Foundations of Algorithms Homework 2

Arthur Nunes-Harwitt

$$F_{0} = 0$$

$$F_{1} = 1$$

$$F_{n} = F_{n-1} + F_{n-2}$$

$$f(0; a, b) = a$$

$$f(1; a, b) = b$$

$$f(n; a, b) = f(n-1; b, a+b)$$

Theorem 1 For any $n \in \mathbb{N}$ if n > 1 then f(n; a, b) = f(n - 1; a, b) + f(n - 2; a, b).

Theorem 2 For any $n \in \mathbb{N}$, $F_n = f(n; 0, 1)$.

- 1. The function fibItHelper implemented the recurrence f(n;a,b). What is the time complexity of fibItHelper? Write down a recurrence relation $T_f(n)$ that characterizes the time complexity in terms of the number of additions performed; then solve the recurrence.
- 2. Notice that f is repeatedly operating on the numbers a and b. Let $L: \mathbb{N}^2 \to \mathbb{N}^2$ be defined by L(a,b) = (b,a+b). Then f(n;a,b) can be understood as $(L^n(a,b))_1$. Prove this assertion by using mathematical induction to prove that for any $n \in \mathbb{N}$, $L^n(a,b) = (f(n;a,b),f(n+1;a,b))$.
- 3. (**project**) Write a function fibPow that takes a natural number n, and returns $(L^n(0,1))_1$.
 - (a) First choose a representation for L. (HINT: The variable L is used because the function is a linear operator. Functional programmers beware!)
 - (b) Then implement an algorithm to raise objects of that type to the nth power that requires only $\mathcal{O}(\log(n))$ "iterations."
 - (c) Finally, implement fibPow using the representation of L and the power algorithm.
 - (d) What is the time complexity of fibPow?
- 4. Look up the definition of pseudo-polynomial time.
 - (a) Write down the definition.
 - (b) Is fib a pseudo-polynomial time algorithm? Explain.
 - (c) Is fibIt a pseudo-polynomial time algorithm? Explain.
 - (d) Is fibPow a pseudo-polynomial time algorithm? Explain.

- 5. Solve the following recurrences using the iteration method and express the answer using \mathcal{O} -notation. In all cases, T(1)=1, and a,b, and c are constants greater than or equal to one.
 - (a) T(n) = aT(n-1) + bn
 - (b) $T(n) = aT(n-1) + bn \log(n)$
 - (c) $T(n) = aT(n-1) + bn^c$
 - (d) $T(n) = aT(n/2) + bn^c$