Symbols and Notation

Symbols are defined where they are introduced. Vectors are indicated by bold-face type, for example, **B**, with lowercase boldface letters usually reserved for unit vectors. The summation convention is not used. Matrix notation is used throughout, with () enclosing one- and two-dimensional arrays. Occasionally, { } are used to enclose a column vector. The notation B(u) means that B is a function of u. Dimensions of quantities are sometimes given in brackets, with F = force, L = length, and T = time; for example, the units of stress are given as (FL^{-2}) . A dot over a letter or symbol (e.g., σ) usually means differentiation with respect to time. Some of the more commonly used symbols are the following:

$\hat{D_i}$	unit vector parallel to the dip
Δd	change in the length of a diameter of a tunnel or borehole
dev	subscript identifying deviatoric stress components
\boldsymbol{E}	Young's modulus (FL^{-2})
g	acceleration of gravity
G	shear modulus; also, specific gravity
GPa	10 ³ MPa
i	angle of the leading edge of an asperity on a joint
I_1, I_2, I_3	invariants of stress
\hat{I}_{ij}	unit vector parallel to the line of intersection of planes i and j
k .	used for different purposes as defined locally, including conductivity (LT^{-1}) and stiffness coefficients
K	used variously for the bulk modulus, the Fisher distribution parameter, permeability (L^2) , $\sigma_{\text{horiz}}/\sigma_{\text{vert}}$, and σ_3/σ_1
l, m, n	direction cosines of a line
ln	natural logarithm
MPa	megapascals (MN/m²); 1 MPa ≈ 145 psi
n, s, t	coordinates perpendicular and parallel to layers (st plane)
n	porosity
\hat{N}_i	unit vector perpendicular to layers or joints of one set

xii Symbols and Notation

p, p_w	pressure, water pressure
p_1, p_2	secondary principal stresses
\boldsymbol{P}	force; also, in Chapter 9, a line load (FL^{-1})
q_f	bearing capacity (FL^{-2})
q_u	unconfined compressive strength
RMR	rock mass rating according to the Geomechanics Classification
S	spacing between joints of a given set
S_i	shear strength intercept according to the Mohr Coulomb relation- ship ("cohesion")
S_{j}	shear strength intercept for a joint
$T_{ m MR}$	magnitude of the flexural tensile strength ("modulus of rupture")
T_{o}	magnitude of the tensile strength; uniaxial tensile strength unless indicated otherwise
и, v	displacements parallel to x , y ; positive in positive direction of coordinate axis
u_r, v_θ	displacements parallel to r , θ
Δu	shear displacement along a joint; also radial deformation
Δv	normal displacement across a joint
V_l, V_t	longitudinal and transverse stress wave velocities in a bar
V_p , V_s	compressive and shear wave velocities in an infinite medium
$\Delta V/V$	volumetric strain
w	water content, dry weight basis
w_L , w_P	liquid limit and plastic limit
W	weight vector
x, y, z	right-handed Cartesian coordinates
\boldsymbol{Z}	depth below ground surface
γ	weight per unit volume (FL^{-3})
γ_w	unit weight of water
$arepsilon,_{\gamma}$	normal and shear strains
η	viscosity $(FL^{-2}T)$
λ	Lamé's constant; also wavelength
μ	friction coefficient (= $\tan \phi$); also same as η
ν	Poisson's ratio
ho	mass density $(FL^{-4}T^2)$
σ	normal stress

$\sigma_1, \sigma_2, \sigma_3$	principal stresses; $\sigma_1 > \sigma_2 > \sigma_3$ (compression positive)
$\sigma_{t,B}$	magnitude of the Brazilian (splitting tension) strength
σ_r, σ_θ	radial and tangential normal stresses
σ'	effective stress
τ	shear stress
$ au_p, au_r$	peak and residual shear strength
φ, .,	friction angle; variously used as internal and surficial friction angles as defined locally
ϕ_{μ}	friction angle for sliding on a smooth surface $(i = 0)$
ϕ_{μ} ϕ_{j}	friction angle for a joint
ψ_j	angle between the direction of σ_1 and the plane of a joint
Ψ ā	average displacement of a bearing plate