Formulario Álgebra lineal

1. Concepto.

Matriz es un arreglo rectangular de números ordenados en filas y columnas encerrados entre dos corchetes. Matemáticamente:

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m \cdot n} \end{bmatrix}$$

Donde:

A = nombre de la matriz. $m \times n = tamaño$ de la matriz.

m = filas. n = columnas.

 a_{ij} = elemento genérico de la matriz y significa que está ubicado en fila "i" y la columna "j".

2. Propiedades de las Matrices.

1. Propiedades de la Suma.

- $1. \qquad A_{m \times n} + A_{m \times n} = A_{m \times n}$
- 2. A + B = B + A
- 3. A + (B + C) = (A + B) + C

Propiedades de la Matriz Cero.

- 1. $A + \theta = \theta + A = A$
- 2. $\theta A = -A$
- 3. $A + (-A) = A A = \theta$
- 4. $A\theta = \theta$; $\theta A = \theta$

Donde: $\theta = \text{matriz cero (nulo)}$. (-A) = inverso aditivo.

2. Propiedades del Producto.

1.
$$A_{m \times n} \times B_{p \times q} = C_{m \times q}$$

Donde: $n = p$

- 2. A(B+C) = AB + AC
- 3. (A+B)C = AC + BC
- 4. A(BC) = (AB)C
- 5. AI = A; I = matriz indentidad.
- 6. $AB \neq BA$ en el producto.
- 7. $k \cdot A_{m \times n} = [k \cdot a_{i,i}]$ $k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$ k = escalar.
- 8. k(A + B) = kA + kB
- 9. $k_1(k_2A) = (k_1k_2)A$
- 10. $(A + B)^2 \neq A^2 + 2AB + B^2$ ya que el producto no es conmutativo.
- 11. No cumple la propiedad cancelativa: AB = AC ??

3. Propiedades de la Potencia.

- 1. $A^0 = I$
 - 2. $A^n = AAA \cdots A$
 - 3. $A^r A^s = A^{r+s}$
 - $4. \quad (A^r)^s = A^{rs}$

4. Matriz Polinomial.

 $P_{(x)} = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

Si A = matriz, entonces se define:

$$P_{(A)} = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n$$

3. Tipos de Matrices.

1. Matriz Cuadrada.

Si el número de filas es igual al número de columnas. $A_{n \times n} = A_n = [a_{ij}] \in IR^n$

 $1 \le i \le n \qquad 1 \le j \le n$

2. Matriz Nula.

Si todos los elementos a_{ij} son cero:

$$A_{m \times n} = \theta = \begin{bmatrix} a_{ij} = 0 \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

3. Matriz Identidad.

La matriz identidad siempre es cuadrada.

$$I_{n \times n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad I_{n \times n} = \begin{cases} a_{ij} = 1 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

4. Matriz Fila.

Es una matriz que consta de una única fila.

$$A_{1\times n} = \left[a_{1j}\right] \in IR^{1\times n}$$

 $A_{1 \times n} = [a_{11} \quad a_{12} \quad a_{13} \quad ... \quad a_{1n}] \in IR^{1 \times n}$ 5. Matriz Columna.

Matriz que tiene una única columna.

$$A_{m \times 1} = [a_{i1}] \in IR^{m \times 1}$$
 $A_{m \times 1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$

6. Matriz Traspuesta.

Si
$$A_{m \times n}$$
 entonces $A^t = A_{n \times m}$
 $A = \begin{bmatrix} a_{ij} \end{bmatrix} \rightarrow A^t = \begin{bmatrix} a_{ji} \end{bmatrix}$
 $A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \rightarrow A^t = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Propiedades:

- $1. \quad (A^t)^t = A$
- 2. $(A + B)^t = A^t + B^t$
- 3. $(AB)^t = A^t B^t$
- 4. $(kA)^t = kA^t$

7. Matriz Triangular (ó Escalonada)

Si
$$AB = \theta \rightarrow \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

No implica que $A = \theta$; $B = \theta$ es decir A, B no necesariamente tiene que ser cero.

8. Matriz Triangular Superior (Upper).

Matriz cuadrada cuyos elementos que están por debajo de la diagonal principal son todos nulos.

$$A_{n \times n} = \begin{cases} a_{ij} \neq 0 & i < j \\ a_{ij} = 0 & i > j \end{cases} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$

9. Matriz Triangular Inferior (Lower).

Es una matriz cuadrada cuyos elementos

$$A_{n \times n} = \begin{cases} a_{ij} \neq 0 & i < j \\ a_{ij} = 0 & i > j \end{cases} \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

10. Matriz Diagonal.

Es una matriz que al mismo tiempo es triangular superior e inferior y es cuadrada.

$$D_{n \times n} = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

$$D_{n\times n}^{k} = D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \dots & 0 \\ 0 & d_{2}^{k} & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{n}^{k} \end{bmatrix}$$

$$D_{n\times n} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} D = \begin{cases} a_{ij} \neq 0 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

$$D_{n \times n} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} \quad D = \begin{cases} a_{ij} \neq 0 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

Matriz Diagonal Inversa:

$$D_{n\times n}^{-1} = D^{-1} = \begin{bmatrix} 1/d_1 & 0 & \dots & 0 \\ 0 & 1/d_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/d_n \end{bmatrix}$$

11. Matriz Conjugado.

Matriz Conjugado.
$$A = \begin{bmatrix} i & 1-i \\ 3 & 1-2i \end{bmatrix} \qquad \overline{A} = \begin{bmatrix} -i & 1+i \\ 3 & 1+2i \end{bmatrix}$$
Propiedades:

- 1. $\overline{A} = A$
- 4. $\overline{A+B} = \overline{A} + \overline{B}$

- 2. $\overline{A}^t = \overline{A^t}$ 3. $\overline{k \cdot B} = \overline{k} \cdot \overline{B}$

4. Matrices Especiales:

1. Matriz Simétrica.

Es Simétrica si solo si $A = A^t$ y es una matriz cuadrada $A_{n \times n} = [a_{ij}]$

2. Matriz Antisimétrica.

También llamado Hemisimétrica.

Es Antisimétrica si solo si $A^t = -A$ y es

una matriz cuadrada
$$A_{n\times n}=\begin{bmatrix} a_{ij} \end{bmatrix}$$

$$A=\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

3. Matriz Normal

Es normal si conmuta con su transpuesta, esto es si: $A \cdot A^t = A^t \cdot A$

4. Matriz Singular.

Es Singular si: $det(A_{n\times n}) = 0$

5. Matriz Regular.

 $det(A_{n\times n}) \neq 0$ y si su Es Regular si: rango $\rho(A_{n \times n}) = n$

6. Matriz Periódica.

Es periódica si $A^{k+1} = A$. Si $k \in \mathbb{Z}^+$ que satisface la condición $A^k = I$ se dice que A es una matriz de periodo k donde: $A^{k+1} = A$, $A^{k+2} = A^2$, $A^{k+3} = A^3$, ...

7. Matriz Idempotente.

Si: $A_{n \times n}$ Es Idempotente si cumple:

$$A^{2} = AA = A$$
, $A^{3} = A$, ... $A^{k} = A$

$$A = \begin{bmatrix} -1 & 3 & 5\\ 1 & -3 & -5\\ -1 & 3 & 5 \end{bmatrix} \rightarrow A^{7} = A$$

8. Matriz Nilpotente. (ó Nulpotente)

Si $A = A^{k-1}$ entonces $A^{\bar{k}} = A^2 = \theta$

Otra forma:

Si
$$k \ge 2 \in Z^+$$
 que satisface la condición $A^k = \theta$ donde $k =$ índice $A_{2 \times 2} = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$ $A^{k+1} = \theta$, $A^{k+2} = \theta$, ... $A^n = \theta$

9. Matriz Involutiva.

Una matriz cuadrada $A = A_{n \times n}$ y k = 2Es Involutiva si cumple las dos condiciones:

- 1) $A^k = A$ si k es Impar.
- 2) $A^k = I$ si k es Par.

$$A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

10. Matriz Ortogonal.

Una matriz cuadrada $A = A_{n \times n}$ Es Ortogonal si cumple: $A \cdot A^t = A^t \cdot A = I$

Es decir: $A^{-1} = A^t$ $\begin{bmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{bmatrix} \begin{bmatrix} \sin x & \cos x \\ -\cos x & \sin x \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Recuerda que: $\sin^2 x + \cos^2 x = 1$

11. Matriz Hermética.

Una matriz cuadrada $A = A_{n \times n}$ Es Hermética si $A_{n\times n} \in \mathbb{C}$ complejos.

$$A_{n \times n} = \left(\overline{A}\right)^{t}$$

$$A_{3 \times 3} = \begin{bmatrix} 4 & -i & 3+2i \\ i & -3 & 4-7i \\ 3-2i & 4+7i & 6 \end{bmatrix}$$

$$A_{3\times3} = \begin{bmatrix} 13 - 2i & 4 + 7i & 6 \\ Matriz Hermitania. \end{bmatrix}$$

$$A_{3\times3} = \begin{bmatrix} 2 & 3 + i & i \\ 3 - i & 5 & 4 - 3i \\ -2i & 1 + i & 7 \end{bmatrix}$$
A.Matriz Hemihermética.

12. Matriz Hemihermética.

Una matriz cuadrada $A = A_{n \times n}$ Es Hemihermética si $A_{n\times n} \in \mathbb{C}$ complejos.

$$A_{n\times n} = -\overline{A^t}$$

$$A_{3\times 3} = \begin{bmatrix} 0 & 1-i & 4+3i \\ -1-i & i & -3 \\ -4+3i & 3 & 0 \end{bmatrix}$$
5. Operaciones y Matrices Elementales.

