Math 242 Test 3, Friday 21 April

Name:

Last 4 digits of SSN:

Show all work **clearly**, **make sentences**. No work means no credit. The points are:

ex1: 20, ex2: 20, ex3: 20, ex4: 10, ex5: 30.

Exercise 1 (Particular solutions)

1) Method of variation of parameters in the case n = 2: We consider the second-order linear differential equation

$$y'' + P(x)y' + Q(x)y = f(x),$$

where P, Q and f are continuous. A general solution is given by:

$$y_c(x) = c_1 y_1(x) + c_2 y_2(x),$$

where c_1 and c_2 are constants.

What will be the form of a particular solution? To find this solution, what system of equations, with unknown c'_1 and c'_2 , do we have to solve?

2) Find the form of a particular solution in each cases, but DO NOT determine the coefficients.

(a)
$$y^{(13)} - 9y'' = x^4 - x + 41$$
,

(b)
$$y^{(3)} + y'' + 9y = (x^2 - 1)e^x + 3x$$
,

(c)
$$y'' - 2y' + 17y = 5e^x(5x - 8)\sin(4x)$$
.

Exercise 2

Find the inverse Laplace transform of the following functions:

a)
$$F(s) = \frac{2s+4}{s^2+36}$$
, b) $G(s) = \frac{5s+7}{s^2-8s+25}$.

Exercise 3

Use the theorem of differentiation of Laplace transform to find the Laplace transform of

$$f(t) = te^{-3t}\sin(2t),$$

and to find the inverse Laplace transform of

$$F(s) = \ln\left(1 + \frac{1}{s^2}\right).$$

Exercise 4

Solve the initial value problem using Laplace transform:

$$x'' + x = 0$$
, $x(0) = 0$ and $x'(0) = \pi$.

Exercise 5

Solve the initial value problem using the Laplace transform:

$$x^{(3)} - x'' + 4x' - 4x = 15e^t$$
, $x(0) = 0$, $x'(0) = 6$ and $x''(0) = 16$.

You will use that 1 is a root of the characteristic equation.