13 | Proof of the Excision Theorem

Based on Tammo tom Dieck, Algebraic Topology sec. 6.9.

The goal of this section is to give a proof a the Excision Theorem. For reference, we bring up again its statement:

11.4 Excision Theorem. Let X be a space and $X_1, X_2 \subseteq X$ be open such that $X = X_1 \cup X_2$. Assume that

- $(X_1, X_1 \cap X_2)$ is m-connected
- $(X_2, X_1 \cap X_2)$ is n-connected

for some $m, n \ge 0$. Then for any $x_0 \in X_1 \cap X_2$ the homomorphism

$$i_*: \pi_k(X_1, X_1 \cap X_2, x_0) \to \pi_k(X, X_2, x_0)$$

induced by the inclusion map, is an isomorphism for $1 \le k < m + n$ and it is onto for k = m + n.

13.1 Cubical subdivisions. The proof of Theorem 11.4 will involve working with certain subdivisions of cubes I^n . Here we set some terminology and notation related to such subdivisions.

Let $N \ge 1$ be some fixed integer. For $j = 0, \ldots, N$ denote $c_j = \frac{j}{N}$. Also, let $\delta = \frac{1}{N}$. The numbers c_j define a subdivision of the interval I = [0, 1] into subintervals $[c_j, c_{j+1}] = [c_j, c_j + \delta]$. More generally, an n-dimensional cube I^n has a subdivision into subcubes of the form

$$C_{j_1,...,j_n} = [c_{j_1}, c_{j_1+1}] \times [c_{j_2}, c_{j_j+1}]$$

= $[c_{j_1}, c_{j_1} + \delta] \times [c_{j_2}, c_{j_2} + \delta] \times ... \times [c_{j_n}, c_{j_n} + \delta]$

for some $0 \le j_1, \ldots, j_n \le N-1$. We will call this the N-cubical subdivision of I^n . This subdivision

defines a CW complex structure on I^n . An m-dimensional cell in I^n is an m-dimensional subcube

$$C = [c_{i_1}, c_{i_1} + \epsilon_1] \times [c_{i_2}, c_{i_2} + \epsilon_2] \times \ldots \times [c_{i_n}, c_{i_n} + \epsilon_n]$$

where $\epsilon_i = \delta$ for m values of the index i and $\epsilon_i = 0$ otherwise. We will denote by $I^n(m)$ the m-skeleton of I^n with this cell structure.

Let $C_{j_1,...,j_n}$ be an *n*-dimensional subcube:

$$C_{j_1,...,j_n} = \{(t_1,\ldots,t_n) \in I^n \mid c_{j_i} \leq t_i \leq c_{j_i} + \delta\}$$

For $0 \le p \le N$ we will denote by $S_p C_{i_1,...,i_n}$ and $L_p C_{i_1,...,i_n}$ the subspaces of $C_{i_1,...,i_n}$ given by

$$S_p C_{j_1,\dots,j_n} = \{(t_1,\dots,t_n) \in C_{j_1,\dots,j_n} \mid c_{j_i} < t_i < c_{j_i} + \frac{\delta}{2} \text{ for at least } p \text{ coordinates } t_i\}$$

$$L_p C_{j_1,\dots,j_n} = \{(t_1,\dots,t_n) \in C_{j_1,\dots,j_n} \mid c_{j_i} + \frac{\delta}{2} < t_i < c_k + \delta \text{ for at least } p \text{ coordinates } t_i\}$$

Also, denote

$$S_p = \bigcup_{j_1, \dots, j_n} S_p C_{j_1, \dots, j_n} \qquad L_p = \bigcup_{j_1, \dots, j_n} L_p C_{j_1, \dots, j_n}$$

- **13.2 Lemma.** Consider I^n with the N-cubical subdivision for some N>0. Assume that $A, B\subseteq I^n$ are closed, disjoint sets, such that $A\cap I^n(p)=\varnothing$ for some $p\le n$. There exists a homotopy $\Phi\colon I^n\times[0,1]\to I^n$ satisfying the following conditions:
 - (i) $\Phi(C \times [0,1]) \subseteq C$ for each subcube (of any dimension) in I^n .
 - (ii) $\Phi_0 = id_{I^n}$.
- (iii) $\Phi_1^{-1}(A) \subseteq S_{p+1}$ and $\Phi_1^{-1}(B) = B$.

