Drug Classification 프로젝트

목차

1 프로젝트목표

2 EDA

- 3 데이터전처리
- 4 분석모델적용
- 5 결론및고찰

프로젝트 목표

Part 1 <u>프로젝트목표</u>

사람의 건강상태 정보가 주어진 상황에서 사용한 Drug를 예측하는 문제 Supervised learning, Classification problem

EDA

2.1 변수설명

수치형 (Numerical)

- Age (Age of person) : integer
- Na_to_K (Ratio of sodium and potassium) : float

범주형 (Categorical)

- BP (Blood pressure level) : High, Normal, Low
- Cholesterol (Cholesterol level): High, Normal
- Sex (Gender of person) :M, F
- Drug: (Type of drug used)
 A, B, C, X, Y → Target

Part 1 EDA

2.1 변수설명

info, describe 함수를 통해 6개변수의 데이터 정보확인

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

Data	COTUMNIS (COC	ar o corumns).	
#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64
5	Drug	200 non-null	object

dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
count	200.000000	200	200	200	200.000000	200
unique	NaN	2	3	2	NaN	5
top	NaN	М	HIGH	HIGH	NaN	DrugY
freq	NaN	104	77	103	NaN	91
mean	44.315000	NaN	NaN	NaN	16.084485	NaN
std	16.544315	NaN	NaN	NaN	7.223956	NaN
min	15.000000	NaN	NaN	NaN	6.269000	NaN
25%	31.000000	NaN	NaN	NaN	10.445500	NaN
50%	45.000000	NaN	NaN	NaN	13.936500	NaN
75%	58.000000	NaN	NaN	NaN	19.380000	NaN
max	74.000000	NaN	NaN	NaN	38.247000	NaN

데이터수:200개

수치형변수: 2개

범주형 변수: 3개

2.2수치형변수EDA

Age (연령)

연령대는 포물선 형태의 데이터 분포를 띠고 있음

Na_to_K (나트륨과 칼륨의 비율)

Na_to_K는비교적 낮은 값의데이터가 많은 분포를 지님

2.3 범주형 변수 EDA

BP (혈압수치)

혈압수치는HIGH>LOW>NORMAL순서로데이터가많음

Cholesterol (콜레스테롤)

콜레스테롤 수치는 HIGH와 NORMAL이 비슷한 수치만큼 존재함

2.3 범주형 변수 EDA

성별도 남/녀 비슷한 수치를 보여주고 있음

종속변수 Drug는 Y>X>A>C>B순서로데이터가많음

Part 2 **EDA**

2.4독립변수<->종속변수데이터분포확인

Age <-> Drug

Drug B는 나이가 50 이상인 경우, Drug A는 50 이하인 경우에만 처방. 그 외에 3개의 유형은 모든 연령대에 대한 값을 가짐 >> Age 변수는 Drug 분류에 영향을 미칠 것으로 예상

2.4독립변수<->종속변수데이터분포확인

Na_to_K<->Drug

Drug Y는 Na_to_K가 15이상인 경우,그이외의약유형은 15이하인 경우에 처방 >> Na_to_K 변수는 Drug 분류에 영향을 미칠 것으로 예상

2.4독립변수<->종속변수데이터분포확인

Drug Y만모든 혈압에사용가능하고,그외4개의 Drug는 특정 혈압수준에만사용가능함 >> BP 변수는 Drug 분류에 영향을 미칠 것으로 예상

2.4독립변수<->종속변수데이터분포확인

Cholesterol <-> Drug

Drug C는 높은 콜레스테롤 수치에만 처방가능 >>Cholesterol 변수는 Drug 분류에 영향을 미칠 것으로 예상

2.4독립변수<->종속변수데이터분포확인

Sex <-> Drug

성별에따라약의유형이달라지진않음 >> 다른 4개의 변수와 달리, 성별 변수는 Drug 분류에 직접적인 영향을 미치지 않을 것 >> 최종 결과와 비교 예정

2.5수치형변수-정규성검정

Shapiro Wilk Test

 H_0 : Distribution follows normal

 H_1 : Distribution does not follows normal

```
# Shapiro wilk test Age
x = drug["Age"].to_numpy()
stats.shapiro(x.reshape(1, -1))

ShapiroResult(statistic=0.9639396071434021, pvalue=5.4086522141005844e-05)

# Shapiro wilk test Na_to_K
x = drug["Na_to_K"].to_numpy()
stats.shapiro(x.reshape(1, -1))

ShapiroResult(statistic=0.901857852935791, pvalue=3.305025975119946e-10)
```

Rejects null hypothesis at $\alpha = 0.05$

No evidence that Age and Na_to_K are normal

2.5수치형변수-독립성검정

1) Scatterplot

규칙성이 없어 보임

2) 상관계수

Correlation Coefficient = -0.0631

Age와 Na_to_K가 독립이라고 가정

2.6 범주형 변수 - 독립성 검정

Chi-Square Test of Independence

 H_0 : The five variables are mutually independent

 H_1 : not H_0

Degrees of Freedom 92

Cannot reject null hypothesis at $\alpha = 0.05$

범주형 변수들끼리 독립이라고 가정!

