Example: Let's trace the variable elimination algorithm with the elimination ordering Y_4 , Y_3 , Y_2 for the graph and factors shown below.

Step 0: Initialize

$$V = \{Y_4, Y_3, Y_2\}$$

$$\phi_1(Y_1, Y_2) = \begin{cases} \phi_2(Y_2, Y_3) & \phi_3(Y_3, Y_4) \\ Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$\phi_3(Y_3, Y_4) = \begin{cases} \phi_3(Y_3, Y_4) & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$F_1 = \begin{cases} \phi_3(Y_3, Y_4) & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{cases}$$

$$F_1 = \begin{cases} \phi_1(Y_1, Y_2) & \phi_2(Y_2, Y_3) \\ Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$F_1 = \begin{cases} \phi_1(Y_1, Y_2) & \phi_2(Y_2, Y_3) \\ Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$\underbrace{ \begin{pmatrix} Y_1 \end{pmatrix}^{\varphi_1(Y_1,Y_2)} \begin{pmatrix} Y_2 \end{pmatrix}^{\varphi_2(Y_2,Y_3)} \begin{pmatrix} Y_3 \end{pmatrix}^{\varphi_3(Y_3,Y_4)} \begin{pmatrix} Y_4 \end{pmatrix}^{\varphi_3(Y_4,Y_4)} \begin{pmatrix} Y_4 \end{pmatrix}^{\varphi_3(Y_4$$

$$V = \{Y_4, Y_3, Y_2\}$$

$$\varphi_3(Y_3, Y_4) \qquad \varphi_1(Y_1, Y_2) \qquad \varphi_2(Y_2, Y_3) \qquad \varphi_2(Y_3, Y_3) \qquad \varphi_2(Y_$$

$$\psi_{1}(Y_{3},Y_{4}) = \prod_{\varphi \in F_{1}} \varphi = \begin{bmatrix} Y_{3} \setminus Y_{4} & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\underbrace{ (Y_1)}^{\varphi_1(Y_1,Y_2)} \underbrace{ (Y_2)}^{\varphi_2(Y_2,Y_3)} \underbrace{ (Y_3)}^{\varphi_2(Y_2,Y_3)} \underbrace{ (Y_3)}^{\varphi_3(Y_3,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_3,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_4,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_4$$

$$V = \{Y_4, Y_3, Y_2\}$$

$$\phi_3(Y_3, Y_4)$$

$$F_1 = \{Y_1 \setminus Y_2 \mid 0 \mid 1 \}$$

$$0 \mid 2 \mid 1 \}$$

$$1 \mid 1 \mid 2 \mid 1 \}$$

$$F'_1 = \{Y_1 \setminus Y_2 \mid 0 \mid 1 \}$$

$$0 \mid 4 \mid 2 \mid 1 \}$$

$$\tau_{1}(Y_{3}) = \sum_{y_{4}} \psi_{1}(Y_{3}, y_{4}) = \sum_{y_{4}} \begin{bmatrix} Y_{3} \setminus Y_{4} & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} Y_{3} & 0 \\ 0 & 3 \\ 1 & 3 \end{bmatrix}$$

$$\underbrace{ \begin{pmatrix} Y_1 \end{pmatrix}} \underbrace{ \varphi_1(Y_1, Y_2)} \underbrace{ \begin{pmatrix} Y_2 \end{pmatrix}} \underbrace{ \varphi_2(Y_2, Y_3)} \underbrace{ \begin{pmatrix} Y_3 \end{pmatrix}} \underbrace{ \begin{pmatrix} Y_3, Y_4 \end{pmatrix}} \underbrace{ \begin{pmatrix} Y_4 \end{pmatrix}$$

$$V = \{Y_4, Y_3, Y_2\}$$

$$F_1 = \{Y_4, Y_3, Y_4\} = \{Y_1, Y_2\} = \{Y_1,$$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_4, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) (Y_$$

$$V = \{Y_3, Y_2\}$$

$$\phi_1(Y_1, Y_2) \qquad \phi_2(Y_2, Y_3) \qquad \tau_1(Y_3)$$

$$V_1 \setminus Y_2 \quad 0 \quad 1 \qquad Y_2 \setminus Y_3 \quad 0 \quad 1 \qquad Y_3 \quad 0$$

