METHOD FOR ESTIMATING MIXTURE EQUATION OF STATE PARAMETERS

Eric W. Lemmon and Mark O. McLinden

National Institute of Standards and Technology Boulder, Colorado 80305 USA

ABSTRACT

A predictive method has been developed for estimating the ζ_{ij} parameter in the mixture model of Lemmon and Jacobsen [*Int. J. Thermophysics*, **20**:1629 (1999)] applied to refrigerant mixtures. Data for 76 binary pairs were used to develop the method and these data are summarized. A wide variety of fluid properties were examined as parameters. The critical temperature, critical pressure, acentric factor, and dipole moment of each pure fluid were used in the final scheme. The values of ζ_{ij} range between -106 and +11; a value of zero for ζ_{ij} corresponds to a pseudo ideal mixture. This method is implemented in the NIST REFPROP database for fluids typically used as refrigerants in engineering practice, and should prove useful in the evaluation of new refrigerant blends.

1. MIXTURE MODEL

In the widely used NIST REFPROP database (Lemmon and McLinden, 2001), the Lemmon-Jacobsen (L-J) (1999) model is used to calculate the properties of mixtures of refrigerants, hydrocarbons, and cryogens. It applies mixing rules to the reduced Helmholtz energy, α , of the components:

$$\alpha_{mix} = \sum_{i=1}^{n} \left[x_{j} \left(\alpha_{j}^{id} + \alpha_{j}^{r} \right) + x_{j} \ln x_{j} \right] + \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} x_{i} x_{j} F_{ij} \alpha_{ij}^{excess} . \tag{1}$$

The first summation represents the ideal solution when used with the appropriate reducing parameters; it consists of ideal gas (superscript id) and residual or real fluid (superscript r) terms for each of the pure fluids in the n component mixture. The $x_j \ln x_j$ terms arise from the entropy of mixing of ideal gases where x_j is the mole fraction of component j. The double summation accounts for the "excess" Helmholtz energy or "departure" from an ideal solution. The α_{ij}^{excess} is a generalized function that is applicable to broad classes of fluids and is fitted to experimental data. The F_{ij} are generalizing parameters that relate the behavior of one binary pair with that of another. The functions in Eq. (1) are evaluated at a reduced temperature τ and density δ given by:

$$\tau = \frac{T^*}{T_{mix}}, \text{ with } T^* = \sum_{i=1}^n x_i T_i^{crit} + \sum_{i=1}^{n-1} \sum_{j=i+1}^n x_i x_j \zeta_{ij}, \text{ and}$$
 (2)

$$\delta = \frac{\rho_{mix}}{\rho^*}, \text{ with } \rho^* = \left[\sum_{i=1}^n \frac{x_i}{\rho_i^{crit}} + \sum_{i=1}^{n-1} \sum_{j=i+1}^n x_i x_j \xi_{ij}\right]^{-1}.$$
 (3)

Thus, the L-J model contains one generalized function α_{ij}^{excess} and three mixture-dependent parameters F_{ij} , ζ_{ij} , and ξ_{ij} for each binary mixture. Multicomponent mixtures are modeled using only the constituent binary parameters. With this model, all of the thermodynamic properties can be calculated. Ideally F_{ij} , ζ_{ij} , and ξ_{ij} would be determined from high-quality data for each binary pair of interest. However, in cases where such data are not available, a method for predicting one or more of these parameters is needed.

The ζ_{ij} parameter is the most important of the three system-dependent parameters in the mixture model, and this single parameter captures the most essential features of refrigerant mixture behavior, including the azeotropic behavior that exists for some fluid pairs (Lemmon and Tillner-Roth, 1999). With this parameter alone, vapor-liquid equilibria for nearly all systems can be calculated with uncertainties close to that obtained by using the full model. (When using only ζ_{ij} , the parameters ξ_{ij} and F_{ij} in the L-J model are set to zero.) Due to a lack of data (published density data were available for fewer than 1/3 of the mixtures studied), it has not been possible to develop a predictive scheme for the F_{ij} and ξ_{ij} parameters; the largest influence of these parameters is in the calculation of densities.

The ζ_{ij} parameters were determined for all the systems studied in this work (including those systems for which more accurate modeling had already taken place in other work) to form a dataset that could be used to develop a predictive scheme. Various fluid-specific constants were examined in developing the predictive method; these included the dipole moment, molecular volume, acentric factor, critical temperature, critical pressure, critical density, triple point temperature, and the normal boiling point temperature. Various ways of combining the pure fluid properties were used to find a relation between these parameters and ζ_{ij} . It was necessary to determine the relationships among the various pure fluid parameters and the functional form of an equation that would allow the estimation of this mixture parameter. The relationships are neither unique nor theoretically justified. In the end, a strictly empirical relation was correlated that used the critical temperature T^{crit} , critical pressure p^{crit} , and acentric factor ω . The dipole moment μ was used to determine the order of the pure components in the equation. In this estimation scheme, ζ_{ij} is given by

