To Read Before #ToBeReady

https://github.com/aish21/Algorithms-and-Data-Structures

✓ Graph Data Structure

✓ Graph and its representations

✓ Graph Theory Introduction

ADVANCED ALGORITHM

W10-S2 - Graph Traversal Algorithm

- Understand the purpose of graph traversal algorithms.
- ✓ Learn the step-by-step process of BFS and DFS
- **Explore** practical applications of each algorithm

Graph Traversal

Visiting all nodes in a **graph** systematically.

Traverse as far as possible along a branch before backtracking.

DFS Algorithm

- 1.Initialize a stack and mark the starting node as visited.
- 2. Push the starting node onto the stack.
- 3. While the stack is not empty:
 - 1. Pop a node from the stack.
 - 2. Visit all its unvisited neighbors, mark them as visited, and push them onto the stack.

Start DFS at node 0

Pick an edge outwards from node 0

Once at 9 pick an edge outwards from node 9

Go to node 8

Pick an edge outwards from 8...

Backtrack when a dead end is reached

Traverse the graph below:

Traverses the graph level by level, starting from the source node.

BFS Algorithm

- 1. Initialize a queue and mark the starting node as visited.
- 2. Add the starting node to the queue.
- 3. While the queue is not empty:
 - 1. Dequeue a node.
 - 2. Visit all its unvisited neighbors, mark them as visited, and enqueue them.

Traverse the graph below:

3-2-1 Challenge

- ✓ List three things you **learned** today.
- ✓ List two **questions** you still have.
- ✓ List one aspect of the lesson or topic you **enjoyed**.

