Álgebra lineal – Semana 6 Bases ortonormales y proyecciones en \mathbb{R}^n

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Longitud de un vector en \mathbb{R}^n

Definición 1

La *longitud* o *magnitud* de un vector $\mathbf{v} = (v_1, \dots, v_n)$ en \mathbb{R}^n se define como

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

La longitud o magnitud de un vector $\mathbf{v} = (v_1, \dots, v_n)$ en \mathbb{R}^n se define como

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Ejemplo 1

• Halle la longitud del vector $\mathbf{v} = (0, -2, 1, 4, -2)$ de \mathbb{R}^5 .

La *longitud* o *magnitud* de un vector $\mathbf{v} = (v_1, \dots, v_n)$ en \mathbb{R}^n se define como

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Ejemplo 1

 \bullet En \mathbb{R}^3 , halle la longitud del vector

$$\mathbf{v} = \left(\frac{2}{\sqrt{17}}, -\frac{2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right).$$

La longitud o magnitud de un vector $\mathbf{v} = (v_1, \dots, v_n)$ en \mathbb{R}^n se define como

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Ejemplo 1

 \bullet En \mathbb{R}^3 , halle la longitud de cada uno de los vectores de la base canónica (estándar)

$$\{(1,0,0),(0,1,0),(0,0,1)\}.$$

Vectores unitarios

Propiedad 1

Si \mathbf{v} es un vector en \mathbb{R}^n y c es un escalar, entonces

$$||c\mathbf{v}|| = |c|||\mathbf{v}||$$

Propiedad 2

Si ${\bf v}$ es un vector en \mathbb{R}^n diferente del vector cero, entonces

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

es un vector de longitud 1 (vector unitario) en la dirección de v.

Vectores unitarios

Propiedad 2

Si ${\bf v}$ es un vector en \mathbb{R}^n diferente del vector cero, entonces

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

es un vector de longitud 1 (vector unitario) en la dirección de v.

Ejemplo 2

Encuentre el vector unitario en la dirección del vector $\mathbf{v} = (3, -1, 2)$.

La distancia entre dos vectores \mathbf{u} y \mathbf{v} de \mathbb{R}^n se define como

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{v} - \mathbf{u}\| = \sqrt{(v_1 - u_1)^2 + \dots + (v_n - u_n)^2}.$$

La distancia entre dos vectores \mathbf{u} y \mathbf{v} de \mathbb{R}^n se define como

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{v} - \mathbf{u}\| = \sqrt{(v_1 - u_1)^2 + \dots + (v_n - u_n)^2}.$$

Ejemplo 3

Encuentre la distancia entre los vectores de \mathbb{R}^3

$$\mathbf{u} = (0, 0, 2)$$
 $\mathbf{v} = (2, 0, 1).$

Distancia entre dos vectores de \mathbb{R}^n

Propiedad 3

La distancia entre vectores de \mathbb{R}^n ,

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{v} - \mathbf{u}\|$$

satisface las siguientes propiedades:

$$d(\mathbf{u}, \mathbf{v}) \ge 0.$$

Angulo entre dos vectores de \mathbb{R}^2

Propiedad 4

El ángulo θ ($0 \le \theta \le \pi$) entre dos vectores no nulos $\mathbf{u} = (u_1, u_2)$ y $\mathbf{v} = (v_1, v_2)$ del plano, está dado por

$$\cos \theta = \frac{u_1 v_1 + u_2 v_2}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Producto escalar (o punto) en \mathbb{R}^n

Definición 3

Recordemos que el producto punto o producto escalar de dos vectores

$$\mathbf{u} = (u_1, \dots, u_n) \qquad \mathbf{v} = (v_1, \dots, v_n)$$

de \mathbb{R}^n se define como

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Observación 1

El producto punto $\mathbf{u} \cdot \mathbf{v}$ de dos vectores es un escalar y no un vector.

