Épreuve écrite: Énoncé

Examen de fin d'études secondaires 2013

Section: D

Branche: Statistique et probabilités

Page 1/2
Numéro d'ordre du candidat

Partie 1: Éléments de statistique descriptive [15 p.]

Le montant mensuel de l'argent de poche de 180 élèves de 18 à 20 ans est distribué selon le tableau suivant:

Argent de poche (en €/mois)	Nombre d'élèves
[0;20[8
[20;40[17
[40;50[25
[50;60[55
[60;100[32
[100;150[32
[150;250[11

Travail à faire:

a. Calculez la moyenne arithmétique par changement d'origine et d'échelle.	[3 p.]
b. Quel est l'intervalle interquartile? Calculez et interprétez brièvement votre résultat.	[5 p.]
c. Calculez l'écart-type par changement d'origine et d'échelle.	[4 p.]
d. Calculez le pourcentage de l'effectif compris dans l'intervalle [24; 154].	[3 p.]

Partie 2: Régression et corrélation [15 p.]

Le tableau suivant renseigne sur l'âge et le traitement annuel brut de 9 cadres choisis au hasard parmi un vaste ensemble de cadres d'une entreprise multinationale.

Cadre	Âge en années (x _i)	Traitement annuel brut en milliers d'euros (y _i)
1	25	40
2	30	48
3	35	58
4	40	74
5	45	76
6	50	86
7	55	95
8	60	100
9	65	98

Travail à faire:

o	a. Représentez ces valeurs graphiquement.
	h Calculat la draita da rágraccion par la máthada das maindres cal

b. Calculez la droite de régression par la méthode des moindres carrés.

c. Représentez cette droite dans le même graphique.

[3 p.]

[9 p.]

[3 p.]

Page 2/2

Examen de fin d'études secondaires 2013

Section: D

Branche: Statistique et probabilités

Number diameter de condid	-4
Numéro d'ordre du candida	аι
1	_

Partie 3: Éléments du calcul des probabilités et variables aléatoires [30 p.]

Exercice 3.1. [10 p.]

Une urne contient 10 boules, dont 3 de couleur verte, 5 de couleur bleue et 2 de couleur rouge. On tire simultanément 3 boules de cette urne.

Calculez la probabilité d'obtenir

- a. 1 boule verte et 2 boules bleues;
- b. 3 boules de couleurs différentes;
- c. au moins une boule bleue;
- d. deux boules d'une même couleur.

Exercice 3.2. [9 p.]

Un groupe de 60 coureurs, portant des dossards numérotés de 1 à 60, participe à une course cycliste qui comprend 8 étapes et au cours de laquelle aucun abandon n'est constaté.

À la fin de chaque étape, un groupe de 6 coureurs est choisi au hasard pour subir un contrôle antidopage.

Ces désignations de 6 coureurs à l'issue de chacune des étapes sont indépendantes.

Un même coureur peut donc être contrôlé à l'issue de plusieurs étapes.

On choisit au hasard un coureur à l'arrivée de la course. Calculez la probabilité qu'

- a. il a été contrôlé trois fois exactement;
- b. il n'a pas été contrôlé;
- c. il a été contrôlé au moins deux fois.

Exercice 3.3. [11 p.]

Un candidat se présente à un jeu à la radio. Sans connaître les réponses, il répond au hasard par vrai ou faux à une série de 3 questions de difficulté croissante. Les questions sont indépendantes et numérotées de 1 à 3. Chaque question comporte quatre affirmations dont une seule est vraie.

- ▶ Le candidat gagne
 - 10 euros s'il répond correctement à la 1ère question;
 - 20 euros s'il répond correctement à la 2ième question;
 - et 40 euros s'il répond correctement à la 3ième question.
- ▶ Le candidat perd 20 euros pour toute mauvaise réponse.

Soit la variable aléatoire X le gain total (positif, négatif ou nul) après avoir répondu aux 3 questions.

- a. Établissez la loi de probabilité.
- b. Calculez l'espérance mathématique de gain.
- c. Quelle est la probabilité pour qu'à l'issue du jeu le candidat ait gagné quelque chose (gain strictement positif)?