VAEPP: Variational Autoencoder with a Pull-back Prior

Abstract

Many approaches to training generative models by distinct training objectives have been proposed in the past. Variational Autoencoder (VAE) is an outstanding model of them based on log-likelihood. In this paper, we propose a novel learnable prior, Pull-back Prior, for VAEs by adjusting the density of the prior by a discriminator that can assess the quality of data. It involves the discriminator from theory of GANs to enrich the prior in VAEs. Based on it, we propose a more general framework, VAE with Pull-back Prior (VAEPP), which uses the existing techniques of VAEs and WGANs to improve the log-likelihood, quality of sampling and stability of training. VAEPP reaches outstanding NLL and comparable FID on MNIST, Static-MNIST, Fashion-MNIST, Omniglot, CIFAR-10 and CelebA.

1 Introduction

How to learn deep generative models that are able to capture complex data pattern in high dimension space, *e.g.*, image datasets, is one of the major challenges in machine learning. Many approaches to training generative models by distinct training objectives have been proposed in the past, *e.g.*, Generative Adversarial Networks (GAN) [Goodfellow *et al.*, 2014], Flow-based models [Dinh *et al.*, 2016; Kingma and Dhariwal, 2018], PixelCNN [Van den Oord *et al.*, 2016], and Variational Autoencoders (VAE) [Kingma and Welling, 2014; Rezende *et al.*, 2014].

VAE uses the variational inference and re-parameterization trick to optimize the evidence lower bound of log-likelihood (ELBO). In the past, many researches [Kingma et al., 2016; Tomczak and Welling, 2016] focused on enriching the variational posterior, but recently [Tomczak and Welling, 2018] showed that the standard Gaussian prior could lead to underfitting in latent space, harmful to the performance of VAEs. To enrich the prior, several learnable priors have been proposed [Tomczak and Welling, 2018; Bauer and Mnih, 2019; Takahashi et al., 2019]. Most of them focus on approximating aggregated posterior which is the integral of the variational posterior and is shown as the optimal prior to minimize ELBO. However, existing methods based on the aggregated

posterior reach limited performance, and the practical meaning of the aggregated posterior is blurry. Recently, we notice that the discriminator can assess the quality of data and we argue that it is advisable to adjust the learnable prior by a discriminator which has clearer practical meaning than approximating the aggregated posterior.

We propose Pull-back Prior, based on the discriminator and a learnable prior. Firstly, a discriminator D(x) is trained for assessing the quality of images. Then, we define a pull-back discriminator on latent space, by D(G(z)), where G(z) is the generator (notion pull-back is from mathematics). Finally, we adjust the density of the prior according to the pull-back discriminator.

We propose a training algorithm for VAE with Pull-back Prior (VAEPP), based on SGVB [Kingma and Welling, 2014] with gradient penalty terms, which mix the discriminator and the gradient penalty term into VAE. We extend it to a more general VAE framework. We also use Langevin Dynamics to improve the quality of sampling. Thanks to the gradient penalty term of WGAN-GP [Gulrajani *et al.*, 2017] and WGAN-div [Wu *et al.*, 2018], and the practical implementation of Langevin dynamics in MEG [Kumar *et al.*, 2019], we enjoy stable efficient training and sampling process.

The main contributions of this paper are in the following:

- We propose a novel and powerful learnable prior, Pullback Prior, which is adjusted by a discriminator that can assess the quality of data.
- We propose VAEPP framework to use existing techniques of VAE, *e.g.*, flow posterior, and WGAN, *e.g.*, gradient penalty strategy, and Langevin Dynamics to improve the log-likelihood, quality of sampling and stability of training.
- In MNIST and CIFAR-10, the log-likelihood of VAEPP outperforms models without autoregressive components and is comparable to autoregressive models. In MNIST, Fashion-MNIST, CIFAR-10 and CelebA, the FID of VAEPP is comparable to GANs and SOTA of VAE.

2 Background

2.1 VAEs and learnable priors

Many generative models aim to minimize the KL-divergence between the empirical distribution $p^*(x)$ and the model distribution $p_{\theta}(x)$, which leads to maximization likelihood estimation. The vanilla VAE [Kingma and Welling, 2014] models the joint distribution $p_{\theta}(x,z)$ and the marginal distribution is $p_{\theta}(x) = \int p_{\theta}(x,z) dz$. VAE apply variational inference to obtain the evidence lower bound objective (ELBO):

$$\ln p_{\theta}(x) \ge \mathbb{E}_{q_{\phi}(z|x)} [\ln p_{\theta}(x|z) + \ln p_{\theta}(z) - \ln q_{\phi}(z|x)] \triangleq \mathcal{L}(x; \theta, \phi) \tag{1}$$

where $q_{\phi}(z|x)$ is the variational posterior (encoder) and $p_{\theta}(x|z)$ is the true posterior (decoder). The training objective of VAE is $\mathbb{E}_{p^*(x)}\left[\mathcal{L}(x;\theta,\phi)\right]$ and it is optimized by SGVB with the re-parameterization trick. In vanilla VAE, the prior $p_{\theta}(z)$ is chosen as the standard Gaussian distribution.

Recently, [Tomczak and Welling, 2018] showed that the simplistic prior could lead to underfitting and many learnable priors are proposed subsequently to enrich the prior. Most of them focus on the aggregated posterior $q_{\phi}(z)$, which is shown as the optimal prior for ELBO by following decomposition [Tomczak and Welling, 2018] where $p_{\lambda}(z)$ denotes the learnable prior:

$$\mathcal{L}(\theta, \phi, \lambda) = \mathbb{E}_{p^*(x)} \, \mathbb{E}_{q_{\phi}(z|x)} [\ln p_{\theta}(x|z)] + \\ \mathbb{E}_{p^*(x)} [\mathbb{H}[q_{\phi}(z|x)]] + \mathbb{E}_{q_{\phi}(z)} \ln p_{\lambda}(z) = \mathcal{I} + \mathcal{J} + \mathcal{K} \quad (2)$$

where $\mathcal{I}, \mathcal{J}, \mathcal{K}$ denotes 3 terms respectively. Notice that $p_{\lambda}(z)$ only appears in the last term \mathcal{K} and the optimal solution of $p_{\lambda}(z)$ is $q_{\phi}(z)$. However, $q_{\phi}(z)$ is intractable. [Tomczak and Welling, 2018; Takahashi *et al.*, 2019] obtains an approximation of it but reaches limited performance.

2.2 GANs and Wasserstein distance

In vanilla GAN, a generator is trained to generate samples for deceiving the discriminator, and a discriminator to distinguish generated samples and real samples. However, vanilla GAN is unstable during the training process. WGAN introduces Wasserstein distance to tackle this problem. 1st Wasserstein distance $W^1(\mu,\nu)$ is used for calculating the distance between two measures μ,ν . The dual form of Wasserstein distance is the following:

$$W^{1}(\mu,\nu) = \sup_{Lip(D) \le 1} \{ \mathbb{E}_{\mu(x)} D(x) - \mathbb{E}_{\nu(x)} D(x) \}$$
 (3)

where $Lip(D) \leq 1$ means D is 1-Lipschitz. WGAN is optimized by minimizing $W^1(p^*,p_\theta)$ which can be seen as a min-max optimization, whose parameters are D and θ .

WGAN makes progress toward stable training but sometimes fails to converge due to the use of weight clipping to enforce the Lipschitz constrain. WGAN-GP [Gulrajani et al., 2017] and WGAN-div [Wu et al., 2018] improve WGAN by gradient penalty technique to achieve a more stable training. These techniques make WGAN framework become more robust and stable.

3 Pull-back Prior

3.1 Intuition of Pull-back Prior

The formula of Pull-back Prior is given by:

$$p_{\lambda}(z) = \frac{1}{Z} p_{\mathcal{N}}(z) \cdot e^{-\beta D(G(z))} \tag{4}$$

333333333344666

Figure 1: The discriminators on above images (generated by linear interpolation of two sample from $q_{\phi}(z)$), are better at both sides and worse at the middle, which validates the intuition that a discriminator can assess the quality of images. Moreover, the density of z which generates better images will increase, and the density of z which generates worse images will decrease.

where p_N is a simple prior, D is a discriminator, G is the generator $G(z) = \mathbb{E}_{p_{\theta}(x|z)} x$, Z is the partition function $Z = \int_{\mathcal{Z}} p_N(z) \exp\{-\beta * D(G(z))\} dz$ and β is a learnable scalar. An intuitive explanation of Pull-back Prior is that we improve the density of z which generates better data and decrease the density of z which generates worse data. D is a discriminator to assess the quality of x. When D(x) is less x

crease the density of z which generates worse data. D is a discriminator to assess the quality of x. When D(x) is less, x is more similar to real data and vice versa, as shown in fig. 1. The pull-back discriminator is defined by D(G(z)), representing the quality of the data generated by z. To improve the density at the better z and decrease the density at the worse z, we modify $p_{\mathcal{N}}(z)$ by $\beta D(G(z))$ and then normalize it by Z.

We obtain the basic formula of Pull-back Prior, and $p_{\mathcal{N}}$ is a special case where $\beta=0$. The theoretical derivation for Pullback Prior is provided in appendix A. However, it remains questions about how to obtain D and G, determine β , and calculate Z.

3.2 How to obtain D and G

By definition in eq. (4), G is defined, and in practical networks, it is generated by neural network and $p_{\theta}(x|z)$ set it as mean $(e.g., p_{\theta}(x|z))$ is Gaussian or Bernouli).

D plays an important role in Pull-back Prior. We propose two way to obtain D and compare their difference detaily in section 4.2 and section 4.1.

3.3 How to determine β

Theoretically, β in eq. (4) represents how far p_{λ} is from $p_{\mathcal{N}}$, as proved in appendix A. It is important to realize that the Pull-back Prior is serving for better ELBO. Therefore, it is reasonable to search β by the optimization for ELBO (λ contains β and ω , which is the parameters of D):

$$\beta = \arg\min_{\beta} \mathcal{L}(\theta, \phi, \lambda) = \arg\min_{\beta} \mathcal{L}(\theta, \phi, \beta, \omega) \quad (5)$$

The optimization process of β depends on $\partial \mathcal{L}/\partial \beta$:

$$\frac{\partial \ln Z}{\partial \beta} = \frac{1}{Z} \int p_{\mathcal{N}}(z) e^{-\beta D(G(z))} \cdot (-D(G(z))) dz$$

$$= \mathbb{E}_{p_{\lambda}(z)} - D(G(z))$$

$$\frac{\partial \mathcal{L}}{\partial \beta} = \mathbb{E}_{q_{\phi}(z)} [-D(G(z))] - \frac{\partial \ln Z}{\partial \beta}$$

$$= -\mathbb{E}_{q_{\phi}(z)} [D(G(z))] + \mathbb{E}_{p_{\lambda}(z)} [D(G(z))] \quad (6)$$

The 1st term in eq. (6) is the mean of the discriminator on the reconstructed data, which is nearly same as real data when the reconstruction is well-trained. The 2nd term in eq. (6) is the mean of the discriminator on data generated from p_{λ} . Hence, $\partial \mathcal{L}/\partial \beta = 0$ means that the discriminator can't distinguish the reconstructed data and generated data, which coincides with the philosophy of GANs.

