

MAS: Betriebssysteme

Geräte- und Dateiverwaltung

T. Pospíšek

Gesamtüberblick

- 1. Einführung in Computersysteme
- 2. Entwicklung von Betriebssystemen
- 3. Architekturansätze
- 4. Interruptverarbeitung in Betriebssystemen
- 5. Prozesse und Threads
- 6. CPU-Scheduling
- 7. Synchronisation und Kommunikation
- 8. Speicherverwaltung
- 9. Geräte- und Dateiverwaltung
- 10.Betriebssystemvirtualisierung

School of Engineering

Zielsetzung

- Die Grundlagen der Geräteverwaltung am Beispiel der Festplatte und der Dateiverwaltung anhand praktisch relevanter Filesysteme verstehen
- Konzepte von Storage Systemen kennenlernen

Überblick

1. Geräteverwaltung

- Überblick
- Treiber, Gerätetypen, Gerätemodelle,...
- Fallbeispiel: Unix
- 2. Dateisysteme
 - Grundlagen
 - Fallbeispiel: Unix
 - Fallbeispiel: Windows
- 3. Storage Systeme
 - RAID
 - SAN, NAS

I/O-Manager

- Die Geräteverwaltung (I/O-Manager) dient der optimierten Verwaltung von externen Geräten zur Ein- und Ausgabe
 - Festplatten, Wechselmedien
 - Tastatur und Bildschirm
 - Netzwerkanbindung
- Schnittstelle zwischen den Geräten und dem Rest des Betriebssystems
- Aufgaben im Einzelnen:
 - Ausgabe von Kommandos an externe Geräte
 - Interruptbearbeitung
 - Fehlerbehandlung

Interrupt-Bearbeitung: Interrupt-Controller

Auffrischung

Bussysteme am Beispiel des Pentium-Bussystems

- Geräte sind über Bussysteme (Datenverbindung) an die CPU angebunden
- In heutigen Rechnern gibt es eine Hierarchie von Bussystemen

Bussysteme am Beispiel des Pentium-Bussystems

- Northbridge und Southbridge (zwei Chips auf der Hauptplatine = Motherboard eines PCs) → Chipsatz:
 - Northbridge verbindet CPU mit Hauptspeicher (breitbandig)
 - Southbridge schließt Bussysteme an
 - Southbridge und Northbridge kommunizieren zum Beispiel über PCI

Hauptplatine, Quelle: Wikipedia

Southbridge

Verbindungen im Chipsatz

- Verbindung CPU Northbridge über FSB
 - Systembus alter Prägung gibt es nicht mehr seit CPUs zu schnell sind
 - FSB (Front Side Bus) oder schnellere Verbindungen wie eine HyperTransport (> 50 Gbyte/s) oder QPI-Verbindung (Intel Quick Path)

 Rechnerkerne

Zh School of Engineering

Ergänzung: Northbridge, Southbridge

Beispiel eines modernen Chipsatzes

- North- und Southbridge sind "Router"
- Routing von Traffic von Bus zu Bus
- Die Northbridge bedient den umfangreichen Traffic zwischen CPU und RAM
- Die Southbridge bedient die anderen Routen (Bussysteme) zu den externen Geräten
- Verbindung über PCI-Bus

Typische Datenraten

Sehr unterschiedliche Transferraten [Bit/s] bzw.
 Datenraten [Byte/s] für die einzelnen Geräte

Gerät	Transferrate bzw. Datenrate
Keyboard	ca. 10 Byte/s
Maus	ca. 100 Byte/s
Laserdrucker	ca. 100 KByte/s
USB3	5 GBit/s
ISA-Bus	16 MByte/s
Fast Ethernet	12,5 MByte/s
Serial Attached SCSI	750 MByte/s
Tape	ca. 320 MByte/s
PCI Express	32 GBit/s
IDE-Festplatten mit ATA	ca. 130 MByte/s
Festplatten mit S-ATA	Bis zu knapp 2 GByte/s
Bus-Kommunikationssystem wie AMD HyperTransport oder Intel QPI	50 GBit/s bis über 100 GBit/s

Schichtung des I/O-Systems

Treiber

- Treiber sind gerätespezifische Programmteile
- Treiber werden in eigenen Modulen meist durch den Gerätehersteller realisiert
- Die wichtigsten Aufgaben eines Treibers:
 - Initialisierung und Bekanntgabe des Geräts
 - Datenübertragung von und zu einem Gerät
 - Logisches Programmiermodell auf gerätespezifische Anforderungen übersetzen
 - Pufferung von Daten
 - Interruptbearbeitung
 - Koordination der nebenläufigen Zugriffe

Gerätearten (1)

Zeichenorientierte Geräte

- Information wird in einzelnen Zeichen gespeichert und gelesen
- Einzelne Zeichen sind nicht adressierbar, es wird in Streams gelesen bzw. gespeichert
- Beispiele: Drucker, Maus, Netzwerkkarten

Blockorientierte Geräte

- Information wird in Blöcken von mind. 512 Bytes gespeichert und gelesen
- Blöcke sind adressierbar, Zugriff erfolgt auf Blöcke
- Beispiele: Festplatten, Tapes
- Sonstige Geräte wie Clocks (Zeitgeber)

Gerätearten (2)

Geräte mit wahlfreiem Zugriff

- Adressierungsinformation notwendig
- Beispiel: Plattenspeicher
 - · Adressierung über
 - Spurnummer

Sektornummer ISA-Steckplatz, Quelle: Wikipedia *

Zylindernummer

S-ATA-Anschluss, Quelle: Wikipedia

IDE-Schnittstelle, Quelle: Wikipedia

Gerätearten: Beispiel Festplatte (1)

- Festplatten bestehen aus Kunststoff- oder Aluminiumscheiben, die mit einer hauchdünnen Magnetschicht überzogen sind
- Schreib-/Leseköpfe sind mit kleinem Elektromagneten ausgestattet
- Daten sind als Blöcke fester Größe in Sektoren gespeichert, die in Spuren zu finden sind
- Anordnung in sog. Zylindern
 - Bei übereinander liegenden Platten alle Spuren mit gleicher Nummer, auf welche die Schreib-/Leseköpfe gleichzeitig positionieren können

Gerätearten: Beispiel Festplatte (2)

Gerätearten: Beispiel Festplatte (3)

Seite 0

- Plattenaufteilung: Spuren, Zylinder, physikalische Sektoren (Kuchenstücke, Kreissektoren)
- Alle Spuren untereinander nennt man Zylinder (eine Position des Kopfes)
- Durchnummerierung logischer Sektoren entlang der Spuren → keine mechanische Aktion erforderlich

Seite 1

Sektor 1 Sektor 8 Sektor 8 Sektor 1 Zylinder 0 Zylinder 0 15 Zylinder 1 Zylinder 1 16 31 24 23 Sektor 7 Zylinder 2 Zylinder 2 40 32 Sektor 7 30 25 22 17 Sektor 2 33 41 Sektor 2 26 29 21 13 10 28 27 20 19 Sektor 6 Sektor 3 Sektor 3 Sektor 6 3 11 Sektor 5 Sektor 4 Sektor 5 Sektor 4

Gerätearten: Beispiel Festplatte (4)

- Üblicher Plattendurchmesser 3,25 oder 2,5 Zoll oder kleiner (1,8 Zoll)
- Zwischen 2 und 8 Platten, Beispiel: 135.000 Spuren/Zoll
- Kapazität: Bei 39 Sektoren, 761 Zylinder und 8 Köpfen und 512 Byte großen Sektoren:
 - 39 x 761 x 8 x 512 = 121.565.184 Byte
- Kapazität: mehrere TiB
 - Hat sich in den letzten 30 Jahren mehr um als das 200-fache erhöht
 - Zugriffszeiten aber nicht!

