Hypothesis Testing

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

Basics of Hypothesis Testing

What is a Hypothesis?

One situation among a set of possible situations

Example (Radar)

EM waves are transmitted and the reflections observed.

Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.

What is Hypothesis Testing?

- A statistical framework for deciding which hypothesis is true
- Under each hypothesis the observations are assumed to have a known distribution
- Consider the case of two hypotheses (binary hypothesis testing)

$$\begin{array}{ccc} H_0 & : & \boldsymbol{Y} \sim P_0 \\ H_1 & : & \boldsymbol{Y} \sim P_1 \end{array}$$

Y is the random observation vector belonging to \mathbb{R}^n for $n \in \mathbb{N}$

The hypotheses are assumed to occur with given prior probabilities

$$Pr(H_0 \text{ is true}) = \pi_0$$

 $Pr(H_1 \text{ is true}) = \pi_1$

where $\pi_0 + \pi_1 = 1$.

• Let observation set be $\mathbb R$ and $\mu > 0$

 H_0 : $Y \sim \mathcal{N}(-\mu, \sigma^2)$ H_1 : $Y \sim \mathcal{N}(\mu, \sigma^2)$

- Any point in \mathbb{R} can be generated under both H_0 and H_1
- What is a good decision rule for this hypothesis testing problem which takes the prior probabilities into account?

What is a Decision Rule?

 A decision rule for binary hypothesis testing is a partition of Rⁿ into Γ₀ and Γ₁ such that

$$\delta(\mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{y} \in \Gamma_0 \\ 1 & \text{if } \mathbf{y} \in \Gamma_1 \end{cases}$$

We decide H_i is true when $\delta(\mathbf{y}) = i$ for $i \in \{0, 1\}$

 For the location testing with Gaussian error problem, one possible decision rule is

$$\Gamma_0 = (-\infty, 0]$$
 $\Gamma_1 = (0, \infty)$

and another possible decision rule is

$$\Gamma_0 = (-\infty, -100) \cup (-50, 0)$$

 $\Gamma_1 = [-100, -50] \cup [0, \infty)$

 Given that partitions of the observation set define decision rules, what is the optimal partition?

Which is the Optimal Decision Rule?

- The optimal decision rule minimizes the probability of decision error
- For the binary hypothesis testing problem of H_0 versus H_1 , the conditional decision error probability given H_i is true is

$$\begin{array}{lcl} P_{e|i} & = & \text{Pr}\left[\text{Deciding } H_{1-i} \text{ is true}|H_i \text{ is true}\right] \\ & = & \text{Pr}\left[Y \in \Gamma_{1-i}|H_i\right] \\ & = & 1 - \text{Pr}\left[Y \in \Gamma_i|H_i\right] \\ & = & 1 - P_{c|i} \end{array}$$

Probability of decision error is

$$P_e = \pi_0 P_{e|0} + \pi_1 P_{e|1}$$

Probability of correct decision is

$$P_c = \pi_0 P_{c|0} + \pi_1 P_{c|1} = 1 - P_e$$

Which is the Optimal Decision Rule?

- Maximizing the probability of correct decision will minimize probability of decision error
- · Probability of correct decision is

$$P_{c} = \pi_{0} P_{c|0} + \pi_{1} P_{c|1}$$

$$= \pi_{0} \int_{\Gamma_{0}} p_{0}(y) dy + \pi_{1} \int_{\Gamma_{1}} p_{1}(y) dy$$

$$= \pi_{0} \int_{\Gamma_{0}} p_{0}(y) dy + \pi_{1} \left[1 - \int_{\Gamma_{0}} p_{1}(y) dy \right]$$

$$= \pi_{1} + \int_{\Gamma_{0}} \left[\pi_{0} p_{0}(y) - \pi_{1} p_{1}(y) \right] dy$$

• To maximize P_c , we choose the partition $\{\Gamma_0, \Gamma_1\}$ as

$$\Gamma_0 = \{ y \in \mathbb{R} | \pi_0 p_0(y) \ge \pi_1 p_1(y) \}
\Gamma_1 = \{ y \in \mathbb{R} | \pi_0 p_0(y) < \pi_1 p_1(y) \}$$

• The points y for which $\pi_0 p_0(y) = \pi_1 p_1(y)$ can be in either Γ_0 and Γ_1 (the optimal decision rule is not unique)

