NE 320 – Ethernet Protocol (2/2)

Quentin Giorgi

"Si vous pensez que l'aventure est dangereuse, Essayez la routine... Elle est mortelle!"

- Paulo Coelho

Motivations:

- Bande passante limitée à 10Mbits/s pouvait être suffisante dans les années fin 1980. Vers le début des années 1990, avec l'augmentation des performances de l'électronique, des technologies, le débit de 10Mbits/s devient limitatif pour les usages.
- Généralisation de l'utilisation de la paire torsadée.
- Généralisation du mode full-duplex (on verra plus tard).
- Sans modification du format de la trame Ethernet.

Technologies: Ethernet

Historique:

- Normalisation:
 - 1995: Normalisation de l'Ethernet 100Mbits/s (groupe de travail 802.3u)
 - 100 baseX
 - 100baseTx (paire torsadée cat5)
 - 100baseFx (fibre optique multimode)
 - 100 baseT4 (paire torsadée cat3, half duplex)
 - 100 baseT2 (paire torsadée cat3, full duplex, non commercialisé)
 - Pas de modification de la trame, le diamètre maximal du réseau (domaine de collision) est réduit d'un facteur 10.

- Positionnement architectural:
 - Interface MII
 - Capable de débits
 10 et 100 Mbits/s
 - Full duplex
 - Utilisation de signaux de niveaux TTL + CLK
 - Data sur 4 signaux parallèles (in/out)
 - Interface de management améliorée.

Source IEEE 802.3

MDI = MEDIUM DEPENDENT INTERFACE MII = MEDIA INDEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER
PMA = PHYSICAL MEDIUM ATTACHMENT

PHY = PHYSICAL LAYER DEVICE PMD = PHYSICAL MEDIUM DEPENDENT

^{*} MII is optional for 10 Mb/s DTEs and for 100 Mb/s systems and is not specified for 1 Mb/s systems.

^{**} PMD is specified for 100BASE-X only; 100BASE-T4 does not use this layer.
Use of MII between PCS and Baseband Repeater Unit is optional.

^{***} AUTONEG is optional.

- L'interface de management
 - MDIO et MDC
 - 2 registres de base (control et status)
 - Exemple le registre de contrôle:

Bit(s)	Name	Description	R/W
0.15	Reset	1 = PHY reset 0 = normal operation	R/W SC
0.14	Loopback	l = enable loopback mode 0 = disable loopback mode	
0.13	Speed Selection (LSB)	0.6 0.13 1 1 = Reserved 1 0 = 1000 Mb/s 0 1 = 100 Mb/s 0 0 = 10 Mb/s	R/W
0.12	Auto-Negotiation Enable	1 = enable Auto-Negotiation process 0 = disable Auto-Negotiation process	R/W
0.11	Power Down	1 = power down 0 = normal operation ^b	
0.10	Isolate	l = electrically Isolate PHY from MII or GMII 0 = normal operation ⁰	
0.9	Restart Auto-Negotiation	1 = restart Auto-Negotiation process 0 = normal operation	R/W SC
0.8	Duplex Mode	1 = full duplex 0 = half duplex	
0.7	Collision Test	1 = enable COL signal test 0 = disable COL signal test	
0.6	Speed Selection (MSB)	0.6 0.13 1 1 = Reserved 1 0 = 1000 Mb/s 0 1 = 100 Mb/s 0 0 = 10 Mb/s	R/W
0.5	Unidirectional enable	When bit 0.12 is one or bit 0.8 is zero, this bit is ignored. When bit 0.12 is zero and bit 0.8 is one: 1 = Enable transmit from media independent interface regardless of whether the PHY has determined that a valid link has been established 0 = Enable transmit from media independent interface only when the PHY has determined that a valid link has been established	R/W
0.4:0	Reserved	Write as 0, ignore on read	R/W

aR/W = Read/Write, SC = Self-clearing.

bFor normal operation, both 0.10 and 0.11 must be cleared to zero; see 22.2.4.1.5.

