Localizing what??

Daniel Teixeira

October 8, 2025

Contents

1	Localizations	1
2	Reflective subcategories	3
3	Localization at local objects	5
4	Locally presentable categories	6
5	ω -categories	8
6	Localizing at a prime p	9

In this note we study two kinds of localization and their intersection. While we focus on classical category theory, the ideas and theorems generalize to higher categories (see ??).

1 Localizations

Recall the usual definition of localization of a category at a collection of morphisms.

Definition 1.1. A localization of a category \mathcal{C} at a collection of morphisms W is a functor $L: \mathcal{C} \to \mathcal{C}[W^{-1}]$ sending W to isomorphisms in $\mathcal{C}[W^{-1}]$ satisfying the following universal property:

• If $F: \mathcal{C} \to \mathcal{D}$ is a functor sending W to isomorphisms in \mathcal{D} , then there exists a functor $\widetilde{F}: \mathcal{C}[W^{-1}] \to \mathcal{D}$ and a natural isomorphism $\sigma: F \cong \widetilde{F} \circ L$. Given another such pair $(\widetilde{F}', \sigma')$, there exists a unique natural isomorphism $\tau: \widetilde{F} \cong \widetilde{F}'$ such that $(\tau.L) \circ \sigma = \sigma'$.

Example 1.2. The localization of \mathcal{C} at all morphisms is the groupoid obtained by inverting every morphism in \mathcal{C} .

Notice that no conditions are imposed in W. The following alternative will prove itself useful.

Definition 1.3. A localization of a category \mathcal{C} at a collection of morphisms W is a functor $L:\mathcal{C}\to\mathcal{C}[W^{-1}]$ such that

- 1. $\underline{\sharp}(L) := L^* : \mathbf{Cat}(\mathcal{C}[W^{-1}], \mathcal{E}) \to \mathbf{Cat}(\mathcal{C}, \mathcal{E})$ is fully faithful for every category \mathcal{C} .
- 2. the essential image of L^* consists of functors sending W to isomorphisms.

With this we can call a functor a localization without specifying W:

Definition 1.4. A functor $F: \mathcal{C} \to \mathcal{D}$ exhibits \mathcal{D} as a localization of \mathcal{C} if it is the localization of \mathcal{C} at some collection of morphisms.

Yet, there is always a canonical characterization of W:

Proposition 1.5. If $F: \mathcal{C} \to \mathcal{D}$ is a localization of \mathcal{C} and W be the collection of morphisms $f \in F$ such that Ff is an isomorphism in \mathcal{D} . Then $\mathcal{D} = \mathcal{C}[W^{-1}]$.

Proof. [DT: to-do] Suppose that F is a localization of C at W', so that $W' \subseteq W$ and hence $C[W^{-1}] \to \mathcal{D}$. Then Definition 1.3 allows us to regard $Cat(C[W^{-1}], \mathcal{D})$ as a full subcategory of $Cat(C[W'^{-1}], \mathcal{E})$

Corollary 1.6. A functor $F: \mathcal{C} \to \mathcal{D}$ is not a localization of \mathcal{C} at W iff there exists a morphism $f \in W$ such that Ff is not an isomorphism.

Saturation

Definition 1.7. A collection of morphisms $S \subseteq \mathcal{C}$ is **saturated** if there exists a functor $F : \mathcal{C} \to \mathcal{D}$ such that S is precisely the class of morphisms sent to isomorphisms by F.

Proposition 1.8. If $S \subseteq \mathcal{C}$ is saturated, then it satisfies 2-out-of-3 and contains all isomorphisms.

Proof. This is very easy. \Box

Proposition 1.9. A collection of morphisms $S \subseteq \mathcal{C}$ is saturated iff S is precisely the class of morphisms inverted by $\mathcal{C} \to \mathcal{C}[S^{-1}]$.

Proof. Assume that S is saturated via a functor $F: \mathcal{C} \to \mathcal{D}$. Notice that

Definition 1.10. The **saturation** of a class of morphisms $S \subseteq \mathcal{C}$ is is precisely the collection \bar{S} of morphisms sent to isomorphisms by $L: \mathcal{C} \to \mathcal{C}[S^{-1}]$.

