CLASSIFICATION OF MUSICAL INSTRUMENTS

Under the guidance of

Prof. Preeti Rao

Department of electrical Engineering Indian Institute of Technology, Bombay Presented by Nihar Mahesh Gupte 213070002 Harsh Diwakar 213070018

Overview

- Instrument Classification
- Dataset
- Feature Extraction
- Methodology
- Results
- Discussion
- Conclusion

Instrument Classification

- Tons of digital audio material on the Internet
- Applications
 - Indexing Annotation and transcription of database
 - Knowing various musical styles, playlist generation
 - Video scene analysis
- Method
 - Dataset
 - Lists of features
 - Learning Algorithms
 - Performance parameters

Dataset

- Instrument recognition in musical audio signals (IRMAS) dataset
- Contains 11 Classes
 - Cello (cel), Clarinet (cla), Flute (flu), Acoustic guitar (gac),
 Electric guitar (gel), Organ (org), Piano (pia), Saxophone (sax),
 Trumpet (tru), Violin (vio), and Human singing
- Training: 6705 audio files, 16 bit stereo at 44.1 kHz
- Testing: 2874 audio samples divided into three parts

Feature Extraction

- Short Time Zero Crossing Rate (ZCR)
- Short Time Energy (STE)
- Mel Frequency Cepstral Coefficients (MFCC)
- Spectral Centroid (SC)
- Spectral Roll off (SRO)
- Spectral Contrast (SCR)

Zero Crossing Rate and Short Time Energy

 ZCR is calculated by counting number of times that time domain signal crosses zero within a short time window

$$Z_n = \sum_{m=-\infty}^{m=\infty} |\operatorname{sgn}(x[m]) - \operatorname{sgn}(x[m-1])| w[n-m]$$

Where,

sgn(x) is sign function and w is window with length L

STE of speech signal gives information about amplitude variation.

$$E_n = \sum_{m=-\infty}^{m=\infty} (x[m]w[n-m])^2$$

Mel Frequency Cepstral Coefficients

- Frequency to mel transform: $m = 2595 \log_{10}(1 + \frac{f}{700})$
- First 13 coefficients are used
- Exploits the property that humans can't distinguish finely at higher frequencies.
- All 13 coefficients are uncorrelated

Spectral Centroid

- SC indicates the location of center of mass of the spectrum
- It is given as^[1]:

$$F_{c} = \frac{\sum_{k=0}^{k=N-1} f(k)S(n,k)}{\sum_{k=0}^{k=N-1} S(n,k)}$$

Where,

f(k) is the frequency of n^{th} frame S(n,k) is magnitude spectrum

- Good Predictor of 'brightness' of a sound
- Used as an automatic measure of musical timbre^[2]

Spectral Roll off and Spectral Contrast

- SRO is the frequency below which a specified percentage of the total spectral energy lies^[1].
- SCR considers the spectral peak, spectral valley and their difference in each sub-band^[2].

■ Then Spectral Contrast is given as: $SC_k = Peak_k - Valley_k$ Where,

N is the total number of k^{th} sub-band, N = 6 by default in Librosa α is set to 0.02 in real implementation according to Jiang et.al.

Visualizing the Features

Feature visualization for a sample from class Piano

Visualizing the Features (contd.)

Probability Density Function for all the extracted features

Methodology

Methodology (contd.)

Method-1

- 1. Dataset was converted to data frames, with 20 ms hop and 30 ms window.
- 2. Each frame provides one training example.
- 3. No need of end pointing as there was little or no silence in the dataset.
- 4. Feature extracted using librosa: 13 MFCC, 1 Spectral rolloff, 7 spectral contrast, 1 zero crossing rate, 1 Short time Energy, 1 Spectral centroid.
- 5. Followed by K-Means clustering for K = 32,64,128,512,1024.
- 6. Finally, test set also decomposed into features and followed by Nearest Neighbors rule to predict classes.

Method-2

- 1. After the 4^{th} step from method-1, Mean and variances of all features were taken for an entire sample and concatenated to make a 24 + 24 = 48 dimensional vector.
- 2. Again steps 5-6 were followed from method-1 to classify the instrument class

Method-3

1. Dataset of method-2 was fed into a neural network with 2 hidden layers, having 64 and 32 neurons each.

Evaluation Metrics

- Evaluation was performed on a test dataset with 807 samples.
- $Accuracy = \frac{True\ Postives}{Total\ Samples}$
- True positives
 - Test dataset contains audios with multiple labels.
 - We are counting the hypotheses as true positive even when our model gives any of the true labels
 - Also, to compensate for the above effect we are adding all the labels as false negative when our model fails to provide the correct label.
- Confusion matrix
 - Evaluates the model performance using a cross- tabulation of actual and predicted classes

	Positive	Negative
Positive	True Positives	False Negatives
Negative	False Positive	True Negatives

Results

Model	Hyperparameter	Accuracy (%)
Extracted Features+ VQ CB Matching (Method-1)	k = 32	29.72%
	k = 64	33.20%
	k = 128	39.90%
	k = 512	43.37%
	k = 1024	45.97%
Mean Variance+ VQ CB Matching (Method-2)	k = 16	22.30%
	k = 32	20.07%
	k = 64	18.46%
	k = 128	19.20%
Mean Variance+ Single layer Neural Network (Method-3)	Neurons in layer-1: 64 Neurons in layer-2: 32 Neurons in layer-3: 11	65.05%

Accuracy for different models and hyperparameters

Results (contd.)

Accuracy vs Number of clusters for Method-1

Results (contd.)

Confusion matrix for Method-1, k=512

Confusion matrix for Method-1, k=1024

Confusion matrix for Method-3

Discussion

- Accuracy was increasing as k increases for method-1.
- However, time and space taken for execution was also increasing.
- Using elbow method, the best k(number of templates in VQ
 Codebook) is 128 as after this value there is very slight improvement in Accuracy.
- Method-2 was poor in terms of accuracy because only the mean and variance of features across frames were used instead of all frames.
- Features used had different mean and variances, which were exploited in method-2.
- Speech features along with neural network not only gave a better result than a very simple template matching technique but also the computational time was less.

Challenges and Future Works

Challenges:

- The dataset to be used initially was TensorFlow Nsynth which was a huge dataset and the instrument sounds were pure.
- However, we lacked the computational power to handle such a huge dataset.
- Continuously changing features and hyperparameters (k) to get the best predictions because of slow computation as k kept increasing.

• Future Works:

- Implement the classification task with the features extracted and more complex classifiers.
- Also using the TensorFlow Nsynth dataset for building an even better classifier.

Conclusion

- For classification of musical instruments, several temporal, spectral and coefficient space features were explored and extracted from audio file.
- After retrieving the features, these features were used to classify the instruments using template matching and statistical learning methods.
- For template matching methods, accuracy was increasing as the number of vectors in VQ Codebook was increasing but so was the computation time.
- Even for a very less set of features (mean and variance of all the features across all frames), neural network classifiers performed better than template matching techniques
- Thus, feature extraction along with modern machine learning can provide excellent results in future.

Thankyou!

a transfer, a restriction of the state of th

8192 -

4096

2048 -

1024

보 ₅₁₂ ▶

256 -

128 -

Spectral centroi

Spectral roll off

Flute

Violin

44

