```
In [1]:
```

```
import numpy as np
```

Библиотека numpy

Пакет питру предоставляет *п*-мерные однородные массивы (все элементы одного типа); в них нельзя вставить или удалить элемент в произвольном месте. В питру реализовано много операций над массивами в целом. Если задачу можно решить, произведя некоторую последовательность операций над массивами, то это будет столь же эффективно, как в С или matlab - львиная доля времени тратится в библиотечных функциях, написанных на С.

Замечание. Модуль numpy.random не рассматривается целенаправленно. Вместо него на следующем занятии мы будем изучать модуль scipy.stats, который больше подходит под наши задачи.

1. Одномерные массивы

1.1 Типы массивов, атрибуты

Можно преобразовать список в массив.

```
In [2]:

a = np.array([0, 2, 1])
a, type(a)

Out[2]:
(array([0, 2, 1]), numpy.ndarray)

print печатает массивы в удобной форме.

In [3]:

print(a)

[0 2 1]
```

Класс ndarray имеет много методов.

```
In [4]:
```

set(dir(a)) - set(dir(object))

Out[4]:

```
{'T',
 '__abs_
   add
    _and_
    array__
   array finalize
   _array_function__
  __array_interface_
  __array_prepare__
   _array_priority_
   _array_struct___'
    _array_ufunc_
    _array_wrap___
    _bool___',
    _complex_
    _contains_
    copy ',
    _deepcopy_
    delitem
    divmod
    float__',
    floordiv
    getitem
    _iadd___',
    iand
    ifloordiv__',
    ilshift
    imatmul
    imod__',
    _imul_
    _index_
    _
_int__',
    invert
    ior_ '
    _ior__',
_ipow___',
    _irshift___',
    _isub___'
    _isub__',
_iter__',
    itruediv
    ixor__',
    len
    _lshift_
    matmul
    mod
    mul
    neg_
    or
    pos_
    _pow_
    radd
   rand '
    rdivmod
    _rfloordiv_
    rlshift
    rmatmul
    rmod '
    rmul
    ror
   _rpow__',
```

```
_rrshift__',
 _rshift__',
'rsub',
__rtruediv__',
'__rxor__',
'__setitem_
setstate__',
__sub__',
__truediv__',
__xor__',
'all',
'any',
'argmax',
'argmin',
'argpartition',
'argsort',
'astype',
'base',
'byteswap',
'choose',
'clip',
'compress',
'conj',
'conjugate',
'copy',
'ctypes',
'cumprod',
'cumsum',
'data',
'diagonal',
'dot',
'dtype',
'dump',
'dumps',
'fill',
'flags',
'flat',
'flatten',
'getfield',
'imag',
'item',
'itemset',
'itemsize',
'max',
'mean',
'min',
'nbytes',
'ndim',
'newbyteorder',
'nonzero',
'partition',
'prod',
'ptp',
'put',
'ravel',
'real',
'repeat',
'reshape',
'resize',
'round',
'searchsorted',
```

```
'setflags',
 'shape',
 'size',
 'sort',
 'squeeze',
 'std',
 'strides',
 'sum',
 'swapaxes',
 'take',
 'tobytes',
 'tofile',
 'tolist',
 'tostring',
 'trace',
 'transpose',
 'var',
 'view'}
Наш массив одномерный.
In [5]:
a.ndim
Out[5]:
1
В n-мерном случае возвращается кортеж размеров по каждой координате.
In [6]:
a.shape
Out[6]:
(3,)
size - это полное число элементов в массиве; len - размер по первой координате (в 1-мерном
случае это то же самое).
In [7]:
len(a), a.size
Out[7]:
(3, 3)
numpy предоставляет несколько типов для целых (int16, int32, int64) и чисел с плавающей
точкой (float32, float64).
```

'setfield',

```
In [8]:
a.dtype, a.dtype.name, a.itemsize
Out[8]:
(dtype('int64'), 'int64', 8)
Массив чисел с плавающей точкой.
In [9]:
b = np.array([0., 2, 1])
b.dtype
Out[9]:
dtype('float64')
Точно такой же массив.
In [10]:
c = np.array([0, 2, 1], dtype=np.float64)
print(c)
[0. 2. 1.]
Преобразование данных
In [11]:
print(c.dtype)
print(c.astype(int))
print(c.astype(str))
float64
[0 2 1]
['0.0' '2.0' '1.0']
1.2 Индексация
Индексировать массив можно обычным образом.
In [12]:
a[1]
Out[12]:
```

