STAT604 SAS Lesson 15

Portions Copyright © 2018 SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC, USA. SAS Institute Inc. makes no warranties with respect to these materials and disclaims all liability therefor.

Restructuring Tables

Restructuring Data with the DATA Step

Restructuring Tables

vide/flat

Table Structure

- Maron

class_test_wide

	Name	13	Math	13	Reading
1	Alfred		82		79
2	Alice		71		67
3	Barbara		96		86

Both tables include the same information, but they are structured differently.

class	test	narrow
_		_

	Name	TestSubject	TestScore
1	Alfred	Math	82
2	Alfred	Reading	79
3	Alice	Math	71
4	Alice	Reading	67
5	Barbara	Math	96
6	Barbara	Reading	86

Multiple Choice Question

Which table and column (or columns) could you use with PROC MEANS to calculate an average for all test scores combined?

- a. class_test_wide, Math and Reading
- b. class_test_narrow, TestScore

	٨	Name	13	Math	13	Reading		
1	Alfre	ed		82	79			
2	Alic	е		71	67			
3	Barl	para		96	86			
		cla						

proc mea	ns data= <mark>???</mark> ;	
var	???;	
run;		

	٨	Name	TestSubject	13	TestScore	
1	Alfred	d	Math		82	
2	Alfred		Reading		79	
3	Alice		Math			
4	Alice		Reading		67	
5	Barba	ara	Math	9		
6	Barba	class	86			

Multiple Choice Question – Correct Answer

Which table and column (or columns) could you use with PROC MEANS to calculate an average for all test scores combined?

- a. class_test_wide, Math and Reading
- b. class_test_narrow, TestScore

```
proc means data=pg2.class_test_narrow
    maxdec=1;
    var TestScore;
    The MEANS Procedure
run;

Analysis Variable: TestScore
    N Mean Std Dev Minimum Maximum
    38 77.7 11.3 55.0 99.0
```


Restructuring Data with the DATA Step

Creating a Narrow Table with the DATA Step

```
data class test narrow(keep=Name Subject Score);
       set pg2.class test wide;
       length Subject $ 7;
       Subject="Math";
       Score=Math;
       output;
       Subject="Reading";
       Score=Reading;
       output;
run;
```

How could this be more efficient or programmer friendly?

Restructuring Data with the DATA Step

	Name	TestSubject	TestScore
1	Alfred	Math	82
2	Alfred	Reading	79
3	Alice	Math	71
4	Alice	Reading	67
5	Barbara	Math	96
6	Barbara	Reading	86

wide

narrow

You can use the DATA step to read multiple rows before writing one row to the output table.

Restructuring Data with the DATA Step

	Name	TestSubject	TestScore
1	Alfred	Math	82
2	Alfred	Reading	79
3	Alice	Math	71
4	Alice	Reading	67
5	Barbara	Math	96
6	Barbara	Reading	86

	Name	Math ■	Reading
1	Alfred	82	79
2	Alice	71	67
3	Barbara	96	86
		wide	

narrow

if TestSubject="Math" then Math=TestScore;
else if TestSubject="Reading" then Reading=TestScore;

Activity

- Examine the last DATA step code in 19-loops.sas and run the program. What statement is necessary to carry the data from the first iteration over to the second?
- 2. Add a statement to include only the last row per student in the output table. Run the program.
- 3. What must be true of the input table for the DATA step to work?

Activity – Correct Answer

1. Examine the DATA step code and run the program. Add the RETAIN statement and run the program again. Why is the RETAIN statement necessary?

The RETAIN statement hold values in the PDV across multiple iterations of the DATA step. The last row for each student includes both test scores.

<u> </u>	Name	133	Math	123	Reading
Alfred			8	2	
Alfred					79
Alice			7	1	
Alice					67

Name	13	Math	13	Reading
Alfred		82		
Alfred		82		79
Alice		71		79
Alice		71		67

without RETAIN

with RETAIN

Activity – Correct Answer

2. Add a subsetting IF statement to include only the last row per student in the output table.

```
data class_wide;
    set pg2.class_test_narrow;
    by name;
    retain Name Math Reading;
    keep Name Math Reading;
    if TestSubject="Reading" then Reading=TestScore;
    else if TestSubject="Math" then Math=TestScore;
    if last.name=1 then output;
run;
```

