Processamento de Sinal (2014/15)

Teste 2 – 7 de janeiro de 2015

N	ome:NºCurso
	Grupo I
sifiq	ue, neste enunciado, as questões que se seguem indicando se são verdadeiras (V) ou falsas (F). Dua
oosta	as erradas anulam uma resposta correta. Atenção às siglas que se seguem:
	SFTC - Série de Fourier em Tempo Contínuo
	SFTD - Série de Fourier em Tempo Discreto
	TFTC - Transformada de Fourier em Tempo Contínuo
	TFTD - Transformada de Fourier em Tempo Discreto
	f_a – Frequência de amostragem
1.	Os coeficientes da SFTD são periódicos, com período igual a 2π/N
2.	Tal como na SFTC, na SFTD os coeficientes $ a_k = a_{-k} $ desde que o sinal seja par
3.	Caso o sinal seja real e observe uma simetria impar, então os coeficientes da sua SFTD serão sempre
4	puramente imaginários positivos
	A TFTC só pode ser usada caso o sinal seja aperiódico.
5.	A energia do sinal pode ser calculada pela sua evolução no tempo, ou usando o conteúdo espetral que resulta do cálculo da TFTC .
6.	O resultado da TFTD é sempre discreto e periódico.
7.	Um sinal amostrado pode ser recuperado desde que usemos uma f_a igual ou superior a duas vezes a largura de banda do sinal
8.	O espetro de um sinal em tempo contínuo que foi amostrado é sempre periódico, com período igual a 2π .
9.	O aliasing pode ser evitado usando filtros passa-baixo ideais com frequência de corte igual à frequência de amostragem
10.	A decimação (após amostragem com período N) equivale a reduzir a frequência de amostragem de un fator de N
11.	Se um sinal pode ser decimado sem gerar aliasing, então significa que foi sobreamostrado.
12.	Num processo de interpolação, a recuperação do sinal faz-se usando um filtro passa-baixo.

Grupo II

Responda às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação adequada.

- 1. Considere que um sinal x[n] é real, ímpar e com período 5 e que os coeficientes da série de Fourier que o define são ak. Sabendo que: a-3=j2, que |a1|=1 e que a fase de a6=90º, calcule:
 - a) Os coeficientes a-2, a-1... a2.
 - b) A potência média do sinal ao longo de um período (caso não tenha respondido à questão anterior, considere que os coeficientes são definidos pela seguinte expressão: $a_k = \frac{j}{5} \sin\left(\frac{k\pi}{4}\right)$

- 2. Considere o sinal x(t) = f(t). g(t), em que $f(t) = \cos(10t)$ e $g(t) = \frac{\sin(2t)}{\pi t}$:
 - a) Calcule o espetro de x(t), isto é calcule $X(j\omega)$.
 - b) Qual será a saída de um sistema LIT com resposta impulsional $h(t) = e^{-t}u(t)$, quando a entrada é f(t).
- 3. Um sistema LIT em tempo discreto é pela seguinte equação às diferenças:

$$2y[n] = -2x[n] + y[n-1] + x[n-2]$$

- a) Calcule a resposta em freguência deste sistema.
- b) Calcule a resposta impulsional do sistema.
- c) Calcule a saída do sistema, y[n], quando a entrada é o sinal x[n] = u[n+1] u[n-1].
- 4. A figura seguinte apresenta um sistema que processa sinais contínuos em tempo discreto (como por exemplo um microcontrolador que processa sinais amostrados). O período de amostragem é T=1us.

Relativamente a este sistema, responda às questões seguintes:

- a) Esboce os espetros $X_p(j\omega)$, $X(e^{j\Omega})$, $Y(e^{j\Omega})$, $Y_p(j\omega)$ e $Y_c(j\omega)$;
- b) Qual seria a menor frequência de amostragem que se poderia usar e que evitava o aliasing?

