Homework 1

Alexander Brown

January 17, 2023

3

Problem Statement

Show that the following are convex:

- 1. The set of $n \times n$ Toeplitz matrices
- 2. The set of monic polynomials of the same degree
- 3. The set of symmetric matrices

Solution

Begin by defining what a complex set is:

A set S is convex if for any two points $p, q \in S$, then all points of the form

$$\lambda p + (1 - \lambda)q$$

for $0 \le \lambda \le 1$, are also in S.

3.1: Toeplitz

Begin by defining what a Toeplitz matrix is

A Toeplitz matrix is a diagonal-constant matrix, which means all elements along a diagonal have the same value. For a Toeplitz matrix A we have $A_{ij} = a_{i-j}$ which results in the form

$$\begin{bmatrix} a & b & c & \cdots \\ e & a & b & \cdots \\ f & e & a & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Consider Toeplitz matrices P and Q of dimension $n \times n$ as let S be the set of $n \times n$ Toeplitz matrices. Lets now apply the definition of the convex set:

$$\lambda P + (1 - \lambda)Q$$

There are two operations being applied to the matrices: addition

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of the same size, then their sum A + B is the matrix obtained by adding the corresponding elements of the matrix A and B.

and multiplication of a matrix by a number

If $A = [a_i j]$ is a matrix and c is a number, then cA is the matrix obtained by multiplying each element of A by c.

Therefore, we can make the statements

- Any Toeplitz matrix multiplied by a scalar is also Toeplitz
- Any two $n \times n$ Toeplitz matrices being added together is also Toeplitz

The following statement can then be made: The set of $n \times n$ Toeplitz matrices is convex.

$$\lambda P + (1 - \lambda)Q \in S$$

3.2: Monic Polynomials of Degree n

Begin by defining what a monic polynomial is

A polynomial is monic if the coefficient of the highest order term is 1.

Suppose p and q are monic polynomials of degree n and S is the set of all monic polynomials of degree n. It can be written

$$\lambda p(x) + (1 - \lambda)q(x) \in S$$

Expanding the above gives

$$\lambda(x^{n} - ax^{n-1} + \dots + bx + c) + (1 - \lambda)(x^{n} + dx^{n-1} + \dots + ex + f)$$

= $2\lambda x^{n} + (a + dx^{n-1}) + \dots$

Dividing by 2λ produces another monic polynomial of degree n. Therefore, the set is convex, i.e $\lambda p(x) + (1 - \lambda)q(x) \in S$.

3.3: Symmetric Matrices

Define what a symmetric matrix is

A matrix A is symmetric $\iff A = A^T$.

Similarly to 3.1,

- Let P and Q are $n \times n$ symmetric matrices
- S is the set of $n \times n$ symmetric matrices
- Any symmetric matrix multiplied by a scalar is also symmetric
- Any two $n \times n$ symmetric matrices being added together is also symmetric

Therefore, S is convex because $\lambda P + (1 - \lambda)Q \in S$.

4

Problem Statement

The set of even integers can be represented as $2\mathbb{Z}$. Show that $|2\mathbb{Z}| = |\mathbb{Z}|$. Similarly show that there are as many odd integers as there are integers.

Solution

Let S and T be two different sets. T and S have the same cardinality if there is a bijection f from S to T. Therefore, we need to show $f: \mathbb{Z} \to 2\mathbb{Z}$. Let the mapping f(n) be defined as

$$f(n) = 2n$$

It now needs to be shown that f(n) is both one-to-one and onto. To show that f(n) is one-to-one begin by defining how to show a mapping is one-to-one

A function f from A onto B is one-to-one if each element of B has at most one element of A mapped into it. That is, f(x) = f(y), then x = y.

From this if we suppose f(a) = f(b), then 2a = 2b so a = b. Thus, f is one-to-one. Now we need to show f is onto. Begin by defining onto

A function is onto if each element of B has at least one element of A that is mapped into it. That is, $\forall b \in B$ there is an $a \in A$ such that f(a) = b.

Take b = 2n for some a, then f(n) = 2n = b which shows that f is onto. Therefore, f(n) is a bijection and $|\mathbb{Z}| = |2\mathbb{Z}|$.

