- 1) Soit la table T(a, b, c, d) et l'ensemble de dépendances fonctionnelles $D = \{a \rightarrow b, a, b \rightarrow c, d\}$.
- a) Produisez une couverture minimale pour *D*. $min(D) = \{a \rightarrow b; a \rightarrow c; a \rightarrow d\}$
 - b) Quelles sont les clés candidates de la table *T* ?

Une seule clé candidate : $\{a\}$

2) Soit la table T(a, b, c, d) et l'ensemble de dépendances fonctionnelles $D = \{a \rightarrow b; b \rightarrow c; c \rightarrow b; a \rightarrow c\}$. Calculez min(D).

If y a deux solutions $min(D) = \{a \rightarrow b; b \rightarrow c; c \rightarrow b\}$ ou $\{a \rightarrow c; b \rightarrow c; c \rightarrow b\}$

- 3) Soit la table T(a, b, c, d) et l'ensemble de dépendances fonctionnelles $D = \{a \rightarrow b; b \rightarrow a; b \rightarrow c; a \rightarrow c\}$.
 - a) Calculez min(D).

Deux solutions : $min(D) = \{a \rightarrow b, b \rightarrow a; b \rightarrow c\}$ ou $\{a \rightarrow b, a \rightarrow c, b \rightarrow a\}$

b) La dépendance $a, b \rightarrow c$ est-elle pleine ?

Non, car $a \rightarrow c$

c) La dépendance $a \rightarrow a$, c est-elle élémentaire ?

Non (a est dans la partie gauche et droite)

d) La dépendance $a \rightarrow c$ est-elle élémentaire ?

Oui

e) Calculez $\{a\}^+$, $\{b\}^+$ à l'aide de la fonction Fermeture.

$$\{a\}^+=\{a,b,c\}$$

$$\{b\}^+ = \{a, b, c\}$$

f) Déterminer si $D \mid = a \rightarrow b$, c'à partir de la fonction Dérivable.

Oui:
$$\{b, c\} \subseteq \{a\}^+ = \{a, b, c\}$$

4) Soit la table *Horaire* (*sigleCours*, *noGroupe*, *rencontre*, *codeProfesseur*, *jour*, *heure*, *local*) et l'ensemble de dépendances *D* = { *sigleCours*, *noGroupe* → *codeProfesseur* ;

```
jour, heure, codeProfesseur \rightarrow local;
jour, heure, local \rightarrow sigleCours, noGroupe, rencontre;
sigleCours, noGroupe, rencontre \rightarrow jour, heure, local\{.
```

Chacun des cours identifié par un *sigleCours* est donné en plusieurs groupes. Le *noGroupe* permet de distinguer les différents groupes du même cours. Chaque groupe d'un cours a un professeur représenté par son *codeProfesseur*. Un groupe a un horaire constitué de plusieurs rencontres hebdomadaires. La colonne *rencontre* est un numéro séquentiel de rencontre à l'intérieur de la semaine. Si le groupe a un horaire avec trois rencontres hebdomadaire, elles seront numérotées 1, 2, 3. L'horaire de chacune des rencontres est spécifié par l'*heure* de début, le *jour* de la semaine et le *local*.

Table Horaire						
sigleCours	noGroupe	rencontre	codeProfesseur	jour	heure	local
INF1000	10	1	prof1	lundi	9h00	PK-4000
INF1000	10	2	prof1	mardi	11h00	PK-5000
INF1000	20	1	prof2	mardi	18h00	PK-4000
INF1000	30	1	prof1	vendredi	18h00	PK-3000
INF2000	10	1	prof2	mercredi	9h00	PK-3000
INF2000	10	2	prof2	jeudi	10h00	PK-5000
INF2000	10	3	prof2	jeudi	15h00	PK-3000

a) Prouver que D = jour, heure, sigleCours, noGroupe \rightarrow rencontre à l'aide des axiomes d'Armstrong.

Preuve:

- 1) jour,heure,sigleCours,noGroupe \rightarrow jour,heure,codeProfesseur Augmentation de sigleCours,noGroupe \rightarrow codeProfesseur
- jour, heure, sigleCours, noGroupe → local
 Transitivité sur 1) et jour, heure, codeProfesseur → local
- 3) *jour, heure, sigleCours, noGroupe* → *jour, heure, local* Augmentation et 2)
- 4) jour, heure, sigleCours, noGroupe -> sigleCours, noGroupe, rencontre

 Transitivité sur 3) et jour, heure, local → sigleCours, noGroupe, rencontre
- 5) sigleCours, noGroupe, rencontre -> rencontre