3. What must be true of the input table for the DATA step to work?
The data must be sorted by Name.

Restructuring Tables

Restructuring Data with the TRANSPOSE Procedure

Restructuring Data with PROC TRANSPOSE

```
PROC TRANSPOSE DATA=input-table <OUT=output-table>;
     <ID col-name;>
     <VAR col-name(s);>
RUN;
                                           PROC TRANSPOSE
                                            can restructure
                                           data with simple
                                             statements.
```


Activity

Open the 20-transpose.sas program and perform the following tasks:

- 1. Highlight the PROC PRINT step and run the selection. Note how many rows are in the **sashelp.class** table.
- 2. Highlight the PROC TRANSPOSE step and run the selection. Answer the following questions:

Which columns from the input table are transposed into rows? What does each column in the output table represent? What is the name of the output table?

Keep this program open for the next activity.

Activity – Correct Answer

Which columns from the input table are transposed into rows?

Only the numeric columns are transposed (Age, Height, and Weight).

What does each column in the output table represent?

What does each column in the output table represent?

Each column corresponds to a student (row) from the input table.

▲ _NAME_	13	COL1	13	COL2	13	COL3	13	COL4	13	COL5	13	COL6	13	COL7	123
Age		14		13		13		14		14		12		12	
Height		69		56.5		65.3		62.8		63.5		57.3		59.8	
Weight		112.5		84		98		102.5		102.5		83		84.5	

What is the name of the output table?

work.data1

NOTE: There were 19 observations read from the data set SASHELP.CLASS.

NOTE: The data set WORK.DATA1 has 3 observations and 20 variables.

Keep this program open for the next activity.

Activity

Use the program from the previous activity to perform the following tasks:

- Add the OUT= option in the PROC TRANSPOSE statement to create an output table named class_t.
- 2. Add the following ID statement and run the step. What changes in the results?

id Name;

3. Add the following VAR statement and run the step. What changes in the results?

var Height Weight;

Activity – Correct Answer

```
proc transpose data=sashelp.class out=class_t;
   id Name;
   var Height Weight;
run;
```

The values of the ID column are assigned as column names.

▲ _NAME_	Alfred	Alice	Barbara	© Carol	Henry @
Height	69	56.5	65.3	62.8	63.5
Weight 🔪	112.5	84	98	102.5	102.5

The VAR statement limits the columns that are transposed to rows.

Transposing Values within Groups

Use the BY statement to transpose data within groups.

The input table must be sorted by the same columns that you specify in the BY statement.

Transposing Values within Groups

Season A Basin Name Wind1 Wind2 (13) Wind3 Wind4 1980 EP **AGATHA** 100 1980 EP BLAS 50 50 45 1980 EP CELIA 65 65

wide

Each unique combination of BY values creates one row in the output table.

by Season Basin Name;

Creating a Wide Table with PROC TRANSPOSE

This demonstration illustrates using PROC TRANSPOSE to transpose data values within groups into rows. The demo also uses options to customize the output table.

Transposing Values into Groups

Activity

Go back to 20-transpose.sas and perform the following tasks:

- Run the next program. Notice that, by default, PROC TRANSPOSE transposes all the numeric columns, Wind1-Wind4.
- Add a VAR statement in PROC TRANSPOSE to transpose only the Wind1 and Wind2 columns. Run the program.
- 3. What are the names of the columns that contain the column names and values that have been transposed?

Activity – Correct Answer

 Add a VAR statement in PROC TRANSPOSE to transpose only the Wind1 and Wind2 columns. Run the program.

3. What are the names of the columns that contain the column names and values that have been transposed? _NAME_ and COL1

Storm Narrow						
Obs	Season	Basin	Name	_NAME_	COL1	
1	1980	EP	AGATHA	Wind1	100	
2	1980	EP	AGATHA	Wind2	95	
3	1980	EP	BLAS	Wind1	50	
4	1980	EP	BLAS	Wind2	50	
5	1980	EP	CELIA	Wind1	65	
C	4000	ED	CELIA	10/: 40	CE	

Changing Column Names

```
PROC TRANSPOSE DATA=input-table <OUT=output-table> <NAME=column> <PREFIX=column>;
```

```
proc transpose data=pg2.storm top4 wide name=WindRank
                    prefix=WindMPH;
     by Season Basin Name;
     var wind1-wind4;
                                    Season A Basin A
                                                   Name
                                                            WindRank
                                                                      WindMPH1
run;
                                      1980 EP
                                                AGATHA
                                                         Wind1
                                                                           100
                                      1980
                                          EP
                                                AGATHA
                                                         Wind2
                                                AGATHA
                                      1980
                                                         Wind3
                                                AGATHA
                                                         Wind4
                                      1980 EP
                                                BLAS
                                                         Wind1
```


Changing Column Names

How could you change the name of the column in the output table to exclude the number 1?

Season	▲ Basin	Name	WindRank	₩indMPH1
1980	EP	AGATHA	Wind1	100
1980	EP	AGATHA	Wind2	95
1980	EP	AGATHA	Wind3	90
1980	EP	AGATHA	Wind4	85
1980	EP	BLAS	Wind1	50
4000		DI 40	1.6.10	

Changing Column Names

Create an output table and use the RENAME= data set option.

Season	A Basin	Name	WindRank	₩indMPH
1980	EP	AGATHA	Wind1	100
1980	EP	AGATHA	Wind2	95
1980	EP	AGATHA	Wind3	90
1980	EP	AGATHA	Wind4	85
1980	EP	BLAS	Wind1	50
1990	ED	DLAC	\s/ind2	50

Recap PROC TRANSPOSE Options

PROC TRANSPOSE DATA=input-table <OUT=output-table> <NAME=column> <PREFIX=column>;

- OUT Controls name and library of output table
- NAME Renames the _NAME_ column
- PREFIX Changes COL1... to something meaningful

Recap PROC TRANSPOSE Statements

```
X
```

- VAR Specifies columns to be transposed (all numeric by default)
- ID Values of the ID column are assigned as column names or suffix
- BY Specifies grouping of transposed data

Discussion

When might you prefer to use the DATA step instead of PROC TRANSPOSE to restructure data and vice versa?

Producing Descriptive Statistics

The FREQ Procedure – Prep Guide Chapter 15

Business Scenario

Orion Star management wants to know the number of male and female sales employees in Australia.

Considerations

Use the FREQ procedure to analyze the **Gender** variable in a subset of **orion.sales**.

The FREQ Procedure			
Gender	Frequency	Percent	
F	XX	XX.XX	
М	XX	XX.XX	

FREQ Procedure

The FREQ procedure produces a one-way frequency table for each variable named in the TABLES statement.

If the TABLES statement is omitted, a one-way frequency table is produced for *every* variable in the data set. This can produce a large amount of output and is seldom preferred.

Viewing the Output

A one-way frequency table was created for **Gender**. It lists the discrete values found in the data set and the number of observations in which the variable has that value.

The FREQ Procedure						
Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
F M	27 36	42.86 57.14	27 63	42.86 100.00		

The default output includes frequency and percentage values, including cumulative statistics.

Use options in the TABLES statement to suppress the display of selected default statistics.

TABLES *variable(s) / options*;

Option	Description
NOCUM	Suppresses the cumulative statistics.
NOPERCENT	Suppresses the percentage display.

Short Answer Poll

What change was needed to correct this program?

```
proc freq data=orion.sales;
   tables country nocum nopercent;
run;
```


Short Answer Poll – Correct Answer

What change was needed? A slash is required before the options in the TABLES statement.

```
31 proc freq data=orion.sales;
32 tables country nocum nopercent;
ERROR: Variable NOCUM not found.
ERROR: Variable NOPERCENT not found.
33 run;
```

```
proc freq data=orion.sales;
  tables country / nocum nopercent;
run;
```

```
The FREQ Procedure
Country Frequency
—————
AU 63
US 102
```


Idea Exchange

This step creates a table for every variable in the data set:

```
proc freq data=orion.sales;
run;
```

- Employee_ID
- First_Name
- Last_Name
- Gender
- Salary

- Job_Title
- Country
- Birth_Date
- Hire_Date

Which variables are most appropriate for a frequency analysis? Why?

Business Scenario

Orion Star management wants to know how many sales employees are in each country, as well as the count of males and females.

