Yang Song (001003647)

Program Structures & Algorithms Fall 2021

Assignment No. 5

Task (List down the tasks performed in the Assignment)

- 1. A cutoff (defaults to, say, 1000) which you will update according to the first argument in the command line when running. It's your job to experiment and come up with a good value for this cutoff. If there are fewer elements to sort than the cutoff, then you should use the system sort instead.
- 2. Recursion depth or the number of available threads. Using this determination, you might decide on an ideal number (t) of separate threads (stick to powers of 2) and arrange for that number of partitions to be parallelized (by preventing recursion after the depth of lg t is reached).
- 3. An appropriate combination of these.

Relationship Conclusion:

- 1. It is better to sort in parallel than system sort
- 2. A good cutoff number is around 41% of the array size
- 3. An ideal number of separate threads is 8

Evidence to support the conclusion:

1. Output

```
public static void main(String[] args) {
    processArgs(args);
    System.out.println("------test cutoff-----");
    System.out.println("Degree of parallelism: " + ForkJoinPool.getCommonPoolParallelism());
    Random random = new Random();

    // manually set the array size from 2000000 to 5000000
    int[] array = new int[5000000]; // 2000000, 3000000, 4000000, 5000000
```

Firstly, I tested the relationship between run time and cutoff number. As ForkJoinPool. get-CommonPoolParallelism() was 7 which told me my cpu is 8, I chose thread number as 8 at

first to test different cutoff results. The output was long, so I just screenshot the part of the result.

the array size from 2000000 to 5000000, the cutoff from 25.5% to 50% of array size

Degree of parallel	ism. 7	Degree of paralleli	sm: 7		
Degree of parallelism: 7 the number of threads is: 8		the number of threads is: 8			
cutoff: 510000	10times Time:975ms	cutoff: 765000	10times Time:1634ms		
cutoff: 520000	10times Time:816ms	cutoff: 780000	10times Time:1293ms		
cutoff: 530000	10times Time:809ms	cutoff: 795000	10times Time:1280ms		
cutoff: 540000	10times Time:863ms	cutoff: 810000	10times Time: 1279ms		
cutoff: 550000	10times Time:865ms	cutoff: 825000	10times Time: 1275ms		
cutoff: 560000	10times Time:906ms	cutoff: 840000	10times Time: 1276ms		
cutoff: 570000	10times Time:899ms	cutoff: 855000	10times Time:1284ms		
cutoff: 580000	10times Time:846ms	cutoff: 870000	10times Time:1319ms		
cutoff: 590000	10times Time:862ms	cutoff: 885000	10times Time:1327ms		
cutoff: 600000	10times Time:847ms	cutoff: 900000	10times Time:1307ms		
cutoff: 610000	10times Time:813ms	cutoff: 915000	10times Time:1457ms		
cutoff: 620000	10times Time:825ms	cutoff: 930000	10times Time:1433ms		
cutoff: 630000	10times Time:872ms	cutoff: 945000	10times Time:1410ms		
cutoff: 640000	10times Time:838ms	cutoff: 960000	10times Time:1602ms		
cutoff: 650000	10times Time:834ms	cutoff: 975000	10times Time:1367ms		
cutoff: 660000	10times Time:850ms	cutoff: 990000	10times Time:1407ms		
cutoff: 670000	10times Time:849ms	cutoff: 1005000	10times Time:1385ms		
cutoff: 680000	10times Time:838ms	cutoff: 1020000	10times Time:1379ms		
cutoff: 690000	10times Time:844ms	cutoff: 1035000	10times Time:1403ms		
cutoff: 700000	10times Time:873ms	cutoff: 1050000	10times Time:1392ms		
cutoff: 710000	10times Time:841ms	cutoff: 1065000	10times Time:1358ms		
cutoff: 720000	10times Time:932ms	cutoff: 1080000	10times Time:1400ms		
cutoff: 730000	10times Time:842ms	cutoff: 1095000	10times Time:1462ms		
cutoff: 740000	10times Time:874ms	cutoff: 1110000	10times Time:1359ms		
cutoff: 750000	10times Time:840ms	cutoff: 1125000	10times Time:1321ms		
cutoff: 760000	10times Time:836ms	cutoff: 1140000	10times Time:1321ms		
cutoff: 770000	10times Time:929ms	cutoff: 1155000	10times Time:1329ms		
cutoff: 780000	10times Time:873ms	cutoff: 1170000	10times Time:1316ms		
cutoff: 790000	10times Time:863ms	cutoff: 1185000	10times Time:1317ms		
cutoff: 800000	10times Time:931ms	cutoff: 1200000	10times Time:1310ms		
cutoff: 810000	10times Time:855ms	cutoff: 1215000	10times Time:1290ms		
cutoff: 820000	10times Time:844ms	cutoff: 1230000	10times Time:1281ms		
cutoff: 830000	10times Time:871ms	cutoff: 1245000	10times Time:1274ms		
cutoff: 840000	10times Time:904ms	cutoff: 1260000	10times Time:1275ms		
cutoff: 850000	10times Time:877ms	cutoff: 1275000	10times Time:1280ms		
cutoff: 860000	10times Time:858ms	cutoff: 1290000	10times Time:1281ms		
cutoff: 870000	10times Time:872ms	cutoff: 1305000	10times Time:1276ms		
cutoff: 880000	10times Time:860ms	cutoff: 1320000	10times Time:1276ms		

