Exercice 1 [fonction de Green] On rappelle la formule de Stokes pour E champ de vecteurs $\in C^1(\Omega, \mathbb{R}^n) \cap C^0\overline{\Omega}$ avec Ω ouvert borné régulier, et n la normale extérieur au bord.

$$\int_{\Omega} \nabla \cdot E = \int_{\partial \Omega} E.n \tag{1}$$

En déduire que pour deux fonctions u, v régulières $(\in C^2(\Omega) \cap C^1(\bar{\Omega}))$ de $\Omega \to \mathbb{R}$ on a :

$$\int_{\Omega} u\Delta v - v\Delta u = \int_{\partial\Omega} u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n}.$$
 (2)

On définit la fonction suivante sur $\mathbb{R}^n \setminus \{0\}$

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \ln|x| & (n=2)\\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}} & (n \ge 3) \end{cases}.$$

Soit $f \in C_c^2(\mathbb{R}^n)$. On pose

$$u(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) dy.$$

- 1. Montrer que u est bien défini et que $u \in C^2(\mathbb{R}^n)$.
- 2. Montrer que $-\Delta u = f$ dans \mathbb{R}^n .
- 3. Donner une interprétation de ce résutat à l'aide de la distribution de Dirac.

On se place maintenant sur Ω . En utilisant la formule de Stokes, montrer que pour toute fonction u, harmonique, régulière sur Ω :

$$u(x) = \int_{\partial \Omega} u(y) \partial_n \Phi(x - y) + \int_{\partial \Omega} \Phi(x - y) \partial_n u(y).$$

on suppose qu'il existe $h: \Omega \times \Omega \to \mathbb{R}$ telle que pour x fixé :

$$\begin{cases} -\Delta_y h(x, y) = 0 & \forall y \in \Omega \\ h(x, y) = -\Phi(x - y) & \forall y \in \partial \Omega \end{cases}$$

En déduire qu'il existe une fonction $G: \Omega \times \Omega \to \mathbb{R}$ telle que

$$u(x) = \int_{\partial \Omega} u(y) \partial_n G(x, y).$$

G est le noyau de Green. Donner une formule pour la solution dans le cas régulier de l'EDP :

$$\begin{cases} \Delta u = f & \text{sur } \Omega \\ u = \varphi & \text{sur } \partial \Omega. \end{cases}$$

Exercice 2 Attention il est difficile.

Exercice 3 Soit $u: U \to \mathbb{R}$, harmonique. On veut montrer que pour toute boule $B(x_0, r) \subset U$ et tout multi-indice α d'ordre $|\alpha| = k$:

$$|D^{\alpha}u(x_0)| \le \frac{C_k}{r^{n+k}}||u||_{L^1(B(x_0,r))}.$$
(3)

Avec

$$C_0 = \frac{1}{\alpha(n)} \quad C_k = \frac{(2^{n+1}nk)^k}{\alpha(n)}.$$
 (4)

- 1. Montrer que l'inégalité est vraie à l'ordre 0. Démontrer l'inégalité pour k=1.
- 2. Montrer que si l'inégalité est vraie à l'ordre k-1 alors elle l'est à l'ordre k.

Exercice 4 [harmonique entraı̂ne analytique] En utilisant l'inégalité (3), montrer toute fonction harmonique $u: U \to \mathbb{R}$ est analytique. C'est à dire que pour tout $x_0 \in U$ il existe une boule ouverte $B(x_0, r) \subset U$ sur laquelle

$$u(x) = \sum_{\alpha} \frac{D^{\alpha} u(x_0)}{\alpha!} (x - x_0)^{\alpha}.$$

Exercice 5 [Théorème de Liouville] Montrer que si $u: \mathbb{R}^n \to \mathbb{R}$ est harmonique, bornée alors elle est constante.

Exercice 6 [Principe du maximun] Donner une preuve directe du fait que si $u \in C^2(U) \cap C(\bar{U})$ est sous-harmonique dans un ouvert borné U, alors

$$\max_{\bar{U}} u = \max_{\partial U} u.$$

Indication: Se ramener à une fonction strictement sur-harmonique.

