銀河における星形成則

久野成夫 筑波大学

Outline

- 1. Introduction
 - Star formation in galaxies
 - Relation between SFR and gas density

- 2. Star formation law in GMC scale
- 3. Dependence on surface density of gas
 - High density regime
 - Low density regime
- 4. Dependence on volume density of gas

1. Introduction

Star formation in galaxies

- Normal galaxies
 - SFR $< 20 M_{\odot} \text{yr}^{-1}$
 - $\Sigma_{SFR} = \text{const.}$
- Starburst galaxies
 - SFR, Σ_{SFR} :

10²-10³ times higher than normal galaxies

Kennicutt & Evans (2012)

Stellar mass vs. specific Star Formation Rate (SFR/ M_*)

- Bimodality
 - Blue sequence: star formation
 - Red sequence: non star formation
- sSFR decreases with stellar mass
 - Difference in quantity(SFR)?quality(SFE)?

How do galaxies evolve from blue to red?

Stellar Mass

Cosmic star formation history

- SFR density $(M_{\odot} \text{yr}^{-1} \text{Mpc}^{-3})$
 - Peak at z=1-3

• (U)LIRG

Relation between SFR and gas density

Schmidt law: SFR vs. gas volume density

$$\rho_{\rm SF} \propto \rho_{gas}^{N} \quad N \approx 2 \text{ (Schmidt 1959)}$$

Kennicutt-Schmidt law:

Gas surface density (Kennicutt 1989)
$$\Sigma_{SFR} \propto \Sigma_{gas}^{N}$$
 $N = 1.3 \pm 0.3$ • Critical surface density for star formation

- Relation between properties of galaxies and star formation
 - Global
 - Radial distribution (sub-kpc scale)

K-S law in global scale

• $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^N \ N \simeq 1.4 - 1.5$ ($I_{\rm CO}$ -> $N({\rm H_2})$ conversion factor, $X_{\rm CO} = {\rm const.}$)

- Large offset of low metallicity galaxies ($Z < 0.3Z_{\odot}$)
 - Difference in X_{CO} ?

 Low-Surface-Brightness galaxies: Low SFR

(Kennicutt and Evans 2012)

K-S law with distant galaxies $(z \ge 2)$

• Bimodal: Starburst vs. Normal 2

Note: not single α_{CO} $L'_{CO} \rightarrow \Sigma(H_2)$

- normal@z=0.5-1.5 : $\alpha_{\rm CO}$ =3.6
- Local spirals :

$$\alpha_{\rm CO}$$
=4.6

• ULIRGs, SMG/QSO : $\alpha_{\rm CO}$ =0.8

• Dependence on α_{CO}

• single $\alpha_{CO} \Rightarrow$ unimodal

Genzel et al. (2010)

• $\alpha_{\rm CO}$ depends on metallicity and CO intensity

$$X_{\rm CO} = \frac{\min[4,6.75 \times \langle W_{\rm CO} \rangle^{-0.32}] \times 10^{20}}{{Z^{\prime}}^{0.65}}$$
 (Narayanan et al. 2012)

Bimodal ⇒ Unimodal with steeper slope

Schmidt law by dense gas tracer

Dense gas ⇒ star formation

Critical density for excitation
$$CO(1-0)$$
 3 × 10³ cm⁻³ @100K $HCN(1-0)$ 4 × 10⁶ cm⁻³ @30K

SFR is proportional to dense gas mass

$$L_{\rm IR} \propto L_{\rm HCN}^{1.00\pm0.05}$$

 If dense gas fraction increases with surface density of molecular gas

higher SFE at higher
$$\Sigma_{\rm H_2}$$
 \downarrow $\Sigma_{\rm SFR} \propto \Sigma_{\rm H_2}^{1.4}$ (non-linear for CO)

Gao & Solomon (2004)

Molecular cloud core to QSOs (order of ten!)

Same relation $(L_{\rm IR} \propto L_{\rm HCN})$?

⇒ Star formation occurs beyond a certain critical density?

Higher HCN/CO in (U)LIRG

e.g., for normal conversion factor, $M_{\rm dense} > M_{\rm gas}$ in Arp220!