Proposition 1.11. The saturation of $S \subseteq \mathcal{C}$ is the smallest saturated class of morphisms containing S.

Proof. \Box

Proposition 1.12. $C[S^{-1}] \cong C[\bar{S}^{-1}]$

Proof. The converse is obvious.

2 Reflective subcategories

Definition 2.1. A **reflective subcategory** of a category \mathcal{C} is a full subcategory \mathcal{D} whose inclusion functor $i: \mathcal{D} \hookrightarrow \mathcal{C}$ has a left adjoint L.

Example 2.2. A category is *gaunt* if it has no non-trivial isomorphisms. The full subcategory inclusion **Gaunt** \hookrightarrow **Cat** admits a left adjoint that "gauntifies" a category by first identifying isomorphic objects, then discarding the resulting automorphisms.

Example 2.3. The full subcategory inclusion $\mathbf{Gpd} \hookrightarrow \mathbf{Cat}$ admits a left adjoint which sends a category to the groupoid obtained by inverting all morphisms.

Example 2.4. A category is *contractible* or (-2)-truncated if it is equivalent to a point. The full subcategory inclusion $\mathbf{Cat}_{\leq -2} \hookrightarrow \mathbf{Cat}$ admits a left adjoint which sends a category to the codiscrete groupoid on its objects.

Lemma 2.5. Let $i: \mathcal{D} \hookrightarrow \mathcal{C}$ is a reflective subcategory with $L \dashv i$. Then

- 1. the counit $\varepsilon: Li \Rightarrow 1_{\mathcal{C}}$ is a natural isomorphism.
- 2. whiskering L with the unit $\eta: 1_{\mathcal{D}} \Rightarrow RL$ defines a natural isomorphism $L\eta: L \cong LRL$.

Proof. The action of i on morphisms factors by pulling back with the counit:

$$i: \mathcal{C}(x,a) \xrightarrow{\varepsilon_x^*} \mathcal{C}(Lix,a) \cong \mathcal{C}(ix,ia).$$

The composite map is a bijection iff ε_x^* is a bijection iff ε_x is a natural isomorphism, proving (1).

For (2), applying the inverse of ε_{Lx} to the triangle equation $\varepsilon_{Lx} \circ L\eta_x = 1_{L_x}$ shows that $L\eta_x = \varepsilon_{Lx}^{-1}$, which is invertible.

Proposition 2.6. If $i : \mathcal{D} \hookrightarrow \mathcal{C}$ is a reflective subcategory, then the left adjoint $L \dashv i$ is a localization of \mathcal{C} at $W := \{ f \in \mathcal{C} : Lf \text{ is an isomorphism} \}$.

Proof. Let $F: \mathcal{C} \to \mathcal{E}$ be a functor sending W to isomorphisms in \mathcal{E} , and define the functor $\widetilde{F} := F \circ i : \mathcal{D} \to \mathcal{E}$. Lemma 2.5 implies that the components of the unit are in W, so F takes them to isomorphisms in \mathcal{E} . It follows that $F\eta : F \cong \widetilde{F} \circ L$ is a natural isomorphism.

Next we show uniqueness up to unique natural isomorphism. If $(\hat{F}, \rho : \hat{F}L \cong F)$ is another extension of F via L, then pasting with ε defines a natural isomorphism $\sigma : \hat{F} \cong Fi =: \widetilde{F}$:

The compatibility condition $(\sigma L)(F\eta) = \rho$ follows from one of the triangle identities for $L \dashv i$:

$$(\sigma L)(F\eta) = \begin{array}{cccc} \mathcal{C} & \xrightarrow{F} & \mathcal{E} & \mathcal{C} & \xrightarrow{F} & \mathcal{E} \\ \stackrel{\downarrow}{L} & \stackrel{\eta}{i} & \stackrel{i}{\varepsilon} & \stackrel{\downarrow}{L} & \stackrel{\rho}{\rho} & \stackrel{\hat{F}}{\hat{F}} & = & \stackrel{\downarrow}{L} & \stackrel{\rho}{\rho} & \stackrel{\hat{F}}{\hat{F}} & = \rho. \\ \mathcal{D} & \xrightarrow{\mathcal{D}} & \mathcal{D} & \mathcal{D} & \mathcal{D} & \mathcal{D} & \mathcal{D} \end{array}$$

The other triangle identity implies that any other compatible natural isomorphism $\sigma': \hat{F} \cong \tilde{F}$ is actually equal to σ :

Remark 2.7. A reflective localization is an adjoint pair whose right adjoint is fully faithful, or equivalently whose counit is invertible. Reflective subcategories are a particular case of reflective localizations, and most results in this section also hold for reflective localizations. In fact, if $L: \mathcal{C} \hookrightarrow \mathcal{D}: R$ is a reflective localization, then the essential image of R is a reflective subcategory of \mathcal{C} .

Remark 2.8. Reflective localizations can be regarded as a categorification of idempotent splitting. First notice that if $L \dashv i$ is a reflective localization then the reflection T := iL is an idempotent monad as the canonical multiplication $iLiL \xrightarrow{i \in L} iL$ is an isomorphism $T^2 \cong T$. Notice that this definition makes sense in any 2-category. A weaker variant of idempotent splitting is used by Douglas-Reutter to define semisimple 2-categories.

Non-examples

The following non-example is only a reflective subcategory in the 2-categorical sense.

Example 2.9. A flagged category is an essentially surjective functor $F: \mathcal{G} \to \mathcal{C}$, where \mathcal{G} is a groupoid. An ordinary category \mathcal{C} has a canonical flagging given by $\mathbf{ob}(\mathcal{C}) \hookrightarrow \mathcal{C}$, and this construction determines a fully faithful functor $\mathbf{Cat} \to \mathbf{Cat}_{\mathrm{flagged}}$. This functor is in fact a right adjoint, and the reflective localization $L: \mathbf{Cat}_{\mathrm{flagged}} \to \mathbf{Cat}$ sends $F: \mathcal{G} \to \mathcal{C}$ to the quotient category \mathcal{C}/\sim defined by the congruence relation generated by $Ff \sim 1_{s(f)}$.

Question 2.10. Are univalent categories S-local with respect to a generating set S? (c.f. Corollary 4.8) In other words, is the a small collection of functors of flagged categories S such that a category is univalent iff it is orthogonal to S?

The following non-example is only a reflective subcategory in the ∞ -sense.

Example 2.11. A space is *n*-truncated if its homotopy groups vanish above degree n. The inclusion $S_{\leq n} \hookrightarrow S$ admits a left adjoint which sends a space to its truncation.

Remark 2.12. The full subcateogry *n*-connected spaces is a *core*flective subcategory, as the inclusion $S_{\geq n} \hookrightarrow S$ admits a *right* adjoints.

3 Localization at local objects

In this section S is a collection of morphisms of a category C.

Definition 3.1. An object $c \in \mathcal{C}$ is **S-local** if $f^* : \mathcal{C}(b,c) \to \mathcal{C}(a,c)$ is a bijection for every $f : a \to b$ in S.

Remark 3.2. Being S-local means that extension problems against S have unique solutions:

$$\begin{array}{c}
x \longrightarrow c \\
S \ni \downarrow \qquad \exists! \\
y
\end{array}$$

Example 3.3. Let J denote the walking isomorphism. The local objects of **Cat** with respect to the terminal map $\exists !: J \to *$ are precisely the gaunt categories.

Example 3.4. Let I denote the walking morphism. The local objects of **Cat** with respect to one of the non-trivial inclusions $I \hookrightarrow J$ are precisely the groupoids.

Example 3.5. A category is contractible iff it is local with respect to the morphism $\partial I \hookrightarrow I$. \triangle

Notation 3.6. A full subcategory inclusion $i: \mathcal{D} \hookrightarrow \mathcal{C}$ induces a restricted Yoneda embedding $\mathcal{L}_{\mathcal{D}}: \mathcal{C} \to \mathbf{Set}^{\mathcal{D}^{\mathrm{op}}}$ given by $c \mapsto \mathcal{C}(c, i(-))$. For the remainder of this section i denotes the full subcategory inclusion $i: \mathcal{C}_S \hookrightarrow \mathcal{C}$ of the S-local objects.

