E.N.S.P. Niveau II/Année 2017-18, Semestre 1 ND/NG

*** U.E. MAT 217 «Séries et Intégrales généralisées » ***

**** Examen final (3H00mn) *****

- 1. DOCUMENTS INTERDITS / CALCULATRICES AUTORISEES, SAUF LES PROGRAMMABLES.
- 2. Le correcteur appréciera le SOIN apporté à la REDACTION et à la PRESENTATION du devoir.
- 3. Toute réponse doit être justifiée, mais éviter des explications INUTILEMENT KILOMETRIQUES.
- 4. L'objectif ici ne doit pas être de chercher à traiter à tout prix toute l'épreuve, en sprintant inconsidérément et en bâclant. Mais, plutôt, d'en couvrir une part significative de manière convaincante.

**** **EXERCICE 1** (7,5 POINTS) **** | Pour $n \in \mathbb{N}$, $t \in \mathbb{R}$, et $g : \mathbb{R} \longrightarrow \mathbb{R}$ continue, on pose :

$$u_n = \frac{1}{2n+1}, \quad f_n(t) = 1 - \tanh^{2n} t, \quad \varphi_n(t) = \frac{f_n(t)}{f_1(t)}, \quad I_n = \int_0^{+\infty} f_n(t) dt, \quad J = \int_0^{+\infty} f_1(t) g(t) dt.$$

- 1°) Trouver la nature de I_0 et, en cas de convergence, préciser sa valeur.
- N.B. Dans toute la suite, on se place dans le cas où $n \in \mathbb{N}^*$, i.e. n est un entier ≥ 1 .
- $\mathbf{2}^{\circ}$) Exprimer $\varphi_n(t)$ comme somme de n fonctions bornées (et 2 à 2 distinctes) de la variable t sur IR.
- **3°)** a) Montrer qu'il existe $C_n \in \mathbb{R}^*$ (à préciser) tel que l'on ait : $f_n(t) \sim C_n f_1(t)$ quand $t \longrightarrow +\infty$.
 - b) Utiliser ce résultat pour en déduire l'équivalent simple de $f_n(t)$ quand $t \longrightarrow +\infty$.
- **4°)** a) Sans chercher à calculer I_n , montrer que I_n est un réel ≥ 0 .
 - b) En déduire que si g est une fonction bornée sur $]0, +\infty[$, alors l'intégrale J est convergente.
- 5°) Exprimer I_n sous forme de somme de n réels ≥ 0 , mais en calculant chaque terme de cette somme.
- **6°)** a) Trouver la nature de la série de terme général u_n et de rang de départ n=0.
 - b) En déduire la limite de I_n quand $n \longrightarrow +\infty$. Intuitivement, cette limite était prévisible. Pourquoi?

**** EXERCICE 2 (3 POINTS) **** Soit
$$A = \sum_{n=p+q}^{+\infty} \frac{\cos(\omega n - \omega q)}{5^n}$$
, où $\omega \in \mathbb{R}$ et $p, q \in \mathbb{N}$.

- 1°) Sans chercher à calculer A, montrer que $A \in \mathbb{R}$.
- 2°) Calculer A (N.B. En simplifiant le résultat autant que possible).

**** EXERCICE 3 (6 POINTS) **** Etudier la nature des séries : (1)
$$\sum_{n \ge 1} (-1)^n \frac{\cos(5n\pi)}{n}$$
;

(2)
$$\sum_{n \geqslant 1} \frac{\operatorname{Arctg} n}{\sqrt[3]{\sinh(2n)}}$$
; (3) $\sum_{n \geqslant 0} (\sinh n - \cosh n)$; (4) $\sum_{n \geqslant 0} (1 - \th n) \cdot \cosh^2 n$; (5) $\sum_{n \geqslant 1} \frac{(-1)^n}{\sqrt[3]{n} + \cos n}$; (6) $\sum_{n \geqslant 0} e^{-3in^2}$.

**** *EXERCICE 4* (7 POINTS) ****

On pose:
$$F(x) = \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!}, \quad I = \int_0^{10} \frac{\operatorname{ch}(\sqrt{x}) - 1}{x} \, \mathrm{d}x, \quad W = \sum_{k=1}^{+\infty} \frac{10^k}{(2k)! \cdot k}, \quad T = \sum_{n \ge 0} a_n x^n.$$

- $\mathbf{1}^{\circ}$) Sans chercher à calculer ni F(x), ni I, ni W:
 - a) Montrer que $W \in \mathbb{R}$.
 - b) Montrer que I est une intégrale définie (au sens de Riemann).
 - c) Trouver le domaine de définition \mathcal{D}_F de la fonction F dans \mathbb{C} .
- **2°)** a) Montrer que : $\forall x \in IR$, $\operatorname{ch} x = F(x)$.
 - b) En déduire que I = W. N.B. Admettre que permuter les symboles intégral et somme infinie est valide ici.
 - c) Utiliser ce résultat pour calculer une approximation de I avec une incertitude absolue $< 10^{-10}$.
 - d) Quelle difficulté aurait posée une tentative de calcul direct de I?
- 3°) On rappelle qu'une série entière est une série de la forme T, où $(a_n)_{n \in IN}$ est une suite numérique. Montrer alors que F(x) est la somme d'une série entière, en précisant les coefficients a_n appropriés. **N.B.** On donnera d'abord a_0 , a_1 , a_2 , a_3 , avant d'extrapoler le cas général pour n quelconque dans IN.