# Modelo Vivienda Precio FEVM

February 5, 2024

# 1 Quiero comprar una casa: Predecir precios de viviendas

Contexto: Estamos buscando comprar una vivienda por la zona de Ames, Iowa. Eres adicto a los chollos y quieres comprar a muy buen precio.

**Objetivo**: De alguna manera, ganar confianza sobre los precios de las viviendas para poder comprar al mejor precio.

Metodología: Crear un modelo de regresión para predecir los precios de las viviendas.

**Datos**: Datos históricos de ventas de viviendas en la zona de Ames, Iowa. Ver data\_description.txt para más contexto.

## 1.1 Que tienes que hacer tu?

Como mínimo, seguir las instrucciones de este notebook y contestar a las preguntas para conseguir crear un modelo que cumple con el objetivo del proyecto. Las preguntas cubren los requisitos mínimos para poder crear un modelo, pero es recomendable ir un poco más allá para aprender más.

## 1.1.1 Entregable: cómo hacerlo y qué incluir

Lo más sencillo es copiar este notebook y trabajar directamente dentro de ello.

Antes de todo no hay ninguna respuesta "correcta". Lo importante es tomar decisiones y razonar estas decisiones. Este razonamiento se debe basar en análisis de los datos y tu conocimiento del problema.

El contenido que incluyáis debería

- 1. Contestar a las preguntas
- Código es parte de contestar a las preguntas
- Es necesario incluir texto para contestar a preguntas (castellano o ingles)
- Gráficos ayudan a explicar tus argumentos
- 2. Ser auto-explicativo
- El código que genera un análisis debería estar cerca del texto de este análisis escribe como si estuvieras contando un cuento
- Lo más importante es explicar tu razonamiento en cada paso
- El notebook se debería de poder ejecutar de arriba abajo
- 3. Ser breve si algo no contribuye a contestar a las preguntas, por favor no incluirlo

- A veces uno intenta hacer algo que no funciona esto también ayuda a contestar la pregunta (para saber lo que NO funciona)
- Si haces una algo que te parece muy interesante pero no ayuda mucho, podéis incluirlo en un fichero aparte

Es muy normal que como vas avanzando tus respuestas a preguntas anteriores pueden cambiar. Si has contestado algo y luego te has dado cuenta que no te guste tu respuesta - cámbialo! No hay problema. En realidad esto es un proceso cíclico, no lineal.

No hay requisitos de librerías / lenguajes pero es altamente recomendable usar Python y tirar principalmente de Pandas y scikit-learn.

Por qué lo hacemos asi? Este formato es algo muy típico de las pruebas que hacen las empresas en procesos de selección, donde el objetivo es mostrar tus habilidades y como te acercas a problemas reales de data science. Intentamos replicar esto para que podéis ganar confianza al futuro si os enfrentéis a esto.

#### 1.1.2 Estructura

El notebook se compone por varias secciones que reflejan los pasos típicos de la creación de un modelo. Iremos introduciendo estas secciones en diferentes semanas. Cada sección depende de lo que has hecho anteriormente.

Cada sección viene con las preguntas de la sección. Lo más normal para contestar a la pregunta seria

- 1. Empezar con la pregunta dejando tus pensamientos iniciales
- 2. Código y texto que ayuda en desarrollar tu respuesta
- 3. Un comentario final que expone tu "respuesta" definitiva un resumen de los comentarios anteriores

Nota que a veces la "pregunta" es más bien una instrucción. Aquí esperamos un un resultado final más que una respuesta en texto. Aún así, es importante incluir explicación de lo que estás haciendo!

Los datos se encuentran en primer-ejercicio/data/house-price-data.csv.

### 1.2 Entender los datos

Lo más importante de cualquier problema de data science es entender los datos. Si no entiendes - no puedes crear un modelo que tenga sentido.

### 1.2.1 Cargar los datos

Lo primero de todo es cargar los datos, asegurar que está todo bien y empezar a formar ideas sobre como se relacionan los datos con nuestro problema.

1. Cargar los datos e imprimir las primeras 5 filas

```
[1]: from pathlib import Path import pandas as pd import plotnine as pn import matplotlib.pyplot as plt
```

```
import seaborn as sns
     import numpy as np
     from sklearn import linear_model
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import mean_squared_error
     from sklearn.metrics import mean_absolute_error
     from sklearn.metrics import r2_score
     pd.set option('display.max rows', None) # Para poder ver el max de filas
     pd.set_option('display.max_columns', None) # Para poder ver el max de columnas
     df = pd.read_csv("house-price-data.csv")
     # Imprime las primeras 5 líneas
     df.head()
[1]:
            MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \
        Ιd
                              RL
                                          65.0
                                                   8450
                                                          Pave
         1
                     60
                                                                  NaN
                                                                           Reg
     1
         2
                     20
                              R.T.
                                          80.0
                                                   9600
                                                          Pave
                                                                  NaN
                                                                           Reg
     2
         3
                     60
                              RL
                                          68.0
                                                  11250
                                                           Pave
                                                                  NaN
                                                                            IR1
     3
         4
                     70
                              RL
                                          60.0
                                                   9550
                                                          Pave
                                                                  NaN
                                                                            IR1
     4
         5
                              RL
                                          84.0
                                                  14260
                                                           Pave
                                                                           IR1
                     60
                                                                  NaN
       LandContour Utilities LotConfig LandSlope Neighborhood Condition1
     0
               Lvl
                       AllPub
                                 Inside
                                               Gtl
                                                        CollgCr
                                                                       Norm
                       AllPub
                                    FR2
                                               Gtl
     1
               Lvl
                                                        Veenker
                                                                      Feedr
     2
               Lvl
                       AllPub
                                 Inside
                                               Gtl
                                                        CollgCr
                                                                       Norm
     3
               Lvl
                       AllPub
                                 Corner
                                               Gtl
                                                        Crawfor
                                                                       Norm
     4
               Lvl
                       AllPub
                                    FR2
                                               Gtl
                                                        NoRidge
                                                                       Norm
       Condition2 BldgType HouseStyle OverallQual
                                                      OverallCond
                                                                    YearBuilt \
     0
             Norm
                       1Fam
                                2Story
                                                   7
                                                                 5
                                                                         2003
     1
             Norm
                       1Fam
                                1Story
                                                   6
                                                                 8
                                                                         1976
     2
             Norm
                       1Fam
                                2Story
                                                   7
                                                                 5
                                                                         2001
     3
             Norm
                                2Story
                                                   7
                                                                 5
                       1Fam
                                                                         1915
     4
             Norm
                       1Fam
                                2Story
                                                   8
                                                                 5
                                                                         2000
        YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType \
     0
                2003
                          Gable
                                 CompShg
                                              VinylSd
                                                           VinylSd
                                                                      BrkFace
     1
                1976
                          Gable
                                 CompShg
                                              MetalSd
                                                           MetalSd
                                                                          NaN
     2
                2002
                          Gable
                                 CompShg
                                              VinylSd
                                                           VinylSd
                                                                      BrkFace
     3
                1970
                                 CompShg
                                                                          NaN
                          Gable
                                              Wd Sdng
                                                           Wd Shng
     4
                2000
                          Gable CompShg
                                              VinylSd
                                                           VinylSd
                                                                      BrkFace
        MasVnrArea ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure
     0
             196.0
                           Gd
                                     TA
                                              PConc
                                                           Gd
                                                                    TΑ
                                                                                  No
     1
               0.0
                           TA
                                     TΑ
                                             CBlock
                                                           Gd
                                                                    TΑ
                                                                                  Gd
```

