- k-anonymity Defined
- k-anonymity-test is in P
- 3-anonymity is NP-hard (Meyerson & Williams)
- 2-anonymity is in P (Blocki & Williams)

# k-anonymity Defined

A database V is a multiset of m-degree attribute tuples with each tuple  $\in \Sigma^m$  where  $\Sigma$  is the domain of attributes. v[i] projects ith attribute in v.

A database V is k-anonymous iff, for all  $v \in V$ , there exist a subset  $S \subseteq V$  of size k such that, for all  $s, s' \in S$ , s = s'.

A suppressor t on a database V is a mapping  $V \to \{\Sigma \cup \{*\}\}^m$  such that, for all  $v \in V$ , for all  $j \in \{1, ..., m\}$ ,  $t(v)[j] \in \{v[j], *\}$ . t(v)[j] is suppressed iff t(v)[j] = \*.

For a suppressor t and a database V,  $t(V) = \{t(v) : v \in V\}$ . If t(V) is k-anonymous, t is called a k-anonymizer on V.

# k-anonymity-test is in P

A database V is k-anonymous iff, for all  $v \in V$ , there exist a subset  $S \subseteq V$  of size k such that, for all  $s, s' \in S$ , s = s'.

#### INSTANCE: *k*-anonymity-test

Given a databse V with column names D, is  $\Pi_Q V$  k-anonymous for all  $Q \subseteq D$ .

It's in P.

# k-anonymity-test is in P

(INSTANCE) Given a databse V with column names D, is  $\Pi_Q V$  k-anonymous for all  $Q \subseteq D$ .

Sweeney's Lemma: remove columns can only make it k-anonymous For relational table RT of m-tuples with column names D, if  $\Pi_H RT$  is k-anonymous, then  $\Pi_K RT$  is k-anonymous, for  $K \subseteq H \subseteq D$ .

Naive Algorithm Check the case of QI=D. It runs in  $\mathcal{O}(n^2mk)$ .

#### Proof

- If it checks out: then it is k-anonymous for all possible Qls, with Sweeney's Lemma.
- If it fails: then it is not k-anonymous for the QI of all attributes.

NP-hardness is shown by reduction from 3-dimensional perfect matching to 3-anonymity.

### INSTANCE: 3-dimensional perfect matching (NP-complete)

Given a simple 3-uniform hypergraph H=(U,E), is there a subset of hyperedges  $S\subseteq E$  of size |U|/3 such that each vertex of U is contained in exactly one hyperedge of S?

#### **INSTANCE: 3-anonymity**

Given  $V \subseteq \Sigma^m$  and  $I \in \mathbb{N}$ , is there a suppressor t such that t(V) is 3-anonymous and the total number of suppressions is at most I?

Given a 3-uniform hypergraph H=(U,E) where  $U=\{u_1,...,u_n\}$  and  $E=\{e_1,...,e_m\}$ , construct a database  $V=\{v_1,...,v_n\}$  of m-degree tuples such that, for all  $v_i \in V$ , for all  $j \in \{1,...,m\}$ :

$$v_i[j] = \begin{cases} 0, & \text{if } u_i \in e_j \\ 1, & \text{otherwise} \end{cases}$$



| $e_1$       | $e_2$ | <i>e</i> <sub>3</sub> | <i>e</i> <sub>4</sub> |                       |
|-------------|-------|-----------------------|-----------------------|-----------------------|
| $V = \{(0,$ | 1,    | 0,                    | 1),                   | $u_1$                 |
| (0,         | 1,    | 0,                    | 0),                   | <i>u</i> <sub>2</sub> |
| (0,         | 1,    | 1,                    | 0),                   | из                    |
| (1,         | 0,    | 1,                    | 1),                   | <b>U</b> 4            |
| (1,         | 0,    | 0,                    | 0),                   | <b>и</b> 5            |
| (1,         | 0,    | 1,                    | 1)}                   | <i>и</i> <sub>6</sub> |

(Goal) H has a 3-dimensional perfect matching iff there exists a t such that t(V) is 3-anonymous with I = n(m-1).

(Left to right) Suppose H has a 3-dimensional perfect matching M, construct a suppressor t such that, for all  $v_i \in V$ , for all  $j \in \{1, ..., m\}$ :

$$t(v_i)[j] = \begin{cases} 0, & \text{if } e_j \in M \\ *, & \text{otherwise} \end{cases}$$



$$e_{1} \qquad e_{2} \qquad e_{3} \qquad e_{4}$$

$$V = \{(0, \quad *, \quad *, \quad *), \quad u_{1}$$

$$(0, \quad *, \quad *, \quad *), \quad u_{2}$$

$$(0, \quad *, \quad *, \quad *), \quad u_{3}$$

$$(*, \quad 0, \quad *, \quad *), \quad u_{4}$$

$$(*, \quad 0, \quad *, \quad *), \quad u_{5}$$

$$(*, \quad 0, \quad *, \quad *)\} \qquad u_{6}$$

(Goal) H has a 3-dimensional perfect matching iff there exists a t such that t(V) is 3-anonymous with I = n(m-1).

(Left to right) Suppose H has a 3-dimensional perfect matching M, construct a suppressor t such that, for all  $v_i \in V$ , for all  $j \in \{1, ..., m\}$ :

$$t(v_i)[j] = \begin{cases} 0, & \text{if } e_j \in M \\ *, & \text{otherwise} \end{cases}$$

Since, for all  $e_j \in M$ , |e| = 3, there are exactly 3 identical tuples v, v', v'' in t(V) such that v[j] = v'[j] = v''[j] = 0 and v[k] = v'[k] = v''[k] = \* for all  $k \neq j$ . Thus, t(V) is k-anonymous. Since the matching is perfect, each tuple has exactly one 0 and m-1 \*s, and there are n tuples. Thus, the number of suppression is exactly n(m-1).

(Goal) H has a 3-dimensional perfect matching iff there exists a t such that t(V) is 3-anonymous with I = n(m-1).

(Right to left) Select as hyperedges the identical tuples in t(V) and we're done.

Note This is the case where  $|\Sigma| \le n$ , but it's also NP-hard for the cases of  $|\Sigma| = 3$  and  $|\Sigma| = 2$ ; see REU Summer 2007 slides for an overview.

# 2-anonymity is in P

Reduction to polynomial time "Simplex Matching" algorithm.