

Computer Security

Digital Signature

Hyoungshick Kim

Department of Software College of Software Sungkyunkwan University

Digital signatures

- Developed to verify that a message comes from the claimed sender
- Opposite of public key encryption
 - Private key used to sign message
 - Public key used to verify signature

Encryption and Digital signature

Encryption

- Suppose we encrypt M with Bob's public key
- Bob's private key can decrypt to recover M

Digital Signature

- Sign by "encrypting" with your private key
- Anyone can verify signature by "decrypting" with public key
- But only you could have signed
- Like a handwritten signature, but way better...

"Plain" RSA signatures

- Public key (N, e); private key (N, d)
- To sign message $m \in Z_N^*$, compute $\sigma = m^d$ mod N
- To verify signature σ on message m, check whether $\sigma^e = m \mod N$
- Correctness holds...

What about security?

Security of "plain" RSA signature?

- Attacker can sign specific messages
 - E.g., easy to compute the e^{th} root of m = 1
- Attacker can sign "random" messages
 - Choose arbitrary σ ; set m = [$\sigma^e \mod N$]
- · Attacker can combine two signatures to obtain a third
 - Say σ_1 , σ_2 are valid signatures on m_1 , m_2 with respect to public key N, e
 - Then $\sigma' = [\sigma_1 \cdot \sigma_2 \mod N]$ is a valid signature on the message $m' = [m_1 \cdot m_2 \mod N]$
 - $-(\sigma_1 \cdot \sigma_2)^e = \sigma_1^e \cdot \sigma_2^e = m_1 \cdot m_2 \mod N$

RSA-FDH (Full Domain Hash)

 Apply a "cryptographic transformation" to messages before signing

- Public key: (N, e)
 Private key: d
- $Sign_{sk}(m) = H(m)^d \mod N$
- Verify_{pk}(m, σ): output 1 iff σ ^e = H(m) mod N
- This also handles long messages

Security of RSA-FDH

- Not easy to compute the eth root of H(1), ...
- Choose σ ..., but how do you find an m such that $H(m) = [\sigma^e \mod N]$?
 - Computing inverses of H should be hard
- $H(m_1) \cdot H(m_2) = \sigma_1^e \cdot \sigma_2^e = (\sigma_1 \cdot \sigma_2)^e \neq H(m_1 \cdot m_2)$

DSA/DSS signatures

- Another popular signature scheme, based on the hardness of the discrete logarithm problem
 - Introduced by NIST in 1992
 - US government standard

- ECDSA (based on ECDLP)
 - Used for Bitcoin

Discrete-logarithm problem

- Fix cyclic group G of order m, and generator g
- We know that $\{g^0, g^1, ..., g^{m-1}\} = G$
 - For every h∈G, there is a unique $x \in \mathbb{Z}_m$ s.t. $g^x = h$
 - Define log_gh to be this x the discrete logarithm of h with respect to g (in the group G)
- <u>Dlog problem in G:</u> Given g, h, compute log_gh
- <u>Dlog assumption in G:</u> Solving the discrete log problem in G is hard

Diffie-Hellman problems

- Fix group G with generator g
- Define $DH_g(h_1, h_2) = DH_g(g^x, g^y) = g^{xy}$
- Computational Diffie-Hellman (CDH) problem:
 - Given g, h_1 , h_2 , compute $DH_g(h_1, h_2)$
- Decisional Diffie-Hellman (DDH) problem:
 - Given g, h₁, h₂, distinguish the correct DH_g(h₁, h₂)
 from a uniform element of G

Relating the Diffie-Hellman problems

- If the discrete-logarithm problem is easy, so is the CDH problem
- If the CDH problem is easy, so is the DDH problem

Group selection

- For cryptographic applications, best to use primeorder groups
 - The dlog problem is "easier" if the order of the group has small prime factors
- Two common choices of groups
 - Prime-order subgroup of \mathbb{Z}_{p}^{*} , p prime
 - E.g., p = tq + 1 where q is also a prime
 - Take the subgroup of t^{th} powers, i.e., $G = \{ [x^t \mod p] | x \in \mathbb{Z}_p^* \}$
 - Prime-order subgroup of an elliptic curve group

Questions?

