# Fairness of Exposure in Ranking Systems



Ashudeep Singh
PhD Thesis Defense
Cornell University

### Rankings in Online Platforms

1970s

2020s



What is a good ranking?

Probability Ranking Principle [Robertson, 1977]

Ranking items by the <u>probability of relevance</u> to the users maximizes <u>user utility</u> for most measures  $\boldsymbol{U}$ 

 $y^* \coloneqq \operatorname{argmax}_y U(y|x)$ 





Two-sided markets:

### Utility in Two-sided markets

**Example: Online Retail** 

Utility to user:
 Customer finds products
 they want.

Utility to items:
 Sellers earn revenue.



### Utility in Two-sided markets

Example: Music Streaming

Utility to user:
 Enjoyment from the music.

Utility to items:
 Streaming Revenue to the artists.



### Utility in Two-sided markets

### Example: Scholarly work

 Utility to user:
 Readers find relevant articles.

Utility to items:
 Authors get read, cited,
 advance their research
 agenda/career.



### Two-sided markets

[KDD'18] [NeurlPS'19] Fairness to
Creators/Producers

[SIGIR'20]

Marketplace Dynamics

Regulations and Legal requirements

Preventing Filter bubbles

Tackle manipulation: Spam, SEO, fake reviews, etc.



Goals & Challenges

**Human Inconsistency** 

Societal Biases

Short-term Reward vs Longterm Risk [RecSys FAccTRec'20]

### Are conventional methods fair?

- Probability Ranking Principle: Rank items by probability of relevance.
- In two-sided markets, PRP might be inadequate since it does not explicitly consider the item-side utility.
- Examples:
  - Job Candidate Ranking
    - Amplifies existing biases.

| Position | λ            | <i>;</i>       | P(interview) |               |
|----------|--------------|----------------|--------------|---------------|
| 1        | $\bigotimes$ | $A_1$          | 50.99%       |               |
|          |              |                |              | High Exposure |
| 2        | 90           | $A_2$          | 50.98%       |               |
| 3        | 90           | $A_3$          | 50.97%       | Position      |
| •••      | •••          |                | •••          | Bias          |
| 101      |              | $B_1$          | 49.99%       |               |
|          | $\sim$       |                |              | Low Exposure  |
| 102      |              | B <sub>2</sub> | 49.98%       |               |
| 103      |              | $B_3$          | 49.97%       |               |
| •••      | •••          |                | •••          |               |
|          |              |                |              |               |

### Are conventional methods fair?

- Probability Ranking Principle: Rank items by probability of relevance.
- In two-sided markets, PRP might be inadequate since it does not explicitly consider the item-side utility.
- Examples:
  - Job Candidate Ranking
    - Amplifies existing biases.
  - Music Recommendation
    - Winner-takes-all!



### Are conventional methods fair?

- Probability Ranking Principle: Rank items by probability of relevance.
- In two-sided markets, PRP might be inadequate since it does not explicitly consider the item-side utility.
- Examples:
  - Job Candidate Ranking
    - Amplifies existing biases.
  - Music Recommendation
    - Winner-takes-all!
  - News Ranking
    - Leads to polarization of the platform.



In online platforms,

Exposure  $\rightarrow$  Opportunity

Hence,

Fairness -> Fair Allocation of Exposure

### Outline

Fair Allocation of Exposure

2. Learning-to-Rank
with Fairness
Constraints

3. Fairness in Dynamic Learning-to-Rank with Biased Feedback

[Singh & Joachims, KDD 2018]

### Position-based Model of Exposure

Exposure  $e_k$  is the probability a user observes the item at position k.

Exposure of a Group (e.g., seller, artist, etc.)

$$Exp(G|y) = \sum_{y(k) \in G} e_k$$

How to estimate?

- Eye tracking [Joachims et al. 2007]
- Intervention studies [Joachims et al. 2017]
- Intervention harvesting [Agarwal et al. 2019]



### Fairness of Exposure

Goal: Enable the explicit statement of how exposure is allocated relative to the merit of the items in the group.

$$Exp(G|x) = f_x(Rel(G|x))$$

Disparity(G) =  $|Exp(G|x) - f_x(Rel(G|x))|$ .

