ACT-2001 Introduction à l'actuariat 2

Atelier du 15 janvier 2025 (Semaine 1)

Étienne Marceau avec Jérémie Barde, Ève Busque, Alexandre Dubeau et Philippe Leblanc

> École d'actuariat Université Laval, Québec, Canada

> > 2025-01-15

Avant-propos

Avant-propos

Sources spécifiques pour le contenu des diapos

■ Site du cours sur monportail.ulaval.

Livre de référence

[Cossette and Marceau, 2023].

Diapositives

Logiciel : LATEX

Package : Beamer

■ Éditeurs : Overleaf

Calculs et illustrations

- Toutes les calculs et les illustrations ont été réalisés dans le langage R grâce au logiciel GNU R mis à disposition par le R Project.
- Les codes R ont été conçus dans l'environnement de développement intégré RStudio.

Avant-propos

Les diapositives contiennent du matériel pour le cours Act-2001 qui sera présenté pendant les ateliers au semestre H2024.

Le document de référence est [Cossette and Marceau, 2023].

Table des matières I

- 1 Avant-propos
- 2 Espérance d'une v.a. positive
- 3 Fonction stop-loss
- 4 Fonction quantile
- 5 Exercice 1.7 manipulations en R
- 6 Exercice 1.8 Constante de normalisation

Table des matières II

- 7 Conseils pour la réussite du cours
- 8 Références

Logiciel R

Lois continues paramétriques et logiciel R :

- Loi uniforme : dunif(), punif(), qunif(), runif();
- Loi exponentielle : dexp(), pexp(), qexp(), rexp();
- Loi gamma : dgamma(), pgamma(), qgamma(), rgamma();
- Loi lognormale : dlnorm(), plnorm(), qlnorm(), rlnorm().
- Loi normale : dnorm(), pnorm(), qnorm(), rnorm().
- Loi pareto : dpareto(), ppareto(), qpareto(), rpareto().

Lois discrètes paramétriques et logiciel R :

- Loi Poisson : dpois(), ppois(), qpois(), rpois();
- Loi binomiale négative : dnbinom(), pnbinom(), qnbinom(), rnbinom().
- Loi binomiale : dbinom(), pbinom(), qbinom(), rbinom().

En actuariat, la notion d'espérance est importante.

Par exemple, si la v.a. X représente les coûts pour un contrat d'assurance pour la prochaine année, alors l'espérance de X correspond à la prime pure de ce contrat.

Généralement, la prime chargée pour le contrat est supérieure à l'espérance de X.

Lorsque X est une v.a. continue avec une fonction de densité f_X , l'espérance de X est définie par

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$
 (1)

On a le résultat suivant pour une v.a. continue positive.

Proposition 1

Soit une v.a. X continue positive dont l'espérance existe. Alors, on a

$$E[X] = \int_{0}^{\infty} \overline{F}_{X}(x) dx.$$
 (2)

Démonstration.

De (1), on a

$$E[X] = \int_{0}^{\infty} y f_X(y) dy = \int_{0}^{\infty} \int_{0}^{y} f_X(y) dx dy$$

qui devient

$$E[X] = \int_{0}^{\infty} \int_{x}^{\infty} f_X(y) dy dx = \int_{0}^{\infty} \overline{F}_X(x) dx.$$

On a aussi un résultat similaire pour une v.a. discrète définie sur un support arithmétique $\{0,1h,2h,\dots\}$.

Proposition 2

Soit une v.a. X discrète définie sur le support $\{0,1h,2h,\dots\}$ dont l'espérance existe. Alors, on a

$$E[X] = h \sum_{k=0}^{\infty} \overline{F}_X(kh).$$
 (3)

Démonstration.

On déduit

$$E[X] = \sum_{j=0}^{\infty} jh f_X(jh) = h \sum_{j=0}^{\infty} \sum_{k=1}^{j} f_X(jh)$$

qui devient

$$E[X] = h \sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} f_X(jh) = h \sum_{k=0}^{\infty} \overline{F}_X(kh).$$

Exemple 1

Soit X une v.a. discrète définie sur $\{0, 1, 2, \dots, 100\}$, avec

$$f_X(k) = 0.8 \times {100 \choose k} 0.1^k 0.9^{100-k} + 0.2 \times {100 \choose k} 0.6^k 0.4^{100-k},$$

pour $k = 0, 1, 2, \dots, 100$.

Questions:

- 1 Vérifier à la main et avec \mathbb{Q} que $\sum_{k=0}^{100} f_X(k) = 1$.
- **2** Calculer à la main et avec \mathbb{Q} la valeur E[X].

