COMS W4701: Artificial Intelligence

Lecture 13: RL Generalization and Applications

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

Model-based reinforcement learning

Function approximation

Stochastic gradient descent

Reinforcement learning applications

Models and Planning

- All search and decision problems that we discussed prior to RL assumed knowledge of the environment model
- With knowledge of a complete model, an agent can plan offline

- If the model is stochastic, an agent can also simulate experiences
- These experiences can then be used to estimate values and policies

Learning methods use "real" experiences in an online setting, but they should also work with simulated experience as well!

Planning, Acting, and Learning

- Suppose our agent is able to plan given some initial environment model
- The agent acts according to its plan (or policy) and makes observations

- These can then be used to improve the existing value function and policy
- These can also be used to improve the agent's model

- Model learning can then indirectly also change the agent's value function and policy
- May be better in cases of limited experiences

- Dyna-Q integrates both learning and planning in the same algorithm
- Steps (a-d) of each iteration are just regular RL (e.g., Q-learning)

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$

- After updating Q-value, we can perform model learning by updating transition probabilities and rewards
- E.g., we can compute and update average rewards, frequencies of all possible state-action-state transitions

- Finally, we can continue learning Q-values by using the current model to simulate rewards and transitions (planning step)
- Query the model for past experiences
- Subsequent Q-value updates can then lead to updates in the policy!

```
(e) Model(S, A) \leftarrow R, S'

(f) Loop repeat n times: S \leftarrow \text{random previously observed state}

A \leftarrow \text{random action previously taken in } S

R, S' \leftarrow Model(S, A)

Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) - Q(S, A)\right]
```


- Dyna-Q integrates both learning and planning in the same algorithm
- In practice, we can interleave both stages in an arbitrary way

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$

Maze Example

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

Function Approximation

- In RL, we are trying to learn *functions* over states or state-actions: V, Q, π
- So far these have specified values for every individual state!
- Not possible in problems with too many states or continuous states

• We need to do function approximation—instead of learning $V^{\pi}(s)$, we learn a (smaller) set of weights \mathbf{w} describing a function $\hat{V}(s, \mathbf{w})$

• Like the evaluation functions used in game trees, \hat{V} may be a linear feature combination, neural network, decision tree, etc.

Objective Functions

- Suppose we've chosen a function parameterization for \widehat{V} with weights ${\bf w}$
- How do we update w given a sample transition sequence?
- Specify an underlying *objective*, e.g., minimizing *squared error* in \hat{V} :

$$L(\mathbf{w}) = \frac{1}{2} \left(V^{\pi}(s) - \widehat{V}(s, \mathbf{w}) \right)^{2}$$

• Ideally we can find a global optimum \mathbf{w}^* that minimizes L, but many problems will have many local optima as well

Gradient Descent

- Suppose that L is a differentiable function of the weight vector \mathbf{w}
- The **gradient** of a multivariate function $L(w_1, ..., w_n)$ is a *vector* of partial derivatives wrt all w_i

$$\frac{\partial L}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial L}{\partial w_1} & \dots & \frac{\partial L}{\partial w_n} \end{bmatrix}$$

- Indicates magnitude and direction of largest change in L
- The value of L decreases fastest along direction of $-\frac{\partial L}{\partial \mathbf{w}}$
- **Gradient descent:** Initialize the configuration **w**, and repeatedly update it as $\mathbf{w} \leftarrow \mathbf{w} \alpha \frac{\partial L}{\partial \mathbf{w}}$ until convergence

Updating the Weights

lacktriangle The gradient descent update for the mean squared error of \widehat{V} is thus

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \frac{\partial}{\partial \mathbf{w}_t} \frac{1}{2} \left(V^{\pi}(s_t) - \hat{V}(s_t, \mathbf{w}_t) \right)^2$$
$$= \mathbf{w}_t + \alpha \left(V^{\pi}(s_t) - \hat{V}(s_t, \mathbf{w}_t) \right) \frac{\partial \hat{V}(s_t, \mathbf{w}_t)}{\partial \mathbf{w}_t}$$

