PAT-NO:

JP02002063063A

DOCUMENT-IDENTIFIER: JP 2002063063 A

TITLE:

STORAGE AREA NETWORK MANAGING SYSTEM

PUBN-DATE:

February 28, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

IWATANI, SAWAO N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

FUЛTSU LTD N/A

APPL-NO:

JP2001167946

APPL-DATE: June 4, 2001

PRIORITY-DATA: 2000167482 (June 5, 2000)

INT-CL (IPC): G06F012/00, G06F012/14

ABSTRACT:

PROBLEM TO BE SOLVED: To automatically perform best security management for a SAN(storage area network) by unitarily integrating/managing conventional discrete security methods.

SOLUTION: An integrating/managing mechanism 1 for integrating/managing SAN is installed, so that access relations between hosts 2 and storage devices 4 can be collectively managed by using the managing mechanism 1. Access paths, that is, areas on the storage device 4 side which are to be accessed from the host 2 side, and fiber channel

adaptors(FCAs) and host bus adaptors(HBAs), which are used when the storages are accessed, are set in the mechanism 1. Based on access path information set, the mechanism 1 performs storage settings, a zoning setting, and settings for which area to permit access, for SAN managing mechanism 2a of the hosts 2, a zoning setting mechanism 3a of a switch 3, and storage managing mechanisms 4a of the storage devices 4, respectively.

COPYRIGHT: (C)2002,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2002-63063

(P2002-63063A)

(43)公開日	平成14年2月28日(2002.2.28)	1

(51) Int.Cl.7		識別記号	FΙ		7	7]1*(参考)
G06F	12/00	5 4 5	G06F	12/00	545B	5B017
		5 3 7			537A	5B082
	12/14	3 2 0		12/14	320A	

審査請求 未請求 請求項の数9 OL (全 20 頁)

(21)出願番号	特願2001-167946(P2001-167946)	(71)出願人 000005223
		富士通株式会社
(22)出顧日	平成13年6月4日(2001.6.4)	神奈川県川崎市中原区上小田中4丁目1番
(,		1号
do at head to the transmit him	45.000	
(31)優先権主張番号	特願2000-167482 (P2000-167482)	(72)発明者 岩谷 沢男
(32)優先日	平成12年6月5日(2000.6.5)	神奈川県川崎市中原区上小田中4丁目1番
(33)優先権主張国	日本 (JP)	1号 富士通株式会社内
		(74)代理人 100100930
		弁理士 長澤 俊一郎 (外1名)
		Fターム(参考) 5B017 AA03 BA06 CA07
		トラーム(多号) DBUIT AAUS DAUG CAUT
		5B082 EA11

(54) 【発明の名称】 ストレージエリア・ネットワーク管理システム

(57)【要約】

【課題】 従来の分割されたセキュリティ方式を一元的 に統合管理し、SANにおいて最善のセキュリティ管理 を自動的に行うこと。

【解決手段】 SANを統合制御する統合管理機構1を 設置し、ホスト2とストレージ装置4とのアクセス関係 をこの管理機構1を用いて一括して管理できるようにす る。統合管理機構1にアクセスパス、すなわち、ホスト 2側からアクセスをしようとするストレージ装置4側の 領域と、そのストレージをアクセスする際の使用するフ ァイバチャネルアダプタ(FCA)、ホストバスアダプ タ(HBA)を設定する。設定されたアクセスパス情報 を元に、統合管理機構1は、ホスト2のSAN管理機構 2a、スイッチ3のゾーニング(Zoning)設定機構3a、 ストレージ装置4のストレージ管理機構4aに、それぞ れストージ設定、ゾーニング設定、アクセスをどこの領 域に対して許可するかの設定を行う。

本発明の概要を説明する図

1

【特許請求の範囲】

【請求項1】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介して接続されたストレージ エリア・ネットワーク・システムにおいて、

上記ストレージエリア・ネットワークを統合制御する統 合管理機構を備え、該統合管理機構はホストコンピュー タとストレージ装置とのアクセス経路情報を備えるとと もに、該アクセス経路情報に基づき、ホストコンピュー タのストレージエリア・ネットワーク管理機構に対し チの領域設定機構に対して領域情報を通知し、ストレー ジ装置のストレージ管理機構に対して上記ホストコンピ ュータについてのアクセス制限情報を通知することを特 徴とするストレージエリア・ネットワーク管理システ 4.

【請求項2】 上記統合管理機構は、ストレージエリア ・ネットワークの構成状態を個々の装置より取得して、 ストレージエリア・ネットワークの構成設定情報として 保持し、

定期的もしくは、システム管理者からの指示によって、 現状のストレージエリア・ネットワークの構成状態を集 収し、上記構成設定情報と集収した現状の構成情報とを 比較することにより、ストレージエリア・ネットワーク ・システムの異常を判断することを特徴とする請求項1 のストレージエリア・ネットワーク管理システム。

【請求項3】 上記統合管理機構は、ホストコンピュー タのストレージエリア・ネットワーク管理機構、スイッ チ、および/またはストレージ装置より、アクセス関係 情報を取得して、アクセスパスの整合性を確認し、アク 常として通知することを特徴とする請求項1または請求 項2のストレージエリア・ネットワーク管理システム。 【請求項4】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介して接続され、これらを統 合管理する統合管理機構を備えたストレージエリア・ネ ットワーク・システムにおけるホストコンピュータであ

上記ホストコンピュータのストレージエリアネットワー ク管理機構は、上記統合管理機構から通知されるストレ するアクセス情報を設定することを特徴とするストレー ジエリア・ネットワーク・システムにおけるホストコン ピュータ。

って、

【請求項5】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介して接続され、これらを統 合管理する統合管理機構を備えたストレージエリア・ネ ットワーク・システムにおけるスイッチであって、

上記スイッチの領域設定機構は、上記統合管理機構から 通知される領域情報に基づき領域設定を行うことを特徴 とするストレージエリア・ネットワーク・システムにお 50 レージ装置のストレージ管理機構に対して上記ホストコ

けるスイッチ。

【請求項6】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介して接続され、これらを統 合管理する統合管理機構を備えたストレージエリア・ネ ットワーク・システムにおけるストレージ装置であっ て、

上記ストレージ装置のストレージ管理機構は、上記統合 管理機構から通知されるアクセス制限情報に基づき、ス トレージに対するアクセス制限条件を設定することを特 て、ストレージ装置に対する管理情報を通知し、スイッ 10 徴とするストレージエリア・ネットワーク・システムに おけるストレージ装置。

> 【請求項7】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介して接続されたストレージ エリア・ネットワーク・システムを統合管理する統合管 理機構であって、

上記統合管理機構は、ホストコンピュータのストレージ エリア・ネットワーク管理機構に対して、ストレージ装 置に対する管理情報を通知し、スイッチの領域設定機構 に対して領域情報を通知し、ストレージ装置のストレー 20 ジ管理機構に対して上記ホストコンピュータについての アクセス制限情報を通知することを特徴とするストレー ジエリア・ネットワーク・システムにおける統合管理機 構。

【請求項8】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介してファイバチャネルで接 続されたストレージエリア・ネットワーク・システムを 統合制御する統合管理プログラムであって、

