

Topic: Survival Analytics

Perform Kaplan Meier analysis for the given data and get the life table

•	PatientID =	Followup	Eventtype	Scenario
1	John	1.0	1	Α
2	Jess	2.0	1	Α
3	Ann	3.0	0	Α
4	Mary	4.0	0	Α
5	Frank	5.0	1	Α
6	Steven	6.0	1	Α
7	Andy	6.2	1	Α
8	Elizabeth	8.0	0	Α
9	Joe	9.0	1	Α
10	Kate	10.0	0	Α

Hints:

- 1. Business Problem
 - 1.1. Objective
 - 1.2. Constraints (if any)
- 2. Data Pre-processing
 - 2.1 Data cleaning, Feature Engineering, EDA etc.
- 3. Model Building
 - 3.1 Partition the dataset
 - 3.2 Model(s) Reasons to choose any algorithm
 - 3.3 Model(s) Improvement steps
 - 3.4 Model Evaluation
 - 3.5 Python and R codes
- 4. Result Share the benefits/impact of the solution how or in what way the business (client) gets benefit from the solution provided.

Note:

- 1. For each assignment the solution should be submitted in the format
- 2. Research and Perform all possible steps for improving the model(s) accuracy & reduce the RMSE (also evaluate errors like MAPE, MAE etc.)
- 3. All the codes (executable programs) are running without errors
- 4. Documentation of the module should be submitted along with R & Python codes, elaborating on every step mentioned here