UNIVERSIDADE ESTADUAL DE CAMPINAS

RENATO LOPES MOURA RA163050

Estudo sobre Inferência Fuzzy baseada em medidas de subsethood

1 Definições

Definição 1. Seja uma função $S: \mathcal{F}(X)x\mathcal{F}(X) \to [0,1]$. S(A,B) é uma medida de subsethood se para $A,B,C\in\mathcal{F}(X)$ temos:

1.
$$S(A, B) = 1 \Leftrightarrow A \subseteq B$$

2.
$$S(X, \emptyset) = 0$$

3. Se
$$A \subseteq B \subseteq C$$
, então $S(C, A) \leq S(B, A)$ e $S(C, A) \leq S(C, B)$

Definição 2. A medida de subsethood de Kosko é definida da seguinte forma:

$$S_k(A, B) = \frac{\int_{x \in X} \min(\mu_A(x), \mu_B(x))}{\int_{x \in X} \mu_A(x)}$$

Definição 3. A medida de subsethood de Willmott é definida da seguinte forma:

$$S_w(A,B) = \frac{\int_{x \in X} \mu_B(x)}{\int_{x \in X} \max(\mu_A(x), \mu_B(x))}$$

Definição4. As medidas de subsethood $S_p^\cap(\text{meet})$ e $S_p^\cup(\text{join})$ são definidas da seguinte forma:

$$S_p^{\cap}(A,B) = I_p(v_p(A), v_p(A \cap B)),$$

$$S_p^{\cup}(A,B) = I_p(v_p(A \cup B), v_p(B))$$

Onde I_p denota a implicação de Goguen e v_p é uma função $\mathcal{F}(X) \to [0,1]$ definida por:

$$v_p = \sum_{i=1}^k \frac{1 - \cos(\pi[\mu_C(x^i)]^p)}{k}, \quad X = \{x^1, ..., x^k\}$$

2 Experimentos

2.1 Caso 1

Entrada triangular quase discreta (3.4,3.5,3.6)

Figure 1: Entrada do caso 1

Figure 2: Resultados do caso 1

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.738	2.297
S_w	0.938	0.988	4.996
$S_{0.25}^{\cap}$	0	0.974	2.333
$S_{0.25}^{\cup}$	0.938	0.999	4.996
$S_{0.5}^{\cap}$	0	0.901	2.327
$S_{0.5}^{\cup}$	0.938	0.995	4.996
S_1^{\cap}	0	0.678	2.281
S_1^{\cup}	0.938	0.984	4.996
S_2^{\cap}	0	0.281	2.133
S_2^{\cup}	0.937	0.965	4.997
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.937	0.952	4.998
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.936	0.951	4.998
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.714	0.769	4.966

2.2 Caso 2

Entrada triangular quase igual ao antecedente (0.0,3.3,4.0)

Figure 3: Entrada do caso 2

Figure 4: Resultados do caso 2

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.929	2.330
S_w	0.429	0.935	4.539
$S_{0.25}^{\cap}$	0	0.988	2.333
$S_{0.25}^{\cup}$	0.429	0.988	4.536
$S_{0.5}^{\cap}$	0	0.968	2.333
$S_{0.5}^{\cup}$	0.429	0.969	4.536
S_1^{\cap}	0	0.926	2.330
S_1^{\cup}	0.429	0.931	4.540
S_2^{\cap}	0	0.839	2.318
S_2^{\cup}	0.429	0.861	4.554
S_{10}^{\cap}	0	0.323	2.151
S_{10}^{\cup}	0.429	0.596	4.730
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.429	0.5	4.864
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.426	0.497	4.864

2.3 Caso 3

Entrada triangular com pouca interseção (3.8,4.0,5.0)

