PREVIOUS YEAR QUESTION BANK EXADEMY

Mathematics Optional Free Courses for UPSC and all state PCS

You Tube Channel WhatsApp-+91-7381987177

Telegram Channel: EXADEMY OFFICIAL

REAL ANALYSIS

Q1. If we metrize the space of functions continuous on [a, b] by taking $P(x, y) = \sqrt{\int_a^b [x(t) - y(t)]^2}$ then show that the resulting metric space is NOT complete.

(Year 1992)

(20 Marks)

Q2. Examine $2xyz - 4zx - 2yz + x^2 + y^2 - 2x - 4y - 4z$ for extreme values.

(Year 1992)

(20 Marks)

Q3. If $U_n = \frac{1+nx}{ne^{nx}} - \frac{1+(n+1)x}{(n+1)e^{(n+1)x}}$, 0 < x < 1 prove that $\frac{d}{dx} \Sigma U_n = \Sigma \frac{d}{dx} U_n$. Is the series uniformly convergent in (0,1)? Justify your claim.

(Year 1992)

Q4. Find the upper and lower Riemann integral for the function defined in the interval [0, 1] as follows

 $\begin{cases} \sqrt{1-x^2} & when \ x \ is \ rational \\ 1-x & when \ x \ is \ irrational \end{cases}$ and show that is NOT Riemann integrable in [0, 1]

(Year 1992)

(20 Marks)

Q5. Discuss the convergence or divergence of $\int_0^\infty \frac{x^\beta}{1+x\alpha\sin^2x} dx \ \alpha > \beta > 0$

(Year 1992)

(20 Marks)

Q6. Evaluate $\iint \sqrt{\frac{a^2b^2-b^2x^2-a^2y^2}{a^2b^2+b^2x^2+a^2y^2}} dxdy$ over the positive quadrant of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(Year 1992)

(20 Marks)

Q7. Examine for Riemann integrability over [0, 2] of the function defined in [0, 2] by

$$f(x) = \begin{cases} x + x^2, & \text{for rational values of } x \\ x^2 + x^3, & \text{for irrational values of } x \end{cases}$$

(Year 1993)

(20 Marks)

Q8. Prove that $\int_0^\infty \frac{\sin x}{x} dx$ converges and conditionally converges.

(Year 1993)

Q9. Evaluate $\iiint \frac{dxdydz}{x+y+z+1}$ over the volume bounded by the coordinate plane and the plane x+y+z+1.

(Year 1993)

(20 Marks)

- Q10. Examine the
 - (i) Absolute convergence
 - (ii) Uniform Convergence of the series

$$(1-x) + x(1-x) + x^2(1-x) + \cdots$$
 in $[-c, 1], 0 < c < 1$.

(Year 1994)

(20 Marks)

Q11. Prove that $S(x) = \sum \frac{1}{n^p + n^q x^2}$, p > 1 is uniformly convergent for all values of x and can be differentiate term by term if q < 3q < 2.

(Year 1994)

(20 Marks)

Q12. Let the function f be defined on [0, 1] by the condition f(x) = 2rx when

 $\frac{1}{r+1} < x < \frac{1}{r}, r > 0$. Show that f is Riemann integrable in [0, 1] and $\int_0^1 f(x) dx = \frac{\pi^2}{6}$

(Year 1994)

Q13. By means of substitution x + y + z = u, y + z = uv, z = uvw evaluate $\iiint (x + y + z)^n xyz dx dy dz$ taken over the volume bounded by x = 0, y = 0, z = 0, x + y + z = 1.

(Year 1994)

(20 Marks)

Q14. Let K and F be non-empty disjoint closed subjects of R^2 . If K is bounded, show that there exists $\delta > 0$ such that $d(x,y) \ge \delta f$ or $x \in K$ where d(x,y) is the usual distance between x and y.

(Year 1995)

(20 Marks)

Q15. Let f be a continuous real function of R such that f maps open interval into open intervals. Prove that f is monotonic.

