Análise de Relação entre Variaveis

https://advancedinstitute.ai

Análise de Relação entre Variáveis

Teste de Hipótese

Referências

Referências e Fontes das Imagens

- □ Estatística Básica (Book)
- ☐ Think Stats (Book)
- □ Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (Book)
- ☐ Stats Normaltest

Grupos Pareados e Independentes

Quando utilizar?

- □ Quando utilizar?
- ☐ Sabe a diferença entre eles?

Grupos Pareados e Independentes

□ Grupos Independentes (ou Não Pareados)

- □ Grupos Independentes (ou Não Pareados)
 - São aqueles que não guardam relação de dependência entre sí

- □ Grupos Independentes (ou Não Pareados)
 - São aqueles que não guardam relação de dependência entre sí
 - Não são as mesmas unidades amostrais que são avaliadas

- □ Grupos Independentes (ou Não Pareados)
 - São aqueles que não guardam relação de dependência entre sí
 - Não são as mesmas unidades amostrais que são avaliadas
 - Cada grupo é composto por indivíduos ou unidades amostrais distintos

Grupos Independentes (ou Não Pareados)

□ Exemplo: Imagine que um psicólogo quer comparar o nível de ansiedade entre dois grupos diferentes de paciente.

Figure: Grupo B (Terapia B)

Grupos Independentes (ou Não Pareados)

Os indivíduos no grupo A são diferentes dos indivíduos no grupo B.

Grupos Independentes (ou Não Pareados)

- □ Os indivíduos no grupo A são diferentes dos indivíduos no grupo B.
- ☐ O nível de ansiedade seria medido usando uma escala numérica de 0 a 100 por exemplo, para cada paciente ao final do tratamento.

Grupos Independentes (ou Não Pareados)

- Os indivíduos no grupo A são diferentes dos indivíduos no grupo B.
- O nível de ansiedade seria medido usando uma escala numérica de 0 a 100 por exemplo, para cada paciente ao final do tratamento.
- □ Não há obrigatoriedade estatística para que os grupos tenham o mesmo tamanho

Grupos Dependentes (ou Pareados)

□ São grupos que guardam relação de dependência entre si

- São grupos que guardam relação de dependência entre si
- ☐ São as mesmas unidades amostrais avaliadas mais de uma vez

Grupos Dependentes (ou Pareados)

■ Exemplo: Imagine que um psicólogo quer avaliar o efeito de uma terapia no nível de ansiedade de um único grupo de pacientes.

Figure: Grupo B (Depois)

Grupos Dependentes (ou Pareados)

O nível de ansiedade numa escala de 0 a 100 por exemplo, seria medido em cada paciente **antes** de iniciar a terapia e **depois** ao final da terapia

- □ O nível de ansiedade numa escala de 0 a 100 por exemplo, seria medido em cada paciente **antes** de iniciar a terapia e **depois** ao final da terapia
- ☐ São as mesmas pessoas avaliadas em dois momentos distintos

- □ O nível de ansiedade numa escala de 0 a 100 por exemplo, seria medido em cada paciente **antes** de iniciar a terapia e **depois** ao final da terapia
- □ São as mesmas pessoas avaliadas em dois momentos distintos
- Obrigatóriamente os grupos devem ter o mesmo tamanho

- O nível de ansiedade numa escala de 0 a 100 por exemplo, seria medido em cada paciente **antes** de iniciar a terapia e **depois** ao final da terapia
- ☐ São as mesmas pessoas avaliadas em dois momentos distintos
- Obrigatóriamente os grupos devem ter o mesmo tamanho
- □ Caso isso não seja possível, o valor da quantidade da última análise é o que será válido

Grupos Dependentes (ou Pareados)

☐ O conceito **pareado**, não se refere a ser "par", posso ter varias etapas de análise com o mesmo grupo

Figure: Mês 1

Figure: Mês 3

Figure: Mês 9

Figure: Mês 12

Pareamento Estatístico X Pareamento Metodológico

□ Pareamento Estatístico:

Pareamento Estatístico X Pareamento Metodológico

- □ Pareamento Estatístico:
 - Os grupos a serem comparados guardam relação de dependência entre si

Pareamento Estatístico X Pareamento Metodológico

- □ Pareamento Estatístico:
 - Os grupos a serem comparados guardam relação de dependência entre si
 - Isso ocorre porque são as mesmas unidades amostrais (indivíduos, animais, etc.) que são avaliadas mais de uma vez

Pareamento Estatístico X Pareamento Metodológico

□ Pareamento Metodológico:

Pareamento Estatístico X Pareamento Metodológico

- □ Pareamento Metodológico:
- Técnica utilizada durante o delineamento da pesquisa, antes mesmo da coleta de dados ou análise estatística

Pareamento Estatístico X Pareamento Metodológico

- Pareamento Metodológico:
- Técnica utilizada durante o delineamento da pesquisa, antes mesmo da coleta de dados ou análise estatística
- Seu objetivo é garantir que grupos independentes tenham características semelhantes no início do estudo

Associação entre Variáveis

☐ Tem como objetivo, descrever simultâneamente a variabilidade de duas ou mais variáveis de forma que cada conjunto seja observado para uma mesma unidade observacional (pessoas, animais, plantas, peças, etc.)

Associação entre Variáveis

- □ Tem como objetivo, descrever simultâneamente a variabilidade de duas ou mais variáveis de forma que cada conjunto seja observado para uma mesma unidade observacional (pessoas, animais, plantas, peças, etc.)
 - Vamos iniciar com um par de variáveis (x,y), sendo (x_i, y_i) , i=1,...,n pares de observações de duas variáveis:

Associação entre Variáveis

• Vamos iniciar com um par de variáveis (x,y), sendo (x_i, y_i) , i=1,...,n pares de observações de duas variáveis:

Associação entre Variáveis

• Vamos iniciar com um par de variáveis (x,y), sendo (x_i, y_i) , i=1,...,n pares de observações de duas variáveis:

×	у
Qualitativa	Qualitativa
Qualitativa	Quantitativa
Quantitativa	Qualitativa

Associação entre Variáveis

• Vamos iniciar com um par de variáveis (x,y), sendo (x_i, y_i) , i=1,...,n pares de observações de duas variáveis:

х	у
Qualitativa	Qualitativa
Qualitativa	Quantitativa
Quantitativa	Qualitativa

Para cada combinação de pares de variáveis, um tipo de análise será realizada.

Associação entre Variáveis

 \square Para entendermos a associação entre x e y, precisamos de uma medidade associação, que deve avaliar se essa associação é **forte** ou **fraca**, **positiva** ou **negativa**.

Associação entre Variáveis

- \square Para entendermos a associação entre x e y, precisamos de uma medidade associação, que deve avaliar se essa associação é **forte** ou **fraca**, **positiva** ou **negativa**.
- Outra possibilidade é através da representação gráfica, podendo para esse tipo de análise ser:
 - Sentido da associação: Positiva ou Negativa;
 - Intensidade da Associação: Forte, Moderada ou Fraca

Entender os sentidos e sua intensidade é necessário e muito utilizado em processos de análise de **predições** nos dados.

Associação entre Variáveis

- $\ \square \ x$: Altura da planta
- □ y: Largura da folha

Figure: Correlação Positiva

Associação entre Variáveis

- \square x: Idade
- \square y: $\mathbb{N}^{\underline{o}}$ de acidentes

Figure: Correlação Negativa

Associação entre Variáveis

- $\square x$: $\mathbb{N}^{\underline{o}}$ do sapato
- \square y: Nota final do semestre

Figure: Sem Associação

- □ Causal unilateral:
 - y depende de x ou x depende de y.

- ☐ Causal unilateral:
 - y depende de x ou x depende de y.
- □ Exemplo:
 - Preço da venda de um produto (y) depende do local da venda (x).

$$x \Rightarrow y$$

- □ Causal unilateral (Preço X Local)
 - É possível perceber então que o preço do produto depende do local da venda e também pode depender de outros fatores mas, o local não depende do preço do produto.

- ☐ Causal bilateral:
 - y depende de x e x depende de y.

- □ Causal bilateral:
 - y depende de x e x depende de y.
- □ Exemplo:
 - Peso (x) e circunferência abdominal (y) de uma pessoa.

$$x \Leftrightarrow y$$

Variáveis Dependentes e Independentes

□ Variável Dependente (resposta):

- □ Variável Dependente (resposta):
 - Representa uma variável cujo valor depende de outra variável (independente)

- □ Variável Dependente (resposta):
 - Representa uma variável cujo valor depende de outra variável (independente)
 - É o que queremos encontrar ou medir

- □ Variável Dependente (resposta):
 - Representa uma variável cujo valor depende de outra variável (independente)
 - É o que queremos encontrar ou medir
 - Ela depende da independente. Ex: glicose, pressão, nota, etc.

Variáveis Dependentes e Independentes

☐ Variável Independente (grupamento):

- □ Variável Independente (grupamento):
 - É aquela que não depende de outras variáveis

- Variável Independente (grupamento):
 - É aquela que não depende de outras variáveis
 - Geralmente é a que usamos para explicar ou prever algo. Ex: sexo, idade, tratamento, etc.

Variáveis Dependentes e Independentes

Exemplo: Diferença nos níveis de glicose entre homens e mulheres.

- **Exemplo:** Diferença nos níveis de glicose entre homens e mulheres.
 - É aquela que não depende de outras variáveis

- **Exemplo:** Diferença nos níveis de glicose entre homens e mulheres.
 - É aquela que não depende de outras variáveis
 - Geralmente é a que usamos para explicar ou prever algo. Ex: sexo, idade, tratamento, etc.

Variáveis Dependentes e Independentes

☐ **Exemplo:** Diferença nos níveis de glicose entre homens e mulheres.

Figure: Células (Dependentes)

- □ Causal bilateral (Peso X Circunferência abdominal)
 - Neste caso, se o peso cresce, a circunferência também aumenta porém, se a circunferência aumenta, o peso também será maior, comprovando que uma variável depende da outra.

- □ Dependência Indireta:
 - Considerado uma condição que gera discussão em estatística devido ao fato de existir uma correlação mas não existir causa.

- □ Dependência Indireta:
 - Considerado uma condição que gera discussão em estatística devido ao fato de existir uma correlação mas não existir causa.
- Exemplo:
 - Vendas de sorvete na praia (x), causas de afogamento (y) e temperatura (w).

Tipos de relação entre Variáveis

Aqui, (w) possui uma relação causal unilateral com (x) e (w) também tem relação causal unilateral com (y), ou seja, aumentar (w) irá causar aumento tanto em (x) como em (y).

Correlação não é Causalidade

- □ Altas temperaturas: Variável independente (x)
- Aumento das vendas: Variável dependente (y)

Correlação não é Causalidade

 Existe uma correlação entre o consumo de sorvetes e o consumo de protetor solar porém, um não causa o outro (Associação não causal)

Correlação não é Causalidade

- □ Congestionamento de veículos:
 Variável independente (x)
- Nível de Poluição: Variável dependente(y)

Correlação não é Causalidade

 □ Existe uma correlação entre os problemas respiratórios e a poluição sonora porém, um não causa o outro (Associação não causal)

Testes para Comparação

□ A primeira coisa a ser feita é encontrar qual é a variável dependente

Testes para Comparação

- ☐ A primeira coisa a ser feita é encontrar qual é a variável dependente
- □ Vamos dividir nosso exemplo em 3 partes:

Testes para Comparação

- □ A primeira coisa a ser feita é encontrar qual é a variável dependente
- □ Vamos dividir nosso exemplo em 3 partes:
 - Qualitativa Nominal;
 - Qualitativa Ordinal;
 - Quantitativa

Testes para Comparação

□ Vamos iniciar com as variáveis Qualitativas Nominais

Testes para Comparação

- □ Vamos iniciar com as variáveis Qualitativas Nominais
 - Qualitativa Nominal: Como já sabemos, para quando possuímos uma variável que tem uma característica que é uma qualidade e não uma ordem.

Testes para Comparação (Qualitativas Nominais)

- □ Teste Hipotético I
 - Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, para isso, aplicou um questionário contendo 20 questões.

36

Testes para Comparação (Qualitativas Nominais)

- □ Teste Hipotético I
 - Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, para isso, aplicou um questionário contendo 20 questões.
 - De acordo com os valores das questões no questionário será dado o diagnóstico inicial sendo, caso obtenha 10 pontos ou mais, será considerado como **estressado**, caso obtenha menos de 10 pontos, seu diagnóstico terá um quadro **normal**.

Testes para Comparação (Qualitativas Nominais)

□ Teste Hipotético I

- Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, para isso, aplicou um questionário contendo 20 questões.
- De acordo com os valores das questões no questionário será dado o diagnóstico inicial sendo, caso obtenha 10 pontos ou mais, será considerado como **estressado**, caso obtenha menos de 10 pontos, seu diagnóstico terá um quadro **normal**.
- Podemos verificar então que ao final, a resposta da nossa pesquisa será se o indivíduo está estressado ou não.

Testes para Comparação (Qualitativas Nominais)

☐ Mas... qual seria o melhor teste comparativo?

Testes para Comparação (Qualitativas Nominais) Não Pareados

□ Diagrama para variáveis qualitativas nominais (2 grupos)

Testes para Comparação (Qualitativas Nominais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (2 grupos)
 - Qui-quadrado: trata-se de um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis categóricas nominais e avaliar a associação existente entre essas variáveis.

Testes para Comparação (Qualitativas Nominais) Não Pareados e Pareados

- Diagrama para variáveis qualitativas nominais (2 grupos)
- Qui-quadrado: trata-se de um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis **categóricas nominais** e avaliar a associação existente entre essas variáveis.
- MC Nemar: é um teste não paramétrico que se baseia em dados ordinais e nominais e não requerem os pressupostos dos testes paramétricos.

Testes para Comparação (Qualitativas Nominais) Pareados

□ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)

Testes para Comparação (Qualitativas Nominais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
 - Qui-quadrado: trata-se de um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis **categóricas nominais** e avaliar a associação existente entre essas variáveis.

Testes para Comparação (Qualitativas Nominais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
 - Qui-quadrado: trata-se de um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis categóricas nominais e avaliar a associação existente entre essas variáveis.
 - Q de Cochram: é um teste estatístico não paramétrico para verificar se k tratamentos têm efeitos similares ao realizado nas análises de delineamentos em blocos aleatorizados, onde a variável de resposta pode assumir apenas dois valores possíveis ($\mathbf{0}$ ou $\mathbf{1}$).

Testes para Comparação

□ Vamos agora com as variáveis Qualitativas Ordinal

Testes para Comparação

- Vamos agora com as variáveis Qualitativas Ordinal
- Qualitativa Ordinal: Como próprio nome diz, existe uma ordem (hierarquia) na classificação dos dados na qual precisas ser respeitada

Testes para Comparação (Qualitativas Ordinais)

- □ Teste Hipotético II
 - Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, para esse novo teste, o psicólogo aplicou agora um questionário contendo 50 questões.

Testes para Comparação (Qualitativas Ordinais)

- □ Teste Hipotético II
 - Vamos imaginar que um psicólogo quer comparar o nível de ansiedade de seu grupo de pacientes, para esse novo teste, o psicólogo aplicou agora um questionário contendo 50 questões.
 - Nesse novo experimento, a análise realizada ao final será aplicada dependendo das respostas do indivíduo, classificando como: ansiedade, ansiedade moderada, ansiedade leve, muito ansioso e sem ansiedade.

