

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 135 541 ⁽¹³⁾ C1

(51) MIK⁶ C 09 K 5/04

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 97120359/04, 10.12.1997
- (24) Дата начала действия патента: 10.12.1997
- (46) Дата публикации: 27.08.1999
- (56) Ссылки: RU 96104188 A1, 20.11.97. RU 2013431 C1, 30.05.94. EP 492777 A2, 01.07.92. WO 91/16390 A1, 31.10.91.
- (98) Адрес для переписки: 197198, Санкт-Петербург, пр.Добролюбова 14, РНЦ "Прикладная химия" первому зам.генер.директора Русанову В.Б.
- (71) Заявитель: Российский научный центр "Прикладная химия"
- (72) Изобретатель: Баранов В.Г., Зотиков В.С., Максимов Б.Н., Плотников В.Т., Самойленко В.И., Семенов Б.Е., Трукшин И.Г., Андреев В.И., Молчанов О.Н.
- (73) Патентообладатель: Российский научный центр "Прикладная химия"

5

(54) КОМПОЗИЦИЯ ХЛАДАГЕНТА

(57) Реферат:

Изобретение относится к смесевым хладагентам, используемым в бытовом, торговом и промышленном оборудовании. Композция содержит, об.%: пентафторэтан 15-70; гептафторпропан 20-70; одно из соединений, выбранных из группы, содержащей пропан, бутан, изобутан, дифторэтан, гексафторпропан,

тетрафторэтан, октафторциклобутан 1-20. Смесевой хладагент более универсален и перспективен, чем известные, предназначенные для сервисного обслуживания в холодильной технике вместо применяемого хладона 12, наиболее широко используемого в холодильной промышленности. З табл.

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 135 541 ⁽¹³⁾ C1

(51) Int. Cl.⁶ C 09 K 5/04

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 97120359/04, 10.12.1997

(24) Effective date for property rights: 10.12.1997

(46) Date of publication: 27.08.1999

(98) Mail address: 197198, Sankt-Peterburg, pr.Dobroljubova 14, RNTs "Prikladnaja khimija" pervomu zam.gener.direktora Rusanovu V.B. (71) Applicant: Rossijskij nauchnyj tsentr "Prikladnaja khimija"

(72) Inventor: Barabanov V.G., Zotikov V.S., Maksimov B.N., Plotnikov V.T., Samojlenko V.I., Semenov B.E., Trukshin I.G., Andreev V.I., Molchanov O.N.

(73) Proprietor: Rossijskij nauchnyj tsentr "Prikladnaja khimija"

(54) COMPOSITION OF COOLING AGENT

(57) Abstract:

FIELD: domestic, trade and industrial equipment. SUBSTANCE: composition comprises, vol.%: pentafluoroethane, 15-70; heptafluoropropane, 20- 70; one of compounds selected from group consisting of propane, butane, isobutane, difluoroethane,

hexafluoropropane, tetrafluoroethane, octafluorocyclobutane, 1-20. Mixed cooling agent is more universal and promising than those known in the art, particularly cooling agent 12 widely used in refrigeration industry. EFFECT: improved composition of the cooling agent. 3 tbl

Изобретение относится к составу озонобезопасного негорючего хладагента, предназначенного для применения в холодильной технике вместо запрещенных хлорфторуглеродов (ХФУ), согласно Монреальскому протоколу.

В настоящее время в качестве заменителя R12 в бытовой холодильной технике применяется R134a, смеси углеводородов или дифторэтан с изобутаном (С1). Однако, такие хладагенты мало пригодны действующего ретрофита на оборудования из-за пожароопасности или несовместимости с компрессорным маслом. Известна также озонобезопасная композиция СМ1, которая содержит R218, обладающий высоким экстремально показателем парникового эффекта (GWP > 34000), поэтому, в связи с ужесточением экологических требований к этому показателю перспективы широкого применения таких веществ должны быть ограничены. Известны из патентной документации композиции хладагентов на основе дифторхлорметана (хладон 22), предназначенные для замены хладона-12, например:

1. Патент N (WO92-12216)

Предложен состав хладагента, вес. %: Хладон 22 (дифторметан) - 41 - 71

Изобутан - 2 - 20

Хладон 142b (1,1-дифтор-1-хлорэтан) - 21 - 51

Предложенный многокомпонентный хладагент обладает приемлемым уровнем холодопроизводительности в холодильном оборудовании и кондиционерах воздуха, обладает хорошей совместимостью с маслами, имеет ODP = 0,05.

