Лабораторная работа №4.

ИССЛЕДОВАНИЕ RC-ГЕНЕРАТОРОВ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ.

- 1. RC генератор с трехзвенной цепочкой.
- 1.1. Исследование дифференцирующей трехзвенной RC цепочки
- 1.1.1. Откройте и зарисуйте макетную схему исследования RC цепочки (рис.1)

1.1.2. Рассчитайте частоту, на которой фазовый сдвиг цепочки равен 180 градусов. Номиналы элементов приведены на схеме.

$$f_0 = \frac{1}{2\pi RC\sqrt{6}}$$
 при $R_1 = R_2 = R_3 = R$ и $C_1 = C_2 = C_3 = C$.

Коэффициент передач на частоте f_0 равен $\beta_0 = \frac{1}{29} = 0.0345$.

- 1.1.3. Измерьте частоту f_0 :
 - включите клавишу моделирования;
 - включите плоттер Боде (XBP1) в режим фаза, мультиметры XMM1 и XMM2 установите в режим переменного напряжения;
 - на генераторе XFG1 установите режим переменного напряжения и значение амплитуды E_r =14,15 B (действующее значение e_r =10 B по мультиметру XMM1);

заполните таблицу 1 меняя частоту сигнала на генераторе XFG1 и измеряя напряжение $U_{\text{вых}}$ по мультиметру XMM2. Частоту f_0 зафиксируйте по плоттеру по признаку переворота фазы.

По данным таблицы 2 постройте график $U_{\text{вых}}=f(F)$.

Таблица 1

F_{r}	0.5	1	1.1	1.2	$f_0=$	2	2.5	5	10	КГц
$U_{\text{вых}}$										В

1.1.4. Рассчитайте коэффициент передачи цепочки на частоте f_0 .

$$\beta_0 = \frac{U_{\text{вых}}}{e_{\Gamma}}.$$

- Исследование генератора с трехзвенной RC-цепочкой.
- 1.2.1. Откройте и зарисуйте макетную схему исследования генератора.

1.2.2. Настройте схему генератора:

- ullet установите ключ J_1 в нижнее положение, а ключ J_2 в замкнутое положение;
- включите осциллограф XSC1 и переменным резистором R₈ добейтесь устойчивого генерирования синусоидальных колебаний с максимальной амплитудой без заметных искажений формы;
- включите частотомер XFC1 и измерьте частоту генерации f_r .
- 1.2.3. Определите коэффициент усиления на частоте генерации $f_{\rm r}$.
 - ullet установите ключ J_1 в верхнее положение, а клавишу J_2 в разомкнутое положение;
 - установите мультиметры XMM1 и XMM2 в режим измерения переменного напряжения;
 - на генераторе XFG1 установите режим переменного напряжения и значение амплитуды $E_r = 14,15$ мВ (действующее значение $e_r = 10$ мВ по мультиметру XMM2);
 - мультиметром XMM1 измерьте Uвых и рассчитайте коэффициент усиления $K_{yc} = \frac{U_{\text{вых}}}{e_{\scriptscriptstyle \Gamma}}$
- 1.2.4. Сравните расчетные и экспериментальные значения f_0 и f_r , а также β_0 и $\frac{1}{K_{\rm loc}}$.

2. Генератор с Г – образной RC – цепочкой

- 2.1. Исследование Γ образной RC цепочки.
- 2.1.1. Откройте и зарисуйте макетную схему исследования Г- образной RC цепочки.

2.1.2. Рассчитайте частоту цепочки, на которой сдвиг фазы равен 0 градусов. Номиналы элементов приведены на схеме.

$$f_0 = \frac{1}{2\pi RC}$$
при $R_1 = R_2 = R$ и $C_1 = C_2 = C$

Коэффициент передачи на частоте f_0 равен $\beta_0 = \frac{1}{3} = 0,33$.

- 2.1.3. Измерьте частоту f_0 , снимите и постройте АЧХ Γ образной RC цепочки по методике пп. 1.1.3, 1.1.4.
- 2.2. Исследование генератора с Γ образной RC цепочкой.
- 2.2.1. Откройте и зарисуйте макетную схему исследования генератора с Γ образной RC цепочкой.

Повторите методику пп. 1.2.2 - 1.2.4. В п. 1.2.3 установите $E_{\rm r}$ = 141,5 мВ ($e_{\rm r}$ = 100 мВ).

J

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ.

- 1. Гусев В.Г., Электроника. / В.Г. Гусев, Ю.М Гусев. М. : Высшая школа, 1991 г. 617 с
- 2. Титце У., Полупроводниковая схемотехника. В 2 т. : Пер. с нем. / У. Титце, К. Шенк. М. : Додэка-XXI, 2008. 832 с