Tópico 1: Conceitos de Probabilidade - Experimento Aleatório; Espaço de Probabilidade; Probabilidade Condicional e Independência. Teorema de Bayes

Ben Dêivide

6 de outubro de 2021

Quando desejamos compreender algum fenômeno da natureza, tentamos estudá-lo por meio de um processo de observação chamado experimento. Para o nosso estudo, definimos

Definição 1 (Experimento Aleatório). Todo experimento cujo resultado não pode ser previsto antes de sua execução, é chamado de experimento aleatório.

Podemos apresentar alguns exemplos.

Exemplo 1. Lançar um dado equilibrado e observar o resultado obtido na face superior do dado.

Exemplo 2. Observar o número de chamadas telefônicas que chegam a uma central telefônica em um determinado intervalo de tempo.

Exemplo 3. Para a escolha ao acaso de uma lâmpada que acabou de sair do processo de fabricação, verificar o tempo de duração da lâmpada em funcionamento.

Por mais que não seja possível prever o resultado antes de sua execução, sabemos que diversos resultados possíveis podem ocorrer. Assim, definimos,

Definição 2 (Espaço amostral). O conjunto de todos os resultados possíveis de um experimento, denotado por Ω , é chamado de espaço amostral.

Cada resultado de Ω é chamado de ponto ou elemento amostral. Denotamos o elemento por w, e expressar $w \in \Omega$, isto é, w pertence a Ω . Cada resultado possível corresponde um, e somente um ponto $\omega \in \Omega$, e resultados distintos correspondem a pontos distintos de $\omega \in \Omega$, isto é, ω representa apenas um único resultado de Ω . Vejamos alguns exemplos.

Exemplo 4. Com base nos Exemplos anteriores, temos para o Exemplo 1 temos $\Omega = \{1, 2, 3, 4, 5, 6\}$. Para o Exemplo 2 temos $\Omega = \mathbb{N}$. E para o Exemplo 3, temos $\Omega = \mathbb{R}^+$.

Exemplo 5. Um experimento lança duas moedas honestas, e deseja-se verificar a face superior dessas moedas. Sabe-se que cada moeda apresenta duas faces: cara (H) e coroa (T). Dessa forma, o espaço amostral é dado por:

$$\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$$

Entretanto, também podemos ter um conjunto qualquer A, que contém parte do elementos de Ω , isto é, $A \subset \Omega$, A passa a ser chamado de subconjunto de Ω .

Definição 3 (Subconjunto). Se todo elemento do conjunto A é também elemento de Ω , então A é definido como um subconjunto de Ω , sendo representado $A \subset \Omega$ ou $\Omega \supset A$ (lê-se: A está contido em Ω ou Ω contém A).

Essa definição pode ser aplicada entre subconjuntos de Ω , como no exemplo a seguir.

Exemplo 6. Sejam o conjunto $\Omega = \{1, 2, 3, 4, 5, 6\}$, e seus subconjuntos,

$$B = \{1, 2, 3, 4, 5\} \ e \ A = \{1, 2, 3\},\$$

então A é um subconjunto de B, pois, os elementos que contém em A, também contém em B. Assim, $A \subset B$.

Definição 4 (Evento). Todo subconjunto do espaço amostral (Ω) , representado por letras latinas em maiúsculo, A, B, \ldots , é chamado de evento.

Exemplo 7. Escolher ao acaso um ponto no círculo de raio 1 centrado na origem. Então

$$\Omega = circulo \ unitário = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Vejamos alguns eventos para esse exemplo:

A ="distância entre o ponto escolhido e a origem é" $\leq 1/2$

B ="distância entre o ponto escolhido e a origem é" ≥ 15

 $C = "1^a Coordenada do ponto escolhido é maior que a <math>2^a$.

Se $\omega=(x,y)$ for um resultado do experimento, então ω pertencerá a A se, e somente se, $x^2+y^2\leq 1/4$. Pertencerá ao evento C se, e somente se, x>y. Nenhum ponto ω pertencerá a B.

Figura 1: Escolha do ponto em um círculo unitário.

Logo temos:

$$A = \{(x, y) \in \Omega : \sqrt{x^2 + y^2} \le 1/2\},$$

$$B = \emptyset = conjunto \ vazio,$$

$$A = \{(x, y) \in \Omega : x > y\}.$$

Então, todo experimento associado a este experimento pode ser identificado por um subconjunto do espaço amostral. **Definição 5** (Evento certo, impossível e elementar). Seja Ω o espaço amostral do experimento. Então dizemos que Ω é o evento certo, e \emptyset é o evento impossível, e o evento $\{\omega\}$ é dito elementar.

Para a compreensão de algumas propriedades, a seguir definimos mais alguns tipos de eventos.

Definição 6 (União de eventos). Sejam A e B, dois eventos quaisquer de Ω , então o conjunto de todos os elementos que estão em A ou B ou em ambos, é definido conjunto união de A e B, denotado por $A \cup B$.

Dessa forma, percebemos que $A \cup B$ ocorre se ao menos um dos eventos A ou B ocorrer.

Exemplo 8. Sejam os conjuntos:

$$A = \{1, 2, 3\} \ e \ B = \{3, 4, 5, 6\},\$$

 $ent\~ao$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

Definição 7 (Intersecção de eventos). Sejam A e B, dois eventos quaisquer de Ω , então o conjunto que contém todos os elementos que estão em A e B, é definido a intersecção de A e B, e escrito $A \cap B$ ou AB.

Exemplo 9. Do exemplo anterior, temos que a intersecção de $AB = \{3\}$.

Definição 8 (Eventos Disjuntos ou multuamente exclusivos). Sejam A e B, dois eventos quaisquer de Ω , então estes são disjuntos ou mutuamente exclusivos quando não existir elementos em comum entre A e B, isto é, $A \cap B = \emptyset$.

Teorema 1. Sejam dois eventos A e B em Ω . Se $A \cap B = \emptyset$, então $A^c \cap B^c \neq \emptyset$, a menos que A e B sejam complementares.

Demonstração. Considere $A \cap B = \emptyset$ e que

$$A \cup B = (A \cap B^c) \cup (A \cap B) \cup (A^c \cap B)$$
$$= (A \cap B^c) \cup (A^c \cap B)$$
$$\neq \Omega \quad \text{(Pelo fato de A e B não serem complementares)}. \tag{1}$$

Usando a Lei de Morgan $A^c \cap B^c = (A \cup B)^c$, logo percebemos pela expressão (1) que $A^c \cap B^c \neq \emptyset$, o que completa a prova.

Exemplo 10. Sejam os eventos
$$A = \{1, 2, 3, 4\}$$
 e $B = \{5, 6\}$, então $A \cap B = \emptyset$

Uma relação de eventos que será muito importante para o estudo da teoria da probabilidade, é a definição de complemento, abordado a seguir.

Definição 9 (Evento complementar). Seja A um evento de Ω . Então o complemento do evento A com respeito a Ω , denotado por \overline{A} , A^c , ou $\Omega - A$, é o subconjunto dos elementos de Ω exceto os elementos do evento A.

Observemos o seguinte exemplo.