Exercice 7 [Principe du maximum et positivité] Soit v une fonction lipschitzienne et de classe C^1 de \mathbb{R} dans \mathbb{R} . Soit $u_0 \in C_b(\mathbb{R}, \mathbb{R})$. On s'intéresse aux deux problèmes suivants :

$$\frac{\partial u}{\partial t}(x,t) + v \frac{\partial u}{\partial x}(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_{+}^{\star}, u(x,0) = u_0(x), \ x \in \mathbb{R}.$$
 (5)

$$\frac{\partial u}{\partial t}(x,t) + \frac{\partial vu}{\partial x}(x,t) = 0, \ x \in \mathbb{R}, \ t \in \mathbb{R}_{+}^{\star}, u(x,0) = u_{0}(x), \ x \in \mathbb{R}.$$

$$(6)$$

- 1. Soit $A, B \in \mathbb{R}$ t.q. $A \leq u_0(x) \leq B$ pour tout $x \in \mathbb{R}$. Soit u la solution (continue) de 5, montrer que $A \leq u(x,t) \leq B$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$. Montrer (en donnant un exemple) que cette propriété peut être fausse si u est solution de 6.
- 2. On suppose que $u_0(x) \geq 0$ pour tout $x \in \mathbb{R}$. Soit u la solution (continue) de 6, montrer que $u(x,t) \geq 0$ pour tout $x \in \mathbb{R}$ et $t \in \mathbb{R}_+$.

Exercice 8 [principe de comparaison.] Soit $U \subset \mathbb{R}^n$ un ouvert borné et $g \in C(\partial U)$. On considère le problème de Laplace :

$$\begin{cases}
-\Delta u = 0 & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(7)

On note u_g une solution de ce problème.

- 1. Soit $g_1, g_2 \in C(\partial U)$. On suppose $g_1 \geq g_2$ sur ∂U et $g_1 \neq g_2$. Montrer que $u_{g_1} > u_{g_2}$ sur U.
- 2. Soit $g_1, g_2 \in C(\partial U)$. Montrer que $\forall x \in U, |u_{g_1}(x) u_{g_2}(x)| \leq \max_{\partial U} |g_1 g_2|$.
- 3. En déduire l'unicité du problème de Laplace dans $C^2(U) \cap C(\bar{U})$.

On considère maintenant le problème non linéaire suivant avec f croissante lipscitzienne :

$$\begin{cases}
-\Delta u + f(u) = 0 & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(8)

Montrer que l'on a également un principe de comparaison pour des solutions régulières. En déduire l'unicité des solutions. Commencer par le cas linéaire $f(x) = c \cdot x$

Exercice 9 [Formulation variationnelle, Problème de Poisson et Principe de Dirichlet.] Soit U un ouvert borné. On considère le problème aux limites suivant :

$$\begin{cases}
-\Delta u = f & \text{dans } U \\
u = g & \text{sur } \partial U
\end{cases}$$
(9)

1. Montrer l'unicité de la solution. (Ici et dans les questions suivantes ∂U est C^1 .)

On veut montrer que la solution du problème de Poisson (9) peut être obtenue en minimisant une certaine fonctionnelle. Considérons donc la fonctionnelle d'energie

$$I[w] := \int_{U} \left(\frac{1}{2}|Dw|^{2} - wf\right) dx,$$

w appartenant à l'espace

$$A := \{ w \in C^2(\bar{U}) | w = g \text{ sur } \partial U \}.$$

2. Montrer que si $u \in C^2(\bar{U})$ est une solution de (9) alors

$$I[u] = \min_{w \in A} I[w]. \tag{10}$$

3. Inversement, montrer que si $u \in A$ satisfait (10), alors u est solution du problème de Poisson (9).

.

Exercice 10 [principe du maximum ...]

Soit $\Omega \subset \mathbb{R}^n$ un ouvert.

- 1. Soit $G \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ une fonction de dérivée bornée telle que G(0) = 0.
 - Montrer que, pour toute $u \in H^1(\Omega)$, $G \circ u \in L^2(\Omega)$.
 - Montrer que, pour toute $u \in H^1(\Omega)$, $G \circ u \in H^1(\Omega)$ et que, pour tout $j \leq n$:

$$\partial_j(G \circ u) = (G' \circ u)\partial_j u.$$

considérer une suite $(u_n)_{n\in\mathbb{N}}$ de fonctions de classe $\mathcal{C}^1(\mathbb{R}^n)$ telle que $u_n \to u$ dans $H^1(\Omega)$ et telle que $(u_n)_{n\in\mathbb{N}}$ converge simplement vers u, presque partout sur Ω .

