

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

Controle Digital - SEL0620

Sistema Dinâmico e Discretização da Resposta Transistória

Relatório 2

Matheus Henrique Dias Cirillo - 12547750

Docente responsável: Dr. Valdir Grassi Jr.

São Carlos 2º semestre/2024

Sumário

1	Intro	odução	1
2	Desenvolvimento		
	2.1	Mostre o gráfico de bode do sistema	2
	2.2	Encontre a partir do gráfico, ou use a função bandwidth() do <i>Matlab</i> para encontrar a frequência de largura de banda, w_b em [rad/s], e f_b em [Hz]	2
	2.3	Mostre a resposta contínua do sistema $G(s)$ para uma entrada degrau de amplitude R sobreposta com a resposta discreta do sistema utilizando um retentor de ordem	
	0.4	zero (zero order holder) para as seguintes frequências de amostragem:	3
	2.4	Baseado na largura de banda de um sistema, w_b , qual o critério (de acordo com alguma referência bibliográfica) que pode ser usado para a escolha de uma frequência	
		de amostragem adequada para o sistema dinâmico?	4
	2.5	Para cada frequência de amostragem utilizada na Parte 1, $w_0 = (w_b, 2 \cdot w_b, 5 \cdot w_b, 10 \cdot w_b, 35 \cdot w_b)$, mostre o gráfico da <i>FFT</i> do sinal discreto (obtido com a função	
		disponibilizada).	5
	2.6	Para quais casos não é possível recuperar o sinal original contínuo a partir do sinal discreto? Ou seja, para quais casos o espectro de frequência original do sinal contínuo discreto não pode ser recuperado após a aplicação do filtro passa-baixa ideal no espectro de frequência do sinal discreto? Como isso está relacionado ao Teorema de Amostragem?	6
R	sferêi	ncias Bibliográficas	7
,	,,,,,	IIVIAU PIVIIVAI AIIVAU	

1 Introdução

Considere o seguinte sistema de segunda ordem representado pela função de transferência:

$$G(s) = \frac{w_n^2}{s^2 + 2\xi w_n s + w_n^2} \tag{1.1}$$

A largura de faixa w_b do sistema é medida quando o ganho do sistema cai 3dB em relação ao ganho do sistema referente a $w \to 0$.

Os parâmetros ξ , w_n , e o valor de amplitude R para a entrada degrau que será utilizada são:

- $\xi = 1,012$
- $w_n = 0.875 \frac{rad}{s}$
- R = 1,18

2 Desenvolvimento

2.1 Mostre o gráfico de bode do sistema

O gráfico de bode para o sistema G(s) da Equação 1.1 com os parâmetros fornecidos pode ser observado na Figura 1.

Figura 1: *Gráfico de bode da função* G(s)

2.2 Encontre a partir do gráfico, ou use a função bandwidth() do *Matlab* para encontrar a frequência de largura de banda, w_b em [rad/s], e f_b em [Hz]

Utilizando a função bandwidth() do Matlab podemos obter o valor de w_b e usando a relação de conversão de rad/s para Hz podemos obter f_b :

wb = bandwidth(g)fb = wb/(2*pi)

Assim, os valores finais são:

- $w_b = 0,5526$
- $f_b = 0.0879$

2.3 Mostre a resposta contínua do sistema G(s) para uma entrada degrau de amplitude R sobreposta com a resposta discreta do sistema utilizando um retentor de ordem zero (zero order holder) para as seguintes frequências de amostragem:

Figura 2: Resposta contínua G(s) para $w_0 = w_b$

Figura 3: Resposta contínua G(s) para $w_0 = 2 \cdot w_b$

Figura 4: Resposta contínua G(s) para $w_0 = 5 \cdot w_b$ Figura 5: Resposta contínua G(s) para $w_0 = 10 \cdot w_b$

Figura 6: Resposta contínua G(s) para $w_0 = 35 \cdot w_b$

2.4 Baseado na largura de banda de um sistema, w_b , qual o critério (de acordo com alguma referência bibliográfica) que pode ser usado para a escolha de uma frequência de amostragem adequada para o sistema dinâmico?

