Concours commun Mines-Ponts

PREMIÈRE ÉPREUVE. FILIÈRE MP

A. Préliminaires

1) Soient $n \in \mathbb{N}^*$ puis $m \in [1, n]$.

$$\begin{split} E(X) &= \sum_{k=1}^n k P(X=k) = \sum_{k < m} k P(X=k) + \sum_{k=m}^n k P(X=k) \text{ (si } m=1, \text{ la première somme est vide et donc sa valeur est 0)} \\ &\leqslant \sum_{k < m} (m-1) \times 1 + n \sum_{k=m}^n P(X=k) = m-1 + n P(X \geqslant m) \text{ (y compris si } m=1). \end{split}$$

2) L'inégalité est claire quand n = 1. Soit $n \ge 2$. La fonction $t \mapsto \ln t$ est continue et croissante sur $]0, +\infty[$ et donc sur [k-1,k], pour tout $k \in [2,n]$. Par suite,

$$\sum_{k=1}^{n} \ln k = \sum_{k=2}^{n} \ln k \geqslant \sum_{k=2}^{n} \int_{k-1}^{k} \ln t \, dt = \int_{1}^{n} \ln t \, dt = (n \ln n - n) - (1 \ln 1 - 1)$$
$$= n \ln n - n + 1.$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $\ln(n!) \geqslant n \ln n - n + 1$ et donc $n! \geqslant e^{n \ln n - n + 1} = e^{\left(\frac{n}{e}\right)^n} \geqslant \left(\frac{n}{e}\right)^n$. Donc, $\forall n \in \mathbb{N}^*, \ \left(\frac{n}{e}\right)^n \leqslant n!.$

B. Le lemme de sous-additivité de Fekete

3) Soit $n \in \mathbb{N}^*$. L'ensemble U_n est une partie non vide et bornée de \mathbb{R} et donc U_n admet dans \mathbb{R} une borne inférieure et une borne supérieure. On en déduit l'existence dans \mathbb{R} de \underline{u}_n et \overline{u}_n . Ainsi, les suites \underline{u} et \overline{u} sont bien définies.

Soit $n \in \mathbb{N}^*$. \underline{u}_n est un minorant de $U_{n+1} = \{u_k, k \ge n+1\}$ et \underline{u}_{n+1} est le plus grand de ces minorants. Donc, $\underline{u}_n \le \underline{u}_{n+1}$. La suite \underline{u} est donc croissante. De même, la suite \overline{u} est décroissante.

Soit $n \in \mathbb{N}^*$. $\underline{u}_n \leq \overline{u}_n \leq \overline{u}_1$. Donc, la suite \underline{u} est croissante et majorée par \overline{u}_1 . On en déduit que la suite \underline{u} est convergente. De même, la suite $\overline{\mathbf{u}}$ est décroissante et minorée par $\underline{\mathbf{u}}_1$ et donc, la suite $\overline{\mathbf{u}}$ est convergente.

4) Soit ν une suite définie sur \mathbb{N}^* , décroissante et plus grande que \mathfrak{u} . Montrons que $\forall \mathfrak{n} \in \mathbb{N}^*$, $\overline{\mathfrak{u}}_{\mathfrak{n}} \leq \nu_{\mathfrak{n}}$.

Soit $n \in \mathbb{N}^*$. Pour tout $k \geqslant n$, $\nu_n \geqslant \nu_k \geqslant u_k$. Donc, ν_n est un majorant de l'ensemble U_n . Puisque \overline{u}_n est le plus petit des majorants de U_n , on en déduit que $\nu_n \geqslant \overline{u}_n$. On a montré que la suite ν est plus grande que la suite \overline{u} .

Soit ν une suite définie sur \mathbb{N}^* , croissante et plus petite que \mathfrak{u} . Alors, $-\nu$ est une suite décroissante et plus grande que $-\mathfrak{u}$. On en déduit que $-\nu$ est plus grande que $(-\mu) = -\underline{\mu}$ puis que ν est plus petite que $\underline{\mu}$.

