Computability and Computational Complexity

Week 1

Course Notes

Definitions

- Course is about limits of computational logic. What type of problems can't be reasonably computed by algorithms, what can and how efficiently.
 - o *Computability*: what questions can logic solve.
 - o *Complexity*: what questions can logic solve efficiently.
- **Decision problem**: problem whose answer is Yes or No.
- *Instance*: inputs to a problem (analogous to inputs to a program).
 - Yes-instances: inputs to a decision problem that should give a Yes answer.
 - o *No-Instances*: inputs to a decision problem that should give a No answer.
- **Exercise**: write the sets that encode the yes-instances of the problem.
 - O Q: Given integers x, y, z, is $z = x^2 + y^3$?
 - A: $S_1 = \{(x, y, z) \in \mathbb{Z}^3 | z = x^2 + y^3 \}.$
 - O Q: Given integers x, z, is there integer y such that $z = x^2 + y^3$?
 - A: $S_2 = \{(x, z) \in \mathbb{Z}^2 | \exists y \in \mathbb{Z}, z = x^2 + y^3 \}$
- **Encoded format**: machine-readable format of an object. E.g., given graph G an encoded graph $\langle G \rangle$ is e.g., an adjacency matrix.
- Alphabet Σ : finite set of characters e.g., $\Sigma = \{0,1\}$. Σ^* is the set of all possible strings composed of elements from the alphabet, including empty string ϵ .
- Languages over Σ^* : sets of finite strings using characters from Σ .
- Link between language and decision problems.
 - o Set of yes-instances is the language describing the problem.
 - O Decision problem for a language: is this input part of the language?
- <u>Algorithm</u>: logical sequence of steps which will, for any problem instance, terminate in a finite amount of time and give the solution for that instance.
 - o In this model of computation an algorithm must halt so we can be certain of the computation result.

Algorithms as Mathematical Objects

- DFSA: memoryless automata that can determine membership in a language. But can't count.
- PDA: machine that recognizes languages requiring counting by using stack memory. But because uses stack, cannot interleave patterns, e.g., cannot recognize $L = \{w \# w \mid w \in \{0,1\}^*\}$.

Fig 3. TM that recognizes $L = \{w \# w \mid w \in \{0,1\}^*$.

- **Turing Machine (TM)**: A TM M is a machine described by a tuple $\langle M \rangle = (Q, \Sigma, \Gamma, \delta, s, q_A, q_B)$.
 - Q: set of states, nodes in a diagram.
 - ο Σ: input alphabet, set of available input characters, e.g., $\Sigma = \{0,1,\#\}$.
 - _ ∉ Σ.
 - Γ : tape alphabet, any characters used in tape which includes input characters and space, e.g., $\Gamma = \{0,1,\#,x,_\}$.
 - $\Sigma \subset \Gamma$, $\subseteq \Gamma$
 - \circ δ: transition function, arrows in diagram. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$.
 - o s: start state
 - o q_A : accept state, halt and accept.
 - o q_R : reject state, halt and reject.
 - Implicitly halt if no arrows out of a state.

• TM Notes

- o Alan Turing's formalism for describing algorithms.
- o TM operates with a tape instead of a stack.
- o TM allows arbitrarily large computing time by allowing the head of the tape to move left or right upon reading a character.
- o TM allows unrestricted memory by allowing unlimited blank spaces _ to the right of the string on the tape.
- o Remain in place when try to move left at left endpoint of tape.
- \circ **L(M)**: is the language of strings accepted by a TM M.
- o **Configuration (of a TM)**: a setting of the current state, current tape content, and current head location, e.g., $q_1010\#011$ is the initial configuration in Fig 3.
- Advantages of TMs:
 - We can program them like regular computers.
 - O Configurations are well-behaved so we can do math on them. This allows us to relate TMs (and computability results on TMs) to non-TM objects.
- **Exercise**: Build a TM to recognize $L = \{1^{2^n} \mid n \in \mathbb{N}\}.$

Conventions

- \mathbb{N} includes 0. \mathbb{Z}_+ is pos integers. \mathbb{Z}_- is negative integers.
- If $a, b, c \in \mathbb{Z}$, then $a \equiv b \pmod{c}$ iff c divides b a.
- $A \setminus B$ is set difference between A and B, i.e., the set $\{x \in A | x \notin B\}$.
- $A \oplus B$ is symmetric difference between A and B, i.e., $A \oplus B = (A \setminus B) \cup (B \setminus A)$.