1 Einführung

1.1 Benutzerschnittstellen

• Human-Computer Interaction untersucht

- 1) Kontext von Computern
- 2) Fähigkeiten des Menschen
- 3) Entwicklungsprozess/Evaluation
- 4) Architektur der Schnittstellen

• 1) Kontext von Computern:

- Arbeitsplatz
- Schule
- Auto
- Haus
- öffentliche Plätze

- Contextual Design

- * muss Arbeitsweise des Benutzers unterstützen und erweitern
- * Partnerschaftliches Vorgehen und Partizipation der Benutzer
- * basiert auf Kohärenz (bzgl. Funktion, Struktur, Layout und Fluss im System)
- * Menschen sind Experten in dem, was sie tun, können es aber nicht artikulieren (Interviews vor Ort nötig)
- * basiert auf expliziter Repräsentation (Zeichnungen oder Modelle)

• 2) Fähigkeiten des Menschen:

- Menschliche Informationsverarbeitung
- Kommunikation
- Ergonomie (individuelles Vermögen und Grenzen)
 - * Behinderungen (Körperbehinderungen, Sensorisch, Kognitiv)
 - * Usability vs Accessibility

• 3) Evaluation

- Analyse der Probleme der Benutzer mit Software
- Usersicht vs Expertensicht
- Sammeln von Daten, beobachten, befragen, Kommentare
- -5-7 Nutzer reichen für min. 80% der Entwurfsfehler

• 4) Architektur

- Graphische Benutzungsoberfläche(GUI, Maus basiert, Desktop Computer)
- Multimediale UI (Games 3D, Mobile mit Stimme und Stift)
- Multimodale Benutzungsoberfläche

• Seeheim Modell

- Anwendung kann ohne Eingabe Präsentation bzw. Feedback erzeugen (z.B. Fehlermeldungen, zeitabhängige Darstellungen)

• Nicht-visuelle Medien

- Hören (Sprach -wiedergabe, -synthese, Sprachassistent)
- Sprechen (Spracherkennung, Diktierprogramme)
- Fühlen (Brailleanzeigen)
- Zeigen (mit/ohne Handschuh, immersive Systeme)
- Ziehen (Kraftrückmeldung)
- Kinästhesie (Erkennung Gesten)
- Geruch (odor TV)

• Schichtenmodell

1.2 Designprozesse

• Ucer Centered Design Lebenszyklus der Benutzeroberfläche

- Ziel ist Gebrauchstauglichkeit (**Usability**)
- Kriterien:
 - Effektivität (Ich komme zum Ziel)
 - Effizienz (Mit wie viel Aufwand komme ich zum Ziel?)
 - **Zufriedenstellung** (Wie angenehm war der Weg zum Ziel?)

1.3 Aufgabenanalyse

- Benutzer verfolgt Ziel und benötigt Rückmeldung
- Ziel: gewünschter Systemzustand
- Aufgabe: Folge von Aktivitäten, zur Zielerreichung
- Erhöhung Verständnis existierender Systeme und Arbeitsabläufe
- hierarchische Aufgabenzerlegung
 - Welche Aufgaben
 - Welche Reihenfolge
 - Welche Kenntnisse
- Hierarchical Task Analyses (HTA)
 - **SEQ**...sequenzielle Aufgaben
 - **PAR**...parallele Aufgaben
 - **ALT**...Alternativen

- 1) Bestimmung Benutzergruppen, Vertreter, Hauptaufgaben
- 2) Vorbereitung und Durchführung Datensammlung (Ziele, Aktionen, Quellen)
- 3) Datenanalyse, beachten der Stoppregeln (z.B. Wahrscheinlichkeit und Kosten eines Fehlers überschreiten Grenze)
- 4) allgemeines Aufgabenmodell
- 5) Abstimmung Modell mit Benutzer
- 6) Iterationen planen
- Grenzen der HTA
 - * nicht sehr exakt
 - * ungeeignet für Interaktionen unter Benutzern
 - * Kontext wenig modelliert

1.4 Persona

- Beschreibung beispielhafter Benutzer
- Verwendung als Stellvertreter (Was würde Herr/Frau ... tun?)
- Sichtweisen auf Personas

- Ziel-gerichtet

- * Vielzahl von Personas
- * in jedem Projekt neu entwickelt

- Rollen-basiert

- * umfangreiche Fakten ausgewertet
- * mehrfach wiederverwendet
- * relevant für Marktforschung