(Year 1995)

(20 Marks)

Q16. Let $c_n \ge 0$ for all positive integers n such that is convergent. Suppose $\{S_n\}$ is a sequence of distinct points in (a,b) For $x \in [a,b]$ define $a(x) = \sum c_n \{n: x > S_n\}$. Prove that a is an increasing function. If f a continuous real function on [a,b], show that $\int_a^b f d\alpha = \sum c_n f(S_n)$.

(Year 1995)

Q17.	Suppose f maps an open ball $U \subset R^n$ into R^n and f is differentiable there exists a real number $M > 0$ such that $ f(x) \le M \ \forall \ x \in U$. P	
	$ f(b) - f(a) \le M b - a \ \forall \ a, b \ \in U.$	
		(Year 1995)
		(20 Marks)
Q18.	Find and classify the extreme values of the function $f(x, y) = x^2 + $	$y^2 + x + xy.$
		(Year 1995)
		(20 Marks)
Q19.	Suppose \propto is a real number not equals to $n\pi$ for any integer n . Prove	e that
	$\int_0^\infty \int_0^\infty e^{-(x^2 + 2xy\cos\alpha + y^2)} dx dy = \frac{\alpha}{2\sin\alpha}.$	
		(Year 1995)
		(20 Marks)
Q20.	Let F be the set of all real valued bounded continuous functions defined by $d(f, g) = \int_{-1}^{1} f(y) g(y) dy \forall f, g \in F$. Verify $f(g) = \int_{-1}^{1} f(y) g(y) dy \forall f \in G$.	f real numbers,
	defined by $d(f,g) = \int_0^1 f(x) - g(x) dx \forall f, g \in F$. Verify d is a result of the following defined by $d(f,g) = \int_0^1 f(x) - g(x) dx$	
		(Year 1996)
		(20 Marks)
Q21.	Prove that a compact set in a metric space is a closed set.	
		(Year 1996)
		(20 Marks)

(Year 1996)

(20 Marks)

Q23. A function f is defined in the interval (a, b) as follows:

$$f(x) = \begin{cases} q^{-2} & when \ x = pq^{-1} \\ q^{-3} & when \ x = (pq^{-1})^{1/2} \end{cases}$$

Where p, q are relatively prime integer; f(x) = 0 for all other values of x. Is f Riemann integrable? Justify your answer.

(Year 1996)

(20 Marks)

Q24. Test for uniform convergence, the series $\sum_{n=1}^{\infty} \frac{2^n x^{2n-1}}{1+x^{2n}}$

(Year 1996)

(20 Marks)

Q25. Evaluate $\int_0^{\pi/2} \int_0^{\pi/2} \sin x \, \sin^{-1}(\sin x \sin y) dx dy$

(Year 1996)

(20 Marks)

Q26. Show that a non-empty set P in \mathbb{R}^n each of whose points is a limit-point is uncountable.

(Year 1997)

Q27. Show that $\iiint_D xyzdxdydz = \frac{a^2b^2c^2}{6}$ where domain *D* is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1.$

(Year 1997)

(20 Marks)

Q28. If $u = \sin^{-1}[(x^2 + y^2)^{1/5}]$. Prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{2}{25} \tan u (2 \tan^{2} u - 3)$$

(Year 1997)

(20 Marks)

- Q29. Let X be the metric space and $E \subset X$. Show that
 - (i) Interior of E is the largest open set contained in E
 - (ii) Boundary of $E = (\text{closure of } E) \cap (\text{closure of } X E)$

(Year 1998)

(20 Marks)

Q30. Let (X, d) and (Y, e) be the metric space with X compact and $f: X \to Y$ continuous. Show that f is uniformly continuous.

(Year 1998)

(20 Marks)

Q31. Show that the function $f(x,y) = 2x^4 - 3x^2y + y^2$ has (0,0) as the only critical point but the function neither has a minima or maxima at (0,0).

