Migration Between TMS320F28004x and TMS320F28003x

ABSTRACT

This migration guide describes the hardware and software differences to be aware of when moving between F28004x and F28003x C2000™ MCUs. This document shows the block diagram between the two MCUs as a visual representation on what blocks are similar or different. It also highlights the features that are unique between the two devices for all available packages in a device comparison table. The F28004x and F28003x devices have two packages in common; 100-pin and 64-pin so a PCB hardware section has been added to aid in migration between the two common packages. The digital general-purpose input/output (GPIO) and analog multiplex comparison tables show pin functionality between the two MCUs. This is a good reference for hardware design and signal routing when considering a move between the two devices. Lastly, the F28003x software support is only in EABI format. The EABI migration is discussed in Section 6.

Table of Contents

1 Feature Differences Between F28004x and F28003x	3
1.1 F28004x and F28003x Feature Comparison	3
2 PCB Hardware Changes	5
2.1 PCB Hardware Changes for the 100-Pin PZ Package	6
2.2 PCB Hardware Changes for the 64-Pin PM Package	11
3 Feature Differences for System Consideration	
3.1 New Features in F28003x	14
3.2 Communication Module Changes	15
3.3 Control Module Changes	17
3.4 Analog Module Differences	18
3.5 Other Device Changes	18
3.6 Power Management	24
3.7 Memory Module Changes	25
3.8 GPIO Multiplexing Changes	26
3.9 Analog Multiplexing Changes	
4 Application Code Migration From F28004x to F28003x	34
4.1 C2000Ware Header Files	34
4.2 Linker Command Files	
4.3 Minimum Compiler Version Requirement for TMU Type 1	34
4.4 C2000Ware Examples	34
5 Specific Use Cases Related to F28003x New Features	34
5.1 HIC	34
5.2 FINTDIV	
5.3 TMU Type1	34
5.4 AES	34
5.5 MCAN	
5.6 EPG	
6 EABI Support	34
6.1 Flash API	
6.2 NoINIT Struct Fix (Linker Command)	
6.3 Pre-Compiled Libraries	
7 References	37
List of Figures	
Figure 1-1. F28003x and F28004x Overlaid Functional Block Diagram	3
Figure 2-1. 100-Pin PZ, F28003x and F28004x Pin-Overlay	

Trademarks Www.ti.com

Figure 2-2. Dual Routing Technique Illustrated	9
Figure 2-3. 64-Pin PM Non-Q Variant, F28003x and F28004x Pin-Overlay	11
Figure 2-4. 64-Pin PM Q Variant, F28003x and F28004x Pin-Overlay	12
List of Tables	
Table 1-1. F28004x and F28003x Superset Device Comparison	
Table 2-1. 100-Pin PZ Migration Between F28004x and F28003x For Existing PCB	7
Table 2-2. 100-Pin PZ Migration Between F28004x and F28003x For New PCB Design	
Table 2-3. 64-Pin PM Migration Between F28004x and F28003x For New and Existing PCB	13
Table 3-1. Communication Module Instances	
Table 3-2. Control Module Differences	17
Table 3-3. Analog Module Differences	18
Table 3-4. XTAL Module Differences	19
Table 3-5. PLL Features	19
Table 3-6. Pie Channel Legend	20
Table 3-7. Pie Table Comparison	20
Table 3-8. Bootrom Comparison Table	21
Table 3-9. Boot options Legend	21
Table 3-10. Bootloaders and GPIO Assignment Comparison	<mark>21</mark>
Table 3-11. Boot Modes Comparison	
Table 3-12. CLB and Motor Control Libraries.	
Table 3-13. ERAD Module Differences.	23
Table 3-14. Error Status Table	24
Table 3-15. RAM and FLASH Memory Changes	
Table 3-16. Mux Legend	
Table 3-17. GPIO Mux Table Comparison	
Table 3-18. Mux Legend	
Table 3-19. F28004x and F28003x 100-Pin PZ Analog Mux Table Differences	
Table 3-20. F28004x and F28003x 64-Pin PM Analog Mux Table Differences	
Table 6-1. Section Names	
Table 6-2. Flash API Differences	<u>36</u>

Trademarks

C2000[™] and Code Composer Studio[™] are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

1 Feature Differences Between F28004x and F28003x

F28003x is both a subset and superset of F28004x. They have two packages in common, 64-pin and 100-pin. It is possible to migrate between F28003x and F28004x with the caveats in this document taken into account.

Note

This comparison guide focuses on the superset devices: F280049 and F280039. Other part numbers in this product family have reduced feature support. For details specific to part numbers, see the device-specific data sheet.

1.1 F28004x and F28003x Feature Comparison

An overlaid block diagram of F28004x and F28003x is shown in Figure 1-1 while feature comparison of the superset part numbers for the F28003x and F28004x devices is shown in Table 1-1.

Figure 1-1. F28003x and F28004x Overlaid Functional Block Diagram

Table 1-1. F28004x and F28003x Superset Device Comparison

	Table 1-1. F280		F28004x				003x		
			56-Pin						
Feature		100-Pin PZ		RSH	100-Pin PZ	80-Pin PN	64-Pin PM	48-Pin PT	
	- an.	Process	sor and Acce	lerators					
C28x	Frequency (MHz)		100				20		
	FPU		Yes		Yes (ins	tructions for	Fast Integer	Division)	
	VCU-I		Yes				-		
	VCRC		_				es		
	TMU		Yes – Type 0		Yes – Typ	e 1 (instructi	ons supportir	ng NLPID)	
CLA – Type 2	Available				Yes				
	Frequency (MHz)		100			1:	20		
6-Channel DMA - Typ	e 0				Yes				
External interrupts					5				
			Memory						
Flash		2	256KB (128Kv	/)		384KB	(192Kw)		
RAM	Dedicated				4KB (2Kw)				
	Local Shared				32KB (16Kw)				
	Message	0	.5KB (0.25Kv	<i>(</i>)		1KB (0.5Kw)		
	Global Shared		64KB (32Kw)			32KB	(16Kw)		
	Total	100	0.5KB (50.25k	(w)		69KB (34.5Kw)		
Message RAM Types		512B (256w) CPU-CLA			512B (256w) CPU-CLA 512B (256w) CLA-DM/				
ECC		FLASH, Mx			FLASH, Mx, LSx, GSx, Message RAM				
Parity		LSx, GSx, Message RAM, CAN RAM			ROM, CAN RAM				
Code security for on-c	hip flash and RAM	Yes							
			System						
Configurable Logic Blo	ck (CLB)	4 Tiles – Type 2			4 Tiles – Type 3				
Embedded Pattern Ge	nerator (EPG)	-			Yes				
Motor Control Libraries	in ROM	Yes							
32-bit CPU timers		3							
Advance Encryption St	andard (AES)	_			Yes				
Background CRC (BG0	CRC)	_			Yes				
Live Firmware Update	<u> </u>	Yes			Yes, with enhancements and flash bank erase time improvements				
Secure Boot		_			Yes				
JTAG Lock			_		Yes				
HWBIST					Yes				
Nonmaskable Interrupt	: Watchdog (NMIWD)	1							
Watchdog timers					1				
Crystal oscillator/External clock input		1							
Internal oscillator		2							
		Pins	and Power S	upply					
Internal 3.3v to 1.2v VREG LDO					Yes				
Voltage Regulator	DCDC		Yes						
GPIO pins		35	21	20	51	39	26	14	
Additional GPIO		5 (2 from cJTAG, 1 from X2 and 2 from DCDC)			4 (2 from cJTAG and 2 from X1/X2)				
AIO (analog with digita	I inputs)	21	14	12	23	16	16	14	
, , ,	gital inputs and outputs)		-	.=	2	2	-	-	
(=s.ss)				_	_	l			

www.ti.com PCB Hardware Changes

Table 1-1. F28004x and F28003x Superset Device Comparison (continued)

Tak	710 1 1.1 2000 TX CITE	F28003x Superset Device Co			F28003x			
		1 200047	56-Pin					
Feature	100-Pin PZ	64-Pin PM	RSH	100-Pin PZ	80-Pin PN	64-Pin PM	48-Pin PT	
		Ana	alog Periphe	rals		I		
ADC 12-bit	Number of ADCs				3			
	MSPS		3.45			4	4	
	Conversion Time (ns)		290			2	50	
ADC channels (single–eigpdac outputs	nded) - includes the two	21	14	12	23	18	16	14
Temperature sensor					1			
Buffered DAC					2			
CMPSS (each CMPSS h two internal DACs)	as two comparators and	7	6	5		4	4	
PGA (Gain Settings: 3, 6	, 12, 24)	7	5	4		-	_	
		Cor	ntrol Periphe	rals				
eCAP/HRCAP modules		7 (2 with HRCAP capability) – Type 1			3 (1 with HRCAP capability) – Type 2			ype 2
ePWM/HRPWM channel	s – Type 4	16 (16 with HRPWM)			16 (8 with HRPWM)			
eQEP modules		2 – Type 1 1 – Type 1 2 – Type 2			ype 2			
SDFM channels		4 – Type 1	3 – T	ype 1	8 – Type 2			
		Commu	ınication Per	ipherals				
CAN (DCAN) – Type 0			2				1	
CANFD (MCAN) – Type	2	-			1			
FSI		1 (1 RX and 1 TX) – Type 0			1 (1 RX and 1 TX) – Type 2			2
I2C – Type 1			1			2	2	
LIN – Type 1		1			2			
HIC - Type 1		No Yes						
PMBus – Type 0		1						
SCI – Type 0		2						
SPI – Type 2					2			
	Packa	ge Options,	Temperature	e, and Qualif	ication			
Junction temperature (T)	-40°C to 125°C -40°C to			o 150°C			
Free-Air temperature (TA	.)			_	40°C to 125°	C		
Package Options with Alavailable	Yes	Yes	_	Yes	_	Yes	Yes	

2 PCB Hardware Changes

The F28004x and F28003x devices have two packages in common: 100-Pin PZ and 64-Pin PM. There are two kinds of migration that can happen between the two devices:

- PCB is already designed for one device but you would like to swap in another device.
- PCB is yet to be designed but you would like to start with one device and migrate later.

For the second migration type above, the dual-routing technique maximizes pin utilization. The following sections describe the pin migration in detail.

Note

Overall compatibility depends on more than just the pins. Please review all the changes in this document during the migration process.

PCB Hardware Changes www.ti.com

2.1 PCB Hardware Changes for the 100-Pin PZ Package

This section describes the F28003x and F28004x differences that exist between the 100-Pin PZ package. The Q and non-Q variant of the 100-Pin PZ package have the same pinout per device. Figure 2-1 outlines the differences.

Figure 2-1. 100-Pin PZ, F28003x and F28004x Pin-Overlay

2.1.1 100-Pin PZ Migration for Existing PCB

If the PCB is already designed and you are moving from F28004x/F28003x to F28003x/F28004x respectively, dual routing is not possible and hence those pins become incompatible between the two devices, Table 2-1 outlines the migration.

For the color legend, see Figure 2-1.

Table 2-1. 100-Pin PZ Migration Between F28004x and F28003x For Existing PCB

Pin	Pin Name		Setween F20004X an	Action					
No	F28004x	F28003x	Transition Type	F28003x to F28004x	F28004x to F28003x				
	Minor Incompatibility - Signals in Common (1)								
28	PGA6_IN, C5	C5, A12		Use C5					
31	PGA4_IN, C3	C3, A7		Use C3					
36	A4, B8, PGA2_OF	A4, B8		Use A4 or B8					
37	A8, PGA6_OF	A8	1	Use A8					
39	B4, C8, PGA4_OF	B4, C8	Common Analog Channel	Use B4 or C8					
40	A10, B1, C10, PGA7_OF	A10, B1, C10		Use A10, B1 or C10					
21	C2	C2, B12	1	Use C2					
22	A1, DACB_OUT	A1, DACB_OUT, B7		Use A1 or DACB_OUT					
41	В0	B0, C11		Use B0					
69	X1	GPIO19, X1	Common Clock	GPIO19 not available for use					
81	GPIO23_VSW	GPIO23	Common GPIO	Do not use DCDC. GPIO22 & GPIO23 availab					
83	GPIO22_VFBSW	GPIO22	Common GF10	use					
		Medium Incompat	tibility - Different Signals	, Same Type					
17	C4	A2, B6, C9	Analog Function Compatible	Update code to C4	Update code to A2, B6 or C9				
19	C0	A14, B14, C4		Update code to C0	Update code to A14, B14 or C4				
85	GPIO40	GPIO44	GPIO Function	Update code to GPIO40	Update code to GPIO44				
91	GPIO39	GPIO61	Compatible	Update code to GPIO39	Update code to GPIO61				

PCB Hardware Changes www.ti.com

Table 2-1, 100-Pin PZ Migration Between F28004x and F28003x For Existing PCB (continued)

Pin	Pin Name			A	Action			
No	F28004x	F28003x	Transition Type	F28003x to F28004x	F28004x to F28003x			
	Major Incompatibility - Different Signals and Types							
14	PGA1_GND	A6						
15	PGA3_GND	B2, C6	PGA Ground to ADC					
32	PGA6_GND, PGA2_GND, PGA4_GND	B5	Channel					
42	PGA7_GND	C14						
13	PGA5_GND	GPIO54	PGA Ground to GPIO					
12	VSSA	GPIO53	Ground to GPIO					
82	VSS_SW	GPIO41	Ground to GPIO					
11	VDDA	GPIO52	Power to GPIO	Power to CRIO				
80	VDDIO_SW	GPIO40	Fower to GFIO	PGA Input to ADC Changel Do not use, follow the guidelines for unused pins in the datasheet as applicable				
16	PGA5_IN	B3, VDAC						
18	PGA1_IN	C7, B9, A3	PGA Input to ADC					
20	PGA3_IN	A11, B10, C0	Channel the datastreet as applicable	ible				
30	PGA2_IN	B11						
43	PGA7_IN	GPIO55	PGA Input to GPIO					
6	A6, PGA5_OF	GPIO47						
7	B2, C6, PGA3_OF	GPIO48						
8	B3, VDAC	GPIO49	Analog to GPIO	Analysis to ODIO				
9	A2, B6, PGA1_OF	GPIO50	Analog to GPIO					
10	A3	GPIO51						
44	C14	GPIO60						
48	FLT2	GPIO20, B5	Flash Test Pins to GPIO/					
49	FLT1	GPIO21, B11	Analog					

1. Channel to use selected in software.

2.1.2 100-Pin PZ Migration for New PCB Design

If the PCB is yet to be designed and you are moving from F28004x/F28003x to F28003x/F28004x, respectively, the dual routing technique illustrated in Figure 2-2 maximizes pin utilization. The complete pin migration is outlined in Table 2-2.

Same Board With F28004x Device

Same Board With F28003x Device

Figure 2-2. Dual Routing Technique Illustrated

For the color legend, see Figure 2-1.

Table 2-2. 100-Pin PZ Migration Between F28004x and F28003x For New PCB Design

Pin	Pin Name			Action				
No	F28004x	F28003x	Transition Type	F28003x to F28004x	F28004x to F28003x			
	Minor Incompatibility - Signals in Common (1)							
28	PGA6_IN, C5	C5, A12		Use C5				
31	PGA4_IN, C3	C3, A7		Use C3				
36	A4, B8, PGA2_OF	A4, B8		Use A4 or B8				
37	A8, PGA6_OF	A8]	Use A8				
39	B4, C8, PGA4_OF	B4, C8	Common Analog Channel	Use B4 or C8				
40	A10, B1, C10, PGA7_OF	A10, B1, C10	- Charmon	Use A10, B1 or C10				
21	C2	C2, B12		Use C2				
22	A1, DACB_OUT	A1, DACB_OUT, B7		Use A1 or DACB_OUT				
41	В0	B0, C11		Use B0				
69	X1	GPIO19, X1	Common Clock	GPIO19 not available for use				
81	GPIO23_VSW	GPIO23	Common GPIO	Do not use DCDC. GPIO	22 & GPIO23 available for			
83	GPIO22_VFBSW	GPIO22	Common GPIO	use				
		Medium Incompat	ibility - Different Signals,	Same Type				
19	C0	A14, B14, C4	Analog Function Compatible	Update code to C0	Update code to A14, B14 or C4			
85	GPIO40	GPIO44	GPIO Function	Update code to GPIO40	Update code to GPIO44			
91	GPIO39	GPIO61	Compatible	Update code to GPIO39	Update code to GPIO61			

PCB Hardware Changes www.ti.com

Table 2-2. 100-Pin PZ Migration Between F28004x and F28003x For New PCB Design (continued)

Pin	Pin Name			Action			
No	F28004x	F28003x	Transition Type	F28003x to F28004x F28004x to F28003x			
		Medium In	compatibility - Dual Rout	ting			
6	A6, PGA5_OF	GPIO47		Dual route to Pin 6 & 14			
7	B2, C6, PGA3_OF	GPIO48	Dual PCB Route,	Dual route to Pin 7 & 15			
8	B3, VDAC	GPIO49	949 F28004x 0-Ohm Dual route to Pin 8 & 16				
9	A2, B6, PGA1_OF	GPIO50	Resistor, F28003x DNP	Dual route to Pin 9 & 17			
10	A3	GPIO51		Dual route to Pin 10 & 18			
14	PGA1_GND	A6		Dual route to Pin 6 & 14			
15	PGA3_GND	B2, C6	Dual PCB Route.	Dual route to Pin 7 & 15			
16	PGA5_IN	B3, VDAC	F28004x DNP, F28003x	Dual route to Pin 8 & 16			
17	C4	A2, B6, C9	0-Ohm Resistor	Dual route to Pin 9 & 17			
18	PGA1_IN	C7, B9, A3		Dual route to Pin 10 & 18			
	Major Incompatibility - Different Signals and Types						
32	PGA6_GND, PGA2_GND, PGA4_GND	B5	PGA Ground to ADC Channel	Tie to VSS			
42	PGA7_GND	C14	Citatille				
13	PGA5_GND	GPIO54	PGA Ground to GPIO	Tie to VSS through 0-Ohm resistor. Depopulate			
12	VSSA	GPIO53	Ground to GPIO	resistor when using F28003x and enable internal			
82	VSS_SW	GPIO41	Glouila to GF10	pull-up for the GPIOs			
11	VDDA	GPIO52		Tie to VDDIO through 0-Ohm resistor. Depopulate			
80	VDDIO_SW	GPIO40	Power to GPIO	resistor when using F28003x and enable internal pull-up for the GPIOs			
20	PGA3_IN	A11, B10, C0	PGA Input to ADC				
30	PGA2_IN	B11	Channel				
43	PGA7_IN	GPIO55	PGA Input to GPIO	No connect. Enable internal pull-up for the GPIOs			
44	C14	GPIO60	Analog to GPIO	on F28003x			
				_			
48	FLT2	GPIO20, B5	Flash Test Pins to GPIO				

1. Channel to use selected in software.

2.2 PCB Hardware Changes for the 64-Pin PM Package

This section describes the F28003x and F28004x differences that exist between the Q and non-Q variants of the 64-Pin PM package. Figure 2-3 shows the differences for the non-Q variant and Figure 2-4 shows the differences for the Q variant.

Figure 2-3. 64-Pin PM Non-Q Variant, F28003x and F28004x Pin-Overlay

PCB Hardware Changes www.ti.com GPIO37/TDO GPI018_X2 GPIO35/TDI VDDIO GPI024 LMS /SS ДQ/ Š GPIO37/TDO GP1018_X2 GPI035/TDI GPI019_X1 GP1032 GP1024 GPI04 VSS VDD TMS Š 41 36 35 46 45 44 43 42 40 39 38 37 34 48 GPIO3 GPIO3 49 32 GPI033 GPIO33 GPIO2 50 GPIO11 GPIO2 31 GPIO11 51 GPIO1 GPIO1 GPIO12 FLT1 GPIO0 52 GPIO13 28 VDDIO VDDIO VDDIO SW GPIO40 54 GPIO23_VSW GPIO23 27 VDD VDD 64-Pin PM Q VSS_SW GPIO41 26 vss vss 56 A10, B1, C10 A10, B1, C10, PGA7_OF GPIO22_VFBSW GPIO22 24 GPI07 57 A9, B4, C8 B4, C8, PGA4_OF Legend 100% Compatible vss vss 58 23 A4, B8, C14 A4, B8, PGA2_OF Minor Incompatibility - Signals In Common 22 VDD VDD 59 VDDA VDDA VDDIO 60 21 VDDIO VSSA VSSA PGA2_GND, PGA4_GND, PGA6_GND GPIO5 GPI05 61 A8, B0, C11 GPIO9 62 19 C3, A7 C3, PGA4_IN 63 GPIO10 GPIO10 18 A12, C1 C1, PGA2_IN VREFLOA, VREFLOB, VREFLOC 64 17 VREFLOABC GPIO6 GPIO6 15 16 5 A0, B15, C15, DACA A1, B7, DACB_OUT B3, C5, VDAC A11, B10, C0 A14, B14, C4 A5, B12, C2 A15, B9, C7 B6, C9 B2, C6 XRSn ΔOV VSS 9_P

Figure 2-4. 64-Pin PM Q Variant, F28003x and F28004x Pin-Overlay

B3, VDAC

B2, C6, PGA3_OF

A6, PGA5_OF

KRSn

PGA3

GND, F

B6, PGA1_OF

A0, B15, C15, DACA_OUT

A1, DACB_OUT

C2, PGA3_IN

CO, PGA1_IN

C4, PGA5_IN

VREFHIA, VREFHIB,

£28004+

F28004X

2.2.1 64-Pin PM Migration for New and Existing PCB

Table 2-3 outlines the migration moving from F28004x/F28003x to F28003x/F28004x, respectively.

For the color legend, see Figure 2-3 and Figure 2-4.

Table 2-3. 64-Pin PM Migration Between F28004x and F28003x For New and Existing PCB

	Table 2-3. 64-Pin PM Migration Between Pin Name		11 1 20007X allu 1 200		ction	
Pin No	F28004x	F28003x	Transition Type	ype F28003x to F28004x F28004		
		Minor Incompa	tibility - Signals in Comm	on (1)		
6	A6, PGA5_OF	A6		Use A6		
7	B2, C6, PGA3_OF	B2, C6		Use B2 or C6		
8	B3, VDAC	A3, B3, C5 VDAC		Use B3 or VDAC		
9	A2, B6, PGA1_OF	A2, B6, C9		Use A2 or B6		
11	PGA5_IN, C4	A14, B14, C4		Use C4		
12	PGA1_IN, C0	A11, B10, C0	Common Analog	Use C0		
13	PGA3_IN, C2	A5, B12, C2	Channel	Use C2		
14	A1, DACB_OUT	A1, B7, DACB_OUT		Use A1 or DACB_OUT		
18	C1	A12, C1		Use C1		
19	PGA4_IN, C3	A7, C3		Use C3		
23	C14	A4, B8, C14		Use C14		
24	B4, C8	A9, B4, C8		Use B4 or C8		
42	X1	GPIO19, X1	Common Clock	GPIO19 not available for use		
54	GPIO23_VSW	GPIO23	Common GPIO	Do not use DCDC. GPI	O22 & GPIO23 available	
56	GPIO22_VFBSW	GPIO22	Common GPIO	for use		
		Major Incompatib	ility - Different Signals an	d Types		
10	PGA1_GND, PGA3_GND, PGA5_GND	A15, B9, C7	PGA Ground to ADC			
20	PGA2_GND, PGA4_GND, PGA6_GND	A8, B0, C11	Channel	Tie to VSS		
55	VSS_SW	GPIO41	Ground to GPIO		hm resistor. Depopulate 8003x and enable internal	
53	VDDIO_SW	GPIO40	Power to GPIO		-Ohm resistor. Depopulate 3003x and enable internal	
	(Non-Q Variant) Major Inc	ompatibility - Different Sig	gnals and Types		
46	VREGENZ	GPIO39		External VREG not support through 0-Ω resistor. Description of the using F28003x and enamed GPIO		
		(Q Variant) Major Incom	patibility - Different Signa	als and Types		
29	FLT2	GPIO13	Flash Test Pins to GPIO		ernal pull-up for the GPIOs	
30	FLT1	GPIO12	100.1 110.10 01 10	on F28003x		

1. Channel to use selected in software.

3 Feature Differences for System Consideration

The differences and similarities that exist when moving between the F28003x and F28004x devices is explored in this section.

