Def. Gruppe (aus der Gruppentheorie)

Eine Gruppe ist ein 4-Tupel der Form $\langle G, e, *, i \rangle$ wobei gilt:

- $e \in G$ (das neutrale Element)
- $ullet \ st: GxG
 ightarrow G$
- i:G o G (das Inverse)
- Es gelten die folgenden Axiome:
 - $\forall x \in G : e * x = x$
 - $ullet \ orall x \in G: i(x) * x = e$
 - $\forall x, y, z \in G : (x * y) * z = x * (y * z)$

Def. Signatur

 $\Sigma=< V, F, arity>$ wobei gilt:

- V ist Menge der Variablen
- F ist Menge der Funktionszeichen
- $arity: F \to \backslash \mathbb{N}$, gibt pro Funktion an, wie viele Argumente diese Funktion als Input bekommt
- $V \cap F = \emptyset$ (Variablen müssen ungleich Funktionszeichen sein)

Def. Sigma-Terme

 \mathcal{T}_{Σ} ist die Menge von Σ -Termen ist induktiv definiert:

- 1. $x \in \mathcal{T}_{\Sigma}$ für alle Variablen x
- 2. $c \in \mathcal{T}_{\Sigma}$ für alle Funktionszeichen c, bei denen gilt: arity(c) = 0
- 3. Falls f ein Funktionszeichen ist und n=arity(f) und n>0 und $t_1,\ldots,t_n\in\mathcal{T}_\Sigma$, dann gilt: $f(t_1,\ldots,t_n)\in\mathcal{T}_\Sigma$

Def. Sigma-Gleichung

Damit sagen wir, dass zwei Terme logisch gleich sind (z.B. 1*x = x ist logisch, aber nicht syntaktisch gleich)

Wir schreiben $\langle s, t \rangle$ oder auch $s \approx t$, g.d.w. s logisch gleich t ist.

Def. Sigma-Algebra

Sei Σ eine Signatur, dann ist $\mathcal{A} = \langle A, \mathcal{I} \rangle$ eine Algebra, g.d.w.:

- 1. *A* ist ein nicht-leeres Universum. (Das Universum enthält alle Symbole, die wir haben können)
- 2. \mathcal{I} ist die Interpretation der Funktions-Symbole. Für alle $f \in F$ gilt: $\mathcal{I}(f) : A^{arity(f)} -> A$. Wir schreiben auch $f^{\mathcal{A}}$ für die Interpretation

Die Menge aller Σ -Algebras schreiben wir als $Alg(\Sigma)$

Def. Variablen-Belegung

Sei Σ eine Signatur und $\mathcal A$ eine Algebra, dann definieren wir I als Variablen-Belegung wie folgt:

Jede Variable wird einem Element aus dem Universum A zugeordnet

Def. Anwendung

Die Anwendung eval ist wie folgt definiert:

```
1. eval(x,I) := I(x) für alle x \in V
```

- 2. $eval(c, I) := c^{\mathcal{A}}$ für alle Konstanten $c \in F$ (also es gilt arity(c) = 0)
- 3. $eval(f(t_1,\ldots,t_n),I):=f^{\mathcal{A}}(eval(t_1,I),\ldots,eval(t_n,I))$

Def. Gültige Gleichung

Eine Gleichung $s \approx t$ ist gültig g.d.w. eval(s,I) = eval(t,I) für alle Variablen-Belegungen I: V->A gilt.

Wir schreiben das auch als $\mathcal{A} \models s \approx t$

Def. E-Varietät

Sei E eine Menge von Σ -Gleichungen, dann ist die E-Varietät die Menge aller Σ -Algebras, die die Gleichungen in E erfüllen.

$$\mathsf{Variety}(\mathsf{E}) \coloneqq \{ \mathcal{A} \in Alg(\Sigma) | \forall (s \approx t) \in E : \mathcal{A} \models s \approx t \}$$

Def. logische Konsequenz

Die Gleichung $s \approx t$ ist eine logische Konsequenz g.d.w.

Für alle $\mathcal{A} \in Variety(E)$ muss $\mathcal{A} \models s \approx t$

Wir schreiben dann auch $E \models s \approx t$

Falls $E \models s \approx t$ gilt, dann gilt auch $E \models t \approx s$

Def. Sigma-Substitution

```
Die Substitution \sigma:V	o \mathcal T_\Sigma
Wir schreiben auch \sigma=\{x_1	o t_1,\dots,x_n	o t_n\}
```

Die Anwendung einer Substition (wir schreiben $x\sigma$) ist wie folgt definiert:

```
1. Für alle Variablen x, gilt: x\sigma=\sigma(x)
2. Für alle Konstanten c gilt: c\sigma=c
3. Für alle Funktionen f gilt: f(t_1,\ldots,t_n)\sigma=f(t_1\sigma,\ldots,t_n\sigma)
```

