EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Representations of graphs

- Adjacency matrix:
 - $\Box A = [a_{ij}], \text{ where }$

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Symmetric for undirected graphs

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \cdots \begin{array}{c} \cdots & \mathbf{1} \\ \cdots & \mathbf{2} \\ \cdots & \mathbf{3} \\ \cdots & \mathbf{4} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \end{bmatrix}$$

Adjacency List

- Each vertex has list of neighbor nodes
 - For directed graphs, out-list
 - Used in MATLAB for sparse matrices
 - Can be implemented as arrays
 - Forward-Star
 - or linked lists
 - |V|+|E| for directed graphs
 - Must store 2 edges for undirected

V vertices E edges

1. Edge list: {a,b}, {b,c}, {c,d}, {d,e}, {e,a}, {e,b}

2. Adjacency list

Vertex	Adjacencies
a	b, e
b	a, c, e
С	b, d
d	c, e
e	a, b, d

Linked List Form

Forward Star Representation

Vertex Array First[I]

Edges[j]

Just the adjacency list put end to end in the arc array!

	a	b	С	d	е
а	0	I	0	0	
b	I	0	I	0	I
С	0	I	0	I	0
d	0	0	I	0	I
е			0		0

4. Incidence matrix:

Matrix of vertex rows, edges columns M =

Directed: -1 in start of edge, 1 in end

Undirected: 1 in both

	1	2	3	4	5	6
а			0	0	0	0
b	0	I	1	0	I	0
С	0	0	0	0	ı	
d	0	0	0	I	0	
е	I	0	I		0	0

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Graph Traversals

- Traversals of graphs are also called *searches*
- We can use either breadth-first or depth-first traversals
 - Breadth-first requires a queue
 - Depth-first requires a stack
- We each case, we will have to track which vertices have been visited requiring $\Theta(|V|)$ memory
- The time complexity cannot be better than and should not be worse than $\Theta(|V| + |E|)$
 - Connected graphs simplify this to $\Theta(|E|)$
 - Worst case: $\Theta(|V|^2)$

Breadth-First Search

- 1. Mark all vertices as unvisited, parents as NULL, depth as -1
- 2. Choose any unvisited vertex, mark it as visited and enqueue it onto queue
- 3. While the queue is not empty:
 - Dequeue top vertex v from the queue. Do work to be done on that vertex
 - If parent[v] == NULL, set depth to 0; otherwise, set depth to depth[parent[v]] + 1
 - For each vertex adjacent to v (e.g. in out list) that has not been visited: Mark it visited, mark its parent as v, and enqueue it
 - Mark v as done
- 4. If there are unvisited vertices, choose any unvisited vertex, mark it as visited, enqueue it and repeat step 3
- This can handle graphs that are not connected
 - Marking as visited avoids cycles
 - Complexity: O(#V + #E), reduces to O(#E) if strongly connected
 - Size of queue is O(#V)

Depth-First Search

Recursive implementation:

- 1. Mark all vertices as unvisited; mark all parents as NULL
- 2. While there are vertices marked as unvisited:
 - Select unvisited vertex v, mark as visited:
 - Do DFS(vertex)

DFS(vertex):

- For neighbors of vertex
 - If neighbor is unvisited, mark as visited and do DFS(neighbor)
- This can handle graphs that are not strongly connected
 - Marking as visited avoids cycles
 - Complexity: O(#V + #E), reduces to O(#E) if strongly connected
 - Size of queue is O(#V)

Recursive depth-first traversal

A recursive implementation uses the call stack for memory:

```
void Graph::depth_first_traversal( Vertex *first ) const {
    std::unordered_map<Vertex *, int> hash;
    hash.insert( first );

    first->depth_first_traversal( hash );
}

void Vertex::depth_first_traversal( unordered_map<Vertex *, int> &hash ) const {
    // Perform an operation on this

    for ( Vertex *v : adjacent_vertices() ) {
        if ( !hash.member( v ) ) {
            hash.insert( v );
            v->depth_first_traversal( hash );
        }
    }
}
```

Depth-First Search

Iterative implementation: (Similar to Recursive)

- 1. Mark all vertices as unvisited; mark all parents as NULL
- 2. While there are vertices marked as unvisited:
 - Choose any unvisited vertex, mark it as visited and push it onto stack
 - While stack is not empty:
 - Let *v* be the vertex that is on top of stack.
 - If v has no unvisited neighbors, pop v, work on it and mark it done
 - Else select an unvisited neighbor of v, mark neighbor as visited, set parent[neighbor] = v, and push neighbor onto stack
- This can handle graphs that are not strongly connected
 - Marking as visited avoids cycles
 - Complexity: O(#V + #E), reduces to O(#E) if strongly connected
 - Size of queue is O(#V)

