What is claimed is:

3

6

7

8

9

10

11

12

13

14

1

2

3

4

- 1. A system of automatic beam energy control,
 2 comprising:
 - a substrate holding apparatus, holding a substrate;
- a measurement apparatus, measuring thickness and hydrogen content of the substrate; and
 - a comparing apparatus, providing a database further comprising critical hydrogen content limits and appropriate beam energy levels for substrates different thicknesses, allowing determination of whether a measured hydrogen content value exceeds a critical hydrogen content limit, providing an appropriate beam energy level accordingly; and
 - a energy beam apparatus, delivering beam energy to the substrate accordingly.
- 1 2. The system as claimed in claim 1, wherein the 2 measurement apparatus utilizes ellipsometry.
- The system as claimed in claim 1, wherein the comparing apparatus issues a warning or alarm when hydrogen content exceeds a critical hydrogen content limit.
 - 4. The system as claimed in claim 1, wherein the comparing apparatus instructs the measurement apparatus to measure thickness when the hydrogen content does not exceed the critical hydrogen content limit.
- 1 5. The system as claimed in claim 1, wherein 2 hydrogen content is calculated in accordance with the

relationship between a light extinction coefficient and a 3 4 bandgap of the substrate. 6. 1 system as claimed in claim 1, wherein thickness is calculated in accordance with a refractive 2 index of the substrate. 3 7. The system as claimed in claim 1, wherein the 1 substrate comprises amorphous silicon. 2 8. The system as claimed in claim 7, wherein the 1 2 database comprises appropriate beam energy required by different thicknesses of amorphous silicon 3 for reconstitution into crystal silicon. 4 A method of automatic beam energy control, 5 9. comprising: 6 7 providing a substrate; 8 measuring hydrogen content of the substrate; 9 determining if hydrogen content exceeds a critical 10 hydrogen content limit; 11 issuing a warning or alarm when hydrogen content 12 exceeds a critical hydrogen content limit; 13 measuring substrate thickness when hydrogen content 14 does not exceed a critical hydrogen content 15 limit; 16 providing a database comprising a plurality appropriate beam energy values corresponding to 17 substrates of different thicknesses; 18 19 the database determining an appropriate beam energy

level corresponding to the measured thickness;

20

21

and

delivering beam energy to the substrate accordingly.

- 1 10. The method as claimed in claim 9, wherein 2 thickness is calculated by measuring a refractive index 3 of the substrate using a reflection meter.
- 1 11. The method as claimed in claim 10, wherein
 2 thickness is calculated by measuring a refractive index
 3 of the substrate using ellipsometry.
- 1 12. The method as claimed in claim 9, wherein 2 hydrogen content is calculated in accordance with the 3 relationship between a light extinction coefficient and a 4 bandgap by measuring the light extinction coefficient of 5 the substrate using ellipsometry.
- 1 13. The method as claimed in claim 9, wherein the substrate comprises amorphous silicon.
- 1 14. The method as claimed in claim 9, wherein the 2 database is populated by determining appropriate beam 3 energy levels required by different thicknesses of 4 amorphous silicon for reconstitution into crystal 5 silicon.
- 1 15. A method of automatic beam energy control,
 2 comprising:
- providing a substrate on a substrate holding apparatus;
- 5 measurement of substrate hydrogen content by ellipsomety;

7	determining if hydrogen content exceeds a critical
8	hydrogen content limit using a comparing
9	apparatus;
10	the comparing apparatus issuing a warning or alarm
11	when hydrogen content exceeds a critical
12	hydrogen content limit;
13	measurement of substrate thickness by ellipsomety
14	when hydrogen content does not exceed a
15	critical hydrogen content limit;
16	providing a database comprising a plurality of
17	energy values individually absorbed by
18	substrates of different thickness;
19	determining a beam energy value corresponding to the
20	measured thickness according to the database,
21	using a comparing apparatus; and
22	a energy beam apparatus delivering energy to the
23	substrate accordingly.
1	16. The method as claimed in claim 15, wherein
2	thickness is calculated by measuring a refractive index
3	of the substrate.
1	17. The method as claimed in claim 15, wherein
2	hydrogen content is calculated in accordance with the
3	relationship between a light extinction coefficient and a
4	bandgap by measuring the light extinction coefficient of
5	the substrate.

18. The method as claimed in claim 15, wherein the substrate comprises amorphous silicon.

1

2

- 1 19. The method as claimed in claim 15, wherein the 2 database is populated by determining appropriate energy 3 levels required by different thicknesses of amorphous 4 silicon for reconstitution into crystal silicon.
- 2 amorphous silicon is reconstitute into crystal silicon after receiving the beam energy.