A escolha da frequência de amostragem adequada para um sistema dinâmico com base na largura de banda do sistema, w_b , segue geralmente o *Teorema da Amostragem de Nyquist-Shannon*. Esse teorema estabelece que, para evitar *aliasing* e capturar completamente as informações do sinal, a frequência de amostragem f_s deve ser, no mínimo, duas vezes a maior frequência presente no sinal.

Matematicamente, isso pode ser expresso como:

$$f_s \geq 2 \cdot f_{\text{max}}$$

Onde: - f_{max} é a maior frequência presente no sinal, que em sistemas dinâmicos pode ser representada pela largura de banda do sistema w_b .

Portanto, o critério comumente utilizado para determinar a frequência de amostragem, conforme a largura de banda w_b de um sistema dinâmico, é:

$$f_s \geq 2 \cdot w_b$$

Essa recomendação garante que a frequência de amostragem seja suficiente para representar o sistema de forma precisa e evitar a distorção dos sinais causadas por *aliasing* [1, 2].

Parcialmente. Na teoria, o espectro apresentado na Figura 8, correspondente a $w_0=2\cdot w_b$, deveria ser suficiente para recuperar o sinal de forma precisa. No entanto, conforme observado na Figura 3, ainda há uma perda significativa de informações. A partir de $w_0=5\cdot w_b$, o sinal começa a ser melhor representado no domínio do tempo. Contudo, é sabido no Processamento Digital de Sinais que, na prática, é recomendável utilizar pelo menos $w_0=10\cdot w_b$. Como ilustrado na Figura 5, essa escolha proporciona uma aproximação muito mais fiel do sinal original, confirmando que essa é uma métrica robusta para uma representação mais precisa.

2.5 Para cada frequência de amostragem utilizada na Parte 1, $w_0 = (w_b, 2 \cdot w_b, 5 \cdot w_b, 10 \cdot w_b, 35 \cdot w_b)$, mostre o gráfico da *FFT* do sinal discreto (obtido com a função disponibilizada).

Figura 7: Resposta G(s) para $w_0 = w_b$

Figura 9: Resposta G(s) para $w_0 = 5 \cdot w_b$

Figura 8: Resposta G(s) para $w_0 = 2 \cdot w_b$

Figura 10: Resposta G(s) para $w_0 = 10 \cdot w_b$

Figura 11: Resposta G(s) para $w_0 = 35 \cdot w_b$

2.6 Para quais casos não é possível recuperar o sinal original contínuo a partir do sinal discreto? Ou seja, para quais casos o espectro de frequência original do sinal contínuo discreto não pode ser recuperado após a aplicação do filtro passa-baixa ideal no espectro de frequência do sinal discreto? Como isso está relacionado ao Teorema de Amostragem?

Não é possível recuperar o sinal contínuo original a partir do sinal discreto quando a frequência de amostragem w_0 é igual ou menor que a largura de banda do sinal ($w_0 \le w_b$). Nesses casos, o aliasing causa sobreposição dos componentes espectrais, tornando inviável a recuperação do espectro original, mesmo após a aplicação de um filtro passa-baixa ideal.

Embora $w_0=2\cdot w_b$ atenda ao critério teórico, na prática, pode não garantir uma reconstrução perfeita devido a imperfeições no processo de amostragem e filtragem. Frequências maiores, como $w_0\geq 5\cdot w_b$, minimizam o risco de aliasing e permitem uma recuperação precisa do sinal contínuo. Essa impossibilidade de recuperação para $w_0\leq 2\cdot w_b$ está diretamente relacionada ao Teorema

Referências Bibliográficas

- [1] A. V. Oppenheim and R. W. Schafer, *Discrete-Time Signal Processing*. Prentice Hall, 2009.
- [2] R. E. Ziemer, W. H. Tranter, and D. R. Fannin, *Signals and Systems: Continuous and Discrete*. Macmillan Publishing, 1993.