ORACLE Academy

Java Foundations

8-1 Matrices unidimensionales

ORACLE Academy

Objetivos

- En esta lección se abordan los siguientes objetivos:
 - -Crear e inicializar matrices unidimensionales
 - -Modificar un elemento de matriz
 - Recorrer una matriz unidimensional mediante un bucle for
 - -Identificar la causa de un ArrayIndexOutOfBoundsException

¿Una variable puede contener más de un valor?

- Hasta el momento hemos utilizado muchos tipos de variables, pero cada variable almacena un valor a la vez:
 - int, string o double
- A continuación se muestra un ejemplo de una variable String, rockband, que puede contener cualquier valor Joe, Paul, Ed, Rob:
 - Puesto que solo hay 4 valores posibles, cambiar el valor de la variable no es muy difícil

```
String rockBand = "Joe";
String rockBand = "Paul";
String rockBand = "Ed";
String rockBand = "Rob";
```


Número de variables necesarias

- Pero hay ocasiones en las que necesitará que una variable contenga más de un valor
- •¿Qué pasa si quiere definir una variable diferente para cada una de las canciones de RockBand? (¡Significaría que hay 300 variables para cada canción!)
- Sin embargo, crear cientos de variables puede tardar mucho tiempo y ser tedioso

```
String rockBandSong1 = "Rainy day";
String rockBandSong2 = "Forever";
String rockBandSong3 = "Something about you";
String rockBandSong4 = "Love you always";
.....
```


Las matrices pueden proporcionar una solución

- En Java, una matriz es un contenedor indexado que incluye un juego de valores de un único tipo
- Las matrices permiten crear un único identificador para organizar varios elementos del mismo tipo de dato

							Índices
0	1	2	3	4	5	6	
27	12	82	70	54	1	30	
							Elementos

Las matrices pueden proporcionar una solución

- Cada elemento de una matriz se denomina elemento
- Las matrices hacen que almacenar un número elevado de valores y acceder a ellos sea fácil y sencillo

							Índices
0	1	2	3	4	5	6	
27	12	82	70	54	1	30	
							Elementos

Se puede acceder a las matrices mediante el índice

- Puede acceder a cada elemento en una matriz mediante su índice numérico
- El índice del primer elemento es 0
- Una matriz de 10 elementos tiene de 0 a 9 índices

Tipos de dato de la matriz

- Las matrices pueden ser de cualquier tipo de dato, pero todos los elementos tienen que compartir el mismo tipo, como:
 - -Primitivo:
 - Ejemplo: matriz de tipos int

27 12 82 70	54 1 30	
-------------	---------	--

- -Objetos predefinidos:
 - Ejemplo: Matriz de String

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
--	-----	-----	-----	-----	-----	-----	-----

Tipos de dato de la matriz

- Las matrices pueden ser de cualquier tipo de dato, pero todos los elementos tienen que compartir el mismo tipo, como:
 - -Objetos definidos por el programador:
 - (como ejemplos de una clase que creó)
 - Ejemplo: Matriz de objetos de la clase Student

Student1	Student2	Student3	Student4	Student5

Declaración de una Matriz

- Las matrices, como todas las variables, se deben declarar antes de su uso
- Puede declarar una matriz con la sintaxis siguiente:

```
type[] arrayIdentifier;
```

 Observe la notación en corchetes [] después del tipo de dato

Declaración de una matriz de valores de temperatura

- Suponga que desea almacenar diferentes lecturas de temperatura en una matriz
- Puede declarar una matriz de la siguiente manera:

Declaración de una matriz: Dos métodos

• Puede declarar una matriz de dos formas:

```
1. int[] prime;
2. int prime[];
```

- Ambas sintaxis son equivalentes
- El primer formato, en general, es más legible y se debe utilizar

¿Basta con declarar una matriz?

- Declarar una matriz no es suficiente para empezar a utilizarla en el programa
- Antes de utilizar una matriz, debe indicar a Java para que cree espacio en la memoria para los elementos que contendrá

¿Basta con declarar una matriz?

Utilice la siguiente sintaxis:

```
data_type[] variable_name = new data_type[size];
variable_name[index] = value; //repeat for each element
```

- El valor de tamaño determina el número de elementos que la matriz puede contener
- Las matrices no pueden crecer por encima de este tamaño

Creación de una matriz

 Por ejemplo, si desea crear una matriz que contenga 100 números enteros, puede realizar las siguientes acciones:

```
int[] myIntArray;
myIntArray = new int[100];
```

 También puede realizar estas dos líneas en un solo paso:

```
int[] myIntArray = new int[100];
```


¿Qué hacen los fragmentos de código?

```
int[] ages = new int[3];
ages[0] = 19;
ages[1] = 42;
ages[2] = 92;
String[] names = new String[3];
names[0] = "Mary";
names[1] = "Bob";
names[2] = "Carlos";
Nombre de
             Índice
                      Valor
 Variable
```


¿Y declarar e inicializar una matriz en un único paso?