上記統合管理プログラムは、ホストコンピュータとスト レージ装置とのアクセス経路情報に基づき、ホストコン セスパスが正しく設定されていないとき、その部分を異 30 ピュータのストレージエリア・ネットワーク管理機構に 対して、ストレージ装置に対する管理情報を通知する処

> スイッチの領域設定機構に対して領域情報を通知する処 理と、ストレージ装置のストレージ管理機構に対して上 記ホストコンピュータについてのアクセス制限情報を通 知する処理とをコンピュータに実行させ、

> ホストとストレージとのアクセス関係を一括して管理す ることを特徴とするストレージエリア・ネットワーク・ システムを統合制御するプログラム。

ージ装置に対する管理情報に基づきストレージ装置に対 40 【請求項9】 複数のホストコンピュータと複数のスト レージ装置が、スイッチを介してファイバチャネルで接 続されたストレージエリア・ネットワーク・システムを 統合制御する統合管理プログラムを記録した記録媒体で あって、

> 上記統合管理プログラムは、ホストコンピュータとスト レージ装置とのアクセス経路情報に基づき、ホストコン ピュータのストレージエリア・ネットワーク管理機構に 対して、ストレージ装置に対する管理情報を通知し、ス イッチの領域設定機構に対して領域情報を通知し、スト

4/11/06, EAST Version: 2.0.3.0

ンピュータについてのアクセス制限情報を通知し、ホストとストレージとのアクセス関係を一括して管理することを特徴とするストレージエリア・ネットワーク・システムを統合制御するプログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はファイバチャネル・ネットワークを用いて複数のサーバ/複数のストレージを結合するストレージエリア・ネットワーク(以下SANと呼ぶ)の管理システムに関する。

[0002]

【従来の技術】近年、1 台のストレージ・システムの容量が大きくなり、複数の多種多様なサーバから使用できるような機能が求められている。また、データ転送経路に高速かつ複数ホスト・ストレージ間の並列転送が可能なファイバチャネルが普及し始めたことをきっかけに、この環境での接続形体はさらに大規模化すると考えられている。このような複数のサーバ/複数のストレージ結合をストレージエリア・ネットワーク(以下SANという)と呼び、分散化されつつある複数サーバのストレー20ジの一元的管理やTOCの削減を計ろうする試みが進みつつある。

[0003]

【発明が解決しようとする課題】しかしながら、ストレージ内の領域管理や、セキュリティの面で解決しなければならない問題がある。その一つに、SANが複数のホストコンピュータ(以下ホストという)及び複数のストレージ・システムより構成されていた場合に、全てのホストから全てのストレージ・システムがアクセス可能である為に、あるホストから使用しているストレージ内の30データが他のホストから不用意に破壊されてしまう可能性があった。

【0004】ストレージ内の領域管理や、セキュリティの面で完全な対策となるものがないのが現状である。また、SANを構成する複数装置で障害が発生した際、いろいろなエラー報告がシステム管理者に報告される為、被疑箇所を特定することが難しく方法がなかった。本発明は上記事情を考慮してなされたものであって、本発明の目的は、従来の分割されたセキュリティ方式を一元的に統合管理し、SANにおいて最善のセキュリティ管理 40を自動的に行うことができるようにすることである。

[0005]

【課題を解決するための手段】図1は本発明の概要を説明する図である。同図に示すように、本発明は上記SAN環境に対して、SANを統合制御する統合管理機構1を設置し、ホスト2とストレージ装置4とのアクセス関係をこの管理機構1を用いて一括して管理できるようにする。システム管理者は、統合管理機構1にホスト2側からアクセスをしようとするストレージ装置4側の領域と、そのストレージをアクセスする際の使用するファイ

Δ

バチャネル・アダプタ (FCA)、ホストバス・アダプ タ(HBA)を設定する。この設定をアクセスパスと呼 ぶ。設定されたアクセスパス情報を元に、この統合管理 機構1は、まずホスト2側から見えるストレージ設定 (Storage affinity) をホスト2側のSAN管理機構2 aに設定する。また、スイッチ3のゾーニング(Zoning) 設定機構3aに対して、FCA、HBAが保有するWW N. PID情報を事前に確保しておきこれを元に設定さ れたアクセスパスが実現できるように計算してゾーニン 10 グ(Zoning)を設定する。さらに、ストレージ装置4のス トレージ管理機構4aには、ストレージ装置のどのFC AがどこのHBA(WWN, PID)のアクセスをどこ の領域に対して許可するかの設定を行う。上記のような 統合管理機構1を設けることにより、SANにおいて、 セキュリティ管理やストレージ内の領域管理を一括して 行うことができる。また、上記統合管理機構に、SAN の構成状態を構成設定情報1aとして保持させることに より、SANに、SAN管理機能を持たないホストや、 ゾーニング設定機能を持たないスイッチや、あるいはス トレージ管理機能を持たないストレージ装置が投入され ても容易に対応することができ、可能な範囲でセキュリ ティを確保することができる。

【0006】さらに、上記統合管理機構1を設けることにより、以下の機能を実現することができる。

- (1)統合管理機構1が、SANの構成状態を個々の装置より確保して、構成設定情報1aとして格納し、定期的もしくは、システム管理者からのコマンド指示によって、統合管理機構1が、現状のSANの構成状態を読込み、SANの構成設定情報1aと比較し、異なっていた場合は、異常と判断し、システム管理者に通知する。これにより、システム管理者はSANの異常を容易に知ることができる。
- (2)統合管理機構1が、システム管理者からのコマンド指示によって、SAN管理機構2a、Zoning設定機構3a、ストレージ管理機構4aよりアクセス関係情報を確保してアクセスパスの整合性を確認する。アクセスパスが正しく設定されていない場合は、その部分を異常とシステム管理者に通知する。これにより、システム管理者はアクセスパスの整合性を確認することができる。
- (3)ホスト2、ホスト2のHBA、スイッチ3、あるいは、ストレージ装置3のFCAが交換されたとき、上記統合管理機構1はこれを検知し、ホスト2のSAN管理機構2a、スイッチ3のゾーニング設定機構3a、もしくは、ストレージ装置4のストレージ管理機構4aから、交換後の設定情報を取得し、交換前と同等のアクセス関係を構築するように再度アクセス関係を設定する。これにより、SANの構成変更に対して容易に対処することができる。
- と、そのストレージをアクセスする際の使用するファイ 50 (4)システム起動時にアクセスパスが設定されていな

い状態時に、スイッチ3に対して全てのアクセスを許可 しない設定を行う。これにより、システム起動時にアク セスパスを設定していない状態で、不用意なアクセスが 設定されることを防ぐことができる。

