

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

HYDERABAD

MAXIMIN ALLOCATION

Shaily Mishra

INDIVIDUAL FAIRNESS

Two-Sided Online Platforms

Twitter Trends

Spliddit

New York Times - Rent calculator

CourseMatch

HOW TO ALLOCATE ITEMS FAIRLY

How do you define fair?

Can we achieve such a fairness?

What can be done?

PROPORTIONALITY

Get at least 1/n of total share of items

							total
Agent 1	1	6	(1)	2	(1		12
Agent 2	4		2		_1_	3	12
Agent 3	1	1	3	3	3	1/	12

Agent 2 Agent 1 Agent 3

Any other proportional allocations?

		X_{-}					total
Agent 1	1	6		2	1		12
Agent 2	4	X ₁	2	71	1	3	12
Agent 3	1		3	3	3	X ₁	12

Does it exist?

ŚŚ

CUT AND CHOOSE PROTOCOL?

You divide the items into bundles and chose last

DIVIDE INTO 3 BUNDLES

Question: can we find proportional allocation?

MAXIMIN SHARE

Maximin value we can guarantee, when we get to divide items into bundles, and then chose last, i.e., choose the minimum.

Question: Prop implies MMS Allocation?

TODAY'S SESSION

MMS Allocation?

Existence?

Complexity – MMS Share, and Allocation?

Approximation Algorithms?

How different it is for goods and chores?

PAPERS

An improved approximation algorithm for maximin shares

Algorithms for Max-Min Share Fair Allocation of Indivisible Chores

An Algorithmic Framework for Approximating Maximin Share Allocation of Chores

PRELIMINARIES

Additive valuations

N = [n] agents , M = [m] items

Agent *i* has a valuation function $v_i = 2^M \rightarrow R$

Utility $u_i(S) = v_i(S)$

Goods: positive valuations, Chores: negative

Complete allocation of items

MMS ALLOCATION

An Allocation A is said to be MMS allocation, $\forall i, u_i(A_i) \geq \mu_i$

$$\mu_i = \max_{(A_1, A_2, \dots, A_n) \in \prod_n(M)} \min_{j \in N} u_i(A_j)$$

EXISTENCE

3 AGENTS

MMS Share Partition

Can we assign MMS allocation?

	1	2	3	4	5	6	7	8	9	10	11	12
Agent 1	380	349	330	320	310	273	219	210	130	120	109	100
Agent2	380	349	330	320	310	273	220	209	130	119	110	100
Agent3	380	350	329	320	310	273	219	210	129	120	110	100

MMS Allocation doesn't exist

Can you create Is constructing such Thoughts! another example for an example easy? MMS non-existence?

What can we say about likelihood, that an MMS allocation will exist?

How will it vary with n and m?

$$u_i \geq \alpha \mu_i$$

Goods: $\alpha \in [0,1)$

Chores: $\alpha > 1$

 α -MMS

GOODS: 1/2-MMS?

What if we directly assign them?

							mms
Agent 1	1	6	1	2	1		3
Agent 2	4	1)	2		1	3	4
Agent 3	1	1	3	3	3	1	4

Agent 1

Agent 2

Agent 3

Δ

							mms
Agent 1	X 1	6	1	2	1	1	3
Agent 2	4	1)	2		1	3	4
Agent 3	1_	1_	3	3	3	1	4

Lot of items $\geq = \frac{1}{2}$ MMS

Agent 1

Re-Distribute 6 5

Agent 2

Agent 2 6

MMS guarantees increased

CAN WE ASSIGN IT?

It doesn't reduce MMS guarantees in the reduced instances.

We have enough goods left.

VALID REDUCTION

Assigning
High Valued
Item

$$\begin{split} S \subseteq M, \exists i \in N \\ v_i(S) \geq \alpha \cdot \mu_i^n(M) \\ \mu_{i'}^{n-1}(M \setminus S) \geq \mu_{i'}^n(M) \quad \forall i' \in N \setminus \{i\} \end{split}$$

1/2 MMS: HIGH VALUED ITEMS

Apply valid reduction, till no high value item is left

LOW VALUED ITEM

Remaining agents and items $< \frac{1}{2}$ MMS

1/2 -MMS : LOW VALUED ITEMS

Moving Knife algorithm? – Proportional allocation for divisible goods

Cake

WHAT IF WE APPLY MOVING KNIFE

						mms
Agent 1	1	6	1/	2	1	3
Agent 2	4	1	2	1	3	4

WILL IT WORK ALWAYS?

$$\forall i, v_i(M) \ge n \,\mu_i$$
 (Why?)

$$v_{ig} \le \frac{1}{2}\mu_i$$

Before someone claims it, adding last item g

Bundle S
$$< \frac{1}{2}\mu_i$$

$$\frac{1}{2}\mu_i \le v_{i(S)} < 1$$

$$\forall i, v_i(M \setminus S) > (n-1)\mu_i$$
 Enough goods are left!

