تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۱ از ۷

آزمون پایانترم

جبر خطی

- همهٔ پاسخهایتان را خوانا، با توضیح دقیق و کامل و مستدل بنویسید.
 - پاسخ هر سؤال را در برگهٔ مستقل بنویسید.
- جمع نمرهها برابر ۱۳۰ است، و نمرهٔ ۱۰۰ نمرهٔ کامل محسوب می شود.
- ه فرض کنید $\mathbb R$ یکی از $\mathbb R$ یا $\mathbb C$ است، V فضایی خطی روی $\mathbb R$ است و T تابعی خطی روی V با چندجملهای مشخصه . I

$$f(x) = (x - \mathsf{Y})(x^{\mathsf{Y}} - x + \mathsf{Y}).$$

(الف) نشان دهید
$$V$$
 عضوی مانند v دارد که $f(x)$ چندجملهای مینیمال v نسبت به T است.

$$($$
ب $)$ بهازای $\mathbb{F}=\mathbb{C}$ ، فرم ژردان T را بنویسید.

$$(\pi)$$
 فرم گویای T را بنویسید. $\mathbb{F}=\mathbb{R}$ فرم گویای T را بنویسید.

- (الف) فرض کنید p(x) چند جملهای مینیمال T روی اعداد مختلط است. ثابت شد که مجموعه ریشههای چند جملهای مشخصه p(x) و چند جملهای مینیمال p(x) چند جملهای مینیمال p(x) باهم برابرند؛ پس p(x)=f(x) چون p(x)=f(x) چند جملهای حقیقی است، p(x) چند جملهای مینیمال p(x) باهم برابرند؛ پس p(x)=f(x) وجود دارد که چند جمله مینیمال آن نسبت به p(x) برابر با چند جملهای مینمیال تبدیل خطی p(x)=f(x) است.
 - T فرم ژردان T:

$$\begin{bmatrix} \Upsilon & & & \\ & \frac{1+i\sqrt{\gamma}}{\Upsilon} & & \\ & & \frac{1-i\sqrt{\gamma}}{\Upsilon} \end{bmatrix}$$

 (π) فرم گویای T:

$$\begin{bmatrix} \gamma & \circ & \circ \\ \circ & \circ & -\gamma \\ \circ & 1 & 1 \end{bmatrix}$$

- ۲. فرض کنید $\mathbb{N} \in \mathbb{N}$ ، و $J \in M_n(\mathbb{R})$ ماتریسی است که همهٔ درایههایش ۱ هستند.
- (الف) همهٔ ویژهمقدارهای J را (با تکرر هرکدام) به دست بیاورید.
- (ب) فرض کنید $B \in M_n(\mathbb{R})$ همهٔ ویژهمقدارهای B را B را B را (با تکرر هرکدام) بهدست بیاورید.
- $\det(A+J) \det(A)$ وارون پذیر است. با استفاده از حاصل ضرب ویژه مقدارهای $I+A^{-1}J$ نشان دهید (ج) فرض کنید (ج) فرض کنید ($A \in M_n(\mathbb{R})$ نشان دهید (عند منازهای $A \in M_n(\mathbb{R})$ نشان دهید (ج) نشان دهید (عند منازهای $A \in M_n(\mathbb{R})$ نشان دهید (ج)
- (الف) فرض کنید j بردار با درایههای همه یک است. پس J = n j، چون N(J) = n 1، ویژهمقدارهای ماتریس J صفر با تکرر J است. J ست.
 - $N(J)\subseteq N(BJ)$ است زیرا BJ است تکرر، ویژهمقدار n-1 تکرر، ویژهمقدار (ب)

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۲ از ۷

آزمون پایانترم

جبر خطی

حالت اول: N(J) = N(BJ) آنگاه ویژهمقدار BJ صفر با تکرر N(J) = N(BJ)

حالت دوم: $N(J)\subsetneq N(BJ)$ آنگاه ماتریس BJ دقیقا یک ویژهمقدار ناصفر دارد که حقیقی است زیرا بنابه نکتهای در جلسه بیست و چهارم، اگر λ ویژهمقدار غیر حقیقی ماتریسی با درایههای حقیقی باشد آنگاه $\bar{\lambda}$ نیز ویژهمقدار است. فرض کنید β مجموعه درایههای ستون i ام ماتریس $B=[b_{ij}]$ است. اگر

$$BJx = \begin{bmatrix} \beta_1 j^T \\ \vdots \\ \beta_n j^T \end{bmatrix} x = \begin{bmatrix} \beta_1 \sum_{i=1}^n x_i \\ \vdots \\ \beta_n \sum_{i=1}^n x_i \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

