機械学習 教師なし学習1: 次元の削減

Pythonによる機械学習入門 第14章

	CONTENTS											
14.1	次元削減の概要											
14.2	データの前処理											
14.3	主成分分析の実施											
14.4	結果の評価											
14.5	第14章のまとめ											
14.6	練習問題											
14.7	練習問題の解答											

P490~P498

教師あり 学習 回帰

分類

入力データをもとに何か別のデータ (正解データ)を予測する

教師なし 学習 次元削減

たくさんある特徴量を少ない特徴量にまとめる

クラスタリング

似ているデータ同士をグループに分ける

14. 1. 1

次元削減とは

P490~P493

次元削減

既存の列データを組み合わせて、新しい列を作ることができる

氏名	数学	理科
松田	80	70
浅木	85	90
工藤	70	85
国元	65	60

実際に測定できる構成要素 を組み合わせることで 実際には測定できない 概念的な指標 を作成できる

氏名	理系能力
松田	75
浅木	88
工藤	80
国元	62

国語

英語

社会

数学

理科

もともと5次元だったデータを2次元の データにすることができる

氏名	国語	数学	英語	理科	社会
松田	70	80	75	70	65
浅木	85	85	85	90	75
工藤	90	70	65	85	90
国元	65	65	56	60	90

文系能力 理系能力 70

80

84

72

82

84

69

81

次元削減モデル

P493~P498

P493

主成分分析

最も代表的な次元削減の手法

各列の相関 がそんなに 強くない場合

新しい軸にデータを移したとき、新しい軸上で のデータ分散値が最大になるような軸を選ぶ

值: 21 值: 7 值: 20

 $S^2 = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ $n: \vec{r} - \mathcal{S}$ 総数 $x_i: 個々の数値$ $\overline{x}: 平均値$

固有ベクトルは 2次元のデータから作成した 場合 [0.7, 0.4] のなどのように、2個の数値の 列で表現できる 決定した新しい軸 固有ベクトル または 主成分 と呼ぶ 新しい軸での分散が大きいほど、 <u>元デー</u>タの情報を反映している

新しいの候補の中で、データの分散 値が最大になるような軸を選択

数学が60点、理科が50点の人の理系能力 理系能力 = 0.7 * 60 + 0.4 * 50 = 42 + 20 = 62 ■ 新しい列(新しい軸)の名称は分析者が考える

■ 新しい列は、すべての既存列から大なり小なり影響を受けている


```
      14.2
      データの前処理
      P499~P501

      14.2.1
      データの読み込み
      P499~P499
```

```
コード14-1 データの読み込み

# pandasのインポート

import pandas as pd

# Boston.csvの読み込み

df = pd.read_csv('Boston.csv')

# 先頭2行の表示

df.head(2)
```

実行結果

	CRIME	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	high	0.0	18.10	0	0.718	3.561	87.9	1.6132	24.0	666	20.2	354.7	7.12	27.5
1	low	0.0	8.14	0	0.538	5.950	82.0	3.9900	4.0	307	21.0	232.6	27.71	13.2

Boston.csv

CRIME	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
high	0	18.1	0	0.718	3.561	87.9	1.6132	24	666	20.2	354.7	7.12	27.5
low	0	8.14	0	0.538	5.95	82	3.99	4	307	21	232.6	27.71	13.2
very_low	82.5	2.03	0	0.415	6.162	38.4	6.27	2	348	14.7	393.77	7.43	24.1
low	0	21.89	0	0.624	6.151	97.9	1.6687	4	437	21.2	396.9	18.46	17.8
high	0	18.1	0	0.614	6.98	67.6	2.5329	24	666	20.2	374.68	11.66	29.8

データの各列の意味

列名	意味
CRIME	その地域の犯罪発生率(high, low, very_low)
ZN	25000平方フィート以上の住居区画の占める割合
INDUS	小売業以外の商業が占める面積の割合
CHAS	チャールズ川の付近かどうかによるダミー変数(1:川の周辺、 0:それ以外)
NOX	窒素酸化物の濃度
RM	住居の平均部屋数
AGE	1940年より前に建てられて物件の割合
DIS	ボストン市内の5つの雇用施設からの距離

列名	意味
RAD	環状高速道路へのアクセスしやすさ
TAX	10000ドルあたりの不動産税率の総計
PTRATIO	町ごとの教員1人当たりの児童生徒数
IK	町ごとの黒人の比率(Bk)を次の式で表したもの。1000(Bk - 0.68) ²
LSTAT	人口における低所得者の割合
PRICE	その地域の住宅平均価格

```
コード14-2 平均値で欠損値を穴埋めする
```

列ごとの平均値で欠損値の穴埋め

df2 = df.fillna(df.mean())

14. 2. 3

14. 2. 2

ダミー変数化

P500~P500

P499~P500

```
コード14-3 CRIME列のダミー変数化
# CRIME列をダミー変数化
dummy = pd.get_dummies(df2['CRIME'], drop_first = True)
# df2とdummyを列方向に結合
df3 = df2.join(dummy)
# 元のCRIMEを削除
df3 = df3.drop(['CRIME'], axis = 1)
# データフレームを表示
df3.head(2)
```

