Université de Lorraine

DIPLOME: Telecom Nancy 2A - FISA Épreuve: ASPD épreuve pratique

Durée du sujet : 1 h 30

Date :Jeudi 25 mai 2023 entre 16 h 00 et 17 h 30

Nom du rédacteur : Dominique Méry Documents personnels autorisés

Epreuve TP ASPD

Vous déposerez cette archive via Arche et vous enverrez votre archive nom-prenom-aspd2023.zip; vous attendrez avant de partir un accusé de réception de la part de Dominique Méry avant de quitter la salle d'épreuve.

Exercice 1

La figure 1 est un réseau de Petri modélisant le système des philosophes qui mangent des spaghetti.

Question 1.1 Traduire le réseau de Petri sous la forme d'un module TLA, en utilisant le fichier petri2023.tla. En particulier, il faut compléter l'initialisation.

Question 1.2 Est-ce que le réseau peut atteindre un point de deadlock? Expliquez votre réponse.

Question 1.3 Proposer une propriété TLA pour répondre à la question suivante, en donnant des explications. Est-ce que deux philosophes voisins peuvent manger en même temps?

Figure 1: Réseau de Petri

```
EXTENDS Naturals, TLC

CONSTANTS Places (* d\'esigne l'ensemble des places du r\'eseau de Petri *)

VARIABLES M (* la variable d'\'etat indiquant o\'u se trouvent les jetons *)

ASSUME

Places \subseteq {"p11", "p12", "p13", ...}

11 ==
r1 ==
```

```
b1 ==
. . . . . .
Init == M = [p \in Places \mid -> IF p \in {"p1", "p2", "p3", "p4"} THEN 1 ELSE IF ....]
______
Exercice 2 Compléter le module pluscalaspd1.tla en proposant une assertion P1 correcte.
----- MODULE pluscalaspd1 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
--wf
--algorithm ex1{
variables x = 0;
process (one = 1)
A:
  x := x - 1;
process (two = 2)
 C:
   x := x + 1;
   assert P1;
} ;
}
end algorithm;
*)
====
Exercice 3 Compléter le module pluscalaspd2.tla en proposant une assertion Q1 correcte.
----- MODULE pluscalaspd2 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex1{
variables x = 0;
```

```
EXTENDS Integers, Sequences, TLC, FiniteSets

(*
--wf
--algorithm ex1{
variables x = 0;

process (one = 1)
{
    A:
        x := x + 1;
    B:
        x := x +1;
};

process (two = 2)
{
```

```
C:
    x := x - 1;
D:
    assert \ldots;
};
end algorithm;
*)
```

====

Exercice 4 Compléter le module pluscalaspd3.tla en proposant deux assertions R1 et R2 correctes.

```
----- MODULE pluscalaspd3 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex3{
variables x = 0, y = 2;
process (one = 1)
 A:
  x := x + 1;
 В:
  y := y -1;
 C:
   assert Q1;
} ;
process (two = 2)
 D:
  x := x - 1;
 E:
  y := y + 2;
  F:
   x := x + 2;
 G:
   assert Q2;
};
}
end algorithm;
*)
```
