CLAIMS

What is claimed is:

1	1.	A method comprising:
2	depositing a l	ayer of a metal on a number of conductors disposed on a surface of a wafer;
3	and	
4	bonding the c	onductors of the wafer to corresponding conductors on a surface of a second
5	wafer	using the metal layer.
1	2.	The method of claim 1, further comprising, prior to depositing the metal
2	layer on the co	onductors, removing dielectric material from the surface of the wafer.
1	3.	The method of claim 1, further comprising, prior to depositing the metal
2	layer on the co	onductors, removing native oxide from the conductors.
1	4.	The method of claim 1, wherein the conductors comprise Copper.
1	5.	The method of claim 1, wherein the metal comprises one of Silver, Gold,
2	Ruthenium, C	Ssmium, Iridium, Palladium, Rhodium, and Platinum.
1	6.	The method of claim 1, wherein the bonding of the conductors of the
2	wafer to the c	orresponding conductors of the second wafer is performed at a temperature
3	between appro	oximately 100 and 300 degrees Celsius.

2	conductors comprises:	
3	forming a blanket layer of the metal over the conductors and the surface of the wafer; and	
4	removing the metal from the wafer surfaces.	
	·	
1	8. The method of claim 1, wherein depositing the layer of metal on the	
2	conductors comprises selectively depositing the metal on the conductors.	
1	9. The method of claim 8, wherein selectively depositing the metal on the	
2	conductors comprises one of an electroless plating process, an electroplating process, and	
3	a contact displacement plating process.	
1	10. The method of claim 1, wherein the metal layer on each of the conductors	
2	comprises a number of islands.	
,		
1	11. The method of claim 10, wherein the islands are selectively deposited on	
2	the conductors.	

The method of claim 1, wherein depositing the layer of metal on the

1

7.

1	12. The method of claim 10, wherein the islands are formed by a process	
2	comprising:	
3	depositing a blanket layer of the metal over the conductors and the surface of the wafer;	
4	and	
5	removing the blanket metal layer from the wafer surface and from portions of each	
6	conductor to form the number of islands on each conductor.	
1	13. A method comprising:	
2	depositing a layer of a first metal on a number of conductors disposed on a first wafer;	
3	depositing a layer of a second metal on a number of conductors disposed on a second	
4	wafer;	
5	aligning the first wafer with the second wafer; and	
6	bonding the metal layer on the conductors of the first wafer with the metal layer on the	
7	conductors of the second wafer.	
1	14. The method of claim 13, further comprising, prior to depositing the metal	
2	layer on the conductors of the first and second wafers, removing dielectric material from	
3	a surface of each of the first and second wafers.	
1	15. The method of claim 13, further comprising, prior to depositing the metal	
2	layer on the conductors of the first and second wafers, removing native oxide from the	
3	conductors of each of the first and second wafers.	

1	10.	The method of claim 13, wherein the conductors of each of the first and
2	second wafers	comprise the same metal.
		•
1	17.	The method of claim 16, wherein the conductors of each of the first and
2	second wafers	comprise Copper.
1	18.	The method of claim 13, wherein the first metal and the second metal are
2	the same.	
1	19.	The method of claim 13, wherein the first metal and the second metal are
2	different.	
1	20.	The method of claim 13, wherein each of the first and second metals
2	comprises one	of Silver, Gold, Ruthenium, Osmium, Iridium, Palladium, Rhodium, and
3	Platinum.	
1	21.	The method of claim 13, wherein the bonding of the conductors of the first
2	wafer to the co	orresponding conductors of the second wafer is performed at a temperature
3	between appro	eximately 100 and 300 degrees Celsius.

1	22.	The method of claim 13, wherein depositing the metal layer on the
2	conductors of	each of the first and second wafers comprises:
3	forming a blan	nket metal layer over the conductors and a surface of the wafer; and
4	removing the	blanket metal layer from the wafer surface.
1	23.	The method of claim 13, wherein depositing the metal layer on the
2	conductors of	each of the first and second wafers comprises selectively depositing the
3	metal layer or	the conductors.
1	24.	The method of claim 23, wherein selectively depositing the metal layer on
2	the conductor	s comprises one of an electroless plating process, an electroplating process,
3	and a contact displacement plating process.	
1	25.	The method of claim 13, wherein the metal layer on the conductors of at
2	least one of th	e first and second wafers comprises a number of islands.
1	26.	The method of claim 25, wherein the islands are selectively deposited on
2	the conductor	s.

