Implémenter un modèle de scoring

Entreprise Prêt à Dépenser

Open Classrooms parcours Data Science - projet 7

Camille Besançon

PROBLÉMATIQUE

- Entreprise "Prêt à dépenser": Propose des crédits à la consommation pour des personnes ayant peu ou pas d'historique de prêt.
- Objectif : Mettre en place un modèle de scoring évaluant la probabilité de défaut de paiement pour aider à la décision
- Plusieurs contraintes :
 - Besoin de transparence des clients sur les conditions d'octroi de prêts.
 - Conseillers et clients ne sont pas spécialisés en data science / ML
 - O Besoin d'un modèle performant dont les résultats sont présentés clairement

En plus de l'entrainement d'un modèle adapté, mise en place de dashboards interactifs détaillant les résultats.

OBJECTIF ET APPROCHE

Objectif: Préparer un modèle qui évaluera la capacité du client à rembourser son crédit et présenter ces résultats sous une forme claire et pédagogique

- Partie 1 : Construire un modèle de scoring qui évaluera la capacité d'un client à rembourser ou non son crédit
 - Pas d'historique de prêt : Données externes
 - Suivi des performances du modèle dans le temps
- Partie 2 : Construire un dashboard interactif destinés aux chargés de relation client
 - Interprêtation des prédictions du modèle
 - Améliorer la connaissance des clients

STRUCTURE DES DONNÉES

Plusieurs fichiers réunissants les informations sur le prêt / crédit demandé, les paiement précédents et les dossiers déposés précédemment (si applicable), informations sur le client lui-même, ...

Application_train / application_test : Fichiers principals sur lesquels les autres données sont agrégées

Cible: Variable TARGET

STRUCTURE DES DONNÉES: CIBLE

- Clients classés en deux catégories :
 - 0 : 282 686 individus Clients ayant remboursé leur crédit
 - 1 : 24 825 individus Clients n'ayant pas remboursé leur crédit

Les classes sont déséquilibrées : 8% VS 92%

Risque de Surapprentissage du modèle :

Modèle calibré uniquement sur les caractéristiques de la classe majoritaire 0 (bon clients) et n'aura pas vraiment "appris" des caractéristiques des mauvais clients

SÉLECTION DES FEATURES IMPORTANTES

- Étape réalisée sur l'ensemble des données
- Mesure des corrrélations :
 - Objectif : Sélectionner des variables indépendantes entre elles pour ne pas surestimer l'importance d'une variable
 - Sélectionner des variables qui sont indépendantes de la variable cible (catégorie du client)
- Le jeu de données initial comporte beaucoup de variables corrélées

Modélisation

SÉLECTION DES FEATURES IMPORTANTES

Risque de surestimer l'importance de ces variables

Variables fortement corrélées

1 (Correlation)

0 (pas de correlation)

-1 (Correlation)

SÉLECTION DES FEATURES IMPORTANTES

- Étape réalisée sur l'ensemble des données
- Mesure des corrrélations :
 - Objectif : Sélectionner des variables indépendantes entre elles pour ne pas surestimer l'importance d'une variable
 - Sélectionner des variables qui sont indépendantes de la variable cible (catégorie du client)
- Le jeu de données initial comporte beaucoup de variables corrélées
 - Risque de surestimer l'importance de ces variables dans le modèle
 - On supprime donc une partie de ces variables
- Types de données mixtes : Variables continues et catégorielles
 - Encodage des variables catégorielles

Catégorie	Rouge	Bleu	Vert
[Rouge]	1	0	0
[Bleu]	0	1	0
[Rouge, Vert]	1	0	1

ÉQUILIBRAGE DES DONNÉES

- Jeu de données déséquilibré : Méthode SMOTE-NC
 - Création de nouveaux individus à partir des caractéristiques des individus réels
 - Attention : Créer trop d'individus = Majorité de données artificielles !
- Classe minoritaire : De 24 825 à 28 268 individus.
 - Calcul de 3 443 nouveaux individus (~ 14% de la classe minoritaire, 10% de la classe majoritaire)
- Suppression aléatoire des individus excédentaires dans la classe majoritaire
 - Ajouter des individus dans la classe minoritaire = limiter la suppression d'individus de la classe majoritaire et de conserver un maximum de données
- Données finales : 56 536 individus

SÉLECTION DES FEATURES

- Entrainement d'un premier modèle utilisant toutes les variables
 - Identification des variables les plus pertinentes
 - Sélection des 10 premières variables ayant la plus forte contribution au modèle
- A partir de ces variables :
 - Entraînement de différents types de modèles et optimisation des hyper-paramètres
 - "Seulement" une dizaine de variables = gain de temps, moins d'informations à collecter

ENTRAÎNEMENT DE MODÈLES

Méthode :

- Entraînement de 6 modèles sur les mêmes données
- Evaluation des performances : Temps d'entraînement, AUC ou RMSE, Score métier

AUC:

Evalue la capacité du modèle à distinguer les classes à prédire.

0,5 = Classification aléatoire. 1 = Classement "parfait"

RMSE:

Basé sur la moyenne des écarts entre les valeurs prédites par le modèle et les valeurs réelles. Plus le RMSE est faible plus les prédictions sont proches des valeurs réelles.

