

MANUFACTURE OF SEMICONDUCTOR DEVICE PACKAGE

Patent Number: JP59208756
Publication date: 1984-11-27
Inventor(s): AKIYAMA KATSUHIKO; others: 02
Applicant(s):: SONY KK
Requested Patent: JP59208756
Application: JP19830083188 19830512
Priority Number(s): H01L23/12 ; H01L21/56 ; H01L23/48
IPC Classification: H01L23/12
EC Classification:
Equivalents: JP1760995C, JP4047977B

Abstract

PURPOSE: To obtain a semiconductor device package which is excellent in heat radiation and suitable for automated manufacturing by a method wherein the semiconductor device is mounted on a substrate and, after being connected to external electrodes, enclosed integrally with resin and the substrate is selectively removed by etching.
CONSTITUTION: Au plating 12 of 1μm thickness and Au plating 14 of 3μm are laminated on an Fe substrate 11 of 35μm thickness. A semiconductor chip 15 is mounted 16 on a portion 11g and connected 19 to external electrodes 17, 18 on the portions 11h, 11i. The transfer-molding with epoxy resin 20 is carried out so as to make thickness $t=1\text{mm}$. The Fe substrate is removed by etching with FeCl₃ solution from the back surface 11a to complete a leadless type package 21. Bottom surfaces of the Au layers 12c of the Au layers are used as external electrodes 12b, 12c and the heat radiation surface 12a. In other to mount the package 21 on a printed circuit board, only the external electrodes 12b, 12c are directly soldered to a conductor pattern on the substrate. With this constitution, a package of excellent heat radiation can be manufactured automatically by an easy and simple method.

Data supplied from the esp@cenet database - 12

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭59—208756

⑫ Int. Cl.³
H 01 L 23/12
21/56
23/48

識別記号

厅内整理番号
7357—5F
7738—5F
7357—5F

⑬ 公開 昭和59年(1984)11月27日

発明の数 1
審査請求 未請求

(全 5 頁)

⑤ 半導体装置のパッケージの製造方法

⑥ 特 許 昭58—83188
 ⑦ 出 計 昭58(1983)5月12日
 ⑧ 発 明 者 秋山克彦
 東京都品川区北品川6丁目7番
 35号ソニー株式会社内
 ⑨ 発 明 者 小野鉄雄
 東京都品川区北品川6丁目7番

35号ソニー株式会社内

⑩ 発 明 者 梶山雄次
 東京都品川区北品川6丁目7番
 35号ソニー株式会社内
 ⑪ 出 計 人 ソニー株式会社
 東京都品川区北品川6丁目7番
 35号
 ⑫ 代 理 人 弁理士 土屋勝 外2名

明細書

1. 発明の名称
半導体装置のパッケージの製造方法
2. 特許請求の範囲

述証ニンテング可塑性材料から成る基板上に半導体装置を取り、接続用ワイヤを上記半導体装置に接続すると共にこの接続用ワイヤの外部電極部を上記基板の外部電極接続部位に接続し、次いで上記基板において上記半導体装置及び上記接続用ワイヤを一体に樹脂モールドし、しかる後上記基板をエンティング除去することを特徴とする半導体装置のパッケージの製造方法。

3. 発明の詳細な説明

産業上の利用分野

本発明は、半導体装置のパッケージの製造方法に関するものである。

背景技術とその問題点

従来、プリント基板上の実装密度の高いパッケージとして、チップキャリアタイプのパッケージが知られている。このパッケージはリードレス

タイプのパッケージで、パッケージの裏面に引き出されているハンダ付け可能な電極をプリント基板の導体部に直接ハンダ付けして接続することにより実装を行うものである。

このチップキャリアタイプパッケージには、セラミックタイプとプラスチックタイプがある。セラミックタイプはパッケージ自体が高価であるばかりでなく、プリント基板に直接ハンダ付けすると、温度サイクル中にセラミックと上記ハンダ及び上記導体との間の熱膨張係数の差によって接続部にはがれやクラックが生じる恐れがあるという欠点を有している。一方、プラスチックタイプはパッケージが安価であるという利点を有しているが、熱放散性が悪く、また形状がパッケージの製造の自動化に適していないという欠点を有している。