Gerätearten: Beispiel Festplatte (5)

- Betrachtung zweier Sektoren aus einer Festplattenspur
- Sektoreninhalt: Präambel, Nutzdaten (hier 4096 Bit) und ECC

Gerätearten: Beispiel Festplatte (6)

- Das Betriebssystem kennt nur logische Sektoren in durchnummerierter Reihenfolge (sog. LSN = Logical Sector Number)
- Eine Übersetzung der logischen Adressen in phys. Adressen ist erforderlich

Einfaches lineares Adressierungsmodell mit den Speicheradressen 0..N

Adressierungslogik der Festplatte (Laufwerk-, Zylinder-, ..., Sektornummer)

- Folge 1 bis N von Blöcken, die eindeutig durch ein
 Quadrupel der Form (g, z, h, s) adressierbar sind, mit
 - g: Laufwerk
 - z: Zylindernummer
 - h: Nummer des Schreib-Lesekopfes
 - s: Sektornummer

Gerätearten: Beispiel Festplatte (7)

- Scheduling-Strategie
 - Ein Plattentreiber muss die Lese- und Schreibaufträge möglichst optimal und fair bearbeiten
- Bekannte Schedulung-Strategien
 - FCFS (First Come First Serve)
 - Einfach und fair: Alle Aufträge in der Reihenfolge ausführen, in der sie ankommen
 - SSTF (Shortest Seek Time First)
 - Aufträge in näherer Umgebung der aktuellen Schreib-/Lesekopf-Position ausführen
 - Vermeidung von Kopfbewegungen
 - Wie bei SJF-Prozessverwaltung besteht das Problem des Verhungerns von Aufträgen

Gerätearten: Geräte mit seriellem Zugriff

Geräte mit seriellem Zugriff

- "Serielle Geräte"
- Keine Adressierungsinformation notwendig
- Lesen bzw. Schreiben geht Zeichen für Zeichen
- Beispiele
 - Maus
 - · langsame Zeilendrucker
 - Tastatur
- Es wird eine Flusssteuerung benötigt (XON/XOFF)

Fallbeispiel Unix: Geräte als spezielle Dateien

- Jedes Gerät hat unter Unix ein "special file" zugeordnet, über das es wie eine Datei behandelt werden kann
 - Verzeichnis z.B. /dev
 - Genaue Namen sind abhängig vom Unix-Derivat
 - Operationen (System Calls): open, read, write,...
- Bei den sog. special files unterscheidet man in
 - Block special file, z.B. /dev/hd1 (Festplatte)
 - Character special file, z.B. /dev/tty (Bildschirm, Tastatur)
- Beispiel:
 - Kommando cp file /dev/lp kopiert eine Datei namens file direkt auf den Drucker

Fallbeispiel Unix: Streams

 Streams-orientiertes Modell bei System V: Treiberschichten (Filter) können in den Stream eingebaut werden

Überblick

- 1. Geräteverwaltung
 - Überblick
 - Treiber, Gerätetypen, Gerätemodelle,...
 - Fallbeispiel: Unix

2. Dateisysteme

- Grundlagen
- Fallbeispiel: Unix
- Fallbeispiel: Windows
- 3. Storage Systeme
 - RAID
 - SAN, NAS

Einordnung in die Schichten

Dateien

- Informationen müssen von Betriebssystemen persistent gespeichert werden können
- Dateien sind ein abstrakter Mechanismus zur Speicherung und zum Wiederauffinden von Informationen
- Der Teil des Betriebssystems, der sich mit Dateien und deren Organisation befasst, wird als Dateiverwaltung bezeichnet
- Zu jeder Datei sind bestimmte Informationen zu verwalten

School of Engineering

Informationen zu Dateien

- Dateien haben einen Dateinamen und einen Inhalt
- Jede Datei besitzt einen Eintrag mit Informationen über:
 - Namen der Datei
 - Typ der Datei: Normal- oder Katalogdatei
 - Länge der Datei in Bytes
 - Blöcke, aus denen die Datei besteht
 - Zugriffsrechte zu dieser Datei
 - Passwörter zum Schutz der Datei
 - Statistikdaten: z.B.: Datum letzte Änderung

- ...

Dateisysteme

- Dateien werden in Dateisystemen (file system) verwaltet
- Dateisysteme oft hierarchisch organisiert
 - Dateigruppen (Dateiverzeichnis) mit Verwaltungsinformation
 - Dateien (mit den eigentlichen Daten)
- Strukturierung mit Unterverzeichnissen (Subdirectory)
- Jedes (Sub)directory enthält Einträge zu weiteren Katalogen oder normalen Dateien
- Beispiele:
 - Unix verfügt über ein systemweites Dateisystem
 - MS-DOS verwaltet für jedes Gerät ein unabhängiges Directory

Hierarchische Verzeichnissysteme

Hierarchische Verzeichnissysteme beliebiger
 Tiefe sind heute "State of the Art"

