This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK DEUTSCHLAND 49365

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

EP99/06322

REC'D 0 8 OCT 1999

WIPO PCT

EPO - Munich
33
27. Aug. 1999

Bescheinigung

Die BASF Aktiengesellschaft in Ludwigshafen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Cyclohexenonchinolinoyl-Derivate"

am 8. September 1998 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 D und A 01 N der Internationalen Patentklassifikation erhalten.

München, den 2. Juni 1999

Deutsches Patent- und Markenamt

Der Präsident

n Auftrag

Aktenzeichen: <u>198 40 799.8</u>

Hiebinger

Patentansprüche

5

10

1. Cyclohexenonchinolinoyl-Derivate der Formel I

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{R}^2

in der die Variablen folgende Bedeutungen haben:

4-		
15	R1	Wasserstoff, Nitro, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxyiminomethyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfinyl,
20		C ₁ -C ₆ -Halogenalkylsulfinyl, C ₁ -C ₆ -Alkylsulfonyl, C ₁ -C ₆ -Halogenalkylsulfonyl, Aminosulfonyl, N-(C ₁ -C ₆ -Alkyl)-aminosulfonyl, N,N-Di-(C ₁ -C ₆ -alkyl)-aminosulfonyl, N-(C ₁ -C ₆ -Alkyl-sulfonyl)-amino, N-(C ₁ -C ₆ -Halogenalkylsulfonyl)-
25		amino, N-(C ₁ -C ₆ -Alkyl)-N-(C ₁ -C ₆ -alkylsulfonyl)- amino, N-(C ₁ -C ₆ -Alky)-N-(C ₁ -C ₆ -Halogenalkyl- sulfonyl)-amino, Phenoxy, Heterocycloyloxy, Phenylthio oder Heterocyclylthio, wobei die vier letztgenannten Reste partiell oder vollständig ha-
30		logeniert sein können und/oder einen bis drei der nachfolgend genannten Substituenten tragen können: Nitro, Cyano, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy oder C ₁ -C ₄ -Halogenalkoxy;
35	R^2 , R^3	Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder Halogen;
	R ⁴	eine Verbindung IIa oder IIb

45 686/98 He/Bei 08.09.98

40

IIa

IIb

wobei 10

5

Halogen, OR^7 , SR^7 , SOR^8 , SO_2R^8 , OSO_2R^8 , POR^8R^9 , R5 OPR^8R^9 , $OPOR^8R^9$, $OPSR^8R^9$, $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

20

15

Nitro, Halogen, Cyano, C1-C6-Alkyl, C1-C6-Halogenalkyl, Di- $(C_1-C_6-alkoxy)$ -methyl, Di- $(C_1-C_6-alkyl-alk$ thio)-methyl, $(C_1-C_6-Alkoxy)$ $(C_1-C_6-alkylthio)$ methyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C_1-C_6 -Alkoxycarbonyloxy, C_1-C_6 -Alkylthio, $C_1-C_6-Halogenalkylthio$, $C_1-C_6-Alkylsulfinyl$, $C_1-C_6-Halogenalkylsulfinyl, C_1-C_6-Alkyl$ $sulfonyl, C_1-C_6-Halogenalkylsulfonyl, C_1-C_6-Halogenalkylsulf$ Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder C_1 - C_6 -Halogenalkoxycarbonyl;

 C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

30

25

oder

Rб

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bil-35 den gemeinsam eine -O- $(CH_2)_m$ -O-, -O- $(CH_2)_m$ -S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- oder -S-(CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C1-C4-Alkyl, C1-C4-Halogenalkyl 40 oder C₁-C₄-Alkoxycarbonyl;

oder

zwei Reste R6, die am gleichen Kohlenstoff gebunden sind, bil-45 den gemeinsam eine - (CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/

_

Gruppe substituiert sein kann: Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

5

10

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine Methylidengruppe, die durch einen bis zwei Reste aus folgender Gruppe substituiert sein kann:

Halogen, Hydroxy, Formyl, Cyano, C₁-C₆-Alkyl,

C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkylthio,

C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl,

C₁-C₆-Alkylsulfonyl oder C₁-C₆-Halogenalkylsulfinyl,

sulfonyl;

oder

20

30

40

15

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

25 oder

zwei Reste R⁶, die an verschiedenen Kohlenstoffen gebunden sind, bilden gemeinsam eine -(CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann:

Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Hydroxy oder C₁-C₆-Alkoxycarbonyl;

R⁷

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl,
C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, C₁-C₂₀-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl,
C₂-C₆-Alkinylcarbonyl, C₃-C₆-Cycloalkylcarbonyl,
C₁-C₆-Alkoxycarbonyl, C₃-C₆-Alkenyloxycarbonyl,
C₃-C₆-Alkinyloxycarbonyl, C₁-C₆-Alkylthiocarbonyl,
C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl,
C₃-C₆-Alkinylaminocarbonyl, N,N-Di(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-

 $N-(C_1-C_6-alkyl)-aminocarbonyl, N-(C_1-C_6-Alkoxy) N-(C_1-C_6-alkyl)-aminocarbonyl, N-(C_3-C_6-Alkenyl) N-(C_1-C_6-alkoxy)-aminocarbonyl, N-(C_3-C_6-Alkinyl) N-(C_1-C_6-alkoxy)-aminocarbonyl, Di-(C_1-C_6-alkyl)-$

aminothiocarbonyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkyla-mino)-imino-C₁-C₆-alkyl oder N,N-Di-(C₁-C₆-alkyl-amino)-imino-C₁-C₆-alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy-carbonyl, C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl, Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkoxycarbonyl, Hydroxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

15

20

10

5

Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C1-C6-alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxy-C1-C6-alkylcarbonyl, Heterocyclyoxy-C₁-C₆-alkylcarbonyl, Phenylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-(phenyl)-aminocarbonyl, Heterocy$ clylaminocarbonyl, N-(C1-C6-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Phenyl-C2-C6-alkenylcarbonyl oder Heterocyclyl-C2-C6-alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 20 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

25

30

R⁸, R⁹

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_6-Halogenalkinyl$, $C_3-C_6-Cyclo-alkyl$, Hydroxy, $C_1-C_6-Alkoxy$, Amino, $C_1-C_6-Alkyl-amino$, $C_1-C_6-Halogenalkylamino$, $Di-(C_1-C_6-alkyl)$ amino oder $Di-(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:

Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di- $(C_1$ - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxy-carbonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxycarbonyl, Di- $(C_1$ - C_4 -alkyl)-amino- C_1 - C_4 -alkoxycarbonyl, Hydroxycarbonyl, C_1 - C_4 -Alkylaminocarbonyl,

40

35

45

10

15

20

25

30

35

R¹⁰

 $-(C_1-C_4-alkyl)-aminocarbonyl$ Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl, Heterocyclyl-C1-C6-alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

 C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C3-C6-Alkinyl, C3-C6-Halogenalkinyl, C3-C6-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Amino, C₁-C₆-Alkylamino, Di-(C₁-C₆-Alkyl)-amino oder C₁-C₆-Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, $Di-(C_1-C_4-alkyl)$ -amino, $C_1-C_4-Alkylcarbonyl$, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy- C_1 - C_4 -alkoxycarbonyl, Di-(C1-C4-alkyl)-amino-C1-C4-alkoxycarbonyl, Hydroxycarbonyl, C1-C4-Alkylaminocarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl, Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cyclo-

Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl oder Heterocyclyl-C1-C6-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder R¹¹. R¹² 40 C1-C6-Alkylcarbonyl;

> 1 0 bis 6;

alkyl;

2 bis 4; 45

n 1 bis 5;

p 2 bis 5;

- 5 sowie deren landwirtschaftlich brauchbaren Salze.
 - 2. Cyclohexenonchinolinoyl-Derivate der Formel I, gemäß Anspruch 1, wobei

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl, (C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy,
C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder C₁-C₆-Halogenalkoxycarbonyl;

bedeutet

20

40

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- oder -S-(CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl

Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxycarbonyl;

oder.

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden eine -(CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann:

Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder C_1 - C_4 -Alkoxycarbonyl;

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Car-

- 3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 oder 2 mit R⁵ = Halogen, dadurch gekennzeichnet, daß man ein Cyclohexandion-Derivat der Formel III,
- 5 zeichnet, daß man ein Cyclohexandion-Derivat der Formel :

$$(R^6)_1 \xrightarrow{R^3} R^2$$

- wobei die Variablen R¹ bis R³, R⁶ und 1 die in den Ansprüchen 1 oder 2 genannte Bedeutung haben, mit einem Halogenierungsmittel umsetzt.
- 4. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 oder 2 mit $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ oder $OPSR^8R^9$ dadurch gekennzeichnet, daß man ein Cyclohexandion-Derivat der Formel III,

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$
III

35

wobei die Variablen R^1 bis R^3 , R^6 und 1 die in den Ansprüchen 1 oder 2 genannte Bedeutung haben, mit einer Verbindung der Formel IV α , IV β , IV γ , IV δ oder IV ϵ ,

$$L^1-R^7$$
 $L^1-SO_2R^8$ $L^1-PR^8R^9$ $L^1-POR^8R^9$ $L^1-PSR^8R^9$ (IVa) (IVb) (IVc)

- wobei die Variablen R^7 bis R^9 die in den Ansprüchen 1 oder 2 genannte Bedeutung haben und L^1 für eine nucleophil verdrängbare Abgangsgruppe steht, umsetzt.
- 5. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 oder 2 mit $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-gebundenes Heterocyclyl oder O(N-gebundenes) Heterocyclyl oder O(N-gebundenes)

10

S

rocyclyl), dadurch gekennzeichnet, daß man eine Verbindung der Formel I α (\equiv I mit R^5 = Halogen, OSO₂ R^8),

$$(R^6)_1 \xrightarrow{\mathbb{R}^3} \mathbb{R}^2$$

$$\text{und/oder} \quad (R^6)_1 \xrightarrow{\mathbb{R}^5} \mathbb{R}^2$$

I mit R^5 = Halogen oder OSO₂ R^8

wobei die Variablen R^1 bis R^3 , R^6 und die in den Ansprüchen 1 oder 2 genannte Bedeutung haben, mit einer Verbindung der Formel V α , V β , V γ , V δ , V ϵ , V η oder V ϑ ,

wobei die Variablen \mathbb{R}^7 bis \mathbb{R}^{12} die in den Ansprüchen 1 oder 2 genannte Bedeutung haben, gegebenenfalls in Gegenwart einer Base, umsetzt.

6. Verfahren zur Herstellung von Verbindungen der Formel I gemäß den Ansprüchen 1 oder 2 mit $R^5=SOR^8$, SO_2R^8 , dadurch gekennzeichnet, daß man eine Verbindung der Formel I β (\equiv I mit $R^5=SR^8$),

40
$$(R^6)_1$$
 R^5 R^1 und/oder $(R^6)_1$ R^5 R^2

I mit $R^5 = SR^8$

30

35

wobei die Variablen \mathbb{R}^1 bis \mathbb{R}^8 und 1 die 1 den Ansprüchen 1 oder 2 genannte Bedeutung haben, mit einem Oxidationsmittel umsetzt.

5 7. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 oder 2, und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.

10

- Verfahren zur Herstellung von Mitteln gemäß Anspruch 7, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 oder 2 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.
- Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Cyclohexenonchinolinoyl-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 oder 2, auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.
- 25 10. Verwendung von Cyclohexenonchinolinoyl-Derivaten der Formel I oder deren landwirtschaftlich brauchbaren Salze gemäß den Ansprüchen 1 oder 2 als Herbizide.

30

35

40

Cyclohexenonchinolinoyl-Derivate

Beschreibung

Die vorliegende Erfindung betrifft neue Cyclohexanonchinolinoyl-Derivate der Formel I,

10

5

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{R}^4

15

in der die Variablen folgende Bedeutung haben:

Wasserstoff, Nitro, Halogen, Cyano, C1-C6-Alkyl, R^1 C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxyiminomethyl, C_1-C_6 -Alkoxy, C_1-C_6 -Halogenalkoxy, C_1-C_6 -Alkylthio, 20 C_1-C_6 -Halogenalkylthio, C_1-C_6 -Alkylsulfinyl, C1-C6-Halogenalkylsulfinyl, C1-C6-Alkylsulfonyl, C_1 - C_6 -Halogenalkylsulfonyl, Aminosulfonyl, $N-(C_1-C_6-Alkyl)$ -aminosulfonyl, $N,N-Di-(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-Alkylsulfonyl)$ -amino, 25 $N-(C_1-C_6-Halogenalkylsulfonyl)-amino, N-(C_1-C_6-Alkyl) N-(C_1-C_6-alkylsulfonyl)-amino, N-(C_1-C_6-Alky)-N (C_1-C_6-halogenalkylsulfonyl)-amino, Phenoxy, Hetero$ cyclyloxy, Phenylthio oder Heterocyclylthio, wobei die vier letztgenannten Reste partiell oder vollständig 30 halogeniert sein können und/oder einen bis drei der nachfolgend genannten Substituenten tragen können:

35

 R^2 , R^3 Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder Halogen;

 $C_1-C_4-Alkoxy$ oder $C_1-C_4-Halogenalkyoxy;$

Nitro, Cyano, C1-C4-Alkyl, C1-C4-Halogenalkyl,

R4

eine Verbindung IIa oder IIb

40

$$(R^6)_1$$
 $(R^6)_1$
 $(R^6)_1$

45

IIb

wobei

Halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPR⁸R⁹, OPR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,
(C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio,
C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl,
C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl,
C₁-C₆-Alkoxycarbonyl oder C₁-C₆-Halogenalkoxycarbonyl;

oder

25 zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine -O-(CH₂)_m-O-, -O-(CH₂)_m-S-, -S-(CH₂)_m-S-, -O-(CH₂)_n- oder -S-(CH₂)_n-Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden

gemeinsam eine - (CH₂)_p-Kette, die durch Sauerstoff oder

Schwefel unterbrochen sein kann und/oder durch einen

bis vier Reste aus folgender Gruppe substituiert sein

kann:

Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder

C₁-C₄-Alkoxycarbonyl;

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden

45 gemeinsam eine Methylidengruppe, die durch einen bis

zwei Reste aus folgender Gruppe substituiert sein kann:

Halogen, Hydroxy, Formyl, Cyano, C1-C6-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, $C_1-C_6-Alkylthio$, $C_1-C_6-Halogenalkylthio$, $C_1-C_6-Alkyl-C$ sulfinyl, C₁-C₆-Halogenalkylsulfinyl, C₁-C₆-Alkylsulfonyl oder C1-C6-Halogenalkylsulfonyl;

oder

5

45

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe 10 aus;

oder

15 zwei Reste R6, die an verschiedenen Kohlenstoffen gebunden sind, bilden gemeinsam eine $-(CH_2)_n$ -Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, Hydroxy oder $C_1 - C_6 - Alkoxycarbonyl;$ 20

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, R^7 C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, C_1-C_{20} -Alkylcarbonyl, C_2-C_6 -Alkenylcarbonyl, C_2-C_6 -Alkinylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, C_1 - C_6 -Alkoxy-25 carbonyl, C3-C6-Alkenyloxycarbonyl, C3-C6-Alkinyloxycarbonyl, C1-C6-Alkylthiocarbonyl, C1-C6-Alkylaminocarbonyl, C3-C6-Alkenylaminocarbonyl, C3-C6-Alkinylaminocarbonyl, $N, N-Di-(C_1-C_6-alkyl)-aminocarbonyl$, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ 30 $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ Di- $(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-Alkylcarbo$ 35 $nyl-C_1-C_6-alkyl$, $C_1-C_6-Alkoxyimino-C_1-C_6-alkyl$, N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl oder $N, N-Di-(C_1-C_6-alkylamino)-imino-C_1-C_6-alkyl,$ wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine 40 bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Di- $(C_1-C_4$ -alkyl)amino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, $C_1-C_4-Alkoxy-C_1-C_4-alkoxycarbonyl$, Di- $(C_1-C_4-alkyl)$ amino- C_1 - C_4 -alkoxycarbonyl, Hydroxycarbonyl,

 C_1-C_4 -Alkylaminocarbonyl, Di-(C_1-C_4 -alkyl)-amino-

40

carbonyl, Aminocarbonyl, C₁-C₄-Alky rbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C1-C6-alkyl, Heterocy $clyl-C_1-C_6-alkyl$, Phenylcarbonyl- $C_1-C_6-alkyl$, Heterocy-5 $clylcarbonyl-C_1-C_6-alkyl$, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phe $noxy-C_1-C_6-alkylcarbonyl$, $Heterocyclyloxy-C_1-C_6-alkyl-alky$ carbonyl, Phenylaminocarbonyl, N-(C1-C6-Alkyl)-N-10 (phenyl)-aminocarbonyl, Heterocyclylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-(heterocyclyl)-aminocarbonyl, Phe$ $ny1-C_2-C_6-alkenylcarbonyl$ oder Heterocyclyl- $C_2-C_6-alkenylcarbonyl$ alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 20 letztgenannten Substituenten partiell 15 oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl, C1-C4-Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Halogenalkoxy;

20 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, R^8 , R^9 $C_3-C_6-Alkinyl$, $C_3-C_6-Halogenalkinyl$, $C_3-C_6-Cycloalkyl$, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, $C_1-C_6-Halogenalkylamino$, Di- $(C_1-C_6-alkyl)$ amino, Di- $(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten 25 Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, $Di-(C_1-C_4$ -alkyl)amino, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, 30 $C_1-C_4-Alkoxy-C_1-C_4-alkoxycarbonyl$, Di- $(C_1-C_4-alkyl)$ -ami $no-C_1-C_4$ -alkoxycarbonyl, Hydroxycarbonyl, C_1-C_4 -Alkylaminocarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl, Amino-

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

carbonyl, C_1 - C_4 -Alkylcarbonyloxy oder C_3 - C_6 -Cycloalkyl;

45 R¹⁰ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyl-

oxy, Amino, C₁-C₆-Alkylamino, Di-(C₁-C₆-Alkyl)-amino oder C₁-C₆-Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen bis drei Reste der folgenden Gruppe tragen können:
Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl, Di-(C₁-C₄-alkyl)-amino-c₁-C₄-alkoxycarbonyl, Hydroxycarbonyl, C₁-C₄-Alkyl-aminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

20 R^{11} , R^{12} C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder C_1 - C_6 -Alkylcarbonyl;

0 bis 6;

25 m 2 bis 4;

5

10

15

n 1 bis 5;

30 p 2 bis 5;

sowie deren landwirtschaftlich brauchbaren Salze.

Außerdem betrifft die Erfindung Verfahren zur Herstellung von 35 Verbindungen der Formel I, Mittel welche diese enthalten sowie die Verwendung dieser Derivate oder diese enthaltende Mittel zur Schadpflanzenbekämpfung.

Aus der Literatur, beispielsweise aus WO 98/12 180 und EP-A 283
40 261 sind Chinolinoyl- bzw. anellierte Phenyl-Derivate, die mit einem gegebenenfalls substituierten (1-Hydroxy-3-oxo-cyclo-hex-1-en-2-yl)carbonyl-Rest verknüpft sind, bekannt. Die herbiziden Eigenschaften der bisher bekannten Verbindungen sowie die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen. Es lag daher dieser Erfindung die Aufgabe

780686 O.Z. 0020/47302 DE

BASF Aktiengesellschaft

zugrunde, weitere biologisch, insbesondere h zid wirksame, Verbindungen zu finden.

Demgemäß wurden die Cyclohexenonchinolinoyl-Derivate der Formel I 5 sowie deren herbizide Wirkung gefunden.

Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur 10 Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als 15 Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

Die Verbindungen der Formel I können auch in Form ihrer landwirt20 schaftlich brauchbaren Salze vorliegen, wobei es auf die Art des
Salzes in der Regel nicht ankommt. Im allgemeinen kommen die
Salze derjenigen Kationen oder die Säureadditionssalze derjenigen
Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die
herbizide Wirkung der Verbindungen I nicht negativ beeinträchti25 gen.

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, 30 vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C1-C4-Alkyl, Hydroxy-C1-C4-alkyl, C1-C4-Alkoxy-C1-C4-alkyl, Hydroxy-C1-C4-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetrabutylammonium, 2-(2-Hydroxyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C1-C4-alkyl)sulfonium und Sulfoxoniumionen,

vorzugsweise $Tri(C_1-C_4-alkyl)$ sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C1-C4-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Die für die Substituenten $R^{1}-R^{12}$ oder als Reste an Phenyl- und Heterocyclyl-Resten genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also

- 5 alle Alkyl-, Halogenalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Halogenalkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsulfonyl-, N-Alkylaminosulfonyl-, N,N-Dialkylaminosulfonyl-, N-Alkylamino-, N-N-Dialkylamino-, N-Halogenalkylamino-, N-Alkoxyamino-, N-Alkoxy-N-alkylamino-, N-Alkyl-
- 10 carbonylamino-, N-Alkylsulfonylamino-, N-Halogenalkylsulfonylamino-, N-Alkyl-N-alkylsulfonylamino-, N-Alkyl-N-halogenalkylsulfonylamino-, Alkylcarbonyl-, Halogenalkylcarbonyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Alkylthiocarbonyl-, Alkylcarbonyl-, Alkyl-carbonyloxy-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Dial-
- 15 kylaminothiocarbonyl-, Alkoxyalkyl-, Dialkoxymethyl-, Dialkylthiomethyl-, (Alkoxy) (alkylthio)methyl-, Alkylcarbonylalkyl-, Alkoxyiminomethyl, Alkoxyiminoalkyl-, N-(Alkylamino)-iminoalkyl-,
 N-(Dialkylamino)-iminoalkyl-, Phenylalkenylcarbonyl-, Heterocyclylalkenylcarbonyl-, Phenoxyalkylcarbonyl, Heterocyclyloxyalkyl-
- 20 carbonyl, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkyl-N-phenylamino-carbonyl-, N-Alkyl-N-heterocyclylaminocarbonyl-, Alkoxycarbonyl-oxy, Phenylalkyl-, Heterocyclylalkyl-, Phenylcarbonylalkyl-, Heterocyclylaminoalkoxycarbonyl-, Alkoxyal-koxycarbonyl-, Alkenylcarbonyl-, Alkenylcarbonyl-, Alkenylami-
- 25 nocarbonyl-, N-Alkenyl-N-alkylaminocarbonyl-, N-Alkenyl-N-alkoxyaminocarbonyl-, Alkinylcarbonyl-, Alkinyloxycarbonyl-, Alkinylaminocarbonyl-, N-Alkinyl-N-alkylaminocarbonyl-, N-AlkinylN-alkoxyaminocarbonyl-, Alkenyl-, Alkinyl-, Halogenalkenyl-,
 Halogenalkinyl-, Alkenyloxy, Alkinyloxy und Alkoxyalkoxy-Teile
- 30 können geradkettig oder verzweigt sein. Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.

35 Ferner bedeuten beispielsweise:

- C₁-C₄-Alkyl: z.B. Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1,1-Dimethylethyl;
- 40 C_1 - C_6 -Alkyl, sowie die Alkylteile von C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl, N-(C_1 - C_6 -Alkylamino)-imino- C_1 - C_6 -alkyl, N-(Di- C_1 - C_6 -alkylamino)-imino- C_1 - C_6 -alkyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-aminocarbonyl, N-(C_3 - C_6 -Alkenyl)-N-(C_1 - C_6 -alkyl)-aminocarbonyl, (C_3 - C_6 -Alkinyl)-N-(C_1 - C_6 -alkyl)-aminocarbonyl,
- 45 N- $(C_1-C_6-Alkyl)$ -N-phenylaminocarbonyl, N- $(C_1-C_6-Alkyl)$ -N-heterocyclylaminocarbonyl, Phenyl- C_1-C_6 -alkyl, N- $(C_1-C_6-Alkyl)$ -N- $(C_1-C_6-Alkyl)$ -N-

06 U.A. 00Ju/22-

(C₁-C₆-halogenalkylsulfonyl)-amino, Heter lyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C₁-C₆-alkyl: C₁-C₄-Alkyl, wie voranstehend genannt, sowie z.B. Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethyl-propyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-3-methylpropyl;

- C₁-C₄-Halogenalkyl: einen C₁-C₄-Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl,
- 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl,
 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl,
 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl,
 2,2,3,3,3-Pentafluorpropyl, Heptafluor-
- 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluor-propyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
- 30 C₁-C₆-Halogenalkyl, sowie die Halogenalkylteile von N-C₁-C₆-Halogenalkylamino: C₁-C₄-Halogenalkyl, wie voranstehend genannt, sowie z.B. 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl oder Dodecafluorhexyl;
- C₁-C₄-Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;
- 40 C₁-C₆-Alkoxy, sowie die Alkoxyteile von N-C₁-C₆-Alkoxyamino, Di-(C₁-C₆-alkoxy)methyl, (C₁-C₆-Alkoxy) (C₁-C₆-alkylthio) methyl, C₁-C₆-Alkoxyiminomethyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl und
- N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl: C₁-C₄-Alkoxy, wie voranstehend genannt, sowie z.B. Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy,

g

1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy;

- C₁-C₄-Halogenalkoxy: einen C₁-C₄-Alkoxyrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brommethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy,
- 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Di-chlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2,3-Dichlorpropoxy, 3,3,3-Trifluor-
- propoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3,3-Pentafluorpropoxy,
 Heptafluorpropoxy, 1-(Fluormethyl)-2-fluorethoxy, 1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy;
- 25 C₁-C₆-Halogenalkoxy: C₁-C₄-Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder Dodecafluorhexoxy;
- 30
 C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, Propylthio,
 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;
- 35 C₁-C₆-Alkylthio, sowie die Alkylthioteile von C₁-C₆-Alkylthiocarbonyl, Di-(C₁-C₆-alkylthio)methyl und (C₁-C₆-Alkoxy)-(C₁-C₆-alkylthio)methyl: C₁-C₄-Alkylthio, wie voranstehend genannt, sowie z.B. Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio,
- 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio,
 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio,
 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Tri-

methylpropyl o, 1,2,2-Trimethylpropylth 1-Ethyl-1-methylpropylthio;

- C₁-C₄-Halogenalkylthio: einen C₁-C₄-Alkylthiorest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, Bromdifluormethylthio, 2-Fluorethylthio, 2-Chlorethylthio, 2-Bromethylthio, 2-Iodethylthio,
- 2,2-Difluorethylthio, 2,2,2-Trifluorethylthio, 2,2,2-Trichlorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, Pentafluorethylthio, 2-Fluorpropylthio, 3-Fluorpropylthio, 2-Chlorpropylthio, 3-Chlorpropylthio, 2-Brompropylthio, 3-Brompropylthio, 3-Chlorpropylthio, 2-Brompropylthio, 3-Brompropylthio, 2-2-3-Difluorpropylthio, 2-2-3-Difluorpropylthio, 2-2-3-Difluorpropylthio, 2-2-3-Difluorpropylthio, 2-2-3-Difluorpropylthio, 3-Brompropylthio, 3-2-3-Difluorpropylthio, 3-3-Difluorpropylthio, 3-3-Difluorprop
- propylthio, 2,2-Difluorpropylthio, 2,3-Difluorpropylthio, 2,3-Dichlorpropylthio, 3,3,3-Trifluorpropylthio, 3,3,3-Trichlorpropylthio, 2,2,3,3,3-Pentafluorpropylthio, Heptafluorpropylthio, 1-(Fluormethyl)-2-fluorethylthio, 1-(Chlormethyl)-2-chlorethylthio, 1-(Brommethyl)-2-bromethylthio, ador
- 4-Fluorbutylthio, 4-Chlorbutylthio, 4-Brombutylthio oder Nonafluorbutylthio;
- C₁-C₆-Halogenalkylthio: C₁-C₄-Halogenalkylthio, wie voranstehend genannt, sowie z.B. 5-Fluorpentylthio, 5-Chlorpentylthio, 5-Brompentylthio, 5-Iodpentylthio, Undecafluorpentylthio, 6-Fluorhexylthio, 6-Chlorhexylthio, 6-Bromhexylthio, 6-Iodhexylthio oder Dodecafluorhexylthio;
- $C_1-C_6-Alkylsulfinyl$ ($C_1-C_6-Alkyl-S(=0)-$): z.B. Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl, Butyl-30 sulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl, 1,1-Dimethylethylsulfinyl, Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Methylbutylsulfinyl, 3-Methylbutylsulfinyl, 2,2-Dimethylpropylsulfinyl, 1-Ethylpropylsulfinyl, 1,1-Dimethylpropylsulfinyl, 1,2-Dimethylpropylsulfinyl, Hexylsulfinyl, 35 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1,1-Dimethylbutylsulfinyl, 1,2-Dimethylbutylsulfinyl, 1,3-Dimethylbutylsulfinyl, 2,2-Dimethylbutylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3,3-Dimethylbutylsulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfi-40 nyl, 1,1,2-Trimethylpropylsulfinyl, 1,2,2-Trimethylpropylsulfinyl, 1-Ethyl-1-methylpropylsulfinyl oder 1-Ethyl-2-methyl-
- 45 C₁-C₆-Halogenalkylsulfinyl: C₁-C₆-Alkylsulfinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B.

