Теоремы, утверждения, следствия

Лекция 1

Парадокс Рассела связан с неограниченным применением принципа выделения. Однако имеется немало подобных парадоксов, которые вовсе не связаны с понятием множества. Примером является

Парадокс Берри

Пусть n — наименьшее натуральное число, которое нельзя описать менее чем 11 словами. Тогда n описывается 10 словами.

Грубо говоря, ответственность за данный парадокс несёт туманное выражение «нельзя описать». Поэтому, прежде чем приступить к изложению аксиом теории множеств, по всей видимости, нужно пояснить смысл выражения «условие на объекты».

Аксиома экстенсиональности

Нередко можно услышать следующее: "Множество определяется своими элементами". В нашей системе эта идея превращается в аксиому экстенсиональности:

$$\forall X \,\forall Y \, (\forall u \, (u \in X \leftrightarrow u \in Y) \to X = Y). \tag{Ext}$$

Отметим, что «обратное» утверждение, а именно

$$\forall X \,\forall Y \, (X = Y \rightarrow \forall u \, (u \in X \leftrightarrow u \in Y)),$$

выглядит интуитивно очевидным, если понимать равенство двух объектов как их совпадение.

Аксиома пустого множества

Нет ничего проще, чем совокупность без единого элемента, существование которой нам гарантирует аксиома пустого множества:

$$\exists X \, \forall u \, (u \in X \leftrightarrow u \neq u). \tag{Empty}$$

Разумеется, такое X будет единственно в силу Ext. Его обозначают через \varnothing и называют пустым множеством.

Аксиома пары

Далее, наша система включает ряд аксиом, позволяющих получать новые множества из уже имеющихся. Простейшей из них является, пожалуй, аксиома пары:

$$\forall X \,\forall Y \,\exists Z \,\forall u \,(u \in Z \leftrightarrow (u = X \lor u = Y)). \tag{Pair}$$

Таким образом, если имеются X и Y, то можно получить Z, содержащее в точности X и Y. Полученное Z обозначают через $\{X,Y\}$ и называют неупорядоченной парой X и Y.

Схема аксиом выделения

Группы однородных аксиом обычно называют схемами. Так, для каждого условия $\Phi(x)$ имеется своя аксиома выделения:

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow (u \in X \land \Phi(u))). \tag{Sep}$$

По сути, она утверждает, что для всякого X мы можем образовать множество Y всех тех $u \in X$, которые удовлетворяют $\Phi(u)$; такое Y будет обозначаться через $\{u \in X \mid \Phi(u)\}$.

Аксиома объединения

Соединять множества в одно целое позволяет аксиома объединения:

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow \exists v \,(v \in X \land u \in v)). \tag{Union}$$

Стало быть, выражение

$$\bigcup X := \{u \mid u \in v \text{ для некоторого } v \in X\}$$

задаёт множество, которое традиционно называют объединением X. В частности, для произвольных X и Y мы можем определить

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \lor u \in Y\},\$$

называемое объединением X и Y.

Аксиома степени

Для того, чтобы сформулировать нашу следующую аксиому, удобно ввести сокращение

$$x \subseteq y := \forall v (v \in x \rightarrow v \in y).$$

Если $X \subseteq Y$, то говорят, что X является подмножеством Y, или Y включает X. Аксиома степени гласит:

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X). \tag{Power}$$

Аксиома бесконечности

Рассмотрим условие

$$\mathsf{Ind}\,(x) \ := \ \varnothing \in x \land \forall u \, (u \in x \to u \cup \{u\} \in x).$$

Будем называть X индуктивным, если верно $\operatorname{Ind}(X)$. Интуитивно каждое индуктивное множество бесконечно. Поэтому сформулируем аксиому бесконечности так:

$$\exists X \operatorname{Ind}(X).$$
 (Inf)

Значит, Inf гарантирует существование некоторого индуктивного множества.