3.4 The lower bound of Z

The extract calculation of partition function Z is difficult. But in VAE domain, it is acceptable to obtain a lower-bound of log-likelihood. Therefore, we propose a feasible evaluation for upper-bound of Z, called \hat{Z} , which will not over-estimate log-likelihood. It is given by:

$$Z = \mathbb{E}_{q_{\phi}(z)} \frac{f_{\lambda}(z)}{q_{\phi}(z)} \le \mathbb{E}_{q_{\phi}(z)} \frac{f_{\lambda}(z)}{\hat{q}_{\phi}(z)} = \hat{Z}$$
 (8)

where $f_{\lambda}(z) = p_{\mathcal{N}}(z) \exp\{-\beta D(G(z))\}$ and $\hat{q}_{\phi}(z)$ is a lower-bound of $q_{\phi}(z)$. It is easy to show that

$$p_{\theta}(x) = \int \frac{1}{Z} p_{\theta}(x|z) f_{\lambda}(z) dz \ge \int \frac{1}{\hat{Z}} p_{\theta}(x|z) f_{\lambda}(z) dz$$

$$\mathcal{K} = \mathbb{E}_{q_{\phi}(z)} \frac{1}{Z} \ln f_{\lambda}(z) \ge \mathbb{E}_{q_{\phi}(z)} \frac{1}{\hat{Z}} \ln f_{\lambda}(z) = \hat{\mathcal{K}}$$

$$\mathcal{L} = \mathcal{I} + \mathcal{J} + \mathcal{K} \ge \mathcal{I} + \mathcal{J} + \hat{\mathcal{K}} = \hat{\mathcal{L}}$$

Above inequalities show that, if we replace Z by \hat{Z} we will obtain lower-bound of log-likelihood and ELBO. Such that \hat{Z} could be used in training and evaluation, and it will not over-estimate log-likelihood and ELBO.

The key of eq. (8) is the choice of $\hat{q}_{\phi}(z)$. As we mentioned before, $q_{\phi}(z)$ is intractable to compute the exact density, but $q_{\phi}(z|x)$ is feasible. We introduce a lower-bound of $q_{\phi}(z)$:

$$q_{\phi}(z) = \mathbb{E}_{p^*(x)} q_{\phi}(z|x) \approx \frac{1}{N} \sum_{i=1}^{N} q_{\phi}(z|x^{(i)}) \ge \frac{1}{N} q_{\phi}(z|x^{(j)})$$

where $x^{(j)}$ is a real data, N is the size of training set and RHS is the $\hat{q}_{\phi}(z)$. To reduce the gap between $\hat{q}_{\phi}(z)$ and $q_{\phi}(z)$, $q_{\phi}(z|x^{(j)})$ should be one of the largest in the summation. Therefore, we firstly sample $x^{(j)}$ form dataset, and then sample z from $q_{\phi}(z|x^{(j)})$. By this way, $q_{\phi}(z|x^{(j)})$ is large enough.

In MNIST and other Bernouli image datasets, the number of Bernouli images sampled from real images might be numerous and $\hat{q}_{\phi}(z)$ might be underestimiated. To solve this it, we propose ELBO based on $q_{\phi}(z|e)$ instead of $q_{\phi}(z|x)$:

$$\mathbb{E}_{p^{*}(x)} \ln p_{\theta}(x) \geq \mathbb{E}_{p^{*}(e)} \, \mathbb{E}_{p^{*}(x|e)} \ln \mathbb{E}_{q_{\phi}(z|e)} \, \frac{p_{\theta}(x|z)p_{\theta}(z)}{q_{\phi}(z|e)}$$

$$= \mathbb{E}_{p^{*}(e)} \, \mathbb{E}_{p^{*}(x|e)} \, \mathbb{E}_{q_{\phi}(z|e)} \ln \frac{p_{\theta}(x|z)p_{\theta}(z)}{q_{\phi}(z|e)}$$

$$= \mathbb{E}_{p^{*}(x)} \ln p^{*}(x) - \mathbb{E}_{p^{*}(e)} \, \mathbb{E}_{p^{*}(x|e)} \, KL(q_{\phi}(z|e), p_{\theta}(z|x))$$

$$(7)$$

where $p^*(x)$ is sampled from $p^*(e)$, and $p^*(x|e)$ means the sampling process from e. eq. (7) is similar to the original ELBO eq. (1), and the above conclusion about learnable prior holds for eq. (7) by repeating above inference. Moreover, the situation without Bernouli images is a special case where $p^*(x|e) = \delta(x-e)$. Since $q_{\phi}(z|e)$ is known, $\hat{q}_{\phi}(z)$ is feasible by $\frac{1}{N}q_{\phi}(z|e^{(j)})$.

