student BGCSE exam Past Paper Booklet Chemistry

More resources you might

like...

Free BJC & BGCSE English Study Tips

LEARN MORE

Free Homeschool Workshop

LEARN MORE

Free Math Q & A Review Book

LEARN MORE

Free Primary Social Studies Activity Book

More resources you might

like...

BJC General Science Answer Book (MCQ)

LEARN MORE

BJC Mathematics Answer Book

LEARN MORE

BJC Social Studies
Answer Book

LEARN MORE

BJC General Science Answer Book

More resources you might like...

BJC Health Science Answer Book

LEARN MORE

BGCSE Mathematics
Answer Book

LEARN MORE

BGCSE Combined Science
Answer Book

LEARN MORE

BGCSE Biology Answer Book

More resources you might like...

BJC & BGCSE On-Demand Pre-recorded Courses

LEARN MORE

Primary School Courses

3051/1 BGCSE

School Number	Candidate Number
Surname and Initials	
Surname and Initials	

CHEMISTRY

PAPER 1

Tuesday

22 May 2018

12:00 NOON-1:15 P.M.

Additional materials: None

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

For each question in this paper, four suggested answers A, B, C and D are given.

Circle the letter of the response which you consider to be correct.

Attempt ALL the questions. Marks will NOT be deducted for wrong answers. Your total score on this test will be the number of correct answers given.

Relative atomic masses are given in the Periodic Table of elements provided on page 2.

The volume of one mole of gas at room temperature and pressure (r.t.p.) is 24 000 cm³ and at standard temperature and pressure (s.t.p.) is 22 400 cm³.

For Examiner's	s Use
TOTAL MARKS	

		0	He Hetum	S Se Se	Ar Arpon	84 Kr Kr ³⁶ Kvypton	Xe Xeron	Rn Redor	
		Vil		19 Flucione	35.5 CI CHloring 17	80 Br Browne	127 I Iodine 53	At Asseine 85	
		Ν		omoen 8	8 0 m	79 Se seenium	128 Te Tefunum 52	Po Potonium 84	
		۸		14 N	31 P Phosphores 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83	
		2		2 O §	28 S4con	73 Ge Germanium 32	119 Sn Tin	207 P.b. Lead	
		=		- c	27 AI Aluminium 13	70 Ga Geffum	115 In Indum 49	204 T.I Thalfum 81	
ts						65 Zn 30 ^{Znc}	Cd Cadmium 48	201 Hg Mercury	
Elemen						64 Cu ^{Copper}	108 Ag Sher	197 Au 604	
The Periodic Table of the Elements	Group				:	59 Nj ^{Nectod}	106 Pd Pattadium 46	195 Putrium 78	
dic Tab	Ď			1		59 Co cobek	103 Rh Anodum 45	192 Ir Indom 77	
he Perio			t H Mydrogen 1			56 Fe ton	101 Ru Ruthenium 44	190 Osmorm 76	
F						SS Min Manganesa 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chomism 24	96 Mo Mohbdenum 42	184 W Tungsten 74	
į						S1 V Vanadium 23	93 Nb Noblum	181 Ta Tamakum 73	
						48 Ti Themum	91 Zrconium 40	178 Hf Hathnum	
-		i				Sc Scandium 21	89 Y Yerwm	139 La Lanthanum 57	ACT ACT ACTIVIUM B9 t
		II		Be Beryfun	24 Mg Magnesium 12	Calcium Calcium 20	Strenhum		226 Ra Radum 88
		_		Li Li	Na Sodeom	39 K Potrssium 19	BS Rubidium 37	CS Cossum	Fr Francium 87

Ly Comendam 1

Mendelevium

Fm. 700

Ensteinium 99

Callornium

Bertellum Bertellum

C S S

Am Americium 95

Ptr Putonium 94

Np Neptunium 93

8

8

b = proton (atomic) number

Key

Protectioners 91

1 2 2 E

a = relative atomic mass X = atomic symbol

გ ⊃

175 Lu Lutelium

Yb Yherbwm

169 Traffern Traffern

167 円 (184

165 Holmisum

و م

159 **7.b**

157 Gd Gdomiym

152 Europium

Sm Smartum

Pm

Neodymium

Pr Praseodym 59

Ce Ce

*58-71 Lanthanoid series †90-103 Actinoid series

- 1. Which term describes the composition of matter?
 - A made up of compounds only
 - B made up of elements only
 - C made up of mixtures of elements and compounds only
 - D made up of tiny particles
- 2. Which row in the table describes the properties of a liquid?

	shape	volume
A	fixed	changeable
В	fixed	decreased volume
С	takes shape of container	increased volume
D	takes shape of container	fixed

3. The chart shows a solid substance changing directly into a gas.

solid substance	process A	gas
-----------------	-----------	-----

Which row in the table is the most suitable answer?

	process A	substance
Α	evaporation	ice crystals
В	sublimation	iodine crystals
С	evaporation	iodine crystals
D	sublimation	ice crystals

