Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024

Tutorial No.5

IMPLEMENT FOLLOWING ALGORITHMS USING PYTHON ON SUITABLE DATA SETS. I. DECISION TREE II. NAÏVE BAYES III. RANDOM FOREST

Vishwakarma Institute of Information Technology

Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024

[22]:	dm					
[22]:		Outlook	Temperature	Humidity	Wind	Play Tennis
	0	2	1	0	1	0
	1	2	1	0	0	0
	2	0	1	0	1	1
	3	1	2	0	1	1
	4	1	0	1	1	1
	5	1	0	1	0	0
	6	0	0	1	0	1
	7	2	2	0	1	0
	8	2	0	1	1	1
	9	1	2	1	1	1
	10	2	2	1	0	1
	11	0	2	0	0	1
	12	0	1	1	1	1
	13	1	2	0	0	0
					>	
24]:			['Play Tenni: Tennis']	s'], axis	= 1)	
25]:	X					
].						

[25]:		Outlook	Temperature	Humidity	Wind
	0	2	1	0	1
	1	2	1	0	0
	2	0	1	0	1
	3	1	2	0	1
	4	1	0	1	1
	5	1	0	1	0
	6	0	0	1	0
	7	2	2	0	1
	8	2	0	1	1
	9	1	2	1	1
	10	2	2	1	0
	11	0	2	0	0
	12	0	1	1	1
	13	1	2	0	0
[26]:	У				

[26]: 0 0

Vishwakarma Institute of Information Technology

Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024

```
[26]: y

[26]: 0 0 0
1 1 0
2 1
3 1
4 1
5 0 6
6 1
7 0 8
8 1
9 1
10 1
11 1
12 1
13 0
Name: Play Tennis, dtype: int64

[27]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 69)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

(11, 4) (3, 4) (11,) (3,)

[28]: from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state = 42)
model.fit(X_train.y_train)
y_pred = model.predict(X_test)

[29]: import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import tree
fig = plt.figure(figsize = (10, 7))
tree.plot_tree(model)
plt.show()
```


Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024

Naïve Bayes Theorem

```
[34]: #maive
    from sklearn.model_selection import train_test_split
    from sklearn.maive_bayes import MultinomialNB
    from sklearn.metrics import accuracy_score
[52]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 43)
[56]: model = MultinomialNB()
[58]: dm.dtypes
[58]: Outlook    int64
    Temperature    int64
    Humidity    int64
    Humidity    int64
    Play Tennis    int64
    dtype: object
[54]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
[59]: model = MultinomialNB()
[61]: df_encoded = pd.get_dummies(df.drop('Play Tennis', axis=1))
[62]: X = df_encoded
[64]: y = df['Play Tennis']
[65]: model = MultinomialNB()
```

Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024

Random Forest

```
[70]: #m the randomforet
           import pandas as pd
           from sklearn.model_selection import train_test_split
           from sklearn.ensemble import RandomForestClassifier
           from sklearn.metrics import accuracy_score
                a = {
    Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'],
    'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'],
    'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'],
    'Wind': ['Weak', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Strong', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']

'Play Tennis': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
          df = pd.DataFrame(data)
           # Perform one-hot encoding on categorical variables
          df = pd.get_dummies(df)
          \# Define features (X) and target variable (y)
          X = df.drop('Play Tennis_Yes', axis=1) # Exclude one of the encoded columns to avoid multicollinearity
          y = df['Play Tennis_Yes']
           X\_train, \ X\_test, \ y\_train, \ y\_test = train\_test\_split(X, \ y, \ test\_size=0.3, \ random\_state=42) 
           # Create Random Forest classifier
          rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
           {\tt rf\_classifier.fit(X\_train,\ y\_train)}
```

Vishwakarma Institute of Information Technology

Name: Abhishek Mali Roll No.: 213070 PRN No.: 22320024