12. (new) Compounds comprising structures of the formulae II-III

A-B-D-C-D'- (Formula (II))
A-B-D- and -D'-C (Formula (III))

wherein

A is selected from the group consisting of functionalized polystyrene based resins, polyacrylamide based polymers, polystyrene/polydimethylacrylamide composites, PEGA resins, polystyrene-polyoxyethylene based supports, Tentagel resins, PEG-polystyrene graft polymeric supports, glass surfaces, functionalized surfaces, materials grafted with functionalized surfaces, and polyethylenglycol;

B is a linker allowing cleavage of fluorescent conjugates of formula (II-III) for liberation of the D and C containing fragments;

C is a compound selected from formula (I)

wherein

one of the radicals R^1 or R^2 and one of the radicals R^3 or R^4 is hydrogen and the other is independently -COOH, $-COOR^7$, $-CONH_2$, $-CONH(CH_2)_nOH$, $-CONR^8R^9$, $-CH_2OH$, $-CH_2NH_2$, $-NO_2$, $-NR^{10}R^{11}$, $-NHCOR^{12}$, CI, Br, F, $-CF_3$, -N=C=O, -N=C=S, $-SO_3H$, $-SO_2NH(CH_2)_nNH_2$, (C_1-C_4) alkyl, (C_1-C_{16}) -alkyl substituted at the terminal carbon with -COOH, $-COOR^7$, $-CONH_2$, $-CONR^8R^9$, $-CONH(CH_2)_nOH$, $-CH_2OH$, $-CH_2NH_2$, -N=C=O, -N=C=S, $-SO_3H$, $-SO_2NH(CH_2)_nNH_2$, $-CONH(CH_2)_nNH_2$, and the $-NH_2$ group could also be substituted by (C_1-C_4) alkyl or a commonly used amino protecting group;

and one of the radicals R^5 or R^6 is hydrogen and the other is hydrogen, halogen, $-NO_2$, $-NR^{10}R^{11}$, $-NHCOR^{12}$, (C_1-C_4) alkyl, (C_1-C_{16}) -alkyl substituted at the terminal carbon with -COOH, $-COOR^7$, $-CONH_2$, $-CONH^8R^9$, $-CONH(CH_2)_nOH$, $-CH_2OH$, $-CH_2NH_2$, -N=C=O, -N=C=S, $-SO_3H$, $-SO_2NH(CH_2)_nNH_2$, $-CONH(CH_2)_nNH_2$, wherein and the $-NH_2$ group could also be substituted by (C_1-C_4) alkyl or a commonly used amino protecting group;

n is 2-8;

with the *proviso* that only one of R¹-R⁶ is nitro;

R⁷ is a commonly used carboxyl protecting or carboxyl activating group;

3

R⁸ or R⁹ is hydrogen and the other is lower alkyl (C₁-C₄), phenyl, benzyl, or R⁸ and R⁹ are part of a 5 or 6 membered ring;

R¹⁰ and R¹¹ are independently hydrogen or (C₁-C₄)alkyl; and

R¹² is (C₁-C₁₀)alkyl, phenyl, which both can be substituted by (C₁-C₄) alkyl, protected amino group or halogen; and

D and D´ are independently a bond or a spacer selected from α , ω -diamino-alkanes, diaminocyclohexyl, bis-(aminomethyl)-substituted phenyl, α -amino- ω -hydroxy-alkanes, alkylamines, cyclic alkylamines or cyclic alkyldiamines or amino acids without or with additional functionality in the side chain.

13. (new) Compounds of claim 12, wherein

B is selected from benzyl, benzhydryl, benzhydryliden, trityl, xanthenyl, benzoin, silicon, or allyl based linkers.

14. (new) Compounds of claim 12 of the following structures:

$$A \longrightarrow B \longrightarrow E \longrightarrow C$$

$$A \longrightarrow B \longrightarrow C \longrightarrow C$$

$$A \longrightarrow B \longrightarrow C \longrightarrow C$$

15. (new) Compounds of claim 12 wherein the amino protecting group is *tert*-butyloxycarbonyl, 9-fluorenylmethoxycarbonyl, phthalimido, trifluoroacetamido, methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, or 2-(trimethylsilyl)ethoxycarbonyl.

16 (new) Compounds of claim 12 wherein C is of the following structures:

09/754,958

09/754,958