Monthly Meeting on October

Yuichiro Honda Morita lab. M1

2016/10/05

- 1 Previous work
- Progress
- 3 Next step

Last month

- searched an (polynomial) algorithm to partition two matroids into their common bases
- 2 found an algorithm to find all common bases in two matroids in $O(n(n^2+t)\lambda)$

- Previous work
- 2 Progress
- Next step

References

Komei Fukuda, Makoto Namiki: "Finding all common bases in two matroids", Discrete Applied Mathmatics 56 (1995) 231-243

Finding all common bases in two matroids

Main result

Given two matroids M_1 , M_2 , and a common base B^1 , there is an algorithm finding all common bases of them in $O(n(n^2 + t)\lambda)$ where λ is number of the bases and t is time to make one pivot operation.

- Previous work
- Progress
- 3 Next step

next month

TODO:

- 1 learn about matroid intersection
- 2 learn how to partition a matoid into bases
- tackle two different partition matroids (can be partitioned into their common bases)
- generalized partition matroid of two different uniform matroids and any matroid