

GPU Programming

Prof. Dr.-Ing. Richard Membarth

- Computer Science background
 - Diploma and PhD from Friedrich-Alexander University Erlangen-Nürnberg
 - Postdoc at the Intel Visual Computing Institute (IVCI) at Saarland University
 - Senior researcher at the German Research Center for Artificial Intelligence (DFKI) in Saarbrücken
 - Research professorship for System on a Chip and AI for Edge Computing at THI
- Mostly working on
 - GPU computing
 - Parallel computing
 - Domain-specific languages
 - Compilers

AnyDSL Compiler Framework

4

- Artic | Impala language: Rust dialect
 - Functional & imperative
 - Filters to guide specialization
 - Triggered code generation
- Thorin compiler
 - Built-in partial evaluator
 - Multi-target code generation
 - Host: vectorization & parallelization
 - GPU: CUDA, OpenCL, AMDGPU, NVVM
 - FPGA: HLS

AnyDSL: Selected Application Domains

Stincilla: Image Processing [OOPSLA'18]

Blur (OpenCV): +40% (CPU) +50% (GPU) Blur (Halide): +12% (CPU) +7% (GPU) Harris (Halide): +37% (CPU) +44% (GPU) Runs also on FGPA!

Rodent: Ray Tracing [SIGGRAPH'19]

Embree (CPU): +1% to +23% (WF)
OptiX (GPU): +2% to +31% (MK)
OptiX (GPU): +29% to +42% (WF)
Runs also on ARM and AMD GPU!

AnySeq: Genome Sequence Alignment [IPDPS'20]

SeqAn (CPU): -7.2% to +7.8% Parasail (CPU): -2.1% to +90.0% NVBIO (GPU): +5.3% to +10.4% Runs also on FPGA!

AnySeq/GPU [ICS'22]

Median speedup of 19.2x vs. fastest available GPU implementations!

- Collision Avoidance & Crash Impact Point Optimization
 - 26 million hypothesis combinations

6 mins Matlab → 36 ms Jetson TX1

→ 15 ms Drive PX2

■ CUDA Challenge 2008

Detector Defect Correction on GraphicsProcessors

■ 2D/3D Image Registration on Multi-core and Many-core Architectures

4

Hipacc: A Domain-Specific Language and Compiler for Image Processing

Objectives

- Understand the architecture of current graphics processing units (GPUs)
- Map applications and algorithms to the parallel execution units of a GPU
- Programming of NVIDIA GPUs using CUDA
- Optimization and debugging of GPU applications

- Course syllabus
 - History of GPU programming
 - CUDA programming model
 - The CUDA API in detail
 - Parallel programming patterns
 - Memory hierarchy
 - Performance optimization case study
 - Hardware / warp scheduling
 - Advanced programming techniques
 - Related programming models
 - AnyDSL compiler framework

- **Tutorial**
 - Development environment
 - Toolchain
 - Debugging
 - Assignments

- Lecture (Wahlpflichtfach)
 - Automatisiertes Fahren und Fahrzeugsicherheit (AUF)
 Cloud Applications und Security Engineering (CASE)
 Künstliche Intelligenz (KI)
 - Lecture in German
- ECTS
 - 5 credit points
- Lecture
 - Mon, 09:55 11:25, G308
 - Wed, 11:35 13:05, K010
- Exam
 - Oral exam (20 minutes)
- Consultation hours
 - Wed, after the lecture

- Monday lecture will be in the CIP pool G308
 - OS: Ubuntu 22.04 LTS
 - Intel Core i9-10900K CPU
 - NVIDIA Quadro RTX 4000
- Programming exercises using NVIDIA CUDA
 - CUDA C/C++
 - CMake
 - OpenACC / OpenMP
- Fallback: remote access to a NVIDIA GTX 970 via ssh

- Slides will be provided on Moodle after the lecture
- Exercises will be provided on Moodle and worked on during the Monday lecture in G308
- Discord channel for questions and discussions
- Questions concerning the lecture: Richard Membarth (<u>richard.membarth@thi.de</u>)

Literature

Programming Massively Parallel Processors Kirk, Hwu

CUDA by Example Sanders, Kandrot

Acknowledgements

- Lecture based on material by
 - GPU Programming lecture at Saarland University
 - Real-Time Graphics 2 lecture at TU Graz
- NVIDIA teaching kit
 - 30% discount and free shipping for "Programming Massively Parallel Processors" from https://www.store.elsevier.com
 - Ask for the discount code!