Interface mécanique

Figure 22-18-MII connector pin numbering

- Interface fonctionnelle
 - data:
 - TxD, TX ER, TX EN,TX CLK
 - RxD, RX_ER,RX_DV,RX_CLK
 - Management :
 - MDC, MDIO
 - COL, CRS

Table 22-15-MII connector contact assignments

Contact	Signal name	Contact	Signal name
1	+5 V	21	+5 V
2	MDIO	22	COMMON
3	MDC	23	COMMON
4	RXD<3>	24	COMMON
5	RXD<2>	25	COMMON
6	RXD<1>	26	COMMON
7	RXD<0>	27	COMMON
8	RX_DV	28	COMMON
9	RX_CLK	29	COMMON
10	RX_ER	30	COMMON
11	TX_ER	31	COMMON
12	TX_CLK	32	COMMON
13	TX_EN	33	COMMON
14	TXD<0>	34	COMMON
15	TXD<1>	35	COMMON
16	TXD<2>	36	COMMON
17	TXD<3>	37	COMMON
18	COL	38	COMMON
19	CRS	39	COMMON
20	+5 V	40	+5 V

- Interface MII:
 - Connexions
 - DTE PHY à travers un câble MII
 - Une interface carte à carte
 - Une interface chip à chip.
 - → RMII (reduced MII) http://www.national.com/appinfo/networks/files/rmii_1_2.pdf
 - Permet une liaison chip à chip utilisant moins de connecteurs

- Les technologies:
 - Les fonctions du PHY
 - Réception
 - Transmission
 - Supervision du lien (indique la disponibilité du média, remonté par la couche PMD)
 - Détection de porteuse
 - Far-end fault (vérification de l'état du PHY partenaire)

- Les technologies:
 - 100baseX (100baseTx et 100baseFx)
 - 100baseX spécifie les couches PCS et PMA commune pour 100baseTx et 100baseFx
 - Seule la couche PMD est spécifique selon le média.
 - Codage 4B/5B dans la couche PCS pour éviter les longues séries de bits sans transitions physiques (pb synchronisation)
 - Détection des collisions par détection simultanée de porteuse et envoi de bits.

- Les technologies:
 - 100baseX (100baseTx et 100baseFx)

- Les technologies:
 - 100baseTx
 - 2 Paires torsadées UTP ou STP catégorie 5, les 2 autres sont inutilisées.
 - 100 m maximum par segment (affaiblissement et diamètre max)
 - 2 PHY par segment de réseau (hub ou switch + station)
 - Connecteur MDI: RJ45.
 - MDI-X interne ou câble croisé identique au 10baseT

- Les technologies:
 - 100baseTx
 - Codage MLT-3 (rappel codage 4B/5B dans PCS)

- Les technologies:
 - 100baseFx
 - 2 Fibres optiques multimodes (Rx et Tx)
 - Longueur d'ondes 1300nm
 - Distance max DTE à DTE
 - 412 m en half duplex
 - 2000m en full duplex
 - Connecteur MDI: SC, (ST ou MIC)
 - MDI-X:
 - RX ←→ TX
 - $TX \leftarrow \rightarrow RX$

- Les technologies:
 - 100baseFx
 - Codage NRZi (rappel codage 4B/5B dans PCS)

- Les technologies:
 - 100baseT4
 - 100baseT4 spécifie les couches PCS et PMA (pas de couche PMD)
 - Codage 8B/6T dans la couche PCS
 - Utilisation de 3 paires pour l'émission (ne peut être que half-duplex)
 - Utilisation de paires torsadées de catégorie 3 ou plus

- Les technologies:
 - 100baseT4
 - Rôle des PMA et **PCS**

- Les technologies:
 - 100baseT4
 - 4 Paires torsadées UTP catégorie 3 ou plus
 - 100 m maximum par segment (affaiblissement et diamètre max)
 - 2 PHY par segment de réseau (hub ou switch + station)
 - Connecteur MDI: RJ45.
 - MDI-X interne ou câble croisé

- Les technologies:
 - 100baseT2
 - 100baseT2 spécifie les couches PCS et PMA (pas de couche PMD)
 - Codage PAM5x5 dans la couche PCS
 - Utilisation de 2 paires pour l'émission et réception sur chaque paire
 - Utilisation de paires torsadées de catégorie 3 ou plus

Figure 32-3—PAM5×5 symbol constellation

- Les technologies:
 - 100baseT2
 - 2 Paires torsadées UTP catégorie 3 ou plus
 - 100 m maximum par segment (affaiblissement et diamètre max)
 - 2 PHY par segment de réseau (hub ou switch + station) auto-négociation nécessaire.
 - Connecteur MDI: RJ45.
 - MDI-X interne ou câble croisé

Table 32–14—Assignment of PMA signals to MDI pin-outs

Contact	PHY without internal crossover (100BASE-T2 operation)	PHY with internal crossover (Auto-Negotiation operation)	MDI labeling requirement
1	BI_DA+	BI_DB+	BI_DA+
2	BI_DA-	BI_DB-	BI_DA-
3	BI_DB+	BI_DA+	BI_DB+
4	Not used	Not used	
5	Not used	Not used	
6	BI_DB-	BI_DA-	BI_DB-
7	Not used	Not used	
8	Not used	Not used	

Conclusion

- Augmentation du débit, sans modification de la trame.
- Large utilisation de 100baseTx
 - 100 baseT4 et 100baseT2 bien que permettant 100Mbits/s sur des câbles cat3 ne connaissent pas de succès commerciaux.
 - 100 baseT2 et 100base T4 permettent de développer des technologies qui seront réutilisées pour Ethernet Gigabit 1000baseT sur câble Cat5E.
- Large utilisation du média paire torsadée, permet de généraliser l'auto-negotiation, le full duplex...

