

Paper Reading

2022.06.23 Guan Yunyi

Geometry-aware Recurrent Neural Networks for Active Visual Recognition

Cheng R, Wang Z, Fragkiadaki K.

Key words: active vision, 3D reconstruction, RL

Introduction

1. Introduction

- Geometry-aware RNN: trained end-to-end in a differentiable manner
- **Active view selection network:** trained with reinforcement rewarded by state estimation accuracy at each timestep.

using the known relative ego-motion

Methods

2.1 Geometry-aware RNN

- Integrate scene information across views into 3D latent feature tensors
 - -> information regarding the same 3D physical point is placed nearby in the tensor
- Tasks are directly solved later from the output of the 3D latent feature

using the **known relative ego-motion**

2.1 Geometry-aware RNN – (1) Unprojection

- Input: an RGB image of the selected viewpoint
- Depth + Mask net: 2D convolutional encoder-decoder network, predicts 2D depth and object foreground map
- Unprojection: 2D -> 3D, use RGB, depth and mask information to fill in z-axis
 (All voxels along the same ray shot will be filled with nearly the same z)
- Output: an initial feature tensor

2.1 Geometry-aware RNN – (2) Recurrent memory update

- Rotation: rotate unprojected feature to the first view using known egomotion
 - -> 2D projections regarding the same physical point are placed nearby in the

3D memory tensor

• 3D GRU: input the rotated features to update memory

2.1 Geometry-aware RNN – (3) 3D tasks

- Supervised training: using 3D occupancy voxel grids, ground-truth bounding boxes and masks available in <u>simulator environments</u>
- 3D convolutional encoder-decoder network: produce the final set of outputs
- 3D sigmoid output which predicts voxel occupancy
- 3D segmentation embedding feature
- multiclass softmax output at every voxel

2.2 View selection policy

- at each t, predict a distribution over eight adjacent views in the neighborhood of the current view
- Policy network: CNN with 2D and 3D branches
- Output: final categorical distribution over 8 possible directions
- Training: with <u>REINFORCE</u>
- Rewards: <u>reconstruction-driven</u>

 (as Intersection over Union (IoU) of the discretized voxel occupancy from each view to the next increases)

Experiments

3.1 Multi-view reconstruction of single objects

	single object								
	view-1	view-2	view-3	view-4					
1D-LSTM	0.57	0.59	0.60	0.60		view-1	view-2	view-3	view-4
LSM	0.63	0.66	0.68	0.69	1D-LSTM	0.12	0.16	0.16	0.18
LSM+gt depth	0.65	0.68	0.69	0.70	ours	0.24	0.28	0.31	0.32
ours+gt depth	0.55	0.69	0.72	0.73	ours	0.24	0.20	0.51	0.52

IoU between the prediction and ground-truth 3D voxel grids

- Dataset: SUNCG and chairs, cars, and airplanes from ShapeNet
- Train a single 3D reconstruction model with ground-truth 3D voxel occupancy (on sequences of randomly selected views)
- -> the proposed geometry-aware RNN outperforms the baselines, especially after aggregating information from more views.

3.1 Multi-view reconstruction of single objects

3.2 Active view selection

	view-1	view-2	view-3	view-4				
	single object							
1-step greedy	0%	29.1%	32.7%	33.3%				
Active	0%	$27.7\% \pm 3.23\%$	$27.7\% \pm 3.23\%$	$36.6\% \pm 1.17\%$				
Oracle	0%	32.7%	38.1%	38.1%				
	multiple objects							
1-step greedy	0%	36.2%	40.4%	40.4%				
Active	0%	$31.3\% \pm 2.26\%$	$39.0\% \pm 1.99\%$	$41.8\% \pm 2.36\%$				
Oracle	0%	29.8%	42.6%	44.7%				

Percent increase in IoU between 3D reconstructions and ground-truth over the single-view reconstruction

3.3 multi-object tasks

multi-objects view-2 view-3 view-1 view-4 0.20 1D-LSTM 0.110.150.17LSM 0.47 0.51 0.53 0.43LSM+gt depth 0.48 0.51 0.54 0.56 ours+gt depth 0.47 0.58 0.62 0.64 ours+learnt depth 0.45 0.56 0.600.62

IoU between the prediction and ground-truth 3D voxel grids

	view-1	view-2	view-3	view-4
3D voxel occupancy IoU	0.54	0.63	0.64	0.65
3D segmentation IoU	0.60	0.69	0.70	0.71
Classification accuracy	0.56	0.83	0.83	0.83

For 3D reconstruction, learned depth results in lower IoU than ground-truth depth

Conclusion

4.1 Innovation Points

- Selecting views for **jointly optimizing** 3D reconstruction, object instance segmentation, and classification
- Proposing a geometry-aware RNN that accumulates feature information directly in 3D

4.2 Limitations

- it assumes ground-truth ego-motion
- it consumes lots of GPU memory for maintaining the full scene tensor
- it cannot handle moving objects
- it requires 3D ground-truth for object detection, which is very expensive to obtain
- My opinion:
- focus on active 3D reconstruction but not active recognition
- can only predict eight adjacent views in the neighborhood of the current view