(Year 1998)

Q32. Test the convergence of the integral $\int_0^\infty e^{-ax} \frac{\sin x}{x} dx$, $a \ge 0$ (Year 1998) (20 Marks) Q33. Test the series $\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}$ for uniform convergence. (Year 1998) **(20 Marks)** Q34. Let f(x) = x and $g(x) = x^2$. Does $\int_0^1 f \circ g$ exists? If it exists then find its value. (Year 1998) (20 Marks) Q35. Let A be a subst of the metric space (M, ρ) . If (A, ρ) is compact, then show that A is a closed subset of (M, ρ) . (Year 1999) (20 Marks) Q36. A sequence $\{S_n\}$ is defined by the recursion formula $S_{n+1} = \sqrt{3S_n}$, $S_1 = 1$. Does this sequence converge? If so, find $\lim S_n$. (Year 1999) (20 Marks) Q37. Test for the convergence the integral $\int_0^1 x^p \left(\log \frac{1}{x}\right)^q dx$ (Year 1999) **(20 Marks)** Q38. Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 =$ 225, z = 0(Year 1999) (20 Marks)

Q39. Show that the double integral $\iint_R \frac{x-y}{(x+y)^3} dxdy$ does not exist over R = [0, 1; 0, 1] (Year 1999)

(20 Marks)

Q40. Verify the Gauss divergence theorem for $\vec{F} = 4x\hat{e}_x - 2y^2\hat{e}_y + z^2\hat{e}_z$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3 where \hat{e}_x , \hat{e}_y , \hat{e}_z are unit vectors along x, y and z directions respectively.

(Year 1999)

(20 Marks)

Q41. Given that the terms of sequence $\{a_n\}$ are such that $a_k, k \le 3$ is the arithmetic mean of its two immediately preceding terms. Show that the sequence converges. Also find the limit of the sequence.

(Year 2000)

(12 Marks)

Q42. Determine the values of x for which the infinite product $\prod_{n=0}^{\infty} \left(1 + \frac{1}{x^{2n}}\right)$ converges absolutely. Find its value whenever it converges.

(Year 2000)

(12 Marks)

Q43. Suppose f is twice differentiable real valued function in $(0, \infty)$ and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)| and |f''(x)| respectively in $(0, \infty)$. Prove for each x > 0, h > 0 that $f'(x) \frac{1}{2h} [f(x+2h) - f(x)] - hf'(u)$ for some $u \in (x, x+2h)$. Hence show that $M_1^2 \le 4 M_0 M_2$.

(Year 2000)

Q44. Evaluate $\iint_S (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$ by transforming into triple integral where S is the closed surface formed by the cylinder $x^2 + y^2 = a^2$, $0 \le z \le b$ and the circular disc $x^2 + y^2 \le a^2$, z = 0 and $x^2 + y^2 \le a^2$, z = b.

(Year 2000)

(20 Marks)

Q45. Show that $\int_0^{\frac{\pi}{2}} \frac{x^n}{\sin^m x} dx$ exists if and only if m < n + 1.

(Year 2001)

(12 Marks)

Q46. If $\lim_{n\to\infty} a_n = l$, then prove that $\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = l$.

(Year 2001)

(12 Marks)

Q47. A function f is defined in the interval (a, b) as follows

$$f(x) = \begin{cases} \frac{1}{q^2} & \text{when } x = \frac{p}{q} \\ \frac{1}{q^3} & \text{when } x = \sqrt{\frac{p}{q}} \end{cases}$$
 where p, q relatively prime integers.

f(x) = 0 for all other values of x. Is f Riemann integrable? Justify your answer.

