1 Let A be a commutative ring. Let M be a module, and N a submodule. Let $N = Q_1 \cap \ldots \cap Q_r$ be a primary decomposition of N. Let $\bar{Q}_i = Q_i/N$. Show that $0 = \bar{Q}_1 \cap \ldots \bar{Q}_r$ is a primary decomposition of 0 in M/N. State and prove the converse.

1. Each \bar{Q}_i is primary

Given $a \in A$, a_{M/Q_i} is either injective or nilpotent, we must show that, given $a \in A$, $a_{(M/N)/(Q_i/N)}$ is either injective or nilpotent.

The function a_{M/Q_i} is a particular function from M/Q_i to itself. Via the isomorphism $\sigma: M/Q_i \mapsto (M/N)/(Q_i/N)$, define \hat{a} as a function from $(M/N)/(Q_i/N)$ to itself (TODO: justify).

We must show that $a_{(M/N)/(Q_i/N)}$ and \hat{a} are the same function. (TODO: do that) Thus if a_{M/Q_i} is injective (resp. nilpotent) then $a_{(M/N)/(Q_i/N)}$ is injective (resp. nilpotent).

2. Their intersection is $0 = \bar{Q}_1 \cap ... \cap \bar{Q}_r$

Assume false.

Take element $a \neq (0) \in \bar{Q}_1 \cap ... \cap \bar{Q}_r$. The pre-image of a under the canonical homomorhism $M \mapsto M/N$ is also not in N (WHY).

However it a *is* in each Q_i so its preimage has to be in Q_i , so has to be in N, a contradiction.

4. If 0 is primary decom, then N is primary decomp

Showing that Q_i is primary given that \bar{Q}_i is primary is identical to part 1 by following the isomorphism $M/Q_i \cong (M/N)/(Q_i/N)$ the other direction.

The proof that the intersection is N is also directly analogous to part 2, shown here:

2 Let \mathfrak{p} be a prime ideal and \mathfrak{a} , \mathfrak{b} be ideals of A. If $\mathfrak{ab} \subset \mathfrak{p}$, show that $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.

Take a_i to be an arbitrary member of \mathfrak{a} and b_i to be an arbitrary member of \mathfrak{b} . If a_ib_i is in \mathfrak{p} , then, since \mathfrak{p} is prime, either a_i is in \mathfrak{p} or b_i is.

Say a_i is. Now we have to show that all of \mathfrak{a} is thus in \mathfrak{p} .

3 Let \mathfrak{q} be a primary ideal. Let \mathfrak{a} , \mathfrak{b} be ideals, and assume $\mathfrak{ab} \subset \mathfrak{q}$. Assume that \mathfrak{b} is finitely generated. Show that $\mathfrak{a} \subset \mathfrak{q}$ or there exists some positive integer n such that $\mathfrak{b}^n \subset \mathfrak{q}$.

Same argument as above, just replacing prime for prime powers.

4 Let A be Noetherian and let \mathfrak{q} be a \mathfrak{p} -primary ideal. Show that there exists some $n \geq 1$ such that $\mathfrak{p}^n \subset \mathfrak{q}$

I'm having trouble understanding what it means to be $\mathfrak{p}-$ primary.