Sample Problems for Final Exam

Questions from Math 125a Final Exam, Spring 2006

In the following, you must prove that your answers are correct.

- 1. Let \mathbb{R} be the structure of the real numbers with 0, 1, +, ×, and <. Show that there are two countable structures \mathcal{M}_1 and \mathcal{M}_2 with the following properties.
 - $\mathcal{M}_1 \equiv \mathbb{R}$ and $\mathcal{M}_2 \equiv \mathbb{R}$
 - \mathcal{M}_1 and \mathcal{M}_2 are not isomorphic

Solution: By the Lowenheim-Skolem Theorem, let \mathcal{M}_1 be a countable elementary substructure of \mathbb{R} .

We obtain \mathcal{M}_2 by application of the Compactness Theorem. Note that < is definable in \mathbb{R} by x < y if and only if there is a z such that $x + z^2 = y$, so we may use < as part of the language of \mathbb{R} . Let Γ be the following set of sentences in the language of \mathbb{R} together with an additional constant symbol c.

$$\Gamma = \{ \varphi : \mathbb{R} \models \varphi \} \cup \{ \underbrace{1 + \dots + 1}_{n \text{ times}} < c : n \in \mathbb{N} \}$$

 Γ is finitely satisfiable, since any finite subset of Γ can be satisfied in \mathbb{R} by interpreting c to be a real number that is sufficiently large. By the Compactness Theorem, Γ is satisfiable. Let \mathcal{M}_2^* be a countable structure which satisfies Γ , and let \mathcal{M}_2 be the restriction of \mathcal{M}_2^* to the language of \mathbb{R} . \mathcal{M}_2 is elementarily equivalent to \mathbb{R} by the definition of Γ .

In \mathcal{M}_1 , every element is less than some finite sum of 1. In \mathcal{M}_2 , that is not the case. Thus, the two structures are not isomorphic.

- 2. Let \mathcal{L}_A be the language with one unary predicate symbol P. Let \mathcal{M} be the finite structure (M, I) such that $M = \{a, b, c, d, e\}$ and $I(P) = \{a, b\}$. In other words, \mathcal{M} interprets P as holding of a and b and as not holding of c, d, or e.
 - (a) Which subsets of M which are definable in \mathcal{M} without parameters?
 - (b) Which subsets of M are are definable in \mathcal{M} with parameters?

Solution: Consider the permutations of M: transpose a and b and leave c, d and e fixed, and transpose two of the elements of c, d and e and leave the other elements of M fixed. Each of these permutations preserves P and so is an automorphism of M. Since definable sets are closed under automorphisms, if A is definable, then if A contains either a or b then it contains the other and if A contains any of c, d or e then it contains the other two. Thus the only subsets of M which are definable in M are \emptyset , $\{a,b\}$, $\{c,d,e\}$ and $\{a,b,c,d,e\}$.

Every subset of M is definable from parameters. If the elements of A are m_1, \ldots, m_k then

$$x = m_1 \vee \cdots \vee x = m_k$$

is a definition of A with parameters m_1, \ldots, m_k .

3. Let A be finite, let k be a natural number, and V_k be the set of sentences φ such that for all \mathcal{L}_A -structures $\mathcal{M} = (M, I)$, if M has exactly k elements then $\mathcal{M} \models \varphi$. Give an algorithm to determine when given a sentence ψ in \mathcal{L}_A whether $\psi \in V_k$.

Solution: First, we can effectively list a finite sequence of \mathcal{L}_A -structures of size k such that every \mathcal{L}_A -structure is isomorphic to one of these. Since isomorphic structures are elementarily equivalent, it is sufficient to check whether the given sentence ψ is satisfied by every structure in the list.

