Quiz 1: CS 215

Name: _______Roll Number: _____

Attempt all five questions, each carrying 10 points. Clearly mark out rough work. You may directly use results/theorems that we derived in class or in homework - you do not need to prove them afresh.

Useful Information

- 1. Binomial theorem: $(x+y)^n = \sum_{k=0}^n C(n,k) x^k y^{n-k}$
- 2. Defining $\Phi(x) = \int_{-\infty}^{x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$, we have the following table:

n	$\Phi(n) - \Phi(-n)$
1	68.2%
2	95.4%
2.6	99%
2.8	99.49%
3	99.73%

- 3. For a non-negative random variable X, we have $P(X \ge a) \le E(X)/a$ where a > 0.
- 4. For a random variable X with mean μ and variance σ^2 , we have $P(|X \mu| \ge k\sigma) \le \frac{1}{k^2}$.
- 5. Integration by parts: $\int u dv = uv \int v du$.
- 6. Gaussian pdf with mean μ and variance σ^2 : $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$. Its MGF is $\phi_X(t) = e^{\mu t + \sigma^2 t^2/2}$.
- 7. Poisson pmf: $P(X = i) = \frac{e^{-\lambda} \lambda^i}{i!}$
- 1. Let $X_1, X_2, ..., X_n$ be independent random variables from $\mathcal{N}(\mu, \sigma^2)$. Show that the random variable $\bar{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ is also Gaussian distributed. (Note: you cannot invoke the central limit theorem here as it would yield only approximate Gaussianity.) What is its mean and variance? [7+3=10 points] Solution: The MGF of \bar{X} is $\phi_{\bar{X}}(t) = \prod_{i=1}^n \phi_{X_i}(t/n) = \prod_{i=1}^n e^{\mu t/n + \sigma^2 t^2/(2n^2)} = e^{\mu t + \sigma^2 t^2/(2n)}$. The latter is clearly the MGF of a Gaussian random variable with mean μ and variance σ^2/n . By uniqueness of MGF, the assertion is proved.
- 2. If $X \sim \text{Poisson}(\lambda)$, $Y \sim \mathcal{N}(0, \sigma^2)$ and Z = X + Y, derive an expression for $E[(Z E(Z))^3]$. Assume X and Y are independent. [10 points]

Solution: We have $E(Z) = E(X) + E(Y) = \lambda$. We also have $E(X^2) = \lambda^2 + \lambda$. Now LHS = $E[(X + Y - \lambda)^3] = E[(X + Y)^3 - \lambda^3 + 3(X + Y)\lambda^2 - 3\lambda(X + Y)^2]$. Now $E[(X + Y)^3] = E[X^3 + Y^3 + 3X^2Y + 3XY^2]$. Now $E[Y] = E[Y^3] = 0$, $E[Y^2] = \sigma^2$, so we have $E[(X + Y)^3] = E[X^3 + 3XY^2] = E[X^3] + 3\lambda\sigma^2$. We have $E[X^3] = \sum_{k=0}^{\infty} k^3 \frac{e^{-\lambda}\lambda^k}{k!} = \sum_{k=1}^{\infty} k^2 \frac{e^{-\lambda}\lambda^k}{(k-1)!}$ which upon replacing k by l+1 further yields $\sum_{l=0}^{\infty} (l+1)^2 \frac{e^{-\lambda}\lambda^{l+1}}{l!} = \lambda E((X+1)^2) = \lambda(E[X^2 + 2X + 1]) = \lambda(E[X^2 + 2X + 1])$ Combining all these results together, we get $E[(X+Y-\lambda)^3] = \lambda^3 + 3\lambda^2 + \lambda + 3\lambda\sigma^2 - \lambda^3 - 3\lambda^2 - 3\lambda\sigma^2 = \lambda$.

3. An exponential random variable X has a pdf which is given as $f_X(x) = \lambda e^{-\lambda x}$ where $x \in [0, \infty)$ and $\lambda > 0$. Derive the pmf of floor(X) and ceil(X). Recall that ceil(X) is the smallest integer greater than or equal to X and floor(X) is the largest integer less than or equal to X. [5+5=10 points]

Solution: $P(\text{floor}(X) = n) = P(n \le X < n+1) = F_X(n+1) - F_X(n) = (1 - e^{-\lambda(n+1)}) - (1 - e^{-\lambda n}) = e^{-\lambda n} (1 - e^{-\lambda}).$

 $P(\overrightarrow{\text{ceil}(X)} = n) = P(n-1 \le X < n) = F_X(n) - F_X(n-1) = (1 - e^{-\lambda(n)}) - (1 - e^{-\lambda(n-1)}) = e^{-\lambda(n-1)}(1 - e^{-\lambda}).$

4. Consider sample values $x_1', x_2', ..., x_n'$ respectively from n > 0 iid random variables $X_1, X_2, ..., X_n$, each having the CDF $F_X(x)$. Then the so-called empirical CDF is defined as $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(x_i' \leq x)$ where $\mathbf{1}(q)$ is the indicator function which produces 1 if the predicate q is true, and 0 otherwise. Prove that $F_n(x)$ is an unbiased estimate of $F_X(x)$ and derive its variance. Hence prove that $\lim_{n\to\infty} E([F_n(x) - F_X(x)]^2) = 0$. [3+4+3=10 points]

Solution: We have $E[F_n(x)] = E[\frac{1}{n}\sum_{i=1}^n \mathbf{1}(X_i \leq x)] = \frac{1}{n}\sum_{i=1}^n P(X_i \leq x) = \frac{1}{n}\sum_{i=1}^n F_X(x) = F_X(x)$. Hence, it is an unbiased estimate. Note that for all i from 1 to n, the random variables $\mathbf{1}(X_i \leq x)$ are

Bernoulli distributed with success parameter $F_X(x)$.

Now $Var(F_n(x)) = Var(\frac{1}{n}\sum_{i=1}^n \mathbf{1}(X_i \le x)) = \frac{1}{n^2} \times nP(X \le x)(1 - P(X \le x) = F_X(x)(1 - F_X(x))/n$. This step made use of the independence of $\mathbf{1}(X_i \le x)$.

Alos $\lim_{n\to\infty} E[(F_n(x) - F_X(x))^2] = \lim_{n\to\infty} E[(F_n(x) - E(F_n(x)))^2] = \lim_{n\to\infty} Var(F_n(x)) = 0$ from the earlier expression for variance.

5. Consider a sequence of independent Bernoulli trials $X_1, X_2, ...$ each with success probability p. Let N be a random variable that denotes the trial number of the first success. Derive an expression for P(N > n) and E(N). [7+3=10 points]

Solution: We have $P(N=n)=p(1-p)^{n-1}$ since the first n-1 trials were failures and the n^{th} trial was a success. N>n implies the first n trials are all failures. Hence $P(N>n)=(1-p)^n$. Hence $P(N\leq n)=(1-p)^n$.

$$1 - (1 - p)^n$$
. Also we have $E(N) = \sum_{n=1}^{\infty} np(1 - p)^{n-1} = p \sum_{n=1}^{\infty} n(1 - p)^{n-1} = p \sum_{n=1}^{\infty} -\frac{d}{dp}(1 - p)^n = p \sum_{n=1}^{\infty} np(1 - p)^{n-1} = p \sum_{n=1}^{\infty} np(1 - p)$

$$-p\frac{d}{dp}\sum_{n=0}^{\infty}(1-p)^{n}=-p\frac{d}{dp}(1/p)=\frac{1}{p}.$$