2022年数学全国乙卷(文科)

- 一、单选题(本大题共12小题,共60分)

A. {2,4}

B. $\{2,4,6\}$ C. $\{2,4,6,8\}$

D. $\{2, 4, 6, 8, 10\}$

2. 设(1+2i)a+b=2i, 其中a, b为实数, 则

A. a = 1, b = -2

B. a = -1, b = 2

C. a = 1, b = 2

D. a = -1, b = -2

3. 已知向量 $\vec{a} = (2,1), \vec{b} = (-2,4), \text{则} |\vec{a} - \vec{b}| =$

B. 3

C. 4

D. 5

4. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位: h),得如下茎叶图:

甲		Z				
6 1	5.					
8530	6.	3				
7532	7.	4 6				
6421	8.	12256666				
4 2	9.	0 2 3 8				
	10.	1				

则下列结论中错误的是

- A. 甲同学周课外体育运动时长的样本中位数为7.4
- B. 乙同学周课外体育运动时长的样本平均数大于8
- C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4
- D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6
- 5. 若x, y满足约束条件 $\begin{cases} x+y \ge 2, \\ x+2 \ y \le 4, \ \text{则} \ z = 2 \ x-y \text{ 的最大值是} \\ y \ge 0, \end{cases}$

A. -2

B. 4

C. 8

D. 12

6. 设F为抛物线C: $y^2 = 4x$ 的焦点,点A在C上,点B(3,0),若|AF| = |BF|,则|AB| =

A. 2

B. $2\sqrt{2}$

C. 3

D. $3\sqrt{2}$

7. 执行右边的程序框图,输出的n=

A. 3

B. 4

C. 5

D. 6

8. 右图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是

A.
$$y = \frac{-x^3 + 3x}{x^2 + 1}$$

B.
$$y = \frac{x^3 - x}{x^2 + 1}$$

B.
$$y = \frac{x^3 - x}{x^2 + 1}$$
 C. $y = \frac{2 x \cos x}{x^2 + 1}$ D. $y = \frac{2 \sin x}{x^2 + 1}$

D.
$$y = \frac{2\sin x}{x^2 + 1}$$

9. 在正方体 $ABCD - A_1B_1C_1D_1$ 中, E, F分别为AB, BC的中点, 则

A. 平面
$$B_1EF$$
 上平面 BDD_1

B. 平面 B_1EF 上平面 A_1BD

C. 平面
$$B_1EF//$$
平面 A_1AC

D. 平面 $B_1 EF / /$ 平面 $A_1 C_1 D$

10. 已知等比数列 $\{a_n\}$ 的前3项和为168, $a_2-a_5=42$,则 $a_6=$

B. 12

D. 3

11. 函数 $f(x) = \cos x + (x+1)\sin x + 1$ 在区间 $[0, 2\pi]$ 的最小值,最大值分别为

A.
$$-\frac{\pi}{2}$$
, $\frac{\pi}{2}$

C.
$$-\frac{\pi}{2}$$
, $\frac{\pi}{2} + 2$

A. $-\frac{\pi}{2}$, $\frac{\pi}{2}$ B. $-\frac{3\pi}{2}$, $\frac{\pi}{2}$ C. $-\frac{\pi}{2}$, $\frac{\pi}{2} + 2$ D. $-\frac{3\pi}{2}$, $\frac{\pi}{2} + 2$

12. 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱 锥的体积最大时, 其高为

A.
$$\frac{1}{3}$$

B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{3}$

D. $\frac{\sqrt{2}}{2}$

二、填空题(本大题共4小题, 共20分)

13. 记 S_n 为等差数列 $\{a_n\}$ 的前n项和.若 $2S_3 = 3S_2 + 6$,则公差d =______.

14. 从甲、 乙等5名同学中随机选3名参加社区服务工作, 则甲、 乙都入选的概率为

15. 过四点(0,0), (4,0), (-1,1), (4,2)中的三点的一个圆的方程为_____.

三、解答题(本大题共7小题, 共80.0分)

(一) 必考题: 共 60 分.

17. 记 $\triangle ABC$ 的内角A, B, C的对边分别为a, b, c, 已知 $\sin C\sin(A-B) = \sin B\sin(C-A)$.

(1)若A = 2B, 求C:

(2)证明: $2a^2 = b^2 + c^2$.

18. 如图,四面体ABCD中, $AD \perp CD$,AD = CD, $\angle ADB = \angle BDC$,E 为 AC的中点.

(1)证明:平面BED 上平面ACD;

(2)设AB=BD=2, $\angle ACB=60^{\circ}$,点F在BD上,当 $\triangle AFC$ 的面积最小时,求CF与平面ABD所成角的正弦值.

19. 某地经过多年的环填治理,已将就山改造成了绿水青山. 为估计一林区某种树木的总材积量,随机选取了10棵这种村木,测量每棵村的根部横截而积 $(心位: m^2)$ 和材积量 (m^3) ,得到如下数据:

样本号i	1	2	3	4	5	6	7	8	9	10	总和
根部横截面积xi	0.04	0.06	0.04	0.08	0.08	0.05	0.05	0.07	0.07	0.06	0.6
材积量 y_i	0.25	0.40	0.22	0.54	0.51	0.34	0.36	0.46	0.42	0.40	3.9

并计算得 $\sum_{i=1}^{10} x_i^2 = 0.038$, $\sum_{i=1}^{10} y_i^2 = 1.6158$, $\sum_{i=1}^{10} x_i y_i = 0.2474$.

(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量:

(2) 求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);

(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 $186\,m^2$.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.

附:相关系数
$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}, \sqrt{1.896} \approx 1.377.$$

20. 已知函数 $f(x) = ax - \frac{1}{x} - (a+1)\ln x$.

(1)当a=0时,求f(x)的最大值;

(2)若f(x)恰有一个零点,求a的取值范围.

- 21. 已知椭圆E的中心为坐标原点,对称轴为x轴,y轴,且过A(0,-2), $B(\frac{3}{2},-1)$ 两点 (1) 求E的方程;
 - (2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x的直线与线段A B交于点T,点H满足 $\overrightarrow{MT}=\overrightarrow{TH}$,证明:直线H N过定点.

(二) 选考题: 共 10 分

22. 在直角坐标系x O y中,曲线C的方程为 $\begin{cases} x = \sqrt{3}\cos 2t \\ y = 2\sin t \end{cases}$ (t为参数).以坐标原点为极点,

x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为 $\rho\sin(\theta+\frac{\pi}{3})+m=0$.

- (1)写出1的直角坐标方程:
- (2)若l与C有公共点,求m的取值范围.

23. 已知a.b.c为正数,且 $a^{\frac{3}{2}} + b^{\frac{3}{2}} + c^{\frac{3}{2}} = 1$,证明:

- (1) $a b c \leq \frac{1}{9}$;
- $(2)\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \le \frac{1}{2\sqrt{a\,b\,c}}.$