$$\vec{v} = N_1(\vec{p}) \cdot \vec{v_1} + N_2(\vec{p}) \cdot \vec{v_2} + N_3(\vec{p}) \cdot \vec{v_3} \tag{1}$$

$$\vec{v} = N_1(\vec{p}) \cdot \vec{v_1} + N_2(\vec{p}) \cdot \vec{v_2} + N_3(\vec{p}) \cdot \vec{v_3} + N_4(\vec{p}) \cdot \vec{v_4}$$
 (2)

$$\vec{P_1} \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \vec{P_2} \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \vec{P_3} \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (3)

$$\xi(x,y) = \frac{x(y_3 - y_1) + y(x_1 - x_3) + y_1x_3 - y_3x_1}{(x_2 - x_1)(y_3 - y_1) + (y_1 - y_2)(x_3 - x_1)}$$

$$\eta(x,y) = \frac{x(y_1 - y_2) + y(x_2 - x_1) + y_2x_1 - y_1x_2}{(x_2 - x_1)(y_3 - y_1) + (y_1 - y_2)(x_3 - x_1)}$$
(4)

$$N_1(\xi, \eta) = 1 - \xi - \eta$$

$$N_2(\xi, \eta) = \xi$$

$$N_3(\xi, \eta) = \eta$$
(5)

$$\vec{v} = N_1(\xi, \eta) \cdot \vec{v_1} + N_2(\xi, \eta) \cdot \vec{v_2} + N_3(\xi, \eta) \cdot \vec{v_3}$$

$$= (1 - \xi - \eta) \cdot \vec{v_1} + \xi \vec{v_2} + \eta \vec{v_3}$$
(6)

$$x = a_1 + a_2 \xi + a_3 \eta + a_4 \xi \eta$$

$$y = b_1 + b_2 \xi + b_3 \eta + b_4 \xi \eta$$
(7)

$$N_{1} = \frac{(1-\eta)(1-\xi)}{4}$$

$$N_{2} = \frac{(1+\eta)(1-\xi)}{4}$$

$$N_{3} = \frac{(1+\eta)(1+\xi)}{4}$$

$$N_{4} = \frac{(1-\eta)(1+\xi)}{4}$$
(8)

$$\vec{P} = \frac{1}{4}(\vec{P_1} + \vec{P_2} + \vec{P_3} + \vec{P_4}) + \frac{\xi}{4}(\vec{P_2} - \vec{P_1} + \vec{P_3} - \vec{P_4}) + \frac{\eta}{4}(\vec{P_3} - \vec{P_2} + \vec{P_4} - \vec{P_1}) + \frac{\xi\eta}{4}(\vec{P_1} - \vec{P_2} + \vec{P_3} - \vec{P_4})$$
(9)

$$\vec{v} = \frac{(1-\eta)(1-\xi)}{4} \cdot \vec{v_1} + \frac{(1+\eta)(1-\xi)}{4} \cdot \vec{v_2} + \frac{(1+\eta)(1+\xi)}{4} \cdot \vec{v_3} + \frac{(1-\eta)(1+\xi)}{4} \cdot \vec{v_4}$$
(10)

$$\vec{P} = (1 - \alpha)\vec{P_1} + \alpha\vec{P_2} \qquad \alpha \in [0, 1]$$
(11)

$$\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \vdots & \vdots & \vdots \\ x_n & y_n & z_n \end{bmatrix}$$
 (12)

$$\begin{bmatrix} n_{11} & \cdots & n_{1N} \\ \vdots & \ddots & \vdots \\ n_{M1} & \cdots & n_{MN} \end{bmatrix}$$

$$(13)$$

$$\begin{bmatrix} n'_1 & \vec{e}_1 \\ \vdots & \vdots \\ n'_{MN} & \vec{e}_{MN} \end{bmatrix} \qquad \vec{e}_i \in \mathbb{R}^k, \ 1 \le i \le MN, \ k \in \mathbb{N}$$
 (14)