Similarly, for the odd we need to show $f: \mathbb{Z} \to 2\mathbb{Z} + 1$ is a bijection. To show f(n) is one-to-one let f(a) = f(b), then 2a + 1 = 2b + 1, so a = b. To show f is onto let b = 2n + 1, then f(n) = 2n + 1 = b. Therefore, f(n) is a bijection and $|\mathbb{Z}| = |2\mathbb{Z} + 1|$.

5

Problem Statement

Show that $|(0,1]| = |\mathbb{R}|$.

Solution

A simple way to go about this is to first show that $|[0,1)| = |[-\pi/2, \pi/2)|$. Suppose $f(x) = \pi x - \pi/2$. To show that f(x) is one-to-one

$$f(x) = f(y)$$

$$\pi x - \pi/2 = \pi y - \pi/2$$

$$\pi x = \pi y$$

$$x = y$$

Therefore, f(x) is one-to-one. Now to show that f(x) is also onto.

$$f(x) = y$$

$$\pi x - \pi/2 = y$$

$$x = y/\pi + 1/2$$

And because we know that $0 < x \le 1$ we can show that x written above is in that range by saying

$$-\pi/2 < y \le \pi/2 -1/2 < y/\pi \le 1/2 0 < y/\pi + 1/2 \le 1$$

Therefore, the function is also onto. Now to show that $|[-\pi/2, \pi/2)| = |\mathbb{R}|$. Let g(x) = tan(x) it can be shown that tan(x) is always increasing.

Fact: If g(x) is always increasing, then g(x) is one-to-one.

By taking the derivative of $g'(x) = sec^2(x) > 0$, therefore g(x) is one-to-one. To show that g(x) is onto, we will use the intermediate value theorem

If g(x) is continuous on an interval [a, b], then g(x) contains all the values between g(a) and g(b).

Let the range of interest be $[-\pi/2 + \epsilon, \pi/2 - \epsilon]$. g(x) is continuous within the range, therefore it obtains all values $g(-\pi/2 + \epsilon)$ to $g(\pi/2 - \epsilon)$. If we let $\epsilon \to 0$ then $g(x) \to \mathbb{R}$. Therefore, $|(0,1]| = |\mathbb{R}|$.

6

Problem Statement

Show that the intersection of a convex set is convex.

Solution

Let A and B be two convex sets, and let $C = A \cup B$. Now let $p, q \in C$.

• If $p, q \in C$ then $p, q \in A$ and A is convex

- If $p, q \in C$ then $p, q \in B$ and B is convex
- \bullet Therefore C must be complex

7

Problem Statement

If S and T are convex sets both in \mathbb{R}^n , show that the set sum is convex.

Figure A.7: The set sum.

Solution

The set sum is defined as

$$S + T = \{x : x = s + t, s \in S, t \in T\}$$

Let S and T be convex sets and $S+T\in C$, let $s_1,s_2\in S$ and $t_1,t_2\in T$, and let $s=s_1+t_1$ and $t=s_2+t_2$, then

$$\lambda s + (1 - \lambda)t\lambda s_1 + \lambda t_1 + s_2(1 - \lambda) + t_2(1 - \lambda)\lambda s_1 + (1 - \lambda)t_1 + \lambda s_2 + (1 - \lambda)t_2 \in C$$

Therefore, the set sum is convex.

8

Problem Statement

Show that the polytope in n dimensions is defined by

$$P_n = \{x \in \mathbb{R}^n : x_i \ge 0, \sum_{i=1}^n x_i = 1\}$$

Solution

Let is take the case of n = 1 to start. Let p = x1 and $q = y_1$ then using the definition used before we get

$$\lambda p + (1 - \lambda)q$$

Which must be convex because it is a single point. Now let n=3

$$\lambda p + (1 - \lambda)q$$

$$\lambda(x_1, x_2, x_3) + (1 - \lambda)(y_1, y_2, y_2) = (z_1, z_2, z_3)$$

Because z must add up to 1, the set must be convex.