propylsulfinyl;

Fluormethylsulfinyl, Difluormethylsulfinyl, Trifluormethylsulfinyl, Chlordifluormethylsulfinyl, Bromdifluormethylsulfinyl, 2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl, 2-Bromethylsulfinyl, 2-Iodethylsulfinyl, 2,2-Difluorethylsulfinyl, 2,2,2-Trifluorethylsulfinyl, 2,2,2-Trichlorethylsulfinyl, 5 2-Chlor-2-fluorethylsulfinyl, 2-Chlor-2,2-difluorethylsulfinyl, 2,2-Dichlor-2-fluorethylsulfinyl, Pentafluorethylsulfinyl, 2-Fluorpropylsulfinyl, 3-Fluorpropylsulfinyl, 2-Chlorpropylsulfinyl, 3-Chlorpropylsulfinyl, 2-Brompropylsulfinyl, 3-Brompropylsulfinyl, 2,2-Difluorpropylsulfinyl, 2,3-Difluor-10 propylsulfinyl, 2,3-Dichlorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl, 3,3,3-Trichlorpropylsulfinyl, 2,2,3,3,3-Pentafluorpropylsulfinyl, Heptafluorpropylsulfinyl, 1-(Fluormethyl)-2-fluorethylsulfinyl, 1-(Chlormethyl)-2-chlorethylsulfinyl, 1-(Brommethyl)-2-bromethylsulfinyl, 4-Fluorbutyl-15 sulfinyl, 4-Chlorbutylsulfinyl, 4-Brombutylsulfinyl, Nonafluorbutylsulfinyl, 5-Fluorpentylsulfinyl, 5-Chlorpentylsulfinyl, 5-Brompentylsulfinyl, 5-Iodpentylsulfinyl, Undecafluorpentylsulfinyl, 6-Fluorhexylsulfinyl, 6-Chlorhexylsulfinyl, 6-Bromhexylsulfinyl, 6-Iodhexylsulfinyl oder 20 Dodecafluorhexylsulfinyl;

 $C_1-C_6-Alkylsulfonyl$ ($C_1-C_6-Alkyl-S$ (=0)₂-), sowie die Alkylsulfonylreste von N-(C_1 - C_6 -Alkylsulfonyl)-amino und N-(C_1 - C_6 - $Alkyl)-N-(C_1-C_6-alkylsulfonyl)-amino: z.B. Methylsulfonyl,$ 25 Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, 1,1-Dimethylethylsulfonyl, Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 30 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutyl-35 sulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl oder 1-Ethyl-2-methylpropylsulfonyl;

- C₁-C₆-Halogenalkylsulfonyl, sowie die Halogenalkylreste von N-(C₁-C₆-Halogenalkylsulfonyl)-amino und N-(C₁-C₆-Alkyl)-N-(C₁-C₆-halogenalkylsulfonyl)-amino: einen C₁-C₆-Alkylsulfonyl-rest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlordifluormethylsulfonyl, Bromdifluorme-

12 Fluorethylsulfonyl, 2-Chlo hylsulfonyl, thylsulfonyl 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2,2-difluorethylsulfonyl, 2,2-Dichlor-2-fluorethylsulfonyl, 2,2,2-Trichlorethylsulfonyl, Pentafluorethylsulfonyl, 2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl,

2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl, 2-Brompropylsulfonyl, 3-Brompropylsulfonyl, 2,2-Difluorpropylsulfonyl, 2,3-Difluorpropylsulfonyl, 2,3-Dichlorpropylsulfonyl,

- 3,3,3-Trifluorpropylsulfonyl, 3,3,3-Trichlorpropylsulfonyl, 10 2,2,3,3,3-Pentafluorpropylsulfonyl, Heptafluorpropylsulfonyl, 1-(Fluormethyl)-2-fluorethylsulfonyl, 1-(Chlormethyl)-2chlorethylsulfonyl, 1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluorbutylsulfonyl, 4-Chlorbutylsulfonyl, 4-Brombutylsulfo-
- nyl, Nonafluorbutylsulfonyl, 5-Fluorpentylsulfonyl, 5-Chlor-15 pentylsulfonyl, 5-Brompentylsulfonyl, 5-Iodpentylsulfonyl, 6-Fluorhexylsulfonyl, 6-Bromhexylsulfonyl, 6-Iodhexylsulfonyl oder Dodecafluorhexylsulfonyl;
- C_1 - C_6 -Alkylamino, sowie die Alkylaminoreste von N-(C_1 - C_6 -20 -Alkylamino)-imino-C₁-C₆-alkyl, also z.B. Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino,
- 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropyl-25 amino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1-Methylpentylamino, 2-Methylpentylamino, 3-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino, 1,3-Dimethylbutylamino,
- 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethyl-30 butylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino, 1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;
- $(C_1-C_4-Alkylamino)$ sulfonyl: z.B. Methylaminosulfonyl, Ethyl-35 aminosulfonyl, Propylaminosulfonyl, 1-Methylethylaminosulfonyl, Butylaminosulfonyl, 1-Methylpropylaminosulfonyl, 2-Methylpropylaminosulfonyl oder 1,1-Dimethylethylaminosulfonyl;
- 40 $(C_1-C_6-Alkylamino)$ sulfonyl: $(C_1-C_4-Alkylamino)$ sulfonyl, wie vorstehend genannt, sowie z.B. Pentylaminosulfonyl, 1-Methylbutylaminosulfonyl, 2-Methylbutylaminosulfonyl, 3-Methylbutylaminosulfonyl, 2,2-Dimethylpropylaminosulfonyl, 1-Ethylpropylaminosulfonyl, Hexylaminosulfonyl, 1,1-Dimethylpropyl-45 aminosulfonyl, 1,2-Dimethylpropylaminosulfonyl, 1-Methylpentylaminosulfonyl, 2-Methylpentylaminosulfonyl, 3-Methylpen-

tylaminosulfonyl, 4-Methylpentylaminosulfonyl, 1,1-Dimethylbutylaminosulfonyl, 1,2-Dimethylbutylaminosulfonyl, 1,3-Dimethylbutylaminosulfonyl, 2,2-Dimethylbutylaminosulfonyl, 2,3-Dimethylbutylaminosulfonyl, 3,3-Dimethylbutylaminosulfonyl, 1-Ethylbutylaminosulfonyl, 2-Ethylbutylaminosulfonyl, 1,1,2-Trimethylpropylaminosulfonyl, 1,2,2-Trimethylpropylaminosulfonyl, 1,2,2-Trimethylpropylaminosulfonyl, 1-Ethyl-1-methylpropylaminosulfonyl oder 1-Ethyl-2-methylpropylaminosulfonyl;

- $Di-(C_1-C_4-alkyl)$ -aminosulfonyl: z.B. N,N-Dimethylaminosulfo-10 nyl, N, N-Diethylaminosulfonyl, N, N-Di-(1-methylethyl)aminosulfonyl, N,N-Dipropylaminosulfonyl, N,N-Dibutylaminosulfonyl, N, N-Di-(1-methylpropyl)-aminosulfonyl, N, N-Di-(2-methylpropyl)-aminosulfonyl, N,N-Di-(1,1-dimethylethyl)-aminosulfonyl, N-Ethyl-N-methylaminosulfonyl, N-Methyl-N-propyl-15 aminosulfonyl, N-Methyl-N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-methylaminosulfonyl, N-Methyl-N-(1-methylpropyl) -aminosulfonyl, N-Methyl-N-(2-methylpropyl) -aminosulfonyl, N-(1,1-Dimethylethyl)-N-methylaminosulfonyl,N-Ethyl-N-propylaminosulfonyl, N-Ethyl-N-(1-methyl-20 ethyl)-aminosulfonyl, N-Butyl-N-ethylaminosulfonyl, N-Ethyl-N-(1-methylpropyl)-aminosulfonyl, N-Ethyl-N-(2-methylpropyl)-aminosulfonyl, N-Ethyl-N-(1,1-dimethylethyl)-aminosulfonyl, N-(1-Methylethyl)-N-propylaminosulfonyl, N-Butyl-N-propylaminosulfonyl, N-(1-Methylpropyl)-N-propylamino-25 sulfonyl, N-(2-Methylpropyl)-N-propylaminosulfonyl,
- N-(1,1-Dimethylethyl)-N-propylaminosulfonyl, N-Butyl-N(1-methylethyl)-aminosulfonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminosulfonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminosulfonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminosulfonyl, N-Butyl-N-(1-methylpropyl)-aminosulfonyl, N-Butyl-N-(2-methylpropyl)-aminosulfonyl, NButyl-N-(1,1-dimethylethyl)-aminosulfonyl, N-(1-Methyl-
- propyl)-N-(2-methylpropyl)-aminosulfonyl, N-(1,1-Dimethyl-ethyl)-N-(1-methylpropyl)-aminosulfonyl oder N-(1,1-Dimethyl-ethyl)-N-(2-methylpropyl)-aminosulfonyl;
- Di-(C₁-C₆-alkyl)-aminosulfonyl: Di-(C₁-C₄-alkyl)-aminosulfonyl, wie voranstehend genannt, sowie z.B. N-Methyl-N-pentylaminosulfonyl, N-Methyl-N-(1-methylbutyl)-aminosulfonyl, N-Methyl-N-(2-methylbutyl)-aminosulfonyl, N-Methyl-N-(3-methylbutyl)-aminosulfonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-ethylpropyl)-aminosulfonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Methyl-N-(1-methylpentyl)-aminosulfonyl, N-Methyl-N-(1-methylpentyl)-aminosulfonyl, N-Methyl-N-(2-methylpentyl)-aminosulfonyl)

14 hyl-N-(3-methylpentyl)-amig alfonyl, Nsulfonyl, N-N Methyl-N-(4-methylpentyl)-aminosulfonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminosulfonyl, N-5 Methyl-N-(2,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-Methyl-N-(1-ethylbutyl)-aminosulfonyl, N-Methyl-N-(2-ethylbutyl)-aminosulfonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminosulfonyl, N-Methyl-N-(1,2,2-trimethylpropyl)-aminosulfonyl, N-10 Methyl-N-(1-ethyl-1-methylpropyl)-aminosulfonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminosulfonyl, N-Ethyl-N-pentylaminosulfonyl, N-Ethyl-N-(1-methylbutyl)-aminosulfonyl, N-Ethyl-N-(2-methylbutyl)-aminosulfonyl, N-Ethyl-N-(3-methylbutyl)-aminosulfonyl, N-Ethyl-N-(2,2-dimethylpropyl)-amino-15 sulfonyl, N-Ethyl-N-(1-ethylpropyl)-aminosulfonyl, N-Ethyl-N-hexylaminosulfonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminosulfonyl, N-Ethyl-N-(1-methylpentyl)-aminosulfonyl, N-Ethyl-N-(2-methylpentyl) -aminosulfonyl, N-Ethyl-N-(3-methylpentyl) -amino-20 sulfonyl, N-Ethyl-N-(4-methylpentyl)-aminosulfonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(1,2-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminosulfonyl, N-25 Ethyl-N-(2,3-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminosulfonyl, N-Ethyl-N-(1-ethylbutyl)-aminosulfonyl, N-Ethyl-N-(2-ethylbutyl)-aminosulfonyl, N-Ethyl-N-(1,1,2-trimethylpropyl) -aminosulfonyl, N-Ethyl-N-(1,2,2-trimethyl-30 propyl) -aminosulfonyl, N-Ethyl-N-(1-ethyl-1-methylpropyl) -aminosulfonyl, N-Ethyl-N-(1-ethyl-2-methylpropyl) -aminosulfonyl, N-Propyl-N-pentylaminosulfonyl, N-Butyl-N-pentylaminosulfonyl, N,N-Dipentylaminosulfonyl, N-Propyl-N-hexylaminosulfonyl, N-Butyl-N-hexylaminosulfonyl, 35 N-Pentyl-N-hexylaminosulfonyl oder N, N-Dihexylaminosulfonyl; Di-(C1-C4-alkyl)amino, sowie die Dialkylaminoreste von $Di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$ und $N-(Di-C_1-C_4-alkyl)$ alkylamino)-imino-C₁-C₆-alkyl, also z.B. N,N-Dimethylamino, 40 N, N-Diethylamino, N, N-Dipropylamino, N, N-Di-(1-methylethyl) amino, N, N-Dibutylamino, N, N-Di-(1-methylpropyl)amino, N, N-Di-(2-methylpropyl)amino, N, N-Di-(1, 1-dimethylethyl) amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, 45 N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methyl-

propyl) amino, N-(1,1-Dimethylethyl)-N-methylamino, N-Ethyl-N-

propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethyl-amino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methyl-propyl)amino, N-Ethyl-N-(1,1-dimethylethyl)amino, N-(1-Methylethyl)-N-propylamino, N-Butyl-N-propylamino, N-(1-Methyl-propyl)-N-propylamino, N-(2-Methylpropyl)-N-propylamino, N-(1,1-Dimethylethyl)-N-propylamino, N-Butyl-N-(1-methylethyl)-N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)-amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino,

- amino, N-Butyl-N-(2-methylpropyl)amino, N-Butyl-N-(1,1-dimethylethyl)amino, N-(1-Methylpropyl)-N-(2-methylpropyl)-amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-amino oder N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
- Di-(C₁-C₆-alkyl)amino, sowie die Dialkylaminoreste von Di-(C₁-C₆-alkyl)amino-imino-C₁-C₆-alkyl: Di-(C₁-C₄-alkyl)amino wie voranstehend genannt, sowie N,N-Dipentylamino, N,N-Dihexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino, N-Methyl-N-hexylamino oder N-Ethyl-N-hexylamino.
- 20
 C1-C4-Alkylcarbonyl: z.B. Methylcarbonyl, Ethylcarbonyl,
 Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl,
 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder
 1,1-Dimethylethylcarbonyl;
- C₁-C₆-Alkylcarbonyl, sowie die Alkylcarbonylreste von Phenoxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkylcarbonyl, C₁-C₆-Alkylcarbonylamino, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl: C₁-C₄-Alkylcarbonyl, wie voranstehend genannt, sowie z.B.
- Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentyl-
- carbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2,-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl,
 1,1,2-Trimethylpropylcarbonyl, 1,2,2-Trimethylpropylcarbonyl,
- 1-Ethyl-1-methylpropylcarbonyl oder 1-Ethyl-2-methylpropylcarbonyl;
- C₁-C₂₀-Alkylcarbonyl: C₁-C₆-Alkylcarbonyl, wie voranstehend genannt, sowie Heptylcarbonyl, Octylcarbonyl, Pentadecylcarbonyl bonyl oder Heptadecylcarbonyl;

- C₁-C₆-Halogenerkylcarbonyl: einen C₁-C₄-Algertandig durch vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chloracetyl, Dichloracetyl, Trichloracetyl, Fluoracetyl, Dichloracetyl, Dichl

- Difluoracetyl, Trifluoracetyl, Chlorfluoracetyl, Dichlorfluoracetyl, Chlordifluoracetyl, 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl, 2-Bromethylcarbonyl, 2-Iodethylcarbonyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl, 2-Chlor-2-fluorethylcarbonyl, 2-Chlor-2,2-difluorethylcarbo-
- nyl, 2,2-Dichlor-2-fluorethylcarbonyl, 2,2,2-Trichlorethylcarbonyl, Pentafluorethylcarbonyl, 2-Fluorpropylcarbonyl, 3-Fluorpropylcarbonyl, 2,2-Difluorpropylcarbonyl, 2,3-Difluorpropylcarbonyl, 3-Chlorpropylcarbonyl, 2-Brompropylcarbonyl, 2,3-Dichlorpropylcarbonyl, 2-Brompropylcarbonyl,
- 3-Brompropylcarbonyl, 3,3,3-Trifluorpropylcarbonyl,
 3,3,3-Trichlorpropylcarbonyl, 2,2,3,3,3-Pentafluorpropylcarbonyl, Heptafluorpropylcarbonyl, 1-(Fluormethyl)-2-fluorethylcarbonyl, 1-(Chlormethyl)-2-chlorethylcarbonyl, 1-(Brommethyl)-2-bromethylcarbonyl, 4-Fluorbutylcarbonyl, 4-Chlor-
- butylcarbonyl, 4-Brombutylcarbonyl, Nonafluorbutylcarbonyl, 5-Fluorpentylcarbonyl, 5-Chlorpentylcarbonyl, 5-Brompentylcarbonyl, Perfluorpentylcarbonyl, 6-Fluorhexylcarbonyl, 6-Chlorhexylcarbonyl, 6-Bromhexylcarbonyl oder Perfluorhexylcarbonyl;
- C1-C4-Alkoxycarbonyl, sowie die Alkoxycarbonylteile von Di-(C1-C4-alkyl) amino-C1-C4-alkoxycarbonyl, also z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl, oder 1,1-Dimethylethoxycarbonyl;
 - (C₁-C₆-Alkoxy) carbonyl; sowie die Alkoxycarbonylteile von C₁-C₆-Alkoxycarbonyloxy: (C₁-C₄-Alkoxy) carbonyl, wie vorstehend genannt, sowie z.B. Pentoxycarbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl,
- thylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 1,2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methyl-propoxy-
- carbonyl oder 1-Ethyl-2-methyl-propoxycarbonyl;

- C₁-C₆-Halogenalkoxycarbonyl: einen C₁-C₄-Alkoxycarbonylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxycarbonyl, Difluormethoxycarbonyl, Trifluor-
- methoxycarbonyl, Chlordifluormethoxycarbonyl, Bromdifluormethoxycarbonyl, 2-Fluorethoxycarbonyl, 2-Chlorethoxycarbonyl, 2-Bromethoxycarbonyl, 2-Iodethoxycarbonyl, 2,2-Difluorethoxycarbonyl, 2,2,2-Trifluorethoxycarbonyl, 2-Chlor-2-fluorethoxycarbonyl, 2-Chlor-2,2-difluorethoxycarbonyl,
- 2,2-Dichlor-2-fluorethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, Pentafluorethoxycarbonyl, 2-Fluorpropoxycarbonyl, 3-Fluorpropoxycarbonyl, 2-Chlorpropoxycarbonyl, 3-Chlorpropoxycarbonyl, 2-Brompropoxycarbonyl, 3-Brompropoxycarbonyl, 2,2-Difluorpropoxycarbonyl, 2,3-Difluorpropoxycarbonyl,
- 2,3-Dichlorpropoxycarbonyl, 3,3,3-Trifluorpropoxycarbonyl, 3,3,3-Trichlorpropoxycarbonyl, 2,2,3,3,3-Pentafluorpropoxycarbonyl, 1-(Fluormethyl)-2-fluorethoxycarbonyl, 1-(Chlormethyl)-2-chlorethoxycarbonyl, 1-(Brommethyl)-2-bromethoxycarbonyl, 4-Fluorbutoxycarbonyl,
- 4-Chlorbutoxycarbonyl, 4-Brombutoxycarbonyl, 4-Iodbutoxy-carbonyl, 5-Fluorpentoxycarbonyl, 5-Chlorpentoxycarbonyl, 5-Brompentoxycarbonyl, 6-Fluorhexoxycarbonyl, 6-Chlorhexoxy-carbonyl oder 6-Bromhexoxycarbonyl;
- 25 (C₁-C₄-Alkyl) carbonyloxy: Acetyloxy, Ethylcarbonyloxy, Propyl-carbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy, 1-Methylpropylcarbonyloxy, 2-Methylpropylcarbonyloxy oder 1,1-Dimethylethylcarbonyloxy;
- 30 (C₁-C₄-Alkylamino) carbonyl: z.B. Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl, Butylaminocarbonyl, 1-Methylpropylaminocarbonyl, 2-Methylpropylaminocarbonyl oder 1,1-Dimethylethylaminocarbonyl;
- (C₁-C₆-Alkylamino) carbonyl: (C₁-C₄-Alkylamino) carbonyl, wie vorstehend genannt, sowie z.B. Pentylaminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methylbutylaminocarbonyl, 2-Dimethylpropylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl, 1-Ethyl-
- propylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl,
- 1,3-Dimethylbutylaminocarbonyl, 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutylaminocarbonyl, 3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutylamino-

carbonyl, 1, 2-Trimethylpropylaminocarbo 1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl oder 1-Ethyl-2-methylpropylaminocarbonyl;

- 5 Di-(C₁-C₄-alkyl)-aminocarbonyl: z.B. N,N-Dimethylaminocarbonyl, N,N-Diethylaminocarbonyl, N,N-Di-(1-methylethyl)aminocarbonyl, N,N-Dipropylaminocarbonyl, N,N-Dibutylaminocarbonyl, N,N-Di-(1-methylpropyl)-aminocarbonyl, N,N-Di-(2-methylpropyl)-aminocarbonyl, N,N-Di-(1,1-dimethylethyl)-aminocarbonyl
- nyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propylaminocarbonyl, N-Methyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-methylaminocarbonyl, N-Methyl-N-(1-methylpropyl)-aminocarbonyl, N-Methyl-N-(2-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminocarbonyl, N-Ethyl-N-pro-
- pylaminocarbonyl, N-Ethyl-N-(1-methylethyl)-aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methylethyl)-N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl,
- N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methyl-propyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminocarbonyl, N-Butyl-N-(1-methylethyl)-aminocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminocarbonyl,
- N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminocarbonyl, N-Bu-tyl-N-(1-methylpropyl)-aminocarbonyl, N-Butyl-N-(2-methyl-propyl)-aminocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl, N-(1,1-Dimethylethyl)
- carbonyl, N (1,1 Dimethylethyl) -N-(2-methylpropyl) -amino-carbonyl;
 - Di- $(C_1-C_6-alkyl)$ -aminocarbonyl: Di- $(C_1-C_4-alkyl)$ -aminocarbonyl, wie voranstehend genannt, sowie z.B. N-Methyl-
- N-pentylaminocarbonyl, N-Methyl-N-(1-methylbutyl)-aminocarbonyl, N-Methyl-N-(2-methylbutyl)-aminocarbonyl, N-Methyl-N-(3-methylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminocarbonyl, N-Methyl-N-hexylaminocarbonyl, N-Methyl-N-hexylaminocarbonyl,
- N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Methyl-N(1,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-methylpentyl)-aminocarbonyl, N-Methyl-N-(2-methylpentyl)-aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl,
 N-Methyl-N-(4-methylpentyl)-aminocarbonyl, N-Methyl-N-
- 45 (1,1-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethyl-butyl)-aminocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminocarbonyl,

N-Methyl-N-(2,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminocarbonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Methyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl, N-Methyl-5 N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-N-(1-ethyl-1-methylpropyl))ethyl-2-methylpropyl)-aminocarbonyl, N-Ethyl-N-pentylaminocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminocarbonyl, N-Ethyl-N-(3-methylbutyl)aminocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminocarbonyl, 10 N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl, N-Ethyl-N-hexylaminocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminocarbonyl, N-Ethyl-N-(2-methylpentyl)aminocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminocarbonyl, 15 N-Ethyl-N-(4-methylpentyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)aminocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,3dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-20 aminocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2,2-trimethylpropyl) -aminocarbonyl, N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethyl-2-methyl-25 propyl)-aminocarbonyl, N-Propyl-N-pentylaminocarbonyl, N-Butyl-N-pentylaminocarbonyl, N,N-Dipentylaminocarbonyl, N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl, N-Pentyl-N-hexylaminocarbonyl oder N, N-Dihexylaminocarbonyl; 30 $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl: z.B. N, N-Dimethylaminothiocarbonyl, N,N-Diethylaminothiocarbonyl, N,N-Di-(1-methylethyl) aminothiocarbonyl, N, N-Dipropylaminothiocarbonyl, N, N-Dibutylaminothiocarbonyl, N, N-Di-(1-methylpropyl)-aminothiocarbonyl, N,N-Di-(2-methylpropyl)-aminothiocarbonyl, 35 N, N-Di-(1,1-dimethylethyl)-aminothiocarbonyl, N-Ethyl-N-methylaminothiocarbonyl, N-Methyl-N-propylaminothiocarbonyl, N-Methyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-methylaminothiocarbonyl, N-Methyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(2-methylpropyl)-amino-40 thiocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminothiocarbonyl, N-Ethyl-N-propylaminothiocarbonyl, N-Ethyl-N-(1-methylethyl) -aminothiocarbonyl, N-Butyl-N-ethylaminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-45 (1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-propylaminothiocarbonyl,

N-(1-Methylprepyl)-N-propylaminothiocarbo N-(2-Methylpropyl) -N-propylaminothiocarbonyl, N-(1,1-Dimethylethyl) -N-propylaminothiocarbonyl, N-Butyl-N-(1-methylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminothio-5 carbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethyl-10 ethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-Methyl-N-pentylaminothiocarbonyl, N-Methyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl, N-Methyl-N-15 (2,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylpropyl) -aminothiocarbonyl, N-Methyl-N-hexylaminothiocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(2-methyl-20 pentyl)-aminothiocarbonyl, N-Methyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,3dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethyl-25 butyl)-aminothiocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)aminothiocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-30 (1,2,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1ethyl-1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-pentylaminothiocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3-35 methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl) -aminothiocarbonyl, N-Ethyl-N-(1-ethylpropyl) -aminothiocarbonyl, N-Ethyl-N-hexylaminothiocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-methyl-40 pentyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,2dimethylbutyl) -aminothiocarbonyl, N-Ethyl-N-(1,3-dimethyl-45 butyl) -aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl) -

aminothiocarbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminothio-

```
carbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl,
N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-
ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,1,2-trimethyl-
propyl)-aminothiocarbonyl, N-Ethyl-N-(1,2,2-trimethyl-
propyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethyl-1-methyl-
propyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethyl-2-methyl-
propyl)-aminothiocarbonyl, N-Propyl-N-pentylaminothiocarbo-
nyl, N-Butyl-N-pentylaminothiocarbonyl, N,N-Dipentylamino-
thiocarbonyl, N-Propyl-N-hexylaminothiocarbonyl, N-Butyl-
N-hexylaminothiocarbonyl, N-Pentyl-N-hexylaminothiocarbonyl
oder N,N-Dihexylaminothiocarbonyl;
```