Exemplo 11. Um experimento lança três moedas honestas, e deseja-se verificar a face superior dessas moedas. Sabe-se que cada moeda apresenta duas faces: cara (H) e coroa (T). Dessa forma, o espaço amostral é dado por:,

$$\Omega = \{ (H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, H), (T, T, T) \}.$$

e um evento de Ω , pode ser dado por

$$A = \{(H, H, H), (H, H, T), (H, T, T)\}.$$

Então o complemento de A será:

$$\overline{A} = \{(T, H, H), (T, H, T), (T, T, T)\}.$$

Seja um evento A contido no espaço amostral Ω . Desejamos associar ao evento A uma medida que assume valores entre 0 e 1, que chamamos de medida de probabilidade de A, denotada por P(A). Assim, diremos que P(A) é a probabilidade de que o evento A ocorra no espaço amostral Ω . Voltando ao Exemplo 1, considerando que esse dado é equilibrado, e o evento $A \subset \Omega$, então poderemos atribuir uma probabilidade para A da seguinte forma:

$$P(A) = \frac{\#A}{6} = \frac{\text{número de resultados favoráveis a A}}{\text{número de resultados possíveis}}.$$

Esta é a definição clássica de probabilidade quando Ω é finito. Entretanto, a probabilidade que o evento A ocorra no espaço amostral nem sempre é possível, devido a complexidade desses eventos. Retornando ao Exemplo 7, podemos interpretar a probabilidade de $A \subset \Omega$ como:

$$P(A) = \frac{\text{área } A}{\text{área } \Omega} = \frac{\text{área } A}{\pi},$$

sendo a área de A bem definida. Segundo um teorema profundo da teoria da medida, não se pode definir P(A) para $A \subset \Omega$ de modo que a área de A não esteja bem definida. A prova disso depende do **Axioma da escolha**. Um exemplo clássico desses eventos são os **conjuntos de Vitali de** \mathbb{R} , os quais não podemos atribuir nenhuma medida quando ela generaliza o comprimento de intervalos de \mathbb{R} . De fato é impossível atribuir comprimento a todos subconjuntos de \mathbb{R} preservando a aditividade e invariância por translação.

Dessa forma, estaremos apenas interessados em eventos cuja área está bem definida. Assim, definimos

Definição 10 (Evento Aleatório). Todo evento de Ω que podemos atribuir uma probabilidade, chamamos de evento aleatório.

Vamos contextualizar algumas definições de Teoria da medida com relação ao conjunto do espaço amostral $\Omega.$

Definição 11 (Classe de um conjunto Ω). Uma coleção de subconjuntos de um dado conjunto Ω , é chamado de classe.

Exemplo 12. Considere $\Omega = \{1, 2\}$ e seja $C_1 = \{\emptyset, \{1\}, \{2\}\}$ e $C_2 = \{\emptyset, \{1\}, \{2\}\}, \{1, 2\}\}$, então dizemos que C_1 e C_2 são classes de Ω .

Vamos estar interessados numa classe de eventos aleatórios que atendem algumas propriedades, que serão importantes para a teoria e cálculo de probabilidades. Denotemos por \mathcal{A} , uma classe de eventos aleatórios definida da seguinte forma:

Definição 12 (Algebra). Seja Ω o espaço amostral, então uma classe de Ω é chamada de álgebra, denotada por A, se satisfaz as seguintes propriedades:

A1. $\Omega \in \mathcal{A}$:

 $A2. \ \forall \ A \in \mathcal{A}, \ A^c \in \mathcal{A};$

A3. Se $A \in \mathcal{A}$ e $B \in \mathcal{A}$, então $A \cup B \in \mathcal{A}$.

Como consequência dessas propriedades, apresentamos o seguinte Teorema,

Teorema 2. Seja A uma álgebra do espaço amostral Ω . Então valem as sequintes propriedades:

 $A4. \emptyset \in \mathcal{A} e$

A5. $\forall n, \forall A_1, A_2, \dots, A_n \in \mathcal{A}, temos \bigcup_{i=1}^n A_i \in \mathcal{A} e \bigcap_{i=1}^n A_i \in \mathcal{A}.$

A6. Se $A \in \mathcal{A}$ e $B \in \mathcal{A}$, então $A - B = A \cap B^c \in \mathcal{A}$.

Demonstração. Podemos observar que A1 e A2 implicam em A4. Para A5, temos que $A_1 \cup A_2 \in \mathcal{A} \Rightarrow (A_1 \cup A_2) \cup A_3 \in \mathcal{A} \Rightarrow \ldots \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$, por indução. Usando o fato de que:

$$\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c.$$

Por A2 sabemos que se $A \in \mathcal{A}$, então $A^c \in \mathcal{A}$. Por indução provamos que $\bigcup_{i=1}^n A_i \in \mathcal{A}$ \mathcal{A} , e por consequência de A3, também $\bigcup_{i=1}^{n} A_i^c \in \mathcal{A}$. Portanto, se $\bigcup_{i=1}^{n} A_i^c \in \mathcal{A}$, por consequência de A2, logo $(\bigcup_{i=1}^{n} A_i^c)^c = \bigcap_{i=1}^{n} A_i \in \mathcal{A}$. Para provar A6, temos por A2 que se $B \subset \mathcal{A}$, então $B^c \subset \mathcal{A}$. È como A e B^c pertencem a \mathcal{A} , então por A5 $A \cap B^c = A - B \in$ \mathcal{A} . П

Vamos supor para a Definição 12 que também satisfaça a seguinte propriedade:

A3*. Se
$$A_k \in \mathcal{A}$$
, para $k = 1, 2, \ldots$, então $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$.

Dessa forma, definimos

Definição 13 (σ -álgebra). Uma classe de eventos de Ω , denotado por \mathcal{F} , é definido σ álgebra se satisfizer as seguintes condições:

A1. $\Omega \in \mathcal{F}$;

A2. Se $A \in \mathcal{F}$, então $A^c \in \mathcal{F}$;

 $A3^*$. Se uma sequência finita ou infinita contável (enumerável) de eventos $A_1, A_2, \ldots \in \mathcal{F}$, então $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Uma σ -álgebra é sempre uma álgebra, pois A3 é consequência de A3*, uma vez que $A \cup B = A \cup B \cup B \cup B \cup B \dots \in \mathcal{F}$, se \mathcal{F} é uma σ -álgebra. Sem perda de generalidade, podemos afirmar que a σ -álgebra é sempre uma álgebra, pelo **Teorema da Extensão de Carathéodory**. Este teorema garante que uma probabilidade definida em uma álgebra, e de acordo com os axiomas usuais, pode ser extendida de uma única maneira para a σ -álgebra gerada pela álgebra.

As duas σ -álgebras canônicas de um conjunto Ω , considerando Ω finito ou enumerável, são definidas a seguir.

Definição 14 (σ -álgebras triviais de Ω). As duas σ -álgebras triviais de Ω , considerando Ω finito ou enumerável, são:

- a) $C = \{\emptyset, \Omega\}$, a menor σ -álgebra de Ω ;
- b) $\mathcal{P}(\Omega)$, é o conjunto de todas as partes de Ω , e representa a maior σ -álgebra de Ω . O número de subconjuntos é 2^n , considerando que Ω tem n elementos.

Alguns exemplos a seguir, complementam o conceito de σ -álgebra.

Exemplo 13. Seja $\Omega = \mathbb{R}$, o conjunto dos números reais, e seja \mathcal{F} uma coleção de todos os subconjuntos de \mathbb{R} . Então \mathcal{F} é uma σ -álgebra.

Exemplo 14. Seja $\Omega = [0,1]$ e seja $\mathcal{F} = \{\emptyset, \Omega, [0,1/2], [1/2,1]\}$. Então \mathcal{F} é uma σ -álgebra.

Exemplo 15. Seja $\Omega = \mathbb{N}^*$ o conjunto dos números naturais maiores ou iguais a um, sendo $P = \{x \in \mathbb{N}^* : x \in par\} \ e \ I = \{x \in \mathbb{N}^* : x \in mpar\}.$ Então $\mathcal{F} = \{\Omega, P, I, \emptyset\} \in ma$ σ -álgebra de subconjuntos de Ω .

Exemplo 16. Seja Ω um conjunto infinito, e \mathcal{Z} uma coleção de todos os conjuntos finitos de Ω . Então \mathcal{Z} não contém Ω e não é fechado para complementação. Assim, \mathcal{Z} não é σ -álgebra de Ω .

Para definirmos uma σ -álgebra de $\Omega = \mathbb{R}$, apresentamos alguns teoremas a seguir.

Teorema 3. Seja Ω um espaço amostral não vazio, e $S = (\mathcal{F})_{i \in I}$ uma coleção arbitrária não vazia de σ -álgebras de Ω , então

$$\mathcal{J} = \bigcap_{i \in I} \mathcal{F}_i = \{ E \in \mathcal{F}_i, \ \forall i \in I \}$$

é a interseção de todas as σ -álgebras que pertencem a S, que também é uma σ -álgebra de Ω , em que I é um conjunto não-vazio de índices.