| 2 | 162.0       | Gd            | TA         | PC          | Conc        | Gd    | TA       | Mr            | ı    |
|---|-------------|---------------|------------|-------------|-------------|-------|----------|---------------|------|
| 3 | 0.0         | TA            | TA         | Brk         | Til         | TA    | Gd       | No            | )    |
| 4 | 350.0       | Gd            | TA         | PC          | Conc        | Gd    | TA       | r A           | I    |
|   | BsmtFinType | 1 Dam+FinCF   | 1 BsmtFinT | ··no?       | Dam+FinCE   | ים פי | smtUnfSF | TotalBsmtSH   | - \  |
| ^ | GL          |               |            | ypez<br>Unf | Demot. THEI |       | 150      |               |      |
| 0 |             |               |            |             |             | 0     |          |               |      |
| 1 | AL          |               |            | Unf         |             | 0     | 284      |               |      |
| 2 | GL          |               |            | Unf         |             | 0     | 434      |               |      |
| 3 | AL          |               |            | Unf         |             | 0     | 540      |               |      |
| 4 | GL          | .Q 65!        | 5          | Unf         |             | 0     | 490      | 1145          | 5    |
|   | Heating Hea | tingQC Centra | alAir Flac | trical      | 1stFlrS     | !F 21 | ndFlrSF  | LowQualFinSH  | 7 \  |
| 0 | GasA        | Ex            | Y Y        | SBrkr       |             |       | 854      | LOWQUATI IIDI |      |
|   |             |               |            |             |             |       |          |               |      |
| 1 | GasA        | Ex            | Υ          | SBrkr       |             |       | 0        |               | )    |
| 2 | GasA        | Ex            | Y          | SBrkr       |             |       | 866      |               | )    |
| 3 | ${	t GasA}$ | Gd            | Y          | SBrkr       |             |       | 756      | (             | )    |
| 4 | GasA        | Ex            | Y          | SBrkr       | 114         | :5    | 1053     | (             | )    |
|   | GrLivArea   | BsmtFullBatl  | n BsmtHal: | fBath       | FullBath    | Ha.   | lfBath   | BedroomAbvGr  | \    |
| 0 | 1710        | :             | 1          | 0           | 2           | )     | 1        | 3             |      |
| 1 | 1262        | (             | )          | 1           | 2           | )     | 0        | 3             |      |
| 2 | 1786        |               | 1          | 0           | 2           |       | 1        | 3             |      |
| 3 | 1717        |               | 1          | 0           | 1           |       | 0        | 3             |      |
| 4 | 2198        |               | 1          | 0           | 2           |       | 1        | 4             |      |
| - | 2130        |               | L          | O           | 2           | •     | 1        | Ŧ             |      |
|   | KitchenAbv  | Gr KitchenQua | al TotRms. | AbvGrd      | l Function  | al l  | Fireplac | es Fireplace( | Qu ∖ |
| 0 |             | 1 (           | Gd         | 8           | 3 Т         | 'ур   |          | O Na          | aN   |
| 1 |             | 1             | ΓΑ         | 6           |             | 'ур   |          | 1             | ГΑ   |
| 2 |             | 1 (           | Gd         | 6           |             | 'ур   |          | 1             | ГΑ   |
| 3 |             |               | Gd         | 7           |             | 'ур   |          |               | Gd   |
| 4 |             |               | Gd         | 9           |             | 'ур   |          |               | ГΑ   |
| - |             | -             |            |             | ·           | JP    |          | -             |      |
| _ | GarageType  | GarageYrBlt   |            |             | GarageCars  |       |          | GarageQual    | \    |
| 0 | Attchd      | 2003.0        |            | RFn         | 2           |       | 548      |               |      |
| 1 | Attchd      | 1976.0        |            | RFn         | 2           |       | 460      |               |      |
| 2 | Attchd      | 2001.0        | ]          | RFn         | 2           | ?     | 608      | TA            |      |
| 3 | Detchd      | 1998.0        | 1          | Unf         | 3           | }     | 642      | TA            |      |
| 4 | Attchd      | 2000.0        | ]          | RFn         | 3           | }     | 836      | TA            |      |
|   | GarageCond  | PavedDrive N  | JoodDeckSF | Open        | nPorchSF    | Encl  | osedPorc | h 3SsnPorch   | \    |
| 0 | TA          | Y             | 0          | -           | 61          |       |          | 0 0           | `    |
| 1 | TA          | Y             | 298        |             | 0           |       |          | 0 0           |      |
| 2 | TA          | Y             | 290        |             | 42          |       |          | 0 0           |      |
| 3 | TA          | Y             |            |             |             |       |          |               |      |
|   |             |               | 100        |             | 35          |       | 27       |               |      |
| 4 | TA          | Y             | 192        |             | 84          |       |          | 0 0           |      |

ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold \

| 0 | 0 | 0 | NaN | NaN | NaN | 0 | 2  | 2008 |
|---|---|---|-----|-----|-----|---|----|------|
| 1 | 0 | 0 | NaN | NaN | NaN | 0 | 5  | 2007 |
| 2 | 0 | 0 | NaN | NaN | NaN | 0 | 9  | 2008 |
| 3 | 0 | 0 | NaN | NaN | NaN | 0 | 2  | 2006 |
| 4 | 0 | 0 | NaN | NaN | NaN | 0 | 12 | 2008 |

|   | ${\tt SaleType}$ | ${\tt SaleCondition}$ | SalePrice |
|---|------------------|-----------------------|-----------|
| 0 | WD               | Normal                | 208500    |
| 1 | WD               | Normal                | 181500    |
| 2 | WD               | Normal                | 223500    |
| 3 | WD               | Abnorml               | 140000    |
| 4 | WD               | Normal                | 250000    |

