$12a_{0805} (K12a_{0805})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -437u^{29} + 1525u^{28} + \dots + 13b + 2231, \ 5117u^{29} - 17060u^{28} + \dots + 143a - 29622, \\ u^{30} - 5u^{29} + \dots - 38u + 11 \rangle \\ I_2^u &= \langle -269u^{22}a + 526u^{22} + \dots - 286a - 712, \ 2u^{22}a + 3u^{22} + \dots - 7a - 6, \ u^{23} + 2u^{22} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle u^8 - u^7 - 5u^6 + 5u^5 + 7u^4 - 6u^3 - 4u^2 + b + 2u, \ -u^2 + a + 2, \\ u^9 - 2u^8 - 5u^7 + 11u^6 + 6u^5 - 17u^4 - u^3 + 8u^2 - u + 1 \rangle \\ I_4^u &= \langle b + a - u - 1, \ a^2 - 3au - 2a + u + 2, \ u^2 + u - 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 90 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -437u^{29} + 1525u^{28} + \dots + 13b + 2231, \ 5117u^{29} - 17060u^{28} + \dots + 143a - 29622, \ u^{30} - 5u^{29} + \dots - 38u + 11 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -35.7832u^{29} + 119.301u^{28} + \dots - 569.783u + 207.147 \\ 33.6154u^{29} - 117.308u^{28} + \dots + 442.615u - 171.615 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -21.4755u^{29} + 79.1469u^{28} + \dots - 257.476u + 109.839 \\ 19.3077u^{29} - 77.1538u^{28} + \dots + 130.308u - 74.3077 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -11.2448u^{29} + 33.5315u^{28} + \dots + 296.245u + 97.6084 \\ 21.6923u^{29} - 63.8462u^{28} + \dots + 601.692u - 187.692 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 27.0629u^{29} - 88.6224u^{28} + \dots + 448.063u - 156.699 \\ -12.5385u^{29} + 34.7692u^{28} + \dots - 371.538u + 113.538 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -28.1678u^{29} + 95.9930u^{28} + \dots - 426.168u + 161.531 \\ 33.4615u^{29} - 116.231u^{28} + \dots + 484.462u - 183.462 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{697}{13}u^{29} - \frac{2097}{13}u^{28} + \dots + \frac{18078}{13}u - \frac{5897}{13}u^{28} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{30} + 4u^{29} + \dots + 5u - 1$
c_2	$u^{30} + 17u^{29} + \dots - 21u - 11$
c_4, c_{10}	$u^{30} - 6u^{28} + \dots - 3u - 1$
c_5, c_9	$u^{30} - u^{29} + \dots - 4u + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$u^{30} + 5u^{29} + \dots + 38u + 11$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{30} + 28y^{28} + \dots - 93y + 1$
c_2	$y^{30} - 3y^{29} + \dots - 1739y + 121$
c_4, c_{10}	$y^{30} - 12y^{29} + \dots - 33y + 1$
c_5, c_9	$y^{30} - 19y^{29} + \dots - 38y + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^{30} - 43y^{29} + \dots - 1180y + 121$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.01658		
a = 2.92862	1.74384	5.98900
b = -1.50043		
u = -0.878022 + 0.002899I		
a = 0.238285 + 0.304913I	1.314950 - 0.451834I	6.61404 + 1.58489I
b = -0.559876 - 0.690935I		
u = -0.878022 - 0.002899I		
a = 0.238285 - 0.304913I	1.314950 + 0.451834I	6.61404 - 1.58489I
b = -0.559876 + 0.690935I		
