Théorie des groupes

Table des matières

1.	Groupes	2
2.	Sous-groupes 2.1. Définitions	
3	Morphismes de groupes 3.1. Définitions	6 6 7
4		8 8 8 9 10 11
5	5.1. Relations d'équivalence	12 13 14 14
6	Actions de groupes 6.1. Définitions	17 17

1. Groupes

Définition 1.1. Soit G un ensemble et $\star: G \times G \longrightarrow G$ une loi de composition interne. On dit que le couple (G,\star) forme un *groupe* s'il vérifie les propriétes suivantes

- 1. la loi \star est associative, $\forall x, y, z \in G, (x \star y) \star z = x \star (y \star z)$,
- 2. il existe un neutre $e_G \in G$, $\forall x \in G, x \star e_G = e_G \star x = x$,
- 3. existence d'un inverse, $\forall x \in G, \exists x^{-1} \in G, x \star x^{-1} = x^{-1} \star x = e_G.$

Exemple 1.2. Le couple $(\mathbb{Z}, +)$ est un groupe, le neutre est 0 et pour $n \in \mathbb{Z}$ un inverse est -n. Le couple (\mathbb{R}, \cdot) n'est pas un groupe, 0 n'admet pas d'inverses.

Proposition 1.3. Soit (G, \star) un groupe. Alors

- 1. le neutre e_G est unique,
- 2. soit $x \in G$, alors son inverse x^{-1} est unique.

Démonstration.

1. Soit $e \in G$ vérifiant $\forall x \in G, x \star e = e \star x = x$. Alors

$$e = e \star e_G = e_G$$
.

2. Soit $y \in G$ vérifiant $x \star y = y \star x = e_G$. Alors

$$y = e_G \star y = \left(x^{-1} \star x\right) \star y = x^{-1} \star \left(x \star y\right) = x^{-1} \star e_G = x^{-1}.$$

П

Définition 1.4. Soit (G, \star) un groupe. On dit qu'il est *commutatif* ou *abélien* s'il vérifie

$$\forall x,y \in G, x \star y = y \star x.$$

Exemple 1.5. Le groupe $(\mathbb{Z}, +)$ est commutatif.

Définition 1.6. Soit (G, \star) un groupe. On appelle *ordre* de G le cardinal de G, si G est un ensemble fini on dit que G est d'*ordre fini*, sinon on dit que G est d'*ordre infini*.

Remarque 1.7. Soit (G,\star) un groupe d'ordre fini. On note $G=\{e_G,g_1,...,g_n\}$, alors on peut donner sa table de multiplication

*	e_G	g_1	•••	g_{j}	•••	g_n
e_G	e_G	g_1		g_{j}		g_n
g_1	g_1	$g_1 \star g_1$		$g_1 \star g_j$		$g_1 \star g_n$
÷	:	:	٠.	:		:
g_i	g_i	$g_i \star g_1$		$g_i \star g_j$		$g_i \star g_n$
:	:	:	··	:	٠.	:
g_n	g_n	$g_n \star g_1$		$g_n \star g_j$		$g_n \star g_n$

où chaque ligne et chaque colonne contient tous les éléments de G.

Notation 1.8. Soit (G, \star) un groupe. Lorsqu'il ne peut pas y avoir de confusions, on notera

- $e := e_G$ pour le neutre,
- $\forall x, y \in G, xy := x \star y \text{ pour la loi } \star$,
- $\bullet \ \, \forall x \in G, \forall n \in \mathbb{Z}, \mathrm{si} \,\, n > 0, x^n \coloneqq \underbrace{x \star \ldots \star x}_{n \,\, \mathrm{fois}}, \mathrm{si} \,\, n = 0, x^0 \coloneqq e, \mathrm{si} \,\, n < 0, x^n \coloneqq x^{-1} \star \ldots \star x^{-1}.$

2. Sous-groupes

2.1. Définitions

Définition 2.1. Soit (G, \star) un groupe et H un sous-ensemble de G. On dit que H est un *sous-groupe* de G, noté H < G, s'il vérifie les propriétés suivantes

- 1. le neutre appartient à H, $e \in H$,
- 2. H est stable par \star , $\forall x, y \in H, x \star y \in H$,
- 3. *H* est stable par inverse, $\forall x \in H, x^{-1} \in H$.

Définition 2.2. Soit (G, \star) un groupe et H un sous-groupe de G. On dit que H est *distingué* ou *normal*, noté $H \lhd G$, s'il vérifie

$$\forall g \in G, \forall h \in H, g \star h \star g^{-1} \in H.$$

Proposition 2.3. Soit (G, \star) un groupe et H un sous-ensemble de G. Alors H est un sous-groupe de G si et seulement s'il vérifie les propriétés suivantes

- 1. le neutre appartient à $H, e \in H$,
- 2. H est stable par \star et par inverse, $\forall x, y \in H, x \star y^{-1} \in H$.

Démonstration.

- \Rightarrow : Supposons que H est un sous-groupe de G. Alors
- 1. le neutre appartient à H,
- 2. soit $x, y \in H$, alors $y^{-1} \in H$ et $x \star y^{-1} \in H$.

 \Leftarrow : Supposons que H vérifie les deux propriétés. Alors

- 1. le neutre appartient à H,
- 3. soit $x \in H$, alors $x^{-1} = e \star x^{-1} \in H$,
- 2. soit $x, y \in H$, alors $y^{-1} \in H$ et $x \star y = x \star (y^{-1})^{-1} \in H$.

Proposition 2.4. Soit (G, \star) un groupe et H un sous-ensemble de G. Alors H est un sous-groupe de G si et seulement s'il vérifie les propriétés suivantes

- 1. H est stable par \star , $\forall x, y \in H, x \star y \in H$,
- 2. le couple (H, \star) forme un groupe.

Démonstration.

- \Rightarrow : Supposons que H est un sous-groupe de G. Alors
- 1. H est stable par \star , $\forall x, y \in H, x \star y \in H$,
- 2. On considère le couple (H, \star) ,
 - 1. soit $x, y, z \in H$, alors $x, y, z \in G$ donc $(x \star y) \star z = x \star (y \star z)$,
 - 2. on pose $e_H = e_G$, alors $e_H \in H$,
 - 3. soit $x \in H$, alors $x^{-1} \in H$.

Donc (H, \star) forme un groupe.

- ← : Supposons que *H* vérifie les deux propriétés. Alors
- 1. soit $x \in H$, alors $x \in G$ et $x \star e_G = x = x \star e_H$, en multipliant à gauche par $x^{-1} \in G$, on obtient donc $e_G = e_H \in H$.
- 2. H est stable par \star ,
- 3. soit $x \in H$, alors $x^{-1} \in H$.

Proposition 2.5. Soit (G,\star) un groupe et H_1,H_2 deux sous-groupes de G. Alors $H_1\cap H_2$ est un sous-groupe de G.

Démonstration.