Exemple 1 - Solution

On a

$$\sum_{k=0}^{\infty} f_X(k) = \sum_{k=0}^{\infty} (0.8 \times {100 \choose k} 0.1^k 0.9^{100-k} + 0.2 \times {100 \choose k} 0.6^k 0.4^{100-k})$$

$$= 0.8 \times \sum_{k=0}^{\infty} {100 \choose k} 0.1^k 0.9^{100-k} + 0.2 \times \sum_{k=0}^{\infty} {100 \choose k} 0.6^k 0.4^{100-k}$$

$$= 0.8 \times 1 + 0.2 \times 1$$

$$= 1$$

Exemple 1 - Solution (suite)

De plus,

$$E[X] = \sum_{k=0}^{\infty} k f_X(k)$$

$$= 0.8 \times \sum_{k=0}^{\infty} k \binom{100}{k} 0.1^k 0.9^{100-k} + 0.2 \times \sum_{k=0}^{\infty} k \binom{100}{k} 0.6^k 0.4^{100-k}$$

$$= 0.8 \times 100 \times 0.1 + 0.2 \times 100 \times 0.6$$

$$= 20$$

Calcul d'espérances en R pour une loi discrète

Soit X une v.a. discrète avec FGP

$$\mathcal{P}_X(t) = 0.2 + 0.4t + 0.3t^2 + 0.1t^3 \text{ pour } t \in (0, 1).$$

- **1** Définir $f_X(k)$ et vérifier que c'est effectivement une fmp.
- 2 Calculer (à la main et avec R)
 - 1 $F_X(1.5)$.
 - 2 Calculer $E[X \times 1_{\{X \leq 1.5\}}]$.
 - 3 Calculer $\pi_X(1.5)$.
 - 4 Calculer $e_X(1.5)$.
 - 5 Définir $E[e^{tX}]$ et calculer $E[e^{tX}]\big|_{t=2}$.

Définition 1

Soit une v.a. X positive dont l'espérance existe. La fonction $stop-loss \ \pi_X \ (d)$ correspond à l'espérance d'une fonction $g \ (x) = \max \ (x-d;0)$ telle que

$$\pi_X(d) = E\left[\max\left(X - d; 0\right)\right],\tag{4}$$

où $d \in \mathbb{R}^{+}$. On note que $\pi_{X}\left(0\right) = E\left[X\right]$.

La fonction $stop-loss\ \pi_X\ (d)$ représente l'espérance des coûts en sinistre en excédant d'une limite, appelée limite de rétention ou franchise.

Si la v.a. X obéit à une loi continue, (4) devient

$$\pi_X(d) = \int_d^\infty (x - d) f_X(x) dx.$$
 (5)

Proposition 3

Soit une v.a. X positive dont l'espérance existe. Alors, on a

$$\pi_X(d) = \int_d^\infty \overline{F}_X(x) \, \mathrm{d}x,\tag{6}$$

pour $d \geq 0$.

Démonstration.

De plus, si la v.a. X est continue positive et en intégrant par partie, l'expression en (5) pour la fonction stop-loss devient

$$\pi_X(d) = \int_d^\infty (x - d) f_X(x) dx$$

$$= -(x - d) \overline{F}_X(x) \Big|_d^\infty + \int_d^\infty \overline{F}_X(x) dx$$

$$= \int_d^\infty \overline{F}_X(x) dx.$$

Si X est une v.a. discrète définie sur le support $\{0,1h,2h,\dots\}$ avec une fonction de masse de probabilité $f_X(kh)$, $k\in\mathbb{N}$, et si $d=hk_0$, $k_0\in\mathbb{N}$, (4) s'écrit comme suit :

$$\pi_X(k_0 h) = \sum_{k=0}^{\infty} \max(kh - k_0 h; 0) f_X(kh) = h \sum_{k=k_0+1}^{\infty} (k - k_0) f_X(kh).$$
 (7)

Pour la prochaine proposition, on rappelle que

$$\overline{F}_X(kh) = \Pr(X > kh) = \sum_{j=k+1}^{\infty} f_X(jh), \qquad (8)$$

pour $k \in \mathbb{N}$.

Proposition 4

Soit une v.a. X discrète définie sur le support $\{0,1h,2h,\dots\}$ dont l'espérance existe. Alors, on a

$$\pi_X(k_0 h) = h \sum_{k=k_0}^{\infty} \overline{F}_X(kh), \qquad (9)$$

pour $k_0 \in \mathbb{N}$.

Démonstration.