- $C_1-C_4-Alkoxy-C_1-C_4-alkyl$: durch $C_1-C_4-Alkoxy$, wie vorstehend genannt, substituiertes C_1 - C_4 -Alkyl, also z.B. für Methoxymethyl, Ethoxymethyl, Propoxymethyl, (1-Methylethoxy)methyl, 15 Butoxymethyl, (1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, (1,1-Dimethylethoxy)methyl, 2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl, 2-(1-Methylethoxy)ethyl, 2-(Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy) ethyl, 2-(1,1-Dimethylethoxy) ethyl, 2-(Methoxy) -20 propyl, 2-(Ethoxy)propyl, 2-(Propoxy)propyl, 2-(1-Methylethoxy)-propyl, 2-(Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl, 2-(1,1-Dimethylethoxy)propyl, 3-(Methoxy)propyl, 3-(Ethoxy)-propyl, 3-(Propoxy)propyl, 3-(1-Methylethoxy)propyl, 3-(Butoxy)propyl, 3-(1-Methyl-25 propoxy)propyl, 3-(2-Methylpropoxy)propyl, 3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)butyl, 2-(Ethoxy)butyl, 2-(Propoxy) butyl, 2-(1-Methylethoxy) butyl, 2-(Butoxy) butyl, 2-(1-Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl, 2-(1,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl, 3-(Ethoxy)-30 butyl, 3-(Propoxy)butyl, 3-(1-Methylethoxy)butyl, 3-(Butoxy)-
- butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl,
 3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl, 4-(Ethoxy)butyl, 4-(Propoxy)butyl, 4-(1-Methylethoxy)butyl, 4-(Butoxy)butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methylpropoxy)butyl
 oder 4-(1,1-Dimethylethoxy)butyl;
 C₁-C₄-Alkoxy-C₁-C₄-alkoxy, sowie die Alkoxyalkoxyteile von
- C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl: durch C₁-C₄-Alkoxy, wie vorstehend genannt, substituiertes C₁-C₄-Alkoxy, also z.B. für Methoxymethoxy, Ethoxymethoxy, Propoxymethoxy, (1-Methylethoxy) methoxy, Butoxymethoxy, (1-Methylpropoxy) methoxy, (2-Methylpropoxy) methoxy, (1,1-Dimethylethoxy) methoxy, 2-(Methoxy) ethoxy, 2-(Propoxy) ethoxy, 2-(1-Methylethoxy) ethoxy, 2-(1-Methylethoxy) ethoxy, 2-(1-Methylethoxy) ethoxy, 2-(1-Dimethylethoxy) ethoxy, 2-(1-Dimethylethoxy)
- 2-(1-Methylethoxy) ethoxy, 2-(Butoxy) ethoxy, 2-(1-Methyl-propoxy) ethoxy, 2-(2-Methylpropoxy) ethoxy, 2-(1,1-Dimethyl-ethoxy) ethoxy, 2-(Methoxy) propoxy, 2-(Ethoxy) propoxy,

```
2-(Propoxy) propoxy, 2-(1-Methylethoxy) prop , 2-(Butoxy)-
       propoxy, 2-(1-Methylpropoxy) propoxy, 2-(2-Methylpropoxy) -
       propoxy, 2-(1,1-Dimethylethoxy) propoxy, 3-(Methoxy)-propoxy,
       3-(Ethoxy)propoxy, 3-(Propoxy)propoxy, 3-(1-Methylethoxy)-
       propoxy, 3-(Butoxy)propoxy, 3-(1-Methylpropoxy)-propoxy,
5
       3-(2-Methylpropoxy)propoxy, 3-(1,1-Dimethylethoxy)propoxy,
       2-(Methoxy)butoxy, 2-(Ethoxy)butoxy, 2-(Propoxy)butoxy,
       2-(1-Methylethoxy)butoxy, 2-(Butoxy)-butoxy, 2-(1-Methyl-
       propoxy) butoxy, 2-(2-Methylpropoxy) butoxy, 2-(1,1-Dimethyl-
       ethoxy) butoxy, 3-(Methoxy) butoxy, 3-(Ethoxy)-butoxy,
10
       3-(Propoxy) butoxy, 3-(1-Methylethoxy) butoxy, 3-(Butoxy)-
       butoxy, 3-(1-Methylpropoxy)butoxy, 3-(2-Methylpropoxy)butoxy,
       3-(1,1-Dimethylethoxy)butoxy, 4-(Methoxy)-butoxy, 4-(Ethoxy)-
       butoxy, 4-(Propoxy) butoxy, 4-(1-Methylethoxy) butoxy,
        4-(Butoxy)butoxy, 4-(1-Methylpropoxy)butoxy, 4-(2-Methyl-
15
       propoxy) butoxy oder 4-(1,1-Dimethylethoxy) butoxy;
        C<sub>3</sub>-C<sub>6</sub>-Alkenyl, sowie die Alkenylteile von C<sub>3</sub>-C<sub>6</sub>-Alkenyl-
        carbonyl, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-Alkenyloxycarbonyl,
        C_3-C_6-Alkenylaminocarbonyl, N-(C_3-C_6-Alkenyl)-N-(C_1-C_6) alkyl-
20
        aminocarbonyl, N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy) amino-
        carbonyl: z.B. Prop-2-en-1-yl, But-1-en-4-yl, 1-Methyl-
        prop-2-en-1-yl, 2-Methyl-prop-2-en-1-yl, 2-Buten-1-yl,
        1-Penten-3-yl, 1-Penten-4-yl, 2-Penten-4-yl, 1-Methyl-
        but-2-en-1-yl, 2-Methyl-but-2-en-1-yl, 3-Methyl-
25
        but-2-en-1-yl, 1-Methyl-but-3-en-1-yl, 2-Methyl-
        but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 1,1-Dimethyl-
        prop-2-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-
        prop-2-en-1-yl, Hex-3-en-1-yl, Hex-4-en-1-yl, Hex-5-en-1-yl,
        1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-
30
        pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 1-Methyl-
        pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl, 3-Methyl-
        pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl, 1,1-Dimethyl-
        but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl, 1,2-Dimethyl-
        but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl, 1,3-Dimethyl-
35
        but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl, 2,2-Dimethyl-
        but-3-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl, 2,3-Dimethyl-
        but-3-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-2-
        en-1-yl, 1-Ethyl-but-3-en-1-yl, 2-Ethyl-but-2-en-1-yl,
        2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl,
40
```

1-Ethyl-1-methyl-prop-2-en-1-yl oder 1-Ethyl-2-methyl-

prop-2-en-1-y1;

 C_2 - C_6 -Alkenyl, sowie die Alkenylteile von C_2 - C_6 -Alkenylcarbonyl, Phenyl- C_2 - C_6 -alkenylcarbonyl und Heterocyclyl- C_2 - C_6 -alkenylcarbonyl: C_3 - C_6 -Alkenyl, wie voranstehend genannt, sowie Ethenyl;

- 5
- C₃-C₆-Halogenalkenyl: einen C₃-C₆-Alkenylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 2-Chlorallyl, 3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl, 2,3,3-Tri-
- chlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromallyl, 3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl, 2,3,3-Tribromallyl oder 2,3-Dibrombut-2-enyl;
- C₃-C₆-Alkinyl, sowie die Alkinylteile von C₃-C₆-Alkinylcarbonyl, C₃-C₆-Alkinyloxy, C₃-C₆-Alkinyloxycarbony,
 C₃-C₆-Alkinylaminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxyaminocarbonyl: z.B. Propargyl, But-1-in-3-yl, But-1-in-4-yl,
 But-2-in-1-yl, Pent-1-in-3-yl, Pent-1-in-4-yl, Pent-1-in-
- oder 4-Methyl-pent-2-in-5-yl;

 C₂-C₆-Alkinyl, sowie die Alkinylteile von C₂-C₆-Alkinyl-
- C₂-C₆-Alkinyl, sowie die Alkinylteile von C₂-C₆-Alkinyl-carbonyl: C₃-C₆-Alkinyl, wie voranstehend genannt, sowie
 Ethinyl;
- C₃-C₆-Halogenalkinyl: einen C₃-C₆-Alkinylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 1,1-Difluor-prop-2-in-1-yl, 3-Iod-prop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-Iod-but-3-in-1-yl, 5-Fluorpent-3-in-1-yl, 5-Iod-pent-4-in-1-yl, 6-Fluor-hex-4-in-1-yl oder 6-Iod-hex-5-in-1-yl;
- 40 C₃-C₆-Cycloalkyl, sowie die Cycloalkylteile von C₃-C₆-Cycloalkylcarbonyl: z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
- Heterocyclyl, sowie Heterocyclylteile von Heterocyclylcarbo nyl, Heterocyclyl-C₁-C₆-alkyl, Heterocyclyloxy, Heterocyclyloxythio, Heterocyclyloxyalkylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Heterocyclylcarbonyl-C₁-C₆-alkyl,

N-(C₁-C₆-Alkyl)-N-(heterocyclyl)-aminocarbal, Heterocyclyl-aminocarbonyl: ein gesättigter, partiell gesättigter oder ungesättiger 5- oder 6-gliedriger, C-gebundener, heterocyclischer Ring, der ein bis vier gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält, also z.B. 5-gliedrige Ringe wie:

Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydrothien-3-yl, Tetrahydropyrrol-2-yl, Tetrahydro-10 pyrrol-3-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 4,5-Dihydrofuran-2-yl, 4,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 4,5-Dihydrothien-2-yl, 4,5-Dihydrothien-3-yl, 15 2,3-Dihydro-1H-pyrrol-2-yl, 2,3-Dihydro-1H-pyrrol-3-yl, 2,5-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 4,5-Dihydro-1H-pyrrol-2-yl, 4,5-Dihydro-1H-pyrrol-3-yl, 3,4-Dihydro-2H-pyrrol-2-yl, 3,4-Dihydro-2H-pyrrol-3-yl, 3,4-Dihydro-5H-pyrrol-2-yl, 3,4-Dihydro-5H-pyrrol-3-yl, 20 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, Pyrrol-2-yl, Pyrrol-3-yl, Tetrahydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydroisoxazol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-5-yl, 1,2-0xathiolan-3-yl, 1,2-0xathiolan-4-yl, 1,2-0xathiolan-5-yl, Tetrahydroisothiazol-3-yl, Tetrahydro-25 isothiazol-4-yl, Tetrahydroisothiazol-5-yl, 1,2-Dithiolan-3yl, 1,2-Dithiolan-4-yl, Tetrahydroimidazol-2-yl, Tetrahydroimidazol-4-yl, Tetrahydrooxazol-2-yl, Tetrahydrooxazol-4-yl, Tetrahydrooxazol-5-yl, Tetrahydrothiazol-2-yl, Tetrahydrothiazol-4-yl, Tetrahydrothiazol-5-yl, 1,3-Dioxolan-2-yl, 30 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl, 1,3-Oxathiolan-5-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl, 4,5-Dihydro-1H-pyrazol-3-yl, 4,5-Dihydro-1H-pyrazol-4-yl, 4,5-Dihydro-1H-pyrazol-5-yl, 2,5-Dihydro-1H-pyrazol-3-yl, 2,5-Dihydro-1H-pyrazol-4-yl, 2,5-Dihydro-1H-pyrazol-5-yl, 35 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-4-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 4,5-Dihydro-40 isothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol-3-yl, 2,3-Dihydroisothiazol-4-yl, 2,3-Dihydroisothiazol-5-yl, Δ^3 -1,2-Dithiol-3-yl, Δ^3 -1,2-Dithiol-4-yl, Δ^3 -1,2-Dithiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl, 4,5-Dihydro-1H-imi-45 dazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl, 2,5-Dihydro-1H-imidazol-2-yl, 2,5-Dihydro-1H-imidazol-4-yl, 2,5-Dihydro-1H-imi-

```
dazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl, 2,3-Dihydro-1H-imi-
       dazol-4-yl, 4,5-Dihydrooxazol-2-yl, 4,5-Dihydrooxazol-4-yl,
       4,5-Dihydrooxazol-5-yl, 2,5-Dihydrooxazol-2-yl, 2,5-Dihydro-
       oxazol-4-yl, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydrooxazol-2-yl,
       2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydro-
5
       thiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothia-
       zol-5-yl, 2,5-Dihydrothiazol-2-yl, 2,5-Dihydrothiazol-4-yl,
       2,5-Dihydrothiazol-5-yl, 2,3-Dihydrothiazol-2-yl, 2,3-Dihy-
       drothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl,
       1,3-Dioxol-4-yl, 1,3-Dithiol-2-yl, 1,3-Dithiol-4-yl, 1,3-Oxa-
10
       thiol-2-yl, 1,3-Oxathiol-4-yl, 1,3-Oxathiol-5-yl, Pyrazol-3-
       yl, Pyrazol-4-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-
       yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl,
        Imidazol-2-yl, Imidazol-4-yl, Oxazol-2-yl, Oxazol-4-yl,
        Oxazol-5-yl, Thiazol-2-yl, Thiazol-4-yl, Thiazol-5-yl,
15
        1,2,3-\Delta^2-Oxadiazolin-4-yl, 1,2,3-\Delta^2-Oxadiazolin-5-yl,
        1,2,4-\Delta^4-Oxadiazolin-3-yl, 1,2,4-\Delta^4-Oxadiazolin-5-yl,
        1,2,4-\Delta^2-Oxadiazolin-3-yl, 1,2,4-\Delta^2-Oxadiazolin-5-yl,
        1,2,4-\Delta^3-Oxadiazolin-3-yl, 1,2,4-\Delta^3-Oxadiazolin-5-yl,
        1,3,4-\Delta^2-Oxadiazolin-2-yl, 1,3,4-\Delta^2-Oxadiazolin-5-yl,
20
        1,3,4-\Delta^3-Oxadiazolin-2-yl, 1,3,4-Oxadiazolin-2-yl,
        1,2,4-\Delta^4-Thiadiazolin-3-yl, 1,2,4-\Delta^4-Thiadiazolin-5-yl,
        1,2,4-\Delta^3-Thiadiazolin-3-yl, 1,2,4-\Delta^3-Thiadiazolin-5-yl,
        1,2,4-\Delta^2-Thiadiazolin-3-yl, 1,2,4-\Delta^2-Thiadiazolin-5-yl,
        1,3,4-\Delta^2-Thiadiazolin-2-yl, 1,3,4-\Delta^2-Thiadiazolin-5-yl,
25
        1,3,4-\Delta^3-Thiadiazolin-2-yl, 1,3,4-Thiadiazolin-2-yl,
        1,3,2-Dioxathiolan-4-yl, 1,2,3-\Delta^2-Triazolin-4-yl,
        1,2,3-\Delta^2-Triazolin-5-yl, 1,2,4-\Delta^2-Triazolin-3-yl,
        1,2,4-\Delta^2-Triazolin-5-yl, 1,2,4-\Delta^3-Triazolin-3-yl,
        1,2,4-\Delta^3-Triazolin-5-yl, 1,2,4-\Delta^1-Triazolin-2-yl, 1,2,4-Tri-
30
        azolin-3-yl, 3H-1,2,4-Dithiazol-5-yl, 2H-1,3,4-Dithiazol-5-
        yl, 2H-1,3,4-Oxathiazol-5-yl, 1,2,3-Oxadiazol-4-yl,
        1,2,3-Oxadiazol-5-yl, 1,2,4-Oxadiazol-3-yl,
        1,2,4,-0xadiazol-5-yl, 1,3,4-0xadiazol-2-yl,
        1,2,3-Thiadiazol-4-yl, 1,2,3-Thiadiazol-5-yl,
35
        1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Thia-
        diazolyl-2-yl, 1,2,3-Triazol-4-yl, 1,2,4-Triazol-3-yl,
        Tetrazol-5-yl,
```

40 6-gliedrige Ringe wie:

45

Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydrothiopyran-4-yl, 2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydropyran-4-yl, 2H-3,4-Dihydropyran-2-yl, 2H-3,4-Dihydropyran-2-yl,

```
26
       2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydroth
                                                     yran-5-yl,
       2H-3,4-Dihydrothiopyran-4-yl, 2H-3,4-Dihydropyran-3-yl,
       2H-3,4-Dihydropyran-2-yl, 1,2,3,4-Tetrahydropyridin-6-yl,
       1,2,3,4-Tetrahydropyridin-5-yl, 1,2,3,4-Tetrahydropyridin-4-
       y1, 1,2,3,4-Tetrahydropyridin-3-y1, 1,2,3,4-Tetrahydropyri-
5
       din-2-yl, 2H-5,6-Dihydropyran-2-yl, 2H-5,6-Dihydropyran-3-yl,
       2H-5,6-Dihydropyran-4-yl, 2H-5,6-Dihydropyran-5-yl,
       2H-5,6-Dihydropyran-6-yl, 2H-5,6-Dihydrothiopyran-2-yl,
       2H-5,6-Dihydrothiopyran-3-yl, 2H-5,6-Dihydrothiopyran-4-yl,
       2H-5,6-Dihydrothiopyran-5-yl, 2H-5,6-Dihydrothiopyran-6-yl,
10
       1,2,5,6-Tetrahydropyridin-2-yl, 1,2,5,6-Tetrahydropyridin-3-
       yl, 1,2,5,6-Tetrahydropyridin-4-yl, 1,2,5,6-Tetrahydropyri-
       din-5-yl, 1,2,5,6-Tetrahydropyridin-6-yl, 2,3,4,5-Tetrahydro-
       pyridin-2-yl, 2,3,4,5-Tetrahydropyridin-3-yl, 2,3,4,5-Tetra-
       hydropyridin-4-y1, 2,3,4,5-Tetrahydropyridin-5-y1,
15
       2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-Pyran-3-
       yl, 4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl,
       4H-Thiopyran-4-yl, 1,4-Dihydropyridin-2-yl, 1,4-Dihydropyri-
       din-3-yl, 1,4-Dihydropyridin-4-yl, 2H-Pyran-2-yl, 2H-Pyran-
       3-yl, 2H-Pyran-4-yl, 2H-Pyran-5-yl, 2H-Pyran-6-yl, 2H-Thiopy-
20
       ran-2-yl, 2H-Thiopyran-3-yl, 2H-Thiopyran-4-yl, 2H-Thiopyran-
        5-yl, 2H-Thiopyran-6-yl, 1,2-Dihydropyridin-2-yl,
        1,2-Dihydropyridin-3-yl, 1,2-Dihydropyridin-4-yl,
        1,2-Dihydropyridin-5-yl, 1,2-Dihydropyridin-6-yl,
        3,4-Dihydropyridin-2-yl, 3,4-Dihydropyridin-3-yl,
25
        3,4-Dihydropyridin-4-yl, 3,4-Dihydropyridin-5-yl,
        3,4-Dihydropyridin-6-yl, 2,5-Dihydropyridin-2-yl,
        2,5-Dihydropyridin-3-yl, 2,5-Dihydropyridin-4-yl,
        2,5-Dihydropyridin-5-yl, 2,5-Dihydropyridin-6-yl,
        2,3-Dihydropyridin-2-yl, 2,3-Dihydropyridin-3-yl,
30
        2,3-Dihydropyridin-4-yl, 2,3-Dihydropyridin-5-yl,
        2,3-Dihydropyridin-6-yl, Pyridin-2-yl, Pyridin-3-yl,
        Pyridin-4-yl, 1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxan-
        5-yl, 1,4-Dioxan-2-yl, 1,3-Dithian-2-yl, 1,3-Dithian-4-yl,
        1,3-Dithian-5-yl, 1,4-Dithian-2-yl, 1,3-Oxathian-2-yl,
35
        1,3-Oxathian-4-yl, 1,3-Oxathian-5-yl, 1,3-Oxathian-6-yl,
        1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, 1,2-Dithian-3-yl,
        1,2-Dithian-4-yl, Hexahydropyrimidin-2-yl, Hexahydropyrimi-
        din-4-yl, Hexahydropyrimidin-5-yl, Hexahydropyrazin-2-yl,
        Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Tetra-
40
        hydro-1,3-oxazin-2-yl, Tetrahydro-1,3-oxazin-4-yl, Tetra-
        hydro-1,3-oxazin-5-yl, Tetrahydro-1,3-oxazin-6-yl, Tetra-
        hydro-1,3-thiazin-2-yl, Tetrahydro-1,3-thiazin-4-yl, Tetra-
        hydro-1,3-thiazin-5-yl, Tetrahydro-1,3-thiazin-6-yl, Tetra-
        hydro-1,4-thiazin-2-yl, Tetrahydro-1,4-thiazin-3-yl, Tetra-
45
        hydro-1,4-oxazin-2-yl, Tetrahydro-1,4-oxazin-3-yl, Tetra-
        hydro-1,2-oxazin-3-yl, Tetrahydro-1,2-oxazin-4-yl, Tetra-
```

hydro-1,2-oxazin-5-yl, Tetrahydro-1,2-oxazin-6-yl, 2H-5,6-Dihydro-1,2-oxazin-3-yl, 2H-5,6-Dihydro-1,2-oxazin-4-yl, 2H-5,6-Dihydro-1,2-oxazin-5-yl, 2H-5,6-Dihydro-1,2-oxazin-6-y1, 2H-5,6-Dihydro-1,2-thiazin-3-y1, 2H-5,6-Dihydro-1,2-thiazin-4-yl, 2H-5,6-Dihydro-1,2-thiazin-5-yl, 5 2H-5,6-Dihydro-1,2-thiazin-6-yl, 4H-5,6-Dihydro-1,2-oxazin-3-yl, 4H-5,6-Dihydro-1,2-oxazin-4-yl, 4H-5,6-Dihydro-1,2-oxazin-5-yl, 4H-5,6-Dihydro-1,2-oxazin-6-yl, 4H-5,6-Dihydro-1,2-thiazin-3-yl, 4H-5,6-Dihydro-1,2-thiazin-4-yl, 4H-5,6-Dihydro-1,2-thiazin-5-yl, 4H-5,6-Dihydro-1,2-thia-10 zin-6-yl, 2H-3,6-Dihydro-1,2-oxazin-3-yl, 2H-3,6-Dihydro-1,2-oxazin-4-yl, 2H-3,6-Dihydro-1,2-oxazin-5-yl, 2H-3,6-Dihydro-1,2-oxazin-6-yl, 2H-3,6-Dihydro-1,2-thiazin-3-yl, 2H-3,6-Dihydro-1,2-thiazin-4-yl, 2H-3,6-Dihydro-1,2-thiazin-5-yl, 2H-3,6-Dihydro-1,2-thiazin-6-yl, 2H-3,4-Dihydro-15 1.2-oxazin-3-v1, 2H-3,4-Dihydro-1,2-oxazin-4-y1, 2H-3,4-Dihydro-1,2-oxazin-5-yl, 2H-3,4-Dihydro-1,2-oxazin-6-yl, 2H-3,4-Dihydro-1,2-thiazin-3-yl, 2H-3,4-Dihydro-1,2-thiazin-4-yl, 2H-3,4-Dihydro-1,2-thiazin-5-yl, 2H-3,4-Dihydro-1,2-thiazin-6-yl, 2,3,4,5-Tetrahydropyridazin-3-yl, 20 2,3,4,5-Tetrahydropyridazin-4-yl, 2,3,4,5-Tetrahydropyridazin-5-y1, 2,3,4,5-Tetrahydropyridazin-6-y1, 3,4,5,6-Tetrahydropyridazin-3-yl, 3,4,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetrahydropyridazin-3-yl, 1,2,5,6-Tetrahydropyrida-25 zin-4-y1, 1,2,5,6-Tetrahydropyridazin-5-y1, 1,2,5,6-Tetrahydropyridazin-6-yl, 1,2,3,6-Tetrahydropyridazin-3-yl, 1,2,3,6-Tetrahydropyridazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-2-y1, 4H-5,6-Dihydro-1,3-oxazin-4-y1, 4H-5,6-Dihydro-1,3-oxazin-5-y1,4H-5,6-Dihydro-1,3-oxazin-6-y1,4H-5,6-Dihydro-1,3-thiazin-2-yl, 4H-5,6-Dihydro-1,3-thia-30 zin-4-yl, 4H-5,6-Dihydro-1,3-thiazin-5-yl, 4H-5,6-Dihydro-1,3-thiazin-6-yl, 3,4,5-6-Tetrahydropyrimidin-2-yl, 3,4,5,6-Tetrahydropyrimidin-4-y1, 3,4,5,6-Tetrahydropyrimidin-5-yl, 3,4,5,6-Tetrahydropyrimidin-6-yl, 1,2,3,4-Tetrahydropyrazin-2-yl, 1,2,3,4-Tetrahydropyrazin-5-yl, 35 1,2,3,4-Tetrahydropyrimidin-2-yl, 1,2,3,4-Tetrahydropyrimidin-4-yl, 1,2,3,4-Tetrahydropyrimidin-5-yl, 1,2,3,4-Tetrahydropyrimidin-6-yl, 2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Dihydro-1,4-thiazin-3-yl, 2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Dihydro-1,4-thiazin-6-yl, 2H-1,2-0xazin-3-yl, 2H-1,2-0xazin-4-40 y1, 2H-1,2-Oxazin-5-y1, 2H-1,2-Oxazin-6-y1, 2H-1,2-Thiazin-3yl, 2H-1,2-Thiazin-4-yl, 2H-1,2-Thiazin-5-yl, 2H-1,2-Thiazin-6-y1, 4H-1,2-Oxazin-3-y1, 4H-1,2-Oxazin-4-y1, 4H-1,2-Oxazin-5-y1, 4H-1,2-Oxazin-6-y1, 4H-1,2-Thiazin-3-y1, 4H-1,2-Thiazin-4-yl, 4H-1,2-Thiazin-5-yl, 4H-1,2-Thiazin-6-yl, 45 6H-1,2-Oxazin-3-yl, 6H-1,2-Oxazin-4-yl, 6H-1,2-Oxazin-5-yl, 6H-1,2-Oxazin-6-yl, 6H-1,2-Thiazin-3-yl, 6H-1,2-Thiazin-4-yl,

28 $6H-1,2-Thiaz_{M}-5-y1$, $6H-1,2-Thiaz_{M}-6-y1$, -1.3-0xazin-2-y1, 2H-1,3-0xazin-4-yl, 2H-1,3-0xazin-5-yl, 2H-1,3-0xazin-6-yl, 2H-1,3-Thiazin-2-yl, 2H-1,3-Thiazin-4-yl, 2H-1,3-Thiazin-5yl, 2H-1,3-Thiazin-6-yl, 4H-1,3-Oxazin-2-yl, 4H-1,3-Oxazin-4-yl, 4H-1,3-0xazin-5-yl, 4H-1,3-0xazin-6-yl, 4H-1,3-Thiazin-5 2-yl, 4H-1,3-Thiazin-4-yl, 4H-1,3-Thiazin-5-yl, 4H-1,3-Thiazin-6-yl, 6H-1,3-0xazin-2-yl, 6H-1,3-0xazin-4-yl, 6H-1,3-0xazin-5-y1, 6H-1,3-Oxazin-6-y1, 6H-1,3-Thiazin-2-y1, 6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-Oxazin-3-yl, 2H-1,4-Oxazin-5-yl, 10 2H-1,4-Oxazin-6-yl, 2H-1,4-Thiazin-2-yl, 2H-1,4-Thiazin-3-yl, 2H-1,4-Thiazin-5-yl, 2H-1,4-Thiazin-6-yl, 4H-1,4-Oxazin-2-yl, 4H-1,4-Oxazin-3-yl, 4H-1,4-Thiazin-2-yl, 4H-1,4-Thiazin-3-yl, 1,4-Dihydropyridazin-3-yl, 1,4-Dihydropyridazin-4-yl, 1,4-Dihydropyridazin-5-yl, 1,4-Dihydropyridazin-6-yl, 1,4-Dihydro-15 pyrazin-2-yl, 1,2-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-3-yl, 1,2-Dihydropyrazin-5-yl, 1,2-Dihydropyrazin-6-yl, 1,4-Dihydropyrimidin-2-yl, 1,4-Dihydropyrimidin-4-yl, 1,4-Dihydropyrimidin-5-yl, 1,4-Dihydropyrimidin-6-yl, 3,4-Dihydropyrimidin-2-yl, 3,4-Dihydropyrimidin-4-yl, 3,4-Dihydropyrimi-20 din-5-yl oder 3,4-Dihydropyrimidin-6-yl, Pyridazin-3-yl, Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5yl, Pyrazin-2-yl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl, 1,2,4,5-Tetrazin-

