Nome: n^o

Considere o seguinte problema de programação inteira:

$$\max BCx_1 + DEx_2$$
, suj. a $2x_1 + 4x_2 \le 9$, $3x_1 + 3x_2 \le 10.5$, $x_1, x_2 \ge 0$ e inteiros

em que B, C, D e E são os valores dos dígitos do seu número de inscrição: ABCDE. Os pontos abaixo indicados têm as coordenadas $A = (3.5, 0)^t, B = (2.5, 1)^t, C = (0, 2.25)^t$, respectivamente.

a) Usando as **Regras** abaixo indicadas, apresente a árvore de pesquisa da resolução do problema pelo método de partição e avaliação, indicando, em cada nó da árvore de pesquisa, o número de ordem de visita do nó, #, as coordenadas do ponto, x_1 e x_2 , e o valor da função objectivo, z, e, em cada ramo da árvore, nas casas a amarelo, a restrição de partição inserida.

Além disso, indique a decisão em cada nó (partição ou abandono), justificando-a:

nó	decisão / justificação
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Regras

O coeficiente DE de x_2 é o número representado pelos dois últimos dígitos do seu número de aluno. Por exemplo, para o aluno cujo número é 35740, o coeficiente de x_2 é 40 e o de x_1 é 57.

Caso o dígito C seja ímpar, deve usar a regra de pesquisa DFS(LIFO); caso seja par, deve usar a regra de pesquisa BFS(FIFO).

No ramo esquerdo da partição, deve colocar a restrição de tipo \leq e, no ramo direito, a restrição de tipo \geq . Se um nó for impossível, escreva "imp" no espaço de x_1 .

©Valério de Carvalho