Réflexivité

- 6) jour, heure, sigleCours, noGroupe -> rencontre Transitivité sur 4) et 5)
 - b) Calculez {jour, heure, sigleCours, noGroupe}⁺, {sigleCours, noGroupe}⁺, {sigleCours, noGroupe, rencontre}⁺, {rencontre, noGroupe}⁺, {jour, heure, codeProfesseur}⁺, {jour, heure, local}⁺, à l'aide de la fonction Fermeture.

```
{jour, heure, sigleCours, noGroupe}<sup>+</sup> = {sigleCours, noGroupe, rencontre, codeProfesseur, jour, heure, local}
{sigleCours, noGroupe}<sup>+</sup> = {sigleCours, noGroupe, codeProfesseur}
{sigleCours, noGroupe, rencontre}<sup>+</sup> = {sigleCours, noGroupe, rencontre, codeProfesseur, jour, heure, local}
{rencontre, noGroupe}<sup>+</sup> = {rencontre, noGroupe}
{jour, heure, codeProfesseur}<sup>+</sup> = {sigleCours, noGroupe, rencontre, codeProfesseur, jour, heure, local}
{jour, heure, local}<sup>+</sup> = {sigleCours, noGroupe, rencontre, codeProfesseur, jour, heure, local}
```

c) Déterminer si D = jour, heure, sigleCours, noGroupe \rightarrow codeProfesseur, local à partir de la fonction Dérivable.

Oui car {codeProfesseur, local} \ \subseteq \{ sigleCours, noGroupe, rencontre, codeProfesseur, jour, beure, local}.

d) Déterminer si $D \mid = sigleCours$, $noGroupe \rightarrow local$ à partir de la fonction Dérivable.

Non car $\{local\} \not\subset \{sigleCours, noGroupe, codeProfesseur\}.$

e) Produire une couverture minimale pour

```
D2 = \{sigleCours, noGroupe \rightarrow codeProfesseur; \\ jour, heure, codeProfesseur \rightarrow sigleCours, local; \\ jour, heure, codeProfesseur \rightarrow noGroupe, local; \\ jour, heure, local \rightarrow sigleCours, noGroupe, rencontre; \\ sigleCours, noGroupe, rencontre, codeProfesseur \rightarrow jour, heure; \\ jour, heure, sigleCours, noGroupe \rightarrow codeProfesseur, local\}.
```

```
Min(D2) = \{
 sigleCours, noGroupe \rightarrow codeProfesseur;
```

```
jour, heure, codeProfesseur \rightarrow local;

jour, heure, local \rightarrow sigleCours;

jour, heure, local \rightarrow noGroupe;

jour, heure, local \rightarrow rencontre;

sigleCours, noGroupe, rencontre \rightarrow jour;

sigleCours, noGroupe, rencontre \rightarrow heure }
```

- f) Quelles sont les clés candidates de la table *Horaire*? { *jour, heure, codeProfesseur*}, { *jour, heure, local*}, { *sigleCours, noGroupe, rencontre*}, et { *jour, heure, sigleCours, noGroupe*}
- g) Le schéma R1(sigleCours,noGroupe,codeProfesseur) et R2(sigleCours,noGroupe, rencontre, jour, heure, local) est-il en FNBC? La décomposition est-elle sans perte (expliquez)? La décomposition préserve-t'elle la dépendance jour, heure, codeProfesseur -> local?

 Oui le schéma est en FNBC. La décomposition est sans perte car elle est basée sur la dépendance sigleCours,noGroupe -> codeProfesseur. Cependant la dépendance jour, heure, codeProfesseur -> local n'est pas préservée car elle ne peut être déduite des dépendances des deux tables R1 et R2.
 - h) Est-ce que les énoncés suivants sont vrais? (est-ce que les décompositions sont sans perte) Expliquez.
 - i) Horaire = T1[jour, heure, codeProfesseur, local] ⋈ T2[sigleCours, noGroupe, rencontre, codeProfesseur, jour, heure]?

Oui car la décomposition est basée sur *jour,heure,codeProfesseur* \rightarrow *local*.

ii) Horaire = T1[jour, heure, codeProfesseur, local] ⋈ T2[sigleCours, rencontre, codeProfesseur, jour, heure]?

Non, il manque *noGroupe*!

iii) $Horaire = T1[jour , codeProfesseur , local] \bowtie T2[sigleCours, noGroupe, rencontre, codeProfesseur , jour, heure] ?$

Non car, il n'est pas vrai que jour, codeProfesseur $\rightarrow \rightarrow local$.

5) Comparez les schémas produits par l'algorithme de synthèse et l'algorithme de décomposition pour R(noVol, noEnvol'ee, escale, destination) et $D = \{noVol, escale \rightarrow destination; noEnvol\'ee \rightarrow noVol; noEnvol\'ee, escale \rightarrow destination\}$.