(Year 2001)

(20 Marks)

Q48. Show that U = xy + yz + zx has a maximum value when the three variables are connected by the relation ax + by + cz = 1 and a, b, c are positive constants satisfying the condition $2(ab + bc + ca) > (a^2 + b^2 + c^2)$

(Year 2001)

(25 Marks)

Q55.	Let a be a positive real number and $\{x_n\}$ sequence of rational number	ers such that
	$\lim_{n\to\infty} x_n = 0$. Show that $\lim_{n\to\infty} a x_n = 1$.	
		(Year 2003)
		(12 Marks)
Q56.	If a continuous function of x satisfies the functional equation	
	$f(x + y) = f(x) + f(y)$ then show that $f(x) = \alpha x$ where α is a constant.	onstant.
		(Year 2003)
		(12 Marks)
Q57.	Show that the maximum value of $x^2y^2z^2$ subject to condition x^2 +	$y^2 + z^2 = c^2 \text{ is}$
	$\frac{c^2}{27}$. Interpret the result	
		(Year 2003)
		(Year 2003) (20 Marks)
Q58.	The axes of two unequal cylinders intersect at right angles. If α be find the volume common to the cylinder by the method of multiple	(20 Marks) their radius, then
Q58.		(20 Marks) their radius, then
Q58.		(20 Marks) their radius, then integrals.
		(20 Marks) their radius, then integrals. (Year 2003)
	find the volume common to the cylinder by the method of multiple	(20 Marks) their radius, then integrals. (Year 2003)
	find the volume common to the cylinder by the method of multiple	(20 Marks) their radius, then integrals. (Year 2003) (20 Marks)
	find the volume common to the cylinder by the method of multiple	(20 Marks) their radius, then integrals. (Year 2003) (20 Marks)

Q60. Show that the function f(x) defined as: $f(x) = \frac{1}{2^n}, \frac{1}{2^{n+1}} \le x \le \frac{1}{2^n}, n = 0,1,2 \dots$ and f(0) = 0 is integrable in [0, 1], although it has an infinite number of points of discontinuity. Show that $\int_0^1 f(x) dx = \frac{2}{3}$.

(Year 2004)

(12 Marks)

Q61. Show that the function f(x) defined on by:

 $\begin{cases} x & when x is irrational \\ -x & when x is rational \end{cases}$ is continuous only at x = 0.

(Year 2004)

(12 Marks)

Q62. If (x, y, z) be the lengths of perpendiculars drawn from any interior point P of triangle ABC on the sides of BC, CA and AB respectively, then find the minimum value of $x^2 + y^2 + z^2$ the sides of triangle ABC being a, b, c.

(Year 2004)

(20 Marks)

Q63. Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0.

(Year 2004)

(20 Marks)

Q64. Let $f(x) \ge g(x)$ for every x in [a, b] and f and g are both bounded and Riemann integrable on [a, b]. At a point $c \in [a, b]$ let f and g be continuous and $f(c) \ge g(c)$ then prove that $\int_a^b f(x) dx > \int_a^b g(x) dx$ and hence show that $\frac{-1}{2} < \int_a^b \frac{x^3 \cos 5x}{2 + x^2} dx < \frac{1}{2}$.

(Year 2004)

Q65.	If u, v, w are the roots of the equation in λ and $\frac{x}{a+\lambda} + \frac{y}{b+\lambda} + \frac{z}{c+\lambda} = 1$	evaluate
	$\frac{\partial(x,y,z)}{\partial(u,v,w)}$	
		(Year 2005)
		(12 Marks)
Q66.	Evaluate $\iiint \ln(x + y + z) dx dy dz$. The integral being extended all	over all positiv
	values of x , y , z such that $x + y + z \le 1$.	
		(Year 2005)
		(12 Marks)
Q67.	If f' and g' exists for every $x \in [a, b]$ and $g'(x)$ does not vanish an	nywhere (a, b).
	Show that there exists c in (a, b) such that $\frac{f(c)-f(a)}{g(b)-g(c)} = \frac{f'(c)}{g'(c)}$.	
		(Year 2005)
		(30 Marks)
Q68.	Show that $\int_0^\infty e^{-t} t^{n-1} dt$ is an improper integral which converges for	for $n > 0$.
		(Year 2005)
		(30 Marks)
Q69.	Examine the convergence of $\int_0^1 \frac{dx}{x^{1/2}(1-x)^{1/2}}$	
		(Year 2006)
		(12 Marks)

Q70. Prove that the function f defined by

$$f(x) = \begin{cases} 1 & when \ x \ is \ rational \\ -1 & when \ x \ is \ irrational \end{cases}$$
 is nowhere continuous.