3.1 New Features in F28003x

This section outlines features that only exist in the F28003x device. For details on each of these new features, see the *TMS320F28003x Real-Time Microcontrollers Technical Reference Manual* (SPRUIW9).

3.1.1 TMU Type1

Two instructions have been added to the instruction set of the Trigonometrical Math Unit (TMU) on F28003x to support computation of the floating-point power function "powf". These instructions calculate the inverse binary exponent in base two logarithm and can be combined to compute the power of a floating-point number raised to the power of another floating-point number.

This calculation would typically take 300 cycles using library emulation, but takes less than ten cycles using the new instructions. An example of the application of the power function is non-linear proportional integral derivative control (NLPID), which is a component of the C2000 Digital Control Library found in C2000Ware.

3.1.2 Fast Integer Division (FINTDIV)

The C28x processor Fast Integer Division (FINTDIV) unit provides an open and scalable approach to facilitate different data type sizes (16/16, 32/16, 32/32, 64/32, 64/64), signed and unsigned or mixed data type versions (ui32/ui32, i32/ui32, i32/i32) and for additional performance, the operations return both the integer and remainder portion of the calculation simultaneously.

The division operations are interruptible so as to enable minimum latency for higher priority tasks, a critical requirement for high performance real-time control applications. Unique to this fast integer division unit is support for Truncated, Modulo and Euclidean division formats without any cycle penalty. Each of these formats represents the integer and remainder result in different forms. Below is a brief summary of the various division formats:

- Truncated format is the traditional division performed in C language (/ = integer, % = remainder), however, the integer value is non-linear around zero.
- · Modulo division is commonly found when performing division on an Excel worksheet.
- Euclidean format is another format similar to Modulo, the difference is the sign on the remainder value.

Both the Euclidean and Modulo formats are more appropriate for precise control applications because the integer value is linear around the zero point and, hence, avoid potential calculation hysteresis. The C28x compiler supports all three division formats for all data types.

3.1.3 Host Interface Controller (HIC)

The Host Interface Controller (HIC) is a new module for the F28003x device that allows an external host controller to directly access resources of the F28003x device using the ASRAM protocol. HIC was first introduced in F28002x.

3.1.4 Background CRC (BGCRC)

The Background CRC (BGCRC) is a new module for the F28003x device that can compute the CRC-32 value of a configurable block of memory. It is an upgrade on the CLAPROMCRC found in the F28004x device to test more memories than just the CLA ROM. BGCRC was first introduced in F2838x.

3.1.5 Standby Low Power Mode

In F28004x, standby low power mode was deprecated. In F28003x, standby low power mode is available for applications requiring this power saving feature.

3.1.6 X1 GPIO Functionality

In the F28003x device, the crystal pin X1 can also be used as a GPIO, GPIO19. This is a new feature for the F28003x device. The X1 pin can either be used as the crystal input pin or as GPIO19, but not both simultaneously.

3.1.7 Diagnostic Features (PBIST/HWBIST)

PBIST is a controller that can execute configurable memory tests routines. PBIST is enabled as part of the boot up sequence in both F28004x and F28003x devices. F28003x and future C2000 device documents will refer to the PBIST module as MPOST (memory power on self-test).

HWBIST is a self-test controller for the CPU for fault coverage in safety applications. HWBIST can be invoked from user application code. HWBIST is available only in the F28003x device.

3.1.8 Advance Encryption Standard (AES)

The AES module on F28003x is a symmetric cipher module that provides hardware-accelerated data encryption and decryption with support for 128-, 192- and 256-bit keys. AES was first introduced in F2838x.

3.1.9 Secure Boot/JTAG Lock

The F28003x device supports secure booting and also has the capability to lock the JTAG to avoid debug access thereby enhancing security. Secure Boot and JTAG Lock were first introduced in F2838x.

3.1.10 Modular Controller Area Network (MCAN)

The MCAN module on F28003x supports CAN FD (CAN with the flexible data-rate) specification which has a higher throughput compared to Classic CAN. It can also operate in Classic CAN mode if needed. MCAN was first introduced in F2838x.

3.1.11 Embedded Pattern Generator (EPG)

The EPG on F28003x is an interface module that can be used to generate waveforms and clocks for other modules on the device. This can be useful for communication module diagnostics and also providing the modulation clock for the SDFM.

3.1.12 Live Firmware Update (LFU)

The F28003x device has in-built hardware to facilitate live firmware updates. It supports fast context switching from the old firmware to the new firmware to minimize application downtime when updating the device firmware.

3.2 Communication Module Changes

Communication module changes between the F28004x and F28003x devices affect the number of modules, addition of CAN-FD, HIC and some differences on the FSI module in F28003x. Module functionality is maintained for both devices. Table 3-1 shows the module instances and differences which should be considered when migrating applications between F28004x and F28003x.

	Table 5-1. Communication module instances						
Module	Category	F28004x	F28003x	Notes			
LIN	Number	1 - LINA	2 - LINA, LINB				
CAN	Number	2 - CANA, CANB	1- CANA				
CAN-FD	Number	not present	1 - MCANA				
SCI	Number	2 - SCIA, SCIB	2 - SCIA, SCIB				
SPI	Number	2 - SPIA, SPIB	2 - SPIA, SPIB				
I2C	Number	1 - I2CA	2 -I2CA, I2CB				
PMBUS	Number	1 - PMBUSA	1 - PMBUSA				
HIC	Number	not present	1 - HICA				

Table 3-1 Communication Module Instances

Table 3-1. Communication Module Instances (continued)

Module	Category	F28004x	F28003x	Notes
Modello	Number	1 - FSIA	1 - FSIA	Updates on F28003x due to daisy chain
				improvements
-		-	TX_OPER_CTRL_LO.TDM_ENABLE	Input TDM port select bit
		-	TX_OPER_CTRL_LO.SEL_TDM_IN	Transmit TDM Mode Enable bit
		-	TX_OPER_CTRL_HI.EXT_TRIG_SEL	External Trigger Select bit
		-	TX_DLYLINE_CTRL	Transmit delay line control register
		-	RX_MASTER_CTRL.INPUT_ISOLATE	Isolate FSI RX Inputs
		-	RX_MASTER_CTRL.DATA_FILTER_EN	Data filter enable bit
		-	RX_EVT_STS.PING_TAG_MATCH	Ping Tag Match Flag
		-	RX_EVT_STS.DATA_TAG_MATCH	Data Tag Match Flag
		-	RX_EVT_STS.ERROR_TAG_MATCH	Error Tag Match Flag
		-	RX_EVT_CLR.PING_TAG_MATCH	Ping Tag Match Flag clear bit
		-	RX_EVT_CLR.DATA_TAG_MATCH	Data Tag Match Flag clear bit
		-	RX_EVT_CLR.ERROR_TAG_MATCH	Error Tag Match Flag clear bit
		-	RX_EVT_FRC.PING_TAG_MATCH	Ping Tag Match Flag force bit
		-	RX_EVT_FRC.DATA_TAG_MATCH	Data Tag Match Flag force bit
FSI		-	RX_EVT_FRC.ERROR_TAG_MATCH	Error Tag Match Flag force bit
	Register	-	RX_INT1_CTRL.INT1_EN_PING_TAG_ MATCH	Enable Ping Tag Match Interrupt 1
		-	RX_INT1_CTRL.INT1_EN_DATA_TAG_ MATCH	Enable Data Tag Match Interrupt 1
		-	RX_INT1_CTRL.INT1_EN_ERROR_TA G_MATCH	Enable Error Tag Match Interrupt 1
		-	RX_INT2_CTRL.INT2_EN_PING_TAG_ MATCH	Enable Ping Tag Match Interrupt 2
		-	RX_INT2_CTRL.INT2_EN_DATA_TAG_ MATCH	Enable Data Tag Match Interrupt 2
		-	RX_INT2_CTRL.INT2_EN_ERROR_TA G_MATCH	Enable Error Tag Match Interrupt 2
		-	RX_TRIG_CTRL_0	Receive Trigger Control register 0
		-	RX_TRIG_WIDTH_0	Receive Trigger Wdith register 0
		-	RX_TRIG_CTRL_1	Receive Trigger Control register 1
		-	RX_TRIG_CTRL_2	Receive Trigger Control register 2
		-	RX_TRIG_CTRL_3	Receive Trigger Control register 3
		-	RX_UDATA_FILTER	Receive User Data Filter Control register

3.3 Control Module Changes

There are changes in the control modules between the F28004x and F28003x devices. The biggest changes come from the EPWM on the F28003x device which has a new generic and simple sync scheme that allows any EPWM/ECAP to be the main sync source for another EPWM/ECAP and addition of new SDFM features for F28003x. Table 3-2 shows the module instances differences which should be considered when migrating applications between F28004x and F28003x.

Table 3-2. Control Module Differences

Mandada	0-4		5-2. Control Wodule Dil	
Module	Category	F28004x	F28003x	Notes
SDFM	Number	4 - SD1_D1C1D4C4	8 - SD1_D1C1D4C4, SD2_D1C1D4C4	
	Registers(1)	SDCMPHx	SDFLTxCMPH1	High-Level Threshold Register for Chx
		SDCMPLx	SDFLTxCMPL1	Low-Level Threshold Register for Chx
		SDCMPHZx	SDFLTxCMPHZ	High-Level (Z) Threshold Register for Chx
		-	SDFLTxCMPH2	Second High-Level Threshold Register for Chx
		-	SDFLTxCMPL2	Second Low-Level Threshold Register for Chx
		-	SDCOMPxCTL	SD Comparator event filterx Control Register
		-	SDCOMPxEVT2FLTCTL	COMPL/CEVT2 Digital filterx Control Register
		-	SDCOMPxEVT2FLTCLKCTL	COMPL/CEVT2 Digital filterx Clock Control Register
		-	SDCOMPxEVT1FLTCTL	COMPH/CEVT1 Digital filterx Control Register
		-	SDCOMPxEVT1FLTCLKCTL	COMPH/CEVT1 Digital filterx Clock Control Register
		-	SDCOMPxLOCK	SD Comparator event filterx Lock Register
eQEP	Number	2 - EQE	P1, EQEP2	
	Registers	-	QEPSRCSEL	Select source as either device pins or cmpss/epwmxbar
		-	QDECCTL.QIDIRE	Index direction compatibility mode
	Other		Support for SinCos Transducers	
eCAP	Number	7 - ECAP17	3 - ECAP13	Updates on F28003x due to new sync scheme
	Registers	-	ECAPSYNCINSEL	Select sync source for ecap
HRCAP	Number	2 - HRCAP6, HRCAP7	1 - HRCAP3	

Table 3-2. Control Module Differences (continued)

Module	Category	F28004x	F28003x	Notes
ePWM	Number	8 - EF	PWM18	Updates on F28003x due to new sync scheme and blanking window improvements
	Registers	-	DCACTL.EVT1LATSEL	DCAEVT1 Latched Signal Select
		-	DCACTL.EVT1LATCLRSEL	DCAEVT1 Latched Clear Source Select
		-	DCACTL.EVT1LAT	Indicates the status of DCAEVT1LAT signal
		-	DCACTL.EVT2LATSEL	DCAEVT2 Latched Signal Select
		-	DCACTL.EVT2LATCLRSEL	DCAEVT2 Latched Clear Source Select
		-	DCACTL.EVT2LAT	Indicates the status of DCAEVT2LAT signal
		-	DCBCTL.EVT1LATSEL	DCBEVT1 Latched Signal Select
		-	DCBCTL.EVT1LATCLRSEL	DCBEVT1 Latched Clear Source Select
		-	DCBCTL.EVT1LAT	Indicates the status of DCBEVT1LAT signal
		-	DCBCTL.EVT2LATSEL	DCBEVT2 Latched Signal Select
		-	DCBCTL.EVT2LATCLRSEL	DCBEVT2 Latched Clear Source Select
		-	DCBCTL.EVT2LAT	Indicates the status of DCBEVT2LAT signal
		DCFCCTL.PULSESEL	DCFCCTL.PULSESEL	Blank Pulse Mix added as an option for F28003x
		-	TBCTL3.OSSFRCEN	F28003x can now generate an EPWMxSYNCO with GLDCTL2[OSHTLD]
		SYNCSEL	EPWMSYNCINSEL	EPWMxSYNCI to EPWMxSYNCO path removed from F28003x
		TBCTL.SYNCOSEL	EPWMSYNCOUTEN	DCAEVT1 and DCBEVT1 are new sync output options
		TBCTL2.SYNCOSELX		for F28003x
HRPWM	Number	8 - HRPWM18	4 - HRPWM14	
	Clock Source	EPWM1CLK	Respective EPWM	

1. x = 1 to 4

3.4 Analog Module Differences

This section outlines the analog differences between F28003x and F28004x. The PGA is not present on the F28003x and the analog mux table is remapped. Table 3-3 shows the differences.