Algorithme de synthèse :

```
Min(D) = \{noVol, escale \rightarrow destination; noEnvol\'ee \rightarrow noVol\}
S = \{R1(\underline{noVol, escale}, destination), R2(\underline{noEnvol\'ee}, noVol)\}
Algorithme de décomposition :
```

Décomposition de R basée sur noVol, $escale \rightarrow destination$

 $R1(\underline{noVol, escale}, destination)$

R2(noVol, noEnvolée, escale)

Décomposition de R2 basée sur noEnvolée→noVol

R3(noEnvolée, noVol)

R4(*noEnvolée*, *escale*)

Résultat final : $S = \{R1(\underline{noVol, escale}, destination), R3(\underline{noEnvolée}, noVol), R4(\underline{noEnvolée}, \underline{escale})\}$

N.B. La table *R4* est inutile...

Autre solution par décomposition:

Décomposition de *R* basée sur *noEnvolée*→*noVol*

R1(noEnvolée, noVol)

R2(*noEnvolée*, *escale*, *destination*)

Résultat final : $S = \{R1(noEnvolée, noVol), R2(noEnvolée, escale, destination)\}$

N.B. Le schéma est bien en FNBC mais, celui de l'algorithme de synthèse est préférable afin d'éviter de répéter les mêmes escales pour toutes les envolées d'un même *noVol*.

6) Comparez les schémas produits par l'algorithme de synthèse et l'algorithme de décomposition pour R(cours, étudiant, module) D={cours→module; étudiant→module}. On suppose qu'un étudiant ne peut suivre que les cours de son module.

Synthèse : $S = \{R1(\underline{cours}, module) \ R2(\underline{\acute{e}tudiant}, module), R3(\underline{cours}, \underline{\acute{e}tudiant})\}$ Décomposition : $S = \{R1(\underline{cours}, module), R2(\underline{cours}, \underline{\acute{e}tudiant})\}$ ou $S = \{R1(\underline{\acute{e}tudiant}, \underline{\acute{e}tudiant})\}$

module), R2(<u>cours</u>, <u>étudiant</u>)}

Les deux schémas de l'algorithme de décomposition ne préservent pas les dépendances.

- 7) Soit: la table T(a, b, c, d, e, f, g) et l'ensemble de dépendances $D = \{b \rightarrow e ; d \rightarrow g ; f \rightarrow c ; a,b \rightarrow d ; f \rightarrow g ; a,b,c \rightarrow f; a,b \rightarrow g \}$
- a) Quelles sont les clés candidates de cette table. $\{a,b,c\}$ et $\{a,b,f\}$
 - b) Cette table est-elle en 3FN?

Non, elle n'est même pas en 2FN car par exemple $b \rightarrow e$ et $\{b\} \subseteq \{a, b, c\}$

c) Donnez un schéma produit par l'algorithme de synthèse.

```
Min(D) = \{b \rightarrow e : d \rightarrow g : f \rightarrow c : f \rightarrow g : a,b \rightarrow d : a,b,c \rightarrow f\}
La seule solution est S = \{RI(\underline{b}, e), R2(\underline{d}, g), R3(\underline{a}, \underline{b}, d), R4(\underline{a}, \underline{b}, \underline{c}, f), R5(\underline{c}, g, \underline{f})\}
```

d) Le schéma obtenu en c) est-il en FNBC?

Non car dans R4, $f \rightarrow c$

- e) $D \models a, b, d \rightarrow e, f$?
- f) D = a, b, $f \rightarrow c$, d?

Oui

g) Y-a-t'il une décomposition de \underline{T} en FNBC qui préserve les dépendances et le contenu ?

Non car $a, b, c \rightarrow f$ et $f \rightarrow c$

- **h)** Donnez un schéma produit par l'algorithme de décomposition en FNBC? Une solution est $S = \{R1(b, e) R2(d, g) R3(a, b, d) R4(a, b, f) R5(c, f)\}$
- 8) Soit la table T(a, b, c, d, e, f) et l'ensemble de dépendances $D = \{a, b \rightarrow c ; a, b, e \rightarrow c, d ; f \rightarrow h; a \rightarrow g ; a, e \rightarrow e, f; g \rightarrow b; a, e \rightarrow h\}.$
 - a) Donnez une couverture minimale pour D.

$$Min(D) = \{a \rightarrow c, g ; a, e \rightarrow d; a, e \rightarrow f, f \rightarrow h; g \rightarrow b\}$$

b) Donnez le schéma résultant de l'application de l'algorithme de synthèse.

$$S = \{R1(\underline{a}, c, g), R2(\underline{a}, \underline{e} \rightarrow d, f), R3(\underline{g}, b), R4(\underline{f}, h)\}$$

c) La table *T* est-elle en 3FN ?

Non la table a une seule clé candidate $\{a, e\}$ et la dépendance fonctionnelle $a \rightarrow c$, entre autres, viole donc la 3FN (la 2FN aussi !).

