Digital System Design

Design of Mealy and Moore Finite State Machines

Alfonso Fernandez

Academia de Sistemas Digitales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Contents

Introduction

Design Examples of Mealy FSM

Design Examples of Moore FSM

Contents

Introduction

Design Examples of Mealy FSM

Design Examples of Moore FSM

Finite Automata

Finite automata are abstract computing devices or **machines**, which are useful model for important hardware and software applications.

Finite automata are composed by discrete inputs, outputs, states and set of transitions, which depend on input symbols, from state to state. They are defined by the 5-tuples $M=(Q,\Sigma,\delta,q_0,F)$, where

- Q is a finite state set
- Σ is a finite alphabet set
- $\delta \colon Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subset Q$ is the set of accepted states

Mealy Machines

- Next state depends on present state and inputs
- Output is a function of present state and inputs

Moore Machines

- Next state depends on present state and inputs
- Output is a function of present state

Algorithm

- From the State Diagram, obtain the State Table and Transition Table.
- Construct the Karnaugh maps using the Transition Table.
- Select the flip-flop to be used in the design.
- Using the Karnaugh maps derive the optimum input equations for the selected flip-flops.

Contents

Introduction

Design Examples of Mealy FSM

Design Examples of Moore FSM

Example 1: Serial Adder

State Table and Transition Table

Present State	Inputs		Next State	Output	Transition		
\overline{A}	x y		A_{+}	z	f_A		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	1	0		
0	1	1	1	0	α		
1	0	0	0	1	$oldsymbol{eta}$		
1	0	1	1	0	1		
1	1	0	1	0	1		
1	1	1	1	1	1		

Design with JK Flip-Flops

$$J_A = x y$$

$$K_A = \overline{x} \, \overline{y} = \overline{x+y}$$

$$z = A \oplus x \oplus y$$

Circuit Diagram

Timing Diagram

Example 2: State Diagram

State Table and Transition Table

Present State		Inputs			Next State			Outputs		Transitions		
\overline{A}	B	C	\overline{x}	\overline{y}	$\overline{A_+}$	B_{+}	C_{+}	z	\overline{w}	f_A	f_B	f_C
0	0	0	0	Χ	0	0	0	Χ	X	0	0	0
0	0	0	1	Χ	0	0	1	X	X	0	0	α
0	0	1	X	0	0	1	0	0	1	0	α	β
0	0	1	X	1	0	0	1	1	0	0	0	1
0	1	0	X	Χ	1	0	0	X	X	α	β	0
1	0	0	X	0	1	0	0	1	1	1	0	0
1	0	0	X	1	1	0	1	0	0	1	0	α
1	0	1	X	0	0	0	1	1	1	eta	0	1
1	0	1	X	1	0	1	0	1	0	β	α	β

Karnaugh Maps for \boldsymbol{z} and \boldsymbol{w}

$$z = yC + \overline{y}A$$

$$w=\overline{y}$$

Karnaugh Maps for f_A and f_B

$$J_A = B$$
$$K_A = C$$

$$J_B = (y \odot A) C$$
$$K_B = 1$$

Karnaugh Map for f_C

$$J_C = yA + x\overline{A}\,\overline{B}$$
$$K_C = y \odot A$$

Circuit Diagram

Timing Diagram

Contents

Introduction

Design Examples of Mealy FSM

Design Examples of Moore FSM

Example 1: Divisible by Three Detector

State Table and Transition Table

Present State		Input	Next State		Output	Transitions		
\overline{A}	\overline{B}	\overline{x}	$\overline{A_+}$	B_{+}	\overline{z}	$\overline{f_A}$	f_B	
0	0	0	0	0	1	0	0	
0	0	1	0	1	1	0	α	
0	1	0	1	1	0	α	1	
0	1	1	0	0	0	0	β	
1	1	0	0	1	0	β	1	
1	1	1	1	1	0	1	1	

Design with JK Flip-Flops

$$J_A = B \, \overline{x}$$
$$K_A = \overline{x}$$

$$J_A = x$$
$$K_B = \overline{A} x$$

$$z=\overline{B}$$

Circuit Diagram

Timing Diagram

Example 2: State Diagram

State Table and Transition Table

Present State		Input	Next State			Output	Transitions			
\overline{A}	B	\overline{C}	\overline{x}	A_{+}	B_{+}	C_{+}	z	f_A	f_B	f_C
0	0	0	0	0	0	1	1	0	0	α
0	0	0	1	0	0	0	1	0	0	0
0	0	1	0	0	1	1	0	0	α	1
0	0	1	1	0	0	0	U	0	0	β
0	1	1	0	0	1	1	1	0	1	1
0	1	1	1	1	0	1	1	α	β	1
1	0	1	0	1	1	1	1	1	α	1
1	0	1	1	0	1	1	1	β	α	1
1	1	1	0	0	0	1	0	β	β	1
1	1	1	1	1	1	1	U	1	1	1

Design with JK Flip-Flops

$$J_A = B x$$
$$K_A = B \oplus x$$

$$J_B = C \, \overline{x} + A \, \overline{B}$$
$$K_B = A \oplus x$$

$$J_C = \overline{x}$$

$$K_C = \overline{A} \, \overline{B} \, x$$

$$z = \overline{C} + A \oplus B$$

Circuit Diagram

Timing Diagram

