Week 4 QM Discussion

Ji Zou, jzeeucla@physics.ucla.edu

Office Hours: Tuesday 10am-12pm, Tutoring Center.

Problem 1

Construct the matrix representation for operators L_x , L_y , L_z for the case l=1. Using the fact that L_+ $|l,m\rangle=\hbar\sqrt{l(l+1)-m(m+1)}$ $|l,m+1\rangle$, $L_ |l,m\rangle=\hbar\sqrt{l(l+1)-m(m-1)}$ $|l,m-1\rangle$ and L_z $|l,m\rangle=m\hbar$ $|l,m\rangle$. What if l=1/2?

¹when l represents angular momentum, l can be only integers. If we start from the basic commutation relation $[L_l, L_j] = t\hbar\epsilon_{ljk}L_k$ and forget that L is angular momentum, the three equations given in the problem are still true and l can be integer or half integer in this case. It turns out we can use l to represent the spin of a particle. Also, this is known as representations of su(2) Lie algebra in group theory.

Spinless Charged Particle on a Sphere with Weak Magnetic Field Applied

Consider a particle of charge e, mass m_0 , constrained to move on the surface of a sphere of radius R (we do not consider spin in this problem). There is a weak uniform magnetic field $\vec{B} = B\hat{z}$. Find the energy levels of the system by following the steps below:

- a) You may have no idea how to start. OK, remember that the starting point is always Hamiltonian. So, write down the Hamilton of the system. (Hint: the Hamiltonian with magnetic field applied is $H = \frac{(\vec{p} e\vec{A}/c)^2}{2m_0}$, we use symmetric gauge here: $\vec{A} = \frac{1}{2}(-By, Bx, 0)$)
- b) Congratulations! You have finished the first step. Now, you need simplify the Hamiltonian. You should get $H = \frac{\tilde{\rho}^2}{2m_0} \frac{eB}{2m_0c}L_z$. (Hint: remember x, p are operators. So, for example, you should write $(p_x eA_x/c)^2 = (p_x eA_x/c)(p_x eA_x/c)$ when you expand the square and do term by term carefully. Also, you can drop all B^2 terms because B is small.)
- c) Use the condition that the particle is on the sphere to simplify Hamiltonian further. You should get $H=\frac{\vec{L}^2}{2m_0R^2}-\frac{\epsilon B}{2m_0\epsilon}L_z$. (You may find the formula below useful.)
 - d) Now, write down the eigenfunctions and energy levels from what you have learned.

Useful Formula: $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) - \frac{\vec{L}^2}{\hbar^2 r^2}$. To get this result, write down the expression ∇^2 and \vec{L}^2 explicitly and compare them.

$$L_{+} = L_{x} + iL_{y}$$

$$L_{-} = L_{x} - iL_{y}$$

$$L_{y} = \frac{1}{2i} (L_{+} - L_{-})$$

three basis:

$$L_{4} = \begin{pmatrix} 0 & \sqrt{2} h & 0 \\ 0 & 0 & \sqrt{2} h \\ 0 & 0 & 0 \end{pmatrix}$$

$$L = \left(L_{+}\right)^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{5}th & 0 & 0 \\ 0 & \sqrt{5}th & 0 \end{pmatrix}$$

Then:

$$L_{x} = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{52} h & 0 \\ \sqrt{52} h & 0 & \sqrt{52} h \\ 0 & \sqrt{52} h & 0 \end{pmatrix}$$

$$L_{y} = \frac{1}{2i} \begin{pmatrix} 0 & \sqrt{2} h & 0 \\ -\sqrt{2} h & 0 & \sqrt{2} h \end{pmatrix}$$

$$0 & -\sqrt{2} h & 0 \end{pmatrix}$$

basi's :

$$L_{+}|\pm,-\pm\rangle = \pm \sqrt{\pm \times \pm - (-\pm)(\pm)/2 \pm 2}$$

$$L_{t} = \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}, \quad L_{-} = \begin{pmatrix} 0 & 0 \\ t & 0 \end{pmatrix}$$

$$L_{x} = \frac{1}{2} \begin{pmatrix} 0 & \frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & \frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{1}{4} \\ \frac{1}{4} & 0 \end{pmatrix} = \frac{\frac{1}{6}}{2} \begin{pmatrix} 0 & -\frac{$$

where Ox, y, z are known as

Pauli matrix.

$$\hat{H} = \frac{(\vec{p} - \frac{e}{c}\vec{A})^{2}}{2m_{o}} = \frac{(P_{x} - \frac{e}{c}A_{x})^{2}}{2m_{o}} + \frac{(P_{y} - \frac{e}{c}A_{y})^{2}}{2m_{o}} + \frac{(P_{z} - \frac{e}{c}A_{z})^{2}}{2m_{o}} + \frac{(P_{z} - \frac{e}{c}A_{z})^{2}}{2m_{o}} + \frac{(P_{y} - \frac{e}{c}A_{z})^{2}}{2m_{o}} + \frac{P_{z}^{2}}{2m_{o}}$$

$$\left(\begin{array}{c} P_{y} = \frac{eB}{2c} \chi \\ \end{array} \right) \left(\begin{array}{c} P_{y} = \frac{eB}{2c} \chi \\ \end{array} \right)$$

$$= P_{y} = \frac{eB}{2c} P_{y} \chi = \frac{eB}{2c} \chi P_{y}$$

$$= P_{y} = \frac{eB}{c} \chi P_{y}$$

Then:
$$\hat{H} = \frac{P_x^2 + \frac{eB}{c}yP_x}{2m_o} + \frac{P_y^2 - \frac{eB}{c}xP_y}{2m_o} + \frac{P_t^2}{2m_o}$$

$$= \frac{\overrightarrow{P}^2}{zm_0} + \frac{eB}{zm_0C} \left(-xP_y + 1P_x\right)$$
$$= \frac{\overrightarrow{P}^2}{zm_0} - \frac{eB}{zm_0C} \widehat{L}_z$$

$$H = \frac{zm_0}{-\frac{1}{4}z} \overrightarrow{p}^2 - \frac{zm_0 C}{eB} \overrightarrow{L}^2$$

where
$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\vec{l}}{\vec{l} r^2}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

$$= -\frac{\vec{l}}{t^2 R^2} \quad \text{due to the particle is}$$

d)
$$\mathbb{Z}^2$$
, $L_{\mathbb{Z}}$ commute and they have the same eigenfunction $T_{L,m}(0,p)$

Then:

$$\frac{1}{14} \text{ Yem}(\theta, \theta) = \left(\frac{1}{2m_0} \frac{1}{2m_0} - \frac{e8 \text{ m h}}{2m_0 \text{ C}}\right) \text{ Yem } \theta, \theta$$

$$\frac{1}{2m_0} \frac{1}{2m_0 \text{ C}} \frac{e8 \text{ h}}{2m_0 \text{ C}} m.$$