Ácido base

• Disociación ácido/base débil

- 1. Se disuelven 20 cm³ de NH₃(g), medidos a 10 °C y 2 atm (202,6 kPa) de presión, en una cantidad de agua suficiente para alcanzar 172 cm³ de disolución. La disolución está ionizada en un 4,2 %. Escribe la reacción de disociación.
 - a) Calcula la concentración molar de cada una de las especies existentes en la disolución una vez alcanzado el equilibrio.
 - b) Calcula el pH.

De estado de los gases ideales

- c) Calcula la K_b del amoniaco.
- d) Calcula la Ka de su ácido conjugado.

Constante de los gases ideales: $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Problema modelo basado en las P.A.U. jun. 10 y jun. 11

 $p \cdot V = n \cdot R \cdot T$

Rta.: a) $[NH_3]_e = 0,0096 \text{ mol/dm}^3$; $[OH^-]_e = [NH_4^+]_e = 4,2 \cdot 10^{-4} \text{ mol/dm}^3$; b) pH = 10,6; c) $K_b = 1,8 \cdot 10^{-5}$; d) $K_a = 5,6 \cdot 10^{-10}$

Datos		Cifras significativas: 3
Gas:	Volumen	$V = 20.0 \text{ cm}^3 = 2.00 \cdot 10^{-5} \text{ m}^3$
	Presión	$p = 202,6 \text{ kPa} = 2,026 \cdot 10^5 \text{ Pa}$
	Temperatura	$T = 10 ^{\circ}\text{C} = 283 \text{K}$
Volun	nen de la disolución	$V_{\rm D}$ = 172 cm ³ = 0,172 dm ³
Grado	de ionización del NH₃ en la disolución	α = 4,20 % = 0,0420
Const	ante de los gases ideales	$R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
Produ	cto iónico del agua	$K_{\rm w} = 1{,}00 \cdot 10^{-14}$
Incóg	nitas	
Conce	entración de cada una de las especies presentes en la disolución	$[NH_3]_e, [OH^-]_e, [NH_4^+]_e, [H^+]_e$
pH de	la disolución	pН
Const	ante de basicidad del NH₃	K_{b}
Otros	símbolos	
Disolı	ación	D
Conce	entración (mol/dm³) de base débil que se ioniza	x
Cantio	dad de la sustancia X	n(X)
Cantio	dad ionizada	n_{i}
Cantio	dad inicial	n_0
Conce	entración de la sustancia X	[X]
Ecua	ciones	
Const	ante de basicidad de una base: $B(OH)_b(aq) \rightleftharpoons B^{b+}(aq) + b OH^-(aq)$	$K_{b} = \frac{\left[B^{b+}\right]_{e} \cdot \left[OH^{-}\right]_{e}^{b}}{\left[B\left(OH\right)_{b}\right]_{e}}$
pН		$pH = -log[H^+]$
рОН		$pOH = -log[OH^-]$
Produ	cto iónico del agua	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$
ъ.	1 1 1	. W D T

Ecuaciones

Grado de ionización

$$\alpha = \frac{n_{i}}{n_{0}} = \frac{[s]_{i}}{[s]_{0}}$$

Solución:

a) Calcular la cantidad de amoníaco, suponiendo comportamiento ideal para el gas:

$$n(\mathrm{NH_3}) = \frac{p \cdot V}{R \cdot T} = \frac{2,026 \cdot 10^5 \, \mathrm{Pa} \cdot 2,00 \cdot 10^{-5} \, \mathrm{m}^3}{8,31 \, \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1} \cdot 283 \, \mathrm{K}} = 1,72 \cdot 10^{-3} \, \mathrm{mol} \, \mathrm{NH_3}(\mathrm{g})$$

Calcular la concentración de la disolución de amoníaco:

$$[NH_3] = \frac{n(NH_3)}{V_D} = \frac{1,72 \cdot 10^{-3} \text{ mol } NH_3}{0,172 \text{ dm}^3 \text{ D}} = 0,010 \text{ 0mol/dm}^3$$

