CSE340: Computer Architecture

Handout_Chapter - 3: Arithmetic for Computers

Inspiring Excellence

Prepared by: Partha Bhoumik (PBK)

Course Coordinator, CSE340

Integer Addition-Subtraction

Bits with this color represent carry-forward

adding bits right to left.

$$6 = 110$$

$$+6 = 0110$$

$$= 1001$$

$$-6 = (1010)_{20}$$

Overflow Detection (regular)

#Addition:

Case-1: Add two same signed numbers:

if (answer also has same sign):

No overflow

else:

Overflow

Case-2: Add two different signed numbers:

Never Overflow

#Subtraction:

Case-3: Sub two same signed numbers:

Never Overflow

Case-4: Sub two different signed numbers:

$$+A - (-B) = +A +B => Case-1$$

$$-A - (+B) = -A + (-B) = > Case-1$$

Long Multiplication

Example:

Multiply 8 and 9 using the long multiplication method:

Solution:

You can choose any of the operands as multiplier or multiplicand.

Number of iterations = Number of bits in Multiplier

Iteration	Multiplier	Multiplicand	Product
0	1001	0000 1000	0000 0000
	1001	0000 1000	0000 1000
1	1001	0001 0000	0000 1000
	0100	0001 0000	0000 1000
	0010	0010 0000	0000 1000
2	0010	0010 0000	0000 1000
	0010	0100 0000	0000 1000
3	0001 0100 0	0100 0000	0000 1000
4	0001	0100 0000	0100 1000
	0001	1000 0000	0100 1000
	0000	1000 0000	0100 1000

Optimized Multiplication

System:

Logic:

if (iteration
$$\zeta = multiplier$$
 bit length):

if (multiplier 0 == 1):

product_MSB = Multiplicand + product_MSB

product = right Shift product by 1

elif (multiplier 0 == 0):

product = right Shift product by 1

Example:

Multiply 8 and 9 using the optimized multiplication method: Solution:

You can choose any of the operands as multiplier or multiplicand.

Number of iterations = Number of bits in Multiplier

This color represents the product MSB part.

Iteration	Multiplicand	Product
0	1000	0000 1001
	1000	1000 1001
		0100 0100
2	1000	0010 0010
3	1000	0001 0001
	1000	1001 0001
4		0100 1000

Floating Point

How does RISC-V support numbers with fractions? => Using IEEE-754 floating point representation

Scientific Notation is just a way to represent very large or

$$\Rightarrow 4500000 = 4.5 \times 10^{6}$$

$$= \frac{1}{2} \times 10^{6}$$

$$=$$

Very small number.

$$\Rightarrow 4500000 = 4.5 \times 10^{6}$$

$$\Rightarrow 0.00453 = 4.53 \times 10^{-3}$$

$$\Rightarrow 109.64 \times 10^{33}$$

IEEE-754 floating point representation:

- i. Single Precision. (32 bits)
- ii. Double Precision. (64 bits)

Using double precision, you can represent a larger or a smaller number than single precision.

Normalized Number

- It To normalize a number you need to shift the binary point (.) left or right until you have a single non-zero digit before the binary point.
- =) If you shift left, the number of times you left shifted will be added with the exponent. $\Rightarrow 110.111 \times 2^{35}$ $\Rightarrow 1.10111 \times 2^{35+2}$
- =) If you shift right, the number of times you right shifted will be subtracted from the exponent.

 =) 0.00110=) 0.00110×2^0
 - $=> |\cdot|0 \times 2^{0-3} = |\cdot|0 \times 2^{-3}$

IEEE-754 Floating Point Representation

	sign Bit	Exponent	Fraction
Single P.	1 bi+	8 bita	23 bita
Double P.	1 4	11 "	52 4

IEEE-754 Single Precision Format (32-bit)

8 bit unsigned bimary range =
$$0 \pm 0.28^{\circ}$$
-1 = 0 ± 0.255

1. 1011 x 2 Exponent

-lized

1. 1011 x 2

But. 0000 0000 and IIIIIII are reserved, so the range for biased exponent is 1 to 254

If the pize of biased exponent field is n bits,
$$Bias = 2^{(m-1)}$$

Hence, for 8 bit biased exponent, bias =
$$2^{7}-1 = 127$$

IEEE-754 Double Precision Format (64-bit)

Sign Bit = 0 => positive number
$$1 => megative \qquad 4$$

Exponent = It will be represented as unsigned number.

| | bit umigned binary range = 0 to 2 -1 = 0 to 2047

But 000 0000 0000 and IIIIII are reserved, so the range for biased exponent is 1 to 2046

If the size of biased exponent field is n bits, Bias = 2 -1

Hence, for 11 bit biased exponent, bias = 20-1 = 1023

Decimal to IEEE-754 Floating Point Conversion

Steps:

- 1. Convert the decimal number to binary number.
- 2. Normalize the binary number.
- 3. Find the biased exponent.
- 4. Sign Bit.
- 5. Find the fraction.
- 6. Encode accordingly.