u = -1.130260 + 0.186589I		
a = -1.246950 - 0.354613I	3.04303 - 4.92292I	3.35262 + 6.51542I
b = 0.627496 - 0.880698I		
u = -1.130260 - 0.186589I		
a = -1.246950 + 0.354613I	3.04303 + 4.92292I	3.35262 - 6.51542I
b = 0.627496 + 0.880698I		
u = 1.18652		
a = -1.61412	6.25305	14.0800
b = 1.01453		
u = 0.313981 + 0.719655I		
a = -0.258210 - 0.371938I	0.07877 - 5.69968I	6.25097 + 7.15473I
b = -0.865351 + 0.635662I		
u = 0.313981 - 0.719655I		
a = -0.258210 + 0.371938I	0.07877 + 5.69968I	6.25097 - 7.15473I
b = -0.865351 - 0.635662I		
u = 0.439811 + 0.644843I		
a = -0.712132 + 0.794843I	0.48551 + 10.07530I	5.95949 - 9.67797I
b = 1.079900 + 0.783683I		
u = 0.439811 - 0.644843I		
a = -0.712132 - 0.794843I	0.48551 - 10.07530I	5.95949 + 9.67797I
b = 1.079900 - 0.783683I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -1.174900 + 0.352174I			
a = 1.84786 + 0.33394I	5.5646 - 13.4956I	9.26736 + 8.87328I	
b = -1.28819 + 0.84300I			
u = -1.174900 - 0.352174I			
a = 1.84786 - 0.33394I	5.5646 + 13.4956I	9.26736 - 8.87328I	
b = -1.28819 - 0.84300I			
u = -1.198660 + 0.506727I			
a = -0.495699 - 0.735221I	4.63959 + 1.45693I	20.4781 - 6.0794I	
b = 0.712841 + 0.295117I			
u = -1.198660 - 0.506727I			
a = -0.495699 + 0.735221I	4.63959 - 1.45693I	20.4781 + 6.0794I	
b = 0.712841 - 0.295117I			
u = -1.32795			
a = -0.917911	3.16863	1.59560	
b = 0.203761			
u = 0.360310 + 0.392975I			
a = 0.55572 - 1.55779I	-1.69300 + 2.96011I	-0.46924 - 8.93785I	
b = -0.494454 - 0.710271I			
u = 0.360310 - 0.392975I			
a = 0.55572 + 1.55779I	-1.69300 - 2.96011I	-0.46924 + 8.93785I	
b = -0.494454 + 0.710271I			
u = -0.481507			
a = 0.778558	0.855934	11.6870	
b = -0.569296			
u = 0.270687 + 0.323054I			
a = 1.45188 - 0.61952I	-1.90583 - 0.45249I	-1.79458 - 1.14821I	
b = 0.413056 - 0.459484I			
u = 0.270687 - 0.323054I			
a = 1.45188 + 0.61952I	-1.90583 + 0.45249I	-1.79458 + 1.14821I	
b = 0.413056 + 0.459484I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.70982 + 0.01754I		
a = -0.504443 - 0.628284I	10.64730 - 0.25494I	0
b = 0.562401 + 1.059590I		
u = 1.70982 - 0.01754I		
a = -0.504443 + 0.628284I	10.64730 + 0.25494I	0
b = 0.562401 - 1.059590I		
u = -1.73772		
a = -2.71628	11.7131	0
b = 1.72980		
u = 1.76484 + 0.04602I		
a = 1.241500 + 0.064835I	13.5460 + 5.9087I	0
b = -0.701863 - 0.995930I		
u = 1.76484 - 0.04602I		
a = 1.241500 - 0.064835I	13.5460 - 5.9087I	0
b = -0.701863 + 0.995930I		
u = 1.77253 + 0.09377I		
a = -2.08526 - 0.07253I	16.1500 + 15.4410I	0
b = 1.43463 + 0.88148I		
u = 1.77253 - 0.09377I		
a = -2.08526 + 0.07253I	16.1500 - 15.4410I	0
b = 1.43463 - 0.88148I		
u = -1.77800		
a = 1.81911	17.0939	0
b = -1.19344		
u = 1.81090 + 0.09745I		
a = 1.055730 - 0.361250I	15.7188 + 1.2036I	0
b = -0.763050 - 0.096600I		
u = 1.81090 - 0.09745I		
a = 1.055730 + 0.361250I	15.7188 - 1.2036I	0
b = -0.763050 + 0.096600I		

II.
