

Co²L: Contrastive Continual Learning

Shiwon Kim,
Digital Healthcare Lab,
Department of Digital Analytics,
Yonsei University College of Computing

Abstract

- Recent breakthroughs in self-supervised learning (SSL)
 - SSL learn transferable representations better than cross-entropy based supervised methods
 - This paper suggests that the similar holds in the continual learning (CL) context
 - Contrastively learned representations are more robust against the catastrophic forgetting
- Co²L (Contrastive Continual Learning)
 - Focuses on continually learning and maintaining transferable representations (replay-based)
 - 1) Learns representations using the contrastive learning objective
 - 2) Preserves learned representations using a self-supervised distillation setup

Motivation for the proposed method

- Previous continual learning approaches
 - Focus on preserving the previously learned knowledge using various past information
 - Replay-based methods rehearse a small portion of past samples along with current samples
 - Regularization-based approaches force the current model to be close to the past model
 - Expansion-based methods allocate a unit (e.g., network node, sub-network) for each task
- Proposed approach
 - Instead of asking how to isolate previous knowledge from new knowledge...

What type of knowledge is likely to be **useful for future tasks (and thus not get forgotten)**, and how can we learn and preserve such knowledge?

Learning transferable representations

- Forgetting of future events
 - e.g., Task 1 (apple vs. banana) → Task 2 (apple vs. strawberry)
 - The color is critical for task 1 but **no longer useful for task 2** and eventually get forgotten
 - Forgetting does not only come from the limited access to the past experience
 - It also comes from the innately restricted access to future events
- Significance of learning transferable representations
 - More complicated features (e.g., shape, polish, texture) may be **re-used for future tasks**
 - Learning transferable representations is as important as preserving the past knowledge

Contrastive learning

- Recent advancement in contrastive methods
 - Use the inductive bias that the prediction should be invariant to input transformations
 - Contrastive methods are known to be surprisingly effective despite their simplicity
 - Closely achieve the fully-supervised performance even without labels¹
 - Outperform its counterparts in the supervised case for ImageNet classification²
- Contrastive learning in a continual setup
 - A similar observation is made in this paper under a continual scenario
 - Contrastively learned representations suffer less forgetting than those trained with CE loss

Challenges of applying contrastive learning to continual settings

- Limited access to negative samples
 - Having informative negative samples is crucial for the success of contrastive learning³
 - The learner can access samples from only a small number of classes at each time step in CL
 - Instantaneous demographics of negative samples are highly restricted under continual setups
- Preserving the contrastively learned representations
 - Recent works aim to learn representations accelerating future learning
 - Lack of an explicit design to preserve representations

Contributions (Co²L)

- 1. Contrastive learning
 - Design an asymmetric version of supervised contrastive loss under continual setup
- 2. Preserving representations
 - Propose a novel preservation mechanism for contrastively learned representations on CL
 - Maintain representations using self-distillation* of instance-wise relations
- Quantitative validation
 - Outperforms all baselines on various datasets, CL scenarios, and memory setups
 - Ablation studies show that both components proposed are essential for performance

Rehearsal-based continual learning

- Experience replay (ER)
 - Manage a fixed-sized buffer to retain a few samples and replay those to prevent forgetting
 - Focus on either regulating model updates or selecting samples
 - Regulate model updates not to contradict the learning objectives on past samples
 - Select the most representative samples to prevent changes in past predictions
 - Not many studies related to ER in a decoupled representation learning setup
 - Representation learning objectives may not be directly aligned to task-specific objectives
 - We focus on utilizing buffered samples to learn representations continually

Representation learning in continual learning

- Continual learning of representations
 - Only a few studies on continual learning focus on representations in two aspects
 - 1) How to maintain learned representations
 - 2) How to learn representations accelerating future learning
 - Previous studies
 - Prevent representations from being forgotten by leveraging distillation
 - Learn representations that accelerate future learning on meta-learning frameworks
 - Exploit self-supervised learning objectives to learn more generalizable representations
 - We use a contrastive scheme with additional components to preserve learned representations

Contrastive representation learning

- Recent progress in contrastive representation learning
 - Superior downstream task performance even comparable to supervised training
 - Advances in this area stems from the use of multiple views as positive samples
 - Practical limitations resolved by previous studies
 - Negative sample pairs
 - Large batch size
 - Supervised learning can also enjoy the benefits of contrastive representation learning²
 - We mainly leverage contrastive representation learning schemes on the CL setup

Knowledge distillation

- Knowledge distillation (KD) in continual learning
 - Widely used to mitigate forgetting by distilling past signatures to the current models
 - Has not been studied to utilize KD for decoupled representation training in the CL setup
 - We develop novel self-distillation loss for contrastive continual learning

Problem setup: continual learning

- Class-incremental learning (CIL)
 - The learner is trained on a sequence of tasks indexed by $t \in \{1, 2, ..., T\}$
 - For a task-specific class set C_t , $\{C_t\}_{t=1}^T$ are assumed to be disjoint, i.e., $t \neq t' \implies C_t \cap C_{t'} = \emptyset$
 - n_t copies of task-specific input-label pairs during each task, i.e., $\{(\mathbf{x}_i, y_i)\}_{i=1}^{n_t} \sim D_t$
 - The goal is to find a predictor $\varphi_{\theta}(x)$ minimizing the following loss function:

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \mathbb{E}_{D_t} [\ell(y, \varphi_{\theta}(\mathbf{x}))]$$

Preliminaries: contrastive learning

Supervised contrastive learning (SupCon)²

Preliminaries: contrastive learning

- Training setup
 - $\varphi_{\theta} = w \circ f_{\vartheta} \rightarrow \text{classification model with parameter pairs } \theta = (\vartheta, w)$
 - $w(\cdot)$ is the linear classifier and $f_{\vartheta}(\cdot)$ is the representation

 $\{(\tilde{\mathbf{x}}_{2\mathbf{k}}, \tilde{\mathbf{y}}_{2\mathbf{k}})\}_{\mathbf{k}=1}^{N}$

batch \mathcal{B}_a

2N augmented samples

$$\{(\tilde{\mathbf{x}}_i, \tilde{\mathbf{y}}_i)\}_{i=1}^{2N}$$

Preliminaries: contrastive learning

- Supervised contrastive loss
 - Samples in the augmented batch are mapped to a unit d-dimensional Euclidean sphere as:

$$\mathbf{z}_i = (g \circ f)_{\boldsymbol{\psi}}(\tilde{\mathbf{x}}_i)$$

• The feature map $(g \circ f)_{\psi}$ is trained to minimize the supervised contrastive loss:

$$\mathcal{L}^{\sup} = \sum_{i=1}^{2N} \frac{-1}{|\mathfrak{p}_i|} \sum_{j \in \mathfrak{p}_i} \log \left(\frac{\exp(z_i \cdot z_j / \tau)}{\sum_{k \neq i} \exp(z_i \cdot z_k / \tau)} \right)$$

 $\mathfrak{p}_i = \{j \in \{1, ..., 2N\} \mid j \neq i, \ y_j = y_i\} \ \cdots \ index \ set \ of \ positive \ samples \ on \ anchor \ \tilde{\mathbf{x}}_i$

A rehearsal-based contrastive learning scheme

- Overview
 - A mini-batch (2N augmented samples) gradient descent based on the compound loss:

$$\mathcal{L} = \mathcal{L}_{asym}^{sup} + \lambda \cdot \mathcal{L}^{IRD}$$

- 1) Learning
 - Learns the representations with an asymmetric form of supervised contrastive loss
- 2) Preserving
 - Preserves learned representations using self-supervised distillation
 - A decoupled representation-classifier training scheme

