Discrete Mathematics Assignment 4 Solutions

- (c) The set $\{ec, fc, fd\}$ is an ea-disconnecting set. The set $\{eca, efcda, eghfdba\}$ contains three edge-disjoint ea-paths, hence by Menger's theorem we conclude that the smallest ea-disconnecting set has size 3. [2]
- (d) The set $\{c, f\}$ is a be-separating set of size 2. The set $\{bce, bdfe\}$ contains two vertex-disjoint be-paths, hence by Menger's theorem the smallest be-separating set has size 2.
- 2. (a)

a	b	c	d	e	f	g	h	j	z
0									
	9	5	6	3					
	9	5	4					7	
	9	5				13	5	7	
	9				13	12	5	7	
	9				13	8		7	9
	9				13	8			9
	9				13				9

The shortest path is a, e, d, h, z, and its total length is 9.

[2]

[2]

- (b) P(a) = 0
 - P(e) = 3
 - P(d) = 6
 - P(c) = 11
 - P(b) = 15
 - P(j) = 10
 - P(h) = 13
 - P(g) = 18
 - P(f) = 23
 - P(z) = 28

The longest path is a, d, c, g, f, z, and its total length is 26.

3. Round 1:

$$E_1 \to C_5$$

$$E_2 \rightarrow C_5$$

$$E_3 \to C_2$$

$$E_4 \rightarrow C_3$$

$$E_5 \to C_3$$

$$(E_1, C_5), (E_3, C_2), (E_4, C_3)$$

Round 2:

$$E_2 \to C_4$$

$$E_5 \to C_1$$

$$(E_1, C_5), (E_3, C_2), (E_4, C_3), (E_2, C_4), (E_5, C_1)$$

The required matching is $(E_1, C_5), (E_3, C_2), (E_4, C_3), (E_2, C_4), (E_5, C_1).$ [4]

4. (a) Since we wish to maximise the total suitability, we begin by replacing each entry of the matrix with nine minus that entry.

$$\begin{bmatrix} 3 & 1 & 7 & 5 & 9 & 5 \\ 2 & 0 & 8 & 6 & 4 & 6 \\ 9 & 9 & 3 & 4 & 5 & 7 \\ 9 & 7 & 5 & 4 & 3 & 5 \\ 2 & 4 & 4 & 3 & 3 & 3 \\ 5 & 5 & 5 & 2 & 4 & 3 \end{bmatrix}$$

Preprocess the rows:

$$\begin{bmatrix}
2 & 0 & 6 & 4 & 8 & 4 \\
2 & 0 & 8 & 6 & 4 & 6 \\
6 & 6 & 0 & 1 & 2 & 4 \\
6 & 4 & 2 & 1 & 0 & 2 \\
0 & 2 & 2 & 1 & 1 & 1 \\
3 & 3 & 3 & 0 & 2 & 1
\end{bmatrix}$$

Preprocess the columns:

$$\begin{bmatrix}
2 & 0 & 6 & 4 & 8 & 3 \\
2 & 0 & 8 & 6 & 4 & 5 \\
6 & 6 & 0 & 1 & 2 & 3 \\
6 & 4 & 2 & 1 & 0 & 1 \\
0 & 2 & 2 & 1 & 1 & 0 \\
3 & 3 & 3 & 0 & 2 & 0
\end{bmatrix}$$

Crossing out columns 2 and 3, and rows 4,5,6 and applying the Hungarian algorithm yields the following matrix:

$$\begin{bmatrix}
1 & 0 & 6 & 3 & 7 & 2 \\
1 & 0 & 8 & 5 & 3 & 4 \\
5 & 6 & 0 & 0 & 1 & 2 \\
5 & 5 & 3 & 0 & 0 & 1 \\
0 & 3 & 3 & 1 & 1 & 0 \\
3 & 4 & 4 & 0 & 2 & 0
\end{bmatrix}$$

Crossing out column 2 and rows 3,4,5,6 and applying the Hungarian algorithm yields the following matrix:

$$\begin{bmatrix} \mathbf{0} & 0 & 5 & 2 & 6 & 1 \\ 0 & \mathbf{0} & 7 & 4 & 2 & 3 \\ 5 & 7 & \mathbf{0} & 0 & 1 & 2 \\ 5 & 5 & 3 & 1 & \mathbf{0} & 1 \\ 0 & 4 & 3 & 1 & 1 & \mathbf{0} \\ 3 & 5 & 4 & \mathbf{0} & 2 & 0 \end{bmatrix}$$

The highlighted entries correspond to the assignment Alice-hosing, Barbara-scrubbing, Curt-window washing, Danielle-polishing, Elmer-waxing, Fred-vacuuming, with a total suitability of 40. [4]

(b) The assignment given as answer to 4(a) has smallest suitability value of 6. To test whether this is best possible we create a 0-1 matrix whose entry is 0 whenever the entry in the given table is greater than six:

As this array has no independent set of zero entries of size six, we conclude that the assignment given as answer to 4(a) is best possible. [2]