2. Патент N (WO92-16596).

Хладагент состава, вес.%:

Хладон 22 (дифторхлорметан) - 65 - 75

Хладон 125 (пентафторэтан) - 15 - 25

Пропан - 5 - 15

Ch

Хладагент нетоксичен, невоспламеняемый с низким коэффициентом сжатия, обладает хорошей совместимостью с маслом.

3. Патент N 2013431 (фирма Санио Электрик Лтд.). Фирма предлагает композицию хладагента, содержащую смесь галоидированных углеводородов, в состав которой входят:

фтордихлорметан (R21) и по крайней мере одно фторалкильное соединение из группы: трифторметан (R23); пентафторэтан (R125); хлордифторметан (R22); -1,1 дифтор-1-хлорметан (R142b); при соотношении компонентов, мас.%:

Фтордихлорметан - 0,1 - 50,0

Фторалкильное соединение - 50 - 99,9

Предложенные составы мало совместимы различных маслами классов. минеральными, полиэфирными. Наиболее решаемой задачи "композиция близким по существу является изобретение хладагента" (заявка Российской Федерации N 96104188/04, 20.11.97), которое рассматривается нами как прототип. Композиция хладагента содержит дифторхлорметан, фтордихлорметан, пропан, бутан, или изобутан, или одно фторалкильное соединение из группы: (R134a R134); тетрафторэтан или трифторэтан (R143a); дифторэтан (R152a); дифторметан (R32); гептафторпропан (R227); гексафторпропан (R236); октафторциклобутан

(RC318), при следующем соотношении компонентов, об.%:

Дифторхлорметан - 45 - 80 Фтордихлорметан - 15 - 40

пропан, или бутан, или изобутан, или одно фторалкильное соединение из группы тетрафторэтан, трифторэтан, дифторметан, гептафторпропан, гексафторпропан, октафторциклобутан - 0,1 -

гексафторпропан, октафторциклобутан - 0,1 - 25,0

Несмотря на то, что этот смесевой хладон более универсален и перспективен, чем известные, предназначенные для сервисного обслуживания холодильников, работающих, как на хладоне 12, так и на хладоне 134а, однако, надо отметить, что смесевые композиции на основе переходных хладагентов R22, R21, R142b, R124 и др., предлагаемые для ретрофита действующих холодильных машин, мало перспективны во вновь изготавливаемом оборудовании.

Задача изобретения состоит в создании озонобезопасной композиции с низким GWP на базе компонентов, производимых в России, которая могла использоваться в качестве ретрофита и в перспективе применяться и в качестве хладагента вновь изготовленного оборудования. Последнее связано с тем, что при освоении R134a в качестве универсального заменителя R12 во всех видах холодильной техники обнаружено, UTO EO эксплуатационным свойствам. экологической и пожарной безопасности он во многих случаях уступает смесевым композициям. При разработке композиции исходными требованиями являлись:

- нулевой показатель ODP

- показатель парникового эффекта GWP должен быть менее, чем у R134a
 - пожаробезопасность
 - ПДК на уровне R12 и R134a
- совместимость с конструкционными материалами
- относительная молекулярная масса 110-120
- совместимость с разрабатываемыми в России маслами
- наличие отечественной сырьевой базы для производства композиции
- минимизация конструктивных изменений при использовании в качестве ретрофита бытового, торгового и промышленного холодильного оборудования
 - композиция должна быть пригодна для ретрофита оборудования, работающего на R12.

Для решений этой задачи предложен хладагент на базе фторуглеродов и углеводородов, обеспечивающий возможность эксплуатации и сервисного обслуживания оборудования, работающего на ХФУ.

Поскольку большинство известных ретрофитных смесей на основе R22 (см. таблицу 1) имеют молекулярную массу менее 100 ед., применение их в оборудовании с центробежными насосами, работающими на R12, приводит к значительному снижению производительности. Поэтому в качестве основы была выбрана композиция R125 - R227, обеспечивающая возможность получения хладагентов с относительной молекулярной массой, близкой к R12, с учетом введения в состав третьей составляющей с меньшей молекулярной

35

50

55

массой (R152a, R290, R600 и др.).

При выборе состава композиции для конкретного применения производился термодинамический расчет характеристик холодильного цикла, экспериментально определялись зависимость Р нас - Т и возгораемость смесей (при введении в состав R152a или углеводородов); совместимость с компрессорными маслами материалами. конструкционными Поспе соответствующей корректировки состава проводились испытания композиции в действующем холодильном оборудовании.

