

Urban Transportation Planning

Chinese-English course (2019)

Lecturer: Dr. Qiong Bao Email: baoqiong@seu.edu.cn Phone: 17351788445

9:50AM, Sunday, 5th May School of Transportation | Southeast University of China | Campus Jiulonghu |

Building Jizhong Y311

1001 0 100 0 100

Transportation Modelling

- Since transportation problems are multi-dimensional, (e.g., Traffic congestion, Emissions, Impact on economy, Traffic accidents)
- and the need for transportation infrastructure is high, due to: Globalization, Urbanization,

Governments cannot afford transportation constraints to have a great negative impact on future competitiveness, foreign investments,...

Moreover, changing the existing infrastructure is:

Expensive and have significant long-term effects;

No guarantee for success;

Not trivial (existing spatial zones, restricted by local regulations, legislation,

Review of the four step model

- □ Step1 Trip Generation
- Step2 Trip Distribution
- □ Step3 Mode Choice (Modal Split)
- □ Step4 Traffic Assignment (Route Choice)

Le	cture	Week	Date/Time	Торіс
	1	9	28 April 9: 50-12: 15	Transportation planning & demand and supply & trip-based model
	2	10	5 May 9: 50-12: 15	ABM: data process
	3	11	10 May 9: 50-12: 15	ABM: scheduling
	4	12	17 May 9: 50-12: 15	ABM: uncertainty analysis
	5	13	24 May 9: 50-12: 15	ABM: sensitivity analysis
	6	14	31 May 9: 50-12: 15	Project Evaluation I
	7	15	7 June 9: 50-12: 15	Festival
	8	16	14 June 9: 50-12: 15	Project Evaluation II

THE CE THE THE THE THE

Transportation Modelling

- □ Therefore transportation models are often used. transportation models to represent human behavior, we can:
 - understand individual's travel behavior
 - support management decision making
 - make predictions in uncertain circumstances
 - forecast traffic trend for new or expanded transportation system
 - test scenarios (e.g., alternative land uses, policies)
 - influence future decision-making
- AIM: to portray reality as accurate as possible.
- Commonly used approaches in different countries :
 - Trip-based approach
 - Tour-based approach
 - Activity-based approach

Southeast University School of Transportat

Questions: could answer

- □ How many trips are produced by each household?
- How many trips are attracted to each zone?
- What is the distribution of trip lengths by purpose?
- Where are the destinations of different trip purposes?
- What mode was used for each individual trip?
- How is the traffic flow affected by cost and level of service?
- How are trips distributed to the network?

Questions: couldn't answer

- How complex is the travel? Are there any stops? Before or after the main destination?
- □ Where are the intermediate stop destinations?
- What mode (combinations of modes) was used to visit intermediate stops?
- How do major improvements affect induced travel?
- What factors affect time-of-day travel decisions?

7 Southeast University School of Transportation

Requirement

THE RESIDE

■ Need a policy-sensitive model

THE R 100 H TO

- Range of transportation policies under study:
 - Congestion pricing policy (cost of travel)
 - Parking policy (cost of travel)
 - Land use and growth management policy (development of infrastructure)
 - Highway and transit improvements policy (level of service of transportation systems)
- Need a model integrated appraisal for air quality, environmental impact assessment, and induced demand

Motivations for ABM

The figure illustrates the daily activity and travel pattern of one person.

This traveler switched to transit in response to an employer-sponsored program. The switch required him to begin the commute earlier, at 7:00 a.m., in order to arrive punctually. Because the shopping destination was not on the transit path, he decided to go home after work and shop later.

- This response was rooted in demand of activity, and involved a complex adjustment to the entire day's pattern.
- Models could capture this kind of response only if the models represent how people schedule their daily activities.

Scenario1: Before intervention 7:30 am Orive alone H S Employer-based transit incentive program 7:00 am Transit W 4:40 pm Drive alone Scenario2: After intervention

100 OF 100 - 100 OF 100 OF 100

Limitations of the trip based models

- With the lack of integration of land use forecasting models in the conventional models, the overall travel demand is fixed and essentially independent of the future transportation network;
- Focus on individual trips, ignoring the spatial and temporal interrelationship between all trips and activities comprising the individual activity pattern;
- Ignorance of travel as a demand derived from activity participation decisions;
- The construction of models based strictly on the concept of utility maximization, neglecting substantial evidence relative to alternative decision strategies, e.g. habit formation, choice complexity.