- 1. $e \in H_1$ et $e \in H_2$, donc $e \in H_1 \cap H_2$,
- 2. soit $x, y \in H_1 \cap H_2$, alors $x, y \in H_1$, puisque H_1 est un sous-groupe de G on a $x \star y^{-1} \in H_1$, de la même manière on a $x \star y^{-1} \in H_2$, donc $x \star y^{-1} \in H_1 \cap H_2$.

Donc d'après la Proposition 2.3, $H_1 \cap H_2$ est un sous-groupe de G.

2.2. Générateurs

Définition 2.6. Soit (G, \star) un groupe et S un sous-ensemble non-vide de G. On appelle *sous groupe engendré par* S, noté $\langle S \rangle$, le plus petit sous-groupe de G contenant S.

Notation 2.7. Si $S = \{x_1,...,x_n\}$, on note $\langle x_1,...,x_n \rangle := \langle S \rangle$.

Proposition 2.8. Soit (G, \star) un groupe et S un sous-ensemble non-vide de G. Alors

$$\langle S \rangle = \bigcap_{\substack{H < G \\ S \subset H}} H$$

ou encore $\langle S \rangle = \{x_1 \star \ldots \star x_n \mid n \in \mathbb{N} \setminus \{0\}, \forall i \in \{1, \ldots, n\}, x_i \in S \text{ ou } x_i^{-1} \in S\}.$

 $D\'{e}monstration$. Notons $F:=\{H < G \mid S \subset H\}$ et $H_S:=\bigcap_{H \in F} H$. Puisque $G \in F$, l'intersection est non-vide, et d'après la Proposition 2.5, H_S est un sous-groupe de G. De plus H_S contient évidemment S. Enfin si H_0 est un sous-groupe de G contenant S, on a $H_0 \in F$, donc $H_0 \subset H_S$. Donc H_S est bien le plus petit sous-groupe de G contenant S.

Notons $K_S := \{x_1 \star ... \star x_n \mid n \in \mathbb{N} \setminus \{0\}, \forall i \in \{1,...,n\}, x_i \in S \text{ ou } x_i^{-1} \in S\}$. On remarque que K_S est stable par multiplication, par inverse et contient le neutre de G, donc d'après la Proposition 2.3, K_S est un sous-groupe de G. De plus G_S contient S, donc $\langle S \rangle \subset G_S$. Réciproquement, puisque $\langle S \rangle$ est un groupe, on en déduit que $\forall x \in K_S, x \in \langle S \rangle$, donc $K_S \subset \langle S \rangle$. Par double inclusion $\langle S \rangle = K_S$.

Définition 2.9. Soit (G, \star) un groupe et S un sous-ensemble de G. Si $G = \langle S \rangle$, on dit que G est engendré par S et on appelle S un système de générateurs pour G.

- Si S est fini, on dit que G est finiment engendré.
- Si *S* ne contient qu'un élément, on dit que *G* est *monogène*, si de plus *G* est fini, on dit que *G* est *cyclique*.

Exemple 2.10.

- 1. Soit (G, \star) un groupe, G a au moins un système de générateur S := G.
- 2. On considère le groupe $(\mathbb{Z}, +)$, il est engendré par \mathbb{N} , et par $\{1\}$, donc il est monogène.
- 3. On considère le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$, il est engendré par $\{\overline{1}\}$ et est fini, donc il est cyclique.

Proposition 2.11. On considère le groupe $(\mathbb{Z}, +)$, alors

- 1. $\forall n \in \mathbb{Z}, \langle n \rangle = n\mathbb{Z},$
- 2. soit H est un sous-groupe de $(\mathbb{Z}, +)$, alors il existe $n \in \mathbb{Z}$ tel que $H = n\mathbb{Z}$,
- 3. soit $a, b \in \mathbb{Z}$ avec $b \neq 0$, alors b divise a si et seulement si $\langle a \rangle \subset \langle b \rangle$,
- 4. soit $a, b \in \mathbb{Z} \setminus \{0\}$, alors $\langle a, b \rangle = \operatorname{pgcd}(a, b)\mathbb{Z}$ et $\langle a \rangle \cap \langle b \rangle = \operatorname{ppcm}(a, b)\mathbb{Z}$.

Démonstration.

- 1. Soit $n \in \mathbb{Z}$, alors $\langle n \rangle = \{k \cdot n \mid k \in \mathbb{Z}\} = n\mathbb{Z}$.
- 2. Si $H = \{0\}$, alors $H = 0\mathbb{Z}$.

- Sinon, $H \setminus \{0\}$ est non-vide, on prend n le plus petit entier strictement positif de H. Puisque $n \in H$, on a $n\mathbb{Z} \subset H$. Réciproquement, soit $m \in H$, par division euclidienne il existe $q, r \in \mathbb{Z}$ tels que m = nq + r et $0 \le r < n$, puisque $r = m nq \in H$, on a nécessairement r = 0, d'où $m \in n\mathbb{Z}$, donc $H \subset n\mathbb{Z}$. Donc $H = n\mathbb{Z}$.
- 3. On sait que b divise a si et seulement il existe $q \in \mathbb{Z}$ tel que a = bq si et seulement $a \in \langle b \rangle$ si et seulement si $\langle a \rangle \subset \langle b \rangle$.
- 4. TODO: Voir TD.

2.3. Ordre d'un élément

Définition 2.12. Soit (G, \star) un groupe et $x \in G$. On appelle *ordre de x*, noté $\operatorname{ord}(x)$, le cardinal du sous-groupe engendré par $\{x\}$.

Proposition 2.13. Soit (G, \star) un groupe et $x \in G$. Alors

$$\operatorname{ord}(x) = \inf \bigl(\bigl\{ d \in \mathbb{N} \setminus \{0\} \mid x^d = e \bigr\} \bigr)$$

de plus si $n \in \mathbb{Z}$ vérifie $x^n = e$, alors $\operatorname{ord}(x)$ divise n.

Démonstration.

- Si $\operatorname{ord}(x) = +\infty$, supposons par l'absurde qu'il existe $d \in \mathbb{N} \setminus \{0\}$ tel que $x^d = e$. Alors $\langle x \rangle = \{e, x, ..., x^{d-1}\}$ est fini, d'où une contradiction.
- Sinon $\operatorname{ord}(x) \in \mathbb{N} \setminus \{0\}$. Puisque $\langle x \rangle$ est fini, il existe $m, n \in \mathbb{N} \setminus \{0\}$ tels que n < m et $x^m = x^n$, alors $x^{m-n} = e$, donc l'ensemble $\{d \in \mathbb{N} \setminus \{0\} \mid x^d = e\}$ est non-vide. Posons $d := \inf (\{d \in \mathbb{N} \setminus \{0\} \mid x^d = e\})$, puisque $x^d = e$, on obtient $\langle x \rangle = \{e, x, ..., x^{d-1}\}$, donc $\operatorname{ord}(x) = |\{e, x, ..., x^{d-1}\}| = d$.
- Soit $n \in \mathbb{Z}$ tel que $x^n = e$. Par division euclidienne il existe $q, r \in \mathbb{Z}$ tels que $n = \operatorname{ord}(x)q + r$ et $0 \le r < d$, alors $x^r = x^{n \operatorname{ord}(x)q} = x^n \star x^{\operatorname{ord}(x)^{-q}} = e$, par définition de $\operatorname{ord}(x)$ on a nécessairement r = 0, donc $\operatorname{ord}(x)$ divise n.

