

Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

Trabalho de Regressão Linear

Brasília, DF

21/02/2021

Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

Trabalho de Regressão Linear

Trabalho de Regressão Linear de Análise de dados hospitalares.

Universidade de Brasília (UnB)

Instituto de Ciências Exatas (IE)

Departamento de Estatística (DE)

Brasília, DF

21/02/2021

Resumo

resumo aqui

Palavras-chaves: 1. Análise de dados.

Lista de ilustrações

Figura	1 -	Gráfico	de box-plot	das variaváveis	dos	dados						13
Figura	2 -	Gráfico	de calor da	correlação entre	e as v	variaváve	eis d	os d	ados.			14
Figura	3 -	Gráfico	de box-plot	das variaváveis	dos	dados						15

Lista de tabelas

Tabela	1	_	Descrição dos códigos da tabela com a seguinte indentificação da variável. S
Tabela	2	_	Medidas descritivas para boxplots

Lista de abreviaturas e siglas

INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

SAEB Sistema de Avaliação da Educação Básica

Lista de símbolos

Sumário

1	RESULT	8
1.1	Introdução	8
1.1.1	Objetivos	8
1.1.2	Metodologia	8
1.2	Resultado	12
1.2.0.1	Correlação entre as variáveis	16
1.3	Objetivo	17
1.3.1	Testes	17
1.3.2	Número de enfermeira(o)s	17
1.3.2.1	Pressupostos para um modelo inicial	21
1.3.2.2	modelo inicial com o metodo de step wise	29
1.3.2.3	modelo hospital assumptions	38
1.3.3	Duração da internação	42
1.3.4	MODELO POR HIPOTESE	42
	REFERÊNCIAS	45
	ANEXOS	46
	ANEYO A AMOSTRA	17

1 RESULT

1.1 Introdução

Tipo de problema, tipo de dados, proposta para contornar o problema

1.1.1 Objetivos

A fim de estudar sobre a duração da internação nos hospitais dos Estados Unidos no período de 1975-1976, foi retirada uma amostra aleatória de 113 hospitais selecionados entre 338 pesquisados, para isso foram propostas as seguintes hipóteses:

A primeira é verificar se o número de enfermeira(o)s está relacionado às instalações, ou seja, os números de leitos do hospital, e se há diferenças entre os serviços disponíveis pelos hospitais. Além de verificar se a mesma variável resposta mencionada anteriormente varia segundo a região.

Já a segunda é verificar se a duração da internação está associada a características do paciente, seu tratamento e do hospital.

1.1.2 Metodologia

O programa utilizado para analisar os dados disponibilizados em Excel será o R Studio, versão 4.2.0. Para uma primeira visualização dos dados, necessita-se identificar e realizar a análise descritiva das variáveis, portanto os dados estão organizados e classificados da seguinte maneira:

```
# Tabela de nomes X1: Nome variavel

Nome <- names(data)

Código <- names(datax)

Descrição <- c('1-113', 'Duração média da internação de todos os pacientes no hospital

Classificação <- c('Qualitativa ordinal', 'Quantitativa contínua', 'Quantitativa cont</pre>
```

library(knitr)

knitr::kable(cbind(Nome,Código,Descrição, Classificação),

caption = 'Descrição dos códigos da tabela com a seguinte indentificação

Warning in cbind(Nome, Código, Descrição, Classificação): number of rows of ## result is not a multiple of vector length (arg 3)

Tabela 1 – Descrição dos códigos da tabela com a seguinte indentificação da variável.

Nome	Cóc	Classificação	
Número de Identificação	ID	1-113	Qualitativa ordinal
Duração da Internação	X1	Duração média da internação de todos os pacientes no hospital (em dias)	Quantitativa contí- nua
Idade	X2	Idade média dos pacientes	Quantitativa contí- nua
Risco de Infecção	Х3	Probabilidade média estimada de adquirir infecção no hospital (em $\%$)	Quantitativa contí- nua
Proporção de Culturas de Rotina	X4	Razão do número de culturas realizadas com relação ao número de pacientes sem sinais ou sintomas de infeção adquirida no hospital, vezes 100.	Quantitativa contí- nua
Proporção de Raio-X de Tórax de Rotina	X5	Razão do número de Raio-X de Tórax realizados com relação ao número de pacientes sem sinais ou sintomas de pneumonia, vezes 100.	Quantitativa contí- nua
Número de leitos	X6	Número médio de leitos no hospital durante o período de estudo	Quantitativa contí- nua

