Carbon sequestration in forest

Objective

To assess the carbon sequestration regimes under the land use change scenarios as derived with CLUE model

Assumptions

We use land use change scenarios as provided by CLUE

CLUE uses land use categories: abandoned, forest, cropland, grassland. For each of these carbon sink/source estimates per country are derived from literature, we assume that when land use changes, the emission factor changes immediately as well. Furthermore:

- static calculation of emission factor * area per time step
- assumed that the emission factors do not change over time (i.e. no saturation)
- only for the land use change of 'deforestation' the loss of stock was calculated. It was assumed that 80% of the biomass will be lost
- for all other land use changes no carbon stock loss was assumed (e.g. conversion between grassland and arable land)

Method

See also 5. CLUE model is used, EFISCEN (European forst resource model is used), emission factors are derived from literature:

DATA MOSLTY FROM JANSSENS ET AL (PAPER TWO) SUBMITTED TO BIOGEOSCIENCES

SOBMITTED TO BIO	g C m-2	g C m-2	g C m-2	g C m-2
	y-1	y-1	y-2	y-3
Country	grasssink	cropsink	peatsink	forestsink
Slovenia (SI)	3.672	-8.2	0.46	142.45
Slovakia (Sk)	12.162	-24.68	-0.65	127.86
Austria (Au)	25.517	-16.19	0.13	89.88
Switzerland (Swi)	40.081	-10.49	-0.32	29.51
France (Fr)	12.023	-19.07	-0.74	25.94
Romania (Ro)	11.086	-30.71	-0.2	56.41
Germany (Ge)	13.599	-28.34	-6.44	64.48
Bulgaria (Bu)	6.751	-19.8	-0.25	43.61
Sweden (Sw)	1.178	-6.49	0.44	29.67
Czech Republic				
(Cz)	6.593	-35.82	-0.7	49.43
Croatia (Cr)	6.722	-15.43	0.22	30.38
Finland (Fi)	5.616	-5.49	-12.81	25.56
Yugoslavia (Yu)	11.44	-25.77	0.22	28.85
Bosnia-Herc. (BH)	6.827	-31.4	0.22	41.02
Norway (No)	3.557	-2.23	-0.59	16.54
Spain (Sp)	20.687	-4.73	-0.41	8.89
Latvia (La)	2.86	-44.1	-7.94	48.84
Hungary (Hu)	6.3	-44.77	-6.43	37.51
Italy (It)	12.718	-19.47	-2.84	31.73

Greece (Gr)	2.772	-10.13	-0.46	5.23
Albania (Al)	1.782	-10.89	0.17	5.2
Macedonia (Ma)	2.788	-12.02	0.03	0
Ukraine (Ukr)	10.458	-39.13	-11.43	22.26
Lithuania (Li)	3.248	-60.82	-2.39	38.22
Estonia (Es)	2.209	-39.69	-26.21	34.67
Poland (Pol)	8.475	-36.85	-26.15	32.04
Belarus (Blr)	8.853	-20.39	-59.08	49.71
United Kingdom				
(UK)	24.226	-13.67	-27.47	10.57
Portugal (Por)	-4.494	-28.08	-2.02	17.93
Moldova (Mo)	4.822	-49	0	12.47
Irish Republic (Ir)	21.186	-12.29	-52.73	6.43
Denmark (Dk)	2.554	-39.91	-6.03	11.63
Belg.+Lux. (BLx)	15.84	-9.11	-9.11	12.68
Netherlands (NI)	18.381	-25.39	-47.07	21.62

Current and historical situation

Forests are young in Europe, they are in a stage of fast sequestration,. This has occurred since 1900, and will most likely continue until at least 2050.

Input (data sets)

National scale emission factors (Janssens et al) CLUE output on areas until 2030

Results

Greenhouse gas balance per country until 2030

Output

National scale GHG balance

Resolution of output

National scale

Accuracy

Rather large assumptions are made on immediate change of emission factor when land use changes. These responses take years to decades in reality.

Conclusions

These are 'what if' scenarios. Results are indicative only.

References

A. Janssens, A. Freibauer, B. Schlamadinger, R. Ceulemans, P. Ciais, A. J. Dolman, M. Heimann, G.-J. Nabuurs, P. Smith, R. Valentini and E.-D. Schulze. The carbon budget of terrestrial ecosystems at country-scale. A European case study. Submitted to Biogeosciences