Neural Network Charity Analysis

By Veronica Ostapowich

A **Neural Network Binary Classifier** was created to predict if the nonprofit foundation Alphabet Soup charities will be successful if they receive funding and optimize this model to achieve higher than 75% accuracy.

Overview of the analysis

This project includes Jupyter Notebook files to build, train, test, and optimize a deep neural network that models charity success from nine features in a loan application data set. We used the TensorFlow Keras Sequential model with Dense hidden layers and a binary classification output layer and optimized this model by varying the following parameters:

- Training duration in epochs
- Hidden layer architecture
- Hidden layer activation functions
- Categorical variable bucketing
- Number of input features
- Batch size
- Learning rate

Resources

Data Source:	https://static.bc-edx.com/data/dl-1-2/m21/lms/starter/charity_data.csv
Software:	Google Colab, Jupyter Notebook, pandas, Python, scikit-learn, TensorFlow

Below is a sample of our data:

	APPLICATION_TYPE	AFFILIATION	CLASSIFICATION	USE_CASE	ORGANIZATION	STATUS	INCOME_AMT	SPECIAL_CONSIDERATIONS	ASK_AMT	IS_SUCCESSFUL
0	T10	Independent	C1000	ProductDev	Association			N	5000	1
1	T3	Independent	C2000	Preservation	Co-operative		1-9999	N	108590	1
2	T5	CompanySponsored	C3000	ProductDev	Association			N	5000	0
3	T3	CompanySponsored	C2000	Preservation	Trust		10000-24999	N	6692	1
4	T3	Independent	C1000	Heathcare	Trust		100000-499999	N	142590	1
34294	T4	Independent	C1000	ProductDev	Association			N	5000	0
34295	T4	CompanySponsored	C3000	ProductDev	Association			N	5000	0
34296	T3	CompanySponsored	C2000	Preservation	Association			N	5000	0
34297	T5	Independent	C3000	ProductDev	Association			N	5000	1
34298	T3	Independent	C1000	Preservation	Co-operative	1	1M-5M	N	36500179	0

Data Preprocessing

STEP 1. Preprocess our data set *charity_data.csv* by reading our data and noting the following information:

Target Variable:	IS_SUCCESSFUL				
Identification Variables to be removed:	EIN, NAME				
Feature Variables:	•	APPLICATION_TYPE AFFILIATION CLASSIFICATION USE_CASE ORGANIZATION	•	STATUS INCOME_AMT SPECIAL_CONSIDERATIONS ASK_AMT	

- **STEP 2.** Convert categorical data to numeric with *pd.get_dummies* after bucketing noisy features APPLICATION_TYPE, ASK AMT, and CLASSIFICATION with many unique values.
- **STEP 3.** We split our preprocessed data into our features and target arrays, split further into training and testing datasets, and scaled our training and testing data.

Compiling, Training, and Evaluating the Model

Using our knowledge of *TensorFlow*, we designed a neural network, or deep learning model, to create a binary classification model that can predict if an "Alphabet Soup" funded organization would be successful based on the dataset features. We determined how many inputs there were before deciding the number of neurons and layers in the first model. We compiled, trained, and evaluated the binary classification model to calculate the model's loss and accuracy with the following parameters:

Parameter	Value	Justification
Number of Hidden Layers	Two	A Deep Neural Network is necessary for complex data. This is a good starting point with low computation time.
Architecture	hidden_nodes1 = 10 hidden_nodes2 = 20	The first layer was set at 10 (we have nine featured variables), and a second layer was added to offer a shorter computation time.
Hidden Layer Activation Function	relu	A generic choice for inexpensive training with generally good performance.
Number of Output Nodes	One	Therefore, this binary classifier model should have one output predicting if the variable IS_SUCCESSFUL is True or False.
Output Layer Activation Function	sigmoid	It provides a probability output (values between 0 and 1) for classifying our target variable.
Training Duration (epochs)	50	Initial training duration