3. Morphismes de groupes

3.1. Définitions

Définition 3.1. Soit (G,\star) et (H,\cdot) deux groupes. Une application $\varphi:G\longrightarrow H$ est un *morphisme de groupes* si elle vérifie

$$\forall x, y \in G, \varphi(x \star y) = \varphi(x) \cdot \varphi(y).$$

- Si H = G, on dit que φ est un *endomorphisme*.
- Si φ est une bijection, on dit que φ est un *isomorphisme*, et G et H sont *isomorphes*, noté $G \simeq H$.

Proposition 3.2. Soit (G, \star) et (H, \cdot) deux groupes, et $\varphi : G \longrightarrow H$ un morphisme de groupes.

- 1. le neutre est envoyé sur le neutre, $\varphi(e_G) = e_H$,
- 2. l'inverse est envoyé sur l'inverse, $\forall x \in G, \varphi(x^{-1}) = \varphi(x)^{-1}$.

Démonstration.

- 1. On a $\varphi(e_G)=\varphi(e_G\star e_G)=\varphi(e_G)\cdot \varphi(e_G)$, donc $\varphi(e_G)=e_H$,
- 2. soit $x \in G$, alors $e_H = \varphi(e_G) = \varphi(x \star x^{-1}) = \varphi(x) \cdot \varphi(x^{-1})$, donc $\varphi(x^{-1}) = \varphi(x)^{-1}$.

Proposition 3.3. Soit (G,\star) et (H,\cdot) deux groupes, et $\varphi:G\longrightarrow H$ un isomorphisme. Alors son inverse, noté φ^{-1} , est un isomorphisme.

Démonstration. Soit $x, y \in H$. Puisque φ est un morphisme de groupes on a

$$\varphi\big(\varphi^{-1}(x\cdot y)\big) = x\cdot y = \varphi\big(\varphi^{-1}(x)\big)\cdot \varphi\big(\varphi^{-1}(y)\big) = \varphi\big(\varphi^{-1}(x)\star \varphi^{-1}(y)\big)$$

et par injectivité de φ , on obtient $\varphi^{-1}(x\cdot y)=\varphi^{-1}(x)\star \varphi^{-1}(y)$, donc φ^{-1} est un morphisme. \square

Proposition 3.4. Soit (G,\star) , (H,\cdot) et (K,\bullet) trois groupes, et $\varphi:G\longrightarrow H$ et $\psi:H\longrightarrow K$ deux morphismes de groupes. Alors $\psi\circ\varphi$ est un morphisme de groupes.

Démonstration. Soit $x, y \in G$. Alors

$$\begin{split} (\psi \circ \varphi)(x \star y) &= \psi(\varphi(x \star y)) \\ &= \psi(\varphi(x) \cdot \varphi(y)) \\ &= \psi(\varphi(x)) \bullet \psi(\varphi(y)) \\ &= (\psi \circ \varphi)(x) \bullet (\psi \circ \varphi)(y) \end{split}$$

donc $\psi \circ \varphi$ est un morphisme de groupes.

Proposition 3.5. Soit (G, \star) et (H, \cdot) deux groupes isomorphes. Alors

- 1. *G* et *H* ont le même ordre,
- 2. G est abélien si et seulement si H est abélien,
- 3. G est monogène si et seulement si H est monogène,
- 4. $\forall \varphi : G \longrightarrow H$ isomorphisme, $\forall x \in G, \operatorname{ord}(x) = \operatorname{ord}(\varphi(x))$.

Démonstration. Soit $\varphi: G \longrightarrow H$ un isomorphisme.

- 1. G et H sont en bijection, donc |G| = |H|.
- 2. \Rightarrow : Supposons que G est abélien. Soit $x, y \in H$, puisque φ est un isomorphisme

$$\varphi^{-1}(x) \star \varphi^{-1}(y) = \varphi^{-1}(y) \star \varphi^{-1}(x) \Rightarrow x \cdot y = y \cdot x$$

donc H est abélien.

← : On montre la réciproque de la même manière.

3. \Rightarrow : Supposons que G est monogène. Alors il existe $x \in G$ tel que $G = \langle x \rangle$, ainsi

$$H = \varphi(G) = \varphi(\langle x \rangle) = \langle \varphi(x) \rangle$$

donc H est monogène.

- ⇒ : On montre la réciproque de la même manière.
- $\text{4. Soit } x \in G \text{, alors } \forall d \in \mathbb{N} \setminus \{0\}, x^d = e_G \Leftrightarrow \varphi(x)^d = e_H \text{, donc } \operatorname{ord}(x) = \operatorname{ord}(\varphi(x)).$

3.2. Image et noyau

Définition 3.6. Soit (G, \star) et (H, \cdot) deux groupes, et $\varphi : G \longrightarrow H$ un morphisme de groupes.

- On appelle *image* de φ l'ensemble $\operatorname{im}(\varphi) := \varphi(G)$.
- On appelle *noyau* de φ l'ensemble $\ker(\varphi) := \varphi^{-1}(e_H)$.

Proposition 3.7. Soit (G,\star) et (H,\cdot) deux groupes, et $\varphi:G\longrightarrow H$ un morphisme de groupes. Alors $\operatorname{im}(\varphi)$ est un sous-groupe de H et $\ker(\varphi)$ est un sous-groupe de G. Plus généralement si G' est un sous groupe de G et G' un sous-groupe de G et G' est un sous-groupe de G et G' est un sous-groupe de G.

Démonstration. On considère $\varphi(G')$,

- 1. $e_H = \varphi(e_G)$, donc $e_H \in \varphi(G')$,
- 2. soit $x, y \in \varphi(G')$, il existe $u, v \in G'$ tels que $x = \varphi(u)$ et $y = \varphi(v)$, alors

$$x \cdot y^{-1} = \varphi(u) \cdot \varphi(y)^{-1} = \varphi(u \star v^{-1})$$

puisque G' est un sous-groupe de G, on a $u \star v^{-1} \in G'$, donc $x \cdot y^{-1} \in \varphi(G')$.

D'après la Proposition 3.3, $\varphi(G')$ est un sous-groupe de H.

On considère $\varphi^{-1}(H')$,

- $1. \ e_G = \varphi(e_H) \text{, donc } e_G \in \varphi^{-1}(H').$
- 2. soit $x, y \in \varphi^{-1}(H')$, alors $\varphi(x), \varphi(y) \in H'$ et

$$x\star y^{-1}\in\varphi^{-1}(H')\Leftrightarrow\varphi(x\star y^{-1})\in H'\Leftrightarrow\varphi(x)\cdot\varphi(y)^{-1}\in H'$$

puisque H' est un sous-groupe de H, on a $\varphi(x)\cdot \varphi(y)^{-1}\in H'$, donc $x\star y^{-1}\in \varphi^{-1}(H')$.

