신입생 Deep Learning 기초 교육

4회: Recurrent neural networks

Multimodal Language Cognition Lab, Kyungpook National University

2023.02.08

This sentence is a sequence of words...

Sequential data!

- RNN is a type of neural network that is specialized for processing time series or sequential data
- Key ideas
 - Recurrence architecture to exploit the past information of data
 - Weight sharing over time for efficient computation

$$h_t = f_W(h_{t-1}, x_t) \ dots \ h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t = W_{hy}h_t$$

- W_{xh} = Weights connecting the input layer and hidden layer
- W_{hh} = Weights connecting the hidden layer and hidden layer
- W_{hy} = Weights connecting the hidden layer and output layer
- Weight sharing
 - The amount of parameters in the model is reduced
 - Independent of the length of the feature vector T

$$\frac{\partial \mathcal{F}}{\partial h_2} = \frac{\partial \mathcal{F}}{\partial \mathsf{cost}_2} \frac{\partial \mathsf{cost}_2}{\partial \hat{p}_2} \frac{\partial \hat{p}_2}{\partial h_2} + \frac{\partial \mathcal{F}}{\partial \mathsf{cost}_3} \frac{\partial \mathsf{cost}_3}{\partial \hat{p}_3} \frac{\partial \hat{p}_3}{\partial h_3} \frac{\partial h_3}{\partial h_2} + \frac{\partial \mathcal{F}}{\partial \mathsf{cost}_4} \frac{\partial \mathsf{cost}_4}{\partial \hat{p}_4} \frac{\partial \hat{p}_4}{\partial h_4} \frac{\partial h_4}{\partial h_3} \frac{\partial h_3}{\partial h_2}$$

- \widehat{p}_t = Current step t output as probability value
- High computational complexity to compute gradients
- Exploding and vanishing gradients
- Difficult to realize the parallel computation due to recurrence

Vanilla RNN vs LSTM

- hidden state(h_t): output state at timer t (short-term memory)
- cell state(c_t): internal state at time t (long-term memory)
- memory control gates(forget gate, input gate) and output control gate

LSTM

Cell state, Hidden state

$$c_t = f * c_{t-1} + i * g$$
$$h_t = o * \tanh(c_t)$$

Forget gate

$$f = \sigma(x_t W_x^f + h_{t-1} W_h^f + b^f)$$

Input gate

$$g = tanh(x_{t}W_{x}^{g} + h_{t-1}W_{h}^{g} + b^{g})$$
$$i = \sigma(x_{t}W_{x}^{i} + h_{t-1}W_{h}^{i} + b^{i})$$

Output gate

$$o = \sigma(x_t W_x^o + h_{t-1} W_h^o + b^o)$$

GRU

Hidden state

$$h_t = (1 - z_t) * g_t + z_t * h_{t-1}$$

Reset gate

$$\mathbf{r_t} = \sigma(x_t W_x^r + h_{t-1} W_h^r + b^r)$$

$$g_t = tanh(x_t W_x^n + r_t * (h_{t-1} W_h^n) + b^n)$$

Reset the information of the previous hidden state (h_{t-1})

Update gate

$$z_t = \sigma(x_t W_x^z + h_{t-1} W_h^z + b^z)$$

 z_t determines the ratio of **previous information** (forget)

 $(1-z_t)$ determines the ratio of **current information** (input)

Bidirectional RNN


```
@d21.add_to_class(BiRNNScratch)
def forward(self, inputs, Hs=None):
    f_H, b_H = Hs if Hs is not None else (None, None)
    f_outputs, f_H = self.f_rnn(inputs, f_H)
    b_outputs, b_H = self.b_rnn(reversed(inputs), b_H)
    outputs = [torch.cat((f, b), -1) for f, b in zip(
        f_outputs, reversed(b_outputs))]
    return outputs, (f_H, b_H)
```

- RNN-based models have past information O, future information X
- Example
 - i) I am <u>happy</u>
 - ii) I am <u>very</u> hungry
 - iii) I am very hungry, and I can eat half a pig

Code

https://colab.research.google.com/drive/1_TXxuBtYv5lPCtKPGidJfFLdvGwN8yAv?usp=share_link

Homework1

Loss = output - target

$$h_t = \tanh(h_{t-1}W_h + x_tW_x + b)$$

$$h_{t+1} = \tanh(h_t W_h + x_{t+1} W_x + b)$$

$$h_{t+2} = \tanh(h_{t+1}W_h + x_{t+2}W_x + b)$$

$$\frac{\frac{\partial \mathbf{L}}{\partial W_h}}{\frac{\partial \mathbf{L}}{\partial W_{\mathbf{x}}}} = ?$$

Homework2

LSTM uses the sigmoid and tanh
This is different for each gate
Why?

