PROPOSITIONAL LOGIC - SYNTAX -

The *syntax* introduces the entities used to define well-formed propositional formulas.

- $\Sigma_P = Var_propos \cup \{F, T\} \cup Connectives \cup \{(,)\}$ is the *vocabulary*;
- Var_propos={p,q,r,...} is a finite set of propositional variables;
- Connectives = { \neg (negation), \land (conjunction), \lor (disjunction), \rightarrow (implication), \leftrightarrow (equivalence)}.

The *negation* is a unary connective and all the others are binary connectives.

The decreasing order of precedence of the connectives is as follows:

$$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$$
.

F_P is the set of well-formed formulas built using the propositional variables, the connectives and the parentheses (to avoid ambiguity).
 example: (p → ¬q) ∧ (r ∨ q ↔ p) ∧ s

Semantics of propositional logic

- Logical propositions are models of propositional assertions from natural language, which can be true or false.
- The aim of the *semantics* is to give a *meaning* (to assign a truth value) to the propositional formulas
- The <u>semantic domain</u> is the set of <u>truth values</u>: $\{F(false), T(true)\}$, satisfy the relations:

$$\neg F = T, \neg T = F$$
.

> New connectives ↑ ("nand"), ↓ ("nor"), ⊕ ("xor") are introduced:

$$p \uparrow q := \neg(p \land q), \quad p \downarrow q := \neg(p \lor q), \quad p \oplus q := \neg(p \leftrightarrow q)$$

- > These new connectives are used in the design of logic circuits.
- The semantics of the connectives are provided by the following truth tables:

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \uparrow q$	$p \downarrow q$	$p \oplus q$
T	T	F	T	T	T	T	F	F	F
T	F	F	F	T	F	F	T	F	T
F	T	T	F	T	T	F	T	F	T
F	F	T	F	F	T	T	T	T	F

Truth tables

- A <u>conjunction</u> is <u>true</u> exactly when <u>both its operands</u> are <u>true</u>.
 As a generalization, the conjunction p₁ ∧ p₂ ∧ ... ∧ p_n is <u>true</u> exactly when all its n operands are true.
- A disjunction ("inclusive or") is false only when both its operands are false.
 As a generalization, the disjunction p₁ ∨ p₂ ∨ ... ∨ p_n is false only when all its n operands are false.
- The <u>implication</u> $p \rightarrow q$ is <u>false</u> only when the <u>hypothesis</u> p is <u>true</u> and the <u>conclusion</u> q is <u>false</u> (*true* cannot imply *false*).
- The equivalence $p \leftrightarrow q$ is true only when p and q have the same truth value.
- The connective ⊕ ("exclusive or") is the negation of equivalence and it is true
 only when one operand is true and the other one is false.

Stylistic variants in English for logical connectives

$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$		
A and B	A or B	If A, then B	A if and only if B		
Both A and B	Either A or B	If A, B	A is equivalent to B		
A, but B A, although B A as well as B A, B A, also B	A unless B	A is a sufficient condition for B A is sufficient for B In case A, B Provided that A, then B B provided that A B is necessary for A A only if B B if A	A is necessary and sufficient for B A just in case B		

Interpretation of a propositional formula

Definition

An interpretation of a formula $U(p_1, p_2,...,p_n) \in F_P$ is a function

$$i:\{p_1,p_2,...,p_n\}\to \{F,T\}$$

that can be extended to $i: F_P \to \{F, T\}$ using the following relations:

$$i(\neg p) = \neg i(p)$$
, $i(p \land q) = i(p) \land i(q)$, $i(p \lor q) = i(p) \lor i(q)$
 $i(p \to q) = i(p) \to i(q)$, $i(p \leftrightarrow q) = i(p) \leftrightarrow i(q)$

- A formula $U(p_1, p_2,...,p_n) \in F_P$ has 2^n interpretations.
- Interpretations assign truth values to propositional variables and using the semantics of the connectives evaluate formulas assigning truth values to them.
- The semantics is compositional, meaning that the truth value of a formula is obtained from the truth values of its subformulas.