Demonstração. Sabemos que S é uma coleção não vazia de σ -álgebras de Ω , e que $\mathcal{J} = \bigcap_{i \in I} \mathcal{F}_i$ pertence a S.

- (i) O conjunto Ω pertence a \mathcal{J} , pois Ω pertence a cada σ -álgebra em \mathcal{S} ;
- (ii) Suponha que $A \in \mathcal{J}$. Cada σ -álgebra que pertence a \mathcal{S} contém A e contém A^c . Assim, A^c pertence a interseção \mathcal{J} dessas σ -álgebras;
- (iii) Por fim, suponha que $\{A_i\}$ seja uma sequência de conjuntos disjuntos que pertence a \mathcal{J} , e então pertence em cada σ -álgebra de \mathcal{S} . Assim $\cup A_i \in \mathcal{S}$ que também pertence a \mathcal{J} .

Portanto, \mathcal{J} é uma σ -álgebra.

Contudo, a união de σ -álgebras não necessariamente é σ -álgebra.

Exemplo 17. Seja o espaço amostral $\Omega = \{1, 2, 3, 4\}$, e σ -álgebras de Ω dadas por $\mathcal{F}_1 = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$ e $\mathcal{F}_2 = \{\emptyset, \Omega, \{4\}, \{1, 2, 3\}\}$. Então

$$\mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{4\}, \{1, 2, 3\}, \{2, 3, 4\}\}\}\$$

que não é uma σ -álgebra.

Corolário 1. Seja ε uma classe de subconjuntos de Ω , sendo Ω um conjunto não vazio, que não necessariamente seja uma σ -álgebra. Existe então, uma σ -álgebra de Ω , denotada por $\mathcal{J}(\varepsilon)$, que contém ε que é a menor σ -álgebra, chamada a σ -álgebra gerada por ε .

Demonstração. Seja $\mathcal S$ uma coleção de todas as σ -álgebras que inclui ε de Ω . Então $\mathcal S$ é não vazio, pois contém $\mathcal P(\Omega)$ que consiste de todos os subconjuntos de Ω . Pelo Teorema 3, a intersecão das σ -álgebras é uma σ -álgebra, $\mathcal J(\varepsilon)$, que inclui ε e está inclusa em todas as σ -álgebras de $\mathcal S$, isto é, $\mathcal J(\varepsilon)$ está contida em toda σ -álgebra de Ω que contém ε . Portanto, $\mathcal J(\varepsilon)$ é a menor σ -álgebra de Ω que contém ε .

Usaremos o colorário anterior para definir uma importante família das σ -álgebras, a chamada σ -álgebra de Borel.

Definição 15 (σ -álgebra de Borel). Seja ε uma coleção de subconjuntos abertos de \mathbb{R} . Então $\mathcal{J}(\varepsilon)$ é chamado de σ -álgebra de Borel de \mathbb{R} , usualmente escrito $\mathcal{B}(\mathbb{R})$. Seus elementos são chamados de conjuntos de Borel ou borelianos. Da mesma forma, definimos $\mathcal{B}(\mathbb{R}^n)$ como a σ -álgebra gerada pelos subconjuntos abertos de \mathbb{R}^n .

Os elementos da σ -álgebra de Borel inclui os conjuntos abertos, conjuntos fechados (os complementares dos conjuntos abertos), interseções enumeráveis de conjuntos abertos (lembrando que uniões enumeráveis e conjuntos abertos já são abertos), uniões enumeráveis de conjuntos fechados (lembrando que interseções enumeráveis de conjuntos fechados já são fechados), etc., como será visto no teorema seguinte.

Teorema 4 (Conjuntos de $\mathcal{B}(\mathbb{R})$). Os subconjuntos seguintes de \mathbb{R} pertencem a $\mathcal{B}(\mathbb{R})$:

- (i) (a,b) para qualquer a < b;
- (ii) $(-\infty, a)$ para qualquer $a \in \mathbb{R}$;
- (iii) (a, ∞) para qualquer $a \in \mathbb{R}$;
- (iv) [a, b] para qualquer $a \leq b$;
- (v) $(-\infty, a]$ para qualquer $a \in \mathbb{R}$;
- (vi) $[a, \infty)$ para qualquer $a \in \mathbb{R}$;
- (vii) (a, b] para qualquer a < b;
- (viii) [a,b) para qualquer a < b;
 - (ix) $\{x\} \in (a,b)$ para qualquer a < b;

(x) qualquer subconjunto fechado de \mathbb{R} .

Demonstração. Os itens (i), (ii) e (iii) são conjuntos abertos e portanto pertencem a $\mathcal{B}(\mathbb{R})$ pela própria definição.

(iv)
$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b + \frac{1}{n}\right) \in \mathcal{B}(\mathbb{R});$$

(v)
$$(-\infty, a] = \bigcap_{n=1}^{\infty} \left(-\infty, a + \frac{1}{n}\right) \in \mathcal{B}(\mathbb{R});$$

(vi)
$$[a, \infty) = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \infty \right) \in \mathcal{B}(\mathbb{R});$$

(vii)
$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n}\right) \in \mathcal{B}(\mathbb{R});$$

(viii)
$$[a,b) = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b\right) \in \mathcal{B}(\mathbb{R});$$

(ix)
$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x + \frac{1}{n}\right) \in \mathcal{B}(\mathbb{R}), \ \forall x \in (a, b);$$

(x) Se B é um subconjunto fechado em \mathbb{R} , então B^c é aberto, assim este pertence a $\mathcal{B}(\mathbb{R})$. Mas $B = (B^c)^c \in \mathcal{B}(\mathbb{R})$.

De fato, todas essas classes de subconjuntos de \mathbb{R} gera a σ -álgebra $\mathcal{B}(\mathbb{R})$.

Teorema 5. Seja $\mathcal{B}(\mathbb{R})$ uma σ -álgebra de Borel de \mathbb{R} . Então, esta é a menor σ -álgebra de \mathbb{R} que inclui todos os intervalos.

Demonstração. Seja $\mathcal{B}' \subseteq \mathcal{B}$ uma σ-álgebra tal que \mathcal{B}' contém todos os intervalos. Isso implica que \mathcal{B}' contém todos os intervalos abertos. Consequentemente, $\mathcal{B} \subseteq \mathcal{B}'$ pela Definição 15. Concluímos então que $\mathcal{B}' = \mathcal{B}$.

Vamos definir formalmente, a probabilidade associada aos eventos aleatórios da σ -álgebra, da qual chamaremos de medida de probabilidade. Inicialmente, definimos

Definição 16 (Medida). Seja \mathcal{F} uma σ -álgebra e um espaço amostral Ω , então uma medida, denotada por μ , é uma função tal que $\mu : \mathcal{F} \to [0, \infty)$, que satisfaz:

- $i)\ \mu(\emptyset)=0;$
- ii) (σ -aditividade) Se A_1, A_2, \ldots , é uma sequência disjunta em \mathcal{F} , então $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$.

Para o caso em que $\mu : \mathcal{F} \to [0,1]$, μ é chamado de medida de probabilidade e passa a ser denotado por P.

Exemplo 18. Seja um espaço amostral Ω qualquer e uma σ -álgebra $\mathcal{F} = \mathcal{P}(\Omega)$, tal que uma medida $\mu : \mathcal{F} \to [0, \infty]$ é dado por:

$$\mu(A) = \left\{ \begin{array}{ll} \#A, & \textit{se A \'e finito}, \\ \infty, & \textit{se A \'e infinito}. \end{array} \right.$$

Algumas condições são impostas sobre $\mu(A)$:

- $i) \mu(\emptyset) = 0;$
- ii) $(A_i)_{i\in\mathbb{N}}$ uma sequência disjunta em \mathcal{F} :

- (a) $\bigcup_{i \in \mathbb{N}} A_i$ conjunto finito;
- (b) $\bigcup_{i\in\mathbb{N}} A_i$ conjunto infinito.

