

ML & QUANT RESEARCHER

baykal@alum.mit.edu | baykalc.github.io | linkedin.com/in/cenkbaykal | Google Scholar

EDUCATION

Massachusetts Institute of Technology

Ph.D. IN COMPUTER SCIENCE (GPA: 5.00/5.00)

• Minor: Probability in High Dimension (Mathematics)

• Thesis: Sampling-based Algorithms for Fast and Deployable Al

· Advisor: Daniela Rus

Massachusetts Institute of Technology

S.M. IN COMPUTER SCIENCE (GPA: 4.91/5.00)

• Thesis: Algorithms for Persistent Autonomy and Surveillance

• Advisor: Daniela Rus

University of North Carolina at Chapel Hill

B.S. Computer Science with Highest Honors, B.A. Mathematics (GPA: 3.91/4.00)

· Graduated with Highest Distinction

• Thesis: Design Optimization Algorithms for Concentric Tube Robots

· Advisor: Ron Alterovitz

EXPERIENCE

Two Sigma New York City, NY

QUANTITATIVE RESEARCHER July 2024 - Present

- Design systematic alpha strategies that combine alternative data and market microstructure signals
- Build and maintain Python/pandas/NumPy research tooling to accelerate signal evaluation and backtesting
- · Partner with portfolio managers to translate promising research prototypes into production pilots
- · Advanced two production-pilot alpha strategies through signal review with double-digit annualized bps uplift in out-of-sample tests

Google Research Cambridge, MA

RESEARCH SCIENTIST

- Developed conditional computation algorithms for transformers that enabled up to 30% speedups on Large Language Models (LLMs)
- Designed data-efficient knowledge distillation strategies that led to improved transformer architectures with only 50% of teacher labeling cost
- Mentored scholars in Google CSRMP, supporting project design and research execution for students from historically marginalized groups
- Received the 2023 Google Research Tech Impact Award for leading "high-impact projects made sustainable by achieving tech excellence and great team dynamics"
- · Received a Google Spot Bonus for "critical contributions to the efficiency of compact Gemini models"

Massachusetts Institute of Technology

Cambridge, MA

January 2022 - June 2024

Post-poc

September 2021 - January 2022

· Worked on algorithms for privacy-aware and efficient Machine Learning

JP Morgan New York City, NY

Al Research Intern

May 2021 - September 2021

· Developed sampling-based algorithms with regret guarantees for large-scale graph neural network training

Massachusetts Institute of Technology

Cambridge, MA

Cambridge, MA

Cambridge, MA

Chapel Hill, NC

2015-2017

2011-2015

2017-2021

TEACHING ASSISTANT FOR ADVANCED ALGORITHMS (6.854J / 18.415J)

Fall 2019

- · Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments
- TA rating according to the official MIT subject evaluation report: 7.0/7.0

NC

EARLIER INDUSTRY & TEACHING EXPERIENCE

2012 - 2015

- Shipped SQL Server compression optimizations and analytics tooling deployed across academic and enterprise users
- Led robotics and transportation research initiatives and created instructional content supporting UNC computer science programs

HONORS & AWARDS

2024	Google Spot Bonus, Critical contributions to the efficiency of compact Gemini models	Google
2023	Google Research Tech Impact Award, Recognized within Google Research for ML efficiency breakthroughs	Google
2023	NeurIPS Spotlight Paper, Alternating Updates for Efficient Transformers	NeurIPS
2021	Winner, MIT The Engine's Interval Program (one of two winning teams)	MIT
2020	Top 10% Reviewer, Neural Information Processing Systems	NeurlPS
2017	Best Paper Award, Robotics: Science and Systems Conference	RSS@MIT
2011–2015	Selected Undergraduate Honors, UNC Distinctions: Carolina Research Scholar, CRA Outstanding Undergraduate Researcher finalist, Phi Beta Kappa, competitive scholarships	University of North
		Carolina at Chapel
		Hill

SELECTED PUBLICATIONS

Efficient Transformers & Distillation	
Alternating Updates for Efficient Transformers (Spotlight)	NeurIPS
CENK BAYKAL, DYLAN CUTLER, NISHANTH DIKKALA, NIKHIL GHOSH, RINA PANIGRAHY, XIN WANG	2023
• Introduced alternating forward/backward scheduling that reduced inference latency for sparse transformers.	
SLAM: Student-label Mixing for Distillation with Unlabeled Examples	NeurIPS
Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, Cenk Baykal , Gaurav Menghani, Erik Vee	2023
Demonstrated unlabeled-target distillation with hybrid pseudo-labeling that cut annotation costs in half.	
Robust Active Distillation	ICLR
CENK BAYKAL, KHOA TRINH, FOTIS ILIOPOULOS, GAURAV MENGHANI, ERIK VEE	2023
• Coupled active learning with knowledge distillation to improve compact model robustness against label noise.	
Weighted Distillation with Unlabeled Examples	NeurIPS
Vasilis Kontonis, Fotis Iliopoulos, Cenk Baykal , Gaurav Menghani, Khoa Trinh, Erik Vee	2022
• Introduced importance-weighted student objectives for unlabeled corpora, yielding state-of-the-art compact transformers.	
MODEL COMPRESSION & DRIVING	

edupted delive tearning with knowledge distinction to improve compact model robustness against tabel noise.	
Weighted Distillation with Unlabeled Examples	NeurlPS
Vasilis Kontonis, Fotis Iliopoulos, Cenk Baykal , Gaurav Menghani, Khoa Trinh, Erik Vee	2022
• Introduced importance-weighted student objectives for unlabeled corpora, yielding state-of-the-art compact transformers.	
Model Compression & Pruning	
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks	SIAM SIMODS
Cenk Baykal*, Lucas Liebenwein*, Igor Gilitschenski, Dan Feldman, Daniela Rus	2022
• Designed a sensitivity-aware pruning scheme with provable bounds that retained accuracy on language models.	
Provable Filter Pruning for Efficient Neural Networks	ICLR
Lucas Liebenwein*, Cenk Baykal *, Harry Lang, Dan Feldman, Daniela Rus	2020
• Provided the first end-to-end guarantees for structural CNN pruning, inspiring broad adoption in efficient CNN research.	
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy	MLSys
Lucas Liebenwein, Cenk Baykal , Brandon Carter, David Gifford, Daniela Rus	2021

• Analyzed deployment-side regressions (latency, calibration) caused by aggressive pruning, motivating safer evaluation metrics.

Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds

ICLR

CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, DANIELA RUS

2019

 $\bullet \ \ \text{Developed dataset-aware coreset selection that yields compression with theoretical generalization guarantees}.$

CORESETS & THEORY

Coresets for Support Vector Machines

Theory of Computing Systems

CENK BAYKAL*, MURAD TUKAN*, DAN FELDMAN, DANIELA RUS

2021

• Unified the streaming and distributed coreset constructions for SVMs. Extended version of the TAMC 2020 oral paper.