诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

《工科数学分析 (二)》B 卷 参考答案 2017-2018 学年第二学期

注意事项:

- 一、 开考前请将密封线内各项信息填写清楚;
- 二、 所有答案请直接答在试卷上;
- 三、 考试形式: 闭卷;
- 四、 本试卷共6大题,满分100分,考试时间120分钟。

1	题 号	_	_	=	四	五	六	总	分
:	得 分								

- 一、填空题:共5题,每题2分,共10分.
 - 1. 微分方程 y'' + 2y' 3y = 2 3x 的通解为 $y = C_1 e^{-3x} + C_2 e^x + x$, 其中 C_1, C_2 为任意常数 ;
 - 2. 向量场 $2xy\vec{i} + e^z \sin y\vec{j} + (x^2 + y^2 + z^2)\vec{k}$ 的旋度为__(2y e^z \sin y)\vec{i} 2x\vec{k} 2x\vec{k};
 - 3. 设 Γ 是平面上的下半圆周 $y=-\sqrt{1-x^2},-1\leqslant x\leqslant 1$,则第一类曲线积分 $\int\limits_{\Gamma}x^2+y^2\mathrm{d}s=\underline{\qquad \qquad }$
 - 4. 幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n \cdot 2^n} x^n$ 的收敛域为______;
 - 5. 设周期为 2π 的函数 $f(x) = |x|, -\pi < x \leq \pi$, 则 f(x) 的傅里叶 (Fourier) 级数在 $x = \pi$ 处收敛于______.

二、单选题: 共5题, 每题2分, 共10分.

- 1. 下列微分方程中,属于二阶线性常微分方程的是(B)
 - $A. (x + y^2) dy + e^x dx = 0;$
 - B. $xy'' + (\sin x)y' + (\ln x)y = \tan x;$
 - C. $(y'')^2 + y = 2$;
 - D. $y'' + \ln y = 2$.
- 2. 二元函数 f(x,y) 在点 (a,b) 的两个偏导数 $\frac{\partial f}{\partial x}(a,b)$ 和 $\frac{\partial f}{\partial y}(a,b)$ 存在是 f(x,y) 在该点连续的 (D)
 - A. 充分而非必要条件;
 - B. 必要而非充分条件;
 - C. 充分必要条件;
 - D. 既非充分也非必要条件.
- 3. 曲面 $3x^2 + y^2 + z^2 = 12$ 上点 M(-1,0,3) 处的切平面与平面 z = 0 的夹角是 (B)
 - A. $\frac{\pi}{6}$;
 - B. $\frac{\pi}{4}$;
 - C. $\frac{\pi}{3}$;
 - D. $\frac{\pi}{2}$.
- 4. 设 Γ 是平面曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a, b > 0$, 取逆时针方向, 则第二类曲线积分 $\int_{\Gamma} x dy y dx = ($ B)
 - A. πab ;
 - B. $2\pi ab$;
 - C. 0;
 - D. $-2\pi ab$.
- 5. 下列级数发散的是(B)
 - A. $\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n};$
 - B. $\sum_{n=2}^{\infty} \frac{1}{\ln n};$
 - $C.\sum_{n=2018}^{\infty} \frac{2^n}{n!};$
 - D. $\sum_{n=1}^{\infty} (1 \frac{1}{n})^{n^2}$.

三、 计算题: 共 3 题, 每题 10 分, 共 30 分.

1. 设 $z=xf\left(\frac{y}{x}\right)+g(x,xy)$, 其中 f(t) 具有连续的二阶导数, g(u,v) 具有连续的二阶偏导数, 计算二阶偏导数 $\frac{\partial^2 z}{\partial x \partial y}$.

解:

$$\frac{\partial z}{\partial y} = f'\left(\frac{y}{x}\right) + xg_2'(x, xy).\dots\dots(5 \%)$$

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{y}{x^2}f''\left(\frac{y}{x}\right) + g_2'(x, xy) + xg_{21}''(x, xy) + xyg_{22}''(x, xy).\dots(5 \%)$$

2. 计算累次积分 $\int_{\frac{1}{4}}^{\frac{1}{2}} \mathrm{d}x \int_{\frac{1}{2}}^{\sqrt{x}} \cos\left(\pi \frac{x}{y}\right) \mathrm{d}y + \int_{\frac{1}{2}}^{1} \mathrm{d}x \int_{x}^{\sqrt{x}} \cos\left(\pi \frac{x}{y}\right) \mathrm{d}y.$

