Теория вероятностей и математическая статистика—1 Теоретический и задачный минимумы ФЭН НИУ ВШЭ

Винер Даниил @danya_vin

Версия от 22 ноября 2024 г.

Содержание

1	Teo	Теоретический минимум					
	1.1	Сформулируйте классическое определение вероятности	2				
	1.2	Выпишите формулу условной вероятности	2				
	1.3	Дайте определение независимости (попарной и в совокупности) для n случайных событий .	2				
	1.4	Выпишите формулу полной вероятности, указав условия её применимости	2				
	1.5	Выпишите формулу Байеса, указав условия её применимости	3				
	1.6	Дайте определение функции распределения $F_X(x)$ случайной величины X . Укажите необходимые и достаточные условия для того, чтобы функция была функцией распределения некоторой случайной величины					
	1.7	Дайте определение функции распределения $f_X(x)$ случайной величины X . Укажите необходимые и достаточные условия для того, чтобы функция была функцией плотности неко-					
	1.8	торой случайной величины	4				
		а α и β — произвольные константы	4				
	1.9	Дайте определение дисперсии случайной величины. Укажите, чему равно $\mathbb{D}\left[\alpha X + \beta\right]$, где X — случайная величина, а α и β — произвольные константы	4				
	1.10	Укажите математическое ожидание, дисперсию, множество значений, принимаемых с ненулевой вероятностью, а также функцию плотности или функцию вероятности	4				
	1.11	Сформулируйте определение функции совместного распределения двух случайных величин, независимости случайных величин. Укажите, как связаны совместное распределение и					
	1.12	частные распределения компонент случайного вектора	Е.				
		симости случайных величин	6				
2	Зал	ачный минимум	7				
_	2.1	$P(A) = 0.3, P(B) = 0.4, P(A \cap B) = 0.1 \dots \dots$	7				
	2.2	Карлсон выложил кубиками слово КОМБИНАТОРИКА	7				
	2.3	В первой урне 7 белых и 3 черных шара, во второй — 8 белых и 4 черных шара, в третьей					
		-2 белых и 13 черных шаров	8				
	2.4	В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных	8				
	2.5	Пусть случайная величина X имеет таблицу распределения	8				
	2.6	Пусть случайная величина X имеет таблицу распределения	ç				
	2.7	Пусть случайная величина X имеет биномиальное распределение с параметрами $n=4$ и					
		p = 0.75	Ć				
	2.8	Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=100$	Ć				
	2.9	В лифт 10-этажного дома на первом этаже вошли 5 человек	11				
	2.10	При работе некоторого устройства время от времени возникают сбои	1 1				

1 Теоретический минимум

1.1 Сформулируйте классическое определение вероятности

Имеет место, когда исходы равновероятны

Пусть Ω — пространство элементарных исходов, то есть все события, которыми может закончиться эксперимент

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$$

Определение. Случайное событие A — любое подмножетсво Ω , причем только для счетных и менее множеств

Определение.

$$P(A) = \frac{|A|}{|\Omega|}$$

Определение.
$$P(A) = \sum_{\omega_i \in A} p(\omega_i)$$

1.2 Выпишите формулу условной вероятности

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ \forall B : P(B) > 0$$

1.3 Дайте определение независимости (попарной и в совокупности) для n случайных событий

Определение. События А и В называются независимыми, если:

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение. События A_1, \ldots, A_n попарно независимы, если:

$$\forall i \neq j \in I$$
, где I — множество индексов : $\mathbb{P}\left(\{A_i \cap A_j\}\right) = \mathbb{P}\left(\{A_i\}\right) \cdot \mathbb{P}\left(\{A_j\}\right)$

Определение. События A_1, \ldots, A_n независимы в совокупности, если:

$$\forall i_1 < \ldots < i_k < \ldots < i_n \ \forall k = 1, \ldots, n :$$
$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \ldots \cdot P(A_{i_k})$$

Примечание. Для A_1, A_2, A_3 :

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$$

$$P(A_2 \cap A_3) = P(A_2) \cdot P(A_3)$$

$$P(A_1 \cap A_3) = P(A_1) \cdot P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$$

1.4 Выпишите формулу полной вероятности, указав условия её применимости

2

Пусть $\{H_i\}$ — полная группа несовместных событий (разбиение Ω)

Должны быть выполнены такие свойства:

•
$$H_i \cap H_j = \emptyset \ \forall i \neq j$$
 — несовместность

$$ullet$$
 $\bigcup_{i=1}^n H_i = \Omega$ — полнота

Теорема. Тогда,
$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$

Доказательство.

$$P(A) = P\left(\bigcup_{i=1}^{n} (A \cap H_i)\right)$$
$$= \sum_{i=1}^{n} P(A \cap H_i)$$
$$= \sum_{i=1}^{n} P(A|H_i) \cdot P(H_i)$$

1.5 Выпишите формулу Байеса, указав условия её применимости

Пусть H_1, H_2, \ldots — полная группа несовместных событий, для которой выполняются критерии полноты и несовместности (см. предыдущий пункт), и A — некоторое событие, вероятность которого положительна. При этом, $H_i \neq \varnothing$

Тогда условная вероятность того, что имело место событие H_k , если в результате эксперимента наблюдалось событие A, может быть вычислена по формуле

$$\begin{split} P(H_k|A) &= \frac{P(A|H_k) \cdot P(H_k)}{P(A)} \\ &= \frac{P(H_k \cap A)}{P(A)} \\ &= \frac{P(A|H_k) \cdot P(H_k)}{\sum_{i=1}^n P(A|H_i) P(H_i)} \end{split}$$

1.6 Дайте определение функции распределения $F_X(x)$ случайной величины X. Укажите необходимые и достаточные условия для того, чтобы функция была функцией распределения некоторой случайной величины

Определение. Пусть $\xi:\Omega \to \mathbb{R} - \mathcal{F}$ -измеримая функция. Функция $F_{\xi}:\mathbb{R} \longrightarrow [0;1] \ \forall x$ равная

$$\mathbb{P}(\{\omega \in \Omega : \xi(\omega) \leq x\}), x \in \mathbb{R}$$

называется функцией распределения случайной величины ξ

Необходимые условия

- 1. \exists пределы $\lim_{x \to \infty} F_{\xi}(x) = 1$, $\lim_{x \to -\infty} F_{\xi}(x) = 0$
- 2. F_{ξ} не убывает: $F_{\xi}(x_1) \leqslant F_{\xi}(x_2) \ \forall x_1 \leqslant x_2$
- 3. F_{ξ} непрерывна справа: $\lim_{x \to x_0+} F_{\xi}(x) = F_{\xi}(x_0)$

Если функция $F:\mathbb{R} \longrightarrow [0;1]$ удовлетворяет данным свойствам, то она является функцией распределения некоторой случайной величины, то есть найдётся вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и определённая на нём случайная величина ξ такая, что

$$F(x) = F_{\varepsilon}(x) \ \forall x \in \mathbb{R}$$

1.7 Дайте определение функции распределения $f_X(x)$ случайной величины X. Укажите необходимые и достаточные условия для того, чтобы функция была функцией плотности некоторой случайной величины

Определение. Случайная величина ξ называется **абсолютно непрерывной**, если $\exists f_{\xi}(x) \geqslant 0$, что функция распределения представима в виде интеграла:

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(x) dx$$

Определение. Функция $f_{\xi}(x)$ называется функцией плотности вероятности

Если некая функция g(x) удовлетворяет следующим свойствам, то она является функцией плотности распределения некоторой случайной величины

- 1. $f_{\xi}(x) \geq 0, \forall x \in \mathbb{R}$
- $2. \int\limits_{-\infty}^{+\infty} f_{\xi}(x) \mathrm{d}x = 1 \text{условие нормировки}$
- 1.8 Дайте определение математического ожидания для дискретных и абсолютно непрерывных случайных величин. Укажите, чему равно $\mathbb{E}\left[\alpha X + \beta Y\right]$, где X и Y случайные величины, а α и β произвольные константы

Определение. $\mathit{Mamemamuчecкum}$ ожиданием $\mathbb{E}\left[\xi\right]$ случайной величины ξ с дискретным распределением называется число

$$\mathbb{E}\left[\xi\right] = \sum_{\omega \in \Omega} \xi(\omega) \mathbb{P}\left(\left\{\omega\right\}\right)^{1},$$

если данный ряд сходится абсолютно

Определение. Математическим ожиданием $\mathbb{E}\left[\xi\right]$ случайной величины ξ с абсолютно непрерывным распределением с плотностью распределения $f_{\xi}(x)$ называется число

$$\mathbb{E}\left[\xi\right] = \int_{-\infty}^{+\infty} x f_{\xi}(x) \mathrm{d}x,$$

если этот интеграл сходится абсолютно

По свойствам математического ожидания: $\mathbb{E}\left[\alpha X + \beta Y\right] = \alpha \mathbb{E}\left[X\right] + \beta \mathbb{E}\left[Y\right]$

1.9 Дайте определение дисперсии случайной величины. Укажите, чему равно $\mathbb{D}\left[\alpha X + \beta\right]$, где X — случайная величина, а α и β — произвольные константы

Определение. Дисперсией случайной величины ξ называется число

$$\mathbb{D}\left[\xi\right] = \mathbb{E}\left[\left(\xi - \mathbb{E}\left[\xi\right]\right)^2\right]$$

По свойствам дисперсии: $\mathbb{D}\left[\alpha X + \beta\right] = \alpha^2 \mathbb{D}\left[X\right]$

- 1.10 Укажите математическое ожидание, дисперсию, множество значений, принимаемых с ненулевой вероятностью, а также функцию плотности или функцию вероятности
 - 1. Биномиальное

 $^{^{1}}$ В учебнике Черновой дано такое выражение: $\mathbb{E}\left[\xi\right]=\sum_{k}a_{k}p_{k}=\sum_{k}a_{k}\mathbb{P}\left(\{\xi=a_{k}\}\right),$ что, в приницпе, эквивалентно

•
$$\mathbb{E}[\xi] = np$$

•
$$\mathbb{D}[\xi] = np(1-p)$$

•
$$\mathbb{P}(\{\xi=k\}) = C_n^k p^k (1-p)^{n-k}$$
, где $k=0,1,\dots,n$

2. Пуассоновское — $Pois(\lambda)$

•
$$\mathbb{E}\left[\xi\right] = \lambda$$

•
$$\mathbb{D}[\xi] = \lambda$$

•
$$\mathbb{P}\left(\{\xi=k\}\right)=\frac{\lambda^k}{k!}e^{-\lambda}$$
, где $k=0,1,\dots$

3. **Геометрическое** (ξ — номер первого успешного испытания)

•
$$\mathbb{E}\left[\xi\right] = \frac{1}{p}$$

•
$$\mathbb{D}\left[\xi\right] = \frac{1-p}{p^2}$$

•
$$\mathbb{P}(\{\xi = k\}) = p(1-p)^{k-1}$$

4. Равномерное

$$\bullet \ \mathbb{E}\left[\xi\right] = \frac{a+b}{2}$$

$$\bullet \ \mathbb{D}\left[\xi\right] = \frac{(b-a)^2}{12}$$

•
$$F_{\xi}(x) = egin{cases} 0, & \text{если } x < a \\ \frac{x-a}{b-a}, & \text{если } x \in [a;b] \\ 1, & \text{если } x > b \end{cases}$$

•
$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & \text{если } x \in [a;b] \\ 0, & \text{если } x \notin [a;b] \end{cases}$$

5. Экспоненциальное с параметром λ

•
$$\mathbb{E}\left[\xi\right] = \frac{1}{\lambda}$$

•
$$\mathbb{D}\left[\xi\right] = \frac{1}{\lambda^2}$$

•
$$F_{\xi}(x) = \begin{cases} 1 - e^{-\lambda x}, & \text{если } x \geqslant 0 \\ 0, & \text{если } x < 0 \end{cases}$$

•
$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$$

1.11 Сформулируйте определение функции совместного распределения двух случайных величин, независимости случайных величин. Укажите, как связаны совместное распределение и частные распределения компонент случайного вектора

Определение. Многомерной (совместной) функцией распределения $F_{\xi}(x_1,\ldots,x_n)$ называется

$$\mathbb{P}\left(\left\{\xi_{1} \leqslant x_{1}, \dots, \xi_{n} \leqslant x_{n}\right\}\right)$$

Свойства многомерного распределения

1.
$$F_{\xi}(x) \in [0;1]$$
. Здесь и далее $x = (x_1, \dots, x_n)$

2.
$$\lim_{\substack{x_1 \to -\infty \\ x_1 \to +\infty}} F_{\xi}(x_1, x_2) = 0$$
$$\lim_{\substack{x_1 \to +\infty, \\ x_2 \to +\infty}} F_{\xi}(x_1, x_2) = F_{\xi_2}(x_2)$$

- 3. $F_{\xi}(x_1, x_2)$ не убывает по каждому из аргументов
- 4. $F_{\xi}(x_1, x_2)$ непрерынва справа по каждому из аргументов

Определение. ξ_1, \ldots, ξ_n независимы, если $\forall B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$:

$$\mathbb{P}\left(\left\{\xi_{1} \in B_{1}, \dots, \xi_{n} \in B_{n}\right\}\right) = \mathbb{P}\left(\left\{\xi_{1} \in B_{1}\right\}\right) \cdot \dots \cdot \mathbb{P}\left(\left\{\xi_{n} \in B_{n}\right\}\right)$$

Определение. $\forall x_1, \dots, x_n \in \mathbb{R}^n$ независимы, если

$$F_{\xi}(x_1,\ldots,x_n) = F_{\xi_1}(x_1)\cdot\ldots\cdot F_{\xi_n}(x_n)$$

1.12 Сформулируйте определение совместной функции плотности двух случайных величин. Укажите необходимые и достаточные условия для того, чтобы функция была совместной функцией плотности некоторой пары случайных величин. Сформулируйте определение независимости случайных величин

Определение. Случайные величины ξ_1, ξ_2 имеют совместное абсолютно непрерывное распределение, если $\exists f_{\xi}(x_1, x_2) \geqslant 0$ такая, что $\forall B \in \mathcal{B}(\mathbb{R}^2)$:

$$\mathbb{P}\left(\left\{\xi \in B\right\}\right) = \iint\limits_{B} f_{\xi}(x_1, x_2) \mathrm{d}x_1 \mathrm{d}x_2$$

1. $f_{\xi} \geqslant 0 \ \forall x_1, x_2 \in \mathbb{R}$

2.
$$\iint_{\mathbb{R}^2} f_{\xi}(x_1, x_2) dx_1 dx_2 = 1$$

3.
$$f_{\xi_1}(x_1) = \int_{-\infty}^{\infty} f_{\xi}(x_1, x_2) dx_1 dx_2$$

$$F_{\xi_1}(x_1) = \mathbb{P}(\{\xi_1 \leqslant x_1 \cap \xi_2 \in \mathbb{R}\})$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{+\infty} f_{\xi}(t_1, x_2) dx_2 dt_1$$

Если некоторая функция g(x) удовлетворяет данным свойствам, то она является совместной функцией плотности распределения для некоторой пары случайных величин

Определение. ξ_1, \dots, ξ_n независимы, если $\forall B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$:

$$\mathbb{P}\left(\left\{\xi_{1} \in B_{1}, \dots, \xi_{n} \in B_{n}\right\}\right) = \mathbb{P}\left(\left\{\xi_{1} \in B_{1}\right\}\right) \cdot \dots \cdot \mathbb{P}\left(\left\{\xi_{n} \in B_{n}\right\}\right)$$

Определение. $\forall x_1, \dots, x_n \in \mathbb{R}^n$ независимы, если

$$F_{\xi}(x_1,\ldots,x_n) = F_{\xi_1}(x_1)\cdot\ldots\cdot F_{\xi_n}(x_n)$$

2 Задачный минимум

Заметьте, что обозначения $P(\ldots)$ и $\mathbb{P}\left(\{\ldots\}\right)$ — это одно и то же, я просто еще не везде исправил

2.1 $P(A) = 0.3, P(B) = 0.4, P(A \cap B) = 0.1$

а) Найдите P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.1}{0.4} = 0.25$$

b) Найдите $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.3 + 0.4 - 0.1 = 0.6$$

c) Являются ли события A и B независимыми?

Определение. События A и B называются независимыми, если $P(A \cap B) = P(A) \cdot P(B)$

Определение. События A и B называются несовместными, если $A \cap B = \emptyset$

Давайте просто проверим, выполняется ли равенство $\mathbb{P}(\{A \cap B\}) = \mathbb{P}(\{A\}) \cdot \mathbb{P}(\{B\})$:

$$\mathbb{P}(\{A \cap B\}) = \mathbb{P}(\{A\}) \cdot \mathbb{P}(\{B\})$$
$$0.1 = 0.3 \cdot 0.4$$
$$0.1 \neq 0.12$$

Это неверно, поэтому события A и B зависимы

2.2 Карлсон выложил кубиками слово КОМБИНАТОРИКА...

Способ №1 (С помощью формулы умножения вероятностей)

$$P(A_1 \cap ... \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdot ... \cdot P(A_n | A_1 \cap ... \cap A_{n-1})$$

Пусть имеются такие события:

$$A_1 := \{$$
первая буква — $K \}$

$$A_2 := \{ \text{вторая буква} - O \}$$

$$A_3 := \{$$
третья буква $- P\}$

$$A_4 := \{$$
четвертая буква — $T\}$

Тогда, искомая вероятность:

$$P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdot P(A_4 | A_1 \cap A_2 \cap A_3)$$

$$= \frac{2}{13} \cdot \frac{2}{12} \cdot \frac{1}{11} \cdot \frac{1}{10}$$

$$= \frac{1}{4290}$$

Способ №2 (комбинаторный)

$$P(A) = \frac{|A|}{|\Omega|}, \ \Omega = \{(a_1, a_2, a_3, a_4) : a_1 \in L, a_2 \in L, a_3 \in L, a_4 \in L, a_i \neq a_j \text{ при } i \neq j\}$$

$$|\Omega| = \frac{13!}{9!} = 17160$$

$$A = \{(K_1, O_1, P_1, T_1), (K_2, O_1, P_1, T_1), (K_1, O_2, P_1, T_1), (K_2, O_2, P_1, T_1)\} \longrightarrow 4$$
 исхода

Индекс у букв означают какой по счету встретилась буква в слове «КОМБИНАТОРИКА»

Тогда, искомая вероятность=
$$\frac{|A|}{|\Omega|} = \frac{4}{17160} = \frac{1}{4290}$$

2.3 В первой урне 7 белых и 3 черных шара, во второй — 8 белых и 4 черных шара, в третьей — 2 белых и 13 черных шаров

 $D_i := \{$ выбираем i-ю урну $\}$, где i = 1, 2, 3 — разбиение Ω

Заметим, что урну мы выбираем равновероятно, то есть $P(D_1) = P(D_2) = P(D_3) = \frac{1}{3}$

а) Вычислите вероятность того, что шар, взятый наугад из выбранной урны, окажется белым
 Формуа полной вероятности

$$P(A) = P(A|D_1) \cdot P(D_1) + \ldots + P(A|D_n) \cdot P(D_n)$$

В нашем случае, формула будет иметь вид

$$P(A) = P(A|D_1) \cdot P(D_1) + P(A|D_2) \cdot P(D_2) + P(A|D_3) \cdot P(D_3)$$

 $A := \{$ шар оказался белым $\}$

Заметим, что $P(A|D_1)=\frac{7}{10}, P(A|D_2)=\frac{2}{3}, P(A|D_3)=\frac{2}{15},$ тогда $P(A)=P(A|D_1)\cdot P(D_1)+P(A|D_2)\cdot P(D_2)+P(A|D_3)\cdot P(D_3)$ $=\frac{7}{10}\cdot\frac{1}{3}+\frac{2}{3}\cdot\frac{1}{3}+\frac{2}{15}\cdot\frac{1}{3}$ $=\frac{1}{2}$

b)
$$P(D_1|A) = \frac{P(A|D_1) \cdot P(D_1)}{P(A|D_1)P(D_1) + P(A|D_2)P(D_2) + P(A|D_3)P(D_3)} = \frac{7}{15}$$

$2.4~~{ m B}$ операционном отделе банка работает 80% опытных сотрудников и 20% неопытных

Обозначим сотрудников так:

$$D_1 := \{$$
опытный сотрудник $\}$
 $D_2 := \{$ неопытный сотрудник $\}$

Пусть $A := \{$ совершена ошибка $\}$

Тогда, условия задачи можно записать так:

$$\mathbb{P}\left(\left\{A|D_1\right\}\right) = 0.01$$
$$\mathbb{P}\left(\left\{A|D_2\right\}\right) = 0.1$$

a)
$$\mathbb{P}(\{A\}) = \mathbb{P}(\{A|D_1\}) \cdot \mathbb{P}(\{D_1\}) + \mathbb{P}(\{A|D_2\}) \cdot \mathbb{P}(\{D_2\}) = 0.01 \cdot 0.8 + 0.1 \cdot 0.2 = 0.028$$

b)
$$\mathbb{P}(\{D_2|A\}) = \frac{\mathbb{P}(\{A|D_2\}) \cdot \mathbb{P}(\{D_2\})}{\mathbb{P}(\{A\})} = 0.714$$

Если мы посчитаем по формуле Байеса $\mathbb{P}(\{D_1|A\})$, то получим, что $(D_2|A)$ и $(D_1|A)$ образуют полную группу вероятностей, то есть

$$P(D_2|A) + P(D_1|A) = 1 \Longrightarrow P(D_1|A) = 0.286$$

2.5 Пусть случайная величина X имеет таблицу распределения

x	-1	0	1
$\mathbb{P}(\{X=x\})$	0.25	c	0.25

а)
$$\Omega = \{X = -1\} + \{X = 0\} + \{X = 1\}$$
 и $1 = \mathbb{P}(\{\{X = -1\}\}) + \mathbb{P}(\{\{X = 0\}\}) + \mathbb{P}(\{\{X = 1\}\}) \implies c = 0.5$

6)
$$\mathbb{P}{X \ge 0} = \mathbb{P}({X = 0} \sqcup {X = 1}) = \mathbb{P}({X = 0}) + \mathbb{P}({X = 1}) = 0.75$$

в)
$$\mathbb{P}(\{X < -3\}) = 0$$
, т.к. Ω — дискретное пространство, или же $\{X < -3\} = \{\omega \in \Omega : X(\omega) < -3\}$

8

г)
$$\mathbb{P}(\{X \in [-0.5; 0.5]\}) = \mathbb{P}(\{X = 0\}) = 0.5$$
, т.к. Ω — дискретное пространство

2.6 Пусть случайная величина X имеет таблицу распределения

а) Аналогично предыдущей задаче — c=0.5

6)
$$\mathbb{E}[X] = -1 \cdot 0.25 + 0 \cdot 0.5 + 1 \cdot 0.25 = 0$$

B)
$$\mathbb{E}[X^2] = (-1)^2 \cdot 0.25 + (0)^2 \cdot 0.5 + (1)^2 \cdot 0.25 = 0.5$$
 $\mathbb{E}[\sin(X)] = \sin(-1) \cdot 0.25 + \sin(0) \cdot 0.5 + \sin(1) \cdot 0.25$

$$\mathbf{r)} \ \mathbb{D}[X] \equiv \mathbb{D}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$

д)
$$\mathbb{E}[|X|] = |-1| \cdot 0.25 + |0| \cdot 0.25 + |1| \cdot 0.25 = 0.5$$

x	-1	0	1
$\mathbb{P}(\{\xi = x\})$	0.25	c	0.25

2.7 Пусть случайная величина X имеет биномиальное распределение с параметрами n=4 и p=0.75

 $X \sim \mathrm{Bi}(n=4,p=rac{3}{4})$. Напомним, что $\mathbb{P}\left(\{X=k\}\right) = C_4^k (rac{3}{4})^k (rac{1}{4})^{4-k}$

a)
$$\mathbb{P}(\{X=0\}) = C_4^0 \left(\frac{3}{4}\right)^0 \left(\frac{1}{4}\right)^4 = \left(\frac{1}{4}\right)^4$$

6)
$$\mathbb{P}(\{X>0\}) = 1 - \mathbb{P}(\{X=0\}) = 1 - \left(\frac{1}{4}\right)^4$$

в) $\mathbb{P}(\{X<0\})=0$, так как количество успехов в биномиальном распределении $\geqslant 0$

r)
$$\mathbb{E}[X] = n \cdot p = 4 \cdot \frac{3}{4} = 3$$

д)
$$\mathbb{D}[X] = np(1-p) = \frac{3}{4}$$

е) Нужно посчитать наиболее вероятную величину. Всего есть 5 значений — 5 возможных успешных исходов

$$\mathbb{P}\left(\left\{X=0\right\}\right) = \left(\frac{1}{4}\right)^4$$

$$\mathbb{P}\left(\left\{X=1\right\}\right) = C_4^1 \cdot \frac{3}{4} \cdot \left(\frac{1}{4}\right)^3$$

$$\mathbb{P}\left(\left\{X=2\right\}\right) = C_4^2 \cdot \left(\frac{3}{4}\right)^2 \cdot \left(\frac{1}{4}\right)^2$$

$$\mathbb{P}\left(\left\{X=3\right\}\right) = C_4^3 \cdot \left(\frac{3}{4}\right)^3 \cdot \left(\frac{1}{4}\right)^1$$

$$\mathbb{P}\left(\left\{X=4\right\}\right) = C_4^4 \cdot \left(\frac{3}{4}\right)^4 \cdot \left(\frac{1}{4}\right)^0$$

2.8 Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=100$

9

Имеется случайная величина $X \sim \text{Pois}(\lambda = 100)$

a)
$$\mathbb{P}(\{\{X=0\}\}) = \frac{\lambda^0}{0!}e^{-\lambda} = e^{-\lambda} = e^{-100}$$

6)
$$\mathbb{P}(\{\{X>0\}\}) = 1 - \mathbb{P}(\{\{x=0\}\}) = 1 - e^{-100}$$

в)
$$\mathbb{P}\left(\left\{\left\{X<0\right\}\right\}\right)=\mathbb{P}\left(\left\{\varnothing\right\}\right)=0$$

г) По определению, $\mathbb{E}[X] = \lambda$. Докажем

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} k \cdot \mathbb{P}(\{\{x = k\}\})$$

$$= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \left(\sum_{l=0}^{\infty} \frac{\lambda^l}{l!}\right) \lambda e^{-\lambda}$$

$$= \lambda$$

д) Для того, чтобы посчитать дисперсию X сначала посчитаем мат.ожидание X^2 , а для этого посчитаем $\mathbb{E}\left[X(X-1)\right]$:

$$\mathbb{E}\left[X(X-1)\right] = \sum_{k=0}^{\infty} k(k-1)\mathbb{P}\left(\left\{\left\{x=k\right\}\right\}\right)$$

$$= \sum_{k=2}^{\infty} k(k-1)\frac{\lambda^k}{k!}e^{-\lambda}$$

$$= \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda}$$

$$= \lambda^2 e^{-\lambda} \sum_{l=0}^{\infty} \frac{\lambda^l}{l!}$$

$$= \lambda$$

Тогда, $\lambda^2 = \mathbb{E}[X(X-1)] = \mathbb{E}[X^2] - \mathbb{E}[X] \Longrightarrow \mathbb{E}[X^2] = \lambda + \lambda^2$

Теперь можем выразить дисперсию через известное равенство:

$$\mathbb{D}\left[X\right] = \mathbb{E}\left[X^2\right] - \left(\mathbb{E}\left[X\right]\right)^2 = \lambda + \lambda^2 - \lambda^2 = \lambda$$

