Convolution

 The convolution integral is a means by which the concentration coming out of a reactor can be determined when the inlet concentration and E curve are know.

Convolution (cont.)

- Although the plots of inlet concentration versus time will not look identical to the plot of outlet concentration versus time it will have the same area.
- This is because the area under the curve is representative of the total concentration which cannot change due to conservation of mass.

$$\begin{pmatrix} \text{tracer leaving} \\ \text{in rectangle } B \end{pmatrix} = \begin{pmatrix} \text{all the tracer entering } t' \text{ seconds earlier than } t, \\ \text{and staying for time } t' \text{ in the vessel} \end{pmatrix}$$

We show the tracer which enters t' seconds earlier than t as the narrow rectangle A. In terms of this rectangle the above equation may be written

$$\begin{pmatrix} \text{tracer leaving} \\ \text{in rectangle } B \end{pmatrix} = \sum_{\substack{\text{all rectangles} \\ A \text{ which enter} \\ \text{earlier then} \\ \text{time } t}} \begin{pmatrix} \text{tracer in} \\ \text{rectangle} \\ A \end{pmatrix} \begin{pmatrix} \text{fraction of tracer in } A \\ \text{which stays for about} \\ t' \text{ seconds in the vessel} \end{pmatrix}$$

In symbols and taking limits (shrinking the rectangles) we obtain the desired relationship, which is called the convolution integral

$$C_{\text{out}}(t) = \int_0^t C_{\text{in}}(t - t') \mathbf{E}(t') dt'$$
 (10a)

In what can be shown to be equivalent form we also have

$$C_{\text{out}}(t) = \int_0^t C_{\text{in}}(t') \mathbf{E}(t - t') dt'$$
 (10b)

We say that C_{out} is the *convolution* of **E** with C_{in} and we write concisely

$$C_{\text{out}} = \mathbf{E} * C_{\text{in}}$$
 or $C_{\text{out}} = C_{\text{in}} * \mathbf{E}$ (10c)

.

Convolution

How do you hand any input and calculate output curves?

$$C_{\text{out}}(t) = \int_0^t C_{\text{in}}(t - t') \mathbf{E}(t') dt'$$

Let us illustrate the use of the convolution equation, Eq. 10, with a very simple example in which we want to find C_{out} given C_{in} and the **E** curve for the vessel, as shown in Fig. E11.3a.

First of all, take 1 min time slices. The given data are then

t'-t	$C_{ m in}$	t'	E	
0	0	5	0	Note: The area under the
1	0	6	0.05	E curve is unity.
2	8	7	0.50	
3	4	8	0.35	
4	6	9	0.10	
5	0	10	0	

Now the first bit of tracer leaves at 8 min, the last bit at 13 min. Thus, applying the convolution integral, in discrete form, we have

t	$C_{ m out}$
7	0 = 0
8	$8 \times 0.05 = 0.4$
9	$8 \times 0.5 + 4 \times 0.05 = 4.2$
10	$8 \times 0.35 + 4 \times 0.5 + 6 \times 0.05 = 5.1$
11	$8 \times 0.10 + 4 \times 0.35 + 6 \times 0.5 = 5.2$
12	$4 \times 0.10 + 6 \times 0.35 = 2.5$
13	$6 \times 0.10 = 0.6$
14	= 0

Note that the area under the C_{out} curve equals the area under the C_{in} curve.

Input tracer	
t Cin(t)	
0	0
1	5 input1
2	10 input2
3	3 input3
4	15 input4
5	0.

RTD of reactor t E(t)						
15	`´ 0					
16	0.1 output1					
17	0.2 output2					
18	0.4 output3					
19	0.2 output4					
20	0.06 output5					
21	0.005 output6					
22	0					

RTD

tracer output

