CS 6363 - ASSIGNMENT 4 - PART ONE

PROBLEM-1:

(a). DIJKSTRA'S ALGORITHM:

Source: S.

Distance table:

Order of visited vertices: s,a,d,b,c,e.

	A	ctive	ve	rtex	in e	ach rm	nd.
1	Initial		0	d	b	C	e.
			0	0	0	0	0
S	0	0		3	3	3	3
a	00	3				7	7
Ь	00	00	F	,			
	1 00	00	12	10	9	9	
C	1 00	6	5	5	5		
d		00	00	12	11	10	10
0	00						

Parent Table:

1	Initially	S	a	d	Ь	C	
5	NULL	NULL	NULL	NULL	ф	Ф	
1	-	S	S	S	5	S	
6		-	a	a	a	•	
C		_	a	d	Ь	Ь	
d		S	a	a	a	a	
e	-	-	-	e	Ь	C	

Shortest path Tree:

From, s Shortest distance to:

$$a = 3$$
 $b = 7$
 $c = 9$
 $d = 5$
 $e = 10$

b). Bellman Ford Algorithm.

Distance Table:

Visiting Order of the edges:
s - a
$s \rightarrow d$ $a \rightarrow b$
$a \rightarrow c$ $a \rightarrow d$
d→c d→e
b>c b>e
c >e

Vertex	Initial	Round 1	Round 2	Round 5
	0	0	0	0
S	00	3	3	3
6	00	7	7	7
C	00	X 169	9	5
d	00	85	10	10
e	00	12 × 10		

Vertex	Initially Parent	Round 1.	Round 5
S	\$	Ф	4
a	-	S	5
Ь		a	9
c		Ь	Ь
d		a	a
e	-	C	6

Shortest path tree:

Shortest path tree:

Shortest path tree:

A 4 6

A 1 6

PROBLEM-2:

Algorithm CheckSPT (s,V,E, pred[1...n], dist[1...n])

if (pred(s) # NULL or dist[s] # 0)

return false

for all (u,v) E E

if dist[u] + weight(u,v) < dist[v]

return false

else if dist[u] + weight(u,v) = dist[v]

if pred(v) # u

return false

return false

Explanation:

- 1) We simply loop through all edges in the input graph and check if there is a tense edge.
 - 2) Since all the edges have positive weights, there cannot be a negative weight eycle in the graph.
 - 3> Hence, the shortest path tree must not contain tense edges.

Running time:

i) Base case checks for pred(s) = NULL and dist[s] = 0. This takes 0(1) time.

- i.e. O(|V|+|E|)3) The comparisons inside the for loop

 take O(1) time:

 [:.T(n) = O(|V|+|E|)]

 Also, for every edge in the shortest path tree,

 we check if: O(|V|+|E|)
 - where (n,v) is the edge in the SPT.

```
PROBLEM-3:
Algorithm Best Edge (V, E, F, s, t)
    P = size (EXF)
    init array A[1-..p]
    init array B[1...p]
    for all edges (u,v) E (EIF)
         put u in A
         put V in B.
               on H=(V,F)
     Run Dijkstra(s) and update the distances
      of the vertices in A
      Reverse the direction of the edges in
      Run Dijkstra(t) on H and update
       the distances of the vertices in B.
      min= 00, edge = NULL
      for i=1 to p
          if (dist(A[i]) + weight(A[i],B[i]) +
                    dist (B[i]) < min
              min = dist (A[i]) + weight (A[i], B(i)) + dist(B(i))
              edge = (A[i],B[i])
      return edge
```

explanation:

- We first initialize an array for all the starting points of the edges removed and an array for the ending prints of these some edges.
- 2) We traverse through these edges and put The Start and end points in arrays A and B respectively.
 - 3> We run Dijkstra with Sovece s and in The process update the distances of all vertices
 - 4) We reverse the edges in (V,F) and sun Dijkstra with source t. We update the distances of all vertices in B.
 - 5) The best edge e= (A[i],B[i]) is the one with minimum value of:

dists[A[i]] + distt[B[i]] + weight(A[i],B(i)) where subscript denotes the vertex which is taken as the source for computing that distance using Dijkstra.

if we me

binary heap.

Running time:

Looping over edges removed: O(IEI) Running Dijkstra from S: O(|E| log |V|)

Reversing graph: O(IVI+IEI)

Running Dijkstra from t: O(IEI log IVI)

Looping over edges removed: o(IEI):. T(n) = o(IEI) + o(IEI log [VI) + o(IVI+IEI) + o(IEI log IVI) + o(IEI)T(n) = o(IEI log IVI)

ROBLEM-4:

a). Residual graph.

(b). Assuming s is the source and t is the destination, an example of augmenting path: $s \to c \to a \to b \to t$

{5,a,b} and {C,d,t} Capacity = 10+5+10+20=45