Posterior distribution

Jan van Waaij

June 4, 2021

Notation 1. When A is a square matrix, we denote by |A| its determinant. If the inverse of A exist, we denote it by A^{-1} .

1 Distribution of the posterior of a finite basis expansion with Gaussian coefficients

Lemma 2. Let $X^T = (X_t : t \in [0,T])$ be an observation of

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t,$$

where $\sigma: \mathbb{R} \to \mathbb{R}_{>0}$ is a measurable function, $(W_t: t \in [0,T])$ is a Brownian motion and b is equipped with the prior distribution defined by

$$b = \sum_{j=1}^{k} \theta_j \phi_j,$$

where $\{\phi_1, \ldots, \phi_k\}$ is a linearly independent basis, and $\theta = (\theta_1, \ldots, \theta_k)^t$ has multivariate normal distribution $N(\mu, \Sigma)$, with mean vector μ and positive definite matrix Σ . Then the posterior distribution of θ given X^T is $N(\hat{\mu}, \hat{\Sigma})$, where

$$\hat{\mu} = (S + \Sigma^{-1})^{-1} (m + \Sigma^{-1} \mu), \quad \hat{\Sigma} = (S + \Sigma^{-1})^{-1}$$

and the vector $m = (m_1, \ldots, m_k)^t$ is defined by

$$m_l = \int_0^T \frac{\phi_l(X_t)}{\sigma(X_t)^2} dX_t, \quad l = 1, \dots, k,$$

and the symmetric $k \times k$ -matrix S is given by

$$S_{l,l'} = \int_0^T \frac{\phi_l(X_t)\phi_{l'}(X_t)}{\sigma^2(X_t)} dt, \quad l, l' = 1, \dots, k,$$
 (1)

provided $S + \Sigma^{-1}$ is invertible. Moreover, the marginal likelihood is given by

$$\int p(X^T \mid \theta) p(\theta) d\theta = |\Sigma^{-1} \hat{\Sigma}|^{1/2} e^{-\frac{1}{2}\mu^t \Sigma^{-1} \mu} e^{\frac{1}{2}\hat{\mu}^t \hat{\Sigma}^{-1} \hat{\mu}}.$$

Proof. Almost surely we have by Girsanov's theorem (e.g. Steele, 2001, chapter 13 or Chung and Williams, 1990 reprint 2014, section 9.4)

$$p(X^T \mid \theta) = \exp\left(\int_0^T \frac{b(X_t)}{\sigma(X_t)^2} dX_t - \frac{1}{2} \int_0^T \left(\frac{b(X_t)}{\sigma(X_t)}\right)^2 dt\right),\tag{2}$$

with respect to the Wiener measure. So

$$\log p(X^T \mid b) = \theta^t m - \frac{1}{2} \theta^t S \theta \tag{3}$$

and the log of the distribution of θ with respect to the Lebesgue measure on \mathbb{R}^k is given by

$$\log p(\theta) = -\frac{k}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma| - \frac{1}{2}(\theta - \mu)^t \Sigma^{-1}(\theta - \mu)$$
$$= C_1 - \frac{1}{2}\theta\Sigma^{-1}\theta + \theta^t \Sigma^{-1}\mu,$$

with

$$C_1 = -\frac{k}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma| - \frac{1}{2}\mu^t \Sigma^{-1}\mu.$$

So,

$$\begin{split} \log(p(X^T \mid \theta)p(\theta)) = & C_1 + \theta^t m - \frac{1}{2}\theta^t S\theta - \frac{1}{2}\theta\Sigma^{-1}\theta + \theta^t\Sigma^{-1}\mu \\ = & C_1 + \theta^t (m + \Sigma^{-1}\mu) - \frac{1}{2}\theta^t (S + \Sigma^{-1})\theta \\ = & C_1 + \theta^t (S + \Sigma^{-1}) \Big((S + \Sigma^{-1})^{-1} (m + \Sigma^{-1}\mu) \Big) \\ & - \frac{1}{2}\theta^t (S + \Sigma^{-1})\theta. \end{split}$$

