Apêndice I: Análise de Sentimentos com Dicionários Léxicos no R

Dados do Twitter sobre o Coronavirus (Inglês)

Coleta de Dados

Uma aplicação muito recorrente da Análise de Sentimentos é analisar dados de mídias sociais. E, para o caso da análise de texto, o Twitter é o mais utilizado. Felizmente, é possível obter dados de Tweets diretamente no R através da API com uma conta de desenvolvedor e por meio do pacote rtweet. Para isso é necessário obter as chaves de acesso da conta de desenvolvedor.

```
library(rtweet)
library(dplyr)
library(tidyr)
library(tidytext)
library(textdata)
library(ggplot2)
library(reshape2)
library(wordcloud)
library(stringr)
library(shiny)
```

Feito isso, é possível coletar os dados através da função search_tweets(), pesquisando uma hashtag. Neste exempo, serão obtidos cerca de 5 mil tweets com #Corona, em inglês e sem considerar os retweets.

Vejamos um exemplo de tweet coletado:

```
Corona <- search_tweets("#corona", n=5000, include_rts = F, lang = "en")
cat(Corona$text[150])</pre>
```

Very useful thread and catches in health insurance claims #corona #healthinsurance
Be aware and be safe https://t.co/KcqgVLeoz7

São fornecidas uma série de informações como o nome de usuário, localidade, hashtags utilizadas, além do texto do tweet.

```
tweets.Corona <- Corona %>% select(screen_name, text)
```

Pré-Processamento

Antes das análises é importante aplicar algumas técnicas de pré-processamento. Serão removidos links dos tweets e será aplicada a *tokenization* para dividir os textos em palavras, além de transformar todos os caracteres em *lowercase* e remover pontuações.

```
tweets.Corona <- tweets.Corona %>%
  mutate(stripped_text=gsub("http\\S+","",tweets.Corona$text)) # Remove links
cat(tweets.Corona$stripped_text[150])
```

Very useful thread and catches in health insurance claims #corona #healthinsurance
Be aware and be safe

```
tweets.Corona_stem <- tweets.Corona %>% # Tokenization
   select(stripped_text) %>%
   unnest_tokens(word, stripped_text)
knitr::kable((tweets.Corona_stem[700:710,]))
```

word
closing
in
the
capital
11pm
6am
since
friday
night
most
publicans

Por fim, serão removidas as stopwords.

```
cleaned_tweets.Corona <- tweets.Corona_stem %>% # Remove stopwords
anti_join(stop_words)
knitr::kable(cleaned_tweets.Corona[700:710,])
```

word
vicious
corona
circle
absolutely
recent

word
claims
trump
walk
water
corona
halo

Análise Descritiva Geral

Nesta primeira análise todos os textos foram considerados como um só para que se possa ter uma noção geral do que se têm falado acerca do coronavírus.

Palavras Únicas Encontradas em Tweets com #Corona

É possível ver que as palavras mais utilizadas são variações de corona e covid-19.

Dicionários Léxicos

O pacote tidytext oferece, por meio da função get_sentiments(), 4 dicionários léxicos: bing, afinn, nrc e loughran. Todos possuem palavras do inglês e uma informação sentimental correspondente. No caso dos dicionários bing, nrc e loughran, cada palavra é associada a um sentimento.

```
get_sentiments("bing") %>% group_by(sentiment) %>% count()
## # A tibble: 2 x 2
## # Groups:
               sentiment [2]
##
     sentiment
                   n
##
     <chr>
               <int>
## 1 negative
                4781
## 2 positive
                2005
get_sentiments("nrc") %>% group_by(sentiment) %>% count()
## # A tibble: 10 x 2
## # Groups:
               sentiment [10]
##
      sentiment
                       n
      <chr>
##
                   <int>
##
   1 anger
                    1247
##
  2 anticipation
                     839
##
   3 disgust
                    1058
   4 fear
                    1476
##
##
  5 јоу
                     689
##
   6 negative
                    3324
  7 positive
                    2312
##
##
   8 sadness
                    1191
## 9 surprise
                     534
## 10 trust
                    1231
get_sentiments("loughran") %>% group_by(sentiment) %>% count()
## # A tibble: 6 x 2
## # Groups:
               sentiment [6]
##
     sentiment
                      n
##
     <chr>
                  <int>
## 1 constraining
                    184
## 2 litigious
                    904
## 3 negative
                   2355
## 4 positive
                    354
## 5 superfluous
                     56
## 6 uncertainty
                    297
```

Entretanto, são categorias diferentes. O dicionário **bing** possui apenas as categorias positivo e negativo. Os dicionários **nrc** e **loughran** oferencem outras categorias além dessas.

Já no dicionário *afinn*, cada palavra possui uma intensidade sentimental que é um valor inteiro entre -5 e 5. Se esse valor é positivo, o sentimento é positivo. Se for igual a zero, o mesmo é neutro. Caso contrário, é negativo.

```
get_sentiments("afinn") %>% group_by(value) %>% count()
```

```
## # A tibble: 11 x 2
               value [11]
## # Groups:
##
      value
                n
      <dbl> <int>
##
##
    1
         -5
               16
##
   2
         -4
               43
##
   3
         -3
              264
##
   4
         -2
              966
##
   5
         -1
              309
##
   6
          0
               1
##
   7
          1
              208
          2
              448
##
   8
              172
##
  9
          3
## 10
          4
               45
## 11
          5
                5
```

Neste exemplo será usado o dicionário bing que possui apenas as categorias de sentimento positivo e negativo.

```
bing_Corona <- cleaned_tweets.Corona %>%
  inner_join(get_sentiments("bing")) %>%
  count(word, sentiment, sort=TRUE) %>%
  ungroup()

bing_Corona
```

```
## # A tibble: 1,263 x 3
##
     word
           sentiment
     <chr>
               <chr>
##
                         <int>
##
  1 trump
               positive
                           446
##
   2 virus
               negative
                           318
##
  3 positive positive
                           153
##
  4 secure
               positive
                           145
## 5 patient
               positive
                           144
## 6 die
                            88
               negative
## 7 loss
               negative
                            84
                            82
## 8 death
               negative
## 9 safe
               positive
                            77
## 10 dangerous negative
                            75
## # ... with 1,253 more rows
```

Dessa forma, cada palavra do banco que está presente no dicionário é associada a um sentimento positivo ou negativo.

É possível, então, verificarmos quais as palavras mais frequentes para cada sentimento.

```
bing_Corona %>%
  group_by(sentiment) %>%
  top_n(10) %>%
  ungroup() %>%
  mutate(word=reorder(word,n)) %>%
```

Tweets Contendo '#Corona'

Outra descritiva muito interessante é a nuvem de palavras que permite observar as palavras de modo que seu tamanho é relativo à frequência e a cor ao sentimento associado.

negative

positive

Dicionário Léxico por Tweet

Além da análise geral é possível utilizar o dicionário léxico em cada texto separadamente e, assim, associoar um sentimento a cada tweet individualmente.

Para isso, será utilizado o dicionário *afinn* que associa um valor numérico a cada palavra. Para classificar o tweet serão somados os valores de intensidade de sentimento de cada palavra do texto. Se a soma for positiva, o tweet será classificado como positivo. Se a soma resultar em zero, o sentimento é neutro. Caso contrário, negativo.

```
tweets.Corona$sentiment %>% table()
```

```
## .
## negative neutral positive
```

Com isso, é possível ver um equilíbrio entre tweets positivos e negativos.

Utilizando as técnicas aplicadas acima é possível classificar qualquer texto em inglês utilizando o dicionário afinn.

Por exemplo, a frase: "You're awesome!"

```
d <- (as_tibble("You're awesome!") %>% unnest_tokens(word, value) %>%
    anti_join(stop_words) %>% inner_join(get_sentiments("afinn")))$value %>% sum()
if(d>0){sentiment="Positive"}else if(d==0){sentiment="Neutral"}else{sentiment="Negative"}
knitr::kable(tibble(Texto="You're awesome!", Sentimento=sentiment, Intensidade=d))
```

Texto	Sentimento	Intensidade
You're awesome!	Positive	4

Dicionário Léxico em Português

De forma análoga à apresentada anteriormente, é possível utilizar um dicionário léxico para classificar textos em português. Será usado o dicionário oferecido pelo pacote lexiconPT que associa, a cada palavra, uma polaridade negativa (-1), positiva (1) ou neutra (0).

```
devtools::install_github("sillasgonzaga/lexiconPT")
library(lexiconPT)
library(readr)
knitr::kable(lexiconPT::oplexicon_v3.0[1100:1110,c(1,3)])
```

	term	polarity
1100	acidificar	1
1101	acido	-1
1102	acidos	-1
1103	aciganada	-1
1104	aciganadas	-1
1105	aciganado	-1
1106	aciganados	-1
1107	acintosa	-1
1108	acintosas	-1
1109	acintoso	-1
1110	acintosos	-1

Além do dicionário, será usado uma lista de stopwords em português disponibilizado pelo LabAPE.

```
stopwordspt <- read_csv(
    file = "http://www.labape.com.br/rprimi/ds/stopwords.txt",
    col_names = 'word')</pre>
```

Qual o sentimento presente na frase "Estou triste hoje."?

```
lexicon_pt <- lexiconPT::oplexicon_v3.0 %>% select(term, polarity) %>%
    rename(word=term, value=polarity)

d <- (as_tibble("Estou triste hoje.") %>% unnest_tokens(word, value) %>%
    anti_join(stopwordspt) %>% inner_join(lexicon_pt))$value %>% sum()
if(d>0){sentiment="Positive"}else if(d=0){sentiment="Neutral"}else{sentiment="Negative"}
```

Texto	Sentimento	Intensidade
Estou triste hoje.	Negative	-1

knitr::kable(tibble(Texto="Estou triste hoje.", Sentimento=sentiment, Intensidade=d))