$$I_2^u = \langle -269u^{22}a + 526u^{22} + \cdots - 286a - 712, \ 2u^{22}a + 3u^{22} + \cdots - 7a - 6, \ u^{23} + 2u^{22} + \cdots - 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.651332au^{22} - 1.27361u^{22} + \dots + 0.692494a + 1.72397 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2.45521au^{22} + 1.61501u^{22} + \dots + 0.692494a + 1.72397 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.273608au^{22} - 2.88862u^{22} + \dots + 2.39952a + 0.917676 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.273608au^{22} - 0.486683u^{22} + \dots + 1.72397a - 0.0750605 \\ 0.00726392au^{22} + 2.23487u^{22} + \dots + 0.445521a + 1.73850 \\ 1.44068au^{22} - 4.08475u^{22} + \dots + 1.15254a + 0.932203 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.806295au^{22} - 3.92978u^{22} + \dots + 1.27361a - 2.48668 \\ -0.806295au^{22} + 4.92978u^{22} + \dots + 1.27361a + 0.486683 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$u^{22} - 10u^{21} - 25u^{20} + 139u^{19} + 224u^{18} - 798u^{17} - 1029u^{16} + 2424u^{15} + 2796u^{14} - 4094u^{13} - 4866u^{12} + 3507u^{11} + 5634u^{10} - 630u^9 - 4167u^8 - 1372u^7 + 1603u^6 + 1148u^5 - 81u^4 - 337u^3 - 100u^2 + 12u + 27$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^{46} - 5u^{45} + \dots + 602u - 47$
c_2	$(u^{23} - 11u^{22} + \dots + 14u - 4)^2$
c_4, c_{10}	$u^{46} - 8u^{44} + \dots + 2009u + 851$
c_5, c_9	$u^{46} + 2u^{44} + \dots - u - 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(u^{23} - 2u^{22} + \dots - 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$y^{46} + 23y^{45} + \dots - 6896y + 2209$
c_2	$(y^{23} - 5y^{22} + \dots + 268y - 16)^2$
c_4, c_{10}	$y^{46} - 16y^{45} + \dots - 19209411y + 724201$
c_5, c_9	$y^{46} + 4y^{45} + \dots - 35y + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(y^{23} - 32y^{22} + \dots + 18y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.999683 + 0.186821I		
a = -0.042700 - 1.410890I	2.50463 + 5.52558I	5.10396 - 8.15770I
b = -0.18371 + 1.64920I		
u = 0.999683 + 0.186821I		
a = 1.68330 - 1.01369I	2.50463 + 5.52558I	5.10396 - 8.15770I
b = -0.995212 - 0.632466I		
u = 0.999683 - 0.186821I		
a = -0.042700 + 1.410890I	2.50463 - 5.52558I	5.10396 + 8.15770I
b = -0.18371 - 1.64920I		
u = 0.999683 - 0.186821I		
a = 1.68330 + 1.01369I	2.50463 - 5.52558I	5.10396 + 8.15770I
b = -0.995212 + 0.632466I		
u = -1.105860 + 0.055480I		
a = -1.92578 + 0.18458I	5.84113 - 4.35667I	13.8335 + 5.4983I
b = 1.35825 - 1.09576I		
u = -1.105860 + 0.055480I		
