Rökfræði

Matthías Páll Gissurarson

26. nóvember 2014

2014-11-05

37

Dæmi. Sýnið að mengi allra rakinna falla er teljanlegt, en að upptalningin f_0, f_1, f_2, \dots á einstæðum röknum föllum er rekki rakin.

Lausn. Látum R_0 vera mengi þeirra rakinna falla sem fást með R1. Þ.e.as.

$$R_0 = \{I_i^n | n \in \mathbb{N}^* \text{ og } \beta \in \{1, \dots, n\}\} \cup \{Z, N\}$$

Þetta mengi er teljanlegt.

Látum $k \ge 1$ vera náttúrulega tölu.

(i) Látum R_{3k-2} vera mengið af þeim röktu föllum sem fást með því að beita R2 á föllin í R_{3k-3} , ásamt öllum föllum í R_{3k-3} .

R2 Segir: Ef G, H_1, \ldots, H_n eru rakin föll, á er $G(H_1(x_1, \ldots, x_n), \ldots, H_n(x_1, \ldots, x_n))$ rakið fall.

Fyrir sérhvert endanlegt hlutmengi í R_{3k-3} fáum við endanlega mörg ný föll í R_{3k-2} . Ef R_{3k-3} er teljanlegt eru þessi hlutmengi teljanlega mörg, svo R_{3k-2} er líka teljanlegt.

- (ii) Skgr. R_{3k-1} á sama hátt með R_3 . Það verður líka teljanlegt ef R_{3k-2} er teljanlegt.
- (iii) Skgr. R_{3k} á sama hátt með R4...

Það er því ljóst að R_n er teljanlegt f. öll $n \in \mathbb{N}$ og þar með er mengi allra rakinna falla

$$R = \bigcup_{n \in \mathbb{N}} R_n$$

2014-11-05

einnig teljanlegt.

Látum nú f_0, f_1, \ldots vera upptaliningu á öllum einstæðum röktum föllum. og $F: \mathbb{N}^2 \to \mathbb{N}$ vera fallið þ.a.

$$F(x,y) = f_x(y)$$

fyrir öll $x, y \in \mathbb{N}$

Fallið $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = F(x, x) + 1$$

er rakið ef F er rakið.

En fyrir $x \in \mathbb{N}$ er

$$f_x(x) < f_x(x) + 1 = F(x, x) + 1 = f(x)$$

svo F er ekkert fallana f_0, f_1, \ldots og það með ekki rakið.

38

Sýnið að eftirfarandi föll og venzl eru rakin:

(a)

$$F(n) := \lfloor \sqrt{n} \rfloor \text{ og } G(n) := \lfloor ne \rfloor$$

$$F(n) := \mu y_{y < n+1} (sg(n+1-y \cdot y) = 0) - 1$$

Sannað með upptalningu: F(N) er $F(0), \ldots, F(9) = 0, 1, 1, 1, 2, 2, 2, 3$ H(N) er $H(0), \ldots, H(9) = 0, 1, 1, 1, 2, 2, 2, 3$

(b) $\pi(n) = \text{fj\"oldi pr\'imtala} \leq n$

$$\pi(n) = \sum_{y \le n} C_{\neg Pr}(y)$$

39

Dæmi.

$$F(x_1, \dots, x_n, y + 1) = N(x_1, \dots, x_n, y, F(x_1, \dots, x_n, y), G(x_1, \dots, x_n, y)$$

$$G(x_1, \dots, x_n, y + 1) = P(x_1, \dots, x_n, y, F(x_1, \dots, x_n, y), G(x_1, \dots, x_n, y)$$

40

Lausn. Skrifum x í stað (x_1,\ldots,x_n) og getum þá skrifað skilgreiningarnar á F,G þannig:

$$F(x,0) = L(x),$$

$$G(x,0) = M(x),$$

$$F(x,y+1) = N(x,y,F(x,y),G(x,y))$$

$$G(x,y+1) = P(x,y,F(x,y),G(x,y))$$

Viljum sjá að F, G rakin ef L, M, N, P eru rakin. Skilgreinum H með:

$$H(x,y) = 2^{F(x,y)}3^{G(x,y)}$$

þá er

$$H(x, y + 1) = 2^{N(x, y, v_0(H(x,y)), v_1(H(x,y))} 3^{P(x, y, v_0(H(x,y)), v_1(H(x,y))}$$

svo að H er [frumstætt] rakið og $F(x,y)=v_0(H(x,y)), G(x,y)=v_1(H(x,y)); v_k$ rakni skv. fyrirlestri.

