Monades, Comonades et Automates cellulaires

Jérémy S. Cochoy

INRIA Paris-Saclay

Octobre 2015

- Monades
 - Types
 - Fonctions
 - Foncteurs
- 2 Automates Cellulaires
- Comonades

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples

- $Int = \{-2147483648, \dots, 2147483647\}$
- $Bool = \{True, False\}$
- $Char = \{'a', 'b', 'c', \ldots\}$
- [Bool] = {[], [True], [False], [True, False], [False, True], . . .}
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char = $\{'a', 'b', 'c', \ldots\}$
- $\bullet \ [\textit{Bool}] = \{[], [\textit{True}], [\textit{False}], [\textit{True}, \textit{False}], [\textit{False}, \textit{True}], \ldots\}$
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char = $\{'a', 'b', 'c', \ldots\}$
- [Bool] = {[], [True], [False], [True, False], [False, True], . . .}
- [a]

Qu'est-ce qu'un type?

C'est un ensemble de valeurs.

Examples:

- $Int = \{-2147483648, \dots, 2147483647\}$
- Bool = { True, False}
- Char = $\{'a', 'b', 'c', \ldots\}$
- [Bool] = {[], [True], [False], [True, False], [False, True], . . .}
- [a]

Construire son type :

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Construire son type :

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Construire son type:

- Trival = Plus | Minus | Zero
- Box a = InABox a
- Maybe a = Just a | Nothing
- Either a b = Left a | Right b

Ce sont les traitements que l'on peux implémenter.

Une fonction ne lance pas de fusé.

Ce sont les traitements que l'on peux implémenter.

Une fonction ne lance pas de fusé.

Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2) :: Int -> Int
- id : : a -> a
- map : : (a -> b) -> [a] -> [b]

Une fonction a aussi un type : $a \rightarrow b$

- floor : : Float -> Int
- (+2) : : Int -> Int
- id : : a -> a
- map : : (a -> b) -> [a] -> [b]

Ça se compose

- f1::a->b
- f2::b->c
- f2 . f1 : : a -> c
- . : : (a -> b) -> (b -> c) -> (a -> c)

Pour l'anecdote, la collection de tous les types forme une catégorie où les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.

Ça se compose

- f1::a->b
- f2::b->c
- f2 . f1 : : a -> c
- . : : (a -> b) -> (b -> c) -> (a -> c)

Pour l'anecdote, la collection de tous les types forme une catégorie où les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.

Ça se compose

- f1::a->b
- f2 :: b -> c
- f2 . f1 : : a -> c
- . : : (a -> b) -> (b -> c) -> (a -> c)

Pour l'anecdote, la collection de tous les types forme une catégorie où les flèches sont les fonctions implémentables. On l'appelle la catégorie des types.

Donnée dans un contexte

Un foncteur place une valeur dans un contexte.

L'exemple de Maybe : Just 3

Donnée dans un contexte

Un contexte peux aussi ne pas contenir de valeur.

L'exemple de Maybe : Nothing

Functorial mapping

On ne peux plus appliquer la fonction telle quelle.

Functorial mapping

Mais le foncteur nous donne une nouvelle flèche.

Les foncteurs

Un foncteur F agit sur les types ...

- a => F a
- a => Maybe a
- a => [a]

... et sur les fonctions

- fmap (+2) : : F Int -> F Int
- fmap id : : F a -> F a

Les foncteurs

Un foncteur F agit sur les types ...

- a => F a
- a => Maybe a
- a => [a]

... et sur les fonctions

- a -> b => F a -> F b
- fmap (+2) : : F Int -> F Int
- fmap id : : F a -> F a

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- $fmap(p \cdot q) = (fmap p) \cdot (fmap q)$

Un foncteur est un endofoncteur de la catégorie des types.

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- $fmap(p \cdot q) = (fmap p) \cdot (fmap q)$

Un foncteur est un endofoncteur de la catégorie des types.

Un traitement qui peux échouer

Une fonction de type Int -> Maybe Int.

Combiner des traitements avec échec

L'opérateur bind

L'opérateur join

L'opérateur join

Monade

Monades - Catégories

Une monade (T, μ, η) est la donné d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_{\mathcal{C}} \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\mu_{T(X)} \downarrow \qquad \qquad \downarrow \mu_X$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$T(\eta_X) \downarrow \qquad \qquad \downarrow \mu_X$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu T$ et $\mu \circ T\eta = \mu \circ \eta T = 1_T$.

Jérémy S. Cochoy

Monades - Catégories

Une monade (T,μ,η) est la donné d'un endofoncteur $T:C\to C$ et de deux transformations naturelles $\mu:T\circ T\to T$ et $\eta:1_C\to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\uparrow^{(\eta_X)} \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu T$ et $\mu \circ T\eta = \mu \circ \eta T = 1_T$.