a = 1.60049 - 1.41054I	5.84113 - 4.35667I	13.8335 + 5.4983I
b = -0.614170 - 0.043824I		
u = -1.105860 - 0.055480I		
a = -1.92578 - 0.18458I	5.84113 + 4.35667I	13.8335 - 5.4983I
b = 1.35825 + 1.09576I		
u = -1.105860 - 0.055480I		
a = 1.60049 + 1.41054I	5.84113 + 4.35667I	13.8335 - 5.4983I
b = -0.614170 + 0.043824I		
u = 1.18981		
a = -1.50802	6.25240	14.1390
b = 1.05229		
u = 1.18981		
a = -1.73509	6.25240	14.1390
b = 0.992937		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.140950 + 0.349828I		
a = 0.851056 - 0.861201I	7.12094 + 5.39909I	13.5404 - 6.0968I
b = -0.901717 - 0.147878I		
u = 1.140950 + 0.349828I		
a = -1.70952 + 0.17931I	7.12094 + 5.39909I	13.5404 - 6.0968I
b = 1.30005 + 0.76522I		
u = 1.140950 - 0.349828I		
a = 0.851056 + 0.861201I	7.12094 - 5.39909I	13.5404 + 6.0968I
b = -0.901717 + 0.147878I		
u = 1.140950 - 0.349828I		
a = -1.70952 - 0.17931I	7.12094 - 5.39909I	13.5404 + 6.0968I
b = 1.30005 - 0.76522I		
u = -0.377702 + 0.629512I		
a = 0.209564 - 0.786199I	2.35417 - 2.04864I	12.02442 + 4.27551I
b = 0.780693 + 0.190315I		
u = -0.377702 + 0.629512I		
a = 0.341684 + 0.460205I	2.35417 - 2.04864I	12.02442 + 4.27551I
b = -0.932101 + 0.597740I		
u = -0.377702 - 0.629512I		
a = 0.209564 + 0.786199I	2.35417 + 2.04864I	12.02442 - 4.27551I
b = 0.780693 - 0.190315I		
u = -0.377702 - 0.629512I		
a = 0.341684 - 0.460205I	2.35417 + 2.04864I	12.02442 - 4.27551I
b = -0.932101 - 0.597740I		
u = -0.580448 + 0.322591I		
a = -0.345114 + 0.640960I	0.229739 + 0.719364I	7.70501 - 1.54064I
b = -0.861693 - 0.321506I		
u = -0.580448 + 0.322591I		
a = 2.10527 + 0.09680I	0.229739 + 0.719364I	7.70501 - 1.54064I
b = -0.966346 + 0.634688I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.580448 - 0.322591I		
a = -0.345114 - 0.640960I	0.229739 - 0.719364I	7.70501 + 1.54064I
b = -0.861693 + 0.321506I		
u = -0.580448 - 0.322591I		
a = 2.10527 - 0.09680I	0.229739 - 0.719364I	7.70501 + 1.54064I
b = -0.966346 - 0.634688I		
u = -0.157596 + 0.449298I		
a = 0.51417 - 1.77331I	-1.03877 - 3.41304I	-1.13516 + 7.69580I
b = 0.893978 - 0.534579I		
u = -0.157596 + 0.449298I		
a = -0.0565579 + 0.1078630I	-1.03877 - 3.41304I	-1.13516 + 7.69580I
b = 0.545955 + 1.142730I		
u = -0.157596 - 0.449298I		
a = 0.51417 + 1.77331I	-1.03877 + 3.41304I	-1.13516 - 7.69580I
b = 0.893978 + 0.534579I		
u = -0.157596 - 0.449298I		
a = -0.0565579 - 0.1078630I	-1.03877 + 3.41304I	-1.13516 - 7.69580I
b = 0.545955 - 1.142730I		
u = 1.59673		
a = -0.0933260	7.42882	28.8540