D'après la Proposition 3.3, $\varphi^{-1}(H')$ est un sous-groupe de G.

Proposition 3.8. Soit (G, \star) et (H, \cdot) deux groupes, et $\varphi : G \longrightarrow H$ un morphisme de groupes.

- φ est surjectif si et seulement si $\operatorname{im}(\varphi) = H$.
- φ est injectif si et seulement si $\ker(\varphi) = \{e_G\}.$

Démonstration.

- Par définition.
- \Rightarrow : Supposons que φ est injectif. Soit $x \in \ker(\varphi)$, alors $\varphi(x) = e_H$, donc $x = e_G$. \Leftarrow : Supposons que $\ker(\varphi) = \{e_G\}$. Soit $x, y \in G$ tels que f(x) = f(y), puisque φ est un morphisme on a $f(x \star y^{-1}) = e_H$, et $\ker(\varphi) = e_G$ d'où $x \star y^{-1} = e_G$, donc x = y et φ est injectif.

4. Groupes symétriques

4.1. Définitions

Définition 4.1. Soit $n \in \mathbb{N}$. On appelle *groupe symétrique*, noté S_n , l'ensemble de toutes les bijections de $\{1, ..., n\}$ dans lui-même muni de la composition.

- On appelle permutations les éléments de S_n .
- Soit σ une permutation, on la note

$$\sigma \coloneqq \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}.$$

Définition 4.2. Soit $\sigma \in S_n$ une permutation. On appelle *support* de σ l'ensemble

$$\operatorname{supp}(\sigma) \coloneqq \{i \in \{1, ..., n\} \mid \sigma(i) \neq i\}.$$

Lemme 4.3. Soit $\sigma_1, \sigma_2 \in S_n$ deux permutations. Si σ_1 et σ_2 sont de supports disjoints, alors elles commutent.

Démonstration. Soit $i \in \{1, ..., n\}$. Alors

- si $i \notin \operatorname{supp}(\sigma_1) \cup \operatorname{supp}(\sigma_2)$, on a $(\sigma_1 \circ \sigma_2)(i) = (\sigma_2 \circ \sigma_1)(i) = i$,
- si $i \in \operatorname{supp}(\sigma_1)$, alors $i \notin \operatorname{supp}(\sigma_2)$ et $\sigma_1(i) \notin \operatorname{supp}(\sigma_2)$, et on a $(\sigma_1 \circ \sigma_2)(i) = (\sigma_2 \circ \sigma_1)(i) = i$,

• si $i \in \text{supp}(\sigma_2)$, de la même manière $(\sigma_1 \circ \sigma_2)(i) = (\sigma_2 \circ \sigma_1)(i) = i$.

Donc σ_1 et σ_2 commutent.

4.2. *k***-cycles**

Définition 4.4. Soit $a_1,...,a_k \in \{1,...,n\}$ deux à deux distincts. On appelle k-cycle, noté $(a_1,...,a_k)$, la permutation définie par

$$\forall i \in \{1,...,n\}, (a_1,...,a_k)(i) \coloneqq \begin{cases} a_{j+1} & \text{si } j \in \{1,...,k-1\} \text{ avec } i = a_j \\ a_1 & \text{si } i = a_k \\ i & \text{sinon} \end{cases}$$

- On dit que *k* est sa *longueur*.
- On appelle *transposition* un 2-cycle.

 $\textbf{Proposition 4.5.} \ \text{Soit} \ (a_1,...,a_k) \in S_n \ \text{un k-cycle.} \ \text{Alors l'inverse de} \ (a_1,...,a_k) \ \text{est} \ (a_k,...,a_1).$

Démonstration. Soit $i \in \{1, ..., n\}$. Alors

• s'il existe $j \in \{1, ..., k-1\}$ tel que $i = a_i$, on a

$$(a_k,...,a_1)\big((a_1,...,a_k)\big(a_j\big)\big)=(a_k,...,a_1)\big(a_{j+1}\big)=a_j=i,$$

• si $i = a_k$, on a

$$(a_k,...,a_1)((a_1,...,a_k)(a_k))=(a_k,...,a_1)(a_1)=a_k=i,\\$$

• sinon on a

$$(a_k,...,a_1)((a_1,...,a_k)(i))=(a_k,...,a_1)(i)=i.$$

Donc $(a_k, ..., a_1)$ est l'inverse de $(a_1, ..., a_k)$.

Proposition 4.6. Soit $(a_1,...,a_k)\in S_n$ un k-cycle. Alors on peut l'écrire comme une composition de k-1 transpositions.

Démonstration. On écrit
$$(a_1,...,a_k)=(a_1,a_2)\circ...\circ(a_{k-1},a_k).$$

4.3. Permutations conjuguées

Définition 4.7. Soit $\sigma_1, \sigma_2 \in S_n$ deux permutations. On dit que σ_1 et σ_2 sont conjuguées s'il existe $\tau \in S_n$ telle que $\sigma_1 = \tau \circ \sigma_2 \circ \tau^{-1}$.

Lemme 4.8. Soit $(a_1,...,a_k) \in S_n$ un k-cycle. Alors

$$\forall \sigma \in S_n, \sigma \circ (a_1,...,a_k) \circ \sigma^{-1} = (\sigma(a_1),...,\sigma(a_k))$$

Démonstration. Soit $\sigma \in S_n$. Soit $i \in \{1, ..., n\}$, alors

• s'il existe $j \in \{1, ..., k-1\}$ tel que $i = \sigma(a_i)$, alors $\sigma^{-1}(i) = a_i$ et on a

$$\sigma((a_1, ..., a_k)(\sigma^{-1}(i))) = \sigma((a_1, ..., a_k)(a_i)) = \sigma(a_{i+1}),$$

• si $i = \sigma(a_k)$, alors $\sigma^{-1}(i) = a_k$ et on a

$$\sigma((a_1,...,a_k)(\sigma^{-1}(i))) = \sigma((a_1,...,a_k)(a_k)) = \sigma(a_1),$$

• sinon on a

$$\sigma\big((a_1,...,a_k)\big(\sigma^{-1}(i)\big)\big)=\sigma\big(\sigma^{-1}(i)\big)=i.$$

Donc
$$\sigma \circ (a_1,...,a_k) \circ \sigma^{-1} = (\sigma(a_1),...,\sigma(a_k)).$$

Corollaire 4.9. Soit $(a_1,...,a_k) \in S_n$ un k-cycle. Alors il est conjugué à (1,...,k).

Démonstration. On prend
$$\sigma \in S_n$$
 telle que $\forall i \in \{1,...,k\}, \sigma(a_i) = i$.

Théorème 4.10. Soit $\sigma \in S_n$ une permutation. On peut écrire σ comme une composition de cycles à supports disjoints $\tau_1,...,\tau_m \in S_n$. De plus cette écriture est unique à l'ordre des cycles près, et leurs longueurs $k_1,...,k_m$ vérifient $\sum_{l=1}^m k_l = n$.

Démonstration. On raisonne par récurrence sur le cardinal de $\operatorname{supp}(\sigma)$.

- Pour $|\text{supp}(\sigma)| = 0$, on a $\sigma = \text{id}$.
- Pour $|\text{supp}(\sigma)| > 0$, supposons que la propriété soit vérifiée pour toute permutation dont le cardinal du support est inférieur.

Soit $i \in \operatorname{supp}(\sigma)$, puisque $\sigma \in S_n$, il existe $p \in \{1,...,n\}$ minimal tel que $\sigma^p(i) = i$, alors on pose $\tau_1 = (i,\sigma(i),...,\sigma^{p-1}(i))$. Alors τ_1 agit comme σ sur l'ensemble $\{i,\sigma(i),...,\sigma^{p-1}(i)\}$, donc on a $|\operatorname{supp}(\tau_1^{-1} \circ \sigma)| < |\operatorname{supp}(\sigma)|$. Par hypothèse de récurrence, on peut écrire $\tau_1^{-1} \circ \sigma$ comme une composition de cycles à supports disjoints $\tau_2,...,\tau_m \in S_n$, et $\sigma = \tau_1 \circ \tau_2 \circ ... \circ \tau_m$.

Soit $i \in \{1, ..., n\}$, puisques les supports sont disjoints, i se trouve dans le support d'un seul des cycles, d'où l'unicité de l'écriture et $\sum_{l=1}^{m} k_l = n$.

Définition 4.11. Soit $\sigma \in S_n$ et $\tau_1,...,\tau_m \in S_n$ la décomposition de σ en cycles à supports disjoints, ordonnés par longueur $k_1 \leq ... \leq k_m$. On appelle $(k_1,...,k_m)$ le type de σ .

Théorème 4.12. Soit $\sigma_1, \sigma_2 \in S_n$ deux permutations. Alors σ_1 et σ_2 sont conjuguées si et seulement si elles ont le même type.

Démonstration.

 \Rightarrow : Supposons que σ_1 et σ_2 sont conjuguées. D'après le Lemme 4.8, σ_1 et σ_2 ont le même type. \Leftarrow : Supposons que σ_1 et σ_2 ont le même type $(k_1,...,k_m)$.

D'après le Corollaire 4.9, σ_1 et σ_2 sont conjuguées à

$$\sigma_3 := (1, ..., k_1) \circ (k_1 + 1, ..., k_1 + k_2) \circ ... \circ (k_1 + ... + k_{m-1} + 1, ..., k_m)$$

donc il existe $\tau_1, \tau_2 \in S_n$ telles que $\sigma_1 = \tau_1 \circ \sigma_3 \circ \tau_1^{-1}$ et $\sigma_2 = \tau_2 \circ \sigma_3 \circ \tau_2^{-1}$. Alors $\sigma_1 = (\tau_1 \circ \tau_2^{-1}) \circ \sigma_2 \circ (\tau_2 \circ \tau_1^{-1})$, donc σ_1 et σ_2 sont conjuguées. Corollaire 4.13. Soit $\sigma \in S_n$ une permutation. On peut écrire σ comme une composition de transpositions.

Démonstration. On peut écrire σ comme une composition de cycles à supports disjoints, et chaque cycle comme une composition de transpositions.

4.4. Signature d'une permutation

Définition 4.14. Soit $\sigma \in S_n$ une permutation. On appelle *signature* de σ le nombre rationnel

$$\operatorname{sign}(\sigma) \coloneqq \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}.$$

Exemple 4.15. On calcule la signature de la transposition (1, 2)

$$\begin{split} \text{sign}((1,2)) &= \frac{\sigma(2) - \sigma(1)}{2 - i} \cdot \prod_{2 < j \le n} \frac{\sigma(j) - \sigma(1)}{j - 1} \cdot \prod_{2 < j \le n} \frac{\sigma(j) - \sigma(2)}{j - 2} \cdot \prod_{3 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i} \\ &= \frac{2 - 1}{1 - 2} \cdot \prod_{2 < j \le n} \frac{j - 2}{j - 1} \frac{j - 1}{j - 2} \cdot 1 \\ &= -1 \end{split}$$

Théorème 4.16. L'application sign : $(S_n, \circ) \longrightarrow (\{-1, 1\}, \cdot)$ est un morphisme de groupes.

Démonstration. Soit $\sigma \in S_n$. Alors on calcule

$$|\operatorname{sign}(\sigma)| = \prod_{1 \le i < j \le n} \frac{|\sigma(j) - \sigma(i)|}{|j - i|}$$

puisque σ est une bijection, on a $\{\{\sigma(i), \sigma(j)\} \mid 1 \le i < j \le n\} = \{\{i, j\} \mid 1 \le i < j \le n\}$, alors

$$|\operatorname{sign}(\sigma)| = \prod_{1 \le i \le j \le n} \frac{|j-i|}{|j-i|} = 1$$

donc $sign(\sigma) \in \{-1, 1\}$. Soit $\tau \in S_n$. Alors

$$\begin{aligned} \operatorname{sign}(\sigma \circ \tau) &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{j - i} \\ &= \prod_{1 \leq i < j \leq n} \frac{\sigma(\tau(j)) - \sigma(\tau(i))}{\tau(j) - \tau(i)} \cdot \prod_{1 \leq i < j \leq n} \frac{\tau(j) - \tau(i)}{j - i} \end{aligned}$$

puisque τ est une bijection, de la même manière on a

$$\operatorname{sign}(\sigma \circ \tau) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i} \cdot \prod_{1 \le i < j \le n} \frac{\tau(j) - \tau(i)}{j - i}$$
$$= \operatorname{sign}(\sigma) \cdot \operatorname{sign}(\tau)$$

donc sign est un morphisme de groupes.

Corollaire 4.17.

- Soit $(a,b) \in S_n$ une transposition. Alors $\mathrm{sign}((a,b)) = -1$.
- • Soit $(a_1,...,a_k) \in S_n$ un k -cycle. Alors $\mathrm{sign}((a_1,...,a_k)) = (-1)^{k-1}.$
- Soit $\sigma \in S_n$ une permutation de type $(k_1,...,k_m)$. Alors $\mathrm{sign}(\sigma) = \prod_{l=1}^m {(-1)}^{k_l-1}$.

Démonstration. Puisque sign est un morphisme de groupes.

- Comme (a, b) est conjuguée à (1, 2), sign((a, b)) = sign((1, 2)) = -1.
- Comme $(a_1,...,a_k) = (a_1,a_2) \circ ... \circ (a_{k-1},a_k)$, on a

$$\mathrm{sign}((a_1,...,a_k)) = \mathrm{sign}((a_1,a_2))... \ \mathrm{sign}((a_{k-1},a_k)) = (-1)^{k-1}.$$

• De la même manière, σ se décompose en cycles à supports disjoints, $\operatorname{sign}(\sigma) = \prod_{l=1}^m (-1)^{k_l-1}$.

