(SEM I) THEORY EXAMINATION 202-ENGINEERING MATHEMATICS-I

Note: Attempt all Sections. In case of any missing data; choose suitably, TIME: 3 HRS

		A CONTRACTOR	
	Attempt all questions in brief. Question	co	Leve
	Attempt all question Question	1	K2
Q no.	$[\cos\theta - \sin\theta]$		K3
	Find the eigen values of the matrix $\begin{bmatrix} \cos\theta & -\sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix}$.	2	100
_	Find the eigen values of $\frac{1-sin\theta}{1-sin\theta}$. If $u = \frac{x^2+y^2}{x+y}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2	KI
	If $u = \frac{x^2 + y^2}{x + y}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial w}{\partial y}$. What is the difference between total derivatives and partial derivatives?	3	K4
	What is the directions of Jacobians	4	K2
	What are the applications of sale's Theorem. Write the statement of Liouville's Theorem.		
		4	K3
	Evaluate $\int_1^2 \int_1^3 x^2 y^2 dx dy$.	5	K2
	Prove that $\operatorname{curl} \vec{r} = 0$.		

SECTION B

Attempt any three of the following:

	Attempt any three of the following:	co	Leve
) no.	Question		1
	Find two non-singular matrices P and Q such that PAQ is in normal	1	K2
i.			
	form,		Bitte
	Where $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \end{bmatrix}$		
	1 5 4 3	2	K3
),	Find the n^{th} derivative of $tan^{-1} \left(\frac{x}{a}\right)$	2	
	Find the volume of the largest rectangular parallelepiped that can be	3	K4
	inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.		A
	Apply Dirichlet's theorem to evaluate $\iiint xyzdxdxdz$ taken throughout	4	K3
	the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$		
	Show that the vector $f(r)\vec{r}$ is irrotational. Where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	5	K5

SECTION C

Attempt any one part of the following: 3.

	Accomply any one part of the following.		07 X	I = 07
Q no.	Question		CO	Level
a.	Find the eigen values and eigen vectors of the following matrices: $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	A =	1	K4
b.	Discuss for all values of K for the system of equations		1	K2

(SEM I) THEORY EXAMINATION 2024-25 ENGINEERING MATHEMATICS-I

M.MARKS:

	x + y + 4z = 6, $x + 2y - 2z = 5$, $Kx + y + z = 6$ as regards existence and nature of solution.		
-	Attempt any one part of the following:	CO	Level
-	Attempt any and parties Question	2	KI
Q no.		200	KI
1.	Trace the curve $y^2(u+x) = x^2(3u-x)$.		
	Trace the curve $y^2(u+x) = x^3(3u+x)$. If $u = f(r)$, where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{\partial^2 u}{\partial x^2} = f''(r)$		
			I A VASIA

5 After	mpt any one part of the	following:	
2/ /4/1/	mpr and and		
		Oue Bon	
			STREET, STREET

Question Question	3	K3
If $u = xyz$, $v = x^2 + y^2 + z^2$ and $\partial(x, y, z)$		
w = x + y + z. Find the Jacobian (y, y, w)	12	K3
Find the maxima and minima of the function $sinx + siny + sin(x + y)$	13	INJ

Attempt any one part of the following:

40		07
U/	X	

	Attempt any one part of the following.	Tco	Level
O no.	Question	Mary of	BAN YERSE
	Find the area inside the circle $r = 2a\cos\theta$ and outside the circle $r = a$	A	K4
2.	Change the order of integration and then evaluate	40	K2
b.	-24 -3U-X		
	$\int_{\mathbb{R}^4} (x^2 + y^2) dy dx$		
	Jo J <u>x</u>		

Attempt any one part of the following:

100		
	400 000 00	
		CONTRACTOR OF STREET

Q no.	Question	СО	Leve
2.	Show that div (gradr ⁿ) = $n(n+1)r^{n-2}$. Where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	5	K4
b.	Verify Stokes theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken round the rectangle bounded by the lines $x = 0$, $x = a$, $y = 0$, $y = b$.	5	K.5