Einführung in die Festkörperphysik

von Charles Kittel

14., überarbeitete und erweiterte Auflage

Inhaltsverzeichnis

Uber den Autor	
Vorwort	XIX
Tabellenverzeichnis	XXI
1 Struktur der Kristalle	1
Periodische Anordnungen von Atomen	2
Gitter-Translationsvektoren	4
Basis und Kristallstruktur	4
Primitive Elementarzelle	5
Fundamentale Gitterarten	7
Zweidimensionale Gittertypen	8
Dreidimensionale Gittertypen	9
Indizierung von Kristallebenen	13
Einfache Kristallstrukturen	15
Natriumchloridstruktur	15
Cäsiumchloridstruktur	17
Hexagonal dichteste Kugelpackung (hcp)	18
Diamantstruktur	20
Zinkblendestruktur	21
Direkte Abbildung der atomaren Struktur	22
Nichtideale Kristallstrukturen	22
Zufällige Stapelung und Polytypie	22
Strukturdaten von Kristallen	23
Zusammenfassung	23
Aufgaben	26
2 Beugung und reziprokes Gitter	27
Beugung von Wellen am Kristall	28
Bragg-Bedingung	28
Amplitude der gestreuten Welle	31
Fourier-Analyse	31
Reziproke Gittervektoren	34
Beugungsbedingungen	35
Laue-Gleichungen	38
Lauc-Offichungen	20

VI Inhaltsverzeichnis

Brillouin-Zonen
Reziprokes Gitter des einfach kubischen (sc)-Gitters
Reziprokes Gitter des kubisch raumzentrierten (bcc)-Gitters 42
Reziprokes Gitter des kubisch flächenzentrierten (fcc)-Gitters 4.
Fourier-Analyse der Basis
Strukturfaktor des bcc-Gitters
Strukturfaktor des fcc-Gitters
Atomformfaktor
Zusammenfassung
Aufgaben
Aurgaben
3 Bindungsverhältnisse in Kristallen 55
Edelgaskristalle
Van-der-Waals-Wechselwirkung
Repulsive Wechselwirkung
Gitterkonstanten im Gleichgewicht
Bindungsenergie
Ionenkristalle
Elektrostatische Energie oder Madelung-Energie
Berechnung der Madelung-Konstanten
Kovalente Kristalle
Wasserstoffbrückenbindung
Atomradien
Radien in Ionenkristallen
Beschreibung der elastischen Dehnung
Dilation
Spannungskomponenten
Elastische Konstanten der Nachgiebigkeit und Steifigkeit
Elastische Energiedichte
Steifigkeitskonstanten kubischer Kristalle
Kompressionsmodul und Kompressibilität
Elastische Wellen in kubischen Kristallen
Wellen in [100]-Richtung
Wellen in [110]-Richtung
Zusammenfassung
Aufgaben
4 Dhononon I. Cittorcohwingungen
4 Phononen I: Gitterschwingungen 10
Schwingungen in Kristallen mit einatomiger Basis
Erste Brillouin-Zone
Gruppengeschwindigkeit

Inhaltsverzeichnis	*	•	VII

Langwelliger Grenzfall	107
	107
Gitter mit zwei Atomen in der primitiven Basis	108
Quantisierung elastischer Wellen	113
Impuls der Phononen	114
Inelastische Streuung durch Phononen	114
Zusammenfassung	116
	117
5 Phononen II: Thermische Eigenschaften	121
· ·	122
Planck-Verteilung	122
Abzählen der Eigenschwingungen	124
Zustandsdichte im Eindimensionalen	124
Zustandsdichte im Dreidimensionalen	127
Zustandsdichte im Debye-Modell	128
Debyesches T^3 -Gesetz	130
Einstein-Modell für die Zustandsdichte	130
Allgemeines Ergebnis für $D(\omega)$	134
Anharmonische Wechselwirkungen in Kristallen	137
	137
Wärmealsiefähistsit	137
Wärmeleitfähigkeit	140
Wärmewiderstand des Phononengases	-
Umklapp-Prozesse	143
Kristallfehler	144
Aufgaben	146
6 Fermi-Gas freier Elektronen	149
Energieniveaus im Eindimensionalen	151
Einfluss der Temperatur auf die Fermi-Dirac-Verteilung	153
Freies Elektronengas im Dreidimensionalen	154
Wärmekapazität des Elektronengases	158
Experimente zur Wärmekapazität von Metallen	163
Schwere Fermionen	165
Elektrische Leitfähigkeit und Ohmsches Gesetz	166
Experimente zum elektrischen Widerstand von Metallen	167
Umklapp-Streuung	170
Bewegung in Magnetfeldern	172
Hall-Effekt	173
Thermische Leitfähigkeit von Metallen	175
Verhältnis von thermischer zu elektrischer Leitfähigkeit	176
Aufgaben	177

7 Energiebänder	181
Modell des nahezu freien Elektrons	183
Ursprung der Energielücke	185
Größe der Energielücke	187
Bloch-Funktionen	187
Kronig-Penney-Modell	188
Wellengleichung eines Elektrons in einem periodischen Potential	191
Weiterer Beweis für das Blochsche Theorem	194
Quasiimpuls eines Elektrons	194
Lösung der Hauptgleichung	195
Kronig-Penney-Modell im reziproken Raum	196
Näherung des leeren Gitters	198
Näherungslösung nahe einer Zonengrenze	199
Anzahl der Niveaus in einem Band	202
Metalle und Isolatoren	203
Zusammenfassung	204
Aufgaben	204
	205
8 Halbleiterkristalle	207
Bandlücke	210
Bewegungsgleichungen	212
Ableitung der Gleichung $\hbar \hat{k} = F$	214
Löcher	
Effektive Masse	219
Physikalische Interpretation der effektiven Masse	220
Effektive Massen in Halbleitern	222
Silizium und Germanium	224
Ladungsträgerkonzentration bei Eigenleitung	228
Beweglichkeit bei Eigenleitung	231
Störstellenleitung	232
Thermische Ionisierung von Donatoren und Akzeptoren	237
Thermoelektrische Effekte in Halbleitern	238
Halbmetalle	239
Übergitter	240
Bloch-Oszillator	240
Zener-Tunneln	241
Zusammenfassung	241
Aufgaben	242

Inhaltsverzeichnis IX

	45
	47
	48
	50
	52
·	54
8	56
Methode der starken Kopplung	56
Wigner-Seitz-Methode	60
Bindungsenergie	62
Pseudopotentialmethoden	64
Experimentelle Methoden zur Untersuchung von Fermi-Flächen	67
Bahnquantisierung in einem Magnetfeld	68
The state of the s	70
· · · · · · · · · · · · · · · · · · ·	77
	78
	79
10 Supraleitung 23	83
Experimenteller Überblick	84
Auftreten der Supraleitung	87
Zerstörung der Supraleitung durch Magnetfelder	87
	88
	91
	93
	94
	95
	96
	96
	99
	01
	04
1 0	05
	06
	09
	10
<u>.</u>	15
	16
	22
	22 22
	22 23

X Inhaltsverzeichnis

11 Diamagnetismus und Paramagnetismus	327
Langevin-Gleichung des Diamagnetismus	329
Quantentheorie des Diamagnetismus mononuklearer Systeme	331
Paramagnetismus	331
Quantentheorie des Paramagnetismus	332
Ionen seltener Erden	335
Hundsche Regeln	336
Ionen der Eisengruppe	338
Kristallfeldaufspaltung	338
Auslöschung des Bahndrehimpulses	339
Spektroskopischer Aufspaltungsfaktor	341
Van Vleckscher temperaturunabhängiger Paramagnetismus	342
Kühlung durch adiabatische Entmagnetisierung	343
Kernentmagnetisierung	346
Paramagnetische Suszeptibilität der Leitungselektronen	347
Zusammenfassung	349
Aufgaben	350
12 Ferromagnetismus und Antiferromagnetismus	355
Ferromagnetische Ordnung	356
Curie-Punkt und Austauschintegral	356
Temperaturabhängigkeit der Sättigungsmagnetisierung	359
Sättigungsmagnetisierung am absoluten Nullpunkt	362
Magnonen	364
Thermische Anregung von Magnonen	368
Magnetische Neutronenstreuung	
Ferrimagnetische Ordnung	371
Curie-Temperatur und Suszeptibilität von Ferrimagneten	373
Antiferromagnetische Ordnung	374
Suszeptibilität unterhalb der Néel-Temperatur	378
Antiferromagnetische Magnonen	
Ferromagnetische Domänen	
Anisotropieenergie	
Übergangsbereich zwischen Domänen	384
Ursprung der Domänen	
Koerzitivfeldstärke und Hysterese	387
Eindomänenpartikel	389
Geomagnetismus und Biomagnetismus	390
Magnetkraft-Mikroskopie	391
Zusammenfassung	392
Aufgaben	393

Inhaltsverzeichnis	XI
--------------------	----

13 Magnetische Resonanz 399 Kernspinresonanz 399 Bewegungssgleichungen 400 Linienbreite 406 Linienverschmälerung durch Bewegung 407 Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 31 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 <tr< th=""><th></th><th></th></tr<>		
Bewegungsgleichungen 400 Linienbreite 406 Linienbreite 406 Linienverschmälerung durch Bewegung 407 Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 420 Paramagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Nullfeldaufspaltung 422 Drei-Niveau-Maser 423 Laser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 44 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmooptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische	13 Magnetische Resonanz	397
Linienbreite 406 Linienverschmälerung durch Bewegung 407 Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen	Kernspinresonanz	399
Linienverschmälerung durch Bewegung 407 Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschir	Bewegungsgleichungen	400
Linienverschmälerung durch Bewegung 407 Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschir	Linienbreite	406
Hyperfeinaufspaltung 409 Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 446 Abschirmung und Phononen in Met		407
Beispiele: Paramagnetische Punktdefekte 412 Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und P	Hyperfeinaufspaltung	409
Knight-Shift 414 Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 44 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 <td></td> <td>412</td>		412
Kernquadrupolresonanz 415 Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Bez		414
Ferromagnetische Resonanz 416 Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirk		415
Einfluss der Probengestalt 416 Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit		416
Spinwellen-Resonanz 418 Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung:	· · · · · · · · · · · · · · · · · · ·	416
Antiferromagnetische Resonanz 420 Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusamm	· · · · · · · · · · · · · · · · · · ·	418
Paramagnetische Elektronenresonanz 422 Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463	Antiferromagnetische Resonanz	420
Austauschverschmälerung 422 Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		422
Nullfeldaufspaltung 422 Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		
Die Wirkungsweise des Masers 423 Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		
Drei-Niveau-Maser 424 Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		
Laser 425 Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463	<u> </u>	424
Zusammenfassung 427 Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		425
Aufgaben 427 14 Plasmonen, Polaritonen und Polaronen 431 Dielektrische Funktion des Elektronengases 432 Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463		
14 Plasmonen, Polaritonen und Polaronen431Dielektrische Funktion des Elektronengases432Plasmaoptik433Dispersionsrelation für elektromagnetische Wellen435Transversale optische Schwingungen in einem Plasma435Longitudinale Plasmaschwingungen437Plasmonen439Elektrostatische Abschirmung441Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	· ·	
Dielektrische Funktion des Elektronengases432Plasmaoptik433Dispersionsrelation für elektromagnetische Wellen435Transversale optische Schwingungen in einem Plasma435Longitudinale Plasmaschwingungen437Plasmonen439Elektrostatische Abschirmung441Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463		
Plasmaoptik 433 Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 435	14 Plasmonen, Polaritonen und Polaronen	431
Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 435	Dielektrische Funktion des Elektronengases	
Dispersionsrelation für elektromagnetische Wellen 435 Transversale optische Schwingungen in einem Plasma 435 Longitudinale Plasmaschwingungen 437 Plasmonen 439 Elektrostatische Abschirmung 441 Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 435		432
Longitudinale Plasmaschwingungen437Plasmonen439Elektrostatische Abschirmung441Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463		
Plasmonen439Elektrostatische Abschirmung441Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	Plasmaoptik	433
Elektrostatische Abschirmung441Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	Plasmaoptik	433 435
Mottscher Metall-Isolator-Übergang 446 Abschirmung und Phononen in Metallen 448 Polaritonen 449 LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 466	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma	433 435 435
Mottscher Metall-Isolator-Übergang446Abschirmung und Phononen in Metallen448Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	Plasmaoptik	433 435 435 437
Abschirmung und Phononen in Metallen Polaritonen	Plasmaoptik	433 435 435 437 439
Polaritonen449LST-Beziehung453Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	Plasmaoptik	433 435 435 437 439 441
LST-Beziehung 453 Elektron-Elektron-Wechselwirkung 456 Fermi-Flüssigkeit 456 Elektron-Phonon-Wechselwirkung: Polaronen 459 Peierls-Instabilität linearer Metalle 461 Zusammenfassung 463	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang	433 435 435 437 439 441 446
Elektron-Elektron-Wechselwirkung456Fermi-Flüssigkeit456Elektron-Phonon-Wechselwirkung: Polaronen459Peierls-Instabilität linearer Metalle461Zusammenfassung463	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen	433 435 435 437 439 441 446 448
Fermi-Flüssigkeit	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen	433 435 435 437 439 441 446 448 449
Elektron-Phonon-Wechselwirkung: Polaronen	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen LST-Beziehung	433 435 435 437 439 441 446 448 449 453
Peierls-Instabilität linearer Metalle	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen LST-Beziehung Elektron-Elektron-Wechselwirkung	433 435 435 437 439 441 446 448 449 453 456
Zusammenfassung	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen LST-Beziehung Elektron-Elektron-Wechselwirkung Fermi-Flüssigkeit	433 435 435 437 439 441 446 448 449 453 456 456
	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen LST-Beziehung Elektron-Elektron-Wechselwirkung Fermi-Flüssigkeit Elektron-Phonon-Wechselwirkung: Polaronen	433 435 435 437 439 441 446 448 449 453 456 456 459
Auigaben	Plasmaoptik Dispersionsrelation für elektromagnetische Wellen Transversale optische Schwingungen in einem Plasma Longitudinale Plasmaschwingungen Plasmonen Elektrostatische Abschirmung Mottscher Metall-Isolator-Übergang Abschirmung und Phononen in Metallen Polaritonen LST-Beziehung Elektron-Elektron-Wechselwirkung Fermi-Flüssigkeit Elektron-Phonon-Wechselwirkung: Polaronen Peierls-Instabilität linearer Metalle	433 435 435 437 439 441 446 448 449 453 456 456 459 461

15 Optische Prozesse und Exzitonen	467
Optische Reflexion	469
Kramers-Kronig-Relationen	470
Elektronische Interband-Übergänge	474
Exzitonen	475
Frenkel-Exzitonen	477
Schwach gebundene (Mott-Wannier) Exzitonen	481
Exzitonen-Kondensation zu Elektron-Loch-Tröpfchen (EHD)	482
Raman-Effekt in Kristallen	484
Elektronenspektroskopie mit Röntgenstrahlen	488
Energieverlust schneller Teilchen in einem Festkörper	489
Zusammenfassung	491
Aufgaben	491
16 Dielektrische und ferroelektrische Festkörper	495
Maxwell-Gleichungen	496
Polarisation	496
Makroskopisches elektrisches Feld	497
Depolarisationsfeld, E_1	499
Lokales elektrisches Feld am Ort eines Atoms	501
Lorentz-Feld, E_2	503
Feld der Dipole innerhalb eines Hohlraums, E_3	504
Dielektrizitätskonstante und Polarisierbarkeit	505
Elektronische Polarisierbarkeit	506
Strukturelle Phasenübergänge	509
Ferroelektrische Kristalle	510
Klassifizierung ferroelektrischer Kristalle	
Verschiebungsübergänge	513
Weiche optische Phononen	516
Landau-Theorie des Phasenübergangs	517
Phasenübergang zweiter Ordnung	518
Phasenübergang erster Ordnung	
Antiferroelektrizität	
Ferroelektrische Domänen	
Piezoelektrizität	524
Zusammenfassung	525
Aufgaben	526
17 Oberflächen- und Grenzflächenphysik	531
Rekonstruktion und Relaxation	532
Kristallographie der Oberfläche	533
Élektronische Struktur der Oberfläche	537

Inhaltsverzeichnis	XIII

Austrittsarbeit	
Thermische Elektronenemission	. 538
Oberflächenzustände	. 539
Tangentialer Oberflächentransport	. 540
Magnetischer Widerstand in einem zweidimensionalen Kanal	. 541
Integraler Quanten-Hall-Effekt (IQHE)	. 543
IQHE in realen Systemen	. 545
p- n -Übergänge	
Gleichrichtung	
Solarzellen und Photodetektoren	
Schottky-Barrieren	
Heterostrukturen	
<i>p-N</i> -Heteroübergänge	. 553
Halbleiterlaser	
Leuchtdioden	
Aufgaben	
18 Nanostrukturen	561
Abbildungstechniken für Nanostrukturen	. 565
Elektronenmikroskopie	. 566
Optische Mikroskopie	. 567
Rastertunnel-Mikroskop	
Rasterkraft-Mikroskop	. 572
Elektronische Struktur von 1D-Systemen	. 574
Eindimensionale (1D) Subbänder	
Spektroskopie von van-Hove-Singularitäten	
1D Metalle – Coulomb Wechselwirkungen und Gitterkopplungen	. 576
Elektrischer Transport in 1D	. 580
Leitfähigkeitsquantisierung und Landauer-Formel	. 580
Zwei Barrieren in Serie – Resonantes Tunneln	. 583
Inkohärente Addition und Ohmsches Gesetz	. 586
Lokalisierung	
Spannungssonden und der Büttiker-Landauer-Formalismus	
Elektronische Struktur von 0D-Systemen	
Quantisierte Energieniveaus	. 593
Halbleiter-Nanokristalle	. 594
Metallische Quantenpunkte	. 596
Diskrete Ladungszustände	. 598
Elektrischer Transport in 0D	
Coulomb-Oszillationen	
Spin, Mott-Isolator und Kondo-Effekt	. 604
•	

Cooper-Paare in supraleitenden Quantenpunkten	606
Schwingungseigenschaften und thermische Eigenschaften	607
Quantisierte Schwingungszustände	607
Transversale Schwingungen	609
Wärmekapazität und Wärmetransport	611
Zusammenfassung	613
Aufgaben	613
19 Nichtkristalline Festkörper	617
Beugungsdiagramme	618
Einatomige amorphe Substanzen	619
Radiale Verteilungsfunktion	620
Struktur von Quarzglas (a-SiO ₂)	621
Gläser	624
Viskosität und Sprung-(Hopping-)Rate	625
Amorphe Ferromagnetika	627
Amorphe Halbleiter	628
Niederenergetische Anregungen in amorphen Festkörpern	630
Berechnung der Wärmekapazität	630
Wärmeleitfähigkeit	632
Glasfaseroptik	633
Rayleigh-Streuung	634
Aufgabe	635
20 Punktdefekte	637
Leerstellen im Gitter	638
Diffusion	642
Metalle	645
Farbzentren	646
F-Zentren	646
Weitere Farbzentren	647
Aufgaben	650
·~ .	
21 Versetzungen	651
Schubfestigkeit von Einkristallen	652
Gleiten	654
Versetzungen	655
Burgers-Vektoren	658
Spannungsfelder von Versetzungen	659
Kleinwinkelkorngrenzen	661
Versetzungsdichten	664
Versetzungsvervielfachung und Gleiten	665

Inhaltsverzeichnis	XV
Festigkeit von Legierungen	667
Versetzungen und Kristallwachstum	669
Whisker	670
Härte von Stoffen	672
Aufgaben	673
22 Legierungen	675
Allgemeine Betrachtungen	676
Substitutions-Mischkristalle, Hume-Rothery-Regeln	679
Ordnung-Unordnungs-Übergang	682
Elementare Theorie der Ordnung	684
Phasendiagramme	687
Legierungen der Übergangsmetalle	689
Kondo-Effekt	
Aufgaben	694
Anhang	695
A: Temperaturabhängigkeit der Bragg-Reflexe	
B: Die Ewaldsche Berechnung der Gittersummen	699
C: Quantisierung elastischer Wellen: Phononen	
D: Fermi-Dirac-Verteilungsfunktion	
E: Ableitung der $\mathrm{d} k/\mathrm{d} t$ -Gleichung	712
F: Boltzmannsche Transportgleichung	
G: Vektorpotential, Feldimpuls und Eichtransformationen	719
H: Cooper-Paare	725
I: Ginzburg-Landau-Gleichung	
J: Elektron-Phonon-Stöße	732

Index

736