

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals:

- See how convolutional layers provide natural ways for understanding neural network learning
- Debate the risks of bias inherent to machine learning applications and understand how to detect and avoid bias using deep learning
- Recognize the vast potential of using pre-trained neural networks for our (computer vision) tasks, instead of spending months developing architectures and training complex networks

How will we do this?

- We start by discussing what CNNs actually learn and how we can use their activation to make algorithms more transparent
- We will then discuss biases introduced through our data and see how we can identify (and possibly overcome) these biases
- We end with a look at transfer learning, which enables complex applications with only limited training

The importance of transparency and interpretability

Trust

Regulation

Fairness

Informativeness

CNNs: not actually a black box

Visual interpretation of the learning of a CNN

- Different from neural networks more generally, CNNs are highly interpretable. Why?
 - We are representing visual concepts → this is easier to visualize by design
- Multiple approaches
 - Visualizing intermediate outputs
 - Visualizing convolutional filters
 - Visualizing heatmaps of class activation

Different approaches and their use

- Visualizing intermediate outputs
 - Understand how layers transform their input
 - Understand meaning of individual filters
- Visualizing convolutional filters
 - Understand visual patterns and concepts filters are receptive to
- Visualizing heatmaps of class activation
 - Understand which parts of an image are used to classify
 - Direct application: Localization
 - Direct application: Checking for biases

Human bias in machine learning

Human bias in machine learning

Other examples of human bias in machine learning

COMPAS Recidivism Racial Bias

Racial Bias in inmate COMPAS reoffense risk scores for Florida (ProPublica)

Algorithm to score probability of recidivism used by judges and parole officers. Predicted African-Americans would reoffend more often than they actually did.

Issues:

- Sample bias: data used for training contains preponderance of one category of person
- Prejudice bias: the prejudices encoded into society are reflected in the data

Why should we care about bias in our algorithms (as a business)?

Bias in ML – an example

Detecting biases with a variational autoencoder

Recall an autoencoder

More abstractly

A variational autoencoder

The difference between an autoencoder (AE) and a variational autoencoder (VAE)

Creating new content from a VAE

AE: VAE:

Semi-supervised variational autoencoder (SS-VAE)

CITY, UNIVERSITY OF LONDON

-ifier

Semi-supervised variational autoencoder (SS-VAE)

Try it out!

Going further: debiasing variational autoencoder (DB-VAE)

Let's see facial recognition – and bias – at scale

How can we train a powerful CNN so quickly?

- Transfer learning: we use a pre-trained model!
- If a CNN is trained on a large number of images, the spatial feature hierarchy can act as a generic model of the visual world
- Another example: take a model trained on the ImageNet dataset (1.4 million labeled images of 1,000 different classes, such as animals and everyday objects)
 - What type of classification tasks might this be useful for?

A brief recap

A brief recap

- Transparency and interpretability of ML algorithms is important for a number of reasons luckily, CNNs can be interpreted in fairly natural ways
- One of the reasons that interpretability is important is that we want to avoid our algorithms perpetuating negative biases
 - A lot of approaches to tackle biases rely on explicitly defining discriminatory categories
 - We saw an approach to find (and possibly correct) biases in an unsupervised manner for the case of (facial) image classification
- We also saw that (facial) image classification can be done (possibly in a biased manner) with only a few training images. The "secret sauce" here is transfer learning, that is, building on pretrained CNNs

Please fill out the module evaluation

https://city.surveys.evasysplus.co.uk/

Sources

- Amini et al., 2019, Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure: http://introtodeeplearning.com/AAAI MitigatingAlgorithmicBias.pdf
- Chollet, 2021, Deep Learning with Python (2nd edition)
- Géron, 2022, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd edition)
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Google, 2017, Machine Learning and Human Bias: https://www.youtube.com/watch?v=59bMh59JQDo
- Manyika et al., 2019, What Do We Do About the Biases in Al? https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai

