Computer Architecture

Some questions & answers

Prof. Nizamettin AYDIN, PhD naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

In the following MIPS code.

```
lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)
```

- a. How many times is instruction memory accessed?
- b. How many times is data memory accessed?
- c. How many times is register file accessed?
- **d.** Which ones are read from the register file, which ones are write to the register file?

```
a. 3
b. 2
 Iw $t0, 32($s3) \square s0 is read from,
    to is written into
 add $t0, $s2, $t0 \square s2 and t0 are read from,
    to is written into
       $t0, 48(\$s3) \square s3 and t0 are read from
 SW
```

- Suppose a system has a virtual memory size of 64K and the system uses word addressing.
- If the page size is 1024 Word,
 - a. How many bits this virtual memory address requires?
 - Determine the number of virtual pages.

A45

- Virtual address space:
 - 64K = $2^6 \times 2^{10} = 2^{16}$ Word
- Page size:
 - 1024 Word = 2^{10} Word
 - **a.** Because the virtual memory size is 2¹⁶ Word, the virtual memory address requires:
 - 16 bits
 - **b.** Number of virtual pages:
 - $-2^{16}/2^{10} = 2^{16-10} = 2^6 = 64$

- Assume that you have a computer with a maximum main memory size of 2 GByte
 - (motherboard does not allow to upgrade the main memory).
- The program you want to run on this computer may require a larger main memory, resulting in a virtual memory that uses part of the hard drive.
 - However, you realized that the magnetic hard drive in this computer is too slow for your application.
- What can you do to increase the performance of this computer?
 - Explain how and why your solution will increase the performance.

A46

- I would replace magnetic hard drive with a Solid State Drive (SSD).
- SSDs have the following advantages over HDDs:
 - High-performance input/output operations per second (IOPS),
 - Less susceptible to physical shock and vibration
 - Longer lifespan
 - Lower power consumption
 - Lower access times and latency rates
 - Silent operation

 Consider a processor which uses branch delay technique for optimization of pipelining.

Each intruction has 2 or 3 stages depending on the instruction type

I: Instruction fetch, E: ExecuteD: Memory operation

a. Which instruction will be executed first after the processor encounters the instruction in line 101.

b. Complete the following pipelinening diagram for the given program.

I: Instruction fetch, E: Execute

D: Memory operation

100	LOAD	R1, (500)
101	JUMP	105
102	ADD	R1, 1
103	AND	R1, (501)

	1	2	3	4	5	6
100 LOAD R1, (500)	_	E	D			
101 JUMP 105		ı	Е			
102 ADDR1, 1			1	E		
103 ANDR1, (501)				I	E	D

A47

- First, instruction in line 100, which adds contents of memory location 500 to R1 will be executed.
 - In line 101 there is a jump (unconditional branch) instruction.
 - Because the processor uses a branch delay technique, instruction in line 102 will be executed before processor jumps to line 105.

b.

	1	2	3	4	5	6
100 LOAD R1, (500)	-	Е	D			
101 JUMP 105		I	Е			
102 ADDR1, 1			I	Е		
103 ANDR1, (501)				I	E	D