高等线性代数 Homework 13

Due: Dec. 16, 2024

姓名: 雍崔扬

学号: 21307140051

Problem 1

给定正整数 m,n,设 $F(\cdot)$ 是 $\mathbb{R}^n \mapsto \mathbb{R}^m$ 上的仿射映射. 试证明由 $G(x) := F(x) - F(0_n)$ 定义的映射 $G(\cdot)$ 是 $\mathbb{R}^n \mapsto \mathbb{R}^m$ 的线性映射.

• **Definition:** 保持仿射性的映射 $F: \mathbb{R}^n \mapsto \mathbb{R}^m$ 称为**仿射映射**.

$$F(\alpha x + (1 - \alpha)y) = \alpha F(x) + (1 - \alpha)F(y) \quad (\forall \ x, y \in \mathbb{R}^n, \alpha \in \mathbb{R})$$

事实上,每个仿射映射都可唯一地表示为 F(x)=Ax+b (其中 $A\in\mathbb{R}^{m\times n}$) 于是 $G(x)=F(x)-F(0_n)=(Ax+b)-b=Ax$ 显然是线性映射. 因此本题的结论直观上是成立的.

Proof:

取 $y = 0_n$ 可得:

$$F(\alpha x) = \alpha F(x) + (1 - \alpha)F(0_n) \quad (\forall \ x \in \mathbb{R}^n, \alpha \in \mathbb{R})$$
 (1)

于是我们有:

$$G(\alpha x) = F(\alpha x) - F(0_n)$$
 (utilize (1))
 $= \alpha F(x) + (1 - \alpha)F(0_n) - F(0_n)$
 $= \alpha F(x) - \alpha F(0_n)$
 $= \alpha G(x)$ ($\forall x \in \mathbb{R}^n, \alpha \in \mathbb{R}$)

取 $\alpha = \frac{1}{2}$ 可得:

$$F(\frac{1}{2}x + \frac{1}{2}y) = \frac{1}{2}F(x) + \frac{1}{2}F(y) \quad (\forall x, y \in \mathbb{R}^n, \alpha \in \mathbb{R})$$
 (2)

结合 (1)(2) 可知,对于任意 $x,y\in\mathbb{R}^n$ 都有:

$$F(x+y) = F(2(\frac{1}{2}x + \frac{1}{2}y)) \quad \text{(utilize (1))}$$

$$= 2F(\frac{1}{2}x + \frac{1}{2}y) - F(0_n) \quad \text{(utilize (2))}$$

$$= 2\left[\frac{1}{2}F(x) + \frac{1}{2}F(y)\right] - F(0_n)$$

$$= F(x) + F(y) - F(0_n)$$

$$= [F(x) - F(0_n)] + [F(y) - F(0_n)] + F(0_n)$$

$$= G(x) + G(y) + F(0_n)$$

因此我们有:

$$G(x + y) = F(x + y) - F(0_n)$$

= $G(x) + G(y) + F(0_n) - F(0_n)$ $(\forall x, y \in \mathbb{R}^n)$
= $G(x) + G(y)$

综上所述, $G(\cdot)$ 是 $\mathbb{R}^n \mapsto \mathbb{R}^m$ 的线性映射.

Problem 2

(仿射映射的保凸性)

试证明凸集在仿射变换下的像和原像都是凸集.

Proof:

• 一方面,给定凸集 $C\subseteq\mathbb{R}^n$ 和仿射映射 $f:\mathbb{R}^n\mapsto\mathbb{R}^m$ 考虑凸集 C 在 f 下的像 $f(C)=\{f(x):x\in C\}$

对于任意
$$egin{cases} x_1,x_2 \in C \ f(x_1),f(x_2) \in f(C) \ lpha \in [0,1] \end{cases}$$

根据仿射映射的仿射性,我们有 $lpha f(x_1) + (1-lpha) f(x_2) = f(lpha x_1 + (1-lpha) x_2)$ 成立.

由于 C 是凸集,故有 $\alpha x_1 + (1-\alpha)x_2 \in C$ 成立.

进而有 $f(\alpha x_1 + (1-\alpha)x_2) \in f(C)$

于是有 $\alpha f(x_1) + (1-\alpha)f(x_2) \in f(C)$

说明 f(C) 也是一个凸集.

