

Objectives

After completing this lesson, you should be able to do the following:

- Outline the Oracle architecture and its main components
- List the structures involved in connecting a user to an Oracle Instance

Overview of Primary Components

Oracle Server

An Oracle server:

- Is a database management system that provides an open, comprehensive, integrated approach to information management
- Consists of an Oracle Instance and an Oracle database

Oracle Instance

An Oracle Instance:

- Is a means to access an Oracle database
- Always opens one and only one database
- Consists of memory and background process structures

Memory structures

Background process structures

Establishing a Connection and Creating a Session

Connecting to an Oracle Instance:

Establishing a user connection

Oracle Database

An Oracle database:

- Is a collection of data that is treated as a unit
- Consists of three file types

Physical Structure

The physical structure includes three types of files:

- Control files
- Datafiles
- Redo log files

Memory Structure

Oracle's memory structure consists of two memory areas known as:

- System Global Area (SGA): Allocated at instance startup, and is a fundamental component of an Oracle Instance
- Program Global Area (PGA): Allocated when the server process is started

System Global Area

- The SGA consists of several memory structures:
 - Shared Pool
 - Database Buffer Cache
 - Redo Log Buffer
 - Other structures (for example, lock and latch management, statistical data)
- There are two additional memory structures that can be configured within the SGA:
 - Large Pool
 - Java Pool

System Global Area

- SGA is dynamic
- Sized by the SGA MAX SIZE parameter
- Allocated and tracked in granules by SGA components
 - Contiguous virtual memory allocation
 - Granule size based on total estimated SGA MAX SIZE

Shared Pool

- Used to store:
 - Most recently executed SQL statements
 - Most recently used data definitions
- It consists of two key performance-related memory structures:
 - Library Cache
 - Data Dictionary Cache
- Sized by the parameter SHARED_POOL_SIZE

```
ALTER SYSTEM SET
SHARED_POOL_SIZE = 64M;
```


Library Cache

- Stores information about the most recently used SQL and PL/SQL statements
- Enables the sharing of commonly used statements
- Is managed by a least recently used (LRU) algorithm
- Consists of two structures:
 - Shared SQL area
 - Shared PL/SQL area
- Size determined by the Shared Pool sizing

Data Dictionary Cache

- A collection of the most recently used definitions in the database
- Includes information about database files, tables, indexes, columns, users, privileges, and other database objects
- During the parse phase, the server process looks at the data dictionary for information to resolve object names and validate access
- Caching data dictionary information into memory improves response time on queries and DML
- Size determined by the Shared Pool sizing

Database Buffer Cache

- Stores copies of data blocks that have been retrieved from the datafiles
- Enables great performance gains when you obtain and update data
- Managed through an LRU algorithm
- DB BLOCK SIZE determines primary block size

Database Buffer Cache

- Consists of independent sub-caches:
 - DB CACHE SIZE
 - DB KEEP CACHE SIZE
 - DB RECYCLE CACHE SIZE
- Can be dynamically resized

```
ALTER SYSTEM SET DB_CACHE_SIZE = 96M;
```

- DB_CACHE_ADVICE set to gather statistics for predicting different cache size behavior
- Statistics displayed by V\$DB_CACHE_ADVICE

Redo Log Buffer

- Records all changes made to the database data blocks
- Primary purpose is recovery
- Changes recorded within are called redo entries
- Redo entries contain information to reconstruct or redo changes
- Size defined by LOG BUFFER

Large Pool

- An optional area of memory in the SGA
- Relieves the burden placed on the Shared Pool
- Used for:
 - Session memory (UGA) for the Shared Server
 - I/O server processes
 - Backup and restore operations or RMAN
 - Parallel execution message buffers
 - PARALLEL AUTOMATIC TUNING set to TRUE
- Does not use an LRU list
- Sized by LARGE POOL SIZE

Java Pool

- Services parsing requirements for Java commands
- Required if installing and using Java
- Sized by JAVA POOL SIZE parameter

Program Global Area

 Memory reserved for each user process connecting to an Oracle database

Allocated when a process is created

 Deallocated when the process is terminated

Used by only one process

Process Structure

Oracle takes advantage of various types of processes:

- User process: Started at the time a database user requests connection to the Oracle server
- Server process: Connects to the Oracle Instance and is started when a user establishes a session
- Background processes: Started when an Oracle Instance is started

User Process

- A program that requests interaction with the Oracle server
- Must first establish a connection
- Does not interact directly with the Oracle server

Database user

Server Process

- A program that directly interacts with the Oracle server
- Fulfills calls generated and returns results
- Can be Dedicated or Shared Server

Background Processes

Maintains and enforces relationships between physical and memory structures

- Mandatory background processes:
 - DBWn– PMON– CKPT
 - LGWR SMON
- Optional background processes:
 - ARCn LMDn RECO
 - CJQ0 LMON Snnn
 - DnnnPnnn
 - LCKnQMNn

Database Writer (DBWn)

DBWn writes when:

- Checkpoint occurs
- Dirty buffers reach threshold
- There are no free buffers
- Timeout occurs
- RAC ping request is made
- Tablespace OFFLINE
- Tablespace READ ONLY
- Table DROP or TRUNCATE
- Tablespace BEGIN BACKUP

Log Writer (LGWR)

LGWR writes:

- At commit
- When one-third full
- When there is 1 MB of redo
- Every three seconds
- Before DBWn writes

System Monitor (SMON)

Responsibilities:

- Instance recovery
 - Rolls forward changes in redo logs
 - Opens database for user access
 - Rolls back uncommitted transactions
- Coalesces free space
- Deallocates temporary segments

Process Monitor (PMON)

Cleans up after failed processes by:

- Rolling back the transaction
- Releasing locks
- Releasing other resources
- Restarting dead dispatchers

Checkpoint (CKPT)

Responsible for:

- Signaling DBWn at checkpoints
- Updating datafile headers with checkpoint information
- Updating control files with checkpoint information

Archiver (ARCn)

- Optional background process
- Automatically archives online redo logs when ARCHIVELOG mode is set
- Preserves the record of all changes made to the database

Logical Structure

- Dictates how the physical space of a database is used
- Hierarchy consisting of tablespaces, segments, extents, and blocks

Tablespace

Processing SQL Statements

- Connect to an instance using:
 - User process
 - Server process
- The Oracle server components that are used depend on the type of SQL statement:
 - Queries return rows
 - DML statements log changes
 - Commit ensures transaction recovery
- Some Oracle server components do not participate in SQL statement processing

Summary

In this lesson, you should have learned how to:

- Explain database files: datafiles, control files, online redo logs
- Explain SGA memory structures: Database Buffer Cache, Shared Pool, and Redo Log Buffer
- Explain primary background processes: DBWn, LGWR, CKPT, PMON, SMON
- Explain the use of the background process ARCn
- Identify optional and conditional background processes
- Explain logical hierarchy

Practice 1 Overview

This practice covers the following topics:

- Review of architectural components
- Structures involved in connecting a user to an Oracle Instance