Southeast University School of Transportatio

Motivations for ABM

- □ The motivation for activity based travel demand modeling is that travel decisions are activity based.
- □ ABM can capture complex travel behavior patterns.
- □ In the 1970s, ABM emerged based on the theories of Hägerstrand (1970) and Chapin (1974).
 - Hägerstrand focused on personal and social constraints
 - Chapin focused on opportunities and choices
- Policies aimed to affect travel decisions (e.g. telecommuting program) influence the problem indirectly through the behavior of individuals. Individuals, moreover, adjust their behavior in complex ways.

Daily travel patterns by an individual

Activities completed in a working day by an individual

Southeast University School of Transportation

H: Home

S: Shop

THE CENTRE THE RESIDENCE OF

Trip based approach

Trip based approach:

- □ The entities of the model is separate, independent trips;
- □ Trip is defined as a travel from one location to another without and intermediate stops;
- no connections between different trips;
- no time component;
- no sequential infomation.

100 T 100 T 100

Tour based approach

Tour based approach:

- □ *Tour* is defined as a cycle of trips start and end in the same location;
- In this example, there are two homebased tours;
- In tour-based approach, the temporal and spatial constrains could represent within a tour;
- but there is no linkage between multiple tours.

Activity based approach Activity based approach

W: Work

THE R 101 TO 101

D: Dinner

Space

- ☐ In activity-based approach, the research unit is the sequence of behavior, instead of individual trips;
- □ Therefore, the full travel pattern of individual could be reflected in temporal and spatial dimensions;
- □ In this example, there are 6 activities happened.

Recall the features of TBM

Trips are treated independently

- Departure times
- Different household activities
- Locations of subsequent stops in a tour
- □ All daily trips are "added up" across all households
- Difficult to account for induced travel
- Difficult to support a policy-sensitive analysis

Recall the features of ABM

- □ Travel demand is derived from the activities that individuals need/wish to perform.
- Sequences or patterns of behaviour, and not individual trips are the unit of analysis.
- □ Household and other social structures influence travel and activity behavior.
- □ Spatial, temporal, transportation and even interpersonal interdependencies constrain activity/travel behavior.
- Activity-based approaches reflect the scheduling of activities in both the spatial and temporal dimensions.

Southeast University School of Transportation

model needs

Activity-based model

inputs outputs What the How the What we get

model works

from the model

Southeast University School of Transportation

What we get from the TBM?

Trip-based models

20 Southeast University School of Transportation

What we get from the ABM?

Activity-based models

Southeast University School of Transportation Output Variable Definition Values 1,2, ... 4023602 Uniquely defined household ID for H hhid population data Traffic analysis zone (TAZ) ID of the H_hhlocid most detailed geographical level 0: single, no children, 1: single, with children, 2: single, with parents, 3: double, no children, 4 Household composition H_comp double, with children 0: [0, 1250), 1: [1250, 2250), 2: [2250, 3250), 3: Household income The oldest age in household 0: <35, 1: [35, 55), 2: [55, 65), 3: [65, 75), 4: >=75 H child Number of children 0: no children, 1: <6, 2: [6, 12], 3: >12 0: no cars, 1: 1car, 2: 2 or more cars Number of cars in household H_ncar P_pid Person ID 0: <35, 1: [35, 55), 2: [55, 65), 3: [65, 75), 4: >=75 P_age Person age of household member P_twork Work status of household member 0: no work, 2: work Gender of household member 0: male, 1: female P isDriv Having driving license 0: no license, 1: with license A_activityCounter Activity ID Day of the week 0: Monday ... 6: Sunday 0: Being at home, 1: Work, 3: Bring/get, 4: A_activityType Activity type Shopping(one), 5: Shopping(mul), 6: Services, 7: Social visits, 8: Leisure, 9: Touring, 10: other Beginning time of each activity A beginningTime A_duration Activity duration A location Location ID J duration Journey duration 1: Car driver, 3: Non-motorised, 4: Public transport, 6: J transportMode Transport mode Car passenger Travel distance for each journey J distance

What we get from the ABM?

