Лекция 14. Элементы k-значной логики

Определение 1. Пусть k > 2 – некоторое натуральное число. Логической переменной в k-значной логике называется переменная величина x, принимающая значения из некоторого k-элементного множества.

Пример 1. Пусть k = 3. Логические переменные в трехзначной логике могут принимать значения из следующих трехэлементных множеств:

- 1) $E_3 = \{0, 1, 2\};$
- 2) $E_3^* = \{$ истина, ложь, неизвестность $\}$ (при доказательстве теорем); 3) $E_3^{**} = \{$ да, нет, может быть $\}$ (в экспертных системах);

4)
$$E_3^{***} = \begin{cases}$$
 наличие положительного потенциала в определенной точке схемы, наличие отрицательного потенциала в той же точке, наличие нулевого потенциала в той же точке

(в электронике).

Упражнение 1 (д/з). Привести другие примеры логических переменных, принимающих значения из некоторых k-элементных множеств с k > 2.

Замечание 1. В дальнейшем, кроме специально оговоренных случаев, будем рассматривать логические переменные, принимающие значения из множества

$$E_k = \{0, 1, \dots, k-1\}.$$

Определение 2. Пусть n – натуральное число. Далее будем рассматривать n логических переменных в k-значной логике x_1, x_2, \ldots, x_n , причем x_i принимает значения из $E_k = \{0, 1, \dots, k-1\}$ $(i = 1, \dots, n)$. Составим для этих переменных упорядоченные наборы их значений (a_1,a_2,\ldots,a_n) , где $a_i\in E_k\ (i=1,\ldots,n)$. Каждый набор значений $(a_1, a_2, ..., a_n)$ называется также k-ичным вектором.

Пример 2. Составить всевозможные наборы значений логических переменных в трехзначной логике и найти их количество при следующих значениях n:

- а) n=1: для 1 логической переменной x_1 имеется $N_{3,1}=3$ различных набора значений, каждый из которых состоит из 1 значения: (0), (1) и (2).
- б) n=2: для 2 логических переменных x_1 и x_2 имеется $N_{3,2}=9$ различных набора значений, каждый из которых состоит из 2 значений:

$$(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2).$$

Упражнение 2 (д/з). n = 3. $N_{3,3} - ?$

Утверждение 1. Количество всех возможных наборов значений п логических переменных в k-значной логике равно $N_{k,n} = k^n$.

Упражнение 3 (д/з). Доказать утверждение 1.

Замечание 2. На наборы значений логических переменных в k-значной логике распространяются приведенные выше (см. лекцию 1) определения лексикографического перехода и лексикографического порядка. Отметим, что лексикографический порядок наборов значений логических переменных в k-значной логике совпадает с порядком возрастания наборов (a_1, \ldots, a_n) , рассматриваемых как числа, записанные в k-ичной системе счисления, например, при k = 3: $(0,2) \sim 0.3^1 + 2.3^0 = 2 < 3 = 1.3^1 + 0.3^0 \sim (1,0)$.

Определение 3. Логической функцией n переменных на k-элементном множестве D_k называется правило $f = f_{n,i,k}$, где i – номер функции, сопоставляющее n логическим переменным (аргументам) x_1, \ldots, x_n со значениями из D_k некоторый вполне определенный элемент подмножества E_f того же множества D_k . В этом случае $(D_k, \ldots, D_k) \equiv D_k^n$ – область определения функции f, а множество $E_f \subset D_k$ – область значений f:

$$(D_k, \dots, D_k) \xrightarrow{f} E_f \subset D_k \Leftrightarrow D_k^n \xrightarrow{f} E_f \subset D_k.$$

В частности, для $D_k = E_k = \{0, 1, \dots, k-1\}$

$$(\{0, 1, \dots, k-1\}, \dots, \{0, 1, \dots, k-1\}) \xrightarrow{f} E_f \subset \{0, 1, \dots, k-1\} \Leftrightarrow \{0, 1, \dots, k-1\}^n \xrightarrow{f} E_f \subset \{0, 1, \dots, k-1\}.$$

Пример 2. Пусть k = 3, n = 1. $f_{1,i,3} - ?$ (i - ?) i = 0. $f_{1,0,3}$:

Таблица 1

x	$f_{1,0,3}(x)$
0	0
1	0
2	0

Упражнение 4 (д/з). Построить другие логические функции одной переменной в трехзначной логике. Сколько их всего существует?