9) Appliquer l'algorithme de décomposition en 4FN à *InfoEmployés(noEmp, dept, salaire, fonction, dépendant)*

$$D = \{noEmp \longrightarrow dependent, fonction \longrightarrow salaire, noEmp \longrightarrow fonction, noEmp \longrightarrow dept\}$$

10) Soit le schéma suivant:

Film(titre, genre, producteur, année, acteur, heure, date, poste, durée) $D= \{titre, année \rightarrow \rightarrow acteur ; titre \rightarrow genre; titre, année \rightarrow producteur, durée; date, poste, titre \rightarrow heure; heure, date, poste \rightarrow titre, année\}$

- a) Donnez la ou les clés candidates de ce schéma. {heure, poste, date, acteur} et {date, poste, titre, acteur}
 - b) Ce schéma est-il en 4FN?

Non, par exemple, titre, année $\rightarrow \rightarrow$ acteur viole la 4FN.

c) Appliquez l'algorithme de décomposition et donnez le schéma résultant.

 $S = \{RI(titre, année, acteur), R2(titre, genre), R3(titre, année, producteur, durée), R4(titre, année, heure, date, poste)\}$ Arbre de décomposition :

D'autres solutions sont possibles. Par exemple :

 $S = \{R1(titre, année, acteur), R2(heure, date, poste, titre, année), R3(heure, date, poste, producteur, durée, genre)\}$

A noter que ce schéma ne préserve pas les dépendances contrairement au précédent!

d) Peut-on déduire *titre*, année $\rightarrow \rightarrow$ genre, producteur, année, heure, date, poste, durée à partir de D?

Oui. Preuve:

- 1) titre ->> genre, producteur, heure, date, poste, durée par titre, année →→ acteur et règle du complément
- 2) titre, année ->> genre, producteur, année, heure, date, poste, durée par 1) et augmentation
 - e) Peut-on déduire *titre*, année $\rightarrow \rightarrow$ genre à partir de D?

Oui. Preuve:

- 1) titre,année -> genre,année
 - par *titre*→ *genre* et augmentation
- 2) titre, année -> genre
 - par 1) et décomposition
- 3) titre, année ->> genre
 - par 2) et une dépendance fonctionnelle est une dépendance multivaluée

f) Peut-on représenter la dépendance multivaluée *titre*, *année* $\rightarrow \rightarrow$ *acteur* par une dépendance de jointure?

Oui : ⋈{(titre, année, acteur), (titre, année, genre, producteur, heure, date, poste, durée)}

11) Démontrer les règles suivantes à partir des axiomes d'Armstrong.

Pseudo-transitivité Si $X \rightarrow Y$ et $Y,W \rightarrow Z$ alors $X,W \rightarrow Z$ Union Si $X \rightarrow Y$ et $X \rightarrow Z$ alors $X \rightarrow Y,Z$ Décomposition Si $X \rightarrow Y$ et $Z \subseteq Y$ alors $X \rightarrow Z$

Pseudo-transitivité

Preuve.

- 1) $X,W \rightarrow Y,W$ par A_2 et $X \rightarrow Y$
- 2) $X,W \rightarrow Z$ par A_3 , 1) et $Y,W \rightarrow Z$

Union

Preuve.

- 1) $X \rightarrow X, Y$ par A_2 et $X \rightarrow Y$
- 2) $X,Y \rightarrow Y,Z$ par A_2 et $X \rightarrow Z$
- 3) $X \rightarrow Y,Z$ par A_3 , 1) et 2)

Décomposition

Preuve.

- 1) $Y \rightarrow Z$ par A_1
- 2) $X \rightarrow Z$ par $A_3, X \rightarrow Y$ et 1)

12) Produisez un schéma relationnel en 3FN pour la table *CONFÉRENCE*. Le diagramme à bulles montre les dépendances fonctionnelles de la table.

CONFÉRENCE(id_participant, année, nom, affiliation, lieu_conférence, no communication, type organisation, titre)

Par l'algorithme de synthèse :

 $S = \{R1 \ \underline{(id_participant, nom, affiliation)}, \ R2 \ \underline{(affiliation, type_organisation)}, \ R3 \ \underline{(ann\acute{e}e, lieu_conf\'erence)}, \ R4 \ \underline{(id_participant, ann\acute{e}e, no_communication)}, \ R5 \ \underline{(no_communication, titre)}\}$

13) Produisez un schéma relationnel en 3FN pour la table ÉLECTION.

ÉLECTION(ass_soc, parti, comté, montant, nom, adresse_bureau, ass_chef, date nomination)

Par l'algorithme de synthèse :

 $S = \{CITOYEN \ (ass_soc, nom, comt\'e), CONTRIBUTION \ (ass_soc, parti, montant), PARTI \ (parti, ass_chef), PARTI_COMT\'E \ (parti, comt\'e, adresse_bureau), CHEF \ (ass_chef, date_nomination)\}$