Manual de Construcción: Robot Seguidor de Luz

Lista de Materiales

Componentes Electrónicos

- 1 Batería de 9V con conector
- 2 Fotorresistencias (LDR)
- 2 Transistores BC548
- 2 Transistores TIP41
- 2 LEDs (cualquier color)
- Resistencias:
- -2×10 k Ω (marrón-negro-naranja)
- -2×1 k Ω (marrón-negro-rojo)
- $2 \times 220\Omega$ (rojo-rojo-marrón)
- 2 Motores DC de 3-9V
- Cable para conexiones

Materiales Estructurales

- 1 Base de plástico o madera (15×10 cm aproximadamente)
- 2 Ruedas compatibles con los motores
- 1 Rueda loca o punto de apoyo frontal
- Tornillos y tuercas para montaje
- Cinta doble cara o pegamento
- Portapilas para batería 9V

Herramientas Necesarias

- Soldador y estaño (Opcional)
- Destornilladores
- Alicates
- Pelacables
- Multimetro (opcional pero recomendado)
- Taladro (para hacer agujeros en la base)

Proceso de Construcción

1. Preparación de la Base

- 1. Marca la posición de los componentes en la base:
 - LDRs en la parte frontal, separados entre sí
 - Motores en los laterales traseros
 - Rueda loca en el centro frontal
 - Espacio para circuito en el centro
 - Espacio para batería en la parte trasera
- 2. Realiza los agujeros necesarios para:
 - Montaje de motores
 - Fijación de la rueda loca
 - Paso de cables de los LDR
 - Tornillos de sujeción del circuito

2. Montaje Mecánico

- 1. Fija los motores a la base
- 2. Coloca las ruedas en los motores
- 3. Instala la rueda loca frontal
- 4. Monta el portapilas para la batería

3. Construcción del Circuito

Fase 1: Circuito de Sensores

- 1. Conecta las resistencias de $10k\Omega$ a cada LDR:
 - Un extremo del LDR al positivo (9V)
 - El otro extremo a la resistencia de $10k\Omega$
 - La otra pata de la resistencia a tierra (GND)
- 2. Conecta los LEDs indicadores:
 - Identifica el ánodo (pata más larga) y cátodo (pata más corta) de cada LED
 - Conecta las resistencias de 470Ω al ánodo de cada LED
 - El otro extremo de la resistencia va al colector del transistor correspondiente
 - El cátodo del LED va a tierra (GND)
- 3. Conecta los transistores T1 y T2:
 - Colector: A través de R5/R6 (470 Ω) al LED correspondiente
 - Base: Al punto medio entre LDR y R1/R2 a través de R3/R4 (1 $k\Omega$)
 - Emisor: A tierra (GND)

Fase 2: Circuito de Motores

- 1. Conecta los transistores T3 y T4:
 - Colector: Al terminal positivo del motor correspondiente
 - Base: Al colector del transistor de control (T1/T2)
 - Emisor: A tierra (GND)
 - El otro terminal del motor va conectado al positivo (9V)

Figura 1: Esquema del Circuito

4. Verificación y Pruebas

- 1. Revisa todas las conexiones con el multímetro
- 2. Comprueba que no hay cortocircuitos
- 3. Conecta la batería y verifica:
 - LEDs funcionan con cambios de luz
 - Motores responden a los cambios de luz
 - No hay sobrecalentamiento

Figura 2: Prueba de funcionamiento

5. Ajustes Finales

- 1. Calibra la sensibilidad:
 - Ajusta la posición de los LDR
 - Modifica las resistencias si es necesario
- 2. Asegura todos los componentes:
 - Fija los cables sueltos
 - Asegura la batería
 - Revisa tornillos y conexiones

Consejos de Construcción

- Suelda los componentes en una placa de circuito impreso
- Usa cables de diferentes colores para identificar conexiones
- Mantén las conexiones lo más cortas posible
- Deja espacio para mantenimiento
- Protege los componentes sensibles

Solución de Problemas

- Si los motores no giran: Verifica las conexiones de los transistores
- Si los LEDs no encienden: Comprueba la polaridad
- Si el robot no sigue la luz: Ajusta la posición de los LDR
- Si hay movimientos erráticos: Revisa las conexiones de los motores

Mantenimiento

- Revisa periódicamente las conexiones
- Mantén limpios los sensores LDR
- Verifica el voltaje de la batería