Markov Decision Processes 1

Question

How would you get groceries on a Saturday afternoon in the least amount of time?

	order grocery delivery
	bike to the store
-	drive to the store
	Uber/Lyft to the store
	fly to the store

Course plan

Outline

MDPs: overview

MDPs: modeling

MDPs: policy evaluation

MDPs: value iteration

MDPs: Summary

So far: search problems

deterministic

state s, action a \longrightarrow state Succ(s, a)

Uncertainty in the real world

Applications

Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.

Resource allocation: decide what to produce, don't know the customer demand for various products

Agriculture: decide what to plant, but don't know weather and thus crop yield

History

MDPs: Mathematical model for decision making under uncertainty.

• MDPs were first introduced in the 1950s-60s.

• Ronald Howard's book on Dynamic Programming and Markov Processes

• The term 'Markov' refers to Andrey Markov as MDPs are extensions of Markov Chains, and they allow making decisions (taking actions or having choice).

Volcano crossing

Run (or press ctrl-enter)

	-50	20
	-50	
2		

CS221 16

Roadmap

Modeling

Learning

Modeling MDP Problems Intro to Reinforcement Learning

Algorithms

Model-Based Monte Carlo

Policy Evaluation

Model-Free Monte Carlo

Value Iteration

SARSA

Q-learning

Epsilon Greedy

Function Approximation

Outline

MDPs: overview

MDPs: modeling

MDPs: policy evaluation

MDPs: value iteration

MDPs: Summary

Dice game

CS221

Example: dice game-

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Rewards

If follow policy "stay":

Expected utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

Rewards

If follow policy "quit":

Expected utility:

$$1(10) = 10$$

MDP for dice game

Example: dice game-

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- \bullet If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Markov decision process

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

 $T(s,a,s^\prime)$: probability of s^\prime if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

 $\mathsf{IsEnd}(s)$: whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Search problems

Definition: search problem-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

Succ(s, a): where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s

 $\mathsf{IsEnd}(s)$: whether at end

- $Succ(s, a) \Rightarrow T(s, a, s')$
- $Cost(s, a) \Rightarrow Reward(s, a, s')$

Transitions

Definition: transition probabilities-

The **transition probabilities** T(s, a, s') specify the probability of ending up in state s' if taken action a in state s.

Probabilities sum to one

For each state s and action a:

$$\sum_{s' \in \mathsf{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in \mathsf{States}$ to an action $a \in \mathsf{Actions}(s)$.

Outline

MDPs: overview

MDPs: modeling

MDPs: policy evaluation

MDPs: value iteration

MDPs: Summary

CS221 40

Evaluating a policy

Definition: utility-

Following a policy yields a random path.

The **utility** of a policy is the (discounted) sum of the rewards on the path (this is a random variable).

```
Path (dice game)
Utility
[in; stay, 4, end]
4
[in; stay, 4, in; stay, 4, in; stay, 4, end]
12
[in; stay, 4, in; stay, 4, end]
8
[in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]
16
```


Definition: value (expected utility)

The value of a policy at a state is the expected utility.

Evaluating a policy: volcano crossing

Run (or press ctrl-enter)

2.4	-0.5 	-50	40
3.7-	4- 5	-50	31
2	12.6	16.3>	26.2

(2,1) E -0.1 (2,2) S -0.1 (3,2) E -0.1 (3,3) E-50.1 (2,3)

Value: 3.73

Utility: -36.79

Discounting

Definition: utility-

Path: $s_0, a_1r_1s_1, a_2r_2s_2, \ldots$ (action, reward, new state).

The **utility** with discount γ is

$$u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

Discount $\gamma = 1$ (save for the future):

[stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount $\gamma = 0$ (live in the moment):

[stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay]: $4+\frac{1}{2}\cdot 4+\frac{1}{4}\cdot 4+\frac{1}{8}\cdot 4=7.5$

Policy evaluation

Definition: value of a policy-

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Definition: Q-value of a policy-

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .

Policy evaluation

Plan: define recurrences relating value and Q-value

$$V_{\pi}(s) = \begin{cases} 0 & \text{if IsEnd}(s) \\ Q_{\pi}(s, \pi(s)) & \text{otherwise.} \end{cases}$$

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

CS221

Dice game

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}(\mathsf{end}) = 0$$

$$V_{\pi}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}(\mathsf{in}))$$

In this case, can solve in closed form:

$$V_{\pi}(\mathsf{in}) = 12$$

Policy evaluation

Key idea: iterative algorithm

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

Algorithm: policy evaluation

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \ldots, t_{PE}$:

For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s, \pi(s))}$$

Policy evaluation implementation

How many iterations (t_{PE}) ? Repeat until values don't change much:

$$\max_{s \in \mathsf{States}} |V_\pi^{(t)}(s) - V_\pi^{(t-1)}(s)| \le \epsilon$$

Don't store $V_{\pi}^{(t)}$ for each iteration t, need only last two:

$$V_{\pi}^{(t)}$$
 and $V_{\pi}^{(t-1)}$

Complexity

Algorithm: policy evaluation-

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state *s*:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s, \pi(s), s') [\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s, \pi(s))}$$

-MDP complexity-

S states

A actions per state

S' successors (number of s' with T(s,a,s')>0)

Time: $O(t_{PE}SS')$

Policy evaluation on dice game

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}^{(t)}(\mathsf{end}) = 0$$

$$V_{\pi}^{(t)}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{in}))$$

$$egin{bmatrix} s & \text{end} & \text{in} \\ V_\pi^{(t)} & 0.00 & 12.00 \end{bmatrix} (t=100 \text{ iterations})$$

Converges to $V_{\pi}(in) = 12$.

Summary so far

• MDP: graph with states, chance nodes, transition probabilities, rewards

Policy: mapping from state to action (solution to MDP)

• Value of policy: expected utility over random paths

Policy evaluation: iterative algorithm to compute value of policy

Outline

MDPs: overview

MDPs: modeling

MDPs: policy evaluation

MDPs: value iteration

MDPs: Summary

CS221 64

- If we are given a policy π , we now know how to compute its value $V_{\pi}(s_{\text{start}})$. So now, we could just enumerate all the policies, compute the value of each one, and take the best policy, but the number of policies is exponential in the number of states (A^S to be exact), so we need something a bit more clever.
- We will now introduce value iteration, which is an algorithm for finding the best policy. While evaluating a given policy and finding the best policy might seem very different, it turns out that value iteration will look a lot like policy evaluation.

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value-

The **optimal value** $V_{\mathrm{opt}}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\mathrm{opt}}(s,a) = \sum_{s'} T(s,a,s') [\mathsf{Reward}(s,a,s') + \gamma V_{\mathrm{opt}}(s')].$$

Optimal value from state s:

$$V_{\text{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{lsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies

Given Q_{opt} , read off the optimal policy:

CS221

$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

Value iteration

Algorithm: value iteration [Bellman, 1957]-

Initialize $V_{\text{opt}}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \ldots, t_{VI}$:

For each state *s*:

$$V_{\text{opt}}^{(t)}(s) \leftarrow \max_{a \in \text{Actions}(s)} \underbrace{\sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t-1)}(s')]}_{Q_{\text{opt}}^{(t-1)}(s, a)}$$

Time: $O(t_{VI}SAS')$

Value iteration: dice game

s end in $V_{\rm opt}^{(t)} \quad 0.00 \quad 12.00 \ (t=100 \ {\rm iterations})$ $\pi_{\rm opt}(s)$ - stay

CS221 7

Value iteration: volcano crossing

Run (or press ctrl-enter)

	-50	20
	-50	
2		

CS221 78

Convergence

Theorem: convergence-

Suppose either

- discount $\gamma < 1$, or
- MDP graph is acyclic.

Then value iteration converges to the correct answer.

Example: non-convergence

discount $\gamma=1$, zero rewards

Outline

MDPs: overview

MDPs: modeling

MDPs: policy evaluation

MDPs: value iteration

MDPs: Summary

Summary

• Markov Decision Processes (MDPs): models for coping with uncertainty

• solutions: policies rather than paths

• Policy evaluation: (MDP, π) $\to V_{\pi}$

• Value iteration: MDP $\to (Q_{\sf opt}, \pi_{\sf opt})$

Unifying idea

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- Value iteration computes optimal value $V_{\text{opt}}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = \cdots V_{\pi}(s') \cdots$)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)