COMPOSITION DE MATHEMATIQUES OPTION

PREMIERE PARTIE

I 1) S'il existe une base $(x_0, x_1, \dots, x_{n-1})$ de E dans laquelle f a pour matrice C, alors, de proche en proche, on montre que $\forall k \in [0, n-1]$ $x_k = f^k(x_0)$. $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est donc une base de E et f est bien cyclique.

Réciproquement, si f est cyclique, alors dans la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ la matrice de f a bien la forme voulue.

I 2) Notons
$$D(a_0, a_1, \dots, a_{n-1}) = P_C(X) = \begin{vmatrix} -X & 0 & \cdots & 0 & -a_0 \\ 1 & -X & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} - X \end{vmatrix}$$

En développant par rapport à la première colonne, on obtient:

$$D(a_0, \dots, a_{n-1}) = -X D(a_1, \dots, a_{n-1}) - \begin{vmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & -X & \ddots & \vdots & -a_2 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & -a_{n-1} - X \end{vmatrix}$$

En développant le second déterminant par rapport à sa première ligne, on obtient une relation de récurrence:

$$D(a_0, a_1, \dots, a_{n-1}) = -X D(a_1, \dots, a_{n-1}) + (-1)^n a_0, \qquad D(a_{n-2}, a_{n-1}) = X^2 + a_{n-1}X + a_{n-2}X + a_{n-$$

On en déduit
$$D(a_0, a_1, \dots, a_{n-1}) = (-1)^n (X^n + a_{n-1} X^{n-1} + \dots + a_0)$$
 et donc $P_C = (-1)^n Q$.

 $\underline{P_C = (-1)^n Q}.$ On a unicité du polynôme caractéristique d'un endomorphisme or la matrice compagne d'un endomorphisme cyclique ne dépend que des coefficients du polynôme caractéristique.

On a donc unicité de la matrice compagne d'un endomorphisme cyclique.

I 3) On remarque que le rang de la matrice $C - \lambda I$ est supérieur ou égal à n-1 car le mineur d'ordre n-1 obtenu en suprimant la première ligne et la dernière colonne est toujours non nul.

Chaque sous espace propre est donc de dimension 1.

En résolvant le système $CX=\lambda X$, on trouve que le sous espace propre associé à la valeur propre λ est engendré par le vecteur de coordonnées

$$(\lambda^{n-1} + a_{n-1}\lambda^{n-2} + \dots + a_2\lambda + a_1, \lambda^{n-2} + a_{n-1}\lambda^{n-3} + \dots + a_3\lambda + a_2, \dots, \lambda^2 + a_{n-1}\lambda + a_{n-2}, \lambda + a_{n-1}, 1).$$

DEUXIEME PARTIE

II 4) $f^{n-1} \neq 0$ et $f^n = 0$, il existe donc $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0$. Montrons que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E. Pour cela, considérons une combinaison linéaire nulle de $x_0, f(x_0), \dots, f^{n-1}(x_0) : a_0x_0 + a_1f(x_0) + \dots + a_{n-1}f^{n-1}(x_0) = 0$ avec $(a_0, a_1, \dots, a_{n-1}) \in \mathbf{Z}^n$ Comme $f^n = 0$, lorsqu'on applique f^{n-1} à la combinaison linéaire, il ne reste que $a_0f^{n-1}(x_0) = 0$. On en déduit $a_0 = 0$.

De même, en appliquant successivement f^{n-2} , f^{n-3} , etc. on montre que $a_1 = 0$, $a_2 = 0$, etc. $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est donc bien une famille libre de E. Or E est un espace vectoriel de dimension n.

 $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est donc une base de E et

f est un endomorphisme cyclique.

La matrice compagne de f est la matrice de f dans la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$. C'est

$$\begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

La matrice de f est de rang n-1, donc

le noyau de f est de dimension 1.

II 5 a) $x \in N_k \Longrightarrow f^k(x) = 0 \Longrightarrow f^{k+1}(x) = 0 \Longrightarrow x \in N_{k+1}$ donc

$$N_k \subset N_{k+1}$$
.