- ABM is operational at the individual level. A full daily travel pattern of individual describes which activities are conducted, where (location), when (start time), for how long (duration), with whom, the transport mode (mode choice) involved and ideally also the implied route decisions is determined.
- This kind of model therefore not only presents the predicted trips, but also the complete activities taken place during these trips. Therefore, an enriched travel data set can be generated that allows for the assessment of more detailed transportation plans, projects and policies.

What we get from the ABM?

Trip-based vs activity-based

Southeast University School of Transportation

THE OF THE SHOP IS THE TO THE

What the ABM needs?

- □ The typical input data includes:
 - Population data

age, occupations, income level, vehicle ownership, family size,

current land use and zoning system data, maps and topography, activity for each area, land use and zoning plans

- Transportation system information

cost, service levels of public transportation, speeds and travel times, speed limits, parking capacity and cost

Observed travel patterns

number of trips and purpose, origins and destinations (OD), transport mode, start time, and time duration, past data for trends

100 0 00 0 10

FEATHERS/ALBATROSS (ABM)

- □ FEATHERS is one of the operational activity based simulation systems, was developed by and Transportation Research Institute (IMOB) of Hasselt University of Belgium.
- □ It's a micro-simulation framework to facilitate the implementation of activity-based models for travel demand forecasting.
- Currently, the embedded scheduler is adapted from the ALBATROSS model (Arentze and Timmermans, 2004).
- □ A sequence of 26 decision trees is used to simulate how individuals perform their daily activities.

Input data of ABM (ALBATROSS or FEATHERS)

THE OF THE STORE OF THE STORE OF

Sources of input data of ABM

- Sources of input data:
 - Census data

(e.g. nr. of employees in the area, nr. of residents)

- Employment office

(e.g. nr. of employees in the restaurant/post office)

Utility company records

(e.g. departure intervals of bus/train, in vehicle time)

Studies (observed data)

(e.g. access/egress time, waiting time, max. transfer distance)

Surveys

(e.g. activity types, transport modes, locations of activity)

Input data of ABM (ALBATROSS or FEATHERS)

327 Superzones

Subzone zoning system:

Zoning system of FEATHERS

 Superzone (municipalities), Zone (administrative units at one level SUBZONE lower than municipality), Zoning System and Subzone (virtual areas according to homogeneous characteristics) 1145 Zones Most detailed travel demand information 2386 Subzones

BB zoning system:

Zone

Subzone

and BB (the most disaggregated geographical level currently applicable in Belgium)

Geographical Levels of Flanders used in Feathers

10521 BBs

Most detailed travel demand information:

Zoning System

Input data of ABM (ALBATROSS or FEATHERS)

Southeast University School of Transportation

THE RESIDENCE TO THE TOTAL THE

Distance and time (O-D pair)

Southeast University School of Transportation

Map and dataview

1010 H HIL HI TH

Input data of ABM (ALBATROSS or FEATHERS)

Southeast University School of Transportat

100 0 00 00 00

TransCAD Interface

tcdata	2006/2/16 9:38	文本文档	1 KB
tcw.BAK	2002/12/17 17:30	BAK 文件	7,752 KB
- 50	200211211717	chement.	7750 10

Layers

'nΧ

BROWN AT BEEN BO

THE RESIDENCE TO THE RESIDENCE TO THE

Merge by value

THE REPORT OF THE PARTY OF THE

Schedule diary data

DataMod

ID	Area District	Municipality
4	1061.33 溧水县	南京
1	803.98 高淳县	南京
3	1474.71 六合区	南京
13	1624.60 江宁区	南京
2	907.71 浦口区	南京
8	372.76 栖霞区	南京
5	91.59 雨花台区	南京
6	90.95 建郵区	南京
7	24.59 泰淮区	南京
9	27.77 下关区	南京
10	25.81 鼓楼区	南京
11	77.13 玄武区	南京
12	23.96 白下区	南京

Merge by value

Input data of ABM (ALBATROSS or FEATHERS)

Households data Synthetic Persons data population data

Total records: 2,898,426

Households and persons are represented individually in the activity-based model.

COMP: 0: single, no children, 1: single, with children, 2: single, with parents, 3: double, no children, 4: double, with children

SEC: income- 0: [0, 1250), 1: [1250, 2250), 2: [2250, 3250), 3: >=3250

AGE: 0: <35, 1: [35, 55), 2: [55, 65), 3: [65, 75), 4:

Household attribute data and person attribute data

In China: one time population census conducted every 10 years

Population attribute data

- Population attribute data
 - Due to the privacy protection or limited by the high cost, the attributed population data is not directly available.
- Challenge: How to obtain the household and person attribute data for the entire population in the study region from available data?
- Methods:
 - Population simulator
 - Population synthesis

Both of the above methods could "create" the household and person data which possess all of the demographic attributes needed for model inputs.