By the Bayes formula, the posterior density of θ is proportional to $p(X^T \mid \theta)p(\theta)$. It follows that $\theta \mid X^T$ is normally distributed with mean

$$\hat{\mu} := (S + \Sigma^{-1})^{-1} (m + \Sigma^{-1} \mu).$$

and covariance matrix

$$\hat{\Sigma} := (S + \Sigma^{-1})^{-1},$$

provided $S + \Sigma^{-1}$ is invertible. Moreover

$$\begin{split} & \int p(X^T \mid \theta) p(\theta) d\theta \\ &= \int e^{C_1} e^{\theta^t \hat{\Sigma}^{-1} \hat{\mu}} e^{-\frac{1}{2} \theta^t \hat{\Sigma}^{-1} \theta} d\theta \\ &= (2\pi)^{k/2} |\hat{\Sigma}|^{1/2} e^{\frac{1}{2} \hat{\mu}^t \hat{\Sigma}^{-1} \hat{\mu}} e^{C_1} \\ & \times \int (2\pi)^{-k/2} |\hat{\Sigma}|^{-1/2} e^{\theta^t \hat{\Sigma}^{-1} \hat{\mu}} e^{-\frac{1}{2} \theta^t \hat{\Sigma}^{-1} \theta} e^{-\frac{1}{2} \hat{\mu}^t \hat{\Sigma}^{-1} \hat{\mu}} d\theta \\ &= (2\pi)^{k/2} |\hat{\Sigma}|^{1/2} e^{\frac{1}{2} \hat{\mu}^t \hat{\Sigma}^{-1} \hat{\mu}} e^{C_1} \\ &= |\hat{\Sigma}^{-1} \hat{\Sigma}|^{1/2} e^{-\frac{1}{2} \mu^t \hat{\Sigma}^{-1} \mu} e^{\frac{1}{2} \hat{\mu}^t \hat{\Sigma}^{-1} \hat{\mu}}, \end{split}$$

using that the integrant in the third last line is the density of a multivariate normal distribution and therefore integrates to one. \Box

Usually we refer to S as the Girsanov matrix.

2 The marginal maximum likelihood estimator

Lemma 3. Let $\lambda > 0$, $\mu \in \mathbb{R}^k$ and let Σ be a positive definite $k \times k$ -matrix. Consider the prior $\theta \sim N(\mu, \Sigma_{\lambda})$, where $\Sigma_{\lambda} = \lambda^2 \Sigma$ and denote its density by p_{λ} . Then

$$\log \int p_{\lambda}(X^{T} \mid \theta) p_{\lambda}(\theta) d\theta$$

$$= -\frac{1}{2} \log |\lambda^{2} \Sigma S + \mathbb{I}_{k}| -\frac{1}{2} \mu^{t} \Sigma^{-1} \mu + \frac{1}{2} (m + \lambda^{-2} \Sigma^{-1} \mu)^{t} (S + \lambda^{-2} \Sigma^{-1})^{-1} (m + \lambda^{-2} \Sigma^{-1} \mu).$$
(4)

Proof. It follows from lemma 2 that

$$\Sigma_{\lambda}\hat{\Sigma}_{\lambda}^{-1} = \Sigma_{\lambda}(S + \Sigma_{\lambda}^{-1}) = \Sigma_{\lambda}S + \mathbb{I}_{k} = \lambda^{2}\Sigma S + \mathbb{I}_{k}$$

and

$$\begin{split} \hat{\mu}^t \hat{\Sigma}_{\lambda}^{-1} \hat{\mu} = & (m + \Sigma_{\lambda}^{-1} \mu)^t (S + \Sigma_{\lambda}^{-1})^{-1} (S + \Sigma_{\lambda}^{-1}) (S + \Sigma_{\lambda}^{-1})^{-1} (m + \Sigma_{\lambda}^{-1} \mu) \\ = & (m + \lambda^{-2} \Sigma^{-1} \mu)^t (S + \lambda^{-2} \Sigma^{-1})^{-1} (m + \lambda^{-2} \Sigma^{-1} \mu). \end{split}$$

So it follows from the same lemma that

$$\begin{split} & \log \int p_{\lambda}(X^{T} \mid \theta) p_{\lambda}(\theta) d\theta \\ & = -\frac{1}{2} \log |\lambda^{2} \Sigma S + \mathbb{I}_{k}| - \frac{1}{2} \lambda^{-2} \mu^{t} \Sigma^{-1} \mu + \frac{1}{2} (m + \lambda^{-2} \Sigma^{-1} \mu)^{t} (S + \lambda^{-2} \Sigma^{-1})^{-1} (m + \lambda^{-2} \Sigma^{-1} \mu). \end{split}$$

So can we calculate $(S + \lambda^{-2}\Sigma^{-1})^{-1}$ from $(S + \Sigma^{-1})^{-1}$? What I found out: if A and B are symmetric matrices that commute, then there is an orthonormal matrix Q so that $D_A = Q^T A Q$ and $D_B = Q^T B Q$ are diagonal. In our set-up this happens when S and S and S and S are commute. They commute when S is S.