1. Operaciones Elementales.

- 1. $kf_i \rightarrow f_i$ $kC_j \rightarrow C_j$ múltiplo. 2. $f_\rho \leftrightarrow f_i$ $C_\rho \leftrightarrow C_j$ intercambiar. 3. $kf_\rho + f_i \rightarrow f_i$ $kC_\rho + C_j \rightarrow C_j$ Suma de la fila o columna con el múltiplo escalar de otra fila o columna.

2. Matriz Elemental.

Sea:
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = E_1$$

$$E_1 = E_2 \qquad E_2 = E_3 \quad \dots$$

$$kf_{\rho} + f_i \rightarrow f_i \qquad kf_{\rho} + f_i \rightarrow f_i \qquad \dots$$

3. Matriz Elemental.

i. Matriz Elemental.
$$A_{m \times n} \equiv B_{m \times n}$$
 si cumple: $E_n \cdots E_2 E_1 A = B$ $A \underbrace{E_1 E_2 \cdots E_n}_{Matriz \ de \ Paso} = B$
Factorización L U = A:

6. Factorización LU=A:

Toda matriz $A_{n\times n}$ puede escribirse como el producto de: $L \cdot U = A$

U = una Matriz Triangular Superior (UpperL = una Matriz Triangular Inferior (Lower). $A = L \cdot U$

1. Método de Tanteo para L U:

Ejemplo 1:

Para U: Comenzar escalonando la matriz A a una Matriz Triangular Superior (Upper):

$$A = \begin{bmatrix} 2 & 5 \\ -3 & -4 \end{bmatrix} \to U = \begin{bmatrix} 2 & 5 \\ 0 & 7 \end{bmatrix}$$

para que a_{21} sea 0: 2x - 3 = 0 $x = \frac{3}{2}$

El factor que hace que se vuelva cero es $\frac{3}{2}$ Trasladamos el factor $-\frac{3}{2}$ cambiado de signo a la posición a_{21} :

$$L = \begin{bmatrix} 1 & 0 \\ -\frac{3}{2} & 1 \end{bmatrix}$$
 Finalmente: $A = LU$

Para *U*: Comenzar escalonando la matriz A a una Matriz Triangular Superior (Upper):

than Matriz Triangular Superior (Opper)
$$A = \begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & -2 & 0 \end{bmatrix}$$

$$\xrightarrow{-\frac{2}{3}f_1 + f_3 \to f_3} \xrightarrow{-\frac{2}{3}f_2 + f_3 \to f_3}$$

para que a_{21} sea 0: 3x - 3 = 0 x = 1para que a_{31} sea 0: 3x + 9 = 0 x = -3para que a_{32} sea 0: -3x - 2 = 0 x = -4

$$\begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & 0 & -8 \end{bmatrix} \rightarrow U = \begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & 0 & -8 \end{bmatrix}$$

- 1. Para L: El factor que hace que se vuelva cero es 1. Trasladamos el factor -1 cambiado de signo, a la posición a_{21} .
- 2. El factor que hace que se vuelva cero es -3. Trasladamos el factor 3 cambiado de signo, a la posición a_{31} .
- 3. El factor que hace que se vuelva cero es $-\frac{2}{3}$. Trasladamos el factor $\frac{2}{3}$ cambiado de signo, a la posición a_{32} .

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & \frac{2}{3} & 1 \end{bmatrix}$$
 Finalmente: $A = L \cdot U$

2. Método de Ecuaciones para L U:

Ej.: La matriz $A_{n \times n}$ se puede descomponer $\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$

$$\begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A \qquad \text{Si: } A = L \cdot U$$

$$A = L \cdot U = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Igualando componentes de la matriz A y el producto de $L \cdot U$. Se tiene las ecuaciones:

$$\begin{array}{c|cccc} a_{11} = U_{11} & a_{22} = L_{21}U_{12} + U_{22} \\ a_{12} = U_{12} & a_{13} = U_{13} \\ a_{21} = L_{21}U_{11} & a_{31} = L_{31}U_{11} \\ a_{32} = L_{31}U_{12} + L_{32}U_{22} \end{array}$$

 $a_{23} = L_{21}U_{13} + U_{23}$

 $a_{33} = L_{31}U_{13} + L_{32}U_{23} + U_{33}$ Método L U para resolver Sis. Ec. Lineales:

Si: $[A]{x} = {f} \rightarrow [L][U]{x} = {f}$

- $\{z\}$ = matriz columna $n \times 1$ (vector)
- ${z} = [U]{x} \rightarrow [L]{z} = {f}$