4.5. Groupes alternés

Définition 4.18. Soit $\sigma \in S_n$ une permutation. On dit que σ est paire si sign $(\sigma) = 1$, ou impaire si sign $(\sigma) = -1$. On appelle groupe alterné l'ensemble

$$A_n \coloneqq \{\sigma \in S_n \ | \ \sigma \text{ est paire}\} = \ker(\operatorname{sign}).$$

Proposition 4.19. Soit $\sigma \in S_n$ une permutation. Alors σ est paire si et seulement si elle peut s'écrire comme une composition de 3-cycles.

Démonstration.

 \Rightarrow : Supposons que σ est paire. Alors σ est la composition d'un nombre pair de transpositions. On considère la permutation $(a,b)\circ(c,d)\in S_n$,

- si $\{a, b\} = \{c, d\}$, alors $(a, b) \circ (c, d) = id$,
- si $\{a,b\} \cap \{c,d\} = \{b\} = \{c\}$, alors $(a,b) \circ (c,d) = (a,b,d)$,
- si $\{a, b\} \cap \{c, d\} = \emptyset$, alors $(a, b) \circ (c, d) = (a, b, c) \circ (b, c, d)$,

donc $(a, b) \circ (b, c)$ est un produit de 3-cycles.

 \Leftarrow : Supposons que σ est une composition de 3-cycles. Alors $sign(\sigma) = 1$, donc σ est paire. \square

5. Groupes quotients

5.1. Relations d'équivalence

Définition 5.1. Soit E un ensemble. On appelle *relation* sur E un sous-ensemble R de $E \times E$. Si $(x,y) \in R$, on écrit xRy.

Définition 5.2. Soit R une relation sur un ensemble E. On dit que R est une relation d'équivalence si elle vérifie les propriétés suivantes

- 1. R est réflexive, $\forall x \in E, xRx$,
- 2. R est symétrique, $\forall x, y \in E, xRy \Rightarrow yRx$,
- 3. R est transitive, $\forall x, yz \in E, xRy$ et $yRz \Rightarrow xRz$.

Dans ce cas, on notera \sim pour R.

Exemple 5.3. Soit $n \in N \setminus \{0\}$, on pose $R_n \coloneqq \{(a,b) \in \mathbb{Z}^2 \mid n|a-b\}$.

- 1. Soit $x \in \mathbb{Z}$, alors n|0 = x x, donc $xR_n x$,
- 2. soit $x, y \in \mathbb{Z}$, si xR_ny , alors n|x-y, d'où n|y-x, donc yR_nx ,
- 3. soit $x,y,z\in\mathbb{Z}$, si xR_ny et yR_nz , alors n|x-y et n|y-z, d'où n|(x-y)+(y-z)=x-z, donc xR_nz .

Donc R_n est une relation d'équivalence, si $(a,b) \in \mathbb{Z}^2$ on notera $a \equiv b \mod n$ pour aR_nb .

Définition 5.4. Soit \sim une relation d'équivalence sur un ensemble E.

- Soit $x \in E$. On appelle classe d'équivalence de x, notée \overline{x} , l'ensemble $\overline{x} := \{y \in E \mid x \sim y\}$.
- Soit $x \in E$. On appelle *représentant* de x tout élément de \overline{x} .
- On appelle *espace quotient* de E modulo \sim l'ensemble $E/\sim:=\{\overline{x}\mid x\in E\}.$
- On appelle *projection canonique* de E sur E/\sim l'application $\pi:E\to E/\sim, x\to \overline{x}.$

Exemple 5.5. Soit $n \in \mathbb{N}$, on considère de nouveau la relation d'équivalence R_n . Alors

$$\forall x \in \mathbb{Z}, \overline{x} = \{ y \in \mathbb{Z} \mid x \equiv y \operatorname{mod} n \} = \{ x + nk \mid k \in \mathbb{Z} \}$$

on notera $\mathbb{Z}/n\mathbb{Z}$ pour \mathbb{Z}/R_n .

Définition 5.6. Soit E un ensemble. On appelle partition de E une famille $(E_i)_{i\in I}$ de sous-ensembles de E qui vérifie les propriétés suivantes

- 1. les sous-ensembles sont deux à deux disjoints, $\forall i, j \in I, i \neq j \Rightarrow E_i \cap E_j = \emptyset$,
- 2. I'union des sous-ensembles forme E, $\bigsqcup_{i \in I} E_i \coloneqq \bigcup_{i \in I} E_i = E$.

Proposition 5.7. Soit E un ensemble et \sim une relation d'équivalence sur E.

- 1. Soit $x, y \in E$, alors les énoncés suivants sont équivalents
 - (a) $\overline{x} = \overline{y}$,
 - (b) $x \in \overline{y}$,
 - (c) $x \sim y$.
- 2. L'espace quotient de E modulo \sim forme une partition de E.
- 3. Soit $(E_i)_{i\in I}$ une partition de E. Alors $R:=\{(x,y)\in E\mid \exists i\in I, x,y\in E_i\}$ est une relation d'équivalence.

Démonstration.

- 1. $(a) \Rightarrow (b)$: Supposons que $\overline{x} = \overline{y}$, alors $x \in \overline{x}$, donc $x \in \overline{y}$.
 - $(b) \Rightarrow (c)$: Supposons que $x \in \overline{y}$, alors $y \in \overline{y}$, donc $x \sim y$.
 - $(c)\Rightarrow(a)$: Supposons que $x\sim y$. Soit $z\in \overline{x}$, alors $z\sim x$, et par transitivité $z\sim y$, donc $z\in \overline{y}$. Réciproquement si $z\in \overline{y}$, alors $z\in \overline{x}$, donc $\overline{x}=\overline{y}$.

- 2. Soit $x,y\in E$. Si $\overline{x}\cap \overline{y}\neq \emptyset$, il existe $z\in \overline{x}\cap \overline{y}$ tel que $z\sim x$ et $z\sim y$, donc $x\sim y$ et $\overline{x}=\overline{y}$. Soit $x\in E$, alors $x\in \overline{x}\subset \bigsqcup_{x\in E} \overline{x}$, donc $E=\bigsqcup_{x\in E} \overline{x}$.
- 3. 1. Soit $x \in E$, alors il existe $i \in I$ tel que $x \in E_i$, donc xRx.
 - 2. Soit $x, y \in E$, alors si xRy, il existe $i \in I$ tel que $x, y \in E_i$, donc yRx.
 - 3. Soit $x, y \in E$, alors si xRy et yRz, il existe $i, j \in I$ tels que $x, y \in E_i$ et $y, z \in E_j$, mais puisque $(E_i)_{i \in I'}$ alors $y \in E_i \cap E_j$, puisqu'il s'agit d'une partition on a i = j, donc xRz.

Donc R est une relation d'équivalence.

