MATH2320 Assignment 3

Benjamin G. Moran, c3076448@uon.edu.au
16 August 2016

Due: 5pm Tuesday 16th August 2016.

If you have any questions about this assignment, please see or email your lecturer for this course, Dr Daniel Sutherland Daniel.Sutherland@newcastle.edu.au.

Questions which review material from Week 2:

- 1. Let $P_3(\mathbb{C})$ be the vector space of complex polynomials with degree less than or equal to 3.
- a) Show that the list of vectors $B = (x 1, (x 1)^2)$ is linearly independent.
- b) Show that B does not span $P_3(\mathbb{C})$ by giving an example of a vector in $P_3(\mathbb{C})$ that does not belong to the span of B.
- c) Denote the vector that you found in the previous part by p, and create a new list of vectors $B' = (x-1,(x-1)^2,p)$. Is B' linearly independent? Is B' a basis for $P_3(\mathbb{C})$? Why/Why not?

Answer First, let's rewrite B in terms of the coefficients a_n of the x^n terms. We can express B as

$$B := \left\{ \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix} \right\}.$$

Nothing we can do to the first vector will give us 1 as the x^2 coefficient. Therefore, the two vectors are independent. We cannot create a new vector p = (0,0,0,1) from any combination of the two vectors in B. Therefore, the vectors in B do not span $P_3(\mathbb{C})$. If we add this vector p to the set B, the resulting set B' must still be linearly independent, because we have added a vector that was not in the span of B, whose vectors we have previously shown to be linearly independent. However, B' still does not span $P_3(\mathbb{C})$ because there is not a combination of vectors in B' that will give us the vector v = (1,0,0,0). Therefore B' is not a basis for $P_3(\mathbb{C})$.

2. Consider the following subspaces of \mathbb{F}_4 :

$$V_1 = span((1, -1, 0, 0), (1, 0, 0, -1))$$
 and $V_2 = span((0, 1, 0, -1), (0, -1, 0, 1))$

- a) What are the dimensions of these subspaces?
- b) Show that V_1 spans V_2 . Hence, what is $V_1 \cap V_2$?
- c) Use the below theorem together with your previous answers to determine $\dim(V_1 + V_2)$. Theorem 2.18: If U_1 and U_2 are subspaces of a nite-dimensional vector space, then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Answer We can calculate the dimension of each subsapce by finding the reduced-row echelon form of the matrices formed by each collection of vectors. For V_1 :

$$V_1 := \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 0 \\ 0 & -1 \end{bmatrix} \xrightarrow{R_2^* = R_2 + R_1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & -1 \end{bmatrix} \xrightarrow{R_4^* = R_4 + R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1^* = R_1 - R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

The dimension of V_1 is equal to the number of pivot variables, therefore $\dim V_1 = 2$. Now for V_2 :

$$V_2 := \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 0 \\ -1 & 1 \end{bmatrix} \xrightarrow{swap \ R_1 \ and \ R_2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 0 \\ -1 & 1 \end{bmatrix} \xrightarrow{R_4^* = R_4 + R_1} \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Therefore, $\dim V_2 = 1$

We can rewrite the vectors in V_2 using the vectors in V_1 :

$$(0,1,0,-1) = (1,0,0,-1) - (1,-1,0,0)$$
$$(0,-1,0,1) = (1,-1,0,0) - (1,0,0,-1)$$

Therefore, V_1 spans V_2 and $V_1 \cap V_2 = V_2$. Using this answer, we can say that:

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

$$= \dim V_1 + \dim V_2 - \dim(V_2)$$

$$= \dim V_1$$

$$= 2$$

Introductory level question relating to Week 3:

- 3. Consider the map $T: \mathbb{R}^2 \implies \mathbb{R}$ given by the rule T(x,y) = 2x + 3y.
- (a) Show that T is a linear map.
- (b) Find the null space of T, and sketch this space.
- (c) Is the linear map T injective? Why/Why not?

Hint: Is there a result from the textbook that might help you?

Answer: We need to show that T is closed under additivity and homogeneity. First, Define two vectors $u := (x_1, y_1)$ and $v := (x_2, y_2)$. Then:

$$T(u) + T(v) = 2x_1 + 3y_1 + 2x_2 + 3y_2$$

= $2(x_1 + x_2) + 3(y_1 + y_2)$
= $T(u + v)$

Therefore, T is closed under additivity. Next, define a vector $w := (x, y) \implies \forall a \in \mathbb{F}, aw := (ax, ay)$. Then,

$$T(aw) = 2ax + 3ay$$
$$= a(2x + 3y).$$
$$= aT(w)$$

Therefore, T is closed under homogeity. Next we define T as a matrix A such that

$$A:=\begin{bmatrix}2\\3\end{bmatrix}\implies \forall v:=(x,y)\in\mathbb{R}^2, T(v)=Av=(x,y)\times\begin{bmatrix}2\\3\end{bmatrix}=(2x+3y)\in\mathbb{R}.$$

We know that in order for a vector v to be an element of $null\ T$, Av=0. It is obvious that the only vector v=(x,y) that satisfies this is the zero vector. Therefore, $null\ T=\{\vec{0}\}$. Lastly - by Proposition 3.2 in the set text - because the kernel of T only contains $\vec{0}$, T must be injective.

Extension question - will not be marked, just for interest!

4. Define a collection of "forward shift" maps $T_{\lambda}: \mathbb{F}^{\infty} \implies \mathbb{F}^{\infty}$ for $\lambda \in \mathbb{F}$ by the rule

$$T_{\lambda}(x_1, x_2, x_3, ...) = (\lambda, x_1, x_2, ...).$$

For what value(s) of λ is T_{λ} a linear map? For these value(s) of λ , is T_{λ} injective? surjective?