相似的判定 202404

- 一、选择题: 本题共 14 小题, 每小题 3 分, 共 42 分。
- 1. 如图,已知∠1 = ∠2,那么添加一个条件后,仍不能判定 \triangle ABC与 \triangle ADE相似 D<

- 的是 ()A. ∠C = ∠AED
- B. $\angle B = \angle D$
- C. $\frac{AB}{AD} = \frac{BC}{DE}$ D. $\frac{AB}{AD} = \frac{AC}{AE}$

A.
$$\angle ADC = \angle ACB$$
 B. $\frac{AB}{BC} = \frac{AC}{CD}$ C. $\angle ACD = \angle B$ D. $AC^2 = AD \cdot AB$

3. 如图,小正方形的边长均为 1,则图中三角形(阴影部分)与 \triangle ABC相似的是()

4. 如图, 在直角梯形ABCD中, AD//BC, ∠ABC = 90°, AB = 7, AD = 3, BC = 4. 点P为AB边上一动点,若 Δ PAD与 Δ PBC是相似三角形,则满足条件的点P的个 数是()A.1 个 B.2 个 C.3 个 D.4 个

- 5. 如图,在正三角形ABC中,点D、E分别在AC、AB上,且 $\frac{AD}{AC} = \frac{1}{3}$,AE = BE,
- 那么有△AED∽()A. △BED B. △ABD C. △CBD D. △ABC

- A. \triangle APD \backsim \triangle PGD B. \triangle APG \backsim \triangle BFP C. \triangle PCF \backsim \triangle BCP D. \triangle CGE \backsim \triangle CBP
- 8. 如图,点E是 ABCD的边BC延长线上的一点,AE和CD交于点G,AC 是□ ABCD的对角线,则图中相似三角形共有()

C. 4 对 D.5 对

9. 已知 \triangle ABC和 \triangle DEA是两个全等的等腰直角三角形, $\triangle BAC = \triangle D = 90^{\circ}$,两条直角边AB,AD重合,把AD绕点A逆时针旋转 $\triangle \alpha (0^{\circ} < \alpha < 90^{\circ})$ 到如图所示的位置时,BC分别与AD,AE相交于点F,G,则图中共有_____对相似三角形(相似比不等于 1)()A. 1 B. 2 C. 3 D. 4

10. 如图, $Rt \triangle ABC$ 中, $\angle ACB = 90^\circ$, $\angle ABC = 60^\circ$,BC = 2cm,D为BC的中点,若动点E以 1cm/s的速度从A点出发,沿着 $A \rightarrow B$ 的方向运动,设E点的运动时间为t秒($0 \le t < 4$),连接DE,当以 $B \setminus D \setminus E$ 为顶点的三角形与 $\triangle ABC$ 相似时,t的值为()

A. 2 B. 2.5 或 3.5 C. 2 或 3.5 D. 2 或 2.5

11. 如图,在 $Rt \triangle ABC$ 中, $\triangle B = 90^\circ$,点P在边AC上,过P画直线截 $\triangle ABC$ 使截得的三角形与 $\triangle ABC$ 相似,这样的直线最多可画()A. 1 条 B. 2 条 C. 3 条 D. 4 条

12. 如图,在 5×6 的方格纸中,画有格点 Δ EFG,下列选项中的格点,与E,G两点构成的三角形中和 Δ EFG相似的是()A. 点A B. 点B C. 点C D. 点D

13. 如图,在 \triangle ABC中,点D、E分别在AB、AC边上,DE与BC不平行,那么下列条件中,不能判断 \triangle ADE \hookrightarrow \triangle ACB的是()

A. $\angle ADE = \angle C$ B. $\angle AED = \angle B$ C. $\frac{AD}{EC} = \frac{DE}{BD}$ D. $\frac{AD}{AC} = \frac{AE}{AB}$

14. 如图,点P是边长为 5 的正方形ABCD内一点,且PB=2, $PB \perp BF$,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与 Δ ABP相似,则BM等于()A. 2 或 $\frac{25}{2}$ B. 2 C. $\frac{25}{2}$ D. 2 或 $\frac{15}{2}$

二、填空题:

15. 两块完全相同的等腰直角三角板ABC和GAF按如图所示摆放,其中 $\angle BAC = \angle AGF = 90^{\circ}$.请写出图中所有与 $\triangle ABE$ 相似的三角形:_____.

16. 如图,等腰三角形ABC中,AB = AC = 5,该三角形的两条高BD与AE交于点F,连接CF,点P为射线AE上一个动点,连接BP,若AD = 3,当 Δ ABP与 Δ BFC相似时,AP的长为

17. 将三角形纸片ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF,已知AB = AC = 8, BC = 10,若以点B′、F、C为顶点的三角形与 Δ ABC相似,那么BF的长度是_____.