- (5)ファイバチャネルではHBAとFCA側で共通に 設定すべきファイバチャネルの転送クラス(Class)とい うパラメータがある。このパラメータがHBA側とFC A側で異なっていると転送ができない。そこで、前記し たアクセスパスを設定する際に、使用する転送クラスも システム管理者に指定させて、統合管理機構1がSAN 10 管理機構2a、ストレージ管理機構4aを通じて、アク セスパスを設定したHBAとFCAが指定された同一の 転送クラスで動作させる。これにより、転送クラスが異 なることにより転送できないという不具合を解消するこ とができる。
- (6) SAN内で障害が発生した場合は、まず、その障 害報告を統合管理機構1が受け取り、システム管理者へ の報告を一端止める。規定時間他の障害が統合管理機構 1が管理している装置から報告されていないかどうかを 待ち合わせする。待ち合わせをしている間に受け取った 20 障害報告に関しては中身をチェックし、最初に受け取っ た障害との関連性がないかを統合管理機構1が保持して いる各アダプタのWWN、PIDやアクセスパス情報か ら確認する。確認結果、関連すると判断された場合は、 予め統合管理機構1内で設定されている障害報告方法定 義に従って、一つのみの障害をシステム管理者に報告す る。システム管理者は、この情報を元に迅速に被疑箇所 を特定することができる。
- (7)1つの被擬箇所と報告するだけでなく、関連して 報告された被擬箇所と判定されなかった報告も、関連障 30 害として報告する。これにより、影響範囲をシステム管 理者は特定することができる。
- (8)予め、統合管理機構1に、各アクセスパスの設定 情報だけでなく各アクセスパスで使用しているホスト2 側の論理ボリュームの情報もホスト2側のSAN管理機 構2aから確保し、統合管理機構1の構成設定情報1a に格納しておく。統合管理機構1は、SAN内から障害 が報告されると、その故障箇所を使用しているアクセス パスを統合管理機構1内の構成設定情報1aから取り出 し、そのアクセスパスを使用しているホスト論理ボリュ 40 ームを取り出し、障害影響のある論理ボリュームをシス テム管理者に報告する。障害影響のある論理ボリューム が分かると、すぐに、その論理ボリュームのリカバリを 行うことができ、業務に対する影響を最小限に止めるこ とができる。

[0007]

【発明の実施の形態】図2に本発明の対象となるSAN システムの構成例を示す。同図に示すように、LAN (ローカルエリア・ネットワーク) に複数台のホストコ

述するSAN総合管理機構として機能する管理サーバS と、前述したスイッチSW-1~SW-m、ストレージ 装置ST、磁気テープ装置MT等が接続される。SAN (ストレージエリア・ネットワーク) は、ホストH-1 ~H-n、スイッチSW、ストレージ装置ST、磁気テ ープ装置MT等で構成されており、各ホストH-1~H -n、スイッチSW-1~SW-n、ストレージ装置S T、磁気テープ装置MTの間にはデータ転送路が設けら れ、該データ転送路を介して各ホストH-1~H-nか らストレージ装置ST等へのアクセスが行われる。ま た、LANを介してSANの構成状態を示す情報等が管 理サーバSに伝送されるとともに、管理サーバSからの 各種設定情報等が各ホストコンピュータH-1~Hn、スイッチSW、ストレージ装置ST等に伝送され る。

【0008】図3は本発明の実施例のストレージエリア ・ネットワーク・システムの構成を示す図である。ここ では、一例としてSANが、ホスト110、120、ス イッチ300、ストレージ装置410、420から構成 されている場合について説明する。図3において、ホス ト110, 120はホストバス・アダプタ(以下HBA という) 111, 112, 121を介してファイバチャ ネルでスイッチ300と接続されており、ストレージ装 置410,420はファイバチャネル・アダプタ(以下 FCAという) 411, 412, 421を介してスイッ チ300と接続されている。図4に図3に示すストレー ジ装置のハードウェア構成例を示す。同図において、サ ブシステム制御部11はチャネルI/F部を介して上位 装置に接続されており、サブシステム制御部11はメモ リ11a、MPU11b、バスインタフェース部11c を備えており、上記MPU11bはメモリ11aに格納 されているプログラムに従って動作する。また、メモリ 11aには、プログラムの他に、転送データや制御デー 夕が格納される。

【0009】13はデバイス制御部であり、デバイス制 御部13は、バッファ13a、MPU13b、上記MP U13bを動作させるプログラム等を格納したメモリ1 3c、バスインタフェース部13dを備えている。上記 サブシステム制御部11とデバイス制御部13はバスB USを介して接続されており、デバイス制御部13はデ バイス I / F部 1 4 を介してディスクドライブ群 1 5 に 接続される。

【0010】上記SAN環境に対して、本実施例では、 SANを統合制御する管理機構500(前記図2の管理 サーバSがこの機能を持つ)を設置し、ホスト110, 120とストレージ装置410,420とのアクセス関 係をこの管理機構500を用いて一括して管理できるよ うにする。また、この管理機構500からの制御に対応 させる為、ホスト側110,120にはSAN管理機構 ンピュータ(以下ホストという) H-1~H-nと、後 50 118, 128を設置し、また、ストレージ装置41

0,420にはストレージ管理機構418,428を設 置する。

【0011】SAN管理機構とは前記a)で説明したス トレージ・アフィニティの設定を行える機構であり、ス トレージ管理機構は前記したc)で説明したホスト・ア フィニティの設定が行える機構である。さらに、スイッ チ300には前記り)で説明したスイッチのゾーニング 設定機構301が搭載される。システム管理者は、SA N統合管理機構500にホスト側からアクセスをしよう とするストレージ側の領域と、そのストレージをアクセ 10 スする際の使用するFCA(ファイバチャネル・アダプ タ), HBA(ホストバス・アダプタ)を設定する。こ の設定をアクセスパスの設定と呼ぶ。設定されたアクセ スパス情報は、このSAN統合管理機構500の中で、 図5(a)に示すSAN統合管理機構500内アクセス パス設定情報の様に格納される。この設定情報を元に、 まずホスト側から見えるストレージ設定(Storage affin ity)をホスト側のSAN管理機構118,128に設定 する。すなわち、どのHABからどのFCA(WWN, PID)へのアクセスを行うかを設定する。

【0012】また、どのHBAからどのFCAに対して アクセスするかの設定は、図5(b)に示すストレージ ・アフィニティ (Storage Affinity) テーブルのような 管理テーブルをホスト内で作成し、アクセスするFCA を選択させる事で実現する。この例では、HBA111 からWWNcのFCAに対して領域415をアクセスす るように設定している。ファイバチャネル上のコマンド は、相手FCAのWWNを介して発行する事が出来る。 さらに、スイッチ300のゾーニング(Zoning)設定機 構301に対して、FCA、HBAが保有するWWN, 30 PID情報を事前に確保しておき、これを元に設定され たアクセスパスが実現できるように計算してゾーニング (Zoning)を設定する。図5(c)にスイッチ・ゾーニ ング (Zoning) テーブルの例を示す。ここではゾーン (Zone)をAとBで設定し、それぞれのゾーン(Zone) に相互アクセスを許可するポート(HBA、FCA)の 識別子(ここではWWN)を格納する。これにより、ス イッチWWN aからアクセスはゾーン(Zone) Aと認識 し、WWNcに対してのみしか実行できないようなアク セス制限を行う。

【0013】ファイバチャネル環境ではスイッチ300 とポートを接続するとログインシーケンスが動作し、そ の中でスイッチはポートのWWN情報を確保できる。こ の情報を元に、ホスト110,120からストレージ装 置410,420にコマンドが発行された場合に、ゾー ン (Zone) 設定されていないポートに対するアクセスが 指定された時、ストレージ装置410,420のポート にコマンドが伝わらないような制御を行う。さらに、ス トレージ装置410、420のストレージ管理機構41

HBA,PIDからのアクセスを、何処の領域に対して 許可するかの設定を行う。図5(d)にホスト・アフィ ニティ(Host affinity) テーブルの例を示す。このテ ーブルにより、FCA411はWWNaのHBAからの アクセスのみを領域415に対して許可し、FCA41 2はWWN eのHBAからのアクセスのみを領域416 に対して許可する。

【0014】ファイバチャネル環境ではホストからのコ マンドを受け付ける前に、ログインシーケンスという相 互のポートの情報をやりとりするシーケンスがあり、そ の中で相手のWWNやPIDなどを確認できる。FCA は、ここで確保した相手のWWNやPIDの情報がアク セス許可されているものかどうかを判断し、アクセス許! 可がされたものに対してのみ処理を継続し、アクセス許 可されていないものからのアクセスに対しては、チェッ クコンディション (Check condition) 等でエラー応答 を行う。なお、SANを構成するホスト装置のなかには SAN管理機構をもたない装置がある。また、ストレー ジ装置内でも前記c)のホスト・アフィニティ機能を提供 していない装置もある。したがって、そのような装置に 対して管理機構500はアクセス関係を設定しないが、 他のセキュリティ方式(Storage Affinity もしくはZoni ng))によってセキュリティは保護される。

【0015】図6によりSAN統合管理機構500が行 う作業のフローチャートとその作業の具体例を説明す る。まず、SAN統合管理機構500は、各FCA、H BAのWWN及びPIDを読み込む(ステップS1)。 図3の例においては、SAN統合管理機構500が例え ばホスト110のHBA111がWWNa, PIDaで あり、ストレージ装置410のFCA411がWWN c, PIDc、FCA412がWWNd, PIDd等で あることを認識する。ついで、SAN統合管理機構50 Oは、HBAからアクセスする予定のFCAと、その配 下の領域を受け付ける(ステップS2)。図3の例にお いては、例えばホスト110のHBA111からストレ ージ装置410のFCA411経由で領域415にアク セスするパス設定を受け付ける。

【0016】次に、当該ホストがストレージ・アフィニ ティ(Storage Affinity)機能をサポートしているかを調 40 べる(ステップS3)。ストレージ・アフィニティ(Sto rageAffinity)機能をサポートしていない場合にはステ ップS5に行く。また、ストレージ・アフィニティ(Sto rage Affinity)機能をサポートしている場合にはステッ プS4において、ストレージ・アフィニティ(Storage A ffinity)機能により、SAN統合管理機構500は、ホ スト側のSAN管理機構に、HBAからアクセスできる デバイスをWWNもしくはPIDを使用して設定する。 例えば図3の例においては、ホスト110のHBA11 1から、ストレージ装置410のFCA411の識別子 8,428には、ストレージ装置410,420のどの 50 であるWWNcもしくはPIDcをアクセスできるよう

にSAN管理機構118に設定する。

【0017】ついで、スイッチがゾーニング(Zoning)機能をサポートしているかを調べる(ステップS5)。ゾーニング機能をサポートしていない場合には、ステップS7にいく。また、ゾーニング(Zoning)機能をサポートしている場合には、ステップS6において、スイッチのゾーニング設定機構により、ゾーニング(Zoning)機能をWWNもしくはPIDを使用して設定する。例えば図3の例においては、ホスト110のHBA111から、ストレージ装置410のFCA411へのアクセスはWW 10Na-WWNcのゾーニング設定、もしくは、PIDaーPIDcのゾーニング設定機構301に設定する。

【0018】次に、ストレージ装置がホスト・アフィニティ(Host Affinity)機能をサポートしているかを調べる。ホスト・アフィニティ機能をサポートしていない場合には、処理を終了する。また、ホスト・アフィニティ機能をサポートしている場合には、ステップS8において、ホスト・アフィニティ機能により、FCAからアクセスを許可するホスト側のHBAのWWNもしくはPIと領域との関係をストレージ装置のストレージ管理機構に設定し、処理を終了する。例えば図3の例においては、ホスト110のHBA111のWWNaもしくはPIDaからのコマンドをストレージ装置410のFCA411で受け付けられるように設定し、さらに、WWNaもしくはPIDaからのコマンドに対しては、領域415をアクセスさせるようにストレージ装置410のストレージ管理機構418に設定する。

【0019】次に、図7のフローチャートによりスイッチ300内のゾーニング(Zoning)設定機構301が行 30 う作業について説明する。まず、ゾーニング(Zoning)設定機構301をゾーニング(Zoning)設定なしの状態(全てのボート間通信許可モード)に設定する(ステップS1)。すなわち、標準でゾーンは設定されず、全てのアクセスが許可されるようになる。次に、ゾーニング(Zoning)設定機構301はSAN統合管理機構500より、全ポート間通信不許可設定を受け付け(ステップS2)、全ポート間通信不許可設定とする(ステップS3)。このように、まず全ポート間通信不許可設定とすることにより、システム起動時、アクセスパスを設定し 40 ていない状態で不用意なアクセスが設定されることを防ぐことができる。

【0020】ついで、SAN統合管理機構500より、 ゾーン設定(ゾーンを構成するWWN群、もしくは、P ID群)を受け付ける(ステップS4)。このゾーン設 定は例えば、システム管理者がSAN統合管理機構50 0を介して行う。上記受け付けたWWN群もしくはPI D群により、ゾーニング(Zoning)設定機構301に新 たなゾーン(Zone)が設定される(ステップS5)。次に スイッチ300は、各ポートに接続された相手ポートの 50

WWNを確保する(ステップS6)。なお、PIDはスイッチ300の物理ポート位置で決まる。ここで、ホストのポートWWNxより相手ポートWWNyへコマンドが発行されると、スイッチ300は上記コマンド(WWNx→WWNy)を受け付ける(スイッチングS7)。そして、ゾーニング(Zoning)設定機構301は、WWNxとWWNyが同一ゾーン(Zone)に設定されている場合には、ホストポートより相手ポートに対してコマンドを通過させる。すなわち、スイッチ300のネームサーバ機能を用いて相手ポートを認識できるようにいない場合には、コマンドを通過させない。すなわち、スイッチ300のネームサーバ機能を用いて相手ポート認識を削除する(ステップS10)。

【0021】次に、上記SAN環境下におけるホストの入出力処理(I/Oオペレーション)の概要について説明する。以下、前記図3によりホスト110,120からI/Oオペレーションが発行された場合の処理例を説明する。なお、ここでは、ホスト110からHBA111、スイッチ300、FCA411を経由して、ストレージ410へのI/Oを行う場合について説明する。まず、ホスト110は、前記図5(b)に示したストレージ・アフィニティ(Storage Affinity)テーブルより、領域415のアクセスはHBA111経由のWWNcを持ったFCAにアクセスする必要があるということを認識する。ホスト110はこの情報を元にHBA111スイッチ300に対しWWNcに対するI/Oとしてファイバチャネルフレーム発行する。

