BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 44 500.5

Anmeldetag:

24. September 2003

Anmelder/Inhaber:

Basell Polyolefine GmbH, 50389 Wesseling/DE

Bezeichnung:

Suspensionspolymerisationsverfahren mit hohen

Feststoffkonzentrationen im Schleifenreaktor

IPC:

C 08 F 2/18

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 5. April 2004

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

SL

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Stremma

A 9161 02/00 EDV-L

Suspensionspolymerisationsverfahren mit hohen Feststoffkonzentrationen im Schleifenreaktor

Beschreibung

5

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor bei Temperaturen von 20 bis 150 °C, jedoch unterhalb der Schmelztemperatur des zu bildenden Polymers, und einem Druck von 5 bis 100 bar, wobei das gebildete Polymer in einer Suspension in einem flüssigen oder überkritischen Suspensionsmittel vorliegt und diese Suspension mittels einer Impellerpumpe im Kreis geführt wird.

15

10

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Schleifenreaktor zur Polymerisation von olefinischen Monomeren umfassend ein zyklisches Reaktorrohr und eine Impellerpumpe zur Beförderung des Polymerisationsgemisches.

20

Suspensionspolymerisationsverfahren zur Polymerisation von Olefinen sind seit langem bekannt. Insbesondere zur Polymerisation von Ethylen, meist zusammen mit weiteren Comonomeren, hat sich ein Suspensionspolymerisationsverfahren besonders bewährt, bei welchem die Polymerisation in einem Schleifenreaktor durchgeführt wird. In solchen Schleifenreaktoren wird das Polymerisationsgemisch kontinuierlich durch ein zyklisches Reaktorrohr gepumpt. Durch das Umpumpen wird einerseits eine ständige Durchmischung des Reaktionsgemisches erreicht und dabei der zudosierte Katalysator sowie die eingespeisten Monomeren im Reaktonsgemisch verteilt. Andererseits verhindert das Umpumpen ein Sedimentieren des suspendierten Polymerisats. Auch die Abfuhr der Reaktionswärme über die Reaktorwand wird durch das Umpumpen begünstigt

25

30

Der Austrag des Polymerisats aus dem Schleifenreaktor erfolgt im allgemeinen diskontinuierlich in sogenannten Absetzbeinen. Bei diesen Absetzbeinen handelt es sich um senkrecht vom unteren Reaktorrohrteil abzweigende Ansätze, in welchen die Polymerisatpartikel sedimentieren können. Nachdem die Sedimentation des Polymerisats ein gewisses Maß erreicht hat, wird kurzzeitig eine Armatur am unteren Ende der Absetzbeine geöffnet und das abgesetzte Polymerisat diskontinuierlich ausgetragen.

35

Da Schleifenreaktoren seit vielen Jahren zu Produktionszwecken eingesetzt werden, wurden zahlreiche Bemühungen unternommen, um die Wirtschaftlichkeit dieser Rektoren und der in ihnen durchgeführten Polymerisationsverfahren zu erhöhen. Besonders erstrebenswert ist eine Erhöhung der Raum-Zeit-Ausbeute des Verfahrens. Die Raum-Zeit-Ausbeute wird insbesondere durch die Abfuhr der Reaktionswärme über die Reaktorwand sowie durch den Polymeranteil der Reakti-

onssuspension begrenzt. Durch eine Erhöhung des Feststoffanteils im Reaktor wird insbesondere der Austrag des Polymers effektiver und die mittlere Verweilzeit der Polymere im Reaktor höher.

