EC 3101 Microeconomic Analysis II

A/P SNG Tuan Hwee

My contact information

WEBSITE: http://profile.nus.edu.sg/fass/ecssth/

• EMAIL: <u>tsng@nus.edu.sg</u>

• PHONE: 6516 3954

• OFFICE: AS2 04-37

• CONSULTATION: Monday 4–6 pm or by appointment

International Student Edition

Intermediate Microeconomics (9th edition)

by Hal Varian

Syllabus (subject to change)

Week 1 Course Overview; Intertemporal Choice, Ch.10

Week 2 Uncertainty, Ch.12

Week 3* Monopoly, Ch.25

Week 4 Oligopoly, Ch.28

Week 5 Oligopoly, Ch.28

Week 6 Game Theory, Ch.29

[Recess Week]

Week 7 Midterm

Week 8 Game Applications, Ch.30

Week 9 Game Applications, Ch.30

Week 10* Externalities, Ch.35; Public Goods, Ch.37

Week 11* Welfare, Ch.34; Asymmetric Information, Ch.38

Week 12 Asymmetric Information, Ch.38

Week 13 Review; AOB

Assessment

- Quiz × 2, 10%
- Presentation and Participation, 10%
- Midterm Exam, 30%
- Final Exam, 50%

Quiz

- Two Quizzes
- To be posted on Canvas 10 days before due date (W6, W12)
- To be submitted on Canvas
- Each student will be allowed two attempts
- There will be no makeup quizzes and no extension of due dates

Presentation and Participation

- Practice Problems to be posted from week 2 onwards
- To be discussed in tutorial the following week
- You will present solutions during tutorial
- Everyone needs to present at least once
- Only first presentation will be graded, based on content (concepts and logic) and delivery (clarity and organization)

Exams

- Midterm
 - Closed-book
 - February 27 (Mon), 10 am (Venue to be confirmed)
- Final
 - Closed-book
 - Cumulative
 - April 24 (Mon), 9 am

Some Ground Rules

- Lectures and Tutorials:
 - Turn your cell phone on silent mode
 - Avoid distracting your classmates
 - Ask questions if you are confused
- Attendance to be taken in tutorials
- Academic dishonesty is unacceptable

INTERTEMPORAL CHOICE

Week 1

(Chapter 10, except 10.4, 10.10, 10.11)

Chinese Idiom: Three at dawn, Four at dusk

Parable by Zhuangzi (4th century BC)

- A man from the country of Song raised monkeys
- 4 bananas at dawn & 4 at dusk
- He wanted to reduce the monkeys' ration to 3 bananas in the morning & 4 in the evening
- The monkeys protested angrily
- How about 4 at dawn & 3 at dusk?
- The monkeys were satisfied

- Were the monkeys gullible?
- Is one banana at dawn equivalent to one at dusk?
- Is a dollar today the same as a dollar tomorrow?

Model of Two Time Periods

We begin with the simplest financial arithmetic

- Take just two periods: 1 and 2
- Let r denote the <u>nominal</u> interest rate per period

Future Value

- If r = 0.1 then \$1 saved in period 1 becomes \$1.10 in period 2
- The next-period value of \$1 saved now is the future value of that dollar

Future Value

• Given an interest rate r, the future value one period from now of \$1 is

$$FV = 1 + r$$

Given an interest rate r, the future value one period from now of \$m is

$$FV = m(1+r)$$

Present Value

How much money would have to be saved now to obtain \$1 in the next period?

- \$k saved now becomes \$k(1+r) in the next period
 - Set k(1+r) = 1
 - So $k = \frac{1}{1+r}$

• $k = \frac{1}{1+r}$ is the present-value of \$1 obtained in the next period

Present Value

• The present value of \$1 available in the next period is $PV = \frac{1}{1+r}$

• And the present value of \$m available in the next period is $PV = \frac{m}{1+r}$