Nome	Códipescrição	Classificação
Filiação a Escola de Medicina	$X7 - \sin 2 - \tilde{nao}$	Qualitativa ordinal
Região	X8 Região Geográfica, onde: 1 – NE 2- NC 3 – S e 4 – W	Qualitativa nomi- nal
Média diária de pacientes	X9 Número médio de pacientes no hospital por dia durante o período do estudo	Quantitativa contí- nua
Número de enfer- meiro(s)	X10 Número médio de enfermeiros(as) de tempo-integral ou equivalente registrados e licenciados durante o período de estudo (número de tempos integrais+metade do número de tempo parcial)	Quantitativa contí- nua
Facilidades e serviços disponíveis	X11 % de 35 potenciais facilidades e serviços que são fornecidos pelo hospital	Quantitativa contí- nua
NA	X1adij-113	Qualitativa ordinal
NA	X2adpuração média da internação de todos os pacientes no hospital (em dias)	Quantitativa contí- nua
NA	X3adjdade média dos pacientes	Quantitativa contí- nua
NA	X4ad Probabilidade média estimada de adquirir infecção no hospital (em %)	Quantitativa contí- nua
NA	X5adRazão do número de culturas realizadas com relação ao número de pacientes sem sinais ou sintomas de infeção adquirida no hospital, vezes 100.	Quantitativa contí- nua
NA	X6adRazão do número de Raio-X de Tórax realizados com relação ao número de pacientes sem sinais ou sintomas de pneumonia, vezes 100.	Quantitativa contí- nua

Nome	Códiguescrição	Classificação
NA	X9ad¶úmero médio de leitos no hospital durante o período de estudo	Quantitativa contí-
		nua
NA	X10adj sim $2 - não$	Qualitativa
		ordinal
NA	X11a de gião Geográfica, onde: 1 – NE 2- NC 3 – S e 4 – W	Qualitativa
		nomi-
		nal

As etapas para o estudo da internação dos hospitais foram separadas em duas maneiras, a primeira é a construção e a segunda é a validação do modelo. Para a primeira etapa, foi selecionada uma amostra aleatória simples com 57 observações, para a segundo ficou o restante das observações que compõe o banco. Para as duas hipóteses procura-se um modelo regressivo linear múltiplo do tipo:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + e_i, \forall i = 1, \dots, n$$

Onde tem-se,

•

 Y_{ij}

- variável resposta;

•

$$X_{i1}, X_{i2}, \ldots, X_{ik}$$

- k variáveis explicativas ou independentes;

•

$$\beta_0, \beta_1, \beta_2, \dots, \beta_k$$

- parâmetros do modelo;

•

 e_i

- são independentes e

$$N(0,\sigma^2)$$

Para a primeira hipótese, define-se como modelo I aquele que relaciona a variável resposta, Número de enfermeiro(s) (X10), com as variáveis explicativas, instalações (X6), serviços disponíveis pelos hospitais (X11) e a região (X8).

Já o modelo II é definido como aquele que relaciona a variável resposta, Duração da internação (X1), com as variáveis explicativas, a características do paciente (X2), seu tratamento (X4 e X5) e do hospital (X3).

```
par(mfrow = c(1,2))
datax$X7 %>% table(.) %>% barplot(xlab='X7')
datax$X8 %>% table(.) %>% barplot(xlab='X8')
```


1.2 Resultado

Realizando uma breve análise descritiva das variáveis quantitativas, tem-se o boxplot com os dados normalizados:

Tabela 2 – Medidas descritivas para boxplots

Variaveis	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Duração da Internação	6.700	8.340	9.420	9.648	10.470	19.560
Idade	38.80	50.90	53.20	53.23	56.20	65.90
Risco de Infecção	1.300	3.700	4.400	4.355	5.200	7.800
Proporção de Culturas de Rotina	1.60	8.40	14.10	15.79	20.30	60.50
Proporção de Raio-X de Tórax de Rotina	39.60	69.50	82.30	81.63	94.10	133.50
Número de leitos	29.0	106.0	186.0	252.2	312.0	835.0
Média diária de pacientes	20.0	68.0	143.0	191.4	252.0	791.0
Número de enfermeiro(s)	14.0	66.0	132.0	173.2	218.0	656.0
Facilidades e serviços disponíveis	5.70	31.40	42.90	43.16	54.30	80.00

boxplot(datax_ajusdet)

Figura 1 – Gráfico de box-plot das variaváveis dos dados.

Para verificar a natureza e a força da relação entre as variáveis e identificar lacunas e pontos discrepantes no conjunto de dados, utiliza-se a matriz de correlação.

library(ggcorrplot)

Carregando pacotes exigidos: ggplot2

```
library(dplyr)
pmat = dplyr::select(datax,!matches("adj")) %>% select_if(is.numeric) %>% cor_pmat()

dplyr::select(datax,!matches("adj")) %>% select_if(is.numeric) %>% cor(.) %>%
    ggcorrplot( type = "lower", p.mat = pmat, hc.order = TRUE,lab = TRUE)
```


Figura 2 – Gráfico de calor da correlação entre as variaváveis dos dados.

Analisando o gráfico acima, tem-se que as variáveis que estão nas três extremidades externas dos dois eixos apresentam uma correlação forte, então, X10 com X11, X6 com X11 e X10 e X9 com X11, X10 e X6. A maior correlação é apresentada entre as variáveis X6 e X9, que é o número de leitos e a média diária de pacientes, respectivamente.

boxplot(datax)

Figura 3 – Gráfico de box-plot das variaváveis dos dados.

```
par(mfrow = c(1,2))

datax %>% dplyr::select(X7) %>% table(.) %>% barplot(xlab='X7')
datax %>% dplyr::select(X8) %>% table(.) %>% barplot(xlab='X8')
```


1.2.0.1 Correlação entre as variáveis

Para verificar a natureza e a força da relação entre as variáveis e identificar lacunas e pontos discrepantes no conjunto de dados, utiliza-se a matriz de correlação aplicado no script a seguir.

1.3 Objetivo

1.3.1 Testes

Para efetuar um modelo, separa-se o banco em teste e treino no qual:

```
set.seed(10)
dados_train <- datax[sample(nrow(datax), 57, replace = F),] %>% data.frame()
dados_valid <- anti_join(datax, dados_train, by="ID") %>% data.frame()

# inbalanced data
table(dados_train$X8)

##
## 1 2 3 4
## 14 17 18 8
```

1.3.2 Número de enfermeira(o)s

```
library(plotly)
```

```
##
## Attaching package: 'plotly'

## The following object is masked from 'package:ggplot2':
##
## last_plot

## The following object is masked from 'package:stats':
##
## filter

## The following object is masked from 'package:graphics':
##
## layout
```

```
require(gridExtra)
## Carregando pacotes exigidos: gridExtra
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
require(ggplot2)
library("patchwork")
g0<-ggplot(data = dados_train, aes(x=X6, X10, color = X8))+
  geom_point()+
  geom_smooth( method=lm, se=FALSE)+theme_bw()
g1<-ggplot(data = dados_train, aes(x=X11, X10, color = X8))+
 geom_point()+
  geom_smooth( method=lm, se=FALSE)+theme_bw()+ ylab("")
g0+g1+plot layout(guides = "collect")
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
```



```
### ANANDA CODE

# Avaliando quais variaveis tem significância

# library("tidyverse")

# library("repurrrsive")

# summary(aov(X10 ~ X8*X6*X11*X7, data=dados_train))

# lista <- map_df(, extract, c("Df", "Sum Sq", "Mean Sq", "F value", "Pr(>F)"))

# knitr::kable(teste)
```

Espera-se que o número de enfermeira(o)s esteja relacionado às instalações e serviços disponíveis através de um modelo de segunda ordem. Suspeita-se também que varie segundo

```
serviços disponíveis:X1,X4,X5,X6,X9,X11 instalações:X7 região:X8
```

\ Deseja-se estudar se o número de enfermeira(o)s está relacionado às instalações, ou seja, os números de leitos do hospital, e se há diferenças entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas.

Para isso, faz-se necessário a aplicação da regressão linear múltipla. No qual avaliando o gráfico da dispersão de ordem da variável região X8 e o número de enfermeiros X10, verifica-se que não possui diferença significatíva na dispersão destes valores.

boxplot(dados_train\$X10~dados_train\$X8)

summary(aov(dados train\$X10~dados train\$X8))

```
## Df Sum Sq Mean Sq F value Pr(>F)
## dados_train$X8 3 14240 4747 0.223 0.88
## Residuals 53 1126692 21258
```

1.3.2.1 Pressupostos para um modelo inicial

Agora presumindo um modelo inicial para explicar a variável de número de enfermeiros X10 é dada por

$$\hat{y}_{X10} = \beta_0 + \beta_{X1}X1 + \beta_{X6}X6 + \beta_{X8}X8 + \beta_{X11}X11 + \beta_{X1,X8}(X1X8) + \beta_{X6,X8}(X6X8) + \beta_{X7,X8}(X7X8) + \beta_{X11,X8}(X11X8)$$

no qual presume que o modelo é explicado pela "duração da internação" (X1), "Número de leitos" (X6), "Facilidades e serviços disponiveis" (X11) com a "Região".

```
# Avaliando quais variaveis tem significância
summary(aov(X10 ~ X1adj*X8+X6adj*X8+X11adj*X8+X7*X8, data=dados_train))
```

```
##
               Df Sum Sq Mean Sq F value
                                             Pr(>F)
                           219271 104.325 2.57e-12 ***
## X1adj
                1 219271
## X8
                   22596
                             7532
                                    3.584
                                             0.0227 *
                           727220 345.997 < 2e-16 ***
## X6adj
                1 727220
## X11adj
                1
                    6463
                             6463
                                    3.075
                                             0.0878 .
## X7
                                    6.304
                                             0.0165 *
                1
                   13251
                            13251
## X1adj:X8
                3
                   29331
                             9777
                                    4.652
                                             0.0074 **
## X8:X6adj
                                    2.520
                                             0.0729 .
                3
                   15888
                             5296
## X8:X11adj
                3
                    9872
                             3291
                                    1.566
                                             0.2141
## X8:X7
                3
                   19275
                             6425
                                    3.057
                                             0.0402 *
## Residuals
               37
                   77767
                             2102
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

agora os resultados obtidos pela anova, temos que pelos testes, deu significativo as variáveis explicativas sem interação e a interação com da região X8 com a variávei X1 e as outras variáveis foram descartadas por estar perto do limite do p-value 0.05.

Agora construindo um novo modelo de regressão

$$\hat{y}_{X11} = \beta_0 + \beta_{X1}X1 + \beta_{X6}X6 + \beta_{X7}X7 + \beta_{X8}X8 + \beta_{X1,X8}(X1X8)$$

temos que

table(dados_train\$X8)

