CLAIMS

;

What is claimed is:

1. A method of forming a semiconductor device, the method comprising the steps of:

forming a dielectric layer over a substrate; forming a mask layer over the dielectric layer;

patterning the mask layer to form a mask including a mask line and space pattern, the mask line and space pattern including at least one mask space; and

forming a conductive layer in the at least one mask space, the conductive layer including a width dimension about equal to the width dimension of the least one mask space.

- The method according to claim 1, further comprising the steps of:
 removing the mask to expose sidewalls of the conductive layer,
 wherein the sidewalls include relatively smooth surfaces.
- 3. The method according to claim 1, wherein the mask layer comprises at least one of photoresist; silicon oxide (Si_xO_y), silicon-dioxide (SiO₂), aluminum oxide (Al₂O₃), hafnium oxide (HfO), zirconium oxide (ZrO), titanium oxide (TiO), yttrium oxide (YO), lanthanum oxide (La₂O₃), cerium oxide (CeO₂), bismuth silicon oxide (Bi₄Si₂O₁₂), tantalum oxide (Ta₂O₅), tungsten oxide (WO₃), LaAlO₃, BST (Ba_{1-x}Sr_xTiO₃), PbTiO₃, BaTiO₃, SiTiO₃, PbZrO₃, PST (PbSc_xTa_{1-x}O₃), PZN (PbZn_xNb_{1-x}O₃), PZT (PbZr_xTi_{1-x}O₃), PMN (PbMg_xNb_{1-x}O₃), binary and tertiary metal oxides, other metal oxides; silicon nitride (Si_xN_y), silicon oxynitride (SiO_xN_y), other nitrides; zirconium silicate, hafnium silicate, other silicates; ferro electric material; the aforementioned materials implanted with any element; the aforementioned materials in layered or graded composition combinations; the aforementioned materials in porous, amorphous, single crystal, polycrystalline, or nanocrystalline form; and mixtures thereof.

- 4. The method according to claim 1, further comprising the step of: forming and patterning an anti-reflective coating (ARC) over the mask layer.
- 5. The method according to claim 4, wherein the mask comprises the patterned ARC and the patterned mask layer.
- 6. The method according to claim 1, wherein the dielectric layer comprises a gate dielectric layer.
- 7. A method according to claim 6, wherein the semiconductor device comprises;

a gate stack formed on the substrate including an active layer interposed between a source and a drain, the gate stack including:

the gate dielectric layer disposed over the substrate; and the conductive layer disposed over the gate dielectric layer.

- 8. A method according to claim 7, wherein the gate dielectric layer includes a gate dielectric material including a permittivity greater than a permittivity of silicondioxide (SiO₂).
- 10. The method according to claim 9, wherein the germanium (Ge) comprises crystalline germanium.

- 11. The method according to claim 10, wherein the dielectric layer comprises a charge-trapping dielectric layer.
- 12. The method according to claim 11, wherein the charge-trapping dielectric layer includes:

a tunneling layer; a charge-trapping layer; and an insulating layer;

wherein the tunneling layer is disposed over the substrate, the charge-trapping layer is disposed over the tunneling layer and the insulating layer is disposed over the charge-trapping layer.

- 13. The method according to claim 1, wherein the dielectric layer comprises at least one of silicon oxide (Si_xO_y), silicon-dioxide (SiO₂), aluminum oxide (Al₂O₃), hafnium oxide (HfO), zirconium oxide (ZrO), titanium oxide (TiO), yttrium oxide (YO), lanthanum oxide (La₂O₃), cerium oxide (CeO₂), bismuth silicon oxide (Bi₄Si₂O₁₂), tantalum oxide (Ta₂O₅), tungsten oxide (WO₃), LaAlO₃, BST (Ba_{1-x}Sr_xTiO₃), PbTiO₃, BaTiO₃, SiTiO₃, PbZrO₃, PST (PbSc_xTa_{1-x}O₃), PZN (PbZn_xNb_{1-x}O₃), PZT (PbZr_xTi_{1-x}O₃), PMN (PbMg_xNb_{1-x}O₃), binary and tertiary metal oxides, other metal oxides; silicon nitride (Si_xN_y), silicon oxynitride (SiO_xN_y), other nitrides; zirconium silicate, hafnium silicate, other silicates; ferro electric material; the aforementioned materials implanted with any element; the aforementioned materials in layered or graded composition combinations; the aforementioned materials in porous, amorphous, single crystal, polycrystalline, or nanocrystalline form; and mixtures thereof.
- 14. The method according to claim 1, wherein the mask defines a pitch of the mask line and space pattern.
- 15. The method according to claim 2, wherein the step of forming the conductive layer comprises the steps of:

forming a conformal layer of a conductive material over the mask and exposed surface of the dielectric layer; and

anisotropically etching to remove a portion of the conductive material from horizontal surfaces of the mask.

16. A method of forming a semiconductor device, the method comprising the steps of:

forming a mask over a substrate to include a line and space pattern, the line and space pattern having at least one space including a width dimension; and

forming a conductive layer in the at least one space of the mask, the conductive layer includes a width dimension about equal to the width dimension of the at least one space of the mask.

- 17. A semiconductor device, comprising:
 - a substrate;
 - a dielectric layer disposed over the substrate; and
 - a conductive layer disposed over the dielectric layer,
 - wherein the conductive layer comprises a line and space pattern and wherein sidewalls of the conductive layer include relatively smooth surfaces.