Psychological and Cognitive Motivations

- Intro
- Principles (Design Rules)
- Foundations
 - Perception
 - Vision
 - Attention
 - Memory
 - Task Execution

Reference for the lectures: "Designing with the mind in mind", Jeff Johnson

Riccardi, Spring 2016

What they do come from?

- They are motivated by human cognitive and perception processes
- Science on how people
 - Perceive
 - Learn
 - Remember
 - Reason
 - Ground Intentions into Actions

Riccardi, Spring 2016

What they do come from?

- They are motivated by human cognitive and perception processes
- Science on how people
 - Perceive
 - Learn
 - Remember
 - Reason
 - Ground Intentions into Actions

Riccardi, Spring 2016

3

Perception

Perception is the process of <u>interpreting</u> signals being collected by our sense organs into our nervous system.

Hearing (Hair Cells),

Sight (Retina)

Smell (Olfactory Receptors)

Taste (Taste buds)

Touch (Neural Receptors)

Riccardi, Spring 2016

Perception is biased by

- Past : Experience or prior information
- Present : Current Context
 - Also from concurrent signals from different sensorial information (sight & hearing)
 - Influence/Reinforce each other (e.g. lip reading)

Riccardi, Spring 2016

13

Language is Ambiguous

Quanti significati ha la parola banco?

- Giorgio e Luca erano compagni di banco
 - Senso → Mobile
- Il direttore del <u>banco</u> di Napoli
 - Senso → Istituzione di credito
- Il nuovo test sara' il <u>banco</u> di prova
 - Senso → Test
-Banco ottico

Riccardi, Spring 2016

Perception is biased by

■ Past : Experience or prior information

■ Present : Current Context

■ Future : Our Goals

Our goals may filter our perception

■ "Look for your red car in the stadium parking lot" → all red cars will pop up!

- Example of goal oriented information over web
- Ignoring information ≠ Do not notice information

Riccardi, Spring 2016

Perception

- Perception is biased by prior conditions, experience, expectations.
 - The bias maybe random (not controlled) or managed.
- Not only Bottom-up Processing!
 - Selective Attention Test

Riccardi, Spring 2016

Take Away Guidelines

Perception

- Avoid Ambiguity
 - Requires effort
- Be Consistent
 - Exploit or Take into account users' past experience (e.g. Apple watch) and expectations
- Understand users' goals
 - Either be explicit
 - Or Implicitly track them

Riccardi, Spring 2016

19

The Gestalt Theory

Visual Perception

- Gestalt = Shape or Figure
- Psychologists proposed in 20th century to explain how visual perception works
- Supported now by neurophysiological experiments
- Descriptive framework
- Support for graphic and user interface design

Riccardi, Spring 2016

Guidelines - B

(Nielsen and Molich 1990)

- Consistency and Standards
- Visibility of System Status
- Match between System and Real World
- User Control and Freedom
- Frror Prevention
- Flexibility and Efficiency of Use
- Aesthetics and Minimalist Design
- Help Users Recognize, Diagnose and Recover from Errors
- Provide Online Documentation and Help

37

Products, Services, Systems

They serve a purpose, a task SOMEBODY may be interested!

Riccardi, Spring 201

What they do come from?

- They are motivated by human cognitive and perception processes
- Science on how people
 - Perceive
 - Learn
 - Remember
 - Reason
 - Ground Intentions into Actions

Riccardi, Spring 2016

39

User Tasks

- A task is what a user
 - Does regularly during the day
 - "Drives to work", "Use cash for payments"
 - Does sometimes
 - "Go out for dinner"
 - Does rarely
 - "Buy a gift for his in-laws"
 - May be doing in the future
 - "Gone fishing"
 - Never thought of doing it
- "Optimizing his gas/electric bill with AI"

Learning a Task

- Learning from scratch
- Learning and recalling from experience
 - Personal Past experience → Learned Actions are easy to perform

"Stay away from walking over the edge of a cliff"

"Do not execute .exe files received from unknown recipients"

"Facebook is good for making friends" (User 1)

"Facebook is a waste of time" (User 2)

Riccardi, Spring 2016

41

Learning from Experience

Issues

- Learning from experience is in general difficult and requires resources (attention, skills, background)!
- Too much or too little data to learn from or too many conclusions to draw
- Learning from errors may be painful but effective
- Credibility of the experience to learn from
 - Whose experience was that (brother vs friend..)
- (Over) Generalization is used both by humans and machines and can undeniably lead to errors.

