WE CLAIM:

1. An extended rhodamine compound having the structure

 Y_1Y_2N

 R_{11}

 R_{10}

5

10

or,

15

25

30

$$R_{11}$$
 R_{10}
 R_{10}

Ŕρ

 R_3

Ŕ8

 \dot{R}_7

 R_2

NY₃Y₄

 R_6

wherein

R₁ taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z₁, halogen, -OS(O)₂OR, -S(O)₂OR, -S(O)₂R, -S(O)₂NR, -S(O)R, -OP(O)O₂RR₂-P(O)O₂RR,-C(O)OR, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR,-CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_1 taken together with R_2 , Y_1 , or Y₂ is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z1, heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

30

5

10

 R_2 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, $-S(O)_2NR$, $-OP(O)O_2RR$, $-P(O)O_2RR$, $-P(O)O_2RR$, -NRR, -NC(O)R, -C(O)R, -C(O)NRR, -CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_2 taken together with R_1 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 ,

 R_3 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$,

10

25

30

 $P(O)O_2RR$,-C(O)OR, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR,-CN, and -OR, wherein R is independently selected from the group consisting of –H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_4 taken together with R_3 , Y_3 , or Y_4 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 R_5 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2R$, $-S(O)_2R$, $-OP(O)O_2RR$, $-P(O)O_2RR$, $-P(O)O_2R$

 R_6 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR, -CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_6 taken together with R_5 , R_7 , R_9 , or R_9 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more R_9 , heteroalkyleno, heteroalkyleno independently substituted with one or

30

10

more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 R_7 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$,

 R_8 is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 ;

 R_9 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR, -CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_2 taken together with R_{10} is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 ,

10

25

30

aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 R_{10} taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2RR$

 R_{11} taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$, and $-P(O)O_2RR$, $-P(O)O_2RR$,

 R_{13} taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl

10

15

independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O

 Y_1 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_1 taken together with R_1 , R_{11} or Y_2 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , aryleno independently substituted with one or more Z_1 ;

 Y_2 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_2 taken together with R_1 , R_{11} or Y_1 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 ;

 Y_3 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl

30

10

independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_3 taken together with R_4 , R_5 , R_6 , R_{13} or Y_4 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 Y_4 is absent, or Y_4 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_4 taken together with R_4 , R_5 , R_6 , R_{13} or Y_3 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 , heteroaryleno, and

 Z_1 is selected from the group consisting of, -R, halogen, -OS(O)₂OR, -S(O)₂OR, -S(O)₂OR, -S(O)₂NR, -S(O)₂NR, -S(O)₂NR, -P(O)O₂RR, -P(O)O₂RR, -C(O)OR, -NRR, -NRR, -NC(O)R, -C(O)R, -C(O)NRR,-CN, -O and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group.

- 2. The compound of **claim 1** wherein Y_1 is taken together with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 , or Y_2 is taken together with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 , or Y_3 is taken together with R_4 or R_5 or R_6 or R_{13} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 , or Y_4 is taken together with R_4 or R_5 or R_6 or R_{13} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 .
- 3. The compound of claim 2 wherein the C_2 or C_3 substituted alkyleno is gem disubstituted with C_1 to C_3 alkyl.

30

the field of the last two terms and the last two terms are the last two terms and the last two terms are the last

20

25

5

10

- 4. The compound of claim 3 wherein the C_2 or C_3 substituted alkyleno is gem disubstituted with methyl.
- 5. The compound of claim 1 wherein R_8 is alkyl independently substituted with one or more substituents selected from the group consisting of halogen, -C(O)R, and $-S(O)_2R$ wherein R is independently selected from the group consisting of -OH, O-alkyl, $-NH_2$, N-alkyl and linking group.
 - 6. The compound of claim 1 wherein R_8 is $-CF_3$.
 - 7. The compound of claim 1 wherein R₈ is

$$(CX_1X_2)n$$

 $(Z_{26}-CX_3)m$
 $Z_{27}-CX_4X_5$

wherein Z_{26} and Z_{27} are each independently selected from the group consisting of hydrogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2NR$, $-S(O)_2NR$, $-S(O)_2NR$, $-OP(O)O_2RR$, $-P(O)O_2RR$, -C(O)OR, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR, -NC(O)R, -NC(O)R, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, and X_1 , X_2 , X_3 , X_4 , and X_5 are each independently selected from the group consisting of hydrogen, -Cl, -Br and -F, wherein n and m are integers each independently ranging from 0 to 5.