- Modèles testés :
 - Deux modèles de régression (prédiction sous forme de variable continue)
 - Quatre modèles de classification (Prédiction sous forme de variable catégorielle)
- Score métier : Evaluer la capacité du modèle à éviter les faux négatifs
 - Clients jugés "bons" qui sont en fait de mauvais clients : Risque de perte de capital

Score métier = (10 x FN + FP) / total de clients

FN = Faux négatifs. FP = Faux positifs (bons clients refusés, perte d'opportunités / de clients pour l'entreprise)
On juge les FN plus grave car ils entrainent une perte sèche de capital

Plus ce score est bas, plus le modèle est efficace

ENTRAÎNEMENT DE MODÈLES

- Entraînement des modèles :
 - Basé sur les 10 variables sélectionnées.
 - On veut éviter le sur-aprentissage ("overfitting")
 - On veut optimiser les paramètres pour avoir le meilleur résultat possible
- Méthode basée la technique du "k-fold" et une grille de paramètres
 - o maximisation de l'utilisation des données (utilisation en validation et en test)
 - Réduction de la variabilité et des risques d'overfitting

ENTRAÎNEMENT DE MODÈLES

- Modèles testés :
 - Deux modèles de régression (prédiction sous forme de variable continue)
 - Quatre modèles de classification (Prédiction sous forme de variable catégorielle)
- Tracking des performances avec MLFlow

	Duration	Source	Models	AUC	best_cv_score	rmse	score metier
Régression - Régression linéaire	4.6s	ipykern	sk-learn-R/8, 2 more	(2)	-3.526	0.625	3.573
negression - ErastisMet	7.3s	ipykern	sk-learn-R/8, 2 more	(2)	-4.725	0.693	4.751
Classification 2 Forest	7.9min	🔲 ipykern	sk-learn-C/8, 2 more	0.728	-1.561	(14)	1.575
Classification - Régression logistique	12.0s	ipykern	sk-learn-C/14, 2 more	0.686	-1.731	(190)	1.738
Classification - K-Neighbors	3.1min	ipykern	% sk-learn-C/8, 2 more	0.699	-1.665	(10)	1.658
Classification - SGD	13.3s	ipykern	S sk-learn-C/12, 2 more	0.67	-1.713	120	2.238

SUIVI DU MODÈLE

- Risque de dégradation des performances du modèle : Data drift
 - O Phénomène où les données réelles des clients s'éloignent des données d'entraînement
 - Le modèle devient moins performant (basé sur des données obsolètes)
 - o Exemple: En cas de crise financière, l'importance des revenus des clients changera
- Données "application_test.csv"
 - O Données plus récentes et sans "TARGET" (variable cible) pas utilisées pour l'entraînement
 - Utilisées pour l'analyse de data drift
- Librairie Evidently :
 - Librairie / plateforme d'outils pour l'évaluation et le suivi de modèles
 - Création d'un dashboard d'analyse de data drifting...

Data drifting

SUIVI DU MODÈLE

 Data drifting détecté sur 60% des variables (6/10)

Il faudra prévoir d'actualiser / réentraîner régulièrement le modèle avec des données plus récentes.

Mise en place d'un système d'alerte basée sur l'analyse du data drift

Column	Туре	Reference Distribution	Current Distribution	Data Drift
DAYS_LAST_PHONE_CHANGE	num			Detected
EXT_SOURCE_2	num			Detected
EXT_SOURCE_3	num			Detected
AMT_INCOME_TOTAL	num			Detected
DAYS_ID_PUBLISH	num			Detected
AMT_REQ_CREDIT_BUREAU_YEAR	num			Detected
REGION_POPULATION_RELATIVE	num		aller	Not Detected
DAYS_REGISTRATION	num			Not Detected
CODE_GENDER	num			Not Detected
HOUR_APPR_PROCESS_START	num			Not Detected

MISE EN PRODUCTION

- Dépôt sur GitHub des scripts et du modèle
 - Plateforme d'hébergement basée sur Git, un logiciel de gestion de version gratuit
 - Centralisation du projet : Facilité de collaboration, suivi des versions et partage des fichiers
- Clonage du répertoire sur une instance EC2 d'Amazon Web Services (AWS)
 - Elastic Compute Cloud Service de location de serveurs pour déploiement d'applications
 - Permet d'accéder au code et de mettre à jour facilement le code ou le modèle

MISE EN PRODUCTION

- Script de déploiement et tests unitaires
 - Script de déploiement : Importe les packages nécessaires à l'exécution des scripts à partir d'un fichier spécifiant les packages et leur version
 - Lancement des scripts de l'API et du dashboard
 - Exécute ensuite des tests unitaires pour vérifier le fonctionnement correct de l'API
- Tests unitaires :
 - Pratique de développement pour tester individuellement le fonctionnement des éléments d'un logiciel (ici, une application)
 - Tests réalisés : API joignable, validité des résultats pour des données normales en entrée, ...
 - Si les données entrées sont invalides (réponse manquante), vérification que l'API renvoie une erreur
- Mise à disposition via un dashboard interactif...

DASHBOARD INTERACTIF

- Accessible depuis n'importe quel navigateur
 - Ouverture des requêtes html de l'instance EC2
 - Facilité d'utilisation car pas de connexion directe à l'instance

Démo...

- Caractéristiques du dashboard interactif :
 - Permet d'entrer les informations du client et de visualiser où il se situe pour chaque variable par rapport aux deux populations du jeu d'entraînement (bon client / mauvaise client)
 - Permet de lancer la prédiction (requête à l'API) et affiche les résultats sous forme d'un "compteur" affichant la probabilité <u>estimée</u> que le client rembourse l'emprunt
 - Accessibilité : Informations visuelles dédoublées avec du texte et/ou graphiques en couleurs adaptées aux personnes daltoniennes, motifs des lignes différents

Implémenter un modèle de scoring

Entreprise Prêt à Dépenser

Merci pour votre attention

Open Classrooms parcours Data Science - projet 6
Camille Besançon