Ex: Linear combination of features

$$\widehat{V}(s, \mathbf{w}) = w_1 x_1(s) + w_2 x_2(s) + \dots = \sum_i w_i x_i(s) = \mathbf{w}^\mathsf{T} \mathbf{x}(s)$$

• Gradient is simply $\frac{\partial \hat{V}(s_t, \mathbf{w}_t)}{\partial \mathbf{w}_t} = (x_1, x_2, ..., x_n) = \mathbf{x}(s)$

Stochastic Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(V^{\pi}(s_t) - \hat{V}(s_t, \mathbf{w}_t) \right) \frac{\partial \hat{V}(s_t, \mathbf{w}_t)}{\partial \mathbf{w}_t}$$

- Last issue: We don't know the "true" or target value $V^{\pi}(s_t)$
- Stochastic gradient descent: Approximate the gradient using samples, just like in classical RL
- Gradient MC prediction: $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(G_t \hat{V}(s_t, \mathbf{w}_t) \right) \frac{\partial V(s_t, \mathbf{w}_t)}{\partial \mathbf{w}_t}$
- Semi-gradient TD(0): $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(r + \gamma \hat{V}(s_{t+1}, \mathbf{w}_t) \hat{V}(s_t, \mathbf{w}_t) \right) \frac{\partial \hat{V}(s_t, \mathbf{w}_t)}{\partial \mathbf{w}_t}$

Neural Networks

- Neural networks are function approximators composed of layers of neurons
- Each neuron applies a nonlinear activation function to a weighted sum of inputs
- Hidden (internal) layers are "feature" transformations of raw inputs
- More neurons yield greater representative power, but at the expense of training efficiency
- Goal: Learn the weights of the neuron connections
- Most methods like backpropagation run some kind of stochastic gradient descent

TD-Gammon

- Backgammon: High branching factor (~400), highly stochastic game
- Can approach using depth-limited tree search with evaluation function
- TD-Gammon (Tesauro, 1992) *approximated* the eval function using a neural net
- Weights were learned via semi-gradient TD learning on self-play
- Incorporated human expert data for hand-designed features

backgammon position (198 input units)

AlphaGo

- Go has much larger game tree than chess, no high-performance eval function
- AlphaGo used MCTS with rollout and selection policies trained on human expert data
- SL network improved using RL, then evaluated using self play to obtain value network
- MCTS values updated using combination of rollout result and value network output

https://deepmind.google/technologies/alphago/

AlphaGo

- AlphaGo used a combination of reinforcement learning with MCTS to master Go
- Human expert data was first used to train a policy network (board state -> action) using supervised learning (classification)
- Policy network was significantly improved via RL and self-play
- Policy network was then used to generate simulated data from self-play
- Finally, regression was used to train a value network (board -> value)

https://deepmind.google/technologies/alphago/

AlphaGo

- During actual gameplay, AlphaGo ran MCTS using its hard-trained network functions
- Node values are weighted averages of value network outputs and simulated values
- Policy network is used for encouraging exploration during the selection step as well as the rollout steps during simulation (evaluation)

Deep Q-Network

- Combination of Q-learning with deep convolutional neural networks (CNNs)
- Raw inputs in the form of video game streams: Automated feature design
- DQN achieved human level play on a few dozen different arcade video games
- Learned different policies to cope with different dynamics and reward structures
- No game-specific modifications!

https://deepmind.com/blog/article/deepreinforcement-learning

RL for Locomotion

https://www.youtube.com/watch?v=hx_bgoTF7bs

Multi-Agent RL

https://openai.com/blog/emergent-tool-use/

Summary

- Model-based RL methods use raw data to learn a model
- Models can be used to generate simulated data and supplement real data

- Function approximations are important for generalization when tabular representations are not feasible
- Learning via different forms of gradient descent

Many modern applications of RL using deep neural networks