#6

OIPE

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/904,380

DATE: 11/06/2001 TIME: 12:15:14

```
3 <110> APPLICANT: Jane H. Morse and James A. Knowles
      5 <120> TITLE OF INVENTION: Role of PPH1 Gene in Pulmonary Hypertension
      7 <130> FILE REFERENCE: 0575/62430-A/JPW/SHS
      9 <140> CURRENT APPLICATION NUMBER: 09/904,380
C--> 10 <141> CURRENT FILING DATE: 2001-10-15
                                                                ENTERED
     12 <160> NUMBER OF SEQ ID NOS: 30
     14 <170> SOFTWARE: PatentIn version 3.1
     16 <210> SEQ ID NO: 1
     17 <211> LENGTH: 6234
     18 <212> TYPE: DNA
     19 <213> ORGANISM: Human
     21 <400> SEOUENCE: 1
                                                                               60
     22 atgactteet egetgeageg geeetggegg gtgeeetgge taccatggae tactgaagga
     24 gcgacgtcgc cgggaccgcc cacgggaccg atggtacctg catcctgctg gtcagcactg
                                                                              120
     26 cggctgcttc gcagaatcaa gaacggctat gtaggacgac cagtcgtgac gccgacgaag
                                                                              180
     28 cgtcttagtt cttgccgata gtgcgtttaa agatccgtat cagcaagacc ttgggatagg
                                                                              240
     30 tgagagtaga cacgcaaatt tctaggcata gtcgttctgg aaccctatcc actctcatct
                                                                              300
                                                                              360
     32 atctctcatq aaaatqqqac aatattatqc tcgaaaqgta gcacctgcta tagagagtac
     34 ttttaccctg ttataatacg agctttccat cgtggacgat tggcctttgg gagaaatcaa
                                                                              420
     36 aaggggacat aaatcttgta aaacaaggat accggaaacc ctctttagtt ttcccctqta
                                                                              480
                                                                              540
     38 tttaqaacat tttgtteeta gttggtetea cattggagat ecceaagagt gteactatga
     40 agaatgtgta caaccagagt gtaacctcta ggggttctca cagtgatact tcttacacat
                                                                              600
     42 gtaactacca ctcctcctc aattcagaat ggaacatacc gtttctgctg cattgatggt
                                                                              660
                                                                              720
     44 gaggagggag ttaagtetta eettgtatgg caaagacgae ttgtagcaca gatttatgta
     46 atgtcaactt tactgagaat tttccacctc aacatcgtgt ctaaatacat tacagttgaa
                                                                              780
     48 atgactetta aaaggtggag etgacacaac accaeteagt ecaeeteatt eatttaaceg
                                                                              840
                                                                              900
     50 agatqaqaca gactgtgttg tggtgagtca ggtggagtaa gtaaattggc tctactctgt
                                                                              960
     52 ataatcattg ctttggcatc agtctctgta ttagctgttt tgatagttgc tattagtaac
     54 gaaaccgtag tcagagacat aatcgacaaa actatcaacg cttatgcttt ggatacagaa
                                                                             1020
     56 tgttgacagg agaccgtaaa caaggtcttc gaatacgaaa cctatgtctt acaactgtcc
                                                                             1080
                                                                             1140
     58 totqqcattt qttocagaag acagtatgaa catgatggag gcagcagcat ccgaaccetc
     60 tettgateta tgteataett gtaetaeete egtegtegta ggettgggag agaactagat
                                                                             1200
     62 gataatctga aactgttgga gctgattggc cgaggtcgat atggagcagt ctattagact
                                                                            1260
     64 ttgacaacct cgactaaccg gctccagcta tacctcgtca atataaaggc tccttggatg
                                                                            1320
     66 agcgtccagt tgctgtaaaa gtgttttcct tatatttccg aggaacctac tcgcaggtca
                                                                            1380
     68 acgacatttt cacaaaagga ttgcaaaccg tcagaatttt atcaacgaaa agaacattta
                                                                             1440
     70 cagagtgcct aacgtttggc agtcttaaaa tagttgcttt tcttgtaaat gtctcacgga
                                                                            1500
                                                                            1560
     72 ttgatggaac atgacaacat tgcccgcttt atagttggag atgagagagt aactaccttg
     74 tactgttgta acgggcgaaa tatcaacctc tactctctca cactgcagat ggacgcatgg
                                                                            1620
     76 aatatttgct tgtgatggag tactatccca gtgacgtcta cctgcgtacc ttataaacga
                                                                            1680
     78 acactacctc atgatagggt atggatcttt atgcaagtat ttaagtctcc acacaagtga
                                                                             1740
     80 ctgggtaagc tacctagaaa tacgttcata aattcagagg tgtgttcact gacccattcg
                                                                            1800
                                                                            1860
     82 tottgccgtc ttgctcattc tgttactaga ggactggctt atcttcacac agaacggcag
     84 aacgagtaag acaatgatet eetgacegaa tagaagtgtg agaattaeca egaggagate
                                                                            1920
     86 attataaacc tgcaatttcc catcgagatt tcttaatggt gctcctctag taatatttgg
                                                                            1980
     88 acgttaaagg gtagctctaa taaacagcag aaatgtccta gtgaaaaatg atggaacctg
                                                                             2040
     90 tgttattagt atttgtcgtc tttacaggat cactttttac taccttggac acaataatca
                                                                             2100
```