Soit $y \in f(N_{k+1})$, alors, il existe $x \in N_{k+1}$ tel que y = f(x). $f^k(y) = f^{k+1}(x) = 0$ donc $y \in N_k$ et $f(N_{k+1}) \subset N_k$.

II 5 b) $n_1 = 1$ donc dim(Im f) = 1 or ker $\varphi \subset \ker f$ donc dim(ker φ) ≤ 1 .

 $\operatorname{Im} \varphi \subset N_k \operatorname{donc} \operatorname{dim}(\operatorname{Im} \varphi) \leq n_k$

De la relation $\dim(\ker \varphi) + \dim(\operatorname{Im} \varphi) = \dim(N_{k+1})$ on déduit alors

$$n_{k+1} \le n_k + 1.$$

II 5 c) On fait l'hypothèse $n_k = n_{k+1}$. On a donc $N_k = N_{k+1}$ car on a toujours $N_k \subset N_{k+1}$

On montre par récurrence sur $j \geq k$ que $N_i = N_k$

La relation est vraie pour j = k.

Supposons que $N_j = N_k$ et montrons que $N_{j+1} = N_k$.

Si $N_j \neq N_{j+1}$, alors comme $N_j \subset N_{j+1}$, il existe $x \in N_{j+1} \setminus N_j$. On en déduit $f^{j+1}(x) = 0$ et $f^j(x) \neq 0$ puis $f^{k+1}(f^{j-k}(x)) = 0$ et $f^k(f^{j-k}(x)) \neq 0$ ce qui est incompatible avec $N_k = N_{k+1}$.

On a donc $N_{j+1} = N_j = N_k$

Finalement, du principe de récurrence, on déduit que

$$\forall j \geq k \quad N_i = N_k$$
.

 $\frac{\forall j \geq k \quad N_j = N_k.}{\text{On sait que } n_1 = 1 \text{ et } n_p = n \text{ et on a montr\'e que } \forall k \in \llbracket 0, p-1 \rrbracket \quad n_{k+1} \leq n_k + 1. \text{ On en d\'eduit}}$

$$n = p$$
 et $n_k = k$.

TROISIEME PARTIE

III 6) Considérons une combinaison linéaire nulle de $(I, f, f^2, \dots, f^{n-1})$: $a_0I + a_1f + \dots + a_{n-1}f^{n-1} = 0$ avec $(a_0, a_1, \cdots, a_{n-1}) \in \mathbf{Z}^n$

f est cyclique, donc il existe $x_0 \in E$ tel que $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E.

On applique la combinaison linéaire à x_0 et on en déduit que tous les a_i sont nuls.

 $(I, f, f^2, \dots, f^{n-1})$ est donc bien une famille libre de E.

III 7 a) On sait que $f \circ (f - \lambda_k)^{m_k} = (f - \lambda_k)^{m_k} \circ f$

Soit $x \in E_k$, alors $(f - \lambda_k)^{m_k}(f(x)) = f((f - \lambda_k)^{m_k}(x)) = 0$ donc $f(x) \in E_k$.

On sait que les p polynômes $(\lambda_k - X)^{m_k}$ sont deux à deux premiers entre eux. On en déduit (Théorème de décomposition des noyaux) que

$$\ker\left(\prod_{k=1}^{p}(\lambda_{k}I-f)^{m_{k}}\right) = \ker\left((\lambda_{1}I-f)^{m_{1}}\right) \oplus \ker\left((\lambda_{2}I-f)^{m_{2}}\right) \oplus \cdots \oplus \ker\left((\lambda_{p}I-f)^{m_{p}}\right)$$

Or ker $\left(\prod_{k=1}^{P}(\lambda_k I - f)^{m_k}\right) = \ker(P_f(f)) = E$ (Théorème de Cayley Hamilton, rappelé dans les notations)

$$E = E_1 \oplus E_2 \oplus \cdots \oplus E_p.$$

III 7 b) Soit $x \in E_k$. $\varphi_k^{m_k}(x) = (f - \lambda_k I)^{m_k} = 0$ donc

$$\varphi_k^{m_k} = 0.$$

 E_k est stable par f, la seule valeur propre de la restriction de f à E_k est λ_k , or λ_k est une valeur propre de f de multiplicité m_k donc dim $E_k \leq m_k$. D'autre part, $m_1 + m_2 + \cdots + m_p = n$ car ici $\mathbf{Z} = \mathbf{C}$ donc P_f est scindé et la somme des multiplicités de ses racines et égale à son degré de plus $E=E_1\oplus E_2\oplus \cdots \oplus E_p$ donc $n = \dim E_1 + \dim E_2 + \dim E_p$