Ответ: 27 функций, заданных таблицей 2.

Таблица 2

x	$f_{1,0,3}(x)$	$f_{1,1,3}(x)$	$f_{1,2,3}(x)$	$f_{1,3,3}(x)$	$f_{1,4,3}(x)$	$f_{1,5,3}(x)$	$f_{1,6,3}(x)$	$f_{1,7,3}(x)$	$f_{1,8,3}(x)$
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	2	2	2
2	0	1	2	0	1	2	0	1	2
x	$f_{1,9,3}(x)$	$f_{1,10,3}(x)$	$f_{1,11,3}(x)$	$f_{1,12,3}(x)$	$f_{1,13,3}(x)$	$f_{1,14,3}(x)$	$f_{1,15,3}(x)$	$f_{1,16,3}(x)$	$f_{1,17,3}(x)$
0	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	2	2	2
2	0	1	2	0	1	2	0	1	2
x	$f_{1,18,3}(x)$	$f_{1,19,3}(x)$	$f_{1,20,3}(x)$	$f_{1,21,3}(x)$	$f_{1,22,3}(x)$	$f_{1,23,3}(x)$	$f_{1,24,3}(x)$	$f_{1,25,3}(x)$	$f_{1,26,3}(x)$
0	2	2	2	2	2	2	2	2	2
1	0	0	0	1	1	1	2	2	2
2	0	1	2	0	1	2	0	1	2

Функции представлены в табл. 2 в лексикографическом порядке, соответствующем возрастанию чисел от 0 до 26, записанных в троичной системе счисления. Вторые индексы у функций соответствуют этим числам. Такая запись применяется для любых k и n.

Утверждение 2. Количество всех возможных функций п логических переменных в k-значной логике равно $P_{k,n} = k^{k^n}$.

Упражнение 5 (д/з). Доказать утверждение 2.

Замечание 3. Так как $P_{k,n}$ быстро возрастает с ростом k и n (уже при k=3 количество функций двух переменных равно $P_{3,2}=3^{3^2}=3^9=19683$, т.е. их множество практически необозримо), обычно используют не табличный, а формульный способ записи функций n логических переменных в k-значной логике.

Рассматриваются, в частности, следующие функции одной логической переменной в k-значной логике:

а) Константы $0, 1, \ldots, k-1$ (в частности, при k=3 это функции $f_{1,0,3}(x)\equiv 0$, $f_{1,13,3}(x)\equiv 1$ и $f_{1,26,3}(x)\equiv 2$ из таблицы 2):

Таблица 3

x	$f_{1,0,3}(x)$	$f_{1,13,3}(x)$	$f_{1,26,3}(x)$
0	0	1	2
1	0	1	2
2	0	1	2

Замечание 4. Константы могут рассматриваться как функции произвольного числа переменных.

б) Отрицание Поста – функция одной переменной в k-значной логике, заданная формулой (алгоритмом вычисления)

$$\bar{x} = x \oplus^k 1 \stackrel{\text{def}}{=} \left\{ egin{array}{ll} x+1, & ext{если } x+1 < k, \\ 0, & ext{если } x+1 \geq k. \end{array}
ight.$$

В частности, в трехзначной логике $\bar{x} = f_{1,15,3}(x)$ из таблицы 2:

Таблица 4

x	$f_{1,15,3}(x)$
0	1
1	2
2	0

Замечание 5. Отрицание Поста представляет собой обобщение функции отрицания из двузначной логики в смысле циклического сдвига значений.