Para (ii).a temos, pela Definição 16.(ii) que

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \#\bigcup_{i\in\mathbb{N}}A_i = \bigcup_{i\in\mathbb{N}}\#A_i$$
$$= \sum_{i=0}^{\infty}\mu(A_i).$$

Para o caso (ii).b, considerando $\bigcup_{i \in \mathbb{N}} A_i$ um conjunto infinito e A_i um conjunto finito não vazio, para todo $i \in \mathbb{N}$, temos

$$\mu\left(\bigcup_{i\in\mathbb{N}} A_i\right) = \infty = \sum_{i=1}^{\infty} \mu(A_i)$$
$$\sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \#A_i = \infty$$

Para o caso (ii).b, considerando $\bigcup_{i \in \mathbb{N}} A_i$ um conjunto infinito e ao menos um A_i seja infinito, para todo $i \in \mathbb{N}$, temos

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right) = \infty$$
$$\sum_{i=1}^{\infty}\mu(A_i) = \infty$$

Definição 17 (Medida de Probabilidade). Seja Ω o espaço amostral e \mathcal{F} uma σ -álgebra dos eventos de Ω . Então, uma função P tal que $P: \mathcal{F} \to [0,1]$, é chamada de medida de probabilidade sob os seguintes axiomas de Kolmogorov:

- 1. (Normalidade) $P(\Omega) = 1$;
- 2. (Positividade) $\forall A \in \mathcal{F}, P(A) \ge 0;$
- 3. (σ -aditividade) Para uma sequência finita ou infinita contável de eventos $A_1, A_2, \ldots \in \mathcal{F}$ multuamente exclusivos,

$$P(U_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty} P(A_i).$$

Observe a seguinte propriedade:

3*) (Aditividade finita) se A_1, A_2, \ldots, A_n é uma sequência disjunta dois a dois em \mathcal{F} , então $P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$.

Teorema 6. O Axioma 3 implica o Axioma 3^* , isto é, se P é σ -aditiva, então é finitamente aditiva.

Demonstração. Supondo satisfeito o Axioma (3), e sejam $A_1, A_2, \ldots, A_n \in \mathcal{F}$. Considerando $P(\emptyset) = 0$, uma vez que

$$P(\Omega) = P(\Omega \cup \emptyset \cup \emptyset \cup \ldots) = P(\Omega) + P(\emptyset) + P(\emptyset) + \ldots$$

Definimos $A_k = \emptyset$, para $k = n + 1, n + 2, \dots$ Como A_1, A_2, \dots são disjuntos, então

$$P\left(\bigcup_{k=1}^{n} A_{k}\right) = P\left(\bigcup_{k=1}^{\infty} A_{k}\right)$$

$$= \sum_{k=1}^{\infty} P(A_{k})$$

$$= \sum_{k=1}^{n} P(A_{k}) + P(\emptyset) + P(\emptyset) + \dots$$

$$= \sum_{k=1}^{n} P(A_{k}).$$

Um quarto Axioma, pode ser complementado sobre a medida de probabilidade, que segue:

Axioma 4. ("Continuidade do vazio") Se a sequência $\{A_k\}_{k\geq 1}$, em que $A_k\in\mathcal{F}\ \forall k$, decrescer para o vazio, então $\lim_{k\to\infty}P(A_k)\to 0$.

Este axioma indica que se $(A_k)_{k\geq 1}$ decrescer para o vazio, $A_k\downarrow\emptyset$, significa que $A_k\supset A_{k+1}\ \forall k$, ou seja, $(A_k)_{k\geq 1}$ decresce, e $\bigcap_{k\geq 1}A_k=\emptyset$.

Teorema 7 (Equivalência dos Axiomas 4 e 3*). Dados os axiomas de Kolmogorov, o Axioma 4 é equivalente ao Axioma 3*, isto é, uma probabilidade finitamente aditiva é uma probabilidade se, e somente se, é contínua no vazio.

Demonstração. (i) Suponhamos o Axioma 4. Sejam $A_1, A_2, \ldots \in \mathcal{F}$ tais que $A_k \downarrow \emptyset$. Vamos provar que $P(A_k) \to 0$. Considere

$$A_1 = (A_1 - A_2) \cup (A_2 - A_3) \cup \ldots = \bigcup_{k=1}^{\infty} (A_k - A_{k+1}),$$

pelo diagrama:

As regiões $A_k - A_{k+1}$ são disjuntas, uma vez que a sequência é decrescente e \mathcal{F} é fechada para diferenças. Pelo Axioma 3*.

$$P(A_1) = P\left(\bigcup_{k=1}^{\infty} (A_k - A_{k+1})\right) = \sum_{k=1}^{\infty} P(A_k - A_{k+1}),$$

portanto a série é convergente e

$$\sum_{k=1}^{\infty} P(A_k - A_{k+1}) = \sum_{k=1}^{n-1} P(A_k - A_{k+1}) + P(\emptyset) + P(\emptyset) + P(\emptyset) + \dots$$

$$= \sum_{k=1}^{n-1} P(A_k - A_{k+1}) \underset{n \to \infty}{\to} P(A_1).$$

Pela aditividade finita,

$$P(A_k - A_{k+1}) = P(A_k) - P(A_{k+1}),$$

logo

$$P(A_k - A_{k+1}) = P(A_k) - P(A_{k+1}),$$

$$P(A_1) = \lim_{n \to \infty} \sum_{k=1}^{n-1} [P(A_k) - P(A_{k+1})]$$

$$= \lim_{n \to \infty} \{ [P(A_1) - P(A_2)] + [P(A_2) - P(A_3)] + \dots + [P(A_{n-1}) - P(A_n)] \}$$

$$= \lim_{n \to \infty} \{ P(A_1) - P(A_2) + P(A_2) - P(A_3) + \dots + P(A_{n-1}) - P(A_n) \}$$

$$= \lim_{n \to \infty} [P(A_1) - P(A_n)],$$

e então $P(A_n) \to 0$.

(ii) Suponhamos o Axioma 4 e sejam $A_1, A_2, \ldots \in \mathcal{F}$ disjuntos. Vamos provar que $P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$. Seja $A = \bigcup_{k=1}^{\infty} A_k$, então

$$A = \left(\bigcup_{k=1}^{n} A_k\right) \cup \left(\bigcup_{k=n+1}^{\infty} A_k\right)$$

e pela aditividade finita,

$$P(A) = \sum_{k=1}^{n} P(A_k) + P\left(\bigcup_{k=n+1}^{\infty} A_k\right).$$

Seja $B_k = \bigcup_{k=n+1}^{\infty} A_k$, então $B_k \downarrow \emptyset$ e portanto $P(B_k) \to 0$ (Pelo Axioma 4). Logo

$$\sum_{k=1}^{n} P(A_k) \underset{n \to \infty}{\to} P(A),$$

isto é,
$$P(A) = \sum_{k=1}^{\infty} P(A_k)$$
.

Corolário 2. Os dois sequintes sistemas de axiomas são equivalentes:

Demonstração. O sistema I é equivalente aos Axiomas 1, 2, 3 e 3*, pois já vimos que o Axioma 3* implica no Axioma 3. Agora, usando o Teorema 7, provamos que o Axioma 3 implica no Axioma 4, e a prova é concluída.

Então para verificar se P é uma probabilidade em \mathcal{F} , basta verificar os axiomas do sistema I ou os axiomas do sistema II.

