Finite Volumen Verfahren erster Ordnung

University of Stuttgart

Studentenvortrag December 3, 2022

Presentation Overview

1 Grundlagen

Schwache Form Flussberechnung Blocks Columns

2 Ergebnisse

Table

Figure

- **3** Mathematics
- 4 Referencing

Schwache Form

Die hyperbolische Differenzialgleichung

$$\mathbf{U}_t + \nabla \cdot \mathbb{F}^{\mathbf{C}}(\mathbf{U}) = 0 \tag{1}$$

stellt eine Anforderung an die Differenzierbarkeit.

Es treten Unstetigkeiten im Strömungsfeld auf
 ⇒ Schwache Form

$$\int_{\mathbf{V}} \mathbf{U}_t \phi \, d\mathbf{x} + \int_{\mathbf{V}} \nabla \cdot \mathbb{F}^{\mathbf{C}}(\mathbf{U}) \phi \, d\mathbf{x} = 0, \qquad \mathbf{x} = [x, y]^T$$
 (2)

Anwendung des Satzes von Gauß ergibt

$$V_i U_{i,t} + \oint_{\partial V_i} \mathbb{F}^{C}(U_{RP} \cdot n \, dS) = 0$$
(3)

Schwache Form - Lösung des Oberflächenintegrals

 Numerische Lösung des Oberflächenintegrals ⇒ Rand eines Kontrollvolumens besteht aus stückweise glatten Elementen.

Figure: KV mit stückweise glatten Kanten

Flussbrechnung in mehreren Dimensionen

Vorgehen

- Diskretisierung des Rechengebiets
- 2 Transformation der Zustände in ein lokales Koordinatensystem
- Berechnung des numerischen Flusses (1D Riemann Problem)
- 4 Rücktransformation in globales Koordinatensystem

Die Transformation ist nur zulässig, wenn das Problem Rotationsinvariant ist.

$$\mathbb{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & n_1 & n_2 & 0 \\ 0 & -n_2 & n_1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{4}$$

$$\mathbb{T}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & n_1 & -n_2 & 0 \\ 0 & n_2 & n_1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{5}$$

Vergleich verschiedener Riemann Löser

TORO3 Testcase

Riemann Löser	Rechenzeit [s]	$L_1[-]$	$L_2[-]$	$L_{inf}[-]$
Godunov	0,0052	2,13E-1	6,34E-1	3,32
Roe 3	0,0027	2,16E-1	6,35E-1	3,33
HLL	0,0026	2,15E-1	6,32E-1	3,38
HLLE	0,0036	2,15E-1	6,32E-1	3,38
HLLC	0,0029	2,13E-1	6,34E-1	3,32
Lax-Friedrichs	0,0023	2,60E-1	6,99E-1	3,45
Steger-Warming	0,0029	2,19E-1	6,41E-1	3,42
AUSMD	0,0026	2,12E-1	6,31E-1	3,31

Table: Rechenzeit und Diskretisierungsfehler verschiedener Riemann Löser

Konvergenzordnung mit AUSMD Riemann Löser 2D SineWaveO1 Testcase

Die empirische Konvergenzordnung des Verfahrens ergibt sich zu

$$n = \frac{\log(\frac{E_1}{E_2})}{\log(\frac{h_1}{h_2})},$$

wobei E die Diskretisierungsfehler und h den gemittelten Gitterabstand darstellen.

Gitterauflösung [x · y]	Rechenzeit [s]	$L_1[-]$	$L_2[-]$	$L_{inf}[-]$	$N_{L1}[-]$	$N_{L2}[-]$
100x100	1,02	3,37E-3	4,28E-3	1,11E-2	0,970	0,973
200×200	8,20	1,72E-3	2,18E-3	5,73E-3	0,987	0,987
400×400	61,79	1,72E-3	2,18E-3	5,73E-3	0,990	0,992
800×800	488,60	4,37E-4	5,53E-4	1,49E-3	0,997	0,992
1600x1600	3985,18	2,19E-4	2,78E-4	7,57E-4		

Table: Rechenzeit, Diskretisierungsfehler und empirische Konvergenzordnung

Druckfeld des SineWaveO1 Testcase

Figure: SineWave mit AUSDM auf einem kartesischen 1600x1600 Netz

Blocks of Highlighted Text

Block Title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue.

Example Block Title

Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan.

Alert Block Title

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci.

Multiple Columns

Heading

Subtitle

- Statement
- 2 Explanation
- 3 Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Figure: Creodocs logo.

Definitions & Examples

Definition

A prime number is a number that has exactly two divisors.

Example

- 2 is prime (two divisors: 1 and 2).
- 3 is prime (two divisors: 1 and 3).
- 4 is not prime (three divisors: 1, 2, and 4).

You can also use the theorem, lemma, proof and corollary environments.

Theorem, Corollary & Proof

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Corollary

$$x + y = y + x$$

Proof.

$$\omega + \phi = \epsilon$$

14 / 21

Equation

$$\cos^3 \theta = \frac{1}{4} \cos \theta + \frac{3}{4} \cos 3\theta \tag{6}$$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem} [Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Slide without title.

Citing References

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2022, Kennedy, 2023].

References

John Smith (2022) Publication title Journal Name 12(3), 45 – 678.

Annabelle Kennedy (2023) Publication title Journal Name 12(3), 45 – 678.

Acknowledgements

Smith Lab

- Alice Smith
- Devon Brown

Cook Lab

- Margaret
- Jennifer
- Yuan

Funding

- British Royal Navy
- Norwegian Government

The End

Questions? Comments?