Массивы - изменяемые объекты.

```
In [13]:
```

```
a[1] = 3
print(a)
```

```
[0 3 1]
```

Массивы, разумеется, можно использовать в for циклах. Но при этом теряется главное преимущество numpy - быстродействие. Всегда, когда это возможно, лучше использовать операции над массивами как едиными целыми.

In [14]:

```
for i in a:
    print(i)

0
3
1
```

Упражнение: создайте numpy-массив, состоящий из первых пяти простых чисел, выведите его тип и размер:

```
In [15]:
```

```
# <...>
```

In [16]:

```
# решение

arr = np.array([2, 3, 5, 7, 11])
print(arr)
print(arr.shape)
print(arr.dtype)

[ 2 3 5 7 11]
(5,)
int64
```

1.3 Создание массивов

Массивы, заполненные нулями или единицами. Часто лучше сначала создать такой массив, а потом присваивать значения его элементам.

In [17]:

```
a = np.zeros(3)
b = np.ones(3, dtype=np.int64)
print(a)
print(b)

[0. 0. 0.]
[1 1 1]
```

Если нужно создать массив, заполненный нулями, длины и типа другого массива, то можно использовать конструкцию

```
In [18]:
```

```
np.zeros like(b)
Out[18]:
array([0, 0, 0])
```

Функция arange подобна range. Аргументы могут быть с плавающей точкой. Следует избегать ситуаций, когда (конец-начало)/шаг - целое число, потому что в этом случае включение последнего элемента зависит от ошибок округления. Лучше, чтобы конец диапазона был где-то посредине шага.

```
In [19]:
```

```
a = np.arange(0, 9, 2)
print(a)
[0 2 4 6 8]
```

```
In [20]:
```

```
b = np.arange(0., 9, 2)
print(b)
```

```
[0. 2. 4. 6. 8.]
```

Последовательности чисел с постоянным шагом можно также создавать функцией linspace. Начало и конец диапазона включаются; последний аргумент - число точек.

```
In [21]:
```

```
a = np.linspace(0, 8, 5)
print(a)
```

```
[0. 2. 4. 6. 8.]
```

Упражнение: создайте и выведите последовательность чисел от 10 до 20 с постоянным шагом, длина последовательности - 21.

```
In [22]:
```

```
# <...>
```

```
In [23]:
```

```
# решение
arr = np.linspace(10, 20, 21)
print(arr)
     10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15.
[10.
                                                       15.5 16.
```

```
6.5
     17.5 18. 18.5 19. 19.5 20. ]
17.
```

Последовательность чисел с постоянным шагом по логарифмической шкале от 10^0 до 10^1 .

```
In [24]:
b = np.logspace(0, 1, 5)
print(b)
```

1

2. Операции над одномерными массивами

1.77827941 3.16227766 5.62341325 10.

2.1 Математические операции

1.

Арифметические операции проводятся поэлементно.

```
In [25]:
а
Out[25]:
array([0., 2., 4., 6., 8.])
In [26]:
b
Out[26]:
array([ 1. , 1.77827941, 3.16227766, 5.62341325, 10.
])
In [27]:
print(a + b)
[ 1.
            3.77827941 7.16227766 11.62341325 18.
                                                          ]
In [28]:
print(a - b)
            0.22172059 0.83772234 0.37658675 -2.
[-1.
                                                          1
In [29]:
print(a * b)
.0
    3.55655882 12.64911064 33.74047951 80.
                                                          1
In [30]:
print(a / b)
           1.12468265 1.26491106 1.06696765 0.8
[0.
                                                     ]
```

```
In [31]:
```

```
print(a ** 2)
```

```
[ 0. 4. 16. 36. 64.]
```

Когда операнды разных типов, они пиводятся к большему типу.

```
In [32]:
```

```
i = np.ones(5, dtype=np.int64)
print(a + i)
```

```
[1. 3. 5. 7. 9.]
```

numpy содержит элементарные функции, которые тоже применяются к массивам поэлементно. Они называются универсальными функциями (ufunc).

```
In [33]:
```

```
np.sin, type(np.sin)
```