【0022】スイッチ300はHBA111より受け取ったWWN cに対する I / Oのファイバチャネルフレームを確保し、HBA111のWWNaとWWNcが、前記図5(c)のスイッチ・ゾーニング(Zoning)テーブル上同一ゾーン(Zone)であることからアクセスを許可し、WWN cの値が設定されているFCA411に対してファイバチャネルフレームを転送する。FCA411は受け取ったファイバチャネルフレームが、前記図5(d)のホスト・アフィニティ(Host affinity)テーブル内に設定されているWWNaから来たものと認識できるので、これを処理することが可能と判断し、I / Oを実行する。

【0023】次に上記SAN統合管理機構500が有する各種機能について説明する。

(1)SAN構成設定情報との比較によるシステムの異常検出

前記したように、SAN統合管理機構500はSANの 構成情報を個々の装置より確保して、SANの構成設定 情報501を格納する。また、SAN統合管理機構50 0は、定期的にもしくは、システム管理者からのコマン ド指示によって、現状のSANの構成情報を読込み、S ANの構成設定情報501と比較して、異なっていた場 合は、異常と判断してシステム管理者に通知する。例え ば、前記図3の状態時にSANの構成設定情報501を 登録し、その後ストレージ420の電源が落ちてしまっ た場合は、SANの構成状態異常と判断して、システム 管理者にストレージ420が見えなくなっていることを 通知する。

【0024】(2)アクセスパスの整合性の確認 SAN統合管理機構500は、システム管理者からのコ マンド指示によって、SAN管理機構118,128、 ゾーニング(Zoning)設定機構301、ストレージ管理 機構418,428よりアクセス関係情報を確保してア クセスパスの整合性を確認する。アクセスパスが正しく 設定されていない場合は、その部分を異常とシステム管 理者に通知する。この機能によりシステム管理者が勝手 に個々の機器の設定を変えてしまった場合に、異常点を 検出することが可能となる。また、既に、SANがアク セスパスの設定がされた状態で存在し、新たに当該SA N管理論理を組み込む際に、既存のSANのアクセスパ スが正しく設定されているかチェックすることができ る。

【0025】(3)HBAの交換時のアクセス関係の再 設定

ホスト110側のHBA111が故障して新たなHBA に交換された場合、SAN管理機構118はHBA交換 を検知して、システム管理者に通知する。システム管理 者からの構成再設定コマンドによって、SAN管理機構 118はSAN統合管理機構500に交換された新しい HBAのWWNを伝える。SAN統合管理機構500は その新しいWWNを用いてHBA交換前と同等のアクセ 30 ス関係を構築し、二つのアクセス関係を設定する機構 〔ゾーニング(Zoning)設定機構301,ストレージ管 理機構418〕に再度アクセス関係を設定する。

【0026】(4)ホスト交換時のアクセス関係の再設 定

ホスト110が故障して新たなホストに交換された場合 に、ホスト110のSAN管理機構118は設定がなく なっている事を検知して、システム管理者に通知する。 システム管理者からの構成再設定コマンドによって、S AN管理機構118はSAN統合管理機構500に接続 40 HBAI側とFCA側で異なっていると転送ができな されているHBAのWWNを伝え、SAN統合管理機構 500は、そのWWNを用いてHBA交換前と同等のア クセス関係を構築し、二つのアクセス関係を設定する機 構〔ゾーニング(Zoning)設定機構301,ストレージ 管理機構418〕に再度アクセス関係を設定する。

【0027】(5)スイッチ交換時のアクセス関係の再 設定

スイッチ300が故障して交換された際に、スイッチに 設定したゾーニング (Zoning) 情報がなくなっている事 を検出し、システム管理者に通知する。SAN統合管理 50 る装置(ホスト、スイッチ、ストレージ装置)で発生し

12

機構500に、システム管理者からの構成再設定コマン ドによって、新しいスイッチに故障前のアクセス関係を セットさせる機構を設け、このような場合に、SAN統 合管理機構500から、新しいスイッチに故障前のアク セス関係を再設定する。なお、スイッチ300が故障し て交換された際に、スイッチに設定したゾーニング(Zo ning) 情報がなくなっている事を検出するが、システム 管理者には通知せず、自動的にSAN統合管理機構50 Oから新しいスイッチに故障前のアクセス関係をセット させる機構をSAN統合管理機構500に設け、再設定 できるようにしてもよい。

【0028】(6)FCA交換時のアクセス関係の再設 定

ストレージ装置側410のFCA411が故障し交換さ れ、FCA側のWWNが変更されてしまった場合に、こ れを検出しシステム管理者に通知する。システム管理者 からの構成再設定コマンドによって、ストレージ管理機 構418が新しいFCAのWWNを検出してSAN統合 管理機構500に伝え、SAN統合管理機構500はそ の新しいWWNを用いてFCA交換前と同等のアクセス 関係を構築し、二つのアクセス関係を設定する機構〔S A N 管理機構 1 1 8、ゾーニング (Zonig) 設定機構 3 0 1〕に再度アクセス関係を設定する。

【0029】(7)不用意なアクセスの設定の防止 前述したように、システム起動時にアクセスパスを設定 していない状態で、不用意なアクセスが設定されること を防ぐ為に、システム起動時にアクセスパスが設定され ていない状態時に、スイッチに対して全てのアクセスを 許可しない設定を行う。このような設定がないと、全て のSANのストレージに対して全てのホストからアクセ ス出来てしまい、セキュリティ上の問題が生ずることが

(8)ファイバチャネルの転送クラスの設定 ファイバチャネル(FC)ではHBAとFCA側で共通 に設定すべきFCの転送クラス(Class)というパ ラメータがある。転送クラスにはクラス1~3があり、 転送クラス1は殆ど使用されず、転送クラス2は転送 後、アクノリッジを返し、転送クラス3は転送後、アク ノリッジを返さない転送方式である。このパラメータが い。そこで、前記したアクセスパスを設定する際に、使 用するCIassもシステム管理者に指定させて、管理 機構500がSAN管理機構118,128、ストレー ジ管理機構418,428を通じて、アクセスパスを設 定したHBAとFCAが指定された同一のClassで 動作させるようにする。

【0030】次に、上記SAN統合管理機構500を用 いたSANの障害監視について説明する。基本的にSA N統合管理機構500を用いた場合は、SANを構成す

た障害については、装置側からSAN統合管理機構50 〇が装置故障の報告を一括して受け取り、それをシステ ム管理者に報告する手法をとる。しかし、図8に示すよ うに、FCA411で障害が発生した場合、ストレージ 装置410より、FCA411が故障したという報告が SAN統合管理機構500になされるだけでなく、スイ ッチ300からもFCA411か、FCA411に接続 するスイッチポートが異常であるという報告、ホスト1 10側からのHBA111からのアクセスパスが使用で きないという報告が入ってくる。従って、これらの3箇 10 所の障害報告をまとめて、一つの報告としてシステム管 理者に報告する手法が必要であり、以下では、この手法

