Colour

MSc Architecture, Energy & Sustainability
Module ADP033
Daylighting & Energy Efficient Artificial Lighting

Dr Axel Jacobs 2012/13

Structure

- I Introduction
- **II** Colour Vision
- III Colour Systems
- **IV** Colour Temperature
- V Colour Rendering

I Introduction

What is Colour?

"Colour is the visual perceptual property corresponding in humans to the categories called red, green, blue and others. Colour derives from the spectrum of light (distribution of light energy versus wavelength) interacting in the eye with the spectral sensitivities of the light receptors.

"The science of colour is sometimes called chromatics. It includes the perception of color by the human eye and brain, the origin of colour in materials, colour theory in art, and the physics of electromagnetic radiation in the visible range (that is, what we commonly refer to simply as light).

Electromagnetic Radiation

Macbeth Test Colours

Visual Spectral Reflectance

Spectral Reflectance

Spectral Power

Daylight

Fluorescent

Tungsten

II Colour Vision

Eye

Brightness Response

Photoreceptors

Sensitive ganglion cells

Photoreceptors for daytime vision are particularly concentrated in the fovea (the small depression at the centre of the retina responsible for sharpness of vision, Ø ~ 1.5 mm). The area contains 50,000 to 60,000 cones; no rods are located here.)

Melanopsin-containing ganglion cells are distributed over the entire retina; their sensitivity is higher in the lower and nasal areas.

Distribution of Photoreceptors

Density of rods and cones in the human eye

Spectral Response

Isaac Newton

- *Opticks*, 1704: "For the rays to speak properly are not coloured. In them there is nothing else than a certain power and disposition to stir up a sensation of this or that colour."
- The sensation of colour vision was produced from sympathetic vibrations set in motion "on the bottom of the eye" by the arriving light.

Pink Floyd's The Dark Side of the Moon

How Many Colours?

• Newton: 7

• Modern Science: 6

Wavelength	Colour	Colour name
380-450 nm		violet
450-490 nm		blue
490-560 nm		green
560-590 nm		yellow
590-630 nm		orange
630-780 nm		red

Colour Theories

- Thomas Young & Herman von Helmholtz, 19th Cent.
 - Trichromatic theory
 - Red, green, blue as primaries
- Edward Hering, 1790
 - Opponent Colour Theory
 - Red-green, blue-yellow, light-dark
- Both theories can be proven and disproven experimentally.

Zone Theory

Franciscus Cornelis Donders, 1881:

Colour vision is processed sequentially along the visual pathway. Trichromacy occurs at one level, opponency at

another.

III Colour Systems

RGB

- Most well-known colour system: Computer graphics, TV
- Actually many different RGB systems, depending on monochromatic primaries and white point
- CMY(K) as special case of RGB system: Printing

Some RGB Colour Spaces

Television

Adobe

HDTV

CIE RGB

- Experiments by Wright and Guild in 1920s
- Primaries:
 - 700 nm (red)
 - 546.1 nm (green)
 - 435.8 nm (blue)
- Some colours required negative amounts of a primary colour

CIE 1931 "Standard Observer"

CIE 1931 XYZ

- Remedy problem with RGB space: no negative primaries
- Y is the Luminance Factor: response curve of the human eye
- For plotting in two dimensions: normalise so that x + y + z = 1

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z} = 1 - x - y$$

CIE 1931 Colour Matching Function

CIE 1931 xy Diagram

Is this the same Colour?

MacAdam ellipses, 1940s (10x)

CIE 1976 L*u'v'

- Simple transformation of CIE 1931 XYZ
- Attempts to perceptual uniformity
- Used extensively, e.g. in computer graphics
- u'v' can be plotted in a plane

CIE 1976 L*u'v' Diagram

CIE 1976 $L^*a^*b^*$

- Gamut larger than any output device or human vision (imaginary colours) -a
- 3d space, can't be represented in 2d
- Coordinates:

- -a* → green; +a* → red
- $-b^*$ → blue; +b* → yellow
- Colour difference given as ΔE^*_{Lab}
- For demanding colour measurements, even CIELAB is not sufficiently uniform: CIE94, CIEDE2000

Munsell System

- Albert Henry Munsell in 1905, revised in 1943
- Considered the simplest of all colour systems, adopted by many paint manufacturers
- Three attributes:
 - Hue: five principal and five intermediate positioned hue steps, e.g. Red (5R), Yellow-Red (5YR), Yellow (5Y), Green-Yellow (5GY), ...
 - Value: lightness or darkness: black (0) to white (10)
 - Chroma: divergence from a neutral gray (0)
- Notation: H V/C, e.g. 5G 6/8

Munsell Hues

Munsell Solid

Natural Colour System

- 1952: colour atlas with 600 colours
- Adoption as the Swedish standard in 1979
- Based on colour opponency: black/white, red/green, blue/yellow
- Specified by
 - Darkness
 - Saturation
 - Hue

