Задача А. Железнодорожная поездка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

JOI Railways — компания, управляющая одной железной дорогой. На железной дороге JOI Railways существует n станций на прямой, пронумерованных от 1 до n. Для каждого i ($1 \le i \le n-1$), станция i и станция i+1 связаны железной дорогой.

JOI Railways имеют k типов поездов, работающих в обоих направлениях. Типы поездов пронумерованы целыми числами от 1 до k включительно. Каждая станция имеет уровень, которые является целым числом от 1 до k включительно. Для каждого i ($1 \le i \le n$), станция i имеет уровень l_i . Конечные станции, а именно станция с номером 1 и n имеют уровень k.

Поезд типа j ($1 \le j \le k$) останавливается на каждой станции, уровень которой больше или равен j, и он не останавливается на любых других станциях. Поскольку конечные станции, а именно станция 1 и станция n, имеют уровень k, каждый поезд останавливается на этих станциях.

Многие пассажиры ежедневно используют JOI Railways. Во время поездки они могут сесть на поезд, который идет в противоположном направлении от станции назначения, или они могут проехать нужную станцию. В конце поездки они должны достигнуть нужной станции. Они не очень любят останавливаться на станциях лишний раз. Следовательно, они пытаются пройти маршрут с минимальным количеством промежуточных станций. Станции, которые мы проезжаем мимо не являются промежуточными. Если пассажир останавливается на станции, чтобы поменять поезд, мы считаем это одной остановкой. Первая остановка на станции и последняя остановка в пункте назначения не считаются промежуточными станциями.

Ваша задача — написать программу, которая отвечает на запросы, какое минимальное количество промежуточных остановок получится для каждого пассажира.

Формат входных данных

Первая строка содержит 3 целых числа n, k, q ($2 \le n \le 100\,000; 1 \le k \le n; 1 \le q \le 100\,000$). n количество станций на JOI Railways, там есть k типов поездов, и есть q запросов про поездку между двумя станциями.

Далее дано n строк, где i-я строка $(1 \le i \le n)$ содержит число l_i $(1 \le l_i \le k)$, уровень станции i. Затем дано q строк, где k-я строка $(1 \le k \le q)$ содержит два целых числа a_i, b_i $(1 \le a_i, b_i \le n; a_i \ne b_i)$, которые обозначают начальную и конечную станцию для пассажира с номером k.

Формат выходных данных

Выведите q строк, где k-я строка $(1 \leqslant k \leqslant q)$ содержит минимальное количество промежуточных станций от станции a_k до станции b_k .

Система оценки

Подзадача 1 (5 баллов): $n, k \leq 100; q \leq 50$

Подзадача 2 (15 баллов): $q \le 50$ Подзадача 3 (25 баллов): $k \le 20$

Подзадача 4 (55 баллов): Нет дополнительных ограничений.

Примеры

римсры	
стандартный ввод	стандартный вывод
9 3 3	1
3	3
1	0
1	
1	
2	
2	
2	
3	
3	
3	
2 4	
4 9	
6 7	
5 2 1	1
2	
1	
1	
1	
2	
1 4	
15 5 15	2
	1
5	
4	1
1	3
2	2
3	0
1	3
1	4
2	0
4	1
5	3
4	4
1	1
5	2
3	2
5	
8 1	
11 1	
5 3	
6 11	
9 12	
15 14	
15 2	
3 12	
2 1	
4 8	
15 5	
12 6	
1 13	
12.0	
13 8	
14 9	

Сборы к РОИ-2019, группа A0, JOI Spring Camp 2017, Day 2 and 3 Санкт-Петербург, 21 марта 2019 года

Замечание

В примере номер 1 приведены три запроса о маршрутах между станциями.

- Первый запрос со станции 2 до станции 4. Если пассажир выберет поезд типа 1 со станции 2 до станции 4, то будет одна промежуточная станция с номером 3, на которой остановится поезд.
- Второй запрос касается проезда от станции 4 до станции 9. Если пассажир выберет поезд с типом 1 со станции 4 до станции 5, потом сядет на поезд типа 2 со станции 5 до станции 1, потом на поезд типа 3 со станции 1 до станции 9, получится 3 промежуточных станции: 5, 1, 8.
- Третий запрос касается проезда от станции 6 до станции 7. Если пассажир выберет поезд типа 2 со станции 6 до станции 7, то не будет промежуточных станций.

Обратите внимание, что пассажиры могут проехать конечную станцию во время поездки.

Задача В. Длинный замок

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В одной компьютерной игре игрок попадает в длинный замок. В замке n комнат, расположенных в ряд и пронумерованных от 1 до n.

Для каждого i от 1 до n-1, комнаты с номерами i и i+1 соединены двусторонним коридором. Для того, чтобы попасть из комнаты в коридор требуется ключ. Для каждого ключа определен тип. Может существовать более одного ключа каждого типа.

Для того, чтобы попасть из комнаты i или i+1 в соединяюнщий их коридор, необходим ключ типа c_i . В комнате с номером i лежат b_i ключей с типами $a_{i,j}$ ($1 \le j \le b_i$). Если игрок попадает в комнату, он подбирает все ключи в этой комнате. После этого он может использовать их, чтобы попасть в другие комнаты. Каждый ключ можно использовать более одного раза.

Для того, чтобы оптимизировать игровой процесс, требуется уметь отвечать на запрос следующего типа:

ullet Определить, может ли игрок попасть в комнату с номером y из комнаты с номером x, не имея изначально никаких ключей.

Для каждого из q запросов в вышеописанном формате, определите, сможет ли игрок из комнаты x попасть в комнату с номером y, не имея изначально никаких ключей.

Формат входных данных

Первая строка входных данных содержит единственное целое число n — количество комнат в замке (2 $\leq n \leq$ 500 000).

Вторая строка содержит n-1 целых чисел $c_1, c_2, \ldots, c_{n-1}$ — соответствие между коридором, соединяющим комнаты i и i+1, и типом ключа c_i , необходимым для того, чтобы попасть в это коридор $(1 \le c_i \le n, 1 \le i \le n-1)$.

Каждая из следующих n строк содержит целое число b_i , а затем b_i целых чисел $a_{i,1}, a_{i,2}, \ldots, a_{i,b_i}$ — количество ключей в комнате i и сами типы ключей $(1 \leqslant a_i, j \leqslant n; \ 1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant b_i \leqslant n; \ 1 \leqslant b_1 + b_2 + \ldots + b_n \leqslant 500\,000)$. Все b_i чисел $a_{i,1}, \ldots, a_{i,b_i}$ попарно различны $(1 \leqslant i \leqslant n)$.

Следующая строка содержит целое число q — количество запросов (1 $\leqslant q \leqslant 500\,000$).

Каждая из следующих q строк содержит два целых числа x_k, y_k — комната, в которой находится игрок изначально и комната, в которую необходимо попасть в i запросе $(1 \le x_k \le n, \ 1 \le y_k \le n; \ 1 \le k \le q; \ x_k \ne y_k)$.

Формат выходных данных

Выведите q строк. Для k-го запроса выведите в отдельной строке слово YES, если существует способ попасть из комнаты x_k в комнату y_k считая, что игрок сейчас в комнате x_k и не имеет никаких ключей.

Система оценки

```
Подзадача 1 (5 баллов): n \leqslant 5\,000, \, q \leqslant 5\,000, \, b_1 + b_2 + \ldots + b_n \leqslant 5\,000.
```

Подзадача 2 (5 баллов): $n \leqslant 5\,000, \, b_1 + b_2 + \ldots + b_n \leqslant 5\,000.$

Подзадача 3 (15 баллов): $n \leqslant 100\,000$, $c_i \leqslant 20$ $(1 \leqslant i \leqslant n-1)$, $a_{i,j} \leqslant 20$ $(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant b_i)$.

Подзадача 4 (75 баллов): Нет дополнительных ограничений.

Примеры

стандартный ввод	стандартный вывод
5	YES
1 2 3 4	NO
2 2 3	NO
1 1	YES
1 1	
1 3	
1 4	
4	
2 4	
4 2	
1 5	
5 3	
5	NO
2 3 1 3	YES
1 3	NO
1 2	YES
1 1	
1 3	
1 2	
4	
1 3	
3 1	
4 3	
2 5	
7	YES
6 3 4 1 2 5	NO
1 1	YES
1 5	
1 1	
1 1	
2 2 3	
1 4	
1 6	
3	
4 1	
5 3	
4 7	
4 /	

Замечание

Пояснение к первому примеру:

- В первого запросе если игрок посетит комнаты в порядке 2, 1, 2, 3, 4, то доберется до комнаты 4.
- Во втором запроса игрок может попасть только в комнаты с номерами 3 и 4. Доступными являются только ключи 1 и 3 типов, игрок не может попасть в комнату 2.
- В третьем запросе игрок не может добыть ключ типа 4 для того, чтобы попасть из комнаты 4 в комнату 5. Следовательно, он не может попасть в комнату 5.
- В четвертом запросе, если игрок посетит комнаты в порядке 5, 4, 3, то попадет в комнату 3.

