```
import requests
import pandas as pd
from sklearn import metrics
from sklearn.metrics import confusion_matrix

%matplotlib inline

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data'
data = pd.read_csv(url, names=['buying', 'maint', 'doors', 'persons', 'lug_boot', 'safety', 'class'])
data = data.drop(['persons'], axis=1)
data.head()
```

	buying	maint	doors	lug_boot	safety	class
0	vhigh	vhigh	2	small	low	unacc
1	vhigh	vhigh	2	small	med	unacc
2	vhigh	vhigh	2	small	high	unacc
3	vhigh	vhigh	2	med	low	unacc
4	vhigh	vhigh	2	med	med	unacc

print(data['buying'].unique())
print(data['class'].unique())

```
['vhigh' 'high' 'med' 'low']
['unacc' 'acc' 'vgood' 'good']

from sklearn.preprocessing import OrdinalEncoder
buying_price_category = ['vhigh', 'high', 'med', 'low']
maint_cost_category = ['low', 'med', 'high', 'vhigh']
doors_category = ['2', '3', '4', '5more']
person_capacity_category = ['2', '4', 'more']
lug_boot_category = ['small', 'med', 'big']
safety_category = ['low', 'med', 'high']
class_category = ['unacc', 'acc', 'vgood', 'good']
all_categories = [buying_price_category, maint_cost_category, lug_boot_category, safety_category, class_category]
oe = OrdinalEncoder(categories= all_categories)
```

```
tf data = oe.fit transform( data)
X = tf data[:,1:]
y = tf data[:,0]
case = [['med', 'high', '4', 'big', 'high', 'good']]
tf case = oe.fit transform(case)
                                                          + Code
                                                                     + Text
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state=143)
from sklearn.tree import DecisionTreeClassifier
DT classifier = DecisionTreeClassifier( criterion='gini', max depth= 8, min samples split= 7)
DT classifier.fit(X train, y train)
     DecisionTreeClassifier(max depth=8, min samples split=7)
y pred = DT classifier.predict(X test)
print(confusion matrix(y test, y pred))
print(metrics.classification report(y test, y pred))
     [[50 43 30 10]
      [68 10 41 9]
      [43 26 17 31]
      [41 20 59 21]]
                   precision
                                recall f1-score
                                                    support
              0.0
                        0.25
                                  0.38
                                             0.30
                                                        133
              1.0
                        0.10
                                  0.08
                                             0.09
                                                        128
              2.0
                        0.12
                                  0.15
                                             0.13
                                                        117
              3.0
                        0.30
                                  0.15
                                             0.20
                                                        141
                                             0.19
                                                        519
         accuracy
        macro avg
                        0.19
                                  0.19
                                             0.18
                                                        519
     weighted avg
                        0.19
                                  0.19
                                             0.18
                                                        519
```

case pred = DT classifier.predict(tf case(:.1:1)

print(buying_price_category[int(case_pred[0])])
low

✓ 0s completed at 7:00 AM

• ×