Solutions for Homework 2

Maxwell Young

September 23, 2003

Question 1

and so on....

Figure 1: Recursion Tree for Question 1

(A)By looking at the recursion tree in Figure 1, we see that we need to look at the following series:

$$\Sigma_{i=0}^{lgn} n^2/8^i$$

Using the version of summing the geometric series where |x| < 1, we get that $T(n) = (8/7)n^2$ and so $T(n) = O(n^2)$.

(B)Let $n=4^k$. Then we can write out the recurrence as $T(4^k)=2T(4^{k-1})+4^{2k}$. We solve the homogenous component of the recurrence first; $T(4^k)-2T(4^{k-1})=0$. The annihilator for this is (L-2). Now we deal with the inhomogenous part of the recurrence; the 4^{2k} component. The annihilator for this is (L-16). Putting these two annihilators together we see that we have:

 $c_0 2^k + c_1 16^k$ but $n = 4^k$ so subtituting back in we get $c_0 \sqrt{n} + c_1 n^2$. Hence $T(n) = O(n^2)$.

Question 2

- (A) In this case, $a=2,\ b=2,$ and $f(n)=(lgn)^2$. We can see that $(logn)^2=O(n^{1-\epsilon})$ so by the Master Theorem, $T(n)=\Theta(n)$.
- (B) We deal with the homogenous part first: T(n) = 2T(n/2). Letting $n = 2^k$, we get that $T(2^k) = 2T(2^{k-1})$ which has the annihilator of (L-2). The inhomogenous part of the recurrence becomes k^2 and it has an annihilator of $(L-1)^3$. Therefore, we end up with $c_0 2^k + (c_1 + c_2 k + c_3 k^2) 1^k$. And the largest term here, when we substitute back in with n, is n and so this recurrence is in O(n).

Question 3

(A) The recurrence for the value of this code is:

$$f(n) = 6f(n-1) - 9f(n-2)$$

When we work out the annihilator for this recurrence we get $(L-3)^2$. We then end up with $(c_0 + c_1 n)3^n$. Using the base cases, we find that $c_0 = 0$ and that $c_1 = 1/3$. Hence, the recursion has solution $(n/3)3^n$.

(B) The recurrence for the running time of this code is f(n) = f(n-1) + f(n-2) + 1. We've seen this recurrence in class (for the runtime of the Fibonnaci numbers) and so we know that the complexity is $f(n) = c_1\phi^n + c_2\hat{\phi}^n + c_31^n$ where $\phi = ((1+\sqrt{5})/2)$ and $\hat{\phi} = (1-\sqrt{5})/2$. The final result is $T(n) = (1+1/\sqrt{5})\phi^n + (1-1/\sqrt{5})\hat{\phi}^n - 1$.

Question 4

Figure 2 gives the table that you should have constructed by following the DP algorithm. The number of different string alignments that you should have achieved is 10.

Question 5

Figure 3 gives the two tables that you should have constructed if you correctly followed the DP algorithm for matrix multiplication.

The optimal paranthesization is $((A_1A_2)(A_3A_4))$ and it has a cost of 11.

Question 6

Here we go with the induction:

Base Case: $P(1) = 1 \ge c(2^1)$ if $c \le 1/2$. Induction Hypothesis: assume that $P(n) \ge c2^n$. Induction Step: $P(n+1) = \sum_{k=1}^n P(k)P(n+1-k)$

```
\begin{split} &= P(1)P(n) + \Sigma_{k=2}^{n-1}P(k)P(n+1-k) + P(n)P(1) \\ &= 2(cP(1)P(n)) + \Sigma_{k=2}^{n-1}P(k)P(n+1-k) \\ &\geq c2^{n+1} + \Sigma_{k=2}^{n-1}P(k)P(n+1-k) \\ &> c2^{n+1} \text{ which is the desired result in the correct form.} \end{split}
```

Question 7

We can do this by using induction.

Base Case: For n = 1, A_1 requires n-1=0 parantheses, so it works.

IH: Given a sequence of n numbers (or matrices, as I will deal with here), there are exactly n-1 pairs of parentheses needed to completely parenthisize this sequence.

IS: Consider the sequence (of matrices) of length n+1; $A_1A_2A_3...A_nA_{n+1}$. We automatically have to place one pair of parantheses starting at A_1 and ending at A_{n+1} . Now, without loss of generality, we can consider that we start our next parentheses pair at A_1 and finish at A_i where $i \leq n$. So we have $((A_1A_2A_3...A_i)(A_{i+1}...A_n))$. Now consider $(A_1A_2A_3...A_i)$; this sequence is shorter than n and so the IH holds ie. we require i-1 pairs of parantheses to fully parantheses since we already added a pair starting at A_1 and finishing at A_i . The remaining matrices, $(A_{i+1}...A_n)$ require (n+1)-i-1-1 pairs of parentheses to fully paranthesize them (taking into account the one we have already put around them). Hence, we have already included 3 pairs of parantheses and the remaining groups require i-2+n-i+1-2 so the sequence of n+1 matrices requires i-2+n-i+1-2+3=n as desired.

Question 8

Figure 4 gives the table you should have constructed by following the DP algorithm for LCS. The longest possible subsequence is of length 6 and, if we trace back along the arrows, we can find one such string: 101011.

Question 9

You are given a sequence of n numbers, call this sequence A. Then copy A and sort it in increasing order to get B; this takes O(nlgn) time. Then use the DP LCS algorithm on A and B; this will give back the longest monotonically increasing subsequence of the original sequence A in $O(n^2)$ time.

Bonus Questions

Please come and talk to me during office hours.


```
a\;b\;a\;b\;b\;a\;b
                         a b a b b a b _
a\,b\,\_\,\_\,b\,a\,\_
                         ab_ba_ab_a
a_b a b a b a b
                         a b a b b a b _
a b b a b _ a _
                         a b _ _ b a b a
a\,b\,\_\,a\,b\,b\,a\,b
                         a\,b\,a\,b\,b\,a\,b\,\_
                         a_{\,\_\,}bbaba
a b b a b _ a _
                         a _ b a b b a b
abab_bab
a\,b\,\_\,b\,a\,b\,a\,\_
                         a b b a _ b a _
a b a b b a b _
                         a b _ a b b a b
                         abba ba
a\,b\quad b\quad a\,b\,a
```

Figure 2: DP Table for Question 4

Figure 3: DP Tables for Question 5

5

Figure 4: DP Table for Question 8