MİKROİŞLEMCİ SİSTEMLERİ

Yrd.Doç.Dr. Şule Öğüdücü www3.itu.edu.tr/~sgunduz/courses/mikroisl/

4

Giriş/Çıkış Arabirimi

- Giriş/Çıkış (G/Ç) arabirimi bilgisayar ve çevre birimleri arasında veri transferini sağlar.
- Çevre birimleri tuş, diyot, yazıcı, disk, teyp, klavye, A/D çevirici olabilir.
- Arabirim Özellikleri:
 - MİB ve çevre birimleri arasındaki farklılıkları giderir.
 - MİB ve çevre birimleri arasındaki veri akışını senkronize eder
 - MİB ve çevre birimleri arasındaki veri akışı tek hat üzerinden ya da her bit için ayrı hatlar üzerinden sağlar.
 - Seri İletişim
 - Paralel İletişim

www3.itu.edu.tr/~sgunduz/courses/mikroisl/

2

Giriş/Çıkış Adresleri

- Yalıtılmış G/Ç Haritası (Isolated IO Map)
 - G/Ç arabirimleri için ayrı adres uzayı
 - G/Ç ya da bellek için ayrı seçme hatları
 - G/Ç işlemleri için özel buyruklar
 - Sınırlı sayıda işlem
- Bellek Haritalı G/Ç (Memory Mapped IO)
 - G/Ç arabirimleri ve bellekler aynı adres uzayını paylaşıyorlar.
 - G/Ç arabirimi için bellek oku/yaz işlemi kullanılabiliyor.
 - Bellek işlemleri için kullanılan buyruklar kullanılabiliyor.

www3.itu.edu.tr/~sgunduz/courses/mikroisl/

MİB ve G/Ç Arabirimi

- MİB transferi başlatıyor ve izliyor.
- Kesmeli çalışan G/Ç
 - G/Ç birimi hazır olduğunda G/Ç arabirimi kesme üreterek durumu MİB bildiriyor.
- Doğrudan Bellek Erişimi
 - Doğrudan bellek erişim (DMA) birimi G/Ç arabirimi ve bellek arasında veri transferini sağlıyor.

www3.itu.edu.tr/~sgunduz/courses/mikroisl/

HAZIR Girişi

- Çevre biriminin hazır olup olmadığını anlamak için kullanılır.
- 7. bitin konumuna göre çevre biriminin hazır olup olmadığı anlaşılır: HAZIR BAYRAĞI
 - Etkin durumu 1
- Hazır girişinin hangi konumunda çevre biriminin hazır olacağı ve kesme oluşturulacağı denetim kütüğünün ${\bf D_1}$ ve ${\bf D_0}$ bitleri ile belirlenir.
- Durum/Denetim Kütüğünün içeriği okunarak durum bayrağı sıfırlanır.

1 0 1	Hazır girişinin	Kesme çıkışı
0 0	1'den 0'a inişinde D ₇ =1	1'de kalır.Kesme üretmez.
0 1	0'dan 1'e çıkışında D ₇ =1	1'de kalır.Kesme üretmez.
1 0	1'den 0'a inişinde D ₇ =1	0'a iner.Kesme üretir.
	0'dan 1'e çıkışında D ₇ =1	0'a iner.Kesme üretir.

ONAY Girişi

- 6. bitin konumuna göre çevre biriminin kendisine gönderilen verileri alıp almadığı anlaşılır.
- Onay girişinin hangi konumunda çevre biriminin verileri aldığı ve kesme oluşturulacağı denetim kütüğünün D₃ ve D₂ bitleri ile belirlenir.

D_3	D ₂	Onay girişinin	Kesme çıkışı
0	0	1'den 0'a inişinde D ₆ =1	1'de kalır.Kesme üretmez.
0	1	0'dan 1'e çıkışında D ₆ =1	1'de kalır.Kesme üretmez.
1	0	1'den 0'a inişinde D ₆ =1	0'a iner.Kesme üretir.
1	1	0'dan 1'e çıkışında D ₆ =1	0'a iner.Kesme üretir.

w3.itu.edu.tr/~sgunduz/courses/mikroisl/

AL Çıkışı

 Durum/Denetim Kütüğünün D₅ ve D₄ bitleri AL çıkışını denetlemek için kullanılır.

D_5	D_4	AL Çıkışı	
0	0	0 konumuna getirilir	
0	1	1 konumuna getirilir	
1	0	Verinin iskeleye yazılmasında sonra 0 olur	
1	1	Verinin iskeleye yazılmasında sonra 1 olur	

21

www3.itu.edu.tr/~sgunduz/courses/mikroisl/

Örnek

8 bit veri yolu, 16 bit adres yolu olan bir mikroişlemciye temel adresi \$A0A0 olan gelişmiş bir PIA bağlanmıştır. PIA'nın ilk dört kapısına 4 anahtar bağlanmıştır. Bu anahtarların konumuna göre PIA'nın son dört kapısına bağlanan LED'ler yanacak veya sönecektir. Anahtarların konumu ancak kullanıcı bir butona bastığında okunacak ve LED'leri yakacak ve söndürecektir.

www3.itu.edu.tr/~sgunduz/courses/mikroisl/

Örnek Mikroişlemci/PIA 5V bağlantıları Veri Yolu HAZIR D₀-D₇ OKU/YAZ D₂ МΪВ KES SEÇK1 ΡİΑ ONAY SEÇK2 D. dres Yolu AKÇ www3.itu.edu.tr/~sgunduz/courses/mikrois/

```
iskele EST $A0A0
YONLEN EST $A0A1
DURDEN EST $A0A2

BAŞLA YÜK A, SFO
YAZ A, YÖNLEN
YÜK A, SOO
YAZ A, DURDEN
GERI YÜK A, CURDENN
SIN A, SOO
DEE GERI
YÜK A, CISKELE>
SOL A
SOL A
SOL A
SOL A
SOL A
YAZ A, CISKELE>
DAL GERI

www3.ttu.edu.tr/~sgunduz/courses/mikrois//
```