(ج) بنابه قضیه یی $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$ چون A وارون پذیر است، ویژه مقدارهای $I + A^{-1}J$ یک با تکرر $I - A^{-1} = \frac{1}{\det A} \operatorname{adj} A$ و یک علاوه مجموع درایه های $I + A^{-1}J$ یعنی $I + \frac{1}{\det A}\sum_{i,j}c_{ij}$ یعنی $I + \frac{1}{\det A}\sum_{i,j}c_{ij}$ یعنی $I + \frac{1}{\det A}\sum_{i,j}c_{ij}$ یعنی ویژه مقدارهای است و همچنین دترمینان حاصل ضرب دو ماتریس برابر باحاصل ضرب دترمینان آنهاست، پس

$$\det(A+J) - \det A = \det A(I+A^{-1}J) - \det A$$

$$= (\det A)(\det(I+A^{-1}J)) - \det A$$

$$= (\det A)\Big((1+\frac{1}{\det A}\sum_{i,j}c_{ij}) - 1\Big)$$

$$= \sum_{i,j}c_{ij}.$$

ره نمره) $\operatorname{adj}(\operatorname{adj} A) = \circ$ نشان دهید A تکین است اگر و تنها اگر n > 7 ، $n \in \mathbb{N}$ نمره) هرف کنید n > 7 ، $n \in \mathbb{N}$

 $\operatorname{-rank}\operatorname{adj} A \in \{\circ, \mathsf{N}, n\}$ ابتدا نشان می دهیم

- .
rank adj A=n و $A^{-1}=rac{1}{\det A}$ adj A آنگاه آنگاه rank A=n
- اگر adj A است. بنابراین ستون r ام ماتریس n-1 ام ماتریس r ام وابسته است. بنابراین ستون r ام ماتریس r اعنابراین ستون r ام ماتریس r اعنابراین ستون r ام ماتریس r اعنابراین ستون r ام ماتریس r
 - .adj $A = \circ$ بیس جازای هر i,j < n به ازای هر rank A(i|j) < n-1 نگاه rank adj A < n-1 با

.adj $(\operatorname{adj} A) = \circ$ تکین است اگر و تنها اگر A تکین است اگر و تنها اگر A تکین است اگر و تنها اگر A تکین است اگر و تنها اثر و تنها اثر

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۳ از ۷

آزمون پایانترم

جبر خطی

 $B = \{v_1, \dots, v_n\}$ فضای خطی حقیقی nبعدی است و T تبدیلی خطی روی V که ماتریس نمایش آن در پایهٔ مرتب V فضای خطی عیارت است از

$$\begin{bmatrix} \lambda & \circ & \circ & \cdots & \circ & \circ \\ 1 & \lambda & \circ & \cdots & \circ & \circ \\ \circ & 1 & \lambda & \cdots & \circ & \circ \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \circ & \circ & \circ & \cdots & \lambda & \circ \\ \circ & \circ & \circ & \cdots & 1 & \lambda \end{bmatrix}$$

$$($$
الف $)$ $V \in V$ را طوری ییدا کنید که $V = Z(v, T - \lambda I)$ را طوری ییدا کنید که $v \in V$

$$($$
ب $)$ فرض کنید $W=V$ زیرفضای V است و تحت T ناورداست. نشان دهید اگر $v_1 \in W$ آنگاه V است و تحت V نمره

$$(v_n \in W$$
 نمره) نشان دهید V است و تحت T ناورداست. نشان دهید W نمره (ج)

(د) نشان دهید که نمی توان
$$V$$
 را به صورت جمع مستقیم دو زیرفضای سره که تحت T ناوردا هستند نوشت.

(ه) همهٔ زیرفضاهایی از
$$V$$
 را پیدا کنید که تحت T ناوردا هستند.

