Access and Download the data

Download packages

```
import pandas as pd
from pandas import Series, DataFrame
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Previewing data

```
In [6]: #This is just to preview the first few rows of the dataframe
    titanic_df = pd.read_csv(data_filename)
    titanic_df.head()
```

Out[6]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.925(
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

In [7]:

#This gives information about every column, the character type
#and the number of entries

titanic_df.info()

#The columns which are inconsistent are Age and Cabin

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

```
In [8]:
          #The .unique() function allows one to preview the distinct values
          #in each column
In [9]:
          titanic df['Survived'].unique()
         array([0, 1])
Out[9]:
In [10]:
          titanic df['Pclass'].unique()
         array([3, 1, 2])
Out[10]:
In [11]:
          titanic df['Embarked'].unique()
         array(['S', 'C', 'Q', nan], dtype=object)
Out[11]:
In [12]:
          titanic_df['Sex'].unique()
         array(['male', 'female'], dtype=object)
Out[12]:
In [13]:
          titanic_df['Age'].unique()
                                                                         , 14.
                      , 38.
         array([22.
                             , 26.
                                    , 35.
                                              nan, 54.
                                                           2.
                                                                 , 27.
Out[13]:
                             , 20.
                                    , 39.
                                           , 55.
                                                   , 31.
                      , 58.
                                                          , 34.
                                                                 , 15.
                                                                         , 28.
                            , 40.
                                          , 42.
                                                   , 21.
                                                          , 18.
                      , 19.
                                   , 66.
                                                                    3.
                                                                            7.
                 49.
                      , 29.
                             , 65.
                                    , 28.5 ,
                                               5.
                                                   , 11.
                                                          , 45.
                                                                 , 17.
                                                                         , 32.
                               0.83, 30. , 33.
                                                   , 23.
                 16.
                      , 25.
                                                            24.
                                                                 , 46.
                                                                         , 59.
                             , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                                         , 36.5
                 71.
                      , 37.
                                                                    9.
                      , 55.5 , 40.5 , 44.
                                                         , 56.
                                                                 , 50.
                                          , 1.
                                                   , 61.
                                            , 52.
                 45.5 , 20.5 , 62. , 41.
                                                   , 63. , 23.5 ,
                                                                   0.92, 43.
                 60.
                                    , 13.
                                           , 48.
                                                     0.75, 53. , 57.
                                                                         , 80.
                      , 10. , 64.
                 70.
                      , 24.5 , 6.
                                    , 0.67, 30.5 , 0.42, 34.5 , 74.
                                                                         1)
In [14]:
          #The histograms allow us to understand the distribution of the data
          #in each column; the min, max and median values
In [15]:
          titanic df['Age'].hist(bins=70,grid=0)
```

Out[15]: <AxesSubplot:>

In [16]: titanic_df['SibSp'].hist(bins=70,grid=0)

Out[16]: <AxesSubplot:>

In [17]: titanic_df['Parch'].hist(bins=70,grid=0)

Out[17]: <AxesSubplot:>

Analysis Section

```
In [18]: #Plotting those who Survived and those that died
    titanic_df['Survivor'] = titanic_df.Survived.map({0:'no',1:'yes'})
    sns.catplot(x='Survivor',kind='count',data=titanic_df,hue='Survivor')
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x7fc7b1f9dc70>

Overall Gender Breakdown

There are overall more male deaths than female deaths although the difference is not very great.

```
In [19]:
          #Classifying all passengers under the age of 16 as children in the
          #gender column
          def male_female_child(passenger):
              age,sex = passenger
              if age < 16:
                  return 'child'
              else:
                  return sex
In [56]:
          titanic_df['person'] = titanic_df[['Age', 'Sex']].apply(male_female_child,ax
In [21]:
          #Counting the number of males, females and children
          titanic_df['person'].value_counts()
         male
                    537
Out[21]:
         female
                   271
         child
                    83
         Name: person, dtype: int64
In [22]:
          sns.catplot(x='person',kind='count',data=titanic_df,hue='Survivor'
                       ,palette='winter')
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x7fc7a019cbe0>

Overall Passenger Class Breakdown

In [23]: sns.catplot(x='Pclass',kind='count',data=titanic_df,hue='Survivor',palette=

Out[23]: <seaborn.axisgrid.FacetGrid at 0x7fc7b10c7e50>

Age Breakdown

Passenger below the age of 16 were classed as children using the script below

```
In [24]: #Understanding the avergae age
    titanic_df['Age'].mean()

Out[24]: 29.69911764705882

In [25]: #Plotting the age distribution of males and females
    fig = sns.FacetGrid(titanic_df,hue='Sex',aspect=4)
    fig.map(sns.kdeplot,'Age',shade=True)

    oldest = titanic_df['Age'].max()
    fig.set(xlim=(0,oldest))
    fig.add_legend()