À partir de (7), on réarrange la somme en développant chaque terme et en utilisant (8) de la façon suivante :

$$\begin{split} \pi_X\left(k_0h\right) &= h \sum_{k=k_0+1}^{\infty} \left(k-k_0\right) f_X\left(kh\right) \\ &= h \left(1 \times f_X\left(\left(k_0+1\right)h\right) + 2 \times f_X\left(\left(k_0+2\right)h\right) + 3 \times f_X\left(\left(k_0+3\right)h\right) + \ldots\right) \\ &= h \left(f_X\left(\left(k_0+1\right)h\right) + f_X\left(\left(k_0+2\right)h\right) + f_X\left(\left(k_0+3\right)h\right) + \ldots\right) \\ &+ h \left(f_X\left(\left(k_0+2\right)h\right) + f_X\left(\left(k_0+3\right)h\right) + \ldots\right) \\ &+ h \left(f_X\left(\left(k_0+3\right)h\right) + \ldots\right) \\ &+ \ldots \\ &= h \sum_{k=k_0}^{\infty} \sum_{j=k+1}^{\infty} f_X\left(jh\right) \\ &= h \sum_{k=k_0}^{\infty} \overline{F}_X\left(kh\right), \operatorname{pour} k_0 \in \mathbb{N}. \end{split}$$

Exemple 2

[JCA]. Soit $X \sim Binom$ (n=100, q=0.05). Avec \P , calculer $\pi_X(k)$, $k=0,1,2,\ldots,100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 3

[JCA]. Soit $X \sim Pois(\lambda = 5)$. Avec \mathbb{Q} , calculer $\pi_X(k)$, $k = 0, 1, 2, \dots, 100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 4

[JCA]. Soit $X \sim NBinom\left(r=1, q=\frac{1}{6}\right)$. Avec \mathbb{Q} , calculer $\pi_X\left(k\right)$, $k=0,1,2,\ldots,100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 5

[JCA]. Soit $X \sim NBinom\left(r=5, q=\frac{1}{2}\right)$. Avec \mathbb{Q} , calculer $\pi_X\left(k\right)$, $k=0,1,2,\ldots,100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 6

[JCA]. Soit $X \sim NBinom\left(r=\frac{1}{2},q=\frac{1}{11}\right)$. Avec \mathbb{Q} , calculer $\pi_X(k)$, $k=0,1,2,\ldots,100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 7

Soit X une v.a. discrète définie sur $\{0,1,2,\ldots,100\}$, avec

$$f_X(k) = 0.8 \times {100 \choose k} 0.0125^k 0.9875^{100-k} + 0.2 \times {100 \choose k} 0.2^k 0.8^{100-k},$$

pour k = 0, 1, 2, ..., 100. Avec \P , calculer $\pi_X(k)$, k = 0, 1, 2, ..., 100. Montrer le code. Illustrer la courbe des valeurs avec un graphique en bâtons.

Exemple 8

Soit $X \sim Exp\left(\beta = \frac{1}{5}\right)$. Avec \mathbb{R} , calculer $\pi_X\left(d\right)$, $d = 0, 1, 2, \dots, 100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique continue.

Exemple 9

Soit $X \sim Gamma$ ($\alpha = 5, \beta = 1$). Avec \P , calculer π_X (d), d = 0, 1, 2, ..., 100. Montrer le code. Illustrer la courbe des valeurs avec un graphique continue.

Exemple 10

Soit $X \sim Gamma\left(\alpha = \frac{1}{2}, \beta = \frac{1}{10}\right)$. Avec \mathbb{Q} , calculer $\pi_X(d)$, $d = 0, 1, 2, \dots, 100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique continue.

Exemple 11

Soit $X \sim LNorm$ $(\mu = \ln{(5)} - 0.125, \sigma = 0.5)$. Avec \mathbb{Q} , calculer $\pi_X(d)$, $d = 0, 1, 2, \ldots, 100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique continue.

Exemple 12

Soit $X \sim LNorm\left(\mu = \ln{(5)} - \frac{1}{2}, \sigma = 1\right)$. Avec \P , calculer $\pi_X(d)$, $d = 0, 1, 2, \dots, 100$. Montrer le code. Illustrer la courbe des valeurs avec un graphique continue.

Fonction quantile

Fonction quantile

On débute avec la définition de base (et générale) de la fonction quantile.

Définition 2

Soit la v.a. X avec fonction de répartition F_X . On définit la fonction inverse F_X^{-1} de F_X par

$$F_X^{-1}(u) = \inf\{x \in \mathbb{R} : F_X(x) \ge u\},$$
 (10)

pour $u \in (0,1)$.

Par convention, $\inf \emptyset = +\infty$ et $\sup \emptyset = -\infty$. La fonction inverse F_X^{-1} est aussi appelée la fonction quantile de X.