Definition 3.7. A morphism $f: x \to y$ is **S-local** if $\sharp_{\mathcal{D}}(f)$ is an isomorphism. In other words, $f^*: \mathcal{C}(y,c) \to \mathcal{C}(x,c)$ is an isomorphism for every S-local object c.

Remark 3.8. The S-local equivalences is, by the definition, the saturation of S.

Lemma 3.9. The S-local morphisms always satisfy 2-out-of-3.

Proof. This is true for any saturated class of morphisms (Proposition 1.8). \Box

Lemma 3.10. Suppose that S satisfies 2-out-of-3 and contains identities. If c and d are S-local objects then $f: c \to d$ is an S-local equivalence iff it is an isomorphism.

Proof. The following lift provides a left inverse to f:

$$c = c$$

$$f \downarrow \qquad \exists ! g$$

Then g is still in S by 2-out-of-3. By the same argument it also has a left inverse, which must be equal to f since left and right inverses must agree.

Proposition 3.11. If S-local objects form a reflective subcategory $i: C_S \hookrightarrow C$, then the left adjoint $L \dashv i$ is a localization of C at the S-local morphisms.

Proof. By Proposition 2.6, it suffices to show that the S-local morphisms are precisely those morphisms inverted by L. Indeed, a morphism $f: x \to y$ is S-local iff $\sharp_{\mathcal{C}_S}(f) = f^* : \mathcal{C}(y, i(c)) \to \mathcal{C}(x, i(c))$ is a bijection for every $c \in \mathcal{C}_S$. Transposing the last equation we obtain the equivalent condition that $Lf^* : \mathcal{C}_S(Ly, c) \to \mathcal{C}_S(Lx, i(c))$ is a bijection for every $c \in \mathcal{C}_S$, but this is precisely the Yoneda embedding applied to $Lf \in \mathcal{C}_S$, so it holds iff Lf is an isomorphism.

Proposition 3.12. If $i: \mathcal{D} \hookrightarrow \mathcal{C}$ is a reflective subcategory with $\mathcal{D} = \mathcal{C}[S^{-1}]$, then the essential image of i is precisely the full subcategory of S-local objects.

Proof. This follows from Remark 2.7.

A common situation is that we have shown that $L: \mathcal{C} \to \mathcal{D}: i$ is a reflective localization which we want to characterize as a reflection at some S-local objects i.e. we want to determine the essential image of i.

Question 3.13. Let S be a class of morphisms such that $C_S \hookrightarrow C$ is a reflective subcategory with left adjoint L. Then $C_S = C[W^{-1}]$ where W is the collection of morphisms that L sends to isomorphisms. Definitely $S \subseteq W$, so that there is a functor $C[S^{-1}] \to C[W^{-1}] \cong C_S$. When is this an equivalence?

4 Locally presentable categories

Proposition 4.1. Let C be a locally presentable category and $D \hookrightarrow C$ a full subcategory. Then the following are equivalent:

- 1. \mathcal{D} is the subcategory of S-local objects for set of morphisms.
- 2. D is a reflective subcategory closed under filtered colimits.

Proof. This is Theorem 1.39 in Adámek-Rosický.

Proposition 4.2. Let C be a category. The following are equivalent:

- 1. C is locally presentable.
- 2. C is the category of continuous presheaves on some category A.
- 3. C is a reflective category of $\mathbf{Set}^{\mathcal{A}}$ closed under filtered colimits for some category \mathcal{A} .
- 4. C is the category of S-local objects of $\mathbf{Set}^{\mathcal{A}}$ for some category \mathcal{A} .
- 5. C is the completion of a category A under filtered colimits.

Proof. This is Theorem 1.46 in Adámek-Rosický.

[DT: something something sheaves]

Lemma 4.3. Let S be a collection of morphisms in a category C and consider the full subcategory $C_S \hookrightarrow C$ on the S-local objects. Then C_S is closed under limits. If the domain and codomain of morphisms in S are compact, then C_S is also closed under filtered colimits.