Схема аксиом подстановки

В нашей системе для каждого условия $\Phi(x, y)$ имеется своя аксиома подстановки:

$$\forall x \,\forall y_1 \,\forall y_2 \,((\Phi(x, y_1) \land \Phi(x, y_2)) \to y_1 = y_2) \to \\ \forall X \,\exists Y \,\forall y \,(y \in Y \leftrightarrow \exists x \,(x \in X \land \Phi(x, y))). \tag{Repl}$$

Таким образом, в случае, когда $\Phi(x,y)$ удовлетворяет посылке Repl, т.е. в определенном смысле является «функциональным», для произвольного X выражение

$$\{y \mid \exists x (x \in X \land \Phi(x, y))\}$$

задаёт множество, своего рода «полный образ X относительно Φ ».

Аксиома регулярности

Значительное влияние на структуру универса всех множеств оказывает аксиома регулярности:

$$\forall X (X \neq \varnothing \to \exists u (u \in X \land X \cap u = \varnothing)). \tag{Reg}$$

(Нет необходимости воспринимать эту аксиому слишком серьёзно.)

Лекция 2

Аксиома выбора

Особое место в нашей системе занимает аксиома выбора:

$$\forall X (\varnothing \not\in X \to \exists f (f : X \to \bigcup X \land \forall u \in X (f (u) \in u))).$$
 (C)

Несмотря на довольно неоднозначную историю этой аксиомы, ныне она считается стандартной.

Вывести Nat из Inf можно с помощью Sep. Действительно, зафиксируем какое-нибудь индуктивное множество X_0 . Возьмём

$$\mathbb{N} := \{x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X)\}.$$

По построению $\forall X$ (Ind $(X) \to \mathbb{N} \subseteq X$). Кроме того, легко проверить, что Ind (\mathbb{N}) .

Теорема (принцип индукции)

Пусть Х удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \to n+1 \in X).$$

Тогда $\forall n \in \mathbb{N} \ n \in X$, т.е. $\mathbb{N} \subseteq X$.

Следствие

Для любого $n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$, т.е. $n = \{m \in \mathbb{N} \mid m < n\}$.

Следствие

Для всех $n, m, k \in \mathbb{N}$ верно следующее:

- i. $(m < k \land k < n) \rightarrow m < n$;
- ii. $\neg n < n$.

%без применения Reg

Следствие

Для всех $n, m \in \mathbb{N}$ верно следующее:

- i. $0 < n \lor 0 = n$;
- ii. $m < n \leftrightarrow (m+1 < n \lor m+1 = n)$;
- iii. $n < m \lor n = m \lor m < n$.

(При этом в (ііі) дизъюнкты взаимно исключают друг друга.)

Теорема (принцип возвратной индукции)

Пусть Х удовлетворяет условию

$$\forall n \in \mathbb{N} (\forall m < n m \in X \rightarrow n \in X).$$

Тогда \forall n ∈ \mathbb{N} n ∈ X, τ .e. $\mathbb{N} \subseteq X$.

Для произвольного X обозначим

$$\mathsf{Min}(X) := \{ x \in X \mid \neg \exists u \in X \ u \in x \}.$$

Элементы Min(X) мы будем называть \in -минимальными в X.

Теорема (принцип минимального элемента)

Если $X \subseteq \mathbb{N}$ и $X \neq \emptyset$, то $\mathsf{Min}(X) \neq \emptyset$.