5) Soit ν une suite plus grande que u. Soit $n \in \mathbb{N}^*$. $\overline{\nu}_n$ est un majorant de V_n et donc de U_n . On en déduit que $\overline{\nu}_n \geqslant \overline{u}_n$. Ainsi, la suite \overline{v} est plus grande que la suite \overline{u} . De même, la suite \underline{u} est plus petite que la suite \underline{v} . Puisque les suites \overline{u} et \overline{v} sont convergentes, quand n tend vers $+\infty$, on obtient

$$\overline{\lim_{n\to +\infty}}u_n=\lim_{n\to +\infty}\overline{u}_n\leqslant \lim_{n\to +\infty}\overline{v}_n=\overline{\lim_{n\to +\infty}}v_n,$$

et aussi $\underline{\lim}_{n\to+\infty}u_n\leqslant \underline{\lim}_{n\to+\infty}v_n.$

6) On sait que pour tout $n \in \mathbb{N}^*$, $\underline{u}_n \leqslant u_n \leqslant \overline{u}_n$. Si les suites \underline{u} et \overline{u} sont adjacentes, alors les \underline{u} et \overline{u} sont convergentes et ont même limite. Le théorème des gendarmes permet d'affirmer que la suite $\mathfrak u$ converge et que $\lim_{n\to +\infty}\mathfrak u=\lim_{n\to +\infty}\underline{\mathfrak u}_n=0$ $\lim_{n\to +\infty} \overline{u}_n.$

1

Réciproquement, supposons la suite \underline{u} convergente et notons ℓ sa limite. On sait déjà que la suite \underline{u} est croissante, la suite \overline{u} est décroissante. Donc, les suites \underline{u} et \overline{u} sont adjacentes si et seulement si la suite $\overline{u} - \underline{u}$ converge vers 0.

Soit $\epsilon>0$. Il existe n_0 tel que pour $k\geqslant n_0$, $\ell-\frac{\epsilon}{2}\leqslant u_k\leqslant \ell+\frac{\epsilon}{2}$. $\ell+\frac{\epsilon}{2}$ est donc un majorant de U_{n_0} et on en déduit que $\overline{u}_{n_0}\leqslant \ell+\frac{\epsilon}{2}$. De même, $\underline{u}_{n_0}\geqslant \ell-\frac{\epsilon}{2}$ puis, la suite \underline{u} étant plus petite que la suite \overline{u} ,

$$0 \leqslant \overline{u}_{n_0} - \underline{u}_{n_0} \leqslant \varepsilon$$
.

Maintenant, la suite $\overline{u} - \underline{u}$ est positive et décroissante en tant que somme de deux suites décroissantes. Par suite, pour $n \geqslant n_0$, $0 \leqslant \overline{u}_n - \underline{u}_n \leqslant \overline{u}_{n_0} - \underline{u}_{n_0} \leqslant \varepsilon$.

On a montré que $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}^* / \ \forall n \in \mathbb{N}$, $(n \geqslant n_0 \Rightarrow |\overline{u}_n - \underline{u}_n| \leqslant \epsilon)$. La suite $\overline{u} - \underline{u}$ converge vers 0 et donc les suites \underline{u} et \overline{u} sont adjacentes. Mais alors, de nouveau, $\lim_{n \to +\infty} \underline{u} = \lim_{n \to +\infty} \underline{u}_n = \lim_{n \to +\infty} \overline{u}_n$.

7) Par définition, $\mathfrak{m}=\mathfrak{n}\mathfrak{q}+r$ et $0\leqslant r\leqslant \mathfrak{n}-1$. D'autre part, puisque $\mathfrak{m}\geqslant 2\mathfrak{n}$, on a $\mathfrak{q}\geqslant 2$ et donc aussi $\mathfrak{q}-1\in\mathbb{N}^*$. Puisque la suite \mathfrak{u} est sous-additive,

$$u_m = u_{(q-1)n+n+r} \leqslant u_{(q-1)n} + u_{n+r} \leqslant \underbrace{u_n + \ldots + u_n}_{q-1 \text{ termes}} + u_{n+r} = (q-1)u_n + u_{n+r}.$$