b = 0.587557		
u = 1.59673		
a = -2.54753	7.42882	28.8540
b = 1.94206		
u = 0.313095 + 0.086295I		
a = 1.18015 - 2.03047I	1.29868 + 3.82978I	14.5236 - 8.4853I
b = -0.959828 - 0.907570I		
u = 0.313095 + 0.086295I		
a = -2.82861 - 3.70039I	1.29868 + 3.82978I	14.5236 - 8.4853I
b = 0.569721 + 0.399803I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.313095 - 0.086295I		
a = 1.18015 + 2.03047I	1.29868 - 3.82978I	14.5236 + 8.4853I
b = -0.959828 + 0.907570I		
u = 0.313095 - 0.086295I		
a = -2.82861 + 3.70039I	1.29868 - 3.82978I	14.5236 + 8.4853I
b = 0.569721 - 0.399803I		
u = -1.73349 + 0.04283I		
a = -0.05422 - 1.72140I	12.35220 - 6.42236I	6.09016 + 6.34054I
b = 0.12177 + 1.99221I		
u = -1.73349 + 0.04283I		
a = -1.78344 - 0.36813I	12.35220 - 6.42236I	6.09016 + 6.34054I
b = 1.091730 - 0.703323I		
u = -1.73349 - 0.04283I		
a = -0.05422 + 1.72140I	12.35220 + 6.42236I	6.09016 - 6.34054I
b = 0.12177 - 1.99221I		
u = -1.73349 - 0.04283I		
a = -1.78344 + 0.36813I	12.35220 + 6.42236I	6.09016 - 6.34054I
b = 1.091730 + 0.703323I		
u = 1.75724 + 0.01445I		
a = -1.45201 - 0.83740I	16.2384 + 4.6560I	13.26850 - 4.63684I
b = 0.696220 - 0.251137I		
u = 1.75724 + 0.01445I		
a = 2.07313 + 0.57426I	16.2384 + 4.6560I	13.26850 - 4.63684I
b = -1.57300 - 1.18808I		
u = 1.75724 - 0.01445I		
a = -1.45201 + 0.83740I	16.2384 - 4.6560I	13.26850 + 4.63684I
b = 0.696220 + 0.251137I		
u = 1.75724 - 0.01445I		
a = 2.07313 - 0.57426I	16.2384 - 4.6560I	13.26850 + 4.63684I
b = -1.57300 + 1.18808I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.76372 + 0.09254I		
a = -1.227110 - 0.467441I	17.5310 - 7.2981I	12.96470 + 5.26666I
b = 1.007300 - 0.351627I		
u = -1.76372 + 0.09254I		
a = 2.09962 - 0.18292I	17.5310 - 7.2981I	12.96470 + 5.26666I
b = -1.54996 + 0.81454I		
u = -1.76372 - 0.09254I		
a = -1.227110 + 0.467441I	17.5310 + 7.2981I	12.96470 - 5.26666I
b = 1.007300 + 0.351627I		
u = -1.76372 - 0.09254I		
a = 2.09962 + 0.18292I	17.5310 + 7.2981I	12.96470 - 5.26666I
b = -1.54996 - 0.81454I		
u = -1.77086		
a = 1.70862 + 0.14562I	17.0133	14.1690
b = -1.115350 + 0.221258I		
u = -1.77086		
a = 1.70862 - 0.14562I	17.0133	14.1690
b = -1.115350 - 0.221258I		

III.
