CS 580, Fall 2022; Instructor: Simina Brânzei.

TAs: Shoaib Khan, Anuj Singh, Lu Yan, Zheng Zhong. Due: September 18, 11:59PM EST. Submit to Gradescope

Problem Set 1

Reading material: Slides on stable matching. Additional reading in Kleinberg-Tardos Ch. 1.

Collaboration policy: Acknowledge your collaborators on the homework. You may discuss proof strategies, but the solution should be written individually in your own words.

Submission format: The solutions must be typed in Latex and submitted via Gradescope.

Problem 1. (10 points) Consider the function $f: \mathbb{N} \to \mathbb{R}$ given by $f(n) = \frac{n^2}{5} - 8n + \log n$. Prove, using mathematical induction, that $f(n) \in \Theta(n^2)$.

Problem 2. (20 points) The stable matchings possess an elegant "lattice" structure, that is, given two different stable matchings, M and M', if each men is given the better of his partners between M and M', then the result M'' is still a stable matching.

Show the lattice structure property by proving the following statements:

1. (10 pts) Suppose m and w are partners in M but not in M'. Show that one of m and w prefers its partner in M to its partner in M', and the other prefers its partner in M' to its partner in M.

Hint: It may be helpful to think about a bipartite graph formed by the matchings M and M'. A path in this graph must alternate edges from M to M'.

- 2. (5 pts) Show that M" is a perfect matching. That is, the partner of m and m' in M" cannot be the same. You can directly use the result from 1.
- 3. (5 pts) Show that there is no unstable pair in M''.

Problem 3. (20 pts) (20 pts) Show that the number of stable matchings can grow exponentially with the size of the instance by proving the following statements:

1. (14 pts) Given an instance of m men and m women with x stable matchings and another instance of n men and n women with with y stable matchings, there is an instance of mn men and mn women with at least $\max(xy^m, yx^n)$ stable matchings.

Hint: Suppose the men are labeled $a_1, ..., a_m$ and $c_1, ..., c_n$, and the women are labeled $b_1, ..., b_m$ and $d_1, ..., d_n$, consider the instance of size mn in which

- (a) the men are labeled (a_i, b_j) where i = 1, ..., m and j = 1, ..., n;
- (b) the women are labeled (c_i, d_j) where i = 1, ..., m and j = 1, ..., n;
- (c) man (a_i, b_j) prefers (c_k, d_l) to $(c_{k'}, d_{l'})$ if b_j prefers d_l to $d_{l'}$, or if l = l' and a_i prefers c_k to $c_{k'}$;

- (d) woman (c_i, d_j) prefers (a_k, b_l) to $(a_{k'}, b_{l'})$ if d_j prefers b_l to $b_{l'}$, or if l = l' and c_i prefers a_k to $a_{k'}$.
- 2. (6 pts) For each $n \ge 0$ where n is a power of 2, there is an instance of n men and n women with at least 2^{n-1} stable matchings.