By the theory of importance sampling, p_{λ} is the optimal choice for the proposal distribution in estimation of Z but it is expensive to sample from p_{λ} . [Bauer and Mnih,

Figure 2: Training process of Naive VAEPP and VAEPP on CIFAR-10. Naive VAEPP is more unstable and nearly crashes at 80 epoch while VAEPP has a little acceptable gap. From global view, the training loss of VAEPP is more smooth than Naive VAEPP and is better than Naive VAEPP over almost all training process, which validates the motivation in section 4.2. There are little gaps at per 200 epoch because learning rate is reduced to half at every 200 epoch.

2019] uses $p_{\mathcal{N}}$ as proposal distribution to estimate Z but when $KL(p_{\mathcal{N}},p_{\lambda})$ is high, the variance of this estimation will be large. In experiment, $KL(q_{\phi},p_{\lambda})$ is much less than $KL(q_{\phi},p_{\mathcal{N}})$ in trained model. Therefore, we choose $q_{\phi}(z)$ as proposal distribution and use a feasible $\hat{q}_{\phi}(z)$ to replace $q_{\phi}(z)$ in eq. (8). The variance of \hat{Z} is acceptable in experiment.

In training, β is trained from small to large and $KL(p_{\mathcal{N}},p_{\lambda})$ is so. Therefore, $p_{\mathcal{N}}$ is also used as proposal distribution in training.

4 Training and Sampling

In this section, we will propose two training methods and a sampling method for VAEPP. The main difference between these two training method is the training method of discriminator.

4.1 Naive training for VAEPP

By appendix A, an approximation discriminator is trained by:

$$W^{1}(p^{\dagger}, p^{*}) = \sup_{Lip(D) \le 1} \mathbb{E}_{p^{\dagger}} D(x) - \mathbb{E}_{p^{*}} D(x)$$

where $p^\dagger(x) = \mathbb{E}_{p\mathcal{N}(z)} p_\theta(x|z)$. The real discriminator should be obtained by $W^1(p_\theta,p^*)$, but it is expensive to sample from p_θ in the training and $W^1(p^\dagger,p^*)$ is used to obtain an approximation discriminator. Therefore, the approximation discriminator may be invalid when p_λ is too far from $p_\mathcal{N}$, i.e., β is too large. Fortunately, the training for β can avoid this: when β becomes too large and D becomes invalid, ELBO will be worse and then β will decrease. The other parameters is trained by SGVB:

$$\max_{\theta,\phi,\beta} \mathcal{L}(\theta,\phi,\beta,\omega)$$

Above two training process run alternatively, which is called the naive training algorithm for VAEPP, in algorithm 1,.

4.2 Combing training for VAEPP

However, the training process of algorithm 1 is unstable and inefficient, as shown in fig. 2. We suspect that the two independent optimization instead of one whole optimization, may lower the log-likelihood and stability. Therefore, we try to combine the training for θ , ϕ , β , ω into a whole optimization.

Algorithm 1 The naive training algorithm for VAEPP

Require: The gradient penalty algorithm R, the batch size b, the number of critic iterations per generator iteration n_c , the parameters for Adam Optimizers, τ .

```
1: while \theta, \phi, \beta, \omega have not converged do
  2:
              for k=1,\ldots n_c do
                  for i=1,\ldots,b do
  3:
                        Sample e, x \sim p^*, z \sim q_{\phi}(z|e), \epsilon \sim p_{\mathcal{N}}
  4:
                        Z^{(i)} \leftarrow \frac{1}{2} (\exp\{-\beta D(G(\epsilon))\} + \frac{f_{\lambda}(z)}{\hat{\sigma}_{\sigma}(z)})
  5:
                        \mathcal{L}^{(i)} \leftarrow \ln p_{\theta}(x|z) + \ln f_{\lambda}(z) - \ln q_{\phi}(z|e)
  6:
                  \begin{array}{l} \textbf{end for} \\ \mathcal{L} \leftarrow \frac{1}{b} \sum_{i}^{b} \mathcal{L}^{(i)} - \ln(\frac{1}{b} \sum_{i}^{b} Z^{(i)}) \\ \theta, \phi, \beta \leftarrow \text{Adam } (\nabla_{\theta, \phi, \beta} \mathcal{L}, \{\theta, \phi, \beta\}, \tau) \end{array}
  7:
  8:
  9:
              end for
10:
              for i=1,\ldots,b do
11:
                   Sample e, x \sim p^*, latent variable z \sim p_N
12:
                   \hat{e} = G(z), get gradient penalty \zeta \leftarrow R(e, \hat{e})
13:
                   L^{(i)} \leftarrow D(\hat{x}) - D(x) + \zeta
14:
15:
             \omega \leftarrow \text{Adam} \left( \nabla_{\omega} \frac{1}{h} \sum_{i}^{b} L^{(i)}, \omega, \tau \right)
16:
17: end while
```

Our solution is to use SGVB with gradient penalty regularizer to train VAEPP:

$$\max_{\theta,\phi,\beta} \max_{Lip(D) \le 1} \mathcal{L}(\theta,\phi,\beta,\omega)$$