Testes para Comparação (Qualitativas Ordinais)

□ Teste Hipotético II

- Vamos imaginar que um psicólogo quer comparar o nível de ansiedade de seu grupo de pacientes, para esse novo teste, o psicólogo aplicou agora um questionário contendo 50 questões.
- Nesse novo experimento, a análise realizada ao final será aplicada dependendo das respostas do indivíduo, classificando como: ansiedade, ansiedade moderada, ansiedade leve, muito ansioso e sem ansiedade.
- Podemos verificar então que ao final, a resposta da nossa pesquisa irá apresentar em que nível de estresse se encontra um determinado indivíduo.

Testes para Comparação (Qualitativas Ordinais)

☐ Mas... qual seria o melhor teste comparativo?

Testes para Comparação (Qualitativas Ordinais)

□ Diagrama para variáveis qualitativas nominais (2 grupos)

Testes para Comparação (Qualitativas Ordinais) Não Pareados

□ Diagrama para variáveis qualitativas nominais (2 grupos)

46

Testes para Comparação (Qualitativas Ordinais) Não Pareados e Pareados

☐ Diagrama para variáveis qualitativas nominais (2 grupos)

Testes para Comparação (Qualitativas Ordinais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (2 grupos ou mais)
- Mann-Whitney: indicado para comparação de dois grupos não pareados para se verificar se pertencem ou não à mesma população e cujos requisitos para aplicação do **teste t de Student** não foram cumpridos

Testes para Comparação (Qualitativas Ordinais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (2 grupos ou mais)
- Mann-Whitney: indicado para comparação de dois grupos não pareados para se verificar se pertencem ou não à mesma população e cujos requisitos para aplicação do **teste t de Student** não foram cumpridos
- Wilcoxon: é um método não-paramétrico para comparação de duas amostras pareadas ou não pareadas.

Testes para Comparação (Qualitativas Ordinais)

□ Diagrama para variáveis qualitativas nominais (3 grupos)

Testes para Comparação (Qualitativas Ordinais)

□ Diagrama para variáveis qualitativas nominais (3 grupos)

Testes para Comparação (Qualitativas Ordinais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
 - Kruskal-Wallis: é um método não paramétrico para testar se amostras se originam ou não da mesma distribuição. Muito utilizado para comparar duas ou mais amostras independentes de tamanhos iguais ou diferentes.

Testes para Comparação (Qualitativas Ordinais) Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
 - Kruskal-Wallis: é um método não paramétrico para testar se amostras se originam ou não da mesma distribuição. Muito utilizado para comparar duas ou mais amostras independentes de tamanhos iguais ou diferentes.
 - Friedman: trata-se de um teste não-paramétrico utilizado para comparar dados amostrais vinculados, ou seja, quando o mesmo indivíduo é avaliado mais de uma vez. Esse testa não utiliza os dados numéricos diretamente, mas sim os postos ocupados por eles após a ordenação feita para cada grupo separadamente.

Testes para Comparação (Quantitativas)

□ Teste Hipotético III

• Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, só que agora, o psicólogo aplicou um teste psicológico que classificava o nível de ansiedade do indivíduo através de uma escala numérica.

Testes para Comparação (Quantitativas)

□ Teste Hipotético III

- Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, só que agora, o psicólogo aplicou um teste psicológico que classificava o nível de ansiedade do indivíduo através de uma escala numérica.
- Nessa escala que vai de 0 à 100, quanto maior o *score* alcançado, maior as chances do indivíduo estar em um quadro de estresse.

Testes para Comparação (Quantitativas)

□ Teste Hipotético III

- Vamos imaginar que um psicólogo quer **comparar** o nível de ansiedade de seu grupo de pacientes, só que agora, o psicólogo aplicou um teste psicológico que classificava o nível de ansiedade do indivíduo através de uma escala numérica.
- Nessa escala que vai de 0 à 100, quanto maior o *score* alcançado, maior as chances do indivíduo estar em um quadro de estresse.
- Agora, nesse tipo de análise nossa variável resposta independente se trata de um número, sendo esse responsável por impactar o resultado.

Testes para Comparação (Quantitativas)

☐ Mas... qual seria o melhor teste comparativo?

