Clase 3

Soporte y modelos estadísticos

El bootstrap no paramétrico

- La incertidumbre en el estimativo del árbol se pude inferir indirectamente usando análisis de bootstrap
- "uno se sube a sí mismo usando sus propios bootstraps"
 - El análisis usando Bootstrap se puede usar en varios métodos filogenéticos:
 - · Máxima parsimonia
 - · Métodos basados en matrices de distancia
 - Máxima verosimilitud

Bootstrap brown bear CGTTAGTACACT cave bear black bear Repetir 1000 veces giant panda Pseudoreplicación brown bear brown bear **ATACTGTCCCT** cave bear cave bear **ATACTGTCCCA** black bear black bear **ACACTGTTCCT GTGCTATTCCT** giant panda giant panda

Interpretar valores de bootstrap

Felsenstein (1985)

El bootstrap nos da un intervalo de confianza que contiene la filogenia que sería estimada por muestrear repetidamente caracteres de la distribución existente

- Los valores del Bootstrap son medidas de repetibilidad
 - Es alto cuando hay muchos datos disponibles
 - Tiene poco significado cuando datos del genoma completo están disponibles

Soltis & Soltis (2003) Stat Sci

Métodos filogenéticos comunes 1. Máxima parsimonia 2. Métodos de distancia 3. Máxima verosimilitud 4. Inferencia Bayesiana Métodos estadísticos MÉTODOS ESTADÍSTICOS

Modelos de sustitución

Proporción de sitios invariables

- A menudo se sobre-estiman cuando se analisan especies
- No distinguen:
 - Sitios que son invariables y no pueden cambiar
 - Sitios que son constantes y por razones estocasticas no han cambiado
- · Tiene poco significado biológico
- Los sitios lentos se pueden describer bien usando +G

Usamos modelos +G models para tomar en cuenta la variación en la tasa entre sitios

18

Matrices de sustitución de amino ácidos

- Matriz de probabilidades de sustitución de 20x20
- Demasiados parámetros para estimar
- · Modelo GTR para ADN: 6 parámetros
- Modelo GTR para proteínas: 190 parámetros
- Se estiman probabilidades de sustitución usando cantidades grandes de datos
 - PAM
 - BLOSUM
 - JTT
 - WAG

Selección de modelos

Selección de modelos

1. Selección subjetiva de modelos

- · Eligiendo un modelo que parezca sensato
- Balanceando el número de parámetros contra la cantidad de datos disponible
- Motivación biológica

2. Selección objetiva de modelos

- Usando teoría de la infromación y hacerlo a computador
- Motivación estadística

Selección de modelos

- Adicionar parámetros siempre mejora el ajuste del modelo a los datos
- Pero adicionar parametros lleva a más varianza en sus estimativos

¿Vale la pena mejorar el ajuste dado el costo de más parametros?

26

Selección de modelos

 Test de la proporción de verosimilitud, Likelihood-ratio test (LRT)

Usado para comparar modelos anidados

- - AIC = -2ln(likelihood) + 2k
- Criterio de información Bayesiano (BIC) BIC = -2ln(likelihood) + kln(n)

Modelos de sustitución en la práctica

- El árbol filogenético es un parámetro áltamente robusto al modelo usado
- **GTR+G** es acceptable para la mayoría de los datos

Referencias útiles

- Model selection in phylogenetics
 Sullivan & Joyce (2005) Annual Review of Ecology, Evolution, and Systematics, 36: 445–466.
- The effects of partitioning on phylogenetic inference Kainer & Lanfear (2015) Molecular Biology and Evolution, 32: 1611–1627.