Out[33]:

(<ufunc 'sin'>, numpy.ufunc)

In [34]:

```
print(np.sin(a))
```

```
[ 0. 0.90929743 -0.7568025 -0.2794155 0.98935825]
```

Один из операндов может быть скаляром, а не массивом.

```
In [35]:
```

```
print(a + 1)
```

```
[1. 3. 5. 7. 9.]
```

In [36]:

```
print(2 * a)
```

```
[ 0. 4. 8. 12. 16.]
```

Сравнения дают булевы массивы.

```
In [37]:
```

```
print(a > b)
```

```
[False True True False]
```

```
In [38]:
print(a == b)
[False False False False]
In [39]:
c = a > 5
print(c)
[False False True True]
Кванторы "существует" и "для всех".
In [40]:
np.any(c), np.all(c)
Out[40]:
(True, False)
Модификация на месте.
In [41]:
а
Out[41]:
array([0., 2., 4., 6., 8.])
In [42]:
a += 1
print(a)
[1. 3. 5. 7. 9.]
In [43]:
b
Out[43]:
            , 1.77827941, 3.16227766, 5.62341325, 10.
array([ 1.
])
In [44]:
b *= 2
print(b)
[ 2.
             3.55655882 6.32455532 11.2468265 20.
                                                           ]
```

```
In [45]:
b /= a
print(b)
[2.
            1.18551961 1.26491106 1.6066895 2.222222221
При выполнении операций над массивами деление на 0 не возбуждает исключения, а даёт значения
np.nan или np.inf.
In [46]:
print(np.array([0.0, 0.0, 1.0, -1.0]) / np.array([1.0, 0.0, 0.0, 0.0]))
[ 0. nan inf -inf]
/Users/eugene.ivanin/opt/anaconda3/lib/python3.7/site-packages/ipyke
rnel launcher.py:1: RuntimeWarning: divide by zero encountered in tr
ue divide
  """Entry point for launching an IPython kernel.
/Users/eugene.ivanin/opt/anaconda3/lib/python3.7/site-packages/ipyke
rnel launcher.py:1: RuntimeWarning: invalid value encountered in tru
e divide
  """Entry point for launching an IPython kernel.
In [47]:
np.nan + 1, np.inf + 1, np.inf * 0, 1. / np.inf
Out[47]:
(nan, inf, nan, 0.0)
Сумма и произведение всех элементов массива; максимальный и минимальный элемент; среднее и
среднеквадратичное отклонение.
In [48]:
b
Out[48]:
                 , 1.18551961, 1.26491106, 1.6066895 , 2.22222222])
array([2.
In [49]:
b.sum(), b.prod(), b.max(), b.min(), b.mean(), b.std()
Out[49]:
(8.279342393526044,
 10.708241812210389,
 2.22222222222223,
 1.1855196066926152,
 1.6558684787052087,
 0.4039003342660745)
```

Имеются встроенные функции

```
In [50]:
print(np.sqrt(b))
print(np.exp(b))
print(np.log(b))
print(np.sin(b))
print(np.e, np.pi)
[1.41421356 1.08881569 1.12468265 1.26755256 1.49071198]
[7.3890561 3.27238673 3.54277764 4.98627681 9.22781435]
[0.69314718 0.17018117 0.23500181 0.47417585 0.7985077 ]
[0.90929743 0.92669447 0.95358074 0.99935591 0.79522006]
2.718281828459045 3.141592653589793
Иногда бывает нужно использовать частичные (кумулятивные) суммы. В нашем курсе такое
пригодится.
In [51]:
print(b.cumsum())
[2.
            3.18551961 4.45043067 6.05712017 8.27934239]
```

2.2 Сортировка, изменение массивов

Функция sort возвращает отсортированную копию, метод sort сортирует на месте.

```
In [52]:
```

```
b
Out[52]:
               , 1.18551961, 1.26491106, 1.6066895 , 2.22222222])
array([2.
In [53]:
print(np.sort(b))
print(b)
[1.18551961 1.26491106 1.6066895 2.
                                             2.22222221
[2.
            1.18551961 1.26491106 1.6066895 2.222222221
In [54]:
b.sort()
print(b)
[1.18551961 1.26491106 1.6066895 2.
                                             2.2222222]
```

Объединение массивов.

```
In [55]:
а
Out[55]:
array([1., 3., 5., 7., 9.])
In [56]:
b
Out[56]:
array([1.18551961, 1.26491106, 1.6066895 , 2.
                                                        , 2.2222222])
In [57]:
a = np.hstack((a, b))
print(a)
                        5.
[1.
            3.
                                    7.
                                                9.
                                                           1.18551961
 1.26491106 1.6066895
                        2.
                                    2.22222221
Расщепление массива в позициях 3 и 6.
In [58]:
np.hsplit(a, [3, 6])
Out[58]:
[array([1., 3., 5.]),
 array([7.
                                , 1.18551961]),
                   , 9.
 array([1.26491106, 1.6066895 , 2.
                                            , 2.2222222])]
Функции delete, insert и append не меняют массив на месте, а возвращают новый массив, в
котором удалены, вставлены в середину или добавлены в конец какие-то элементы.
In [59]:
a = np.delete(a, [5, 7])
print(a)
                                    7.
                        5.
                                               9.
                                                           1.26491106
[1.
            3.
            2.2222222]
 2.
In [60]:
a = np.insert(a, 2, [0, 0])
print(a)
[1.
                                    0.
                                                5.
                                                           7.
                        0.
            1.26491106 2.
                                    2.22222221
 9.
```

```
In [61]:
```

```
a = np.append(a, [1, 2, 3])
print(a)
[1.
                         0.
                                     0.
                                                 5.
                                                             7.
            1.26491106 2.
                                     2.2222222 1.
                                                             2.
 9.
 3.
            ]
```

2.3 Способы индексации массивов

Есть несколько способов индексации массива. Вот обычный индекс.

```
In [62]:
```

```
a = np.linspace(0, 1, 11)
print(a)
[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]
In [63]:
b = a[2]
print(b)
```

0.2

Диапазон индексов. Создаётся новый заголовок массива, указывающий на те же данные. Изменения, сделанные через такой массив, видны и в исходном массиве.

```
In [64]:
```

```
b = a[2:6]
print(b)
```

[0.2 0.3 0.4 0.5]

```
In [65]:
```

```
b[0] = -0.2
print(b)
```

 $[-0.2 \quad 0.3 \quad 0.4 \quad 0.5]$

In [66]:

```
print(a)
```

```
[ 0. 0.1 -0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. ]
```

Диапазон с шагом 2.

```
In [67]:
```

```
b = a[1:10:2]
print(b)
```

```
[0.1 0.3 0.5 0.7 0.9]
```

```
In [68]:
```

```
b[0] = -0.1
print(a)
```

```
[0. -0.1 -0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.]
```

Массив в обратном порядке.

In [69]:

```
b = a[::-1]
print(b)
```

```
[ 1. 0.9 0.8 0.7 0.6 0.5 0.4 0.3 -0.2 -0.1 0. ]
```

Подмассиву можно присвоить значение - массив правильного размера или скаляр.

In [70]:

```
a[1:10:3] = 0
print(a)
```

```
[ 0. 0. -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ]
```

Тут опять создаётся только новый заголовок, указывающий на те же данные.

In [71]:

```
b = a[:]
b[1] = 0.1
print(a)
```

```
[ 0. 0.1 -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1. ]
```

Чтобы скопировать и данные массива, нужно использовать метод сору .

In [72]:

```
b = a.copy()
b[2] = 0
print(b)
print(a)
```

```
[0. 0.1 0. 0.3 0. 0.5 0.6 0. 0.8 0.9 1.]
[0. 0.1 -0.2 0.3 0. 0.5 0.6 0. 0.8 0.9 1.]
```

Можно задать список индексов.

In [73]:

```
print(a[[2, 3, 5]])
[-0.2 0.3 0.5]
```

Можно задать булев массив той же величины.

```
In [74]:
b = a > 0
print(b)
[False True False True False True False True
                                                         True
                                                               True]
In [75]:
print(a[b])
[0.1 0.3 0.5 0.6 0.8 0.9 1. ]
In [76]:
а
Out[76]:
array([ 0. , 0.1, -0.2, 0.3, 0. , 0.5, 0.6, 0. , 0.8, 0.9,
1. ])
In [77]:
b
Out[77]:
array([False, True, False, True, False, True, False,
        True, True])
Упражнение:
1)Создайте массив чисел от -2\pi до 2\pi
2)Посчитайте сумму поэлементных квадратов синуса и косинуса для данного массива
3)С помощью np.all проверьте, что в ответе только единицы
In [78]:
# решение
x = np.linspace(-2 * np.pi, 2 * np.pi, 20)
np.all((np.sin(x)**2 + np.cos(x)**2).round() == 1)
Out[78]:
```

3. Двумерные массивы

3.1 Создание, простые операции

True

```
In [79]:
a = np.array([[0.0, 1.0], [-1.0, 0.0]])
print(a)
[[ 0. 1.]
 [-1. 0.]
In [80]:
a.ndim
Out[80]:
2
In [81]:
a.shape
Out[81]:
(2, 2)
In [82]:
len(a), a.size
Out[82]:
(2, 4)
In [83]:
a[1, 0]
Out[83]:
-1.0
Атрибуту shape можно присвоить новое значение - кортеж размеров по всем координатам.
Получится новый заголовок массива; его данные не изменятся.
In [84]:
b = np.linspace(0, 3, 4)
print(b)
[0. 1. 2. 3.]
In [85]:
b.shape
Out[85]:
(4,)
```

```
In [86]:
```

```
b.shape = 2, 2
print(b)
[[0. 1.]
```

Можно растянуть в одномерный массив

```
In [87]:
```

[2. 3.]]

```
print(b.ravel())
[0. 1. 2. 3.]
```

Арифметические операции поэлементные

In [88]:

```
print(a + 1)
print(a * 2)
print(a + [0, 1]) # второе слагаемое дополняется до матрицы копированием строк
print(a + np.array([[0, 2]]).T) # .T - транспонирование
print(a + b)
```

```
[[1. 2.]

[0. 1.]]

[[ 0. 2.]

[-2. 0.]]

[[ 0. 2.]

[-1. 1.]]

[[0. 1.]

[1. 2.]]

[[0. 2.]

[1. 3.]]
```

3.2 Работа с матрицами

Поэлементное и матричное (только в Python >=3.5) умножение.

```
In [89]:
```

```
print(a * b)

[[ 0.  1.]
  [-2.  0.]]

In [90]:

print(a @ b)

[[ 2.  3.]
  [ 0. -1.]]
```

```
In [91]:
```

```
print(b @ a)

[[-1.  0.]
[-3.  2.]]
```

Упражнение: создайте две матрицы $\left(\begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\right)$. Посчитайте их поэлементное и матричное произведения.

```
In [92]:
```

```
# решение
a = np.array([[-3, 4], [4, 3]])
b = np.array([[2, 1], [1, 2]])
print(a * b)
print(b * a)
print(a @ b)
print(b @ a)

[[-6 4]
  [ 4 6]]
  [[-6 4]
  [ 4 6]]
  [[-2 5]
```

Умножение матрицы на вектор.

```
In [93]:
```

[11 10]] [[-2 11] [5 10]]

```
v = np.array([1, -1], dtype=np.float64)
print(b @ v)

[ 1. -1.]

In [94]:
print(v @ b)

[ 1. -1.]
```

Если у вас Питон более ранней версии, то для работы с матрицами можно использовать класс np.matrix, в котором операция умножения реализуется как матричное умножение.

```
Внешнее произведение a_{ij} = u_i v_j
```

```
In [100]:
```

```
u = np.linspace(1, 2, 2)
v = np.linspace(2, 4, 3)
print(u)
print(v)

[1. 2.]
[2. 3. 4.]

In [101]:

a = np.outer(u, v)
print(a)

[[2. 3. 4.]
```

Двумерные массивы, зависящие только от одного индекса: $x_{ij} = u_j$, $y_{ij} = v_i$

In [102]:

[4. 6. 8.]]

```
x, y = np.meshgrid(u, v)
print(x)
print(y)

[[1. 2.]
  [1. 2.]
  [1. 2.]]
  [2. 2.]
  [3. 3.]
  [4. 4.]]
```

Единичная матрица.

In [103]:

```
I = np.eye(4)
print(I)

[[1. 0. 0. 0.]
  [0. 1. 0. 0.]
  [0. 0. 1. 0.]
  [0. 0. 1. 0.]
```

Метод reshape делает то же самое, что присваивание атрибуту shape .

In [104]:

```
print(I.reshape(16))
```

```
[1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.]
```

```
In [105]:
print(I.reshape(2, 8))
[[1. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 1.]]
Строка.
In [106]:
print(I[1])
[0. 1. 0. 0.]
Цикл по строкам.
In [107]:
for row in I:
    print(row)
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]
Столбец.
In [108]:
print(I[:, 2])
[0. 0. 1. 0.]
Подматрица.
In [109]:
print(I[0:2, 1:3])
[[0. 0.]
```

Можно построить двумерный массив из функции.

[1. 0.]]

```
In [110]:
def f(i, j):
    print(i)
    print(j)
    return 10 * i + j
print(np.fromfunction(f, (4, 4), dtype=np.int64))
[[0 0 0 0]]
 [1 \ 1 \ 1 \ 1]
 [2 2 2 2]
 [3 3 3 3]]
[[0 1 2 3]
 [0 1 2 3]
 [0 1 2 3]
 [0 1 2 3]]
[[0 1 2 3]
 [10 11 12 13]
 [20 21 22 23]
 [30 31 32 33]]
Транспонированная матрица.
In [111]:
print(b.T)
[[2 1]
 [1 2]]
Соединение матриц по горизонтали и по вертикали.
In [112]:
a = np.array([[0, 1], [2, 3]])
b = np.array([[4, 5, 6], [7, 8, 9]])
c = np.array([[4, 5], [6, 7], [8, 9]])
print(a)
print(b)
print(c)
[[0 1]
 [2 3]]
[[4 5 6]
 [7 8 9]]
[[4 5]
 [6 7]
 [8 9]]
In [113]:
print(np.hstack((a, b)))
```

[[0 1 4 5 6] [2 3 7 8 9]]

```
In [114]:
```

```
print(np.vstack((a, c)))

[[0 1]
  [2 3]
  [4 5]
  [6 7]
  [8 9]]
```

Сумма всех элементов; суммы столбцов; суммы строк.

```
In [115]:
```

```
print(b.sum())
print(b.sum(axis=0))
print(b.sum(axis=1))

39
[11 13 15]
[15 24]
```

Аналогично работают prod, max, min и т.д.

In [116]:

```
print(b.max())
print(b.max(axis=0))
print(b.min(axis=1))

9
[7 8 9]
```

След - сумма диагональных элементов.

```
In [117]:
```

[4 7]

```
np.trace(a)
```

```
Out[117]:
```

3

Упражнение: в статистике и машинном обучении часто приходится иметь с функцией RSS, которая вычисляется по формуле $\sum_{i=1}^n (y_i - a_i)^2$, где y_i - координаты одномерного вектора y, a_i - координаты одномерного вектора a. Посчитайте RSS для y = (1, 2, 3, 4, 5), a = (3, 2, 1, 0, -1)

```
In [118]:
```

```
# решение

y = np.arange(1, 6)
a = np.arange(3, -2, -1)
rss = np.sum((y - a)**2)
```

4. Тензоры (многомерные массивы)