No evidence that Sex, BP, Cholesterol, Age_binned, Na_to_K_binned are not independent

데이터전처리

데이터전처리

3.1 결측치 및 이상치확인

1) 결측치확인

결측치없음

2)이상치 확인

데이터수가적은관계로이상치를제거하지않음

Part 3 데이터전처리

3.2 파생변수생성

Age, Na_to_K 변수 바이닝 (Binning)

- 어떤 모델을 선택하더라도 정확도가 매우 높았음
- 과적합을 방지하기 위해 바이닝을 통해 다음의 변수를 생성

Age → Age_binned: <20s, 20s, 30s, 40s, 50s, 60s, >60s Na_to_K → Na_to_K_binned: <10, 10-20, 20-30, >30

3.3 범주형 변수전처리 | 변수인코딩 (Encoding)

One-Hot Encoding

Sex
BP
Cholesterol
Age_Binned
Na_to_K_Binned

Part 3 데이터전처리

3.3 범주형 변수 전처리 | 변수 인코딩 (Encoding)

```
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
convert = preprocessing.LabelEncoder()
# 1)
drug['Drug'] = convert.fit_transform(drug['Drug'])
# 2)
one_hot = ['Sex', 'BP', 'Cholesterol', 'Age_binned', 'Na_to_K_binned']
drug = pd.get_dummies(drug, columns=one_hot)
drug.head()
```

Part 3 데이터전처리

3.4 표준화, 정규화

수치형 변수인 Age, Na_to_K에 적용

모델	표준화	정규화	이유
SVM	O	X	• 거리 기반의 학습 모델이므 로 스케일링이 필요(표준화 만으로도 충분)
Random Forest	X	X	• 스케일링에 민감하지 않은 모델이라 불필요
Decision Tree	X	X	• 스케일링에 민감하지 않은 모델이라 불필요
Logistic Regression	X	X	• 오차의 정규성 가정을 만족하 지 않아도 됨

분석모델적용

1. SVM

2. Random Forest

3. Decision Tree

4. Logistic Regression

4.1 SVM(Support Vector Machine)

1) 모델 설명

데이터를가장 잘 나누는 초평면을 찾아내는 분류 및 회귀 알고리즘

장점

- 학습데이터가적은분야도사용 가능
- 오류데이터의 영향이 적음

단점

• 하이퍼파라미터조합을통한모형 구축에시간이오래걸림

2) 하이퍼파라미터튜닝

• grid search 사용

```
# Define the parameter grid for grid search
param_grid = {
    'C': [0.1, 1, 10],
    'kernel': ['linear', 'rbf', 'poly'],
    'degree': [2, 3, 4],
    'gamma': ['scale', 'auto', 0.1, 1]
}

svm_model = SVC()
grid_search = GridSearchCV(svm_model, param_grid, cv=3, verbose=2)
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Best Parameters:", best_params)
```

Best Parameters:

```
{'C': 10, 'degree': 2, 'gamma': 'scale', 'kernel': 'linear'}
```

4.1 SVM(Support Vector Machine)

3) 결과

confusion matrix

classification report

정밀도,재현율, F1-score, support(각클래스의실제샘플수) 지표를제공

	precision	recall	f1-score	support
0 1 2 3 4	1.00 1.00 0.60 1.00	0.92 1.00 1.00 1.00	0.96 1.00 0.75 1.00 1.00	26 7 3 6 18
accuracy macro avg weighted avg	0.92 0.98	0.98 0.97	0.97 0.94 0.97	60 60 60

4.2 Random Forest

1) 모델 설명

결정 트리를 기본 모델로 사용하는 앙상블 방법 결정 트리를 여러 개 만들어서 그 결과들을 종합적으로 고려하여 결론을 도출하는 방법

장점

- 과적합,이상치및 결측치에 Robust함
- 정규화과정이필요없음
- 비선형적인데이터에도좋은성능을보임

단점

- 학습 및 연산시간이 오래 걸림
- 해석이용이하지않음

2) 하이퍼파마미터튜닝

• grid search사용

```
from sklearn.model_selection import GridSearchCV
# 파라미터 딕셔너리 정의
param_grid = {
     'n_estimators': [100, 200, 300],
     'max_depth': [None, 10, 20],
     'min_samples_split': [2, 5, 10],
     'min_samples_leaf': [1, 2, 4],
     'max_features': ['auto', 'sqrt', 'log2']
# Grid Search 적용
grid_search = GridSearchCV(estimator=drug_RF, param_grid=param_grid, cv=5)
grid_search.fit(x_train, y_train)
# 최적의 파라미터 및 모델 정의
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
y_pred2_GS = best_model.predict(x_test)
accuracy = accuracy_score(y_test, y_pred2_GS)
print("Best Parameters:", best_params)
print("Accuracy:", accuracy)
```

