Rechnernetze - Tutorium

zu Kapitel 1

Link zu den Folien 🛂

https://github.com/blauwiggle/Rechnernetze-1-Tutorium

- 1. Welche Vor- und Nachteile haben die Netzstrukturen Bus, Ring und Stern?
- 2. Welche Variante (Paket- oder Leitungsvermittlung) ist für welche Verkehrsarten geeignet? Welche Variante wird sich warum zukünftig durchsetzen?
- 3. Erläutere ...
 - i. Die Begriffe LAN, MAN, WAN
 - ii. Welche Technologien wo bevorzugt eingesetzt werden
 - iii. Warum ein Schichtenmodell eingeführt wurde.
- 4. Vergleichen Leitungsvermittlung und Paketvermittlung unter folgenden Gesichtspunkten *Adressierung/Zeitdauer* für die *Übertragung/Wegewahl* zwischen Netzknoten.
- 5. Erläutere die Begriffe verbindungslos und verbindungsorientiert.

- 6. Erläutere die Adressierungsarten und benenne Einsatzgebiete
 - i. unicast
 - ii. multicast
 - iii. anycast
 - iv. broadcast
- 7. Wozu benötigt man das OSI-Modell? Beschreibe die Funktion der Schichten. Welches sind die Unterschiede zwischen dem OSI- und dem TCP/IP-Modell?
- 8. Warum benötigt man individuelle Adressierungsverfahren auf den OSI-Ebenen 2, 3 und 4?
- 9. Ein US-Carrier nennt sich Layer2-Communications. Was kann man aus dem Namen bezüglich der Geschäftsmodelle ableiten?
- 10. Welches Kapitel der Vorlesung beschäftigt sich mit welcher Layer.

1. Welche Vor- und Nachteile haben die Netzstrukturen Bus, Ring und Stern?

Bus

Vorteile

- einfach installier- und erweiterbar
- kurze Leitungen und geringe Kabelmengen

- Netzausdehnung begrenzt
- Ausfallanfällig
- keine Alternativwege
- Nur eine Station kann Daten senden

Ring

Vorteile

- Alle Stationen wirken als Repeater, Überbrückung großer Entfernungen möglich
- Gleiche Zugriffsmöglichkeiten
- bei Ringunterbrechung sind trotzdem noch alle Teilnehmer erreichbar

- Hoher Verkabelungsaufwand
- Langsam bei vielen angeschlossenen Endgeräten
- Relativ hohe Latenzen

Stern

Vorteile

- Leicht erweiterbar
- Hohe Ausfallsicherheit
- Leichte Fehlersuche
- Einfache Vernetzung

- Netzausfall bei Ausfall/Überlastung der Zentrale (Hub/Switch)
- Hoher Kabelaufwand

Welche weitere Topologien kennst du?

Baum

Vorteile

- Erweiterbar
- Große Entfernungen realisierbar
- Gut geeignet für Algorithmen

- Bei Verteilerausfall ist gesamter Unterbaum nicht erreichbar
- Bei zunehmender Tiefe -> zunehmende Latenz

Vermascht

Vorteile

- Sicherste Variante
- Hohe Konnektivität
- Sehr leistungsfähig

Nachteile

Hoher Kabelaufwand

2. Welche Variante (Paket- oder Leitungsvermittlung) ist für welche Verkehrsarten geeignet? Welche Variante wird sich warum zukünftig durchsetzen?

Paketvermittelt

- Aufteilung der Daten in Pakete
- Pakete enthalten Adressinformationen
- Freier Routenwahl der Pakete
- Eignet sich für zeitunkritische Übertragungen und Übertragungen mit über der Zeit schwankenden Lastprofilen (bessere Ausnutzung der Übertragungskapazitäten)

Leitungsvermittelt

- Verbindungsaufbau für Dauer der Übertragung
 - Aufbau Übertragung Abbau
- Ständiger Kontakt
- Feste Bandbreite
- Geringe Verzögerungszeiten
- Gut für Echtzeitanwendungen

Was wird sich durchsetzen?

Paketvermittlung

Obwohl ...

- Pakete in falscher Reihenfolge ankommen können
- keine konstante Datenrate garantiert wird
- es zu Überlastungen an einzelnen Vermittlungsstationen kommen kann

Wieso dann?

- Effizientere Auslastung mehrere Nutzer/Dienster die gleichzeitig kommunizieren können
- Faire Aufteilung der Ressourcen unter den Teilnehmern
- Transparente Umleitung des Datenstroms möglich, bei Ausfall einer Vermittlungsstation

3. Erläutere ...

- 1. Die Begriffe LAN, MAN, WAN
- 2. Welche Technologien wo bevorzugt eingesetzt werden
- 3. Warum ein Schichtenmodell eingeführt wurde.

