Assignment 2: Finite Element Methods (41525)

Ole Sigmund and Kim L. Nielsen
Department of Civil and Mechanical Engineering
Solid Mechanics, Building 404
Technical University of Denmark
DK-2800 Lyngby, Denmark

October 12, 2022

Report requirements

Formal rules

- This second assignment consists of four subassignments in total (one pr. course days 6-9).
- The 4 subassignments must be answered on at most 5 pages including figures and discussions. Also include subassignment numbers in answers, c.f. 3.1, 3.2, etc.
- Apart from the 5 pages discussed above, a cover page must include the following:
 - Group number and code.
 - Student's names and student's numbers.
 - A statement on who is responsible for what parts of the assignment and codes¹.
- One (in total) additional and separate page may be added containing answers to *-exercises related to the subassignments. Recall that one can still achieve top grades without solving any *-exercises! This page may also be used to brag about special programming or smart file handling details that you have implemented in connection with the exercises.
- Use minimum 12 pt, single line spacing, 2cm margin left and right, 3cm margin top and bottom on your A4 paper. (NB! This document is formatted according to these rules)
- The final report must be uploaded to DTU Learn as one separate pdf-file before the deadline (Tuesday November 8th at 10pm) and handed to the teacher in hard copy with signatures before the following Wednesday lecture at the latest.
- One separate pdf-file containing your source codes for the fea.f90 and plane42.f90 (isoparametric formulation) modules must be uploaded as well.
- Failure to adhere to above rules will count negatively in the evaluation.

Recommendations:

- Use the feedback sheet (see the sample outline next page) as work guidance and check-list.
- The answers to each subassignment may contain plots, graphs, equations and text.
- All results must be accompanied by short and precise explanations, discussions and critical interpretations. Note that these discussions and interpretations also count in the evaluation.
- Create simple, clear and readable illustrations and graphs.

October 2022, Ole Sigmund and Kim L. Nielsen

¹From the DTU rules: "It must be clearly specified for which sections each student has the (main) responsibility. A group project is not deemed to be individualized if the students merely state that they have contributed equally to all sections of the report or the like. If a group project does not comply with these requirements for individualization or other formal requirements, the report may be rejected and no assessment given."

Sample evaluation sheet

Evaluation of final report

Group code:

	8	NA	Unacceptable	Just acceptable	Average	Good	Excellent	Remarks
Report specific issues	A1 213	-	9 4					Α
Layout and format								4
Matlab codes	A 0							4
Cover page	3 8							6
Page limit	- in - 81							
Competition 1	- inc - 81				- 2			2
Clarity and preciseness	88 83			5 8	_ a			5
Language	- 28 - 28		3 3	2 23	- 0		8	· ·
Readability of graphs	28 23		3 3	2 25			8	is a second
Code organization	3 8			3 3	- 3		8	
Subassignment 1	80 S	X	c 0		500		24	© 2
Ex. 1	96 83		- 1	3 8	- 3		2	2
Ex. 2	591 - 53		2 2	3 59	- 3	\dashv		2
Ex. 3	- S	-	2		- 3	_		3
Ex. 4	3 S		X 8	2 2	- 3		8 -	8
	- th - 47			8 10			8	1 2
Subassignment 2	G)-							·
Ex. 1	20 27							3
Ex. 2								
Ex. 3				4 W				
Ex. 4				2 20				
Ex. 5								
Subassignment 3	Ť							ľ
Ex. 1		T	Ĩ	<u> </u>			1	
Ex. 2		1				\neg		
Ex. 3		\neg						3
Ex. 4								6
Subassignment 4	1							
Ex. 1		Ì			Ĵ			5
Ex. 2		İ						5
Ex. 3								

Exercise 1 - Equation solving

Figure 1: Schematic of 2D domain discretized by 2000 elements. The number of elements in the x- and y-directions are ne_x and ne_y , respectively. The node numbering starts at the bottom left corner (at [x,y] = [0,0]), continues along the y-axis before making a shift along the x-axis. The node numbering ends at the top right corner (at [x,y] = [L,H]).