On en déduit que

$$\begin{split} \frac{u_m}{m} &\leqslant \frac{(q-1)u_n + u_{n+r}}{m} = \frac{n(q-1)}{m} \times \frac{u_n}{n} + \frac{u_{n+r}}{m} = \frac{m-n-r}{m} \times \frac{u_n}{n} + \frac{u_{n+r}}{m} \\ &\leqslant \frac{m-n-r}{m} \times \frac{u_n}{n} + \frac{\max\{u_{n+r}, \ r \in \llbracket 0, n-1 \rrbracket \}}{m}. \end{split}$$

8) En particulier, quand n = 1, pour tout $m \ge 2$, on a

$$0 \leqslant \frac{u_m}{m} \leqslant \frac{m-1}{m} \times \frac{u_1}{1} + \frac{u_1}{m} \leqslant u_1 + u_1 = 2u_1$$

ce qui reste vrai quand $\mathfrak{m}=1.$ Donc, la suite $\left(\frac{\mathfrak{u}_\mathfrak{m}}{\mathfrak{m}}\right)_{\mathfrak{m}\in\mathbb{N}^*}$ est bornée.

Soit $n \in \mathbb{N}^*$. Pour $m \ge 2n$, on a

$$\frac{\mathfrak{u}_{\mathfrak{m}}}{\mathfrak{m}} \leqslant \frac{\mathfrak{m} - (2\mathfrak{n} - 1)}{\mathfrak{m}} \times \frac{\mathfrak{u}_{\mathfrak{n}}}{\mathfrak{n}} + \frac{\max\{\mathfrak{u}_{\mathfrak{n} + \mathfrak{r}}, \ \mathfrak{r} \in \llbracket 0, \mathfrak{n} - 1 \rrbracket \}}{\mathfrak{m}}.$$

Par passage à la limite supérieure (d'après la question 5)), on obtient

$$\begin{split} & \overline{\lim}_{m \to +\infty} \frac{u_m}{m} \leqslant \overline{\lim}_{m \to +\infty} \left(\frac{m - (2n - 1)}{m} \times \frac{u_n}{n} + \frac{\max\{u_{n+r}, \ r \in \llbracket 0, n - 1 \rrbracket \}}{m} \right) \\ &= \lim_{m \to +\infty} \left(\frac{m - (2n - 1)}{m} \times \frac{u_n}{n} + \frac{\max\{u_{n+r}, \ r \in \llbracket 0, n - 1 \rrbracket \}}{m} \right) \text{ (d'après la question 6))} \\ &= \frac{u_n}{n}. \end{split}$$

9) On en déduit encore, par passage à la limite inférieure, que $\lim_{m \to +\infty} \frac{u_m}{m} \leqslant \lim_{n \to +\infty} \frac{u_n}{n}$ et donc $\lim_{m \to +\infty} \frac{u_m}{m} = \lim_{n \to +\infty} \frac{u_n}{n}$ (car d'autre part, $\lim_{m \to +\infty} \frac{u_m}{m} \geqslant \lim_{n \to +\infty} \frac{u_n}{n}$).

Donc, si pour $n \in \mathbb{N}^*$, on pose $\nu_n = \frac{u_n}{n}$, les suites $\underline{\nu}$ et $\overline{\nu}$ sont adjacentes. D'après la question 6), la suite $\left(\frac{u_n}{n}\right)_{n \in \mathbb{N}^*}$ converge.

C. Une application probabiliste

10) Soit $n \in \mathbb{N}^*$. Supposons $P(X_1 < x) = 1$. Alors, puisque les X_k ont mêmes lois, pour tout $k \in [1, n]$, $P(X_k < x) = 1$. Ensuite,

$$(\forall k \in [\![1,n]\!], \ X_k < x) \Rightarrow \frac{1}{n} \sum_{k=1}^n X_k < x \Rightarrow Y_n < x$$

et donc $\bigcap_{k=1}^n \{X_k < x\} \subset \{Y_n < x\}$ puis, les variables X_k étant indépendantes,

$$P\left(Y_{n} < x\right) \geqslant P\left(\bigcap_{k=1}^{n} \left\{X_{k} < x\right\}\right) = \prod_{k=1}^{n} P\left(X_{k} = 1\right) = 1$$

et finalement $P(Y_n < x) = 1$.

