Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name: Junbo Wang Student ID: 519021910683 Email: sjtuwjb3589635689@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof. Since n > 2, n! must have factors n and 2. Therefore, $n! \ge 2n = n + n > n + 1$, then we have n! - 1 > n > 2. Additionally, we have a general fact that every integer greater than 1 must have a prime factor, thus n! - 1 has a prime factor p with $p \le n! - 1$, that is, p < n!.

Another side, we use the proof of contradiction. If $p \le n$, then due to $p \ge 2$, p is a factor of n!. Additionally, we have a general fact that there is no integer that is the factor of both n and n-1, where $n \ge 2$, except for 1, which is in contradiction to $p \ge 2$. So we have p > n.

Then we conclude n .

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. We first take the statement as P(n).

So, **Basic step**, P(n): for any integer $n \ge 7$, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 2 + j_n \times 3$. And we check that $P(7) = 2 \times 2 + 1 \times 3$.

For **Induction step**, we use minimal counterexample principle, assuming for $7 \le n \le k-1$, P(n) all holds until n = k. So due to the induction hypothesis, we have

$$k-1 = i_{k-1} \times 2 + j_{k-1} \times 3$$
,

that is,

$$k = i_{k-1} \times 2 + j_{k-1} \times 3 + 1$$

where $i_{k-1} \ge 0$ and $j_{k-1} \ge 0$. However, we can see that i_{k-1} and j_{k-1} cannot both equal to 0 as the following shows. We prove it by contradiction: if so, then k-1=0, giving k=1 in contradiction to the condition $k \ge 8$. So we conclude that either $i_{k-1} \ge 1$ or $j_{k-1} \ge 1$, which means either $i_{k-1} - 1 \ge 0$ or $j_{k-1} - 1 \ge 0$.

Then we can divide the proof into separate cases.

(i) If $i_{k-1} - 1 \ge 0$, then we can have

$$k = (i_{k-1} - 1) \times 2 + (j_{k-1} + 1) \times 3,$$

giving $i_k = i_{k-1} - 1 \ge 0$ and $j_k = j_{k-1} + 1 \ge 1 \ge 0$. Here P(k) holds, where we derived a contradiction.

(ii) And if $j_{k-1} - 1 \ge 0$, then we can have

$$k = (i_{k-1} + 2) \times 2 + (j_{k-1} - 1) \times 3,$$

giving $i_k = i_{k-1} + 2 \ge 2 \ge 0$ and $j_k = j_{k-1} - 1 \ge 0$. Also contradiction!

Therefore, our original assumption is false. Thus for any integer $n \ge 7$, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 2 + j_n \times 3$.

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. We first take the statement as P(n).

Basic step. It is true that $f(0) = 0 = 3^0 - 2^0 = 1 - 1$ and $f(1) = 1 = 3^1 - 2^1 = 3 - 2$. It is also true that $f(2) = 5f(1) - 6f(0) = 5 = 3^2 - 2^2 = 9 - 4$.

Induction hypothesis. $k \ge 1$, and for every n with $0 \le n \le k$, $f(n) = 3^n - 2^n$.

Statement to be show in induction step. $f(k+1) = 3^{k+1} - 2^{k+1}$.

Proof of induction step. Since $k-1 \ge 0$, we also have definition for f(k-1). Then f(k+1) = 5f(k) - 6f(k-1), using our induction hypothesis, we have

$$f(k+1) = 5(3^k - 2^k) - 6(3^{k-1} - 2^{k-1}).$$

So we can get

$$f(k+1) = 5 \times 3^k - 2 \times 3^k - 5 \times 2^k + 3 \times 2^k = 3^{k+1} - 2^{k+1}.$$

Therefore, P(k+1) is true.

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. We also first take the statement as P(n).

Basic step. We first check P(2) which is that there are p and q teams. Then since the hypothesis in the question that team p beats team q iff q does not beat p for all teams $p \neq q$, there must be a "champion" team that beats the other.

We can also check P(3) which is that there are p, q and r three teams. Without loss of generality, we can assume p beats q. Then (i) if p also beats r, then p will be the "champion" team. When it's not the case, then that means r beats p, leaving q and r where (ii) if q beats r then there exists a 3-cycle, (iii) else then r will be the "champion" team. The pictures below show the 3 cases.

Fig. 1: case i for P(3)

Fig. 2: case ii for P(3)

Fig. 3: case iii for P(3)

Induction hypothesis. $k \ge 2$, and P(k) holds, which means in a tournament with k teams participating, either there is a "champion" team or there is a 3-cycle.

Statement to be show in induction step. P(k+1) holds.

Proof of induction step. For a tournament with k+1 teams participating, we can take it as a tournament with k teams $p_1, p_2,..., p_k$ participating and then another team p_{k+1} goes to play with each team additionally. So due to our induction hypothesis, $p_1, p_2,..., p_k$ either have a "champion" team or have a 3-cycle. If the latter, then additional team p_{k+1} participation doesn't influence that 3-cycle, so that 3-cycle still exists in the tournament with k+1 teams participating. For the "champion" case, without loss of generality, we assume p_1 was the original "champion". If the p_{k+1} beats all the original k teams, then p_{k+1} becomes the "champion". If not, then when p_{k+1} doesn't beat p_1, p_1 still is the "champion", but when p_{k+1} doesn't beat p_i where $2 \le i \le k$ but beating p_1 , then it's easy to see p_1, p_i and p_{k+1} form a 3-cycle. Whichever the case is, either there is a "champion" team or there is a 3-cycle. \square

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.