

Surface Areas and Volumes Ex.16.1 Q29

Answer:

Let the radius of the big metallic ball is 4r. Therefore, the volume of the big metallic ball is

$$V = \frac{4}{3}\pi \times (4r)$$

The metallic sphere is melted to produce small balls of radius $\frac{4r}{4} = r$. Then, the volume of each of

the small balls is

$$V_1 = \frac{4}{3} \pi \times (r)^3$$

Since, the volume of the big metallic ball is equal to the sum of the volumes of the small balls, we have the number of produced small balls is

$$\frac{V}{V_1} = \frac{\frac{4}{3}\pi \times (4r)^3}{\frac{4}{3}\pi \times (r)^3}$$
$$= (4)^3$$
$$= 64$$

Hence, the number of small balls is 64

The surface area of the big ball is

$$S = 4\pi \times (4r)^2$$

The surface area of each of the small ball is

$$S_1 = 4\pi \times (r)^2$$

Therefore, the total surface area of the 64 small balls is

$$S_2 = 64 \times 4\pi \times (r)^2$$

Now, we compute the following ratio

$$\frac{S_2}{S} = \frac{64 \times 4\pi \times (r)^2}{4\pi \times (4r)^2} = 4$$

$$\Rightarrow S_2 = 4S$$

Hence, the total surface area of the small balls is equal to four times the surface area of the original big ball.

Surface Areas and Volumes Ex.16.1 Q30

Answer

The height of the tent is 77dm = 7.7m. The height of the upper portion of the tent is 44dm = 4.4m. Therefore, the height of the cylindrical part is $77-44=33\,\text{dm}=3.3\text{m}$. The radius of the cylindrical part is $\frac{36}{2}=18\,\text{m}$.

Let the slant height of the cone part is / m. Then, we have

$$I^2 = (18)^2 + (3.3)^2$$

$$\Rightarrow l^2 = 324 + 10.89 = 334.89$$

$$\Rightarrow l = 18.3$$

Therefore, the slant height of the cone part is 18.3 m.

The curved surface area of the cylindrical part is

$$S = 2\pi \times 18 \times 4.4 \text{ m}^2$$

The curved surface area of the cone part is

$$S_1 = \pi \times 18 \times 18.3 \text{ m}^2$$

Therefore, the total curved surface area of the tent is

$$S + S_1 = 2\pi \times 18 \times 4.4 + \pi \times 18 \times 18.3$$

$$=18\pi(8.8+18.3)$$

$$=18\pi \times 27.10$$

The cost of canvas per m² is Rs 3.50. Hence, the total cost for canvas in Rs is

$$=18 \times \frac{22}{7} \times 27.10 \times 3.50$$

Hence total cost is Rs.5365.80

Surface Areas and Volumes Ex.16.1 Q31

Answer .

The radius of each of the metallic sphere is 2cm. Therefore, the volume of each metallic sphere is

$$V = \frac{4}{3}\pi \times (2)^3 \text{ cm}^3$$

The total volume of the 16 spheres is

$$V_1 = 16 \times \frac{4}{3} \pi \times (2)^3 \text{ cm}^3$$

The internal dimension of the rectangular box is $16cm \times 8cm \times 8cm$. Therefore, the volume of the rectangular box is

$$V_2 = 16 \times 8 \times 8 \text{ cm}^3$$

Therefore, the volume of the liquid is

$$V_2 - V_1 = 16 \times 8 \times 8 - 16 \times \frac{4}{3} \pi \times (2)^3$$

= 1024 - 536.03

Hence volume of liquid is 488 cm³

******* END *******