3. Método Operaciones Elementales:

Ejemplo 1: Para *U*: Comenzar escalonando la matriz A a una Matriz Triangular Superior

matriz A a una Matriz Triangular Superior (Upper), con operaciones elementales:
$$[A] = [A_1] \rightarrow E_1^{-1} = [I]$$

$$2f_1 + f_1 \rightarrow f_1$$

$$Ojo!! - 2f_1 + f_2 \rightarrow f_2 = f_2 - 2f_1 \rightarrow f_2$$

$$[A_1] = [A_2] \rightarrow E_2^{-1} = [I]$$

$$-2f_2 + f_3 \rightarrow f_3$$

$$[A_2] = [A_3] \rightarrow E_3^{-1} = [I]$$

$$-\frac{1}{2}f_2 + f_3 \rightarrow f_3$$

$$[A_3] = [A_4] \rightarrow E_4^{-1} = [I]$$

$$\frac{1}{2}f_3 \rightarrow f_3$$

$$[A_4] = [A_5] \rightarrow E_5^{-1} = [I]$$

$$-\frac{1}{2}f_3 \rightarrow f_3$$

$$[A_4] = [A_5] \rightarrow E_5^{-1} = [I]$$

$$-\frac{1}{2}f_3 \rightarrow f_3$$

$$U = [A_5] = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \text{Trian. Sup.}$$

$$E_n \dots E_3 E_2 E_1 A = U \qquad A = \underbrace{E_1^{-1} E_2^{-1} \dots E_n^{-1}}_{L \text{ upper}} U$$

7. Factorización PAQ=B:

Si queremos expresar A en forma PAQ = Bcon A y B como datos:

1. Para la forma: PAQ = B

$$(A|I_A) \rightarrow (B_1|P) \rightarrow \left(\frac{I_B}{B_1}\right) \rightarrow \left(\frac{Q}{B}\right)$$

2. Partiendo de A llevaremos a B, haciendo op. elem.: $\underbrace{F_n \dots F_2 F_1}_{P} A \underbrace{C_1 C_2 \dots C_n}_{O} B$

8. Factorización L D U = A:

Si queremos expresar A en forma LDU = Acon A v D como datos:

1. Para la forma: PAQ = D

$$(A|I_A) \rightarrow (B_1|P) \rightarrow \left(\frac{I_B}{B_1}\right) \rightarrow \left(\frac{Q}{B}\right)$$

- **2.** Partiendo de A llevaremos a D, haciendo op. elem.: $\underbrace{F_n \dots F_2 F_1}_{P} A \underbrace{C_1 C_2 \dots C_n}_{Q} = D$
- 3. Finalmente:

$$\underbrace{F_1^{-1}F_2^{-1}\dots F_n^{-1}}_{L}D\underbrace{C_n^{-1}\dots C_2^{-1}C_1^{-1}}_{\dot{U}} = A$$

9. Características de una Matriz.

1. Diagonal Principal.

Se denomina a los elementos a_{ij} tal y solo existe en matrices que i = jcuadradas. (otro diagonal secundario).

$$A_{m \times m} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$

2. Traza de una Matriz

Es la suma de todos los elementos de la diagonal principal, y solo existe en matrices cuadradas.

$$tr(A) = a_{11} + a_{22} + a_{33} + \dots + a_{m \times m}$$

 $tr(A) = \sum_{i=j=1}^{n} a_{ij}$ si: $i = j$

Propiedades:

- 1. tr(A+B) = tr(A) + tr(B)
- 2. $tr(A + \cdots + Z) = tr(Z + \cdots + A)$
- 3. $tr(A^t) = tr(A)$
- 4. tr(kA) = k tr(A)5. $tr(A^{-1}) = a_{11}^{-1} + a_{22}^{-1} + \cdots + a_{nn}^{-1}$

3. Rango de una Matriz.

El rango de una matriz es igual al número de filas no nulas luego de realizar un número finito de operaciones elementales. Escalonar.

$$\rho(A)$$
 = Rango de $A_{m \times n}$ = N° filas no nulas $\rho(A) = n$ ° de vectores.

: los vectores son Lin. Indep.

1. Rango por Gauss:

$$\begin{bmatrix}
1 & 6 & 9 \\
0 & 5 & 8 \\
0 & 0 & 1
\end{bmatrix}_{3\times 3}$$

$$\begin{bmatrix}
1 & 3 & 5 & 9 \\
0 & 7 & 2 & 6 \\
0 & 0 & 6 & 7
\end{bmatrix}_{3\times 4}$$

$$\boxed{3} = \text{rango max}$$

$$\boxed{3} = \text{rango max}$$

3 = rango max Ejemplo 1:

$$A = \begin{bmatrix} 1 & 4 & -1 \\ 0 & 7 & 1 \\ 0 & -6 & 2 \\ 6f_2 + 7f_3 \to f_3 \end{bmatrix} \to \begin{bmatrix} \frac{1}{0} & 4 & -1 \\ 0 & \frac{7}{2} & 1 \\ 0 & 0 & \underline{18} \end{bmatrix}$$
$$\therefore \rho(A) = 3; \quad 3 \text{ vectores L. I}$$

2. Rango por Determinantes:

Si: $|A| \neq 0 \rightarrow \rho(A) = 3$. Vectores L.I. Si: $|A| = 0 \rightarrow \rho(A) = 2 \text{ ó } 1.$ Ejemplos:

Ejemplos:

$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 9 \quad \therefore \text{ 3 Vectores } L.I.$$

$$|A| = \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 0 \quad \therefore \rho(A) = 2 \text{ 6 1.}$$

$$|A| = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \neq 0 \quad \therefore \rho(A) \geq 2$$

