Chapter 1: Chemical Reactions and Equations

What is a Chemical Reaction?

A chemical reaction is a process in which one or more substances (reactants) are changed into new substances (products) with different properties.

- g Examples from daily life:
 - Milk turning sour
 - Iron getting rusty
 - Grapes fermenting
 - Cooking of food
 - Digestion
 - Respiration

These involve change in identity or chemical nature — that's why they are chemical changes.

How Do You Know a Chemical Reaction Has Happened?

You can say a chemical reaction has occurred if you observe:

- 1. Change in colour
- 2. Change in state
- 3. Evolution of gas
- 4. Change in temperature

Word Equation

A word equation represents a chemical reaction using names of reactants and products.

Example:

Magnesium + Oxygen → Magnesium oxide

Reactants are written on the left-hand side (LHS), products on the right-hand side (RHS), and an arrow → shows the direction of the reaction.

Chemical Equation

Instead of words, we can use chemical formulas:

This is called a skeletal chemical equation (unbalanced).

Balanced Chemical Equation

To follow the Law of Conservation of Mass, number of atoms of each element must be same on both sides.

Example:

```
Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 \checkmark (Balanced)
```

If atoms are unequal, you adjust the equation by adding small whole number coefficients.

Physical States in a Chemical Equation

To make equations more informative, physical states are written as:

- (s) solid
- (l) liquid
- (g) gas
- (aq) aqueous (dissolved in water)

Example:

```
3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)
```

Types of Chemical Reactions

Combination Reaction

When two or more substances combine to form a single product.

Example:

 $CaO + H_2O \rightarrow Ca(OH)_2 + Heat (Exothermic)$

Other examples:

- $C + O_2 \rightarrow CO_2$
- $2H_2 + O_2 \rightarrow 2H_2O$
- Exothermic Reaction = Heat is released during the reaction

Decomposition Reaction

A single compound breaks down into two or more simpler substances.

⚠ Usually needs heat, light, or electricity.

Types:

(a) Thermal decomposition (by heat)

$$FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3$$

 $CaCO_3 \rightarrow CaO + CO_2$

(b) **Photodecomposition** (by light)

(c) **Electrolytic decomposition** (by electricity)

$$2H_2O \rightarrow 2H_2 + O_2$$

Endothermic Reaction = Energy is absorbed

_

Displacement Reaction

A more reactive element displaces a less reactive element from its compound.

Example:

```
Fe + CuSO<sub>4</sub> \rightarrow FeSO<sub>4</sub> + Cu
Zn + CuSO<sub>4</sub> \rightarrow ZnSO<sub>4</sub> + Cu
```

_

Double Displacement Reaction

Exchange of ions between two compounds to form new compounds.

Example:

```
Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl
Here BaSO_4 is a white insoluble solid \rightarrow called a precipitate
```

Precipitation Reaction = An insoluble substance (solid) is formed

_

Oxidation and Reduction (Redox)

Definitions:

- Oxidation = Gain of oxygen or loss of hydrogen
- **Reduction** = Loss of oxygen or gain of hydrogen

Example:

2Cu + O₂ → 2CuO (Oxidation)

CuO + H₂ → Cu + H₂O

CuO is reduced (loses oxygen), H₂ is oxidised (gains oxygen)

These reactions are called redox reactions.

Important Daily Life Effects

Corrosion

When a metal reacts slowly with air, water, or acids, it gets damaged.

Example: Iron becomes reddish-brown (rust), copper becomes green, silver becomes black.

This process is called corrosion.

💡 It leads to damage of iron bridges, railings, etc.

Rancidity

Spoiling of food containing oil/fat due to oxidation.

It smells bad and tastes sour.

Prevent rancidity by:

- Using antioxidants
- Packing food in nitrogen
- Keeping food in airtight containers

Type of Reaction	Definition	Example
Combination	2 or more reactants → 1 product	CaO + H ₂ O → Ca(OH) ₂
Decomposition	1 compound → 2 or more products	CaCO ₃ → CaO + CO ₂
Displacement	1 element replaces another in a compound	Zn + CuSO₄ → ZnSO₄ + Cu
Double Displacement	Exchange of ions between 2 compounds	BaCl₂ + Na₂SO₄ → BaSO₄ + NaCl
Oxidation	Gain of oxygen / Loss of hydrogen	$C + O_2 \rightarrow CO_2$
Reduction	Loss of oxygen / Gain of hydrogen	CuO + H₂ → Cu + H₂O
Exothermic	Heat is released	$CH_4 + O_2 \rightarrow CO_2 + H_2O +$ Heat
Endothermic	Heat/energy is absorbed	2AgCl → 2Ag + Cl ₂