CS118 Homework 7 Due: Nov.29 6pm, 2012

- 1. In Section 5.3, we provided an outline of the derivation of the efficiency of slotted ALOHA. In this problem we'll complete the derivation.
 - a. Recall that when there are N active nodes, the efficiency of slotted ALOHA is $Np(1-p)^{N-1}$. Find the value of p that maximizes this expression.
 - b. Using the value of p found in (a), find the efficiency of slotted ALOHA by letting N approach infinity. Hint: $(1-1/N)^N$ approaches 1/e as N approaches infinity.
- 2. Suppose four active nodes node A, B, C and D are competing for access to a channel using slotted ALOHA. Assume each node has an infinite number of packets to send. Each node attempts to transmit in each slot with probability *p*. The first slot is numbered slot 1, the second slot is numbered slot 2, and so on.
 - a. What is the probability that node A succeeds for the first time in slot 5?
 - b. What is the probability that some node (either A, B, C or D) succeeds in slot 4?
 - c. What is the probability that the first success occurs in slot 3?
 - d. What is the efficiency of this four-node system?
- 3. Consider a 100 Mbps 100BASE-T Ethernet with all nodes directly connected to a hub. To have an efficiency of 0.50, what should be the maximum distance between a node and the hub? Assume a frame length of 1000 bytes and that there are no repeaters. Does this maximum distance also ensure that a transmitting node A will be able to detect whether any other node transmitted while A was transmitting? Why or why not? How does your maximum distance compare with the actual 100 Mbps standard? Assume that the signal propagation speed in 100BASE-T Ethernet is 1.8 x 10⁸ m/sec.
- 4. Suppose two nodes, A and B, are attached to opposite ends of an 800 m cable, and that they each have one frame of 1500 bits (including all headers and preambles) to send to each other. Both nodes attempt to transmit at time t=0. Suppose there are four repeaters between A and B, each inserting a 20-bit delay. Assume the transmission rate is 100 Mbps, and CSMA/CD with backoff intervals of multiples of 512 bits is used. After the first collision, A draws K=0 and B draws K=1 in the exponential backoff protocol. Ignore the jam signal and the 96-bit time delay.
 - a. What is the one-way propagation delay (including repeater delays) between A and B in seconds? Assume that the signal propagation speed is $2 \cdot 10^8$ m/sec.
 - b. At what time (in seconds) is A's packet completely delivered at B?
 - c. Now suppose that only A has a packet to send and that the repeaters are replaced with switches. Suppose that each switch has a 20-bit processing delay in addition to a store-and-forward delay. At what time, in seconds, is A's packet delivered at B?