[1. 0.]]

```
In [119]:
X = np.arange(24).reshape(2, 3, 4)
print(X)
[[[ 0 1 2 3]
  [4567]
  [ 8 9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
Суммирование (аналогично остальные операции)
In [120]:
# суммируем только по нулевой оси, то есть для фиксированных j и k
# суммируем только элементы c индексами (*, j, k)
print(X.sum(axis=0))
# суммируем сразу по двум осям, то есть для фиксированной і
# суммируем только элементы с индексами (i, *, *)
print(X.sum(axis=(1, 2)))
[[12 14 16 18]
 [20 22 24 26]
 [28 30 32 34]]
[ 66 210]
5. Линейная алгебра
In [121]:
a = np.array([[0, 1], [2, 3]])
In [122]:
np.linalg.det(a)
Out[122]:
-2.0
Обратная матрица.
In [123]:
a1 = np.linalg.inv(a)
print(a1)
[[-1.5 \quad 0.5]
```

```
In [124]:
print(a @ a1)
print(a1 @ a)
[[1. 0.]
 [0. 1.]]
[[1. 0.]
 [0. 1.]]
Решение линейной системы au = v.
In [125]:
v = np.array([0, 1], dtype=np.float64)
print(a1 @ v)
[0.5 0.]
In [126]:
u = np.linalg.solve(a, v)
print(u)
[0.5 0.]
Проверим.
In [127]:
print(a @ u - v)
[0. 0.]
Собственные значения и собственные векторы: au_i = \lambda_i u_i. 1 - одномерный массив собственных
значений \lambda_i, столбцы матрицы u - собственные векторы u_i.
In [128]:
1, u = np.linalg.eig(a)
print(1)
```

```
[-0.56155281 \quad 3.56155281]
```

```
In [129]:
```

```
print(u)
```

```
[[-0.87192821 -0.27032301]
 [ 0.48963374 -0.96276969]]
```

Проверим.

```
In [130]:
```

```
for i in range(2):
    print(a @ u[:, i] - l[i] * u[:, i])

[0.00000000e+00 1.66533454e-16]
[ 0.0000000e+00 -4.4408921e-16]
```

Функция diag от одномерного массива строит диагональную матрицу; от квадратной матрицы - возвращает одномерный массив её диагональных элементов.

In [131]:

Все уравнения $au_i = \lambda_i u_i$ можно собрать в одно матричное уравнение $au = u\Lambda$, где Λ - диагональная матрица с собственными значениями λ_i по диагонали.

In [132]:

```
print(a @ u - u @ L)

[[ 0.00000000e+00     0.0000000e+00]
  [ 1.66533454e-16 -4.44089210e-16]]
```

Поэтому $u^{-1}au = \Lambda$.

In [133]:

```
print(np.linalg.inv(u) @ a @ u)

[[-5.61552813e-01 2.77555756e-17]

[-2.22044605e-16 3.56155281e+00]]
```

Найдём теперь левые собственные векторы $v_i a = \lambda_i v_i$ (собственные значения λ_i те же самые).

In [134]:

```
l, v = np.linalg.eig(a.T)
print(l)
print(v)
```

```
[-0.56155281 3.56155281]
[[-0.96276969 -0.48963374]
[ 0.27032301 -0.87192821]]
```

Собственные векторы нормированы на 1.

```
In [135]:
```

Левые и правые собственные векторы, соответствующие разным собственным значениям, ортогональны, потому что $v_i a u_i = \lambda_i v_i u_i = \lambda_i v_i u_i$.

11

```
In [136]:
```

[0.23570226 1.

```
print(v.T @ u)

[[ 9.71825316e-01  0.0000000e+00]
[-5.55111512e-17  9.71825316e-01]]
```

Упражнение: в машинном обучении есть модель линейной регрессии, для которой "хорошее" решение считается по следующей формуле: $\widehat{\theta} = (X^T \cdot X + \lambda \cdot I_n)^{-1} \cdot X^T y$. Вычислите $\widehat{\theta}$ для $X = \begin{pmatrix} -3 & 4 & 1 \\ 4 & 3 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 10 \\ 12 \end{pmatrix}$, I_n - единичная матрица размерности 3, $\lambda = 0.1$

```
In [137]:
```

```
# решение

X = np.array([[-3, 4, 1], [4, 3, 1]])
y = np.array([10, 12])
I = np.eye(3)
lambd = 0.1
theta = np.linalg.inv(X.T @ X + lambd * I) @ X.T @ y
```

6. Интегрирование

```
In [138]:
```

```
from scipy.integrate import quad, odeint
from scipy.special import erf
```

```
In [139]:
```

```
def f(x):
    return np.exp(-x ** 2)
```

Адаптивное численное интегрирование (может быть до бесконечности). err - оценка ошибки.

```
In [140]:
```

```
res, err = quad(f, 0, np.inf)
print(np.sqrt(np.pi) / 2, res, err)
```

```
In [141]:
```

```
res, err = quad(f, 0, 1)
print(np.sqrt(np.pi) / 2 * erf(1), res, err)
```

