We plug y^+ into (D) and discover that the first, third, and fourth constraints are equalities. Thus, $J = \{1, 3, 4\}$ and the Restricted Primal (RP4) is

Maximize
$$-(\xi_1 + \xi_2 + \xi_3)$$

subject to
$$\begin{pmatrix} 3 & -3 & 1 & 1 & 0 & 0 \\ 3 & 6 & -1 & 0 & 1 & 0 \\ 6 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_3 \\ x_4 \\ \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} \text{ and } x_1, x_3, x_4, \xi_1, \xi_2, \xi_3 \ge 0.$$

The initial tableau for (RP4), with $\hat{c} = (0, 0, 0, -1, -1, -1)$, $(x_1, x_3, x_4, \xi_1, \xi_2, \xi_3) = (1/2, 0, 1/2, 0, 0, 1/2)$ and K = (3, 1, 6) is obtained from the final tableau of the previous (RP3) by replacing the column corresponding to the variable x_2 by a column corresponding to the variable x_3 , namely

$$\widehat{A}_K^{-1} A^3 = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/6 & 1/6 & 0 \\ -3/2 & -1/2 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = \begin{pmatrix} -9/2 \\ 1/2 \\ 3/2 \end{pmatrix},$$

with

$$\overline{c}_3 = c_3 - z^* A^3 = 0 - (3/2 \quad 1/2 \quad -1) \begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} = 3/2,$$

and we get

	x_1	x_3	x_4	ξ_1	ξ_2	ξ_3
1/2	0	3/2	0	-5/2	-3/2	0
$x_4 = 1/2$	0	-9/2	1	1/2	-1/2	0
$x_1 = 1/2$	1	1/2	0	1/6	1/6	0
$\xi_3 = 1/2$	0	(3/2)	0	-3/2	-1/2	1

By analyzing the top row of reduced cost, we see that $j^+=2$. Furthermore, since $\min\{x_1/(1/2),\xi_3/(3/2)\}=\xi_3/(3/2)=1/3$, we let $k^-=6$, K=(3,1,2), and pivot along the red circled 3/2 to obtain

	x_1	x_3	x_4	ξ_1	ξ_2	ξ_3	
					-1		
$x_4 = 2$	0	0	1	-4	-2	3	
$x_1 = 1/3$	1	0	0	2/3	1/3	-1/3	
$ \begin{array}{c} x_4 = 2 \\ x_1 = 1/3 \\ x_3 = 1/3 \end{array} $	0	1	0	-1	-1/3	2/3	

Since the upper left corner of the final tableau is zero and the reduced costs are all ≤ 0 , we are finally finished. Then $y = (19/3 \ 8/3 - 14/3)$ is an optimal solution of (D), but more