α) Θέτουμε ημω = x και η εξίσωση γράφεται:

$$5x^3 - 8x^2 - 7x + 6 = 0.$$

Οι πιθανές ακέραιες ρίζες της εξίσωσης είναι οι διαιρέτες του 6, δηλαδή οι $\pm 1, \pm 2, \pm 3, \pm 6$. Με δοκιμή διαπιστώνουμε ότι ο -1 είναι ρίζα. Κάνουμε τη διαίρεση $(5x^3 - 8x^2 - 7x + 6)$: (x + 1).

5	-8	-7	6	-1
	-5	13	-6	
5	-13	6	0	

$$Aρα 5x^3 - 8x^2 - 7x + 6 = (x + 1)(5x^2 - 13x + 6).$$

Το τριώνυμο $5x^2-13x+6$ έχει διακρίνουσα $\Delta=(-13)^2-4\cdot 5\cdot 6=169-120=49$ και ρίζες:

$$x_1 = \frac{13 + \sqrt{49}}{2 \cdot 5} = \frac{13 + 7}{10} = 2$$

και

$$x_2 = \frac{13 - \sqrt{49}}{2 \cdot 5} = \frac{13 - 7}{10} = \frac{6}{10} = \frac{3}{5}.$$

Επειδή $0<\omega<\frac{\pi}{2}$, είναι $0<\eta\mu\omega<1$, άρα η μόνη αποδεκτή λύση είναι $\eta\mu\omega=\frac{3}{5}$.

β)

i. Ισχύει ότι:

$$\eta \mu^2 \omega + \sigma v v^2 \omega = 1 \Leftrightarrow \left(\frac{3}{5}\right)^2 + \sigma v v^2 \omega = 1 \Leftrightarrow$$
$$\sigma v v^2 \omega = 1 - \frac{9}{25} = \frac{16}{25}$$

Επειδή $0<\omega<\frac{\pi}{2}$, είναι $\sigma vv\omega>0$. Άρα,

$$\sigma v v \omega = \sqrt{\frac{16}{25}} = \frac{4}{5}.$$

ii. Από τον τριγωνομετρικό κύκλο γνωρίζουμε ότι το σημείο B έχει συντεταγμένες $(\sigma v v \omega, \eta \mu \omega)$, άρα $B(\frac{4}{5}, \frac{3}{5})$. Τα σημεία Γ και Δ είναι συμμετρικά του B ως προς τον άξονα y'y και την αρχή O αντίστοιχα. Οπότε είναι:

$$\Gamma\left(-\frac{4}{5},\frac{3}{5}\right),\Delta\left(-\frac{4}{5},-\frac{3}{5}\right).$$

iii. Το ημίτονο και το συνημίτονο των γωνιών $A\hat{O}B$, $A\hat{O}\Gamma$ και $A\hat{O}\Delta$ είναι οι τεταγμένες και οι τετμημένες των σημείων B, Γ και Δ αντίστοιχα. Άρα,

$$\eta \mu A \hat{O} B = \frac{3}{5}, \qquad \sigma v v A \hat{O} B = \frac{4}{5},$$

$$\eta \mu A \hat{O} \Gamma = \frac{3}{5}, \qquad \sigma v v A \hat{O} \Gamma = -\frac{4}{5},$$

και

$$\eta \mu A \hat{O} \Delta = -\frac{3}{5}, \qquad \sigma v \nu A \hat{O} \Delta = -\frac{4}{5}.$$