- Einsatzorientiert

- * Einsicht und Einbeziehung dargestellt
- * sozialer und psychologischer Hintergrund deutlich

- Fiktions-basiert

* Extreme Charaktere (z.B. behinderte Menschen)

• Personas entwickeln

- Onsite Befragungen (auf Website)
- Fokusgruppen (Workshops)
- Tiefeninterviews (Einzelgespräche)
- Nutzerbeobachtung vor Ort
- Bildung von Clustern
- Fotos und Namen verwenden

Szenarien 1.5

- Was werden Benutzer tun wollen? (lineare Abfolge)
- Schritt für Schritt Anleitung
 - Was können Sie sehen (z.B. Bildschirminhalt)
 - Was können Sie tun (z.B. mit der Maus)
 - Was denken Sie

Mentale Modelle 1.6

• mentales Model:

- subjektive Vorstellung eines Benutzers vom interaktiven System

• konzeptionelles Model:

- von Designer
- objektiv nachvollziehbar
- Beschreibung von Aufgaben, Trennung von Objekten und Operationen

• Analyse konzeptionelles Model:

- Welche Konzepte wird der Benutzer anwenden?
- Gibt es andere vergleichbare Systeme?
- Welche Art von Metapher (Spraydose als Bild in Paint)
- Welche Interaktionstechniken sind relevant?
- Woher können Fehler kommen?

• Konzepte basieren auf

- Aktivitäten (Anweisungen erteilen, Unterhalten, Handhaben und navigieren, Erkunden und browsen)
- Prozessen (ein oder mehrere Benutzer)
- Fehler im mentalen Modell durch fehlerhaftes Verständnis des Benutzers möglich

Regeln fürs Design

• Entwurfsprinzipien:

- Kenntnis potenzielle Benutzer und ihre Aufgaben
- Reduktion der kognitiven Belastung
- Konsistenz
- Abbruch und Rückgängig machen von Aktionen
- Berücksichtigung von Fehlern
- Adaptierbarkeit der Schnittstelle

• Normen z.B. ISO

- Aufgabenangemessenheit
- Selbstbeschreibungsfähigkeit
- Erwartungskonformität
- Steuerbarkeit
- Robustheit gegen Benutzungsfehler
- Erlernbarkeit
- Benutzerbindung

Evaluation durch Analyse der Handlungen 1.8

• Modell des Gedächtnis

- Langzeit
- visueller Bildspeicher
- akustischer Speicher
- kognitiver Prozessor
- motorischer Prozessor

• GOMS

- Evaluationsmethode um Effizienz zu verbessern
- Goals: Zielzustand, den Benutzer erreichen will
- **Operators:** Handlungen (Taste drücken)
- Methods: Reihenfolge der Operatoren für Ziel
- Selection Rules: Anwendungsauswahl bei mehrern Operatoren
- Keystroke Level Model (KLM): Vergleich der Zeiten der Aufgaben
- Nachteile:
 - * nur Experten als Benutzer sinnvoll
 - * Modelle werden zu groß
 - * Fehler nicht leicht einzubeziehen

2 Evaluationsmethoden

2.1Usability

• Ziele effektiv, effizient und zufriedenstellend erreichen

• 1) Analysephase

- Arbeits-, Prozess- und Systemanalyse
- Erhebung der Nutzeranforderungen

• 2) Konzeptphase

- Arbeitsgestaltung und Prozessdefinition
- Entscheidung über Systemfunktionalitäten
- Konzepterstellung: High/Low-Fidelity Mock-ups

• 3) Entwicklungsphase

- Entwicklung von Prototypen
- Systemintegration

• 4) Einführungsphase

- Piloteinsatz
- Allgemeine Einführung

• Partizipation

- Wer? (Nutzer oder Nutzervertreter)
- Wie? (Passiv: Entwickler entscheiden, Aktive Mitwirkung: gemeinsam, Aktive Partizipation: Benutzer gestalten direkt)

- Wann? (dauern oder festgelegte Zeitpunkte)
- Woran? (Definition, Gestaltung Funktionen...)

