# Bottom-Up Parsing II

Lecture 8

### Review: Shift-Reduce Parsing

Bottom-up parsing uses two actions:

$$Shift$$

$$ABC | xyz \Rightarrow ABCx | yz$$

Reduce
$$Cbxy|ijk \Rightarrow CbA|ijk$$

#### Recall: The Stack

- Left string can be implemented by a stack
  - Top of the stack is the
- Shift pushes a terminal on the stack
- Reduce
  - pops 0 or more symbols off of the stack
    - production rhs
  - pushes a non-terminal on the stack
    - production lhs

### Key Issue

- How do we decide when to shift or reduce?
- Example grammar:

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

- Consider step int | \* int + int
  - We could reduce by  $T \rightarrow int giving T \mid * int + int$
  - A fatal mistake!
    - No way to reduce to the start symbol E

#### Handles

 Intuition: Want to reduce only if the result can still be reduced to the start symbol

· Assume a rightmost derivation

$$5 \rightarrow^* \alpha X \omega \rightarrow \alpha \beta \omega$$

. Then X  $\rightarrow \beta$  in the position after  $\alpha$  is a handle of  $\alpha\beta\omega$ 

### Handles (Cont.)

- Handles formalize the intuition
  - A handle is a string that can be reduced and also allows further reductions back to the start symbol (using a particular production at a specific spot)
- We only want to reduce at handles
- Note: We have said what a handle is, not how to find handles

## Important Fact #2

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top of the stack, never inside

## Why?

- Informal induction on # of reduce moves:
- · True initially, stack is empty
- Immediately after reducing a handle
  - right-most non-terminal on top of the stack
  - next handle must be to right of right-most nonterminal, because this is a right-most derivation
  - Sequence of shift moves reaches next handle

## Summary of Handles

- In shift-reduce parsing, handles always appear at the top of the stack
- Handles are never to the left of the rightmost non-terminal
  - Therefore, shift-reduce moves are sufficient; the need never move left
- Bottom-up parsing algorithms are based on recognizing handles

## Recognizing Handles

- There are no known efficient algorithms to recognize handles
- Solution: use heuristics to guess which stacks are handles
- On some CFGs, the heuristics always guess correctly
  - For the heuristics we use here, these are the SLR grammars
  - Other heuristics work for other grammars

#### **Grammars**



#### Viable Prefixes

It is not obvious how to detect handles

- At each step the parser sees only the stack, not the entire input; start with that . . .
  - $\alpha$  is a viable prefix if there is an  $\omega$  such that  $\alpha$   $\omega$  is a state of a shift-reduce parser

#### Huh?

- · What does this mean? A few things:
  - A viable prefix does not extend past the right end of the handle
  - It's a viable prefix because it is a prefix of the handle
  - As long as a parser has viable prefixes on the stack no parsing error has been detected

## Important Fact #3

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language

## Important Fact #3 (Cont.)

- Important Fact #3 is non-obvious
- We show how to compute automata that accept viable prefixes

#### Items

 An item is a production with a "." somewhere on the rhs

• The items for  $T \rightarrow (E)$  are

```
T \rightarrow .(E)

T \rightarrow (.E)

T \rightarrow (E.)
```

$$T \rightarrow (E)$$
.

### Items (Cont.)

- The only item for  $X \rightarrow \epsilon$  is  $X \rightarrow .$
- Items are often called "LR(0) items"

#### Intuition

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
  - If it had a complete rhs, we could reduce
- These bits and pieces are always prefixes of rhs of productions

## Example

### Consider the input (int)

- Then (E|) is a state of a shift-reduce parse
- (E is a prefix of the rhs of  $T \rightarrow (E)$ 
  - · Will be reduced after the next shift
- Item  $T \rightarrow (E.)$  says that so far we have seen (E of this production and hope to see )

#### Generalization

- The stack may have many prefixes of rhs's  $Prefix_1 Prefix_2 \dots Prefix_{n-1} Prefix_n$
- Let Prefix, be a prefix of rhs of  $X_i \rightarrow \alpha_i$ 
  - Prefix, will eventually reduce to X,
  - The missing part of  $\alpha_{i-1}$  starts with  $X_i$
  - i.e. there is a  $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$  for some  $\beta$
- Recursively,  $Prefix_{k+1}...Prefix_n$  eventually reduces to the missing part of  $\alpha_k$

