

Copyright © 2008 Pearson Prentice Hall, Inc.

Basic Circuit Components and Theory*

Yuttapong Jiraraksopakun

*Image courtesy: Allan R. Hambley, Electrical Engineering Principles and Applications, 4th Ed., Upper Saddle River, NJ: Pearson Education, Inc., 2008.

Circuits

(a) Physical configuration

(b) Circuit diagram

Copyright © 2008 Pearson Prentice Hall, Inc.

Currents

Direct and Alternating Current

Votages

Power and Energy

$$p(t) = v(t)i(t)$$

$$w(t) = \int_{t_1}^{t_2} p(t)dt$$

$$v_a = 12 \text{ V}$$

 $i_a = 2 \text{ A}$
(a)

charged

$$v_b = 12 \text{ V}$$
$$i_b = 1 \text{ A}$$

(b)

Copyright © 2008 Pearson Prentice Hall, Inc.

discharged

$$v_c = 12 \text{ V}$$
$$i_c = -3 \text{ A}$$

(c)

discharged

Kirchhoff's Current Law (KCL)

The net current entering a node is zero

Series/ Parallel Circuits

$$v_a = v_b = -v_c$$

$$i_a = i_b = i_c$$

Copyright © 2008 Pearson Prentice Hall, Inc.

Kirchhoff's Voltage Law (KVL)

Voltage Sources

Independent sources

(a) Constant or dc voltage source

(b) Ac voltage source

12 V E V X

Copyright © 2008 Pearson Prentice Hall, Inc.

Dependent sources

Avoid self-contradictory circuit

Current Sources

Independent sources

Dependent sources

Resistance and Ohm's Law

$$p = vi$$

$$p = Ri^{2}$$

$$p = \frac{v^{2}}{R}$$

(a) Resistance symbol

(b) Ohm's law

Copyright © 2008 Pearson Prentice Hall, Inc.

Terminals for current to enter or leave
Copyright © 2008 Pearson Prentice Hall, Inc.

v = iR

$$i = \frac{1}{R}v$$

$$i = Gv$$

$$R = \frac{\rho L}{\Delta}$$

Resistive Circuits

(a) Three resistances in series

(b) Equivalent resistance

Copyright © 2008 Pearson Prentice Hall, Inc.

(a) Three resistances in parallel

(b) Equivalent resistance

Voltage-Divider and Current-Divider Circuits

$$v_i = \frac{R_i}{R_1 + R_2 + R_3} v_{total}$$

$$i_{\text{total}}$$

$$v$$

$$R_1$$

$$Copyright © 2008 Pearson Prentice Hall, Inc.$$

$$i_i = \frac{R_i}{R_1 + R_2} i_{tota}$$

Node-Voltage Analysis

Mesh-Current Analysis

Thévenin Equivalent Circuits

Thévenin equivalent circuit

Thévenin Resistance

Zeroing sources

(b) Thévenin equivalent with its source zeroed

Thévenin Circuit Example

(b) Circuit with an open circuit

Norton Equivalent Circuits

Source Transformation

$$I_n = V_t / R_t$$

Maximum Power Transfer

(a) Original circuit with load

(b) Thévenin equivalent circuit with load

$$p_{L} = \frac{V_{t}^{2} R_{L}}{(R_{t} + R_{L})^{2}}$$

$$\frac{dp_{L}}{dR_{L}} = 0 \Rightarrow R_{L} = R_{t}$$

$$P_{L \max} = \frac{V_{t}^{2}}{AR}$$

Superposition Principle

- ► Total response is the sum of the responses to each of the independent sources acting individually
- Linearity

 $R_1 = 10 \Omega$

(b) Circuit with only the voltage source active

(c) Circuit with only the current source active

Capacitance

$$C_{1}$$

$$C_{1}$$

$$+ v_{1} - + v_{2}$$

$$- v_{3} + - C_{2}$$

$$C_{3}$$

$$C_{eq} = \frac{1}{1/C_{1} + 1/C_{2} + 1/C_{3}}$$

Voltage and Stored Energy

$$q(t) = \int_{t_0}^{t} i(t)dt + q(t_0)$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(t)dt + v(t_0)$$

(d)

$$p(t) = v(t)i(t) = Cv \frac{dv}{dt}$$

Inductance

$$v(t) = L \, \frac{di}{dt}$$

$$i(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$$

$$p(t) = Li(t)\frac{di}{dt}$$

$$w(t) = \frac{1}{2}Li^2(t)$$

Voltage, Power, and Energy for Inductance

Mutual Inductance

Copyright © 2008 Pearson Prentice Hall, Inc.

solve for node voltage

solve for power delivered by the voltage source

find *i* using superposition principle