Vejamos algumas propriedades de uma medida de probabilidade,

Teorema 8 (Propriedades de P). Seja P uma medida de probabilidade associada a sequênia de eventos aleatórios $A_i \in \mathcal{F} \ \forall i \in \mathbb{N}$ e o evento $B \in \mathcal{F}$, sendo \mathcal{F} uma σ -álgebra, e $A \in \mathcal{F}$. Então são válidas as seguintes propriedades:

- i) (Complemento) $P(A) = 1 P(A^c)$;
- $ii) P(\emptyset) = 0;$
- iii) $P(B) = P(A \cap B) + P(A^c \cap B);$
- iv) (Monotonicidade) Se $A \subset B$, então $P(A) \leq P(B)$;
- v) $P(A \cup B) = P(A) + P(B) P(A \cap B);$
- vi) (Limitante Superior) $0 \le P(A) \le 1$;
- vii) (Designaldade de Boole) $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i);$
- viii) (subaditividade) $P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i);$
 - ix) (Designal dade de Bonferroni) $P(\bigcap_{i=1}^n A_i) \geq 1 - \sum_{i=1}^n P(A_i^c)$
 - x) (Continuidade da probabilidade) Se $A_i \downarrow A$, então $P(A_i) \downarrow P(A)$. Se $A_i \uparrow A$, então $P(A_i) \uparrow P(A)$.
 - xi) (Inclusão-Exclusão) $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) \sum_{i< j}^{n} P(A_i \cap A_j) + \sum_{i< j< k}^{n} P(A_i \cap A_j) + (-1)^{n+1} P(A_1 \cap A_2 \cap ... \cap A_n).$

Demonstração. (Item i). Sabemos que $A \cup A^c = \Omega$ e que estes eventos são disjuntos. Veja o diagrama de Venn,

Assim,

$$P(A \cup A^c) = P(A) + P(A^c)$$

$$1 = P(A) + P(A^c)$$

$$P(A) = 1 - P(A^c).$$

(Item ii). Sabemos que Ω e \emptyset são eventos disjuntos. Assim,

$$P(\Omega \cup \emptyset) = P(\Omega) + P(\emptyset)$$

$$1 = 1 + P(\emptyset)$$

$$P(\emptyset) = 0.$$

Figura 2: Diagrama de Venn para o evento $B = \{A \cap B\} \cup \{A^c \cap B\}$.

(Item iii). Podemos observar que $B = \{A \cap B\} \cup \{A^c \cap B\}$, e que $\{A \cap B\}$ e $\{A^c \cap B\}$ são disjuntos. Veja o diagrama de Venn na Figura 2.

Portanto,

$$P(B) = P(\{A \cap B\} \cup \{A^c \cap B\})$$

= $P(A \cap B) + P(A^c \cap B)$.

(Item iv) Se $A \subset B$, então $A \cap B = A$. Usando (i), temos

$$P(B) = P(A \cap B) + P(A^c \cap B)$$

= $P(A) + P(A^c \cap B) \ge P(A)$.

. (Item v). Observando a seguinte identidade,

$$A \cup B = (A \cap B^c) \cup (A \cap B) \cup (A^c \cap B),$$

união de eventos disjuntos, que pode ser observado pela Figura 3, então

$$P(A \cup B) = P(A \cap B^c) + P(A \cap B) + P(A^c \cap B).$$

Por (iii) sabemos que

$$P(A) = P(B \cap A) + P(B^c \cap A) \Rightarrow \qquad P(B^c \cap A) = P(A) - P(B \cap A),$$

$$P(B) = P(A \cap B) + P(A^c \cap B) \Rightarrow \qquad P(A^c \cap B) = P(B) - P(A \cap B).$$

Figura 3: Diagrama de Venn para o evento $A \cup B = (A \cap B^c) \cup (A \cap B) \cup (A^c \cap B)$.

Logo

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

(Item vi). Pela Definição da medida de probabilidade P ser uma função $P: \mathcal{F} \to [0, 1]$, logo se $A \in \mathcal{A}$, então $0 \leq P(A) \leq 1$.

(Item vii). Vamos inicialmente criar uma sequência disjunta A_1^*, A_2^*, \ldots , com a propriedade $\bigcup_{i=1}^{\infty} A_i^* = \bigcup_{i=1}^{\infty} A_i$. Definimos

$$A_1^* = A_1, \qquad A_i^* = A_i \cap \left(\bigcup_{j=1}^{i-1} A_j\right)^c, \quad i = 2, 3, \dots$$

É fácil perceber que

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\bigcup_{i=1}^{\infty} A_i^*\right) = \sum_{i=1}^{\infty} P(A_i^*),$$

onde a última igualdade segue, pois A_i^* são disjuntos. Observemos que pela construção, $A_i^* \subseteq A_i$, portanto, pela propriedade (iv), $P(A_i^*) \le P(A_i)$, logo

$$\sum_{i=1}^{\infty} P(A_i^*) \le \sum_{i=1}^{\infty} P(A_i).$$

Concluindo a prova,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i^*) \le \sum_{i=1}^{\infty} P(A_i).$$

(item viii). Como vimos pela Definição 17 que a σ -adivitidade implica na aditividade finita, logo o item (vii) implica em (viii). (item ix).

(item x). Vamos supor que $A_i \downarrow A$, isto é, $A_i \supset A_{i+1}$ e $\bigcap_{i \geq 1} A_i = A$. Então $P(A_i) \geq P(A_{i+1})$ pelo item (iv), e $(A_i - A) \downarrow \emptyset \Rightarrow P(A_i - A) \to 0$ pela continuidade do vazio. Pela aditividade finita $P(A_i - A) = P(A_i) - P(A)$, e como $\{P(A_i)\}_{i \in \mathbb{N}}$ é decrescente, logo $P(A_i) \downarrow P(A)$. Agora, se $A_i \uparrow A$, isto é, $A_i \subset A_{i+1}$ e $\bigcup_{i \geq 1} A_i = A$, então $A_i^c \downarrow A^c$, logo $P(A_i^c) \downarrow P(A^c) \Rightarrow 1 - P(A_i) \downarrow 1 - P(A)$. Portanto, $P(A_i) \uparrow P(A)$. (item xi). Associar a prova aos diagramas de Venn abaixo. Vamos apresentar duas provas.

• Primeiro para n=2, temos a propriedade (iv) do Teorema 8, isto é,

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \tag{2}$$

• Para n=3, vamos considerar $A=\{A_1\cup A_2\}$, e que

$$P(A_1 \cup A_2 \cup A_3) = P(A \cup A_3)$$

= $P(A) + P(A_3) - P(A \cap A_3)$. (3)

Segue que $P(A) = P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$ e que

$$P(A \cap A_3) = P[(A_1 \cup A_2) \cap A_3]$$

$$= P[(A_1 \cap A_3) \cup (A_2 \cap A_3)]$$

$$= P(A_1 \cap A_3) + P(A_2 \cap A_3) - P(A_1 \cap A_2 \cap A_3)$$
(4)

Substituindo as expressões (2) e (4) em (3), logo

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$$

• Para n=4, já apresentando o resultado direto, temos

$$P(A_1 \cup A_2 \cup A_3 \cup A_4) = \sum_{i=1}^4 P(A_i) - \sum_{i< j}^4 P(A_i \cap A_j) + \sum_{i< j< k}^4 P(A_i \cap A_j \cap A_k) - P(\bigcap_{i=1}^4 A_i).$$
(5)

• Para n = 5, já apresentando o resultado direto, temos

$$P(A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5) = \sum_{i=1}^{5} P(A_i) - \sum_{i< j}^{5} P(A_i \cap A_j) + \sum_{i< j< k}^{5} P(A_i \cap A_j \cap A_k) - \sum_{i< j< k}^{5} P(A_i \cap A_j \cap A_k) + P(\bigcap_{i=1}^{5} A_i).$$

$$(6)$$

Observe que a última expressão para a união das probabilidades alterna o sinal à medida que n aumenta, isto é, quando n é positivo, a interseção de todos os eventos

Figura 4: Diagrama de Venn4 eventos.