解: 记 D 为由 $y=\frac{1}{2},y=\sqrt{x}$ 和 y=x 围成的区域, 如图示

则所求累次积分为

$$\int_{\frac{1}{4}}^{\frac{1}{2}} dx \int_{\frac{1}{2}}^{\sqrt{x}} \cos\left(\pi \frac{x}{y}\right) dy + \int_{\frac{1}{2}}^{1} dx \int_{x}^{\sqrt{x}} \cos\left(\pi \frac{x}{y}\right) dy$$

$$= \iint_{D} \cos\left(\pi \frac{x}{y}\right) dx dy$$

$$= \int_{\frac{1}{2}}^{1} dy \int_{y^{2}}^{y} \cos\left(\pi \frac{x}{y}\right) dx \cdots (6 \%)$$

$$= -\frac{1}{\pi} \int_{\frac{1}{2}}^{1} y \sin(\pi y) dy$$

$$= \frac{1}{\pi^{3}} (1 - \pi) \cdots (4 \%)$$

3. 计算曲面 $z = \sqrt{x^2 + y^2}$ 夹在两柱面 $x^2 + y^2 = x$ 和 $x^2 + y^2 = 2x$ 之间的那一部分的面积. 解: 曲面的面积微元为

$$dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$$

$$= \sqrt{1 + \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2} dxdy$$

$$= \sqrt{2}dxdy.....(3 /x)$$

因此,所求面积为

$$A = \iint_{\Sigma} 1 dS \cdot \dots \cdot (2 \, \cancel{f})$$

$$= \iint_{x \leqslant x^2 + y^2 \leqslant 2x} \sqrt{2} dx dy \cdot \dots \cdot (3 \, \cancel{f})$$

$$= \sqrt{2} (\pi - \frac{1}{4}\pi) = \frac{3\sqrt{2}}{4}\pi \cdot \dots \cdot (2 \, \cancel{f})$$

四、解答题: 共3题, 每题10分, 共30分.

1. 设 Σ 是曲线 $\begin{cases} z = \sqrt{y-1}, \\ x = 0 \end{cases}$ $(1 \leqslant y \leqslant 3)$ 绕 y 轴旋转一周所成的曲面, 其法向量与 y 轴正向夹角恒大于 $\frac{\pi}{2}$. 求曲面积分 $\iint_{\Sigma} (8y+1)x \mathrm{d}y \mathrm{d}z + 2(1-y^2) \mathrm{d}z \mathrm{d}x + (z^2-2z) \mathrm{d}x \mathrm{d}y.$

解: 设 Σ_1 为平面 y=3 在 $x^2+z^2 \le 2$ 的部分, 取右侧为正向. 则 Σ 和 Σ_1 形成一个闭曲面, 外侧为正向, 其所围区域为 Ω , 由 Gauss 公式

$$\iint\limits_{\Sigma \cup \Sigma_1} (8y+1)x \mathrm{d}y \mathrm{d}z + 2(1-y^2) \mathrm{d}z \mathrm{d}x + (z^2-2z) \mathrm{d}x \mathrm{d}y = \iiint\limits_{\Omega} 4y + 2z - 1 \mathrm{d}x \mathrm{d}y \mathrm{d}z \cdot \dots \cdot \dots \cdot (5 \, ?)$$

由对称性,

$$\iiint\limits_{\Omega}z\mathrm{d}x\mathrm{d}y\mathrm{d}z=0.$$

因此,

$$\iiint_{\Omega} 4y + 2z - 1 dx dy dz = \iiint_{\Omega} 4y - 1 dx dy dz = \int_{1}^{3} dy \iint_{x^{2} + z^{2} \leqslant y - 1} 4y - 1 dx dz$$
$$= \int_{1}^{3} (4y - 1)\pi(y - 1) dy = \frac{50}{3}\pi \cdot \dots \cdot (2 \%)$$

而 Σ_1 的单位法向量为 (0,1,0), 因此,

$$\iint_{\Sigma_1} (8y+1)x dy dz + 2(1-y^2) dz dx + (z^2 - 2z) dx dy = - \iiint_{x^2 + z^2 \leqslant 2} 16 dx dz = -32\pi. \dots (2 \%)$$

因此,

$$\iint_{\Sigma} (8y+1)x dy dz + 2(1-y^2) dz dx + (z^2 - 2z) dx dy = \frac{50}{3}\pi + 32\pi = \frac{146}{3}\pi.\dots(1 \%)$$

2. 设曲线积分 $\int_{\Gamma} (f(x) - e^x) \sin \frac{y}{2} dx - \frac{1}{2} f(x) \cos \frac{y}{2} dy$ 与路径无关, 其中 f(x) 有一阶连续导数且 f(0) = 0. 求 f(x) 并计算曲线积分 $\int_{(0,0)}^{(1,1)} (f(x) - e^x) \sin \frac{y}{2} dx - \frac{1}{2} f(x) \cos \frac{y}{2} dy$.

