Linear Algebra

Inverted Pastry
Papyrus
June 27, 2024

Preface

Preface.

Beijing, February 2024

Inverted Pastry

Contents

Preface	iii
1 Vector Spaces	1
Bibliography	3
Index	5

CONTENTS CONTENTS

Chapter 1

Vector Spaces

Definition 1. A vector space over a field F, whose elements are referred to as scalars, is a non-empty set V, whose elements are referred to as vectors, together with two binary operations. The first operation, called vector addition or simply addition, assigns to each pair $(\boldsymbol{u}, \boldsymbol{v})$ of vectors in V a vector $\boldsymbol{u} + \boldsymbol{v}$ in V. The second operation, called scalar multiplication, assigns to each pair $(\boldsymbol{a}, \boldsymbol{v})$ in $F \times V$ a vector \boldsymbol{av} in V. Furthermore, if we let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be any vectors in V, and $\boldsymbol{a}, \boldsymbol{b}$ be any scalars in F, the following properties must be satisfied.

- 1. Addition is associative, $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- 2. Addition is *commutative*, u + v = v + u.
- 3. There exists a vector $\mathbf{0}$ in V, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$.
- 4. There exists a vector -u in V, called the *additive inverse* of u, such that u + (-u) = (-u) + u = 0.
- 5. Scalar multiplication is distributive with respect to vector addition, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 6. Scalar multiplication is distributive with respect to field addition, $(a + b) \mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 7. Scalar multiplication is compatible with field multiplication, $a(b\mathbf{u}) = (ab)\mathbf{u}$.
- 8. $1\mathbf{u} = \mathbf{u}$, where 1 denotes the multiplicative identity in F.

Such a vector space is also called an *F-vector space*.

Remark. Items 1 to 4 can be summarized by saying that (V, +) is an *abelian group*.

Bibliography

- [1] Kenneth M. Hoffman and Ray A. Kunze. *Linear Algebra*. 2nd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1971. ISBN: 978-0-13-536797-1.
- [2] Steven Roman. *Advanced Linear Algebra*. 3rd ed. Graduate Texts in Mathematics 135. New York: Springer, 2008. ISBN: 978-0-387-72831-5. DOI: 10.1007/978-0-387-72831-5.

BIBLIOGRAPHY BIBLIOGRAPHY

Index

vector space, 1