このような従来のプラスチックタイプのチップキャリアタイプパッケージの構造を第1図に示す。このパッケージ(1)は、鋼箔製の電極(2)が予め形成されているプリント基板(3)上に半導体装置を構成

するチップ(4)を設置し、ワイヤボンディング法により上記チップ(4)と上記電極(2)の一端とをAuの細線から成るワイヤ(5)で接続した後、上方より板状のエポキシ樹脂を滴下させて硬化成形することによつて作る。

このパッケージ(1)において、チップ(4)は樹脂層(6)とプリント基板(3)とによつて固定されている。これらの樹脂層(6)及びプリント基板(3)の熱抵抗は共に大きいので、その動作時においてチップ(4)で発生する熱をパッケージ(1)の外部に効果的に放散することができない。即ち、このパッケージ(1)は放熱性が悪いという欠点を有している。また上記の板状のエポキシ樹脂を滴下する際に、微量の樹脂を一定量、しかも高速で滴下することが難しく、このためにパッケージ(1)はパッケージの製造の自動化に適していないという欠点を有している。

一方、上述のチップキャリアタイプパッケージとは異なるパッケージにチップキャリアタイプパッケージがある。このタイプのパッケージは従来のチップキャリアタイプパッケージよりもさらに

ことができる。なお上記外部電極部は上記接続用ワイヤ自身が嵌ねていてもよいし、上記接続用ワイヤとは別に設けられかつ上記接続用ワイヤが接続されているものでもよい。

実施例

以下本発明に係る半導体装置のパッケージの製造方法の実施例につき図面を参照しながら説明する。

第2A図～第2D図は本発明の第1実施例による半導体装置のパッケージの製造方法を説明するための工程図である。以下第2A図から工程順に説明する。

まず第2A図において、厚さ3.5(μ)のF₀膜の基板凹の上に、厚さ1(μ)のAu層02、厚さ1(μ)のNi層03及び厚さ3(μ)のAu層04を順次積み重ねて、半導体装置を構成するチップ05の接続部06及び外部電極部07のそれぞれを上記基板凹の所定のチップ接続部位(11a)及び外部電極部位(11b)(11c)のそれぞれに取ける。第2A図に示す工程終了後の上記基板凹の平面図を第

小形化できるという利点を有するが、チップが樹脂層によつて完全に覆われているため熱放散性が良好でないこと、テープを用いているために特殊な装置が必要である等の欠点を有している。

発明の目的

本発明は、上述の問題にかんがみ、熱放散性が良好でかつ信頼性の高い半導体装置のパッケージの製造方法を提供することを目的とする。

発明の概要

本発明に係る半導体装置のパッケージの製造方法は、選択エンチング可能な材料から成る基板上に半導体装置を設置し、接続用ワイヤを上記半導体装置に接続すると共にこの接続用ワイヤの外部電極部を上記基板の外部電極接続部位に接続し、次いで上記基板上において上記半導体装置及び上記接続用ワイヤを一体に樹脂モールドし、しかる後上記基板をエッチング除去するようによっている。このようにすることによつて、熱放散性が良好でかつ信頼性の高いリードレスタイプのパッケージを、簡便かつ安価な方法によつて自動的に製造す

る。3図に示す。次に第2B図において、上記チップ接続部06にチップ05を設置した後、ワイヤボンディング法によつてこのチップ05と上記外部電極部07との端子をそれぞれAuの細線から成るワイヤ05で接続する。次に第2C図において、第2B図の基板凹の上に設けられた上記外部電極部07、チップ接続部06、チップ05及びワイヤ05を一体とするために、公知のトランヌフア・モールド法(移形成法)を用いて、エポキシから成る樹脂モールド層04を上記基板凹上に形成する。なお本実施例においては、上記樹脂モールド層04の厚さtを1(μ)とした。

