walk of length k from v_1 to v_i to create a walk of length k+1 from v_i to v_i with v_1 as its second vertex. Thus, by the multiplication rule,

$$a_{i1}b_{1j} = \begin{bmatrix} \text{the number of walks of length } k+1 \text{ from} \\ v_i \text{ to } v_j \text{ that have } v_1 \text{ as their second vertex} \end{bmatrix}.$$

More generally, for each integer r = 1, 2, ..., m,

$$a_{ir}b_{rj} = \begin{bmatrix} \text{the number of walks of length } k+1 \text{ from } \\ v_i \text{ to } v_i \text{ that have } v_r \text{ as their second vertex } \end{bmatrix}$$

Because every walk of length k+1 from v_i to v_i must have one of the vertices v_1, v_2, \dots, v_m as its second vertex, the total number of walks of length k+1 from v_i to v_i equals the sum in (10.2.1), which equals the ijth entry of \mathbf{A}^{k+1} . Hence

the *ij*th entry of \mathbf{A}^{k+1} = the number of walks of length k+1 from v_i to v_i

[Since both the basis step and the inductive step have been proved, the sentence P(n) is true for every integer $n \ge 1.7$

TEST YOURSELF

- 1. In the adjacency matrix for a directed graph, the entry in the *i*th row and *i*th column is ____
- 2. In the adjacency matrix for an undirected graph, the entry in the *i*th row and *j*th column is __
- **3.** An $n \times n$ square matrix is called symmetric if, and only if, for all integers i and j from 1 to n, the entry in row _____ and column ____ equals the entry in row _____ and column ___
- **4.** The *ij*th entry in the product of two matrices **A** and **B** is obtained by multiplying row _____ of **A** by row _____ of **B**.
- **5.** In an $n \times n$ identity matrix, the entries on the main diagonal are all _____ and the off-diagonal entries are all __
- **6.** If G is a graph with vertices v_1, v_2, \ldots, v_m and A is the adjacency matrix of G, then for each positive integer n and for all integers i and j with i, j = 1, 2, ..., m, the ijth entry of $\mathbf{A}^n = \underline{\hspace{1cm}}$

EXERCISE SET 10.2

1. Find real numbers a, b, and c such that the following are true.

a.
$$\begin{bmatrix} a+b & a-c \\ c & b-a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2a & b+c \\ c-a & 2b-a \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 1 & -2 \end{bmatrix}$$

2. Find the adjacency matrices for the following directed graphs.

3. Find directed graphs that have the following adjacency matrices:

a.
$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

711

- **c.** K_4 , the complete graph on four vertices
- **d.** $K_{2,3}$, the complete bipartite graph on (2, 3)vertices
- 5. Find graphs that have the following adjacency matrices.

a.
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 0 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

6. The following are adjacency matrices for graphs. In each case determine whether the graph is connected by analyzing the matrix without drawing the graph.

a.
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

a.
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

- 7. Suppose that for every positive integer i, all the entries in the ith row and ith column of the adjacency matrix of a graph are 0. What can you conclude about the graph?
- **8.** Find each of the following products.

a.
$$[2 -1]\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

a.
$$\begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 b. $\begin{bmatrix} 4 & -1 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$

9. Find each of the following products.

a.
$$\begin{bmatrix} 3 & 0 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 4 \\ 0 & 2 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 5 & -4 \\ -2 & 2 \end{bmatrix}$$

$$\mathbf{c.} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$$

d.
$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}^2$$

10. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$, and $\mathbf{C} = \begin{bmatrix} 0 & -2 \\ 3 & 1 \\ 1 & 0 \end{bmatrix}$.

For each of the following, determine whether the indicated product exists, and compute it if it does.

a. AB b. BA c.
$$A^2$$
 d. BC e. CB f. B^2 g. B^3 h. C^2 i. AC j. CA

- 11. Give an example different from that in the text to show that matrix multiplication is not commutative. That is, find 2×2 matrices A and B such that AB and BA both exist but $AB \neq BA$.
- 12. Let O denote the matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Find 2×2 matrices **A** and **B** such that $A \neq O$ and $B \neq O$ but AB = O.
- **13.** Let O denote the matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Find 2×2 matrices A and B such that $A \neq B$, $B \neq O$, and $AB \neq O$, but BA = O.

In 14-18, assume the entries of all matrices are real numbers.

- **H** 14. Prove that if **I** is the $m \times m$ identity matrix and **A** is any $m \times n$ matrix, then $\mathbf{IA} = \mathbf{A}$.
 - 15. Prove that if **A** is an $m \times m$ symmetric matrix, then A^2 is symmetric.
 - **16.** Prove that matrix multiplication is associative: If **A**, **B**, and **C** are any $m \times k$, $k \times r$, and $r \times n$ matrices, respectively, then (AB)C = A(BC). (Hint: Summation notation is helpful.)
 - 17. Use mathematical induction and the result of exercise 16 to prove that if **A** is any $m \times m$ matrix, then $\mathbf{A}^n \mathbf{A} = \mathbf{A} \mathbf{A}^n$ for each integer $n \ge 1$.
 - **18.** Use mathematical induction to prove that if **A** is an $m \times m$ symmetric matrix, then for any integer $n \ge 1$, \mathbf{A}^n is also symmetric.