Higher r leads to lower PV

If r = 0.1, the most you should pay now for \$1 available next period is

$$PV = \frac{1}{1+0.1} = 0.91$$

If r = 0.2, the most you should pay now for \$1 available next period is

$$PV = \frac{1}{1+0.2} = 0.83$$

The Intertemporal Choice Problem

- Suppose there are two time periods: 1 and 2
 - Let m₁ and m₂ be incomes (\$) received in periods 1 and 2
 - Let c₁ and c₂ be consumptions (physical units) in periods 1 and 2
 - Let p₁ and p₂ be the prices of consumption (\$ per unit) in periods 1 and 2

The Intertemporal Choice Problem

- The intertemporal choice problem:
 - Given incomes (m_1, m_2) and prices (p_1, p_2) , what is the most preferred intertemporal consumption bundle (c_1, c_2) ?
 - (m₁, m₂, p₁, p₂ exogenous; c₁, c₂ endogenous)

- For an answer we need to know:
 - intertemporal budget constraint
 - intertemporal consumption preferences

To keep things simple, for now suppose that there is no inflation

and
$$p_1 = p_2 = $1 (per unit)$$

- Suppose that consumer chooses not to save or to borrow.
- Q: What will be consumed in period 1?
- A: $c_1 = m_1$.
- Q: What will be consumed in period 2?
- A: $c_2 = m_2$.

- Now suppose that the consumer spends nothing on consumption in period 1
- So, $c_1 = 0$ and $s_1 = m_1$
- The interest rate is r
- What will c₂ be?

- Period 2 income is \$ m₂
- Savings plus interest from period 1 sum to \$ (1 + r)m₁
- So total income available in period 2 is \$ m₂ + (1 + r)m₁
- So period 2 consumption expenditure is $c_2 = m_2 + (1 + r)m_1$

- Now suppose that consumer spends everything in period 1, so $c_2 = 0$
- What is the most that the consumer can borrow in period 1 given her period 2 income of \$m₂?
- Let \$b₁ denote the amount borrowed in period 1

\$m₂ available in period 2 to pay back \$b₁ borrowed in period 1

So

$$b_1(1+r) = m_2$$

• That is,

$$b_1 = \frac{m_2}{1+r}$$

The largest possible period 1 consumption level is

$$c_1 = m_1 + \frac{m_2}{1+r}$$

More generally, suppose that c₁ units are consumed in period 1. This costs
 \$c₁ and leaves \$m₁- c₁ saved. Period 2 consumption will then be

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

Rearranging gives us,

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
slope intercept

Now add prices p₁ and p₂ for consumption in periods 1 and 2

- (Assume that consumer received $\frac{m_1}{p_1}$ in period 1 and $\frac{m_2}{p_2}$ in period 2)
- How does this affect the budget constraint?

- Given her endowment (m₁,m₂) and prices (p₁, p₂), which intertemporal consumption bundle (c₁, c₂) will the consumer choose?
- Maximum possible expenditure in period 2 is

$$m_2 + (1+r)m_1$$

So, maximum possible consumption in period 2 is

$$c_2 = \frac{m_2 + (1+r)m_1}{p_2}$$

• Maximum possible expenditure in period 1 is $m_1 + \frac{m_2}{1+r}$

• So, maximum possible consumption in period 1 is $c_1 = \frac{m_1 + \frac{m_2}{1+r}}{p_1}$

Finally, if c₁ units are consumed in period 1 then the consumer spends \$p₁c₁ in period 1, leaving \$(m₁ - p₁c₁) saved for period 1. Available income in period 2 will then be

