Introduction Construction du modèle Présentation des résultats de l'étude analytique Simulation numérique Conclusion

TIPE (Océan) Un phénomène d'hystérésis dans un modèle de circulation thermohaline

Neven VILLANI (353)

Épreuve de TIPE

Session 2020

Plan de l'exposé

- Introduction
- 2 Construction du modèle
- 3 Présentation des résultats de l'étude analytique
- Simulation numérique
- Conclusion

Introduction : contexte et définitions La dérive nord atlantique

- Circulation en surface de l'équateur vers le pôle
- Eaux chaudes
- Extension du Gulf Stream
- Inquiétudes liées au rôle climatique :
 - Influence exacte mal connue
 - Inversion possible?
 - Refroidissement local?
 - Phénomène d'hystérésis?

Introduction : contexte et définitions Qu'est-ce que l'hystérésis?

"Soit une grandeur cause notée C produisant une grandeur effet notée E. On dit qu'il y a hystérésis lorsque la courbe E=f(C) obtenue à la croissance de C ne se superpose pas avec la courbe E=f(C) obtenue à la décroissance de C."

Source de:

- Non linéarité
- Irréversibilité

Premières approximations

- Géométrie simplifiée de l'océan
- Pas d'atmosphère
- Seulement deux compartiments homogènes

Le modèle de Stommel

Océan à deux compartiments homogènes

Equateur
$$(T_e(t), S_e(t))$$

Pôle
$$(T_p(t), S_p(t))$$

Forçage

Retour des grandeurs à leur valeur à l'équilibre

$$X^* \longrightarrow X(t)$$

$$dX(t)_{\text{Forçage}} = \frac{X^* - X(t)}{\tau_X} \cdot dt$$

$ au_T$	≈ 1 mois	$ au_S$	\approx 6mois
T_e^*	$\approx 30^{\circ} \text{C}$	S_e^*	$\approx 38 \mathrm{psu}$
T_p^*	$pprox 2^{\circ} C$	S_p^*	$\approx 32 \text{psu}$

Le modèle de Stommel

Océan à deux compartiments homogènes

Équation d'état

Densité de l'eau de mer en fonction de sa salinité et de sa température

Linéarisation en *T* et *S*

$$\rho = \rho_0 \left[\beta (S - S_0) - \alpha (T - T_0) \right]$$

$$T_0 = 10 \, ^{\circ}\text{C}$$
 $S_0 = 35 \, \text{psu}$ $\beta = 1,67 \cdot 10^{-4} \, \text{K}^{-1}$ $\beta = 0,78 \cdot 10^{-3} \, \text{psu}^{-1}$

Le modèle de Stommel

Océan à deux compartiments homogènes

Circulation

Établissement du flux de surface

$$\phi ext{ kg/s}$$
 $\lambda pprox 10^7 ext{ m}^3/ ext{s}$

 $\phi = \lambda \cdot (\rho_p - \rho_e)$

$$\rho_p - \rho_e \approx 1 \text{ kg/m}^3$$

Le modèle de Stommel

Océan à deux compartiments homogènes

Variation des paramètres

Couplage des deux compartiments

$$\begin{split} \mathrm{d}S_e(t)_{\mathrm{Couplage}} &= \frac{S_e(t) \cdot (M_0 - \delta m) + S_p(t) \cdot \delta m}{M_0} - S_e(t) \\ \mathrm{d}S_e(t)_{\mathrm{Couplage}} &= (S_p(t) - S_e(t)) \cdot \frac{\delta m}{M_0} \\ \delta m &\equiv |\phi| \cdot \mathrm{d}t \\ \mathrm{d}S_e(t) &= \mathrm{d}S_e(t)_{\mathrm{Couplage}} + \mathrm{d}S_e(t)_{\mathrm{Forçage}} \end{split}$$

