交换代数导引 Atiyah 笔记

https://phanpu.github.io/

January 2022

目录

1	环和	理想	4
	1.1	环和环同态	4
	1.2	理想, 商环	4
	1.3	零因子,幂零元,可逆元	4
	1.4	素理想,极大理想	4
	1.5	小根和大根	5
	1.6	理想的运算	6
	1.7	扩张和局限	7
	1.8	习题 1	7
2	模		17
	2.1	模和模同态	17
	2.2	子模和商模	18
	2.3	子模上的运算	18
	2.4	直和与直积	19
	2.5	有限生成的模	19
	2.6	正合序列	20
	2.7	模的张量积	20
	2.8	纯量的局限和扩充	21
	2.9	张量积的正合性	22
	2.10	代数	23
	2.11	代数的张量积	23
	2.12	习题 2	23

3	分式	环和分式域	28		
	3.1	局部性质	29		
	3.2	理想在分式环中的扩张和局限	30		
	3.3	习题 3	31		
4	准素	分解	39		
	4.1	习题 4	42		
5	整相	 关性和赋值	47		
	5.1	整相关性	47		
	5.2	上升定理	47		
	5.3	整闭整环,下降定理	48		
	5.4	赋值环	50		
	5.5	习题 5	51		
6	链条	件 件	60		
	6.1	习题 6	62		
7	Noether 环				
	7.1	Noether 环中的准素分解	65		
	7.2	习题 7	66		
8	Art	in 环	71		
	8.1	习题 8	72		
9	离散赋值环和 Dedekind 整环				
	9.1	离散赋值环	74		
	9.2	Dedekind 整环	75		
	9.3	分式理想	76		
10	完备	化	77		
	10.1	拓扑和完备化	77		
	10.2	滤链 (Filtrations)	78		
	10.3	分次环和分次模	79		
	10.4	相伴的分式环	81		
11	维数	理论	82		

11.1	Hilbert 函数	82
11.2	Noether 局部环的维数理论	84
11.3	正则局部环	85
11.4	超越维数	86

1 环和理想

1.1 环和环同态

环和同态的定义可以参考任何一本抽象代数教材, Atiyah 书中的环特指**交换幺环**。只有一个元素 0 组成的环称为零环。

1.2 理想, 商环

命题 1.1. 设 α 是环 A 的理想,则包含 α 的理想 β 与商环 A/α 的理想 $\bar{\beta}$ 构成——对应。

1.3 零因子,幂零元,可逆元

定义 1.2. 环 A 中的零因子是指整除 0 的因子 x,即存在 y 使得 xy = 0。没有 0 以外的零因子且元素个数大于 1 的环称为**整环**。

定义 1.3. 环 A 中的可逆元 x 是指存在 y 使得 xy = yx = 1。环 A 中的可逆元全体构成交换群。

命题 1.4. A 是非零环,则以下命题等价:

- A 是域
- A 中除了 0 和 (1) 外没有别的理想
- 任意从 A 映入非零环的同态都是单的

1.4 素理想,极大理想

命题 1.5.

- p 是素理想当且仅当 A/p 是整环
- m 是极大理想当且仅当 A/m 是域

命题 1.6. 设 $f: A \to B$ 是环的同态,则有 B 中的素理想的原像是素理想,但是这个结论对于极大理想不成立。

证明. 设 \mathfrak{g} 是 B 中的素理想, 若 $ab \in f^{-1}(\mathfrak{g})$, 则 $f(ab) = f(a)f(b) \in \mathfrak{g}$, 不妨 $f(a) \in \mathfrak{g}$, $a \in \mathfrak{g}$ 。

而对于非域的环到域的环同态(如 $\mathbb{Z} \to \mathbb{Q}$),显然后者的极大理想为 0,而 0 显然不是前者的极大理想。

定理 1.7. 每个非零环都有极大理想。

证明. 本定理是 Zorn 引理的应用。(设 P 为非空偏序集,若 P 中任何全序子集均在 P 中有上界,那 么 P 至少存在一个极大元)。

记 A 的所有不等于 (1) 的理想构成的集合为 Σ ,包含关系是一个偏序关系,且显然每个链都有上界,故有极大元。

推论 1.8. 对环 A 的任意非 (1) 的理想 a, 存在包含 a 的极大理想。

证明. 对 A/\mathfrak{a} 使用上定理即可。

推论 1.9. 对任意不可逆元 x, 存在包含 x 的极大理想。

证明. 事实上, (x) 是不含 1 的理想。

注 1.10.

- 对诺特环,可以避免使用佐恩引理
- 有的环恰有一个极大理想 \mathfrak{m} , 这样的环称为**局部环**, 域 $k=A/\mathfrak{m}$ 称为同类余域。

命题 1.11. 设 $A \in A$ 是一个环,且 $m \neq (1)$ 是 A 中这样一个理想,他使得 A - m 都由可逆元组成,则 A 是局部环,m 是他的极大理想。

证明. 事实上,非(1)的理想一定由不可逆元组成。

命题 1.12. 设 A 是环, m 是他的极大理想, 且有 1+m 都是可逆元, 则 A 是局部环。

证明. 对任意 $x \notin \mathfrak{m}$,由 x 和 \mathfrak{m} 共同生成 A,故存在 $t \in \mathfrak{m}, y \in A$,使得 xy + t = 1,故 $xy \in 1 + \mathfrak{m}$ 可逆,从而 x 可逆。

定义 1.13. 有有限个极大理想的环称为半局部环。

1.5 小根和大根

命题 1.14. 环 A 的所有幂零元构成的集合 $\mathfrak M$ 是一个理想, 环 $A/\mathfrak M$ 中没有非零幂零元。

证明. 若 x,y 是幂零元,则对任意 r,显然 rx 也是幂零元,而由二项式定理,x+y 也一定是幂零元,从而 $\mathfrak N$ 是一个理想。

对 $x \in A$,若 $\bar{x}^n = 0$,则 $x^n \in \mathfrak{N}$,从而 $x \in \mathfrak{N}$,即 $\bar{x} = \bar{0}$ 。

定义 1.15. 我们称 \mathfrak{N} 为理想 A 的小根 (nilradical)。

命题 1.16. A 的小根为所有素理想的交。

证明. 首先先证明对任意素理想 \mathfrak{p} 和任意幂零元 x, 一定有 $x \in \mathfrak{p}$ 。

这是显然的, 因为 $x \cdot x \cdot \cdot \cdot x = 0 \in \mathfrak{p}$, 由素理想的性质易得 $x \in \mathfrak{p}$ 。

如果 x 不是幂零元,用 Σ 表示一切具有性质: 不包含 $x^n(n>0)$ 的理想的集合,零理想显然在 Σ 中,由 Zorn 引理, Σ 有一个最大元 \mathfrak{p} 。

对任意 $a, b \notin p$, $(a)+\mathfrak{p}$ 不在 Σ 中, 故 $\exists m, n$ 使得 $x^m \in (a)+\mathfrak{p}$, $x^n \in (b)+\mathfrak{p}$, 从而 $x^{m+n} \in (ab)+\mathfrak{p}$, 故 $ab \notin \mathfrak{p}$, 这样, 若 $ab \in \mathfrak{p}$, 必然有 $a \in \mathfrak{p}$ 或者 $b \in \mathfrak{p}$, 从而 \mathfrak{p} 是素理想。

定义 1.17. A 的**大根** (Jacobson radical) 究 为所有极大理想的交。

命题 1.18. $x \in \mathfrak{R} \Leftrightarrow$ 对一切 $y \in A$, 1-xy 都是可逆元。

证明. \Rightarrow : 若 1-xy 不可逆,则存在包含 (1-xy) 这个理想的极大理想 \mathfrak{m} ,而 $x \in \mathfrak{m}$,有 $xy \in \mathfrak{m}$,从 而 $1 \in \mathfrak{m}$,矛盾。

 \Leftarrow : 若 $x \in \mathfrak{m}$, \mathfrak{m} 是某个极大理想,则 x 和 \mathfrak{m} 生成 A, 故存在 $y \in A$ 和 $t \in \mathfrak{m}$ 使得 t + xy = 1, 从而 t 可逆,故 $\mathfrak{m} = (1)$ 矛盾。

1.6 理想的运算

命题 1.19. 理想 $\mathfrak{a} + \mathfrak{b}$ 是包含两者的最小理想。

命题 1.20. 环 A 的理想关于包含关系构成完备格。

注 1.21. 设 $< S, \le >$ 是偏序集, 若 S 中任意两个元素都存在上确界以及下确界, 则称 S 是格 (lattice), 为了方便, 这样的格称为偏序格。

定理 1.22. 如果 \mathfrak{a} 和 \mathfrak{b} 是互素的,则有 $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a} \mathfrak{b}$

命题 1.23.

- i) 设 $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ 是素理想, 而 \mathfrak{a} 是含在 $\bigcup_{i=1}^n \mathfrak{p}_i$ 中的理想,则对某个 i 有 $\mathfrak{a} \subseteq \mathfrak{p}_i$
- ii) 设 $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ 是一些理想, \mathfrak{p} 是包含 $\bigcap_{i=1}^n \mathfrak{a}_i$ 的素理想,那么对某个 i, $\mathfrak{a}_i \subseteq \mathfrak{p}$, 如果 $\mathfrak{p} = \bigcap_{i=1}^n \mathfrak{a}_i$,那么对某个 i, $\mathfrak{a}_i = \mathfrak{p}$

证明. 归纳即可。

定义 1.24. 理想的商 (quotient) 定义为 $(\mathfrak{a}:\mathfrak{b}) = \{x \in A | x\mathfrak{b} \subseteq \mathfrak{a}\}$,特别的, $(0:\mathfrak{b})$ 称为理想 \mathfrak{b} 的零**化子** (annihilator),记为 Ann(\mathfrak{b})。如果 \mathfrak{b} 是主理想 (x), $(\mathfrak{a}:\mathfrak{b})$ 也可记为 $(\mathfrak{a}:x)$ 。

习题 1.1

- $i) \ \mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- $ii) (\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$
- iii) $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc})=((\mathfrak{a}:\mathfrak{c}):\mathfrak{b})$
- $iv) (\bigcap \mathfrak{a}_i : b) = \bigcap (\mathfrak{a}_i : b)$
- $v) (\mathfrak{a}: \Sigma_i \mathfrak{b}_i) = \bigcap_i (\mathfrak{a}: \mathfrak{b}_i)$

定义 1.25. 设 \mathfrak{a} 是 A 中任意理想,它的根理想 (radical) 定义为集合

$$r(\mathfrak{a}) = \{x \in A | x^n \in \mathfrak{a}$$
对某个 $n > 0$ 成立}

考虑 A 到 A/\mathfrak{a} 的 standard homomorphism ϕ , 有 $r(\mathfrak{a}) = \phi^{-1}(\mathfrak{R}_{A/\mathfrak{a}})$, 从而 $r(\mathfrak{a})$ 是理想。

习题 1.2

- $i) \ r(\mathfrak{a}) \supseteq \mathfrak{a}$
- $ii) \ r(r(\mathfrak{a})) = r(\mathfrak{a})$
- $iii) \ r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- $iv) \ r(\mathfrak{a}) = (1) \Leftrightarrow \mathfrak{a} = (1)$
- $v) \ r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$
- vi) 如果 \mathfrak{p} 是素理想,那么 $r(\mathfrak{p}^n) = r(\mathfrak{p})$ 对一切 n 成立(英文原版为 $r(\mathfrak{p}^n) = \mathfrak{p}$)

命题 1.26. 理想 α 的根是所有包含 α 的素理想的交。

证明. 1.16应用到 A/a 上。

注 1.27. 可以把根的定义扩张到任意集合 E, 且有 $r(\bigcup E_n) = \bigcup r(E_n)$ 。

命题 1.28. 记 $D=\bigcup_{x\neq 0}\operatorname{Ann}(x)$, 则 $D=\bigcup_{x\neq 0}r(\operatorname{Ann}(x))$, 即 D=r(D)。

命题 1.29. 如果环 A 的理想 a,b 的根互素,则它们互素。

证明. 由习题 2,
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})) = r((1)) = (1)$$
, 从而 $\mathfrak{a} + \mathfrak{b} = (1)$ 。

1.7 扩张和局限

定义 1.30. 在环同态 $f: A \to B$ 中,A 的理想 \mathfrak{a} 的像并不一定是理想,称 $f(\mathfrak{a})$ 生成的理想为**扩理想** (the extension) \mathfrak{a}^e ,为所有 $\sum y_i f(x_i)$ 的集合,其中 $y_i \in B, x_i \in \mathfrak{a}$ 。

定义 1.31. 而在环同态 f 中,B 的理想 \mathfrak{b} 的原像总是理想,称为 \mathfrak{b} 的**局限理想** (the contraction) \mathfrak{b}^c ,我们已经证明过如果 \mathfrak{b} 是素理想,它的局限理想也是素理想。

命题 1.32.

- $i) \mathfrak{a} \subseteq \mathfrak{a}^{ec}, \mathfrak{b} \supseteq \mathfrak{b}^{ce}$
- $ii) \mathfrak{b}^c = \mathfrak{b}^{cec}, \mathfrak{a}^e = \mathfrak{a}^{ece}$
- iii) 设 C 是所有 B 中理想的局限理想的集合,E 是所有 A 中理想的扩理想的集合,则

$$C = \{\mathfrak{a} | \mathfrak{a}^{ec} = \mathfrak{a}\}, E = \{\mathfrak{b} | \mathfrak{b}^{ce} = \mathfrak{b}\}$$

 $\mathfrak{a} \to \mathfrak{a}^e$ 是一一映射且逆为 $\mathfrak{b} \to \mathfrak{b}^c$.

习题 1.3

设 $\mathfrak{a}_1,\mathfrak{a}_2$ 是 A 中的理想, $\mathfrak{b}_1,\mathfrak{b}_2$ 是 B 中的理想,那么

- $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e, (\mathfrak{b}_1 + \mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c + \mathfrak{b}_2^c$
- $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e \cap \mathfrak{a}_2^e, (\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$
- $(\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e, (\mathfrak{b}_1\mathfrak{b}_2)^c \supseteq \mathfrak{b}_1^c\mathfrak{b}_2^c$
- $(\mathfrak{a}_1:\mathfrak{a}_2)^e = (\mathfrak{a}_1^e:\mathfrak{a}_2^e), (\mathfrak{b}_1:\mathfrak{b}_2)^c \subseteq (\mathfrak{b}_1^c:\mathfrak{b}_2^c)$
- $r(\mathfrak{a})^e \subseteq r(\mathfrak{a}^e), r(\mathfrak{b})^c = r(\mathfrak{b}^c)$

即集合 E 关于和和积是封闭的,C 关于其余三个运算是封闭的。

1.8 习题 1

1. 0 x 是环 A 中的幂零元,证明: 1+x 是 A 的可逆元,由此得出幂零元和可逆元的和是可逆元。

证明. 不妨
$$x^n = 0$$
, 则 $1 - x^n = 1 = (1 - x)(1 + x + \dots + x^{n-1})$ 。

2. 设 A 是环, 令

$$f = a_0 + a_1 x + \dots + a_n x^n \in A[x]$$

证明:

- i) $f \in A[x]$ 的可逆元 $\Leftrightarrow a_0 \in A$ 中可逆元且 a_1, \dots, a_n 是幂零元。
- ii) f 幂零 $\Leftrightarrow a_0, a_1, \dots, a_n$ 幂零。
- iii) f 是零因子 \Leftrightarrow 存在着环 A 的非 0 元 a 使得 af = 0。
- iv) 如果 $(a_0, \dots, a_n) = (1)$, f 就叫本原多项式。证明: 如果 $f, g \in A[x]$, 那么 fg 本原 $\Leftrightarrow f, g$ 均为本原。

证明. i) \Leftarrow : 设 $a_i^{m_i} = 0$, $1 \le i \le n$, 不妨 $a_0 = 1$, 否则考虑 $a_0^{-1}f$, 则 $(f-1)^{m_1+\cdots+m_n} = 0$, 记幂数 为 M, 从而 $1 = 1 - (1-f)^M = f((1-f)^{M-1} + \cdots + 1)$ 。(实际上就是题 1)

$$\Rightarrow$$
: 设 $fg = 1$,且 $g(x) = b_0 + b_1 x + \dots + b_m x^m$,令 $x = 0$,可得 $a_0 b_0 = 1$,从而 a_0 可逆。

从而有 $\forall k$, $\sum_{i+j=k} a_i b_j = 0$ (线性代数的结论),特别的 $a_n b_m = 0$, $a_n b_{m-1} + b_m a_{n-1} = 0$,从而 $a_n^2 b_{m-1} = 0$,如此往下, $a_n^{m+1} b_0 = 0$,故 a_n 幂零。对其余同理。

- ii) \Leftarrow : 设 $a_i^{m_i} = 0$,则 $f^{m_0 + \dots + m_n} = 0$ 。
- \Rightarrow : 设 $f^m = 0$, 有 $a_n^m = 0$, 从而 $(f a_n x^n)^2 m = 0$, 如此往下即得任意 i 有 a_i 幂零。
- iii) ⇐: 显然

⇒: $fg = 0, \sum_{i=j=k} a_i b_j = 0$, 特别的 $a_0 b_0 = 0, a_0 b_1 + a_1 b_0 = 0$, 从而 $a_1 b_0^2 = 0$, 如此往下, $a_n b_0^{n+1} = 0$ 。

iv) 首先 f 本原等价于不存在极大理想 \mathfrak{m} 使得 $f \in \mathfrak{m}[x]$ 。

考虑任意极大理想 \mathfrak{m} , $A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$ 是整环, 注意到

$$f, g \notin \mathfrak{m}[x] \Leftrightarrow \bar{f}, \bar{g} \neq \bar{0} \Leftrightarrow \overline{fg} \neq \bar{0} \Leftrightarrow fg \notin \mathfrak{m}[x]$$

- 3. 推广题 2 的结果到多个变元的多项式环 $A[x_1, \cdots, x_r]$ 上去。
- 解. 用主元归纳的方法很容易推广到 n 变元情形。
- 4. 在环 A[x] 中, 大根与小根重合。
- 证明. 若 f 幂零,则显然对任意 g, fg 是幂零的,由题 1, 1-fg 可逆,故 f 在 \mathfrak{R} 中。

若对任意
$$g$$
, $1-fg$ 可逆,令 $g=x$,则由题 2 , $(a_0,a_1,\cdots,a_n)\subseteq\mathfrak{N}$,从而 f 幂零。

- 5. 设 A 是环。A[[x]] 是形式幂级数 $f = \sum_{n=0}^{\infty} a_n x^n$ 所组成的环,证明:
 - i) $f \in A[[x]]$ 中可逆元 $\Leftrightarrow a_0 \in A$ 中可逆元。
 - ii) 如果 f 幂零,那么对一切 $n \ge 0$, a_n 都幂零,逆命题是否成立?(参考第七章习题 2)。
 - iii) f 属于环 A[[x]] 的大根 $\Leftrightarrow a_0$ 属于环 A 的大根。
 - iv) 环 A[[x]] 中任一极大理想 \mathfrak{m} 对 A 的局限理想都是 A 中的极大理想, 而 \mathfrak{m} 由 \mathfrak{m}^c 和 x 生成。

V) A 中任一素理想都是 A[[x]] 中一个素理想的局限理想。

证明. i) \Leftarrow : 实际上就是解一次方程组 $a_0b_0 = 1, a_0b_k + \cdots + a_kb_0 = 0 (k \ge 1)$,可以归纳看出每个 b_i 都是可解的。

 \Rightarrow : 令 x = 0 即得。

- ii) 设 $f^m = 0$, 则 $a_0^m = 0$, $f a_0$ 幂零, 如此往下。
- iii) f 是大根 $\Leftrightarrow \forall g, 1 fg$ 可逆 $\Leftrightarrow \forall b_0, 1 a_0b_0$ 可逆 $\Leftrightarrow a_0 \in \mathfrak{R}$
- iv)由 iii)易得。
- v) 素理想 $\mathfrak{n} = (\varphi(\mathfrak{n}, x))^c$, 其中 φ 是嵌入。
- 6. 假定环 A 中任一不含在小根中的理想都包含非 0 幂等元(即适合条件 $e^2=e\neq 0$ 的元素 e)。证明: A 的小根与大根相重合。

证明. 若大根与小根不重合,则大根存在 $x \in \mathfrak{R}, x^2 = x \neq 0$,对任意 y 都有 1 - xy 可逆,故 $1 - x = 1 - x^2 = 1 - x^3$ 都可逆,从而 1 - x 的逆 $1 + x = 1 + x + x^2$,故 $x^2 = 0$,故 x = 0,矛盾。

7. 设环 A 中任一元素 x 都对某个 n 成立 $x^n = x$, 证明: A 的任一素理想都极大。

证明. \mathfrak{p} 是素理想, A/\mathfrak{p} 是整环, $\bar{x}^n = \bar{x}$,若 $\bar{x} = 0$,可以得到 $\bar{x}^{n-1} = 1$,从而是域,从而 \mathfrak{p} 是极大理想。

8. 设 A 是非 0 环,证明: A 中的素理想的构成的集合有一个(按包含关系而言)极小元素。

证明. 对降链 A_{α} , 考虑 $A_0 = \bigcap_{\alpha} A_{\alpha}$, 只需证明这是素理想。

对 $xy \in A_0$, 对 $xy \in A_\beta$, 有 $x, y \in A_\beta$, 故 A_0 是素理想。

9. 设 $\mathfrak{a} \neq (1)$ 是环 A 中的理想,证明: $\mathfrak{a} = r(\mathfrak{a}) \Leftrightarrow \mathfrak{a}$ 是素理想的交。

证明. 根据1.26立得。 □

- 10. 设 A 是环, \mathfrak{N} 是它的小根, 证明下列断言等价:
 - A 恰好只有一个素理想
 - A 中任一元素或者是可逆元,或者是幂零元
 - A/𝔄 是域

证明. $1 \rightarrow 3$: A 的极大理想一定是素理想,故唯一的素理想 p 也是极大理想, A/p 是域。

- $3 \to 1$: 域只有零理想,从而 $\mathfrak{p} \subseteq \mathfrak{N}$,故 \mathfrak{p} 唯一且等于 \mathfrak{N} 。
- $2 \rightarrow 1$: 若理想含有可逆元则为 (1), 故所有素理想为 \mathfrak{N} 子集, 从而只有一个素理想。
- $1 \to 2$: p 即为 \mathfrak{N} , 对 $x \notin \mathfrak{N}$, 且 x 不可逆, 由于 (x) 为理想, 必然有包含它的极大理想, 即为 \mathfrak{p} 。从而 x 幂零, 矛盾。

- 11. 环 A 叫做 Boole 环,如果 $x^2 = x$ 对一切 $x \in A$ 成立。在 Boole 环 A 中证明:
 - i) 2x = 0 对一切 $x \in A$ 成立;
 - ii) 任一素理想 \mathfrak{p} 都极大, 而 A/\mathfrak{p} 是由两个元素组成的域;
 - iii) A 中任一具有有限个生成元的理想都是主理想。

证明. i)
$$2x = 2x^2 = (2x)^2 \Rightarrow 2x^2 = 0 \Rightarrow 2x = 0$$

ii) 只需证 A/\mathfrak{p} 含有两个元素。

事实上 $(y-1)y=0 \in \mathfrak{p}$, 从而 y 和 y-1 必有一个在 \mathfrak{p} 中,从而 $A/\mathfrak{p}=\{\bar{0},\bar{1}\}$ 。

iii) 事实上,
$$(x,y) = (x + y - xy)$$
.

12. 局部环里除了 0 和 1 之外,没有别的幂等元。

证明. 记唯一的极大理想为 m

若存在非零非 1 幂等元 x, 则 x 不可逆,从而存在包含它的极大理想,故 $x \in \mathfrak{m}$ 。从而 1-x 可逆,否则 $1-x+x \in \mathfrak{m}$ 矛盾,从而 $x(1-x)=0 \Rightarrow x=0$,矛盾。

13. (代数闭域的构造)设 K 是域, Σ 是系数属于 K 且首项系数等于 1 的一元不可约多项式 f 的全体所组成的集合。对每个 $f \in \Sigma$,相应的一个变元为 x_f 。用 $A = K[x_{f_1}, x_{f_2}, \cdots]$ 表示这些变元 x_f 在 K 上生成的多项式环,由 \mathfrak{a} 表示由所有的多项式 $f(x_f)$ 在 A 中生成的理想。证明 $\mathfrak{a} \neq (1)$ 。

设 m 设 A 中的一个包含有 \mathfrak{a} 的极大理想,并令 $K_1 = A/\mathfrak{m}$,那么 K_1 是 K_1 的扩域,且每个多项式 $f \in \Sigma$ 都有根 x_f ,进而可约(如果次数大于等于 2)。对 K_1 重复对 K 的作法,得到域 K_2 ,如此往下,得到 K_n 。令 $L = \bigcup_{n=1}^{\infty} K_n$ 。那么 L 是域。对每个多项式 $f \in \Sigma$,它都可以在 L 中分解成线性因式之积。用 \bar{K} 表示 L 中在 K 上代数元的集合。那么 \bar{K} 是 K 的代数闭包。

证明. 若 $\mathfrak{a} = (1)$,则存在 $\sum_{i=1}^{n} g_i f_i(x_{f_i}) = 1$,其中 $g_i \in A$ 为 x_f 的多项式。

不妨把范围从 A 缩小在 $K[x_{f_1},\cdots,x_{f_n}]$ 中。

设右式中出现的变元 x_1, \dots, x_n ,不妨假定 n 是使式子成立最小的正整数。

记
$$\mathfrak{b} = (f_1(x_1), f_2(x_2), \dots, f_{n-1}(x_{n-1})),$$
 显然 $\mathfrak{b}[x_n] + (f_n(x_n)) = (1) = K[x_{f_1}, \dots, x_{f_n}].$

由 n 的最小性, $\mathfrak{b} \subsetneq K[x_1, \cdots, x_{n-1}]$,从而

$$0 = K[x_1, \dots, x_n]/(\mathfrak{b}[x_n] + (f_n(x_n))) \cong (K[x_1, \dots, x_{n-1}]/\mathfrak{b})[x_n]/(\overline{f_n(x_n)}) \neq 0$$

矛盾。

故
$$\mathfrak{a}$$
 ≠ (1) \circ

14. 用 Σ 表示环 A 中完全由零因子组成的理想的全体组成的集合。证明 Σ 有一个极大元,而且 Σ 的每个极大元都是素理想,因此 A 中零因子的集合是素理想的并。

证明. 由 Zorn 引理,第一问易得。

对 Σ 的极大元 \mathfrak{p} , 若 $xy \in \mathfrak{p}$, x 和 y 均为零因子, 有 $(x) + \mathfrak{p} = \mathfrak{p}$ 。从而 \mathfrak{p} 是素理想。

15. 设 A 是环, X 是它的所有素理想的集合,对每个子集 $E \subsetneq A$,用 V(E) 表示包含 E 的所有素理想的集合。证明:

- i) 如果 \mathfrak{a} 是 E 生成的理想,那么 $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$
- ii) $V(0) = X, V(1) = \emptyset$
- iii) 设 $(E_i)_{i\in I}$ 是 A 的任意一组子集,那么

$$V(\bigcup_{i\in I} E_i) = \bigcap_{i\in I} V(E_i)$$

- iv) 对 A 中任意两个理想 \mathfrak{a} 和 \mathfrak{b} , $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$
- V(E) 这些集合适合拓扑空间关于闭集的公理,相应的,X 上的拓扑称为 Zariski 拓扑。拓扑空间 X 叫做环 A 的素谱 (the prime spectrum),记为 $\mathrm{Spec}(A)$ 。

证明. i) 显然包含 $\mathfrak a$ 的素理想一定包含 E,即 $V(E) \supseteq V(\mathfrak a)$,而由生成的概念,包含 E 的理想也包含 $\mathfrak a$,故 $V(E) = V(\mathfrak a)$ 。

由于 $r(\mathfrak{a}) \supseteq \mathfrak{a}$,则 $V(r(\mathfrak{a})) \subseteq V(\mathfrak{a})$ 。对包含 \mathfrak{a} 的素理想 \mathfrak{p} ,若 $x^n \in \mathfrak{a}$,则 $x^n \in \mathfrak{p}$,从而 $x \in \mathfrak{p}$,故 $r(\mathfrak{a}) \subseteq \mathfrak{p}$,则 $V(\mathfrak{a}) = V(r(\mathfrak{a}))$ 。

- ii) 显然。
- iii) 显然。

iv)
$$r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$$
 再利用第一问。

- 16. 描述空间 $\operatorname{Spec}(\mathbb{Z}), \operatorname{Spec}(\mathbb{R}), \operatorname{Spec}(\mathbb{C}[x]), \operatorname{Spec}(\mathbb{R}[x]), \operatorname{Spec}(\mathbb{Z}[x])$ 。
- 解. 整数环 \mathbb{Z} 的素理想集合 $X = \{(p)|p$ 为素数 $\}$ 。其中闭集为所有有限子集和全集空集。

实数环 \mathbb{R} 没有非平凡素理想, $Spec(\mathbb{R})$ 只有一个点 (0)。

 $Spec(\mathbb{C}[x]) = \{(f)|f = 0$ 或 $\deg f = 1\}$,其中的闭集为所有有限子集和全集空集。

 $\operatorname{Spec}(\mathbb{R}[x])=\{(f)|f=0$ 或f次数为 1 或次数为 2 且没有实根 $\}$,其中的闭集为所有有限子集和全集空集。

 $\operatorname{Spec}(\mathbb{Z}[x]) = \{(f)|f$ 不可约 $\}$ $\bigcup \{(p)|p$ 为素数 $\}$ $\bigcup \{(f,p)|f,p$ 如上 $\}$,其中的闭集为所有有限子集和全集空集。

注 1.33. UFD 的多项式环也是 UFD。

17. 对于每个元素 $f \in A$,用 X_f 记 $X = \operatorname{Spec}(A)$ 中 V(f) 的补集。集合 X_f 是开的。证明:它们组成 Zariski 拓扑中开集的一组基,并且具有以下性质:

- i) $X_f \cap X_g = X_{fg}$
- ii) $X_f = \emptyset \Leftrightarrow f$ 是幂零元
- iii) $X_f = X \Leftrightarrow f$ 是可逆元
- iv) $X_f = X_g \Leftrightarrow r((f)) = r((g))$
- v) X 是拟紧的 (quasi-compact) (即对 X 的每个开覆盖都有一个有限子覆盖)

- vi) X_f 是拟紧的
- vii) X 中的一个开子集是拟紧的当且仅当它是有限个形如 X_f 的集合的并,集合 X_f 叫做 $X=\mathrm{Spec}(A)$ 的主开集 (basic open sets)。
- 证明. i) X_f 是所有不包含 f 的素理想, $fg \notin \mathfrak{p} \Leftrightarrow f \notin \mathfrak{p}, g \notin \mathfrak{p}$ 。
 - ii) 所有素理想的交集为幂零元。
 - iii) 所有非 (1) 理想不含可逆元。
- iv) $X_f = X_g \Leftrightarrow V(r((f))) = V(r((g)))$,考虑到 r((f)) 是包含 (f) 的素理想的交,故 r((f)) = r((g))。
 - v) 只需证 vi)。
- vi) 开覆盖即 $\bigcap_{\alpha} V(\mathfrak{a}_{\alpha}) \subseteq V(f)$, 由闭集的性质这等价于 $V(\sum \mathfrak{a}_{\alpha}) \subseteq V((f))$ 。即 $r(\sum \mathfrak{a}_{\alpha}) \supseteq r((f))$,这等价于 $f^m \in \sum \mathfrak{a}_{\alpha}$,即等价于存在有限和 $f^m = \sum_{i=1}^n \mathfrak{a}_{\alpha}$ 。
- vii) 有限个 X_f 的并显然拟紧且开。另一方面,若一个开子集 U 是拟紧的,对覆盖 $\bigcup_f X_f$,他的有限子覆盖即为有限个 X_f 的并。
- 18. 将环 A 的素理想看作空间 $X = \operatorname{Spec}(A)$ 中的点时,用 x, y 这类字母来表示它们是合适的,如果 x 看作 A 的理想,就写成 \mathfrak{p}_x 。证明:
 - i) 集合 $\{x\}$ 是 Spec(A) 中的闭集 (我们说 x 是一个"闭点") ⇔ 理想 \mathfrak{p}_x 是极大理想
 - ii) $\overline{\{x\}} = V(\mathfrak{p}_x)$
 - iii) $y \in \overline{\{x\}} \Leftrightarrow \mathfrak{p}_x \subseteq \mathfrak{p}_y$
- iv) $X \in T_0$ 空间(这就是说,如果 x 和 y 是空间 X 中任意两个不同的点,那么或者存在 x 的一个邻域而不包含 y,或者存在 y 的一个邻域而它不包含 x)
- 证明. i) 若 $\{x\}$ 是闭集,代表存在一个 A 的子集 E 使得 V((E)) 只有一个元素,即包含 (E) 的素理想有且仅有一个,由于一定有极大理想包含 (E),且极大理想为素理想,从而 \mathfrak{p}_x 即为这个极大理想。

若 \mathfrak{p}_x 为极大理想,则显然 $V(\mathfrak{p}_x) = \{\mathfrak{p}_x\}$ 。

- ii) 左侧为包含 x 的所有闭集的交集,即包含 \mathfrak{p}_x 的所有 V((E)) 的集合,即 $V(\mathfrak{p}_x)$ 。
- iii) 由 ii) 有 $y \in \overline{\{x\}} \Leftrightarrow y \in V(\mathfrak{p}_x) \Leftrightarrow$ 素理想 \mathfrak{p}_y 包含 \mathfrak{p}_x 。
- iv) 取开集 $\{x\}^c$, $\{y\}^c$, 则若 $x \in \{y\}^c$ 且 $y \in \{x\}^c$, 由 iii) 有 $\mathfrak{p}_x = \mathfrak{p}_y$, 即 x = y, 矛盾。不妨 $x \notin \{y\}^c$, 这个开集是 x 的邻域且不含 y。
- 19. 拓扑空间 X 称为不可约的 (irreducible),如果 $X \neq \emptyset$ 而且 X 每一对非空开集都相交。一个等价的条件是:任一非空开集都在 X 里稠密。证明:X 不可约当且仅当 A 的小根是素理想。
- 证明. X 不可约 \Leftrightarrow 对任意 $f,g \in A \mathfrak{N}$ 有 $X_f \cap X_g$ 不为空集 \Leftrightarrow 存在素理想 \mathfrak{p} 使得 $f \notin \mathfrak{p}, g \notin \mathfrak{p}$ $\Leftrightarrow V(f) \cup V(g) = V((f)(g)) = V((fg)) \neq X$,即等价于 $f,g \notin \mathfrak{N}$ 时 $fg \notin \mathfrak{N}$,故等价于 \mathfrak{N} 是素理想。
- 20. 设X是拓扑空间。

- i) 如果 Y 是 X 不可约子空间, 那么 Y 在 X 中的闭包 \bar{Y} 也是不可约的。
- ii) X 的任一不可约子空间都包含在某个极大不可约子空间中。
- iii) X 的极大不可约子空间都是闭的,而且它们覆盖 X,它们叫做 X 的不可约分支 (irreducible components)。Hausdorff 空间的不可约分支是什么?
- iv) 如果 A 是环而 $X = \operatorname{Spec}(A)$,那么 X 的不可约分支是形如 $V(\mathfrak{p})$ 的闭集,这里 \mathfrak{p} 是 A 中的一个极小素理想。
- 证明. i) 对 X 中任意开集 U_1 和 U_2 ,若有 $U_1 \cap Y \neq \emptyset$, $U_2 \cap Y \neq \emptyset$,则 $U_1 \cap Y \cap U_2 \neq \emptyset$,而 $U_1 \cap \bar{Y} \neq \emptyset \Leftrightarrow U_1 \cap \subseteq (\bar{Y}^c)^\circ \Leftrightarrow U_1 \cap Y \neq \emptyset$,显然 $U_1 \cap U_2 \cap \bar{Y} \neq \emptyset$ 。
 - ii) Zorn 引理易得。
 - iii) 由 T_2 性质,任意两个单点都有不相交的开邻域,从而不可约子空间必为单点集。
- iv) 不可约分支是闭的,故形如 $V(\mathfrak{m})=V(r(\mathfrak{m}))$, \mathfrak{m} 为理想,由题 19 它的根 r((m)) 为素理想 \mathfrak{p} 。 若 \mathfrak{p} 有素理想真子集 \mathfrak{q} ,则 $V(\mathfrak{p}) \subsetneq V(\mathfrak{q})$,且由 $19V(\mathfrak{q})$ 同样是不可约的,与极大矛盾,故 \mathfrak{p} 为极小素理想。
- 21. 设 $\varphi: A \to B$ 是个环同态。令 $X = \operatorname{Spec}(A)$ 而 $Y = \operatorname{Spec}(B)$ 。如果 $\mathfrak{q} \in Y$,那么 $\varphi^{-1}(\mathfrak{q})$ 是 A 的素理想,即是 X 的一个点。因此 φ 诱导出映射 $\varphi^*: Y \to X$ 。证明:
 - i) 如果 $f \in A$,那么 $(\varphi^*)^{-1}(X_f) = Y_{\varphi(f)}$,因此映射 φ^* 是连续的。
 - ii) 如果 \mathfrak{a} 是 A 中理想;那么 $(\varphi^*)^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$
 - iii) 如果 \mathfrak{b} 是 B 中理想;那么 $\overline{\varphi^*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$
 - iv) 如果 φ 是满同态, 那么 φ^* 是 Y 映到 X 的闭子集 $V(\text{Ker}(\varphi))$ 上的同胚。
 - v) 如果 φ 是单的, 那么集合 $\varphi^*(Y)$ 在 X 中稠密。确切的说, $\varphi^*(Y)$ 在 X 中稠密 \Leftrightarrow $\mathrm{Ker}(\varphi) \subseteq \mathfrak{N}$
 - vi) 设 $\phi: B \to C$ 是另一环同态,那么 $(\phi \circ \varphi)^* = \varphi^* \circ \phi^*$ 。
- vii) 设 A 是具有唯一非零素理想 $\mathfrak p$ 的整环,再设 K 是 A 的分式域。令 $B = (A/\mathfrak p) \times K$,按照公式 $\varphi(x) = (\bar x, x)$ 定义 φ 。证明 φ^* 是一一映射,但不是同胚。
- 证明. i) $\varphi^*(\mathfrak{q}) \in X_f \Leftrightarrow \exists f \notin \mathfrak{p} \in X_f, \varphi^{-1}(\mathfrak{q}) = \mathfrak{p} \Leftrightarrow \exists f \notin \mathfrak{p} \in X_f, \mathfrak{q} = (\varphi(\mathfrak{p})) \Leftrightarrow \mathfrak{q} \notin \varphi(f)$, 故 $(\varphi^*)^{-1}(X_f) = Y_{\varphi(f)}$ 。从而开集的原像是开集,即映射连续。
 - ii) 由 i) 易得。
 - iii) 由 ii) 易得。
 - iv) 事实上, $\varphi^*(V(\mathfrak{b}/\mathfrak{a})) = V(\mathfrak{b})$, 其中 \mathfrak{b} 是 A 的理想。
 - v) $X = \varphi^*(Y) \Leftrightarrow X = \varphi * (V(0)) = V(0^c) = V(\text{Ker}(\varphi)) \Leftrightarrow \text{Ker}(\varphi) \subseteq \mathfrak{N}_{\circ}$
 - vi) 显然。
 - vii) $Spec(A) = \{(0), \mathfrak{p}\}, Spec(B) = \{(A/\mathfrak{p}) \times (0), (0) \times K\}, 显然一一映射。$
- 22. 设 $A = \prod_{i=1}^n A_i$ 是 A_i 的直积。证明 $\operatorname{Spec}(A)$ 是与 $\operatorname{Spec}(A_i)$ 自然同胚的两两不相交的开(且闭)子空间 X_i 的并。

反之,设 A 是任一环,证明以下诸条件等价:

- i) 空间 X = Spec(A) 不连通。
- ii) $A \cong A_1 \times A_2$,而 A_1 和 A_2 这两个环都不是零环。
- iii) A 含有不等于 0 和 1 的幂等元。

特别的,局部环的谱总是连通的。

- 证明. (1) 记投射 $p_i: A \to A_i$,记 $\mathfrak{b}_i = \operatorname{Ker}(p_i) = \Pi_{j \neq i} A_j$ 。 p_i^* 是 $\operatorname{Spec}(A_i)$ 到 $\operatorname{Spec}(A)$ 的映射,由 题 $21\mathrm{iv}$),它构建了 $\operatorname{Spec}(A_i)$ 到 $V(\mathfrak{b}_i)$ 的同胚。而 $\bigcup V(\mathfrak{b}_i) = V(0) = \operatorname{Spec}(A)$,且 $V(\mathfrak{b}_i) \cap V(\mathfrak{b}_j) = V(\mathfrak{b}_i \cup \mathfrak{b}_j) = V(A) = \varnothing$,且 $V(\mathfrak{b}_i) = (\bigcup_{j \neq i} V(\mathfrak{b}_j))^c$ 为开集。
 - (2) ii) ⇒ i): 由 (1) 可得 X 可以分解为两个不相交非空开子集的并,这与连通矛盾。
- $i)\Rightarrow iii)$: X 存在不相交的两个非空闭(且开)集并为 X(这与拓扑的不连通性等价),不妨记为 $V(\mathfrak{a})$ 和 $V(\mathfrak{b})$,则 $V(\mathfrak{a}\cap\mathfrak{b})=V(\mathfrak{a}\mathfrak{b})=X$,这意味着 $\mathfrak{a}\mathfrak{b}\in\mathfrak{N}$,同时 $V(\mathfrak{a}\cup\mathfrak{b})=\varnothing$,这说明 $\mathfrak{a}\cup\mathfrak{b}=(1)$ 否则必有一个极大理想(同时也是素理想)包含它,故存在 $a+b=1, a\in\mathfrak{a}, b\in\mathfrak{b}$,且有 $ab\in\mathfrak{N}$,不 妨 $b^ma^m=0$,有 $(a^m)+(b^m)=(1)$,故存在 e,有 e(1-e)=0(事实上,e 是可求的,把 a+b=1 两边 2m-1 次幂, a^m 的倍数即为 e, b^m 的倍数即为 1-e)。
 - $iii) \Rightarrow ii)$: e(1-e) = 0,有 $V((e)) \cap V((1-e)) = \varnothing$, $V((e)) \cup V((1-e)) = X$,故不连通。
- 23. 设 A 是 Boole 环而 $X = \operatorname{Spec}(A)$
 - i) 对每个 $f \in A$, 集合 X_f 在 X 中既是开的也是闭的
 - ii) 设 $f_1, \dots, f_n \in A$, 证明: $X_{f_1} \cup \dots \cup X_{f_n} = X_f$ 对某个 $f \in A$ 成立
 - iii) X_f 这些集合是 X 中仅有的既开又闭的子集。
 - iv) X 是紧 Hausdorff 空间。
- 证明. i) 有 $X_f \bigcup X_{1-f} = X$,而 f(1-f) = 0,对任意 $\mathfrak p$ 为素理想,f 和 1-f 必有一个在 $\mathfrak p$ 中,从 而 $X_f \bigcap X_{1-f} = \varnothing$,从而 $X_f = X_{1-f}^c$ 。
- ii) 由于 Boole 环任意有限生成理想都是主理想,记 $(f_1, \dots, f_n) = (f)$,故 $\bigcup X_{f_i} = (\bigcap V(f_i))^c = (V(\bigcup (f_i)))^c = (V((f_i)))^c = X_f$ 。
- iii) 设 U 既开又闭,记 $U=\bigcap X_\alpha$,则 $\{X_\alpha\bigcup U^c\}$ 构成 X 的开覆盖,则存在有限子覆盖 $\{X_i\bigcup U^c,1\le i\le n\}$,即 $U=\bigcup_{i=1}^nX_i$,由 ii)得 U 形如 X_f 。
- iv)(紧即拟紧性),由于 X 是 T_0 的,对任意两个元素 x 和 y,不妨存在 U 为 x 的开邻域且不含 y,记 $U = \bigcup X_{f_\alpha}$,不妨 $x \in X_f$,由于 X_f 既开又闭,则 X_f^c 为 y 的开邻域且不含 x,且 $X_f \cap X_f^c = \varnothing$,故 X 是 Hausdorff 空间。
- 24. 设 L 是一个格,它里面的两个元素 a 和 b 的 sup 和 inf 分别记作 $a \lor b$ 和 $a \land b$ 。L 叫做 Boole 格 (或 Boole 代数),如果有:
 - i) 在 L 中有最大元和最小元(分别记为 1 和 0)
 - ii) ∧,∨ 这两个运算中的每一个对另一个都是分配的 (distributive)。
 - iii) 对于每个 $a \in L$ 存在唯一的一个"补元" $a' \in L$ 具有性质 $a \lor a' = 1, a \land a' = 0$

