Coordinate Geometry

Outline

- Equation of a straight line
- Parallel lines
- Perpendicular lines
- Distance between two points
- Mid point between two points
- Perpendicular Distance from a point to a line
- Equation of a circle
- Polar Coordinates
- Tangent to a circle

Linear Functions

• A Linear Function is a function of the form: f(x) = mx + c where m and c are real numbers and m is the slope and c is the intercept.

The domain and range of a linear function are all real numbers.

Question

Q) Identify the slope and the intercept of the following:

1.
$$5x - 6y = -12$$

2.
$$x - 6y = -11$$

3.
$$y - 5x = 20$$

$$4. -3x = -0.5y + 7$$

$$5. \ \frac{x+3}{2y-5} = -4$$

- The slope m is also called as the gradient / Average rate of change of the line.
- The average rate of change of a linear function is defined by $\frac{\Delta y}{\Delta x}$

$$m = \tan(\theta) = \frac{y_2 - y_1}{x_2 - x_1}$$

• The angle theta is measured counter clockwise from the positive x-axis.

When
$$f(x) = -3x+4$$

Slope: m = -3

Intercept: c = 4

The average rate of change is the constant m = -3

Since m =-3 is negative, the graph is slanted downwards. Thus the function is decreasing

When
$$f(x) = 3$$

$$f(x)=0x+3$$

Slope: m = 0

Intercept: c = 3

- The average rate of change is 0
- The function is constant neither increasing or decreasing

Plotting a graph from the line equation

Methods

- 1. Plot the line by identifying x and y intercepts
- 2. Plot the line by identifying the slope and the intercept from the given equation

Note: If the slope is not given, at least two points are required to plot a line.

Plotting a line by identifying x and y intercepts

Example: Plot the graph of y = 2x - 4

- In order to find the y intercept, set x=0 in the equation
- In order to find the x intercept, set y=0 in the equation

when
$$x = 0$$
, $y = -4$, $(0, -4)$
when $y = 0$, $x = 2$, $(2, 0)$

• Now use the two points (0,-4) and (2, 0) to plot the line

Plotting a line by identifying x and y intercepts

• Plot the graph of y = 2x - 4

Plotting a line by identifying the slope and the intercept

• Plot the graph of y = x - 4

• Slope:
$$m = 1$$
, $\tan(\theta) = 1$
$$\theta = \tan^{-}(1)$$

$$\theta = 45^{\circ}$$

• Intercept:

$$c = -4$$
,

Now, plot the graph using m and c.

Plotting a line by identifying the slope and the intercept

• Plot the graph of y = x - 4

• Draw rough sketches of the following graphs.

i)
$$y = mx$$

ii)
$$y = mx + c$$

iii)
$$y = mx - c$$

iv)
$$y = -mx$$

$$y = -mx + c$$

$$y = -mx - c$$

Qs-

Exercise:

Sketch y = -2x + 7 using x and y intercepts and plot the same line identifying the slope and the intercept.

Identify whether the following data fits a linear function or not

• Q1.

X	y=f(x)
-1	-9
0	-7
1	-5

Q3.

X	y=f(x)
-1	5
0	5
1	5

• Q2.

X	y=f(x)
-1	-6
0	-7
1	-6

Q4.

X	y=f(x)
-1	-4
0	-1
1	6

• NOTE: Slope of a linear function is a constant regardless of what points are used to calculate it.

Equation of a line

a) Finding the line equation when the **slope** and **a point** on the line **is given**:

Lets consider the slope to be 'm' and the point A (x_1, y_1) to be on the line. Then, the line equation is given by:

$$y - y_1 = m(x - x_1)$$

Example:

Q) Find the equation of a line that goes through the point (3, 4) with a slope =-2.

Equation of a line

b) Finding the line equation when two points are known.

Suppose A (x_1, y_1) and B (x_2, y_2) are on the line. Then, the line equation is given by:

$$y - y_1 = \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$$

Example:

Q) Find the equation of a line through points (3, 4) and (-1, 6).