In such optimization, the behavior of θ, ϕ, β is same as algorithm 1 since the optimization for them is same. For ω , $\max_{Lip(D)\leq 1}\mathcal{L}(\theta,\phi,\beta,\omega)$ indeed finds a suboptimal discriminator in $W^1(p^\dagger,p^*)$ (sign \simeq means that optimizations at left and right are equivalent):

$$\max_{Lip(D) \le 1} \mathcal{L} \simeq \max_{Lip(D) \le 1} \{ -\mathbb{E}_{q_{\phi}(z)} \,\beta * D(G(z)) - \ln Z \}$$

$$\le \beta \max_{Lip(D) \le 1} \{ \mathbb{E}_{p_{\mathcal{N}}(z)} \, D(G(z)) - E_{q_{\phi}(z)} D(G(z)) \}$$

$$= \beta W^{1}(p^{\dagger}, p_{r}) \approx \beta W^{1}(p^{\dagger}, p^{*})$$
(9)

where p_r denotes $p_r(x) = \mathbb{E}_{q_{\phi}(z)} p_{\theta}(x|z)$, consisting of reconstructed data. The last approximation sign is from the fact that $p_r \to p^*$ after a few epoch in the training of VAE. eq. (9) also uses the assumption $D(G(z)) = \mathbb{E}_{p_{\theta}(x|z)} D(x)$ introduced in appendix A to simplify equation. The inequality of $\ln Z$ is in the following:

$$\ln Z = \ln \mathbb{E}_{p_{\mathcal{N}}(z)} \, e^{-\beta * D(G(z))} \geq \mathbb{E}_{p_{\mathcal{N}}(z)}[-\beta * D(G(z))]$$

eq. (9) indicates that it is reasonable to obtain a suboptimal discriminator D by optimizing $\mathcal L$ with the gradient penalty term, and the gradient penalty term should be multiplied by β . In this way, the optimizations for θ, ϕ, β and ω are combined into one, which is provided in algorithm 2. Thanks to the gradient penalty regularizer term provided by WGAN-GP and WGAN-div, we enjoy stable and efficient training. The model trained by algorithm 1 is called Naive VAEPP and the model trained by algorithm 2 is called VAEPP.

Algorithm 2 The combing training algorithm for VAEPP

Require: The gradient penalty algorithm R, the batch size b, the parameters for Adam Optimizers, τ .

```
1: while \theta, \phi, \beta, \omega have not converged do
2: for i=1,\ldots,b do
3: Sample e,x\sim p^*,z\sim q_\phi(z|e),\epsilon\sim p_\mathcal{N}
4: \hat{e}=G(\epsilon), get gradient penalty \zeta\leftarrow R(e,\hat{e})
5: Z^{(i)}\leftarrow\frac{1}{2}(\exp\{-\beta D(G(\epsilon))\}+\frac{f_\lambda(z)}{\bar{q}_\phi(z)})
6: \mathcal{L}^{(i)}\leftarrow \ln p_\theta(x|z)+\ln f_\lambda(z)-\ln q_\phi(z|e)+\beta\zeta
7: end for
8: \mathcal{L}\leftarrow\frac{1}{b}\sum_i^b\mathcal{L}^{(i)}-\ln(\frac{1}{b}\sum_i^bZ^{(i)})
9: \theta,\phi,\beta,\omega\leftarrow \operatorname{Adam}(\nabla_{\theta,\phi,\beta}\mathcal{L},\{\theta,\phi,\beta,\omega\},\tau)
10: end while
```

4.3 Sampling from VAEPP

We apply Langevin Dynamics to sample z from $p_{\lambda}(z)$. It could generate natural and sharp images and only requires that $\nabla_z \log p_{\lambda}(z)$ is computable and the initial z_0 has an enough high density in $p_{\lambda}(z)$ [Song and Ermon, 2019]. Moreover, MEG [Kumar *et al.*, 2019] have implemented a Metropolis-Adjusted Langevin Algorithm (MALA) for sampling where the formula of density also contains a discriminator term. But how to obtain the initial z_0 whose density is high enough is still a problem.

Following the philosophy of VAEPP, *i.e.*, using the technique of GANs to assist VAEs, it is natural to use a GAN to model the distribution $q_{\phi}(z)$, and use samples of the GAN as the initial z_0 for MALA.

The sampling of VAEPP consists of 3 parts:

- 1. generate initial z_0 by a GAN modeling $q_{\phi}(z)$
- 2. generate $z \sim p_{\lambda}(z)$ from initial z_0 by MALA
- 3. generate image from z with a decoder

This sampling process is similar to 2-Stage VAE [Dai and Wipf, 2019]. The main difference between them is that VAEPP applies Langevin Dynamics to sample from the explicit prior but 2-Stage VAE doesn't, since the prior of 2-Stage VAE is implicit. In experiments, sampling from the explicit learnable prior improves the quality of sampling and ensures the theoretical correctness of the prior.

It is hard to sample z from $p_{\lambda}(z)$ since it is complicated. Accept/Reject Sampling (ARS) [Bauer and Mnih, 2019] is unuseful for p_{λ} because ARS requires that $p_{\lambda}(z)/p_{\mathcal{N}}(z)$ is bounded by a constant M, such that a sample could be sampled in M times. It means β is nearly 0, but not in fact.

