Group Members:

- Ali Janloo
- Ali Alavizadeh
- Amir Ali Akhgari

Armijo-Goldstein Condition and Backtracking Line Search

The **Armijo-Goldstein** condition is a criterion used in optimization algorithms to determine the step size along a given direction during line search. It ensures that the step size satisfies both a sufficient decrease condition and a curvature condition, balancing between making sufficient progress and avoiding excessive steps.

Armijo-Goldstein Condition

The **Armijo-Goldstein** condition involves two main components:

1. Sufficient Decrease Condition (Armijo Condition): It ensures that the function value decreases sufficiently with the step size. Mathematically, it is expressed as:

$$f(x_k + \alpha_k d_k) \leq f(x_k) + \epsilon \alpha_k \nabla f(x_k) \cdot d_k$$

where:

- $f(x_k)$ is the function value at the current point.
- α_k is the step size.
- d_k is the search direction.
- $\nabla f(x_k)$ is the gradient of the function at x_k .
- ϵ is a small positive constant, often chosen to be a small fraction.
- 2. Curvature Condition (Goldstein Condition): It ensures that the step size is not too large, preventing excessive progress. Mathematically, it is expressed as:

$$f(x_k + \alpha_k d_k) \ge f(x_k) + \eta \alpha_k \nabla f(x_k) \cdot d_k$$

where:

• η is another small positive constant, typically smaller than ϵ .

The **Armijo-Goldstein** condition requires that the step size α_k satisfies both the Armijo condition and the curvature condition.

Backtracking Line Search

Backtracking line search is an optimization technique used to find an appropriate step size that satisfies the **Armijo-Goldstein** condition. It iteratively reduces the step size until the condition is met.

Algorithm Steps:

- 1. Initialization:
 - Start with an initial guess for the step size α .
 - Compute the function value $f(x_k)$ and the directional derivative $\nabla f(x_k) \cdot d_k$.
- 2. Backtracking Loop:
 - Iterate until the **Armijo-Goldstein** condition is satisfied:
 - Update the step size: $\alpha = \eta \alpha$.
 - Check if both the Armijo condition and the curvature (Goldstien) condition are met.
 - * If yes, exit the loop.
 - * If no, continue reducing the step size and recheck.
- 3. Return the Step Size:
 - Once the loop exits, return the step sizeαthat satisfies the Armijo-Goldstein condition.

Conclusion

The **Armijo-Goldstein** condition, implemented through backtracking line search, provides a reliable method for choosing step sizes in optimization algorithms. By ensuring a balance between sufficient decrease and controlling step sizes, it helps optimize the convergence and efficiency of optimization algorithms.

Usage

In main.py , you can specify function you want to minimize by modifying $test_function$, $grad_test_fuciton$ and hyper-parameters like x0, d and initial_alpha:

```
def test_fuction(x: np.ndarray) -> np.ndarray:
    return np.sin(x)

def grad_test_fuciton(x: np.ndarray) -> np.ndarray:
    return np.cos(x)

# Initial point
```

```
x0 = np.array([0])
d = np.array([-8])
initial_alpha = 1000
and leave the rest as it is. then run the main.py:
python main.py
```