# Страменопилы

(финальная презентация)

|                   | Название                    | Идентификатор   | Длина генома | Число генов |
|-------------------|-----------------------------|-----------------|--------------|-------------|
| Екатерина Гришина | Aureococcus anophagefferens | GCF_000186865.1 | 56.7 Mb      | 11522       |
| Полина Шайдурова  | Phytophthora sojae          | GCF_000149755.1 | 82.6 Mb      | 28142       |
| Илья Герман       | Blastocystis hominis        | GCF_000151665.1 | 18.8 Mb      | 6020        |
| Ян Аникиев        | Nannochloropsis gaditana    | GCF_000240725.1 | 34 Mb        | 3465        |
| Михаил Сизов      | Aphanomyces invadans        | GCF_000520115.1 | 71.4 Mb      | 15416       |
| Ульяна Ключникова | Aphanomyces astaci          | GCF_000520075.1 | 75.8 Mb      | 19 584      |
| Георгий Караваев  | Thalassiosira pseudonana    | GCF_000149405.2 | 32.4 Mb      | 11771       |
| Денис Михайлов    | Phytophthora nicotianae     | GCF_000247585.1 | 82.4 Mb      | 23240       |
| Егор Попов        | Phaeodactylum tricornutum   | GCF_000150955.2 | 27.5 Mb      | 10398       |
|                   |                             |                 |              |             |

#### Число G квадруплексов

Интроны

Промотеры

Downstream

Межгенники

Всего

T. pseudonana

P. nicotianae

P. tricornutum

Экзоны

| A. anophagefferens | 415   | 101  | 73   | 105  | 33  | 256   |
|--------------------|-------|------|------|------|-----|-------|
| P. sojae           | 2426  | 530  | 256  | 1100 | 402 | 1693  |
| B. hominis         | 105   | 42   | 8    | 34   | 9   | 59    |
| N. gaditana        | 18495 | 1908 | 1550 | 1756 | 573 | 15349 |
| A. invadans        | 33    | 31   | 1    | 14   | 3   | 8     |
| A. astaci          | 170   | 127  | 11   | 22   | 2   | 8     |
|                    |       |      |      |      |     |       |

# Доля G квадруплексов

|                    | Экзоны | Интроны | Промотеры | Downstream | Межгенники |
|--------------------|--------|---------|-----------|------------|------------|
| A. anophagefferens | 0.24   | 0.18    | 0.25      | 0.08       | 0.62       |
| P. sojae           | 0.22   | 0.11    | 0.45      | 0.17       | 0.70       |
| B. hominis         | 0.4    | 0.08    | 0.32      | 0.09       | 0.56       |
| N. gaditana        | 0.1    | 0.08    | 0.09      | 0.03       | 0.83       |
| A. invadans        | 0.94   | 0.03    | 0.42      | 0.01       | 0.24       |
| A. astaci          | 0.75   | 0.06    | 0.13      | 0.02       | 0.05       |
| T. pseudonana      | 0.33   | 0.05    | 0.39      | 0.11       | 0.64       |
| P. nicotianae      | 0.29   | 0.02    | 0.34      | 0.12       | 0.68       |
| P. tricornutum     | 0.47   | 0.0     | 0.56      | 0.09       | 0.56       |





Видим, что почти все организмы коррелируют по долям квадруплексов, кроме A. invadans и A. astaci, представителей одного рода

- 0.6

- 0.4

- 0.2

- 0.0

### Число Z-ДНК (ZDNABERT)

Экзоны

Всего

A. anophagefferens

T. pseudonana

P. nicotianae

P. tricornutum

| P. sojae    | 104869 | 57326 | 7219 | 38401 | 6715 | 42806 |
|-------------|--------|-------|------|-------|------|-------|
| B. hominis  | 1178   | 836   | 49   | 336   | 48   | 328   |
| N. gaditana | 30287  | 4262  | 970  | 2775  | 599  | 25249 |
| A. invadans | 2717   | 3538  | 303  | 989   | 174  | 351   |
| A. astaci   | 5661   | 4306  | 189  | 846   | 109  | 211   |

Интроны

Промотеры

Downstream

Межгенники

## Доля Z-ДНК (ZDNABERT)

|                    | Экзоны | Интроны | Промотеры | Downstream | Межгенники |
|--------------------|--------|---------|-----------|------------|------------|
| A. anophagefferens | 0.36   | 0.08    | 0.20      | 0.04       | 0.58       |
| P. sojae           | 0.55   | 0.07    | 0.37      | 0.06       | 0.41       |
| B. hominis         | 0.71   | 0.04    | 0.29      | 0.04       | 0.28       |
| N. gaditana        | 0.14   | 0.03    | 0.09      | 0.02       | 0.83       |
| A. invadans        | 1.3    | 0.11    | 0.36      | 0.06       | 0.13       |
| A. astaci          | 0.76   | 0.03    | 0.15      | 0.02       | 0.04       |
| T. pseudonana      | 0.51   | 0.06    | 0.42      | 0.09       | 0.43       |
| P. nicotianae      | 1.09   | 0.04    | 0.38      | 0.07       | 0.22       |
| P. tricornutum     | 0.67   | 0.04    | 0.42      | 0.09       | 0.31       |