Fonction quantile

La fonction quantile satisfait les propriétés suivantes :

- \mathbf{I} F_X^{-1} est non décroissante (croissante au sens large);
- $\mathbf{Z} F_X^{-1}$ est semi-continue à gauche;
- $F_{X}^{-1}(F_{X}(x)) \leq x;$
- $F_{X}\left(F_{X}^{-1}\left(x\right)\right)\geq u.$

Exemple 13 (Fonction quantile d'une loi discrète quelconque)

Soit une v.a. discrète X dont les valeurs de la fmp sont fournies dans le Tableau 1. Dans ce tableau, c est une constante de normalisation.

$$X$$
 10 9 6 13 17 16 20 $\Pr[X=x]$ 0.3 0.4 0.12 0.06 0.07 0.01 0.04

Tableau – Fmp de X pour l'exercice 13

Si la v.a. X est continue, alors F_X^{-1} correspond à l'unique solution de

$$F_X\left(x_u\right) = u,\tag{11}$$

pour $u \in (0,1)$.

Dans certains cas, il est possible d'inverser aisément la fonction de répartition pour obtenir la fonction quantile.

Exemple 14

Inversion à la main de fonctions de répartition

- $1 X_1 \sim Pareto(\alpha_1, \lambda_1)$
- $\mathbf{Z} \ X_2 \sim Weibull(\tau_2, \lambda_2)$
- $X_3 \sim Log logistique(\lambda_3, \tau_3)$

En R, des fonctions internes sont à notre disposition pour calculer les quantiles de lois usuelles.

Exemple 15

- I Si $X_1 \sim Exp(\lambda = 10)$, $X_2 \sim Pareto(\alpha = 3, \lambda = 0.6)$ et $X_3 \sim Gamma(\alpha = 4, \beta = 0.3)$,
 - **1** Calculer $f_{X_i}(5)$ pour $i \in \{1, 2, 3\}$;
 - $\textbf{2} \ \ \textit{D\'efinir l'expression de } F_{X_i}^{-1}(u), \ \textit{puis \'evaluer en R pour } u \in \{0.9, 0.99\} \ \textit{et } i \in \{1, 2, 3\}.$

On note que la Gamma n'est pas inversible. Ainsi les fonctions R sont plus qu'utiles!

Pour les lois quelconques continues où il est énormément (voir impossible) difficile d'isoler $x=F_X^{-1}(u)$, l'optimisation permet de résoudre

$$F_X(x) = u$$
$$F_X(x) - u = 0$$

En déterminant pour quel x, $F_X(x) = u$, la fonction quantile est ainsi résolue.

Exemple 16

Soit la v.a. continue positive X dont la fonction de répartition est

$$F_X(x) = 0.8 \times \left(1 - e^{-\frac{x}{10}}\right) + 0.2 \times \left(1 - e^{-\frac{x}{60}}\right),$$

pour $x \in \mathbb{R}^+$. [JCA]

- 1 Avec R, tracer la courbe de F_X et de f_X .
- **2** Avec R, calculer les valeurs de $F_X^{-1}(u)$, $u = \frac{j}{100}$, j = 1, 2, ..., 99.

Pour les v.a. discrètes, il suffit d'appliquer directement la dé finition en (10) comme il est illustré dans l'exemple suivant.

Exemple 17

Soit
$$X$$
 une v.a. discrète définie sur $\{0,1,2,\ldots,100\}$, avec
$$f_X(k) = 0.8 \times \binom{100}{k} 0.0125^k 0.9875^{100-k} + 0.2 \times \binom{100}{k} 0.2^k 0.8^{100-k},$$

pour $k = 0, 1, 2, \dots, 100$.

[JCA] Avec R, calculer les valeurs de $F_X^{-1}(u)$, $u=\frac{j}{100}$, $j=1,2,\ldots,99$. Montrer le code. Illustrer la courbe des valeurs avec un graphe continu.

Exercice 1.7 - manipulations en R

Exemple 18

Soit X une v.a. discrète prenant des valeurs dans l'ensemble $A=\{0,1,2,\dots,100\}$ et dont la fmp est

$$f_X(k) = \frac{\left(\frac{5}{5+k}\right)^2 - \left(\frac{5}{6+k}\right)^2}{1 - \left(\frac{5}{106}\right)^2}, \quad k \in A.$$

- Espérance de X.
 - ▶ Développez l'expression de l'espérance de X en termes de la fmp.
 - ► Construisez un code R pour calculer l'espérance de X.
 - Indiquez la valeur de E[X].
- **2** Variance de X.
 - ▶ Développez l'expression de la variance de X en termes de la fmp.
 - ▶ Construisez un code R pour calculer la variance de X.
 - Indiquez la valeur de $\sqrt{Var(X)}$.

