

Hieroglyphs

Një ekip studiuesish po studiojnë ngjashmëritë midis sekuencave të hieroglifeve. Ata paraqesin çdo hieroglifi menjë numër të plotë jo negativ. Për të kryer studimin e tyre, ata përdorin konceptet e mëposhtme për sekuencat.

Për një sekuencë të caktuar A, një sekuencë S quhet një **nënsekuecë** e A vetëm nëse S mund të merret duke hequr disa elementë (ndoshta asnjë) nga A.

Tabela më poshtë tregon shembuj nga nënsekuncat e sekuencës A = [3, 2, 1, 2].

Subsequence	How it can be obtained from \boldsymbol{A}	
[3, 2, 1, 2] No elements are removed.		
[2, 1, 2]	[3 , 2, 1, 2]	
[3, 2, 2]	[3, 2, 2] [3, 2, 1 , 2]	
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]	
[3]	[3, 2 , 1 , 2]	
[]	[3 , 2 , 1 , 2]	

Nga ana tjetër, [3,3] ose [1,3] nuk janë nënsekuencatë of A.

Konsideroni dy sekuenca të hieroglifeve, A dhe B. Një sekuencë S quhet **nënsekuencë e përnashkët** e A dhe B vetëm nëse S është një nënsekuncë e A dhe B. Për më tepër, ne themi se një sekuencë U iështë një **nënsekuencë e përnashkët universale** e A dhe B vetëm nëse plotësohen dy kushtet e mëposhtme:

- Uështë një nënsekuencë e përnashkët e A dhe B.
- Çdo nënsekuencë e përnashkët e A dhe B është një nënsekuncë e U.

Mund të tregohet se dy sekuenca A dhe B kanë më së shumti një e përnashkët universale.

Studiuesit kanë gjetur dy sekuenca hieroglifesh A dhe B. Sekuenca e A përbëhet nga hieroglifi N dhe sekuenca B përbëhet nga hieroglifi M . Ndihmoni studiuesit të llogaritin një nënsekuencë të përnashkët universale të sekuencës A dhe B, ose përcaktoni se një sekuencë e tillë nuk ekziston.Ju duhet të zbatoni procedurën si më poshtë.

Implementation details

You should implement the following procedure.

```
std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
```

- A:matrica me gjatësi N përshkruar sekuencën e parë.
- B:matrica me gjatësi M depërshkruar sekuencën e dytë.
- Nëse ekziston një nënsekuencë e përnashkët universale për A dhe B, procedura do afishoj një matricë që the procedure should return an array përmbankëtë sekuencën. Përndryshe, procedura duhet të afishoj [-1] (një matricë me gjatësi 1, i cili ka vetëm elementin -1).
- Kjo procedurë thirret vetëm një herë për çdo rast testimi.

Constraints

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $ullet 0 \leq A[i] \leq 200\,000$ për secilin i të tillë që $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ për secilin j të tillë që $0 \leq j < M$

Subtasks

Subtask	Score	Additional Constraints
1	3	N=M; secila A dhe B të dyja përbëhen nga N numra të plotë të dallueshëm midis 0 dhe $N-1$ (duke përfshirëse)
2	15	Për çdo numër të plotë k , numri i elementeve të A është e barabart me k plus numrat e elementeve të B të barabarta me k është më së shumti 3 .
3	10	$A[i] \leq 1$ për secilën i të tilla që $0 \leq i < N$; $B[j] \leq 1$ për secilën j të tilla që $0 \leq j < M$
4	16	Ekziston një nënsekuencë e përnashkët universale për A dhe B .
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Nuk ka kufizime shtesë.

Examples

Example 1

Merrni parasysh thirrjen e mëposhtme.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Këtu, sekuencat e zakonshme të A adhe B si më poshtë: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] and [0,1,0,2].

[0,1,0,2] është nënsekuencë e përnashkët A dhe B, dhe të gjitha nënsekuencë e përnashkët A dhe B janë nënprocedura e [0,1,0,2], procedura do afishoj [0,1,0,2].

Example 2

Merrni parasysh thirrjen e mëposhtme.

```
ucs([0, 0, 2], [1, 1])
```

Këtu, e vetmja nënsekuencë e përnashkët është A dhe B është një sekuencë boshe $[\,]$. Procedura afishon një matricë boshe $[\,]$.

Example 3

Merrni parasysh thirrjen e mëposhtme.

```
ucs([0, 1, 0], [1, 0, 1])
```

Këto, nënsekuencë e përnashkët e A dhe B është $[\,],[0],[1],[0,1]$ and [1,0]. Mund të shikojm që ënsekuencë e përnashkët universale nuk ekziston. Procedura do të afishoj [-1].

Sample Grader

Input format:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Output format:

```
T
R[0] R[1] ... R[T-1]
```

Ketu , R është matrica që afishohet nga ucsdhe T është gjatësia.