					\bigcirc 1		
$ au_1^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}{}_+\alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}_{+} \alpha_{\beta} \tau_{1}^{\#1}_{+}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	0	0	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#_2^2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

					m		
$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	13 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_1^{\#_+^2}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_2} + ^{\alpha \beta}$	$f_1^{#1} + ^{\alpha\beta}$	$\omega_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^-}^{\#1} \dagger^\alpha$	$f_{1}^{#2} + ^{lpha}$

Lagrangian density $\frac{2}{3}t_3 \omega_{,}^{\alpha l} \omega_{\kappa\alpha}^{k} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{-\frac{1}{2}} r_3 \partial_{l} \omega^{\kappa\lambda}_{k} \partial^{l} \omega_{\alpha}^{\alpha} - r_5 \partial_{l} \omega^{\kappa\lambda}_{k} \partial^{l} \omega_{\alpha}^{\alpha} - r_5 \partial_{l} \omega^{\kappa\lambda}_{k} \partial^{l} \omega_{\alpha}^{\alpha} - r_5 \partial_{l} \omega_{k}^{k} \partial^{l} \omega_{\alpha}^{\alpha} - r_5 \partial_{l} \omega_{k}^{k} \partial^{l} \omega_{k}^{\alpha} - r_5 \partial_{l} \omega_{k}^{\alpha} \partial^{l} \omega_{k}^{\alpha} + r_5 \partial_{l} \omega_{k}^{\alpha} \partial^{l} \omega_{k}^{\alpha} + r_5 \partial_{l} \omega_{k}^{\alpha} \partial^{l} \omega_{k}^{\alpha} $	$\frac{1}{2}$ 13 $^{$
---	--

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

_	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
# ₁ †	t_3	$-i \sqrt{2} kt_3$	0	0
^{#1} 0+	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
^{#2} †	0	0	0	0
^{#1} †	0	0	0	0

$\sigma_{0}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$ au_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

	#	1	Т	1	3	٣	3	3	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{1+}^{\#2}\alpha\beta==0$	$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

?		?	
	$\stackrel{k^{\mu}}{\longrightarrow}$	\angle	- ?
		$\sqrt{}$	- :
?		\	

	Quadratic pole					
$\stackrel{k^{\mu}}{\longrightarrow} ?$	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$				
	Polarisations:	2				

(No massive particles)

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$