De même, si $\forall k \in [\![1,n]\!], \ X_k \geqslant x$, alors $Y_n \geqslant x$ et donc $\bigcap_{k=1}^n \{X_k \geqslant x\} \subset \{Y_n \geqslant x\}$. Si $P(X_1 \geqslant x) > 0$, alors $\forall k \in [\![1,n]\!], P(X_k \geqslant x) > 0$ puis

$$P\left(Y_{n}\geqslant x\right)\geqslant P\left(\bigcap_{k=1}^{n}\left\{X_{k}\geqslant x\right\}\right)=\prod_{k=1}^{n}P\left(X_{k}\geqslant x\right)>0.$$

11) Si $Y_m \geqslant x$ et $\frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant x$, alors

$$Y_{m+n} = \frac{1}{m+n} \sum_{k=1}^{m+n} X_k = \frac{m}{m+n} \times \frac{1}{m} \sum_{k=1}^{m} X_k + \frac{n}{m+n} \times \frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant \frac{m}{m+n} x + \frac{n}{m+n} x = x,$$

 $\mathrm{et}\;\mathrm{donc}\;\{Y_{\mathfrak{m}}\geqslant x\}\cap\left\{\frac{1}{n}\sum_{k=m+1}^{m+n}X_{k}\geqslant x\right\}\subset\{Y_{\mathfrak{m}+\mathfrak{n}}\geqslant x\}.$

D'après le lemme des coalitions, les variables $Y_m = \frac{1}{m} \sum_{k=1}^m X_k$ et $\frac{1}{n} \sum_{k=m+1}^{m+n} X_k$ sont indépendantes. D'après la question précédente,

$$P\left(Y_{m+n}\geqslant x\right)\geqslant P\left(\left\{Y_{m}\geqslant x\right\}\cap\left\{\frac{1}{n}\sum_{k=m+1}^{m+n}X_{k}\geqslant x\right\}\right)=P\left(Y_{m}\geqslant x\right)P\left(\frac{1}{n}\sum_{k=m+1}^{m+n}X_{k}\geqslant x\right).$$

Maintenant, les variables $\frac{1}{n}\sum_{k=m+1}^{m+n}X_k$ et $\frac{1}{n}\sum_{k=1}^{n}X_k=Y_n$ ont mêmes lois et donc

$$P\left(Y_{m+n}\geqslant x\right)\geqslant P\left(Y_{m}\geqslant x\right)P\left(Y_{n}\geqslant x\right).$$

12) Pour $n \in \mathbb{N}^*$, posons $u_n = -\ln{(P(Y_n \geqslant x))}$. La suite u est positive puis, d'après la question précédente, pour $(m,n) \in {(\mathbb{N}^*)}^2$

$$u_{\mathfrak{m}+\mathfrak{n}} = -\ln\left(P\left(Y_{\mathfrak{m}+\mathfrak{n}}\geqslant x\right)\right) \leqslant -\ln\left(P\left(Y_{\mathfrak{m}}\geqslant x\right)P\left(Y_{\mathfrak{n}}\geqslant x\right)\right) = -\ln\left(P\left(Y_{\mathfrak{m}}\geqslant x\right)\right) - \ln\left(P\left(Y_{\mathfrak{n}}\geqslant x\right)\right) = u_{\mathfrak{m}} + u_{\mathfrak{n}}.$$

Donc, la suite $\mathfrak u$ est sous-additive. D'après la question 9), la suite $(\nu_n)_{n\in\mathbb N^*}=\left(\frac{u_n}{n}\right)_{n\in\mathbb N^*}$ converge vers un certain réel positif ℓ . Maintenant, pour $n\in\mathbb N^*$, $\nu_n=-\frac{\ln{(P_n\geqslant x)}}{n}$ et donc

$$(P(Y_n \ge x))^{\frac{1}{n}} = e^{-\nu_n}.$$

On en déduit que la suite $\left(\left(P\left(Y_{n}\geqslant x\right)\right)^{\frac{1}{n}}\right)_{n\in\mathbb{N}^{*}}$ converge vers le réel $e^{-\ell}\in]0,1].$