• 另一方面,给定凸集 $C\subseteq\mathbb{R}^n$ 和仿射映射 $f:\mathbb{R}^k\mapsto\mathbb{R}^n$,考虑凸集 C 在 f 下的原像 $f^{-1}(C)=\{x:f(x)\in C\}$: (尽管逆映射 f^{-1} 不一定存在,但我们总能定义原像 $f^{-1}(C)$)

对于任意
$$egin{cases} x_1,x_2\in f^{-1}(C)\ f(x_1),f(x_2)\in C\ lpha\in[0,1] \end{cases}$$

根据仿射映射的仿射性,我们有 $f(\alpha x_1 + (1-\alpha)x_2) = \alpha f(x_1) + (1-\alpha)f(x_2)$ 成立.

由于 C 是凸集,故有 $\alpha f(x_1) + (1-\alpha)f(x_2) \in C$

进而有 $f(\alpha x_1 + (1 - \alpha)x_2) \in C$

于是有 $\alpha x_1 + (1 - \alpha)x_2 \in f^{-1}(C)$

说明 $f^{-1}(C)$ 也是一个凸集.

Problem 3

给定正整数 n, 设 $\|\cdot\|$ 是 \mathbb{R}^n 上的范数.

试证明对于给定的 $x_0 \in \mathbb{R}^n$ 和 $r \in (0, \infty)$,

开范数球 $\{x\in\mathbb{R}^n: \|x-x_0\|< r\}$ 和闭范数球 $\{x\in\mathbb{R}^n: \|x-x_0\|\leq r\}$ 都是凸集.

Proof:

记开范数球和闭范数球为:

$$B(x_0, r, \|\cdot\|) := \{x \in \mathbb{R}^n : \|x - x_0\| < r\} = \{x_0 + ru : \|u\| < 1\}$$

 $\bar{B}(x_0, r, \|\cdot\|) := \{x \in \mathbb{R}^n : \|x - x_0\| < r\} = \{x_0 + ru : \|u\| < 1\}$

• 首先考虑闭范数球:

$$\| \alpha x + (1 - \alpha)y \| \le \| \alpha x \| + \| (1 - \alpha)y \|$$
 $= \alpha \| x \| + (1 - \alpha) \| y \|$
 $\le \alpha r + (1 - \alpha)r$
 $= r$
 $(\forall x, y \in \bar{B}(x_0, r, \| \cdot \|), \alpha \in [0, 1])$

因此 $\alpha x + (1-\alpha)y \in \bar{B}(x_0,r,\|\cdot\|)$ 这说明闭范数球 $\bar{B}(x_0,r,\|\cdot\|)$ 是凸集.

• 其次考虑开范数球:

$$\begin{aligned} \|\alpha x + (1 - \alpha)y\| &\leq \|\alpha x\| + \|(1 - \alpha)y\| \\ &= \alpha \|x\| + (1 - \alpha)\|y\| \\ &< \alpha r + (1 - \alpha)r \\ &= r \end{aligned} (\forall \ x, y \in B(x_0, r, \|\cdot\|), \alpha \in [0, 1])$$

因此 $\alpha x + (1 - \alpha)y \in B(x_0, r, \|\cdot\|)$ 这说明开范数球 $B(x_0, r, \|\cdot\|)$ 是凸集.

Problem 4

给定正整数 n,设 $A\in\mathbb{C}^{n\times n}$ 为正规矩阵. 试证明 A 的数值域 $w(A):=\{x^HAx:\|x\|_2=1\}$ 是 A 的特征值的凸包.

• Definition:

给定集合 $S \subset \mathbb{R}^n$

我们称 S 中的点的**所有凸组合**构成的集合为 S 的**凸包** (convex hull),记为 $\mathrm{conv}(S)$ 易知 $\mathrm{conv}(S)$ 是包含 S 的最小的凸集,且 S 为凸集当且仅当 $\mathrm{conv}(S)=S$.

Proof:

注意到正规矩阵一定可以酉对角化.

因此 $A \in \mathbb{C}^{n imes n}$ 存在谱分解 $A = U \Lambda U^H$

其中 $U\in\mathbb{C}^{n imes n}$ 为酉矩阵,而 $\Lambda=\mathrm{diag}\{\lambda_1,\ldots,\lambda_n\}$ 的对角元为 A 的特征值.