设 L 是一个 Boole 格,按如下公式引入加法和乘法

$$a + b = (a \wedge b') \vee (a' \wedge b), \ ab = a \wedge b$$

验证 L 成为一个 Boole 环,将它记作 A(L)。

反过来,设 A 是个 Boole 环,在其中如下引进序: $a \le b$ 意思是 a = ab。证明对于这个序来说,A 是一个 Boole 格。这样 Boole 环和 Boole 格构建了一个一一对应。

证明. 首先证明关于 Boole 代数的几个性质:

- (1) 根据上确界和下确界的定义(上确界:对任意 $w \ge x, y$ 有 $w \ge x \lor y$,下确界同理),可得两个运算都是交换的,即 $x \lor y = y \lor x, x \land y = y \land x$ 。
 - (2) 结合律:同样根据定义,有 $x \wedge y \wedge z = x \wedge (y \wedge z)$,上确界同理。
 - (3) 自反: $x \wedge x = x, x \vee x = x$
 - (4) $x \wedge (x \vee y) = x \vee (x \wedge y) = x$, 因为 $x \geq (x \wedge y), x \leq (x \vee y)$
 - (5) $0 \le x \le 1, 0 \land x = 0, 0 \lor x = x, 1 \land x = x, 1 \lor x = 1$
 - (6) De Morgan's Laws: $(x \vee y)' = x' \wedge y'$, $(x \wedge y)' = x' \vee y'$, 这是因为

$$(x' \wedge y') \wedge (x \vee y) = ((x' \wedge y' \wedge x) \vee (x' \wedge y' \wedge y) = (0 \wedge y') \vee (x' \wedge 0) = 0$$

另一个同理。

从而可以得到一些关于加法和乘法的结论:

- $(1) a+b = ((a \wedge b') \vee a') \wedge ((a \wedge b') \vee b) = ((a \vee a') \wedge (b' \vee a') \wedge (a \vee b) \wedge (b' \vee b)) = (a \vee b) \wedge (a' \vee b') = (a \vee b)(a' \vee b')$
 - (2) $(a+b)' = (a'b') \lor (ab)$
 - (3) 1' = 0
 - (4) 1 + a = a'

现在证明 L 是一个 Boole 环, 首先是环公理:

- (1) 封闭性显然
- (2) 乘法结合律已证
- (3) 加法结合律: 可以化简出 $a+b+c=ab'c' \lor a'bc' \lor a'b'c \lor abc$
- (4) 交換律易证
- (5) 1a = a, a + 0 = a
- (6) $a + a = (a \lor a)(a' \lor a') = aa' = 0$, $a \neq a$ 的加法逆元
- $(7)(a+b)c = (ab')\lor(a'b)c = (ab'c)\lor(a'bc), ac+bc = ac(bc)'\lor(bc(ac)') = (ac(b'\lorc'))\lor(bc(a'\lorc')) = (acb')\lor(bca'), 分配律成立$

又 $a^2 = a \land a = a$,从而为 Boole 环。

若 $A \in Boole$ 环,对序关系 $a \le b : a = ab$,首先验证格公理:

 $(1) \le$ 是自反的: 显然 $a = a^2$, 故 $a \le a$

- $(2) \leq$ 是反对称的: 若 $a \leq b \leq a$, 有 a = ab, b = ba, 从而 a = b。
- (3) \leq 是传递的,若 $a \leq b, b \leq c$,则 a = ab, b = bc,故 $a = ab = ab^2c = abc = ac$,从而 $a \leq c$ 。 从而 \leq 是偏序关系。下面验证格公理(对任意两个元素都有上下确界)
- (1) 令 $a \lor b = a + b + ab$, 有 a(a + b + ab) = a + ab + ab = a, 从而 $a \le a \lor b$, 同理 $b \le a \lor b$, 而 若 $a \le c, b \le c$, 即 ac = a, bc = b, 则 (a + b + ab)c = a + b + ab, 从而 $a + b + ab \le c$, 故 a + b + ab 为上确界。
 - (2) 令 $a \wedge b = ab$, 有 aba = abb = ab, 且若 ca = cb = c, 有 cab = cb = c, 同理 ab 是下确界。接下来是验证 Boole 格的定义。
 - (1) 显然 x1 = x, 0x = 0, 故最大元和最小元存在;
 - (2) 有以下各式成立,从而彼此分配

$$a \lor b \land c = (a+b+ab)c = ac+bc+abc, (a \land c) \lor (b \land c) = ac+bc+abc^2 = ac+bc+abc$$
$$a \land b \lor c = ab+c+abc, (a \lor c) \land (b \lor c) = (a+c+ac)(b+c+bc) = ab+c+abc$$

$$\Box$$
 (3) a 的补元为 $1-a$ 。

25. 从题 23 题 24 推出 Stone 定理: 任一 Boole 格都与某个紧 Hausdorff 拓扑空间的既开且闭的子集 组成的格同构。

证明. 设 Boole 格 B 在题 24 中对应 Boole 环 A(B), $X = \operatorname{Spec}(A)$, 令 B' 为 X 的既开且闭子集构成的集合,包含关系是 B' 上的偏序集,易证 B' 构成 Boole 格,偏序关系为包含关系。

建立映射
$$B \to B'$$
: $f \to X_f$, 这是格同构。

26. 设 A 是个环。A 的所有极大理想组成 $\operatorname{Spec}(A)$ 的一个子集,这个子集作为 $\operatorname{Spec}(A)$ 的子空间具有诱导拓扑,叫做 A 的极大谱 (maximal spectrum) 并记作 $\operatorname{Max}(A)$,对任意交换环, $\operatorname{Max}(A)$ 并没有 $\operatorname{Spec}(A)$ 的那些好的函子性质,因为极大理想在环同态下的原像不一定是极大理想。

设 X 是紧 Hausdorff 空间,C(X) 是定义在 X 上的所有实值连续函数组成的环(将两个函数的值相加和相乘来定义它们的和与积)。对于每个点 $x \in X$ 用 \mathfrak{m}_x 记 C(X) 中所有具有性质 f(x) = 0 的 f 组成的集合。因为 \mathfrak{m}_x 是满同态 $C(X) \to \mathbb{R}, f \mapsto f(x)$ 的核,所以 \mathfrak{m}_x 是个极大理想:将 $\mathrm{Max}(C(X))$ 写作 \widetilde{X} ; 我们定义映射 $\mu: X \to \widetilde{X}$,即 $x \mapsto \mathfrak{m}_x$,证明 μ 是将 X 映射到 \widetilde{X} 之上的同胚。

i) 设 m 是 C(X) 中的任一极大理想, 并设 $V=V(\mathfrak{m})$ 是 m 中函数的公共零点集: $V=\{x\in X|f(x)=0, \forall f\in \mathfrak{m}\}$

假定 V 是空的,那么对于每个点 $x \in X$,存在着这样一个元素 $f_x \in \mathfrak{m}$ 使得 $f_x(x) \neq 0$ 。因为 f_x 是连续的, f_x 在点 x 的一个开邻域 U_x 上都不等于 0。因为 X 是紧的,有限个这种邻域 U_{x_1}, \cdots, U_{x_n} 就覆盖 X,令 $f = f_{x_1}^2 + \cdots + f_{x_n}^2$,那么 f 在 X 上处处不等于 0,这就是说它是 C(X) 中的可逆元。但是这与 $f \in \mathfrak{m}$ 相矛盾。因此 V 非空。

设 $x \in V$ 的一个点,那么 $\mathbf{m} \subseteq \mathbf{m}_x$,因为 \mathbf{m} 极大,所以 $\mathbf{m} = \mathbf{m}_x$,因此 μ 是满的。

- ii) 根据 Urysohn 引理,连续函数把 X 的点区分开来,于是 $x \neq y \Leftarrow \mathfrak{m}_x \neq \mathfrak{m}_y$,因此 μ 是单的。
- iii) 设 $f \in C(X)$, 令 $U_f = \{x \in X | f(x) \neq 0\}$ 及 $\widetilde{U_f} = \{\mathfrak{m} \in \widetilde{X} | f \notin \mathfrak{m}\}$, 证明 $\mu(U_f) = \widetilde{U_f}$, 开集 U_f 组成 X 的拓扑的一组基,于是 μ 是同胚。因此 X 可以从 C(X) 重新构成。

证明. 只有 iii) 是要证明的。

首先,对 $x \in U_f$,若 $\mu(x) \notin \widetilde{U_f}$,则 $f \in \mu(x) = \mathfrak{m}_x$,与 $f(x) \neq 0$ 矛盾。从而 $\mu(U_f) \subseteq \widetilde{U_f}$ 。另一方面,若 $\mu(x) \in \widetilde{U_f}$,则 $f \notin \mathfrak{m}_x$,则 $f(x) \neq 0, f \in U_f$ 。

再结合 μ 是满射,原命题成立。

27. 设 k 是代数闭域,再设 $f_{\alpha}(t_1,\dots,t_n)=0$ 是系数属于 k 的 n 个变元的多项式方程组。 k^n 中所有适合这些方程的点 $x=(x_1,\dots,x_n)$ 所成的集合 X 叫做仿射代数簇 (affine algebra variety)。

考察所有具有性质 $g(x)=0, \forall x\in X$ 的多项式 $g\in k[t_1,\cdots,t_n]$ 所成的集合。这个集合是多项式环中的一个理想 I(X); 它叫做簇 X 的理想。同余类环 $P(X)=k[t_1,\cdots,t_n]/I(X)$ 是定义在 X 上的多项式函数环,因为两个多项式 g 和 h 定义 X 上的同一个函数,当且仅当 $g-h\in I(X)$

将 t_i 在 P(X) 中的象记为 $\xi_i, \xi_j (1 \le i \le n)$ 是 X 上的坐标函数: 如果 $x \in X$,那么 $\xi_i(x)$ 就是点 x 的第 i 个坐标; P(X) 作为 k-代数,就由这些坐标函数生成,它叫做 X 的坐标环。

如同在题 26 中那样,对任意点 $x \in X$ 用 \mathfrak{m}_x 来记为 P(X) 中所有适合条件 f(x) = 0 的函数 f 所组成的理想,它是 P(X) 的一个极大理想。因此,如果令 $\widetilde{X} = \operatorname{Max}(P(X))$,就定义了一个映射 $\mu: X \to \widetilde{X}$,即 $x \mapsto \mathfrak{m}_x$ 。

不难证明, μ 是单的: 如果 $x \neq y$, 那么 $x_i \neq y_i$ 对某个 i 成立, 因此 $\xi_i - x_i$ 属于 \mathfrak{m}_x , 但是不属于 \mathfrak{m}_y , 于是 $\mathfrak{m}_x \neq \mathfrak{m}_y$, μ 还是满的,这一点是 Hilbert 零点定理的一个形式。

28. 设 f_1, \dots, f_m 是 $k[t_1, \dots, t_n]$ 中的元素,它们定义一个多项式映射 $\varphi: k^n \to k^m$: 如果 $x \in k^n$,那 么点 $\varphi(x)$ 的坐标就是 $f_1(x), \dots, f_m(x)$ 。

设 X, Y 分别是 k^n, k^m 中的仿射代数簇, 映射 $\varphi: X \to Y$ 叫正则的, 如果 φ 是从 k^n 到 k^m 的一个多项式映射在 X 上的限制。

对于 Y 上的任意多项式函数 η ,合成映射 $\eta \circ \varphi$ 是 X 上的多项式函数,因此 φ 诱导出 k-代数同态 $P(Y) \to P(X)$,即 $\eta \mapsto \eta \circ \varphi$,证明:这样我们得到了 X 到 Y 的正则映射的集与从 P(Y) 到 P(X) 的 k-代数同态的集之间的一个——对应。

证明. 首先 $\eta \circ \varphi$ 是一个环同态。

若 φ 和 ϕ 诱导同一个函数,考虑坐标函数 v_i ,有 $\phi_i = v_i \circ \phi = v_i \circ \varphi = \varphi_i$ 。有 $\phi_i - \varphi_i \in I(X)$,故 ϕ 和 φ 在任意 x 处相等。从而该诱导出的对应是单射。

若 μ 给出 k-代数同态 $P(Y)\to P(X)$ 。不妨设 $P(Y)=k[y_1,\cdots,y_m]/I(Y)$,那么 $\mathrm{Im}(\mu)$ 由 $\mu(\bar{y}_i)=\bar{f}_i\in k[x_1,\cdots,x_n]/I(X)$ 给出。

令 φ 表示多项式映射 $X \to Y: (x_1, \dots, x_n) \mapsto (f_1, \dots, f_m)$,那么 $\bar{y}_i \circ \varphi(x_1, \dots, x_n) = f_i$ 。即此 时 φ 诱导了 μ 。从而该对应是满的。

2 模

2.1 模和模同态

定义 2.1. (M,μ) 称为 A-模 (A-module),如果 M 是个交换群,运算记为加法,A 是一个环,且 μ 是一个映射 $A \times M \to M$,它满足:(把 $\mu(a,x)$ 简记为 ax)

- a(x+y) = ax + ay
- (a+b)x = ax + bx
- (ab)x = a(bx)
- 1x = x

定义 2.2. 两个 A-模 M 和 N 之间的映射 $f: M \to N$ 称为 A-模同态,如果

$$f(x + y) = f(x) + f(y), f(ax) = af(x), a \in A, x, y \in M$$

命题 2.3. 显然 M 到 N 的所有 A-模同态是交换群, 它也是 A-模, 记为 $\operatorname{Hom}_A(M,N)$ 。

命题 2.4. 对于任意 A-模 M, 有同构 $Hom(A, M) \cong M$, 前者为 A 作为加法群到 M 的群同态的集合,显然该同态依赖于 f(1) 的选取。

2.2 子模和商模

定义 2.5. M 的子群 M' 若对于 A 的乘法运算是封闭的,则称为 M 的子模,在交换群 M/M' 上按 $a(\bar{x}) = \bar{\alpha}\bar{x}$ 来定义乘法,M/M' 也构成 A-模,称为商模。从 M 到 M/M' 的自然映射是 A-模同态。

定义 2.6. 对于模同态 f, 它的余核 Coker(f) = N/Im(f), 是 N 的一个商模。

命题 2.7. 模同构 $M/\mathrm{Ker}(f)\cong\mathrm{Im}(f)$

2.3 子模上的运算

命题 2.8. 子模的和 $\sum M_i$ 定义为所有有限和 $\sum x_i$, 它是包含所有 M_i 的最小子模, $\bigcap M_i$ 也是 M 的子模, M 的子模关于包含关系构成完备格。

命题 2.9. *i*) 设 $L \supseteq M \supseteq N$ 都是 A-模,则有

$$(L/N)/(M/N) \cong (L/M)$$

ii) 设 M_1, M_2 是 M 的子模, 那么

$$(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$$

证明. i) 考虑映射 $v: L/N \to L/M$, v(x+N) = x+M, 这个映射易证是良定义的, 映射的核是 M/N, 由映射的同构定理, 原式成立。

ii) 考虑映射 $w: M_2 \to M_1 + M_2 \to (M_1 + M_2)/M_1$,即 w 是嵌入映射和一个商模诱导同态的复合,这个映射是满的,且 $\mathrm{Ker}(w) = M_1 \cap M_2$,由映射的同构定理可以推出原式。

定义 2.10. A-模 $\mathfrak{a}M$ 定义为 A 的理想 \mathfrak{a} 和 A-模 M 的乘积,其元素为所有有限和 $\sum a_i x_i$,它是 M 的子模。

定义 2.11. N 和 P 是 M 的两个子模,定义 $(M:P) = \{a \in A | aP \subseteq N\}$,它是 A 的理想。定义 M 的零化子 (annihilator)Ann(M) 为 (0:M)。如果 M 的零化子是 0,则称 M is faithful。

命题 2.12. 如果 $\mathfrak{a} \subseteq \text{Ann}(M)$,那么 M 可以看做 A/\mathfrak{a} -模,其中 $\bar{x}m = xm$ 。 faithful A-module M 看做 A/\mathfrak{a} -模也是 faithful module。

习题 2.1

i) $Ann(M + N) = Ann(M) \cap Ann(N)$

ii) (N : P) = Ann((N + P)/N)

定义 2.13. 设 x 是 M 的一个元素,它生成的子模 (x) (或 Ax) 是指所有形如 $ax(a \in A)$ 的元素构成的模。同理可以定义多个生成元生成的子模。

2.4 直和与直积

定义 2.14. 直和 $\oplus M_i$ 为所有形如 $(x_i)_{i \in I}$ 组成的模,且分量几乎所有均为 0。如果去掉这个限制,则称为直积 ΠM_i 。因此有限集的直积和直和重合。

命题 2.15. 对环 A, 将 A 看做 A 的模,且有 $A = \bigoplus_{i=1}^n \mathfrak{a}_i$,则有环 A 的直积分解 $A \cong \prod_{i=1}^n (A/\mathfrak{b}_i)$,其中 $\mathfrak{b}_i = \bigoplus_{i \neq i} \mathfrak{a}_i$ 。

2.5 有限生成的模

定义 2.16. 自由 A-模是同构于 $\bigoplus_{i \in I} M_i$ 的一个 A-模,这里 M_i 都同构于 A,记这样的模为 $A^{(I)}$ 。有限生成的自由 A 模同构于 $A \oplus \cdots \oplus A$,记为 A^n (约定 A^0 为零模)。

命题 2.17. A-模 M 是有限生成的 ⇔ 存在 n 使得 M 同构于 A^n 的一个商模。

证明. 若 M 是有限生成的,设 x_1, \dots, x_n 生成了 M,定义 $\varphi: A^n \to M$: $\varphi(a_1, \dots, a_n) = \sum_{i=1}^n a_i x_i$,这是一个满同态,因此 $M \cong A^n/\mathrm{Ker}(\varphi)$ 。

若存在 A^n 的商模与 M 同构,即存在 $\varphi: A^n \to M$,有 $\varphi(0, \dots, 1, \dots, 0)$ 生成 M。

命题 2.18. 设 M 是有限生成的 A-模, \mathfrak{a} 是 A 的一个理想, φ 是 A-模 M 的一个自同态,且使得 $\varphi(M)\subseteq\mathfrak{a}M$ 。那么 φ 有下式成立:

$$\varphi^n + a_1 \varphi^{n-1} + \dots + a_n = 0 (a_i \in \mathfrak{a})$$

推论 2.19. M 是有限生成的 A-模, α 使得 $\alpha M = M$, 则存在 $x \equiv 1 \pmod{\alpha}$ 使得 xM = 0.

证明. 取 φ 为恒同, $x=1+a_1+\cdots+a_n$ 。

命题 2.20 (Nakayama 引理). 设 M 是有限生成的 A-模, 而 \mathfrak{a} 是 A 的一个包含在 A 的大根 \mathfrak{R} 中的理想, 如果 $\mathfrak{a}M=M$, 则 M=0。

证明. 记 $x \equiv 1 \pmod{\mathfrak{R}}$ 且使得 xM = 0,若 x 不可逆,则存在包含 x 的极大理想 \mathfrak{m} ,而 $x \equiv 1 \pmod{\mathfrak{R}}$,矛盾,从而 x 可逆,从而 $xM = 0 \Rightarrow M = 0$ 。

推论 2.21. 设 M 是有限生成 A-模,N 是一个子模, \mathfrak{a} 是 A 的一个包含在 A 的大根 \mathfrak{R} 中的理想,则 $M=\mathfrak{a}M+N\Rightarrow M=N$

证明. 将 Nakayama 引理应用到 M/N 上且考虑到 $\mathfrak{a}(M/N) = (\mathfrak{a}M + N)/N$ 。

推论 2.22. 设 x_i 是 M 的一组元素,它们在 $M/\mathfrak{m}M$ 中的象组成这个向量空间的一组基,则 x_i 生成 M。

2.6 正合序列

定义 2.23. 一个 A-模和 A-同态的序列

$$\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots$$

在 M_i 处**正合** (exact), 如果 $Im(f_i) = Ker(f_{i+1})$ 。

形如

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

的序列称为短正合序列 (short exact sequence)。

注 2.24. 对任意长的正合序列

$$\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots$$

可以通过如下方式分解为短正合序列: 令 $N_i = \operatorname{Im}(f_i) = \operatorname{Ker}(f_{i+1})$,则有 $0 \to N_i \to M_i \to N_{i+1} \to 0$ 。

命题 2.25. i) 设

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$$

是一个 A-模和 A-同态的序列,那么该序列正合等价于对一切 A-模 N,序列

$$0 \to \operatorname{Hom}(M'', N) \xrightarrow{\bar{v}} \operatorname{Hom}(M, N) \xrightarrow{\bar{u}} \operatorname{Hom}(M', N)$$

都正合。

ii) 设

$$0 \to N' \xrightarrow{u} N \xrightarrow{v} N''$$

是一个 A-模和 A-同态的序列,那么该序列正合等价于对一切 A-模序列 M,序列

$$0 \to \operatorname{Hom}(M, N') \xrightarrow{\bar{u}} \operatorname{Hom}(M, N) \xrightarrow{\bar{v}} \operatorname{Hom}(M, N'')$$

都是正合的。

定义 2.26. 设 C 是 A-模的一个类, λ 是定义在 C 上取值为整数的一个函数,且对任意短正合序列都有 $\lambda(M') - \lambda(M) + \lambda(M'') = 0$,称 λ 为一个**加性函数** (additive function)。

命题 2.27. 设 $0 \to M_0 \to \cdots \to M_n \to 0$ 是一个 A-模的正合序列,对任意定义在该类上的加性函数 λ ,有

$$\sum_{i=1}^{n} (-1)^i \lambda(M_i) = 0$$

证明. 根据2.24, 有 $\lambda(M_i) = \lambda(N_i) + \lambda(N_{i+1})$, 然后交错加减即可。

2.7 模的张量积

命题 2.28. 设 M,N 是两个 A-模,那么存在唯一一个由一个 A-模 T 和一个 A-双线性映射 $g:M\times N\to T$ 所构成的对 (T,g),具有以下性质:

对任意双线性映射 $f: M \times N \to P$, 其中 $P \neq A$ -模, 都存在分解 $f = f' \circ g$.

证明. 唯一性显然。

用 C 表示自由群 $A^{M\times N}$, 即 $\sum_{i=1}^{n} \mathfrak{a}_{i}(m_{i}, n_{i})$ 构成的集合。

记 D 为 (x+x',y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y'), (ax,y)-a(x,y), (x,ay)-a(x,y)生成的子模,T 为 $M\times N$ 在 C/D 中的象生成的模,即为符合条件的 A-模。

命题 2.29. 设 $x_i \in M, y_i \in N$ 使得在 $M \otimes N$ 中 $\Sigma x_i \otimes y_i = 0$,那么存在有限生成的子模 $M_0 \subsetneq M, N_0 \subsetneq N$,在 $X_0 \otimes N_0$ 中, $\Sigma x_i \otimes y_i = 0$ 。

证明. $\Sigma x_i \otimes y_i = 0$ 表明 $\Sigma(x_i, y_i) \in D$,记 M_0 是 $\{x \otimes y | x = x_i \exists x \not\in D$ 生成元的第一个坐标} 生成的子模, N_0 同理,此时原命题成立。

注 2.30. 在一般情况中, $M \otimes N$ 中的零元不一定在子模中为 0。如 $A = \mathbb{Z}, M = \mathbb{Z}, N = \mathbb{Z}/2\mathbb{Z}, M' = 2\mathbb{Z}, N' = N$ 中, $2 \otimes x$ 在 $M \otimes N$ 中为 0 但不在 $M' \otimes N'$ 中为 0。

命题 2.31 (一些典范同构). 设 M, N, P 都是 A-模,则有如下同构:

- *i)* $M \otimes N \to N \otimes M : x \otimes y \to y \otimes x$
- ii) $M \otimes N \otimes P \rightarrow M \otimes (N \otimes P) : x \otimes y \otimes z \rightarrow x \otimes (y \otimes z)$
- iii) $(M \oplus N) \otimes P \rightarrow (M \otimes P) \oplus (N \otimes P) : (x,y) \otimes z \rightarrow (x \otimes z, y \otimes z)$
- iv) $A \otimes M \to M : a \otimes x \to ax$

习题 2.2

设 A,B 是环。M 是一个 A-模,P 是一个 B-模,N 是一个 (A,B)-双模(即同时赋予 N 一个 A 模结构和 B 模结构,且有 $(ax)b = a(xb), a \in A, b \in B, x \in N)$,那么 $M \otimes_A N$ 有自然的 B-模结构, $N \otimes_B P$ 有自然的 A-模结构,且

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P)$$

定义 2.32. 张量积可以拓展到模同态上 $(f \otimes g)(x \otimes y) = f(x) \otimes g(y)$.

命题 2.33. $(f' \circ f) \otimes (g' \circ g) = (f' \otimes f) \circ (g' \otimes g)$

2.8 纯量的局限和扩充

定义 2.34. 设 $f: A \to B$ 是一个环同态,N 是一个 B-模,那么 N 有一个 A-模结构,定义如下: $ax = f(a)x, a \in A, x \in N$,称该 A-模为 N **纯量局限** (restriction of scalars) 得到的模。

命题 2.35. 如果环 B 作为 A-模和 N 作为 B-模都是有限生成的,那么 N 作为 A-模也是有限生成的。

证明. 两个有限生成模的生成元的乘积生成了 A-模 N 。

定义 2.36. 设 M 是一个 A-模,如上定义 B 是一个 A-模,定义 $M_B = B \otimes_A M$,其中 $b(b' \otimes x) = (bb' \otimes x), \forall b, b' \in B, x \in M$,则 M_B 是一个 B-模,称为 M **纯量扩充** (extension of scalars) 得到的模。

命题 2.37. 如果 M 作为 A-模是有限生成的, 那么 M_B 作为 B-模也是有限生成的。

2.9 张量积的正合性

命题 2.38. 设 $f: M \times N \to P$ 是一个 A-双线性映射,则 f 诱导出一个映射 $M \to \operatorname{Hom}(N,P)$,其中 $x \to f_x$,其中 $f_x(y) = f(x,y)$)。反之对任意同态 $\varphi: M \to \operatorname{Hom}(N,P)$,都定义了一个双线性映射 $(x,y) \to \varphi(x)(y)$,因此所有 $f: M \times N \to P$ 的 A-双线性映射 f 的集合 S 与 $\operatorname{Hom}(M,\operatorname{Hom}(N,P))$ 一一对应。而 S 与 $\operatorname{Hom}(M \otimes N,P)$ 一一对应,因此有

$$\operatorname{Hom}(M \otimes N, P) \cong \operatorname{Hom}(M, \operatorname{Hom}(N, P))$$

命题 2.39. 设

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

是一个 A-模和 A-同态的正合序列, N 是一个任意 A-模, 那么

$$M' \otimes N \xrightarrow{f \otimes id} M \otimes N \xrightarrow{g \otimes id} M'' \otimes N \to 0$$

也是正合的。

证明. 由2.25(1), 有

$$0 \to \operatorname{Hom}(M'', \operatorname{Hom}(N, P)) \xrightarrow{\bar{g}} \operatorname{Hom}(M, \operatorname{Hom}(N, P)) \xrightarrow{\bar{f}} \operatorname{Hom}(M', \operatorname{Hom}(N, P))$$

正合, 再由2.38, 得到

$$\operatorname{Hom}(M''\otimes N,P)\xrightarrow{\bar{g}}\operatorname{Hom}(M\otimes N,P)\xrightarrow{\bar{f}}\operatorname{Hom}(M'\otimes N,P)\to 0$$

正合。再由2.25(1) 得原序列正合。

注 2.40. 如果把 $\rightarrow 0$ 去掉则不成立。如果仍成立,则称 N 为平坦 (flat)A-模。

命题 2.41. 对任意 A-模 N, 下列性质等价:

- N 是平坦模
- 对任意 A-模正合序列 $0\to M'\to M\to M''\to 0$,有 $0\to M'\otimes N\to M\otimes N\to M''\otimes N\to 0$ 也是正合的
- 如果同态 $f: M' \to M$ 单,则 $f \otimes id: M' \otimes N \to M \otimes N$ 也是单的。
- 如果同态 $f: M' \to M$ 单, 且 M 和 M' 是有限生成的,则 $f \otimes id: M' \otimes N \to M \otimes N$ 也是单的。

证明. 1 和 2 等价可以由长正合列拆分短正合列得到, 2 和 3 等价已证, 3 推出 4 是显然的, 故只需证明 4 推出 3。

如果 $f: M' \to M$ 是单的,取 $u = \sum_{i=1}^n x_i' \otimes y_i \in \operatorname{Ker}(f \otimes id)$,则 $\sum f(x_i') \otimes y_i = 0$ 。用 M_0' 表示这些 x_i' 生成的子模,根据2.29,存在 M_0 使得在 M_0 上 $\sum f(x_i') \otimes y_i = 0$,这样构造了两个有限 生成的子模。考虑 f 在 M_0' 上的限制 f_0 ,由已知条件有 $f_0 \otimes id$ 单,从而 $\operatorname{Ker}(f_0 \otimes id) = \{0\}$,而 $u = \sum_{i=1}^n x_i' \otimes y_i \in \operatorname{Ker}(f_0 \otimes id)$,从而 u = 0,故 f 单。

习题 2.3

如果 $f: A \to B$ 是环同态, 而 M 是一个平坦 A-模, 那么 $M_B = B \otimes_A M$ 是一个平坦 B-模。

2.10 代数

定义 2.42. 设 $f:A\to B$ 是环同态,按公式 ab=f(a)b 定义 B 为一个 A-模,这样 B 就同时有了一个 A-模结构和环结构,且两个结构协调。这样环 B 在赋予一个 A-模结构后,称为一个 A-**代数**。

注 2.43.

- 如果 A 是域 K, 则 f 是单的,此时 K-代数就是包含 K 的一个环。
- 每个环都是 \mathbb{Z} -代数, 其中 $f: n \to 1 + \cdots + 1$ 。

定义 2.44. 设 $f:A\to B$ 和 $g:A\to C$ 是两个环同态。一个环同态 $h:B\to C$ 如果还是 A-模同态,就叫做 A-代数同态。

命题 2.45. $h \in A$ -代数同态当且仅当 $h \circ f = g$ 。

证明. $h \in A$ -代数同态 $\Leftrightarrow g(a)h(b) = ah(b) = h(ab) = h(f(a)b) = h(f(a))h(b)$ 。

定义 2.46. 环同态 $f: A \to B$ 叫做有限的,同时 B 叫做有限 A-代数,如果 B 作为 A-模是有限生成的。同态 f 叫做有限型,同时 B 叫做有限生成的 A-代数,如果 B 存在 x_1, \dots, x_n 使得 B 每个元素都可以写成以它们为变元,系数属于 f(A) 的多项式,一个等价的条件是:存在 $A[t_1, \dots, t_n]$ 到 B 的 A-代数同态。

环 A 称为有限生成的,如果它作为 \mathbb{Z} -代数是有限生成的,即存在 x_1, \dots, x_n 使得 A 的每个元素都是他们的整系数多项式。

2.11 代数的张量积

定义 2.48. 设 B 和 C 是两个 A-代数,定义它们的张量积为 D,定义 D 上的乘法为 $\mu: D \times D \to D$, $\mu(b \otimes c, b' \otimes c') = bb' \otimes cc'$,这个定义是合理的。

2.12 习题 2

1. 证明如果 m, n 互素,则 $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ 。

证明. 由裴蜀定理, 存在 $a,b\in\mathbb{Z}$ 使得 am+bn=1, 有 $1\otimes 1=1\otimes 1(am+bn)=a(m\otimes 1)+b(1\otimes n)=0+0=0$ 。

2. 设 A 是一个环, \mathfrak{a} 是 A 的理想, M 是一个 A-模, 证明: 模 $A/\mathfrak{a} \otimes_A M$ 与 $M/\mathfrak{a} M$ 同构。

证明. 建立映射 $f: \bar{a} \otimes m \to \overline{am}$, 容易证明这是良定义的。

如果 $\bar{a} \otimes m \in \text{Ker}(f)$, 则 $am \in \mathfrak{a}M$, 即 $a \in \mathfrak{a}$, 则 $\bar{a} = 0$, 故 $\bar{a} \otimes m = 0$, 即 f 为同构。

3. 设 A 是一个局部环,M 和 N 都是有限生成的 A-模,证明:如果 $M\otimes N=0$,那么 M=0 或者 N=0。

证明. 记 A 的唯一极大理想为 \mathfrak{m} ,考虑 $B=A/\mathfrak{m}$ 为域,有 $(B\otimes M)\otimes (B\otimes N)=0$,由题 2, $B\otimes M$ 同构于 $M/\mathfrak{m}M$,记为 M_B 。

根据命题我们有 $\operatorname{Hom}(M_B \otimes N_B, N_B) \cong \operatorname{Hom}(M_B, \operatorname{Hom}(N_B, N_B))$,前者只包含平凡映射,而后者 只包含平凡映射说明 M_B 和 N_B 有一个为 0,再根据 Nakayama 引理,这说明 M=0 或 N=0。 \square

4. 设 M_i 是任意一组 A-模,M 是它们的直和,证明: M 是平坦的 $\Leftrightarrow M_i$ 都是平坦的。

证明. M 是平坦的 \Leftrightarrow 如果 A-模同态 $f:N\to N'$ 单,则 $id\otimes f:M\otimes N\to M\otimes N'$ 单 \Leftrightarrow 如果 A-模同态 $f:N\to N'$ 单,则 $(\oplus M_i)\otimes N\to (\oplus M_i)\otimes N'$ 单 \Leftrightarrow 如果 A-模同态 $f:N\to N'$ 单,则 $\oplus (M_i\otimes N)\to \oplus (M_i\otimes N')$ 单 \Leftrightarrow 每个分量映射单 \Leftrightarrow M_i 平坦。

5. 设 A[x] 是环 A 上的一个变元的多项式环,证明: A[x] 是平坦 A-代数。

证明. 显然 A[x] 是 A-代数, 只需 A[x] 是平坦的。

事实上, $A[x] = \oplus(x^i)$,且 $M \otimes (x^i) \cong M \otimes A \cong M$,故 $f: M \to M'$ 单显然推出 $M \otimes (x^i) \to M' \otimes (x^i)$ 单,从而 (x^i) 是平坦的,所以 A[x] 是平坦的。

6. 对任意 A-模 M; 用 M[x] 表示 x 的系数属于 M 的多项式全体,证明 M[x] 为 A[x] 模,且 $M[x]\cong A[x]\otimes_A M$ 。

证明. M[x] 为 A[x] 模验证定义即可。

设 $f: A[x] \otimes M \to M[x]$, 其中 $f(\Sigma a_i x^i \otimes m) = \sigma(a_i m) x^i$ 。定义 $g: M[x] \to A[x] \otimes M$, $g(\Sigma m_i x^i) = (\sum x^i) \otimes m_i$ 。容易看出, $f \circ g = g \circ f = id$ 。

7. 设 \mathfrak{p} 是 A 中的素理想,证明 $\mathfrak{p}[x]$ 是 A[x] 中的素理想。请问如果 \mathfrak{m} 是 A 中的极大理想, $\mathfrak{m}[x]$ 是 否为 A[x] 中的极大理想?

证明. 考虑 $f: A[x] \to (A/\mathfrak{p})[x]$, f 的核是 $\mathfrak{p}[x]$, 而整环的多项式环也是整环, 所以 $\mathfrak{p}[x]$ 是素理想。对极大理想不成立((2) 是 \mathbb{Z} 的极大理想,但是 (2)[x] 不是 $\mathbb{Z}[x]$ 的极大理想)。

- 8. i) 如果 M 和 N 都是平坦 A-模, 那么 $M \otimes_A N$ 也是平坦的。
 - ii) 如果 B 是平坦 A-代数,而 N 是平坦 B-模,那么 N 也是平坦 A-模。

证明. i) 对任意 $f: P \to P'$, $P \otimes (M \otimes N) \cong (P \otimes M) \otimes (P \otimes N)$, 显然单射和单射的张量积为单射。

- ii) 对任意 A-模同态 $f: P \to P', \ P \otimes N \cong (P \otimes B) \otimes N \cong P \otimes (B \otimes N), \ 显然 \ P \otimes (B \otimes N) \to P' \otimes (B \otimes N)$ 单。
- 9. 设 $0 \to M' \to M \to M'' \to 0$ 是 A-模的正合序列,如果 M' 和 M'' 都是有限生成的,那么 M 也是有限生成的。

证明. $M \in M' \oplus M''$ 的像集,故 M 是有限生成的。

10. 设 A 是环, \mathfrak{a} 是包在环 A 的大根中的一个理想, M 是一个 A-模, N 是有限生成的 A-模, $u:M\to N$ 是一个同态。证明: 如果 u 诱导出的同态 $M/\mathfrak{a}M\to N/\mathfrak{a}N$ 是满的, 那么 u 也是满的。

证明. 考虑复合同态 $u': M \to M/\mathfrak{a}M \to N/\mathfrak{a}N$,同态为满射,从而 $u(M)+\mathfrak{a}N=N$,根据 Nakayama 引理的推论,M=N。

11. 设 A 是非 0 环,证明: $A^m \cong A^n \Rightarrow m = n$ 。

证明. 设 m 是 A 中的一个极大理想且设 $\varphi: A^m \to A^n$ 是一个同构,则 $id \otimes \varphi: (A/\mathfrak{m}) \otimes A^m \to (A/\mathfrak{m}) \otimes A^n$ 是域上 m 维和 n 维向量空间的一个同构,故 m=n。

12. 设 M 是有限生成的 A-模而 $\varphi: M \to A^n$ 是满同态,证明: $\mathrm{Ker}(\varphi)$ 是有限生成的。

证明. 存在 m 使得有限生成的模 M 同构于 A^m 的一个商模 A^m/B ,故 $\mathrm{Ker}(\varphi)$ 同构于一个商模 C/B,我们有 $(A^m/B)/(C/B)\cong A^n$,从而 $C\cong A^{m-n}$,故 $\mathrm{ker}(\varphi)$ 是有限生成的。

13. 设 $f:A\to B$ 是一个环同态,而 N 是一个 B-模,利用纯量局限的方法可将 N 看做 A-模,再造 B-模 $N_B=B\otimes_A N$ 。证明:将 $y\in N$ 映射到 $1\otimes y$ 的同态 $g:N\to N_B$ 是单的而 g(N) 是 N_B 的一个直和项。

证明. g 显然是单的, 定义 $h: N_B \to N$, $h(b \otimes n) = bn$, 有 $h \circ g = id$, 有 $N_B \cong \operatorname{Ker}(h) \oplus \operatorname{Im}(g)$ 。 \square

14. 一个偏序集 I 叫做正向集 (directed set),如果对每一对 $i,j \in I$,存在 $k \in I$,使得 $i \le k,j \le k$ 。

设 A 是环,I 是正向集, $(M_i)_{i\in I}$ 是指标集为 I 的一族 A-模,对 I 中每一对满足 $i\leq j$ 的 i,j,设 $\mu_{ij}:M_i\to M_j$ 是一个 A-同态,并假定下列公理被满足:

- (1) 对任意 i, μ_{ii} 是 M_i 中恒同映射
- (2) $\mu_{ik} = \mu_{jk} \circ \mu_{ij}, i \leq j \leq k$

这时就说模 M_i 和同态 μ_{ij} 形成一个正向集 I 上的正向系统 (direct system)M = (M_i, μ_{ij}) .

我们将构造一个 A-模 M 叫做正向系统 M 的正向极限 (direct limit)。设 C 是 M_i 的直和,将每个 M_i 与其在 C 中的典范象视为等同。D 是 C 中所有形如 $x_i - \mu_{ij}(x_i), i \leq j$ 且 $x_i \in M_i$ 的元素生成的子模,设 M = C/D, $\mu: C \to M$ 是投影, μ_i 是在 M_i 上的限制。

模 M,或者更准确的说是 M 和映射族 $\mu_i: M_i \to M$ 构成的对称为正向系统 $\mathbb M$ 的正向极限,记作 $\lim_{\to} M_i$,显然有 $\mu_i = \mu_j \circ \mu_{ij}, i \leq j$ 。

证明. 取 $i \leq j, x_i \in M_i$, 则 $x_i - \mu_{ij}(x_i) \in D = ker(\mu)$, 从而 $\mu_i(x_i) = \mu(x_i) = \mu_j(\mu_{ij}(x_i))$ 。

15. 证明: M 的每个元素能写成 $\mu_i(x_i), x_i \in M_i$ 的形式,从而 μ_i 是满的。证明: 若 $\mu_i(x_i) = 0$,则存在 $j \geq i$ 使得在 M_j 中, $\mu_{ij}(x_i) = 0$ 。

证明. 对 M 中的元素 m 存在 $x \in C$ 使得 $\mu(x) = m$,记 $x = \sum_{i \in S} x_i$,S 有限,选择一个 j 使得 $j \ge i, \forall i \in S$ 。记 $x_j = \sum_{i \in S} \mu_{ij}(x_i) \in M_j$,有 $\bar{x_j} = \bar{x}$,即 $\mu(x_j) = \mu(x) = m$,故 $\mu(x_j) = m$ 。

若 $\mu_i(x_i) = 0$,则 $x_i \in D$,记 $x_i = \sum_{j=1}^n (y_j - \mu_{jk}(y_j))$,在每组 (j,k) 中, $j \leq k$,由于 $\mu_{jj}(y_j) = y_j$,不妨 j < k,记 $x_i = \sum_j z_j$, z_j 是整理后的属于 M_j 的部分,显然 z_j 为一些 y_j 和 $-\mu_{pj}(y_p)$ 的求和。而当 $j \neq i$ 时, $z_j = 0$,取所有 j 的上确界 l,故有 $\mu_{il}(x_i) = \mu_{il}(z_i) = \sum_j \mu_{jl}(z_j)$,而考虑到 $\mu_{jl}(-\mu_{pj}(y_p)) = -\mu_{pl}(y_p)$,如此再把这个求和拆分开来,得到 $\mu_{il}(x_i) = \sum_{j=1}^n (\mu_{jl}(y_j)) - \sum_{p=1}^n (\mu_{pl}(y_p)) = 0$ (容易看出,角标 p 的个数就是角标 k 的个数,都是 n 个)。

16. 证明正向极限(除差一同构外)由下述性质所刻画: 设 N 是一个 A-模,对任意 $i \in I$,设 $\alpha_i : M_i \to N$ 是 A-模同态,满足 $\alpha_i = \alpha_j \circ \mu_{ij}, i \leq j$,则存在唯一一个同态 $\alpha : M \to N$ 使得对任意 i 有 $\alpha_i = \alpha \circ \mu_i$ 。

证明. 考虑 $\alpha' = \oplus \alpha_i : C \to N$,这个映射诱导出 $\alpha : C/D = M \to N$,这个诱导良定义是因为 $\alpha'(D) = 0$ $((\oplus \alpha_i)(x_i - \mu_{ij}(x_i)) = \alpha_i(x_i) - \alpha_j(\mu_{ij}(x_i))) = 0)$ 。

17. 设 $(M_i)_{i \in I}$ 是一 A-模的子集族,使得对每一对指数 $i, j \in I$,存在 $k \in I$ 使得 $M_i + M_j \subseteq M_k$,定义 $i \leq j$ 如果 $M_i \subseteq M_j$,设 $\mu_{ij} : M_i \to M_j$ 是嵌入映射,证明

$$\lim_{i \to \infty} M_i = \sum M_i = \bigcup M_i$$

证明. 第二个等号是显然的。只需证 $\lim_{\to} M_i = \sup M_i$ 。利用题 16,设 N 是一个 A-模,且有 α_i 满足题 16 的条件.

