Contents

1	Cha	apter 1	1
	1.1	Propositional Logic	1
	1.2	Applications of Propositional Logic	1
	1.3	Propositional Equivalences	1
	1.4	Predicates and Quantifiers	1
	1.5	Nested Quantifiers	1
	1.6	Rules of Inference	1
	1.7	Introduction to Proofs	1
		1.7.1 Basic Methods of Proofs	1
		1.7.2 Example	2
		1.7.3 Example	2
		1.7.4 Example	2
		1.7.5 Example	2
		1.7.6 Example	3
		1.7.7 Example	3
		1.7.8 Example	3
		1.7.9 Example	4
		1.7.10 Existence and Uniqueness	4
	1.8	Proof Methods and Strategy	4

1 Chapter 1

- 1.1 Propositional Logic
- 1.2 Applications of Propositional Logic
- 1.3 Propositional Equivalences
- 1.4 Predicates and Quantifiers
- 1.5 Nested Quantifiers
- 1.6 Rules of Inference
- 1.7 Introduction to Proofs

We can define rational numbers as

$$\mathbb{Q} = \left\{ r | r = \frac{p}{q}, p, q, \in \mathbb{Z}, q \neq 0, \gcd(p, q) = 1 \right\}$$
 (1)

1.7.1 Basic Methods of Proofs

- 1. Directly
- 2. Case by case

- 3. Contradiction (unknown result, but know it is wrong) & Contrapositive (known result)
 - For contrapositive: To prove $p \implies q$, we prove $\neg q \implies \neg p$
 - For contradiction: We assume the opposite of the result, then from the assumption, we draw contradiction

1.7.2 Example

Prove that the product of two odd integers is odd.

Direct Proof: Let $a, b \in \mathbb{Z}$. Since a, b are odds, then by definition a = 2m + 1, b = 2n + 1, where $m, n \in \mathbb{Z}$.

$$a \cdot b = (2m+1)(2n+1)$$

$$a \cdot b = 4mn + 2m + 2n + 1$$

$$a \cdot b = 2(2mn + m + n) + 1$$

$$a \cdot b = 2k + 1$$

$$\therefore a \cdot b \text{ is odd by definition}$$

1.7.3 Example

Prove that $n^2 + 1 \ge 2^n$ when n is a positive integer with $1 \le n \le 4$.

Case by Case Proof

1.7.4 Example

Prove that if m + n and n + p are even integers, where m, n, and p are integers, then m + p is even. What kind of proof did you use?

Proof:

Case 1: When n is even.

Since m+n & n+p are even, then m is even & p is even. Thus, m+p is even.

$$n = 2k_1$$

$$m + n = 2k_2$$

$$m = 2k_2 - 2k_1$$

$$m = 2(k_2 - k_1)$$

1.7.5 Example

 $\forall a, b \in \mathbb{Z}$, if $a \cdot b$ is even, then either a is even or b is even.

Proof by Contrapositive: The statement is equivalent to

$$\neg (a = 2k_1 \lor b = 2k_2) \implies \neg (a \cdot b = 2k_3)
\neg (a = 2k_1) \land \neg (b = 2k_2) \implies \neg (a \cdot b = 2k_3)
(a = 2k_1 + 1) \land (b = 2k_2 + 1) \implies (a \cdot b = 2k_3 + 1)$$

1.7.6 Example

Prove that $\sqrt{2}$ is irrational.

Proof by Contadiction: We assume that $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{m}{n}$, where $m, n \in \mathbb{Z}, n \neq 0, \gcd(m, n) = 1$.

$$2 = \frac{m^2}{n^2}$$
$$m^2 = 2n^2$$

Hence, m^2 is even $\implies m$ is even $\implies m^2$ is a multiple of 4. Thus, n^2 is even $\implies n$ is even $\implies n^2$ is a multiple of 2. $\therefore gcd(m,n) \neq 1$ contradicts with gcd(m,n) = 1.

1.7.7 Example

Prove that there is no largest positive real number.

Proof by Contradiction: Assume that there is a largest real number. Let x be the largest positive real number.

Consider x + 1 > x. Then it contradicts with the assumption.

1.7.8 Example

Show that the equation has exactly one real solution.

$$2x + \cos(x) = 0$$

Start by showing there is at least one solution.

Let
$$a = 0, f(x) = 2x + \cos(x)$$
, then $f(a) = 1 > 0$. When $b = \pi$, then $f(b) = 2(-\pi) + \cos(-\pi) = -2\pi - (-1) < 0$.

Show at most one solution. By contradiction, assume we have at least two solutions: $f(x_1) = 0, f(x_2) = 0$.

By Rolle's Theorem: Show that f'(b) = 0. $f'(b) = 2 - \sin(x) \neq 0$.

1.7.9 Example

Prove that the arithmetic mean is greater than or equal to the geometric mean for the case when n=2. That is, prove

$$\frac{x+y}{2} \ge \sqrt{xy}, x \ge y \ge 0$$

$$\frac{x+y}{2} \ge \sqrt{xy}$$

$$\left(\frac{x+y}{2}\right)^2 \ge xy$$

$$\frac{x^2+y^2+2xy}{4} \ge xy$$

$$x^2+y^2+2xy \ge 4xy$$

$$x^2+y^2-2xy \ge 0$$

$$(x-y)^2 \ge 0$$

1.7.10 Existence and Uniqueness

$$\exists ! x P(x) \implies \text{If } P(x) \text{ is } T, \text{ then } P(y) \text{ is } F \text{ if } y \neq x.$$

 $\iff P(x) = P(y) \text{ is true, then } x = y$

Existence: Consider $x = \frac{c-b}{a}$ is well-defined since $a, b, c \in \mathbb{R}, a \neq 0$. Then $ax + b = a\left(\frac{c-b}{a}\right) + b = c - b + b = c$ $\therefore x = \frac{c-b}{a}$ is a solution.

Uniqueness: Let x_1, x_2 be two real numbers that are solutions to ax + b = c. Then

$$\begin{cases} ax_1 + b = c \\ ax_2 + b = c \end{cases}$$

1.8 Proof Methods and Strategy