第六章 样本及抽样分布 习题 课

例1 设 X 服从 $N(0,1), (X_1, X_2, \dots, X_6)$ 为来自总体 X 的简单随机样本,

$$Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$$

试决定常数 C , 使得 CY 服从 χ^2 分布.

解 根据正态分布的性质,

$$X_1 + X_2 + X_3 \sim N(0,3),$$

 $X_4 + X_5 + X_6 \sim N(0,3),$

,

则
$$\frac{X_1 + X_2 + X_3}{\sqrt{3}} \sim N(0,1), \quad \frac{X_4 + X_5 + X_6}{\sqrt{3}} \sim N(0,1),$$
 故 $\left(\frac{X_1 + X_2 + X_3}{\sqrt{3}}\right)^2 \sim \chi^2(1), \left(\frac{X_4 + X_5 + X_6}{\sqrt{3}}\right)^2 \sim \chi^2(1),$ 因为 X_1, X_2, \dots, X_6 相互独立及 χ^2 分布的可加性,
$$\left(\frac{X_1 + X_2 + X_3}{\sqrt{3}}\right)^2 + \left(\frac{X_4 + X_5 + X_6}{\sqrt{3}}\right)^2$$
 = $\frac{1}{3}[(X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2] \sim \chi^2(2),$ 所以 $C = \frac{1}{3}, CY$ 服从 χ^2 分布.

例2 设 \overline{X}_1 和 \overline{X}_2 是来自正态总体 $N(\mu,\sigma^2)$ 的容量为n的两样本 $(X_{11},X_{12},\cdots,X_{1n})$ 和 $(X_{21},X_{22},\cdots,X_{2n})$ 的样本均值,试确定 n,使得这两个样本均值之差超过 σ 的概率大约为0.01.

解
$$\overline{X}_1 \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
, $\overline{X}_2 \sim N\left(\mu, \frac{\sigma^2}{n}\right)$,
则 $\overline{X}_1 - \overline{X}_2 \sim N\left(0, \frac{2\sigma^2}{n}\right)$,
 $P\{|\overline{X}_1 - \overline{X}_2| > \sigma\} = P\left\{\left|\frac{\overline{X}_1 - \overline{X}_2}{\sqrt{2/n}\sigma}\right| > \sqrt{\frac{n}{2}}\right\}$

$$\begin{split} &= 1 - P \left\{ \left| \frac{X_1 - X_2}{\sqrt{2/n\sigma}} \right| \le \sqrt{\frac{n}{2}} \right\} \\ &\approx 1 - \left[\boldsymbol{\sigma} \left(\sqrt{\frac{n}{2}} \right) - \boldsymbol{\sigma} \left(-\sqrt{\frac{n}{2}} \right) \right] = 2 - 2 \boldsymbol{\sigma} \left(\sqrt{\frac{n}{2}} \right) = 0.01, \\ &\tilde{\boldsymbol{\sigma}} \left(\sqrt{\frac{n}{2}} \right) \approx 0.995, \quad \text{查标准正态分布表知} \\ &\sqrt{\frac{n}{2}} = 2.58, \qquad \text{于是 } n = 14. \end{split}$$

例3 设总体 $X \sim N(\mu, \sigma^2)$, 从此总体中取一个容量为 n = 16 的样本 $(X_1, X_2, \dots, X_{16})$, 求概率

(1)
$$P\left\{\frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \le 2\sigma^2\right\}$$
;

$$(2) P \left\{ \frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \le 2\sigma^2 \right\}.$$

 \mathbf{K} (1) 因为 X_1, X_2, \cdots, X_{16} 是来自正态总体的样本,

所以
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$
,

于是
$$P\left\{\frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \le 2\sigma^2\right\}$$

$$= P\left\{8 \le \frac{1}{\sigma^2} \sum_{i=1}^{16} (X_i - \mu)^2 \le 32\right\}$$

$$= P\left\{8 \le \chi^2(16) \le 32\right\}$$

$$= P\left\{\chi^2(16) \le 32\right\} - P\left\{\chi^2(16) \le 8\right\}$$

$$= [1 - P\left\{\chi^2(16) \ge 32\right\}] - [1 - P\left\{\chi^2(16) \ge 8\right\}]$$

$$= 0.94;$$

(2)因为
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2(n-1),$$
 (定理二)
于是 $P\left\{\frac{\sigma^2}{2} \le \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \le 2\sigma^2\right\}$
 $= P\left\{8 \le \frac{1}{\sigma^2} \sum_{i=1}^{16} (X_i - \overline{X})^2 \le 32\right\}$
 $= P\left\{8 \le \chi^2(15) \le 32\right\}$
 $= P\{\chi^2(15) \ge 8\} - P\{\chi^2(15) \ge 32\} = 0.98.$

例4、在总体N(12,4)中随机抽一容量为5的样本 X_1,\cdots,X_5 .

- (1) 求样本均值与总体均值之差的绝对值大于1的概率;
- (2) 求概率 $P\{\max(X_1, X_2, X_3, X_4, X_5) > 15\};$ $P\{\min(X_1, X_2, X_3, X_4, X_5) < 10\}.$

解

(1) 由
$$\overline{X} \sim N(12, \frac{4}{5})$$
,有
$$P\{\overline{X} - 12 > 1\} = 1 - P\{\frac{-1}{2/\sqrt{5}} \le \frac{\overline{X} - 12}{2/\sqrt{5}} \le \frac{1}{2/\sqrt{5}}\}$$

$$= 1 - \Phi(2/\sqrt{5}) + \Phi(-2/\sqrt{5})$$

$$= 2 - 2\Phi(2/\sqrt{5}) = 0.2628$$

例4、在总体N(12,4)中随机抽一容量为5的样本X₁,···,X₅.

(1) 求样本均值与总体均值之差的绝对值大于1的概率;

(2) 求概率P
$$\{\max(X_1, X_2, X_3, X_4, X_5) > 15\};$$

$$P\{\min(X_1, X_2, X_3, X_4, X_5) < 10\}.$$
(2) F $\{\max(X_1, X_2, X_3, X_4, X_5) < 10\}.$

$$= 1 - P\{\max(X_1, X_2, X_3, X_4, X_5) \le 15\}$$

$$= 1 - P\{X_1 \le 15, X_2 \le 15, X_3 \le 15, X_4 \le 15, X_5 \le 15\}$$

$$= 1 - \prod_{i=1}^{5} P\{X_i \le 15\} = 1 - \prod_{i=1}^{5} P\{\frac{X_i - 12}{2} \le \frac{15 - 12}{2}\}$$

$$= 1 - \prod_{i=1}^{5} \Phi(1.5)$$

$$= 1 - \Phi(1.5)^5 = 0.2923$$

$$(3)P\{\min(X_1, X_2, X_3, X_4, X_5) < 10\}$$

$$= 1 - P\{\min(X_1, X_2, X_3, X_4, X_5) \ge 10\}$$

$$= 1 - P\{X_1 \ge 10, X_2 \ge 10, X_3 \ge 10, X_4 \ge 10, X_5 \ge 10\}$$

$$= 1 - \prod_{i=1}^{5} P\{X_i \ge 10\}$$

$$= 1 - \prod_{i=1}^{5} \left[1 - P\left\{\frac{X_i - 12}{2} < \frac{10 - 12}{2}\right\}\right]$$

$$= 1 - \prod_{i=1}^{5} \left[1 - \Phi(-1)\right] = 1 - \Phi(1)^5 = 0.5785$$

2