Parallel lines

Parallel lines have the same slope.

Q) Graph a line parallel to the given line L1 and through point (0, -1):

Slope of the parallel line: 3/5

Line equation:

$$y = \frac{3}{5}x - 1$$

Perpendicular lines

Perpendicular lines have the opposite reciprocal slopes

Suppose the slope of a line L_1 is m_1 and the line drawn perpendicular to L_1 has a slope of m_2 . Then, the following relationship holds:

$$m_1 \times m_2 = -1$$

For E.g.

Example:

Find the equation of a line(L_1) through points (3, 4) and (-4, -6). Now write the equation of the line perpendicular to L_1 containing point (2,3)

Summary: Parallel and Perpendicular lines

Consider two lines L_1 and L_2 with slopes m_1 and m_2 .

a) If L₁ is parallel to L₂

$$m_1 = m_2$$

b) If L₁ is perpendicular to L₂

$$m_1 \times m_2 = -1$$

Identify the following pairs of lines are parallel, perpendicular or not

1.
$$x - y + 1 = 0$$

 $x + y - 6 = 0$

$$4. \quad -3x + 4y + 1 = 0$$
$$4x + 3y - 6 = 0$$

$$2. -51x + 23y + 40 = 0$$
$$-51x + 23y - 19 = 0$$

5.
$$-3x + 4y + 1 = 0$$

 $4x - 3y - 6 = 0$

3.
$$ax + by + c = 0$$
$$ax + by - c = 0$$

6.
$$ax + by + c = 0$$
$$bx - ay - c = 0$$

Distance between two points

The distance between point A (x_1,y_1) and point B (x_2,y_2) is given by the following expression.

$$d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

Proof: Use Pythagoras theorem to prove.

Q) Find the distance between points (-1,-2) and (3,4).

Mid Point between two points P & Q

Q) Find the mid point between (-1,-2) and (3,4)

Identifying the intersection point of two intersecting lines

Consider L_1 to be a line with the line equation $y=m_1x+c_1$ and L_2 to be another line with the line equation $y=m_2x+c_2$.

If the lines L_1 and L_2 intersect, the intersecting point could be found by solving the line equations simultaneously.

Solve:

$$L_1 \rightarrow y=m_1x+c_1$$

$$L_2 \rightarrow y = m_2 x + c_2$$

Find the intersection point of the following lines:

$$1. x + y = 5$$
$$x - y = 2$$

2.
$$x - y = -1$$

 $3x + 5y = -1$

3.
$$4x + 7y = 20$$

 $21x - 13y = 21$

Identifying whether a given point is on a defined line

Consider L_1 to be a line with the line equation y=mx+c.

If a point (x_1,y_1) is on the line L_1 :

$$y_1 = mx_1 + c$$

The point (x_1,y_1) satisfies the line equation.

Q: Check whether the following points are on the given lines

1.
$$x + y = 5$$

$$A(2,3) B(-2,-3) C(1,4) D(3,2)$$

2.
$$3x - 2y = 1$$

2.
$$3x-2y=1$$
 A(1,1) B(-1,-2) C(2/3,0) D(0,0.5)

3.
$$3x + 5y = -1$$

$$A(1,-1)$$
 $B(-2,1)$ $C(2,-1)$ $D(5,-3)$

4.
$$4x + 7y = 20$$

4.
$$4x + 7y = 20$$
 A(1.5,2) B(-2,4) C(2,2) D(7,-1)

5.
$$2x + 7y = 11$$

Perpendicular distance from a point to a line

Perpendicular distance from a point P(m,n) to the line DE (ax+by+c=0) is given by:

$$PQ = \frac{|am + bn + c|}{\sqrt{a^2 + b^2}}$$

Example: What is the distance d of the point P(-6, -7) from the line L with equation 3x + 4y = 11?

