Samyak Gondane-AI25BTECH11029

Question

If $\mathbf{a} = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\mathbf{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependant vectors and $|c| = \sqrt{3}$, then

1.
$$\alpha = 1, \beta = -1$$

3.
$$\alpha = -1, \beta = -1$$

2.
$$\alpha = 1, \beta = \pm 1$$

4.
$$\alpha = \pm 1, \beta = 1$$

Solution

Linear Dependence of Vectors via Matrix Theory

Given three vectors in \mathbb{R}^3 :

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ \alpha \\ \beta \end{pmatrix} \tag{1}$$

and the condition that $\|\mathbf{c}\| = \sqrt{3}$, we aim to find values of α and β such that the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are linearly dependent.

The magnitude of vector **c** is:

$$\|\mathbf{c}\|^2 = 1^2 + \alpha^2 + \beta^2 = 3 \implies \alpha^2 + \beta^2 = 2$$
 (1)

Construct a matrix with the vectors as columns:

$$M = \begin{pmatrix} 1 & 4 & 1 \\ 1 & 3 & \alpha \\ 1 & 4 & \beta \end{pmatrix} \tag{2}$$

Compute the determinant:

$$det(M) = 1 \cdot (3\beta - 4\alpha) - 4 \cdot (\beta - \alpha) + 1 \cdot (4 - 3)$$

= $3\beta - 4\alpha - 4\beta + 4\alpha + 1$
= $-\beta + 1$

Set det(M) = 0 for linear dependence:

$$-2\beta + 2 = 0 \quad \Rightarrow \quad \beta = 1 \tag{2}$$

Substitute Equation (2) into Equation (1):

$$\alpha^2 + 1 = 2 \implies \alpha^2 = 1 \implies \alpha = \pm 1$$
 (3)

Final Answer

The values of α and β that satisfy both conditions are:

$$\alpha = \pm 1, \quad \beta = 1 \tag{4}$$