mathbf{x} \leftarrow \mathbf{x} + \Delta \mathbf{x}^*$$

Example: Odometry Calibration

- We have a robot which moves in an environment, gathering the odometry measurements u;
- The odometry is affected by a systematic error which we want to eliminate through calibration
- For each u_i we have a ground truth u^*_i which can, for example, be approximated by scan-matching or a SLAM procedure

Example: Odometry Calibration

• There is a function $f_i(x)$ which, given some bias parameters x, returns a an unbiased odometry for the reading u_i as follows

$$\mathbf{u}_{i}' = f_{i}(\mathbf{x}) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mathbf{u}_{i}$$

The goal is to find the parameters x

Odometry Calibration (cont)

The state vector is

$$\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \end{pmatrix}^T$$

The error function is

$$\mathbf{e}_{i}(\mathbf{x}) = \mathbf{u}_{i}^{*} - \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mathbf{u}_{i}$$

• Its derivative is:

$$\mathbf{J}_{i} = \frac{\partial \mathbf{e}_{i}(\mathbf{x})}{\partial \mathbf{x}} = - \begin{pmatrix} u_{i,x} & u_{i,y} & u_{i,\theta} \\ & & & u_{i,x} & u_{i,y} & u_{i,\theta} \\ & & & & u_{i,x} & u_{i,y} & u_{i,\theta} \end{pmatrix}$$

Some Questions

- How do the parameters look like if the odometry is perfect?
- How many measurements (at least) are needed to find a solution for the calibration problem?
- *H* is symmetric. Why?
- How does the structure of the measurement function affects the structure of *H*?