1/2 MMS

$$v_{ik} \ge \frac{1}{2}\mu_i$$

- Valid reduction
- $\mu_i' \geq \mu_i$

$$v_{ik} \le \frac{1}{2}\mu_i$$

- Bag Filling
- Bag Filling
 ∀i, v_i(M \ S) > (n − 1)μ_i

LOW VALUED ITEMS

Using Bag Filling, if we know that $v_{ik} \leq \delta$, and can we achieve α —MMS ?

 $arrho=\dot{ ext{s}}$ s

LOW VALUED ITEMS

Assume
$$\forall i, \mu_i = 1$$
; $\forall i, g, v_{ig} \leq \delta$

So again, we have bundle S, and just before adding last item \boldsymbol{g}

$$v_i(S) < \alpha \Rightarrow 1 > v_i(S) + v_{ig} \ge \alpha \Rightarrow 1 > v_i(S) + \delta \ge \alpha$$

Now,
$$v_i(S) < \alpha : 1 > v_i(S) + \delta \ge \alpha$$
,

what can be the maximum possible value of δ

$$\delta = 1 - \alpha$$

WHAT IF $\mu_i \neq 1$

Scale valuations

$$v'_{ik} = c_i v_{ik}; \mu'_i = c_i \mu_i; c_i > 0$$

$$v'_i(A_k) = c_i v_i(A_k) \ge c_i \alpha \mu_i = \alpha \mu_i'$$

Scale Invariance

BAG FILLING ALGORITHM

▶ Proposition 5. Assume agents' valuations are normalized as defined in (2), and that no agent values any item more than $0 < \delta < 1/2$: $v_{ij} \le \delta$ for all $j \in M$, for all $i \in N$. Then, the bag filling algorithm gives a $(1 - \delta)$ MMS allocation.

QUICK REVIEW

3/4 MMS ALLOCATION

INTUITION

Bag Filling, $\forall v_{ig} \leq \frac{1}{4}$

Reduction, $\forall v_{ig} \geq 3/4$

Rest?

3/4 MMS ALLOCATION

Create an ordered instance

Reduction for high value items

Modified Bag Filling

ORDERED INSTANCE?

Agent 1	1	6	1	2	_ 1	l l
Agent 2	4	1	2	1	1)<	3
Agent 3	1/	1 /	3	3	3	1/

			\times	\times	\geq	
Agent 1	6	2	1	1	1	1
Agent 2	4	3	2	1	\1	1
Agent 3	3	3	3	<u> </u>	1	1

Solve this now!

COUNTER-INTUITIVE?

Are we assigning one item to more than one agent in this?

CONVERT BACK THE ALLOCATION

Allocation:

Agent1: Item1

Agent2: Item2

Agent3: Item3,4,5,6

	\geq	\mathbb{Z}				X
Agent 1	6	2	<u> </u>	1	1	1
Agent 2	4	3	2	1	1	1/
Agent 3	3	3	3	1/	1	1

Allocation:

ltem1 => Agent1

Assign highest valued item from the remaining items

Agent1 => Item2

Agent2 => Item1

Agent3: Item3,4,5,6

Agent 1	1	6	1	2	1	1 /	
Agent 2	4		2	1	1	3	
Agent 3	1	1	3	3	3	<u> </u>	

WHY THIS WILL WORK

Each iteration => assign 1 item to 1 agent

A is $\alpha-MMS$ in ordered, it is also $\alpha-MMS$ in original

 j^{th} iteration, agent $i, j \in A'_j \Rightarrow k_j \in A_j$

 k_i is top j most valuable item for agent i

As before k-1 items have been allocated

Now,
$$\forall j \in A'_i$$
; $v_i(k_j) \ge v'_i(j)$
$$v_i(A_i) = \sum_{j \in A'_j} v_i(k_j) \ge \sum_{j \in A'_j} v'_i(j) = v'_i(A'_i) \ge \alpha$$

Create an ordered instance

Reduction for high value items

Modified Bag Filling S1
• 1st item
(most

valued)

\$2

• (n,n+1)

\$3

• (2n-1,2n,2n+1) \$4

• (1,2n+1)

HIGH VALUE ITEM BUNDLE

INITIAL ASSIGNMENT

For an agent, if $\{S1, S2, S3, S4\}$ is $3/4\mu_i$, assign the lowest index bundle S_k

 $S_k = \phi$; if those items are not present

This is a valid reduction

REMAINING ITEMS? — MODIFIED BAG FILLING

After initial assignment, for remaining n and m

Make n bags with item i^{th} and $(2n+1-i)^{th}$

1 2 n n n+1 ...