Теорема (о рекурсии)

Пусть $y_0 \in Y$ и $h : \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$,

$$f\left(n
ight) = egin{cases} y_0 & ext{если } n=0, \\ h\left(m, f\left(m
ight)
ight) & ext{если } n=m+1. \end{cases}$$
 (\star)

Теорема (о рекурсии, параметризованная)

Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f: X \times \mathbb{N} \to Y$ такая, что для любых $x \in X$ и $n \in \mathbb{N}$,

$$f\left(x,n
ight) \ = \ egin{cases} g_0\left(x
ight) & ext{если } n=0, \ h\left(x,m,f\left(x,m
ight)
ight) & ext{если } n=m+1. \end{cases}$$

Лекция 3

Теорема (о рекурсии, частичной)

Пусть $y_0 \in Y$ и $h : \subseteq \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \subseteq \mathbb{N} \to Y$ такая, что:

а. для любого $n \in \text{dom}(f)$,

$$f\left(n
ight) \ = \ egin{cases} y_0 & \ \textit{если} \ n=0, \ h\left(m,f\left(m
ight)
ight) & \ \textit{если} \ n=m+1; \end{cases}$$

b. либо $\mathsf{dom}\,(f) = \mathbb{N}$, либо $\mathsf{dom}\,(f) = k + 1$ для некоторого $k \in \mathbb{N}$, причём $(k, f(k)) \not\in \mathsf{dom}\,(h)$.

Теорема (о возвратной рекурсии)

Пусть $h: \mathbb{N} \times Y^* \to Y$. Тогда существует и единственная $f: \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$,

$$f(n) = h(n, f \upharpoonright_n).$$

Теорема (о возвратной «классовой рекурсии»)

Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда сущ-ет и единственная функция f c dom $(f) = \mathbb{N}$ такая, что для любого $n \in \mathbb{N}$,

$$f(n) = \llbracket \Phi \rrbracket (n, f \upharpoonright_n).$$

Теорема

Для всех X, Y и Z верно следующее:

- a. $X \sim X$;
- b. если $X \sim Y$, то $Y \sim X$;
- с. если $X \sim Y$ и $Y \sim Z$, то $X \sim Z$.

Теорема

Для всех X, Y и Z верно следующее:

- а. если $X \preccurlyeq Y$ и $X \sim Z$, то $Z \preccurlyeq Y$;
- b. если $X \preccurlyeq Y$ и $Y \sim Z$, то $X \preccurlyeq Z$;
- c. $X \preceq X$;
- d. если $X \preccurlyeq Y$ и $Y \preccurlyeq Z$, то $X \preccurlyeq Z$.

Теорема (Кантора, обобщённая)

Для любого X верно $X \prec \mathcal{P}(X)$.

Теорема (Кантора–Шрёдера–Бернштейна)

Если $X \preccurlyeq Y$ и $Y \preccurlyeq X$, то $X \sim Y$.

Лемма

Если $X\supseteq Y\supseteq X'$ и $X\sim X'$, то $X\sim Y\sim X'$.

Предложение

Пусть X бесконечно. Тогда |X| > n для всех $n \in \mathbb{N}$.

Предложение

Пусть X конечно и $|Y| \leqslant |X|$. Тогда Y конечно.

Предложение

Пусть $f: X \xrightarrow{\mathsf{нa}} Y$, причём X конечно. Тогда $|Y| \leqslant |X|$.

Предложение

Пусть X и Y конечны. Тогда $X \cup Y$, $X \times Y$ и X^Y конечны, причём

$$\begin{aligned} |X \cup Y| &= |X| + |Y \setminus X|, \\ |X \times Y| &= |X| \cdot |Y| \quad \text{if} \quad \left|X^Y\right| &= |X|^{|Y|}. \end{aligned}$$

Предложение (в ZFC)

Пусть X бесконечно. Тогда существует счётное $Y \subseteq X$.

Следствие (в ZFC)

 $|X|>leph_0$ тогда и только тогда, когда X бесконечно и несчётно.

Предложение

 $|X| \leqslant \aleph_0$ тогда и только тогда, когда X конечно или счётно.

Следствие (в ZFC)

|X| ≯ \aleph_0 тогда и только тогда, когда |X| $\leqslant \aleph_0$.

Предложение

Пусть $f: X \xrightarrow{\text{на}} Y$, причём X не более чем счётно. Тогда Y не более чем счётно.