In de implementatie voor vaste α kun je $\mu^t \Sigma^{-1} \mu$ en $\Sigma^{-1} \mu$ opslaan en hoef je maar een keer uit te rekenen.

Als $\mu = 0$, dan is

$$\log \int p_{\lambda}(X^{T} \mid \theta) p_{\lambda}(\theta) d\theta$$
$$= -\frac{1}{2} \log |\lambda^{2} \Sigma S + \mathbb{I}_{k}| + \frac{1}{2} m^{t} (S + \lambda^{-2} \Sigma^{-1})^{-1} m.$$

Verder hebben we

$$S + \lambda^{-2} \Sigma^{-1} = \lambda^{-2} \Sigma^{-1} \left(\lambda^2 \Sigma S + I_k \right).$$

Dus

$$\log \int p_{\lambda}(X^{T} \mid \theta) p_{\lambda}(\theta) d\theta$$
$$= -\frac{1}{2} \log |\lambda^{2} \Sigma S + \mathbb{I}_{k}| + \frac{1}{2} \lambda^{2} m^{t} \left(\lambda^{2} \Sigma S + I_{k}\right)^{-1} \Sigma m.$$

Dus de laatste formule hangt niet af van Σ^{-1} . De vraag is dus, zijn er slimme snelle manieren om de determinant en inverse van $\lambda^2 \Sigma S + I_k$ uit te rekenen? Conclusie van 3 dagen aan werken is dat de determinant makkelijk uitgerekend kan worden met behulp van de eigenwaarden, maar de inverse naar het schijnt niet zo makkelijk.

Lemma 4. If ν_1, \ldots, ν_k are the eigenvalues of $\Sigma S + I_k$, then $\lambda^2 \nu_1 - \lambda^2 + 1, \ldots, \lambda^2 \nu_k - \lambda^2 + 1$ are the eigenvalues of $\lambda^2 \Sigma S + \mathbb{I}_k$.

Proof. Note that

$$\begin{aligned} 0 &= |\nu_i \, \mathbb{I}_k - (\Sigma S + \mathbb{I}_k)| \\ &\Leftrightarrow \\ 0 &= \left| \lambda^2 \nu_i \, \mathbb{I}_k - (\lambda^2 \Sigma S + \lambda^2 \, \mathbb{I}_k) \right| \\ &= \left| (\lambda^2 \nu_i - \lambda^2 + 1) \, \mathbb{I}_k - (\lambda^2 \Sigma S + \mathbb{I}_k) \right|. \end{aligned}$$

So ν_i is an eigenvalue of $\Sigma S + \mathbb{I}_k$ if and only if $\lambda^2 \nu_i - \lambda^2 + 1$ is an eigenvalue of $\lambda^2 \Sigma S + \mathbb{I}_k$. \square

Lemma 5. If ν_1, \ldots, ν_k are the eigenvalues of ΣS , then $\lambda^2 \nu_1 + 1, \ldots, \lambda^2 \nu_k + 1$ are the eigenvalues of $\lambda^2 \Sigma S + I_k$.

Proof. Note that

$$\begin{aligned} |\nu_i \, \mathbb{I}_k - \Sigma S| &= 0 \\ \Leftrightarrow \\ 0 &= \left| \lambda^2 \nu_i \, \mathbb{I}_k - \lambda^2 \Sigma S \right| \\ &= \left| (\lambda^2 \nu_i + 1) \, \mathbb{I}_k - (\lambda^2 \Sigma S + \mathbb{I}_k) \right| \end{aligned}$$

So the eigenvalues of $\lambda^2 \Sigma S + \mathbb{I}_k$ are easily obtained from the eigenvalues of ΣS or $\Sigma S + \mathbb{I}_k$. Note that the determinant

