

Robotics

Path Planning

Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding for non-holonomic systems, control-based sampling, Dubins curves

Marc Toussaint University of Stuttgart Winter 2014/15

Alpha-Puzzle, solved with James Kuffner's RRTs

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep Planning Among Obstacles for Biped Robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2001.

3/61

T. Bretl. Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints: The Free-Climbing Robot Problem. International Journal of Robotics Research, 25(4):317-342, Apr 2006.

S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning. International Journal of Robotics Research, 20(5):378–400, May 2001.

Feedback control, path finding, trajectory optim.

- Feedback Control: E.g., $q_{t+1} = q_t + J^{\sharp}(y^* \phi(q_t))$
- ullet Trajectory Optimization: $\operatorname{argmin}_{q_{0:T}} f(q_{0:T})$
- Path Finding: Find some $q_{0:T}$ with only valid configurations

Outline

- Really briefly: Heuristics & Discretization (slides from Howie CHoset's CMU lectures)
 - Bugs algorithm
 - Potentials to guide feedback control
 - Dijkstra
- Sample-based Path Finding
 - Probabilistic Roadmaps
 - Rapidly Exploring Random Trees
- Non-holonomic systems

"Bug 2" Algorithm

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.
- 3) Leave the obstacle and continue toward the goal

"Bug 2" Algorithm

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.
- 3) Leave the obstacle and continue toward the goal

Better or worse than Bug1?

"Bug 2" Algorithm

- 1) head toward goal on the m-line
- 2) if an obstacle is in the way, follow it until you encounter the m-line again.
- 3) Leave the obstacle and continue toward the goal

"Bug 2" Algorithm

- 1) head toward goal on the m-line
- 2) if an obstacle is in the way, follow it until you encounter the m-line again *closer to the goal*.
- 3) Leave the obstacle and continue toward the goal

Better or worse than Bug1?

BUG algorithms – conclusions

- Other variants: TangentBug, VisBug, RoverBug, WedgeBug, . . .
- only 2D! (TangentBug has extension to 3D)
- Guaranteed convergence
- Still active research:
 - K. Taylor and S.M. LaValle: I-Bug: An Intensity-Based Bug Algorithm

- ⇒ Useful for minimalistic, robust 2D goal reaching
 - not useful for finding paths in joint space

Start-Goal Algorithm: Potential Functions

Repulsive Potential

Total Potential Function

Local Minimum Problem with the Charge Analogy

Potential fields - conclusions

- · Very simple, therefore popular
- In our framework: Combining a goal (endeffector) task variable, with a constraint (collision avoidance) task variable; then using inv. kinematics is exactly the same as "Potential Fields"
- ⇒ Does not solve locality problem of feedback control.

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values >= 2
 - · 0's will only remain when regions are unreachable

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with "0" to the current cell + 1
 - 4-Point Connectivity or 8-Point Connectivity?
 - Your Choice We'll use 8-Point Connectivity in our example

7																		
	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
	3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values >= 2
 - · 0's will only remain when regions are unreachable

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

- You're done
 - Remember, 0's should only remain if unreachable regions exist

						_				_	_			_		
7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	0	1	2	3	4	5	6	7	3 9	9 1	0 1	1 :	12	13	14	15

The Wavefront, Now What?

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two possible shortest paths shown

Dijkstra Algorithm

- Is efficient in discrete domains
 - Given start and goal node in an arbitrary graph
 - Incrementally label nodes with their distance-from-start
- Produces optimal (shortest) paths
- Applying this to continuous domains requires discretization
 - Grid-like discretization in high-dimensions is daunting! (curse of dimensionality)
 - What are other ways to "discretize" space more efficiently?

Sample-based Path Finding

[Kavraki, Svetska, Latombe, Overmars, 95]

[Kavraki, Svetska, Latombe, Overmars, 95]

 $q \in \mathbb{R}^n$ describes configuration $Q_{\text{free}} \text{ is the set of configurations without collision}$

[Kavraki, Svetska, Latombe, Overmars, 95]

Probabilistic Road Map

- generates a graph G = (V, E) of configurations
 - such that configurations along each edges are $\in Q_{\mathsf{free}}$

Given the graph, use (e.g.) Dijkstra to find path from $q_{\rm start}$ to $q_{\rm goal}$.