25 3-y1;

> wobei ggf. der Schwefel der genannten Heterocyclen zu S=0 oder S(=0)2 oxidiert sein kann;

- und wobei mit einem ankondensierten Phenylring oder mit einem 30 C3-C6-Carbocyclus oder mit einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.
- N-gebundenes Heterocyclyl: ein gesättigter, partiell gesät-35 tigter oder ungesättigter 5- oder 6-gliedriger N-gebundener heterocyclischer Ring, der mindestens einen Stickstoff und gegebenenfalls ein bis drei gleiche oder verschiedene Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff enthält, also z.B. 40

N-gebundene 5-gliedrige Ringe wie:

Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyrrol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, Pyrrol-1-yl, Tetrahydropyrazol-1-yl, 45 Tetrahydroisoxazol-2-yl, Tetrahydroisothiazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydrooxazol-3-yl, Tetrahydrothia-

zol-3-yl, 4,5-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydro-1H-pyrazol-1-yl, 2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol-2-y1, 2,3-Dihydroisoxazol-2-y1, 2,5-Dihydroisothiazol-2-y1, 2,3-Dihydroisoxazol-2-yl, 4,5-Dihydro-1H-imidazol-1-yl, 2,5-Dihydro-1H-imidazol-1-yl, 2,3-Dihydro-1H-imidazol-1-yl, 5 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrothiazol-3-yl, Pyrazol-1yl, Imidazol-1-yl, 1,2,4- Δ^4 -Oxadiazolin-2-yl, 1,2,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^5 -Thiadiazolin-2-yl, 1,2,4- Δ^3 -Thiadiazolin-2-yl, 1,2,4- Δ^2 -Thiadiazolin-4-yl, 1,3,4- Δ^2 -Thiadiazo-10 lin-4-yl, 1,2,3- Δ^2 -Triazolin-1-yl, 1,2,4- Δ^2 -Triazolin-1-yl, 1,2,4- Δ^2 -Triazolin-4-yl, 1,2,4- Δ^3 -Triazolin-1-yl, 1,2,4- Δ^1 -Triazolin-4-yl, 1,2,3-Triazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl;

sowie N-gebundene 6-gliedrige Ringe wie:

Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl, 1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydropyridin-1-yl, 1,2-Dihydropyridin-1-yl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, 20 Hexahydropyridazin-1-yl, Tetrahydro-1,3-oxazin-3-yl, Tetrahydro-1,3-thiazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-thiazin-2-yl, 25 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,6-Dihydro-1,2-thiazinoxazin-2-y1, 2H-3,4-Dihydro-1,2-thiazin-2-y1, 2,3,4,5-Tetrahydropyridazin-2-yl, 1,2,5,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyridazin-2-yl, 1,2,3,6-Tetrahydropyridazin-1-y1, 3,4,5,6-Tetrahydropyrimidin-3-y1, 1,2,3,4-Tetrahy-30 dropyrazin-1-yl, 1,2,3,4-Tetrahydropyrimidin-1-yl, 1.2.3.4-Tetrahydropyrimidin-3-yl, 2.3-Dihdro-1.4-thiazin-4-y1, 2H-1,2-Oxazin-2-y1, 2H-1,2-Thiazin-2-y1, 4H-1,4-Oxazin-4-yl, 4H-1,4-Thiazin-4-yl, 1,4-Dihydropyridazin-1-yl, 1,4-Dihydropyrazin-1-yl, 1,2-Dihydropyrazin-1-yl, 1,4-Dihydropyrimidin-1-yl oder 3,4-Dihydropyrimidin-3-yl, sowie N-ge-35 bundene cyclische Imide wie: Phthalsäureimid, Tetrahydrophthalsäureimid, Succinimid, Maleinimid oder Glutarimid, sowie 4-0xo-1,4-dihydropyridin-1-yl;

40

15

Alle Phenylringe bzw. Heterocyclylreste sowie alle Phenylkomponenten in Phenyl-C1-C6-alkyl, Phenylcarbonyl-C1-C6-alkyl, Phenoxy, Phenylthio, Phenylcarbonyl, Phenylalkenylcarbonyl, Phenoxycarbonyl, Phenoxyalkylcarbonyl, Phenylaminocarbonyl und N-(C1-C6-Alkyl)-N-phenylaminocarbonyl bzw. Heterocyclylkomponenten

in Heterocyclyl- C_1 - C_6 -alkyl, Heterocyclylcarbonyl- C_1 - C_6 -alkyl, Heterocyclyoxy, Heterocyclylthio, Heterocyclylcarbonyl, Heterocy-

clylalkenylcarbonyl, Heterocycloxyalkylcarbon, Heterocyclyloxy-carbonyl, Heterocyclylaminocarbonyl und N(C1-C6-Alkyl)-N-heterocyclylaminocarbonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/5 oder eine Nitrogruppe, einen Cyanorest und/oder einen oder zwei Methyl-, Trifluormethyl-, Methoxy- oder Trifluormethoxysubstituenten.

Die erfindungsgemäßen Verbindungen der Formel I mit R^4 = IIa wer10 den als Verbindungen der Formel Ia sowie Verbindungen der Formel
I mit R^4 = IIb als Ib bezeichnet.

In Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen der Formel I als Herbizide haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in Kombination:

Nitro, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio, C_1 - C_6 -Halogenalkylthio, C_1 - C_6 -Alkylsulfonyl oder C_1 - C_6 -Halogenalkylsulfonyl;

R², R³ Wasserstoff, C₁-C₆-Alkyl oder Halogen;

25 R⁴ eine Verbindung IIa oder IIb

30 $(R^6)_1$ R^5 $(R^6)_1$ IIIb

35 wobei

45

20

Halogen, OR7, SR7, SO₂R⁸, OSO₂R⁸, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,
(C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl,
C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl,
C₁-C₆-Alkoxycarbonyl oder C₁-C₆-Halogenalkoxycarbonyl;

10 oder

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-O-(CH_2)_n-$ oder $-S-(CH_2)_n-$ Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C_1-C_4- Alkyl, C_1-C_4- Halogenalkyl oder C_1-C_4- Alkoxycarbonyl;

oder

20

25

15

zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-(CH_2)_p$ -Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann:

Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl oder

oder

30

40

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus;

 $C_1 - C_4 - Alkoxycarbonyl;$

35 oder

zwei Reste R⁶, die an verschiedenen Kohlenstoffen gebunden sind,
 bilden gemeinsam eine - (CH₂)_n-Kette, die durch einen
 bis drei Reste aus folgender Gruppe substituiert sein
 kann:
 Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Hydroxy oder
 C₁-C₆-Alkoxycarbonyl;

R⁷ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl,

45 C₃-C₆-Alkinyl, C₁-C₂₀-Alkylcarbonyl, C₂-C₆-Alkenyl
carbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxy
carbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxy-

carbon, C1-C6-Alkylthiocarbonyl, C_6 -Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, N.N-Di-(C1-C6-alkyl)-aminocarbonyl, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl$, 5 $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)$ -aminocarbonyl, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$ $Di-(C_1-C_6-alkyl)$ -aminothiocarbonyl, $C_1-C_6-alkyl$ carbo $nyl-C_1-C_6-alkyl$, $C_1-C_6-Alkoxyimino-C_1-C_6-alkyl$, 10 $N-(C_1-C_6-Alkylamino)-imino-C_1-C_6-alkyl$ oder $N, N-Di-(C_1-C_6-alkylamino)-imino-C_1-C_6-alkyl,$ wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: 15 Cyano, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Alkyl$ carbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl, $Di-(C_1-C_4-alkyl)$ -aminocarbonyl, $C_1-C_4-Alkylcarbonyloxy$ oder C₃-C₆-Cycloalkyl;

20

25

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C₁-C₆-alkyl, Phenylcarbonyl, Heterocyclylcarbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxythiocarbonyl, Heterocyclyloxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkylcarbonyl, Heterocyclyloxy-C₁-C₆-alkylcarbonyl, Phenyl-C₂-C₆-alkenylcarbonyl oder Heterocyclyl-C₂-C₆-alkenylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 16 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

30

35 R⁸, R⁹ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Cycloalkyl, Hydroxy, C₁-C₆-Alkoxy, Di-C₁-C₆-alkylamino, oder Di-(C₁-C₆-Halogenalkyl)amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkyl-carbonyl, C₁-C₄-Alkyl)-aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

20

25

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

C1-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Halogenalkenyl,
C3-C6-Cycloalkyl, C1-C6-Alkoxy, C3-C6-Alkenyloxy oder
Di-(C1-C6-Alkyl)-amino, wobei die genannten Alkyl-,
Cycloalkyl- und Alkoxyreste partiell oder vollständig
halogeniert sein können und/oder einen bis drei Reste
der folgenden Gruppe tragen können:
Cyano, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-Alkylcarbonyl, C1-C4-Alkoxycarbonyl, Hydroxycarbonyl,
Di-(C1-C4-alkyl)-aminocarbonyl, C1-C4-Alkylcarbonyloxy
oder C3-C6-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

R¹¹, R¹² C₁-C₆-Alkyl oder C₃-C₆-Alkenyl;

30

1 0 bis 6;

m 2 bis 4;

35 n 1 bis 5;

p 2 bis 5;

Besonders bevorzugt sind Verbindungen der Formel I, wobei die Va-40 riablen folgende Bedeutungen haben, und zwar für sich allein oder in Kombination:

Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkylsulfonyl; insbesondere Halogen wie Fluor oder Chlor, C₁-C₆-Alkyl wie Methyl oder Ethyl oder C₁-C₆-Halogenalkyl wie Difluormethyl oder Trifluormethyl;

hyl, Difluormethyl s bevorzugt Fluor, Chlor, oder Trifluormethyl;

Wasserstoff oder C1-C6-Alkyl, wie Methyl oder Ethyl; \mathbb{R}^2 insbesondere Wasserstoff oder Methyl; 5

Wasserstoff oder C1-C6-Alkyl; insbesondere Wasserstoff; \mathbb{R}^3

eine Verbindung IIa oder IIb R4

IIa

10

$$(R^6)_1$$
 R^5
 $(R^6)_1$
III

wobei

R⁵

20

25

15

Halogen, OR^7 , SR^7 , SO_2R^8 , OSO_2R^8 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-gebundenes Heterocyclyl oder O-(N-gebundenes Heterocyclyl), wobei der Heterocyclyl-Rest der beiden letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

30 R6 Halogen, Cyano, C1-C6-Alkyl, C1-C6-Halogenalkyl, Di- $(C_1-C_6-alkoxy)$ -methyl, Di- $(C_1-C_6-alkylthio)$ -methyl, $(C_1-C_6-Alkoxy)$ $(C_1-C_6-alkylthio)$ -methyl, Hydroxy, $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkoxy$, $C_1-C_6-Alkoxycarbonyl$ oxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Halogenalkylthio;

35

oder

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe 40 aus;

R⁷ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, $C_3-C_6-Alkinyl$, $C_1-C_{20}-Alkylcarbonyl$, $C_3-C_6-Cycloalkyl$ carbonyl, C₁-C₆-Alkoxycarbonyl, C₃-C₆-Alkenyloxy-45 carbonyl, C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, N, N-Di-(C1-C6-alkyl)-aminocarbonyl, $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$

N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl,
N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl,
Di-(C₁-C₆-alkyl)-aminothiocarbonyl oder C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können:
Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylcarbonyl,
Carbonyl, C₁-C₄-Alkoxycarbonyl, Hydroxycarbonyl,
Di-(C₁-C₄-alkyl)-aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocy-clyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl-C₁-C₆-alkyl, Phenylcarbonyl, Heterocyclyl-carbonyl, Phenoxycarbonyl, Heterocyclyloxycarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxythiocarbonyl, Heterocyclyloxythiocarbonyl, Phenoxy-C₁-C₆-alkylcarbonyl oder Heterocyclyloxy-C₁-C₆-alkylcarbonyl, wobei der Phenyl- und der Heterocyclyl-Rest der 14 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

 $C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Cycloalkyl$, Hydroxy, $C_1-C_6-Alkoxy$, $Di-C_1-C_6-alkyl-amino$ oder $Di-(C_1-C_6-Halogenalkyl)$ amino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Alkyl-carbonyl$, $C_1-C_4-Alkoxycarbonyl$, $C_1-C_4-Alkyl-aminocarbonyl$, $C_1-C_4-Alkyl-a$

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl-C₁-C₆-alkyl, Phenoxy, Heterocyclyloxy, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

20

15

5

10

35

30

40

C1-C6-Arkyl, C3-C6-Alkenyl, C3-C6-Hambenalkenyl,
C3-C6-Cycloalkyl, C1-C6-Alkoxy, C3-C6-Alkenyloxy oder
Di-(C1-C6-Alkyl)-amino, wobei die genannten Alkyl-,
Cycloalkyl- und Alkoxyreste partiell oder vollständig
halogeniert sein können und/oder einen bis drei Reste
der folgenden Gruppe tragen können:
Cyano, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-Alkylcarbonyl, C1-C4-Alkoxycarbonyl, Hydroxycarbonyl,
Di-(C1-C4-alkyl)-aminocarbonyl, C1-C4-Alkylcarbonyloxy
oder C3-C6-Cycloalkyl;

Phenyl, Heterocyclyl, Phenyl-C₁-C₆-alkyl oder Heterocyclyl-C₁-C₆-alkyl, wobei der Phenyl- oder Heterocyclyl-Rest der vier letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:
Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

20 R¹¹, R¹² C₁-C₆-Alkyl oder C₃-C₆-Alkenyl;

1 0 bis 6;

15

Ebenso besonders bevorzugt sind Verbindungen der Formel I, 25 wobei

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl,
(C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl,
C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder
C₁-C₆-Halogenalkoxycarbonyl;

bedeutet

oder

40

45

zwei Reste R^9 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam eine $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ oder $-S-(CH_2)_n-$ Kette, die durch einen bis drei Reste aus folgender Gruppe substituiert sein kann:

Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halog nalkyl oder C_1 - C_4 -Alkoxycarbonyl;

oder

5

10

zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden eine -(CH₂)_p-Kette, die durch Sauerstoff oder Schwefel unterbrochen sein kann und/oder durch einen bis vier Reste aus folgender Gruppe substituiert sein kann: Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxycarbonyl;

oder

15 zwei Reste R⁶, die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus.

Insbesondere bevorzugt sind Verbindungen der Formel I, wobei

20

Nitro, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, Di-(C₁-C₆-alkoxy)-methyl, Di-(C₁-C₆-alkylthio)-methyl, (C₁-C₆-Alkoxy) (C₁-C₆-alkylthio)-methyl, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyloxy, C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsufinyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl, C₁-C₆-Alkylcarbonyl, C₁-C₆-Halogenalkylcarbonyl, C₁-C₆-Alkoxycarbonyl oder C₁-C₆-Halogenalkoxycarbonyl;

30

45

25

bedeutet

oder

35 zwei Reste R^6 , die am gleichen Kohlenstoff gebunden sind, bilden gemeinsam mit diesem Kohlenstoff eine Carbonylgruppe aus.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel I, 40 wobei

NR¹⁰R¹¹ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen bis drei der folgenden Reste tragen kann:

Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy;

bedeutet.

Ebenso insbesondere bevorzugt sind die Verbindungen der Formel I, wobei R4 folgende Bedeutung hat:

5

10

IIb1

15

IIa2

IIb2

20

25

IIa3

IIb3

30

35

IIa4

IIb4

40

IIa5

IIb5

IIb6

5

20

25

30

35

40

IIa8

IIa9

IIb9

IIa10

IIb10

Insbesonderst bevorzugt sind die Verbindungen der Formel I, wobei

NR¹⁰R¹¹ oder Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyr-rol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, Pyrrol-1-yl, Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl, Tetrahydrothiazol-2-yl, Tetrahydroimidazol-1-yl, Tetrahydro-oxazol-3-yl, Tetrahydrothiazol-3-yl, Pyrazol-1-yl, Imi-

dazol-1-yl, 1,2,4-Triazol-1-yl, Tetazol-1-yl, Piperidin-1-yl, 4-Oxo-1,4-dihydro-1-pyridyl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl, Succinimid, Maleinimid oder Glutarimid, wobei die genannten Heterocyclen partiell oder vollständig halogeniert sein können und/oder einen bis drei der folgenden Reste tragen können:

Nitro, Cyano, C_1 - C_4 -Alkyl, wie Methyl oder Ethyl, C_1 - C_4 -Halogenalkyl wie Chlormethyl, Difluormethyl oder Trifluormethyl, C_1 - C_4 -Alkoxy wie Methoxy oder Ethoxy oder C_1 - C_4 -Halogenalkoxy wie Difluormethoxy oder Trifluormethoxy;

15 Außerordentlich bevorzugt sind die Verbindungen der Formel Ial und Ib1 (≡ I mit 1 = 0), insbesondere die Verbindungen Ia1.1 bis Ia1.456 und die Verbindungen Ib1.1 bis Ib1.456, wobei die Restedefinitionen R¹ bis R⁵ und 1 nicht nur in Kombination miteinander, sondern auch jeweils für sich allein betrachtet für die
20 erfindungsgemäßen Verbindungen eine bevorzugte Bedeutung haben.

Tabelle 1:

5

25
$$R^{3}$$

$$R^{2}$$

$$R^{5}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R$$

35		Nr.	R ¹	R ²	R ³	R ⁵
	Ia1.1	bzw. Ib1.1	CH ₃	н	Н	F
	Ia1.2	bzw. Ib1.2	CH ₃	Н	Н	Cl
	Ia1.3	bzw. Ib1.3	CH ₃	Н	Н	Br
40	Ia1.4	bzw. Ib1.4	CH ₃	Н	Н	I
40	Ia1.5	bzw. Ib1.5	CH ₃	H	Н	SCH ₃
	Ia1.6	bzw. Ib1.6	CH ₃	Н	Н	SCH ₂ CH ₃
	Ia1.7	bzw. Ib1.7	CH ₃	Н	Н	SCO (N (CH ₃) ₂) ₂
	Ia1.8	bzw. Ib1.8	CH ₃	Н	Н	SO ₂ CH ₃
45	Ia1.9	bzw. Ib1.9	CH ₃	H	Н	SO ₂ CH ₂ CH ₃
	Ia1.10	bzw. Ib1.10	CH ₃	Н	н	SC ₆ H ₅
	Ia1.11	bzw. Ib1.11	CH ₃	H	Н	S (4-CH ₃ -C ₆ H ₄)

				41		
- 1		Nr.	R ¹	R ²	R ³	R ⁵
	Ia1.12	bzw. Ib1.12	CH ₃	Н	H	S(4-C1-C ₆ H ₄)
۱ .	Ia1.13	bzw. Ib1.13	CH ₃	Н	Н	SO ₂ C ₆ H ₅
	Ia1.14	bzw. Ib1.14	CH ₃	Н	Н	SO ₂ (4 - CH ₃ - C ₆ H ₄)
5	Ia1.15	bzw. Ib1.15	CH ₃	Н	H	SO ₂ (4-C1-C ₆ H ₄)
	Ia1.16	bzw. Ib1.16	CH ₃	Н	Н	4-Morpholinyl
	Ia1.17	bzw. Ib1.17	CH ₃	Н	Н	1-Pyrrolidinyl
ļ	Ia1.18	bzw. Ib1.18	CH ₃	Н	Н	1-(1,2,4-Triazolyl)
10	Ia1.19	bzw. Ib1.19	CH ₃	Н	Н	1-Imidazolyl
	Ia1.20	bzw. Ib1.20	CH ₃	Н	Н	1-Pyrazolyl
	Ia1.21	bzw. Ib1.21	CH ₃	н	Н	4-0x0-1,4-dihydro-1- pyridyl
	Ia1.22	bzw. Ib1.22	CH ₃	Н	H	N (OCH ₃) CH ₃
15	Ia1.23	bzw. Ib1.23	CH ₃	Н	Н	2-Tetrahydroisoxazolyl
	Ia1.24	bzw. Ib1.24	CH ₃	н	Н	N(CH ₃)N(CH ₃) ₂
	Ia1.25	bzw. Ib1.25	CH ₃	Н	Н	$N(CH_2CH=CH_2)N(CH_3)_2$
	Ia1.26	bzw. Ib1.26	CH ₃	Н	Н	OPO (OCH ₃) ₂
	Ia1.27	bzw. Ib1.27	CH ₃	Н	Н	OPO (OCH ₂ CH ₃) ₂
20	Ia1.28	bzw. Ib1.28	CH ₃	Н	Н	OPO (N (CH ₃) ₂) ₂
	Ia1.29	bzw. Ib1.29	CH ₃	Н	Н	OPO (OC ₆ H ₅) ₂
	Ia1.30	bzw. Ib1.30	CH ₃	н	Н	OPO (CH ₃) ₂
	Ia1.31	bzw. Ib1.31	CH ₃	Н	Н	OPO (CH ₂ CH ₃) ₂
25	Ia1.32	bzw. Ib1.32	CH ₃	Н	Н	OPO (C ₆ H ₅) ₂
	Ia1.33	bzw. Ib1.33	CH ₃	Н	Н	OPS (OCH ₃) ₂
	Ia1.34	bzw. Ib1.34	CH ₃	Н	Н	OPS (OCH ₂ CH ₃) ₂
	Ia1.35	bzw. Ib1.35	CH ₃	Н	Н	OP (OCH ₃) ₂
	Ia1.36	bzw. Ib1.36	CH ₃	Н	Н	OP (OCH ₂ CH ₃) ₂
30	Ia1.37	bzw. Ib1.37	CH ₃	Н	н	PO (OCH ₃) ₂
	Ia1.38	bzw. Ib1.38	CH ₃	н	Н	PO (OCH ₂ CH ₃) ₂
	Ia1.39	bzw. Ib1.39	CH ₃	н	H	PO (C ₆ H ₅) ₂
	Ia1.40	bzw. Ib1.40	CH ₃	н	Н	OCH ₃
3,5	Ia1.41	bzw. Ib1.41	CH ₃	н	Н	OCH ₂ CH ₃
	Ia1.42	bzw. Ib1.42	CH ₃	Н	н	OCH ₂ C ₆ H ₅
	Ia1.43	bzw. Ib1.43	CH ₃	Н	н	OCH ₂ (2-furyl)
	Ia1.44	bzw. Ib1.44	CH ₃	н	Н	OCH ₂ (3-furyl)
	Ia1.45	bzw. Ib1.45	CH ₃	Н	Н	OCOOCH ₃
40	Ia1.46	bzw. Ib1.46	CH ₃	Н	н	OCOOCH ₂ CH ₃
	Ia1.47	bzw. Ib1.47	CH ₃	н	Н	OCOOCH (CH ₃) ₂
	Ia1.48	bzw. Ib1.48	CH ₃	Н	Н	OCOOC ₆ H ₅
	Ia1.49	bzw. Ib1.49	CH ₃	Н	Н	OCOOC (CH ₃) ₃
45	Ia1.50	bzw. Ib1.50	CH ₃	H	Н	OCSOC ₆ H ₅
	Ia1.51	bzw. Ib1.51	CH ₃	Н	Н	OCSN (CH ₃) ₂
	Ia1.52	bzw. Ib1.52	CH ₃	H	Н	OCON (CH ₃) ₂

					42		
		Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.53	bzw.	Ib1.53	CH ₃	H	H	OCOSCH ₃
	Ia1.54	bzw.	Ib1.54	CH ₃	H	H	ON (CH ₃) ₂
_	Ia1.55	bzw.	Ib1.55	CH ₃	Н	H	0-1-piperidyl
5	Ia1.56	bzw.	Ib1.56	CH ₃	Н	H	OCOCH ₃
	Ia1.57	bzw.	Ib1.57	CH ₃	Н	H	OCOCH ₂ CH ₃
	Ia1.58	bzw.	Ib1.58	CH ₃	Н	H	OCOCH (CH ₃) ₂
	Ia1.59	bzw.	Ib1.59	CH ₃	H	H	OCOC (CH ₃) ₃
10	Ia1.60	bzw.	Ib1.60	CH ₃	Н	Н	OCO (CH ₂) ₆ CH ₃
	Ia1.61	bzw.	Ib1.61	CH ₃	Н	H	OCO (CH ₂) ₇ CH ₃
	Ia1.62	bzw.	Ib1.62	CH ₃	Н	H	OCO (CH ₂) ₁₆ CH ₃
	Ia1.63	bzw.	Ib1.63	CH ₃	Н	H	OCO (CH ₂) 14CH ₃
	Ia1.64	bzw.	Ib1.64	CH ₃	H	Н	OCOCH ₂ CH ₂ CH=CH ₂
15	Ia1.65	bzw.	Ib1.65	CH ₃	Н	H	OCO (CH ₂) 30 (2, 4-Cl ₂ -C ₆ H ₃)
	Ia1.66	bzw.	Ib1.66	CH ₃	Н	н	OCOCH (CH ₃) O- (2-CH ₃ -4-Cl-C ₆ H ₃)
	Ia1.67	bzw.	Ib1.67	CH ₃	Н	Н	OCOcyclopropyl
	Ia1.68	bzw.	Ib1.68	CH ₃	н	Н	OCOcyclopentyl
20	Ia1.69	bzw.	Ib1.69	CH ₃	Н	Н	OCOcyclohexyl
	Ia1.70	bzw.	Ib1.70	CH ₃	Н	Н	OCOC ₆ H ₅
	Ia1.71	bzw.	Ib1.71	CH ₃	н	Н	OCO(2-tetrahydrofuryl)
	Ia1.72	bzw.	Ib1.72	CH ₃	Н	Н	OCO(2-furyl)
25	Ia1.73	bzw.	Ib1.73	CH ₃	Н	Н	OCO(2-thienyl)
	Ia1.74	bzw.	Ib1.74	CH ₃	Н	Н	OCO(3-pyridyl)
	Ia1.75	bzw.	Ib1.75	CH ₃	н	Н	OSO ₂ CH ₃
	Ia1.76	bzw.	Ib1.76	CH ₃	Н	Н	OSO ₂ CH ₂ CH ₃
	Ia1.77	bzw.	Ib1.77	F	Н	H	F
30	Ia1.78	bzw.	Ib1.78	F	H	н	Cl
	Ia1.79	bzw.	Ib1.79	F	Н	Н	Br
	Ia1.80	bzw.	Ib1.80	F	Н	Н	I
	Ia1.81	bzw.	Ib1.81	F	Н	Н	SCH ₃
35	Ia1.82	bzw.	Ib1.82	F	Н	Н	SCH ₂ CH ₃
	Ia1.83	bzw.	Ib1.83	F	Н	Н	SCO (N (CH ₃) ₂) ₂
	Ia1.84	bzw.	Ib1.84	F	Н	Н	SO ₂ CH ₃
	Ia1.85	bzw.	Ib1.85	F.	Н	Н	SO ₂ CH ₂ CH ₃
	Ia1.86	bzw.	Ib1.86	F	H	Н	SC ₆ H ₅
40	Ia1.87	bzw.	Ib1.87	F	H	Н	S (4-CH ₃ -C ₆ H ₄)
	Ia1.88	bzw.	Ib1.88	F	Н	H	S(4-C1-C ₆ H ₄)
	Ia1.89	bzw.	Ib1.89	F	H	Н	SO ₂ C ₆ H ₅
	Ia1.90	bzw.	Ib1.90	F	H	H	SO ₂ (4-CH ₃ -C ₆ H ₄)
45	Ia1.91	bzw.	Ib1.91	F	Н	Н	SO ₂ (4-C1-C ₆ H ₄)
	Ia1.92	bzw.	Ib1.92	F	Н	н	4-Morpholinyl
	Ia1.93	bzw.	Ib1.93	F	Н	Н	1-Pyrrolidinyl

