Mitschrift Computergrafik

Martin Lenders

14. April 2010

Inhaltsverzeichnis

1	Einf	ührung	į
	1.1	Organisatorisches	ļ
		1.1.1 Übungsblätter:	ļ
		1.1.2 Programmierung	ļ
	1.2	Übersicht	,
		1.2.1 Fahrplan	ļ
2		ordinatensysteme, geometrische Transformationen	7
	2.1	kartesische Koordinaten	-
	2.2	Geometrische Transformationen	-
	2.3	Homogene Koordinaten	8
		2.3.1 Allgemeine affine Transformation in homogenen Koordinaten	(

1 Einführung

1.1 Organisatorisches

1.1.1 Übungsblätter:

- Ausgabe: Mittwoch, Abgabe: Freitag
- Abgabe in Zweiergruppen
- $\bullet~60\%$ der Punkte müssen erreicht werden
- min. einmal Vorrechnen

1.1.2 Programmierung

- Aufgaben in Java gestaltet
- mit OpenGL-Interface
- auf Nachfrage kann auch C/C++ verwendet werden

1.2 Übersicht

- Computergrafik
- BILDBEARBEITUNG / BILDERKENNUNG
- Geometrisches Rechnen / Geometrische Modellierung

1.2.1 Fahrplan

- Koordinatiensysteme, geometrische Transformationen
- Licht und Farben
- Rasterung
- Beleuchtung und Schattierung
- rendering-pipeline: vom Modell bis zum gerasterten Bildbearbeitung
- $\bullet\,$ geometrische Modellierung: Kurven, Flächen und Splines
- Kein Anwendungskurs für OpenGL, JOGL, Javaview etc.!

2 Koordinatensysteme, geometrische Transformationen

2.1 kartesische Koordinaten

2.2 Geometrische Transformationen

• Translation: $p \mapsto p + t$ $t \in \mathbb{R}^2$, Translationsvektor

• Rotation (um den Ursprung $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$):

$$p \mapsto M \cdot p$$
 $M = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, Rotationsmatrix

- Rotation um den Punkt $c: p \mapsto M(p-c) + c = Mp + (c-Mc), \qquad c \mapsto c$
- gleichförmige Skalierung:

$$p \mapsto \lambda \cdot p = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \cdot p, \qquad \lambda \neq 0$$

$$\lambda = 1 \qquad p \mapsto -p = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot p = \text{Spiegelung am Ursprung} = \text{Rotation um } 180^{\circ}$$

• Ungleichförmige Skalierung:

$$M = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad p \mapsto M \cdot p$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda_1 x \\ \lambda_2 y \end{pmatrix}$$

$$M = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 resultiert in der Spiegelung an der x-Achse

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 resultiert in der Spiegelung an der y-Achse

• Scherung

Scherung auf der
$$x$$
-Achse
$$\begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} \text{Scherung auf der } y\text{-Achse} \\ \text{oder} \qquad \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \lambda y \\ y \end{pmatrix}$$
$$\lambda = 0.5$$

Flächeninhalt:

- Translationen, Rotationen, Scherungen und Spiegelungen ändern den Flächeninhalt nicht.
- \bullet Skalierung ändert den Flächeninhalt um den Faktor $\lambda_1 \cdot \lambda_2$

Definition Eine Verknüpfung mehrerer dieser Transformationen bildet eine **affine Transformation**. Allgemein ist diese:

$$p \mapsto M \cdot p = b, \qquad M \in \mathbb{R}^{2 \times 2}, b \in \mathbb{R}^2, \det M \neq 0$$

Der Flächeninhalt ändert sich um den Faktor det M

Definition Die Verknüpfung von Translation, Rotation und Spiegelung heißt **starre Bewegung** oder **Isometrie**. Allgemein ist diese:

$$p \mapsto Mp + t \text{ mit } \mathbf{orthogonaler } \mathbf{Matrix} \ M \ (d. \ h. \ \det M = \pm 1)$$

die Isometrien zerfallen:

- orientierungserhaltende ($\det M = 1$) und
- orientierungsumkehrende (det M = -1) Isometrien

2.3 Homogene Koordinaten

Definition Homogene Koordinaten: Statt $p = \begin{pmatrix} x \\ y \end{pmatrix}$ verwendet man eine dritte Koordinate $p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

Konvention Die Koordinaten
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 und $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$ stellen denselben Punkt dar $(\lambda \neq 0)$

Der Punkt
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 mit $z \neq 0$ hat die kartesischen Koordinaten $\begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$

2.3.1 Allgemeine affine Transformation in homogenen Koordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \underbrace{\begin{pmatrix} m_{11} & m_{12} & b_1 \\ m_{21} & m_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix}}_{M'} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} m_{11}x + m_{12}y + b_1 \\ m_{21}x + m_{22}y + b_2 \\ 1 \end{pmatrix}$$

Die Matrizen M' und $\lambda M'$ beschreiben dieselbe Transformation $(\lambda \neq 0)$

$$p \mapsto M'p \text{ mit } M' = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & m_{33} \end{pmatrix} \text{ und } \det M' \neq 0$$
$$\det M' \neq 0 \Leftrightarrow m_{33} \neq 0 \land \begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix} \neq 0$$

 \Rightarrow o. B. d. A. kann man auch $m_{33}=1$ annehmen (Dann kann man die dritte Zeile auch weglassen).