Degree of parallelism: 7		Degree of parallelism: 7			
the number of threads is: 8		the number of threads is: 8			
cutoff: 1020000	10times Time:2077ms	cutoff: 1275000 10times Time:2381ms			
cutoff: 1040000	10times Time:1738ms	cutoff: 1300000 10times Time:2166ms			
cutoff: 1060000	10times Time:1770ms	cutoff: 1325000 10times Time:2157ms			
cutoff: 1080000	10times Time:1719ms	cutoff: 1350000 10times Time:2163ms			
cutoff: 1100000	10times Time:1749ms	cutoff: 1375000 10times Time:2152ms			
cutoff: 1120000	10times Time:1747ms	cutoff: 1400000 10times Time:2139ms			
cutoff: 1140000	10times Time:1796ms	cutoff: 1425000 10times Time:2238ms			
cutoff: 1160000	10times Time:1955ms	cutoff: 1450000 10times Time:2263ms			
cutoff: 1180000	10times Time:1902ms	cutoff: 1475000 10times Time:2193ms			
cutoff: 1200000	10times Time:1832ms	cutoff: 1500000 10times Time:2213ms			
cutoff: 1220000	10times Time:1818ms	cutoff: 1525000 10times Time:2234ms			
cutoff: 1240000	10times Time:1800ms	cutoff: 1550000 10times Time:2230ms			
cutoff: 1260000	10times Time:1776ms	cutoff: 1575000 10times Time:2430ms			
cutoff: 1280000	10times Time:1811ms	cutoff: 1600000 10times Time:2287ms			
cutoff: 1300000	10times Time:1892ms	cutoff: 1625000 10times Time:2288ms			
cutoff: 1320000	10times Time:1858ms	cutoff: 1650000 10times Time:2282ms			
cutoff: 1340000	10times Time:1872ms	cutoff: 1675000 10times Time:2284ms			
cutoff: 1360000	10times Time:1741ms	cutoff: 1700000 10times Time:2507ms			
cutoff: 1380000	10times Time:1732ms	cutoff: 1725000 10times Time:2423ms			
cutoff: 1400000	10times Time:1725ms	cutoff: 1750000 10times Time:2189ms			
cutoff: 1420000	10times Time:1727ms	cutoff: 1775000 10times Time:2183ms			
cutoff: 1440000	10times Time:1750ms	cutoff: 1800000 10times Time:2178ms			
cutoff: 1460000	10times Time:1728ms	cutoff: 1825000 10times Time:2225ms			
cutoff: 1480000	10times Time:1738ms	cutoff: 1850000 10times Time:2220ms			
cutoff: 1500000	10times Time:1735ms	cutoff: 1875000 10times Time:2214ms			
cutoff: 1520000	10times Time:1729ms	cutoff: 1900000 10times Time:2290ms			
cutoff: 1540000	10times Time:1742ms	cutoff: 1925000 10times Time:2292ms			
cutoff: 1560000	10times Time:1730ms	cutoff: 1950000 10times Time:2116ms			
cutoff: 1580000	10times Time:1728ms	cutoff: 1975000 10times Time:2138ms			
cutoff: 1600000	10times Time:1730ms	cutoff: 2000000 10times Time:2106ms			
cutoff: 1620000	10times Time:1726ms	cutoff: 2025000 10times Time:2134ms			
cutoff: 1640000	10times Time:1728ms	cutoff: 2050000 10times Time:2104ms			
cutoff: 1660000	10times Time:1800ms	cutoff: 2075000 10times Time:2130ms			
cutoff: 1680000	10times Time:2002ms	cutoff: 2100000 10times Time:2130ms			
cutoff: 1700000	10times Time:1802ms	cutoff: 2125000 10times Time:2142ms			
cutoff: 1720000	10times Time:1743ms	cutoff: 2150000 10times Time:2101ms			
cutoff: 1740000	10times Time:1785ms	cutoff: 2175000 10times Time:2221ms			
cutoff: 1760000	10times Time:1904ms	cutoff: 2200000 10times Time:2155ms			