Testes para Comparação (Quantitativas Não Pareados

☐ Diagrama para variáveis quantitativas (2 grupos)

Testes para Comparação (Quantitativas Não Pareados

□ Diagrama para variáveis quantitativas (2 grupos)

Testes para Comparação (Quantitativas Não Pareados e Pareados

□ Diagrama para variáveis quantitativas (2 grupos)

Testes para Comparação (Quantitativas Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
- Teste T: é um teste de hipóteses utilizado quando queremos tirar conclusões de um grupo inteiro de indivíduos com base em apenas uma pequena amostra coletada.

Testes para Comparação (Quantitativas Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
- Teste T: é um teste de hipóteses utilizado quando queremos tirar conclusões de um grupo inteiro de indivíduos com base em apenas uma pequena amostra coletada.
- Teste-t pareado: simplesmente calcula a diferença entre observações emparelhadas (por exemplo, antes e depois) e, em seguida, realiza um teste-t para 1 amostra sobre as diferenças.

Testes para Comparação (Quantitativas Não Pareados

□ Diagrama para variáveis quantitativas (3 grupos)

Testes para Comparação (Quantitativas Não Pareados e Pareados

☐ Diagrama para variáveis quantitativas (3 grupos)

Testes para Comparação (Quantitativas Não Pareados e Pareados

- □ Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
 - Anova: é uma fórmula estatística usada para comparar as variâncias entre as medianas (ou médias) de grupos diferentes.

Testes para Comparação (Quantitativas Não Pareados e Pareados

- Diagrama para variáveis qualitativas nominais (3 grupos ou mais)
- Anova: é uma fórmula estatística usada para comparar as variâncias entre as medianas (ou médias) de grupos diferentes.
- Anova de Medidas Repetidas: compara as médias de uma ou mais variáveis que se baseiam em observações repetidas. Um modelo ANOVA de medidas repetidas também pode incluir zero ou mais variáveis independentes.

- □ Basicamente, sempre que iremos utilizar uma amostra de dados, calculamos algumas métricas estatísticas conhecidas (como média, mediana, desvio padrão e outras) e generalizamos esse valor para todo uma população, esse processo é conhecido como inferência estatística.
 - Mas essa generalização pode realmente ser feita?

- ☐ Basicamente, sempre que iremos utilizar uma amostra de dados, calculamos algumas métricas estatísticas conhecidas (como média, mediana, desvio padrão e outras) e generalizamos esse valor para todo uma população, esse processo é conhecido como inferência estatística.
 - Mas essa generalização pode realmente ser feita?
 - Será que nossa amostra é realmente uma boa representação da população?

- □ Basicamente, sempre que iremos utilizar uma amostra de dados, calculamos algumas métricas estatísticas conhecidas (como média, mediana, desvio padrão e outras) e generalizamos esse valor para todo uma população, esse processo é conhecido como inferência estatística.
 - Mas essa generalização pode realmente ser feita?
 - Será que nossa amostra é realmente uma boa representação da população?
 - Como provar isso estatisticamente?

- □ Basicamente, sempre que iremos utilizar uma amostra de dados, calculamos algumas métricas estatísticas conhecidas (como média, mediana, desvio padrão e outras) e generalizamos esse valor para todo uma população, esse processo é conhecido como inferência estatística.
 - Mas essa generalização pode realmente ser feita?
 - Será que nossa amostra é realmente uma boa representação da população?
 - Como provar isso estatisticamente?
 - Simples, usando teste de hipóteses!

Iniciando os Testes

□ O teste de hipóteses é um ótima ferramenta para validar as nossas inferências, mas mesmo sendo ótima, muitas vezes ela é utilizada de forma errada ou simplesmente é esquecido o que realmente o teste representa.

Teorema Central do Limite

• Antes de apresentar as características de um teste de hipótese, é importante entendermos o que é o **Teorema Central do Limite** - **TCL**, pois trata-se de um dos principais conceitos por trás da inferência estatística.