$$I_3^u = \langle u^8 - u^7 + \dots + b + 2u, -u^2 + a + 2, u^9 - 2u^8 + \dots - u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{8} + u^{7} + 5u^{6} - 5u^{5} - 7u^{4} + 6u^{3} + 4u^{2} - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{8} - u^{7} - 10u^{6} + 5u^{5} + 13u^{4} - 5u^{3} - 4u^{2} - 3 \\ -3u^{8} + 2u^{7} + 15u^{6} - 10u^{5} - 20u^{4} + 11u^{3} + 9u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} + 5u^{5} - 7u^{3} - u^{2} + 4u + 2 \\ u^{8} - 6u^{6} + u^{5} + 11u^{4} - 4u^{3} - 6u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{8} - u^{7} - 5u^{6} + 5u^{5} + 6u^{4} - 6u^{3} + u - 3 \\ -u^{8} + u^{7} + 5u^{6} - 5u^{5} - 7u^{4} + 6u^{3} + 4u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{8} - u^{7} - 5u^{6} + 6u^{5} + 7u^{4} - 10u^{3} - 4u^{2} + 6u \\ -u^{8} + 5u^{6} - 7u^{4} - u^{3} + 4u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^8 + 32u^6 6u^5 64u^4 + 25u^3 + 41u^2 21u + 8$

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^9 - u^8 + 5u^7 + 6u^5 + 6u^4 + 4u^3 + 5u^2 + 2u + 1$
c_2	$u^9 + 8u^8 + \dots + 114u + 29$
c_4, c_{10}	$u^9 + u^8 + u^7 + 2u^5 + 2u^4 - u^2 + 1$
c_5, c_9	$u^9 - u^7 + 2u^5 - 2u^4 - u^2 + u - 1$
c_6, c_7, c_8	$u^9 + 2u^8 - 5u^7 - 11u^6 + 6u^5 + 17u^4 - u^3 - 8u^2 - u - 1$
c_{11}, c_{12}	$u^9 - 2u^8 - 5u^7 + 11u^6 + 6u^5 - 17u^4 - u^3 + 8u^2 - u + 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_3	$y^9 + 9y^8 + 37y^7 + 80y^6 + 90y^5 + 34y^4 - 20y^3 - 21y^2 - 6y - 1$	
c_2	$y^9 + 2y^8 - 5y^7 - 25y^6 - 15y^5 - 19y^4 - 13y^3 - 214y^2 - 112y - 841$	
c_4, c_{10}	$y^9 + y^8 + 5y^7 + 6y^5 - 6y^4 + 4y^3 - 5y^2 + 2y - 1$	
c_5, c_9	$y^9 - 2y^8 + 5y^7 - 4y^6 + 6y^5 - 6y^4 - 5y^2 - y - 1$	
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$y^9 - 14y^8 + \dots - 15y - 1$	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.058740 + 0.157360I		
a = -0.903839 - 0.333206I	4.19323 - 5.25554I	11.10227 + 7.96200I
b = 0.697506 - 0.952517I		
u = -1.058740 - 0.157360I		
a = -0.903839 + 0.333206I	4.19323 + 5.25554I	11.10227 - 7.96200I
b = 0.697506 + 0.952517I		
u = 1.180180 + 0.330999I		
a = -0.716747 + 0.781273I	4.16417 - 1.30911I	4.70320 + 1.63386I
b = 0.620761 - 0.367622I		
u = 1.180180 - 0.330999I		
a = -0.716747 - 0.781273I	4.16417 + 1.30911I	4.70320 - 1.63386I
b = 0.620761 + 0.367622I		
u = 0.035682 + 0.320509I		
a = -2.10145 + 0.02287I	0.54144 + 3.69294I	2.15237 - 6.28351I
b = -0.625202 - 0.718766I		
u = 0.035682 - 0.320509I		
a = -2.10145 - 0.02287I	0.54144 - 3.69294I	2.15237 + 6.28351I
b = -0.625202 + 0.718766I		
u = 1.75217 + 0.04113I		
a = 1.068410 + 0.144146I	14.3916 + 6.0909I	12.47244 - 6.62825I
b = -0.752703 - 1.076140I		
u = 1.75217 - 0.04113I		
a = 1.068410 - 0.144146I	14.3916 - 6.0909I	12.47244 + 6.62825I
b = -0.752703 + 1.076140I		
u = -1.81858		
a = 1.30725	15.9267	10.1390
b = -0.880724		

IV.