4. Which pair represents Boyle's Law?

	soluble in water	insoluble in water
A	potassium chloride	barium sulfate
В	silver nitrate	calcium carbonate
С	silver chloride	lead (II) sulfate
D	sodium carbonate	lead (II) chloride

)1))

- 5. Which colour is universal indicator most lightly to turn when placed in a solution of calcium hydroxide?
 - Α blue
 - В green
 - C red
 - D yellow
- 6. Which method is best suited to separate a mixture of oil and vinegar?
 - chromatography Α
 - В decantation
 - C distillation
 - D filtration
- 7. Which type of structure would contain positive ions in a sea of delocalised electrons?
 - Α aqueous solutions of ionic compounds
 - В covalent compounds
 - C ionic solids
 - D metals
- 8. Which method is best suited to test the purity of a sample of water?
 - Α litmus paper
 - melting and boiling point В
 - C pH meter
 - hydrogen carbonate D

The diagrams represent the atomic structures of four different atoms.

Questions 9-12 are based on the atomic diagrams.

X

y

n neutron

9.	Which atomic structure represents a metalloid?		
	A B C D	w x y z	
10.	Which	atomic structure represents an element that exists in nature as a diatomic gas?	
	Α	W	
	В	x	
	C	y	
	D	z	
11.	Which	type of bonding will take place between atomic structures w and y?	
	Α	covalent	
	В	hydrogen	
	C	ionic	
	D	metallic	
12.	In whic	ch period do these atomic structures belong?	
	Α	1	
	В	2	
	C	3	
	D	4	
13.	Atoms	are made up of subatomic particles.	
	Which	row in the table has the correct information?	

	particle	charge	mass relative to a proton
A	electron	-1	1 1840
В	neutron	+1	1
С	proton	0	1
D	nucleus	+2	3

14.	What is	s the electron configuration for a sulfur ion (S^{2-}) ?
	Α	2, 6
	В	2, 8, 6
	C	2, 8, 7
	D	2, 8, 8
		-, -, -
15.	Which	pair of ions contributes to the hardness of water?
	A	Na ⁺ and K ⁺
	В	Na ⁺ and Ca ²⁺
	C	Ca^{2+} and Mg^{2+}
	D	Na ⁺ and Mg ²⁺
16.	Which	element is used, in large amounts, by water companies to purify water?
	A	chlorine
	В	fluorine
	C	nitrogen
	D	oxygen (O ₂)
17.	Where	would you find the smallest atoms of elements in the periodic table?
	A	top and left-hand side
	В	top and right-hand side
	C	bottom and left-hand side
	D	bottom and right-hand side
18.	Which	ion produces a lilac or purple flame in a flame test?
	Α	Ca^{2+}
	В	K ⁺
	C	Mg^{2+}
	D	Na ⁺
19.	Which	group contains a liquid non-metal?
	Α	Group I
	В	Group II
	C	Group VII
	D	Group 0

20.	Which e	element has the same relative atomic mass as argon?
	A	calcium
	В	fluorine
	C	potassium
	D	zirconium
21.	Which e	element is a metal and used in the manufacture of an aircraft body?
	A	aluminium
	В	arsenic
	C	germanium
	D	silicon
22.	What is	the product when the acid anhydride, HCl, is placed in water?
	Α	HCl(aq)
	В	HC <i>l</i> (1)
	c	HCl(g)
	D	HCl(s)
23.	What is	the basicity of acetic acid, CH ₃ COOH?
	Α	1
	В	2
	C	3
	D	4
24.	What is	the pH range of sulfuric acid?
	A	0–2
	A B	4–6
	C	8–11
	D	12–14
	Б	
25.	Which t	two reactants produce magnesium sulfate and water?
	A	magnesium metal and sulfuric acid
	В	magnesium hydroxide and sulfuric acid
	C	magnesium metal and hydrochloric acid
	D	magnesium hydroxide and hydrochloric acid

26.	Whic	h reagent, when added to a chloride, produces a white precipitate that turns grey in sunlight?
	Α	ammonium hydroxide
	В	barium chloride

- 27. Which of the following has a characteristic which makes it suitable for use in a fire extinguisher?
 - A carbon dioxide

silver nitrate

sodium hydroxide

- B hydrogen
- C oxygen

C

D

- D water vapour
- 28. Which of the following uses electrolysis?
 - I to separate the elements in compounds like water and salt
 - II to extract metals from their ores
 - III to coat a steel ring with a thin layer of silver
 - A II only
 - B I and II only
 - C I and III only
 - D I, II and III

- A chloride ions becoming chlorine atoms
- B iron (II) ions becoming iron (III) ions
- C sodium atoms becoming sodium ions
- D sulfur atoms becoming sulfide ions

The diagram shows an electrolysis cell.

Use the diagram to answer questions 30–31.