$$0 \quad 3 \quad 1 \quad 0 \quad 4 \quad 2 \quad 0 \quad 3$$

$$1 \quad 2 \quad 1 \quad 1 \quad 2 \quad 1 \quad 1 \quad 3$$

$$F_2 = \{Y_3, Y_2\}$$

$$V_1 \setminus Y_2 \quad 0 \quad 1 \qquad Y_3 \quad 0$$

$$V_2 \setminus Y_3 \quad 0 \quad 1 \qquad Y_3 \quad 0$$

$$V_2 \setminus Y_3 \quad 0 \quad 1 \qquad Y_3 \quad 0$$

$$V_2 \setminus Y_3 \quad 0 \quad 1 \qquad Y_3 \quad 0$$

$$V_2 \setminus Y_3 \quad 0 \quad 1 \qquad 0 \quad 3 \quad 1$$

$$V_3 \quad 0 \quad 1 \quad 0 \quad 3 \quad 1$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 0 \quad 3 \quad 1$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 1$$

$$V_4 \setminus Y_2 \quad 0 \quad 1$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 0 \quad 3$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 0 \quad 3$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 0 \quad 3$$

$$V_1 \setminus Y_2 \quad 0 \quad 1$$

$$V_2 \setminus Y_3 \quad 0 \quad 1$$

$$V_3 \quad 0 \quad 0 \quad 0 \quad 0$$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_4, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) (Y_$$

 $\phi \epsilon F_2$

$$V = \{Y_3, Y_2\}$$

$$F_2 = \begin{cases} \phi_2(Y_2, Y_3) & \tau_1(Y_3) \\ 0 & 4 & 2 \\ 1 & 2 & 1 \end{cases}$$

$$Y_3 & 0 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$F'_2 = \begin{cases} \phi_1(Y_1, Y_2) \\ Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$$\psi_2(Y_2, Y_3) = \prod \Phi = \begin{cases} \phi_2(Y_2, Y_3) & \tau_1(Y_3) \\ 0 & 4 & 2 \\ 0 & 3 & 1 \end{cases}$$

$$V = \begin{cases} \phi_2(Y_2, Y_3) & \tau_1(Y_3) \\ Y_2 \setminus Y_3 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 3 & 1 \end{cases}$$

$$\underbrace{ \begin{pmatrix} \varphi_1(Y_1, Y_2) \\ Y_1 \end{pmatrix}} \underbrace{ \begin{pmatrix} \varphi_2(Y_2, Y_3) \\ Y_2 \end{pmatrix}} \underbrace{ \begin{pmatrix} \varphi_2(Y_2, Y_3) \\ Y_3 \end{pmatrix}} \underbrace{ \begin{pmatrix} \varphi_3(Y_3, Y_4) \\ Y_3 \end{pmatrix}}$$

$$V = \{Y_3, Y_2\}$$

$$F_{2} = \begin{cases} \phi_{2}(Y_{2}, Y_{3}) & \tau_{1}(Y_{3}) \\ Y_{2} \setminus Y_{3} & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 1 \\ 1 & 3 \end{cases}$$

 $\tau_2(Y_2) = \sum \psi_2(Y_2, y_3) = \sum$

6

 $\phi_1(Y_1,Y_2)$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_4, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) (Y_$$

$$V = \{Y_3, Y_2\}$$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) ($$

$$V = \{Y_{2}\}$$

$$\varphi_{1}(Y_{1},Y_{2}) \qquad \tau_{2}(Y_{2})$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$0 \qquad 3 \qquad 1$$

$$1 \qquad 2 \qquad 1 \qquad 1 \qquad 9$$

$$F_{3} = \{Y_{2}\}$$

$$\varphi_{1}(Y_{1},Y_{2}) \qquad \tau_{2}(Y_{2})$$

$$Y_{2} \qquad 0$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$0 \qquad 3 \qquad 1$$

$$1 \qquad 2 \qquad 1 \qquad 1 \qquad 9$$

$$F'_{3} = \{Y_{2}\}$$

$$F'_{3} = \{Y_{1},Y_{2}\}$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$Y_{2} \qquad 0$$