• Evaluierung durch Benutzer:

- verschiedene Nutzergruppen
- bestimmt Qualität der Software

2.2Testverfahren

- Befragung (Interviews, Umfragen, Fragebogen, Eigenbericht, Aufzeichnungen...)
- Beobachtung (Thinking Aloud, heuristische Evaluation, Kontrolle, Messungen)
- Kreative Methoden (Fokusgruppen, Workshops)
- Testen der Software (z.B. GOMS)

• Kontrolliertes Experiment

- Unabhängige/Abhängige Variablen bestimmen/messen
- Within-group (mehrere Variablenwerte je Proband)
- Between-group (ein Variablenwert je Gruppe)
- statistische Auswertung und Schlussfolgerung

Evaluation von Zeigehandlungen (Performanztest)

- verschiedenste Zeigegeräte mit Dimensionen
- Position (Schieber, Tablett&Stift, 3D Joystick)
- Bewegung (Laufband, Maus, Mobiltelefon)
- Kraft
- Temporale Eigenschaften
 - Multimedia (mehrere Medien zur Darstellung benutzt)
 - Multimodalität (mehrere Eingabemethoden führen zum gleichen Ziel)
 - Intermodalität (Koordination mehrerer Wahrnehmungsmöglichkeiten)

• Empirische Tests Fitts Law

- Zeit für das Erreichen eines Ziels ist abhängig von der Entfernung und der Größe des Ziels

$$\mathbf{MT} = \mathbf{a} + \mathbf{b} * \mathbf{log_2}(\mathbf{2A/W} + \mathbf{c})$$

- * MT...Bewegungszeit
- * a und b...empirisch bestimmte, geräteabhängige Konstanten
- * c...Konstante von 0, 0.5, 1
- * A...Entfernung der Bewegung (von Start zu Ziel)
- * W...Breite des Ziels
- * Term $log_2(2A/W+c)$ index of difficulty (ID) beschreibt Schwierigkeit der motorischen Steuerung
- große nahe Zeile schneller erreichbar
- ID erhöht sich um 1 je Verdoppelung der Amplitude und Halbierung der Breite
- Verschiedene Modelle (Breite, Breite + Höhe, Breite * Höhe, ...)

- Standardabweichung (S) des Endpunkts einer Bewegung erhöht sich mit der Entfernung
 (D) des Endpunkts und verringert sich mit der Dauer (T) einer Bewegung, k...Konstante:
- $-\mathbf{S} = \mathbf{k} * (\frac{\mathbf{D}}{\mathbf{T}})$
- Optimierung:
 - * Entfernung D verringern
 - * Breite W erhöhen

• Steering Law

- neben Zeigehandlungen auch andere Arbeiten von Bewegungen zu beobachten
- $-\mathbf{MT} = \mathbf{a} + \mathbf{b} * \frac{\mathbf{A}}{\mathbf{W}}$

2.4 Evaluationsmethoden

• Heuristische Evaluation

- Grundlegende Richtlinien (Feedback an User, Hilfsmenü immer rechts, Play Button Dreieckssymbol...)
- Evaluatoren prüfen Einhaltung der Richtlinien (Prioritätsstufen: kosmetisch, kleines, großes Problem, Katastrophe)

• Heuristiken nach Nielsen und Molich

- Sichtbarkeit Systemstatus
- Benutzerkontrolle und Freiheit
- Ästhetisches Design
- Hilfe und Dokumentation

2.5 Cognitive Walkthrough

- zielt auf unerfahrene Benutzer
- Aufgaben festgelegt mit Tutorial
- Gruppe von Usability Experten diskutiert:
 - Werden Benutzer versuchen gewünschten Effekt zu erzielen?
 - Werden Benutzer erkennen, dass korrekte Handlung ausgeführt werden kann?
 - Werden Nutzer erkennen, dass korrekte Handlung zum gewünschten Effekt führen wird?
 - Werden Benutzer Fortschritt erkennen, wenn sie die korrekte Handlung ausgeführt haben?

2.6 Prototypen

• **Problem** früher Phasen:

- Benutzer können wenig mit abstrakten GUIs anfangen
- funktionsfähige GUI erst spät in Entwicklung

• Lösung durch Prototypen:

- Prototyp so früh wie mgl. testen lassen
- schnelle und billige Realisierung (eingeschränkte Funktionalität, Verzicht auf optimale Effizienz...)

2.7Qualitative Methoden

• Thinking Aloud Methode

- leicht aufzuzeichnen
- wenn Proband aufhört, Fragen stellen (z.B. Was denken Sie gerade?)

