Contents

1	Thesis Overview					
	1.1	General Introduction	6			
	1.2	Contributions	6			
	1.3	Thesis Overview	6			
2	Intr	roduction	8			
	2.1	1 Introduction				
	2.2	2 Fluorescence Microscopy				
	2.3	3 Forster Resonance Energy Transfer				
	2.4	Single Molecule Fluorescence Microscopy	Ć			
		2.4.1 Overview	Ć			
		2.4.2 Confocal Microscopy	Ć			
		2.4.3 Total Internal Fluorescence Miroscopy	10			
		2.4.4 Epifluorescent Microscopy	10			
		2.4.5 Super-Resolution Microscopy	10			
	2.5	Probabilistic Inference and Bayesian Statistics	10			
		2.5.1 Bayesian Statistics	10			
		2.5.2 Sampling Techniques	10			
3	Ana	alysis Tools for Single Molecule Confocal Microscopy	11			
	3.1	Overview	11			
	3.2					
		3.2.1 The Single Molecule Fluorescence Experiment	12			
	3.3	Data Analysis in Confocal smFRET Experiments	13			
		3.3.1 Continuous Excitation	14			
		3.3.2 Alternating Laser Excitation	15			

	3.4	Develo	opment of Scientific Software	16
	3.5	pyFRI	ET: Design and Implementation	17
		3.5.1	Code Layout and Design	17
		3.5.2	Simple Event Selection and Denoising	19
		3.5.3	Burst Search Algorithms	22
	3.6	RASP	: Recurrence Analysis of Single Particles	22
		3.6.1	Compatibilities	23
	3.7	Exper	imental Methods	24
		3.7.1	Benchmarking the Gaussian Fitting Using Simulated Datasets	24
		3.7.2	Data to Evaluate the Simple Event Selection Algorithms	24
		3.7.3	Data to Evaluate Event Selection Using the Burst Search Algorithms	25
		3.7.4	Performance Analysis Using Mixtures of DNA Duplexes	26
		3.7.5	Testing the RASP Algorithm	26
	3.8	Perfor	mance Analysis of smFRET Analysis Algorithms	27
		3.8.1	Evaluating Performance with DNA Duplexes	27
		3.8.2	Evaluating the Burst Search Algorithms	28
		3.8.3	Evaluating Performance of the Gaussian Mixture Model	32
		3.8.4	Benchmarking the RASP Algorithm	35
	3.9	Conclu	usions	36
	3.10	Availa	bility and Future Directions	38
4	Bay	esian I	Inference of Intramolecular Distances Using Single Molecule FRE	T 39
	4.1	Overv	iew	39
	4.2	Introd	uction	40
		4.2.1	A smFRET Experiment	40
		4.2.2	Approaches to Analysis of smFRET Data	42
		4.2.3	Model Based Inference	44
	4.3	Theor	y	49
		4.3.1	A Physical Model of a smFRET Experiment	49
		4.3.2	Inference of Model Parameters	57
		4.3.3	The Metropolis-Hastings Algorithm	61
	4.4	Exper	imental Methods	63
	4.5	Result	s	67
		4.5.1	Justification of the Gamma-Poisson Mixture Model	77
	4.6	Conclu	usions and Future Work	79

5	Bay	esian i	Inference of Oligomer Sizes Using Single Molecule FRET	81
	5.1	Overv	iew	81
	5.2	Introd	luction	82
		5.2.1	Diseases of Protein Aggregation	82
		5.2.2	Studying Protein Aggregation	83
		5.2.3	The Relationship Between Size and Photon Emission is Complex	84
		5.2.4	The Effect of Confocal Excitation Heterogeneity on Photon Emission	85
		5.2.5	Controlling Confocal Excitation Heterogeneity	86
		5.2.6	The DNA Holliday Junction as a Model Oligomer	87
	5.3	Theor	y	87
		5.3.1	A Simple Poisson Model of Oligomer Photon Emission	90
		5.3.2	A Gamma-Poisson Mixture Model of Oligomer Photon Emission	91
	5.4	Exper	imental Methods	93
		5.4.1	Labelling of Protein Monomers	93
		5.4.2	Protein Aggregation Experiments	93
		5.4.3	Preparation of DNA Holliday Junctions	93
		5.4.4	Simple FRET Measurements of DNA Holliday Junctions	94
		5.4.5	Flattening the Confocal Volume Using Acousto-Optic Deflection: A	
			Modified Single Molecule Fluorescence Microscope	94
		5.4.6	Preparation of Microfluidic Channels	95
		5.4.7	smFRET Measurements to Determine the Effect of Unequal Excitation	
			on Photon Emission	95
		5.4.8	Counting Photobleaching Steps Using TIRF Imaging	96
	5.5	Result	ts	96
		5.5.1	The need for a Generative Model	96
		5.5.2	Understanding the Relationship Between Size and Photon Emission $. $	96
		5.5.3	Inferring Event Brightness Using the Gamma-Poisson Model	102
		5.5.4	How Bright Are Holliday Junction Events	108
		5.5.5	Photobleaching Steps Analysis Reveals Additional Source of Overdis-	
			persal	112
	5.6	Concl	usions	113
		5.6.1	Complex Relationship between Size and Photon Emission	113
		5.6.2	Implications for Future Work on Molecular Sizing	114

6 Probabilistic Inference for Error Detection in De Novo Genome Assem-

	blies							
	6.1	Overview	116					
	6.2	Introduction	116					
	6.3	Theory	119					
	6.4	Experimental Methods	124					
	6.5	Results	128					
	6.6	Conclusions	130					
7	Con	aclusions and Future Work	134					
	7.1	General Conclusions	134					
	7.2	Applications	134					
	7.3	Future Work	134					

Chapter 1

Thesis Overview

1.1 General Introduction

1.2 Contributions

1.3 Thesis Overview

The rest of this thesis is structured as follows. Chapter 2 provides a introduction to other research that has been undertaken in the field of fluorescence microscopy. General experimental and analysis techniques for fluorescence microscopy of single molecules are introduced, and the work presented in this thesis is contextualised. Chapter 2 also provides an overview of current research in Bayesian statistics and probabilistic analysis, introducing the statistical methods that are used in later chapters. Following this introductory section, we present our results over four separate chapters.

Chapter 3 introduces the pyFRET library, which we developed for analysis of confocal sm-FRET data. We describe the theory and implementation of different analysis algorithms for smFRET datasets. Data from both continuous and alternating excitation experiments are considered. In the second part of Chapter 3, we provide a comprehensive evaluation of different smFRET analysis algorithms, using a combination of simulated and experimental datasets. We benchmark popular analysis techniques, demonstrating their relative utility under different data collection regimes.

Chapter 4 considers a Bayesian method for the analysis of data from continuous excitation smFRET datasets. First, we introduce a model-based theory of the smFRET experiment. Then, we describe how this parametric model can be used to infer intramolecular distances and population sizes from time-binned smFRET data. We benchmark our Bayesian analysis technique against thresholding techniques used for time-binned data, showing the superior performance of the inference technique.

Chapter 5 extends this Bayesian analysis to sizing of labelled protein aggregates. We describe how a simplified model can be used to describe photon emission from multiple fluorophores. Using a combination of real and simulated datasets, we then show that this model is degenerate, making inference of aggregate sizes undecidable. We further show that a single emission event has multiple sources of heterogeneity, creating a complex, non-linear relationship between aggregate size and the number of photons emitted in a fluorescent event.

Chapter 6, the final results chapter, is somewhat different. This chapter describes a Bayesian analysis tool for error correction in genome assemblies generated using Illumina Nextera mate pairs. Illumina sequencing technology uses fluorescence emission from multiple fluorophores in its base calling algorithm. However, base calling errors and complex repeat structures can make reassembly of short reads challenging. In this chapter, we introduce NxRepair, an error correction tool that can identify mistakes in de novo assemblies of bacterial genomes. We benchmark NxRepair against existing tools, demonstrating its superior performance.

Finally, Chapter 7 provides the conclusion to the thesis. Here, we summarise the overall contribution of this thesis and relate the work described to its wider research context. We also discuss possible extensions of the research described, indicating future applications of the research.