40

6 2014-11-05

2014-11-19 Dæmablað 12

45

Dæmi. Skilgreinum tvístætt fall $f: \mathbb{N}^2 \to \mathbb{N}$ með því að láta f(x,y) ver töluna í menginu $\{0,\ldots,9\}$ sem er táknuð með þeim tölustaf sem er y sætum til vinstri frá aftasta staf þegar við skrifum x í tugakerfi þannig er t.d.

$$f(6382, 0) = 2,$$

 $f(6382, 1) = 8,$
 $f(6382, 3) = 3,$
 \vdots

Lausn. [Áslaug] Sýnum fyrst að tvístæða fallið $g:\mathbb{N}^2\to\mathbb{N}$ $(x,y)\mapsto x^y$ sé frumstætt rakið:

$$q(x, 0) = 1, q(x, y + 1) = q(x, y)x.$$

þá er $f(x,y) = rm(qt(x,10^y),10)$ frumstætt rakið.

46

47

Dæmi. Látum \mathcal{L} vera mál kenningarinnar \mathcal{N} og látum $\mathcal{T}(\mathbb{N})$ sem hefur sem seningar nkvl. þær yrðingar sem eru sannar í \mathbb{N} . Látum Q vera mengi af frumtölum. Sýnið að til er líkan M f. kenninguna $\mathcal{T}(\mathbb{N})$ ásamt staki a úr M þ.a. frumtala p gangi upp í a í líkaninu þþaa $p \in Q$

Lausn. [Tandri] Látum \mathcal{L}^* vera málið sem fæst með því að bæta við málið \mathcal{L} fasta a Fyrir náttúrulega tölu n látum við \mathbf{A}_n vera

$$\exists x (x \cdot S \dots S0 = \mathbf{a})$$

Þar sem S kemur fyrir n sinnum.

Látum \mathcal{T}^+ vera kenninguna á málinu \mathcal{L}^* sem fæst með því að bæta við $\mathcal{T}(\mathbb{N})$ frumsenum \mathbf{A}_p fyrir sérhvert p úr \mathbb{Q} og frumsendunni $\neg \mathbf{A}_p$ fyrir sérhverja frumtölu $p \notin \mathbb{Q}$. Ef \mathcal{T}^* er endanlega frumsendaður hluti kenningarinnar \mathcal{T}^* , þá hefu hann endanlega margar frumsendur af gerðinni \mathbf{A}_p . Segjum $\mathbf{A}_{p_1}, \ldots, \mathbf{A}_{p_n}$ en þá er \mathbb{N} líkan fyrir \mathcal{T}^* með $(\mathbf{a})_{\mathbb{N}} = \prod_{j=1}^k p_j$.

Skv. þjöppunarsetn hefur \mathcal{T}^* því líkan M, sem er þá sér í lagi líkan fyrir $\mathcal{T}(\mathbb{N})$. Það er þá ljóst að frumtala p gengur upp í $a := (\mathbf{a})_n$ þþaa $p \in Q$.

48

Dæmi. Látum \mathcal{L} vera málið sem hefur jafnaðarmerki, fastana '0' og '1', tvístæðu falltáknin '+' og '-' og tvístæða umsagnartáknið ' <'; og bætum auk þess við einstæðu falltákni 'f'. Við lítum á rauntölurnar \mathbb{R} sem mynztur fyrir þetta mál með eðlilegum hætti, þar sem túlkun falltáknsins 'f' er gefin með einhverju gefnu falli $f: \mathbb{R} \to \mathbb{R}$ sem er þannig að f(0) = 0. Bætum nú við málið föstum fyrir allar rauntölur og látum \mathcal{T} vera mengi allra yrðinga á nýja málinu sem eru sannar í líkaninu. Bætum við nýjum fasta og frumsendum sem segja að nýi fastinn sé stærri en allar rauntölur og fáum þannig líkt og í fyrirlestrum líkan fyrir nýju kenninguna sem er óarkimedísktsvið * \mathbb{R} ; látum *f vera túlkun falltáknsins 'f' í þessu nýja líkani. Segjum að stak $x \in \mathbb{R}$ sé óendanlega lítið ef -y < x < yfyrir sérhvert jákvætt stak í \mathbb{R} .