2. Se han cargado de forma correcta los datos? Cómo lo sabemos?

# [2]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

| #  | Column               | Non-Null Count | Dtype   |
|----|----------------------|----------------|---------|
| 0  | Id                   | 1460 non-null  | int64   |
| 1  | MSSubClass           | 1460 non-null  | int64   |
| 2  | MSZoning             | 1460 non-null  | object  |
| 3  | LotFrontage          | 1201 non-null  | float64 |
| 4  | LotArea              | 1460 non-null  | int64   |
| 5  | Street               | 1460 non-null  | object  |
| 6  | Alley                | 91 non-null    | object  |
| 7  | LotShape             | 1460 non-null  | object  |
| 8  | LandContour          | 1460 non-null  | object  |
| 9  | Utilities            | 1460 non-null  | object  |
| 10 | LotConfig            | 1460 non-null  | object  |
| 11 | LandSlope            | 1460 non-null  | object  |
| 12 | Neighborhood         | 1460 non-null  | object  |
| 13 | Condition1           | 1460 non-null  | object  |
| 14 | Condition2           | 1460 non-null  | object  |
| 15 | BldgType             | 1460 non-null  | object  |
| 16 | HouseStyle           | 1460 non-null  | object  |
| 17 | OverallQual          | 1460 non-null  | int64   |
| 18 | OverallCond          | 1460 non-null  | int64   |
| 19 | YearBuilt            | 1460 non-null  | int64   |
| 20 | ${\tt YearRemodAdd}$ | 1460 non-null  | int64   |
| 21 | RoofStyle            | 1460 non-null  | object  |
| 22 | RoofMatl             | 1460 non-null  | object  |
| 23 | Exterior1st          | 1460 non-null  | object  |
| 24 | Exterior2nd          | 1460 non-null  | object  |
| 25 | ${	t MasVnrType}$    | 588 non-null   | object  |

| 26       | MasVnrArea               | 1452  | non-null | float64 |
|----------|--------------------------|-------|----------|---------|
| 27       | ExterQual                | 1460  | non-null | object  |
| 28       | ExterCond                | 1460  | non-null | object  |
| 29       | Foundation               | 1460  | non-null | object  |
| 30       | BsmtQual                 | 1423  | non-null | object  |
| 31       | BsmtCond                 | 1423  | non-null | object  |
| 32       | BsmtExposure             | 1422  | non-null | object  |
| 33       | BsmtFinType1             | 1423  | non-null | object  |
| 34       | BsmtFinSF1               | 1460  | non-null | int64   |
| 35       | BsmtFinType2             | 1422  | non-null | object  |
| 36       | BsmtFinSF2               | 1460  | non-null | int64   |
| 37       | BsmtUnfSF                | 1460  | non-null | int64   |
| 38       | TotalBsmtSF              | 1460  | non-null | int64   |
| 39       | Heating                  | 1460  | non-null | object  |
| 40       | HeatingQC                | 1460  | non-null | object  |
| 41       | CentralAir               | 1460  | non-null | object  |
| 42       | Electrical               | 1459  |          | object  |
| 43       | 1stFlrSF                 | 1460  | non-null | int64   |
| 44       | 2ndFlrSF                 | 1460  | non-null | int64   |
| 45       | LowQualFinSF             | 1460  | non-null | int64   |
| 46       | GrLivArea                | 1460  | non-null | int64   |
| 47       | BsmtFullBath             | 1460  | non-null | int64   |
| 48       | BsmtHalfBath             | 1460  | non-null | int64   |
| 49       | FullBath                 | 1460  | non-null | int64   |
| 50       | HalfBath                 | 1460  |          | int64   |
| 51       | BedroomAbvGr             | 1460  | non-null | int64   |
| 52       | KitchenAbvGr             | 1460  | non-null | int64   |
| 53       | KitchenQual              | 1460  |          | object  |
| 54       | TotRmsAbvGrd             | 1460  |          | int64   |
| 55       | Functional               | 1460  | non-null | object  |
| 56       | Fireplaces               | 1460  | non-null | int64   |
| 57       | FireplaceQu              |       | non-null | object  |
| 58       | GarageType               | 1379  | non-null | object  |
| 59       | GarageYrBlt              | 1379  |          | float64 |
| 60       | GarageFinish             | 1379  |          | object  |
| 61       | GarageCars               | 1460  |          | int64   |
| 62       | GarageArea               | 1460  |          | int64   |
| 63       | -                        | 1379  |          |         |
| 64       | GarageQual               | 1379  |          | object  |
| 65       | GarageCond<br>PavedDrive | 1460  |          | object  |
| 66       |                          |       |          | object  |
|          | WoodDeckSF               | 1460  |          | int64   |
| 67       | OpenPorchSF              | 1460  | non-null | int64   |
| 68       | EnclosedPorch            | 1460  |          | int64   |
| 69<br>70 | 3SsnPorch                |       | non-null | int64   |
| 70<br>71 | ScreenPorch              | 1460  |          | int64   |
| 71       | PoolArea                 | 1460  | non-null | int64   |
| 72<br>72 | PoolQC                   |       | n-null   | object  |
| 73       | Fence                    | 281 I | non-null | object  |

```
54 non-null
    MiscFeature
                                     object
 75
    MiscVal
                    1460 non-null
                                     int64
 76
    MoSold
                    1460 non-null
                                     int64
 77
    YrSold
                    1460 non-null
                                     int64
 78
     SaleType
                    1460 non-null
                                     object
     SaleCondition
                    1460 non-null
                                     object
80
    SalePrice
                    1460 non-null
                                     int64
dtypes: float64(3), int64(35), object(43)
```

memory usage: 924.0+ KB

Podemos comprobar con df.info() que ha cargado el total de filas que tenemos en el csv, 1460. Tambien se puede ver que tenemos 81 columnas. Aunque alguno de las columnas se puede ver que tienen muchos nulls como por ejemplo "Alley". Y en el tipo de dato encajaria con los tipos numericos y texto que tenemos en el csv.

3. Tras una mirada inicial - que parece que tenemos en nuestros datos?

# [3]: df.nunique()

| F07  | T.1          | 4.400 |
|------|--------------|-------|
| [3]: | Id           | 1460  |
|      | MSSubClass   | 15    |
|      | MSZoning     | 5     |
|      | LotFrontage  | 110   |
|      | LotArea      | 1073  |
|      | Street       | 2     |
|      | Alley        | 2     |
|      | LotShape     | 4     |
|      | LandContour  | 4     |
|      | Utilities    | 2     |
|      | LotConfig    | 5     |
|      | LandSlope    | 3     |
|      | Neighborhood | 25    |
|      | Condition1   | 9     |
|      | Condition2   | 8     |
|      | BldgType     | 5     |
|      | HouseStyle   | 8     |
|      | OverallQual  | 10    |
|      | OverallCond  | 9     |
|      | YearBuilt    | 112   |
|      | YearRemodAdd | 61    |
|      | RoofStyle    | 6     |
|      | RoofMatl     | 8     |
|      | Exterior1st  | 15    |
|      | Exterior2nd  | 16    |
|      | MasVnrType   | 3     |
|      | MasVnrArea   | 327   |
|      | ExterQual    | 4     |
|      | ExterCond    | 5     |
|      |              |       |

| Foundation               | 6        |
|--------------------------|----------|
| BsmtQual                 | 4        |
| BsmtCond                 | 4        |
| BsmtExposure             | 4        |
| BsmtFinType1             | 6        |
| BsmtFinSF1               | 637      |
| BsmtFinType2             | 6        |
| BsmtFinSF2               | 144      |
| BsmtUnfSF                | 780      |
| TotalBsmtSF              | 721      |
| Heating                  | 6        |
| HeatingQC                | 5        |
| CentralAir               | 2        |
| Electrical               | 5        |
| 1stFlrSF                 | 753      |
| 2ndFlrSF                 | 417      |
| LowQualFinSF             | 24       |
| GrLivArea                | 861      |
| BsmtFullBath             | 4        |
| BsmtHalfBath             | 3        |
| FullBath                 | 4        |
| HalfBath                 | 3        |
| BedroomAbvGr             | 8        |
| KitchenAbvGr             | 4        |
| KitchenQual              | 4        |
| TotRmsAbvGrd             | 12       |
| Functional               | 7        |
| Fireplaces               | 4        |
| FireplaceQu              | 5        |
| GarageType               | 6        |
| GarageYrBlt              | 97       |
| GarageFinish             | 3        |
| GarageCars               | 5        |
| =                        | U        |
| GarageArea<br>GarageQual | 441<br>5 |
| GarageCond               | 5        |
| PavedDrive               | 3        |
|                          | 3<br>274 |
| WoodDeckSF               |          |
| OpenPorchSF              | 202      |
| EnclosedPorch            | 120      |
| 3SsnPorch                | 20       |
| ScreenPorch              | 76       |
| PoolArea                 | 8        |
| PoolQC                   | 3        |
| Fence                    | 4        |
| MiscFeature              | 4        |
| MiscVal                  | 21       |

MoSold 12 YrSold 5 SaleType 9 SaleCondition 6 SalePrice 663

dtype: int64

Podemos comprobar los valores unicos que tienen cada columna y con ayuda del data\_description.txt podemos ver que en algunos casos hay mas datos en el data\_description que datos reales en el csv. Pero en otros casos tenemos el problema como en PoolQC que los NA que son No Pool lo detecta como un null, vamos a tener que tratar esto mas adelante.

### 1.2.2 Analizar los datos

Para entender lo que tenemos en los datos, los tenemos que analizar. En realidad, este paso es el más importante de todos y puede durar horas, días o meses (la verdad es que en una empresa, nunca terminamos de analizar los datos). El conocimiento que ganamos aquí forma la base del razonamiento que usaremos para hacer decisiones en el futuro.

Aquí buscamos cosas como

- 1. El comportamiento de nuestros datos
- 2. Los problemas que podemos tener
- 3. Una impresión inicial de lo que podemos y de lo no podemos hacer con estos datos
- 4. Las metodologías que seguramente vamos a usar
- 1. Cuantas filas de datos tenemos? Qué representa cada fila?

### [4]: df.shape

#### [4]: (1460, 81)

Tenemos 1460 filas, cada fila es un registro de cada venta de casa con muchas columnas de informacion.

2. Hay filas que no son relevantes para nuestro problema?

A priori ami juicio creo que todas las filas son utiles, aunque mas adelante la 523 me da problemas he decidido dejarla porque borrarlo seria alterar los datos originales.

3. Qué variables crees que van a ser los más importantes? Como se comportan estos datos? Qué variable será nuestro target?

```
[5]: # Obtén las columnas categóricas
categorical_columns = df.select_dtypes(include=['object']).columns

# Convierte las columnas categóricas a variables dummy
df2 = pd.get_dummies(df, columns=categorical_columns, drop_first=True)

# Calcula la matriz de correlación con todas las variables
correlation_matrix = df2.corr()
```

```
[5]:
        Correlation
                       Number
          SalePrice 1.000000
    0
    1
        OverallQual 0.790982
    2
          GrLivArea 0.708624
    3
         GarageCars 0.640409
    4
         GarageArea 0.623431
    5
        TotalBsmtSF 0.613581
    6
            1stFlrSF 0.605852
    7
      ExterQual_TA 0.589044
    8
           FullBath 0.560664
       TotRmsAbvGrd 0.533723
```

Convertimos todas las columnas de tipo object en columnas dummy, es decir se generan muchas columnas, esto a priori puede hacer que le modelo sea bastante complicado de seguir ya que pasamos de 81 columnas a 246 columnas.



4. Cuándo se construyeron los diferentes casas? Dibuja un gráfico para visualizarlo

```
[7]: sns.set(style="whitegrid")
plt.figure(figsize=(12, 6))

sns.histplot(df['YearBuilt'], bins=30, kde=False, color='#2E8B57')

plt.title('Distribución de Años de Construcción de Casas')
plt.xlabel('Año de Construcción')
plt.ylabel('Número de Casas')
plt.show()
```



5. Cuánto tiempo tardaron las diferentes casas en venderse? Dibuja un gráfico para visualizarlo

```
[8]: sns.set(style='whitegrid', palette='pastel')

plt.figure(figsize=(10, 6))
   sns.countplot(x='YrSold', data=df, palette='viridis')
   plt.title('Distribución de Años de Venta de Casas')
   plt.xlabel('Año de Venta')
   plt.ylabel('Número de Casas Vendidas')
   plt.show()
```



# [9]: print(df.dtypes)

Ιd int64  ${\tt MSSubClass}$ int64 MSZoning object LotFrontage float64 int64 LotArea Street object Alley object LotShape object  ${\tt LandContour}$ object Utilities object LotConfig object  ${\tt LandSlope}$ object Neighborhood object Condition1 object Condition2 object BldgTypeobject HouseStyle object OverallQual int64 OverallCond int64YearBuilt int64 YearRemodAddint64RoofStyle object

| RoofMatl           | object            |
|--------------------|-------------------|
| Exterior1st        | object            |
| Exterior2nd        | object            |
| ${\tt MasVnrType}$ | object            |
| MasVnrArea         | float64           |
| ExterQual          | object            |
| ExterCond          | object            |
| Foundation         | object            |
| BsmtQual           | object            |
| BsmtCond           | object            |
| BsmtExposure       | object            |
| BsmtFinType1       | object            |
| BsmtFinSF1         | int64             |
| BsmtFinType2       | object            |
| BsmtFinSF2         | int64             |
| BsmtUnfSF          | int64             |
| TotalBsmtSF        | int64             |
| Heating            | object            |
| HeatingQC          | object            |
| CentralAir         | object            |
| Electrical         | object            |
| 1stFlrSF           | int64             |
| 2ndFlrSF           | int64             |
| LowQualFinSF       | int64             |
| GrLivArea          | int64             |
| BsmtFullBath       | int64             |
| BsmtHalfBath       | int64             |
| FullBath           | int64             |
| HalfBath           | int64             |
| BedroomAbvGr       | int64             |
| KitchenAbvGr       | int64             |
| KitchenQual        | object            |
| TotRmsAbvGrd       | int64             |
| Functional         | object            |
| Fireplaces         | int64             |
| _                  | object            |
| FireplaceQu        | •                 |
| GarageType         | object<br>float64 |
| GarageYrBlt        |                   |
| GarageFinish       | object            |
| GarageCars         | int64             |
| GarageArea         | int64             |
| GarageQual         | object            |
| GarageCond         | object            |
| PavedDrive         | object            |
| WoodDeckSF         | int64             |
| OpenPorchSF        | int64             |
| EnclosedPorch      | int64             |
| 3SsnPorch          | int64             |

```
ScreenPorch
                    int64
PoolArea
                    int64
PoolQC
                   object
Fence
                   object
                   object
MiscFeature
MiscVal
                    int64
MoSold
                    int64
YrSold
                    int64
SaleType
                   object
SaleCondition
                   object
SalePrice
                    int64
```

dtype: object

Ver el tipo de datos que tiene cada columna

Las 10 columnas que mas correlacion tendria con SalePrice, en formato lista

```
[12]: df.SalePrice.min()
```

[12]: 34900

## 1.2.3 Limpiar los datos

Cuando creamos un modelo, no hay forma de "mágicamente" contar al modelo que es lo que queremos. Tenemos que usar unos datos que representan bien nuestro problema y crear un modelo que predice algo que alinea con la respuesta que buscamos.

Si los datos son "sucios" (malos, con problemas, reflejan algo que no representa bien a nuestro problema) - nuestro modelo va a predecir cosas que no acaban de tener mucho sentido, no son de fiar o directamente son equivocadas.

Cosas que queremos evitar

- Datos que no tienen que ver con nuestro problema
- Datos que tienen poca muestra

- Outliers
- Nulos
- 1. Identifique los principales problemas que tienen las variables que parecen (por ahora) más interesantes para el modelo

Pues datos nulls que afectan al modelo y datos de tipo Object que hay que borrarlos o convertirlos a formato numerico.

2. Arregla los problemas

```
[13]: # Obtén las columnas que tienen valores nulos y llenar con la media del restoude datos de cada columna

columnas_con_nulls = df2.columns[df2.isnull().any()].tolist()

for columna in columnas_con_nulls:

media_columna = df2[columna].mean()

df2[columna] = df2[columna].fillna(media_columna)
```

Los datos de tipo Object los converti a columnas dummy mas arriba

3. Borra todos los datos que no son relevantes para el problema - simplifica los datos

En mi caso para lo que quiero probar quiero dejar todos los datos ya que creo que todos pueden servir en menor o mayor medida

## 1.3 Preparación de los datos para el modelo

Ahora que entendemos bien los datos, tomamos un paso más directo hacia la creación de nuestro modelo preparando los datos para el entrenamiento.

### 1.3.1 Relevancia de variables

Por norma general, queremos incluir variables que son importantes en la predicción de nuestro target:

- Tener menos variables más relevantes suele ser mejor porque simplifica el modelo
- Si no tenemos variables relevantes, los resultados del modelo van a ser malos

Para analizar la relevancia, normalmente miramos que haya "correlaciones" entre diferentes variables y el target. Hay muchas formas de analizar estas "correlaciones", como por ejemplo:

- Coeficiente de correlación (variables continuas)
- La media del target para cada valor del variable (variables NO continuas)
- 1. Qué variables son los más relevantes? Analiza la relevancia para comprobarlo

```
[14]: # Crear listas para almacenar los resultados
num_features_list = []
r2_list = []
mae_list = []
rmse_list = []
```

```
# Obtén la lista de características
      all_features_list = best_features_df.iloc[1:, 0].tolist()
      num_features_to_try = len(all_features_list)
      for i in range(1, num_features_to_try + 1):
         # Selecciona las primeras i características
         selected_features = all_features_list[:i]
          # Divide los datos en conjunto de entrenamiento y prueba
         X_train, X_test, y_train, y_test = train_test_split(df2[selected_features],_
       →df2.SalePrice, test_size=0.2, random_state=8)
          # Crea y entrena el modelo de regresión lineal
         reg = linear_model.LinearRegression()
         reg.fit(X_train, y_train)
          # Realiza predicciones en el conjunto de prueba
         predictions = reg.predict(X_test)
         # Calcula el coeficiente de determinación (R^2)
         r2 = r2_score(y_test, predictions)
         # Calcula el MAE y el RMSE
         mae = mean_absolute_error(y_test, predictions)
         rmse = np.sqrt(mean_squared_error(y_test, predictions))
         # Almacena los resultados en las listas
         num_features_list.append(i)
         r2_list.append(r2)
         mae_list.append(mae)
         rmse_list.append(rmse)
      # Crea el DataFrame a partir de las listas
      results_df = pd.DataFrame({'Num_features': num_features_list, 'R2': r2_list,__

¬'MAE': mae_list, 'RMSE': rmse_list})
      # Muestra los resultados
      results_df.sort_values(by=['R2', 'MAE', 'RMSE'], ascending=[False, True, True])
「14]:
          Num features
                              R2
                                           MAE
                                                        RMSE
      172
                   173 0.828808 17321.418914 30014.293332
      173
                   174 0.828495 17378.620042 30041.684259
      171
                   172 0.828197 17355.091618 30067.771718
                   171 0.828125 17400.417724 30074.046352
      170
                   170 0.828030 17431.113864 30082.414271
      169
      174
                   175 0.827807 17435.749459 30101.923041
```

| 168 | 169 | 0.827606 | 17475.317452 | 30119.417917 |
|-----|-----|----------|--------------|--------------|
| 176 | 177 | 0.827603 | 17439.740304 | 30119.729812 |
| 167 | 168 | 0.827541 | 17561.356296 | 30125.116752 |
| 175 | 176 | 0.827396 | 17487.048484 | 30137.762086 |
| 166 | 167 | 0.826603 | 17567.306639 | 30206.958825 |
| 165 | 166 | 0.826581 | 17568.329973 | 30208.858615 |
| 163 | 164 | 0.826097 | 17592.331958 | 30250.985974 |
| 164 | 165 | 0.826074 | 17593.919641 | 30253.015664 |
| 179 | 180 | 0.824271 | 17645.938085 | 30409.418748 |
| 178 | 179 | 0.824271 | 17645.962254 | 30409.419255 |
| 180 | 181 | 0.824267 | 17642.573298 | 30409.764325 |
| 177 | 178 | 0.824110 | 17678.855368 | 30423.296152 |
| 160 | 161 | 0.821708 | 17935.006566 | 30630.328894 |
| 161 | 162 | 0.821658 | 17944.372661 | 30634.636853 |
| 181 | 182 | 0.821604 | 17677.958566 | 30639.249175 |
| 162 | 163 | 0.821526 | 17969.664712 | 30645.959590 |
| 153 | 154 | 0.821488 | 17792.117822 | 30649.257894 |
| 152 | 153 | 0.821397 | 17770.857387 | 30657.058969 |
| 159 | 160 | 0.821356 | 17965.000589 | 30660.603064 |
| 154 | 155 | 0.821274 | 17829.870017 | 30667.602366 |
| 155 | 156 | 0.821255 | 17912.562002 | 30669.198603 |
| 158 | 159 | 0.821132 | 17973.246861 | 30679.762474 |
| 157 | 158 | 0.821132 | 17965.703660 | 30679.818791 |
| 156 | 157 | 0.820717 | 17932.969996 | 30715.350656 |
| 182 | 183 | 0.820717 | 17705.086763 | 30715.555898 |
| 184 | 185 | 0.819858 | 17738.611738 | 30788.825125 |
| 183 | 184 | 0.819847 | 17741.564722 | 30789.816945 |
| 144 | 145 | 0.818879 | 17782.897055 | 30872.416489 |
| 142 | 143 | 0.818869 | 17805.514048 | 30873.209562 |
| 141 | 142 | 0.818848 | 17801.188546 | 30874.999992 |
| 146 | 147 | 0.818766 | 17769.000121 | 30881.999223 |
| 143 | 144 | 0.818716 | 17792.728460 | 30886.247923 |
| 147 | 148 | 0.818485 | 17787.824082 | 30905.959623 |
| 150 |     | 0.818444 | 17810.934436 | 30909.454884 |
|     | 151 |          |              | 30918.635352 |
| 149 | 150 | 0.818336 | 17815.483767 |              |
| 148 | 149 | 0.818330 | 17818.647686 | 30919.109766 |
| 145 | 146 | 0.818133 | 17859.068520 | 30935.942820 |
| 151 | 152 | 0.818110 | 17802.604409 | 30937.835329 |
| 185 | 186 | 0.818018 | 17735.116142 | 30945.701813 |
| 186 | 187 | 0.818012 | 17732.465238 | 30946.181298 |
| 188 | 189 | 0.817748 | 17868.154543 | 30968.610556 |
| 187 | 188 | 0.817738 | 17771.386698 | 30969.452668 |
| 136 | 137 | 0.817672 | 17890.053614 | 30975.078310 |
| 129 | 130 | 0.817636 | 17900.596591 | 30978.118392 |
| 134 | 135 | 0.817604 | 17874.448655 | 30980.832301 |
| 135 | 136 | 0.817484 | 17887.407695 | 30991.048650 |
| 199 | 200 | 0.817277 | 18123.433411 | 31008.653532 |

| 198 | 199 | 0.817276 | 18124.770724 | 31008.695377 |
|-----|-----|----------|--------------|--------------|
| 133 | 134 | 0.817253 | 17953.729923 | 31010.624041 |
| 139 | 140 | 0.817246 | 17974.622824 | 31011.291039 |
| 140 | 141 | 0.817230 | 17969.040931 | 31012.600588 |
| 137 | 138 | 0.817117 | 18030.692500 | 31022.173183 |
| 200 | 201 | 0.817084 | 18137.609332 | 31024.958386 |
| 131 | 132 | 0.816950 | 17956.365560 | 31036.360126 |
| 130 | 131 | 0.816870 | 17963.256303 | 31043.175233 |
| 138 | 139 | 0.816843 | 18046.206185 | 31045.434894 |
| 201 | 202 | 0.816807 | 18125.897061 | 31048.481453 |
| 197 | 198 | 0.816764 | 18163.989994 | 31052.162390 |
| 132 | 133 | 0.816701 | 17996.467283 | 31057.476758 |
| 196 | 197 | 0.816678 | 18180.454784 | 31059.396359 |
| 210 | 211 | 0.816605 | 18207.330697 | 31065.588506 |
| 208 | 209 | 0.816598 | 18160.662738 | 31066.173791 |
| 211 | 212 | 0.816502 | 18196.733416 | 31074.314584 |
| 189 | 190 | 0.816482 | 17985.578997 | 31075.990206 |
| 209 | 210 | 0.816475 | 18170.462696 | 31076.602576 |
| 206 | 207 | 0.816201 | 18126.875426 | 31099.822362 |
| 204 | 205 | 0.816191 | 18126.626438 | 31100.612490 |
| 202 | 203 | 0.816190 | 18126.521790 | 31100.757018 |
| 203 | 204 | 0.816190 | 18126.521790 | 31100.757019 |
| 205 | 206 | 0.816105 | 18134.197837 | 31107.874998 |
| 207 | 208 | 0.815169 | 18128.054152 | 31186.984692 |
| 191 | 192 | 0.815112 | 18005.040276 | 31191.807957 |
| 190 | 191 | 0.815056 | 18010.127473 | 31196.537198 |
| 192 | 193 | 0.814367 | 18018.942627 | 31254.609435 |
| 193 | 194 | 0.813618 | 18082.995777 | 31317.578085 |
| 194 | 195 | 0.813433 | 18098.768113 | 31333.078209 |
| 195 | 196 | 0.812998 | 18097.366893 | 31369.580357 |
| 124 | 125 | 0.812637 | 18390.334757 | 31399.892661 |
| 128 | 129 | 0.811831 | 18462.718653 | 31467.316870 |
| 127 | 128 | 0.811705 | 18453.012540 | 31477.848058 |
| 125 | 126 | 0.811638 | 18466.605942 | 31483.506018 |
| 126 | 127 | 0.811577 | 18480.548953 | 31488.577117 |
| 103 | 104 | 0.809893 | 19205.704796 | 31628.967264 |
| 212 | 213 | 0.809694 | 18459.118767 | 31645.505324 |
| 104 | 105 | 0.809024 | 19259.372834 | 31701.196336 |
| 121 | 122 | 0.808839 | 19057.945535 | 31716.563366 |
| 101 | 102 | 0.808190 | 19238.321559 | 31770.279562 |
| 122 | 123 | 0.807650 | 19108.487553 | 31815.038694 |
| 123 | 124 | 0.807308 | 19119.429422 | 31843.270986 |
| 102 | 103 | 0.806394 | 19392.614598 | 31918.726060 |
| 80  | 81  | 0.805500 | 19684.863158 | 31992.359157 |
| 79  | 80  | 0.805352 | 19704.063261 | 32004.486607 |
| 120 | 121 | 0.804489 | 19158.714719 | 32075.361152 |
| 117 | 118 | 0.804268 | 19150.500976 | 32093.508878 |
|     |     |          |              |              |

| 112 | 113      | 0.804196 | 19155.070739 | 32099.409207 |
|-----|----------|----------|--------------|--------------|
| 111 | 112      | 0.804195 | 19158.501602 | 32099.427046 |
| 113 | 114      | 0.804172 | 19155.764173 | 32101.358969 |
| 119 | 120      | 0.804105 | 19187.803634 | 32106.805084 |
| 118 | 119      | 0.804075 | 19168.788527 | 32109.290669 |
| 115 | 116      | 0.804056 | 19199.984671 | 32110.834495 |
| 114 | 115      | 0.804035 | 19204.994641 | 32110.634493 |
|     |          |          |              |              |
| 78  | 79       | 0.803828 | 19808.141499 | 32129.523885 |
| 110 | 111      | 0.803798 | 19164.945133 | 32131.970360 |
| 99  | 100      | 0.803773 | 19507.750983 | 32134.071428 |
| 116 | 117      | 0.803619 | 19191.968242 | 32146.623538 |
| 109 | 110      | 0.803561 | 19166.588818 | 32151.382113 |
| 98  | 99       | 0.803481 | 19546.382824 | 32157.921042 |
| 77  | 78       | 0.803479 | 19847.049200 | 32158.137150 |
| 100 | 101      | 0.803041 | 19543.245231 | 32193.906014 |
| 106 | 107      | 0.802841 | 19175.192250 | 32210.300145 |
| 107 | 108      | 0.802545 | 19312.239604 | 32234.451482 |
| 105 | 106      | 0.802455 | 19226.908521 | 32241.806158 |
| 97  | 98       | 0.802331 | 19990.759860 | 32251.930513 |
| 108 | 109      | 0.802277 | 19326.399076 | 32256.277274 |
| 81  | 82       | 0.802022 | 20018.416503 | 32277.122929 |
| 74  | 75       | 0.802002 | 19690.126418 | 32278.721891 |
| 82  | 83       | 0.801957 | 20020.733581 | 32282.363783 |
| 73  | 74       | 0.801932 | 19726.545317 | 32284.457798 |
| 72  | 73       | 0.801932 | 19930.252835 | 32358.021580 |
|     |          | 0.801028 |              |              |
| 94  | 95<br>06 |          | 20204.044097 | 32386.930669 |
| 95  | 96       | 0.800609 | 20217.512567 | 32392.031652 |
| 96  | 97       | 0.800564 | 20292.308891 | 32395.699870 |
| 75  | 76       | 0.800215 | 20009.752936 | 32424.034236 |
| 83  | 84       | 0.800189 | 19984.627667 | 32426.185794 |
| 71  | 72       | 0.799865 | 20229.468745 | 32452.473432 |
| 64  | 65       | 0.799807 | 20233.545624 | 32457.128102 |
| 76  | 77       | 0.799751 | 20035.285617 | 32461.726037 |
| 84  | 85       | 0.799200 | 19953.411505 | 32506.358250 |
| 93  | 94       | 0.799100 | 20254.917673 | 32514.431984 |
| 70  | 71       | 0.799079 | 20307.099327 | 32516.125028 |
| 68  | 69       | 0.798609 | 20337.052682 | 32554.107460 |
| 69  | 70       | 0.798435 | 20356.834153 | 32568.182363 |
| 92  | 93       | 0.798380 | 20287.579171 | 32572.594692 |
| 90  | 91       | 0.798333 | 20289.748075 | 32576.430444 |
| 91  | 92       | 0.798322 | 20289.430883 | 32577.339270 |
| 85  | 86       | 0.798076 | 20178.052943 | 32597.197125 |
| 86  | 87       | 0.798073 | 20178.482252 | 32597.390755 |
| 89  | 90       | 0.797932 | 20285.729291 | 32608.797604 |
| 65  | 66       | 0.797738 | 20348.584297 | 32624.477429 |
|     |          |          |              |              |
| 87  | 88       | 0.797341 | 20227.740205 | 32656.430655 |
| 67  | 68       | 0.797297 | 20397.968428 | 32659.980476 |

| 88  | 89  | 0.797245 | 20245.231916 | 32664.145199 |
|-----|-----|----------|--------------|--------------|
| 66  | 67  | 0.797091 | 20410.839518 | 32676.540587 |
| 31  | 32  | 0.795058 | 20684.842570 | 32839.908676 |
| 63  | 64  | 0.794072 | 20455.847382 | 32918.740540 |
| 62  | 63  | 0.793731 | 20430.903141 | 32946.000021 |
| 227 | 228 | 0.793589 | 18855.970189 | 32957.394206 |
| 214 | 215 | 0.793446 | 18950.846449 | 32968.807332 |
| 215 | 216 | 0.793411 | 18944.409884 | 32971.595453 |
| 213 | 214 | 0.793281 | 18943.238677 | 32981.934744 |
| 30  | 31  | 0.792300 | 20476.026998 | 33060.127574 |
| 219 | 220 | 0.792220 | 18864.655861 | 33066.465070 |
| 218 | 219 | 0.791593 | 18927.480343 | 33116.343274 |
| 217 | 218 | 0.790800 | 18954.204023 | 33179.266488 |
| 225 | 226 | 0.790166 | 18834.049175 | 33229.533304 |
| 226 | 227 | 0.790080 | 18852.070704 | 33236.285957 |
| 216 | 217 | 0.789909 | 18997.799717 | 33249.816442 |
| 39  | 40  | 0.789680 | 20699.633179 | 33267.932638 |
| 42  | 43  | 0.789677 | 20539.783993 | 33268.216528 |
| 223 | 224 | 0.789208 | 18884.266697 | 33305.279419 |
| 222 | 223 | 0.789166 | 18880.950392 | 33308.584719 |
| 224 | 225 | 0.789146 | 18894.133018 | 33310.173986 |
| 40  | 41  | 0.788990 | 20686.821419 | 33322.461223 |
| 41  | 42  | 0.788831 | 20673.036904 | 33335.063854 |
| 58  | 59  | 0.788642 | 20347.850155 | 33349.984188 |
| 221 | 222 | 0.788517 | 18912.730157 | 33359.829294 |
| 57  | 58  | 0.788300 | 20384.494714 | 33376.925105 |
| 220 | 221 | 0.788299 | 18914.561439 | 33376.987029 |
| 47  | 48  | 0.788277 | 20387.977589 | 33378.752253 |
| 46  | 47  | 0.788244 | 20401.288343 | 33381.315195 |
| 61  | 62  | 0.788198 | 20546.200749 | 33384.932324 |
| 229 | 230 | 0.788187 | 18996.306523 | 33385.823042 |
| 230 | 231 | 0.788146 | 19084.769174 | 33389.065551 |
| 228 | 229 | 0.788031 | 18972.164815 | 33398.101273 |
| 26  | 27  | 0.787919 | 20392.336587 | 33406.927419 |
| 60  | 61  | 0.787889 | 20559.052949 | 33409.309301 |
| 27  | 28  | 0.787721 | 20418.369356 | 33422.552157 |
| 45  | 46  | 0.787682 | 20423.211084 | 33425.636160 |
| 59  | 60  | 0.787531 | 20487.905451 | 33437.461758 |
| 44  | 45  | 0.787355 | 20498.945743 | 33451.371237 |
| 24  | 25  | 0.787341 | 20384.436045 | 33452.475427 |
| 23  | 24  | 0.787324 | 20384.979176 | 33453.742404 |
| 25  | 26  | 0.787128 | 20414.833305 | 33469.194368 |
| 22  | 23  | 0.787041 | 20380.707991 | 33476.067280 |
| 36  | 37  | 0.786851 | 21035.867550 | 33490.988984 |
| 38  | 39  | 0.786815 | 21026.536884 | 33493.795147 |
| 29  | 30  | 0.786573 | 20471.197349 | 33512.825760 |
| 43  | 44  | 0.786417 | 20596.820374 | 33525.028437 |
|     |     |          |              |              |

```
37
                    0.786407
                               21063.480215
                                              33525.828729
                38
28
                29
                    0.786348
                               20463.115813
                                              33530.468747
32
                33
                    0.785851
                               21251.520146
                                               33569.421631
33
                34
                    0.785237
                               21298.941245
                                               33617.506167
                    0.784692
21
                22
                               20925.976889
                                               33660.184410
49
                    0.784441
                               20641.387463
                                              33679.796979
                50
                    0.784341
                               20655.196794
50
                51
                                              33687.562908
48
                49
                    0.784204
                               20665.163390
                                              33698.262855
51
                52
                    0.783758
                               20695.900857
                                               33733.094896
                    0.783551
                               20447.255151
55
                56
                                               33749.209701
53
                54
                    0.782866
                               20562.384694
                                               33802.567235
20
                    0.782388
                               21856.041357
                                               33839.736558
                21
35
                36
                    0.782353
                               21345.631614
                                               33842.496554
34
                35
                    0.781997
                               21416.790471
                                               33870.177612
54
                    0.781748
                               20574.056998
                                              33889.495449
                55
56
                57
                    0.781081
                               20586.913721
                                              33941.258968
52
                53
                    0.779839
                               20742.336760
                                              34037.401302
                    0.774439
                                               34452.286551
231
               232
                               19559.527429
19
                20
                    0.772181
                               22324.901845
                                              34624.264980
                    0.770261
                               22335.782655
18
                19
                                               34769.907702
17
                18
                    0.769983
                               22672.432885
                                              34790.940625
                                              34828.077568
                    0.769491
                               22674.295409
16
                17
243
                    0.766278
                               16858.305096
                                              35070.004808
               244
244
               245
                    0.766212
                               16859.475497
                                               35074.965902
15
                    0.764761
                               23478.326615
                                               35183.653695
                16
241
               242
                    0.763787
                               18489.345330
                                               35256.353897
240
               241
                    0.762095
                               18458.609148
                                               35382.467533
239
               240
                    0.761702
                               18495.820619
                                               35411.683823
238
               239
                    0.757704
                               18423.130817
                                               35707.436596
236
               237
                    0.757384
                               18463.141992
                                              35731.022138
4
                 5
                               23429.850125
                    0.757261
                                              35740.097325
10
                    0.756907
                               23293.253031
                                               35766.124967
                11
242
               243
                    0.756717
                               18501.722311
                                               35780.114315
237
               238
                    0.756476
                               18485.204403
                                              35797.863480
5
                    0.756190
                               23528.747875
                 6
                                               35818.860036
14
                15
                    0.754874
                               23584.664127
                                               35915.392383
9
                    0.754710
                               23499.054801
                                              35927.423296
                10
13
                    0.754510
                               23400.710025
                                              35942.014159
                14
12
                    0.754169
                               23480.429722
                                              35966.998471
                13
                    0.754167
                               23480.280251
                                              35967.115859
11
                12
7
                 8
                    0.752218
                               23970.890201
                                               36109.414567
6
                 7
                    0.752186
                               24038.424948
                                              36111.778318
                    0.752166
8
                 9
                               23950.010789
                                               36113.231965
235
               236
                    0.737504
                               19301.287631
                                              37166.122613
232
               233
                    0.737404
                               19212.011597
                                               37173.218260
233
               234
                    0.737404
                               19212.011597
                                               37173.218260
234
               235
                    0.737127
                               19304.370774
                                              37192.774958
```

```
      3
      4
      0.730323
      25803.376488
      37671.094631

      2
      3
      0.722937
      26418.122771
      38183.429084

      1
      2
      0.693212
      27781.861472
      40179.523420

      0
      1
      0.644354
      32778.190019
      43260.864281
```

