

Agent-Based Modeling for Malaria Policy: Applications, Challenges, and Lessons Learned

Daniel T. Citron, PhD

Malaria Elimination Team, IHME

Presentation Outline

- Malaria Basics
- Describe agent-based modeling application
 - Bioko Island Malaria Elimination Program
 - Analytical methodology
 - How we built and used our models
- Four lessons learned about the challenges presented when trying to use agent-based models to make robust policy recommendations

Malaria

- Vector borne parasitic disease
- Transmitted by Anopheles mosquitoes
- Tropical climates
- Disease burden
 - Estimated 200 million cases per year
 - Estimated 400,000 deaths per year
 - Disproportionately affecting children
 - Concentrated in sub-Saharan Africa

Parasite Life Cycle

Parasite Distribution, Africa 2015

Heterogeneous Aspects of Malaria

- Malaria dynamics nonlinear, multicomponent, heterogeneous
- Two examples:
 - Transmission is heavily dependent on mosquito ecology
 - Local mosquito habitats and mosquito activity
 - Seasonal changes to temperature and rainfall
 - Vector control nets and insecticides
 - Human exposure risk and immunity
 - Immune response and symptoms sensitive to lifetime exposure history
 - Treatment seeking behavior in response to symptoms

Agent-Based Models (ABMs) for Malaria

- Possible to write-down simpler mechanistic models
 - e.g. Ross-Macdonald compartmental models
 - Simpler models do not account for heterogeneities
 - Fail to account for heterogeneous exposure
 - Fail to account for immune response variability
- ABMs can capture the many heterogeneities inherent to malaria transmission in ways that other modeling tools cannot
- ABMs are one of the best tools for exploring complicated data sets, and understanding which aspects of the data are most important

Challenges Posed by ABMs for Policy Analysis

- Robust policy recommendations require characterization of uncertainty
 - Uncertainty reflected in underlying data
 - Uncertainly inherent in choice of mechanistic model
- Made more difficult when using ABMs
 - Extensive and detailed data sets required
 - Enormous parameter space makes it difficult to calibrate
 - Vast set of possible models of individual behavior to choose from
- ABMs can be unwieldy to set up, use, and interpret

An Application: Bioko Island

- Island Population: ~250,000
- Malabo Population: ~190,000

Bioko Island Epidemiological History

- PR = Parasite Rate, a measure of prevalence
- High risk region
- 2004 Bioko PR ~ 40%
- 15-year control program, including:
 - Extensive surveillance
 - Extensive vector control
 - Freely available treatment
 - Capacity building
- Since 2015 Bioko PR ~ 10%

Bioko Island Malaria Elimination Program

- Program managed by MCDI
- Collect data in Malaria Indicator Survey:
 - Annual survey of ~15,000 residents
 - Parasite Rate
 - Travel history
- Close collaboration was crucial for understanding transmission environment

Bioko Island: Key Questions

- No improvements to PR since 2015
- Why has progress stalled?
- What is role of off-island transmission?
- Will adding a vaccine to the current intervention package result in halting transmission on Bioko Island?

Modeling Methodology

- Create geostatistical map of estimated PR
- Calibrate all mechanistic models to match PR in each map-area
- Analysis:
 - Quantify influence of cases acquired off-island with simple dynamical model
 - Simulate vaccination deployment scenarios with ABM

Mapping Malaria Prevalence

- Geostatistical prevalence mapping
 - Census
 - Survey data
 - Environmental covariates
- Estimate prevalence in each map-area
 - Captures km²-scale variability in PR
 - Highest PR along northwest coast
 - ~10-14% in Malabo

Prevalence Conditioned on Travel History

- Map PR, this time conditioning on recent travel
- Higher risk of malaria among those who traveled off-island

Influence of Off-Island Transmission

- Mainland EG has very high transmission risk
- Frequent off-island travel from Malabo
- How much of the prevalence seen on the island is attributable to travel?
- Use simple dynamical model
 - Ross-Macdonald
 - Include off-island infections
 - Calibrate based on PR + travel survey

Influence of Off-Island Transmission

- Travel Fraction: % cases attributable to off-island transmission
- Malabo
 - High travel fraction (white)
 - Infections not occurring locally
 - Explains high prevalence and few viable vectors in urban area
- Malaria cases acquired off-island maintain prevalence in parts of Bioko

Lesson 1: ABMs Are Not Always Necessary

- Using the simple dynamical model we were able to answer important questions about drivers of prevalence on Bioko Island
- Wanted a map of attributable cases individual-level detail unnecessary:
 - More difficult to build
 - More difficult to calibrate
 - More difficult to interpret
 - Would not give us different results (effect size is very strong)
- ABMs more suited to exploring effects of individual-level heterogeneity

Agent-Based Modeling for Bioko Island

- What would be the impact of deploying a vaccine?
- Modeling vaccination requires individual-level heterogeneity
 - Vaccine coverage and distribution whether someone receives the vaccine
 - Vaccine efficacy whether the vaccine lends protection
 - Variable efficacy fraction of new infections blocked by each individual
- Use simulation to measure population-level effects of protection

MACRO: Our Agent-Based Model

- Humans treated as individual agents
 - Populate island with individuals based on census data
 - Allow individuals to travel, based on travel survey data
 - Individuals in contact with mosquitoes, can become infected

Lesson 2: Challenge of Verifying ABMs

- ABM outputs are very complicated
- How do I know the simulation is doing what I designed it to do?
- No accepted standards for ABM verification
 - Difficult to argue to others whether the model can be trusted

ABM Verification

- Dynamics based on Ross-Macdonald Model
- Can show that ABM aligns with Ross-Macdonald under special circumstances
- Challenges:
 - Time consuming
 - Can only verify without heterogeneity
- Upsides :
 - Not just a theoretical exercise
 - Now can quantify importance of heterogeneity by comparing with non-homogeneous case

Establishing a baseline, calibrating to geostatistical PR map

Geospatial Estimate Mean PR

Calibrated Model Mean PR

- Baseline: what would happen with no additional interventions
- Red: tracking mean prevalence over time

- Adding vaccine + treatment, as a best-case scenario
- Malaria returns after a few years unlikely to eliminate

- Simulated reducing risk of acquiring infections off-island
- Addressing imported cases of malaria may be more effective

Vaccination

Reduced Off-Island Risk

Lesson 3: Tool for Exploring Data

- ABMs show which features of complicated data sets are important
 - Performed sensitivity analysis on vaccine efficacy and coverage
 - All results the same: malaria resurgence driven by off-island transmission
 - Focus on travel survey data as important for understanding patterns on BI
 - Recommend improvements to future surveys

Vaccination

Reduced Off-Island Risk

Lesson 4: Communicating with Policy Makers

- Large difference in training/expertise between modelers and policy makers
- When should policy makers trust modeling results?
- What evidence should modelers provide that their model results are useful?
- No standard practices for this

ABMs - Worth the Trouble

- Challenges: how to implement; how to verify; how to communicate
- Why do we keep returning to ABMs?
 - Malaria modeling requires considering many heterogeneous components
 - No other known way of analyzing malaria data
 - No other known way of projecting forward for strategic planning
 - Indispensable for quantifying which aspects of the data matter and which do not
- Just because ABMs can be challenging to work with, does not at all mean we need to avoid them – no other options when dealing with highly complex and heterogeneous problems

Summary

- 1. ABMs necessary for modeling individual-level heterogeneity
- 2. Challenging to verify
- 3. ABMs can help uncover which data are most important
- 4. Challenging to effectively communicate the results

Acknowledgments

- Bill & Melinda Gates Foundation
- Sean Wu, who designed and built our ABM software
- David Smith, PI who leads our team
- Carlos Guerra, who processed MCDI's data and produced the PR maps
- Guillermo Garcia, Dianna Hergott, Jordan Smith of MCDI