Directories sind in einer Baum-Struktur

Operationen auf Dateien

- Systemdienste zur Verwaltung von Dateien:
 - Erzeugen eines Katalogeintrages (Dateiname)
 - Löschen des Katalogeintrags u. Dateiinhalts
 - Kopieren von Dateien
 - Löschen einer Datei
 - Ändern des Dateinamens oder anderer Katalogeinträge
 - Übertragen eines Katalogeintrags in einen anderen Katalog (Directory)

Blockverwaltung

- Die Bearbeitung von Dateien ist blockweise oder zeichenweise möglich
- Jede gefüllte Datei hat eine Liste mit von ihr belegten Blöcken
- Der Katalog enthält Hinweise auf die Blöcke, aus denen die Dateien bestehen
- Das Dateisystem verwaltet zudem:
 - Eine Pseudodatei bestehend aus allen freien Blöcken eines Datenträgers
 - Eine Pseudodatei mit einer Liste aller unzuverlässigen Blöcke

Fallbeispiel: Unix, Einordnung von Filesystemen

Fallbeispiel: Unix, Verzeichnisstruktur

 Unix verwendet ein beliebig tiefes, hierarchisches Dateisystem

Fallbeispiel: Unix Verzeichnisstruktur

- Die Wurzel des Baums heißt root; das rootdirectory wird mit "/" abgekürzt. (bei MS-DOS "\")
- Darunter befinden sich die home-directories der einzelnen User (hier unter /usr)
- Die inneren Knoten des Baumes sind subdirectories, die Blätter des Baumes sind die eigentlichen Files
- Geräte (Drucker, Terminals, Maus etc.) werden logisch wie Dateien behandelt (special files)
- Für die Organisation des Unix-Baumes haben sich gewisse Konventionen eingebürgert

Fallbeispiel: Unix, Verzeichnisstruktur

 Unter den Kindern der Wurzel finden sich meist subdirectories mit folgender Bedeutung:

- bin: Systemdateien (binär)

- dev: Gerätedateien (devices)

- lib: Bibliotheken (libraries)

- usr: Benutzerdateien (user)

- Externe Dateisysteme, also physikalische Datenträger wie Harddisk, CDROM, Floppy,... können unabhängige Filesysteme enthalten
 - Diese kann man mit dem Befehl mount an beliebiger
 Stelle in den Unix-Dateibaum einklinken
 - Danach gibt es keine Unterscheidung mehr zwischen Files auf der Diskette und anderen block special files
 - Mit umount wird das Subdirectory entfernt

Fallbeispiel: Unix, Implementierung des Dateisystems

 Beispiel eines Dateisystem-Layouts einer Festplatte

Vgl. Tanenbaum Ganze Platte Partition Table Plattenpartitionen **MBR** Dateien und Superblock Free Blocks Rootverzeichn. Bootblock **I-nodes Directories**

Fallbeispiel: Unix, Implementierung des Dateisystems

- MBR = Master Boot Record auf Sektor 0 zum Booten des Rechnersystems
- Am Ende des MBR liegt die Partition Table: Eine Platte kann i.d.R. in mehrere Partitionen eingeteilt werden
- Bootblock wird bei Hochfahren gelesen und ausgeführt
- Superblock enthält Verwaltungsinformationen zum Dateisystem (Anzahl der Blöcke,...)
- Free Blocks (z.B. Bitmap) gibt die freien Blöcke des Dateisystems an
- Rootverzeichnis enthält den Inhalt des Dateisystems (nach der Wurzel)
- I-nodes: I-nodes sind Einträge im Inhaltsverzeichnis des Dateisystems

Fallbeispiel: Unix, Verweisstruktur einer Datei

Einschub: NFS, Verteiltes Dateisystem

- Das Network File System (NFS) verbindet Dateisysteme mehrerer Rechner zu einem logisch zusammengehörigen Dateisystem
 - NFS-Protokoll

Fallbeispiel: Unix, Verzeichnisstruktur

- Jedes Unterverzeichnis und jede Datei lassen sich eindeutig durch den Weg von der Wurzel zur Datei beschreiben
- Die Folge der Knoten auf dem Weg wird, mit "/" getrennt, als **Pfad** bezeichnet.
- Das Dateisystem jedes Users ist ein Subdirectory des gesamten Unix-Baums
- Die Wurzel des Unterbaums nennt man Home-Directory
- Der User arbeitet meist in seinem Home-Directory
- Bei der Arbeit bezieht man sich oft auf Dateien des selben Verzeichnisses (working directory)

Fallbeispiel: Windows, Volume Manager

- Unter Windows gibt es einen Volume
 Manager
 - Verwaltung der Platten auf logischer Ebene
 - Stellt logische Laufwerke für die Anwendungen bereit
 - Veränderung, Neupartitionierung ist dynamisch, ohne Systemneustart möglich

Fallbeispiel: Windows, Cluster

- Cluster = in Windows adressierbarer Filesystemblock
- Cluster besteht aus einem oder mehreren Sektoren
- FAT-x → x gibt die Anzahl der Bits an, die für die Clusteradressierung verwendet werden
- Bit-Anzahl bestimmt die Größe des Filesystems

- FAT-16 ist das alte MS-DOS Filesystem
 - nutzt 16-Bit Plattenadressen und max. 2 GiB (GibiByte) große Partitionen
- FAT-32 ist das alte MS-DOS Filesystem
 - nutzt 32-Bit Plattenadressen und max. 2 TiB große (TebiByte) Partitionen
- NTFS (NT File System) ist das moderne, hierarchische Filesystem von Windows 2000
 - NTFS nutzt 64-Bit Plattenadressen und unterstützt Partitionen bis zu einer Größe von 2⁶⁴ Byte
- Windows unterstützt auch Read-Only Filesysteme für DVDs (UDF) und CD-ROMs (CDFS)

Fallbeispiel: Windows, Filesysteme-Überblick

File- system	Bits für Clusterindex	Anzahl Cluster	Unterstützte Clustergrößen	Maximale Filesystemgröße
FAT-12	12 Bit	$2^{12} = 4.096$	512 Byte - 8 KiB	32 MiB
FAT-16	16 Bit	$2^{16} = 65.536$	512 Byte - 64 KiB	4 GiB (GibiByte)
FAT-32	32 Bit, aber nur 28 genutzt	2 ²⁸	512 Byte - 32 KiB	8 TiB (TebiByte) begrenzt auf 32 GiB
NTFS	64 Bit	264	512 Byte - 64 KiB	16 EiB (ExbiByte) begrenzt auf 256 TiB

Fallbeispiel: Windows, Partitionierung

- Plattenpartitionierung in NTFS
- Eine Platte kann mehrere logische Datenträger (Volumes enthalten
- Festlegung bei der Formatierung, Beispiel:

- Eine Master File Table (MFT) je Volume
- Für jede Datei und jedes Verzeichnis ein oder mehrere Einträge in der MFT

Überblick

- 1. Geräteverwaltung
 - Überblick
 - Treiber, Gerätetypen, Gerätemodelle,...
 - Fallbeispiel: Unix
- 2. Dateisysteme
 - Grundlagen
 - Fallbeispiel: Unix
 - Fallbeispiel: Windows
- 3. Storage Systeme
 - RAID
 - SAN, NAS

Zh School of Engineering

Storage Systeme

- Bisher betrachtet:
 - DAS: Direct Attached Storage = Herkömmliche Speichersysteme
- Weitere wichtige Begriffe:
 - RAID-Systeme
 - SAN: Hochgeschwindigkeitsnetzwerk zwischen Servern und Subsystemen
 - NAS: Network Attached Storage, NAS-Systeme sind Dateiserver, keine Festplattenserver

Zh School of Engineering

RAID-Plattensysteme

- Multiple Plattenspeicher, sog. RAIDs
 - sind heute sehr verbreitet
 - RAID steht für Redundant Array of Inexpensive (heute Independent) Disks
- Mehrere kleine Platten werden hier als große virtuelle Platte verwaltet
- In HW implementiert für Betriebssystem transparent, als SW vom BS selbst betrieben
- Man verwendet RAID-Systeme auch zur Verbesserung der Leistung und zur Erhöhung der Ausfallsicherheit
- Es werden verschiedene Varianten unterschieden

 Der gesamte logische Plattenbereich wird in Streifen (stripes) eingeteilt, die sich über mehrere Disks erstrecken