Given a finite structure \mathcal{M} , a formula φ and a sequence \vec{m} of elements of M, we can check whether $\mathcal{M} \models \varphi[\vec{m}]$ by recursion on the length of φ . We can evaluate terms in \mathcal{M} by application of its given operations. This lets us tell whether $\mathcal{M} \models \varphi[\vec{m}]$ when φ is atomic. In the cases of negation or implication, the recursion step is immediate. Finally, when φ is $\forall x\theta$, $\mathcal{M} \models \varphi[\vec{m}]$ if and only if for all $m^* \in M$, $\mathcal{M} \models \varphi[m^*, \vec{m}]$, in which it is understood that x is to be assigned the value m^* . Since M is finite, this too can be checked in finitely many steps.

- 4. Let $A = \{c_i : i \in \mathbb{N}\}.$
 - (a) Give an example of an \mathcal{L}_A structure \mathcal{M} such that

$$T_{\mathbb{M}} = \{ \varphi : \ \varphi \text{ is a sentence and } \mathbb{M} \models \varphi \}$$

does not have the Henkin property.

(b) Is there an example $\mathcal{M} = (M, I)$ such that $T_{\mathcal{M}}$ does not have the Henkin property and $\{I(c_i) : i \in \mathbb{N}\}$ is infinite?

Solution: (1) Let $M = \{m_1, m_2\}$ and let $I(c_i) = m_1$ for all i. Then, $\mathfrak{M} \models \exists x (x \neq c_1)$ but there is no constant c such that $\mathfrak{M} \models c \neq c_1$. Thus, $T_{\mathfrak{M}}$ does not have the Henkin Property.

- (2) No, there is no example $\mathcal{M} = (M, I)$ such that $T_{\mathcal{M}}$ does not have the Henkin property and $\{I(c_i) : i \in \mathbb{N}\}$ is infinite. Suppose that \mathcal{M} is an \mathcal{L}_A structure and $\{I(c_i) : i \in \mathbb{N}\}$ is infinite. Suppose that $\mathcal{M} \models \exists x \varphi$. It could happen that there is a constant c_i such that c_i appears in φ and $\mathcal{M} \models \varphi[x; c_i]$, which would be an instance of the Henkin Property. Otherwise, there is an $m \in M$ such that m is not the interpretation of any constant mentioned in φ and $\mathcal{M} \models \varphi[m]$. But then any permutation of the elements of M which fixes the interpretations of the constants that appear in φ is an automorphism of the structure with universe M and language the constants of φ . Thus, for every m^* in M, if m is not the interpretation of any constant of φ then $\mathcal{M} \models \varphi[m^*]$. Since $\{I(c_i) : i \in \mathbb{N}\}$ is infinite, there is such an m^* and a constant c_j such that $I(c_j) = m^*$. By the Substitution Lemma, $\mathcal{M} \models \varphi[x; c_j]$, as required to verify the Henkin Property.
- 5. Suppose that $\mathcal{M} \subseteq \mathcal{N}$ are infinite \mathcal{L}_{\emptyset} structures. Show that $\mathcal{M} \preceq \mathcal{N}$.

Solution: By Tarski's Criterion, it is sufficient to show that if A is nonempty and definable in \mathbb{N} with parameters from \mathbb{M} , then A has an element in \mathbb{M} . Suppose that $A = \{n : \mathbb{N} \models \varphi[n, \vec{m}]\}$, where \vec{m} is a sequence of elements from \mathbb{M} . If one of the elements of \vec{m} belongs to A then $A \cap \mathbb{M}$ is not empty. Otherwise, by the analogous

automorphism observation as in the previous problem, for every element n of \mathbb{N} which is not in \vec{m} , $\mathbb{N} \models \varphi[n, \vec{m}]$. Since \mathbb{M} is infinite, it contains infinitely many such elements and $A \cap \mathbb{M}$ is not empty, as required.

6. Give the proof to show that if, for every set of formulas Γ

 Γ is consistent iff Γ is satisfiable

then, for every set of formulas Γ and every formula φ

 $\Gamma \vdash \varphi$ iff every (\mathfrak{M}, ν) which satisfies Γ also satisfies φ .

