# Machine Learning DD2421, 7.5 credits

Atsuto Maki, Giampiero Salvi, Örjan Ekeberg

Autumn, 2018

Welcome to DD2421 Machine Learning!

The number of students in the ML course:



Welcome to DD2421 Machine Learning!

The number of students in the ML course:



Since 2017 it is given in P1, and will be then in P3.

- About the course
  - Course Contents
  - Who are teaching?
  - Textbook
- 2 Logistics
  - Lectures
  - Labs
  - Examination
  - Miscellaneous
- 3 A brief overview of Machine Learning
  - Applications
  - Types of Learning
  - Supervised vs Unsupervised

#### The aim of the course is provide:

- basic knowledge of the most important algorithms and theory that form the foundation of machine learning
- a practical knowledge of machine learning algorithms and methods

#### The aim of the course is provide:

- basic knowledge of the most important algorithms and theory that form the foundation of machine learning
- a practical knowledge of machine learning algorithms and methods

#### Course contents:

- Lectures 1–11
- Lecture 12, A summary lecture
- Labs 1–3 (NB. there is a deadline for each)
- Written exam

#### Intended outcomes – students will be able to:

- explain the principles, advantages, limitations such as overfitting and possible applications of machine learning
- identify and apply the appropriate machine learning technique to classification, pattern recognition, optimization and decision problems.

#### Intended outcomes – students will be able to:

- explain the principles, advantages, limitations such as overfitting and possible applications of machine learning
- identify and apply the appropriate machine learning technique to classification, pattern recognition, optimization and decision problems.

#### DD2421 is:

- Compulsory for the Masters Programme in Machine Learning
- Prerequisite for DD2434 Machine Learning, Advanced Course

# Who are teaching?

- Atsuto Maki
  - Dept. Robotics, Perception, and Learning
- Örjan Ekeberg
  - Dept. Computational Science and Technology
- Giampiero Salvi
  - Dept. Speech, Music, and Hearing
- Course Assistant: Alexander Kozlov
  Dept. Computational Science and Technology
- 10+ teaching assistants (PhD students)

# Örjan Ekeberg

#### My research

Simulation of the neural control of movements.



### Giampiero Salvi

#### My research

Speech Technology, Biologically inspired learning





DT2119 Speech and Speaker Recognition, 4th period

#### Atsuto Maki

#### My research

Computer Vision and Machine/Deep Learning



http://www.csc.kth.se/~atsuto/research.html

# Recommended reading

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

An Introduction to Statistical Learning

Springer, 2013

Available online:

http://www-bcf.usc.edu/~gareth/ISL/



# Recommended reading

Simon Prince

Computer Vision: Models, Learning, and Inference

Cambridge University Press, 2012

Available online:

web4.cs.ucl.ac.uk/staff/s.prince/book/book.pdf



- About the course
  - Course Contents
  - Who are teaching?
  - Textbook
- 2 Logistics
  - Lectures
  - Labs
  - Examination
  - Miscellaneous
- 3 A brief overview of Machine Learning
  - Applications
  - Types of Learning
  - Supervised vs Unsupervised

#### Course Information on KTH Social

https://www.kth.se/social/course/DD2421/useful for the schedule

#### Course Information on Canvas

https://kth.instructure.com/courses/4741

Course registration needed! Any inquiries to student office / service center (Email:service@eecs.kth.se).

For administrative questions please consult this page: www.kth.se/en/eecs/studentsupport

#### Lectures

- Nearest Neighbour Classifier (Memory-based)
- ② Decision Trees (Logical inference)
- Challenges in Machine Learning
- Regression
- Probabilistic Methods
- Learning as Inference
- Learning with Latent Variables
- Support Vector Machines
- Artificial Neural Networks
- Ensemble Methods
- Dimensionality Reduction

# Labs (3.5 credits)

- Decision Trees
- Support Vector Machines
- Bayes Classifier & Boosting
  - labs are carried out by students and examined by teaching assistants
  - use Canvas to book time slots for examination

# Labs (3.5 credits)

- Decision Trees
- Support Vector Machines
- Bayes Classifier & Boosting
  - labs are carried out by students and examined by teaching assistants
  - use Canvas to book time slots for examination

#### Examination:

- It is your task to convince the examiner that you have done the assignment and understood the results.
- Strongly encouraged to work+report by pairs of two students.
- 10 minutes
- No computer

# Written examination (4 credits)

Date (HT2018): Mon 22 October 14:00-18:00

Exam Registration in advance!

https://www.kth.se/form/exams

Chance for re-exam in December, and again during VT2019 (in P3).

