Q10

Due Apr 1 at 5:30am **Points** 200 **Questions** 11

Available Mar 18 at 9:30am - Apr 1 at 5:30am 14 days Time Limit 30 Minutes

Instructions

You have 30 minutes to solve the quiz.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	19 minutes	170 out of 200

Score for this quiz: 170 out of 200

Submitted Mar 31 at 7:47pm This attempt took 19 minutes.

	Question 1 20 / 20 pts
	Which of the following are true?
Correct!	A high dropout value can lead to lot of fluctuations at the later stages of training in VA
Correct!	Comparatively, at the midele of the training, learning rate can be much higher than at later stages
Correct!	While updating the weights of one kernel, we must assume other kernel is constant

Correct!

For gradient ascent we take positive value of the gradients

	Question 2	15 / 20 pts
	Which of the following are true?	
Correct!	✓ In SDG (academically), batch size is 1	
Correct!	Even if we use momentum with SGD, the learning rate remains cor	nstant.
orrect Answer	As the VA increases, we should increase the batch size keeping the learning rate constant	e
Correct!	As the VA increases, we should reduce the learning rate, keeping be size constant	patch

	Question 3	10 / 20 pts
	It is proven that if we add gradient perturbation (small noise in gradients we can avoid hitting the problem of weights getting stuck in plateaus.	
	Which of the following can have a similar effect:	
Correct!	✓ Patch Gaussian	
	L1/L2 regularization	
orrect Answer	Dropout	

ReLU

Question 5

Assume that the value of a specific weight was 4.

The derivative of the Loss Function w.r.t. this weight is 100

If we used a learning rate of 0.01, after the backprop step, what would be the value of the new weight?

Correct!

3

orrect Answers

3

3.0

	Question 6	10 / 10 pts
	We are working on a custom dataset, where we have 10 of 100 images for each class. Which Optimization Algorithm us better results?	•
	SGD	
	SGD with reducing learning rates	
	SGD with Momentum	
Correct!	✓ Adam	

Question 7	10 / 10 pts
In the momentum algorithm, what would be the value of the very first time?	v ^(t) for the
would be set to a random value	
■ Would be required to be calculated	

Correct!

✓ 0

	Question 8	20 / 20 pts
	What all would be the benefits of adding momentum term to SG	GD?
Correct!	Faster Convergence	
Correct!	Solving weight plateauing problem	
Correct!	Solving weight saddling problem	

	Question 9 10 / 20	10 / 20 pts	
	We "know" for sure that we are stuck in local minima. What all could we try?		
Correct!	✓ Increase the learning rate		
orrect Answer	Add image augmentation		
orrect Answer	Change the optimizer for sometime		
Correct!	✓ Add momentum to our optimizer if we haven't done so yet		

Question 10 20 / 20 pts

We defined a network and then ran an LR finder on it.

After a few tests on learning rates, we do not see any change in the loss function. What all could be wrong?

We haven't yet tried varied range of possible LRs

Network is incapable of learning

Quiz Score: 170 out of 200