BASIC NUMBER THEORY: LECTURE 13

WENHAN DAI

1. Orders in imaginary quadratic field

We first introduce the definition of orders. We always assume K is an imaginary quadratic field.

Definition 1. An ideal $\mathcal{O} \subseteq K$ is called an *order* if

- (1) \mathcal{O} is a subring of K,
- (2) \mathcal{O} is a finitely generated \mathbb{Z} -module, and
- (3) there exists an isomorphism $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q} \simeq K$ of \mathbb{Q} -vector spaces.

Note that (1)(2) in the definition above guarantee that \mathcal{O} is a subring of \mathcal{O}_K . As it is clear that \mathcal{O}_K is an order, it turns out that \mathcal{O}_K is the maximal order of K.

Remark 2. Note that when K is an imaginary quadratic field, \mathcal{O} is an order if and only if \mathcal{O} is a subring of \mathcal{O}_K with rank \mathbb{Z} $\mathcal{O}=2$ as a \mathbb{Z} -module, which implies that $\mathcal{O}\neq\mathbb{Z}$.

Recall that

$$\mathcal{O}_K = [1, w_K] := \mathbb{Z}[w_K], \quad w_K = \frac{\sqrt{d_K} + d_K}{2}.$$

In the upcoming context we use [-] to denote the \mathbb{Z} -linear combination for short.

Lemma 3. Suppose \mathcal{O} is an order of K. Then:

- (1) \mathcal{O} has finite index in \mathcal{O}_K ;
- (2) Let $f = [\mathcal{O}_K : \mathcal{O}]$ by regarding \mathcal{O} as a subgroup of \mathcal{O}_K . Then

$$\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K = [1, fw_K].$$

Proof. (1) Since $\mathcal{O} \subseteq \mathcal{O}_K$ and both of them share the same \mathbb{Z} -rank 2, we have

$$[\mathcal{O}_K:\mathcal{O}]=|\mathcal{O}_K/\mathcal{O}|<\infty.$$

(2) Note that $f\mathcal{O}_K \subseteq \mathcal{O}$ and then

$$\mathbb{Z} + f\mathcal{O}_K = \mathbb{Z} + [f, fw_K] = [1, fw_K] \subseteq \mathcal{O}.$$

Since $[1, fw_K]$ has index f in \mathcal{O}_K , we see $\mathcal{O} \subseteq [1, fw_K]$.

Definition 4. Suppose \mathcal{O} is an order of K. We call $f = [\mathcal{O}_K : \mathcal{O}]$ the conductor of \mathcal{O} .

Be careful that there might be various versions of "conductor" in algebraic number theory, e.g. there is an irrelevant definition with the same name in Kronecker-Weber theorem.

Date: November 20, 2020.

Corollary 5. Let f be the conductor of the order \mathcal{O} . Then

(1) The discriminant of \mathcal{O} over \mathbb{Z} is

$$\Delta_{\mathcal{O}/\mathbb{Z}} = f^2 \Delta_{\mathcal{O}_K/\mathbb{Z}} = f^2 d_K.$$

(2) \mathcal{O} is uniquely determined by $\Delta_{\mathcal{O}/\mathbb{Z}}$.

Proof. (1) is already known by definition of the discriminant. For (2), take

$$\Delta = \Delta_{\mathcal{O}/\mathbb{Z}}, \quad K = \mathbb{Q}(\sqrt{\Delta}), \quad f = \sqrt{\frac{\Delta}{d_K}}.$$

We have

$$\mathcal{O} = [1, f w_K] = [1, (\Delta + \sqrt{\Delta})/2].$$

This determines \mathcal{O} by Δ .

The following Lemma 6 and Remark 7 dictate that \mathcal{O} partially satisfies the property of a Dedekind domain.

Lemma 6. Let \mathcal{O} be an order.

- (1) \mathcal{O} is noetherian as a ring.
- (2) For any $0 \neq \mathfrak{a} \subseteq \mathcal{O}$ ideal, we have $|\mathcal{O}/\mathfrak{a}| < \infty$.
- (3) If $0 \neq \mathfrak{a} \subseteq \mathcal{O}$ is a prime ideal then \mathfrak{a} is maximal in \mathcal{O} .

Proof. (1) is clear as \mathcal{O}_K is noetherian as a Dedekind domain. For (2), choose $0 \neq \mathfrak{a} \subseteq \mathcal{O}$ and hence

$$\mathfrak{a}\mathcal{O} \subset \mathfrak{a} \subset \mathcal{O}$$
.

So \mathfrak{a} is of rank 2 over \mathbb{Z} , as rank $\mathbb{Z} \mathcal{O} = \operatorname{rank}_{\mathbb{Z}} \mathfrak{a} \mathcal{O} = 2$. This shows $|\mathcal{O}/\mathfrak{a}| < \infty$.

- (3) follows from noticing that \mathcal{O}/\mathfrak{a} is a finite integral domain.
- Remark 7. (1) For any order \mathcal{O} , the maximal order \mathcal{O}_K is the integral closure of \mathcal{O} in K. However, \mathcal{O} is not a Dedekind domain unless $\mathcal{O} = \mathcal{O}_K$ because it fails to be integrally closed.
 - (2) In general, \mathcal{O} does not have unique factorization of ideals.

Definition 8. An \mathcal{O} -ideal \mathfrak{a} is called *proper* if

$$\{\beta \in K \mid \beta \mathfrak{a} \subseteq \mathfrak{a}\} = \mathcal{O}.$$

Note that in Definition 8, \mathcal{O}_K always encompasses the set $\{\beta \in K \mid \beta \mathfrak{a} \subseteq \mathfrak{a}\}$. In fact, the equality can be replaced with " \subseteq " above.

Example 9. For $K = \mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{-3})$, take the order

$$\mathcal{O} = \mathbb{Z}[\sqrt{-3}] \subsetneq \mathcal{O}_K = [1, \frac{1+\sqrt{-3}}{2}].$$

Consider the \mathcal{O} -ideal $\mathfrak{a} = [2, 1 + \sqrt{-3}] = 2\mathcal{O}_K \subseteq \mathcal{O}$. As an extension of $\mathbb{Z} \cdot 2\mathbb{Z} \subseteq 2\mathbb{Z}$, we see

$$\{\beta \in K \mid \beta \mathfrak{a} \subset \mathfrak{a}\} = \mathcal{O}_K.$$

So in this case \mathfrak{a} is not proper in \mathcal{O} .

Definition 10. A fractional \mathcal{O} -ideal \mathfrak{a} is a finitely generated \mathcal{O} -submodule of K. It is called proper if $\{\beta \in K \mid \beta \mathfrak{a} \subseteq \mathfrak{a}\} \subseteq \mathcal{O}$. It is called *invertible* if there is fractional \mathcal{O} -ideal \mathfrak{b} such that $\mathfrak{ab} = \mathcal{O}$.

Proposition 11. Let a be a fractional O-ideal. Then

$$\mathfrak{a}$$
 is proper \iff \mathfrak{a} is invertible.

Proof. The necessity is easy. Suppose $\mathfrak{ab} = \mathcal{O}$ for some \mathfrak{b} . Then the candidate condition $\beta \mathfrak{a} \subseteq \mathfrak{a}$ implies $\beta \mathcal{O} \subseteq \mathfrak{ab} = \mathcal{O}$, and hence $\beta \in \mathcal{O}$. Conversely, the following Lemma 12 is required. Granting the lemma, as \mathfrak{a} is of rank 2 over \mathbb{Z} , let

$$\mathfrak{a} = [\alpha, \beta] = \alpha[1, \tau]$$

for some τ with minimal polynomial $ax^2 + bx + c$, where (a, b, c) = 1. The strategy is trying to construct $a\bar{a}$ as a principal ideal. Then

$$\mathfrak{a}\overline{\mathfrak{a}} = \alpha \overline{\alpha}[1, \tau][1, \overline{\tau}] = \alpha \overline{\alpha}[1, \tau, \overline{\tau}, \tau \overline{\tau}].$$

Then, as $\mathcal{O} = [1, a\tau]$,

$$\begin{split} a \mathfrak{a} \overline{\mathfrak{a}} &= N(\alpha)[a, a\tau, a\overline{\tau}, a\tau\overline{\tau}] \\ &= N(\alpha)[a, a\tau, -b, c] \\ &= N(\alpha)[1, a\tau] \qquad (\text{as } (a, b, c) = 1) \\ &= N(\alpha)\mathcal{O}. \end{split}$$

Therefore,

$$\mathfrak{a} \cdot \frac{a}{N(\alpha)}\overline{\mathfrak{a}} = \mathcal{O}.$$

So \mathfrak{a} is an invertible \mathcal{O} -ideal.

Lemma 12. Let $K = \mathbb{Q}(\tau)$ be an imaginary quadratic field with $ax^2 + bx + c$ being the minimal polynomial of τ , where (a,b,c)=1. Then $[1,\tau]$ is a proper fractional ideal of the order $[1, a\tau]$.

Proof. Note that $a\tau$ is an algebraic integer such that $a\tau \in \mathcal{O}_K$. Then $\mathcal{O} = [1, a\tau]$ is an order of K. It remains to show that

$$\{\beta \in K : \beta[1,\tau] \subseteq [1,\tau]\} = \mathcal{O}.$$

Suppose $\beta[1,\tau]\subseteq[1,\tau]$, then we have

- $\beta = m + n\tau$ for some $m, n \in \mathbb{Z}$,
- $\beta \tau = m\tau + n\tau^2 = (m \frac{b}{a})\tau \frac{cn}{a} \in [1, \tau],^1$ and $\frac{bn}{a}, \frac{cn}{a} \in \mathbb{Z}$ if and only if $\frac{n}{a} \in \mathbb{Z}$.

Or equivalently, $\beta \in [1, a\tau]$.