Exercice 1.7 - manipulations en R

Exemple (18 - Suite)

- 3 Fonction de répartition.
 - ▶ Développez l'expression de $F_X(k)$, $k \in A$, en termes de la fmp.
 - Construisez un code R pour calculer $F_X(k)$, $k \in A$.
 - Calculez $F_X(30)$.
- 4 Soit $\theta = \int_{0.6}^{0.99} F_X^{-1}(u) du$.
 - Dévelopez l'expression permettant de calculer θ.
 - Calculez et indiquez la valeur de θ .
- lacksquare Fgm de X.
 - lacktriangle Développez l'expression permettant de calculer la fgm de X définie par

$$\mathcal{M}_X(t) = E[e^{tX}], \quad t \ge 0.$$

- ▶ Construisez un code R pour calculer $\mathcal{M}_X(t)$, $t \ge 0$.
- Calculez $\psi_{\rho}(X) = \frac{1}{\rho} \ln(\mathcal{M}_X(\rho))$, pour $\rho \in \{0.001, 0.01, 0.1\}$.

Exercice 1.8 - Constante de normalisation

Exemple 19

Soit une v.a. discrète X dont les valeurs de la fmp sont fournies dans le Tableau 2. Dans ce tableau, c est une constante de normalisation.

\overline{x}	0	10	50	100	200	500	800	1500	4000	10000
$f_X(x)$	100c	4c	10c	20c	30c	50c	25c	12c	6с	3c

Tableau – Fmp de X de l'exercice 19, où c est une constante de normalisation

- La v.a. X représente les pertes pour un risque en assurance dommages.
 - **1** Constante de normalisation c.
 - $lue{}$ Développez l'expression de la constante de normalisation c en termes de la fmp.
 - ► Construisez un code R pour calculer la constante de normalisation c.
 - ▶ Indiquez la constante de normalisation c.

Exemple (19 - Suite)

- **2** Espérance de X.
 - ▶ Développez l'expression de l'espérance de X en termes de la fmp.
 - Construisez un code R pour calculer l'espérance de X.
 - ▶ Indiquez la valeur de E[X].
- $\mathbf{3}$ Variance de X.
 - Développez l'expression de la variance de X en termes de la fmp.
 - Construisez un code R pour calculer la variance de X.
 - ▶ Indiquez la valeur de $\sqrt{Var(X)}$.
- 4 Fonction de répartition.
 - ▶ Développez l'expression de $F_X(x)$, $x \ge 0$, en termes de la fmp.
 - Construisez un code R pour calculer $F_X(x)$, $x \ge 0$.
 - ► Calculez $F_X(x)$, $x \in \{0, 300, 800, 1000, 12000\}$.

Exemple (19 - Suite)

- 5 Fonction quantile.
 - ▶ Développez l'expression de $F_X^{-1}(u)$, $u \in (0,1)$.
 - Construisez un code R pour calculer $F_X(x)$, $F_X^{-1}(u)$, $u \in (0,1)$.
 - ► Calculez $F_X^{-1}(u)$, $u \in \{0.1, 0.5, 0.7, 0.9, 0.99, 0.999\}$.
- 6 Soit $\theta = \int_{0.6}^{0.99} F_X^{-1}(u) du$.
 - Dévelopez l'expression permettant de calculer θ.
 - ightharpoonup Calculez et indiquez la valeur de θ .
- 7 Fgm de X.
 - lacktriangle Développez l'expression permettant de calculer la fgm de X définie par

$$\mathcal{M}_X(t) = E[e^{tX}], \quad t \ge 0.$$

- ▶ Construisez un code R pour calculer $\mathcal{M}_X(t)$, $t \ge 0$.
- ► Calculez $\psi_{\rho}(X) = \frac{1}{\rho} \ln(\mathcal{M}_X(\rho))$, pour $\rho \in \{0.0001, 0.001, 0.01\}$.

Conseils pour la réussite du cours

Conseils pour la réussite du cours

- Éviter le retard + être alerte pendant le cours.
- Exercices traditionnels à faire en R aussi pour les réponses;
- Utiliser des vérifications pour les calculs informatiques;
- Bien comprendre les preuves qui sont présentées;
- Utilise activement le document d'annexes;
- Utiliser les ateliers adéquatement;
- « Essayer » jusqu'à développer l'intuition.

Références

Références |

Cossette, H. and Marceau, E. (2023).

Mathématiques actuarielles du risque : modèles, mesures de risque et méthodes quantitatives.

Monographie.