Out[25]: <seaborn.axisgrid.FacetGrid at 0x7fc7f0cbd130>
```



```
In [26]: #Plotting the age distribution of males, females and children
fig = sns.FacetGrid(titanic_df,hue='person',aspect=4)
fig.map(sns.kdeplot,'Age',shade=True)
oldest = titanic_df['Age'].max()
fig.set(xlim=(0,oldest))
fig.add_legend()
```

Out[26]: <seaborn.axisgrid.FacetGrid at 0x7fc7f0d27280>

Summary Analysis of Class, Age and Gender Breakdown

```
In [27]: sns.catplot(x='Pclass',kind='count',data=titanic_df,hue='person')
```

Out[27]: <seaborn.axisgrid.FacetGrid at 0x7fc7a1a7e0d0>

Analysis of Deaths by Cabin Levels

```
In [28]: #Obtaining the first character(letter) from each cabin seat to analyse pass
#on each cabin level

levels = []
for level in titanic_df['Cabin']:
    levels.append(str(level)[0])
titanic_df['New_Cabin'] = levels
```

```
In [29]:
#Including those who Survived and those that died
titanic_df['Survivor'] = titanic_df.Survived.map({0:'no',1:'yes'})
titanic_df.head()
```

Out[29]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.925(
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050(

Out[30]: <seaborn.axisgrid.FacetGrid at 0x7fc7f0c928e0>

Port of Embarkation Breakdown

```
In [31]: sns.catplot(x='Embarked',kind='count', data=titanic_df, palette='winter_d')
```

Out[31]: <seaborn.axisgrid.FacetGrid at 0x7fc7f0be9910>

Analysis of Passenger Deaths and Family Relations

Perhaps passengers with family would have fought more to survive than those with no family

```
In [51]:
           titanic df['Alone'] = titanic df.SibSp + titanic df.Parch
           #Parch represents parent child
In [52]:
           titanic df['Alone'].loc[titanic df['Alone']>0] = 'With Family'
           titanic df['Alone'].loc[titanic df['Alone']==0] = 'Alone'
In [53]:
           titanic_df.head()
                                                                                    Ticket
Out [53]:
             PassengerId Survived Pclass
                                               Name
                                                        Sex
                                                              Age SibSp Parch
                                                                                              Far€
                                              Braund,
           0
                        1
                                 0
                                         3
                                            Mr. Owen
                                                        male
                                                            22.0
                                                                                 A/5 21171
                                                                                            7.2500
                                               Harris
                                             Cumings,
                                            Mrs. John
                                              Bradley
           1
                       2
                                                      female 38.0
                                                                                 PC 17599 71.2833
                                             (Florence
                                               Briggs
                                                 Th...
                                            Heikkinen,
                                                                                 STON/O2.
           2
                                         3
                                                Miss.
                                                      female 26.0
                                                                                            7.9250
                                                                                  3101282
                                                Laina
                                              Futrelle,
                                                 Mrs.
                                             Jacques
           3
                        4
                                 1
                                                      female 35.0
                                                                              0
                                                                                   113803 53.1000
                                               Heath
                                             (Lily May
                                                Peel)
                                             Allen, Mr.
           4
                        5
                                 0
                                         3
                                              William
                                                        male 35.0
                                                                       0
                                                                              0
                                                                                   373450
                                                                                            8.0500
                                               Henry
In [54]:
           #Plot of those with family and those without
           sns.catplot(x='Alone',kind='count',data=titanic_df, hue='Survivor')
```

Out[54]: <seaborn.axisgrid.FacetGrid at 0x7fc7b24a2280>

Relationship between Survival and Passenger Class

```
In [40]:
    lim = sns.catplot(x='Pclass',kind='count',data=titanic_df,hue='Survivor')
    lim.set(ylim=(0,None))
```

Out[40]: <seaborn.axisgrid.FacetGrid at 0x7fc7b230e490>

A Further Breakdown of This Relationship According to Gender

```
In [42]:
    lim = sns.catplot(x='Pclass',kind='count', hue='person', data=titanic_df)
    lim.set(ylim=(-0.2,None))
```

Out[42]: <seaborn.axisgrid.FacetGrid at 0x7fc7d0a4a6d0>

Relationship between Survival and Age

```
In [43]:
sns.lmplot('Age','Survived', data=titanic_df)
```

/Users/annetteamoa/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decor ators.py:36: FutureWarning: Pass the following variables as keyword args: x , y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[43]: <seaborn.axisgrid.FacetGrid at 0x7fc7f125b7c0>

In []: