

An Introduction to HSL: Design of reliable software

M. Arioli

http://www.numerical.rl.ac.uk/people/marioli/marioli.html

Outline

- ■HSL packages
- Multifrontal
- ■Static pivoting for Multifrontal
- Mixed precision
- Iterative refinement, GMRES and Flexible GMRES
- Numerical experiments

Linear system

We wish to solve large sparse systems

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{A} \in \mathbb{R}^{\mathbf{N} \times \mathbf{N}}$

Linear system

We wish to solve large sparse systems

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{A} \in \mathbb{R}^{\mathbf{N} \times \mathbf{N}}$$

A particular and important case arises in saddle-point problems where

$$A = \begin{bmatrix} H & B \\ B^T & 0 \end{bmatrix} \qquad (A = L^T D L)$$

Background to HSL Library

- ■HSL began as Harwell Subroutine Library in 1963. Internal library for those at AERE Harwell. Early contributors included: Mike Powell, Mike Hopper and Alan Curtis.
- Distributed externally for the ïňĄrst time in 1964 and has been constantly developed and available under licence ever since.
- In 2000 older codes were made freely available for research in HSL Archive.
- ■HSL 2007: **free** academic access for personal research and teaching.

Background to HSL Library

- ■HSL began as Harwell Subroutine Library in 1963. Internal library for those at AERE Harwell. Early contributors included: Mike Powell, Mike Hopper and Alan Curtis.
- Distributed externally for the ïňĄrst time in 1964 and has been constantly developed and available under licence ever since.
- In 2000 older codes were made freely available for research in HSL Archive.
- ■HSL 2007: **free** academic access for personal research and teaching.

Since 1970s, one of the main strengths of HSL has been its sparse direct solvers. **First HSL sparse direct solver**: 1971 Curtis and Reid MA18 Many well-known packages, including MA27, MA28, MA42, MA48, MA57 ...

See www.cse.scitech.ac.uk/nag/hsl

Direct solvers

Advantages of direct methods:

- High accuracy
- Robust. Can be used as black box solvers
- Can cheaply solve for multiple right-hand sides
- Savings can be made if solving a series of problems

Direct solvers

Advantages of direct methods:

- High accuracy
- Robust. Can be used as black box solvers
- Can cheaply solve for multiple right-hand sides
- Savings can be made if solving a series of problems

Disadvantages:

- Memory required grows more rapidly than problem size
- Difficult to code efficiently. (Massive) parallelism very hard

Direct solvers

- Techniques to extend the application of direct methods include:
- Parallel codes (eg MUMPS, PARDISO, WSMP, SuperLU, ...).
- Use as a preconditioner eg
 - incomplete factorization
 - use a block form and factorize diagonal blocks with direct solver (in parallel)
 - **■**static pivoting
- Out-of-core storage (hold matrix data, matrix factors and some work arrays in files). Advantage: disk storage is cheap.
- New: mixed precision approach (single precision factorization then refinement in double precision).

ASSEMBLY TREE

ASSEMBLY TREE

AT EACH NODE

F	$\mathbf{F}_{_{12}}$
$F_{_{12}}^{T}$	\mathbf{F}_{22}

ASSEMBLY TREE

AT EACH NODE

F ₁₁	$\mathbf{F}_{_{12}}$
$\mathbf{F}_{_{12}}^{\mathrm{T}}$	\mathbf{F}_{22}

$$F_{22} \leftarrow F_{22} - F_{12}^T F_{11}^{-1} F_{12}$$

From children to parent

- From children to parent
- **ASSEMBLY** Gather/Scatter operations (indirect addressing)

- From children to parent
- **ASSEMBLY** Gather/Scatter operations (indirect addressing)
- **ELIMINATION** Full Gaussian elimination, Level 3 BLAS (TRSM, GEMM)

- From children to parent
- **ASSEMBLY** Gather/Scatter operations (indirect addressing)
- **ELIMINATION** Full Gaussian elimination, Level 3 BLAS (TRSM, GEMM)

Pivot can only be chosen from F_{11} block since F_{22} is **NOT** fully summed.

Situation wrt rest of matrix

Pivoting (1×1)

Choose x as 1×1 pivot if |x| > u|y| where |y| is the largest in column.