Table 3-3. Analog Module Differences

Table 0-0. Allalog module billerences										
Module	Category	F28004x	F28003x	Notes						
ADC(1)	Number	3 - ADCA, A	DCB, ADCC							
	Max Speed	50 MHz	60 MHz							
GPDAC	Number	2 - GPDAC	A, GPDACB							
CMPSS(1)	Number	7 - CMPSS1 to CMPSS7	4 - CMPSS1 to CMPSS4							
	Registers	CTRIPxFILCLKCTL.CLKP RESCALE[90]	CTRIPxFILCLKCTL.CLKP RESCALE[150]	CMPSS filter prescaling size increased on F28003x						
	Other	CMPx_HP has 5 mux input options	CMPx_HP has 6 mux input options							
PGA	Number	7 - PGA1 to PGA7	-							
Temp Sensor	Number	1 - (in ADCB ch 14)	1 - (in ADCC ch 12)							

1. In porting software from F28004x to F28003x (or the other way around), care must be taken to ensure that the correct ADC channels are used because of a difference in channel assignment, see Section 3.9.

3.5 Other Device Changes

This section describes feature differences between F28004x and F28003x that were not covered in the previous sections, as such the changes identified below must be considered when migrating applications between devices.

3.5.1 XTAL Module

The XTAL module has a few changes between F28003x and F28004x as highlighted in Table 3-4

Table 3-4. XTAL Module Differences

Module	Category	F28004x	F28003x	Notes
		X1CNT.X1CNT[90]	X1CNT.X1XNT[100]	
XTAL	Registers	-	XTALCR2	For pre-conditioning the GPIO mode of X1/X2
	Other	X1CNT.CLR is synchronous	X1CNT.CLR is asynchronous	

3.5.2 PLL

The PLL blocks of F28004x and F28003x devices are different. Table 3-5 lists the PLL features for both devices for comparison. for more information, consult the TMS320F28003x microcontrollers technical reference manual.

Table 3-5. PLL Features

Feature	F28004x	F28003x
VCO Range	120 - 400 MHz	220 - 600 MHz
PLL Raw Clock Range	15 - 200 MHz	6 - 240 MHz
X1 Input Range (PLL enable)	2 - 20 MHz	2 - 25 MHz
REFCLK Divider	No	Yes[132]
PLL Slip Detect	Yes	No (use DCC)
Fractional PLLMULT	Yes	No

3.5.3 PIE Channel Mapping

Pie channel mapping between F28004x and F28003x is different due to peripheral module changes between these devices. Table 3-7 summarizes the common and unique pie channel assignments on these two devices.

Table 3-6. Pie Channel Legend

Color	Description
	Pie channel common for both devices
	Pie channel applicable only for F28004x
	Pie channel applicable only for F28003x

Table 3-7. Pie Table Comparison

	INTx.1	INTx.2	INTx.3	INTx.4	INTx.5	INTx.6	INTx.7	INTx.8	INTx.9	INTx.10	INTx.11	INTx.12	INTx.13	INTx.14	INTx.15	INTx.16
INT1.y	ADCA1	ADCB1	ADCC1	XINT1	XINT2	-	TIMER0	WAKE/ WDOG	-	SYS_ER R	-	-	-	-	-	-
INT2.y	EPWM1_ TZ	EPWM2_ TZ	EPWM3_ TZ	EPWM4_ TZ	EPWM5_ TZ	EPWM6_ TZ	EPWM7_ TZ	EPWM8_ TZ	-	-	-	-	-	-	-	-
INT3.y	EPWM1	EPWM2	EPWM3	EPWM4	EPWM5	EPWM6	EPWM7	EPWM8	-	-	-	-	-	-	-	-
INT4.y	ECAP1	ECAP2	ECAP3	ECAP4	ECAP5	ECAP6	ECAP7	-	-	-	ECAP3_I NT2	-	-	-	ECAP6_ HRCAL	ECAP7_ HRCAL
INT5.y	EQEP1	EQEP2	-	-	CLB1	CLB2	CLB3	CLB4	SDFM1	SDFM2	-	-	SDFM1D R1	SDFM1D R2	SDFM1D R3	SDFM1D R4
INT6.y	SPIA_RX	SPIA_TX	SPIB_RX	SPIB_TX	-	-	-	-	-	-	-	-	SDFM2D R1	SDFM2D R2	SDFM2D R3	SDFM2D R4
INT7.y	DMA_CH 1	DMA_CH 2	DMA_CH 3	DMA_CH 4	DMA_CH 5	DMA_CH 6	-	-	-	-	FSITXA_I NT1	FSITXA_I NT2	FSIRXA_ INT1	FSIRXA_ INT2	CLAPRO MCRC	DCC0
INT8.y	I2CA	I2CA_FIF O	I2CB	I2CB_FIF O	-	-	-	-	LINA_0	LINA_1	LINB_0	LINB_1	PMBUSA	-	-	DCC1
INT9.y	SCIA_RX	SCIA_TX	SCIB_RX	SCIB_TX	CANA_0	CANA_1	CANB_0	CANB_1	MCAN_0	MCAN_1	MCAN_E CC	MCAN_ WAKE	BGCRC_ CPU	-	-	HICA
INT10.y	ADCA_E VT	ADCA2	ADCA3	ADCA4	ADCB_E VT	ADCB2	ADCB3	ADCB4	ADCC_E VT	ADCC2	ADCC3	ADCC4	-	-	-	-
INT11.y	CLA1_1	CLA1_2	CLA1_3	CLA1_4	CLA1_5	CLA1_6	CLA1_7	CLA1_8	-	-	-	-	-	-	-	-
INT12.y	XINT3	XINT4	XINT5	PBIST(M POST)	FMC	-	FPU_OV ERFLOW	FPU_UN DERFLO W	-	RAM_CO RR_ERR	FLASH_ CORR_E RR	RAM_AC C_VIOL	PLLSLIP AES_SIN TREQ	BGCRC_ CLA1	CLA_OV ERFLOW	CLA_UN DERFLO W

3.5.4 Bootrom

For bootrom similarities and differences between F28004x and F28003x see Table 3-8 and Table 3-11.

Table 3-8. Bootrom Comparison Table

rabio o di Bodi din Companicon Tabio						
	F28004x	F28003x				
System Debug (ERAD)	NMI is disabled	NMI is enabled. Bootrom exception handler is updated for this NMI				
HWBIST	HWBIST is not available	HWBIST is available				
CPU Boot Mode GPIO Assignments	On the 64-Pin package, F28004x and F28003x havalues are different. For boot mode GPIO assignment the device-specific data sheet.	•				
BMSP Restrictions - Do not use pins	GPIO20-33, GPIO36, GPIO38 and GPIO60-233	GPIO36, GPIO38, GPIO62-223				
RAM Initialization	RAM initialization occurs on POR and XRS	RAM initialization occurs only on POR				
ROM Table	ROM tables for F28004x and F28003x are differe	nt. For details, see device-specific TRM.				
PBIST(MPOST) Status Flag	Flag is reset for every reset type	Flag is reset only for POR rest type				
PBIST(MPOST) Execution Speed	Will execute either at maximum SYSCLK speed or INTOSC clock	Will execute at maximum SYSCLK speed, half o maximum SYSCLK speed or INTOSC clock				

Table 3-9. Boot options Legend

Color	Description							
	Options common for both devices but BOOTDEFx values may differ							
	Options applicable only for F28004x							
	Options applicable only for F28003x							

Table 3-10. Bootloaders and GPIO Assignment Comparison

Bootloader	Option	BOOTDEFx	F28004x	F28003x
Parallel	0	0x00	D0-D7=0 to 7; DSP=16; Host=11	D0-D7=0 to 7; DSP=16; Host=29
Farallel	1	0x20	n/a	D0-D7=0 to 7; DSP=16; Host=11
	0	0x01	TX=29; RX=28	TX=29; RX=28
	1	0x21	TX=16; RX=17	TX=16; RX=17
SCIA	2	0x41	TX=8; RX=9	TX=8; RX=9
	3	0x61	TX=48; RX=49	TX=2; RX=3
	4	0x81	TX=24; RX=25	TX=16; RX=3
	0	0x02	TX=32; RX=33	TX=4; RX=5
CAN	1	0x22	TX=4; RX=5	TX=32; RX=33
CAN	2	0x42	TX=31; RX=30	TX=2; RX=3
	3	0x62	TX=37; RX=35	TX=13; RX=12
	0	0x08	n/a	TX=4; RX=5
MCAN	1	0x28	n/a	TX=1; RX=0
	2	0x48	n/a	TX=13; RX=12
	0	0x06	n/a	SIMO=2 SOMI=1; CLK=3; STE=5
	1	0x26	SIMO=8; SOMI=10; CLK=9; STE=11	SIMO=16 SOMI=1; CLK=3; STE=0
SPI	2	0x46	SIMO=54; SOMI=55; CLK=56; STE=57	SIMO=8 SOMI=10; CLK=9; STE=11
	3	0x66	SIMO=16; SOMI=17; CLK=56; STE=57	SIMO=8 SOMI=17; CLK=9; STE=11
	4	0x86	SIMO=8; SOMI=17; CLK=9; STE=11	n/a

Table 3-10. Bootloaders and GPIO Assignment Comparison (continued)

Bootloader	Option	BOOTDEFx	F28004x	F28003x
	0	0x07	SDA=32; SCL=33	SDA=32; SCL=33
I2C	1	0x27	n/a	SDA=0; SCL=1
	2	0x47	SDA=26; SCL=27	SDA=10; SCL=8
	3	0x67	SDA=42; SCL=43	n/a

