6.541/18.405 Problem Set 0

due on February 15, 11:59pm

Problem 1 (2 points)

Question

For a Turing machine M, let $\langle M \rangle$ denote the description of M in binary. Prove that the following language is undecidable:

 $L = \{\langle M \rangle \mid \text{for all } n \text{ and input strings } x \text{ of length } n,$

M is a Turing machine that halts on x in $18n^3 + 405$ steps}

Answer

I will reduce this to the halting problem.

Given \bar{M} , we must determine whether \bar{M} halts on the empty tape.

Let M be the Turing machine which does the following. On input x, it first simulates \bar{M} for |x| steps. If \bar{M} has halted, M then runs for $|x|^4$ more steps, and then halts. Otherwise, if \bar{M} has not halted, M halts.

For contradiction, suppose L is decidable. Let D be a Turing machine that decides it

Say that D accepts M. Then M halts within $18|x|^3 + 405$ steps on every input x. Noting that $18 \times 100^3 + 405 < 100^4$, this means M does not run for $|x|^4$ or more steps on any x of length greater than 100. Thus, it must be that for all n > 100, \bar{M} does not halt within n steps. Thus \bar{M} must not halt.

Conversely, say D does not accept M. Then there is some x such that M runs for more than $18|x|^3 + 405$ steps. This can only happen if \bar{M} halts within |x| steps. Thus \bar{M} halts.

Thus, if L is decidable, so is the halting problem.

Problem 2 (2 points)

Question

Prove that if $3SAT \in P$, then there is a polynomial-time algorithm for solving SEARCH-3SAT (as defined in lecture 1). That is, under the hypothesis, there is a polynomial-time algorithm that given any 3CNF formula ϕ , the algorithm outputs a satisfying assignment to ϕ (when one exists) in polynomial time.

Answer

Say $3SAT \in P$, and let M be a Turing machine that solves 3SAT in polynomial time. The following polynomial time algorithm can then be used to solve sc Search-3Sat.

Let ϕ be a given 3CNF formula, with variables x_1, \ldots, x_n .

First, call M on ϕ . If it rejects, return that no solution exists to ϕ .

Next, if n = 1, evaluate ϕ on $x_1 = 1$. If it is true, return $x_1 = 1$; else, return $x_1 = 0$.

Now say n > 1. Construct the CNF formula ϕ_1 by setting x_1 to 1 in ϕ . Call M on ϕ_1 . If it accepts, assign $x_1 = 1$, and set $\phi \leftarrow \phi_1$. Else, set $x_1 = 0$ and construct the formula ϕ_0 by substituting $x_1 = 0$ in ϕ . Then set $\phi \leftarrow \phi_0$. Now recurse on the formula ϕ_0 or ϕ_1 to obtain an assignment to the variables in ϕ_0 or ϕ_1 , which are $x_2, \ldots x_m$. This full assignment to x_1 , and x_2, \ldots, x_m , is a solution to ϕ . Return it.

Each recursive step calls M once, and solves for one variable. Thus there are a polynomial number of steps in the input size (linear, in fact). Thus this algorithm takes polynomial time to run.

Problem 3 (3 points)

Question

Recall $\mathbf{EXP} = \bigcup_{c \geq 1} \mathbf{TIME}(2^{n^c})$ and $\mathbf{NEXP} = \bigcup_{c \geq 1} \mathbf{NTIME}(2^{n^c})$. Prove that if $\mathbf{P} = \mathbf{NP}$, then $\mathbf{EXP} = \mathbf{NEXP}$.

Answer

Say P = NP. Let L be any language in NEXP on the alphabet $\{0, 1\}$. Let L' be the language on $\{0, 1, a\}$ (where a is just some other symbol) given by

$$L' = \{ x \cdot a^{2^{|x|}} \mid x \in L \}$$

That is, L' contains each string x in L followed by a long string of the symbol a repeated $2^{|x|}$ times.

Let N be a nondeterministic Turing machine on the binary alphabet which decides L in $O(2^{n^c})$ time for some c. We now construct a nondeterministic Turing machine M on the alphabet $\{0,1,a\}$ to decide L'. On any input, M runs N on the binary characters in the input and treats input squares with the symbol a as blank. Then on input $y = x \cdot a^{2^{|x|}}$, M runs in $O(2^{|x|^c})$. Thus M runs in $O(|y|^c)$. Thus M is a nondeterministic polynomial decider for L'. By the assumption $\mathbf{P} = \mathbf{NP}$, this means there exists a deterministic polynomial-time Turing machine R which decides L'.