Solution: Assume that for every set of formulas, that set is consistent iff it is satisfiable. Suppose that Γ is a fixed set of formulas.

First, suppose that $\Gamma \vdash \varphi$. Then, $\Gamma \cup \{(\neg \varphi)\}$ is not consistent. Thus, $\Gamma \cup \{(\neg \varphi)\}$ is not satisfiable. Hence, every (\mathcal{M}, ν) which satisfies Γ does not satisfy $(\neg \varphi)$, and thereby satisfies φ .

Second, suppose that every (\mathcal{M}, ν) which satisfies Γ also satisfies φ . Then, $\Gamma \cup \{(\neg \varphi)\}$ is not satisfiable. Hence, by assumption, $\Gamma \cup \{(\neg \varphi)\}$ is not consistent. Let θ be one of the logical axioms. Since an inconsistent set proves every formula, $\Gamma \cup \{(\neg \varphi)\} \vdash (\neg \theta)$. By the Deduction Theorem, $\Gamma \vdash (\neg \varphi) \to (\neg \theta)$. By the completeness theorem for propositional logic, Γ proves the contrapositive: $\Gamma \vdash \theta \to \varphi$. By noting that θ is an axiom and applying modus ponens, $\Gamma \vdash \varphi$.

Extra credit. Suppose that T is a set of sentences and that there is an $\mathbb{N} = (N, J)$ such that $\mathbb{N} \models T$ and N is infinite. Show that there is an $\mathbb{M} = (M, I)$ and an element a of M such that $\mathbb{M} \models T$ and a is not definable in \mathbb{M} without parameters.

Solution: As in the proof of the Completeness Theorem, we may assume that there are infinitely many constant symbols which are not in the language of \mathbb{N} . By the Lowenheim-Skolem Theorem, we may assume that \mathbb{N} is countable. Obtain $\mathbb{N}^* = (N, J^*)$ by augmenting \mathbb{N} so that every element of N is the interpretation of some constant symbol and so that the constant symbol c is not used in the language of \mathbb{N}^* . Let Γ be as follows:

$$\Gamma = \{\varphi : \mathcal{N}^* \models \varphi\} \cup \{c \neq c_i : c_i \text{ a constant symbol interpreted in } \mathcal{N}^*., \}$$

nn where φ is a sentence in the language of \mathbb{N} .

That Γ is finitely satisfiable follows from \mathbb{N} 's being infinite. Let \mathbb{M}^* satisfy Γ . By definition of Γ , \mathbb{M}^* and \mathbb{N}^* are elementarily equivalent.

Let m be the interpretation of c in \mathcal{M}^* , and let \mathcal{M} be the reduction of \mathcal{M}^* to the language of \mathcal{N} (same universe as \mathcal{M}^* but interpreting only the symbols in the language of \mathcal{N}). Similarly, \mathcal{M} and \mathcal{N} are elementarily equivalent.

Suppose that $\mathcal{M} \models \varphi[m]$. Then, $\mathcal{M} \models \exists x \varphi$ and so $\mathcal{N} \models \exists x \varphi$. Let n be an element of N such that $\mathcal{N} \models \varphi[n]$. Let c_j be such that n is the interpretation of c_j in \mathcal{N}^* . Then $\mathcal{N}^* \models \varphi[x; c_j]$, and so $\mathcal{M}^* \models \varphi[x; c_j]$. Since $\mathcal{M}^* \models c \neq c_i$, $\mathcal{M} \models \exists x_{j_1} \exists x_{j_2} (\varphi[x; x_{j_1}] \land \varphi[x; x_{j_2}] \land x_{j_1} \neq x_{j_2}$, for any x_{j_1} and x_{j_2} which are substitutable for x in φ . Thus, φ does not define $\{m\}$ in \mathcal{M} .