$$Y_{3} \qquad Y_{2} \qquad 0$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$Y_{2} \qquad 0$$

$$Y_{3} \qquad Y_{4} \qquad Y_{5} \qquad 0$$

$$Y_{5} \qquad Y_{7} \qquad Y_{7} \qquad 0$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$Y_{2} \qquad 0$$

$$Y_{3} \qquad Y_{4} \qquad Y_{5} \qquad 0$$

$$Y_{5} \qquad Y_{7} \qquad Y_{7} \qquad 0$$

$$Y_{1}\setminus Y_{2} \qquad 0 \qquad 1$$

$$Y_{2} \qquad 0$$

$$Y_{3} \qquad Y_{5} \qquad 0$$

$$Y_{4} \qquad Y_{5} \qquad 0$$

$$Y_{5} \qquad Y_{5} \qquad Y_{5} \qquad 0$$

$$Y_{5} \qquad Y_{5} \qquad Y_$$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) ($$

$$V = \{Y_2\}$$

$$F_{3} = \begin{cases} \phi_{1}(Y_{1}, Y_{2}) \\ Y_{1} \setminus Y_{2} & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

 $\psi_3(Y_1,Y_2) = \prod \Phi =$

 $\phi \epsilon F_3$

$$\tau_{2}(Y_{2})$$
 Y_{2}
 0
 0
 18
 1
 9
 $\phi_{1}(Y_{1},Y_{2})$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_3) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_4) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_5) \xrightarrow{\varphi_3(Y_5, Y_5)} (Y_5) (Y_$$

1

X

0

3

$$V = \{Y_2\}$$

$$F_{3} = \begin{cases} \phi_{1}(Y_{1}, Y_{2}) \\ Y_{1} \setminus Y_{2} & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{cases}$$

$\tau_2(Y_2)$		
Y ₂	0	
0	18	
1	9	

$$F'_3 = \left\{ \right\}$$

$$\tau_3(Y_1) = \sum_{y_2} \psi_3(Y_1, y_2) = \sum_{y_2}$$

$$Y_1 \setminus Y_2 = 0$$
 1 $Y_1 = 0$
1 36 9 1

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2) \xrightarrow{\varphi_2(Y_2, Y_3)} (Y_2) \xrightarrow{\varphi_3(Y_3, Y_4)} (Y_2)$$

$$V = \{Y_2\}$$

$$F'_3 = \left\{ \right\}$$

$$F = F'_3 \cup \{\tau_3(Y_1)\} = \begin{cases} Y_2 & 0 \\ 0 & 63 \\ 1 & 45 \end{cases}$$

$$(Y_1) \xrightarrow{\varphi_1(Y_1, Y_2)} (Y_2, Y_3) (Y_2, Y_3) (Y_3, Y_4) (Y_1) (Y_1) (Y_1) (Y_2, Y_3) (Y_2, Y_3) (Y_2, Y_3) (Y_3, Y_4) (Y_4) (Y_4, Y_5) (Y_5, Y_5) (Y_5,$$

Step 4: Return

$$P(Y_1=1) = \frac{\tau_3(1)}{\tau_3(0) + \tau_3(1)} = 0.4166$$

$$\underbrace{ (Y_1) } \bigoplus_{ \Phi_1(Y_1, Y_2) } \bigoplus_{ \Phi_2(Y_2, Y_3) } \bigoplus_{ \Phi_3(Y_3, Y_4) } \bigoplus_{ \Phi_3(Y_3,$$

Question: What happens to the complexity of the algorithm if we start by eliminating Y_3 instead of Y_4 ?

