

ENTROPY & Decision Tree

Entropy: Measurement for Uncertainty

• 불확실성(Uncertainty)의 정도를 나타내는 수치

SHANNON ENTROPY

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

0 <= Entropy <= 1

■ 불확실성이 높을수록 엔트로피는 큰 값을 가짐

• Binary Classification: 0 <= Entropy <= 1

• 8-classes Classification: 0 <= Entropy <= 3

• 16 classes Classification: 0 <= Entropy <= 4

■ 머신러닝에서 엔트로피 활용 예

- [1] Deep Learning의 Loss Function
- [2] Decision Tree
- [3] Active Learning

MLP: Loss Function

- Loss function: 학습 모델이 얼마나 잘못 예측하고 있는지는 표현하는 지표
 - 값이 낮을수록 모델이 정확하게 예측했다고 해석할 수 있음
 - Ex. Cross Entropy Error (CEE) 계산 방법

$$CEE(y, y') = -\sum_{i=1}^{N} y_i \times \log(y_i')$$

❖ y': 예측 값

$$h(x) = -\sum_{i=1}^n \left(pi\log_2(pi)
ight)$$

0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	0	0	0	0	0

정답 값 (y, one-hot)

Model A의 예측 결과

0 0.8 0	0 0	0.1 0	0.1	0
---------	-----	--------------	-----	---

예측 확률 (y') CEE = 0.2231

$$CEE(y, y') = -(1 \times \log(0.8)) = 0.2231$$

- 머신러닝에서 엔트로피 사용 예: Decision Tree (DT)
 - DT에서 확실히 구분이 되는 특징을 먼저 구분해 주는 것이 중요
 - 확실히 구분이 되는 특징은 불확실성(엔트로피)가 작다는 것을 의미

person	Is soldier?	Long hair?	gender	
1	yes	no	Male	
2	no	no	Female	
3	yes	no	Male	
4	no	yes	Female	
5	yes	no	Male	
6	6 no		Female	

- 머신러닝에서 엔트로피 사용 예: Decision Tree (DT)
 - DT에서 확실히 구분이 되는 특징을 먼저 구분해 주는 것이 중요
 - 확실히 구분이 되는 특징은 불확실성(엔트로피)가 작다는 것을 의미

■ 머신러닝에서 엔트로피 사용 예: Active Learning

	Нарру	Unhappy	Entropy
l love you	0.99	0.01	80.0
I am angry	0.05	0.95	0.29
I am sad	0.3	0.7	88.0
I am feeling blue	0.6	0.4	0.97

K-NEAREST NEIGHBOR (KNN)

Supervised Learning: <u>Model-based Learning</u>

- Linear/Ridge/Lasso/Elastic Regression
- Deep Learning(MLP & CNN)
- Support Vector Machine
- Decision Tree

Unsupervised Learning

• KNN Method(or Algorithm): [Memory-based Learning] or [Lazy Learning]

KNN Algorithm

• 선형 vs. **비선형**

• KNN 응용: <u>(1) KNN 분류, (2) KNN 추정</u>

■ KNN 분류

• 인접한 K개의 데이터로부터 Majority Voting

k = # of nearest neighbors

k = I : Orange

k = 3: Green

■ KNN 분류

• 인접한 K개의 데이터로부터 Majority Voting

	유전자 정보						환자 상태	
사람	<i>,</i> 유전자A	유전자 B	유전자 C	유전자 D	환자 상태 질병유무]	질병유무	새로운 관측치와 의 거리
Α	2.54	4.33	3.99	2.57	정상		정상	1.54
В	3.12	3.87	3.84	3.04	정상		정상	0.76
С	2.76	4.17	5.63	3.28	정상	【】	정상	2.00
D	3.87	3.56	4.25	3.65	질병	4/	질병	0.78
Е	3.55	3.91	2.68	4.22	질병	1 /	실병	1.28
F	4.12	2.86	3.30	3.71	질병		질병	1.31
								k = I : 정상
G	3.24	3.68	3.82	3.77	?		질병	k = 3 : 질병

■ KNN 예측

• 인접한 K개의 데이터로부터 **평균**/중간값/Min/Max/ 중에서 택일

k = number of nearest neighbors

k = 1: new = 15

k = 3: new = (15+21+30)/3 = 22

■ KNN Algorithm 이슈

• [1] 최적의 K를 어떻게 결정할 것인가? → 인접한 학습 데이터를 몇 개까지 탐색할 것인가?

(1<= K <= 전체 데이터 개수 → Overfitting vs Underfitting)

■ KNN Algorithm 이슈

• [1] 최적의 K를 어떻게 결정할 것인가? (인접한 학습 데이터를 몇 개까지 탐색할 것인가?)

$$MisclassError_k = \frac{1}{k} \sum_{i=1}^{k} I(c_i \neq \hat{c}_i) \text{ for } k = 1, 2, ..., k^*$$

 $I(\cdot)$: Indicator Function

• 예측모델

$$SSE_k = \sum_{i=1}^k (y_i - \hat{y_i})^2 \text{ for } k = 1, 2, ..., k^*$$

■ KNN Algorithm 이슈

- [2] 데이터간 거리는 어떻게 측정할 것인가? (Distance Measurements)

 - L2 Norm (Euclidean Distance)
 - Mahalanobis Distance
 - Correlation Distance

• L1 Norm (Manhattan Distance)
$$d_{Manhattan(X,Y)} = \sum_{i=1}^{n} |x_i - y_i|$$

$$d_{(A,B)} = \sqrt{(a_1 - b_1)^2 + \dots + (a_p - b_p)^2} = \sqrt{\sum_{i=1}^{p} (a_i - b_i)^2}$$

$$d_{Mahalanobis(X,Y)} = \sqrt{(X-Y)^T \Sigma^{-1} (X-Y)},$$

 Σ^{-1} : inverse of covariance matrix