Définition 5.8. Soit E un ensemble et \sim une relation d'équivalence sur E. On appelle *système de représentants* pour \sim un sous-ensemble F de E tel que

$$\forall c \in E/\sim, \exists ! x \in F, x \in c$$

c'est-à-dire $\pi_{|F}:F\to E/\sim$ est bijective.

Définition 5.9. Soit E et F deux ensembles, et $f:E\to F$ une fonction. On dit que f est bien définie si

$$\forall x, y \in E, x = y \Rightarrow f(x) = f(y)$$

Proposition 5.10. Soit E et F deux ensembles, et \sim une relation d'équivalence. Soit $f: E \to F$ une application, $\pi: E \to E/\sim$ la projection canonique. Alors il existe $\overline{f}: E/\sim \to F$ bien définie telle que $\overline{f}\circ\pi=f$ si et seulement si

$$\forall x, y \in E, x \sim y \Rightarrow f(x) = f(y).$$

Démonstration.

 \Rightarrow : Supposons que \overline{f} soit bien définie et que $\overline{f} \circ \pi = f$. Soit $x,y \in E$ tels que $x \sim y$, alors $\pi(x) = \pi(y)$, d'où $\overline{f}(\pi(x)) = \overline{f}(\pi(y))$, donc f(x) = f(y).

 \Leftarrow : Supposons que $\forall x, y \in E, x \sim y \Rightarrow f(x) = f(y)$.

Soit $\alpha \in E/\sim$, on pose $x_{\alpha} \in E$ un représentant de α , on définit $\overline{f}(\alpha) = f(x_{\alpha})$. Soit $\beta \in E/\sim$, si $\beta = \alpha$, alors $x_{\beta} \sim x_{\alpha}$, d'où $f(x_{\beta}) = f(x_{\alpha})$, donc $\overline{f}(\beta) = \overline{f}(\alpha)$, c'est-à-dire \overline{f} est bien définie. \square

5.2. Classes modulo un sous-groupe

Définition 5.11. Soit (G, \star) un groupe et H un sous-groupe de G. On appelle *relation modulo* H *à gauche*, la relation \sim_H sur G définie par

$$\forall x,y \in G, x \sim_H y \Leftrightarrow y \in xH \Leftrightarrow x^{-1} \star y \in H$$

où $xH = \{x \star y \mid y \in H\}.$

Remarque 5.12. On peut définir la *relation modulo H à droite* $_{H}\sim$ d'une manière similaire.

Proposition 5.13. Soit (G, \star) un groupe et H un sous-groupe de G. Alors \sim_H est une relation d'équivalence sur G, dont les classes d'équivalences sont $\forall x \in G, \overline{x} = xH$.

Démonstration.

- 1. Soit $x \in G$, alors $x \star e \in xH$, donc $x \sim_H x$.
- 2. Soit $x, y \in G$, alors si $x \sim_H y$, on a $x^{-1} \star y \in H$, d'où $y^{-1} \star x = (x^{-1} \star y)^{-1} \in H$, donc $y \sim_H x$.
- 3. Soit $x, y, z \in G$, alors si $x \sim_H y$ et $y \sim_H z$, on a $y \in xH$ et $z \in yH$, d'où $z \in xH$, donc $x \sim_H z$.

L

Notation 5.14. Soit (G,\star) un groupe et H un sous-groupe de G. Alors on note les espaces quotients $G/H:=G/\sim_H$ et $H\setminus G:=G/_{H}\sim$.

Proposition 5.15. Soit (G, \star) un groupe et H un sous-groupe de G. Alors les ensembles G/H et $H \setminus G$ sont isomorphes. En particulier si G est fini, on a $|G/H| = |G \setminus H|$.

Démonstration. On considère le morphisme $\varphi: G/H \to H \setminus G, xH \to Hx^{-1}$, il est bien définie et admet pour inverse $\psi: H \setminus G \to G/H, Hx \to x^{-1}H$, donc c'est un isomorphisme. \square

5.3. Théorème du nombre de classes et théorème de Lagrange

Définition 5.16. Soit (G, \star) un groupe et H un sous-groupe de G. On appelle *indice* de H dans G

$$[G:H] := |G/H|$$
.

Théorème 5.17. (Théorème du nombre de classes) Soit (G, \star) un groupe et H un sous-groupe de G. Alors si G est fini

$$|G| = [G:H]|H|$$

 $D\'{e}monstration$. On pose n:=[G:H] et on considère $\{x_1,...,x_n\}$ un système de représentants pour \sim_H . On sait que la famille $(x_iH)_{i\in\{1,...,n\}}$ forme une partition de G, d'où

$$|G| = \sum_{i=1}^{n} |x_i H| = \sum_{i=1}^{n} |H| = n|H|$$

c'est-à-dire |G| = [G : H]|H|.

Corollaire 5.18. (Théorème de Lagrange) Soit (G, \star) un groupe et H un sous-groupe de G. Alors si G est fini, |H| divise |G|, en particulier si $x \in G$, ord(x) divise |G|.

Corollaire 5.19.

- 1. Soit (G, \star) un groupe fini d'ordre n et $x \in G$. Alors $x^n = e$.
- 2. Soit (G,\star) un groupe fini, H un sous-groupe de G et K un sous-groupe de H. Alors K est un sous-groupe de G et

$$[G:K] = [G:H][H:K].$$

Démonstration.

- 1. D'après le Corollaire 5.18, $\operatorname{ord}(x)$ divise n, donc $x^n = e$.
- 2. D'après le Théorème 5.17,

$$[G:K] = \frac{|G|}{|K|} = \frac{[G:H]|H|}{|K|} = \frac{[G:H][H:K]|K|}{|K|} = [G:H][H:K].$$

5.4. Sous-groupes distingués et groupes quotients

Théorème 5.20. Soit (G, \star) un groupe et H un sous-groupe de G. Alors les énoncés suivants sont équivalents

- 1. *H* est distingué.
- 2. Il existe un morphisme $\varphi: G \to G$ tel que $H = \ker(\varphi)$.
- 3. G/H a une structure de groupes.

Démonstration.

 $1. \Rightarrow 3.$: Supposons que H est distingué.

On considère l'application $\cdot: G/H \times G/H \to G/H, (xH, yH) \to xyH$, alors elle est bien définie et $(G/H, \cdot)$ forme un groupe.

 $3. \Rightarrow 2.$: Supposons que G/H a une structure de groupe.

Alors la projection canonique $\pi: G \to G/H$ est un morphisme de groupes et $\ker(\pi) = H$.

 $2. \Rightarrow 1.$: Supposons qu'il existe un tel morphisme φ .

Soit $h \in H$ et $g \in G$, alors

$$\varphi(g \star h \star g^{-1}) = \varphi(g) \star \varphi(h) \star \varphi(g)^{-1} = \varphi(x) \star \varphi(x)^{-1} = e$$

puisque $H = \ker(\varphi)$, on a $g \star h \star g^{-1} \in H$.

Corollaire 5.21. Soit (G, \star) un groupe et H un sous-groupe de G. Si G est abélien, alors G/H a une structure de groupes.

