REDES I - ATIVIDADE SUB-REDES 2 ANSELMO SANTOS NOVAES TURMA TS421

1. 131.1.123.0/27

Classe B 255.255.0.0

Variação: 256 - 224 = 32

A. 131.1.123.30

Sub-rede: 131.1.123.0

Range: 131.1.123.1 – **131.1.123.30**

B. 131.1.123.31

Sub-rede: 131.1.123.0 Broadcast: **131.1.123.31**

C. 131.1.123.32

É um ID de sub-rede

D. 131.1.123.33

Sub-rede: 131.1.123.32 É o primeiro IP da sub-rede.

Logo, o último endereço IP na rede 131.1.123.0 é **131.1.123.30**. Alternativa A

2.

124.12.4.0 /22

Classe A

255.255.252.0

$$2^{10}-2=1024-2=1022$$
 hosts válidos.

Alternativa B

3.

192.168.5.33 /28

255.255.255.240

Variação: 256 - 240 = 16

33/16 = 2 (resto 1)

16 x 2=32

Sub-rede: 192.168.5.32

Obs: Como boa prática no mundo das redes, o endereço gateway deve ser o primeiro ou o último de uma rede/sub-rede.

Range: **192.168.5.31** – 192.168.5.46

- A) 192.168.5.55 não pertence à sub-rede 192.168.5.32.
- B) 192.168.5.47 é o endereço de broadcast da sub-rede 192.168.5.32.
- C) 192.168.5.40 é um endereço de IP válido da sub-rede 192.168.5.32.
- D) 192.168.5.32 é o ID da sub-rede.
- E) 192.168.5.14 não pertence à sub-rede 192.168.5.32.

Portanto, alternativa D.

4. Atualmente a maioria das implementações do IPv4 usa o IP 127.0.0.1 como o endereço de loopback padrão. O nome de domínio padrão para tal endereço é localhost. O termo localhost se refere à localização do sistema que está sendo usado. É um dispositivo loopback ao qual é atribuído o endereço IP 127.0.0.1 no IPv4, ou ::1 no IPv6, e pode ser usado por aplicações TCP/IP para testarem a comunicação consigo mesmas.

Resposta: Alternativa B.

5.

Host A: 192.0.2.24 /28 255.255.255.240

Variação: 256 - 240 = 16

24/16 = 1 (resto 8)

 $16 \times 1 = 16$

Sub-rede: 192.0.2.16

Host B: 192.0.2.100 /28

255.255.255.240

Variação: 256 - 240 = 16

100/16 = 6 (resto 4)

 $16 \times 6 = 96$

Sub-rede: 192.0.2.96

Host A e Host B estão em Sub-redes diferentes!!!

A. Opção correta.

"O cabo crimpado com a mesma disposição de fios em ambos os lados é chamado de cabo "reto", ou **straight**. Este é o tipo "normal" de cabo, usado para ligar os micros ao switch ou ao roteador da rede. Existe ainda um outro tipo de cabo, chamado de "**cross-over**"(também chamado de cabo cross, ou cabo cruzado), que permite ligar diretamente dois micros, sem precisar de hub ou switch." (Morimoto, Carlos Eduardo, Redes, Guia prático – Porto Alegre: Sul Editores, 2008, pag 83.)

Segundo o trecho acima, para conectar dispositivos iguais usa-se o cabo cross-over, já para conectar dispositivos diferente usa-se o cabo direto ou straight.

Como os dois dispositivos estão interligados diretamente, muito provavelmente são dispositivos iguais, e não estão se comunicando isso se deve pelo fato de que o cabo usado para a conexão não é um cabo cross-over, mas sim um cabo straight-trough, logo deve-se fazer a substituição por um cabo cross-over.

B. Opção correta

/25

Host A: 192.0.2.24 /25 255.255.255.128

Variação: 256 - 128 = 128

24/128 = 0 (resto) $100 \times 0 = 0$

Sub-rede: 192.0.2.0

Host B: 192.0.2.100 /25

255.255.255.128

Variação: 256 - 128 = 128

100/128 = 0 (resto)

 $128 \times 0 = 0$

Sub-rede: 192.0.2.0

Host A e Host B estão na mesma sub-rede.

