Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a IX-a

Problema 1. Fie ABC un triunghi neisoscel, cu centrul de greutate G și centrul cercului înscris I. Arătați că $GI \perp BC$ dacă și numai dacă AB + AC = 3BC.

Soluție. Cu notațiile uzuale au loc egalitățile

$$\overline{GI} = \overline{AI} - \overline{AG} = \left(\frac{b}{a+b+c} - \frac{1}{3}\right) \overline{AB} - \left(\frac{c}{a+b+c} - \frac{1}{3}\right) \overline{AC} =$$

$$= \frac{1}{3(a+b+c)} \left((2b-a-c) \overline{AB} + (2c-a-b) \overline{AC} \right).$$

Problema 2. Fie ABCD un pătrat. Considerăm punctele $E \in (AB)$, $N \in (CD)$ şi $F, M \in (BC)$, astfel încât triunghiurile AMN și DEF să fie echilaterale. Arătați că

$$PQ = FM$$
,

unde $\{P\} = AN \cap DE$ și $\{Q\} = AM \cap EF$.

Problema 3. Fie $a \neq n$ două numere naturale nenule fixate.

a) Arătați că există n numere naturale nenule a_1, a_2, \ldots, a_n astfel încât

$$1 + \frac{1}{a} = \left(1 + \frac{1}{a_1}\right) \left(1 + \frac{1}{a_2}\right) \dots \left(1 + \frac{1}{a_n}\right).$$

b) Demonstrați că numărul reprezentărilor de forma de mai sus ale lui $1 + \frac{1}{a}$ este finit.

Soluție. a) Dacă $a_1 < a_2 < \cdots < a_n$ sunt numere naturale nenule consecutive, rezultă că

$$\left(1+\frac{1}{a_1}\right)\left(1+\frac{1}{a_2}\right)\ldots\left(1+\frac{1}{a_n}\right)=\frac{a_n+1}{a_1}.$$

Alegând $a_k = an + k - 1, \forall k = \overline{1, n}$, obţinem

$$\left(1+\frac{1}{a_1}\right)\left(1+\frac{1}{a_2}\right)\ldots\left(1+\frac{1}{a_n}\right)=\frac{an+n}{an}=1+\frac{1}{a}.$$

- b) Este suficient să demonstrăm prin inducție după $n \in \mathbb{N}^*$ proprietatea
- P(n): "Pentru orice număr rațional q > 1 există cel mult un număr finit de alegeri a n numere naturale nenule $a_1 \le a_2 \le \cdots \le a_n$ astfel ca $\prod_{k=1}^n \left(1 + \frac{1}{a_k}\right) = q$."

Presupunem că propoziția P(n) este adevărată pentru un număr natural nenul n.

Fie
$$q \in \mathbb{Q}$$
, $q > 1$. Considerăm că există $n+1$ numere naturale nenule $a_1 \le a_2 \le \cdots \le a_{n+1}$ astfel încât $\prod_{k=1}^{n+1} \left(1 + \frac{1}{a_k}\right) = q$. Atunci, din inegalitățile $1 + \frac{1}{a_1} < q \le \left(1 + \frac{1}{a_1}\right)^{n+1}$, obținem $a_1 \in A$,

unde $A = \left(\frac{1}{q-1}, \frac{1}{n+\sqrt[4]{q-1}}\right] \cap \mathbb{N}^*$ este o mulţime finită. Pentru $a_1 \in A$, fixat, notăm $q_1 = \frac{q}{1+1/a_1}$. Avem $q_1 \in \mathbb{Q}, \ q_1 > 1$. Conform P(n), numărul de alegeri a n numere naturale $a_2 \leq \cdots \leq a_{n+1}$, cu proprietatea $\prod_{k=0}^{n+1} \left(1 + \frac{1}{a_k}\right) = q_1$, este cel mult finit. Deducem că numărul de alegeri a n+1

Problema 4. Fie $a, b \in \mathbb{R}$, cu 0 < a < b, iar $f : \mathbb{R} \longrightarrow \mathbb{R}$ o funcție care satisface proprietatea

$$f(x^2 + ay) \ge f(x^2 + by)$$
, pentru orice $x, y \in \mathbb{R}$. (*)

- a) Arătați că $f(s) \le f(0) \le f(t)$, pentru orice s < 0 și t > 0.
- b) Demonstrați că f este constantă pe intervalul $(0, \infty)$.
- c) Dați un exemplu de funcție nemonotonă $f: \mathbb{R} \longrightarrow \mathbb{R}$ cu proprietatea (*).

Soluție. Pentru $u, v \in \mathbb{R}$, condiția necesară și suficientă ca sistemul de ecuații

$$\begin{cases} x^2 + ay = u \\ x^2 + by = v \end{cases}$$

să admită soluții este $av \leq bu$, o soluție fiind $\left(x = \sqrt{\frac{bu - av}{b - a}}, y = \frac{v - u}{b - a}\right)$. În acest caz, rezultă că $f(u) \geq f(v)$.

a) Pentru
$$s < 0$$
, alegând $x = \sqrt{\frac{-as}{b-a}}$ și $y = \frac{s}{b-a}$, avem $f(0) = f(x^2 + ay) \ge f(x^2 + by) = f(s)$.

Pentru t > 0, alegând $x = \sqrt{\frac{bt}{b-a}}$ și $y = \frac{-t}{b-a}$, avem $f(t) = f(x^2 + ay) \ge f(x^2 + by) = f(0)$.

b) Fie c = f(1). Vom demonstra prin inducție după $n \in \mathbb{N}^*$ că $f(u) = c, \forall u \in \left[\left(\frac{a}{b} \right)^n, \left(\frac{b}{a} \right)^n \right]$.

Pentru orice $u \in \left[\frac{a}{b}, \frac{b}{a}\right]$, sistemele

$$\begin{cases} x^2 + ay = 1 \\ x^2 + by = u \end{cases}$$

şi

$$\begin{cases} x^2 + ay = u \\ x^2 + by = 1 \end{cases}$$

admit soluții, de unde rezultă că $c = f(1) \ge f(u) \ge f(1) = c$. Atunci $f(u) = c, \forall u \in \left[\frac{a}{b}, \frac{b}{a}\right]$. Presupunem acum că pentru un $n \in \mathbb{N}^*$ are loc $f(u) = c, \forall u \in \left[\left(\frac{a}{b}\right)^n, \left(\frac{b}{a}\right)^n\right]$. Pentru orice $u \in \left[\left(\frac{a}{b}\right)^{n+1}, \left(\frac{b}{a}\right)^{n+1}\right]$, sistemele

$$\begin{cases} x^2 + ay = \left(\frac{b}{a}\right)^n \\ x^2 + by = u \end{cases}$$

şi

$$\begin{cases} x^2 + ay = u \\ x^2 + by = \left(\frac{a}{h}\right)^n \end{cases}$$

admit soluții, astfel că $c = f\left(\left(\frac{b}{a}\right)^n\right) \ge f(u) \ge f\left(\left(\frac{a}{b}\right)^n\right) = c$.

Pentru orice t>0 există $n\in\mathbb{N}^*$ cu proprietatea că $t\in\left[\frac{1}{1+n\frac{b-a}{a}},1+n\frac{b-a}{a}\right]$. Din inegalitatea lui

Bernoulli avem
$$\left[\frac{1}{1+n\frac{b-a}{a}}, 1+n\frac{b-a}{a}\right] \subset \left[\left(\frac{a}{b}\right)^n, \left(\frac{b}{a}\right)^n\right], \text{ deci } t \in \left[\left(\frac{a}{b}\right)^n, \left(\frac{b}{a}\right)^n\right].$$

Obţinem $\bigcup_{n\geq 1} \left[\left(\frac{a}{b} \right)^n, \left(\frac{b}{a} \right)^n \right] = (0, \infty)$, de unde rezultă că f este constantă pe $(0, \infty)$**1p**

c) Fie t < 0 oarecare. Dacă $x, y \in \mathbb{R}$ au proprietatea că $x^2 + ay < t$, atunci $y < \frac{t}{a}$ și rezultă că $x^2 + by = x^2 + ay + (b-a)y < t\left(1 + \frac{b-a}{a}\right) = \frac{bt}{a}$. Funcția $f_t : \mathbb{R} \longrightarrow \mathbb{R}$ definită prin

$$f_t(x) = \begin{cases} 1 & , \operatorname{dacă} x \in [t, \infty) \\ \frac{a(t-x)}{t(a-b)} & , \operatorname{dacă} x \in \left(\frac{tb}{a}, t\right) \\ 0 & , \operatorname{dacă} x \in \left(-\infty, \frac{tb}{a}\right] \end{cases}$$