次に第2C図において、F₀のみを選択的にエッチングするが樹脂モールド層04及びAu層02はエッチングしないエッチング液、例えば塩化第二鉄(FeCl₃)溶液を用いて、基板凹の裏面(11a)側からスプレー・エッチングすることにより、上記基板凹を除去して、第2D図に示すリードレスタイプのパッケージ凹を完成させる。上記エッチングによって露出されたAu層02の下面のうち外部

電極部切端の A₀ 唇の下面が外部電極面(12b) (12c)となり、またチップ取置部切端の A₀ 唇の下面が熱放散面(12a)となる。

上述のようにして完成されたパッケージ即ちプリント基板上に実装する場合には、第2D図に示す上記外部電極面(12b) (12c)をプリント基板上の導体バタンに直接ハンダ付けして接続すればよい。

上述の第1実施例の熱放散面(12a)は、その動作時においてチップ即ちから発生する熱の放散面となつていて、金属の熱伝導度は非常に高いので、チップ即ちから発生する熱は金属製のチップ取置部切端を外方に向かつて逆逆に流れ、熱放散面(12a)から放散されることによつて効果的に除去される。しかし、より効果的にチップ即ちの発生熱を除去するためには、広い表面積を有する放熱フィンの一部を上記熱放散面(12a)に押し当てて空冷により熱を放散させるのが好ましい。

上述の第1実施例のパッケージ即ちは第2A図～第2D図に示すような簡単な工程によつて作ること

ができるばかりでなく、全ての製造工程に従来から用いられている装置を用いることができるの、テープキャリアタイプのパッケージにおいて必要な既述の特殊な装置が不要である。従つて、簡便かつ安価な方法によりパッケージ即ちを製造することができる。さらに上述の第1実施例では出脂モールド唇凹を形成する方法としてトランスペア・モールド法(移送成形法)を用いている。この方法は信頼性の高い樹脂封止ができるばかりでなく、モールドの機械化、省効化が容易であるためにパッケージを自動的に製造できるという利点を有している。

なお上述の第1実施例において、第2A図に示す場合と同様にチップ取置部切端及び外部電極部切端の下部に上記アンダーカット部(11a)～(11d)が形成されるので、これらの部分に樹脂が回り込んで突出部(20a)～(20d)が形成される。従つてこれらの突出部(20a)～(20d)によつて上記チップ取置部切端及び上記外部電極部切端が下方から保月される構造となるので、上記チップ取置部切端及び上記外部電極部切端がパッケージ即ちの使用時ににおいて樹脂モールド唇凹から抜け出てしまうのを防止することができるという利点がある。さらにチップ取置部切端及び外部電極部切端が樹脂モールド唇凹の下面から突出することなく形成されるので、これらのチップ取置部切端及び外部電極部切端を保護することができるという利点もある。

第5A図～第5C図は本発明の第2実施例による半導体装置のパッケージの製造方法を説明するための工藝図である。以下第5A図から工藝順に説明する。
まず第5A図において、厚さ35(μ)のCu

板の基板即ちの上面に公知のフォトレジストを塗布した後に所定のバーチュニングを行う。次いでCuのみを選択的にエッチングするエッチング液、例えば既述のFeCl₃溶液を用いて上記基板即ちの表面を僅かにエッチングすることによつて、上記基板即ちの表面にチップ取置部位(11a)及び外部電極接続部位(11b) (11c) (11d)をそれぞれ形成する。上記フォトレジストを除去した後に第5B図において、第1実施例と同様に、上記チップ取置部位(11a)にハンダ唇凹を介してチップ即ちを取置した後、ワイヤボンディング法によつてこのチップ即ちと上記外部電極接続部位(11b) (11c) (11d)とをそれぞれA₀の四隅から成るワイヤ即ちで接続する。なお本実施例においては、既述の理由により、第1実施例で用いたワイヤよりも程の大きいワイヤを用いた。次に第1実施例と同様に樹脂モールド唇凹を上記基板即ち上に形成する。次に上記基板即ちを第1実施例と同様な方法でエッチング除去してパッケージ即ちを発成させる。上記エッチングにより露出されたワイヤ即ちの露部が外部電極接続部位となり、またハ

