Lambda Calculus

Week 4

Principle of Compositionality

"The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee, 1993)

Compositional semantic construction:

 Define meaning representations for sub-expressions

2. Combine them in a principled manner to obtain a meaning representation for a complex expression.

Compositionality: first try

"Bill is not a student" \mapsto [NOT [[bill]_{NP} [student]_{VP}]_S]_S

Functions and arguments

"Bill is not a student" \mapsto [NOT [[bill]_{NP} [student]_{VP}]_S]_S

Lambda expressions

- Lambda expressions are functions that consist of a set of lambda variables and a body
 - The body of a lambda expression is an open* WFF:

```
[\mathsf{Mary}_{\mathsf{e}} \ [\mathsf{sings} \ \mathsf{and} \ \mathsf{dances}]_{\langle e, \ t \rangle}] \mapsto [\![ \lambda \mathsf{x} ( \mathit{sing}(\mathsf{x}) \ \land \ \mathit{dance}(\mathsf{x})) ( \mathit{mary})]\!] \in D_t
```

 Lambda expressions can themselves serve as arguments for functions (including other lambda expressions)

```
[[\text{Not smoking}]_{\langle e, t \rangle} [\text{is healthy}]_{\langle \langle e, t \rangle, t \rangle}] \mapsto [[\text{healthy}(\lambda y. \neg (\text{smoke}(y)))]] \in D_t
```

λ-abstraction

• Formal definition: if $\alpha \in WE_{\sigma}$ and $x \in VAR_{\pi}$, then $\lambda x(\alpha)$ is in $WE_{\langle \pi, \sigma \rangle}$

- λ -abstraction: the operation that transforms expressions of any type σ into a function $\pi \rightarrow \sigma$ (i.e. of the type $\langle \pi, \sigma \rangle$), where π is the type of the λ -variable
 - The scope of the λ-operator is the smallest WE to its right—wider scope must be indicated by brackets
 - We often use the "dot notation" $\lambda x. \phi$ indicating that the λ -operator takes wide scope over ϕ

Interpretation of λ -expressions

- If $\alpha \in WE_{\sigma}$ and $v \in VAR_{\pi}$, then $[[\lambda v\alpha]]^{M,g}$ is the function f: $D_{\pi} \to D_{\sigma}$ such that for all $d \in D_{\pi}$, $f(d) = [[\alpha]]^{M,g[v/d]}$
- If the λ -expression is applied to an argument, we can simplify the interpretation:
- Example: "Bill is a student"

$$[[\lambda x(S(x))(b')]]^{M,g} = 1 \quad \text{iff } [[S(x)]]^{M,g'} = 1 \text{ (where } g' = g[x/[[b']]^{M,g}])$$

$$[[\lambda x(S(x))(b')]]^{M,g} = [[S(b')]]^{M,g}$$

Interpretation of λ -expressions

• For $\varphi \in WE_t$, $x \in VAR_{\sigma}$: $V_M(\lambda x. \varphi) = \{ d \in D_{\sigma} \mid [[\varphi]]^{M,g[x/\sigma]} \}$

- For example:

 - $O V_{M}(\lambda x. \forall y.eat(y)(x)) = \{d \in D_{e} \mid [[\forall y.eat(y)(x)]]^{M,g[x/d]}\}$

β-reduction: function application in λ-calculus

- $[[\lambda V(\alpha)(\beta)]]^{M,g} = [[\alpha]]^{M,g[V/[[\beta]]]}$
 - o all (free) occurrences of the λ -variable (v) in α get the interpretation of β as their value

- This operation is called β-reduction
 - $\circ \quad \lambda v(\alpha)(\beta) \Leftrightarrow \alpha[v/\beta]$
 - \circ where: $\alpha[v/\beta]$ is the result of replacing all free occurrences of v in α with β
 - Warning: this equivalence is not unconditionally valid ...

