Optimization and Regularization for NNs

Vladislav Goncharenko

ML Teamlead, DZEN

MSU, spring 2024

Outline

- 1. Previous lecture recap
 - a. activations
 - b. backpropagation
- 2. Optimizers
 - a. SGD
 - o. Momentum
 - c. RMSProp
 - d. Adam
- 6. Data normalization
 - a. Batch Norm
 - b. Layer Norm
- 4. Regularization
 - a. Dropout
- 5. Augmentation
 - a. Images
 - b. Texts

Recap

girafe

Once again: nonlinearities

$$f(a) = \frac{1}{1 + e^{-a}}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.

source: http://cs231n.github.

Optimizers

girafe ai

Stochastic gradient descent

$$x_{t+1} = x_t - \text{learning rate} \cdot dx$$

Optimizers

There are lots of optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs

Optimization: SGD

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

Averaging over mini batches => noisy gradient

First idea: momentum

Simple SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

SGD with momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Momentum update:

Nesterov momentum

Momentum update:

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Comparing momentums

RMSProp - SGD with exponential cache

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta)(\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1}^{1/2} + \varepsilon}$$

Slide 29 Lecture 6 of Geoff Hinton's Coursera class http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

> Simpler (historical) method: Adagrad - SGD with cache

Adam

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1}^{v_t} + \varepsilon}$$

Actually, that's not quite Adam.

Adam full form involves bias correction term. See http://cs231n.github.io/neural-networks-3/ for more info.

Comparing optimizers

3e-4 is the best learning rate for Adam, hands down.

100 D-	464	11			
108 Ret	tweets 461 L	likes			
	9	(I)	\bigcirc	\triangle	
	Andrej Karpathy @ @karpathy · Nov 24, 2016 Replying to @karpathy (i just wanted to make sure that people understand that this is a joke)				
	O 9	↑7. 3	♡ 119	.1.	

Once more: learning rate

Weights initialization

- All zero initialization
 - o pitfall
- Small random numbers
- Calibrated random numbers

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i})$$

$$= \sum_{i}^{n} \operatorname{Var}(w_{i}x_{i})$$

$$= \sum_{i=1}^{n} [E(w_i)]^2 \operatorname{Var}(x_i) + E[(x_i)]^2 \operatorname{Var}(w_i) + \operatorname{Var}(x_i) \operatorname{Var}(w_i)$$

$$= \sum_{i}^{n} \operatorname{Var}(x_{i}) \operatorname{Var}(w_{i})$$

$$= (nVar(w)) Var(x)$$

Sum up: optimization

- Adam is great basic choice
- Even for RMSProp learning rate matters
- Use learning rate decay
- Monitor your model quality
- Sometimes weights initialization matters

Normalization

girafe ai

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Data normalization

Data normalization

Before normalization: classification loss very sensitive to changes in weight matrix;

hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

Problem (internal covariate shift):

- Consider a neuron in any layer beyond first
- At each iteration we tune it's weights towards better loss function
- But we also tune it's inputs. Some of them become larger, some smaller
- Now the neuron needs to be re-tuned for it's new inputs

TL; DR:

- It's usually a good idea to normalize linear model inputs
 - (c) Every machine learning lecturer, ever

 Normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

• Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Original algorithm (2015)

What is this?

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Original algorithm (2015)

What is this?

This transformation should be able to represent the identity transform.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

number of training steps

Layer normalization

$$\mu^l = rac{1}{H} \sum_{i=1}^H a_i^l$$

$$\sigma^l = \sqrt{rac{1}{H}\sum_{i=1}^H \left(a_i^l - \mu^l
ight)^2}$$

Regularization

girafe

What is regularization anyway?

Regularization is a process that changes the result answer to be "simpler". It is often used to obtain results for ill-posed problems or to prevent overfitting.

(c) Common knowledge site

- **Explicit** is regularization whenever one explicitly adds a term to the optimization problem. These terms could be priors, penalties, or constraints. Explicit regularization is commonly employed with ill-posed optimization problems. The regularization term, or penalty, imposes a cost on the optimization function to make the optimal solution unique.
- **Implicit** is all other forms of regularization. This includes, for example, early stopping, using a robust loss function, and discarding outliers

Problem: overfitting

Weights norm regularization

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

Adding some extra term to the loss function.

Common cases:

- L2 regularization:
- L1 regularization:
- Elastic Net (L1 + L2):

$$R(W) = ||W||_{2}^{2}$$

$$R(W) = ||W||_{1}$$

$$R(W) = \beta ||W||_{2}^{2} + ||W||_{1}$$

Dropout

Some neurons are "dropped" during training.

Prevents overfitting.

(a) Standard Neural Net

(b) After applying dropout.

Actually, on test case output should be normalized. See sources for more info.

Augmentation

girafe

Data augmentation

Data augmentation

Many ways to augment

Original image

augmentation

Horizontal Flip

Contrast

Crop

Hue / Saturation / Value

Median Blur

Gamma

Albumentations for images

Original

VerticalFlip

HorizontalFlip

ShiftScaleRotate

https://albumentations.ai/

	Sentence	
Original	The quick brown fox jumps over the lazy dog	
Synonym (PPDB)	The quick brown fox climbs over the lazy dog	
Word Embeddings (word2vec)	The easy brown fox jumps over the lazy dog	
Contextual Word Embeddings (BERT)	Little quick brown fox jumps over the lazy dog	
PPDB + word2vec + BERT	Little easy brown fox climbs over the lazy dog	

- https://github.com/sloria/TextBlob
- https://github.com/facebookresearch/AugLy
- https://github.com/makcedward/nlpaug/
- https://github.com/QData/TextAttack

Revise

- 1. Previous lecture recap
 - a. activations
 - b. backpropagation
- 2. Optimizers
 - a. SGD
 - o. Momentum
 - c. RMSProp
 - d. Adam
- 3. Data normalization
 - a. Batch Norm
 - b. Layer Norm
- 4. Regularization
 - a. Dropout
- 5. Augmentation
 - a. Images
 - b. Texts

Thanks for attention!

Questions?