This parameter combination yielded the model summary shown in the Base Model summary and was saved as *AlphabetSoupCharity.ipynb*:

We then compiled and trained the model using the *binary_crossentropy* loss function, *adam* optimizer, and *accuracy* metric to obtain the training results shown in our Base Model Training. Verifying with the testing set, we got the following results:

```
268/268 - 1s - loss: 0.5452 - accuracy: 0.7324 - 584ms/epoch - 2ms/step
Loss: 0.5451513528823853, Accuracy: 0.7323614954948425
```

Since our accuracy is not reaching the goal of achieving more than 75% accuracy, we optimized the previous model by adjusting the parameters shown above.

We saved it as AlphabetSoupCharity_Optimization.ipynb, initially making the following single changes:

Parameter	Value Change To	Justification		
Architecture Adding a third hidden layer		Adding a third hidden layer to a deep learning model can provide		
		additional capacity and flexibility, allowing it to learn more comple		
		and abstract features from the input data.		
Hidden Layer	The second and third layers	Using different activation functions on the hidden layers in a deep		
Activation Function	were changed to tanh	learning model is to introduce non-linearity into the network.		
Number of input	hidden_nodes_layer1 = 80	Increasing the input features per hidden layer allows us to capture		
features	hidden_nodes_layer2 = 50	complex relationships, learn hierarchical representations, avoid		
	hidden_nodes_layer3 = 30	overfitting, and improve the overall performance.		

The parameters changed yielded our optimized model summary shown in our Base Model Summary.

Model: "sequential_62"						
Layer (type)	Output Shape	Param #				
dense_205 (Dense)	(None, 80)	4080				
dense_206 (Dense)	(None, 50)	4050				
dense_207 (Dense)	(None, 30)	1530				
dense_208 (Dense)	(None, 1)	31				
Total params: 9,691 Trainable params: 0 Non-trainable params: 0						

268/268 - 27s - loss: 0.5490 - accuracy: 0.7325 - 27s/epoch - 100ms/step Loss: 0.548992931842804, Accuracy: 0.732478141784668

Despite modifying the parameters, we didn't observe a significant increase in performance from the initial model, and it does not meet the target 75% accuracy criteria. To improve the accuracy of our model, we attempted a systematic approach by following **Optimizing Neural Networks** and iteratively changing one model parameter at a time while holding others fixed, and then combining the parameters which generated the highest accuracy in each iterative search.

The results were the following:

Parameter	Search Options	Optimal Value	Loss	Accuracy
Training Duration (epochs)	50, 100, 200, 300	100	0.588	0.732
_ ` ' /		(00.50.00)	0.504	0 = 10
Architecture	All permutations with one to three hidden layers, i.e. [(10,),, (80,), (10, 30), (30, 10),, (80, 50), (10, 30, 50), (10, 50, 30), (30, 10, 50),, (80, 50, 30)	(80, 50, 30), three hidden layers with 80, 50, and 30 nodes.	0.561	0.740
Hidden Layer Activation Function	relu, tanh, selu, elu, exponential	relu and tanh	0.556	0.734
Number of Input Features	Bucket all combinations of APPLICATION_TYPE, CLASSIFICATION, INCOME_AMT		0.560	0.737

Combining all optimized model parameters, we retrained and tested to obtain the following testing loss and accuracy:

Loss: 0.564Accuracy: 0.728

Summary

In summary, we presented a Deep Neural Network classification model that predicts loan applicant success from feature data contained in *charity_data.csv* with 73% accuracy. Unfortunately, our optimized model does not meet the 75% accuracy target, and the optimization methods employed here have not caused significant improvement.

Additional Optimization Methods

We can now consider other optimizing options to reach our more than 75% accuracy goal:

- Visualize the numerical feature variable ASK_AMT to find and remove potential noisy outliers.
- Carefully tune the parameters listed above iteratively and log optimal values when moving to reach an optimized model that meets our established goal.