

Inicio

/*Reconocer la utilidad del diccionario de datos.*/

/*Elaborar un diccionario de datos detallando un modelo relacional.*/

Desarrollo

Traspasando el modelo físico a SQL

Una compañía telefónica designa un departamento para recibir llamadas de los usuarios que presenten problemas con la señal en sus teléfonos o la plataforma online, y necesita almacenar todos los reportes como registros en la base de datos. Tenemos el siguiente modelo:

Traspasando el modelo físico a SQL

En el siguiente código verás el ejemplo de cómo se construirían las tablas con consultas SQL:

```
CREATE TABLE usuario(
    email VARCHAR(50),
    nombre VARCHAR(20) NOT NULL,
   telefono VARCHAR(15) NOT NULL,
    PRIMARY KEY (email)
    );
   CREATE TABLE registro(
    id NUMBER,
    reporte TEXT NOT NULL,
    responsable VARCHAR(50) NOT NULL,
    usuario email VARCHAR(50) REFERENCES usuario
(email),
   PRIMARY KEY (id)
    );
```

Traspasando el modelo físico a SQL

- Existen programas que nos permiten generar SQL a partir de modelos físicos y otros que nos permiten generar los diagramas a partir de SQL.
- Ejecuta el código dentro de una base de datos y agregar los siguientes datos para probar el modelo:

```
INSERT INTO usuario(email, nombre, telefono) VALUES
('usuario1@gmail.com',
    'Juan', '12345678');
    INSERT INTO usuario(email, nombre, telefono)
VALUES ('usuario2@gmail.com',
    'Francisca', '12345679');
    INSERT INTO registro (reporte, responsable,
usuario email) values ('El usuario
    presenta problemas para realizar el pago online',
'Javiera',
    'usuario1@gmail.com');
    INSERT INTO registro (reporte, responsable,
usuario email) values ('El usuario
    presenta problemas para ingresar a la plataforma',
'Javiera',
    'usuario2@gmail.com');
```

Ahora te toca a ti

Crear las tablas correspondientes al modelo físico de la siguiente imagen, la cual corresponde a una plataforma que ofrece reseña de películas. Este modelo tiende a tener registros duplicados y redundancia de datos, es decir, no está normalizado pero lo estaremos normalizando en próximos ejercicios propuestos.

Actores	Peliculas
Id_Pelicula INT [FK]	Id_Pelicula INT [FK]
Id_Actor INT [PK]	Pelicula VARCHAR(30) NOT NULL
Nombre VARCHAR(30) NOT NULL	Genero VARCHAR (20) NOT NULL

Resolvamos en conjunto

Un empleado puede trabajar en diversos proyectos de una empresa, los empleados para entrar a la plataforma necesitan identificarse con un correo corporativo, password y su nombre. De cada proyecto se tiene el nombre y una descripción.

Se pueden dar situaciones donde en un proyecto no trabaje ningún empleado y un empleado no trabaje en ningún proyecto. Procedamos con la modelación de este caso:

Modelo conceptual

- Identificar entidades
- 2. Agrupar entidades con sus atributos
- 3. Identificar relaciones y sus cardinalidades
- 4. Identificar candidatos únicos

Continuando con el caso propuesto de la plataforma de reseñas de películas, se debe realizar el diagrama del diseño conceptual, considerando la relación entre ambas entidades.

Modelo lógico

- 1. Transformar todas las entidades en tablas y agregar los atributos como columnas de la tabla.
- Transformar todas las relaciones del tipo N:N en tablas.
- 3. Propagar la clave primaria de las tablas en las relaciones 1:N desde el lado de las 1 al lado de las N.

Continuando con el caso propuesto de la plataforma de reseñas de películas, se debe diseñar el modelo lógico basado en el resultado del ejercicio propuesto 2.

Modelo físico

Una vez teniendo el modelo lógico, el único cambio que debemos hacer es incluir en los atributos el tipo de dato y la longitud de este para pasarlo a un modelo físico, pues este será el último dato necesario para pasar a la construcción de las tablas.

Continuando con el caso propuesto de la plataforma de reseñas de películas, se debe diseñar el modelo físico basado en el resultado del ejercicio propuesto 3.

Normalización

¿Para qué sirve la normalización?