5 Experiments

VAEPP is evaluated in vast common datasets including MNIST, Static-MNIST[Larochelle and Murray, 2011], Fashion-MNIST [Xiao et al., 2017], Omniglot [Lake et al., 2015], and CIFAR-10 [Krizhevsky et al., 2009] using log-likelihood. The quality of sampling of VAEPP is evaluated in MNIST, Fashion-MNIST [Xiao et al., 2017], CIFAR-10 [Krizhevsky et al., 2009] and CelebA [Liu et al., 2015], using FID [Heusel et al., 2017].

Model	MNIST	CIFAR
With autoregressive		
PixelCNN	81.30	3.14
DRAW	80.97	3.58
IAFVAE	79.88	3.11
PixelVAE++	78.00	2.90
PixelRNN	79.20	3.00
VLAE	79.03	2.95
PixelSNAIL		2.85
PixelHVAE with VampPrior	78.45	
Without autoregressive		
Implicit Optimal Priors	83.21	
Discrete VAE	81.01	
LARS	80.30	
VampPrior	79.75	
BIVA	78.59	3.08
Naive VAEPP	76.49	3.15
VAEPP	76.37	2.91
VAEPP+Flow	76.23	2.84

Table 1: Test NLL on MNIST and Bits/dim on CIFAR-10. Bits/dim means $-\log p_{\theta}(x|z)/(3072*\ln(2))$. The data is from [Maaløe et al., 2019], [Chen et al., 2018], [Tomczak and Welling, 2018], [Bauer and Mnih, 2019] and [Takahashi et al., 2019]. VAEPP+Flow means VAEPP with a normalization flow on encoder, to enrich encoder. Additional, we compare VAE based on $q_{\phi}(z|x)$ and $q_{\phi}(z|e)$ on MNIST, whose NLL are 81.10 and 83.30 respectively. Moreover, evaluation using importance sampling based on $q_{\phi}(z|e)$ has enough small variance (0.01) with 10^3 samples from $q_{\phi}(z|e)$ and 10 samples for $p^*(x|e)$. It validates that using $q_{\phi}(z|e)$ is stable for evaluation and doesn't improve the performance. VAEPP reaches SOTA without autoregressive component, and is comparable to the models with autoregressive component.

5.1 Log-likelihood Evaluatoin

We compare our algorithms with other models based on log-likelihood, on MNIST and CIFAR-10 as shown in table 1, and on Static-MNIST, Fashion-MNIST, and Omniglot, as shown in table 2. Because the improvement of auto-regressive components is significant, we separate models by whether they use an auto-regressive component. VAEPP outperforms most of the models without autoregressive component and is comparable to the models with autoregressive component. The reason of why VAEPP doesn't use an auto-regressive component is that VAEPP is time-consuming in training, evaluation and sampling due to the huge structure (need additional discriminator) and Langevin Dynamics. It is not easy to apply an auto-regressive component is also time-consuming. Therefore, how to ap-

Model	Static MNIST	Fashion	Omniglot
Naive VAEPP	78.06	214.63	90.72
VAEPP VAEPP+Flow	77.73 77.66	213.24 213.19	89.60 89.24

Table 2: Test NLL on Static MNIST, Fashion-MNIST and Omniglot.

GP Strategy	Naive VAEPP	VAEPP
WGAN-GP	3.15	2.95
WGAN-div-1	3.20	2.91
WGAN-div-2	4.47	2.99

Table 3: Comparation between VAEPP and Improved VAEPP when gradient penalty strategy varies on CIFAR-10 with dim $\mathcal{Z}=1024$. For any gradient penalty strategy in the table, VAEPP outperforms Naive VAEPP, which validates the our intuition of design of algorithm 2. WGAN-div-1 is chosen as our default gradient penalty strategy since it reaches best performance in VAEPP.

ply an autoregressive component on VAEPP is a valuable and challenging practical work and we leave it for future work.

We evaluate and compare the performance of VAEPP trained by algorithm 1 and the Naive VAEPP trained by algorithm 2 on CIFAR10, as the gradient penalty algorithm is chosen from 3 strategies: WGAN-GP, WGAN-div-1 (sampling the linear interpolation of real data and generated data) and WGAN-div-2 (sampling real data and generated data), as shown in table 3.

To validate that it is better to use $q_\phi(z)$ to evaluate Z than $p_\mathcal{N}(z)$ in section 3.4, we calculate the $KL(q_\phi(z)||p_\lambda(z))$ and $KL(p_\mathcal{N}(z)||p_\lambda(z))$ on CIFAR-10 and MNIST. The former is less than $\mathcal{L}-\mathcal{I}$ [Hoffman and Johnson, 2016](180.3 on CIFAR-10 and 12.497 on MNIST), and the latter can be evaluated directly (1011.30 on CIFAR-10 and 57.45 on MNIST). Consequently, $q_\phi(z)$ is much closer to $p_\lambda(z)$ than $p_\mathcal{N}(z)$.

To ensure the variance of estimation \hat{Z} is small enough, the $q_{\phi}(z|e)$ is chosen as truncated normal distribution (drop the sample whose magnitude is more than 2 standard deviation form the mean) instead of normal distribution. In eq. (8), $\hat{q}_{\phi}(z)$ estimated by $\frac{1}{N}q_{\phi}(z|e^{(j)})$ is the denominator and if it becomes too small sometimes, the estimation will become unstable. If $q_{\phi}(z|e^{(j)})$ is chosen as normal distribution, the probability of z in tail will be larger when the number of samples become larger, which will lead to huge variance to the estimation \hat{Z} . With 10^9 samples, the variance of these two method are 0.809260 (normal) and 0.000967 (truncated normal) in MNIST. Therefore, truncated normal is chosen as default setting.