é eliminada. Quando n é impar, a interseção de todos os eventos é somada. Assim, para um n qualquer induzindo pela expressão (6), temos

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i< j}^n P(A_i \cap A_j) + \sum_{i< j< k}^n P(A_i \cap A_j \cap A_k) - \ldots$$
$$\ldots (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n).$$

Para uma segunda demonstração, vamos provar para n-1 eventos e induzir para n. Considere a probabilidade da união de eventos $\{A_i\}_{i=1}^n$, isto é,

$$P(A_{1} \cup A_{2} \cup ... \cup A_{n}) = P\left(\bigcup_{i=1}^{n-1} A_{i} \cup A_{n}\right)$$

$$= P\left(\bigcup_{i=1}^{n-1} A_{i}\right) + P(A_{n}) - P\left(\bigcup_{i=1}^{n-1} A_{i} \cap A_{n}\right)$$

$$= \left[\sum_{i=1}^{n-1} P(A_{i}) - \sum_{i < j}^{n-1} P(A_{i} \cap A_{j}) + \sum_{i < j < k}^{n-1} P(A_{i} \cap A_{j} \cap A_{k}) - ... + (-1)^{(n-1)+1} P\left(\bigcap_{i=1}^{n} A_{i}\right)\right] + P(A_{n}) - P\left(\bigcup_{i=1}^{n-1} A_{i} \cap A_{n}\right).$$
(7)

Observe que

$$P\left(\bigcup_{i=1}^{n-1} A_{i} \cap A_{n}\right) = \sum_{i=1}^{n-1} P(A_{i} \cap A_{n}) - \sum_{i < j}^{n-1} P[(A_{i} \cap A_{n}) \cap (A_{j} \cap A_{n})] +$$

$$+ \sum_{i < j < k}^{n-1} P[(A_{i} \cap A_{n}) \cap (A_{j} \cap A_{n}) \cap (A_{k} \cap A_{n})] - \dots$$

$$\dots + (-1)^{(n-1)+1} P\left(\bigcap_{i=1}^{n-1} (A_{i} \cap A_{n})\right)$$

$$= \sum_{i=1}^{n-1} P(A_{i} \cap A_{n}) - \sum_{i < j}^{n-1} P(A_{i} \cap A_{j} \cap A_{n}) +$$

$$+ \sum_{i < j < k}^{n-1} P(A_{i} \cap A_{j} \cap A_{k} \cap A_{n}) - \dots +$$

$$(-1)^{n} \sum_{i_{1} < i_{2} < \dots < i_{n-2}}^{n-1} P(A_{i_{1}} \cap \dots \cap A_{i_{n-2}} \cap A_{n})$$

$$\dots + (-1)^{(n-1)+1} P\left(\bigcap_{i=1}^{n} A_{i}\right).$$

$$(8)$$

Observe a expressão $P\left(\bigcup_{i=1}^{n-1} A_i \cap A_n\right)$ recebe o sinal negativo, portanto iremos (8) em (7), levando em consideração a substituição do sinal, que segue

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \left[\sum_{i=1}^{n-1} P(A_i) - \sum_{i < j}^{n-1} P(A_i \cap A_j) + \sum_{i < j < k}^{n-1} P(A_i \cap A_j \cap A_k) - \ldots + (-1)^{(n-1)+1} P\left(\bigcap_{i=1}^{n} A_i\right) \right] + P(A_n) - [].$$
(9)

Vejamos mais algumas propriedades da probabilidade em uma sequência de eventos. (ACRESCENTAR)

Agora diante dessas definições, definimos

Definição 18 (Espaço de probabilidade). Seja Ω o espaço amostral e \mathcal{F} uma coleção de subconjuntos de Ω que pode ser atribuído probabilidade. Se P é uma função que mede a probabilidade dos eventos em \mathcal{F} , então a tripla (Ω, \mathcal{F}, P) é chamada de espaço de probabilidade.

Dizemos também que (Ω, \mathcal{F}) é o espaço mensurável. As próximas Definições e Teoremas iremos apresentar com base em uma motivação:

Motivação 1. Paulo é um jovem empreendedor e quer abrir seu próprio negócio. Ele observou que o mercado de sandálias era lucrativo. Então resolveu abrir uma fábrica de sandálias. Devido a dificuldade financeira, resolveu comprar três máquinas de sandálias usadas. As informações anteriores sobre estas máquinas dadas pelo proprietário foram:

Máquina	Produto	Total da produção	Produto com defeito
M1	Pantufas	50%	1%
M2	Sandálias baixas	40%	2%
M3	Sandálias de couro	10%	3%

Surgiu as seguintes indagações:

- Do total de sandálias produzidas, qual a probabilidade de Paulo produzir uma sandália com defeito?
- Pensando em aumentar o lucro da fábrica, Paulo pensa e substituir uma das máquinas, qual seria sua decisão?
 - Será que a máquina M1 que produz mais sandálias e consequentemente tem maior desgaste, deve ser trocada primeiro?
 - Ou será que apesar da máquina M3 ter menor produção, é a que gera mais defeito por sandália, e portanto, deve ser trocada primeiro?

Muitas vezes nos deparamos com situações em que antes da realização de algum experimento descrito em (Ω, \mathcal{F}, P) , temos alguma informação adicional. Queremos saber o quanto que essa informação pode afetar a medida de probabilidade dos eventos de \mathcal{F} .

Definição 19 (Probabilidade condicional). Seja um espaço de probabilidade (Ω, \mathcal{F}, P) . Dados dois eventos A e B definidos em \mathcal{F} , então a probabilidade condicional do evento A dado que ocorreu o evento B, denotado por P(A|B), é definida por:

$$P(A|B) = \frac{P(A \cap B)}{P(B)},\tag{10}$$

para
$$P(B) > 0$$
.

Com base no problema de Paulo, denote o evento D as sandálias produzidas com defeitos, M_1 o evento que representa as sandálias produzidas pela máquina M1, M_2 o evento que representa as sandálias produzidas pela máquina M2 e M_3 o evento que representa as sandálias produzidas pela máquina M3. Assim,

$$P(D|M_1) = 0,01,$$

 $P(D|M_2) = 0,02,$
 $P(D|M_3) = 0,03.$

Teorema 9 (P(A|B) é uma medida de probabilidade). Sejam A e B eventos no espaço de probabilidade (Ω, \mathcal{F}, P) , tal que P(B) > 0, e considere $Q : \mathcal{F} \to [0, 1]$ definida por

$$Q(A) = P(A|B) = \frac{P(A \cap B)}{P(B)},$$

que é a probabilidade condicional de A dado B. Então (Ω, \mathcal{F}, Q) é também um espaço de probabilidade.

Demonstração. Verificar que (Ω, \mathcal{F}, Q) é um espaço de probabilidade, é o mesmo que dizer que Q é uma medida de probabilidade sobre (Ω, \mathcal{F}) , isto é, Q satisfaz os axiomas de Kolmogorov.

• Axioma 1:

$$Q(\Omega) = \frac{P(\Omega \cap B)}{P(B)}$$
$$= \frac{P(B)}{P(B)}$$
$$= 1.$$

Axioma 2:
 Como P é uma medida de probabilidade, então

$$\forall A \in \Omega : \quad Q(A) \ge 0.$$

• Axioma 3: Seja uma sequência A_1, A_2, \ldots , disjunta, então

$$Q(\bigcup_{i=1}^{\infty} A_i) = \frac{P(\bigcup_{i=1}^{\infty} A_i \cap B)}{P(B)}$$
$$= \sum_{i=1}^{\infty} \frac{P(A_i \cap B)}{P(B)}$$
$$= \sum_{i=1}^{\infty} Q(A_i).$$

Prova concluída.

Teorema 10 (Regra do produto de probabilidade). Seja os eventos A_1, A_2, \ldots, A_n em (Ω, \mathcal{F}, P) , com $P(\bigcap_{i=1}^n A_i) > 0$, então a probabilidade do produto desses eventos é dado

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)...P(A_n|A_1 \cap A_2 \cap ... \cap A_{n-1})$$

Demonstração. Por indução, consideremos n=2. Assim, pela Definição 19, temos

$$P(A_2|A_1) = \frac{P(A_1 \cap A_2)}{P(A_1)}$$
$$P(A_1 \cap A_2) = P(A_1)P(A_2|A_1),$$

pois $P(A_1) > 0$. Agora para n = k, generalizamos a indução,

$$P(A_1 \cap A_2 \cap \ldots \cap A_k) = P[(A_1 A_2 \ldots A_{k-1}) \cap A_k],$$

pela definição 19, temos

$$P[(A_1 A_2 \dots A_{k-1}) \cap A_k] = P[(A_1 A_2 \dots A_{k-1})] P(A_k | A_1 A_2 \dots A_{k-1})$$

podendo ser reescrito como

o ser reescrito como
$$P[(A_1A_2...A_{k-1}) \cap A_k] = \underbrace{P(A_1A_2...A_{k-2})P(A_{k-1}|A_1A_2...A_{k-2})}_{P(A_1A_2...A_{k-1})} \times P(A_k|A_1A_2...A_{k-1}).$$

Assim, usando a indução sucessivas vezes, chegaremos a expressão

$$P(A_1 A_2 \dots \cap A_k) = P(A_1) P(A_2 | A_1) \dots P(A_{k-1} | A_1 A_2 \dots A_{k-2}) \times P(A_k | A_1 A_2 \dots A_{k-1}).$$

Observe que por hipótese, todos os condicionamentos da expressão do lado direito, têm probabilidades positivas, pois contém $\bigcap_{i=1}^n A_i$. Portanto, teorema provado.

