Colon Cancer

Jose Tamez

2023-05-11

Contents

1 RRPlot and the Colon data set 1.1 The data set 1.2 Modeling 1.3 Cox Model Performance 1.4 Cross-Validation	1 2 2 3 27
1 RRPlot and the Colon data set	
1.0.1 Libraries	
library(survival) library(FRESA.CAD)	
## Loading required package: Rcpp	
## Loading required package: stringr	
## Loading required package: miscTools	
## Loading required package: Hmisc	
<pre>## ## Attaching package: 'Hmisc'</pre>	
<pre>## The following objects are masked from 'package:base': ##</pre>	
## format.pval, units	
## Loading required package: pROC	
<pre>## Type 'citation("pROC")' for a citation.</pre>	
<pre>## ## Attaching package: 'pROC'</pre>	
<pre>## The following objects are masked from 'package:stats': ##</pre>	
## cov, smooth, var	
<pre>#library(corrplot) #source("~/GitHub/FRESA.CAD/R/RRPlot.R") #source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R") op <- par(no.readonly = TRUE) pander::pander(ntions(!digits! 3))</pre>	

```
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
```

1.1 The data set

```
data(cancer)
colon <- subset(colon,etype==1)
colon$etype <- NULL
rownames(colon) <- colon$id
colon$id <- NULL
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

0 1 442 446

```
dataColon <- as.data.frame(model.matrix(status~.*age,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\+","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

0	1
301	320

pander::pander(table(dataColonTest\$status))

0	1
141	126

1.2 Modeling

```
ml <- BSWiMS.model(Surv(time, status)~1, data=dataColonTrain, NumberofRepeats = 10)
```

```
[++++++++++++++++++++++++++++++++++]...
```

pander::pander(sm\$coefficients)

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
age_nodes	0.000458	1.000	1.000	1.001	0.607
\mathbf{age}	-0.020172	0.973	0.980	0.987	0.502
${f age_node4}$	0.005125	1.003	1.005	1.007	0.614
age_extent	0.005018	1.003	1.005	1.007	0.536
extent	0.187439	1.107	1.206	1.314	0.580
${f node 4}$	0.187704	1.100	1.206	1.323	0.614
$rxLev_5FU_age$	-0.002388	0.996	0.998	0.999	0.586
$rxLev_5FU$	-0.190602	0.748	0.826	0.913	0.586
adhere	0.432738	1.202	1.541	1.976	0.530
${f age_adhere}$	-0.005721	0.990	0.994	0.998	0.530
\mathbf{nodes}	0.018295	1.004	1.018	1.034	0.618

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
age_nodes	0.564	0.623	0.612	0.570	0.626
\mathbf{age}	0.620	0.640	0.504	0.624	0.641
${f age_node4}$	0.624	0.640	0.621	0.622	0.641
${f age_extent}$	0.628	0.640	0.535	0.632	0.641
${f extent}$	0.622	0.658	0.569	0.627	0.658
${f node 4}$	0.639	0.658	0.621	0.639	0.658
$rxLev_5FU_age$	0.630	0.658	0.581	0.636	0.658
${ m rxLev_5FU}$	0.624	0.640	0.581	0.628	0.641
${f adhere}$	0.602	0.615	0.541	0.607	0.620
${f age_adhere}$	0.609	0.615	0.541	0.613	0.620
nodes	0.648	0.658	0.623	0.645	0.660

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
age_nodes	0.03263	0.379	6.04	5.11	0.05648	1.0
\mathbf{age}	0.03251	0.272	5.22	3.42	0.01636	1.0
${f age_node4}$	0.02950	0.422	4.99	6.23	0.01836	1.0
${f age_extent}$	0.02683	0.277	4.56	4.80	0.00865	1.0
${f extent}$	0.02368	0.272	4.28	4.71	0.03110	1.0
${f node 4}$	0.01870	0.398	4.07	5.97	0.01985	1.0
$rxLev_5FU_age$	0.01677	0.324	3.97	4.35	0.02218	1.0
${ m rxLev_5FU}$	0.01463	0.324	3.75	4.35	0.01279	1.0
${f adhere}$	0.00951	0.367	3.41	6.52	0.01329	0.7
${f age_adhere}$	0.00664	0.486	2.88	6.63	0.00724	0.7
nodes	0.00570	0.158	2.43	2.04	0.01560	1.0

1.3 Cox Model Performance

Here we evaluate the model using the $\operatorname{RRPlot}()$ function.

1.3.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

ROC: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

1.3.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$keyPoints),caption="Threshold values")

Table 6: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.506	0.380	0.217	0.108	0.501
$\mathbf{R}\mathbf{R}$	1.750	1.990	3.410	1.000	1.750
\mathbf{SEN}	0.331	0.556	0.978	1.000	0.338
\mathbf{SPE}	0.897	0.794	0.123	0.000	0.894
\mathbf{BACC}	0.614	0.675	0.551	0.500	0.616

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 7: O/E Ratio

O/E	Low	Upper	p.value
1.02	0.915	1.14	0.651

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 8: O/E Mean

mean	50%	2.5%	97.5%
1.45	1.44	1.42	1.47

pander::pander(t(rrAnalysisTrain\$0Acum95ci),caption="0/Acum Mean")

Table 9: O/Acum Mean

mean	50%	2.5%	97.5%
1.32	1.32	1.32	1.33

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.677	0.677	0.647	0.704

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.723	0.684	0.763

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.331	0.28	0.386

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 13: Specificity

est	lower	upper
0.897	0.857	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