Depth-First Search

Alternative Iterative implementation: (Different from Recursive)

- 1. Mark all vertices as unvisited; mark all parents as NULL
- 2. While there are vertices marked as unvisited:
 - Choose any unvisited vertex v, mark it as visited and push it onto stack
 - While stack is not empty:
 - Pop v be the vertex that is on top of stack. Work on v. For any unvisited neighbors of v in its out list, mark neighbor as visited, set parent[neighbor] = v, and push it onto stack. Mark v as done
- · This can handle graphs that are not strongly connected
 - Marking as visited avoids cycles
 - Complexity: O(#V + #E), reduces to O(#E) if strongly connected
 - Size of queue is O(#V)

Iterative depth-first traversal

An iterative implementation can use a stack

```
void Graph::depth_first_traversal( Vertex *first ) const {
   unordered_map<Vertex *, int> hash;
   hash.insert( first );
   std::stack<Vertex *> stack;
   stack.push( first );

while ( !stack.empty() ) {
     Vertex *v = stack.top();
     stack.pop();
     // Perform an operation on v

     for ( Vertex *w : v->adjacent_vertices() ) {
        if ( !hash.member( w ) ) {
            hash.insert( w );
            stack.push( w );
         }
     }
}
```

Example: BFS

Performing a breadth-first traversal:

Pop B and push DDone: A, B

Pop C and push F A, B, C

Performing a breadth-first traversal:

- Pop E and push G,
- Done: A, B, C, E

D F	G	Н		
-----	---	---	--	--

Pop D A, B, C, E, D

Performing a breadth-first traversal:

- Pop F
- Done: A, B, C, E, D,F

Pop G, push I A, B, C, E, D, F, G

Performing a breadth-first traversal:

- Pop H
- Done: A, B, C, E, D,F, G, H

Pop I

A, B, C, E, D, F, G, H, I

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown d[u]. The queue Q is shown at the beginning of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the queue.

Performing a recursive depth-first traversal:

- Insert A: Visited: A, B

Stack: A, B

Examine B: Visited A, B, C,

Stack A, B, C

Performing a recursive depth-first traversal:

- Examine C: Visited: A, B,C,D

Stack: A,B,C,D

Pop D: Visited A, B, C, D

Stack A,B,C

Performing a recursive depth-first traversal:

Examine C: Visited: A,B,C,D,E

Stack: A,B,C,E

Examine E: Visited A,B,C,D,E,G

Stack A,B,C,E,G

Performing a recursive depth-first traversal:

Examine G: Visited: A,B,C,D,E,G,IStack: A,B,C,E,G,I

Examine I: Visited A,B,C,D,E,G,I,H Stack A,B,C,E,G,I,H

Performing a recursive depth-first traversal:

- Pop H: Visited: A,B,C,D,E,G,I,H

Stack: A,B,C,E,G,I

Pop G, then E

Inspect C: Visited A,B,C,D,E,G,I,H,F

Stack: A,B,C,F

Pop I: Visited A,B,C,D,E,G,I,H

Stack A,B,C,E,G,

Pop F, C, B, A. Done.

Comparison

The order in which vertices can differ greatly

An iterative depth-first traversal may also be different again

A, B, C, E, D, F, G, H, I

A, B, C, D, E, G, I, H, F

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Vertices are timestamped by discovery time/finishing time.

Applications

Applications of tree traversals include:

- Determining connectedness and finding connected sub-graphs
- Determining the path length from one vertex to all others
- Testing if a graph is bipartite
- Branch and bound search
- Topological Sort

– ...

Topological Sort

Application

- o Given a number of tasks, there are often a number of constraints between the tasks:
 - o task A must be completed before task B can start
- These tasks together with the constraints form a directed acyclic graph
- A topological sort of the graph gives an order in which the tasks can be scheduled while still satisfying the constraints

Topological Sort

o Course prerequisite structure represented in an acyclic graph

Topological Sort

o Topological Sort (Relabel): Given a directed acyclic graph (DAG), relabel the vertices such that every directed edge points from a lower-numbered vertex to a higher numbered one

154

Algorithm Using Priority

Determine the indegree of each vertex List is set of vertices with indegree 0

Vertex Indegree

1	2	3	4	5	6	7	8
2	2	3	2	1	1	0	2

next

Select a node from LIST

Select a vertex from LIST and delete it.

