K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College A filiated to University of Mumbai)

Semester: Jan 2022 - May 2022

Max. Marks: 30

Duration: 1 hr. 15 min.

Class: TYBTECH

Semester: VI

Branch: COMP

Course Code: 2UCC601

Name of the Course: Digital Signal and Image Processing

Question No.		Max. Marks				
1100	a) Find the signal given below is periodic or aperiodic					
	$y(n) = \sin\left(\frac{2\pi}{7}n^2\right)$	8M				
1	b) Find even and odd components of the given discrete time signal.					
	$x(n) = \{-1, 2, 3, 4, -1, 2, -2, 1, 3\}$					
	Test whether following systems are linear or nonlinear					
	a) y(n) = 2nx(n)					
	b) $y(n) = e^{x(n)}$					
	OR					
2						
	Test following systems for time invariance					
	a) $y(n) = x(n) + x(n+1)$					
	b) y(n)= 4nx(n)					
	Perform following point processing operations on the digital image 3					
	bits/pixel image given below.					
	a) Gray level slicing with and without background					
	Given $r_1 = 3$ and $r_2 = 5$ and r must be following the range					
	as $r_1 \ll r \ll r_2$. Consider slicing extreme levels as 0 and					
3	7.					
	b) Bit plane slicing					
	2 4 5 7					
	6 5 7 0					
	1 3 0 4					

4	Explain any two of the following spatial enhancement techniques with suitable example and state one application of each. a) Contrast stretching						8M		
		b) Averaging filter in spatial domain c) Log Transformation							
	C) Log Transforma					e <i>ii)</i> 10 3a is			
						69334343			
		orb to ambren							

		h and without ba							
		onsider slierng							
					d				