KAIZEN SOFTWARE

2. Determinantes.

1. Concepto de Determinante.

Es una función que va de las Matrices de $M_{n\times n}$ a los Reales.

$$\begin{array}{c|c}
\hline
f: M_{n \times n} \to R & \text{o} & f: R^{n \times n} \to R \\
\hline
\text{Notación:} & det(A) = |A| \\
det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

2. Propiedades de los Determinantes.

- $|A^{-1}| = \frac{1}{|A|}$ $det(A^{-1}) = \frac{1}{det(A)}$
- 3. $k|A| = \begin{vmatrix} k \cdot a_{11} & ka_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} ka_{11} & a_{12} \\ ka_{21} & a_{22} \end{vmatrix}$ 4. $|A^{-1}| = |A|^{-1}$; $||A|| = |A|^n$

- $|A^t| = |A|$ $det(A^t) = det(A)$
- $|A| = -|B| \quad \text{Intercambiar} \begin{cases} f_1 \leftrightarrow f_2 \\ c_1 \leftrightarrow c_2 \end{cases}$

Si en un determinante se intercambian Filas o Columnas el nuevo determinante queda multiplicado por (-).

$$\begin{vmatrix} a & b \\ c & d \\ f_1 \leftrightarrow f_2 \end{vmatrix} = -\begin{vmatrix} c & d \\ a & b \end{vmatrix}; \begin{vmatrix} a & b \\ c & d \\ c_1 \leftrightarrow c_2 \end{vmatrix} = -\begin{vmatrix} b & a \\ d & c \end{vmatrix}$$

- **9.** Si $A_{m \times n}$ tiene una Fila o una Columna compuestas por **ceros**, entonces |A| = 0.
 - $\begin{vmatrix} 0 & 0 \\ a & b \end{vmatrix} = 0 \quad ; \quad \begin{vmatrix} 0 & a \\ 0 & b \end{vmatrix} = 0$
- **10.** Si $A_{m \times n}$ tiene dos Filas o dos Columnas **iguales**, entones |A| = 0.

$$\begin{vmatrix} a & b \\ a & b \end{vmatrix} = 0 \quad ; \quad \begin{vmatrix} a & a \\ b & b \end{vmatrix} = 0$$

11. Si $A_{n \times n}$ tiene una Fila o una Columna

que es **múltiplo** del otro (**L.D.**) entones:

$$|A| = 0$$
; $\begin{vmatrix} 3 & 5 \\ 2 \cdot 3 & 2 \cdot 5 \end{vmatrix} = 0$; $\begin{vmatrix} 3 & 2 \cdot 3 \\ 5 & 2 \cdot 5 \end{vmatrix} = 0$

12. Si $A_{n \times n}$ tiene una Fila o una Columna que es una combinación de las demás filas o columnas, entones |A| = 0.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ a+d & b+e & c+f \end{vmatrix} = 0$$

13. Si una fila o una columna se multiplica por k, entonces el determinante de la matriz se multiplica por la **inversa** de k.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{1}{k} \begin{vmatrix} ka & kb \\ c & d \end{vmatrix}$$

determinante de una Triangular Superior o Inferior es el Producto de los elementos de la diagonal

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

15. Suma de determinantes:

$$\begin{vmatrix} a+c & b+d \\ x & y \end{vmatrix} = \begin{vmatrix} a & b \\ x & y \end{vmatrix} + \begin{vmatrix} c & d \\ x & y \end{vmatrix}$$

También cumple para determinantes de 3x3, 4x4, etc.

- $|adj(A_{n\times n})| = |A|^{n-1}$
- $adj(adj(A_{n\times n})) = |A|^{n-2}A$ 17.

3. Cálculo de Determinantes.

1. Regla de Sarrus para |A|.

Primera Forma:

Determinantes de 3x3: Copear las 2 primeras Columnas a la derecha, y multiplicar en diagonales.

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \quad |A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \frac{a}{g} \frac{b}{h}$$

$$|A| = (aei + bfg + cdh) - (ceg + afh + bdi)$$

Determinantes de 4x4: Copear las 3 primeras Columnas a la derecha, y multiplicar en diagonales.

Segunda Forma:

Determinantes de 3x3: Copear las 2 primeras Filas abajo, y multiplicar en diagonales.

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \qquad |A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \\ a & b & c \\ d & e & f \end{vmatrix}$$

|A| = (aei + dhc + gbf) - (ceg + fha + ibd)Determinantes de 4x4: Copear las 3 primeras Filas abajo, y multiplicar en diagonales.