For all vertices in outlist of vertex, reduce in degree by 1

update LIST

Node Indegree

1	2	3	4	5	6
2	2	3	1	0	1

next

Delete 5

next 2

Node Indegree

1	2	3	4	
2	7	3	0	

6		8
0		2
	ı	

Delete 6

next

Node Indegree

1	2	3	4
1	0	3	0

8 2

Delete 2

next 4

Node Indegree

1	
0	

3	4
3	0

next 5

Node
Indegree

3	4
2	0

8

next := next +1
order(i) := next;
update
indegrees
update LIST

Node Indegree

3

8

next

next := next +1
order(i) := next;

update indegrees

update LIST

next 7

Node 3
Indegree 0

List is empty.

Node Indegree

The algorithm terminates with a topological order of the nodes

next

Complexity of Topological Sort

- Computing indegrees: O(#E)
 - Recursively updating indegrees: One operation per edge, O(#E)
 - So, algorithm is O(#E), using an array of O(#V)
- Alternative algorithm: recursive DFS (O(#E))
 - Order in which vertices are completed is reverse order of a topological sort!

Stack: 1 2 4 Completed: 4

Stack: 1 2 3 Completed: 3

Stack: 1 2 5 Completed: 5

Stack: 1 2 Completed: 2

Stack: 1 Completed: 1

Stack: 6 Completed: 6

Reverse Order: 6,1,2,5,3,4

DAG Topological Sort (Execution order)

- Connected undirected graph is biconnected if there are no nodes whose removal disconnects the graph
- Nodes whose removal disconnect the graph are known as articulation points
- o DFS can be used to find articulation points:
 - o Algorithm: Number nodes in Depth First Search order, in the order in which they are inserted into the execution stack of the recursive Depth-First Search. This creates a spanning tree in the graph. Call this number NUM(n) for node n

o Algorithm:

- Number vertices in DFS order, in the order in which they are marked as visited in DFS. Call this number NUM(n) for vertex n
- o For each vertex n, compute the lowest numbered vertex which is reachable from node n by following down the tree 0 or more steps and using a single edge which is not on the tree. Call that number LOW(n)
- o Find articulation points as follows:
 - o a root of a DFS tree is an articulation point if and only if it has more than one child.
 - Any vertex n is an articulation point if and only if there is a child m of n in the DFS tree such that LOW(m) ≥ NUM(n)

o For each vertex n, compute the lowest numbered vertex which is reachable from node n by following down the tree 0 or more steps and using a single edge which is not on the tree. Call that number LOW(n)

- o Why does this work?
 - o **Property** 1: The lowest numbered vertex reachable from n with one backward arc must be an ancestor of n in DFS tree
 - o DFS algorithm guarantees that edges not included in the spanning tree cannot cross between branches.
 - o **Property** 2: If, for all children n1 of n in DFS tree, LOW(n1) < NUM(n), then there is path from each n1 to an ancestor of n which bypasses n (because it is not in the DFS tree) ==> removing n leaves its ancestors and successors connected, so n cannot be an articulation point
 - O Property 3: If there is a child n1 of n for which LOW(n1) >= NUM(n), then there is no path from n1 to any ancestor of node n which does not go through n ==> removing n disconnects n1 ==> n is articulation point

Example

LOW(1) = 1
LOW(2) = 1
LOW(3) = 1
LOW(4) = 1
LOW(5) = 1
LOW(6) = 1
LOW(7) = 1
LOW(8) = 1
LOW(9) = 1

DFS tree

NO ARTICULATION POINTS

Strong Connectivity

- A graph is strongly connected if every vertex can be reached from every other vertex
 - Would like to detect if a graph is strongly connected
- o Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.
- o Algorithm: Pick any s.
 - o Run BFS from s and verify all vertices can be reached
 - o Reverse all edges in E, run BFS and verify all vertices can be reached
 - Complexity O(#E + #V) (2 BFS).

Strongly-Connected Components

- A graph is strongly connected if every vertex can be reached from every other vertex
 - A strongly-connected component of a graph is a subgraph that is strongly connected
 - Would like to identify stronglyconnected components of a graph
 - O Can be used to identify weaknesses in a network
 - o General approach: Perform two DFSs

Strongly-Connected Components

- o Kosaraju's Algorithm
 - o Perform DFS on graph G = (V, E),
 - o Number vertices according to their finishing time in DFS of G
 - Perform DFS on Gr = (V,Er), where Er are reverse of edges in E, selecting nodes in decreasing order of finishing time in previous DFS
 - Strongly connected components = reachable trees obtained in last DFS

Example

Example

Reverse graph with distance labels

Reverse graph reachable trees

Strongly-Connected Components

o Correctness

- o If v and w are in a strongly-connected component
- o Then there is a path from v to w and a path from w to v
- o Therefore, there will also be a path between v and w in G and Gr

o Running time

- Two executions of DFS
- o O(|E|+|V|)