```
##
## 1 2 3 4
## 14 17 18 8
modelo_inicial <- lm(X10 ~ X1adj*X8 + X6adj +X7*X8, data=dados_train)</pre>
summary(modelo inicial)
##
## Call:
## lm(formula = X10 ~ X1adj * X8 + X6adj + X7 * X8, data = dados_train)
##
## Residuals:
##
        Min
                  1Q
                                   3Q
                      Median
                                           Max
## -141.234 -26.732
                     -2.642 34.468
                                      112.310
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 252.530
                           29.189 8.652 4.77e-11 ***
## X1adj
                           18.516 0.150
                 2.783
                                            0.8812
## X82
                           41.170 -1.230
               -50.619
                                            0.2254
## X83
               -93.827
                           63.641 -1.474
                                            0.1475
## X84
               11.293
                           67.563 0.167
                                            0.8680
## X6adj
               121.208
                           11.440 10.595 1.09e-13 ***
## X72
               -76.374
                           32.815 -2.327
                                            0.0246 *
## X1adj:X82
               -30.166
                           25.681 -1.175
                                            0.2465
## X1adj:X83
                71.317
                           29.406 2.425
                                            0.0195 *
## X1adj:X84
                           41.757 0.055
                 2.300
                                            0.9563
## X82:X72
                30.403
                           44.952 0.676
                                            0.5024
## X83:X72
               115.530
                           69.311 1.667
                                            0.1027
## X84:X72
                -5.958
                           82.334 -0.072
                                            0.9426
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 52.48 on 44 degrees of freedom
## Multiple R-squared: 0.8938, Adjusted R-squared: 0.8648
## F-statistic: 30.85 on 12 and 44 DF, p-value: < 2.2e-16</pre>
```

com valor do F-statistics, para o teste linear geral, percebe-se que o teste de regressão é significativo, indicando que há regressão nesses dados, e analizando o modelo, apenas x6 tem diferenças significativas, podendo descartar acabando com um modelo do tipo, no qual rejeitamos a normalidade, assim transformando a variável através do boxcox

```
modelo_inicial <- lm(X10 ~ X6adj+X7, data=dados_train)
summary(modelo_inicial)</pre>
```

```
##
## Call:
## lm(formula = X10 ~ X6adj + X7, data = dados_train)
##
## Residuals:
##
        Min
                  1Q
                      Median
                                   3Q
                                           Max
## -172.453 -21.961
                      -5.528
                               23.631 150.681
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                228.18
                            21.83 10.451 1.4e-14 ***
## X6adj
                120.89
                             9.96 12.137 < 2e-16 ***
## X72
                -58.38
                            25.02 -2.333
                                            0.0234 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.63 on 54 degrees of freedom
## Multiple R-squared: 0.8535, Adjusted R-squared: 0.8481
## F-statistic: 157.3 on 2 and 54 DF, p-value: < 2.2e-16
```

shapiro.test(modelo_inicial\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: modelo_inicial$residuals
## W = 0.95214, p-value = 0.02461
```

como foi rejeitada o teste de normalidade, utilizamos uma transformação boxcox para criar o novo modelo, onde seque se que

library(MASS)

```
##
## Attaching package: 'MASS'

## The following object is masked from 'package:patchwork':
##
## area

## The following object is masked from 'package:plotly':
##
## select

## The following object is masked from 'package:dplyr':
##
## select
```

k<-boxcox(modelo_inicial)


```
lambda<- k$x[which.max(k$y)]</pre>
dados_train['X10_cox'] <- (dados_train$X10^lambda-1)/lambda</pre>
modelo_inicial_cox <- lm(X10_cox ~X6adj+X7, data=dados_train)</pre>
summary(modelo_inicial_cox)
##
## Call:
## lm(formula = X10_cox ~ X6adj + X7, data = dados_train)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      3Q
                                               Max
## -20.7865 -3.3753 -0.5417
                                  4.6651
                                          19.6757
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                             3.100
                 42.373
                                     13.67 < 2e-16 ***
                             1.414
## X6adj
                 16.355
                                     11.56 3.11e-16 ***
                             3.553
## X72
                 -6.501
                                     -1.83 0.0728 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.899 on 54 degrees of freedom
## Multiple R-squared: 0.8351, Adjusted R-squared: 0.829
## F-statistic: 136.7 on 2 and 54 DF, p-value: < 2.2e-16
shapiro.test(modelo_inicial_cox$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: modelo inicial cox$residuals
## W = 0.98839, p-value = 0.8595
      agora avalindo este modelo temos que o erro medio das previsões é baixo e o R2
no banco de teste é alto, assim sendo um bom modelo para começar e avaliar com as
suposições do hospital
require(MASS)
library(caret)
## Carregando pacotes exigidos: lattice
# Teste de multicolinearidade Gif (>1 indica multicolinearidade)
# car::vif(modelo_inicial)
```

par(mfrow=c(2,2))

plot(modelo_inicial_cox)