于是我们有:

$$\begin{split} w(A) &:= \left\{ \frac{x^H A x}{x^H x} : x \in \mathbb{C}^n \backslash \{0_n\} \right\} \\ &= \left\{ x^H A x : \|x\|_2 = 1 \right\} \\ &= \left\{ x^H U \Lambda U^H x : \|x\|_2 = 1 \right\} \quad \text{(denote } y := U^H x \text{ and note that } \|y\|_2 = \|U^H x\|_2 = \|x\|_2 \text{)} \\ &= \left\{ y^H \Lambda y : \|y\|_2 = 1 \right\} \\ &= \left\{ \sum_{i=1}^n y_i^2 \lambda_i : \sum_{i=1}^n y_i^2 = 1 \right\} \\ &= \text{conv}(\{\lambda_1, \dots, \lambda_n\}) \end{split}$$

Problem 5

给定正整数 n, 设 $w \neq 0_n \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ 试求 $x_0 \in \mathbb{R}^n$ 到超平面 $\{x \in \mathbb{R}^n : w^T x + \alpha = 0\}$ 的距离.

Solution:

设 $x_0 \in \mathbb{R}^n$ 关于超平面 $\{x \in \mathbb{R}^n : w^Tx + \alpha = 0\}$ 的正交分解为:

$$x_0 = p + \lambda w$$

其中 p 是 x_0 在超平面 $\{x\in\mathbb{R}^n: w^Tx+\alpha=0\}$ 上的正交投影. 于是我们有:

$$\begin{cases} w^T p + \alpha = 0 \\ x_0 = p + \lambda w \end{cases}$$

解得:

$$egin{cases} \lambda = rac{|w^Tx_0 + lpha|}{\|w\|_2^2} \ p = x_0 - rac{|w^Tx_0 + lpha|}{\|w\|_2^2} w \end{cases}$$

 x_0 到超平面 $\{x \in \mathbb{R}^n : w^T x + \alpha = 0\}$ 的距离即为 $x_0 - p$ 的长度: (正交投影点是最近点,这个性质通过反证法容易证明)

$$\begin{split} d &:= \min_{w^T x + \alpha = 0} \|x_0 - x\|_2 \\ &= \|x_0 - p\|_2 \\ &= \left\| \frac{|w^T x_0 + \alpha|}{\|w\|_2^2} w \right\| \\ &= \frac{|w^T x_0 + \alpha|}{\|w\|_2^2} \|w\| \\ &= \frac{|w^T x_0 + \alpha|}{\|w\|_2} \end{split}$$

Alternative Solution:

• ① 首先考虑 $\alpha=0$ 的特殊情况.

此时超平面 $\{x\in\mathbb{R}^n:w^Tx=0\}=\mathrm{Range}(w)^\perp$ 是 \mathbb{R}^n 的子空间. 因此根据正交分解定理可知 $x_0\in\mathbb{R}^n$ 与它之间的距离就是 x_0 在 $\mathrm{Range}(w)$ 上的投影的长度:

$$egin{aligned} d &:= \min_{w^T x = 0} \|x - y\|_2 \ &= \left\| rac{w w^T}{w^T w} x_0
ight\|_2 \ &= rac{|w^T x_0|}{\|w\|_2} \end{aligned}$$

• ② 其次考虑 $\alpha \in \mathbb{R}$ 的一般情况.

在超平面 $\{x\in\mathbb{R}^n:w^Tx+\alpha=0\}$ 中任取一点 b (满足 $w^Tb+\alpha=0$) 则对于任意 $x\in\{x\in\mathbb{R}^n:w^Tx+\alpha=0\}$ 我们都有:

$$w^T(x-b) = w^Tx - w^Tb \ = (w^Tx + lpha) - (w^Tb + lpha) \ = 0 - 0 \ = 0$$

因此 $\{x-b: w^Tx+\alpha=0\}=\{y\in\mathbb{R}^n: w^Ty=0\}=\mathrm{Range}(w)^\perp$ 利用 ① 的结论可知 x_0-b 与 $\{x-b: w^Tx+\alpha=0\}$ 之间的距离为:

$$egin{aligned} d &= rac{|w^T(x_0 - b)|}{\|w\|_2} \ &= rac{|w^Tx_0 - w^Tb|}{\|w\|_2} & ext{(note that)} \ &= rac{|w^Tx_0 + lpha|}{\|w\|_2} \end{aligned}$$

于是 x_0 与超平面 $\{x\in\mathbb{R}^n:w^Tx+lpha=0\}$ 之间的距离就是 $d=rac{|w^Tx_0+lpha|}{\|w\|_2}$ 综上所述, $x_0\in\mathbb{R}^n$ 到超平面 $\{x\in\mathbb{R}^n:w^Tx+lpha=0\}$ 的距离为 $d=rac{|w^Tx_0+lpha|}{\|w\|_2}$

Problem 6 (optional)

给定正整数 n

记 \mathbb{S}^n 是所有 n 阶 Hermite 阵构成的集合,而 \mathbb{S}^n_{++} 是所有 n 阶 Hermite 正定阵构成的集合. 试证明 $f(X):=\log\left(\det\left(X\right)\right)$ 是 \mathbb{S}^n_{++} 上的凹函数.