$$m_2 + (1+r)(m_1 - p_1c_1)$$

So,

$$p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1)$$

$$c_2 = -(1+r)\frac{p_1}{p_2}c_1 + \frac{(1+r)m_1 + m_2}{p_2}$$

The Intertemporal Budget Constraint

Price Inflation

• Define the inflation rate by π where $p_1(1+\pi)=p_2$

For example,

 π = 0.2 means 20% inflation

 π = 1.0 means 100% inflation

Price Inflation

• We lose nothing by setting $p_1=1$, so that $p_2=1+\pi$

The budget constraint is given by

$$c_2 = -(1+r)\frac{p_1}{p_2}c_1 + \frac{(1+r)m_1 + m_2}{p_2}$$

We can rewrite as

$$c_2 = -\frac{1+r}{1+\pi}c_1 + \frac{(1+r)m_1 + m_2}{1+\pi}$$

• Slope of the intertemporal budget constraint: $-\frac{1+r}{1+\pi}$

Price Inflation

When there was no price inflation (p₁=p₂=1), slope of budget constraint was

$$-(1+r)$$

• Now, with price inflation, slope of budget constraint is $-\frac{1+r}{1+\pi}$

Define ρ such that

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$

 ρ (rho) is known as the real interest rate

Real Interest Rate

$$-(1+\rho) = -\frac{1+r}{1+\pi} \implies \rho = \frac{r-\pi}{1+\pi}$$

- For low inflation rates $(\pi \approx 0)$, $\rho \approx r \pi$
- As inflation rate increases, this approximation becomes increasingly poor

Real Interest Rate

r	0.30	0.30	0.30	0.30	0.30
π	0.0	0.05	0.10	0.20	1.00
r - π	0.30	0.25	0.20	0.10	-0.70
$\rho = \frac{r - \pi}{1 + \pi}$	0.30	0.24	0.18	0.08	-0.35

• The slope of the budget constraint is $-(1+\rho) = -\frac{1+r}{1+\pi}$

- The constraint becomes flatter if
 - the interest rate r falls or
 - the inflation rate π rises (both decrease the real rate of interest)

An increase in inflation rate or a decrease in interest rate <u>flattens</u> the budget constraint.

If the consumer saves, a lower interest rate or a higher inflation rate reduces welfare.

A fall in the interest rate or a rise in the inflation rate flatten the budget constraint.

If the consumer borrows, a lower interest rate or a higher inflation rate increases welfare.

Valuing Securities

A security is a financial instrument that promises to deliver an income stream

For example, a security that pays

\$m₁ at the end of year 1

\$m₂ at the end of year 2

\$m₃ at the end of year 3

What is the most that you should pay to buy this security?

Valuing Securities

• The PV of
$$m_1$$
 paid 1 year from now is $\frac{m_1}{(1+r)}$

• The PV of \$m_2 paid 2 years from now is
$$\frac{m_2}{(1+r)^2}$$

• The PV of \$m₃ paid 3 years from now is
$$\frac{m_3}{(1+r)^3}$$

• The PV of the security is therefore $\frac{m_1}{(1+r)} + \frac{m_2}{(1+r)^2} + \frac{m_3}{(1+r)^3}$

Valuing Bonds

A bond is a special type of security that pays a fixed amount \$x for T-1 years
 (T: number of years to maturity) and then pays its face value \$F upon
 maturity

What is the most that should now be paid for such a bond?

Valuing Bonds

End of Year	1	2	3	•••	T-1	Т
Income Paid	\$x	\$x	\$x	\$x	\$x	\$F
Present Value	$\frac{\$x}{(1+r)}$	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$	•••	$\frac{\$x}{(1+r)^{T-1}}$	$\frac{\$F}{(1+r)^T}$

$$PV = \frac{x}{(1+r)} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots + \frac{x}{(1+r)^{T-1}} + \frac{F}{(1+r)^T}$$

Valuing Bonds

- Suppose you win a lottery
- The prize is \$1,000,000, but it is paid over 10 years in equal installments of \$100,000 each
- What is the prize actually worth?

$$PV = \frac{100,000}{(1+0.1)} + \frac{100,000}{(1+0.1)^2} + \dots + \frac{100,000}{(1+0.1)^{10}}$$
$$= \$614,457$$

A consol is a bond that never terminates, paying \$x per period forever

What is a consol's present-value?

End of Year	1	2	3		t	
Income Paid	\$x	\$x	\$x	\$x	\$x	\$x
PV	$\frac{\$x}{(1+r)}$	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$		$\frac{\$x}{(1+r)^t}$	

$$PV = \frac{x}{(1+r)} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots + \frac{x}{(1+r)^t} + \dots$$

Solving for PV gives
$$PV = \frac{x}{r}$$

If r = 0.1 now and forever, the most you should pay now for a consol that provides \$1000 per year is

$$PV = \frac{x}{r} = \frac{1000}{0.1} = \$10,000$$