D. Le théorème de Erdös-Szekeres

- 13) Pour $s \in [1, pq + 1]$, notons $(\mathcal{P})_s$ la propriété de l'énoncé.
 - Supposons qu'il n'y ait qu'une pile. Soient z une valeur de cette pile puis $b_1 = z$. La suite (b_1) convient.
 - Soit $s \in [1, pq]$. Supposons (\mathscr{P}_s) . Considérons alors une configuration à s+1 piles et notons z la valeur d'un jeton de la s+1-ème pile. Notons a' la suite obtenue à partir de la suite a en supprimant tous les jetons de la s+1-ème pile. Posons $b_{s+1} = z$. Par construction, il existe une valeur de la s-ème pile qui est supérieure à z car sinon, on n'aurait pas posé le jeton sur la s+1-ème pile. Notons b_s cette valeur. Par hypothèse de récurrence appliquée à la suite a' (le nombre pq+1 de jetons n'intervenant pas dans cette récurrence), il existe une suite (b_1, \ldots, b_s) répondant

aux conditions de l'énoncé. Mais alors, la suite $(b_1, \ldots, b_s, b_{s+1})$ convient.

Le résultat est démontré par récurrence.

Remarque. Directement et sans récurrence, si $s \ge 2$, la suite constituée des sommets des s-1 premières piles et de $b_s = z$ convient.

14) Si l'une des piles contient au moins p+1 éléments, alors les valeurs de cette pile, lues de bas en haut constituent une suite croisante extraite de a de longueur au moins p+1. Sinon, toutes les piles contiennent au plus p jetons. Mais alors, le nombre s de piles est supérieur ou égal à q+1 car, dans le cas contraire, le nombre de jetons serait inférieur ou égal à pq ce qui est faux. La question précédente fournit dans ce cas, une suite décroissante extraite de a de longueur a0 de longueur a1.

E. Comportement asymptotique d'une suite aléatoire

 $\textbf{15)} \ \mathrm{Soit} \ \omega \in \Omega. \ \omega \in \{A_1=1\} \cap \{A_2=1\} \Leftrightarrow B(\omega)(1)=B(\omega)(2)=1 \ \mathrm{ce} \ \mathrm{qui} \ \mathrm{est} \ \mathrm{impossible}. \ \mathrm{Donc}, \{A_1=1\} \cap \{A_2=1\}=\varnothing \ \mathrm{puis} \ P\left(\{A_1=1\} \cap \{A_2=1\}\right)=0.$

Il est d'autre part clair que $P(\{A_1=1\}) \times P(\{A_2=1\}) \neq 0$ car il existe au moins une permutation σ telle que $\sigma(1)=1$ et une permutation σ' telle que $\sigma'(2)=1$.

Donc, $P(\{A_1=1\} \cap \{A_2=1\}) \neq P(\{A_1=1\}) \times P(\{A_2=1\})$ et on en déduit que les variables A_1, \ldots, A_n ne sont pas indépendantes.

16) Soit $E = \{ \sigma \in \mathscr{S}_n / \sigma(s_1) < \ldots < \sigma(s_k) \}$. Alors, puisque B suite la loi uniforme,

$$P\left(A^{s}\right) = P(B \in E) = \frac{\operatorname{card}(E)}{\operatorname{card}\left(S_{n}\right)} = \frac{\operatorname{card}(E)}{n!}.$$

Déterminons le cardinal de E. Pour construire un élément σ de E, on commence par choisir k éléments dans [1,n]. Il y a $\binom{n}{k}$ tels choix. On ordonne ces k valeurs dans l'ordre croissant : ce sont les valeurs attribuées à A_{s_1},\ldots,A_{s_k} . Il reste (n-k) éléments de [1,n] pour les autres A_i qui peuvent être permutées de (n-k)! façons. Au total

$$\operatorname{card}(E) = \binom{n}{k} \times (n-k)! = \frac{n!}{k!},$$

et donc

$$P(A^s) = \frac{n!/k!}{n!} = \frac{1}{k!}.$$

17) Soit $\varphi: S_n \to S_n$. φ est involutive et donc φ est une permutation de S_n . $\sigma \mapsto (\sigma(n), \ldots, \sigma(1))$