0.7468241328124269 0.7468241328124271 8.291413475940725e-15

7. Сохранение в файл и чтение из файла

```
In [142]:
```

```
x = np.arange(0, 25, 0.5).reshape((5, 10))

# Сохраняем в файл example.txt данные x в формате с двумя точками после запятой и раздели телем ';'
np.savetxt('example.txt', x, fmt='%.2f', delimiter=';')
```

Получится такой файл

```
In [143]:
```

```
! cat example.txt

0.00;0.50;1.00;1.50;2.00;2.50;3.00;3.50;4.00;4.50

5.00;5.50;6.00;6.50;7.00;7.50;8.00;8.50;9.00;9.50

10.00;10.50;11.00;11.50;12.00;12.50;13.00;13.50;14.00;14.50

15.00;15.50;16.00;16.50;17.00;17.50;18.00;18.50;19.00;19.50

20.00;20.50;21.00;21.50;22.00;22.50;23.00;23.50;24.00;24.50
```

Теперь его можно прочитать

```
In [144]:
```

```
x = np.loadtxt('example.txt', delimiter=';')
print(x)
[[ 0.
       0.5 1.
                 1.5 2.
                          2.5 3.
                                    3.5 4.
                                              4.51
       5.5 6.
                6.5 7.
                          7.5 8.
[ 5.
                                   8.5 9.
                                              9.51
[10.
     10.5 11.
               11.5 12.
                        12.5 13.
                                  13.5 14.
                                            14.5]
     15.5 16. 16.5 17. 17.5 18. 18.5 19.
[15.
                                            19.5
      20.5 21. 21.5 22. 22.5 23. 23.5 24. 24.5]]
[20.
```

8. Производительность numpy

Посмотрим на простой пример --- сумма первых 10^8 чисел.

```
In [145]:
```

```
%%time
sum_value = 0
for i in range(10 ** 8):
    sum_value += i
print(sum_value)
```

4999999950000000

```
CPU times: user 9.29 s, sys: 8.9 ms, total: 9.3 s Wall time: 9.3 s
```

Немного улучшеный код

In [146]:

```
%%time
sum_value = sum(range(10 ** 8))
print(sum_value)
```

4999999950000000

```
CPU times: user 1.62 s, sys: 6.77 ms, total: 1.63 s Wall time: 1.62 s
```

Код с использованием функций библиотеки numpy

In [147]:

```
%%time
sum_value = np.arange(10 ** 8).sum()
print(sum_value)
```

499999950000000

```
CPU times: user 254 ms, sys: 242 ms, total: 496 ms Wall time: 495 ms
```

Простой и понятный код работает в 30 раз быстрее!

Посмотрим на другой пример. Сгенерируем матрицу размера 500×1000 , и вычислим средний минимум по колонкам.

Простой код, но при этом даже использующий некоторые питон-функции

Замечание. Далее с помощью scipy.stats происходит генерация случайных чисел из равномерного распределения на отрезке [0, 1]. Этот модуль будем изучать на следующем занятии.

```
In [148]:
```

```
import scipy.stats as sps
```

In [149]:

```
%%time

N, M = 500, 1000
matrix = []
for i in range(N):
    matrix.append([sps.uniform.rvs() for j in range(M)])

min_col = [min([matrix[i][j] for i in range(N)]) for j in range(M)]
mean_min = sum(min_col) / N
print(mean_min)
```

0.00400095222563674

CPU times: user 16.7 s, sys: 237 ms, total: 16.9 s Wall time: 16.9 s

Понятный код с использованием функций библиотеки numpy

In [150]:

```
%%time

N, M = 500, 1000
matrix = sps.uniform.rvs(size=(N, M))
mean_min = matrix.min(axis=1).mean()
print(mean_min)
```

0.0009739207148634659 CPU times: user 184 ms, sys: 10.3 ms, total: 194 ms Wall time: 41.1 ms

Простой и понятный код работает в 1500 раз быстрее!

Введение в анализ данных, 2020

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)

Ha основе http://www.inp.nsk.su/~grozin/python/)