$$V = \{Y_3, Y_4, Y_2\}$$

$$F_0 = \{ \phi_1(Y_1, Y_2), \phi_2(Y_2, Y_3), \phi_3(Y_3, Y_4) \}$$

$$F_1 = \{ \phi_2(Y_2, Y_3), \phi_3(Y_3, Y_4) \}$$
 $F'_1 = \{ \phi_1(Y_1, Y_2) \}$

$$\psi_1(Y_2,Y_3,Y_4) = \prod_{\phi \in F_1} \phi = \phi_2(Y_2,Y_3) \times \phi_3(Y_3,Y_4)$$

$$\tau_1(Y_2, Y_4) = \sum_{y_3} \psi_1(Y_2, y_3, Y_4) \quad F = \{\phi_1(Y_1, Y_2), \tau_1(Y_2, Y_4)\}$$

$$\underbrace{ (Y_1)}^{\varphi_1(Y_1,Y_2)} \underbrace{ (Y_2)}^{\varphi_2(Y_2,Y_3)} \underbrace{ (Y_3)}^{\varphi_2(Y_2,Y_3)} \underbrace{ (Y_3)}^{\varphi_3(Y_3,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_3,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_4,Y_4)} \underbrace{ (Y_4)}^{\varphi_3(Y_4$$

Question: What is the worst elimination ordering for this graph? What is an optimal ordering?

Question: What is an optimal elimination ordering for this graph?

Question: Is there any efficient elimination ordering for the following graph:

For any elimination ordering we have:

$$F_1 = \{ \varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6 \} \quad F'_1 = \{ \}$$

$$\psi_1(Y_1, Y_2, Y_3, Y_4) = \prod \varphi = \varphi_1 \times \varphi_2 \times \varphi_3 \times \varphi_4 \times \varphi_5 \times \varphi_6$$

Example: Let's trace the sum-product algorithm for the graph and factors shown below.

Sum-Product: Forming the Clique Tree

Sum-Product Algorithm: 3→2 Message

$$\delta_{3\rightarrow 2}(Y_3) \leftarrow \sum_{Y_4} \omega_3(Y_3, Y_4)$$

Sum-Product Algorithm: 3→2 Message

$$\delta_{3\to 2}(Y_3) \leftarrow \sum_{y_4} \begin{vmatrix} Y_3 \setminus Y_4 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} Y_3 & 0 \\ 0 & 3 \\ 1 & 3 \end{vmatrix}$$

Sum-Product Algorithm: 2→1 Message

$$\delta_{2\rightarrow 1}(Y_2) \leftarrow \sum_{Y_3} \omega_2(Y_2, Y_3) \delta_{3\rightarrow 2}(Y_3)$$

Sum-Product Algorithm: $2 \rightarrow 1$ Message

$$\delta_{2\to 1}(Y_2) \leftarrow \sum_{y_3} \begin{bmatrix} Y_2 \setminus Y_3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} Y_3 & 0 \\ 0 & 3 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} Y_2 & 0 \\ 0 & 18 \\ 1 & 9 \end{bmatrix}$$

Sum-Product Algorithm: $1\rightarrow 2$ Message

$$\delta_{1\rightarrow 2}(Y_2) \leftarrow \sum_{Y_1} \omega_1(Y_1, Y_2)$$

Sum-Product Algorithm: $1\rightarrow 2$ Message

$$\delta_{1\to 2}(Y_2) \leftarrow \sum_{y_1} \begin{vmatrix} Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} Y_2 & 0 \\ 0 & 5 \\ 1 & 2 \end{vmatrix}$$

Sum-Product Algorithm: 2→3 Message

$$\delta_{2\to3}(Y_3) \leftarrow \sum_{Y_2} \omega_2(C_2) \delta_{1\to2}(Y_2)$$

Sum-Product Algorithm: 2→3 Message

$$\delta_{2\rightarrow 3}(Y_3) \leftarrow \sum_{y_2}$$

$Y_2 \setminus Y_3$	0	1
0	4	2
1	2	1

	Y ₂	0	
•	0	5	
	1	2	

Y ₃	0
0	24
1	12

Sum-Product Algorithm: C₁Belief Read-Out

$$\beta_1(Y_1,Y_2) \leftarrow \omega_1(Y_1,Y_2) \delta_{2\rightarrow 1}(Y_2)$$

Sum-Product Algorithm: C₁Belief Read-Out

$$\beta_1(Y_1, Y_2) \leftarrow \begin{bmatrix} Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} Y_2 & 0 \\ 0 & 18 \end{bmatrix} = \begin{bmatrix} Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 54 & 9 \\ 1 & 36 & 9 \end{bmatrix}$$