• Grounded Theory

- Theoriebildung durch qualitative Analyse verbaler Äußerungen zur Bildung von Kategorien

Eyetracking

- Performanzanalyse und qualitative Auswertung der Aufmerksamkeit

• Fragebögen

- Offene Fragen (qualitative Analye)
- Likert-Skalen (quantitative Analyse)
- anfangs allgemeine Fragen (Alter)
- keine doppelte Verneinung
- Standardisierte Fragebögen liegen vor

- Task Load Index (TLX)

- * Mental Demand (MD): mental anspruchsvoll?
- * Physical Demand (PD): körperlich anstrengend?
- * Temporal Demand (TD): Tempo der Aufgabe gehetzt?
- * Performance (OP): Aufgabe erfolgreich ausgeführt?
- * Effort (EF): hart, Leistungsniveau zu erreichen?
- * Frustration (FR): stressig, frustrierend?
- * Paare bilden (z.B. PD/MD) und wichtigeres auswählen (zählen und dadurch Gewichtung)
- * Likert Skalen für jeden Wert
- * Endwert Summe aller Punkte (vorher Likert Wert * Gewichtung)
- * niedriger Wert ist gut

3 Texteingabesysteme

- Sprache und Handschrift (fehleranfällig)
- Touch Typing (Tastatur)
- dynamische Selektion
- Shape Writing
- Gesten
- andere z.B. Blicksteuerung

• Bewertungskonzepte

- Geschwindigkeit
- Fehlerrate
- Ergonomie
- Lernbarkeit

- Hardware Tastaturen (QWERTY, Neo, 12key)
- virtuelle Tastaturen (FITALY, OPTI)
- Gestern Alphabete (Unistrokes, Graffiti)
- Alternativen (Visual Panel, Chording Glove)

4 Fenstersysteme

4.1 Interaktion und Paradigmen

- Interaktionsmodelle helfen, die Handhabung von Systemen durch Benutzer zu verstehen
- Aufgabenanalyse: Feststellung des Problemraums mit den Dimensionen Domäne, Ziel, Intentionen und Aufgaben
- Norman's Modell der Interaktion:
 - ausarbeiten des Ziels
 - bestimmen der Intention
 - festlegen der Aktionssequenz
 - ausführen der Aktion
 - wahrnehmen des Systemzustands
 - interpretieren des Systemzustands
 - evaluieren des Systemzustands in Bezug auf Ziele und Intentionen
 - Ausführungslücke... Unterschied zwischen formulierten Aktionen, um Ziel zu erreichen und Aktionen die vom System erlaubt sind
 - Bewertungslücke... Unterschied zwischen physischen Präsentation des Systemzustandes und Erwartungen des Benutzers

• Interaktionstechniken

- Kommandozeile (telnet, ssh)
- Menü (ATM)
- natürliche Sprache
- Frage/Antwort Dialog
- Formulare und Tabellenkalkulation
- WIMP (Window, Icon, Menu, Pointer)
- Zeigen, Klicken
- 3D Benutzeroberfläche
- modale Dialoge (erzwingen Abschluss) vs nichtmodale Dialoge (erlauben parallele Bearbeitung von Aufgaben)
- Direkte Manipulation liegt vor wenn gegeben:
 - Sichtbarkeit aller relevanten Objekte
 - unmittelbare Rückmeldung auf Aktionen
 - Rücknahmemöglichkeit ALLER Aktionen
 - syntaktische Korrektheit aller Aktionen
 - Direkte Manipulation ermöglicht Drag and Drop

4.2Komponenten eines GUI

• Fenstersystem

- Eingabeverwaltung
- Verwaltung der Ausgaben
- Fenstermanagement

• Kriterien der Architektur von GUIs

- Verfügbarkeit
- einfache Programmierung
- Betriebssystem verbergen
- Graphik Engine (Raster vs Vektor)
- Struktur/Komfort API
- Prozesskommunikation (Clipboard, Drag and Drop)
- Anpassbarkeit (je Benutzer/Land/Kultur/Sprachen/zeitlich)
- Erweiterbarkeit
- Parallele Verarbeitung von Aufgaben

• Komponenten eines Fenstersystems

- Anwendungen
- Toolkits
 - * Sammlung an Dialogtechniken
 - * ergänzende Programmeinheiten (Installations-/Deployment Tookits, Netzwerküberwachung, Fehlerdiagnose)
- Windowmanager
 - * Fensterverwalter
- Ressourcenmanager
 - * Fenster (owner, Zustand)
 - * Ereignisse
 - * Queue (Warteschlange der empfangenen Ereignisse)