(1) Representation learning with asymmetric supervised contrastive loss

- Asymmetrically modified version of \mathcal{L}^{sup}
 - **Prevent overfitting** to small-sized past samples \rightarrow only use **current samples** as anchors
 - Past task samples from the memory buffer are only used as negative samples
 - Contrasts anchor samples from the current task against the samples from other classes
 - Provides a more transferable representation

$$\mathcal{L}_{\text{asym}}^{\text{sup}} = \sum_{i \in S} \frac{-1}{|\mathfrak{p}_i|} \sum_{j \in \mathfrak{p}_i} \log \left(\frac{\exp(\mathbf{z}_i \cdot \mathbf{z}_j / \tau)}{\sum_{k \neq i} \exp(\mathbf{z}_i \cdot \mathbf{z}_k / \tau)} \right)$$

$$S \subset \{1, ..., 2N\}$$

(2) Instance-wise relation distillation (IRD) for contrastive continual learning

- Explicit mechanism to preserve the learned knowledge
 - Regulates the changes in feature relation between batch samples via self-distillation
 - Quantifies discrepancy between instance-wise similarities of current and past representation
 - Instance-wise similarity vector for each sample $\tilde{\mathbf{x}}_i$ in a batch \mathcal{B} :

$$\mathbf{p}(\tilde{\mathbf{x}}_{i}; \psi, \kappa) = [p_{i,1}, \dots, p_{i,i-1}, p_{i,i+1}, \dots, p_{i,2N}]$$

Normalized instance-wise similarity:

$$p_{i,j} = \frac{\exp(\mathbf{z}_i \cdot \mathbf{z}_j / \kappa)}{\sum_{k \neq i}^{2N} \exp(\mathbf{z}_i \cdot \mathbf{z}_k / \kappa)}$$

(2) Instance-wise relation distillation (IRD) for contrastive continual learning

- Explicit mechanism to preserve the learned knowledge
 - Denote the parameters of the past and current model as $\psi^{
 m past}$ and ψ
 - Use fixed weights snapped at the end of previous task training as the **reference model** ψ^{past}
 - Minimize the drift of the instance-wise similarities given by ψ from the ones given by $\psi^{\rm past}$

$$\mathcal{L}^{\text{IRD}} = \sum_{i=1}^{2N} - \mathbf{p}\left(\tilde{\mathbf{x}}_{i}; \psi^{\text{past}}, \kappa^{*}\right) \cdot \log \mathbf{p}\left(\tilde{\mathbf{x}}_{i}; \psi, \kappa\right)$$

(b) Instance-wise Relation Distillation Loss

(3) Algorithm details

- Data preparation
 - Dataset is built as a union of current samples and buffered samples without oversampling
 - Each sample in a mini-batch is augmented into two views (rotation)
- Learning new representations
 - Forward augmented samples to the **encoder** f_{ϑ} and the **projection map** g_{ϕ} sequentially
 - Projection map outputs are used to compute asymmetric supervised contrastive loss
- Preserving learned representation
 - Compute instance-wise relations drifts between reference model and the training model
 - The reference model is not updated while optimizing the total loss (stop-gradient)

(3) Algorithm details

Overall architecture

Experimental setup

- Learning scenarios and datasets
 - Seq-CIFAR-10 (2 classes * 5) and Seq-Tiny-ImageNet (20 classes * 10) → Task-IL / Class-IL
 - **R-MNIST** (20 tasks corresponding to 20 uniformly randomly chosen degrees) → Domain-IL
- Rehearsal-based continual learning baselines
 - ER, iCaRL, GEM, A-GEM, FDR, GSS, HAL, DER, DER++ (ResNet-18)
 - Buffer size 200 and 500
- Evaluation protocol
 - Train a linear classifier using current and buffer on top of frozen representations from Co²L
 - 100 epochs for all experiments

Main results

Validation of key hypothesis

Contrastive learning learns more useful representation for the future task than the cross-entropy based coupled representation-classifier supervised learning

Main results

- Validation of key hypothesis
 - Contrastively learned representations suffer less forgetting than those trained with CE loss
 - Learns highly transferable representations useful for future tasks on unseen objects

