Analyse Exploratoire Des Données

TD 2. Introduction à l'Analyse Statistiques Multidimensionnelles

Présenté par : M. HAMMAD

06 Novombre 2023

Exercice 1: Dans une étude on a relevé le nombre de mois séparent la fin des études et le premier emploi en CDI (Contrat de travail à Durée Indéterminée). Les résultats sont les suivants et sont des données fictives : 9 5 5 6 5 10 5 7 8 8 8 4 7 8 4 3 4 5 7 7 6 3 2 6 9.

On notera (x_1, \dots, x_k) les valeurs possibles de ces données.

- Construire le tableau des données de cette distribution.
- Construire le diagramme en bâtons des effectives (des fréquences resp.).
- Tracer la courbe cumulative.
- Calculer les indices statistiques de cette série de données.

Exercice 2: Une étude statistique sur les résultats de 100 étudiants en Probabilités (variable X) et en Statistiques (variable Y) a donnée les résultats consignés dans le tableau suivant :

Y	2	6	8	12	14
7	9	7	1	0	0
11	2	27	3	0	1
12	2	4	15	4	2
15	0	1	4	17	1

- Calculer les moyennes marginales et les ecarts-types marginaux de X et Y.
- Déterminer le coefficient de corrélation linéaire $\rho_{X,Y}$.
- Déterminer les deux droites de regression de Y en X et de X en Y.

Exercice 3: Soient les huit points de \mathbb{R}^2 se même poids suivants : (2, -4), (5, 0), (8, 4), (3, 4), (-2, 4), (-5, 0), (-8, -4), (-3, -4).

- (2, -4), (3, 0), (6, 4), (5, 4), (-2, 4), (-3, 0), (-6, -4), (-3, -4).
 - 1. Calculer le vecteur moyen g et préciser la matrice des données centrées.
 - 2. Calculer la matrice des variances-covariances V.
 - 3. Tracer le nuage de huits points sur le plans de \mathbb{R}^2 et placer la ligne de regression de Y en X.

Exercice 4: Soient W, W_1, W_2 trois sous-espaces vectoriel de \mathbb{R}^p tels que : $W = W_1 \oplus W_2$ et $W_1 \perp W_2$. On note W^{\perp} : le sous-espace supplimentaire M-orthogonal de W dans \mathbb{R}^p .

- 1. Montrer que $I_{W^{\perp}}=I_{W_1^{\perp}}+I_{W_2^{\perp}}$ pour W_1 et W_2 de dimension 1. Généraliser.
- 2. Déduire la valeur de I_W .