

SIMULACIÓN BASADA EN AGENTES

Enrique Canessa 1er Semestre 2022

Explorando un ABM: Fire simple

(IABM Textbook/Chapter 3/Fire Extensions/Fire Simple)

Explorando un ABM: Fire simple

Varíe la densidad entre 40% y 80%, de 10% en 10%, y vea el efecto sobre el porcentaje quemado

Extendiendo un ABM: Fire simple Ext1

(IABM Textbook/Chapter 3/Fire Extensions/Fire Simple Extension 1)

Extendiendo un ABM: Fire simple Ext1

- 1. Primero verifique que el ABM funcione concordante/coherentemente con el anterior
- 2. Varíe la densidad y la "probabilidad de extensión" entre algunos valores y vea el efecto sobre el porcentaje quemado

Explorando un ABM: Segregación

(IABM Textbook/Chapter 3/Segregation Extensions/Segregation Simple)

Extendiendo un ABM: Segregación Ext1

(IABM Textbook/Chapter 3/Segregation Extensions/Segregation Simple Extension 1)

- 1. Primero verifique que el ABM funcione concordante/coherentemente con el anterior
- 2. Varíe el valor de algunos parámetros y vea el efecto sobre el porcentaje similar

Condición de término:

- En algunos ABMs y/o bajo algunas condiciones, el modelo sigue corriendo indefinidamente
- Entonces debemos detenerlo, normalmente especificando un límite de tiempo (ticks)
- Esto implica que debemos detenerlo cuando el ABM alcance el estado estable (steady state)
- Es difícil establecer cuando el ABM alcanzó el steady state,
 ante dudas se debe simular por un largo tiempo
- Veamos prácticamente un ejemplo usando un ABM

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de *Sample Models/Earth Science/Climate Change*.
- Estudie la información del modelo
- Se desea ver el efecto del albedo sobre la temperatura cuando está en estado estacionario (steady-state)
- Para eso, se deja todo constante con valores por defecto y se establece el albedo en 0.2 y 0.8
- Por ahora realicemos una réplica para cada valor de albedo

Cambio climático (Climate Change)

Albedo en 0.2

Detención ABM: app. 40.000 ticks

Temperatura se incrementa

Temperatura llega a steady state

Cambio climático (Climate Change)

Albedo en 0.2

¿Qué valor usamos para temperatura?

Cambio climático (Climate Change)

Albedo en 0.2

¿Qué valor usamos de estas dos réplicas?

(Sample Models/Earth Science /Climate Change)

Analizador comportamiento

Cuidado: evaluar al final solamente

BehaviorSpa	ce results (Ne	etLogo 5.3.1)	
Climate Char	nge.nlogo		
experiment			
06/30/2021 1			
min-pxcor	max-pxcor	min-pycor	max-pycor
-24	24	-8	22
[run number	albedo	[step]	temperature
1	0.2	40000	28.71176738
2	0.2	40000	28.12124827
3	0.2	40000	28.7047714
4	0.2	40000	29.88708268
5	0.2	40000	27.70676335
6	0.8	40000	22.19420526
7	0.8	40000	23.82921908
8	0.8	40000	23.05151445
9	0.8	40000	23.1976947
10	0.8	40000	22.89554892

(Sample Models/Earth Science /Climate Change)

Produce una "serie de tiempo"

BehaviorSpace r	esults (NetLo	go 5.3.1)	
Climate Change	.nlogo		
experiment			
06/30/2021 10:35	5:38:639 -0400)	
min-pxcor	max-pxcor	min-pycor	max-pycor
-24	24	-8	22
[run number]	albedo	[step]	temperature
1	0.2	0	12
1	0.2	1	12
1	0.2	2	12
1	0.2	3	12
1	0.2	4	12
1	0.2	5	12
1	0.2	6	12
1	0.2	7	12
1	0.2	8	12
1	0.2	9	12
1	0.2	10	12
1	0.2	39990	29.43233543
1	0.2	39991	29.43501207
1	0.2	39992	29.43766195
1	0.2	39993	29.44028533
1	0.2	39994	29.44188248
1	0.2	39995	29.44346366
1	0.2	39996	29.44502902
1	0.2	39997	29.44657873
1	0.2	39998	29.44911294
1	0.2	39999	29.45162181
1	0.2	40000	29.45310559

2	0.8	0	12
2	0.8	1	12
2	0.8	2	12
2	0.8	3	12
2	0.8	4	12
2	0.8	5	12
2	0.8	6	12
2	0.8	7	12
2	0.8	8	12
2	0.8	9	12
2	0.8	10	12
2	0.8	39990	22.02551665
2	0.8	39991	22.02726149
2	0.8	39992	22.02898887
2	0.8	39993	22.03069898
2	0.8	39994	22.03239199
2	0.8	39995	22.03406807
2	0.8	39996	22.03572739
2	0.8	39997	22.03737012
2	0.8	39998	22.03899642
2	0.8	39999	22.04060645
2	0.8	40000	22.04220039

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de *Earth Science*.
- Estudie la información del modelo
- Se desea ver el efecto del albedo y de cuánta energía solar entra a la Tierra (sun-brightness) sobre la temperatura cuando está en estado estacionario (steady-state)
- Para eso, se deja todo constante con valores por defecto y se establece el *sun-brightness* en 1 y 3; y el albedo en 0.2 y 0.8
- Se efectúan cinco réplicas por cada combinación entradas

(Sample Models/Earth Science /Climate Change)

Analizador comportamiento

Cuidado: evaluar al final solamente

BehaviorSpace	results (NetLog	o 5.3.1)		
Climate Change	e.nlogo			
experiment				
06/30/2021 11:	07:31:088 -0400			
min-pxcor	max-pxcor	min-pycor	max-pycor	
-24	24	-8	22	
[run number]	sun-brightness	albedo	[step]	temperature
1	1	0.2	40000	28.80725855
2	1	0.2	40000	28.72363237
3	1	0.2	40000	28.37693988
4	1	0.2	40000	29.88515946
5	1	0.2	40000	28.44906417
6	1	0.8	40000	23.20476956
7	1	0.8	40000	22.64858531
8	1	0.8	40000	23.43653026
9	1	0.8	40000	22.94529947
10	1	0.8	40000	22.1896434
11	3	0.2	40000	39.23673499
12	3	0.2	40000	39.51712208
13	3	0.2	40000	39.79756905
14	3	0.2	40000	38.18118174
15	3	0.2	40000	38.57418736
16	3	0.8	40000	27.51716966
17	3	0.8	40000	26.67709948
18	3	0.8	40000	25.84234466
19	3	0.8	40000	27.87918503
20	3	0.8	40000	27.91278743

Entregable:

- Seleccione un ABM de la librería de modelos de Netlogo o del NetLogo User Community Models: http://ccl.northwestern.edu/netlogo/models/community/index.cgi
- 2. El ABM debería tener tres entradas y una salida cuantitativa
- 3. Explore el ABM según se mostró: variando una entrada
- 4. Elabore una presentación de 10 minutos y venga preparado para exponer
- 5. TODOS los miembros de los grupos deben poder exponer: se seleccionará aleatoriamente al expositor/es
- 6. Entregue una copia impresa de la presentación, con un tamaño adecuado para que pueda ser leída (2 diapositivas por página, por ambas caras)