9

Problem Statement

For the polytope P_n of the previous problem, let $(a_1, a_2, \dots, a_n) \in P_n$. Show by induction that

$$n^2 \le \sum_{i=1}^n \frac{1}{a_i}$$

Solution

Begin with the base case, n = 1.

$$1^2 \le \sum_{i=1}^1 \frac{1}{1} \\ 1 \le 1$$

which is true. Now let

$$n^2 \le \sum_{i=1}^n \frac{1}{a_i}$$

be true. We now need to show that the following is true

$$(n+1)^2 \le \sum_{i=1}^{n+1} \frac{1}{a_i}$$

Begin by defining an element from P_N : $p=(a_1,a_2,\cdots,a_n)$. To make p an element in the P_{n+1} space let $p=(a_1,a_2,\cdots,a_n,0)$. Let's define another point $q=(0,0,\cdots,0,1)$. Now let's define the line between the points p and q

$$\lambda p + (1 - \lambda)q$$

$$\lambda(a_1, a_2, \dots, a_n, 0) + (1 - \lambda)(0, 0, \dots, 0, 1) = (b_1, b_2, \dots, b_{n+1})$$

Going back to the $(n+1)^2 \leq \sum_{i=1}^{n+1} \frac{1}{a_i}$, let's plug this in for b for a: $(n+1)^2 = \sum_{i=1}^{n+1} \frac{1}{b_i}$. Note that the $(1-\lambda)$ is non-zero at n+1, so we can rewrite this as $(n+1)^2 = \frac{1}{1-\lambda} + \sum_{i=1}^{n+1} \frac{1}{\lambda a_i}$. Now to remove the λ :

$$\frac{1}{1-\lambda} + \sum_{i=1}^{n+1} \frac{1}{\lambda a_i} \le \sum_{i=1}^{n+1} \frac{1}{a_i}$$

Therefore, $(n+1)^2 \leq \sum_{i=1}^{n+1} \frac{1}{a_i}$.

10

Problem Statement

Show that $(AB)^T = B^T A^T$ is true.

Solution

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. And let $A = (a_{ij})$ and $A^T = (a_{ji})$, the same can be said for B. If we look at the multiplication of $(AB)^T$

$$(AB)^T = \sum_{k=1}^n (a_{ik}b_{ki})^T$$

Which denotes the row/column multiplication/addition of matrix multiplication for transposed matrices. Now if we transpose the summed values

$$(AB)^{T} = \sum_{k=1}^{n} (a_{ik}b_{ki})^{T} = \sum_{k=1}^{n} (a_{kj}b_{ki})$$

Reversing the multiplication order we get

$$(AB)^T = \sum_{k=1}^n (b_{ki} a_{kj})^T = B^T A^T$$

11

Problem Statement

Show that the following are true

Solution

$$A_{i:} = \sum_{j} a_{ij} e_{j}$$

Begin with definition of unit vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} e_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ n \end{bmatrix}$$

Now outline the form of $A_{i:} = [a_{i1}, a_{i2}, a_{i3}, \dots, a_{in}]$ which denotes the all the elements of row i. To show that is equivalent to the sum, begin by expanding the sum. Let k be the column of interest.

$$\sum_{i} a_{ij}e_{j} = a_{i1}e_{1} + a_{i2}e_{2} + \dots + a_{ik}e_{k} + a_{in}e_{n}$$

Referring back to the definition of e, we see that only e_k is nonzero therefore the only value returned is a_{ik} . Extrapolating this for all columns n in the matrix we get the vector $[a_{i1}, a_{i2}, a_{i3}, \dots, a_{in}]$.

$$A_{:j} = \sum_{i} a_{ij} e_i$$

This is very similarly to the previous problem; however, now we are summing over the columns. $A_{:j} = [a_{1j}, a_{2j} \cdots, a_{mj}]^T$. Now taking the sum version, we find

$$\sum_{i} a_{ij}e_{i} = a_{1j}e_{1} + a_{2j}e_{2} + \dots + a_{kj}e_{k} + a_{nj}e_{m}$$

Where the only nonzero value in e is e_k , therefore we are returned akj when i = k. Doing this for all m elements returns the vector $[a_{1j}, a_{2j}, \dots, a_{mj}]^T$

$$A_{i:}^T = \sum_j a_{ij} e_j^T$$

This is nearly the same as $A_{i:} = \sum_{j} a_{ij} e_{j}$, but now because A is transposed, the unit vectors must also be transposed to keep the dimensions connect (column vector to row). Therefore, in a similar vein we can state $(A_{i:}^T) = (a_{:i}) = [a_{1i}, a_{2i}, \dots, a_{ni}]^T$. Taking the summed version we find

$$\sum_{j} a_{ij} e_j^T = a_{1i} e_1 + a_{2i} e_2 + \dots + a_{ki} e_k + a_{ni} e_n$$

Again, because k is the index of interest the only value that is returned is a_{ki} . Extrapolating out, as we have done before, we find that the vector that is returned is the column vector of $[a_{1i}, a_{2i}, \dots, a_{ni}]^T$.

