FUNZIONE DERIVATA

12 feb 121

ex 1740 p. 206 1. a | y = f(n) no massimi no minimi $M = \frac{an - 2}{n^2 - an + 1}$ =D $\int_{-\infty}^{\infty} (n) \neq 0$ $\forall n \in CE$ (se $\int_{-\infty}^{\infty} (n) continue)$

 $y' = \frac{a(n^2 - an + 1) - (an - 2)(2n - a)}{(an)^2} \neq 0$

CE $n^2 - an + 1 \neq 0$ $an^2 - a^2n + a - 2an^2 + a^2n + hn - 2a \neq 0$

 $-an^2+hn-a\neq0$ vo $\Delta<0$ h- 22 < 0 ~ a < - 2 V a > 2

· se il numeratore = denominatore = 0 ~o discontinuità, ma se $\# f(n_0) = n_0$ 20 · venificau CE? No, se D=0 ~ asiuToti I mo= 13 max relativo \rightarrow $M'(\sqrt{3}) = 0$ poi verifico se il valou di a soodisfa gli attri requisiti $-3a + 6\sqrt{3} - a = 0$ no $a = \sqrt{3}$ $-a n^2 + h n - a = 0$

Adesso bisogna verificare che y' (con a trovato) sia positivo per valori minori di $\sqrt{3}$ e negativo per valori $> \sqrt{3}$

se
$$f' \in y = n$$
 $f' = \frac{1}{2}n^2 + k \sim le traslationi sull'asce delle y non cambiano il coeff. angolare

Posso dire de
$$\int u \, du = \frac{1}{2}n^2 + k$$$