Where would

- 30. oxygen gas be produced if the hydroxide ion is discharged; A B C D
- 31. a spoon be placed for electroplating? A B C D
- 32. Which factor only affects the rate of a reaction with gases?
 - A catalyst
 - B pressure
 - C surface area
 - D temperature
- 33. Which factor affects the rate by reducing the activation energy?
 - A catalyst
 - B concentration
 - C surface area
 - D temperature

9122 FT-----

34.	Which n	netal reacts most vigorously with water?
	A	aluminium
	В	caesium
	C	magnesium
	D	tin
35.	Which e	element is the most reactive?
	Α	chlorine
	В	fluorine
	C	helium
	D	oxygen
36.	The liste	ed pollutants are sometimes found in car exhaust fumes.
	1	carbon monoxide
	2	nitrogen oxides
	3	sulphur dioxide
	Which o	of these pollutants are products of the combustion of the fuel?
	A	1 and 2 only
	В	1 and 3 only
	C	2 and 3 only
	D	1, 2 and 3
37.	Which r	aw materials are used in the manufacture of iron?
	Α	bauxite and lime
	В	bauxite and limestone
	C	hematite and lime
	D	hematite and limestone
38.	Which p	oure form of carbon conducts electricity?
	Α	coal
	В	diamond
	C	graphite
	D	soot

39.	Which	substance is not an alloy?
	A B C D	brass bronze lanthanum steel
40.	Which	substance is aluminium commercially extracted from?
	A B C D	bauxite haematite magnetite siderite
41.	What is	the mass of one mole of lithium hydroxide (LiOH)?
	A B C D	24 g 25 g 31 g 47 g
42.	What is	the volume occupied by 6.02×10^{23} molecules of carbon dioxide (CO ₂) at room temperature ssure?
	A B C D	22.4 dm ³ 44 dm ³ 88 dm ³ 24 000 dm ³
43.	What h	appens to an atom when a covalent bond is formed?
	A B C D	lose electrons lose protons share inner-shell electrons share valence electrons

588122 [Turn over

- 44. How many moles are in 0.85 g of ammonia (NH₃)?
 - A 2.0 moles
 - B 0.2 moles
 - C 0.05 moles
 - D 0.005 moles
- 45. Which process is an exothermic process?
 - A evaporation of rubbing alcohol from skin
 - B liquid wax changing to solid wax
 - C photosynthesis in a green leaf
 - D sublimation of dry ice
- 46. The reaction for the extraction of iron is given in the equation.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

Which row in the table describes the reaction?

	Fe ₂ O ₃	со	reducing agent	oxidising agent
Α	iron is reduced	carbon is oxidised	iron	carbon monoxide
В	iron is oxidised	carbon is reduced	iron	iron (III) oxide
С	iron is reduced	carbon is oxidised	carbon monoxide	iron (III) oxide
D	iron is oxidised	carbon is reduced	carbon monoxide	carbon monoxide

47. The equation shows a reaction.

$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$$

Which type of reaction is represented by this equation?

- A addition
- B substitution
- C polymerization
- D hydrogenation

48.	Which	formula	represents	an al	lkane?
-----	-------	---------	------------	-------	--------

- A
- $\begin{array}{c} \mathrm{C_3H_6} \\ \mathrm{CH_3OH} \end{array}$ В
- $C_{6}H_{14}$ $C_{8}H_{14}$ \mathbf{C}
- D

49. Which compound has the highest boiling point?

- Α butane
- В hexane
- \mathbf{C} octane
- D propane

50. Which waste material is non-biodegradable?

- Α broken wooden chair
- В chicken bones from dinner
- \mathbf{C} fallen trees and leaves from a hurricane
- used plastic water bottles D

BLANK PAGE

CHEMISTRY

PAPER 2

Tuesday

22 MAY 2018

1:30 P.M.-3:00 P.M.

Additional materials:

None

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

Read each question carefully and make sure you know what you have been asked to do before starting your answer.

The instruction **NAME** . . . requires an answer in words **NOT** chemical symbols.

Show ALL your working when answering numerical questions. Lines are provided on the question paper for your answers. You should write your answers on these lines only.

A copy of the Periodic Table is provided on page 2.

The mark for each part question is given in brackets [].

FOR EXAM	
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

This question paper consists of 18 printed pages and 2 blank pages.