			43		
ſ	Nr.	R ¹	R ²	R ³	R ⁵
ļ	Ia1.94 bzw. Ib1.94	F	н	H	1-(1,2,4-Triazolyl)
	Ial.95 bzw. Ib1.95	F	н	Н	1-Imidazolyl
	Ial.96 bzw. Ibl.96	F	н	Н	1-Pyrazolyl
5	Ia1.97 bzw. Ib1.97	F	н	н	4-0xo-1,4-dihydro-1- pyridyl
	Ia1.98 bzw. Ib1.98	F	Н	н	N (OCH ₃) CH ₃
	Ia1.99 bzw. Ib1.99	F	H.	Н	2-Tetrahydroisoxazolyl
	Ia1.100 bzw. Ib1.100	F	Н	н	N(CH ₃)N(CH ₃) ₂
10	Ial.101 bzw. Ib1.101	F	Н	н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ia1.102 bzw. Ib1.102	F	Н	н	OPO (OCH ₃) ₂
	Ia1.103 bzw. Ib1.103	F	Н	н	OPO (N (CH ₃) ₂) ₂
	Ia1.104 bzw. Ib1.104	F	Н	Н	OPO (OCH ₂ CH ₃) ₂
15	Ia1.105 bzw. Ib1.105	F	Н	н	OPO (OC ₆ H ₅) ₂
	Ia1.106 bzw. Ib1.106	F	Н	Н	OPO (CH ₃) ₂
	Ial.107 bzw. Ibl.107	F	Н	Н	OPO (CH ₂ CH ₃) ₂
	Ia1.108 bzw. Ib1.108	F	Н	н	OPO (C ₆ H ₅) ₂
	Ia1.109 bzw. Ib1.109	F	Н	Н	OPS (OCH ₃) ₂
20	Ial.110 bzw. Ib1.110	F	Н	н	OPS (OCH ₂ CH ₃) ₂
	Ia1.111 bzw. Ib1.111	F	н	Н	OP (OCH ₃) ₂
	Ia1.112 bzw. Ib1.112	F	н	н	OP (OCH ₂ CH ₃) ₂
	Ia1.113 bzw. Ib1.113	F	н	н	PO (OCH ₃) ₂
25	Ial.114 bzw. Ib1.114	F	н	Н	PO (OCH ₂ CH ₃) ₂
	Ial.115 bzw. Ib1.115	F	Н	Н	PO (C ₆ H ₅) ₂
	Ial.116 bzw. Ib1.116	F	Н	Н	OCH ₃
	Ia1.117 bzw. Ib1.117	F	Н	Н	OCH ₂ CH ₃
	Ial.118 bzw. Ib1.118	F	Н	н	OCH ₂ C ₆ H ₅
30	Ia1.119 bzw. Ib1.119	F	Н	Н	OCH ₂ (2-furyl)
	Ia1.120 bzw. Ib1.120	F	Н	н	OCH ₂ (3-furyl)
•	Ia1.121 bzw. Ib1.121	F	Н	Н	осоосн3
	Ia1.122 bzw. Ib1.122	F	Н	Н	OCOOCH ₂ CH ₃
35	Ia1.123 bzw. Ib1.123	F	Н	Н	OCOOCH (CH ₃) ₂
	Ial.124 bzw. Ib1.124	F	Н	Н	OCOOC ₆ H ₅
	Ia1.125 bzw. Ib1.125	F	Н	Н	OCOOC (CH ₃) ₃
	Ia1.126 bzw. Ib1.126	F	Н	Н	OCSOC ₆ H ₅
	Ia1.127 bzw. Ib1.127	F	Н	Н	OCSN (CH ₃) ₂
40	Ia1.128 bzw. Ib1.128	F	Н	Н	OCON (CH ₃) ₂
	Ia1.129 bzw. Ib1.129	F	Н	Н	OCOSCH ₃
	Ia1.130 bzw. Ib1.130	F	Н	Н	ON (CH ₃) ₂
	Ia1.131 bzw. Ib1.131	F	H	H	O-1-Piperidyl
45	Ia1.132 bzw. Ib1.132	F	H	Н	OCOCH ₃
	Ia1.133 bzw. Ib1.133	F	Н	Н	OCOCH ₂ CH ₃
	Ia1.134 bzw. Ib1.134	F	Н	Н	OCOCH (CH ₃) ₂

					44		
[Nr.		R ¹	R ²	R ³	R ⁵
	Ia1.135	bzw.	Ib1.135	F	H	Н	OCOC (CH ₃) 3
	Ia1.136	bzw.	Ib1.136	F	H	Н	OCO (CH ₂) ₆ CH ₃
	Ia1.137	bzw.	Ib1.137	F	H	Н	OCO (CH ₂) 7CH ₃
5	Ia1.138	bzw.	Ib1.138	F	Н	H	OCO (CH ₂) ₁₆ CH ₃
	Ia1.139	bzw.	Ib1.139	F	Н	Н	OCO (CH ₂) ₁₄ CH ₃
	Ia1.140	bzw.	Ib1.140	F	Н	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.141	bzw.	Ib1.141	F	Н	H	OCO (CH ₂) 3O (2, 4-Cl ₂ -C ₆ H ₃)
10	Ia1.142	bzw.	Ib1.142	F	Н	Н	ОСОСН (СН ₃) О - (2-СН ₃ -4-С1-С ₆ Н ₃)
	Ia1.143	bzw.	Ib1.143	F	Н	Н	OCOcyclopropyl
	Ia1.144	bzw.	Ib1.144	F	Н	Н	OCOcyclopentyl
	Ia1.145	bzw.	Ib1.145	F	Н	Н	OCOcyclohexyl
15	Ia1.146	bzw.	Ib1.146	F	Н	Н	OCOC ₆ H ₅
	Ia1.147	bzw.	Ib1.147	F	Н	Н	OCO(2-tetrahydrofuryl)
	Ia1.148	bzw.	Ib1.148	F	Н	Н	OCO(2-furyl)
	Ia1.149	bzw.	Ib1.149	F	Н	Н	OCO(2-thienyl)
	Ia1.150	bzw.	Ib1.150	F	Н	Н	OCO(3-pyridyl)
20	Ia1.151	bzw.	Ib1.151	F	H	Н	OSO ₂ CH ₃
	Ia1.152	bzw.	Ib1.152	F	Н	Н	OSO ₂ CH ₂ CH ₃
	Ia1.153	bzw.	Ib1.153	CF ₃	H	Н	F
	Ia1.154	bzw.	Ib1.154	CF ₃	Н	Н	C1
25	Ia1.155	bzw.	Ib1.155	CF ₃	Н	Н	Br
	Ia1.156	bzw.	Ib1.156	CF ₃	Н	Н	I
	Ia1.157	bzw.	Ib1.157	CF ₃	Н	Н	SCH ₃
	Ia1.158	bzw.	Ib1.158	CF ₃	Н	Н	SCH ₂ CH ₃
	Ia1.159	bzw.	Ib1.159	CF ₃	Н	Н	SCO (N (CH ₃) ₂) ₂
30	Ia1.160	bzw.	Ib1.160	CF ₃	Н	Н	SO ₂ CH ₃
	Ia1.161	bzw.	Ib1.161	CF ₃	Н	Н	SO ₂ CH ₂ CH ₃
	Ia1.162	bzw.	Ib1.162	CF ₃	Н	H	SC ₆ H ₅
	Ia1.163	bzw.	Ib1.163	CF ₃	Н	Н	S (4-CH ₃ -C ₆ H ₄)
35	Ial.164	bzw.	Ib1.164	CF ₃	Н	Н	S(4-C1-C ₆ H ₄)
	Ia1.165	bzw.	Ib1.165	CF ₃	Н	Н	SO ₂ C ₆ H ₅
	Ia1.166	bzw.	Ib1.166	CF ₃	Н	Н	SO ₂ (4-CH ₃ -C ₆ H ₄)
	Ia1.167	bzw.	Ib1.167	CF ₃	Н	Н	SO ₂ (4-C1-C ₆ H ₄)
	Ia1.168	bzw.	Ib1.168	CF ₃	Н	Н	4-Morpholinyl
40	Ia1.169	bzw.	Ib1.169	CF ₃	Н	Н	1-Pyrrolidinyl
	Ia1.170	bzw.	Ib1.170	CF ₃	Н	Н	1-(1,2,4-Triazolyl)
	Ia1.171	bzw.	Ib1.171	CF ₃	Н	H	1-Imidazolyl
	Ia1.172	bzw.	Ib1.172	CF ₃	Н	Н	1-Pyrazolyl
45	Ia1.173	bzw.	Ib1.173	CF3	Н	н	4-0xo-1,4-dihydro-1- pyridyl
	Ia1.174	bzw.	Ib1.174	CF ₃	Н	Н	N (OCH ₃) CH ₃

			45		
1	Nr.	R ¹	R ²	R ³	R ⁵
i	Ia1.175 bzw. Ib1.175	CF ₃	Н	Н	2-Tetrahydroisoxazolyl
	Ial.176 bzw. Ib1.176	CF3	H	Н	N(CH ₃)N(CH ₃) ₂
5	Ia1.177 bzw. Ib1.177	CF ₃	H	Н	N(CH ₂ CH=CH ₂)N(CH ₃) ₂
	Ial.178 bzw. Ib1.178	CF ₃	Н	Н	OPO (OCH ₃) ₂
	Ial.179 bzw. Ib1.179	CF ₃	H	Н	OPO (OCH ₂ CH ₃) ₂
	Ia1.180 bzw. Ib1.180	CF ₃	Н	H	OPO (N (CH ₃) ₂) ₂
	Ial.181 bzw. Ib1.181	CF ₃	H	Н	OPO (OC ₆ H ₅) ₂
10	Ial.182 bzw. Ib1.182	CF ₃	Н	H	OPO (CH ₃) ₂
	Ia1.183 bzw. Ib1.183	CF ₃	H	Н	OPO (CH ₂ CH ₃) ₂
	Ial.184 bzw. Ib1.184	CF ₃	н	H	OPO (C ₆ H ₅) ₂
	Ia1.185 bzw. Ib1.185	CF ₃	н	Н	OPS (OCH ₃) ₂
	Ia1.186 bzw. Ib1.186	CF ₃	Н	Н	OPS (OCH ₂ CH ₃) ₂
15	Ia1.187 bzw. Ib1.187	CF ₃	н	н	OP (OCH ₃) ₂
	Ial.188 bzw. Ibl.188	CF ₃	Н	Н	OP (OCH ₂ CH ₃) ₂
	Ial.189 bzw. Ib1.189	CF ₃	H	Н	PO (OCH ₃) ₂
	Ial.190 bzw. Ib1.190	CF ₃	H	н	PO (OCH ₂ CH ₃) ₂
20	Ial.191 bzw. Ib1.191	CF ₃	H	Н	PO (C ₆ H ₅) ₂
20	Ial.192 bzw. Ibl.192	CF ₃	н	н	OCH ₃
	Ial.193 bzw. Ib1.193	CF ₃	H	Н	OCH ₂ CH ₃
	Ial.194 bzw. Ib1.194	CF ₃	н	Н	OCH ₂ C ₆ H ₅
	Ial.195 bzw. Ib1.195	CF ₃	н	H	OCH ₂ (2-furyl)
25	Ial.196 bzw. Ib1.196	CF ₃	н	Н	OCH ₂ (3-furyl)
	Ial.197 bzw. Ib1.197	CF ₃	н	Н	OCOOCH ₃
	Ia1.198 bzw. Ib1.198	CF ₃	н	Н	OCOOCH ₂ CH ₃
	Ial.199 bzw. Ib1.199	CF ₃	н	Н	OCOOCH (CH ₃) ₂
30	Ia1.200 bzw. Ib1.200	CF ₃	н	Н	OCOOC ₆ H ₅
30	Ia1.201 bzw. Ib1.201	CF ₃	Н	Н	OCOOC (CH ₃) ₃
	Ia1.202 bzw. Ib1.202	CF ₃	Н	Н	OCSOC ₆ H ₅
	Ia1.203 bzw. Ib1.203	CF ₃	Н	Н	OCSN (CH ₃) ₂
	Ia1.204 bzw. Ib1.204	CF ₃	Н	Н	OCON (CH ₃) ₂
35	Ia1.205 bzw. Ib1.205	CF ₃	H	н	OCOSCH ₃
	Ia1.206 bzw. Ib1.206	CF ₃	Н	Н	ON (CH ₃) ₂
	Ia1.207 bzw. Ib1.207	CF ₃	Н	H	O-1-Piperidyl
	Ia1.208 bzw. Ib1.208	CF ₃	H	Н	OCOCH ₃
	Ia1.209 bzw. Ib1.209	CF ₃	H	Н	OCOCH ₂ CH ₃
40	Ial.210 bzw. Ibl.210	CF ₃	Н	Н	OCOCHC (CH ₃) ₂
	Ial.211 bzw. Ib1.211	CF ₃	Н	Н	OCOC (CH ₃) ₃
	Ia1.212 bzw. Ib1.212	CF ₃	Н	Н	OCO (CH ₂) ₆ CH ₃
	Ia1.213 bzw. Ib1.213	CF ₃	Н	Н	OCO (CH ₂) ₇ CH ₃
45	Ia1.214 bzw. Ib1.214	CF ₃	н	н	OCO (CH ₂) ₁₆ CH ₃
	Ia1.215 bzw. Ib1.215	CF ₃	Н	Н	OCO (CH ₂) ₁₄ CH ₃
	Ial.216 bzw. Ib1.216	CF ₃	Н	Н	OCOCH ₂ CH ₂ CH=CH ₂

Nr. R1 R2 R3 R5)
Tal.217 bzw. Ibl.217 CF ₃ H H OCO(CH ₂) ₃ 0(2,4-Cl ₂ -1al.218 bzw. Ibl.218 CF ₃ H H OCO(CH ₂) ₃ 0(2,4-Cl ₂ -4-Cl ₂ -GH ₃ -4-Cl ₂ -GH ₄ -4-Cl ₂ -Cl ₂ -Gl ₄ -4-Cl ₂ -Cl ₂ -Gl ₄ -4-Cl ₂ -Cl ₂ -Gl ₄ -4-Cl ₂ -Cl ₂ -Cl ₄ -4-Cl ₂ -Cl)
Tal.218 bzw. Ibl.218 CF ₃ H H OCOCH(CH ₃)O-(2-CH ₃ -4-Cl-C ₆ H ₃ Tal.219 bzw. Ibl.219 CF ₃ H H OCOcyclopropyl Ial.220 bzw. Ibl.220 CF ₃ H H OCOcyclopentyl Ial.221 bzw. Ibl.221 CF ₃ H H OCOCyclopentyl Ial.222 bzw. Ibl.222 CF ₃ H H OCOCyclopentyl Ial.223 bzw. Ibl.223 CF ₃ H H OCO(2-tetrahydroful Ial.224 bzw. Ibl.225 CF ₃ H H OCO(2-tetrahydroful Ial.225 bzw. Ibl.225 CF ₃ H H OCO(2-thienyl) Ial.226 bzw. Ibl.225 CF ₃ H H OCO(2-thienyl) Ial.227 bzw. Ibl.227 CF ₃ H H OCO(3-pyridyl) Ial.227 bzw. Ibl.227 CF ₃ H H OSO ₂ CH ₃ Ial.228 bzw. Ibl.228 CF ₃ H H OSO ₂ CH ₂ CH ₃ Ial.229 bzw. Ibl.229 Cl H H F Ial.230 bzw. Ibl.230 Cl H H F Ial.231 bzw. Ibl.231 Cl H H GCl Ial.232 bzw. Ibl.233 Cl H H H SCH ₃ Ial.233 bzw. Ibl.233 Cl H H SCO(N(CH ₃) ₂) ₂ Ial.234 bzw. Ibl.235 Cl H H SCO(N(CH ₃) ₂) ₂ Ial.235 bzw. Ibl.236 Cl H H SCO ₂ CH ₂ CH ₃ Ial.237 bzw. Ibl.237 Cl H H SCO ₂ CH ₂ CH ₃ Ial.238 bzw. Ibl.238 Cl H H SCO ₂ CH ₂ CH ₃ Ial.239 bzw. Ibl.239 Cl H H SCO ₂ CH ₂ CH ₃ Ial.239 bzw. Ibl.239 Cl H H SCO ₂ CH ₂ CH ₃ Ial.239 bzw. Ibl.239 Cl H H SCO ₂ CH ₂ CH ₄ Ial.239 bzw. Ibl.239 Cl H H SCO ₂ CH ₃ CH ₄ Ial.239 bzw. Ibl.239 Cl H H SCO ₂ CH ₃ CH ₄	
10 10 11 11 12 12 13 13 13 14 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
Ia1.220 bzw. Ib1.220 CF3 H H OCOcyclopentyl Ia1.221 bzw. Ib1.221 CF3 H H OCOcyclohexyl Ia1.222 bzw. Ib1.222 CF3 H H OCOC6H5 Ia1.223 bzw. Ib1.223 CF3 H H OCO (2-tetrahydrofu Ia1.224 bzw. Ib1.224 CF3 H H OCO (2-furyl) Ia1.225 bzw. Ib1.225 CF3 H H OCO (2-furyl) Ia1.226 bzw. Ib1.225 CF3 H H OCO (3-pyridyl) Ia1.227 bzw. Ib1.227 CF3 H H OSO2CH3 I5 Ia1.228 bzw. Ib1.228 CF3 H H OSO2CH2CH3 Ia1.229 bzw. Ib1.229 C1 H H C1 Ia1.230 bzw. Ib1.230 C1 H H C1 Ia1.231 bzw. Ib1.231 C1 H H Br Ia1.232 bzw. Ib1.233 C1 H H SCH2CH3 Ia1.234 bzw. Ib1.234 C1 H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.235 C1 H H SO2CH2CH3 Ia1.236 bzw. Ib1.237 C1 H H SC6H5 Ia1.238 bzw. Ib1.238 C1 H H SC6H5 Ia1.239 bzw	ryl)
Ial.221 bzw. Ibl.221 CF3	ryl)
Tal.222 bzw. Ibl.222 CF3	ryl)
10	ryl)
10 Ia1.224 bzw. Ib1.224 CF3 H H OCO(2-furyl) Ia1.225 bzw. Ib1.225 CF3 H H OCO(2-thienyl) Ia1.226 bzw. Ib1.226 CF3 H H OCO(3-pyridyl) Ia1.227 bzw. Ib1.227 CF3 H H OSO2CH3 Ia1.228 bzw. Ib1.228 CF3 H H OSO2CH2CH3 Ia1.229 bzw. Ib1.229 Cl H H H F Ia1.230 bzw. Ib1.230 Cl H H H Cl Ia1.231 bzw. Ib1.231 Cl H H H Br Ia1.232 bzw. Ib1.232 Cl H H H SCH3 Ia1.233 bzw. Ib1.233 Cl H H H SCH3 Ia1.234 bzw. Ib1.233 Cl H H H SCH2CH3 Ia1.235 bzw. Ib1.235 Cl H H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.235 Cl H H H SO2CH3 Ia1.237 bzw. Ib1.237 Cl H H SC6H5 Ia1.238 bzw. Ib1.238 Cl H H H SC6H5 Ia1.239 bzw. Ib1.239 Cl H H SC6H5 Ia1.239 bzw. Ib1.239 Cl H H H SC6H4 Ia1.240 bzw. Ib1.240 Cl H H H SC6H4	ryl)
Ia1.224 bzw. Ib1.224 CF3 H H OCCO(2-Idry1) Ia1.225 bzw. Ib1.225 CF3 H H OCCO(2-thieny1) Ia1.226 bzw. Ib1.226 CF3 H H OCCO(3-pyridy1) Ia1.227 bzw. Ib1.227 CF3 H H OSO2CH3 Ia1.228 bzw. Ib1.228 CF3 H H OSO2CH2CH3 Ia1.229 bzw. Ib1.229 Cl H H F F Ia1.230 bzw. Ib1.230 Cl H H H Br Ia1.231 bzw. Ib1.231 Cl H H H Br Ia1.232 bzw. Ib1.232 Cl H H H I Ia1.233 bzw. Ib1.233 Cl H H H SCH3 Ia1.234 bzw. Ib1.233 Cl H H H SCH2CH3 Ia1.235 bzw. Ib1.235 Cl H H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.236 Cl H H SO2CH3 Ia1.237 bzw. Ib1.237 Cl H H SC6H5 Ia1.238 bzw. Ib1.238 Cl H H SC6H5 Ia1.239 bzw. Ib1.239 Cl H H SC6H5 Ia1.230 bzw. Ib1.239 Cl H H SC6H4 Ia1.230 bzw. Ib1.239 Cl H H SC6H4 Ia1.230 bzw. Ib1.239 Cl H H SC6H4	
Tal.226 bzw. Ibl.226 CF3 H	
Ia1.227 bzw. Ib1.227 CF3 H H OSO2CH3 15 Ia1.228 bzw. Ib1.228 CF3 H H OSO2CH2CH3 Ia1.229 bzw. Ib1.229 C1 H H F Ia1.230 bzw. Ib1.230 C1 H H C1 Ia1.231 bzw. Ib1.231 C1 H H Br Ia1.232 bzw. Ib1.232 C1 H H SCH3 Ia1.233 bzw. Ib1.233 C1 H H SCH2CH3 Ia1.234 bzw. Ib1.234 C1 H H SCO(N(CH3)2)2 Ia1.235 bzw. Ib1.235 C1 H H SO2CH3 25 Ia1.237 bzw. Ib1.236 C1 H H SO2CH3 Ia1.238 bzw. Ib1.238 C1 H H SC6H5 Ia1.239 bzw. Ib1.239 C1 H H S(4-CH3-C6H4) Ia1.240 bzw. Ib1.240 C1 H H S(4-C1-C6H4)	
15 Ia1.228 bzw. Ib1.228 CF3 H H F OSO2CH2CH3 Ia1.229 bzw. Ib1.229 C1 H H F Ia1.230 bzw. Ib1.230 C1 H H F Ia1.231 bzw. Ib1.231 C1 H H F Ia1.232 bzw. Ib1.232 C1 H H H IT Ia1.232 bzw. Ib1.232 C1 H H H SCH3 Ia1.233 bzw. Ib1.233 C1 H H H SCH2CH3 Ia1.234 bzw. Ib1.234 C1 H H SCH2CH3 Ia1.235 bzw. Ib1.235 C1 H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.236 C1 H H SO2CH3 Ia1.237 bzw. Ib1.237 C1 H H SO2CH3 Ia1.238 bzw. Ib1.238 C1 H H SC6H5 Ia1.239 bzw. Ib1.239 C1 H H SC4-CH3-C6H4 Ia1.240 bzw. Ib1.240 C1 H H SC4-C1-C6H4	
Ta1.229 bzw. Ib1.229 C1 H H H C1 Ia1.230 bzw. Ib1.230 C1 H H H C1 Ia1.231 bzw. Ib1.231 C1 H H Br Ia1.232 bzw. Ib1.232 C1 H H H I Ia1.233 bzw. Ib1.232 C1 H H SCH ₃ Ia1.234 bzw. Ib1.234 C1 H H SCH ₂ CH ₃ Ia1.235 bzw. Ib1.235 C1 H H SCO(N(CH ₃) ₂) ₂ Ia1.236 bzw. Ib1.235 C1 H H SO ₂ CH ₃ Ia1.236 bzw. Ib1.236 C1 H H SO ₂ CH ₃ Ia1.237 bzw. Ib1.237 C1 H H SO ₂ CH ₂ CH ₃ Ia1.238 bzw. Ib1.238 C1 H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 C1 H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 C1 H H S(4-C1-C ₆ H ₄)	
Ia1.239 bzw. Ib1.230 Cl H H Cl Ia1.231 bzw. Ib1.231 Cl H H Br Ia1.232 bzw. Ib1.232 Cl H H I Ia1.233 bzw. Ib1.233 Cl H H SCH3 Ia1.234 bzw. Ib1.234 Cl H H SCH2CH3 Ia1.235 bzw. Ib1.235 Cl H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.236 Cl H H SO2CH3 Ia1.237 bzw. Ib1.237 Cl H H SC6H5 Ia1.238 bzw. Ib1.238 Cl H H SC6H5 Ia1.239 bzw. Ib1.239 Cl H H S(4-CH3-C6H4) Ia1.240 bzw. Ib1.240 Cl H H S(4-Cl-C6H4)	
Ia1.231 bzw. Ib1.231 C1 H H Br Ia1.232 bzw. Ib1.232 C1 H H I Ia1.233 bzw. Ib1.233 C1 H H SCH ₃ Ia1.234 bzw. Ib1.234 C1 H H SCH ₂ CH ₃ Ia1.235 bzw. Ib1.235 C1 H H SCO(N(CH ₃) ₂) ₂ Ia1.236 bzw. Ib1.235 C1 H H SO ₂ CH ₃ Ia1.236 bzw. Ib1.236 C1 H H SO ₂ CH ₃ Ia1.237 bzw. Ib1.237 C1 H H SO ₂ CH ₂ CH ₃ Ia1.238 bzw. Ib1.238 C1 H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 C1 H H SC ₆ H ₅ Ia1.240 bzw. Ib1.240 C1 H H SC ₆ H ₄)	
1a1.232 bzw. Ib1.232 Cl H H SCH ₃ Ia1.233 bzw. Ib1.233 Cl H H SCH ₃ Ia1.234 bzw. Ib1.234 Cl H H SCH ₂ CH ₃ Ia1.235 bzw. Ib1.235 Cl H H SCO(N(CH ₃) ₂) ₂ Ia1.236 bzw. Ib1.236 Cl H H SO ₂ CH ₃ Ia1.237 bzw. Ib1.237 Cl H H SO ₂ CH ₃ Ia1.238 bzw. Ib1.238 Cl H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 Cl H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 Cl H H S(4-Cl-C ₆ H ₄)	
20 Ia1.232 bzw. Ib1.232 ct H H SCH3 Ia1.233 bzw. Ib1.234 ct H H SCH2CH3 Ia1.235 bzw. Ib1.235 ct H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.236 ct H H SO2CH3 25 Ia1.237 bzw. Ib1.237 ct H H SO2CH2CH3 Ia1.238 bzw. Ib1.238 ct H H SC6H5 Ia1.239 bzw. Ib1.239 ct H H S(4-CH3-C6H4) Ia1.240 bzw. Ib1.240 ct H H S(4-C1-C6H4)	
Ia1.233 bzw. Ib1.233 C1 H H H SCH3 Ia1.234 bzw. Ib1.234 C1 H H SCH2CH3 Ia1.235 bzw. Ib1.235 C1 H H SCO(N(CH3)2)2 Ia1.236 bzw. Ib1.236 C1 H H SO2CH3 Ia1.237 bzw. Ib1.237 C1 H H SC6H5 Ia1.238 bzw. Ib1.238 C1 H H SC6H5 Ia1.239 bzw. Ib1.239 C1 H H S(4-CH3-C6H4) Ia1.240 bzw. Ib1.240 C1 H H S(4-C1-C6H4)	
Ia1.235 bzw. Ib1.235 C1 H H SCO(N(CH ₃) ₂) ₂ Ia1.236 bzw. Ib1.236 C1 H H SO ₂ CH ₃ 25 Ia1.237 bzw. Ib1.237 C1 H H SO ₂ CH ₂ CH ₃ Ia1.238 bzw. Ib1.238 C1 H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 C1 H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 C1 H H S(4-Cl-C ₆ H ₄)	
Tal.236 bzw. Ibl.236 Cl H H SO ₂ CH ₃ Ial.237 bzw. Ibl.237 Cl H H SO ₂ CH ₂ CH ₃ Ial.238 bzw. Ibl.238 Cl H H SC ₆ H ₅ Ial.239 bzw. Ibl.239 Cl H H S(4-CH ₃ -C ₆ H ₄) Ial.240 bzw. Ibl.240 Cl H H S(4-Cl-C ₆ H ₄)	
25 Ia1.237 bzw. Ib1.237 Cl H H SO ₂ CH ₂ CH ₃ Ia1.238 bzw. Ib1.238 Cl H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 Cl H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 Cl H H S(4-Cl-C ₆ H ₄)	
Ia1.238 bzw. Ib1.238 C1 H H SC ₆ H ₅ Ia1.239 bzw. Ib1.239 C1 H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 C1 H H S(4-Cl-C ₆ H ₄)	
Ia1.239 bzw. Ib1.239 Cl H H S(4-CH ₃ -C ₆ H ₄) Ia1.240 bzw. Ib1.240 Cl H H S(4-Cl-C ₆ H ₄)	· · · · · ·
Tal.240 bzw. Ibl.240 Cl H H S(4-Cl-C ₆ H ₄)	
101.240 S2W. 121.210	
Tal 241 haw the 241 left H H SOcCaHs	
20	
1a1.242 bzw. 1b1.242 C1 n n sc2/4 cn3 co-4/	
Ia1.243 bzw. Ib1.243 Cl H H SO ₂ (4-Cl-C ₆ H ₄)	
Ial.244 bzw. Ibl.244 Cl H H 4-Morpholinyl	
Ia1.245 bzw. Ib1.245 Cl H H 1-Pyrrolidiny	
35 1411111111111111111111111111111111111	/ <u>-</u> /
141.247 224. 121.21.	
Ia1.248 bzw. Ib1.248 Cl H H 1-Pyrazolyl 4-0xo-1,4-dihydro	
Ial.249 bzw. Ibl.249 Cl H H H 2-0x8-1,4-dillydro	
40 Ia1.250 bzw. Ib1.250 Cl H H N(OCH ₃) CH ₃	
Ial.251 bzw. Ibl.251 Cl H H 2-Tetrahydroisoxa	
Ia1.252 bzw. Ib1.252 Cl H H N(CH ₃)N(CH ₃) ₂	
Ia1.253 bzw. Ib1.253 Cl H H N(CH ₂ CH=CH ₂) N(CH	olyl
Ia1.254 bzw. Ib1.254 Cl H H OPO(OCH ₃) ₂	olyl
45 Ia1.255 bzw. Ib1.255 Cl H H OPO(OCH ₂ CH ₃) ₂	olyl
Ia1.256 bzw. Ib1.256 Cl H H OPO(N(CH ₃) ₂) ₂	olyl

