1

Assignment

dushyant — EE22BTECH11031

Question 9.3.3 On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct?

Solution:

Gaussian:

TABLE 1: Variables

Variable	Value	Description
n	5	Number of questions
p	$\frac{1}{3}$	probability of question being correct
$\mu = np$	<u>5</u> 3	mean of distribution
$\sigma = \sqrt{npq}$	$\sqrt{\frac{10}{9}}$	variance of distribution
X	$0 \le X \le 5$	Number of correct questions

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$
 (1)

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y \le x) \tag{2}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma} \le \frac{X-\mu}{\sigma}\right) \tag{3}$$

$$\frac{Y-\mu}{\sigma} \sim \mathcal{N}(0,1) \tag{4}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{X-\mu}{\sigma}\right) \tag{5}$$

(6)

therefore the cdf will be:

$$F_{Y}(y) = \begin{cases} 1 - Q\left(\frac{y - \mu}{\sigma}\right), & y \ge \mu \\ Q\left(\frac{\mu - y}{\sigma}\right), & y \le \mu \end{cases}$$
 (7)

1) Without correction:

$$Pr(Y \ge 4) = 1 - Pr(Y \le 4) \tag{8}$$

$$=1-F_{Y}(4) \tag{9}$$

$$\implies \Pr(Y \ge 4) = Q\left(\frac{X - \mu}{\sigma}\right) \tag{10}$$

$$= Q(2.22286) \tag{11}$$

$$\Pr(Y \ge 4) = 0.013113\tag{12}$$

2) With a 0.5 correction:

$$\Pr(Y \ge 4) = Q\left(\frac{X - \mu + 0.5}{\sigma}\right) \tag{13}$$

$$= Q(1.74604) \tag{14}$$

$$\implies \Pr(Y \ge 4) = 0.040402$$
 (15)

Binomial:

$$p_X(k) = {}^{n}C_k p^k (1-p)^{n-k}$$
(16)

(17)

Probablity that 4 or more are correct

$$\implies P(X \ge 4) = \sum_{k=4}^{5} {}^{5}C_{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{5-k}$$

$$= \frac{11}{243} \tag{19}$$

$$\begin{array}{r}
 243 \\
 = 0.04526
 \end{array}
 \tag{20}$$

Fig. 1: Binomial vs guassian