Proof:

对数-行列式函数 (Log-determinant) $\begin{cases} f(X) = \log\left(\det\left(X\right)\right) \\ \operatorname{dom}(f) = \mathbb{S}^n_{++} \end{cases}$ 是**凹函数**.

我们证明其凹性的方法是将其转化为任意 "直线"上的单变量函数:

对于任意给定的
$$\left\{egin{array}{ll} X\in\mathbb{S}^n_{++} & \text{ $\#$} X\in\mathbb{S}^n_{++} \end{array}
ight.$$
 对于任意给定的 $\left\{egin{array}{ll} X\in\mathbb{S}^n_{++} & \text{ $\#$} X\in\mathbb{S}^n_{++} \end{array}
ight.$ $\left\{egin{array}{ll} g(t)=f(X+tV) \\ \mathrm{dom}(g)=\{t\in\mathbb{R}:X+tV\in\mathrm{dom}(f)=\mathbb{S}^n_{++}\} \end{array}
ight.$ 记 $X^{-\frac{1}{2}}VX^{-\frac{1}{2}}$ 的特征值为 $\lambda_1,\ldots,\lambda_n$

则对于任意 $t \in dom(g)$ 都有:

$$egin{aligned} g(t) &= f(X+tV) \ &= \log \left(\det \left(X + tV
ight)
ight) \ &= \log \{ \det \left(X^{rac{1}{2}} (I_n + tX^{-rac{1}{2}} V X^{-rac{1}{2}}) X^{rac{1}{2}})
ight\} \ &= \log \{ \det \left((I_n + tX^{-rac{1}{2}} V X^{-rac{1}{2}}) X
ight) \} \ &= \sum_{i=1}^n \log \left(1 + t \lambda_i
ight) + \log \left(\det \left(X
ight)
ight) \end{aligned}$$

故有
$$egin{cases} g'(t) = \sum_{i=1}^n rac{\lambda_i}{1+t\lambda_i} \ g''(t) = -\sum_{i=1}^n rac{\lambda_i^2}{(1+t\lambda_i)^2} \leq 0 \end{cases}$$

说明任意 "直线"上的单变量函数 g(t) 都是凹函数,因此 f(X) 为凹函数.

Problem 7 (optional)

给定 \mathbb{R}^3 中的四面体 ABCD

设 $P,Q,R,S\in\mathbb{R}^3$ 关于四面体 ABCD 的重心坐标分别为:

 $(p_1:p_2:p_3:p_4), (q_1:q_2:q_3:q_4), (r_1:r_2:r_3:r_4), (s_1:s_2:s_3:s_4)$ 试证明 P,Q,R,S 共面的充要条件是:

$$\det egin{bmatrix} p_1 & q_1 & r_1 & s_1 \ p_2 & q_2 & r_2 & s_2 \ p_3 & q_3 & r_3 & s_3 \ p_4 & q_4 & r_4 & s_4 \end{bmatrix} = 0$$

• **Definition:** (Barycentric coordinate system - Wikipedia)

若 x_0, x_1, \ldots, x_n 是 \mathbb{R}^n 中某个单纯形的顶点,

则对于任意 $x \in \mathbb{R}^n$ 都存在唯一的一组常数 $\alpha_0, \alpha_1, \ldots, \alpha_n$ 使得:

$$x = \alpha_0 x_0 + \alpha_1 x_1 + \cdots + \alpha_n x_n$$

我们称 $[\alpha_0, \alpha_1, \dots, \alpha_n]$ 为 x 关于 x_0, x_1, \dots, x_n 的**重心坐标** (barycentric coordinate) (与 $[\alpha_0, \alpha_1, \dots, \alpha_n]$ 有着相同比例的坐标也可称为重心坐标, 即用比例关系代表一个点)

Solution: (可能是伪证)

注意到:

$$\begin{bmatrix} p_x & q_x & r_x & s_x \\ p_y & q_y & r_y & s_y \\ p_z & q_z & r_z & s_z \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} a_x & b_x & c_x & d_x \\ a_y & b_y & c_y & d_y \\ a_z & b_z & c_z & d_z \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} p_1 & q_1 & r_1 & s_1 \\ p_2 & q_2 & r_2 & s_2 \\ p_3 & q_3 & r_3 & s_3 \\ p_4 & q_4 & r_4 & s_4 \end{bmatrix}$$

