Module de I => I

Argument de <u>I</u> et $\underline{V} => \varphi$

IC de $C \Rightarrow 1/jCw$

IC de L => jLw

Unité de Z => Ohms (V/A)

Z => U / I

φ => Phase à l'origine (radian ou degré)

 ω => vitesse angulaire ou pulsation (rad/s) = $2\pi f$

Lω => Ohms

Cω => Siemens

 $s(t) => Signal avec S valeur efficace et arg(S) = \varphi$

Q50. Soit l'association ci-contre. Quel est l'impédance complexe complexe équivalente ?

a.
$$\underline{Z} = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$$

b.
$$\underline{Z} = \frac{jL\omega}{1-j^2LC\omega^2}$$

$$\widehat{C} \cdot \underline{Z} = \frac{jL\omega}{1 - LC\omega^2}$$

d.
$$\underline{Z} = \frac{1/jC\omega}{1-LC\omega^2}$$

Soit le circuit ci-contre, où $v_e(t) = V_E \cdot \sqrt{2} \cdot \sin(\omega t)$: (Q47&48)

Q47. L'amplitude complexe de la tension u est donnée par :

a.
$$\underline{U} = \frac{1}{1 + jRC\omega} V_E$$

c.
$$\underline{U} = \frac{V_E}{R + jCC}$$

b.
$$\underline{U} = \frac{V_E \sin(\omega t)}{1 + iRC\omega}$$

$$(d.) \ \underline{U} = \frac{V_E}{2 + jRC\omega}$$

Q48. La tension u est donnée par :

a.
$$u(t) = \frac{1}{1+jRC\omega}V_E.\sqrt{2}.\sin(\omega t)$$

$$(c.) \ u(t) = |\underline{U}|.\sqrt{2}.\sin(\omega t + arg(\underline{U}))$$

b.
$$u(t) = \frac{V_E \cdot \sqrt{2} \cdot \sin(\omega t)}{2 + jRC\omega}$$

d.
$$u(t) = |\underline{U}| \cdot \sqrt{2} \cdot \cos(\omega t + arg(\underline{U}))$$

Q50. Soit \underline{Z} , l'impédance d'un dipôle formé par un condensateur en parallèle avec une bobine. L'argument de \underline{Z} est égal à :

- a. $\frac{\pi}{2}$ quelque soit la fréquence
- c. π quelque soit la fréquence
- b. $-\frac{\pi}{2}$ quelque soit la fréquence
- d) $\pm \frac{\pi}{2}$ selon la fréquence