Sýnið: Fallið $f: \mathbb{R} \to \mathbb{R}$ er samfellt í punktinum 0 þá og því aðeins að stærðin f(x) sé óendanlega lítil fyrir sérhverja óendanlega litla stærð f(x).

Lausn. [Áslaug] G.r.f. að f sé samfellt í 0. G.r.f að til sé óendanlega lítil stærð x b.a. f(x) sé ekki óendanlega líti. Þá er til

tala $\epsilon > 0, \epsilon \in \mathbb{R}$ þ.a. $|*f(x)| > \epsilon$. Þá er ekki

til $\delta>0, \delta\in\mathbb{R}$ þ.a. $|*f(y)|<\epsilon$ fyrir öll $|y|<\delta$, því $|x|<\delta$. Því er f ekki samfellt.

Dæmablað 13

52

[Reynir hefur ekki leyst það almennilega ennþá]

Dæmi. (a)

Fullyrðingin hér að neðan er ósönn Fullyrðingin hér að ofan er sönn

Hvað er hæft í þessu?

(b) Látum \mathcal{T} vera útvíkkun á \mathcal{N} , \mathbf{B} og \mathbf{C} vera tvær yrðingar á máli \mathcal{T} . Sem hafa hvor um sig nákvæmlega eina frjálsa breytu \mathbf{x} . Til eru lokaðar yrðingar \mathbf{E} og \mathbf{T} þ.a.

$$\vdash_{\mathcal{T}} \mathbf{E} \leftrightarrow \mathbf{B}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{F} \urcorner}] \text{ og } \vdash_{\mathcal{T}} \mathbf{F} \leftrightarrow \mathbf{C}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{E} \urcorner}]$$

Sönnun. Setjum

$$D(u,v) = sub(sub(v, \ulcorner \mathbf{x} \urcorner, Num(v)), \ulcorner \mathbf{z} \urcorner, Num(u))$$

Þar sem ${\bf z}$ er ný breyta sem kemur hvergi fyrir í ${\bf B}$ og ${\bf C}$. Ef ${\bf S}$ og ${\bf T}$ eru yrðingar er

$$D(\lceil \mathbf{S} \rceil, \lceil \mathbf{T} \rceil) = sub(\mathbf{T}_{\mathbf{x}}[\mathbf{k}_{\lceil \mathbf{T} \rceil}], \lceil \mathbf{z} \rceil, \mathbf{k}_{\lceil \mathbf{S} \rceil}) = \lceil \mathbf{T}_{\mathbf{x}, \mathbf{z}}[\mathbf{k}_{\lceil \mathbf{T} \rceil}, \mathbf{k}_{\lceil \mathbf{S} \rceil}] \rceil.$$

Þar sem D er rakið fall, hefur það framsetningu ${\bf D}$ ásamt ${\bf x}, {\bf z}$ og ${\bf y}$ í ${\cal T}$. Það þýðir að fyrir $n,m\in\mathbb{N}$ er

$$\vdash_{\mathcal{T}} \mathbf{D}_{\mathbf{x},\mathbf{y}}[\mathbf{k}_n,\mathbf{k}_m] \leftrightarrow \mathbf{y} = \mathbf{k}_l$$

par sem l = D(n, m).

Látum **G** vera yrðinguna $\forall \mathbf{y}(\mathbf{D} \to \mathbf{B_x[y]})$, og **H** vera $\forall \mathbf{y}(\mathbf{D} \to \mathbf{C_x[y]})$ og látum $m = \lceil \mathbf{G} \rceil$ og $n = \lceil \mathbf{H} \rceil$.

Látum einnig \mathbf{E} vera $\mathbf{G}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_m,\mathbf{k}_n]$ og \mathbf{F} vera $\mathbf{H}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_n,\mathbf{k}_m]$. Setjum $p:=\lceil \mathbf{E} \rceil$ og $q:=\lceil \mathbf{F} \rceil$.