Следствие

Непустое X не более чем счётно тогда и только тогда, когда существует сюрьекция из \mathbb{N} на X.

Следствие

Пусть R — отношение эквивалентности на X, причём X не более чем счётно. Тогда $X_{/R}$ не более чем счётно.

Предложение

Пусть X и Y не более чем счётны. Тогда $X \times Y$ не более чем счётно.

Следствие

Пусть X и Y не более чем счётны. Тогда $X \cup Y$ не более чем счётно.

Следствие

Пусть X конечно, причём его элементы не более чем счётны. Тогда |X| не более чем счётно.

Теорема

Пусть f — бесконечная последовательность бесконечных последовательностей. Тогда $\bigcup \{ \operatorname{range}(f_n) \mid n \in \mathbb{N} \}$ не более чем счётно.

Следствие (в ZFC)

Пусть X не более чем счётно, причём его элементы также не более чем счётны. Тогда $\bigcup X$ не более чем счётно.

Теорема

Пусть X не более чем счётно и непусто. Тогда X^* счётно.

Следствие

Пусть X счётно. Тогда $\mathfrak{P}_{\mathsf{fin}}(X)$ счётно.

Теорема (в ZFC)

Пусть X бесконечно, а Y не более чем счётно. Тогда $|X \cup Y| = |X|$.

Следствие (в ZFC)

Пусть X более чем сч., а Y не более чем сч. Тогда $|X\setminus Y|=|X|$.

Лекция 5

Предложение

Пусть \mathfrak{A} — ч.у.м. Тогда:

- і. существует не более одного наибольшего в $\mathfrak A$ элемента;
- іі. всякий наибольший в $\mathfrak A$ элемент является максимальным в $\mathfrak A$;
- ііі. любые два различных максимальных в 🎗 элемента несравнимы.

Аналогично для наименьших и минимальных элементов.

Предложение

Пусть $\mathfrak A$ — л.у.м. Тогда всякий максимальный в $\mathfrak A$ элемент является наибольшим в $\mathfrak A$ (и наоборот). Аналогично для минимальных и наименьших элементов.

Предложение

Пусть даны л.у.м. $\mathfrak A$ и ч.у.м. $\mathfrak B$. Тогда всякий инъективный гомоморфизм из $\mathfrak A$ в $\mathfrak B$ является вложением $\mathfrak A$ в $\mathfrak B$.

Предложение

Для всех ч.у.м. а, в и с верно следующее:

- a. $\mathfrak{A} \simeq \mathfrak{A}$;
- b. если $\mathfrak{A} \simeq \mathfrak{B}$, то $\mathfrak{B} \simeq \mathfrak{A}$;
- с. если $\mathfrak{A}\simeq\mathfrak{B}$ и $\mathfrak{B}\simeq\mathfrak{C}$, то $\mathfrak{A}\simeq\mathfrak{C}$.

I. Пусть даны ч.у.м. $\mathfrak{A} = \langle A, \leqslant \rangle$ и $S \subseteq A$. Возьмём

$$\leq_S := \leq \cap S \times S.$$

Тогда $\langle S, \leqslant_S \rangle$ — ч.у.м., которое называют индуцированным в по S. При этом из л.у.м. всегда получится л.у.м.

II. Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$, причём A и B не пересекаются. Возьмём

$$\leq := \leq_A \cup \leq_B \cup A \times B.$$

Тогда $\langle A \cup B, \leqslant \rangle$ — ч.у.м., которое будет обозначаться $\mathfrak{A} \oplus \mathfrak{B}$. При этом из двух л.у.м. всегда получится л.у.м.

III. Пусть даны ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$. Определим \leqslant на $A\times B$ по правилу

$$\langle a_1,b_1\rangle\leqslant\langle a_2,b_2\rangle$$
 : \iff $a_1\leqslant_A a_2$ и $b_1\leqslant_B b_2$.

