Storing Data

Spreadsheets

Spreadsheets are sometimes used to collect and store data. Spreadsheets may sometimes be used because they are the only program that some individuals or agencies have for storing data. Spreadsheet programs may also be used because spreadsheets can be very intuitive and easy ways of managing small amounts of data.

However, spreadsheets may be problematic as a data storage solution for a number of reasons detailed below, especially as data sets grow in size. Notably, statistical programs like Stata, R, or Julia can all store additional information with each variable such as: a *variable label*, describing the contents of the variable, or the survey question that resulted in the variable; and a *value label*, which attaches qualitative information to each possible value of the response.

Spreadsheets do not generally contain this extra information about each variable, or column of data, which may lead to errors in working with quantitative information.

Describe The Data

Notice how a description of the data contains information that helps us to understand the variables.

pos	variable	label
1	country	country id
2	HDI	Human Development Index
3	family	family id
4	id	unique country family id
5	identity	hypothetical identity group variable
6	intervention	recieved intervention
7	physical_punishment	physical punishment in past week
8	${ m warmth}$	parental warmth in past week
9	outcome	beneficial outcome

Descriptive Statistics and Bar Graph

•

Variable Labels and Value Labels Help Us Understand Our Data

Notice how the descriptive statistics and graph are informative in that they contain information on the *variable label* and *value label*. These help us to get an intuitive sense of the information in the data. We see this information when we list out the data as well.

Descriptive Statistics

Table 2: Table continues below

country	HDI	family	id
1:100	Min. :33.00	Min.: 1.00	Length:3000
2:100	1st Qu.:53.00	1st Qu.: 25.75	Class:character
3:100	Median $:70.00$	Median: 50.50	Mode :character
4:100	Mean $:64.77$	Mean: 50.50	NA
5:100	3rd Qu.:81.00	3rd Qu.: 75.25	NA
6:100	Max. :87.00	Max. :100.00	NA
(Other):2400	NA	NA	NA

Table 3: Table continues below

identity	intervention	physical_punishment	warmth
Identity B:1507	no intervention:1547	Min. :0.000	Min. :0.000
Identity A:1493	intervention:1453	1st Qu.:2.000	1st Qu.:2.000
NA	NA	Median $:2.000$	Median $:4.000$
NA	NA	Mean $:2.479$	Mean $: 3.522$
NA	NA	3rd Qu.:3.000	3rd Qu.:5.000
NA	NA	Max. $:5.000$	Max. :7.000
NA	NA	NA	NA

outcome

Min. :29.61

1st Qu.:48.02 Median :52.45 Mean :52.43 outcome

3rd Qu.:56.86

Max. :74.84

NA

Bar Graph

List Out A Sample Of The Data

Table 5: Table continues below

country	HDI	family	id	identity	intervention
1	69	1	1.1	Identity A	no intervention
1	69	2	1.2	Identity A	intervention
1	69	3	1.3	Identity B	intervention
1	69	4	1.4	Identity A	no intervention
1	69	5	1.5	Identity A	no intervention
1	69	6	1.6	Identity B	intervention

physical_punishment	warmth	outcome
3	3	57.47
2	1	50.1
3	2	52.92
0	5	60.17
4	4	55.05
5	3	49.81

Now Use The Data In Spreadsheet Format

We now import the Excel data file. We use the first row of data as variable names.

We see right away—when we list some of the data—that the data are less informative.

Table 7: Table continues below

country	HDI	family	id	identity	intervention	physical_punishment
1	69	1	1.1	1	0	3
1	69	2	1.2	1	1	2

country	HDI	family	id	identity	intervention	physical_punishment
1	69	3	1.3	0	1	3
1	69	4	1.4	1	0	0
1	69	5	1.5	1	0	4
1	69	6	1.6	0	1	5

warmth	outcome
3	57.47
1	50.1
2	52.92
5	60.17
4	55.05
3	49.81

Adding this valuable information back into the data set may take a great deal of extra effort.

Descriptive Statistics and Bar Graph

Notice here how the descriptive statistics and graph are much less informative. For example, it is now not immediately clear what the values of identity or intervention represents. The information on variable label and value label will have to be added back into the data when preparing a final product for dissemination.

Descriptive Statistics

Table 9: Table continues below

country	HDI	family	id
Min.: 1.0	Min. :33.00	Min.: 1.00	Length:3000
1st Qu.: 8.0	1st Qu.:53.00	1st Qu.: 25.75	Class:character
Median $:15.5$	Median $:70.00$	Median: 50.50	Mode :character
Mean $:15.5$	Mean $:64.77$	Mean: 50.50	NA
3rd Qu.:23.0	3rd Qu.:81.00	3rd Qu.: 75.25	NA
Max. $:30.0$	Max. :87.00	Max. :100.00	NA

Table 10: Table continues below

identity	intervention	physical_punishment	warmth
Min. :0.0000	Min. :0.0000	Min. :0.000	Min. :0.000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:2.000	1st Qu.:2.000
Median $:0.0000$	Median: 0.0000	Median: 2.000	Median $:4.000$
Mean $:0.4977$	Mean $:0.4843$	Mean $:2.479$	Mean $:3.522$
3rd Qu.:1.0000	3rd Qu.:1.0000	3rd Qu.:3.000	3rd Qu.:5.000
Max. $:1.0000$	Max. $:1.0000$	Max. $:5.000$	Max. $:7.000$

outcome
Min. :29.61
1st Qu.:48.02
Median: 52.45
Mean $:52.43$
3rd Qu.:56.86
Max. :74.84

Bar Graph

While the graph has an informative title, as well as informative axis labels, a crucial piece of information is missing, what each status of the intervention represents.

A Few Final Issues

Notice finally how spreadsheets doesn't enforce the idea of whether variables are *numeric*, or *text*, and so would allow storage of different types of information in the same column. Relatedly, *numeric* variables may be improperly stored as *text*, often necessitating recoding before graphical or statistical procedures can be employed.

Secondly, Excel would allow some of your columns to have the same name, which might make data difficult to work with in other software.

X	у	verylongvariablename	verylongvariablename
100	1	Smith	20
200	2	30	NA
not applicable	X	yes	60

File Organization

Files for all of your work should not be stored all together in downloads. Ideally, you should have a specific set of folders for your work. Each project, should be stored in its own individual folder. Ideally, each project folder would have a separate sub-folder for separate aspects of the project such as data, code or syntax, and various outputs.

Figure 1: A Hypothetical Set of Folders and Subfolders