 - * Multiplexing (Queues richtig zuordnen)
 - * Schriftarteneinsatz
 - * Grafikkontexte (durch Anwendung, Graphische Attribute)
 - * Farbtabelle
 - * Remote Zugriff (verteilte Systeme)
- Graphik Engine
 - * Eingabe
 - * Operation
 - * Ausgabe
- Hardware

• Betriebssystem

- Adressräume (Kernel, Anwendung/User)
- Ressourcenverwalter bietet Dienste, Anwendung nutzt sie

• Fensterverwalter (FM)

- Verantwortlichkeit für Fokus und Verdeckung
- logischer Bildschirm umfasst evt. mehrere Monitore
- Fensterrahmen
- Drag and Drop
- Icons (Mauszeiger)

• Abstraktionsgrad

- Programmierung (Funktions- oder Klassenbibliotheken, Verwendung in allgemeiner Programmiersprache)
- Textuelle Spezifikation (Spezielle Beschreibungssprache)
- Strukturiertes Editieren (Graphische Spezifikation (direkte Manipulation), Syntax-sensitiver Editor)
- Automatische Generierung (Automatische Auswahl und Attributierung der Oberflächenobjekte, Generierung von Dialogen mit einheitlicher Syntax)

• GUI-Werkzeuge

- GUI-Fenstersystem
- 1) UI-Toolkit (Oberflächenbaukästen)
- 2) UI Builder (Oberflächenbeschreibungssprache und Editoren)
- 3) UIMS (Dialogbeschreibungssprache und Simulationskomponente)
- 4) auto. gen. Werkzeuge

• 1) UI-Toolkit

- stellen Bausteine für graphische Dialogobjekte bereit
- Flexibilität (beliebige Erweiterungen)
- Hohe Einlernzeit (Programmierkenntnisse)
- Prototyping schlecht unterstützt
- mangelnde Portabilität

• Application Frameworks

- Rahmenprogrammierwerkzeuge (objektorientiert)
- enthalten Klassen für Dialogobjekte und generische Klassen für Entwicklung der Anwendung
- bietet sozusagen vorgefertigten Code für z.B. ein Dropdown Menu oder APIs für ein einfacheren Backend Zugriff
- Mächtig, aber komplex!

• 2) UI Builder

- einfache Entwicklung von plattformunabhängige Benutzeroberflächen
- Trennung Oberfläche und Restprogramm
- muss transformiert werden für konkrete Schnittstellen für eine Programmiersprache

• 3) UIMS

- Gestaltung, Implementierung Bedienoberflächen
- komplette Trennung von Dialog- und Anwendungsteil
- Oberflächenentwicklung nach ergonomischen Gesichtspunkten durchführbar

• 4) Automatisch generierende Werkzeuge

- Dialogbeschreibungen aus abstrakten Spezifikationen generiert
- automatische Umsetzung von durch Regelmenge und vordefinierter Bausteine
- automatische Einhaltung ergonomischer Richtlinien
- automatische Auswahl von Dialogobjekten

5 Formale Modelle und Zeit

• formale Modelle

- Analyse Benutzeroberfläche auf bestimmte Eigenschaften
- Anwenden von Modellen menschlicher Performanz (GOMS)
- Automatische Kritik zum Bildschirmdesign
- Beweis sicherheitskritischer Aspekte

5.1 Übergangsdiagramme

- Zustandsdiagramm
- Bestimmung der kürzesten Wege (z.B. Floyd-Warshall Algorithmus)
- Starke Verbundenheit (von jedem Zustand kann jeder andere Zustand erreicht werden)
- Pfadlängen analysieren
- Effizienzanalyse Fitts Law
 - $-\mathbf{MT} = \mathbf{c} + \mathbf{d} * \mathbf{log}((\frac{\mathbf{D}}{\mathbf{W}}) + \mathbf{1})$
 - W...Tasten mit Radius r
 - D...Entfernung zwischen den Tasten (Tastenmittelpunjt durch Koordinaten beschrieben)

• Analyse durch Simulation

5.2 Ereignisse in GUIs

• Nebenläufigkeit

- mehrere Aufgaben laufen Parallel ab (z.B. Laden einer Datei im Hintergrund und Fortschrittsbalken im Vordergrund)
- **Problem:** Teilautomaten stehen in loser Beziehung zueinander
- Direkte Manipulation (Auswirkungen auf Objekte durch Zeigebewegung sofort sichtbar, vollständige Rückkopplung)
- Sammlung von relativ kleinen Dialogen (Verhalten wie Koroutinen)
- Koroutinen... Funktionen, die Ablauf unterbrechen und später wieder aufnehmen können

