Reviewer1_MovementQ

Sophie Wulfing

2024-06-21

Table 1: (ref:defaultparamtable)

Parameter	Population 1	Population 2	Definition
r	0.16	0.16	Fish net growth
S	0.8	0.8	Supply and demand
h	0.25	0.25	Harvesting efficiency
k	0.17	0.17	Rate of sampling opinions or social interaction
ω	1.44	1.44	Conservation cost
\mathbf{c}	0.5	0.5	Rarity valuation
d	0.3	0.3	Strength of social influence (within population)
m	0.01	0.01	Fish movement (from opposite patch)
ho	0.01	0.01	Strength of social influence (from opposite population)

Figure 1: In graphs a), b), and c), both ρ_1 and ρ_2 were set to 0.01, 0.25, and 0.5, respectively. The corresponding graphs show the dynamics of these models with the new parameterizations. d), e), and f) show the changes in model dynamics when m_2 is held at 0.01 and only m_1 (the movement of resources from patch 2 to patch 1) is increased by 0.01, 0.05, and 0.1, respectively.

Figure 2: In graphs a), b), and c), ρ_1 was set to 0.01, 0.5, and 1, respectively. The corresponding graphs show the dynamics of these models with the new parameterizations. d), e), and f) show the changes in model dynamics when m_2 is held at 0.01 and only m_1 (the movement of resources from patch 2 to patch 1) is increased by 0.01, 0.05, and 0.1, respectively.