Probabilistic Road Maps – generation

```
Input: number n of samples, number k number of nearest neighbors
Output: PRM G = (V, E)
 1: initialize V = \emptyset, E = \emptyset
 2: while |V| < n do
                                                   // find n collision free points q_i
 3: q \leftarrow \text{random sample from } Q
 4: if q \in Q_{\text{free}} then V \leftarrow V \cup \{q\}
 5 end while
 6: for all q \in V do
                                       // check if near points can be connected
      N_q \leftarrow k nearest neighbors of q in V
       for all q' \in N_a do
           if path(q, q') \in Q_{free} then E \leftarrow E \cup \{(q, q')\}
       end for
10.
11: end for
```

where path(q, q') is a local planner (easiest: straight line)

Local Planner

tests collisions up to a specified resolution $\boldsymbol{\delta}$

Problem: Narrow Passages

The smaller the gap (clearance ϱ) the more unlikely to sample such points.

PRM theory

(for uniform sampling in *d*-dim space)

• Let $a,b \in Q_{\text{free}}$ and γ a path in Q_{free} connecting a and b.

Then the probability that PRM found the path after n samples is

$$P(\mathsf{PRM\text{-}success}\,|\,n) \geq 1 - \frac{2|\gamma|}{\varrho}\;e^{-\sigma\varrho^d n}$$

$$\begin{split} \sigma &= \frac{|B_1|}{2^d |Q_{\rm free}|} \\ \varrho &= {\rm clearance~of}~\gamma \quad \text{(distance to obstacles)} \\ \text{(roughly: the exponential term are "volume ratios")} \end{split}$$

- This result is called *probabilistic complete* (one can achieve any probability with high enough *n*)
- For a given success probability, n needs to be exponential in d

Other PRM sampling strategies

illustration from O. Brock's lecture

Gaussian: $q_1 \sim \mathfrak{U}$; $q_2 \sim \mathfrak{N}(q_1, \sigma)$; if $q_1 \in Q_{\mathsf{free}}$ and $q_2 \not\in Q_{\mathsf{free}}$, add q_1 (or vice versa). Bridge: $q_1 \sim \mathfrak{U}$; $q_2 \sim \mathfrak{N}(q_1, \sigma)$; $q_3 = (q_1 + q_2)/2$; if $q_1, q_2 \not\in Q_{\mathsf{free}}$ and $q_3 \in Q_{\mathsf{free}}$, add q_3 .

Other PRM sampling strategies

illustration from O. Brock's lecture

Gaussian: $q_1 \sim \mathfrak{U}$; $q_2 \sim \mathfrak{N}(q_1, \sigma)$; if $q_1 \in Q_{\mathsf{free}}$ and $q_2 \not\in Q_{\mathsf{free}}$, add q_1 (or vice versa). Bridge: $q_1 \sim \mathfrak{U}$; $q_2 \sim \mathfrak{N}(q_1, \sigma)$; $q_3 = (q_1 + q_2)/2$; if $q_1, q_2 \not\in Q_{\mathsf{free}}$ and $q_3 \in Q_{\mathsf{free}}$, add q_3 .

- Sampling strategy can be made more intelligence: "utility-based sampling"
- Connection sampling (once earlier sampling has produced connected components)

Probabilistic Roadmaps – conclusions

- Pros:
 - Algorithmically very simple
 - Highly explorative
 - Allows probabilistic performance guarantees
 - Good to answer many queries in an unchanged environment

Cons:

 Precomputation of exhaustive roadmap takes a long time (but not necessary for "Lazy PRMs")

Rapidly Exploring Random Trees

2 motivations:

- Single Query path finding: Focus computational efforts on paths for specific (q_{start}, q_{goal})
- Use actually controllable DoFs to incrementally explore the search space: control-based path finding.

(Ensures that RRTs can be extended to handling differential constraints.)

n = 1

n = 100

n = 300

n = 600

n = 1000

n = 2000

Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size α

Rapidly Exploring Random Trees

RRT growing directedly towards the goal

```
Input: q_{\text{start}}, q_{\text{goal}}, number n of nodes, stepsize \alpha, \beta

Output: tree T = (V, E)

1: initialize V = \{q_{\text{start}}\}, E = \emptyset

2: for i = 0 : n do

3: if \operatorname{rand}(0, 1) < \beta then q_{\text{target}} \leftarrow q_{\text{goal}}

4: else q_{\text{target}} \leftarrow \operatorname{random} sample from Q

5: q_{\text{near}} \leftarrow \operatorname{nearest} neighbor of q_{\text{target}} in V

6: q_{\text{new}} \leftarrow q_{\text{near}} + \frac{\alpha}{|q_{\text{target}} - q_{\text{near}}|} (q_{\text{target}} - q_{\text{near}})

7: if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}

8: end for
```


n = 1

n = 100

n = 200

n = 300

n = 400

n = 500

Bi-directional search

 $\bullet \:$ grow two trees starting from $q_{\rm start}$ and $q_{\rm goal}$

let one tree grow towards the other (e.g., "choose $q_{\sf new}$ of T_1 as $q_{\sf target}$ of T_2 ")

