SCC0220 - Laboratório de Introdução à Ciência de Computação II

Revisão de Complexidade de Tempo

Prof.: Leonardo Tórtoro Pereira

leonardop@usp.br

- → Podemos medir a complexidade de tempo de execução de algoritmos para descobrir se é possível resolver tal problema computacionalmente com determinada solução
- → Para isso, geralmente temos 3 possibilidades
 - Pior caso
 - Caso médio é necessário uso de probabilidade
 - Melhor caso

- → Não importa qual possibilidade, consideramos o número de entradas *n*
 - O tempo para resolver o problema aumenta com o tamanho de n
- → Para *n* pequeno, qualquer algoritmo custa pouco
- → Por isso, analisamos os casos de *n* grande
 - O limite do comportamento de custo quando n cresce
- O comportamento assintótico da função de custo f(n)

- → Dizemos que uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para n >= m temos
 - lack |g(n)| <= c*|f(n)|
- → Ou seja, a partir de um número de entrada m a função c*f(n) é sempre maior que g(n) não importa o valor do número de entradas
- \rightarrow Notação: g(n) = O(f(n))

Fonte: [1]

- \rightarrow O caso contrário, de g(n) >= c*f(n) para todo n >= m recebe a notação g(n) é $\Omega(f(n))$
- → Ou seja, a partir de um número de entrada m a função c*f(n) é sempre MENOR que g(n) não importa o valor do número de entradas
- → Encontramos um limite inferior!

- \rightarrow Voltando ao caso do O(f(n))
- Caso exista uma outra constante c_2 na qual c*f(n) <= g(n) $<= c_2*f(n)$ para todo n >= m
- \rightarrow Ou seja, a partir de um valor de entrada m, a função g(n) é igual a f(n) a menos de uma constante
- \rightarrow f(n) é um limite assintótico firme
- \rightarrow $g(n) = \Theta(f(n))$

$$\rightarrow$$
 f(n) = O(1) -> Algoritmo de Complexidade Constante

$$\rightarrow$$
 f(n) = O(n) -> Algoritmo de Complexidade Linear

- \rightarrow f(n) = O(n²) -> Algoritmo de Complexidade Quadrática
- \rightarrow f(n) = O(n³) -> Algoritmo de Complexidade Cúbica
- \rightarrow f(n) = O(2ⁿ) -> Algoritmo de Complexidade Exponencial
- \rightarrow f(n) = O(n!) -> Algoritmo de Complexidade Fatorial

Função de Custo	Tamanho de <i>n</i>					
	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n³	0,001s	0,008s	0,027s	0,064s	0,125s	0,316s
n ⁵	0,1s	3,2s	24,3s	1,7 min	5,2 min	13 min
2 ⁿ	0,001s	1s	17,9 min	12,7 dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58 min	6,5 anos	3855 séc.	10 ⁸ séc.	10 ¹³ séc.

Adaptado de: [1]

- → Para contar operações em geral
 - Comandos de atribuição, leitura ou escrita são O(1)
 - Avaliar condição também O(1)
 - ◆ For
 - Somar o tempo do corpo mais a condição de terminação multiplicado pelo número de iterações

- → Para contar operações em procedimentos não recursivos
 - Cada procedimento deve ser contado separadamente
 - Iniciar naqueles que não chamam outros
 - Depois os que chamam os já avaliados
 - Até acabar

- → Para contar operações em procedimentos recursivos
 - associa uma função de complexidade f(n) desconhecida
 - *n* é o tamanho dos argumentos
 - Encontrar uma equação de recorrência para f(n)
 - Maneira de definir uma função por uma expressão envolvendo essa mesma função

- → Equação de recorrência:
 - igoplus Seja T(n) função de complexidade de um algoritmo,
 - ◆ Vamos supor que o algoritmo execute 5 linhas de tempo O(1) e uma chamada recursiva *n* vezes
 - Ex: percorrer um vetor recursivamente
 - igoplus T(n) é especificado em função dos termos anteriores
 - T(1), T(2), ..., T(n-1)

- → Equação de recorrência:
 - igoplus Seja T(n) função de complexidade de um algoritmo
 - ◆ Vamos supor que para cada chamada o algoritmo execute 5 linhas de tempo O(1) e uma chamada recursiva n/2 vezes
 - igoplus T(n) é especificado em função dos termos anteriores
 - T(1), T(2), ..., T(n-1)
 - igoplus T(n) = 5*n + T(n/2), T(1) = 5 (é preciso do valor de <math>n=1)

- → Equação de recorrência:
 - T(n) = 5*n + T(n/2), T(1) = 5 (é preciso do valor de n=1)
 - \bullet T(2) = 5*2 + T(2/2) = 15
 - \bullet T(4) = 5*4 + T(4/2) = 35
 - Precisamos de k-1 passos para o valor de T(2^k)
- \rightarrow Precisamos substituir os termos T(k), k < n, até que todos os sejam substituídos por fórmulas apenas com T(1)

- → Equação de recorrência:
 - T(n) = 5*n + T(n/2)
 - T(n/2) = 5*(n/2) + T(n/2/2)
 - \bullet T(n/2/2) = 5*(n/2/2) + T(n/2/2/2)

•••

 \rightarrow T(n/2/2.../2) = 5*(n/2/2.../2) + <math>T(n/2.../2)

- $T(n) = 5n + 5n*(\frac{1}{2}) + 5n*(\frac{1}{2^2}) + 5n*(\frac{1}{2^3}) + ... + (\frac{n}{2}/2...2)$
- → Soma de série geométria de razão ½ multiplicada por 5*n* e adicionada de T(n/2/2.../2) que é menor ou igual a 1
 - Desprezamos o termo final quando n tende a infinito
- \rightarrow T(n) = 5n*Σ_{i=0}[∞] (1/2)ⁱ = n(1/(1-½)) = 5n*2 = 10n
- → Logo, o programa é *O(n)*

Referências

- → [1] ZIVIANI, N. Projeto de Algoritmos. 3º edição revisada e ampliada. Cengage Learning, 2017.
- → https://pt.wikipedia.org/wiki/Bubble_sort
- → https://en.wikipedia.org/wiki/Bubble_sort
- → https://www.geeksforgeeks.org/bubble-sort/
- → https://pt.wikipedia.org/wiki/Insertion_sort
- → https://en.wikipedia.org/wiki/Insertion_sort
- https://www.geeksforgeeks.org/insertion-sort/
- → https://pt.wikipedia.org/wiki/Merge_sort
- → https://en.wikipedia.org/wiki/Merge_sort
- → https://www.geeksforgeeks.org/merge-sort/