Steps for a Machine learning model

Carlos Montenegro

1. Data Summary: Variables

```
'data.frame':
               7000 obs. of 21 variables:
                : int 2 3 4 5 6 7 8 9 14 15 ...
$ client id
$ age
                : int 29 39 49 32 29 51 34 52 52 29 ...
                : Factor w/ 12 levels "admin.", "blue-collar", ..: 4 11 2 7 1 7 2 8 1 1 ...
$ job
                : Factor w/ 4 levels "divorced", "married", ...: 3 2 2 3 3 2 2 2 2 3 ...
$ marital
                : Factor w/ 8 levels "basic.4y", "basic.6y", ...: 4 3 2 7 4 7 1 4 7 7 ...
$ education
$ default
                : Factor w/ 2 levels "no", "unknown": 1 2 2 1 2 2 1 1 1 1 ...
                : Factor w/ 3 levels "no", "unknown", ...: 1 3 1 3 3 3 3 3 3 3 ...
$ housing
                : Factor w/ 3 levels "no", "unknown", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ loan
$ contact
                : Factor w/ 2 levels "cellular", "telephone": 2 2 1 1 1 2 1 1 1 1 ...
                : Factor w/ 10 levels "apr", "aug", "dec", ...: 7 5 8 7 4 5 8 8 8 5 ...
$ month
               : Factor w/ 5 levels "fri", "mon", "thu", ...: 2 1 4 2 1 4 4 4 3 2 ...
$ day of week
$ campaign
                : int 3623211131...
                : int 999 999 999 999 999 999 999 999 ...
$ pdays
$ previous
               : int 0001000000...
                : Factor w/ 3 levels "failure", "nonexistent", ...: 2 2 2 1 2 2 2 2 2 2 ...
$ poutcome
$ emp.var.rate : num 1.1 1.4 -0.1 -1.8 1.4 1.4 -0.1 -0.1 -0.1 -2.9 ...
$ cons.price.idx: num 94 94.5 93.2 92.9 93.9 ...
$ cons.conf.idx : num -36.4 -41.8 -42 -46.2 -42.7 -41.8 -42 -42 -42 -40.8 ...
$ euribor3m
                : num 4.86 4.96 4.15 1.3 4.96 ...
$ nr.employed
              : num 5191 5228 5196 5099 5228 ...
$ subscribe
                : int 0000000000...
```

Both data sets, bank mkt train and bank mkt test contain the same variables. The first dataset contains 7000 observation and the latter contains 3000. Each of them contain 6 variables are defined integers, 10 defined as factors and 5 defined as numeric.

1. Data Summary: Distribution & missings

Missing valu	es		vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis
client_id	0	client_id	1	7000	5002.60785714	2891.9901535	5018.500	5001.87285714	3725.0325000	2.000	9998.000	9996.000	0.004286773	-1.2005890
age	0	age	2	7000	40.34357143	10.6024871	38.000	39.60107143	10.3782000	18.000	98.000	80.000	0.822653018	0.9674292
job	0	job*	3	7000	4.74214286	3.5794329	3.000	4.50375000	2.9652000	1.000	12.000	11.000	0.438387413	-1.3953122
marital	0	marital*	4	7000	2.16942857	0.5996925	2.000	2.21035714	0.0000000	1.000	4.000	3.000	-0.052613827	-0.3175492
education	0	education*	5	7000	4.77185714	2.1353225	4.000	4.91214286	2.9652000	1.000	8.000	7.000	-0.257946129	-1.1959371
default	0	default*	6	7000	1.20414286	0.4031027	1.000	1.13017857	0.0000000	1.000	2.000	1.000	1.467689986	0.1541360
housing	0	housing*	7	7000	2.06442857	0.9856770	3.000	2.08053571	0.0000000	1.000	3.000	2.000	-0.129067394	-1.9583801
loan	0	loan*	8	7000	1.31671429	0.7132775	1.000	1.14589286	0.0000000	1.000	3.000	2.000	1.869634180	1.5857008
contact	0	contact*	9	7000	1.35971429	0.4799509	1.000	1.32464286	0.0000000	1.000	2.000	1.000	0.584500147	-1.6585965
month	0	month*	10	7000	5.24871429	2.3338330	5.000	5.32642857	2.9652000	1.000	10.000	9.000	-0.299013583	-1.0127403
day_of_week	0	day_of_week*	11	7000	3.02014286	1.3988831	3.000	3.02517857	1.4826000	1.000	5.000	4.000	-0.012978591	-1.2749168
campaign	0	campaign	12	7000	1.55500000	2.6315055	1.000	0.99910714	1.4826000	0.000	32.000	32.000	4.160547700	26.5522882
pdays	0	pdays	13	7000	962.26442857	187.4276625	999.000	999.00000000	0.0000000	0.000	999.000	999.000	-4.904734224	22.0600271
previous	0	previous	14	7000	0.17614286	0.4965686	0.000	0.04982143	0.0000000	0.000	6.000	6.000	3.767054784	19.4431201
poutcome	0	poutcome*	15	7000	1.92614286	0.3666353	2.000	1.99142857	0.0000000	1.000	3.000	2.000	-0.886187415	3.7809451
emp.var.rate	0	emp.var.rate	16	7000	0.04881429	1.5878130	1.100	0.23405357	0.4447800	-3.400	1.400	4.800	-0.694219113	-1.1032336
cons.price.idx	0	cons.price.idx	17	7000	93.56868986	0.5829994	93.444	93.57442946	0.8154300	92.201	94.767	2.566	-0.228388905	-0.8438292
cons.conf.idx	0	cons.conf.idx	18	7000	-40.47275714	4.6829851	-41.800	-40.59971429	6.5234400	-50.800	-26.900	23.900	0.333920059	-0.3153432
euribor3m	0	euribor3m	19	7000	3.58687614	1.7488719	4.857	3.76443143	0.1601208	0.634	5.045	4.411	-0.669202310	-1.4640703
nr.employed	0	nr.employed	20	7000	5165.42015714	73.3050028	5191.000	5176.93112500	55.0044600	4963.600	5228.100	264.500	-1.009506512	-0.1018737
subscribe	0	subscribe	21	7000	0.11742857	0.3219533	0.000	0.02178571	0.0000000	0.000	1.000	1.000	2.376225422	3.6469683

