${f EE2703: Applied Programming Lab} \\ {f Assignment 4}$

Aman Singhal EP17B002

February 26, 2020

Abstract

This assignment is about finding the Fourier coefficients of the two given functions i.e. $\exp(x)$ and $\cos(\cos(x))$ and reconstructing them from their Fourier series.

Introduction

The Fourier series of a function f(x) is given by the following formula:

$$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi n}{T}t\right) + b_n \sin\left(\frac{2\pi n}{T}t\right)$$

where a_n and b_n are the Fourier coefficients of the function and can be found using the following formulae:

$$a_0 = \frac{1}{T} \int_0^T x(t)dt$$
$$a_n = \frac{2}{T} \int_0^T x(t) \cos\left(\frac{2\pi n}{T}t\right) dt$$

$$b_n = \frac{2}{T} \int_0^T x(t) \sin\left(\frac{2\pi n}{T}t\right) dt$$

Problems with solutions and outputs

0.0.1 Problem 1

Plotting $\exp(x)$ and $\cos(\cos(x))$

0.0.2 Problem 2

Plotting the coefficients for $f1(x) = \exp(x)$ and the coefficients for $\cos(\cos(x))$.

0.0.3 Problem 3

"Least Squares approach" to the problem. Finding the Fourier coefficients of the functions by solving and finding the least square solution of the matrix equation Ax = b.

0.0.4 Problem 4

Finding the absolute difference between the two sets of coefficients and finding the largest deviation. Largest deviation in An coefficients = 1.332730870335368 Largest deviation in Bn coefficients = 2.5394379427569514e-15

0.0.5 Problem 5

Plotting the actual functions and the estimated functions from the Fourier coefficients obtained from least square method

