Estadística. Práctica 6

En esta práctica comprobaremos gráficamente algunos resultados teóricos del tema 4.

Ejemplo 1: Distribución T-Student. Aproximación por la N(0,1).

Mediante los menús de R-Commander, dibujamos la gráfica de la función de densidad de una distribución N(0,1) y mantenemos abierta la ventana R-Graphics.

A continuación, con el comando curve, vamos a dibujar sobre los mismos ejes y con distintos colores las gráficas de las distribuciones t_5 , t_{10} y t_{40} . Para ello escribimos y ejecutamos en la ventana de instrucciones (R Script) lo siguiente:

```
curve(dt(x,df=5),add=TRUE,col="green")
curve(dt(x,df=10),add=TRUE,col="red")
curve(dt(x,df=40),add=TRUE,col="blue")
```

Observamos que, a medida que aumentan los grados de libertad, la distribución T-Student se aproxima más a la N(0,1).

Ejemplo 2: Caso particular del Teorema Central del Límite.¹

Sea X_1, \ldots, X_{40} una muestra aleatoria simple de una variable $X \sim U(0, 2)$. Por el Teorema Central del Límite, resulta que

$$\overline{X} = \frac{X_1 + \dots + X_{40}}{40} \simeq N\left(1, \frac{1}{120}\right)$$

Vamos a comprobar experimentalmente este resultado. Como no vamos a poder crear la variable \overline{X} lo que haremos será generar una muestra representativa de ella. Para ello, a través de Distribuciones \to Distribuciones continuas \to Distribución uniforme \to Muestra de una distribución uniforme, generamos, en un archivo de nombre ejemplo2, 1000 filas con 40 valores aleatorios de una distribución U(0,2), calculando a la vez la media de cada fila. En la columna mean de dicho archivo tenemos una muestra de tamaño 1000 de la variable \overline{X} .

A continuación, a través de Gráficas \rightarrow Estimar densidad dibujamos la función de densidad estimada para los datos de mean.

Finalmente dibujamos sobre los mismos ejes y con distinto color la función de densidad de la normal de media 1 y desviación típica $1/\sqrt{120}$ ejecutando en la ventana de instrucciones:

```
curve(dnorm(x,mean=1,sd=1/sqrt(120)),add=TRUE,col="red")
```

Podemos observar que las gráficas son similares.

¹Teorema Central del Límite: Si X_1, \ldots, X_n es una muestra aleatoria simple de una variable aleatoria X, con media μ y varianza σ^2 finita, entonces $\overline{X} \simeq N\left(\mu, \frac{\sigma^2}{n}\right)$. En general, la aproximación es buena para $n \ge 30$.

Ejemplo 3.

Sabemos que si X_1, \ldots, X_n una muestra aleatoria simple procedente de una población $N(\mu, \sigma^2)$, entonces:

•
$$Y = \frac{(n-1)S_c^2}{\sigma^2} \sim \chi_{n-1}^2$$

•
$$T = \frac{\overline{X} - \mu}{S_c} \sqrt{n} \sim t_{n-1}$$

Caso particular:

Si X_1, \ldots, X_{10} una muestra aleatoria simple procedente de una población N(1,4), entonces:

•
$$Y = \frac{9S_c^2}{4} \sim \chi_9^2$$

•
$$T = \frac{\overline{X}-1}{S_c} \sqrt{10} \sim t_9$$

Para comprobar experimentalmente estos resultados, comenzamos, como en el ejemplo anterior, generando, en un archivo de nombre **ejemplo3**, 1000 filas con 10 valores de la distribución normal con $\mu=1$ y $\sigma=2$, calculando a la vez la media y la desviación típica de cada fila (se recuerda que la deviación típica que calcula R es S_c). En las columnas mean y sd del archivo tenemos muestras de tamaño 1000 de \overline{X} y de S_c , respectivamente.

A continuación calculamos las variables Y y T a través de Datos \rightarrow Modificar variables del conjunto de datos activo \rightarrow Calcular una nueva variable.

Para comprobar el primer resultado, dibujamos la función de densidad estimada de Y. A continuación, sobre los mismos ejes y con distinto color, dibujamos el gráfico de la función de densidad de la χ_9^2 ejecutando en la ventana de instrucciones:

Obsérvese que las gráficas son similares².

Para comprobar el segundo resultado, dibujamos la función de densidad estimada de T. A continuación, sobre los mismos ejes y con distinto color, dibujamos el gráfico de la función de densidad de la t_9 :

Se observa que, en efecto, las gráficas son similares.

 $^{^2}$ Las gráficas no son iguales porque no hemos trabajado realmente con la variable Y sino con una muestra de ella. Lo mismo ocurre con la variable T.