 También puede declarar e inicializar la matriz en un solo paso con valores conocidos:

```
type[] arrayIdentifier = {comma-separated list of values};
```

 Por ejemplo, declare las matrices de los tipos String e int:

```
String[] names = {"Mary", "Bob", "Carlos"};
int[] ages = {25, 27, 48};

Declaración e inicialización en un solo paso
```


¿Y declarar e inicializar una matriz en un único paso?

- Observe que este método no especifica el tamaño
- Se asigna un tamaño en función del número de elementos entre llaves ({ })

```
String[] names = {"Mary", "Bob", "Carlos"};
int[] ages = {25, 27, 48};

Declaración e inicialización en un solo paso
```


Acceso a los elementos de matriz

- Las matrices son estructuras sequentiales, lo que significa que los elementos se almacenan uno después de otro en una matriz
- Puede acceder a un elemento individual de una matriz mediante una notación en corchetes
- Por ejemplo, aquí se muestra cómo puede obtener valores de la matriz ages:

```
int[] ages = {25, 27, 48};
int myAge = ages[0];
int yourAge = ages[1];
System.out.println("My age is " + ages[0]);
```


¿Cómo se define el valor de un elemento de matriz?

 Puede definir los valores para los elementos de la matriz como se muestra a continuación:

```
String[] names = {"Mary", "Bob", "Carlos"};
names[0] = "Gary";
names[1] = "Rob";
```

 Después de definir los valores en los elementos en los índices 0 y 1, la matriz names se muestra de la siguiente manera:

0	1	2	
Gary	Rob	Carlos	
names[0]	names[1]	names[2]	

Ejercicio 1

- •¿Puede identificar los tres componentes de una declaración de matriz para cada una de estas matrices de tipos de datos primitivos?
 - -Tipo de Dato
 - -Nombre
 - -Tamaño

```
int[] myArray;
myArray = new int[20];
char[] sentence = new char[100];
double[] teamPoints = new double[5];
```


Inicialización por defecto de matrices

- Cuando las matrices se han declarado pero aún no se han inicializado, a los elementos se les da el valor por defecto asociado con el tipo de dato.
- Por ejemplo:

int[] myArray = new int[5];

Valores por defecto para los elementos de esta matriz

Indeks:	0	1	2	3	4
Nilai:	0	0	0	0	0

¿Cómo se accede a la longitud de una matriz?

- Hasta ahora, ha creado una matriz con un número determinado de elementos
- Después de la creación, no puede cambiar la longitud de una matriz. No pueden crecer por encima de este tamaño
- Puede acceder al tamaño de cualquier matriz mediante la propiedad length de la matriz

```
int primes[] = {2, 3, 5, 7, 11, 13, 17};
System.out.println("Array length: " + primes.length);
//prints 7
```


Índices y longitud de matriz

 Por ejemplo, el siguiente fragmento de código muestra el tamaño de la matriz ages:

```
int ages[] = {27, 12, 82, 70, 54, 1, 30, 34};
System.out.println(ages.length); //prints 8
```


Academy

Ejercicio 2

- Cree un nuevo proyecto y agréguele el archivo ArrayEx1. java
- Examine ArrayEx1. java
- Modifique el programa para implantar...
 - -Declare una matriz de una dimensión denominada score de tipo int que pueda contener 9 valores
 - Declare e inicialice una matriz de bytes de una dimensión denominada values de tamaño 10, de manera que todas las entradas contengan 1
 - Anule los comentarios de las dos líneas que se han comentado y, a continuación, resuelva los errores de sintaxis

Recorrido de una matriz

- Iterar o recorrer una matriz significa procesar cada elemento de la matriz por el número de índice
- Puede acceder a cada elemento de una matriz para...
 - -Imprimir los elementos
 - -Buscar un elemento
 - -Inicializar los elementos de una matriz con el mismo valor

Uso de un bucle for para recorrer las matrices

- Puede utilizar un bucle for para recorrer las matrices
- El bucle for le permite iterar sobre un rango conocido
- Puede visitar cada elemento de matriz mediante la propiedad de longitud de la matriz en la condición de iteración

```
int[] array = { -20, 19, 1, 5, -1, 27, 19, 5 };
int min = array[0]; // initialize the current minimum
for (int index=0; index < array.length; index++ )
   if (array[index] < min)
        min = array[index];
System.out.println("The minimum of this array is: " + min);</pre>
```


¿Cómo se imprimen los valores de una matriz de nombres?

Considere una matriz de cadenas, names:

```
String names[] = {"Tom", "David", "Mike"};
```

Recorra la matriz names con el bucle for:

Uso de un bucle for-each para recorrer una matriz

- También puede utilizar un bucle for-each, una alternativa al bucle for, para iterar una matriz.
- El bucle for-each...
 - -Funciona de la misma forma que el bucle for, pero se implanta de una manera más sencilla.
 - -También se le conoce como un bucle for mejorado.

