

Lecture 32

Residuals

Announcements

Error in Estimation (Review)

- error = actual value estimate
- Some errors are positive and some negative
- To measure the rough size of the errors
 - square the errors to eliminate cancellation
 - take the mean of the squared errors
 - take the square root to fix the units
 - root mean square error (rmse)

Residuals

- Error in regression estimate
- One residual corresponding to each point (x, y)
- residual
 - = observed y regression estimate of y
 - = observed y height of regression line at x
 - = vertical distance between the point and the best line

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But will show patterns for non-linear relations
- Used to check whether linear regression is appropriate

Regression Diagnostics

Dugong

Properties of Residuals

Discussion Questions

What should the average of the residuals be?

 Does your answer depend on whether the scatter diagram looks linear or shows a nonlinear pattern?

Average of Residuals

- The average of the residuals is always 0
- No matter what the scatter looks like

- Just as the average of the deviations from mean is always 0
- No matter what the data look like

A Measure of Clustering

Correlation, Revisited

 "The correlation measures how clustered the points are about a straight line."

We can now quantify this statement.

SD of Fitted Values

SD of fitted values

$$---- = |r|$$
SD of y

• SD of fitted values = |r| * (SD of y)

Variance of Fitted Values

- Variance = Square of the SD= Mean Square of the Deviations
- Variance has bad units, but good math properties

Variance of fitted values
 ----- = r²
 Variance of y

A Variance Decomposition

• Variance of fitted values

----- = r^2 Variance of y

• Variance of residuals
----- = $1 - r^2$ Variance of y

Residual Average and SD

The average of residuals is always 0

Variance of residuals

Variance of
$$y$$
 = 1 - r^2

• SD of residuals = $\sqrt{(1 - r^2)}$ SD of y

Discussion Question

Midterm: Average 70, SD 10

Final: Average 60, SD 15

r = 0.6

Fill in the blank:

For at least 75% of the students, the regression estimate of final score based on midterm score will be correct to within points.