09/27/2024

Kecap

- Défot functions

- A function maps all the elements in the domain to bent a unique value in codomain.

 $-f:A\longrightarrow B$

- 1. YaEA, fa) is defined

2. Va EA, f(h) is unique. 3. Va EA, f(a) EB

Ex': $S: \mathbb{Z} \longrightarrow \mathbb{Z}$, defined as S(x) = x+1prove S is a function.

Proof! We are toying to show that S has properties of a function.

Vacaz, sca) is defined.

Sca) = a+1 by the def of S.

2. WTS, tall Valle, sca) is unique. \equiv If $S(a) = b_1$ and $S(a) = b_2$, then $b_1 = b_2$

Assume $S(a) = b_1$ and $S(a) = b_2$ $S(a) = b_1 = a + 1$ $S(a) = b_2 = a + 1$ $b_1 = b_2$ $therefore, \forall a \in A, f(a) is unique.$ 3. $\forall a \neq a \neq a \neq 1$ $b_1 \in Z$ $b_2 \in Z$ $b_3 \in Z$ $b_4 \in Z$ $b_4 \in Z$ $b_5 \in Z$ $b_6 \in Z$ $b_7 \in Z$

S(a) = a+1 $a+1 \in \mathbb{Z}$ by def of S. $a \in \mathbb{Z}, 1 \in \mathbb{Z}, sum of ints is$ an int.

Sa) EZ property 3 is satisfied.

S is a function.

onto/surjective functions. A function $f:A \longrightarrow B$ is called onto (surjective) if YbEB JaEA: fa) = b = YbeB, something in A maps to it. Range = codomain B Det one-to-one/injective functions. A function f: A -> B is called one-to-one/ injective if $\forall a_1, a_2 \in A$, $a_1 \neq a_2 \Longrightarrow f(a_1) \neq f(a_2)$ = Ybeb, at most 1 element in A maps to

Trijective and surjective are NOT the exact opposite of each other.

Det Bijection function.

A function f.A >> B is called a bijection if f is onto and one-to-one.

= \text{\text{\$\sigma}} \text{\$\text{\$\sigma}} \text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\e

	1:1 (one-to-one)	not (!)
onto	(Bijection)	B
not onto	A CONTRACTOR OF THE PARTY OF TH	A B

How can we prove a function f is onto or 1:13 WTS [HEB : [JaEA: fa)=b] = If beB, then JacA: f(a) = b K **3** step 1: Assume bEB Step 2: construct "a" s.t f(n) = b Ex: $S: \mathbb{Z} \longrightarrow \mathbb{Z}$, S(x) = x+1Let's prove that S is a onto function WTS If be Z, then Ja EZ : \$ S(a) = b * proof! by assumption Assume bEZ Then let's construct a EZ s.t sa) = b int-int is an int. consider a = b-1, a ∈ Z by det of S. 5(a) = (b-1)+1 = bwe found an aEZ that maps to b. ... S is an onto function. Therefore

can we prove a function is one-to-one. How ∀a1, a2 ∈ A, : a1 ≠ a2 => f(a1) ≠ f(a2). WTS 92 ffn2) If a, + 92 , then fait + fais P=> 9 = 79=> TP me consider the contrapositive statement and prove the claim is true. $\equiv \forall a_1 a_2 \in A$ of $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ ex'. $S: \mathbb{Z} \longrightarrow \mathbb{Z}$, S(x) = x+1prove S is I:1. Proof: proof by contrapositive WTS, $\forall \alpha_1, \alpha_2 \in \mathbb{Z}$: $S(\alpha_1) = S(\alpha_2) \Rightarrow \alpha_1 = \alpha_2$ Assume SCai) = SCa2) by def. of S and by substitution. $a_1+1 = a_2+1$ $a_1 = q_2$ by algebra, ... S is 1:1 function