ECO-Al Hackathon Track 2

Deep Learning Emulators of Coupled Time-Dependent PDEs

Carbon Hackers (ChatGPT-recommended)

Jack Li Rui Li Vitalii Starikov Donghu Guo Farah Rabie

Introduction

Objective Develop a machine-learning based emulator for reactive transport simulations

Can a machine-learning based emulator accurately predict the following fields?

concentration porosity Ux Uy

Data

16 GeoChemFoam simulations, each initialized with a different random distribution of porosity 12 datasets for training and 4 for validation

Baseline Model

U-net

Residual Network (ResNet) 34

Network Type

Convolutional Neural Network

Input

Images of size 256 x 256 pixels

Initial Convolutional Layer

Convolutional operation with a kernel size of 7x7; 64 filters

Batch normalisation; ReLU activation

Pooling Layer > Residual Stages > Final Layers (includes Output Layer)

Baseline Model

simulations for validation)

U-net

Residual Network (ResNet) 34

Input

10 simulations (2

No. of batches

64

Output

Baseline Results

Baseline Results

CNN Model

Architecture of Neural Network

Layer (type)	Output Shape	Param #
Conv2d-1 LeakyReLU-2	[-1, 16, 256, 256] [-1, 16, 256, 256]	1,168
Conv2d-3	[-1, 48, 256, 256]	6,960
LeakyReLU-4 Conv2d-5	[-1, 48, 256, 256] [-1, 128, 256, 256]	55 , 424
LeakyReLU-6 ConvTranspose2d-7	[-1, 128, 256, 256] [-1, 48, 256, 256]	0 55,344
LeakyReLU-8	[-1, 48, 256, 256] [-1, 16, 256, 256]	0
ConvTranspose2d-9 LeakyReLU-10	[-1, 16, 256, 256]	6 , 928 0
ConvTranspose2d-11 LeakyReLU-12	[-1, 4, 256, 256] [-1, 4, 256, 256]	580 0
Identity-13	[-1, 4, 256, 256]	0

Total params: 126,404 Trainable params: 126,404 Non-trainable params: 0

Input size (MB): 2.00

Forward/backward pass size (MB): 262.00

Params size (MB): 0.48

Estimated Total Size (MB): 264.48

```
Sample size
(1, 8, 256, 256)
(1, 4, 256, 256)
```

 ~ 80 samples for one simulation

The first simulation for training The 15th simulation for testing

CNN Model

A/ One-time stepping

CNN Model

A/ One-time stepping

Velocity in y-direction

Concentration

Porosity

CNN Model

B/ Multi-time stepping; autoregression

CNN Model

B/ Multi-time stepping; autoregression

ConvLSTM (several times of trials)

Using N previous time steps to predict future one step

Treating C, eps, Ux, and Uy as separate channels

Previous 10 steps — the 10th step

Predicted 11th step

Auto-regressive U-Net

Takes all 4 fields as input at a previous time step, and predicts their change for the next time step

Conclusion

- This is a difficult task working with large datasets can be quite challenging
- · Regardless of learning algorithm, validation error hardly decreases during training

Thoughts

- How can we pre-process the data, to help deal with memory issues?
- Which variables should we be trying to learn (are they all varying significantly)?
- How do we decide on which timesteps to include (should we include gaps in timesteps)?
- Can we use Physics-based Machine Learning algorithms for this task?