Здесь хорошо коррелируют все, кроме А. anophagefferens и N. gaditana, оомицет и водоросль (живущие в воде)

# Параметры

- Выравнивая строились при помощи ClustalW со стандартными параметрами
- Деревья строились при помощи **Minimum Evolution Tree** со стандартными параметрами
- Параметры для ZHUNT были взяты с прошлого года, то есть запуск команды выглядел так: !./zhunt3 12 8 12 genomic.fna и порог был равен 300
- Параметры для ZDNABERT были стандартными, то есть:

model = 'HG kouzine' model\_confidence\_threshold = 0.5 minimum\_sequence\_length = 10

| Pfam Domain | HGNC approved symbol | Function                                        |
|-------------|----------------------|-------------------------------------------------|
| PF00004     | ATAD2                | Chromatin remodeling                            |
| PF00012     | HSPA1A               | Histone modification write cofactor             |
| PF00022     | ACTB                 | Chromatin remodeling, Histone modification read |
| PF00063     | MYO1C                | Chromatin remodeling cofactor                   |
| PF00069     | AURKA                | Histone modification write                      |







Фитофторы и Aphanomyces часто попадают в одну кладу (патогены). Aureococcus рядом с Blastocystis (паразиты). И оставшиеся 3 водоросли группируются часто в одну кладу.

# GQ PF00022 (Chromatin remodeling cofactor)

| 1. Thalassiosira pseudonana XP 002286111.1 q1  |   |   |   |   |     |   |   |     |     |     |   |                  |   |     |     |     |   |   |   |   |   |     |     |     |   |   |   |
|------------------------------------------------|---|---|---|---|-----|---|---|-----|-----|-----|---|------------------|---|-----|-----|-----|---|---|---|---|---|-----|-----|-----|---|---|---|
| 2. Blastocystis hominis XP 012895781.1 q1      | С | C | С | Α | C   | С | G | G   | T   | CC  | C | Α                | С | G ( | 3 ( | 3 A | C | C | C | Α | С | G   | G G | A 6 | C | C | C |
| 3. Blastocystis hominis XP 012898538.1 q2      | _ | 4 | C | С | C ( | С | G | T   | T   | T C | C | С                | С | T   | Τ.  |     | C | C | С | G | С | T   | AC  | C   | C | C | - |
| 4. Astacy Invadans XP 008862936.1 q1           | - | G | G | G | G   | T | G | G T | T   | 3 G | - | : <del>-</del> : | G | G   | T   | G G | G | С | G | G | G | G ( | G ( | ) - | - | - | - |
| 5. Phaeodactylum tricornutum XP 002180828.1 q1 | - | G | G | G | Α   | T | G | G ( | 3 ( | 3 A | T | T                | С | G   | T   | C   | G | G | G | G | G | T   | GG  | G   | - |   |   |

# GQ PF00118





#### **GQ PF00171**



# GQ PF00224 (Histone modification write cofactor)

| 1. Aureococcus anophagefferens EGB05272.1 q1 | - | 2  | _  | G | G | G | C   | T/ | A ( | CC  | T | G | G   | 3 A | G | C | G | G   | 3 ( | A | G | C | C | C   | 3          | 3 ( | 3  |
|----------------------------------------------|---|----|----|---|---|---|-----|----|-----|-----|---|---|-----|-----|---|---|---|-----|-----|---|---|---|---|-----|------------|-----|----|
| 2. Aureococcus anophagefferens EGB05272.1 q2 | C | C  | C  | A | G | G | C ( | C  | G   | CC  | C | Α | G / | A C | G | С | С | C   | 3 0 | G | G | Α | G | C   | 0          |     |    |
| 3. Phytophthora sojae XP 009535963.1 q1      | - | ÷  | -  | - | G | G | G   | T/ | A   | A A | G | G | G   | G A | T | T | T | A ( | 3 ( | G | Α | T | С | A ( | 3 (        | 3 ( | 3  |
| 4. Phytophthora sojae XP 009516171.1 q2      | - | C  | C  | C | T | G | A   | T  | C ( | СС  | T | Α | A A | ۱C  | C | С | С | С   | П   | П | Α | С | C | C   |            |     |    |
| 5. Aphanomyces astaci XP 009822641.1 q1      | - | 20 | 23 | 2 | 2 | _ |     |    | - ( | CC  | C | С | C   | C   | C | C | C | C   | C   | T | C | C | C | C   | <i>i</i> . | 4   | 38 |





# ZDNA PF06068 (Chromatin remodeling, modification write)







GAGCCCACGCGCGCGCGCGCGCGCGCGTTCC

2. Aureococcus anophagefferens EGB11573.1 q2 - - - - T C G G C G C C C G C G G G C C T C - - - - - -

1. Aureococcus anophagefferens EGB11573.1 q1 - - - -

#### **ZDNA PF00224**





#### **ZDNA PF00136**





#### **ZDNA PF00183**

