CS 221 Logic Design

Fall 2021

By Wessam El-Behaidy & Salwa Osama

BOOLEAN FUNCTION SIMPLIFICATION

Algebraic method

Boolean Algebra

Disadvantage

 It lacks specific rules to predict each succeeding step in the manipulative process

Advantage

 For complex boolean functions

Graphical method

- Karnaugh Map (k-map)
- Advantage
 - Simple straightforward procedure

Disadvantage

 Functions of up to five variables by the map

KARNAUGH MAP

- Is a diagram made up of squares
- Each square representing one minterm of the function
- The simplified expressions produced by the map are always in one of the two standard forms:
 - SOP and POS
- It is sometimes possible to find two or more expressions that satisfy the minimization. In that case, either solution is satisfactory. m_0

TWO-VARIABLE MAP

- Upon the Boolean function, the minterms are filled by 1's (Only adjacent 1's (2 or 4) can be grouped)
- Grouping will reduce a literal:

(1)
$$x'y' + x'y = x'(y' + y) = x'$$

(2)
$$xy' + xy = x (y' + y) = x$$

TWO-VARIABLE MAP (CONT.)

(3)
$$x'y' + xy' = y'$$

$$(4) x'y + xy = y$$

(5)
$$x'y' + xy' + x'y + xy = ?$$

 If the four adjacent (the whole map) are grouped, the output is the identity function (i.e. 1).

EXAMPLE:

$$X + X = X$$

Boolean Algebra

o F =
$$x'y + xy' + xy$$

= $x'y + xy' + xy + xy$
= $(x'y + xy) + (xy' + xy)$
= $y(x' + x) + x(y + y')$
= $x + y$

A SOP expression can be obtained by ORing all squares that contain a 1.

K-map

THREE-VARIABLE MAP

o 3 variables → 8 squares

The minterms are arranged, in a sequence similar to Gray code; only one bit changes in value from one adjacent column to the next.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

THREE-VARIABLE MAP: ADJACENT SQUARES

- The number of adjacent squares that may be combined must always represent a number that is a power of two; 1,2,4,8,...
- As more adjacent squares combined, we obtain a product term with fewer literals:
 - 1 square → given 3 literals
 - 2 adjacent squares → given 2 literals
 - 4 adjacent squares → given 1 literal
 - 8 adjacent squares (the entire map)→ always 1

THREE-VARIABLE MAP: ADJACENT SQUARES (CONT.)

THREE-VARIABLE MAP: ADJACENT SQUARES (CONT.)

EXAMPLE 3.1 (P.92)

•
$$F(x, y, z) = \Sigma(2,3,4,5)$$

= $x'y + xy'$

EXAMPLE 3.2 (P.93)

•
$$F(x, y, z) = \Sigma(3,4,6,7)$$

= $yz + xz'$

EXAMPLE 3.4 (P.95)

• If a function is not expressed in sum of minterms:

→ always 1

FOUR-VARIABLE MAP

- There are 16 minterms
- Rows and columns are numbered in Gray code sequence
- Its map minimization is similar as the method used in three-variable functions.
- Adjacent squares are defined to be:
 - Squares next to each other
 - The top and bottom edges
 - The right and left edges

1 square → 4 literals
2 adjacent squares → 3 literals
4 adjacent squares → 2 literal
8 adjacent squares → 1 literal

16 adjacent squares

EXAMPLE 3.5 (P.97)

• $F(w, x, y, z) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$ = y' + w'z' + xz'

EXAMPLE 3.6 (P.97)

F = A'B'C' + B'CD' + A'BCD' + AB'C'= B'D' + B'C' + A'CD'

PRIME IMPLICANTS

• Prime implicant:

 Is a product term obtained by combining the maximum possible number of adjacent squares in the map

Essential prime implicant

If a minterm in a square is covered by only one prime implicant

EXAMPLE

• $F(A, B, C, D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

Essential prime implicants:
BD and B'D'

EXAMPLE (CONT.)

• $F(A, B, C, D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

EXAMPLE (CONT.)

• $F(A, B, C, D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

This function has 4 different simplified expressions:

The simplified expression =
 essential implicants + other prime implicants

Don't Care Conditions

- The Boolean function specifies the conditions under which the function is equal to 1 or 0.
- In practice, in some applications the function is not specified for certain combinations of the variables.
 - → called "incompletely specified functions"
 - → we simply don't care what value is
- A don't care minterm is a combination of variables whose logical value is not specified.
 - It marked as x
 - When simplifying the function, we choose to include each don't care minterm with either 1's or 0's, depending on which combination gives the simplest expression.

EXAMPLE 3.9(P. 103)

Don't care conditions

• $F(w,x,y,z) = \Sigma (1,3,7,11,15)$ and $d(w,x,y,z) = \Sigma (0,2,5)$

(b) F = yz + w'z

FIVE-VARIABLE MAP

- Maps for more than 4 variables are not simple to use as for four or fewer variables.
- 5 variable needs 32 squares

SIX-VARIABLE MAP AND MORE

- Six-variable map consists of:
 - 4 four-variable maps
 - Require 64 squares
- Maps with six and more variables need to many squares and are impractical to use.
- The alternative is to employ computer programs specifically written to facilitate the simplification of Boolean functions with a large number of variables.

PRODUCT OF SUMS SIMPLIFICATION

- For obtaining a minimized function in product of sums:
- Mark the empty squares by 0's
- 2. Combine them into valid adjacent squares
- → we obtain the simplified complemented function
- Apply DeMorgan's theorem (or dual and literal complementing)
- → we obtain the simplified function in product of sums

EXAMPLE 3.7 (P.101)

• $F(A,B,C,D) = \Sigma (0,1,2,5,8,9,10)$

Simplify into:

Product of sums

$$F' = AB + CD + BD'$$

$$F = (A' + B')(C' + D')(B' + D)$$

EXAMPLE 3.7 (CONT.)

 Implementation of simplified expressions (two-level implementation):

SOP

POS

Table 3.2 *Truth Table of Function F*

EXAMPLE

Suppose, the function is expressed in:

The sum of minterms

$$F(x,y,z) = \Sigma(1,3,4,6)$$

→ Represent 1's in map

The product of maxterms

$$F(x,y,z)=\Pi(0,2,5,7)$$

→ Represent 0's in map

The truth table

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

EXAMPLE

Given function expressed into product of sums form

$$F = (A' + B' + C')(B + D)$$

1) Take its complement

$$F' = ABC + B'D'$$

- 2) Mark the minterms of F' with 0's and others with 1's
- 3) Simplify the function by Combining:
- 1's if the required is SOP
- 0's and then complement if the required is POS

EXAMPLE:

PRODUCT OF SUMS WITH DON'T CARE

 $F(w,x,y,z) = \Sigma (1,3,7,11,15)$ and $d(w,x,y,z) = \Sigma (0,2,5)$

Product of sums=?

→
$$F = \Pi$$
 (0,2,4,6,8,9,10,12,13)

$$\rightarrow$$
F = Σ (1,3,5,7,11,15)

THANKS

We covered from:

Ch.3 (sec. $3.2 \rightarrow 3.6$)

Next week:

33

Analysis and design of combinational circuit