Long-Tailed Learning

Question Setting

Imbalanced Train Set and Balanced Test Set

Trends of Solutions

- Data level techniques: SAMPLING
 - over-sampling
 - disadvantages: overfitting to less samples
 - less followers
 - down-sampling
 - disadvantages: loss of information
 - less followers
 - class-balanced sampling
 - combine over-sampling and down-sampling
 - mixing minor samples
 - SMOTE: Synthetic Minority Over-sampling Technique
- Loss level techniques: REWEIGHTING
 - loss level: make minor classes' misclassification cost higher
 - ratio of total population to class population
 - score level: balance the predicting scores directly
 - Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Problem
- Others
 - Transfer based techniques

Clustering based techniques

Popular Benchmarks

- ImageNet-LT
- Places365-LT
- iNaturalist

Related Papers

Training Cost-Sensitive Neural Networks with Methods Addressing the Class Imbalance Problem

$$O_i^* = \eta \sum_{c=1}^{C} O_i Cost[i, c].$$

- Cost based moving threshold can achieve similar performance with the sampling methods.
- Cost function should be pre-defined.

SMOTE: Synthetic Minority Over-sampling Technique

$$r = p + (q - p) \times \lambda$$

- Generate synthetic examples from K-means neighbours by operating in "feature space"
- · Combine over-sampling and down-sampling

Take-on Message

- For sampling: The performance depends on the class DISCRIMINATORY INFORMATION contained in the PRUNED PORPULATION.
- SCORE LEVEL BALANCING is underdeveloped
- · Balancing will hurt feature learning, while help classifier learning