Secondly, I made an experiment on different thread numbers with a good cutoff which is 41% of the array size.

the array size from 2000000 to 5000000, the thread number from 2 to 256

2. Graphical Representation

cutoff / array size	2 million array size	3 million array size	4 million array size	5 million array size
0.255	97.5	163.4	207.7	238.1
0.26	81.6	129.3	173.8	216.6
0.265	80.9	128	177	215.7
0.27	86.3	127.9	171.9	216.3
0.275	86.5	127.5	174.9	215.2
0.28	90.6	127.6	174.7	213.9
0.285	89.9	128.4	179.6	223.8
0.29	84.6	131.9	195.5	226.3
0.295	86.2	132.7	190.2	219.3
0.3	84.7	130.7	183.2	221.3
0.305	81.3	145.7	181.8	223.4
0.31	82.5	143.3	180	223
0.315	87.2	141	177.6	243
0.32	83.8	160.2	181.1	228.7
0.325	83.4	136.7	189.2	228.8
0.33	85	140.7	185.8	228.2
0.335	84.9	138.5	187.2	228.4
0.34	83.8	137.9	174.1	250.7
0.345	84.4	140.3	173.2	242.3
0.35	87.3	139.2	172.5	218.9
0.355	84.1	135.8	172.7	218.3
0.36	93.2	140	175	217.8
0.365	84.2	146.2	172.8	222.5
0.37	87.4	135.9	173.8	222
0.375	84	132.1	173.5	221.4
0.38	83.6	132.1	172.9	229
0.385	92.9	132.9	174.2	229.2
0.39	87.3	131.6	173	211.6
0.395	86.3	131.7	172.8	213.8
0.4	93.1	131	173	210.6
0.405	85.5	129	172.6	213.4
0.41	84.4	128.1	172.8	210.4
0.415	87.1	127.4	180	213
0.42	90.4	127.5	200.2	213
0.425	87.7	128	180.2	214.2
0.43	85.8	128.1	174.3	210.1
0.435	87.2	127.6	178.5	222.1
0.44	86	127.6	190.4	215.5
0.445	93.8	127.3	175.8	211.8
0.45	84.8	128.4	172.1	219
0.455	81.3	127.8	173.6	218.2
0.46	84	127.7	171.6	221.2
0.465	83.9	131.7	170.4	216.7
0.47	81.6	135	171.8	210.5
0.475	90.3	130.4	171.9	206.7
0.48	86.8	128.1	170	213.9
0.485	85.2	130.5	172.6	217.3
0.49	85.8	128.3	176.9	217.6
0.495	88.2	130.4	170.8	216.2
		1		

I chose cutoff / array size = 0.41 as a relatively good value.

threads	2 million array size	3 million array size	4 million array size	5 million array size
2	172.5	293.9	409.4	524.7
4	120.6	187.6	282.9	348.4
8	79.7	122.4	175.9	230.8
16	79.9	123.3	171.2	227.1
32	81.6	121.5	171.4	222.6
64	79.8	120.2	172.2	227.4
128	81.4	121.7	172.7	223.4
256	80.3	119.8	174.6	228.8

when the thread number is larger than 8, the run time is smaller and starts to flatten.