TABLES Statement

You can list multiple variables in a TABLES statement. A separate table is produced for each variable.

```
proc freq data=orion.sales;
    tables Gender Country;
run;
```

The FREQ Procedure

Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
F	68	41.21	68	41.21	
М	97	58.79	165	100.00	

Country	Frequency	Percent	Cumulative Frequency	Cumulative Percent
AU	63	38.18	63	38.18
US	102	61.82	165	100.00

BY Statement

The BY statement is used to request separate analyses for each BY group.

```
proc sort data=orion.sales out=sorted;
  by Country;
run;

proc freq data=sorted;
  tables Gender;
  by Country;
run;
```

The data set must be sorted or indexed by the variable (or variables) named in the BY statement.

Each group appears on a separate page with a BY line.

		Country	=AU	
Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	27	42.86	27	42.86
M	36	57.14	63	100.00

Country=US								
Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent				
F	41	40.20	41	40.20				
M	61	59.80	102	100.00				

Crosstabulation Table

An asterisk between two variables generates a two-way frequency table, or crosstabulation table.

A two-way frequency table generates a single table with statistics for each distinct combination of values of the selected variables.

PROC FREQ Output

Frequency	Table o	f Gend	er by C	ountry
Percent Row Pct			Countr	у
Col Pct	Gender	AU	US	Total
	F	27	41	68
	"	16.36	24.85	41.21
		39.71	60.29	
		42.86	40.20	
	M	36	61	97
	1111	21.82	36.97	58.79
		37.11	62.89	
		57.14	59.80	
	Total	63	102	165
		38.18	61.82	100.00

Use options in the TABLES statement to suppress the display of selected default statistics.

TABLES *variable(s) / options*;

Option	Description
NOROW	Suppresses the display of the row percentage.
NOCOL	Suppresses the display of the column percentage.
NOPERCENT	Suppresses the percentage display.
NOFREQ	Suppresses the frequency display.

Creating N-Way Tables

The FREQ procedure can create a series of two-way tables with a table for each level of the other tables.

```
proc freq data=orion.sales;
    tables country*gender*job_title;
run;
```

You can include up to 50 variables in a single request.

Creating N-Way Tables

Partial output:

Frequency Percent Row Pct	Table 1 of Gender by Job_Title										
		Controlling for Country=AU									
Col Pct			Job_Title								
	Gender	Chief Sales Officer	Sales Manager	Sales Rep. I	Sales Rep. II	Sales Rep. III	Sales Rep. IV	Senior Sales Manager	Total		
	F	0.00 0.00 0.00	0 0.00 0.00 0.00	8 12.70 29.63 38.10	10 15.87 37.04 55.56	7 11.11 25.93 41.18	2 3.17 7.41 40.00	0 0.00 0.00	27 42.86		
	М	0 0.00 0.00	2 3.17 5.56 100.00	13 20.63 36.11 61.90	8 12.70 22.22 44.44	10 15.87 27.78 58.82	3 4.76 8.33 60.00	0 0.00 0.00	36 57.14		
	Total	0.00	2 3.17	21 33.33	18 28.57	17 26.98	5 7.94	0.00	63 100.00		

LIST and CROSSLIST Options

You can use the LIST and CROSSLIST options in the TABLES statement to "flatten" the output.

```
proc freq data=orion.sales;
   tables Gender*Country /list;
run;
```

Gender	Country	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	AU	27	16.36	27	16.36
F	US	41	24.85	68	41.21
M	AU	36	21.82	104	63.03
M	US	61	36.97	165	100.00

LIST and CROSSLIST Options

You can use the LIST and CROSSLIST options in the TABLES statement to "flatten" the output.

```
proc freq data=orion.sales;
  tables Gender*Country /crosslist;
run;
```

	Table of Gender by Country								
Gender	Country	Frequency	Percent	Row Percent					
F	AU	27	16.36	39.71	42.86				
	US	41	24.85	60.29	40.20				
	Total	68	41.21	100.00					
M	AU	36	21.82	37.11	57.14				
	US	61	36.97	62.89	59.80				
	Total	97	58.79	100.00					
Total	AU	63	38.18		100.00				
	US	102	61.82		100.00				
	Total	165	100.00						

Business Scenario

A new data set, **orion.nonsales2**, must be validated. It contains information about non-sales employees and might include invalid and missing values.

Partial orion.nonsales2

Employee_ ID	First	Last	Gender	Salary	Job_Title	Country
120101	Patrick	Lu	М	163040	Director	AU
120104	Kareen	Billington	F	46230	Admin Mgr	au
120105	Liz	Povey	F	27110	Secretary I	AU
120106	John	Hornsey	М		Office Asst II	AU
120107	Sherie	Sheedy	F	30475	Office Asst II	AU
120108	Gladys	Gromek	F	27660	Warehouse Asst II	AU

Considerations

Use the FREQ procedure to screen for invalid, missing, and duplicate data values.

