

- Motivation...
 High transmission rates over wireline and wireless channels with protection from multipath fading
- Technique in fourth Generation (4G) mobile phones
- Ideal for bandwidth hogging applications like Video Conferen DAB, DVB, etc
- Multiuser capacity possible using MC-CDMA

Advantages of OFDM

- Allows carriers to overlap (no guard band), resulting in lesser wasted bandwidth without any Inter Carrier Interference (ICI)
- High data rate distributed over multiple carriers resulting in lower symbol rate (more immune to ISI)
- Permits higher data rate as compared to FDM
- Increased security and bandwidth efficiency possible using CDMA – OFDM (MC-CDMA)
- Simple guard intervals make the system more robust to multipath effects.

What is OFDM??

Orthogonality in time domain...

What is OFDM??

Orthogonality in frequency domain...

- Each carrier is modulated using BPSK / QPSK / M-ary QAM
- Frequency response for each carrier is a Sinc(X)
- Overlap of frequency response is possible as against FDM where intercarrier spacing is a must
- Frequency responses of the carriers overlap at zero crossings avoiding
 Inter Carrier Interference

OFDM Methodology

Fast Fourier Transform (FFT)

• FFT takes O(NlogN) time (assumption: $N=2^n$)

Table 3.1 A Comparison of N2 versus N Log₂N for Various Values of N

N	N ² (Direct FT)	N log ₂ N (FFT)	Computational Advantage (N/log ₂ N)
2	4 10	2	2.00
4	16	8	2.00
8	64	24	2.67
16	256	64	4.00
32	1,024	160	6.40
64	4,096	384	10.67
128	16,384	896	18.29
256	65,536	2,048	32.00
512	262,144	4,608	56.89
1024	1,048,576	10,240	102.40
2048	4,194,304	22,528	186.18
4096	16,777,216	49,152	341.33
8192	67,108,864	106,496	630.15

Inverse FFT

Forward DFT

Inverse DFT

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-j2\pi ux}{N}} f(x) = \sum_{u=0}^{N-1} F(u) e^{\frac{j2\pi ux}{N}}$$

• The inverse FFT can be computed using the same implementation

Understanding Multipath

Figure Demonstration of Multipath Reflections

Figure Demonstration of Time-Varying Fading

Why we need the Guard Period...

Equalization

 Performed in frequency domain

• FFT compulsorily performed in Receiver

 Time domain convolution replaced with frequency domain multiplication – computationally simpler code

Adaptive filters used

The Modules

•Modulator module:

BPSK, QPSK, 8QAM

Channel module:

AWGN, Fading, Physical

Equalizer module

OFDM Advantages

- Makes efficient use of the spectrum by allowing overlap.
- By dividing the channel into narrowband flat fading subchannels, OFDM is more resistant to frequency selective fading than single carrier systems are.
- Eliminates ISI through use of a cyclic prefix.
- Using adequate channel coding and interleaving one can recover symbols I due to the frequency selectivity of the channel.
- Channel equalization becomes simpler than by using adaptive equalization techniques with single carrier systems.
- It is possible to use maximum likelihood decoding with reasonable complexity.
- OFDM is computationally efficient by using FFT techniques to implement the modulation and demodulation functions.
- Is less sensitive to sample timing offsets than single carrier systems are.

DISADVANTAGES OF OFDM

- Sensitive to Doppler shift
- Sensitive to frequency synchronization problems
- High peak-to-average-power ratio (PAPR), requiring linear transmitter circuitry, which suffers from poor power efficiency
- Loss of efficiency caused by cyclic prefix/guard interval

Constellation diagram

SC-FDMA

Advantages of SC-FDMA

- 1.Low PAPR
- 2.Low sensitivity to carrier frequency offset
- 3.Less sensitive to non-linear distortion and hence, it allows the use of low-cost power amplifiers
- 4. Greater robustness against spectral nulls

MIMO-OFDM

MIMO

- High diversity gain (space-time coding)
- High multiplexing gain (BLAST)

OFDM

- Bandwidth efficient
- Robust to multipath fading thanks to cyclic prefix
- Easy to implement thanks to the IFFT/FFT
- Flexible in resource allocation

Diversity & Coding

- Diversity in space, time and frequency
 - Antenna diversity (space)
 - Delay diversity (time)
 - Multipath diversity (frequency)
- Coding over space, time and frequency
 - Space-time (ST) coding
 - Space-frequency (SF) coding
 - Space-time-frequency (STF) coding