Retirando os outliers temos que

```
modelo_inicial_cox <- lm(X10_cox ~ X6adj+X7, data=dados_train[-c(18,48,46),])
summary(modelo_inicial_cox)</pre>
```

```
##
## Call:
## lm(formula = X10_cox ~ X6adj + X7, data = dados_train[-c(18,
       48, 46), ])
##
##
## Residuals:
                                  3Q
##
       Min
                 1Q
                     Median
                                         Max
## -16.397
            -3.828
                      0.453
                               4.488
                                      15.163
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  38.912
                               2.943
                                                <2e-16 ***
                                      13.220
## X6adj
                  17.826
                                      13.158
                                                <2e-16 ***
                               1.355
```

```
## X72
                -2.486
                            3.430 -0.725
                                             0.472
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.745 on 51 degrees of freedom
## Multiple R-squared: 0.8767, Adjusted R-squared: 0.8718
## F-statistic: 181.3 on 2 and 51 DF, p-value: < 2.2e-16
shapiro.test(modelo_inicial_cox$residuals)
##
    Shapiro-Wilk normality test
## data: modelo_inicial_cox$residuals
## W = 0.98291, p-value = 0.6322
par(mfrow=c(2,2))
plot(modelo_inicial_cox)
```


Agora avalindo o modelo no banco de teste, temos que a raiz do erro quadratico médio e dado por

```
# predições
predictions <- modelo_inicial_cox %>% predict(dados_valid)
data.frame(
    RMSE = RMSE(predictions, (dados_valid$X10^lambda-1)/lambda),
    R2 = R2(predictions, ((dados_valid$X10)^lambda-1)/lambda)
)
```

```
## RMSE R2
## 1 8.086683 0.8341232
```

1.3.2.2 modelo inicial com o metodo de step wise

Agora avaliando através do steepwise, temos que o modelo que converge sobre o uso de mais variaveis

```
modmin<-lm(X10_cox ~ X6adj+X7, data=dados_train[-c(18,48,46),])</pre>
modcompl<-lm(X10_cox~ X1adj+X2adj+X3adj+X4adj+X5adj+X6adj+X7+X8+X9adj+X11adj, data=da
modfim <- step(modmin, scope=list(lower=modmin, upper=modcompl), direction="both",da</pre>
summary(modfim)
##
## Call:
## lm(formula = X10_cox ~ X6adj + X7 + X3adj + X2adj + X11adj +
       X9adj + X1adj + X5adj, data = dados_train[-c(18, 48, 46),
##
       ])
##
## Residuals:
##
       Min
                 10
                      Median
                                   3Q
                                           Max
## -13.2762 -2.2828
                      0.1701 3.7534 10.6444
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.6234
                           2.5543 15.513 < 2e-16 ***
## X6adj
               5.5375
                           4.4381 1.248 0.218584
## X72
               -3.2001
                           2.9536 -1.083 0.284389
## X3adj
                3.8744
                           1.0969 3.532 0.000966 ***
## X2adj
                2.3237
                           1.0954 2.121 0.039442 *
                         1.1943 1.526 0.133955
## X11adj
               1.8227
## X9adj
               10.4575
                           4.6942 2.228 0.030942 *
                           1.3893 -1.883 0.066159 .
## X1adj
               -2.6161
## X5adj
                1.4966
                           0.8374 1.787 0.080660 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.434 on 45 degrees of freedom
## Multiple R-squared: 0.9294, Adjusted R-squared: 0.9168
## F-statistic: 74.04 on 8 and 45 DF, p-value: < 2.2e-16
```

shapiro.test(modfim\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: modfim$residuals
## W = 0.97759, p-value = 0.404
```

agora com o teste linear geral, temos que existe diferença significatifva entre os modelos e acabamos com um modelo mais parcimanioso sem multicolineariade que é o caso do modtest

```
anova(modelo_inicial_cox,modfim) # modelo 2 é melhor
```

```
## Analysis of Variance Table
## Model 1: X10 cox ~ X6adj + X7
## Model 2: X10 cox ~ X6adj + X7 + X3adj + X2adj + X11adj + X9adj + X1adj +
       X5adj
##
##
     Res.Df
               RSS Df Sum of Sq
                                     F
                                          Pr(>F)
## 1
         51 2320.4
## 2
         45 1328.6 6
                         991.78 5.5987 0.0002097 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