Requirements of non-sales employee data:

- Employee_ID values must be unique and not missing.
- **Gender** must be F or M.
- Job_Title must not be missing.
- Country must have a value of AU or US.
- Salary values must be in the numeric range of 24000 to 500000.

Short Answer Poll

What problems exist with the data in this partial data set?

Employee_ID	First	Last	Gender	Salary	Job_Title	Country
120101	Patrick	Lu	М	163040	Director	AU
120104	Kareen	Billington	F	46230	Administration Manager	au
120105	Liz	Povey	F	27110	Secretary I	AU
120106	John	Hornsey	М		Office Assistant II	AU
120107	Sherie	Sheedy	F	30475	Office Assistant III	AU
120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU
120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU
120110	Dennis	Entwisle	М	28615	Warehouse Assistant III	AU
120111	Ubaldo	Spillane	М	26895	Security Guard II	AU
120112	Ellis	Glattback	F	26550		AU
120113	Riu	Horsey	F	26870	Security Guard II	AU
120114	Jeannette	Buddery	G	31285	Security Manager	AU
120115	Hugh	Nichollas	М	2650	Service Assistant I	AU
	Austen	Ralston	М	29250	Service Assistant II	AU
120117	Bill	Mccleary	М	31670	Cabinet Maker III	AU
120118	Darshi	Hartshorn	М	28090	Cabinet Maker II	AU

Hint: There are seven data problems.

Short Answer Poll – Correct Answer

What problems exist with the data in this partial data set?

Employee_ID	First	Last	Gender	Salary	Job_Title	Country
120101	Patrick	Lu	M	163040	Director	AU
120104	Kareen	Billington	F	46230	Administration Manager	au
120105	Liz	Povey	F	27110	Secretary I	AU
120106	John	Hornsey	M		Office Assistant II	AU
120107	Sherie	Sheedy	F	30475	Office Assistant III	AU
120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU
120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU
120110	Dennis	Entwisle	M	28615	Warehouse Assistant III	AU
120111	Ubaldo	Spillane	М	26895	Security Guard II	AU
120112	Ellis	Glattback	F	26550		AU
120113	Riu	Horsey	F	26870	Security Guard II	AU
120114	Jeannette	Buddery	G	31285	Security Manager	AU
120115	Hugh	Nichollas	М	2650	Service Assistant I	AU
	Austen	Ralston	М	29250	Service Assistant II	AU
120117	Bill	Mccleary	М	31670	Cabinet Maker III	AU
120118	Darshi	Hartshorn	М	28090	Cabinet Maker II	AU

Hint: There are seven data problems.

FREQ Procedure for Data Validation

The FREQ procedure lists all discrete values for a variable and reports missing values.

```
proc freq data=orion.nonsales2;
  tables Gender Country / nocum nopercent;
run;
```


PROC FREQ Output

The FREQ	Procedure			
Gender	Frequency			
F	110			
G	1			
М	123			
Country	Missing = 1 Frequency			
AU	33			
US	196			
au	3			
us	3			
40	0			

NLEVELS Option

The NLEVELS option displays a table that provides the number of distinct values for each analysis variable.

```
proc freq data=orion.nonsales2 nlevels;
  tables Gender Country / nocum nopercent;
run;

PROC FREQ DATA=SAS-data-set NLEVELS;
    TABLES variable(s);
RUN;
```


PROC FREQ Output

Gender	Frequency
F	110
G	1
M	123
	ncy Missing = 1

Country	Frequency
AU	33
US	196
au	3
us	3

Check for Uniqueness

The values of Employee_ID must be unique and not missing. PROC FREQ can be used to check for duplicate or missing values.

```
proc freq data=orion.nonsales2 order=freq;
  tables Employee_ID / nocum nopercent;
run;
```

The ORDER=FREQ option displays the results in descending frequency order.