Sum-Product Algorithm: C₂ Belief Read-Out

$$\beta(Y_2,Y_3) \leftarrow \omega_2(Y_2,Y_3) \delta_{1\rightarrow 2}(Y_2) \delta_{3\rightarrow}(Y_3)$$

Sum-Product Algorithm: C₂ Belief Read-Out

$$\beta(Y_2, Y_3) \leftarrow \begin{bmatrix} Y_2 \setminus Y_3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} Y_2 & 0 \\ 0 & 5 \\ 1 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} Y_3 & 0 \\ 0 & 3 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} Y_2 \setminus Y_3 & 0 & 1 \\ 0 & 60 & 30 \\ 1 & 12 & 6 \end{bmatrix}$$

Sum-Product Algorithm: C₃ Belief Read-Out

$$\beta_3(Y_3,Y_4) \leftarrow \omega_3(Y_3,Y_4) \delta_{2\rightarrow 3}(Y_4)$$

Sum-Product Algorithm: C₃ Belief Read-Out

Sum-Product Algorithm: C₁ Probabilities

$$P(Y_1,Y_2) = \frac{\beta_1(Y_1,Y_2)}{\sum_{y_1} \sum_{y_2} \beta_1(y_1,y_2)} = \begin{bmatrix} Y_1 \setminus Y_2 & 0 & 1 \\ 0 & 0.5000 & 0.0833 \\ 1 & 0.3333 & 0.0833 \end{bmatrix} P(Y_1=1) = 0.4166$$

Sum-Product Algorithm: C₂ Probabilities

$$P(Y_2, Y_3) = \frac{\beta_2(Y_2, Y_3)}{\sum_{y_2 \ y_3}} = \frac{Y_2 \setminus Y_3}{\sum_{y_2 \ y_3}} = \frac{0}{0.5555} = \frac{1}{0.1111} = 0.1666$$

$$P(Y_2 = 1) = 0.1666$$

$$P(Y_3 = 1) = 0.3333$$

Sum-Product Algorithm: C₃ Probabilities

$$P(Y_3, Y_4) = \frac{\beta_3(Y_3, Y_4)}{\sum_{y_3} \beta_3(y_3, y_4)} = \begin{bmatrix} Y_3 \setminus Y_4 & 0 & 1 \\ 0 & 0.4444 & 0.2222 \\ 1 & 0.1111 & 0.2222 \end{bmatrix} P(Y_3 = 1) = 0.3333$$

Sum-Product: Algorithm Overview

$$\delta_{3\to2}(Y_3) \leftarrow \sum_{\substack{Y_4 \\ Y_2}} \omega_3(Y_3, Y_4) \qquad \delta_{1\to2}(Y_2) \leftarrow \sum_{\substack{Y_1 \\ Y_2}} \omega_1(Y_1, Y_2)$$

$$\delta_{2\to1}(Y_2) \leftarrow \sum_{\substack{Y_2 \\ Y_3}} \omega_2(Y_2, Y_3) \delta_{3\to2}(Y_3) \qquad \delta_{2\to3}(Y_3) \leftarrow \sum_{\substack{Y_2 \\ Y_2}} \omega_2(C_2) \delta_{1\to2}(Y_2)$$

$$\beta_{1}(Y_{1},Y_{2}) \leftarrow \omega_{1}(Y_{1},Y_{2}) \, \delta_{2\to 1}(Y_{2})$$

$$\beta_{2}(Y_{2},Y_{3}) \leftarrow \omega_{2}(Y_{2},Y_{3}) \, \delta_{1\to 2}(Y_{2}) \, \delta_{3\to}(Y_{3}) \qquad P(Y_{i},Y_{i+1}) = \frac{\beta_{i}(Y_{i},Y_{i+1})}{\sum_{Y_{i}} \sum_{Y_{i+1}} \beta_{i}(y_{i},y_{i+1})}$$

$$\beta_{3}(Y_{3},Y_{4}) \leftarrow \omega_{3}(Y_{3},Y_{4}) \, \delta_{2\to 3}(Y_{4})$$

