

第一类永动机是不可能制造的!

----热力学第一定律

$$Q = \Delta E + W$$

$$dQ = dW + dE$$
 微分形式

対理想气体:
$$W = \int_{V_1}^{V_2} P dV$$
 $\Delta E = \frac{i}{2} \nu R \Delta T$
 $Q = \nu \int_{T_1}^{T_2} C_m dT$

$$C_{V,m} = \frac{i}{2}R$$
 $C_{p,m} = C_{V,m} + R$

第3节 热力学第一定律对理想气体的应用

Applying the First Law of Thermodynamics to Ideal Gas

一、等容过程

特征 dV=0, dW=0过程方程 $V=C_1$ 或 $\frac{p}{T}=C_2$ 过程中吸热 $(dQ)_V=dE$

或
$$Q = \int dQ = \int_{T_1}^{T_2} \nu C_{V, m} dT = \nu C_{V, m} (T_2 - T_1)$$

对外做功 W=0

结论: 等容过程系统吸收的热量全部用来增加内能.

二、等温过程

设v摩尔理想气体经历等温过程

特征
$$dT=0$$

过程方程 $T=C_1$ 或 $pV=C_2$

内能增量 $\Delta E = 0$

过程中吸热 dQ = dW

$$p$$
 V_1
 V_2
 V

$$(Q)_{T} = W = \int_{V_{1}}^{V_{2}} p dV$$

$$= \int_{V_{1}}^{V_{2}} \frac{1}{V} \nu R T dV = \nu R T \ln \frac{V_{2}}{V_{1}}$$

$$\therefore p_{1}V_{1} = p_{2}V_{2} \quad \therefore W = \nu R T \ln \frac{p_{1}}{p_{2}}$$

结论:系统吸收的热量全部用来对外做功.

三、等压过程

设业摩尔理想气体经历等压过程

$$C_{p, \mathbf{m}} = \frac{i+2}{2}R$$

特征
$$dp = 0$$

特征 $C_P = C_1$ 或 $\frac{V}{T} = C_2$ 过程中吸热

$$(Q)_p = \int_{T_1}^{T_2} \nu C_{p,m} dT = \nu \frac{i+2}{2} R(T_2 - T_1)$$

对外做功

$$W = \int_{V_1}^{V_2} P dV = p(V_2 - V_1) = \nu R(T_2 - T_1)$$

内能增量

$$\Delta E = (Q)_p - W = \nu \frac{i}{2} R(T_2 - T_1) = \nu C_{V,m} (T_2 - T_1)$$

$$Q_p = \nu C_{p,m} (T_2 - T_1)$$

$$W = \nu R (T_2 - T_1)$$

$$W = \nu R (T_2 - T_1)$$

$$\Delta E = \nu C_{V,m} (T_2 - T_1)$$

- 1° 等压过程中, 系统吸收的热量一部分用来增加 内能,一部分用来对外做功。
- 2° 在等容和等压两个等值过程中,均有

$$\Delta E = \nu C_{V, m} (T_2 - T_1)$$

 ΔE 与过程无关,与过程是否为准静态过程也没 有关系, 它是理想气体内能增量的普遍式。

四、绝热过程——系统与外界无热量交换的过程

绝热过程 { 准静态绝热过程 非准静态绝热过程

1. 准静态绝热过程

特征
$$dQ = 0$$
 $dE + dW = 0$ $dW = -dE$ 自由膨胀 内能增量 $\Delta E = \nu \frac{i}{2} R \Delta T = \nu C_{V,m} \Delta T$ 对外做功 $W = -\Delta E = -\nu C_{V,m} \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$ $p_2 V_2 - p_1 V_1 = \nu R \Delta T$

$$=\frac{p_2V_2-p_1V_1}{1-\gamma}$$
吸热 $Q=0$

结论: 当气体绝热膨胀对外做功时, 气体内能减少.