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/904,380

DATE: 11/06/2001 TIME: 12:15:14

92 gactttggac	tatacatasa	actaactaaa	aatamactum	tacacccaaa	ctgaaacctg	2160
94 acaggtactc						2220
96 taagcgaggt						2280
98 accgtgatag						2340
100 tgaatcagct						2400
100 tydattagtt						2460
102 tigadacaay	Lagacatgia	. cattacataa	occtotata	tatgagatat	acagacetet	2520
106 tcccagggga						2580
						2640
108 taggcatggt	clearggree	. iggettite	gacayayyıı	ggaaaccacc	ccactititya	2700
110 ggatatgcag	accgaaaagt	. etgteteeaa	ccitiggiag	ggigadadci	cetatacyte	2760
112 gttctcgtgt	ctagggaaaa	acagagacco	aagttcccag	aagcctggaa	caayaycaca	2820
114 gatccctttt	tgtctctggg	ttcaagggtc	troggaeett	agaaaatage	ciggeagiga	2880
116 ggtcactcaa	ggagacaatc	gaagactgtt	tcttttatcg	gaccgtcact	ccagigagii	
118 cctctgttag						2940
120 tgaggaaagg						3000
122 atggctgaac						3060
124 aatactacta	aaccctttct	. ttgtttagac	: actcgggttg	agtcaatcca	atgtctactg	3120
126 ctatgcagaa						3180
128 acttgcgttg	gacagtgtat	. ataggcgtgt	. gccaaaaatt	ggtccttatc	cagattattc	3240
130 ttcctcctca	tatccgcaca	cggtttttaa	ı ccaggaatag	gtctaataag	aaggaggagt	3300
132 tacattgaag	actctatcca	tcatactgac	agcatcgtga	agaatatttc	atgtaacttc	3360
134 tgagataggt	agtatgactg	tcgtagcact	: tcttataaag	ctctgagcat	tctatgtcca	3420
136 gcacaccttt	gactataggg	gaaaaaaacc	gagactcgta	agatacaggt	cgtgtggaaa	3480
138 ctgatatccc						3540
140 aatccccago	ctttaagtta	attgatactt	gctgtcgttc	gtgttcgagc	ttaggggtcg	3600
142 cctgaaacaa						3660
144 cacagtggtc						3720
146 ctggcatgac						3780
148 atgatataga						3840
150 gtcaattggg						3900
152 ccaacccctg						3960
154 agacgaatgt	cgactgtctt	cttctgaacc	tttggttgtt	gctagaccca	aaagaagttg	4020
156 ataagaacct	caaggaaagc	tctgatgaga	cgatctgggt	tttcttcaac	tattcttgga	4080
158 gttcctttcg	agactactct	atctcatgga	gcactctctt	aaacagttca	gtggcccaga	4140
160 cccactgage						4200
162 agtactagtt						4260
164 gatcgaacga						4320
166 cacagactgc	aaatggcgag	gcatgtttga	ttgacctgtc	gtcctgaagt	atatetaaca	4380
168 tttaccggtt						4440
170 gcagcagaac	aggagataga	. cccccgacgi	. cccycctact	gagaggggtt	catcatctta	4500
170 gcagcagaac 172 cttcccaaga						4560
174 ctggatgatc						4620
						4680
176 gcagcaagca	CadalCadaC	tagaaacaag	r actters	gattitaadC	toaatooaoo	4740
178 gtttagtttg	aactctgttc	tanaaactgg	ayılgocaag taattatat	acyaacacaa	tottografts	4800
180 agaacctcat	agetttgace	taatataa	: cacccatytt	agilacyicg	anagagtata	4860
182 gtggtgacag	ccaccatgaa	. ugguguggda	gytagaaacc	acayiyilaa	caccactyte	4920
184 agtggtactt	accacaccgt	ccatctttgg	rgtcacaatt	ctcccatgct	gecacaaccc	
186 aatatgccaa	taggacagta	ctatctggcc	gagggtacga	eggtgttggg	LLatacggtt	4980
188 atcctgtcat	gatagaccgg	aaacaaccaa	catagtgaca	catagggccc	aagaaatgtt	5040