Упражнение 5 (д/з). Задать табличным способом функцию \bar{x} в трехзначной логике. Совпадает ли она с x?

в) Отрицание Лукашевича – функция одной переменной в k-значной логике, заданная формулой (алгоритмом вычисления)

$$\sim x = k - 1 - x \ (x = 0, \dots, k - 1).$$

В частности, в трехзначной логике $\sim x = f_{1,21,3}(x)$ из таблицы 2:

Таблица 5

x	$f_{1,21,3}(x)$
0	2
1	1
2	0

Замечание 6. Отрицание Лукашевича представляет собой другое обобщение функции отрицания из двузначной логики в смысле "зеркального" отображения значений.

Упражнение 6 (д/з). Задать табличным способом функцию $\sim (\sim x)$ в трехзначной логике. Совпадает ли она с x?

г) Характеристическая функция первого рода значения i ($i=0,\ldots,k-1$) – функция одной переменной в k–значной логике, заданная формулой (алгоритмом вычисления)

$$j_i(x) = \begin{cases} 1, & \text{если } x = i, \\ 0, & \text{если } x \neq i. \end{cases}$$

В частности, в трехзначной логике $j_0(x)\equiv f_{1,9,3}(x),\, j_1(x)\equiv f_{1,3,3}(x)$ и $j_2(x)\equiv f_{1,1,3}(x)$ из таблицы 2:

Таблица 6

	\boldsymbol{x}	$j_2(x) \equiv f_{1,1,3}(x)$	$j_1(x) \equiv f_{1,3,3}(x)$	$j_0(x) \equiv f_{1,9,3}(x)$
	0	0	0	1
ſ	1	0	1	0
	2	1	0	0

д) Характеристическая функция второго рода значения i ($i=0,\ldots,k-1$) – функция одной переменной в k–значной логике, заданная формулой (алгоритмом вычисления)

$$J_i(x) = \begin{cases} k-1, & \text{если } x = i, \\ 0, & \text{если } x \neq i. \end{cases}$$

В частности, в трехзначной логике $J_0(x)\equiv f_{1,18,3}(x),\ J_1(x)\equiv f_{1,6,3}(x)$ и $J_2(x)\equiv f_{1,2,3}(x)$ из таблицы 2:

Таблица 7

x	$J_2(x) \equiv f_{1,2,3}(x)$	$J_1(x) \equiv f_{1,6,3}(x)$	$J_0(x) \equiv f_{1,18,3}(x)$
0	0	0	2
1	0	2	0
2	2	0	0

Рассматриваются также функции двух логических переменных в k-значной логике:

- а) Минимум x и y (одно из обобщений конъюнкции). Обозначение $\min(x,y)$ или $x \wedge y$.
 - б) Максимум x и y (обобщение дизъюнкции). Обозначение $\max(x,y)$ или $x\vee y$.

Замечание 7. По индукции для любого числа переменных в k-значной логике можно определить

$$\min(x_1, \dots, x_n) = \min(\min(x_1, \dots, x_{n-1}), x_n),$$

 $\max(x_1, \dots, x_n) = \max(\max(x_1, \dots, x_{n-1}), x_n).$

Упражнение 7 (д/з). Задать табличным способом функции $\min(x_1, x_2, x_3)$ и $\max(x_1, x_2, x_3)$ в трехзначной логике.

в) Сумма по модулю k (обобщение суммы по модулю два):

$$x \oplus^k y \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} x+y, & \text{если } x+y < k, \\ x+y-k, & \text{если } x+y \ge k. \end{array} \right.$$

Замечание 8. В отличие от суммы по модулю 2, для суммы по модулю $k \geq 3$ возможны ситуации, когда x+y>k, откуда $x\oplus^k y=x+y-k>0$.