Example:

Convert 50.6749 to IEEE-754 single precision floating point representation. Show your final answer in Hex format. Consider 10 bits while converting from decimal to binary.

Solution:

Example:

Convert -0.0232 to 12-bit IEEE-754 representation where the size of the exponent field is 4 bits. Show your final answer in Hex format.

Solution:

(i)
$$-0.0232 = -0.0000010$$

(ii)
$$-0.0000010 = 1.0 \times 2$$
 actual exponent fraction

(iii) $Biaa = 2 - 1 = 7$

IEEE-754 Floating Point to Decimal Conversion

Steps:

- 1. Convert the Hex/Decimal number to binary number.
- 2. Arrange the binary number according to the given IEEE format.
- 3. Determine the sign.
- 4. Find out the actual exponent from the biased exponent field.
- 5. Convert Fraction to Decimal.

6. Final number =
$$(-1)^{Sign \, Bit} \times (1 + Fraction) \times 2^{Actual \, Exponent}$$

Example:

Convert the given IEEE-754 single precision floating point number 0xF2400120 to decimal.

Solution: (i) IIII 0010 0100 0

Floating Point Addition/Subtraction

Given A and B both are floating point numbers. Steps:

- 1. Make sure both numbers are in Binary.
- 2. Normalize both A and B.
- 3. Align the binary point so that the lower exponent match with the higher exponent.
- 4. Now add or sub accordingly.
- 5. Normalize the result.

Ex: 0.999×101 + 1.610×10-1; Size of expo	oment field is 3 bits
= 99.99 + 0.1610	1
= 1(00011.11(1)11010) + 0.0010 100100	Bion = 2 -1 = 3
= 1.1000 1111 1111 0101 × 2 ⁶ + 1.0100 100 × 2 ⁻³	Biased Exp. = 3+6=9
= 1.1000 1111 1111 0101×26+ 0.0000 0000 10100 100 ×26	Pange = 0 to 23-1
$= 1.10010 \times 2^6 (Am)$	=0 to \(\times
	= 1 to 6 Treserved
# 110100.111011 x28 + 10110.11111 x27	To and 7] upper
= 1.1010 0111 011 ×2 + 1.0110 1111 1 ×2	range
=1.1010 0111 011 x2 + 0.0101 1011 111 x 2 ¹³	9>6 => So,
= 10.0000 0011 010 x 2 ¹³	overflow
= 1.0000 0001 1010 × 214 (Am)	

Floating Point Multiplication

Given A and B both are floating point numbers.

Steps:

- 1. Make sure both numbers are in Binary.
- 2. Normalize both A and B.
- 3. Add the exponents.
- 4. Now multiply accordingly.
- 5. Normalize the result.
- 6. Determine the sign of the operation.

$$\frac{E_{\%}}{E_{\%}} = 1.110 \times 2^{5} \times 1.11 \times 2^{-5}$$

$$= 1.110 \times 1.11 \times 2^{5+(-5)}$$

$$= 11.0001 \times 2^{0}$$

$$= 1.10001 \times 2^{1} (A_{m_{2}})$$

Overflow-Underflow detection for IEEE-754 format

Overeflow / Underflow defection: system.

Step 1: Find the biased exponent of the answer.

Step 2: " " range of the biased exponent of the given system. (I to upper Range)

Step 3: Detection:

if (Biased exponent 4 1):

underflow

else if (Biased exponent > upper Range)
Overflow

else: [1 & Biased Exp & upper Range]
No over lunder flow

Floating Point instructions in RISC-V

If Suppose, two single Preci. floating point numbers A,B are stored in memory. The memory locations are directly stored in register ×10, ×11.

Write necessary code to store the result of A+B in the memory address that is stored in ×13.

$$f_{l\omega}$$
 f_{1} , $O(x_{10})$; $f_{1} = A$
 $f_{l\omega}$ f_{2} , $O(x_{11})$; $f_{2} = B$
 $f_{add.s}$ f_{3} , f_{1} , f_{2} ; $f_{3} = A + B$
 $f_{a\omega}$ f_{3} , $O(x_{13})$

Formulas

- 1. Bias = $2^{(n-1)} 1$; n = Size of the exponent field
- 2. Biased Exponent = Bias + Actual Exponent Actual Exponent = Biased Exoponent - Bias
- 3. Biased Exponent Range = $0 \text{ to } 2^n 1$; [upper & lower limit is reserved] = $1 \text{ to } 2^n - 2$; [Usable range]
- 4. Actual Exponent Ramge = (0 Bias) to $(2^n 1 Bias)$ = (1 - Bias) to $(2^n - 2 - Bias)$; [Usable range]
- 5. Decimal Number = $(-1)^{Sign \, Bit} \times (1 + Fraction) \times 2^{Actual \, Exponent}$