RAW SEQUENCE LISTING DATE: 11/06/2001 PATENT APPLICATION: US/09/904,380 TIME: 12:15:14

```
190 gcagaatcag tttgttggtt gtatcactgt gtatcccggg ttctttacaa cgtcttagtc
                                                                          5100
192 tttattggtg aggacacccg gctgaatatt aattccagtc ctgatgagca aaataaccac
                                                                          5160
194 tcctgtgggc cgacttataa ttaaggtcag gactactcgt tgagccttta ctgagacgag
                                                                          5220
196 agcaacaagc tggccatgat gaaggtgttc actcggaaat gactctgctc tcgttgttcg
                                                                          5280
198 accggtacta cttccacaag tggatcgtct tgtggacagg agggaacggc cactagaagg
                                                                          5340
200 tggccgaact acctagcaga acacctgtcc tcccttgccg gtgatcttcc accggcttga
                                                                          5400
202 aatteeaata acaacaacag caateeatgt teagaacaag atgttettge ttaaggttat
                                                                          5460
204 tgttgttgtc gttaggtaca agtcttgttc tacaagaacg acagggtgtt ccaagcacag
                                                                          5520
206 cagcagatcc tgggccatca aagcccagaa tgtcccacaa ggttcgtgtc gtcgtctagg
                                                                          5580
208 accoggtagt ttcgggtctt gagcacagag gcctaattct ctggatcttt cagccacaaa
                                                                          5640
210 tgtcctggat ctcgtgtctc cggattaaga gacctagaaa gtcggtgttt acaggaccta
                                                                          5700
212 ggcagcagta tacagatagg tgagtcaaca caagatggca aatcaggatc ccgtcgtcat
                                                                          5760
214 atgtctatcc actcagttgt gttctaccgt ttagtcctag aggtgaaaag atcaagaaac
                                                                          5820
216 gtgtgaaaac tccctattct cttaagcggt tccacttttc tagttctttg cacacttttg
                                                                          5880
218 agggataaga gaattegeea ggegeeeete caeetgggte ateteeaetg aategetgga
                                                                          5940
220 ctgtgaagtc ccgcggggag gtggacccag tagaggtgac ttagcgacct gacacttcag
                                                                          6000
222 aacaataatg gcagtaacag ggcagttcat tccaaatcca gcactgctgt ttgttattac
                                                                          6060
224 cgtcattgtc ccgtcaagta aggtttaggt cgtgacgaca ttaccttgca gaaggaggca
                                                                          6120
226 ctgctacaac catggtgtct aaagatatag aatggaacgt cttcctccgt gacgatgttg
                                                                          6180
228 gtaccacaga tttctatatc gaatgaactg tctgtgactt acttgacaga cact
                                                                          6234
231 <210> SEQ ID NO: 2
232 <211> LENGTH: 1080
233 <212> TYPE: PRT
234 <213> ORGANISM: Human
236 <400> SEQUENCE: 2
238 Met Thr Ser Ser Leu Gln Arg Pro Trp Arg Val Pro Trp Leu Pro Trp
242 Thr Thr Ile Leu Leu Val Ser Thr Ala Ala Ala Ser Gln Asn Gln Glu
243
                20
                                     25
246 Arg Leu Cys Cys Ala Phe Lys Asp Pro Tyr Gln Gln Asp Leu Gly Ile
250 Gly Glu Ser Arg Ile Ser His Glu Asn Gly Thr Ile Leu Cys Ser Lys
251
254 Gly Ser Thr Cys Tyr Tyr Gly Leu Trp Glu Lys Ser Lys Gly Asp Ile
                        70
                                            75
258 Asn Leu Val Lys Gln Gly Cys Cys Trp Ser His Ile Gly Asp Pro Gln
259
                                        90
262 Glu Cys His Tyr Glu Glu Cys Val Val Thr Thr Thr Pro Pro Ser Ile
                100
                                    105
                                                         110
266 Gln Asn Gly Thr Tyr Arg Phe Cys Cys Cys Cys Ser Thr Asp Leu Cys
            115
                                120
270 Asn Val Asn Phe Thr Glu Asn Phe Pro Pro Pro Asp Thr Thr Pro
                            135
                                                140
274 Leu Ser Pro Pro His Ser Phe Asn Arg Asp Glu Thr Ile Ile Ile Ala
275 145
                        150
                                            155
278 Leu Ala Ser Val Ser Val Leu Ala Val Leu Ile Val Ala Ala Leu Cys
                    165
                                        170
282 Phe Gly Tyr Arg Met Leu Thr Gly Asp Arg Lys Gln Gly Leu His His
283
                180
                                   185
```