Induktive Def. der Relation ⊢ ("Beweis"-Relation)

```
1. E \vdash s \approx t für alle Gleichungen (s \approx t) \in E
2. E \vdash s \approx s für alle Terme s
3. Falls E \vdash s \approx t dann gilt auch E \vdash t \approx s
4. Falls E \vdash r \approx s und E \vdash s \approx t dann gilt auch: E \vdash r \approx t
5. Falls n = arity(f) und für alle i = 1, \ldots, n E \vdash s_i \approx t_i gilt, dann gilt auch: E \vdash f(s_1, \ldots, s_n) \approx f(t_1, \ldots, t_n)
6. Falls E \vdash s \approx t und \sigma eine Substitution ist, dann gilt auch E \vdash s\sigma \approx t\sigma
```

Induktive Def. der Menge Pos(t)

```
Bsp.:
1 * (x + y)
Das können wir uns wie folgt vorstellen:
  *
 /\
 1 +
   /\
  х у
Wir wollen die einzelnen Terme individuell ansprechen können und müssen
deswegen deren Position definieren.
In diesem Beispiel:
-1*(x + y) ist an Postion []
- 1 ist an Position [1]
- x + y ist an Position [2]
- x ist an Position [2, 1]
- y ist an Positon [2, 2]
```

Pos(t) ist die Menge aller Positionen in einem Term t und ist wie folgt definiert:

- 1. Für jede Variable x gilt: $Pos(x) := \{[]\}$
- 2. Für jede Konstante c gilt: $Pos(c) := \{[]\}$
- 3. Für jede Funktion f gilt: $Pos(f(t_1,\ldots,t_n)):=ig\{[\]ig\}\cupigcup_{i=1}^nig\{[i]+u\mid u\in Pos(t_i)ig\}$

Def. Teilterm

Wenn t ein Teilterm von s ist und an der Position u in s ist, dann schreiben wir s/u=t. Wir definieren s/u induktiv wie folgt:

```
1. s/[] := s
2. f(s_1, \ldots, s_n)/([i] + u) := s_i/u
```

Def. Termersetzung

Wir können den Teilterm an der Position u in s mit einem Term t ersetzen und schreiben dann $s[u \to t]$. Wir definieren das induktiv:

```
1. s[[]	o t]:=t
2. f(s_1,\ldots,s_n)[[i]+u	o t]:=f(s_1,\ldots,s_i[u	o t],\ldots,s_n)
```

Def. Termersetzungs-Ordnung

Die Relation \prec ordnet Σ -Terme. Wir definieren diese Ordnung wie folgt:

- 1. Für alle $s \in \mathcal{T}_{\Sigma}$ gilt: $\neg (s \prec s)$
- 2. Für alle $r,s,t\in\mathcal{T}_\Sigma$ gilt: Falls $r\prec s$ und $s\prec t$ dann gilt auch $r\prec t$
- 3. Für alle $r,s\in\mathcal{T}_\Sigma$ und Substitionen σ gilt: Falls $r\prec s$ dann gilt auch $r\sigma\prec s\sigma$
- 4. Für alle $s,l,r\in\mathcal{T}_\Sigma$ und Positionen $u\in Pos(s)$ gilt: Falls $r\prec l$ dann gilt auch $s[u o r]\prec s[u o l]$
- 5. Es gibt eine Folge $(s_n)_{n \in \backslash \mathbb{N}}$ mit $s_{n+1} \prec s_n$ (in anderen Worten, es gibt eine Folge, die immer kleinere Terme liefert)
- 6. Für alle $(l \approx r) \in E$ gilt $l \prec r$

Regeln von Martelli & Montanari zur Lsg. von syntaktischen Gleichungssystemen

Syntaktische Gleichung schreibt sich als $s \doteq t$. Ein syntaktisches Gleichungssystem ist eine Menge solcher Gleichungen.

- 1. Falls $y\in V\land y\not\in Vars(t)$, dann können wir $< E\cup \{y\doteq t\},\sigma>$ zum folgendem umformen: $< E\{y\to t\},\sigma\{y\to t\}>$
- 2. Falls $y \in V \land y \in Vars(t) \land y \neq t$, dann können wir $< E \cup t \doteq y, \sigma >$ zum folgendem umformen: Ω (kein mögliches Ergebnis)

- 3. Falls $y\in V\land t\not\in V$, dann können wir $< E\cup\{t\doteq y\},\sigma>$ zum folgendem umformen: $< E\cup\{y\doteq t\},\sigma>$
- 4. Falls $x \in V$, dann können wir $< E \cup \{x \doteq x\}, \sigma >$ zum folgendem umformen: $< E, \sigma >$
- $5. < E \cup \{f(s_1,\ldots,s_n) \doteq f(t_1,\ldots,t_n)\}, \sigma >$ zum folgendem umformen: $< E \cup \{s_1 \doteq t_1,\ldots,s_n \doteq t_n\}, \sigma >$
- 6. f
 eq g dann gibt es keine Lösung für $< E \cup \{f(\dots) \doteq g(\dots)\}, \sigma >$ (also wird zu Ω)

Def. Most General Unifier

Falls $< E, \{\} > zu < \{\}, \mu > mit$ diesen Regeln umgeformt werden kann, dann ist mu der Most-general-unifier, auch mgu(E) genannt