## An Example

```
Consider the string (int * int):
  (int *|int) is a state of a shift-reduce parse

"(" is a prefix of the rhs of T → (E)

"ε" is a prefix of the rhs of E → T

"int *" is a prefix of the rhs of T → int * T
```

## An Example (Cont.)

```
The "stack of items"
       T \rightarrow (.E)
        E \rightarrow T
        T \rightarrow int * T
Says
  We've seen "(" of T \rightarrow (E)
   We've seen \varepsilon of E \rightarrow T
   We've seen int * of T \rightarrow int * T
```

### Recognizing Viable Prefixes

Idea: To recognize viable prefixes, we must

- Recognize a sequence of partial rhs's of productions, where
- Each sequence can eventually reduce to part of the missing suffix of its predecessor

## An NFA Recognizing Viable Prefixes

- 1. Add a dummy production  $S' \rightarrow S$  to G
- 2. The NFA states are the items of G
  - Including the extra production
- 3. For item  $E \rightarrow \alpha.X\beta$  add transition  $E \rightarrow \alpha.X\beta \rightarrow X E \rightarrow \alpha X.\beta$
- 4. For item  $E \to \alpha.X\beta$  and production  $X \to \gamma$  add  $E \to \alpha.X\beta \to {}^{\epsilon} X \to .\gamma$

## An NFA Recognizing Viable Prefixes (Cont.)

5. Every state is an accepting state

6. Start state is  $5' \rightarrow .5$ 

## NFA for Viable Prefixes of the Example



## NFA for Viable Prefixes in Detail (1)

## NFA for Viable Prefixes in Detail (2)



### NFA for Viable Prefixes in Detail (3)



## NFA for Viable Prefixes in Detail (4)



### NFA for Viable Prefixes in Detail (5)



### NFA for Viable Prefixes in Detail (6)



## NFA for Viable Prefixes in Detail (7)



### NFA for Viable Prefixes in Detail (8)



### NFA for Viable Prefixes in Detail (9)



### NFA for Viable Prefixes in Detail (10)



#### NFA for Viable Prefixes in Detail (11)



#### NFA for Viable Prefixes in Detail (12)



## NFA for Viable Prefixes in Detail (13)



#### Translation to the DFA

 $E \rightarrow T + . E$ 

 $E \rightarrow .T$ 

 $E \rightarrow .T + E$ 

 $T \rightarrow .(E)$ 

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 

 $T \rightarrow (.E)$ 

 $E \rightarrow T + E$ .

 $E \rightarrow .T$ 

 $E \rightarrow .T + E$ 

 $T \rightarrow .(E)$ 

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 



int

 $S' \rightarrow . E$ 

 $E \rightarrow . T$ 

 $E \rightarrow .T + E$ 

 $T \rightarrow .(E)$ 

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 

int

 $T \rightarrow int.$ 

 $T \rightarrow int * .T$ 

 $T \rightarrow .(E)$ 

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 

 $T \rightarrow int * T$ .

 $T \rightarrow (E.)$ 

 $T \rightarrow (E)$ .

# Lingo

The states of the DFA are "canonical collections of items" or

"canonical collections of LR(0) items"

The Dragon book gives another way of constructing LR(0) items

#### Valid Items

Item  $X \to \beta.\gamma$  is valid for a viable prefix  $\alpha\beta$  if  $S' \to^* \alpha X \omega \to \alpha\beta\gamma\omega$ 

by a right-most derivation

After parsing  $\alpha\beta$ , the valid items are the possible tops of the stack of items

#### Items Valid for a Prefix

An item I is valid for a viable prefix  $\alpha$  if the DFA recognizing viable prefixes terminates on input  $\alpha$  in a state s containing I

The items in s describe what the top of the item stack might be after reading input  $\alpha$ 

# Valid Items Example

- · An item is often valid for many prefixes
- Example: The item  $T \rightarrow (.E)$  is valid for prefixes