588123 © MOE 2018

Turn over

Lr Lawrencium 103

Nobelium 102

Mendelevium 101

Fm. Fermen

Es Ensteinium 99

Callerium 98

BK Bertelium 197

> CH See

Am Americium

Pu Punahèm 94

Neptunium 93

238 □ C 238

> Pa Protectiviem 1

Th There

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

• ×

Key

						F	The Perio	Periodic Table of the Elements	e of the	Element	<u>s</u>							
								Group	dn									
1	11											==	۸۱	۸	١٨	IIA	0	
:							1 H Hydrogen										4 Hetum 2	
'n	Be J											: 8	င္ ၁	N	O 91	e н	Ne 30	
3 (5)	Serymum 4										•	2 2000	9	Natrogen 7	Unygen 8	9 Huorine	10 Neon	
23	24											22	8 ;	<u> </u>	8 0	35.5	9.	
Na Sodium	Magnesium 12	E										Al Aluminium 13	S4con 14	Prosphorus		Chlorine 17	Argen 18	
88	07		848	15	25	22	20	65	8	Z	53	7.0	73	7.5	62	80	æ	
	చ	Sc				٣	Fe	ပိ	Z	ತ	Zu	ga	ge	As		ğ	꿏	
Potessum 19	Catcum 20	n Scandium 21	filanium 22	Vanadium 23	Chromium 24	Menganese 25	tron 26	Cobelt 27	Nickel 28	Copper 29	30 Zmc	Gellium 31	Germanium 32	Arsenic 33	Setenium 34	Bromine 35	Krypton 36	
88	98		6	8	88		<u>6</u>	5	901	108	112	315	119	122	128	127	131	
	Şr	>	Ż	g			쿭		Pd	Ag	3	드		Sp	<u>T</u>	-	Xe	
Rubidium 37	Strontium 38	Yterium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Phodium 45	Palladium 46		Cedmium 48	Indiam 49	т. п 50	Antimony 51	Tellurium 52	lodina 53	Xenon 54	
133	137	139	178	181	184	186	06t	192	2 6	197	501	204	207	503				
క	Ba		Ξ				ő	<u>-</u>	£	Αu	ΕĦ	F	P	<u></u>		Ą	뜐	
Caessum 55	Barium 56	Lanthanum 57 *	Hafhium 72	Tantatum 73	Tungsten 74	Rhenium 75	0smum 76	Frideum 77	Platinum 78	79 Gold	Mercury 80	Thalkum 81	Lead 82	Bismuth 83	Palonum B4	Astaine 85	Radon 86	
L.	928																	
Francium 87	Radium Badium	AC Actinium B9 +																
* 50 71 1	440	oid opio	٦	140	141			150	152	157	159	162	165	167	169	17.1	175	
58-7 I Lantifation series	dianian Actinoi	38-71 Lanuianolu senes +90-103 Actinoid series		సి	Ą.	PZ					2		H9	ᆈ	Tn		רם	
3	2	2		Cerium 58	Preseodymium 59	Neodymium 60	Promethium 61	Samarkum 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68		Ytterburn 70	Lutebum 71	
	•	a = relative atomic mass	mic mass						•							1		

1.	This o	nis question is about the Periodic Table.					
	(a)	Use th	ne Group name to identify				
		(i)	the group with the most reactive metal;	. 113			
		(ii)	the group that contains coloured non-metals;	[1] [1]			
		(iii)	the least reactive group.				
	(b)	(i)	State the number of neutrons found in the element polonium.				
		(ii)	Name an element that can replace diamond in jewels.				
		(iii)	State the valency of the element zinc.				
		(iv)	Name the element whose ion turns brick red in a flame.	[1]			
				[1]			

	(i)	(c)
[2]		
for ammonia, NH ₃ .	(ii)	
[1]		

2. The diagram shows the lattice structure of calcium chloride.

(a)	(i)	Describe the movement and spacing of the particles that make up this latt	ice.
			[2]
	(ii)	Calcium chloride is used to melt ice.	
		Explain the effect calcium chloride has on the melting point of ice and prothe new melting point.	edict
			[2]
(b)	(i)	Write the electronic configuration for calcium and chlorine.	
		calcium	<u></u>
		chlorine	[2]
	(ii)	State the type of bonding in calcium chloride.	
			[1]

Draw the Lewis dot bonding diagram for calcium chloride; use only outer electrons.
Explain why calcium chloride conducts electricity when it is molten or
dissolved in water.

3.	Acids	and alka	lis can be prepared by dissolving their oxid	les in water.	
	The li	ist shows	five oxides.		
		potass sodiur sulfur sulfur	gen dioxide ium oxide n oxide dioxide trioxide		
			naybe used once, more than once or not		
	(a)	Two o	Name the two oxides and the acids they		
			oxide	acid	
					[2]
		Two o	oxides on the list will form a soluble base.		
		(ii)	Name the two oxides and the bases they	form.	
			oxide	base	
					[2]
		(iii)	State the chemical classification of solu	ble bases.	
		(iv)	Using an acid from (a)(i) and one so equation for their reaction.	oluble base from (a)(ii), write a w	[1] ord
					[2]

588123 [Turn over

(b)	(i)	State the colour of damp blue litmus when placed in hydrogen chloride gas.
	(ii)	Name the alkaline gas that reacts with hydrogen chloride to produce a thick white smoke.
	(iii)	Give the chemical name of this thick white smoke.
	()	[1]
		TOTAL MARKS [10]

4. The diagram shows a blast furnace.

- (a) Write the names of the material leaving the blast furnace at X and Y in the blank spaces on the diagram. [2]
 - (ii) Iron is extracted from its ore by heating the ore with carbon in the blast furnace.

