## Reading Material

# CS 5135/6035 Learning Probabilistic Models Lecture 23: Hierarchical Modeling, Application of Gibbs Sampling

Gowtham Atluri

November 26, 2018

• Gelman et al. Bayesian Data Analysis

- Chapter 5. Hierarchical Models
- Albert et al. Bayesian Computation with R
  - Chapter 7. Hierarchical Modeling

Gowtham Atlur

S 5135/6035 Learning Probabilistic Models

ovember 26, 2018 1 / 25

Gowtham Atlur

S 5135/6035 Learning Probabilistic Models

mbar 26 2019

2 / 25

### **Topics**

- Hierarchical Modeling
  - Motivation
  - Differences with traditional approach
  - Advantages
  - Bayesian Setup
- Normal Hierarchical Model
  - A Complete Bayesian Treatment
    - Model Specification to Point-Estimation
  - Gibbs Sampling
    - Determining full-conditionals
- Julia Implementation
  - Generating data
  - Gibbs Sampling
  - Results

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

November 26, 2018 3

# Hierarchical Modeling: Motivating Example

- In many scenarios, we are interested in learning about many parameters that are connected in some way
- Example
  - We have data related to post-liver-transplant survival from 94 hospitals
    - $\bullet$  We know the number of months patients survived at each hospital from 2000-2015
  - We are interested in modeling the survival periods post-transplantation
  - One approach is to pool data from all hospitals and model the parameters of the distribution

Hospital 1 Hospital 2 ... Hospital 94

- Not suited for determining which hospital has better survival rates?
- To address this, we can model the data at each hospital independently
  - Goal is to estimate  $\lambda_1, \dots, \lambda_{94}$

 $\lambda_1$   $\lambda_2$  Hospital 1 Hospital 2

...

 $\lambda_{94}$  Hospital 94

4 / 25

### Hierarchical Modeling: Motivating Example

- Let  $y_{i1}, y_{i2}, \dots y_{in_i}$  be the survival periods of  $n_i$  subjects at Hospital i.
- Data at each hospital can be modeled independently
  - $y_{ij} \sim p(y|\lambda_i)$ ,  $\lambda_i$  is the parameter of the *model* at hospital i
    - ullet i is the index of the hospital, j is subject number in hospital i
  - $\lambda_i$  can be estimated at each hospital separately using MLE or Bayesian approaches





### Hierarchical Modeling: Motivating Example

- It is reasonable to believe that survival is similar across hospitals with some variation
  - ullet Implies a dependence structure between  $\lambda s$
  - ullet Knowing  $\lambda_i$  affects belief on  $\lambda_j$
- ullet Specifically, we assume all  $\lambda s$  follow a common distribution
  - specific  $\lambda_i$  is sampled from this distribution
  - $\lambda_i \sim p(\lambda | \alpha)$
- ullet Observed data points at each hospital are drawn using the  $\lambda_i$  specific to the hospital
  - $y_{ij} \sim p(y|\lambda_i)$

# Hierarchical Modeling $p(\lambda|\alpha)$ • $y_{ii} \sim p(y|\lambda_i)$ Hospital 1 Hospital k $p(y|\lambda_1)$

Subject<sup>1</sup> 1 Subject<sup>1</sup> 2

Subject<sup>k</sup> 1 Subject<sup>k</sup> 2

Subject<sup>k</sup> nj

# Traditional vs. Hierarchical Modeling - Plate Diagrams

•  $\lambda_i \sim p(\lambda | \alpha)$ 

•  $y_{ij} \sim p(y|\lambda_i)$ 

Estimate  $\lambda_1, \ldots, \lambda_k$ ,  $\alpha$ 

At each hospital i

•  $y_{ij} \sim p(y|\lambda_i)$ 

Estimate  $\lambda_1, \ldots, \lambda_k$ , separately



### Plate-diag. interpretation:

- Nodes are random vars
- Arrows show dependency
- Shaded nodes are obs. var.
- Plates for multiple samples