2. Método de las Diagonales Paralelas

(Otra forma de Sarrus)

Valido solo para Determinantes de 3x3:

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
 formar: $\bigstar \bigstar$

|A| = (aei + bfg + cdh) - (ceg + afh + bdi)

3. Métodos Matriciales para |A|.

Mediante Gauss (ó **Operaciones** Elementales) llegar a una matriz triangular superior o inferior, luego la determinante es el Producto de los elementos de la diagonal.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

4. Método de Reducida o Menores |A|

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(-1)^{1+1} \begin{vmatrix} e & f \\ h & i \end{vmatrix} + b(-1)^{1+2} \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c(-1)^{1+1} \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$|A| = a[ei - fh] - b[di - fg] + c[dh - eg]$$

5. Método de Cofactores para |A|.

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

La matriz de cofactores es:

$$cof(A) = \begin{vmatrix} + \begin{vmatrix} e & j \\ h & i \end{vmatrix} & - \begin{vmatrix} a & j \\ g & i \end{vmatrix} & + \begin{vmatrix} a & e \\ g & h \end{vmatrix} \\ - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & - \begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ + \begin{vmatrix} b & c \\ e & f \end{vmatrix} & - \begin{vmatrix} a & c \\ d & f \end{vmatrix} & + \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$c_{11} = (-1)^{1+1} |A_{11}| \quad c_{12} = (-1)^{1+2} |A_{12}|$$

$$\begin{array}{ll} c_{13} = (-1)^{1+3}|A_{13}| & c_{21} = (-1)^{2+1}|A_{21}| \\ c_{22} = (-1)^{2+2}|A_{22}| & c_{23} = (-1)^{2+3}|A_{23}| \\ c_{31} = (-1)^{3+1}|A_{31}| & c_{32} = (-1)^{3+2}|A_{32}| \\ c_{33} = (-1)^{3+3}|A_{33}| & \end{array}$$

$$cof(A) = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \quad |A_{11}| = \begin{bmatrix} e & f \\ h & i \end{bmatrix}$$
Page | A| so debe multiplicantly file 1 do A con

Para |A| se debe multiplicar la fila 1 de A, con la misma fila 1 de cof(A).

Para |A| se debe multiplicar la columna 1 de A, con la misma columna 1 de cof(A).

$$|A| = ac_{11} + dc_{21} + gc_{31}$$

6. Regla de Chío para |A| de 3x3.

(ó Método del Pivote) Primero elegir una Fila o Columna para trabajar.

Mediante Gauss (Operaciones Elementales) llegar a una Fila o Columna que tenga un 1 y los demás elementos ceros.

En este caso elegimos la columna 1.

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ kf_i + f_j \rightarrow f_{nj} \end{vmatrix} \xrightarrow{\text{Op.Elem.}} \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

$$|A| = 1(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - 0 \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + 0 \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

 $|A| = 1 \cdot (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + 0 + 0$ 7. Regla de Chío para |A| de 4x4.

Ejemplo:
$$|A| = \begin{vmatrix} 1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 4 \\ 2 & 3 & 0 & 0 \\ 1 & 5 & -2 & 6 \end{vmatrix}$$

Generalizando y comparando con |A|:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & \boxed{a_{43}} & a_{44} \end{vmatrix}$$

Trabajando en la tercera columna.

$$|A| = \sum_{i=1}^{4} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$|A| = \sum_{i=1}^{4} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$n = 4$$

$$j = 3 \text{ columna} \qquad |A| = \sum_{i=1}^{4} (-1)^{i+3} a_{i3} |M_{i3}|$$

Desarrollando y reemplazando:

$$|A| = \underbrace{(-1)^{1+3}a_{13}|M_{13}|}_{+(-1)^{3+3}a_{23}|M_{23}|} + \underbrace{(-1)^{2+3}a_{23}|M_{23}|}_{+(-1)^{3+3}a_{43}|M_{43}|}_{+(-1)^{3+3}a_{43}|M_{43}|}$$

$$\begin{aligned} |A| &= 0|M_{13}| - 0|M_{23}| + 0|M_{33}| - (-2)|M_{43}| \\ |A| &= 2|M_{43}| & |A| &= 2\underbrace{\begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 3 & 0 \end{bmatrix}}_{|B|} \end{aligned}$$

Queda una Matriz de 3x3:

 $|a_{11} \quad a_{12} \quad a_{13}|$ |A| = 2|B| generalizando: $|a_{21} \ a_{22} \ a_{23}|$

$$|B| = \sum_{i=1}^{3} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$n = 3$$

$$j = 1 \text{ columna}$$

$$|B| = \underbrace{(-1)^{1+1} a_{11} |M_{11}|}_{+(-1)^{3+1} a_{21} |M_{31}|} + \underbrace{(-1)^{2+1} a_{21} |M_{21}|}_{+(-1)^{3+1} a_{31} |M_{31}|}$$

$$\begin{aligned} |B| &= 1|M_{11}| - 0|M_{21}| + 2|M_{31}| \\ |B| &= |M_{11}| + 2|M_{31}| \\ |B| &= \begin{vmatrix} -1 & 4\\ 3 & 0 \end{vmatrix} + 2\begin{vmatrix} 0 & -1\\ 2 & 3 \end{vmatrix} \quad |B| = -6 \end{aligned}$$
 Finalments:

$$|A| = 2|B|$$
 $|A| = 2(-6)$ $|A| = -12$

1ra Propiedad: si la matriz es simétrica con elementos únicos (una sola variable respecto a la diagonal principal). Para reducir el determinante, sumamos todas las (filas o columnas) a la primera.

