DATA STRUCTURES & ALGORITHMS

18: SINGLE SOURCE SHORTEST PATH

(Bellman-Ford & DAG Shortest Path)

Dr Ram Prasad Krishnamoorthy

Associate Professor School of Computing and Data Science

ram.krish@saiuniversity.edu.in

Dijkstra's algorithm solves single source shortest path on weighted directed graph G(V,E).

It is a generalization of Breadth First Search (BFS) on weighted graphs. The weights here are non-negative.

The source vertex \mathbf{s} is explicitly provided.

Find shortest path from **s** to all remaining vertices.

d[v] = 5 + 2 = 7

if
$$(d[u] + w(u,v) < d[v])$$

 $d[v] = d[u] + w(u,v)$
RELAX (u, v, w)
if $v.d > u.d + w(u, v)$
 $v.d = u.d + w(u, v)$
 $v.d = u.d + w(u, v)$
 $v.\pi = u$

Selected vertex	Visited set	d[t]	d[x]	d[y]	d[z]	
S	{s}	10	∞	5	∞	
у	{s, y}	8	14	5	7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Z	${s, y, z}$	8	13	5	7	$s \bigcirc 2 \bigcirc 3 \bigcirc 9 \bigcirc 4 \bigcirc 6$
t	${s, y, z, t}$	8	9	5	7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
x	$\{s, y, z, t, x\}$	8	9	5	7	

```
DIJKSTRA(G, w, s)
 INITIALIZE-SINGLE-SOURCE (G, s)
 S = \emptyset
 Q = \emptyset
 for each vertex u \in G.V
      INSERT(Q, u)
 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
      S = S \cup \{u\}
      for each vertex v in G.Adj[u]
           Relax(u, v, w)
           if the call of RELAX decreased v.d
               DECREASE-KEY(Q, v, v.d)
```

INITIALIZE-SINGLE-SOURCE (G, s)for each vertex $v \in G$. V $v.d = \infty$ $v.\pi = \text{NIL}$ s.d = 0

Bellman-Ford

- Allows negative-weight edges.
- Computes v.d and $v.\pi$ for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.


```
BELLMAN-FORD (G, w, s)
 INITIALIZE-SINGLE-SOURCE (G, s)
 for i = 1 to |G.V| - 1
     for each edge (u, v) \in G.E
         Relax(u, v, w)
 for each edge (u, v) \in G.E
     if v.d > u.d + w(u, v)
         return FALSE
 return TRUE
```


ITERATION - 1

s -	t	X	-	t
s -	у	У	-	X
t -	X	У	-	Z
t -	У	Z	-	X
t -	Z	Z	-	S

s -	- t	X	-	t
s -	- у	у	-	X
t -	- X	у	-	Z
t -	- у	Z	-	X
t -	- Z	Z	_	S
t - t -	- x - y	y z	- -	2

S	_	t	X		-	t
S	_	У	У	,	-	X
t	_	X	У	,	-	Z
t	_	У	Z		-	X
t	_	Z	Z		-	S

S	_	t		X	_	t
S	_	У		У	-	X
t	_	X		У	-	Z
t	-	у		Z	-	X
t	-	Z		Z	-	S

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

Iteration - 1

Iteration - 1

Iteration - 1

ITERATION - 2

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

S	_	t	X	-	t
	_		у	-	X
t	_	X	У	-	Z
t	_	У	Z	-	X
t	_	Z	Z	-	S

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z – s

s - t	x - t
s - y	y - x
t - x	y – z
t - y	z - x
t - z	z - s

Iteration - 2

s – t	Ī	X	_	t
s - y	/	у	-	X
t - >	<	У	-	Z
t - y	/	Z	-	X
t - 2	<u>z</u>	Z	_	S

ITERATION - 3

(-	t
/	-	X
/	_	Z
<u> </u>	_	X
<u> </u>	-	S
	/ / Z	< - / - / - z - z -

s -	- t	x	_	t
s -	- у	У	-	>
t -	- x	У	-	Z
t -	- у	Z	-	>
t -	- z	Z	-	9

s - t	X	_	t
s – y	у	_	X
t - x	У	-	Z
t - y	Z	-	X
t – z	z	_	S

s - t	x - t
s - y	y - x
t - x	y – z
t - y	z - x
t - z	z - s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z – s