Calcular la concentración de amoníaco ionizado a partir do grado de ionización:

$$\alpha = \frac{[NH_3]_d}{[NH_3]_0} \Longrightarrow [NH_3]_d = \alpha \cdot [NH_3]_0 = 0,0420 \cdot 0,0100 \text{ mol/dm}^3 = 4,20 \cdot 10^{-4} \text{ mol/dm}^3$$

Calcular la concentración del amoníaco en el equilibrio::

$$[NH_3]_e = [NH_3]_0 - [NH_3]_d = 0,0100 \text{ mol/dm}^3 - 4,20 \cdot 10^{-4} \text{ mol/dm}^3 = 0,0096 \text{ mol/dm}^3$$

Se pierde una cifra significativa en la resta, porque <u>el resultado no puede tener más cifras decimales</u> que (4) lo que menos tiene

Escribir la ecuación de ionización de amoníaco, que es una base débil, en agua:

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Calcular la concentración de iones amonio e hidróxido a partir de la estequiometría (1:1) de la reacción.

$$[OH^{-}]_{e} = [NH_{4}^{+}]_{e} = [NH_{3}]_{d} = 4,20 \cdot 10^{-4} \text{ mol/dm}^{3}$$

Calcular la concentración de iones hidrógeno a partir del produto iónico do agua:

$$[H^+]_e = \frac{K_w}{[OH^-]_e} = \frac{1,00 \cdot 10^{-14}}{4,20 \cdot 10^{-4}} = 2,38 \cdot 10^{-11} \text{ mol/dm}^3$$

b) Calcular el pH:

$$pH = -\log[H^+] = -\log(2.38 \cdot 10^{-11}) = 10.6$$

Análisis: Este pH es razonable. Si el amoníaco fuese una base fuerte, el pH de una disolución 0.01 mol/dm^3 sería pH $\approx 14 + \log 0.01 = 12$. Una base débil tendrá un pH menos básico, más próximo a 7.

Calcular la constante de equilibrio K_b :

$$K_{\rm b} = \frac{[{\rm NH_4^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e}}{[{\rm NH_3}]_{\rm e}} = \frac{4,20 \cdot 10^{-4} \cdot 4,20 \cdot 10^{-4}}{0,009 \ 6} = 1,8 \cdot 10^{-5}$$

En multiplicaciones y divisiones, las cifras significativas del resultado son las del número que menos tiene.

d) Escribir la ecuación de ionización del ácido conjugado del @amoníaco:

$$NH_4^+(aq) \rightleftharpoons NH_3(aq) + H^+(aq)$$

Escribir la expresión de la constante de acidez del ácido conjugado del @amoníaco:

$$K_{a} = \frac{\left[NH_{3}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[NH_{4}^{+}\right]_{s}}$$

Demostrar la relación matemática entre la constante de basicidade del amoníoco y la constante de acidez de su ácido conjugado, multiplicando las expresiones de ambas constantes:

$$K_{b} \cdot K_{a} = \frac{[NH_{4}^{+}]_{e} \cdot [OH]_{e}}{[NH_{3}]_{e}} \cdot \frac{[NH_{3}]_{e} \cdot [H^{+}]_{e}}{[NH_{4}^{+}]_{e}} = [OH]_{e} \cdot [H^{+}]_{e} = K_{w}$$

 $K_{\rm w}$ es la constante de ionización del agua. $K_{\rm w} = 1 \cdot 10^{-14}$. Calcular la constante de acidez del ión amonio.

