Chương 6: Kỹ thuật Giảm để trị (Decrease-and-Conquer)

Duyệt đồ thị theo chiều sâu (Depth-First Search – DFS)

Giải thuật

```
void DFS(G) {
    for (u ∈ V) {
        color<sub>u</sub> = WHITE;
        parent<sub>u</sub> = NIL;
    }
    for (u ∈ V)
        if (color<sub>u</sub> == WHITE)
            DFS_VISIT(u);
}

void DFS_VISIT(u ∈ V) {
    color<sub>u</sub> = GRAY;
    for (mỗi đinh v kề với đinh u)
        if (color<sub>v</sub> == WHITE) {
            parent<sub>v</sub> = u;
            DFS_VISIT(v);
        }
        color<sub>u</sub> = BLACK;
}
```


Duyệt đồ thị theo chiều rộng (Breadth-First Search – BFS)

Giải thuật

```
void
            BFS(G, root) {
    for (u \in V) {
        color<sub>u</sub> = WHITE;
        parent_u = NIL;
    color_{root} = GRAY;
    Q = \emptyset;
    enQueue(Q, root);
    while (Q \neq \emptyset) {
        u = deQueue(Q);
        for (m\tilde{\delta}i \ \text{dinh} \ v \ k\hat{e} \ \text{dinh} \ u)
             if (color<sub>v</sub> == WHITE) {
                 color_v = GRAY;
                parent_v = u;
                 enQueue(Q, v);
        color<sub>u</sub> = BLACK;
    }
```


Sắp xếp Topology

- 1. Lắp thắng vào tay lái
- 2. Gắn bộ truyền động
- 3. Gắn tay lái
- 4. Lắp bàn đạp và đĩa
- 5. Lắp đèn xe
- 6. Lắp yên xe
- 7. Lắp hộp điều chỉnh tốc độ
- 8. Lắp (tạo) khung xe
- 9. Lắp vỏ xe vào vành xe
- 10. Gắn bánh xe vào khung xe
- 11. Lắp vành xe vào bánh xe (đúc)

Sắp xếp topo (Giảm để trị và xử lý trực tiếp)

Giải thuật:

```
Topologicalsort(Graph G) {
    Vertex indegree[0 .. |V|] = 0;
    for (mỗi u ∈ V)
        for (mỗi đinh v kề với u)
            indegree[v] ++;
    for (mỗi v ∈ V)
        if (indegree[v] == 0)
            enQueue(Q, v);
    while (!isEmpty(Q)) {
        Vertex u = deQueue(Q);
        Output(u);
        for (mỗi đinh v kề với u)
            if( -- indegree[v] == 0 )
                 enQueue(Q, v);
    }
}
```

Giải thuật Steinhause-Johnson-Trotter

Dãy có 3 phần tử								
1. 123	$3. \ \ 312 \rightarrow 312$	5. 231						
2. 132	4. $3\overline{2}1 \rightarrow 3\overline{2}1 \rightarrow \overline{3}\overline{2}1$	$6. \overleftarrow{213} \rightarrow \overleftarrow{213}$						
Dãy có 4 phần tử								
1. 123 <mark>4</mark>	9. $3\overrightarrow{124} \rightarrow 3\overrightarrow{124} \rightarrow 3\overrightarrow{124}$	$17. \overleftarrow{2314} \rightarrow \overleftarrow{2314} \rightarrow \overleftarrow{2314}$						
2. 1243	10. 3142	18. 23 4 1						
3. 1423	11. 3412	19. 2431						
$4. \cancel{4}\cancel{1}\cancel{2}\cancel{3} \rightarrow \cancel{4}\cancel{1}\cancel{2}\cancel{3} \rightarrow \cancel{4}\cancel{1}\cancel{2}\cancel{3}$	$12. \cancel{4312} \rightarrow \cancel{4312} \rightarrow \cancel{4312}$	$20. \overset{\bullet}{4231} \rightarrow \overset{\bullet}{4231} \rightarrow \overset{\bullet}{4231}$						
$5. \ 4132 \rightarrow 4132 \rightarrow 4132$	$13.\overline{4321} \rightarrow \overline{4321} \rightarrow \overline{4321}$	$21.\overline{4213} \rightarrow \overline{4213} \rightarrow \overline{4213}$						
6. 1432	14. 3 4 21	22. 24 13						
7. 1342	15. 3241	23. 21 4 3						
$8. \ \ \overrightarrow{1324} \rightarrow \overrightarrow{1324} \rightarrow \overrightarrow{1324} \rightarrow \overrightarrow{1324}$	$16. \vec{3} 214 \rightarrow \vec{3} 214 \rightarrow \vec{3} 214$	$24.\overline{2}\overline{134} \rightarrow \overline{2}\overline{134}$						

Chương trình

```
void SJT(int a[], int pos[], int dir[]) {
  int k, i;
  while (true) {
      k = N;
      PrintIt(a);
      while (a[pos[k] + dir[k]] > k) {
         dir[k] = -dir[k];
         if (--k == 0)
            return;
      i = pos[k];
      a[i] = a[i + dir[k]];
      a[i + dir[k]] = k;
     pos[k] = i + dir[k];
      pos[a[i]] = i;
   }
void main() {
  int i;
  int a[N + 2], pos[N + 2], dir[N + 2];
  for (i = 1; i <= N; i++) {</pre>
     a[i] = pos[i] = i;
      dir[i] = -1;
  a[0] = a[N + 1] = N + 1;
   SJT(a, pos, dir);
```

Thứ tự từ điển học (lexicographic order)

Giải thuật (Hàm tìm dãy hoán vị kế tiếp dãy được truyền vào)

```
NextPerm(a[1 .. n]) {
   k = n - 1;
  while (a[k] > a[k+1]) {
      k--;
      if (k == 0)
         return;
   }
   i = n;
   while (a[k] > a[i])
      i--;
   swap(a[k], a[i]);
   r = n;
   s = k + 1;
  while (r > s) {
      swap(a[r], a[s]);
     r--;
      s++;
   }
```

Phát sinh tập con

 $Vi d\mu$: Phát sinh tập lũy thừa của tập $\{a_1, a_2, a_3\}$

N	Các tập con								
0	Ø								
1	Ø	$\{a_1\}$							
2	Ø	$\{a_1\}$	$\{a_{2}\}$	$\{a_1, a_2\}$					
3	Ø	$\{a_1\}$	$\{a_{2}\}$	$\{a_1, a_2\}$	$\{a_3\}$	$\{a_1, a_3\}$	$\{a_2, a_3\}$	$\{a_1, a_2, a_3\}$	

Chương trình (đệ qui)

Chương trình (không đệ qui)

Gray code

Cách nhân của tá điền Nga Chương trình (đệ qui)

```
#include <stdio.h>
int Russ(int n, int m) {
   if (n == 1)
      return m;
   if (n % 2 == 0)
      return Russ(n / 2, m * 2);
   return Russ((n - 1) / 2, m * 2) + m;
}
```

Bài toán Josephus

Vấn đề chọn (Selection problem)

Chương trình (đệ qui, không sử dụng mảng phụ)

```
Partition(int a[], int left, int right) {
if (left == right)
                    return
                                  left;
int p = a[left];
int i = left;
int j = right + 1;
do {
   do i++; while (a[i] < p);
   do j--; while (a[j] > p);
   swap(a[i], a[j]);
} while (i < j);</pre>
swap(a[i], a[j]);
swap(a[left], a[j]);
return j;
   Selection(int a[], int left, int right, int k) {
int pivot = Partition(a, left, right);
if (left + k - 1 < pivot)
            Selection(a, left, pivot - 1, k);
   return
else
   if (pivot < left + k - 1)</pre>
      return
               Selection(a, pivot + 1, right, left + k - 1 - pivot);
   else
      return
               a[pivot];
```

```
void main() {
  int a[N + 1], median, k;
  k = (N % 2) ? (N + 1) / 2 : N / 2 + 1;
  a[N] = ∞;
  median = Selection(a, 0, N - 1, k);
}
```

Tìm kiếm nội suy