自由膨胀

2. 理想气体准静态绝热过程的过程方程

$$dE = v \frac{i}{2} R dT = v C_{V, m} dT \quad dW = p dV$$

在过程中任一时刻理想气体的状态满足

$$pV = \nu RT$$

则有
$$pdV + Vdp = \nu RdT$$
 (2)

从(1)、(2)中消去dT,得
$$(C_{V,m}+R)pdV + C_{V,m}Vdp = 0$$
即 $\frac{dp}{p} + \gamma \frac{dV}{V} = 0$

$$C_{V,m}+R=C_{p,m}$$

$$C_{V,m}+R=C_{p,m}$$

$$C_{V,m}+R=C_{p,m}$$

积分可得 $\ln p + \gamma \ln V = 常量 或 pV^{\gamma} = C_1$ 泊松方程

理想气体准静态绝热过程的过程方程

$$pV^{\gamma} = C_1$$
 经推导可得
$$TV^{\gamma-1} = C_2$$
 绝热过程方程
$$p^{\gamma-1}T^{-\gamma} = C_3$$

或
$$\begin{cases} p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \\ T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \\ p_1^{\gamma - 1} T_1^{-\gamma} = p_2^{\gamma - 1} T_2^{-\gamma} \end{cases}$$

$$W = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} C_1 \frac{dV}{V^{\gamma}} = \int_{V_1}^{V_2} p_1 V_1^{\gamma} \frac{dV}{V^{\gamma}} = p_1 V_1^{\gamma} \left(\frac{V_2^{1-\gamma} - V_1^{1-\gamma}}{1-\gamma} \right) = \frac{p_2 V_2 - p_1 V_1}{1-\gamma}$$

3. 等温线与绝热线的比较

等温过程方程 **PV**=常量 等温线的斜率

$$K_{\boldsymbol{T}} = \left(\frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}\boldsymbol{V}}\right)_{\boldsymbol{T}}$$
$$= -\frac{\boldsymbol{P}}{\boldsymbol{V}}$$

绝热过程方程

绝热线的斜率

绝热线比等温线陡峭的物理解释

考虑从V₁膨胀到V₂的准静态过程

等温过程:温度T不变

绝热过程: $Q = \Delta E + A = 0$

 $W = -\Delta E = -\nu C_{V, \mathbf{m}} \Delta T$ 所以温度降低

等温: pV = 恒量 分子密度n 而: $p = \frac{2}{3}n\varepsilon_t$

绝热: $\frac{pV}{T} = 恒量 \sqrt{\varepsilon_t} = \frac{3}{2}kT$

可见,从相同初态a作同样的体积膨胀时,绝热过程的压强比等温过程的压强减少得多些。

过程	特征	过程方程	Q	W	ΔE
等容	$\Delta V = 0$	$\frac{p}{T} = C$	$\nu C_{V,\mathrm{m}} \Delta T$	0	$ u C_{V,\mathrm{m}} \Delta T$
等压	$\Delta p = 0$	$\frac{V}{T} = C$	$\nu C_{p,m} \Delta T$	$p\Delta V = \nu R \Delta T$	$ u C_{V,m} \Delta T$
等温	$\Delta T = 0$	pV = C	Q = A	$ u RT \ln \frac{V_2}{V_1} $	0
绝热	Q = 0	$pV^{\gamma} = C$ $V^{\gamma-1}T = C$ $p^{\gamma-1}T^{-\gamma} = C$		$-\nu C_{V,\mathrm{m}} \Delta T$	$ u C_{V,m} \Delta T$

$$\gamma = \frac{C_{p, m}}{C_{V, m}} = \frac{(i+2)R/2}{iR/2} = \frac{i+2}{i} > 1$$
 $Q = W + \Delta E_{11}$

过程	特征	过程方程	$oldsymbol{\mathcal{Q}}$	W	ΔE
等容	$\Delta V = 0$	$\frac{p}{T} = C$	$\nu C_{V,\mathrm{m}} \Delta T$	0	$ u C_{V,\mathrm{m}} \Delta T$
等压	$\Delta p = 0$	$\frac{V}{T} = C$	$\nu C_{p,m} \Delta T$	$p\Delta V = \nu R \Delta T$	$ u C_{V,m} \Delta T$
等温	$\Delta T = 0$	pV = C	Q = A	$vRT \ln \frac{p_1}{p_2}$	0
绝热	Q = 0	$pV^{\gamma} = C$ $V^{\gamma-1}T = C$ $p^{\gamma-1}T^{-\gamma} = C$	0	$\frac{p_2V_2-p_1V_1}{1-\gamma}$	$ u C_{V,m} \Delta T$

$$\gamma = \frac{C_{p, m}}{C_{V, m}} = \frac{(i+2)R/2}{iR/2} = \frac{i+2}{i} > 1$$
 $Q = W + \Delta E_{12}$