On en déduit que

$$\dim E_k = n_k \text{ pour } k \in [1, p].$$

 $\underline{\dim E_k = n_k \text{ pour } k \in [\![1,p]\!]}.$ Supposons que $\varphi_k^{m_k-1}$ soit l'endomorphisme nul.

Soit
$$Q(X) = (\lambda_k - X)^{m_k - 1} \prod_{\substack{r=1 \ r \neq k}}^{p} (\lambda_r - X)^{m_r} = \frac{P_f(X)}{\lambda_k - X}$$

Soit $Q(X) = (\lambda_k - X)^{m_k - 1} \prod_{\substack{r=1 \ r \neq k}}^p (\lambda_r - X)^{m_r} = \frac{P_f(X)}{\lambda_k - X}$ $\forall x \in E_k \quad Q(f)(x) = 0 \text{ car } \varphi^{m_k - 1} = 0 \text{ et } \forall x \in E_r \quad r \neq k \quad Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ car } \varphi^{m_r}_r = 0 \text{ (les endomorphismes } Q(f)(x) = 0 \text{ (les endomorphism$ $(\lambda I - f)$ commutent deux à deux)

Comme $E = E_1 \oplus E_2 \oplus \cdots \oplus E_p$, on a alors $\forall x \in E \quad Q(f)(x) = 0$ et donc Q(f) = 0 Q est de degré n-1, Q(f) est donc une combinaison linéaire non nulle de $(I, f, f^2, \cdots, f^{n-1})$ ce qui est contraire à l'hypotèse stipulant que $(I, f, f^2, \cdots, f^{n-1})$ est une partie libre. $\underline{\varphi_k^{m_k-1}} \text{ n'est donc pas l'endomorphisme nul.}$

III 7 c) D'après 7 b) E_k est de dimension m_k , $\varphi_k^{m_k-1} \neq 0$ et $\varphi_k^{m_k} = 0$ donc d'après II 4) φ_k est cyclique et il existe une base de E_k dans laquelle sa matrice est sa matrice compagne :

$$\begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

Dans cette base, la matrice de la restriction de f à E_k est : $\begin{pmatrix} \lambda_k & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & \lambda_k \end{pmatrix}$

Dans la base de E formée par la réunion des bases de chacuns de E_k , la matrice de f est bien de la forme voulue.

III 7 d) Soit g un endomorphisme de matrice la matrice compagne de P_f dans une certaine base de E. D'après la question I 1), on voit que g est un endomorphisme cyclique. $(I, g, g^2, \dots, g^{n-1})$ est donc une partie libre et P_f est le polynôme caractéristique de g. Les hypothèses de la question 7) sont alors vérifiées, on en déduit l'existence d'une base de E dans laquelle la matrice de g est la matrice "diagonale par blocs" décrite à la question 7 c), c'est à dire la matrice de f dans la base \mathcal{B} . La matrice compagne de P_f et la matrice de fdans la base \mathcal{B} sont donc semblables. Il existe donc une base \mathcal{B}' de E dans laquelle la matrice de f sera la matrice compagne de P_f .

f est donc un endomorphisme cyclique.