Producto escalar (o punto) en \mathbb{R}^n

Definición 3

Recordemos que el producto punto o producto escalar de dos vectores

$$\mathbf{u} = (u_1, \dots, u_n) \qquad \mathbf{v} = (v_1, \dots, v_n)$$

de \mathbb{R}^n se define como

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Ejemplo 4

Encuentre el producto escalar de los vectores

$$\mathbf{u} = (1, 2, 0, -3)$$
 $\mathbf{v} = (3, -2, 4, 2).$

Propiedad 5

Si ${\bf u},{\bf v}$ y w
 son vectores en \mathbb{R}^n y ces un escalar, ent
onces se satisfacen las siguientes propiedades:

$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

$$\mathbf{0} \ \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$

$$\mathbf{o} \ \mathbf{v} \cdot \mathbf{v} \ge 0$$

$$\mathbf{0} \ \mathbf{v} \cdot \mathbf{v} = 0 \text{ si y sólo si } \mathbf{v} = \mathbf{0}$$

Propiedades del producto escalar

${\bf Ejemplo~5}$

Considere los vectores

$$\mathbf{u} = (2, -2), \quad \mathbf{v} = (5, 8), \quad \mathbf{y} \quad \mathbf{w} = (-4, 3).$$

Calcule

0 u · v

 $\mathbf{0} \mathbf{u} \cdot (2\mathbf{v})$

 $\mathbf{0} \mathbf{u} \cdot (\mathbf{v} - 2\mathbf{w})$

 $\mathbf{0} \ (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

 $||\mathbf{w}||^2$

Propiedad 6 (Desigualdad de Cauchy-Schwarz)

Si **u** y **v** son vectores de \mathbb{R}^n , entonces

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \ \|\mathbf{v}\|,$$

donde $|\mathbf{u}\cdot\mathbf{v}|$ denota el valor absoluto del producto escalar $\mathbf{u}\cdot\mathbf{v}$.

Definición 4

El ángulo θ entre dos vectores no nulos ${\bf u}$ y ${\bf v}$ de \mathbb{R}^n está dado por

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \qquad 0 \le \theta \le \pi.$$

Angulo entre vectores de \mathbb{R}^n

Definición 4

El ángulo θ entre dos vectores no nulos \mathbf{u} y \mathbf{v} de \mathbb{R}^n está dado por

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \qquad 0 \le \theta \le \pi.$$

Ejemplo 6

Calcule el ángulo entre los vectores

$$\mathbf{u} = (-4, 0, 2, -2)$$
 $\mathbf{v} = (2, 0, -1, 1).$

El ángulo θ entre dos vectores no nulos \mathbf{u} y \mathbf{v} de \mathbb{R}^n está dado por

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \qquad 0 \le \theta \le \pi.$$

Observación 2

En la definición 4, $\|\mathbf{u}\|$ y $\|\mathbf{v}\|$ siempre son positivos y por tanto

 $\mathbf{O} \cos \theta$ y $\mathbf{u} \cdot \mathbf{v}$ son positivos ó

 $\mathbf{0} \cos \theta \mathbf{y} \mathbf{u} \cdot \mathbf{v}$ son negativos.

(a) Direcciones iguales

 $\cos \theta > 0$

(b) $\mathbf{u} \cdot \mathbf{v} > 0$

El ángulo θ entre dos vectores no nulos \mathbf{u} y \mathbf{v} de \mathbb{R}^n está dado por

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \qquad 0 \le \theta \le \pi.$$

Observación 2

En la definición 4, $\|\mathbf{u}\|$ y $\|\mathbf{v}\|$ siempre son positivos y por tanto

 $\mathbf{O} \cos \theta \mathbf{v} \mathbf{u} \cdot \mathbf{v}$ son positivos ó

 $\mathbf{0} \cos \theta \mathbf{y} \mathbf{u} \cdot \mathbf{v}$ son negativos.

(a) $\mathbf{u} \cdot \mathbf{v} = 0$

(b)
$$\mathbf{u} \cdot \mathbf{v} < 0$$

Dos vectores ${\bf u}$ y ${\bf v}$ de \mathbb{R}^n se dice que son ortogonales (o perpendiculares) si

$$\mathbf{u} \cdot \mathbf{v} = 0.$$

Ejemplo 7

Determine si los siguientes vectores de \mathbb{R}^3 son ortogonales.

$$\mathbf{u} = (1,0,0) \text{ y } \mathbf{v} = (0,0,1).$$

Dos vectores ${\bf u}$ y ${\bf v}$ de \mathbb{R}^n se dice que son ortogonales (o perpendiculares) si

$$\mathbf{u} \cdot \mathbf{v} = 0.$$

Ejemplo 8

Determine todos los vectores de \mathbb{R}^2 que son ortogonales a $\mathbf{u} = (4, 2)$.

