Machine Learning

ML(Machine Learning)? Why

The Limitation of explicit Programming

if condition1 else if condition2 else if condition3 else if condition4

9990 Lines later ...

else if condition 9994 else if condition 9995

Size (feet) 2	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Do it yourself!

Machine Learning(ML)

컴퓨터가 배워야 할 4가지 자료유형

- **Supervised**: Linear Regression, Logistic Regression- Classification, multi-level Classification: Neural Network (NN), Support Vector Machine(SVM)
- Unsupervised: Clustering, Recommendation System, NLP
- Reinforcement Learning : Q-Learning Gaming, Automotive Mobility
- Semi-supervised : end-to-end self training

<u>Deep</u>Learning:

CNN, GAN, RNN, LSTM, Transformer

challenging: Overfitting, Dimensionality (Data Compression), Security & Privacy (On-device), Ethic

Supervised Learning = prediction

continuous -> linear regression discrete -> logistic regression, multi-classification, NN

Unsupervised Learning = clustering

Cocktail party Algorithm
YouTube algorithm
Recommendation System

Schedule: ca. 3개월 (Supervised, Unsupervised)

3주 간격	진도	내용(syllabus 참조)
26.9.2020	Week 1,2	Linear Regression
17.10.2020	3,4,5	Logistic Regression, NN
7.11.2020	6,7	Supervised 내용 끝- 총 정리
28.11.2020	8, 9.5	Unsupervised 시작
19.12.2020	9.5, 10, 11	Recommendation system Unsupervised 총정리

Notation

training set

 $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})$

n =	Number	of "x	input	variable"	(j = 1	~ 4)

 $\mathbf{m} = \text{Number of training examples (i = 1 ~ 4)}$

x's = "input" variable / features

y's = "output" variable / "target" variable / label

Age of home (years) Price (\$1000)
$$(x^{(1)}, y^{(1)}) = 45$$

$$40$$

$$232$$

$$30$$

$$315$$

$$(x^{(4)}, y^{(4)}) = 36$$

$$178$$

 $(x_j^{(i)}, y^{(i)})$

1	2	3	4	У
Size (feet) 2	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45 $x_4^{(1)}$	460
1416	3	2	40	232
1534	$x_{2}^{(3)}$	2	30	315
852 $x_1^{(4)}$	2	1	36	178

Hypothesis

$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Which is the best ...?

hypothesis의 parameter를 결정해야 하는 상황 발생

Parameters: θ_0, θ_1 y θ_0, η_2

Solution: Cost function minimization

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

One variable(one input x variable)

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Multiple variable(multiple input x variable)

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

parameter decision: Gradient Descent

one variable(one input x variable)

Repeat
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\left\{ \text{(simultaneously update } \theta_0, \theta_1) \right\}$$

Multiple variable(multiple input x variable)

Repeat
$$\left\{\begin{array}{c} \underbrace{(n\geq 1):}_{\text{a.o.}} \\ \text{Repeat} \end{array}\right\}$$
 $\theta_j := \theta_j - \alpha \underbrace{\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}}_{\text{(simultaneously update } \theta_j \text{ for } j = 0, \dots, n)}$ $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$ $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$...

Gradient Descent

Feature scaling (feature = input x variable)

To speed up gradient descent

Mean normalization (u = avg)

$$x_i := \frac{x_i - \mu_i}{s_i}$$

Gradient Descent- Learning Rate

Suppose a friend ran gradient descent three times, with $\alpha=0.01$, $\alpha=0.1$, and $\alpha=1$, and got the following three plots (labeled A, B, and C):

Which plots corresponds to which values of α ?

- $^{\bigcirc}$ A is lpha=0.01, B is lpha=0.1, C is lpha=1.
- $^{\bigcirc}$ A is lpha=0.1, B is lpha=0.01, C is lpha=1.
- $^{\bigcirc}$ A is lpha=1, B is lpha=0.01, C is lpha=0.1.
- $^{\bigcirc}$ A is lpha=1, B is lpha=0.1, C is lpha=0.01.

If α is too small: slow convergence.

If α is too large: $J(\theta)$ may not decrease on

every iteration; may not converge.

Wrap up: Summary

Why do we need to study ML? -> The Limitation of explicit Programming

Supervised Learning = prediction

Unsupervised Learning = clustering

Linear Regression

$$(\pmb{x_j^{(i)}}, \pmb{y^{(i)}})$$
 training set notation

- Training of many dataset (Experience accumulation) -> hypothesis
- Which Hypothesis is better? -> cost function
- How can I get minimum cost function? -> parameter decision-> Gradient Descent
- Feature scaling: to speedup -> mean(averrage) normalization
- Learning rate If α is too small: slow convergence. If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

Wrap up: Spoiler

Logistic Regression, Neural Network(NN)

@ https://hay.dk/en/hay/accessories-8b1762fc/decoration/desk-accessories-b2b/time

감사합니다

Danke ありがとう Thank you