Consider the 2D plane stress domain loaded by a concentrated forces of magnitude, P, at the top-right corner point (x = L and y = H) and at the bottom-right corner point (x = L and y = 0). The domain is fixed (so that $u_x = u_y = 0$) at points [x, y] = [0, 0] and constrained in the x_1 -direction at point [x, y] = [0, H] (so that $u_x = 0$). The domain size and shape stay fixed throughout the following investigation of the employed solvers.

The total number of elements (ne) that discretizes the domain equals 2000, such that ne = $ne_x \times ne_y = 2000$, with ne_x and ne_y being the number of elements in the x- and y-direction, respectively. The nodes are numbered as illustrated in Fig. 1. Thus, the node numbering starts at the bottom left corner (at [x,y] = [0,0]) and runs along the y-axis before making a shift along the x-axis. The node numbering ends at the top right corner (at [x,y] = [L,H]).

For $ne_x = [2000, 1000, 500, 250, 125, 16, 8, 4, 2, 1]$ (in total 10 different meshes), your are asked to:

- 1. Create the input files (e.g. by using *Flextract*) and calculate the bandwidth (*bw*) as well as the number of equations (neqn) for all 10 meshes. Explain the numbers and make a prediction of the expected CPU time according to the discussion in Chapter 6 in the course notes and the Cook book.
- 2. Time the solution and compare results for the *full* and *banded* solver. Discuss the differences if any and compare with your theoretical predictions.

Employ the *bandfem* and *renum* programs (available on DTU Learn) to optimize the bandwidth for all 10 meshes.

- 3. Compare the optimized bandwidths to those of the original meshes. Do you see a change in bandwidth for all meshes why/why not?
- 4. Compare calculation time for the 10 different meshes, before and after optimizing the bandwidth, and discuss the results.

Exercise 2 - Virtual Work Principle

Figure 2: Schematic of a compression test of a linear elastic material constrained by a channel such that the specimen (in grey) only deforms in the x_2 -direction. The specimen has height c, and in-plane dimensions a and b in the x_1 - and x_3 -direction respectively. The material is functionally graded such that the Young's modulus is denoted, $E(x_2)$, the shear modulus is $G(x_2)$, and Poisson ratio is $V(x_2)$.

Consider compression testing of a block of linear elastic material with height, c, and in-plane dimensions a and b in the x_1 and x_3 -direction, respectively (see Fig. 2). The block is placed in the bottom of the channel and loaded by a pressure, p = P/(ab), at the top boundary. The channel die and punch is assumed rigid such that the specimen only deformed in the x_2 -direction, thus, $u_2(x_2) \neq 0$ and $u_1(x_2) = u_3(x_2) = 0$. No volume and friction forces exist. Based on linear elasticity you are asked to:

- 1. Determine the stress and strain state of the material. Write the respective vectors (e.g $\{\epsilon\} = \{\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, \epsilon_{12}, \epsilon_{13}, \epsilon_{23}\}^T$ and $\{\sigma\} = \{\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{13}, \sigma_{23}\}^T$).
- 2. Determine the strain energy density, U. Write the expression in terms of the given parameters (**Hint:** recall that $U = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}$).

From Eq. (7.25) in Chapter 7 in the course notes, the principle of virtual work for the domain considered can by written as:

$$\int_{V} \delta \varepsilon_{ij} \sigma_{ij} dV = \int_{S_{F}} \delta u_{i} F_{i} dS + \int_{V} \delta u_{i} \Phi_{i} dV$$
(1)

You are asked to:

- 3. Show that the weak form of the equilibrium equations in Eq. (1) reduces to 1D for the compression problem in Fig. 2. Write the simplified version of Eq. (1). (**Hint:** Notice that the variation in the displacement field is in the x_2 -direction.)
- 4. Derive the discrete finite element equation based on the 1D variational problem accounting for the material gradient in the x_2 -direction, i.e. $E = E(x_2)$ and $v = v(x_2)$.
- 5. Based on the derivations in question 4, develop a 1D element (not iso-parametric) and derive the element stiffness matrix.