実行結果

	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE	low	very_low
0	0.0	18.10	0	0.718	3.561	87.9	1.6132	24.0	666	20.2	354.7	7.12	27.5	0	0
1	0.0	8.14	0	0.538	5.950	82.0	3.9900	4.0	307	21.0	232.6	27.71	13.2	1	0

```
# 標準化モジュールをインストール
from sklearn.preprocessing import StandardScaler
# 中身が整数だと、fit_transformで警告になるので、
# float型に変換(省略可能)
df4 = df3.astype('float')
# 標準化
# StandardScalerインスタンスを生成
sc = StandardScaler()
# 標準化する
sc_df = sc.fit_transform(df4)
```

14.3 主成分分析の実施

P502~P506

14.3.1

モジュールのインポート

P502~P502

コード14-5 モジュールのインポート

主成分分析モジュール PCA をインポート from sklearn.decomposition import PCA

14. 3. 2

モデルの作成

P502~P506

コード14-6 モデルの作成

モデル作成

model = PCA(n_components = 2, whiten = True)

白色化

白色化

白色化を行うと各列の関係は無相 関になり、各列の平均値が0、標 準偏差が1になる

固有ベクトル数

固有 ベクトル 軸上のデータの分散値が 最大になるような軸

固有 ベクトル数 新たな軸をいくつ見つけるか

既存列をいくつの「新たな列」にまとめるか

モデルの作成

```
PCA( n_components=整数, whiten=真偽値 )

※ PCAは sklearn.decomposition からインポート済み
※ n_components は利用する新規の軸の個数
※ whiten=True で、次元削減の結果の白色化を行う。False だと行わない。
```

```
コード14-7 モデルに学習をさせる
# モデルに学習させる
```

model.fit(sc_df)

```
コード14-8 第1軸と第2軸の固有ベクトル
```

```
# 新規の第1軸(第1主成分とも呼ぶ)の固有ベクトル print( model.components_[0] ) print('----') # 新規の第2軸(第2主成分とも呼ぶ)の固有ベクトル print(model.components_[1])
```

実行結果

[-0.1533893 0.02835867 0.19795373 0.13817925 0.4047141 0.20058802 -0.29340246 -0.1027543 -0.11546952 -0.34046929 0.05661836 -0.17845386 0.44390529 0.42253976 -0.27716437]

要素数 1 5 = sc_dfの列数

```
コード14-9 既存の sc_df を新しい2つの軸に当てはめる
# 既存の sc_df を新しい2つの軸に当てはめる
new = model.transform(sc_df)
# データフレーム化する
new_df = pd.DataFrame(new)
# 表示
new_df.head(3)
```

実行結果

新しい2つの軸に当てはめたデータ

学習済みの新規の軸にデータを当てはめる(主成分得点の計算)

モデル変数.transform(表データ)

- ※ 表データはデータフレームや、numpy の ndarry
- ※ モデル変数は、事前に fit メソッドで学習
- ※ 戻り値は numpy であり、左列から順に最適な軸が選んでいる

14.4.1

14.4

主成分負荷量の確認

P502~P502

主成分負荷量

新しい列と既存の列との相関関係を考えるとき使用

コード14-10 新しい2列ともとの列を結合

カラム名の設定
new_df.columns = ['PC1', 'PC2']
標準化済の既存データ (numpy)をデータフレーム化
df5 = pd.DataFrame(sc_df, columns = df4.columns)
2つのデータフレームを列方向に結合

コード14-11 主成分負荷量の計算

df_corr = df6.corr() # 相関係数の計算
df_corr.loc[:'very_low', 'PC1':]

df6 = pd.concat([df5, new_df], axis=1)

インデックスが very_low より 上にある行(very_low含む) PC1列より右の列(PC1含む)

実行結果

PC1ともとの列の 相関係数

> PC2ともとの列の 相関係数

-0.560802 -0.226097 0.891989 INDUS 0.041801 CHAS 0.104808 0.291786 0.868891 0.203678 NOX -0.483825 0.596553 0.739745 0.295669 -0.744414 -0.432478 RAD 0.762947 -0.151461 0.814979 -0.170203 TAX 0.403417 -0.501855 PTRATIO -0.453200 0.083456 LSTAT 0.683921 -0.263043 -0.501186 0.654321 PRICE 0.095129 0.622828 very_low -0.781958 -0.408543

「都会度」

「市街地としての

コード14-12 相関係数を大きい順に並べ替える

```
# わかりやすいように変数に代入
pc_corr = df_corr.loc[:'very_low', 'PC1':]
# PC1列を降順にソート
pc_corr['PC1'].sort_values(ascending = False)
```

実行結果

INDUS 0.891989 NOX 0.868891 0.814979 TAX RAD 0.762947 AGE 0.739745 LSTAT 0.683921 PTRATIO 0.403417 CHAS 0.104808 low 0.095129 -0.453200 -0.483825 PRICE -0.501186 -0.560802 7N DIS -0.744414 very_low -0.781958 Name: PC1, dtype: float64

