Package 'PathQuant'

May 26, 2017

Title Annotation of gene-metabolite pairs using topology of KEGG

Type Package

metabolic pathway maps

Version 0.1.1						
Date 2015-07-22						
Author Sandra Therrien-Laperriere <sandra.therrien.laperriere@gmail.com> Sarah Cherkaoui <cherkaos@gmail.com></cherkaos@gmail.com></sandra.therrien.laperriere@gmail.com>						
Maintainer Sandra Therrien-Laperriere <sandra.therrien.laperriere@gmail.com></sandra.therrien.laperriere@gmail.com>						
Description Modeling of KEGG metabolism pathway maps into compound graph format to compute shortest reactional distance (srd) for gene-metabolite pairs to assess their biological relevance and output results in data.frame and graphical outputs.						
License GNU-3						
Imports igraph, XML, ggplot2, data.table, knitr, rmarkdown, scales, stringr, gdata, RCurl, reshape2, stringr, dplyr, plyr, doParallel, parallel, foreach						
VignetteBuilder knitr						
Suggests testthat, knitr, rmarkdown						
LazyData TRUE						
RoxygenNote 6.0.1						
R topics documented:						
annotateAssociationData 2 exportDFtoTxt 2 gene.distribution 3 get.srd 3 heatmap 4 importTXTtoDF 5 importXLSXtoDF 5 permutationTest 6 srd.distribution 6						
Index						

2 exportDFtoTxt

annotateAssociationData

Gene annotation classification of associations

Description

Gene annotation involve EC number, kegg brite annotation High level classification made by involved brite trnasporter, enzyme or protein

Usage

annotateAssociationData(associations)

Arguments

association

Dataframe with 2 columns, where each line reprensents an association. First column are the genes and the sencond column are the metabolites. Only use KEGG Ids.

Examples

annotateAssociationData(associations)

exportDFtoTxt

Export results data of a data frame into a text files, for which each lines separates the data from every data frame colum by tabulation. This text file can be easily opened with excel.

Description

Export results data of a data frame into a text files, for which each lines separates the data from every data frame colum by tabulation. This text file can be easily opened with excel.

Usage

```
exportDFtoTxt(export_data, exportNameFile)
```

Arguments

a

dataframe.

Examples

```
exportDFtoTxt(dataFrame, exportFileName)
```

gene.distribution 3

gene.distribution Distance distribution plots for single gene	gene.distribution
---	-------------------

Description

Function ploting the distribution of distances between a gene and all measured metabolite, high-lithing the distance of its associated metabolites.

Usage

```
gene.distribution(pathway, gene, pairs, metabolites)
```

Arguments

pathway	Selected pathway. Only use KEGG Ids.
gene	Gene selected. Only use KEGG Ids.
pairs	Dataframe with 2 columns, where each line reprensents an association. First column are the genes and the sencond column are the metabolites. Only use KEGG Ids.
metabolites	Dataframe of 1 column containing a lsit of selected metabolites. Default = "All". All metabolite of the selected pathway map. Only use KEGG Ids.

Details

The plot is depicted as frequency bars, which represent the number of metabolites at a given distance for the selected gene. Frequency bars are shown in grey for metabolites that are not associated with the selected gene and in red if there is at least one metabolite associated with this gene.

If a gene or a metabolite is present on multiple edges or nodes, then the shortest distance is selected.

Examples

```
gene.distribution(hsa01100, "hsa:1373" , pairs.df, metabolite.df)
```

get.srd	Compute shortest reaction path (srd) for a list of gene-metabolite pairs

Description

Compute shortest reaction path (srd) for a list of gene-metabolite pairs

Usage

```
get.srd(pairs, organism_code, pathway = "All", ordered = FALSE,
  commonNames = FALSE, path = FALSE)
```

4 heatmap

Arguments

pairs dataframe with 2 columns, where each line reprensents a pair. The first column

is genes and the sencond column is metabolites. Only use KEGG Ids.

pathway list of selected metabolic pathway in KEGG. Default = "All". Only use KEGG

lds.

ordered [option] ascendent ordering of distance

commonNames [option] get KEGG's Common Names of the KEGG Id in the results.

path [option] get reactional path used for srd computation.

Examples

get.srd(pairs.df,"All")

heatmap Function that output a heatmap to visualize distance computed be-

tween every gene-metabolite associations in input using the overview

map only

Description

Function computing shortest distance between every genes and metabolites in a gene-metabolite pairs of your association dataset on a graph model of KEGG map selected, where nodes are metabolites and reactions/genes are edges.

Usage

heatmap(association, pathway, commonNames = FALSE)

Arguments

association dataframe with 2 columns, where each line reprensents a uniq association. First

column are genes and sencond column are metabolites. Only use KEGG Ids.

pathway KEGG Id.

display common names of KEGG ids input (TRUE) or display KEGG Ids for axis de-

scription.