(Year 2006)

(12 Marks)

Q71. A twice differentiable function f is such that f(a) = f(b) = 0 and f(c) > 0 for a < c < b. Prove that there is at least one value of ξ , $a < \zeta < b$ for which $f''(\zeta) < 0$.

(Year 2006)

(20 Marks)

Q72. Show that the function given by

$$f(x,y) = \begin{cases} \frac{x^3 + 2y^2}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

- (i) Is continuous at (0, 0)
- (ii) Possesses partial derivative $f_x(0,0)$ and $f_y(0,0)$

(Year 2006)

(20 Marks)

Q73. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(Year 2006)

Q74. Show that the function given by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

Is not continuous at (0, 0) but its partial derivatives f_x and f_y exists at (0, 0).

(Year 2007)

(12 Marks)

Q75. Using Lagrange's mean value theorem, show that $|\cos b - \cos a| \le |b - a|$

(Year 2007)

(12 Marks)

Q76. Given a positive real number a and any natural number n, prove that there exists one and only one positive real number ξ such that $\xi^n = a$.

(Year 2007)

(20 Marks)

Q77. Find the volume of the solid in the first octant bounded by the paraboloid

$$z = 36 - 4x^2 - 9y^2$$

(Year 2007)

(20 Marks)

Q78. Rearrange the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ to converge to 1.

(Year 2007)

- Q79. (i) For x > 0, show $\frac{x}{1+x} < \log(1+x) < x$
 - (ii) Let $T = \left\{\frac{1}{n}, n \in N\right\} \cup \left\{1 + \frac{3}{2n}, n \in N\right\} \cup \left\{6 \frac{1}{3n}, n \in N\right\}$. Find derived set T of T. Also find the supremum of T and the greatest number of T.

(Year 2008)

(6+6=12 Marks)

Q80. If $f: R \to R$ is continuous and f(x + y) = f(x) + f(y), for all $x, y \in R$ then show that f(x) = xf(1) for all $x \in R$.

(Year 2008)

(12 Marks)

Q81. Discuss the convergence of the series $\frac{x}{2} + \frac{1}{2} \cdot \frac{3}{4}x^2 + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}x^3 \dots x > 0$.

(Year 2008)

(15 Marks)

Q82. Show that the series $\sum \frac{1}{n(n+1)}$ is equivalent to $\frac{1}{2} \prod_{2}^{\infty} \left(1 + \frac{1}{n^2 - 1}\right)$

(Year 2008)

(15 Marks)

Q83. Let f be a continuous function on [0, 1]. Using first Mean Value theorem on integration, prove that $\lim_{n\to\infty} \int_0^1 \frac{nf(x)}{1+n^2x^2} dx = \frac{\pi}{2} f(0)$.

(Year 2008)

- Q84. (i) Prove that the sets A = [0, 1], B = (0, 1) are equivalent sets.
 - (ii) Prove that $\frac{\tan x}{x} > \frac{x}{\sin x}$, $x \in \left(0, \frac{\pi}{2}\right)$

(Year 2008)

(15 Marks)

Q85. State Roll's theorem. Use it to prove that between two roots of $e^x \cos x = 1$ there will be root of $e^x \sin x = 1$.

(Year 2009)

(2+10=12 Marks)

Q86. Let $f(x) = \begin{cases} \frac{|x|}{2} + 1 & \text{if } x < 1 \\ \frac{x}{2} + 1 & \text{if } 1 \le x \le 2 \text{ what are the points of discontinuity of } f, \text{ if any?} \\ \frac{-|x|}{2} + 1 & \text{if } 2 \le x \end{cases}$

What are the points where f is not differentiable, if any? Justify your answer.

(Year 2009)

(12 Marks)

Q87. Show that the series $\left(\frac{1}{3}\right)^2 + \left(\frac{1\cdot 4}{3\cdot 6}\right)^2 + \dots + \left(\frac{1\cdot 4\cdot 7\dots (3n-2)}{3\cdot 6\cdot 9\dots (3n-2)}\right)^2 + \dots$ converges.

(Year 2009)

(15 Marks)

Q88. Show that if $f:[a,b] \to R$ is a continuous function then f([a,b]) = [c,d] form some real numbers c and d, $c \le d$.

(Year 2009)

Q89. Show that: $\lim_{x\to 1} \sum_{n\to 1}^{\infty} \frac{n^2 x^2}{n^4 + x^4} = \sum_{n\to 1}^{\infty} \frac{n^2}{n^4 + 1}$ justify all steps of your answer by quoting the theorems you are using.

(Year 2009)

(15 Marks)

Q90. Show that a bounded infinite subset *R* must have a limit point.

(Year 2009)

(15 Marks)

Q91. Discuss the convergence of the sequence $\{x_n\}$ where $X_n = \frac{\sin(\frac{n\pi}{2})}{8}$.

(Year 2010)

(12 Marks)

Q92. Define $\{x_n\}$ by $x_1 = 5$ and $x_{n+1} = \sqrt{4 + x_n}$ for n > 1. Show that the sequence converges to $\left(\frac{1+\sqrt{17}}{2}\right)$.

(Year 2010)

(12 Marks)

Q93. Define the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. Find f'(x). Is f'(x) continuous at x = 0? Justify your answer.

(Year 2010)

Q94.	Consider the series $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^2}$. Find the values of x for which it is	convergent and
	also the sum function. Is the converse uniform? Justify your answer.	
		(Year 2010)
		(15 Marks)
Q95.	Let $f_n(x) = x^n$ on $-1 < x \le 1,2$ Find the limit function. Is the uniform? Justify your answer.	converge
		(Year 2010)
		(15 Marks)
Q96.	Let $S = (0,1)$ and f be defined by $f(x) = \frac{1}{x}$ where $0 < x \le 1$ (in	R). Is f
	uniformly continuous on S? Justify your answer.	
		(Year 2011)
		(12 Marks)
Q97.	Let $f_n(x) = nx(1-x)^n$, $x \in [0,1]$. Examine the uniform converge	nce of $\{f_n(x)\}$ on
	[0, 1].	
		(Year 2011)
		(15 Marks)
Q98.	Find the shortest distance from the origin (0, 0) to the hyperbola	
	$x^2 + 8xy + 7y^2 = 225$	
		(Year 2011)
		(15 Marks)

Q99. Show that the series for which the sum of first n terms $f_n(x) = \frac{nx}{1+n^2x^2}$, $0 \le x \le 1$ cannot be differentiated term by term at x = 0. What happens at $x \ne 0$.

(Year 2011)

(15 Marks)

Q100. Show that if $S(x) = \sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ then its derivative $S'(x) = -2x \sum_{n=1}^{\infty} \frac{1}{(1 + nx^2)^2}$, for all x.

(Year 2011)

(15 Marks)

Q101. Let
$$f_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n+1} \\ \sin \frac{\pi}{x}, & \text{if } x < \frac{1}{n+1} \le x \le \frac{1}{n} \text{ show that } f_n(x) \text{ converges to a} \\ 0, & \text{if } x > \frac{1}{n} \end{cases}$$

continuous function but not uniformly.

(Year 2012)

(12 Marks)

Q102. Show that the series $\sum_{n=1}^{\infty} \left(\frac{\pi}{\pi+1}\right)^n n^6$ is convergent.

(Year 2012)

(12 Marks)

Q103. Let
$$f(x,y) = \begin{cases} \frac{(x+y)^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$
 show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at $(0,0)$.