In US-B1-6,239,235 wird ein Polymerisationsverfahren in einem Schleifenreaktor beschrieben, bei welchem durch ein kontinuierliches Austragssystem eine Erhöhung des durchschnittlichen Feststoffanteils im Reaktor erreicht wird. Mit diesem kontinuierlichen Austragssystem wurde ein durchschnittlicher Feststoffanteil im Reaktor von 53 Gew.-% erreicht, wogegen mit dem herkömmlichen diskontinuierlichen Austrag lediglich eine durchschnittliche Feststoffkonzentration von 45 Gew.-% erzielt wurde. Entsprechend der herkömmlichen Lehre gibt das Dokument keinen Hinweis auf einen variierenden Reaktordurchmesser, im Gegenteil soll durch sanfte Bögen eine störungsfreie Strömung erreicht werden. Lediglich im Bereich der Impellerpumpe scheint offenbar aus Gründen der Impellerkonstruktion eine kurze Erweiterung des Reaktionsrohrdurchmessers vorhanden zu sein. Auch das in diesem Dokument beschriebene Verfahren läßt hinsichtlich der Feststoffkonzentration im Reaktor noch zu wünschen übrig. Auch bestätigt das Dokument das herrschende Vorurteil, wonach es generell nicht möglich sei, in Suspensionspolymerisationsverfahren Polymerfeststoffkonzentrationen von mehr als 37 bis 40 Gewichtsprozent zu erreichen.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Polymerisation von olefinischen Monomeren in einem Schleifenreaktor zu finden, welches höhere Feststoffkonzentrationen im Reaktor und höhere Raum-Zeit-Ausbeuten ermöglicht.

Demgemäß wurde das eingangs beschriebene Verfahren gefunden, welches dadurch gekennzeichnet ist, dass der verwendete Schleifenreaktor ein zyklisches Reaktorrohr umfaßt, dessen Durchmesser um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in einem anderen Bereich als dem der Impellerpumpe befindet.

Außerdem wurde ein Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor bei Temperaturen von 20 bis 150 °C, jedoch unterhalb der Schmelztemperatur des zu bildenden Polymers, und einem Druck von 5 bis 100 bar gefunden, wobei die Polymerisation bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 53 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erfolgt.

Die erreichbare Feststoffkonzentration kann dabei davon abhängen, ob der Produktaustrag kontinuierlich oder diskontinuierlich erfolgt. Es wurde demgemäß ein Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor bei Temperaturen von 20 bis 150 °C, jedoch unterhalb der Schmelztemperatur des zu bildenden Polymers, und einem Druck von 5 bis 100 bar gefunden, wobei die Polymerisation für den Fall eines kontinuierlichen Produktaustrags bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 53 Gew.-%,

10

20

25

30

bezogen auf die Gesamtmasse des Reaktorinhalts, und für den Fall eines diskontinuierlichen Produktaustrags bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 45 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erfolgt.

Weiterhin wurde ein neuer Schleifenreaktor zur Polymerisation von olefinischen Monomeren umfassend ein zyklisches Reaktorrohr und eine Impellerpumpe zur Beförderung des Polymerisationsgemisches gefunden, welcher dadurch gekennzeichnet ist, dass der Durchmesser des zyklischen Rektorrohrs um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in einem anderen Bereich als dem der Impellerpumpe befindet.

Das erfindungsgemäße Verfahren eignet sich zur Polymerisation verschiedener olefinischer Monomerer, insbesondere zur Polymerisation von Ethylen, Propylen und 1-Buten sowie Mischungen dieser Monomere. Dabei können auch zusätzliche Monomere als Comonomere eingesetzt werden, z.B. weitere α-Olefine wie 1-Penten, 1-Hexen, 1-Octen oder 1-Decen.

Besonders bevorzugt ist ein Verfahren, welches dadurch gekennzeichnet ist, dass als Monomer Ethylen und als Comonomer mindestens ein α-Olefin mit 3 bis 8 Kohlenstoffatomen eingesetzt wird, vorzugsweise 1-Buten, 1-Hexen oder 1-Okten. Die Menge des Comonomers hängt dabei von dem Einbauverhalten des jeweiligen Katalysators hinsichtlich des Comonomers und von der gewünschten Dichte des Copolymers ab. Je mehr Comonomer in das Polymer eingebaut wird, desto geringer wird die Dichte des Copolymers. Nach diesen Erwägungen kann das Verhältnis von Monomer zu Comonomer vom Fachmann leicht eingestellt werden.