解: 记 $P = (f(x) - e^x) \sin \frac{y}{2}, Q = -\frac{1}{2}f(x) \cos \frac{y}{2}$. 由于曲线积分与路径无关,因此

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.\dots(3 \ \%)$$

因此,

$$f(x) - e^x = -f'(x) \cdot \cdots \cdot (2 \cancel{f})$$

这是一个一阶线性微分方程, 其通解为

$$f(x) = \frac{1}{2}e^x + Ce^{-x}.$$

由 f(0) = 0,有 $C = -\frac{1}{2}$,因此,

$$f(x) = \frac{1}{2}e^x - \frac{1}{2}e^{-x}.\dots(1 \%)$$

此时,

$$P \mathrm{d} x + Q \mathrm{d} y = -\frac{1}{2} (e^x + e^{-x}) \sin \frac{y}{2} \mathrm{d} x - \frac{1}{4} (e^x - e^{-x}) \cos \frac{y}{2} \mathrm{d} y = \mathrm{d} \left(-\frac{1}{2} (e^x - e^{-x}) \sin \frac{y}{2} \right).$$

因此,

$$\int_{(0,0)}^{(1,1)} P dx + Q dy = \left(-\frac{1}{2} (e^x - e^{-x}) \sin \frac{y}{2} \right) \Big|_{(0,0)}^{(1,1)} = -\frac{1}{2} (e - e^{-1}) \sin \frac{1}{2} \dots \dots (4 \%)$$

3. 将函数 $f(x) = \cos^2 x$ 展开成 x 的幂级数.

解: cost可展开为

$$\cos t = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} t^{2n} \cdots (4 \, \mathcal{T})$$

注意到

$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x \cdot \cdots \cdot (2 \, \cancel{\upbeta})$$

因此,

$$\cos^2 x = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n} = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{(2n)!} x^{2n}, \dots (2 / 2)$$

其收敛域为 $(-\infty, +\infty)$. · · · · · · · · (2分)

五、证明题: 共1题, 每题10分, 共10分.

设 0 < c < 1, 证明函数项级数 $\sum\limits_{n=0}^{\infty} (1-x)^n$ 在 [c,1] 一致收敛, 但在 (0,1) 不一致收敛.

证明: $\forall x \in [c, 1], (1 - x)^n \leqslant (1 - c)^n$. 由于

$$\sum_{n=0}^{\infty} (1-c)^n$$

收敛. 由优级数判别法, 有

$$\sum_{n=0}^{\infty} (1-x)^n$$

在 [c,1] 上一致收敛.....(6分)

级数 $\sum_{n=0}^{\infty} (1-x)^n$ 在 (0,1] 收敛, 前 n 项和为

$$S_n(x) = \sum_{k=0}^n (1-x)^k = \frac{1-(1-x)^{n+1}}{x}.$$

和函数为

$$S(x) = \frac{1}{x}.$$

取 $x_n = \frac{1}{n} \in (0,1)$,则

$$\lim_{n \to \infty} |S_n(x_n) - S(x_n)| = \lim_{n \to \infty} \left| \left(1 - \frac{1}{n} \right)^n (n - 1) \right| = +\infty.$$

因此, 函数项级数 $\sum_{n=0}^{\infty} (1-x)^n$ 在 (0,1) 不一致收敛.······(4分)

六、应用题: 共1题, 每题10分, 共10分.

设椭圆 $x^2 + 3y^2 = 12$ 的内接等腰三角形之底边平行于椭圆的长轴, 求这样的三角形的最大面积.

解: 设等腰三角形的三个顶点为 (-x,y), (x,y) 和 (0,2), x>0. 则三角形面积为

$$f(x,y) = x(2-y) \cdot \cdots \cdot (2 \cancel{f}).$$

因此, 只需求出函数 f(x,y) 在条件 $x^2 + 3y^2 = 12$ 之下的条件极值.....(2 分) 设 Lagrange 函数

$$L(x, y, \lambda) = x(2 - y) - \lambda(x^2 + 3y^2 - 12)....(2 \%)$$

则极值点满足

$$\begin{cases} \frac{\partial L}{\partial x} = 2 - y - 2\lambda x = 0, \\ \frac{\partial L}{\partial y} = -x - 6\lambda y = 0, \\ \frac{\partial L}{\partial \lambda} = -(x^2 + 3y^2 - 12) = 0. \end{cases}$$
(2 \(\frac{\frac{\gamma}{2}}{2}\)

解之,得

$$(x,y,\lambda)=\left(3,-1,\frac{1}{2}\right),\left(-3,-1,-\frac{1}{2}\right),\ \overrightarrow{\mathrm{gl}}\left(0,2,0\right).$$

因 x > 0 有极大值点为 (x, y) = (3, -1). 因此, 三角形最大面积为

$$f(3,-1)=9.\cdots (2 \%)$$