Semantic concepts

Let $U(p_1, p_2,..., p_n)$ be a propositional formula.

An interpretation i which evaluates the formula U as true is called a model of U.

$$i:\{p_1,...,p_n\}\rightarrow\{T,F\}$$
 such that $i(U)=T$.

2. An interpretation i which evaluates the formula U as false is called an *anti-model* of U:

$$i:\{p_1,...,p_n\}\rightarrow\{T,F\}$$
 such that $i(U)=F$.

3. A formula U is called consistent (satisfiable) if it has a model:

$$\exists i: \{p_1,...,p_n\} \rightarrow \{T,F\} \text{ such that } i(U)=T.$$

4. The **formula** U is called **valid** (tautology) and we use the notation: $\models U$, if U is evaluated as true in all interpretations:

$$\forall i: \{p_1,...,p_n\} \rightarrow \{T,F\}, i(U) = T.$$
 All interpretations of U are **models** for U .

The formula U is called inconsistent if U does not have any model,
 U is evaluated as false in all interpretations: ∀i:{p₁,...,p_n}→{T,F},i(U) = F.

6. The *formula* U is called *contingent* if U is consistent, but is not valid.

Semantic concepts (contd.)

The *logical consequence* notion is a generalization of the *tautology* notion:

Definition: The formula V is a *logical consequence* of the formula U,

notation: $U \models V$,

if $\forall i : F_P \to \{T, F\}$ such that i(U) = T, we have i(V) = T.

Definition: The formulas U and V are *logically equivalent*, notation: $U \equiv V$,

if they have identical truth tables.

Note:

"|=" and "=" are *meta-symbols* used to express *logical relations* between formulas.

Problems in propositional logic

- ➤ Check the *validity* / *consistency* / *inconsistency* property of a propositional formula;
- Find the *models* and *anti-models* of a consistent formula
- ➤ Check the *logical equivalence* and *logical consequence* relations between two propositional formulas
- ➤ Check the *logical consequence* relation between a *set of premises (hypotheses)* and a *conclusion*.

Example 1. Build the truth tables of the formulas:

$$U(p,q,r) = (\neg p \lor q) \land (r \lor p) , \quad V(p,q,r) = (\neg p \land r) \lor (q \land r) \lor (q \land p) ,$$

$$W(p,q,r) = (p \uparrow (\neg p \land q)) \lor r , \quad Z(p,q,r) = p \land ((\neg q \lor r) \downarrow q) .$$

	р	q	r	<i>¬ p∨q</i>	r∨p	U(p,q,r)	V(p,q,r)	W(p,q,r)	Z(p,q,r)
i1	T	T	T	T	T	T	T	T	F
i2	T	T	F	T	T	T	T	T	F
i3	T	F	T	F	T	\overline{F}	F	T	F
i4	T	F	F	F	T	\overline{F}	F	T	F
i5	F	T	T	T	T	T	T	T	F
i6	F	T	F	T	F	\overline{F}	F	T	F
i 7	F	F	T	T	T	T	T	T	F
i8	F	F	F	T	F	\overline{F}	F	T	F

- \triangleright i1,i2,i5,i7 are *models* of U and i3,i4,i6,i8 are *anti-models* of U
- \triangleright W(p,q,r) is a *tautology*, all its 8 interpretations are also its models
- \triangleright Z(p,q,r) is *inconsistent*, it is evaluated as false in all its 8 interpretations
- $ightharpoonup U \equiv V$, U and V are logically equivalent because they have identical truth tables.
- $V = \neg p \lor q$ (logical consequence) because in all interpretations (i1,i2,i5,i7) which evaluate the formula U as true, the formula $\neg p \lor q$ is also evaluated as true.