- Sofern der Katalysator es erlaubt können auch vinylaromatische Comonomere wie Styrol oderpolare Comonomere wie Vinylacetat, Vinylaikohole, Acrylsäure oder Acrylsäureester polymerisiert
 werden. Auch zyklische Monomere wie Norbornen und Diene wie Butadien, 1,5-Hexadien oder
 1,7-Octadien kommen als Comonomere in Betracht.
- Das erfindungsgemäße Polymerisationsverfahren kann vorteilhaft bei Temperaturen zwischen 20 und 150 °C duchgeführt werden, vorzugsweise bei Temperaturen zwischen 50 und 110 °C, wobei die Reaktionstemperatur nach oben durch die Schmelztemperatur des zu bildenden Polymeren begrenzt ist.
- Der Reaktionsdruck bewegt sich üblicherweise zwischen 5 und 100 bar, vorzugsweise zwischen 10 und 80 bar. Niedrige Drücke sind im allgemeinen mit geringeren Raum-Zeit-Ausbeuten verbunden, wogegen höhere Drücke einen höheren Investitionsaufwand und höhere Energiekosten für die Kompression erfordern. Im allgemeinen stellt ein Reaktionsdruck zwischen 20 und 50 bar einen guten Kompromiß zwischen apparativem Aufwand und Reaktionsausbeute dar. Bei Nut-

15

20

zung von überkritischen Suspensionsmitteln wie überkritischem Propan kann auch ein höherer Druck oberhalb des kritischen Drucks technisch sinnvoll sein.

Geeignete Suspensionssmittel für das erfindungsgemäße Verfahren sind alle Mittel, die zum Einsatz in Schleifenreaktoren allgemein bekannt sind. Das Suspensionssmittel sollte inert und unter Reaktionsbedingungen flüssig oder überkritisch sein und sollte einen von den eingesetzten Monomeren und Comonomeren deutlich unterschiedlichen Siedepunkt aufweisen, um eine destillative Wiedergewinnung dieser Einsatzstoffe aus dem Produktaustrag zu ermöglichen. Übliche Suspensionssmittel sind beispielsweise Isobutan, Butan, Propan, Isopentan, Pentan und Hexan.

10

15

20

Ein wichtiges Merkmal des erfindungsgemäßen Verfahrens ist es, dass es eine Polymerisation bei hohen Ethylenkonzentrationen erlaubt. Hohe Feststoffanteile im Reaktor, in diesem Zusammenhang hier auch einfach als "Reaktordichte" bezeichnet, bringen es mit sich, dass der Anteil des Suspensionsmittels im Reaktor entsprechend kleiner ist. Durch das geringere Volumen des Suspensionsmittels ist im allgemeinen auch die Ethylenmenge im Reaktor geringer, was zu einer geringeren Polymerisatbildung führt. Das erfindungsgemäße Verfahren ermöglicht dagegen eine Erhöhung der Ethylenkonzentration im Suspensionsmittel und damit eine höhere Polymerisatbildung und eine höhere Polymerisationsgeschwindigkeit auch bei hohen Reaktordichten.

In einer bevorzugten Ausführungsform ist das erfindungsgemäße Verfahren daher dadurch gekennzeichnet, dass die Polymerisation bei einer Ethylenkonzentration von mindestens 10 mol-%, bezogen auf das Suspensionsmittel, vorgenommen wird.

25

So wurden nach dem erfindungsgemäßen Verfahren Ethylenkonzentrationen von 15 und sogar 17 mol-%, bezogen auf das Suspensionsmittel, erreicht.

Dabei ist hier unter dem Suspensionsmittel nicht das eingesetzte Suspensionsmittel wie Isobutan allein, sondern die Mischung dieses eingesetzten Suspensionsmittels mit den darin gelösten Monomeren zu verstehen. Die Ethylenkonzentration kann leicht durch gaschromatographische Untersuchung des Suspensionsmittels bestimmt werden.

Wie eingangs erwähnt ist die Technologie der Schleifenreaktoren seit langem bekannt. Im allgemeinen bestehen diese Reaktoren im Wesentlichen aus einem zyklischen Reaktorrohr mit einer
oder mehreren aufsteigenden und einer oder mehreren absteigenden Flanken, die von Kühlmänteln zur Abfuhr der Reaktionswärme umschlossen sind, sowie horizontalen Rohrteilen welche
die senkrechten Flanken verbinden. Im unteren Rohrteil sind meist die Impellerpumpe, die Katalysator- und Monomereinspeisungsvorrichtungen und sowie die Austragseinrichtung, in der Regel

10

15

20

25

30

5

also die Absetzbeine, angebracht. Der Reaktor kann aber auch mehr als zwei senkrechte Rohrteile aufweisen, so daß eine schlangenförmige Anordnung entsteht.