Desigualdad triangular

Propiedad 7 (Desigualdad triangular)

Si \mathbf{u} y \mathbf{v} son vectores de \mathbb{R}^n , entonces

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$$

Propiedad 8 (Teorema de Pitágoras)

Si \mathbf{u} y \mathbf{v} son vectores de \mathbb{R}^n , entonces \mathbf{u} y \mathbf{v} son ortogonales si y sólo si

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

Observación 3

Si los vectores $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ de \mathbb{R}^n los representamos como vectores columna

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix},$$

entonces el $producto\ punto$ o
 $producto\ escalar$ de ellos se puede expresar como el producto de matrices

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + \cdots + u_n v_n.$$

Si los vectores $\mathbf{u} = (u_1, \dots, u_n)$ y $\mathbf{v} = (v_1, \dots, v_n)$ de \mathbb{R}^n los representamos como vectores columna, entonces el producto punto o producto escalar de ellos se puede expresar como el producto de matrices

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = u_1 v_1 + \cdots + u_n v_n.$$

Ejemplo 9

Calcule el producto punto de los vectores

$$\mathbf{u} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v} = \begin{pmatrix} 3\\-2\\4 \end{pmatrix}.$$

(a) c > 0

(b) c < 0

Definición 6

Sean \mathbf{u} y \mathbf{v} vectores no nulos de \mathbb{R}^n . La proyección ortogonal de \mathbf{u} sobre \mathbf{v} es el vector definido por

$$\mathrm{proy}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \ \mathbf{v}$$

Sean ${\bf u}$ y ${\bf v}$ vectores no nulos de $\mathbb{R}^n.$ La proyección~ortogonal de ${\bf u}$ sobre ${\bf v}$ es el vector definido por

$$\mathrm{proy}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \ \mathbf{v}$$

Ejemplo 10

Encuentre la proyección ortogonal de $\mathbf{u} = (6, 2, 4)$ sobre $\mathbf{v} = (1, 2, 0)$.

Observación 1

En \mathbb{R}^3 el conjunto de vectores de

$$B = \left\{ \underbrace{(1,0,0)}_{\mathbf{e}_1}, \underbrace{(0,1,0)}_{\mathbf{e}_2}, \underbrace{(0,0,1)}_{\mathbf{e}_3} \right\},\,$$

satisface las siguientes propiedades:

- $\mathbf{e}_1 \cdot \mathbf{e}_2 = 0, \ \mathbf{e}_1 \cdot \mathbf{e}_3 = 0 \ \text{y} \ \mathbf{e}_2 \cdot \mathbf{e}_3 = 0.$

Definición 1

Considere en \mathbb{R}^n un conjunto de vectores

$$S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}.$$

Se dice que:

- ullet S es **ortogonal** si cada par de vectores en S distintos es ortogonal.
- \bullet S es ortonormal si S es ortogonal y cada vector en S es unitario.

Ejemplo 1

Muestre que el siguiente conjunto de vectores de \mathbb{R}^3 es ortonormal.

$$S = \left\{ \underbrace{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)}_{\mathbf{v}_1}, \underbrace{\left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}\right)}_{\mathbf{v}_2}, \underbrace{\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)}_{\mathbf{v}_3} \right\}.$$

Relación entre conjuntos ortogonales y LI

Definición 1

Considere en \mathbb{R}^n un conjunto de vectores

$$S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}.$$

Se dice que:

- $oldsymbol{\circ}$ S es ortogonal si cada par de vectores en S distintos es ortogonal.
- lacktriangleq S es ortogonal y cada vector en S es unitario.

Propiedad 1

Si $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ es un *conjunto ortogonal* de vectores no nulos en \mathbb{R}^n , entonces S es linealmente independiente.

Relación entre conjuntos ortogonales y LI

Definición 1

Considere en \mathbb{R}^n un conjunto de vectores

$$S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}.$$

Se dice que:

- $oldsymbol{\circ}$ S es ortogonal si cada par de vectores en S distintos es ortogonal.
- lacksquare S es ortogonal y cada vector en S es unitario.

Propiedad 2

En \mathbb{R}^n todo conjunto ortogonal de n vectores es base.

Relación entre conjuntos ortogonales y LI

Propiedad 2

En \mathbb{R}^n todo conjunto ortogonal de n vectores es base.