Also, there exists a homotopy $\Psi: I^n \times [0,1] \to I^n$ that satisfies (i) and (ii) and

(iii')
$$\Psi_1^{-1}(A) \subseteq L_{p+1}$$
 and $\Psi_1^{-1}(B) = B$.

Proof. Let $\varphi: [0,1] \times [0,1] \to [0,1]$ be a homotopy defined as follows:

$$\varphi(t,s) = (1-s)t + s \cdot \min(c_i + \delta, 2t - c_i)$$

for $t \in [c_j, c_j + \delta]$. This is a homotopy between the identity map on [0,1] and a map that on each subinterval $[c_j, c_j + \delta]$ sends $[c_j + \frac{\delta}{2}, c_j + \delta]$ to the point $c_j + \delta$ and stretches $[c_j, c_j + \frac{\delta}{2}]$ linearly to $[c_i, c_j + \delta]$. Define $\widetilde{\Phi} \colon I^n \times [0, 1] \to I^n$ by

$$\widetilde{\Phi}((t_1,\ldots,t_n),s)=(\varphi(t_1,s),\ldots,\varphi(t_n,s))$$

The homotopy $\widetilde{\Phi}$ satisfies conditions (i) and (ii). Moreover, $\widetilde{\Phi}_1(t_1,\ldots,t_n)\notin I^n(p)$ if and only if $(t_1,\ldots,t_n)\in S_{p+1}$. Since $A\cap I^n(p)=\varnothing$ this gives $\widetilde{\Phi}_1^{-1}(A)\subseteq S_{p+1}$. Let $\varrho\colon I^n\to [0,1]$ be a function such that $\varrho(A)=1$ and $\varrho(B)=0$. Define $\Phi\colon I^n\times [0,1]\to I^n$ by

$$\Phi(x,s) = \widetilde{\Phi}(x,s\varrho(x))$$

Then
$$\Phi_1^{-1}(A) = \widetilde{\Phi}_1^{-1}(A) \subseteq S_p$$
 and $\Phi_1^{-1}(B) = \widetilde{\Phi}_0^{-1}(B) = B$

The homotopy Ψ can be obtained analogously.

13.3 Corollary. Consider the cube I^n with the N-cubical subdivision for some $N \ge 1$. Assume that $A, B \subseteq I^n$ are closed, disjoint sets, such that $A \cap I^n(p) = \emptyset$ and $B \cap I^n(q) = \emptyset$ for some $p, q \le n$. There exists a homotopy $\Lambda \colon I^n \times [0,1] \to I^n$ satisfying the following conditions:

- (i) $\Lambda(C \times [0,1]) \subseteq C$ for each subcube (of any dimension) in I^n .
- (ii) $\Lambda_0 = id_{I^n}$.
- (iii) $\Lambda_1^{-1}(A) \subseteq S_{p+1}$ and $\Lambda_1^{-1}(B) \subseteq L_{q+1}$.