5.2 Quality of Sampling

As common sense, the quality of sampling of VAEs is worse than GANs, and it is indeed a reason that we involve the techniques of GAN to improve VAE model: We use the discriminator to adjust learnable prior and a GAN to sample the initial z_0 for Langevin Dynamics. These techniques will help VAEPP improve the quality of samples. The samples of VAEPP gets good FID, comparable to GANs and 2-Stage VAE (which is the SOTA of VAE in FID), as shown in table 4. Some generated images are shown in fig. 3.

It is hard to reach best FID, IS [Salimans *et al.*, 2016] and log-likelihood simultaneously with the same setting. We observe the fact that when dim \mathcal{Z} (the dimension of latent space) increases, the trends of FID and IS are greatly different to log-likelihood's, as shown in fig. 4. As diagnosis in [Dai and Wipf, 2019], the variance of $p_{\theta}(x|z)$ is chosen as a learnable

Figure 3: Examples of generated images.

Model	MNIST	Fashion	CIFAR	CelebA
Best GAN	~ 10	~ 32	~ 70	~ 49
VAE+Flow	54.8	62.1	81.2	65.7
WAE-MMD	115.0	101.7	80.9	62.9
2-StageVAE	12.6	29.3	72.9	44.4
GAN-VAEPP	12.7	26.7	74.1	53.4
VAEPP	12.0	26.7	71.0	53.4

Table 4: FID comparison of GAN-based models and other VAEs. Best GAN indicates the best FID on each dataset across all GAN models when trained using settings suggested by original authors. VAEPP uses Bernouli as posterior on MNIST and Discretized Logistic [Salimans $et\ al.$, 2017] on others. GAN-VAEPP indicates that image is directly sampled from z_0 , generated by GAN without Langevin Dynamics. The data of Best GAN and other VAEs is from [Dai and Wipf, 2019]. The FID of VAEPP is usually better than GAN-VAEPP , which validates that the explicit prior and Langevin Dynamics are useful for improving the quality of sampling.

scalar γ , and the dim $\mathcal Z$ is chosen as a number, a little larger than the dimension of real data manifold, dim $\mathcal Z=128$, as our experimental result.

For better understanding, the value of discriminator in this section is normalized into $\mathcal{N}(0,1)$ in training set.

To validate the eq. (6), we calculate the $\mathbb{E}_{p_{\lambda}(z)}[D(G(z))]$ (discriminator on generated samples) and $\mathbb{E}_{q_{\phi}(z)}[D(G(z))]$ (discriminator on reconstructed samples). They are 0.092 and 0.015 respectively on CIFAR-10, which means discriminator on generated samples and reconstructed samples are nearly same as the discriminator on real data.

To validate the assumption introduced in appendix A indeed holds in practical experiment, $|\mathbb{E}_{p_{\theta}(x|z)} D(x) - D(G(z))|$ is an acceptable value (0.019) on CIFAR-10.

6 Conclusion

We propose a novel learnable prior, Pull-back Prior, for VAE, by adjusting the prior with a discriminator assessing the quality of data, with a solid derivation and an intuitive explanation. We propose an efficient and stable training method for VAE with Pull-back Prior, by mixing the optimizations of WGAN and VAE into one. VAEPP is evaluated on common datasets, and shows impressive performance in log-likelihood and quality of sampling. We believe that this paper could lead VAE models into a new stage, with a clear formula, a general framework and powerful performance.

A Derivation of Pull-back Prior

Given θ, ϕ , search the optimal prior that minimizes the

Figure 4: Comparison of VAEPP with a learnable scalar γ (variance of $p_{\theta}(x|z)$), as the dimension of latent space varies on CIFAR-10, with metrics BPD, FID and IS. FID and BPD is better when it is smaller and IS is better when it is larger. When $\dim \mathcal{Z}$ is greater than 128, the quality of sampling becomes worse and BPD becomes better as $\dim \mathcal{Z}$ increases. It validates the proposition that $\dim \mathcal{Z}$ should be chosen as a minimal number of active latent dimensions in [Dai and Wipf, 2019]. The reconstruction term is optimized more as $\dim \mathcal{Z}$ increases, because larger latent space could keep more information. Meanwhile, the $KL(q_{\phi}(z)||p_{\lambda}(z))$ (Bounded by the difference between ELBO and reconstruction term) increases not much since the learnable prior could relieve the increasing of it. It also shows an interesting phenomenon that the trends of FID and IS, are not always same as BPD, maybe greatly different.

