Mohammed Alghazwi

APPLIED CRYPTOGRAPHY · SECURITY AND PRIVACY RESEARCHER

Groningen, Netherlands

□ (+31) 618895880 | ■ m.ghazwi@gmail.com | ② www.mghazwi.com | 回 mghazwi | 回 mghazwi

Summary _

Researcher specializing in applied cryptography and privacy-enhancing technologies. My work focuses on the design and implementation of various zero-knowledge proofs (ZKPs) for practical applications. I have also worked on related topics such as multi-party computation (MPC) and homomorphic encryption (HE).

Aside from my research, I'm an experienced software developer with a strong background in implementing cryptographic protocols in Rust. I'm also passionate about writing educational content and have experience in teaching and supervising students.

Experience _____

Institute of Free Technology (IFT)

Sept 2024 - current

APPLIED CRYPTOGRAPHY RESEARCHER

- Research, design, implementation, and technical documentation of Zero-knowledge proof (ZKP) systems for remote auditing schemes for decentralized storage, specifically for the <u>Codex</u> project.
- Write specifications and design documentation.
- · Perform security analysis and audit ZKP circuits

University of Groningen

Nov 2019 - Aug 2024

TEACHING ASSISTANCE AND STUDENT SUPERVISION

- MSc Course: Advanced Topics in Privacy and Security. Teaching activities include:
 - Giving lectures on decentralization, blockchain, smart contracts, and Zero-Knowledge Proofs.
 - Creating and supervising the labs.
 - Providing student projects and evaluating the outcome.
- Supervised more than 10 successful student projects including 3 Master projects.
 Description of these projects and outcomes can be found on my personal website.

Education

Ph.D. - Computer Science

Nov 2019 - Aug 2024

University of Groningen

Groningen, Netherlands

• PhD thesis: Secure, privacy-preserving, and publicly verifiable collaborative data analysis

MSc - Cybersecurity

Mar 2014 - Dec 2015

RMIT University

Melbourne, Australia

 Thesis: Design of multimodal biometric authentication system on mobile environment for access to sensitive personal data using fido authentication protocol

BSc in Computer Science

Feb 2010 - Sept 2013

University of Auckland Auckland Auckland, New Zealand

Publications

- 2024 Collaborative CP-NIZKs: Modular, Composable Proofs for Distributed Secrets, Under review paper
- VPAS: Publicly Verifiable and Privacy-Preserving Aggregate Statistics on Distributed Datasets, Under

review - paper

DARC: Decentralized Anonymous Researcher Credentials for Access to Federated Genomic Data,

International Workshop on Trends in Digital Identity (TDI), paper

Privacy-preserving Genome Analysis using Verifiable Off-Chain Computation (<u>Poster</u>), ACM CCS

Conference on Computer and Communications Security

- Blockchain for Genomics: a Systematic Literature Review., Journal: Distributed Ledger Technologies -
- 2022 Research and Practice. Paper

Technical Skills

Selected Projects _____

2024	Codex storage proof aggregation (code), Researched, designed, and implemented custom Plonly2-based
	proof system and circuits for the Codex storage zk-proofs in Rust.
2024	Collaborative CP-NIZK (code available in request), Developed an MPC protocol in Rust (Arkworks) along
	with distributed (collaborative) Groth16, LegoGro16, and Bulletproofs by adapting these schemes into MPC
2023	Distributed Verifiable Encryption (code) , Developed a distributed protocol for verifiable encryption in
	Rust (Arkworks) by extending the <u>SAVER</u> scheme with distributed key generation and key-switching protocols
2023	In-Circuit Elgamal (Homomorphic) Encryption (code), Developed an efficient In-Circuit Elgamal
	(Homomorphic) Encryption using Arkworks and Circom by optimizing the cryptographic operations done
	inside the zk-SNARKs circuit
2021	Data Sharing Consent for Health-Related Data Using Smart Contracts (<u>code</u>), Our solution won the 1st
	place in <u>IDASH</u> 2021- Privacy and Security Workshop
2021	Decentralized Electronic Voting System using Blockchain & Zero-Knowledge Proofs (ZKPs), A project in
	collaboration with Blockchainlab Drenthe