GSMST APPLICATIONS OF LINEAR ALGEBRA IN PROGRAMMING

Learning LaTeX

Submitted By: Anish Goyal 4th Period Submitted To:
Mrs. Denise Stiffler
Educator

April 13, 2023

Contents

1	Mathematical expressions														2								
	1.1	Expression	1.																				2
	1.2	Expression	2 .																				3
	1.3	Expression	3.																				4
	1.4	Expression	4 .																				5
	1.5	Expression																					
	1.6	Expression																					
	1.7	Expression	7.																				8
	1.8	Expression	8 .																				Ć
	1.9	Expression																					
	1.10	Expression	10																				11
	1.11	Expression	11																				12
	1.12	Expression	12																				13
	1.13	Expression	13																				14
	1.14	Expression	14																				15
	1.15	Expression	15																				16
2	A L	aTeX Men	ne																				17

1 Mathematical expressions

,

1.1 Expression 1

$$\begin{cases} w + x + y + z = 6 \\ w + y + z = 4 \\ w + y = 2 \end{cases}$$

\Huge

\systeme {

$$w + x + y + z = 6$$
,
 $w + y + z = 4$,
 $w + y = 2$
}
$$\begin{cases} w + x + y + z = 6 \\ + y + z = 4 \\ w + y = 2 \end{cases}$$

1.2 Expression 2

$$k \neq -1, 1$$

$$\frac{1}{k+1}, \frac{1}{k+1}$$

\Huge \begin{eqnarray*}
k\neq-1, 1 \\
\\
{\frac{1}{k+1}},{\frac{1}{k+1}}
\end{eqnarray*}

$$k \neq -1, 1$$

$$\frac{1}{k+1}, \frac{1}{k+1}$$

1.3 Expression 3

$$\operatorname{tr} A := \sum_{j=1}^{n} a_{jj}.$$

\Huge

 $\coperatorname{tr}A:=\sum_{j=1}^{n}a_{jj}$

$$\operatorname{tr} A := \sum_{j=1}^{n} a_{jj}$$

1.4 Expression 4

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

\begin{eqnarray*}
A(\theta)={\left[
\begin{matrix}
\cos{\theta} & -\sin{\theta} \\
\sin{\theta} & \cos{\theta}
\end{matrix}\right]}.
\end{eqnarray*}

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

1.5 Expression 5

$$A = \begin{bmatrix} 0 & a & a^2 & a^3 & a^4 \\ 0 & 0 & a & a^2 & a^3 \\ 0 & 0 & 0 & a & a^2 \\ 0 & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & a & a^2 & a^3 & a^4 \\ 0 & 0 & a & a^2 & a^3 \\ 0 & 0 & 0 & a & a^2 \\ 0 & 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

1.6 Expression 6

3.1.6. Proposition. Let $n \in \mathbb{N}$ and $\mathbf{M}_{n \times n}$ be the collection of all $n \times n$ matrices. There is exactly one function

$$\det \colon \mathbf{M}_{n \times n} \to \mathbb{R} \colon A \mapsto \det A$$

\$\$

\$\$

3.1.6 Proposition. Let $n \in \mathbb{N}$ and $\mathbf{M}_{n \times n}$ be the collection of all $n \times n$ matrices. There is exactly one function

$$\det: \mathbf{M}_{n \times n} \to \mathbb{R} \colon A \mapsto \det A$$

1.7 Expression 7

3.1.12. Proposition. If $A \in \mathbf{M}_{n \times n}$ and $1 \le j \le n$, then

$$\det A = \sum_{k=1}^{n} a_{jk} C_{jk}.$$

\Large \begin{proposition}

If $A \in \mathbb{M}_{n \subset n} \$ and $1 \le j \le n$, $\left(\sup_{0 \le j \le n} \frac{10000pt \min 1}{j} \right)$

 $\label{eq:condition} $$ \det A: \sum_{k=1}^{n}a_{jk}C_{jk} \ \left(\exp(\alpha t) \right) $$ \end{proposition}$

Proposition 1. If $A \in M_{nn}$ and $1 \le j \le n$, then

$$\det A: \sum_{k=1}^{n} a_{jk} C_{jk}$$

1.8 Expression 8

$$|ad + be + cf| \le \sqrt{a^2 + b^2 + c^2} \sqrt{d^2 + e^2 + f^2}.$$

\begin{eqnarray*}

$$|ad + be + cf| \le \sqrt{a^2 + b^2 + c^2} \sqrt{d^2 + e^2 + f^2}$$

1.9 Expression 9

Let V be the set of all real numbers x such that $x \geq 0$. Define an operation of "addition" by

$$x \boxplus y = xy + 1$$

for all $x, y \in V$. Define an operation of "scalar multiplication" by

$$\alpha \boxdot x = \alpha^2 x$$

for all $\alpha \in \mathbb{R}$ and $x \in V$.

\text{Let \$V\$ be the set of real numbers \$x\$ such that \$x >= 0\$. Define an operation
\begin{center}

 $x \setminus boxplus \setminus y = xy+1$

\end{center}

\begin{flushleft}

 $\label{text for all x, $y \in V$. Define an operation of "scalar multiplication" by $$ \$

\end{flushleft}

\begin{center}

 $a \setminus boxdot \setminus x = a^2x$

\end{center}

\begin{flushleft}

 $\text{text}\{\text{for all } a \in \mathbb{R} \text{ and } x \in \mathbb{V}.\}$

\end{flushleft}

Let V be the set of real numbers x such that $x \ge 0$. Define an operation of "addition" by

$$x \boxplus y = xy + 1$$

for all $x, y \in V$. Define an operation of "scalar multiplication" by

$$a \odot x = a^2 x$$

for all $a \in R$ and $x \in V$.

1.10 Expression 10

$$\begin{bmatrix} 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \vdots & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & \vdots & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 & \vdots & 0 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & \frac{1}{2} & \vdots & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{X_1} \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & \vdots \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & \vdots \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 & \vdots \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \vdots \end{bmatrix}$$

```
\begin{eqnarray*}
\left [ \begin{matrix}
0 & -\frac{1}{2} & 0 & \frac{1}{2} & : & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & : & 0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 & : & 0 & 0 & 1 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} & 0 & : & 0 & 0 & 1 & 0 \\
1 & 0 & \frac{1}{2} & \frac{1}{2} & : & 0 & 0 & 0 & 1 \\
\end{matrix} \right ] \xrightarrow{X_1}
\left [ \begin{matrix}
1 & 0 & \frac{1}{2} & \frac{1}{2} & : & & & & & \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & : & & & & \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & : & & & \\
\frac{1}{2} & 0 & -\frac{1}{2} & : & & & \\
\end{matrix} \right ]
\end{eqnarray*}
```

$$\begin{bmatrix} 0 & -\frac{1}{2} & 0 & \frac{1}{2} & : & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & : & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 & : & 0 & 0 & 1 & 0 \\ 1 & 0 & \frac{1}{2} & \frac{1}{2} & : & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{X_1} \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & : \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & : \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 & : \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & : \end{bmatrix}$$

1.11 Expression 11

$$a_{jk} = \begin{cases} 0, & \text{for } |j - k| > 1\\ 1, & \text{for } |j - k| = 1\\ 2\cos x, & \text{for } j = k. \end{cases}$$

\Huge

$$a_{jk} = \left(\frac{1}{2} \right)$$

0, & \text{for \$\vert j-k \vert 1\$} \\
1, &\text{for \$\vert j-k \vert = 1\$} \\
2\cos x, &\text{for \$j=k\$} \\

\end{cases}

$$\mathbf{a}_{jk} = \begin{cases} 0, & \text{for } |j - k| 1\\ 1, & \text{for } |j - k| = 1\\ 2\cos x, & \text{for } j = k \end{cases}$$

1.12 Expression 12

4.1.3. Definition. Let \mathbf{x} and \mathbf{y} be nonzero vectors in \mathbb{R}^n . Then $\measuredangle(\mathbf{x}, \mathbf{y})$, the ANGLE between \mathbf{x} and \mathbf{y} , is defined by

$$\measuredangle(\mathbf{x},\mathbf{y}) = \arccos\frac{\langle \mathbf{x},\mathbf{y}\rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

\begin{flushleft}

 $\text{\text{$$1.3$ Definition. }Let \mathbb{x} and \mathbb{y} be nonzero vectord{flushleft}}$

\begin{equation*}

 $\label{langle (\mathbb{x}, \mathbb{y})} = \arccos \frac{\ln x}{x}, \mathbf{y}) = \arccos \frac{\ln x}{x}, \mathbf{y})$

4.1.3 Definition. Let \mathbf{x} and \mathbf{y} be nonzero vectors in \mathbb{R}^n . Then $\angle(\mathbf{x}, \mathbf{y})$, the ANGLE between \mathbf{x} and \mathbf{y} , is defined by

$$\measuredangle(\mathbf{x},\mathbf{y}) = \arccos\frac{\langle \mathbf{x},\mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}$$

1.13 Expression 13

\Huge \begin{eqnarray*}
M\cap N \\
M\cup N
\end{eqnarray*}

 $M \cap N$ $M \cup N$

1.14 Expression 14

$$\int_0^1 t g(t) \, dt = 0 \qquad \text{ and } \qquad \int_0^1 t^4 g(t) \, dt = 0$$

 $\begin{eqnarray*} $$ \int_{0}^{1}t g(t)\, d t=0 \\ \text{and} \ \ \int_{0}^{1}t^{4} \end{eqnarray*} $$$

$$\int_0^1 tg(t) \, dt = 0 \qquad \text{and} \qquad \int_0^1 t^4 g(t) \, dt = 0$$

1.15 Expression 15

$$\mathbf{y} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

 $\label{left(-{frac{1}{2}},{frac{sqrt{3}}{2}}\rightarrow 0)} $$ \operatorname{to}(-{frac{1}{2}},{frac{sqrt{3}}{2}}\rightarrow 0) $$$

$$\mathbf{y} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

2 A LaTeX Meme