Þá fæst:

$$D(m,n) = D(\lceil \mathbf{G} \rceil, \lceil \mathbf{H} \rceil) = \lceil \mathbf{H}_{\mathbf{x},\mathbf{z}} [\mathbf{k}_n, \mathbf{k}_m] \rceil = \lceil \mathbf{F} \rceil = q$$

og D(n,m) = p, svo

$$\vdash_{\mathcal{T}} \mathbf{D}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_m, \mathbf{k}_n] \leftrightarrow \mathbf{y} = \mathbf{k}_q \text{ og}$$
$$\vdash_{\mathcal{T}} \mathbf{D}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_n, \mathbf{k}_m] \leftrightarrow \mathbf{y} = \mathbf{k}_p$$

Fáum nú

$$\begin{array}{l} \vdash_{\mathcal{T}} \mathbf{E} \\ \mathbf{b} \mathbf{b} \mathbf{a} \ \mathbf{G}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_m,\mathbf{k}_n] \\ \mathbf{b} \mathbf{b} \mathbf{a} \ \vdash_{\mathcal{T}} \forall \mathbf{y} (\mathbf{D}_{\mathbf{x},\mathbf{z}}[\mathbf{k}_m,\mathbf{k}_n] \to \mathbf{B}_{\mathbf{x}}[\mathbf{y}]) \\ \mathbf{b} \mathbf{b} \mathbf{a} \ \vdash_{\mathcal{T}} \forall (\mathbf{y} = \mathbf{k}_q \to \mathbf{B}_{\mathbf{x}}[\mathbf{y}]) \\ \mathbf{b} \mathbf{b} \mathbf{a} \ \vdash_{\mathcal{T}} \mathbf{B}_{\mathbf{x}}[\mathbf{k}_q] & \text{skv. afleiðslusetn.} \\ \mathbf{b} \mathbf{b} \mathbf{a} \ \vdash_{\mathcal{T}} \mathbf{B}_{\mathbf{x}}[\mathbf{k}_{r}] \end{array}$$

svo $\vdash_{\mathcal{T}} \mathbf{E} \leftrightarrow \mathbf{B}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{F} \urcorner}]$. Á sama hátt fæst $\vdash_{\mathcal{T}} \mathbf{F} \leftrightarrow \mathbf{C}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{E} \urcorner}]$.

(c) Látum \mathcal{T} vera frumsendanlega útvíkkun á \mathcal{N} , þá eru venslin $Pr_{\mathcal{T}}$ rakin og því framsetjanleg. $(Pr_{\mathcal{T}}(a,b)$ þþaa b sé Gödel-tala sönnunar á yrðingu sem hefur Gödel-tölu a).

Látum **P** ásamt \mathbf{x}, \mathbf{y} vera framsetningu á $Pr_{\mathcal{T}}$, látum $\mathbf{B} \ \forall \mathbf{y} \neg \mathbf{P}$ og \mathbf{C} vera $\exists \mathbf{y} \mathbf{P}$.

Skv. (b)-lið eru til lokaðar yrðingar **E** og **F** þ.a.

$$\vdash_{\mathcal{T}} \mathbf{E} \leftrightarrow \forall \mathbf{y} \neg \mathbf{P}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{F} \urcorner}]$$
$$\vdash_{\mathcal{T}} \mathbf{F} \leftrightarrow \exists \mathbf{y} \mathbf{P}_{\mathbf{x}}[\mathbf{k}_{\ulcorner \mathbf{E} \urcorner}]$$

Athugasemd. Að ${\bf E}$ er jafngilt þeirri fullyrðingu að ${\bf F}$ sé ekki sannanleg í ${\cal T}$ og ${\bf F}$ jafngilt fulllyrðingunni að ${\bf E}$ sé sannanlegt í ${\cal T}$

Við getum sýnt:

(1) Ef \mathcal{T} er samvkæm, þá er $\vdash_{\mathcal{T}} \mathbf{E}$

(2) Ef \mathcal{T} er samvkæm, þá er hvorki $\vdash_{\mathcal{T}} \neg \mathbf{E}$, né $\vdash_{\mathcal{T}} \mathbf{F}$.

Gerum það í fjórum skrefum.

52

Látum fyrst $p := \lceil \mathbf{E} \rceil, q := \lceil \mathbf{F} \rceil$

- (i) (Ef $\vdash_{\mathcal{T}} \mathbf{E}$, þá $\vdash_{\mathcal{T}} \mathbf{F}$). G.r.f. að $\vdash_{\mathcal{T}} \mathbf{E}$ og látum r vera Gödel-tölu sönnunar á \mathbf{E} í \mathbf{T} . Þá er $Pr_{\mathcal{T}}(p, r,)$, svo $\vdash_{\mathcal{T}} \mathbf{P}_{\mathbf{x}, \mathbf{y}}[\mathbf{k}_p, \mathbf{k}_r]$ og því $\vdash_{\mathcal{T}} \exists \mathbf{P}_{\mathbf{x}}[\mathbf{k}_p]$ og þá $\vdash_{\mathcal{T}} \mathbf{F}$.
- (ii) (Ef $\vdash_{\mathcal{T}} \mathbf{F}$, þá $\vdash_{\mathcal{T}} \neg \mathbf{E}$).

G.r.f. að $\vdash_{\mathcal{T}} \mathbf{F}$, og látum s vera Gödel-tölu sönnunar á \mathbf{F} í \mathcal{T} . Þá er $Pr_{\mathcal{T}}(q, s)$, svo $\vdash_{\mathcal{T}} \mathbf{P}_{\mathbf{x},\mathbf{y}}[\mathbf{k}_q, \mathbf{k}_s, \text{ og því } \vdash_{\mathcal{T}} \exists \mathbf{y} \mathbf{P}_{\mathbf{x}}[\mathbf{k}_q] \text{ þ.e.a.s } \vdash_{\mathcal{T}} \neg \forall \mathbf{y} \neg \mathbf{P}_{\mathbf{x}}[\mathbf{k}_q], \text{ svo } \vdash_{\mathcal{T}} \neg \mathbf{E}.$ Af (i) og (ii) leiðir (1).

(iii) (Ef \mathcal{T} ω -skv. og $\vdash_{\mathcal{T}} \neg \mathbf{E}$, þá ekki $\vdash_{\mathcal{T}} \mathbf{F}$) G.r.f. að \mathcal{T} sé ω -skv. og $\vdash_{\mathcal{T}} \neg \mathbf{E}$. Þá gildir ekki $\vdash_{\mathcal{T}} \mathbf{E}$, því \mathcal{T} er sér í lagi samkvæm.

En þá er $\neg Pr_{\mathcal{T}}(p, n)$ fyrir öll n úr \mathbb{N} og því $\vdash_{\mathcal{T}} \neg \mathbf{P}_{\mathbf{x}, \mathbf{y}}[\mathbf{k}_p, \mathbf{k}_n]$ fyrir öll n úr \mathbb{N} . Því fæst að ekki gildir $\vdash_{\mathcal{T}} \exists \mathbf{y} P_{\mathbf{x}}[\mathbf{k}_p]$, þar sem \mathcal{T} er ω -samvkvæm.

En þá gildir ekki $\vdash_{\mathcal{T}} \mathbf{F}$.

(iv) (Ef \mathcal{T} er ω -samkvæm. og ekki $\vdash_{\mathcal{T}} \mathbf{F}$, þá er ekki $\vdash_{\mathcal{T}} \neg \mathbf{E}$) G.r.f. að \mathcal{T} sé ω -samvkæm og ekki gildi $\vdash_{\mathcal{T}} \mathbf{F}$. Þá er $\neg Pr_{\mathcal{T}}(q, n)$ fyrir öll n úr \mathbb{N} , og því $\vdash_{\mathcal{T}} \neg \mathbf{P}_{\mathbf{x},\mathbf{y}}[\mathbf{k}_q,\mathbf{k}_y]$ fyrir öll n úr \mathbb{N} .

Því fæst með ω -samvkæmni að ekki gildi

$$\vdash_{\mathcal{T}} \exists \mathbf{y} \mathbf{P}_{\mathbf{x}}[\mathbf{k}_q]$$

þ.e.a.s að ekki gildi

$$\vdash_{\mathcal{T}} \neg \forall \mathbf{y} \neg \mathbf{P}_{\mathbf{x}}[\mathbf{k}_q],$$

en þá gildir ekki $\vdash_{\mathcal{T}} \neg \mathbf{E}$ Fáum nú (2):

G.r.f að \mathcal{T} sé ω -samkvæm:

- Ef $\vdash_{\mathcal{T}} \neg \mathbf{E}$, þá er ekki $\vdash_{\mathcal{T}} \mathbf{F}$ skv. (iii) og þá ekki $\vdash_{\mathcal{T}} \neg \mathbf{E}$ skv. (iv). Mótsögn.
- Ef $\vdash_{\mathcal{T}} \mathbf{F}$, þá er $\vdash_{\mathcal{T}} \neg \mathbf{E}$ skv. (iii) og þá ekki $\vdash_{\mathcal{T}} \mathbf{F}$ skv. (iii). Mótsögn.

 $Ni\partial ursta\partial a$: ω -samkvæm, frumsendanleg útvíkkun á \mathcal{N} er ekki fullkomin.

11