Partial PROC FREQ Output

The FREQ Proc	edure		
Employee_ID	Frequency		
120108	2		
120101	1		
120104	1		
120105	1		
120106	1		
		121134	1
		121141	1
		121142	1
		121146	1
		121147	1
		121148	1
	Freq	uency Missing	= 1

NLEVELS Option

NLEVELS can also be used to identify duplicates, when the number of distinct values is known.

```
proc freq data=orion.nonsales2 nlevels;
  tables Employee_ID / noprint;
run;
```

This example uses the NOPRINT option to suppress the frequency table. Only the Number of Variable Levels table is displayed.

Partial PROC FREQ Output

The FREQ Procedure						
Number of Variable Levels						
Variable	Levels	Missing Levels	Nonmissing Levels			
Employee_ID	234	1	233			

There are 235 employees, but there are only 234 distinct **Employee_ID** values. Therefore, there is one duplicate value and one missing value for **Employee_ID**.

NLEVELS Option

The _ALL_ keyword with the NOPRINT option displays the number of levels for all variables without displaying frequency counts.

```
proc freq data=orion.nonsales2 nlevels;
    tables _all_ / noprint;
run;
```


PROC FREQ Output

The FREQ Procedure Number of Variable Levels						
Variable	Levels	Missing Levels	Nonmissing Levels			
Employee ID	234	1	233			
First	204	0	204			
Last	228	0	228			
Gender	4	1	3			
Salary	230	1	229			
Job Title	125	1	124			
Country	4	0	4			

No frequency tables were displayed.

Identifying Observations with Invalid Data

PROC FREQ uncovered the existence of invalid data values for **Gender**, **Country**, and **Employee_ID**. Use PROC PRINT to display the observations with invalid values.

```
proc print data=orion.nonsales2;
   where Gender not in ('F','M') or
        Country not in ('AU','US') or
        Job_Title is null or
        Employee_ID is missing or
        Employee_ID=120108;
run;
```


PROC PRINT Output

	Employee_ID	First	Last	Gender	Salary	Job_Title	Country
2	120104	Kareen	Billingto	n F	46230	Administration Manager	au
6	120108	Gladys	Gromek	F	27660	Warehouse Assistant II	AU
7	120108	Gabriele	Baker	F	26495	Warehouse Assistant I	AU
10	120112	Ellis	Glattback	F	26550		AU
12	120114	Jeannette	Buddery	G	31285	Security Manager	AU
14		Austen	Ralston	M	29250	Service Assistant II	AU
84	120695	Trent	Moffat	M	28180	Warehouse Assistant II	au
87	120698	Geoff	Kistanna	M	26160	Warehouse Assistant I	au
101	120723	Deanna	Olsen		33950	Corp. Comm. Specialist I	I US
125	120747	Zashia	Farthing	F	43590	Financial Controller I	us
197	120994	Danelle	Sergeant	F	31645	Office Administrator I	us
200	120997	Mary	Donathan	F	27420	Shipping Administrator I	us

original observation numbers

Business Scenario

The manager of Human Resources requested a report that shows the number and percent of sales employees who are hired each year.

Using Formats in PROC FREQ

A FORMAT statement can be used in PROC FREQ to format data values.

```
proc freq data=orion.sales;
  tables Hire_Date / nocum;
  format Hire_Date date9.;
run;
```

Partial PROC FREQ Output

many discrete values, and not what the manager requested

Using Formats in PROC FREQ

A FORMAT statement can also be used in PROC FREQ to group the data.

```
proc freq data=orion.sales;
   tables Hire_Date / nocum;
   format Hire_Date year4.;
run;
```

Partial PROC FREQ Output

Short Answer Poll

Can user-defined formats be used to group data?

Short Answer Poll – Correct Answer

Can user-defined formats be used to group data? yes

	The FREQ Procedure				
Salary	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Tier1	1	0.61	1	0.61	
Tier2	158	95.76	159	96.36	
Tier3	4	2.42	163	98.79	
Tier4	2	1.21	165	100.00	

Lesson Quiz

6. Which statement is false concerning the TRANSPOSE procedure?

- a. Columns are transposed into rows.
- b. By default, numeric columns are transposed.
- c. Use a BY statement to sort the data while transposing.
- d. Use a VAR statement to specifically specify the character and numeric columns to transpose.

6. Which statement is false concerning the TRANSPOSE procedure?

- a. Columns are transposed into rows.
- b. By default, numeric columns are transposed.
- c.) Use a BY statement to sort the data while transposing.
- d. Use a VAR statement to specifically specify the character and numeric columns to transpose.