Théorème 5.22. (Propriété d'universalité du groupe quotient) Soit (G,\star) un groupe et H un sous-groupe distingué de G. Soit (K,\cdot) un groupe, $\pi:G\to G/H$ la projection canonique et $\varphi:G\to K$ un morphisme de groupes. Alors il existe un morphisme $\overline{\varphi}:G/H\to K$ tel que $\overline{\varphi}\circ\pi=\varphi$, si et seulement si $H\subset\ker(\varphi)$. Dans ce cas $\operatorname{im}(\overline{\varphi})=\operatorname{im}(\varphi)$ et $\ker(\overline{\varphi})=\ker(\pi(\varphi))$.

Démonstration.

 \Rightarrow : Supposons qu'il existe un tel morphisme $\overline{\varphi}$.

Soit $x \in H$, alors $\varphi(x) = \overline{\varphi}(\pi(x)) = \overline{\varphi}(\{e\}) = H$, donc $H \subset \ker(\varphi)$.

 \Leftarrow : Supposons que $H \subset \ker(\varphi)$.

Soit $x \in H$, on définit $\overline{\varphi}(xH) = \varphi(x)$, alors $\overline{\varphi}$ est bien définie. Puisque $\overline{\varphi} \circ \pi = \varphi$ et π est surjectif, on a $\operatorname{im}(\overline{\varphi}) = \operatorname{im}(\varphi)$ on a $\operatorname{ker}(\overline{\varphi}) = \pi(\operatorname{ker}(\varphi))$.

Corollaire 5.23. (Théorème d'isomorphisme) Soit (G, \star) et (K, \cdot) deux groupes, et $\varphi : G \to K$ un morphisme de groupes. Alors il existe un isomorphisme $\overline{\varphi} : G/\ker(\varphi) \to \operatorname{im}(\varphi)$.

Démonstration. On pose $H:=\ker(\varphi)$, alors par le Théorème 5.22, il existe $\overline{\varphi}:G/\ker(\varphi)\to \operatorname{im}(\varphi)$ telle que $\overline{\varphi}\circ\pi=\varphi$. Puisque $\ker(\overline{\varphi})=\pi(\ker(\varphi))=\pi(H)=\{e\}$, $\overline{\varphi}$ est injectif, et par définition $\overline{\varphi}$ est surjectif. Donc $\overline{\varphi}$ est un isomorphisme.

Proposition 5.24. Soit (G, \star) un groupe. Alors si (G, \star) est monogène, il existe $n \in \mathbb{N}$ tel qu'il est isomorphe à $(\mathbb{Z}, +)$ ou à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Démonstration. Soit $x \in G$ un générateur et $\varphi : \mathbb{Z} \to G, m \to x^m$.

Alors φ est un morphisme de groupes et $\operatorname{im}(\varphi) = \langle x \rangle = G$, donc φ est surjectif. Soit $d \coloneqq \operatorname{ord}(x)$

- si $d = +\infty$, alors φ est injectif, et par le Corollaire 5.23, $\mathbb{Z}/\ker(\varphi) \simeq \operatorname{im}(\varphi)$, c'est-à-dire $\mathbb{Z} \simeq G$,
- sinon $\ker(\varphi) = d\mathbb{Z}$, et par le Corollaire 5.23, $\mathbb{Z}/\ker(\varphi) \simeq \operatorname{im}(\varphi)$, c'est-à-dire $\mathbb{Z}/d\mathbb{Z} \simeq G$.

Proposition 5.25. Soit (G,\star) un groupe et $x,y\in G$ tels que $x\star y=y\star x$. Notons $a:=\operatorname{ord}(x)$ et $b:=\operatorname{ord}(y)$, alors $\operatorname{ord}(x\star y)$ divise $\operatorname{ppcm}(a,b)$. De plus si $\langle x\rangle\cap\langle y\rangle=\{e\}$, on a $\operatorname{ord}(x\star y)=\operatorname{ppcm}(a,b)$

Démonstration. Posons m := ppcm(a, b) et d := pgcd(a, b).

Alors il existe $a', b' \in \mathbb{Z}$ tels que a = da' et b = db', d'où m = da'b'. Alors

$$\left(x\star y\right)^{m}=x^{m}\star y^{m}=\left(x^{da'}\grave{\mathbf{a}}\right)^{b'}\star\left(y^{db'}\right)^{a'}=e$$

donc ord($x \star y$) divise ppcm(a, b).

Proposition 5.26. Soit $n, m \in \mathbb{Z}$. Alors $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ est isomorphe à $\mathbb{Z}/nm\mathbb{Z}$ si et seulement si $\operatorname{pgcd}(n, m) = 1$.

Démonstration. Soit $x \in \mathbb{Z}$. Notons \overline{x} et [x] les classes respectives de x modulo n et m. ⇒ : Supposons que $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ est isomorphe à $\mathbb{Z}/nm\mathbb{Z}$. Alors $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ est cyclique. Soit (a,b) un générateur de $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, c'est-à-dire $\operatorname{ord}((a,b)) = nm$, alors

$$\operatorname{ppcm}(\operatorname{ord}(a),\operatorname{ord}(b))\cdot(a,b)=\left(\overline{0},[0]\right)$$

donc $nm|\operatorname{ppcm}(\operatorname{ord}(a),\operatorname{ord}(b))$, on en déduit $nm|\operatorname{ppcm}(n,m)$, d'où $\operatorname{pcgd}(n,m)=1$.

 \Leftarrow : Supposons que $\operatorname{pgcd}(n,m)=1$. Posons $\varphi:\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z}, x\to(\overline{x},[x])$. Alors φ est bien un morphisme, et on a

$$\ker(\varphi) = \left\{ k \in \mathbb{Z} \mid \left(\overline{k}, [k]\right) = \left(\overline{0}, [0]\right) \right\}$$
$$= \left\{ k \in \mathbb{Z} \mid n|k \text{ et } m|k \right\}$$
$$= \left\{ k \in \mathbb{Z} \mid nm|k \right\} = nm\mathbb{Z}$$

d'après le Théorème 5.22, il existe un morphisme $\overline{\varphi}: \mathbb{Z}/nm\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ injectif. Enfin puisque $|\mathbb{Z}/nm\mathbb{Z}| = |\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}|$, on en déduit que $\overline{\varphi}$ est un isomorphisme.

6. Actions de groupes

6.1. Définitions

Définition 6.1. Soit (G,\star) un groupe et X un ensemble. On appelle *action* de G sur X une application $\psi:G\times X\longrightarrow X$ qui vérifie les propriétés suivantes

- 1. $\forall x \in X, \psi(e, x) = x$,
- $2. \ \forall g,h \in G, \forall x \in X, \psi(g,\psi(h,X)) = \psi(gh,x).$

Dans ce cas, on notera $\forall g \in G, \forall x \in X, g \star x := \psi(g, x)$.

Notation 6.2. Soit (G,\star) un groupe et X un ensemble. Si G agit sur X, on note $G \supseteq X$