Durch die vorliegende Erfindung wird es möglich, ein Suspensionspolymerisationsverfahren in einem Schleifenreaktor bei Feststoffkonzentrationen von mehr als 53 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, durchzuführen und damit die Produktionskapazität des Schleifenreaktors zu erhöhen. Diese hohen Feststoffkonzentrationen können durch verschiedene Maßnahmen erreicht werden.

In einer Ausführungsform der vorliegenden Erfindung wird die hohe Feststoffkonzentration dadurch erreicht, dass das zyklische Reaktorrohr in seinem Durchmesser um mehr als 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert. Eine konstruktionsbedingte Erweiterung des Reaktorrohres im Bereich der Impellerpumpe soll dabei außer Betracht bleiben, da eine solche Erweiterung vorwiegend der Führung des Impellers im Reaktionsrohr dient und in diesem Bereich ohnehin eine stark turbulente Strömung vorherrscht. Der Erfindung lag vielmehr die Beobachtung zu Grunde, dass, entgegen der vorherrschenden Meinung, eine gezielt ungleichförmige Strömung des Polymerisationsgemisches im Bereich des Reaktionsrohres auch außerhalb des Impellerbereiches eine Erhöhung der Feststoffkonzentration im Reaktor ermöglicht. Dieser Effekt scheint, ohne auf diese Hypothese beschränkt sein zu wollen, auf einer effektiveren Durchmischung des heterogenen Reaktionsgemisches zu beruhen. Insbesondere das eingespeiste Monomer, z.B. Ethylen, verteilt sich so offenbar schneller im Reaktonsgemisch, löst sich schneller im Suspensionsmittel und steht in verstärktem Ausmaß zur Polymerisation zur Verfügung. Auch die Abfuhr der Reaktionswärme scheint erleichtert zu sein, da durch die Störung der Strömung eine Bewegung quer zur Strömungsrichtung, also in Richtung auf die gekühlte Reaktorwand hin, verstärkt wird, was bei einer gleichmäßigen Pfropfenströmung nur sehr begrenzt der Fall ist.

Um die Strömungsverhältnisse in dieser gewünschten Weise beeinflussen zu können, sollte die Variation des Reaktionsrohrdurchmessers ein gewisses Maß aufweisen. Der Durchmesser des Rohres sollte um mindestens 10%, bezogen auf den vorwiegend vorherrschenden Durchmesser der Reaktorrohres, variieren. Unter dem vorwiegend vorherrschenden Durchmesser des Reaktorrohres soll dabei der Rohrdurchmesser verstanden werden, der über die längste Spanne des Reaktorrohres konstant ist. Vorzugsweise sollte der Rohrdurchmesser um mindestens 20 %, noch besser um mindestens 30 % und ganz besonders bevorzugt um mindestens 50% variieren.

Die konische Erweiterung des Reaktordurchmessers in Flußrichtung sollte einen Konuswinkel von etwa $0.5 - 10^{\circ}$, vorzugsweise von $0.5 - 1.5^{\circ}$ aufweisen, der Konuswinkel bei der Verengung des Rohrdurchmessers zum vorwiegend vorherrschenden Rohrdurchmesser sollte etwa $0.5 - 10^{\circ}$, vorzugsweise $1 - 3^{\circ}$ betragen.

ഒ

Die Länge der Abschnitte mit erweitertem Rohrdurchmesser liegt vorzugsweise beim 2- bis 30fachen des vorwiegend vorherrschenden Rohrdurchmessers, besonders bevorzugt beim 5- bis
15-fachen dieses Rohrdurchmessers.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens befindet sich zusätzlich auch eine Erweiterung und Verengung des Reaktionsrohres im Bereich der Impellerpumpe.

Wie bereits erwähnt sind solche konstruktionsbedingten Erweiterungen bereits bekannt. Die Wirkung dieser Erweiterungen im erfindungsgemäßen Sinne kann aber verstärkt werden, indem die Erweiterung stärker ausgeführt wird und möglicherweise auch einen längeren Rohrabschnitt betrifft, als es konstuktionsbedingt erforderlich ist.