2. On considère l'opérateur suivant :

$$L(u) = \sum_{1 \le i, j \le n} \partial_i (a_{ij} \partial_j u)$$

où les a_{ij} sont des fonctions de $L^{\infty}(\Omega)$, à valeurs dans \mathbb{R} , telles qu'il existe $\lambda > 0$ vérifiant :

$$\forall (x,\xi) \in \Omega \times \mathbb{R}^n, \qquad \lambda |\xi|^2 \le \sum_{1 \le i,j \le n} a_{ij}(x)\xi_i\xi_j.$$

Pour toute fonction $u \in H^1(\Omega)$, on dit que Lu = 0 au sens faible si :

$$\forall \phi \in H_0^1(\Omega), \qquad \sum_{1 \le i, j \le n} \int_{\Omega} a_{ij}(x) (\partial_j u(x)) (\partial_i \phi(x)) dx = 0.$$

On va démontrer le principe du maximum : si $u \in H^1(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$ est telle que Lu = 0 au sens faible et $u \leq 0$ sur $\partial\Omega$, alors $u \leq 0$ sur tout Ω .

- 3. Montrer qu'il existe $G \in \mathcal{C}^1(\mathbb{R})$ une fonction de dérivée bornée telle que G' > 0 sur $]0; +\infty[$ et G = 0 sur $]-\infty; 0]$.
 - En considérant $\langle Lu, G \circ u \rangle$, montrer que $\int_{\Omega} |\nabla u|^2 G'(u) \leq 0$.
 - Conclure.

[Remarque : l'hypothèse $u \in \mathcal{C}^0(\overline{\Omega})$ est superflue. La démonstration reste valable si on suppose seulement que u appartient à $H^1(\Omega)$ et que sa trace sur $\partial\Omega$ est négative.]

Exercice 11 [inégalité de Caccioppoli et régularité des fonctions harmoniques]

Soit Ω un ouvert de \mathbb{R}^n . Une fonction $u \in H^1(\Omega)$ à valeurs réelles est dite harmonique si

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = 0, \quad \forall \, \varphi \in H_0^1(\Omega).$$

1. Supposons que $u \in \mathcal{C}^{\infty}(\Omega)$ est harmonique et considérons deux boules concentriques $B(r) \subset\subset B(R) \subset\subset \Omega$ de rayons respectivement r>0 et R>0 (on a noté $\subset\subset$ la stricte inclusion). Montrer que pour tout $c\in\mathbb{R}$, on a :

$$\int_{B(r)} |\nabla u|^2 \, dx \le \frac{16}{(R-r)^2} \int_{B(R)\setminus B(r)} |u-c|^2 \, dx.$$

introduire $\eta \in \mathcal{C}_c^{\infty}(\Omega)$ telle que $0 \le \eta \le 1$, $\eta = 1$ sur B(r), $\eta = 0$ sur $\Omega/B(R)$ et $|\nabla \eta| \le 2/(R-r)$ et choisir $\varphi = (u-c)\eta^2$ comme fonction test.

2. Considérons une boule $B(R) \subset\subset \Omega$. Montrer que pour tout $k \in \mathbb{N}^*$, il existe une constante K(R, k) telle que pour toute $u \in \mathcal{C}^{\infty}(\Omega)$ vérifiant $\Delta u = 0$, on a :

$$||u||_{H^k(B(R/2))}^2 \le K(R,k) \int_{B(R)} u^2 dx.$$

3. Montrer que si $u \in H^1(\Omega)$ est harmonique, alors $u \in \mathcal{C}^{\infty}(\Omega)$. introduire une approximation de l'unité.

Exercice 12 [inégalité de Caccioppoli généralisée]

Soit Ω un ouvert de \mathbb{R}^n . Soit $A = (a_{ij}(x)) \in L^{\infty}(\Omega, \mathcal{M}_d(\mathbb{R}))$ une fonction à valeurs matricielles et $\alpha > 0$ tels que :

$$\forall x \in \Omega, \forall \xi \in \mathbb{R}^d, \qquad \alpha |\xi|^2 \le \sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j.$$

Soient $b \in L^{\infty}(\Omega, \mathbb{R}^d)$ et $c \in L^{\infty}(\Omega, \mathbb{R})$. On considère l'opérateur linéaire défini par :

$$Lu = -\operatorname{div}(A(x)\nabla u) + b(x) \cdot \nabla u + c(x)u$$
$$= -\sum_{i,j=1}^{d} \partial_{x_i}(a_{ij}(x)\partial_{x_j}u) + \sum_{i=1}^{d} b_i(x)\partial_{x_i}u + c(x)u.$$

Soient $f \in L^2(\Omega)$ et $u \in H^1(\Omega)$ telles que Lu = f au sens des distributions. Soit $\Omega' \subset \Omega$ un ouvert borné tel que $\overline{\Omega'} \subset \Omega$. Montrer que :

$$\int_{\Omega'} |\nabla u|^2 dx \le C \int_{\Omega} (u^2 + f^2) dx.$$

on pourra utiliser comme fonction test $\eta^2 u$ où $\eta \in \mathcal{C}_c^{\infty}(\Omega)$ et vaut 1 sur Ω' .