Pivoting (2×2)

For the indefinite case, we can choose 2×2 pivot where we require

$$\left| \begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix}^{-1} \right| \left[\begin{array}{c} |y| \\ |z| \end{array} \right] \le \left[\begin{array}{c} \frac{1}{u} \\ \frac{1}{u} \end{array} \right]$$

where again |y| and |z| are the largest in their columns.

If we assume that k-1 pivots are chosen but $|x_k| < u|y|$:

If we assume that k-1 pivots are chosen but $|x_k| < u|y|$:

we can either take the **RISK** and use it or

If we assume that k-1 pivots are chosen but $|x_k| < u|y|$:

- we can either take the **RISK** and use it or
- **DELAY** the pivot and then send to the parent a larger Schur complement.

If we assume that k-1 pivots are chosen but $|x_k| < u|y|$:

- we can either take the **RISK** and use it or
- **DELAY** the pivot and then send to the parent a larger Schur complement.

This can cause more work and storage

An ALTERNATIVE is to use Static Pivoting, by replacing x_k by

$$x_k + \tau$$

and CONTINUE.

An ALTERNATIVE is to use Static Pivoting, by replacing x_k by

$$x_k + \tau$$

and CONTINUE.

This is even more important in the case of parallel implementation where static data structures are often preferred

Several codes use (or have an option for) this device:

- ■SuperLU (Demmel and Li)
- PARDISO (Gärtner and Schenk)
- ■MA57 (Duff and Pralet)

We thus have factorized

$$A + E = LDL^T = M$$

where
$$|E| \leq \tau I$$

We thus have factorized

$$A + E = LDL^T = M$$

where
$$|E| \leq \tau I$$

The three codes then have an Iterative Refinement option. IR will converge if $\rho(M^{-1}E) < 1$

Choosing τ

Choosing τ

Increase $\tau \Longrightarrow$ increase stability of decomposition

Choosing τ

Increase $\tau \Longrightarrow$ increase stability of decomposition

Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces ||E||

Choosing τ

Increase $\tau \Longrightarrow$ increase stability of decomposition

Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces ||E||

Trade-off

- $ightharpoonup \approx \varepsilon \Longrightarrow \text{big growth in preconditioning matrix } M$
- $\blacksquare \approx 1 \Longrightarrow \text{huge error } ||E||.$

Choosing τ

Increase $\tau \Longrightarrow$ increase stability of decomposition

Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces ||E||

Trade-off

- $ightharpoonup \approx \varepsilon \Longrightarrow \text{big growth in preconditioning matrix } M$
- $\blacksquare \approx 1 \Longrightarrow$ huge error ||E||.

Conventional wisdom is to choose

$$\tau = \mathcal{O}(\sqrt{\varepsilon})$$

Choosing τ

Increase $\tau \Longrightarrow$ increase stability of decomposition

Decrease $\tau \Longrightarrow$ better approximation of the original matrix, reduces ||E||

Trade-off

- $ightharpoonup \approx \varepsilon \Longrightarrow \text{big growth in preconditioning matrix } M$
- $\blacksquare \approx 1 \Longrightarrow \text{huge error } ||E||.$

Conventional wisdom is to choose

$$\tau = \mathcal{O}(\sqrt{\varepsilon})$$

In real life $\rho(M^{-1}E) > 1$ but we have a plan **B FGMRES**

GMRES and **FGMRES**

Let $r_0 = b - Ax_0$ and $\mathcal{K}_k(A, r_0)$ be the usual Krylov space GMRES

$$\min_{x \in x_0 + \mathcal{K}_k(A, r_0)} ||r_0 - Ax||_2 \qquad r_0 - Ax_k \perp A\mathcal{K}_k(A, r_0)$$

GMRES and **FGMRES**

Let $r_0 = b - Ax_0$ and $\mathcal{K}_k(A, r_0)$ be the usual Krylov space GMRES

$$\min_{x \in x_0 + \mathcal{K}_k(A, r_0)} ||r_0 - Ax||_2 \qquad r_0 - Ax_k \perp A\mathcal{K}_k(A, r_0)$$

GMRES Right preconditioning

$$AM^{-1}y = b \begin{cases} (AM^{-1}, r_0) \longrightarrow (A, r_0) \\ \mathcal{K}_k(AM^{-1}, r_0) \longrightarrow \mathcal{K}_k(A, r_0) \\ x_k = M^{-1}y_k \\ AM^{-1}V_k = V_{k+1}H_k \end{cases}$$