$$I_4^u = \langle b+a-u-1, a^2-3au-2a+u+2, u^2+u-1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -a + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a - u \\ -a + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a - u \\ -a + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u + 1 \\ -a + 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -a + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 7u 2

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^4$
c_2	u^4
c_4, c_5, c_9 c_{10}	$u^4 - u^3 - 3u^2 + u + 1$
c_6, c_7, c_8	$(u^2 - u - 1)^2$
c_{11}, c_{12}	$(u^2+u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y-1)^4$
c_2	y^4
c_4, c_5, c_9 c_{10}	$y^4 - 7y^3 + 13y^2 - 7y + 1$
$c_6, c_7, c_8 \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.880394	-0.657974	2.32620
b = 0.737640		
u = 0.618034		
a = 2.97371	-0.657974	2.32620
b = -1.35567		
u = -1.61803		
a = -0.140774	7.23771	-13.3260
b = -0.477260		
u = -1.61803		
a = -2.71333	7.23771	-13.3260
b = 2.09529		

V.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing	
$c_1, c_3, c_4 \\ c_5, c_9, c_{10}$	u+1	
c_2, c_6, c_7 c_8, c_{11}, c_{12}	u	

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_9, c_{10}	y-1
c_2, c_6, c_7 c_8, c_{11}, c_{12}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-1.64493	-6.00000
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^{4}(u+1)(u^{9}-u^{8}+5u^{7}+6u^{5}+6u^{4}+4u^{3}+5u^{2}+2u+1)$ $\cdot (u^{30}+4u^{29}+\cdots+5u-1)(u^{46}-5u^{45}+\cdots+602u-47)$
c_2	$u^{5}(u^{9} + 8u^{8} + \dots + 114u + 29)(u^{23} - 11u^{22} + \dots + 14u - 4)^{2}$ $\cdot (u^{30} + 17u^{29} + \dots - 21u - 11)$
c_4, c_{10}	$(u+1)(u^4 - u^3 - 3u^2 + u + 1)(u^9 + u^8 + u^7 + 2u^5 + 2u^4 - u^2 + 1)$ $\cdot (u^{30} - 6u^{28} + \dots - 3u - 1)(u^{46} - 8u^{44} + \dots + 2009u + 851)$
c_5, c_9	$(u+1)(u^4 - u^3 - 3u^2 + u + 1)(u^9 - u^7 + 2u^5 - 2u^4 - u^2 + u - 1)$ $\cdot (u^{30} - u^{29} + \dots - 4u + 1)(u^{46} + 2u^{44} + \dots - u - 1)$
c_6, c_7, c_8	$u(u^{2} - u - 1)^{2}(u^{9} + 2u^{8} + \dots - u - 1)$ $\cdot ((u^{23} - 2u^{22} + \dots - 2u - 1)^{2})(u^{30} + 5u^{29} + \dots + 38u + 11)$
c_{11}, c_{12}	$u(u^{2} + u - 1)^{2}(u^{9} - 2u^{8} + \dots - u + 1)$ $\cdot ((u^{23} - 2u^{22} + \dots - 2u - 1)^{2})(u^{30} + 5u^{29} + \dots + 38u + 11)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y-1)^{5}$ $\cdot (y^{9} + 9y^{8} + 37y^{7} + 80y^{6} + 90y^{5} + 34y^{4} - 20y^{3} - 21y^{2} - 6y - 1)$ $\cdot (y^{30} + 28y^{28} + \dots - 93y + 1)(y^{46} + 23y^{45} + \dots - 6896y + 2209)$
c_2	$y^{5}(y^{9} + 2y^{8} + \dots - 112y - 841)$ $\cdot ((y^{23} - 5y^{22} + \dots + 268y - 16)^{2})(y^{30} - 3y^{29} + \dots - 1739y + 121)$
c_4, c_{10}	$(y-1)(y^4 - 7y^3 + 13y^2 - 7y + 1)$ $\cdot (y^9 + y^8 + 5y^7 + 6y^5 - 6y^4 + 4y^3 - 5y^2 + 2y - 1)$ $\cdot (y^{30} - 12y^{29} + \dots - 33y + 1)$ $\cdot (y^{46} - 16y^{45} + \dots - 19209411y + 724201)$
c_5, c_9	$(y-1)(y^4 - 7y^3 + 13y^2 - 7y + 1)$ $\cdot (y^9 - 2y^8 + 5y^7 - 4y^6 + 6y^5 - 6y^4 - 5y^2 - y - 1)$ $\cdot (y^{30} - 19y^{29} + \dots - 38y + 1)(y^{46} + 4y^{45} + \dots - 35y + 1)$
c_6, c_7, c_8 c_{11}, c_{12}	$y(y^{2} - 3y + 1)^{2}(y^{9} - 14y^{8} + \dots - 15y - 1)$ $\cdot ((y^{23} - 32y^{22} + \dots + 18y - 1)^{2})(y^{30} - 43y^{29} + \dots - 1180y + 121)$