III 8 a) $\det(Q_1 + XQ_2)$ est un polynôme en X. Pour X = i, il prend une valeur non nulle, ce n'est donc pas le polynôme nul. Il existe donc bien un réel λ pour lequel $\det(Q_1 + \lambda Q_2) \neq 0$ et donc $Q_1 + \lambda Q_2 \in \mathcal{GL}_n(\mathbf{R})$

 $\frac{\{\lambda \in \mathbf{R}/ \quad Q_1 + \lambda Q_2 \in \mathcal{GL}_n(\mathbf{R})\} \text{ est donc non vide.}}{A = QBQ^{-1} \Leftrightarrow AQ = QB \Leftrightarrow A(Q_1 + iQ_2) = (Q_1 + iQ_2)B \Leftrightarrow (AQ_1 = Q_1B \text{ et } AQ_2 = Q_2B) \text{ (identification of the expression of the expre$ des parties réelles et imaginaires)

On a alors $A(Q_1 + \lambda Q_2) = (Q_1 + \lambda Q_2)B$ et donc $A = (Q_1 + \lambda Q_2)B(Q_1 + \lambda Q_2)^{-1}$ A et B sont donc semblables dans $\mathcal{M}_n(\mathbf{R})$.

III 8 b) Soit A la matrice de f dans une certaine base de E. Soit g l'endomorphisme de \mathbb{C}^n de matrice A dans la base canonique de \mathbb{C}^n . Alors $(I, f, f^2, \dots, f^{n-1})$ est une partie libre, il en est de même de $(I, A, A^2, \dots, A^{n-1})$ et de $(I, g, g^2, \dots, g^{n-1})$ et donc d'après la question 7 c) g est un endomorphisme cyclique et dans $\mathcal{M}_n(\mathbf{C})$ sa matrice A est semblable à sa matrice compagne qui est la matrice compagne de P_f . D'après la question précédente, ces deux matrices sont également semblables dans $\mathcal{M}_n(\mathbf{R})$.

f est donc bien un endomorphisme cyclique.

Conclusion : si f est un endomorphisme d'un espace vectoriel E de dimension n sur $\mathbf R$ ou $\mathbf C$, f est cyclique si et seulement si $(I, f, f^2, \dots, f^{n-1})$ est libre dans $\mathcal{L}(E)$.

IV 9 a) On décompose $g(x_0)$ dans la base $(I, f(x_0), \dots, f^{n-1}(x_0))$, on en déduit :

$$\left(g - \sum_{k=0}^{n-1} \alpha_k f^k\right) \left(f^r(x_0)\right) = f^r \circ \left(g - \sum_{k=0}^{n-1} \alpha_k f^k\right) (x_0) = f^r \left(g(x_0) - \sum_{k=0}^{n-1} \alpha_k f^k(x_0)\right) = 0, \text{ en effet, } f^r \text{ commutation}$$

mute avec g et avec tout élément de $\mathbf{Z}[f]$. L'image par $g - \sum_{k=0}^{n-1} \alpha_k f^k$ de chacuns des éléments de la base

$$(x_0, f(x_0), \dots, f^{n-1}(x_0))$$
 est donc nulle et donc $g - \sum_{k=0}^{n-1} \alpha_k f^k = 0$

On a bien $g \in \mathbf{Z}[f]$.

IV 9 b) On suppose que $g \in C(f)$ et on montre qu'il existe un unique polynôme $R \in \mathbf{Z}_{n-1}[X]$ tel que g = R(f). Unicité : f est cyclique, donc $(I, f, f^2, \cdot, f^{n-1})$ est une famille libre. Supposons qu'il existe deux polynômes $(Q,R) \in (\mathbf{Z}_{n-1}[X])^2$ tels que g = Q(f) = R(f). Alors (Q-R)(f) = 0 or (Q-R)(f) est une combinaison linéaire nulle de la famille libre $(I, f, f^2, \cdot, f^{n-1})$, tous ses coefficients sont donc nuls, donc Q = R et on a

Existence: de la question 9 a), on déduit l'existence d'un polynôme $T \in \mathbf{Z}[X]$ tel que g = T(f). On fait la division euclidienne de T par P_f : $T = P_fQ + R$ où $R \in \mathbf{Z}_{n-1}[X]$. $P_f(f) = 0$ donc g = R(f). On a bien l'existence.

Réciproquement, si il existe $R \in \mathbf{Z}_{n-1}[X]$ tel que g = R(f), alors $g \in \mathcal{C}(f)$

IV 10) De même que dans la question précédente, en utilisant la division euclidienne et le théorème de Cayley-Hamilton, on montre que $\mathbf{Z}[f]$ est un espace vectoriel de dimension $\leq n$ engendré par $(I, f, f^2, \dots, f^{n-1})$. On suppose que $C(f) = \mathbf{Z}[f]$, dans les notations, on a précisé que la dimension de C(f) est $\geq n$. $\mathbf{Z}[f]$ est donc un espace de dimension exactement n de base $(I, f, f^2, \dots, f^{n-1})$. On en déduit que $(I, f, f^2, \dots, f^{n-1})$ est une partie libre et que

f est un endomorphisme cyclique.