2da Propiedad: si la matriz tiene elementos simétricos opuestos respecto a la diagonal principal, su $|A| = |A^t| \rightarrow |A||A^t| = |AA^t|$ $|A||A| = |AA^t| \rightarrow |A| = \sqrt{|AA^t|}$ esto lo realizamos para que al multiplicar solo genere la diagonal principal, ya que son opuestos, los demás elementos se anula.

3. Inversión de Matrices.

1. Generalidades.

1. Concepto de la Matriz Inversa.

Sea A y B matrices cuadradas de orden "n" tal que BA = AB = I en estas condiciones se dice que B es la matriz inversa de A o sea $B = A^{-1}$ y $AA^{-1} = A^{-1}A = I$

2. Condiciones para Invertir:

- 1. Tiene que ser cuadrada $A_{n \times n}$
- 2. $A_{n \times n}$ debe ser No Singular, es decir el determinante de $A \neq 0$

3. Inversa de una Matriz 2×2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$
$$|A| = a_{11}a_{22} - (a_{12}a_{21}) \neq 0$$

2. Propiedades de la Inversa.

- 1. $AA^{-1} = A^{-1}A = I$ 2. $(A^{-1})^{-1} = A$ 3. $(AB)^{-1} = B^{-1}A^{-1}$
- 4. $|A^{-1}| = |A|^{-1}$ 1ro |A| luego $|A|^{-1}$
- 5. $(kA)^{-1} = \frac{1}{k}A^{-1}$ 6. $A^{-n} = (A^{-1})^n = \underbrace{A^{-1}A^{-1} \cdots A^{-1}}_{n \text{ factores}}$ $(A^n)^{-1} = (A^{-1})^n \quad \text{lro } A^{-1} \quad (n \ge 0)$

$$(A^n)^{-1} = (A^{-1})^n$$
 1 ro A^{-1} $(n \ge 0)$

- 7. $(A^{-1})^t = (A^t)^{-1}$
- 8. $(A^{-1})^t A^t = (AA^{-1})^t = I^t = I$

3. Inversión por Gauss – Jordán.

También llamado método de las operaciones elementales.

[A]
$$\rightarrow \begin{bmatrix} A \mid I \end{bmatrix}_{\text{k}f_i + f_j \rightarrow f_{n_j}} \xrightarrow{\text{Op.Elem.}} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

4. Inversión por Fadevva.

4. Inversión por Fadevva.
$$A_1 = A_n \qquad a_1 = \frac{tr(A_1)}{1} \qquad B_1 = A_1 - a_1 I$$

$$A_2 = AB_1 \qquad a_2 = \frac{tr(A_2)}{2} \qquad B_2 = A_2 - a_2 I$$

$$A_3 = AB_2 \qquad a_3 = \frac{tr(A_3)}{3} \qquad B_3 = A_3 - a_3 I$$
Hasta:
$$B_n = 0 = A_n - a_n I \qquad A_n = a_n I \quad (1)$$
Pero:
$$A_n = AB_{n-1} \qquad (2)$$

$$(1) \text{ en } (2) \qquad a_n I = A \cdot B_{n-1} \qquad //A^{-1}$$

$$A^{-1} = \frac{B_{n-1}}{a_n}$$

5. Inversión por Cofactores (ó adjunta)

$$A^{-1} = \frac{1}{|A|} adj(A)$$

$$adj(A) = [cof(A)]^{t}$$

1. Matriz de Cofactores

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

La matriz de cofactores es:

$$\begin{split} cof(A) &= \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \quad |A_{11}| = \begin{vmatrix} e & f \\ h & i \end{vmatrix} \\ c_{11} &= (-1)^{1+1} |A_{11}| \quad c_{12} = (-1)^{1+2} |A_{12}| \\ c_{13} &= (-1)^{1+3} |A_{13}| \quad c_{21} = (-1)^{2+1} |A_{21}| \\ c_{22} &= (-1)^{2+2} |A_{22}| \quad c_{23} = (-1)^{2+3} |A_{23}| \\ c_{31} &= (-1)^{3+1} |A_{31}| \quad c_{32} = (-1)^{3+2} |A_{32}| \\ c_{33} &= (-1)^{3+3} |A_{33}| \\ & cof(A) = \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & - \begin{vmatrix} d & f \\ g & i \end{vmatrix} & + \begin{vmatrix} d & e \\ g & h \end{vmatrix} \\ - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & - \begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix} \\ & A^{-1} &= \frac{1}{|A|} adj(A) = \frac{1}{|A|} [cof(A)]^t \end{split}$$

$$A^{-1} = \frac{1}{|A|} adj(A) = \frac{1}{|A|} [cof(A)]^{t}$$

2. Inversión por Adjunta de una Matriz.

Sea $A_{n\times n}$ una matriz de cof(A), se defina la adjunta de la matriz $A_{n\times n}$ como:

$$adj(A) = [cof(A)]^t = cof(A^t)$$

Deducción: Si: $|A| \cdot I = A \cdot adj(A)$ (1) Si pre multiplicamos por A^{-1} a (1): $A^{-1}|A| \cdot I = A^{-1} \cdot A \cdot adj(A)$

$$A^{-1} = \frac{adj(A)}{|A|} \qquad A^{-1} = \frac{1}{|A|} adj(A)$$
$$A^{-1} = \frac{1}{|A|} [cof(A)]^{t}$$