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1,00 \cdot 10^{-14}}{1,8 \cdot 10^{-5}} = 5,6 \cdot 10^{-10}$$

Puede obtener las respuestas en la pestaña «AcidoBase» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>. En DATOS, escriba:

		Base	Ácido conjuga	do
I	ormula:	NH ₃	NH ₄	
Grado de disociación	α =	4,2	%	
	pH =			
Volumen (s)	V =	0,02	dm³ gas	
Volumen (D)	V =	172	cm³	
Presión	P =	202,6	kPa	
Temperatura	T =	10	°C	
Constante	$K_w =$	1,00.10-14	de ionización	del agua

RESULTADOS:

Concentración	NH ₃ +	$H_2O \rightleftharpoons$	NH ₄ +	OH-	
inicial:	0,0100				mol/dm^3
en equilibrio:	0,00959		$4,20\cdot10^{-4}$	$4,20\cdot10^{-4}$	mol/dm^3
			$[H_3O^+] =$	2,38·10 ⁻¹¹	mol/dm^3
pH = 10,62					
pOH = 3,38	Constante d	de basicidad:	$K_b =$	1,84·10 ⁻⁵	
Constante	e de acidez de	l conjugado:	$K_a =$	5,43.10-10	

- 2. Para una disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxipropanoi-co), calcula:
 - a) La concentración de todas las especies presentes en la disolución.
 - b) El grado de ionización del ácido en disolución.
 - c) El pH de la disolución.
 - d) ¿Qué concentración debería tener una disolución de ácido benzoico (C₆H₅COOH) para que tuviera el mismo pH?

Datos: $K_a(CH_3CH(OH)COOH) = 3.2 \cdot 10^{-4}; (C_6H_5COOH) = 6.42 \cdot 10^{-5}; K_w = 1.0 \cdot 10^{-14}$

Problema modelo basado en el A.B.A.U. jun. 17

Rta.: a) $[CH_3CH(OH)COO^-]_e = [H^+]_e = 0,00784 \text{ mol/dm}^3; [CH_3CH(OH)COOH]_e = 0,192 \text{ mol/dm}^3; [OH^-]_e = 1,28 \cdot 10^{-12} \text{ mol/dm}^3; b) \alpha = 3,92 \%; c) pH = 2,11; d) <math>[C_6H_5COOH]_0 = 0,965 \text{ mol/dm}^3$

DatosCifras significativas: 3Concentración de ácido láctico $[C_3H_6O_3]_0 = 0,200 \text{ mol/dm}^3$ Constante de acidez del ácido láctico $K_a(C_3H_6O_3) = 3,20\cdot 10^{-4}$ Constante de acidez del ácido benzoico $K_a(C_7H_6O_2) = 6,42\cdot 10^{-5}$ IncógnitaspHGrado de ionización del ácido lácticopH

Incógnitas

Concentración de la disolución de ácido benzoico del incluso pH [C₀H₅COOH]

Otros símbolos

Concentración (mol/dm 3) de ácido débil que se ioniza x

Cantidad de substancia ionizada $n_{\rm i}$

Cantidad inicial n_0

Concentración de la substancia X [X]

Concentración inicial de ácido benzoico c_0

Ecuaciones

Constante de acidez de un ácido monoprótico: $HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$	$K_{a} = \frac{\left[A^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[HA\right]_{e}}$
pH	$pH = -log[H^*]$
рОН	$pOH = -log[OH^{-}]$
Grado de ionización	$\alpha = \frac{n_{i}}{n_{0}} = \frac{[s]_{i}}{[s]_{0}}$

Solución:

a) El ácido láctico es un ácido débil. Se escribe la reacción de su ionización.

$$CH_3CH(OH)COOH(aq) \rightleftharpoons H^+(aq) + CH_3CH(OH)COO^-(aq)$$

Se llama x a la concentración de ácido láctico que se ioniza. De la estequiometría de la reacción se deduce que la concentración de ácido láctico ionizado $[CH_3CH(OH)COOH]_i$ es la misma (x) que la de los iones hidrógeno $[H^+]$ y la de los iones lactato $[CH_3CH(OH)COO^-]$ producidos.