$$\zeta_{ij} \frac{T_1^{crit}}{T_2^{crit}} = 40.4 - 25.03 \times 2^m, \text{ with } m = \left[\frac{T_1^{crit}}{T_2^{crit}} \frac{p_2^{crit}}{p_1^{crit}} \frac{\omega_2}{\omega_1} \right], \tag{4}$$

where fluid "1" has the smaller value of the dipole moment. In the special case where the dipole moments of the two fluids are identical, fluid "1" has the larger value of $T^{crit}/(p^{crit}\omega)$. Values of the critical parameters and acentric factors for the systems studied in this work were taken from Version 7 of the REFPROP database (Lemmon and McLinden, 2001) and are given in Table 1. A value of zero for ζ_{ij} corresponds to "ideal mixing". Figure 1 depicts the correlation given by Eq. (4).

Table 1. Critical Parameters and Acentric Factors

Fluid	T^{crit}	p^{crit}	ω	μ	Fluid	T^{crit}	p^{crit}	ω	μ
	(K)	(MPa)		(debye)		(K)	(MPa)		(debye)
Propane	369.825	4.2471	0.1524	0.083	R113	487.21	3.3922	0.2525	0.803
Propylene	365.57	4.6646	0.1408	0.4	R114	418.83	3.2570	0.2523	0.658
CO_2	304.128	7.3773	0.2239	0.0	R115	353.1	3.1200	0.2520	0.52
R11	471.11	4.4076	0.1887	0.45	R116	293.03	3.0420	0.2540	0.0
R12	385.12	4.1361	0.1795	0.51	R123	456.831	3.6618	0.2819	1.356
R13	302.00	3.8790	0.1723	0.51	R124	395.425	3.6243	0.2881	1.469
R14	227.51	3.7500	0.1785	0.0	R125	339.165	3.6290	0.3061	1.563
R21	451.48	5.1812	0.2061	1.37	R134a	374.21	4.0593	0.3268	2.058
R22	369.295	4.9900	0.2208	1.458	R141b	479.96	4.4600	0.2235	2.014
R23	299.293	4.8280	0.2646	1.649	R142b	410.26	4.0700	0.2337	2.14
R32	351.255	5.7820	0.2769	1.978	R143a	345.857	3.7610	0.2615	2.34
R41	317.28	5.8970	0.2012	1.851	R152a	386.411	4.5168	0.2752	2.262

2. RESULTS AND DISCUSSION

Table 2 summarizes the experimental data used in the development of this refrigerant mixture model. Data for 76 binary pairs were used in the development of this method. About three-fourths of the binary pairs contain an HCFC and/or CFC and are not appropriate for use in modern environmentally friendly refrigeration equipment. However, the HCFC and CFC-containing mixtures have provided a wider range of molecular parameters that were useful in the development of the model. These data are reasonably complete for the mixtures examined, but not exhaustive. There are additional data for several of the mixtures marked with an asterisk that are referenced in McLinden et al. (1998) but which are not included here for reasons of space. A few data points have been removed from individual data sets that were either obviously in error, or for which the iterative programs used to calculate the properties failed at the given experimental conditions.

The values of ζ_{ij} determined by fitting experimental data and those calculated from Eq. (4) are given in Table 2. The overall AAD of the 4439 VLE data points analyzed is 1.77%, based on ζ_{ii} values fitted to experimental data, compared to 4.50% for ζ_{ij} values calculated with Eq. (4); the corresponding deviations for the 10373 PVT data points are 0.94% and 1.71%. The data for the 76 mixtures studied here span a wide range of quality, and the deviations include scatter and systematic deviations in the data. The deviations for some of the recently-studied HFC mixtures such as the recently-studied HFC mixtures such as 2^m , $m = \{T_1^c \omega_2 p_2^c / (T_2^c \omega_1 p_1^c)\}$ R125/143a and R134a/152a are quite good as Figure 1. Comparison of ζ_{12} values derived from shown in Table 2. The L-J mixture model is capable of reproducing mixture PVT data within from the estimation method (solid line)

experimental data (circles) with those calculated

0.2% in density and VLE data to about 1.0% in bubble point pressure when the three parameters ζ_{ii} , ξ_{ij} , and F_{ij} are fitted to high-quality data. An additional factor in the larger deviations seen here (as compared to the three parameter model), even when ζ_{ij} values based on experimental data are used, is the compromise in accuracy in fitting a single parameter instead of three. In particular, PVT data are most sensitive to the F_{ij} parameter, so density values calculated using the single parameter model reported here show the greatest relative degradation from the optimum case. To these effects, one must add the uncertainty of the predictive scheme itself. All properties stem from molecular structure and the interactions between molecules; likewise the parameters used in the present prediction are derived from molecular structure. But the relationship in Equation (4) is empirical and does not fully capture the physics of the actual molecular interactions occurring in a mixture.

