

Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-based IR models

Navid Rekabsaz¹, Mihai Lupu¹, Artem Baklanov^{2,3}, Allan Hanbury¹, Alexander Dür¹, Linda Anderson¹

¹ TU Wien, Vienna, Austria

² International Institute for Applied Systems Analysis (IIASA)

³ N.N. Krasovskii Institute of Mathematics and Mechanics

contact: rekabsaz@ifs.tuwien.ac.at

Volatility Prediction - Research Questions

- Market volatility is an essential indicator of financial instability, widely studied using market data.
- We study the effectiveness of using sentiment analysis on annual reports for voalitilty forecast.
- We explore (1) Using word embedding-based information retrieveal weightings for long documents sentiment analysis (2) Combination methods for text and market data (3) Effect of financial sectors.

Data & Features

- Data: Risk Factors sections of the 10-K reports of corporations in the US markets from 2006 to 15.
- Financial Lexicon: Loughran & McDonald, expanded with a word2vec model (Tsai & Wang 2014)
- Text Features: BoW with TC and BM25 weightings as welll as their extended forms (Rekabsaz et al. 2016)
- Market Features: Current volatility (the quartile before the issue date of a report), GARCH, sector.
- Feature Fusion: Early fusion, Stacking, Multi Kernel Learning (MKL) for SVM.

Experiments & Results

Content Analysis

Using the methods, introduced in Tsai & Wang (2014): (a) The Cosine similarity of the years' centroid vectors (b) Performance using the reports from a year to 2015

Result: Contextual changes in the reports every three years. Best performance when using data since 2012.

Sectors

Training separate models on the reports of each financial sector.

Result: Sector-specific models outperform sector-agnostic, while the models yet suffer from lack of data.

2

Volatility Prediction

Our best performing method shows state-of-the-art results by using the **Extended BM25** weighting model, **SVM with RBF** kernel, and **Stacking** for feature fusion.

	Method		(r^{2})	(MSE)
Forecast performance		GARCH	0.280	0.170
of the volatility of the first year after the issue date of reports using 5-fold cross validation:	Text	Wang (2013)	0.345	0.154
		Tsai (2014)	0.395	0.142
		Our method	0.439	0.132
		Market	0.485	0.122
	Text+Market	Wang (2013)	0.499	0.118
		Tsai (2014)	0.484	0.122
		Our method	0.527	0.111

Forecast performance of our method till 8 quartiles

Result: Our SA approach demonstrates a strong and more consistent prediction signal. The effective combination of the features achieves the best results.

Conclusion

- We propose a state-of-the-art sentiment analysis approach for long documents in the financial domain which benefits from the recent word embedding-based IR weighting models.
- We demonstrate the effectiveness of our method in long-term volatility forecasting and the importance of financial sectors in sentiment analysis of 10-K reports.