Hypothesis

Transportation

Python for Data Science and Al

- -Suzuki Kaori 21224038
- -Shrestha Roji 22224045

Table Of Content

- 1. Introduction
- 2. First Hypothesis
- 3. Second Hypothesis
- 4. Third Hypothesis
- 5. Conclusion

What is MBTA?

- •The Massachusetts Bay Transportation Authority (MBTA) provides public transit services including subway, bus, commuter rail, and ferry routes in the Greater Boston area.
- •The CR-Providence line is part of the commuter rail network connecting Boston with southern Massachusetts and Rhode Island.

Our research questions

1. Does the CR-Providence route have more inbound or outbound routes?

2. Are certain route patterns more frequent in the data?

3. Is there a correlation between direction (inbound or outbound) and the typicality of routes in the CR-Providence route patterns?

```
#First we imported the libraries we needed for analysis.
import requests
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#This is the API which we worked on. We got it from MBTA.
test_url = 'https://api-v3.mbta.com/route_patterns?filter[route]=CR-Providence&include=representative_trip&fields[trip]=headsign'
response = requests.get(test_url)
data = response.json()
# Extract relevant information into a DataFrame
route_patterns = [
        'route pattern id': pattern['id'],
        'direction_id': pattern['attributes']['direction_id'],
        'name': pattern['attributes']['name'],
        'typicality': pattern['attributes']['typicality'],
                                                                route pattern id direction id
                                                                                                                                name typicality
    for pattern in data['data']
                                                          CR-Providence-9cf54fb3-0
                                                                                            0 South Station - Wickford Junction via Back Bay
                                                         CR-Providence-9515a09b-0
                                                                                            0
                                                                                                     South Station - Stoughton via Back Bay
df = pd. DataFrame(route_patterns)
                                                                                                    South Station - Providence via Back Bay
                                                          CR-Providence-743ff41d-0
                                                                                                                                              2
                                                                                            0
                                                          CR-Providence-cf299c9f-0
                                                                                                     South Station - Stoughton via Back Bay
# Display the DataFrame to verify the structure
                                                                                            0
                                                                                                                                              3
df. head()
```

4 CR-Providence-e7e93ca2-0

0 South Station - Wickford Junction via Back Bay

3

Research Question: Does the CR-Providence route have more inbound or outbound routes?

Hypothesis: There are more inbound routes.

```
# Visualize the count of route patterns by direction
plt.figure(figsize=(8, 5))
sns.countplot(data=df, x='direction_id', color='lightgreen')
plt.title('Count of Route Patterns by Direction (CR-Providence)', fontsize=14)
plt.xlabel('Direction ID (0: Inbound, 1: Outbound)', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.show()
# Pie chart for proportion of direction usage
direction_counts = df['direction_id'].value_counts()
labels = ['Inbound (0)', 'Outbound (1)']
plt.figure(figsize=(6, 6))
plt.pie(direction_counts, labels=labels, autopct='%1.1f%%', startangle=90, colors=['#87CEEB', '#FFD700'])
plt.title('Proportion of Inbound vs Outbound Trips', fontsize=14)
plt.show()
```


Result: The graph for count of route patterns by direction shows that the inbound is higher than outbound. Also, the piechart confirms that 57% of the routes are inbound, while 43% are outbound, supporting our hypothesis.

Research question: Are certain route patterns more frequent in the data? Hypothesis: Specific patterns such as "South Station - Wickford Junction" appear more frequently.

```
# Preparing data for the bar chart
frequent_patterns = df['name'].value_counts().reset_index()
frequent_patterns.columns = ['Route Pattern', 'Count']

plt.figure(figsize=(10, 6))
sns.barplot(data=frequent_patterns, x='Count', y='Route Pattern', hue='Route Pattern', dodge=False, palette="viridis", legend=False)
plt.title('Most Frequent Route Patterns for CR-Providence')
plt.xlabel('Count')
plt.ylabel('Route Pattern')
plt.show()
```


The bar plot of route patterns shows that "South Station - Wickford Junction via Back Bay" and similar patterns dominate the dataset. This confirms that certain route patterns are indeed more frequent than others.

Research Question: Is there a correlation between direction (inbound or outbound) and the typicality of routes in the CR-Providence route patterns?

Hypothesis: Routes with higher typicality scores are more likely to be inbound (direction_id = 0).

```
# New Research Question and Hypothesis
# Research Question: Is there a correlation between direction and typicality in the CR-Providence route patterns?
# Hypothesis: Routes with higher typicality scores are more likely to be inbound (direction_id = 0).

# Exploring correlation using basic statistics
correlation = df[['direction_id', 'typicality']].corr()

# Visualizing the correlation between direction and typicality
plt.figure(figsize=(8, 6))
sns.heatmap(correlation, annot=True, cmap="coolwarm", vmin=-1, vmax=1)
plt.title('Correlation between Direction and Typicality')
plt.show()
correlation
```


Result: The correlation coefficient between direction_id and typicality is -0.008, which indicates almost no linear correlation between these two variables.

Interpretation: The direction (whether the route is inbound or outbound) does not appear to be related to the typicality score. Thus, the hypothesis is not supported by the data.

Conclusion...

The analysis of CR-Providence route patterns revealed that:

- The CR-Providence route have more inbound routes than outbound routes.
- Specific patterns such as "South Station Wickford Junction" appear more frequently.