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/904,380

DATE: 11/06/2001
TIME: 12:15:14

286 287	Ser	Met	Asn 195	Met	Met	Glu	Ala	Ala 200	Ala	Ser	Glu	Pŗro	Ser 205	Leu	Asp	Leu
	Asp	Asn 210	Leu	Lys	Leu	Leu	Glu 215	Leu	Ile	Gly	Arg	Gly 220	Arg	Tyr	Gly	Ala
294	val 225		Tyr	Lys		Ser 230	Leu	Asp	Glu	Arg	Pro 235	Val	Ala	Val	Lys	Val 240
	Phe	Ser	Phe	Phe			Arg	Gln	Asn	Phe 250		Asn	Glu	Lys	Asn 255	
	Tyr	Arg	Val	Pro 260		Met	Glu	His	Asp 265		Ile	Ala	Arg	Phe 270		Val
	Gly	Asp	Glu 275		Val	Val	Thr	Ala 280		Gly	Arg	Met	Glu 285		Leu	Leu
	Val	Met 290		Tyr	Tyr	Pro	Asn 295		Gly	Ser	Leu	Cys 300		Tyr	Leu	Ser
314	Leu 305		Thr	Ser	Asp	Trp 310		Ser	Ser	Cys	Arg 315		Ala	His	Ser	Val 320
	Thr	Arg	Gly	Leu	Ala 325		Leu	His	Thr	Thr 330		Leu	Pro	Arg	Gly 335	
	His	Tyr	Lys	Pro 340		Ile	Ser	His	Arg 345		Leu	Leu	Asn	Ser 350		Asn
326	Val	Leu			Asn	Asp	Gly	Thr		Val	Ile	Ser	Asp		Gly	Leu
327 330	Ser	Met	355 Ara	Leu	Thr	Glv	Asn		Leu	Val	Arq	Pro		Gly	Glu	Glu
331		370					375					380				
	Asp 385	Asn	Ala	Ala	Ile	Ser 390	Glu	Val	Gly	Thr	Ile 395	Arg	Tyr	Met	Ala	Ala 400
338 339	Pro	Glu	Val	Leu	Glu 405	Gly	Ala	Val	Asn	Leu 410	Arg	Asp	Cys	Glu	Ser 415	Ala
342 343	Leu	Lys	Gln	Val 420	Asp	Met	Tyr	Ala	Leu 425	Gly	Leu	Ile	Tyr	Trp 430	Glu	Ile
346 347	Phe	Phe	Met 435	Arg	Cys	Thr	Asp	Leu 440	Phe	Pro	Gly	Glu	Ser 445	Val	Pro	Glu
350 351	Tyr	Gln 450	Met	Met	Ala	Phe	Gln 455	Thr	Glu	Val	Gly	Asn 460	His	Pro	Thr	Phe
354	Glu 465		Met	Gln	Val	Leu 470	Val	Ser	Arg	Glu	Lys 475	Gln	Arg	Pro	Lys	Phe 480
	Pro	Glu	Ala	Trp	Lys 485	Lys	Glu	Asn	Ser	Leu 490	Ala	Val	Arg	Ser	Leu 495	Lys
	Glu			Glu 500	Asp	_	_	_	_							Leu
	Thr									Ala	Glu	Leu	Met 525	Met	Ile	Trp
	Glu	Arg 530		Lys	Ser	Val	Ser 535		Thr	Thr	Val	Asn 540		Met	Ser	Thr
	Ala		Gln	Asn	Glu	Arg		Leu	Ser	His	Asn		Arg	Arg	Val	Pro
375	545					550					555					560
378 379	Lys	Ile	Gly	Pro	Tyr 565	Pro	Asp	Tyr	Ser	Ser 570	Ser	Ser	Tyr	Ile	Glu 575	Asp
	ser	Ile	His	His	Thr	Asp	Ser	Ile	Val	Lys	Asn	Ile	Ser	Ser	Glu	His

