Intervention analysis

Giovani Valdrighi, Vitória Guardieiro

11/12/2020

Total Business Sales FRED

▶ Data from 01/2002 to 12/2012, intervention on 07/2008.

Variance stabilization

▶ With BoxCox, the lambda is 0.1370143.

SARIMA pre-intervention

▶ Model with data until 06/2008. The plots and the models will use the transformed series.

Check differences

▶ To identify parameters *d* and *D* for the SARIMA model.

- Use Augmented Dickey Fuller test to verify if there is trend.
- ► ADF test p-values:
 - ► Original series: 0.01
 - Diff() series: 0.0206
 - Diff() Diff() series: 0.01Diff() Diff(12) series: 0.01
- We will be using d=1 and D=0 or D=1.

ACF and PACF

▶ Plot of ACF and PACF for model to identify parameters p, q, P, Q.

- Both non-seasonal and seasonal ACFs decrease slowly,
- indicating an auto regressive model. For the non seasonal PACFs, we have the first two significant

► SARIMA(2, 1, 1)(2, 0, 1) ► SARIMA(2, 1, 1)(2, 1, 1)

- lags and for the seasonal we have the first three significant lags.
- Going to test the following models:
 - ► SARIMA(2, 1, 1)(3, 0, 1)

SARIMA(2, 1, 1)(3,0,1)

##

```
## Series: FRED pre
## ARIMA(2,1,1)(3,0,1)[12]
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
           ar1
               ar2 ma1 sar1 sar2 sar3
## -1.0512 -0.6526 0.4358 1.3318 -0.6488 0.3169
## s.e. 0.1522 0.0967 0.2066 0.1446 0.2147 0.1664
##
## sigma^2 estimated as 0.01199: log likelihood=40.37
## ATC=-64.75 ATCc=-62.66 BTC=-45.89
##
## Training set error measures:
##
                    ME
                          RMSE MAE
                                            MPE
## Training set 2520.937 15857.62 12908.28 0.2255516 1.2994
##
                      ACF1
## Training set -0.008910006
```

ME

RMSE

MAE

M

M

MPE

##
Ljung-Box test

##

SARIMA(2, 1, 1)(2,0,1) ## Series: FRED_pre ## ARIMA(2,1,1)(2,0,1)[12] ## Box Cox transformation: lambda= 0.1370143

##

##

##

##

```
##
## Coefficients:
##
          ar1
             ar2 ma1 sar1 sar2
## -1.0241 -0.6449 0.3274 1.3619 -0.3620 -0.9710
## s.e. 0.1519 0.1015 0.1898 0.1587 0.1587 0.0839
##
```

ME

ME

ACF1

AIC=-63.74 AICc=-62.14 BIC=-47.24

Training set error measures:

Training set -0.01155024

sigma^2 estimated as 0.014: log likelihood=38.87

Training set 2627.641 17197.02 14037.53 0.2394168 1.4153

RMSE

RMSE MAE

MAE

sma:

M

M

MPE

MPE

##
Ljung-Box test

##

SARIMA(2, 1, 1)(2,1,1)

ARIMA(2,1,1)(2,1,1)[12]

Series: FRED pre

```
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
           ar1
               ar2 ma1 sar1 sar2
                                                 sma:
## -1.0398 -0.6653 0.4239 0.3215 -0.3262 -0.9998
## s.e. 0.1517 0.0968 0.2184 0.1410 0.1683 0.4228
##
## sigma^2 estimated as 0.01172: log likelihood=44.27
## AIC=-74.54 AICc=-72.61 BIC=-59.21
##
## Training set error measures:
##
                   ME
                          RMSE MAE MPE
                                                  MAI
## Training set 1562.579 14709.87 11070.55 0.1228108 1.0888
                          RMSE
                                   MAE
##
                   ME
                                            MPE
                                                  MAI
## Training set 1562.579 14709.87 11070.55 0.1228108 1.088
```


Ljung-Box test

##

▶ The model with lowest AIC is the SARIMA(2, 1, 1)(2, 1, 1).

FRED pre intervention Real x Predicted

Forecast of pre intervention

We now look on how our model says that the series should be without the intervention, predicting the next six years after july 2008.

FRED series x Forecast of pre-intervention model

Intervention modeling

Series: FRED

##

Permanent constant effect

- For the first intervention model we will define $h_t = I(t > jul2008)\delta_0$, so there will be a permanent effect equal to δ_0 after july of 2008.
- ▶ The estimated δ_0 value is 0.0759 with s.e. 0.1385, so the interval includes 0.

```
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
```

0.4136 0.2755 -0.5898 0.3468 -0.3696 -1.0000 ## s.e. 0.1413 0.0813 0.1256 0.0841 0.0842 0.1084
sigma^2 estimated as 0.02422: log likelihood=49.68

ma1

sar1

sar2

sma1

AIC=-83.35 AICc=-82.28 BIC=-59.65

ar2

ar1

##
Ljung-Box test
##

FRED Real x Predicted with permanent constant effect

Temporary constant effect

- Now for the intervention model we will define $h_t = I(t = ju/2008)\delta_0$, so there will be a temporary effect equal to δ_0 on july of 2008.
- ▶ The estimated δ_0 value is 0.1835 with s.e. 0.1064, so the interval doesn't include 0.

```
## Series: FRED
```

- ## Regression with ARIMA(2,1,1)(2,1,1)[12] errors ## Box Cox transformation: lambda= 0.1370143
- ##
- ## ar1 ar2 ma1 sar1 sar2 sma1
- ## 0.4276 0.2601 -0.6093 0.3375 -0.3652 -1.0000 ## s.e. 0.1474 0.0822 0.1328 0.0853 0.0852 0.1106 ## ## sigma^2 estimated as 0.02377: log likelihood=51.04
- ## Coefficients:

Training set error measures:

AIC=-86.07 AICc=-85 BIC=-62.37

```
##
## z test of coefficients:
##
##
       Estimate Std. Error z value Pr(>|z|)
## ar1 0.427649 0.147396 2.9014 0.003716 **
## ar2 0.260076 0.082171 3.1651 0.001550 **
## sar1 0.337458 0.085268 3.9576 7.570e-05 ***
## sar2 -0.365227   0.085162 -4.2886   1.798e-05 ***
## sma1 -0.999953 0.110620 -9.0395 < 2.2e-16 ***
## xreg 0.183541 0.106421 1.7247 0.084587 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.5
```


Ljung-Box test

FRED Real x Predicted with temporary constant effect

Optimizing the duration of the effect

- As the constant permanent effect doesn't show good results, and the temporary effect show significance, we can evaluate the significance of a set o values m, with $h_t = I((jul2008 + m) \ge t \ge jul2008)\delta_0$, that is, the effect will be the constant δ_0 for m months after july of 2008. For each value, we keep the AIC and will look at the m value that minimize the AIC.
- ▶ The duration that minimize the AIC is m = 3.

AIC values for each length of temporary effect


```
## Series: FRED
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
           ar1 ar2 ma1 sar1 sar2 sma1
## 0.4233 0.2897 -0.6271 0.3838 -0.3790 -1.0000
## s.e. 0.1324 0.0812 0.1162 0.0847 0.0864 0.1155
##
## sigma^2 estimated as 0.02162: log likelihood=57.99
## ATC=-99.99 ATCc=-98.91 BTC=-76.28
##
## Training set error measures:
##
                     ME
                           RMSE MAE
                                               MPE
## Training set -917.1745 23005.39 17195.01 -0.08674129 1.5
##
                     ACF1
```

Training set -0.09547755

Transfer function