Logical equivalences

Simplification laws:

$$\neg\neg U \equiv U$$
 and $U \rightarrow U \equiv T$
 $U \land \neg U \equiv F$ and $U \lor \neg U \equiv T$
 $T \land U \equiv U$ and $F \lor U \equiv U$
 $U \rightarrow T \equiv T$ and $U \rightarrow F \equiv \neg U$
 $T \rightarrow U \equiv U$ and $F \rightarrow U \equiv T$
 $U \leftrightarrow T \equiv U$ and $U \leftrightarrow F \equiv \neg U$
 $U \oplus T \equiv \neg U$ and $U \oplus F \equiv U$
 $U \leftrightarrow U \equiv T$ and $U \oplus U \equiv F$

Commutative laws:

$$U \wedge V \equiv V \wedge U$$
$$U \vee V \equiv V \vee U$$

Distributive laws:

$$U \wedge (V \vee Z) \equiv (U \wedge V) \vee (U \wedge Z)$$
$$U \vee (V \wedge Z) \equiv (U \vee V) \wedge (U \vee Z)$$

Logical equivalences (contd.)

Idempotency laws:

$$U \wedge U \equiv U$$
$$U \vee U \equiv U$$

Absorption laws:

$$U \wedge (U \vee V) \equiv U$$
$$U \vee (U \wedge V) \equiv U$$

De Morgan laws:

$$\neg (U \land V) \equiv \neg U \lor \neg V$$
$$\neg (U \lor V) \equiv \neg U \land \neg V$$

Associative laws:

$$(U \land V) \land Z \equiv U \land (V \land Z)$$
$$(U \lor V) \lor Z \equiv U \lor (V \lor Z)$$

Logical equivalences (contd.)

--- Definitions of the connectives ---

$$U \to V \equiv \neg U \lor V$$

$$U \to V \equiv U \leftrightarrow (U \land V)$$

$$U \leftrightarrow V \equiv (U \to V) \land (V \to U)$$

$$U \leftrightarrow V \equiv (U \lor V) \to (U \land V)$$

$$U \lor V \equiv \neg (\neg U \land \neg V)$$

$$U \lor V \equiv \neg (\neg U \land \neg V)$$

$$U \lor V \equiv \neg (U \to V) \lor \neg (V \to U)$$

$$U \lor V \equiv \neg (U \to V) \lor \neg (V \to U)$$

$$U \land V \equiv \neg (U \to V) \lor \neg (V \to U)$$

$$U \land V \equiv \neg (U \to V) \lor \neg (V \to U)$$

$$U \land V \equiv \neg (U \to \neg V)$$

$$\neg U \equiv U \uparrow U$$

$$U \lor V \equiv (U \uparrow U) \uparrow (V \uparrow V)$$

$$U \land V \equiv (U \downarrow U) \downarrow (V \downarrow V)$$

$$U \land V \equiv (U \uparrow V) \uparrow (U \uparrow V)$$

- A set of connectives is **functionally complete** if there is no truth table that can not be expressed as a formula involving only these connectives. All the other connectives can be expressed using the connectives from the set.
- The following sets of connectives are functionally complete.
- 1. $\{\neg, \land\};$ 2. $\{\neg, \lor\};$ 3. $\{\neg, \to\};$ 4. $\{\uparrow\};$ 5. $\{\downarrow\};$ 6. $\{\oplus, \land\};$ 7. $\{\oplus, \lor\};$ 8. $\{\oplus, \to\};$

The duality principle:

For every logical equivalence $U \equiv V$ containing only the connectives: $\neg, \land, \lor, \uparrow, \downarrow, \leftrightarrow, \otimes$ there is another logical equivalence $U' \equiv V'$, where U', V' are formulas obtained from U, V by interchanging the connectives (\land,\lor) , (\uparrow,\downarrow) , $(\leftrightarrow,\otimes)$ and the truth values (T,F).