12

Problem Statement

Show that $(A^{-1})^T = (A^T)^{-1}$.

Solution

Let $A^{-1} = B$. Then we can write

$$B^T = (A^T)^{-1}$$

Inverting both sides and stating the fact that $(A^{-1})^{-1} = A$ we get

$$A^T = (B^T)^{-1}$$

Substituting the result from above back into the original equation we get

$$((B^T)^{-1})^{-1} = B^T$$

Using the definition that the inverse of an inverse is the original matrix for an inverterable matrix we get

$$B^T = B^T$$

Therefore, $(A^{-1})^T = (A^T)^{-1}$.

13

Problem Statement

Show that tr(AB) = tr(BA)

Solution

Define what the trace of a matrix is

The trace of a matrix $tr(A) = \sum_{i=1}^{n} a_{ii}$. In other words, the trace is the sum of the elements along the main of the diagonal

The trace can be written as

$$tr(AB) = (AB)_{ii} = \sum_{k=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \sum_{k=1}^{n} A_{ik} B_{ki}$$

Reversing the summations we get

$$\sum_{k=1}^{n} \sum_{i=1}^{m} B_{ki} A_{ik} = \sum_{k=1}^{n} (BA)_{kk} = \text{tr}(BA)$$

14

Problem Statement

Define the offset trace as a generalization of the usual trace

$$\operatorname{tr}(C,l) = \sum_{i} C_{i,i+l}$$

where the usual trace is obtained when l=0, and for l>0, the sum is taken on the lth superdiagonal. Show that for $l\neq 0$

$$tr(AB, l) = tr(B^T A^T, l)$$

Solution

To begin we state the fact that was proven before.

$$(AB)^T = B^T A^T$$

Now we need to show that $(A)_{i,i+1} = ((A)_{i+1,i})^T$. The obvious case is when j = 0, when l > 0. Let j = i + l, we know that

$$(a_{i,j}) = (a_{j,i})^T$$

substituting j = i + 1 is then obvious. Putting these facts together, let C = AB

$$\operatorname{tr}(C, l) = \sum_{i} C_{i+l, i}^{T} = \sum_{i} (B^{T} A^{T})_{i+l, i}$$

15

Problem Statement

Let two complex numbers be defined as $z_1 = a + jb$ and $z_2 = c + jd$. Let $z_3 = z_1z_2 = e + jf$. Show

1. The product can be written as

$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

1. The complex product can also be written as

$$e = (a - b)d + a(c - d)$$
 $f = (a - b)d + b(c + d)$

1. Show that this modified scheme can be expressed in matrix notation as

$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} (c-d) & 0 & 0 \\ 0 & (c+d) & 0 \\ 0 & 0 & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Solution

1.4-1.1

Complex matrix multiplication can be written as

$$z_1 z_2 = (a + jb)(c + jd)$$

Expanding and combining real and imaginary terms

$$z_1 z_2 = ac + ajd + cjb + bdj^2$$
$$(ac - bd) + (ajd + cjb)$$

Now lets expand the matrix form shown in the problem statement

$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ca - bd \\ da + cb \end{bmatrix}$$

Note that the grouped pairs match for real and imaginary parts.

1.4-1.2

This can be found by simply expanding and simplifying. Lets begin with e

$$e = (a - b)d + a(c - d)$$

$$e = ad - bd + ac - ad$$

$$e = ac - bd$$

Which matches the two solutions found before. Similarly for f

$$f = (a - b)d + b(c + d)$$

$$f = ad - bd + bc + bd$$

$$f = ad + bc$$

Which, again, matches what was found before.

1.4-1.3

Once again, we can show that they are equivalent by expansion and simplification. We will work from left to right performing matrix multiplication

$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} (c-d) & 0 & 0 \\ 0 & (c+d) & 0 \\ 0 & 0 & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} (c-d) & 0 & d \\ 0 & (c+d) & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} (c-d) & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ca-bd \\ da+cb \end{bmatrix}$$

Which is equivalent to what was found in the previous problems.

16

Problems Statement

Show that

$$k_j = \frac{1}{p^j j!} (-1)^j \frac{d^j}{d(z^{-1})^j} (1 - pz^{-1})^r H(z) \Big|_{z=p}$$

for the partial fraction expansion of a Z-transform with repeated roots is correct.

Solution