### Written examination (4 credits)

Date (HT2018): Mon 22 October 14:00-18:00

Exam Registration in advance!

https://www.kth.se/form/exams

#### Exam in two sections with requirements (subject to change):

- A-part: Multiple choices at essential level, 7/8 points required
- B-part: Several questions, some 10/27 points needed for a pass

Chance for re-exam in December, and again during VT2019 (in P3).

### FAQ

- Q. Are course slides available?
- A. Will be uploaded on the "Lectures" page on Canvas.
- Q. Could we make a group of 3 students for the lab?
- A. No the slot is too short to examine three students.
- Q. Can you register me to the course, please?
- A. Please consult student office/service center: service@eecs.kth.se

#### Miscellaneous

Message board available on "Discussion" on KTH Canvas (but bear with us – teachers cannot promise to respond :-)).

A form to get a KTH-account available at the reception of EECS (for PhD-students from other universities).

Kursnämnd: It is a great pleasure to have students' course committee (so-called kursnämnd). Anyone volunteers, please?

- About the course
  - Course Contents
  - Who are teaching?
  - Textbook
- 2 Logistics
  - Lectures
  - Labs
  - Examination
  - Miscellaneous
- 3 A brief overview of Machine Learning
  - Applications
  - Types of Learning
  - Supervised vs Unsupervised

### **Applications**

#### Sample Applications

- Image recognition / Computer vision
- Speech recognition and synthesis
- Natural language processing
- Autonomous robots
- Spam-filter for e-mail
- ..

### **Applications**

#### Sample Applications

- Image recognition / Computer vision
- Speech recognition and synthesis
- Natural language processing
- Autonomous robots
- Spam-filter for e-mail
- ...

#### Where is machine learning useful?

A pattern exists

Data available for training

Hard/impossible to define rules mathematically

Driving assistants (Google, Toyota, Volvo, ...)

Personal assistants (Apple Siri, Amazon Eco, ...)





Board games (DeepMind AlphaGo)



• Supervised Learning (covered)

• Unsupervised Learning (briefly covered)

• Reinforcement Learning (not covered)

Evolutionary Learning (not covered)

- Supervised Learning (covered)
  - Function approximation
  - Well-defined problem. Battle-tested in industrial applications.
- Unsupervised Learning (briefly covered)

Reinforcement Learning (not covered)

• Evolutionary Learning (not covered)

- Supervised Learning (covered)
  - Function approximation
  - Well-defined problem. Battle-tested in industrial applications.
- Unsupervised Learning (briefly covered)
  - Clustering, dimensionality reduction, density estimation
  - Primarily used for preprocessing and exploratory data analysis
- Reinforcement Learning (not covered)

Evolutionary Learning (not covered)

- Supervised Learning (covered)
  - Function approximation
  - Well-defined problem. Battle-tested in industrial applications.
- Unsupervised Learning (briefly covered)
  - Clustering, dimensionality reduction, density estimation
  - Primarily used for preprocessing and exploratory data analysis
- Reinforcement Learning (not covered)
  - Behavior Selection: useful for learning how to act or behave when given occasional reward or punishment signals.
  - Consider how a baby learns to walk for instance.
- Evolutionary Learning (not covered)

- Supervised Learning (covered)
  - Function approximation
  - Well-defined problem. Battle-tested in industrial applications.
- Unsupervised Learning (briefly covered)
  - Clustering, dimensionality reduction, density estimation
  - Primarily used for preprocessing and exploratory data analysis
- Reinforcement Learning (not covered)
  - Behavior Selection: useful for learning how to act or behave when given occasional reward or punishment signals.
  - Consider how a baby learns to walk for instance.
- Evolutionary Learning (not covered)
  - General Purpose Optimization

### Supervised vs Unsupervised learning paradigms

Conflates two different distinctions:

• Supervised Learning, a.k.a. predictive

Unsupervised Learning, a.k.a. descriptive

### Supervised vs Unsupervised learning paradigms

#### Conflates two different distinctions:

- Supervised Learning, a.k.a. predictive
  - Learning mappings from A to B. (Neutral mathematics.)
  - Learning from human supervision: B was provided by a human teacher, as in "This is a dog".
     (Not scalable and biologically implausible.)
- Unsupervised Learning, a.k.a. descriptive

### Supervised vs Unsupervised learning paradigms

#### Conflates two different distinctions:

- Supervised Learning, a.k.a. predictive
  - Learning mappings from A to B. (Neutral mathematics.)
  - Learning from human supervision: B was provided by a human teacher, as in "This is a dog".
     (Not scalable and biologically implausible.)
- Unsupervised Learning, a.k.a. descriptive
  - Analyzing unstructured raw data. There is no B, only A.
  - Learning without human supervision. (Scalable and biologically plausible.)