• Kontrollfluss

- regelt zeitliche Abfolge der einzelnen Befehle
- Interpreter benötigt
- ordnet aktiven Übergangsdiagramm Eingabeereignis zu

- Interpreter:

- * FROM: Liste von anderen Interaktionsobjekten, von der dieses Methoden, Variablen erbt
- * IVARS: Variablen mit Vorbelegung
- * METHODS: Interaktionsmethoden dieses Interaktionsobjekts
- * TOKENS: Ein- und Ausgabeelemente
- * SYNTAX: Übergangsdiagramm, legt Abfolge von Verarbeitung der TOKENS/Aktionen fest
- * SUBS: zusätzliche Übergangsdiagramme
- * STATES: zusätzliche Beschreibung von Zuständen

Interaktionsobjekt Button

IVARS

```
Position = {100, 50, 64, 24}
METHODS
        Draw() { DrawText(position, "Help") }
```

TOKENS

```
iLeft
                  { -- click left mouse button -- }
iEnter
                  { -- mouse cursor enters window at position -- }
                  { -- mouse cursor leaves window at position -- }
iExit
                  { -- invert pixels at rectangle given by position -- }
oHighlight
```

oDeHighlight { -- same as oHighlight -- }

5.3Event Response Language (ERL)

- kann Nebenläufigkeit beschreiben
- Event Response System ERS: Tupel(F, \sum , R, S, f_f)
 - F... Bedingungsvariablen
 - $-\sum$... Menge von Eingabeereignissen
 - R... Menge von Verarbeitungsregeln
 - S... Bedingungsvariablen (Teilmenge von F), die inital wahr sind
 - $-f_f$... Bedingungsvariablen, die angibt, dass Eingabe akzeptiert ist
- Bsp.: $F_1 \to F_2$ (Aktion in F_2 wird "gefeuert" wenn Bedingung F_1 erfüllt ist, also wenn alle Bedingungsvariablen wahr sind)
- Feuern einer Regel:
 - Alle Zustände im Bedingungsteil einer Regel werden gelöscht
 - Alle Zustände in den Aktionsteilen einer Regel werden gesetzt (ohne Reihenfolge zu
 - Alle markierten Regeln werden als nicht markiert gekennzeichnet

Zeit und Interaktion

- Phasen der Interaktion
 - Eingabezeit
 - Antwortzeit
 - Ausgabezeit
 - Denkzeit
- Zeitintervall: Anfang t und Ende t+
- Ereignis-Intervall Regel System (EIRS) ist Tupel (F, I, R, Ω , S, f_f)
 - F... Bedingungsvariablen
 - I... Ereignisse und Intervalle für Verlauf
 - R... Regeln
 - Ω... Wurzelintervall

- S... Bedingungsvariablen (Teilmenge von F), die inital wahr sind
- $-f_f$... Bedingungsvariable, die "wahr" wird, und Ende vom System angibt

• Temporale Modelle

- beschreiben zeitliche Strategie des Benutzers während der Interaktion
- geben Bedingungen für zeitliche Beschränkungen während Interaktion an
- beschreiben Nebenläufigkeit von Interaktionsschritten

• Intervalldiagramm

 beschreibt durch temporale Intervalle die Lebensdauer eines Objekts oder die Ausführbarkeit von Operationen

• Parallele Modelle

- Parallelität durch erneute Eingabe
- Parallelität durch zwei Eingabegeräte
- Parallelität durch zwei Ausgabegeräte

• Ansprechbarkeit

- Sofortheit 0,1 s bis 0,2 s (Rückmeldung Tastenanschlag)
- Unmittelbarkeit 0,5 s bis 1 s (positive Bestätigung des Eingangs von Eingabe)
- Kontinuität 2 s bis 5 s (Verarbeitungsschritte nach 2 s, bei Fehler auch bis zu 5 s)
- Beachtung 5 s bis 10 s (maximale Aufmerksamkeitsspanne zur Verfolgung einer Aufgabe)