Table 3-11. Boot Modes Comparison

Boot Mode	Option	BOOTDEFx	F28004x	F28003x
	0	0x03	Entry=0x00080000; Bank/ Sector=0/0	Entry=0x00080000; Bank/Sector=0/0
	1	0x23	Entry=0x0008EFF0; Bank/ Sector=0/14	Entry=0x00088000; Bank/Sector=0/8
	2	0x43	Entry=0x00090000; Bank/ Sector=1/0	Entry=0x0008FFF0; Bank/Sector=0/15
Flash	3	0x63	Entry=0x0009EFF0; Bank/ Sector=1/14	Entry=0x00090000; Bank/Sector=1/0
	4	0x83	-	Entry=0x00097FF0; Bank/Sector=1/7
	5	0xA3	-	Entry=0x0009FFF0; Bank/Sector=1/15
	6	0xC3	-	Entry=0x000A0000; Bank/Sector=2/0
	7	0xE3	-	Entry=0x000AFFF0; Bank/Sector=2/15
	0	0x0B	-	Entry=0x00080000; Bank=0 Entry=0x00090000; Bank=1 Entry=0x000A0000 Bank=2
	1	0x2B	-	Entry=0x00088000; Bank=0 Entry=0x00098000; Bank=1 Entry=0x000A8000 Bank=2
LFU Flash	2	0x4B	-	Entry=0x0008FFF0; Bank=0 Entry=0x0009FFF0; Bank=1 Entry=0x000AFFF0 Bank=2
	3	0x6B	-	Entry=0x00088000; Bank=0 Entry=0x00090000; Bank=1 Entry=0x000A0000 Bank=2
	4	0x8B	-	Entry=0x0008EFF0; Bank=0 Entry=0x00097FF0; Bank=1 Entry=0x000A7FF0 Bank=2
	0	0x0C	-	Entry=0x00080000; Bank=0 Entry=0x00090000; Bank=1 Entry=0x000A0000 Bank=2
	1	0x2C	-	Entry=0x00088000; Bank=0 Entry=0x00098000; Bank=1 Entry=0x000A8000 Bank=2
Secure LFU Flash	2	0x4C	-	Entry=0x0008FFF0; Bank=0 Entry=0x0009FFF0; Bank=1 Entry=0x000AFFF0 Bank=2
	3	0x6C	-	Entry=0x00088000; Bank=0 Entry=0x00090000; Bank=1 Entry=0x000A0000 Bank=2
	4	0x8C	-	Entry=0x0008EFF0; Bank=0 Entry=0x00097FF0; Bank=1 Entry=0x000A7FF0 Bank=2
Wait	0	0x04	Watchdog enabled	Watchdog enabled
vvait	1	0x24	Watchdog disabled	Watchdog disabled
RAM	0	0x05	Entry=0x00000000	Entry=0x00000000

3.5.5 CLB and Motor Control Libraries

There are no functional changes on the Motor Control Libraries in ROM between F28004x and F28003x. There are feature differences in CLB as outlined in Table 3-12.

Table 3-12. CLB and Motor Control Libraries

Module	Category	F28004x	F28003x	Note
	Features	-	CLB Counter	Module contains pipleline mode
		-	CLB HLC	Module has access to CLB Tile outputs delayed by one cycle
CLB	Registers	-	CLB_LOAD_EN	Global enable and inderect load enable control. Contains field PIPELINE_EN which can enable input pipelinining.
		-	CLB_MISC_ACCESS_CTRL	Miscellaneous access and enable control
		-	CLB_SPI_DATA_CTRL_HI	CLB to SPI buffer control high
Motor Control Libraries in ROM	Features	same	same	No feature differences

3.5.6 **ERAD**

The ERAD module has a number of changes between F28004x and F28003x as highlighted in Table 3-13

Table 3-13. ERAD Module Differences

Module	Category	F28004x	F28003x	Notes				
		-	Event Masking and Exporting	EBC Unit on F28003x supports event OR/AND, maskingand exporting				
		-	Cumulative Mode	SEC Unit on F28003x supports a cummulative mode over several start/stop events				
	Features	-	CRC Unit	F28003x has CRC units to monitor CPU buses and compute CRC when self-test code is executed				
		32 Event Selector Options	128 Event Selector Options	Connections to ADC, CMPSS, EPWM and other sources have been added to F28003x				
		-	GLBL_NMI_CTL	Global Debug NMI Control				
		-	GLBL_EVENT_AND_MASK	Global Bus Comparator Event AND Mask Register				
ERAD		-	GLBL_EVENT_OR_MASK	Global Bus Comparator Event OR Mask Register				
		-	GLBL_AND_EVENT_INT_M ASK	Global AND Event Interrupt Mask Register				
	Registers	-	GLBL_OR_EVENT_INT_MA SK	Global OR Event Interrupt Mask Register				
	. tog.sto.s	-	CTM_INPUT_SEL_2	Counter Input Select Extension Register				
		-	CTM_INPUT_COND	Counter Input Conditioning Register				
		-	CRC_GLOBAL_CTRL	CRC Global Control Register				
		-	CRC_CURRENT	Reads Current CRC Value				
		-	CRC_SEED	CRC Seed Register				
		-	CRC_QUALIFIER	CRC Compute Qualification Register				

3.5.7 GPIO

The GPIO module in F28003x has a new register for reading back the value written in GPyDAT. This register is not available in F28004x. The register is GPyDAT_R and description is as follows:

• GPyDAT_R is a read-only register which return the values written to GPyDAT register instead of pin status. Writes to this register has no effect.

3.5.8 **AGPIO**

F28003x has two AGPIO channels that support both normal GPIO and AGPIO (analog) pin functionality. These channels are available on the 100-pin and 80-pin packages. AGPIO functionality is not available on F28004x. See the F28003x data manual for configuration details.

3.5.9 ERROR Status

Error signaling through a pin is a feature that is available on both F28004x and F28003x devices. The GPIO multiplex in Table 3-17 shows the available multiplex positions that support the functionality of ERROR status. Table 3-14 describes the characteristics of the ERROR status pin.

Table 3-14. Error Status Table

ERROR Status	F28004x	F28003x
Pull requirement	Pull-down	Pull-down
Polarity	Active low	Active low
Polarity option	Fixed	Programmable

3.6 Power Management

The F28004x and F28003x devices have a few different options for power. Both devices support dual-rail (3.3 V and 1.2 V) or single-rail (3.3 V) with the internal LDO VREG however the F28004x also has the option to use it's internal DCDC to provide the 1.2 V rail. This section describes the power management differences and similarities between the two devices.

3.6.1 LDO/VREG

Both F28004x and F28003x devices support internal and external VREG selectable using the VREGENZ pin. However, not all packages support the external VREG option. For packages that do not support external VREG, the VREGENZ pin is replaced by GPIO39 on the F28003x device. See the device-specific data manual for details.

3.6.2 DCDC

The F28003x device does not have a DCDC while F28004x has an internal DCDC to supply the 1.2 V rail that requires minimal external components (inductor and capacitor).

3.6.3 POR/BOR

There are no functional changes for the POR and BOR.

3.6.4 Power Consumption

There is not a significant difference in power consumption between F28003x and F28004x if the same number of peripherals are being utilized and internal VREG is being used for both.

3.7 Memory Module Changes

RAM and FLASH memories in F28004x and F28003x devices have some similarities and differences. Table 3-15 summarizes the memory features including error-checking and security assignment.

Table 3-15. RAM and FLASH Memory Changes

		F28	004x		F28	003x		
	Memory	Size Parity/ ECC Secured		Size	Parity/ ECC	Secured		
	Dedicated(M0,M1)	4KB	ECC	No	4KB	ECC	No	
	Local Shared(LS0-LS7)	32KB	Parity	Yes	32KB	ECC	DCSM- controlled	
RAM	Global Shared(GS0-GS3)	64KB	Parity	No	32KB	ECC	No	
	Message	512B(CPU-CLA)	Parity	No	512B(CPU-CLA) 512B(CLA-DMA)	ECC	No	
	Total RAM	100.	5KB		69	KB		
FLASH	Per Bank	128KB(2 banks)	ECC	DCSM- controlled	128KB(3 banks)	ECC	DCSM- controlled	
	Total FLASH	256	KB		384KB			

3.8 GPIO Multiplexing Changes

Table 3-17 outlines the differences and similarities that exist in the GPIO mux between F28004x and F28003x.

Table 3-16. Mux Legend

	-
Color	Description
	mux function common for both devices
	mux function applicable only for F28004x
	mux function applicable only for F28003x

Table 3-17. GPIO Mux Table Comparison

0, 4, 8, 12	1	2	3	5	6	7	9	10	11	13	14	15	ALT
GPIO0	EPWM1_A				I2CA_SDA	SPIA_STE	FSIRXA_CLK	MCAN_RX	CLB_OUTPUTX BAR8	EQEP1_INDEX	HIC_D7	HIC_BASESEL1	
GPIO1	EPWM1_B				I2CA_SCL	SPIA_SOMI		MCAN_TX	CLB_OUTPUTX BAR7	HIC_A2	FSITXA_TDM_D 1	HIC_D10	
GPIO2	EPWM2_A			OUTPUTXBAR1	PMBUSA_SDA	SPIA_SIMO	SCIA_TX	FSIRXA_D1	I2CB_SDA	HIC_A1	CANA_TX	HIC_D9	
GPIO3	EPWM2_B	OUTPUTXBAR2		OUTPUTXBAR2	PMBUSA_SCL	SPIA_CLK	SCIA_RX	FSIRXA_D0	I2CB_SCL	HIC_NOE	CANA_RX	HIC_D4	
GPIO4	EPWM3_A		MCAN_TX	OUTPUTXBAR3	CANA_TX	SPIB_CLK	EQEP2_STROB E	FSIRXA_CLK	CLB_OUTPUTX BAR6	HIC_BASESEL2		HIC_NWE	
GPIO5	EPWM3_B		OUTPUTXBAR3	MCAN_RX	CANA_RX	SPIA_STE	FSITXA_D1	CLB_OUTPUTX BAR5		HIC_A7	HIC_D4	HIC_D15	
GPIO6	EPWM4_A	OUTPUTXBAR4	SYNCOUT	EQEP1_A	CANB_TX	SPIB_SOMI	FSITXA_D0		FSITXA_D1	HIC_NBE1	CLB_OUTPUTX BAR8	HIC_D14	
GPIO7	EPWM4_B		OUTPUTXBAR5	EQEP1_B	CANB_RX	SPIB_SIMO	FSITXA_CLK	CLB_OUTPUTX BAR2		HIC_A6		HIC_D14	
GPIO8	EPWM5_A	CANB_TX	ADCSOCAO	EQEP1_STROB E	SCIA_TX	SPIA_SIMO	I2CA_SCL	FSITXA_D1	CLB_OUTPUTX BAR5	HIC_A0	FSITXA_TDM_C LK	HIC_D8	
GPIO9	EPWM5_B	SCIB_TX	OUTPUTXBAR6	EQEP1_INDEX	SCIA_RX	SPIA_CLK		FSITXA_D0	LINB_RX	HIC_BASESEL0	I2CB_SCL	HIC_NRDY	
GPIO10	EPWM6_A	CANB_RX	ADCSOCBO	EQEP1_A	SCIB_TX	SPIA_SOMI	I2CA_SDA	FSITXA_CLK	LINB_TX	HIC_NWE	FSITXA_TDM_D 0	CLB_OUTPUTX BAR4	
GPIO11	EPWM6_B	SCIB_RX	OUTPUTXBAR7	EQEP1_B	SCIB_RX	SPIA_STE	FSIRXA_D1	LINB_RX	EQEP2_A	SPIA_SIMO	HIC_D6	HIC_NBE0	
GPIO12	EPWM7_A	CANB_TX	MCAN_RX	EQEP1_STROB E	SCIB_TX	PMBUSA_CTL	FSIRXA_D0	LINB_TX	SPIA_CLK	CANA_RX	HIC_D13	HIC_INT	
GPIO13	EPWM7_B	CANB_RX	MCAN_TX	EQEP1_INDEX	SCIB_RX	PMBUSA_ALER T	FSIRXA_CLK	LINB_RX	SPIA_SOMI	CANA_TX	HIC_D11	HIC_D5	
GPIO14	EPWM8_A	SCIB_TX		I2CB_SDA	OUTPUTXBAR3	PMBUSA_SDA	SPIB_CLK	EQEP2_A	LINB_TX	EPWM3_A	CLB_OUTPUTX BAR7	HIC_D15	
GPIO15	EPWM8_B	SCIB_RX		I2CB_SCL	OUTPUTXBAR4	PMBUSA_SCL	SPIB_STE	EQEP2_B	LINB_RX	EPWM3_B	CLB_OUTPUTX BAR6	HIC_D12	
GPIO16	SPIA_SIMO	CANB_TX	OUTPUTXBAR7	EPWM5_A	SCIA_TX	SD1_D1	EQEP1_STROB E	PMBUSA_SCL	XCLKOUT	EQEP2_B	SPIB_SOMI	HIC_D1	
GPIO17	SPIA_SOMI	CANB_RX	OUTPUTXBAR8	EPWM5_B	SCIA_RX	SD1_C1	EQEP1_INDEX	PMBUSA_SDA	CANA_TX			HIC_D2	
GPIO18_X2	SPIA_CLK	SCIB_TX	CANA_RX	EPWM6_A	I2CA_SCL	SD1_D2	EQEP2_A	PMBUSA_CTL	XCLKOUT	LINB_TX	FSITXA_TDM_C LK	HIC_INT	X2
GPIO19_X1	SPIA_STE	SCIB_RX	CANA_TX	EPWM6_B	I2CA_SDA	SD1_C2	EQEP2_B	PMBUSA_ALER T	CLB_OUTPUTX BAR1	LINB_RX	FSITXA_TDM_D 0	HIC_NBE0	X1
GPIO20	EQEP1_A				SPIB_SIMO	SD1_D3	MCAN_TX						
GPIO21	EQEP1_B				SPIB_SOMI	SD1_C3	MCAN_RX						

