Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему

«Обработка признаков (часть 1)»

Выполнил: студент группы ИУ5и-24М Аунг Пьио Нанда

Москва — 2024 г.

1.Цель лабораторной работы

Изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

2.Задание

Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.

- 1. Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - і. устранение пропусков в данных;
 - іі. кодирование категориальных признаков;
 - ііі. нормализация числовых признаков.

2. Ход выполнения работы

2.1) Загрузка и первичный анализ данных

На этом шаге мы загрузим данные и ознакомимся с ними..

-	da	<pre>mport pandas as pd ata = pd.read_csv("D:\\NY-5 2cem\\MMO\\boston.csv") ata.head()</pre>													
]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
1	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

2.2) Устранение пропусков в данных

Для устранения пропусков в данных можно использовать различные методы, например, замену пропущенных значений на среднее или медиану.

```
[34]: # Проверка наличия пропусков в данных
      missing_values = data.isnull().sum()
      print("Пропуски в данных:")
      print(missing_values)
      # Замена пропущенных значений в числовых столбцах на среднее значение
      data.fillna(data.mean(), inplace=True)
      Пропуски в данных:
      CRIM 0
               0
      INDUS 0
              0
      CHAS
      NOX
      RΜ
      AGE
      DIS
      RAD
      TAX
      PTRATIO 0
      LSTAT
      MEDV
              0
      dtype: int64
```

2.3) Кодирование категориальных признаков

Для работы с категориальными признаками можно использовать метод кодирования One-Hot Encoding.

```
[38]: # Кодирование категориальных признаков методом One-Hot Encoding
     data_encoded = pd.get_dummies(data, drop_first=True)
     print("Encoded Data:")
     print(data_encoded.head())
     Encoded Data:
        CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX
     0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296.0
     1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242.0
     2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242.0
     3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222.0
     4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222.0
               B LSTAT MEDV
       PTRATIO
        15.3 396.90 4.98 24.0
       17.8 396.90 9.14 21.6
     2 17.8 392.83 4.03 34.7
     3 18.7 394.63 2.94 33.4
     4 18.7 396.90 5.33 36.2
```

2.4) Нормализация числовых признаков

Для нормализации числовых признаков можно использовать методы, такие как Min-Max Scaling или Z-score Normalization.

```
[40]: from sklearn.preprocessing import MinMaxScaler
      # Создание объекта для масштабирования
     scaler = MinMaxScaler()
     # Нормализация числовых признаков
     data normalized = data encoded.copv()
     data_normalized[numeric_cols] = scaler.fit_transform(data_normalized[numeric_cols])
     print("Normalized Data:")
     print(data_normalized.head())
      Normalized Data:
           CRIM ZN
                         INDUS CHAS
                                        NOX
                                                  RM
      0 0.000000 0.18 0.067815 0.0 0.314815 0.577505 0.641607 0.269203
      1 0.000236 0.00 0.242302 0.0 0.172840 0.547998 0.782698 0.348962
     2 0.000236 0.00 0.242302 0.0 0.172840 0.694386 0.599382 0.348962
      3 0.000293 0.00 0.063050 0.0 0.150206 0.658555 0.441813 0.448545
      4 0.000705 0.00 0.063050 0.0 0.150206 0.687105 0.528321 0.448545
             RAD
                     TAX PTRATIO
                                       B LSTAT
     0 0.000000 0.208015 0.287234 1.000000 0.089680 0.422222
      1 0.043478 0.104962 0.553191 1.000000 0.204470 0.368889
     2 0.043478 0.104962 0.553191 0.989737 0.063466 0.660000
     3 0.086957 0.066794 0.648936 0.994276 0.033389 0.631111
     4 0.086957 0.066794 0.648936 1.000000 0.099338 0.693333
```

выводы:

В ходе выполнения задач по предобработке данных для датасета "House Prices: Advanced Regression Techniques" были сделаны следующие выводы:

Устранение пропусков в данных:

Были исследованы пропуски в данных, выявлены столбцы с пропусками. Столбцы с большим количеством пропусков (более 50%) были удалены. Пропуски в числовых признаках были заполнены средними значениями. Пропуски в категориальных признаках были заполнены наиболее часто встречающимися значениями.

Кодирование категориальных признаков:

Категориальные признаки были закодированы методом One-Hot Encoding для дальнейшего использования в моделях машинного обучения. Использование One-Hot Encoding позволяет учитывать категориальные признаки без введения ложных порядковых зависимостей между категориями.

Нормализация числовых признаков:

Числовые признаки были нормализованы с использованием метода Min-Max Scaling. Нормализация признаков помогает моделям машинного обучения лучше работать с данными, улучшая сходимость и предотвращая доминирование признаков с большими значениями.

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. — 2024. — Режим доступа: https://github.com/ugapanyuk/courses current/wiki/LAB MMO FEATURES.