Figure 5: Entrada do caso 3

Figure 6: Resultados do caso 3

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.028	2.014
S_w	0.714	0.774	4.963
$S_{0.25}^{\cap}$	0	0.601	2.258
$S_{0.25}^{\cup}$	0.714	0.787	4.956
$S_{0.5}^{\cap}$	0	0.266	2.126
$S_{0.5}^{\cup}$	0.714	0.777	4.961
S_1^{\cap}	0	0.045	2.022
S_1^{\cup}	0.714	0.771	4.965
S_2^{\cap}	0	0.001	2
S_2^{\cup}	0.714	0.769	4.966
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.714	0.769	4.966
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.714	0.769	4.966
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.649	0.711	4.949

2.4 Caso 4

Entrada triangular sem interseção mas próxima de um dos antecedentes (4.0,4.5,5.0)

Figure 7: Entrada do caso 4

Figure 8: Resultados do caso 4

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0	0
S_w	0.750	0.800	4.974
$S_{0.25}^{\cap}$	0	0	0
$S_{0.25}^{\cup}$	0.750	0.800	4.974
$S_{0.5}^{\cap}$	0	0	0
$S_{0.5}^{\cup}$	0.750	0.800	4.974
S_1^{\cap}	0	0	0
S_1^{\cup}	0.750	0.800	4.974
S_2^{\cap}	0	0	0
S_2^{\cup}	0.750	0.800	4.974
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.750	0.800	4.974
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.750	0.800	4.974
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.696	0.753	4.962

2.5 Caso 5

Entrada triangular equidistante dos antecedentes (5.0,5.5,6.0). Obs: notar que os antecedentes não possuem o mesmo tamanho.

Figure 9: Entrada do caso 5

Figure 10: Resultados do caso 5

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0	0
S_w	0.750	0.800	4.974
$S_{0.25}^{\cap}$	0	0	0
$S_{0.25}^{\cup}$	0.750	0.800	4.974
$S_{0.5}^{\cap}$	0	0	0
$S_{0.5}^{\cup}$	0.750	0.800	4.974
S_1^{\cap}	0	0	0
S_1^{\cup}	0.750	0.800	4.974
S_2^{\cap}	0	0	0
S_2^{\cup}	0.750	0.800	4.974
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.750	0.800	4.974
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.750	0.800	4.974
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.696	0.753	4.962

2.6 Comentários

- Em todos os casos, as medidas de subsethood do tipo $meet(S_p^{\cap})$ com $p \geq 10$ não apresentam valores de ativação significativos. No Caso 2, temos $S_{10}^{\cap} = 0.323$ apesar de a entrada estar quase totalmente contida no antecedente. Portanto, não parece interessante considerar as medidas do tipo $meet(S_p^{\cap})$ com $p \geq 10$.
- Também é possível notar que conforme o parâmetro p aumenta, o grau de ativação pela medida de subsethood do tipo join (S_p^{\cup}) tende a se igualar para todas as regras. Portanto, também não parece interessante considerar as medidas do tipo join (S_p^{\cup}) com $p \geq 10$.
- No Caso 1, apesar de a entrada apresentar um nível considerável de interseção com o antecedente da Regra 2 (tomate verde), as medidas de subsethood do tipo join (S_p^{\cup}) ainda apresentam um elevado grau de ativação, em geral ≥ 0.9 . Desta forma, é possível concluir que para entradas com cardinalidade pequena, deve-se dar um peso maior para o grau de ativação das medidas de subsethood do tipo meet (S_p^{\cap}) .
- Nos Casos 4 e 5, pode-se notar que o grau de ativação das regras independe da localização da entrada no caso em que a interseção da entrada com os antecedentes é vazia. A medida de subsethood do tipo join (S_p^{\cup}) considera apenas a cardinalidade dos antecedentes e da entrada, o que pode representar um problema em bases de regras esparsas.

3 Experimentos com combinação de medidas

Proposição~1.~ A média ponderada entre medidas de subsethood do tipo meet~e join:

$$S = \frac{\alpha S_p^\cap + \beta S_p^\cup}{\alpha + \beta}$$

é uma medida de subsethood??? (falta condições para α e $\beta)$

Proof. \Box

References