Eq. Calore 1D

$$\frac{\partial}{\partial t}T = K \frac{\partial^2}{\partial x^2} T$$

Dove T(t,x) rappresenta la temperatura e K rappresenta la conduzione. Discretizziamo lo spazio ed il tempo: $t_n = n\Delta t$ e $x_j = j\Delta x$.

Schema 1

Utilizziamo il seguente schema centrato nello spazio (secondo ordine in Δx) ed Eulero nel tempo (primo ordine in Δt).

$$T_j^{n+1} = T_j^n + \sigma(T_{j-1}^n - 2T_j^n + T_{j+1}^n)$$

Dove $\sigma = K\Delta t/\Delta x^2$. Per studiare la stabilitá di questo schema possiamo studiare la crescita di una perturbazione. Assumiamo di conoscere la soluzione esatta T_E e sostituiamo $T = T_E + \epsilon$. sviluppando l'errore ϵ con fourier poniamo:

$$\epsilon(t,x) = A(t)e^{ikx}$$

sostituendo in Eq. 2) otteniamo:

$$A^{n+1} = (1 + 2\sigma(\cos(k\Delta x) - 1)A^n)$$

A non cresce nel tempo se $|1 - 2\sigma(1 - \cos(k\Delta x))| < 1$ ossia se $\sigma < 1/2$

Schema 2

Utilizziamo il seguente schema centrato nello spazio e nel tempo (secondo ordine in Δx e in Δt).

$$T_j^{n+1} = T_j^{n-1} + 2\sigma(T_{j-1}^n - 2T_j^n + T_{j+1}^n)$$

per studiare la stabilitá di questo schema possiamo studiare la crescita di una perturbazione. Assumiamo di conoscere la soluzione esatta T_E e sostituiamo $T = T_E + \epsilon$. sviluppando l'errore ϵ con fourier poniamo:

$$\epsilon(t,x) = A(t)e^{ikx}$$

sostituendo in Eq. 2) otteniamo:

$$A^{n+1} = A^{n-1} + 4\sigma(\cos(k\Delta x) - 1)A^n$$

La soluzione di questa equazione alle differenze puó essere trovata assumendo $A^n = p^n$ ossia p elevato alla n. Raccogliendo p^{n-1} otteniamo:

$$p^2 - 4\sigma(\cos(k\Delta x) - 1)p - 1 = 0;$$

Osserviamo che il prodotto delle radici vale -1 e non é possibile avere entrambe le soluzioni in modulo minori di 1.

Schema 3

Utilizziamo il seguente schema centrato nello spazio (secondo ordine in Δx) ed Eulero nel tempo (primo ordine in Δt).

$$T_j^{n+1} = T_j^n + \sigma (T_{j-1}^{n+1} - 2T_j^{n+1} + T_{j+1}^{n+1})$$

Osserviamo che la derivata seconda é calcolata al tempo n+1. Studiamo la stabilitá di questo schema introducendo un piccolo errore:

$$\epsilon(t,x) = A(t)e^{ikx}$$

sostituendo in Eq. 4) otteniamo:

$$A^{n+1} = A^n/(1 + 2\sigma(1 - \cos(k\Delta x)))$$

A non cresce nel tempo se $|1+2\sigma(1-\cos(k\Delta x))|>1$ ossia per ogni σ . Per risolverla numericamente riscriviamo la come:

$$T_{j-1}^{n+1} - (2+1/\sigma)T_j^{n+1} + T_{j+1}^{n+1} = -(1/\sigma)T_j^n$$

Occorre prestare attenzione a come si applicano le condizioni al contorno.