Тогда $\langle A \times B, \leqslant \rangle$ — ч.у.м., где \leqslant традиционно называют покоординатным порядком. Разумеется, даже в случае, когда \leqslant_A и \leqslant_B были линейными, \leqslant может оказаться нелинейным.

IV. Модифицируем предыдущую конструкцию, сделав одну из координат главной. Например, вторую:

$$\langle a_1,b_1
angle\leqslant \langle a_2,b_2
angle$$
 : \Longleftrightarrow $b_1<_B b_2$ или $(b_1=b_2$ и $a_1\leqslant_A a_2).$

Тогда $\langle A \times B, \leqslant \rangle$ — ч.у.м., которое мы будем обозначать $\mathfrak{A} \otimes \mathfrak{B}$. При этом из двух л.у.м. всегда получится л.у.м.

Теорема

Для ч.у.м. $\mathfrak A$ верен принцип трансфинитной индукции тогда и только тогда, когда $\mathfrak A$ фундировано.

Нетрудно проверить следующее.

- I. Пусть даны фундированные ч.у.м. $\mathfrak A$ и $\mathfrak B$, причём $A\cap B=\varnothing$. Тогда $\mathfrak A\oplus\mathfrak B$ будет фундированным ч.у.м.
- II. Пусть даны фундированные ч.у.м. $\mathfrak A$ и $\mathfrak B$. Тогда $\mathfrak A\otimes \mathfrak B$ будет фундированным ч.у.м.

Предложение

Пусть $\mathfrak{A} -$ в.у.м., а S -начальный сегмент \mathfrak{A} , отличный от A. Тогда существует и единственный а $\in A$ такой, что S = [0, a).

Предложение

Для каждого в.у.м. \mathfrak{A} верно $\mathfrak{A} \simeq \langle \mathsf{IS}_{\mathfrak{A}}, \subseteq_{\mathsf{IS}_{\mathfrak{A}}} \rangle$.

Предложение

Пусть $\mathfrak A - в.у.м.$, а f - вложение из $\mathfrak A в \mathfrak A$ (или «строго возрастающая функция из A в A»). Тогда $f(a) \geqslant a$ для всех $a \in A$.

Следствие

Для каждого в.у.м. $\mathfrak A$ единственным автоморфизмом $\mathfrak A$ является id_A .

Следствие

Для любых в.у.м. ${\mathfrak A}$ и ${\mathfrak B}$ имеется не более одного изом-ма из ${\mathfrak A}$ на ${\mathfrak B}.$

Лемма

Никакой собств. нач. сегмент в.у.м. $\mathfrak A$ не может быть изоморфен $\mathfrak A$.

Теорема (о сравнении в.у.м.)

Для любых в.у.м. $\mathfrak A$ и $\mathfrak B$ имеет место ровно один из трёх случаев:

- і. Я и В изоморфны;
- ii. $\mathfrak A$ изоморфно собственному начальному сегменту $\mathfrak B$;
- iii. $\mathfrak B$ изоморфно собственному начальному сегменту $\mathfrak A$.

При этом в (іі–ііі) соответствующие собственные начальные сегменты определяются однозначно.

Предложение

Пусть α — ординал и $X \in \alpha$. Тогда X — ординал.

Предложение

Пусть α — ординал и $\beta \in \alpha$. Тогда $\beta = [0, \beta)$.

Предложение

Для любых ординалов α и β ,

$$\alpha \in \beta \iff \alpha \subsetneq \beta.$$

Теорема

Для любых ординалов α , β и γ верно следующее:

- i. $\alpha \not< \alpha$;
- ії. если $\alpha < \beta$ и $\beta < \gamma$, то $\alpha < \gamma$;
- ііі. либо $\alpha = \beta$, либо $\alpha < \beta$, либо $\beta < \alpha$;
- iv. для всякого непустого множества ординалов X верно $\bigcap X \in X$, причём $\bigcap X$ является наименьшим в $\langle X, \in_X \rangle$.