Proof. Take a homotopy Φ as in Lemma 13.2. Using the same lemma with $A=\Phi_1^{-1}(A)$ and $B=\Phi_1^{-1}(B)=B$ we obtain a homotopy Ψ that satisfies (i), (ii) and $\Psi_1^{-1}(\Phi_1^{-1}(A))=\Phi_1^{-1}(A)\subseteq S_{p+1}$ and $\Psi_1^{-1}(\Phi_1^{-1}(B))=\Psi_1^{-1}(B)\subseteq L_{q+1}$. The homotopy Λ can be then defined by

$$\Lambda(x,s) = \begin{cases} \Phi(x,2s) & \text{for } s \le \frac{1}{2} \\ \Psi(\Phi(x,1),2s) & \text{for } s \ge \frac{1}{2} \end{cases}$$

Proof of Theorem 11.4. Denote $X_0 = X_1 \cap X_2$. We will first show that the homomorphism

$$i_*: \pi_k(X_1, X_0, x_0) \to \pi_k(X, X_2, x_0)$$

is onto for $k \leq m + n$.

Assume then $k \leq m+n$ and let $\omega \colon I^k \to X$ be a map representing an element of $\pi_k(X,X_2,x_0)$. We have $\omega(I^{k-1} \times \{0\}) \subseteq X_2$ and $\omega((\partial I^k \times I) \cup (I^{k-1} \times \{1\})) = x_0$. We need to show that ω is homotopic through such maps to $\tau \colon I^k \to X$ such that $\tau(I^k) \subseteq X_1$ and $\tau(I^{k-1} \times \{0\}) \subseteq X_0$.

Consider I^k with a N-cubical subdivision such that for each subcube $C \subseteq I^k$ we have either $\omega(C) \subseteq X_1$ or $\omega(C) \subseteq X_2$. We claim that there exists a homotopy $h \colon \omega \simeq \omega_1$ such that

- 1) if $\omega(C) \subseteq X_0$ then $h(x, t) = \omega(x)$ for $(x, t) \in C \times [0, 1]$
- 2) if $\omega(C) \subseteq X_i$ for i = 1, 2 then $h(C \times [0, 1]) \subseteq X_i$.
- 3) $\omega_1^{-1}(X_1 \setminus X_0) \cap I^k(m) = \emptyset$
- 4) $\omega_1^{-1}(X_2 \setminus X_0) \cap I^k(n) = \emptyset$.

The homotopy h can be constructed by induction with respect to skeleta of I^k . Let C^0 be a 0-dimensional subcube of I^k . If $\omega(C^0) \in X_0$ take $h|_{C^0 \times [0,1]}$ to be the constant map to the point $\omega(C^0)$ if $C^0 \in X_i \setminus X_0$ for i = 1, 2 take $h|_{C^0 \times [0,1]}$ to be a path in X_i that joins $\omega(C^0)$ with a point in X_0 . Such path exists by the connectivity assumption on the pair (X_i, X_0) . In effect we obtain a homotopy

 $h \colon I^k(0) \times [0,1] \to X$ satisfying 1)-4). For the inductive step, assume that we already constructed a homotopy $h \colon I^k(r) \times [0,1] \to X$ for some $r \ge 0$, and let C^{r+1} be an (r+1)-dimensional cube. The homotopy h is already defined on ∂C^{r+1} . If $\omega(C^{r+1}) \subseteq X_0$, we extend h to C^{r+1} using condition 1). If $\omega(C^{r+1}) \subseteq X_1$ and $r+1 \le m$ then we can extend h to a homotopy $h \colon C^{r+1} \times [0,1] \to X_1$ such that $h_1(C^{r+1}) \subseteq X^0$ by Proposition 11.3. We proceed analogously if $\omega(C^{r+1}) \subseteq X_2$ and $r+1 \le k$. In all other cases we extend h to C^{r+1} in an arbitary way that satisfies condition 2).

To check that the resulting map $\omega_1 = h_1 \colon I^k \to X$ satisfies condition 3), let $C^r \subseteq I^k(m)$ be an r-dimensional subcube for some $r \le m$. If $\omega(C^r) \subseteq X_1$ then $\omega_1(C^r) \subseteq X_0$ and if $\omega(C^r) \subseteq X_2$ then $\omega_1(C^r) \subseteq X_2$. Thus $\omega_1(C^r) \cap (X_1 \setminus X_0) = \emptyset$. Condition 4) is satisfied by the same argument.