If any agent likes any bag $\geq \frac{3}{4}\mu_i$, assign it

For remaining agents and items, keep adding item to bag, until someone claims

WALK THROUGH EXAMPLE

	1	2	3	4	5	6	7	8	9	10	11	12
Agent 1	380	349	330	320	310	273	219	210	130	120	109	100
Agent2	380	349	330	320	310	273	220	209	130	119	110	100
Agent3	380	350	329	320	310	273	219	210	129	120	110	100

 $\forall i; \ \mu_i = 950 \ ; \ge \frac{3}{4} \ \mu_i = 712.5$

S3 qualifies, assign it arbitrarily – agent 1; reduce the instance $A_1 = \{5,6,7\}$

original		1	2	3	4	8	9	10	111	12
		1	2	3	4	5	6	7	8	9
Agent1	Agent2	380	349	330	320	209	130	119	110	100
Agent2	Agent3	380	350	329	320	210	129	120	110	100

Agent2

Agent3

$$S1 = \{1\}$$
380

Can't reduce any further! => Bag Filling

Both the agents like bag1; $\geq \frac{3}{4} \mu_i$ Assign to agent2

$$A_1 = \{5,6,7\} \Rightarrow 802$$

 $A_1 = \{1,4\} \Rightarrow 720$
 $A_1 = \{2,3,8,9,10,11,12\} \Rightarrow 1348$

3/4 MMS ALLOCATION

Reduction for high value items

Modified Bag Filling

GOODS: α — MMS

Valid Reduction

Scale Invariance

Ordered Instance

Bag Filling

3/4 MMS Allocation

MMS Share — NP Hard

MMS Allocation — NP Hard

 α -MMS Allocation - NP Hard (if)

PTAS exists for all

 $\frac{3}{4} + \frac{1}{12}n - MMS$

Polynomial time 3/4-MMS

For different n, different bound are also proved

Proof: Do we have enough goods left

CHORES

INTUITION

How different it is from chores?

Reduction?

Bag Filling?

 $\alpha-MMS$? No chores is left unallocated

ROUND ROBIN

EF1

$$\forall i, j \ v_i(A_i) \ge v_i(A_j) + v_i(k^{min}) \ ; \ v_i(k^{min}) = \min_{k \in M} \ v_i(k)$$

Suppose total there are L rounds.

$$i$$
 goes first. Till L-1 rounds, $v_i(A_i^{L-1}) \geq v_i(A_j^{L-1})$

In the last round, say only agent i got an item;

It's a chore; so that item value $\geq v_i(k^{min})$

ROUND ROBIN

j goes first.

$$v_i(k_j^1)$$

$$\begin{vmatrix} v_i(k_i^2) & v_i(k_i^3) \\ \ge v_i(k_j^1) & \ge v_i(k_j^2) \end{vmatrix}$$

$$v_i(k_i^3) \ge v_i(k_j^2)$$

$$v_i(k_i^{L1}) \ge v_i(k_j^{L-1})$$

$$v_i(k_i^L)$$

$$\begin{split} v_i(A_i) &- v_i\big(A_j\big) = v_i\big(k_i^L\big) - v_i\big(k_j^L\big) + \dots + v_i\big(k_i^2\big) - v_i\big(k_j^2\big) + v_i\big(k_i^1\big) - v_i\big(k_j^1\big) \\ &\geq v_i\big(k_i^L\big) - v_i(k_j^1) \\ &\geq v_i\big(k_i^L\big) \qquad \text{(chore; also L round, i may or may not get any chore)} \\ &\geq v_i(k^{min}) \end{split}$$

ROUND ROBIN

$$\forall i, j, v_i(A_i) \ge v_j(A_j) + v_i(k^{min})$$

Summing both side for j = 1 to n

$$v_i(A_i) \ge \frac{1}{n} v_j(M) + \frac{1}{n} v_i(k^{min})$$

$$v_i(k^{min}) \ge \mu_i$$
; $\frac{1}{n}v_j(M) \ge \mu_i$

$$v_i(A_i) \ge 2 \mu_i$$

Gives 2-MMS

WHY RR WON'T WORK FOR GOODS

$$v_i(k^{min}) \ge \mu_i ; \frac{1}{n} v_j(M) \ge \mu_i$$

MODIFIED BAG FILLING?

Create an ordered instance

Keep filling chores from largest to lowest, until $\exists i, v_{i(S)} \geq \alpha \mu_i$

11/9 MMS

This modified bag filling gives 11/9-MMS

\times	1	2	3	4	5	6	7	8	9	10	11	12
Agent1	-380	-349	-330	-320	-310	-273	-219	-210	-130	-120	-109	-100
Agent2	-380	-349	-330	-320	-310	-273	-220	-209	-130	-119	-110	-100
Agent3	-380	-350	-329	-320	-310	-273	-219	-210	-129	-120	-110	-100

$$\forall i; \ \mu_i = -950 \ ; \ge \frac{11}{9} \ \mu_i = -1161.12$$

Bag = $\{1,2,3\}$ => -1059; doesn't violate any agent threshold

Bag = $\{1,2,3,4\} = > -1379$; violates all

Only chore that can we added is chore 12

Bag = $\{1,2,3,12\}$ => -1159; assign arbitrary; $A_1 = \{1,2,3,12\}$

Repeat the process

$$A_2 = \{4,5,6,7\} \Rightarrow -1123 ; A_3 = \{8,9,10,11\} \Rightarrow -569$$

SUMMARY OF CHORES

Round Robin

Modified Bag Filling

Proof: No Chore is left unallocated

Best: 11/9 - MMS

Polynomial time 5/4-MMS

TO SUMMARIZE

Proportionality, MMS, $\alpha - MMS$

Goods: ½ MMS and ¾ MMS

Chores: 2 MMS and 11/9 MMS

Complexity

THANK YOU