Proof. Use the hypotheses to take the (co)limits out of the hom-sets and apply the definition of S-local objects.

Corollary 4.4. Let C be a locally presentable category and let S be a collection of morphisms whose domains and codomains are compact. Then $C_S \hookrightarrow C$ is a reflective subcategory exhibiting $C[S^{-1}]$.

Proof. Combine Lemma 4.3 with Proposition 4.1.

Remark 4.5. The definitions and theorems of reflective localizations and locally presentable categories parse verbatim to ∞ -categories. If a specific model desired, then the *Bousfield localization* at a space of morphisms presents the category of S-local objects. This construction always exits when the model structures are *combinatorial*, i.e. when the ∞ -categories are presentable.

Codiagonal completion

Let \mathcal{C} be a locally presentable category and \mathcal{D} be a reflective subcategory, so that $\mathcal{D} \cong \mathcal{C}[W^{-1}]$ for a saturated class of morphisms W (combine Remark 3.8 with Proposition 3.11). What does it mean to say that W is generated by a set I?

Then for any set of morphisms $I \subseteq \mathcal{C}$ we can produce a *weak* factorization systems via the small object argument. Namely, the factorization system is $(\operatorname{cell}(I), \operatorname{rlp}(I))$, where $\operatorname{cell}(I)$ can equivalently regarded as $\operatorname{llp}(\operatorname{rlp}(I))$ or the collection of I-cell complexes, i.e. the closure of I under pushouts, transfinite composition, and retracts (in the arrow category $\operatorname{Arr}(\mathcal{C})$).

On the other hand, we can turn rlp(I) into orlp(I) (unique lifts) by adding codiagonals, that is, given any $f: x \to y$ in I also add the morphism $y \underset{x}{\sqcup} y \to y$ induced by the identities on y:

Then a morphism has unique lifts against I iff it has lifts against \widetilde{I} .

Now run the small object argument to obtain the weak factorization system $(\operatorname{cell}(\tilde{I}), \operatorname{rlp}(\tilde{I}))$, which is in fact an orthogonal factorization system.

Suppose that \mathcal{C} has terminal objects. Then, by definition,

$$x \in \mathcal{C}$$
 is *I*-local $\iff x \xrightarrow{\exists !} * \in \text{rlp}(\widetilde{I})$.

Likewise a morphisms is an I-local equivalence iff it has the LLP against I-local objects. Hence the I-local equivalences are precisely the (I)-cell complexes. By virtue of Remark 3.8, we have shown the following.

Corollary 4.6. If I is a class of morphisms in a locally presentable category, then the following sets are the same:

- 1. the I-local equivalences.
- 2. the \widetilde{I} -cell complexes, where \widetilde{I} is the codiagonal completion of I.
- 3. the saturation of I.

Now suppose that you show that a subcategory $\mathcal{D} \hookrightarrow \mathcal{C}$ is reflective, and moreover that the objects of \mathcal{D} are I-local morphisms with respect to a small class morphisms. Then you can describe the S-local morphisms sharply: they are \widetilde{I} -cell complexes.

Corollary 4.7. Let C be a locally presentable category and $D \hookrightarrow C$ be a reflective category of S-local objects for a set of morphisms $S \subseteq C$. Suppose that the full subcategory Arr(C) on S is accessibly embedded, i.e. closed under filtered colimits. Then $D = C[S^{-1}]$.

Proof. [DT: to-do, the point is that the additional condition should correspond to \mathcal{D} being closed under filtered colimits, as suggested by the first theorem in this section]

The following corollary is rephrasing Corollary 4.4 in the language of this subsection.

Corollary 4.8. Let C be a locally presentable category and suppose that W is a saturated set of morphisms of the form W = cell(I) for a set of morphisms I. Then the full subcategory on I-local objects presents $C[W^{-1}] \cong C[I-1]$.