For example: Allocate exposure proportional to relevance per group

Group Fairness

Exposure 
$$\propto$$
 Relevance  $\rightarrow \frac{Exp(G_0|x)}{Exp(G_1|x)} = \frac{Rel(G_0|x)}{Rel(G_1|x)}$ 

Individual Fairness?

### Fairness of Exposure

Objective: Given relevance scores, find a ranking that optimizes user utility while satisfying fairness of exposure constraints.

Problem: Rankings are discrete combinatorial objects

Exponential solution space.





### Key Idea 1: Stochastic Ranking Policies

- Ranking Policy
  - $\pi(y|x)$  is the conditional distribution over rankings of items under query x.
- Utility

$$U(\pi|x) = \sum_{y} U(y|x) \cdot \pi(y|x)$$

Exposure

$$Exp(i|\pi) = \sum_{k} e_k \cdot P(rank(i) = k \mid \pi)$$

• Problem: The distribution is over the set of permutations which is still exponential in size.

| $y_1$ | $y_2$ | $y_3$ | $y_4$ |
|-------|-------|-------|-------|
| $A_1$ | $A_1$ | $A_1$ | $B_1$ |
| $A_2$ | $B_1$ | $A_2$ | $A_1$ |
| $A_3$ | $A_2$ | $B_1$ | $B_2$ |
| $B_1$ | $B_2$ | $A_3$ | $A_2$ |
| $B_2$ | $A_3$ | $B_2$ | $B_3$ |
| $B_3$ | $B_3$ | $B_3$ | $A_3$ |
| 0.40  | 0.40  | 0.16  | 0.04  |

### Key Idea 2: Doubly Stochastic Matrices

Represent a Stochastic Ranking  $\pi$  as a Marginal Rank Distribution  $\mathbb{P}.$ 



 $\mathbb{P}_{i,k}$  = Probability of item i at position k.

Utility (e.g., DCG, Avg Precision) and Exposure can be expressed as a Linear function of matrix  $\mathbb{P}$ .

For example, 
$$DCG(\mathbb{P}) = \sum_i \mu_i \sum_k \frac{\mathbb{P}_{i,k}}{\log(1+k)}$$
.

**Objective:** Find  $\mathbb{P}$  that optimizes utility U and satisfies exposure constraints.

### → Linear Program

(for a large class of fairness constraints and utility functions)

### Example: Exposure Proportional to Merit

Given relevance scores, find matrix  $\mathbb{P}_{fair}$  that maximizes <u>DCG (i.e., utility)</u> subject to the <u>Proportional Exposure</u> fairness constraint.

How to sample rankings from  $\mathbb{P}_{fair}$  to present to the users? **Birkhoff von Neumann (BvN) decomposition:**  $\mathbb{P}_{fair}$  can be decomposed into a distribution over rankings

$$\mathbb{P}_{\text{fair}} = \theta_1 y_1 + \theta_2 y_2 + \dots + \theta_d y_d.$$

| ltems          | $\hat{h}(x)$ |   | Exposure@k |
|----------------|--------------|---|------------|
| A <sub>1</sub> | 0.82         |   | $e_1$      |
| $A_2$          | 0.81         |   | $e_2$      |
| A <sub>3</sub> | 0.80         | X | $e_3$      |
| B <sub>1</sub> | 0.79         |   | $e_4$      |
| B <sub>2</sub> | 0.78         |   | $e_5$      |
| B <sub>3</sub> | 0.77         |   | $e_6$      |







 $\mathbb{P}_{ ext{fair}}$ : Proportional Exposure



Distribution over rankings: BvN decomposition

### Fair Allocation of Exposure

[Singh & Joachims, KDD 2018]

#### Merit-based exposure allocation

- Stochastic Rankings
- Two-stage Approach:
  - Estimate Relevances.
  - Find fair ranking distribution.