Definition 13. Given an order \mathcal{O} , we define

- (1) $I(\mathcal{O}) := \text{the group of proper fractional } \mathcal{O}\text{-ideals},$
- (2) $P(\mathcal{O}) :=$ the group of principal fractional \mathcal{O} -ideals, and
- (3) $C(\mathcal{O}) := I(\mathcal{O})/P(\mathcal{O})$, the ideal class group of the order \mathcal{O} , with $h(\mathcal{O}) := |C(\mathcal{O})|$ the class number of \mathcal{O} .

¹By using the condition $\tau^2 + \frac{b}{a}\tau + \frac{c}{a} = 0$ one cancels the items of degree ≥ 2 .

2. Orders and quadratic forms

Theorem 14. Fix an order \mathcal{O} of discriminant $D = \Delta_{\mathcal{O}/\mathbb{Z}} < 0$. Then

(1) If $f(x,y) = ax^2 + bxy + cy^2$ is a ppdf of discriminant D, then

$$[a, \frac{-b+\sqrt{D}}{2}] \subseteq \mathcal{O}$$

is a proper ideal of \mathcal{O} .

(2) Resuming on (1), the map

$$f(x,y) \longmapsto \left[a, \frac{-b + \sqrt{D}}{2}\right]$$

induces an isomorphism $C(D) \simeq C(\mathcal{O})$. In particular, $h(\mathcal{O}) = h(D)$.

Proof. (1) We have

$$[a, \frac{-b + \sqrt{D}}{2}] = a[1, \frac{-b + \sqrt{D}}{2a}] = a[1, \tau], \quad \tau = \frac{-b + \sqrt{D}}{2}.$$

And τ is a root of f(x,1). Since D<0, we see τ lies in the upper half plane. Call τ the root of f(x,y). As $[1,\tau]$ is a proper fractional ideal of $[1,a\tau]$, $a[1,\tau]=[a,a\tau]$ is a proper fractional ideal of $[1,a\tau]$. Also, for $f=[\mathcal{O}_K:\mathcal{O}]$,

$$[1, a\tau] = [1, \frac{-b + \sqrt{D}}{2}] = [1, \frac{(-b - fd_K) + fd_K + \sqrt{D}}{2}]$$
$$= [1, \frac{fd_K + \sqrt{D}}{2}] = [1, fw_K] = \mathcal{O}.$$

Here the second-last equality is due to $D = f^2 d_K$, and the third equality is because of $b \equiv D = b^2 - 4ac = f^2 d_K \equiv f d_K \mod 2$.

(2) Let f(x,y), g(x,y) be ppdfs of discriminant D with roots τ, τ' , respectively.

Claim 1. $f \sim g$ via proper equivalence if and only if

$$\tau' = \frac{p\tau + q}{r\tau + s}, \quad \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

(Recall that the upper half plane is stable under the action of $SL_2(\mathbb{Z})$.)

For this, if $f \sim g$ then f(x,y) = g(px + qy, rx + sy), and in particular,

$$f(x,1) = (rx+s)^2 g(\frac{px+q}{rx+s},1),$$

and hence

$$f(\tau, 1) = g(\frac{p\tau + q}{r\tau + s}, 1) = g(\tau', 1) = 0.$$

This shows that τ and τ' are differed by an element of $SL_2(\mathbb{Z})$. Conversely, we take

$$f'(x,y) = g(px + qy, rx + sy).$$

Then f(x,y) and f'(x,y) has the same root τ . This shows f=f' and proves Claim 1.

Claim 2. $[1,\tau]$ and $[1,\tau']$ are in the same ideal class if and only if

$$\tau' = \frac{p\tau + q}{r\tau + s}, \quad \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

For Claim 2, we note that $[1,\tau] \sim [1,\tau']$ if and only if there is some λ such that $\lambda[1,\tau'] = [1,\tau]$. This implies

$$\lambda = r\tau + s, \quad \lambda \tau' = p\tau + q, \quad r, s, p, q \in \mathbb{Z}.$$

Hence

$$\tau' = \frac{\lambda \tau'}{\lambda} = \frac{p\tau + q}{r\tau + s}, \quad \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Conversely, supposing the condition above, we get $\lambda = r\tau + s$ and $\lambda[1, \tau'] = [1, \tau]$. Then Claim 2 follows.

Combining two claims together, we see the map

$$C(D) \longrightarrow C(\mathcal{O})$$

 $f(x,y) \longmapsto \left[a, \frac{-b + \sqrt{D}}{2}\right]$

is a group homomorphism and injective. It remains to prove the surjectivity. Let $[1, \tau]$ be any proper fractional ideal of \mathcal{O} , and $ax^2 + bx + c$ with (a, b, c) = 1 and a > 0 the minimal polynomial of τ . Consider the ppdf $f(x, y) = ax^2 + bxy + cy^2$. Then $[1, \tau]$ is a proper fractional ideal of an order \mathcal{O}' which has discriminant $\operatorname{disc}(f(x, y))$. Hence

$$\mathcal{O} = \mathcal{O}', \quad D = \operatorname{disc}(f(x, y)).$$

This finishes the proof.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn