Solutions Manual for Gregory F. Lawler's Introduction to Stochastic Processes

Jonathan Bown

Part I

Finite Markov Chains

Problem 1.1.

Problem 1.2. Consider a Markov chain with state space 0,1 and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1/3 & 2/3 \\ 3/4 & 1/4 \end{bmatrix}$$

Assuming that the chain starts in state 0 at time n = 0, what is the probability that it is in state 1 at time n = 3?

Solution. This is just some basic matrix multiplication. The chain starts in state 0 at time n = 0 so we will look at the first row of the matrix \mathbf{P}^3 .

Problem 1.3.

Solution.

Problem 1.4.

Solution.

Problem 1.5.

Solution.

Problem 1.6.

Solution.

Problem 1.7.

Solution.

Problem 1.8.

Solution.	•
Problem 1.9.	
Solution.	•
Problem 1.10.	
Solution.	•
Problem 1.11.	
Solution.	•
Problem 1.12.	
Solution.	•
Problem 1.13.	
Solution.	•
Problem 1.14.	
Solution.	•
Problem 1.15.	
Solution.	•
Problem 1.16.	
Solution.	•
Problem 1.17.	
Solution.	•
Problem 1.18.	
Solution.	•
Problem 1.19.	
Solution.	•
Problem 1.20.	
Solution.	◄
Problem 1.21.	
Solution.	◄

Countable Markov Chains

Problem 2.1.

Continuous-Time Markov Chains

Problem 3.1.

Chapter 4 Optimal Stopping

Problem 4.1.

Martingales

Problem 5.1.

Renewal Processes

Problem 6.1.

Reversible Markov Chains

Problem 7.1.

Brownian Motion

Problem 8.1.

Chapter 9
Stochastic Integration