Optimizing ROC Curves with a Sort-Based Surrogate Loss for Binary Classification and Changepoint Detection

Toby Dylan Hocking — toby.hocking@nau.edu joint work with my student Jonathan Hillman Machine Learning Research Lab — http://ml.nau.edu

Come to SICCS! Graduate Research Assistantships available!

Problem Setting and Related Work

Proposed algorithm

Results

Discussion and Conclusions

Problem: unsupervised changepoint detection

- We are given a data sequence z_1, \ldots, z_T measured at T points over time/space.
- **E**x: DNA copy number data for cancer diagnosis, $z_t \in \mathbb{R}$.
- ▶ The penalized changepoint problem is

$$\operatorname*{arg\,min}_{u_1,\ldots,u_T\in\mathbb{R}}\sum_{t=1}^T(u_t-z_t)^2+\lambda\sum_{t=2}^TI[u_{t-1}\neq u_t].$$

 $\begin{array}{lll} \mbox{Larger} & \mbox{penalty} & \lambda \\ \mbox{results} & \mbox{in fewer} \\ \mbox{changes/segments}. \end{array}$

 $\begin{array}{ll} {\sf Smaller} & {\sf penalty} \\ \lambda & {\sf results} & {\sf in more} \\ {\sf changes/segments}. \end{array}$

Problem: weakly supervised changepoint detection

- ightharpoonup We are given a data sequence **z** with labeled regions L.
- We compute features $\mathbf{x} = \phi(\mathbf{z}) \in \mathbf{R}^p$ and want to learn a function $f(\mathbf{x}) = \log \lambda \in \mathbf{R}$ that minimizes label error.

Problem: supervised binary classification

- ▶ Given pairs of inputs $\mathbf{x} \in \mathbb{R}^p$ and outputs $y \in \{0,1\}$ can we learn $f(\mathbf{x}) = y$?
- \triangleright Example: email, $\mathbf{x} = \text{bag of words}$, y = spam or not.
- Example: images. Jones et al. PNAS 2009.

A Automated Cell Image Processing

Cytoprofile of 500+ features measured for each cell

B Iterative Machine Learning

System presents cells to biologist for scoring, in batches

Looping ROC curve, simple synthetic example

 $FPT_{\hat{y}}(c)$

 $FNT_{\hat{y}}(c)$ $M_{\hat{y}}(c)$

Problem Setting and Related Work

Proposed algorithm

Results

Discussion and Conclusions

Looping ROC curve, simple synthetic example

 $FPT_{\hat{y}}(c)$

 $\text{FNT}_{\hat{\mathbf{y}}}(c)$ $M_{\hat{y}}(c)$

Real data example with non-monotonic label error

Notation

Let there be a total of B breakpoints in the error functions over all *n* labeled training examples, where each breakpoint $b \in \{1, \dots, B\}$ is represented by the tuple $(v_b, \Delta FP_b, \Delta FN_b, \mathcal{I}_b)$. The $\mathcal{I}_b \in \{1, \dots, n\}$ is an example index, so there are changes $\Delta \mathsf{FP}_b, \Delta \mathsf{FN}_b$ at predicted value $v_b \in \mathbb{R}$ in the error functions $\mathsf{FP}_{\mathcal{I}_k}, \mathsf{FN}_{\mathcal{I}_k}$ (Figure ??). For example in binary classification, there are B = n breakpoints (same as the number of labeled training examples); for each breakpoint $b \in \{1, ..., B\}$ we have $v_b = 0$ and $\mathcal{I}_b = b$. For breakpoints b with positive labels $y_b = 1$ we have $\Delta FP = 0$, $\Delta FN = -1$, and for negative labels $y_b = -1$ we have $\Delta FP = 1, \Delta FN = 0$. In changepoint detection we have more general error functions, which may have more than one breakpoint per example.

Proposed algorithm

```
Input: Predictions ŷ ∈ ℝ<sup>n</sup>, breakpoints in error functions v<sub>b</sub>, ΔFP<sub>b</sub>, ΔFN<sub>b</sub>, T<sub>b</sub> for all b ∈ {1,..., B}.
Zero the AUM ∈ ℝ and directional derivatives D ∈ ℝ<sup>n×2</sup>.
t<sub>b</sub> ← v<sub>b</sub> − ŷ<sub>T<sub>b</sub></sub> for all b.
s<sub>1</sub>,..., s<sub>B</sub> ← SORTEDINDICES(t<sub>1</sub>,..., t<sub>B</sub>).
Compute FP<sub>b</sub>, FP<sub>b</sub>, FN<sub>b</sub>, FN<sub>b</sub> for all b using s<sub>1</sub>,..., s<sub>B</sub>.
for b ∈ {2,..., B} do
AUM += (t<sub>s<sub>b</sub></sub> − t<sub>s<sub>b-1</sub></sub>) min{FP<sub>b</sub>, FN<sub>b</sub>}.
for b ∈ {1,..., B} do
D<sub>T<sub>b</sub>,1</sub> += min{FP<sub>b</sub>, FN<sub>b</sub>} − min{FP<sub>b</sub> − ΔFP<sub>b</sub>, FN<sub>b</sub>} − ΔFN<sub>b</sub>}
D<sub>T<sub>b</sub>,2</sub> += min{FP<sub>b</sub>, FN<sub>b</sub>} − MFN<sub>b</sub> + ΔFN<sub>b</sub>} − min{FP<sub>b</sub>, FN<sub>b</sub>}
```

11: Output: AUM and matrix **D** of directional derivatives.

Problem Setting and Related Work

Proposed algorithm

Results

Discussion and Conclusions

Real data example with AUC greater than one

Train set ROC curves for a real changepoint problem

Learning algorithm results in better test AUC/AUM for changepoint problems

Standard logistic loss fails for highly imbalanced labels

Comparing logistic regression models (control experiment)

Error rate loss is not as useful as error count loss

0.990

AUM.rate -AUM.count -

0.985

Test AUC, median and quartiles over 10 random train sets

0.995

percent

percent

percent positive abels: 50

1.000

Learning algorithm competitive for unbalanced binary classification

(b) AUM compared to baselines

Test AUC, median and quartiles over 10 random train sets

Comparable computation time to other loss functions

Problem Setting and Related Work

Proposed algorithm

Results

Discussion and Conclusions

Conclusions

TODO

More notation

First let $\{(\operatorname{fpt}(\hat{\mathbf{y}})_q, \operatorname{fnt}(\hat{\mathbf{y}})_q, \tau(\hat{\mathbf{y}})_q)\}_{q=1}^Q$ be a sequence of Q tuples, each of which corresponds to a point on the ROC curve (Figure ??, right). The fpt/fnt are false positive/negative totals whereas τ are values such there is a change/threshold at $M_{\hat{\mathbf{v}}}(\tau)$. As shown in Figure ?? we assume these values are increasing, $-\infty = \tau(\hat{\mathbf{y}})_0 < \cdots < \tau(\hat{\mathbf{y}})_Q = \infty$. For each $q \in \{1, \dots, Q\}$ there is a corresponding interval of values c between $\tau(\hat{\mathbf{y}})_{a-1}$ and $\tau(\hat{\mathbf{y}})_a$ such that $FPT_{\hat{\mathbf{y}}}(c) = fpt(\hat{\mathbf{y}})_q$ and $FNT_{\hat{\mathbf{y}}}(c) = fnt(\hat{\mathbf{y}})_q$ for all $c \in (\tau(\hat{\mathbf{y}})_{a-1}, \tau(\hat{\mathbf{y}})_a)$ (Figure ??, left). Then we define $m(\hat{\mathbf{y}})_q = \min\{\text{fpt}(\hat{\mathbf{y}})_q, \, \text{fnt}(\hat{\mathbf{y}})_q\} \text{ and so since } m(\hat{\mathbf{y}})_1 = m(\hat{\mathbf{y}})_Q = 0$ the area under those intervals is zero, and the AUM can be computed by summing over all of the other intervals,

L1 relaxation interpretation

Our proposed loss function is

$$\mathsf{AUM}(\mathbf{\hat{y}}) = \sum_{q=2}^{Q-1} [\tau(\mathbf{\hat{y}})_q - \tau(\mathbf{\hat{y}})_{q-1}] m(\mathbf{\hat{y}})_q.$$

It is an L1 relaxation of the following non-convex Sum of Min(FP,FN) function,

$$\mathsf{SM}(\hat{\mathbf{y}}) = \sum_{q=2}^{Q-1} I[\tau(\hat{\mathbf{y}})_q \neq \tau(\hat{\mathbf{y}})_{q-1}] m(\hat{\mathbf{y}})_q = \sum_{q:\tau(\hat{\mathbf{y}})_q \neq \tau(\hat{\mathbf{y}})_{q-1}} m(\hat{\mathbf{y}})_q.$$

FP and FN counts before/after each threshold

$$\begin{split} & \underline{\mathsf{FP}}_b &= \sum_{j:t_j < t_b} \Delta \mathsf{FP}_j, \\ & \overline{\mathsf{FP}}_b &= \sum_{j:t_j \leq t_b} \Delta \mathsf{FP}_j, \\ & \underline{\mathsf{FN}}_b &= \sum_{j:t_j \geq t_b} -\Delta \mathsf{FN}_j, \\ & \overline{\mathsf{FN}}_b &= \sum_{j:t_j > t_b} -\Delta \mathsf{FN}_j. \end{split}$$

Directional derivatives

Theorem

The AUM directional derivatives for a particular example $i \in \{1, ..., n\}$ can be computed using the following equations.

$$\begin{split} &\nabla_{\mathbf{v}(-1,i)}\mathsf{AUM}(\hat{\mathbf{y}}) = \\ &\sum_{b:\mathcal{I}_b=i} \min\{\overline{\mathsf{FP}}_b, \overline{\mathsf{FN}}_b\} - \min\{\overline{\mathsf{FP}}_b - \Delta\mathsf{FP}_b, \overline{\mathsf{FN}}_b - \Delta\mathsf{FN}_b\}, \\ &\nabla_{\mathbf{v}(1,i)}\mathsf{AUM}(\hat{\mathbf{y}}) = \\ &\sum_{b:\mathcal{I}_b=i} \min\{\underline{\mathsf{FP}}_b + \Delta\mathsf{FP}_b, \underline{\mathsf{FN}}_b + \Delta\mathsf{FN}_b\} - \min\{\underline{\mathsf{FP}}_b, \underline{\mathsf{FN}}_b\}. \end{split}$$