Table 3-17. GPIO Mux Table Comparison (continued)

0.4.0.40	4	Table 3-17. GPIO Mux Table Comparison (continued)12356791011131415AI											
0, 4, 8, 12	1	2	3	5	6	/	9		11	13	14	15	ALT
GPIO22	EQEP1_STROB E		SCIB_TX		SPIB_CLK	SD1_D4	LINA_TX	CLB_OUTPUTX BAR1	LINB_TX	HIC_A5	EPWM4_A	HIC_D13	VFBS W
GPIO23	EQEP1_INDEX		SCIB_RX		SPIB_STE	SD1_C4	LINA_RX	CLB_OUTPUTX BAR3	LINB_RX	HIC_A3	EPWM4_B	HIC_D11	vsw
GPIO24	OUTPUTXBAR1	EQEP2_A		EPWM8_A	SPIB_SIMO	SD1_D1 SD2_D1	LINB_TX	PMBUSA_SCL	SCIA_TX	ERRORSTS		HIC_D3	
GPIO25	OUTPUTXBAR2	EQEP2_B		EQEP1_A	SPIB_SOMI	SD1_C1 SD2_C1	FSITXA_D1	PMBUSA_SDA	SCIA_RX		HIC_BASESEL0		
GPIO26	OUTPUTXBAR3	EQEP2_INDEX		OUTPUTXBAR3	SPIB_CLK	SD1_D2 SD2_D2	FSITXA_D0	PMBUSA_CTL	I2CA_SDA		HIC_D0	HIC_A1	
GPIO27	OUTPUTXBAR4	EQEP2_STROB E		OUTPUTXBAR4	SPIB_STE	SD1_C2 SD2_C2	FSITXA_CLK	PMBUSA_ALER T	I2CA_SCL		HIC_D1	HIC_A4	
GPIO28	SCIA_RX		EPWM7_A	OUTPUTXBAR5	EQEP1_A	SD1_D3 SD2_D3	EQEP2_STROB E	LINA_TX	SPIB_CLK	ERRORSTS	I2CB_SDA	HIC_NOE	
GPIO29	SCIA_TX		EPWM7_B	OUTPUTXBAR6	EQEP1_B	SD1_C3 SD2_C3	EQEP2_INDEX	LINA_RX	SPIB_STE	ERRORSTS	I2CB_SCL	HIC_NCS	AUX CLKI N
GPIO30	CANA_RX		SPIB_SIMO	OUTPUTXBAR7	EQEP1_STROB E	SD1_D4 SD2_D4	FSIRXA_CLK	MCAN_RX	EPWM1_A		HIC_D8		
GPIO31	CANA_TX		SPIB_SOMI	OUTPUTXBAR8	EQEP1_INDEX	SD1_C4 SD2_C4	FSIRXA_D1	MCAN_TX	EPWM1_B		HIC_D10		
GPIO32	I2CA_SDA		SPIB_CLK	EPWM8_B	LINA_TX	SD1_D3 SD1_D2	FSIRXA_D0	CANA_TX	PMBUSA_SDA	ADCSOCBO		HIC_INT	
GPIO33	I2CA_SCL		SPIB_STE	OUTPUTXBAR4	LINA_RX	SD1_C3 SD1_C2	FSIRXA_CLK	CANA_RX	EQEP2_B	ADCSOCAO	SD1_C1	HIC_D0	
GPIO34	OUTPUTXBAR1				PMBUSA_SDA					HIC_NBE1	I2CB_SDA	HIC_D9	
GPIO35	SCIA_RX		I2CA_SDA	CANA_RX	PMBUSA_SCL	LINA_RX	EQEP1_A	PMBUSA_CTL	EPWM5_B	SD2_C1	HIC_NWE	TDI	
GPIO37	OUTPUTXBAR2		I2CA_SCL	SCIA_TX	CANA_TX	LINA_TX	EQEP1_B	PMBUSA_ALER T			HIC_NRDY	TDO	
GPIO39					CANB_RX MCAN_RX	FSIRXA_CLK	EQEP2_INDEX		CLB_OUTPUTX BAR2	SYNCOUT	EQEP1_INDEX	HIC_D7	
GPIO40	SPIB_SIMO			EPWM2_B	PMBUSA_SDA	FSIRXA_D0	SCIB_TX	EQEP1_A	LINB_TX		HIC_NBE1	HIC_D5	
GPIO41				EPWM2_A	PMBUSA_SCL	FSIRXA_D1	SCIB_RX	EQEP1_B	LINB_RX	HIC_A4	SPIB_SOMI	HIC_D12	
GPIO42		LINA_RX	OUTPUTXBAR5	PMBUSA_CTL	I2CA_SDA			EQEP1_STROB E	CLB_OUTPUTX BAR3		HIC_D2	HIC_A6	
GPIO43			OUTPUTXBAR6	PMBUSA_ALER T	I2CA_SCL		PMBUSA_ALER T	EQEP1_INDEX	CLB_OUTPUTX BAR4	SD2_D3	HIC_D3	HIC_A7	
GPIO44			OUTPUTXBAR7	EQEP1_A	PMBUSA_SDA	FSITXA_CLK	PMBUSA_CTL	CLB_OUTPUTX BAR3	FSIRXA_D0	HIC_D7	LINB_TX	HIC_D5	
GPIO45			OUTPUTXBAR8			FSITXA_D0	PMBUSA_ALER T	CLB_OUTPUTX BAR4		SD2_C3		HIC_D6	
GPIO46			LINA_TX	MCAN_TX		FSITXA_D1	PMBUSA_SDA			SD2_C4		HIC_NWE	
GPIO47			LINA_RX	MCAN_RX		CLB_OUTPUTX BAR2	PMBUSA_SCL			SD2_D4	HIC_A6	FSITXA_TDM_C LK	
GPIO48	OUTPUTXBAR3		CANA_TX		SCIA_TX	SD1_D1	PMBUSA_SDA				HIC_A7	FSITXA_D0	

Table 3-17. GPIO Mux Table Comparison (continued)

0, 4, 8, 12	1	2	3	5	6	7	9	n (continue	11	13	14	15	ALT
GPIO49	OUTPUTXBAR4		CANA_RX		SCIA_RX	SD1_C1	LINA_RX			SD2_D1	HIC_D2	FSITXA_D1	
GPIO50	EQEP1_A			MCAN_TX	SPIB_SIMO	SD1_D2	I2CB_SDA			SD2_D2	HIC_D3	FSITXA_CLK	
GPIO51	EQEP1_B			MCAN_RX	SPIB_SOMI	SD1_C2	I2CB_SCL			SD2_D3	HIC_D6	FSIRXA_D1	
GPIO52	EQEP1_STROB E			CLB_OUTPUTX BAR5	SPIB_CLK	SD1_D3	SYNCOUT			SD2_D4	HIC_NWE	FSIRXA_CLK	
GPIO53	EQEP1_INDEX			CLB_OUTPUTX BAR6	SPIB_STE	SD1_C3	ADCSOCAO	CANA_RX		SD1_C1			
GPIO54	SPIA_SIMO			EQEP2_A	OUTPUTXBAR2	SD1_D4	ADCSOCBO	LINB_TX		SD1_C2	FSITXA_TDM_D 1	HIC_A0	
GPIO55	SPIA_SOMI			EQEP2_B	OUTPUTXBAR3	SD1_C4	ERRORSTS	LINB_RX		SD1_C3		FSIRXA_D0	
GPIO56	SPIA_CLK		MCAN_TX	EQEP2_STROB E	SCIB_TX	SD1_D3 SD2_D1	SPIB_SIMO	CLB_OUTPUTX BAR7	EQEP1_A	SD1_C4	FSIRXA_D1	HIC_D6	
GPIO57	SPIA_STE		MCAN_RX	EQEP2_INDEX	SCIB_RX	SD1_C3 SD2_C1	SPIB_SOMI	CLB_OUTPUTX BAR8	EQEP1_B		FSIRXA_CLK	HIC_D4	
GPIO58				OUTPUTXBAR1	SPIB_CLK	SD1_D4 SD2_D2	LINA_TX	CANB_TX CANA_TX	EQEP1_STROB E	SD2_C2	FSIRXA_D0	HIC_NRDY	
GPIO59				OUTPUTXBAR2	SPIB_STE	SD1_C4 SD2_C2	LINA_RX	CANB_RX CANA_RX	EQEP1_INDEX	SD2_C3	FSITXA_TDM_D 1		
GPIO60			MCAN_TX	OUTPUTXBAR3	SPIB_SIMO	SD2_D3				SD2_C4		HIC_A0	
GPIO61				FSIRXA_CLK	MCAN_RX	SD2_C3					CANA_RX		
AIO224		SD2_D3										HIC_A3	
AIO225		SD2_C2										HIC_NWE	
AIO226		SD2_D4										HIC_A1	
AIO227		SD1_C3										HIC_NBE0	
AIO228		SD2_C1										HIC_A0	
AIO229													
AIO230		SD1_C4										HIC_BASESEL2	
AIO231		SD1_C1										HIC_BASESEL1	
AIO232		SD1_D4										HIC_BASESEL0	
AIO233		SD2_D1										HIC_A4	
AIO236													
AIO237		SD1_D2										HIC_A6	
AIO238		SD2_C3										HIC_NCS	
AIO239		SD1_D1										HIC_A5	
AIO240		SD2_C1										HIC_NBE1	
AIO241		SD2_C1										HIC_NBE1	
AIO242		SD2_D2										HIC_A2	
AIO244		SD1_D3										HIC_A7	
AIO245		SD1_C2										HIC_NOE	4
AIO247													$\perp \perp \mid$
AIO248													$\perp \perp \perp$
AIO249													

Table 3-17. GPIO Mux Table Comparison (continued)

0, 4, 8, 12 AIO251	1	2	3	5	6	7	9	10	11	13	14	15	ALT
AIO251													
AIO252		SD2_C4											
AIO253													

3.9 Analog Multiplexing Changes

Table 3-19 and Table 3-20 outline the differences and similarities that exist in the analog mux between F28003x and F28004x for the 100-Pin PZ and 64-Pin PM respectively. The legend for the tables is Table 3-18. The main changes are the absence of the PGA and the reduction of the number of CMPSS modules in F28003x from the seven that exist in F28004x to four.