Variation des paramètres

Couplage des deux compartiments

$$\dot{T}_e = (T_p - T_e) \cdot \frac{\phi}{M_0} + \frac{T_e^* - T_e}{\tau_T}$$
(1)

$$\dot{T}_p = (T_e - T_p) \cdot \frac{\phi}{M_0} + \frac{T_p^* - T_p}{\tau_T}$$
(2)

$$\dot{S}_e = (S_p - S_e) \cdot \frac{\phi}{M_0} + \frac{S_e^* - S_e}{\tau_S}$$
 (3)

$$\dot{S}_p = (S_e - S_p) \cdot \frac{\phi}{M_0} + \frac{S_p^* - S_p}{\tau_S}$$
 (4)

$$\phi = \lambda \cdot (\rho_{v} - \rho_{e}) \tag{5}$$

$$\rho = \rho_0 \cdot [\beta(S - S_0) - \alpha(T - T_0)] \tag{6}$$

Recherche de l'équilibre

$$\widehat{\alpha} = \left(1 + \left|\widehat{\phi}\right|\right) \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left|\widehat{\phi}\right|}\right)$$

$$\begin{split} \widehat{\phi} &\propto \phi \\ \widehat{\alpha} &\propto T_p^* - T_e^* \\ \widehat{\beta} &\propto S_p^* - S_e^* \\ \widehat{\delta} &\equiv \frac{\tau_T}{\tau_S} \end{split}$$

Position d'équilibre

Allure de $\widehat{\phi} = f(\widehat{\alpha})$ et influence des paramètres

Position d'équilibre

Confirmation par la simulation de la stabilité

Évolution du système

Diminution d'intensité du Gulf Stream

Évolution du système

Inversion brutale du sens de circulation

Évolution du système

Refroidissement aux pôles

Hystérésis Irréversibilité de l'évolution

Hystérésis Cycle complet

Conclusion

- Inutilisable en tant que tel
- Peut faciliter l'étude d'un modèle plus précis
- Permet d'envisager des scénarios à tester

Équation d'état Influence de la pression

24 / 24

Circulation

Loi de Fick et établissement du flux de surface

$$\vec{j} = -D \cdot \overrightarrow{\text{grad}} n$$

$$\vec{j} \cdot m \cdot S = -D \cdot m \cdot S \cdot \overrightarrow{\text{grad}} n$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{dn}{dx}$$

$$j \cdot m \cdot S = -D \cdot m \cdot S \cdot \frac{\Delta n}{\Delta x}$$

$$\lambda \equiv \frac{D \cdot S}{\Delta x} \qquad \phi \equiv j \cdot m \cdot S \qquad \rho \equiv m \cdot n$$

$$\phi = \lambda \cdot \Delta \rho$$

Neven VILLANI (353)

Circulation thermohaline

Mélange

Eaux de salinités et températures différentes

$$\Delta U = m \cdot c \cdot (T^f - T^i) \qquad \Delta M^{\text{sel}} = m \cdot (S^f - S^i)$$

$$\Delta U_1 + \Delta U_2 = 0 \qquad \Delta M_1^{\text{sel}} + \Delta M_2^{\text{sel}} = 0$$

$$m_1 \cdot T_1^f + m_2 \cdot T_2^f = m_1 \cdot T_1^i + m_2 \cdot T_2^i \qquad m_1 \cdot S_1^f + m_2 \cdot S_2^f = m_1 \cdot S_1^i + m_2 \cdot S_2^i$$

$$T^f = \frac{m_1 \cdot T_1^i + m_2 \cdot T_2^i}{m_1 + m_2} \qquad S^f = \frac{m_1 \cdot S_1^i + m_2 \cdot S_2^i}{m_1 + m_2}$$

Découplage des équations

$$(2) - (1) \qquad \frac{d(T_p - T_e)}{dt} = \frac{T_p^* - T_e^* + T_e - T_p}{\tau_T} - \frac{2|\phi|}{M_0} (T_p - T_e)$$

$$(4) - (3) \qquad \frac{d(S_p - S_e)}{dt} = \frac{S_p^* - S_e^* + S_e - S_p}{\tau_S} - \frac{2|\phi|}{M_0} (S_p - S_e)$$

$$\frac{d\hat{T}}{d\hat{t}} = 1 - \hat{T} - |\hat{\phi}| \cdot \hat{T} \qquad \frac{d\hat{S}}{d\hat{t}} = \hat{\delta} (1 - \hat{S}) - |\hat{\phi}| \cdot \hat{S}$$