Wasserstein distance between p_{θ} and p^* :

$$\min_{\lambda} \sup_{Lip(D) \le 1} \{ \mathbb{E}_{p_{\lambda}(z)} \, \mathbb{E}_{p_{\theta}(x|z)} \, D(x) - \mathbb{E}_{p^{*}(x)} \, D(x) \} \quad (10)$$

We apply an assumption $\mathbb{E}_{p_{\theta}(x|z)} D(x) = D(G(z))$ (it indeed extends the definition of D by $D(e) = \mathbb{E}_{p*(x|e)} D(x)$ in Bernouli image dataset) and an approximation D to simplify it. The D in eq. (10) could be approximated by D obtained in $W^1(p^{\dagger},p^*)$ (independent on λ and feasible), if p_{λ} is near $p_{\mathcal{N}}$, as section 4.1 and section 4.2 does. The simplified optimization is:

$$\min_{\lambda} \{ \mathbb{E}_{p_{\lambda}(z)} D(G(z)) - \mathbb{E}_{p^{*}(x)} D(x) \}$$
s.t. $KL(p_{\lambda}, p_{\mathcal{N}}) = \alpha, \qquad \int_{\mathcal{Z}} p_{\lambda}(z) \mathrm{d}z = 1$

It could be solved by Lagrange multiplier method introduced by calculus of variation [Gelfand *et al.*, 2000]. The Lagrange function with Lagrange multiplier η , γ is:

$$F(p_{\lambda}, \eta, \gamma) = \mathbb{E}_{p_{\lambda}(z)} D(G(z)) - \mathbb{E}_{p^{*}(x)} D(x) + \eta \left(\int_{\mathcal{Z}} p_{\lambda}(z) dz - 1 \right) + \gamma (KL(p_{\lambda}, p_{\mathcal{N}}) - \alpha)$$
(12)

We solve eq. (12) by Euler-Lagrange equation:

$$\ln p_{\lambda}(z) = \frac{1}{\gamma} D(G(z)) + \ln p_{\mathcal{N}}(z) + (\frac{\eta}{\gamma} - 1) \tag{13}$$

where γ is determined by α and η is determined from condition $\int_{\mathcal{Z}} p_{\lambda}(z) \mathrm{d}z = 1$. Consequently, β is determined by α , representing how far p_{λ} is from $p_{\mathcal{N}}$. In eq. (11), α is static and should be searched as an appropriate value, *i.e.*, β should be searched, as section 3.3 does. It is an interesting trade-off: if β is too large, the approximation D may be invalid; if β too small, p_{λ} has no difference to $p_{\mathcal{N}}$.

References

- [Bauer and Mnih, 2019] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 66–75, 2019.
- [Chen *et al.*, 2018] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive generative model. In *International Conference on Machine Learning*, pages 863–871, 2018.
- [Dai and Wipf, 2019] Bin Dai and David Wipf. Diagnosing and enhancing vae models. *arXiv preprint arXiv:1903.05789*, 2019.
- [Dinh *et al.*, 2016] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv* preprint arXiv:1605.08803, 2016.
- [Gelfand et al., 2000] Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations. Courier Corporation, 2000.
- [Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680, 2014.
- [Gulrajani *et al.*, 2017] Ishaan Gulrajani, Faruk Ahmed, and other. Improved training of wasserstein gans. In *NIPS*, 2017.
- [Heusel *et al.*, 2017] Martin Heusel, Hubert Ramsauer, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances in Neural Information Processing Systems*, pages 6626–6637, 2017.
- [Hoffman and Johnson, 2016] Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the variational evidence lower bound. In *Workshop in Advances in Approximate Bayesian Inference*, *NIPS*, volume 1, 2016.
- [Kingma and Dhariwal, 2018] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In *Advances in Neural Information Processing Systems*, pages 10215–10224, 2018.
- [Kingma and Welling, 2014] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014.
- [Kingma *et al.*, 2016] Durk P Kingma, Tim Salimans, et al. Improved variational inference with inverse autoregressive flow. In *Advances in neural information processing systems*, pages 4743–4751, 2016.
- [Krizhevsky *et al.*, 2009] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.
- [Kumar *et al.*, 2019] Rithesh Kumar, Anirudh Goyal, et al. Maximum entropy generators for energy-based models. *arXiv preprint arXiv:1901.08508*, 2019.
- [Lake *et al.*, 2015] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

- [Larochelle and Murray, 2011] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pages 29–37, 2011.
- [Liu et al., 2015] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of the IEEE international conference on computer vision*, pages 3730–3738, 2015.
- [Maaløe *et al.*, 2019] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy of latent variables for generative modeling. *arXiv preprint arXiv:1902.02102*, 2019.
- [Rezende *et al.*, 2014] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, 2014.
- [Salimans et al., 2016] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In Advances in neural information processing systems, pages 2234–2242, 2016.
- [Salimans *et al.*, 2017] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. *arXiv preprint arXiv:1701.05517*, 2017.
- [Song and Ermon, 2019] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In *Advances in Neural Information Processing Systems*, pages 11895–11907, 2019.
- [Takahashi *et al.*, 2019] Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi. Variational autoencoder with implicit optimal priors. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 5066–5073, 2019.
- [Tomczak and Welling, 2016] Jakub M Tomczak and Max Welling. Improving variational auto-encoders using householder flow. *arXiv preprint arXiv:1611.09630*, 2016.
- [Tomczak and Welling, 2018] Jakub Tomczak and Max Welling. Vae with a vampprior. In *International Conference on Artificial Intelligence and Statistics*, pages 1214–1223, 2018.
- [Van den Oord *et al.*, 2016] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixelcnn decoders. In *Advances in neural information processing systems*, pages 4790–4798, 2016.
- [Wu et al., 2018] Jiqing Wu, Zhiwu Huang, Janine Thoma, Dinesh Acharya, and Luc Van Gool. Wasserstein divergence for gans. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 653–668, 2018.
- [Xiao *et al.*, 2017] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.