Variable capturing

- Are $\lambda v(\alpha)(\beta)$ and $\alpha[\beta/v]$ always equivalent?
 - $\lambda x(sing(x) \land dance(x))(john) \Leftrightarrow sing(john) \land dance(john)$
 - $\lambda x(sing(x) \land dance(x))(y) \Leftrightarrow sing(y) \land dance(y)$ (where $y \in VAR_e$)

 - $\circ \lambda x(\forall y.know(x)(y))(y) \Leftrightarrow \forall y.know(y)(y)$

Problem: y is not "free for x" in $\forall y.know(x)(y)$

- Let x, y be variables of the same type, and let α be a WE of any type
 - \circ **y is free for x** in α iff no free occurrence of x in α is in the scope of a quantifier or a λ -operator that binds y

Equivalence transformations in λ-calculus

- β -conversion: $\lambda v(\alpha)(\beta) \Leftrightarrow \alpha[v/\beta]$ (α with all instances of v replaced by β)
 - \circ assuming all free variables in β are free for v in α

- α -conversion: $\lambda v.\alpha \Leftrightarrow \lambda w.\alpha[v/w]$ (α with all instances of v replaced by w)
 - \circ assuming w is free for v in α

• η -conversion: $\lambda v.\alpha(v) \Leftrightarrow \alpha$

Quantifiers as λ-expressions

- "a student works" $\mapsto \exists x(student(x) \land work(x))$:: t \circ "a student" $\mapsto \lambda P \exists x(student'(x) \land P(x))$:: $\langle\langle e, t \rangle, t \rangle$ \circ "a", "some" $\mapsto \lambda Q \lambda P \exists x(Q(x) \land P(x))$:: $\langle\langle e, t \rangle, \langle\langle e, t \rangle, t \rangle\rangle$
- "every student" $\mapsto \lambda P \,\forall \, x (student'(x) \to P(x))$:: $\langle \langle e, t \rangle, t \rangle$ \circ "every" $\mapsto \lambda Q \lambda P \,\forall \, x (Q(x) \to P(x))$:: $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$
- "no student" $\mapsto \lambda P \neg \exists x (student(x) \land P(x))$:: $\langle \langle e, t \rangle, t \rangle$ \circ "no" $\mapsto \lambda Q \lambda P \neg \exists x (Q(x) \land P(x))$:: $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$
- "someone" $\mapsto \lambda F \exists x (person(x) \land F(x))$:: $\langle \langle e, t \rangle, t \rangle$
- "something" $\mapsto \lambda F \exists x.F(x)$:: $\langle\langle e, t \rangle, t \rangle$

Interpretation of expressions of type $\langle\langle e, t \rangle, t \rangle$

- something $\in CON_{\langle\langle e, t \rangle, t \rangle}$, so $V_M(something) \in D_{\langle\langle e, t \rangle, t \rangle}$
- $D_{\langle\langle e, t \rangle, t \rangle}$ is the set of functions from $D_{\langle e, t \rangle}$ to D_t
 - i.e. the set of functions from $p(U_M)$ (the **powerset** of U_M) to {0, 1}, which in turn is equivalent to $p(p(U_M))$
- From $V_M(something) \in \mathbb{P}(\mathbb{P}(U_M))$ it follows that $V_M(something) \subseteq \mathbb{P}(U_M)$
 - More specifically: $V_M(something) = \{S \subseteq U_M \mid S \neq \emptyset\}$, if U_M is a domain of individuals

Compositional construction

(2)
$$\lambda P\lambda Q \forall x(P(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$$

(3)
$$\lambda y.student(y) \Leftrightarrow_{\eta} student :: \langle e, t \rangle$$

(1)
$$\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) (student)$$

 $\Leftrightarrow_{\beta} \lambda Q \forall x (student(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, t \rangle$

$$(4)/(5) \lambda z.work(z) \Leftrightarrow_{n} work :: \langle e, t \rangle$$

Compositional construction

"not smoking is healthy" → [[not smoking] [is healthy]]

```
[healthy(not smoking)] \in D_{+}
                                                          [\lambda P.healthy(P)(\lambda x(\neg smoke(x)))]
                                                             \Leftrightarrow^{\beta} [[healthy(\lambda x(\neg smoke(x)))]]
                      [not smoking] \in D_{(e,t)}
                       [\lambda Q \lambda x. \neg Q(x)(smoke)]
                          \Leftrightarrow^{\beta} [\lambda x. \neg smoke(x)]
                                                                       [smoking] \in D_{(e,t)}
                       [not] \in D_{((e,t),(e,t))}
[\lambda P \lambda x. \neg P(x)] \Leftrightarrow^{\alpha} [\lambda Q \lambda x. \neg Q(x)]
                                                                [\lambda x.smoke(x)] \Leftrightarrow [smoke]
```

```
[[healthy]] \in D_{((e,t),t)}[[healthy]] \Leftrightarrow [[\lambda P.healthy(P)]]
```