Table 3-18. Mux Legend

	<u> </u>
Color	Description
	mux function common for both devices
	mux function applicable only for F28004x
	mux function applicable only for F28003x

Table 3-19. F28004x and F28003x 100-Pin PZ Analog Mux Table Differences

(F28004x Pin Name)	F28004x	PKG		Always	Connected (NO MUX)			Comparator S	ubsystem (MUX)		
F28003x Pin Name	Group Name	100 PZ	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(VREFHIA) VREFHIABC	-	25										
(VREFHIB, VREFHIC) VREFHIABC		24										
(VREFLOA) VREFLOABC	-	27	A13									
(VREFLOB, VREFLOC)		26		B13								
VREFLOABC					C13							
		F28004	Analog Grou	p 1						F28004x CMP1		-
(A3)	G1_ADCAB	10	A3					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO233
(A2/B6/PGA1_OF)	PGA1_OF	9	A2	B6		PGA1_OF		HPMXSEL = 0		LPMXSEL = 0		AIO224
(C0)	G1_ADCC	19	A14	B14	C0			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO237
A14/B14/C4					C4			CMP3_HPMXSEL = 4		CMP3_LPMXSEL = 4		AIO239
(PGA1_IN)	PGA1_IN	18	A3	В9	C7	PGA1_IN		HPMXSEL = 2		LPMXSEL = 2		AIO229
A3, B9, C7								CMP3_HPMXSEL = 5		CMP3_LPMXSEL = 5		
(PGA1_GND)	PGA1_GND	14	A6			PGA1_GND		HPMXSEL = 2		LPMXSEL = 2		AIO228
A6												
(-)	PGA1_OUT		A11	B7		PGA1_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004	Analog Grou	p 2						F28004x CMP2		•
(A5)	G2_ADCAB	35	A5					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO234
A5								HPMXSEL = 5		LPMXSEL = 5		AIO249
(A4/B8/PGA2_OF)	PGA2_OF	36	A4	B8		PGA2_OF		HPMXSEL = 0		LPMXSEL = 0		AIO225
A4/B8												
(C1)	G2_ADCC	29			C1			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO238
C1								CMP4_HPMXSEL = 2		CMP4_LPMXSEL = 2		AIO248

Table 3-19. F28004x and F28003x 100-Pin PZ Analog Mux Table Differences (continued)

(F28004x Pin Name)		PKG	10.120		Connected (alog Wax Table	Comparator Su			
F28003x Pin Name	F28004x Group Name	100 PZ	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(PGA2 IN)	PGA2 IN	30	ADCA	ADGB	ADCC	PGA2 IN	DAG	HPMXSEL = 2	riigii Negative	LPMXSEL = 2	Low Negative	AlO Iliput
B11	F GAZ_IIV	30		B11		F GAZ_IIV		CMP4_HPMXSEL = 5		CMP4_LPMXSEL = 5		AIO251
(PGA2 GND)	PGA2 GND	32		B5		PGA2 GND		CMP1 HPMXSEL = 5		CMP1 LPMXSEL = 5		AIO251
B5	PGAZ_GND	32		БЭ		PGAZ_GND		CMP1_HPMXSEL = 5		CIVIPT_LPIVIXSEL = 5		AIU252
	PGA2 OUT		A12	B9		DCA2 OUT		HPMXSEL = 4		LPMXSEL = 4		
(-)	PGAZ_001	F29004v				PGA2_OUT		HPWIASEL = 4		F28004x CMP3		
(B2A/DAC)	00 40040		Analog Grou				\/D40	LIDMYOFI			LABAYOFI	410040
(B3/VDAC)	G3_ADCAB	8		B3	00	D040 05	VDAC	HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO242
(B2/C6/PGA3_OF)	PGA3_OF	7		B2	C6	PGA3_OF		HPMXSEL = 0		LPMXSEL = 0		AIO226
(C2)	G3_ADCC	21		B12	C2			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO244
B12/C2												
(PGA3_IN)	PGA3_IN	20	A11	B10	C0	PGA3_IN		HPMXSEL = 2	CMP1_HNMXSEL = 1	LPMXSEL = 2	CMP1_LNMXSEL = 1	AIO237
A11, B10, C0								CMP1_HPMXSEL = 1		CMP1_LPMXSEL = 1		
(PGA3_GND)	PGA3_GND	15		B2	C6	PGA3_GND		HPMXSEL = 0		LPMXSEL = 0		AIO226
B2, C6												
(-)	PGA3_OUT			B10		PGA3_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004x	Analog Grou	ıp 4						F28004x CMP4		
(B5)	G4_ADCAB			B5				HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO243
(B4/C8/PGA4_OF)	PGA4_OF	39		B4	C8	PGA4_OF		HPMXSEL = 0		LPMXSEL = 0		AIO227
B4/C8												AIO236
(C3)	G4_ADCC	31	A7		C3			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO245
A7, C3												
(PGA4_IN)	PGA4_IN					PGA4_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA4_GND)	PGA4_GND	32				PGA4_GND						
(-)	PGA4_OUT			B11	C9	PGA4_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004x	Analog Grou	ıp 5	•				ı	F28004x CMP5		•
(A7)	G5_ADCAB		A7					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO235
(A6/PGA5_OF)	PGA5_OF	6	A6			PGA5_OF		HPMXSEL = 0		LPMXSEL = 0		AIO228
(C4)	G5_ADCC	17	A2	В6	C4			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO239
A2/B6/C9					C9			CMP1_HPMXSEL = 0		CMP1_LPMXSEL = 0		AIO224
(PGA5_IN)	PGA5_IN	16		B3		PGA5_IN	VDAC	HPMXSEL = 2	CMP3 HNMXSEL = 0	LPMXSEL = 2	CMP3 LNMXSEL = 0	AIO242
B3, VDAC								CMP3 HPMXSEL = 0	_	CMP3 LPMXSEL = 0		
(PGA5 GND)	PGA5 GND	13				PGA5 GND		_		_		
(-)	PGA5_OUT		A14			PGA5_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004x	Analog Grou	ID 6		_				F28004x CMP6		
(A9)	G6 ADCAB	38	A9	·				HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO236
A9								CMP2_HPMXSEL = 2		CMP2 LPMXSEL = 2		AIO227
(A8/PGA6_OF)	PGA6 OF	37	A8			PGA6 OF		HPMXSEL = 0		LPMXSEL = 0		AIO229
A8		-						CMP4 HPMXSEL = 4		CMP4 LPMXSEL = 4		AIO240
(C5)	G6 ADCC	28	A12		C5			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO240
l ` '	00_7,000		7,12									AIO240
	PGA6 IN	-				DGAG IN			C.III E_IIIIIIIAGEE = I	_	CAN E_ENANGEE = 1	7110200
A12/C5 (PGA6_IN)	PGA6_IN	_				PGA6_IN		CMP2_HPMXSEL = 1 HPMXSEL = 2	CMP2_HNMXSEL = 1	CMP2_LPMXSEL = 1 LPMXSEL = 2	CMP2_LNMXSEL = 1	Α

Table 3-19. F28004x and F28003x 100-Pin PZ Analog Mux Table Differences (continued)

(F28004x Pin Name)	F28004x	PKG		Always	Connected (N	NO MUX)		_	Comparator Su	bsystem (MUX)		
F28003x Pin Name	Group Name	100 PZ	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(PGA6_GND)	PGA6_GND	32				PGA6_GND						
(-)	PGA6_OUT		A15			PGA6_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004x	Analog Grou	p 7					ı	F28004x CMP7		
(B0)	G7_ADCAB	41		В0	C11			HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO241
B0, C11								CMP2_HPMXSEL = 4		CMP2_LPMXSEL = 4		AIO253
(A10/B1/C10/PGA7_OF)	PGA7_OF	40	A10	B1	C10	PGA7_OF		HPMXSEL = 0	CMP2_HNMXSEL = 0	LPMXSEL = 0	CMP2_LNMXSEL = 0	AIO230
A10/B1/C10								CMP2_HPMXSEL = 3		CMP2_LPMXSEL = 3		
(C14)	G7_ADCC	44			C14			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO246
(PGA7_IN)	PGA7_IN	43				PGA7_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA7_GND)	PGA7_GND	42			C14	PGA7_GND		CMP4_HPMXSEL = 3	CMP4_HNMXSEL = 0	CMP4_LPMXSEL = 3	CMP4_LNMXSEL = 0	AIO247
C14												
(-)	PGA7_OUT			B12	C11	PGA7_OUT		HPMXSEL = 4		LPMXSEL = 4		
			•		•	Other	F28004x Ana	log				•
(A0/B15/C15/DACA_OUT)		23	A0	B15	C15		DACA_OUT	CMP3_HPMXSEL = 2		CMP3_LPMXSEL = 2		AIO231
A0/B15/C15/DACA_OUT												
(A1/DACB_OUT)		22	A1	B7			DACB_OUT	CMP1_HPMXSEL = 4		CMP1_LPMXSEL = 4		AIO232
A1/B7/DACB_OUT												
(C12)					C12							AIO247
-	TempSensor			B14	C12							

Table 3-20. F28004x and F28003x 64-Pin PM Analog Mux Table Differences

(F28004x Pin Name)	F28004x	PKG	Always Connected (NO MUX)					Comparator Subsystem (MUX)				
F28003x Pin Name	Group Name	64 PM	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(VREFHIA, VREFHIB, VREFHIC) VREFHIABC	-	16										
(VREFLOA, VREFLOB,	-	17	A13									
VREFLOC) VREFLOABC				B13								
					C13							
		F28004x	Analog Grou	ıp 1	'			F28004x CMP1				
(A3)	G1_ADCAB		A3					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO233
(A2/B6/PGA1_OF)	PGA1_OF	9	A2	В6	C9	PGA1_OF		HPMXSEL = 0		LPMXSEL = 0		AIO224
A2/B6/C9												
(CO)	G1_ADCC	12	A11	B10	C0			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO237
A11/B10/C0												
(PGA1_IN)	PGA1_IN					PGA1_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA1_GND)	PGA1_GND	10	A15	B9	C7	PGA1_GND		HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO233
A15/B9/C7												
(-)	PGA1_OUT		A11	B7		PGA1_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004>	Analog Grou	ıp 2				F28004x CMP2				
(A5)	G2_ADCAB		A5					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO234

Table 3-20. F28004x and F28003x 64-Pin PM Analog Mux Table Differences (continued)

(F28004x Pin Name)		PKG Always Connected (NO MUX)						Comparator Subsystem (MUX)				
F28003x Pin Name	F28004x Group Name	64 PM	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(A4/B8/PGA2_OF)	PGA2 OF	23	A4	B8	C14	PGA2 OF		HPMXSEL = 0	CMP4 HNMXSEL = 0	LPMXSEL = 0	CMP4 LNMXSEL = 0	AIO225
A4/B8/C14	_					_		CMP4 HPMXSEL = 3	_	CMP4 LPMXSEL = 3	_	
(C1)	G2_ADCC	18	A12		C1			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO238
A12/C1								CMP4_HPMXSEL = 2		CMP4_LPMXSEL = 2		AIO248
(PGA2_IN)	PGA2_IN					PGA2_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA2_GND)	PGA2_GND	20	A8	В0	C11	PGA2_GND		HPMXSEL = 4		LPMXSEL = 4		AIO241
A8/B0/C11								CMP4_HPMXSEL = 4		CMP4_LPMXSEL = 4		
(-)	PGA2_OUT		A12	B9		PGA2_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004	Analog Grou	ıp 3						F28004x CMP3		
(B3/VDAC)	G3_ADCAB	8	A3	В3	C5		VDAC	HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO242
A3/B3/C5/VDAC								HPMXSEL = 5		LPMXSEL = 5		
(B2/C6/PGA3_OF)	PGA3_OF	7		B2	C6	PGA3_OF		HPMXSEL = 0		LPMXSEL = 0		AIO226
B2/C6												
(C2)	G3_ADCC	13	A5	B12	C2			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO244
A5/B12/C2								CMP2_HPMXSEL = 5		CMP2_LPMXSEL = 5		
(PGA3_IN)	PGA3_IN					PGA3_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA3_GND)	PGA3_GND	10				PGA3_GND						
(-)	PGA3_OUT			B10		PGA3_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004	Analog Grou	ıp 4						F28004x CMP4		
(B5)	G4_ADCAB			B5				HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO243
(B4/C8/PGA4_OF)	PGA4_OF	24	A9	B4	C8	PGA4_OF		HPMXSEL = 0		LPMXSEL = 0		AIO227
A9/B4/C8								CMP2_HPMXSEL = 2		CMP2_LPMXSEL = 2		AIO236
(C3)	G4_ADCC	19	A7		C3			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO245
A7/C3												
(PGA4_IN)	PGA4_IN					PGA4_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA4_GND)	PGA4_GND	20				PGA4_GND						
(-)	PGA4_OUT			B11	C9	PGA4_OUT		HPMXSEL = 4		LPMXSEL = 4		
		F28004	α Analog Grou	ıp 5				F28004x CMP5				
(A7)	G5_ADCAB		A7					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO235
(A6/PGA5_OF)	PGA5_OF	6	A6			PGA5_OF		HPMXSEL = 0		LPMXSEL = 0		AIO228
A6								CMP1_HPMXSEL = 2		CMP1_LPMXSEL = 2		
(C4)	G5_ADCC	11	A14	B14	C4			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO239
A14/B14/C4								CMP3_HPMXSEL = 4		CMP3_LPMXSEL = 4		
(PGA5_IN)	PGA5_IN					PGA5_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA5_GND)	PGA5_GND	10				PGA5_GND						
(-)	PGA5_OUT		A14			PGA5_OUT		HPMXSEL = 4		LPMXSEL = 4		
F28004x Analog Group 6								F28004x CMP6				
(A9)	G6_ADCAB		A9					HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO236
(A8/PGA6_OF)	PGA6_OF		A8			PGA6_OF		HPMXSEL = 0		LPMXSEL = 0		AIO229
(C5)	G6_ADCC				C5			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO240
(PGA6_IN)	PGA6_IN					PGA6_IN		HPMXSEL = 2		LPMXSEL = 2		

Table 3-20. F28004x and F28003x 64-Pin PM Analog Mux Table Differences (continued)

(F28004x Pin Name)	PKG			Connected (f		1 111 / 1110	Comparator Subsystem (MUX)					
F28003x Pin Name	F28004x Group Name	64 PM	ADCA	ADCB	ADCC	PGA	DAC	High Positive	High Negative	Low Positive	Low Negative	AIO Input
(PGA6_GND)	PGA6_GND	20				PGA6_GND		-			-	
(-)	PGA6_OUT		A15			PGA6_OUT		HPMXSEL = 4		LPMXSEL = 4		
F28004x Analog Group 7					F28004x CMP7							
(B0)	G7_ADCAB			В0				HPMXSEL = 3	HNMXSEL = 0	LPMXSEL = 3	LNMXSEL = 0	AIO241
(A10/B1/C10/PGA7_OF)	PGA7_OF	25	A10	B1	C10	PGA7_OF		HPMXSEL = 0	CMP2_HNMXSEL = 0	LPMXSEL = 0	CMP2_LNMXSEL = 0	AIO230
A10/B1/C10								CMP2_HPMXSEL = 3		CMP2_LPMXSEL = 3		
(C14)	G7_ADCC				C14			HPMXSEL = 1	HNMXSEL = 1	LPMXSEL = 1	LNMXSEL = 1	AIO246
(PGA7_IN)	PGA7_IN					PGA7_IN		HPMXSEL = 2		LPMXSEL = 2		
(PGA7_GND)	PGA7_GND					PGA7_GND						
(-)	PGA7_OUT			B12	C11	PGA7_OUT		HPMXSEL = 4		LPMXSEL = 4		
						Other	F28004x Ana	log				
(A0/B15/C15/DACA_OUT)		15	A0	B15	C15		DACA_OUT	CMP3_HPMXSEL = 2		CMP3_LPMXSEL = 2		AIO231
A0/B15/C15/DACA_OUT												
(A1/DACB_OUT)		14	A1	B7			DACB_OUT	CMP1_HPMXSEL = 4		CMP1_LPMXSEL = 4		AIO232
A1/B7/DACB_OUT												
(C12)					C12							AIO247
-	TempSensor			B14	C12							

4 Application Code Migration From F28004x to F28003x

The following section describes code changes when migrating from F28004x to F28003x. Software examples for the new features in F28003x are also discussed in this section.

4.1 C2000Ware Header Files

Header files for both F28003x and F28004x devices are available in C2000Ware under the device_support sub directory.

4.2 Linker Command Files

Linker command files for both F28003x and F28004x devices are available in C2000Ware under the device_support sub directory. Specific to F28003x, which has to be compiled to the Embedded Application Binary Interface (EABI) format, section names would also need to conform to the EABI standard. For more details, see Table 6-1.

4.3 Minimum Compiler Version Requirement for TMU Type 1

Code Composer Studio[™] (CCS) compiler version 18.12.0.LTS supports the new instruction sets for TMU Type1 new instruction sets.

4.4 C2000Ware Examples

C2000Ware has examples specific for both F28003x and F28004x devices.

5 Specific Use Cases Related to F28003x New Features

This section outlines the new examples in C2000Ware for the F28003x device to support the new features such as HIC and FID/NLPID.

5.1 HIC

C2000Ware has example tests, hic_ex1, hic_ex2 and hic_ex3, that demonstrate the functionality of the HIC module in F28003x device.

5.2 FINTDIV

C2000Ware has examples that demonstrate the functionality of fast integer division instructions for the F28003x device.

5.3 TMU Type1

C2000Ware DCL under control libraries has examples that demonstrate the two new instructions (IEXP2F32 and LOGF32) to support NLPID in the F28003x device.

5.4 AES

C2000Ware has examples that demonstrate the encryption and decryption capabilities of the AES module.

5.5 MCAN

C2000Ware has loopback, transmit and receive examples that illustrate MCAN operation.

5.6 EPG

C2000Ware has examples that demonstrate the functionality of the EPG module.

6 EABI Support

In the past, F28004x applications have always supported the Common Object File Format (COFF) binary executable output. COFF has several limitations. One of which is that the symbolic debugging information is not capable of supporting C/C++. There is also a limit on the maximum number of sections and length of section names and source files, among other things. COFF is also not an industry standard. For these reasons, C2000 is now migrating to Embedded Application Binary Interface (EABI) format. EABI and COFF are incompatible and conversion between the two formats is not possible. This section provides summary of COFF and EABI differences and useful links that provide more guidelines in migrating applications from COFF to EABI.

www.ti.com EABI Support

- EABI key differences with COFF:
 - Direct initialization
 - · Uninitialized data is zero by default in EABI.
 - Initialization of RW data is accomplished via linker-generated compressed copy tables in EABI.
 - C++ language support
 - C++ inline function semantics: In COFF, inline functions are treated as static inline and this causes issues for functions that cannot be inlined or have static data. In EABI, inline functions without the 'static' gualifier have external linkage.
 - Better template instantiation: COFF uses a method called late template instantiation and EABI uses early template instantiation. Late template instantiation can run into issues with library code and can result in long link times. Early instantiation uses ELF COMDAT to guarantee templates are always instantiated properly and at most one version of each instantiation is present in the final executable.
 - Table-Driven Exception Handling (TDEH): Almost zero impact on code performance as opposed to COFF which uses setimp/longimp to implement C++ exceptions Features enabled by EABI.
 - Features enabled by EABI
 - Location attribute: Specify the run-time address of a symbol in C-source code.
 - Noinit/persistent attribute: Specify if a symbol should not be initialized during C auto initialization.
 - Weak attribute: Weak symbol definitions are pre-empted by strong definitions. Weak symbol references are not required to be resolved at link time. Unresolved weak symbols resolve to 0.
 - External aliases: In COFF, the compiler will make A an alias to B if all calls to A can be replaced with B. A and B must be defined in the same file. In EABI, the compiler will make A an alias to B even if B is external.
 - Calling convention
 - Scalar calling convention is identical between COFF and EABI
 - Struct calling convention (EABI)
 - Single field structs are passed/returned by value corresponding to the underlying scalar types.
 - For FPU32, homogenous float structs with size less than 128 bits will be passed by value.
 - Passed in R0H-R3H, then by value on the stack.
 - Structs that are passed by value are also candidates for register allocation.
 - For FPU64, the same applies for 64-bit doubles(R0-R3).
 - Double memory size
 - In EABI, double is 64-bit size while in COFF, double is still represented as 32-bit size.
 - C/C++ requires that double be able to represent integer types with at least 10 decimal digits, which effectively requires 64-bit double precision.
- Sections overview:

Table 6-1 summarizes the section names for COFF and EABI. These are compiler-generated sections.

Table 6-1. Section Names

Description	COFF	EABI						
Read-Only Sections								
Const data	.econst	.const						
Const data above 22-bits	.farconst	.farconst						
Code	.text	.text						
Pre-main constructors	.pinit	.init_array						
Exception handling	N/A	.c28xabi.exidx/.c28xabi.extab						
	Read-Write Sections							
Uninitialized data	.ebss	.bss						
Initialized data	N/A	.data						
Uninitialized data above 22-bits	.farbss	.farbss						
Initialized data above 22-bits	N/A	.fardata						
Неар	.esysmem	.sysmem						

EABI Support www.ti.com

Table 6-1. Section Names (continued)

Description	COFF	EABI		
Stack	.stack	.stack		
CIO Buffer	.cio	.bss:cio		

Resources:

For more information regarding EABI and the migration process, see the resources on the links below:

- Wiki: http://processors.wiki.ti.com/index.php/EABI
- Wiki: http://processors.wiki.ti.com/index.php/C2000 EABI Migration
- C28 EABI Specifications: C28x embedded application binary interface (SPRAC71)

6.1 Flash API

F28004x has two Flash banks. F28003x has three Flash banks. Hence, the F28003x Flash API library (FlashAPI_F28003x_FPU32.lib) supports erase, program and verify operations for the Flash Bank0, 1 and 2 address ranges. Compared to the F28004x Flash API library (F021_API_F28004x_FPU32.lib), the F28003x Flash API is enhanced to return an error when an invalid address is provided for erase, blank-check, program and verify functions. Also, the F28003x Flash API is enhanced to return an error when an invalid programming mode is provided for program operation. Fapi_getLibraryInfo() in FlashAPI_F28003x_FPU32.lib returns the Flash API minor version as 58 (F28004x Flash API returns 56 as the API minor version). The F28003x Flash API library is compiled for EABI format, whereas, the F28004x Flash API library is compiled for legacy COFF. Note that F28004x and F28003x have the same Bank0 and Bank1 memory map and sector sizes. Also, the Flash wait-state configuration requirement is the same between the two devices. These features are summarized in Table 6-2.

Table 6-2. Flash API Differences

14010 0 211 14011 741 1 211101011000						
Feature	F28004x	F28003x				
Library Name	F021_API_F28004x_FPU32.lib	FlashAPI_F28003x_FPU32.lib				
Library Executable Output	COFF (with future EABI support)	EABI				
Erase, Blank-check, Program and Verify	Operation on two banks	Operation on three banks				
Flash Wait States	Same wait states	s on both devices				
FlashAPI Minor Version	56	58				

6.2 NoINIT Struct Fix (Linker Command)

With EABI, the SECTIONS area of a linker command file has to be modified as shown in the example below in order for the registers or memory areas to not be initialized to a zero value. This is important as failure to make this modification can result to unintended behavior when register bits are forced to zero during start up. By default, EABI initializes registers or memory areas defined in the SECTIONS part of the linker to zero.

Linker modification example:

```
SECTIONS
{
:
Regs1File :> REG1_ADDR, type=NOINIT
Regs2File :> REG2_ADDR, type=NOINIT
:
}
```

6.3 Pre-Compiled Libraries

All F28003x libraries supplied by TI will be released as EABI. Future F28003x libraries created by customers should be generated and compiled as EABI as well.

www.ti.com References

7 References

- Texas Instruments: C28 EABI Specifications: C28x Embedded Application Binary Interface
- EABI wiki
- C2000 EABI Migration wiki
- Texas Instruments: TMS320F28003x Microcontrollers Technical Reference Manual (SPRUIW9)
- Texas Instruments: TMS320F2838x Microcontrollers Technical Reference Manual
- Texas Instruments: TMS320F28003x Microcontrollers Data Sheet (SPRSP61)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated