

W9D4 – pfSense 10/09/2025

Configurazione reti in VirtualBox

pfSense

In pfSense configureremo due reti distinte, una per Kali e una per Metasploitable

Metasploitable

Metasploitable si troverà dentro una delle 2 reti di pfSense intenet2

Kali

Kali si troverà dentro l'altra delle due reti interne di pfSense intnet

Configurazione interne delle VM

Metasploitable

Metasploitable si troverà dentro una rete (vedi immagine sotto).

```
msfadmin@metasploitable:~$ ifconfig
eth0
           Link encap:Ethernet HWaddr 08:00:27:e4:29:4e inet addr:192.168.51 101 Bcast:192.168.51.255 Mask:255.255.255.0
           inet6 addr: fe80::a00:27ff:fee4:294e/64 Scope:Link
           UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
           RX packets:2 errors:0 dropped:0 overruns:0 frame:0
           TX packets:63 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
RX bytes:128 (128.0 B) TX bytes:5194 (5.0 KB)
           Base address:0xd010 Memory:f0200000-f0220000
           Link encap:Local Loopback
lo
           inet addr:127.0.0.1 Mask:255.0.0.0
           inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
           RX packets:124 errors:0 dropped:0 overruns:0 frame:0
           TX packets:124 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:0
           RX bytes:30789 (30.0 KB) TX bytes:30789 (30.0 KB)
```

Kali

Kali si troverà dentro l'altra rete.

Configurazione pfSense

Kali

Metasploitable

Test Kali > Metasploitable senza regole di firewall

Ping

Facendo un ping da Kali a Metasploitable vediamo che le due macchine comunicano

Traceroute

Con il Traceroute da Kali a Metasploitable notiamo che la comunicazione passa per il firewall pfSense

```
(kali⊗ kali)-[~]
$ traceroute 192.168.51.101
traceroute to 192.168.51.101 (192.168.51.101), 30 hops max, 60 byte packets
1 pfSense.home.arpa (192.168.50.1) 4.911 ms 4.634 ms 4.415 ms
2 192.168.51.101 (192.168.51.101) 6.442 ms 6.224 ms 5.957 ms
```

Wireshark

Anche monitorando i pacchetti del ping su Wireshark notiamo che la destinazione risponde

22 21.092478372	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=4/1024,	ttl=63	(request in 21)	
23 22.090942334	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=5/1280,	ttl=64	(reply in 24)	
24 22.093706053	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=5/1280,	ttl=63	(request in 23)	
25 23.096685756	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=6/1536,	ttl=64	(reply in 26)	
26 23.101350419	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=6/1536,	ttl=63	(request in 25)	
27 24.098765789	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=7/1792,	ttl=64	(reply in 28)	
28 24.102642918	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=7/1792,	ttl=63	(request in 27)	
29 25.100532812	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=8/2048,	ttl=64	(reply in 30)	
30 25.103854871	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=8/2048,	ttl=63	(request in 29)	
31 26.177919760	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=9/2304,	ttl=64	(reply in 32)	
32 26.180732272	192.168.51.101	192.168.50.100	ICMP	98 Echo	(ping) re	eply	id=0x0006,	seq=9/2304,	ttl=63	(request in 31)	
33 27.193514901	192.168.50.100	192.168.51.101	ICMP	98 Echo	(ping) re	equest	id=0x0006,	seq=10/2560,	ttl=64	(reply in 34)	
3/1 27 19622612/	192 168 51 101	192 168 50 100	TCMP	98 Echo	(ning) re	enly	id=0v0006	sen=10/2560	t+1=63	(request in 33)	

DVWA

Accediamo regolarmente a DVWA

Regola di firewall che impedisce a Kali di raggiungere Metasploitable

Configurazione regola in pfSense

Ping

Il ping funzionerà perché l'IP di Metasploitable è raggiungibile, ma non avremo accesso a DWA perché gira sulla porta 80

```
(kali@ kali)-[~]
$ ping 192.168.51.101
PING 192.168.51.101 (192.168.51.101) 56(84) bytes of data.
64 bytes from 192.168.51.101: icmp_seq=1 ttl=63 time=2.75 ms
64 bytes from 192.168.51.101: icmp_seq=2 ttl=63 time=4.39 ms
64 bytes from 192.168.51.101: icmp_seq=3 ttl=63 time=3.03 ms
```


Facendo nmap notiamo che lo stato della porta 80 è filtered

```
(kali® kali)-[~]
$ nmap -p 80 192.168.51.101
Starting Nmap 7.95 ( https://nmap.org ) at 2025-09-10 09:35 EDT
Nmap scan report for 192.168.51.101
Host is up (0.0021s latency).

PORT STATE SERVICE
80/tcp filtered http

Nmap done: 1 IP address (1 host up) scanned in 0.40 seconds
```

Su Wireshark vedremo che il client invia richieste senza ricevere risposta dal server

Dal log di pfSense vedremo inoltre i tentativi di accesso bloccati

×	Sep 9 21:16:29 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:16:59 WAN	Block private networks from WAN block 192.168/16 (12004)	i 🗖 192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:17:29 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:17:52 WAN	Block private networks from WAN block 192.168/16 (12004)	i ☐ 192.168.1.1	1 + 224.0.0.1	IGMP
×	Sep 9 21:17:59 WAN	Block private networks from WAN block 192.168/16 (12004)	192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:18:29 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	192.168.1.255:17500	UDP
×	Sep 9 21:18:59 WAN	Block private networks from WAN block 192.168/16 (12004)	192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:19:29 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:19:58 WAN	Block private networks from WAN block 192.168/16 (12004)	192.168.1.1	1 + 224.0.0.1	IGMP
×	Sep 9 21:20:00 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	1 192.168.1.255:17500	UDP
×	Sep 9 21:20:30 WAN	Block private networks from WAN block 192.168/16 (12004)	i = 192.168.1.17:17500	1 192.168.1.255:17500	UDP