This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-10. (Canceled)

11. (Previously Presented) A manufacturing method of a transparent polypropylene based sheet that uses a resin composition containing: 70 to 99.8 mass% of a polypropylene resin (a) having an isotactic pentad fraction of 0.85 to 0.99 and a melt flow rate (MFR) of 0.1 to 30g/10min; and 30 to 0.02 mass % of a metallocene-type ethylene-α-olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min, the method comprising:

a melt extrusion step for melt-extruding the resin composition into a sheet-like shape; a cooling step for quenching the melt-extruded sheet-like resin composition to obtain a sheet-like article; and

a heat treatment step for heat-treating the quenched sheet-like article at a heat treatment temperature of 100 to 220° C.

- 12. (Currently Amended) The manufacturing method according to claim 11, wherein the polypropylene resin (a) and the metallocene-type ethylene-α-olefin copolymer (b) do not preferably contain a nucleating agent.
- 13. (Previously Presented) The manufacturing method according to claim 11, wherein the cooling step includes at least one of:

quenching the melt-extruded sheet-like resin composition by allowing the sheet-like resin composition to pass through a slit through which cooling water flows; and

quenching the melt-extruded sheet-like resin composition by allowing the sheet-like resin composition sheet to travel between and in contact with a cooling roller and an endless belt.

14. (Previously Presented) The manufacturing method according to claim 12, wherein the cooling step includes at least one of:

quenching the melt-extruded sheet-like resin composition by allowing the sheet-like resin composition to pass through a slit through which cooling water flows; and

quenching the melt-extruded sheet-like resin composition by allowing the sheet-like resin composition sheet to travel between and in contact with a cooling roller and an endless belt.

- 15. (Previously Presented) The manufacturing method according to claim 11, wherein, in the heat treatment step, front and back surfaces of the sheet-like article are held with a metallic endless belt and/or a metallic roller to heat the sheet-like article, the metallic endless belt and/or the metallic roller having a mirror-finished surface.
- 16. (Previously Presented) The manufacturing method according to claim 12, wherein, in the heat treatment step, front and back surfaces of the sheet-like article are held with a metallic endless belt and/or a metallic roller to heat the sheet-like article, the metallic endless belt and/or the metallic roller having a mirror-finished surface.
- 17. (Previously Presented) The manufacturing method according to claim 13, wherein, in the heat treatment step, front and back surfaces of the sheet-like article are held with a metallic endless belt and/or a metallic roller to heat the sheet-like article, the metallic endless belt and/or the metallic roller having a mirror-finished surface.
- 18. (Previously Presented) The manufacturing method according to claim 14, wherein, in the heat treatment step, front and back surfaces of the sheet-like article are held with a metallic endless belt and/or a metallic roller to heat the sheet-like article, the metallic endless belt and/or the metallic roller having a mirror-finished surface.
- 19. (Currently Amended) A transparent polypropylene based sheet that uses a resin composition containing: 70 to 99.8 mass% of a polypropylene resin (a) having an isotactic pentad fraction of 0.85 to 0.99 and a melt flow rate (MFR) of 0.1 to 30g/10min; and 30 to 0.02 mass % of a metallocene-type ethylene-α-olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min, wherein:

a tensile modulus of elasticity of an extruding direction (MD direction) is 1500 MPa or higher; and

a total haze H is represented by Equation (I) below with a thickness of the sheet being t [mm]:

$$H \le 70t^2 - 30t + 6 \cdots (I)_{2}$$

- 20. (Previously Presented) The transparent polypropylene based sheet according to claim 19, wherein an impact resistance at -5°C is 2000J/m or higher.
- 21. (New) The manufacturing method according to claim 11, wherein the resin composition contains 5 to 25 mass % of a metallocene-type ethylene- α -olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min.
- 22. (New) The manufacturing method according to claim 11, wherein the resin composition contains 5 to 30 mass % of a metallocene-type ethylene-α-olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min.
- 23. (New) The manufacturing method according to claim 11, wherein the resin composition contains 3 to 30 mass % of a metallocene-type ethylene- α -olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min.
- 24. (New) The manufacturing method according to claim 11, wherein the transparent polypropylene based sheet has an impact resistance at -5°C of 2000J/m or higher.
- 25. (New) The manufacturing method according to claim 11, wherein the resin composition contains 70 to 97 mass% of a polypropylene resin (a) having an isotactic pentad fraction of 0.85 to 0.99 and a melt flow rate (MFR) of 0.1 to 30g/10min.
- 26. (New) The manufacturing method according to claim 11, wherein the resin composition contains 75 to 95 mass% of a polypropylene resin (a) having an isotactic pentad

fraction of 0.85 to 0.99 and a melt flow rate (MFR) of 0.1 to 30g/10min.

- 27. (New) The manufacturing method according to claim 11, wherein the metallocene-type ethylene- α -olefin copolymer has a molecular weight distribution (M_w/M_n) obtained by a gel permeation chromatography method in the range from 1.5 to 4.0.
- 28. (New) The manufacturing method according to claim 11, wherein heat treatment temperature is 100°C to the melting point of the polypropylene resin.
- 29. (New) The manufacturing method according to claim 11, wherein the resin composition contains 75 to 95 mass% of a polypropylene resin (a) having an isotactic pentad fraction of 0.85 to 0.99 and a melt flow rate (MFR) of 0.1 to 30g/10min and 5 to 25 mass % of a metallocene-type ethylene-α-olefin copolymer (b) that is produced using a metallocene catalyst and having a density of 880 to 920 kg/m³ and a melt flow rate (MFR) of 1 to 30g/10 min.
- 30. (New) The manufacturing method according to claim 29, wherein the transparent polypropylene based sheet has an impact resistance at -5°C of 2000J/m or higher.