			47		
ſ	Nr.	R ¹	R ²	R ³	R ⁵
Ì	Ia1.257 bzw. Ib1.257	Cl	Н	Н	OPO (OC ₆ H ₅) ₂
•	Ia1.258 bzw. Ib1.258	Cl	Н	H	OPO (CH ₃) ₂
	Ia1.259 bzw. Ib1.259	Cl	Н	Н	OPO (CH ₂ CH ₃) ₂
5	Ia1.260 bzw. Ib1.260	Cl	Н	H	OPO (C ₆ H ₅) ₂
	Ial.261 bzw. Ib1.261	Cl	Н	H	OPS (OCH ₃) ₂
	Ia1.262 bzw. Ib1.262	Cl	Н	H	OPS (OCH ₂ CH ₃) ₂
ı	Ial.263 bzw. Ibl.263	Cl	Н	Н	OP (OCH ₃) ₂
10	Ia1.264 bzw. Ib1.264	Cl	н	H	OP (OCH ₂ CH ₃) ₂
	Ia1.265 bzw. Ib1.265	Cl	н	H	PO (OCH ₃) ₂
	Ial.266 bzw. Ibl.266	Cl	н	Н	PO (OCH ₂ CH ₃) ₂
	Ial.267 bzw. Ibl.267	Cl	н	н	PO (C ₆ H ₅) ₂
	Ia1.268 bzw. Ib1.268	Cl	н	н	OCH ₃
15	Ia1.269 bzw. Ib1.269	Cl	Н	н	OCH ₂ CH ₃
	Ia1.270 bzw. Ib1.270	Cl	н	Н	OCH ₂ C ₆ H ₅
	Ia1.271 bzw. Ib1.271	Cl	Н	Н	OCH ₂ (2-furyl)
	Ia1.272 bzw. Ib1.272	Cl	Н	н	OCH ₂ (3-furyl)
20	Ia1.273 bzw. Ib1.273	Cl	H	Н	OCOOCH3
20	Ia1.274 bzw. Ib1.274	Cl	Н	Н	OCOOCH ₂ CH ₃
	Ia1.275 bzw. Ib1.275	Cl	Н	Н	OCOOCH (CH ₃) ₂
	Ia1.276 bzw. Ib1.276	Cl	Н	Н	OCOOC ₆ H ₅
	Ia1.277 bzw. Ib1.277	Cl	Н	Н	OCOOC (CH ₃) ₃
25	Ia1.278 bzw. Ib1.278	Cl	Н	Н	OCSOC ₆ H ₅
	Ia1.279 bzw. Ib1.279	Cl	Н	Н	OCSN(CH ₃) ₂
	Ia1.280 bzw. Ib1.280	Cl	Н	Н	OCON (CH ₃) ₂
,	Ia1.281 bzw. Ib1.281	Cl	Н	Н	OCOSCH ₃
30	Ia1.282 bzw. Ib1.282	Cl	Н	H	ON (CH ₃) ₂
30	Ia1.283 bzw. Ib1.283	Cl	Н	H	O-1-Piperidyl
	Ia1.284 bzw. Ib1.284	Cl	Н	Н	ососн3
	Ia1.285 bzw. Ib1.285	Cl	Н	н	OCOCH ₂ CH ₃
	Ia1.286 bzw. Ib1.286	Cl	Н	Н	OCOCH (CH ₃) ₂
35	Ia1.287 bzw. Ib1.287	Cl	Н	H	OCOC (CH ₃) ₃
	Ia1.288 bzw. Ib1.288	Cl	Н	н	OCO (CH ₂) ₆ CH ₃
	Ial.289 bzw. Ibl.289	Cl	Н	Н	OCO (CH ₂) ₇ CH ₃
	Ia1.290 bzw. Ib1.290	Cl	Н	Н	OCO (CH ₂) ₁₆ CH ₃
40	Ia1.291 bzw. Ib1.291	Cl	Н	Н	OCO (CH ₂) ₁₄ CH ₃
40	Ia1.292 bzw. Ib1.292	Cl	Н	H	OCOCH ₂ CH ₂ CH=CH ₂
	Ia1.293 bzw. Ib1.293	Cl	н	Н	OCO (CH ₂) 3O (2, 4-Cl ₂ -C ₆ H ₃)
	Ia1.294 bzw. Ib1.294	Cl	н	н	OCOCH (CH ₃) O - (2-CH ₃ -4-Cl-C ₆ H ₃)
45	Ia1.295 bzw. Ib1.295	Cl	Н	Н	OCOcyclopropyl
-2-3	Ia1.296 bzw. Ib1.296	Cl	Н	Н	OCOcyclopentyl
	Ia1.297 bzw. Ib1.297	Cl	Н	Н	OCOcyclohexyl
			_		

48 R5 R^2 R^3 R^{1} Nr. OCOC6H5 Н Н Ia1.298 bzw. Ib1.298 OCO(2-tetrahydrofuryl) Н Н Ia1.299 bzw. Ib1.299 C1 oco(2-furyl) Ia1.300 bzw. Ib1.300 Cl Н Н OCO(2-thienyl) H Cl Н Ia1.301 bzw. Ib1.301 OCO(3-pyridyl) Ia1.302 bzw. Ib1.302 Н Н Cl OSO₂CH₃ Н Ia1.303 bzw. Ib1.303 Cl Н OSO2CH2CH3 Н Н Ia1.304 bzw. Ib1.304 Cl Ia1.305 bzw. Ib1.305 Н Н CHF₂ Cl Н Ia1.306 bzw. Ib1.306 Н CHF₂ Br Н Ia1.307 bzw. Ib1.307 CHF₂ Н I Н Ia1.308 bzw. Ib1.308 Н CHF₂ SCH₃ Н Н Ia1.309 bzw. Ib1.309 CHF2 SCH₂CH₃ Н Н Ia1.310 bzw. Ib1.310 CHF₂ SCO (N (CH3) 2) 2 Н Н Ia1.311 bzw. Ib1.311 CHF₂ SO₂CH₃ Н Ia1.312 bzw. Ib1.312 CHF₂ Н SO2CH2CH3 Н Ia1.313 bzw. Ib1.313 Н CHF₂ SC₆H₅ Н Η Ia1.314 bzw. Ib1.314 CHF₂ $S(4-CH_3-C_6H_4)$ Н Н Ib1.315 CHF₂ Ia1.315 bzw. $S(4-C1-C_6H_4)$ Н Ib1.316 CHF2 Ia1.316 bzw. SO₂C₆H₅ Н Н Ia1.317 bzw. Ib1.317 CHF₂ SO2 (4-CH3-C6H4) Н CHF₂ Н Ia1.318 bzw. Ib1.318 $SO_2(4-C1-C_6H_4)$ Н Н Ia1.319 bzw. Ib1.319 CHF₂ 4-Morpholinyl Н Ia1.320 bzw. Ib1.320 CHF2 Н 1-Pyrrolidinyl CHF₂ Н Н Ia1.321 bzw. Ib1.321 1-(1,2,4-Triazolyl) Н Ib1.322 CHF2 Н Ia1.322 bzw. 1-Imidazolyl Н Н CHF₂ Ib1.323 Ia1.323 bzw. 1-Pyrazolyl Н Н Ia1.324 bzw. Ib1.324 CHF₂ 4-0x0-1,4-dihydro-1-Н Ia1.325 bzw. Ib1.325 CHF₂ Н pyridyl N (OCH₃) CH₃ Н Ia1.326 bzw. Ib1.326 CHF₂ Н 2-Tetrahydroisoxazolyl Н Н Ia1.327 bzw. Ib1.327 CHF₂ $N(CH_3)N(CH_3)_3$ Н CHF₂ Ia1.328 bzw. Ib1.328 $N(CH_2CH=CH_2)N(CH_3)_2$ Ia1.329 bzw. Ib1.329 CHF₂ OPO (OCH₃)₂ Н Н Ia1.330 bzw. Ib1.330 CHF2 OPO (OCH2CH3) 2 Н Ia1.331 bzw. Ib1.331 CHF2 OPO (N (CH3) 2) 2 Н Н Ib1.332 CHF₂ Ia1.332 bzw. OPO (OC6H5) 2 Н Ia1.333 bzw. Ib1.333 CHF₂ Н OPO (CH₃)₂ Н Ib1.334 CHF₂ Ia1.334 bzw. OPO (CH2CH3) 2 Н H Ia1.335 bzw. Ib1.335 CHF₂

Η

Н

Н

Н

CHF₂

CHF₂

CHF₂

Ib1.336

bzw. Ib1.337

Ia1.338 bzw. Ib1.338

OPO (C6H5) 2

OPS (OCH₃)₂

OPS (OCH2CH3) 2

40

35

15

20

25

45

Ia1.336 bzw.

Ia1.337

Ia1.339 Ia1.340	Nr. bzw.	Ib1.339	R ¹	R ²	R ³	R ⁵
Ia1.340		Ib1.339	CIID		**	00/0011
			CHF ₂	н	H	OP (OCH ₃) ₂
	bzw.	Ib1.340	CHF ₂	Н	Н	OP (OCH ₂ CH ₃) ₂
Ia1.341	bzw.	Ib1.341	CHF ₂	Н	Н	PO (OCH ₃) ₂
Ia1.342	bzw.	Ib1.342	CHF ₂	Н	H	PO (OCH ₂ CH ₃) ₂
Ia1.343	bzw.	Ib1.343	CHF ₂	н	Н	PO (C ₆ H ₅) ₂
Ia1.344	bzw.	Ib1.344	CHF ₂	н	Н	OCH ₃
Ia1.345	bzw.	Ib1.345	CHF ₂	н	Н	OCH ₂ CH ₃
Ia1.346	bzw.	Ib1.346	CHF ₂	н	Н	OCH ₂ C ₆ H ₅
Ia1.347	bzw.	Ib1.347	CHF ₂	н	Н	OCH ₂ (2-furyl)
Ia1.348	bzw.	Ib1.348	CHF ₂	н	Н	OCH ₂ (3-furyl)
Ia1.349	bzw.	Ib1.349	CHF ₂	H	Н	OCOOCH ₃
Ia1.350	bzw.	Ib1.350	CHF ₂	Н	Н	OCOOCH ₂ CH ₃
Ia1.351	bzw.	Ib1.351	CHF ₂	Н	Н	OCOOCH (CH ₃) ₂
Ia1.352	bzw.	Ib1.352	CHF ₂	Н	Н	OCOOC ₆ H ₅
Ia1.353	bzw.	Ib1.353	CHF ₂	Н	H	OCOOC (CH ₃) ₃
Ia1.354	bzw.	Ib1.354	CHF ₂	H	Н	OCSOC ₆ H ₅
Ia1.355	bzw.	Ib1.355	CHF ₂	Н	Н	OCSN (CH ₃) ₂
Ia1.356	bzw.	Ib1.356	CHF ₂	Н	Н	OCON (CH ₃) ₂
Ia1.357	bzw.	Ib1.357	CHF ₂	Н	Н	OCOSCH ₃
Ia1.358	bzw.	Ib1.358	CHF ₂	Н	Н	ON (CH ₃) ₂
Ia1.359	bzw.	Ib1.359	CHF ₂	Н	Н	0-1-Piperidyl
Ia1.360		Ib1.360	CHF ₂	н	Н	ососн3
Ia1.361	bzw.	Ib1.361	CHF ₂	н	Н	OCOCH ₂ CH ₃
Ia1.362	bzw.	Ib1.362	CHF ₂	Н	Н	OCOCH (CH ₃) ₂
Ia1.363	bzw.	Ib1.363	CHF ₂	Н	Н	OCOC (CH ₃) ₃
Ia1.364	bzw.	Ib1.364	CHF ₂	Н	Н	OCO (CH ₂) ₆ CH ₃
Ia1.365	bzw.	Ib1.365	CHF ₂	Н	Н	OCO (CH ₂) ₇ CH ₃
Ia1.366	bzw.	Ib1.366	CHF ₂	Н	Н	OCO (CH ₂) 16CH ₃
Ia1.367		Ib1.367	CHF ₂	Н	Н	OCO (CH ₂) 14CH ₃
Ia1.368	bzw.	Ib1.368	CHF ₂	H	H	OCOCH ₂ CH ₂ CH=CH ₂
Ia1.369	bzw.	Ib1.369	CHF ₂	Н	Н	$OCO(CH_2)_3O(2,4-Cl_2-C_6H_3)$
To1 370	have	Th1 370	CHE	н	н	OCOCH (CH ₃) O-
141.370	DZW.					(2-CH ₃ -4-C1-C ₆ H ₃)
Ia1.371	bzw.	Ib1.371	CHF ₂	H		OCOcyclopropyl
Ia1.372	bzw.	Ib1.372	CHF ₂	Н	Н	OCOcyclopentyl
Ia1.373	bzw.	Ib1.373	CHF ₂	H	Н	OCOcyclohexyl
Ia1.374	bzw.	Ib1.374	CHF ₂	Н	Н	OCOC ₆ H ₅
Ia1.375	bzw.	Ib1.375	CHF ₂	Н	H	OCO(2-tetrahydrofuryl)
Ia1.376	bzw.	Ib1.376	CHF ₂	Н	Н	OCO(2-furyl)
Ia1.377	bzw.	Ib1.377	CHF ₂	Н	Н	OCO(2-thienyl)
Ia1.378	bzw.	Ib1.378	CHF ₂	H	Н	OCO(3-pyridyl)
Ia1.379	bzw.	Ib1.379	CHF ₂	Н	Н	OSO ₂ CH ₅
	Ial.343 Ial.344 Ial.345 Ial.346 Ial.347 Ial.348 Ial.349 Ial.350 Ial.351 Ial.352 Ial.353 Ial.354 Ial.355 Ial.356 Ial.357 Ial.358 Ial.359 Ial.360 Ial.361 Ial.362 Ial.363 Ial.364 Ial.365 Ial.365 Ial.366 Ial.367 Ial.368 Ial.369 Ial.370 Ial.370 Ial.371 Ial.372 Ial.373 Ial.375 Ial.375 Ial.375	Ia1.343 bzw. Ia1.344 bzw. Ia1.345 bzw. Ia1.346 bzw. Ia1.347 bzw. Ia1.348 bzw. Ia1.349 bzw. Ia1.350 bzw. Ia1.351 bzw. Ia1.352 bzw. Ia1.353 bzw. Ia1.354 bzw. Ia1.355 bzw. Ia1.356 bzw. Ia1.357 bzw. Ia1.358 bzw. Ia1.359 bzw. Ia1.360 bzw. Ia1.361 bzw. Ia1.361 bzw. Ia1.362 bzw. Ia1.363 bzw. Ia1.364 bzw. Ia1.365 bzw. Ia1.365 bzw. Ia1.366 bzw. Ia1.367 bzw. Ia1.368 bzw. Ia1.369 bzw. Ia1.369 bzw. Ia1.370 bzw. Ia1.371 bzw. Ia1.371 bzw. Ia1.372 bzw. Ia1.373 bzw. Ia1.374 bzw. Ia1.375 bzw. Ia1.375 bzw. Ia1.377 bzw.	Ial.343 bzw. Ibl.343 Ial.344 bzw. Ibl.344 Ial.345 bzw. Ibl.345 Ial.346 bzw. Ibl.346 Ial.347 bzw. Ibl.347 Ial.348 bzw. Ibl.348 Ial.349 bzw. Ibl.349 Ial.350 bzw. Ibl.350 Ial.351 bzw. Ibl.351 Ial.352 bzw. Ibl.353 Ial.353 bzw. Ibl.353 Ial.354 bzw. Ibl.355 Ial.356 bzw. Ibl.355 Ial.357 bzw. Ibl.356 Ial.357 bzw. Ibl.357 Ial.358 bzw. Ibl.358 Ial.360 bzw. Ibl.358 Ial.361 bzw. Ibl.360 Ial.361 bzw. Ibl.361 Ial.362 bzw. Ibl.362 Ial.363 bzw. Ibl.363 Ial.364 bzw. Ibl.363 Ial.365 bzw. Ibl.363 Ial.366 bzw. Ibl.365 Ial.367 bzw. Ibl.365 Ial.368 bzw. Ibl.366 Ial.369 bzw. Ibl.369 Ial.370 bzw. Ibl.369 Ial.370 bzw. Ibl.370 Ial.371 bzw. Ibl.371 Ial.372 bzw. Ibl.372 Ial.373 bzw. Ibl.373 Ial.374 bzw. Ibl.375 Ial.376 bzw. Ibl.375 Ial.377 bzw. Ibl.377	Ial.343 bzw. Ibl.343 CHF2 Ial.344 bzw. Ibl.344 CHF2 Ial.345 bzw. Ibl.345 CHF2 Ial.346 bzw. Ibl.346 CHF2 Ial.347 bzw. Ibl.347 CHF2 Ial.348 bzw. Ibl.349 CHF2 Ial.350 bzw. Ibl.350 CHF2 Ial.351 bzw. Ibl.351 CHF2 Ial.352 bzw. Ibl.352 CHF2 Ial.353 bzw. Ibl.353 CHF2 Ial.354 bzw. Ibl.354 CHF2 Ial.355 bzw. Ibl.355 CHF2 Ial.356 bzw. Ibl.356 CHF2 Ial.357 bzw. Ibl.358 CHF2 Ial.360 bzw. Ibl.359 CHF2 Ial.361 bzw. Ibl.360 CHF2 Ial.362 bzw. Ibl.361 CHF2 Ial.363 bzw. Ibl.363 CHF2	Ial.343 bzw. Ibl.343 CHF2 H Ial.344 bzw. Ibl.344 CHF2 H Ial.345 bzw. Ibl.345 CHF2 H Ial.346 bzw. Ibl.346 CHF2 H Ial.347 bzw. Ibl.347 CHF2 H Ial.348 bzw. Ibl.347 CHF2 H Ial.348 bzw. Ibl.348 CHF2 H Ial.350 bzw. Ibl.350 CHF2 H Ial.351 bzw. Ibl.351 CHF2 H Ial.352 bzw. Ibl.352 CHF2 H Ial.353 bzw. Ibl.353 CHF2 H Ial.354 bzw. Ibl.355 CHF2 H Ial.355 bzw. Ibl.355 CHF2 H Ial.356 bzw. Ibl.356 CHF2 H Ial.357 bzw. Ibl.357 CHF2 H Ial.358 bzw. Ibl.358 CHF2 H Ial.359 bzw. Ibl.359 CHF2 H Ial.360 bzw. Ibl.359 CHF2 H Ial.361 bzw. Ibl.360 CHF2 H Ial.362 bzw. Ibl.361 CHF2 H Ial.363 bzw. Ibl.362 CHF2 H Ial.364 bzw. Ibl.363 CHF2 H Ial.365 bzw. Ibl.365 CHF2 H Ial.366 bzw. Ibl.366 CHF2 H Ial.367 bzw. Ibl.368 CHF2 H Ial.369 bzw. Ibl.369 CHF2 H Ial.370 bzw. Ibl.369 CHF2 H Ial.371 bzw. Ibl.370 CHF2 H Ial.371 bzw. Ibl.371 CHF2 H Ial.372 bzw. Ibl.372 CHF2 H Ial.373 bzw. Ibl.373 CHF2 H Ial.374 bzw. Ibl.374 CHF2 H Ial.375 bzw. Ibl.377 CHF2 H Ial.376 bzw. Ibl.377 CHF2 H Ial.377 bzw. Ibl.377 CHF2 H	Ial.343 bzw. Ibl.343 CHF2 H H Ial.344 bzw. Ibl.344 CHF2 H H Ial.345 bzw. Ibl.345 CHF2 H H Ial.346 bzw. Ibl.346 CHF2 H H Ial.347 bzw. Ibl.347 CHF2 H H Ial.348 bzw. Ibl.348 CHF2 H H Ial.349 bzw. Ibl.349 CHF2 H H Ial.350 bzw. Ibl.350 CHF2 H H Ial.351 bzw. Ibl.351 CHF2 H H Ial.352 bzw. Ibl.352 CHF2 H H Ial.353 bzw. Ibl.353 CHF2 H H Ial.355 bzw. Ibl.355 CHF2 H H Ial.356 bzw. Ibl.355 CHF2 H H Ial.357 bzw. Ibl.355 CHF2 H H Ial.358 bzw. Ibl.357 CHF2 H H Ial.359 bzw. Ibl.357 CHF2 H H Ial.358 bzw. Ibl.359 CHF2 H H Ial.360 bzw. Ibl.359 CHF2 H H Ial.360 bzw. Ibl.360 CHF2 H H Ial.361 bzw. Ibl.361 CHF2 H H Ial.362 bzw. Ibl.362 CHF2 H H Ial.363 bzw. Ibl.363 CHF2 H H Ial.364 bzw. Ibl.365 CHF2 H H Ial.365 bzw. Ibl.367 CHF2 H H Ial.368 bzw. Ibl.368 CHF2 H H Ial.369 bzw. Ibl.369 CHF2 H H Ial.370 bzw. Ibl.369 CHF2 H H Ial.370 bzw. Ibl.370 CHF2 H H Ial.371 bzw. Ibl.371 CHF2 H H Ial.372 bzw. Ibl.372 CHF2 H H Ial.373 bzw. Ibl.373 CHF2 H H Ial.374 bzw. Ibl.374 CHF2 H H Ial.375 bzw. Ibl.377 CHF2 H H Ial.376 bzw. Ibl.377 CHF2 H H Ial.377 bzw. Ibl.377 CHF2 H H

	·				50		
-		Nr.		R ¹	·R ²	R ³	R ⁵
- 1	Ia1.380	bzw.	Ib1.380	CHF ₂	H	Н	OSO ₂ CH ₂ CH ₃
	Ia1.381	bzw.	Ib1.381	Cl	CH ₃	Н	F
	Ia1.382	bzw.	Ib1.382	Cl	CH ₃	Н	Cl
5	Ia1.383	bzw.	Ib1.383	Cl	CH ₃	Н	Br
	Ia1.384	bzw.	Ib1.384	Cl	CH ₃	H	I ·
	Ia1.385	bzw.	Ib1.385	Cl	CH ₃	H	SCH ₃
	Ia1.386	bzw.	Ib1.386	Cl	CH ₃	Н	SCH ₂ CH ₃
10	Ia1.387	bzw.	Ib1.387	Cl	CH ₃	Н	SCO (N (CH ₃) ₂) ₂
	Ia1.388	bzw.	Ib1.388	C1	CH ₃	H	SO ₂ CH ₃
	Ia1.389	bzw.	Ib1.389	Cl	CH ₃	н	SO ₂ CH ₂ CH ₃
	Ia1.390	bzw.	Ib1.390	Cl	CH ₃	Н	SC ₆ H ₅
	Ia1.391	bzw.	Ib1.391	Cl	CH ₃	н	S(4-CH ₃ -C ₆ H ₄)
15	Ia1.392	bzw.	Ib1.392	C1	CH ₃	Н	S(4-C1-C ₆ H ₄)
	Ia1.393	bzw.	Ib1.393	C1	CH ₃	Н	SO ₂ C ₆ H ₅
	Ia1.394	bzw.	Ib1.394	Cl	CH ₃	н	SO ₂ (4 - CH ₃ - C ₆ H ₄)
*	Ia1.395	bzw.	Ib1.395	C1	CH ₃	н	SO ₂ (4-Cl-C ₆ H ₄)
20	Ia1.396	bzw.	Ib1.396	Cl	CH ₃	Н	4-Morpholinyl
20	Ia1.397	bzw.	Ib1.397	Cl	CH ₃	H	1-Pyrrolidinyl
	Ia1.398	bzw.	Ib1.398	Cl	CH ₃	Н	1-(1,2,4-Triazolyl)
	Ia1.399	bzw.	Ib1.399	Cl	CH ₃	Н	1-Imidazolyl
	Ia1.400	bzw.	Ib1.400	Cl	CH ₃	Н	1-Pyrazolyl
25	Ia1.401	bzw.	Ib1.401	Cl	CH ₃	н	4-0xo-1,4-dihydro-1- pyridyl
	Ia1.402	bzw.	Ib1.402	Cl	CH ₃	Н	N (OCH ₃) CH ₃
	Ia1.403	bzw.	Ib1.403	Cl	CH ₃	H	2-Tetrahydroisoxazolyl
	Ia1.404	bzw.	Ib1.404	Cl.	CH ₃	Н	N(CH ₃)N(CH ₃) ₂
30	Ia1.405	bzw.	Ib1.405	Cl	CH ₃	Н	N (CH ₂ CH=CH ₂) N (CH ₃) ₂
	Ia1.406	bzw.	Ib1.406	Cl	CH ₃	Н	OPO (OCH ₃) ₂
	Ia1.407	bzw.	Ib1.407	Cl	CH ₃	н	OPO (OCH ₂ CH ₃) ₂
	Ia1.408	bzw.	Ib1.408	C1	CH ₃	н	OPO (N (CH ₃) ₂) ₂
35	Ia1.409	bzw.	Ib1.409	Cl	CH ₃	н	OPO (OC ₆ H ₅) ₂
-	Ia1.410	bzw.	Ib1.410	Cl	CH ₃	н	OPO (CH ₃) ₂
•	Ia1.411	bzw.	Ib1.411	Cl	CH ₃	Н	OPO(CH ₂ CH ₃) ₂
	Ia1.412	bzw.	Ib1.412	Cl	CH ₃	Н	OPO (C ₆ H ₅) ₂
•	Ia1.413	bzw.	Ib1.413	Cl	CH ₃	н	OPS (OCH ₃) ₂
40	Ia1.414	bzw.	Ib1.414	Cl	CH ₃	Н	OPS (OCH ₂ CH ₃) ₂
			Ib1.415	Cl	CH ₃	Н	OP (OCH ₃) ₂
	Ia1.416			+	CH ₃	Н	OP (OCH ₂ CH ₃) ₂
			Ib1.417		CH ₃	Н	PO (OCH ₃) ₂
AF	Ia1.418			Cl	CH ₃	Н	PO (OCH ₂ CH ₃) ₂
45			Ib1.419		CH ₃	Н	PO (C ₆ H ₅) ₂
	Ia1.420		Ib1.420		CH ₃	Н	OCH ₃
					<u> </u>		

