Package 'scCNAutils'

November 4, 2018

Title Functions to analyze copy number aberrations in single-cell data **Version** 0.0.0.9000 **Description** Functions to analyze copy number aberrations in singlecell data. A bunch of scripts and workflows to read and analyze scRNAseq data and look at CNA-oriented signal. **Depends** R ($\xi = 3.4.4$) **License** MIT License + file LICENSE **Encoding** UTF-8 LazyData true Imports Matrix, dplyr, magrittr, tidyr, rlang, parallel, ggplot2, data.table, Rtsne Suggests testthat RoxygenNote 6.1.0

R topics documented:

n_genes	2
nvert_to_coord	
orm_ge	3
ot_qc_cells	
${ m ot_tsne}$	
z_cells	
Lafilter	5
ad_mtx	
n_pca	7
n_tsne	8

2 convert_to_coord

smooth_movingw	3
zscore	9

Index 10

bin_genes

Merge consecutive genes into expressed bins

Description

Merge consecutive genes into expressed bins

Usage

```
bin_genes(ge_df, mean_exp = 3, nb_cores = 1)
```

Arguments

ge_df the input gene expression with coordinate columns (chr, start, end) and

then one column per cell.

mean_exp the desired minimum mean expression in the bin.

nb_cores the number of processors to use.

Value

a data.frame with bin expression.

Author(s)

Jean Monlong

convert_to_coord

Convert gene symbols to coordinates

Description

If *genes_coord* is a filename, the file is expected to be a tab-delimited file with four columns: 'chr', 'start', 'end', 'symbol'. The order of the columns is not important.

Usage

```
convert_to_coord(ge_df, genes_coord, chrs = c(1:22, "X", "Y"),
    rm_dup = TRUE)
```

norm_ge 3

Arguments

ge_df the data.frame with gene expression and one column 'symbol' with gene

names.

genes_coord either a file name or a data.frame with coordinates and gene names.

the chromosome names to keep. NULL to include all the chromosomes.

rm_dup remove duplicated coordinates? Default is TRUE.

Details

The gene names in column 'symbol' should match the gene names in the input ge_df .

Value

a data.frame with columns 'chr', 'start', 'end' columns with genes coordinates (and still one column per barcode).

Author(s)

Jean Monlong

norm_ge

Normalize gene expression

Description

Normalize gene expression

Usage

```
norm_ge(ge_df, method = c("tmm", "total"), nb_cores = 1)
```

Arguments

ge_df the input gene expression method the normalization method

nb_cores the number of processors to use.

Value

a data.frame with the normalized expression.

Author(s)

 $plot_tsne$

plot_qc_cells

 $QC\ graphs$

Description

QC graphs

Usage

```
plot_qc_cells(qc_df)
```

Arguments

 qc_df

the output data.frame from ${\tt qc_cells}$

Value

a list of ggplots

Author(s)

Jean Monlong

plot_tsne

 $tSNE\ graphs$

Description

tSNE graphs

Usage

```
plot_tsne(tsne_df, qc_df = NULL)
```

Arguments

tsne_df

the output data.frame from run_tsne (columns: cell, tsne1, tsne2)

qc_df

a data.frame with QC metrics (output from qc_cells). Default is NULL

(i.e. not used)

Value

a list of ggplot objects

Author(s)

 qc_cells 5

|--|

Description

If cell_cycle is provided it should be a data.frame (or a tsv file) with two columns: 'symbol' with gene names, and 'phase' with the cell cycle phase (e.g. either 'G1.S' or 'G2.M').

Usage

```
qc_cells(ge_df, cell_cycle = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See

details.

Value

a data.frame with qc metrics per cell.

Author(s)

Jean Monlong

qc_filter Filter cells based on QC results

Description

Filter cells based on QC results

Usage

```
qc_filter(ge_df, qc_df, max_mito_prop = 0.2, min_total_exp = 0)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

 qc_df the output data.frame from qc_cells

max_mito_prop the maximum proportion of mitochondrial RNA.

6 read_mtx

Value

 ge_df with only the cells that passed the filters

Author(s)

Jean Monlong

read_mtx

Read a trio of genes, barcodes and mtx files.

Description

Read a trio of genes, barcodes and mtx files.

Usage

```
read_mtx(mtx_file = "matrix.mtx", genes_file = "genes.tsv",
  barcodes_file = "barcodes.tsv", path = ".", rm_dup = TRUE,
  genes_col = 2)
```

Arguments

mtx_file the path to the mtx file genes_file the path to the genes file. barcodes_file the path to the barcodes file

path the path to the folder containing the files

rm_dup remove duplicated gene names? Default is TRUE.

genes_col the column to use in genes_file. Default is 2.

Value

a data.frame with a 'symbol' column with gene names and one column per barcode.

Author(s)

run_pca 7

run_pca Run PCA

Description

Cells in core_cells are used to build the principal components to which all cells are then projected to. Usually used to reduce the effect of cell cycle in the PCA, by using only cells that don't cycle (see qc_cells) as core_cells.

Usage

```
run_pca(z_df, core_cells = NULL, out_pcs = 100)
```

Arguments

z_df a data.frame with z-scores for each cell

core_cells if non-NULL, a vector with the names of the cells to use as core cells. See

details. Default is NULL.

out_pcs the number of top PCs to report. Default is 100.

Details

The graph (sdev.graph) shows the standard deviation for the top 50 PCs. To show more/less PCs, add xlim(1,N) to the sdev.graph. See examples.

Value

a list with

x the PC matrix

sdev the standard deviations of the PCs

sdev.graph a ggplot graph of the sdev

Author(s)

Jean Monlong

Examples

```
## Not run:
pca.o = run_pca(z)

## Zoom in to the top 20 PCs
pca.o$sdev.graph + xlim(1,20)

## End(Not run)
```

8 smooth_movingw

run_tsne

 $Run\ tSNE$

Description

Run tSNE

Usage

```
run_tsne(pca_o, nb_pcs = 10, nb_it = 1000)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10.

nb_it the number of iterations. Default 1000.

Value

```
a data.frame with columns: cell, tsne1, tsne2
```

Author(s)

Jean Monlong

 $smooth_movingw$

Moving-window smoothing

Description

Moving-window smoothing

Usage

```
smooth_movingw(df, wsize = 3, nb_cores = 1, FUN = stats::median)
```

Arguments

df the input data.frame with coordinate columns (chr, start, end) and then

one column per cell

wsize the window size. Default is 3.

nb_cores the number of processors to use.

FUN the function to apply to each window. Default is median.

zscore

Value

a data.frame with smoothed signal.

Author(s)

Jean Monlong

zscore

 $Compute\ Z\text{-}score$

Description

Compute Z-score

Usage

```
zscore(ge_df, wins.th = 3, method = c("norm", "z"), normals = NULL)
```

Arguments

ge_df the inpue expression data.frame

wins.th the threshold to winsorize Z-score. Default is 3 method the normalization method. Either 'norm' or 'z'.

normals the cells to use as normals. If NULL (default) all cells are used as normals

Value

a data.frame with Z-scores.

Author(s)

Index

```
bin_genes, 2

convert_to_coord, 2

norm_ge, 3

plot_qc_cells, 4

plot_tsne, 4

qc_cells, 4, 5, 7

qc_filter, 5

read_mtx, 6

run_pca, 7, 8

run_tsne, 4, 8

smooth_movingw, 8

zscore, 9
```