- 8. The compound of claim 7 wherein X_1 and X_2 are -H.
- 9. The compound of claim 7 wherein X_1 , X_2 , X_4 , and X_5 are each -F.
- 10. The compound of claim 1 wherein R_8 is anyl or anyl independently substituted with one or more Z_1 .

11. The compound of claim 1 wherein R₈ has the structure

$$Z_{25}$$
 Z_{21}
 Z_{24}
 Z_{23}

wherein Z_{21} , Z_{22} , Z_{23} , Z_{24} and Z_{25} each taken separately are Z_1 .

- 12. The compound of **claim 11** wherein Z₂₁, Z₂₂, Z₂₃, Z₂₄ and Z₂₅ are each independently selected from the group consisting of -H, halogen, C₁ to C₃ alkyl, -C(O)OR, -C(O)OR, -S(O)₂OR, -S(O)₂R, and -CH₂OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group.
 - 13. The compound of claim 11 wherein one or more of Z_{21} , Z_{22} , Z_{23} , Z_{24} or Z_{25} is -Cl or -F.
 - 14. The compound of claim 11 wherein Z_{21} is -C(O)OH.
 - 15. The compound of claim 11 wherein Z_{21} is -C(O)OH and one of Z_{23} or Z_{24} is -C(O)OH.
 - 16. The compound of claim 11 wherein Z_{22} and Z_{25} are each -Cl.
 - 17. The compound of claim 11 wherein Z_{22} , Z_{23} , Z_{24} and Z_{25} are each -F.
 - 18. The compound of claim 11 wherein Z_{21} is $-S(O)_2OH$ and one of Z_{23} or Z_{24} is -C(O)OH.
 - 19. The compound of claim 11 wherein Z_{21} is -C(O)OR and one of Z_{22} , Z_{23} , or Z_{24} is linking group.

25

10

20

20. The compound of claim 1 wherein R₈ is selected from the group consisting of

OH OH O=
$$S=O$$
O= C
O=

wherein LG is linking group.

- 21. The compound of claim 1 wherein at least one of Y_1 , Y_2 , Y_3 , or Y_4 taken separately is selected from the group consisting of -H, alkyl, aryl and arylalkyl.
- 22. The compound of claim 1 wherein one or more of R_1 , R_4 , R_5 , R_6 , R_7 , R_9 , R_{10} , R_{11} and R_{13} is each independently -S(O)₂OH.
- 23. The compound of **claim 1** wherein one or more of R₁, R₄, R₅, R₆, R₇, R₉, R₁₀, R₁₁ and R₁₃ are each independently –F or –Cl.
 - 24. The compound of claim 1 wherein one or more of R_1 , R_4 , R_5 , R_6 , R_7 , R_9 , R_{10} , R_{11} and R_{13} is each independently aryl or aryl independently substituted with one or more Z_1 .
 - 25. The compound of claim 1 having the structure

wherein R₈ is selected from the group consisting of

5 ОН , and LG

wherein LG is linking group.

26. The compound of claim 1 having the structure

 \bar{H}^+ CH₃ H₃C H₃C CH₃ ĊH₃ ĊH₃ R₈ - 85 -

20

10

25

30

wherein R_8 is selected from the group consisting of

OH OH OH O=S=O
$$O=C O=C$$

$$-CH_2-CH-CH_2$$

$$CI$$

$$CC-OH$$

$$CI$$

$$CC-OH$$

wherein LG is linking group.

27. The compound of claim 1 having the structure

$$H_3C$$
 N CH_3 CH_3 CH_3

wherein R₈ is selected from the group consisting of

5

10

OH OH O=
$$S=O$$

O= C
O=

wherein LG is linking group.