		21		•
Nr.	R ¹	R ²	R ³	R ⁵
Ia1.421 bzw. Ib1.421	Cl	CH ₃	Н	OCH ₂ CH ₃
Ial.422 bzw. Ibl.422	Cl	CH ₃	Н	OCH ₂ C ₆ H ₅
Ia1.423 bzw. Ib1.423	Cl	CH ₃	H	OCH ₂ (2-furyl)
Ial.424 bzw. Ibl.424	Cl	CH ₃	Н	OCH ₂ (3-furyl)
Ia1.425 bzw. Ib1.425	Cl	CH ₃	H	OCOOCH3
Ia1.426 bzw. Ib1.426	Cl	CH ₃	Н	OCOOCH ₂ CH ₃
Ia1.427 bzw. Ib1.427	Cl	CH ₃	Н	OCOOCH (CH ₃) ₂
Ia1.428 bzw. Ib1.428	Cl	CH ₃	Н	OCOOC ₆ H ₅
Ia1.429 bzw. Ib1.429	Cl	CH ₃	H	OCOOC (CH ₃) ₃
Ia1.430 bzw. Ib1.430	Cl	CH ₃	Н	OCSOC ₆ H ₅
Ia1.431 bzw. Ib1.431	C1	CH ₃	н	OCSN (CH ₃) ₂
Ia1.432 bzw. Ib1.432	Cl	CH ₃	Н	OCON (CH ₃) ₂
Ia1.433 bzw. Ib1.433	Cl	CH ₃	Н	OCOSCH ₃
Ial.434 bzw. Ib1.434	Cl	CH ₃	Н	ON (CH ₃) ₂
Ia1.435 bzw. Ib1.435	Cl	CH ₃	н	0-1-piperidyl
Ia1.436 bzw. Ib1.436	Cl	CH ₃	Н	OCOCH ₃
Ia1.437 bzw. Ib1.437	Cl	CH ₃	Н	OCOCH ₂ CH ₃
Ial.438 bzw. Ibl.438	Cl	CH ₃	H	OCOCH (CH ₃) ₂
Ia1.439 bzw. Ib1.439	Cl	CH ₃	Н	OCOC (CH ₃) ₃
Ia1.440 bzw. Ib1.440	Cl	CH ₃	Н	OCO (CH ₂) ₆ CH ₃
Ia1.441 bzw. Ib1.441	Cl	CH ₃	Н	OCO (CH ₂) ₇ CH ₃
Ia1.442 bzw. Ib1.442	C1.	CH ₃	Н	OCO (CH ₂) ₁₆ CH ₃
Ia1.443 bzw. Ib1.443	Cl	CH ₃	Н	OCO (CH ₂) ₁₄ CH ₃
Ia1.444 bzw. Ib1.444	Cl	CH ₃	Н	OCOCH ₂ CH ₂ CH=CH ₂
Ia1.445 bzw. Ib1.445	Cl	CH ₃	H	OCO (CH ₂) ₃ O (2,4-Cl ₂ -C ₆ H ₃)
Ia1.446 bzw. Ib1.446	Cl	CH ₃	н	OCOCH (CH ₃) O - (2 - CH ₃ - 4 - Cl - C ₆ H ₃)
Ial.447 bzw. Ib1.447	C1	CH ₃	н	OCOcyclopropyl
Ia1.448 bzw. Ib1.448	Cl	CH ₃	Н	OCOcyclopentyl
Ial.449 bzw. Ib1.449	Cl	CH ₃	Н	OCOcyclohexyl
Ia1.450 bzw. Ib1.450	Cl	CH ₃	Н	OCOC ₆ H ₅
Ia1.451 bzw. Ib1.451	Cl	CH ₃	н	OCO(2-tetrahydrofuryl)
Ia1.452 bzw. Ib1.452	C1	CH ₃	н	OCO(2-furyl)
Ial.453 bzw. Ib1.453	Cl	CH ₃	Н	OCO(2-thienyl)
Ial.454 bzw. Ib1.454	Cl	CH ₃	Н	OCO(3-pyridyl)
Ia1.455 bzw. Ib1.455	Cl	CH ₃	Н	OSO ₂ CH ₃
Ial.456 bzw. Ibl.456	Cl	CH ₃	Н	OSO ₂ CH ₂ CH ₃
	Ia1.421bzw.Ib1.421Ia1.422bzw.Ib1.422Ia1.423bzw.Ib1.423Ia1.424bzw.Ib1.424Ia1.425bzw.Ib1.425Ia1.426bzw.Ib1.426Ia1.427bzw.Ib1.427Ia1.428bzw.Ib1.428Ia1.429bzw.Ib1.429Ia1.430bzw.Ib1.430Ia1.431bzw.Ib1.432Ia1.432bzw.Ib1.432Ia1.433bzw.Ib1.433Ia1.434bzw.Ib1.435Ia1.435bzw.Ib1.436Ia1.436bzw.Ib1.437Ia1.438bzw.Ib1.438Ia1.439bzw.Ib1.438Ia1.440bzw.Ib1.440Ia1.441bzw.Ib1.441Ia1.442bzw.Ib1.442Ia1.443bzw.Ib1.444Ia1.444bzw.Ib1.445Ia1.445bzw.Ib1.446Ia1.446bzw.Ib1.447Ia1.447bzw.Ib1.448Ia1.449bzw.Ib1.449Ia1.450bzw.Ib1.450Ia1.451bzw.Ib1.451Ia1.452bzw.Ib1.452Ia1.453bzw.Ib1.454Ia1.455bzw.Ib1.454Ia1.455bzw.Ib1.454Ia1.455bzw.Ib1.455	Tal.421 bzw. Ibl.421 Cl Ial.422 bzw. Ibl.422 Cl Ial.423 bzw. Ibl.423 Cl Ial.424 bzw. Ibl.424 Cl Ial.425 bzw. Ibl.425 Cl Ial.426 bzw. Ibl.426 Cl Ial.427 bzw. Ibl.427 Cl Ial.428 bzw. Ibl.428 Cl Ial.429 bzw. Ibl.429 Cl Ial.430 bzw. Ibl.430 Cl Ial.431 bzw. Ibl.431 Cl Ial.432 bzw. Ibl.432 Cl Ial.433 bzw. Ibl.432 Cl Ial.434 bzw. Ibl.434 Cl Ial.435 bzw. Ibl.436 Cl Ial.436 bzw. Ibl.437 Cl Ial.437 bzw. Ibl.437 Cl Ial.438 bzw. Ibl.438 Cl Ial.439 bzw. Ibl.438 Cl Ial.439 bzw. Ibl.439 Cl Ial.440 bzw. Ibl.439 Cl Ial.440 bzw. Ibl.430 Cl Ial.441 bzw. Ibl.440 Cl Ial.442 bzw. Ibl.440 Cl Ial.443 bzw. Ibl.440 Cl Ial.444 bzw. Ibl.444 Cl Ial.445 bzw. Ibl.445 Cl Ial.446 bzw. Ibl.446 Cl Ial.447 bzw. Ibl.446 Cl Ial.447 bzw. Ibl.446 Cl Ial.448 bzw. Ibl.448 Cl Ial.449 bzw. Ibl.449 Cl Ial.449 bzw. Ibl.449 Cl Ial.449 bzw. Ibl.449 Cl Ial.445 bzw. Ibl.445 Cl	Nr.	Nr. R1 R2 R3 Ia1.421 bzw. Ib1.421 C1 CH3 H Ia1.422 bzw. Ib1.422 C1 CH3 H Ia1.423 bzw. Ib1.423 C1 CH3 H Ia1.424 bzw. Ib1.424 C1 CH3 H Ia1.425 bzw. Ib1.425 C1 CH3 H Ia1.426 bzw. Ib1.425 C1 CH3 H Ia1.427 bzw. Ib1.426 C1 CH3 H Ia1.428 bzw. Ib1.428 C1 CH3 H Ia1.429 bzw. Ib1.429 C1 CH3 H Ia1.430 bzw. Ib1.430 C1 CH3 H Ia1.431 bzw. Ib1.431 C1 CH3 H Ia1.432 bzw. Ib1.431 C1 CH3 H Ia1.432 bzw. Ib1.433 C1 CH3 H Ia1.435 bzw. Ib1.434 C1 CH3 H Ia1.436 bzw. Ib1.437 C1 CH3 H Ia1.437 bzw. Ib1.436 C1 CH3 H Ia1.438 bzw. Ib1.437 C1 CH3 H Ia1.439 bzw. Ib1.436 C1 CH3 H Ia1.437 bzw. Ib1.437 C1 CH3 H Ia1.438 bzw. Ib1.437 C1 CH3 H Ia1.439 bzw. Ib1.437 C1 CH3 H Ia1.439 bzw. Ib1.437 C1 CH3 H Ia1.430 bzw. Ib1.437 C1 CH3 H Ia1.430 bzw. Ib1.437 C1 CH3 H Ia1.430 bzw. Ib1.438 C1 CH3 H Ia1.431 bzw. Ib1.440 C1 CH3 H Ia1.440 bzw. Ib1.440 C1 CH3 H Ia1.440 bzw. Ib1.440 C1 CH3 H Ia1.441 bzw. Ib1.444 C1 CH3 H Ia1.442 bzw. Ib1.442 C1 CH3 H Ia1.443 bzw. Ib1.444 C1 CH3 H Ia1.444 bzw. Ib1.444 C1 CH3 H Ia1.445 bzw. Ib1.445 C1 CH3 H Ia1.446 bzw. Ib1.446 C1 CH3 H Ia1.447 bzw. Ib1.447 C1 CH3 H Ia1.448 bzw. Ib1.448 C1 CH3 H Ia1.449 bzw. Ib1.449 C1 CH3 H Ia1.449 bzw. Ib1.449 C1 CH3 H Ia1.449 bzw. Ib1.449 C1 CH3 H Ia1.450 bzw. Ib1.450 C1 CH3 H Ia1.451 bzw. Ib1.455 C1 CH3 H Ia1.455 bzw. Ib1.455 C1 CH3 H

Desweiteren sind folgende Cyclohexenonchinolinoyl-Derivate der Formel I außerordentlich bevorzugt:

52

Die Verbindagen der Formel Ia2 und Ib2, besondere die Verbindungen Ia2.1 bis Ia2.456 und die Verbindungen Ib2.1 bis Ib2.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "5,5-Dimethyl" bedeutet.

10
$$\bigcap_{\mathbb{R}^5} \bigcap_{\mathbb{R}^1} \mathbb{R}^2$$

Die Verbindungen der Formel Ia3 und Ib3, insbesondere die Verbindungen Ia3.1 bis Ia3.456 und die Verbindungen Ib3.1 bis Ib3.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "5-Methyl" bedeutet.

25
$$R^3$$

$$R^2$$

$$R^5$$

$$R^1$$

$$R^3$$

$$R^2$$

$$R^3$$

$$R^3$$

$$R^2$$

$$R^3$$

$$R^3$$

Die Verbindungen der Formel Ia4 und Ib4, insbesondere die Verbindungen Ia4.1 bis Ia4.456 und die Verbindungen Ib4.1 bis Ib4.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁
"4,4-Dimethyl" bedeutet.

 $\begin{array}{c|c}
R^3 \\
R^2 \\
R^5 \\
R^1
\end{array}$

Ia4

Ib4

10

15

5

Die Verbindungen der Formel Ia5 und Ib5, insbesondere die Verbindungen Ia5.1 bis Ia5.456 und die Verbindungen Ib5.1 bis Ib5.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "6,6-Dimethyl" bedeutet.

20

25

$$\begin{array}{c|c}
R^3 \\
R^2 \\
R^5 \\
R^1
\end{array}$$
Ia5

Ib5

30

Die Verbindungen der Formel Ia6 und Ib6, insbesondere die Verbindungen Ia6.1 bis Ia6.456 und die Verbindungen Ib6.1 bis Ib6.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R⁶)₁ "4,4,6,6-Tetramethyl-5-oxo" bedeutet.

35

$$\begin{array}{c|c}
 & R^3 \\
 & R^2 \\
 & R^5 \\
 & R^1
\end{array}$$

45

Die Verbindungen der Formel Ia7 und Ib7, sbesondere die Verbindungen Ia7.1 bis Ia7.456 und die Verbindungen Ib7.1 bis Ib7.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R6)₁ "6-Methyl" bedeutet.

$$\bigcap_{G} \bigcap_{R^5} \bigcap_{R^1} \bigcap_{R^2} \bigcap_{R^2} \bigcap_{R^3} \bigcap_{R^3$$

Ia7

$$\bigcap_{G} \mathbb{R}^{5} \longrightarrow \mathbb{R}^{3} \mathbb{R}^{2}$$

Ib7

Die Verbindungen der Formel Ia8 und Ib8, insbesondere die Verbindungen Ia8.1 bis Ia8.456 und die Verbindungen Ib8.1 bis 20 Ib8.456, die sich von den Verbindungen Ia1.1 bis Ia1.456 bzw. Ib1.1 bis Ib1.456 dadurch unterscheiden, daß (R6)1 "5-Hydroxy-4,4,6,6-tetramethyl" bedeutet.

5

10

15

Ia8

$$\begin{array}{c|c}
 & R^{5} \\
 & R^{2} \\
 & R^{1}
\end{array}$$

Ib8

35

30

40

Die Cyclohexenonchinolinoyl-Derivate der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach folgenden Verfahren:

5

A. Darstellung von Verbindungen der Formel I mit R⁵ = Halogen durch Umsetzung von Cyclohexandion-Derivaten der Formel III mit Halogenierungsmitteln:

10

15
$$(R^6)_1$$
 Halogenierungs- Ia und/oder Ib (mit R^5 = Halogen)

III

Als Halogenierungsmittel eignen sich beispielsweise Phosgen, Diphosgen, Triphosgen, Thionylchlorid, Oxalylchlorid, Phosphoroxychlorid, Phosphorpentachlorid, Mesylchlorid, Chlormethylen-N,N-dimethylammoniumchlorid, Oxylylbromid, Phosphoroxybromid etc.

25

B. Darstellung von Verbindungen der Formel I mit $R^5 = OR^7$, OSO_2R^8 , OPR^8R^9 , $OPOR^8R^9$ oder $OPSR^8R^9$ durch Umsetzung von Cyclohexandion-Derivaten der Formel III mit Alkylierungs-, Sulfonylierungs- bzw. Phosphonylierungsmitteln IV α , IV β , IV γ , IV δ bzw. IV ϵ .

30

$$L^{1}-R^{7} \text{ (IV}\alpha) \text{ oder}$$

$$L^{1}-SO_{2}R^{8} \text{ (IV}\beta) \text{ oder}$$

$$L^{1}-PR^{8}R^{9} \text{ (IV}\gamma) \text{ oder}$$

$$L^{1}-POR^{8}R^{9} \text{ (IV}\gamma) \text{ oder}$$

$$L^{1}-POR^{8}R^{9} \text{ (IV}\delta) \text{ oder}$$

$$L^{1}-PSR^{8}R^{9} \text{ (IV}\delta)$$

Ia und/oder Ib (mit R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ oder OPSR⁸R⁹)

gangsgruppe, wie L¹ steht für eine nucleophil verdrängbare Halogen, z. B. Chlor oder Brom, Hetaryl, z. B. Imidazolyl, Carboxylat, z. B. Acetat, oder Sulfonat, z. B. Mesylat oder Triflat etc.

980686

5 Die Verbindungen der Formel IV α , IV β , IV γ , IV δ oder IV ϵ können direkt eingesetzt werden wie z. B. im Fall der Carbonsäurehalogenide oder in situ erzeugt werden, z. B. aktivierte Carbonsäuren (mit Carbonsäure und Dicyclohexylcarbodiimid 10 etc.).

Darstellung von Verbindungen der Formel I mit $R^5 = OR^7$, SR^7 , c. POR8R9, NR10R11, ONR11R12, N-gebundenes Heterocyclyl oder O-(Ngebundenes Heterocyclyl) durch Umsetzung von Verbindungen der Formel I mit R^5 = Halogen, OSO_2R^8 (Ia) mit Verbindungen der Formel Va, V β , V γ , V δ , V ϵ , V η oder V ϑ , gegebenenfalls in Gegenwart einer Base oder unter vorangehender Salzbildung.

 HOR^7 (Va) oder 20 HSR^{7} (V β) oder HPOR8R9 (Vy) oder $HNR^{10}R^{11}$ (V δ) oder Ia und/oder Ib 25 HONR¹¹R¹² (V_E) oder $(mit R^5 = Halogen, OSO_2R^8)$ H(N-gebundenes Heterocyclyl) (Vη) oder H (ON-gebundenes Heterocyclyl) (V0) 30 Ia und/oder Ib $(mit R^5 = OR^7, SR^7,$ POR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², 35 N-gebundenes Heterocyclyl oder ON-gebundenes

Darstellung von Verbindungen der Formel I mit $R^5 = SOR^8$, SO_2R^8 durch Umsetzung von Verbindungen der Formel I mit $R^5 = SR^8$ $(I\beta)$ mit einem Oxidationsmittel.

Heterocyclyl)

Ia und/oder Ib Oxidationsmittel Ia und/oder Ib $(mit R^5 = SR^8)$ (mit $R^5 = SOR^8$ oder SO_2R^8)

- Als Oxidationsmittel kommen beispielsweise m-Chlorperbenzoesäure, Peroxyessigsäure, Trifluorperoxyessigsäure, Wasserstoffperoxid, ggf. in Gegenwart eines Katalysators wie Wolframat, in Betracht.
- Für die oben genannten Reaktionen gelten folgende Bedingungen:
 Die Ausgangsverbindungen werden in der Regel im äquimolaren
 Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die
 eine oder andere Komponente im Überschuß einzusetzen.
- Gegebenenfalls kann es von Vorteil sein, die Umsetzungen in Gegenwart einer Base durchzuführen. Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein Überschuß der Base z.B. 1,5 bis 3 Moläquivalente, bezogen auf Ia und/oder Ib (mit R⁵ = Halogen oder OSO₂R⁸) oder III, kann unter Umständen vorteilhaft sein.

Als Basen eignen sich tertiäre Alkylamine, wie Triethylamin, aromatische Amine, wie Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat oder Kaliumcarbonat, Alkalimetallhydrogencarbonate, wie
Natriumhydrogencarbonat und Kaliumhydrogencarbonat, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium-tert.butanolat oder Alkalimetallhydride, z.B. Natriumhydrid. Bevorzugt
verwendet werden Triethylamin oder Pyridin.

Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin erfolgen.

In Abhängigkeit an den Reaktionsbedinungen komen die Verbindungen Ia, Ib oder Gemische hiervon gebildet werden. Letztere können durch klassische Trennmethoden, wie z.B. Kristallisation, Chromatographie etc., getrennt werden.

Die Cyclohexandion-Derivate der Formel III sind bekannt oder können nach an sich bekannten Verfahren hergestellt werden (z.B. DE-A 19 532 311). Beispielsweise durch Umsetzung von Cyclohexanonen der Formel VI mit einer aktivierten Benzoesäure VIIa oder einer Benzoesäure VIIb, die vorzugsweise in situ aktiviert wird, zu dem Acylierungsprodukt und anschließende Umlagerung.

15

$$R^3$$
 R^2
 R^3
 R^2
 R^3
 R^3
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

 ${\tt L}^2$ steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen z.B. Brom oder Chlor, Hetaryl, z.B. Imidazolyl oder Pyridyl, Carboxylat, z.B. Acetat oder Trifluoracetat etc.

Die aktivierte Benzoesäure VIIa kann direkt eingesetzt werden, wie im Fall der Benzoylhalogenide oder in situ erzeugt werden, z.B. mit Dicyclohexylcarbodiimid, Triphenylphosphin/Azodicarbonsäureester, 2-Pyridindisulfid/Triphenylphosphin, Carbonyldi-5 imidazol etc.

Gegebenenfalls kann es von Vorteil sein, die Acylierungsreaktion in Gegenwart einer Base auszuführen. Die Reaktanden und die Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen 10 eingesetzt. Ein geringer Überschuß der Hilfsbase z.B. 1,2 bis 1,5 Moläquivalente, bezogen auf VII, kann unter Umständen vorteilhaft sein.

Als Hilfsbasen eignen sich tertiäre Alkylamine, Pyridin oder 15 Alkalimetallcarbonate. Als Lösungsmittel können z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, wie Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie 20 Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester wie Essigsäureethylester oder Gemische hiervon verwendet werden.

Werden Benzoylhalogenide als aktivierte Carbonsäurekomponente eingesetzt, so kann es zweckmäßig sein, bei Zugabe dieses Reakti-25 onspartners die Reaktionsmischung auf 0-10°C abzukühlen. Anschlie-Bend rührt man bei 20 - 100°C, vorzugsweise bei 25 - 50°C, bis die Umsetzung vollständig ist. Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich hierfür be-30 sonders Methylenchlorid, Diethylether und Essigsäureethylester. Nach Trocknen der organischen Phase und Entfernen des Lösungsmittels kann der rohe Ester ohne weitere Reinigung zur Umlagerung eingesetzt werden.

- 35 Die Umlagerung der Ester zu den Verbindungen der Formel III erfolgt zweckmäßigerweise bei Temperaturen von 20 bis 100°C in einem Lösungsmittel und in Gegenwart einer Base sowie gegebenenfalls mit Hilfe einer Cyanoverbindung als Katalysator.
- 40 Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid, 1,2-Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Gemische hiervon verwendet werden. Bevorzugte Lösungsmittel sind Acetonitril und Dioxan.
- 45 Geeignete Basen sind tertiäre Amine wie Triethylamin, aromatische Amine wie Pyridin oder Alkalicarbonate, wie Natriumcarbonat oder Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu

einem vierfachen Überschuß, bezogen auf den Ester, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonat verwendet, vorzugsweise in doppelt äquimolaren Verhältnis in Bezug auf den Ester.

60

5

Als Cyanoverbindungen kommen anorganische Cyanide, wie Natriumcyanid oder Kaliumcyanid und organische Cyanoverbindungen, wie
Acetoncyanhydrin oder Trimethylsilylcyanid in Betracht. Sie werden in einer Menge von 1 bis 50 Molprozent, bezogen auf den
10 Ester, eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 15, vorzugsweise
10 Molprozent, bezogen auf den Ester, eingesetzt.

Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das

15 Reaktionsgemisch wird z.B. mit verdünnter Mineralsäure, wie
5 %ige Salzsäure oder Schwefelsäure, angesäuert, mit einem organischen Lösungsmittel, z.B. Methylenchlorid oder Essigsäureethylester extrahiert. Der organische Extrakt kann mit 5-10%iger
Alkalicarbonatlösung, z.B. Natriumcarbonat- oder Kaliumcarbonat
20 lösung extrahiert werden. Die wäßrige Phase wird angesäuert und
der sich bildende Niederschlag abgesaugt und/oder mit Methylenchlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt.

25 Die Benzoylhalogenide der Formel VIIa (mit L^2 = C1, Br) können auf an sich bekannte Art und Weise durch Umsetzung der Benzoesäuren der Formel VIIb mit Halogenierungsreagentien wie Thionylchlorid, Thionylbromid, Phosgen, Diphosgen, Triphosgen, Oxalylchlorid, Oxalylbromid hergestellt werden.

30

Die Benzoesäuren der Formel VIIb können in bekannter Weise durch saure oder basische Hydrolyse aus den entsprechenden Estern hergestellt werden. Letztere sind literaturbekannt oder können auf an sich bekannte Art und Weise dargestellt werden.

35

8-Difluormethyl-5-alkoxycarbonyl-chinoline können durch Fluorierung aus den korrespondierenden 8-Aldehyd-Derivaten erhalten werden. Als Fluorierungsagens kommt unter anderem DAST in Betracht. Das Formylchinolin wird durch Oxidation des entsprechen-

40 den Brommethylchinolins erhalten.

Weiterhin ist es möglich 8-Difluormethoxy-5-alkoxycarbonyl-chinoline aus den entsprechenden 8-Hydroxy-Derivaten durch Umsetzung mit Chlordifluormethan zu gewinnen. Bevorzugt wird diese Reaktion 45 in Gegenwart einer Base, wie Kaliumhydroxid oder Natriumhydroxid, in einen aprotischen Lösungsmittel durchgeführt. Die 8-Hydroxy-5alkoxycarbonylchinoline werden durch an sich bekannte Vereste-

rungsreaktionen aus 8-Hydroxy-5-hydroxycarbonyl-chinolin erhalten.

Herstellungsbeispiele:

5

2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.22) und 2-[(8-Chlorchinolin-5-yl)-chlormethyliden]-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion (Verbindung 3.1)

10

- 4,0 g (10,8 mmol) 2-(8-Chlorchinolin-5-yl)-carbonyl-4,4,6,6-te-tramethyl-cyclohexan-1,3,5-trion wurden in 40 ml Dichlormethan gelöst, 4,1 g (32,4 mmol) Oxalylchlorid und 1,5 ml Dimethylformamid zugegeben. Nach 1,5 Stunden Rühren bei 25°C wurde das
- 15 Lösungsmittel entfernt. Man erhielt 3,9 g farblose Kristalle.
 Nach Chromatographie an Kieselgel (Eluent: Toluol/Methyl-tert.butylether) erhielt man:
 - 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion: Ausbeute 0,65 g (farblose Kristalle);
- 20 Fp.: 180°C;
 - 2-[(8-Chlorchinolin-5-yl)-chlormethyliden-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion: Ausbeute 0,35 g (farblose Kristalle); Fp.: 156°C.
- 25 2-[(8-Chlorchinolin-5-yl)-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.46) und 2[(8-chlorchinolin-5-yl)-(4'-oxo-1',4'-dihydropyrid-1'-yl')-methyliden]-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion (Verbindung 3.5)

30

- 1,0 g (2,6 mmol) einer Mischung der Verbindungen 2.22 und 3.1 wurde in 25 ml Methylenchlorid gelöst, 0,82 g (8,7 mmol) 4-Hydroxy-pyridin zugegeben und 8 Stunden bei 40°C gerührt. Anschließend wurden unlösliche Bestandteile filtriert, das Lösungsmittel
- 35 entfernt und der Rückstand an Kieselgel chromatograhiert (Eluent: Methylenchlorid/Methanol). Man erhielt: 2-[(8-Chlorchino-lin-5-yl)-4'-oxo-1',4'-dihydropyridin-1'yl)methyliden-4,4,6,6-tetramethylcyclohexan-1,3,5-trion: Ausbeute 0,40 g (farbloses Öl);
- 40 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-(4'-oxo-1',4'-dihydropyrid-1'-yl)-4,4,6,6-tetramethylcyclohex-1-en-3,5-dion: Ausbeute 0,25 g (farblose Kristalle); Fp. > 210°C.
- 2-(8-Fluorchinolin-5-yl)-carbonyl-1,5-di(ethoxycarbonyloxy)-45 4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 3.20)

0,12 g (4 mmol) triumhydrid wurden in 10 ml trahydrofuran gelöst, bei Raumtemperatur 0,36 g (1 mmol) 2-[(8-Fluorchinolin-5-y1)-carbony1]-4,4,6,6-tetramethyl-1-hydroxy-cyclohexan-3,5-dion in 5 ml Tetrahydroforan zugetropft und 1 Stunde bei 40°C gerührt.

