

The University of Hong Kong

FITE7405: Techniques in Computational Finance

Assignment 3 – Mini Option Pricer Project Report

Group 30

Member Details

#	Member Name	SID
1	Abhimanyu Bhati	3036383745
2	Sameer Kabani	3036384012

Team Contributions

#	Member	Contribution
1	Abhimanyu Bhati	 Implementation of american_binomial, arithmetic_asian_mc, arithmetic_basket_mc, kiko_quasi models and test_scripts file GUI optimization Drafting of report.
2	Sameer Kabani	 Implementation of black_scholes, geometric_asian, geometric_basket, implied_volatility models and drafted test cases Implementation of GUI Setting up of GitHub repository, readme, documentation.

Instructions To Run Project

1. Clone the Repository

git clone https://github.com/sk1805/FITE7405-Assignment-3.git cd FITE7405-Assignment-3

2. Create and Activate Virtual Environment

For Windows:

python -m venv venv
venv\Scripts\activate

For macOS/Linux:

python -m venv venv source venv/bin/activate

3. Install Dependencies

pip install -r requirements.txt

4. Run the Application

python app.py

5. Access the Application

Open your web browser and navigate to:

http://localhost:8050

6. To run test cases

python models/test_scripts.py

User Interface Description

Figure: Screencap / Instance of our GUI

European Option Tab

- Inputs: Spot price (S(0)), Strike price (K), Risk-free rate (r), Repo rate (q), Time to maturity (T), Volatility (σ), Option type (Call/Put)
- Output: Option price

Implied Volatility Tab

- Inputs: Spot price, Strike price, Risk-free rate, Repo rate, Time to maturity, Option Premium, Option type
- · Output: Implied volatility

Geometric Asian Option Tab

- Inputs: Spot price, Volatility, Risk-free rate, Time to maturity, Strike price, Number of observations (n), Option type
- Output: Option price

Arithmetic Asian Option Tab

- Inputs: All Geometric Asian inputs plus Number of simulations (m), Control variate method
- Output: Option price with Standard Error and 95% confidence interval

Geometric Basket Option Tab

- Inputs: Spot prices (S1(0), S2(0)), Volatilities (σ1, σ2), Risk-free rate, Time to maturity, Strike price, Correlation (ρ),
 Option type
- Output: Option price

Arithmetic Basket Option Tab

- Inputs: All Geometric Basket inputs plus Number of simulations, Control variate method
- Output: Option price with Standard Error and 95% confidence interval

American Option Tab

- Inputs: Option type, Spot price, Strike price, Risk-free rate, Time to maturity, Volatility, Number of steps (N)
- Output: Option price, Early exercise premium, European Price (for comparison)

KIKO Put Option Tab

- Inputs: Spot price, Strike price, Risk-free rate, Time to maturity, Volatility, Lower barrier (L), Upper barrier (U), Number of observations (n), Rebate (R), Calculate Delta (Yes/No)
- Output: Option price with Standard Error, 95% confidence Interval and Delta (optional)

Functionality Description

The codebase is organized into several key components:

Web Interface (app.py):

- Implements a Dash web application with Bootstrap styling
- Driver code and handles user input validation and calculation triggers
- Displays results in a user-friendly format

Core Pricing Models (models/ directory):

#	Script Name	Functionality
1	black_scholes.py	Implements closed-form Black-Scholes formulas for European options
2	implied_volatility.py	Calculates implied volatility using numerical methods
3	geometric_asian.py	Implements closed-form formulas for geometric Asian options
4	arithmetic_asian_mc.py	Monte Carlo simulation for arithmetic Asian options with control variate
5	geometric_basket.py	Closed-form formulas for geometric basket options
6	arithmetic_basket_mc.py	Monte Carlo simulation for arithmetic basket options with control variate
7	american_binomial.py	Binomial tree method for American options
8	kiko_quasi_mc.py	Quasi-Monte Carlo method for KIKO put options
9	test_scripts.py	Runs the test cases for the above models

Test Cases

Each pricing model contains test cases in its "__main__" block. To view detailed test results for all models at once, run models/test_scripts.py as per the instructions above.

Black Scholes (European Options)

At-the-money

S	K	r	q	Т	sigma	type	Option Price
100	100	0.05	0.05	3	0.3	call	17.6434
100	100	0.05	0.05	3	0.3	Put	17.6434

Out-of-the-Money

S	К	r	q	Т	sigma	type	Option Price
100	110	0.05	0.05	3	0.3	call	14.5256
100	90	0.05	0.05	3	0.3	Put	12.7930

In -the-Money

S	K	r	q	Т	sigma	type	Option Price
100	90	0.05	0.05	3	0.3	call	21.4001
100	110	0.05	0.05	3	0.3	Put	23.1327

Implied Volatility

S	K	r	q	Т	Option Premium / Market Price	type	Imp Vol.
100	100	0.05	0.05	3	10	call	0.1687395906
100	100	0.05	0.05	3	10	put	0.1687395906

Geometric Asian

S0	sigma	r	T	K	n	type	Option Price
100	0.3	0.05	3	100	50	call	13.2591

^{*}The results have been truncated to 4 decimal places below for brevity.