We observe that the variables default, loan, campaign, pdays, previous, nr.employed and subscribe are variables that are highly skewed (skewness less than -1 or greater than 1). Also we observe that some of this variables also leptokurtic have distribution (kurtosis higher than 3): campaign, pdays and previous. This two indicators suggest the presence of outliers or a heavy concentration of values.

2. Model: Logistic regression

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \qquad \frac{\mathbb{I}_{\text{production}}}{\mathbb{I}_{\text{production}}}$$

Target: maximize the likelihood function

$$\ell(\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

The logistic regression is more appropriate in this case that we have a binary variable. This regression return us a number between 0 and 1 that is the probability to be 1.

The parameters of a logistic regression model are estimated by the probabilistic framework called maximum likelihood estimation.

2. Model: Random Forest

A decision tree splits the observations in each node in order to increase the purity of the subgroup. This means that the resulting groups are as different from each other as possible.

The Random Forest classifier consists of a number of decision trees that operate as an ensemble. Each Decision tree predicts a class and the majority class becomes our model's prediction.

2. Model: Naive Bayes

Bayes theorem

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

$$P(y|x_1,...,x_n) \propto P(y) \prod_{i=1}^n P(x_i|y)$$

$$y = argmax_y P(y) \prod_{i=1}^n P(x_i|y)$$

The Naïve Bayes classifier is a probabilistic machine learning model that is based on the Bayes Theorem. We can find the probability of A happening, given that B has occurred.

In this model we want to maximize the probability of finding one of the classes of the target variable (y).

2. Model: Linear discriminant analysis (LDA)

Within-class variance:

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (z_n - m_k)^2, \quad k = 1, 2$$

• Between-class variance:

$$m_1 - m_2 = \frac{1}{N_1} \sum_{i \in C_1} z_i - \frac{1}{N_2} \sum_{j \in C_2} z_j = \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)$$

Maximize the objective function:

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

b) Small $(m_1 - m_2)^2$, small $s_1^2 + s_2^2$

LDA is a dimensionality reduction technique that looks for a linear combination between features that best separates the classes of the target variable.

With this model we rescue the information coming from different dimensions and we find a new dimension that minimizes the variance and maximizes the distance between the means of the two classes.

2. Model: KNN

The KNN is a supervised classification algorithm. It calculates the distances between a data point and its K nearest neighbors (based on distance) and based on their classes we assign the data point a class. Due to this, when we increase the number of neighbors (K) the separation becomes smoother.

3. Models summary: AUC

Logistic regression: 0.8067

LDA: 0.8098

Naïve bayes: 0.7929

Random forest: 0.7368

KNN: 0.6958

Pro: easy to interpret

Cons: can solve non linear problems

Pro: No hyperparameter tuning

Cons: can't reduce dimensions to more than the number of classes

Pro: Performs well in multiclass prediction Cons: Has the assumption of independent predictors.

Pro: Interpretability

Cons: Unstable

Pro: Its consistency increases with + data

Cons: Time consuming

Cross Validation

We run a cross validation with the random forest mode to tune its number of trees and number of available variables to split the tree nodes.

Performance

The best performing model was the logistic model followed by the LDA and Naïve Bayes.