École normale supérieure, année universitaire 2018-2019.

Cours Algèbre 1, examen partiel du 7 novembre 2018.

Durée : 2 heures. Les documents et calculatrices sont interdits.

Exercice 1. On se propose dans cet exercice de démontrer le résultat suivant de «simplification dans la catégorie des groupes finis» : $soient\ X, H\ et\ K\ trois$ groupes finis $tels\ que\ X\times H\simeq X\times K.\ Alors\ H\simeq K.$

Pour tout couple (G, H) de groupes finis, on note M(G, H) le nombre de morphismes de groupes de G dans H, et I(G, H) le nombre de morphismes de groupes injectifs de G dans H.

(a) Soient G et H deux groupes finis. Montrez que

$$M(G,H) = \sum_{\Gamma \lhd G} I(G/\Gamma,H).$$

(b) Soit G un groupe fini. Montrez par récurrence sur |G| qu'il existe une famille $(a_{\Gamma})_{\Gamma \triangleleft G}$ d'entiers relatifs tels que pour tout groupe fini H on ait

$$I(G,H) = \sum_{\Gamma \lhd G} a_{\Gamma} M(G/\Gamma,H).$$

- (c) Soient X, H et K trois groupes finis tels que $X \times H \simeq X \times K$.
 - (c1) Montrez que M(G, H) = M(G, K) pour tout groupe fini G.
 - (c2) Montrez que I(G, H) = I(G, K) pour tout groupe fini G.
 - (c3) Montrez que $H \simeq K$.
- (d) Un contre-exemple dans le cas infini. Soit G le groupe des suites d'entiers relatifs, avec l'addition définie composante par composante (autrement dit, G est le produit d'une famille de copies de \mathbf{Z} indexée par \mathbf{N}). Montrez que $G \times G \simeq G$.

Exercice 2. Soit n un entier et soient ℓ_1, \ldots, ℓ_r des entiers ≥ 2 deux à deux distincts. Soient n_1, \ldots, n_r des entiers ≥ 1 tels que $\sum n_i \ell_i \leq n$. Soit $\sigma \in S_n$ une permutation dont l'écriture comme produit de cycles à supports deux à deux disjoints comprend n_i cycles de longueur ℓ_i pour chaque i, et aucun autre cycle. On désigne par C la classe de conjugaison de σ .

- (a) Soit G le commutant de σ , c'est-à-dire l'ensemble des permuations τ telles que $\tau \sigma \tau^{-1} = \sigma$. Calculez |G|; en déduire |C|.
- (b) On suppose à partir de maintenant que σ est paire. Montrez que $G \subset A_n$ si et seulement si les trois conditions suivantes sont satisfaites :
 - (i) chacun des ℓ_i est impair;
 - (ii) les n_i sont tous égaux à 1;
 - (iii) $\sum n_i \ell_i \geqslant n-1$.

(c) Montrez que si les conditions (i), (ii) et (iii) ci-dessus sont satisfaites C est réunion de deux classes de conjugaison de A_n qui ont même cardinal. Montrez que dans le cas contraire C est une classe de conjugaison de A_n .

Exercice 3. Soit G un groupe.

- (a) Montrez que le groupe $\operatorname{Int}(G)$ des automorphismes intérieurs de G est distingué dans $\operatorname{Aut}(G)$. On note $\operatorname{Out}(G)$ le quotient $\operatorname{Aut}(G)/\operatorname{Int}(G)$; on l'appelle le groupe des automorphismes extérieurs de G. On note π le morphisme quotient de $\operatorname{Aut}(G)$ vers $\operatorname{Out}(G)$.
- (b) Soit

$$\mathscr{S} = \left(\hspace{.1cm} 1 \longrightarrow G \xrightarrow{\hspace{.1cm} u \hspace{.1cm}} \Gamma \xrightarrow{\hspace{.1cm} p \hspace{.1cm}} Q \longrightarrow 1 \hspace{.1cm} \right)$$

une suite exacte de groupes. Rappelez comme on associe naturellement à une section s de p un morphisme φ_s de Q dans $\operatorname{Aut}(G)$.

- (c) En vous inspirant de la construction rappelée en (b), utilisez la suite exacte $\mathscr S$ pour construire de manière naturelle un morphisme ψ de Q vers $\mathrm{Out}(G)$ sans avoir à choisir une section de p, ni même à supposer qu'il en existe. Montrez que si p possède une section s alors $\psi = \pi \circ \varphi_s$.
- (d) Que peut-on dire du morphisme ψ construit en (c) lorsque G est abélien?

Exercice 4. On fixe un entier impair $m \ge 3$. On note φ le morphisme de $\mathbb{Z}/2\mathbb{Z}$ dans $\operatorname{Aut}(\mathbb{Z}/m\mathbb{Z})$ qui envoie $\overline{1}$ sur la multiplication par (-1), et l'on note D le groupe diédral $\mathbb{Z}/m\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

- (a) Calculez l'ordre d'un élément (a, b) de D (en fonction de a et b).
- (b) Montrez qu'il existe un morphisme μ de Aut(D) dans $(\mathbf{Z}/m\mathbf{Z})^{\times}$ tel que $u(a,0)=(\mu(u)a,0)$ pour tout $a\in\mathbf{Z}/m\mathbf{Z}$. Montrez que μ est surjectif et possède une section.
- (c) Montrez qu'il existe un morphisme λ de Ker (μ) dans $\mathbf{Z}/m\mathbf{Z}$ tel que $u(0,1)=(\lambda(u),1)$ pour tout $u\in \mathrm{Ker}(\mu)$. Montrez que λ est un isomorphisme.
- (d) Utiliser ce qui précède pour construire un isomorphisme explicite

$$(\mathbf{Z}/m\mathbf{Z} \rtimes_{\psi} (\mathbf{Z}/m\mathbf{Z})^{\times}) \simeq \operatorname{Aut}(D)$$

où ψ est un morphisme de $(\mathbf{Z}/m\mathbf{Z})^{\times}$ dans $\operatorname{Aut}(\mathbf{Z}/m\mathbf{Z})$ à déterminer. Modulo cet isomorphisme, à quoi correspond la conjugaison par un élément (a,b) de D? À quoi correspond le groupe des automorphismes intérieurs de D?