について説明する。

【0031】SAN内で障害が発生した場合は、まず、 その障害報告をSAN統合管理機構500が受け取り、 システム管理者への報告を一端止める。すなわち、規定 時間(例えば1分間)他の障害がSAN統合管理機構5 00が管理している装置から報告されていないかどうか を待ち合わせする。待ち合わせをしている間に受け取っ た障害報告に関しては中身をチェックし、最初に受け取 20 った障害との関連性がないかをSAN統合管理機構50 Oが保持している各アダプタのWWN、PIDや前記し たアクセスパス情報から確認する。確認の結果、関連す ると判断された場合は、予めSAN統合管理機構500 内で設定されている図9に示すような障害報告方法定義 に従って、一つのみの障害をシステム管理者に報告し、 この情報を元にシステム管理者は迅速な被擬箇所の特定 を行うことができる。

【0032】図9に上記障害報告方法定義の一例を示 〇が受け取った障害情報を示し、右側の欄はSAN総合 管理機構500が行う障害報告内容を示す。例えば、 「FCA自己エラー」と、「スイッチポートアクセスエ

ラー」と「ホスト側アクセスエラー」という障害情報を 受け取った場合、SAN総合管理機構500は障害報告 方法定義に従い、「FCA自己エラー」と判断して、障 害報告を行う。

【0033】以下、図10のフローチャートにより、S AN統合管理機構が行うSANの障害監視機能と、FC AN統合管理機構500が、障害報告を受け取る(ステ ップS1)。例えば、FCA411に障害が発生した場 合、SAN統合管理機構500は、ストレージ装置41 OよりFCA411の障害報告を受け取る。これによ り、SAN統合管理機構500は、他の装置からの障害 報告があるかどうかを一定時間待ち合わせる(ステップ S2)。スイッチ側から障害報告を受け取ると(ステッ プS3)、新たな障害報告の内容と、先ほどの障害報告 とのすり合わせを、WWN等の関連情報から行う(ステ 14

IDcのパスでエラー発生の報告を受け取ると、WWN c、PIDcがFCA411のものであるため、SAN 統合管理機構500は、同一障害であると認識する。 【0034】次に、ホスト側からの障害報告を受け取る と(ステップS5)、新たな障害報告の内容と先ほどの 障害報告の内容とのすり合わせをWWN等の関連情報か ら行う(ステップS6)。例えば、ホスト110からW WNa,PIDaのパスでエラー発生の報告を受ける と、WWNa, PIDaとWWNc, PIDcはアクセ スパス600で連携されていることをSAN統合管理機 構500は認識しているため、同一障害と認識する。上 記待ち合わせを一定時間行い(ステップS7)、一定時 間待ち合わせると、関連情報をすり合わせた結果、障害 の根本原因を特定する(ステップS8)。根本原因の特 定方法はSAN統合管理機構500に含まれる前記障害 報告定義によって行われる。例えば、スイッチ300側

【0035】根本原因が特定されると、根本原因のみを システム管理者に報告する(ステップS9)。例えば、 前記したFCA411障害の場合には、FCA411障 害のみをシステム管理者に報告する。上記説明では、被 擬箇所を報告するだけであったが、これだけでなく、関 連して報告された被擬箇所と判定されなかった報告も、 関連障害として報告するようにしてもよい。これによ り、影響範囲をシステム管理者は特定できることとな る。

の障害とホスト側の障害は、上記障害報告定義により、

ストレージ側のFCA障害と判断する。

【0036】また、予め、SAN統合管理機構500 が、各アクセスパスの設定情報だけでなく各アクセスパ す。同図において、左側の欄はSAN統合管理機構50-30 スで使用しているホスト側の論理ボリュームの情報もホ スト側のSAN管理機構118から確保し、SAN構成 設定情報501に格納しておけば、障害影響のある論理 ボリュームをシステム管理者に報告することができる。 すなわち、SAN統合管理機構500は、SAN内から 障害が報告されると、その故障箇所を使用しているアク セスパスをSAN統合管理機構500内のSAN構成設 定情報501から取り出す。さらに、そのアクセスパス を使用しているホスト論理ボリュームを取り出し、障害 影響のある論理ボリュームをシステム管理者に報告す A411障害報告方法の例について説明する。まず、S 40 る。例えば、FCA411障害の場合には、領域415 は使用不可であることを報告する。システム管理者は、 障害影響のある論理ボリュームがわかると、すぐさまそ の論理ボリュームのリカバリが可能であり、業務影響を 最小限にさせることが実現できる。

【0037】(付記1)複数のホストコンピュータと複 数のストレージ装置が、スイッチを介して接続されたス トレージエリア・ネットワーク・システムにおいて、 上記ストレージエリア・ネットワークを統合制御する統 合管理機構を備え、該統合管理機構はホストコンピュー ップS4)。例えば、スイッチ300からWWNc,P 50 タとストレージ装置とのアクセス経路情報を備えるとと

もに、該アクセス経路情報に基づき、ホストコンピュー タのストレージエリア・ネットワーク管理機構に対し て、ストレージ装置に対する管理情報を通知し、スイッ チの領域設定機構に対して領域情報を通知し、ストレー ジ装置のストレージ管理機構に対して上記ホストコンピ ュータについてのアクセス制限情報を通知することを特 徴とするストレージエリア・ネットワーク管理システ

(付記2)上記統合管理機構は、ストレージエリア・ネ ットワークの構成状態を個々の装置より取得して、スト 10 レージエリア・ネットワークの構成設定情報として保持 し、定期的もしくは、システム管理者からの指示によっ て、現状のストレージエリア・ネットワークの構成状態 を集収し、上記構成設定情報と集収した現状の構成情報 とを比較することにより、ストレージエリア・ネットワ ーク・システムの異常を判断することを特徴とする付記 1のストレージエリア・ネットワーク管理システム。 (付記3)上記統合管理機構は、ホストコンピュータの ストレージエリア・ネットワーク管理機構、スイッチ、 および/またはストレージ装置より、アクセス関係情報 20 を取得して、アクセスパスの整合性を確認し、アクセス パスが正しく設定されていないとき、その部分を異常と して通知することを特徴とする付記1または付記2のス トレージエリア・ネットワーク管理システム。

A.

(付記4)複数のホストコンピュータと複数のストレー ジ装置が、スイッチを介して接続されたストレージエリ ア・ネットワーク・システムであって、上記ストレージ エリア・ネットワークを統合制御する統合管理機構を備 え、該統合管理機構はホストコンピュータとストレージ 装置とのアクセス経路情報を備えるとともに、該アクセ 30 ス経路情報に基づき、ホストコンピュータのストレージ エリア・ネットワーク管理機構に対して、ストレージ装 置に対する管理情報を通知し、スイッチの領域設定機構 に対して領域情報を通知し、ストレージ装置のストレー ジ管理機構に対して上記ホストコンピュータについての アクセス制限情報を通知するストレージエリア・ネット ワーク管理システムにおいて、ホストコンピュータ、ホ ストコンピュータに設けられたホストバス・アダプタ、 スイッチ、あるいは、ストレージ装置に設けられたファ イバチャネル・アダプタが交換されたとき、上記続合管 40 理機構はこれを検知し、上記ホストコンピュータのスト レージエリア・ネットワーク管理機構、スイッチの領域 設定機構、もしくは、ストレージ装置のストレージ管理 機構から、交換後の設定情報を取得し、交換前と同等の アクセス関係を構築するように再度アクセス関係を設定 することを特徴とするストレージエリア・ネットワーク ・システム。

(付記5) ホストコンピュータのホストバス・アダプタ が故障して交換された際、統合管理機構はホストバス・ アダプタの交換を検知して、システム管理者に通知し、 50 備え、該統合管理機構はホストコンピュータとストレー

16

システム管理者からの構成再設定コマンドにより、統合 管理機構1は、ホストコンピュータのストレージエリア ・ネットワーク管理機構に交換された新しいホストバス ・アダプタの設定情報を伝え、該新しい設定情報を用い てホストバス・アダプタ交換前と同等のアクセス関係を 構築し、ストレージエリア・ネットワーク管理機構、領 域設定機構、ストレージ管理機構に再度アクセス関係を 設定することを特徴とする付記4記載のストレージエリ ア・ネットワーク・システム。

(付記6)ホストコンピュータが故障して交換された 際、統合管理機構は、ホストコンピュータのストレージ エリア・ネットワーク管理機構の設定がなくなっている 事を検知して、システム管理者に通知し、システム管理 者からの構成再設定コマンドにより、上記ストレージエ リア・ネットワーク管理機構は統合管理機構に対して接 続されているホストバス・アダプタの設定情報を伝え、 統合管理機構はその情報を用いてホストコンピュータ交 換前と同等のアクセス関係を構築し、領域設定機構、ス トレージ管理機構に再度アクセス関係を設定することを 特徴とする付記4記載のストレージエリア・ネットワー ク・システム。

(付記7)スイッチが故障して交換された際、統合管理 機構は、スイッチに設定した領域設定情報がなくなって いる事を検出し、システム管理者に通知し、システム管 理者からの構成再設定コマンドによって、新しいスイッ チに故障前のアクセス関係をセットさせ、アクセス関係 を再設定できるようにしたことを特徴とする付記4記載 のストレージエリア・ネットワーク・システム。

(付記8)スイッチが故障して交換された際に、スイッ チに設定した領域設定情報がなくなっている事を検出 し、統合管理機構は、自動的に新しいスイッチに故障前 のアクセス関係をセットさせ、アクセス関係を再設定で きるようにしたことを特徴とする付記4記載のストレー ジエリア・ネットワーク・システム。

(付記9)ストレージ装置側のファイバチャネル・アダ プタ交換され、ファイバチャネル・アダプタの設定情報 が変更された場合、統合管理機構は、これを検出し、シ ステム管理者に通知し、システム管理者からの構成再設 定コマンドによって、ストレージ管理機構が新しい設定 情報を統合管理機構に伝え、統合管理機構はその新しい 設定情報を用いて交換前と同等のアクセス関係を構築 し、ストレージエリア・ネットワーク管理機構、領域設 定機構に再度アクセス関係を設定することを特徴とする 付記4記載のストレージエリア・ネットワーク・システ

(付記10)複数のホストコンピュータと複数のストレ ージ装置が、スイッチを介して接続されたストレージエ リア・ネットワーク・システムであって、上記ストレー ジエリア・ネットワークを統合制御する統合管理機構を

18

ジ装置とのアクセス経路情報を備えるとともに、該アクセス経路情報に基づき、ホストコンピュータのストレージエリア・ネットワーク管理機構に対して、ストレージ装置に対する管理情報を通知し、スイッチの領域設定機構に対して領域情報を通知し、ストレージ装置のストレージ管理機構に対して上記ホストコンピュータについてのアクセス制限情報を通知するストレージエリア・ネットワーク管理システムにおいて、システム起動時であって、アクセス経路情報が設定されていない状態の時に、上記統合管理機構はスイッチの領域設定機構に対して全10てのアクセスを許可しない設定を行い、その後スイッチの領域設定機構に対して領域設定を行うことを特徴とするストレージエリア・ネットワーク・システム。

(付記11)複数のホストコンピュータと複数のストレ ージ装置が、スイッチを介して接続されたストレージエ リア・ネットワーク・システムであって、上記ストレー ジエリア・ネットワークを統合制御する統合管理機構を 備え、該統合管理機構はホストコンピュータとストレー ジ装置とのアクセス経路情報を備えるとともに、該アク セス経路情報に基づき、ホストコンピュータのストレー 20 ジエリア・ネットワーク管理機構に対して、ストレージ 装置に対する管理情報を通知し、スイッチの領域設定機 構に対して領域情報を通知し、ストレージ装置のストレ ージ管理機構に対して上記ホストコンピュータについて のアクセス制限情報を通知するストレージエリア・ネッ トワーク管理システムにおいて、上記統合管理機構は、 指定されたファイバチャネルの転送クラスを、アクセス 経路情報を設定したホストコンピュータのストレージエ リア・ネットワーク管理機構、ストレージ装置のストレ ージ管理機構を介して設定し、ホストコンピュータのホ 30 ストバス・アダプタ、ストレージ装置のファイバチャネ ル・アダプタを同一の転送クラスで動作させることを特 徴とするストレージエリア・ネットワーク・システム。 (付記12)複数のホストコンピュータと複数のストレ ージ装置が、スイッチを介して接続されたストレージエ リア・ネットワーク・システムであって、上記ストレー ジエリア・ネットワークを統合制御する統合管理機構を 備え、該統合管理機構はホストコンピュータとストレー ジ装置とのアクセス経路情報を備えるとともに、該アク セス経路情報に基づき、ホストコンピュータのストレー 40 ジエリア・ネットワーク管理機構に対して、ストレージ 装置に対する管理情報を通知し、スイッチの領域設定機 構に対して領域情報を通知し、ストレージ装置のストレ ージ管理機構に対して上記ホストコンピュータについて のアクセス制限情報を通知するストレージエリア・ネッ トワーク管理システムにおいて、ストレージエリア・ネ ットワーク・システム内で障害が発生した際、上記統合 管理機構は、障害報告を受け取り、規定時間の間、他の 障害が報告されているか否かを待ち合わせ、その間に受

害報告との関連性を調べ、関連性があると判断されたとき、予め上記統合管理機構内で設定されている障害報告 方法定義に従って、1つの障害箇所のみを報告すること を特徴とするストレージエリア・ネットワーク・システム。

(付記13)1つの障害箇所に加えて、受け取った関連する障害報告を関連障害として報告することを特徴とする付記12記載のストレージエリア・ネットワーク・システム。

(付記14) 上記統合管理機構は、各アクセス経路情報の設定情報に加えて、各アクセスパスで使用しているホスト側の論理ボリュームの情報をホストコンピュータのストレージエリア・ネットワーク管理機構から取得して保持し、ストレージエリア・ネットワーク・システム内から障害が報告されたとき、該障害箇所を使用しているアクセス経路情報に基づき、該アクセスパスを使用している論理ボリュームを取り出し、障害影響のある論理ボリュームを報告することを特徴とする付記12記載のストレージエリア・ネットワーク・システム。

(付記15)複数のホストコンピュータと複数のストレージ装置が、スイッチを介して接続され、これらを統合管理する統合管理機構を備えたストレージエリア・ネットワーク・システムにおけるホストコンピュータであって、上記ホストコンピュータのストレージエリアネットワーク管理機構は、上記統合管理機構から通知されるストレージ装置に対する管理情報に基づきストレージ装置に対するアクセス情報を設定することを特徴とするストレージエリア・ネットワーク・システムにおけるホストコンピュータ。

