EN. 601.467/667 Introduction to Human Language Technology Deep Learning II

Shinji Watanabe

Today's agenda

- Basics of (deep) neural network
- How to integrate DNN with HMM
- Recurrent neural network

Speech recognition pipeline

Feed-forward neural network for acoustic model

- Basic problem $p(s_t|\mathbf{o}_t)$
 - s_t : HMM state or phoneme
 - \mathbf{o}_t : speech feature vector
 - *t*: data sample
- Configurations
 - Input features
 - Context expansion
 - Output class
 - Softmax function
 - Training criterion
 - Number of layers
 - Number of hidden states
 - Type of non-linear activations

+ 11 context frames

Input feature

- GMM/HMM formulation
 - Lot of conditional independence assumption and Markov assumption
 - Many of our trials are how to break these assumptions
- In GMM, we always have to care about the correlation
 - Delta, linear discriminant analysis, semi-tied covariance
- In DNN, we don't have to care ©
 - We can simply concatenate the left and right contexts, and just throw it!

$$\mathbf{o}_t^{(2)} = egin{bmatrix} \mathbf{o}_{t-r}^{(1)} \ dots \ \mathbf{o}_t^{(1)} \ dots \ \mathbf{o}_{t+r}^{(1)} \end{bmatrix}$$

Output

- Phoneme or HMM state ID is used
- We need to have a pair data of output and input data at frame t
 - First use the Viterbi alignment to obtain the state sequence

$$\hat{S} = \{\hat{s}_t | t = 1, \cdots, T\} = \underset{S}{\operatorname{argmax}} p(S, \mathbf{O} | \Theta_{\operatorname{gmm/hmm}})$$

- Then, we get the input and output pair $\{\hat{s}_t, \mathbf{o}_t\}$ for all t
- Make acoustic model as a multiclass classification problem by predicting the all HMM state ID given the observation
 - Not consider any constraint in this stage (e.g., left to right, which is handled by an HMM during recognition)

Feed-forward neural networks

Affine transformation and non-linear activation function (sigmoid function)

$$\mathbf{h}_t^{(1)} = \sigma(\mathbf{W}^{(1)}\mathbf{o}_t + \mathbf{b}^{(1)})$$

$$\mathbf{h}_t^{(l)} = \sigma(\mathbf{W}^{(l)}\mathbf{h}_t^{(l-1)} + \mathbf{b}^{(l)})$$

• Softmax operation to get the probability distribution

$${p(s_t = j | \mathbf{o}_t)}_{j=1}^J = \operatorname{softmax}(\mathbf{W}^{(L)} \mathbf{h}_t^{(L-1)} + \mathbf{b}^{(L)})$$

Linear operation

- Transforms $D^{(l-1)}$ -dimensional input to $D^{(l)}$ output $f(\mathbf{h}^{(l-1)}) = \mathbf{W}^{(l)}\mathbf{h}^{(l-1)} + \mathbf{b}^{(l)}$
 - $\mathbf{W}^{(l)} \in \mathbb{R}^{D^{(l)} \times D^{(l-1)}}$: Linear transformation matrix
 - $\mathbf{b}^{(l)} \in \mathbb{R}^{D^{(l)}}$: bias vector
- Derivatives

•
$$\frac{\partial \sum_{j} w_{ij} h_{j} + b_{i}}{\partial b_{i'}} = \delta(i, i')$$
•
$$\frac{\partial (\sum_{j} w_{ij} h_{j} + b_{i})}{\partial w_{i'j'}} = \delta(i, i') h_{j'}$$

Sigmoid function

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Convert the domain from \mathbb{R} to [0,1]
- Elementwise sigmoid function:

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}} = \left[\frac{1}{1 + e^{-x_d}}\right]_{d=1}^{D}$$

- No trainable parameter in general
- Derivative

•
$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

Softmax function

Softmax function

$$p(j|\mathbf{h}) = [\operatorname{softmax}(\mathbf{h})]_j = \frac{e^{h_j}}{\sum_{i=1}^J e^{h_i}}$$

- Convert the domain from \mathbb{R}^J to $[0,1]^J$ (make a multinomial dist. \rightarrow classification)
- Satisfy the sum to one condition, i.e., $\sum_{j=1} p(j|\mathbf{h}) = 1$
- J = 2: sigmoid function

Derivative

- For i = j: $\frac{\partial p(j|\mathbf{h})}{\partial h_i} = p(j|\mathbf{h})(1 p(j|\mathbf{h}))$ For $i \neq j$: $\frac{\partial p(j|\mathbf{h})}{\partial h_i} = -p(i|\mathbf{h}) \, p(j|\mathbf{h})$ Or we can write as $\frac{\partial p(j|\mathbf{h})}{\partial h_i} = p(j|\mathbf{h})(\delta(i,j) p(i|\mathbf{h}))$: $\delta(i,j)$: Kronecker's delta

What functions/operations we can use and cannot use?