重心坐标的定义默认 A,B,C,D 仿射无关,因此 A,B,C,D 的齐次坐标构成的系数矩阵一定非奇异. 根据行列式的几何意义,P,Q,R,S 共面的充要条件是:

$$\detegin{bmatrix} p_x & q_x & r_x & s_x \ p_y & q_y & r_y & s_y \ p_z & q_z & r_z & s_z \ 1 & 1 & 1 & 1 \end{bmatrix} = 0$$
 \Leftrightarrow
 $\detegin{bmatrix} p_1 & q_1 & r_1 & s_1 \ p_2 & q_2 & r_2 & s_2 \ p_3 & q_3 & r_3 & s_3 \ p_4 & q_4 & r_4 & s_4 \end{bmatrix} = 0$

Problem 8 (optional)

给定 \mathbb{R}^2 上的三角形 $\triangle ABC$ 设 BC,CA,AB 的中点分别为 D,E,F 试求 $\triangle ABC$ 的内心关于 $\triangle DEF$ 的重心坐标.

• Lemma:

以 \mathbb{R}^2 为例,考虑三角形 $\triangle ABC$ 和 \mathbb{R}^2 中的一点P:

$$P = lpha A + eta B + \gamma C$$
 where $lpha + eta + \gamma = 1$ \Leftrightarrow $\begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix} = egin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{bmatrix} egin{bmatrix} lpha \\ eta \end{bmatrix}$

我们有如下关系:

$$lpha = rac{rac{1}{2} ext{det} egin{bmatrix} p_x & b_x & c_x \ p_y & b_y & c_y \ 1 & 1 & 1 \end{bmatrix}}{rac{1}{2} ext{det} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & c_y \ 1 & 1 & 1 \end{bmatrix}} = rac{S_{\triangle PBC}}{S_{\triangle ABC}}$$
 $eta = rac{rac{1}{2} ext{det} egin{bmatrix} a_x & p_x & c_x \ a_y & p_y & c_y \ 1 & 1 & 1 \end{bmatrix}}{rac{1}{2} ext{det} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & c_y \ 1 & 1 & 1 \end{bmatrix}} = rac{S_{\triangle APC}}{S_{\triangle ABC}}$ $\gamma = rac{rac{1}{2} ext{det} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & p_y \ 1 & 1 & 1 \end{bmatrix}}{rac{1}{2} ext{det} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & p_y \ 1 & 1 & 1 \end{bmatrix}} = rac{S_{\triangle ABC}}{S_{\triangle ABC}}$

Solution:

记 $\triangle ABC$ 的内心为 I ,它是 $\triangle ABC$ 的内切圆的圆心,因此到各边的距离相同. 我们使用 a,b,c 简记三角形的边 BC,AC,AB

则我们有 $S_{ riangle IBC}: S_{ riangle IAC}: S_{ riangle IAB} = a:b:c$

即内心为 I 的重心坐标为 [a:b:c]

$$egin{bmatrix} I_x \ I_y \ 1 \end{bmatrix} = rac{1}{a+b+c} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & c_y \ 1 & 1 & 1 \end{bmatrix} egin{bmatrix} a \ b \ c \end{bmatrix}$$

注意到 D, E, F 的重心坐标为:

$$egin{bmatrix} d_x & e_x & f_x \ d_y & e_y & f_y \ 1 & 1 & 1 \end{bmatrix} = rac{1}{2} egin{bmatrix} a_x & b_x & c_x \ a_y & b_y & c_y \ 1 & 1 & 1 \end{bmatrix} egin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{bmatrix}$$

因此我们有:

$$\begin{split} \begin{bmatrix} I_x \\ I_y \\ 1 \end{bmatrix} &= \frac{1}{a+b+c} \begin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \\ &= \frac{1}{a+b+c} \cdot 2 \begin{bmatrix} d_x & e_x & f_x \\ d_y & e_y & f_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} \\ &= \frac{2}{a+b+c} \begin{bmatrix} d_x & e_x & f_x \\ d_y & e_y & f_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \\ &= \frac{1}{a+b+c} \begin{bmatrix} d_x & e_x & f_x \\ d_y & e_y & f_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -a+b+c \\ a-b+c \\ a+b-c \end{bmatrix} \end{split}$$

所以 $\triangle ABC$ 的内心 I 关于 $\triangle DEF$ 的重心坐标为 [-a+b+c:a-b+c:a+b-c]

The End