MPEI 2023-2024

Resolução de exercícios (consolidação)

Exercício - Inquérito futebolístico

- f: fracção da população que gosta de futebol
- Queremos fazer uma sondagem/inquérito a n pessoas
- Quantas pessoas devemos inquirir para ter uma confiança (probabilidade) de 95% de que não cometemos um erro superior a 1 %

Considere:

Resultado de um inquérito à pessoa i:

$$X_i = \begin{cases} 1, & se \ gosta \\ 0, & se \ n\~{a}o \ gosta \end{cases}$$

$$-M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 fracção de "gosta" na amostras

Resolução

- Sugestões ?
- Uma das formas (veremos outra) é usando a Desigualdade de Chebyshev ...

O que diz a desigualdade ?

•
$$P(|M_n - E[M_n]| \ge \epsilon) \le \frac{Var(M_n)}{\epsilon^2}$$

O que sabemos ?

- $\epsilon = ?$
- $\epsilon = 0.01$

- $Var(M_n) = ?$
- $Var(M_n) = \frac{Var(X_i)}{n}$

$$Var(X_i) = ?$$

- Todas as X_i são v. a. de Bernoulli
 - Mas não sabemos p (o inquérito é para estimar isso)

• Para o nosso caso é útil o valor máximo de $Var(X_i)$. Qual esse valor ?

•
$$Var(X_i) = p(1-p) \le \frac{1}{4}$$

Voltando à desigualdade

Substituindo temos:

•
$$P(|M_n - E[M_n]| \ge 0.01) \le \frac{\frac{1}{4}}{0.01^2} = \frac{1}{4 n \cdot 10^{-4}}$$

- Como queremos $P() \le 0.05$
- $\frac{1}{4 \, n \, 10^{-4}} \le 0.05$
- n = ?
- $n \ge 50~000$ (valor conservador)

E se erro aceitável (ϵ) = 0,05 ?

•
$$P(|M_n - E[M_n]| \ge 0.05) \le \frac{1}{4 n (0.05)^2}$$

• Obtendo-se *n* de:

• n > 2000

Discussão

- Problemas com os valores de *n* que obtivemos:
- 1. São muito grandes
- Baseiam-se numa desigualdade que apenas pode dar um majorante/minorante
 - E não um valor "exato"
- Veremos de seguida que se pode fazer melhores estimativas de n
 - Mas para isso precisamos saber mais sobre a distribuição de M_n

Resolução usando TLC

- Pretendemos $P(|M_n f| \le 0.05) \ge 0.95$
- O evento que nos interessa calcular a probabilidade é $|M_n f| \le 0.05$
- Pretendemos portanto $P\left(\left|\frac{S_n nf}{n}\right| \le 0.05\right)$
- Como $Z_n=\frac{S_n-n\mu}{\sigma\sqrt{n}}$ manipulamos para obter $\sqrt{n}\sigma$ no denominador, obtendo

$$P\left(\left|\frac{S_n - nf}{\sqrt{n}\sigma}\right| \le \frac{0.05\sqrt{n}}{\sigma}\right)$$

Resolução usando TLC (cont.)

- Como Z_n tende para N(0,1)
- Teremos:

$$P(|M_n - f| \le 0.05) \approx P(|Z| \le 0.05 \frac{\sqrt{n}}{\sigma})$$

E usando majorante para a variância

$$p(1-p) \le 1/4$$
 (=> $\sigma = 1/2$)

•
$$P(|M_n - f| \le 0.05) \le P(|Z| \le 0.1\sqrt{n})$$

$$P(|Z| \leq 0.1\sqrt{n})$$
?

- $P(|Z| \leq 0.1\sqrt{n})$
- = $P(-0.1\sqrt{n} \le Z \le 0.1\sqrt{n})$
- = $F_{N(0,1)}(0,1\sqrt{n}) F_{N(0,1)}(-0,1\sqrt{n})$

- Para permitir usar tabelas, coloquemos em função de $Q(z)=1-F_{N(0.1)}(z)$
 - Sabe-se também que $F_{N(0,1)}(-z) = Q(z)$
- = 1 $Q(0,1\sqrt{n}) Q(0,1\sqrt{n})$
- = 1 2 $Q(0,1\sqrt{n})$

Terminando...

• $1 - 2 Q(0,1\sqrt{n})$ terá de ser ≥ 0.95

- $1-2 Q(0,1\sqrt{n}) \ge 0.95$
- $\Rightarrow Q(0,1\sqrt{n}) \geq 0,025$
- $\Rightarrow 0.1\sqrt{n} \ge 1.96$ por consulta a tabela
- Resolvendo em ordem a n temos, finalmente,
- $\sqrt{n} \ge (19.6) \implies n \ge 384.16$
- n = 385 é o número mínimo que procurávamos

Para mais informação

 Capítulo 7, "Somas de variáveis aleatórias e situações limite", do livro de F. Vaz e A. Teixeira

Problema – Ganho médio num jogo

- Considere o seguinte jogo de cartas entre si e um amigo:
 - Apenas se usam as figuras (Rei, Dama e Valete), o Ás e o Joker de um dos naipes
 - As cartas são baralhadas honestamente e extraídas uma a uma
 - Sempre que se extrai uma figura ganha 1 Euro, cada Ás obriga-o a pagar 1 Euro ao seu amigo, cada Joker implica pagar 2 Euros ao seu amigo.
 - Volta a colocar-se a carta no baralho e baralha-se
- Questão: Qual o seu ganho médio ao fim de uma longa sequência de jogadas ?