Следствие

Пусть X — транзитивное множество ординалов. Тогда X — ординал.

Теорема

Пусть X — множество ординалов. Тогда $\bigcup X$ — ординал, причём $\bigcup X$ является «супремумом X» в классе всех ординалов относительно \in .

Теорема (о связи ординалов и в.у.м.)

Пусть $\mathfrak A$ — в.у.м. Тогда существует и единственный ординал α такой, что $\mathfrak A$ изоморфно $\langle \alpha, \in_{\alpha} \rangle$.

Теорема (о трансфинитной рекурсии)

Фиксируем некоторый ординал α . Пусть $h: X^{<\alpha} \to X$. Тогда существует и единственная $f: \alpha \to X$ такая, что для любого $\beta \in \alpha$,

$$f(\beta) = h(f \upharpoonright_{\beta}). \tag{*}$$

Теорема (о трансфинитной рекурсии, частичной)

Фиксируем некоторый ординал α . Пусть $h : \subseteq X^{<\alpha} \to X$. Тогда сущ. и единственная $f : \subseteq \alpha \to X$ такая, что:

а. для любого $\beta \in \text{dom}(f)$,

$$f(\beta) = h(f \upharpoonright_{\beta});$$

b. либо $dom(f) = \alpha$, либо $dom(f) = \gamma$ для некоторого $\gamma < \alpha$, причём $f \not\in dom(h)$.

Теорема (о трансфинитной «классовой рекурсии»)

Фиксируем некоторый ординал α . Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда существует и единственная функция f c dom $(f) = \alpha$ такая, что для любого $\beta \in \alpha$,

$$f(\beta) = \llbracket \Phi \rrbracket (f \upharpoonright_{\beta}).$$

Теорема (Цермело о полном упорядочении; ZFC)

Для любого A существует \leq_A такое, что $\langle A, \leq_A \rangle$ — в.у.м.

Теорема (о сравнимости по мощности; в ZFC)

Для любых X и Y верно $X \preccurlyeq Y$ или $Y \preccurlyeq X$.

Предложение

Для любых кардиналов κ и μ ,

$$\kappa \preccurlyeq \mu \iff \kappa \leqslant \mu.$$

Теорема (в ZFC)

Для каждого X имеется единственный кардинал, равномощный X.

Предложение (в ZFC)

Для любых Х и Ү верно следующее:

- i. card $(X) = \operatorname{card}(Y)$ тогда и только тогда, когда $X \sim Y$;
- іі. card $(X) \leqslant \operatorname{card}(Y)$ тогда и только тогда, когда $X \preccurlyeq Y$.

Теорема (Гёдель, 1940)

Теорема (Коэн, 1963)

Можно доказать, что CH нельзя доказать в ZFC. "ещё интереснее

Лекция 8

Теорема (Лемма Цорна; в ZFC)

Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ — ч.у.м. с непустым носителем, в котором у любой цепи имеется верхняя грань. Тогда в \mathfrak{A} есть максимальный элемент.

Следствие (в ZFC)

Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ — ч.у.м., в котором у любой цепи имеется верхняя грань. Тогда для каждого $a \in A$ в \mathfrak{A} есть макс. элемент $a' \geqslant_A a$.

Теорема (в ZFC)

Пусть X бесконечно. Тогда $|X \times X| = |X|$.

Следствие (в ZFC)

Если $0 < |X| \leqslant |Y|$ и Y бесконечно, то $|X \times Y| = |Y|$.

Следствие (в ZFC)

Пусть $|X|\leqslant |Y|$ и Y бесконечно. Тогда $|X\cup Y|=|Y|$.

Следствие (в ZFC)

Пусть |X| < |Y| и Y бесконечно. Тогда $|Y \setminus X| = |Y|$.

Следствие (в ZFC)

Пусть X бесконечно. Тогда $|X^*|=|X|$.