Semaine n° 5: du 2 octobre au 6 octobre

Lundi 2 octobre

- Cours à préparer : Chapitre V Nombres complexes
 - Partie 1 : Inégalité triangulaire.
 - Partie 2 : Formules d'Euler, formule de Moivre.
 - Partie 3 : Groupe des nombres complexes de module 1.
 - Partie 4.1 : Racines carrées d'un nombre complee sous forme algébrique.
- Exercices à corriger en classe
 - Feuille d'exercices n° 3 : exercices 8 et 9.

Mardi 3 octobre

- Cours à préparer : Chapitre V Nombres complexes
 - Partie 4.2 : Résolution des équations du second degré.
 - Partie 5 : Racines énièmes de l'unité, racines énièmes d'un nombre complexe.
- Exercices à corriger en classe
 - Feuille d'exercices nº 4 : exercices 8 et 9.

Jeudi 5 octobre

- Cours à préparer : Chapitre V Nombres complexes
 - Partie 6 : Formules trigonométriques, technique de l'anglé moitié, linéarisation, factorisation.
 - Partie 7: Exponentielle complexe.
 - Partie 8 : Colinéarité, orthogonalité; transformations isométries, similitudes directes.
- Exercices à corriger en classe
 - Feuille d'exercices n° 4 : exercices 11 et 12.

Vendredi 6 octobre

- Cours à préparer : Chapitre V Equations différentielles linéaires
 - Partie 1.1 : Continuité et dérivabilité d'une fonction à valeurs complexes ; dérivation et opérations ; dérivée de $x \mapsto \exp(u(x))$ où u est une fonction dérivable à valeurs complexes ; dérivées successives.
 - Partie 1.2 : Primitives.

Échauffements

Mardi 3 octobre

- Calculer $\sum_{1 \leqslant i < j \leqslant 6} i j$.

Jeudi 5 octobre

- Résoudre le système suivant : $\begin{cases} x 2y + 3z = 1 \\ -3x + z = 3 \\ 2x y + z = -1 \end{cases}$ Cocher toutes les assertions vraies : $\Box \text{ La fonction } x \longmapsto \frac{\ln(x)}{x} \text{ est la dérivée de } x \longmapsto \left(\ln x\right)^2 \text{ sur } [1, +\infty[.]]$
- - \square La fonction $x \longmapsto \frac{1}{x}$ est la dérivée de $x \longmapsto \frac{-1}{x^2}$ sur $[1, +\infty[$.
 - \square La fonction $x \longmapsto \frac{1}{r^3}$ a pour dérivée $x \longmapsto \frac{-1}{r^2}$ sur $]0, +\infty[$.
 - $\square \ \ \text{La fonction} \ x \longmapsto \mathrm{e}^{\,-\frac{x^2}{2}} \ \text{admet comme primitive} \ x \longmapsto \frac{1}{x} \mathrm{e}^{\,-\frac{x^2}{2}} \ \text{sur} \ [1,+\infty[.$

Vendredi 6 octobre

• Résoudre $z^2 + (1 - 2i)z - i - 3 = 0$.