Example 4.9. Let $C = \mathbf{Cat}$ and $I = \{\partial \Theta_1 \hookrightarrow \Theta_1\}$ (see Construction 5.4), so that a functor is orthogonal to I iff it is fully faithful. The codiagonal completion \widetilde{I} of I adds the morphism $\partial \Theta_2 \twoheadrightarrow \Theta_1$, hence there is an orthogonal factorization system (cell(\widetilde{I}), orlp(I)). This must be equal to the factorization system (eso, f.f.), hence cell(\widetilde{I}) is precisely the collection of fully faithful functors.

Moreover, a category is *I*-local iff it is a contractible groupoid, but we have seen in Example 3.5 that these form a reflective subcategory of Cat. Hence $Cat_{\leq -2}$ is precisely the localization of Cat at $\partial \Theta_1 \hookrightarrow \Theta_1$.

5 ω -categories

[DT: In progress for the ATCAT.]

Definition 5.1. A category is a fixed point for enrichment if $V \cong VCat$.

Proposition 5.2. The category \mathbf{Cat}_{ω} of ω -categories is a terminal object for the full subcategory of SymMonCat at the fixed points for enrichment.

 \triangle

Proof. This is due to Goldthorpe.

Definition 5.3. The suspension of an ω -category \mathcal{C} is the ω -category with two objects and whose unique hom- ω -category is \mathcal{C} .

Construction 5.4. The n-globe is the n-category Θ_n defines as the n-th iterated suspension of the point *:

$$\Theta_0 = *, \qquad \Theta_1 = * \longrightarrow * \qquad \Theta_2 = * \downarrow \stackrel{\checkmark}{\nearrow} \cdots$$

The boundary of the n-globe is the (n-1)-category $\partial \Theta_n$ obtained by discarding the top morphism:

$$\partial\Theta_0 = \emptyset$$
, $\partial\Theta_1 = *$ * $\partial\Theta_2 = *$ * ...

Proposition 5.5. Let $S_{\geq n}$ denote the set of boundary inclusions $\partial \Theta_i \hookrightarrow \Theta_i$ for $i \geq n$. Then an ω -category is $S_{\geq n}$ -local iff it is an n-category.

Corollary 5.6. The subcategory of n-categories forms a reflective subcategory of Cat_{ω} .

Proof. [DT: to-do] Since Cat_{ω} is locally presentable there is a sthere is a reflection onto the subcategory of S-local objects.

6 Localizing at a prime p

[DT: Just a sketch. The goal is to pinpoint results analogous to the yoga of p-local spectra.]

Let R be a PID and $R_{\mathfrak{p}}$ the localization of R away from a prime ideal $\mathfrak{p} \subset R$.

$$R_{\mathfrak{p}} = \left\{ \frac{r}{s} : r \in R, s \in R \setminus \mathfrak{p} \right\}$$

Example 6.1. The ring $\mathbb{Z}_{(2)}$ consists of rational numbers with odd denominator.

Proposition 6.2. The functor $\mathbf{Mod}_R \to \mathbf{Mod}_{R_{\mathfrak{p}}}$ defined by $M \mapsto M \otimes_R R_{\mathfrak{p}}$ is a reflective localization.

Proof. [DT: to-do]

Proposition 3.12 implies that $\mathbf{Mod}_{R_{\mathfrak{p}}}$ is equivalent to the category of S-local modules for some class of homomorphisms S. We will give a sharper description of this subcategory.

Proposition 6.3. An R-module M is S-local iff the endomorphism defined by $m \mapsto r \cdot m$ is invertible for $r \notin \mathfrak{p}$ iff it is local with respect to the canonical homomorphism $R \to R_{\mathfrak{p}}$.

Proof.

Corollary 6.4. A finitely generated R-module is \mathfrak{p} -local iff it only has \mathfrak{p} -torsion, i.e. the endomorphism defined by $m \mapsto r \cdot m$ is nilpotent iff $r \in \mathfrak{p}$.

Example 6.5. A finite abelian group is p-local iff it only has no p-torsion. \triangle

Proposition 6.6. A homomorphism of R-modules is \mathfrak{p} -local iff it induces isomorphisms on the \mathfrak{p} -torsion subgroups.