- Most of elementary functions
 - $+, -, \times, \div, \log(), \exp(), \sin(), \cos(), \tan()$
- The function/operations that we cannot take a derivative, including some discrete operation
 - $argmax_w p(W|O)$: Basic ASR operation, but we cannot take a derivative....
 - Discretization

Objective function design

We usually use the cross entropy as an objective function

$$\mathcal{C}_{\text{CE}}(\Theta_{\text{dnn}}) = \sum_{t} \text{CE}[p^{\text{ref}}(s_t)|p(s_t|\mathbf{o}_t, \Theta_{\text{dnn}})]$$

$$= -\sum_{t} \sum_{s_t} p^{\text{ref}}(s_t) \log p(s_t|\mathbf{o}_t, \Theta_{\text{dnn}})]$$

$$= -\sum_{t} \sum_{s_t} \delta(s_t, \hat{s}_t) \log p(s_t|\mathbf{o}_t, \Theta_{\text{dnn}})]$$

$$= -\sum_{t} \log p(\hat{s}_t|\mathbf{o}_t, \Theta_{\text{dnn}})]$$

 Since the Viterbi sequence is a hard assignment, the summation over states is simplified

Other objective functions

Square error

$$\left|\mathbf{h}^{\text{ref}} - \mathbf{h}\right|^2$$

- We could also use p norm, e.g., L1 norm
- Binary cross entropy

$$\mathcal{C}_{\text{Binary}}(\Theta_{\text{dnn}}) = -\sum_{t} \log p(\hat{s}_{t}|\mathbf{o}_{t}, \Theta_{\text{dnn}})]$$
$$= -\sum_{t} \log \sigma(\mathbf{h}_{t})$$

 Again this is a special case of the cross entropy when the number of classes is two

Output: $s_t \in \{1, ..., J\}$

Softmax activation

Sigmoid activation

Linear transformation

$$+, -, \exp(), \log(), etc.$$

Input: $\mathbf{o}_t \in \mathbb{R}^D$

Input: $\mathbf{o}_t \in \mathbb{R}^D$

Output: $s_t \in \{1, ..., J\}$

Softmax activation

Sigmoid activation

Linear transformation

$$+, -, \exp(), \log(), etc.$$

Input: $\mathbf{o}_t \in \mathbb{R}^D$

How to optimize? Gradient decent and their variants

• Take a derivative and update parameters with this derivative

$$\Theta_{\rm dnn}^{\rm (new)} = \Theta_{\rm dnn}^{\rm (old)} - \rho \frac{\partial}{\partial \Theta_{\rm dnn}} \mathcal{C}_{\rm CE}(\Theta_{\rm dnn}) \bigg|_{\Theta_{\rm dnn} = \Theta_{\rm dnn}^{\rm (old)}}$$

• Chain rule

$$\frac{\partial}{\partial \theta} f(g(\theta)) = \frac{\partial}{\partial g} \frac{\partial g}{\partial \theta} f(g(\theta)) = f'(g(\theta))g'(\theta)$$

• Learning rate ρ

Deep neural network: nested function

- Chain rule to get a derivative recursively
 - Each transformation (Affine, sigmoid, and softmax) has analytical derivatives and we just combine these derivatives
 - We can obtain the derivative from the back propagation algorithm

Minibatch processing

- Batch processing
 - Slow convergence
 - Effective computation
- Online processing
 - Fast convergence
 - Very inefficient computation
- Minibatch processing
 - Something between batch and online processing

$$\Theta_{\rm dnn}^{\rm (new)} = \Theta_{\rm dnn}^{\rm (old)} - \rho \frac{\partial}{\partial \Theta_{\rm dnn}} \mathcal{C}_{\rm CE}(\Theta_{\rm dnn}) \bigg|_{\Theta_{\rm dnn} = \Theta_{\rm dnn}^{\rm (old)}}$$
where
$$\mathcal{C}_{\rm CE}(\Theta_{\rm dnn}) = -\sum_{t} \log p(\hat{s}_t | \mathbf{o}_t, \Theta_{\rm dnn})$$

How to set ρ ?

$$\Theta^{(\tau+1)} = \Theta^{(\tau)} - \rho \cdot \Delta_{\text{grad}}^{(\tau)}$$

- Stochastic Gradient Decent (SGD)
 - Use a constant value (hyper-parameter)
 - Can have some heuristic tuning (e.g., $\rho \leftarrow 0.5 \times \rho$ when the validation loss started to be degraded. Then the decay factor becomes another a hyperparameter)
- Adam, AdaDelta, RMSProp, etc.
 - Use current or previous gradient information adaptively update $\rho(\Delta_{\rm grad}^{(\tau)}, \Delta_{\rm grad}^{(\tau-1)}, \dots)$
 - Still has hyperparameters to make a balance between current and previous gradient information
- Choice of an appropriate optimizer and its hyperparameters is critical

Today's agenda

- Basics of (deep) neural network
- How to integrate DNN with HMM
- Recurrent neural network

How to integrate DNN with HMM

- Bottleneck feature
- DNN/HMM hybrid

Bottleneck feature

- Train DNN, but one layer having a narrow layer
- Use a hidden state vector for GMM/HMM
- Nonlinear feature extraction with discriminative abilities
- Can combine with existing GMM/HMM

Bottleneck layer

Output HMM state

Input speech features

Log mel filterbank + 11 context frames

DNN/HMM hybrid

- How to make it fit to the HMM framework?
 - Use the Bayes rule to convert the posterior to the likelihood

$$p(\mathbf{o}_t|s_t) \to p(s_t|\mathbf{o}_t,\Theta_{\mathrm{dnn}})/p(s_t)$$

- $p(s_t)$ is obtained by the maximum likelihood (unigram count)
- Need a modification in the Viterbi algorithm during recognition

Today's agenda

- Basics of (deep) neural network
- How to integrate DNN with HMM
- Recurrent neural network

Recurrent neural network

- Basic problem
 - HMM state (or phoneme) or speech feature is a sequence

$$S_1, S_2, ..., S_t$$

 $\mathbf{0}_1, \mathbf{0}_2, ..., \mathbf{0}_t$

• It's better to consider context (e.g., previous input) to predict the probability of S_t

$$p(s_t|\mathbf{o}_t) \rightarrow p(s_t|\mathbf{o}_1,\mathbf{o}_2,...,\mathbf{o}_t)$$

Recurrent neural network (RNN) can handle such problems

Vanilla RNN: We ignore the bias term for simplicity

$$\mathbf{y}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right)$$

Possibly consider long-range effect (but longer weaker) no future context

 $p(s_6|x_1,x_2,\ldots,x_6)$

Softmax activation

We can compute the posterior distribution $p(s_t|\mathbf{o}_1,\mathbf{o}_2,...,\mathbf{o}_t)$

Bidirectional RNN

We can compute the posterior distribution $p(s_t|\mathbf{o}_t,\mathbf{o}_{t+1},...,)$

Bidirectional RNN

$$\mathbf{y}_{t} = \begin{bmatrix} \overrightarrow{\mathbf{y}}_{t+1} \\ \overleftarrow{\mathbf{y}}_{t+1} \end{bmatrix} \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t-1} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{W} \begin{bmatrix} \overleftarrow{\mathbf{y}}_{t} \\ \mathbf{x}_{t} \end{bmatrix} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{\overline{y}}_{t} \right) \qquad \mathbf{\overline{y}}_{t} = \sigma \left(\mathbf{\overline{$$

We can compute the posterior distribution $p(s_t|\mathbf{o}_1,\mathbf{o}_2,...,\mathbf{o}_t,\mathbf{o}_{t+1},...,)$

Long short-term memory RNN

- Keep two states
 - Normal recurrent state: y_t
 - Memory cell: c_t

- Cell state keeps the history information
 - 1. It **will be** forgotten
 - 2. New information from x_t will be added
 - 3. The cell information **will be** outputted as y_t
 - "will be" function is implemented by a gate function [0, 1] through the sigmoid activation

tanh and sigmoid activations

sigmoid

- Convert the domain from $\mathbb R$ to [0,1]
- Used as a gating (weight the state vector (information))

$$\mathbf{h}_t \otimes \sigma(\mathbf{z}_t)$$

- tanh
 - ullet Convert the domain from ${\mathbb R}$ to $^{[-1,\,1]}$
 - Allow negative and positive values

$$\tanh(\mathbf{x}) = \frac{e^{\mathbf{x}} - e^{-\mathbf{x}}}{e^{\mathbf{x}} + e^{-\mathbf{x}}}$$

- Cell state keeps the history information
 - 1. It **will be** forgotten
 - 2. New information from x_t will be added
 - 3. The cell information will be outputted as y_t

$$\mathbf{g}_{\mathrm{forget}} = \sigma \left(\mathbf{W}_{\mathrm{forget}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{forget}} \right)$$

$$\mathbf{c}_{t-1} \otimes \mathbf{g}_{\mathrm{forget}}$$

- Cell state keeps the history information
 - 1. It will be forgotten
- c_t 2. New information from x_t will be added
 - 3. The cell information will be outputted as y_t

$$\mathbf{g}_{\mathrm{input}} = \sigma \left(\mathbf{W}_{\mathrm{input}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{input}} \right)$$

$$anh\left(\mathbf{W}_{\mathrm{cell}}\begin{bmatrix}\mathbf{y}_{t-1}\\\mathbf{x}_{t}\end{bmatrix}+\mathbf{b}_{\mathrm{cell}}\right)\otimes\mathbf{g}_{\mathrm{input}}$$