18. 如图,在等腰 \triangle ABC中,AB = AC = 10cm,BC = 16cm,点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为 1cm/s,连接DE,设运动时间为ts(0 < t < 10),当 \triangle BDE与 \triangle ABC相似时,t的值为____s.

19. 如图,正方形ABCD中,P为AD上一点, $BP \perp PE$ 交BC的延长线于点E,若AB = 6,AP = 4,则CE长为_____.
20. 如图, $Rt \triangle ABC$ 中, $\angle C = 90^\circ$,AC = 4,BC = 3,点 $P \setminus Q$ 分别为 $AB \setminus BC$ 上的动点,将 $\triangle PQB$ 沿PQ折叠,使点B们对应点D恰好落在边AC上,当 $\triangle APD$ 与 $\triangle ABC$ 相似时,AP长_____.

点坐标为____.

21. 如图,有一正方形ABCD,边长为 $6\sqrt{2}$,E是边CD上的中点,对角线BD上有一动点F,当 Δ ABF与 Δ DEF相似时,BF的值为_____.

22. 如图, $AB \perp BD$, $CD \perp BD$,AB = 6,CD = 16,BD = 20,动点 $P \lor B$ 向D 运动,当 ΔPAB 与 ΔPCD 相似时,BP 的长度为______.

23. 如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(-8,6),点P在矩形ABOC的内部,点E在BO边上,满足 Δ PBE \hookrightarrow Δ CBO,当 Δ APC 是等腰三角形时,P

24. 如图正方形ABCD的边长为 2,AE=EB,MN=1,线段MN的两个端点M,N分别 在BC,CD上滑动. 当CM=_____时, Δ AED与以M,N,C为顶点的三角形相似.

25. 如图,已知 \triangle ABC中,AB=8,BC=7,AC=6,E 是AB的中点,F 是AC 边上一个动点.将 \triangle AEF 沿EF 折叠,使点A 落在A \triangle 处,如果 \triangle AEF 与原 \triangle \triangle \triangle 似,则EF 的长为_____.

26. 如图,在矩形ABCD中,BC=4,AB=2,Rt \triangle BEF的项点E在边CD上,且 \triangle BEF=90°, $EF=\frac{1}{2}BE$, $DF=\frac{3}{4}\sqrt{5}$,则 $BE=\underline{\hspace{1cm}}$.

27. 如图,在平面直角坐标系xOy中. 边长为 3 的等边 $_{\Delta}$ OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE/ /AB,连接CD、CE,当点E坐标为______ 时, $_{\Delta}$ CDE与 $_{\Delta}$ ACE相似. 28. 如图,在Rt $_{\Delta}$ ABC中, $_{\Delta}$ CE = 90°,AB = 5,BC = 4,点E , F分别在边BC , AC 上,沿EF所在的直线折叠 $_{\Delta}$ CC ,使点C 的对应点D 恰好落在边AB 上,若 $_{\Delta}$ EFC 和 $_{\Delta}$ ABC 相似,则BD 的长为______ . 29. 如图,在正方形ABCD中, $_{\Delta}$ BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连BD 、DP ,BD 与CF 相交于点H ,给出下列结论: CDE = CDE ② CDE CDE

其中正确的是____.

30. 如图,在正方形ABCD中,AB = 4,点E为CD上一动点,AE交BD于点F,过点F作 $FH \perp AE$,交BC于H,连接AH交BD于点P,过H作 $HG \perp BD$ 于点G,下列结论: @AF = FH, $@ \triangle CEH$ 的周长是 7,@BD = 2FG, $@ \triangle AFP \hookrightarrow \triangle AHE$.其中正确的是_____(写正确结论的序号).

- 31. 如图,BD、CE是三角形ABC的高,BD、CE的交点是O,图中相似三角形有_____对.
- 32. 如图,在矩形ABCD中, $BC = \sqrt{2}AB$, $\angle ADC$ 的平分线交边BC于点E, $AH \perp DE$ 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:

③ △ AEH \backsim △ CFB ④DH = $2\sqrt{2}$ EH

其中正确命题的序号是____(填上所有正确命题的序号).

①DN = DG; ② $\triangle BFG \hookrightarrow \triangle EDG \hookrightarrow \triangle BDE$; ③CM垂直BD; ④若 $MC = \sqrt{2}$, 则BF = 2; 正确的结论有_____.

三、解答题:本题共15小题,共120分。解答应写出文字说明,证明过程或演算步骤。

34. (本小题 8 分)

35. (本小题 8 分)

如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作 $MN \perp CM$,交线段AB于点N.

