UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ANALISIS NUMERICO III 525442

TAREA 2.

Problema 1. Demuestre el teorema de caracterización de consistencia para métodos multipasos lineales, enunciado en clase.

Problema 2. Considérese el método multipaso

$$-y_{j+2} + 4y_{j+1} - 3y_j = 2h f(x_j, y_j).$$

- a) ¿Es consistente? Si es así, establezca el orden de consistencia, asumiendo condiciones sobre f (señálelas).
- b) ¿Será convergente este método? ¿de qué orden? Justifique.
- c) Aplicando este método al problema y' = -y, y(0) = 1, x > 0, muestre que con los valores iniciales $y_0 = 1 = y_1$, y considerando el tamaño de paso constante h, se obtiene la aproximación

$$y_j = \frac{1}{2r} \left((r-1)(2+r)^j + (r+1)(2-r)^j \right), \qquad j = 0, 1, 2, ...,$$

siendo $r = \sqrt{1+2h}$. ¿Cómo es el comportamiento de y_j respecto a la solución exacta a medida que $h \to 0$?

Problema 3. Determine el orden de consistencia maximal de los métodos multipasos lineales con las siguientes consideraciones:

- a) métodos AB, para k = 2, 3, 4.
- b) métodos AM, para k=2,3,4.

¿Son convergentes los métodos? ¿Cuál es la región de estabilidad absoluta?

Fecha de entrega: Miércoles 15.09.2004.

Problema 4. (Trabajo computacional)(*) Dado el sistema lineal de ecuaciones diferenciales:

$$\begin{cases} y_1' = -0.5 y_1 + 32.6 y_2 + 35.7 y_3, & y_1(0) = 4 \\ y_2' = -48 y_2 + 9 y_3, & y_2(0) = 13 \\ y_3' = 9 y_2 - 72 y_3, & y_3(0) = 1 \end{cases}$$

Determine si el sistema es rígido o no. ¿Cuáles son las longitudes de paso maximales para el método de Runge-Kutta clásico? En base a esta información, resuelva el sistema usando este método, considerando $x \in [0,3]$.

Problema 5. (Trabajo computacional) (*) Grafique las regiones de estabilidad absoluta de los métodos AB, considerando k = 2, 3, 4, así como del método ABM presentado en clase. En base a ello, indique el intervalo de estabilidad asociado a cada caso.

Problema 6. (Trabajo computacional)(*) Considere el PVI

$$\begin{cases} u'' + 4u' + 2u = -4\cos(t) + \cos(2+t) + \sin(t) + 4\sin(2+t), \\ u(0) = -\cos(2), u'(0) = \sin(2) - 1, & t \in [0, 6], \end{cases}$$

cuya solución exacta es $u(t) = -(\text{sen}(t) + \cos(2+t)).$

- a) Exprese el PVI dado como un sistema lineal de ecuaciones de primer orden.
- b) Partiendo con la longitud de paso h=2, encuentre la solución aproximada aplicando:
 - i) método de Euler,
 - ii) método de Runge-Kutta clásico,
 - iii) método de Runge-Kutta-Gill de cuarto orden, definido por

$$\phi(t_j, y_j; h) := \frac{1}{6} (k_1 + (2 - \sqrt{2}) k_2 + (2 + \sqrt{2}) k_3 + k_4),$$

siendo

$$k_1 := f(t_j, y_j)$$

$$k_2 := f(t_j + h/2, y_j + h k_1/2)$$

$$k_3 := f(t_j + h/2, y_j + h (\sqrt{2} - 1) k_1/2 + h (2 - \sqrt{2}) k_2/2)$$

$$k_4 := f(t_j + h, y_j - h \sqrt{2} k_2/2 + h (2 + \sqrt{2}) k_3/2).$$

- iv) método A-B de orden 4,
- v) método Predictor-Corrector ABM de orden 4 (presentado en clase), calculando los valores iniciales empleando el método de Runge-Kutta-Gill introducido en iii).

Fecha de entrega del Trabajo Computacional: Viernes 24.09.2004.

(*) Los resultados serán presentados en un informe, el cual debe contener una descripción del problema, su solución exacta, así como la presentación de los métodos a ocupar. Para cada uno de ellos se debe anexar una tabla de tamaños de paso (h), errores y órdenes de convergencia experimental. Para ello, resuelva para las longitudes de paso h, h/10, h/1000, h/10000, ...

Manifieste sus observaciones y conclusiones en cada caso. No olvide anexar impresiones de sus programas fuentes y comparar gráficamente lo bien o lo mal que pueda resultar la solución aproximada encontrada por cada esquema numérico respecto a la solución exacta. Respecto a la redacción del informe, se recomienda hacerlo utilizando LATEX.