

Figure 1: Networks within social media dier rom that Drople

plan	0	1	2	3
a_0	(0,0)	(1,0)	(2,0)	(3,0)
a_1	(0,0)	(1,0)	(2,0)	(3,0)

Table 1: Basis degree programs such as acebook relationshi

$$spct_{i,j} = \begin{cases} 1, & \neg af(a_j, g_i) \land \neg gf(g_i) \\ 0, & af(a_j, g_i) \land \neg gf(g_i) \\ 0, & \neg af(a_j, g_i) \land gf(g_i) \end{cases}$$
(1)

$$spct_{i,j} = \begin{cases} 1, & \neg af(a_j, g_i) \land \neg gf(g_i) \\ 0, & af(a_j, g_i) \land \neg gf(g_i) \\ 0, & \neg af(a_i, g_i) \land gf(g_i) \end{cases}$$
(2)

0.1 SubSection

Algorithm 1 An algorithm with caption while $N \neq 0$ do $N \leftarrow N - 1$ $N \leftarrow N - 1$ $N \leftarrow N - 1$

 $\begin{aligned} N &\leftarrow N-1 \\ N &\leftarrow N-1 \\ N &\leftarrow N-1 \end{aligned}$

 $N \leftarrow N - 1$ $N \leftarrow N - 1$

 $N \leftarrow N-1$

 $N \leftarrow N - 1$ $N \leftarrow N - 1$

 $N \leftarrow N - 1$ $N \leftarrow N - 1$

end while

1 Section

$$\frac{1 + \frac{a}{b}}{1 + \frac{1}{1 + \frac{1}{a}}}$$

Figure 2: Networks within social media dier rom that Drople

Figure 3: Room o o users enterprises and content providers

$$spct_{i,j} = \begin{cases} 1, & \neg af(a_j, g_i) \land \neg gf(g_i) \\ 0, & af(a_j, g_i) \land \neg gf(g_i) \\ 0, & \neg af(a_j, g_i) \land gf(g_i) \end{cases}$$
(3)

$$spct_{i,j} = \begin{cases} 1, & \neg af(a_j, g_i) \land \neg gf(g_i) \\ 0, & af(a_j, g_i) \land \neg gf(g_i) \\ 0, & \neg af(a_i, g_i) \land gf(g_i) \end{cases}$$
(4)

1.1 SubSection

plan	0	1	2	3
a_0	(0,0)	(1,0)	(2,0)	(3,0)
a_1	(0,0)	(1,0)	(2,0)	(3,0)

Table 2: Basis degree programs such as acebook relationshi

Figure 4: Room o o users enterprises and content providers