

Department of Information Systems College of Computer and Information Sciences King Saud University

IS493: Information Security

Summer Session: 2016 -2017 Section:

Student Name:

ID:

Assignment: 1

Deadline 4th December

TOTAL: 100

N.B: Submission after 4th December, it is considered as a **zero** mark. Softcopy will be sent to me and hard copy will be given to TA. (For your information: Prepare your submission with question and answer; if question is not available then mark will be deducted and it could be from 45% to 75 %. For your help you can download the doc file)

Question 1: (5 Marks)

Decrypt the following ciphertext using columnar transposition cipher with **keyword: YOURSELF**Ciphertext: YARUEDCAUOADGRYHOBBNDERPUSTKNTTTGLORWUNGEFUOLNDRDEYGOOAOJRUCKESPY

Answer:

Question 2: (5 Marks)

If exists, calculate multiplicative inverse of 7, 12, 22, 23, 66, 93, and 129 in Z_{164} . If does not exists explain why?

Answer:

Question 3: (5 Marks)

Additive cipher technique is used to produce the following ciphertext. Find the key by brute force cryptanalysis and deduce the plaintext.

Ciphertext: il pu aol jshzz dpaopu jlyahpu wlyjluahnl

Question 4: (5 Marks)

Using Affine cipher technique decrypt the following ciphertext: Where K_1 = 11 and K_2 = 14

Cipher Text: Y oq o epavgbp

Answer:

Question 5: (5 Marks)

If exists, find the determinant and the multiplicative inverse of the residue matrix M_1 and M_2 over \mathbf{Z}_{26}

$$M_1 = \begin{pmatrix} 21 & 6 & 22 \\ 5 & 23 & 25 \\ 7 & 3 & 9 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 23 & 6 & 3 \\ 25 & 21 & 22 \\ 9 & 5 & 7 \end{pmatrix}$$

Answer:

Question 6: (5 Marks)

If we want to use above matrices (M_1 and/ or M_2) of Question 5 as a key for constructing a Hill Cipher cryptosystem, then which one between M_1 and M_2 you recommend to use as a key, and why?

Using your recommended key decrypt the following ciphertext.

Ciphertext: TJFKBSXXW

Answer:

Question 7: (5 Marks)

- A. Show the result of 3-bit circular left shift on word (10011011)₂.
- B. Show the result of 3-bit circular right shift on the resulting from Part a.
- C. Compare the result of Part b with the original word in Part a.

Answer:

Question 8: (5 Marks)

Find the result of the following operations:

- A. $(01001101) \oplus (01001101)$
- B. $(01001101) \oplus (10110010)$
- C. $(01001101) \oplus (00000000)$
- **D.** $(01001101) \oplus (11111111)$

Answer:

Question 9: (5 Marks)

A message has 2003 characters. If it is supposed to be encrypted using a block cipher of 64 bits, find the size of the padding and the number of blocks.

Answer:

Question 10: (5 Marks)

Determine whether the P-box with the following permutation table is a straight P-box, a compression P-box, or an expansion P-box.

1 3 5 6 7

Answer:

Question 11: (10 Marks)

Using Feistel Block Cipher Encryption technique with two rounds, encrypt the following plaintext . Plaintext: be (01100010 01100101)

 $K_1 \colon 10101011$

 $K_2: 11001101$

F is defined as follows:

$$F(K, R) = K \oplus [4-bit left circular shift of R]$$

Answer:

Question 12: (5 Marks)

The Input/ Output relation in 2×2 a S-box is shown by the following table . Show the table for the inverse S-box.

Input: right bit
0 1

Input: left bit $\begin{array}{c|cccc} & 0 & 1 \\ \hline 0 & 01 & 11 \\ \hline 1 & 10 & 00 \\ \hline \end{array}$

Question 13:
Definitions of DES S-Boxes are as follows:

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
s_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	. 4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
\mathbf{s}_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
_	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	40						4.5	-		42						-
s_3	10 13	0 7	9	14 9	6	3 4	15 6	5 10	1 2	13 8	12 5	7 14	11 12	4 11	2 15	8
33	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
	_															
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
s_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
~6	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
\mathbf{s}_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1 6	4 11	11 13	13 8	12 1	3 4	7 10	14 7	10 9	15 5	6 0	8 15	0 14	5 2	9	2 12
	0	- 11	13			-	10	,				15	14			12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
s_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Answer the following questions about S-boxes in DES: (5 Marks)

- A. Show the result of passing 110111 through S-box 3
- B. Show the result of passing 001100 through S-box 4
- C. Show the result of passing 000000 through S-box 7
- D. Show the result of passing 111111 through S-box 2
- E. Draw the table to sow the result of passing 111111 through all 8 S-boxes. Do you see a pattern in the outputs?

Answer:

Question 14: (10 Marks)

Ahmed is using RSA crypto-system with the following setup:

- p = 11 and q = 3
- $n = pq = 11 \times 3 = 33$.
- $\Phi(n) = (p-1)(q-1) = 10 \times 2 = 20$.
- Ahmed publish his Public Key:

$$(n, e) = (33, 3).$$

- A. Calculate Ahmed's private key.
- B. Charlie wants to send the message M = 13 to Ahmed. Using Ahmed's public and private keys, calculate the ciphertext C, and the value for Message R, when Alice recovers the message.
- C. Dixit wants to set up his own public and private keys. He chooses p = 23 and q = 19 with e = 283. Find his private and public keys.

Answer:

Question 15: (5 Marks)

In a RSA cryptanalysis , assume n=209 and $\phi(n)=180$. Calculate p and q. **Answer:**

Question 16: (5 Marks)

In a RSA cryptanalysis, you intercept the ciphertext C = 10 sent to a user whose public key is (e = 7, n = 35). What is the plaintext M?

Question 17: (5 Marks)

How many primitive roots are available for 43? Find all of them.

Answer:

Question 18: (5 Marks)

In a Deffie-Hellman key exchange setup, for simplicity, consider the large prime P = 53 and the primitive root of P is a = 5. A sender generates his random secret $X_A = 12$ and the receiver generates his random secret $Y_B = 18$. Calculate the session key.