Lecture 03: Completeness of Real Numbers

06 August 2019

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT, Jaipur

3.1 Completeness Property

The most important, property of \mathbb{R} that we shall assume is the following.

Completeness Property: Every nonempty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .

Exercise 3.1 State True/False.

- 1. Every nonempty subset of \mathbb{N} that is bounded above has a supremum in \mathbb{N} . Ans. True
- 2. Every nonempty subset of \mathbb{Z} that is bounded above has a supremum in \mathbb{Z} . Ans. True
- 3. Every nonempty subset of \mathbb{N} that is bounded above has a supremum in \mathbb{Q} . Ans. True
- 4. Every nonempty subset of \mathbb{Z} that is bounded above has a supremum in \mathbb{Q} . Ans. True

Completeness property implies the following.

Proposition 3.2 Let S be a nonempty subset of \mathbb{R} that is bounded below. Then S has an infimum.

Remark 3.3 Proposition 3.2 is equivalent to the completeness property.

The set of natural numbers \mathbb{N} is not bounded above in \mathbb{R} . This is evident if we take any real number on number line, then we may take integers bigger than it.

Proposition 3.4 (Archimedean property) Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x.

Alternate form of Archimedean Property: If $a, b \in \mathbb{R}$ and a > 0, then there is a positive integer n such that na > b.

Suppose $a, b \in \mathbb{R}$ with a > 0 is given. Then set x = b/a. By Proposition 3.4, there exists n such that n > b/a, i.e., na > b.

To go other way around take a = 1 and b = x.

The next couple of results are easy consequences of the Archimedean property.

Example 3.5 1. Given x > 0, show that there exists $n_0 \in \mathbb{N}$ such that

$$n > n_0 \implies 0 < 1/n < x$$
.

2. Given x > 0, show that there exists $n_0 \in \mathbb{N}$ such that

$$n > n_0 \implies 2^{-n} < x.$$

3. Let $x \geq 0$. Then show that x = 0 iff for each $n \in \mathbb{N}$, we have $x \leq 1/n$.

Solution:

- 1. Take a = x and b = 1 then AP says that there exist n_0 such that $n_0x > 1$. Now $n_0x > 1 \iff x > 1/n_0$. If $n \ge n_0$ then $1/n \le 1/n_0$. Hence we are done.
- 2. Note that $2^n > n$ for all $n \ge 1$. One can prove it using induction. For n = 1, result is true. For n > 1, adding n on both sides on inequality we get n + n > 1 + n, i.e., 2n > n+1. Now suppose result is true for n = m > 1. Now $2^{m+1} = 2 \cdot 2^m > 2m > m+1$. Now by part 1, it follows that there exists n_0 such that

$$\frac{1}{n_0} < x$$

For $n \ge n_0$, $1/n \le 1/n_0$ also $2^{-n} < 1/n$ hence we get the result.

3. If x = 0 then evidently x < 1/n for each n. Suppose conversely, that $x \le 1/n$ for each n. Suppose x > 0, then by part 1, it follows there exists n_0 such that $1/n_0 < x$. This is a contradiction to the assumption that $x \le 1/n$ for each n.

Example 3.6 Let
$$J_n := (1/n, 1)$$
. Show that $\bigcup_{n=1}^{\infty} J_n = (0, 1)$.

Solution: Note that $J_1 = (1,1) = \emptyset$. Also note that $J_1 \subset J_2 \subset J_3 \subset \cdots$. Each $J_n \subset (0,1)$ hence their union is also a subset of (0,1). We need to show that $(0,1) \subset \bigcup_{n=1}^{\infty} J_n$. Let $x \in (0,1)$ be given. Then by AP, there exist n_0 such that $1/n_0 < x < 1$. hence $x \in J_{n_0}$.

Example 3.7 Let $J_n := [n, \infty)$. Show that $\bigcap_n J_n = \emptyset$.

Solution: Note that $J_1 \supset J_2 \supset J_3 \supset \cdots$. We prove $\bigcap_n J_n = \emptyset$ by contradiction. Suppose $\bigcap_n J_n \neq \emptyset$. There there must exists at least one $x \in \mathbb{R}$ such that $x \in \bigcap_n J_n$, i.e., $x \in J_n$ for all n, i.e. $x \geq n$ for all n. That is x is an upper bound for set of natural number, which is absurd.

A very important consequence of Archimedean property is the existence of greatest integer function stated in the following theorem.

Proposition 3.8 Let $x \in \mathbb{R}$. Then there exists a unique $m \in \mathbb{Z}$ such that $m \le x < m + 1$.

Definition 3.9 The unique integer m such that $m \le x < m+1$ is called greatest integer less than or equal to x. It is denoted by [x]. It is also called the floor of x and is denoted by [x] in computer science. The number x-[x] is called the fractional part of x. We observe that $0 \le x-[x] < 1$.

The Archimedean property leads to the "density of rationals in \mathbb{R} " and "density of irrationals in \mathbb{R} .

Proposition 3.10 Given any $a, b \in \mathbb{R}$ with a < b, there exists a rational number as well as an irrational number between a and b.

Proof: Using Archimedean-Property with $x = 1, y = \frac{1}{b-a}$, we can find $n \in \mathbb{N}$ such that $n > \frac{1}{b-a}$. Let m = [na] + 1. Then $m-1 \le na < m$, and hence

$$a < \frac{m}{n} \le \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b.$$

Thus we have found a rational number (namely, $\frac{m}{n}$) between a and b. Now we show that given any $a, b \in \mathbb{R}$ with a < b, there exists an irrational number, $a < b \implies a + \sqrt{2} < b + \sqrt{2}$, and we can find r a rational number between $a + \sqrt{2}$ and $b + \sqrt{2}$. Then we claim that $r - \sqrt{2}$ is an irrational number between a and b. Clearly $a + \sqrt{2} < r < b + \sqrt{2} \implies a < r - \sqrt{2} < b$. Let us assume that $r - \sqrt{2}$ is rational, i.e.

$$r - \sqrt{2} = \frac{m}{n}$$
, for some $m \in \mathbb{Z}, n \in \mathbb{N}$
 $\implies r - \frac{m}{n} = \sqrt{2}$

which is contradiction as left hand side is a rational number.

Example 3.11 Show that \mathbb{Q} does not have completeness property, i.e. show that there is a non-empty subset of \mathbb{Q} that is bounded above but does not have supremum in \mathbb{Q} .

Solution: Let $A = \{r \in \mathbb{Q} : r^2 < 2\}$; this is a non-empty and bounded subset of \mathbb{Q} . It is clear that $\sqrt{2}$ is an upper bound of set A (If $b_1, b_2 \in \mathbb{R}$ with $0 \le b_1 < b_2$, then $\sqrt{b_1} < \sqrt{b_2}$). We claim that it the supremum. Let us assume contrary, that is there exist $\alpha < \sqrt{2}$ such that α is an upper bound for A. As α is an upper bound and $1 \in A$ so we can say that $1 \le \alpha$. Now $1 \le \alpha < \sqrt{2} \implies \exists r \in \mathbb{Q}$ such that $\alpha < r < \sqrt{2}$. This implies $r^2 < 2 \implies r \in A$. This contradicts that α is an upper bound.