La concentración de ácido láctico en el equilibrio se obtiene restando la concentración que se disoció de la concentración inicial.

$$[CH_3CH(OH)COOH]_e = [CH_3CH(OH)COOH]_0 - [CH_3CH(OH)COOH]_i = 0,200 - x$$

Se crea una tabla que muestra las concentraciones de cada especie en las distintas fases:

		CH₃CH(OH)COOH	\rightleftharpoons	H⁺	CH₃CH(OH)COO⁻	
$[X]_0$	Concentración inicial	0,200		0	0	mol/dm³
$[X]_i$	Concentración ionizada o formada	x	\rightarrow	x	x	mol/dm³
[X] _e	Concentración en el equilibrio	0,200 - x		x	x	mol/dm³

Se emplea la expresión de la constante de acidez y se sustituyen en ella los símbolos por los valores o expresiones de las concentraciones en el equilibrio.

$$K_{a} = \frac{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COO}^{-}]_{e} \cdot [\text{H}^{+}]_{e}}{[\text{CH}_{3} - \text{CH}(\text{OH}) - \text{COOH}]_{e}} \Rightarrow 3,20 \cdot 10^{-4} = \frac{x \cdot x}{0,200 - x}$$

Se supone, en primera aproximación, que x es despreciable frente a 0,200. La ecuación se reduce a:

$$x \approx \sqrt{0,200 \cdot 3,20 \cdot 10^{-4}} = 0,00800 \text{ mol/dm}^3$$

Se calcula el grado de ionización:

$$\alpha = \frac{[s]_i}{[s]_0} = \frac{0,00800 \text{ mol/dm}^3}{0.200 \text{ mol/dm}^3} = 0,040 \oplus 4,00 \%$$

Un valor inferior al 5 % se considera despreciable, por lo que esta solución es aceptable. Al ser superior al 1 %, el número de cifras significativas se reduce a dos.

Se calcula el pH:

$$pH = -log[H^+] = -log(0,0080) = 2,10$$

b) La disolución de ácido benzoico que tiene el mismo pH tendrá la misma concentración de iones hidrógeno, y también de ion benzoato, por ser un ácido monoprótico.

$$C_6H_5COOH(aq) \rightleftharpoons H^+(aq) + C_6H_5COO^-(aq)$$

 $[C_6H_5COO^-]_e = [H^+]_e = 0,0080 \text{ mol/dm}^3$

Se llama c_0 a la concentración inicial de ácido benzoico y a x a la concentración de ácido benzoico que se ioniza, y Se crea una tabla que muestra las concentraciones de cada especie en las distintas fases:

		C ₆ H ₅ COOH	\Rightarrow	H ⁺	C ₆ H ₅ COO⁻	
$[X]_0$	Concentración inicial	c_{0}		0	0	mol/dm³
$[X]_i$	Concentración ionizada o formada	x	\rightarrow	х	x	mol/dm³
[X] _e	Concentración en el equilibrio	$c_0 - x$		0,0080	0,0080	mol/dm³

Se deduce que:

$$x = 0.0080 \text{ mol/dm}^3$$

Se emplea la expresión de la constante de acidez y se sustituyen en ella los símbolos por los valores o expresiones de las concentraciones en el equilibrio.

$$K_{a} = \frac{\left[C_{6} H_{5} COO^{-}\right]_{e} \cdot \left[H^{+}\right]_{e}}{\left[C_{6} H_{5} COOH\right]_{e}} \Rightarrow 6,42 \cdot 10^{-5} = \frac{0,008 \ 00,008 \ 0}{c_{0} - 0,008 \ 0}$$

Se calcula la concentración inicial de ácido benzoico:

$$[C_6H_5COOH]_0 = c_0 = \frac{0,008 \ 00,008 \ 0}{6.42 \cdot 10^{-5}} + 0,008 \ C = 1,0 \ mol/dm^3$$

Análisis: El resultado tiene sentido, porque como el ácido benzoico es más débil que el ácido láctico $(K_a(C_6H_5COOH) = 6.42 \cdot 10^{-5} < 3.2 \cdot 10^{-4} = K_a(CH_3CH(OH)COOH))$, su concentración tiene que ser mayor que 0,200 mol/dm³ para dar el mismo pH.

Puede obtener las respuestas en la pestaña «AcidoBase» de la hoja de cálculo Quimica (es). Instrucciones. En DATOS, escriba:

LII D/11 05, C3C1	ıva.			
		Ácido	Base conj	ugada
Fór	mula:	$C_3H_6O_3$	$C_3H_5O_3^-$	
Constante	K _a =	$3,2\cdot 10^{-4}$	de acidez	
	pH =			
Concentración	[s] =	0,2	mol/dm³	
Constante	$K_w =$	1,00.10-14	de ionizac	ción del agua

RESULTADOS: Las concentraciones, el grado de disociación y el pH aparecen en la tabla:

Concentración	$C_3H_6O_3$ +	$H_2O \rightleftharpoons$	$C_3H_5O_3^- +$	H_3O^+	
inicial:	0,200				mol/dm^3
en equilibrio:	0,192		0,00784	0,00784	mol/dm^3
			[OH ⁻] =	1,28.10-12	$mol/dm^{\scriptscriptstyle 3}$
pH = 2,11	Grado de di	isociación:	α =	3,92 %	
pOH = 11,89					

Para resolver el apartado d) anote el valor del pH, borre los datos, haciendo clic en el botón Borrar datos, y escriba los nuevos datos.

		Ácido	Base conjugada
Fór	mula:	HC₀H₅COO	C ₆ H ₅ COO ⁻
Constante	$K_a =$	$6,42 \cdot 10^{-5}$	de acidez
	pH =	2,11	

RESULTADOS:

Concentración $HC_6H_5COO + H_2O \rightleftharpoons C_6H_5COO^- + H_3O^+$

inicial: 0,946 mol/dm³

El resultado es diferente por el número de cifras significativas del primero cálculo. Se hubiera elegido 4 cifras, el pH hubiera sido 2,106. Con ese dato a concentración inicial sería 0,964 mol/dm³.

Mezclas ácido base

- 1. Calcula:
 - a) El pH de una disolución de hidróxido de sodio de concentración 0,010 mol/dm³.
 - b) El pH de una disolución de ácido clorhídrico de concentración 0,020 mol/dm³.
 - c) El pH de la disolución obtenida al mezclar 100 cm³ de la disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ de la disolución de ácido clorhídrico de concentración 0,020 mol/dm³.

Dato: $K_{w} = 1.0 \cdot 10^{-14}$ (A.B.A.U. jun. 18)

Rta.: a) pH = 12; b) pH = 1,7; c) pH = 11,6

Datos Cifras significativas: 3

Concentración de la disolución de NaOH $[NaOH] = 0,0100 \text{ mol/dm}^3$ Volumen que se mezcla de la disolución de NaOH $V_b = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$ Concentración de la disolución de HCl $[HCl] = 0,0200 \text{ mol/dm}^3$

Volumen que se mezcla de la disolución de HCl $V_a = 25,0 \text{ cm}^3 = 25,0 \cdot 10^{-3} \text{ dm}^3$

Incógnitas

pH de la disolución de NaOH p H_b pH de la disolución de HCl p H_a pH de la mezcla p H_3

Ecuaciones

pH = $-\log[H^+]$ pOH = $-\log[OH^-]$

Producto iónico del agua $K_{\rm w} = 1,0\cdot 10^{-14}; \, \rm pH + pOH = 14$

Solución:

a) El hidróxido de sodio es una base fuerte que se ioniza totalmente:

$$NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$$

El pOH de la disolución de NaOH valdrá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(0,0100) = 2,000$$

(El número de dígitos en la mantisa del logaritmo debe ser igual al número de cifras significativas). Por tanto, su pH será:

$$pH = 14,000 - pOH = 14,000 - 2,000 = 12,000$$

b) El ácido clorhídrico es un ácido fuerte que se ioniza totalmente:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

El pH de la disolución de HCl valdrá:

$$pH = -log[H^+] = -log[HCl] = -log(0,0200) = 1,700$$

c) Se estudia la reacción entre el HCl y el NaOH para ver qué reactivo está en exceso,

En 25 cm³ de la disolución de HCl hay: $n=0.0250~\rm{dm^3\cdot0.0200~mol/dm^3}=5.00\cdot10^{-4}~\rm{mol}$ HCl En 100 cm³ de la disolución de NaOH hay: $n'=0.100~\rm{dm^3\cdot0.0100~mol/dm^3}=1.00\cdot10^{-3}~\rm{mol}$ NaOH Suponiendo volúmenes aditivos:

		HCl	NaOH	\rightarrow	Na ⁺	Cl-	H ₂ O	
n_0	Cantidad inicial	5,00.10-4	1,00.10-3		0	0		mol
$n_{ m r}$	Cantidad que reacciona o se forma	5,00.10-4	5,00.10-4		5,00.10-4	5,00.10-4	5,00.10-4	mol
$n_{ m f}$	Cantidad al final de la reacción	0	$5,0\cdot 10^{-4}$		5,00.10-4	5,00.10-4		mol

La concentración final de hidróxido de sodio es:

$$[NaOH] = 5.0 \cdot 10^{-4} \text{ mol NaOH} / 0.125 \text{ dm}^3 \text{ D} = 4.0 \cdot 10^{-3} \text{ mol/dm}^3$$

El pOH de la disolución final valdrá:

$$pOH = -log[OH^{-}] = -log[NaOH] = -log(4,0 \cdot 10^{-3}) = 2,40$$

Por tanto, su pH será:

$$pH = 14,00 - pOH = 14,000 - 2,40 = 11,60$$

Puede obtener las respuestas en la pestaña «Esteq» de la hoja de cálculo <u>Quimica (es)</u>. <u>Instrucciones</u>. En DATOS, escriba:

	m1103, csci	1Du	•							
				Reactivos \rightarrow			Produ	ictos		
	NaOH		HCl		NaCl		H ₂ O			
						·				
	Calcular:	a)	рН	disolución	NaOH					
		b)	рН	disolución	HCl					
		c)	рН	mezcla		─				
que	se precisa		para reaccion	nar con			•			
	100		cm ³	disolución	NaOH		[NaOH] =	0,01	mol/dm³	
	25		cm ³	disolución	HCl		[HCl] =	0,02	mol/dm³	
RES	JLTADOS:									
	NaC	ЭН	+ H	ICl		\rightarrow	NaCl	+	H_2O	
	mol 5,00·	10-	5,00)·10 ⁻⁴			$5,00 \cdot 10^{-4}$		$5,00 \cdot 10^{-4}$	
				a)		pH =	12,0 1	NaOH		
				b)		pH =	1,70 l	HCl		
				c)		pH =	11,6			

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de traducindote, y del traductor de la CIXUG.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado: 05/10/24

Sumario

ÁCIDO BASE

	ciación ácido/base débil	
1.	Se disuelven 20 cm³ de NH₃(g), medidos a 10 °C y 2 atm (202,6 kPa) de presión, en una cantidad de agua suficiente para alcanzar 172 cm³ de disolución. La disolución está ionizada en un 4,2 %. Escritoria	
	be la reacción de disociación	1
	a) Calcula la concentración molar de cada una de las especies existentes en la disolución una vez alcanzado el equilibrio	
	b) Calcula el pH	
	c) Calcula la K _b del amoniaco	
	d) Calcula la K _a de su ácido conjugado	
2.	Para una disolución acuosa de concentración 0,200 mol/dm³ de ácido láctico (ácido 2-hidroxiprop	
	noico), calcula:	
	a) La concentración de todas las especies presentes en la disolución	
	b) El grado de ionización del ácido en disolución	
	c) El pH de la disolución	
	d) ¿Qué concentración debería tener una disolución de ácido benzoico (C₅H₅COOH) para que tuviera el mismo pH?	-
Mezo	clas ácido base	
	Calcula:	
	a) El pH de una disolución de hidróxido de sodio de concentración 0,010 mol/dm³	
	b) El pH de una disolución de ácido clorhídrico de concentración 0,020 mol/dm³	
	c) El pH de la disolución obtenida al mezclar 100 cm³ de la disolución de hidróxido de sodio de concentración 0,010 mol/dm³ con 25 cm³ de la disolución de ácido clorhídrico de concentració	
	0.020 mol/dm ³	