Name the ore of iron used in the blast furnace.

_____[1]

(iii) Name the chemical compound, which may be found in Bahamian rock that is used in the blast furnace.

_____[1]

(b) The equation for the reduction process is shown.

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO$

(i) Calculate how many moles of iron will be produced from 2 moles of iron (III) oxide.

_____g [1]

Calculate the mass of the iron produced from your answer in (b)(i).

(ii)

	g [1]
	als like gold and silver were extracted and used since ancient times; however metals sodium, calcium and aluminium were extracted only recently.
(i)	State what this indicates about the reactivity of metals extracted in ancient times and metals extracted in recent times.
	[1]
(ii)	Suggest why metals like sodium, calcium and aluminium were extracted fairly recently.
	[1]
Iron	and aluminum are industrially important metals.
(i)	State a property of iron that makes it useful in construction.
	[1]
(ii)	State a property of aluminium that makes it useful in the manufacturing of aircrafts.
	[1]

Hydrogen is the most abundant element in the universe. Free hydrogen is very rare on Earth,

The e	quation s	hown represents the reaction.	
(a)	(i)	Balance the equation.	
		$\underline{\qquad} H_2O \rightarrow \underline{\qquad} H_2 + \underline{\qquad} O_2 \qquad \Delta H = +286 \text{ kJ/mc}$	ol [1]
	(ii)	State whether the reaction shown is endothermic or exothermic. Explain answer.	your
			_ [1]
	(iii)	Describe the test to identify hydrogen gas and give its positive result.	
		test	
		resultt	_ [2]
(b)	Hydro	ogen can be prepared in the laboratory.	
	The re	eaction is shown in the equation.	
		$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$	
	Calcu	late the number of moles in 6000 cm ³ of hydrogen produced at r.t.p.	
			_ [1]
(c)	Large	quantities of hydrogen are used in manufacturing of ammonia.	
	Name	the process of manufacturing ammonia.	

5.

_____[1]

(d) The diagram shows an experiment in which hydrogen gas is passed over heated black copper (II) oxide until all of the copper (II) oxide changes to copper.

The equation represents the reaction in the experiment.

$$CuO + H_2 \rightarrow Cu + H_2O$$

- (i) From the equation, state what is happening to the movement of electrons in the copper atom in CuO.
- (ii) Briefly explain why the unreacted hydrogen is burnt off.
 - ______[1]
- (e) Calculate the two missing values from the results of the experiment.

mass of empty apparatus	= 24.25 g	
mass of apparatus + copper (II) oxide before heating	= 44.25 g	
mass of apparatus + copper after heating	= 40.25 g	
mass of copper (II) oxide before heating	= 20.00 g	
mass of copper after heating	= g	
mass of oxygen removed	= g	[2]

TOTAL MARKS [10]

_ [1]

6. Electroplating is a commonly used technique to change surface properties of metals and plastics. This technique improves the properties of the original metal.

((a)	On	the	diagram:

(u)	On the	diagram.	
	(i)	draw the electrodes needed to electroplate a spoon with silver metal.	[1]
	(ii)	label the electrodes drawn on the diagram.	[1]
(b)	(i)	Name the electrolyte.	
			[1]
	(ii)	Write the symbols of the ions in the electrolyte.	
			[2]
(c)	(i)	Name the electrode at which the metal forms an ion.	
			[1]
	(ii)	Name the electrode at which reduction occurs.	
			[1]
(d)	Name a	an industry where electroplating with chromium would be useful.	

_ [1]

(e)	Explain why a plastic trophy is coated with graphite before it is electroplated with						

		[2]					
	TOTAL N	// // // // // // // // // // // // //					

7.	This que	estion inv	volves organic compounds.	
		ethane -	- C ₂ H ₆ methane - CH ₄ propane - C ₃ H ₈	
	(a)	(i)	List one source of methane.	117
		(ii)	State one commercial use of propane.	[1]
	(b)	(i)	Write the name and general formula of the homologous series the above organ compounds belong to.	[1] nic
			homologous series	
			general formula	[2]
		(ii)	Write the chemical formula for the fourth member of this organic series.	
		(iii)	Draw the structural formula for (b) (ii).	[1]
	(c)	(i)	Complete the word equation.	[2]
	(0)	(1)	methane gas + bromine gas → + hydrogen bromide	ſ11
		(ii)	State what happens to the colour of bromine water when methane is reacted w the bromine water.	

[1]

(d) A bottle of wine left open becomes sour after a while. This equation represents the reaction.

$$C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$$

Name the type of reaction that is shown in this equation.

_____ [1]

TOTAL MARKS [10]

8. Many vehicles use petrol or gasoline as fuel for their engines.

(a)	(i)	Name the harmful metal that is no longer added to gasoline.
	(ii)	State the effect this metal has on developing infants.
	(iii)	Name an alternative fuel other than unleaded petrol and diesel that is used in modern cars.
(b)	(i)	Complete the word equation for the complete combustion of an alkane.
	(ii)	alkane + oxygen → + [2] When gasoline is combusted in insufficient oxygen, a poisonous gas is produced.
		Name this poisonous gas[1]
	(iii)	State the effect of this poisonous gas on humans.

