機械学習の基本的な手順

- 一般的な機械学習の手順
 - 。 前処理・学習・結果の可視化はライブラリによる支援が可能

Pythonによる機械学習の実装

- Pythonを使うメリット
 - 。 データ処理や機械学習のパッケージが充実
 - numpy:多次元配列を効率よく扱う
 - scipy:高度な数値計算
 - pandas: データの読み込み・解析を支援
 - scikit-learn:多くの機械学習アルゴリズム
 - tensorflow:深層学習
 - 。 グラフ表示などの可視化が容易
 - matplotlib:グラフ描画
 - 。 Jupyter Notebookで実行手順を記録しながらコーディングが可能

Pythonによる機械学習の実装

■ scikit-learnを用いた機械学習の手順

scikit-learnを用いた機械学習の手順

- パッケージの読み込み
 - 。 機械学習のコードにはnumpyは必須
 - 。 入力したデータの分析や前処理を行うにはpandasは必須
 - 。 データや結果の可視化を行うにはmatplotlib.pyplotは必須
 - 。 scikit-learnは大きなパッケージではなくクラスや関数を個別に指定

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
```

- サンプルデータ: iris
 - 。 3種類のアヤメ(setosa, versicolor, virginica)を萼(がく; sepal) の長さ・幅、花びら (petal)の長さ・幅の4つの特徴から分類する
 - 。 各クラス50事例ずつで計150事例のデータ数

index	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

- scikit-learnでのデータの持ち方
 - 。 パターン行列:X
 - 全データの特徴ベクトルを列方向に並べたもの
 - irisデータの場合は150事例、4特徴の150行4列の行列
 - 正解:y
 - 正解ラベルを整数値にしてデータの数だけ並べたもの
 - irisデータの場合は150個の数字(0,1,2のいずれか)が並ぶベクトル

■ numpyのndarray (n次元テンソル)として読み込む方法

```
iris = load_iris()
X = iris.data
y = iris.target
print(iris.DESCR)
```

- load_iris関数の戻り値はBunchオブジェクト
 - Bunchオブジェクト
 - 特徴ベクトル, 正解データ, 特徴名, データの説明などのさまざまな情報を属性として持つ
 - 。 Xやyはndarrayなので、scikit-learnの学習データとして用いることができる

- pandasのDataFrameおよびSeriesとして読み込む方法
 - 。 データロード関数の引数:as_frame=True

```
iris = load_iris(as_frame=True)
```

- 。 実データでは、異常値・欠損値・記述ミス・不要な特徴の混入などへの対処が必要
 - → numpyでは不十分
- pandas: データ分析・操作ライブラリ
 - 。 統計的分析: describe, hist, …
 - 。 異常値·欠損値(NA)処理: query, dropna, fillna, …

前処理

- 主成分分析(PCA)
 - 高次元空間上のデータの散らばりをできるだけ保存する低次元空間への写像を求める。
 - 。 データの次元削減に有効

```
pca = PCA(n_components=1) # n_components: 削減後の次元数
X2 = pca.fit transform(X)
             2次元データX
                                               第1主成分軸を表示
                                                                                   1次元データに変換
                                    1.0
1.0
0.5
                                    0.0
0.0
                                   -0.5
-0.5
                                       -1.0
                                                    第1主成分ベクトル u<sub>1</sub>
         共分散行列 \Sigma を計算 \longrightarrow \Sigma = U \Lambda U^{-1}
```

 $\lambda_1 > \lambda_2$

前処理

- t-SNE
 - 。 高次元空間での類似度を反映した低次元空間への写像を求める
 - 。 データの可視化に有効

```
tsne = TSNE(perplexity=5) # perplexity: 考慮する近傍のデータ数(5~50程度の値で全データ数が多いほど大きく)
X3 = tsne.fit_transform(X)
```

t-SNEの考え方

元の高次元空間

- 。 どのくらいの範囲のデータを類似度計算の対象とみなすかをパラメータ perplexity で与える
- 。 データ $m{x}_i$ と $m{x}_j$ の類似度を、 $m{x}_i$ が与えられた時に近傍として $m{x}_j$ を選択する条件付き確率 p_{ij} とする
- 。 p_{ij} : 平均を $m{x}_i$ 、分散をperplexityに基づいて求めた σ^2 とする正規分布に基づいて計算

削減後の低次元空間

- 。 データ $oldsymbol{y}_i$ と $oldsymbol{y}_j$ の類似度 q_{ij} を、自由度1のt分布に基づいて計算
- 。 t分布は正規分布よりも値の大きい範囲が広い

最適化

。 p_{ij} と q_{ij} を近くするために、両分布間の距離(KL-divergence)を最小化するように $Y=\{m{y}_1,\dots,m{y}_n\}$ の位置を逐次更新

$$KL(P,Q) = \sum_i \sum_j p_{ij} \log rac{p_{ij}}{q_{ij}}$$

前処理

- 特徴のスケーリング
 - 。 特徴の各次元のスケールが著しく異なると、特徴の扱いが不公平になる
 - 。 標準化:すべての次元を平均0、分散1に揃える
 - 各次元(軸)に対して平均値を引き、標準偏差で割る

$$x_i' = rac{x_i - m_i}{\sigma_i}$$
 $m_i, \sigma_i : 軸 i の平均、標準偏差$

X_scaled = StandardScaler().fit_transform(X)

- 分割学習法(データ数が多いとき)
 - 。 データを学習用と評価用に適切な割合で分ける

Train Test	
------------	--

。 実験の再現性を確保するためにはrandom_stateを固定しておく

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.33, random_state=7)
```

○ ハイパーパラメータを調整する場合は、学習用・検証用・評価用に分ける

Train	Valid	Test
-------	-------	------

評価基準の設定

- 交差確認法(データ数が少ないとき)
 - 。 データを m 個の集合に分割し、m-1 個の集合で学習、残りの1個の集合で評価を行う
 - 評価する集合を入れ替え、合計 *m* 回評価を行う
 - 。 分割数をデータ数とする場合を一つ抜き法と よぶ
 - 。 学習用データで交差確認によりハイパーパラ メータ調整を行い、評価用データで評価しても よい

■ k-NN法

。 識別したいデータの近傍のk個の学習データを探し、属するクラスの多数決で識別

- k-NN法のパラメータ
 - 。 近傍として探索するデータ数: k
 - kが1の場合にもっとも複雑な境界
 - kが増えるに従って境界は滑らかになるが、大き過ぎると識別性能が低下する
 - 。 距離尺度
 - 通常はユークリッド距離
 - 値を持つ次元が少ない場合はマンハッタン距離
 - 。 探索方法
 - 入力と全データとの距離を計算してソート
 - データが多い場合は事前にデータを木構造化

- 学習を行うインスタンスの生成
 - 。 モデルの構成に関するパラメータ(ハイパーパラメータ)は、インスタンス生成時に与える

clf = KNeighborsClassifier(n_neighbors=3)

。 詳しくはAPIドキュメントを参照

デフォルト引数の値が示されている。*以降は必ずキーワード引数で指定する。

結果の表示

- 学習したモデル
 - 。 式、木構造、ネットワークの重み、etc.
- 性能
 - 。 正解率、適合率、再現率、F值
 - 。グラフ
 - パラメータを変えたときの性能の変化
 - 異なるモデルの性能比較

結果の表示

混同行列

	予測+	予測-
正解+	true positive (TP)	false negative (FN)
正解-	false positive (FP)	true negative (TN)

正解率

- 。 正解の割合。 unbalanced dataには不適 $Accuracy = rac{TP+TN}{TP+FN+FP+TN}$
- 適合率
 - 。 正例の判定が正しい割合 $Precision = rac{TP}{TP+FP}$
- 再現率
 - 。 正しく判定された正例の割合 $Recall = rac{TP}{TP+FN}$
- F値
 - 。 適合率と再現率の調和平均 $F-measure=2 imesrac{Precision imes Recall}{Precision+Recall}$

結果の表示

- 多クラス識別の評価法
 - 。マクロ平均
 - ひとつのクラスを正、残りのクラスを負とした混同行列を作成し、クラスごとの適合率や再現率を求め、平均を計算する
 - すべてのクラスを平等に評価している
 - 。 マイクロ平均
 - クラスごとにTP, FN, FP, TNを求め、それらを足し合わせて適合率や再現率を求める
 - クラス毎の事例数を評価に反映させている

多クラスの識別結果

	予測A	予測B	予測C
正解A			
正解B			
正解C			

クラス毎のTP, FN, FP, TN を計算

マイクロ平均

パイプライン

- パイプラインとは
 - 。 複数の前処理と学習モジュールなど、連続した処理ををパイプラインとして結合して、ひとつの識別 器のインスタンスとみなせる
- パイプラインのメリット
 - 。 処理をカプセル化して実行を簡単にできる
 - 。 ハイパーパラメータ調整を一度に行える
 - 。 テストデータが混入していないことを保証できる

まとめ

- 機械学習の基本的な手順
 - 。前処理
 - 。 標準化、次元削減
 - 。 評価基準の設定
 - 分割法、交差確認法
 - 。学習
 - 。 結果の可視化

実開発ではこれ以前のデータ収集・整理の段階が最も時間がかかることも多い