7. Which statements are needed in a PROC TRANSPOSE step for the following example (narrow ⇒ wide)?

Day	Meal	♠ Food
Saturday	Breakfast	Yogurt
Saturday	Lunch	Sandwich
Saturday	Dinner	Steak
Sunday	Breakfast	Pancakes
Sunday	Lunch	Salad
Sunday	Dinner	Lasagna

<u> </u>	Day	<u> </u>	Breakfast	<u> </u>	Lunch	<u> </u>	Dinner
Saturda	ау	Yog	urt	Sand	dwich	Steak	(
Sunday	/	Pane	cakes	Sala	d	Lasa	gna

- by Day;
 var Meal Food;
- c. by Day;
 id Food;
 var Meal;

- b. id Day; var Food Meal;
- by Day;
 id Meal;
 var Food;

7. Which statements are needed in a PROC TRANSPOSE step for the following example (narrow ⇒ wide)?

<u> </u>	Day	<u> </u>	Meal	<u> </u>	Food
Saturda	ıy	Breakfa	ast	Yogurt	
Saturda	ıy	Lunch		Sandwi	ch
Saturda	ıy	Dinner		Steak	
Sunday	•	Breakfa	ast	Pancak	ces
Sunday	•	Lunch		Salad	
Sunday	•	Dinner		Lasagn	а

<u> </u>	Day	<u> </u>	Breakfast	<u> </u>	Lunch	<u> </u>	Dinner
Saturda	ay	Yog	urt	Sand	dwich	Steal	k
Sunday	/	Pane	cakes	Sala	d	Lasa	gna

- by Day;
 var Meal Food;
- c. by Day;
 id Food;
 var Meal;

- b. id Day;
 var Food Meal;
- by Day;
 id Meal;
 var Food;

8. Which statement or statements are needed in a PROC TRANSPOSE step for the following example (wide ⇒ narrow)?

Day	Breakfast	A Lunch	Dinner
Saturday	Yogurt	Sandwich	Steak
Sunday	Pancakes	Salad	Lasagna

	NAME Breakfast		
•	Lunch	Sandwich	Salad
	Dinner	Steak	Lasagna

a. by Day;

b.

var Breakfast Lunch Dinner;

c. id Day;

d.

id Day;
var Breakfast Lunch Dinner;

8. Which statement or statements are needed in a PROC TRANSPOSE step for the following example (wide ⇒ narrow)?

Day	Breakfast	A Lunch	Dinner
Saturday	Yogurt	Sandwich	Steak
Sunday	Pancakes	Salad	Lasagna

	Breakfast	Yogurt	Pancakes
•	Lunch	Sandwich	Salad
	Dinner	Steak	Lasagna

a. by Day;

(b.

var Breakfast Lunch Dinner;

c. id Day;

d.

id Day;
var Breakfast Lunch Dinner;

9. Which option is needed in the PROC TRANSPOSE statement to rename the **_NAME_** column?

▲ _NAME_		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

Meal		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

- a. name =Meal
- b. name=Meal
- C. prefix=Meal
- d. **rename=Meal**

9. Which option is needed in the PROC TRANSPOSE statement to rename the **_NAME_** column?

▲ _NAME_		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

Meal		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

- a. name =Meal
- b. name=Meal
- C. prefix=Meal
- d. rename=Meal

10. Which option is needed in the PROC TRANSPOSE statement to rename the **COL** columns?

Meal		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

Meal	▲ Day7	▲ Day1
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

- a. out=meals2(COL1=Day_7 COL2=Day_1)
- b. out=meals2(name=(COL1=Day_7 COL2=Day_1))
- c. out=meals2(rename=(COL1=Day_7 COL2=Day_1))
- d. out=meals2(prefix=(COL1=Day_7 COL2=Day_1))

10. Which option is needed in the PROC TRANSPOSE statement to rename the **COL** columns?

Meal		
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

Meal	▲ Day7	
Breakfast	Yogurt	Pancakes
Lunch	Sandwich	Salad
Dinner	Steak	Lasagna

- a. out=meals2(COL1=Day_7 COL2=Day_1)
- b. out=meals2(name=(COL1=Day_7 COL2=Day_1))
- C.) out=meals2(rename=(COL1=Day_7 COL2=Day_1))
- d. out=meals2(prefix=(COL1=Day_7 COL2=Day_1))