Notación

Utilizaremos la siguiente notación para detallar la normalización de una tabla:

```
nombre_tabla(atributo_1, atributo_2, ..., atributo_n)
```

- Fuera de los paréntesis se tiene el nombre de la tabla con la que se trabajará.
- Dentro de los paréntesis se encuentran los atributos existentes.
- Hay casos en que dentro de una tabla pueden existir atributos repetidos. Para definirlos de forma explícita, se deben encapsular entre llaves { } de la siguiente forma:

```
nombre_tabla(atributo_1, atributo_2, ..., atributo_n,
{atributo_repetido})
```


¿Qué es un grupo repetitivo?

Lo más fácil es verlo con un ejemplo, tenemos la siguiente tabla Cliente:

En este caso, puede haber más de un teléfono asociado. Por eso es un atributo (o grupo de atributos) repetitivo, lo anterior es muy similar a esta nueva tabla:

N Cliente	Nombre	Teléfonos
1	Fernanda	123-456 123-457
2	Felipe	234-412
3	Francisco	123-411

N_Cliente	Nombre	Teléfono1	Teléfono2
1	Fernanda	123-456	123-457
2	Felipe	234-412	
3	Francisco	123-411	

Identificando las claves primarias y foráneas

 Clave primaria con el símbolo # y letras en negrita.

```
Tabla1(#clavePrimaria, atributo_1, ...,
atributo_n)
```

Clave foránea con letras cursivas.

```
Tabla2(#clavePrimaria, claveForánea, ...,
atributo_n)
```

 Claves primarias compuestas con letra negrita y signo #.

```
Tabla3(#atributoPrimario, claveForánea,
#otroAtributoPrimarioCompuesto, ..., atributo_n)
```


Continuando con el caso propuesto de la plataforma de reseñas de películas, escribir las tablas en la notación aprendida.

Ahora te toca a ti

Implementación de formas normales

Para ejemplificar el uso de las formas normales, utilizaremos el siguiente ejemplo, que corresponde a la factura de un paciente en un hospital, donde se muestran los datos del paciente y los ítems que consumió.

Resolvamos el ejemplo en conjunto:

	Factura		# 23464
			20/04/2019
Nombre pacier	te: Marta Fuentes	#Paciente: 4724	
Dirección: Mon	jitas 245	Comuna: Santiag	jo
COD-SISTEMA	A-SALUD: 10	Ciudad: Santiago)
ITEM	NOMBRE		VALOR
200	Pieza semiprivada		150
204	Televisión		10
245	Rayos X		25
414	Exámenes		35
		SUBTOTAL	220
		%IMPUESTO	22
		TOTAL	242

Primera Forma Normal (1FN)

La tabla debe cumplir las siguientes condiciones:

- Cada campo o atributo deben ser atómicos, es decir debe contener un único valor.
- No pueden haber grupos repetitivos.

Resultado:

Factura

#Factura	Fecha factura	Nombre	#Paciente	Dirección	Comuna	Ciudad	CSS
23464	20/04/19	Marta Fuentes	4724	Monjtas 245	Santiago	Santiago	10

Facturaltem

#Factura	#Item	Nombre	Valor
23464	200	Pieza semiprivada	150
23464	204	Televisión	10
23464	245	Rayos X	25
23464	414	Exámenes	35

Ahora te toca a ti

Realizar la primera forma normal con la siguiente tabla:

	Peliculas				
Id_Pelicula	Pelicula	Genero	ID_Actor	Actor	
1	Interestelar	Ficción	1	Matthew McConaughey	
1	Interestelar	Ficción	2	Anne Hathaway	
2	En busca de la felicidad	Drama	3	Will Smith	
2	En busca de la felicidad	Drama	4	Jaden Smith	

Segunda Forma Normal (2FN)

Esta forma debe cumplir las siguientes condiciones:

- Debe satisfacer la 1FN.
- Cada atributo debe depender de la clave primaria, y no solo una parte de ella.
- Los atributos que dependen de manera parcial de la clave primaria deben ser eliminados o almacenados en una nueva entidad.

Resultado:

Paciente

#Paciente	Nombre	#Dirección	Comuna	Ciudad	css
4724	Marta Fuentes	Monjitas 245	Santiago	Santiago	10

Factura

#Factura Fecha factu		#Paciente
23464	20/04/19	4724

Realizar la segunda forma normal con el resultado del ejercicio de las películas expuesto en el ejercicio propuesto 6.

