Programa de Asignatura Álgebra Moderna II

Generalidades

Requisitos (prerrequisitos): Álgebra Moderna I.

■ Duración del curso: 16 semanas.

■ Unidades valorativas: 4.

■ Año y ciclo académico: P - 2018.

■ Nivel: Ciclo 8.

■ Carrera: Licenciatura en Matemática

■ Personal responsable: Alexey Beshenov

Descripción general

Esto es una continuación del curso de Álgebra Moderna I que se enfocaba en la teoría de grupos. El presente curso estudia con más detalles anillos y también introduce módulos sobre anillos.

Objetivos

- 1. Introducir los conceptos básicos de la teoría de anillos y álgebra conmutativa.
- 2. Estudiar la teoría aritmética de anillos conmutativos: dominios de ideales principales, dominios euclidianos, dominios de factorización única.
- 3. Introducir los módulos sobre anillos.
- 4. Revisar conceptos elementales del álgebra homológica.

Contenido

Algunos temas avanzados serán desarrollados según la disponibilidad de tiempo.

1. Teoría de anillos (2 semanas).

Breve revisión de anillos. Subanillos. Homomorfismos de anillos. Ejemplo: anillo de grupo $G \leadsto \mathbb{Z}[G]$ y la adjunción con $R \leadsto R^{\times}$. Producto directo de anillos. Ideales (derechos, izquierdos, bilaterales). Anillos cociente, el teorema de isomorfía. El teorema chino del resto para anillos.

2. Anillos conmutativos (3 semanas).

Ideales primos y maximales en anillos conmutativos. Ideales, ideales primos, ideales maximales en un anillo cociente. Digresión lógica: el lema de Zorn. Todo ideal propio está contenido en un ideal maximal. Anillos noetherianos y el teorema de la base. Localización. El cuerpo de fracciones de un dominio.

3. Aritmética de los anillos conmutativos (3 semanas).

Dominios euclidianos. Ejemplos: enteros \mathbb{Z} , anillos de polinomios k[X], enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$. Dominios de ideales principales. Dominios de factorización única (DFU). Si R es un DFU, entonces R[X] es un DFU. Ejemplo: $k[X_1, \ldots, X_n]$ y $\mathbb{Z}[X_1, \ldots, X_n]$. Perspectiva: anillos de números \mathcal{O}_K .

4. Cuerpos (2 semanas).

Algunas nociones básicas (extensiones, característica, etc.). Construcción y clasificación de los cuerpos finitos \mathbb{F}_q . Dependencia algebraica. Construcción de la cerradura algebraica.

Comentario: la teoría de Galois se ofrece como una materia electiva separada y no hará parte del curso.

5. Módulos (3 semanas).

Módulos (derechos, izquierdos). Aplicaciones R-lineales. Submódulos, módulos cociente, el teorema de isomorfía. Producto y suma directa. Módulos libres; rango sobre un anillo conmutativo. El grupo / módulo Hom. Producto tensorial. Producto tensorial de anillos y álgebras. Cambio de base. Adjunción entre \otimes y Hom y sus consecuencias.

6. Álgebra homológica (3 semanas; según la disponibilidad de tiempo).

Sucesiones exactas de módulos. Lema de la serpiente, lema del tres, lema del cinco. Exactitud de Hom por la izquierda. Módulos proyectivos e inyectivos. Grupos abelianos proyectivos e inyectivos. Exactitud de \otimes por la derecha. Módulos planos. Perspectiva: Ext y Tor. Perspectiva: complejos y (co)homología.

Metodología

Se darán lecciones teóricas y hojas de ejercicios semanales con más ejemplos prácticos. Para motivar los alumnos a revisar los ejercicios y las definiciones básicas, se organizaran exámenes cortos semanales (a partir de la segunda semana).

Evaluación

■ Parcial 1: semana 5, 30 %.

■ Parcial 2: semana 17, 30 %.

• 14 exámenes cortos semanales (a partir de la segunda semana, todas las semanas, salvo las semanas de parciales): total 40%.

Cronograma

№ de semanas	Fecha	Unidad	Actividades
2	13.08.18-26.08.18	1	Clases y el examen corto 1
3	27.08.18-16.09.18	2	Clases y exámenes cortos (2,3,4), parcial 1
3	17.09.18-7.10.18	3	Clases y exámenes cortos (5,6)
2	8.10.18-21.10.18	4	Clases y exámenes cortos (7,8)
3	22.10.18-11.11.18	5	Clases y exámenes cortos (9,10,11)
3	12.11.18-2.12.18	6	Clases y exámenes cortos (12,13,14)
	3.12.18-9.12.18	_	Parcial 2

Bibliografía

- Alexey Beshenov, Curso de Álgebra (apuntes de Álgebra Moderna I),
 http://cadadr.org/san-salvador/2018-algebra/
- David S. Dummit, Richard M. Foote, Abstract Algebra.
- Serge Lang, Algebra.
- E. B. Vinberg, A Course in Algebra.