(Year 2012)

Q104. Find the minimum distance of the line given by the planes 3x + 4y + 5z = 7 and x - z = 9 and from the origin, by the method of Lagrange's multipliers.

(Year 2012)

(15 Marks)

Q105. Let f(x) be differentiable on [0, 1] such that f(1) = f(0) = 0 and $\int_0^1 f^2(x) dx = 1$ prove that $\int_0^1 x f(x) f'(x) dx = -\frac{1}{2}$.

(Year 2012)

(15 Marks)

Q106. Give an example of a function f(x), that is not Riemann integrable but |f(x)| is Riemann integrable. Justify your answer.

(Year 2012)

(20 Marks)

Q107. Let $f(x) = \begin{cases} \frac{x^2}{2} + 4 & \text{if } x \ge 0 \\ \frac{-x^2}{2} + 2 & \text{if } x < 0 \end{cases}$ is Riemann integrable in the interval [-1, 2]? Why?

Does there exists a function g such that g'(x) = f(x)? Justify your answer.

(Year 2013)

(10 Marks)

Q108. Show that the series $\sum_{1}^{\infty} \frac{(-1)^{n-1}}{n+x^2}$ is uniformly convergent but not absolutely for all real values of x.

(Year 2013)

(13 Marks)

Q109. Show that every open subset of *R* is countable union of disjoint open intervals.

(Year 2013)

(14 Marks)

Q110.Let [x] denote the integer part of the real number x i.e., if $n \le x < n+1$ where n is an integer, then [x] = n is the function $f(x) = [x]^2 + 3$ Riemann integrable in the function in [-1,2]? If not, explain why? If it is integrable compute $\int_{-1}^{2} ([x]^2 + 3) dx$

(Year 2013)

(10 Marks)

Q111. Test the convergences of the improper integral $\int_{1}^{\infty} \frac{dx}{x^2(1+e^{-x})}$

(Year 2014)

(10 Marks)

Q112. Integrate
$$\int_{1}^{0} f(x)dx$$
, where $f(x) = \begin{cases} 2x \sin{\frac{1}{x}}\cos{\frac{1}{x}}, & x \in [0,1] \\ 0 & x = 0 \end{cases}$

(Year 2014)

(15 Marks)

Q113. Obtain $\frac{\partial^2 f(0,0)}{\partial x \partial y}$ and $\frac{\partial^2 f(0,0)}{\partial y \partial x}$ for the function

$$f(x,y) = \begin{cases} \frac{xy(3x^2 - 2y^2)}{x^2 + y^2}, & (x,y) \neq 0 \\ 0, & (x,y) \neq 0 \end{cases}$$
 also discuss the continuity $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$

of at (0, 0)

(Year 2014)

(Year 2014)

(15 Marks)

Q115. Test for convergence $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{n^2+1} \right)$

(Year 2015)

(10 Marks)

Q116. Is the function $f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n} \\ 0, & x = 0 \end{cases}$ Riemann integrable? If yes, obtain the value of $\int_0^1 f(x) dx$.

(Year 2015)

(15 Marks)

Q117. Test the series of function $\sum_{n=1}^{\infty} \frac{nx}{1+n^2x^2}$ for uniform convergence.

(Year 2015)

(15 Marks)

Q118. Find the absolute maximum and minimum values of the function

 $f(x, y = x^2 + 3y^2 - y \text{ over the region } x^2 + 2y^2 \le 1.$

(Year 2015)

Q119. For that function $f:(0,\infty)\to R$ given by $f(x)=x^2\sin\frac{1}{x}$, $0< x<\infty$. Show that there is a differentiable function $g:R\to R$ that extends f

(Year 2016)

(10 Marks)

Q120. Two sequences $\{x_n\}$ and $\{y_n\}$ are defined inductively by the following

$$x_1 = \frac{1}{2}, y_1 = 1, x_n = \sqrt{x_{n-1}y_{n-1}} \ n = 2, 3, 4 \dots \frac{1}{y^n} = \frac{1}{2} \left(\frac{1}{x_n} + \frac{1}{y_{n-1}} \right), n = 2, 3, 4 \dots$$

And prove that $x_{n-1} < x_n < y_{n-1}$, n = 2,3,4... and deduce that both the sequence converges to the same $\lim tl$ where $\frac{1}{2} < l < 1$.