Antes de falarmos sobre o teorema da lei da probabilidade total, será interessante fazer a definição sobre a partição de Ω .

Definição 20 (Partição de Ω). Se a sequência A_1, A_2, \ldots, s ão disjuntos dois a dois e $\bigcup_{i=1}^{\infty} A_i = \Omega$, então dizemos que essa sequência forma uma partição de Ω .

Entretanto, para calcular a probabilidade de uma sandália está com defeito, isto é P(D), apresentamos o seguinte Teorema,

Teorema 11 (Teorema da probabilidade total). Seja o espaço de probabilidade (Ω, \mathcal{F}, P) . Considere uma sequência de eventos A_1, A_2, \ldots, A_n de \mathcal{F} , disjuntos, tal que $\bigcup_{i=1}^n A_i = \Omega$, e B um evento de \mathcal{F} , então a probabilidade de B é dada por:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i), \tag{11}$$

para
$$P(A_i) > 0$$
, sendo $i = 1, 2, \dots, n$.

Demonstração. Sabendo que $A_i \cap_{i \neq j} A_j$ e que $\bigcup_{i=1}^n B \cap A_i = \Omega$, então $\bigcup_{i=1}^n B \cap A_i = B$ e os $B \cap A_i$ são também disjuntos. Dessa forma,

$$P(B) = P\left(\bigcup_{i=1}^{n} B \cap A_{i}\right)$$

$$= \sum_{i=1}^{n} P(B \cap A_{i}) \qquad (B \cap A_{i} \text{ disjuntos})$$

$$= \sum_{i=1}^{n} P(B|A_{i})P(A_{i}) \qquad (\text{Teorema 10})$$

como queríamos provar.

Exemplo 19. Voltando ao problema de Paulo, como $P(M_1) = 0,50$, $P(M_2) = 0,40$) e $P(M_3) = 0,10$, então a probabilidade de uma sandália ter defeito é

$$P(D) = \sum_{i=1}^{3} P(D|M_i)P(M_i)$$

$$= P(D|M_1)P(M_1) + P(D|M_2)P(M_2) + P(D|M_3)P(M_3)$$

$$= 0,01 \times 0,50 + 0,02 \times 0,40 + 0,03 \times 0,10$$

$$= 0,016.$$

Uma outra Definição interessante é a independência de eventos, apresentada a seguir.

Definição 21 (Independência de dois eventos). Seja um espaço de probabilidade (Ω, \mathcal{F}, P) . Dois eventos A e B de \mathcal{F} são independentes se satisfaz ao menos uma das seguintes condições:

$$I) P(A \cap B) = P(A)P(B);$$

II)
$$P(A|B) = P(A)$$
, para $P(B) > 0$;

III)
$$P(B|A) = P(B)$$
, para $P(A) > 0$.

É fácil mostrar que (I) implica em (II), (II) implica em (III), e (III) implica em (I). (i) \rightarrow (ii): Se P(AB) = P(A)P(B), então

$$P(A|B) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(B)} = P(A), \text{ para } P(B) > 0;$$

 $(ii) \rightarrow (iii)$: Se P(A|B) = P(A), então

$$P(B|A) = \frac{P(BA)}{P(A)} = \frac{P(A|B)P(B)}{P(A)} = P(B), \text{ para } P(A) > 0;$$

 $(iii) \rightarrow (i)$: Se P(B|A) = P(B), então

$$P(AB) = P(B|A)P(A) = P(B)P(A)$$
, para $P(A) > 0$.

A intuição para independência na Definição 21 fica justificada pelo fato de que A é independente de B tanto na ocorrência quanto a não ocorrência de B e isso não muda em nada a probabilidade da ocorrência de A, isto é, P(A|B) = P(A) e $P(A|B^c) = P(A)$. Essas duas expressões significam que

$$P(A \cap B) = P(B)P(A|B) = P(B)P(A)$$

$$P(A \cap B^c) = P(B^c)P(A|B) = P(B^c)P(A).$$

Entretanto, a independência entre dois eventos não implica em independência coletiva. Vejamos,

Exemplo 20. Seja um experimento cujo objetivo é verificar a face superior de um tetraedro, isto é, $\Omega = \{1, 2, 3, 4\}$. Sejam os eventos em Ω , $A = \{1, 4\}$, $B = \{2, 4\}$ e $C = \{3, 4\}$. Considerando o tetraedro honesto e que cada valor é equiprovável, assim P(A) = P(B) = P(C) = 1/2. Observamos que estes eventos são independentes dois a dois, isto é, $P(A \cap B) = 1/4 = P(A)P(B)$, $P(A \cap C) = 1/4 = P(A)P(C)$ e $P(B \cap C) = 1/4 = P(B)P(C)$. Porém, $P(A \cap B \cap C) = 1/4 \neq P(A)P(B)P(C)$. Logo, os eventos A, B e C não são independentes três a três.

Para uma definição mais geral, temos

Definição 22 (Independência de eventos). Seja um espaço de probabilidade (Ω, \mathcal{F}, P) . Uma sequência de eventos A_1, A_2, \ldots, A_n de \mathcal{F} são independentes se e somente se:

$$P(A_{i} \cap A_{j}) = P(A_{i})P(A_{j}), \quad para \ i \neq j;$$

$$P(A_{i} \cap A_{j} \cap A_{k}) = P(A_{i})P(A_{j})P(A_{k}), \quad para \ i \neq j \neq k;$$

$$\vdots$$

$$P(\bigcap_{i=1}^{n} A_{i}) = \prod_{i=1}^{n} P(A_{i}). \tag{12}$$

Devemos deixar claro que a Definição 22 implica na Definição 21, mas não o contrário, isto é, a independência a pares não implica em independência coletiva. Vejamos o exemplo.

Exemplo 21. Considere um experimento de um arremesso de um tetraedro honesto, cuja suas faces resultam nos números 1, 2, 3 e 4. Sejam os eventos $A = \{1,4\}$, B = 2,4 e $C = \{3,4\}$. Considerando equiprovável o valor de se obter um dos números do tetaedro na face superior, temos que qualquer valor terá probablidade 1/4. Dessa forma, a probabilidade P(A) = P(B) = P(C) = 1/2 e $P(A \cap B) = P(A \cap C) = P(B \cap C) = 1/4$. Logo, A, B e C são independentes dois a dois. Mas,

$$P(A \cap B \cap C) = \frac{1}{4} \neq \frac{1}{8} = P(A)P(B)P(C).$$

Exemplo 22. No lançamento de dois dados honestos, sejam os eventos A = "face ímpar no primeiro dado", B = "face ímpar no segundo dado" e C = "'soma ímpar das duas faces". É fácil ver que A, B e C, têm, cada um, probabilidade 1/2 e são independentes dois a dois. Mas, eles não podem ser simultaneamente, de modo que $A \cap B \cap C = \emptyset$ e

$$P(A \cap B \cap C) = 0 \neq \frac{1}{8} = P(A)P(B)P(C).$$

Retornando a Motivação 1, Paulo poderia indagar, os M_i e D são independentes ou dependentes? Pela Definição 21, temos que

$$P(D|M_i) \neq P(D) = 0,016 \Rightarrow D$$
 e M_i não são independentes, para $i = 1,2,3$.