3 Random scaling

Lemma 6. Let $X^T = (X_t : t \in [0,T])$ be an observation of

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t,$$

where b is equipped with the prior distribution defined by

$$\lambda^{2} \sim Inverse \ Gamma(A, B) = IG(A, B)$$

$$\theta \mid \lambda \sim N(\mu, \lambda^{2}\Sigma)$$

$$b \mid \theta = \sum_{j=1}^{k} \theta_{j}\phi_{j},$$

where $\{\phi_1, \ldots, \phi_k\}$ is a linearly independent basis. Then

$$\lambda^2 \mid \theta, X^T \sim IG\left(A + k/2, B + \frac{1}{2}(\theta - \mu)^t \Sigma^{-1}(\theta - \mu)\right).$$

Proof. Recall eq. (3), $\log p(X^T \mid b) = \theta^t m - \frac{1}{2}\theta^t S\theta$. The logarithm of the distribution of θ given λ with respect to the Lebesgue measure on \mathbb{R}^k is given by (proportionality w.r.t. λ),

$$\log p(\theta \mid \lambda) = C_1 - k \log \lambda - \frac{1}{2} \lambda^{-2} (\theta - \mu)^t \Sigma^{-1} (\theta - \mu).$$

for some real constant C_1 , depending on θ , but not on λ .

In the following, \propto means equal up to a multiplicative constant depending on θ and X^T , but not on λ . By the Bayes formula,

$$p(\lambda^2 \mid \theta, X^T) \propto p(X^T \mid \lambda^2, \theta) p(\lambda^2 \mid \theta)$$

and

$$p(\lambda^2 \mid \theta) \propto p(\theta \mid \lambda^2) p(\lambda^2)$$

SO

$$p(\lambda^2 \mid \theta, X^T) \propto p(X^T \mid \lambda^2, \theta) p(\theta \mid \lambda^2) p(\lambda^2)$$

It follows that for some real constants C, \tilde{C} depending on θ and X^T , but not on λ , we have

$$\begin{split} &\log p(\lambda^2 \mid \theta, X^T) \\ = &C + \theta^t m - \frac{1}{2} \theta^t S \theta \\ &- k \log \lambda - \frac{1}{2} \lambda^{-2} (\theta - \mu)^t \Sigma^{-1} (\theta - \mu) \\ &- (A+1) \log(\lambda^2) - \frac{B}{\lambda^2} \\ = &\tilde{C} - (A+k/2+1) \log(\lambda^2) - \frac{B + \frac{1}{2} (\theta - \mu)^t \Sigma^{-1} (\theta - \mu)}{\lambda^2}, \end{split}$$

which is up to an additive constant the logarithm of the density of the inverse gamma distribution with shape parameter A + k/2 and scale parameter $B + \frac{1}{2}(\theta - \mu)^t \Sigma^{-1}(\theta - \mu)$.

Lemma 7. We have

$$\log p(X^T \mid j, \lambda^2) = -\frac{1}{2} \log |\lambda^2 \Sigma S + \mathbb{I}_k| - \frac{1}{2} \mu^t \Sigma^{-1} \mu + \frac{1}{2} (m + \lambda^{-2} \Sigma^{-1} \mu)^t (S + \lambda^{-2} \Sigma^{-1})^{-1} (m + \lambda^{-2} \Sigma^{-1} \mu).$$

Proof. This follows from

$$p(X^T \mid j, \lambda^2) = \int p(X^T \mid j, \theta^j, \lambda^2) p(\theta^j \mid j, \lambda) d\theta^j$$

and lemma 3.

4 The sparsity of the Girsanov matrix with Faber-Schauder functions

The Faber-Schauder basis functions $\psi_0, \psi_{j,k}$ are defined as follows:

$$\psi_0(x) = \begin{cases} 1 - 2x & \text{when } x \in [0, 1/2), \\ 2x - 1 & \text{when } x \in [1/2, 1], \\ 0 & \text{otherwise,} \end{cases}$$

$$\Lambda(x) = \begin{cases} 2x & \text{when } x \in [0, 1/2), \\ 2(1 - x) & \text{when } x \in [1/2, 1], \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\psi_{i,k}(x) = \Lambda(2^j x - k + 1), \quad j = 0, 1, \dots, k = 1, \dots, 2^j,$$

see van der Meulen, Schauer, and van Waaij, 2018, p. 607. We say that ψ_0 and $\psi_{0,1}$ are of level zero, and the basis functions $\psi_{j,1},\ldots,\psi_{j,2^j}$ are said to be of level j. The Girsanov matrix S defined in eq. (1) with all basis function up to and including level J is denoted by S^J . Note that S^J has $2 + \sum_{j=1}^J 2^j = 2^{J+1}$ rows and columns, and 2^{2J+2} entries.