AIC(modelo_inicial_cox,modfim)

```
## df AIC
## modelo_inicial_cox 4 364.3127
## modfim 10 346.2019
```

Assim, o modelo 2 apresenta melhor desenpenho considerando o RSS, e o teste linear geral possui diferença significante, ou seja, o modelos são diferentes, agora avalindo este modelo modfim, temos que

```
# quanto menoor melhor
car::vif(modfim)
##
                    Х7
                            X3adj
                                      X2adj
                                               X11adj
                                                           X9adj
       X6adj
                                                                     X1adj
                                                                                X5adj
## 32.074398 2.216131
                        1.986354
                                   1.291405
                                             2.718891 34.913365
                                                                  2.110575
                                                                             1.189607
      para os parametros do X6 e X9, encontrou grande correlação entre elas, e para
avaliar que o modelo não possua colinearidade, temos que
modsem9<-lm(X10_cox ~ X6adj+X7+X3adj+X2adj+X11adj+X1adj+X5adj, data=dados_train[-c(18
summary(modsem9)
##
## Call:
## lm(formula = X10 cox ~ X6adj + X7 + X3adj + X2adj + X11adj +
       X1adj + X5adj, data = dados_train[-c(18, 48, 46), ])
##
##
## Residuals:
##
        Min
                       Median
                                     3Q
                   1Q
                                             Max
## -12.5084 -2.9763
                       0.2571
                                 4.0507
                                         11.7946
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 40.624
                              2.620 15.503 < 2e-16 ***
## X6adj
                 14.878
                              1.516
                                      9.814 7.36e-13 ***
## X72
                 -4.464
                              3.021 -1.478 0.14634
## X3adj
                              1.143 3.366 0.00155 **
                  3.848
## X2adj
                              1.135
                                      2.287 0.02682 *
                  2.595
## X11adj
                  1.997
                              1.242 1.608 0.11477
## X1adj
                 -1.564
                              1.362 -1.149 0.25665
## X5adj
                  1.302
                              0.868
                                      1.500 0.14046
```

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.663 on 46 degrees of freedom

##

Signif. codes:

```
## Multiple R-squared: 0.9216, Adjusted R-squared: 0.9097
## F-statistic: 77.25 on 7 and 46 DF, p-value: < 2.2e-16
modsem9<-lm(X10 cox ~ X6adj+X3adj, data=dados train[-c(18,48,46),])</pre>
summary(modsem9)
##
## Call:
## lm(formula = X10_cox ~ X6adj + X3adj, data = dados_train[-c(18,
       48, 46), ])
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -14.4114 -3.2837 0.4073 4.1360 12.3687
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.0721
                         0.8310 44.612 < 2e-16 ***
             17.4011 0.9314 18.683 < 2e-16 ***
## X6adj
                       0.9251 3.526 0.000901 ***
## X3adj
               3.2619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.079 on 51 degrees of freedom
## Multiple R-squared: 0.8998, Adjusted R-squared: 0.8959
## F-statistic: 229.1 on 2 and 51 DF, p-value: < 2.2e-16
car::vif(modsem9)
##
     X6adj
              X3adj
## 1.128576 1.128576
shapiro.test(modsem9$residuals)
```