RAW SEQUENCE LISTING DATE: 11/06/2001 PATENT APPLICATION: US/09/904,380 TIME: 12:15:14

383				580					585					590		
386	Ser	Met	Ser	Ser	Thr	Pro	Leu	Thr	Ile	Gly	Glu	Lys	Asn	Arg	Arg	Asn
387			595					600		-		-	605	-	_	
390	Ser	Ile	Asn	Tyr	Glu	Arg	Gln	Gln	Ala	Gln	Ala	Arg	Ile	Pro	Ser	Pro
391		610		_		-	615					620				•
394	Glu	Thr	Ser	Val	Thr	Ser	Leu	Ser	Thr	Asn	Thr	Thr	Thr	Thr	Asn	Thr
	625					630					635					640
398	Thr	Thr	Gly	Leu	Thr	Pro	Ser	Thr	Gly	Met	Thr	Thr	Ile	Ser	Glu	Met
399			-		645				-	650					655	
402	Pro	Tyr	Tyr	Pro	Asp	Glu	Thr	Asn	Leu	His	Thr	Thr	Asn	Val	Ala	Gln
403		_	_	660					665					670		
406	Ser	Ile	Gly	Pro	Thr	Pro	Val	Cys	Leu	Gln	Leu	Thr	Glu		Asp	Leu
407			675					680					685		-	
410	Glu	Thr	Asn	Lys	Lys	Leu	Asp	Pro	Lys	Glu	Val	Asp	Lys	Asn	Leu	Lys
411		690		-	-		695		-			700	•			•
414	Glu	Ser	Ser	Asp	Glu	Asn	Asn	Leu	Met	Glu	His	Ser	Leu	Lys	Gln	Phe
	705			_		710					715			•		720
418	Ser	Gly	Pro	Asp	Pro	Leu	Ser	Ser	Thr	Ser	Ser	Ser	Leu	Leu	Tyr	Pro
419		_		_	725					730					735	
422	Leu	Ile	Lys	Leu	Ala	Val	Glu	Ala	Ala	Thr	Gly	Gln	Gln	Gln	Asp	Phe
423			_	740					745		-			750	•	
426	Thr	Gln	Thr	Ala	Asn	Gly	Gln	Ala	Cys	Leu	Ile	Ile	Pro	Asp	Val	Leu
427			755					760					765	_		
430	Pro	Thr	Gln	Ile	Tyr	Pro	Leu	Pro	Lys	Gln	Gln	Asn	Leu	Pro	Lys	Arg
431		770					775					780				
434	Pro	Thr	Ser	Leu	Pro	Leu	Asn	Thr	Lys	Asn	Ser	Thr	Lys	Lys	Glu	Pro
435	785					790					795					800
438	Arg	Leu	Lys	Phe	Gly	Ser	Lys	His	Lys	Ser	Asn	Leu	Lys	Gln	Val	Val
439					805					810					815	
442	Glu	Thr	Gly	Val	Ala	Lys	Met	Asn	Thr	Ile	Asn	Ala	Ala	Glu	Pro	His
443				820					825					830		
446	Val	Val	Thr	Val	Thr	Met	Asn	Gly	Val	Ala	Gly	Arg	Asn	His	Ser	Val
447			835					840					845			
450	Asn	Asn	Ser	His	Ala	Ala	Thr	\mathtt{Thr}	Gln.	Tyr	Ala	Asn	Arg	Thr	Val	Leu
451		850					855					860				
454	Ser	Gly	Gln	Gln	Thr	Thr	Asn	Ile	Val	Thr	His	Arg	Ala	Gln	Glu	Met
455						870					875					880
458	Leu	Gln	Asn	Gln	Phe	Ile	Gly	Glu	Asp	Thr	Arg	Leu	Asn	Ile	Asn	Ser
459					885					890					895	
	Ser	Pro	Asp	Glu	His	His	Glu	Pro	Leu	Leu	Arg	Arg	Glu	Gln	Gln	Ala
463				900					905					910		
	Gly	His	Asp	Glu	Gly	Val	Leu	Leu	Asp	Arg	Leu	Val	Asp	Arg	Arg	Gļu
467			915					920					925			
	Arg	Pro	Leu	Glu	Gly	Gly	Arg	Thr	Asn	Ser	Asn	Asn	Asn	Asn	Ser	Asn
471		930					935					940				
		Cys	Ser	Glu	Gln		Val	Leu	Ala	Ala	Gln	Gly	Val	Pro	Ser	Thr
	945	_				950					955					960
	Ala	Ala	Asp	Pro	Gly	Pro	Ser	Lys	Pro	_	Arg	Arg	Ala	Gln	Arg	Pro
479					965					970					975	

VERIFICATION SUMMARY

DATE: 11/06/2001

PATENT APPLICATION: US/09/904,380

TIME: 12:15:15

Input Set : A:\62430-A seq listing.txt
Output Set: N:\CRF3\11062001\I904380.raw

L:10 M:271 C: Current Filing Date differs, Replaced Current Filing Date