On a $C_n(\Omega) = D_n(\Omega) = [1, n!]$. Soit $k \in [1, n!]$. Si σ est une permutation telle que la longueur de la plus longue liste croissante extraite de σ est k, alors $\phi(\sigma)$ est une permutation telle que la longueur de la plus longue liste décroissante extraite de $\phi(\sigma)$ est k et réciproquement. Il y a donc autant de permutations σ telle que la longueur de la plus longue liste croissante extraite de σ est k que de permutations σ telle que la longueur de la plus longue liste décroissante extraite de σ est k. Puisque m0 suit la loi uniforme, on en déduit que

$$P(C_n = k) = P(D_n = k)$$
.

Ceci montre que C_n et D_n suivent la même loi.

Soit $p = E\left(\sqrt{n-1}\right)$. Alors, $p \leqslant \sqrt{n-1} < p+1$ puis $1+p^2 \leqslant n < 1+(p+1)^2$. Posons $m=1+p^2$. Donc, $n \geqslant m$. D'après la question 14, pour tout σ de \mathscr{S}_n , la liste $(\sigma(1),\ldots,\sigma(m))$, et donc aussi σ , contient au moins une suite extraite croissante de longueur p+1 et une suite extraite décroissante de longueur 1 ou une suite extraite décroissante de longueur p+1 et une suite extraite de longueur 1. L'événement $C_n+D_n\geqslant p+2$ est donc l'événement certain.

D'après l'inégalité de Markov,

$$1 = P\left(C_n + D_n \geqslant p + 2\right) \leqslant \frac{E\left(C_n + D_n\right)}{p + 2} = \frac{2E\left(C_n\right)}{p + 2}$$

 $\operatorname{car} C_n$ et D_n ont même loi, et donc

$$E(C_n) \geqslant \frac{p+2}{2}$$

Maintenant, $(p+2)^2 = p^2 + 4p + 4 = p^2 + 2p + 1 + 3 = (p+1)^2 + 3 > (\sqrt{n-1})^2 + 3 = n+2 > n$ et donc $p+2 > \sqrt{n}$. On a montré que

$$E(C_n) \geqslant \frac{\sqrt{n}}{2}$$
.

18) Notons S_k l'ensemble des listes strictement croissantes $s=(s_1,\ldots,s_k)$ de k éléments de $[\![1,n]\!]$. S_k est en bijection avec l'ensemble des parties à k éléments de $[\![1,n]\!]$ et donc card $(S_k)=\binom{n}{k}$.

 $\mathrm{Maintenant},\,\{C_{\mathfrak{n}}\geqslant k\}\subset \bigcup_{s\in S_k}A^s \ \mathrm{et \ donc},\,\mathrm{d'après}\ \mathrm{la}\ \mathrm{question}\ 16),$

$$P\left(C_{\mathfrak{n}}\geqslant k\right)\leqslant P\left(\bigcup_{s\in S_{k}}A^{s}\right)\leqslant \sum_{s\in S_{k}}P\left(A^{s}\right)=\frac{1}{k!}\mathrm{card}\left(S_{k}\right)=\frac{\binom{\mathfrak{n}}{k}}{k!}.$$

19) Si $\alpha e \sqrt{n}$ n'est pas entier, soit $k = E\left(\alpha e \sqrt{n}\right) + 1$. Alors, k est un entier naturel non nul (car $\alpha e \sqrt{n} \geqslant 0$) vérifiant $k-1 < \alpha e \sqrt{n} < k$ et en particulier, $k-1 < \alpha e \sqrt{n} \leqslant k$. Si $\alpha e \sqrt{n}$ est un entier, nécessairement non nul car $\alpha e \sqrt{n} > 0$, $k = \alpha e \sqrt{n}$ est un entier naturel non nul tel que $k-1 < \alpha e \sqrt{n} \leqslant k$.

Dans tous les cas, on a montré l'existence d'un entier naturel non nul k tel que $k-1 < \alpha e \sqrt{n} \le k$. k est ainsi dorénavant défini. Dans tous les cas, k est le plus petit entier supérieur ou égal à $\alpha e \sqrt{n}$.