В результате проведенных исследований установлено, что зависимость Р_{нвс} - Т можно регулировать в широких пределах, обеспечивая Т _{кип} от -28 до -46°C путем изменения соотношения компонентов.

Некоторые из результатов определения зависимости $P_{\text{нас}}$ - T приведены в табл. 2.

Из представленных данных следует, что кривая для одной из композиций близка к аналогичной для R12. Возгораемость смесей также зависит от состава.

Смеси R125 - R227 практически любого соотношения переходят в разряд горючих при R152a свыше введении углеводородов выше 18-20%. Длительная надежная эксплуатация холодильного оборудования достигается при обеспечении совместимости хладагента с компрессорным маслом, так как при плохой совместимости возможна сепарация масла в испарителе, нарушение возврата масла в компрессор и преждевременный выход его из строя. Экспериментально установлено, что основа композиции R125 - R227 совместима с полиэфирным маслом ХФС134, практически не растворяется в минеральном XФ 12-16. При добавке к основе R152a до 40% растворимость в минеральном масле возрастает незначительное, а при введении углеводородов выше 10-12% композиция становится совместимой.

Из данных табл. 2 следует, что при содержании основной составляющей R227 - R125 в композиции до 90 об.% и введении третьей составляющей в количестве 10 об.% и выше удается создать трехкомпонентные смеси по функциональной характеристике P_{Hac} - T, подобные известным хладагентам R12, R22 или R502. На основании выполненных расчетных и

экспериментальных исследований были выбраны композиции для изучения их в качестве хладагентов в работающих на R12 холодильниках.

Для испытаний использовались бытовые холодильники, сконструированные под хладон 12 и заправленные компрессорным минеральным ХФ12-16 или полиэфирным маслом ХФС 134. Перед испытаниями агрегаты холодильников вакуумировались до остаточного давления 5 - 10 мм рт.ст. и заправлялись хладоном 12 или исследуемыми смесевым композициями.

Доза заправки композициями составляла 0,8 - 0,9 дозы заправки моно-компонентом по паспорту. Результаты этих испытаний В табл. 3. Результаты приведены экспериментальных испытаний холодильников со смесевым хладагентом на основе R227 - R125 подтверждают возможность применения исследуемой композиции взамен R12, наиболее широко применяющегося в холодильной технике.

Все исследования смеси при использовании взамен R12 обеспечивают безотказность работы холодильников на режимах, близких к расчетным. Но с увеличением содержания R125 в смесевой основе давление на линии нагнетания компрессора возрастает поэтому предпочтительным составом, обеспечивающим возможность эксплуатации оборудования в режиме, близком к расчетному для R12, является композиция (об.%):

Гептафторпропан - 40 - 60 Пентафторэтан - 20 - 50 Изобутан (R600a) - 15 - 18

Однако, это не исключает использования в качестве третьей составляющей R152a или RC318, пропана или бутана.

Формула изобретения:

Композиция хладагента, содержащая гептафторпропан, отличающаяся тем, что она дополнительно содержит пентафторэтан и одно из соединений, выбранных из группы, содержащей пропан, бутан, изобутан, дифторэтан, гексафторпропан, тетрафторэтан, октафторциклобутан при следующем соотношении компонентов, об.%:

Гептафторпропан - 20 - 70 Пентафторэтан - 15 - 70

Одно из соединений, выбранных из вышеописанной группы - 1 - 20

50

45

55

60

Таблица 1 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИЗВЕСТНЫХ СМЕСЕВЫХ ХЛАДАГЕНТОВ

	Индекс хладагента	Химический состав	Модек. вес	Trun.,oC	ODP	AHAJOT
 	R401A	R22/124/152a (53/34/13)	93.4	-32.2	0.03	R12
Ì	R401B	R22/124/152a (61/28/11)	91.9	-33.9	0.03	R12
1	R401C	R22/124/152a (33/52/15)	101.0	-28.3	0.03	R12
1	R409A	R22/124/142b (60/25/15)	97.5	-34.2	0.05	R12
!	R402A	R22/125/290 (38/60/2)	101.6	-49.0	0.03	R502
1	R402B	R22/125/290 (60/38/2)	94.7	-47.4	0.03	R502
1	R408A	R22/125/143a (47/7 /46)	87.0	-43.5	0.02	R502
1	R404A	R125/143a/134a (44/52/4)	97.0	-48.0	0.00	R502
	R407a	R32/125/134a (20/40/40)	90.1	-45.5	0.00	R502
1	R407b	R32/125/134a (10/70/20)	102.9	-47.7	0.00	R502