- Notice that some of the above laws are pairs of *dual logical equivalences*.
- **Dual connectives**: (\land,\lor) , (\uparrow,\downarrow) , $(\leftrightarrow,\otimes)$.
- **Dual truth values:** (T,F).

Sets of propositional formulas

Definition:

ightharpoonup The set $\{U_1, U_2, ..., U_n\}$ is called *consistent* if

the formula $U_1 \wedge U_2 \wedge ... \wedge U_n$ is consistent:

$$\exists i: F_P \rightarrow \{T, F\} \text{ such that } i(U_1 \wedge U_2 \wedge ... \wedge U_n) = T.$$

ightharpoonup The set $\{U_1, U_2, \dots, U_n\}$ is called *inconsistent* if

the formula $U_1 \wedge U_2 \wedge ... \wedge U_n$ is inconsistent:

$$\forall i: F_P \to \{T, F\}, i(U_1 \land U_2 \land ... \land U_n) = F.$$

The formula V is a *logical consequence* of the set $\{U_1, U_2, ..., U_n\}$ of formulas, notation: $U_1, U_2, ..., U_n \models V$, if

 $\forall i: F_P \rightarrow \{T, F\} \text{ such that } i(U_1 \wedge U_2 \wedge ... \wedge U_n) = T, \text{ we have } i(V) = T.$

The formulas $U_1, U_2, ..., U_n$ are called *premises, hypotheses, facts*, and V is called *conclusion*.

Theorems (semantic results)

Theorem 1: Let $U_1, U_2, ..., U_n, U, V$ be propositional formulas.

- $\models U$ if and only if $\neg U$ is inconsistent.
- $U \models V$ if and only if $\models U \rightarrow V$ if and only if $\{U, \neg V\}$ is inconsistent.
- $U \equiv V$ if and only if $|= U \leftrightarrow V$.
- $U_1, U_2, ..., U_n = V$ if and only if $= U_1 \wedge U_2 \wedge ... \wedge U_n \rightarrow V$ if and only if the set $\{U_1, U_2, ..., U_n, \neg V\}$ is inconsistent.

Theorem 2: Let $S = \{U_1, U_2, ..., U_n\}$ be a set of propositional formulas.

- 1. If S is a consistent set, then $\forall j, 1 \le j \le n, S \{U_j\}$ is a consistent set.
- 2. If S is a consistent set and V is a valid formula, then $S \cup \{V\}$ is consistent.
- 3. If S is an inconsistent set, then $\forall V \in F_P$, $S \cup \{V\}$ is inconsistent.
- 4. If S is an inconsistent set and U_j is valid, where $1 \le j \le n$, then $S \{U_j\}$ is inconsistent.

Example

A client describes the requirements of a software application:

 R_1 . If condition A is satisfied then condition B must also be satisfied.

 R_2 . If conditions B and C are satisfied, then D must also be satisfied.

 R_3 . If condition D is satisfied then condition A is not satisfied.

 R_4 . If condition C is satisfied then A must also be satisfied.

 R_5 . If A is satisfied then D or C are satisfied.

 R_6 . C is satisfied if neither B nor A are satisfied.

 R_7 . B is **not** satisfied **if** C is **not** satisfied.

Are these requirements simultaneously satisfiable?

In order to answer the question we have to check the <u>consistency/inconsistency</u> of the formula:

$$U = R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5 \wedge R_6 \wedge R_7.$$

Example (contd.)

 R_1 . If condition A is satisfied then condition B must also be satisfied.

 R_2 . If conditions B and C are satisfied, then D must also be satisfied.

 R_3 . If condition D is satisfied then condition A is not satisfied.

 R_4 . If condition C is satisfied then A must also be satisfied.

 R_5 . If A is satisfied then D or C are satisfied.

 R_6 . C is satisfied if neither B nor A are satisfied.

