

基本页式管理与请求调页管理 对比分析

小组成员:

刘笑辰 周济宸

谢华 吴霖

汇报人:刘笑辰 周济宸

01 题目案例分析

基本页式管理和请求调页管理的页表机制异同 02

03 请求调页管理中的各页表项的作用和使用过程

01 题目案例分析

题目分析

题目内容

以一个程序空间为10页的进程为例,假设在请求页式管理方式下获得4个页框的内存物理空间,请对比分析其**基本页式管理和请求调页管理**方式下的页表机制的异同,并说明请求调页管理中的各页表项的作用和使用过程。

MacBook

基本页式管理---介绍

固定分区会产生内部碎片,动态分区会产生外部碎片,为尽量避免碎片的产生而引入分页:

- 1. 将主存空间划分为大小相等且固定的块, 块相对较小, 作为主存的基本单位
- 2. 每个进程以块为单位进行划分,进程在执行时,以块为单位逐个申请主存中的空间

程序的局部性原理

程序在执行时呈现出局部性规律,即:

- 在一段时间内,整个程序的执行仅限于程序中的某一部分。
- 相应地,执行所访问的存储空间也局限于某个内存区域。

•函数fun_1: 按行访问

•函数fun_2: 按列访问

pineklll@pineklll-virtual-machine:~/Documents/example\$./a.out

fun_1: 0.518716 seconds

fun_2: 0.321745 seconds

请求调页管理---介绍

内存

用户程序

0页
1页
2页
3页
9页

页号	物理块号	状态位P	访问字段A	修改位M	外存地址
0	1	1	0	0	а
1	2	1	0	0	b
2	3	1	0	0	С
3	0	0	0	0	d
		***	***		***
7	0	1	0	0	е
					•••
9		0	0	0	f

	7	0	1	2	0	3	0	4	2	3	0	3	2	1	2	0	1
0	7	7	7	7	7	3	3	3	3	3	3	3	3	3	2	2	2
1		0	0	0	0	0	0	4	4	4	4	4	4	4	4	4	4
2			1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
3				2	2	2	2	2	2	2	2	2	2	1	1	1	1

02

基本页式管理和请求调页管理的 **页表机制异同**

基本页式管理

内存页面分配与回收

请求调页管理

03

请求调页管理中页表项的 **作用和使用过程**

请求调页管理中的页表项

页号 物理块号 状态位P 访问字段A 修改位M 外存地址

状态位P:由于在请求分页系统中,只将应用程序的一部分调入内存,还有一部分仍在外存磁盘上,故须在页表中增加一个存在位字段。它用于指示该页是否已调入内存,供程序访问时参考。

访问字段A:用于记录本页在一段时间内被访问的次数,或记录本页最近已有多长时间未被访问,提供给置换算法在选择换出页面时参考。

修改位M:标识该页在调入内存后是否被修改过。由于内存中的每一页都在外存上保留一份副本,因此,在置换该页时,若未被修改,就不需再将该页写回到外存上,以减少系统的开销和启动磁盘的次数;若已被修改,则必须将该页重写到外存上,以保证外存中所保留的副本始终是最新的。简而言之,修改位是置换页面时的参考。

外存地址:指出该页在外存上的地址,通常是物理块号,供调入该页时参考。

请求调页管理

谢谢观看!

上善若水 海纳百川 大道明德 学用济世