Problem 1:

Since $b^2 \gg 4ac$, $\sqrt{b^2 - 4ac}$ will be very close to |b|. To get the smaller root, we subtract the |b|.

When <u>b</u> is positive, for the $\underline{x+}$, the numerator would be close to -b+(b), and subtracting a nearly equal quantity will result in large relative errors.

When <u>b</u> is negative, for the <u>x</u>-, the numerator would be close to -b - (-b), and subtracting a nearly equal quantity will result in large relative errors.

```
%problem 1

function[xp,xm]=solve quadratic(a,b,c)
if (b >= 0)
    xp = (2*c)/(-b-sqrt(b^2-4*a*c));
    xm = (-b-sqrt(b^2-4*a*c))/(2*a);
else
    xp = (-b+sqrt(b^2-4*a*c))/(2*a);
    xm = (2*c)/(-b+sqrt(b^2-4*a*c));
end
```

$$(a) x^2 - 10^6 x + 1 = 0$$

The x^+ is $1.0 * 10^6$, the x^- is $1.0 * 10^{-6}$.

The error in the smaller root is $-5.0593 * 10^{-11}$

(b) $x^2 + 10^6x + 1 = 0$ (codes and results are on the next page)

The x^+ is $-1.0 * 10^{-6}$, the x^- is $-1.0 * 10^{+6}$.

The error in the smaller root is 0

Problem 2:

The answers are 0.7071. By reducing the power of x and y, we prevent the overflow.

Problem 3:

```
function y = mytanh(x)
y = 1 - 2/(exp(2*x)+1);
end

for k=[-2, -1, 0, 1, 2, 3]
x = 10^k
[mytanh(x)]
end
```

The results are on the next page.

k = -2, -1:	k = 0, 1:	k = 2, 3:	
x =	x =	x =	
0.0100	1	100	
ans =	ans =	ans =	
0.0100	0.7616		
x =	x =	x =	
0.1000	10	1000	
ans =	ans =	ans =	
0.0997	1.0000		
for k=[-2, -1, 0, 1, 2, 3]			
$x = -10^k$	1 -1		
[mytanh(x)]			

end

k = -2, -1:	k = 0, 1:	k = 2, 3:
x =	x =	x =
-0.0100	-1	-100
ans =	ans =	ans =
0.0100	-0.7616	-1
x =	x =	x =
-0.1000	-10	-1000
ans =	ans =	ans =
-0.0997	-1.0000	-1

Problem 4:

The second variance = $1.324e^{+0.3}$ is more accurate. Since all entries are the same, we expect the variance to be 0. In the first function, we keep adding $(x_i - \bar{x})^2$, the subtracting will lead to a large relative error.