Type Clash

- Problem: in natural language, quantified expressions occur with transitive verbs in both subject and object position
 - Example: "someone reads a book"

```
read :: <e,<e,t>> a book :: <<e,t>,t>

someone :: <<e,t>,t>

?? :: ??

?? :: t
```

- Solution: reverse functor-argument relation
 - Logical form: someone(read(a book))
 - \circ Use **type raising** to adjust the type of the transitive verb: $read_{\langle\langle\langle e, t\rangle, t\rangle, \langle e, t\rangle\rangle}$

Type Raising

What if we just change the type of the transitive verb?

```
o "read" → read ∈ CON_{(((e, t), t), (e, t))}

[[someone reads a book]] =

[[λF∃x(person(x) ∧ F(x))(read(λP∃y(book'(y) ∧ P(y))))]]

\Leftrightarrow_{β} [[∃x(person(x) ∧ read(λP∃y(book'(y) ∧ P(y)))(x))]]
```

- Stuck! We need a more explicit λ-term:
 - $\qquad read \leftarrow \lambda Q \lambda z. Q(\lambda x(read^*(x)(z))) \in WE_{\langle (\langle e, t \rangle, t \rangle, \langle e, t \rangle \rangle} \ \ (type\ raising)$
 - where read* $\subseteq WE_{\langle e, \langle e, t \rangle \rangle}$ is the "underlying" first-order relation

Type Raising (Cont.)

- Specifically, given $f: \pi \to \sigma$, $g: \sigma \to \delta$, we can *type raise* f to get $(f): (\sigma \to \delta) \to (\pi \to \delta)$, so that f takes g as an argument (this is basically just function composition):
 - $\circ \quad \uparrow(f) = \lambda h_{(\sigma \to \delta)} \lambda x_{\pi} . h(f(x))$
 - $\circ \uparrow (f)(g) = \lambda x_{\pi}.g(f(x)): \pi \rightarrow \delta$
- Given c: σ , g: $\sigma \rightarrow \delta$, we can consider c as a function c: $\phi \rightarrow \sigma$
 - $\circ \quad \uparrow(c): (\sigma \rightarrow \delta) \rightarrow (\emptyset \rightarrow \delta)$
 - $\circ \quad \uparrow(c): \lambda h_{(\sigma \to \delta)}.h(c)$
 - $\circ \uparrow (c)(g) = g(c): \emptyset \rightarrow \delta \Leftrightarrow \delta$

Type Raising

someone reads a book → someone(reads(a book))

```
\lambda F \exists x(person(x) \land F(x))(\lambda Q\lambda z(Q(\lambda w(read^*(w)(z))))(\lambda P \exists y(book(y) \land P(y))))
\Leftrightarrow_{\beta} \lambda F \exists x(person(x) \land F(x))(\lambda z(\lambda P \exists y(book(y) \land P(y))(\lambda w(read^*(w)(z)))))
\Leftrightarrow_{\beta} \lambda F \exists x(person(x) \land F(x))(\lambda z(\exists y(book(y) \land \lambda w(read^*(w)(z))(y))))
\Leftrightarrow_{\beta} \lambda F \exists x (person(x) \land F(x))(\lambda z (\exists y (book(y) \land read^*(y)(z))))
\Leftrightarrow_{\beta} \exists x(person(x) \land \lambda z(\exists y(book(y) \land read^*(y)(z)))(x))
\Leftrightarrow_{\beta} \exists x(person(x) \land \exists y(book(y) \land read^*(y)(x)))
```