Die Wirkung der vorliegenden Erfindung hinsichtlich der Möglichkeit, die Feststoffkonzentration im Reaktor zu erhöhen, scheint u.a. auf einer besseren Durchmischung des Monomers im Reaktionsgemisch zu beruhen. Es hat sich gezeigt, dass diese erfinderische Wirkung noch verstärkt werden kann, indem das Monomer, also beispielsweise Ethylen, an mehreren Stellen in das Reaktionsrohr eingespeist wird. Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens besteht daher darin, dass mindestens ein olefinisches Monomer an mindestens 2 Stellen des Reaktorrohres eingespeist wird. Als vorteilhaft hat sich beispielsweise eine Einspeisung an 3 oder 4 Stellen entlang des Reaktorrohres erwiesen. Diese Einspeisestellen können gleichmäßig entlang des Reaktorrohres angebracht werden, wobei es vorteilhaft ist, wenn die Einspeisestellen jeweils vor den Rohrerweiterungen angebracht sind, nicht jedoch im Bereich der letzten vertikalen Flanke vor dem Produktaustragsbereich.

Aus US-B1-6,239,235 ist bekannt, dass auch ein kontinuierliches Austragssystem geeignet sein kann, die Feststoffkonzentration im Reaktor zu erhöhen. Diese Maßnahme läßt sich mit dem erfinderischen Verfahren kombinieren. Demgemäß ist Gegenstand der vorliegenden Erfindung auch ein eingangs beschriebenes Verfahren, welches dadurch gekennzeichnet ist, dass der Austrag des gebildeten Polymers aus dem Reaktor kontinuierlich erfolgt.

Die erfindungsgemäß angestrebte hohe Feststoffkonzentration im Reaktor kann, wie bereits erläutert, durch die oben geschilderten Maßnahmen erreicht werden. Besonders bevorzugt ist dabei ein Verfahren, welches dadurch gekennzeichnet ist, dass die Polymerisation bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 53 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erfolgt. Vorzugsweise liegt diese Feststoffkonzentration über 55 Gew.-%, weiter bevorzugt bei über 58 Gew.-% und besonders bevorzugt bei über 60 Gew.-%, wobei, wie in den Beispielen gezeigt wird, auch Feststoffkonzentrationen von mehr als 62 Gew.-% erreicht werden können. Als durchschnittliche Feststoffkonzentration soll dabei die Feststoffkonzentration im Reaktionsrohr verstanden werden. Im Austragssystem, ob kontinuierlich oder dis-

15

20

7:

kontinuierlich, können durch Sedimentation noch höhere Feststoffkonzentrationen beobachtet werden.

Die hohen Feststoffkonzentrationen können erfindungsgemäß auch ohne kontinuierlichen Austrag des Polymerprodukts erreicht werden. Eine Variante des erfindungsgemäßen Verfahrens besteht daher darin, dass der Austrag des gebildeten Polymers aus dem Reator diskontinuierlich erfolgt und dass die Polymerisation bei einer durchschnittlichen Feststoffkonzentration im Reator von mehr als 45 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erfolgt. Vorzugsweise liegt unter diesen Bedingungen die Feststoffkonzentration im Reaktor über 50 Gew.-%, besonders bevorzugt über 55 Gew.-%.

Das erfindungsgemäße Verfahren läßt sich als einstufiges Verfahren betreiben, es läßt sich jedoch auch durch Kombination mit weiteren Polymerisationsreaktoren als mehrstufiges Kaskadenverfahren, durchführen. Eine Ausgestaltung des erfindungsgemäßen Verfahrens besteht daher in einem Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor, dadurch gekennzeichnet, dass dieses Polymerisationsverfahren vor oder nach der Polymerisation in diesem Schleifenreaktor mindestens einen weiteren Polymerisationsschritt in einem Schleifenreaktor oder einem Gasphasenreaktor umfaßt. Solche Kaskadenverfahren, jedoch ohne die spezifischen Besonderheiten der vorliegenden Erfindung, werden beispielsweise in EP-A-517 868 und US-A-6 355 741 beschrieben.

Neben der oben beschriebenen Störung der Suspensionsströmung im Reaktionsrohr kann die Reaktordichte auch noch durch andere Maßnahmen beeinflußt werden, beispielsweise durch Auswahl eines besonders geeigneten Katalysators.

