Performance Evaluation of Routing Algorithms in RHiNET-2 Cluster

Michihiro Koibuchi, Konosuke Watanabe, **Kenichi Kono**, Akiya Jouraku, and Hideharu Amano

Keio University, Japan

Overview

- Introduction
 - What is the System Area Networks (SANs)?
- Deterministic routing
 - Up*/Down* routing
 - Structured buffer pools (SBP)
 - The DL routing (developed by Keio University)
- The RHiNET-2 cluster system
- Performance evaluation
- Conclusion

Large-scale parallel computing

- Traditional parallel computers (multi-computers)
- PC clusters
 - Beowulf cluster
 - PC + LAN(Ethernet) with TCP/IP
 - High-performance cluster
 - PC + SANs(TCP/IP off-loading) with free topologies.

(e.g.Myrinet,InfiniBand, RHiNET)

SAN for PC clusters

- Network Interface on PC + Switch + Link
- High-speed direct-memory-communication is required.
- Switching tech. is VCT/WH (Go & Stop): Not Store-and-Forward manner

Deadlock problem on communication

Overview

- Introduction
 - What is the System Area Networks (SANs)?
- Deterministic routing
 - Up*/Down* routing
 - Structured buffer pools (SBP)
 - The DL routing (developed by Keio University)
- The RHiNET-2 cluster system
- Performance evaluation
- Conclusion

Deadlock-free deterministic routings

- Deterministic routing is preferred to adaptive routing in SANs.
- Up*/down* routing(1990,Autonet)
 - requires no vchs, non-minimal paths
- Structure buffer pools(SBP) based routing
 - (Diameter+1) vchs, minimal paths
- DL routing (2002, developed by us)
 - More than 1 vch
 - shorter paths than Up*/Down* routing

graph

2. Add the rest now

Up*/down* routing (2)-Restrict routing paths

- After using up channel, use down channel.
- Non-minimal routing

Structural buffer pools (SBP)

- ■sends a packet to (the channel number +1).
- ■takes (Diameter+1) virtual channels.

The DL routing

- 1. Divide the network into the multiple sub-networks.
 - Sub-network is the same topology as the target network.
- 2. Avoid dead-locks.
 - Impose up*/down* routing within each sub-net..
 - Use some sub-networks in the descending order.
- 3. Establish a single shortest path.
 - Descend a sub-network when forwarding from down direction to up direction.

Routing example

■ Switch $7 \rightarrow$ Switch 13

SN2

Up*/down* routing7hops

SN₀

SN1

Characteristics of deterministic routings

	Size limit?	Minimal path?	Virtual channel?
Up*/Down*	No	No	No
SBP	Yes	Yes	Yes
DL	No	No	Yes

Previous simulation, analysis works indicate that SBP >= DL >= up*/down*.

Overview

- Introduction
 - What is the System Area Networks (SANs)?
- Deterministic routing
 - Up*/Down* routing
 - Structured buffer pools (SBP)
 - The DL routing (developed by Keio University)
- The RHiNET-2 cluster system
- Performance evaluation
- Conclusion

The RHiNET-2 cluster system

- Developed by RWCP, Hitachi Co, and Keio University
- 64 hosts + 16 switches + optical link
- Deterministic routings with table look-up manner.
- Supporting arbitrary topologies and routing algorithms by rewriting the routing table.

The RHiNET-2 cluster system

- RHiNET-2/SW (network switch)
 - Throughput: 64Gbps
 - 16 virtual channels
- RHiNET-2/NI (network interface)
 - User-level Zero-copy communication
 - Remote DMA and PIO based transfer
- Host PC
 - CPU: Intel Pentium III 933MHz (x2)
 - Memory: 1Gbyte SDRAM
 - PCI bus: 64bit/66MHz
 - OS: RedHat Linux 7.2、kernel-2.4.18

RHiNET-2/SW

RHiNET-2/NI

Measures

- Latency of barrier synchronization on 64 hosts[usec]
 - NIC based method: 12(2*log 64) steps
 - Using the PIO-based low-latency transfer
- Bandwidth
 - Typical traffic patterns
 - Bit rev., matrix transpose, butterfly, complement
 - Using R-DMA transfer

Routings and topologies

Three routings x Three topologies

- Up*/Down* routing with 1, 2, or 4 vchs
 - Non-minimal paths in T-A, T-B
- SBP with 5 or 6 vchs
- DL routing with 2 or 4 vchs
 - Minimal paths in all the topologies

Barrier synchronization time

Only Packet hops are crucial.

(The number of vchs, and traffic balance are un-important.)

Bandwidth (Topology A, bit rev)

- 1) Shorter paths make larger bandwidth.
- 2) DL is better (minimal-paths, only 2-vchs).

Bandwidth (Topology B, bit rev)

Routing impact is smaller than that of Topology A.

Bandwidth (in Mesh, bit rev)

All the routings take minimal paths.

They have the similar bandwidth.

Bandwidth

- Packet hops are crucial.
- The number of vchs are un-important.
- The DL routing and SBP have almost the same bandwidth.

Conclusion

We evaluated the performance of routing on the RHiNET-2 cluster.

- Packet hops are crucial to routing bandwidth, and latency.
- The DL routing and SBP have the almost same performance in each topology.
 - Up to 29% improvement (barrier synchronization)
 - Up to 51% improvement (bandwidth)

Future work on the RHiNET-2 cluster

- Routing impact under using smaller buffer
 - Unlike this eval, VCHs may work well.
- Uni-cast based Multicast algorithms
 - Host ID order V.S. random V.S. others
- Topology
 - Myrinet Clos, Fat-tree, torus, mesh

END

