Seminar of HA—Homology Functor

Liu Xiaolong

2020年10月29日

1 Basic Defnition

Definition 1.1. A chain complex in an abelian category A is a sequence of objects and morphisms in A (called differentials),

$$(C_{\bullet}, d_{\bullet}) = \rightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \rightarrow,$$

such that $d_n d_{n+1} = 0$ for all $n \in \mathbb{Z}$.

Definition 1.2. A chain map $f = f_{\bullet} : (C_{\bullet}, d_{\bullet}) \to (C'_{\bullet}, d'_{\bullet})$ is a sequence of $f_n : C_n \to C'_n$ for all $n \in \mathbb{Z}$ making the following diagram commute

Remark 1.1. (i) If we give two chain maps $f_{\bullet}: (C_{\bullet}, d_{\bullet}) \to (C'_{\bullet}, d'_{\bullet})$ and $g_{\bullet}: (C'_{\bullet}, d'_{\bullet}) \to (C''_{\bullet}, d''_{\bullet})$, and their composite is defined by $(gf)_n = g_n f_n$;

- (ii) The category of all complex in A, denoted by Comp(A), is an abelian category;
- (iii) We define a notation \rightarrow $C^{m+1}_{ullet} \stackrel{f_{m+1}}{\longrightarrow} C^{m}_{ullet} \stackrel{f_{m}}{\longrightarrow} C^{m-1}_{ullet} \rightarrow$ is a large diagram as

follows:

$$\longrightarrow C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \xrightarrow{p_{n+1}} C_{n+1} \longrightarrow \\
\downarrow^{d'_{n+1}} & \downarrow^{d_{n+1}} & \downarrow^{d''_{n+1}} \\
\longrightarrow C_{n} \xrightarrow{i_{n}} C_{n} \xrightarrow{p_{n}} C_{n} \longrightarrow \\
\downarrow^{d'_{n}} & \downarrow^{d_{n}} & \downarrow^{d''_{n}} \\
\longrightarrow C_{n-1} \xrightarrow{i_{n-1}} C_{n-1} \xrightarrow{p_{n-1}} C_{n-1} \longrightarrow \\
\downarrow & \downarrow & \downarrow$$

- Example 1.1. (i) All exact sequence is a complex by adding the zeros in its head and tail.
- (ii) Singular complex. Consider the standard simplex $\Delta_q = \{\sum_{j=0}^q c_j e_j : c_j \geq 0, \sum_{j=0}^q c_j = 1\}$ and a topological space X. Consider a continuous map $\sigma_q : \Delta_q \to X$ and this called a singular simplex in X. Now we let $\partial_q(\sigma_q) = \sum_{j=0}^q (-1)^j \sigma_q | [e_0, ..., \hat{e_i}, ..., e_n]$. Then all these σ_q formed a basis and generate a free abelian group $S_q(X)$ and $\partial_q \partial_{q+1} = 0$.

of continuous

(iv) Let U be an open set of \mathbb{R}^n , then we have

$$0 \longrightarrow \Omega^0(U) \stackrel{d}{\longrightarrow} \Omega^1(U) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Omega^k(U) \stackrel{d}{\longrightarrow} \Omega^{k+1}(U) \stackrel{d}{\longrightarrow} \cdots$$

where $\Omega^k(U)$ is a set of all k-forms ω on U where $\omega: U \to \bigcup_{p \in U} A_k(T_p\mathbb{R}^n)$ with $p \mapsto \omega_p$. Let $\omega = \sum_I a_I dx^I \in \Omega^k(U)$, then $d\omega = \sum_I da_I dx^I$ $= \sum_I \left(\sum_j \frac{\partial a_I}{\partial x^j} dx^j\right) \wedge dx^I \in \Omega^{k+1}(U)$. At = 0.

(v) Consider
$$\partial_n : \mathbf{a} \mapsto \mathbf{A}\mathbf{a}$$
 where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ & 0 \end{pmatrix}$ and $\mathbf{a} \in \mathbb{R}^2$. Let $C_n = \mathbb{R}^2$ with ∂_n formed a complex since $\partial_n \partial_{n+1} = 0$.

Resolutions

Definition 1.3. A projective resolution of $A \in \text{Ob}(A)$, where A is an abelian category, is an exact sequence $\mathbf{P} : \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} A \to 0$ in which each P_n is projective.

Let P is a projective resolution of A, then its **deleted projective resolution** is the complex $P_A : \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \to 0$. This need not be exact.

Remark 1.2. (i) Deleting A loses no information since we have

$$A = \operatorname{Im}\varepsilon \cong P_0/\ker\varepsilon = P_0/\operatorname{Im}d_1 = \operatorname{coker}d_1;$$

(ii) In $_R$ Mod or Mod $_R$, we can define free resolution and flat resolution.

Definition 1.4. A injective resolution of $A \in Ob(A)$, where A is an abelian category, is an exact sequence $\mathbf{E}: 0 \to A \xrightarrow{\eta} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \to in$ which each E_n is injective.

Let E is a injective resolution of A, then its **deleted injective resolution** is the complex $E^A: 0 \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \to$. This need not be exact.

Remark 1.3. Deleting A loses no information since $A \cong \ker d^0$.

Remark 1.4. In projective resolution $P : \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} A \to 0$, we define $K_0 = \ker \varepsilon$ and $K_n = \ker d_n, n \geq 1$. Then we call K_n the nth syzygy of P.

In injective resolution $\mathbf{E}: 0 \to A \xrightarrow{\eta} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \to$, we define $V_0 = \operatorname{coker} \eta$ and $V_n = \operatorname{coker} d^{n-1}, n \geq 1$. Then we call V_n the nth cosyzygy of \mathbf{E} .

Proposition 1.1. Every A be a R-module has a free resolution (hence projective, flat).

Proof. Since A = (X|Y) and we can find a free module F_0 with a basis X such that we have an exact sequence $0 \to K_1 \xrightarrow{i_1} F_0 \xrightarrow{\varepsilon} A \to 0$. Then we consider K_1 and find a free module F_1 , we have an exact sequence $0 \to K_2 \xrightarrow{i_2} F_1 \xrightarrow{\varepsilon'} K_1 \to 0$. Then we consider

k,=ker g

where $\operatorname{Im} d_1 = K_1 = \ker \varepsilon$ and $\ker d_1 = K_2$.

Proposition 1.2. Every A be a R-module has a injective resolution.

Proof. Every module can be imneded as a submodule of and injective module E^0 , then we have $0 \to A \xrightarrow{\eta} E^0 \xrightarrow{\pi} V^0 \to 0$ where $V = \frac{V^0 = \operatorname{coker} \eta}{\Gamma}$ and π is natural map. Then we have $V \xrightarrow{\eta'} E^1$. Then we consider

A= F/K =<\x7/{\\

and well done.

Remark 1.5. In an abelian category A, if it is enough projective, it has projective resolution. If it is enough injective, it has injective resolution. The proof of these are trivial.

Definition 1.5. A complex C is a positive complex if $C_n = 0$ for all n < 0; A complex C is a negative complex if $C_n = 0$ for all n > 0.

2 Basic Homology

Definition 2.1. Let A be an abelian category, let (C, d) is a complex in Comp(A) as below.

$$\longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow$$

We define C_n is n-chains, $Z_n(\mathbf{C}) = \ker d_n$ is n-cycles and $B_n(\mathbf{C}) = \operatorname{Im} d_{n+1}$ is n-boundaries. Then nth homology is $H_n(\mathbf{C}) = Z_n(\mathbf{C})/B_n(\mathbf{C})$.

Remark 2.1. In abelian category, the quotient is an equivalence class [(f,C)] where $f: B \to C$ is an epic and $(f,C) \sim (f',C')$ if and only if there exists an isomorphism $g: C \to C'$ make the diagram below commute.

$$B \xrightarrow{f} C$$

$$\cong \downarrow^g$$

$$C'$$

But now we can see A as a full subcategory of Ab, then $H_n(C) = \{z + B_n(C)\}$ and the elements of it called homology class which denoted by cls(z).

Proposition 2.1. Let A be an abelian category, then $H_n : \mathbf{Comp}(A) \to A$ is an additive functor for all $n \in \mathbb{Z}$.