对 $M_i \cap M_j \neq \emptyset$, 记 $x \in M_i \cap M_j$, 取 M_k 同时包含 M_i, M_j , 有 $\alpha_i(x) = (\alpha_k \circ \mu_{ik})(x) = \alpha_k(x)$ (μ_{ik} 是嵌入), $\alpha_j(x) = (\alpha_k \circ \mu_{jk})(x) = \alpha_k(x) = \alpha_i(x)$ 。 定义 $\alpha: \bigcup M_i \to N$: $\alpha(x) = \alpha_i(x), x \in M_i$, 由上述讨论知,这个定义是良定义的。此时 $\alpha_i = \alpha \circ \mu_i$ 。

18. 设 $\mathbb{M} = (M_i, \mu_{ij}), \mathbb{N} = (N_i, \nu_{ij})$ 是同一正向集上的 *A*-模的正向系统。设 *M*, *N* 是正向极限而 $\mu_i: M_i \to M, \ \nu_i: N_i \to N$ 是相伴的同态。

同态 $\Phi: \mathbb{M} \to \mathbb{N}$ 由一族 A-模同态 $\phi_i: M_i \to N_i$ 所定义,对 $i \leq j$ 有 $\phi_j \circ \mu_{ij} = \nu_{ij} \circ \phi_i$,证明 Φ 定义唯一一个同态 $\phi = \lim_{i \to \infty} \phi_i: M \to N$ 使得 $\phi \circ \mu_i = \nu_i \circ \phi_i, \forall i \in I$ 。

证明. 定义 $\alpha_i = v_i \circ \varphi_i$, 有 $\alpha_j \circ \mu_{ij} = \alpha_i$, 利用 16 题存在 ϕ 满足条件。

19. 一个正向系统和同态的序列

$$\mathbb{M} \to \mathbb{N} \to \mathbb{P}$$

称为正合的,如果对 $\forall i \in I$ 相应的模与模同态的序列是正合的,证明这时正向极限序列 $M \to N \to P$ 是正合的。

证明. 定义 $\Phi: \mathbb{M} \to \mathbb{N}$ 相应的模同态为 ϕ_i , $\Phi: \mathbb{N} \to \mathbb{P}$ 相应的模同态为 φ_i , 三个正向系统的内部的 同态为 $\mu_{ij}, \nu_{ij}, \pi_{ij}$ 。记 $\phi: M \to N, \ \varphi: N \to P$ 。

对 $x \in M$,由题 15,x 可以写成 $\mu_i(x_i)$ 的形式,由于 $M_i \to N_i \to P_i$ 是正合的,再由题 18,故有 $\varphi(\phi(\mu_i(x_i))) = \varphi(\nu_i(\phi_i(x_i))) = \pi_i(\varphi_i(\phi_i(x_i))) = \pi_i(0)$,即 $\mathrm{Im}(\phi) \subseteq \mathrm{Ker}(\varphi)$ 。

设 $y \in \text{Ker}(\varphi)$, 由题 15 有 y 可以写成 $\nu_i(y_i)$, $0 = \varphi(\nu_i(y_i)) = \pi_i(\varphi_i(y_i))$, 利用题 15 的后半段, $\pi_i(t_i) = 0 \Rightarrow \exists j \geq i, \pi_{ij}(t_i) = 0$, 从而 $pi_{ij}(\varphi_i y_i) = \varphi_i(\nu_{ij}(y_i)) = 0$, 从而 $\nu_{ij}(y_i) \in \text{Ker}(\varphi_i) = \text{Im}(\phi_i)$, 记 $\nu_{ij}(y_i) = \phi_i(x_j)$, 我们有 $y = \nu_i(y_i) = \nu_j \circ \nu_{ij}(y_i) = \nu_j(\phi_j(x_j)) = \phi(\nu_j(y_j))$, 即 $y \in \text{Im}(\phi)$ 。

综上
$$Im(\phi) = Ker(\varphi)$$
,故原序列正合。

20. 设 N 是一个 A-模,则 $(M_i \otimes N, \mu_{ij} \otimes id)$ 是一个正向系统,设 $P = \lim_{\to} (M_i \otimes N)$ 是正向极限。对任意 $i \in I$ 我们有同态 $\mu_i \otimes id : M_i \otimes N \to M \otimes N$,由题 16 有同态 $\phi : P \to M \otimes N$ 。证明这是一个同构,且使得

$$\lim_{\to} (M_i \otimes N) \cong (\lim_{\to} M_i) \otimes N$$

证明. 由题 16 中的定义有 ϕ 是 $\oplus (\mu_i \otimes id)$ 的商映射限制。由于 $\oplus (\mu_i \otimes id) \cong (\oplus \mu_i) \otimes id$,从而 $\operatorname{Ker}(\phi)$ 就是 $\operatorname{Ker}(\oplus \mu_i) \otimes 1 \cong \operatorname{Ker}(\oplus \mu_i) = D$,也就是说,在商映射下 ϕ 是同构。

21. 设 $\{A_i\}_{i\in I}$ 是由正向集 I 所标号的一族环,对于 I 中每一对 $i \leq j$,设 $\alpha_{ij}: A_i \to A_j$ 是满足习题 14 中条件(1)(2)的同态,将每个 A_i 看做 \mathbb{Z} -模,我们可以做出正向极限 $A = \lim_{\to} A_i$ 。证明:A 从 A_i 继承了一个环结构,使得 $A_i \to A$ 是环同态。环 A 是系统(A_i, α_{ij})正向极限。

如果 A=0, 证明对某个 i 有 $A_i=0$ 。

证明. 交换幺环范畴下的正向极限。其中乘法定义为 $x_ix_j = \alpha_{ik}(x_i)\alpha_{jk}(x_j)$,这里 $k \in i,j$ 的任一上界。并且 $1_A = \alpha_i(1_{A_i})$,可以看出这个 1 不依赖 i 的选择。

如果 A=0,那么 1=0。则 $\alpha_i(1)=0, \forall i$ 。由题 15,这表明存在 j 使得 $\alpha_{ij}(1)=1_{A_j}=0$,从而 $A_j=0$ 。

22. 设 (A_i, α_{ij}) 是环的正向系统, \mathfrak{N}_i 是 A_i 的小根,证明: $\lim_{\to} \mathfrak{N}_i$ 是 $\lim_{\to} A_i$ 的小根。若每个 A_i 是整环,则 $\lim_{\to} A_i$ 是整环。

证明. 如果 $a \in \mathfrak{N}(A)$,即存在 n 使得 $a^n = 0$ 。设 $a = \alpha_i(x_i), x_i \in A_i$ 。则 $\alpha_i^n(x_i) = \alpha_i(x_i^n) = 0$ 。从而存在 j 使得 $\alpha_{ij}(x_i^n) = 0$,即 $\alpha_{ij}(x_i) \in \mathfrak{N}(A_j)$ 。这表明 $a \in \lim_{\to} \mathfrak{N}_i$ 。

反之,若 $a \in \lim_{\to} \mathfrak{N}_i$,则 $a = \alpha_i(n_i)$ 其中 $n_i \in \mathfrak{N}_i$ 。则存在 n 使得 $a^n = \alpha_i(0) = 0$ 。

23. 设 $(B_{\lambda})_{\lambda \in \Lambda}$ 是一族 A-代数,对 Λ 的每个有限子集 J,设 B_J 为 $B_{\lambda}, \lambda \in J$ 的张量积。设 J' 是 Λ 的另一个有限子集,且 $J \subseteq J'$,则有典范 A-代数同态 $B_J \to B_{J'}$ 。令 B 表示当 J 跑过 Λ 一切有限子集时环 B_J 的正向极限。环 B 有自然 A-代数结构,使得同态 $B_j \to B$ 是 A-代数同态。A-代数 B 叫做族 $(B_{\lambda})_{\lambda \in \Lambda}$ 的张量积。

- 24. 若 M 是一个 A-模,则下列陈述等价:
 - i) M 是平坦的
 - ii) 对任意 n > 0 和一切 A-模 N 都有 $\operatorname{Tor}_n^A(M, N) = 0$
 - iii) 对一切 A-模 N 都有 $Tor_1^A(M,N)=0$

证明. 只需证 iii) 推 i),事实上这是诱导长正合列的推论。

25. 设 $0 \to N' \to N \to N'' \to 0$ 正合, N'' 是平坦的, 则 N' 平坦等价于 N 平坦。

证明. 同样是长正合列的性质。

26. 设 N 是一个 A-模,则 N 平坦等价于 $Tor_1(A/\mathfrak{a},N)=0$ 对所有 A 的有限生成理想 \mathfrak{a} 成立。

证明. 这个用到了 $\operatorname{Tor}^{A^{op}}$ 的整合列的性质。

- 27. 一个环 A 是绝对平坦的 (absolute flat), 如果对每个 A-模都是平坦的。证明下述陈述等价:
 - i) *A* 是绝对平坦的
 - ii) 每个主理想是幂等的
 - iii) 每个有限生成的理想是 A 的直和分量

证明. A 绝对平坦等价于 A 的同调 Weak 维数为 0。这等价于 A 是 regular 环 (A 被定义为 regular,如果对任意 $a \in A$ 都有 $r \in A$ 使得 a = ara)。regular 环的性质有它的有限生成理想都是主理想,且生成元为幂等元。

直和分量可由以下引理推出:一个理想 $\mathfrak{a}\subset A$ 是环 A 的直和分量当且仅当 \mathfrak{a} 是主理想且由幂等元生成。

以上证明可以参考 GTM196。

28. Boole 环是绝对平坦的, 习题 1 中的题 7 的环是绝对平坦的。绝对平坦环的每个同态象是绝对平坦的。若一个局部环是绝对平坦的,则它是一个域。

若 A 是绝对平坦的, A 中每个非可逆元是零因子。

证明. 验证很简单,剩下的都是 regular 环的性质。

3 分式环和分式域

定义 3.1. 设 A 的乘法封闭子集 (multiplicatively closed subset)S 是 A 的乘法半群的子半群(保持乘法封闭性且包含 1),在 $A \times S$ 上定义等价关系:

$$(a,s) \equiv (b,t) \Leftrightarrow \exists u \in S, (at-bs)u = 0$$

这个等价关系是良定义的(可以类比分式关系),将 (a,s) 所在等价类记为 a/s,并设 $S^{-1}A$ 是等价类集,在等价类上按公式 (a/s)+(b/t)=(as+bt)/st, (a/s)(b/t)=(ab/st) 定义加法和乘法,这样在 $S^{-1}A$ 上引进了一个环结构,称它为**分式环** (ring of fractions)。

习题 3.1

验证这个加法和乘法不依赖于代表元的选取,且构成交换幺环。

命题 3.2. 设 $g: A \to B$ 是一个环同态使得对任意 $s \in S$, g(s) 都是 B 中的可逆元。那么存在唯一的一个环同态 $H: S^{-1}A \to B$ 使得 $g = h \circ f$, 其中 f 为自然同态 $A \to S^{-1}A$, f(x) = x/1。

证明. 唯一性显然。

令 $h(a/s) = g(a)g(s)^{-1}$ 。显然 h 为环同态。假设 a/s = a'/s',则存在 $t \in S$ 使得 (as' - a's)t = 0,因此 (g(a)g(s') - g(a')g(s))g(t) = 0,由于 g(t) 可逆,从而 $g(a)g(s)^{-1} = g(a')g(s')^{-1}$ 。

命题 3.3. 环 $S^{-1}A$ 和同态 $f: A \to S^{-1}A$ 具有以下性质:

- 1) $s \in S \Rightarrow f(s)$ 是 $S^{-1}A$ 中的可逆元
- 2) $f(a) = 0 \Rightarrow \exists s \in S, as = 0$
- 3) $S^{-1}A$ 中任意元素都有形状 $f(a)f(s)^{-1}$, 其中 $a \in A, s \in S$ 。

命题 3.4. 设 $g: A \to B$ 是一个环同态,具有性质:

- i) $s \in S \Rightarrow g(s)$ 是 B 中的可逆元
- ii) $q(a) = 0 \Rightarrow \exists s \in S, as = 0$

iii) B 中任意元素具有形状 $g(a)g(s)^{-1}$

那么存在唯一的同构 $h: S^{-1}A \to B$ 使得 $g = h \circ f$ 。

证明. 根据3.2,只需证 $h(a/s) = g(a)g(s)^{-1}$ 定义的 h 是同构。根据 iii),h 是满的,若 h(a/s) = 0,则 g(a) = 0,故存在 $s \in S$, as = 0,g(as) = 0 = g(a)g(s),由于 g(s) 可逆,从而 g(a) = 0。从而 h 为同构。

注 3.5. 对环 A 的素理想 \mathfrak{p} ,明显 $S = A - \mathfrak{p}$ 是乘法封闭的,记 $S^{-1}A = A_{\mathfrak{p}}$,此时形如 $a/s, a \in \mathfrak{p}$ 构成一个理想 \mathfrak{m} 。如果 $b/t \notin \mathfrak{m}$,则 $\mathfrak{b} \in S$,故 b/t 可逆,故 \mathfrak{m} 是一个极大理想,而且进一步是唯一的极大理想,故 $A_{\mathfrak{p}} = S^{-1}A$ 是局部环。

称 A 转化为 A_p 的过程的 A 的**局部化** (localization)。

注 3.6. 设 $S = \{f^n\}_{n \geq 0}$,则此时 $S^{-1}A$ 记为 A_f 。

注 3.7. 记 $A = k[t_1, \dots, t_n]$,其中 k 是域,记 \mathfrak{p} 是 A 中素理想,这是 $A_{\mathfrak{p}}$ 是所有形如 f/g 的有理函数的集合,且 $g \notin \mathfrak{p}$ 。设 V 是由理想 \mathfrak{p} 定义的簇,即所有 $x \in k^n$ 使得 $f(x) = 0 \forall f \in \mathfrak{p}$,这时,若 k 是无限域, $A_{\mathfrak{p}}$ 与在 V 上几乎所有点有定义的函数组成的环相重合,称为 k^n 沿簇 V 的局部环。

定义 3.8. 记 A-模 M,在 $M \times S$ 上定义 $(m,s) \equiv (m',s') \Leftrightarrow \exists t \in S, t(sm'-s'm) = 0$,同样这是一个 等价关系,且这些等价类集合记为 $S^{-1}M$,它是一个 $S^{-1}A$ -模。如果 $S^{-1}A$ 为 A_f, A_p ,相应的 $S^{-1}M$ 为 M_f, M_p 。

命题 3.9. A-模同态 $u: M \to N$ 诱导出 $S^{-1}A$ -模同态 $u' = S^{-1}u: S^{-1}M \to S^{-1}N$,其中 u'(m/s) = u(m)/s。且有 $S^{-1}(v \circ u) = S^{-1}v \circ S^{-1}u$ 。

命题 3.10. 设 $M' \xrightarrow{f} M \xrightarrow{g} M''$ 正合,则 $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ 正合。

命题 3.11. 如果 $N, P \in M$ 的子模, 那么:

i)
$$S^{-1}(N+P) = S^{-1}N + S^{-1}P$$

$$ii) S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P$$

$$iii) S^{-1}(M/N) \cong (S^{-1}M)/(S^{-1}N)$$

命题 3.12. 按 $f((a/s)\otimes m)=am/s$ 定义了一个 $S^{-1}A\otimes M\to S^{-1}M$ 的同构。

证明. 显然 f 是满的。

记 $\Sigma_i(a_i/s_i)\otimes m_i$ 是 $S^{-1}A\otimes M$ 的任意元素,这个元素可以写成 $\frac{1}{s}\otimes m$ 的形式 (类似于通分操作),其中 $s=\Pi_i s_i$ 。若 $f(\frac{1}{s}\otimes m)=0$,则 m/s=0,因此存在 $t\in S$ 使得 tm=0,从而 $\frac{1}{s}\otimes m=\frac{1}{st}\otimes 0=0$,故 f 是单的。

推论 3.13. $S^{-1}A$ 是平坦模。

命题 3.14. 对任意模 M,N,存在唯一的模同构 $f:S^{-1}M\otimes S^{-1}N\to S^{-1}(M\otimes N)$,其中 $f((m/s)\otimes (n/t))=m\otimes n/st$ 。

3.1 局部性质

定义 3.15. 环 A (或模 M) 具有**局部性质** (lacal properties)P 是指,如果有 A 满足 $P \Leftrightarrow$ 对任意素理想 \mathfrak{p} , $A_{\mathfrak{p}}$ (或 $M_{\mathfrak{p}}$) 也满足 P 。

命题 3.16. M 是一个 A-模,以下断言等价:

- M = 0
- 对任意素理想 \mathfrak{p} , $M_{\mathfrak{p}}=0$
- 对任意极大理想 \mathfrak{m} , $M_{\mathfrak{m}}=0$

证明. 显然只需证 $3 \rightarrow 1$ 。

若 M 非 0,取非零元 x,记 $\mathfrak{a} = \mathrm{Ann}(x)$,取包含它的极大理想 \mathfrak{m} ,有 $M_{\mathfrak{m}} = 0$,显然 $x/1 \in M_{\mathfrak{m}}$,有存在 $t \in S = A - \mathfrak{m}$ 使得 tx = 0,从而 $t \in \mathrm{Ann}(x) \subseteq \mathfrak{m}$,矛盾。

命题 3.17. 设 $\phi: M \to N$ 是 A-模同态, 那么以下断言等价:

- φ 是单的
- 对每一个素理想 $\mathfrak{p}, \ \phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ 单
- 对每一个极大理想 m, $\phi_{m}: M_{m} \to N_{m}$ 单

把单改为满也是成立的。

证明. 仍然是只需要证明 $3 \rightarrow 1$ 。

令 $M' = \text{Ker}(\phi)$, 那么序列 $0 \to M' \to M \to N$ 正合序列, 因此 $0 \to M'_{\mathfrak{m}} \to M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ 正合。由于 $\phi_{\mathfrak{m}}$ 单,故 $M'_{\mathfrak{m}} = 0$,即 M' = 0,故 ϕ 是单的。

命题 3.18. 对任意 A-模 M, 以下断言等价:

- M 是平坦 A-模
- 对任意素理想 p, M_p 是平坦 A-模
- 对任意极大理想 m, M_m 是平坦 A-模

证明. 仍然只需证明 $3 \rightarrow 1$ 。

如果 $N \to P$ 是 A-模单同态,有 $N_{\mathfrak{m}} \to P_{\mathfrak{m}}$ 单,有 $M_{\mathfrak{m}} \otimes N_{\mathfrak{m}} \to M_{\mathfrak{m}} \otimes P_{\mathfrak{m}}$ 单,有 $(M \otimes N)_{\mathfrak{m}} \to (M \otimes P)_{\mathfrak{m}}$ 单,有 $M \otimes N \to M \otimes P$ 单,故 M 平坦。

3.2 理想在分式环中的扩张和局限

定义 3.19. A 中的理想在 $f: A \to S^{-1}A, f(x) = x/1$ 中的像生成的理想称为分式环的扩理想,局限理想同理。用 C 表示局限理想的集合,E 表示扩理想的集合(对比1.32)。

注 3.20. 理想 \mathfrak{a} 的扩理想是 $S^{-1}\mathfrak{a}$ 。

命题 3.21. 有如下结论成立:

- i) $S^{-1}A$ 的每个理想都是扩理想;
- ii) 如果 \mathfrak{a} 是 A 中的理想,则 $\mathfrak{a}^{ec} = \bigcup_{s \in S} (\mathfrak{a} : s)$,因此 $\mathfrak{a}^e = (1) \Leftrightarrow \mathfrak{a} \cap S$ 非空。

- iii) a ∈ C ⇔ S 中没有一个元素是 A/a 的零因子。
- iv) $S^{-1}A$ 中的素理想在对应 $(p \to S^{-1}p)$ 之下与 A 的那些与 S 不相交的素理想一一对应。
- v) 运算 S^{-1} 与作有限和、积、交和求根运算可交换。

证明. i) 设 \mathfrak{b} 是 $S^{-1}A$ 的理想,设 $a/s \in \mathfrak{b}$,则 $a/1 \in \mathfrak{b}$,从而 $a \in \mathfrak{b}^c$,从而 $a/s \in \mathfrak{b}^{ce}$,即 $\mathfrak{b} \subseteq \mathfrak{b}^{ce}$,从 而 $\mathfrak{b} = \mathfrak{b}^{ce}$ 。

ii) 若 $x \in \mathfrak{a}^{ec} = (S^{-1}\mathfrak{a})^c$, 则 $f(x) = x/1 \in S^{-1}\mathfrak{a}$, 即存在 $a/s = x/1, s \in S, a \in \mathfrak{a}$, 则存在 s', (a-xs)s' = 0, 则 $xss' = as' \in \mathfrak{a}$, 故 $x \in (\mathfrak{a}:ss')$ 。

若 $xs \in \mathfrak{a}$, 则 $xs/s = x/1 \in S^{-1}\mathfrak{a}$, 则 $x \in \mathfrak{a}^{ec}$.

iii) 设 $\mathfrak{a} = \mathfrak{b}^c$ 其中 \mathfrak{b} 为 $S^{-1}A$ 的理想。若 $\bar{x}\bar{y} = 0$,则 $xy \in \mathfrak{a}$, $f(xy) \in \mathfrak{b}$,从而 f(x) = x/1,f(y) = y/1 均不可逆,故 $x, y \notin S$ 。

反之同理。

iv) 只需证在分式环自然同态下素理想的像是素理想。事实上,如果 \mathfrak{p} 是素理想,则 A/\mathfrak{p} 是整环,有 $S^{-1}A/S^{-1}\mathfrak{p}\cong \bar{S}^{-1}(A/\mathfrak{p})$,后面这个环要么是零环,要么在整环 A/\mathfrak{p} 的分式域中,因此是整环,故原命题成立。

推论 3.22. $S^{-1}\mathfrak{N}$ 是 $S^{-1}A$ 的小根。

推论 3.23. 设 p 是素理想,则 A_p 的素理想与 A 的包含在 p 中的素理想一一对应。

命题 3.24. 设 M 是有限生成的 A-模,有 $S^{-1}(Ann(M)) = Ann(S^{-1}M)$ 。

证明. 首先,若 xM=0,则 $x/s \cdot m/s'=0$,故 $x/s \in \text{Ann}(S^{-1}M)$ 。反之若 $x/s \cdot S^{-1}M=0$,则对 任意 $m \in M$ 存在 s' 使得 xms'=0,由于 M 是有限生成的,记有限生成元组为 m_1, m_2, \cdots, m_t ,对 应的 s'_1, \cdots, s'_t ,从而 $xs'_1 \cdots s'_t \in \text{Ann}(M)$,从而 $x/s = xs'_1 \cdots s'_t/ss'_1 \cdots s'_t \in S^{-1}(\text{Ann}(M))$ 。

推论 3.25. 设 N 和 P 是子模,且 P 是有限生成的,则 $S^{-1}(N:P) = (S^{-1}N:S^{-1}P)$ 。

证明. 事实上, (N:P) = Ann((N+P)/N)。

命题 3.26. 设 $A \to B$ 是环同态, \mathfrak{p} 是 A 的素理想, 那么 \mathfrak{p} 是 B 中的一个素理想的局限理想等价于 $\mathfrak{p}^{ec} = \mathfrak{p}$

3.3 习题 3

1. 设 S 是环 A 的乘法封闭子集,M 是有限生成 A-模,证明: $S^{-1}M=0$ 当且仅当存在 $s\in S$ 使得 sM=0 。

证明. $m/s=0 \Leftrightarrow \exists s', s'm=0$,由于 M 有限生成,对 M 的一组基,记对应的 s' 为 s_1, \dots, s_n ,则 $s=s_1s_2\cdots s_n$ 使得 sM=0。

2. 设 \mathfrak{a} 是环 A 中的理想, $S=1+\mathfrak{a}$ 。证明: $S^{-1}\mathfrak{a}$ 含于 $S^{-1}A$ 的大根之中。

证明. 对任意 $a/s \in S^{-1}\mathfrak{a}$, 只需证对任意 $a'/s' \in S^{-1}A$ 都有 1 - aa'/ss' 可逆。

事实上,
$$s = 1 + a''$$
, $s' = 1 + a'''$, 故 $ss' - aa' = 1 + a''' + aa' \in S$ 。

3. 设 A 是环,S 和 T 是 A 的两个乘法封闭子集,又设 U 是 T 在 $S^{-1}A$ 中的象。证明:环 $(ST)^{-1}A$ 与 $U^{-1}(S^{-1}A)$ 同构。

证明. $f(a/st) = 0 \Leftrightarrow \exists t'/1 \in U, t'a/s = 0$,这等价于 $\exists s', t's'a = 0$,即有 a/st = as't'/sts't' = 0,故为同构。

4. 设 $f:A\to B$ 是环同态,S 是 A 的一个乘法封闭子集。设 T=f(S),求证: $S^{-1}A$ 与 $T^{-1}B$ 作为 $S^{-1}A$ -模是同构的。

证明. 若 a/s 是核,则存在 t'=f(s') 使得 t'f(a)=0,从而 as'/ss'=0。

5. 设 A 是环。又设对每个素理想 \mathfrak{p} ,局部环 $A_{\mathfrak{p}}$ 没有非零幂零元。如果每个 $A_{\mathfrak{p}}$ 是整环,问 A 是否一定是整环?

解. 由于 $S^{-1}\mathfrak{N}$ 是 $S^{-1}A$ 的小根,故 $A_{\mathfrak{p}}$ 的小根为 0 推出 $S^{-1}\mathfrak{N}$ 为 0,取 $x \in N$,对任意 x/s 存在 s' 使得 xs' = 0。若 x 不为 0,记包含 Ann(x) 的极大理想为 \mathfrak{m} ,它是一个素理想,令 $S = A - \mathfrak{m}$,有矛盾。故 $\mathfrak{N} = 0$ 。

记 $A = \prod k_i$ 是 n 个域的积,显然它不是整环。它的所有素理想为

 $\{a_i|a_i$ 为所有满足在第 i 位为 0 的元素组成的集合}

即为 $0k_i \times \Pi_{j\neq i}k_j$,则 $A = k_i^{\times}\Pi_{j\neq i}k_j$,若 $A_{\mathfrak{p}}$ 中的元素 a/b 是 c/d 的零因子,则存在 $x \in S$ 使得 acx = 0,则 x 在 ac 所有非 0 的分量上取 0,若 $c \in S$,则 a/b = acx/bcx = 0,若 $c \notin S$,则取 c' 为 把 c 第 i 个分量改为 1,此时 $c' \in S$,且 acx = 0,故 a/b = ac'x/bc'x = 0,从而 $A_{\mathfrak{p}}$ 是整环。

6. 设 A 是非零环, Σ 是 A 的一切不含 0 的乘法封闭子集 S 的集合。证明: Σ 中有极大元, 而 $S \in \Sigma$ 是极大的当且仅当 A - S 是 A 的极小素理想。

证明. Zorn 引理,显然有极大元素。

若 S 是极大的,对任意 $a \in A-S$,集合 $\{a^n s, s \in S.n \geq 0\}$ 是极大的,从而由极大性,该集合包含 0,从而存在 n 和 s 使得 $a^n s = 0$,对 $x, y \in A-S$,有 $x^n s_1 = 0, y^m s_2 = 0$,从而 $(x+y)^{m+n-1} s_1 s_2 = 0$,故 $x+y \in A-S$,且 $(rx)^n s = 0$,故 A-S 是一个理想。若 $(xy)^n s = 0$,则 x 和 y 必有一个不在 S中,故 A-S 是素理想,由 S 极大,故 A-S 极小。

7. 环 A 的乘法封闭子集 S 称作饱和的 (saturated), 如果

$$xy \in S \Leftrightarrow x \in S, y \in S$$

证明: i) S 是饱和的 $\Leftrightarrow A - S$ 是素理想的并

ii) 如果 S 是 A 的任一乘法封闭子集,那么存在唯一的含有 S 的最小的饱和的乘法封闭子集 \bar{S} ,且 \bar{S} 是与 S 不相交的素理想的并在 A 中的补集。

如果 $S = 1 + \mathfrak{a}$,这里 $\mathfrak{a} \in A$ 的理想,求 \bar{S} 。

证明. i) 若 S 是饱和的,对 $x \in S$ 有 $1x \in S$,故 $1 \in S$,从而 S 包含所有可逆元。对 $x \notin S$,记包含 x 且与 S 不相交的所有理想构成的集合为 Σ ,它有一个元素 (x),则由 Zorn 引理它包含一个极大元 \mathfrak{p} ,显然 \mathfrak{p} 是素的。有 $A-S=\bigcup \mathfrak{p}$

若 A-S 是素理想的并,设 $xy \in S, x \in A-S$ 根据理想的性质这是显然矛盾的。

ii) 按 \bar{S} 的定义来,显然它饱和且最小。

若 $S=1+\mathfrak{a}$,则对每个包含 \mathfrak{a} 的理想 \mathfrak{m} ,有 $S \cap \mathfrak{m} = \varnothing$,否则 $1 \in \mathfrak{m}$,从而 $\bar{S} = A - \bigcup_{\mathfrak{a} \subseteq \mathfrak{m}} \mathfrak{m}$ 。 其中 \mathfrak{m} 极大。

- 8. 设 S,T 是 A 的乘法封闭子集,使得 $S\subseteq T$,设 $\phi:S^{-1}A\to T^{-1}A$ 是同态,它将 $a/s\in S^{-1}A$ 映射到 $a/s\in T^{-1}A$ 。证明下述论断等价:
 - i) ϕ 是一一映射
 - ii) 对每个 $t \in T$, t/1 是 $S^{-1}A$ 中的可逆元
 - iii) 对每个 $t \in T$, 存在 $x \in A$, 使得 $xt \in S$
 - iv) T 含于 S 的饱和化中
 - v) 与 T 相交的每个素理想也与 S 相交

证明. 若 ϕ 是一一映射有 1/t 的原像存在, 故 t/1 可逆。

- 若 ii) 成立存在 a/s 使得 ta/s = 1, 即存在 s'(at s) = 0, 故 $s'at = ss' \in A$
- 若 iii) 成立对每个 t, 有 $xt \in S \subseteq \bar{S}$, 从而 $t \in \bar{S}$
- 若 iv) 成立显然 v) 成立
- \overline{A} v) 成立,显然 iv) 成立,有 $tA \cap S \neq \emptyset$,故 iii)成立,此时显然 i)成立。
- 9. A 中一切非零因子的集合 S_0 是 A 中饱和的乘法封闭子集。因此 A 中零因子的集合 D 是素理想的 并(习题 1 第 14 题)。证明:A 的每个极小素理想都含于 D 中

环 $S_0^{-1}A$ 叫做 A 的全分式环 (total ring of fractions)。证明:

- i) S_0 是 A 中使得同态 $A \to S_0^{-1}A$ 是单的最大的乘法封闭子集
- ii) $S_0^{-1}A$ 中每个元或是零因子或是可逆元
- iii) 若一环中每个非可逆元是零因子,则该环与其全分式环相等(即 $A \to S_0^{-1} A$ 是一一映射)。

证明. 对 A 的极小素理想 \mathfrak{p} ,记 $\mathfrak{p} \cap D = \mathfrak{q}$,若 $xy \in \mathfrak{q}$,x 和 y 必有一个为零因子,若 $x,y \in \mathfrak{q}$,则 x+y 也是零因子,故 \mathfrak{q} 是素理想,由极小性, $\mathfrak{p} = \mathfrak{q}$ 。

- i) $A \to S_0^{-1}A$ 是单的等价于对任意 $a \neq b \in A$,不存在 $s \in S_0$ 使得 s(a-b) = 0,即 $S \subseteq S_0$
- ii) 若 a/s 不可逆,则 $a \notin S$,即 A 是零因子,则 a/s 是零因子。
- iii) 利用第 8 题。 □
- 10. 设 A 是环。
 - i) 如果 A 绝对平坦, S 是 A 中任一乘法封闭子集, 那么 $S^{-1}A$ 仍然绝对平坦
 - ii) A 绝对平坦 ⇔ 对 A 的每个极大理想 \mathfrak{m} , $A_{\mathfrak{m}}$ 是域

证明. A 是绝对平坦, 故 A 的每个非可逆元是零因子。

- i) 由题 9, 它和 A 是一一映射
- ii) 若 A 绝对平坦, 由 i) Am 绝对平坦

若对 A 的每个极大理想 \mathfrak{m} , $A_{\mathfrak{m}}$ 是域,令 M 是一个 A-模, $M_{\mathfrak{m}}$ 是一个 $A_{\mathfrak{m}}$ 模,他是一个自由 $A_{\mathfrak{m}}$ -模,从而平坦,故 M 平坦。

- 11. 设 A 是环, 求证下述命题等价:
 - i) A/9 绝对平坦
 - ii) A 中每个素理想都是极大的
 - iii) Spec(A) 是 T₁ 空间
 - iv) Spec(A) 是 Hausdorff 空间

如果这些条件成立, 求证: Spec(A) 紧且完全不连通。

证明. 若 i) 成立,则每个极大理想 $\mathfrak{m}/\mathfrak{N}$ 都是域只有平凡理想,从而每个素理想都是极大的。反之同理。

若 ii) 成立, 单点集是闭集, 易有 iii) 成立, 反之亦然。

若 i) 成立,令 x,y 是两个不同的素理想,有 $\mathfrak{p}_x+\mathfrak{p}_y=(1)$,从而存在 $a+b=1,a\in\mathfrak{p}_x,b\in\mathfrak{p}_y$,由于 A 绝对平坦,故 A 的主理想都是幂等的,从而 $a=a^2s,b=b^2t$,令 c=b(1-as),有 ac=0,有 1=a+b=a+abs+c=a(bs+1)+c,从而 (a,c)=1。考虑 X_a 和 X_c , $X_a\bigcap X_c=X_{ac}=X_0=\varnothing,X_a\bigcup X_c=(V(a)\bigcap V(c))^c=(V(1))^c=X$,从而 X 是 Hausdorff 的。且有 SpecA 不连通。

显然 iv) 有 iii)。 □

12. 设 A 是整环,M 是 A-模。M 中元素 x 称作 M 中的扭元 (torsion element),如果 $Ann(x) \neq 0$,即如果 x 被 A 中某个非零元零化。证明:M 中的扭元组成 M 的一个子模。这个子模称作 M 的扭子模 (torsion submodule),表作 T(M)。如果 T(M) = 0,模 M 称为无扭的 (torsion-free)。证明:

- i) 如果 M 是任意 A-模,则 M/T(M) 是无扭的
- ii) 如果 $f: M \to N$ 是模同态, 那么 $f(T(M)) \subseteq T(N)$ 。
- iii) 如果 $0 \to M' \to M \to M''$ 是正合序列,那么 $0 \to T(M') \to T(M) \to T(M'')$ 也是正合序列
- iv) 如果 M 是任意 A-模,那么 T(M) 是 M 到 $K \otimes_A M$ 中的映射 $x \mapsto 1 \otimes x$ 的核,这里 K 是 A 的分式域。

证明. i) 令 $\bar{x} \in M/T(M)$,若 $\bar{x}\bar{y} = 0\bar{y} \neq 0$,则 $xy \in T(M)$,即存在 $z \neq 0$ 使得 xyz = 0,此时若 $\bar{x} \neq 0$,则有 yz = 0,故 $y \in T(M)$ 矛盾。

- ii) 设 $x \in T(M)$, 设 x 被 $a \neq 0$ 零化。则 af(x) = f(ax) = f(0) = 0。从而 $f(T(M)) \subset T(N)$ 。
- iii) 由 ii) 很容易推出 $0 \to T(M') \to T(M)$ 是正合的,故只需证明右侧是正合的。设 $x \in \operatorname{Ker}(T(M) \to T(M''))$,这表明 $x \in \operatorname{Ker}(M \to M'')$ 。从而 $x \in \operatorname{Im}(M' \to M)$ 。把 M' 视为 M 的子模,这意味着 $x \in M'$ 。由于 x 被某个非零元零化,这表明 $x \in T(M')$,从而 $x \in \operatorname{Im}T(M') \to T(M)$ 。
 - iv) 显然 $1 \otimes x = 0 \iff ax = 0$ 对某些 $0 \neq a \in A$ 。

13. 设 S 是整环 A 的乘法封闭子集,用题 12 的记号,证明: $T(S^{-1}M) = S^{-1}(TM)$,推出下列命题等价:

- i) M 是无扭的
- ii) 对一切素理想 \mathfrak{p} , $M_{\mathfrak{p}}$ 是无扭的
- iii) 对所有极大理想 \mathfrak{m} , $M_{\mathfrak{m}}$ 是无扭的

证明. 对 m 是扭元,m/s 显然可以被非零元零化,若 m/s 被 a/s' 零化,则存在 s''am=0,故 M 是 扭元。上述三条等价可以由这个命题立得。

14. $M \in A$ -模, $\mathfrak{a} \in A$ 的理想, 设对一切极大理想 $\mathfrak{m} \supseteq \mathfrak{a}$, 有 $M_{\mathfrak{m}} = 0$, 证明: $M = \mathfrak{a}M$

证明. 由分式模的性质, $0=M_{\mathfrak{m}}/(\mathfrak{a}M)_{\mathfrak{m}}\cong (M/\mathfrak{a}M)_{\mathfrak{m}}\cong S^{-1}A\otimes (M/\mathfrak{a}M)$

15. 设 A 是环, F 是 A-模 A^n , 证明: F 的每个由 n 个生成元构成的集合是 F 的基。

证明. 令 x_1, \dots, x_n 是一组生成元集,用 e_i 表示第 i 个分量为 1 其余为 0 的元素,所有 e_i 构成一组基。记 $\phi: e_i \to x_i, \phi$ 是满射,只需证 ϕ 是同构。由3.17,不妨 A 是局部环。

设 $N \in \Phi$ 的核, 令 $k \in A/\mathfrak{m}$ 为 A 的同余类域, 由于 F 是平坦 A-模, 正合序列

$$0 \to N \to F \to F \to 0$$

产生正合序列

$$0 \to k \otimes N \to k \otimes F \to k \otimes F \to 0$$

由于 $k \otimes F \to k \otimes F$ 满,故 $0 = k \otimes N = (A/\mathfrak{m}) \otimes N \cong N/\mathfrak{m}N$,由第二章 12 题,N 是有限生成的,由 Nayakama 引理,N = 0,因此 ϕ 是同构。

- 16. 设 B 是平坦 A-代数,则下列条件等价:
 - i) 对一切 A 的理想 \mathfrak{a} , $\mathfrak{a}^{ec} = \mathfrak{a}$
 - ii) $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ 是满映射
 - iii) 对 A 的每个极大理想 \mathfrak{m} , 有 $\mathfrak{m}^e \neq (1)$
 - iv) 如果 M 是任意非零 A-模, 那么 $M_B \neq 0$
 - v) 对每个 A-模 M, M 到 M_B 中的映射 $x \to 1 \otimes x$ 是单的

这时 B 称作在 A 上忠实平坦 (faithfully flat)。

证明. 如果 i) 成立, $f^*: \operatorname{Spec} B \to \operatorname{Spec} A$ 由 $f^*(\mathfrak{q}) = \mathfrak{q}^c$ 给出, 有 $f^*p^e = \mathfrak{p}$, 从而满。

如果 ii) 成立, 如果 $\mathfrak{m}^e = (1)$, 设 $f^*(\mathfrak{q}) = \mathfrak{m}$, 则 $\mathfrak{m}^e \subseteq \mathfrak{m}$, 矛盾。

如果 iii) 成立,假设 $M_B = B \otimes_A M = 0$,由于 B 平坦,从而对 M 的一切子模 M 都有 $M_B' = 0$,考虑所有循环子模 Ax,它同构于 A 的一个商环,记为 A/\mathfrak{a} ,则 $0 = (Ax)_B \cong B \otimes A/\mathfrak{a} \cong B/\mathfrak{a}B$,从 而 $\mathfrak{a}^e = B$,取极大理想 $\mathfrak{m} \supseteq \mathfrak{a}$,有 $\mathfrak{m}^e = (1)$ 矛盾。

如果 iv) 成立,显然 $x \to 1 \otimes x$ 单

如果 v) 成立,假设 $\mathfrak{a} \subsetneq \mathfrak{a}^{ec}$,则 $\mathfrak{a}^{ec}/\mathfrak{a}$ 非零,记 $M = A/\mathfrak{a}$, $M_B = B \otimes_A (A/\mathfrak{a}) \cong B/\mathfrak{a}B \cong B/\mathfrak{a}^e$,从而 $M \to M_B$ 的核为 $\mathfrak{a}^{ec}/\mathfrak{a}$,矛盾。

17. 设 $A \xrightarrow{f} B \xrightarrow{g} C$ 是环同态,如果 $g \circ f$ 平坦,而 g 忠实平坦,则 f 平坦。

证明. 对任意一个 A-模单同态 $M \to M'$, 由于 $g \circ f$ 平坦从而 $M \otimes_A C \to M' \otimes_A C$ 是单射。

由作业 2.2 的性质有 $M \otimes_A C \cong M \otimes_A (C \otimes_B B) \cong M \otimes_A B \otimes_B C$

由于 g 是忠实平坦, 从而存在 $M \otimes_A B \to M \otimes_A B \otimes_B C$ 的单射。

有如下示意图:

$$M \otimes_A B \xrightarrow{\begin{subarray}{c} \dot{\mathbb{H}}, \ \dot{\mathbb{H}} \dot{\mathbb{H}}, \ \dot{\mathbb{H}} \dot{\mathbb{H}}, \ \dot{\mathbb{H}} \dot{\mathbb{H}} \dot{\mathbb{H}}, \ \dot{\mathbb{H}} \dot{\mathbb{H}} \dot{\mathbb{H}}, \ \dot{\mathbb{H}} \dot{\mathbb{H}$$

从而 $j: M \otimes_A B \to M' \otimes_A B$ 只能单、否则 $v \circ u$ 单、但是 $i \circ j$ 不单。

18. 设 $f:A\to B$ 是环的平坦同态,设 \mathfrak{q} 是 B 的素理想,令 $\mathfrak{p}=\mathfrak{q}^e$ 。那么 $f^*:\operatorname{Spec}(B_{\mathfrak{q}})\to\operatorname{Spec}(A_{\mathfrak{p}})$ 是满映射。

证明. 有 B_p 在 A_p 上平坦, B_q 是 B_p 的局部环,因此在 B_p 上平坦,因此 B_q 在 A_p 上平坦。它满足 16 题第三问的结论,从而第二问成立。

19. 设 A 是环, M 是 A-模, 用 Supp(M) 表示 A 中使得 $M_{\mathfrak{p}} \neq 0$ 的素理想 \mathfrak{p} 的集合,称 Supp(M) 是 M 的支集。证明:

- i) $M \neq 0 \Leftrightarrow \operatorname{Supp}(M) \neq \emptyset$
- ii) $V(\mathfrak{a}) = \operatorname{Supp}(A/\mathfrak{a})$
- iii) 如 $0 \to M' \to M \to M'' \to 0$ 是正合序列,那么 $Supp(M') = Supp(M') \cup JSupp(M'')$
- iv) 如果 $M = \Sigma M_i$, 那么 $Supp(M) = Supp(M_i)$
- v) 若 M 是有限生成的, 那么 Supp(M) = V(Ann(M))
- vi) 若 M, N 有限生成,那么 $\operatorname{Spec}(M \otimes N) = \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$
- vii) 若 M 有限生成, \mathfrak{a} 是 A 的理想, 那么 $Supp(M/\mathfrak{a}M) = V(\mathfrak{a} + Ann(M))$
- viii) 若 $f: A \to B$ 是环同态, M 是有限生成 A-模, 那么 $Supp(B \otimes_A M) = f^{*-1}(Supp(M))$

证明. i) 显然 M=0 时对任意 \mathfrak{p} 都有 $M_{\mathfrak{p}}=0$,故 $\mathrm{Supp}(M)=0$ 。

根据3.16若任意 \mathfrak{p} 都有 $M_{\mathfrak{p}}=0$,则 M=0

$$\begin{split} \mathfrak{p} \notin \operatorname{Supp}(A/\mathfrak{a}) \\ \Leftrightarrow M_{\mathfrak{p}} &= 0 \\ \Leftrightarrow \forall x \in A, \forall s \in A - \mathfrak{p}, \exists t \in A - \mathfrak{p}, t(s\bar{x}) = 0 \\ \Leftrightarrow \forall x \in A, \forall s \in A - \mathfrak{p}, \exists t \in A - \mathfrak{p}, \overline{tsx} = 0 \\ \Leftrightarrow \forall x \in A, \forall s \in A - \mathfrak{p}, \exists t \in A - \mathfrak{p}, tsx \in \mathfrak{a} \end{split}$$

若 \mathfrak{a} 不在 \mathfrak{p} 中,则取 $t \in \mathfrak{a} \cap (A - \mathfrak{p})$,则显然 $tsx \in \mathfrak{a}$ 。

若 $\mathfrak{a} \subseteq \mathfrak{p}$, 取 $x \in A - \mathfrak{p}$, 则由素理想的定义 $tsx \notin \mathfrak{p}$, 故此时 $tsx \notin \mathfrak{a}$, 故 $\mathfrak{p} \in \operatorname{Supp}(A/\mathfrak{a})$

- iii) 有 $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}} \to 0$ 是正合序列, $M_{\mathfrak{p}} = 0 \Leftrightarrow M'_{\mathfrak{p}} = M''_{\mathfrak{p}} = 0$
- iv) 若 $M_{i\mathfrak{p}}\neq 0$,则 $M_{\mathfrak{p}}\neq 0$,反之若 $\forall i\ M_{i\mathfrak{p}}=0$,则考虑 $\oplus M_i\to M$ 的自然映射,它诱导出 $\oplus M_{i\mathfrak{p}}\to M_{\mathfrak{p}}$,故 $M_{\mathfrak{p}}=0$ 。
 - v) 令 a_1, \dots, a_n 是生成元,则 $Supp(M) = \bigcup Supp((a_i))$

考虑 A 在 (a_i) 上的群作用,记 $f: A \to (a_i), a \mapsto aa_i$,映射的核为 $Ann((a_i))$,它为 A 的理想,且 $A/Ann((a_i)) \cong (a_i)$ 。故 $Supp((a_i)) = Supp(A/Ann((a_i))) = V(Ann((a_i)))$ 。

故
$$\operatorname{Supp}(M) = \bigcup V(\operatorname{Ann}((a_i))) = V(\operatorname{Ann}(M))$$

- vi) $(M \otimes N)_{\mathfrak{p}} = M_{\mathfrak{p}} \otimes N_{\mathfrak{p}}$
- vii) $M/\mathfrak{a}M \cong A/\mathfrak{a} \otimes M$
- viii) 令 \mathfrak{q} 是 B 的素理想,且 $\mathfrak{p} = \mathfrak{q}^c$ 。

若 \mathfrak{q} ∈ Supp(B),则

$$(B \otimes_A M)_{\mathfrak{q}} \cong (B_{\mathfrak{q}} \otimes_A M) \cong B_{\mathfrak{q}} \otimes_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$$

从而 $M_{\mathfrak{p}} = 0$ 有 $(B \otimes M)_{\mathfrak{q}} = 0$

反之,若 $(B \otimes M)_{\mathfrak{q}} = 0$,根据 M 有限生成,不妨生成元只有一个,而 $B_{\mathfrak{q}}$ 有不为 0 的基,故 $M_{\mathfrak{p}} = 0$ 。

- 20. 设 $f: A \to B$ 是环同态, $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ 是与 f 相伴的映射。证明:
 - i) A 的每个素理想都是局限理想 ⇔ f^* 是满映射.
 - ii) B 的每个素理想都是扩理想 ⇒ f^* 是单映射。
 - ii) 的逆是否成立?

证明. 每个 B 中的素理想的逆为 A 的一个素理想,则如果 f^* 是满射代表 A 的每个素理想都是局限理想, f^* 是单射代表 B 的每个素理想是局限理想的扩理想。

- ii) 的逆不成立,可以有 A 中的素理想的扩理想不是 B 中的素理想。
- 21. i) 设 A 是环,S 是 A 的乘法封闭子集, $\phi: A \to S^{-1}A$ 是典范同态,证明: $\phi^*: \operatorname{Spec}(S^{-1}A) \to \operatorname{Spec}(A)$ 是 $\operatorname{Spec}(S^{-1}A)$ 到它在 $X = \operatorname{Spec}(A)$ 中的像的同胚。这个像用 $S^{-1}X$ 表示。
- ii) 设 $f:A\to B$ 是环同态,设 $X=\operatorname{Spec}(A),Y=\operatorname{Spec}(B)$,并设 $f^*:Y\to X$ 是与 f 相伴的映射。将 $\operatorname{Spec}(S^{-1}A)$ 与它在 X 中的典范象 $S^{-1}X$ 等同,将 $\operatorname{Spec}(S^{-1}B)=\operatorname{Spec}(f(S)^{-1}B)$ 与它在 Y 中的典范象 $S^{-1}Y$ 等同,证明: $S^{-1}f^*:\operatorname{Spec}(S^{-1}B)\to\operatorname{Spec}(S^{-1}A)$ 是 f^* 在 $S^{-1}Y$ 上的限制,且 $S^{-1}Y=f^{*-1}(S^{-1}X)$ 、
- iii) 设 \mathfrak{a} 是 A 的理想, $\mathfrak{b} = \mathfrak{a}^e$ 是它在 B 中的扩张,令 $\bar{f}: A/\mathfrak{a} \to B/\mathfrak{b}$ 是由 f 诱导的同态,若 $\operatorname{Spec}(A/\mathfrak{a})$ 与它在 X 中的典范象 $V(\mathfrak{a})$ 等同, $\operatorname{Spec}B/\mathfrak{b}$ 与它在 Y 中的象 $V(\mathfrak{b})$ 等同,证明: \bar{f}^* 是 f^* 在 $V(\mathfrak{b})$ 上的限制
- iv) 设 \mathfrak{p} 是 A 的素理想,在 ii) 中取 $S = A \mathfrak{p}$,再如 iii) 那样 $\mod S^{-1}\mathfrak{p}$ 约化。推出 Y 的子空 间 $f^{*-1}(\mathfrak{p})$ 自然同胚于 $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}) = \operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$,这里 $k(\mathfrak{p})$ 是局部环 $A_{\mathfrak{p}}$ 的同余类域。

 $\operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$ 称为 f^* 在 \mathfrak{p} 上的纤维。

证明. i) 根据3.21第四问,可得这是个一一对应的同态,即为同胚。

ii) $\operatorname{Spec}(S^{-1}B) \to \operatorname{Spec}(S^{-1}A)$ 诱导了 $S^{-1}Y \to S^{-1}X$ 。

对 $\mathfrak{q} \in Y$, $f(S) \cap \mathfrak{q} \neq \emptyset \Leftrightarrow \exists s, f(s) \in \mathfrak{q} \Leftrightarrow \Leftrightarrow s \in f^{-1}(\mathfrak{q}) \Leftrightarrow S \cap f^{-1}(\mathfrak{q})\emptyset$, 从而 $S^{-1}Y = f^{*-1}(S^{-1}X)$ 。

22. 设 A 是环, \mathfrak{p} 是 A 的素理想。那么 $\mathrm{Spec}(A_{\mathfrak{p}})$ 在 $\mathrm{Spec}(A)$ 中的典范象等于 \mathfrak{p} 在 $\mathrm{Spec}(A)$ 中一切开邻域的交。

证明. 由3.21可得这个像为所有包含于 p 的素理想。

对 $f \in A$, 记 $X = \operatorname{Spec}(A)$, 若 $\mathfrak{p} \in X_f$, 则所有含于 \mathfrak{p} 的素理想也在 X_f 中。且对任意一个不含于 \mathfrak{p} 的理想 \mathfrak{q} , 取 $f \in \mathfrak{q} \cap (A - \mathfrak{p})$, 则 $\mathfrak{p} \in X_f$, $\mathfrak{q} \notin X_f$ 。

- 23. 设 A 是环, $X = \operatorname{Spec}(A)$, U 是 X 中的主开集(即对某个 $f \in A, U = X_f$)
 - i) 如果 $U = X_f$, 证明环 $A(U) = A_f$ 只依赖于 U 而不依赖于 f
- ii) 设 $U'=X_g$ 是使得 $U'\subseteq U$ 的另一主开集,证明对某个整数 n>0 和某个 $u\in A$,有方程 $g^n=uf$,利用这定义一个同态 $\rho:A(U)\to A(U')$ 即 $(A_f\to A_g)$,它将 a/f^m 映射到 au^m/g^{mn} ,证 明: ρ 只依赖于 U 和 U',这个同态被称为限制同态。
 - iii) 若 U = U' 那么 ρ 恒同
- iv) 若 $U\supseteq U'\supseteq U''$ 是 X 中的主开集,证明: 图表 $A(U)\to A(U''), A(U)\to A(U')\to A(U'')$ 交换
 - v) 设 $x(=\mathfrak{p})$ 是 X 中的一个点,证明:

$$\lim_{\to} A(U) \cong A_{\mathfrak{p}}, \sharp \mathfrak{p} x \in U$$

对 X 中的每个主开集 U_p 指定的一个环 A(U) 和适合上面条件 iii) 和 iv) 的限制同态 ρ ,构成了开集基 $(X_f)_{f\in A}$ 的予层,v) 指出这个予层的茎的响应的局部环 A_p 。

证明. i) 设 f, g 使得 $X_f = X_g = U$,只需证此时 $A_f \cong A_g$ 。

考虑第三章第七题的第二问的结论,设 $T = \overline{\{f, f^2, f^3, \cdots\}}$,有 T 为所有不含 f 的素理想的并的补集,故 $T = \overline{\{g, g^2, \cdots\}}$,且 T 为饱和乘法封闭子集。

由第八题的结论, A_f 与 $T^{-1}A$ 是存在——映射的, A_g 也—样,故 $A_f\cong A_g$,即 A(U) 仅依赖于 U 。

ii) 由题,包含 f 的素理想一定是包含 g 的,从而 (f) 的根理想包含 (g) 的根理想。

从而 $g \in r((g)) \subseteq r((f))$, 即有 $g^n = uf$.

24. 予层有下面的性质: 设 $(U_i)_{i\in I}$ 是由主开集构成的 X 的一个覆盖。对每个 $i\in I$,设有 $s_i\in A(U_i)$ 使得对每队 i,j, s_i,s_j 在 $A(U_i\cap U_j)$ 中的象是恒等的。那么存在唯一的 $s\in A(=A(X))$,它在 $A(U_i)$ 中的象是 s_i (这实际上蕴含着予层是一个层)。

证明. □

- 25. 设 $f: A \to B$, $g: A \to C$ 是环同态, 设 $h: A \to B \otimes_A C$ 由 $h(x) = f(x) \otimes g(x)$ 定义, 令 X, Y, Z, T 分别是 $A, B, C, B \otimes_A C$ 的素谱, 那么 $h^*(T) = f^*(Y) \cap g^*(Z)$ 。
- 26. 令 $(B_{\alpha}, g_{\alpha\beta})$ 是一个环的正向系统。B 是正向极限,对每个 α 设 $f_{\alpha}: A \to B_{\alpha}$ 是环同态,使得只要 $\alpha \leq \beta$,就有 $g_{\alpha\beta} \circ f_{\alpha} = g_{\beta}$ (即 B_{α} 组成一个 A-代数的正向系统), f_{α} 诱导出 $f: A \to B$,证明: $f^*(\operatorname{Spec}(B)) = \bigcap_{\alpha} f_{\alpha}^*(\operatorname{Spec}(B_{\alpha}))$
- 27. i) 设 $f_{\alpha}: A \to B_{\alpha}$ 是任意一个 A-代数的有限族,设 $f: A \to B$ 是它们在 A 上的张量积,那么 $f^*(\operatorname{Spec}(B)) = \bigcap_{\alpha} f_{\alpha}^*(\operatorname{Spec}(B_{\alpha}))$
- ii) 设 $f_{\alpha}: A \to B_{\alpha}$ 是任意一个 A-代数的有限族,设 $B = \Pi_{\alpha}B_{\alpha}$ 。令 $f(x) = (f_{\alpha}(x))$ 定义 $f: A \to B$,那么 $f^*(\operatorname{Spec}(B)) = \bigcup_{\alpha} f_{\alpha}^*(\operatorname{Spec}(B_{\alpha}))$
- iii) 设 $f: A \to B$ 是环同态,那么 $X = \operatorname{Spec}(A)$ 中形如 $f^*(\operatorname{Spec}(B))$ 的子集满足拓扑空间中闭集的公理,相应的拓扑称为 X 上的可构造拓扑,它比 Zariski 拓扑细
 - iv) 设 X_C 表示赋予了可构造拓扑的集合 X, 证明 X_C 是拟紧的。
- 28. i) 对每个 $g \in A$,集合 X_g (第一章习题 17) 在可构造拓扑中既开又闭
- ii) 用 C' 表示 X 中如下性质的最小拓扑,即使得集合 X_g 既开又闭,用 $X_{C'}$ 表示被赋予这个拓扑的 X。证明: $X_{C'}$ 是 Hausdorff 空间
- iii) 推出恒等映射 $X_C \to X_{C'}$ 是同胚,因此对某个 $f:A\to B,~X$ 的子集 E 具有 $F^*(\operatorname{Spec}(B))$ 形状当且仅当它在拓扑 C' 中闭
 - iv) 拓扑空间 X_C 是紧 Hausdorff 空间且完全不连通
- 29. 设 $f: A \to B$ 是环同态,证明: $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ 对于可构造拓扑来讲是连续闭映射
- 30. 证明在 Spec(A) 上的 Zariski 拓扑与可构造拓扑相同当且仅当 A/\mathfrak{N} 是绝对平坦的。

4 准素分解

- **定义 4.1.** 环 A 中的理想 \mathfrak{q} 是**准素** (primary) 的,如果 $\mathfrak{q} \neq A$ 且 $xy \in A \Rightarrow x \in \mathfrak{q}$ 或 $\exists n > 0, y^n \in \mathfrak{q}$ (即有三种情况: $x \in \mathfrak{q}, y \in \mathfrak{q}, x^m \in \mathfrak{q}$ 且 $y^n \in \mathfrak{q}, m > 1, n > 1$)。换句话说, \mathfrak{q} 是准素的 \Leftrightarrow 商环非零且它的每个零因子都是幂零的。
- **命题 4.2.** 令 q 是环 A 中的准素理想,那么 r(q) 是包含 q 的最小素理想。
- 证明. $r(\mathfrak{q})$ 是包含 \mathfrak{q} 的素理想的交,只需证 \mathfrak{p} 是素理想即可,若 $(xy)^m \in \mathfrak{q}$,则 $x^m \in \mathfrak{q}, y^{mn} \in \mathfrak{q}$,从 π r(g) 是素理想。
- 定义 4.3. 如果 $\mathfrak{p} = r(\mathfrak{q})$,则称 \mathfrak{q} 为 \mathfrak{p} -准素 (\mathfrak{p} -primary)。
- **命题 4.4.** 如果 $r(\mathfrak{a})$ 是极大的,那么 \mathfrak{a} 是准素的,特别的,极大理想 \mathfrak{m} 的幂是 \mathfrak{m} -准素的。
- 证明. 令 $r(\mathfrak{a}) = \mathfrak{m}$,考虑 A/\mathfrak{a} ,它的小根是 $\bar{\mathfrak{m}}$,从而小根极大,即 A/\mathfrak{a} 只有一个素理想 $\bar{\mathfrak{m}}$ 。从而 A/\mathfrak{a} 中的每个元素要么是可逆元要么是幂零元,所以 A/\mathfrak{a} 中的每个零因子都是幂零的。
- **引理 4.5.** 如果 q_i 都是 p-准素的, 那么 $\bigcap_{i=1}^n q_i$ 是 p-准素的。

证明. 首先 $r(\mathfrak{q}) = \bigcap r(\mathfrak{q}_i) = \mathfrak{p}$, 只需证 \mathfrak{q} 是准素的,若 $xy \in \mathfrak{q}$, 不妨 $x \notin \mathfrak{q}$, 则 $xy \in \mathfrak{q}_i, \forall i$,若 $y \in \mathfrak{p}$,则已成立;若 $y \notin \mathfrak{p}$,则 $y \notin r(\mathfrak{q}_i)$,故 $x \in \mathfrak{q}_i, \forall i$,矛盾。

引理 4.6. 令 q 是 p-准素理想, x 是 A 的元素。那么:

- i) 如果 $x \in \mathfrak{q}$,则 $(\mathfrak{q}:x)=(1)$
- ii) 如果 $x \notin q$,则 (q:x)是 p-准素的,因此 r(q:x) = p
- iii) 如果 $x \notin \mathfrak{p}$, 则 $(\mathfrak{q}:x) = \mathfrak{q}$, 此时 $r(\mathfrak{q}:x) = \mathfrak{p}$

证明. i) 对任意 $y \in (1), xy \in \mathfrak{q}$

ii) 若 $abx \in \mathfrak{q}$, 若 $ax \notin \mathfrak{q}$, 则存在 t 使得 $b^t \in \mathfrak{q}$, 则 $b^tx \in \mathfrak{q}$, 即 $b^tx \in \mathfrak{q}$, 故 $(\mathfrak{q}:x)$ 是准素的。

对 $y \in (\mathfrak{q}:x)$, $xy \in \mathfrak{q}$, 由于 $x \notin \mathfrak{q}$, 故 $y^t \in \mathfrak{q}$, 即 $y \in \mathfrak{p}$, 从而 \mathfrak{p} 是包含 $(\mathfrak{q}:x)$ 的素理想,则包含它的根。另一方面,对 $y \in \mathfrak{p}$,设 $y^m \in \mathfrak{q}$,故 $y^m x \in \mathfrak{q}$,从而 $y^m \in (\mathfrak{q}:x)$,即 $y \in r(\mathfrak{q}:x)$,从而 $r(\mathfrak{q}:x) = \mathfrak{p}$ 。

- iii) 此时 x 和 x 的幂均不在 \mathfrak{q} 中,故若 $xy \in \mathfrak{q}$ 只能 $y \in \mathfrak{q}$ 。
- **定义 4.7.** A 中理想 \mathfrak{a} 的准素分解 (primary decomposition) 是指将它表示为准素理想的交,即 $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$,如果该分解满足:所有 $r(\mathfrak{q}_i)$ 都不相同且去掉任意一个准素理想后该式不成立,那么就称之为极小的准素分解。任何准素分解都可以化简为极小的。称 \mathfrak{a} 是可分解的 (decomposable),如果它有一个准素分解。

定理 4.8 (第一唯一性定理). 令 a 是一个可分解的理想,而 $a = \bigcap_{i=1}^n q_i$ 是 a 的极小准素分解。令 $\mathfrak{p}_i = r(\mathfrak{q}_i)$,那么 \mathfrak{p}_i 恰是在理想集合 $\{r(\mathfrak{a}:x) \mid x \in A\}$ 中出现的**素理想**,因此与 a 的分解无关。

证明. 事实上, $(\mathfrak{a}:x) = \bigcap (\mathfrak{q}_i:x)$,因此由引理有 $r(\mathfrak{a}:x) = \bigcap r(\mathfrak{q}_i:x) = \bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i$ 。假设 $r(\mathfrak{a}:x)$ 是素理想,由于它是素理想的交集,故必然有 $r(\mathfrak{a}:x) = \mathfrak{p}_j$ (1.23)。反之,对每个 i,存在 $x_i \notin \mathfrak{q}_i$ 使得 $x_i \in \bigcap_{j \neq i} \mathfrak{q}_i$, $r(\mathfrak{a}:x_i) = \mathfrak{p}_i$ 。

命题 4.9. 若 \mathfrak{q} 是 \mathfrak{p} = 准素的, S 是 A 的乘法封闭子集。

- i) 如果 $S \cap \mathfrak{p} \neq \emptyset$,那么 $S^{-1}\mathfrak{q} = S^{-1}A$
- ii) 如果 $S \cap \mathfrak{p} = \emptyset$, 那么 $S^{-1}\mathfrak{q}$ 是 $S^{-1}\mathfrak{p}$ -准素的, 且局限为 \mathfrak{q}

证明. i) 如果 $s \in S \cap \mathfrak{p}$, 则 $s^n \in \mathfrak{q}$, 且 $a/1 = as^n/s^n \in S^{-1}\mathfrak{q}$

- ii) 如果 $S \cap \mathfrak{p} = \emptyset$, 那么 $a/1 = q/s \Leftrightarrow ss'a = qs \in \mathfrak{q}$, 从而 $a \in \mathfrak{q}$ 。
- **定义 4.10.** 称出现在 $r(\mathfrak{a}:x)$ 的素理想 \mathfrak{p}_i 是属于 (belong to) \mathfrak{a} 的,或称为与 \mathfrak{a} 相伴 (associated) 的。 如果 \mathfrak{a} 只有一个相伴的素理想,则它是准素的 (4.5)。集合 $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$ 按照包含关系的极小元素称 为属于 \mathfrak{a} 的极小 (minimal) 的或者孤立 (isolated) 的素理想。其余的称为嵌入 (embeded) 的素理想。

命题 4.11. 令 α 是个可分解的理想,那么任何素理想 $p \supseteq α$ 都包含一个属于 α 的一个极小素理想。因 此 α 的极小素理想恰是包含 α 的所有素理想集合中的极小元。

证明. 如果 $\mathfrak{p} \supseteq \bigcap_{i=1}^n \mathfrak{q}_i$,那么 $\mathfrak{p} = r(\mathfrak{p}) \supseteq \bigcap r(\mathfrak{q}_i) = \bigcap \mathfrak{p}_i$ 。由1.23,存在 i 使得 $\mathfrak{p} \supseteq \mathfrak{p}_i$ 。而 $\mathfrak{a} \subseteq \mathfrak{q}_i \subseteq \mathfrak{p}_i$,这说明极小素理想包含 \mathfrak{a} 。

注 4.12. 孤立和嵌入的名字来源于几何,如果 $A = k[x_1, x_2, \cdots, x_n]$,其中 k 是域,那么理想 \mathfrak{a} 给出一个簇 $X \subseteq k^n$ 。极小素理想 \mathfrak{p}_i 对应 X 的不可约分支,嵌入素理想对应他们的子簇,即,嵌入不可约分支的簇。

命题 4.13. 令 \mathfrak{a} 是可分解理想, $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ 是一个极小准素分解, $r(\mathfrak{q}_i) = \mathfrak{p}_i$,那么

$$\bigcup_{i=1}^{n} \mathfrak{p}_{i} = \{x \in A : (\mathfrak{a} : x) \neq \mathfrak{a}\}\$$

特别的,如果零理想是可分解的,A的零因子的集合D是属于0的素理想的并。

证明. 首先证明最后一个断言。

首先有 $D = \bigcup_{x \neq 0} r(0:x)$,若 $0 = \bigcap \mathfrak{q}_i$, $r(0:x) = \bigcap r(\mathfrak{q}_i:x) = \bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i$,从而对每个 r(0:x)都是某个 \mathfrak{p}_j 的子集,因此 $D \subseteq \bigcup \mathfrak{p}_i$,另一方面,存在 $r(0:x_i) = \mathfrak{p}_i$,此时 $\mathfrak{p}_i \subseteq D$,从而 $D = \bigcup \mathfrak{p}_i$ 。

对一般情况, 考虑商映射 $A \rightarrow A/\mathfrak{a}$, 此时划归为上情况。

命题 4.14. 令 $S \in A$ 的乘法封闭子集, $q \in A$ p-准素理想。

- i) 如果 $S \cap \mathfrak{p} \neq \emptyset$, 那么 $S^{-1}\mathfrak{q} = S^{-1}A$
- ii) 如果 $S \cap \mathfrak{p} = \emptyset$, 那么 $S^{-1}\mathfrak{q}$ 是 $S^{-1}\mathfrak{p}$ -准素,它在 A 中的局限是 \mathfrak{q}

因此, 在 $S^{-1}A$ 中的理想与A中的局限理想之间的对应中, 准素理想对应准素理想。

证明. i) 如果 $S \cap \mathfrak{p} \neq \varnothing$,则 S 与 \mathfrak{q} 交集也非空,设 $s \in S \cap \mathfrak{q}$,对任意 $x \in A, s' \in S, \ x/s' = xs/ss'$,从而 $S^{-1}A = S^{-1}\mathfrak{q}$

ii) 若 $x/s \cdot y/s' \in S^{-1}\mathfrak{q}$, 即 $xy \in \mathfrak{q}$, 若 $x \in \mathfrak{q}$, 则 $x/s \in S^{-1}\mathfrak{q}$, 若 $y^n \in \mathfrak{q}$, 则 $y^n/s'^n \in S^{-1}\mathfrak{q}$, 故 $S^{-1}\mathfrak{q}$ 是准素的。如果 $(x/s)^n \in S^{-1}\mathfrak{q}$, 则 $x^n \in S^{-1}\mathfrak{q}$, 从而 $x \in \mathfrak{p}$, $x/s \in S^{-1}\mathfrak{p}$, 反之亦然,故 $r(S^{-1}\mathfrak{q}) = S^{-1}\mathfrak{p}$ 。从而 $S^{-1}\mathfrak{q}$ 是 $S^{-1}\mathfrak{p}$ -准素的。

若 $x/1 = x'/s \in S^{-1}\mathfrak{q}, x' \in \mathfrak{q}, s \in S$,若 $x \notin \mathfrak{q}$,存在 $s' \in S, (sx - x')s' = 0$,即 $xss' = x's' \in \mathfrak{q}$,故 $(ss')^n \in \mathfrak{q}$,然而 $S \cap \mathfrak{p} = 0$,矛盾。

注 4.15. 对任何理想 \mathfrak{a} , $S^{-1}\mathfrak{a}$ 在 A 中的局限用 $S(\mathfrak{a})$ 表示。

命题 4.16. 令 S 是 A 的乘法封闭子集, \mathfrak{a} 是可分解的理想, $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_{i}$ 是 \mathfrak{a} 的极小准素理想分解。令 $\mathfrak{p}_{i} = r(\mathfrak{q}_{i})$,假设给 \mathfrak{q}_{i} 如此编号,使得 S 与 $\mathfrak{p}_{m+1}, \cdots, \mathfrak{p}_{m}$ 相交而不与 $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{m}$ 相交。那么 $S^{-1}\mathfrak{a} = \bigcap_{i=1}^{m} S^{-1}\mathfrak{q}_{i}$, $S(\mathfrak{a}) = \bigcap_{i=1}^{m} \mathfrak{q}_{i}$

证明. $S^{-1}\mathfrak{a}=\bigcap_i S^{-1}\mathfrak{q}_i=\bigcap_{i=1}^m S^{-1}\mathfrak{q}_i$ 。两边取局限易得。

定义 4.17. 属于 $\mathfrak a$ 的一个素理想集合 Σ 叫做孤立的 (isolated),如果它满足下条件: 如果 $\mathfrak p'$ 是属于 $\mathfrak a$ 的素理想且 $\exists \mathfrak p \in \Sigma, \mathfrak p' \subseteq \mathfrak p$,那么 $\mathfrak p' \subseteq \Sigma$ 。

命题 4.18. 设 Σ 孤立,记 $S = A - \bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p}$,则 S 是乘法封闭的(这是素理想的性质)。对属于 \mathfrak{a} 的任何素理想 \mathfrak{p}' ,我们有 $p' \in \Sigma \Rightarrow \mathfrak{p}' \bigcap S = \varnothing$; $\mathfrak{p}' \notin \Sigma \Rightarrow \mathfrak{p}' \notin \bigcup_{\mathfrak{p} \in \Sigma} \mathfrak{p} \Rightarrow \mathfrak{p}' \bigcap S \neq \varnothing$ (用到了定义)。

定理 4.19 (第二唯一性定理). 令 a 是一个可分解的理想, $a = \bigcap_{i=1}^n q_i$ 是 a 的极小准素分解,令 $\{p_{i_1}, \dots, p_{i_m}\}$ 是 a 的素理想的孤立集合,那么 $q_{i_1} \cap \dots \cap q_{i_m}$ 与分解无关。

证明. $S=A-\bigcup_{\mathfrak{p}\in\Sigma}\mathfrak{p}$,有 $S(\mathfrak{a})=\bigcap_{j=1}^m\mathfrak{q}_{i_j}$,由第一分解定理 \mathfrak{p}_i 只依赖于 \mathfrak{a} ,从而与分解无关。 $\ \square$

推论 4.20. 孤立准素分支 (The isolated primary components) (即一个极小素理想对应的准素分支) 由 a 唯一决定。

注 4.21. 嵌入理想对应的准素分支一般不由 α 唯一决定。

4.1 习题 4

1. 如果 \mathfrak{a} 有准素分解,那么 $\operatorname{Spec}(A/\mathfrak{a})$ 只有有限个不可约分支。

证明. 由第一章第 20 题, $\operatorname{Spec}(A/\mathfrak{a})$ 的不可约分支是形如 $V(\mathfrak{p}/\mathfrak{a})$ 的闭集, 其中 $\mathfrak{p}/\mathfrak{a}$ 是 A/\mathfrak{a} 的极小素理想, \mathfrak{p} 是 $\mathfrak{p}/\mathfrak{a}$ 在商映射下的原像, 它是 \mathfrak{a} 的极小素理想, 故为有限个。

2. 如果 $\mathfrak{a} = r(\mathfrak{a})$, 那么 \mathfrak{a} 没有嵌入素理想。

证明. a 是包含 a 的所有素理想的交。

3. 若 A 绝对平坦,则每个准素理想极大。

证明. 令 \mathfrak{q} 是准素理想,且 $\mathfrak{p}=r(\mathfrak{q})$,由第二章 28 题,有 A/\mathfrak{q} 是绝对平坦的,且 A 除了可逆元就是 零因子。对零因子 $a \notin \mathfrak{q}$, $ab=0 \in \mathfrak{q}$,由准素的性质有 $b^n \in \mathfrak{q}$,从而 $b \in \mathfrak{p}$,从而 \mathfrak{p} 是唯一极大理想。

考虑 A/\mathfrak{q} ,由第一章第 10 题, A/\mathfrak{q} 只有恰好一个素理想,即 $\bar{\mathfrak{p}}$,由第二章 28 题,局部环是绝对平坦环,有它是一个域。

4. 在多项式环 $\mathbb{Z}[t]$ 中, 理想 $\mathfrak{m}=(2,t)$ 是极大的, 理想 $\mathfrak{q}=(4,t)$ 是 \mathfrak{m} -准素的, 但是它不是 \mathfrak{m} 的幂。

证明. 验证一下, 确实如此。

5. 设 K 是域, x,y,z 是无关的变元, 在多项式环 K[x,y,z] 中, 设 $\mathfrak{p}_1=(x,y),\mathfrak{p}_2=(x,z),\mathfrak{m}=(x,y,z),$ $\mathfrak{p}_1,\mathfrak{p}_2$ 是素理想, \mathfrak{m} 是极大理想。设 $\mathfrak{a}=\mathfrak{p}_1\mathfrak{p}_2$,证明 $\mathfrak{a}=\mathfrak{p}_1\cap\mathfrak{p}_2\cap\mathfrak{m}^2$ 是 \mathfrak{a} 的约简的准素分解。试问该分解中极小和嵌入素理想分别是哪个。

证明. $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ 是 \mathfrak{a} 是显然的。

 $r(\mathfrak{m}^2) = \mathfrak{m}$,这个是嵌入,其余是极小。

6. 设 X 是无限的紧的 Hausdorff 空间,C(X) 是 X 上的实值连续函数环,该环的零理想是不可分解的吗?

解. 是不可分解的。

由第一章 26 题, C(X) 的每个极大理想具有形式 $\mathfrak{m}_x = \{f \in C(x) : f(x) = 0\}$ 。

设 q 准素,如果 $\mathfrak{q} \subseteq \mathfrak{m}_x \cap \mathfrak{m}_y (x \neq y)$,取 $x \in U, y \in V, U \cap V = \varnothing$,由 Urysohn 引理,存在 f 使得 f(x) = 1, f(X - U) = 0,同理有 g(y) = 1, g(X - V) = 0,易见此时 fg = 0。而显然 $f^s, g^t \in (\mathfrak{m}_x - \mathfrak{m}_y) \cup (\mathfrak{m}_y - \mathfrak{m}_x)$,故他们的乘积不可能在 \mathfrak{q} 中,矛盾。从而任意一个准素理想都恰包含在一个极大理想中。

对有限个准素理想 $\mathfrak{q}_i \subseteq \mathfrak{m}_{x_i}$,设 f_i 使得 f_i 在 x_i 上取 0,而它在其余 x_j 上不可能取 0。则 $f_1 \cdots f_{n-1} \neq 0$ (它在 x_n 上的值不为 0),而 $f_1 \cdots f_{n-1} \in \bigcap_{i=1}^{n-1} \mathfrak{q}_i$,故有限个准素理想的交不为零理 想。

- 7. 设 A 是环,对 \mathfrak{a} 为 A 的理想,用 $\mathfrak{a}[x]$ 表示 A[x] 中系数在 \mathfrak{a} 中的多项式的集合。
 - i) 证明: $\mathfrak{a}[x]$ 是 \mathfrak{a} 在 A[x] 中的扩张。
 - ii) 如果 \mathfrak{p} 是 A 的素理想,那么 $\mathfrak{p}[x]$ 是 A[x] 的素理想。
 - iii) 如果 \mathfrak{q} 是 A 的 \mathfrak{p} -准素理想,那么 $\mathfrak{q}[x]$ 是 A[x] 的 $\mathfrak{p}[x]$ -准素理想。
- iv) 如果 $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ 是 A 的一个极小准素理想分解,那么 $\mathfrak{a}[x] = \bigcap_{i=1}^n \mathfrak{q}_i[x]$ 是 A[x] 中的一个极小准素分解。
 - v) 如果 \mathfrak{p} 是 \mathfrak{a} 的一个极小素理想,那么 $\mathfrak{p}[x]$ 是 $\mathfrak{a}[x]$ 的一个极小素理想。
- 证明. i) 只需证明 $\mathfrak{a}[x]$ 是包含 \mathfrak{a} 的最小理想。

首先, 若理想 $\mathfrak{b} \subseteq A[x]$ 包含 \mathfrak{a} , 则他显然包含 $\mathfrak{a}[x]$ 。

齐次, a 是理想。

故 $\mathfrak{a}[x]$ 是包含 \mathfrak{a} 的最小理想。

- ii) 设 $fg \in \mathfrak{p}[x]$, 且 $f = \sum a_i x^i$, $g = \sum b_i x^i$, 分析 fg 的展开可得 f or $g \in \mathfrak{p}$.
- iii) 对任意 $f \in \mathfrak{p}[x]$, 设 f 的每个系数 a 满足 $a^n \in \mathfrak{q}$, 则 $f^{n \deg f} \in \mathfrak{q}[x]$, 故 $r(\mathfrak{p}[x]) = \mathfrak{q}[x]$ 。
- iv) 显然。

v) 显然。

8. 设 k 是域,证明在多项式环 $k[x_1,\cdots,x_n]$ 中,理想 $\mathfrak{p}=(x_1,\cdots,x_i)(1\leq i\leq n)$ 都是素理想,它们所有的幂都是准素理想。

证明. 十分显然。

9. 在环 A 中,用 D(A) 表示满足下列条件的素理想 $\mathfrak p$ 的集合:存在 $a\in A$,使得 $\mathfrak p$ 是包含 (0:a) 的素理想集合的极小元,证明: $x\in A$ 是零因子 \Leftrightarrow 对某个 $\mathfrak p\in D(A)$ $x\in \mathfrak p$ 。

令 S 是 A 的乘法封闭子集,将 Spec $(S^{-1}A)$ 与它在 Spec(A) 中的象等同,证明: $D(S^{-1}A) = D(A) \cap \operatorname{Spec}(S^{-1}A)$

如果零理想有准素分解,证明:D(A)是零的相伴素理想的集合。

证明. 若 x 是非零零因子,设 xa=0,则 a 不可逆,则包含 (0:a) 的素理想的极小元包含 x。

若 $x \in \mathfrak{p} \supseteq (0:a)$,考虑 A/(0:a),则 $\bar{\mathfrak{p}}$ 是极小素理想。考虑第三章第六题,记 $\bar{S} = \bar{A} - \bar{p}$,它 是不含 0 的极大乘法封闭子集,用类似该题的处理手法,记 $\bar{S}' = \{\bar{x}^n s, s \in \bar{S}\}$,由极大性,有 $0 \in \bar{S}'$,故 $\bar{x}^n s \in \bar{0}$,故 xsa = 0,即 x 是零元素。

由3.21, $S^{-1}A$ 的理想总是某个 A 的理想 \mathfrak{a} 的扩理想 $S^{-1}\mathfrak{a}$, 对单个的元素 x, 我们有 $\mathrm{Ann}(x/s)=\mathrm{Ann}(x/1)=\mathrm{Ann}(x)^e=S^{-1}\mathrm{Ann}(x)$ 。故成立。

记 $0 = \bigcap \mathfrak{q}_i$, $r(\mathfrak{q}_i) = \mathfrak{p}_i$, 由第一唯一分解定理, 可得 D(A) 的定义与相伴素理想的定义相符。 \square

- 10. 对环 A 中任意素理想 \mathfrak{p} , 用 $S_{\mathfrak{p}}(0)$ 表示同态 $A \to A_{\mathfrak{p}}$ 的核,证明:
 - i) $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$
 - ii) $r(S_{\mathfrak{p}}(0)) = \mathfrak{p} \Leftrightarrow \mathfrak{p} \in A$ 的极小素理想。
 - iii) 如果 $\mathfrak{p} \supseteq \mathfrak{p}'$,那么 $S_{\mathfrak{p}}(0) \subseteq S_{\mathfrak{p}'}(0)$
 - iv) $\bigcap_{\mathfrak{p}\in D(A)} S_{\mathfrak{p}}(0) = 0$
- 证明. i) 如果 $x \notin \mathfrak{p}$, 则 $x/1 \neq 0$, 否则 $0 \in A \mathfrak{p}$, 故 $S_{\mathfrak{p}}(0) \subseteq \mathfrak{p}$ 。
- ii) $r(S_{\mathfrak{p}}(0)) = \mathfrak{p} \Leftrightarrow \forall x \in \mathfrak{p}, \exists n, x^n/1 = 0 \Leftrightarrow \exists x^n s = 0 \Leftrightarrow A \mathfrak{p}$ 是不含 0 的极大乘法子集 $\Leftrightarrow \mathfrak{p}$ 是极小素理想。
 - iii) 如果 $x \in S_{\mathfrak{p}}(0)$,即 x/1 = 0,那么存在 $s \in A \mathfrak{p} \subseteq A \mathfrak{p}'$ 使得 xs = 0,故 $x \in S'_{\mathfrak{p}}(0)$
- iv) 如果 $x \in S_{\mathfrak{p}}(0), \forall \mathfrak{p} \in D(A)$,那么考虑包含 (0:x) 的最小素理想 \mathfrak{q} , $A \mathfrak{q}$ 中没有零化 x 的元素,故此时 $x \notin S_{\mathfrak{q}}(0)$ 。
- 11. 如果 \mathfrak{p} 是 A 的极小素理想,证明 $S_{\mathfrak{p}}(0)$ 是最小的 \mathfrak{p} -准素理想。

令 \mathfrak{a} 是理想 $S_{\mathfrak{p}}(0)$ 的交,这里 \mathfrak{p} 跑遍 A 的极小素理想,证明: \mathfrak{a} 包含在 A 的小根中。

假设零理想可以分解,证明 $\mathfrak{a}=0$ 当且仅当零的每个素理想是孤立的。

证明. 设 \mathfrak{q} 是 \mathfrak{p} -准素的,则对任意 $x \in S_{\mathfrak{p}}(0)$,若 $x \notin \mathfrak{q}$,由于存在 $s \in A - \mathfrak{p}$ 使得 $xs = 0 \in \mathfrak{q}$,则 $s^t \in \mathfrak{q}$,从而 $s \in \mathfrak{p}$ 矛盾,故 $S_{\mathfrak{p}}(0) \subseteq \mathfrak{q}$ 。

所有极小素理想的交为小根,故 α包含在小根中。

若 $\mathfrak{a} = 0$,由于 $(0) = \bigcap_{\text{极小素理想}} \mathfrak{p}$,设 $\mathfrak{q} = r(0:x)$ 是嵌入素理想, $\mathfrak{q} = r(\bigcap(S_{\mathfrak{p}}(0)):x) = \bigcap_{some \ \mathfrak{p}} \mathfrak{p}$,而这些 \mathfrak{p} 是极小素理想,故不存在比它们的交还小的嵌入素理想。

反之,若所有属于 0 的理想都是孤立素理想,它们恰为所有极小素理想,故 $\mathfrak{a} = 0$

- 12. 令 A 是环,S 是 A 的乘法封闭子集。对任意理想 \mathfrak{a} ,令 $S(\mathfrak{a})$ 表示 the contraction of $S^{-1}\mathfrak{a}$ (即 \mathfrak{a}^{ec}),理想 $S(\mathfrak{a})$ 称为 \mathfrak{a} 的饱和化 (saturation),证明:
 - i) $S(\mathfrak{a}) \cap S(\mathfrak{b}) = S(\mathfrak{a} \cap \mathfrak{b})$
 - ii) $S(r(\mathfrak{a})) = r(S(\mathfrak{a}))$
 - iii) $S(\mathfrak{a}) = (1) \Leftrightarrow \mathfrak{a} \cap S \neq \emptyset$
 - iv) $S_1(S_2(\mathfrak{a})) = (S_1 S_2)(\mathfrak{a})$

如果 \mathfrak{a} 有准素分解,证明 $S(\mathfrak{a})$ 构成的集合(S 遍历所有乘法封闭子集)是有限集。

- 证明. i) 考虑 standard function $\phi: A \to S^{-1}A$, 若 $\phi(x) \in S^{-1}\mathfrak{a} \cap S^{-1}\mathfrak{b}$, 则存在 $(xs_1 a)s_2 = 0$, $(xs_3 b)s_4 = 0$, 从而 $xs_1s_2s_3s_4 = as_2s_3s_4 = bs_1s_2s_4 \in \mathfrak{a} \cap \mathfrak{b}$, 从而 $x \in S(\mathfrak{a} \cap \mathfrak{b})$
- ii) 若 $\phi(x) \in S^{-1}r(\mathfrak{a})$, 则存在 $(xs_1 a)s_2 = 0, a^n \in \mathfrak{a}$, $x^n s_1^n s_2^n = a^n s_2^n \in \mathfrak{a}$, 从而 $x^n/1 = x^n s_1^n s_2^n/s_1^n s_2^n \in S^{-1}\mathfrak{a}$, 故 $x^n \in S(\mathfrak{a})$, 即 $x \in r(S(\mathfrak{a}))$ 。

另一方面,若 $x^n/1 \in S^{-1}\mathfrak{a}$,那么存在 $x^ns_1s_2 = as_2$,从而 $x^ns_1^ns_2^n \in \mathfrak{a}$,从而 $xs_1s_2 \in r(\mathfrak{a})$,从而 $x/1 \in S^{-1}r(\mathfrak{a})$ 。

iii) 已证

iv) 如果 $x \in S_1(S_2(\mathfrak{a}))$, 那么存在 $y \in S_2(\mathfrak{a})$ 使得 $xs_1s_2 = ys_1'$, 同时有 $ys_2s_2' = as_2' \in \mathfrak{a}$, 那么 $xs_1s_1's_2s_2' = as_1's_2' \in \mathfrak{a}$, 故 $x/1 \in S^{-1}(S_1S_2)$, 反之同理。

如果
$$\mathfrak{a} = \bigcap \mathfrak{q}_i$$
,那么由 4.16 , $S(\mathfrak{a})$ 至多 2^n 个元素。

13. 设 A 是一个环, \mathfrak{p} 是 A 的素理想,定义 A 的 symbolic power 是 $\mathfrak{p}^{(n)} = S_{\mathfrak{p}}(\mathfrak{p}^n)$,其中 $S_{\mathfrak{p}} = A - \mathfrak{p}$,证明:

- i) p⁽ⁿ⁾ 是一个 p-准素理想
- ii) 如果 \mathfrak{p}^n 有准素分解,那么 $\mathfrak{p}^{(n)}$ 是它的准素分支
- iii) 如果 $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ 有准素分解,那么 $\mathfrak{p}^{(m+n)}$ 是它的准素分支
- iv) $\mathfrak{p}^{(n)} = \mathfrak{p}^n \Leftrightarrow \mathfrak{p}^n$ 是 \mathfrak{p} -准素的

证明. i)
$$r(\mathfrak{p}^{(n)}) = r(S_{\mathfrak{p}}(\mathfrak{p}^n)) = S_{\mathfrak{p}}(r(\mathfrak{p}^n)) = S_{\mathfrak{p}}(\mathfrak{p}) = \mathfrak{p}$$

- ii) 下证 $\mathfrak{p}^{(n)}$ 是所在链最小准素理想。设一个 \mathfrak{q} 是包含 \mathfrak{p}^n 的准素理想且 $r(\mathfrak{q}) \subseteq \mathfrak{p}$,设 $x \in \mathfrak{p}^{(n)}$,那么存在 $xs_1s_2 = p^ns_2$, $xs_1s_2^n \in \mathfrak{q}$,而 $s_1s_2^n \in A \mathfrak{p}$,故 $x \in \mathfrak{q}$,从而 $\mathfrak{p}^{(n)} \subseteq \mathfrak{q}$ 。
 - iii) $r(\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}) = \mathfrak{p}$,同 ii) 可证
 - iv) 如果 \mathfrak{p}^n 是 \mathfrak{p} -准素的,那么根据 ii) 有 $\mathfrak{p}^{(n)} \subseteq \mathfrak{p}^n$ (\mathfrak{p}^n 即为 \mathfrak{q}),故两者相等。

14. 令 \mathfrak{a} 是环 A 可分解的理想,令 \mathfrak{p} 是集合 $\{(\mathfrak{a}:x)|x\in A,x\notin\mathfrak{a}\}$ 的一个极大元,证明: \mathfrak{p} 是属于 \mathfrak{a} 的素理想。

证明. 设 $\mathfrak{a} = \bigcap \mathfrak{q}_i$, 那么 $(\bigcap \mathfrak{q}_i : x) = \bigcap (\mathfrak{q}_i : x)$ 。

由4.6,考虑 $x \notin \mathfrak{q}$ 的一些 $\mathfrak{q}_1, \dots, \mathfrak{q}_n$,设 $x \notin \mathfrak{p}'_1, \dots, \mathfrak{p}'_m, x \in \mathfrak{p}''_1, \dots, \mathfrak{p}''_{n-m}$,那么 $(\mathfrak{q}'_i : x) = \mathfrak{q}'_i$ 且 $(\mathfrak{q}''_j : x)$ 是 \mathfrak{p}''_j -准素的。如此,若想要 $\bigcap_{i=1}^n (\mathfrak{q}_i : x)$ 极大,必有 n=1,故 $\mathfrak{p}=(\mathfrak{q}:x)$ 对某个 $\mathfrak{q}\in \{\mathfrak{q}'_i,\mathfrak{q}''_j\}$ 成立,设 $r(\mathfrak{q})=\mathfrak{p}'$ 。

若 $x \notin \mathfrak{p}'$,则 $\mathfrak{p} = \mathfrak{q}$

若 $x \in \mathfrak{p}'$,由于 $(\mathfrak{q}_i : x) \subseteq (\mathfrak{q}_i : xy)$, $\forall y \in A - \mathfrak{p}$,故由极大性,有 $xyz \in \mathfrak{q} \Rightarrow xz \in \mathfrak{q}$,此即为 $yz \in \mathfrak{p} \Rightarrow z \in \mathfrak{p}$, if $y \notin \mathfrak{p}$,故此时 $\mathfrak{p} = \mathfrak{p}'$ 是属于 \mathfrak{a} 的素理想。

15. 令 \mathfrak{a} 是环 A 可分解的理想,令 Σ 是一个属于 \mathfrak{a} 的孤立的素理想集合,令 \mathfrak{q}_{Σ} 是相应的准素分支,令 $f \in A$ 使得对任意属于 \mathfrak{a} 的素理想,都有 $f \in \mathfrak{p} \Leftrightarrow \mathfrak{p} \notin \Sigma$,令 S_f 表示 f 的幂集,证明: $\mathfrak{q}_{\Sigma} = S_f(\mathfrak{a}) = (\mathfrak{a}:f^n)$ 对极大的 n 成立。

证明. 后面等式是显然的。只需证 $\mathfrak{q}_{\Sigma}=(\mathfrak{a}:f^n)$ 。

记
$$\mathfrak{a} = (\bigcap_{\mathfrak{p}_i \in \Sigma} \mathfrak{q}_i) \cap (\bigcap_{\mathfrak{p}_i' \notin \Sigma} \mathfrak{q}_i')$$

若 $f \in \mathfrak{p}'_i$, 则存在一个 N 使得 n > N 时, $f^n \in \bigcap \mathfrak{q}'_i$,此时有 $(\mathfrak{a}: f^n) = (\bigcap (\mathfrak{q}_i: f^n)) \bigcap (\bigcap (\mathfrak{q}'_i: f^n)) = \bigcap (\mathfrak{q}_i: f^n) = \bigcap \mathfrak{q}_i = \mathfrak{q}_{\Sigma}$ 。

16. 如果 A 是一个环且每个理想都有准素分解,请证明 A 的任意分式环 $S^{-1}A$ 也有一样的性质。

证明. 分式环的理想形如 $S^{-1}\mathfrak{a}$,记 $\mathfrak{a} = \bigcap \mathfrak{q}_i$,那么 $S^{-1}\mathfrak{a} = \bigcap S^{-1}\mathfrak{q}_i$,而准素理想对应准素理想,故分式环有一样的性质。

17. 令 A 是一个环满足如下条件:

(L1) 对任意理想 $\mathfrak{a} \neq (1)$ 和任意素理想 \mathfrak{p} ,存在 $x \notin \mathfrak{p}$ 使得 $S_{\mathfrak{p}}(\mathfrak{a}) = (\mathfrak{a} : x)$,其中 $S_{\mathfrak{p}} = A - \mathfrak{p}$ 则 A 的每个理想都是准素理想的交(可以无限)。

证明. 令 \mathfrak{a} 是任意非 (1) 的理想,设 \mathfrak{p} 是包含 \mathfrak{a} 的极小素理想, $\mathfrak{q}_1 = S_{\mathfrak{p}_1}(\mathfrak{a})$ 是 \mathfrak{p}_1 -准素理想,且由题 有 $\mathfrak{q}_1 = (\mathfrak{a}:x), x \notin \mathfrak{p}_1$ 。

令 \mathfrak{a}_1 是满足 $\mathfrak{a} \subseteq \mathfrak{b}$ 且 $\mathfrak{q}_1 \cap \mathfrak{b} = \mathfrak{a}$ 且 $x \in \mathfrak{a}_1$ 的理想集的极大元; 重复 \mathfrak{a}_1 的构造, 有 $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n \cap \mathfrak{a}_n$, 一直重复下去(超限归纳法)。

18. 考虑如下的环 A:

- (L2) 给定理想 \mathfrak{a} 和 A 的乘法封闭子集的降链 $S_1 \supseteq S_2 \cdots$,存在一个正整数 \mathfrak{n} 使得 $S_n(\mathfrak{a}) = S_{n+1}(\mathfrak{a}) = \cdots$,证明下述等价:
 - i) 每个 A 的理想都有准素分解
 - ii) A 满足 (L1) 和 (L2)

证明. 若每个 A 的理想都有准素分解,由 $4.16S_p(\mathfrak{a})$ 是 \mathfrak{a} 的准素分解中,是 \mathfrak{p} 的子集的准素理想的交。由4.6,易知 A 满足 (L1)。若给定乘法封闭子集降链,由于 $S_i\mathfrak{a}$ 只有有限个,且根据第 10 题第三问(考虑 A/\mathfrak{a}), $S_i(\mathfrak{a})$ 存在包含关系,故存在一个正整数 \mathfrak{n} 使得 $S_n(\mathfrak{a})=S_{n+1}(\mathfrak{a})=\cdots$ 。

若 A 满足 (L1) 和 (L2), 那么由 17 题,每个理想都是若干准素理想的交,但是由 (L2) 它可以在有限步停下。 $\ \square$

19. 令 A 是一个环,且 \mathfrak{p} 是 A 的素理想,证明每个 \mathfrak{p} -准素理想包含 $S_{\mathfrak{p}}(0)$ 。

设 A 满足下述条件: 对每个素理想 \mathfrak{p} , A 的一切 \mathfrak{p} -准素理想的交等于 $S_{\mathfrak{p}}(0)$, 令 $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ 是不同的素理想,且它们不是极小素理想,那么存在 A 的一个理想 \mathfrak{a} ,它的相伴素理想是 $\mathfrak{p}_1, \dots, \mathfrak{p}_n$

证明. i) 若 $x \in S_{\mathfrak{p}}(0)$, 则 $xs = 0 \in \mathfrak{q}, s \in A - \mathfrak{p}$, 则由准素理想定义 $x \in \mathfrak{q}$ 。

ii) 对 n 归纳

n=1 显然

设 \mathfrak{p}_n 是这 n 个素理想的极大元,存在 \mathfrak{b} 和它的准素分解 $\mathfrak{b} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_{n-1}$,每个 \mathfrak{q}_i 是 \mathfrak{p}_i -准素的。

若 $\mathfrak{b} \subseteq S_{\mathfrak{p}_n}(0)$,设 \mathfrak{p} 是含于 \mathfrak{p}_n 的极小素理想,则 $\mathfrak{b} \subseteq S_{\mathfrak{p}}(0)$,两边取根利用习题 10 有 $\Pi \mathfrak{p}_i \subseteq \mathfrak{p}$,即有 $\mathfrak{p}_i \subseteq \mathfrak{p}$,这与 \mathfrak{p}_i 不是极小的矛盾。故 \mathfrak{b} 不是 $S_{\mathfrak{p}_n}(0)$ 的子集,同理用上方式可得存在 \mathfrak{q}_n 是 \mathfrak{p}_n -准 素理想,且 \mathfrak{b} 不是 \mathfrak{p}_n 的子集。则 $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$ 。

5 整相关性和赋值

5.1 整相关性

定义 5.1. 设 B 是环, A 是 B 的子环。B 的元素叫做在 A 中上整 (integral),如果 x 是系数在 A 中且首项系数为 1 的多项式的根,显然 A 的元素都是上整的。

命题 5.2. 下面的断言是等价的:

- i) $x \in B$ 在 A 上上整
- ii) A[x] 是有限生成 A-模
- iii) A[x] 包含在 B 的子环 C 中,而 C 是有限生成 A-模
- iv) 存在一个 $faithful\ A[x]$ -模 (零化子为 0), 它作为 A-模是有限生成的

证明. $1 \to 2$: 由 $1, x, \dots, x^{n-1}$ 生成

$$2 \rightarrow 3$$
: $C = A[x]$

 $3 \rightarrow 4$: 取 M=C, 若 $yC = 0, y \in A[x]$, 特殊的有 $y \cdot 1 = 0$, 故 y = 0。从而 C 是忠实 A[x]-模

 $4\to 1$: 令 $\phi:M\to xM$,有 $M\subseteq AM$,故存在多项式使得 $\phi^n+a_{n-1}\phi^{n-1}+\cdots+a_0=0$,由于 M is faithful,故 $x^n+\cdots+a_0=0$

推论 5.3. B 的在 A 上整的元素的集合 C 是 B 的一个子环,且包含 A。称环 C 为整闭包 (integral closure)。如果 C=A,那么称 A 在 B 中整闭 (integral closed in B)。如果 C=B,B 叫做在 A 上整 (integral over A)。

命题 5.4. 如果 $A \subseteq B \subseteq C$ 是环, B 在 A 上整, C 在 B 上整, 那么 C 在 A 上整。

证明. 对任意 $x \in C$,存在 $x^n + b_1 x^{n-1} + \dots + b_n = 0$,考虑 $B' = A[b_1, \dots, b_n]$,x 在 B' 上整,因此 B'[x] 是有限生成的 B'-模,因此是有限生成的 A-模,由此得 x 在 A 上整。

推论 5.5. 令 $A \subseteq B$ 是环, $C \not\in A$ 在 B 中的整闭包, 那么 C 在 B 中是整闭的。

命题 5.6. 令 $A \subseteq B$ 是环, B 在 A 上整

- i) 如果 b 是 B 的理想, $a = b^c = A \cap b$, 那么 B/b 在 A/a 上整
- ii) 如果 $S \in A$ 的乘法封闭子集, 那么 $S^{-1}B$ 在 $S^{-1}A$ 上整。

证明. i) 如果 $x^n + a_1 x^{n-1} + \cdots + a_n = 0$, 模 \mathfrak{b} 即得。

ii) 如果
$$x^n + a_1 x^{n-1} + \cdots + a_n = 0$$
, 则 $(x/s)^n + \cdots + a_n/s^n = 0$ 。

5.2 上升定理

命题 5.7. 令 $A \subseteq B$, B 是整环, B 在 A 上整。那么 B 是域当且仅当 A 是域。

证明. 若 A 是域,令 $y \in B$,取 $y \neq 0$,记 $y^n + \dots + a_n = 0$ 是对于 y 的最小次数的多项式。由于 B 是整环,故 $a_n \neq 0$,由于 A 是域,故 a_n^{-1} 存在,且 $y^{-1} = -a_n^{-1}(y^{n-1} + \dots + a_{n-1})$,故 B 是域。

若 B 是域,取 $x\in A$,则 x 在 B 中存在乘法逆元,且存在 $x^{-m}+\cdots+a_m'=0$,两边乘 x^{m-1} 得 $x^{-1}\in A$ 。

推论 5.8. 令 $A \subseteq B$ 是环,B 在 A 上整;令 q 是 B 的素理想,记 $p = q^c = q \bigcap A$,则 q 极大当且仅 当 p 极大。

推论 5.9. 令 $A \subseteq B$ 是环,B 在 A 上整;令 q, q' 是 B 的素理想,使得 $q \subseteq q'$, $q^c = q'^c = \mathfrak{p}$ 。那么 q = q'。

证明. 有 B_p 在 A_p 上整。令 m 是 p 在 A_p 中的扩理想, $\mathfrak{n},\mathfrak{n}'$ 分别是 $\mathfrak{q},\mathfrak{q}'$ 是 B_p 中的扩理想。那么 m 是 A_p 的极大理想; $\mathfrak{n} \subseteq \mathfrak{n}',\mathfrak{n}^c = \mathfrak{n}'^c = \mathfrak{m}$ 。从而 $\mathfrak{n},\mathfrak{n}'$ 是极大的,因此 $\mathfrak{n} = \mathfrak{n}'$,从而 $\mathfrak{q} = \mathfrak{q}'$

定理 5.10. 令 $A \subseteq B$ 是环, B 在 A 上整, p 是 A 的素理想。那么存在 B 的素理想 q, 使得 $q \cap A = p$ 。

证明. 令 \mathfrak{n} 是 $B_{\mathfrak{p}}$ 的一个极大理想, $\mathfrak{m} = \mathfrak{n} \cap A_{\mathfrak{p}}$ 是极大的,因此是局部环 $A_{\mathfrak{p}}$ 唯一的极大理想。如果 \mathfrak{q} 是 \mathfrak{n} 在 B 中的原像,那么 \mathfrak{q} 素,故 $\mathfrak{q} \cap A = \mathfrak{p}$ 。

定理 5.11 (Going-up theorem). 设 $A \subseteq B$, B 在 A 上整, $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots \mathfrak{p}_n$ 是 A 的素理想链, $\mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_m (m < n)$ 是 B 的素理想链, 使得 $\mathfrak{q}_i \bigcap A = \mathfrak{p}_i (1 \le i \le m)$, 那么可以把 $\mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_m$ 扩充成链 $\mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_n$,且 $\mathfrak{q}_i \bigcap A = \mathfrak{p}_i$

证明. 事实上只需证明 m=1, n=2 的情况。

令 $\bar{A} = A/\mathfrak{p}_1, \bar{B} = B/\mathfrak{q}_1$,则 \bar{B} 在 \bar{A} 上整。由此存在 $\bar{\mathfrak{q}}_2$ 使得 $\bar{\mathfrak{q}}_2 \cap \bar{A} = \bar{p}_2$,从而 \bar{q}_5 即为所求。 \Box

5.3 整闭整环,下降定理

命题 5.12. 令 $A \subseteq B$ 是环,C 是 A 在 B 中的整闭包,令 S 是 A 的一个乘法封闭子集,则 $S^{-1}C$ 是 $S^{-1}A$ 在 $S^{-1}B$ 中的整闭包。

证明. 首先 $S^{-1}C$ 在 $S^{-1}A$ 上整,若 $b/s \in S^{-1}B$ 在 $S^{-1}A$ 上整,则存在 $(b/s)^n + a_1/s_1(b/s)^{n-1} + \cdots + a_n/s_n = 0$ 。

通分后可得存在 s' 使得 $s'((s_1\cdots s_n)b^n+\cdots+a_ns^ns_1\cdots s_{n-1}a_n)=0$,如此 $bs's_1\cdots s_n$ 在 A 上整即在 C 中,从而 $b/s=bs's_1\cdots s_n/ss's_1\cdots s_n\in S^{-1}C$ 。

定义 5.13. 一个整环称为整闭的 (integral closed), 如果它在它的分式域(即乘法封闭子集 S 为 $A-\{0\}$) 中整闭。显然整数是整闭的(首 1 整系数多项式的根不可能是非整数的有理数)。

命题 5.14. 所有 UFD 是整闭的。特别的,域上的多项式环是整闭的。通过 Noether 正规化引理,所有有限生成 k-代数是整闭的。

命题 5.15. 令 A 是一个整环,那么下列断言是等价的:

- *i)* A 是整闭的
- ii) 对每个素理想 p, An 是整闭的
- iii) 对每个极大理想 m, Am 是整闭的

证明. 取 K 是 A 的分式域, C 是 A 在 K 中的整闭包, 取 $f: A \to C$ 是嵌入, 那么 A 是整闭的当且 仅当 f 是满的, 由上命题, $A_{\mathfrak{p}}$ 是整闭的当且仅当 $f_{\mathfrak{p}}$ 是满的, 而 f 满等价于 $f_{\mathfrak{p}}$ 满。

定义 5.16. 令 $A \subseteq B$ 是环, \mathfrak{a} 是 A 的理想。B 的元素叫做在 \mathfrak{a} 上整的 (integral over \mathfrak{a}), 如果它满足 A 上的整相关方程性质且系数都在 \mathfrak{a} 中。 \mathfrak{a} 在 B 中的整闭包是在 \mathfrak{a} 上整的所有 B 中的元素的集合。

引理 5.17. C 是 A 在 B 中的整闭包, \mathfrak{a}^e 表示 \mathfrak{a} 在 C 中的扩理想。那么 \mathfrak{a} 在 B 中的整闭包是 \mathfrak{a}^e 的根。

证明. 如果 $x \in B$ 在 \mathfrak{a} 上整,我们有方程 $x^n + a_1 x^{n-1} \cdots + a_n = 0$,其中 $a_i \in \mathfrak{a}$ 。有 $x \in C, x^n \in \mathfrak{a}^e$,所以 $x \in r(\mathfrak{a}^e)$ 。

另一方面,如果 $x^m \in \mathfrak{a}^e$,由于 \mathfrak{a}^e 是 \mathfrak{a} 在 $A \to C$ 下的扩理想,故存在 $x^m = c_1 a_1 + \cdots c_n a_n, c_i \in C, a_i \in \mathfrak{a}$,而由于 C 在 A 上整,故 $M = A[c_1][c_2]\cdots[x_n] = A[c_1,\cdots,c_n]$ 是有限生成 A-模,且有 $x^m M \subseteq \mathfrak{a} M$,则 x^m 在 \mathfrak{a} 上整,因此 x 在 \mathfrak{a} 上整。

命题 5.18. 令 $A \subseteq B$ 是整环, A 是整闭的, $x \in B$ 在 A 的理想 \mathfrak{a} 上整。那么 x 在 A 的分式域 K 上是代数元,而且如果 x 在 K 上的极小多项式为 $t^n + a_1 t^{n-1} \cdots + a_n$,那么 $a_1 \cdots , a_n$ 位于 $r(\mathfrak{a})$ 中。

证明. 显然 x 在 K 上是代数元,令 L 是 K 的扩域,它包含 x 的所有共轭元 x_1, \dots, x_n ,每个 x_i 都 是上整的,我们可以把 n 个方程看做 a_1, \dots, a_n 的 n 元方程组,从而 a_i 可以表示为 x_1, \dots, x_n 的多项式,且系数在 K 中,事实上:

$$\begin{bmatrix} x_1^{n-1} & \cdots & 1 \\ & \ddots & \\ x_n^{n-1} & \cdots & 1 \end{bmatrix} \times \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} -x_1^n \\ \vdots \\ -x_n^n \end{bmatrix}$$

进一步的,由于每个 x_i 在 \mathfrak{a} 上整,而由 Vieta 定理,每个系数 \mathfrak{a}_i 是这些 x_i 的多项式,故由上引理 有系数 a_i 在 \mathfrak{a} 上整。由 A 是整闭的,所以 a_i 在 $r(\mathfrak{a})$ 中。

推论 5.19. 取 $\mathfrak{a} = A$ 可以看出此时 $a_1, \dots, a_n \in A$, 即 x 在 K 上的极小多项式系数必须在 A 中。

定理 5.20 (下降定理). 令 $A \subseteq B$ 是整环,A 是整闭,B 在 A 上整,令 $\mathfrak{p}_1 \supseteq \mathfrak{p}_2 \cdots \supseteq \mathfrak{p}_n$ 是 A 的素理想链, $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_m (m < n)$ 是 B 的素理想链,使得 $\mathfrak{q}_i \bigcap A = \mathfrak{p}_i$ 。那么 $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_m$ 可以扩充为 $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_n$ 使得 $\mathfrak{q}_i \bigcap A = \mathfrak{p}_i$ 。

证明. 同上升定理的证明类似,只需证明 m=1, n=2 的情形。即证明: 环 \mathfrak{p}_2 是 $B_{\mathfrak{q}_1}$ 的一个素理想的局限,或者说 $B_{\mathfrak{q}_1}\mathfrak{p}_2 \cap A = \mathfrak{p}_2$ (3.26)。

每个 $x \in B_{\mathfrak{q}_1}\mathfrak{p}_2$ 都具有形式 y/s, 其中 $y \in B\mathfrak{p}_2$, $s \in B - \mathfrak{q}_1$ 。由于 y 在 \mathfrak{p}_2 上整, y 在 A 的分式 域 K 上极小多项式具有如下形式: $y^r + \cdots + u_r = 0$, $u_i \in \mathfrak{p}_2$ 。

假设同时有 $x \in A$,则 $s = yx^{-1}$,且有 $s^r + \dots + v_r = 0, v_i = u_i/x^i$ 。又 s 在 A 上整,因此每个 v_i 都在 A 中。假设 $x \notin \mathfrak{p}_2$,而 $v_i \in \mathfrak{p}_2$,于是 $s^r \in \mathfrak{p}_1$,因此 $s \in \mathfrak{q}_1$,矛盾。故 $x \in \mathfrak{q}_2$ 。

命题 5.21. 令 A 是一个整闭的整环,K 是它的分式域,L 是 K 的一个有限可分扩张,B 是 A 在 L 中的整闭包。那么存在 L 在 K 上的基 v_1, \cdots, v_n 使得 $B \subseteq \sum_{i=1}^n Av_i$ 。

证明. 对 $v \in L$,由于 v 在 K 上是代数元,故存在方程 $a_0v^r + \cdots + a_r = 0$ ($a_i \in A$),容易看出 a_0v 是 在 A 上整的,从而 $a_0v \in B$ 。

对 L 在 K 上的任何基, 我们可以适当乘以 A 的元素使得基 $u_1 \cdots , u_n$ 均在 B 中。

令 T 表示从 L 到 K 的迹,由于 L/K 是可分的,L 上的双线性函数 $(x,y) \to T(x,y)$ 是非退化的,因此我们有 L 在 K 上的对偶基 v_1, \dots, v_n 使得 $T(u_i, v_i) = \delta_{ij}$

对 $x \in B$, 记 $x = \sigma x_j v_j (x_j \in K)$, 有 $xu_i \in B$, 考虑到元素的迹是它极小多项式一个系数的倍数, 故 $T(xu_i) \in A$, 又 $T(xu_i) = \Sigma_j T(x_j u_i v_j) = \Sigma x_j \delta_{ij} = x_i$, 故 $B \subseteq \sum A v_j$ 。

5.4 赋值环

定义 5.22. 令 B 是一个整环, K 是它的分式域, B 叫做 K 的一个赋值环 (valuation ring), 如果对每个 $x \neq 0, x \in K$, 要么有 $x \in B$ 要么有 $x^{-1} \in B$ (或两者都有)。

命题 5.23.

- i) B 是局部环
- ii) 如果 B' 是环, 使得 $B \subseteq B' \subseteq K$, 那么 B' 是 K 的一个赋值环
- iii) B 是整闭的 (在 K 中)

证明. i) 令 m 是 B 中所有不可逆元的集合, $x \in \mathfrak{m} \Leftrightarrow x = 0$ 或x在 K 中的逆元 $\notin B$ 。如果 $a \in B, x \in \mathfrak{m}$,必有 $ax \in \mathfrak{m}$,否则 ax 可逆,有 $(ax)^{-1} \in B$,从而 $x^{-1} \in B$,矛盾。从而 $B\mathfrak{m} \subseteq \mathfrak{m}$ 。

对 $x, y \in \mathfrak{m}$ 且非零,要么有 $xy^{-1} \in B$,要么有 $x^{-1}y \in B$,若 $xy^{-1} \in B$,则 $x+y = (1+xy^{-1})y \in B\mathfrak{m} \subseteq \mathfrak{m}$ 。另一个同理。

综上, m 是一个理想, 易知它是唯一的极大理想。

- ii) 由定义立得。
- iii) 设 $x \in K$ 在 B 上整,那么有 $x^n + b_1 x^{n-1} + \dots + b_n = 0$ 。若 $x \notin B$,则 $x^{-1} \in B$, $x = -(b_1 + \dots + b_n x^{1-n}) \in B$ 矛盾。

定义 5.24. 令 K 是一个域, Ω 是一个代数闭域。令 Σ 是所有形如 (A,f) 的集合,其中 A 是 K 的子环,f 是 A 到 Ω 的一个同态。 Σ 按如下关系形成偏序集: $(A,f) \leq (A',f') \Leftrightarrow A \subseteq A',f'|_A = f$ 。显然该情况下 Zorn 引理满足,故 Σ 至少有一个极大元。

引理 5.25. 令 (B,q) 是一个极大元,有 B 是一个局部环, $\mathfrak{m} = \operatorname{Ker}(q)$ 是它的极大理想。

证明. 由于 g(B) 是代数闭域的子环,故它是一个整环。定义 $\bar{g}:b/s \to g(b)/g(s)$,这个映射定义在 $B_{\mathfrak{m}}$ 上。显然这个分式环是 K 的子环,且 \bar{g} 的限制是 g,故由极大性, $B=B_{\mathfrak{m}}$,即 $B-\mathfrak{m}$ 的元素均可逆 (1/s=b/1 推出 s'(sb-1)=0,再结合整环即得),即 B 是局部环且 \mathfrak{m} 是极大理想。

引理 5.26. 令 x 是 K 的一个非零元,B[x] 是由 x 在 B 上所生成的 K 的子环, $\mathfrak{m}[x]$ 是 \mathfrak{m} 在 B[x] 中的扩理想。那么或者 $\mathfrak{m}[x] \neq B[x]$ 或者 $\mathfrak{m}[x^{-1}] \neq B[x^{-1}]$ 。

证明. 假设 $\mathfrak{m}[x] = B[x], \mathfrak{m}[x^{-1}] = B[x^{-1}], 则存在方程 <math>1 = u_0 + \dots + u_m x^m, u_i \in \mathfrak{m}, 1 = v_0 + \dots + v_n x^{-n}, v_i \in \mathfrak{m}, 且假设 m 和 n 都是最小的使方程成立的正整数。不妨 <math>m \geq n, 有 (1-v_0)x^n = v_1 x^{n-1} + \dots + v_n, 由于 <math>v_0 \in \mathfrak{m}, \text{ 故 } 1-v_0 \text{ 可逆, 从而 } x^n = w_1 x^{n-1} + \dots + w_n, \text{ 即 } x^m = w_1 x^{m-1} + \dots + w_n x^{m-n},$ 在 $1 = u_0 + \dots + u_m x^m$ 中代替 x^m 后得到次数更小的方程,矛盾。

定理 5.27. $B \in K$ 的一个赋值环。

证明. 即证对任意 x, 要么 $x \in B$, 要么 $x^{-1} \in B$ 。

由引理, 不妨设 $B' = \mathfrak{m}[x]$ 不是 B[x], 则存在一个极大理想 \mathfrak{m}' 使得它包含 $\mathfrak{m}[x]$, 那么 $\mathfrak{m} \subseteq \mathfrak{m}' \cap B$,得到 $\mathfrak{m} = \mathfrak{m}' \cap B$ 。记 $k = B/\mathfrak{m}$,同态 g 诱导出它和 Im(g) 的同构,由于 Ω 是代数闭域,从而 $Im(g)[x] \subseteq \Omega$, $\forall x$,考虑 $k[x] = B[x]/\mathfrak{m}[x] \supseteq B'/\mathfrak{m}'$,从而存在 B'/\mathfrak{m} 到 Ω 的嵌入。由于 B 是极大的,从而 B=B',得到 $x \in B$ 。

推论 5.28. 令 A 是域 K 的一个子环,则 A 在 K 中的整闭包 \bar{A} 是 K 的所有包含 A 的赋值环的交。

证明. 设 B 是 K 的赋值环,且使得 $A \subseteq B$,由于 B 是整闭的,且 B 的分式环为 K,所以 A 的整闭包也是 B 的子环。

而对 $x \in B$ ' 不在 A 上整,x 不在环 $A' = A[x^{-1}]$ 中,故 x^{-1} 在 A' 中是不可逆元。设 A' 的极大理想 \mathfrak{m}' 包含 x^{-1} ,令 Ω 是 $k' = A'/\mathfrak{m}'$ 的代数闭包,考虑自然同态 $A' \to k'$,该同态对 A 的限制确定了一个 $f: A \to \Omega$ 的嵌入,考虑包含 (A,f) 的极大元 (B,g),B 是赋值环且包含 A,且 g 在 A 的限制即为 f,故 $g(x^{-1}) = f(x^{-1}) = 0$,从而 $x \notin B$ 。

命题 5.29. 令 $A \subseteq B$ 是整环,B 在 A 上有限生成,v 是 B 的非零元素。那么在 A 中存在 $u \neq 0$, 具有下面性质:A 到代数闭域 Ω 中的任何使得 $f(u) \neq 0$ 的同态 f 都可以扩充为 B 到 Ω 中的同态 g, 使得 $g(v) \neq 0$ 。

证明. 不妨 B 在 A 上的生成元为 1 个, 否则用归纳即可。

- i) 假设 x 在 A 上超越,令 $v = a_0 x^n + \dots + a_n$,取 $u = a_0$,那么如果 $f : A \to \Omega$ 是使得 $f(u) \neq 0$,由于 Ω 是无限的,存在 $\epsilon \in \Omega$,使得 $f(a_0)\epsilon^n + f(a_1)\epsilon^{n-1} + \dots + f(a_n) \neq 0$,从而定义 $g(x) = \epsilon$ 且 g 是 f 的扩充,显然这是同态。
- ii) x 是代数元,则在 A 的分式域上它是代数的,因为 v 是 x 的多项式,所以 v^{-1} 在该分式域上是代数的,且通分操作可以保证系数都在 A 中。故存在方程:

$$a_0x^m + \dots + a_m = 0 (a_i \in A)$$

$$a_0'v^{-n} + \dots + a_n' = 0(a_i' \in A)$$

 $\diamondsuit \ u = a_0 a_0', \ f: A \to \Omega$ 使得 $f(u) \neq 0$ 。那么首先可以扩充为同态 $f_1: A[u^{-1}] \to \Omega(f_1(u^{-1}) = f(u)^{-1})$,然后可以扩充到包含 $A[u^{-1}]$ 的赋值环 C 上扩充为 h。由于 x 在 $A[u^{-1}]$ 上整,故 $x \in C$,所 以 $B \subseteq C$,而 v^{-1} 在 $A[u^{-1}]$ 上整,因此 $v^{-1} \in C$,因此 v 可逆, $h(v) \neq 0$,取 g 是 h 对 B 的限制即 可。

注 5.30. 取 A=k 为域, v=1, $\Omega=k$ 的代数闭包, 即为 Hilbert 零点定理。

5.5 习题 5

1. 设 $f:A\to B$ 是环的整同态(即 B 为 f(A) 在 B 上的整闭包),求证: $f^*:\operatorname{Spec}(B)\to\operatorname{Spec}(A)$ 是 闭映射,即 f^* 将闭集映为闭集。

证明. 对 B 的素理想 \mathfrak{q} 有它的原像 \mathfrak{p} 是素理想,从而 $\mathfrak{q} \in f(A)$ 可以表示为 $f(\mathfrak{p})$ 。由于 B 在 f(A) 上整,那么存在 \mathfrak{q}' 使得 $\mathfrak{q}' \cap f(A) = \mathfrak{q} = f(\mathfrak{p})$ 。

对 $V(E) \in \operatorname{Spec}(B)$, 对每个 $\mathfrak{q}' \in V(E)$, 考虑他们交 f(A) 后的 \mathfrak{q} , 他们是 $V(E \cap f(A))$ 。

2. 设 A 是 B 的子环,B 在 A 上整,设 $f:A\to\Omega$ 是 A 到代数闭域 Ω 的一个同态,求证: f 可以扩充为 B 到 Ω 的一个同态。

证明. 有 $\mathfrak{p} = \operatorname{Ker}(f)$ 为素理想 $(A/\operatorname{Ker}(f)$ 是整环), $f(A) \cong A/\mathfrak{p}$, 从而存在 $\mathfrak{q} \subseteq B$ 使得 $\mathfrak{q} \cap A = \mathfrak{p}$ 。由于 B/\mathfrak{q} 在 A/\mathfrak{p} 上整,从而可以不妨 f 是一个双射。

我们用 Zorn 引理来构造映射。设 (C,g) 是满足 $A \subseteq C \subseteq B$ 且 $g: C \to \Omega, g|_A = f$ 的一个对,这个对构成的集合由 Zorn 引理有极大元,不妨设就是 (C,g)。

设 $C \neq B$, 取 $b \in B, b \notin C$, 由 5.29, 由于 C[b] 是有限生成 C-模, 这个 g 可以扩张, 矛盾。 \Box

3. 设 $f:B\to B'$ 是 A-代数同态,并且 C 是 A-代数,如果 f 是整同态,证明: $f\otimes 1:B\otimes_A C\to B'\otimes_A C$ 是整同态。

证明. 由于 $B' \otimes_A C$ 是包含形如 $b' \otimes c$ 的最小环, 故只需对这些元素证明上整即可。

设
$$b'$$
 满足方程 $x^n + a_1 x^{n-1} + \dots + a_n = 0$,其中 $a_i \in f(B)$,从而 $(b' \otimes c)^n + (a_1 \otimes c)(b' \otimes c)^{n-1} + \dots + a_n \otimes c^n = 0$ 。

4. 令 A 是环 B 的子环使得 B 在 A 上整,令 \mathfrak{n} 是 B 的极大理想,令 $\mathfrak{m} = \mathfrak{n} \cap A$ 是对应的 A 的极大理想,请问 $B_{\mathfrak{n}}$ 是否在 $A_{\mathfrak{m}}$ 上整?(注意对比5.6)

解. 考虑环 k[x] 的子环 $K[x^2-1]$,令 $\mathfrak{n}=(x-1)$,则 $\mathfrak{m}=(x^2-1)$ 。考虑 $B_{\mathfrak{n}}$ 的元素 $\frac{1}{x+1}$,若他上整,则有

$$\Sigma(a_i/s_i)(\frac{1}{x+1})^i = 0, a_i \in K[x^2-1], s_i \notin (x^2-1), a_n/s_n = 1$$

由于 B 是整环, 故可以直接通分得 $\Sigma^{\frac{a_i\pi s_j(x+1)^{n-i}}{s_i}}=0$, 从而有 $x+1|a_ns_1\cdots s_{n-1}$, 即 $x+1\in S=A-A_{\mathfrak{m}}$, 这是矛盾的。

- 5. $\Diamond A \subseteq B$, B 在 A 上整, 请证明:
 - i) 如果 $x \in A$ 是一个 B 中的可逆元 (unit), 则他是 A 的可逆元
 - ii) A 的大根是 B 的大根的局限

证明. i) 设 $(1/x)^n + a_1(1/x)^{n-1} + \cdots + a_n = 0$, 则两边乘 x^{n-1} 有 $1/x \in A$

- ii) 极大理想对应极大理想的直接推论
- 6. $\Diamond B_1, \dots, B_n$ 是整闭的 A-代数,证明: $\Pi_{i=1}^n B_i$ 是整闭的 A-代数。

证明. 只需对 n=2 证明。

设 $bc \in BC$,设 $b^n + \dots + a_n = 0, c^m + \dots + a'_m = 0$,则两个多项式的乘积使得 b 和 c 同时满足,而系数刚好属于 $(BC - 0)^{-1}BC$ 。

7. \Diamond A 是 B 的子环, 使得集合 B - A 是乘法封闭的, 证明: A 在 B 中整闭

证明. 若 $x \in B-A$ 使得 $x^n+\cdots+a_n=0, a_i \in A$ (并使得 n 最小),那么 $x^n+\cdots+a_1x \in A$,从而 $x^{n-1}+\cdots+a_1 \in A$,与 n 最小矛盾。

- 8. i) 令 A 是整环 B 的子环,令 C 是 A 在 B 中的整闭包,令 f,g 是 B[x] 中首项系数为 1 的多项式,使得 $fg \in C[x]$ 。则 $f,g \in C[x]$
 - ii) 在不假定 B (或 A) 是整环的情况下证明这个结论

证明. 只需证明 ii)。

可以取一个 B 的扩环 K 使得它包含 fg 的所有根,这些根在 C 上整。由韦达定理,f 的系数可以表示为这些根中一部分的多项式,从而 f 的系数是在 C 上整的,同理 g 的系数,而 C 在 B 上的整闭包就是 C。 \qed

9. $A \in B$ 的子环, $C \in A$ 的整闭包,证明: $C[x] \in A[x]$ 在 B[x] 中的整闭包。

证明. 若 u(x) 在 A[x] 上整,那么有 $u^n + \cdots + f_n = 0, f_i \in A[x]$,那么 $u(u^{n-1} + \cdots + f_{n-1}) \in A[x]$,由上一题,有 $u \in C[x]$ 。

- 10. 一个环同态 $f: A \to B$ 称为具有上升性质 (going-up property) 的,如果对 f(A) 和 B 满足上升定理,同理定义下降性质 (going-down property)。令 $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ 是 f 诱导的映射
- i) 考虑下列三个命题:
 - (a) f* 是闭映射
 - (b) f 有上升性质
 - (c) 令 \mathfrak{q} 是 B 的任意素理想,令 $\mathfrak{p} = \mathfrak{q}^c$,则 $f^* : \operatorname{Spec}(B/\mathfrak{q}) \to \operatorname{Spec}(A/\mathfrak{p})$ 是满射请证明 $(a) \Rightarrow (b) \Leftrightarrow (c)$
- ii) 考虑下列三个命题:
 - (a') f* 是开映射
 - (b') f 有下降性质
 - (c') 对任意素理想 $\mathfrak{q} \in B$,令 $\mathfrak{p} = \mathfrak{q}^c$, $f^* : \operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ 是满射请证明 $(a') \Rightarrow (b') \Leftrightarrow (c')$ 。

证明. i) 若 f^* 是闭映射,对 f(A) 的素理想升链 $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$ 和 B 的素理想 \mathfrak{q}_1 ,若有 $\mathfrak{q}_1 \cap f(A) = \mathfrak{p}_1$,下 构造 \mathfrak{q}_2 。

考虑 $V(\mathfrak{q})$,它在 f^* 下映到一个 V(E),这个闭集只能是 $V(f^{-1}(\mathfrak{p}_1))$,从而 $f^*|_{V(\mathfrak{q})}$ 是满射,故存在 \mathfrak{q}_2 在 f^* 下被映到 $f^{-1}(\mathfrak{p}_2)$,即 $\mathfrak{q}_2 \cap f(A) = \mathfrak{p}_1$

若 f 有上升性质,设 $\bar{\mathfrak{p}'}\in \operatorname{Spec}(A/\mathfrak{p})$ 是素理想,那么它在商映射下的原像 \mathfrak{p}' 是素理想,且有 $\mathfrak{p}\subseteq\mathfrak{p}'$,从而由上升性质存在包含 \mathfrak{q} 的理想 \mathfrak{q}' 使得 $\mathfrak{q}'^c=\mathfrak{p}'$,故 $f^*(\bar{\mathfrak{q}'})=\bar{\mathfrak{p}'}$ 。用这个方法反着分析也是很容易的。

ii) 若 f^* 是开映射,注意到 $B_{\mathfrak{q}}$ 是环 $B_t, t \notin B - \mathfrak{q}$ 的正向极限,由第三章 26 题有 $f^*(\operatorname{Spec}(B_{\mathfrak{q}})) = \bigcap (\operatorname{Spec}(B_t)) = \bigcap f^*(Y_t)$, Y_t 是 \mathfrak{q} 在 Y 中的开邻域,因此 $f^*(Y_t)$ 是 \mathfrak{p} 在 X 中的开邻域,因此包含 $\operatorname{Spec}(A_{\mathfrak{p}})$ 。

若 f 有下降性质,那么对任意 $A_{\mathfrak{p}}$ 的素理想 $(A - \mathfrak{p})^{-1}\mathfrak{p}'$,都有原像 $(B - \mathfrak{q})^{-1}\mathfrak{q}'$,其中 $\mathfrak{p} = \mathfrak{q}^c$, $\mathfrak{p}' = \mathfrak{q}'^c$,从而为满射。反之亦然。

11. 今 $f: A \to B$ 是环的平坦同态, 那么 f 有下降性质。

证明. 考虑习题 3 第 18 题。

12. 设群 G 是环 A 的一个有限的自同构群,令 A^G 是 G-不变元素形成的子环,证明:A 在 A^G 上整。

令 S 是 A 的乘法封闭子集,且有 $\sigma(S)\subseteq S, \forall \sigma\in G,\ \diamondsuit\ S^G=S\cap A^G,$ 证明:G 在 A 上的作用可以扩充到 $S^{-1}A$ 上,且 $(S^G)^{-1}A^G\cong (S^{-1}A)^G$ 。

证明. 注意到 $a \in A$ 满足多项式 $\Pi_{\sigma \in G}(x - \sigma(a))$, 而这个多项式系数在 A^G 中 (对称多项式)。

G 在 $S^{-1}A$ 上的作用定义为 $\sigma(a/s) = \sigma(a)/\sigma(s)$,这个作用是良定义的。

13. 在 12 题的情况下,设 \mathfrak{p} 是 A^G 的一个素理想,令 P 是 $A^G \to A$ 的映射下局限理想是 \mathfrak{p} 的那些**素 理想**的集合。证明 G 可以作用在 P 上,且 G 有限。

证明. 对 $\mathfrak{q},\mathfrak{q}'\in P$ 和 $x\in\mathfrak{q}$,有 $\Pi_{\sigma\in G}\sigma(x)\in A^G$,从而 $\Pi_{\sigma\in G}\sigma(x)\in A^G\cap\mathfrak{q}=\mathfrak{p}\subseteq\mathfrak{q}'$ 。

由于 \mathfrak{q}' 是素理想,从而存在 $\sigma(x) \in \mathfrak{q}$,从而存在 $y \in \mathfrak{q}'$ 使得 $\sigma^{-1}(y) = x$,从而有

$$\mathfrak{q}\subseteq\bigcup_{\sigma\in G}\sigma(\mathfrak{q}')$$

每个 $\sigma(\mathfrak{q}')$ 都是素理想,从而由1.23,存在一个 σ 使得 $\mathfrak{q} \subseteq \mathfrak{q}'$,同理 $\mathfrak{q}' \subseteq \sigma'(\mathfrak{q})$,从而 $\sigma\sigma' = 1$ 且 $\mathfrak{q} = \sigma(\mathfrak{q}')$,从而 P 自由有限个元素,且 G 作用在 P 上。

14. 设 A 是整闭的整环,K 是它的分式域,L 是域 K 的有限正规可分扩张,G 是 L 在 K 上的 Galois 群,设 B 是 A 在 L 中的整闭包,证明 $\sigma(B)=B, \forall \sigma\in G$,且 $A=B^G$

证明. 设 $x \in B$ 满足 $x^n + a_1 x^{n-1} + \dots + a_n = 0, a_i \in A$,那么 $\sigma^n(x) + \sigma(a_1) \sigma^{n-1}(x) + \dots + \sigma(a_n) = 0$,由于 G 保持 K 不变,从而 $\sigma(a_i) = a_i \in A$,从而 $\sigma(B) \subseteq B$,而 σ 存在逆 σ^{-1} ,从而 sigma 是一一映射即 $\sigma(B) = B$ 。

由于 $K = L^G$ (Galois 理论),故只需证明 $B \cap L = A$,这是显然的,因为 A 在 K 中的整闭包为 A。

15. 设 A, K 如习题 14, L 是 K 的任意有限扩域, B 是 A 在 L 中的整闭包,证明:如果 \mathfrak{p} 是 A 的 任意素理想,那么 B 中那些局限理想是 \mathfrak{p} 的素理想 \mathfrak{q} 的集合是有限集。

证明. 若 L:K 可分,则可把它嵌入一个有限正规可分扩张中,由 13, 14 题可得成立。

若 L: K 纯不可分(否则取 K 为可分闭包),设 \mathfrak{q} 是 B 中的素理想,有 $\mathfrak{q} \cap A = \mathfrak{p}$,则此时 K 为有限特征的无限域(有限域和特征为 0 的域都是**完全域** (complete field),即他们的代数扩张都是可分扩张。)

记 $\operatorname{char} K = p$,对 $\alpha \in L$,设它在 K 上的极小多项式为 $f(\alpha)$,这个多项式满足 $(f,f') \neq 1$ (f') 为形式导数)。此时只能有 f' = 0。这代表 f 的展开式中,次数不为 p 的倍数的项的系数均为 p 的倍数,即在 K 中 f 的表达式为 $g(x^p)$ 。

若 g(x) 在 L 上有重根,那么 $(g,g')\neq 0$,对 g(x) 重复以上讨论,直到 $f(x)=k(x^{p^n})$,此时 k(x) 不可约且无重根。设在 k(x) 的分裂域中

$$k(x) = \Pi(x - x_i)$$

则在 f(x) 的分裂域中有

$$f(x) = \Pi(x - x_i^{1/p^n})^{p^n}$$

而 x^{p^n} 的极小多项式为 k(x) 为可分多项式,从而 $x^{p^n} \in K$,由扩张的性质这个 n 不超过 [L:K],从 而存在 N 使得对任意的 $x \in L$ 都有 $x^{p^N} \in K$ 。

若 $x \in \mathfrak{q}$,则 $x^{p^n} \in \mathfrak{q} \cap K = \mathfrak{p}$ 。设 $f(\mathfrak{p}) = \{x \in B, \exists m, \ x^{p^m} \in \mathfrak{p}\}$,显然 $f(\mathfrak{p}) = \mathfrak{q}$ 。从而 $\mathfrak{q} = \mathfrak{p}$ 的对应是一一的。

16. 令 k 是域, $A \neq 0$ 是有限生成 k-代数。则存在有限个元素 y_1, \dots, y_r 是在 A 上代数无关,且有 A 在 $k[y_1, \dots, y_r]$ 上整。

这有如下的几何解释: 设 k 代数闭, X 是 k^n 中的仿射代数簇, 其坐标环 $A \neq 0$, 利用习题 2, 可以构造 k^n 中的 r 维线性子空间 L, 并有映射把 X 映到 L 上。

证明. 假定 k 是无限域,设 x_1, \dots, x_n 生成了 A, 我们可以重排 x_i 使得 x_1, \dots, x_r 代数无关且 x_{r+1}, \dots, x_n 在 $k[x_1, \dots, x_r]$ 上整。

现对n用归纳法。

n=r 时成立。设 [r,n-1] 均成立。

由于 x_n 在 $k[x_1, \dots, x_{n-1}]$ 上整,则存在一个多项式 $f(x_1, \dots, x_n) = 0$,设 F 是由 f 的所有最高次数的项构成的多项式,则存在 λ_i 使得 $F(\lambda_1, \dots, \lambda_{n-1}, 1) \neq 0$,令 $x_i' = x_i - \lambda_i x_n$,有 x_n 在 $A' = k'[x_1', \dots, x_n']$ 上整,因此 A 在 A' 上整,从而由归纳假设,A 在 $k[y_1, \dots, y_r]$ 上整。

17. 令 $X \in \mathbb{R}^n$ 上的代数簇,k 是代数闭域,令 I(X) 是簇 X 在多项式环 $k[t_1, \dots, t_n]$ 中生成的理想。 如果 $I(X) \neq (1)$,那么 X 非空。

据此推断多项式环 $k[t_1, \dots, t_n]$ 的每个极大理想都形如 $(t_1 - a_1, \dots, t_n - a_n)$,其中 $a_i \in k$ 。

证明. 记 $A = k[t_1, \dots, t_n]/I(X)$ 是 X 的坐标环, 那么 $A \neq 0$, 由 16 题, 存在 X 到 L 的映射, 从而 X 非空。

18. 设 k 是域,B 是有限生成 k-代数,若 B 是域,那么 B 是 k 的有限代数扩域。(这是 Hilbert 零点定理另一种形式)

证明. 设 x_1, \dots, x_n 生成了作为 k-代数的 B, 对 n 用归纳法。

n=1 结论是显然的。 $(1/x_1 = \sum a_n x_1^n$ 说明 x_1 是代数元,从而 $k[x_1] = k(x_1)$)

设 n>1, 记 $A=k[x_1]$, $K=k(x_1)$, 由归纳假设, B 是 K 的有限代数扩域。

设 x_2, \dots, x_n 中的每个元素在 K 中有首 1 的多项式,记这些多项式的系数的分母的乘积为 f,易有 B 在 A_f 上整。

若 x_1 在 k 上是超越的, 那么 A 是整闭的 (UFD 是整闭的), 从而 A_f 是整闭的 (5.12), 又 K 在 A_f 上整, 从而 $A_f = K$, 这不可能 (因为可以很容易找到非平凡理想,只要在 A 中找到和 $\{1, f, f^2, \cdots\}$ 不相交的理想 \mathfrak{a} , 那么 $S^{-1}\mathfrak{a}$ 就是非平凡理想)。从而 x_1 是代数的,因此 K 是 k 的有限扩张。

19. 用 18 题证明 17 题。

证明. $B = k[t_1, \dots, t_n]/\mathfrak{m}$ 是有限生成代数扩域,其中 \mathfrak{m} 是极大理想。由于 k 是代数闭域,它的代数元都在 k 中,从而有 k-代数同构 $B \to k$ 。设 $k[t] \to B \to k$ 的复合下 $t_i \mapsto x_i$,而显然这个复合下 $x_i \mapsto x_i$,则 $\overline{t_i - x_i} = 0$,则 $\mathfrak{m} \subseteq (t_1 - x_1, \dots, t_n - x_n)$,又 \mathfrak{m} 是极大理想,故两者相等。

证明 2. 由 16 题,存在 k 的线性空间 $A = k[t_1, \dots, t_n]$,B 在 A 上整,由5.7,得到 A 是域,从而 t_i 不存在,即 A = k,从而 B 是 k 的有限生成代数。

20. 令 A 是整环 B 的子环,使得 B 在 A 上有限生成,证明:存在 $s \neq 0, s \in A$ 和在 A 上代数无关的元素 $y_1, \dots, y_n \in B$ 使得 B_s 在 B_s' 上整,其中 $B' = A[y_1, \dots, y_n]$

证明. 设 $S = A - \{0\}$, 令 $K = S^{-1}A$ 是分式域,由于 B 在 A 有限生成,那么 $S^{-1}B$ 在 $S^{-1}A$ 上有限生成。由习题 16,存在 $x_1, \dots, x_n \in S^{-1}B$,它们在 K 上代数无关,且 $S^{-1}B$ 在 $C = K[x_1, \dots, x_n]$ 上整。设 $x_i = y_i/s_i$,则每个 B 的生成元 b_i 都满足一个多项式 $p(b_i/1) = \sum c_{i,j} (x_i/1)^j, c_{i,j} \in C$,取 s 是所有 $c_{i,j}$ 的分母的乘积,这个 s 满足条件。

21. 条件同题 20, 证明: A 中存在 $s\neq 0$ 使得如果 Ω 是代数闭域且 $f:A\to \Omega$ 是个同态, $f(s)\neq 0$, 那么 f 可以扩张到 $B\to \Omega$

证明. f 可以首先扩张到 B' 上,例如令 $f(y_i) = 0$,然后可以扩张到 B'_s 上(f(b/s) = f(b)/f(s)),再由题 2,可以扩张到 B_s 上,那么 f(b) = f(b/1)。

22. 条件同题 20, 如果 A 的大根是零, 那么 B 的大根也是零。

证明. 对 $v \neq 0, v \in B$,考虑环 B_v 和它的子环 A,由题 21 存在满足题 21 性质的 s。由于 A 的大根 为 0,故存在不含 s 的极大理想 \mathfrak{m} 。考虑自然同态 $A \to A/\mathfrak{m}$,这个映射可以扩充到 $g: B_v \to \Omega$,其中 Ω 是包含 A/\mathfrak{m} 的代数闭域。

由于 g(1/v)g(v/1)=g(1/1)=1,若 g(v)=g(v/1)=0,则 1=0 矛盾,故 $g(v)\neq 0$ 。由于 $B_v/\mathrm{Ker}(g)$ 是域,从而 $\mathrm{Ker}(g)$ 是 B_v 中的极大理想。可以看出 \mathfrak{m} 是 $A\to A/\mathfrak{m}$ 的核,从而有 $\mathrm{Ker}(g)\cap A=\mathfrak{m}$ 。 $\mathrm{Ker}(g)\cap A\subseteq \mathrm{Ker}(g)\cap B$ 。

重新整理下 g 的扩张: 首先有

$$g: A \to A/\mathfrak{m} \to \Omega$$

题 21 告诉我们可以扩张到:

$$g: A \to A_s \to (A[y_1, \cdots, y_n])_s \to B_v \to (B_v)_s \to \Omega, y_i \in B_v$$

由于 $s \notin \mathfrak{m}$,从而 $g(A_s) = g(A) = A/\mathfrak{m}$ (即域的分式环还是他自己 $A_s/S^{-1}\mathfrak{m} \cong A/\mathfrak{m}$)。由题 21 的构造方式,有 $g((A[y_1, \dots, y_n])_s) = g(A)$ 。同理对 B_v 也一样,有 $g(B_v) = g((B_v)_s)$ 。

由于 $(B_v)_s$ 在 $(A[y_1, \dots, y_n])_s$ 上整,从而 $g((B_v)_s)$ 在 $g((A[y_1, \dots, y_n])_s)$ 上整。从而 $g(B_s)$ 在 g(A) 上整。由于 $g(B) \subseteq g(B_s)$,从而 g(B) 在 g(A) 上整。由于 g(A) 是域,从而由 5.7,得到 g(B) 也是域,从而 $\ker(g) \cap B$ 是极大理想。

综上,对 B 的任意非零元素 v,总有极大理想不含 v,故 B 的大根为零。

- 23. 令 A 是环,证明下列说法等价:
 - i) A 的每个素理想都是极大理想的交
 - ii) A 的每个同态象的小根等于大根
 - iii) A 的每个非极大的素理想等于真包含它的素理想的交。

称满足这些条件的环为 Jacobson 环。

证明. 如果 i) 成立,对商映射 $A \to A/\mathfrak{a}$, A/\mathfrak{a} 的小根为 \mathfrak{a} 的根理想,即包含 \mathfrak{a} 的素理想(一些极大理想的交)的交, A/\mathfrak{a} 的极大理想的原像是包含 \mathfrak{a} 的极大理想,从而 A/\mathfrak{a} 的大根和小根相同。

如果 ii) 成立,考虑 A/\mathfrak{p} , 它的大根是 0,从而成立。

如果 iii) 成立,假设 i) 不成立,则存在素理想 \mathfrak{p} 不是极大理想的交,那么 $B = A/\mathfrak{p}$ 的大根不是 0。设 $f \in \mathfrak{R}(B), f \neq 0$,有 $B_f \neq 0$,取 B_f 的极大理想 \mathfrak{m} ,它在 B 中的原像是一个素理想 \mathfrak{q} , \mathfrak{q} 不是 极大理想(否则 $f \in \mathfrak{q}$), \mathfrak{q} 是真包含 \mathfrak{q} 的素理想的交。然而,由于 \mathfrak{q} 在不含 \mathfrak{f} 的素理想的集合中是极大的,从而比 \mathfrak{q} 还大的集合只能包含 \mathfrak{f} ,故真包含 \mathfrak{q} 的所有素理想的交也包含 \mathfrak{f} ,矛盾。

24. 设 A 是一个 Jacobson 环,B 是一个 A-代数。证明在下述两种情况下 B 也是一个 Jacobson 环: i) B 在 A 上整;ii) B 作为 A-代数是有限生成的

特别的,有限生成的环和域上的任意有限生成代数都是 Jacobson 环。

证明. ii) 可由 22 题直接得到。

i) 如果 B 在 A 上整,设 \mathfrak{q} 是 B 的素理想,有 $\mathfrak{q} \cap A = \mathfrak{p}$ 是 A 的素理想,由5.6可得, B/\mathfrak{q} 在 A/\mathfrak{p} 上整。

设 $u \in \mathfrak{R}(B/\mathfrak{q})$,则 $(A/\mathfrak{p})[u] \subseteq B/\mathfrak{q}$ 是一个中间环,且它的大根含有 u。但是 $(A/\mathfrak{p})[u]$ 是有限生成 A/\mathfrak{p} -代数,由第二问结论,可得 u=0。

有限生成的环同构于 $Z[t_1, \cdots, t_n]$ 。

- 25. 设 A 是一个环,证明下述命题等价:
 - i) A 是一个 Jacobsonn 环。
 - ii) 每个有限生成 A-代数 B 若是域,则他是有限 A-代数 (注意2.47)。

证明. 若 A 是一个 Jacobson 环,且域 B 是有限生成 A-代数,那么 A 是整环,根据题 21,取一个不含 s 的极大理想 \mathfrak{m} , $f:A\to k=A/\mathfrak{m}$ 可以扩张到 $f:B\to\Omega$ 。

由于 B 是域,从而 $B \to \Omega$ 是单射,考虑映射 $\phi: A \to B$,B 在 $\phi(A)$ 上有限生成,则 f(B) 在 $f(\phi(A)) = A/\mathfrak{m} = k$ 上有限生成,从而 f(B) 是 k 的有限扩域。从而 B 是有限 A-代数。

若 ii) 成立,若 A 的素理想都是极大的,则显然 A 是 Jacobson 环。若 A 存在非极大的素理想 \mathfrak{p} , 考虑 $B = A/\mathfrak{p}$ 。设 f 是 B 的一个非零元, B_f 是有限生成 A-代数(由 1,1/f 生成)。若它是域,则它是有限 A-代数,则这个域在 A 上整,从而 A 也是域,矛盾。从而 A_f 不是域,即它有一个极大理想 \mathfrak{p}' , $\mathfrak{q} = \mathfrak{p}'^c$ 是 A 的素理想,且不含 f。由于 f 是任意非零元素,从而所有真包含 \mathfrak{p} 的素理想的交是 \mathfrak{p} 。 \square

26. 令 X 是拓扑空间,X 的一个子集称为局部闭的,如果它是一个开集合闭集的交,或者等价的说,它在它的闭包中是开集。

关于 X 的子集 X_0 , 下列条件等价:

- i) X 的每个非空局部闭子集都与 X_0 相交
- ii) 对 X 的每个闭集 E, 都有 $\overline{E \cap X_0} = E$
- iii) X 中全部开集的集合到 X_0 的全部开集的集合上的映射 $U \mapsto U \cap X_0$ 是一一的。

具有这些条件的 X_0 称为充分稠密 (very dense) 的

证明,对任何环 A,下列条件等价:

- i) A 是 Jacobson 环
- ii) A 的极大理想的集合在 SpecA 中充分稠密
- iii) SpecA 中的每一个单点集且为局部闭子集是闭的。

证明. 事实上这是把 23 题翻译成了拓扑语言。

27. 设 A, B 是两个局部环, 如果 A 是 B 的子环, 而且 A 的极大理想 \mathfrak{m} 包含在 B 的极大理想 \mathfrak{n} 中, 那么称 B dominate A。令 K 是域且 Σ 是所有 K 的局部子环的集合。如果 Σ 按 dominate 的关系有一个序,证明: A 是 Σ 的极大元当且仅当 A 是域 K 的赋值环 (K 是 A 的分式域)。

证明. 首先由 Zorn 引理,这个序关系下 Σ 有极大元。

设 A 是极大元, 那么由第四节域 K 的赋值环的构造得 A 是一个赋值环。

- 28. 令 A 是整环, K 是其分式环, 证明下命题等价:
 - i) A 是 K 的赋值环
 - ii) 如果 $\mathfrak{a},\mathfrak{b}$ 是两个 A 中的理想,那么要么有 $\mathfrak{a} \subseteq \mathfrak{b}$ 要么有 $\mathfrak{b} \subseteq \mathfrak{a}$

从而如果 A 是赋值环, \mathfrak{p} 是它的素理想,那么 $A_{\mathfrak{p}}$ 与 A/\mathfrak{p} 均为各自分式环的赋值环。

证明. 若 i) 成立,取 $x \in \mathfrak{a} - \mathfrak{b}, y \in \mathfrak{b} - \mathfrak{a}$,考虑 x/y, y/x,不妨 $x/y \in A$,则由于 A 是整环,故存在 t 使得 $x/y = t/1 \Rightarrow x = yt$ 矛盾。

若 ii) 成立,对 $y/x \in K$,若 x 在 A 中可逆,则 $y/x \in A$ 。若 x 在 A 中不可逆,但 y 在 A 中可逆,则 $x/y \in K$ 。若 x,y 均在 A 中不可逆,考虑 (x) 与 (y),这两个理想存在包含关系,不妨 $(x) \subseteq (y)$,则 x=yt,从而 $x/y=t \in A$ 。

29. \Diamond A 是 K 的赋值环,证明每个包含 A 的 K 的子环都是 A 的局部化。

证明. 设 B 包含 A, 且为 K 的子环。由于 B 的分式环也是 K, 从而 B 也是赋值环。

设 \mathfrak{q} 是 B 的极大理想,则 $\mathfrak{q}^c = \mathfrak{q} \cap A$ 是 A 的素理想。考虑 $A' = A_{\mathfrak{p}}$,A' 是赋值环,分式域为 K,且 B dominate A',由 27 题有 B = A',从而 B 是 A 的局部化。

30. 令 A 是 K 的赋值环,A 的可逆元组成的集合 U,是 K 的乘法子群 K^{\times} 的子群。令 $\Gamma = K^{\times}/U$,设 $\xi = \bar{x}, \eta = \bar{y}$,定义 $\xi \geq \eta \Leftrightarrow xy^{-1} \in A$ 。证明这样定义了一个 Γ 上的全序,且与群的结构相容(即 $\xi \geq \eta \Rightarrow \xi \omega \geq \eta \omega$)。总之, Γ 是一个全序 Abel 群,称为 A 的 value group。

证明. 全序的证明非常简单,这个序自反、反对称且传递,说明是一个偏序,任意两个元素可比,说明是一个全序。

$$1+y/x, 1+x/y$$
 中有一个在 A 中,故 $v(x+y) \ge \min(v(x), v(y))$ 。

31. 反之,设 Γ 是一个全序 Abel 群(运算记为加法),令 K 是一个域。一个 K 在 Γ 上的赋值是指一个映射 $v:K^{\times}\to\Gamma$ 使得

- i) v(xy) = v(x) + v(y)
- ii) $v(x+y) \ge \min(v(x), v(y))$

证明 K^{\times} 中使得 $v(x) \ge 0$ 的元素是 K 的一个赋值环,称为 v 的赋值环, $v(K^{\times})$ 称为 v 的 value group。

这样赋值环和赋值一一对应。

证明. 事实上,
$$v(1) = 0$$
, 从而 $v(x) = -v(-x)$ 。

32. 设 Γ 是一个全序 Abel 群, Γ 的子群 Δ 称为在 Γ 中孤立的,如果只要有 $0 \le \beta \le \alpha, \alpha \in \Delta$,就 有 $\beta \in \Delta$ 。设 A 是一个域 K 的赋值环,以 Γ 为 value group,证明:如果 \mathfrak{p} 是 A 的一个素理想,则 $v(A-\mathfrak{p})$ 是 Γ 中某个孤立子群 Δ 中非负元素的集合。如此 $\mathrm{Spec} A$ 到 Γ 的孤立子群的映射也是一一的。

证明. 只需证 $v(A - \mathfrak{p})$ 孤立,若 $x \in \mathfrak{p}$ 使得 $0 \le v(x) \le v(y), y \in A - \mathfrak{p}$,那么 $yx^{-1} \in A$,即存在 tx = y,这不可能。

33. 设 Γ 是一个全序 Abel 群。设 k 是任意一个域,设 $A = k[\Gamma]$ 是群代数,易知 A 是整环。

如果 $u = \sum_{i=1}^n \lambda_i x_{a_i}$ 是 A 的一个非零元,其中 $a_1 < \dots < a_n$,定义 $v_0(u) = a_1$,则 v_0 适合 31 题的条件。 v_0 可唯一扩张为 A 的分式域上的映射 v,v 的 value group 恰为 Γ 。

证明. 验证即可。

34. 设 A 是一个赋值环, K 是它的分式域, 设 $f:A\to B$ 是环同态, 使得 $f^*:\operatorname{Spec}(B)\to\operatorname{Spec}(A)$ 是 闭映射, 那么如果 $g:B\to K$ 是任意 A-代数同态, 那么 g(B)=A。

证明. 设 C = g(B),则 $A \subseteq C$,设 \mathfrak{n} 是 A 的极大理想,由于 f^* 是闭映射,那么 $\mathfrak{m} = \mathfrak{n} \cap A$ 是 A 的极大理想(习题 10),于是 $A_{\mathfrak{m}}$ dominate A, $C_{\mathfrak{n}}$ dominate A,从而他们都是相等的。

35. 由习题 1 和习题 3 可得,如果 $f: A \to B$ 是整同态,那么 $(f \otimes 1)^*: \operatorname{Spec}(B \otimes_A C) \to \operatorname{Spec}(C)$ 是闭的。

反之,设f有这个性质,且B是整环,证明f是整的。

证明: 如果 B 是仅有有限个极小素理想的环,上述结果仍然成立。

证明. 不妨 A 是 B 的子环。设 K 是 B 的分式域,A' 是 K 的一个包含 A 的赋值环。由于 $\operatorname{Spec}(B \otimes_A A') \to \operatorname{Spec}(A')$ 是闭的,利用 34 可得,A'-代数同态 $g: b \otimes a' \to ba'$ 满足 g(B) = A',从而有 A' 包含 B,根据5.28,从而 f 是整的。

若 B 有有限个极小素理想,设为 $\mathfrak{p}_1, \dots, \mathfrak{p}_n$,考虑 $\phi_i : A \to B \to B/\mathfrak{p}_i$ 。由上面的结论,得到每个 ϕ_i 都是整的,从而 $\Pi \phi_i : A \to \Pi(B/\mathfrak{p}_i)$ 是整的,因此 $A \to B/\mathfrak{N}$ 是整的。

设 $b \in B$ 满足 $\bar{b}^n + \bar{a_1}\bar{b}^{n-1} + \dots + \bar{a_n} = 0$,即 $b^n + a_1b^{n-1} + \dots + a_n = s \in \mathfrak{N}$,由于 s 幂零,故 b 在 A 上整。

6 链条件

- **命题 6.1.** 令 Σ 是一个偏序集, 具有序关系 ≤, 有下列条件等价:
 - i) 在 Σ 中的每个递增序列 $x_1 \leq x_2 \leq \cdots$ 是稳定的 (即存在正整数 n 使得 $x_n = x_{n+1} = \cdots$)
 - ii)∑的每个非空子集都有极大元
- **定义 6.2.** 如果 Σ 由模 M 的子模构成,序关系为 \subseteq ,那么 i)称为升链条件(简记为 a.c.c.),ii)称 为极大条件。满足上面等价条件之一的模 M 称为 **Noether 模**。如果序关系由 \supseteq 给出,那么称为降 链条件(简记为 d.c.c.)和极小条件。满足它们的模称为 **Artin 模**。
- **命题 6.3.** M 是一个 Noether A-模当且仅当 M 的每个子模都是有限生成的。

证明. 若 M 是一个 Noether 模,令 N 是 M 的一个子模, Σ 是包含在 N 中所有有限生成子模的集合,它有一个极大元 N_0 ,考虑 $N_0+Ax,x\in N-N_0$,它是有限生成的,且严格包含 N_0 ,故必然有 $N-N_0=\varnothing$,从而 N 是有限生成的。

若 M 的每个子模都是有限生成的,取子模的一个升链 $M_1 \subseteq M_2 \subseteq \cdots$,记 $N = \bigcup M_n$,它是 M 的子模,因此是有限生成的,不妨设由 x_1, \cdots, x_r 生成,则存在一个最小的 n 使得 M_n 包含所有生成元,从而链是稳定的。

- **命题 6.4.** 令 $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ 是 A-模正合序列, 那么:
 - i) M 是 Noether 模等价于 M'和 M"都是 Noether 模
 - ii) M 是 Artin 模等价于 M'和 M"都是 Artin 模
- **推论 6.5.** 如果 M_i 是 Noether (或 Artin) A-模, 那么 $\bigoplus_{i=1}^n M_i$ 也是。

证明. 对 $0 \to M_n \to \bigoplus_{i=1}^n M_i \to \bigoplus_{i=1}^{n-1} M_i \to 0$ 用归纳法。

定义 6.6. 环 A 称为 Noether 环 (或 Artin 环),如果它作为 A-模是 Noether 模 (或 Artin 模),即 它满足理想的 a.c.c. (或 d.c.c.)。

命题 6.7. A 是 Noether 环 (或 Artin 环), M 是有限生成 A-模, 那么 M 是 Nother (或 Artin) 模。

证明. $M \neq A^n$ 的商模, $0 \to \operatorname{Ker}(f) \to A^n \xrightarrow{f} M \to 0$ 正合。

命题 6.8. A 是 Noether (或 Artin) 环,则对任意理想 a, A/a 同样也是 Noether (或 Artin) 环。

推论 6.9. 如果 A 是 Noether (或 Artin) 环, ϕ 是 A 到环 B 之上的一个同态, 那么 B 也是 Noether 环。

定义 6.10. 模 M 的子模链是 M 的子模序列使得 $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$ 。相邻元素不相等,链的长度为 n。M 的**合成列** (composistion series) 是一个极大链,即不能添加任何子模,每个商模 M_{i-1}/M_i 都是单的(除了它和自己没有其他子模)。

命题 6.11. 假设 M 有一个长度为 n 的合成列,那么 M 的每个合成列长度都是 n,在 M 中的每个链都可以扩充成合成列。

证明. 令 l(M) 表示 M 的合成列的最小长度。

- i) $N \subsetneq M \Rightarrow l(N) < l(M)$ 。对 M 的合成列 (M_i) ,令 $N_i = N \cap M_i$,则 $N_i/N_{i+1} \subseteq M_i/M_{i+1}$,从而 N_i/N_{i+1} 要么和 M_i/M_{i+1} 相等要么只有一个元素。若全部是相等,则易有 M = N,故至少有一个是 $N_i = N_{i+1}$,去掉重复的之后,l(N) < l(M)
- ii) 在 M 中的任何链长度都不大于 l(M)。事实上 $M=M_0\supseteq M_1\cdots$ 是一个长度为 k 的链,则有 $l(M)>l(M_1)>\cdots>l(M_k)=0$,从而 $l(M)\ge k$ 。
 - iii) 从 ii) 易得所有合成列都一样的长度。 □

命题 6.12. M 有合成列等价于 M 满足两个链条件 (a.c.c. 和 d.c.c.)。

证明. 若 M 有合成列,则在 M 中的所有链都是有限长度,显然 a.c.c. 和 d.c.c. 成立。

若 M 满足两个链条件,取 M 的真子模集合里极大的,记为 M_1 ,如此往下得到一个降链,它必是有限的,它是合成列。

定义 6.13. 满足 a.c.c. 和 d.c.c. 的模称为有限长度模,l(M) 称为 M 的长度。把 Jordan-Hölder 定理 (群 G 的任意两个合成序列是同构的)应用于有限长度模:如果 $(M_i)_{0 \le i \le n}$ 和 $(M'_i)_{0 \le i \le n}$ 是两个合成列,那么商模集合 (M_{i-1}/M_i) 和 (M'_{i-1}/M'_i) 之间存在——对应并且同构。

命题 6.14. 长度 l(M) 是所有有限 A-模类上的一个加性函数。

证明. 事实上,对正合序列 $0 \to M' \to M \to M'' \to 0$,M' 和 M'' 的正合列给出了一个 M 的正合列,从而 l(M) = l(M') + l(M'')。

命题 6.15. 对域 k-向量空间 V, 下面条件等价:

- i) 有限维数
- ii) 有限长度
- iii) a.c.c.
- $iv) \ d.c.c.$

如果这些条件满足,则长度 = 维数。

证明. 若 i) 成立,即存在 a_1, \dots, a_n 使得 $V = ka_1 + \dots + ka_n$,对 V 的任意子模 V',显然它包含的 生成元子集唯一决定了该子模,包含同一组生成元子集的子模相同,从而它一定有限长度且满足 a.c.c. 和 d.c.c.。

而若 i) 不成立, 那么存在无限个生成元 $(x_i)_{i\in I}$, 取一列无穷子集 $(x_i)_{i\in \mathbb{N}^*}$, 设 U_n 是 (x_1, \dots, x_n) 生成的子模, V_n 是 (x_n, x_{n+1}, \dots) 生成的子模, 显然这两组子模链不满足升链和降链条件。

推论 6.16. 令 A 是一个环,它的零理想是极大理想的乘积 $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ 。那么 A 是 Noether 环当且仅当 A 是 Artin 环。

证明. 考虑 $A \supseteq \mathfrak{m}_1 \supseteq \cdots \supseteq \mathfrak{m}_1 \cdots \mathfrak{m}_n = 0$,每个因子 $\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \cdots \mathfrak{m}_i$ 都是域 A/\mathfrak{m}_i 上的向量空间,因此对 A 有 $a.c.c. \Leftrightarrow d.c.c.$ 。

6.1 习题 6

- 1. i) 如果 M 是一个 Noether A-模, $u:M\to M$ 是一个模同态, 如果 u 是满的, 那么 u 是同构。
 - ii) 如果 M 是一个 Artin A-模,而 u 是单的,那么 u 也是同构。

证明. i) 有 $\operatorname{Ker}(u^n)$ (u 的 n 次复合)是 M 的子模,这个序列是升链,从而由 Noether 环的性质,有存在最小的 n 使得 $\operatorname{ker}(u^n) = \operatorname{Ker}(u^{n+1}) = \cdots$ 。若 $n \geq 2$,对 $x \in \operatorname{Ker}(u^n) - \operatorname{Ker}(u^{n-1})$,存在 $y \in M$ 使得 u(y) = x,则 $u^{n+1}(y) = u^n(x) = 0$,从而 $y \in \operatorname{Ker}(u^{n+1}) = \operatorname{Ker}(u^n)$,从而 $u^n(y) = u^{n-1}(x) = 0$,这与 $x \notin \operatorname{Ker}(u^{n-1})$ 矛盾。从而 n = 1,即 $\operatorname{Ker}(u) = \operatorname{Ker}(u^2) = \cdots$ 。

如果 u(x)=0,设 x=u(y),则 $u(u(y))=0 \Rightarrow u(y)=0 \Rightarrow u(x)=0$,从而 u 是单的,从而 u 是同构。

ii) 考虑 $Im(u^n)$, 这个序列是降链,由 Artin 模的性质,存在最小的 n 使得 $Im(u^n) = Im(u^{n-1}) = \cdots$ 。同上讨论,若 $n \ge 2$,设 $x \in Im(u^{n-1}) - Im(u^n)$,设 u(x) = y,有 $y \in Im(u^n) = Im(u^{n+1})$,从而存在 $u^{n+1}(z) = y = u(x)$,由于 u 是单射,从而 $x = u^{(z)}$,矛盾。从而 n = 1,即 $Im(u) = Im(u^2) = \cdots$ 。

对任意的 $x \in M$,设 $u(x) = y \in \text{Im}(u) = \text{Im}(u^2)$,则 $y = u^2(z) \Rightarrow x = u(z) \in \text{Im}(u)$,故 u 是满射,从而 u 是同构。

证明. 若 M 不是 Noether 模,那么存在一个 M 的非有限生成子模,它的有限生成子模集合不存在极大元。 \qed

3. 令 M 是一个 A-模,且 N_1,N_2 是 M 的子模。如果 M/N_1 和 M/N_2 都是诺特环,那么 $M/N_1\cap N_2$ 也是 Noether 环。用 Artin 代替 Noether 也是成立的。

证明. 考虑正合列 $0 \to N_1/(N_1 \cap N_2) \to M/N_1 \cap N_2 \to M/N_1 \to 0$ 即可。

4. 令 M 是一个 Noether A-模, 令 \mathfrak{a} 是 M 在 A 中的零化子, 证明: A/\mathfrak{a} 是一个 Noether 环。

证明. 设 M 的生成元为 x_1, \dots, x_n ,设 $\mathfrak{a}_i = \mathrm{Ann}(x_i)$,那么 $A/\mathfrak{a}_i \cong Ax_i$ 是一个子模,它是有限生成的。所以 $A/\cap \mathfrak{a}_i$ 的任意理想是有限生成的。

5. 一个拓扑空间 X 称为 Noetherian,如果 X 的开子集满足升链条件。因为闭子集是开集的补集,从而也可以说闭子集满足降链条件。证明:如果 X 是 Noetherian,那么每个 X 的子空间也是 Noetherian,且 X 是紧的。

证明,前一问是显然的。

若 $X = \bigcup U_{\alpha}$,它不存在有限子覆盖,则考虑一列 $U_1, U_2 \cdots$,它的构造如下: U_{n+1} 是包含 X 中不在 $\bigcup_{i=1}^n U_i$ 中的点 X 的一个开集。则序列 $U_1, U_1 \bigcup U_2, U_1 \bigcup U_2 \bigcup U_3 \cdots$ 不满足升链性质,矛盾 \square

- 6. 证明下列是等价的:
 - i) X 是 Noetherian
 - ii) 每个 X 的开子集是紧的
 - iii)每个子空间是紧的

证明. 若 i) 成立, 那么应用第五题的方法, 同样可以得到 ii) 和 iii) 成立。

若 iii) 成立, 则显然 ii) 成立

若 ii) 成立,那么对 X 的任意升链 $U_1 \subseteq U_2 \subseteq \cdots$,以及诱导的开覆盖 $\bigcup U_{\alpha}$,都存在有限子覆盖 $\bigcup_{i=1}^n U_{t_i}, t_1 < t_2 < \cdots < t_n$ 。那么 $U_{t_n} = U_{t_{n+1}} = \cdots$,即满足升链条件。

7. 一个 Noetherian 空间是它的不可约闭子空间的有限并。因此 Noetherian 空间的不可约分支构成的集合有限。

证明. 考虑 Σ 为所有不能表示为有限个不可约闭集并的闭子集的集合。

若 $X \in \Sigma$,由于 X 满足对闭集的极小条件,从而 Σ 有极小元 C。易知 C 本身不是不可约空间,即他可以表示为两个真闭集的并。这两个闭集都是可以表示为有限个不可约闭集的并,故 C 也可以,矛盾。

8. 如果 A 是诺特环, 那么 Spec(A) 是 Noetherian 空间。它的逆命题成立吗?

证明. A 是诺特环,由于 $V(\mathfrak{a}) \subseteq V(\mathfrak{b}) \Rightarrow r(\mathfrak{b}) \subseteq r(\mathfrak{a})$,那么 Spec A 满足对闭集的极小条件。

逆命题不成立,可以构造一个只有一个素理想,但是不满足极大条件的环。

9. 由第八题推导出 Noether 环的极小素理想是有限的。

证明. 由第一章 20 题 iv),极大不可约闭集对应极小素理想。

10. 如果 M 是一个 Noether 模(在任意环 A 上),那么 Supp(M) 是 Spec(A) 上的闭 Noetherian 子 空间。

证明. 由第三章 19 题, Supp(M) = V(Ann(M)) 是闭集。

11. 令 $f: A \to B$ 是环同态, $\operatorname{Spec}(B)$ 是 Noetherian 空间,证明: $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ 是一个闭映射当且仅当 f 满足 going-up property.

证明. 第五章第 10 题表明 f^* 是闭映射时 f 总是满足 going-up property.

若 f 满足 going-up property, 令 $V(\mathfrak{b})$ 是一个闭集, 其中 $r(\mathfrak{b})$ 是一个根理想。有 B/\mathfrak{b} 也是 Noether 环,从而 B/\mathfrak{b} 的极小素理想只有有限个。

设 \mathfrak{b} 的极小素理想为 $\mathfrak{q}_1, \dots, \mathfrak{q}_n$,设 $\mathfrak{p}_i = \mathfrak{q}_i \cap A$,有 $\mathfrak{b} \cap A = \bigcap \mathfrak{p}_i$, $f^*(V(\mathfrak{b})) = f^*(\bigcap V(\mathfrak{q}_i)) = \bigcap f^*(V(\mathfrak{q}_i)) = \bigcap V(\mathfrak{p}_i) = V(\mathfrak{a})$ 是闭集。

12. 若环 A 使得 Spec(A) 是 Noetherian 空间,证明 A 的素理想集合满足升链条件。它的逆命题是否成立?

证明. 事实上, $V(\mathfrak{p}) \subseteq V(\mathfrak{q}) \Leftrightarrow \mathfrak{p} \supseteq \mathfrak{q}$ 。

反之是不成立的,取 k 为一个域,环 $A = \Pi k$ 是可数个 k 的积,则 A 的不可逆元必有一个分量为 0。考虑 A 的素理想 \mathfrak{p} ,它的素理想必形如 $\{(a_1,\cdots,a_n,0,a_{n+1}\cdots)\}$ (对比第一章 26 题),满足升链条件。但极小素理想对应极大不可约闭集,从而 $\mathrm{Spec}(A)$ 有无限个不可约闭集,从而不为 Noetherian 空间。

7 Noether 环

命题 7.1. 令 A 是 B 的子环,假设 A 是 Noether 环,且 B 作为 A-模是有限生成的,则 B 是一个 Noether 环。

命题 7.2. 如果 $A \in Noether$ 环,那么 $S^{-1}A \in Noether$ 环。

证明. 事实上, $S^{-1}A$ 的理想和它的局限理想——对应。

注 7.3 (Hilbert 基定理). 如果 $A \in Noether$ 环, 那么多项式环 $A[x] \in Noether$ 环。

证明. 令 \mathfrak{a} 是 A[x] 的一个理想, \mathfrak{a} 中的所有多项式的首项系数构成的集合,是 A 的一个理想 \mathfrak{b} 。由于 A 是 Noether 环,所以 \mathfrak{b} 有限生成,不妨设生成元为 a_1, \cdots, a_n 。对每个 \mathfrak{i} ,都存在多项式 $f_i = a_i x^{r_i} + \cdots$,令 $r = \max r_i$,记 f_1, \cdots, f_n 生成的理想记为 \mathfrak{a}' 。

记 $f = ax^m + \cdots \in \mathfrak{a}$ 是任意一个元素,则 $a \in \mathfrak{b}$,如果 $m \geq r$,记 $\mathfrak{a} = \sum u_i a_i$,那么 $f - \sum u_i f_i x^{m-r_i}$ 在 \mathfrak{a} 中且次数小于 \mathfrak{m} 。不断用这种方法,直到多项式 \mathfrak{g} 使得次数小于 \mathfrak{r} ,此时 f = g + h,其中 $h \in \mathfrak{a}'$ 。

记 M 是 $1,x,\cdots,x^{r-1}$ 生成的 A-模,从而, $\mathfrak{a}=(\mathfrak{a}\bigcap M)+\mathfrak{a}'$ 。由于 M 是有限生成 A-模,从而 它是 Noether 模,因此 $\mathfrak{a}\bigcap M$ 作为子模是有限生成的,从而 \mathfrak{a} 是有限生成的,从而 A[x] 是 Noether 环。

推论 $7.4.\ B$ 是有限生成 A-代数, A 是 Noether 环, 那么 B 也是 Noether 环。

证明. B 是多项式环 $A[x_1, \dots, x_n]$ 的同态象, 故为 Noether 环。

命题 7.5. 令 $A \subseteq B \subseteq C$ 是环,假设 A 是 Noether 环而 C 作为 A-代数是有限生成的,且 C 作为 B-模是有限生成的,(此时等价于 C 在 B 上整),那么 B 作为 A-代数是有限生成的。

证明. 令 C 作为 A-代数由 x_1, \dots, x_m 生成, C 作为 B-模由 y_1, \dots, y_n 生成。那么有 $x_i = \sum b_{ij} y_j (b_{ij} \in B)$, $y_i y_j = \sum_k b_{ijk} y_k (b_{ijk} \in B)$ 。令 B_0 是 A 上的代数,由 b_{ij} 和 b_{ijk} 生成。由于 A 是 Noether 环, B_0 也是 Noether 环,且 $A \subseteq B_0 \subseteq B$ 。

C 的任何元素是系数在 A 中的 x_i 的多项式。重复使用上述两式子可得:C 的每个元素是系数在 B_0 的 y_j 的线性组合,所以 B 作为 B_0 -模是有限生成的。由于 B_0 作为 A-代数是有限生成的,于是 B 作为 A-代数是有限生成的。

命题 7.6 (Zariski Lemma). 令 k 是域,E 是有限生成 k-代数。如果 E 是域,那么它是 k 的有限代数扩张。

证明. 令 $E = k[x_1, \dots, x_n]$,如果 E 在 k 上不是代数的,那么可以重排 x_1, \dots, x_n 使得 x_1, \dots, x_r 在 k 上代数无关,且 x_{r+1}, \dots, x_n 每一个在 $F = k(x_1, \dots, x_r)$ 上代数,因此 E 是 F 的有限代数扩张。

E 作为 F-模是有限生成的,对于 $k \subseteq F \subseteq E$ 应用上命题,得到 F 是有限生成 k-代数,记 $F = k[y_1, \dots, y_s]$,每个 y_i 都是 $k(x_1, \dots, x_r)$ 的元素,具有形式 f_i/g_i 。

根据素数有限的证明, $k[x_1, \dots, x_r]$ 存在无穷个不可约多项式,因此存在一个和所有 g_i 都互素的 多项式 h, F 的元素 h^{-1} 不可能是 y_i 的多项式,矛盾。因此 E 在 k 上是代数的。

推论 7.7. 令 k 是域,A 是有限生成 k-代数。m 是 A 的一个极大理想。那么域 A/m 是 k 的有限代数扩张。特别的,如果 k 是代数闭的,那么 $A/m \cong k$ 。

7.1 Noether 环中的准素分解

定义 7.8. 理想 \mathfrak{a} 叫做不可约的,如果 $\mathfrak{a} = \mathfrak{b} \cap \mathfrak{c} \Rightarrow \mathfrak{a} = \mathfrak{b}$ 或 $\mathfrak{a} = \mathfrak{c}$.

引理 7.9. 在 Noether 环 A 中,每个理想是有限个不可约理想的交。

证明. 设所有不是有限个不可约的理想的交的集合非空,取其中的极大元 \mathfrak{a} ,由于 \mathfrak{a} 可约,故存在 $\mathfrak{a} = \mathfrak{b} \cap \mathfrak{c}, \mathfrak{a} \subseteq \mathfrak{b}, \mathfrak{a} \subseteq \mathfrak{c}$,于是 \mathfrak{b} 和 \mathfrak{c} 都是有限个不可约理想的交,矛盾。

引理 7.10. 在 Noether 环中, 每个不可约理想是准素的。

证明. 过渡到商环、只需证如果零理想不可约、那么它是准素的。

设 $xy=0, y\neq 0$,下证存在 n 使得 $x^n=0$ 。考虑升链 $\mathrm{Ann}(x)\subseteq \mathrm{Ann}(x^2)\subseteq \cdots$,这个链稳定,故对存在 n,使得 $\mathrm{Ann}(x^n)=\mathrm{Ann}(x^{n+1})=\cdots$ 。

如果 $a \in (y) \cap (x^n)$, 那么 ax = 0, $a = tx^n$ 。则 $t \in \text{Ann}(x^{n+1}) = \text{Ann}(x^n)$,故 a = 0,从而 $(x^n) \cap (y) = \{0\}$ 。由于 0 不可约,故必须有 $x^n = 0$,这说明 (0) 是准素的。

定理 7.11. 由这两个引理显然有 Noether 环 A 的每个理想都有准素分解。

命题 7.12. 在 Noether 环 A 中,每个理想 \mathfrak{a} 包含有它的根理想的一个幂次,即存在 n 使得 $r(\mathfrak{a})^n \subseteq \mathfrak{a}$ 。

证明. 根理想是有限生成的, 那么设 x_1, \dots, x_k 生成 $r(\mathfrak{a})$, 且设 $x_i^{m_i} \in \mathfrak{a}$, 令 $m = \sum (m_i - 1) + 1$, 那么 $r(\mathfrak{a})^m \subseteq \mathfrak{a}$.

推论 7.13. 在 Noether 环中, 小根是幂零的。

推论 7.14. 令 $A \in Noether$ 环, $m \in A$ 的一个极大理想, $q \in A$ 的任何理想, 那么以下断言是等价的:

i) q 是 m-准素的;

- $ii) \ r(\mathfrak{q}) = \mathfrak{m}$
- $iii) \exists n > 0, \mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$

命题 7.15. 令 $\mathfrak{a} \neq (1)$ 是 Noether 环 A 中的一个理想,那么属于 \mathfrak{a} 的素理想恰是在理想集合 $(\mathfrak{a}:x)(x\in A)$ 中出现的素理想。(注意对比第一唯一分解定理)

证明. 我们可以假定 $\mathfrak{a} = 0$, 否则过渡到 A/\mathfrak{a} 。

令 $\bigcap_{i=1}^n \mathfrak{q}_i = 0$ 是极小准素理想分解, $\mathfrak{p}_i = r(\mathfrak{q}_i)$,令 $\mathfrak{a}_i = \bigcap_{j \neq i} \mathfrak{q}_j \neq 0$ 。对 \mathfrak{a}_i 中的任何非零元 \mathbf{x} ,由4.6,有 $r(\mathrm{Ann}(x)) = \mathfrak{p}_i$,所以 $\mathrm{Ann}(x) \subseteq \mathfrak{p}_i$ 。

由于 \mathfrak{q}_i 是 \mathfrak{p}_i -准素的,存在一个整数 m 使得 $\mathfrak{p}_i^m \subseteq \mathfrak{q}_i$,于是 $\mathfrak{a}_i \mathfrak{p}_i^m \subseteq \mathfrak{a}_i \mathfrak{q}_i \subseteq \mathfrak{a}_i \cap \mathfrak{q}_i = 0$ 。设 M 是 使得该式成立的最小元素,设 $x \in \mathfrak{a}_i \mathfrak{p}_i^{m-1}$ 非零,那么 $\mathfrak{p}_i x = 0$,于是对这样的 x 有 $\mathrm{Ann}(x) \supseteq \mathfrak{p}_i$,因此 $\mathrm{Ann}(x) = \mathfrak{p}_i$

反之,若 $\mathrm{Ann}(x)$ 是一个素理想,那么 $r(\mathrm{Ann}(x))=\mathfrak{p}$,由第一唯一分解定理,因此 \mathfrak{p} 是属于 0 的素理想。

7.2 习题 7

1. 设 A 不是诺特环,令 Σ 是 A 的不能有限生成的理想的集合,证明: Σ 有极大元,且 Σ 的极大元为素理想。

这样若一个环的每个素理想都是有限生成的,那么他一定是诺特环。(I.S.Cohen)

证明. 由 Zorn 引理, Σ 存在极大元。

设 \mathfrak{p} 是一个极大元, 若 $a \notin \mathfrak{p}, b \notin \mathfrak{p}$ 。不妨 a 不可逆, 考虑 $\mathfrak{q} = (a) + \mathfrak{p}$, 有 \mathfrak{q} 是有限生成的。

设 \mathfrak{q} 由 $\{a_i + x_i\}$ 生成,其中 $a_i \in (a), x_i \in \mathfrak{p}$ 。设 $(x_1, x_2, \cdots, x_n) = \mathfrak{b}$,这是有限生成理想,有 $\mathfrak{b} \subsetneq \mathfrak{p}$,且 $\mathfrak{b} + (a) = (a) + \mathfrak{p}$ 。设 $y \in \mathfrak{p}, y \notin \mathfrak{b}$,设 $y = b_i + at$,有 $at \in \mathfrak{p}$,从而 $t \in (\mathfrak{p} : a)$,即 $\mathfrak{p} \subseteq \mathfrak{b} + a(\mathfrak{p} : a)$,而右边显然是左边的子集,从而 $\mathfrak{p} = \mathfrak{b} + a(\mathfrak{p} : a)$ 。由于 $b \in (\mathfrak{p} : a)$,从而 $(\mathfrak{p} : a) \supsetneq \mathfrak{p}$,从而 $(\mathfrak{p} : a)$ 是有限生成的,这样 $\mathfrak{b} + a(\mathfrak{p} : a)$ 是有限生成的,矛盾。

2. 令 A 是诺特环且令 $f = \sum_{n=0}^{\infty} a_n x^n \in A[[x]]$,证明: f 是幂零的当且仅当每个 a_n 是幂零的。

证明. 由第一章第五题, 从 f 幂零可以推出任意 a_n 幂零。

反之,若每个 a_n 幂零,由于诺特环的小根是幂零的,即存在 m 使得任意 m 个幂零元的乘积是 零,故 $f^m = 0$ 。

- 3. 令 a 是 A 中的不可约理想,则下列命题等价:
 - i) a 是准素的
 - ii) 对每个乘法封闭子集 S,存在 $x \in S$ 使得 $(S^{-1}\mathfrak{a})^c = (\mathfrak{a} : x)$
 - iii) 对任意 $x \in A$, 序列 $(\mathfrak{a}: x^n)$ 是稳定的。

证明. 若 i) 成立。若 $S \cap \mathfrak{a}$ 非空,那么取 $x \in S \cap \mathfrak{a}$,有 $(\mathfrak{a}:x) = A$,且 $(S^{-1}\mathfrak{a})^c = A$;若 $S \cap r(\mathfrak{a}) = \varnothing$,那么 $(\mathfrak{a}:x) = \mathfrak{a}$, $(S^{-1}\mathfrak{a})^c = \mathfrak{a}$;若 $S \cap r(\mathfrak{a}) \neq \varnothing$,则设 $S \in r(\mathfrak{a}) \cap S$,那么 $S^n \in S \cap \mathfrak{a}$,即为第一种情况。

若 ii) 成立, x=0 时显然 iii) 成立, 不妨 $x \neq 0$ 。考虑 S_x , 存在 $y=x^t$, $(\mathfrak{a}:y)=(S^{-1}\mathfrak{a})^c$,由于 $(\mathfrak{a}:x^u)\subseteq (S_x^{-1}\mathfrak{a})^c$ 恒成立, 从而 $(\mathfrak{a}:x^t)=(\mathfrak{a}:x^{t+1})=\cdots=(S^{-1}\mathfrak{a})^c$ 。

若 iii) 成立,设 $xy \in \mathfrak{a}, x \notin \mathfrak{a}$ 。若 $y \notin r(\mathfrak{a})$,考虑 $(\mathfrak{a}: y^n)$,它是稳定的,则存在 n 使得 $(\mathfrak{a}: y^n) = (\mathfrak{a}: y^{n+1}) = \cdots = \mathfrak{b}$ 。在 A/\mathfrak{a} 下考虑,设 $z \in (\bar{y}^n) \cap (\bar{x})$,有 $z = \bar{y}^n s = \bar{x}t$,有 $\bar{y}z = \bar{y}^{n+1}s = \bar{x}\bar{y}t = 0$,从而 $s \in (0: \bar{y}^{n+1}) = (0: \bar{y}^n)$,即 z = 0。从而 $0 = (\bar{y}^n) \cap (\bar{x})$,右者均不为 0,与不可约性矛盾。 \square

- 4. 判断下列哪个环是诺特环:
 - i) 在圆周 |z|=1 上没有极点的有理函数环
 - ii) 具有正的收敛半径的幂级数环
 - iii) 具有无穷收敛半径的幂级数环
 - iv) 前 k 阶导在原点为 0 的多项式全体构成的环
 - v) 对 w 的偏导数在 z=0 时为 0 的变元 z,w 的多项式全体构成的环

解. i) 是

- ii) 是
- iii) 不是
- iv) 是

v) 不是		
V) / I'AE		

5. 设 A 是诺特环,B 是有限生成 A-代数,G 是 B 的 A-自同构构成的一个有限群,令 B^G 是 G 的左乘作用下保持不变的 B 的元素,证明: B^G 是有限生成 A-代数。

证明. 事实上, $B \in B^G$ 上整 (参考第五章第 12 题), 从而由7.5可得成立。

6. 如果一个有限生成的环 K 是一个域, 那么它是一个有限域。

证明. 如果 $\operatorname{char} K = 0$,那么它是一个有限生成 \mathbb{Z} -代数,由于它是一个域,故有 $\mathbb{Z} \subset \mathbb{Q} \subseteq K$,且 K是有限生成 \mathbb{Q} -模。从而 \mathbb{Q} 是一个有限生成 \mathbb{Z} -模,这不可能。

如果 $\mathrm{char}K=p$,那么它是一个有限生成 $\mathbb{Z}/(p)$ -代数,从而由 Zariski Lemma 有它是 GF(p) 的有限代数扩张,故为有限域。

7. 令 X 是仿射代数簇,由一族方程 $f_{\alpha}(t_1, \dots, t_n) = 0$ 给出,证明存在有限个方程使得 X 由这些方程给出。

证明. k 作为域自然是诺特环,从而 $k[t_1, \cdots, t_n]$ 是诺特环。对由 f_{α} 生成的理想,自然存在有限生成元。

8. 如果 A[x] 是 Noether 环, 那么 A 是否一定是 Noether 环?

解. 对 \mathfrak{a}_n 升链, 考虑 $(\mathfrak{a}_n)^e$, 它是一个稳定升链。

若 $(\mathfrak{a}_n)^e = (\mathfrak{a}_{n+1})^e$,设 $y \in \mathfrak{a}_{n+1}, y \notin \mathfrak{a}_n$,有 $y \in (\mathfrak{a}_{n+1})^e = (\mathfrak{a}_n)^e$,从而存在 $x_i \in \mathfrak{a}_n$ 以及 $f_i \in A[x]$,使得 $\sum f_i x_i = y$,考虑两边多项式的次数,有每个 f_i 都是零次的,从而 $f_i \in A$,即有 $y \in \mathfrak{a}_n$,矛盾。从而 $\mathfrak{a}_n = \mathfrak{a}_{n+1}$,即升链稳定,故 A 为诺特环。

- 9. 设 A 是一个环, 使得
 - i) 对每个 A 的极大理想 \mathfrak{m} ,局部环 $A_{\mathfrak{m}}$ 是诺特环
 - ii) 对每个 A 中的非零元 x, A 的包含 x 的极大理想构成的集合是有限的。

证明: A 是诺特环。

证明. 对任意一个理想 \mathfrak{a} ,设一个极大理想 $\mathfrak{m}_1, \cdots, \mathfrak{m}_r$ 包含它。取 A 中的非零元 x_0 ,设 $\mathfrak{m}_1, \cdots, \mathfrak{m}_{r+s}$ 是含有 x_0 的素理想,记 $a_j \in \mathfrak{a}$ 使得 $x_j \notin \mathfrak{m}_{r+j}, 1 \leq j \leq s$ 。由于每个 $A_{\mathfrak{m}_j}$ 是诺特环,所以 \mathfrak{a} 在 $A_{\mathfrak{m}_j}$ 中是有限生成的,这表明存在 b_1, \cdots, b_k 在 $A_{\mathfrak{m}_j}$ 中生成了 \mathfrak{a} 。设这些所有 (a_i, b_j, x_0) 在 A 中生成了 \mathfrak{a}_0 ,则对任意的 \mathfrak{m} 为极大理想,有 \mathfrak{a}_0 与 \mathfrak{a} 在 $A_{\mathfrak{m}}$ 的扩理想相同,从而存在一个一一的模同态 $\mathfrak{a}_{\mathfrak{m}} \to (\mathfrak{a}_0)_{\mathfrak{m}}$,由3.17可得, $\mathfrak{a} = \mathfrak{a}_0$,即 \mathfrak{a} 是有限生成的。

10. 令 M 是一个诺特 A-模,证明: M[x] 是一个诺特 A[x]-模。

证明. 希尔伯特基定理即为 M=A 的情形,仿照基定理的证明很容易得到该结论。

11. 令 A 满足每个局部环 $A_{\mathfrak{p}}$ 是诺特环,请问 A 是诺特环吗?

解. 不一定是。第六章第 12 题的构造可以应用在这里,事实上,设 $\mathfrak{p} = \{(a_1, \cdot, a_{n-1}, 0, a_{n+1}, \cdots)\}$,此 时 $(A_{\mathfrak{p}})^{-1}\mathfrak{p}$ 任意一个元素 $(a_1, \cdots, 0, \cdots)/(\cdots, b_n, \cdots) = 0/(\cdots, b_n, \cdots)(0, \cdots, c_n, 0, \cdots)$,从而 $A_{\mathfrak{p}}$ 的极大理想是 0,即它是一个域,显然为诺特环。

12. 设 A 是环, B 是 faithfully flat A-algebra, 如果 B 是诺特环, 证明 A 也是诺特环。

证明. 由第三章第 16 题, 在 A 和 B 的理想间存在诱导的双射 $\mathfrak{a} \mapsto \mathfrak{a}^e$, 从而右者升链稳定代表左边的升链也是稳定的。

13. 令 $f:A\to B$ 是一个环同态,并设 $f^*:\operatorname{Spec}(B)\to\operatorname{Spec}(A)$ 是一个与 f 相伴的映射,证明: f^* 的 纤维是 B 的 Noether 子空间。

14. 令 k 是代数闭域,用 A 表示多项式环 $k[t_1,t_2,\cdots,t_n]$,设 $\mathfrak a$ 是 A 中的理想。设 V 是由理想 $\mathfrak a$ 定义的 k^n 中的簇: $V=\{(x_1,x_2,\cdots,x_n)\in k^n|f(x)=0,\forall f\in\mathfrak a\}$,令 I(V) 表示 V 生成的理想,即 $\{g|g(x)=0,\forall x\in V\}$,则 $I(V)=r(\mathfrak a)$ 。

证明. 容易看出若 $g^n \in \mathfrak{a}$, 那么 $g \in I(V)$, 从而 $r(\mathfrak{a}) \subseteq I(V)$ 。

若 $f \notin r(\mathfrak{a})$,由于根理想是包含 \mathfrak{a} 的素理想的交,从而存在一个素理想 $\mathfrak{p} \supseteq \mathfrak{a}$ 使得 $f \notin \mathfrak{p}$ 。

考虑 $B = A/\mathfrak{p}$, 令 $C = B_f = B[1/\bar{f}]$, 则 C 是有限生成 k-代数。根据7.7,令 \mathfrak{m} 是 C 的一个极大理想,有 $C/\mathfrak{m} \cong k$ 。

考虑映射链:

$$\phi: A \to A/\mathfrak{p} = B \to B_f = C \to C/\mathfrak{m} \cong k$$

 $\phi(x)$ 的核为一个极大理想,形如 $\mathfrak{m}_x = (t_1 - x_1, \dots, t_n - x_n)$, ϕ 实际上是把多项式在一个点 $x = (x_1, \dots, x_n)$ 上 "取值"。这样由于 $\mathfrak{a} \subseteq \mathfrak{m}_x$,从而 $(x_1, \dots, x_n) \in V$,而 $\phi(g)$ 是 k 中的可逆元不为 0,即 g 在 V 中不全为 0,从而 $g \notin I(V)$ 。

15. 令 A 是诺特局部环, \mathfrak{m} 是它的极大理想且 k 是它的同余类域,令 M 是有限生成 A-模,则下列命题等价:

- i) M 是自由模
- ii) M 是平坦模
- iii) $\mathfrak{m} \otimes M$ 到 $A \otimes M$ 的映射是双射
- iv) $\operatorname{Tor}_{1}^{A}(k, M) = 0$
- 16. 令 A 是诺特环, M 是有限生成 A-模, 则下列命题等价:
 - i) M 是平坦 A-模
 - ii) 对任意素理想 \mathfrak{p} , $M_{\mathfrak{p}}$ 是自由 $A_{\mathfrak{p}}$ -模
 - iii) 对任意极大理想 \mathfrak{m} , $M_{\mathfrak{m}}$ 是自由 $A_{\mathfrak{m}}$ -模
- 17. 令 A 是一个环, M 是诺特 A-模, 证明: M 的每个子模都有准素分解。
- 证明. 这是诺特环理想都可以准素分解的推论,证明过程仿照诺特环即可。
- 18. 设 A 是诺特环, \mathfrak{p} 是 A 的素理想, \mathfrak{d} 是有限生成 A-模,证明下列命题等价:
 - i) p 在 M 中是属于 0 的素理想
 - ii) 存在 $x \in M$ 使得 $Ann(x) = \mathfrak{p}$
 - iii) 存在 M 的子模同构于 A/\mathfrak{p} 。

由此推出存在 M 的子模列 $0 = M_0 \subsetneq M_1 \cdots \subsetneq M_r = M$,且每个 $M_i/M_{i-1} \cong A/\mathfrak{p}_i$

19. 令 \mathfrak{a} 是一个诺特环 A 中的理想,令 $\mathfrak{a} = \bigcap_{i=1}^r \mathfrak{b}_i = \bigcap_{i=1}^s \mathfrak{c}_i$ 是两个极小分解且每个 $\mathfrak{b}_i, \mathfrak{c}_i$ 不可约。证明: r = s 且(在重排下标后) $r(\mathfrak{b}_i) = r(\mathfrak{c}_i)$

证明. 假设 $r \leq s$, 设 $\mathfrak{d}_i = c_i \cap (\bigcap_{i=2}^r \mathfrak{b}_i)$, 我们断言 $\mathfrak{b}_1 = \bigcap_{i=1}^s (\mathfrak{d}_i + \mathfrak{b}_1)$ 。

如果这不真,那么存在 $b_i \in \mathfrak{b}_1, d_i \in \mathfrak{d}_i$,使得 $x = b_1 + d_1 = \cdots = b_s + d_s \notin \mathfrak{b}_1$,从而 $d_i - d_1 = b_1 - b_i \in \mathfrak{b}_1$,同时 $d_i - d_1 \in (\bigcap_{i=2}^r \mathfrak{b}_i)$,故 $d_i - d_1 = b_1 - b_i \in \mathfrak{a}$,从而 $d_i - d_1 \in \mathfrak{c}_j$, $\forall i, j$,从而 $d_1 \in \mathfrak{c}_i$, $d_1 \in \mathfrak{c}_i$, $d_1 \in \mathfrak{c}_i$, $d_1 \in \mathfrak{c}_i$ $d_1 \in \mathfrak{c$

从而 $\mathfrak{b}_1 = \bigcap_{i=1}^s (\mathfrak{d}_i + \mathfrak{b}_1)$,由于 \mathfrak{b}_1 是不可约的,从而存在 $\mathfrak{d}_i + \mathfrak{b}_1 = \mathfrak{b}_1$,即 $\mathfrak{d}_i \subseteq \mathfrak{b}_1$,从而 $\mathfrak{d}_i \subseteq \mathfrak{b}_1 \cap (\bigcap_{i=2}^r \mathfrak{b}_i) = \mathfrak{a}$,从而 $\mathfrak{d}_i = \mathfrak{a}$ 。

这样一点一点替换后,易得 r=s。且由于这是准素分解,从而属于 $\mathfrak a$ 的素理想集合也是对应的。

- 20. 设 X 是拓扑空间,设 \mathscr{F} 是具有下述性质的 X 的子集族中的最小者:这种集合包含所有 X 的开子集,且对于有限交和求补运算是封闭的。
 - i) 证明: X 的子集 $E \in \mathcal{F}$ 当且仅当 E 是形如 $U \cap C$ 集合的有限并,其中 U 是开集,C 是闭集。
 - ii) 假设 X 不可约,设 $E \in \mathscr{F}$,证明 E 在 X 中稠密当且仅当 E 包含 X 的一个非空开集。
- 证明. i) 根据 De Morgan's Laws 这是显然的。
 - ii) 由于不可约空间的开集是稠密的, 只需证 E 稠密时的那一部分。

设 E 稠密,且 $E = \bigcup_{i=1}^n (U_i \cap C_i)$,有 $X = \overline{E} = \bigcup \overline{U_i \cap C_i}$,由于 X 不可约,从而 $X = \overline{U_i \cap C_i}$,从而 $\overline{U_i} = X$,且 $\overline{C_i} = C_i = X$,从而 $U_i \cap C_i = U_i$ 。

21. 令 X 是 Noetherian 拓扑空间,令 E 是 X 的子集,证明: $E \in \mathscr{F}$ 当且仅当对每个不可约闭子集 X_0 ,要么 $\overline{E \cap X_0} \neq X_0$,要么 $E \cap X_0$ 包含一个 X_0 的非空开子集。

证明. $\overline{E \cap X_0} = X_0$ 表明它在 X_0 中稠密,由 20 题立得。

反之,若 $E \notin \mathscr{F}$,那么满足 $E \cap X' \notin \mathscr{F}$ 的闭子集 X' 构成的集合不空。由于 X 是 Noetherian 空间,从而这个集合有极小元 X_0 。记 $F = \overline{X_0 \cap E}$,如果 $F \neq X_0$,那么它满足 $F \cap E \in \mathscr{F}$,则 $E \cap X_0 = E \cap \overline{X_0 \cap E} \in \mathscr{F}$,矛盾,从而 $F = X_0$ 。

则若 $E \cap X_0$ 包含一个非空开集,那么 $(E \cap X_0) = (U \cap X_0) \cup ((E - U) \cap X_0) = (U \cap X_0) \cup (E \cap U^c \cap X_0) \in \mathscr{F}$ 。

22. 令 X 是 Noetherian 拓扑空间,令 E 是 X 的子集,证明: E 在 X 中开当且仅当对每个不可约闭 子集 X_0 ,要么 $\overline{E \cap X_0} = \emptyset$,要么 $E \cap X_0$ 包含一个 X_0 的非空开子集。

证明. 证明同上题。

- 23. 设 A 是诺特环, $f: A \to B$ 是有限型的环同态 (因此 B 是诺特环)。设 $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B)$,令 $f^*: Y \to X$ 是与 f 相伴的映射,那么 Y 的可构造子集在 f^* 的象是 X 的可构造子集。
- 24. 沿用习题 23 的记号,有 f^* 开等价于 f 有下降性质。
- 25. 设 A 是诺特环, f 是有限型且平坦的, 那么 f^* 是开映射。
- 26. 设 A 是诺特环,用 F(A) 表示有限生成 A-模的一切同态类的集合。设 C 是由 F(A) 生成的自由交换 群。对每个有限生成 A-模的短正合序列 $0 \to M' \to M \to M'' \to 0$,令 C 中的元素 (M')-(M)+(M'') 与之对应。设 D 是所有与短正合序列相应的元素生成的子群,商群 C/D 称作 A 的 Gothendieck 群,用 K(A) 表示。如果 M 是有限生成 A-模,令 $\gamma(M)$ 或 $\gamma_A(M)$ 表示(M) 在 K(A) 中的象。
- i) 证明: K(A) 有下述性质: 对定义在有限生成 A-模的类, 取值在一个交换群 G 中的加性函数 λ , 诱导一个唯一的 $\lambda_0: K(A) \to G$, 使得 $\lambda(M) = \lambda_0(\gamma(M))$
 - ii) 证明 K(A) 是由元素 $\gamma(A/\mathfrak{p})$ 生成,这里 \mathfrak{p} 是 A 的素理想。
 - iii) 如果 A 是域,更一般的,A 是主理想整环,证明: $K(A) \cong \mathbb{Z}$
- iv) 设 $f: A \to B$ 是有限环同态,证明纯量的局限产生一个同态: $f_1: K(B) \to K(A)$,使得 $f_1(\gamma_B(N)) = \gamma_A(N)$ 对某个 B-模 N 成立。如果 $g: B \to C$ 是另一个有限环同态,证明: $(g \circ f)_1 = f_1 \circ g_1$ 。 27. 令 A 是模且 $F_1(A)$ 是有限生成平坦 A-模的所有同构类, $K_1(A)$ 同上题,令 $\gamma_1(M)$ 表示 (M) 在 $K_1(A)$ 中的象。
- i) 证明模在 A 中作张量积导出 $K_1(A)$ 上一个交换环的同构,使得 $\gamma_1(M)\cdots\gamma_1(N)=\gamma_1(M\otimes N)$,这个环的单位元是 $\gamma_1(A)$
 - ii) 证明张量积导出群 K(A) 上的 $K_1(A)$ -模同构, 使得 $\gamma_1(M)\gamma(N) = \gamma(M \otimes N)$
 - iii) 如果 A 是(Noether)局部环,那么 $K_1(A) \cong \mathbb{Z}$
- iv) 设 $f:A\to B$ 是环同态,B 是诺特环,证明纯量扩张产生一个环同态 $f^1:K_1(A)\to K_1(B)$ 使 得 $f^1(\gamma_1(M))=\gamma(B\otimes_A M)$

v) 如果 $f:A\to B$ 是有限环同态,那么 $f_1(f^1(x)y)=xf_1(y)$,换言之,可以通过纯量局限把 K(B) 看做 $K_1(A)$ -模,同态 f^1 是 $K_1(A)$ 模同态。

8 Artin 环

命题 8.1. 在 Artin 环中, 每个素理想都是极大的。

证明. 设 \mathfrak{p} 是一个素理想,则 $B=A/\mathfrak{p}$ 是一个 Artin 整环。设 $x\in B, x\neq 0$,由降链条件,存在 n 使得 $(x^n)=(x^{n+1})$,因此存在 y 使得 $x^n=x^{n+1}y$,又 B 是整环,从而 xy=1,因此 B 是域。所以 \mathfrak{p} 极大。

推论 8.2. Artin 环小根等于大根。

命题 8.3. 一个 Artin 环只有有限个极大理想。

证明. 考察所有有限交 $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_r$,其中 \mathfrak{m}_i 是极大理想。这个集合有一个极小元素,设为 $\mathfrak{a} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$,对任何极大理想 \mathfrak{m} , $\mathfrak{m} \cap \mathfrak{a} = \mathfrak{a}$,从而 $\mathfrak{a} \subseteq \mathfrak{m}$ 。由 $\mathfrak{1}.23$,有某个 $\mathfrak{m}_i \subseteq \mathfrak{m}$,即有 $\mathfrak{m}_i = \mathfrak{m}$,故极大理想只有有限个。

命题 8.4. 在 Artin 环中, 小根 𝐧 是幂零理想。

证明. 存在 k 使得 $\mathfrak{N}^k = \mathfrak{N}^{k+1} = \cdots = \mathfrak{a}$,假定 $\mathfrak{a} \neq 0$ 。设 Σ 是所有使得 $\mathfrak{ab} \neq 0$ 的理想 \mathfrak{b} 构成的集合,因为 $\mathfrak{a} \in \Sigma$,故 Σ 非空。

取 Σ 的极小元 \mathfrak{b} ,存在 $x \in \mathfrak{b}$ 使得 $x\mathfrak{a} \neq 0$,从而 $(x)\mathfrak{a} \neq 0$,即 $(x) \in \Sigma$,又 \mathfrak{b} 极小,有 $(x) = \mathfrak{b}$ 。 又 $x\mathfrak{a}\mathfrak{a} = x\mathfrak{a} \neq 0$ 且 $x\mathfrak{a} \subseteq (x)$,从而 $x\mathfrak{a} = (x)$ 。取 y 使得 $x = xy, y \in \mathfrak{a}$,因此 $x = xy = xy^2 = \cdots$,但是 y 是幂零元,所以 x = 0,矛盾。

定义 8.5. 环 A 的一个素理想链是指一个有限的严格增序列 $\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$,这个链的长度是 n。 定义所有素理想链的长度的上确界称为 A 的**维数**(可以是正无穷)。域的维数为 0,整数环的维数为 1。

定理 8.6. 环 $A \in Artin$ 环等价于 $A \in Noether$ 环且 $\dim A = 0$.

证明. 若 A 是 Artin 环,由于每个素理想都是极大的,从而 $\dim A = 0$,而由于小根是幂零的,从而 $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_t \supseteq \Pi \mathfrak{m}_i$ 是幂零的,再由6.16,容易得出 A 是 Noether 环。

若 A 是 Noether 环且 $\dim A = 0$,由于零理想有准素分解,而属于理想的极小素理想是包含它的素理想集合的极小元(4.11),从而 A 只有有限个极小素理想。又 $\dim A = 0$,故它们都是极大的。不妨设 $\mathfrak{N} = \bigcap \mathfrak{m}_i$,设 $\mathfrak{N}^k = 0$,则 $\Pi \mathfrak{m}_i^k = 0$,故由6.16知 A 是 Artin 环。

命题 8.7. 若 A 是局部 Artin 环,它的极大理想为 m,则 m 是 A 仅有的素理想,因此是 A 的小根。故 m 的每个元素都是幂零的且这个理想本身也是幂零的。A 的元素或是可逆元或是幂零元。

命题 8.8. 设 A 是一个 Noether 局部环, \mathfrak{m} 是它的极大理想,则下面两个陈述恰好有一个为真:

- i) $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ 对所有 n 成立
- ii) $\mathfrak{m}^n = 0$ 对某个 n 成立, 此时 A 是一个 Artin 局部环。

证明. 设对某个 n 有 $\mathfrak{m}^n = \mathfrak{m}^{n+1}$,由 Nakayama 引理, $\mathfrak{m}^n = 0$,因此不满足 1 就满足 2,不满足 2,就满足 1。假设满足 2,设 \mathfrak{p} 是 A 的任何素理想,有 $\mathfrak{m}^n \subseteq \mathfrak{p}$,两边求根,有 $\mathfrak{m} = \mathfrak{p}$,因此 \mathfrak{m} 是仅有的素理想,因此 A 是 Artin 局部环。

定理 8.9 (Artin 环的结构定理). Artin 环 A 是有限个 Artin 局部环的直积, 且在同构意义下唯一。

证明. 设 \mathfrak{m}_i 是所有不同的极大理想,存在 k 使得 $\Pi\mathfrak{m}_i^k = 0$,而 $\Omega\mathfrak{m}_i^k = \Pi\mathfrak{m}_i^k = 0$,故自然映射 $A \to \Pi A/\mathfrak{m}_i^k$ 是同构,每个 A/\mathfrak{m}_i^k 是一个局部环 $((\mathfrak{m}_i/\mathfrak{m}_i^k)^k = 0)$,因此 A 是 Artin 局部环的直积。

反之,假定 $A \cong \Pi A_i$,其中 A_i 是 Artin 局部环,则对每个 i 有一个投影 ϕ_i 。设 \mathfrak{a}_i 是 Ker(ϕ_i),这些 \mathfrak{a}_i 两两互素,且 $\bigcap \mathfrak{a}_i = 0$,设 \mathfrak{q}_i 是 A_i 的唯一的素理想, \mathfrak{p}_i 是它在 A 中的限制理想,故它是素理想也是极大理想。由于 \mathfrak{q}_i 是幂零的,所以 \mathfrak{a}_i 是 \mathfrak{p}_i -准素的,且 $\bigcap \mathfrak{a}_i$ 是 0 的准素分解。因为 \mathfrak{a}_i 两互素,故 \mathfrak{p}_i 也是如此,它们是 0 理想的孤立素理想。因此所有 \mathfrak{a}_i 都是孤立的,由第二唯一性定理, \mathfrak{a}_i 由 A 唯一确定,从而在同构意义下唯一。

定义 8.10. 设 A 是一个局部环,m 是它的极大理想,k = A/m 是它的同余类域,A-模 m/m^2 被 m 零 化,因此有 k-向量空间构造。如果 m 是有限生成的,那么 m 的生成元集合的像张成向量空间 m/m^2 ,因此 $\dim_k(\mathfrak{m}/\mathfrak{m}^2)$ 有限。

命题 8.11. 设 A 是一个 Artin 局部环,则下述陈述等价:

- i) A 的每个理想都是主理想
- ii) 极大理想 m 是主理想
- $iii) \dim_k(\mathfrak{m}/\mathfrak{m}^2) \leq 1$

证明. 显然有 $1 \rightarrow 2 \rightarrow 3$, 只需证明 $3 \rightarrow 1$ 。

如果 $\dim(\mathfrak{m}/\mathfrak{m}^2) = 0$,则 $\mathfrak{m} = \mathfrak{m}^2$,由 Nakayama 引理, $\mathfrak{m} = 0$,这样 A 是域。

如果 $\dim(\mathfrak{m}/\mathfrak{m}^2) = 1$, 则 \mathfrak{m} 是主理想,设 $\mathfrak{m} = (x)$,又设 \mathfrak{a} 是 A 中异于 (0) 或者 (1) 的理想。

我们有 $\mathfrak{m}=\mathfrak{R}$,因此 \mathfrak{m} 幂零,故存在 \mathfrak{r} 使得 $\mathfrak{a}\subseteq\mathfrak{m}^r$,且 $\mathfrak{a}\not\subset\mathfrak{m}^{r+1}$,于是存在 $y\in\mathfrak{a}$ 使得 $y=ax^r$,由此推出 $a\notin(x)$,A 是可逆元。因此 $x^r\in\mathfrak{a}$,于是 $\mathfrak{m}^r\subseteq\mathfrak{a}$,因此 $\mathfrak{a}=\mathfrak{m}^r=(x^r)$,所以 \mathfrak{a} 是主理想。

8.1 习题 8

1. 设 $\mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \cap \mathfrak{q}_n = 0$ 是一个 Noether 环中零理想的一个准素分解, \mathfrak{q}_i 是 \mathfrak{p}_i 准素的, $\mathfrak{p}_i^{(r)}$ 是 \mathfrak{p}_i 的第 r 阶 symbol power,证明:对每个 $i = 1, 2, \cdots, n$,存在一个整数 r_i 使得 $\mathfrak{p}^{(r_i)} \subseteq \mathfrak{q}_i$ 。

假设 \mathfrak{q}_i 是一个孤立准素分支,那么 $A_{\mathfrak{p}_i}$ 是一个 Artin 局部环,因此如果 \mathfrak{m}_i 是它的极大理想,对 充分大的 r 有 $\mathfrak{m}_i^r=0$,于是对这些大的 r 有 $\mathfrak{q}_i=\mathfrak{p}_i^{(r)}$

若 \mathfrak{q}_i 是一个嵌入准素分支,则 $A_{\mathfrak{p}_i}$ 不是 Artin 环,因此这些幂次 \mathfrak{m}_i^r 都不相同,从而 $\mathfrak{p}_i^{(r)}$ 也都不相同,从而在给定的准素分解中,我们可以用 $\mathfrak{p}^{(r)}$ 中的元素去替换 \mathfrak{q}_i ,于是存在 (0) 的无限个极小分解,他们区别在于 \mathfrak{p}_i 分支不同。

证明. 若 $x \in \mathfrak{p}^{(r)}$, 即 $x/1 = q/s, s \in A - \mathfrak{p}, q \in \mathfrak{p}^r$, 即 $xss' = qs' \in \mathfrak{p}^r$, 由于诺特环的性质,存在 $\mathfrak{p}^r \subseteq \mathfrak{q}$, 从而此时 $x \in \mathfrak{q}$, 即 $\mathfrak{p}^{(r)} \subset \mathfrak{q}$ 。

- 2. 设 A 是诺特环, 那么下列命题等价:
 - i) A 是 Artin 环
 - ii) Spec(A) 是离散且有限的
 - iii) Spec(A) 是离散的

证明. 若 A 是 Artin 环, 显然 ii) 和 iii) 都是成立的。

若 ii) 成立则 iii) 成立。

若 iii) 成立,每个单点集是开集说明素理想之间不含有包含关系,即环 A 有有限个素理想且均为极大理想。此时 $\dim A=0$,从而由 A 是诺特环,有 A 是 Artin 环。

- 3. 令 k 是域, A 是有限生成 k-代数,请证明下列命题等价:
 - i) A 是 Artin 环
 - ii) A 是有限 k-代数

证明. 若 i) 成立,由于 A 是局部 Artin 环的直积,只需对局部 Artin 环证明即可。设 A 的极大理想为 \mathfrak{m} ,则 $k'=A/\mathfrak{m}$ 是 k 的有限生成代数,由 ZariskiLemma 有 k' 是 k 的有限代数扩张,从而是有限维 k-向量空间。

由于 A 是 Artin 环,从而存在链 $\mathfrak{m}\supseteq\mathfrak{m}^2\supseteq\mathfrak{m}^3\supseteq\cdots\supseteq\mathfrak{m}^r=0$,且有 $\mathfrak{m}^i/\mathfrak{m}^{i+1}\cong A/\mathfrak{m}$,从而 \mathfrak{m} 是有限生成 k-模。

若 ii) 成立, A 可以视为有限维 k-向量空间。

- 4. 设 $f: A \to B$ 是有限型环固态; 研究下列命题:
 - i) f 有限;
 - ii) f^* 的纤维是 Spec(B) 的离散子空间;
 - iii) 对 A 的每一素理想 \mathfrak{p} , 环 $B \otimes_A k(\mathfrak{p})$ 是有限 k(p)-代数 (k(P) 是 $A_{\mathfrak{p}}$ 的同余类域);
 - iv) f^* 的纤维是有限的.

证明: $i \rightarrow ii \rightarrow iii \rightarrow iv$)

如果 f 是整的, 且 f^* 的纤维是有限的, f 是否一定有限?

5. 证明第五章习题 16 中的 X 是 L 的有限覆盖。

证明.

6. 设 A 是一 Noether 环, q 是 A 中一个 p-准素理想。考虑从 q 到 p 的准素理想链。证明所有这种链都具有限有界长度,并且所有极大链的长度都相同。

证明. 类似于合成列的证明方法可以证明。

9 离散赋值环和 Dedekind 整环

命题 9.1. 设 A 是维数 1 的 Noether 整环,A 中每一个理想 \mathfrak{a} 可以唯一表示为准素理想的乘积,这些准素理想的根互不相同。

证明. 由于 A 是 Noether 环, \mathfrak{a} 有一个极小准素分解 $\mathfrak{a} = \bigcap \mathfrak{q}_i$,其中每个 \mathfrak{q}_i 是 \mathfrak{p}_i -准素的。因为 $\dim A = 1$ 且 A 是整环,A 的每个非零素理想都是极大的(素理想链 $\mathfrak{p} \supseteq (0)$),因此 \mathfrak{p}_i 是互不相同的 极大理想(因为 $\mathfrak{p}_i \supseteq \mathfrak{q}_i \supseteq \mathfrak{a} \neq 0$),所以是两两互素的。由此可得 \mathfrak{q}_i 两两互素,故有 $\Pi \mathfrak{q}_i = \bigcap \mathfrak{q}_i$,因此 $\mathfrak{a} = \Pi \mathfrak{q}_i$ 。

反之,如果 $\mathfrak{a} = \Pi \mathfrak{q}_i$,同样推理可得 $\mathfrak{a} = \bigcap \mathfrak{q}_i$,这是 \mathfrak{a} 的一个极小准素分解,其中每个 \mathfrak{q}_i 是一个 孤立准素分支,因此表示方法唯一。

命题 9.2. 设 A 是一个维数 1 的 Noether 环,它的每个准素理想是一个素理想的幂,这样的理想都能分解成素理想的乘积,如果我们相对于一个非零素理想 p 对 A 做局部环 A_p ,满足和 A 一样的条件。因此 A_p 中每个非零理想是极大理想的幂。

9.1 离散赋值环

定义 9.3. 设 K 是一个域, $K^* = K - \{0\}$ 是 K 的乘法群。K 的一个离散赋值 (discrete valuation) 是 一个 K^* 到 \mathbb{Z} 之上的映射 v,使得:

- i) v(xy) = v(x) + v(y), 即 v 是一个群同态;
- ii) $v(x+y) \ge \min(v(x), v(y))$

所有使得 $v(x) \ge 0$ 的 x 和 0 构成一个环, 叫做 v 的赋值环, 它是 K 的一个赋值环。令 $v(0) = +\infty$, 就将 v 扩张到整个 K 上。

一个整环 A 叫做离散赋值环 (discrete valuation ring), 如果它的分式环 K 有一个离散赋值 v 而 A 恰是 v 的赋值环。

例 1. i) $K = \mathbb{Q}$, 对任意素数 p, 可以定义 $v_p(x)$ 为 x 的 p 的幂次 (可以为负数)。

ii) K = k[x], k 是域,取不可约多项式 f,可以如 i) 定义 v。

命题 9.4. 由于赋值环是局部环,所以 A 只有一个极大理想,由于 $v(1) = 0, v(x^{-1}) = -v(x)$,从而极大理想由所有满足 v(x) > 0 的 $x \in K$ 构成。

命题 9.5. 如果离散赋值环 A 中两个元素 $v(x) = v(y) \neq 0$,则 $v(xy^{-1}) = 0$,因此 xy^{-1} 可逆,故 (x) = (y)。

如果 $\mathfrak{a} \neq 0$ 是 A 中的理想,则存在一个最小整数 k 使得对某个 $x \in \mathfrak{a}$ 有 v(x) = k,因此 \mathfrak{a} 包含有一切满足 $v(y) \geq k$ 的 y ($yx^{-1} \in A$,从而 $yx^{-1}x \in \mathfrak{a}$),于是 A 中仅有的非零理想是理想 $\mathfrak{m}_k = \{y \in A : v(y) \geq k\}$ 。这些理想构成单链 $\mathfrak{m} \supseteq \mathfrak{m}_2 \supseteq \cdots$,因此 A 是 Noether 环。

更进一步的, $v: K^* \to \mathbb{Z}$ 是满的,因此存在 $x \in \mathfrak{m}$ 使得 v(x)=1,那么 $\mathfrak{m}=(x), \mathfrak{m}_k=(x^k)$,这样 \mathfrak{m} 是 A 中仅有的非零素理想,而 A 是 Noether 局部整环,维数为 1,它的任一非零理想都是极大理想的幂。

命题 9.6. 设 A 是维数 1 的 Noether 局部整环,m 是它的极大理想,k = A/m 是它的同余类域,则下述叙述等价:

- i) A 是离散赋值环
- ii) A 是整闭的
- iii) m 是主理想
- $iv) \dim_k(\mathfrak{m}/\mathfrak{m}^2) = 1$
- v) 每个非零理想是 m 的一个幂
- vi) 存在 $x \in A$, 使得每个理想形如 (x^k)

证明. 若 i) 成立, 赋值环都是整闭的, 从而 ii) 成立。

若 ii) 成立,设 $a \in \mathfrak{m}$,由于 \mathfrak{m} 是唯一的素理想,从而 $r(a) = \mathfrak{m}$,从而存在 n 使得 $\mathfrak{m}^n \subseteq (a), \mathfrak{m}^{n-1}$ 不是 (a) 子集。设 $b \in \mathfrak{m}^{n-1}, b \notin A$,设 x = a/b 是 K 的分式域的元素,则 $x^{-1}a = b$,从而 $x^{-1} \notin A$,由于 A 是整闭的,从而 x^{-1} 在 A 上整。在 K 上考虑 $x^{-1}\mathfrak{m}$,yo 若 ii) 成立,设 $a \in \mathfrak{m}$,由于 \mathfrak{m} 是唯一的素理想,从而 $r(a) = \mathfrak{m}$,从而存在 n 使得 $\mathfrak{m}^n \subseteq (a), \mathfrak{m}^{n-1}$ 不是 (a) 子集。设 $b \in \mathfrak{m}^{n-1}, b \notin A$,设 x = a/b 是 K 的分式域的元素,则 $x^{-1}a = b$,从而 $x^{-1} \notin A$,由于 A 是整闭的,从而 x^{-1} 在 A 上整。在 K 上考虑 $x^{-1}\mathfrak{m}$,由于 $b\mathfrak{m} \subseteq (a)$,从而 $x^{-1}\mathfrak{m} \subseteq A$,若 $x^{-1}\mathfrak{m} \subseteq \mathfrak{m}$,则 \mathfrak{m} 是一个忠实 $A[x^{-1}]$ -模,从 而作为 A-模是有限生成的,从而 x^{-1} 上整,矛盾。故 $x^{-1}\mathfrak{m}$ 包含 A 的可逆元,此时 $\mathfrak{m} = Ax = (x)$

若 iii) 成立,显然 $\dim_k(\mathfrak{m}/\mathfrak{m}^2) \leq 1$,而 $\dim = 0$ 时为 Artin 环,从而 $\dim(\mathfrak{m}/\mathfrak{m}^2) = 1$ 。

若 iv) 成立,设 \mathfrak{a} 是一个理想,则存在 n 使得 $\mathfrak{m}^n \subset \mathfrak{a}$,在 A/\mathfrak{m}^n 上(此时是一个 Artin 环)应用 Artin 环的性质,它是一个主理想且为 (x^r) 。

若 v) 成立,由于 $\mathfrak{m} \neq \mathfrak{m}^2$,取 $x \in \mathfrak{m}, x \notin \mathfrak{m}^2$,则 $(x) = \mathfrak{m}^r$,从而 r = 1,故 $\mathfrak{m} = (x)$,故每个理想都是 (x^s)

若 vi) 成立, 定义 v(a) = k, 其中 $(a) = (x^k)$ 。

9.2 Dedekind 整环

定理 9.7. 设 A 是维数 1 的 Noether 整环 (注意离散赋值环要求是局部 Noether 整环),则下述陈述 等价:

- i) A 是整闭的
- ii) A 中每个准素理想都是素理想的一个幂
- iii) 每个局部环 An 是一个离散赋值环

定义 9.8. 满足上三个条件的环称为 Dedekind 整环 (Dedekind domain)。

例 2. *i*) 任意主理想整环,都是维数为 1 的 Noether 整环,它的每个局部环 A_p 也是主理想整环,由 9.6有 A_p 是一个离散赋值环,从而 A 是 Dedekind 整环。

ii) K 是代数数域,它的整数环 A 是 \mathbb{Z} 在 K 中的整闭包,此时 A 是 Dedekind 整环。

推论 9.9. 在一 Dedekind 整环中,每一非零理想唯一分解成素理想的积。

定理 9.10. 代数数域 ($\mathbb{Q}(\zeta)$) 的整数环是 *Dedekind* 整环。

证明. K 是 Q 的可分扩张, 因此 K 在 Q 上的基 v_1, \dots, v_n 使得 $A \subseteq \Sigma \mathbb{Z} v_i$ 。因此 A 是有限生成 \mathbb{Z} -模,

故是 Noether 环。A 是整闭的,只需证明 A 中每个非零素理想是极大的。对任何素理想 \mathfrak{p} , $\mathfrak{p} \cap \mathbb{Z}$ 是 \mathbb{Z} 的极大理想,于是 \mathfrak{p} 是 A 中极大理想。

9.3 分式理想

定义 9.11. A 是一个整环,K 是它的分式域。A 的**分式理想**是 K 的一个 A-子模 M 满足 $xM \subseteq A$,对某个 $x \in A, x \neq 0$ 成立。特别通常意义上的理想(现称整理想)是分式理想。任一元素 $u \in K$ 生成一个分式理想,记为 (u) 或者 (Au)。若 M 是一分式理想,所有满足 $xM \subseteq A$ 的 $x \in K$ 的集合记为 (A:M)。

定义 9.13. K 的一个 A-子模 M 叫做**可逆理想** (invertible ideal),如果存在 K 的一个 A-子模 N 使得 MN = A。模 N 是唯一的并且等于 (A:M),因为有 $N \subseteq (A:M) = (A:M)MN \subseteq AN = N$ 。可以 推出 M 是有限生成的,因而是分式理想;因为 M(A:M) = A,所以存在 $x_i \in M$, $y_j \in (A:M)$ 使得 $\Sigma x_i y_j = 1$,因此对任意 $x \in M$,有 $x = \Sigma (y_i x) x_i$,故 M 由 x_1, \dots, x_n 生成。

显然每个非零主理想 (u) 都是可逆的,它的逆是 (u^{-1})。所有可逆理想对于乘法构成群,它的单位元是 A=(1)。

命题 9.14. 对任意分式理想 M, 有下列陈述等价:

- i) M 是可逆的
- ii) M 是有限生成的,且对每个素理想 \mathfrak{p} , $M_{\mathfrak{p}}$ 是可逆的
- iii) M 是有限生成的,且对每个极大理想 m, M_m 是可逆的

证明. 只需证 $3 \to 1$: 设 $\mathfrak{a} = M(A:M)$,这是一个整理想。对每一个极大理想 \mathfrak{m} ,我们有 $\mathfrak{a}_{\mathfrak{m}} = M_{\mathfrak{m}}(A_{\mathfrak{m}}:M_{\mathfrak{m}}) = A_{\mathfrak{m}}$,因此 $\mathfrak{a} \not\subset \mathfrak{m}$,因此 $\mathfrak{a} = A$,即 M 是可逆的。

命题 9.15. 设 A 是一个局部整环,那么 A 是离散赋值环等价于 A 中的每个非零分式理想可逆。

证明. 若 A 是离散赋值环,设 x 是 A 中极大理想 m 的生成元,并设 $M \neq 0$ 是一个分式理想,则存在 $y \in A$ 使得 $yM \subseteq A$,这样 yM 是一个整理想,设为 (x^r) ,于是 $M = (x^{r-s})$,这里 s = v(y)。

若 A 的每个非零分式理想都是可逆的,则必是有限生成的,所以 A 是 Noether 环。只需证明每个非零整理想是 \mathfrak{m} 的一个幂。设 Σ 是不为 \mathfrak{m} 的幂的非零理想构成的集合,若它非空,设 \mathfrak{a} 是一个极大元,则有 $\mathfrak{a} \neq \mathfrak{m}$,从而 $\mathfrak{a} \subseteq \mathfrak{m}$,因此 $\mathfrak{m}^{-1}\mathfrak{a} \subsetneq \mathfrak{m}^{-1}\mathfrak{m} = A$ 是一个真整理想,且 $\mathfrak{m}^{-1}\mathfrak{a} \supseteq \mathfrak{a}$ 。如果 $\mathfrak{m}^{-1}\mathfrak{a} = \mathfrak{a}$,则 $\mathfrak{a} = \mathfrak{m}\mathfrak{a}$,由 Nakayama 引理有 $\mathfrak{a} = 0$,因此 $\mathfrak{m}^{-1}\mathfrak{a} \supsetneq \mathfrak{a}$,因此 $\mathfrak{m}^{-1}\mathfrak{a}$ 是 \mathfrak{m} 的幂,矛盾。 \square

定理 9.16. 设 A 是一个整环, 那么 A 是 Dedekind 整环等价于 A 中每个非零分式理想可逆。

证明. 若 A 是 Dedekind 整环,设 M 是非零分式理想,因为 A 是 Noether 环,故 M 是有限生成的。对每个素理想 $\mathfrak{p} \neq 0$, $M_{\mathfrak{p}}$ 是离散赋值环 $A_{\mathfrak{p}}$ 中的非零分式理想,从而 $M_{\mathfrak{p}}$ 是可逆的,从而 M 是可逆的。

若 A 中每个非零分式理想均可逆,因此是有限生成的,从而 A 是 Noether 环。对于 $A_{\mathfrak{p}}$ 的任意非零理想 \mathfrak{b} ,设 $\mathfrak{a} = \mathfrak{b}^c = \mathfrak{b} \cap A$,则 \mathfrak{a} 可逆,从而 $\mathfrak{b} = \mathfrak{a}_{\mathfrak{p}}$ 可逆,从而 $A_{\mathfrak{p}}$ 是离散赋值环。

推论 9.17. 设 $A \in Dedekind$ 整环,则 A 中所有非零分式理想对于乘法构成一个群,称为 A 的理想群,记为 I。

定义 9.18. 设 K^* 为 K 的乘法群,每个 $u \in K^*$ 定义了一个分式理想 (u),而映射 $u \to (u)$ 定义了一个同态 $\varphi: K^* \to I$, φ 的像 P 称为主分式理想群。商群 H = I/P 叫做 A 的理想类群。 φ 的核 U 是 所有满足 (u) = (1) 的 u 构成的集合,所以它是 A 的可逆元群。我们有正合列

$$1 \to U \to K^* \to I \to H \to 1$$

10 完备化

10.1 拓扑和完备化

定义 10.1. G 是一个拓扑交换群,即交换群有一个拓扑结构,且加法运算(交换群的群运算记为加法)和求逆运算都是连续的。若 $\{0\}$ 在 G 中是闭的,则 $G\times G$ 中对角线是闭的(因为它是连续映射 $(x,y)\to x-y$ 下 0 的原像),于是 G 是 Hausdorff 的(记对角线组成的集合为 Δ ,对任意两个元素 $x,y\in G$,有 $(x,y)\in \Delta^c$,从而存在 G 的开集 U,V 使得 $(x,y)\in U\times V\subseteq \Delta^c$,则 $U\cap V=\varnothing,x\in U,y\in V)$ 。设 A 是 G 的某个元素,由 $T_a(x)=x+a$ 定义了一个 G 到 G 的同胚,因此如果 U 是 0 的一个邻域,则 U+A 是 A 的邻域,反之 A 的邻域均以这种形式出现,从而 G 的拓扑由 0 的邻域唯一确定。

引理 10.2. 设 H 是 G 中 0 的一切邻域的交,则

- i) H 是子群
- ii) H 是 {0} 的闭包
- iii) G/H 是 Hausdorff 的
- iv) G 是 Hausdorff 的等价于 H=0

证明. i) 若 $x \neq 0 \in H$,若 $-x \notin H$,则存在 0 的开邻域 U 使得 $-x \notin U$,取同胚 $-x \to x$,有 U 的 原像 U' 是开集,但是 U' 包含 0 但不含 x,矛盾。

若 $x,y \neq 0 \in H$,对任意开邻域 U,考虑同胚 T_y , $0 = (-y) + y \in T_y(U)$,从而 $x, -x \in T_y(U)$,故 $-x - y \in U$,这说明 $-x - y \in H$,即 $x + y \in H$ 。

- ii) 由于 $\{\bar{0}\}$ 是所有含 0 的闭包的交集,从而 $H \subseteq \{\bar{0}\}$,而由闭包的定义(如果 x 的任意邻域与 A 有交点,那么 $x \in \bar{A}$),如果 x 的任意邻域包含 0,作平移 T_{-x} ,那么 H 包含-x,故 $x \in \bar{A}$
 - iii) G/H 的点是闭的,从而 G/H 是 Hausdorff 的。

定义 10.3. 假设 0 有可数的基础邻域组,则 G 的完备化 (the completion) \hat{G} 可以按如下方法定义: 对 G 的元素序列 (x_r) ,它被定义为 Cauchy 序列是指对 0 的任意邻域 U,存在一个整数 s(U) 使得对任意 $\mu,\nu\geq s(U)$ 都有 $x_\mu-x_\nu\in U$ 。

两个 Cauchy 序列 $(x_r), (y_r)$ 等价是指在 G 中 $x_{\nu} - y_{\nu} \to 0$ 。全部 Cauchy 序列的等价类集合记为 \hat{G} ,显然它关于加法构成交换群。对自然同态 $\phi: G \to \hat{G}, \phi(x) = (x)(由一个元素组成的常数序列)$,它有 $Ker(\phi) = \bigcap U$,这里 U 是 0 的一切邻域。因此 ϕ 是单的当且仅当 G 是 Hausdorff 的。

命题 10.4. 如果 H 是一个交换拓扑群, $f: G \to H$ 是连续同态,则 G 中 Cauchy 序列在 f 的象是 Cauchy 序列,于是 f 诱导出同态 $\hat{f}: \hat{G} \to \hat{H}$,它是连续的且 $g \circ f = \hat{g} \circ \hat{f}$ 。

假定 $0 \in G$ 有一组由子群组成的基础邻域组,这样就有子群序列 $G = G_0 \supseteq G_1 \supseteq \cdots$, $U \subseteq G$ 是 0 的邻域当且仅当它包含某个 G_s 。

定义 10.5. 设 (x_{ν}) 是 G 中的 Cauchy 序列,则 x_{ν} 在 G/G_n 中的像最终要是常数,设为 ζ_n ,在投影 $G/G_{n+1} \xrightarrow{\theta_{n+1}} G/G_n$ 下有 $\zeta_{n+1} \to \zeta_n$ (协调性),这样 Cauchy 序列定义了一个**协调列** (coherent sequence)。等价的 Cauchy 定义了同样的协调序列。给定一个协调序列 (ζ_n) ,取 x_n 为 ζ_n 所在陪集任意元素,有 $x_{n+1}-x_n\in G_n$,可以构造一个 Cauchy 序列 (x_n) ,这样 \hat{G} 可以等价的定义为带有显然群结构的协调序列 (ζ_n) 的集合。

更一般的,对任意群 $\{A_n\}$ 及同态 $\theta_{n+1}:A_{n+1}\to A_n$ 的序列,我们称之为反向系统 (inverse system),而所有协调序列 $(a_n)(a_n\in A_n,\theta_{n+1}a_{n+1}=a_n)$ 组成的群叫做反向极限 (inverse limit),记为 $\lim_{\leftarrow}A_n$,有 $\hat{G}=\lim_{\leftarrow}G/G_n$ 。

反向系统 $\{G/G_n\}$ 满足 θ_{n+1} 是满的,称任一具有这一性质的反向系统为满系统。

命题 10.6. 若 $0 \to \{A_n\} \to \{B_n\} \to \{C_n\} \to 0$ 是一反向系统的正合序列,则 $0 \to \lim_{\leftarrow} A_n \to \lim_{\leftarrow} B_n \to \lim_{\leftarrow} C_n$ 正合。若再设 $\{A_n\}$ 是满系统,则 $0 \to \lim_{\leftarrow} A_n \to \lim_{\leftarrow} B_n \to \lim_{\leftarrow} C_n \to 0$ 正合。

证明. 设 $A = \Pi_{n=1}^{\infty} A_n$,定义 $d_A : A \to A$,在每个分量上 $d_A(a_n) = a_n - \theta_{n+1}(a_{n+1})$,则 $\operatorname{Ker}(d_A) \cong \lim \leftarrow A_n$,类似的可以定义 B, C, d_B, d_C 。

我们有正合序列

$$0 \to \operatorname{Ker} d_A \to \operatorname{Ker} d_B \to \operatorname{Ker} d_C \to \operatorname{Coker} d_A \to \operatorname{Coker} d_B \to \operatorname{Coker} d_C \to 0$$

推论 10.7. 设 $0 \to G' \to G \to G'' \to 0$ 是一个群的正合序列, G 有由子群序列 $\{G_n\}$ 定义的拓扑, 并且对 G', G'' 给出由子群序列 $\{G' \cap G_n\}, \{pG_n\}$ 诱导的拓扑, 则 $0 \to \hat{G}' \to \hat{G} \to \hat{G}'' \to 0$ 正合。

推论 10.8. \hat{G}_n 是 \hat{G} 的子群, 且 $\hat{G}/\hat{G}_n \cong G/G_n$ 。

证明.
$$\Diamond G' = G_n, \ G'' = G/G', \$$
 于是 $\hat{G}'' = G''$ 。

定义 10.9. 如果 $\phi: G \to \hat{G}$ 是同构的,那么称 G 为完备的,上推论说明 G 的完备化是完备的。

取 G=A, $G_n = \mathfrak{a}^n$, 这样定义 A 的拓扑称为 $\mathfrak{a} - adic$ 拓扑,或 \mathfrak{a} 拓扑。对这个拓扑,A 是一个 拓扑环。这个拓扑是 Hausdorff 拓扑当且仅当 $\bigcap \mathfrak{a}^n = (0)$ 。A 的完备化也是拓扑环, $\phi: A \to \hat{A}$ 是连 续的环同态,它的核是 $\bigcap \mathfrak{a}^n$ 。

类似的,对一个 A-模 M,取 G=M, $G_n=\mathfrak{a}^n M$,定义了一个 M 上的 \mathfrak{a} -拓扑,M 的完备化 \hat{M} 是一个拓扑 \hat{A} -模(即 $\hat{A}\times\hat{M}\to\hat{M}$ 是连续的)。

10.2 滤链 (Filtrations)

定义 10.10. 对一个 A-模 M, M 的一个滤链为一个无限子模链 $M = M_0 \supseteq M_1 \supseteq \cdots$,记为 (M_n) 。 若对任意 $n \in \mathfrak{a}M_n \subseteq M_{n+1}$,则称为 \mathfrak{a} -滤链。若对充分大的 $n \in \mathfrak{a}M_n = M_{n+1}$,则称为稳定 \mathfrak{a} -滤链,这样 $(\mathfrak{a}^n M)$ 是一个稳定 \mathfrak{a} -滤链 (stable filtration)。

引理 10.11. 如果 (M_n) 和 (M'_n) 都是 M 的稳定 \mathfrak{a} -滤链,则它们有有界差:指存在一个整数 n_0 使得对任意 n 都有 $M_{n+n_0}\subseteq M'_n$ 和 $M'_{n+n_0}\subseteq M_n$ 。因此所有稳定的滤链定义相同的拓扑,即 \mathfrak{a} -拓扑。

证明. 只要对 $M'_n = \mathfrak{a}^n M$ 证明就可以了,因为 $\mathfrak{a} M_n \subseteq M_{n+1}$,有 $\mathfrak{a}^n M \subseteq M_n$,又设对任意 $n \ge n_0$ 有 $\mathfrak{a} M_n = M_{n+1}$,因此 $M_{n+n_0} = \mathfrak{a}^n M_{n_0} \subseteq \mathfrak{a}^n M$ 。

10.3 分次环和分次模

定义 10.12. 一个分次环 (graded ring) 是指一个环 A 及 A 的加法群的一组子群 (A_n) ,使得 $A = \bigoplus_{n=0}^{\infty} A_n$,且 $A_m A_n \subseteq A_{m+n}$ 对一切 m 和 n 成立。这样 A_0 是 A 的子环而每个 A_n 是一个 A_0 -模。

设 A 是一个分次环,一个分次 A-模是指一个 A-模 M 及 M 的一组子群 $(M_n)_{n\geq 0}$,使得 $M=\bigoplus_{n=0}^{\infty}M_n$ 且 $A_mM_n\subseteq M_{m+n}$ 对任意 m,n 成立,这样每个 M_n 是一个 A_0 模。M 中的一个元素 x 称为**齐次的** (homogeneous),n 称为 x 的次数,如果对某个 n 有 $x\in M_n$ 成立。任何一个 $y\in M$ 都可以写成一个和 $\sum_n y_n$,其中对一切 $n\geq 0$ 有 $y_n\in M_n$ 且除了有限个 y_n 外均为 y0。非零分量 y_n 称为 y0 的齐次分量 (homogeneous components)。

设 M, N 是分次 A-模,一个分次 A-模同态是指一个 A-模同态 $f:M\to N$ 使得 $f(M_n)\subseteq N_n$ 对一切 n 成立。

命题 10.13. 设 A 是分次环, 设 $A_{+} = \bigoplus_{n>0} A_{n}$, A_{+} 是 A 的一个理想。

例 3. 多项式环 $A[x_1, x_2, \dots, x_n]$ 是一个分次环, 其中 A_n 为所有 n 次多项式构成的加法子群。

命题 10.14. 对任意一个分次环 A, 下述论断等价:

- i) A 是 Noether 环
- ii) A_0 是 Noether 环且 A 是有限生成 A_0 -代数

证明. ii)→i) 是 Hilbert 基定理推论。

若 A 是 Noether 环, $A_0\cong A/A_+$,因此 A_0 是 Noether 环。 A_+ 是 A 的理想,从而它是有限生成的,记生成元为 x_1,\cdots,x_s ,取他们为 A 的齐次元素,次数为 k_1,\cdots,k_s 。设 A' 是由 x_1,\cdots,x_s 在 A_0 上生成的 A 的子环。下用归纳来证明: $A_n\subseteq A'$:

当 n=0 时,这自然成立。

设 n>0, $y\in A_n$, 由于 $y\in A_+$, 从而 y 形如 $\sum a_ix_i$, 其中 $a_i\in A_{n-k}$, 因为每个 $k_i>0$, 由 归纳假设可知每个 a_i 是系数取自 x_1,\cdots,x_i 的多项式,因此 y 也是。于是 $y\in A',A_n\subseteq A'$,从而 A=A'。

注 10.15. 设 A 是环,A 不是分次环, \mathfrak{a} 是 A 的理想,可以做分次环 $A^* = \oplus \mathfrak{a}^n$ 。类似的,如果 M 是一个 A-模, M_n 是一个 \mathfrak{a} -滤链,则 $M^* = \oplus M_n$ 是一个分次 A^* -模,这是因为 $\mathfrak{a}^m M_n \subseteq M_{m+n}$ 。

如果 A 是 Noether 环, \mathfrak{a} 是有限生成的,设由 x_1, \dots, x_r 生成,则 $A^* = A[x_1, \dots, x_r]$,它是 Noether 环。

引理 10.16. $A \in Noether$ 环, M 是有限生成 A-模, (M_n) 是 M 的一个 \mathfrak{a} -滤链。则下述论断等价:

- i) M* 是有限生成 A*-模
- ii) 滤链 (M_n) 是稳定的。

证明. 每个 M_n 是有限生成的,因此每个 $Q_n = \bigoplus_{r=0}^n M_r$ 也是有限生成的,这是一个 M^* 的一个子群,它生成了一个 A^* -子模,即

$$M_n^* = M_0 \oplus \cdots \oplus M_n \oplus \mathfrak{a} M_n \oplus \mathfrak{a}^2 M_n \oplus \cdots$$

由于 Q_n 作为 A-模是有限生成的, M_n^* 作为 A^* -模是有限生成的, M_n^* 作为一个升链,它的并是 M^* ,因为 A^* 是 Noether 环, M^* 作为 A^* -模是有限生成的 \Leftrightarrow 这个升链有限,即 $M^* = M_n^*$ 对某个 n_0 ,这个式子 $\Leftrightarrow M_{n_0+r} = \mathfrak{a}^r M_{n_0}$ 对任意 r 成立,即这个滤链稳定。

命题 10.17 (Artin-Rees 引理). 设 $A \in Noether$ 环, $\mathfrak{a} \in A$ 的一个理想, $M \in A$ 是一个有限生成的 A-模, $(M_n) \in M$ 的一个稳定 \mathfrak{a} -滤链, 设 $M' \in M$ 的一个子模, 则 $M' \cap M_n \in M'$ 的一个稳定 \mathfrak{a} -滤链。

证明. 我们有 $\mathfrak{a}(M' \cap M_n) \subseteq \mathfrak{a}M' \cap \mathfrak{a}M_n \subseteq M' \cap M_{n+1}$,因此 $(M' \cap M_n)$ 是一个 \mathfrak{a} -滤链。因此它定义了一个分次 A^* -模,它是 M^* 的子模并且是有限生成的,应用上命题立得。

推论 10.18. 存在整数 k 使得对任意 $n \ge k$ 有

$$(\mathfrak{a}^n M) \bigcap M' = \mathfrak{a}^{n-k} (\mathfrak{a}^k M \bigcap M')$$

定理 10.19. 综合 Artin-Rees 引理和滤链引理,我们有如下结果: 设 A 是 Noether 环, \mathfrak{a} 是一个理想,M 是一个有限生成 A-模,M' 是 M 的一个子模,则滤链 $\mathfrak{a}^n M$ ' 和 $(\mathfrak{a}^n M) \cap M$ ' 具有有界差。特别的,M' 的 \mathfrak{a} -拓扑与由 M 的 \mathfrak{a} -拓扑诱导的拓扑相同。

命题 10.20 (完备化的正合性质). 设 $0 \to M' \to M \to M'' \to 0$ 是 Noether 环 A 上有限生成模的正合序列, \mathfrak{a} 是 A 的理想,则 $\mathfrak{a} - adic$ 完备化序列 $0 \to \hat{M}' \to \hat{M} \to \hat{M}'' \to 0$ 是正合的。

命题 10.21. 对任意环 A, 如果 M 是有限生成的,则 $\hat{A} \otimes_A M \to \hat{M}$ 是满的。如果设 A 是 Noether 环,则 $\hat{A} \otimes_A M \to \hat{M}$ 是一个同构。

命题 10.22. 上两个命题说明,若 A 是一个 Noether 环, $\mathfrak a$ 是一个理想, $\hat A$ 是 A 的 $\mathfrak a$ — adic 完备化,则 $\hat A$ 是平坦 A-代数。

命题 10.23. 设 $A \in Noether$ 环, \hat{A} 是它的 $\mathfrak{a} - adic$ 完备化, 则

- $i) \hat{\mathfrak{a}} = \hat{A}\mathfrak{a} \cong \hat{A} \otimes_A \mathfrak{a}$
- ii) (\mathfrak{a}^n) 的完备化是 ($\hat{\mathfrak{a}}$)ⁿ
- $iii) \mathfrak{a}^n/\mathfrak{a}^{n+1} \cong \hat{\mathfrak{a}}^n/\hat{\mathfrak{a}}^{n+1}$
- iv) â 包含在 Â 的大根中

证明. 由于 A 是 Noether 环, \mathfrak{a} 是有限生成的,映射 $\hat{A}_A \otimes_A \mathfrak{a} \to \hat{\mathfrak{a}}$ 是一个同构,它的像是 $\hat{A}\mathfrak{a}$,这就证明了 i)。将 i) 用到 \mathfrak{a}^n 上,有 (\mathfrak{a}^n) 的完备化是 $(\hat{\mathfrak{a}})^n$ 。有 $A/\mathfrak{a}^n \cong \hat{A}/\hat{\mathfrak{a}}^n$ 。由此取商环得到 iii)。由 ii) \hat{A} 对于它的 $\hat{\mathfrak{a}}$ -拓扑是完备的,因此对任意 $x \in \hat{\mathfrak{a}}$ 有 $(1-x)^{-1} = 1 + x + \cdots$ 在 \hat{A} 中收敛,故 1-x 可逆,这说明 $\hat{\mathfrak{a}}$ 包含在 \hat{A} 的大根中。

命题 10.24. 设 A 是 Noether 局部环,m 是它的极大理想,则 A 的 m – adic 完备化 \hat{A} 是局部环,其极大理想是 $\hat{\mathfrak{m}}$ 。

证明. 由于 $\hat{A}/\hat{\mathfrak{m}}\cong A/\mathfrak{m}$,因此 $\hat{A}/\hat{\mathfrak{m}}$ 是域, $\hat{\mathfrak{m}}$ 是极大理想,从而 $\hat{\mathfrak{m}}$ 是 \hat{A} 的大根,因此是唯一的极大理想。

命题 10.25. 设 A 是 Noether 环, $\mathfrak a$ 是一个理想, M 是有限生成 A-模, $\hat M$ 是 M 的 $\mathfrak a$ -完备化,则 $M\to \hat M$ 的核 $E=\bigcap_{n=1}^\infty \mathfrak a^n M$ 由 M 中被 $1+\mathfrak a$ 中某元素所零化的那些元素 x 组成。

证明. 因为 E 是 $0 \in M$ 的一切邻域的交,故在 E 上诱导的拓扑是平凡的,即 E 是 $0 \in E$ 仅有的邻域。从而 E 诱导的拓扑和它的 \mathfrak{a} -拓扑相同。因为 $\mathfrak{a} E$ 是 E 的 \mathfrak{a} -拓扑的一个邻域,于是 $\mathfrak{a} E = E$,由于 M 是有限生成模,而 A 是 Noether 环,E 也是有限生成的,所以有某个 $\alpha \in \mathfrak{a}$ 使得 $(1-\alpha)E = 0$ 。反之是显然的:如果 $(1-\alpha)x = 0$,则 $x = \alpha x = \alpha^2 x = \cdots \in \bigcap_{n=1}^\infty \mathfrak{a}^n M = E$

推论 10.26. 设 $A \in Noether$ 整环, $\mathfrak{a} \neq (1)$ 是 A 的一个理想, 则 $\bigcap \mathfrak{a}^n = 0$

推论 10.27. $A \in Noether$ 环, $\mathfrak{a} \in A$ 的一个包含在大根中的理想。M 是有限生成 A-模, 则 M 的 \mathfrak{a} -拓扑是 Hausdorff 拓扑,特别的,A 的 \mathfrak{m} -拓扑是 Hausdorff 拓扑。

推论 10.28. 设 $A \in Noether$ 环, $p \in A$ 的一个素理想, 则 A 的所有 p-准素理想的交是 $A \to A_p$ 的核。

10.4 相伴的分式环

定义 10.29. 设 A 是一个环, \mathfrak{a} 是 A 的一个理想。定义

$$G(A)(=G_{\mathfrak{a}}(A))=\oplus_{n=0}^{\infty}\mathfrak{a}^n/\mathfrak{a}^{n+1}$$

这是一个分次环,其中乘法定义如下: 对于每个 $x_n \in \mathfrak{a}^n$,令 $\bar{x_n}$ 为 x_n 在 $\mathfrak{a}^n/\mathfrak{a}^{n+1}$ 中的像,定义 $\bar{x_m}\bar{x_n} = \overline{x_m}\overline{x_n}$,即 x_mx_n 在 $\mathfrak{a}^{m+n}/\mathfrak{a}^{m+n+1}$ 中的像。

类似的, 对于 M 是一个 A-模, (M_n) 是 M 的一个 \mathfrak{a} -滤链, 定义 $G(M) = \oplus M_n/M_{n+1}$, 记 $G_n(M) = M_n/M_{n+1}$ 。

命题 10.30. 设 A 是一个 Noether 环, \mathfrak{a} 是 A 的一个理想,则

- i) $G_{\mathfrak{a}}(A)$ 是 Noether 环
- ii) $G_{\mathfrak{a}}(A)$ 和 $G_{\hat{\mathfrak{a}}}(\hat{A})$ 作为分次环是同构的
- iii) 若 M 是一个有限生成 A-模, (M_n) 是 M 的一个稳定 \mathfrak{a} -滤链,则 G(M) 是有限生成分次 $G_{\mathfrak{a}}(A)$ -模。

证明. i) 因为 A 是 Noether 环,故 \mathfrak{a} 是有限生成的,设生成元为 x_1, \dots, x_s ,设 \bar{x}_i 是 x_i 在 $\mathfrak{a}/\mathfrak{a}^2$ 的象,则 $G(A) = (A/\mathfrak{a})[\bar{x}_1, \dots, \bar{x}_s]$,由 Hilbert 基定理立得。

- ii) 事实上 $\mathfrak{a}^n/\mathfrak{a}^{n+1} \cong \hat{\mathfrak{a}}^n/\hat{\mathfrak{a}}^{n+1}$
- iii) 存在 n_0 使得 $M_{n_0+r}=\mathfrak{a}^rM_{n_0}$ 对一切 r 成立。因此 G(M) 由 $\oplus_{n\leq n_0}G_n(M)$ 生成。每个 $G_n(M)=M_n/M_{n+1}$ 是 Noether 环且被 \mathfrak{a} 所零化,故是有限生成 A/\mathfrak{a} -模,因此 $\oplus_{n\leq n_0}G_n(M)$ 由有限 个元素生成,因此 G(M) 作为 G(A)-模是有限生成的。

引理 10.31. 设 $\phi: A \to B$ 是一个滤链群同态, 即 $\phi(A_n) \subseteq B_n$, 设 $G(\phi): G(A) \to G(B)$ 及 $\hat{\phi}: \hat{A} \to \hat{B}$ 是相伴分次群和完备化群的诱导同态,则

- i) $G(\phi)$ 单等价于 $\hat{\phi}$ 单
- ii) $G(\phi)$ 满等价于 $\hat{\phi}$ 满

命题 10.32. 设 A 是环, \mathfrak{a} 是 A 的一个理想,M 是一个 A-模, (M_n) 是 M 的一个 \mathfrak{a} -滤链,假定 A 在 \mathfrak{a} -拓扑下完备,M 在它的滤链拓扑下是 Hausdorff 的(即 $\bigcap M_n = 0$)。又设 G(M) 是一个有限生成 A-模,则 M 是有限生成 A-模。

证明. 由于 A 完备,从而 $\cap \mathfrak{a} = 0$,设 x_1, \dots, x_n 是 G(M) 的生成元,记 ξ_i 是这些生成元的每个齐次 分量,度记为 n(i),由于 $x_i \neq 0$,这些分量有限。

设 $F_k^i = \mathfrak{a}^{k+n(i)}$, 令 $F = \bigoplus_{i=1}^r F^i$, 则把每个 F_i 的生成元 1 映到 x_i 的 $\phi: F \to M$ 定义了一个同态, $G(\phi): G(F) \to G(M)$ 是满同态,有 ϕ 满,从而 M 有限生成。

推论 10.33. 如果 G(M) 是 Noether G(A)-模,则 M 是 Noether A-模。

定理 10.34. 如果 $A \in Noether$ 环, $a \in A$ 的一个理想, 则 A 的 a-完备化 $\hat{A} \in Noether$ 环。

推论 10.35. 如果 A 是一个 Noether 环,则 n 变元幂级数环 $B = A[[x_1, \dots, x_n]]$ 是 Noether 环。k 是域, $k[[x_1, \dots, x_n]]$ 是 Noether 环。

11 维数理论

11.1 Hilbert 函数

命题 11.1. 如果 $A \in Noether$ 分次环, $M \in A-Noether$ 分次模, 那么 M_n 作为 A_0 -模是 Nother 模。

证明. 事实上,设 $M = Ax_1 + \cdots + Ax_n$,不妨 x_i 除一个分量外其余均为 0,即 $x_i \in M_{k_i}$ 。则 M_n 的每个元素都有形式 $\sum_{i=1}^n a_i x_i$,其中 $a_i \in A_{n-k_i}$ 。由于 A 是有限生成 A_0 -代数,记生成元为 (k_1, \cdots, k_t) ,从 而 a_i 是 k_1, \cdots, k_t 的有限次数的多项式,这样的单项是有限的,从而 M_n 的元素可由 $g(k_1, \cdots, k_t)x_i$ 生成,其中 $g(k_1, \cdots, k_t)$ 是 k_1, \cdots, k_t 的次数不高于 n 的单项式。

定义 11.2. 令 λ 是定义在所有有限生成 A_0 模上的加性函数,取值为整数。M 相对于 λ 的 Poincare 级数指的是 $\lambda(M_n)$ 的生成函数,即

$$P(M,t) = \sum_{n=0}^{\infty} \lambda(M_n) t^n \in \mathbb{Z}[[t]]$$

定理 11.3. 存在 $f(t) \in \mathbb{Z}[t]$, 使得

$$P(M,t) = \frac{f(t)}{\prod_{i=1}^{s} (1 - t^{k_i})}$$

证明. 对s做归纳法。

s=0 意味着 $A=A_0$,由于 M 是 Noether A-模,从而是有限生成 A_0 -模。记 $M=A_0x_1+\cdots+A_0x_n$,不妨 $x_i\in M_{k_i}$,从而 $A_0x_i\in Mk_i$,那么可以得出 M 的任何元素在 M_k , $k>\max k_i$ 中的分量为 0,这意味着 $M_k=M_{k+1}=\cdots=0$,从而 P(M,t) 是多项式。

假设定理对 s-1 成立, s>0, 记 $A_0[x_1,x_2,\cdots,x_{s-1}]=A'$ 。

定义

$$\phi: M_n \to M_{n+k_s}$$
$$m \mapsto x_s m$$

记 $K_n = \text{Ker}(\phi), L_{n+k_s} = M_{n+k_s}/\text{Im}(\phi)$, 即此时有正合序列:

$$0 \to K_n \to M_n \xrightarrow{\phi} M_{n+k_s} \to L_{n+k_s} \to 0$$

令 $K = \bigoplus_{n=0}^{\infty} K_n, L = \bigoplus_{n=k_s}^{\infty} L_n$,它们都是分次模。 $K \in M$ 的子模,从而是有限生成 A-模; $L \in M$ 的商模,M 的生成元在 L 中的像生成了 L,从而 L 也是有限生成 A-模。

有 $\phi(K_n) = 0$,从而 $\phi(K) = 0$;注意到

$$L = \bigoplus_{n=k}^{\infty} L_n = L = \bigoplus_{n=k}^{\infty} M_{n+k_s}/x_s M_n \cong M/x_s M$$

从而 $x_sL=0$,从而 L 和 K 都是 A'-模。

由加性函数的性质,此时有

$$\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_s}) - \lambda(L_{n+k_s}) = 0$$

乘以 t^{n+k_s} 并对 $n=0\to\infty$ 求和, 有

$$t^{k_s}P(K,t) + (1-t^{k_s})P(M,t) - \sum_{i=0}^{k_s-1}\lambda(M_i)t^i - P(L,t) + \sum_{i=0}^{k_s-1}\lambda(L_i)t^i = 0$$

应用归纳假设,存在 f(t) 使得

$$P(M,t) = \frac{f(t)}{\prod_{i=1}^{s} (1 - t^{k_i})}$$

推论 11.4. 如果每个 $k_s=1$, 那么对足够大的 n, $\lambda(M_n)$ 是 n 的 d-1 次多项式 (有理系数)。

命题 11.5. 如果 $x \in A_k$ 不是 M 的零因子, 那么 d(M/xM) = d(M) - 1

命题 11.6. 令 A 是 Noether 局部环, \mathfrak{m} 是它的极大理想, \mathfrak{q} 是一个 \mathfrak{m} -准素理想, M 是有限生成 A-模, (M_n) 是 M 的一个稳定的滤链, 那么

- i) 对每个 $n \geq 0$, M/M_n 有有限长度;
- ii) 对所有充分大的 n, 这个长度是 n 的一个多项式 g(n), 次数 $\leq s$, s 是 q 的生成元的最小个数
- iii) g(n) 的次数和首项系数只依赖于 M 和 q,不依赖于滤链的选择。

定义 11.7. 和滤链 $(\mathfrak{q}^n M)$ 相对应的多项式 g(n) 用 $\chi^M_{\mathfrak{q}}(n)$ 表示:

$$\chi_{\mathfrak{q}}^{M}(n) = l(M/\mathfrak{q}^{n}M)$$

如果 M = A,用 $\chi_{\mathfrak{q}}(n)$ 表示 $\chi_{\mathfrak{q}}^A(n)$,并把 $\chi_{\mathfrak{q}}(n)$ 叫做 \mathfrak{m} -准素理想 \mathfrak{q} 的特征多项式。

推论 11.8. 对足够大的 n, 长度 $l(A/\mathfrak{q}^n)$ 是次数 $\leq s$ 的一个多项式 $\chi_{\mathfrak{q}}(n)$,这里 s 是 \mathfrak{q} 的生成元的最小个数。

命题 11.9. 如果 A, m, q 如上面给出, 那么 $\deg \chi_{\mathfrak{q}}(n) = \deg \chi_{m}(n)$

证明. 对某个 \mathbf{r} , 有 $\mathfrak{m} \supseteq \mathfrak{q} \supseteq \mathfrak{m}^r$, 因此 $\mathfrak{m}^n \supseteq \mathfrak{q}^n \supseteq \mathfrak{m}^{cn}$, 于是 $\chi_m(n) \le \chi_{\mathfrak{q}}(n) \le \chi_m(rn)$ 对足够大的 \mathbf{n} 成立,令 \mathbf{n} 趋于无穷即可。

注 11.10. $\chi_{\mathfrak{q}}(n)$ 的公共次数用 d(A) 表示, 这意味着 $d(A) = d(G_m(A))$, 其中 $d(G_m(A))$ 是用 $G_m(A)$ 的 Hilbert 函数在 t=1 的极点的阶所确定的整数。

П

11.2 Noether 局部环的维数理论

定义 11.11. 令 A 是局部 Noether 环,m 是它的极大理想,令 $\delta(A) = A$ 的 m-准素理想的生成元的最小个数。

命题 11.12. $\delta(A) \geq d(A)$

证明. 由11.8, 11.9, 11.10联合得到。

命题 11.13. 令 A, \mathfrak{m} , \mathfrak{q} 如前定义,令 M 是有限生成 A-模, $x\in A$ 是 M 中的非零因子而 M'=M/xM,那么

$$\deg \chi_{\mathfrak{q}}^{M'} \leq \deg \chi_{\mathfrak{q}}^{M} - 1$$

证明. 令 N=xM; 那么根据对 x 的假设,M 和 N 作为 A-模有 $N\cong M$,令 $N_n=N\bigcap \mathfrak{q}^nM$,于是 有正合序列

$$0 \to N/N_n \to M/\mathfrak{q}^n M \to M'/\mathfrak{q}^n M' \to 0$$

因此如果 $g(n) = l(N/N_n)$, 则有对足够大的 n

$$g(n) - \chi_{\mathfrak{q}}^{M}(n) + \chi_{\mathfrak{q}}^{M'}(n) = 0$$

根据 Artin-Rees 引理, (N_n) 是 N 的一个稳定 \mathfrak{q} -滤链。因此 $N\cong M$,从而 $g(n),\chi^M_{\mathfrak{q}}(n)$ 有相同的首项,从而原命题成立

推论 11.14. 如果 $A \in Noether$ 局部环, $x \in A$ 中的非零因子, 那么 $d(A/(x)) \le d(A) - 1$

命题 11.15. $d(A) \ge \dim A$

证明. 对 d=d(A) 用归纳法,如果 d=0,那么对足够大的 n, $l(A/\mathfrak{m}^n)$ 是常数,于是对某个 n, $\mathfrak{m}^n=\mathfrak{m}^{n+1}$,由 Nakayama 引理, $\mathfrak{m}^n=0$,因此 A 是 Artin 环, $\dim A=0$

设 d > 0, 令 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r$ 是 A 的任何一个素理想链。令 $x \in \mathfrak{p}_1, x \notin \mathfrak{p}_0$ 和 $A' = A/\mathfrak{p}_0$, x' 是 x 在 A' 中的象。那么 $x' \neq 0$, A' 是整环。有 $d(A'/(x')) \leq d(A') - 1$

如果 \mathfrak{m}' 是 A' 的极大理想, A'/\mathfrak{m}'^n 是 A/\mathfrak{m}^n 的同态象,因此 $l(A/\mathfrak{m}^n) \geq l(A'/\mathfrak{m}'^n)$,于是 $d(A) \geq d(A')$ 。从而

$$d(A'/(x')) \le d(A) - 1 = d - 1$$

由归纳假设立得。 □

推论 11.16. 如果 A 是 Noether 局部环, 那么 $\dim A$ 是有限的。

定义 11.17. 如果 A 是环, \mathfrak{p} 是 A 中的素理想,那么 \mathfrak{p} 的高度定义为在 \mathfrak{p} 终止的素理想链 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r = \mathfrak{p}$ 的长度的上确界,记为 height \mathfrak{p} ,有 height $\mathfrak{p} = \dim A_{\mathfrak{p}}$ 。

推论 11.18. 在 Noether 环,每个素理想有有限高度,因此, Noether 环中的素理想满足降链条件。

注 11.19. 可以类似考虑从 p 开始的素理想链,类似的定义深度为 $\dim A/p$

命题 11.20. 令 A 是维数为 d 的 Noether 局部环,那么在 A 中存在一个由 d 个元素 x_1, \cdots, x_d 生成的 \mathfrak{m} -准素理想,因此 $\dim A \geq \delta(A)$

证明. 归纳的构造 x_1, \dots, x_d ,使得对每个 i,包含 (x_1, \dots, x_i) 的每个素理想高度 $\geq i$ 。

假设已有 x_1, \dots, x_{i-1} ,令 \mathfrak{p}_j 是 (x_1, \dots, x_{i-1}) 的高度恰为 i-1 的极小素理想(由第六章第九题 知极小素理想有限),由于 $i-1 < d = \dim A = \operatorname{heightm}$,有 $\mathfrak{m} \neq \mathfrak{p}_j$,因此 $\mathfrak{m} \neq \bigcup \mathfrak{p}_j$ (否则由 1.23 矛盾)。取 $x_i \in \mathfrak{m}$, $x_i \notin \bigcup \mathfrak{p}_j$,令 \mathfrak{q} 是包含 (x_1, \dots, x_i) 的任何素理想,那么它包含一个极小素理想 \mathfrak{p} 。如果对某个 $\mathfrak{p}_j = \mathfrak{p}$,那么 $x_i \in \mathfrak{p}$,从而 $x_i \in \mathfrak{p}$,是包含 $x_i \in \mathfrak{p}$,从而 $x_i \in \mathfrak{p}$,以而 $x_i \in \mathfrak{p}$,是包含 $x_i \in \mathfrak{p}$,从而 $x_i \in \mathfrak{p}$,是包含 $x_i \in \mathfrak{p}$,是可能 $x_$

定理 11.21 (维数定理). 对于任何 Noether 局部环 A, 下面三个整数相等:

- i) 在 A 中的素理想链的极大长度
- ii) 特征多项式 $\chi_{\mathfrak{m}}(n) = l(A/\mathfrak{m}^n)$ 的次数
- iii) A 的 m-准素理想的生成元的最小个数

证明. 由11.12, 11.15, 11.20易得。

推论 11.22. $\dim A \leq \dim_k(\mathfrak{m}/\mathfrak{m}^2)$

延期. For any maximal ideal \mathfrak{m} of A, $\mathfrak{m}/\mathfrak{m}^2$ is a vector space on $k = A/\mathfrak{m}$. If the image of $x_1, \dots, x_r \in \mathfrak{m}$ gives the basis of the vector space, set N is the ideal $(x_1, \dots, x_r) \subset \mathfrak{m}$, hence $N \to \mathfrak{m}/\mathfrak{m}^2$ is onto. Thus we have $N + \mathfrak{m}^2 = \mathfrak{m}$, then $\mathfrak{m} \cdot (\mathfrak{m}/N) \cong (N + \mathfrak{m}^2)/N = \mathfrak{m}/N$, this infers $\mathfrak{m}/N = 0$ by Nakayama's lemma (without loss of generality we can assume A is the local ring). Thus $\dim_k(\mathfrak{m}/\mathfrak{m}^2) \geq \dim A$.

推论 11.23. 令 A 是 Noether 环, $x_1, \dots, x_r \in A$, 那么属于 (x_1, \dots, x_r) 的每个极小理想 $\mathfrak p$ 的高度 $\leq r$

推论 11.24 (Krull 主理想定理). 令 A 是 Noether 环, x 是 A 的一个元素,它不是零因子也不是可逆元。那么 (x) 的每个极小素理想的高度都等于 1。

推论 11.25. 令 $A \in Noether$ 局部环, $x \in \mathfrak{m}$ 的元素且不是零因子, 那么 $\dim A/(x) = \dim A - 1$

推论 11.26. 令 \hat{A} 是 A 的 $\mathfrak{m} - adic$ 完备化, 那么 $\dim A = \dim \hat{A}$

定义 11.27. 如果 x_1, \dots, x_d 生成一个 \mathfrak{m} -准素理想,且 $d = \dim A$,我们就把 x_1, \dots, x_d 叫做一个参数系。

命题 11.28. 令 x_1, \dots, x_d 是 A 的一个参数系, $\mathfrak{q} = (x_1, \dots, x_d)$ 是它们生成的 \mathfrak{m} -准素理想,令 $f(t_1, \dots, t_d)$ 是系数在 A 中的 s 次的齐次多项式,且假设 $f(x_1, \dots, x_d) \in \mathfrak{q}^{x+1}$,那么 f 的所有系数 都位于 \mathfrak{m} 中。

推论 11.29. 如果 $k \subseteq A$ 是一个域,它同构于映射到 A/\mathfrak{m} 之上,又设 x_1, \dots, x_d 是一个参数系,那 么 x_1, \dots, x_d 在 k 上是代数无关的。

11.3 正则局部环

定理 11.30. 令 A 是 d 维的 Noether 局部环, \mathfrak{m} 是它的极大理想, $k=A/\mathfrak{m}$, 那么下面的断言是等价的:

 $i) G_{\mathfrak{m}}(A) \cong k[t_1, \cdots, t_d]$

- $ii) \dim_k(\mathfrak{m}/\mathfrak{m}^2) = d$
- iii) m 可由 d 个元素生成

引理 11.31. 令 A 是一个环, \mathfrak{a} 是 A 的一个理想, 而且 $\bigcap \mathfrak{a}^n = 0$, 假设 $G_{\mathfrak{m}}(A)$ 是整环, 那么 A 是整环。

证明. 令 $x,y \in A$ 的非零元素,那么由于 $\bigcap \mathfrak{a}^n = 0$,存在整数 $r,s \geq 0$ 使得 $x \in \mathfrak{a}^r, x \notin \mathfrak{a}^{r+1}, y \in \mathfrak{a}^s, y \notin \mathfrak{a}^{s+1}$,令 \bar{x}, \bar{y} 表示 x,y 分别在 $G_r(A), G_s(A)$ 中的象,那么 $\bar{x} \neq 0, \bar{y} \neq 0$,因此 $xy \neq 0$

命题 11.32. 令 $A \in Noether$ 局部环,那么 A 是正则的当且仅当 $G_{\mathfrak{m}}(A) \cong G_{\hat{\mathfrak{m}}}(\hat{A})$

11.4 超越维数

定义 11.33. 假设 k 是代数闭域,V 是 k 上的不可约仿射簇,因此坐标环 A(V) 具有形式 $A(V) = k[x_1, \cdots, x_n]/\mathfrak{p}$,这里 \mathfrak{p} 是一个素理想。整环 A(V) 的分式域叫做 V 上的有理函数,用 k(V) 表示。它 是 k 的有限生成扩张,所以它在 k 上的有限超越次数——k 上的代数无关元的最大数。这个数定义为 V 的维数。根据零点定理,V 的点与 A(V) 的点的极大理想——对应。如果 P 是与极大理想 \mathfrak{m} 相应的点,我们把 $\dim A(V)_{\mathfrak{m}}$ 叫做 V 在 P 的局部维数。

引理 11.34. 令 $B \subseteq A$ 是整环,B 是整闭的,A 在 B 上整,再令 \mathfrak{m} 是 A 的极大理想, $\mathfrak{n} = \mathfrak{m} \cap B$,那么 \mathfrak{n} 是极大的,且 $\dim A_{\mathfrak{m}} = \dim B_{\mathfrak{n}}$

定理 11.35. 对 k 的任何不可约簇 V 来说,V 在任何一点的局部维数都等于 $\dim V$

推论 11.36. 对于 A(V) 的每个极大理想 \mathfrak{m} , 有 dim $A(V) = \dim A(V)_{\mathfrak{m}}$ 。