(付記16)複数のホストコンピュータと複数のストレージ装置が、スイッチを介して接続され、これらを統合管理する統合管理機構を備えたストレージエリア・ネットワーク・システムにおけるスイッチであって、上記スイッチの領域設定機構は、上記統合管理機構から通知される領域情報に基づき領域設定を行うことを特徴とするストレージエリア・ネットワーク・システムにおけるスイッチ。

(付記17)複数のホストコンピュータと複数のストレージ装置が、スイッチを介して接続され、これらを統合管理である管理機構を備えたストレージエリア・ネットワーク・システムにおけるストレージ装置であって、上記ストレージ装置のストレージ管理機構は、上記統合管理機構から通知されるアクセス制限情報に基づき、ストレージに対するアクセス制限条件を設定することを特徴とするストレージエリア・ネットワーク・システムにおけるストレージ装置。

ットワーク・システム内で障害が発生した際、上記統合 (付記18)複数のホストコンピュータと複数のストレ 管理機構は、障害報告を受け取り、規定時間の間、他の ージ装置が、スイッチを介して接続されたストレージエ 障害が報告されているか否かを待ち合わせ、その間に受 リア・ネットワーク・システムを統合管理する統合管理 け取った障害報告をチェックして、最初に受け取った障 50 機構であって、上記統合管理機構は、ホストコンピュー

タのストレージエリア・ネットワーク管理機構に対して、ストレージ装置に対する管理情報を通知し、スイッチの領域設定機構に対して領域情報を通知し、ストレージ装置のストレージ管理機構に対して上記ホストコンピュータについてのアクセス制限情報を通知することを特徴とするストレージエリア・ネットワーク・システムにおける統合管理機構。

(付記19)複数のホストコンピュータと複数のストレージ装置が、スイッチを介してファイバチャネルで接続されたストレージエリア・ネットワーク・システムを統 10 合制御する統合管理プログラムであって、上記統合管理プログラムは、ホストコンピュータとストレージ装置とのアクセス経路情報に基づき、ホストコンピュータのストレージエリア・ネットワーク管理機構に対して、ストレージ装置に対する管理情報を通知する処理と、スイッチの領域設定機構に対して領域情報を通知する処理と、ストレージ装置のストレージ管理機構に対して上記ホストコンピュータについてのアクセス制限情報を通知する処理とをコンピュータに実行させ、ホストとストレージとのアクセス関係を一括して管理することを特徴とするストレージエリア・ネットワーク・システムを統合制御するプログラム。

[0038]

【発明の効果】以上説明したように、本発明においては、SANにストレージエリア・ネットワークを統合制 40 御する統合管理機構を設け、ホストとストレージとのアクセス関係を上記統合管理機構により一括して管理するようにしたので、以下の効果を得ることができる。

(1)信頼性の高い一元管理されたSANシステムを構築することができる。また、前記したホスト・アフィニティ、ゾーニング等の機能を持っていない、過去のシステムに対しても対応できるので、全て新しいシステムを購入してSANを構築することが動作環境の必須条件とならない。

20

- (2) SANの異常や、アクセスパスの整合性を容易に 確認することができる。
- (3) SANを構成するホスト、HAB、スイッチ、ストレージ装置、FCA等が交換され、SANの構成状態が変更されても容易に対応することができる。
- (4) SANに異常が発生した場合、被疑箇所やその影響範囲を容易に特定することができ、業務影響を最小限に止めることができる。

【図面の簡単な説明】

- 0 【図1】本発明の概要を説明する図である。
 - 【図2】本発明の対象となるSANシステムの構成例を 示す図である。
 - 【図3】本発明の実施例のSAN管理システムの構成を示す図である。
 - 【図4】ストレージ装置のハードウェア構成例を示す図である。
 - 【図5】アクセスパス設定情報、ストレージ・アフィニティ・テーブル、スイッチ・ゾーニングテーブル、ホスト・アフィニティ・テーブルの例を示す図である。
 - 【図6】SAN統合管理機構が行う処理のフローチャートを示す図である。
 - 【図7】ゾーニング設定機構が行う処理のフローチャートを示す図である。
 - 【図8】SANの障害管理を説明する図である。

統合管理機構

構成設定情報

- 【図9】障害報告方法定義の一例を示す図である。
- 【図10】SAN統合管理機構が行うSANの障害監視機能のフローチャートである。

【符号の説明】

,	1 a	何以改足IHTX
	2	ホスト
	2 a	SAN管理機構
	3	スイッチ
	3 a	ゾーニング(Zoning)設定機構
	4	ストレージ装置
	4 a	ストレージ管理機構
	110,120	ホスト
	111,112	ホストバス・アダプタ(HBA)
	1 2 1	ホストバス・アダプタ(HBA)
)	300	スイッチ
	301	ゾーニング設定情報
	410,420	ストレージ装置
	411,421	ファイバチャネル・アダプタ(FC
	A)	
	421	ファイバチャネル・アダプタ(FC
	A)	
	418,428	ストレージ管理機構
		on a situal A Antonio DV Life

SAN統合管理機構

SAN構成設定情報

500

501

【図1】 本発明の概要を説明する図

【図9】 障害報告方法定義の一例を示す図

受け取った障害情報	障害報告內容
FCA自己エラー+スイッチボートエラー+ ススト側アタセスパスエラー	FCA自己エラー
スイッチポートエラー+ホスト側アタセスパスエラー	スイッチネ゙ートエラー

【図2】 本発明の対象となるSANシステムの構成例を示す図

【図3】 本発明の実施例のSAN管理システムの構成を示す図

【図4】 本発明の実施例のストレージ装置のハードウェア構成例を示す図

【図5】

アクセスパス設定情報、ストレージ・アフィニティ・テーブル、 スイッチ・ゾーニングテーブル、ホスト・アフィニティ・テーブル の例を示す図

(a)SAN統合管理機構内のアクセスパス設定情報

7タセスパ ス	ホスト	HBA (WWN, PID)	ストレージ装置	FCA (WWN, PID)	領域
600	110	111 (WWNa, PIDa)	410	411 (WWNc, PIDc)	415
601	120	121 (WWNa, PIDa)	410	412 (WWNd, PIDd)	416

(b)Storage Affinityテープル(ホスト110の場合)

НВА	アクセス先FCAの情報	FCA配下のアクセスする領域
111	WWN c	415
112	なし	なし

(c)スイッチZoningテープル(スイッチ300場合)

Zone名	Zoning設定
A	WWN a, WWN c
В	WWN e, WWN d

(d)Host Affinityテーブル(ストレージ410の場合)

FCA	アクセス許可HBAの情報	対応する領域
411	WWN a	415
412	WWN e	416

【図6】 SAN統合管理機構が行う処理のフローチャートを示す図

【図7】 ソーニング設定機構が行う処理のフローチャートを示す図

【図8】 SANの障害管理を説明する図

【図10】 SAN統合管理機構が行うSANの障害監視機能の フローチャート