 R_7 . B is **not** satisfied **if** C is **not** satisfied.

$$R_1 \cdot A \rightarrow B \equiv \neg A \vee B$$

$$R_3 \cdot D \rightarrow \neg A \equiv \neg D \lor \neg A$$

$$R_5.A \rightarrow C \lor D \equiv \neg A \lor C \lor D$$

$$R_7. \neg C \rightarrow \neg B \equiv C \lor \neg B$$

$$R_2 \cdot B \wedge C \rightarrow D \equiv \neg B \vee \neg C \vee D$$

$$R_4. C \rightarrow A \equiv \neg C \lor A$$

$$R_6 \cdot \neg A \land \neg B \rightarrow C \equiv A \lor B \lor C$$

$$U = R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5 \wedge R_6 \wedge R_7.$$

Example (contd.) – Truth table

	A	В	C	D	R_I	R_2	R_{β}	R_4	R_{5}	R_6	R_7	$oxed{U}$
i_I	T	T	T	T	T	T	F	T	T	T	T	F
i_2	T	T	T	F	T	F	T	T	T	T	T	F
i_{β}	T	T	F	T	T	T	F	T	T	T	F	F
i_d	T	T	F	F	T	T	T	T	F	T	F	F
i 5	T	F	T	T	F	T	F	T	T	T	T	F
<i>i</i> ₆	T	F	T	F	F	T	T	T	T	T	T	F
i7	T	F	F	T	F	T	F	T	T	T	T	F
i_S	T	F	F	F	F	T	T	T	F	T	T	F
i9	F	T	T	T	T	T	T	F	T	T	T	F
i10	F	T	T	F	T	F	T	F	T	T	T	F
ijj	F	T	F	T	T	T	T	T	T	T	F	F
i_{12}	F	T	F	F	T	T	T	T	T	T	F	F
i_{IS}	F	F	T	T	T	T	T	F	T	T	T	F
i_{Id}	F	F	T	F	T	T	T	F	T	T	T	F
i15	F	F	F	T	T	T	T	T	T	F	T	F
i_{16}	F	F	F	F	T	T	T	T	T	F	T	F

The column of U contains only the truth value F, so U is evaluated as false in all 16 interpretations, therefore U is an inconsistent formula.

The conclusion is that the requirements are contradictory, they cannot be satisfied simultaneously by the software application.

Normal forms - *definitions*

A literal is a propositional variable or its negation.	$p, \neg q, r$			
A clause is a disjunction of a finite number of literals.	$p, \neg p \lor q, r \lor q \lor s$			
A cube is a conjunction of a finite number of literals.	$q,p \land \neg q,r \land s \land p$			
A formula is in disjunctive normal form (DNF), if it is written as a disjunction of cubes: $\bigvee_{i=1}^{p} \left(\bigwedge_{j=1}^{q} l_{ij} \right)$	$p \lor \neg q \lor r$ - 3 unit cubes $p \land q$ - DNF, 1 cube $p \lor (q \land r) \lor (\neg p \land \neg r \land s)$ - 3 cubes			
A formula is in conjunctive normal form (CNF), if it is written as a conjunction of clauses:	$p \lor \neg q \lor r$ - CNF, 1 clause $p \land q$ - 2 unit clauses $p \land (q \lor r) \land (\neg p \lor \neg r \lor s)$ - 3 clauses			

Property

Let $\{l_1, l_2, ..., l_n\}$ be a set of literals.

The following sentences are equivalent:

- a) The clause $\bigvee_{i=1}^{n} l_i$ is a tautology;
- b) The cube $\wedge_{i=1}^{n} l_{i}$ is inconsistent;
- The set { l₁, l₂..., l_n } of literals contains at least one pair of opposite literals:
 ∃i, j ∈ {1,...,n} such that l_i = ¬l_i.

Examples

- the clause $U = \underline{p} \lor q \lor r \lor \underline{\neg p}$ is a tautology $(U \equiv T)$, because $p, \neg p$ are opposite literals.
- the *cube* $V = \underline{p} \land q \land r \land \underline{\neg p}$ is an *inconsistent* formula $(V \equiv F)$, because $p, \neg p$ are opposite literals.