 $\widehat{T} \equiv \frac{T_p - T_e}{T_n^* - T_e^*} \qquad \widehat{S} \equiv \frac{S_p - S_e}{S_n^* - S_e^*} \qquad \widehat{t} \equiv \frac{t}{\tau_T} \qquad \widehat{\delta} \equiv \frac{\tau_T}{\tau_S} \qquad \widehat{\phi} \equiv \frac{2\tau_T}{M_0} \phi$

Neven VILLANI (353)

Circulation thermohaline

24 / 24

Résolution Expression du flux

$$\begin{split} \widehat{\phi} &= \frac{2\tau_T}{M_0} \phi \\ &= \frac{2\tau_T}{M_0} \lambda \rho_0 \left[-\alpha (T_p^* - T_e^*) \widehat{T} + \beta (S_p^* - S_e^*) \widehat{S} \right] \\ &= \widehat{\alpha} \widehat{T} - \widehat{\beta} \widehat{S} \\ \\ \widehat{\alpha} &= \frac{2\tau_T}{M_0} \lambda \rho_0 \alpha (T_e^* - T_p^*) > 0 \\ \\ \widehat{\beta} &= \frac{2\tau_T}{M_0} \lambda \rho_0 \beta (S_e^* - S_p^*) > 0 \end{split}$$

Recherche de l'équilibre

$$\frac{d\widehat{T}}{d\widehat{t}} = 1 - \widehat{T} - \left| \widehat{\phi} \right| \cdot \widehat{T} = 0 \qquad \Longrightarrow \qquad \widehat{T} = \frac{1}{1 + \left| \widehat{\phi} \right|}$$

$$\frac{d\widehat{S}}{d\widehat{t}} = \widehat{\delta}(1 - \widehat{S}) - \left| \widehat{\phi} \right| \cdot \widehat{S} = 0 \qquad \Longrightarrow \qquad \widehat{S} = \frac{\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

$$\widehat{\phi} = \frac{\widehat{\alpha}}{1 + \left| \widehat{\phi} \right|} - \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

Recherche de l'équilibre

$$\widehat{\phi} = \frac{\widehat{\alpha}}{1 + \left| \widehat{\phi} \right|} - \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|}$$

$$\widehat{\alpha} = \left(1 + \left| \widehat{\phi} \right| \right) \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left| \widehat{\phi} \right|} \right)$$

$$\frac{d\widehat{\alpha}}{d\widehat{\phi}} = \left(\widehat{\phi} + \frac{\widehat{\beta}\widehat{\delta}}{\widehat{\delta} + \left|\widehat{\phi}\right|}\right) \frac{d\left|\widehat{\phi}\right|}{d\widehat{\phi}} + \left(1 + \left|\widehat{\phi}\right|\right) \left(1 - \frac{\widehat{\beta}\widehat{\delta}}{\left(\widehat{\delta} + \left|\widehat{\phi}\right|\right)^{2}} \frac{d\left|\widehat{\phi}\right|}{d\widehat{\phi}}\right)$$

Recherche de l'équilibre

$$\begin{split} \frac{d\widehat{\alpha}}{d\widehat{\phi}}\Big|_{\widehat{\phi}\approx 0} &\approx 1 - \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right)\frac{d\left|\widehat{\phi}\right|}{d\widehat{\phi}} \\ \frac{d\widehat{\alpha}}{d\widehat{\phi}}\Big|_{\widehat{\phi}\geq 0} &\approx 1 - \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) \qquad \frac{d\widehat{\alpha}}{d\widehat{\phi}}\Big|_{\widehat{\phi}\leq 0} \approx 1 + \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) \\ 0 &< \widehat{\delta} < 1 \\ \widehat{\beta}\left(\frac{1-\widehat{\delta}}{\widehat{\delta}}\right) > 1 \end{split}$$

Neven VILLANI (353)

Circulation thermohaline