Summary: RRTs

- Pros (shared with PRMs):
 - Algorithmically very simple
 - Highly explorative
 - Allows probabilistic performance guarantees
- Pros (beyond PRMs):
 - Focus computation on single query $(q_{\text{start}}, q_{\text{goal}})$ problem
 - Trees from multiple queries can be merged to a roadmap
 - Can be extended to differential constraints (nonholonomic systems)
- To keep in mind (shared with PRMs):
 - The metric (for nearest neighbor selection) is sometimes critical
 - The local planner may be non-trivial

RRT*

Sertac Karaman & Emilio Frazzoli: Incremental sampling-based algorithms for optimal motion planning, arXiv 1005.0416 (2010).

RRT*

Sertac Karaman & Emilio Frazzoli: Incremental sampling-based algorithms for optimal motion planning, arXiv 1005.0416 (2010).

```
Algorithm 4: Extend<sub>BRT*</sub>(G,x)
V' \leftarrow V : E' \leftarrow E:
2 x<sub>nearest</sub> ← Nearest(G, x);
x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{nearest}, x_{new}) then
           V' \leftarrow V' \cup \{\hat{x}_{now}\}:
           x_{\min} \leftarrow x_{\text{nearest}};
           X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
           for all x_{\text{near}} \in X_{\text{near}} do
                 if ObstacleFree(x_{near}, x_{new}) then
                         c' \leftarrow \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}}));
                         if c' < Cost(x_{new}) then
                               x_{\min} \leftarrow x_{\text{near}};
           E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};
           for all x_{near} \in X_{near} \setminus \{x_{min}\} do
                 if ObstacleFree(x_{new}, x_{near}) and
                 Cost(x_{near}) > Cost(x_{new}) + c(Line(x_{new}, x_{near}))
                  then
                         x_{\text{parent}} \leftarrow \text{Parent}(x_{\text{near}}):
                         E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{near}})\};

E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\};
is return G' = (V', E')
```

References

Steven M. LaValle: *Planning Algorithms*, http://planning.cs.uiuc.edu/.

Choset et. al.: Principles of Motion Planning, MIT Press.

Latombe's "motion planning" lecture, http: //robotics.stanford.edu/~latombe/cs326/2007/schedule.htm

Non-holonomic systems

Non-holonomic systems

 We define a nonholonomic system as one with differential constraints:

$$\dim(u_t) < \dim(x_t)$$
 \Rightarrow Not all degrees of freedom are directly controllable

- Dynamic systems are an example!
- General definition of a differential constraint:
 For any given state x, let Ux be the tangent space that is generated by controls:

$$U_x = \{\dot{x} \ : \ \dot{x} = f(x,u), \ u \in U\}$$
 (non-holonomic $\iff \dim(U_x) < \dim(x)$)

The elements of U_x are elements of T_x subject to additional *differential* constraints.

Car example

$$\begin{split} \dot{x} &= v \, \cos \theta \\ \dot{y} &= v \, \sin \theta \\ \dot{\theta} &= (v/L) \, \tan \varphi \\ |\varphi| &< \Phi \end{split}$$

State
$$q = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}$$
 Controls $u = \begin{pmatrix} v \\ \varphi \end{pmatrix}$

Controls
$$u = \begin{pmatrix} v \\ \varphi \end{pmatrix}$$

Sytem equation

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} v & \cos \theta \\ v & \sin \theta \\ (v/L) & \tan \varphi \end{pmatrix}$$

Car example

 The car is a non-holonomic system: not all DoFs are controlled, dim(u) < dim(q)

We have the *differential constraint* \dot{q} :

$$\dot{x}\sin\theta - \dot{y}\cos\theta = 0$$

"A car cannot move directly lateral."

 Analogy to dynamic systems: Just like a car cannot instantly move sidewards, a dynamic system cannot instantly change its position q: the current change in position is *constrained* by the current velocity q.

Path finding with a non-holonomic system

Could a car follow this trajectory?

This is generated with a PRM in the state space $q=(x,y,\theta)$ ignoring the differntial constraint.

Path finding with a non-holonomic system

This is a solution we would like to have:

The path respects differential constraints.

Each step in the path corresponds to setting certain controls.

