Problem Set 8

by Maksim Al Dandan

April 21, 2024

1 Task 1

1.1 Statement

Insert the (key, value) items into an empty B-tree [Cormen, §18] with minimum degree t=2:

- (a) $\langle 33, U \rangle$, $\langle 10, T \rangle$, $\langle 17, I \rangle$, $\langle 12, N \rangle$, $\langle 23, U \rangle$
- (b) $\langle 1, A \rangle$, $\langle 29, D \rangle$, $\langle 36, Y \rangle$, $\langle 3, S \rangle$, $\langle 5, T \rangle$
- (c) $\langle 19, P \rangle$, $\langle 14, O \rangle$, $\langle 7, I \rangle$, $\langle 8, N \rangle$, $\langle 39, I \rangle$
- (d) $\langle 27, I \rangle$, $\langle 35, N \rangle$, $\langle 20, O \rangle$, $\langle 25, L \rangle$, $\langle 31, S \rangle$

Show the state of the tree after every 5 insertions. Depict each tree as a sequence of arrays for each layer. For example, consider this B-tree:

The tree above must be depicted as follows:

- (layer 1) $\langle 9, I \rangle$
- (layer 2) $\langle 2, A \rangle \langle 6, T \rangle$ $\langle 15, D \rangle$
- $(layer \ 3) \ \boxed{\langle 1, \, D \rangle} \ \boxed{\langle 3, \, S \rangle \ | \ \langle 4, \, T \rangle \ | \ \langle 5, \, A \rangle} \ \boxed{\langle 7, \, S \rangle \ | \ \langle 8, \, T \rangle} \ \boxed{\langle 10, \, R \rangle \ | \ \langle 12, \, U \rangle} \ \boxed{\langle 17, \, R \rangle \ | \ \langle 19, \, E \rangle \ | \ \langle 20, \, S \rangle}$

1.2 Answer

- 1. Insertion 1
- (layer 1) $\langle 17, I \rangle$
- (layer 2) $\boxed{\langle 10, T \rangle | \langle 12, N \rangle} \boxed{\langle 23, U \rangle | \langle 33, U \rangle}$
- 2. Insertion 2
- (layer 1) $\langle 10, T \rangle | \langle 17, I \rangle | \langle 29, D \rangle$
- $(layer\ 2)\ \boxed{\langle 1,\ A\rangle\ |\ \langle 3,\ S\rangle\ |\ \langle 5,\ T\rangle}\ \boxed{\langle 12,\ N\rangle}\ \boxed{\langle 23,\ U\rangle}\ \boxed{\langle 33,\ U\rangle\ |\ \langle 36,\ Y\rangle}$
- 3. Insertion 3
- (layer 1) $\boxed{\langle 17, 1 \rangle}$
- (layer 2) $\lfloor \langle 3, S \rangle \mid \langle 10, T \rangle \rfloor \quad \lfloor \langle 29, D \rangle$

 $(layer 3) \ \ \overline{\langle 1, A \rangle} \ \ \overline{\langle 5, T \rangle} \ \overline{\langle 7, I \rangle} \ \overline{\langle 8, N \rangle} \ \overline{\langle 12, N \rangle} \ \overline{\langle 14, O \rangle} \ \overline{\langle 19, P \rangle} \ \overline{\langle 23, U \rangle} \ \overline{\langle 33, U \rangle} \ \overline{\langle 36, Y \rangle} \ \overline{\langle 39, I \rangle}$

4. Insertion 4

(layer 1) $\langle 17, I \rangle$

 $(layer 2) \ \ \boxed{\langle 3, \, S \rangle \ | \ \langle 10, \, T \rangle} \ \ \boxed{\langle 23, \, U \rangle \ | \ \langle 29, \, D \rangle \ | \ \langle 36, \, Y \rangle}$

2 Task 2

2.1 Statement

Perform Heap-Sort [Cormen, §6.4] on the following input array:

Show the state of the array after each call to Max-Heapify (solution must have 12 arrays).

2.2 Answer

Call 1	1	3	7	8	0	2	5	4	6
Call 2	1	3	7	8	0	2	5	4	6
Call 3	1	8	7	6	0	2	5	4	3
Call 4	8	6	7	4	0	2	5	1	3
Call 5	7	6	5	4	0	2	3	1	8
Call 6	6	4	5	1	0	2	3	7	8
Call 7	5	4	3	1	0	2	6	7	8
Call 8	4	2	3	1	0	5	6	7	8
Call 9	3	2	0	1	4	5	6	7	8
Call 10	2	1	0	3	4	5	6	7	8
Call 11	1	0	2	3	4	5	6	7	8
Call 12	0	1	2	3	4	5	6	7	8

References

[Cormen] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, Fourth Edition. The MIT Press 2022

 $\left[\text{Goodrich} \right]$ M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data Structures and Algorithms in Java. WILEY 2014.