

Squeezing the Most Utility from Your Models

Nina Zumel
Win-Vector LLC

Picking Thresholds: An Alternative View

- ROCs are great for visualizing certain tradeoffs, but...
- Thresholds only implicit in the visualization
- Harder to visualize other tradeoffs
 - Precision/Recall
 - Revenue vs Expenditure

"Unroll" the ROC

Tradeoffs on other Metrics

Model Performance Goals are not Operational Goals

- Models help make decisions that run the organization
- Accuracy metrics aren't always easy to map to operational goals

Pick Thresholds By Model *Utility*

- Rewards/costs for correct/ incorrect classifications
- Assign values to TP, FP, TN, FN
 - (Generally monetary)
- (How thresholds picked via ROC)

Example 1: Sales

Identify and contact prospective customers

- Pool of 10,000 prospects
 - Conversion rate 1% (~100 customers)
- Every contact costs \$x_{contact}
- Every conversion is worth \$x_{sale}

Goal: Maximize booked net revenue

Example 1: Sales

Identify and contact prospective customers

- Pool of 10,000 customers
 - Conversion rate 1% (~100 customers)
- Every contact costs \$x_{contact}
- Every conversion is worth \$x_{sale}

Goal: Maximize booked net revenue

Utilities

true positive value: Xsale - Xcontact

(prospects contacted and converted)

Example: Sales

Identify and contact prospective customers

- Pool of 10,000 customers
 - Conversion rate 1% (~100 customers)
- Every contact costs \$x_{contact}
- Every conversion is worth \$x_{sale}

Goal: Maximize booked net revenue

Utilities

true positive value: Xsale - Xcontact

false positive value: - x_{contact}

(prospects contacted who didn't convert)

Example 1: Sales

Identify and contact prospective customers

- Pool of 10,000 customers
 - Conversion rate 1% (~100 customers)
- Every contact costs \$x_{contact}
- Every conversion is worth \$x_{sale}

Goal: Maximize booked net revenue

Utilities

true positive value: Xsale - Xcontact

false positive value: - Xcontact

true negative value: 0

(not contacted, wouldn't have converted)

false negative value: -0.01

(not contacted, would have converted)

Screening for a rare but serious condition

- ~1% prevalence (~100 out of 10,000 subjects)
- Test costs \$T
- Follow-up costs \$F
- Early treatment costs \$x_{early_treat}
- Late treatment costs \$x_late_treat >> \$x_early_treat

Goal: minimize overall cost = maximize (negative) value

Screening for a rare but serious condition

Utilities

- ~1% prevalence (~100 out of 10,000 subjects)
- Test costs \$T
- Follow-up costs \$F
- Early treatment costs \$x_early_treat
- Late treatment costs \$x_late_treat >> \$x_early_treat

Goal: minimize overall cost = maximize (negative) value

true positive value: -(T + F + Xearly_treat)

(subject caught early)

Screening for a rare but serious condition

- ~1% prevalence (~100 out of 10,000 subjects)
- Test costs \$T
- Follow-up costs \$F
- Early treatment costs \$x_early_treat
- Late treatment costs \$x_late_treat >> \$x_early_treat

Goal: minimize overall cost = maximize (negative) value

Utilities

true positive value: -(T + F + Xearly_treat)

false positive value: -(T + F)

(subjects who mistakenly screen positive)

Screening for a rare but serious condition

- ~1% prevalence (~100 out of 10,000 subjects)
- Test costs \$T
- Follow-up costs \$F
- Early treatment costs \$x_early_treat
- Late treatment costs \$x_late_treat >> \$x_early_treat

Goal: minimize overall cost = maximize (negative) value

Utilities

true positive value: -(T + F + Xearly_treat)

false positive value: -(T + F)

true negative value: -T

(subjects who correctly screen negative)

Screening for a rare but serious condition

- ~1% prevalence (~100 out of 10,000 subjects)
- Test costs \$T
- Follow-up costs \$F
- Early treatment costs \$x_early_treat
- Late treatment costs \$x_late_treat >> \$x_early_treat

Goal: minimize overall cost = maximize (negative) value

Utilities

true positive value: -(T + F + Xearly_treat)

false positive value: -(T + F)

true negative value: -T

false negative value: -(T + Xlate_treat)

(subjects we missed in early screening)

Calculating Total Utility

Optimal threshold: maximizes total utility

Let's Do It!

Back to Sales Example

head(d)

converted	predicted_probability
FALSE	0.0040164
FALSE	0.0199652
FALSE	0.0132867
FALSE	0.0051605
FALSE	0.0038753
FALSE	0.0057591

cost of call: \$5 value of sale: \$100

missed opportunity: -\$0.01

Calculate model utility

sigr::model_utility() returns a data frame of utility calculations as a function of threshold

Calculate model utility

threshold: 0.015

- contact 1751 prospects (of 10,000)
- 75 conversions (of 106 possible)
- earned \$7125, spent \$8380
- total utility -\$1255.31

model	predicted_proba bility
threshold	0.01493523
count_taken	1751
fraction_taken	0.1751
true_positive_value	7125
false_positive_value	-8380
true_negative_value	0
false_negative_value	-0.31
total_value	-1255.31
true_negative_count	8218
false_negative_count	31
true_positive_count	75
false_positive_count	1676

Utility as a function of threshold

threshold	0.021672
count_taken	427.000000
true_positive_count	42.000000
false_positive_count	385.000000
true_negative_count	9509.000000
false_negative_count	64.000000
fraction_taken	0.042700
total_value	2064.360000

Comparing to Best Possible Performance

```
# add a column for the wizard model
d$wizard <- with(d, ifelse(converted, 1.0, 0.0))

# calculate the wizard's model utilities
```

threshold	count_taken	fraction_taken	total_value	
0.0	10000	1.0000	-39400.00	(contact everyone)
0.5	106	0.0106	10070.00	(contact exactly the right prospects)
NA	0	0.0000	-1.06	(contact no one)

model_name = 'wizard',

outcome name = 'converted')

wizard_values <- model_utility(d,</pre>

Medical Screening Example

```
x_test = 10
x_follow_up = 50
x_early_treatment = 1000
x_late_treatment = 10000

d$true_positive_value <- -(x_test + x_follow_up + x_early_treatment)
d$false_positive_value <- -(x_test + x_follow_up)
d$true_negative_value <- -x_test
d$false_negative_value <- -(x_test + x_late_treatment)</pre>
```


Find the Best Threshold

threshold	1.06178E-02
count_taken	3704
true_positive_count	95
false_positive_count	3609
true_negative_count	6285
false_negative_count	11
fraction_taken	0.03704
total_value	-490200

Lowest possible cost: \$211,300

Same Model Performance, Different Operational Goals

Medical:
High sensitivity important
False Negatives expensive

Higher specificity preferred False Positives add up

Advanced: Variable Utilities

Takeaways

- Accuracy metrics don't always express how (or whether) a model meets operational goals
- Utilities express model performance in "operational units" (e.g. \$)
 - Quantify tradeoffs between false positives and missed opportunities
- Somewhat more intuitive way to elicit performance goals from stakeholders and business partners

Thank You

