Module-4.8-Decision Trees

Presented by Yasin Ceran

Table of Contents

Basic Idea Behind Decision Trees

2 Decision Trees-Hyperparameters

Openition Trees and KNN

4 Summary

Idea: Series of Binary of Binary Questions

Building Trees

Continuous features:

- "questions" are thresholds on single features.
- Minimize impurity

Criteria for Classification

• Gini Index:

$$H_{\mathrm{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

Cross-Entropy:

$$H_{\mathsf{CE}}(X_m) = -\sum_{k \in \mathcal{Y}} p_{mk} \log(p_{mk})$$

- X_m observations in node m
- ullet ${\cal Y}$ classes
- p_m distribution over classes in node m

An Example

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Entropy

Entropy H(S) is a measure of the amount of uncertainty in the data set S (i.e., entropy characterizes the data set S.

$$H(S) = \sum_{c \in C} -p(c) log_2 p(c)$$

where

- S The current data set for which the entropy is being calculated
- C Set of classes in S, for example, $C = \{yes, no\}$
- p(c) The proportion of the number of elements in class c to the number of elements in set S

When H(S) = 0, the set S is perfectly classified.

Information Gain

Information gain IG(A) is the measure of the difference in entropy from before to after the set S is split on an attribute A. In other words, how much uncertainty in S was reduced after splitting S on attribute A.

$$IG(A,S) = \mathbf{H}(S) - \sum_{t \in T} p(t)H(t)$$

where

- H(S) Entropy of set S
- T The subsets created from splitting set ${\bf S}$ by attribute ${\bf A}$ such that ${\bf S} = \bigcup_{t \in T} t$
- p(t) The proportion of the number of elements in t to the number of elements in set S
- H(t) Entropy of subset t

Compute the Entropy for the Weather Data Set

$$H(S) = \sum_{c \in C} -p(c)log_2p(c)$$
$$C = \{yes, no\}$$

Out of 14 instances, 9 are clasified as 'yes' and 5 as 'no'

•
$$p(yes) = -(9/14) * log_2(9/14)$$

•
$$p(no) = -(5/14) * log_2(5/14)$$

•
$$H(S) = p(yes) + p(no) = 0.94$$

Calculate Entropy and IG for All Features

E (Outlook=sunny) =
$$-\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

E (Outlook=overcast) =
$$-1 \log(1) - 0 \log(0) = 0$$

E (Outlook=rainy) =
$$-\frac{3}{\pi}\log\left(\frac{3}{\pi}\right) - \frac{2}{\pi}\log\left(\frac{2}{\pi}\right) = 0.971$$

Average Entropy information for Outlook

I (Outlook) =
$$\frac{5}{14} * 0.971 + \frac{4}{14} * 0 + \frac{5}{14} * 0.971 = 0.693$$

Gain (Outlook) = E(S) – I (outlook) = 0.94-.693 = 0.247

$$\sum_{t \in T} p(t) H(t)$$

$$IG(A,S) = H(S) - \sum_{t \in T} p(t)H(t)$$

E (Windy=false) =
$$-\frac{6}{9}\log\left(\frac{6}{9}\right) - \frac{2}{9}\log\left(\frac{2}{9}\right) = 0.811$$

E (Windy=true) =
$$-\frac{3}{\epsilon}\log\left(\frac{3}{\epsilon}\right) - \frac{3}{\epsilon}\log\left(\frac{3}{\epsilon}\right) = 1$$

Average entropy information for Windy

$$I \text{ (Windy)} = \frac{8}{14} * 0.811 + \frac{6}{14} * 1 = 0.892$$

Gain (Windy) =
$$E(S) - I$$
 (Windy) = 0.94-0.892=0.048

Pick the Highest Gain Attribute

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Humidity	We are the	Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048

Which One is the Root?