CINQUIEME PARTIE

V 11 a)
$$\forall k \in \llbracket 0, p-1 \rrbracket$$
 $f^p(f^k(x_0)) = f^k(f^p(x_0)) = f^k(x_0)$ et $(f^k)_{0 \le k \le p-1}$ est une famille génératrice de E donc $f^p = I$.

V 11 b) E est un espace de dimension n, par conséquent, une partie libre de E a au plus n éléments. De plus $x_0 \neq 0$. \mathcal{E} est donc une partie non vide et majorée de N donc

\mathcal{E} admet un maximum.

V 11 c) Montrons par récurrence sur j que $\forall k \leq m$ $f^k(x_0) \in \text{Vect }(x_0, f(x_0), \dots, f^{m-1}(x_0))$. $f^m(x_0) \in \text{Vect }(x_0, f(x_0), \dots, f^{m-1}(x_0))$ car $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ est libre et $(x_0, f(x_0), \dots, f^{m-1}(x_0), f^m(x_0))$ est liée par définition de m. Supposons que $f^k(x_0) \in \text{Vect }(x_0, f(x_0), \cdots, f^{m-1}(x_0))$, alors $f^{k+1}(x_0) \in \text{Vect }(f(x_0), f^2(x_0), \cdots, f^m(x_0))$ et comme $f^m(x_0) \in \text{Vect }(x_0, f(x_0), \cdots, f^{m-1}(x_0))$ on a bien $f^{k+1}(x_0) \in \text{Vect }(x_0, f(x_0), \cdots, f^{m-1}(x_0))$

$$\frac{\forall k \ge m \quad f^k(x_0) \in \text{Vect } (x_0, f(x_0), \dots, f^{m-1}(x_0)).}{(x_0, f(x_0), \dots, f^{m-1}(x_0)) \text{ est alors une base de } E.}$$

f est bien cyclique.

(On remarque que m = n)

 $f^p - I = 0$, or le polynôme $X^p - 1$ est scindé (le corps de base est C) et n'a que des racines simples. f est donc diagonalisable. Etant cyclique, on sait que ses sous espaces propres sont tous de dimension 1.

f possède donc n valeurs propres deux à deux distinctes.

V 12) $f^n(x_0) = x_0$, la matrice compagne de f qui est la matrice de f dans la base $(x_0, f(x_0), \dots, f^{m-1}(x_0))$ est

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

$$CU_{k} = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{\omega}^{k} \\ \overline{\omega}^{2k} \\ \vdots \\ \vdots \\ \overline{\omega}^{nk} \end{pmatrix} = \begin{pmatrix} \overline{\omega}^{nk} \\ \overline{\omega}^{k} \\ \overline{\omega}^{2k} \\ \vdots \\ \overline{\omega}^{(n-1)k} \end{pmatrix} = \overline{\omega}^{(n-1)k} U_{k} = \omega^{k} U_{k}$$

Donc

$$CU_k = \omega^k U.$$

 $\underline{CU_k = \omega^k U}.$ Remarque : U_k est un vecteur propre de C associé à la valeur propre ω^k Les ω^k pour $k \in [\![1,n]\!]$ sont deux à deux distincts. (U_1, U_2, \cdots, U_n) forme donc une famille libre et par conséquent une base de vecteurs propres $\mathrm{de}\ C.$

V 13)

$$M\overline{M} = nI$$
 et $M^{-1} = \frac{\overline{M}}{n}$.

V 14) Introduisons le polynôme $P(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$. On remarque que A = P(C). A est donc diagonalisable avec la même matrice de passage que C, U_k est un vecteur propre de A associé à la valeur propre $P(\omega^k)$ et (U_1, U_2, \dots, U_n) forme une base de vecteurs propres de C.

FIN