# Lecture 7: Curves in Space (§11.1, 13.1)

### Goals:

- 1. Fluently and accurately apply the terminology of parametric curves (parametric curve, parametric equations, parameter, parameter interval, initial point, terminal point).
- 2. Analyze the parametrization for a curve or path and sketch (or describe) the curve or path, including a description of the motion performed.
- 3. Interpret vector-valued functions as representing the position of a moving particle.

### Parametrization of plane curves

If x and y are given as continuous functions

$$x = f(t)$$
 and  $y = g(t)$ ,

over an interval I of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a **parametric curve**. The equations are **parametric equations** for the curve.

If I = [a, b] is a closed interval, the point (f(a), g(a)) is the **initial point** of the curve and the point (f(b), g(b)) is the **terminal point**.

Position of particle at time r

(f(t), g(t))

The initial point

(f(a), g(a))

**Example.** Sketch the curve defined by the parametric equation  $x=t^2, y=t+1$  for  $I=(-\infty,\infty)$ .

| t          | × | ا ا |
|------------|---|-----|
| _3         | 9 | 4   |
| 2          | 4 | 3   |
| 1          | 1 | 2   |
| Ö          | 0 | 1   |
| -7         | 1 | 0   |
| -2         | 4 | -1  |
| <b>-</b> 5 | 9 | - 2 |



$$y = t+1$$
,  $t = y-1$   
 $x = t^2 = (y-1)^2$   
 $x = (y-1)^2$ 

TABLE 11.2 Values of  $x = t^2$  and y = t + 1 for selected values of t.

| t  | x | y  |
|----|---|----|
| -3 | 9 | -2 |
| -2 | 4 | -1 |
| -1 | 1 | 0  |
| 0  | 0 | 1  |
| 1  | 1 | 2  |
| 2  | 4 | 3  |
| 3  | 9 | 4  |



**FIGURE 11.3** The curve given by the parametric equations  $x = t^2$  and y = t + 1 (Example 2).

Another method of drawing a curve is to use algebraic manipulation to write y as a function of x, or vice versa (or via an implicit equation). This however doesn't provide us any information on the position (f(t), g(t)) of the curve as t varies, so this should be done as well.

#### **Example.** Sketch the parametrized curves:

1. 
$$x = \cos(t), y = \sin(t), 0 \le t \le 2\pi$$
.

2. 
$$x = a\cos(t), y = a\sin(t), 0 \le t \le 2\pi$$
.





**FIGURE 11.4** The equations  $x = \cos t$  and  $y = \sin t$  describe motion on the circle  $x^2 + y^2 = 1$ . The arrow shows the direction of increasing t (Example 3).





**Example.** The position P(x, y) of a particle moving in the xy-plane is given by equations and parameter interval

$$x = |\sqrt{t}|$$
 and  $y = t, t \ge 0$ .

Identify the path traced by the particle and describe the motion.



Remark. The points on the curve are precisely,  $x = \sqrt{y}$  for  $y \ge 0$ . It might be tempting to write  $x^2 = y$  and  $y \ge 0$ , instead of  $x = \sqrt{y}$ , but this set is much larger, since it contain also the negative values of x.



**FIGURE 11.5** The equations  $x = \sqrt{t}$  and y = t and the interval  $t \ge 0$  describe the path of a particle that traces the right-hand half of the parabola  $y = x^2$  (Example 4).

## Curves in space

A vector-valued function (or vector function or vector parametrization is a function that takes as input a real number t and returns as an output a vector  $\overrightarrow{r}(t)$ .

Any vector function in space can be written in terms of its components:

$$\overrightarrow{r}(t) = (f(t), g(t), h(t))$$

The f(t), g(t) and h(t) are called the **component functions** of  $\overrightarrow{r}(t)$ .

- 00 < t < 00

1.  $\overrightarrow{r}(t) = (\cos(t), \sin(t), t)$ .



3.  $\overrightarrow{r}(t) = (\cos(t), \sin(t), \sin(100t)).$ 











clarification; the following example is a solve, please to not try to manipulate it.

**Example.** Use algebraic manipulation to find a parametrization for a curve whose components satisfy the following implicit equation:

$$\begin{split} &\left((\frac{x}{7})^2 \cdot \sqrt{\frac{||x|-3|}{(|x|-3)}} + (\frac{y}{3})^2 \cdot \sqrt{\frac{|y+3 \cdot \frac{\sqrt{33}}{7}|}{y+3 \cdot \frac{\sqrt{33}}{7}}} - 1\right) \\ &\cdot \left(|\frac{x}{2}| - ((3 \cdot \frac{\sqrt{33}-7)}{112}) \cdot x^2 - 3 + \sqrt{1-(||x|-2|-1)^2} - y\right) \\ &\cdot \left(3 \cdot \sqrt{\frac{|(|x|-1) \cdot (|x|-0.75)|}{((1-|x|) \cdot (|x|-0.75))}} - 8 \cdot |x| - y\right) \\ &\cdot \left(3 \cdot |x| + 0.75 \cdot \sqrt{\frac{|(|x|-0.75) \cdot (|x|-0.5)|}{((0.75-|x|) \cdot (|x|-0.5))}} - y\right) \\ &\cdot \left(2.25 \cdot \sqrt{\frac{|(x-0.5) \cdot (x+0.5)|}{((0.5-x) \cdot (0.5+x))}} - y\right) \\ &\cdot \left(\frac{\sqrt{360}}{7} + (\frac{3-|x|}{2}) \cdot \sqrt{\frac{||x|-1|}{|x|-1}} - \frac{\sqrt{360}}{14} \cdot \sqrt{4-(|x|-1)^2} - y\right) = 0. \end{split}$$

