Gradient Boosting – идея метода Вер 2 09.2019

1. Вспомним метод скорейшего спуска.

Задача: минимизация функции $f(t_1, t_2, ... t_k)$ Задача: найти $argmin(f(t_1, t_2, ... t_k))$

Временно рассмотрим функции одного аргумента

f(t)

 $t_{0}\;$ - начальное приближение

 λ - скорость обучения (learning rate)

$$t_{i+1} = t_i - \lambda \cdot f'(t_i)$$

Получаем последовательность точек

2. Boosting – последовательное улучшение моделей

Пример, когда следующая модель строится для остатков Регрессия для решения задач классификации

3. Вспомним наш подход к построению моделей.

Имеем семейство функций

В этом семейсве выбираем функцию h так, чтобы по иксам «хорошо» распознавать игреки, по предикторам распознавать отклик:

$$h(x_i) = \hat{y}_i \approx y_i$$

Искомая функция h будет минимизировать критерий качества (с оговорками, какими?)

Критерий качества
$$Q = \frac{1}{n} \cdot \sum_{i=1}^{n} L(y_i, h(x_i)) = \frac{1}{n} \cdot \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

Примеры критериев качества

1. MSE
$$L_1 = (y_i - h(x_i))^2$$

2. MAD
$$L_2 = |y_i - h(x_i)|$$

3. LogLoss
$$L_3 = -[y_i \cdot \log(h(x_i)) + (1 - y_i) \cdot \log(1 - h(x_i))]$$

Дополнительно предположим, что у L имеется первая производная.

Что мы меняем, чтобы минимизировать Q?

 $\mathsf{HE} \quad \mathsf{X}_i \quad$ - это наблюдения, они фиксированные.

HE y_i - это наблюдения, они фиксированные.

НЕ функцию L, она выбирается в самом начале анализа.

Подбираем функцию h.

Далее — среди всех сумм деревьев регрессии

Но не среди всех деревьев классификации.

4. Объединим эти две идеи.

Так же, как и в методе скорейшего спуска, где

$$t_{k+1} = t_k - \lambda_k \cdot f'(t_k) = t_0 - \lambda_0 \cdot f'(t_0) - \lambda_1 \cdot f'(t_1) - \lambda_2 \cdot f'(t_2) - \ldots - \lambda_k \cdot f'(t_k)$$
 ищем модель в виде суммы подмоделей

$$H^{k} = h_0 + \lambda_0 \cdot h_1 + \lambda_1 \cdot h_1 + \lambda_2 \cdot h_1 + \dots + \lambda_k \cdot h_k$$

При этом H^k модель, полученная комбинированием k простых моделей, λ_i - числа, веса простых моделей, h_i - функции, комбинируемые модели, вроде тех, которые мы изучали ранее, почти всегда на практике это деревья регрессии.

Шаг 1. Выбор начального значения

Вместо t_0 будет некоторая функция h_0 . Она постоянная, ее значение всегда равно одному и тому же числу.

Функцию h_0 вроде надо выбирать произвольной, но можно поступать лучше.

В задачах регрессии часто полагают $h_0 = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$

В задачах распознавания двух классов «0» и «1», когда \pmb{h} интерпретируем как вероятность того, что объект принадлежит классу «1», часто полагают $h_0 = \frac{1}{2}$.

Совсем правильно найти число h_0 минимизируя $Q = \frac{1}{n} \cdot \sum_{i=1}^n L(y_i, h_0)$

Объяснение как бы по индукции.

Предположим, что построена функция $H^k()$.

Как найти следующую модели $H^{k+1}(\,)\,$?

$$H^{k+1} = H^k + \lambda_k \cdot h_{k+1} = (h_0 + \lambda_0 \cdot h_1 + \lambda_1 \cdot h_1 + \lambda_2 \cdot h_1 + \dots + \lambda_k \cdot h_k) + \lambda_k \cdot h_{k+1}$$

Что теперь будет аналогом $f'(t_k) = \frac{df}{dt}(t_k)$ из формулы $t_{k+1} = t_k - \lambda_0 \cdot f'(t_k)$ Friedman предложил использовать

$$r_{ik} = -\frac{\partial L(y_i, h_k(x_i))}{\partial h_k(x_i)}$$

Например для MISE $Q = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - h(x_i))^2$

$$r_{ik} = -2 \cdot (y_i - h_k(x_i))$$

Теперь организуем матрицу, у которой первые столбцы как у исходной, а вместо столбца со значениями отклика — столбец из r_{ik} . Строки, как и ранее соответствуют наблюдениям.

Как определять очередное значение λ ? Для каждого слабого классификатора индивидуально, так, чтобы минимизировать Q.