	Disk 1	Disk 2	Disk N
Streifen M			
		111	
Streifen 1			
Streifen 0			

RAID-0-System:

- Stripes werden über mehrere Platten eines Arrays verteilt
- Größe der Stripes beeinflusst die Leistung erheblich
 - Stripes-Größe: 32 KB, 64 KB, 128 KB (Striping-Granularität)
- Verteilung übernimmt entweder das Betriebssystem oder ein eigener RAID-Controller
- Hoher I/O-Durchsatz, schnelle Variante, aber nicht ausfallsicher

RAID-1-System:

- Spiegelung der Daten, volle Redundanz der Daten
- Spiegelung durch Betriebssystem oder eigenen RAID-Controller möglich
- Ausfallsicher aber langsam

■ RAID-2-System (heute nicht mehr eingesetzt):

- Bitweises Striping und Ergänzung von Prüfdaten (Paritätsbits) zur Fehlerkorrektur
- Jedes Byte wird um ein Paritätsbit ergänzt
- Bei Ausfall einer Platte kann diese rekonstruiert werden
 - → Ausfallsicherheit für eine Platte des Arrays

RAID-10-System: häufig verwendet!

- Striping und Spiegelung, Kombination RAID-0 und RAID-1
- Schnell und ausfallsicher
- Zuerst Striping und danach Spiegelung

RAID-3-System:

- Erweiterung zu RAID-2
- Prüfdaten zusammenfassen und auf dedizierter Platte speichern
- Dient der Reduzierung der Kosten für die 1:1-Spiegelung (heute nicht mehr so relevant)
- Ausfall einer Platte führt nicht zu einer Ausfallzeit,
 Ausfall von zwei Platten schon

RAID-4-System:

- Hier werden auch die Datenbits wie bei RAID-0 zu Streifen zusammengefasst
- Pro Streifen wird eine Prüfsumme gebildet und auf einer eigenen Platte gespeichert
- Ausfallsicherheit wie bei RAID-3, Speicheraufwand weniger als bei RAID-1, aber langsameres Schreiben

RAID-5-System:

- In Gegensatz zu RAID-4 werden die Paritätsabschnitte auf die beteiligten Platten verteilt → gleichmäßige Plattenauslastung
- Gute Leistung beim Lesen, schlechtere beim Schreiben
- Verlust einer Platte hat keine Auswirkungen, Verlust von zwei Platten bedeutet Ausfall
- Nicht so geeignet bei hoher Transaktionslast

Host-Adapter

D

G

Parity

RAID-6-System:

- Wie RAID-5 mit redundanten Prüfdaten auf weiterer Platte, so dass sogar der Ausfall von zwei Platten ohne Auswirkung bleibt
- Gute Leistung beim Lesen, Schreibleistung schlechter als RAID-5
- Geeignet für sehr hohe Ausfallsicherheitsanforderungen

Network Attached Storage

NAS

- Massenspeichereinheiten, die an ein lokales Netzwerk (LAN) angeschlossen sind
- Nachteil: belasten das Netzwerk

Storage Area Networks

SAN

- Eigenes Netzwerk zwischen Servern und den Speicherressourcen
- Speicher kann virtuell wie eine einzige Festplatte behandelt werden

Zusammenfassung

- Geräte- und Dateiverwaltung sind eigene Softwareschichten im Kernel
- Festplatten wichtigstes externes
 Speichermedium
- Dateien und Dateisysteme (FAT, NTFS, Unix-Dateisysteme) als Abstraktion
- RAID-Systeme dienen der gesicherten Datenspeicherung
 - RAID 1, RAID-10 und RAID 5 oft im Einsatz
- NAS- bzw. SAN sind Storage-Systeme, die sich weiter Verbreitung erfreuen

Zh School of Engineering

Gesamtüberblick

- ✓ Einführung in Computersysteme
- ✓ Entwicklung von Betriebssystemen
- ✓ Architekturansätze
- ✓ Interruptverarbeitung in Betriebssystemen
- ✓ Prozesse und Threads
- ✓ CPU-Scheduling
- ✓ Synchronisation und Kommunikation
- ✓ Speicherverwaltung
- ✓ Geräte- und Dateiverwaltung
- 10.Betriebssystemvirtualisierung