#### $E \rightarrow T + . E$ $E \rightarrow .T$ $E \rightarrow T + E$ . Valid Items for (((... $E \rightarrow .T + E$ $T \rightarrow .(E)$ $E \rightarrow T$ . $S' \rightarrow E$ . $T \rightarrow .int * T$ $E \rightarrow T. + E$ $T \rightarrow .int$ E $T \rightarrow (.E)$ $T \rightarrow int. * T$ $E \rightarrow .T$ int $T \rightarrow int$ . $S' \rightarrow . E$ $E \rightarrow .T + E$ $E \rightarrow . T$ $T \rightarrow .(E)$ int $T \rightarrow int * T$ . $E \rightarrow .T + E$ $T \rightarrow .int * T$ $T \rightarrow int * .T$ $T \rightarrow .(E)$ $T \rightarrow .int$ $T \rightarrow (E.)$ $T \rightarrow .(E)$ $T \rightarrow .int * T$ $T \rightarrow .int * T$ $T \rightarrow .int$ $T \rightarrow (E)$ . $T \rightarrow .int$ Prof. Aiken CS 143 Lecture 8 45

# LR(0) Parsing

- · Idea: Assume
  - stack contains  $\alpha$
  - next input is t
  - DFA on input  $\alpha$  terminates in state s
- Reduce by  $X \rightarrow \beta$  if
  - s contains item  $X \rightarrow \beta$ .
- · Shift if
  - s contains item  $X \rightarrow \beta.t\omega$
  - equivalent to saying s has a transition labeled t

# LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
  - Any state has two reduce items:
  - $X \rightarrow \beta$ . and  $Y \rightarrow \omega$ .
- LR(0) has a shift/reduce conflict if:
  - Any state has a reduce item and a shift item:
  - $X \rightarrow \beta$ . and  $Y \rightarrow \omega.t\delta$

# LR(0) Conflicts

 $E \rightarrow T + . E$   $E \rightarrow .T$   $E \rightarrow .T + E$  $T \rightarrow .(E)$ 

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 





 $T \rightarrow int.$ 





 $T \rightarrow .(E)$ 

 $T \rightarrow .int$ 

 $T \rightarrow .int * T$ 

int

$$T \rightarrow int * .T$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

Two shift/reduce conflicts with LR(0) rules

#### SLR

- LR = "Left-to-right scan"
- SLR = "Simple LR"
- SLR improves on LR(0) shift/reduce heuristics
  - Fewer states have conflicts

# SLR Parsing

- · Idea: Assume
  - stack contains  $\alpha$
  - next input is t
  - DFA on input  $\alpha$  terminates in state s
- Reduce by  $X \rightarrow \beta$  if
  - s contains item  $X \rightarrow \beta$ .
  - $t \in Follow(X)$
- · Shift if
  - s contains item  $X \rightarrow \beta.t\omega$

# SLR Parsing (Cont.)

- If there are conflicts under these rules, the grammar is not SLR
- The rules amount to a heuristic for detecting handles
  - The SLR grammars are those where the heuristics detect exactly the handles

#### **SLR Conflicts**

 $E \rightarrow T + . E$  $E \rightarrow .T$  $E \rightarrow .T + E$  $T \rightarrow .(E)$ 

 $E \rightarrow T + E$ .



int

 $T \rightarrow .int * T$ 

 $T \rightarrow .int$ 

 $T \rightarrow (.E)$ 

$$E \rightarrow . T$$

$$E \rightarrow .T + E$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

$$T \rightarrow int. * T$$

$$T \rightarrow int.$$

$$T \rightarrow int * .T$$

$$T \rightarrow .(E)$$

$$T \rightarrow .int * T$$

$$T \rightarrow .int$$

No conflicts with SLR rules!

# Precedence Declarations Digression

- · Lots of grammars aren't SLR
  - including all ambiguous grammars
- We can parse more grammars by using precedence declarations
  - Instructions for resolving conflicts

## Precedence Declarations (Cont.)

- Consider our favorite ambiguous grammar:
  - $E \rightarrow E + E \mid E * E \mid (E) \mid int$
- The DFA for this grammar contains a state with the following items:
  - $E \rightarrow E * E$ .  $E \rightarrow E . + E$
  - shift/reduce conflict!
- Declaring "\* has higher precedence than +" resolves this conflict in favor of reducing

## Precedence Declarations (Cont.)

- The term "precedence declaration" is misleading
- These declarations do not define precedence;
   they define conflict resolutions
  - Not quite the same thing!

