CSE 152 Section 7 **HW3: Epipolar Geometry**

November 16, 2018

Owen Jow

Epipolar Geometry

- P arbitrary 3D point
- p projection of P onto image 1
- p' projection of P onto image 2
- O₁ pinhole (center of projection) of camera 1
- O₂ pinhole (center of projection) of camera 2

Epipolar Geometry

- P arbitrary 3D point
- p projection of P onto image 1
- p' projection of P onto image 2
- O₁ pinhole (center of projection) of camera 1
- O₂ pinhole (center of projection) of camera 2
- e epipole 1 (projection of O₂ onto image 1)
- e' epipole 2 (projection of O₁ onto image 2)

gray plane orange line blue line

epipolar plane (defined by P, O₁, O₂) baseline (defined by O₁, O₂) epipolar line (intersection of epipolar plane with image)

Epipolar Geometry

Epipolar constraint:

the point **p'** which corresponds to **p** must lie on the epipolar line for image 2

an alternative interpretation of this epipolar line: the projection of the line O₁ - P onto image 2

$3D \rightarrow 2D$

Recall from the calibration lecture:

$$p = MP = K[R t]P$$

for K the 3x3 intrinsic (camera projection) matrix, [R t] the 3x4 extrinsic (camera pose) matrix

image source: Savarese

$3D \rightarrow 2D$

Let

i.e.

- world coordinates = camera 1 coordinates
- the transformation from camera 1 to camera 2 is R, t
- p' in camera 1 coordinates is R^T[(K')⁻¹p' t]

Fundamental Matrix

Then the fundamental matrix is

$$F = (K')^{-T} T_x R K^{-1}$$

where T_x is a skew-symmetric matrix corresponding to the translation vector \mathbf{t} : $\begin{bmatrix}
0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t & t & 0
\end{bmatrix}$

$$egin{bmatrix} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{bmatrix}$$

- 3x3, rank 2, seven degrees of freedom
- gives epipolar line in image 1 as F^Tp' (i.e. $\{\alpha F^Tp' : \alpha \text{ is a scalar}\}$)
- gives epipolar line in image 2 as **Fp** (i.e. $\{\alpha Fp : \alpha \text{ is a scalar}\}\)$
- $F^{T}e' = 0$. Fe = 0
- relates corresponding points \mathbf{p} , \mathbf{p}' according to $(\mathbf{p}')^T \mathbf{F} \mathbf{p} = \mathbf{0}$ (epipolar constraint)
 - note that **p** is in homogeneous image 1 coords, **p'** is in homogeneous image 2 coords

Eight-Point Algorithm

We can estimate the fundamental matrix using the eight-point algorithm.

Input: 8+ pairs of corresponding points $p_i = (u_i, v_i, 1), p_i' = (u_i', v_i', 1)$

Output: fundamental matrix F

each correspondence is 1 equation $(p_i)^T F p_i = 0$

$$egin{bmatrix} [u_iu'_i & v_iu'_i & u'_i & u_iv'_i & v_iv'_i & v'_i & u_i & v_i & 1 \end{bmatrix} egin{bmatrix} F_{12} \ F_{13} \ F_{21} \ F_{22} \ F_{23} \ F_{31} \ F_{32} \ F_{33} \end{bmatrix} = egin{bmatrix} F_{32} \ F_{33} \ F_{34} \ F_{35} \$$

Eight-Point Algorithm

We use 8+ equations to solve for the 8 independent entries in **F** (the ninth is a scaling factor).

$$\begin{bmatrix} u_1u'_1 & v_1u'_1 & u'_1 & u_1v'_1 & v_1v'_1 & v'_1 & u_1 & v_1 & 1 \\ u_2u'_2 & v_2u'_2 & u'_2 & u_2v'_2 & v_2v'_2 & v'_2 & u_2 & v_2 & 1 \\ u_3u'_3 & v_3u'_3 & u'_3 & u_3v'_3 & v_3v'_3 & v'_3 & u_3 & v_3 & 1 \\ u_4u'_4 & v_4u'_4 & u'_4 & u_4v'_4 & v_4v'_4 & v'_4 & u_4 & v_4 & 1 \\ u_5u'_5 & v_5u'_5 & u'_5 & u_5v'_5 & v_5v'_5 & v'_5 & u_5 & v_5 & 1 \\ u_6u'_6 & v_6u'_6 & u'_6 & u_6v'_6 & v_6v'_6 & v'_6 & u_6 & v_6 & 1 \\ u_7u'_7 & v_7u'_7 & u'_7 & u_7v'_7 & v_7v'_7 & v'_7 & u_7 & v_7 & 1 \\ u_8u'_8 & v_8u'_8 & u'_8 & u_8v'_8 & v_8v'_8 & v'_8 & u_8 & v_8 & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$$

$$W\mathbf{f} = 0$$

Eight-Point Algorithm

Approach: find a least-squares solution to this system of equations. Can use SVD for this! Might also want to normalize each p_i and p_i for better results (must de-normalize resulting F as well!).

- 1. Normalize points in each image according to **T** and **T**', use normalized points to construct **W**.
- 2. Compute the SVD of W, reshape right singular vector into initial estimate of F.
 - a. As reference, see sections 3 and 4 of this document.
- 3. Enforce rank = 2 by taking another SVD, this time of \mathbf{F} , and zeroing out the last singular value.

$$F = U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T$$

- De-normalize F.
 - a. Currently, $(T'p')^TF(Tp) = 0 \rightarrow (p')^T(T')^TFTp = 0$, so $(T')^TFT$ is the true fundamental matrix.

Recap:)

Question 1.1

Notes:

- no rotation, only translation
- can assume intrinsic matrices are the same

Suggestions:

- try to compute the essential matrix check: does this work?
 - o what is the rotation matrix?
 - o what is the translation vector?
- reason geometrically

Question 1.2

Notes:

• X

Suggestions:

• X

Question 2

1. Eight-point algorithm

Estimate the fundamental matrix given point correspondences.

2. Metric reconstruction

Estimate the camera matrices, triangulate and visualize the 3D points.

3. 3D correspondence

Estimate corresponding points given the fundamental matrix.

2.1. Eight-Point Algorithm

2.2. Metric Reconstruction

2.3. 3D Correspondence

Additional Readings

- CS 231A course notes
- How to use SVD to solve homogeneous linear least-squares