Zum Einsatz in dem erfindungsgemäßen Verfahren eignen sich prinzipiell alle Katalysatoren, die auch sonst in Schleifenreaktoren eingesetzt werden, also beispielsweise Chromkatalysatoren vom Phillips-Typ, Ziegler-Katalysatoren, Ziegler-Natta-Katalysatoren oder Single-Site-Katalysatoren wie beispielsweise Metallocenkatalysatoren. Besondere Verbreitung haben in Schleifenreaktoren die Phillips-Katalysatoren erfahren, die auch in dem erfindungsgemäßen Verfahren besonders vorteilhaft einsetzbar sind. Unter diesen Katalysatoren sind besonders solche bevorzugt, wie sie in den Patentanmeldungen WO-01/18069, WO-01/17675, WO-01/17676 und WO-01/90204 beschrieben werden.

Gegenstand der Erfindung ist auch ein Schleifenreaktor zur Polymerisation von olefinischen Monomeren umfassend ein zyklisches Reaktorrohr und eine Impellerpumpe zur Beförderung des Polymerisationsgemisches, dadurch gekennzeichnet, dass der Durchmesser des zyklischen Rektorrohrs um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in einem an-

30

5

10

15

deren Bereich als dem der Impellerpumpe befindet. Besonders bevorzugt ist dabei wiederum ein Schleifenreaktor, bei dem an mindestens 2 Stellen Vorrichtungen zur Einspeisung von Monomeren in das Reaktorrohr angebracht sind.

Abbildung 1 soll die Elemente des erfindungsgemäßen Reaktors näher erläutern. Die Abbildung zeigt einen erfindungsgemäßen Reaktor mit zwei aufsteigenden (1) und zwei absteigenden Flanken (2), welche durch Bögen miteinander verbunden sind. Ethylen wird über die Leitungen (3) in die Suspensionsmittelzuführungen (4) eigespeist und gelangt so in den Reaktor, in diesem Fall an 2 Stellen. Das polymere Produkt setzt sich in den Absetzbeinen (5) ab und wird von dort diskontinuierlich aus dem Reaktor ausgeschläust. Die Reaktionssuspension wird durch den Impeller (6) im Kreis geführt und vermischt. Die Bereiche (7) zeigen Bereiche mit erweitertem Rohrdurchmesser, Bereich (8) einen Bereich mit dem vorwiegend vorherrschenden Rohrdurchmesser.

15

20

10

Beispiel

Die Herstellung des Katalysators bis zur Aktivierung erfolgte nach der in WO 01/90204 angegebenen Vorschrift. Die Aktivierung erfolgte dann bei 650 °C mit Luft in einem Wirbelschichtaktivator. Die Fluorid-Dotierung erfolgte durch Einsatz einer Mischung der Katalysatorvorstufe mit 2,5 Gew.-% Ammoniumhexafluorosilikat (resultierte in ca. 1 Gew.-% Fluorid-Gehalt, bezogen auf die Gesamtmasse des Katalysators) bei der Aktivierung. Zur Aktivierung wurde dieses Gemisch innerhalb 1 Stunde auf 350°C aufgeheizt, 1 Stunde bei dieser Temperatur gehalten, anschließend bis auf die gewünschte Aktivierungstemperatur von 650 °C aufgeheizt, 2 Stunden bei dieser Temperatur gehalten und anschließend abgekühlt, wobei nach Abkühlung auf 350°C die weitere Abkühlung unter N₂ erfolgte.

25

Polymerisation:

In einem Schleifenreaktor mit einem Reaktorvolumen von 0,18 m³ und der in Abbildung 1 gezeigten Geometrie wurde, unter Einsatz des oben beschriebenen Katalysators Ethylen mit 1-Hexen bei einem Druck von 39 bar und einer Temperatur von 104 °C copolymerisiert. Ethylen wurde zwei Stellen, eine davon kurz vor dem Impeller, in den Reaktor dosiert. Als Suspensionsmittel diente Isobutan. Das Isobutan wurde an 6 Stellen in den Reaktor dosiert, u.a. im Bereich der Impellerpumpenwelle und der Katalysatordosierung. Die Impellerpumpe wurde mit 1700-1900 Umdrehungen/Minute betrieben. Der Produktaustrag erfolgte diskontinuierlich über übliche Absetzbeine. Es wurden Polymerisationen bei leicht variierten Ethylen/Isobutan-Verhältnissen durchgeführt, wobei das entstehende Produkt jedoch stets eine Dichte von etwa 0,949 g/ccm und

einen High Load Melt Index (21,6/190) von ca. 6,0 aufwies. Dabei wurde eine Reaktordichte von über 62 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erreicht.