#### Related Work

- Composition-based Fairness notions
   [Yang & Stoyanovich (2017), Zehlike et al. (2017), Celis et al. (2017)]
  - Special case of fairness of exposure.
- Concurrent & Independent work by Biega et al. (2018):
  - Amortized fairness of attention by making exposure proportional to relevance in a sequence of rankings.
  - Individual Fairness.
  - Uses Integer Linear Programming to generate a series of ranking.

### 1. Fair Allocation of Exposure

[Singh & Joachims, KDD 2018]

### Merit-based exposure allocation

- Stochastic Rankings
- Two-stage Approach:
  - Estimate Relevances.
  - Find fair ranking distribution.

### Applications in the Industry

- LinkedIn Talent Search [Geyik et al. 2019], LinkedIn Network Recommendations [Nandy et al. 2021].
- Spotify Music Recommendations [Mehrotra et al. 2018].
- Google's production recommender system [Beutel et al. 2019].
  - Pairwise accuracy fairness: a special case of fairness of exposure.

### **Outline**

### Fair Allocation of Exposure

[Singh & Joachims, KDD 2018]

#### Merit-based exposure allocation

- Stochastic Rankings
- Two-stage Approach:
  - Estimate Relevances.
  - Find fair ranking distribution.
- Problem: What if the estimation of relevances is biased?

# 2. Learning-to-Rank with Fairness Constraints

[Singh & Joachims, NeurlPS 2019]

Learn an end-to-end ranking model that:

- Generalizes to unseen queries and items.
- Ignores biased features.

3. Fairness in Dynamic Learning-to-Rank with Biased Feedback

### Learning-to-Rank

For a query x, rank a candidate set  $\mathcal{S}_{x} = \{d_{1}, d_{2}, d_{3}, ...\}$  of items

- $d_i$  represented by features  $\psi(d_i|x)$ , and
- $d_i$  has a merit score (e.g., relevance—whether a user would click it or not).

Ranking Policy  $\pi$  ranks  $\mathcal{S}_{x}$  for a query x.

Learning objective: Find policy  $\pi$  that maximizes expected utility U with small disparity D

$$\pi^* = \operatorname{argmax}_{\pi} \mathbb{E}_{x}[U(\pi|x)] \text{ s.t. } \mathbb{E}_{x}[D(\pi|x)] \leq \delta.$$

Empirical Risk Minimization with Lagrange multiplier:

$$\pi^* = \operatorname{argmax}_{\pi} \frac{1}{n} \sum_{i=1}^{n} U(\pi | x_i) - \lambda \cdot D(\pi | x_i)$$

### Stochastic Ranking Policies: Model

 $\pi$  maps  $\mathcal{S}_{x}$  to a ranking distribution through the feature vectors  $\psi(d_{i}|x)$ .



Candidate Set for query  $x:S_x$ 

### FAIR-PG-RANK: Policy Gradient for Fair Learning-to-Rank

- ullet Policy Class: Neural Network with Plackett-Luce Sampling  $\pi$
- Objective:  $\pi^* = \operatorname{argmax}_{\pi} \frac{1}{n} \sum_{i=1}^{n} U(\pi|x_i) \lambda \cdot D(\pi|x_i)$

Can optimize an arbitrary U and D metric.

- Training Algorithm:
  - Loss function: REINFORCE loss [Williams'92] with the reward as  $U(\pi|x_i) \lambda \cdot D(\pi|x_i)$ .
  - Policy Gradient using Monte-Carlo estimates of gradient.
  - Using Entropy & Variance Regularization.

### Trade-off between Utility and Disparity

- Data
  - Yahoo! LTR Challenge Dataset
- Fairness Goal
  - Exposure proportional to Relevance
  - Individual Fairness
- Ranking Policy
  - Deep neural network
  - Plackett-Luce sampling



Both Fairness and Utility generalize to test set queries.

### How does FAIR-PG-RANK handle biased features?

- Two features  $x_1$  and  $x_2$ . Relevance =  $x_1 + x_2$
- $x_2$  is biased: informative for  $G_0$  and uninformative for minority  $G_1$ .

FAIR-PG-RANK detects biased features.



Figure: Visualizing weights of the learned model on two features: one fair, and one biased against the minority group.