1. Räunliche Ausdehnung

- LAN Local Area Network (Raum, Gebäude)
- MAN Metropolitan Area Network (City-Netz)
- WAN Wide Area Network (Weitverkehr, Internet)

2. Technologien in Netzen

- LAN Ethernet, Wireless
- Access xDSL, ISDN, Cable, Ethernet, Wireless
- Metro SDH/SONET, Ethernet, Ringnetz nur DWDM
- WAN SDH/SONET, Maschennetz mit DWDM

Ergänzungen

Was ist Latenz?

Was ist ein Hop?

Was ist SDH/SONET?

Latenz

Die Latenz beschreibt die Zeit, die ein Datenpaket innerhalb eines Netzwerks unterwegs ist.

Die Latenz entwickelt sich aus allen Leitungen, Funkstrecken, Koppelelementen, den Informationen ganz oben im Datenpaket (Header) und der Kodierung.

Zum Thema Netzneutralität, jedem Netzbetreiber steht es frei zu, welche Daten er wie priorisiert.

Somit ist räumliche Entfernung nicht unbedingt ausschlaggebend für eine hohe Latenz, sondern vielmehr die Anzahl an Hops.

Hop

Ein Hop (engl. für "Hopser", "Etappe") ist ein Zwischenschritt eines Pakets auf dem Weg von einem Netzsegment (PC -> Switch -> Router) bzw. Subnetz (HdM -> Universität -> BelWü -> DE-CIX) zum jeweils nächsten. Das jeweilige Gerät (beispielsweise Router) definiert dann den **next hop**, wohin das Paket als nächstes gehen soll.

Die Anzahl der Hops können mit einem Traceroute ermittelt werden.

SDH/SONET

SDH (Synchrone Digitale Hierarchie) - DE

SONET (Synchronous Optical Network) - US

Beides sind Weitverkehrsnetze, die nahezu identisch sind. Vor WhatsApp und Co. hatte man noch telefoniert . Dazu ergänzten beide Systeme in den 90er Jahren das Netz und ermöglichten so Geschwindigkeiten von bis zu 2,5 GBit / Sekunde. Die Strukturen bestehen aus DWDM-Ringstrukturen. DWDM besprechen wir im kommenden Kapitel. In den vermaschten Netzstrukturen sind vordefinierte Ersatzstrecken enthalten.

Ergänzungen von Herr Kiefer

SDH/SONET waren und sind es immer noch, Layer 2 Alternativen. Vorwiegend heute im wo wirkliche Echtzeit benötigt wird, zum Beispiel werden Radarbilder der FLugsicherung über SDH übertragen. Einsatz auch im Bereich der Rettungskräfte (die eigene Netze haben).

Die Marktbedeutung hat nachgelassen, da sie zu teuer sind. Geschwindkeiten bis 40 GBit / Sekunde sind möglich, in Verbindung mit DWDM deutlich mehr.

3. OSI

Das verschieben wir einfach mal auf Frage 7 🛂

4. Vergleichen Sie Leitungsvermittlung und Paketvermittlung unter folgenden Gesichtspunkten *Adressierung/Zeitdauer* für die Übertragung/Wegewahl zwischen Netzknoten.

Dabei kann es sich auch um Multiplexing einer Leitung handeln. Stell dir vor, dir werden 64 kBit / Sekunde zugeordnet, nachdem du dein mobiles Datenvolumen aufgebraucht hast. Übertragen wird jedoch innerhalb dieser Struktur beispielsweise mit LTE.

	Leitung	Paket
Adressierung	Provider schaltet eine direkte, physikalische Leitung	Jedes Paket beinhaltet die Ziel- und Quelladresse
Zeit	konstant	variiert
Wegewahl	konstante Route	Route variiert (unter Umständen)

5. Erläutere die Begriffe verbindungslos und verbindungsorientiert.

Verbindungslos

• kein Verbindungsaufbau, direkte Datenübertragung

Zum Beispiel IP.

Verbindungsorientiert

- 1. Verbindungsaufbau
- 2. Datenübertragung
- 3. Verbindungsabbau

Zum Beispiel telefonieren.

