VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Elektronika pro informační technologie Laboratoř č. 1

1 Zadání

V laboratorním cvičení č. 1 bylo naším cílem získat základní schopnosti pro:

- Zapojování obvodů dle schémat
- Měření elektrických hodnot pomocí multimetru

Následně jsme také experimentálně oveřili základní fyzikální zákony a související principy.

1.1 První experiment

Úkolem prvního experimentu bylo seznámit se s obsluhou multimetru. Připravili jsme si rezistor a následně jsme změřili jeho odpor. Poté jsme změřili napětí na rezistoru a proud protékající rezistorem.

1.2 Druhý experiment

Úkolem druhého experimentu bylo zjistit celkový odpor dvou odporů, které jsou zapojeny paralelně nebo sériově. Také jsme změřili napětí na rezistorech a proud protékající rezistory. Schéma zapojení obou obvodů (obr. 1 a obr. 2)

Obrázek 1: Schéma zapojení odporů sériově

Obrázek 2: Schéma zapojení odporů paralelně

2 Teorie

K měření základních elektrických hodnot lze použít multimetr.

- ullet Pro měření napětí U v obvodu se zapojíme paralelně s měřeným obvodem a multimetrem nastavíme na měření napětí.
- Pro měření proudu I v obvodu se zapojíme do série s měřeným obvodem a multimetrem nastavíme na měření proudu.
- ullet Pro měření odporu R se zapojíme do série s měřeným obvodem a multimetrem nastavíme na měření odporu.

2.1 Ohmův zákon

Pro ověření hodnot naších měření využijeme Ohmův zákon. Ten říká, že napětí U na svorkách rezistoru je přímo úměrné proudu I protékajícího rezistorem. Tato úměrnost je dána velikostí odporu R rezistoru. Tedy platí:

$$I = \frac{U}{R} \tag{1}$$

3 Měření

3.1 Měření experimentu 1

Nejdříve jsme změřili hodnoty pomocí multimetru a zapsali si je do tabulky.

	$R[k\Omega]$	U[V]	I[mA]
R1	4.6	5.03	1.07
R2	4.6	5.04	1.07
R3	9.9	5.03	0.504
R4	9.9	5.06	0.504

Poté jsme pomocí Ohmova zákonu všechny hodnoty vypočítali a ověřili zákony.

	$R[k\Omega](vypocitane)$	U[V](vypocitane)	I[mA](vypocitane)
R1	4.6	5.03	1.07
R2	4.6	5.04	1.07
R3	9.9	5.03	0.504
R4	9.9	5.06	0.504

3.2 Měření experimentu 2

3.2.1 Měření seriového obvodu

Nejdříve jsme obvod zapojili podle obrázku č. 1 (odpory sériově) a změřili všechny hodnoty pomocí multimetru.

$R1[\mathrm{k}\Omega]$	4.6
$R2[k\Omega]$	9.9
$Rab[k\Omega]$	15
UR1[V]	1.57
UR2[V]	3.42
Uab[V]	5
IR1[mA]	1.03
IR2[mA]	0.502
Iab[mA]	1.54

Poté jsme pomocí Ohmova zákonu vypočítali celkový odpor a napětí.

$Rab[k\Omega]$	14.5
Uab[V]	4.99

3.2.2 Měření paralelního obvodu

Poté jsme obvod zapojili podle obrázku č. ?? (odpory paralelně) a změřili všechny hodnoty pomocí multimetru.

$R1[\mathrm{k}\Omega]$	4.6
$R2[k\Omega]$	9.9
$Rab[k\Omega]$	3.18
UR1[V]	4.96
UR2[V]	5.02
Uab[V]	5.06
IR1[mA]	1.03
IR2[mA]	0.502
Iab[mA]	1.54

Poté jsme pomocí Ohmova zákonu vypočítali celkový odpor a proud.

$Rab[k\Omega]$	3.1407
Iab[mA]	1.532

4 Závěr

Zjistili jsme, že při experimentu 1 i 2 se naměřené hodnoty pomocí multimetru se téměř shodují s hodnotami vypočítanými pomocí Ohmova zákona.

Dalším zjištěním bylo, že při seriovém zapojení odporů se celkový odpor rovná součtu jednotlivých odporů a při paralelním zapojení odporů se celkový odpor rovná inverzní hodnotě součtu inverzních hodnot jednotlivých odporů.