Best Parameters:

```
{'max_depth': None, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 300, 'random_state': 42}
```

4.2 Random Forest

3) 결과

confusion matrix

• classification report

정밀도, 재현율, F1-score, support(각클래스의실제샘플수) 지표를제공

	precision	recall	f1-score	support
0 1 2 3 4	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	26 7 3 6 18
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	60 60 60

Accuracy: 1.0

4.2 Random Forest

4) 변수중요도평가

Importance of attributes:
Na_to_K: attribute 1 (0.402701)
BP_HIGH: attribute 3 (0.135020)
Age: attribute 0 (0.122766)
BP_NORMAL: attribute 4 (0.076437)
Na_to_K_binned_20-30: attribute 13 (0.059898)
Cholesterol_HIGH: attribute 5 (0.047393)
Na_to_K_binned_10-20: attribute 12 (0.034208)
Age_binned_30s: attribute 7 (0.020654)
Sex_M: attribute 2 (0.019315)
Age_binned_50s: attribute 9 (0.016300)
Age_binned_40s: attribute 8 (0.015750)
Na_to_K_binned_>30: attribute 14 (0.014973)
Age_binned_60s: attribute 10 (0.013487)

Age_binned_20s: attribute 6 (0.010850)

Age_binned_>60s: attribute 11 (0.010246)

- 의약품분류에있어중요하게고려되는변수: Na_to_K,BP_HIGH,Age
- EDA를 통해 예측한 것처럼 Sex 변수의 중요도는 떨어짐을 확인

4.3 Decision Tree

1) 모델 설명

데이터학습을통해트리기반의분류규칙을만드는방법

장점

- 분류예측에유용하며해석이용이함
- 데이터전처리불필요
- 시각화가능

단점

- 과적합가능성이높음
- 데이터수가적은경우불안정

2) 하이퍼파라미터튜닝

• grid search 사용

```
# Define the parameter grid for grid search
param_grid = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': [None, 'sqrt', 'log2']
}

dt_model = DecisionTreeClassifier()

grid_search = GridSearchCV(dt_model, param_grid, cv=3, verbose=2)

grid_search.fit(X_train, y_train)

best_params = grid_search.best_params_
best_model = grid_search.best_estimator_

dt_pred = best_model.predict(X_test)

dt_accuracy = accuracy_score(y_test, dt_pred)
print("Best_Parameters:", best_params)
```

Best Parameters:

```
{'criterion': 'gini', 'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, 'min_samples_split': 2}
```

4.3 Decision Tree

3) 결과

```
The constructed tree has 11 nodes
I--- Na to K <= 14.83
    I--- BP HIGH <= 0.50
        I--- BP LOW <= 0.50
          l--- class: 4
        I--- BP LOW > 0.50
            |--- Cholesterol_HIGH <= 0.50
                1--- class: 4
            |--- Cholesterol HIGH > 0.50
                1--- class: 3
     --- BP_HIGH > 0.50
        |--- Age <= 50.50
             --- class: 1
        |--- Age > 50.50
            1--- class: 2
|--- Na to K > 14.83
    1--- class: 0
```

• 결정트리시각화

- Na_to_K, BP_HIGH 변수가 분류하는데 중요한 것으로 보임
- EDA를 통해 예측한 것처럼 Sex 변수의 중요도는 떨어짐을 확인

4.3 Decision Tree

3) 결과

confusion matrix

• classification report

정밀도, 재현율, F1-score, support(각클래스의실제샘플수) 지표를제공

	precision	recall	f1-score	support
O 1	1.00 1.00	1.00 1.00	1 . 00 1 . 00	26 7
2	1.00	1.00	1.00	3
3 4	1.00	1.00	1.00	6 18
accuracy			1.00	60
macro avg	1.00	1.00	1.00	60
weighted avg	1.00	1.00	1.00	60

Accuracy is: 1.0

4.4 Multiclass Logistic Regression

1) 모델 설명

선형 회귀 방식을 Classification 문제에 적용한 방법

장점

- 회귀계수(Coefficient)가계산되며,해 석이용이함
- 클래스에속할확률을구할수있다.

단점

- 선형 모형이다.
- 상호작용이 있을 경우수동으로 변수를 추가해야함.