- HCN abundance?
- Excitation by IR radiation?
- \Rightarrow Small HCN- $\Sigma_{\rm dense}$ conversion factor

Garcia-Burillo et al. (2012)

Difference of HCN- Σ_{dense} conversion factor (α_{HCN}) between normal galaxies and ULIRG

- \Rightarrow N>1 for all
- ⇒ Bimodality in K-S law by dense gas tracer?

Low SFR/ $M_{\rm dense}$ near the Galactic center

- Central Molecular Zone (CMZ) (R < 200 pc)
 - Low $\Sigma_{SFR}/\Sigma_{dense}$ (Rathborne et al. 2014)
 - G0.253+0.016: Star formation in a specific core ($> 10^6 \mathrm{cm}^{-3}$)

⇒High critical density

for star formation?

⇒Not simply SFR $\propto M_{\rm dense}$?

G0.253+0.016

Blue: 3.6µm

Green: 8.0µm

Red: 3mm

ALMA

Rathborne et al. (2014)

K-S law in sub-kpc scale

- Spatially resolved K-S law
 - and average of small-scale variation
- *N*=1.4-3.1(total gas), 1.0-1.4(molecular gas)
- Critical density for star formation \sim a few M_{\odot} pc⁻²

Kennicutt (1989)

Time scale of star formation

• Dynamical time $au_{ ext{dyn}}$:

One disk orbit time at half of the radius of the starforming disk

$\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}/\tau_{\rm dyn}$

 A constant fraction of gas form stars per orbit

e.g., trigger by spiral arms?

Kennicutt (1998)

- $\Sigma_{\rm gas}/\tau_{\rm dyn}$: ULIRG/SMGs bimodal \Rightarrow unimodal
 - Galactic dynamics determine the relation? (Why?)

Free fall time

$$\tau_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho}}$$

$$\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}/ au_{\rm ff}$$

 SFR depends on the properties of molecular clouds?

Krumholz et al. (2012)

Physical interpretation of K-S law (1)

$$ho_{
m SF} \propto rac{
ho_{
m gas}}{ au_{
m ff}} \propto rac{
ho_{
m gas}}{(1/\sqrt{G
ho_{
m gas}})} \propto
ho_{
m gas}^{1.5}$$

If scale height of the galactic disk is constant

$$\Sigma_{\rm SF} \propto \Sigma_{\rm gas}^{1.5}$$

(But, we observe ensemble of molecular clouds.

In that case,
$$\Sigma_{SF} \propto \Sigma_{gas}$$
?)

Critical density for star formation

- Toomre criterion (Toomre 1964)
 - Critical density for gravitational instability in thin isothermal gas disk

$$\Sigma_{\rm c} = \alpha \frac{\kappa \sigma}{3.36G}$$

 σ : velocity dispersion, κ : epicyclic frequency

$$\kappa^2 = \left(R\frac{d\Omega^2}{dR} + 4\Omega^2\right)_{R_g}$$

R: radius, Ω : angular velocity

Toomre Q parameter

$$\frac{\Sigma_{\rm c}}{\Sigma} = Q = \alpha \frac{\kappa \sigma}{3.36 G \Sigma}$$

Q > 1: stable Q < 1: unstable

 $\Sigma > \Sigma_c \Rightarrow$ star formation by gravitational instability?

Physical interpretation of K-S law (2)

- Three-dimensional hydrodynamic simulations
- ⇒ Probability distribution function (PDF) of gas density

Star formation law

⇒ Relation between PDF of gas density and SFR

(Critical density, efficiency)

Wada & Norman (2007)

• If non-linear random processes determine density distribution ⇒ log-normal distribution (対数正規分布)

$$f(\rho)d\rho = \frac{1}{\sqrt{2\pi}\sigma} exp \left[-\frac{\ln(\rho/\rho_0)^2}{2\sigma^2} \right] d\ln\rho$$

Numerical simulation (Wada and Norman 2007)

log(density)

PDF of gas density in M31 (Berkhuijsen & Fletcher 2015)