A grande questão agora é qual a máquina que Paulo deveria substituir com o propósito de aumentar seu lucro na empresa. A ideia será calcular $P(M_i|D)$, isto é, dado um defeito na sandália qual a probabilidade de vindo da máquina i? A maior probabilidade será a máquina substituída. Entretanto, ainda não temos ferramenta para resolver essa resposta. Para isso, apresentamos o seguinte Teorema:

Teorema 12 (Teorema de Bayes). Seja o espaço de probabilidade (Ω, \mathcal{F}, P) . Considere uma sequência de eventos A_1, A_2, \ldots, A_n de \mathcal{F} , disjuntos, tal que $\bigcup_{i=1}^n A_i = \Omega$, e B um evento de \mathcal{F} , então a probabilidade de A_k , para $k=1,2,\ldots,n$, dado que ocorreu o evento B, denotado por $P(A_k|B)$, é dado por:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)}, \qquad k = 1, 2, \dots, n,$$

$$para\ P(A_k) > 0 \ e\ P(A_i) > 0, \ sendo\ i = 1, 2, \dots, n.$$

$$Demonstração \quad \text{Para um } i \text{ qualquer temos}$$

para
$$P(A_k) > 0$$
 e $P(A_i) > 0$, sendo $i = 1, 2, ..., n$.

Demonstração. Para um i qualquer, temos

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$
ou
$$P(B|A_i) = \frac{P(B \cap A_i)}{P(A_i)}.$$

Isto implica que

$$P(A_i \cap B) = P(B)P(A_i|B) = P(A_i)P(B|A_i).$$

Pela lei da probabilidade total, a probabilidade de B pode ser dada por $P(B) = \sum_{i=1}^{\infty}$ $P(A_i) P(B|A_i)$. Portanto,

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{\infty} P(A_i)P(B|A_i)},$$

prova concluída.

Tal é a sua importância, que um dos ramos de estudo da inferência estatística é baseado nesse teorema. O Teorema de Bayes fornece uma atualização do conhecimento já existente $P(A_k)$, conhecido como "a priori", por meio da ocorrência do evento B. Essa atualização é a probabilidade "a posteriori" $P(A_k|B)$.

Com esse resultado, Paulo agora pode tomar uma decisão mais plausível, isto é, dado um defeito numa determinada sandália produzida na fábrica, qual a probabilidade desta ter sido produzida em cada uma das máquinas?

$$P(M_1|D) = \frac{0,01 \times 0,50}{0,016} = 0,3125$$

$$P(M_2|D) = \frac{0,02 \times 0,40}{0,016} = 0,5000$$

$$P(M_3|D) = \frac{0,03 \times 0,10}{0,016} = 0,1875$$

A tomada de decisão será substituir a máquina M2. Poderíamos ter tomado uma decisão equivocada se não fosse o teorema de Bayes.

Devemos abrir uma discussão para que ocorre muito frequente entre as Definições 8 e 22, isto é, eventos disjuntos e independência. Nas próprias definições percebemos a distinção clara entre as características. A primeira se remete a eventos (conjuntos), e a segunda é uma condição probabilística dos eventos. Contudo, em determinados problemas ainda há muita confusão ao tentar resolvê-los. Assim, apresentemos os seguintes teoremas,

Teorema 13 (Eventos disjuntos e independentes). Considere A e B, dois eventos no espaço de probabilidade (Ω, \mathcal{F}, P) . Se $A \cap B = \emptyset$ (eventos disjuntos), então A e B são independentes apenas, se e somente se, um dos eventos tiver probabilidade \emptyset .

Demonstração. Considerando que o evento A tenha probabilidade 0, isto é, P(A) = 0, implica que $A = \emptyset$, pelo Teorema 8. Assim, $P(A \cap B) = P(\emptyset \cap B) = P(\emptyset) = 0$. A condição de independência entre os dois eventos existe se $P(A)P(B) = P(A \cap B)$, e isso ocorre de fato, $P(A)P(B) = P(\emptyset)P(B) = 0 \times P(B) = 0 = P(A \cap B)$, o que completa a prova. \square

Caso esses eventos não tenham probabilidade 0, a condição $A \cap B = \emptyset$ não implica em independência entre os eventos. Vejamos o seguinte exemplo.

Exemplo 23 (Eventos disjuntos não implica em independência de eventos). A tabela abaixo dá a distribuição das probabilidade dos quatro tipos sanguíneos, numa certa comunidade.

Tipo sanguíneo	A	B	AB	0
Probabilidade de ter				
o tipo especificado	0,2			
Probabilidade de não	7			
ter o tipo especificado	1	0,9	0,95	

Calcular a probabilidade de que:

- a) um indivíduo, sorteado ao acaso nessa comunidade, tenha o tipo O;
- b) dois indivíduos, sorteados ao acaso nessa comunidade, tenham tipo A e tipo B, nessa ordem;
- c) um indivíduo, sorteado ao acaso nessa comunidade, não tenha o tipo B ou não tenha o tipo AB.

Vejamos que os tipos sanguíneos são multuamente exclusivos e formam a partição do espaço amostral, uma vez que não existe outro tipo sanguineo além dos informados e que não há indivíduo com dois tipos sanguíneos. Assim,

- a) $P(\Omega) = P(A) + P(B) + P(AB) + P(O) \Rightarrow 1 = 0,2000 + 0,1000 + 0,0500 + P(O) \Rightarrow P(O) = 0,6500.$
- b) Como os eventos A e B são independentes, então $P(A \cap B) = P(A) \times P(B) = 0,2000 \times 0,1000 = 0,0200$.

c) Agora os eventos "não ter o tipo sanguíneo especificado" não implica que os eventos sejam multuamente exclusivos pelo fato dos eventos "ter o tipo sanguíneo especificado" terem sido disjuntos. Veja, o evento não ter o tipo sanguínio AB e o evento não ter o tipo sanguíneo B, pode existir indivíduos comum a estes dois eventos, por exemplo, um indivíduo do tipo sanguíneo A ou O, e a probabilidade destes não é zero, logo, os eventos não ter o tipo sanquínio AB e não ter o tipo sanquíneo B não são disjuntos. Entretanto, esses eventos são independentes, pois a probabilidade de um evento não influencia na probabilidade do outro. Assim,

$$P[(AB)^c \cup B^c] = P[(AB)^c] + P(B^c) - P[(AB)^c]P(B^c)$$
 (Independência)
= 0,9000 + 0,9500 - 0,9000 × 0,9500 = 0,9950 \approx 1.

Ao final, temos a tabela completada da seguinte forma:

Tipo Sanguíneo	A	В	AB	0
Prob. tipo esp.	0,20	0,10	0.05	0,65
Prob. não tipo esp	0,80	0,90	0,95	0,35

Podemos ainda expressar mais três teoremas para complementar as afirmações feitas no Exemplo 23.

Teorema 14. Se A e B são eventos independentes no espaço de probabilidade (Ω, \mathcal{F}, P) , $ent ilde{a}o$

- a) A e B^c também são independentes;
- b) A^c e B também são independentes:
- c) A^c e B^c também são independentes.

Demonstração. Usando as seguintes equivalências:

$$P(A) = P(A \cap B) + P(A \cap B^c) \tag{14}$$

$$P(A^c) = P(A^c \cap B) + P(A^c \cap B^c)$$

$$P(B) = P(B \cap A) + P(B \cap A^c)$$

$$(15)$$

$$(16)$$

$$P(B) = P(B \cap A) + P(B \cap A^c) \tag{16}$$

$$P(B^c) = P(B^c \cap A) + P(B^c \cap A^c) \tag{17}$$

e a condição de que $P(A \cap B) = P(A)P(B)$ (independentes), então usando (14) temos

$$P(A \cap B^c) = P(A) - P(A)P(B)$$
 (Independência)
= $P(A)[1 - P(B)] = P(A)P(B^c)$,

o que prova o ítem (a). Usando (16) pelo mesmo raciocínio, provamos o ítem (b). Usando o resultado do ítem (a), já provado, e a condição de independência na expressão (17), temos

$$P(A^{c} \cap B^{c}) = P(B^{c}) - P(B^{c})P(A)$$

= $P(B^{c})[1 - P(A)] = P(B^{c})P(A^{c}),$

o que prova o ítem (c), concluindo assim, a prova do teorema.