GMRES and **FGMRES**

Let $r_0 = b - Ax_0$ and $\mathcal{K}_k(A, r_0)$ be the usual Krylov space GMRES

$$\min_{x \in x_0 + \mathcal{K}_k(A, r_0)} ||r_0 - Ax||_2 \qquad r_0 - Ax_k \perp A\mathcal{K}_k(A, r_0)$$

GMRES Right preconditioning

$$AM^{-1}y = b \begin{cases} (AM^{-1}, r_0) \longrightarrow (A, r_0) \\ \mathcal{K}_k(AM^{-1}, r_0) \longrightarrow \mathcal{K}_k(A, r_0) \\ x_k = M^{-1}y_k \\ AM^{-1}V_k = V_{k+1}H_k \end{cases}$$

Flexible GMRES Right preconditioning

$$Z_k \longrightarrow \mathcal{K}_k(A, r_0) \ x_k = x_0 + Z_k y_k \quad AZ_k = V_{k+1} H_k$$
$$Z_k = span(r_0, AM_1^{-1} r_0, \dots, \left(\prod_{j=0}^{k-1} AM_j^{-1}\right) r_0)$$

Right preconditioned GMRES and Flexible GMRES

```
procedure [x] = right\_Prec\_GMRES(A,M,b)
         x_0 = M^{-1}b, r_0 = b - Ax_0 and \beta = ||r_0||
         v_1 = r_0 / \beta; k = 0;
         while ||r_k|| > \mu(||b|| + ||A|| ||x_k||)
               k = k + 1;
              z_{k} = M^{-1}v_{k}; w = Az_{k};
              for i = 1, \ldots, k do
                  h_{i,k} = v_i^T w;
                  w = w - h_{i,k} v_i;
              end for:
              h_{k+1,k} = ||w||;
              v_{k+1} = w/h_{k+1,k};
              V_{k} = [v_1, \ldots, v_k];
              H_k = \{h_{i,j}\}_{1 \le i \le j+1:1 \le j \le k};
              y_k = \arg\min_{y} ||\beta e_1 - H_k y||;
              x_k = x_0 + M^{-1}V_k y_k and r_k = b - Ax_k;
         end while:
end procedure.
```

```
procedure [x] = FGMRES(A, M_i, b)
         x_0 = M_0^{-1}b, r_0 = b - Ax_0 \text{ and } \beta = ||r_0||
         v_1 = r_0 / \beta; k = 0;
         while ||r_k|| > \mu(||b|| + ||A|| \ ||x_k||)
               k = k + 1;
              z_k = M_k^{-1} v_k; w = A z_k;
               for i = 1, \ldots, k do
                  h_{i,k} = v_i^T w;
                   w = w - h_{i,k} v_i;
               end for;
              h_{k+1,k} = ||w||;
               v_{k+1} = w/h_{k+1,k};
              Z_k = [z_1, \dots, z_k]; V_k = [v_1, \dots, v_k];
               H_k = \{h_{i,j}\}_{1 \le i \le j+1:1 \le j \le k};
              y_k = \arg\min_{y} ||\beta e_1 - H_k y||;
               x_k = x_0 + Z_k y_k and r_k = b - Ax_k;
         end while:
end procedure.
```


The roundoff error analysis of both FGMRES and GMRES can be done in three stages:

The roundoff error analysis of both FGMRES and GMRES can be done in three stages:

1. Error analysis of the Arnoldi-Krylov process (Giraud and Langou, Björck and Paige, and Paige, Rozložník, and Strakoš).

MGS applied to

$$z_1 = M_1^{-1} r_0 / ||r_0||, \quad z_j = M_j^{-1} v_j$$

$$C^{(k)} = (r_0, Az_1, Az_2, \dots, Az_k) = V_{k+1}R_k$$

$$R_k = \begin{bmatrix} ||r_0|| & H_{1,1} & \dots & H_{1,k} \\ 0 & H_{2,1} & \dots & H_{2,k} \\ 0 & 0 & \dots & H_{3,k} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & H_{k+1,k} \end{bmatrix}$$

The roundoff error analysis of both FGMRES and GMRES can be done in three stages:

- 1. Error analysis of the Arnoldi-Krylov process (Giraud and Langou, Björck and Paige, and Paige, Rozložník, and Strakoš).
- 2. Error analysis of the Givens process used on the upper Hessenberg matrix H_k in order to reduce it to upper triangular form.

The roundoff error analysis of both FGMRES and GMRES can be done in three stages:

- 1. Error analysis of the Arnoldi-Krylov process (Giraud and Langou, Björck and Paige, and Paige, Rozložník, and Strakoš).
- 2. Error analysis of the Givens process used on the upper Hessenberg matrix H_k in order to reduce it to upper triangular form.
- 3. Error analysis of the computation of x_k in FGMRES and GMRES.

The roundoff error analysis of both FGMRES and GMRES can be done in three stages:

- 1. Error analysis of the Arnoldi-Krylov process (Giraud and Langou, Björck and Paige, and Paige, Rozložník, and Strakoš).
- 2. Error analysis of the Givens process used on the upper Hessenberg matrix H_k in order to reduce it to upper triangular form.
- 3. Error analysis of the computation of x_k in FGMRES and GMRES.

The first two stages of the roundoff error analysis are the same for both FGMRES and GMRES. The last stage is specific to each algorithm.

Roundoff error analysis of FGMRES

Theorem 1. If we apply FGMRES to solve Ax = b, using finite-precision arithmetic conforming to IEEE standard with relative precision ε and under the hypotheses:

$$2.12(n+1)\varepsilon < 0.01$$
 and $c_0(n)\varepsilon\kappa(C^{(k)}) < 0.1 \ \forall k$

where

$$c_0(n) = 18.53n^{\frac{3}{2}}$$

and

$$|\bar{s}_k| < 1 - \varepsilon, \ \forall k,$$

where \bar{s}_k are the sines computed during the Givens algorithm applied to \bar{H}_k in order to compute \bar{y}_k , then there exists $\hat{k},\ \hat{k}\leq n$ such that, $\forall k\geq \hat{k}$, we have

$$||b - A\bar{x}_{k}|| \leq c_{1}(n,k)\varepsilon(||b|| + ||A|| ||\bar{x}_{0}|| + ||A|| ||\bar{z}_{k}|| ||\bar{z}_{k}|| ||\bar{y}_{k}|| + ||A\bar{z}_{k}|| ||\bar{y}_{k}||) + \mathcal{O}(\varepsilon^{2}).$$

(Arioli, Duff, Gratton, and Pralet SISC 2007), (Arioli and Duff. ETNA 2008)

HSL_MA57

In order to reduce the fill-in during the LDL^T factorization

 \blacksquare We scale and reorder the entries of A

HSL_MA57

- \blacksquare We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold

HSL_MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in

HSL_MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.

HSL_MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.
- We thus have factorized $A + E = LDL^T = M$ where $|E| \le \tau I$

HSL MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.
- We thus have factorized $A + E = LDL^T = M$ where $|E| \le \tau I$
- Several codes use (or have an option for) this device:

HSL_MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.
- We thus have factorized $A + E = LDL^T = M$ where $|E| \le \tau I$
- Several codes use (or have an option for) this device:
 - SuperLU (Demmel and Li)

HSL MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.
- We thus have factorized $A + E = LDL^T = M$ where $|E| \le \tau I$
- Several codes use (or have an option for) this device:
 - ■SuperLU (Demmel and Li)
 - PARDISO (Gärtner and Schenk)

HSL MA57

- We scale and reorder the entries of A
- We weaken the numerical pivot strategy by using a threshold
- However, also this can be unsatisfactory: the numerical pivot strategy is still disrupting the ordering we have chosen and increases the fill-in
- An ALTERNATIVE is to use Static Pivoting, by replacing the pivot a_k failing the test by $a_k + \tau$ and CONTINUE.
- We thus have factorized $A + E = LDL^T = M$ where $|E| \le \tau I$
- Several codes use (or have an option for) this device:
 - ■SuperLU (Demmel and Li)
 - PARDISO (Gärtner and Schenk)
 - ■MA57 (Duff and Pralet)

Why FGMRES for symmetric case?

The computed values of Gaussian factorization \hat{L} \hat{D} are affected by roundoff: $M = \hat{L}\hat{D}\hat{L}^T$ and $||E|| = ||M - A|| \le c(n)\varepsilon||A||$ with $E \ne E^T$

Why FGMRES for symmetric case?

- The computed values of Gaussian factorization \hat{L} \hat{D} are affected by roundoff: $M = \hat{L}\hat{D}\hat{L}^T$ and $||E|| = ||M A|| \le c(n)\varepsilon||A||$ with $E \ne E^T$
- Thus $M^{-1}A \neq AM^{-1}$ and the preconditioned matrix is non symmetric

Why FGMRES for symmetric case?

- The computed values of Gaussian factorization \hat{L} \hat{D} are affected by roundoff: $M = \hat{L}\hat{D}\hat{L}^T$ and $||E|| = ||M A|| \le c(n)\varepsilon||A||$ with $E \ne E^T$
- Thus $M^{-1}A \neq AM^{-1}$ and the preconditioned matrix is non symmetric
- **FGMRES** is then the only way

GMRES error bounds depend on $||\hat{L}||\hat{D}||\hat{L}^T|||$. (Arioli, Duff, Gratton, and Pralet SISC 2007)

- ■GMRES error bounds depend on $||\hat{L}||\hat{D}||\hat{L}^T|||$. (Arioli, Duff, Gratton, and Pralet SISC 2007)
- For sparse matrices $|||\hat{L}||\hat{D}||\hat{L}^T|||$ can be much larger than ||A||.

- **GMRES** error bounds depend on $||\hat{L}||\hat{D}||\hat{L}^T|||$. (Arioli, Duff, Gratton, and Pralet SISC 2007)
- For sparse matrices $||\hat{L}||\hat{D}||\hat{L}^T|||$ can be much larger than ||A||.
- For the static pivot the growth can be dramatic.

- **GMRES** error bounds depend on $||\hat{L}||\hat{D}||\hat{L}^T|||$. (Arioli, Duff, Gratton, and Pralet SISC 2007)
- For sparse matrices $||\hat{L}||\hat{D}||\hat{L}^T|||$ can be much larger than ||A||.
- For the static pivot the growth can be dramatic.
- Theorem 1 shows that FGMRES does not depend on $||\hat{L}||\hat{D}||\hat{L}^T|||$.

Test Problems

	n	nnz	Description
CONT_201	80595	239596	KKT matrix Convex QP (M2)
CONT_300	180895	562496	KKT matrix Convex QP (M2)
TUMA_1	22967	76199	Mixed-Hybrid finite-element

Test problems

MA57 tests

	n	nnz(L)+nnz(D)	Factorization time
CONT_201	80595	9106766	9.0 sec
CONT_300	180895	22535492	28.8 sec

MA57 without static pivot

MA57 tests

	n	nnz(L)+nnz(D)	Factorization time
CONT_201	80595	9106766	9.0 sec
CONT_300	180895	22535492	28.8 sec

MA57 without static pivot

	nnz(L)+nnz(D)+	Factorization time	# static pivots
	FGMRES (#it)		
CONT_201	5563735 (6)	3.1 sec	27867
CONT_300	12752337 (8)	8.9 sec	60585

MA57 with static pivot $\tau = 10^{-8}$

$||\,|\hat{L}|\,|\hat{D}|\,|\hat{L}^T|\,||\,\,{ m vs}\,\,1/ au$

Numerical experiments

FGMRES on CONT-201 test example

Numerical experiments

GMRES on CONT-201 test example

■ Very fast 32-bit arithmetic unit

(Arioli and Duff. ETNA 2008)

- Very fast 32-bit arithmetic unit
- We use 32-bit arithmetic for factorization and triangular solves M is the fl(LU) of A and $||M-A|| \le c(N)\sqrt{\varepsilon}||A||$ $(\varepsilon = 2.2 \times 10^{-16})$

(Arioli and Duff. ETNA 2008)

- Very fast 32-bit arithmetic unit
- We use 32-bit arithmetic for factorization and triangular solves M is the fl(LU) of A and $||M-A|| \le c(N)\sqrt{\varepsilon}||A||$ $(\varepsilon = 2.2 \times 10^{-16})$
- If $\kappa(A)\sqrt{\varepsilon} > 1$ then Iterative Refinement may not converge. FGMRES does

(Arioli and Duff. ETNA 2008)

- Very fast 32-bit arithmetic unit
- We use 32-bit arithmetic for factorization and triangular solves M is the fl(LU) of A and $||M-A|| \le c(N)\sqrt{\varepsilon}||A||$ $(\varepsilon = 2.2 \times 10^{-16})$
- If $\kappa(A)\sqrt{\varepsilon} > 1$ then Iterative Refinement may not converge. FGMRES does
- FGMRES backward stable (Arioli and Duff. ETNA 2008)

- Very fast 32-bit arithmetic unit
- We use 32-bit arithmetic for factorization and triangular solves M is the fl(LU) of A and $||M-A|| \le c(N)\sqrt{\varepsilon}||A||$ $(\varepsilon = 2.2 \times 10^{-16})$
- If $\kappa(A)\sqrt{\varepsilon} > 1$ then Iterative Refinement may not converge. FGMRES does
- FGMRES backward stable (Arioli and Duff. ETNA 2008)
- ■GMRES is not always backward stable

Test Environment using mixed precision

■ Selected Sparse Matrices

Test Environment using mixed precision

- Selected Sparse Matrices
- Forward and backward substitution

Test Environment using mixed precision

- Selected Sparse Matrices
- Forward and backward substitution
 - the vector \bar{z}_k is computed using the forward and backward substitution algorithm in single precision on the single precision conversion of vector \bar{v}_k ,
 - the vector \bar{z}_k is computed using the forward and backward substitution algorithm in double precision on \bar{v}_k after we converted the factors L and U to double precision.

MA57 sparse tests using mixed precision

Matrix Id	n	Iterative refinement		FGMRES				
		Total It	SR	Total It	Inner it	SR	$ Aar{Z}_{\hat{k}} $	$ \bar{z}_{\hat{k}}^{} \bar{y}_{\hat{k}}^{} $
bcsstk20	485	30	2.1e-15	2	2	1.4e-11	1.7e+00	4.6e+02
$\kappa(A) = 5.10^9$				4	2	3.4e-14	1.6e+00	3.8e-01
				6	2	7.2e-17	1.6e+00	5.6e-04
bcsstm27	1224	22	1.6e-15	2	2	5.8e-11	1.7e+00	2.7e+01
$\kappa(A) = 5.10^9$				4	2	1.8e-11	6.3e-01	1.3e+00
				6	2	6.0e-13	2.0e+00	7.6e-02
				8	2	1.5e-13	1.7e+00	1.0e-02
				10	2	1.2e-14	1.7e+00	1.9e-03
				12	2	2.6e-15	1.8e+00	1.7e-04
				14	2	1.8e-16	1.6e+00	4.3e-05
s3rmq4m1	5489	16	2.2e-15	2	2	3.5e-11	1.0e+00	8.6e+01
$\kappa(A) = 4.10^9$				4	2	2.1e-13	1.1e+00	3.2e-01
				6	2	4.5e-15	1.7e+00	6.4e-03
				8	2	1.1e-16	1.6e+00	1.3e-04
s3dkq4m2	90449	53	1.1e-10	10	10	6.3e-17	1.2e+00	1.2e+03
$\kappa(A) = 7.10^{10}$								

Sparse matrices results
$$(SR = \frac{||b - A\overline{\mathbf{x}}_{\hat{k}}||}{(||A|| ||\overline{\mathbf{x}}_{\hat{k}}|| + ||b||)})$$

MA57 sparse tests using mixed precision

Ratio of times to solve linear system in mixed precision and double precision on a test set of 78 sparse problems with a scaled residual

$$\frac{||b - A\overline{\mathbf{x}}_{\hat{k}}||}{(||A|| \, ||\overline{\mathbf{x}}_{\hat{k}}|| + ||b||)} \le 5 \times 10^{-15}.$$

Out-of-core solvers

Idea of out-of-core solvers **not** new: band and frontal solvers developed in 1970s and 1980s held matrix data and factors out-of-core eg MA32 (later superseded by MA42).

Other codes with out-of-core options include BCSEXT-LIB, Oblio, TAUCS.

MUMPS team currently developing out-of-core version.

Out-of-core solvers

Idea of out-of-core solvers **not** new: band and frontal solvers developed in 1970s and 1980s held matrix data and factors out-of-core eg MA32 (later superseded by MA42).

Other codes with out-of-core options include BCSEXT-LIB, Oblio, TAUCS.

MUMPS team currently developing out-of-core version.

Our new out-of-core solver for **LARGE** sparse symmetric systems, both positive definite and indefinite, is **HSL_MA77** (Reid and Scott).

- Multifrontal code written in Fortran 95
- Matrix data, matrix factor, and the multifrontal stack are optionally held in files

- Multifrontal code written in Fortran 95
- Matrix data, matrix factor, and the multifrontal stack are optionally held in files
- Matrix A may be either in assembled form or a sum of element matrices

- Multifrontal code written in Fortran 95
- Matrix data, matrix factor, and the multifrontal stack are optionally held in files
- Matrix A may be either in assembled form or a sum of element matrices
- Reverse communication interface with input by rows or by elements

- Multifrontal code written in Fortran 95
- Matrix data, matrix factor, and the multifrontal stack are optionally held in files
- Matrix A may be either in assembled form or a sum of element matrices
- Reverse communication interface with input by rows or by elements
- Separate calls for each phase (input data, analyse, factorize, solve, residual, restart).

