

## یادگیری ماشین

دکتر محمد حسین رهبان





#### مباحث این جلسه

لاجیستیک رگرشن (Logistic Regression)

انتخاب مدل (Model Selection)

تقسیم داده (Data Split)

سوگیری قیاسی (Inductive Bias)

تعمیمپذیری (Generalization)



#### مسئله

#### چگونه مسائل زیر را مدل سازی کنیم؟







## **Logistic Regression**

- ⇒ **تعریف**: استفاده از تابع لاجستیک برای مدلسازی یک متغیر وابسته باینری (خرید بیمه) از روی یک یا چند متغیر مستقل (سن)
- ⇒ **کاربرد** : مسائل دستهبندی دو کلاسه (مانند تشخیص هرزنامه، تشخیص بیماری و غیره.)
  - ⇒ **خروجی**: احتمال تعلق به یک کلاس خاص



#### **Sigmoid Function**



$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

تابع Sigmoid

یک متغیر مستقل

$$z = \beta_0 + \beta_1 x_1$$

چند متغیر مستقل

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$



## مسئله خرید بیمه



مدلسازی مسئله پیشبینی خرید بیمه با لاجستیک رگرشن

مثال تعاملي: لجستيک رگرشن



#### مسئله

در مسأله پیشبینی قیمت خانه بر اساس ویژگیهایی نظیر محله، متراژ، تعداد اتاق خواب و ... با چه چالشهایی در انتخاب مدل روبرو هستیم؟

عملکرد روی دادههای جدید

دقت مدل در پیشبینی

اعتمادپذیری و تفسیرپذیری



#### **Inductive Bias**

تعریف: فرضیاتی که مدل برای تعمیم از داده آموزش به داده تست استفاده میکند.



مثال : مدل رگرشن خطی: وجود رابطه خطی بین ورودی و خروجی



## یک روش ساده دیگر

دستهبند k-NN : برای داده x یافتن k نزدیکترین داده آموزشی به آن کلاسی اکثریت در بین همسایهها به x نسبت داده میشود









#### انتخاب مدل (Model Selection)

k-NN بهتره یا Logistic Regression؟

برای این منظور چه فاکتورهایی را باید در نظر بگیریم؟

- **سوگیری قیاسی** : فرضیات پشت کدام مدل با مسئله سازگار است؟
  - پیچیدگی مدل : تقابل بین سادگی مدل و عملکرد مدل
    - عملکرد مدل : Accuracy, Precision, Recall
  - تفسیریذیری: فهمیدن اینکه مدل بر چه اساسی پیشبینی میکند



## متریکهای ارزیابی



$$Precision = \frac{\sum TP}{\sum TP + FP}$$

$$Recall = \frac{\sum TP}{\sum TP + FN}$$

$$Accuracy = \frac{\sum TP + TN}{\sum TP + FP + TN + FN}$$

$$Sepecificity = \frac{\sum TN}{\sum TN + FP}$$

مدلی داریم که برای تشخیص سرطان به دقت 99 درصد رسیده است. نظر شما در مورد این مدل چیست؟



#### تقسیمبندی دادهها

در یادگیری ماشین دادهها به سه قسمت زیر تقسیمبندی میشوند:

تست

**Test** 

ارزیابی

**Validation** 

آموزش

**Train** 



#### آموزش، ارزیابی و تست

- **داده آموزش** : برای آموزش مدل استفاده میشود
- دادهی ارزیابی : برای تیون کردن هایپرپارامتر و انتخاب مدل استفاده میشود
- دادهای یکبار مصرف که برای ارزیابی نهایی مدل استفاده میشود
  - و عملکرد مدل نهایتا توسط این داده گزارش میشود
  - نحوه جداسازی متداول : 0.1 tseT ,0.1 noitadilaV ,0.8 Train



#### اهمیت جداسازی داده

- اطمینان از اینکه مدل دادهها را حفظ نکرده (overfitting)
- انتخاب بهترین مدل و تیون کردن هایپرپارامترها با استفاده از داده ارزیابی بدون
   نشت اطلاعات از داده تست
- عملکرد منصفانه و بدون غرض روی دادههای واقعی دیده نشده با استفاده از
   داده تست.



#### **Cross Validation**

**تعریف** : تکنیکی برای ارزیابی عملکرد مدل با استفاده از چند دستهای کردن دادههای آموزش و ارزیابی

هدف: بدست آوردن تقریب دقیقتر از عملکرد مدل



#### DATASET TRAINING SET TEST SET FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

# K-Fold Cross Validation

**تعریف** : تقسیم داده به k زیر دسته، سپس k بار آموزش مدل و ارزیابی روی زیر دستههای متفاوت

## تعمیمپذیری

**تعمیمپذیری (Generalization)** : توانایی یک مدل برای عملکرد خوب بر روی دادههای دیده نشده

#### فاکتورهای مهم :

- پیچیدگی مدل: تقابل بین پیچیدگی و عملکرد که مدلهای ساده underfit
   میشوند و مدلهای پیچیده overfit
- اندازه داده آموزش: داده بیشتر عموما به تعمیمپذیری بیشتر منجر میشود
  - مهندسی داده : کیفیت و مرتبط بودن ویژگیهای موجود در داده



## تعمیمپذیری







## ارزیابی تعمیمپذیری

چگونه تعمیمپذیری را ارزیابی کنیم؟

ارزیابی روی داده تست

ارزیابی روی داده ارزیابی

استفاده از Cross Validation برای تخمین تعمیمپذیری



#### **Machine Learning Pipeline**