Porque é real $|a_{k}| = |a_{-k}|$ Porque é real $|a_{k}| = |a_{-k}|$ Porque et par, os conficientes sul priminente

innes; marios e impares tombém, ento $a_{k} = -a_{-k}$

Para alé disso ax = ax±N

Ents:

$$a_{-2} = a_3 = j2 = -a_2$$
 $a_{-1} = -a_1$
 $a_0 = 0$
 $a_1 = 1 \ 120^\circ = j$
 $a_2 = -a_{-2} = -j2$

(2)
$$K(t) = f(t), g(t), f(t) = 2 con (10t), g(t) = \frac{sen(2t)}{\pi t}$$

a)
$$X(j\omega)=?$$

$$X(t)=f(t). \, f(t) \quad \xrightarrow{\mathcal{F}} \quad X(j\omega)=\frac{1}{2\pi}. \, F(j\omega) \times G(j\omega)$$

$$X(j\omega)A$$

-12 -10 -8

8 10 12 ω

$$X(j\omega) = \frac{2\pi}{2\pi} \left(\delta(\omega - 10) \star b(j\omega) + \delta(\omega + 10) \star b(j\omega) \right)$$

$$= \delta(j(\omega - 10)) + \delta(j(\omega + 10))$$

b)
$$Y(t) = f(t) * h(t)$$
 on $|Y(j\omega)| = F(j\omega) \cdot H(j\omega)$
 $H(j\omega) = \frac{20}{10+j\omega}$ $|Y(t)| = f^{-1} \{Y(j\omega)\}$
 $Y(i\omega) = \frac{20}{10+j\omega}$ $|Y(t)| = f^{-1} \{Y(j\omega)\}$

$$Y(j\omega) = \left[2\pi \delta(\omega-10) + 2\pi \delta(\omega+\omega)\right]. \ H(j\omega) =$$

$$= 2\pi \delta(\omega-10). H(j(0) + 2\pi \delta(\omega+10). H(-j(0))$$

$$= 2\pi \sqrt{2} \int_{0}^{1/4} \int_{0}^{0$$

$$H(j10) = \frac{20}{10+j10} = \frac{2}{\sqrt{2} L \sqrt{1} \sqrt{4}} = \sqrt{2} L - \sqrt{1} \sqrt{4} = \sqrt{2} e^{-j \sqrt{1} \sqrt{4}}$$

$$H(-j10) = \sqrt{2} e^{-j \sqrt{1} \sqrt{4}}$$

$$Y(j\omega) = 2\pi \int_{2}^{\infty} e^{-jT/4} \int_{4}^{\infty} (\omega - l_{0}) + 2\pi \int_{2}^{\infty} e^{jT/4} \int_{4}^{\infty} (\omega + l_{0})$$

$$Y(t) = 2\pi \int_{2}^{\infty} e^{-jT/4} \int_{2}^{\infty} e^{jt/4} \int_{4}^{\infty} e^{-jl/4} \int_{4}^{\infty} e^{-$$

a)
$$2Y[n] = -2x[n] + y[n-1] + x[n-2]$$

 $\downarrow \hat{x}$
 $2Y(e^{jn}) = -2X(e^{jn}) + e^{-jn} Y(e^{jn}) + e^{-jn} X(e^{jn})$
 $(2-e^{-jn})Y(e^{jn}) = (e^{-j2n}-2)X(e^{jn})$
 $H(e^{jn}) = \frac{Y(e^{jn})}{X(e^{jn})} = \frac{e^{-j2n}-2}{2-e^{-jn}}$

b)
$$h[n] = \int_{-\infty}^{\infty} \{H(xin)\}$$

$$H(xin) = \frac{1/2}{1 - \frac{1}{2}x^{2}} = \frac{1}{1 - \frac{1}{2}e^{2x}} - \frac{1}{1 - \frac{1}{2}e^{2x}}$$

$$h[n] = \frac{1}{2}(\frac{1}{2})^{m-2}n[m-2] - (\frac{1}{2})^{m}n[m]$$

$$Y[m] = X[m] * h(m) = (S[m+i] - S(m)) * h(m) = h[m+i] - h(m)$$

$$= \frac{1}{2} (\frac{1}{2})^{m-1} u[m-i] - (\frac{1}{2})^{m+1} u[m+i] - \frac{1}{2} (\frac{1}{2})^{m-2} u[m-i] + (\frac{1}{2})^{m} u[m]$$

b) Ws>8