Uso de un bucle for-each para recorrer una matriz

• Sintaxis:

```
for (<type> <iteration variable> : <array name>) {
      <code_block to be performed for each arrayelement>
}//end for
```


¿Cómo se imprimen los valores de una matriz de nombres mediante un bucle for-each?

• A continuación se muestra un ejemplo de un recorrido de la matriz de nombres mediante un bucle for-each:

```
Iteración-
Variable
Tipo
Nombre de la matriz

for(String name: names){
    System.out.println(name);
}//end for
```


¿Cómo se imprimen los valores de una matriz de nombres mediante un bucle for-each?

- Para cada iteración del bucle, el siguiente elemento de la matriz se recupera y se almacena en una variable de iteración
- El tipo debe ser el mismo que el de los elementos almacenados en la recolección

Bucle for-each frente a Bucle for

Bucle for-each

```
for(String name: names){
    System.out.println(name);
}//end for
```

Bucle for

```
for (int idx = 0; idx < names.length; idx++){
    System.out.println(names[idx]);
}//end for</pre>
```

• La salida de ambos bucles es la misma.

Procesamiento de una matriz de cadenas

• Resultado:

Name is George Name is Jill Name is Xinyi Name is Ravi

Conclusiones

- Veamos un ejemplo en el que hay que...
 - Introducir las puntuaciones de 10 estudiantes mediante un objeto Scanner
 - -Mostrar las puntuaciones que ha introducido
 - -Calcular el promedio de las puntuaciones que ha introducido

Calculemos la puntuación media

```
public class StudentScores {
   public static void main(String args[]) {
      double scores[] = new double[10];
      double sum = 0.0, avg = 0.0;
      Scanner keyboard = new Scanner(System.in);
      System.out.println("Enter scores of 10 students");
      for(int i = 0; i < scores.length; i++) {</pre>
         scores[i] = keyboard.nextInt();
      }//end for
      System.out.println("Display the scores of 10 students");
      for(int i = 0; i < scores.length; i++) {</pre>
         System.out.println(scores[i]);
      }//end for
      for(int i = 0; i < scores.length; i++) {</pre>
         sum = sum + scores[i];
         avg = sum / scores.length;
      }//end for
      System.out.println("The average score of the class " + avg);
    }//end method main
}//end class StudentScores
```


Ejercicio 3

- Agregue el archivo ComputeAvg. java al proyecto creado para el ejercicio 2
- Examine ComputeAvg.java
- Modifique el programa para implantar...
 - En una clase determinada, hay cinco pruebas, cada una con un valor de 100 puntos
 - Introduzca cinco puntuaciones de las pruebas de la consola
 - Almacene las puntuaciones de las pruebas en una matriz
 - Calcule las puntuaciones medias de los estudiantes

¿Qué es ArrayIndexOutOfBoundsException?

- Como ya sabe, una matriz tiene un tamaño fijo
- El índice debe estar en un intervalo de rango [0, n-1], en que n es el tamaño de la matriz
- Si un índice es negativo o mayor o igual a tamaño de la matriz, el índice de matriz está fuera de los límites
- Si un índice de matriz está fuera de los límites, JVM devuelve ArrayIndexOutOfBoundsException
- Esto se denomina comprobación de límites automática

¿Qué pasa cuando se produce esta excepción?

- Se ha devuelto ArrayIndexOutOfBoundsException solo en tiempo de ejecución
- El compilador Java no comprueba esta excepción cuando se está compilando un programa
- El programa termina si esta excepción no se ha manejado

¿Cómo se Identifica ArrayIndexOutOfBoundsException?

```
public static void main(String[] args) {
    int primes[] = {2, 3, 5, 7, 11, 13, 17};
    System.out.println("Array length: " + primes.length);
    primes[10] = 20; //

    System.out.println("The first few prime numbers are:");
    for (int i : primes) {
        System.out.println(i);
        }//end for
}//end method main
El índice de la matriz es
    de 0 a 6 y está intentando
    acceder a un elemento
    en el índice 10
```

• Resultado:

```
Array length: 7
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 10
        at arraysdemo.ArraysDemo.main(ArraysDemo.java:21)
Java Result: 1
```


Ejercicio 4

- Agregue el archivo ArrayEx2. java al proyecto creado para el ejercicio 2
- Examine ArrayEx2. java
- Realice lo siguiente:
 - -Ejecute el proyecto y observe el error
 - -Modifique el programa para resolver el error
 - Mediante un bucle for-each, muestre todos los exploradores que se almacenan en la matriz

Resumen

- En esta lección, debe haber aprendido lo siguiente:
 - -Crear e inicializar matrices unidimensionales
 - -Modificar un elemento de matriz
 - Recorrer una matriz unidimensional mediante un bucle for
 - -Identificar la causa de un ArrayIndexOutOfBoundsException

ORACLE Academy