Пример 3. $2 \oplus^3 2 = ?$

Решение. Так как 2+2=4>3, то $2\oplus^3 2=2+2-3=1>0$.

Упражнение 8 (д/з). Построить таблицу задания функции $x \oplus^3 y$.

г) Произведение по модулю k (еще одно обобщение конъюнкции): $x \odot^k y$ определяется как остаток от деления $x \cdot y$ на k.

Пример 4. $2 \odot^3 2 = ?$

Решение. $2 \odot^3 2$ равняется остатку от деления $2 \cdot 2 = 4$ на 3, т.е. 1.

Упражнение 9 (д/з). Построить таблицу задания функции $x \odot^3 y$.

В таблице 8 приведены значения перечисленных функций двух переменных при k=3.

Таблица 8

x	y	$\min(x,y)$	$\max(x,y)$	$x \oplus^3 y$	$x \odot^3 y$
0	0	0	0	0	0
0	1	0	1	1	0
0	2	0	2	2	0
1	0	0	1	1	0
1	1	1	1	2	1
1	2	1	2	0	2
2	0	0	2	2	0
2	1	1	2	0	2
2	2	2	2	1	1

Замечание 9. Существуют различные способы представления произвольных функций n переменных в k-значной логике в виде композиций вышеперечисленных иди других (базисных) функций. К этим способам относятся представление функций k-значной логики полиномами, а также первая, вторая и третья основные формы функций k-значной логики.

Определение 4. *Полиномом по модулю k* от переменных x_1,\dots,x_n в k-значной логике называется выражение вида: $a_0 \oplus^k a_1 \odot^k X_1 \oplus^k \dots \oplus^k a_m \odot^k X_m$, где коэффициенты

 a_i принадлежат множеству E_k , а X_i — либо некоторая переменная, либо произведение переменных из множества $\{x_1,\ldots,x_n\}$, причем произведения берутся по модулю k и каждая переменная может входить в выражение X_i любое число раз (в любой степени). Говорят, что некоторая функция от переменных x_1,\ldots,x_n в k-значной логике npedcmaeuma полиномом по модулю k, если существует полином по модулю k, равный этой функции.

Пример 5. Выражения 1, x, $1 \oplus^3 y$, $2 \oplus^3 x \odot^3 y$, $1 \oplus^3 y \oplus^3 2 \odot^3 x \odot^3 x \odot^3 y$ являются полиномами по модулю 3 от переменных x, y в трехзначной логике.

Упражнение 10 (д/з). Привести другие примеры полиномов по модулю k в k-значной логике.

Теорема 1. Представление каждой функции в k-значной логике полиномом по модулю k возможно в том и только в том случае, когда k — простое число. Если k — составное число, то в k-значной логике имеются функции, представимые полиномами по модулю k, и функции, не представимые такими полиномами.

Для представления логических функций k—значной логики в виде полиномов применяется метод неопределенных коэффициентов (см. лекцию о полиномах Жегалкина). При этом используются следующие свойства логических функций \oplus^k и \odot^k (см. аналогичные свойства для \oplus и \wedge в двузначной логике):

- 1. $x \oplus^k y = y \oplus^k x$.
- 2. $(x \oplus^k y) \oplus^k z = x \oplus^k (y \oplus^k z) = x \oplus^k y \oplus^k z$.
- 3. Пусть $l \in \{0, 1, \dots, k-1\}$. Тогда $x \oplus^k x \oplus^k \dots \oplus^k x = l \odot^k x$, если сложение по модулю k в левой части этого равенства производится l раз.
- 4. $x \oplus^k x \oplus^k \cdots \oplus^k x = 0$, если сложение по модулю k в левой части этого равенства производится k раз.
- 5. $x \oplus^k 0 = x$.
- 6. $x \odot^k y = y \odot^k x$.
- 7. $(x \odot^k y) \odot^k z = x \odot^k (y \odot^k z) = x \odot^k y \odot^k z$.

Упражнение 11 (д/з). Доказать перечисленные свойства для k=3.

Замечание 10. Очевидно, из свойств 3 и 1 следует, что $x \odot^k 0 = 0$ и $x \odot^k 1 = x$.

Замечание 11. Из свойств 2, 4 и 5 следует, что если

$$x \oplus^k y = z \oplus^k y, \tag{1}$$

то x=z. Действительно, прибавляя по модулю k переменную y к обеим частям $(\ref{eq:condition})$ раз, получим

$$x \oplus^k y \oplus^k \dots \oplus^k y = z \oplus^k y \oplus^k \dots \oplus^k y, \tag{2}$$

где сложение по модулю k в обеих частях равенства производится k раз. Преобразуем левую часть (??):

$$x \oplus^k y \oplus^k \dots \oplus^k y \stackrel{2}{=} x \oplus^k (y \oplus^k \dots \oplus^k y) \stackrel{4}{=} x \oplus^k 0 \stackrel{5}{=} x.$$
 (3)

Аналогично преобразуем правую часть (??):

$$z \oplus^k y \oplus^k \dots \oplus^k y \stackrel{2}{=} z \oplus^k (y \oplus^k \dots \oplus^k y) \stackrel{4}{=} z \oplus^k 0 \stackrel{5}{=} z. \tag{4}$$

Из (??)–(??) получаем x = z, ч.т.д.

Замечание 12. При k=3 максимальная возможная степень x в представлении полиномом логической функции одной переменной равняется 2, т.к. $x\odot^3 x\odot x=x$ для всех возможных значений x.

Упражнение 12 (д/з). Доказать утверждение замечания 12.

Пример 6. Методом неопределенных коэффициентов представить при k=3 характеристическую функцию первого рода $j_0(x)$ в виде полинома

$$j_0(x) = a_0 \oplus^3 a_1 \odot^3 x \oplus^3 a_2 \odot^3 x \odot^3 x.$$

Решение. Последовательно подставляя значения аргумента x=0, 1 и 2, получим систему уравнений

$$\begin{cases} a_0 \oplus^3 a_1 \odot^3 0 \oplus^3 a_2 \odot^3 0 \odot^3 0 = 1, \\ a_0 \oplus^3 a_1 \odot^3 1 \oplus^3 a_2 \odot^3 1 \odot^3 1 = 0, \\ a_0 \oplus^3 a_1 \odot^3 2 \oplus^3 a_2 \odot^3 2 \odot^3 2 = 0. \end{cases}$$

Упростим эту систему, используя свойства 1–7. Получим

$$\begin{cases} a_0 = 1, \\ 1 \oplus^3 a_1 \oplus^3 a_2 = 0, \\ 1 \oplus^3 a_1 \odot^3 2 \oplus^3 a_2 = 0. \end{cases}$$

Из второго и третьего уравнений имеем

$$1 \oplus^3 a_1 \odot^3 a_2 = 1 \oplus^3 a_1 \odot^3 2 \oplus^3 a_2$$

откуда с учетом свойств 1 и 3 при l=2

$$1 \oplus^3 a_1 \odot^3 a_2 = 1 \oplus^3 a_1 \oplus^3 a_1 \oplus^3 a_2$$

и в силу замечания 11, отбрасывая одинаковые слагаемые в обеих частях равенства, получаем $a_1 = 0$. Подставляя найденное значение a_1 во второе уравнение, приходим к $1 \oplus^3 a_2 = 0$. Прибавляя 2 по модулю 3 к обеим частям полученного уравнения, с учетом свойства 4 получаем $a_2 = 2$.

Ответ: $a_0 = 1$, $a_1 = 0$, $a_2 = 2$, т.е. $j_0(x) = 1 \oplus^3 2 \odot^3 x \odot^3 x$.