THE RESIDENCE OF THE STATE OF THE STATE OF

Population attribute data

- Objective:
 - to obtain the household and person attribute data for the entire population from the available data

43 Southeast University School of Transportation

Population synthesis

THE RESIDENCE OF THE STATE OF THE

- Practical in application:
 - Relatively easy (feasible) to obtain a sample data;
 - Available to obtain the forecasted or projected aggregate distributions of household and person attributes for the population;
- Commonly used approaches:
 - Iterative proportional fitting algorithm (IPF)
 - Iterative proportional updating algorithm (IPU)

T. ... 1.

Iterative proportional fitting (IPF)

- Input of IPF:
 - Sample data: frequency tables or household travel surveys
 - Marginal distributions from the Census files (base year), population forecasts (future year) are used for controls
- Output of IPF:
 - Joint distribution of household attributes
 - A set of cross tables

Population simulator

E.g.: 2000 year population attribute data

AGE: 0: <35, 1: [35, 55), 2: [55, 65), 3: [65, 75), 4: >=75

AGE2000 Child: 17-year Category value: <u>0</u> AGE2019 Adult: 36-year Category value: <u>1</u>

Iterative proportional fitting (IPF)

- Deming and Stephan (1941) presented the method to adjust sample frequency tables to match known marginal distributions using a least squares approach.
- Beckman (1996) proposed a method to create synthetic population based on IPF.
 - Joint distribution of household attributes was estimated using IPF.
 - Synthetic households were generated by randomly selecting households from the sample based on estimated joint distributions.
 - Synthetic persons were comprised from the selected households.
 - IPF is one of the most commonly used techniques for generating synthetic population.

IPF example

TOTAL TO THE TOTAL TOTAL

2 attributes: household size, household income

ror or nor - nor or nor or nor

IPF example

Iteration1: Adjust for income

			Hou	sehold incor	ne c		Adjust	Marginal	Adjust for	
			High Low		Total	-size	size			
Household	1	3	×8.57	25.7	1	×6.67	6.67	32.37	30	0.93
size	2	2	=	17.14	4	=	26.67	43.81	40	0.91
category	3	2		17.14	1		6.67	23.81	30	1.26
Total			7		6					
Adjust Total			60)	40					
Marginal- Income		60)	40					
Adjust for income			8,57=	60/7	6.67=40/6					

IPF example

Iteration1: Adjust for size

THE RESIDENCE OF THE PERSON OF THE

		Household incor	me category	Adjust	Marginal	Adjust for	
		High	Low	Total	-size	size	
Household	1	23.82	6.18	30	30	0.93	
size	2	15.65	24.35	40	40	0.91	
category	3	21.6	8.4	30	30	1.26	
Adjust Total		61.08	38.92				
Marginal- Income		60	40				

Iteration2: ...

THE R 101 H 101

IPF example

Iteration3: co		Frequen (joint dist	_		
		Household inc	ine category	_ Adjust	Marginal
_		High	Low	Total	-size
Household	1	23,57	6,43	30	30
size	2	15.17	24,83	40	40
category	3	21.29	8,71	30	30
Adjust Total		60.03	39,97		
Marginal- Income		60	40		
Adjust for income		0.9997	1,0005		

Steps of IPF

- □ Step 1: (Column-adjust) Each column of cells is proportionally adjusted to equal the marginal column totals. Specifically, each cell is divided by the actual sum of the column of cells, then multiplied by the marginal column total.
- □ Step 2: (Row-adjust) Each row of cells is proportionally adjusted to equal the marginal row totals. Specifically, each cell is divided by the actual sum of the row of cells, then multiplied by the marginal row total. This is the end of the first 'Iteration'.
- Steps 3: The above steps are repeated until the selected level of convergence is reached.

Iterative proportional fitting (IPF)

- Limitations of IPF:
 - The procedure only controls for household attributes and not person attributes.
 - As a result, synthetic populations fail to match given distributions of person characteristics.
 - The method assumes that all households in the sample contributing to a particular household type have the same structure (i.e., a similar individual structure).
 - However, the structure of households even within a same household type is generally different and hence different weights are needed based on household structure.