4. 非准静态绝热过程

绝热自由膨胀

$$(V_2, p_2, T_2)$$

自由膨胀过程中每个时刻都不是平衡态,但过程中:

$$W = 0$$
, $Q = 0$, $\triangle E = 0$, $\bigcirc \Delta T = 0$, $T_2 = T_1$

$$\begin{array}{l}
 p_1 V_1 = \nu R T_1 \\
 p_2 V_2 = \nu R T_1
 \end{array}
 \qquad
 \begin{array}{l}
 p_1 V_1 = p_2 V_2 V_2 = 2V_1 \\
 p_2 V_2 = 2V_1 V_2 = 2$$

- 注意 (1) 尽管 $T_2=T_1$,但此过程不是等温过程。
 - (2) 由于是非准静态过程,所以绝热过程方程 不适用.

例1 设有 5 mol 的氢气,最初温度20°C,压强 1.013×10⁵ Pa ,求下列过程中把氢气压缩为原体积的 1/10 需作的功: (1) 等温过程(2) 绝热过程(3) 经这两过程后,气体的

压强各为多少?

已知:
$$\nu = 5 \text{ mol}$$
 $T_0 = 293 \text{ K}$
$$P_0 = 1.013 \times 10^5 \text{ Pa} \quad V = 0.1 V_0$$

解(1)等温过程

 $W'_{12} = vRT \ln \frac{V'_2}{V_1} = -2.80 \times 10^4 \text{ J}$

(2) 氢气为双原子气体

由表查得 $\gamma = 1.41$,有

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = 753 \text{ K}$$

$$W_{12} = -\nu C_{V,m} (T_2 - T_1)$$

$$W_{12} = -4.70 \times 10^4 \,\mathrm{J}$$

(3) 对等温过程

$$p_2' = p_1(\frac{V_1}{V_2})$$

 $=1.01\times10^{6} \text{ Pa}$

对绝热过程,有

$$p_2 = p_1 (\frac{V_1}{V_2})^{\gamma}$$

$$= 2.55 \times 10^6 \text{ Pa}$$

$$C_{V,m} = 20.44 \,\mathrm{J \cdot mol^{-1} \cdot K^{-1}}$$

例1一定量的理想气体,分别经历abc, def过程。

这两过程是吸热还是放热?

 $Q = \Delta E + A$

解: abc过程

$$Q = \Delta E + A$$

ac过程: (+) 0 (+)

abc过程: (+) 0 (+)

 \therefore 在abc过程 Q > 0,系统吸热。

def 过程: $Q = \Delta E + A$

df 过程: 0 (-) (+) $|\Delta E| = A$

def 过程: (-) 不变 变小

 $\therefore Q < 0$ 系统放热。

A. 吸热

B.) 放热

C. 不吸不放

D. 无法确定

五、多方过程

理想气体在等温过程中进行着完全的功、 热之间 的转换,这时满足过程方程: pV = 常量

而在绝热过程中,气体与外界完全没有热交换, 过程方程为: $pV^{\gamma} = 常量$

实际上,在气体压缩或膨胀时所经历的过程常常是 一个介于等温和绝热之间的过程,过程方程可写为

$$pV^n$$
 =常量, $n = \frac{C - C_p}{C - C_V}$

这种过程称为多方过程 其中常数n 称为多方指数

等温、绝热、等压、等 容过程是多方过程的特例.

 pV^n =常量, $n = \frac{C - C_p}{C - C_v}$ \ n = 1, pV = 常量, 等温过程 $n = \gamma, pV^{\gamma} = 常量, 绝热过程$ n=0, $C=C_p$, 等压过程 $n \to \infty$, $C = C_v$, 等容过程 $1 < n < \gamma$,介于等温与绝 热之间的过程 例4 一理想气体在某过程中压强与体积满足关系 pV^2 =常量,求此过程中气体的摩尔热容量 $C_{n,m}$ 。