C. Opção Incorreta

/26

Host A: 192.0.2.24 /26 255.255.255.192

Variação: 256 - 192 = 64

24/64 = 0 (resto) Sub-rede: 192.0.2.0

Host B: 192.0.2.100 /26

255.255.255.192

Variação: 256 - 192 = 64100/64 = 1 (resto 36)

 $64 \times 1 = 64$

Sub-rede: 192.0.2.64

Host A e Host B estão em sub-redes diferentes.

D. Opção Incorreta Host A: 192.0.2.15 /28

255.255.255.240

Variação: 256 - 240 = 16

15/16 = 0 (resto) $16 \times 0 = 0$

Sub-rede: 192.0.2.0

Host B: 192.0.2.100 /28

255.255.255.240

Variação: 256 - 240 = 16

100/16 = 6 (resto 4)

 $16 \times 6 = 96$

Sub-rede: 192.0.2.96

Host A e Host B estão em sub-redes diferentes.

E. Opção Incorreta Host A: 192.0.2.24 /28 255.255.255.240

Variação: 256 - 240 = 16

24/16 = 1 (resto 8)

 $16 \times 1 = 16$

Sub-rede: 192.0.2.16

Host B: 192.0.2.111 /28

255.255.255.240

Variação: 256 - 240 = 16

111/16 = 6 (resto 5)

 $16 \times 6 = 96$

Sub-rede: 192.0.2.96

Host A e Host B estão em sub-redes diferentes.

6.

Três faixas de endereços são reservadas para redes privadas, são elas:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

Logo, as opções que não estiverem nos intervalos dos endereços acima farão parte da internet pública.

São eles:

C. 172.64.12.29

E. 198.234.12.95

F. 212.193.48.254

7.

300 sub-redes 50 hosts por sub-redes Classe B

A. 255.255.255.0

 $2^8 = 256 \text{ Sub-redes}$

 $2^8 - 2 = 254$ hosts

B. 255.255.255.128

2⁹ = 512 Sub-redes

 $2^7 - 2 = 126$ hosts

C. 255.255.252.0

 $2^6 = 64$ sub-redes

$$2^{10} - 2 = 1022$$
 hosts

D. 255.255.254

 2^{11} = 2048 Sub-redes $2^{5} - 2 = 30$ hosts

E. 255.255.255.192

 2^{10} = 1024 Sub-redes $2^{6} - 2 = 62$ hosts

F. 255.255.248.0

 $2^5 = 32$ sub-redes $2^{11} - 2 = 2042$ hosts

Apenas as alternativas **B** e **E** poderão ser utilizadas.

8.

IP1: 10.1.0.36 IP2: 10.1.1.70

A. Máscara 255.255.255.12

Não existe.

B. 255.255.255.128

131072 sub-redes $2^7 - 2 = 126$ hosts

Variação: 256 - 128 = 128

IP1: 10.1.0.36 255.255.255.128

Range: 10.1.0.1 – 10.1.0.126 - **Sub-rede: 10.1.0.0** 10.1.0.127 – 10.1.0.254 - **Sub-rede: 10.1.0.126**

IP2: 10.1.1.70 255.255.255.128

Range: 10.1.1.1 – 10.1.1.126 - **Sub-rede: 10.1.1.0**

10.1.1.127 - 10.1.1.254 - **Sub-rede: 10.1.1.126**

10.1.2.1 – 10.1.2.126 ... - **Sub-rede: 10.1.2.0**

Opção correta.

C.

255.255.255.0

Opção errada. Será necessário um dispositivo de Layer 3 para os Pcs se comunicarem, pois estarão em redes distintas.

D.

255.255.255.128

Opção correta, pois os Pcs estão em redes diferentes.

E. 255.255.254.0

Opção correta, pois teremos 2046 hosts para cada sub-rede.