# Naïve SLR Parsing Algorithm

- 1. Let M be DFA for viable prefixes of G
- 2. Let  $|x_1...x_n|$  be initial configuration
- 3. Repeat until configuration is 5 | \$
  - Let  $\alpha \mid \omega$  be current configuration
  - Run M on current stack α
  - If M rejects  $\alpha$ , report parsing error
    - Stack  $\alpha$  is not a viable prefix
  - If M accepts  $\alpha$  with items I, let a be next input
    - Shift if  $X \rightarrow \beta$ . a  $\gamma \in I$
    - Reduce if  $X \to \beta \in I$  and  $a \in Follow(X)$
    - Report parsing error if neither applies

#### Notes

If there is a conflict in the last step, grammar is not SLR(k)

- k is the amount of lookahead
  - In practice k = 1

```
Configuration DFA Halt State Action | int * int$ 1 shift
```







```
Configuration DFA Halt State Action | int * int$ 1 shift | int | * int$ 3 * not in Follow(T) shift | int * | int$ 11 shift
```















```
Configuration DFA Halt State
                                     Action
int * int$
                                     shift
int | * int$
               3 * not in Follow(T)
                                     shift
int * | int$
               11
                                     shift
int * int |$
               3 \quad \$ \in Follow(T)
                                     red. T→int
int * T | $
                  \$ \in Follow(T)
                                     red. T→int*T
```









# SLR Example

```
Configuration DFA Halt State
                                      Action
int * int$
                                      shift
int | * int$
                3 * not in Follow(T)
                                      shift
int * | int$
                11
                                      shift
                                      red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
int * T | $
                4 \$ \in Follow(T)
                                      red. T→int*T
T |$
                5 \quad \$ \in Follow(E)
                                      red. E→T
```





## SLR Example

```
Configuration DFA Halt State
                                      Action
int * int$
                                      shift
int | * int$
                3 * not in Follow(T)
                                      shift
int * | int$
                11
                                      shift
                                      red. T→int
int * int |$
                3 \quad \$ \in Follow(T)
int * T | $
                4 \$ \in Follow(T)
                                      red. T→int*T
T |$
                5 \quad \$ \in Follow(T)
                                      red. E→T
E |$
                                      accept
```

#### Notes

- Skipped using extra start state 5' in this example to save space on slides
- Rerunning the automaton at each step is wasteful
  - Most of the work is repeated

## An Improvement

 Remember the state of the automaton on each prefix of the stack

Change stack to contain pairs

Symbol, DFA State >

## An Improvement (Cont.)

For a stack

```
\langle \text{sym}_1, \text{state}_1 \rangle \dots \langle \text{sym}_n, \text{state}_n \rangle
state<sub>n</sub> is the final state of the DFA on \text{sym}_1 \dots \text{sym}_n
```

- Detail: The bottom of the stack is (any,start) where
  - any is any dummy symbol
  - start is the start state of the DFA

### Goto Table

- Define goto[i,A] = j if  $state_i \rightarrow A$   $state_j$
- goto is just the transition function of the DFA
  - One of two parsing tables

### Refined Parser Moves

- Shift x
  - Push  $\langle a, x \rangle$  on the stack
  - a is current input
  - x is a DFA state
- Reduce  $X \rightarrow \alpha$ 
  - As before
- Accept
- Error

### Action Table

## For each state s; and terminal a

- If  $s_i$  has item  $X \rightarrow \alpha.a\beta$  and goto[i,a] = j then action[i,a] = shift j
- If  $s_i$  has item  $X \to \alpha$ . and  $a \in Follow(X)$  and  $X \neq S'$  then action[i,a] = reduce  $X \to \alpha$
- If  $s_i$  has item  $S' \rightarrow S$ . then action[i,\$] = accept
- Otherwise, action[i,a] = error

# SLR Parsing Algorithm

```
Let I = w$ be initial input
Let j = 0
Let DFA state 1 have item S' \rightarrow .S
Let stack = \langle dummy, 1 \rangle
   repeat
         case action[top_state(stack),I[j]] of
                 shift k: push ( I[j++], k )
                 reduce X \rightarrow A:
                      pop |A| pairs,
                      push (X, goto[top_state(stack),X])
                 accept: halt normally
                 error: halt and report error
```

# Notes on SLR Parsing Algorithm

- Note that the algorithm uses only the DFA states and the input
  - The stack symbols are never used!
- However, we still need the symbols for semantic actions

### More Notes

- Some common constructs are not SLR(1)
- LR(1) is more powerful
  - Build lookahead into the items
  - An LR(1) item is a pair: LR(0) item x lookahead
  - $[T \rightarrow . int * T, $]$  means
    - After seeing T→ int \* T reduce if lookahead is \$
  - More accurate than just using follow sets
  - Take a look at the LR(1) automaton for your parser!