Patentansprüche

- Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem
 Schleifenreaktor bei Temperaturen von 20 bis 150 °C, jedoch unterhalb der Schmelztemperatur des zu bildenden Polymers, und einem Druck von 5 bis 100 bar, wobei das gebildete Polymer in einer Suspension in einem flüssigen oder überkritischen Suspensionsmittel
 vorliegt und diese Suspension mittels einer Impellerpumpe im Kreis geführt wird, dadurch
 gekennzeichnet, dass der Schleifenreaktor ein zyklisches Reaktorrohr umfaßt, dessen
 Durchmesser um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in
 einem anderen Bereich als dem der Impellerpumpe befindet.
 - Verfahren zur Polymerisation nach Anspruch 1, dadurch gekennzeichnet, dass die Polymerisation für den Fall eines kontinuierlichen Produktaustrags bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 53 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, und für den Fall eines diskontinuierlichen Produktaustrags bei einer durchschnittlichen Feststoffkonzentration im Reaktor von mehr als 45 Gew.-%, bezogen auf die Gesamtmasse des Reaktorinhalts, erfolgt.
 - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich zusätzlich auch eine Erweiterung und Verengung des Reaktorrohres im Bereich der Impellerpumpe befindet.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Monomer Ethylen und als Comonomer mindestens ein α-Olefin mit 3 bis 8 Kohlenstoffatomen eingesetzt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
 mindestens ein olefinisches Monomer an mindestens 2 Stellen des Reaktorrohres eingespeist wird.
 - Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Austrag des gebildeten Polymers aus dem Reaktor kontinuierlich erfolgt.
 - 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymerisation bei einer Ethylenkonzentration von mindestens 10 mol-%, bezogen auf das Suspensionsmittel, vorgenommen wird.

35

15

- 8. Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor nach einem der vorhergehehenden Ansprüche, dadurch gekennzeichnet, dass dieses Polymerisationsverfahren vor oder nach der Polymerisation in diesem Schleifenreaktor mindestens einen weiteren Polyerisationsschritt in einem Schleifenreaktor oder einem Gasphasenreaktor umfaßt.
- 9. Schleifenreaktor zur Polymerisation von olefinischen Monomeren umfassend ein zyklisches Reaktorrohr und eine Impellerpumpe zur Beförderung des Polymerisationsgemisches, dadurch gekennzeichnet, dass der Durchmesser des zyklischen Rektorrohrs um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in einem anderen Bereich als dem der Impellerpumpe befindet.
- Schleifenreaktor nach Anspruch 9, dadurch gekennzeichnet, dass an mindestens 2 Stellen
 Vorrichtungen zur Einspeisung von Monomeren in das Reaktorrohr angebracht sind.

20

5

10

15

25

30

Abb. 1

Zusammenfassung

Verfahren zur Polymerisation von mindestens einem olefinischen Monomer in einem Schleifenreaktor bei Temperaturen von 20 bis 150 °C, jedoch unterhalb der Schmelztemperatur des zu bildenden Polymers, und einem Druck von 5 bis 100 bar, wobei das gebildete Polymer in einer Suspension in einem flüssigen oder überkritischen Suspensionsmittel vorliegt und diese Suspension mittels einer Impellerpumpe im Kreis geführt wird, wobei der Schleifenreaktor ein zyklisches Rektorrohr umfaßt, dessen Durchmesser um mindestens 10 %, bezogen auf den vorwiegend vorherrschenden Reaktorrohrdurchmesser, variiert und wobei sich mindestens eine Erweiterung und Verengung in einem anderen Bereich als dem der Impellerpumpe befindet.

15

10

. 5

20

25

30