Question 1

a) Data Preparation

The original dataset (Figure 1.1) contains variables of Gender, Mstat, SA_Amt and FD_Amt that are required to be split into separate variables

Figure 1.1Data type of the original dataset

The Derive node was used to create the new variables under Gender (Figure 1.2), Mstat (Figure 1.3), SA_Amt (Figure 1.4) and FD_Amt (Figure 1.5)

Figure 1.2Creation of new variables for Gender

Figure 1.3Creation of new variables for Mstat

Figure 1.4

Creation of new variables for SA_Amt

Figure 1.5Creation of new variables for FD_Amt

As new variables were created, the Filter node was used to remove the "replaced" variables (Figure 1.6)

Figure 1.6

Filter node used to remove "replaced" variables

The data type of the newly created variables, along with the unchanged variables for product holdings are shown in Figure 1.7

Figure 1.7Data type after creation of new variables

b) Using the Apriori node, with an Antecedent Support of 10% and Confidence level of 60% (Figure 1.8), a total of 6 rules was generated (Figure 1.9):

Figure 1.8Model settings Antecedent Support of 10% and Confidence level of 60%

Figure 1.9Rules generated using the Apriori node

c) Based on the rules generated by the Apriori node (rules are numbered from 1 to 6, from top to bottom as shown in Figure 1.9), the following rule set can be observed:

Subset rules

- 1) Rule 1 is a subset of Rule 5
- 2) Rule 2 is a subset of Rule 3
- 3) Rule 2 is a subset of Rule 6

Overlapping rules

- 1) Rule 1 and Rule 4 are overlapping rules
- 2) Rule 2 and Rule 4 are overlapping rules

Rule sets

Table 1

Customer Group	Rule Set	Rules
1	1	1 and 5
2	2	2, 3 and 6
3	3	4

d) Customer Group 1 contains customers who are single and make investments. There is a 62.255% confidence level that this group of customers will churn on their credit cards. The confidence level increases to 71.429% for female customers under this customer group. To reduce the churn rate, ShineBank may consider increasing the rewards that are linked to using the credit cards. This will incentivize customers who are looking for value when it comes to spending.

Customer Group 2 contains customers who are male and service their home loans with the bank. The confidence level that this group of customers will churn on their credit cards is between 61.472% and 66.667%, depending on whether the customer is married, holds a fixed

deposit account with the bank or both. ShineBank can consider packaging credit card usage with fixed deposit account and home loans. Customers who fulfil the criteria will be rewarded with a monthly rebate, up to a certain amount. This will incentivize customers to keep their credit cards.

Customer Group 3 contains customers who are female and maintain both savings and fixed deposit accounts. There is a confidence level of 65.06% that this group of customers will churn on their credit cards. As this group of customers tend to be more conservative and frugal, ShineBank can consider waiving their credit card fees for a number of years. Since no charges will be incurred to maintain the credit cards, customers may be prone to maintain the status quo.

Question 2

a)

Figure 2.1Data Stream For Clustering

Figure 2.2Variables used for Clustering

Figure 2.3 K-Means Node Setting

Figure 2.4K-Means Model Summary

Figure 2.5K-Mean Cluster Sizes Summary

Figure 2.6K-Mean Predictor Importance

Figure 2.7Clusters Profile

Figure 2.8Cluster Comparison

b) From Figure 2.4, we can observe that the Cluster Quality is in the Fair region with average silhouette coefficient near 0.5. Furthermore, the size of each cluster is generally big with the smallest cluster at 23.9% and the biggest cluster at the highest incidence 51.8%.

To compare the individual variables characteristic between the cluster from Table 2, and interpretation of clustering results and cluster profiles

Table 2Cluster Profiles Evaluation

	Cluster-3 : Inactive	Cluster-2 : Active	Cluster-1 : Moderate
	Moderate Satisfied	UnSatisfied Young	Active Satisfied Older
	Working Adult	Working Adult	Working Adult
	(Inactive)	(Active)	(Mod Active)
No of Campaign Customer Participated (Campaign)	Lowest participation relative to Mod Active and Active.	Highest participation relative to Inactive and Active.	Slightly lower participation relative to Active
Customer Satisfaction	Moderate rating relative to	Lower rating relative to	Higher rating relative to
Rating (SatRate)	Mod Active and Active.	Inactive and Mod Active.	Inactive and Active.
Number of Product	Similar median relative to	Higher numbers relative to	Similar median relative to
Holdings (NumPdt)	Mod Active.	Inactive and Mod Active.	Inactive.
Age (Age)	Slightly lower median relative to Mod Active and Active.	Lowest relative to Mod Active and Inactive	Highest relative to Inactive and Active.
Number of Years with ShineBank (Tenure)	Slightly lower median relative to Mod Active and Active.	Similar median relative to Inactive.	Slightly higher median relative to Inactive and Active

c) The clusters labelled as Inactive Moderate Satisfied Working Adult (Cluster-3), Active Unsatisfied Young Working Adult (Cluster-2) and Moderate Active Satisfied Older Working Adult (Cluster-1). d) To analyse the incidence of credit card churning in each cluster, we perform a matrix and Distribution graph refer to Figure 2.9 and Figure 2.10.

Figure 2.9 Matrix

\$KM-K-Means		No	Yes	Total
cluster-1	Count	270	91	361
	Row %	74.792	25.208	100
	Column %	26.839	18.056	23.907
	Total %	17.881	6.026	23.907
cluster-2	Count	152	215	367
	Row %	41.417	58.583	100
	Column %	15.109	42.659	24.305
	Total %	10.066	14.238	24.305
cluster-3	Count	584	198	782
	Row %	74.680	25.320	100
	Column %	58.052	39.286	51.788
	Total %	38.675	13.113	51.788
Total	Count	1006	504	1510
	Row %	66.623	33.377	100
	Column %	100	100	100
	Total %	66.623	33.377	100

Figure 2.10
Clusters Distribution

From the figure 2.9, we can observe that Cluster-2 (Active) had the highest churning (58.6%) with relative to Inactive and Mod Active. In this cluster, the customer age is generally younger than other clusters and their satisfaction rating is also relatively lower than other clusters (Inactive, Mod Active). On the other hand, Cluster-1 (Mod Active) had the lowest incidence of Churning (25.2%) relative to Inactive and Active.

Based on the above clustering result, we can make the following recommendation for each cluster profile.

As this cluster group characteristic consist almost half of the ShineBank customers and their churn rate is low, ShineBank could focus on strengthening the relationship with them so that their satisfaction level can further increase. ShineBank could provide new products recommendation (new investment trends, insights, children insurance plan, etc) that suit their lifestyle needs and improve their current products holding (more investment returns, upgraded insurance policy, etc). ShineBank could also run simple and straightforward campaign like cashback system that rewards them with staying with the bank. To further improve their customer experience and satisfaction level, ShineBank can introduce a one stop platform that allow customers to easily see all the products holding and perform fast transaction on the same platform.

ii) Active Unsatisfied Young Working Adult (Cluster-2)

As the churn rate for this group (58.6%) is highest relative to Inactive and Mod Active and customers are holding many products, customers are usually demanding and will churn to another bank if the products/ services cannot meet their requirement. To reduce churn rate, ShineBank need to constantly improve their servicing level above market standard so that these customer satisfaction levels will be improved. The service level could be improved by assigning fund manager to smaller group of high product holdings' customers and these fund managers will follow up closely with these customers' needs. ShineBank could also run more aggressive campaign at lower threshold and easily achievable than competitors. By improving the satisfaction level and maintaining the high product holdings, customer churn rate will be reduced.

iii) Moderate Active Satisfied Older Working Adult (Cluster-1)

As the characteristic of this group is a more established older age group relative to Inactive and Active, ShineBank could introduce more suitable products that meet their specific needs. For example, insurance policy for more hospitalization coverage. ShineBank could also run campaigns that bundle their products to achieve higher saving interest rates. If customers signed up more products through the campaign, their chances to churn will be reduced.

Question 3

Figure 3.1
Selected fields' measurement settings to evaluate on a champion decision tree algorithm

"Auto Classifier" node is added to the analysis to provide an indication on the "Best" model that can be deployed. The outcome below shows that C5.0 is the "Best" model as it has a relatively higher lift value, overall accuracy and AUC.

Figure 3.2

The Lift chart is examined below on the predictive result of the "churn" category on the "Testing" dataset. At 20% percentile, the lift value of C5.0 (Denoted by the thin red line "\$C-Churn") is about 2.5, which is about 2.5 times better than the base-line model. C5.0 has a relatively higher lift value until the 35% percentile, that could suggest C5.0 is a better model in predicting churns compared to the other two models.

Figure 3.3

Lift Chart

Table 3

Accuracy and hits rates table calculated

	Tra	aining Datas	set	Testing Dataset			
Metrics	CHAID	CHAID CART C5.0		CHAID	CART	C5.0	
Overall Accuracy Rate	77.80%	78.71%	78.88%	78.53%	76.60%	79.81%	
Accuracy Rate for Churners	38.42%	38.42% 49.36%		46.85%	54.05%	49.55%	
Accuracy Rate for Non-							
Churners	97.02%	93.04%	97.89%	96.02%	89.05%	96.52%	
Hit Rate for Churners	86.29%	77.60%	90.23%	86.67%	73.17%	88.71%	
Hit Rate for Non-Churners	76.34%	79.01%	76.95%	76.59%	77.83%	77.60%	

C5.0 demonstrates the highest overall accuracy(79.81%), accuracy rate for Non-Churners(96.52%), and hit rates for Churners(88.71%).

CART has a highest accuracy rate for Churners(54.05%) and hit rate for Non-Churners(77.83%), but has a lowest overall rate, accuracy rate for Non-Churners and Hit Rate for Churners.

If we compare the stability of the model generated under CART and C5.0 for the "training data" against the "testing data", C5.0 is relatively more consistent on its model performance for most aspects.

Based on the findings above, <u>C5.0</u> can be deemed as the champion model.

Next, we re-construct the decision tree (C5.0-evaluated as best model) setting all the inputs in the datasets as follows:

Figure 3.4

From the Predictor Importance chart below, "FD_Amt" is at the top of the predictor importance that indicates the highest association to the target (ie the customer will churn or not for the credit card). The next important predictor is the number of campaigns participated by customer in the last 2 years ("Campaign"), followed by any home loan ("HL"), any insurance policy ("Ins"), and marital status ("Mstat"). The rest of the variables may not be that critical in predicting if customer will churn.

Figure 3.5Predictor Importance

The decision tree as shown below also indicates that the "FD_Amt" followed by "Campaign" are the more important variables that will determine customer's churning on his card.

Figure 3.6

The following rules are generated for customers who are likely to churn on his credit card:

i) **Node 12**: Customers who have a FD more than \$20,751 has probability of 95.652% churning on their credit cards.

churning on their credit cards.

ii) **Node 11**: Customers who have FD less than \$20,751, have participated in more than 2

campaigns, and marital status being single, will have a 92.174% probability of churning on

their credit cards.

iii) Node 7: Customers who have FD more than \$2,047.50 but less than \$20,751, and

participated in less than 3 campaigns, and have home loan but no insurance policy, will have

a 57.333% probability of churning on their credit cards.

Recommendations:

ShineBank may need to look into the competitors' fixed deposits and credit cards offerings to understand the underlying churn reasons. Customer could be churning on their credit cards upon completion of their FD tenure. Competitive FD interest rates may be recommended to encourage these customers to extend their FD tenure with ShineBank while offering better credit cards perks.

Currently, ShineBank only offers the same type of credit card to all customers. We can see the higher probability of singles churning their credit cards. There is no differentiation in the perks/benefits to "Single" customers to "Married/others". ShineBank should consider strengthening its product line offering by understanding different customer needs and wants ie. ShineBank may consider lifestyle benefits credit card targeting at singles.

Question 4

Poster

Credit card churn prediction using Association Analysis, KMeans Clustering, CHAID, CART, C5.0 Choong, H. M. K., Lim, S. J., Lau, S. K., Ong, K. M.

INTRODUCTION

Motivation

- Increase in Credit Card Churning
- Revenue loss
- Expensive to acquire new customers

Business Objectives

- To investigate the relationship between input variables with target variable churn
- To understand ShineBank's customer profile
- To predict churn of ShineBank's credit card customers

Data Mining Techniques

- Association analysis perform to discover if customer's demographics variables such as gender and marital status, and product holdings affect churning, using such findings to prevent churning from happening
- KMeans clustering perform for market segmentation according to customer's age, product holdings, campaigns participation, customer satisfaction rating, and customer tenure
- Using CHAID, CART, and C5.0 to predict the best churn model

DATASETS & DATA PREPARATION

MODELLING AND RESULTS Association FD_Amt_With bal, SA_Amt_With bal

Predictive Modelling

base-line churn

model

Least important

KMeans Clustering

derate Active Satisfied Older Working Adult (Clus

RECOMMENDATIONS & CONCLUSION

Customer Group 1

> Increase rewards based upon spending

Customer Group 2

> Bundle credit card usage with fixed deposit and home loans, and rewarding

Customer Group 3

Waiver of credit card fees for a few years

- Compare competitors' fixed deposits and credit cards offerings to understand the underlying churn reasons
- Give competitive FD interest rates to retain customers
- Offer better credit cards perks
- Introduce lifestyle benefits credit card targeting at singles

Active Unsatisfied Young Working Adult (Prone to Churn)

- Constantly improve customer service level so that customer satisfaction levels will improve
- Assign fund manager to follow up with customers' needs closely
- Run more aggressive campaign

References

- Chan, S.P., Tan, S.C., Wang, D., & Ren, J. (2021). *ANL307 Predictive modelling* (study guide). Singapore: Singapore University of Social Sciences. Release V1.7 Build S1.0.5, T1.5.21
- Tan, W. C. J. (2021). *ANL309 Business analytics applications* (study guide). Singapore: Singapore University of Social Sciences.

Appendix A

Association Analysis

Figure A1 Association Analysis data mining stream

Table A1

Table node output

T	а	bl	е	Α	n	n	0	ta	ti	0	n	S

	CustID HL	Invest	Ins	Churn	Male	Female	Married	Single	Others	SA_Amt_With Balance	FD_Amt_With balance
1	1.000 No	No	Yes	No	Т	F	T	F	F	No	No
2	2.000 Yes	Yes	Yes	No	F	Т	T	F	F	No	No
3	3.000 Yes	No	Yes	No	Т	F	F	Т	F	Yes	Yes
4	4.000 Yes	Yes	Yes	No	F	Т	T	F	F	Yes	Yes
5	5.000 No	Yes	Yes	No	F	Т	T	F	F	No	Yes
6	6.000 No	No	No	No	F	Т	F	Т	F	No	Yes
7	7.000 Yes	No	Yes	No	F	Т	F	Т	F	No	No
8	8.000 No	No	Yes	No	Т	F	F	F	T	No	No
9	9.000 No	No	No	No	Т	F	F	Т	F	Yes	No
10	10.000 Yes	No	Yes	No	F	Т	F	Т	F	No	No
11	11.000 Yes	No	No	Yes	Т	F	F	F	Т	Yes	Yes
12	12.000 No	No	No	Yes	F	Т	F	Т	F	Yes	No
13	13.000 Yes	No	No	No	Т	F	F	Т	F	No	No
14	14.000 No	No	_	No	F	Т	F	Т	F	Yes	No
15	15.000 No	No	No	No	F	T	F	T	F	Yes	No
16	16.000 No	No		No	T	F	F	T	F	No	No
17	17.000 Yes	No		Yes	T	F	F	F	T	No	Yes
18	18.000 Yes	No	No	Yes	T	F	F	F	T	Yes	Yes
19	19.000 No	No	No	Yes	F	T	F	T	F	Yes	No
20	20.000 No	No	_	No	F	T	F	T	F	Yes	No
21	21.000 Yes	Yes		No	T	F	F	F	T	Yes	Yes
22	22.000 No	No	No	No	F	Т	F	Т	F	Yes	No
23	23.000 No	No		No	F	T	F	T	F	Yes	No
24	24.000 No	No		No	F	T	F	T T	F	Yes	No
25	25.000 No	Yes	_	No	F	Ť	F	Ť	F	No	No
26	26.000 Yes	Yes	Yes		T	F	F	F.	Т	Yes	Yes
27	27.000 Yes	No	_	Yes	T	F	F	F	T	No	Yes
28	28.000 Yes	No		Yes	T	F.	F	F	T	No	Yes
29	29.000 Yes	No	No	Yes	T	F	F	F	T	No	Yes
30	30.000 Yes	No	No	Yes	T	F	F	F	T	No	Yes
31	31.000 No	No		No	F	T	F	T	F	Yes	No
32	32.000 No	No	_	No	F	Ť	F	Ť	F	Yes	No
33	33.000 Yes	No	No	Yes	T	F	F	F	T	No	Yes
34	34.000 No	No	Yes		F	T	F	T	F	No	No
35	35.000 Yes	No	_	Yes	T	F	F	F	T	No	Yes
36	36.000 Yes	No	_	Yes	T	F	F	F	T	No	Yes
37	37.000 No	No	_	Yes	F	T	F	T	F	Yes	No
	38.000 No				F	-	F	T	F		
38		No No	Yes		F	T T	F	T	F	Yes Yes	No Yes
40	39.000 No 40.000 No		Yes	No	F	-	F	T	F		
		No No	_		F	T T	F	T	F	Yes	No No
41	41.000 No	No No	No No		-		•	-	•	Yes	No Voc
42	42.000 Yes	No No		Yes	Т	F	F	F	T	No Voc	Yes
43	43.000 No	No No	No No		F	T	F	T T	F	Yes	No No
44	44.000 No	No		Yes	F	T	F	T	F	Yes	No
45	45.000 No	No		Yes	F	T	F	T	F	Yes	No
46	46.000 No	No	Yes		F	T	F	T	F	Yes	No
47	47.000 No	No	Yes		F	T	F	T	F	Yes	No V
48	48.000 Yes			Yes	T	F	F	F	T	No	Yes
49	49.000 No	No	Yes		F	T	F	T	F	No	No
50	50.000 Yes	No	Yes	No	T	F	F	F	T	No	Yes

Appendix B

Clustering Profiles

Clusters

Input (Predictor) Importance

1.0 0.8 0.8 0.6 0.4 0.2 0.2 0.0

Appendix C Predictive Modelling

Figure C1

Evaluating the 3 models

Figure C2C5.0 Model for all inputs

Figure C3

Partition Node

Figure C4

Chaid Setting

Figure C5

CART Setting

Figure C6

CART Setting

Figure C7

C5.0 Setting