- Multifrontal code written in Fortran 95
- Matrix data, matrix factor, and the multifrontal stack are optionally held in files
- Matrix A may be either in assembled form or a sum of element matrices
- Reverse communication interface with input by rows or by elements
- Separate calls for each phase (input data, analyse, factorize, solve, residual, restart).
- Additional flexibility through control parameters (default settings minimize decisions user must make)

Dense linear algebra kernels

- At the heart of the multifrontal method is the partial factorization of dense frontal matrices
- We have developed separate packages to perform these factorizations (and partial solves)
 - ■HSL_MA54 for positive definite problems
 - ■HSL_MA64 for indefinite problems (by default uses threshold partial pivoting with 1×1 and 2×2 pivots)

Dense linear algebra kernels

- At the heart of the multifrontal method is the partial factorization of dense frontal matrices
- We have developed separate packages to perform these factorizations (and partial solves)
 - ■HSL_MA54 for positive definite problems
 - ■HSL_MA64 for indefinite problems (by default uses threshold partial pivoting with 1×1 and 2×2 pivots)

Advantages:

- Modular design helps with readability, testing, maintenance etc
- Kernels can also be reused in other solvers
- Kernels use blocking and exploit Level 3 BLAS. Highly efficient
- Performance can be tuned for computing environment (OpenMP version currently being tested)

 Warwick, C

Virtual memory management

For HSL_MA77 to perform well, the i/o must be efficient.

We have developed a separate Fortran 95 package HSL_OF01 to handle all i/o

- ■HSL_OF01 provides read/write facilities for one or more direct access files through a single in-core buffer (work array)
- The buffer is divided into fixed length pages ... a page is the same length as a record in the direct access file
- Efficiency acheived by careful handling of the buffer within HSL_OF01 to avoid actual i/o operations whenever possible eg.
 - All wanted pages that are in buffer are accessed before those that are not
 - When a page is freed, only written to file if it has changed

Virtual memory management

Each set of data (such as the reals in the matrix and its factor) is accessed as a virtual array i.e. as if it were a very long array

- Most active pages of the virtual array are held in the buffer
- Any contiguous section of the virtual array may be read or written
- Each virtual array is associated with a primary file
- For very large problems, the virtual array may be too large for a single file so **secondary files** are used: this is all handled **automatically**.

Note: primary and secondary files can be held on different devices

Use of long integers

HSL_MA77 make selective use of long integers (64-bit).

- ■64-bit integers are needed for addresses in the virtual array
- If 32-bit integers are used to address the frontal matrix within HSL_MA77, its size is limited to about 2^{14} ($\sim 16,000$)
- We are now wanting to solve **LARGE** problems where this may be exceeded
- Do **not** want all integers used to be long integers (more storage and more data movement than necessary, and BLAS do not use long integers)
- Long integers are used selectively within HSL_MA77 (and within the dense linear algebra kernels)
- On 64-bit architecture, frontal size not limited to 2^{14} (user must specify if running on 64-bit machine but **no** other action needed)

Factor time compared with MA57

Solve time compared with MA57

Total time compared with MA57

Times (seconds) for larger problems

Phase	inline_1	bones10	nd24k	bone010
	(n = 503, 712)	(n = 914, 898)	(n = 72,000)	(n = 986, 703)
Input	4.87	6.25	2.86	8.00
Ordering	14.2	22.8	16.4	34.7
analyse	4.20	6.70	22.1	26.7
factorize	90.6	174	1284	1491
solve(1)	5.30	36.0	10.4	311
solve(8)	10.6	41.3	20.7	331
solve(64)	60.5	141	90.2	499

■MA57 not able to solve these on our Dell Precision 670 (4 GB memory insufficient).

Mixed precision approach

Advantages of single precision include:

- Reduces amount of data moved within direct solver (memory bandwidth bottleneck).
- Uses less storage (potentially solve LARGER problems).
- On a number of modern architectures, currently more highly optimised.

BUT potential loss of accuracy.

Solution: use double precision iterative method preconditioned by single precision factorization. This is currently a hot topic, particularly with regard to multicore machines.

Basic mixed precision algorithm

```
Input required accuracy \epsilon
Select initial factorization precision prec
do
    Factorize A = LDL^T using precision prec
    Solve Ax = b using double prec
    Compute scaled residual res = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{\infty}/(\|\mathbf{A}\|_{\infty}\|\mathbf{x}\|_{\infty} + \|\mathbf{b}\|_{\infty})
    if res \leq \epsilon then exit
    Perform iterative refinement using double prec
      res < \epsilon then exit
    Perform FGMRES using double prec
    if res \le \epsilon then exit
    if prec = single prec
        set prec = double prec and cycle
    else
    Set error flag and exit
end do
```


HSL mixed precision solver

New mixed precision solver will be HSL_MA79 (Hogg and Scott).

Key features include:

- User inputs A, required accuracy ϵ , and the right hand side(s), and HSL_MA79 does the rest. Simple to use and designed to be robust.
- Code employs MA57 and/or HSL_MA77.
- Control parameters allow the user to make choices (including solver, precision, number of refinement steps, ...)
- Multiple solves can follow single factorization.
- Option to factor and solve a system with the same pattern but different values using experience from previous system.

Example use of HSL_MA79

Application: 3D mine design and ground control, using 3D elasto-plastic FEM.

Problem data: n = 3,633,677, nz = 145,626,418

Test machine: Dell Precision T5400 with two 64-bit Quad-Core E5420

processors, 8 GB memory, two 146 GB SAS Hard Drives.

Analyse phase of HSL_MA77 predicts:

 $nnz(L) = 1.47 * 10^{10}$, flops = $3.72 * 10^{14}$, max frontsize = 60, 121.

Projected memory usage for largest frontal matrix:

Number of entries $1.8 * 10^9$

Single Precision: 6.7 GB

Double Precision: 13.5 GB

Example use of HSL_MA79

Application: 3D mine design and ground control, using 3D elasto-plastic FEM.

Problem data: n = 3,633,677, nz = 145,626,418

Test machine: Dell Precision T5400 with two 64-bit Quad-Core E5420

processors, 8 GB memory, two 146 GB SAS Hard Drives.

Analyse phase of HSL_MA77 predicts:

 $nnz(L) = 1.47 * 10^{10}$, flops = $3.72 * 10^{14}$, max frontsize = 60, 121.

Projected memory usage for largest frontal matrix:

Number of entries $1.8 * 10^9$

Single Precision: 6.7 GB

Double Precision: 13.5 GB

HSL_MA79 results:

- approximately 250 minutes to factorize and solve system (using OpenMP version of dense kernel).
- Scaled residual: $\mathcal{O}(10^{-13})$.
- Storage used: approximately 70 GB.

■IR (PLAN A) does not always work with mixed precision

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting
- ■PLAN B is working

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting
- ■PLAN B is working
- Out-of-core solver HSL_MA77 developed for large symmetric systems. Also version HSL_MA78 for unsymmetric element problems.

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting
- ■PLAN B is working
- Out-of-core solver HSL_MA77 developed for large symmetric systems. Also version HSL_MA78 for unsymmetric element problems.
- Codes are performing well, solving larger problems than previously possible on desktop machines.

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting
- ■PLAN B is working
- Out-of-core solver HSL_MA77 developed for large symmetric systems. Also version HSL_MA78 for unsymmetric element problems.
- Codes are performing well, solving larger problems than previously possible on desktop machines.
- Out-of-core working adds an overhead but our memory management system HSL_OF01 attempts to minimise this (single rhs solve expensive).

- ■IR (PLAN A) does not always work with mixed precision
- ■GMRES is also sensitive and not robust
- FGMRES is robust and less sensitive
- Gains from restarting
- ■PLAN B is working
- Out-of-core solver HSL_MA77 developed for large symmetric systems. Also version HSL_MA78 for unsymmetric element problems.
- Codes are performing well, solving larger problems than previously possible on desktop machines.
- Out-of-core working adds an overhead but our memory management system HSL_OF01 attempts to minimise this (single rhs solve expensive).
- Mixed precision solver aimed at modern multicore architectures currently being developed ... so far, some encouraging results.

Reminder: HSL 2007 packages are available for use worldwide without charge for individual academic research and teaching.

See www.cse.scitech.ac.uk/nag/hsl