Mathematical Finance

Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF02P

Mathematical Finance: QF

In-Tutorial exercises (for discussion on Tuesday, 11/07/2023)

In-Tutorial Exercise 1. Let $\Omega = \{1, 2, 3, a\}$ and let $\mathcal{A}, \mathcal{B} \subseteq \Omega$ be σ -algebrae defined via

$$\mathcal{A} = \sigma(\{1,2\},\{3,a\}), \mathcal{B} = \sigma(\{1,a\},\{2,3\}) \text{ and } \mathcal{C} = \sigma(\{1,2\},\{3\},\{a\}).$$

- a) Give all the elements of \mathcal{A}, \mathcal{B} and \mathcal{C} .
- b) Give all the elements of $A \cup B$ and $A \cap B$.

In-Tutorial Exercise 2. Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ and define a stochastic process $X = (X_0, X_1, X_2)$ on Ω by the following values:

ω	$X_0(\omega)$	$X_1(\omega)$	$X_2(\omega)$
ω_1	1	0.5	0.25
ω_2	1	0.5	1
ω_3	1	2	1
ω_4	1	2	1.5
ω_5	1	2	3.5

- a) Represent X in the tree and determine the filtration $\mathcal{F} = (\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2)$ generated by X.
- b) Let P be the uniform distribution on Ω . Calculate the conditional expectations $E(X_2|\mathcal{F}_1)$, $E(X_1|\mathcal{F}_0)$ and $E(X_2|\mathcal{F}_0)$.
- c) Determine whether X is a martingale, a submartingale or a supermartingale?