(Year 2016)

(10 Marks)

Q121. Show that $\sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n^2+1} \right)$ conditionally convergent (if you use any theorem (s) to show it then you must give a proof of that theorem(s).

(Year 2016)

(15 Marks)

Q122. Find the relative maximum minimum values of the function

$$x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

(Year 2016)

(15 Marks)

Q123. Let $f: R \to R$ be continuous function such $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ exist and are finite. Prove that is uniformly continuous on \mathbb{R} .

(Year 2016)

(15 Marks)

Q124. Let $x_1 = 2$ and $x_{n+1} = \sqrt{x_n + 20}$, n = 1, 2, 3 show that the sequence x_1, x_2, x_3 ... is convergent.

(Year 2017)

(10 Marks)

Q125. Find the Supremum and the infimum of $\frac{x}{\sin x}$ on the interval $\left(0, \frac{\pi}{2}\right)$

(Year 2017)

(10 Marks)

Q126.Let $f(t) = \int_0^t f(x)dx$ where [x] denote the largest integer less than or equal to x

- (i) Determine all the real numbers t at which f is differentiable.
- (ii) Determine all the real numbers t at which f is continuous but not differentiable.

(Year 2017)

(15 Marks)

Q127. Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series of real numbers. Show that there is a rearrangement $\sum_{n=1}^{\infty} x_n$ (n) of the series $\sum_{n=1}^{\infty} x_n$ that converges to 100.

(Year 2017)

Q128. Find the range of p(>0) for which the series

$$\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \cdots$$
, $a > 0$ is

- (i) Is absolutely convergent
- (ii) Conditionally convergent

(Year 2018)

(20 Marks)

Q129. Prove the inequality: $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$

(Year 2018)

(10 Marks)

Q130. Show by applying residue theorem that $\int_0^\infty \frac{dx}{(x^2+a^2)^2} = \frac{\pi}{4a^3}$, a > 0.

(Year 2018)

(15 Marks)

Q131. Show that of a function f defined on an open interval (a, b) of \mathbb{R} is convex, then f is a continuous. Show, by example, if the condition of open interval is dropped then the convex function need not to be continuous.

(Year 2018)

Q132. Suppose \mathbb{R} be the set of all real numbers and $f: \mathbb{R} \to \mathbb{R}$ is a function such that the following equations hold for all $x, y \in \mathbb{R}$:

(i)
$$f(x + y) = f(x) + f(y)$$

(ii)
$$f(xy) = f(x)f(y)$$

Show that $\forall x \in \mathbb{R}$ either f(x) = 0 or f(x) = x.

(Year 2018)

(20 Marks)

Q133. Show that the function

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x - y}, & (x,y) \neq (1,-1), (1,1) \\ 0, & (x,y) \neq (1,-1), (1,1) \end{cases}$$

Is continous and differntiable at (-1, 1).

(Year 2019)

(10 Marks)

Q134. Evaluate

$$\int_{0}^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^{2})} dx, a > 0, a \neq 1$$

(Year 2019)

(10 Marks)

Q135. Discuss the uniform convergence of

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \forall x \in \mathbb{R} (-\infty, \infty), n = 1, 2, 3, \dots$$

(Year 2019)

(15 Marks)

Q136. Find the maximum value of $f(x, y, z) = x^2y^2z^2$ subject to the subsidiary condition

$$x^2 + y^2 + z^2 = c^2$$
, $(x, y, z > 0)$.

(Year 2019)

(15 Marks)

Q137. Discuss the convergence of $\int_{1}^{2} \frac{\sqrt{x}}{\ln x} dx$

(Year 2019)