MATH 262 - Homework 7.1

4. Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation:

Reflection about a line L in \mathbb{R}^2

Then find an eigenbasis if you can, and thus determine whether the given transformation is diagonalizable.

Below on the left is a plot of a vector \vec{u} that is on L and a vector \vec{v} that is on L^{\perp} , the line perpendicular to L. On the right is a plot of these vectors reflected about L.

Notice $T(\vec{u})$ remains the same, so it's eigenvalue is 1. $T(\vec{v})$ remains on L^{\perp} , but is going in the opposite direction, so it's eigenvalue is -1. Therefore, the transformation is diagonalizable and

eigenbasis =
$$\{\vec{u}, \vec{v}\}$$
 where $\vec{u} \in L, \vec{v} \in L^{\perp}$