Задача С. Междугородний автобус

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Автобус курсирует между городом from и городом to. В автобусе есть резервуар с водой, из которого пассажиры и водитель могут пить во время пути. Автобус находится в городе from в момент времени 0 и добирается до города to за время x. На пути автобуса есть n заправочных станций, на которых можно наполнить резервуар водой. Возле i-ой заправки $(1 \le i \le n)$ автобус окажется через время s_i .

В начале пути в резервуаре нет воды, но его можно наполнить перед отправлением. Также резервуар можно наполнить на заправочной станции, стоимость воды в любой момент составляет w рублей за литр.

В городе $from\ m$ пассажиров садятся в автобус. Пассажиры нумеруются от 1 до m. Нигде, кроме города from, пассажиры не садятся. Пассажиру $j\ (1\leqslant j\leqslant m)$ потребуется литр воды во время d_j . После того, как пассажир выпьет воду, он захочет пить по прошествии времени t. Другими словами, пассажиру j требуется вода в моменты времени $d_j+k\cdot t(k=0,1,2,\ldots)$, где $1\leqslant d_j< t$ и значение t одинаково для всех пассажиров. Если в резервуаре недостаточно воды, когда пассажир хочет пить, пассажир сходит с автобуса. Если j-ый пассажир сходит с автобуса, не доезжая до города to, водитель платит штраф в размере c_j рублей. Сам водитель также нуждается в воде, и, как и другие пассажиры, после утоления жажды водитель снова захочет пить спустя время t. Другими словами, водителю нужна вода в моменты времени $k\cdot t(k=0,1,2,\ldots)$. Если в резервуаре автобуса нет воды, когда она требуется водителю, автобус прекращает свое движение.

Никакие два человека не нуждаютя в воде в один и тот же момент времени. Также в моменты прибытия на заправку или в конечный пункт никто не нуждается в воде.

Регулируя количество воды в резервуаре, требуется минимизировать суммарную стоимость воды и штрафов, обеспечивающую завершение поездки в городе to. Ваша задача понять, где и каким количеством воды необходимо пополнять резерувар в течение путешествия, и найти минимальную стоимость воды и штрафов.

Формат входных данных

Первая строка содержит 5 целых чисел x, n, m, w, t ($1 \le x \le 10^{12}, 1 \le n, m \le 200\,000, 1 \le t \le x, 1 \le w \le 1\,000\,000$).

Далее идут n строк, где в i-ой $(1 \le i \le n)$ находится целое число s_i $(1 \le s_i < x)$. Далее в m строках задано два целых числа d_j и c_j $(1 \le d_j < t; 1 \le c_j \le 10^9)$. Все d_j различны.

Формат выходных данных

Выведите одно целое число — минимальную суммарную стоимость.

Система оценки

Подзадача 1 (16 баллов): $n, m \le 8$ Подзадача 2 (30 баллов): $n, m \le 100$ Подзадача 3 (25 баллов): $n, m \le 2000$

Подзадача 4 (29 баллов): Нет дополнительных ограничений.

Примеры

стандартный ввод	стандартный вывод
19 1 4 8 7	103
10	
1 20	
2 10	
4 5	
6 5	
105 3 5 9 10	547
59	
68	
71	
4 71	
6 32	
7 29	
3 62	
2 35	
100000000000 1 1 1000000 6	333333209997456789
999999259244	
1 123456789	

Замечание

В первом примере: если залить в резервуар 7 литров воды перед отправлением и 4 литра на первой заправке, работа автобуса будет происходить следующим образом:

- 1. Когда автобус начнет движение в городе from, в резервуаре будет 7 литров воды.
- 2. Водитель и пассажиры 1, 2, 3, 4 выпьют по 1 литру воды в моменты времени 0, 1, 2, 4, 6, соответственно. После чего, в резервуаре останется 2 литра воды.
- 3. Водитель и пассажир 1 выпьют по 1 литру воды в моменты 7 и 8, соответственно. После чего, в автобусе не останется воды.
- 4. В момент 9 пассажир 2 захочет пить и будет вынужден покинуть автобус, так как в резервуаре в этот момент не будет воды.
- 5. В момент времени 10, мы зальем 4 литра воды на первой заправке. В резервуаре будет 4 литра воды.
- 6. Пассажиры 3, 4, водитель и пассажир 1 выпьют по 1 литру воды в моменты 11, 13, 14, 15, соответственно. В резервуаре не останется воды.
- 7. В момент 18 пассажир 3 захочет пить и покинет автобус из-за недостатка воды в резервуаре.
- 8. В момент 19 водитель прибудет в город to.

Количество купленной воды будет равно 11 литрам. Стоимость воды составит 88 рублей. Стоимость штрафов за пассажиров 2 и 3 составит 15 рублей. Суммарная стоимость будет равна 103 рублям.