NCS Hues

Example: Swedish Flag

- Yellow NCS 0580-Y10R
 (= 5% darkness, 80% saturation, 90% yellow +
 10% red = very slightly darkish mostly saturated
 yellow with a slight orangish tinge)
- Blue NCS 4055-R95B (= 40% darkness, 55% saturation, 5% red + 95% blue = somewhat dark rather unsaturated blue with a very slight purplish tinge)

IV Colour Temperature

Blackbody Radiation

Blackbody Spectra

Sun – 6500K

Spectral Distribution of Sunlight and Molecular Absorption

Planckian Locus

Correlated Colour Temperature

If an emitter is not on the Planckian locus, i.e. it is not a blackbody emitter, we use the Correlated Colour Temperature, CCT

Standard Illuminants

- A, B, C introduced in 1931
- B, C obsolete now
- D series for daylight e.g. D65
- E equal energy
- F various fluorescents

Source	Corresponding to	ССТ	X	Y
Α	tungsten-filament lamp	2854K	0.448	0.407
В	noon sunlight	4800K	0.348	0.352
С	daylight	6500K	0.310	0.316

White Points

Name	CIE 1931 2°		CIE 1964 10°		CCT (K)	Hue	Note	
	X2	y 2	X ₁₀	y 10	CCT (K)	пие	Note	
Α	0.44757	0.40745	0.45117	0.40594	2856		Incandescent / Tungsten	
В	0.34842	0.35161	0.34980	0.35270	4874		{obsolete} Direct sunlight at noon	
С	0.31006	0.31616	0.31039	0.31905	6774		{obsolete} Average / North sky Daylight	
D50	0.34567	0.35850	0.34773	0.35952	5003		Horizon Light. ICC profile PCS	
D55	0.33242	0.34743	0.33411	0.34877	5503		Mid-morning / Mid-afternoon Daylight	
D65	0.31271	0.32902	0.31382	0.33100	6504		Noon Daylight: Television, sRGB color space	
D75	0.29902	0.31485	0.29968	0.31740	7504		North sky Daylight	
Е	1/3	1/3	1/3	1/3	5454		Equal energy	
F1	0.31310	0.33727	0.31811	0.33559	6430		Daylight Fluorescent	
F2	0.37208	0.37529	0.37925	0.36733	4230		Cool White Fluorescent	
F3	0.40910	0.39430	0.41761	0.38324	3450		White Fluorescent	
F4	0.44018	0.40329	0.44920	0.39074	2940		Warm White Fluorescent	
F5	0.31379	0.34531	0.31975	0.34246	6350		Daylight Fluorescent	
F6	0.37790	0.38835	0.38660	0.37847	4150		Lite White Fluorescent	
F7	0.31292	0.32933	0.31569	0.32960	6500		D65 simulator, Daylight simulator	

V Colour Rendering

Colour Comparator

Methodology

- 1. Measure chromaticity of the test source: CIE 1960 colour space, 2° standard observer
- 2. Determine the correlated color temperature CCT
- **3.** Choose blackbody or standard illuminant C (CCT > 5000K) as reference
- 4. Illuminate samples alternatively with both sources
- 5. Measure chromaticity of reflected light: CIE 1964 space, 2° observer
- 6. Apply von Kries transform for chromatic adaptation
- 7. Calculate colour difference for each sample ΔE_i
- 8. Calculate individual CRI: $R_i = 100 4.6 \Delta E_i$
- 9. General CRI (R_a) is the arithmetic mean of the special CRIs R_i

TCS01 to TCS08 for general colour rendering index Ra

TCS09 to TCS14 for supplementary information on the colour rendering properties of the light source

Test Colour Samples

Name	Appr. Munsell	Appearance under daylight	Swatch
TCS01	7,5 R 6/4	Light greyish red	
TCS02	5 Y 6/4	Dark greyish yellow	
TCS03	5 GY 6/8	Strong yellow green	
TCS04	2,5 G 6/6	Moderate yellowish green	
TCS05	10 BG 6/4	Light bluish green	
TCS06	5 PB 6/8	Light blue	
TCS07	2,5 P 6/8	Light violet	
TCS08	10 P 6/8	Light reddish purple	
TCS09	4,5 R 4/13	Strong red	
TCS10	5 Y 8/10	Strong yellow	
TCS11	4,5 G 5/8	Strong green	
TCS12	3 PB 3/11	Strong blue	
TCS13	5 YR 8/4	Light yellowish pink	
TCS14	5 GY 4/4	Moderate olive green (leaf)	

Colour Difference

Colour Rendering Index

Resources

- Wikipedia (start with <u>Colour</u>)
- Minolta: <u>Precise Color Communication</u>
- Bruce Lindbloom
- EasyRGB
- Radiance Colour Picker on JALOXA
- R. W. G. Hunt: *Measuring Colour*, Fountain Press Ltd, 3rd edition, 2001

<u>xkcd</u>