# Individual vs. Combined estimation of $\lambda_i$ 's

Subject<sup>1</sup> ni

- Individual estimates  $\lambda_i$  can be highly variable
  - Particularly due to hospitals with a small number of cancer patients
  - There may not be enough samples to accurately estimate survival rates
- As individual estimate are poor, it may seem desirable to combine the individual estimates  $\lambda_i$ s
  - ullet Treat  $\lambda_i$ s as data points and estimate parameter lpha of the distribution  $p(\lambda)$
- ullet Since individual estimates  $\lambda_i$  are already noisy, estimating the parameters of the  $p(\lambda)$  is ineffective
- In hierarchical modeling  $\lambda_i$ 's and  $\alpha$  are estimated simultaneously
  - Overcomes the above limitations with individual modeling

# Traditional vs. Hierarchical Modeling - Bayesian Setup

### Traditional Model

At each hospital i

•  $y_{ij} \sim p(y|\lambda_i)$ 

Estimate  $\lambda_i$ 's

### Bayesian setup:

• Likelihood:  $p(y_{ij}|\lambda_i)$ 

• Prior:  $p(\lambda_i|\tau)$ 

• Posterior  $p(\lambda_i|y_{ii})$ 

Prior is on  $\lambda_1, \ldots, \lambda_k$ 

### Hierarchical Model

- $\lambda_i \sim p(\lambda | \alpha)$
- $y_{ij} \sim p(y|\lambda_i)$

Estimate  $\lambda_i$ 's,  $\alpha$ 

### Bayesian setup:

• Likelihood:  $\prod_{ij} p(y_{ij}|\lambda_i) p(\lambda_i|\alpha)$ 

• Prior:  $p(\alpha|\phi)$ 

• Posterior  $p(\lambda_1, \ldots, \lambda_k, \alpha | y)$ 

Prior is only on  $\alpha$ , not for  $\lambda_1, \ldots, \lambda_k$ 

Normal Hierarchical Model

We assume  $y_{ij}$  and  $\lambda_i$  follow Gaussian distribution

- $\lambda_i$  is the mean for hospital i
- ullet variance is  $\sigma^2$  and is the same for all hospitals

### **General Version**

- $y_{ij} \sim p(y|\lambda_i)$
- $\lambda_i \sim p(\lambda | \alpha)$
- Prior:  $p(\alpha|\phi)$
- Likelihood:

 $\prod_{ij} p(y_{ij}|\lambda_i) p(\lambda_i|\alpha)$ 

- Specific Version: Using Normal distr.
  - $y_{ii} \sim \mathcal{N}(\lambda_i, \sigma^2)$ 
    - where  $i = 1, ..., k, j = 1, ..., n_i, n = \sum_{i=1}^{k} n_i$
  - $\lambda_i \sim \mathcal{N}(\mu, \tau^2)$

(flat) Prior: 
$$p(\mu, \sigma^2, \tau^2) = p(\mu)p(\sigma^2)p(\tau^2) \propto \frac{1}{\sigma^2 \tau^2}$$

# Normal Hierarchical Model

- Generative Model:
  - $y_{ij} \sim \mathcal{N}(\lambda_i, \sigma^2)$ 
    - where  $i = 1, ..., k, j = 1, ..., n_i, n = \sum_{i=1}^{k} n_i$
  - $\lambda_i \sim \mathcal{N}(\mu, \tau^2)$
- Non-Inf. Prior:  $p(\mu, \sigma^2, \tau^2) = p(\mu)p(\sigma^2)p(\tau^2) \propto \frac{1}{\sigma^2 \tau^2}$

Posterior 
$$p(\lambda_1, \dots, \lambda_k, \alpha | y) \propto p(y|\lambda)p(\lambda|\alpha)p(\alpha)$$
  

$$\propto \prod_{ij} p(y_{ij}|\lambda_i)p(\lambda_i|\alpha)p(\alpha)$$

$$\propto \prod_{ij} p(y_{ij}|\lambda_i, \sigma^2)p(\lambda_i|\mu, \tau^2)p(\sigma^2, \mu, \tau^2)$$

$$\propto \prod_{ij} \mathcal{N}(y_{ij}|\lambda_i, \sigma^2)\mathcal{N}(\lambda_i|\mu, \tau^2)\frac{1}{\sigma^2\tau^2}$$

## Gibbs Sampling for Normal Hierarchical Model

$$p(\lambda_1,\ldots,\lambda_k,\sigma^2,\mu,\tau^2|y) \propto \prod_{ii} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\sigma^2 \tau^2}$$

- Initialize  $\lambda_1^{(1)}, \dots, \lambda_k^{(1)}, \sigma^{2(1)}, \mu^{(1)}, \tau^{2(1)}$
- **o** for run = 2:n
- $\sigma^{2(run)} \sim p(\sigma^2|\ldots)$

- end

These full conditionals can be written by retaining only the terms in the posterior that has the parameter of interest

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Model

ovember 26, 2018

# Full conditional for $\lambda_i$

Full conditional for  $\lambda_i$  is

$$\begin{split} \textit{p}(\lambda_i|\ldots) &\propto \textit{p}(\lambda_1,\ldots,\lambda_k,\sigma^2,\mu,\tau^2|\textit{y}) \\ &\propto \prod_{ij} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\sigma^2\tau^2} \\ &\propto \prod_{j=1}^{n_i} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2) \end{split}$$

- Notice that this not include other  $\lambda_{i'}$ , for any  $i' \neq i$ .
  - ullet i.e.,  $\lambda_i$  are conditionally independent of each other

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Model

r 26, 2018 14/

### Full conditional for $\lambda_i$

$$p(\lambda_i|\ldots) = \prod_{i=1}^{n_i} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2)$$

• We know: product of Gaussians is a Gaussian

$$\begin{split} p(\lambda_i|\dots) &= \mathcal{N}(\mu_i, \tau_i^2) \qquad \text{(abusing notation)} \\ \text{where } \tau_i^2 &= [\tau^{-2} + n_i \sigma^{-2}]^{-1} \\ \mu_i &= \tau_i^2 [\mu \tau^{-2} + \bar{y}_i n_i \sigma^{-2}] \\ \bar{y}_i &= \frac{1}{n_i} \sum_{i=1}^{n_i} y_{ij} \end{split}$$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

November 26, 2018

# Full conditional for $\sigma^2$

Full conditional for  $\sigma^2$  is

$$\begin{split} \rho(\sigma^2|\ldots) &\propto \rho(\lambda_1,\ldots,\lambda_k,\sigma^2,\mu,\tau^2|y) \\ &\propto \prod_{ij} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\sigma^2 \tau^2} \\ &\propto \prod_{ij} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \frac{1}{\sigma^2} \\ &\propto \prod_{ij} (\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2} (y_{ij}-\lambda_i)^2\right) \frac{1}{\sigma^2} \\ &\propto (\sigma^2)^{-n/2-1} \exp\left(-\frac{1}{2} \sum_{i=1}^k \sum_{i=1}^{n_i} (y_{ij}-\lambda_i)^2 / \sigma^2\right) \end{split}$$

This matches with the kernel of  $InverseGamma \propto x^{-(\alpha+1)} exp(-\theta/x)$  $p(\sigma^2|\ldots) = InvergeGamma \left(\alpha = \frac{n}{2}, \left[\theta = \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \lambda_i)^2\right]\right)$ 

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

November 26, 2018 16

# Full conditional for $\tau^2$

Full conditional for  $\tau^2$  is

$$\begin{split} \rho(\tau^2|\ldots) &\propto \rho(\lambda_1,\ldots,\lambda_k,\sigma^2,\mu,\tau^2|y) \\ &\propto \prod_{ij} \mathcal{N}(y_{ij}|\lambda_i,\sigma^2) \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\sigma^2\tau^2} \\ &\propto \prod_i \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\tau^2} \\ &\propto \prod_i (\tau^2)^{-1/2} \exp\Big(-\frac{1}{2\tau^2}(\lambda_i-\mu)^2\Big) \frac{1}{\tau^2} \\ &\propto (\tau^2)^{-k/2-1} \exp\Big(-\frac{1}{2\tau^2}\sum_i (\lambda_i-\mu)^2\Big) \end{split}$$

This matches with the kernel of  $InverseGamma \propto x^{-(\alpha+1)} exp(-\theta/x)$   $p(\tau^2|\ldots) = InverseGamma \left(\alpha = k/2, \beta = \left[\frac{1}{2}\sum_i(\lambda_i - \mu)^2\right]\right)$ 

