Степан Остапенко

Автоматическая генерация наклонных шрифтов

Семестровый проект

Руководитель: Иван Гладких (ТуреТуре)

30.05.2023

Факультет математики и компьютерных наук Программа «Современное программирование»

Введение в предметную область

- Компания ТуреТуре занимается разработкой и рисованием цифровых шрифтов.
- Современный шрифт содержит от нескольких сотен до нескольких тысяч символов.
- Каждый символ (глиф) задается в формате SVG (а не JPEG/PNG), т. е. в виде набора команд для его рисования.
- Для каждого шрифта нужно уметь поддерживать разные модификации, например: **жирную** и *наклонную* версии.

Общая постановка решаемой задачи

Разработать механизм для автоматического превращения прямых версий шрифтов в наклонные версии (италики).

Исследование и поиск решения

- Поскольку задача является очень сложной, в рамках работы планировалось проведение различных экспериментов и тестирование гипотез.
- Работа основана на статье о предыдущем исследовании в этой области.
- Одним из направлений исследования является проработка двух принципиально разных подходов к решению задачи: растрового и векторного.
- Моя работа посвящена растровому подходу.

Описание подхода к решению

Преобразования глифа: SVG $ightarrow^1$ PNG $ightarrow^2$ *PNG* $ightarrow^3$ *SVG*

- 1. растеризатор переводит векторное изображение глифа в пиксельное в заданном разрешении;
- 2. нейросеть по пиксельному изображению прямого глифа генерирует пиксельное изображение наклонного;
- 3. кодировщик по пиксельному изображению глифа генерирует набор команд для его рисования.

Многое зависит от правильно подобранного разрешения для промежуточных изображений (PNG).

Полносвязная сеть

- На входном слое находятся пиксели изображения прямого глифа, на выходном – наклонного.
- Размеры входного и выходного слоев определяются заданным разрешением (64/128/256), размер скрытого слоя подбирается.

Сверточная сеть

- Основана на архитектуре известной нейросети ResNet18.
- Параметры приходится подбирать отдельно для каждого разрешения (64/128/256).

Генеративная сеть

- Количество параметров не зависит от разрешения, что дает большое преимущество.
- К сожалению, не удалось реализовать в рамках проекта :(8/14

Оценка качества работы

В роли кодировщика использовалась утилита potrace.

Для оценки результатов работы нейросети считались метрики: MSE, MAE, accuracy, F-score, SSIM. Также учитывалось количество команд для рисования итогового результата.

Метрики и результаты

model	MSE	ACC	FSC	SSIM	mean cmd #
target	0.0	1.0	1.0	1.0	16.125
dense-64	0.007	0.985	0.991	0.928	19.101
dense-128	0.009	0.985	0.991	0.918	35.197
conv-64	0.007	0.920	0.955	0.870	17.751
conv-128	0.008	0.922	0.957	0.826	24.664

- Полносвязная сеть ухудшается с ростом разрешения.
- Сверточная сеть работает стабильнее.
- На выходе кодировщик слишком сильно "смазывает" изображение, из-за чего результаты не подходят.

11/14

Выводы по исследованию

- Решение, основанное на растровом подходе очень нестабильное, в первую очередь, из-за кодировщика, который восстанавливает финальные инструкции.
- Для продолжения исследования данного подхода нужно перейти к генеративным моделям для обработки изображений и подобрать настройки для кодировщика (но не факт, что это даст желаемый результат).
- Тем не менее, данный подход можно использовать для получения дополнительной информации о символах, которую можно будет использовать в векторном подходе.

Результаты работы

- 1. Проведено исследование, получены определенные соображения о дальнейшей работе в этом направлении.
- 2. Был написан код для предобработки данных, обучения моделей и сравнения результатов, который может быть использован в дальнейших исследованиях.

tg: @flaax, e-mail: stepanos2002@gmail.com ссылка на репозиторий: https://github.com/stephen-ostapenko/auto-italics