- Antes de apresentar as características de um teste de hipótese, é importante entendermos o que é o **Teorema Central do Limite TCL**, pois trata-se de um dos principais conceitos por trás da inferência estatística.
- Basicamente, esse teorema nos diz que conforme aumentamos o tamanho de uma amostra, a distribuição amostral da sua média aproxima-se cada vez mais de uma distribuição normal, independentemente da distribuição da população.

Figure: Distribuição normal: simétrica e com média

Teorema Central do Limite

• Mas o que isso significa???

- Mas o que isso significa????
- Se utilizarmos a *feature* **Renda** do nosso conjunto de dados para analisar o salário médio dos brasileiros. Pela definição de média, teríamos que somar o salário de todos os brasileiros e dividir pelo tamanho da população do Brasil.

- Mas o que isso significa????
- Se utilizarmos a *feature* **Renda** do nosso conjunto de dados para analisar o salário médio dos brasileiros. Pela definição de média, teríamos que somar o salário de todos os brasileiros e dividir pelo tamanho da população do Brasil.
 - Isso é um pouco inviável de ser feito não acham?

Teorema Central do Limite

• Nesse caso, como não é possível ter informações da população toda, teríamos que utilizar amostras. Com isso, decidimos perguntar o salário de **10 pessoas** que encontramos aleatoriamente na rua (vamos ignorar o fato de que praticamente ninguém responderia a uma pergunta dessa rss)

- Nesse caso, como não é possível ter informações da população toda, teríamos que utilizar amostras. Com isso, decidimos perguntar o salário de **10 pessoas** que encontramos aleatoriamente na rua (vamos ignorar o fato de que praticamente ninguém responderia a uma pergunta dessa rss)
 - Então, pegaríamos a média desses 10 salários, o que nos retornaria um valor X_1 .

- Nesse caso, como não é possível ter informações da população toda, teríamos que utilizar amostras. Com isso, decidimos perguntar o salário de **10 pessoas** que encontramos aleatoriamente na rua (vamos ignorar o fato de que praticamente ninguém responderia a uma pergunta dessa rss)
 - Então, pegaríamos a média desses 10 salários, o que nos retornaria um valor X_1 .
 - ullet Em seguida, perguntamos o salário de mais 10 pessoas para obtermos mais uma média, X_2 .

- Nesse caso, como não é possível ter informações da população toda, teríamos que utilizar amostras. Com isso, decidimos perguntar o salário de **10 pessoas** que encontramos aleatoriamente na rua (vamos ignorar o fato de que praticamente ninguém responderia a uma pergunta dessa rss)
 - Então, pegaríamos a média desses 10 salários, o que nos retornaria um valor X_1 .
 - ullet Em seguida, perguntamos o salário de mais 10 pessoas para obtermos mais uma média, X_2 .
 - ullet Repetimos esse processo com mais 10 pessoas, obtemos então outra média, X_3 .

- Nesse caso, como não é possível ter informações da população toda, teríamos que utilizar amostras. Com isso, decidimos perguntar o salário de **10 pessoas** que encontramos aleatoriamente na rua (vamos ignorar o fato de que praticamente ninguém responderia a uma pergunta dessa rss)
 - ullet Então, pegaríamos a média desses 10 salários, o que nos retornaria um valor $X_1.$
 - ullet Em seguida, perguntamos o salário de mais 10 pessoas para obtermos mais uma média, X_2 .
 - ullet Repetimos esse processo com mais 10 pessoas, obtemos então outra média, $X_3.$
- Vamos supor agora que repetimos esse processo até obter mil médias amostrais, $(X_1, X_2, ... X_{1000})$.

Teorema Central do Limite

• Pelo Teorema Central do Limite, a distribuição dessas mil médias tende a ser normal.

- Pelo Teorema Central do Limite, a distribuição dessas mil médias tende a ser normal.
- Se ao invés de perguntarmos a 10 pessoas, perguntássemos a 30, a distribuição dessas médias obtidas por meio de amostras de 30 pessoas, se aproximaria mais ainda de uma normal!

