Department of Computer Science University of Bristol

Image Processing and Computer Vision

www.ole.bris.ac.uk/bbcswebdav/courses/COMS30121_2018/content www.ole.bris.ac.uk/bbcswebdav/courses/COMSM0020_2018/content

Lecture 03

Frequency Domain & Image Transforms

Andrew Calway | Tilo Burghardt | Sion Hannuna

Recap: The Camera Obscura (Pinhole Camera)

First published picture of camera obscura in Gemma Frisius' 1545 book De Radio Astronomica et Geometrica

Recap: OpenCV(C++) Image Representation

```
#include [...]
                                        f(x_1, x_2, ..., x_m) = (c_1, c_2, ..., c_n)
                                                                                        draw.cpp
using namespace cv;
                                         f: \mathbb{R}^m \to \mathbb{R}^n
int main() {
  //create a red 256x256, 8bit, 3channel BGR image in a matrix container
  Mat image(256, 256, CV 8UC3, Scalar(0, 0, 255));
                                8 bits per
                                                                                               red
                                                        3 channels
     width & height
                                 channel
                                                                                   green
                                                                         blue
                                             unsigned
 //put white text HelloOpenCV
 putText(image, "HelloOpenCV", Point(70, 70),
   FONT HERSHEY COMPLEX SMALL, 0.8, cvScalar(255, 255, 255), 1, CV AA);
 //draw blue line under text
 line(image, Point(74, 90), Point(190, 90), cvScalar(255, 0, 0),2);
 //draw a green smile
 ellipse(image, Point(130, 180), Size(25,25), 180, 180, 360,
   cvScalar(0, 255, 0), 2);
 circle(image, Point(130, 180), 50, cvScalar(0, 255, 0), 2);
 circle(image, Point(110, 160), 5, cvScalar(0, 255, 0), 2);
 circle(image, Point(150, 160), 5, cvScalar(0, 255, 0), 2);
 //save image to file
 imwrite("myimage.jpg", image);
 //free memory occupied by image
 image.release();
 return 0;
```

Recap: Shannon's Sampling Theorem

"An analogue signal containing components up to some maximum frequency **u** may be completely reconstructed by regularly spread samples, provided the sampling rate is above 2**u** samples per second."

Also referred to as the Shannon-Nyquist criterion:
Sampling <u>must</u> be performed <u>above twice</u> the highest (spatial) frequency of the signal to be lossless.

t

Recap: Intuition of Spatial Frequency

Jean-Baptiste Joseph Fourier

Fourier's Theorem

$$f(x) = \int a_n \cos(nx) + b_n \sin(nx) \delta n$$

Animation by Lucas V Barbosa

Representing 2D Basis Functions

• we can specify any 1-dimensional sine-like wave by three parameters: the frequency k (cycles per second), the start phase θ (shift in degrees), the amplitude r (peak value)

• for a 2-dimensional wave we add as a parameter the direction encoded by an angle α (rotation of wavefront in degrees)

'Fabric' of the 2D Fourier Space (as kernels)

Euler's Equation

Instead of representing kernel functions as explicit sine or cosine functions we can campactly represent them by exponentials:

$$e^{2\pi i(ux+vy)/N} = \cos(2\pi(ux+vy)/N) + i\sin(2\pi(ux+vy)/N)$$

Change of Base: The Fourier Transform

Each term of the Fourier Transform (FT) is composed of the sum of all values of the image function f(x,y) multiplied by a particular kernel at a particular frequeny and orientation specified by (u,v):

$$F(u,v) = \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} f(x,y) e^{(-2\pi i(ux+vy)/N)}$$
image kernels (probing functions)

All kernels together form a new orthogonal basis for our image.

Thus, we have transformed the image f from a spatial domain indexed in (x,y) to a frequency domain representation in (u,v).

Components of the Frequency Domain

F(u,v) is a complex number and has real and imaginary parts:

$$F(u,v) = R(u,v) + iI(u,v)$$

Magnitudes (forming the Power Spectrum):

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

Phase Angles (forming the Phase Spectrum):

$$\theta(u,v) = \tan^{-1} \left[I(u,v) / R(u,v) \right]$$

Expressing F(u,v) in polar coordinates (r, θ) :

$$F(u,v) = |F(u,v)|e^{i\theta(u,v)} = re^{i\theta}$$

Example: Power Spectrum and Phase Spectrum

f(x,y) :

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

$$\theta(u,v) = \tan^{-1} \left[I(u,v) / R(u,v) \right]$$

2D Fourier Transform Pair

Given a fourier transform of a discrete function of two variables:

$$F(u,v) = \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} f(x,y) e^{(-2\pi i(ux+vy)/N)}$$

There exists an inverse transform that can reconstruct the original image in spatial coordinates from its representation in the frequency domain. This is known as the Inverse Fourier Tansform:

$$f(x,y) = \frac{1}{N^2} \sum_{v=0}^{N-1} \sum_{u=0}^{N-1} F(u,v) e^{(2\pi i(ux+vy)/N)}$$

Together the two equations form the Fourier Transform Pair.

Image Pairs: Spatial Domain vs Frequency Domain

Recap: Convolution Operation

• ...quantifies the structural similarity of a kernel image h(x) as it is shifted over a target image f(x):

$$f * h = \int_{-\infty}^{+\infty} f(x - t)h(x) \, \partial t$$

$$\int_{-\infty}^{c_{onvolution}} f(x - t)h(x) \, dt$$

- ... determines the effect of a system, i.e. the kernel h(x), on an input signal, i.e. f(x)
- the result image is known as the `response' of *f* to the kernel *h*

Deriving the Convolution Theorem

Definition of Convolution

$$h(x) = f(x) * g(x) = \sum_{y} f(x - y)g(y)$$

Definition of Fourier Transform

$$H(u) = \sum_{x} \left(\sum_{y} f(x - y) g(y) \right) e^{(-iux2\pi/N)}$$

Reordering of Summations

$$H(u) = \sum_{y} g(y) \left(\sum_{x} f(x - y) e^{(-iux2\pi/N)} \right)$$

Substitution of x=z+y

$$H(u) = \sum_{y} g(y) \left(\sum_{z} f(z) e^{(-iu(z+y)2\pi/N)} \right)$$

Splitting of Exponential

$$H(u) = \sum_{y} g(y)e^{(-iuy2\pi/N)} \left(\sum_{z} f(z)e^{(-iuz2\pi/N)}\right)$$

Definition of Fourier Transform

$$H(u) = G(u) \cdot F(u)$$

Convolution in the Spatial/Frequency Domain

Convolution Theorem:

Convolution in spatial domain

is equivalent to

multiplication in frequency domain

(and vice versa)

$$g = f * h$$
 implies $G = FH$

$$g = fh$$
 implies $G = F * H$

Fast Filtering using the Convolution Theorem

1D:
$$G(u) = F(u)H(u)$$
 2D: $G(u,v) = F(u,v)H(u,v)$

Low Pass Filtering

- 1D: turning the "treble" down on audio equipment!
- 2D: smooth image

$$H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases}$$

$$r(u, v) = \sqrt{u^2 + v^2}$$
, r_0 is the filter radius

Butterworth's Low Pass Filter

$$H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases} \qquad r(u,v) = \sqrt{u^2 + v^2}, \ r_0 \text{ is the filter radius}$$

$$r(u, v) = \sqrt{u^2 + v^2}$$
, r_0 is the filter radius

Butterworth's High Pass Filter

- 1D: turning the bass down on audio equipment!
- 2D: sharpen image

$$H(u,v) = \frac{1}{1 + [r_0 / r(u,v)]^{2n}}$$
 of order n

Order of n=3

Optional Excurse: Wiener De-Convolution

Idea: Restore an image by convolution with an adjusted inverse kernel that estimates the loss of information per frequency.

inverse of original kernel

estimated loss at frequency f