Proof. We just need to prove the case when $\mathcal{A} = \mathbb{A} \mathbb{B}$ -since the Mitchell's theorem. Now we need to define H_n on morphisms. If $f: (\mathbf{C}, d) \to (\mathbf{C}', d')$, then $(H_n(f): H_n(\mathbf{C}) \to H_n(\mathbf{C}'))$ by $cls(z_n) \mapsto cls(f_n z_n)$. There are three steps in this property.

 \rightarrow Step 1. Show that $H_n(f)$ is well defined. It suffice to show that $f_n z_n$ is a cycle

and $H_n(f)$ is independent of the choice of cycle z_n . We have the following diagram.

$$\longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$

$$\longrightarrow C'_{n+1} \xrightarrow{d'_{n+1}} C'_n \xrightarrow{d'_n} C'_{n-1} \longrightarrow$$

Let $z \in Z_n(\mathbf{C})$, then $d_n z = 0$. Then $d'_n f_n z = f_{n-1} d_n z = 0$ and $f_n z_n$ is a n-cycle.) (Next, if $z + B_n(\mathbf{C}) = y + B_n(\mathbf{C})$, then $z - y \in B_n(\mathbf{C})$. Then $z - y = d_{n+1}c$ for some $c \in C_{n+1}$. Then $f_n z - f_n y = f_n d_{n+1}c = d'_{n+1}f_{n+1}c \in B_n(\mathbf{C}')$. Hence $cls(f_n z) = cls(f_n y)$, well done.) \hookrightarrow Step 2. Show that H_n is a functor. $H_n(1_{\mathbf{C}}) = 1$. Moreover, let f, g are chain maps and gf is well defined. Then

$$H_n(gf): cls(z) \mapsto cls((gf)_n z) = cls(g_n f_n z) = H_n(g)(cls(f_n z)) = H_n(g)H_n(f)(cls(z)).$$

 \rightarrow Step 3. Show that $H_n(f)$ is additive. Let f, g are chain maps, then

$$H_n(f+g): cls(z) \mapsto cls(f_nz+g_nz) = cls(f_nz) + cls(g_nz) = (H_n(f)+H_n(g))cls(z).$$

Well done.
$$\Box$$

Theorem 2.1 (Long Exact Sequence). Let \mathcal{A} be an abelian category. If $0 \to \mathbf{C}' \stackrel{i}{\longrightarrow} \mathbf{C} \stackrel{p}{\longrightarrow} \mathbf{C}'' \to 0$ is an exact sequence, then there is an exact sequence

$$H_{n+1}(C) \longrightarrow H_{n+1}(C'')$$
 $\rightarrow H_{n}(C') \xrightarrow{i_*} H_n(C) \xrightarrow{p_*} H_n(C'')$
 $\rightarrow H_{n-1}(C') \longrightarrow H_{n-1}(C) \longrightarrow$

Before we prove this important theorem, we will discuss the definition and properties of ∂_n and check whether it is well defined. ∂_n is called **connecting homomorphism**.

Proposition 2.2. Let \mathcal{A} be an abelian category. If $0 \to \mathbb{C}' \xrightarrow{i} \mathbb{C} \xrightarrow{p} \mathbb{C}'' \to 0$ is an exact sequence, then for each $n \in \mathbb{Z}$, there is a morphism in \mathcal{A} , $\partial_n : H_n(\mathbb{C}'') \to H_{n-1}(\mathbb{C}')$ by $cls(z_n'') \mapsto cls(i_{n-1}^{-1}d_np_n^{-1}z_n'')$.

Proof. We now look at the diagram below. $n ee O^{less}$ to say.