- Pelo Teorema Central do Limite, a distribuição dessas mil médias tende a ser normal.
- Se ao invés de perguntarmos a 10 pessoas, perguntássemos a 30, a distribuição dessas médias obtidas por meio de amostras de 30 pessoas, se aproximaria mais ainda de uma normal!
- Conforme aumentássemos o número de pessoas questionadas sobre o seu salário, mais a distribuição dessas médias se aproximaria de uma normal.

Teorema Central do Limite

• E o melhor, a média dessa distribuição normal é uma ótima aproximação da média dos salários de toda a população.

- E o melhor, a média dessa distribuição normal é uma ótima aproximação da média dos salários de toda a população.
- Com isso teríamos uma estimativa, ou seja, teríamos uma inferência da média dos salários de toda a população brasileira sem precisar perguntar isso para cada pessoa que vive no país. :-)

- E o melhor, a média dessa distribuição normal é uma ótima aproximação da média dos salários de toda a população.
- Com isso teríamos uma estimativa, ou seja, teríamos uma inferência da média dos salários de toda a população brasileira sem precisar perguntar isso para cada pessoa que vive no país. :-)
- Podemos observar também que em nenhum momento há a definição de que os salários são normalmente distribuídos.

- E o melhor, a média dessa distribuição normal é uma ótima aproximação da média dos salários de toda a população.
- Com isso teríamos uma estimativa, ou seja, teríamos uma inferência da média dos salários de toda a população brasileira sem precisar perguntar isso para cada pessoa que vive no país. :-)
- Podemos observar também que em nenhum momento há a definição de que os salários são normalmente distribuídos.
- Pelo TCL essa característica não é necessária. A distribuição das médias amostrais dos salários seguirão uma normal, mesmo que os salários sigam qualquer outra distribuição.

Teorema Central do Limite

• Vamos supor que os salários seguem uma distribuição normal.

- Vamos supor que os salários seguem uma distribuição normal.
- Muitas pessoas recebem um salário médio e o número de pessoas que recebem um salário menor que a média é o mesmo número de pessoas que recebem um salário maior que a média.

- Vamos supor que os salários seguem uma distribuição normal.
- Muitas pessoas recebem um salário médio e o número de pessoas que recebem um salário menor que a média é o mesmo número de pessoas que recebem um salário maior que a média.
 - Por outro lado, acreditamos que o salário das pessoas seguem uma distribuição exponencial.

- Vamos supor que os salários seguem uma distribuição normal.
- Muitas pessoas recebem um salário médio e o número de pessoas que recebem um salário menor que a média é o mesmo número de pessoas que recebem um salário maior que a média.
 - Por outro lado, acreditamos que o salário das pessoas seguem uma distribuição exponencial.
- Muitas pessoas recebem um salário mais baixo, enquanto poucas pessoas recebem um salário mais alto.

Figure: Distribuição exponencial.

Teorema Central do Limite

• Uma pessoa sonhadora acredita que vivemos em uma sociedade muito igualitária, onde os salários seguem uma **distribuição uniforme**, ou seja, as pessoas recebem salários parecidos.

Figure: Distribuição uniforme.

Teorema Central do Limite

• Para obtermos uma melhor visualização, geramos uma distribuição contendo 100.000 valores aleatórios que seguem, respectivamente, uma distribuição **normal**, **exponencial** e **uniforme**.

- Para obtermos uma melhor visualização, geramos uma distribuição contendo 100.000 valores aleatórios que seguem, respectivamente, uma distribuição **normal**, **exponencial** e **uniforme**.
- O valor médio das três distribuições é aproximadamente **2.000**, ou seja, a suposição é que o salário médio da população é = R\$2.000.

Teorema Central do Limite

□ Distribuição Normal

Teorema Central do Limite

□ Distribuição Exponencial

Teorema Central do Limite

□ Distribuição Uniforme

- ☐ Tipos de associações entre duas variáveis
 - (a) Associação linear direta (ou **positiva**)
 - Soma do produto das coordenadas será sempre positivo
 - (b) Dependência linear inversa (ou **negativa**)
 - Soma dos produtos das coordenadas será negativa

Dúvidas?