2) 하이퍼파라미터튜닝

- 별도의튜닝과정없음
- Baseline column을 제거해야한다는 점주의 (가장작은 범주를 제거)
 - Sex: Female 제거
 - BP: BP_LOW제거
 - Cholesterol: Cholesterol_NORMAL제거
 - Age_binned: Age_binned_<20s제거
 - Na_to_K_binned: Na_to_K_binned_<10제거

4.4 Multiclass Logistic Regression

- 3) 결과
- Coefficients

Age	Na_to_K	Sex_M	BP_HIGH	BP_NORMAL	Cholesterol	Age_binned	Age_binned	Age_binned	Age_binned	Age_binned	Age_binned	Na_to_K_bi	Na_to_K_bi	Na_to_K_bi	
					_HIGH	_20s	_30s	_40s	_50s	_60s	_>60s	nned_10-20	nned_20-30	nned_>30	
drug	Y -0.024079	2.050701	0.165550	-0.322051	0.188647	0.075999	-0.094422	-0.018406	0.112359	-0.077269	0.241947	-0.173754	-0.002503	0.000048	-2.794305e- 06
drug	-0.082794	-0.607678	-0.003054	2.126726	-0.506448	0.137994	-0.068678	0.455941	0.508993	-0.132711	-0.298340	-0.052269	0.017794	0.000017	1.587805e- 06
drug	B 0.133053	-0.342913	-0.012823	1.743605	-0.461141	-0.347242	-0.011853	-0.126747	-0.456707	0.745794	0.091563	-0.239383	0.114461	-0.000052	2.297349e- 07
drug	C -0.018430	-0.598324	0.239900	-1.506994	-1.103936	1.382675	0.209649	-0.520925	0.184552	-0.500932	0.000703	0.293329	0.058000	0.000007	2.703918e- 07
drug	-0.007750	-0.501785	-0.389573	-2.041286	1.882878	-1.249426	-0.034696	0.210136	-0.349198	-0.034882	-0.035873	0.172076	-0.187752	-0.000020	7.063729e- 07

4.4 Multiclass Logistic Regression

3) 결과

confusion matrix

• classification report

	precision	recall	f1-score	support
0	1.00	0.96	0.98	26
1	1.00	1.00	1.00	7
2	0.75	1.00	0.86	3
3	1.00	0.50	0.67	6
4	0.86	1.00	0.92	18
accuracy			0.93	60
macro avg	0.92	0.89	0.89	60
weighted avg	0.94	0.93	0.93	60

결론및고찰

결론및고찰

5.1분석결과도출

Accuracy: 0.967 Accuracy: 1.0 Accuracy: 1.0 Accuracy: 0.933

Part 5 **결론및고찰**

5.1분석결과도출

Performance: Decision tree > SVM > Random forest > Logistic Regression

Part 5 **결론및고찰**

5.2 프로젝트 결론

- 모델 성능: 4개의 모델 모두 성능이 높게 나왔음(0.9 이상)
- 하지만 관측값의 개수가 200개에 불과하기 때문에, 과적합이 발생했을 가능성이 존재함
 -> 더 많은 양의 데이터로 모델링을 진행할 경우 더 정확한 결과를 얻을 수 있다고 판단됨
- 변수 중요도: Drug를 분류하는 데에 있어서 Na_to_K, BP, Age 순서로 높은 중요도를 가지는 것으로 판단됨
- EDA 과정에서 SEX 변수가 Drug를 분류에 있어 영향을 미치지 않는 것이 보여졌는데, 실제로 랜덤포레스트, 결정트리 결과에서 SEX 변수가 낮은 중요도를 갖는 것을 확인할 수 있었음

Part 5 **결론및고찰**

5.3 프로젝트를 마치며

프로젝트 의의

- EDA부터 분석 결과까지 모델링의 전 단계를 직접 구현하는 과정이 매우 유익했음
- 다양한 EDA 과정을 거치며 변수 간의 관계성을 알 아가는 과정이 인상 깊었음
- 모델별로 적합한 전처리 과정을 고민하고, 실제로도 모델마다 각기 다른 전처리 과정을 적용하는 과정에 서 많은 부분들을 알아갈 수 있었음
- 트리 계열 모델과 SVM, 로지스틱 회귀 등 다양한 분 류 모델을 탐구하고 적용하는 과정이 뜻 깊었음

프로젝트 한계점

- 어떤 모델을 쓰더라도 결과가 잘 나와, 최적의 모델을 판단하기는 어려움
- 높은 prediction accuracy가 과적합에 의한 것인지, 데이터가 명확했기 때문인지 판단하기 어려음
- 모델 선정 시 수치형 변수를 (Age. Na_to_K) 제외할 경우 prediction accuracy가 매우 떨어짐
- 다중분류이기 때문에 ROC curve는 사용하지 않음
- Naive Bayes, KNN, Neural Net 디벨롭 여지가 있음

감사합니다