е) Предположим, что X=k и есть наиболее вероятное значение, принимаемое X. При этом, $k \in \{0,1,2,\ldots\}$. Так как k — дискретная, то дифференцированием мы воспользоваться не можем, тогда посчитаем $\frac{\mathbb{P}\left(\{\{X=k+1\}\}\right)}{\mathbb{P}\left(\{\{X=k\}\}\right)}$:

$$\frac{\mathbb{P}\left(\left\{\left\{X=k+1\right\}\right\}\right)}{\mathbb{P}\left(\left\{\left\{X=k\right\}\right\}\right)} = \frac{\frac{\lambda^{k+1}}{(k+1)!}e^{-\lambda}}{\frac{\lambda^{k}}{k!}e^{-\lambda}}$$
$$= \frac{\lambda}{k+1}$$
$$= \frac{100}{k+1}$$

Теперь проанализируем при каких k это отношение будет больше, меньше или равно 1:

$$\bullet \ \frac{100}{k+1} > 1 \Longrightarrow k < 99$$

$$\bullet \ \frac{100}{k+1} < 1 \Longrightarrow k > 99$$

•
$$\frac{100}{k+1} = 1 \Longrightarrow k = 99$$

Значит, 99 и 100 — наиболее вероятные значения, принимаемые случайной величиной X

2.9 В лифт 10-этажного дома на первом этаже вошли 5 человек

а) Пусть $\xi_i = \begin{cases} 1, & \text{если } i\text{-} \Brightarrow accase up} & \text{вышел на шестом этаже} \\ 0, & \text{иначе} \end{cases}$. При этом $i \in \{1, 2, 3, 4, 5\}$ Тогда, $\xi = \xi_1 + \ldots + \xi_5$ — число naccase upob, которые вышли на шестом этаже Заметим, что ξ_1, \ldots, ξ_5 — независимые, а также $\xi_i \sim \text{Be}\left(p = \frac{1}{9}\right)$. Тогда, $\xi \sim \text{Bi}\left(n = 5, p = \frac{1}{9}\right)$

 $\mathbb{P}(\{\{\xi > 0\}\}) = 1 - \mathbb{P}(\{\{\xi = 0\}\}) = 1 - \left(\frac{8}{9}\right)^5$

- **6)** $\mathbb{P}(\{\{\xi=0\}\}) = C_n^k p^k q^{n-k} = C_5^0 \left(\frac{1}{9}\right)^0 \left(\frac{8}{9}\right)^5 = \left(\frac{8}{9}\right)^5$
- в) Пусть $\eta_i = \begin{cases} 1, & \text{если } i\text{-} \Breve{n} \ nacca ж up} \ \text{вышел на 6 этаже или выше} \\ 0, & \text{иначе} \end{cases}$. При этом $i \in \{1,2,3,4,5\}$

Тогда, $\eta=\eta_1+\ldots+\eta_5$ — число *пассажиров*, которые вышли на шестом этаже и выше Заметим, что η_1,\ldots,η_5 — независимые, а также $\eta_i\sim \mathrm{Be}\left(p=\frac{5}{9}\right)$. Тогда, $\eta\sim \mathrm{Bi}\left(n=5,p_1=\frac{5}{9}\right)$ $\mathbb{P}\left(\{\{\eta=5\}\}\right)=C_5^5\cdot p_1^5\cdot q^0=\left(\frac{5}{9}\right)^5$

2.10 При работе некоторого устройства время от времени возникают сбои

 $\xi_i \sim \mathrm{Pois}(\lambda=3)$ — число сбоев за i-е сутки

a) $\mathbb{P}(\{\{\xi_i > 0\}\}) = 1 - \mathbb{P}(\{\{\xi_i = 0\}\})$ $= 1 - \frac{\lambda^0}{0!}e^{-\lambda}$

б) Требуется вычислить вероятность того, что за двое суток не произойдет ни одного сбоя. То есть нужно найти вероятность двух событий: $\{\xi_1=0\}$ и $\{\xi_2=0\}$. Заметим, что эти события независимы. Формально:

$$\mathbb{P}\left(\{\{\xi_1 = 0\} \cap \{\xi_2 = 0\}\}\right) = \mathbb{P}\left(\{\{\xi_1 = 0\}\}\right) \cdot \mathbb{P}\left(\{\{\xi_2 = 0\}\}\right)$$
$$= e^{-3} \cdot e^{-3}$$