ンダルの下面が熱放散面(23a)となる。

上述のようにして完成されたパッケージBをプリント基板上に設置する場合には、第1実施例と同じく、图5C図に示す上部外部電極端子切端をプリント基板上の導体バタンに直接ハンダ付けして接続すればよい。このことから明らかのように、本実施例においてはワイヤ49の端部をそのまま外部端子切端として用いるために、ワイヤ49の端を前述のように大きくするのが好ましい。なお熱放散面(23a)の機能は第1実施例と同様である。

上述の第2実施例のパッケージBは、第1実施例のパッケージBと異なつて、フォトレジスト工程及びエンチング工程によつて基板Bに設けられた外部電極接続部位(11b)(11c)にワイヤ49を直接接続するようにしているので、第1実施例のパッケージBにおけるAu膜0.00及びNi膜0.00を応する必要がない。上記のフォトレジスト工程及びエンチング工程は第1実施例のパッケージBで用いたメッシュ工程よりもさらに簡便である。またこれらのフォトレジスト工程及びニッティング工

を用いることにより、Au等の貴金属を用いる必要がなくなるという利点がある。

上述の第1実施例及び第2実施例においては、1個のチップをチップ接続部に設置してこれを樹脂モールドする場合につき述べたが、基板上に多数のチップ接続部を設け、それぞれのチップ接続部に同一のチップを設置して、これらのチップを一体に樹脂モールドした後に切断分離することにより、それぞれ1個のチップを有する同一のパッケージを多数個同時に作ることもできる。また図5Bのチップと、コンデンサや抵抗等の受動素子とを基板上に設置した後にこれらを一体に樹脂モールドすれば、種々の機能を有するパッケージを作ることができると共に、回路素子の集成度の高いパッケージを作ることができるという利点がある。

上述の第1実施例の基板の材料は選択エンチングが可能であればCu等の他の金属であつてもよく、また第2実施例の基板の材料もFe等の他の金属であつてもよい。第1実施例においてはさらに金属以外の材料、例えばポリイミドアミド系樹

脂を用いることも可能である。この場合には既述のエンチング液としては、ヒドラジンとエチレンジアミンとの混合液を用いればよい。

発明の効果

本発明に係る半導体装置のパッケージの製造方法によれば、その動作時において半導体装置から発生する熱の放散性が良好でありかつ信頼性が高い小形のパッケージを、確めて簡便かつ安価な方法によつて自動的に製造することができる。

4. 製造の簡単な説明

第1図は従来のプラスチックタイプのチップやシリカタイプパッケージの構造を示す断面図、第2A図～第2D図は本発明の第1実施例による半導体装置のパッケージの製造方法を説明するための工程図、第3図は上記第2A図に示す工程終了時の状態の半面図、第4A図及び第4B図は上記の第1実施例の断面図を示す上記第2A図～第2D図と同様な図、第5A図～第5C図は本発明の第2実施例による半導体装置のパッケージの製造方法を説明するための工程図である。

なお図面に用いた符号において、

(11) (22) (23)	パッケージ
(4) (5)	チップ
(5) (4)	ワイヤ
(6)	基板
(11b) (11c)	外部端子接続部位
(7) (8)	外部電極端子
(9)	樹脂モールド層

である。

代理人	土屋 助
	大田 勝男
	杉浦 順

第5A図

第4A図

第4B図

第5B図

第5C図