3. Propiedades de la Adjunta

- 1. $adj(I_n) = I_n$
- 2. $\underline{adj}(A \cdot B) = adj(B) \cdot adj(A)$
- $adj(A^n) = [adj(A)]^n$
- 4. $adj(A^t) = [adj(A)]^t$
- 5. $adj(A^{-1}) = [adj(A)]^{-1}$
- 6. $adj(A^{-1}) = \frac{A}{|A|}$; $A^{-1} = \frac{1}{|A|}adj(A)$
- $A \cdot adj(A) = adj(A) \cdot A = |A| \cdot I_n$

8.
$$adj(kA_n) = k^{n-1}adj(A_n)$$

- $adj(kA) = |kA|(kA)^{-1}$
- $adj[adj(A_n)] = |A_n|^{n-2}A_n$
- 11. $adj[adj(A)] = |adj(A)|[adj(A)]^{-1}$
- $adj[adj(A_{2\times 2})] = A_{2\times 2}$
- $|adj(A_n)| = |A_n|^{n-1}$
- $|adj(kA_n)| = (k^{n-1})^n |A_n|^{n-1}$
- 15. $|adj(adj(A_n))| = |A_n|^{(n-1)^2}$

n =orden de la matriz.

16. Si:
$$adj(A_n) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 se cumple: $|A_n|^2 = |adj(A_n)|$

- $A_n = |A_n| \cdot [adj(A_n)]^{-1}$
- $|adj(A^n)| = |A^{n-1}|^n$
- 19. $||A|| = |A|^n$

4. Sistema de Ec. Lineales.

1. Concepto.

Es un conjunto de n ecuaciones, con nincognitas. Las ecuaciones deben ser lineales es decir de primer grado. Y puede ser representado por la forma Matricial: AX = B.

Soluciones a Sistema de Ec. Lineales

Ec. > # Incog. ÚnicaSol. ∞Sol. No tieneSol Sist. No Homogéneos: AX = B; $B \neq \theta$. Sist Equivalentes: # Ec. = # Incognits = Sol

3. Métodos de Solución a sist. Lineales:

1. Solución por la Inversa.

Solo sirve para sistemas: Cuadrados, que tienen única solución $A_{n\times n}X_{n\times 1}=B_{n\times 1}$.

Ec. = # Incognitas. El
$$|A| \neq 0$$
.
 $AX = B \rightarrow A^{-1}AX = A^{-1}B \rightarrow X = A^{-1}B$

$$A^{-1} = \frac{1}{|A|}adj(A) \qquad |A| \neq 0$$

$$A^{-1} = \frac{1}{|A|} adj(A) \qquad |A| \neq 0$$

2. Solución por Gauss – Jordán.

Aplicable a sist. tipo: $A_{m \times n} X_{n \times 1} = B_{m \times 1}$ # Ec. < # Incognitas

Matriz aumentada: $[A \mid B] \rightarrow [A_1 \mid B_1]$ Escalonar la matriz aumentada al máximo, por Op. Elem. preferentemente en Filas.

3. Solución por el método de Cramer:

Solo sirve para sistemas: Cuadrados, que tienen única solución $A_{n\times n}X_{n\times 1} = B_{n\times 1}$. # Ec. = # Incognitas. El $|A| \neq 0$.

Algoritmo de Cramer:

$$\begin{array}{ll} \mathrm{Si:}\,A_{n\times n} = [C_1|C_2|C_3|\dots|C_n] & \mathrm{Si:}\,B. \\ A_1 = [B|C_2|C_3|\dots|C_n] & x_1 = \frac{|A_1|}{|A|} \\ A_2 = [C_1|B|C_3|\dots|C_n] & x_1 = \frac{|A_2|}{|A|} \\ A_3 = [C_1|C_2|B|\dots|C_n] & x_2 = \frac{|A_2|}{|A|} \\ \vdots & x_3 = \frac{|A_3|}{|A|}\dots \end{array}$$

4. Sistemas Lineales Homogéneos.

Es cuando el vector columna de los términos **independientes** B es nula. AX = 0; B = 0. Un sistema homogéneo siempre tiene soluciones o siempre es consistente.

- Única Sol.: $x_1 = x_2 = x_3 = \dots = 0$ Trivial.
- Infinitas Sol.: incluye solución Trivial.
- 1. Homogéneo Cuadrado: |A| = 0 infinitas Sol. $|A| \neq 0$ sol Trivial $x_1 = x_2 = x_3 = \dots = 0$
- 2. Homogéneo No Cuadrado:

Ec. < # Incognits → Infinitas sol.

Ec. > # Incognits → Única sol. Infinitas sol.