### Outline

### 1. Fair Allocation of Exposure

[Singh & Joachims, KDD 2018]

# 2. Learning-to-Rank with Fairness Constraints

[Singh & Joachims, NeurlPS 2019]

Learn an end-to-end ranking model that:

- Optimizes user utility.
- Generalizes to unseen queries and items.
- Ignores biased features.

Problem: Using clicks instead of ground truth relevance for training.

# 3. Fairness in Dynamic Learning-to-Rank with Biased Feedback

[Morik\*, **Singh**\*, Hong & Joachims, SIGIR 2020 (Best Paper)]

- Partial and biased Click feedback.
- Dynamically adaptive ranking.

### Dynamic Learning-to-Rank

How to train a ranking policy that adapts the ranking to user interactions?





### Problem 1: Selection Bias due to position



**Position Bias** 

Click count is biased estimator of relevance.

- Lower positions get lower attention.
- Less attention means fewer clicks.

Rich-get-richer dynamic: What starts at the bottom has little opportunity to rise in the ranking.

### Problem 2: Exposure Disparity between groups

Item Distribution



**User Distribution** 



**Problem: Polarization** 



### Dynamic Learning-to-Rank

Sequentially present rankings to users to

- $\circ$  Maximize Expected User Utility  $\mathbb{E}[U|x]$ ,
- $\circ$  Ensure Unfairness  $D_{ au}$  goes to 0 with au,

while learning from user feedback.

Problem 1: Selection Bias due to position Problem 2: Exposure
Disparity between
groups



### Fairness Controller (FairCo) LTR Algorithm

[Morik\*, Singh\*, Hong & Joachims. SIGIR 2020]

FairCo: Ranking at time  $\tau$  for query x

$$\sigma_{\tau} = \operatorname{argsort}_{d \in \mathcal{D}} \left( \hat{R}(d|x) + \lambda \operatorname{err}_{\tau}(d) \right)$$

#### **P-Controller:**

Linear feedback control system where correction is proportional to the error.

 $\widehat{R}(d|x)$ : Estimated Conditional Relevance

Problem 1: Selection Bias

$$\lambda > 0$$
  $err_{\tau}(d) = (\tau - 1) \max_{G_i}(\widehat{D}_{\tau}^E(G_i, G(d)))$ 

Problem 2: Exposure Disparity

### Theorem:

When the problem is well posed, FairCo ensures that  $D_{\tau} \to 0$  as  $\tau \to \infty$  at the rate of  $\mathcal{O}\left(\frac{1}{\tau}\right)$ .

#### Data

- Query Distribution:  $x_i \sim \mathbb{P}(X)$
- Deployed Rankings:  $y_t = \pi_t(x_t)$
- Feedback: *clicks*, purchases, plays, reads, etc.

Question: Clicks  $\rightarrow$  Relevance



Average number of clicks is not a consistent estimator of relevance because the feedback is **biased** by:

- Deployed ranker
- User's position bias

Question: Clicks ? Relevance

Key Idea: Understand the Observation Mechanism [Joachims et al., 2017].

Assume a Position-based Model:

$$click_i = 1 \leftrightarrow (obs_i = 1) \land (rel_i = 1)$$

Problem:

$$click_i = 0 \leftrightarrow (obs_i = 0) \lor (rel_i = 0)$$



Propensity:  $p(d) = P[obs(rank(d)) = 1 \mid y]$ 

• Can use position-based exposure  $e_i$  as an estimate.

Inverse Propensity Score (IPS) Weighting

$$\widehat{R}_{\tau}^{IPS}(d) = \frac{1}{\tau} \sum_{i=1}^{\tau} \frac{click_{t}(d)}{p_{t}(d)}$$

Unbiased estimator of relevance



To estimate:  $\hat{R}^w(d|x_t)$  — Relevance of document d for query  $x_t$ .

$$\mathcal{L}^{c}(w) = \sum_{t=1}^{\tau} \sum_{d} \hat{R}^{w}(d|x_{t})^{2} + \frac{c_{t}(d)}{p_{t}(d)} (c_{t}(d) - 2 \hat{R}^{w}(d|x_{t})) \qquad c_{t}(d)$$

$$p_{t}(d)$$

$$\widehat{R}^W$$
 Output of a Neural Network with weights  $W$ .  $c_t(d)$  Click on  $d$  at time  $t$ .  $p_t(d)$  Position bias at position of  $d$ .

• Train a neural network by minimizing  $\mathcal{L}^c(w)$ .

•  $\mathcal{L}^{c}(w)$  is unbiased i.e., in expectation,  $\mathcal{L}^{c}(w)$  is equal to a full information squared loss (with no position bias).

### Fairness Controller (FairCo) LTR Algorithm

[Morik\*, Singh\*, Hong & Joachims. SIGIR 2020]

FairCo: Ranking at time  $\tau$  for query x

$$\sigma_{\tau} = \operatorname{argsort}_{d \in \mathcal{D}} \left( \hat{R}(d|x) + \lambda \operatorname{err}_{\tau}(d) \right)$$

 $\widehat{R}(d|x)$ : Estimated Conditional Relevance

 $\lambda > 0$ 

$$err_{\tau}(d) = (\tau - 1) \max_{G_i} (\widehat{D}_{\tau}^E(G_i, G(d)))$$

**Problem 1: Selection Bias** 

**Problem 2: Exposure Disparity** 

### Does FairCo ensure fairness with effective personalization?



Personalized Rankings with FairCo achieve high utility (NDCG), while also reducing Unfairness to 0 with au.

### Can FairCo break the Rich-get-richer dynamic?



FairCo keeps the Unfairness low for any amount of head start.

Fig: Effect of the initial ranking after 3000 users.

### Can FairCo ensure fairness for Minority user groups?



FairCo converges to fair ranking for all user distributions.

### Outline

Exposure-based
 Fairness for
 Rankings

[Singh & Joachims, KDD 2018]

## 2. Learning-to-Rank with Fairness Constraints

[**Singh** & Joachims, NeurlPS 2019]

# 3. Fairness in Dynamic Learning-to-Rank with Biased Feedback

[Morik\*, **Singh**\*, Hong & Joachims, SIGIR 2020 (Best Paper)]

- 1. **Selection bias**: Use unbiased estimators to learn relevance from clicks.
- **2. Fairness:** The controller minimizes disparity over time.

### Ranking and Recommendations in two-sided markets

[NeurIPS'19] Fairness to
Creators/Producers

Marketplace
[SIGIR'20] Dynamics

Regulations and Legal
requirements

Preventing Filter bubbles

Tackle manipulation: Spam, SEO, fake reviews, etc.



### Fairness under Uncertainty in Merit Estimates

 Ranking Policy that respects the uncertainty in merits.

• Such a fairness notion incentivizes the system to more equitably evaluate the merits of the items.

 $A_1$  $A_3$ 101  $B_1$  $B_2$ 102  $B_3$ 103

**Position** 

[Singh, Kempe & Joachims. 2021 (Under Submission)]

 $\mathbb{P}[\hat{h}(x)|\mathcal{D}]$ 

### Ranking and Recommendations in two-sided markets

Position [NeurlPS'19] User Fairness to [KDD'18] Bias [SIGIR'20] [KDD'18] Utility Creators/Producers [NeurlPS'19] Selection [ICML'16] Trust Bias Marketplace Bias [SIGIR'20] ltem **Dynamics** [SIGIR'20] Utility Uncertainty [Preprint'21] Regulations and Legal requirements Goals & Challenges Human Inconsistency Preventing Filter bubbles Societal Biases Tackle manipulation: Spam, [RecSys FAccTRec'20] Short-term Reward vs Long-SEO, fake reviews, etc. term Risk

### Ranking and Recommendations in two-sided markets



### Acknowledgements



Thorsten Joachims (Ph.D. Advisor)

Committee Members: David Mimno, Karthik Sridharan, Solon Barocas

Co-authors and Collaborators











Research Group













### Internships







Grants and Gifts



IIS-2008139, IIS-1247637, IIS-1217686, IIS-161*5*706, IIS-1513692





