Name: UIN:

1. Compute voltages V_2 , V_3 , and V_4 in the circuit shown below. Assume: $V_{in}=9V,~R_1=3k\Omega,~R_2=3k\Omega,~R_3=3k\Omega.$

2. Compute voltages $V_1,~V_2,~$ and V_3 in the circuit shown below. Assume: $V_{in}=9V,~R_1=3k\Omega,~$ $R_2=3k\Omega,~$ $R_3=3k\Omega.$

3. Compute the equivalent resistance $\mathbf{R_{eq}}$ shown in the circuit below.

4. Compute voltages V_1 and V_2 in terms of voltage V_{in} and resistors R_1 , R_2 , R_3 in the circuit shown below.

5. In the circuit shown in the figure below, $V_i n = 7$ V, $R_1 = 1$ $k\Omega$, $R_1 = 2$ $k\Omega$, $R_3 = 2$ $k\Omega$, $R_4 = 1$ $k\Omega$, $R_5 = 3$ $k\Omega$, I = 7 mA.

(a) Using the loop analysis method, write down a system of equation you will solve to compute currents i_1 , i_2 , i_3 . You must clearly mark the loops in the circuit.

(b) Solve the above system of equations.