R □

2

3 5 5

Таблица 2

РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ ЗАВИСИМОСТИ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ КОМПОЗИЦИЙ ОТ ТЕМПЕРАТУРЫ

	R227-35,2	R227-35,2	R227-35,2	1.85	2,43	3.10	3.72	4.42	5.10	5,92		7.93	ල ග ග	10.45	11.80	13.61	15.92	17.21	19.13	21.38
, 06.%	R227-35,2	R227-35,2	R227-35,2	1.79	. 53 86. 53	5.99	3.63	4.36	5.09	0.70	ල ගු	3.00 00.00		10.01	11.40	12,43	14,35	16.30	18.25	20.40
композиций	R227-35,2	R227-35,2	R227-35,2	1.54	2.06	2.58	3.10	3.69	4,42	5,13	5.92	6.70	7.60	ල, රට	10.15	11.50	13.00	14.40	16.80	18.20
COCTABOB	R227-35,2	R227-35,2	R227-35,2	1.17	1.65	2.15	2.60	3.10	3,55	4.01	4.60	50. 50.	6.24	7.28	8. 8.	9.40	10.50	10,80	13,15	14,55
KTO/CM2 ALR	R227-35,2	R227-35,2	R227-35,2	1.16	1.67	2.19	2.74	3.22	3.76	4.35	5.00	5.63	6,52	7.60	8.45	10.03	11.40	13.00	14.78	16.50
Давление,	R227-35,2	R227-35,2	R227-35,2	1.02	1.60	2,10	2.60	3.08	3.63	4.20	4.72	5.35	6.02	7.00	8.19	9.48	10.70	12.20	13.80	15.30
Темпе-	parypa,			-30	-25	-20	-15	-10	ID ID	0	נחו	10	Ü	ន	 	8	- 8	40	45	 品

RU 2135541 C1

Таблица 3

PEBYJETATU CPABHNTEJEHUK NOTELTAHNÁ XOJOJNJEHNKOB CO CMECEBEMN KOMIOBNUMRAM IFN IEMIEPATYPE OKPYKANNIĘŃ CPEJU 20-25oc.

Расход	- ব্য	0.5 1.5	تا 1:	4	 				0.7 2.0	0.6 1.	_ _ _ _	0.0	5 - 1.	5 1.	6 1:		
/pa, oC	-	xolod xamepa	8 - 10	t	8 - 9	1	8 - 10	8 - 9	8 - 10	2 - 9	8 - 10	110-12	8 - 10	8 - 12	8 - 9	8 - 10	8 - 11
Temmeparypa,		жоров.	-1819	-1720	-15-20	-15-25	-1825	-1822	-1820	[-2530]	-1718	[-1820]	[-1620	j-18-	(-1720	-1518	-1520
Habrehwe, Kr/cw2	ablehne, kr/cwz (komipeccop) khna nnhna arh, bcac.										0.1						
Давлени	HINGY)	пиния нагн.	8.6	10.1		14.6		16.1	3.8	14.7	15.2						12.3
	Компрес- сорное масло			X012-16	XΦ12-16	X@12-16	X@12-16	X@12-16	Полиэфир	X@134	X4134	X 0 134	X@134	X4134	X0134	X4184	X@134
комповиции, 206	ž, C	компонент	1	R600a-16	R600a-14	R600a-15	R290 -15	R290 -20		R152a-10	R318c-10	R134a-20	R134a-20	R290 - 20	ł	R236 -15	R290 -20
	- 1	-	!	13	딥	99	_ 입	45	-	75	20	유 —		45	15	요 교	<u> </u>
CocraB	4664		1	66	 25	13	<u> </u>	 G	,	15	<u>지</u>	요 -	99	<u> </u>	5	왕	08
Хладагент комповиция		R12	[компоамция]	композиция	китовития	компоамимя	комповиция	R134a	компоаиция	композиция	компоанция	КОМПОВИЦИЯ	комповиция	комповиция	компоанция	компоамия	
Mapra	Марка колодиль- ника		Mrp 101-2	-		******		Sphinish Like Spain	MYHCK 16E			~	aportena in	~~~~	,	~~~	

RU 2135541 C1