- We claim that $i'_{n-1}d_np_n^{-1}$ make sense. Let $z'' \in C''_n$ and $d''_nz'' = 0$. Since p_n is surjective, there is $c \in C_n$, we called it **lifting**, with $p_nc = z''$. Let $d_nc \in C_{n-1}$. Then $p_{n-1}d_nc = d''_np_nc = d''_nz'' = 0$, so that $d_nc \in \ker p_{n-1} = \operatorname{Im} i_{n-1}$. There is a unique $c' \in C'_{n-1}$ with $i_{n-1}c' = d_nc$, for i_{n-1} is an injection. Thus $c' = i'_{n-1}d_np_n^{-1}z''$. And $\partial_n(cls(z'')) = cls(c')$.
- ightharpoonup Independence of the choice of lifting. If $p_n\check{c}=z''$ where $\check{c}\in C_n$. Then $c-\check{c}\in\ker p_n=\mathrm{Im}i_n$, so there is $u'\in C'_n$ with $i_nu'=c-\check{c}$. Thus $i_{n-1}d'_nu'=d_ni_nu'=d_nc-d_n\check{c}$. Hence $i_{n-1}^{-1}d_nc-i_{n-1}^{-1}d_n\check{c}=d'u'\in B'_{n-1}$, that is, $cls(i_{n-1}^{-1}d_nc)=cls(i_{n-1}^{-1}d_n\check{c})$. So this part gives a well defined map $Z''_n\to C'_{n-1}/B'_{n-1}$ by $z''\mapsto cls(i_{n-1}^{-1}d_np_n^{-1}z'')$.
- \rightsquigarrow Map $Z_n'' \to C_{n-1}'/B_{n-1}'$ is a homomorphism. Let $z'', z_1'' \in Z_n''$ with $p_n c = z'', p_n c_1 = z_1''$. Since the map is independent of the choice of lifting, we can choose $c + c_1$ as a lifting of $z'' + z_1''$.
- ightharpoonup Element $i_{n-1}^{-1}d_np_n^{-1}z''$ is a cycle. Let $i_{n-1}c' = d_nc$, then $0 = d_{n-1}d_nc = d_{n-1}i_{n-1}c' = i_{n-2}d'_{n-1}c'$, os $d'_{n-1}c' = 0$ since i_{n-2} is injective. So c' is a cycle. Then we have homomorphism $Z''_n \to Z'_{n-1}/B'_{n-1} = H_{n-1}(C')$ by $z'' \mapsto cls(i_{n-1}^{-1}d_np_n^{-1}z'')$.
- ArrSubgroup B''_n goes into B'_{n-1} . Let $z'' = d''_{n+1}c''$ where $c'' ∈ C''_{n+1}$. Let $p_{n+1}u = c''$, then $p_n d_{n+1}u = d''_{n+1}p_{n+1}u = d''_{n+1}c'' = z''$. We choose $d_{n+1}u$ with $p_n d_{n+1}u = z''$, so $\partial_n (cls(z'')) = cls(i_{n-1}^{-1}d_np_n^{-1}p_nd_{n+1}u) = cls(0)$. Then well done.

Proof of Theorem 3.1. The sequence $0 \to \mathbb{C}' \xrightarrow{i} \mathbb{C} \xrightarrow{p} \mathbb{C}'' \to 0$ is exact, we now consider

the following diagram.

m.
$$0 \to C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \longrightarrow 0$$

$$\downarrow C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \longrightarrow 0$$

$$\downarrow C_{n+1} \xrightarrow{i_{n+1}} C_{n+1} \xrightarrow{$$

We need to verify six inclusions as follows.

 $\bigvee \bigcirc \mathbf{Im} i_* \subset \ker p_*. \text{ This is because } p_*i_* = (pi)_* = 0_* = 0;$ $\bigvee \bigcirc \mathbf{Im} i_* \subset \ker p_*. \text{ This is because } p_*i_* = (pi)_* = 0_* = 0;$ $\downarrow c''_{n+1} \in C''_{n+1}. \text{ Then there is } c''_{n+1} = p_{n+1}c_{n+1} \text{ where } c_{n+1} \in C_{n+1} \text{ since } p_{n+1} \text{ is surjective.}$ $\downarrow c''_{n+1} \in C''_{n+1}. \text{ Then there is } c''_{n+1} = p_{n+1}c_{n+1} \text{ where } c_{n+1} \in C_{n+1} \text{ since } p_{n+1} \text{ is surjective.}$ $\downarrow c''_{n+1} = c''_{n+1} = c''_{n+1} \text{ where } c_{n+1} \in C_{n+1} \text{ since } p_{n+1} \text{ is surjective.}$ $\downarrow c''_{n+1} = c''_{n+1} =$

Independence of lifting.