BLANK PAGE

CHEMISTRY

PAPER 3

Monday

4 JUNE 2018

12:00 NOON-1:30 P.M.

Additional materials: Graph paper

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials at the top of this page as well as at the top of all lined paper submitted.

Answer ALL the questions in Section A in the spaces provided on this question booklet and any TWO questions from Section B on the lined pages provided at the back of this question booklet.

Equations and diagrams should be given wherever they are helpful.

Essential working must be shown.

The intended marks for each question or part question are given in brackets [].

Relative atomic masses are given in the Periodic Table printed on page 2.

ADDITIONAL INFORMATION

s.t.p.
$$(t = 0 \,{}^{\circ}\text{C}, p = 1 \, \text{atm.})$$

The volume of one mole of gas at room temperature and pressure (r.t.p.) is 24 000 cm³.

For E	Examiner's Use
	Section A
1	
2	
3	
4	
	Section B
5	
6	
7	
TOTAL	

This question paper consists of 13 printed pages, 4 lined pages and 3 blank pages.

		0	He H	Z	22	Ne Ne	Neon 10	04	Ā	Argon 18	28	ż	Krypton 36	131	×e	Xenon 54		띺	Radon 85				175	3	Lutetium 71		ב	Lawrencium 103
		NII			19	ц.	Phorine 9	35.5	ಽ	Chlorine 17	08	Ä	Bromine 35	127	_	lodine 53		Ąŧ	Asiatine 85				173		Ytterbium 70	í	ŝ	
		iΛ			91	0	Onygen 8	32		Sulphur 16	62		Selenium 34	i	Te	Tellurum 52		S.	- 1				169		Thulium 69		PΨ	Mendetevium 101
		Λ			4	z	Nitrogen 7	16	Δ.	Phosphorus 15	75	As	Arsenic 33	122		Antimony 51	503	ã	Bismuth 83				191	й	Erbium 68		Fm	Fermium 100
į		ΛΙ			12	ပ		28	S.	Salcon 14	ez	Ge	Germanium 32	119		Tin 50	202	<u>ح</u>	Lead 82				165	운	Holmium 67		Es	Einsteinium 99
		111			11	ω	Boron 5	72	₹	Atuminium 13	. 02	Са	Gallium 31	115	Ι'n	Indium 49	204	F	Thatium 81				162		Dysprosium 66		ರ	Californum 98
ts											28	Z	Zinc 30	112	3	Cadmium 48	201	ΕĒ	Mercury 80				159	£	Terbium 65		滋	Berkelium 97
Elemen											99	రె	Capper 29	108	Ag		197	Αn	79 Gold				157		Gadolinium 64	1	E S	
The Periodic Table of the Elements	Group										S	Ž	Nickel 28	106	Pd	Palladium 46	195	<u>ح</u>	Putenum 78				152	n D	Europium 63		Am	Americium 95
dic Tabl	Gr										29	ပိ	Cobelt 27	103		Rhodium 45	192	=	ridium 77			:		Sm	Samarlum 62			٤ ١
he Perio			H, Hydrogen	-							9 <u>2</u>	æ	kon 26	101	곮	Ruthenium 44	061	ő	Osmium 76					ڇ	Promethium 61		ď	Neptunium 93
1											55	M	Manganese 25		J.	Technetium 43	186		Rhenium 75					ž	Neodymium 80	238	>	Uranium 92
											25	ప	Chromium 24	96	Š	Molybdenum 42	184	≥	Tungsten 74				143	ď	Praseodymium 59		Pa	Protactinium 91
											51	>	Vanadium 23	ន	g	Niobium 41	181		Tantalum 73				140	<u>ల</u> —	Cerium 58	232	f	Thorism 90
:											84	F	Titanium 22	16	Zr	Zirconium 40	178		Hafnium * 72			········	1			nic mass	loqu	nic) number
								····			45	Sc	Scandium 21	8	>	Yttrium 39	139	r.	Landranum 57	722	Ac	Actinium B9 1	1 carias	Socies Springs	2	a ≈ relative atomic mass	X = atomic symbol	b = proton (atomic) number
		H			6.	Be	Beryffum 4	24	Mg	Magnesium 12	40	င်	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ra	Radium BB	*E8_71 anthanoid series	20-7 1 Landinanda Sene +00-103 Actionid series		f0.	×	Δ
		-			7	=	J. Cthium	23	Sa	Sodium 11	జ	¥	Potassium 19	85	윤	Rubidium 37	55.	ပ် 	Caesium 55		止	Francium 87	* 59 71	+00-103	20		Key	

BLANK PAGE

SECTION A

Answer all questions.