6. Erläutere die Adressierungsarten und benenne Einsatzgebiete

- 1. unicast
- 2. multicast
- 3. anycast
- 4. broadcast

unicast

Ein Sender und ein Empfänger

Beispiel:

• Telefon

multicast

Ein Sender und mehrere Empfänger

Beispiele:

- Zoom
- BigBlueButton

anycast

Ein Sender ein beliebiger Empfänger innerhalb einer Gruppe

- Update von Routingtabellen
- Aktuell genutzt für DNS, soll in IPv6 stärker zum Einsatz kommen

broadcast

Ein Sender und alle empfangen

Beispiel:

• TV

3. Erläutere ...

3. Warum ein Schichtenmodell eingeführt wurde.

7. Wozu benötigt man das OSI-Modell? Beschreibe die Funktion der Schichten. Welches sind die Unterschiede zwischen dem OSI- und dem TCP/IP-Modell?

Warum war es notwendig das OSI Modell zu entwerfen?

- Netze wurden immer größer
- Unterschiedliche Hard- und Software Lösungen waren untereinander nicht kompatibel
- keine einheitliche Lösung
- Modell zur Darstellung der Datenkommunikation
- Grundlage für Weiterentwicklungen und Normen

Dabei stellt jede Schicht der übergeordneten Schicht seine Dienste zur Verfügung und nimmt die Dienste der untergeordneten Schicht in Anspruch.

OSI Layer

Allgemein

Layer	Туре	Dienste
7	Application	Netzwerkdienste wie E-Mail, Datentransfer
6	Presentation	Übersetzer zwischen verschiedenen Datenformaten, Kompression, Verschlüsselung
5	Session	regelt Ablauf einer Session, Sende- und Empfangsrecht, Dialogkontrolle, Prozesssynchronisation
4	Transport	transparente Datenübertragung zwischen Endsystemen
3	Network	Adressierung und Wegewahl zwischen zwei Hosts, logische Netzstrukturierung
2	Data Link	Datentransport über einen einzelnen Übermittlungsabschnitt
1	Physical	physikalischer Transport (Stecker, Strom, Spannung, etc.)

OSI Layer

Protokoll Beispiele und Koppelelement

Layer	Protokoll Beispiel	Koppelelement	
7 - Anwendung (Application)	HTTP, FTP, SSH	Gateway, Content-Switch	
6 - Darstellung (Presentation)	JPEG, MP3, MPEG	Gateway, Content-Switch	
5 - Sitzung	SIP, RTP, RTCP	Gateway, Content-Switch	
4 - Transport (Transport)	TCP, UDP	Gateway, Content-Switch	
3 - Vermittlung (Network)	IP, ICMP	Router	
2 - Sicherung (Data Link)	Ethernet	Switch, Bridge	
1 - Bitübertragung (Physical)	X	Repeater, Hub	

TCP/IP Modell

Das TCP/IP Modell dient zur Beschreibung der Kommunikation über das Internet.

8. Warum benötigt man individuelle Adressierungsverfahren auf den OSI-Ebenen 2, 3 und 4?

Individuelle Adressierungen

- Logische Strukturierung
 - Jede Ebene bietet unterschiedliche Möglichkeiten zur Netzeinteilung
- Sicherheit
- Sockets
 - Mehrere verschiedene Verbindungen zwischen zwei Teilnehmern möglich
- Wenn nur eine Adressierung vorhanden
 - Riesige globale Routingtabellen

9. Ein US-Carrier nennt sich Layer2-Communications. Was kann man aus dem Namen bezüglich der Geschäftsmodelle ableiten?

Layer2 Communications

Headquartered in Houston, Texas, Layer2
Communications, Inc. is an Internet Service
Provider (ISP) and global technology aggregator
specializing in data, internet, voice and hardware
solutions. We collaborate with over 155 suppliers in
more than 83 countries around the world to deliver
private network solutions to help multi-location
companies communicate with ease.

https://www.layer2communications.com/about-us/

Layer2 Communications

- Bietet Dienstleistungen nah an der Hardware
- Liefert Metro-Ethernet-Dienste für Gebäudestandorte
- Arbeitet mit dem Ethernet-Protokoll

10. Welches Kapitel der Vorlesung beschäftigt sich mit welcher Layer.

Kapitel	Layer 1	Layer 2	Layer 3	Layer 4
Kapitel 2	✓			
Kapitel 3	~			
Kapitel 4		✓		
Kapitel 5		~		
Kapitel 6			✓	
Kapitel 7				✓

Weitere Fragen?

Bitte per E-Mail an cr099@hdm-stuttgart.de, mv068@hdm-stuttgart.de oder auf GitHub direkt. Wir beantworten die dann im kommenden Meeting ausführlich.

Bis nächste Woche 👄

git pull nicht vergessen