Университет ИТМО Кафедра ВТ

Алгоритм Беллмана-Форда Алгоритмы и Структуры Данных

Выполнил: Федоров Сергей

Группа: Р3212

Санкт-Петербург 2020 г.

Алгоритм Беллмана-Форда

Алгоритм Беллмана-Форда - алгоритм поиска кратчайших путей. в ориентированном графе, от заданной вершины до всех остальных.

```
Сложность алгоритма по времени: O(|V| * |E|)
Сложность алгоритма по памяти: O(|V|)
```

Суть алгоритма:

Построим матрицу A_{ij} , где конкретное значение матрицы будет означать кратчайшее расстояние от вершины **s** до вершины **i** при кол-ве ребер в пути не более **j**.

Первый столбец можем инициализировать следующим образом:

$$A_{i0} = 0 : i = s, A_{i0} = +\infty : i \neq s$$

Стоит заметить, что все пути из s в i, содержащие ровно j ребер состоит из пути длинной **j** - **1** и еще одного ребра. Тогда если мы знаем столбцы матрицы $A_{ij}: j \in [0,1...(x-1)]$ то можно легко определить столбец A_{ix}

Матрицу можно заменить на список, тем самым уменьшив сложность алгоритма по памяти с $0(|V|^2)$ до 0(|V|), но при этом мы тогда теряем возможность нахождения самих путей, а будем хранить лишь расстояние от \mathbf{s} до остальных вершин.

Псевдно-код:

```
\begin{array}{l} \text{for } v \in V \\ \quad \text{do } d[v] \leftarrow +\infty \\ d[s] \leftarrow 0 \\ \text{for } i \leftarrow 1 \text{ to } |V|-1 \\ \quad \text{do for } (u,v) \in E \\ \quad \text{if } d[v] > d[u] + w(u,v) \\ \quad \text{then } d[v] \leftarrow d[u] + w(u,v) \\ \text{return } d \end{array}
```

Релаксации по каждой вершине выполняются ровно |V| - 1 раз, так как максимальная длинна кратчайшего пути в ребрах будет равна |V| - 1 ребер, если не так, то значит в пути есть циклы, а такой случай мы не рассматриваем.

Доказательство корректности:

Докажем корректность алгоритма по индукции:

Предположение:

После х итерций:

- Если d[i] (расстояние до i) не бесконечность, то она равно какому либо пути от s до i
- Если существует путь от **s** до **i** с не более чем **x** ребрами, то **d[i]** имеет значение кратчайшего пути из **s** в **i**, с кол-вом ребер не больше **x**

База:

При ${\bf x}$ = 0, тогда по нашей инициализации $d_i=0$: $i=s, d_i=+\infty$: $i\neq s$, все условия выполняются.

Док-во:

В начале докажем первое утверждение. Каждый раз когда мы обновляем значение в **d** мы делаем сложение двух путей $d[v] \leftarrow d[u] + w(u, v)$, по индукционному предположению d[u] - длинна пути от **s** до **u**. Следовательно d[v] есть длинна какого-то пути от **s** до **v**.

Для доказательства второго утверждения, рассмотрим некоторый кратчайший путь ${\bf P}$ из s до v c количеством ребер в пути не более ${\bf j}$. Обозначим предпоследнюю вершину в пути ${\bf P}$ буквой ${\bf u}$. Пусть имеющийся подпуть из ${\bf s}$ в ${\bf u}$, не кратчайший путь из ${\bf s}$ в ${\bf u}$, тогда мы можем найти составить такой путь из ${\bf P}^*$, который будет короче ${\bf P}$ - противоречие. По индукционному предположению d[u] на ${\bf j}$ - ${\bf 1}$ итерации есть кратчайший путь из ${\bf s}$ в ${\bf u}$, тогда d[u]+w(u,v) есть ${\bf P}$. На итерации ${\bf j}$ расстояние от ${\bf s}$ до ${\bf v}$ (d[v]) будет сравниваться с d[u]+w(u,v) и будет приравнено d[u]+w(u,v) если вдруг окажется больше. Таким образом на итерации ${\bf j}$ d[v] будет равно длине кратчайшего пути ${\bf P}$.

Оптимизация:

Если при выполнений новой итерации алгоритма минимальные расстояния не изменились, это означает что дальнейшие итерации не найдут более коротких путей, а значит можно прекратить выполнение алгоритма и вернуть результат.

Работа с отрицательными циклами:

Несмотря на то что задача нахождения кратчайшего пути в графе с отрицательными циклами, не имеет смысла, так как можно найти бесконечно малый путь, однако с помощью модифицированного алгоритма Беллмана-Форда можно установить факт наличия отрицательного цикла в графе. Для нахождения такого цикла в графе, достаточно провести еще одну итерацию релаксации после |V| - 1 уже осуществленных и если расстояние до какой-либо из вершин уменьшилось, то это означает что в графе есть отрицательный цикл.