• Zeiteinteilung

- Prospektive Angaben: Wie lange wird es dauern? (vermeiden, dass Benutzer was anderes machen)
- Echtzeitangaben Restzeit (bei nicht Nachvollziehbarkeit von Teilschritten)
- Retrospektive Angaben
- Managment Wahrnehmung: vorzeitige Installation obwohl Benutzer noch auswählt oder sinnvolle Ablenkung während Installation
- Managment Toleranz: großzügige Planung (wenn 3 min dauert, 5 min angeben) oder Puffern bei Streaming

6 Adaptierung und Adaptivität

- Adaptivität... beschreibt die selbständige automatische Anpassung des Systems an Eingaben oder auch von Ausgaben
- Adaptierbarkeit... wenn durch Anpassungen Einstellungen des Programms verändert werden können

• Bestandteile adaptives System

- Erwerbung von Informationen über den Benutzer des Systems
- Repräsentierung dieser Information
- Generierung von personalisierten Inhalten und angepassten Navigationsstrukturen
- Sensorschicht: Interaktion Benutzer mit Kontext
- Semantikschicht: Identität Benutzers, Beziehungen zu anderen Objekten

- Kontrollschicht: Basissteuerung mittels Regeln
- Ausführungsschicht: Domänenabhängige Implementierung der Steuerung
- Methodik
 - Afferenz: Beobachtung und Sammlung von Informationen
 - Inferenz: Auswertung der gesammelten Informationen
 - Efferenz: Anpassung des Systems
- **Hypermedien:** nehmen Eigenschaften vom Benutzer auf und passen sich dementsprechend an
 - Tutorielle Systeme: Lernsystem, was sich den Antworten auf Fragen anpasst, klare Strukturierung und Lernsteuerung
- adaptive Führung: auszeichnen der relevanten Verweise einer Seite
- adaptive Annotation: Generierung von Hinweisen für Verweise
- adaptive Empfehlung: Zeile vom System bestimmt, nur relevante Verweise dargestellt
- Stereotypisierte Benutzermodelle für Vorhersagen
- Kombination von verschiedenen Benutzermodellen (Filmempfehlung für Gruppe von Zuschauern)
- Kollaboratives Clustern
 - "Mentor Nutzer" finden, dessen Bewertungen stark mit aktuellem Benutzer korrelieren
 - aggregierte Bewertung der Mentoren für ein Objekt gibt Vorhersage

• Inhaltsbasiert vs Kollaborativ

	Inhaltsbasiert	Kollaborativ
Vorteile	 Empfehlung unbewerteter Objekte möglich Unabhängig von der Benutzerzahl Außergewöhnliche Präferenzen werden berücksichtigt 	 Unabhängig von den Objekten für die Empfehlung Unabhängig von früheren Empfehlungen
Nachteile	 Objektbeschreibung ist notwendig Mindestzahl von Bewertung von einem neuen Nutzer ist notwendig keine subjektiven Kriterien keine Berücksichtigung der Erkenntnisse andere Benutzer 	 Kaltstart (neues Benutzer, neues Objekt unsicher Bei schwach besetzter Matrix -> niedrige Empfehlungsqualität Popularitätsausrichtung

• Hybride Empfehlungssysteme

- Inhaltsbasierte in kollaborative Technik integrieren (Demographische Daten im Benutzerprofil erfassen)
- Kollaborative in inhalts-basierte Technik integrieren (Gruppierung von inhalts-basierten Benutzerprofilen)

7 Navigationssysteme

7.1 Navigation mit mobilen Endgeräten

- Preis sinkt, Leistung steigt
- Eingabe: Tastatur, Touch, Gesten, Sprache, Haktik
- Ausgabe: Bildschirm, Sprache, akustische Signale, Vibration
- Anwendungen müssen mit kleinem Ausgabebereich zurecht kommen
- Ortung (GPS, GALILEO, COMPASS)
 - 4 Satelliten senden: 3 x Ortung x, y, z (Überschneidungen) und 1 x Signallaufzeiten
 - NMEA-Nachrichtenformat (ASCII): Uhrzeit, Länge, Breite, Qualität, Anzahl Satelliten,
 Höhe über Meeresspiegel
- Anwendung: Verkehrs- Seefahrtsüberwachung, Landwirtschaft (Autonome Steuerung), touristische Anwendungen
- Fahrzeugnavigation (dynamischer Einbezug von Verkehrsinformationen)

• Fußgängernavigation

- Mikronavigation ;10m (Spur halten, Hindernisse)
- Makronavigation ¿50m (Navigation nächster Wegpunkt)
- Kognitive Verarbeitung (Wissenaufbbau erfolgt unterschiedlich und parallel)
- Kognitive Karten (points of interests)
- Art der Fortbewegung wichtig, genauere Positionsbestimmung (2-5m), zeitabhängige Faktoren (Baustellen vermeiden)
- Berücksichtigung von Mobilitätseinschränkungen (Blinde, Rollstuhlfahrer, Senioren ...)

• Proximität

- intimer Bereich 0,45m
- persönlicher Bereich 1,2m
- sozialer Bereich 1.6m
- öffentlicher Bereich 7,6m

7.2 Kollaboratives Benutzermodell einer Gruppe durch Annotation

• Multimodale Annotation

- semi-automatische Annotation geographischer Daten
- Berechnung von Routen optimiert für verschiedene Benutzergruppen
- Generierung von umfangreicheren und personalisierten Navigationsanweisungen auf Basis der Annotationen

• Annotation

- persönliche Attributierung geographischer Objekte (Points of Interests)
- z.B. Bewertung eines Weges durch Benutzer

• Annotiertes Wegenetz

- Gewichtung der Kanten eines Navigationsgraphen (Durchschnittszeit, Bewertungen...)
- Multicriteria Decision Making (MCDM)

- Normierung der Werte
- Berechnung über Zielerreichungsmatrix

• Entscheidungsregeln

- Dominanz (in allen Attributen überlegen oder min. gleichwertig)
- Maximin (schlechtestes Attribut hat den besten Wert)
- Maximax (maximaler Attributwert)
- Konjunktiv (Mindestgrenzen von Attributen)
- Disjunktiv (wie Konjunktiv + Alternativen zugelassen, die bei bestimmter Anzahl von Attributen Mindestwerte erreichen)
- Lexikographisch (Konjunktiv in Reihenfolge der Wichtigkeit der Attribute bis nur 1 übrig bleibt)
- additive Gewichtung (Berechnung mit Wichtigkeit und Summierung)

7.3 Personalisierung von elektronischen Fahrplananzeigen

- UCD nicht anwendbar, weil zu viele unterschiedliche Gruppen im öffentlichen Raum
- Personalisierung notwendig für verschiedene Nutzergruppen
- z.B. Bluetooth Bakes and Haltestellen

7.4 Navigation in Gebäuden

• Lokalisierung über Wifi:

- Suche nach Übereinstimmung mit vorher bestimmten Fingerprints (Signalstärkenkarte)
- Korrekturen notwendig, da Schwankungen (Personen schirmen ab)

8 Entwicklungswerkzeuge von Benutzungsoberflächen

8.1 Modellbasierte Transformation

• User Interface Description Language (UIDL)... formale Sprache für Zwecke der MCI, um Benutzeroberfläche zu beschreiben

• Kontext der Benutzung

- eines interaktiven Systems ist dynamische strukturierter Informationsraum (Entitäten: Benutzer U, Plattform P, Umgebung E)
- Kontext der Benutzung ist Tupel (U, P, E)
- z.B. Multi-target UI (unterstützt mehre Benutzer, Plattformen und Umgebungen),
 Adaptable UI (kann angepasst werden)
- Kontext: Produktion (Änderung Benutzungsoberfläche zur Laufzeit, je nach Standort und Benutzer)

• ConcurTaskTrees (CTT)

Temporale Relationen

- T1 [] T2 Auswahl
- T1 | | | T2 Überlappend
- T1 |[] | T2 Synchronisierung
- T1 >> T2 Ermöglichen
- T1 []>> T2 Ermöglichen und Weitergabe von Information
- T1 [> T2 Deaktivierung
- T1* Iteration
- T1(n) Finite Iteration
- [T1] Optional
- T Rekursion
- Presentation Task Sets (PTS)... entsprechen Aufgaben, die zur selben Zeit aktiv sind

• UsiXML

- Beschreibung des Modells der Benutzungsoberfläche in einer gemeinsamen XML-Sprache (Modular erweiterbar)
- beschreibt CUIs (Character), GUIs (Graphical), Auditory UIs, Multimodal UIs
- Ziel: Geräteunabhängigkeit, Plattformunabhängigkeit, Wiederverwendung von Komponenten

9 Visuelles Programmieren

- Vereinfachung der Entwicklung
- Herausforderung besteht in der Abstimmung zwischen Spezifikation, Design, Umsetzung und eigentliches Ziel des Nutzers
- Visuelle Programmiersprachen
 - Er-Diagramme
 - Kontrollflussdiagramme