Next, consider the homotopy Λ as in Corollary 13.3 for the sets $A = \omega_1^{-1}(X_1 \setminus X_0)$ and $B = \omega_1^{-1}(X_2 \setminus X_0)$. The composition $\omega_1 \Lambda \colon I^k \times I \to X$ gives a homotopy between ω_1 and a map ω_2 satisfying $\omega_2^{-1}(X_1 \setminus X_0) \subseteq S_{m+1}$ and $\omega_2^{-1}(X_2 \setminus X_0) \subseteq L_{n+1}$. Take the projection map $\operatorname{pr} \colon I^k \to I^{k-1}$, $\operatorname{pr}(t_1,\ldots,t_{k-1},t_k)=(t_1,\ldots,t_{k-1})$. We claim that the sets $\operatorname{pr}(S_{m+1})$ and $\operatorname{pr}(L_{n+1})$ are disjoint. Indeed, if $(t_1,t_2,\ldots,t_{k-1}) \in \operatorname{pr}(S_{m+1}) \cap \operatorname{pr}(L_{n+1})$ then there are numbers $c_{j_1},\ldots,c_{j_{k-1}} \in \{0,\frac{1}{N},\ldots,\frac{N-1}{N}\}$ such that $c_{j_i} < t_i < c_{j_i} + \frac{\delta}{2}$ for at least m coordinates t_i and $c_{j_i} + \frac{\delta}{2} < t_i < c_{j_i} + \delta$ for at least n coordinates t_i . However, by assumption k-1 < m+n, so this is impossible. As a consequence, the sets $\operatorname{pr}(\omega_2^{-1}(X_1 \setminus X_0))$ and $\operatorname{pr}(\omega_2^{-1}(X_2 \setminus X_0))$ are disjoint. We also have $\partial I^{k-1} \cap \operatorname{pr}(\omega_2^{-1}(X_2 \setminus X_0)) = \emptyset$ so $\operatorname{pr}(\omega_2^{-1}(X_1 \setminus X_0)) \cup \partial I^{k-1}$ and $\operatorname{pr}(\omega_2^{-1}(X_1 \setminus X_0)) \cup \partial I^{k-1}$ and $\operatorname{pr}(\omega_2^{-1}(X_1 \setminus X_0)) \cup \partial I^{k-1}$. Take a function $\varrho \colon I^{k-1} \to [0,1]$ such that $\varrho(\operatorname{pr}(\omega_2^{-1}(X_1 \setminus X_0)) \cup \partial I^{k-1}) = 1$ and $\varrho(\operatorname{pr}(\omega_2^{-1}(X_2 \setminus X_0))) = 0$. Define a homotopy $h \colon I^k \times [0,1] \to X$ by

$$h((t_1,\ldots,t_{k-1},t_k),s)=\omega_2(t_1,\ldots,t_{k-1},(1-s)t_k+s\varrho(t_1,\ldots,t_{k-1})t_k)$$

Then $h_0 = \omega_2 \simeq \omega$ while h_1 gives the desired map τ .

The argument that i_* : $\pi_k(X_1, X_0, x_0) \to \pi_k(X, X_2, x_0)$ is 1-1 for k < m+n is analogous. In such case we start with two maps ω_0 , ω_1 : $I^k \to X_1$ representing two elements of $\pi_k(X_1, X_0, x_0)$. If these maps represent the same element in $\pi_k(X, X_2, x_0)$ then there exists $h: I^{k+1} = I^k \times I \to X$ such that $h|_{I^k \times \{i\}} = \omega_i$ for i = 0, 1 and that satisfies the appropriate conditions on the other faces of I^{k+1} . We want to show that h is homotopic to a map $h': I^{k+1} \to X_1$. Since $k+1 \le m+n$ this can be done in the same way as above.