Main results

Buffer	Dataset	Seq-CII	FAR-10	Seq-Tiny-ImageNet		R-MNIST
	Scenario	Class-IL	Task-IL	Class-IL	Task-IL	Domain-IL
	ER [34]	44.79±1.86	91.19±0.94	8.49 ± 0.16	38.17±2.00	93.53±1.15
	GEM [29]	25.54 ± 0.76	90.44 ± 0.94	-	-	89.86 ± 1.23
	A-GEM [8]	20.04 ± 0.34	83.88 ± 1.49	8.07 ± 0.08	22.77 ± 0.03	89.03 ± 2.76
	iCaRL [33]	49.02 ± 3.20	88.99 ± 2.13	7.53 ± 0.79	28.19 ± 1.47	-
200	FDR [4]	30.91 ± 2.74	91.01 ± 0.68	8.70 ± 0.19	40.36 ± 0.68	93.71 ± 1.51
200	GSS [2]	39.07 ± 5.59	88.80 ± 2.89	-	-	87.10 ± 7.23
	HAL [7]	32.36 ± 2.70	82.51 ± 3.20	-	-	89.40 ± 2.50
	DER [5]	61.93 ± 1.79	91.40 ± 0.92	11.87 ± 0.78	40.22 ± 0.67	96.43 ± 0.59
	DER++ [5]	64.88 ± 1.17	91.92 ± 0.60	10.96 ± 1.17	40.87 ± 1.16	95.98 ± 1.06
	Co ² L (ours)	65.57 ± 1.37	93.43 ± 0.78	13.88 ± 0.40	42.37 ± 0.74	97.90 ± 1.92
500	ER [34]	57.74±0.27	93.61±0.27	9.99 ± 0.29	48.64±0.46	94.89±0.95
	GEM [29]	26.20 ± 1.26	92.16 ± 0.64	-	-	92.55 ± 0.85
	A-GEM [8]	22.67 ± 0.57	89.48 ± 1.45	8.06 ± 0.04	25.33 ± 0.49	89.04 ± 7.01
	iCaRL [33]	47.55 ± 3.95	88.22 ± 2.62	9.38 ± 1.53	31.55 ± 3.27	-
	FDR [4]	28.71 ± 3.23	93.29 ± 0.59	10.54 ± 0.21	49.88 ± 0.71	95.48 ± 0.68
	GSS [2]	49.73 ± 4.78	91.02 ± 1.57	-	-	89.38 ± 3.12
	HAL [7]	41.79 ± 4.46	84.54 ± 2.36	-	-	92.35 ± 0.81
	DER [5]	70.51 ± 1.67	93.40 ± 0.39	17.75 ± 1.14	51.78 ± 0.88	97.57 ± 1.47
	DER++ [5]	72.70 ± 1.36	93.88 ± 0.50	19.38 ± 1.41	51.91 ± 0.68	97.54 ± 0.43
	Co ² L (ours)	$\textbf{74.26} \!\pm\! 0.77$	95.90 ± 0.26	$20.12 {\pm} 0.42$	53.04 ± 0.69	98.65 ± 0.31

- Effectiveness of IRD
 - Experiments with the class-IL setup on the Seq-CIFAR-10 dataset
 - *a)* Without buffer and IRD → optimize using only the **symmetric SupCon loss**
 - b) With IRD only \rightarrow use both symmetric SupCon loss and IRD loss
 - c) With replay buffer only \rightarrow optimize the asymmetric SupCon loss

	Buffer Size	IRD	Accuracy(%)
(a) w/o buffer and IRD	0	X	53.25 ± 1.70
(b) w/ IRD only	0	1	58.89 ± 2.61
(c) w/ buffer only	200	×	53.57 ± 1.03
(d) $Co^2L(ours)$	200	✓	65.57 ± 1.37

- Effectiveness of IRD
 - Train with symmetric and asymmetric SupCon loss on an infinite-buffer class-IL scenario
 - Asymmetric SupCon performs poor without IRD → gap closes with increasing IRD power
 - Not using past samples as positive pairs only restricts learning under class-balanced setup

- Effectiveness of asymmetric supervised contrastive loss
 - The original SupCon loss versus the asymmetric SupCon loss combined with the IRD loss

	Seq-CIFAR-10		Seq-Tiny-ImageNet	
Buffer	200	500	200	500
$\mathcal{L}^{ ext{sup}}_{ ext{asym}}$	60.49±0.72 65.57±1.37	68.66±0.68 74.26 ± 0.77	13.51±0.48 13.88±0.40	19.68 ± 0.62 20.12 ± 0.42

- Effectiveness of asymmetric supervised contrastive loss
 - **t-SNE visualization** of features from buffered and entire training samples of Seq-CIFAR-10