Create the Tree

Final Decision

Final decision tree

Table of Contents

Basic Idea Behind Decision Trees

Decision Trees-Hyperparameters

Decision Trees and KNN

4 Summary

Predictions with Decision Trees

Regression Trees

• Prediction:

$$\bar{y}_m = \frac{1}{N_m} \sum_{i \in N_m} y_i$$

Mean Squared Error:

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2$$

Mean Absolute Error:

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y}_m|$$

A Simple Example with Tree

from sklearn.tree import plot_tree
tree_dot = plot_tree(tree, feature_names=cancer.feature_names)

Parameter Tuning

- Limit tree size (pick one, maybe two):
 - max_depth
 - max_leaf_nodes
 - min_samples_split
 - min_impurity_decrease

No Pruning

max depth = 4

max leaf nodes = 8

min_samples_split = 50

Decision Tree Accuracy for Different max_depth

```
from sklearn.model_selection import GridSearchCV
param_grid = {'max_depth':range(1, 7)}
grid = GridSearchCV(OecisionTreeClassifier(random_state=0),param_grid=param_grid,
cv=10)
grid.fit(X_train, y_train)
```


Decision Tree Accuracy for Different max_leaf_nodes

```
from sklearn.model_selection import GridSearchCV
param_grid = {'max_leaf_nodes':range(2, 20)}
grid = GridSearchCV(DecisionTreeClassifier(random_state=0),
param_grid=param_grid, cv=10)
grid.fit(X_train, y_train)
```


Table of Contents

Basic Idea Behind Decision Trees

Decision Trees-Hyperparameters

Decision Trees and KNN

4 Summary

Predict average of neighbors – either by k, by epsilon ball or by leaf.

- Trees are much faster to predict.
- Both can't extrapolate

Extrapolation

Instability

- 1 X_train, X_test, y_train, y_test =
- 3 tree = DecisionTreeClassifier(max_leaf_nodes=6)
- 4 tree.fit(X train, v train)

- 1 X_train, X_test, y_train, y_test =
- - 3 tree = DecisionTreeClassifier(max_leaf_nodes=6)
- 4 tree.fit(X_train, y_train)

Feature Importance

```
X_train, X_test, v_train, v_test =
         2
                 iris.data, iris.target,

→ stratify=iris.target, random_state=1)
          tree = DecisionTreeClassifier(max leaf nodes=6)
          tree.fit(X_train,y_train)
        petal width (cm) <= 0.8
            gini = 0.6666
            samples = 112
         value = [38, 37, 37]
       True
                   petal length (cm) <= 4.75
  gini = 0.0
                         gini = 0.5
 samples = 38
                       samples = 74
value = [38, 0, 0]
                      value = [0, 37, 37]
                              petal width (cm) <= 1.75
             gini = 0.0
                                  gini = 0.2098
            samples = 32
                                  samples = 42
           value = [0, 32, 0]
                                 value = [0, 5, 37]
                  petal length (cm) <= 4.95
                                              gini = 0.0571
                        gini = 0.5
                                              samples = 34
                        samples = 8
                                            value = [0, 1, 33]
                      value = [0, 4, 4]
                             petal width (cm) <= 1.55
              gini = 0.0
                                  gini = 0.4444
             samples = 2
                                  samples = 6
            value = [0, 2, 0]
                                 value = [0, 2, 4]
                          gini = 0.0
                                           eini = 0.4444
                          samples = 3
                                            samples = 3
                        value = [0, 0, 3]
                                          value = [0, 2, 1]
```

1 tree.feature_importances_ 2 array([0.0, 0.0, 0.414, 0.586])

Predicting Probabilities

- Fraction of class in leaf.
- Without pruning: Always 100% certain!
- Even with pruning might be too certain.

Table of Contents

Basic Idea Behind Decision Trees

2 Decision Trees-Hyperparameters

Openition Trees and KNN

Summary

Summary-I

Definition:

- A Decision Tree is a supervised learning algorithm used for classification and regression tasks.
- It models decisions and their possible consequences, including chance event outcomes.

Structure:

- Comprised of nodes and edges.
- Root Node: Represents the entire dataset.
- Internal Nodes: Represent features and make decisions based on their values.
- Leaf Nodes: Represent the final decision or output.

Types of Decision Trees:

- Classification Trees: Used for categorical target variables.
- Regression Trees: Used for continuous target variables.

Key Concepts:

- · Gini Impurity and Entropy: Metrics to measure the quality of splits.
- Information Gain: Reduction in entropy after a dataset is split on an attribute
- Pruning: Reducing the size of the tree to prevent overfitting.

Summary-II

Advantages:

- Easy to understand and interpret.
- Can handle both numerical and categorical data.
- Requires little data preprocessing.

Disadvantages:

- Prone to overfitting, especially with complex trees.
- Can be unstable due to small variations in the data.
- Biased towards attributes with more levels.

Applications:

- Medical diagnosis.
- Customer segmentation.
- Financial analysis.