Finally, let Q be a Turing machine on the binary alphabet which, on input x, simulates R. If R tries to move past the last filled bit in x, Q simulates that R reads in the character a if the tape head is at position $\leq |x| + 2^{|x|}$, and blank otherwise. Then R runs in time polynomial in $|x|2^{|x|}$, so exponential in |x|. Thus R is a deterministic exponential time decider for L, so $L \in \mathbf{EXP}$.

Problem 4 (3 points)

Define **E** to be $\bigcup_{c\geq 1} \mathbf{TIME}(2^{cn})$. Prove that $\mathbf{E} \neq \mathbf{PSPACE}$. (*Hint: find some property of* **PSPACE** *that doesn't hold of* **E**.)

Problem 5 (4 points, 2 for each sub-problem)

Question

In this problem we will see an "amplification" argument, in which we prove that a weak-looking lower bound actually implies a stronger lower bound. (We love these things.)

(A) Prove that if $\mathbf{TIME}(n^{1+\epsilon}) = \mathbf{TIME}(n)$ for some $\epsilon > 0$, then $\mathbf{TIME}(n^c) = \mathbf{TIME}(n)$ for all constant c > 1. (You may assume without proof that the function $f(n) := \lceil n^{1+\epsilon} \rceil$ is time constructible, for every $\epsilon > 0$.)

If you want a hint, see the footnote.¹

(B) Use (A) and the statement of the time hierarchy theorem from class to prove that $\mathbf{TIME}(n)$ is a proper subset of $\mathbf{TIME}(n^{1+\epsilon})$ for every $\epsilon > 0$.

Answer to A

Say $\mathbf{TIME}(n^{1+\epsilon}) = \mathbf{TIME}(n)$ for some $\epsilon > 0$. Let $L \in \mathbf{TIME}(n^{(1+\epsilon)^2}) = \mathbf{TIME}(n^{1+2\epsilon+\epsilon^2})$. Let $L' = \{x \cdot a^{|x|^{1+\epsilon}} \mid x \in L\}$

For each $x \in L$, $y := x \cdot a^{|x|^{1+\epsilon}}$ can be recognized in time $O(|x|^{(1+\epsilon)^2})$ and hence $O(|y|^{1+\epsilon})$. Thus $L' \in \mathbf{TIME}(n^{1+\epsilon})$. We can build a Turing machine to recognize L by simulating a TM for L' and giving it as when it reads slots past the first |x| characters and before the TM for L' would reach blank squares. Thus actualy $L \in \mathbf{TIME}(n^{1+\epsilon}) = \mathbf{TIME}(n)$.

Thus $\mathbf{TIME}(n^{1+\epsilon^2}) = \mathbf{TIME}(n^{1+\epsilon}) = \mathbf{TIME}(n)$. Since $(1+\epsilon)^2 > 1+2\epsilon$, this means $\mathbf{TIME}(n^{1+2\epsilon}) = \mathbf{TIME}(n)$. Iterating this argument, now taking ϵ to be twice our original ϵ , shows that $\mathbf{TIME}(n^{1+4\epsilon}) = \mathbf{TIME}(n)$. Repeating this lets us show $\mathbf{TIME}(n^{1+2^k\epsilon}) = \mathbf{TIME}(n)$ for all k > 0.

For any c, there exists a k such that $1 + 2^k \epsilon > c$. Thus $\mathbf{TIME}(n^c) = \mathbf{TIME}(n)$ for all c > 1.

¹First try to show that the assumption implies $\mathbf{TIME}(n^{(1+\epsilon)^2}) = \mathbf{TIME}(n^{1+\epsilon}) = \mathbf{TIME}(n)$, then try to iterate the argument.

Answer to B

The time hierarchy theorem states that for any time constructable function T(n), there exists a c>1 such that $\mathbf{TIME}(T(n)^c) \not\subseteq \mathbf{TIME}(T(n))$. Taking T(n)=n, this implies that $\mathbf{TIME}(n^c) \neq \mathbf{TIME}(n)$ for some c. By part A, this maens that in fact $\mathbf{TIME}(n^{1+\epsilon}) \neq \mathbf{TIME}(N)$ for all $\epsilon>0$. And certainly $\mathbf{TIME}(n) \subseteq \mathbf{TIME}(n^{1+\epsilon})$, so we must have this be a strict subset inclusion.