• If stars are formed from dense gas above ρ_c with an efficiency ε_c ,

$\dot{\rho}_* = \varepsilon_{\rm c} (G\rho_{\rm c})^{1/2} f_{\rm c} \langle \rho \rangle_V$

 $\varepsilon_{\rm c}$: Star formation efficiency

 $\rho_{\rm c}$: Critical density for star formation

 $f_{\rm c}$: Fraction of gas above critical density

 $\langle \rho \rangle_V$: Average density

• If PDF of gas density is log-normal $\Rightarrow f_0$

SFR ⇒ a function of average density

$$\dot{\rho}_* \left[\varepsilon_c, \left(\frac{\langle \rho \rangle_V}{1 M_{\odot} \text{pc}^{-3}} \right), \left(\frac{\rho_0}{1 \text{cm}^{-3}} \right), \left(\frac{\rho_c}{10^5 \text{cm}^{-3}} \right) \right]$$

$$= 3.6 \times 10^{-7} \varepsilon_c M_{\odot} \text{yr}^{-1} \text{pc}^{-3} \times \left[1 - Erf \left(\frac{\ln(\rho_c \rho_0 / \langle \rho \rangle_V^2)}{2[\ln(\langle \rho \rangle_V / \rho_0)]^{1/2}} \right) \right] \rho_c^{1/2} \langle \rho \rangle_V$$

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

- Consistent with observations
 - Steep slop at low density regime
 - $\sum_{SFR} \infty \sum_{gas}$ at high density regime
- Difference between Normal and starburst $\Rightarrow \varepsilon_c$? (What is the cause of the difference of ε_c ?)

Physical interpretation of K-S law (3)

Critical density for star formation (Krumholz and McKee 2005)

 Star formation in clouds in virial equilibrium supported by turbulence

$$\sigma_l \propto l^{0.5}$$
 σ_l : velocity dispersion, l : size of molecular cloud

- PDF of gas density: log-normal
- Gravitational energy > turbulence energy ⇒ star formation
 - \Rightarrow Jeans length $< \lambda_s$ (velocity dispersion of turbulence = sound speed)

$$x = \frac{\rho}{\rho_0} > x_{crit} \equiv \left(\phi_x \frac{\lambda_{J0}}{\lambda_s}\right)^2$$

 λ_{I0} : Jeans length of average density

$$\phi_{x}=1.13$$
: fitted by simulations

- ⇒ Spatial variation of critical density
 - Small $\lambda_s \Rightarrow$ high critical density e.g., Galactic center

- Solid line: Krumholtz & McKee (2005)
- Dashed line: Kennicutt (1998)

• Star formation in the core with highest density ($> 10^6 {
m cm}^{-3}$)

Galactic Longitude

	Solar	G0.253+0.016	
Measured			
Mean, column density PDF (N_0)	$0.5 - 3.0 \times 10^{21} \text{ cm}^{-2}$	$86 \pm 20 \times 10^{21} \text{ cm}^{-2}$	7, 8
Dispersion, column density PDF $(\sigma_{\log N})$	0.28-0.59	0.34 ± 0.03	7, 8
Critical volume density (ρ_{crit})	10^4 cm^{-3}	$> 10^6 \text{ cm}^{-3}$	3, 9, 8
Predicted (relative to solar neighborhood clouds)			
Mean, column density PDF (N_0)	1	100	
Dispersion, volume density PDF $(\sigma_{\log \rho})$	1	1.2	
Critical volume density (ρ_{crit})	1	10 ⁴	10, 11, 5

Note. The key properties are marked in bold.

References. (1) Larson 2003; (2) Ao et al. 2013; (3) Lada et al. 2010; (4) Longmore et al. 2013; (5) Kruijssen et al. 2014; (6) Schneider et al. 2014; (7) Kainulainen et al. 2009; (8) this work; (9) Lada et al. 2012; (10) Krumholz & McKee 2005; (11) Padoan & Nordlund 2011.

