

SHANGHAI JIAO TONG UNIVERSITY

课程报告

BI908 脑肿瘤分割项目报告

518021910971 裴奕博 学号丁一 学号陈波 学号栗行健

目录

1	项目]简介与预处理	2
	1.1	项目简介	2
	1.2	各文件(夹)功能	2
	1.3	预处理方法	4
2	实现	型方法与结果	4
	2.1	基于多阈值 Otsu 的图像分割	4
		2.1.1 传统的多阈值 Otsu 方法	4
		2.1.2 改进后的 Otsu 方法	4
	2.2	基于区域增长的图像分割	4
		2.2.1 传统的区域增长方法	4
		2.2.2 改进后的区域增长方法	4
	2.3	基于深度学习的图像分割	4
3	项目]评价	4
	3.1	各方法效果比较	4
	3.2	项目优势	5
	3.3	项目缺点	5
4	成员	是分工与贡献	5
	4.1	裴奕博	5
	4.2	T	5
	4.3	陈波	5
	4.4	栗行健	5
5	感想	見 現与展望	5

1 项目简介与预处理

1.1 项目简介

本项目采用了阈值分割,区域增长,深度学习等多种分割算法,结合锐化滤波,形态学处理等辅助增强手段,对给定的脑肿瘤进行了分割,并取得了不错的效果。整个项目均采用自己实现的 Python 算法,项目的总流程如下:

图 1: 总工作流程图

其中:

- 1) nii.gz 文件的输入输出均由 SimpleITK 包完成
- 2) 数据预处理部分的算法包括
- 3) 图像分割算法包括:去除背景的三维 Otsu 算法,传统的三维区域增长算法,改进后的三维区域增长算法。
- 4) 分割结果的形态学后处理方法包括: 开运算和闭运算操作。

我们组的编号为 04,采用的数据集是 Dataset_Group/04 文件夹下的三个待分割样本,编号分别为 $BRAT_008, BRAT_033, BRAT_259$ 。

1.2 各文件(夹)功能

- README.md 文件: 说明了本项目的主要信息和使用方法。
- requirements.txt 文件: 说明了本项目所需环境中的依赖包。
- Dataset_Group 文件夹: 存放待分割样本和标签。
- train data 文件夹:存放经切片之后的二维图像,可供深度学习使用。
- output 文件夹: 存放经过算法之后输出的文件,文件夹下共由 5 个子文件夹,对应 5 种分割和结果后处理的方法。
- run.bat 文件: 命令行运行脚本,用户若需要再不同的分割方式下进行切换,可以直接在该文件中 修改参数实现。
- main.py 文件:整个项目的主函数,包含了从数据读入,调用算法和结果评估,输出结果的全过程。

- iotest.py/sitk_test.py/iotest.nii.gz 文件:项目实现过程中的调试文件和调试输出,用户使用时不要运行。
- prepare.py 文件: 用于将原始数据切片并上采样至 256×256 的二维图像, 其结果输出为 jpg 格式, 存放在 train data 文件夹中。
- otsu.py 文件: 实现了三维的 Otsu 阈值分割函数。
- region growing.py 文件: 实现了三维的区域增长分割函数。
- validation.py 文件: 实现了混淆矩阵 (confusion matrix) 和所有评价指标的求取。
- utils.py 文件:存放运行过程中所需的常量。实现其余所有需要用到的辅助函数(如输入输出、可 视化、形态学算法等)
- result.json 文件: 存放分割算法的评价指标原始数据。
- result_to_csv.py 文件:将 json 中的原始数据读出后转换并整理为 csv 格式。
- result.csv 文件: 存放本项目各方法的最终对比结果。

1.3 预处理方法

2 实现方法与结果

- 2.1 基于多阈值 Otsu 的图像分割
- 2.1.1 传统的多阈值 Otsu 方法
- 2.1.2 改进后的 Otsu 方法
- 2.2 基于区域增长的图像分割
- 2.2.1 传统的区域增长方法
- 2.2.2 改进后的区域增长方法
- 2.3 基于深度学习的图像分割

3 项目评价

3.1 各方法效果比较

表 1: 各实现方法结果评估

sample_name	method	sensitivity	precision	accuracy	iou	dice
	multi-threshold Otsu	0.934346	0.765708	0.993947	0.726613	0.841663
	Otsu_with_opening_closing	0.969602	0.836849	0.996021	0.815455	0.898348
$BRATS_008$	$traditional_region_growing$	0.67059	0.704125	0.986517	0.523169	0.686948
	new_region_growing	0.857218	0.90009	0.994751	0.782739	0.878131
	$new_region_growing_with_closing$	0.744508	0.958709	0.992221	0.721376	0.838139
	multi-threshold Otsu	0.799434	0.742815	0.994336	0.626128	0.770085
	$Otsu_with_opening_closing$	0.938875	0.821778	0.997041	0.780044	0.876432
$BRATS_033$	$traditional_region_growing$	0.689785	0.724282	0.992319	0.546327	0.706613
	new_region_growing	0.854984	0.89775	0.99675	0.779115	0.875846
	$new_region_growing_with_closing$	0.785025	0.956462	0.996099	0.757941	0.862305
	multi-threshold Otsu	0.801038	0.770203	0.997052	0.646522	0.785318
	$Otsu_with_opening_closing$	0.733511	0.785546	0.996501	0.611133	0.758637
$BRATS_259$	$traditional_region_growing$	1	0.00024	0.993001	0.00024	0.00048
	new_region_growing	0.996561	0.811385	0.99866	0.80912	0.89449
	$new_region_growing_with_closing$	0.994516	0.853095	0.998939	0.849101	0.918393

- 3.2 项目优势
- 3.3 项目缺点

4 成员分工与贡献

4.1 裴奕博

- 完成了输入输出、可视化、结果评估、运行脚本等辅助函数的实现。
- 尝试了用 Pytorch 实现 UNet 等网络结构进行深度学习的算法。
- 与组内其他成员共同讨论,提出了分割算法改进的思路。
- 完成了后续说明文档的书写,并与组内其他成员共同完成了项目报告。
- 4.2 丁一
- 4.3 陈波
- 4.4 栗行健

5 感想与展望