S	-	t	X	_	t
S	_	У	у	-	X
t	-	X	У	-	Z
t	-	У	Z	-	X
t	_	Z	Z	-	S

s – t	<u>-</u>	X	-	t
s - y	/	У	-	X
t - >	<	У	-	Z
t - y	/	Z	-	X
(t – z	7	Z	-	S

Iteration - 3

Iteration - 3

Iteration - 3

Iteration - 3

ITERATION - 4

Iteration - 4

 s - t
 x - t

 s - y
 y - x

 t - x
 y - z

 t - y
 z - x

 t - z
 z - s

S	_	t	x		_	t
S	_	У	у	,	-	X
t	_	X	у	,	-	Z
t	_	У	Z		-	X
t	_	Z	z		-	S

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

s - t	X	-	t
s - y	у	-	X
t - x	у	-	Z
t - y	z	-	X
t - z	z	_	S

s - t	x - t
s - y	y - x
t - x	y – z
t - y	z - x
t - z	z – s

s - t	x - t
s - y	y - x
t - x	y - z
t - y	z - x
t - z	z - s

Iteration - 4

 s - t
 x - t

 s - y
 y - x

 t - x
 y - z

 t - y
 z - x

 t - z
 z - s

Iteration - 4

Iteration - 4

Iteration - 4

Iteration - 4

Arrange the vertices based on in-degree update.

C

g

Arrange the vertices based on in-degree update.

Can be implemented using DFS based on the finish time.

```
DAG-SHORTEST-PATHS (G, w, s)
topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE (G, s)
for each vertex u \in G.V, taken in topologically sorted order
for each vertex v in G.Adj[u]
RELAX(u, v, w)
```


$$r \rightarrow \{s, t\}$$

$$s \rightarrow \{t, x\}$$

$$t \rightarrow \{x, y, z\}$$

$$x \rightarrow \{y, z\}$$

$$y \rightarrow \{z\}$$

$$z \rightarrow \{\}$$


```
r \rightarrow \{s, t\}

s \rightarrow \{t, x\}

t \rightarrow \{x, y, z\}

x \rightarrow \{y, z\}

y \rightarrow \{z\}

z \rightarrow \{\}
```



```
r \rightarrow \{s, t\}
s \rightarrow \{t, x\}
t \rightarrow \{x, y, z\}
x \rightarrow \{y, z\}
y \rightarrow \{z\}
z \rightarrow \{\}
```


$$r \rightarrow \{s, t\}$$

$$s \rightarrow \{t, x\}$$

$$t \rightarrow \{x, y, z\}$$

$$x \rightarrow \{y, z\}$$

$$y \rightarrow \{z\}$$

$$z \rightarrow \{\}$$

$$r \rightarrow \{s, t\}$$

$$s \rightarrow \{t, x\}$$

$$t \rightarrow \{x, y, z\}$$

$$x \rightarrow \{y, z\}$$

$$y \rightarrow \{z\}$$

$$z \rightarrow \{\}$$

$$r \rightarrow \{s, t\}$$

$$s \rightarrow \{t, x\}$$

$$t \rightarrow \{x, y, z\}$$

$$x \rightarrow \{y, z\}$$

$$y \rightarrow \{z\}$$

$$z \rightarrow \{\}$$

$$r \rightarrow \{s, t\}$$

$$s \rightarrow \{t, x\}$$

$$t \rightarrow \{x, y, z\}$$

$$x \rightarrow \{y, z\}$$

$$y \rightarrow \{z\}$$

$$z \rightarrow \{\}$$


```
r \rightarrow \{s, t\}
s \rightarrow \{t, x\}
t \rightarrow \{x, y, z\}
x \rightarrow \{y, z\}
y \rightarrow \{z\}
z \rightarrow \{\}
```



```
r \rightarrow \{s, t\}
s \rightarrow \{t, x\}
t \rightarrow \{x, y, z\}
x \rightarrow \{y, z\}
y \rightarrow \{z\}
z \rightarrow \{\}
```



```
r \rightarrow \{s, t\}
s \rightarrow \{t, x\}
t \rightarrow \{x, y, z\}
x \rightarrow \{y, z\}
y \rightarrow \{z\}
z \rightarrow \{\}
```



```
r \rightarrow \{s, t\}
s \rightarrow \{t, x\}
t \rightarrow \{x, y, z\}
x \rightarrow \{y, z\}
y \rightarrow \{z\}
z \rightarrow \{\}
```



```
DAG-SHORTEST-PATHS (G, w, s)
topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE (G, s)
for each vertex u \in G.V, taken in topologically sorted order
for each vertex v in G.Adj[u]
RELAX (u, v, w)
```