Physical interpretation of K-S law (4)

- SFR vs. HI: no correlation
- SFR vs. $H_2: \Sigma_{SFR} \propto \Sigma_{H_2}^{1.0}$
- SFR vs. HI+H $_2$: $\Sigma_{SFR} \propto \Sigma_{\rm HI+H}_2^{1.6}$ + Critical density for star formation

⇒ Star formation: Two processes

- HI -> H₂ ⇒ Critical density for H₂ formation
- Star formation from H₂ with a constant efficiency

- 2. Star formation law in GMC scale
- 3. Dependence on surface density of gas
 - High density regime
 - Low density regime
- 4. Volume density of gas vs. SFE

2. K-S law in GMC scale (Onodera et al. 2009)

- K-S law
 - Global
 - Radial average

To what scale is the K-S law valid?

Spatial resolution ~80 pc (GMC scale)

CO map of M33 (Tosaki et al. 2011)

K-S law in GMC scale

Breakdown of K-S law

Difference of evolutionary stage of GMC

M33: Onodera et al. (2009)

LMC:Fukui & Kawamura (2010)

3. Dependence on surface density of gas K-S law at high density region (Pan et al. 2014)

• Dependence of X_{CO} on metallicity and CO intensity

$$X_{\text{CO},v} = \frac{\min[4,6.75 \times \langle W_{\text{CO}} \rangle^{-0.32}] \times 10^{20}}{z'^{0.65}}$$
 (Narayanan et al. 2012)

¹²CO map of IC342 (Kuno et al. 2007)

- K-S law taking account of dependence of X_{CO} on metallicity and CO intensity
 - Higher power at high density region

Comparison with optically thin ¹³CO

- 12CO
 - Optically thick
 - Conversion factor ⇒ Gas mass
- 13CO
 - Optically thin
 - LTE ⇒ Gas mass
 - Abundance variation Radial variation: center \Rightarrow high $^{13}CO/^{12}CO$
 - Temperature variation
 Dust temperature ⇒ Gas temperature

Comparison with optically thin ¹³CO

Star formation mechanisms

- Low density region: Gravitational instability
- High density region: Cloud-cloud collision

M51 (Nakai, Kuno et al. 1991)

GMC properties

High density region: ISM pressure ⇒ High density
 ⇒ Short free fall time
 (Krumholz et al. 2009)

3. Dependence on surface density of gas K-S law at low density region (Hatakeyama et al. 2017)

- NGC 2976
 - Nearby (3.56Mpc)
 - HI dominant

Good sample : $HI \Rightarrow H_2 \Rightarrow Star$ formation

 I_{CO} map obtained with NRO 45-m telescope

K-S law at low density region

- HI
 - Saturated at $\Sigma \approx 10 \, M_{\odot} \, \mathrm{pc}^{-2}$
 - Correlation with SFR (photoionization)?
 - \Rightarrow Power: HI+H₂ > H₂ H₂ formation

- $\Sigma(H_2) > 10 M_{\odot} \mathrm{pc}^{-2} \Rightarrow \text{ star formation?}$
 - Diffuse clouds ⇒ Self gravitating clouds?

Star formation process

- $\Sigma(HI) > 10 M_{\odot} pc^{-2}$: HI \Rightarrow H₂ (diffuse clouds)
- $\Sigma(H_2) > 10 M_{\odot} pc^{-2}$: $H_2 \Rightarrow$ self gravitating clouds \Rightarrow star

4. Volume density of gas vs. SFE (Muraoka et al. 2016)

- NGC 2903
- ¹²CO+¹³CO mapping (COMING) ⇒ Physical properties

Detection of ¹³CO by stacking using ¹²CO velocity

(12CO(2-1): IRAM 30-m Leroy et al. 2009)

- Large Velocity Gradient (LVG) model
 - Abundance, Velocity gradient ⇒ density, temperature

Volume density of molecular gas vs. SFE

Higher volume density ⇒ Higher SFE

(Muraoka et al. 2016)

<u>Summary</u>

- Star formation law: one of the most fundamental relations to understand galaxy evolution
 - Gas phase (total gas, molecular gas, dense gas)
 - Galaxy type (e.g., normal vs. starburst)
 - Time scale of star formation
 - Spatial variation in galaxies
 (relation with galactic structures, such as spiral arm and bar)
 - Surface density ⇒ volume density
 - Effect of variation in conversion factor X_{co}