Circles

Definitions

- Circle: The set of all points that are equidistant from a fixed point.
- Center: the fixed point

 Radius: a segment whose endpoints are the center and a point on the circle

Center

Radius

Standard equation of a circle

If the circle is at the origin

$$x^2 + y^2 = r^2$$

If the circle is not at the origin

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

The center is at (a, b)

r is the radius

Writing the equation of a circle given the center and the radius

- 1. Write the equation of a circle given the center C(-5,0) and radius 5
- 2. Write the equation of a circle given the center C(2,3) and radius 5

$$(x-a)^2 + (y-b)^2 = r^2$$

Writing the equation of a circle given the center and a point on the circle

- 1. Write the equation of a circle given the center C(-3,0) and the point A(0,-4)
- 2. Write the equation of a circle given the center C(2,-3) and the point A(8,5)

$$(x-a)^2 + (y-b)^2 = r^2$$

Checking whether a given point is out, in or on the circle

$$(x-13)^2 + (y-6)^2 = 5^2$$

Tell if the point (5, 6) is inside or outside the circle.

Check if
$$(5-13)^2 + (6-6)^2$$
 is <, >, or = to 5^2
 $(-8)^2 + 0^2 = 64 > 25$

Greater than 5² indicates the point is **outside** the circle.

Less than 5² indicates the point is inside the circle.

Equal to 5^2 indicates the point is on the circle.

Checking whether a given point is out, in or on the circle

$$(x-13)^2 + (y-6)^2 = 5^2$$

Tell if the following points are inside, outside or on the circle.

- A(5, 6)
- B (14,8)
- C(20, 9)
- D (16, 2)

General equation of a circle

When g, f, c are constants, the general equation of a circle is given by:

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Center:
$$(-g,-f)$$

Radius:
$$\sqrt{g^2 + f^2 - c}$$

Q: Find the center and the radius of the following

1.
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

2.
$$x^2 + y^2 + 2x - 10y - 10 = 0$$

3.
$$x^2 + y^2 - x - 8y + 16 = 0$$

Finding the equation of a circle given 3 points on the circle

- 1. Find the equation of the circle that goes through points (0,0), (1,0) and (0,1)
- 2. Find the equation of the circle that goes through points (4,2), (2,0) and (0,2)

Cartesian Coordinates

- A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates.
- Usually, we use Cartesian coordinates, which are directed distances from two perpendicular axes.

- We choose a point in the plane that is called the pole (or origin) and is labeled O.
- Then, we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn horizontally to the right corresponding to the positive x-axis in Cartesian coordinates.

- If *P* is any other point in the plane, let:
 - r be the distance from O to P.
 - ϑ be the angle (usually measured in radians) between the polar axis and the line OP.

• P is represented by the ordered pair (r, ϑ) . r, ϑ are called **polar coordinates** of P.

- We use the convention that an angle is:
 - Positive—if measured in the counterclockwise direction from the polar axis.
 - Negative—if measured in the clockwise direction from the polar axis.

• As shown below, the points $(-r, \vartheta)$ and (r, ϑ) lie on the same line through O and at the same distance |r| from O, but on opposite sides of O.

Polar and Cartesian coordinates

- The connection between polar and Cartesian coordinates can be seen here.
 - The pole corresponds to the origin.
 - The polar axis coincides with the positive *x*-axis.

$$x = r \cos \theta$$
$$y = r \sin \theta$$

Find the Cartesian coordinates of following polar coordinates

- 1. (10,30)
- 2. (5,60)
- 3. (14.90)

Equation of a Circle in Polar Coordinates

Circle Equations

Polar form

 $x = r \cos \theta$ $y = r \sin \theta$

(r = radius of circle)

General Equation of a Circle in Polar Coordinates

• General Equation is given by:

$$x = a + r \cos \theta$$
$$y = b + r \sin \theta$$

Find the Cartesian points of following polar coordinates with center coordinates

- 1. (6,35) -- center(2,3)
- 2. (10,45) -- center(-4,5)

$$x^{2} + y^{2} - 8x - 6y + 21 = 0$$
 $y = b + r \sin \theta$

$$x = a + r \cos \theta$$
$$y = b + r \sin \theta$$

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Thank you