Fonte: "O ACASO", J. M. Sá, Gradiva

Exemplo

 Para perceber melhor, analisemos um possível jogo:

Saiu	A	R	A	R	A	J	V	D	V	
Seu ganho	-1	1	-1	1	-1	-2	1	1	1	
Ganho	-1	0	-1	0	-1	-3	-2	-1	0	•••
acumulado										

Simulemos ...

Para simplificar, consideremos a seguinte codificação:
 Rei=1, Dama=2, Valete=3, Ás=4, Joker=5

```
% simular N extracções
e= floor (rand(1,N)*5)+1; % inteiros de 1 a 5 (equiprováveis)
% calcular ganho acumulado ao longo do jogo
g=e; g(e==1 \mid e==2 \mid e=3)=1; g(e==4)=-1; g(e==5)=-2;
gacum= cumsum(g)
% ganho médio ao longo do tempo
n=1:N;
gmed= gacum ./ n;
```

Plot(n,gmed, '.')

Exemplo de resultado

1000 jogadas

• É apenas uma de um número muito grande de sequências possíveis (são possíveis 5^{1000})

Resolução ...

 Tentemos agora resolver sem simulação e usando o que já sabemos ...

Sugestões ?

Variável aleatória Ganho

- O Ganho em cada extracção de uma carta (experiência aleatória) pode ser considerada uma variável aleatória (G)
- Pode assumir os valores {-2,-1,1}

Função de probabilidade ?

$$p_G(G = -2) = ?$$

 $p_G(G = -1) = ?$
 $p_G(G = 1) = ?$

Função de probabilidade de G

- $p_G(G = -2) = 1/5$
 - Equivalente a P("sair um Joker")

•
$$p_G(G = -1) = 1/5$$

•
$$p_G(G=1)=3/5$$

Ganho médio ...

 O "Ganho médio esperado" ao fim de um grande número de jogadas é designado por esperança matemática da variável Ganho

•
$$E[G] = \sum x_i p(X = x_i)$$

Aplicando ao nosso caso...

•
$$E[G] = 1 \times \frac{3}{5} + (-1) \times \frac{1}{5} + (-2) \times \frac{1}{5} = 0$$

Longa sequência

- É altura de esclarecer um pouco mais o que se entende por "longa sequência"...
- Repetindo o jogo (ou melhor simulando..), temos

• Existe uma tendência para todas as curvas estabilizarem em torno da esperança (0)

Problemas com mais do que uma v.a

3. (2 valores) Considere duas variáveis X e Y com a função massa de probabilidade conjunta seguinte:

$$\begin{array}{c|cccc} X \setminus Y & 0 & 1 \\ \hline 0 & \frac{1}{9} & \frac{2}{9} \\ 1 & \frac{2}{9} & \frac{4}{9} \end{array}$$

- a) Calcule as probabilidades marginais de X e de Y.
- b) Calcule a média e a variância de X.

Exercícios de mini-testes

Exercício 1 (2015-2016)

8.0 2) Considere que tem um pequeno conjunto de páginas web identificadas pelas letras A a F com as seguintes ligações entre si no dia 1 de janeiro de 2016: a página A tem links para as páginas B a E; a página B tem links para as páginas B, D e F; pode chegar-se às páginas A e B através da página C; D apenas tem links para E e B; E tem links para A e B; F possui links para todas as outras páginas, excepto para ela própria.

Considerando que se pretende obter o pagerank das páginas e que se inicializa esse valor com um valor igual para todas as páginas e igual a 1/6:

3.0 Qual o valor da estimativa do pagerank de cada página ao fim de três iterações do processo de cálculo?

Resposta: A ______ B ____

B _____ D ____

E _____ F ____

2.0	(2.b) Represente num gráfico a evolução do valor do pagerank de cada uma das páginas em função
	da iteração? Deve utilizar um número de iterações suficiente para que os valores estabilizem.
	Código matlab/octave:

3.0 2.c) Qual a página com o maior valor do pagerank e qual o seu valor?

Resposta: Página? ______pagerank? _____

Código matlab/octave:

Exercício de 2018-2019

2) Considere o conjunto de países C={Iraque,França,Brasil,Suiça,EUA,Israel} e a informação da figura seguinte relativa à probabilidade de, ao fim de um mês, um terrorista ter viajado de um país para outro ou ter permanecido nesse país:

2.0 2.a) Represente em Matlab a matriz de transição T na sua forma canónica, sendo T_{ji} a probabilidade de viagem de i para j. Considere permanecer num país como equivalente a uma viagem de i para i e que cada transição corresponde a 1 mês. Represente também o vector estado v correspondente à seguinte situação: terrorista está na Europa e com igual probabilidade de estar num dos países possíveis.

Código Matlab:

2.0	2.b) Qual a média (valor esperado) do número de meses necessários para um terrorista inicialmente no Iraque vir a terminar os seus dias em Israel ou nos EUA?						
	Resposta:						
	Código Matlab:						

2.0 Qual a probabilidade de um terrorista que esteja inicialmente no Iraque se encontrar no EUA passados 5 meses? Qual a probabilidade de estar em Israel 50 meses depois de se encontrar no Brasil?

Resposta: P[Iraque \rightarrow EUA, em 5 meses] = ______ P[Brasil \rightarrow Israel, em 50 meses] = _____

Código Matlab: