USN					
0 21 1					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Fast track Examinations Oct-2020

Computer Science and Engineering DISCRETE MATHEMATICS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	How many permutations are there for the letters a, b, c, d, e, f, g, h ? How	
		many starts with letter g and end with letter h?	02
	1.2	Find the number of 5 digit positive integer such that in each of them	
		every digit is greater than the digit to the right.	01
	1.3	Determine the co-efficient of x^{12} in the expansion of $x^3(1-2x)^{10}$	02
	1.4	Determine the number of integer solutions for $x_1 + x_2 + x_3 + x_4 = 18$,	
		where $x_i \le 7$, $i = 1, 2, 3, 4$	02
	1.5	What is the negation of the following statement?	
		$\exists x \forall y [(p(x,y) \lor q(x,y)) \to r(x,y)]$	02
	1.6	For the partition of the set $A = \{1, 2, 3, 4\}$, given as $P = \{\{1, 2\}, \{3, 4\}\}$.	
		Find the equivalence relation induced by <u>P</u>	01
1	1.7	If the function f is defined by $f(x) = x^2 + 1$ on a set $A = \{-2, -1, 0, 1, 2\}$.	
		Find the range of f	02
	1.8	Consider the functions f and g defined by $f(x) = x^2$ and	
		$g(x) = x^4 - 1$, $\forall_x \in R$ Find $g \circ f$ and f^2	02
	1.9	Construct DFA to accept all the strings of a's and b's which is not	
		ending with ab.	02
	1.10	Define the extended transition function δ^* for $\in -NFA$	01
	1.11	Show that $(Z_6, +)$ ia an abelian group.	02
	1.12	The word $C = 1010110$ is transmitted through a binary symmetric	
		channel. If $e = 0101101$ is the error pattern, find the receiver word 'r'.	01

PART-B

2	а	if A, B and C are sets, prove both analytically and using Venn diagrams						
		$A - (B \cap C) = (A - B) \cup (A - C)$	06					
	b	State and prove the extended addition rule.						
	С	Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 20$						
		where $x_1 \ge 3, x_2 \ge 2, x_3 \ge 4, x_4 \ge 6, x_5 \ge 0$						
	•							
3	а	Prove the following by mathematical induction: $n! \ge 2^{n-1}$ for all						
		integers $n \ge 1$	04					

	b	Find and solve the recurrence relation for the number of binary sequence of length $n \ge 1$ that have consecutive 0's.	04
	С	Solve the recurrence $a_{n+1} - a_n = 3n^2 - n$, $n \ge 0$, $a_o = 3$	08
4	a	Prove the following logical equivalence without using truth tables i) $[(p \lor q) \land (p \lor \sim q)] \lor q \Leftrightarrow p \lor q$	0.6
	b	ii) $(p \rightarrow q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$ Test the validity of the argument	06
	C	$(\neg p \lor q) \to r, r \to (s \lor t), \neg s \land \neg u, \neg u \to \neg t \vdash p$ Show that the argument below is valid	04
		$\forall_x [p(x) \lor q(x)]$	
		$\frac{\forall_{x}[(\backsim p(x) \lor q(x)) \to r(x)]}{\therefore \forall_{x}[\backsim r(x) \to p(x)]}$	06
5	a	Define <i>DFA</i> , Language accepted by <i>DFA</i> . Construct <i>DFA</i> accepting the language over $\Sigma = \{0,1\}$ which has even numbers of 0's and odd number of 1's.	08
	b	Construct <i>NFA</i> to accept all strings which have second symbol from <i>RHS</i> is 'b' over $\Sigma = \{a, b\}$. Find the equivalent <i>DFA</i> for the constructed	
		NFA.	08
		OR	
6	a	Define the following terms with respect to $\in -NFA$ with suitable examples.	
		i) \in -closure(q)	00
	b	ii) Extended transition function δ^* Convert the following $\in -NFA$ given below to an equivalent NFA	08
		$\rightarrow A^0 \in B \in D_1$	
			08
7	a	Consider the sets $A = \{a, b, c\}$ and $B = \{1,2,3\}$ and the relations $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$ and $S = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$ from A to B .	
		Determine $\bar{R}, \bar{S}, R \cup S, R^C$ and $R_0(R \cap S)$.	08
	b	Let $A = \{1,2,3,4\}, B = \{a,b,c\}$ and $C = (w,x,y,z)$ with $f := A \rightarrow B$ and	
		$g: B \to C$ given by $f = \{(1, a), (2, a), (3, b), (4, c)\},$	
		$g = \{(a, x), (b, y), (c, z)\}$. Find $g \circ f$.	04
	С	Draw the Harse diagram represented by the positive divisor of 36.	04
8		Show that $(U_{14},)$ is cyclic and find all its generators.	06
	b	State and prove Lagrange's theorem.	04
	c	The encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by the generator matrix	
		$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$	
		i) Determine the code words. What is the error detection and	
		correction capability of this code?	
		ii) Find the associated parity check matrix <i>H</i> .	0.0
		iii) Use <i>H</i> to decode the received words 11101, 11011	06