Tercera Forma Normal (3FN)

Esta forma debe cumplir las siguientes condiciones:

- Debe satisfacer 2FN.
- Toda entidad debe depender directamente de la clave primaria.

Resultado:

Paciente

#Paciente	Nombre	Dirección	id_comuna	CSS
4724	Marta Fuentes	Monjitas 245	145	10

Comuna

id_comuna	Nombre	id_ciudad
145	Santiago	12

Ciudad

id_ciudad	Ciudad
12	Santiago

Continuando con el ejercicio de las películas, realiza la tercera forma normal con el resultado del ejercicio propuesto 7.

Resumen de la normalización

Desnormalización y sus usos

- Es el proceso de añadir redundancia en las tablas de manera deliberada.
- Una de las motivaciones para desnormalizar tablas en una base de datos es el reducir el tiempo de consulta al implementar joins en múltiples tablas.
- Es un paso posterior a la normalización, donde se busca maximizar la eficiencia y representación de los datos, a expensas de hacer más compleja la mantención de una tabla específica.

Resolvamos en conjunto

Tenemos una base de datos sobre pacientes en un hospital, la cual está compuesta por tres tablas:

 Una tabla Paciente, que registra el nombre del paciente, el tipo de tratamiento y el doctor con el que se atendió, éstas últimas dos columnas están registradas como claves foráneas.

Paciente	Tratamiento_id	Doctor_id
María Zenteno	1	1
Fernando Sánchez	2	2
Jose Artigas	1	2
Emilia Tapia	1	1
Felipe Zamorano	2	1
César Oyarce	2	1
Catalina Maillard	1	2

 Una tabla Doctores que vincula la clave primaria con el nombre del doctor tratante.

•	Una tabla Tratamiento que vincula la clave		
	primaria con el nombre del tratamiento		
	asignado al paciente.		

ld	Nombre
1	Astorquiza
2	Feris

ld	Nombre
1	Control Médico
2	Biopsia

Ahora te toca a ti

Una tienda de remates tiene vendedores que manejan diferentes almacenes en diferentes direcciones y ciudades. Tienen una base de datos normalizada, sin embargo, consideran que las consultas están tardando mucho porque son consultas muy procesadas con diferentes comandos y subquerys, por lo que se ven en la necesidad de desnormalizar las siguientes 3 tablas.

Direción			
id	Nombre	ciudad	
1	Maipu 727	1	
2	Santo Domingo 1450	2	
3	Santa Isabel 517	1	
4	San Pablo 1361	2	

Almacen			
id	Responsable	Ciudad	Dirección
1	Valentina	1	1
2	Valentina	2	2
2	Omar	1	3
2	Omar	2	4

Ciudad	
id	Nombre
1	Concepción
2	Santiago

Diccionario de datos

- Es un repositorio de metadatos que contiene las definiciones de los objetos de datos, descripciones y relaciones entre sí.
- incluye las características lógicas y específicas de los datos, como el nombre, descripción, alias, contenido y dominio.

Diccionario de datos

¿Para qué sirve el diccionario de datos?

 Permite que los analistas conozcan los detalles y descripciones de los elementos de la base de datos, sus relaciones, los permisos y usuarios asociados, obteniendo una lista de objetos que forman parte del flujo de datos de todo el sistema.

Elaboración de un diccionario de datos

Oracle pone a disposición una serie de vistas, que nos proporcionan valiosa información del diccionario de datos.

```
-- Seleccionar las tablas y sus comentarios, si es que
los tiene
SELECT table name TABLA,
                 COMENTARIO
       comments
FROM
      user_tab_comments
WHERE table name NOT LIKE 'BIN$%'
ORDER BY tabla;
-- resultado
             |COMENTARIO|
TABLA
PARTICIPACION
PROYECTO
USUARIO
```


Generar una sentencia SQL que extraiga la información de tus tablas para elaborar un diccionario de datos. Usa cualquiera de tus bases de datos y nombra tus atributos solo con letras.

Cierre

¿Existe algún concepto que no hayas comprendido?

Volvamos a revisar los conceptos que más te hayan costado antes de seguir adelante

talentos digitales

www.desafiolatam.com

