חישוב מימד של מרחבים ווקטורים

דוגמה 1: מה הוא מימד של הקבוצה

$$? \quad V = \left\{ a \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} : a, b \in \mathbb{F} \right\}$$

.(7,8 כאן זה לא טעות ורשמתי $\mathbb R$ בכוונה, ראו דוגמה $dim_{\mathbb R}V=2$

 $dim_{\mathbb{C}}V$ עבור מה מה 2: מה הוא

$$? \quad V = \left\{ \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix} \cdot t : t \in \mathbb{C} \right\}$$

. תשובה: $dim_{\mathbb{C}}V=1$ כי יש סה"כ רק איבר אחד בבסיס וזה מטריצה נתונה

דורמה 3:

$$dim_{\mathbb{Q}}V = dim_{\mathbb{Q}}\left\{a \cdot 1 + b\sqrt{2} : a, b \in \mathbb{Q}\right\} = 2$$

? כיוון ש־ $\sqrt{2}$ ור בת"ל אה בסיס של אה בסיס און אר $\{1,\sqrt{2}\}$ כיוון פי

דוגמה $\underline{\mathbf{e}}:\mathbf{c}$ סופי של איברים. זה נכון, כיוון שלא נצליח לקחת מספר סופי של איברים ולבנות ממנו בסיס ל \mathbb{R} כך שהצירוף הלינארי של איברי הבסיס עם המקדמים מ־ \mathbb{R} יתן מספר ממשי. נניח בשלילה שאפשר, אז נגיה למצב שזה לא מספיק.

 $(y=\sqrt{1+rac{1}{3}}=rac{2}{\sqrt{3}}$ למשל מספר אי־רציונלי $y\leq\sqrt{2}pprox1.4$ למשל מספר אי־רציונלי ניתן לחשב על ידי טור ידוע:

$$.\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{1}{32}x^4 + ..., \qquad |x| \le 1$$

? במקרה כזה נקבל שהבסיס הוא אינסופי $\left\{1,x,x^2,x^3,...
ight\}$. למה x ולא $\frac{1}{2}$? כי יכולנו לקחת במקום $\frac{1}{3}$ מספר ממשי אחר למשל $\frac{1}{\pi}$ ואז הבסיס יהיה $\left\{1,\frac{1}{\pi},\frac{1}{\pi^2},...\right\}$ זה בסיס ל- \mathbb{R} . לא מדובר כאן שצריך להוכיח ש־

 $\mathbb R$ הם מר מיס של $\mathbb C$ והמקדמים הם מר $\{1,i\}$,(ראה לדוגמה 3). $dim_{\mathbb R}\mathbb C=2$

 $.dim_{\mathbb{Q}}\mathbb{Q}=1$ או $dim_{\mathbb{R}}\mathbb{R}=1$ דוגמה 6:

 $dim_{\mathbb C}$ ו־ $dim_{\mathbb Q}$? מה יהיה מה $dim_{\mathbb Q}$ וי

$$\{e_1,e_2,...,e_n\}$$
 תוכורת הזכורת $i\equiv\sqrt{-1}$ תהי המים בסים קנוני (בסים סטנדרטי) האים המרחב וקטורי וקטורי $e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}$, ... , $e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}$, $e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}$

מרוכב \mathbb{C}^n מעל הממשיים \mathbb{R} הוא \mathbb{R} מעל הממשיים \mathbb{C}^n

$$\{e_1, ..., e_n, \sqrt{-1}e_1, ..., \sqrt{-1}e_n\}$$

 $\sqrt{-1}$ נקראת בסיס ממשי ל- \mathbb{C}^n . למה אומרים ל- \mathbb{C}^n ל-כדי להבין את זה נראה

 $_{,}n$ י שווה \mathbb{C} מעל המרוכבים שווה ל־היוגמה 8: נראה שהמימד של מרחב וקטורי מרוכב \mathbb{C}^n (7) כלומר במקרה של . \mathbb{C}^2 באנלוגיה לדוגמה לפשטות, לפשטות לפשטות כלומר . $dim_{\mathbb{C}}\mathbb{C}^n=n$

$$B = \left\{ \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \left[\begin{array}{c} \sqrt{-1} \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ \sqrt{-1} \end{array} \right] \right\}$$

 \mathbb{C} היא קבוצה של הווקטורים בת"ל \mathbf{aud} :B נכתוב צירוף לינארי של האיברים מהקבוצה

$$.\alpha \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + \beta \left[\begin{array}{c} 0 \\ 1 \end{array}\right] + \gamma \left[\begin{array}{c} \sqrt{-1} \\ 0 \end{array}\right] + \delta \left[\begin{array}{c} 0 \\ \sqrt{-1} \end{array}\right]$$

 $.\beta=\gamma=\delta=0$ ר, ו־ , $\alpha=\sqrt{-1}$ ניקח שייכים ל־ מייכים $\alpha,\beta,\gamma,\delta$ שייכים שמתנו שהמקדמים אזי נקבל שהווקטור $w=\left[\begin{array}{c}1\\0\end{array}\right]$ תלוי לינארי מהוקטור ש $w=\left[\begin{array}{c}\sqrt{-1}\\0\end{array}\right]$, כיוון ש

$$\alpha \cdot u = \alpha \cdot \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \sqrt{-1} \cdot \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} \sqrt{-1} \\ 0 \end{array} \right] = w$$

, $\alpha=\gamma=\delta=0$ רד $\beta=\sqrt{-1}$ עבור $\beta\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}0\\\sqrt{-1}\end{bmatrix}$ עבור 2 כנ"ל נקבל נקבל B יש רק B תלוי לינארי מהוקטור תלוי לינארי מהוקטור מהוקטור רקישור מהוקטור רקישור מהוקטור רקישור תלוי \mathbb{C}^2 של בסיס מרוכב $B=\{e_1,e_2\}$ אזי הבסיס הנ"ל נקראת בסיס מרוכב של אזי הבסיס הל"ל.

מסכנה:

$$.dim_{\mathbb{C}}\mathbb{C}^n = n, \qquad dim_{\mathbb{R}}\mathbb{C}^n = 2n$$

במונכים $\left\{e_1,...,e_n,\sqrt{-1}e_1,...,\sqrt{-1}e_n
ight\}$ במונכים שהאיברים מהקבוצה של דוגמה 7 הם בת"ל ולכן מהווים בסיס ל- \mathbb{C}^n מעל הממשיים.

 $dim_{\mathbb{F}}V=dim_{\mathbb{R}}V$ פאם 1. האם לדוגמה 1: תרגיל 3: