

Data Measures

Big Data

Prof. Hwanjo Yu POSTECH

Evolution of sciences

- Before 1600, empirical science
- 1600-1950s, theoretical science
 - Each discipline has grown a theoretical component.
 Theoretical models often motivate experiments and generalize our understanding.
- 1950s-1990s, computational science
 - Over the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 - Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.
- 1990-now, data science
 - The flood of data from new scientific instruments and simulations
 - The ability to economically store and manage petabytes of data online
 - The Internet and computing Grid that makes all these archives universally accessible
 - Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!

Evolution of database technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

Knowledge discovery (KDD) process

• This is a view from typical database systems and **Pattern Evaluation** data warehousing communities Data mining plays an essential role in the **Data Mining** knowledge discovery process **Task-relevant Data ↑** Selection **Data Warehouse Data Cleaning** Data Integration **Databases**

KDD process: View from ML and statistics

Multi-dimensional view of data mining

Data to be mined

• Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

Knowledge to be mined (or Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

Techniques utilized

• Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, higherformance, etc.

Applications adapted

• Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

Data mining: On what kinds of data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Data mining function: Association rule mining

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
- Association, correlation vs. causality
 - A typical association rule
 - Diaper → Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?

Data mining function: Classification and prediction

- Classification and label prediction (Supervised learning)
 - Construct models (functions) based on some training examples
 - Predict unknown class labels of data using the model

Methods

• Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...

Applications

• Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Data mining function: Cluster analysis

- Unsupervised learning (i.e. Class label is unknown)
- Group data based on their similarity (or distance)
- Principle: Maximizing intra-class similarity & minimizing interclass similarity

Data mining function: What else?

- Outlier analysis
- Sequential pattern analysis
- Trend and evolution analysis
- Structure and network analysis

Data type and representation

Record

- Relational records
- Data matrix, e.g. numerical matrix, crosstabs
- Text documents, e.g. term-frequency vector
- Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data, video data

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Attribute type

- Can be categorized
 - Nominal (or Categorical), e.g. Type of car, Color name
 - *Binary*, e.g. Gender, Whether to have car or not
 - *Ordinal*, e.g. Grade
 - *Numerical*, e.g. Height, Temperature

or

- *Discrete*, e.g. Integer
- *Continuous*, e.g. Real

Measuring the central tendency

• Mean (algebraic measure) (sample vs. population):

Note: n is **sample** size and N is **population** size.

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i \, x_i}{\sum_{i=1}^{n} w_i}$$

Median (holistic measure):

- Middle value if odd number of values, or average of the middle two values otherwise
- Computing it requires storing every data => Estimating it by one scan is an active research topic

• Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula: $mean-mode=3 \times (mean-median)$

Distributive, algebraic, holistic measure

• A **distributive** measure can be computed by partitioning the data into smaller subsets (e.g. **sum and count**)

• An **algebraic** measure can be computed by applying an algebraic function to one or more distributive measures (e.g. **mean=sum/count**)

- A holistic measure must be computed on the entire data set (e.g. median)
 - Holistic measures are much more expensive to compute than distributive measures
 - Could be estimated

Symmetric vs. Skewed data

• Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the dispersion of data

- Quartiles, outliers and boxplots
 - Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 - Inter-quartile range: IQR = Q3 Q1
 - Five number summary: min, Q1, median, Q3, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)
 - Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Boxplot analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum
- Boxplot
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles,
 i.e. the height of the box is IQR
 - The **median** is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually

Visualization of data dispersion: 3-D boxplots

Properties of normal distribution curve

• The normal (distribution) curve

- From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
- From μ –2 σ to μ +2 σ : contains about 95% of it
- From μ -3 σ to μ +3 σ : contains about 99.7% of it

Graphic displays of basic statistical descriptions

Boxplot:

graphic display of five-number summary

• Histogram:

• x-axis => values, y-axis => frequencies

Quantile plot:

each value X_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq X_i$

Quantile-quantile (q-q) plot:

• graphs the quantiles of one univariant distribution against the corresponding quantiles of another

Scatter plot:

each pair of values is a pair of coordinates and plotted as points in the plane

Histogram analysis

Histogram

- x-axis => values
- y-axis => frequencies
- Show overall distribution of one dimensional data

Histograms often tell more than boxplots

 The two histograms shown in the left may have the same boxplot representation

• The same values for: min, Q1, median, Q3, max

But they have rather different data distributions

Quantile plot (generalization of quartile)

- Plots quantile information
 - For a data X_i sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value X_i
 - Quartiles are 4-quantiles.
- Displays all the data for the given attribute
- Can see both the overall behavior and unusual occurrences

Quantile-Quantile (Q-Q) plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Example shows unit price of items sold at Branch 1 vs.

 Branch 2 for each quantile. Unit prices of items sold at

 Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and negatively correlated data

- The left half fragment is positively correlated
- The right half is negative correlated

Uncorrelated data

Similarity and dissimilarity

- Similarity
 - Value is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (e.g. distance)
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0, and upper limit varies
- Proximity refers to a similarity or dissimilarity

Data matrix and dissimilarity matrix

• Data matrix

- n-by-p matrix
- n instances in p dimensions

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n-by-n (triangular) matrix
- distances between every pair of instances

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity measure for nominal attributes

- Can take 2 or more states. e.g. red, yellow, blue, green (generalization of a binary attribute)
- Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Transform to a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity measure for binary attributes

- A **contingency table** for binary data
- Distance measure for **symmetric** binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

Object
$$i$$
 $\begin{bmatrix} 1 & 0 & sum \\ 0 & r & q+r \\ 0 & s & t & s+t \\ sum & q+s & r+t & p \end{bmatrix}$

Object *j*

$$d(i,j) = \frac{r+s}{q+r+s+t}$$
$$d(i,j) = \frac{r+s}{q+r+s}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$\Rightarrow sim_{Jaccard}(i,j) = \frac{q}{q+r+s}$$

Note: Jaccard coefficient is the same as "coherence":

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Asymmetric dissimilarity between binary variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Example: Data matrix and dissimilarity matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x2</i>	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x3</i>	5.1	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on numeric data: Minkowski distance

• Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
- Properties
 - d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special cases of Minkowski distance

- h = 1: Manhattan (city block, L_1 norm) distance
 - E.g. the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2}$$

- $h \rightarrow \infty$: "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
x 3	2	0
x4	4	5

Dissimilarity Matrices

Manhattan (L₁)

L	x1	x2	x 3	x4
x1	0			
x2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x 3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
x4	3	1	5	0

Attributes of mixed type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• *f* is binary or nominal:

$$d_{ij}^{(f)} = 0$$
 if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise

- *f* is numeric: use the normalized distance
- *f* is ordinal
 - $\bullet \;$ Compute ranks r_{if} and

$$z_{if} = \frac{r_{if} - 1}{\max_{r_f} - 1}$$

• Treat z_{if} as interval-scaled

Cosine similarity

• A **document** can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g. term-frequency vectors), then $\cos(d_p,d_2)=(d_1\bullet d_2)/||d_1||\,||d_2||,$

where \bullet indicates vector dot product, ||d||: the length of vector d

Example: Cosine similarity

- $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where indicates vector dot product, ||d||: the length of vector d
- Example: Find the similarity between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{aligned} &d_1 \bullet d_2 = 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*1 + 2*1 + 0*0 + 0*1 = 25 \\ &||d_1|| = (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ &||d_2|| = (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{0.5} = (17)^{0.5} = 4.12 \\ &\cos(d_{\nu}, d_2) = 0.94 \end{aligned}$$