5 Anschließend wurde bei Raumtemperatur 0,43 (4 mmol) Chlorameisensäureethylester zugetropft und 3 Stunden unter Rückfluß erhitzt. Nach Abkühlen wurden Wasser zugegeben, mit Essigsäureethylester extrahiert, die organische Phase mit 2-prozentiger Kaliumcarbonatlösung und Wasser gewaschen, getrocknet und das Lösungsmittel

2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-[dimethylamino)carbonylthio]-4,4,6,6-tetramethyl-cyclo-hex-1-en-3,5-dion (Verbindung 2.45) und

10 entfernt. Man erhielt 0,45 g eines farblosen Öles.

15 2-{(8-Chlorchinolin-5-yl)-[dimethylamino)carbonylthio]methyliden}-4,4,6,6-tetramethylcyclohexan-1,3,5-trion (Verbindung 3.4)

0,50 g (1,3 mmol) 2-[(8-Chlorchinolin-5-yl)-carbonyl]-4,4,6,6-te20 tramethyl-cyclohexan-1,3,5-trion wurden in 15 ml Tetrahydrofuran gelöst, 0,52 g (5,2 mmol) Triethylamin zugegeben und 0,32 g (2,6 mmol) Dimethylaminothiocarbonylchlorid in 5 ml Tetrahydrofuran zugetropft. Nach 30 Stunden Rühren bei Raumtemperatur, wurde das Lösungsmittel entfernt, der Rückstand in Essigsäureethylester
25 aufgenommen, mit 5-prozentiger Kaliumcarbonatlösung und Wasser

25 aufgenommen, mit 5-prozentiger Kaliumcarbonatlösung und Wasser gewaschen, getrocknet, eingeengt und mit Cyclohexan/Essigsäure-ethylester an Kieselgel chromatographiert. Man erhielt 2-[(8-Chlorchinolin-5-yl)-carbonyl]-1-[dimethylamino)carbonyl-thio]-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion: Ausbeute 0,5 g

30 (farblose Kristalle); Fp. 138°C; 2-{(8-Chlorchinolin-5-yl)-[[dimethylamino)carbonyl-thio]methyliden}-4,4,6,6-tetramethylcyclohexan-1,3,5-trion: Ausbeute: 0,2 g (farblose Kristalle) Fp. 75°C.

35 2-[(8-Difluormethylchinolin-5-yl)carbonyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.31)

Stufe a) 8-Formyl-5-chinolincarbonsäuremethylester

40 28,8 g (103 mmol) 8-(Brommethyl)-5-chinolincarbonsäuremethylester wurden in 200 ml Acetonitril gelöst, 36,1 g (309 mmol) N-Methyl-morpholin-N-oxid zugegeben, 7 Stunden bei 25°C gerührt und anschließend das Lösungsmittel entfernt. Nach Chromatographie an Kieselgel (Eluent: Cyclohexan/Essigsäureethylester) erhielt man 45 12.0 g 8-Formyl-5-chinolincarbonsäure-methylester (farblose Kri-

45 12,0 g 8-Formyl-5-chinolinearbonsäure-methylester (farblose Kristalle), Fp.: 128°C.

Stufe b) 8-Difluormethyl-5-chinolincarbonsauremethylester

0,5 g (2,3 mmol) 8-Formyl-5-chinolincarbonsäuremethylester wurden in 50 ml Dichlorethan gelöst und bei -20°C 1,1 g (6,8 mmol)

- 5 Diethylaminoschwefeltrifluorid (DAST) zugetropft. Nach 30 min. Rühren bei -20°C wurde auf 25°C erwärmt und 50 ml Wasser zugetropft. Die wäßrige Phase wurde mit Methylenchlord extrahiert, die vereinigten organischen Phasen mit Natriumhydrogencarbonat-Lösung gewaschen, getrocknet und das Lösungsmittel entfernt.
- 10 Ausbeute: 0,7 g farblose Kristalle;
 1H-NMR (δin ppm, d⁶-DMSO): 9.28 (d,1H); 9.04 (s, 1H); 8.36
 (d, 1H); 8.11 (d, 1H); 7.90 (t, 1H); 7.80 (brs, 1H); 3.96 (s,3H).

Stufe c) 8-Difluormethyl-5-chinolincarbonsäure

- 0,5 g (2,0 mmol) 8-Difluormethyl-5-chinolincarbonsäuremethylester wurden in 5 ml Ethanol gelöst, 0,43 g (10,5 mmol) Natriumhydroxyd und 1 ml Wasser zugegeben und 20 Stunden bie 25°C gerührt. Anschließend wurden die Lösungsmittel entfernt, der Rückstand in
- 20 Wasser aufgenommen, zweimal mit Methylenchlorid gewaschen, mit 10 N Salzsäure auf pH 1 gestellt und der Niederschlag abgesaugt. Nach dem Trocknen erhielt man 0,5 g 8-Difluormethyl-5-chinolincarbonsäure (farblose Kristalle);
- $^{1}\text{H-NMR}$ (δ in ppm, d^{6} -DMSO): 9.35 (d,1H); 9.04 (s, 1H); 8.38 25 (d, 1H); 8.10 (d, 1H); 7.92 (t, 1H); 7.78 (brs, 1H).
 - Stufe d) 2-[(8-Difluormethylchinolin-5-yl)-carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion
- 30 0,26 g (1,4 mmol) 2,2,4,4-Tetramethylcyclohexan-1,3,5-trion wurden in 10 ml Acetonitril gelöst, 0,34 g (1,4 mmol) 8-Difluor-methyl-5-chinolincarbonsäure und 0,38 g (1,9 mmol) Dicyclohexylcarbodiimid zugegeben und 17 Stunden bei 25°C gerührt. Zu der Suspension wurden dann 0,57 g (5,6 mmol)Triethylamin und 5 Trop-
- 35 fen Trimethylsilylcyanid gegeben und weitere 25 Stunden bei 25°C gerührt. Anschließend wurde 50 ml 5-prozentige Kaliumcarbonatlösung zugegeben, filtriert, das Filtrat mit Methyl-tert.-Butylether gewaschen, die wäßrige Phase mit konzentrierter Salzsäure auf pH 2 gestellt und der Niederschlag abfiltriert, mit Wasser
- 40 gewaschen und getrocknet. Ausbeute: 0,25 g (farblose Kristalle);
 1H-NMR (δin ppm, CDCl₃): 17.5 (s,1H); 9.02 (q, 1H); 8.24 (d, 1H);
 8.06 (d, 1H); 7.82 (t, 1H); 7.50 (m, 2H); 1.60 (s,6H); 1.36
 (s, 6H).

Stufe e) 2-[(8-Dirluormethylchinolin-5-yl)-callnyl]-1-chlor-4,4,6,6-tetramethyl-cyclohex-1-en-3,5-dion (Verbindung 2.31)

5 0,25 g (0,65 mmol) 2-(8-Difluormethylchinolin-5-yl)-carbonyl-4,4,6,6-tetramethyl-cyclohexan-1,3,5-trion wurden in 15 ml Dichlormethan gelöst, 0,25 g (1,95 mmol) Oxalylchlorid und 7 Tropfen Dimethylformamind zugegeben. Nach 17 Stunden Rühren bie 25°C wurde das Lösungsmittel entfernt. Man erhielt 0,2 g farblose 10 Kristalle.

Darstellung des Vorprodukts 2-[(8-Difluormethoxychinolin-5-y1)carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion

15 Stufe a) 8-Hydroxy-5-chinolincarbonsäuremethylester

16,25 g (86 mmol) 8-Hydroxy-5-chinolincarbonsäure wurden in 70 ml Methanol gelöst, 3 ml konzentrierte Schwefelsäure zugegeben und 25 Stunden unter Rückfluß erhitzt. Das Lösungsmittel wurde dann

- 20 entfernt, der Rückstand in Eiswasser aufgenommen, mit Natriumcarbonatlösung ein pH-Wert von 8 eingestellt und heiß filtriert. Der Rückstand wurde am Heiß-Extraktor 7 Stunden mit Methyl-tert.butylether extrahiert und anschließend das Lösungsmittel vom Extrakt entfernt. Man erhielt 6,8 g eines braunen Pulvers;
- 25 1 H-NMR (δ in ppm, d^{6} -DMSO): 9.38 (d, 1H); 8.90 (d, 1H); 8.26 (d, 1H); 7.71 (dd, 1H); 7.15 (d, 1H); 3.93 (s, 3H).

Stufe b) 8-Difluormethoxy-5-chinolincarbonsäuremethylester

30 1,0 g (5,0 mmol) 8-Hydroxy-5-chinolincarbonsäuremethylester wurden in 20 ml Dimethylformamid gelöst, 0,76 g (5,5 mmol) Kalium-carbonat zugegeben und bei 40°C über 2 Stunden 14 g Chlordifluormethan eingesetzt. Feste Bestandteile wurden dann abfiltriert, das Lösungsmittel enfernt, der Rückstand mit Wasser gewaschen und 35 getrocknet. Man erhielt 0,75 g eines braunen Pulvers;

¹H-NMR (δin ppm, CDCl₃): 9.45 (d,1H); 9.00 (d, 1H); 8.30 (d, 1H); 7.61 (dd, 1H); 7.49 (d, 1H); 7.18 (t, 1H); 3.99 (s, 3H).

Stufe c) 8-Difluormethoxy-5-chinolincarbonsaure

40

0,7 g (2,8 mmol) 8-Difluormethoxy-5-chinolincarbonsäuremethylester wurden in 15 ml Wasser suspendiert und 0,4 g (10 mmol) Natriumhydroxid zugegeben. Es wurde 20 Stunden bei 25°C gerüht, abfiltriert und das Filtrat mit Methyl-tert.-butylether

45 gewaschen. Die wäßrige Phase wurde mit konzentrierter Salzsäure auf pH 3 gestellt, abfiltriert und der Rückstand getrocknet. Man erhält 0,45 g eines farblosen Pulvers;

¹H-NMR (δin ppm, d⁶-DMSO): 13.5 (br, 1H); 9.39 (d, 1H); 9.03 (d, 1H); 8.32 (d, 1H); 7.78 (dd, 1H); 7.62 (d, 1H); 7.60 (t, 1H).

Stufe d) 2-[(8-Difluormethoxychinolin-5-yl)carbonyl]-4,4,6,6-tetramethylcyclohexan-1,3,5-trion

- 0,4 g (1,7 mmol) 8-Difluormethoxy-5-chinolincarbonsäure wurden in 20 ml Acetonitril gelöst, 0,4 g (1,9 mmol) N,N-Dicyclohexylcarbodiimid und 0,3 g (1,7 mmol) 2,2,4,4-Tetramethylcyclohexan-1,3,5-
- 10 trion zugegeben und 20 Stunden bei 25°C gerührt. Dann wurden 0,4 g (4,0 mmol) Triethylamin und 2 Tropfen Trimethylsilylcyanid zugegeben und weitere 3 Stunden bei 30 35°C gerührt. Der Niederschlag wurde abfiltriert, das Filtrat eingeengt, 20 ml5-prozentige Kaliumcarbonatlösung zugegeben und mit Methyl-tert.-butyle-
- 15 ther gewaschen. Die wäßrige Phase wurde anschließend mit konzentrierter Salzsäure auf pH 3 gestellt und mit Essigsäureethylester extrahiert. Nach Entfernen des Lösungsmittels wurde an Kieselgel chromatographiert (Eluent: Methylenchlord/Methanol). Man erhielt 0,2 g eines farblosen Pulvers;
- 20 ¹H-NMR (δin ppm, CDCl₃): 16.5 (br, 1H); 9.02 (d, 1H); 8.30 (d, 1H); 7.51 (m, 2H); 7.21 (d, 1H); 7.17 (t, 1H); 1.60 (s, 6H); 1.35 (s, 6H).

In den Tabellen 2 und 3 sind neben den veranstehend beschriebenen 25 Cyclohexanonchinolinoyl-Derivaten der Formel I weitere aufgeführt, die in analoger Weise oder auf an sich bekannte Art und Weise hergestellt wurden oder herstellbar sind:

30

35

40

 (R^6) $\frac{4}{1}$ $\frac{0}{1}$ $\frac{1}{1}$ $\frac{1}{1$

Tabelle 2:

	_ (66					_
Fp. [°C] oder ¹ H-NMR [ppm]	178	9.22(d, 1H); 9.03 (d, 1H); 7.98 (q, 1H); 7.62 (q, 1H); 7.39 (t, 1H); 1.49 (s, 6H); 1.11 (s, 9H)	>200	9.20 (dd, 2H); 8.85 (q, 2H); 7.60 (q, 1H); 1.40 (s, 12H); 1.12 (s, 9H)	9.50 (d, 1H); 8.98 (d, 1H); 8.06 (d, 1H); 7.60 (m, 2H); 3.95 (m, 4H); 2.90 (s, 3H); 1.65 (s, 6H); 1.51 (s, 6H)	128	
(R6) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃)4-5-oxo
R5	ococ ^e H ²	осос (сн3) 3	OCOC6H5	осос (сн³) 3	OPS (OCH ₂ CH ₃) ₂	осозснз	OCSN(CH ₃) ₂
R ³	Н	н	Н	н	H	н	н
R ²	н	н	н	н	н	н	Н
R1	F	ͱ,	C1	C1	СН3	СН3	СН3
Nr.	2.1	2.2	2.3	2.4	2.5	2.6	2.7

		Ι	T	· 	67 ₁₀	Ţ	<u> </u>	Г	П	
Fp. [°C] oder ¹ H-NMR [ppm]	9.05 (d, 1H); 9.85 (d, 1H); 7.92 (d, 1H); 7.72 (d, 2H); 7.51 (d, 1H); 7.48 (t, 1H); 7.35 (q, 1H); 7.28 (t, 2H); 2.79 (s, 3H); 1.62 (s, 6H); 1.55 (s, 6H)	9.41 (d, 1H); 8.95 (d, 1H); 8.07 (d, 1H); 7.58 (d, 1H); 7.50 (q, 1H); 2.88 (s, 3H); 2.45 (s, 6H); 2.42 (s, 6H); 1.65 (s, 6H); 1.48 (s, 6H)			9.20 (d, 1H); 8.85 (d, 1H); 7.80 (d, 1H); 7.51 (d, 1H); 7.48 (q, 1H); 2.85 (s, 3H); 1.55 (s, 6H); 1.50 (s, 6H); 1.08 (s, 9H)		9.13 (d, 1H); 9.02 (d, 1H); 7.85 (s, 2H); 7.58 (q, 1H); 2.40 (q, 2H);1.60 (s, 6H); 1.05 (t, 3H)		84	72
(R6) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6-(CH ₃) ₃	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃)4-5-(OH)	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	осос _б н ₅	OPO [N (CH ₃)] ₂	OCO (CH ₂) 30 (2,4-C12. C ₆ H ₃)	OCOCH (CH ₃) O (2 · CH ₃ · 4 · C1 · C ₆ H ₃)	осос (сн ₃) ₃	OCOC (CH ₃) ₃	ососн ₂ сн ₃	осовсн3	осозсн3	осозсн3
R ³	н	н	Н	Н	н	н	н	н	Н	н
R ²	н	H	Н	н	н	н	н	Н	н	Н
R1	снэ	СН3	СН3	СН3	СН3	F	C1	F	c1	দ্র
Nr.	2.8	2.9	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17

						(_		61	8						
Fp. [°C] oder ¹ H-NMR [ppm]	9.44 (d, 1H); 9.03 (d, 1H); 7.88 (d,	1H); 7.59 (m, 2H); 3.92 (s, 3H); 2.90	(s, 3H); 1.50 (s, 6H); 1.38 (s, 6H)	9.30 (d, 1H); 9.02 (d, 1H); 7.93 (g,	1H); 7.61 (q, 1H); 7.40 (q, 1H); 3.01	(s, 3H); 1.57 (s, 3H); 1.53 (s, 3H);	1.32 (s, 3H); 1.28 (s, 3H)	9.18 (d, 1H); 9.02 (s, 1H); 7.92 (g,	1H); 7.65 (q, 1H); 7.41 (q, 1H); 4.32	(q, 2H); 4.11 (q, 1H); 1,45 (s, 3H);	1.40 (s, 3H); 1.38 (s, 3H); 1.30 (s,	3H); 1.22 (s, 3H); 1.15 (s, 3H)	9.45 (d, 1H); 9.03 (d, 1H); 7.96 (g,	1H); 7.68 (q, 1H); (7.40 (t, 1H);	3.88 (s, 3H); 1.50 (s, 6H); 1.39 (s,	(Н9)	180				
(R ⁶) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo			4,4,6,6-(CH ₃) ₄ -5-(OH)				3)4-5-	(OCOOCH ₂ CH ₃)		•		4,4,6,6-(CH ₃) ₄ -5-oxo				4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R ⁵	6н20			оѕо2сн3				осоосн2сн3					осн3				c1	c1	S(4-CH3-C6H4)	S (4-CH ₃ -C ₆ H ₄)	c1
R ³	Н			н				н					н				н	н	Н	н	Ħ
R ²	н			н				н					Ħ				H	н	H	н	Ħ
\mathbb{R}^1	CH ₃			F				ᄄ					(E4				C1	Ĕij	C1	S (4-CH ₃ -C ₆ H ₄)	C1
Nr.	2.18			2.19				2.20					2.21				2.22	2.23	2.24	2.25	2.26

_	· · · · · · · · · · · · · · · · · · ·		т-				 	,	1		
Fp. [°C] oder 1H-NMR [ppm]	9.65 (d, 1H); 9.05 (d, 1H); 8.83 (d, 1H); 7.66 (q, 1H); 6.95 (d, 1H); 5.23 (m, 1H); 4.21 (d, 2H); 4.05 (m, 2H); 2.39 (m, 2H); 1.62 (s, 6H); 1.48 (s, 6H)	194			9.40 (d, 1H); 9.05 (d, 1H); 8.05 (d, 1H); 7.86 (t, 1H); 7.80 (d, 1H); 7.65	F. T. 1 (17) (2) (2) (17)	9.15 (d, 1H); 8.10 (d, 1H); 7.75 (d, 1H); 7.52 (d, 1H); 3.02 (s, 2H); 2.91 (s, 2H); 2.80 (s, 3H); 1.20 (s, 6H)		9.50 (d, 1H); 9.02 (d, 1H); 7.80 (d, 1H); 7.50 (m, 3H); 2.90 (s, 3H); 2.30 (s, 3H); 1.50 (s, 6H); 1.35 (s, 3H); 1.25 (s, 3H)	9.30 (d, 1H); 9.05 (d, 1H); 7.80 (d, 1H); 7.75 (d, 1H); 7.61 (q, 1H); 7.52 (d, 1H); 7.40 (s, 1H); 6.11 (s, 1H); 1.65 (s, 3H); 1.60 (s, 3H); 1.50 (s, 6H)	
(R6) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6-(CH ₃) ₃	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	5,5-(СН3)2	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	C1	c1	C1	Cl	C1	C1	C1	N(CH ₃) OCH ₃	SCH ₃	1-pyrazolyl	N (CH ₃) OCH ₃
R ³	Ħ	н	H	Н	н	H	н	H	н	H	Ħ
R ²	н	н	н	н	н	H	СН3	н	н	н	H
\mathbb{R}^1	O(tetra- hydro- furan-3 -y1)	СН3	占	СН3	CHF2	CF3	CF_3	CH3	СН3	C1	C1
Nr.	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37

										7	0		
Fp. [°C] oder ¹ H-NMR [ppm]		205			150			138	>210		166	9.65 (d, 1H); 8.97 (d, 1H); 7.79 (d, 1H); 7.60 (m, 2H); 4.00 (m, 4H); 2.91 (s, 3H); 1.71 (s, 6H); 1.51 (s, 6H)	9.65 (d, 1H); 9.01 (d, 1H); 7.83 (d, 1H); 7.65 (q, 1H); 7.02 (d, 1H); 4.18 (s, 3H); 1.65 (s, 6H); 1.55 (s, 6H)
(R6) ₁	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,6-(CH ₃) ₂ -4-SCH ₃	4,4,6,6.(CH ₃)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo			
R ⁵	1-pyrolidinyl	4-morpholinyl	4-morpholinyl	Cl	1-pyrazolyl	4-morpholinyl	13	SCON (CH ₃) ₂	4-oxo-1,4-dihydro- pyrid-1-yl	CI	SCON (CH ₃) ₂	OP (OCH ₂ CH ₃) ₂	C1
R³	Н	н	Н	н	н	Н	н	н	н	н	н	н	н
\mathbb{R}^2	Н	н	Н	н	н	H	н	н	н	н	н	Ħ	н
R^1	снз	снз	ເງ	СН3	снз	CF_3	CHNOCH ₃	cı	C1	Ŧ	CH ₃	СН3	осн3
Nr.	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.50

71

_	_	1		T	1	
Fp. [°C] oder 1H-NMR [ppm]	156	9.00 (d, 1H); 8.09 (s, 1H); 7.82 (d, 1H); 7.72 (s, 1H); 7.68 (d, 1H); 7.47 (d, 1H); 7.35 (q, 1H); 2.95 (s, 3H); 1.55 (s, 6H); 1.30 (s, 6H)	9.15 (d, 1H); 8.32 (d, 1H); 7.82 (d, 1H); 7.60 (q, 1H); 7.45 (d, 1H); 4.05 (m, 2H); 3.68 (m, 4H); 3.35 (m, 1H); 3.25 (m, 1H); 1.30 (s, 6H); 1.22 (s, 6H)	75	9.02 (d, 1H); 8.42 (d, 1H); 7.80 (2d, 3H); 7.50 (q, 1H); 7.38 (d, 1H); 6.72 (d, 2H); 1.50 (s, 12H)	190
R6	4,4,6,6-(CH3)4-5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4,4,6,6-(CH ₃) ₄ -5-oxo	4.0xo-1,4-dihydro- 4,4,6,6-(CH ₃) ₄ -5-oxo pyrid-1-yl	4,4,6,6-(CH ₃) ₄ -5-oxo
R5	C1	1-(1,2,4-tri- azolyl)	4-morpholinyl	SCON (CH ₃) ₂	4-oxo-1,4-dihydro- pyrid-1-yl	N(CH ₃) ₂
R ³	Н	н	н	Н	н	H
\mathbb{R}^2	Н	н	н	н	н	Ħ
\mathbb{R}^1	C1	СН3	c1	c1	C1	C1
Nr.	3.1	3.2	3.3	3.4	3.5	3.6

R⁶)₁ R² R³

qi

Tabelle 3:

Die Verbindungen der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die herbiziden 5 Mittel, die Verbindungen der Formel I enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor al10 lem bei niedrigen Aufwandmengen auf.

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung 15 unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec.

- 20 rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis
- 25 guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot
- 30 esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum 35 tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifo-
- 35 tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

Darüber hinaus können die Verbindungen der Formel I auch in Kul-40 turen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch

hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln,

Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der 5 erfindungsgemäßen Wirkstoffe gewährleisten.

Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflan-10 zenschutzmitteln übliche Hilfsmittel.

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie

15 Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol,

20 Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren

- 25 Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Cyclohexenonchinolinoyl-Derivate der Formel I als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden.
- 30 Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
- 35 Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta-
- 40 und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder
- 45 Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenoder

Polyoxypropylena-kylether, Laurylalkoholpolye koletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

5 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate

10 können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl. Baumrin-

5 mittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

20 Die Konzentrationen der Verbindungen der Formel I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer

25 Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

30

35

40

- I. 20 Gewichtsteile der Verbindung Nr. 2.2 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des
- II. 20 Gewichtsteile der Verbindung Nr. 2.4 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ein-

Wirkstoffs enthält.

gießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

- 5 III. 20 Gewichtsteile der Verbindung Nr. 2.16 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile der Verbindung Nr. 2.18 werden mit 3
 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
- V. 3 Gewichtsteile der Verbindung Nr. 2.22 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.
- VI. 20 Gewichtsteile der Verbindung Nr. 2.46 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
- VII. 1 Gewichtsteil der Verbindung Nr. 3.1 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
- VIII. 1 Gewichtsteil der Verbindung Nr. 3.4 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

t 980686

76

Die Applikation er Verbindungen der Formel 1 w. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei 5 welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, 10 lay-by).

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0 vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz 15 (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Cyclohexenonchinolinoyl-Derivate der Formel I mit zahlreichen Vertretern anderer herbizider oder 20 wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner

ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoesäure und deren

25 Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF₃-Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane,

30 Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessig-

35 säure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.

40

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder

45 phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können

auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Anwendungsbeispiele

5 Die herbizide Wirkung der Cyclohexenonchinolinoyl-Derivate der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit 10 etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein vertei15 lender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgier-

- 25 ten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0.25 bzw. 0.125 kg/ha a.S.
- 30 (aktive Substanz).

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen 35 gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der 40 oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

		78			
	Lateinischer Name	Deutscher Name	Englischer Name		
	Abutilon theophrasti	Chinesischer Hanf	velvet leaf		
5	Chenopodium album	Weißer Gänsefuß	lambsquarters		
	Galium aparine	Klettenlabkraut	catchweed bedstraw		
	Ipomoea spp.	Prunkwindearten	morningglory		
10	Setaria faberi	Borstenhirse	giant foxtail		
	Setaria viridis	Grüne Borstenhirse	green foxtail		
	Solanum nigrum	Schwarzer Nacht- schatten	black nightshade		

Bei Aufwandmengen von 0.25 bzw. 0.125 kg/ha a.S. zeigten die Verbindungen 2.2, 2.4 und 2.16 im Nachauflauf eine sehr gute Wirkung gegen Schadpflanzen wie Borstenhirse, grüne Borstenhirse und schwarzen Nachtschatten. Weiterhin bekämpfen die Verbindungen 2.2 und 2.4 chinesischen Hanf und Prunkwinden sehr gut. Verbindung 2.16 zeigt zudem hervorragende Wirkung gegenüber den Unkräutern weißer Gänsefuß und Klettenlabkraut.

Cyclohexenonchinolinoyl-Derivate

Zusammenfassung

5

Cyclohexenonchinolinoyl-Derivate der Formel I

10

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{R}^2

15

in der die Variablen folgende Bedeutungen haben:

 R^1

Wasserstoff, Nitro, Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxyiminomethyl, Alkoxy, Halogenalkoxy, Alkylthio, C_1 - C_6 -Halogenalkylthio, Alkylsulfinyl, Halogenalkylsulfinyl, Alkylsulfonyl, Halogenalkylsulfonyl, ggf. sub. Aminosulfonyl, ggf. sub. Sulfonylamino, ggf. sub. Phenoxy, ggf. sub. Heterocyclyloxy, ggf. sub. Phenyl-

20

thio oder ggf. sub. Heterocyclylthio;

25

Wasserstoff, Alkyl, Halogenalkyl oder Halogen; R^2 , R^3

R4

substituiertes (3-0xo-1-cyclohexen-2-yl)-carbonyl oder substituiertes (1,3-dioxo-2-cyclohexyl)-methyliden;

30

sowie deren landwirtschaftlich brauchbaren Salze;

Verfahren zur Herstellung der Cyclohexenonchinolinoyl-Derivate; Mittel, welche diese enthalten, sowie die Verwendung dieser Deri-35 vate oder diese enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.

THIS PAGE BLANK (USPTO)