3. CONCLUSIONS

A method has been developed to estimate the ζ_{ij} parameter in the Lemmon-Jacobsen mixture model. The method calculates properties with an overall average absolute deviation of 4.5% in bubble-point pressure and 1.7% in density. This new scheme does not replace the values of F_{ij} , ξ_{ij} , and ζ_{ij} determined directly for binary mixtures with extensive data, but it should prove useful in the evaluation of new refrigerant blends. The support of this work by the U.S. Department of Energy is gratefully acknowledged.

Table 2. Values of ζ_{ij} Determined from Fitting Experimental Data and Calculated from Eq. (4), and Comparisons with Experimental Data.

Binary Mixture and ζ_{ii} values	Binary Mixture and ζ_{ij} values
Author Data # AAD AAD	Author Data # AAD AAD
Type Pts. Exp. Calc.	Type Pts. Exp. Calc.
propane/R22 $\zeta_{exp} = -43.44 \ \zeta_{calc} = -41.13$	$CO_2/R41 \ \zeta_{exp} = 1.79 \ \zeta_{calc} = 0.06$
Nagahama (1986) VLE 1 0.215 0.957	Holcomb (1998) VLE 25 0.889 1.125
Bivens (1996) VLE 20 0.606 1.199	Magee (1996) PVT 214 1.559 1.370
propane/R32 $\zeta_{exp} = -102.3 \ \zeta_{calc} = -106.2$	$CO_2/R142b$ $\zeta_{exp} = -15.84$ $\zeta_{calc} = 9.11$
Holcomb (1998) VLE 64 2.251 3.808	Lavrenchenko (1983) VLE 17 3.511 12.94
Holcomb (1998) PVT 49 4.067 4.133	R11/R12 $\zeta_{exp} = -0.53 \ \zeta_{calc} = -10.59$
propane/R115 $\zeta_{exp} = -41.19 \ \zeta_{calc} = -19.15$	Loi (1983) VLE 66 1.955 3.697
Nagahama (1986) VLE 1 0.405 10.85	Kruse (1977) PVT 6 4.214 4.266
propane/R125 $\zeta_{exp} = -74.31 \ \zeta_{calc} = -46.94$	Ström (1990) PVT 66 0.387 0.425
Holcomb (1998) VLE 48 1.883 9.798	R11/R13 $\zeta_{exp} = -7.87 \ \zeta_{calc} = -12.36$
Bivens (1996) VLE 17 1.337 9.892	Kriebel (1966) VLE 130 2.222 3.708
Holcomb (1998) PVT 26 1.849 6.662	R11/R22 $\zeta_{exp} = -26.89 \ \zeta_{calc} = -31.64$
propane/R134a $\zeta_{exp} = -73.73 \ \zeta_{calc} = -62.24$	Meskel (1982a) VLE 29 0.871 2.250
Holcomb (1998) VLE 60 1.396 5.153	R11/R23 $\zeta_{exp} = -67.26 \ \zeta_{calc} = -59.30$
Kleiber (1994) VLE 23 2.163 7.116	Chareton (1990) VLE 11 5.111 6.158
Holcomb (1998) PVT 49 2.345 5.759	R12/R13 $\zeta_{exp} = -13.44$ $\zeta_{calc} = -11.82$
propylene/R12 $\zeta_{exp} = -8.75$ $\zeta_{calc} = -12.92$	Agarwal (1980) VLE 118 3.837 4.280
Kleiber (1994) VLE 42 0.259 1.659	Mollerup (1976) VLE 17 1.033 1.167
propylene/R13 $\zeta_{exp} = -31.18$ $\zeta_{calc} = -15.19$	R12/R22 $\zeta_{exp} = -22.32 \ \zeta_{calc} = -31.43$
Kleiber (1994) VLE 16 0.587 6.960	Eiseman (1957) VLE 21 3.286 1.185
propylene/R22 $\zeta_{exp} = -15.86$ $\zeta_{calc} = -39.13$	Kriebel (1967) VLE 166 1.170 3.675
Kleiber (1994) VLE 35 0.118 10.25	Löffler (1960) VLE 126 1.889 2.817
propylene/R23 $\zeta_{exp} = -62.15$ $\zeta_{calc} = -73.29$	Pennington (1957) VLE 10 0.851 2.127
Kleiber (1994) VLE 13 2.418 8.522	Spauschus (1962) VLE 70 1.222 1.570
propylene/R114 $\zeta_{exp} = -21.87$ $\zeta_{calc} = -14.85$	Ström (1989) VLE 16 2.779 1.767
Kleiber (1994) VLE 14 2.305 3.943	White (1959) VLE 41 2.536 6.258
propylene/R115 $\zeta_{exp} = -41.09$ $\zeta_{calc} = -18.06$	Yin (1986) PVT 12 0.780 1.090
Kleiber (1994) VLE 19 1.606 8.490	Takaishi (1982) PVT 297 1.363 3.812
propylene/R134a $\zeta_{exp} = -46.98 \ \zeta_{calc} = -59.25$	White (1959) PVT 53 0.417 1.589
Kleiber (1994) VLE 23 2.083 5.642	R12/R23 $\zeta_{exp} = -55.24 \ \zeta_{calc} = -58.86$
propylene/R142b $\zeta_{exp} = -8.04 \zeta_{calc} = -23.37$	Geller (1972) VLE 36 4.699 5.115
Kleiber (1994) VLE 23 1.265 7.716	R12/R32 $\zeta_{exp} = -71.97$ $\zeta_{calc} = -80.71$
propylene/R152a $\zeta_{exp} = -37.88 \ \zeta_{calc} = -48.82$	Kang (1996a) VLE 14 0.433 3.175
Ohgaki (1990) VLE 18 2.787 1.648	R12/R113 $\zeta_{exp} = 20.16 \zeta_{calc} = -8.47$
Kleiber (1994) VLE 28 1.539 4.502	Hackstein (1976) VLE 46 8.335 12.92
$CO_2/R12^{\dagger}$ $\zeta_{exp} = -37.06$ $\zeta_{calc} = 10.62$	R12/R114 $\zeta_{exp} = -2.04$ $\zeta_{calc} = -11.18$
Lavrenchenko (1983) VLE 25 3.421 16.41	Kruse (1985) VLE 39 0.872 4.239
$CO_2/R22$ $\zeta_{exp} = -0.62$ $\zeta_{calc} = 4.58$	Kubota (1990) VLE 25 1.986 2.203
Nohka (1973) VLE 40 2.955 4.795	Ström (1989) VLE 34 2.376 4.163
Roth (1992) VLE 52 2.002 3.684	Ström (1990) PVT 33 0.626 0.877
Wang (1991) VLE 71 1.587 1.244	R12/R134a $\zeta_{exp} = -45.30 \zeta_{calc} = -47.75$
$CO_2/R23$ $\zeta_{exp} = -12.26$ $\zeta_{calc} = -2.71$	Kleiber (1994) VLE 24 0.808 1.466
Roth (1992) VLE 41 0.675 3.094	R12/R142b $\zeta_{exp} = -18.1 \ \zeta_{calc} = -18.33$
$CO_2/R32 \zeta_{exp} = -3.12 \zeta_{calc} = -5.06$	Lavrenchenko (1983) VLE 16 1.424 1.448
Adams (1971) VLE 48 1.109 1.631	

Table 2. (Continued)

Table 2. (Continued)									
Binary Mixture and ζ_{ij} v		Binary Mixture and ζ_{ij} values							
Author	Data	#	AAD	AAD	Author	Data	#	AAD	AAD
	Type	Pts.	Exp.	Calc.		Type	Pts.	Exp.	Calc.
$R12/R143a \zeta_{exp} = -38.6$	9 ζ_{calc} :	= -26	.21		Hinrichsen (1969)	VLE	62	1.144	7.734
Geller (1972)	VLE		2.787	6.021	Hongo (1990)	VLE	66	1.466	
R12/R152a $\zeta_{exp} = -44.3$					Kimura (1981)	VLE		1.049	
Pennington (1950)	VLE		0.838	1.787		VLE		0.281	
Sand (1994)	VLE		2.080		Kimura (1981)	PVT		0.717	
Sinka (1967)			0.382		Martin (1970)	PVT		1.487	
Wright (1985)			0.837		R22/R124 $\zeta_{exp} = -2.95$				
Sinka (1967)	PVT		3.406		Sand (1994)	VLE		8.037	7.091
R13/R14 $\zeta_{exp} = -9.08 \zeta$					R22/R125 $\zeta_{exp} = -16.52$,
Proust (1979)	VLE		0.510	4 672	Bivens (1996)	VLE		0.335	1 657
Kubic (1981)	VLE		0.944		R22/R134a $\zeta_{exp} = -6.89$				1.057
Zakharov (1977)			1.834		Arita (1991)	VLE		0.367	4 435
R13/R23 $\zeta_{exp} = -40.35$				3.137	Nishiumi (1990)	VLE		1.366	
Sinka (1970)	VLE		1.143	7 223	Nishiumi (1993)	VLE		0.360	
Stein (1971)	VLE		1.376		Sand (1994)	VLE		1.098	
Tanishita (1972)			1.239		R22/R142b $\zeta_{exp} = 0.23$			1.076	4.402
Oguchi (1973)	PVT		2.121		Maezawa (1992)	VLE		0.864	1 572
Sinka (1970)	PVT		1.545		Sousa (1992)	PVT		0.304	
			1.545	4.575	Dressner (1993)	PVT		0.476	
R13/R113 $\zeta_{exp} = 12.71$ Meskel (1982b)			1.337	0.836	Xu (1989)	PVT		3.151	
				9.630	, ,				
R14/R23 $\zeta_{exp} = -32.70$				5.060	Kumagai (1991)	PVT PVT		2.131 0.472	
Piacentini (1967)			4.677		Ström (1993)				0.390
Lange (1970)			0.870	0.703	R22/R152a $\zeta_{exp} = 7.42$				11.70
R21/R114 $\zeta_{exp} = -34.61$				6 722	Larue (1990)	VLE		0.788	
Hinrichsen (1969)			1.047	0.722	Maezawa (1991a)	VLE		3.933	
$R22/R23$ $\zeta_{exp} = -10.68$				2.960	Sand (1994)	VLE		2.386	
Laugier (1994)	VLE		2.130		Dressner (1993)	PVT		0.197	
Roth (1992)	VLE		0.707		Ström (1993)	PVT		0.563	1.332
Sand (1994)	VLE		6.599	13.90	R23/R113 $\zeta_{exp} = -63.32$				12.00
R22/R32 $\zeta_{exp} = -5.05 \zeta$			0.264	10.00	Valtz (1987)	VLE		14.84	12.98
Kang (1996a)	VLE		0.264	10.88	R23/R114 $\zeta_{exp} = -51.4$	-			7 201
R22/R113 $\zeta_{exp} = -27.29$			3.065	4.007	Laugier (1994)			7.278	7.391
Valtz (1986)				4.097	R23/R116 $\zeta_{exp} = -51.22$				9.206
R22/R114 $\zeta_{exp} = -25.51$				1 172	Bivens (1996)			1.361	8.296
Fukuizumi (1991a)	VLE		1.073		$R23/R134a^{\dagger}$ $\zeta_{exp} = 40.90$				20.60
Hasegawa (1985)	VLE		2.674		Sand (1994)	VLE		7.089	30.69
Kruse (1985)	VLE		4.265		R32/R115 $\zeta_{exp} = -83.98$				0.167
Kruse (1989)	VLE		1.003		Mears (1968)	VLE		1.121	
Kubota (1990)	VLE		3.629		Mears (1968)	PVT		5.427	14.89
Mishima (1993)	VLE		2.946		$R32/R125^*$ $\zeta_{exp} = -14.54$				2 (20
Ström (1989)	VLE		5.415		Defibaugh (1995)	VLE		0.763	
Fukuizumi (1991b)	PVT		0.631		Kleemiss (1997)	VLE		1.110	
Hasegawa (1985)	PVT		0.793		Nagel (1995)	VLE		1.497	
Kruse (1989)	PVT		0.765		Piao (1996)	VLE		0.672	
Ström (1990)	PVT		0.538	0.566	Kleemiss (1997)	PVT		0.689	
R22/R115 $\zeta_{exp} = -40.47$					Magee (2000)	PVT		0.638	
Martin (1970)	VLE	46	1.795	10.10	Piao (1996)	PVT	532	1.398	0.974

Table 2. (Continued)

Discon Minters and Section 2									
Binary Mixture and ζ_{ij} values Author Data # AAD AAD				Binary Mixture and ζ_{ij} values					
Author	Data				Author Data # AAD AAD				
			Exp.		Type Pts. Exp. Calc.				
Sato (1996)	PVT		0.657		Sand (1994) VLE 3 3.431 0.178				
Zhang (1996) PVT 124 0.611 0.166				R124/R152a $\zeta_{exp} = -10.33$ $\zeta_{calc} = -17.43$					
$R32/R134a^*$ $\zeta_{exp} = -6.1$	-			Sand (1994) VLE 3 2.437 6.020					
Defibaugh (1995)	VLE		0.286		$R125/R134a^*$ $\zeta_{exp} = -2.00$ $\zeta_{calc} = -13.90$				
Kleemiss (1997)	VLE		0.361		Kleemiss (1997) VLE 24 0.777 7.887				
Nagel (1995)	VLE		0.826		Nagel (1995) VLE 31 0.647 6.652				
Piao (1996)	VLE	10	0.925	0.703	Holcomb (1998) PVT 17 0.277 1.485				
Kleemiss (1997)	PVT	390	0.417	0.403	Kleemiss (1997) PVT 407 0.114 1.197				
Magee (2000)	PVT	461	0.498	0.627	Magee (2000) PVT 268 0.176 2.469				
Piao (1996)	PVT	633	0.833	1.682	$R125/R143a^*$ $\zeta_{exp} = 3.06$ $\zeta_{calc} = -5.39$				
Sato (1994)	PVT	214	0.316	0.549	Bivens (1996) VLE 32 0.520 3.762				
R32/R143a $\zeta_{exp} = -17.0$	$00 \zeta_{calc} =$	= 1.80)		Kleemiss (1997) VLE 16 0.929 5.618				
Fujiwara (1992)			1.587	6.919	Nagel (1995) VLE 19 1.067 5.800				
Holcomb (1998)	VLE	19	0.622	7.548	Kleemiss (1997) PVT 151 0.043 0.951				
Holcomb (1998)	PVT	43	0.884	4.129	Magee (2000) PVT 281 0.084 1.100				
R32/R152a $\zeta_{exp} = -2.64$	$4 \zeta_{calc} =$	-0.47	7		R134a/R141b $\zeta_{exp} = -32.3 \zeta_{calc} = -32.21$				
Defibaugh (1995)			0.616	1.543	Zheng (1990) VLE 38 2.599 2.626				
Fujiwara (1992)			3.195		R134a/R142b $\zeta_{exp} = -11.07 \ \zeta_{calc} = 1.11$				
R113/R114 $\zeta_{exp} = 0.24$					Sand (1994) VLE 7 4.331 9.483				
Lee (1988)	VLE		1.580	4.846	Kleiber (1994) VLE 26 0.601 5.457				
R113/R142b $\zeta_{exp} = -17$					R134a/R143a* $\zeta_{exp} = 1.52 \ \zeta_{calc} = -3.00$				
			0.653	0.903	Bivens (1996) VLE 35 0.409 2.179				
R113/R152a $\zeta_{exp} = -52$					Kleemiss (1997) VLE 18 0.273 2.706				
Valtz (1987)	VLE		2.252	6.650	Nagel (1995) VLE 12 0.352 2.327				
R114/R115 $\zeta_{exp} = -2.1$					Holcomb (1998) PVT 14 0.455 0.580				
Yada (1990)	VLE		2.265	2.349	Kleemiss (1997) PVT 377 0.113 0.517				
Yada (1989)			1.206		R134a/R152a* $\zeta_{exp} = 0.87 \ \zeta_{calc} = -6.76$				
R114/R152a $\zeta_{exp} = -40$				_,,,	Defibaugh (1995) VLE 13 0.279 2.773				
Yada (1988)	VLE		2.863	3.919	Kleiber (1994) VLE 19 0.375 3.868				
Yada (1988)	PVT				Tillner–Roth (1993) VLE 23 0.276 3.012				
R116/R134a $\zeta_{exp} = -42$,,,,,	Dressner (1993) PVT 139 0.423 1.068				
	VLE		3.926	10 94	Tillner–Roth (1993) PVT 1678 0.395 0.595				
R123/R134a $\zeta_{exp} = -21$				10.71	R141b/R142b $\zeta_{exp} = -7.38 \zeta_{calc} = -11.85$				
Kubota (1991)	_		2.065	4 286	Kang (1996b) VLE 11 0.593 2.319				
R124/R134a $\zeta_{exp} = -9.9$				4.200	Rang (1990b) VEE 11 0.393 2.319 R142b/R152a $\zeta_{exp} = -13.37 \zeta_{calc} = -23.63$				
Lee (1996)	VLE		0.643	5 350	Maezawa (1991b) VLE 48 2.127 4.775				
Sand (1994)	VLE		0.698		Sand (1994) VLE 3 1.110 6.488				
R124/R142b $\zeta_{exp} = 1.89$				T.J20	OVERALL VLE 4439 1.771 4.501				
Lee (1996)			0.289	2 725	OVERALL VLE 4439 1.771 4.301 OVERALL PVT 10373 0.944 1.707				
	, (D)	L/T)	0.209	1: :1	OVERALL IVI 103/3 0.544 1.707				

Legend: Data Type - density (PVT) or vapor liquid equilibrium (VLE), AAD Exp. – average absolute deviation between the experimental data and the model using the listed ζ_{ij} values fitted to the experimental data, AAD Calc. – average absolute deviation between the experimental data and the model using the ζ_{ij} values calculated from Eq. (4).

^{*}Additional sources of data exist for this refrigerant mixture; see McLinden et al. (1998).

[†]The experimental data for R23/134a and CO₂/R12 are questionable, and the calculated value for ζ_{ij} is recommended in preference to the experimental value.

4. REFERENCES

Adams, R. A. and F. P. Stein, J. Chem. Eng. Data 16, 146 (1971).

Agarwal, R. S. and C. P. Arora, J. Therm. Eng. 1, 162 (1980).

Arita, K., T. Tomizawa, Y. Nagakawa, and Y. Yoshida, Fluid Phase Equilib. 63, 151 (1991).

Bivens, D.B., private communication, DuPont Fluoroproducts unpublished data, 1996.

Chareton, A., A. Valtz, S. Laugier, D. Richon, and H. Renon, J. Chem. Eng. Data 35, 162 (1990).

Defibaugh, D. R. and G. Morrison, *Int. J. Refrig.* 18, 518 (1995).

Dressner, M. and K. Bier, Fortschr.-Ber. VDI 3 (1993).

Eiseman, B. J., J. Am. Chem. Soc. 79, 6087 (1957).

Fujiwara, K., H. Momota, and M. Noguchi, 13th Japan Symp. Thermophys. Prop. A11.6, p. 61 (1992).

Fukuizumi, H. and M. Uematsu, Int. J. Thermophys. 12, 371 (1991a).

Fukuizumi, H. and M. Uematsu, Int. J. Thermophys. 12, 869 (1991b).

Geller, Z. I., W. F. Czoikowski, and A. W. Egorow, Kholod. Tekh. Tekhnol. 15, 70 (1972).

Hackstein, G., Technical University of Dresden (1976).

Hasegawa, N., M. Uematsu, and K. Watanabe, J. Chem. Eng. Data 30, 32 (1985).

Hinrichsen, H., Technical University of Berlin (1969).

Holcomb, C. D., J. W. Magee, J. Scott, S. L. Outcalt, and W. M. Haynes, NIST Tech Note 1397 (1998).

Hongo, M., M. Kusunoki, H. Matsuyama, T. Takagi, K. Mishima, Y. Arai, *J. Chem. Eng. Data* 35, 414 (1990).

Kang, Y. W. and K. Y. Chung, J. Chem. Eng. Data 41, 443 (1996a).

Kang, Y. W. and Y. Y. Lee, J. Chem. Eng. Data 41, 303 (1996b).

Kimura, T., M. Uematsu, and K. Watanabe, J. Chem. Eng. Data 26, 109 (1981).

Kleemiss, M., Fortschr.-Ber. VDI 19, No. 98, VDI-Verlag Düsseldorf (1997).

Kleiber, M., Fluid Phase Equilib. 92, 149 (1994).

Kriebel, M. and H. J. Löffler, Kaltetech.-Klim. 18, 34 (1966).

Kriebel, M., Kaltetech.-Klim. 19, 8 (1967).

Kruse, H. and H. Holdack-Janssen, Klima-Kalte-Ing. 5, 307 (1977).

Kruse, H., K.-D. Gerdsmeyer, M. Kuever, and M. Arnemann, Int. J. Refrig. 121, 62 (1989).

Kruse, H., M. Kuever, U. Quast, M. Schroeder, and B. Upmeier, ASHRAE Trans. 91(2B), 1383 (1985).

Kubic, W. L. Jr. and F. P. Stein, Fluid Phase Equilib. 5, 289 (1981).

Kubota, H., Q. Zheng, X.-Y. Zheng, and T. Makita, J. Chem. Eng. Japan 24, 659 (1991).

Kubota, H., T. Ikawa, Y. Tanaka, T. Makita, and K. Miyoshi, J. Chem. Eng. Japan 23, 155 (1990).

Kumagai, K., N. Yada, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36, 236 (1991).

Lange, H. B. Jr. and F. P. Stein, J. Chem. Eng. Data 15, 56 (1970).

Larue, P. A., P. Renaud, and M. Parent, Final Report, Centre de Recherche Industrielle du Quebec (1990).

Laugier, S., D. Richon, and H. Renon, Fluid Phase Equilib. 93, 297 (1994).

Lavrenchenko, G. K., V. A. Nikol'skii, O. V. Baklan, and N. L. Artemenko, Kholod. Tekh. 6, 41 (1983).

Lee, J., J. Lee, and H. Kim, J. Chem. Eng. Data 41, 745 (1996).

Lee, Y. Y., Y.-W. Kang, W.-H. Hong, and H. Lee, J. Chem. Eng. Data 33, 155 (1988).

Lemmon, E.W. and R.T Jacobsen, Int. J. Thermophys., 20, 1629, (1999).

Lemmon, E.W. and M.O. McLinden, NIST Standard Reference Database 23: NIST Reference Fluid

Thermodynamic and Transport Properties-REFPROP, Version 7.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2001.

Lemmon, E.W. and R. Tillner-Roth, Fluid Phase Equilib., 165:1 (1999).

Löffler, H. J., Kaltetechnik 12, 256 (1960).

Loi, N. D., Luft-und Kaltetechnik 19, 37 (1983).

Maezawa, Y., H. Sato, and K. Watanabe, Fluid Phase Equilib. 61, 263 (1991a).

Maezawa, Y., H. Sato, and K. Watanabe, High Temp.-High Press. 24, 435 (1992).

Maezawa, Y., J. V. Widiatmo, H. Sato, and K. Watanabe, Int. J. Thermophys. 12, 1029 (1991b).

Magee, J. W. and W. M. Haynes, *Int. J. Thermophys.* 21, 113 (2000).

```
Magee, J. W., National Institute of Standards and Technology, Boulder, Colorado, Final Report for ARTI MCLR Project, Number 660, 660 (1996).
```

Martin, J. J. and R. C. Downing, ASHRAE Trans. 76, 129 (1970).

McLinden, M.O., E.W. Lemmon, and R.T Jacobsen, Int. J. Refrig. 21, 322 (1998).

Mears, W. H., J. V. Sinka, P. F. Malbrunot, P. A. Meunier, A. G. Dedit, J. Chem. Eng. Data 13, 344 (1968).

Meskel-Lesavre, M., D. Richon, and H. Renon, Fluid Phase Equilib. 8, 37 (1982a).

Meskel-Lesavre, M., D. Richon, and H. Renon, J. Chem. Eng. Data 27, 160 (1982b).

Mishima, K., M. Hongo, T. Takagi, and Y. Arai, J. Chem. Eng. Data 38, 49 (1993).

Mollerup, J. and A. Fredenslund, J. Chem. Eng. Data 21, 299 (1976).

Nagahama, K., D. Hoshino, and M. Hirata, World Congress of Chemical Engineering, Tokyo, p. 100 (1986).

Nagel, M. and K. Bier, Int. J. Refrig. 18, 534 (1995).

Nishiumi, H. and T. Yokoyama, Proc. 11th Japan Symp. Thermophys. Prop., Paper B105, 95 (1990).

Nishiumi, H., M. Komatsu, Y. Taichirou, and S. Kohmatsu, Fluid Phase Equilib. 83, 109 (1993).

Nohka, J., E. Sarashina, Y. Aria, and S. Saito, J. Chem. Eng. Japan 6, 10 (1973).

Oguchi, K., I. Tanishita, K. Watanabe, T. Yamaguchi, A. Sasayama, Y. Matsushita, and S. Otaki, Intl. Inst. Refrig., p. 25 (1973).

Ohgaki, K., M. Kageyama, and T. Katayama, J. Chem. Eng. Japan 23, 763 (1990).

Pennington, W. A. and W. H. Reed, Chem. Eng. Prog. 16, 464 (1950).

Pennington, W. A., World Refrig. 8, 151 (1957).

Piacentini, A. and F. P. Stein, Chem. Eng. Prog. 63, 28 (1967).

Piao, C.-C., I. Iwata, and M. Noguchi, private communication, Daikin Industries, Japan (1996).

Proust, P. C. and F. P. Stein, J. Chem. Eng. Data 24, 341 (1979).

Roth, H., P. Peters-Gerth, and K. Lucas, Fluid Phase Equilib. 73, 147 (1992).

Sand, J. R., S. K. Fischer, and J. A. Jones, Int. J. Refrig. 17, 123 (1994).

Sato, T., H. Kiyoura, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39, 855 (1994).

Sato, T., H. Kiyoura, H. Sato, and K. Watanabe, Int. J. Thermophys. 17, 43 (1996).

Sinka, J. V. and K. P. Murphy, J. Chem. Eng. Data 12, 315 (1967).

Sinka, J. V., E. Rosenthal, and R. P. Dixon, J. Chem. Eng. Data 15, 73 (1970).

Sousa, A. T., P. S. Fialho, C. A. de Castro, R. Tufeu, B. Le Neindre, Fluid Phase Equilib. 80, 213 (1992).

Spauschus, H. O., ASHRAE J. 4, 49 (1962).

Stein, F. P. and P. C. Proust, J. Chem. Eng. Data 16, 389 (1971).

Ström, K. H. U. and U. B. Gren, J. Chem. Eng. Data 38, 18 (1993).

Ström, K. H. U., Can. J. Chem. Eng. 68, 645 (1990).

Ström, K., U. Gren, and K. Ljungkvist, J. Chem. Eng. Data 34, 252 (1989).

Takaishi, Y., N. Kagawa, M. Uematsu, and K. Watanabe, Proc. Symp. Thermophys. Prop. 8, 387 (1982).

Tanishita, I., K. Watanabe, J. Kijima, K. Oguchi, H. Kondo, and A. Nakashima, Heat Engineering Laboratory, Division of Mechanical Engineering, Keio University, Tokyo, Japan (1972).

Tillner-Roth, R., J. Chem. Thermodyn. 25, 1419 (1993).

Valtz, A., S. Laugier, and D. Richon, Int. J. Refrig. 9, 282 (1986).

Valtz, A., S. Laugier, and D. Richon, J. Chem. Eng. Data 32, 397 (1987).

Wang, X., Y. Wang, and J. Shi, J. Chem. Eng. Data 36, 436 (1991).

White, D., E. F. Neilson, and J. Farnham, ASME Symposium on Thermal Properties, p. 172 (1959).

Wright, E. G., ASHRAE Trans. 91(2B), 944 (1985).

Xu, H., L. Tan, Z. Liu, and J. Yin, Second Asian Thermophysical Properties Conference (1989).

Yada, N., M. Uematsu, and K. Watanabe, Int. J. Thermophys. 11, 603 (1990).

Yada, N., M. Uematsu, and K. Watanabe, J. Chem. Eng. Data 34, 431 (1989).

Yada, N., M. Uematsu, and K. Watanabe, Trans. JAR 5, 107 (1988).

Yin, J., L. Tan, and Z. Liu, Proc. First Asian Conf. of Thermophys. Proc., p. 415 (1986).

Zakharov, N. D., Yu. I. Matyash, A. S. Demenkov, E. V. Domnina, Russ. J. Phys. Chem. 51, 1640 (1977).

Zhang, H.-L., H. Sato, and K. Watanabe, J. Chem. Eng. Data 41, 1401 (1996).

Zheng, X., H. Kubota, Q. Zheng, and T. Makita, J. Chem. Eng. Data 35, 441 (1990).