Neural Circuits and Computations Unit RIKEN Center for Brain Science louis.kang@riken.jp https://louiskang.group

Updated 13 November 2022

Positions —	
Unit Leader (Junior Group Leader), Neural Circuits and Computations Unit RIKEN Center for Brain Science, Wako, Japan	2020-
Miller Postdoctoral Fellow University of California, Berkeley, USA Host departments: Physics and Helen Wills Neuroscience Institute Host faculty: Mike DeWeese	2017–2020
Visiting and Adjunct Positions —	
Adjunct Associate Professor, Graduate School of Informatics Kyoto University, Japan	2021-
Visiting Scientist RIKEN Center for Brain Science, Wako, Japan Host faculty: Taro Toyoizumi	Summer 2019
Research Statement —	
Human cognition ultimately emerges from sophisticated computations performed neurons. I use and develop theoretical tools to investigate how our brains make sense to our dynamic environments. In particular, I am interested in how hippocampal memory and how they are disrupted in neurological diseases.	e of and respond
Education —	
MD, Perelman School of Medicine University of Pennsylvania, Philadelphia, USA	2017
PhD , Department of Physics & Astronomy University of Pennsylvania, Philadelphia, USA Thesis advisor: Tom Lubensky Thesis title: Chirality and its spontaneous symmetry breaking in two liquid crysta	2015 al systems
${\bf AB}$ in Chemistry and Physics and Mathematics $summa\ cum\ laude$ Harvard University, Cambridge, USA	2009
Publications *equal contribution †corresponding author —	
–. Kang \mathbf{L}^{\dagger} , Toyoizumi T. Distinguishing examples while building concepts in his	ippocampal and

- artificial networks. bioRxiv (2023). doi:10.1101/2023.02.21.529365.
- -. **Kang L**^{\dagger}, Toyoizumi T. A Hopfield-like model with complementary encodings of memories. arXiv (2023). doi:10.48550/arXiv.2302.04481.
- 10. Wang R, **Kang L**[†]. Multiple bumps can enhance robustness to noise in continuous attractor networks. *PLOS Comput Biol* 18, e1010547 (2022). doi:10.1371/journal.pcbi.1010547.
- 9. **Kang L**[†], Xu B, Morozov D. Evaluating state space discovery by persistent cohomology in the spatial representation system. *Front Comput Neurosci* 15, 616748 (2021). doi:10.3389/fncom.2021.616748.
- 8. Kang L^{\dagger} , DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. *eLife* 8, e46351 (2019). doi:10.7554/eLife.46351.
- 7. **Kang L** † , Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. *eLife* 8, e46687 (2019). doi:10.7554/eLife.46687.
- Kang L[†], Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. *Proc Natl Acad Sci USA* 114, E19 (2017). doi:10.1073/pnas.1613732114.
- 5. **Kang L**[†], Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures in colloidal membranes. *Soft Matter* 12, 386 (2016). doi:10.1039/C5SM02038G.
- 4. Davidson ZS*, **Kang L***, Jeong J*,†, Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. *Phys Rev E* 91, 050501 (2015). doi:10.1103/PhysRevE.91.050501.
- 3. Jeong J^{*,†}, **Kang L***, Davidson ZS, Collings PJ, Lubensky TC, Yodh AG. Chiral structures from achiral liquid crystals in cylindrical capillaries. *Proc Natl Acad Sci USA* 112, E1837 (2015). doi:10.1073/pnas.1423220112.
- 2. Idema T, Dubuis JO, **Kang L**, Manning ML, Nelson PC, Lubensky TC, Liu AJ[†]. The syncytial *Drosophila* embryo as a mechanically excitable medium. *PLOS ONE* 8, e77216 (2013). doi:10.1371/journal.pone.0077216.
- 1. Heo M, **Kang L**, Shakhnovich EI[†]. Emergence of species in evolutionary "simulated annealing". *Proc Natl Acad Sci USA* 106, 1869 (2009). doi:10.1073/pnas.0809852106.

Grants, Awards, and Honors -

KAKENHI Grant-in-Aid for Early-Career Scientists

2022-2024

Japan Society for the Promotion of Science

Project role: PI

Project title: The influence of attractor topology on seizure initiation in the hippocampal region (22K15209)

Collaborative Research Travel Grant

2019 - 2020

Burroughs Wellcome Fund

Project role: PI

Project title: Complementary input pathways enhance associative memory in a model of CA3

Travel Award 2018

Computational Neuroscience Meeting (CNS*2018)

Miller Research Fellowship University of California, Berkeley	017–2020
Mary Ellis Bell Prize University of Pennsylvania, Perelman School of Medicine "This prize is given to a student in the School of Medicine who is engaged in noteworthy in any field related to medicine"	2016 research
in any field related to medicine." Werner Teutsch Memorial Prize University of Pennsylvania, Department of Physics & Astronomy "Awarded annually to the graduate student who, by his or her performance in the first year	2012 r courses,
shows the most promise for outstanding achievement in research." Medical Scientist Training Program National Institutes of Health (USA), awarded through the University of Pennsylvania	009–2017
Phi Beta Kappa Harvard University	2009
Conference Presentations †talk ————————————————————————————————————	
Bernstein Conference, Berlin, Germany Multiscale encodings of memories in hippocampal and artificial networks	2022
Computational and Systems Neuroscience (Cosyne), Lisbon, Portugal Multiscale encodings of memories in hippocampal and artificial networks	2022
Computational and Systems Neuroscience (Cosyne), Denver, USA Complementary encoding pathways build a memory hierarchy in a model of hippocampus	2020
Society for Neuroscience Meeting, Chicago, USA Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor new	$2019\\twork$
Bernstein Conference, Berlin, Germany Replay arises naturally as a traveling wavefront in an entorhinal attractor network [‡]	2018
Computational Neuroscience Meeting (CNS*2018), Seattle, USA A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
Interdisciplinary Navigation Symposium (iNAV), Mont-Tremblant, Canada A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
American Physical Society March Meeting, Los Angeles, USA Self-organization of entorhinal grid modules through commensurate lattice relationships [‡]	2018
Computational and Systems Neuroscience (Cosyne), Denver, USA Self-organization of entorhinal grid modules through commensurate lattices	2018
American Physical Society March Meeting, New Orleans, USA Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension [‡]	2017
Computational and Systems Neuroscience (Cosyne), Salt Lake City, USA Coupling between attractor networks naturally generates a discrete grid cell hierarchy	2017
Gordon Research Conference & Seminar on Liquid Crystals, Biddeford, USA Roles of entropy and chirality in depletion-induced colloidal membranes [‡]	2015

American Chemical Society Colloid & Surface Science Symposium, Philadelphia, USA	2014
A theory for depletion-induced colloidal membranes [‡]	
American Physical Society March Meeting, Denver, USA A theory for depletion-induced colloidal membranes [‡]	2014
IAS Program on Frontiers of Soft Matter Physics, Hong Kong A theory for depletion-induced colloidal membranes	2014
American Physical Society March Meeting, Baltimore, USA Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos [‡]	2013
Teaching —	
An introduction to computational neuroscience RIKEN Center for Brain Science, Brain Science Training Program Two-hour lecture for graduate students once a year	2022-
An introduction to computational neuroscience Kyoto University, Graduate School of Informatics Three-hour lecture for graduate students once a year	2021-
References —	

Mike DeWeese

Postdoctoral advisor
University of California, Berkeley
Redwood Center for Theoretical Neuroscience
deweese@berkeley.edu
Vijay Balasubramanian

Research mentor
University of Pennsylvania
Department of Physics & Astronomy
vijay@physics.upenn.edu

Tom Lubensky

PhD advisor University of Pennsylvania Department of Physics & Astronomy tom@physics.upenn.edu

Taro Toyoizumi

Research mentor

RIKEN Center for Brain Science

Neural Adaptation and Computation Group

taro.toyoizumi@riken.jp