Control-based sampling to grow a tree

- Control-based sampling: fulfils none of the nice exploration properties of RRTs, but fulfils the differential constraints:
 - 1) Select a $q \in T$ from tree of current configurations
 - 2) Pick control vector u at random
 - 3) Integrate equation of motion over short duration (picked at random or not)
 - 4) If the motion is collision-free, add the endpoint to the tree

Control-based sampling for the car

- 1) Select a $q \in T$
- 2) Pick v, ϕ , and τ
- 3) Integrate motion from q
- 4) Add result if collision-free

J. Barraquand and J.C. Latombe. Nonholonomic Multibody Robots: Controllability and Motion Planning in the Presence of Obstacles. Algorithmica, 10:121-155, 1993.

car parking

parking with only left-steering

with a trailer

Better control-based exploration: RRTs revisited

RRTs with differential constraints:

```
Input: q_{\text{start}}, number k of nodes, time interval \tau
Output: tree T = (V, E)

1: initialize V = \{q_{\text{start}}\}, E = \emptyset

2: for i = 0 : k do

3: q_{\text{target}} \leftarrow random sample from Q

4: q_{\text{near}} \leftarrow nearest neighbor of q_{\text{target}} in V

5: use local planner to compute controls u that steer q_{\text{near}} towards q_{\text{target}} if q_{\text{new}} \leftarrow q_{\text{near}} + \int_{t=0}^{\tau} \dot{q}(q, u) dt

7: if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}

8: end for
```

- · Crucial questions:
- How meassure near in nonholonomic systems?
- How find controls u to steer towards target?

Metrics

Standard/Naive metrics:

- Comparing two 2D rotations/orientations $\theta_1, \theta_2 \in SO(2)$:
 - a) Euclidean metric between $e^{i\theta_1}$ and $e^{i\theta_2}$
 - b) $d(\theta_1, \theta_2) = \min\{|\theta_1 \theta_2|, 2\pi |\theta_1 \theta_2|\}$
- Comparing two configurations $(x, y, \theta)_{1,2}$ in \mathbb{R}^2 : Eucledian metric on $(x, y, e^{i\theta})$
- Comparing two 3D rotations/orientations $r_1, r_2 \in SO(3)$:

Represent both orientations as unit-length quaternions $r_1, r_2 \in \mathbb{R}^4$:

$$d(r_1, d_2) = \min\{|r_1 - r_2|, |r_1 + r_2|\}$$

where $|\cdot|$ is the Euclidean metric.

(Recall that r_1 and $-r_1$ represent exactly the same rotation.)

Metrics

Standard/Naive metrics:

- Comparing two 2D rotations/orientations $\theta_1, \theta_2 \in SO(2)$:
 - a) Euclidean metric between $e^{i\theta_1}$ and $e^{i\theta_2}$
- b) $d(\theta_1, \theta_2) = \min\{|\theta_1 \theta_2|, 2\pi |\theta_1 \theta_2|\}$
- Comparing two configurations $(x, y, \theta)_{1,2}$ in \mathbb{R}^2 : Eucledian metric on $(x, y, e^{i\theta})$
- Comparing two 3D rotations/orientations $r_1, r_2 \in SO(3)$:

Represent both orientations as unit-length quaternions $r_1, r_2 \in \mathbb{R}^4$:

$$d(r_1, d_2) = \min\{|r_1 - r_2|, |r_1 + r_2|\}$$

where $|\cdot|$ is the Euclidean metric.

(Recall that r_1 and $-r_1$ represent exactly the same rotation.)

Ideal metric:

Optimal cost-to-go between two states x_1 and x_2 :

- Use optimal trajectory cost as metric
- This is as hard to compute as the original problem, of course!!
 - → Approximate, e.g., by neglecting obstacles.

Side story: Dubins curves

- Dubins car: constant velocity, and steer $\varphi \in [-\Phi, \Phi]$
- Neglecting obstacles, there are only six types of trajectories that connect any configuration ∈ R² × S¹:

$$\{LRL, RLR, LSL, LSR, RSL, RSR\}$$

annotating durations of each phase:

$$\begin{split} \{L_{\alpha}R_{\beta}L_{\gamma},,R_{\alpha}L_{\beta}R_{\gamma},L_{\alpha}S_{d}L_{\gamma},L_{\alpha}S_{d}R_{\gamma},R_{\alpha}S_{d}L_{\gamma},R_{\alpha}S_{d}R_{\gamma}\} \\ \text{with } \alpha \in [0,2\pi),\beta \in (\pi,2\pi), d \geq 0 \end{split}$$

Side story: Dubins curves

 \rightarrow By testing all six types of trajectories for (q_1,q_2) we can define a Dubins metric for the RRT – and use the Dubins curves as controls!

Side story: Dubins curves

- \rightarrow By testing all six types of trajectories for (q_1, q_2) we can define a Dubins metric for the RRT and use the Dubins curves as controls!
- Reeds-Shepp curves are an extension for cars which can drive back.
 (includes 46 types of trajectories, good metric for use in RRTs for cars)