Iterative proportional updating (IPU)

- □ The IPU algorithm simultaneously controls for both household and person attributes of interest.
 - Reallocates the weights of the households within a same household type to account for the differences in their household structures.
- Input of IPU:
 - Sample data: frequency tables or household travel surveys
 - Household and person constrains from IPF algorithm
- Output of IPU:
 - Joint distribution of household and person attributes

THE RESIDENCE OF THE PARTY OF T

IPU example

2 attributes: household income, person age

			Fre	equency	table		
HHID	Initial weights	HH Income High	HH Income Low	Person Age < 30	Person Age 30-55	Person Age >55	
1	1	1	0	1	1	1	
2	1	1	0	1	0	1	
3	1	1	0	2	1	0	
4	1	0	1	1	0	2	
5	1	0	1	Perso	n constrains	from	
6	1.12	usehold con		IPF u	IPF using Person attributes		
7	from	IPF using H	H attributes	2	1	2	
8	1	0	1	1	1	0	
Constraints	,	35	65	91	65	104	
Weighted Sum		3	5	9	7	7	

Southeast University School of Transportation

TOTAL TOTAL TOTAL TOTAL IPU example

Iteration1: Adjust for HH income low

HHID	Initia l weight	HH Income High	HH Income Low	Person Age<30	Person Age 30- 55	Person Age >55	Weight1	Weight2
1	1	1	0	1	1	1	11.67	11.67
2	1	1	0	1	0	1	11.67	11.67
3	1	1	0	2			11.67	11.67
4	1	0	1	1	W ₂ =13	=65/5	1	13
5	1	0	1	0		_	1	_ 13
6	1	0	1			-0		13
7	1	0	1	Weight	ed Sum	$1 = \sum_{i=1}^{8} A_i$	$i \times W_i$	13
8	1	0	1	1	1	U	1	13
Constraints		35	65	91	65	104		
Weighted Sum0		3	5	9	7	7		
Weighted Sum1		35	5	51.67	28.33	28.33	-	
Weighted Sum2		35	65	111.67	88.33	88.33		

Southeast University
School of Transportation

IPU example

Iteration401: Adjust for HH and P attributes

HHID	Initial weight	HH Income High	HH Income Low	Person Age<30	Person Age 30- 55	Person Age >55	Final IPU Weight
1	1	1	0	1	1	1	1.36
2	1	1	0	1	0	1	25,66
3	1	1	0	2	1	0	7.98
4	1	0	1	1	0	2	27.79
5	1	0	1	0	2	1	18.45
6	1	0	1	1	1	0	8.64
7	1	0	1	2	1	2	1.47
8	1	0	1	1	1	0	8.64
Constraints		35	65	91	65	104	
Weighted Sum0		3	5	9	7	7	
Final Weighted Sum		35	64.99	90.99	64.99	103.99	

THE RESIDENCE TO THE RESIDENCE TO THE IPU example

Iteration1: Adjust for HH income high

HHID	Initial weight	HH Income High	HH Income Low	Person Age<30	Person Age 30- 55	Person Age >55	Weight1
1	1	1	0	1	1	1	11.67
2	1	1	0	1	0	1	11.67
3	1	1	0	2	1	0	11.67
4	1	0	1	1	0	2	1
5	1	0	1	0	2	1	1
6	1	0	1	1	1	0	1
7	1	0	1	2	1	2	1
8	1	0	1	1	1	0	1
Constraints		35	65	91	65	104	
Weighted Sum0		3	5	9	7	7	
Weighted Sum1		35	5	51.67	28.33	28.33	

