

Objectives & Overview

- Implement a robotic manipulator and mobile robot together
- Achieve autonomous navigation
- Pick and place system

The goal

- Apply machine vision and machine learning to an integrated robotic system
- Train the model with a predefined dataset
- Deploy the system in a physical environment

Hardware

TurtleBot3 Waffle Pi

Mobile robot by ROBOTIS equipped with a camera, LIDAR, and a Raspberry Pi microcomputer

OpenManipulator ×

Robotic manipulator by ROBOTIS with five degrees of freedom

ROBOTC

- C based simulation environment for designing and testing robot configurations
- We utilized this tool as an introduction to robotics and model setup
- Virtual world loaded with default robot model depicted below

Image sourced from Google Images

ROS and Gazebo

3--0

ROS

- Set of software libraries for building robot applications
- Uses a CLI for scripting and control
- Implementation via nodes
 - Communicate between individual robotic components
 - Allows for the entire system to act together
- Includes tools for robot simulation and visualization

Gazebo

- Simulation environment hosted on ROS
- Allows models to interact with world objects

NVIDIA Isaac

- 1. Isaac Sim is a software platform built by Nvidia.
- 2. Comes with a collection of workflows for importing and tuning mechanical systems designed in the most common formats
- 3. Can directly access to Nvidia Geforce RTX GPU to support the simulation of various kinds of sensors (cameras, LiDAR, and contact sensors)

Simulation in ROS

ROS: firmware/software libraries

Rviz: 3D visualization tool for trajectory control

Gazebo: simulation environment and world editor

Simulation in Isaac

Hardware Application and Future Goals

Hardware Shipment

We are currently waiting on the hardware to be delivered to the school.

Model Improvemen t

We are actively enhancing the model in simulation while we wait for physical resources to become available

Future Goals

Upon hardware delivery:

- Upload the models to the physical system
- Test in a lab environment
- Modify the models as needed

Thank you

Any questions?

We submitted our powerpoint slides prior to this presentation