Riccardi, Spring 2016

Learned actions easy to perform

- Many tasks may be performed routinely
 - "Riding a bike", "Driving a car", "Walking on the sidewalk", "Reading a Newspaper"...
 - For most part of the experience we do not consume any conscious resources (attention or memory) (Schneider & Shiffrin 1977)
 - → We automate how and when to change gears
 - → We have learned from past experience
 - → We pay attention to obstacle avoidance

Riccardi, Spring 2016

Examples of Learned vs New Tasks

- "Recite letters of the alphabet A through P"
- "Recite letters of the alphabet from P to A"
- "Drive to work using your normal route"
- "Drive to work an unfamiliar one"
- "Spell out your telephone number"
- "Spell out your telephone number by grouping numbers by four"
- Write and post a letter at the post office
- Write and send an email (users age >50)

Riccardi, Spring 2016

Take Away Guidelines

- Provide System status and Users' progress toward their goal
 - → Relieve attention strain and minimize shortmemory
- Guide users to goal
 - → Consider one-time user or repeat-user experience
 - →Expliciting needed information (do not overload either)
- Let Computer do the "math"/"algorithm"
- \blacksquare "Go the middle of the document" $\boldsymbol{\rightarrow}$ Solve it graphically

45

Putting Together User Interface, User Interaction/Experience

- The production process of an App.
- Conceptualizing
- Designing
- Prototyping
- Refining
- Evaluating
- Your App.

Riccardi, Spring 2016

12 Myths of Mobile App Design

Over the years (2005 A. Marcus and adapted)

- · What we really need is a Swiss army knife
- 3G

Riccardi, Spring 2016

- Focus group and ther traditional market analys are the best way to dete me er needs
- . If it works in New York, it will work anywhere
- The killer app will be games, --er, no, I mean, nightlife, or gps.... uh...

- · Mobile devices will essentially be phones, organizers, or combinations with maybe music/video added on
- The industry is converging on a UI standard
- Highly usable systems are just around the corner
- One g operating system wil domi
- Mobile devices will be free-or nearly
- · Advanced data-oriented services are just around the corner

The App Concept

The story begins

- At the office during a meeting
- At home, with my kids
- On Vacation with my friends
- **24/7**
- A teacher with 1-10 grades students in class
- Recruiter on face-to-face interviews

Riccardi, Spring 2016

51

APP concept: Create a Story I want my camera to tell I want to easily create a me when is the best shopping list easily, timing/lighting for me to quickly and share it with shoot a picture my family. I want to plan my next summer vacation in the countryside and select exercise while I go to from friends' advices and work, do sports and share social websites it with my doctor I want to know where is the cheapest gas station I want to monitor and wherever I am improve my mnemonic considering the mileage skills Riccardi, Spring 201 to reach it.

Extreme Use Cases

- 60 SECONDS use case
 - Soccer match scores, weather, stock quotes..
- 60 MINUTES use case
 - Video watching, Reading (emails), Writing (blogs), making dinner plans..

Riccardi, Spring 2016

53

Casual Game Utility Serious From Nathan . Freitas

App Design Process

- 1. Create an Application Concept-Story
- 2. Identify Your User-Group
- 3. List All the Features App may support
- 4. Filter the Feature List Through the User-Group Definition
- 5. Review
- 6. Prototype
- 7. Iterate
- 8. EVALUATE (may happen at the end of step 6)

Example

□ "Help People Shop for Groceries"

- Features: CreatingList, GettingRelatedRecipes, GettingCoupons,...
- Who needs it?: PennyPinching, Gourmet, BusyMom, Single people
- Filter the Feature List by choosing target audience: Thrifty People
- Prototype, Iterate
- EVALUATE!: Yourself, Friends, Group of Potential Users

Riccardi, Spring 2016

57

Bibliography

- Johnson, J., "Designing with the mind in mind", MK Publisher, 2010
- Shneiderman, B., "Designing the user interfaces: Strategies for effective human-computer interaction",, Addison-Wesley Publisher, 1987
- Nielsen, J. and Molich, R. "Heuristic Evaluation of user interfaces", Proceedings of ACM CHI, Seattle, 1990.
- Schneider, W. and Shiffrin, R. M., "Controlled and Automatic human information processing: detection, search and attention", Psychological Review, pp. 1-66, 1977.

Riccardi, Sp. Sp. gi 20 26 12