DSM LAB REPORT-2

Group 14: Aaryan Shah (2024113014)

Lab 2: Gate
Identification
and De Morgan's
Theorems

Experiment-1

Objective:

To identify the logic gate present in each of the given ICs.

Components Used:

Digital Test Kit, wires, ICs = CPAE0014, CD4001BE, HD74LS86P, MC14001BCP, HD74LS32B, 74F08N

Reference Circuit:

Procedure:

- Connect the VCC and GND of the Digital Test Kit to the VCC and GND pins of the ICs.
- 2. Connect the two input pins of each IC to any of the input switches on the Digital Test Kit and their respective output pins to the display points.
- 3. Now, toggle the input switches of each gate and record the readings in a truth table for each of the ICs.

Tinkercad Simulation:

https://www.tinkercad.com/things/6hRjDU00NTk-dsmlab2exp1?sharecode=E_V9b1jKBYWSkEKcW-v8Ed_BTaks-ZafsexHGEd9p8E

Observation:

1. NOR GATE (MC14001BCP)

Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

2. AND GATE (74F08N)

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

3. OR GATE (HD74LS32B)

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

4. NAND GATE (CPAE0014)

Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

5. NOR GATE (CD4001BE)

Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

6. XOR GATE (HD74LS86P)

Α	В	A NOR B
0	0	0
0	1	1
1	0	1
1	1	0

Conclusion:

Logic gates present in the ICs identified via truth tables.

Experiment-2

Objective:

Verifying the De Morgan theorems.

- 1. (A+B)' = A'B'
- 2. (AB)' = A' + B'

Components Used:

Digital Test Kit, wires, ICs = CPAE0014, C005601, HD74LS32B

Reference Circuits:

Procedure:

- For A'B', create a circuit using two NAND gates and one AND gate.
 Connect two inputs to the NAND gates to perform the NOT function. ((AA)' = A')
- 2. Now follow steps 1, 2, and 3 from Experiment 1 to verify that A'B' is logically equivalent to the NOR gate.
- 3. Similarly using two NAND gates and one OR gate verify that A' + B' is logically equivalent to the NAND gate.

Outputs:

DSM_Lab-2(1).mp4 & DSM_Lab-2(2).mp4

Tinkercad Simulations:

1. Y = A'B'

https://www.tinkercad.com/things/fBXGDnYl0Sh-dsmlab2exp2-1?sharecode=Wz3xleFYr_H-AQkTfTNhp4zFay6bk6M2x68m0eY7z6c

2. Y = A' + B'

https://www.tinkercad.com/things/iHAWsm2o0q4-dsmlab2exp2-2?sharecode=NScncwOS_xr2UMz_CC_RcFlQ6ZLa4GA0aL68fzrA4lM

Observations:

Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

2.
$$Y = A' + B'$$

Α	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Conclusion:

De Morgan's theorems state that the truth table of Y = A'B' is equivalent to the truth table of the NOR gate, and the truth table of Y = A' + B' is equivalent to the truth table of the NAND gate.

Thus,

1.
$$(A + B)' = A'B'$$

2.
$$(AB)' = A' + B'$$