1 Allotropes and isotopes are important terms in Chemistry.

Allotropes are different forms of the same element in the same state.

(a) (i) Name the two allotropes sho	own.
--	------

X _____

Y ______ [2]

(ii) State **one** property and **one** use of the **two** allotropes shown.

allotrope	property	use
X	_	
Y		

[4]

- (b) The element carbon has two naturally occurring isotopes, C 12 (98.93%) and C 13 (1.07%).
 - (i) State whether you expect the relative atomic mass of naturally occurring carbon to be closer to 12 or 13. Explain why.

_____[1]

(ii) Calculate the relative atomic mass of naturally occurring carbon. Give your answer to four significant figures. [3]

TOTAL MARKS [10]

(a)	(i)	Explain how fractional distillation is used to separate the components in crude oil.
		[2]
	(ii)	State one way in which the molecular structure of the components in crude oil are similar and one way in which they are different.
		Similarity
		Difference
		[2]
(b)	Halogo halide	ens combine with alkanes and alkenes to form compounds referred to as alkyls.
	(i)	Write a symbolic equation to show: the first step in a substitution reaction between ethane and bromine.
		the addition reaction between ethene and bromine.
		[2]
	(ii)	State how these reactions can be used to distinguish between alkanes and alkenes
		test results for alkanes
		test results for alkenes
		[1

[Turn over

2.

(c)	Cracking is the breaking of long chain and less useful hydrocarbons to produce short
	chain and more useful hydrocarbons at high temperatures using a catalyst.

(i) Name the catalyst used in the process of cracking.

_____[1]

(ii) One of the substances produced during cracking is ethene, C_2H_4 . Use the equation to calculate the volume of ethene gas, produced at room temperature and pressure from 160 grams of nonane, C_9H_{20} .

$$C_9H_{20} \rightarrow C_2H_4 + C_3H_6 + C_4H_{10}$$

[2]

TOTAL MARKS [10]

two specially designed measuring apparatus that should be used for titration		(a)
	experir	
1		
2[2]		
sal indicator is used in the experiment.	Univer	(b)
ne colour of universal indicator at the endpoint of the titration.	State th	
[1]		
Write a balanced equation showing the reaction between calcium hydroxide and hydrochloric acid.	(i)	(c)
[2]		
Calculate to convert g/dm³ into mol/dm³ and then determine the number of moles of calcium hydroxide used in the experiment.	(ii)	
[2]		
Calculate the number of moles of hydrochloric acid that is needed to react with the calcium hydroxide used in the experiment.	(iii)	
[1]		
Based on your answer in (c)(iii) calculate the concentration of the hydrochloric acid.	(iv)	
[1]		
Name the compound made when carbon dioxide gas, CO^2 is bubbled into calcium hydroxide solution, $Ca(OH)^2$.	(d)	

[Turn over

(a)		er can be used to make electrical wires, hot water pipes and cooking pots. It able and can be easily bent and shaped into a cooking pot, when a force is applie							
	(i)	Explain in terms of particle movement, why copper metal can be used t pots.	o mak						
			[2						
	(ii)	Give one other reason why copper is used to make cooking pots.							
			[1						
(b)	In an	environmentally conscious world, hydrogen could replace fossil fuels as the	energ						
		e for heating, transportation and industrial processes. When hydrogen is burnesse energy, the main by-product is water. Cars that run on hydrogen are now	nt in a						
	to rele	e for heating, transportation and industrial processes. When hydrogen is burn	nt in a						
	to rele built.	e for heating, transportation and industrial processes. When hydrogen is burnease energy, the main by-product is water. Cars that run on hydrogen are not	nt in a						
	to rele built.	e for heating, transportation and industrial processes. When hydrogen is burnease energy, the main by-product is water. Cars that run on hydrogen are not	nt in a w bein						
	to rele built. (i)	e for heating, transportation and industrial processes. When hydrogen is burnease energy, the main by-product is water. Cars that run on hydrogen are now. Write a balanced equation for the reaction between hydrogen and air. Give one reason why using hydrogen as a fuel is better in an environn	nt in a w bein						

4.

		[1]
(ii)	Draw the Lewis Dot structure for hydrobromic acid, HBr(aq).	

Draw the Lewis Dot structure for hydrogen bromide gas, HBr(g).

[1]

TOTAL MARKS [10]

(c)

(i)

SECTION B

Answer any two questions.

- 5. This question is based on the manufacture of ammonia and sulfuric acid.
 - (a) An investor wants to build an ammonia plant in one of the Family Islands.
 - (i) State **one** environmental factor and **one** economic factor to be considered when determining the location of the ammonia plant. [2]
 - (ii) Write a balanced chemical equation for the manufacture of ammonia by the Haber process. [2]
 - (b) The table shows the percentage yield of ammonia at different temperatures and pressures.

temperature / °C	100	200	300	400	500					
pressure / atm	p	percentage yield of ammonia								
100	79	50	25	13	6					
300	87	66	40	21	12					
400	91	78	55	32	20					

Use information from the table and Le Chatelier's Principle to explain why the percentage yield of ammonia

(i) increases with different pressures;

[2]

[2]

(ii) decreases with different temperatures.