- Interconnexion multi-segments. (Répéteurs)
 - Fonctions d'un répéteur
 - Restauration du signal
 - Gestion des données (transmission sur tous les ports)
 - Gestion des collisions (jamming sur tous les ports)
 - Gestions des erreurs
 - Gestions des jabbers et partitionnement.
 - Deux classes de répéteurs
 - Classe I : régénère un encodage, permet de mixer plusieurs technologies différentes (100baseTx,100baseFx,100baseT4, etc...)
 - Classe II : utilisable pour un même technologie (même codage)

- Interconnexion multi-segments. (Répéteurs)
 - Défini un domaine de collision
 - Un seul répéteur classe I par domaine de collision.
 - Un ou deux répéteurs classe II par domaine de collision (en respectant le diamètre maximal).
- Conclusion
 - Interconnexion par répéteurs induit des problèmes de:
 - Bande passante partagée entre tous les utilisateurs
 - 1 seule domaine de collision
 - Pas de possibilité d'utiliser le full-duplex
 - Sécurité: les communications sont visibles sur tous les segments.

Normalisation:

- 1998-1999: Normalisation de l'Ethernet 1000baseX (groupe de travail 802.3z)
 - 1000base-CX (25m max, shielded cable)
 - 1000base-LX (2 fibres multimodes ou monomodes)
 - 1000base-SX (2 fibres multimodes)
- 1999: Normalisation de l'Ethernet 1000baseT (802.3ab)
 - 1000baseT (100m, 4 paires torsadées cat5E ou plus)
- Augmentation du débit d'un facteur 10.
- Le mode full-duplex est le mode de fonctionnement privilégié.

- Positionnement architectural:
 - Interface GMII
 - Capable de débit 1000 Mbits/s
 - Full duplex
 - Data sur 8 signaux parallèles (in/out)
 - Interface de management simple (même que 100base)

Carrier extension

- Mécanisme utilisé pour les technologies 1000Mbits/s HALF DUPLEX permettant de satisfaire des diamètres de réseaux suffisant sans modifier la taille minimale de la trame Ethernet.
 - SlotTime jusqu'à 100Mbits/s → 512 bits.
 - SlotTime 1000Mbits/s \rightarrow 4096bits.
 - Minimum frame size 512 bits.
- Bit d'extension (codage distinct des bits de donnés) pour combler 4096-512 bits.

Frame bursting

- Mécanisme utilisé pour les technologies 1000Mbits/s HALF DUPLEX permettant à une station de transmettre plusieurs trames sans relâcher l'accès au média, et donc renter dans une période de contention. (dans la limite de 65536 bits.)
- Utilisation de bits d'extension (codage distinct des bits de données) dans la partie entre les trames
 - Permet de maintenir la détection de porteuse sur les autres stations
 - Permet à la station destinatrice de détecter bits d'extension et données.

- Les technologies 1000 Mbits/s
 - 1000base X (CX,LX,SX)
 - Encodage 8B/10B dans PCS puis NRZ
 - Diamètre du segment max dépendant de la techno (jusqu'à 5000m en LX, 25m en CX)

- Les technologies:
 - 1000baseT
 - 1000baseT spécifie les couches PCS et PMA
 - Codage similaire au 100baseT2 dans la couche PCS
 - Utilisation de 4 paires pour l'émission et la réception
 - Utilisation de paires torsadées de catégorie 5E ou plus
 - longueur maximal du segment: 100m
 - MDI connecteur RJ45

Contact	MDI	MDI-X
1	BI_DA+	BI_DB+
2	BI_DA-	BI_DB-
3	BI_DB+	BI_DA+
4	BI_DC+	BI_DD+
5	BI_DC-	BI_DD-
6	BI_DB-	BI_DA-
7	BI_DD+	BI_DC+
8	BI_DD-	BI_DC-

- Interconnexion multi-segments. (Répéteurs)
 - Les répéteurs sont très peu (voire jamais) utilisés dans les réseaux Gbits/s
 - Utilisation privilégiée de commutateurs. (voir chapitre suivant)