 $W_1 = 11.67 = 35/3$

Weighted Sum1= $\sum_{i=1}^{8} A_i \times W_i$

100 U UI UI UI

IPU example Iteration1: Adjust for HH & P attributes

HHID	Initial weight	HH Income High	HH Income Low	Person Age<30	Person Age 30-55	Age	Weight 1	Weight 2	Weight 3	Weight 4	Weight 5
1	1	1	0	1	1	1	11.67	11.67	9.51	8.05	12.37
2	1	1	0	1	0	1	11.67	11.67	9.51	9.51	14.61
3	1	1	0	2	1	0	11.67	11.67	9.51	8.05	8.05
4	1	0	1	1	0	2	1	13	10.59	10.59	16.28
5	1	0	1	0	2	1	1	13	13	11.00	16.91
6	1	0	1	1	1	0	1	13	10.59	8.97	8.97
7	1	0	1	2	1	2	1	13	10.59	8.97	13.78
8	1	0	1	1	1	0	1	13	10.59	8.97	8.97
Constraints		35	65	91	65	104					
Weighted Sum0		3	5	9	7	7					
Weighted Sum1		35	5	51.67	28.33	28.33					
Weighted Sum2		35	65	111.67	88.33	88.33					
Weighted Sum3		28.52	55.38	91.00	76.80	74.39					
Weighted Sum4		25.60	48.50	80.11	65.00	67.68					
Weighted Sum5		35.02	64.90	104.84	85.94	104					

Southeast University
School of Transportation

THE CE THE THE THE THE THE

Zero-cell problem

Problem

- The disaggregate sample for small TAZs might capture infrequent household types.
- IPF algorithm fails to converge

Solution

- Add a small arbitrary number to the zero-cells
- This procedure introduces an arbitrary bias
- Borrow the prior information for the zero cells from last layer subject to an limit on the probabilities

THE OF THE 2001 WALLS IN THE

Zero-cell problem

Zero-cell frequency table Higher level frequency table Household income category Household income category High High 0 7 1 3 Household Household 8 10 size category size category 3 2 3 3 12 Total Tota

Threshold probability=1/12=0.083

		Household i	ncome category
		High	Low
1	1	0,25	0
J	2	0.17	0.33
	3	0.17	0.08

_		
	Higher level probability	table

C - I-	
ligh	Low
),21	0.06
),24	0.3
	0.09
	0.09

Iterative proportional updating (IPU)

- Joint household distribution from IPF gives the frequencies of different household types to be drawn
- □ IPU

Household size category

THE RESIDE

- IPF frequencies are rounded

100 0 00 0 10

- The difference between the rounded frequency sum and the actual household total is adjusted
- Households are drawn probabilistically based on IPU estimated weights for each household type.

Steps of generating synthetic population

- Data preprocessing
 - To prepare input data for the synthetic population technique
 - Seed data: A sample data set containing disaggregated population with enough details of the demographic attributes needed.
 - Target marginal: Information about the sum of one dimension of an attribute.
 - A set of cross-tables is obtained
 - Consists of rows and columns that represent one dimension with cells and marginal totals of each attribute.

100 01 100 100 10 100 100 100

Zero-cell problem

Zero-cell adjusted Probability table

0.09

Higher level probability table

Sum of probability=1,06>1

Zero-cell adjusted Probability table

		Household income category			
		High	Low		
Household	1	0,23	0,06		
size	2	0.16	0.31		
category	3	0.16	0.08		

size category

> Southeast University School of Transportatio

0.09

Steps of generating synthetic population

- There are four main steps in the process of generating synthetic population:
 - Data preprocessing
 - Data fitting
 - Data drawing
 - Data validation

Southeast University School of Transportation

C+------

Steps of generating synthetic population

Data fitting

- To adjust seed data to target marginal distribution by iteratively re-scaling the value of a cell in the seed cross-table.
 - An IPF fitting process is applied to the household data to make them comply with household marginals.
 - > Next, a person distribution is determined in the same way.
 - > The two distributions are then combined using a person-perhousehold ratio at the end of the fitting step.
- The fitting process can be classified into:
 - Single level fitting vs. Multi-level fitting.
 - > Zone-by-zone fitting vs. Multi-zone fitting.
 - Temporal fitting vs. Spatial fitting.