Normalization algorithm

Aim: to transform a formula into another logically equivalent formula, having a certain character of "normal" or "canonical" form.

Transformations which preserve the logical equivalence are applied:

Step1: The formulas of " $X \to Y$ " type are replaced by the equivalent form $\neg X \lor Y$. The formulas of " $X \leftrightarrow Y$ " type are replaced by the equivalent form $(\neg X \lor Y) \land (\neg Y \lor X)$.

Step2: De Morgan laws are applied \Longrightarrow push negations in until they apply only to propositional variables

Multiple negations are eliminated by the reduction rule: $\neg\neg X \equiv X$.

Step3: The distribution laws are applied.

Normal forms – theoretical results

Theorem 3:

Every propositional formula admits an equivalent CNF and an equivalent DNF.

Theorem 4:

- 1. A formula in CNF is a tautology if and only if all its clauses are tautologies.
- A formula in DNF is inconsistent if and only if all its cubes are inconsistent.

Remarks:

- The first part of the above theorem provides a direct method to prove that a formula is a tautology.
- DNF of a propositional formula provides all the models of that formula, finding all the interpretations that evaluate the cubes as true.
- > CNF of a propositional formula **provides all the anti-models of that formula**, finding all the interpretations that evaluate, one by one, the clauses as false.

<u>Dual concepts</u>: clause-cube, DNF-CNF.

<u>Example</u>

Write the equivalent **DNF** of the formula and find its models.

$$X = (p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$$

We apply the normalization algorithm:

$$X = (p \land q \xrightarrow{1} r) \xrightarrow{2} (p \xrightarrow{3} r) \land q \qquad \text{(replace } \xrightarrow{2} \text{using } U \to V \equiv \neg U \lor V)$$

$$\equiv \neg (p \land q \xrightarrow{1} r) \lor (p \xrightarrow{3} r) \land q \qquad \text{(replace } \xrightarrow{1,3} \text{using } U \to V \equiv \neg U \lor V)$$

$$\equiv \neg (\neg (p \land q) \lor r) \lor (\neg p \lor r) \land q \qquad \text{(apply de Morgan's law)}$$

$$\equiv (p \land q \land \neg r) \lor (\neg p \lor r) \land q \qquad \text{(apply distribution of } \land \text{ over } \lor)$$

$$\equiv (p \land q \land \neg r) \lor (\neg p \land q) \lor (r \land q) \qquad -\text{DNF with 3 cubes}$$

The **models** of X are the interpretations that evaluate one by one the **cubes** of DNF as true.

Example – models of a formula

$$\mathbf{DNF(X)} = (p \land q \land \neg r) \lor (\neg p \land q) \lor (r \land q)$$

Cube: $p \wedge q \wedge \neg r$ provides one model:

$$i1:\{p,q,r\}->\{T,F\}, i1(p)=T, i1(q)=T, i1(r)=F$$

Cube: $\neg p \land q$ provides 2 models:

$$i2:\{p,q,r\}->\{T,F\}, i2(p)=F, i2(q)=T, i2(r)=T$$

$$i3:\{p,q,r\}->\{T,F\}, i3(p)=F, i3(q)=T, i3(r)=F$$

Cube: $r \wedge q$ provides 2 models:

$$i4:\{p,q,r\}->\{T,F\}, i4(p)=T, i4(q)=T, i4(r)=T$$

$$i5:\{p,q,r\}->\{T,F\}, i5(p)=F, i5(q)=T, i5(r)=T$$

We notice that i2 = i5.

The models of X are the interpretations: i1,i2,i3,i4.

$$i1(X) = i2(X) = i3(X) = i4(X) = T$$

All the other four interpretations evaluate the formula X as false, they are anti-models of X.