- 1. Which of these procedures produces output that is most useful for detecting duplicate values?
 - a. PROC PRINT
 - b. PROC FREQ
 - c. PROC MEANS
 - d. PROC UNIVARIATE

- 1. Which of these procedures produces output that is most useful for detecting duplicate values?
 - a. PROC PRINT
 - b.) PROC FREQ
 - c. PROC MEANS
 - d. PROC UNIVARIATE

2. Which of these programs is most useful for determining the exact observation that contains a numeric variable with an extreme value?

```
a. proc print data=sales.totals;var ProdNum Sales Region;run;
```

```
b. proc freq data=sales.totals;tables ProdNum Sales Region;run;
```

```
c. proc univariate data=sales.totals;run;
```


2. Which of these programs is most useful for determining the exact observation that contains a numeric variable with an extreme value?

```
a. proc print data=sales.totals;var ProdNum Sales Region;run;
```

```
b. proc freq data=sales.totals;tables ProdNum Sales Region;run;
```

```
c. proc univariate data=sales.totals; run;
```


- 3. A PROC FREQ analysis identified invalid and missing values in a data set. Which of these procedures displays the observations that contain invalid or missing values?
 - a. PROC PRINT
 - b. PROC FREQ
 - c. PROC MEANS
 - d. PROC UNIVARIATE

- 3. A PROC FREQ analysis identified invalid and missing values in a data set. Which of these procedures displays the observations that contain invalid or missing values?
 - (a.) PROC PRINT
 - b. PROC FREQ
 - c. PROC MEANS
 - d. PROC UNIVARIATE

4. Which PROC FREQ step creates the output shown here?

- a. proc freq data=orion.qtr1_2007;tables Order_Type;run;
- b. proc freq data=orion.qtr1_2007
 nlevels;
 tables Order_Type / nocum;
 run;
- c. proc freq data=orion.qtr1_2007 nlevels; tables Order_Type / noprint; run;
- d. proc freq data=otion.qtr1_2007 nlevels; tables Order_Type nocum; run;

Order Type		
Order_Type	Frequency	Percent
1	13	59.09
2	2	9.09
3	7	31.82

4. Which PROC FREQ step creates the output shown here?

- a. proc freq data=orion.qtr1_2007;tables Order_Type;run;
- b. proc freq data=orion.qtr1_2007 nlevels; tables Order_Type / nocum; run;
 - c. proc freq data=orion.qtr1_2007

 nlevels;
 tables Order_Type / noprint;
 run;
- d. proc freq data=otion.qtr1_2007 nlevels; tables Order_Type nocum; run;

Order Type		
Order_Type	Frequency	Percent
1	13	59.09
2	2	9.09
3	7	31.82

5. This PROC MEANS step creates all of the statistics listed below.

```
proc means data=orion.sales;
run;
```

- minimum and maximum
- the total number of observations that PROC MEANS processes for each subgroup (N Obs)
- mean and standard deviation
- the number of nonmissing values (N)
- O True
- O False

5. This PROC MEANS step creates all of the statistics listed below.

```
proc means data=orion.sales;
run;
```

minimum and maximum

- the total number of observations that PROC MEANS processes for each subgroup (N Obs)
- mean and standard deviation
- the number of nonmissing values (N)
- True
 False

6. What must be added to the PROC MEANS statement to produce this output?

The MEANS Procedure

Analysis Variable : Customer_Age Customer Age		
Customer Gender	Range	Mean
F	54.0	35.1
М	54.0	47.0

- a. nonobs
- b. range mean
- c. range mean nonobs bestw.
- d. range mean nonobs maxdec=1

6. What must be added to the PROC MEANS statement to produce this output?

The MEANS Procedure

Analysis Variable : Customer_Age Customer Age		
Customer Gender	Range	Mean
F	54.0	35.1
M	54.0	47.0

- a. nonobs
- b. range mean
- c. range mean nonobs bestw.
- d.) range mean nonobs maxdec=1

- 7. Which option enables you to specify the number of extreme observations that are displayed by PROC UNIVARIATE?
 - a. NEXTROBS=
 - b. NLEVELS
 - c. NOPRINT
 - d. _ALL_

- 7. Which option enables you to specify the number of extreme observations that are displayed by PROC UNIVARIATE?
 - a. NEXTROBS=
 - b. NLEVELS
 - c. NOPRINT
 - d. _ALL_