- Cell state keeps the history information
 - 1. It will be forgotten
- c_t 2. New information from x_t will be added
 - 3. The cell information will be outputted as y_t

$$\mathbf{g}_{\mathrm{input}} = \sigma \left(\mathbf{W}_{\mathrm{input}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{input}} \right)$$

$$anh\left(\mathbf{W}_{\mathrm{cell}}\begin{bmatrix}\mathbf{y}_{t-1}\\\mathbf{x}_{t}\end{bmatrix}+\mathbf{b}_{\mathrm{cell}}\right)\otimes\mathbf{g}_{\mathrm{input}}$$

- Cell state keeps the history information
 - 1. It will be forgotten
- \mathbf{c}_t 2. New information from \mathbf{x}_t will be added
 - 3. The cell information will be outputted as y_t

$$\mathbf{c}_t = \mathbf{c}_{t-1} \otimes \mathbf{g}_{\mathrm{forget}} + \mathrm{tanh}\left(\mathbf{W}_{\mathrm{cell}}\begin{bmatrix}\mathbf{y}_{t-1}\\\mathbf{x}_t\end{bmatrix} + \mathbf{b}_{\mathrm{cell}}\right) \otimes \mathbf{g}_{\mathrm{input}}$$

- Cell state keeps the history information
 - 1. It will be forgotten
- c_t 2. New information from x_t will be added
 - 3. The cell information **will be** outputted as y_t

$$\mathbf{g}_{\mathrm{output}} = \sigma \left(\mathbf{W}_{\mathrm{output}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{output}} \right)$$

$$\mathbf{y}_t = \mathrm{tanh}(\mathbf{c}_t) \otimes \mathbf{g}_{\mathrm{output}}$$

LSTM block summary

• 3 gating functions

$$\mathbf{g}_{\mathrm{forget}} = \sigma \left(\mathbf{W}_{\mathrm{forget}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{forget}} \right)$$

$$\mathbf{g}_{ ext{input}} = \sigma \left(\mathbf{W}_{ ext{input}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{ ext{input}} \right)$$

$$\mathbf{g}_{\mathrm{output}} = \sigma \left(\mathbf{W}_{\mathrm{output}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{output}} \right)$$

Cell update

$$\mathbf{c}_t = \mathbf{c}_{t-1} \otimes \mathbf{g}_{\mathrm{forget}} + \mathrm{tanh}\left(\mathbf{W}_{\mathrm{cell}} \begin{bmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{bmatrix} + \mathbf{b}_{\mathrm{cell}} \right) \otimes \mathbf{g}_{\mathrm{input}}$$

Hidden state update

$$\mathbf{y}_t = \tanh(\mathbf{c}_t) \otimes \mathbf{g}_{\mathrm{output}}$$

LSTM RNN

 $\mathbf{c}_t = \mathbf{c}_{t-1} \otimes \mathbf{g}_{\text{forget}} + anh\left(\mathbf{W}_{\text{cell}} \begin{vmatrix} \mathbf{y}_{t-1} \\ \mathbf{x}_t \end{vmatrix} + \mathbf{b}_{\text{cell}} \right) \otimes \mathbf{g}_{\text{input}}$ • LSTM **y**₁ **y**₂ **y**₃ **y**₄ **y**₅ **y**₆ **y**t **y**₃ **y**₁ **y**₂ **y**₄ **y**₅ y_{t-1} X_4 **X**₆

Possibly consider to keep the above initial information dependency by

$$\mathbf{g}_{\text{forget}} = \mathbf{1}$$
 and $\mathbf{g}_{\text{input}} = \mathbf{0}$ at $t > 1$

RNN can be used for both acoustic and language models

• HMM/DNN Acoustic model $p(s_t|\mathbf{o}_1,\mathbf{o}_2,...,\mathbf{o}_t)$

• Language model $p(w_i|w_1, w_2, ..., w_{i-1})$

Summary of today's talk

- Basics of deep neural network
 - Input, output, function block, back propagation, optimization
- Recurrent neural network
 - Now we can handle a sequence $(s_1, s_2, ...), (w_1, w_2, ...), (\mathbf{o}_1, \mathbf{o}_2, ...)$
- Integrate deep neural network for speech recognition
 - GMM/HMM → DNN/HMM or RNN/HMM
 - RNN language model
- Next lecture will extend this sequence handling function to directly model whole speech recognition in an end-to-end manner