発展度合い」 などの指標に まとめられる 商業施設の割合 (INBUS) 正の相関 窒素化合物 (NOX) 正の相関 不動産税率 第1列 正の相関 (TAX)負の相関 雇用施設との距離 (DIS) 正の相関 古い住居の割合 (AGE)

コード14-13 第2列の相関を確認

PC2列を降順にソート

pc_corr['PC2'].sort_values(ascending = False)

実行結果

PRICE 0.654321 0.622828 Low RM 0.596553 AGE 0.295669 CHAS 0.291786 NOX 0.203678 0.083456 INDUS 0.041801 RAD -0.151461 TAX -0.170203 ZN -0.226097 LSTAT -0.263043 very_low -0.408543 DIS -0.432478 PTRATIO -0.501855 Name: PC2, dtype: float64

平均家賃 (PRICE) 平均部屋数 (RM) 第2列 犯罪発生率が低い (low)

> 「住環境の良さ」 として まとめられる

コード14-14 新しい列の散布図

```
# 新しい列名
# 「都市の発展度合い」と「住環境の良さ」
col = ['City', 'Exclusive residential']
# 列名の変更
new_df.columns = col
# 散布図
new_df.plot(kind = 'scatter', x = 'City', y = 'Exclusive residential')
```

実行結果

<matplotlib.axes._subplots.AxesSubplot at 0x177635236d8>

14.4.2

主成分分析の本来の目的

新規列の個数を少なくして簡潔にデータを表す

新規の列が元データの情報を反映すること

トレードオフ の関係

最適な新規列の個数を考慮する必要がある

元のデータの情報量の70%~80%程度反映するように列の個数を選ぶ

理論上は元データの 列の数だけ新規の列を 作れる

コード14-15 新規の軸をすべて用意する

n_components を指定しないと、新規の軸は すべてデフォルトで作られる

主成分分析モデルを生成

model = PCA(whiten = True)

学習と新規軸へのデータの当てはめを一括で行う

tmp = model.fit_transform(sc_df)

次元の表示

tmp.shape

実行結果

(100, 15)

新しい列でのデータの分散値は、 元データを反映している情報量 と解釈することができる

元データの分散の全体 (各列ごとの分散の合計値)と、 新しい列の分散の比率を調べる

寄与率

新規の列がもとのデータの全情報量のうち 何%ほど反映しているかを表す尺度

一番最適な列 分散値100

寄与率:100/(100+80+50)

2番目に最適な列 分散値80

寄与率:80/(100+80+50)

3番目に最適な列 分散値50

寄与率:50/(100+80+50)

コード14-16 寄与率を表示する

寄与率

model.explained_variance_ratio_

第2列の寄与率

実行結果

array([0.41102789] 0.14484698, 0.10192698, 0.06448954, 0.06233684,

0.05810331, 0.04843711, 0.02885228, 0.02142431, 0.01831962,

0.01572944, 0.01068611, 0.00918466, 0.00277548, 0.00185945

第1列の寄与率

元データの80%を反映させるように、新規の列を選びたい

元データの41%を第1列だけで反映することができる

最適な第1列から順々に寄与率を足していくと

0.41102789+0.14484698+0.10192698+0.06448954+0.06233684+0.05810331 =約0.85

第6列で、目標の80%を突破

第N列の累積寄与率

第1列~第N列の寄与率の合計

寄与率のデータ集合 ratio = model.explained_variance_ratio_ # 第N列までの累積寄与率を格納するリスト array = [] for i in range(len(ratio)): # 累積寄与率の計算 ruiseki = sum(ratio[0:(i+1)]) # 累積寄与率の格納 array.append(ruiseki) # 第N列の累積寄与率を折れ線グラフ化 pd.Series(array).plot(kind = 'line')

実行結果


```
コード14-18 情報量のしきい値を設定して必要な列数を求める
# 累積寄与率のしきい値
thred = 0.8
for i in range(len(array)):
  # 第(i + 1)列の累積寄与率がthredより大きいかチェック
  if array[i] >= thred:
    print(i + 1)
    break
```

実行結果

6

```
コード14-19 新規の列を6つ設定してモデルに学習させる
# もとのデータの全情報の80%を賄うために、新規の列を6つに設定
model = PCA(n_components=6, whiten = True)
# 学習
model.fit(sc_df)
# 元データを新規の列(6列)に当てはめる
new = model.transform(sc_df)
```

```
コード14-20 6列のデータをCSVファイルに保存

# 列名の指定
col = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6']

# 主成分分析の結果をデータフレームに変換
new_df2 = pd.DataFrame(new, columns = col)

# データフレームをcsvファイルとして保存
new_df2.to_csv('boston_pca.csv', index = False)
```

分散と寄与率

- ・新規の列(軸)での分散 モデル変数.explained_variance_
- ・寄与率 モデル変数.explained_variance_ratio_
- ※ 戻り値は numpy
- ※ 0番目から順に 新機軸1,新機軸2、・・・と続く

データフレームのCSV保存

df.to_csv('ファイル名', index=ブール値)

※ index=Trueとすると、インデックスもCSVファイルに掃き出される