Упражнение 13 (д/з). Представить при k=3 характеристические функции первого рода $j_1(x)$ и $j_2(x)$ в виде полиномов.

Упражнение 14 (д/з). Показать, что при k=4 характеристическую функцию первого рода $j_0(x)$ нельзя представить в виде полинома.

Определение 5. *Первой основной формой (ПОФ)* функции k-значной логики называют выражение

$$f(x_1, \dots, x_n) = \max_{(s_1, \dots, s_n)} \{ \min[f(s_1, \dots, s_n), J_{s_1}(x_1), J_{s_2}(x_2), \dots, J_{s_n}(x_n)] \},$$
 (5)

где максимум берется по всем наборам (s_1, \ldots, s_n) значений переменных (x_1, \ldots, x_n) .

Замечание 13. Очевидно, ПОФ представляет собой обобщение СДНФ для функций двузначной логики.

Пример 7. Представить в виде ПОФ функцию

$$f(x,y) = \max\{j_0(x) \odot^3 j_0(y), x \odot^3 [j_1(y) \oplus^3 2 \odot^3 j_2(y)]\}.$$

Решение. Обозначим $f_1(x,y) = j_0(x) \odot^3 j_0(y), f_2(x,y) = j_1(y) \oplus^3 2 \odot^3 j_2(y)$. Составим таблицу значений функции:

\Box	1 /	\sim
Таблица	- 1 (1
Lacomina	т,	.,

x	y	$j_0(x)$	$j_0(y)$	$f_1(x,y)$	$j_1(y)$	$j_2(y)$	$2 \odot^3 j_2(y)$	$f_2(x,y)$	$x \odot^3 f_2(x,y)$	f(x,y)
0	0	1	1	1	0	0	0	0	0	1
0	1	1	0	0	1	0	0	1	0	0
0	2	1	0	0	0	1	2	2	0	0
1	0	0	1	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	1	1	1
1	2	0	0	0	0	1	2	2	2	2
2	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	1	0	0	1	2	2
2	2	0	0	0	0	1	2	2	1	1

По первым двум и последнему столбцам таблицы 10 записываем правую часть выражения (??). Тогда получим:

$$\begin{split} f(x,y) &= \max \big\{ \min[1,J_0(x),J_0(y)], \min[0,J_0(x),J_1(y)], \min[0,J_0(x),J_2(y)], \\ \min[0,J_1(x),J_0(y)], \min[1,J_1(x),J_1(y)], \min[2,J_1(x),J_2(y)], \min[0,J_2(x),J_0(y)], \\ \min[2,J_2(x),J_1(y)], \min[1,J_2(x),J_2(y)] \big\} \,. \end{split}$$

Составляющие в фигурных скобках, для которых значения функции f(x,y) равны нулю, сами равняются нулю и, следовательно, не влияют на максимум, поэтому их можно убрать. Кроме того, составляющие в фигурных скобках, для которых значения функции f(x,y) равны 2, можно записать без 2. Произведя эти упрощения, получим искомую ПОФ данной функции.

Ответ:
$$f(x,y) = \max \{\min[1, J_0(x), J_0(y)], \min[1, J_1(x), J_1(y)], \min[J_1(x), J_2(y)], \min[J_2(x), J_1(y)], \min[1, J_2(x), J_2(y)] \}$$
.

Дополнительный материал

Определение 6. Второй основной формой $(BO\Phi)$ функции k-значной логики называют выражение

$$f(x_1, \dots, x_n) = \sum_{(s_1, \dots, s_n)} f(s_1, \dots, s_n) \odot^k j_{s_1}(x_1) \odot^k \dots \odot^k j_{s_n}(x_n),$$
(6)

где суммирование ведется по всем наборам (s_1,\ldots,s_n) значений переменных (x_1,\ldots,x_n) .

Пример 8. Представить в виде ВОФ функцию из примера 7.