• Let $\mu_1 > \mu_0$ and $\pi_0 = \pi_1 = \frac{1}{2}$

 H_0 : $Y \sim \mathcal{N}(\mu_0, \sigma^2)$ H_1 : $Y \sim \mathcal{N}(\mu_1, \sigma^2)$

$$p_0(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_0)^2}{2\sigma^2}}$$

$$p_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_1)^2}{2\sigma^2}}$$

$$p_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu_1)^2}{2\sigma^2}}$$

• Optimal decision rule is given by the partition $\{\Gamma_0, \Gamma_1\}$

$$\Gamma_0 = \{ y \in \mathbb{R} | \pi_0 p_0(y) \ge \pi_1 p_1(y) \}
\Gamma_1 = \{ y \in \mathbb{R} | \pi_0 p_0(y) < \pi_1 p_1(y) \}$$

• For $\pi_0 = \pi_1 = \frac{1}{2}$

$$\Gamma_0 = \left\{ y \in \mathbb{R} \middle| y \le \frac{\mu_1 + \mu_0}{2} \right\}
\Gamma_1 = \left\{ y \in \mathbb{R} \middle| y > \frac{\mu_1 + \mu_0}{2} \right\}$$

- Suppose $\pi_0 \neq \pi_1$
- Optimal decision rule is still given by the partition $\{\Gamma_0, \Gamma_1\}$

$$\Gamma_0 = \{ y \in \mathbb{R} | \pi_0 p_0(y) \ge \pi_1 p_1(y) \}
\Gamma_1 = \{ y \in \mathbb{R} | \pi_0 p_0(y) < \pi_1 p_1(y) \}$$

The partitions specialized to this problem are

$$\Gamma_{0} = \left\{ y \in \mathbb{R} \middle| y \leq \frac{\mu_{1} + \mu_{0}}{2} + \frac{\sigma^{2}}{(\mu_{1} - \mu_{0})} \log \frac{\pi_{0}}{\pi_{1}} \right\}
\Gamma_{1} = \left\{ y \in \mathbb{R} \middle| y > \frac{\mu_{1} + \mu_{0}}{2} + \frac{\sigma^{2}}{(\mu_{1} - \mu_{0})} \log \frac{\pi_{0}}{\pi_{1}} \right\}$$

Suppose $\pi_0 = 0.6$ and $\pi_1 = 0.4$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} + \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$

Suppose $\pi_0 = 0.6$ and $\pi_1 = 0.4$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} + \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$

Suppose $\pi_0 = 0.4$ and $\pi_1 = 0.6$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} - \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$

Suppose $\pi_0 = 0.4$ and $\pi_1 = 0.6$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} - \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$

M-ary Hypothesis Testing

• M hypotheses with prior probabilities π_i , i = 1, ..., M

 H_1 : $\mathbf{Y} \sim P_1$ H_2 : $\mathbf{Y} \sim P_2$: : : H_M : $\mathbf{Y} \sim P_M$

A decision rule for M-ary hypothesis testing is a partition of Γ into M disjoint regions {Γ_i | i = 1,..., M} such that

$$\delta(\mathbf{y}) = i \text{ if } \mathbf{y} \in \Gamma_i$$

We decide H_i is true when $\delta(\mathbf{y}) = i$ for $i \in \{1, \dots, M\}$

· Minimum probability of error rule is

$$\delta_{\mathsf{MPE}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} \pi_i p_i(\mathbf{y})$$

Maximum A Posteriori Decision Rule

• The a posteriori probability of H_i being true given observation \mathbf{y} is

$$P\left[H_i \text{ is true} \middle| \mathbf{y}\right] = \frac{\pi_i \rho_i(\mathbf{y})}{\rho(\mathbf{y})}$$

• The MAP decision rule is given by

$$\delta_{\mathsf{MAP}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} P\left[H_i \text{ is true} \middle| \mathbf{y}\right] = \delta_{\mathsf{MPE}}(\mathbf{y})$$

MAP decision rule = MPE decision rule

Maximum Likelihood Decision Rule

The ML decision rule is given by

$$\delta_{\mathsf{ML}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} p_i(\mathbf{y})$$

- If the *M* hypotheses are equally likely, $\pi_i = \frac{1}{M}$
- The MPE decision rule is then given by

$$\delta_{\mathsf{MPE}}(\mathbf{y}) = \max_{1 < i < M} \pi_i p_i(\mathbf{y}) = \delta_{\mathsf{ML}}(\mathbf{y})$$

For equal priors, ML decision rule = MPE decision rule

Irrelevant Statistics

Irrelevant Statistics

- In this context, the term statistic means an observation
- For a given hypothesis testing problem, all the observations may not be useful

Example (Irrelevant Statistic)

$$\begin{aligned} \textbf{Y} &= \begin{bmatrix} Y_1 & Y_2 \end{bmatrix}^T \\ H_1 : & Y_1 = A + N_1, & Y_2 = N_2 \\ H_0 : & Y_1 = N_1, & Y_2 = N_2 \end{aligned}$$
 where $A > 0$, $N_1 \sim \mathcal{N}(0, \sigma^2)$, $N_2 \sim \mathcal{N}(0, \sigma^2)$.

- If N_1 and N_2 are independent, Y_2 is irrelevant.
- If N_1 and N_2 are correlated, Y_2 is relevant.
- Need a method to recognize irrelevant components of the observations

Characterizing an Irrelevant Statistic

Theorem

For M-ary hypothesis testing using an observation $\mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 & \mathbf{Y}_2 \end{bmatrix}$, the statistic \mathbf{Y}_2 is irrelevant if the conditional distribution of \mathbf{Y}_2 , given \mathbf{Y}_1 and \mathbf{H}_i , is independent of i. In terms of densities, the condition for irrelevance is

$$p(\mathbf{y}_2|\mathbf{y}_1,H_i)=p(\mathbf{y}_2|\mathbf{y}_1) \ \forall i.$$

Proof

$$\begin{split} \delta_{\mathsf{MPE}}(\mathbf{y}) &=& \arg\max_{1 \leq i \leq M} \pi_i p_i(\mathbf{y}) = \arg\max_{1 \leq i \leq M} \pi_i p(\mathbf{y}|H_i) \\ p(\mathbf{y}|H_i) &=& p(\mathbf{y}_1,\mathbf{y}_2|H_i) = p(\mathbf{y}_2|\mathbf{y}_1,H_i) p(\mathbf{y}_1|H_i) \\ &=& p(\mathbf{y}_2|\mathbf{y}_1) p(\mathbf{y}_1|H_i) \\ \delta_{\mathsf{MPE}}(\mathbf{y}) &=& \arg\max_{1 \leq i \leq M} \pi_i p(\mathbf{y}_2|\mathbf{y}_1) p(\mathbf{y}_1|H_i) = \arg\max_{1 \leq i \leq M} \pi_i p(\mathbf{y}_1|H_i) \end{split}$$

Example of an Irrelevant Statistic

Example (Independent Noise)

$$\begin{aligned} \textbf{Y} &= \begin{bmatrix} Y_1 & Y_2 \end{bmatrix}^T \\ H_1 : & Y_1 = A + N_1, & Y_2 = N_2 \\ H_0 : & Y_1 = N_1, & Y_2 = N_2 \end{aligned}$$
 where $A > 0$, $N_1 \sim \mathcal{N}(0, \sigma^2)$, $N_2 \sim \mathcal{N}(0, \sigma^2)$, with N_1, N_2 independent
$$p(y_2|y_1, H_0) &= p(y_2)$$

$$p(y_2|y_1, H_1) &= p(y_2)$$

Example of a Relevant Statistic

Example (Correlated Noise)

$$\begin{split} \textbf{Y} &= \begin{bmatrix} Y_1 & Y_2 \end{bmatrix}^T \\ H_1 : & Y_1 = A + N_1, & Y_2 = N_2 \\ H_0 : & Y_1 = N_1, & Y_2 = N_2 \\ \end{bmatrix} \\ \text{where } A > 0, \ N_1 \sim \mathcal{N}(0, \sigma^2), \ N_2 \sim \mathcal{N}(0, \sigma^2), \ \textbf{C}_Y = \sigma^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \\ p(y_2 | y_1, H_0) &= \frac{1}{\sqrt{2\pi(1 - \rho^2)\sigma^2}} e^{-\frac{(y_2 - \rho y_1)^2}{2(1 - \rho^2)\sigma^2}}, \\ p(y_2 | y_1, H_1) &= \frac{1}{\sqrt{2\pi(1 - \rho^2)\sigma^2}} e^{-\frac{[y_2 - \rho (y_1 - A)]^2}{2(1 - \rho^2)\sigma^2}} \end{split}$$

References

- Section 3.2, Fundamentals of Digital Communication, Upamanyu Madhow, 2008
- Chapter 2, An Introduction to Signal Detection and Estimation,
 H. V. Poor, Second Edition, Springer Verlag, 1994.
- Fundamentals of Statistical Signal Processing, Volume II: Detection Theory, Steven M. Kay, Prentice Hall, 1998.