Devoir à la maison n° 01

À rendre le 09 septembre

Dans tout le problème, (\mathscr{C}) désigne la courbe d'équation $y = \ln x$ représentant la fonction logarithme népérien dans le plan rapporté à un repère orthonormal d'origine O et d'unité graphique 4 cm.

Question préliminaire: Tracer avec soin mais sans étude de la fonction, la courbe (\mathscr{C}) et la droite (\mathscr{D}) d'équation y = x.

Partie A

- 1) a) Déterminer une équation de la tangente (Δ) à (\mathscr{C}) au point I, point de l'axe (Ox) d'abscisse 1.
 - b) Étudier les variations de la fonction f définie sur l'intervalle $]0,+\infty[$ par

$$f(x) = x - 1 - \ln x.$$

- c) En déduire la position de (\mathscr{C}) par rapport à Δ .
- 2) a) Déduire de la question précédente la valeur minimale prise par $x \ln x$ sur l'intervalle $[0, +\infty[$.
 - b) Soit $x \in]0, +\infty[$ et M et N les points de même abscisse x des courbes (\mathscr{C}) et (\mathscr{D}) respectivement.

Déterminer la plus petite valeur (exprimée en cm) prise par la distance MN lorsque x décrit l'intervalle $]0, +\infty[$.

Partie B

- 1) Soit $x \in]0, +\infty[$ et M le point d'abscisse x de la courbe (\mathscr{C}) . Exprimer la distance OM de l'origine à M en fonction de x.
- 2) Étude de la fonction auxiliaire u définie sur $]0, +\infty[$ par $u(x) = x^2 + \ln x :$
 - a) Justifier les limites de u en 0 et en $+\infty$ ainsi que le sens de variations de u.
 - b) Montrer qu'il existe un réel α et un seul tel que $u(\alpha) = 0$. Montrer que α est compris entre 0,5 et 1 puis donner un encadrement de α d'amplitude 10^{-2} .
 - c) Déterminer le signe de u(x) lorsque x parcourt $]0, +\infty[$.
- 3) Étude de la fonction g définie sur $]0, +\infty[$ par $g(x) = x^2 + (\ln x)^2 :$ Calculer g' et vérifier que $g'(x) = \frac{2}{x}u(x)$.

En déduire le tableau de variations de g.

- 4) Déduire des questions précédentes la valeur exacte de la plus courte distance de l'origine aux points de la courbe (\mathscr{C}) et en donner une valeur approchée (exprimée en cm) en utilisant pour α la valeur centrale de l'encadrement trouvé à la question 2b.
- 5) A étant le point d'abscisse α de (\mathscr{C}) , démontrer que la tangente à (\mathscr{C}) en A est perpendiculaire à la droite (OA).

Partie C - Étude d'une suite

1) Montrer que le réel α défini dans la partie **B** est solution de l'équation h(x) = x, où h est la fonction définie sur $]0, +\infty[$ par

$$h(x) = x - \frac{1}{4} \left(x^2 + \ln x \right).$$

- 2) a) Calculer h' et étudier son signe sur l'intervalle $\left[\frac{1}{2},1\right]$.
 - **b)** Prouver que $h\left(\left[\frac{1}{2},1\right]\right) \subset \left[\frac{1}{2},1\right]$.
 - c) Calculer h'' et étudier son signe sur l'intervalle $\left[\frac{1}{2},1\right]$.
 - d) En déduire que, pour tout x appartenant à l'intervalle $\left[\frac{1}{2},1\right]$, on a

$$0 \leqslant h'(x) \leqslant 0, 3.$$

3) On définit la suite (u_n) par : $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = h\left(u_n\right).$$

- a) Montrer que, pour tout entier naturel $n, \frac{1}{2} \leq u_n \leq 1$, et que la suite (u_n) est décroissante.
- **b)** Soit $a, b \in \left[\frac{1}{2}, 1\right]$ tels que a < b. Grâce à une intégration, montrer que $h(b) h(a) \le 0.3(b-a)$.
- c) Soit $a, b \in \left[\frac{1}{2}, 1\right]$. Montrer que $|h(b) h(a)| \le 0, 3|b a|$.
- **d)** Montrer que l'on a pour tout entier naturel n, $|u_{n+1} \alpha| \le 0, 3|u_n \alpha|$ puis que $|u_n \alpha| \le \frac{1}{2}(0,3)^n$.
- e) En déduire que la suite (u_n) converge vers α .
- f) Déterminer un entier n_0 tel que u_{n_0} soit une valeur approchée de α à 10^{-5} près et indiquer la valeur de u_{n_0} donnée par la calculatrice (avec 5 décimales).

— FIN —