

BRAINHACK SCHOOL 2020

Can We Identify Gender Using fMRI?

Tajwar Sultana
NED University of Engg. & Tech.
Pakistan

INSPIRATION

PREVIOUS RESEARCH => GENDER DIFFERENCE RESULTS IN FC DIFFERENCE

- <u>Functional Connectivity Predicts Gender:</u>
 <u>Evidence for Gender Differences in Resting</u>
 <u>State Connectivity</u>
- Sex Classification by Resting State Brain
 Connectivity

BOLD contrast and fMRI Time Series

Functional Connectivity

FUNCTIONAL IMAGES

- Used to determineConnectivity Matrices
- Features are built using
 Connectivity matrices

PHENOTYPIC DATA

- Used to determine Labelsfor supervised learning
- Gender Information asTarget Data

DATA SIZE

- 155 subjects
- 84 Female
- 71 Male

EXTRACTING

Legion nterest

TIME SERIES

datasets.fetch_atlas_basc_multiscale_2015Resolution = 64

Connectivity

Connectivity

SINGLE SUBJECT

SINGLE SUBJECT

Cannectame

Features feature matrix - 0.75 20 -0.50 40 155 X 2016 0.25 60 -Subject - 0.00 100 --0.25120 --0.50140 --0.751000 250 500 750 1250 1500 1750 2000 Features

LABEL ENCODING

Female

0

Label Encoder

Male

1

Gender Count

Counts

Pair Plot 11 0.4 12 0.4 0.0 0.6 0.4 0.2 -0.4-0.6-0.8Gender 0.2 -0.2-0.4-0.60.8 0.6 0.4 0.0 -0.2

Dimensionality Reduction

155 x 2016

Principal Component Analysis

155 x 110

Scree Plot

Training and Test and Taset

CLASSIFIERS

- Logistic Regression
- K-Nearest Neighbors
- Multilayer Perceptron
- Gaussian Naive Bayes
- Decision Tree
- Random Forest

CROSS VALIDATION

10 FOLD

PERFORMANCE METRICS

- Accuracy
- ROC-AUC Curve
- F1 Score
- Confusion Matrix

Evaluation Metrics

Classification	Accuracy	AUC	F1 Score	True Positive	Fals Pos	e itive	True Negative	False Negative	
Model Logistic			0.51	25		24	38	21	
Regression	0.58	0.61	0.51				2.	27	7
K-Nearest	0.51	0.49	0.47	2	3	26	3.	-	
Neighbors	0.5					29	4	5 1	4
Multilayer Perceptron	0.	6 0.5	9 0.4	7 2	0	2.	1		
Gaussian			g 0,3	12	16	3	3 3	35 2	24
Naïve Bayes	0.4	7 0.4	8 0.0					30	29
Decision	0.5	55 0.5	54 0.	52	25		24	30	
Tree	0						31	43	1
Random Forest	0.	55 0.	52 0.	35	18		31		

FUTURE GOALS

- Improving classification accuracy by:
- Selecting those networks whose connectivity differ between male and female
- Using advanced ML algorithms like PLS
- Choosing different atlases
 - Explore Nilearn => RegionExtractor,
 Masker, plotting, atlases, seed based FC
- Containerization using Docker
- More of Interactive plotting