Full conditional for  $\mu$ 

Full conditional for  $\mu$  is

$$p(\mu|\ldots) \propto p(\lambda_1,\ldots,\lambda_k,\sigma^2,\mu,\tau^2|y)$$
  
  $\propto \prod_i \mathcal{N}(\lambda_i|\mu,\tau^2) \frac{1}{\tau^2}$ 

The marginal posterior posterior for non-informative prior is  $\mathcal{N}(\bar{\lambda},\tau^2/k)$  where  $\bar{\lambda}=\frac{1}{k}\sum_{i=1}^k \lambda_i$ 

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Model

November 26, 201

17 / 25

Gowtham Atluri

CC E12E /602E Lagraine Drobabilistic Model

November 26, 2018

18 / 2

## Gibbs Sampling for Normal Hierarchical Model

Use Gibbs sampling to draw samples from the full posterior

• Initialize 
$$\lambda_1^{(1)}, \dots, \lambda_k^{(1)}, \sigma^{2(1)}, \mu^{(1)}, \tau^{2(1)}$$

**o** for run = 2:n

for 
$$i = 1, ..., k$$
  $\lambda_i^{(run)} \sim p(\lambda_i|,...)$  end

 $\sigma^{2(run)} \sim p(\sigma^2|\ldots)$ 

end

• For parameters of survival rates at hospital *i* 

• compute point-estimates for  $\lambda_i, \sigma^2$ 

• For parameters of survival rate distribution

ullet compute point-estimates for  $\mu, \tau^2$ 

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

ember 26, 2018 1

### Julia Implementation

Generating the data

- Generative Model:
  - $y_{ij} \sim \mathcal{N}(\lambda_i, \sigma^2)$ •  $\lambda_i \sim \mathcal{N}(\mu, \tau^2)$

```
k = 100; #number of hospitals
n_k = 1000; # num. subjects/hospital
mu = 5; # mean of p(lambda)
tau = sqrt(1); # std of p(lambda)
dl = Normal(mu,tau);
lambda = rand(dl,100); #generating lambda
sigma = sqrt(0.1);
y = zeros(100,1000);
for i=1:100 #generating observations
    for j=1:1000
        y[i,j] = rand(Normal(lambda[i],sigma));
    end
end
```

Non-Informative Prior:  $p(\mu,\sigma^2,\tau^2)=p(\mu)p(\sigma^2)p(\tau^2)\propto \frac{1}{\sigma^2\tau^2}$ 

Gowtham Atlur

S 5135/6035 Learning Probabilistic Models

ovember 26, 2018

# Julia implementation: Setting up Gibbs sampling

# # setup nruns = 10000; lambda\_est = zeros(100,nruns); sigma\_est = zeros(nruns); mu\_est = zeros(nruns); tau\_est = zeros(nruns); # initialization for i=1:100 lambda\_est[i,1] = rand(Normal(rand(Uniform(0,10)),rand(Uniform(0,0.1)))); end sigma\_est[i] = rand(Uniform(0,0.1)); mu\_est[i] = rand(Normal(rand(Uniform(0,10)))); tau\_est[i] = rand(Uniform(0,0.1));

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

November 26, 2018 21 / 25

# Julia implementation: Gibbs sampling

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

ember 26, 2018 22 /

### Julia implementation: Gibbs sampling

### Results



Estimated parameters match precisely with the parameters used for generating data.

owtham Atluri CS

CS 5135/6035 Learning Probabilistic Models

Nevember 26, 2018

# Summary

- Hierarchical Modeling allows the use of domain knowledge that connects parameters by the structure of the problem
  - Domain knowledge implies that joint distribution for the parameters should reflect their dependence
- Difference between Traditional modeling vs. Hierarchical modeling
- Bayesian setup for hierarchical modeling
  - Specifying the prior and computing the posterior
- Computing point-estimates for parameters of interest
  - Gibbs sampling
    - No need to select a candidate distribution
    - Need to determine full-conditionals
- Julia implementation
  - Results match precisely with the parameters used to generate the data

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

November 26, 2018

25 / 25