1	27. The method of claim 25, wherein the islands are formed by a process	
2	comprising:	
3	depositing a blanket metal layer over each of the conductors and a surface of the wafer;	
4	and	
5	removing the blanket metal layer from the wafer surface and from portions of each	
6	conductor to form the number of islands on each conductor.	
1	28. A wafer stack comprising:	
2	a first wafer including a number of conductors disposed on a surface of the first wafer,	
3	each of the conductors having a layer of metal formed thereon; and	
4	a second wafer including a number of conductors disposed on a surface of the second	
5	wafer, each of the conductors having a layer of metal formed thereon;	
6	wherein the metal layer of each conductor of the first wafer is bonded to the metal layer	
7	on a corresponding conductor of the second wafer.	
1	29. The wafer stack of claim 28, wherein the conductors on each of the first	
2	and second wafers comprise the same metal.	
	\cdot	
1	30. The wafer stack of claim 29, wherein the conductors on each of the first	
2	and second wafers comprise Copper.	

1	31.	The wafer stack of claim 28, wherein the metal layer on each conductor of
2	the first wafe	r and the metal layer on each conductor of the second wafer comprises the
3	same metal.	
1	32.	The wafer stack of claim 28, wherein the metal layer on each conductor of
2	the first wafe	r comprises a first metal and the metal layer on each conductor of the second
3	wafer compri	ses a second, different metal.
1	33.	The wafer stack of claim 28, wherein the metal layer on each conductor on
2	each of the fir	rst and second wafers comprises one of Silver, Gold, Ruthenium, Osmium,
3	Iridium, Palla	adium, Rhodium, and Platinum.
1	34.	The wafer stack of claim 28, wherein the first and second wafers comprise
2	the same mat	erial.
1	35.	The wafer stack of claim 28, wherein the first wafer comprises one
2	material and	the second wafer comprises a different material.
1	36.	The wafer stack of claim 28, wherein the first wafer includes logic
2	circuitry and	the second wafer includes memory circuitry.

1	31. A water stack comprising:	
2	a first wafer, the first wafer having an interconnect including an uppermost dielectric	
3	layer and a number of lower dielectric layers, each lower dielectric layer	
4	including a number of conductors comprised of a first metal and the uppermost	
5	dielectric layer including a number of conductors comprised of a third metal; and	
6	a second wafer, the second wafer having an interconnect including an uppermost	
7	dielectric layer and a number of lower dielectric layers, each lower dielectric layer	
8	including a number of conductors comprised of a second metal and the uppermost	
9	dielectric layer including a number of conductors comprised of a fourth metal;	
10	wherein the conductors comprised of the third metal and the conductors comprised of the	
11	fourth metal are capable of bonding together at a temperature of approximately	
12	300° Celsius or less; and	
13	wherein the conductors of the uppermost dielectric layer of the first wafer are bonded to	
14	the conductors of the uppermost dielectric layer of the second wafer.	
l	38. The wafer stack of claim 37, wherein the first and second metals comprise	
2	the same metal.	
1	39. The wafer stack of claim 38, wherein the first and second metals comprise	
2	Copper.	

- 1 40. The wafer stack of claim 37, wherein the third and fourth metals comprise 2 the same metal.
- 1 41. The wafer stack of claim 37, wherein each of the third and fourth metals
- 2 comprise one of Silver, Gold, Ruthenium, Osmium, Iridium, Palladium, Rhodium,
- 3 Platinum.
- 1 42. The wafer stack of claim 37, wherein the third metal comprises one of
- 2 Silver, Gold, Ruthenium, Osmium, Iridium, Palladium, Rhodium, Platinum and the
- 3 fourth metal comprises Copper.