Definition 8. Let M^n be an $n \times n$ -matrix, and let $nz(M^n)$ the number of non-zero entries of M^n . The level of sparsity of M^n is the fraction of nonzero entries, $\frac{nz(M^n)}{n^2}$.

The definition of a sparse matrix is vague. Usually, we mean that the number of nonzero entries grows at most linear with the number of rows. We will establish that for S^n , the number of nonzero entries grows at most like $r \log r$ with r the number of rows.

Recall the definition of $S_{l,l'}$ in lemma 3. Note that $S_{l,l'} = 0$ when $SUPP(\psi_l) \cap SUPP(\psi_{l'})$ has Lebesgue measure zero. We say that ψ_l and $\psi_{l'}$ have non-overlapping support when their supports are either disjoint or only share a boundary point; otherwise, we say they have overlapping support.

Note that both functions of level zero, ψ_1 and $\psi_{0,1}$, have the same support [0,1].

When $j \geq 0, d \geq 0$ and $d + j \geq 1$, there are 2^d Faber functions of level j + d that have overlapping support with $\psi_{j,k}$, $j \geq 0$. These are

$$\psi_{j+d,(k-1)2^d+1}, \psi_{j+d,(k-1)2^d+2}, \dots, \psi_{j+d,k2^d}$$

For level 0, there are exactly two, and for level $1, \ldots, j-1$ there is precisely one basis function with overlapping support with $\psi_{j,k}$.

So for ψ_0 and $\psi_{0,1}$ there are

$$2 + \sum_{d=1}^{J} 2^d = 2^{J+1}$$

basis functions $\psi_0, \psi_{j',k'}, j' \leq J$ with overlapping support. For $\psi_{j,k}, j \geq 1$, there are

$$2+j-1+\sum_{d=0}^{J-j} 2^d = j+2^{J-j+1}$$

basis functions $\psi_0, \psi_{j',k'}, j' \leq J$, with overlapping support. When we make use of lemma 11, we see that S^n has at most

$$2 \cdot 2^{J+1} + \sum_{j=1}^{J} 2^{j} \left(j + 2^{J-j+1} \right)$$

$$= 2 \cdot 2^{J+1} + (J-1)2^{J+1} + 2 + J2^{J+1}$$

$$= (2J+1)2^{J+1} + 2$$

nonzero entries.

So the number of nonzero entries of S^n grows at most like $r \log r$ with r the number of rows. It has level of sparsity at most

$$\frac{(2J+1)2^{J+1}+2}{2^{2J+2}} = (2J+1)2^{-J-1} + 2^{-2J-1},$$

which is of the order $\frac{\log r}{r}$.

5 Credible bands

Suppose we have a prior Π on θ , where $\theta : \mathbb{R} \to \mathbb{R}$ is a 1-periodic function. Let $X^T = (X_t : t \in [0, T])$ be a sample path of $dX_t = \theta(X_t)dt + dW_t$. Consider the posterior $\Pi(\cdot \mid X^T)$.

Definition 9. A **pointwise credible band** of **credible level** $1 - \alpha$ are two functions $f_L : \mathbb{R} \to \mathbb{R}$ and $f_H : \mathbb{R} \to \mathbb{R}$ so that for each $t \in \mathbb{R}$,

$$\Pi(\{\theta: f_L(t) \le \theta(t) \le f_H(t)\} \mid X^T) \ge 1 - \alpha.$$

A simultaneous credible band of credible level $1 - \alpha$ are two functions $f_L : \mathbb{R} \to \mathbb{R}$ and $f_H : \mathbb{R} \to \mathbb{R}$ so that

$$\Pi(\{\theta: f_L(t) \le \theta(t) \le f_H(t) \,\forall t\} \mid X^T) \ge 1 - \alpha.$$

So

simultaneous credible band \implies pointwise credible band.

The reverse does not hold necessarily.

