1

AE 42

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: Consider the equation $\frac{dy}{dx} + ay = \sin \omega x$, where a and ω are constants. Given y = 1 at x = 0, correct all the correct statement(s) from the following as $x \to \infty$.

- (A) $y \rightarrow 0$ if $a \neq 0$
- (B) $y \rightarrow 1$ if a = 0
- (C) $y \rightarrow Aexp(|a|x)$ if a < 0; A is constant
- (D) $y \rightarrow B \sin(\omega x + C)$ if a > 0; B and C are constants

(GATE AE 2023)

Solution::

$$\frac{dy}{dx} + ay = \sin(\omega_0 x) \quad \text{with} \quad y(0) = 1 \tag{1}$$

Taking Fourier transform on both sides

Function	Fourier transform
$\frac{dy}{dx}$	ίωΥ
у	Y
$\sin \omega_0 x$	$\frac{\omega}{2J}(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
TABLE 0	

FOURIER TRANSFORM

$$i\omega Y + aY = \frac{\omega_0}{2i} \left(\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right) \tag{2}$$

$$\implies Y = \frac{\omega_0}{2i(i\omega + a)} \left(\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right) \tag{3}$$

Taking inverse fourier transform on both sides

$$y(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} Y(\omega) e^{-i\omega x} d\omega$$
 (4)

$$y(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\omega_0}{2i(i\omega + a)} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right) e^{-i\omega x} d\omega \tag{5}$$

$$y(x) = \mathcal{F}^{-1}\{Y\} = \frac{w_0}{2i}e^{-ax} + \frac{\pi}{2i}\sin(\omega_0 x + \phi)$$
 (6)

$$y(x) = \mathcal{F}^{-1}{Y} = Ae^{-ax} + B\sin(\omega_0 x + C)$$
 (7)

Now as $x \to \infty$

- 1) $y \to 0$ if $a \neq 0$ is not true as y depend on a, ω_0
- 2) $y \rightarrow 1$ if a = 0 is not true as y depend on ω_0
- 3) $y \to Aexp(|a|x)$ if a < 0 is true as $B\sin(\omega_0 x + C)$ is neglected compared to Ae^{-ax}
- 4) $y \to B \sin(\omega_0 x + C)$ if a > 0; is true as $Ae^{-ax} \to 0$
- .: C,D are correct options