Details

If a gene or a metabolite is present on multiple edges or nodes, then the shortest distance is selected within the group

Output: Heatmap of distances calculated between associated genes-metabolites. Columns represent genes and rows represent metabolites. The calculated distance is shown in each cell with the corresponding color code (from red - closest; to yellow - farthest).

Examples

heatmap(shinAndAlDF, TRUE)

importTXTtoDF 5

importTXTtoDF	Importing data from an txt file (with table separators), in the context
	of this package, one of the data to import is the association file.

Description

Importing data from an txt file (with table separators), in the context of this package, one of the data to import is the association file.

Usage

```
importTXTtoDF(file)
```

Arguments

path

to txt file.

Examples

```
inputXLSXtoDF("file_path/fileName.xlsx")
```

 $\verb|importXLSXtoDF| \\$

Importing data from an XSLX file, in the context of this package, one of the data to import is the association file.

Description

Importing data from an XSLX file, in the context of this package, one of the data to import is the association file.

Usage

```
importXLSXtoDF(file, sheet.num = 1)
```

Arguments

path

to XSLX file.

Examples

```
inputXLSXtoDF("file_path/fileName.xlsx")
```

6 srd.distribution

permutationTest Statistical permutation test to asses the relevance of associated gene- metabolite pairs vs. randomly selected pairs	
---	--

Description

Permutation test to evauluate if gene-metabolite associations are significantly closer than randomly selected gene-metabolite pairs.

Usage

```
permutationTest(pathwayId, association, gene, metabolite, permutation,
  output = c("medians", "pvalue", "histogram"))
```

Arguments

pa	thwayId	KEGG Id of selected pathway.
ass	sociation	Dataframe with 2 columns, where each line reprensents an association. First column are genes and the sencond column are metabolites. Only use KEGG Ids.
ger	ne	Dataframe of 1 column, representing all genes reported. Only use KEGG Ids.
me	tabolite	Dataframe of 1 column, representing all the measured metabolites. Only use KEGG Ids .
pei	rmutation	Number desired permutations
out	tput	'medians' of all permutations, 'pvalue' of the permutation test, 'histogram' representing the distribution of all permutations' median

Details

If a gene or a metabolite is present on multiple edges or nodes, then the shortest distance is selected.

Examples

 ${\tt srd.distribution} \hspace{1.5cm} \textit{srd.distribution}$

Description

Function ploting the distribution of srds computed by get.srd function.

Usage

```
srd.distribution(distance)
```

srd.distribution 7

Arguments

distance list of computed srd values of the data.frame obtained by get.srd function

Details

The plot is depicted as frequency bars, which represent the number of pairs at a given srd value. Frequency bars are shown in heatmap colors to depict the small from larger srd values.

Examples

srd.distribution(res[,7])

Index

*Topic KEGG ,	heatmap, 4
srd.distribution, 6	*Topic import ,
*Topic KEGG.	importTXTtoDF, 5
gene.distribution,3	<pre>importXLSXtoDF, 5</pre>
*Topic KEGG	*Topic median ,
annotateAssociationData, 2	permutationTest, 6
get.srd,3	*Topic path,
heatmap, 4	gene.distribution, 3
permutationTest, 6	get.srd,3
*Topic XSLX ,	*Topic permutation,
<pre>importXLSXtoDF, 5</pre>	permutationTest, 6
*Topic annotation ,	*Topic reactional
annotateAssociationData, 2	get.srd,3
*Topic associations.	*Topic shortest.distance ,
<pre>importTXTtoDF, 5</pre>	heatmap, 4
<pre>importXLSXtoDF, 5</pre>	*Topic shortest
*Topic barplot.	gene.distribution, 3
srd.distribution, 6	get.srd, 3
*Topic classification ,	*Topic shrotestDistance,
annotateAssociationData, 2	permutationTest, 6
*Topic data ,	*Topic srd ,
<pre>exportDFtoTxt, 2</pre>	srd.distribution, 6
<pre>importTXTtoDF, 5</pre>	*Topic statistic
<pre>importXLSXtoDF, 5</pre>	permutationTest, 6
*Topic dataframe.	*Topic test ,
exportDFtoTxt, 2	permutationTest, 6 *Topic txt ,
*Topic data	exportDFtoTxt, 2
<pre>importTXTtoDF, 5</pre>	importTXTtoDF, 5
<pre>importXLSXtoDF, 5</pre>	importing to the country of
*Topic export ,	annotateAssociationData, 2
exportDFtoTxt, 2	
*Topic frame,	exportDFtoTxt, 2
<pre>importTXTtoDF, 5</pre>	
<pre>importXLSXtoDF, 5</pre>	gene.distribution,3
*Topic gene	get.srd,3
annotateAssociationData, 2	hoatman 4
*Topic graph,	heatmap, 4
gene.distribution, 3	<pre>importTXTtoDF, 5</pre>
get.srd,3	importXLSXtoDF, 5
heatmap, 4	L
permutationTest, 6	permutationTest, 6
srd.distribution, 6	
*Topic heatmap ,	srd.distribution,6