5.1 How to construct credible bands

5.1.1 Exact pointwise credible bands

With Gaussian process priors you can construct exact pointwise credible bands. The posterior is of the form

$$f(t) = \sum_{k=1}^{N} \theta_k \phi_k, \quad \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_N \end{pmatrix} \sim N(m, V),$$

where m is the N-dimensional mean vector and V is the $N \times N$ -covariance matrix.

The coefficients are multivariate normally distributed, so f(t) is, as a linear combination of the coefficients, normally distributed with mean

$$\mathbb{E}[f(t)] = \sum_{k=1}^{N} \mathbb{E}[\theta_k] \phi_k(t) = \sum_{k=1}^{N} m_k \phi_k(t)$$

and variance

$$\operatorname{var}(f(t)) = \sum_{k=1}^{N} \sum_{\ell=1}^{N} \operatorname{cov}(\theta_k, \theta_\ell) \phi_k(t) \phi_\ell(t)$$
$$= \sum_{k=1}^{N} \sum_{\ell=1}^{N} V_{k\ell} \phi_k(t) \phi_\ell(t)$$

Let ξ_p be the quantile function of a standard normally distributed random variable Z, so $\mathbb{P}(Z \leq \xi_p) = p$. The *exact* pointwise credible band (around the posterior mean) is

$$f_L(t) = \mathbb{E}[f(t)] - \sqrt{\operatorname{var}(f(t))} \xi_{1-\alpha/2}$$

and

$$f_H(t) = \mathbb{E}[f(t)] + \sqrt{\operatorname{var}(f(t))} \xi_{1-\alpha/2}.$$

5.1.2 Simulated simultaneous credible bands

Here I describe a procedure to simulate a $1-\alpha$ -simultaneous credible band around the posterior mean.

Algorithm 10. Given a prior Π on a space of drift functions, and data $X^T = (X_t : t \in [0, T])$.

- 1. Calculate the posterior $\Pi(\cdot \mid X^T)$,
- 2. calculate the posterior mean $\bar{\theta} = \int \theta d\Pi(\theta \mid X^T)$ (you may use the mean function in the BayesianNonparametricStatistics.jl package),
- 3. simulate $\theta_1, \ldots, \theta_M$ from the posterior,
- 4. for each i, calculate $d_i = \sup\{|\theta_i(t) \bar{\theta}(t)| : t \in \mathbb{R}\}$.
- 5. take the $\lceil (1-\alpha) \cdot M \rceil$ functions $\theta_{(1)}, \ldots, \theta_{(\lceil (1-\alpha)M \rceil)}$ from $\theta_1, \ldots, \theta_M$ for which d_i is the smallest.
- 6. Define f_L and f_M as

$$f_L(t) = \min \left\{ \theta_{(1)}(t), \dots, \theta_{(\lceil (1-\alpha)M \rceil)}(t) \right\} \quad and \quad f_H(t) = \max \left\{ \theta_{(1)}(t), \dots, \theta_{(\lceil (1-\alpha)M \rceil)}(t) \right\}.$$

A Lemma

Lemma 11. For each $J \in \mathbb{N}$,

$$\sum_{j=1}^{J} j2^{j} = (J-1)2^{J+1} + 2.$$

Proof. Note that

$$\sum_{j=1}^{J} j 2^{j} = \sum_{j=1}^{J} \sum_{k=j}^{J} 2^{k}$$

$$= \sum_{j=1}^{J} 2^{j} \sum_{k=0}^{J-j} 2^{k}$$

$$= \sum_{j=1}^{J} 2^{j} (2^{J-j+1} - 1)$$

$$= J2^{J+1} - (2^{J+1} - 2)$$

$$= (J-1)2^{J+1} + 2.$$

References

Chung, K.L. and R.J. Williams (1990 reprint 2014). *Introduction to Stochastic Integration*. Modern Birkhäuser Classics. Springer New York. ISBN: 978-1-4614-9587-1. DOI: 10.1007/978-1-4614-9587-1.

- Steele, J.M. (2001). Stochastic Calculus and Financial Applications. Applications of mathematics: stochastic modelling and applied probability. Springer. ISBN: 9780387950167. DOI: 10.1007/978-1-4684-9305-4.
- van der Meulen, F.H., M. Schauer, and J. van Waaij (2018). "Adaptive nonparametric drift estimation for diffusion processes using Faber–Schauder expansions". In: *Statistical Inference for Stochastic Processes* 21.3, pp. 603–628. DOI: 10.1007/s11203-017-9163-7.