Notes on Matlab's Optimizers

July 5, 2012

fminsearch

Nelder-Mead Simplex Algorithm

The algorithm iterates on the following steps:¹

- 1. Create a simplex of dimension K + 1 (where there are K parameters to be estimated) around the starting value x_0 .
- 2. Modify the simplex based on how the function looks at different trial modifications. In particular, "order the points in the simplex from lowest function value f(x(1)) to highest f(x(K+1)). At each step in the iteration, the algorithm discards the current worst point x(K+1), and accepts another point into the simplex" (Matlab website). Possible simplex modifications are:
 - (a) Reflect
 - (b) Expand
 - (c) Contract outside
 - (d) Contract inside
 - (e) Shrink
- 3. Repeat steps 1-2 until the diameter of the simplex is smaller than the tolerance (default is 10^{-4})

$fminunc^2$

Medium-Scale algorithm: line search (BFGS method) — No user-supplied gradient or hessian

The medium-scale algorithm iterates on the following four steps for the kth iteration:

¹For more details, see http://www.mathworks.com/help/techdoc/math/bsotu2d.html#bsgpq6p-11

²For more info on these algorithms, see http://www.mathworks.com/help/toolbox/optim/ug/brnoxr7-1.html#brnpcy5

1. compute the search direction p_k by solving

$$\hat{H}_k p_k = -\nabla f(x_k)$$
, or $p_k = -\hat{H}_k^{-1} \nabla f(x_k)$

where \hat{H}_k is an approximation of the hessian.

2. Choose the step size α_k by solving

$$\min_{\alpha} f(x_k + \alpha_k p_k)$$

- 3. Update $x_{k+1} = x_k + \alpha_k p_k$
- 4. Update \hat{H}_{k+1} , letting $s_k = \alpha_k p_k$ and $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$:

$$\hat{H}_{k+1} = \hat{H}_k + \frac{y_k y_k'}{y_k' s_k} - \frac{\hat{H}_k s_k s_k' \hat{H}_k}{s_k' \hat{H}_k s_k}$$

where ' refers to matrix transpose, not differentiation.

5. Continue steps 1-4 until $\|\nabla f(x_k)\|$ < tolerance, where tolerance = 10^{-6} by default.

Large-Scale algorithm: trust region method — user-supplied gradient and/or hessian

The trust region method operates by dividing the optimization into a series of 2-dimensional trust region subproblems. "The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of function f in a neighborhood N around the point x. This neighborhood is the **trust region**" (Matlab website, emphasis added). The algorithm iterates on the following steps:

- 1. Divide the problem into a series of 2-dimensional trust-region subproblems
- 2. Find the optimal step size *s* by solving the following equation:

$$\min_{s} \frac{1}{2} s' H s + s' g \text{ subject to } ||Ds|| < \Delta$$

where H is the hessian, g is the gradient, D is a diagonal scaling matrix, and Δ is a positive scalar. $\|\cdot\|$ is the 2-norm.

- 3. If f(x+s) < f(x) then $x_{k+1} = x_k + s$. If not, then adjust Δ .
- 4. Continue steps 1-3 until $\|\nabla f(x_k)\|$ < tolerance, or $f(x_{k+1}) f(x_k)$ < tolerance, or s < tolerance(each 10^{-6} by default).