

CAI 4104/6108 – Machine Learning Engineering: Recurrent Neural Networks 2

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

Project Proposals

- Due today (3/27) at 11:59pm
- Please make sure to use the Canvas Project Groups functionality
 - Only one person in the group needs to submit the PDF

Homework 4 is out

- Topic: (debugging) training neural networks (& some CNNs)
- Due 4/3

Reminder: Recurrent Neurons/Units

- Recurrent Layers:
 - Made up of recurrent neurons/units which keep state
 - State at time t: $h^{(t)}$ is a function g of the previous state $h^{(t-1)}$ and the current input $x^{(t)}$
 - $*h^{(t)} = g(h^{(t-1)}, x^{(t)})$

Reminder: Recurrent Layers

Recurrent Layers:

- Weight matrices: $W(m \times k)$ and $V(k \times k)$
 - * *k* is the number of units/neurons
- Activation function: f (e.g., tanh)
- ◆ Hidden state vector: h(t) = V y(t-1)
- Output vector: $\mathbf{y}^{(t)} = f(\mathbf{W}^T \mathbf{x}^{(t)} + \mathbf{h}^{(t)} + \mathbf{b})$

Bias vector: $b(k \times 1)$

(e.g., we can set $h^{(0)} = 0$)

Reminder: Processing Sequences

Architecture & Tasks:

- Sequence-to-sequence: from an input sequence produce a sequence as output
- Vector-to-sequence: from a fixed length input produce a sequence as output
- Sequence-to-vector: from an input sequence produce a fixed length output
- Encoder-decoder networks: sequence-to-vector followed by vector-to-sequence

Unrolling through time

Reminder: Processing Sequences

- Architecture & Tasks:
 - Encoder-decoder networks: sequence-to-vector followed by vector-to-sequence
 - Example: Language translation
 - Translate a sentence from one language to another

Reminder: Training RNNs

- How does training work?
 - Backpropagation through time
 - Note:
 - Loss is typically averaged over the entire output
 - The weights are shared across time
 - Training is slow

Reminder: Gradients & Short-Term Memory

- Unstable gradients problem
 - Activation functions that do not saturate (e.g., ReLU) can make things worse
 - Typically, we use activation functions such as tanh or sigmoid
 - We cannot use batch normalization across time steps
 - But we can use gradient clipping
- Short-term memory problem
 - RNNs cannot remember long-term dependencies well
 - Intuition: information is lost at each time step
 - Mitigation
 - Use a different type of cell (e.g., LSTM, GRU, etc.)

Gates & Recurrent Units

- Types of cells
 - Simple/traditional RNN cell
 - Long Short-Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation." In EMNLP, 2014.

update gate z — allows information from previous hidden state to carry over to current hidden state

Reset gate *r* — decides if previous hidden state is ignored (reset to current input)

Deep RNNs & Bidirectionality

- Deep RNNs:
 - RNNs with multiple recurrent layers
- Bi-directional RNNs:
 - Takes in sequence forwards and also backwards

Training Encoder-Decoder for Sequences

Outputs from Probabilities

- Greedy search: take the token/word with the highest probability
- Beam search: select the best k sequences so far based on joint probabilities
 - ◆ k is called the beam width (hyperparameter)

Teacher Forcing

- Teacher forcing (training):
 - Use the actual input as ground truth and not the model output of earlier step

Long Paths & Attention

- What if the decoder could **focus** on the **most important words** at each time step?
 - Seminal paper introducing attention (called Bahdanau attention)
 - Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." In 3rd International Conference on Learning Representations, ICLR 2015.
 - Note: there are multiple types of attention (e.g., Dot-product attention, multiplicative attention, selfattention, visual attention etc.)

Attention

- Attention "network" (or layer)
 - Trained at the same time at the encoder-decoder
 - Produces weights $\mathbf{\alpha}^{(t,i)}$ which sum to 1 (= $\Sigma_i \mathbf{\alpha}^{(t,i)}$)
 - Weight $\alpha^{(t,i)}$ represents the importance of encoder output

Decoder

Source: Bahdanau et al. ICLR 2015.

Next Time

- Friday (3/29): Exercise
- Upcoming:
 - Project Proposals due 3/27
 - Homework 4 due 4/3