A chemical engineer discovered that the best conditions for the manufacture of ammonia

are 450 °C and 200 atm.

- (iii) Suggest a reason why the engineer will **not** increase the pressure to achieve a higher yield of ammonia. [2]
- (c) Sulfuric acid is made by the Contact process.
 - (i) Write a balanced chemical equation showing sulfur dioxide reacting to produce sulfur trioxide. [2]
 - (ii) Assuming that this reaction goes to completion and occurs at r.t.p, find the volume of sulfur trioxide that will be produced from 48 dm³ of sulfur [1]
 - (iii) Approximately 30% of the sulfur trioxide made in (c)(i) is collected.

 Calculate the actual volume of sulfur trioxide collected. [1]

(iv) 100 g of a catalyst is used in the reaction in (c) (i).

Name the catalyst used and state how much of it is left at the end of the reaction. [2]

 $(v) \qquad \text{State the effect a catalyst has on the yield and the rate of sulfur trioxide production}.$

[1]

- (d) State why sulfur trioxide gas is dissolved in 98.8% sulfuric acid and not in water. [1]
- (e) Ammonia and sulfuric acid are used to produce fertilisers such as ammonium sulfate and sodium nitrate.

Calculate which fertiliser, ammonium sulfate or sodium nitrate, contains the largest percentage of elemental nitrogen. Show your working. [2]

TOTAL MARKS [20]

588124 [Turn over

6. A BGCSE class investigates three substances using a flame test. The class records a description of the substances tested and the results of the flame test.

		description of substance	flame test	
	1	An octopus has blood that is blue and not red because it contains metal X in the compound that carries oxygenated blood.	blue-green flame	
	2	Chemical fertilisers and matches contain nitrates of metal Y .	lilac flame	
	3	Glass and water softener contains carbonate of this metal Z .	golden yellow flame	
(a)		results of the flame tests to identify the metal is of the metal ions.	ions X, Y, and Z by writing	the [3]
(b)	(i)	Find the empirical formula of the compound in percentage is 81.07% Ba and 18.93% O.	dry bleaching powder where	the [3]
	(ii)	Ethylene glycol is used as antifreeze. The molar natural formula is: CH ₃ O. Determine the molecular for	_	ical [2]
(c)	Bromine chlorine	e is obtained from sodium bromide in seawater	by a displacement reaction v	vith
		sodium bromide + chlorine gas → sodium chlo	oride + bromine	
	(i)	Write a balanced equation for the reaction.		[2]
	(ii)	State what this reaction indicates about the reac	ctivity of the halogens.	[1]
	(iii)	Write the test and the positive result for the chlo	oride ion in water.	[1]

(d) The flow chart shows a series of chemical reactions.

Identity the names of the substances A - H in the flow chart.

[8]

TOTAL MARKS [20]

7. A student investigates the rate of reaction of magnesium in **equal volumes** of two different acids. The **same mass** of magnesium ribbon is used. The two acids used are hydrochloric acid (HCl) and ethanoic acid (CH₃COOH) at r.t.p. All of the magnesium reacted completely in hydrochloric acid, but some magnesium was left unreacted in the ethanoic acid.

The results obtained for both investigations are recorded in the table.

time/s	0	20	40	60	80	100	120	140	160
hydrochloric acid total volume of H2(g) / cm ³	0	20	40	60	79	95	100	100	100
ethanoic acid total volume of H2(g) /cm ³	0	4	8	12	19	29	42	57	57

(a) Plot a graph of the volume of hydrogen collected in each experiment using the same axes. Indicate the name of each acid on the curve drawn. [6]

From your graph determine the volume of hydrogen produced at

- (ii) 130 s in the experiment with ethanoic acid; [1]
- (iii) 180 s in the experiment with hydrochloric acid.
- (b) State which acid, from the results of this experiment, appears to be highly ionised. Give a reason for your answer. [1]
- (c) Write a balanced equation for the reaction between magnesium and hydrochloric acid. [2]
 - (ii) Calculate the mass of magnesium used in the reaction with hydrochloric acid. [2]
 - (iii) In the reaction with ethanoic acid, 0.003 g of magnesium was left unreacted.

 Determine the mass of magnesium that reacted with ethanoic acid. [2]
- (d) Explain, in terms of the collision theory, the effect of increasing temperature on the final results of this experiment. [3]
- (e) (i) State the test and result for the hydrogen gas that was produced in the experiment.

(ii) Give **one** industrial use of hydrogen gas.

TOTAL MARKS [20]

[1]

[1]

[2]

Question	
Write on both sides of the paper	
I of	
	•
	
	•

588124 [Turn over

Question Write on both sides of the paper

Question	

588124

Question
Write on both sides of the paper
\cdot