##

```
Shapiro-Wilk normality test
##
## data: modsem9$residuals
## W = 0.97015, p-value = 0.1957
predictions <- modsem9 %>% predict(dados_valid)
data.frame(
  RMSE = RMSE(predictions, (dados_valid$X10^lambda-1)/lambda),
 R2 = R2(predictions, (dados valid$X10^lambda-1)/lambda)
##
         RMSE
                     R2
## 1 8.121198 0.8406073
modsem6<-lm(X10_cox ~ X9adj+X7+X3adj+X2adj+X11adj+X1adj+X5adj, data=dados_train[-c(18
summary(modsem6)
##
## Call:
## lm(formula = X10 cox ~ X9adj + X7 + X3adj + X2adj + X11adj +
       X1adj + X5adj, data = dados_train[-c(18, 48, 46), ])
##
##
## Residuals:
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -13.2179 -2.4119
                       0.1548
                                3.5366 10.4195
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.5260
                            2.5685 15.389 < 2e-16 ***
## X9adj
                            1.5478 10.331 1.43e-13 ***
                15.9911
## X72
               -3.0875
                            2.9701 -1.040 0.30400
                            1.1035 3.505 0.00103 **
## X3adj
                3.8678
## X2adj
                            1.0963 1.992 0.05233 .
                2.1837
## X11adj
                            1.1907 1.698 0.09633 .
                 2.0215
## X1adj
                -3.0601
                            1.3510 -2.265 0.02827 *
```

```
## X5adj
                1.5822
                           0.8397
                                    1.884 0.06585 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.466 on 46 degrees of freedom
## Multiple R-squared: 0.9269, Adjusted R-squared: 0.9158
## F-statistic: 83.38 on 7 and 46 DF, p-value: < 2.2e-16
modsem6<-lm(X10_cox ~ X9adj+X3adj, data=dados_train[-c(18,48,46),])</pre>
summary(modsem6)
##
## Call:
## lm(formula = X10_cox ~ X9adj + X3adj, data = dados_train[-c(18,
##
      48, 46), ])
##
## Residuals:
       Min
                      Median
                                   3Q
                 1Q
                                           Max
## -15.5728 -1.8658
                      0.6328
                               3.2096 11.0777
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 37.2650
                           0.8272 45.052 < 2e-16 ***
## X9adj
               17.8166
                           0.9479 18.796 < 2e-16 ***
## X3adj
                2.8030
                           0.9286 3.018 0.00396 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.047 on 51 degrees of freedom
## Multiple R-squared: 0.9009, Adjusted R-squared: 0.897
## F-statistic: 231.8 on 2 and 51 DF, p-value: < 2.2e-16
car::vif(modsem6)
            X3adj
##
     X9adj
## 1.14937 1.14937
```

```
shapiro.test(modsem6$residuals)
##
##
   Shapiro-Wilk normality test
##
## data: modsem6$residuals
## W = 0.93803, p-value = 0.007721
predictions <- modsem6 %>% predict(dados valid)
data.frame(
 RMSE = RMSE(predictions, (dados valid$X10^lambda-1)/lambda),
 R2 = R2(predictions, (dados valid$X10^lambda-1)/lambda)
         RMSF.
## 1 8.898686 0.8175485
anova(modfim, modsem6)
## Analysis of Variance Table
##
## Model 1: X10_cox ~ X6adj + X7 + X3adj + X2adj + X11adj + X9adj + X1adj +
##
       X5adj
## Model 2: X10_cox ~ X9adj + X3adj
     Res.Df
               RSS Df Sum of Sq F Pr(>F)
## 1
         45 1328.6
## 2
         51 1865.0 -6 -536.45 3.0283 0.01424 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(modfim, modsem9)
## Analysis of Variance Table
##
## Model 1: X10_cox ~ X6adj + X7 + X3adj + X2adj + X11adj + X9adj + X1adj +
```

```
## X5adj
## Model 2: X10_cox ~ X6adj + X3adj
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1    45 1328.6
## 2    51 1884.8 -6    -556.18 3.1396 0.01174 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

AIC(modsem9,modsem6)

```
## df AIC
## modsem9 4 353.0849
## modsem6 4 352.5166
```

```
par(mfrow=c(2,2))
plot(modsem9)
```


assim, no final foi escolhido o modelo modsem9 no qual os pressupostos são atendidos e possui valores mais consistentes na predição do número de enfermeiros

1.3.2.3 modelo hospital assumptions

Agora como o modelo formulado pelo hospital temos que,

```
\label{eq:mod_sec} $$ \mod_{\sec<- \lim(formula = X10\_cox ~ X6adj+I(X6adj^2) + X3adj+I(X3adj^2)+X8 , $$ data = dados summary(mod\_sec) $$ $$
```

```
##
## Call:
## lm(formula = X10 cox ~ X6adj + I(X6adj^2) + X3adj + I(X3adj^2) +
      X8, data = dados_train[-c(18, 48, 46), ])
##
##
## Residuals:
##
                                   3Q
       \mathtt{Min}
                 1Q
                      Median
                                           Max
## -14.7958 -3.1296 -0.1209
                               3.8364 11.7547
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.725721
                          1.772682 22.410 < 2e-16 ***
## X6adj
             16.890543
                          1.622481 10.410 1.12e-13 ***
## I(X6adj^2) -0.007856
                          0.869457 -0.009 0.99283
## X3adj
               2.514039
                          1.010543 2.488 0.01654 *
## I(X3adj^2) -1.832165
                          0.610414 -3.002 0.00433 **
## X82
              -0.951667
                          2.200682 -0.432 0.66744
## X83
              -1.895478
                          2.211356 -0.857 0.39580
## X84
              -1.323005
                          2.747512 -0.482 0.63242
## ---
## Signif. codes:
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.753 on 46 degrees of freedom
## Multiple R-squared: 0.9191, Adjusted R-squared: 0.9068
## F-statistic: 74.64 on 7 and 46 DF, p-value: < 2.2e-16
```

```
mod_sec < -lm(formula = X10_cox ~ X6adj + X3adj + I(X3adj^2) , data = dados_train[-c(18, add) + I(X3adj^2)] .
summary(mod_sec)
##
## Call:
## lm(formula = X10_cox ~ X6adj + X3adj + I(X3adj^2), data = dados_train[-c(18,
       48, 46), ])
##
##
## Residuals:
        Min
                  1Q
                      Median
                                    ЗQ
## -13.8032 -3.5342 -0.4144 4.2161 11.7274
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.6812
                            0.9035 42.811 < 2e-16 ***
## X6adj
               16.8500
                          0.8687 19.397 < 2e-16 ***
## X3adj
                2.7070
                            0.8632 3.136 0.00287 **
## I(X3adj^2) -1.8592 0.5636 -3.299 0.00179 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.564 on 50 degrees of freedom
## Multiple R-squared: 0.9177, Adjusted R-squared: 0.9128
## F-statistic: 185.9 on 3 and 50 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(mod_sec)
```


car::vif(mod_sec)

X6adj X3adj I(X3adj^2)
1.171908 1.173127 1.117543

shapiro.test(mod_sec\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: mod_sec$residuals
## W = 0.98009, p-value = 0.5042

predictions <- mod_sec %>% predict(dados_valid)

data.frame(
```

```
RMSE = RMSE(predictions, (dados_valid$X10^lambda-1)/lambda),
  R2 = R2(predictions, (dados_valid$X10^lambda-1)/lambda)
         RMSE
##
## 1 7.387265 0.8631546
predictions <- modsem9 %>% predict(dados_valid)
data.frame(
  RMSE = RMSE(predictions, (dados_valid$X10^lambda-1)/lambda),
  R2 = R2(predictions, (dados valid$X10^lambda-1)/lambda)
##
         RMSE
                    R2
## 1 8.121198 0.8406073
anova(modsem9,mod_sec)
## Analysis of Variance Table
##
## Model 1: X10_cox ~ X6adj + X3adj
## Model 2: X10_cox ~ X6adj + X3adj + I(X3adj^2)
     Res.Df RSS Df Sum of Sq F
##
## 1
         51 1884.8
         50 1547.9 1 336.91 10.883 0.001793 **
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
AIC(modsem9,mod_sec)
##
           df
                  AIC
## modsem9 4 353.0849
## mod_sec 5 344.4506
```

Agora avaliando o teste linear geral e o AIC, temos que o modelo proposto com diferença significativa, e assim, o modelo escolhido foi o que possui ordem quadrática e consegue explicar boa parte da variabilidade do número de enfermeiros.

1.3.3 Duração da internação

A duração da internação está associada a características do paciente, seu tratamento e do hospital

características do paciente:X2, seu tratamento:X4,X5 hospital:X3,X6,X7,X9,X10, X11

Deseja-se estudar se a Duração da internação está associada a características do paciente, seu tratamento e do hospital, ou seja, a duração da internação, e se há diferenças entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas. Para isso, faz-se necessário a aplicação da regressão linear múltipla realizada no script a seguir:

1.3.4 MODELO POR HIPOTESE

```
\# summary(aov(X1 \sim X2+X3+X4+X5+X6+X7+X9+X10+X11, data=dados train))
#
#
\# modelo\_inicial \leftarrow lm(X1 \sim X3 + X6 + X9), data=dados\_train)
#
#
# car::vif(modelo_inicial) #multicolinearidade
#
#
#
#
# pmat = datax %>% select_if(is.numeric) %>%cor_pmat()
# datax %>% select_if(is.numeric) %>% cor(.) %>%
    ggcorrplot( type = "lower", p.mat = pmat, hc.order = TRUE)
#
#
#
```

```
# # cor(X3, X9)
# #
# #
# # cor(X3,X6)
# #
# #
# # cor(X9,X6)
# #
# #
# # cor(X1, X9)
# #
# #
# # cor(X1, X6)
# #
#
\# modelo\_inicial \leftarrow lm(X1 \sim X3 + X9), data=dados\_train)
# car::vif(modelo_inicial) #multicolinearidade
#
#
# shapiro.test(modelo_inicial$residuals)#normal
#
# predictions <- modelo_inicial %>% predict(dados_valid)
# RMSE(predictions, dados_valid$X1)# modelo bom
#
# R2(predictions, dados_valid$X1) # Fraco
# ##Forward##
# modmin<-lm(X1 ~ 1, data=dados_train)</pre>
# step(modmin, direction='forward', scope=( ~ X2+X3+X4+X5+X6+X7+X8+X9+X10+X11))
#
#
# ##Backward##
```

```
\# modcompl<-lm(X1 ~ X2+X3+X4+X5+X6+X7+X8+X9+X10+X11, data=dados_train)
# step(modcompl, direction = 'backward')
#
# # stepwise
# modmin<-lm(X1 ~ 1, data=dados_train)</pre>
\# modcompl<-lm(X1 ~ X2+X3+X4+X5+X6+X7+X8+X9+X10+X11, data=dados_train)
# step(modmin, scope=list(lower=modmin, upper=modcompl),
       direction="both", data=dados_train)
#
# #todos os modelos foram iguais
\# modstep <- lm(formula = X1 \sim X3 + X8 + X9 + X11, data = dados_train)
# summary(modstep)
#
# shapiro.test(modstep$residuals)#Normal
\# par(mfrow = c(4,1))
# plot(modelo_inicial)
# predictions <- modstep %>% predict(dados_valid)
# RMSE(predictions, dados_valid$X1)#modelo bom
# AIC(modelo_inicial, modstep)
```

Referências

ANEXO A - Amostra