28. An intermediate useful for the synthesis of extended rhodamine compounds having the structure

$$R_1$$
 R_2
 R_1
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_1
 R_2

wherein

25

 R_1 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted

25

30

with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR, -CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_1 taken together with R_2 , Y_1 , or Y_2 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 R_2 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2R$, $-S(O)_2R$, $-S(O)_2R$, -C(O)R, -C(O)R, -C(O)R, -C(O)R, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_2 taken together with R_1 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 ,

 R_8 is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 ;

 R_9 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or

30

5

10

more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-OP(O)O_2RR$

 R_{10} taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2RR$, $-S(O)_2RR$, $-S(O)_2RR$, $-C(O)_2RR$, $-C(O)_2RR$, $-R(O)_2RR$, $-R(O)_2$

 R_{11} taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z_1 , halogen, $-OS(O)_2OR$, $-S(O)_2OR$, $-S(O)_2R$, $-S(O)_2NR$, -S(O)R, $-OP(O)O_2RR$, $-P(O)O_2RR$, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR, -CN, and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group, or, R_{11} taken together with R_{10} , Y_1 or Y_2 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 ,

10

155

25

30

aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

R₁₂ is selected from the group consisting of -H and -C(O)R₃;

 Y_1 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_1 taken together with R_1 , R_{11} or Y_2 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ,

 Y_2 taken alone is selected from the group consisting of -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or Y_2 taken together with R_1 , R_{11} or Y_1 is selected from the group consisting of alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno independently substituted with one or more Z_1 , and

 Z_1 is selected from the group consisting of, -R, halogen, -OS(O)₂OR, -S(O)₂OR, -S(O)₂OR, -S(O)₂NR, -S(O)₂NR, -S(O)R, -OP(O)O₂RR, -P(O)O₂RR, -C(O)OR, -NRR, -NRRR, -NC(O)R, -C(O)R, -C(O)NRR,-CN, -O and -OR, wherein R is independently selected from the group consisting of -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group.

29. The compound of claim 28 wherein Y_1 is taken together with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 , or Y_2 is taken together

Case No. 4446

with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 .

- 30. The compound of claim 29 wherein the C₂ or C₃ substituted alkyleno is gem disubstituted with C₁ to C₃ alkyl.
 - 31. The compound of claim 30 wherein the C_2 or C_3 substituted alkyleno is gem disubstituted with methyl.
 - 32. The compound of claim 28 wherein at least one of Y_1 or Y_2 taken separately is selected from the group consisting of –H, alkyl, aryl and arylalkyl.
 - 33. The compound of claim 28 wherein one or more of R_1 , R_2 , R_9 , R_{10} and R_{11} is each independently -S(O)₂OH.
 - 34. The compound of claim 28 wherein one or more of R_1 , R_2 , R_9 , R_{10} and R_{11} is each independently -F or -Cl.
 - 35. The compound of claim 28 wherein one or more of R_1 , R_2 , R_9 , R_{10} and R_{11} is each independently arryl or arryl independently substituted with one or more Z_1 .

36. The compound of claim 28 having the structure

37. The compound of claim 28 having the structure

25

10

25

38. The compound of claim 28 which is selected from the group consisting of

and

10

25

and,

39. The compound of claim 28 selected from the group consisting of

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

40. A labeled nucleoside/side having the formula:

NUC-L-D

wherein

NUC is a nucleoside/tide or nucleoside/tide analog;

L is a linkage;

D is an extended rhodamine dye compound of claim 1;

wherein if NUC comprises a purine base, the linkage is attached to the 8-position of the purine, if NUC comprises a 7-deazapurine base, the linkage is attached to the 7-position of the 7-deazapurine, and if NUC comprises a pyrimidine base, the linkage is attached to the 5-position of the pyrimidine.

41. The labeled nucleoside/tide of **claim 40** wherein NUC comprises a base selected from the group consisting of uracil, cytosine, deazaadenine, and deazaguanosine.

10

- 42. The labeled nucleoside/tide of claim 40 wherein NUC is a nucleotide terminator compound.
 - 43. The labeled nucleoside/tide of claim 40 having the structure

$$\begin{array}{c} O \\ \parallel \\ NUC-C \equiv C-CH_2-NH-C-D \end{array}.$$

- 44. A method of fragment analysis comprising the steps of:
- forming one or more labeled polynucleotide fragments, the fragments being labeled with an extended rhodamine compound of claim 1;

resolving the one or more labeled polynucleotide fragments; and detecting the resolved labeled polynucleotide fragments.

45. The method of **claim 44** wherein the resolving step is an electrophoretic size-dependent separation process and the one or more labeled polynucleotide fragments are detected by fluorescence.