Ejemplo 2

Muestre que el siguiente conjunto de vectores es base para \mathbb{R}^4 .

$$S = \left\{ \underbrace{(2,3,2,-2)}_{\mathbf{v}_1}, \underbrace{(1,0,0,1)}_{\mathbf{v}_2}, \underbrace{(-1,0,2,1)}_{\mathbf{v}_3}, \underbrace{(-1,2,-1,1)}_{\mathbf{v}_4} \right\},$$

Propiedad <u>3</u>

Si $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es un base ortogonal para \mathbb{R}^n , entonces cada vector \mathbf{w} en \mathbb{R}^n se pude representar como

$$\mathbf{w} = \left(\frac{\mathbf{w} \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2}\right) \, \mathbf{v}_1 + \left(\frac{\mathbf{w} \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2}\right) \, \mathbf{v}_2 + \dots + \left(\frac{\mathbf{w} \cdot \mathbf{v}_n}{\|\mathbf{v}_n\|^2}\right) \, \mathbf{v}_n.$$

Observación 2

$$\mathbf{w} = \operatorname{proy}_{\mathbf{v_1}} \mathbf{w} + \operatorname{proy}_{\mathbf{v_2}} \mathbf{w} + \dots + \operatorname{proy}_{\mathbf{v_n}} \mathbf{w}.$$

Propiedad 4

Si $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ es un base ortonormal para \mathbb{R}^n , entonces cada vector \mathbf{w} en \mathbb{R}^n se pude representar como

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{w} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{w} \cdot \mathbf{u}_n) \, \mathbf{u}_n.$$

deficientes de l'ourier

Propiedad 4

Si $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ es un base ortonormal para \mathbb{R}^n , entonces cada vector \mathbf{w} en \mathbb{R}^n se pude representar como

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{w} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{w} \cdot \mathbf{u}_n) \, \mathbf{u}_n.$$

Observación 3

- \odot En la propiedad 3, a las coordenadas de \mathbf{w} respecto a la base B se les llama coeficientes de Fourier de \mathbf{w} respecto a B.
- $oldsymbol{0}$ El vector de coordenadas de $oldsymbol{w}$ respecto a al base B es

$$\left[\mathbf{w}
ight]_{\mathcal{B}} = \left[egin{array}{c} \mathbf{w} \cdot \mathbf{v}_1 \ \mathbf{w} \cdot \mathbf{v}_2 \ dots \ \mathbf{w} \cdot \mathbf{v}_n \end{array}
ight]$$

Propiedad 4

Si $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ es un base ortonormal para \mathbb{R}^n , entonces cada vector \mathbf{w} en \mathbb{R}^n se pude representar como

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{w} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{w} \cdot \mathbf{u}_n) \, \mathbf{u}_n.$$

Ejemplo 3

Encuentre el vector de coordenadas de $\mathbf{w}=(5,-5,2)$ respecto a la base ortonormal

$$B = \left\{ \underbrace{\left(\frac{3}{5}, \frac{4}{5}, 0\right)}_{\mathbf{v}_1}, \underbrace{\left(-\frac{4}{5}, \frac{3}{5}, 0\right)}_{\mathbf{v}_2}, \underbrace{\left(0, 0, 1\right)}_{\mathbf{v}_3} \right\}.$$

Proceso de ortonormalización de Gram-Schmidt en \mathbb{R}^2

Propiedad 4 (Gram-Schmidt)

Si $\{\mathbf{v}_1, \mathbf{v}_2\}$ es una base de \mathbb{R}^2 , entonces los vectores \mathbf{w}_1 y \mathbf{w}_2 dados por

$$\mathbf{w}_1 = \mathbf{v}_1$$

 $\mathbf{w}_2 = \mathbf{v}_2 - \operatorname{proy}_{\mathbf{w}_1} \mathbf{v}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1$

forman una base ortogonal de \mathbb{R}^2 .

Propiedad 4 (Gram-Schmidt)

Si $\{\mathbf{v}_1, \mathbf{v}_2\}$ es una base de \mathbb{R}^2 , entonces los vectores \mathbf{w}_1 y \mathbf{w}_2 dados por

$$\mathbf{w}_1 = \mathbf{v}_1$$

 $\mathbf{w}_2 = \mathbf{v}_2 - \operatorname{proy}_{\mathbf{w}_1} \mathbf{v}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} \mathbf{w}_1$

forman una base ortogonal de \mathbb{R}^2 .

Ejemplo 4

Aplique el proceso de ortonormalización de Gram-Schmidt a la siguiente base de \mathbb{R}^2 :

$$B = \left\{ \underbrace{(1,1)}_{\mathbf{v_1}}, \underbrace{(0,1)}_{\mathbf{v_2}} \right\},\,$$

Propiedad 5 (Gram-Schmidt en \mathbb{R}^n)

- \bullet Sea $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ es una base de \mathbb{R}^n .
- \bigcirc Definimos $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ como

$$\mathbf{w}_{1} = \mathbf{v}_{1}$$

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \operatorname{proy}_{\mathbf{w}_{1}} \mathbf{v}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1}$$

$$\mathbf{w}_{3} = \mathbf{v}_{3} - \operatorname{proy}_{\mathbf{w}_{1}} \mathbf{v}_{3} - \operatorname{proy}_{\mathbf{w}_{2}} \mathbf{v}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2}$$

$$\vdots$$

$$\mathbf{w}_{n} = \mathbf{v}_{n} - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} - \dots - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{n-1}}{\|\mathbf{w}_{n-1}\|^{2}} \mathbf{w}_{n-1}$$

Entonces el conjunto $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ es una base *ortogonal* para \mathbb{R}^n .

3 Definimos $\mathbf{u}_i = \frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}$ y entonces el conjunto

$$\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n\}$$

es una base ortonormal de \mathbb{R}^n .

Proceso de ortonormalización de Gram-Schmidt en \mathbb{R}^n

$$\mathbf{w}_{1} = \mathbf{v}_{1}$$

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \operatorname{proy}_{\mathbf{w}_{1}} \mathbf{v}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1}$$

$$\mathbf{w}_{3} = \mathbf{v}_{3} - \operatorname{proy}_{\mathbf{w}_{1}} \mathbf{v}_{3} - \operatorname{proy}_{\mathbf{w}_{2}} \mathbf{v}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2}$$

$$\vdots$$

$$\mathbf{w}_{n} = \mathbf{v}_{n} - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} - \dots - \frac{\mathbf{v}_{n} \cdot \mathbf{w}_{n-1}}{\|\mathbf{w}_{n-1}\|^{2}} \mathbf{w}_{n-1}$$

Ejemplo 5

Aplique el proceso de ortonormalización de Gram-Schmidt a la siguiente base de \mathbb{R}^3 :

$$B = \left\{ \underbrace{(1,1,0)}_{\mathbf{Y}_1}, \underbrace{(1,2,0)}_{\mathbf{Y}_2}, \underbrace{(0,1,2)}_{\mathbf{Y}_2} \right\}.$$

Suponga que H es un subespacio de \mathbb{R}^n con base ortogonal

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$$

Si \mathbf{v} es un vector en \mathbb{R}^n , entonces la **proyección ortogonal** de \mathbf{v} sobre H es el vector definido por

$$\operatorname{proy}_{H} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}}\right) \mathbf{v}_{1} + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}}\right) \mathbf{v}_{2} + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}}\right) \mathbf{v}_{k}.$$

Observación 4

$$\operatorname{proy}_H \mathbf{v} = \operatorname{proy}_{\mathbf{v_1}} \mathbf{v} + \operatorname{proy}_{\mathbf{v_2}} \mathbf{v} + \dots + \operatorname{proy}_{\mathbf{v_k}} \mathbf{v}.$$

Suponga que H es un subespacio de \mathbb{R}^n con base ortogonal

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$$

Si ${\bf v}$ es un vector en $\mathbb{R}^n,$ entonces la $proyecci\'on\ ortogonal\ {\rm de}\ {\bf v}$ sobre H es el vector definido por

$$\operatorname{proy}_{H} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}}\right) \mathbf{v}_{1} + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}}\right) \mathbf{v}_{2} + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}}\right) \mathbf{v}_{k}.$$

Ejemplo 6

Encuentre la proyección ortogonal del vector $\mathbf{v}=(1,1,3)$ de \mathbb{R}^3 sobre el subespacio generado por los vectores

$$\mathbf{w}_1 = (0, 3, 1)$$
 y $\mathbf{w}_2 = (2, 0, 0)$.

Proyección ortogonal

Definición 2

Suponga que H es un subespacio de \mathbb{R}^n con base ortogonal

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$$

Si ${\bf v}$ es un vector en \mathbb{R}^n , entonces la *proyección ortogonal* de ${\bf v}$ sobre H es el vector definido por

$$\operatorname{proy}_{H} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}}\right) \mathbf{v}_{1} + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}}\right) \mathbf{v}_{2} + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}}\right) \mathbf{v}_{k}.$$

Propiedad 6

Suponga que S es un subespacio de \mathbb{R}^n y \mathbf{v} un vector en \mathbb{R}^n . Entonces

$$\|\mathbf{v} - \operatorname{proy}_S \mathbf{v}\| \le \|\mathbf{v} - \mathbf{u}\|$$

para todo vector \mathbf{u} en S.

Suponga que H es un subespacio de \mathbb{R}^n con base ortogonal

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$$

Si ${\bf v}$ es un vector en $\mathbb{R}^n,$ entonces la $proyecci\'on\ ortogonal\ {\rm de}\ {\bf v}$ sobre H es el vector definido por

$$\operatorname{proy}_{H} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}}\right) \mathbf{v}_{1} + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}}\right) \mathbf{v}_{2} + \dots + \left(\frac{\mathbf{v} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}}\right) \mathbf{v}_{k}.$$

Propiedad 7

Suponga que $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ es una base ortonormal para \mathbb{R}^n y que \mathbf{v} es un vector en \mathbb{R}^n . Entonces

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{u} \cdot \mathbf{u}_n) \, \mathbf{u}_n.$$

Es decir, $\operatorname{proy}_{\mathbb{R}^n} \mathbf{v} = \mathbf{v}$.

Proyección ortogonal

Ejemplo 7

Considere los siguientes subespacios de \mathbb{R}^3 :

$$H_1 = \text{gen}\{(-1,1,1)\}$$
 y $H_2 = \text{gen}\{(1,0,1),(1,1,0)\}.$

Demuestre que todos los vectores de H_1 son ortogonales a todos los vectores de H_2 . En tal caso se dice que los subespacios H_1 y H_2 son ortogonales.

Suponga que H es un subespacio de \mathbb{R}^n . El complemento ortogonal de H es el conjunto denotado por H^\perp y definido como

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{h} = 0 \text{ para todo } \mathbf{h} \in H \}$$

Ejemplo 8

Encuentre el complemento ortogonal del subespacio H de \mathbb{R}^4 generado por las columnas de la matriz

$$A = \left(\begin{array}{cc} 1 & 0 \\ 2 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right)$$

Complemento ortogonal

Definición 3

Suponga que H es un subespacio de \mathbb{R}^n . El complemento ortogonal de Hes el conjunto denotado por H^{\perp} y definido como

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{h} = 0 \text{ para todo } \mathbf{h} \in H \}$$

Propiedad 8

Suponga que H es un subespacio de \mathbb{R}^n . Entonces

- \bullet H^{\perp} es un subespacio de \mathbb{R}^n . \bullet dim $H + \dim H^{\perp} = n$.

 $H \cap H^{\perp} = \{0\}.$

Suponga que H es un subespacio de \mathbb{R}^n . El complemento ortogonal de H es el conjunto denotado por H^\perp y definido como

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{h} = 0 \text{ para todo } \mathbf{h} \in H \}$$

Propiedad 9

Suponga que A es una matriz $m \times n$. Entonces

- $C_A{}^\perp = N_{A^T}.$
- $N_A^{\perp} = R_A.$

Suponga que H es un subespacio de \mathbb{R}^n . El complemento ortogonal de H es el conjunto denotado por H^\perp y definido como

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{h} = 0 \text{ para todo } \mathbf{h} \in H \}$$

Propiedad 10 (Teorema de la proyección)

Suponga que H es un subespacio de \mathbb{R}^n . Entonces para cada vector \mathbf{v} en \mathbb{R}^n existen vectores únicos \mathbf{p} en H y \mathbf{q} en H^{\perp} tales que

$$\mathbf{v} = \mathbf{p} + \mathbf{q} = \operatorname{proy}_H \mathbf{v} + \operatorname{proy}_{H^{\perp}} \mathbf{v}$$

Sea H el subespacio de \mathbb{R}^4 que tiene como base a las columnas de

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

 \bigcirc Halle una base ortogonal para H.

Sea H el subespacio de \mathbb{R}^4 que tiene como base a las columnas de

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

 $\bullet \text{ Halle proy}_{H}\mathbf{v}, \text{ donde } \mathbf{v} = (-2, 0, 2, 2).$

Sea H el subespacio de \mathbb{R}^4 que tiene como base a las columnas de

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

 \bullet Halle H^{\perp} .

Bibliografía

Stanley Grossman
Álgebra lineal
McGraw-Hill Interamericana, Edición 8, 2019.

David Poole
Álgebra lineal: una introducción moderna
Cengage Learning Editores, 2011.

Bernard Kolman Álgebra lineal Pearson Educación, 2006.

Ron Larson
Fundamentos de Álgebra lineal
Cengage Learning Editores, 2010.