Puisque C_n est une variable à valeur entière, $\left\{C_n\geqslant\alpha e\sqrt{n}\right\}=\left\{C_n\geqslant k\right\}$ puis, si $k\leqslant n$, d'après la question 18,

$$\begin{split} P\left(C_n\geqslant \alpha e\sqrt{n}\right) &= P\left(C_n\geqslant k\right) = \frac{\binom{n}{k}}{k!} = \frac{1}{k!^2}\times n(n-1)\dots(n-k+1) \\ &\leqslant \left(\left(\frac{e}{k}\right)^k\right)^2 n^k \; (\text{d'après la question 2}) \\ &= \left(\frac{e\sqrt{n}}{k}\right)^{2k} \leqslant \left(\frac{1}{\alpha}\right)^{2k} \; (\text{par croissance sur } [0,+\infty[\; (\text{de } t\mapsto t^{2k} \; \text{et car } \frac{e\sqrt{n}}{k}\leqslant \frac{1}{\alpha}) \\ &\leqslant \left(\frac{1}{\alpha}\right)^{2\alpha e\sqrt{n}} \; (\text{par décroissance de } t\mapsto \left(\frac{1}{\alpha}\right)^t \; \text{car } \frac{1}{\alpha}<1). \end{split}$$

Sinon, $k \geqslant n+1$ et donc $P\left(C_n \geqslant k\right) = 1$ et dans ce cas, l'inégalité proposée est clairement fausse. On note tout de même que, α étant fixé, pour n grand, on a $\alpha e \sqrt{n} \leqslant n$ et donc $k \leqslant n$.

20) On suppose que α et n sont tels que $\alpha e \sqrt{n} \leqslant n$. On applique la question 1) quand m est l'entier k de la question précédente. On obtient

$$E\left(C_{n}\right)\leqslant k-1+nP\left(C_{n}\geqslant k\right)\leqslant \alpha e\sqrt{n}+n\left(\frac{1}{\alpha}\right)^{2\alpha e\sqrt{n}}.$$

On choisit $\alpha = \alpha_n = 1 + n^{-1/4}$. α est un réel strictement supérieur à 1 et pour n grand, on a $\alpha e \sqrt{n} \leqslant n$ car $\frac{\alpha_n e \sqrt{n}}{n} \sim \frac{e}{\sqrt{n}} \to 0$. Pour n grand, on obtient

$$\frac{E\left(C_{n}\right)}{\sqrt{n}}\leqslant\left(1+n^{-1/4}\right)e+\epsilon_{n}$$

où
$$\epsilon_n = \sqrt{n} \left(\frac{1}{1+n^{-1/4}}\right)^{2\left(1+n^{-1/4}\right)\varepsilon\sqrt{n}}.$$

Or,

$$\begin{split} \ln\left(\epsilon_{n}\right) &= \frac{1}{2}\ln n - 2\left(1 + n^{-1/4}\right)e\sqrt{n}\ln\left(1 + n^{-1/4}\right) \\ &= \frac{1}{n \to +\infty}\ln n - 2en^{1/4} + o\left(n^{1/4}\right) \\ &= \frac{-2en^{1/4} + o\left(n^{1/4}\right)}{n \to +\infty} \text{ (d'après un théorème de croissances comparées)} \\ &\xrightarrow{n \to +\infty} -\infty, \end{split}$$

$$\mathrm{et\ donc\ } \epsilon_n = \exp\left(\frac{1}{2}\ln n - 2\left(1 + n^{-1/4}\right)e\sqrt{n}\ln\left(1 + n^{-1/4}\right)\right) \underset{n \to +\infty}{\to} 0.$$

D'après les questions 5 et 6, $\lim_{n\to+\infty} \frac{\mathbb{E}(C_n)}{\sqrt{n}}$ existe puis

$$\varlimsup_{n\to +\infty} \frac{E\left(C_n\right)}{\sqrt{n}} \leqslant \varlimsup_{n\to +\infty} \left(\left(1+n^{-1/4}\right)e + \epsilon_n\right) = \lim_{n\to +\infty} \left(\left(1+n^{-1/4}\right)e + \epsilon_n\right) = e.$$