 $\bigvee \bigoplus_{n=1}^{\infty} \operatorname{Im} p_{*} \subset \ker (\partial_{n}). \text{ Let } p_{*}cls(z_{n}) = cls(p_{n}z_{n}) \in \operatorname{Im} p_{*}, \text{ then } \partial_{n}cls(p_{n}z_{n}) = cls(i_{n-1}^{-1}d_{n}p_{n}^{-1}p_{n}z_{n}).$ We can let $p_{n}^{-1}p_{n}z_{n} = z_{n}$ and $i_{n-1}^{-1}d_{n}p_{n}^{-1}p_{n}z_{n} = 0.$

 $\int \bigoplus_{n=1}^{\infty} \ker(\partial_n) \subset \operatorname{Im} p_*. \text{ Let } \partial_n cls(z_n'') = cls(0), \text{ then there exists } z_{n-1}' = i_{n-1}^{-1} d_n p_n^{-1} z_n'' \in B_{n-1}', \text{ that is, } z_{n-1}' = d_n' c_n' \text{ for } c_n' \in C_n'. \text{ But } i_{n-1} z_{n-1}' = i_{n-1} d_n' c_n' = d_n i_n c_n' \text{ and } i_{n-1} z_{n-1}' = d_n p_n^{-1} z_n'', \text{ so } d_n(p_n^{-1} z_n'' - i_n c_n') = 0 \text{ and } p_n^{-1} z_n'' - i_n c_n' \text{ is a cycle. Then we have } p_* cls(p_n^{-1} z_n'' - i_n c_n') = cls(p_n p_n^{-1} z_n'' - p_n i_n c_n') = cls(z_n'').$

 $\swarrow \lim_{n \to \infty} \operatorname{Im} \partial_{n+1} \subset \ker i_*. \text{ Since } i_n z'_n = d_{n+1} p_{n+1}^{-1} z''_{n+1} \in B_{n-1}, \text{ then we have } i_* \partial_{n+1} cls(z''_{n+1}) = cls(i_n z'_n) = 0.$

 $\int (b) ds er i_* \subset Im \partial_{n+1}. \text{ Let } i_*cls(z'_n) = cls(i_n z'_n) = cls(0), \text{ then } i_n z'_n = d_{n+1}c_{n+1} \text{ for some } c_{n+1} \in C_{n+1}. \text{ Then } d''_{n+1}p_{n+1}c_{n+1} = p_n d_{n+1}c_{n+1} = p_n i_n z'_n = 0. \text{ So } p_{n+1}c_{n+1} \text{ is a cycle.}$ Then $\partial_{n+1}cls(p_{n+1}c_{n+1}) = cls(i_n^{-1}d_{n+1}p_{n+1}^{-1}p_{n+1}c_{n+1}) = cls(i_n^{-1}d_{n+1}c_{n+1}) = cls(i_n^{-1}i_n z'_n) = cls(z'_n).$

Corollary 2.1 (Snake Lemma). Let A be an abelian category. We have the following diagram.

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$$

Then we have $0 \to \ker f' \to \ker f \to \ker f'' \to \operatorname{coker} f' \to \operatorname{coker} f \to \operatorname{coker} f'' \to 0$.

Proof. This is trivial. Why snake? Look at the diagram below!

$$0 \longrightarrow \ker f' \xrightarrow{g_0} \ker f \xrightarrow{h_0} \ker f''$$

$$\downarrow^{i'} \qquad \qquad \downarrow^{i''} \qquad \qquad \downarrow^{i'} \qquad \qquad \downarrow^{i'$$

This is a snake. \Box

Remark 2.2. Except this, we have the <u>real snake lemma</u>, consider the commutative diagram with exact rows.

Then after define $\Delta : \ker \gamma \to \operatorname{coker} \alpha \ by \ z \mapsto i^{-1}\beta p^{-1}z + \operatorname{Im} \alpha$, which is well defined, we have $\ker \alpha \to \ker \beta \to \ker \gamma \xrightarrow{\Delta} \operatorname{coker} \alpha \xrightarrow{i'} \operatorname{coker} \beta \to \operatorname{coker} \gamma$, where $i' : a' + \operatorname{Im} \alpha \mapsto ia' + \operatorname{Im} \beta$.

Theorem 2.2 (Naturality of ∂). Let A be an abelian category. Given a diagram with exact rows.

$$0 \longrightarrow \mathbf{C}' \xrightarrow{i} \mathbf{C} \xrightarrow{p} \mathbf{C}'' \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow \mathbf{A}' \xrightarrow{j} \mathbf{A} \xrightarrow{q} \mathbf{A}'' \longrightarrow 0$$

Then we have the following diagram with exact rows.

$$\longrightarrow H_n(\mathbf{C}') \xrightarrow{i_*} H_n(\mathbf{C}) \xrightarrow{p_*} H_n(\mathbf{C}'') \xrightarrow{\partial} H_{n-1}(\mathbf{C}') \longrightarrow$$

$$\downarrow^{f_*} \qquad \downarrow^{g_*} \qquad \downarrow^{h_*} \qquad \downarrow^{f_*}$$

$$\longrightarrow H_n(\mathbf{A}') \xrightarrow{j_*} H_n(\mathbf{A}) \xrightarrow{q_*} H_n(\mathbf{A}'') \xrightarrow{\partial'} H_{n-1}(\mathbf{A}') \longrightarrow$$

Proof. Trivial by diagram chase.

Example 2.1. We know that if F is flat, then $\operatorname{Tor}_n^R(F,M) = \{0\}$ for all $n \geq 1$ and $M \in {}_R\mathbf{Mod}$. Conversely, if $\operatorname{Tor}_1^R(F,M) = \{0\}$ for all $M \in {}_R\mathbf{Mod}$, then F is flat. Now we consider a proposition: if $0 \to A \to B \to C \to 0$ is an exact sequence of modules, and C is flat, then A is flat iff B is flat. Now for any module X,

we have $\operatorname{Tor}_2^R(C,X) \to \operatorname{Tor}_1^R(A,X) \to \operatorname{Tor}_1^R(B,X) \to \operatorname{Tor}_1^R(C,X)$, since $\operatorname{Tor}_2^R(C,X) = \operatorname{Tor}_1^R(C,X) = 0$, then $\operatorname{Tor}_1^R(A,X) \cong \operatorname{Tor}_1^R(B,X)$, well done.

How to prove the long exact sequence of left derived functor? First by Horseshoe Lemma, we have $0 \to \mathbf{P}'_{A'} \to \widetilde{\mathbf{P}}_A \to \mathbf{P}''_{A''} \to 0$. Since additive functor preserve split short exact sequence, then we have exact $0 \to T\mathbf{P}'_{A'} \to T\widetilde{\mathbf{P}}_A \to T\mathbf{P}''_{A''} \to 0$. Then there a long exact sequence. Next just need to consider the relation between $\widetilde{\mathbf{P}}_A$ and original \mathbf{P}_A .

Example 2.2. Let X be a space and A be a nonempty closed subspace that is a deformation retract of some neighborhood in X, then we have

Then consider $X = D^n$ and $A = S^{n-1}$, then $D^n/S^{n-1} \cong S^n$. Use this and the knowledge in algebraic topology inductively, we have $\widetilde{H}_n(S^n) \cong \mathbb{Z}$ and $\widetilde{H}_i(S^n) = 0, i \neq n$.

Definition 2.2. Let C, D be complexes, let $p \in \mathbb{Z}$. A map of degree p, denoted by $s : C \to D$, is a sequence $s = (s_n)$ with $s_n : C_n \to D_{n+p}$ for all n.

Definition 2.3. Chain maps $f,g:(C,d)\to (C',d')$ are <u>homotopic</u>, denoted by $f\simeq g$, if, for all n, there is a map $s=(s_n):C\to C'$ of degree +1 with the following diagram and $f_n-g_n=d'_{n+1}s_n+s_{n-1}d_n$.

Homotopy F: XxI->Y

 $\frac{\textit{If } f \simeq 0, \textit{ we called } f \textit{ is null-homotopic.}}{\textit{A complex } (\boldsymbol{D}, e) \textit{ has a } \boldsymbol{contracting } \boldsymbol{homotopy} \textit{ if its identity } 1_{\boldsymbol{D}} \textit{ is null-homotopic.}} \overset{\text{prism}}{\Rightarrow} \overset{\text{prism}$

Theorem 2.3. Homotopic chain maps induce the same morphism in homology. That is, if $f, g: (C, d) \to (C', d')$ are chain maps with $f \simeq g$, then $f_{*n} = g_{*n}: H_n(C) \to H_n(C')$ for all n.

Proof. Let z is a n-cycle, then $f_nz - g_nz = d'_{n+1}s_nz - s_{n-1}\underline{d_nz} = d'_{n+1}s_nz \in B_n(\mathbf{C}')$, so $f_{*n} = g_{*n}$, well done.

Proposition. 50 if a complex C houring a contracting homotopy, then Hn(C)=0 for all n.

More Theorems 3

X Theorem 3.1. If $(C^i)_{i \in I}$, $(\varphi^i_j)_{i \leq j}$ is a direct system of complexes over a directed index set, then for all $n \geq 0$, we have

$$H_n(\varinjlim \mathbf{C}^i) \cong \varinjlim H_n(\mathbf{C}^i).$$

Theorem 3.2 (Barratt-Whitehead). Consider the diagram with exact rows.

$$\longrightarrow A_n \xrightarrow{i_n} B_n \xrightarrow{p_n} C_n \xrightarrow{\partial_n} A_{n-1} \longrightarrow$$

$$\downarrow f_n \qquad \downarrow g_n \qquad \trianglerighteq \downarrow h_n \qquad \downarrow f_{n-1}$$

$$\longrightarrow A'_n \xrightarrow{j_n} B'_n \xrightarrow{q_n} C'_n \longrightarrow A'_{n-1} \longrightarrow$$

If each h_n is an isomorphism, then we have

$$\longrightarrow A'_{n+1} \oplus B_{n+1} \longrightarrow B'_{n+1}$$

$$A_n \xrightarrow{(f_{n,i_n})} A'_n \oplus B_n \xrightarrow{j_n - g_n} B'_n$$

$$\xrightarrow{\partial_n h_n^{-1} q_n}$$

$$A_{n-1} \longrightarrow A'_{n-1} \oplus B_{n-1} \longrightarrow$$

where $(f_n, i_n) : a_n \mapsto (f_n a_n, i_n a_n)$ and $j_n - g_n : (a'_n, b_n) \mapsto j_n a'_n - g_n b_n$.

Theorem 3.3 (Mayer-Vietoris). Given a commutative diagram with exact rows.

$$0 \longrightarrow \mathbf{C}' \xrightarrow{i} \mathbf{C} \xrightarrow{p} \mathbf{C}'' \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow \mathbf{A}' \xrightarrow{j} \mathbf{A} \xrightarrow{q} \mathbf{A}'' \longrightarrow 0$$

If every h_* in the following diagram

$$\longrightarrow H_n(\mathbf{C}') \xrightarrow{i_*} H_n(\mathbf{C}) \xrightarrow{p_*} H_n(\mathbf{C}'') \xrightarrow{\partial} H_{n-1}(\mathbf{C}') \longrightarrow$$

$$\downarrow f_* \qquad \qquad \downarrow g_* \qquad \qquad \underbrace{\mathbf{v}}_{h_*} \qquad \qquad \downarrow f_* \qquad \qquad \downarrow$$

is an isomorphism, then we have an exact sequence.

$$\longrightarrow H_{n+1}(\mathbf{A}') \oplus H_{n+1}(\mathbf{C}) \longrightarrow H_{n+1}(\mathbf{A}) \longrightarrow$$

$$H_n(\mathbf{C}') \longrightarrow H_n(\mathbf{A}') \oplus H_n(\mathbf{C}) \longrightarrow H_n(\mathbf{A}) \longrightarrow$$

$$H_{n-1}(\mathbf{C}') \longrightarrow H_{n-1}(\mathbf{A}') \oplus H_{n-1}(\mathbf{C}) \longrightarrow$$