(1)求证: MN = MC;

(2) 若DM: DB = 2: 5, 求证: AN = 4BN;

(3)如图②,连接NC交BD于点G.若BG: MG = 3: 5,求 $NG \cdot CG$ 的值.

36. (本小题 8 分)

如图,四边形ABCD和四边形ACED都是平行四边形,R是DE的中点,连接BR,分别与AC,CD交于点P,Q.

(1)求证: $\triangle ABP \hookrightarrow \triangle DQR$. (2)求 $\frac{BP}{QR}$ 的值.

37. (本小题 8 分)如图,已知E是四边形ABCD的对角线BD上的一点,且 $\frac{AB}{AE} = \frac{AC}{AD}, \ \ \angle 1 = \angle 2.$ 求证: $\angle ABC = \angle AED$.

38. (本小题 8 分)

如图, $\triangle ABC$ 和 $\triangle DEF$ 是两个全等的等腰直角三角形, $\angle BAC = \angle EDF = 90^\circ$, $\triangle DEF$ 的顶点E与 $\triangle ABC$ 的斜边BC的中点重合,将 $\triangle DEF$ 绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.

- (1)当点Q在线段CA上时,如图 1,求证: \triangle $BPE \hookrightarrow \triangle$ CEQ.
- (2)当点Q在线段CA的延长线上时,如图 2, Δ BPE和 Δ CEQ是否相似? 说明理由;若BP=1, $CQ=\frac{9}{2}$,求PQ 的长.

- 39. (本小题 8分)如图,四边形ABCD,CDEF,EFGH都是边长相等的正方形.
- (1) \triangle ACF与 \triangle GCA相似吗?说说你的理由. (2)求 \angle 1 + \angle 2 的度数.

- 40. (本小题 8 分)如图,四边形ABCD中,AC平分 $\angle DAB$, $\angle ADC = \angle ACB = 90$ °,E为AB的中点.
- (1)求证: △ *ACD* ∽ △ *ABC*;
- (2)求证: CE//AD;
- (3)若AB = 6,AD = 4,求 $\frac{AF}{AC}$ 的值.

41. (本小题 8 分)如图,点A在线段BD上,在BD的同侧作等腰直角 \triangle ABC和等腰直角 \triangle ADE, \angle ABC = \angle AED = 90°,CD与BE、AE分别交于点P、M. 求证:

(1) \triangle *BAE* \sim \triangle *CAD*;

(2) 若
$$BC = \frac{\sqrt{6}}{2}$$
, $PC = \frac{3}{2}$, 求 PM 长.

42. (本小题 8 分)

如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且 $AE \perp BF$ 于点P,G为AD的中点,连接GP,过点P作 $PH \perp GP$ 交AB于点H,连接GH.

(1)求证: BE = CF;

(2) 若AB = 6, $BE = \frac{1}{3}BC$,求GH的长.

43. (本小题 8 分)如图,在 \triangle ABC中,CD/ /EF,AF = 1,AD = 3,AE = 2.

(1)求AC的长;

(2) 若AB = 9,求证: $\triangle ABC \hookrightarrow \triangle ADE$.

44. (本小题 8 分)

如图, $\triangle ABC$ 中, $BD \perp AC$ 于点D, $CE \perp AB$ 于点E, BD, CE交于点F, 连接DE.

(1)求证: $\triangle ABD \hookrightarrow \triangle ACE$;

(2)求证: △ *ADE* ∽ △ *ABC*;

45. (本小题 8 分)

如图,M为线段AB上一点,AE与BD交于点C, $\angle DME = \angle A = \angle B = \alpha$,且DM交AE于点F,ME交BD于点G.

- (1)写出图中的三对相似三角形.
- (2)连接FG, 当AM = MB时, 求证: $\triangle MFG \hookrightarrow \triangle BMG$.
- (3)在(2)条件下,若 $\alpha = 45^{\circ}$, $AB = 4\sqrt{2}$,AF = 3,求FG的长.

46. (本小题 8 分)

如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以 2cm/s的速度移动,点Q沿DA边从点D开始向点A以 1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间($0 \le t \le 6$),那么:

- (1) 当t为何值时, ΔQAP 是等腰直角三角形?
- (2)当t为何值时,以点Q、A、P为顶点的三角形与 Δ ABC相似?

48. (本小题 8 分)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为 2cm/s,点F的速度为 4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时, Δ EFG的面积为

$S(cm^2)$.

- (1)当t = 1时,S的值是多少?
- (2)写出S和t之间的函数解析式,并指出自变量t的取值范围;
- (3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.

