

Onboarding SDSC users at CSCS

Workshop

Prashanth Kanduri and Lukas Drescher CSCS

19th October, 2023

Structure of the day

Morning

- Alps overview
- MFA access
- SSH configuration:
 - Daint login nodes and compute nodes
 - Login with VS code
- Running jobs using sbatch
- Conda environment
 - create custom jupyter-kernel
 - shared between Jupyter service, IDE and shell

Afternoon

- Running containers with Sarus on Piz Daint
 - ...using NGC containers for single node and distributed deep learning
 - Large scale training on Piz Daint in MLPerf
- Outlook on Alps
 - New container engine
 - High-performance data science with RAPIDS on Clariden

Quick Intro to CSCS

A unit of the Swiss Federal Institute of Technology, ETH Zürich

Mission

«We develop and operate a high-performance computing and data research infrastructure that supports world-class science in Switzerland»

Located in Ticino since 1991

 National and international collaborations in the research of new technologies for HPC

Some numbers

Staff

- 120 members
- 26+ nationalities
- Official language: english

Building

- 2'600 m² office building
 2'000 m² machine room
- «Free cooling» with lake water

User Lab

- 2'300 users
- 130 projects

Budget

- CHF 30 Mio. operating budgetCHF 20 Mio. IT investment

Electricity

- Currently 11 MW
- Possible extension to 25 MW
- 100% hydro-electric source

Partnerships

MeteoSwiss, NCCR Marvel, PSI, CHIPP, Empa, ETH Zurich, CERN, USI, UZH, BlueBrain ...

The Facility in Lugano

The Facility in Lugano

The Machines

Current Flagship System: Piz Daint

Model	Cray XC40/XC50		
XC50 Compute Nodes	Intel® Xeon® E5-2690 v3 @ 2.60GHz (12 cores, 64GB RAM) and NVIDIA® Tesla® P100 16GB - 5704 Nodes		
XC40 Compute Nodes	Two Intel® Xeon® E5-2695 v4 @ 2.10GHz (2 x 18 cores, 64/128 GB RAM) - 1813 Nodes		
Login Nodes	Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256 GB RAM)		
Interconnect Configuration	Aries routing and communications ASIC, and Dragonfly network topology		B6
Scratch capacity	8.8 PB		

Daint-GPU Nodes

Daint-GPU node has a simple architecture

- 1 Haswell CPU socket
- 1 P100 GPU
- PCI-E connection between host-device
- 1 NIC

The ratio of 1-1 made allocating MPI ranks relatively simple:

- One rank per GPU + CPU
- Or multiple ranks sharing the GPU using CUDA MPS (multi-process service)

Alps Phase II Nodes

Grace-Hopper modules are conceptually similar

- 1 Grace CPU socket and one Hopper GPU per module
- Cache-coherent NVLINK connection between host and device memory
- One NIC per module

Each node will have 4 Grace-Hopper modules

All-to-all cache-coherent memory NVLINK between all host and device memory

The one-to-one CPU to GPU ratio remains

The 4 modules on a node form an optimised communication network.

The Grace-Hopper "Super Chip"

NVIDIA are releasing are two super chips:

1. Grace-Grace: dual-socket Grace CPU with NVLINK C2C

2. Grace-Hopper: Grace CPU + Hopper GPU with NVLINK C2C

Alps Phase

Bandwidth: Daint-GPU Node vs. one GH Module

Comparing the raw speeds and feeds of the CPU and GPU

GPU	P100	Hopper	Increase
Bandwidth	700 GB/s	4000 GB/s	5.7x
FP64	4.7 TFlops	34/67 TFlops	7-14x
Memory	16 GB HBM	96 GB HBM3	6x

Data Movement	Daint-GPU	Alps Phase II	Increase
Host-Device	22 GB/s	480 GB/s	20x
Device-Device on node	-	900 GB/s	-
node-node	11 GB/s	23 GB/s	2x

CPU	Haswell	Grace	Increase
Cores	12	72	6х
Bandwidth	60 GB/s	475 GB/s	8x
FP64	0.49 TFlops	> 2.5 TFlops	5x
Memory	64 GB DDR3	128 GB LPDDR	2x

- The Grace-Hopper module delivers 5-10x improvement across the board
- Speedup may be lower or higher depending on the existing bottlenecks.

Grace: Server Class ARM CPU

- 64bit Server Class Core and SoC
 - Arm V9.0 ISA Compliant aarch64 core (Neoverse V2 "Demeter"architecture)
 - Full SVE-2 Vector Extensions support, inclusive of NEON instructions
 - Supports 48-bit Virtual and 48-bit Physical address space
- Implemented on 5nm Process technology
- Balanced architecture between Single Core Perf, Core count, Memory and IO subsystems

Grace Performance

OPENFOAM 2206

MotorBike 5M

- Sapphire Rapids: Intel Xeon Platinum 8470Q, 52c @ 2.1GHz 3.8GHz Genoa: AMD EPYC 9654, 96c @ 1.5GHz 3.7GHz Grace: NVIDIA Engineering Sample, 72c @ 3.2GHz Best single socket time using best compilers (GCC, ICC, AOCC) and best rank/thread decomposition
- The state of the s

- Grace will be competitive with x86 HPC CPU architectures.
- Each GPU will have a full CPU socket workloads that can "reverse offload" or have CPU-intensive components will benefit.

WRF 4.4.2 CONUS12, 24hr simulation time

Sapphire Rapids: Intel Xeon Platinum 84700, 52c @ 2.1GHz - 3.8GHz Genoa: AMD EPYC 9654, 96c @ 1.5GHz - 3.7GHz Grace: NVIDIA Engineering Sample, 72c @ 3.2GHz

Best single socket time using best compilers (GCC, ICC, AOCC) and best rank/thread decomposition

Results based on early engineering samples of Grace

Flexible distribution of resources

Grace-Hopper supports flexible allocation of CPU and GPU resources over multiple jobs and tasks

One Job exclusive to the node

Job A - 64 Grace CPU MPAM Job B - 8 Grace Cores MPAM + Hopper GPU

Job A - 8 Grace Cores MPAM + Hopper MIG Job B - 8 Grace Cores MPAM + Hopper MIG Etc.

24

Thank you for your attention.