100	0.3	0.05	3	100	100	call	13.1387
100	0.4	0.05	3	100	50	call	15.7598
100	0.3	0.05	3	100	100	put	8.43108
100	0.4	0.05	3	100	50	put	12.5587
100	0.3	0.05	3	100	50	put	8.48270

Arithmetic Asian MC

Max Simulations = 100,000. Control Variate = geometric

S0	sigma	r	Т	К	n	type	Option Price
100	0.3	0.05	3	100	50	call	14.73409
100	0.3	0.05	3	100	100	call	14.61921
100	0.4	0.05	3	100	50	call	18.21373
100	0.3	0.05	3	100	100	put	7.747432
100	0.4	0.05	3	100	50	put	11.27977
100	0.3	0.05	3	100	50	put	7.799341

Geometric Basket

S1	S2	sigma1	sigma2	r	Т	K	rho	type	Option Price
100	100	0.3	0.3	0.05	3	100	0.5	put	11.4915
100	100	0.3	0.3	0.05	3	100	0.9	put	12.6223
100	100	0.1	0.3	0.05	3	100	0.5	put	6.5863
100	100	0.3	0.3	0.05	3	80	0.5	put	4.7115
100	100	0.3	0.3	0.05	3	120	0.5	put	21.2891
100	100	0.5	0.5	0.05	3	100	0.5	put	23.4691
100	100	0.3	0.3	0.05	3	100	0.5	call	22.1020
100	100	0.3	0.3	0.05	3	100	0.9	call	25.8788
100	100	0.1	0.3	0.05	3	100	0.5	call	17.9247
100	100	0.3	0.3	0.05	3	80	0.5	call	32.5362
100	100	0.3	0.3	0.05	3	120	0.5	call	14.6854
100	100	0.5	0.5	0.05	3	100	0.5	call	28.4493

Arithmetic Basket

Max Simulations = 100,000. Control Variate = geometric

S1	S2	sigma1	sigma2	r	Т	K	rho	type	Option Price
100	100	0.3	0.3	0.05	3	100	0.5	put	10.5710
100	100	0.3	0.3	0.05	3	100	0.9	put	12.4274
100	100	0.1	0.3	0.05	3	100	0.5	put	5.5166
100	100	0.3	0.3	0.05	3	80	0.5	put	4.2480
100	100	0.3	0.3	0.05	3	120	0.5	put	19.8765
100	100	0.5	0.5	0.05	3	100	0.5	put	21.0731
100	100	0.3	0.3	0.05	3	100	0.5	call	24.4945
100	100	0.3	0.3	0.05	3	100	0.9	call	26.3523
100	100	0.1	0.3	0.05	3	100	0.5	call	19.4293
100	100	0.3	0.3	0.05	3	80	0.5	call	35.3863
100	100	0.3	0.3	0.05	3	120	0.5	call	16.5873
100	100	0.5	0.5	0.05	3	100	0.5	call	34.9757

American Binomial

S	K	r	T	sigma	N	type	Option Price
50	40	0.1	2	0.4	200	put	3.4184
50	50	0.1	2	0.4	200	put	7.4676
50	70	0.1	2	0.4	200	put	20.8314

KIKO QMC

S	K	r	Т	sigma	L	U	R	n	delta	Option Price
100	100	0.05	2	0.2	80	125	1.5	24	True	5.9636
100	100	0.03	2	0.2	75	105	5	24	True	7.5685

Results

Black Scholes

If S == K, and r == q, then price will be the same for both call and put option

When S not equal to K:

Option	Κ↑
Call	Decreases
Put	Increases

Implied Volatility

If S == K, and r == q, then volatility will be the same for both call and put option

Geometric Asian & Arithmetic Asian

Option	Case: Averaging Frequency 个 (n)	Case: Volatility ↑ (σ)
Call	Decreases	Increases
Put	Decreases	Increases

Geometric Basket & Asian Basket

Option Case: Strike Price ↑		Case: Correlation ↑	Case: Volatility ↑	
Call	Decreases	Increases	Increases	
Put	Increases	Increases	Increases	

American Binomial

Price increases as **K** increases for Put options

KIKO QMC

Option	r ↑	L↓	U↓	R↓
Put	Decreases	Increases	Increases	Increases