解:
$$C_{n,m} = \frac{1}{\nu} \left(\frac{dQ}{dT} \right)$$
 $dQ = dE + pdV$ $pV = \nu RT$ \therefore $dE = \nu C_{V,m} dT$ \therefore $dQ = \nu C_{V,m} dT + pdV$ 对过程方程求微分,得 $V^2 dp + 2pV dV = 0$ 化简 $V dp + 2pdV = 0$ 再对状态方程求微分得 $pdV + V dp = \nu R dT$ 以上两式相减,得 $pdV = -\nu R dT$ 故 $dQ = \nu (C_{V,m} - R) dT$ 代入第一个式子,得 $C_{v,m} = C_{V,m} - R$

第4节 循环过程 卡诺循环

Cyclic process and Carnot Cycle

- 一、热机和循环过程
 - 1. 循环过程

系统的工作物质(简称工质),经一系列变化又回到初始状态的整个闭合过程,称为循环过程。

以蒸汽机为例 蒸汽机的工质 水(液态和蒸汽)

-逆循环

 $^{\circ}$ 循环过程的特征: $\Delta E = 0$

2° 通过各种平衡态(或准静过程) 组合起来实现

3° 热功计算: 按各不同的分过程进行,综合起来 求得整个循环过程的净吸热、净功。21

2. 热机效率

热机: 利用工质做功把热能转变成机械能的装置

各种热机都是重复地进行着某些过程而不断的吸热做功。

从高温热源 T_1 吸热 Q_1 对外做净功 W_{β} 向低温热源 T_2 放热 Q_2

工质回到初态 $\Delta E = 0$

$$W_{/\!\!\!/}=Q_1-|Q_2|$$

热机效率

$$\eta = \frac{W_{\text{in}}}{Q_{\text{in}}} = \frac{Q_1 - |Q_2|}{Q_1} = 1 - \frac{|Q_2|}{Q_1} < 1$$

热机循环过程示意图

3. 致冷系数

将热机的工作过程反向运转

——致冷机

从低温库 T_2 吸热 Q_2 外界做净功 W_{β} 向高温库 T_1 放热 Q_1

工质回到初态 $\Delta E = 0$ $|W_{\beta}| = |Q_1| - Q_2$

致冷系数
$$w = \frac{Q_2 w}{|W_{i}|} = \frac{Q_2}{|Q_1| - Q_2}$$

w越高越好 (吸一定的热量 Q_2 需要的净功越少越好)

冰箱循环过程示意图

例5 空气标准奥托循环 (四冲程内燃机进行的循环过程)

(1) 绝热压缩 $a \rightarrow b$,气体从

$$V_1 \rightarrow V_2$$

(2) 等容吸热 $b \rightarrow c$ (点火爆燃), $(V_2, T_2) \rightarrow (V_2, T_3)$

- (3) 绝热膨胀 $c \rightarrow d$ (对外作功), 气体从 $V_2 \rightarrow V_1$
- (4) 等容放热 $d \rightarrow a$, $T_4 \rightarrow T_1$ 求 $\eta = ?$

b→c 吸热 $Q_1 = \nu C_{V,m} (T_3 - T_2)$ d→a 放热 $|Q_2| = \nu C_{V,m} (T_4 - T_1)$

$$\eta = 1 - \frac{|Q_2|}{Q_1}$$

$$\eta_{\text{MH}} = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{T_4 - T_1}{T_3 - T_2}$$

利用 $a \rightarrow b$, $c \rightarrow d$ 两绝热过程

$$TV^{\gamma-1} = C'' \begin{cases} T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1} \\ T_4 V_1^{\gamma-1} = T_3 V_2^{\gamma-1} \end{cases}$$

可得
$$\frac{T_3 - T_2}{T_4 - T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = r^{\gamma - 1}$$

$$\eta_{\text{與托}} = 1 - \frac{1}{r^{\gamma - 1}}$$

$$\gamma = \frac{C_{p,m}}{C_{V,m}} = \frac{i+2}{2}$$

$$r \uparrow, \eta \uparrow, r \leq 7$$
; 若 $r = 7$, $\gamma = 1.4$, $\eta = 54\%$

汽油引擎---如:四冲程内燃机