Aqui calculo con fuerza bruta con cuantas columnas consigo el mejor coeficiente de determinacion y a su vez un MAE Y RMSE bajos. En mi caso sale que el mejor resultado seria con 174 columnas, así que en mi caso voy a crear 2 modelos.

- 1- Muy complejo, pero si se tienen todos los datos entiendo que mas preciso 0.8288
- 2- Simple y entiendo que lo mas facil pues solo necesita 5 columnas y daria un coeficiente de 0.7572
  - 2. Podemos crear algunas variables para mejorar la relevancia?

En mi caso ya creo que tengo suficientes columnas como para crear mas

### 1.3.2 Train y test

Dividir los datos en train y test (o train, test y validación) es un paso fundamental para la correcta evaluación de nuestro modelo. Buscamos replicar el efecto de "tener datos nuevos".

Nota: En realidad, lo más correcto seria dividir en train / test ANTES de analizar relevancias - pero simplificamos un poco por ahora.

Nota 2: Si dividimos de forma random es importante fijar el seed (te vas a volver loco si no)

1. Qué variables quieres elegir para tu X final?

Todas menos SalePrice obviamente

2. Divide los datos en train / test

#### 1.4 Modelado

Ahora vamos a entrenar el modelo. Si has hecho lo anterior bien, este paso es muy sencillo. Normalmente incluimos aquí optimizaciones del modelo, pero para el primer ejercicio esto es de menor importancia.

#### 1.4.1 Entrenar el modelo

La parta más sexy, pero por ahora lo más sencillo. Tiramos de librerías de modelos ya hechos para simplificarnos la vida.

1. Crea un modelo de regresión

```
reg.fit(X_train,y_train)

predictions = reg.predict(X_test)

r2 = r2_score(y_test, predictions)
print(f"Coeficiente de Determinación (R^2): {r2}")

plt.scatter(y_test, predictions)
plt.xlabel("Valores Reales")
plt.ylabel("Predicciones")
plt.title("Valores Reales vs Predicciones")
plt.show()
```

Coeficiente de Determinación (R^2): 0.8288076349565676



El modelo 1 bastante complejo y que si no se tienen todos los datos totalmente inutil creo

```
reg2 = linear_model.LinearRegression()

reg2.fit(X_train2,y_train2)

predictions2 = reg2.predict(X_test2)

r2_2 = r2_score(y_test2, predictions2)
print(f"Coeficiente de Determinación (R^2): {r2_2}")

plt.scatter(y_test2, predictions2)
plt.xlabel("Valores Reales")
plt.ylabel("Predicciones")
plt.title("Valores Reales vs Predicciones")
plt.show()
```

Coeficiente de Determinación (R^2): 0.7572609722098338



El modelo 2 simple con 5 columnas que a priori son las que mas correlacion tenian con SalePrice

2. Generar predicciones para tu conjunto de test

```
[17]: data = {
    'OverallQual': [8, 7, 6, 9, 8, 7, 6, 9, 8, 7],
    'GrLivArea': [2000, 1800, 1600, 2200, 2000, 1800, 1600, 2200, 2000, 1800],
    'GarageCars': [2, 2, 2, 3, 2, 2, 2, 3, 2, 2],
    'GarageArea': [500, 480, 460, 600, 500, 480, 460, 600, 500, 480],
    'TotalBsmtSF': [1000, 900, 800, 1100, 1000, 900, 800, 1100, 1000, 900]
}
reg2.predict(pd.DataFrame(data))
```

#### 1.4.2 Evaluar el modelo

No vamos a dedicar mucho esfuerzo en este paso por ahora, pero es fundamental evaluar las predicciones que hemos generado. El objetivo es entender lo bueno que es nuestro modelo, para entender si podemos fiar de los resultados y usarlo para responder a nuestro problema.

- 1. Elige las métricas para tu evaluación
- 2. Evalúa las predicciones generadas

```
[18]: mae = mean_absolute_error(y_test, predictions)
print(f"Error Absoluto Medio (MAE): {mae}")
```

Error Absoluto Medio (MAE): 17321.418913941176

```
[19]: rmse = mean_squared_error(y_test, predictions, squared=False)
print(f"Raíz del Error Cuadrático Medio (RMSE): {rmse}")
```

Raíz del Error Cuadrático Medio (RMSE): 30014.29333211952

3. El modelo funciona? Se podría utilizar para ayudarnos con el problema que tenemos?

Realmente yo creo que el modelo simple seria el mas util ya que el complejo es absurdamente complejo, aparte creo que cometo el error de sobreentrenarlo, y que tambien hay columnas que existen mas tipos de datos de un tipo que de otro...Tampoco acabo de entender como una sola fila la 523 puede influir tanto en el modelo.