90%	
0.506	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 15: Risk Ratio

est	lower	upper
1.75	1.53	2

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 16: Logrank test Chisq = 81.803097 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0 class=1	484	214	271.6	12.2	81.8
	137	106	48.4	68.5	81.8

1.3.3 Cox Calibration

h0	Gain	DeltaTime
0.702	1.51	3.15

1.3.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

1.3.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$keyPoints), caption="Threshold values")

Table 18: Threshold values

	@:0.9	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.656	0.514	0.309	0.158	0.500
$\mathbf{R}\mathbf{R}$	1.750	1.990	3.410	1.000	1.863
\mathbf{SEN}	0.331	0.556	0.978	1.000	0.603
\mathbf{SPE}	0.897	0.794	0.123	0.000	0.714
\mathbf{BACC}	0.614	0.675	0.551	0.500	0.659

pander::pander(t(rrAnalysisTrain\$0ERatio\$estimate),caption="0/E Ratio")

Table 19: O/E Ratio

O/E	Low	Upper	p.value
0.819	0.732	0.914	0.000267

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Mean")

Table 20: O/E Mean

mean	50%	2.5%	97.5%
0.994	0.994	0.981	1.01

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Mean")

Table 21: O/Acum Mean

mean	50%	2.5%	97.5%
1.04	1.04	1.03	1.04

pander::pander(rrAnalysisTrain\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.677	0.677	0.649	0.705

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 23: ROC AUC

est	lower	upper
0.723	0.684	0.763

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 24: Sensitivity

est	lower	upper
0.331	0.28	0.386

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 25: Specificity

est	lower	upper
0.897	0.857	0.929

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 26: Probability Thresholds

	90%
(0.656

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 27: Risk Ratio

est	lower	upper
1.75	1.53	2

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 28: Logrank test Chisq = 81.803097 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	484	214	271.6	12.2	81.8
class=1	137	106	48.4	68.5	81.8

1.3.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

1.3.7 Test Performance

pander::pander(t(rrAnalysisTest\$keyPoints), caption="Threshold values")

Table 29: Threshold values

	@:0.66	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.657	0.474	0.404	0.3089	0.500
$\mathbf{R}\mathbf{R}$	1.368	1.595	1.853	24.0458	1.325
\mathbf{SEN}	0.262	0.714	0.857	1.0000	0.516
\mathbf{SPE}	0.844	0.482	0.319	0.0355	0.617
\mathbf{BACC}	0.553	0.598	0.588	0.5177	0.566

pander::pander(t(rrAnalysisTest\$OERatio\$estimate),caption="0/E Ratio")

Table 30: O/E Ratio

O/E	Low	Upper	p.value
0.742	0.618	0.884	0.000544

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Mean")

Table 31: O/E Mean

mean	50%	2.5%	97.5%
0.971	0.97	0.946	0.993

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Mean")

Table 32: O/Acum Mean

mean	50%	2.5%	97.5%
0.866	0.866	0.861	0.872

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.607	0.606	0.551	0.655

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 34: ROC AUC

est	lower	upper
0.607	0.54	0.675

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 35: Sensitivity

est	lower	upper
0.262	0.188	0.348

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 36: Specificity

est	lower	upper
0.844	0.773	0.9

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 37: Probability Thresholds

90%	
0.656	

```
pander::pander(t(rrAnalysisTest$RR_atP),caption="Risk Ratio")
```

Table 38: Risk Ratio

est	lower	upper
1.4	1.08	1.82

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 39: Logrank test Chisq = 10.116219 on 1 degrees of freedom, p = 0.001470

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	212	93	106	1.60	10.1
class=1	55	33	20	8.47	10.1

1.4 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

.[+++].[++++].[++++].[++++].[++++].[++++-].[+++-

```
stp <- rcv$survTestPredictions
stp <- stp[!is.na(stp[,4]),]

bbx <- boxplot(unlist(stp[,1])~rownames(stp),plot=FALSE)
times <- bbx$stats[3,]
status <- boxplot(unlist(stp[,2])~rownames(stp),plot=FALSE)$stats[3,]</pre>
```

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

1.4.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$keyPoints),caption="Threshold values")

Table 40: Threshold values

	@:0.66	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
\mathbf{Thr}	0.655	0.507	0.352	0.168	0.500
$\mathbf{R}\mathbf{R}$	1.714	1.698	3.175	1.000	1.639
\mathbf{SEN}	0.305	0.558	0.975	1.000	0.594
\mathbf{SPE}	0.898	0.706	0.124	0.000	0.652
\mathbf{BACC}	0.602	0.632	0.550	0.500	0.623

pander::pander(t(rrAnalysisCVTest\$0ERatio\$estimate),caption="0/E Ratio")

Table 41: O/E Ratio

O/E	Low	Upper	p.value
0.78	0.709	0.856	5.32e-08

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Mean")

Table 42: O/E Mean

mean	50%	2.5%	97.5%
0.973	0.973	0.962	0.984

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Mean")

Table 43: O/Acum Mean

mean	50%	2.5%	97.5%
0.977	0.977	0.976	0.979

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.652	0.652	0.627	0.677

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 45: ROC AUC

est	lower	upper
0.679	0.645	0.714

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 46: Sensitivity

est	lower	upper
0.303	0.26	0.348

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 47: Specificity

est	lower	upper
0.898	0.866	0.925

pander::pander(t(rrAnalysisCVTest\$thr_atP),caption="Probability Thresholds")

Table 48: Probability Thresholds

90%	
0.656	

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 49: Risk Ratio

est	lower	upper
1.71	1.52	1.92

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 50: Logrank test Chisq = 102.535013 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	708	311	384.4	14.0	103
class=1	180	135	61.6	87.4	103