 $T(W)\subseteq W$ یادآوری: میگوییم زیرفضای $W\subseteq V$ تحت تا ناورداست اگر یادآوری: میگوییم زیرفضای

 $V = Z(v_1, T - \lambda I)$.الف

- $Tv_k \lambda v_k = v_{k+1} \in W$ ب. پون $V_1 \in W$ و $V_1 \in W$ ، باید $V_1 = v_1 = v_1 \in W$. به استقرا، فرض کنید $V_1 \in W$ و نر $V_2 \in W$ بازای هر $V_1 \in W$ به ازای هر $V_2 \in W$ و در نتیجه $V_3 \in W$
- i=n گرنید v=0 و $W \neq 0$ و $W \neq 0$ و V=0 بس فرض کنید که v=0 بس فرض کنید که V=0 و گرند و V=0 باورداست و در نتیجه آنگاه حکم بدیهی است. فرض کنید V=0 بخون V=0 تعدت V=0 ناورداست و در نتیجه آنگاه حکم بدیهی است.

$$(T - \lambda I)^{n-i}v = (T - \lambda I)^{n-i}(c_1v_1 + \dots + c_nv_n)$$
$$= a_iv_n \in W.$$

- د. فرض خلف: فرض کنید $W_1 = \{\circ\}$ دو زیرفضای سره از V هستند که $W_1 \oplus W_1 \oplus W_2$. در نتیجه $W_1 \cap W_2 \oplus W_3$ از طرفی بنا به قسمت $v_n \in W_1 \cap W_2$ ؛ پس $v_n \in V_3$ که تناقض است.
 - ه. بنا به قسمت (ج) و (ب) تنها زیر فضاهای ناوردا عبارتاند از

$$\begin{split} W_n &= \operatorname{span}\left(\{v_n\}\right) \\ W_{n-1} &= \operatorname{span}\left(\{v_n, v_{n-1}\}\right) \\ \vdots \\ W_1 &= \operatorname{span}\left(\{v_1, \dots, v_n\}\right) = V \\ W_\circ &= \{\circ\} \end{split}$$

(الف) نشان دهید
$$\mathrm{N}(T)$$
 و $\mathrm{N}(T)$ تحت $\mathrm{N}(T)$ نصره)

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۲ از ۷

آزمون پایانترم

جبر خطی

(ب) فرض کنید λ ویژهمقدار T است. نشان دهید

$$W_{\lambda} = \{ x \in V \mid Tx = \lambda x \}$$

تحت
$$S$$
 ناورداست.

(ج) نشان دهید
$$T$$
 و S حداقل یک ویژهبردار مشترک دارند.

(د) نشان دهید
$$V$$
 پایهای دارد که هم ماتریس نمایش T و هم ماتریس نمایش S در آن بالامثلثی هستند.

- (الف) فرض کنید $Tx \in Im(T)$ بنا به فرض، S(Tx) = T(Sx). پس S(Tx) = Im(T) و راکت S(Tx) = Im(T) تحت S(Tx) = Im(T)اگر N(T) و $Sx \in N(T)$ یس S(Tx) = T(Sx) = 0 تحت S ناوردا است. S(Tx) = T(Sx) = 0 اگر راگر بنا به فرض،
 - $S(x) \in W_{\lambda}$ یس $T(Sx) = S(Tx) = \lambda S(x)$ ، یس $X \in W_{\lambda}$ یس $X \in W_{\lambda}$ فرض کنید $X \in W_{\lambda}$ یس $X \in W_{\lambda}$ یس
- W_{λ} حداقل W_{λ} بنا به قسمت W_{λ} تحت S ناورداست؛ پس تحدید S روی W_{λ} تابعی خطی از W_{λ} است. تابع تحدید W_{λ} روی W_{λ} حداقل یک ویژهبردار در W_{λ} دارد که حکم را ثابت میکند.
- (د) با استقرار روی n حکم را ثابت میکنیم. بنابه قسمت قبل، فرض کنید $v \in V$ ویژهبردار مشترک T و S است. بردار ناصفر v را به پایه برای V گسترش میدهیم. قرار دهید $B=\{v,v_{1},\ldots,v_{n}\}$

$$W = \operatorname{span}(\{v_{\mathsf{Y}}, \dots, v_n\}).$$

فرض کنید $T' \circ S' = S' \circ T'$ درننتیجه بنا به فرض استقرا پایهای W هستند. به وضوح $T' \circ S' = S' \circ T'$ درننتیجه بنا به فرض استقرا پایهای مانند B برای W وجود دارد که T' و S' در آن پایه بالامثلثی هستند. قرار دهید $B = \{v\} \cup B'$. بهوضوح T و S' در B بالامثلثی

به حاصل کنید V فضای خطی حقیقی متناهی بعد است و T تابعی خطی روی V که چندجملهای مینیمالش روی اعداد حقیقی به حاصل ضربVچندجملهایهای درجه یک تجزیه میشود.

- (الف) نشان دهید تبدیل خطی قطری شدنی D و تبدیل خطی پوچتوان N روی V وجود دارند که T=D+N و T=D+N (مره)
- (ب) نشان دهید تبدیلهای خطی قطری شدنی و پوچتوان با خاصیتهای (الف) یکتا هستند. (۵ نمره)
- (ج) نشان دهید T قطری شدنی است اگر و تنها اگر چندجملهای مینیمال آن ریشهٔ تکراری نداشته باشد. (۵ نمره)
- (۵ نمره) (د) نشان دهید اگر $T = \operatorname{rank} T$ آنگاه T یا قطری شدنی است یا پوچتوان (و نه هردو).

(الف) فرض کنید λ_i ها حقیقی و متمایزند. بنابر فرم ژردان منتج $p(x)=(x-\lambda_1)^{n_1}\cdots(x-\lambda_k)^{n_k}$ شده از قضیه تجزیه دوری، پایهای مانند B برای فضای خطی V وجود دارد که

$$[T]_B = \begin{bmatrix} J_{\uparrow} & & \\ & \ddots & \\ & & J_k \end{bmatrix}$$

که در آن

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه

صفحهٔ ۵ از ۷

جبر خطی

آزمون پایانترم

سميرا حسين قربان

قرار دهید

فرض کنید تکرر ویژهمقدار λ_k برابر با d_k است؛ پس $0 < N_k^{d_k} = 0$. فرض کنید $N_k^{d_k} = 0$ تبدیلهایی خطی هستند که ماتریس نمایش آنها در پایه B به ترتیب

$$egin{bmatrix} N_1 & & & & & \\ & & \ddots & & \\ & & & N_k \end{bmatrix},$$
 $egin{bmatrix} D_1 & & & & \\ & & \ddots & & \\ & & & D_t \end{bmatrix}$

DN=N و T=D+N و $N^k=\circ$ هستند. قرار دهید $k=\max\{d_i\mid 1\leq i\leq k\}$ هستند. قرار دهید

رب) فرض کنید تبدیل خطی قطری شدنی D' و تبدیل خطی پوچتوان N' روی N وجود دارند که T=D'+N'+N' و تبدیل خطی پوچتوان N' این صورت

$$D' - D = N' - N.$$

چون N'-N پوچتوان است، ماتریس قطری D'-D پوچتوان است. ماتریس قطری پوچتوان است اگر و تنها اگر ماتریس صفر باشد؛ D'-N=0. پس D'-D=0. و بنابراین D'-D=0.

(ج) اگر T قطری شدنی باشد، آنگاه پایه ای مانند B وجود دارد که

$$[T]_B = \begin{bmatrix} \lambda_1 I_{d_1} & & \\ & \ddots & \\ & & \lambda_k I_{d_k} \end{bmatrix}$$

که در آن λ_i ها متمایزند. در این صورت چند جمله مینیمال آن $p(x)=(x-\lambda_1)\cdots(x-\lambda_k)$ است. $p(x)=(x-\lambda_1)\cdots(x-\lambda_k)$ برعکس، فرض کنید $p(x)=(x-\lambda_1)\cdots(x-\lambda_k)$ باشد. بنابراین $p(x)=(x-\lambda_1)$ و اگر $p(x)=(x-\lambda_1)$ باشد. بنابراین $p(x)=(x-\lambda_1)$ و اگر $p(x)=(x-\lambda_1)$ باشد آنگاه $p(x)=(x-\lambda_1)$

$$[T]_{\bigcup_{i=1}^k B_i} = \begin{bmatrix} \lambda_1 I_{d_1} & & & \\ & \ddots & & \\ & & \lambda_k I_{d_k} \end{bmatrix}.$$

(د) چون n-1 جداقل n-1 پس T حداقل n-1 ویژهمقدار صفر دارد. پس چندجملهای مشخصه آن $f(x)=x^n$ است که در این صورت T پوچتوان است و مسئله حل است و یا $f(x)=(x-\lambda)x^{n-1}$ که 0 که 0 خون 0 توجه کنید که ویژهمقدار غیر صفر آن حقیقی است؛ بنابراین بنا به قضیه تجزیه اولیه، پایهای وجود دارد که

$$[T]_B = \begin{bmatrix} \circ & & & & & \\ & \circ & & & & \\ & & \ddots & & & \\ & & & & \lambda \end{bmatrix}.$$

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۶ از ۷

(۵ نمره)

آزمون پایانترم

جبر خطی

سميرا حسين قربان

A فرض کنید \mathbb{N} و فرض کنید $A \in M_n(\mathbb{R})$ و فرض کنید $A \in M_n(\mathbb{R})$ است.

$$\sigma_1$$
 (الف) نشان دهید بیشترین مقدار $\|Ax\|$ روی بردارهای یکهٔ \mathbb{R}^n برابر است با

$$($$
ب $)$ فرض کنید λ ویژهمقدار A است. نشان دهید $|\lambda| \leq \sigma_1$ نمره نشان دهید $|\lambda| \leq \sigma_1$ نمره

(الف) بنابه قضیه SVD میتوانیم بنویسیم

$$A = U\Sigma V^T$$

که ماتریسهای U و V یکانی هستند و Σ ماتریسی قطری است که r درایه قطری اول آن ناصفر و برابر با مقدارهای تکین A هستند. پس $A=\sigma_1 u_1 v_1^T+\cdots+\sigma_k u_k v_k^T$

 \mathbb{R}^n که در آن u_i به ازای هر $1 \leq i \leq n$ ستونهای ماتریس U و U هستند، چون ستونهای ماتریس V پایه متعامد برای فضای هستند،

$$x = \langle v_1, x \rangle v_1 + \dots + \langle v_n, x \rangle v_n;$$

پس

$$||x|| = \langle v_1, x \rangle^{\mathsf{T}} + \dots + \langle v_n, x \rangle^{\mathsf{T}},$$

$$\langle Ax, Ax \rangle = \sigma_1^{\mathsf{Y}} \langle v_1, x \rangle^{\mathsf{Y}} + \dots + \sigma_r^{\mathsf{Y}} \langle v_r, x \rangle^{\mathsf{Y}}$$

$$\leq \sigma_1^{\mathsf{Y}} \Big(\langle v_1, x \rangle^{\mathsf{Y}} + \dots + \langle v_r, x \rangle^{\mathsf{Y}} \Big)$$

$$\leq \sigma_1 \|x\| = \sigma_1$$

(ب) فرض کنید v ویژهبردار متناظر λ است. پس $Av = \lambda v$ و در نتیجه

$$||Av||^{\mathsf{T}} = |\lambda|^{\mathsf{T}} ||v||^{\mathsf{T}} = |\lambda|^{\mathsf{T}} \le \sigma_{\mathsf{L}}.$$

ه. فرض کنید $B\in M_n(\mathbb{R})$ ، $n\in\mathbb{N}$ متقارن است و

$$A = \begin{bmatrix} I & B \\ B & I \end{bmatrix}.$$

نشان دهید A مثبت معین است اگر و تنها اگر هردوی I+B و I-B مثبت معین باشند.

چون

$$xI - A = \begin{bmatrix} (x - 1)I & B \\ B & (x - 1)I \end{bmatrix}$$

$$((1-x)IB = B(1-x)I$$
 و

تاریخ آزمون: ۲۵ دی ۱۴۰۰ مدت آزمون: ۱۵۰ دقیقه صفحهٔ ۷ از ۷

آزمون پايانترم

جبر خطی

سميرا حسين قربان

$$\det(xI - A) = \det\left((x - 1)^{\mathsf{Y}}I - B^{\mathsf{Y}}\right)$$
$$= \det\left(((x - 1)I - B)((x - 1)I + B)\right)$$
$$= \det(xI - (I + B))\det(xI - (I - B));$$

بنابراين

$$f_A(x) = f_{I+B}(x)f_{I-B}(x).$$

در نتیجه مجموعهٔ ریشههای چندجملهای مشخصه A اجتماع مجموعههای ریشههای چندجملهای مشخصه I-B و I-B است. اگر I-B در نتیجه مجموعهٔ ریشههای چندجملهای مشبت معین باشند، آنگاه ویژه مقدارهای آنها مثبت هستند؛ پس ویژه مقدارهای I+B مثبت معین هستند. مثبت معین هستند. I+B و I+B نیز مثبت هستند و بنابراین ماتریسهای مثبت معین هستند.

موفق باشيد.