Steps of generating synthetic population

Data drawing

- To draw synthetic population by adding individuals/households to the population up to the desired size of the population.
 - > Household selection probability
 - > Monte-Carlo sampling

Data validation

- To check the accuracy of the estimation, the synthetic population needs to be validated against real population using a goodness-of-
 - Traditional statistics, e.g., R² and chi-square.
 - > Information-based statistics, e.g., entropy difference.
 - > Distance-based statistics, e.g.,a standardized root mean square error

Example of cross-table

Lecture summary

Activity based model:

- Difference among the trip-based approach, tour-based approach, and the activity-based approach;
- The output of ABM;
- The input of ABM;
 - Population attribute data
 - ▶ IPF
 - ▶ IPU

no or our more or our or our

Example of source data

Example of source data: household data

	Household ID	Residence		Income		Size	
1		3	1		1		
2		15	1	1		1	
3		20	4		2		
4	Example of so	urce data: person data					
5	P ID	DL.D III		Tak	Combo	Dates Line	

5	Person ID	Household ID	Age	Job	Gender	Driver License	
6	1	1	2	2	2	1	
	2	2	3	0	2	0	
	3	3	4	0	2	0	
	4	3	4	0	1	1	
	5	Example of target data					

Subzone	Households	Persons	Income 1	Income 2	Size 1	Size 2	Age1
0	4138	7207	734	711	1451	2686	782
1	767	1442	136	132	269	498	141
2	1496	2709	265	257	525	972	314
3	8073	9169	1896	1905	3591	4483	1367
A ge2	No Work	Work	Male	Female	No Driving License	Driving License	
1117	3031	4177	4052	3155	1688	5519	
202	679	763	751	691	416	1026	
448	1043	1666	1578	1131	566	2144	
1952	4267	4902	5074	4094	2533	6635	

Southeast University School of Transportation

THE R 101 TO 101

Cons and pros of ABM

- Advantages:
- Travel is derived from the need to conduct activities
- Predict where, when, how long, with whom, which route/mode
- Better capture activity-travel behavior of individual
- Sensitive to a larger spectrum of policies
- Main limitations:
- ABM requires more detailed input data.
- For a sustainable development and also to further improve the prediction accuracy of the model, the input data should be updated as an ongoing process.
- In practice, the model execution is time-consuming.

Southeast University School of Transportati

Ouestions

- 1. What are the main differences between trip based approach, tour based approach and activity based approach?
- 2. What are the outputs of an activity-based model?
- 3. IPF calculation

THE OF THE SHOP IS THE TO THE

Unit 2 Assignment

- □ Famous activity based methods:
 - Constraint-based models

(e.g. CARLA, MASTIC, PCATS)

- Utility maximizing models
 - (e.g. STARTCHILD, DAS, Tel Aviv)
- Rule-based models (computational process models)

(e.g. ALBATROSS, FEATHERS, TASHA, ADAPTS)

Micro-simulation models (mixed)

(e.g. CEMDAP, HAPP, MATSim)

References: Bowman and Ben-Akiva, 2001; Arentze and Timmermans 2004; Miller, 2009; Balmer & Axhausen et al., 2009; Bhat et al., 2012;

Unit 2 Assignment

THE TENNE THE TOTAL THE

- □ Famous activity based methods:
 - Utility maximizing model
 - e.g. DAS (Bowman and Ben-Akiva, 2001)

Fig. Activity schedule hierarchy, using nested logit model

THE RESIDENCE TO BE SHOWN THE TOTAL PARTY. Unit 2 Assignment

- □ Famous activity based methods: Micro-simulation models (mixed)
 - e.g. CEMDAP (Bhat), HAPP (Recker), MATSim (Axhausen)
 - CEMDAP: 20+ decomposed econometric models (hierarchical)
 - HAPP: mixed integral programming (simultaneously)
 - MATSim: evolutionary optimization process (simultaneously but)

THE OF THE STORE OF THE STORE OF

Unit 2 Assignment

- □ Famous activity based methods:
 - Constraint-based models
 - e.g. CARLA, MASTIC, PCATS (1970s ~ 2000s)

Southeast University School of Transportati

on or our more a nor or our

Unit 2 Assignment

- □ Famous activity based methods:
 - Rule-based models
 - e.g. ALBATROSS (Arentze and Timmermans, 2004)

Fig. Activity schedule sequencing, using decision tree classification

Unit 2 Assignment

Requirements:

- Submit your report before June 7th. As a review of research papers, your report structure should cover the following parts:
 - · introduction (find the very beginning history of ABM),
 - · summarize the literature's research question and clearly denote the reference paper or website,
 - · describe the selected ABM (developed by ?, motivated by ?, applied for ? how the model be used?)
 - The incorporated methodology (how the methodology apply, why take the methodology into account/advantages of the method)
 - · an case study is prefer.
 - · the major findings and the results.
 - · the reference list

Thanks for your attention!

baoqiong@seu.edu.cn