3D Modeling & Simulations in Bioinformatics (CS06F)

ASSIGNMENT: 01

METROPOLIS MONTI CARLO SIMULATION

OF

2D Hyperbolic-Polar model of Proteins

Name: ZEESHAN ALI, Roll No: I14-1623

Instructor: PROF. HAMMAD NAVEED

Main Block

```
probability = 0.5
NUM OF ITERATIONS = 1000
hyper parameter = 6
energy = calculate Energy(residue position)
energies = []
rpositions = []
mutation type = []
for iteration in range(NUM OF ITERATIONS):
    rp , m type = random mutation(residue position)
    residue position updated = np.copy(rp)
    if (residue position updated != []):
        energy updated = calculate Energy(residue position updated)
        if (energy_updated < energy):</pre>
            energy = energy_updated
            residue position = np.copy(residue position updated)
        elif ((energy updated-energy) < hyper parameter*probability):</pre>
            energy = energy updated
            residue position = np.copy(residue position updated)
    energies.append(energy)
    rpositions.append(residue position)
    mutation type.append(m type)
```

Results of the algorithm on different protein sequences

(Observed that the performance was better for longer sequences)

S#	Length	Sequence	Energy
01	20	НРНРРННРНРРНРН	-4
02	24	РРНРРННРРРРННРРРРНН	-2
03	25	РРНРРННРРРРННРРРРНН	-2
04	36	РРРННРРННРРРРНННННННРРННРРРРННРР	-5
05	48	РРНРРННРРННРРРРРНННННННННРРРРРРРННРРНННРРНННН	-16
06	51	ННРНРНРННННРНРРРНРРРНРРРРНРРРНРРННННННРНР	-16
07	60	РРНННРННННННРРРНННННННННРРРРННННННННННН	-31
08	64	ННННННННННРНРРННРРННРРННРРННРРННРРННРРННРРННРРННРНННН	-40
09	85	ННННРРРРНИНИНИННИННРРРРРРНИНИНИННННННРРРНИНИНННННН	-59
10	100	РРРННРРНННРРННРННРННРННННРРРРРРРРНННННН	-33
11	100	РРРРРРНРННРРРРНННИННРНННРРРРРРРРРРРРРР	

→ STRING_02 = "H"*2+("P"*2+"H")*7+"H"

→ STRING_03 = "P"*2+"H"+"P"*2+("H"*2+"P"*4)*3+"H"*2

→ STRING_04 = "PPPHH"+"P"*2+"H"*2+"P"*5+"H"*7+"P"*2+"H"*2+"P"*4+"HHPPHPP"

→ STRING_05 = "P"*2+"H"+("P"*2+"H"*2)*2+"P"*5+"H"*10+"P"*6+ ("P"*2+"H"*2)*2+"H"+"P"*2+"H"*5

→ STRING_06 = "H"*2+"PH"*3+"P"+"H"*4+"PH"+("P"*3+"H")*2+"P"*4+"H"+ ("P"*3+"H")*2+"PHP"+"H"*4+"HP"*3+"H"*2

→ STRING_08 = "H"*12+"PH"*2+"PPHH"*2+"PPHPPHHPPHHPPHHPPHHPPHPPHPHP"+"H"*12

→ STRING_09 = "HHHHPPPPHHHHHHHHHHHHHHHHHHPPPPPP"+("H"*12+"P"*3)*3+ "HPPHHPPHHPPHP"