Решение. Подставим в правую часть выражения (??) значения первого, второго и последнего столбцов таблицы 10:

$$f(x,y) = 1 \odot^{3} j_{0}(x) \odot^{3} j_{0}(y) \oplus^{3} 0 \odot^{3} j_{0}(x) \odot^{3} j_{1}(y) \oplus^{3} 0 \odot^{3} j_{0}(x) \odot^{3} j_{2}(y) \oplus^{3} \oplus^{3} 0 \odot^{3} j_{1}(x) \odot^{3} j_{0}(y) \oplus^{3} 1 \odot^{3} j_{1}(x) \odot^{3} j_{1}(y) \oplus^{3} 2 \odot^{3} j_{1}(x) \odot^{3} j_{2}(y) \oplus^{3} \oplus^{3} 0 \odot^{3} j_{2}(x) \odot^{3} j_{0}(y) \oplus^{3} 2 \odot^{3} j_{2}(x) \odot^{3} j_{2}(x) \odot^{3} j_{2}(x) \odot^{3} j_{2}(y).$$

Упрощая полученные выражения с помощью свойств 1–6, получим искомую ВОФ данной функции.

Ответ:
$$j_0(x) \odot^3 j_0(y) \oplus^3 j_1(x) \odot^3 j_1(y) \oplus^3 2 \odot^3 j_1(x) \odot^3 j_2(y) \oplus^3 2 \odot^3 j_2(x) \odot^3 j_1(y) \oplus^3 j_2(x) \odot^3 j_2(y)$$
.

Определение 7. *Третьей основной формой (TO\Phi)* функции k-значной логики называют выражение

$$f(x_1, \dots, x_n) = \min_{(s_1, \dots, s_n)} \{ \max[f(s_1, \dots, s_n), \sim J_{s_1}(x_1), \sim J_{s_2}(x_2), \dots, \sim J_{s_n}(x_n)] \}, \quad (7)$$

где минимум берется по всем наборам (s_1, \ldots, s_n) значений переменных (x_1, \ldots, x_n) .

Замечание 14. Очевидно, ТОФ представляет собой обобщение СКНФ для функций двузначной логики.

Пример 9. Представить в виде ТОФ функцию из примера 7.

Решение. Подставляя в правую часть выражения (??) значения первого, второго и последнего столбцов таблицы 10, получим

$$f(x,y) = \min \left\{ \max[1, \sim J_0(x), \sim J_0(y)], \max[0, \sim J_0(x), \sim J_1(y)], \max[0, \sim J_0(x), \sim J_2(y)], \max[0, \sim J_1(x), \sim J_0(y)], \max[1, \sim J_1(x), \sim J_1(y)], \max[2, \sim J_1(x), \sim J_2(y)], \max[0, \sim J_2(x), \sim J_0(y)], \max[2, \sim J_2(x), \sim J_1(y)], \max[1, \sim J_2(x), \sim J_2(y)] \right\}.$$

Составляющие в фигурных скобках, для которых значения функции f(x,y) равны 2, сами равняются 2 и, следовательно, не влияют на минимум, поэтому их можно убрать. Кроме того, составляющие в фигурных скобках, для которых значения функции f(x,y) равны 0, можно записать без 0. Произведя эти упрощения, получим искомую ТОФ данной функции:

Otbet:
$$f(x,y) = \min \{ \max[1, \sim J_0(x), \sim J_0(y)], \max[\sim J_0(x), \sim J_1(y)], \max[\sim J_0(x), \sim J_2(y)], \max[\sim J_1(x), \sim J_0(y)], \max[1, \sim J_1(x), \sim J_1(y)], \max[\sim J_2(x), \sim J_0(y)], \max[1, \sim J_2(x), \sim J_2(y)] \}.$$

Теорема 2. Для каждой функции в k-значной логике существуют и единственны представления в виде $\Pi O \Phi$, $B O \Phi$ и $T O \Phi$.

Упражнение 15 (д/з). Доказать теорему 2.