Chapter 1

Section 1.1

Prerequisites for Calculus

1. Find the value of y that corresponds to
$$x=3$$
 in $y=-2+4(x-3)$.

2) Find the value of x that corresponds to
$$y=3$$
 in $y=3-2(x+1)$.

 $3=3-2(x+1)$
 $0=-2(x+1)$
 $x=-1$

In Exercises 3 and 4, find the value of m that corresponds to the values of x and y.

3)
$$x=5$$
, $y=2$, $m=\frac{y-3}{x-4} = \frac{1}{y-3} = -1$

$$4x = -1, y = -3, m = \frac{2-y}{3-x} = \frac{5}{4}$$

In exercises 5 and 6, determine whether the ordered pair is a

exercises 5 and 6, determine whether the ordered pair is a lution to the equation.

$$3x-4y=5$$
 6. $y=-2x+5$

solution to the equation.
5.
$$3x - 4y = 5$$
 6. $y = -2x + 5$

$$2x+5$$

a) $\left(2, \frac{1}{4}\right)$ b) (3, -1) a) (-1, 7) b) (-2, 1) Yes N_0 In exercises 7 and 8, find the distance between the points.

(1,0) and (0,1)

(8) (2,1) and
$$\left(1, -\frac{1}{3}\right)$$

$$d = \sqrt{(0-1)^2 + (1-0)^2} \quad d = \sqrt{(2-1)^2 + (1-\frac{1}{3})^2}$$

In Exercises 9 and 10, solve for y in terms of x.

$$9.4x - 3y = 7$$

$$10. -2x + 5y = -3$$

$$-3y = 7 - 4x$$
 $5y = 2x - 3$

$$Y = -\frac{7}{3} + \frac{4}{3}x$$
 $Y = \frac{2}{5}x - \frac{3}{5}$

The equation $y = m(x - x_1) + y_1$ is the **point**-slope equation of the line through the point (x_1, y_1) with slope m.

The equation y = mx + b is the **slope-intercept equation** of the line with slope m and y-intercept b.

In Exercises 1-6, solve for x.

Section 1.2

(1)
$$3x-1 \le 5x+3$$

$$(2)x(x-2)>0$$

Eupotions and

$$(3) |x-3| \leq 4$$

$$|x-2| \ge 5$$

Functions and Graphs

5.
$$x^2 < 16$$

$$6.9 - x^2 \ge 0$$
 (2) \times

X-2

X-275 or x-24-5

In Exercises 7 and 8, describe how the graph of f can be transformed to the graph of g.

7.
$$f(x)=x^2$$
, $g(x)=(x+2)^2-3$

8.
$$f(x)=|x|, g(x)=|x-5|+2$$

- 7. translate f 2 units left and 3 units down
- 8. translate f(x) 5 right and 2 units up

In Exercises 9-12, find all real solutions to the equations.

of
$$(w) = w^2$$
 5

9.
$$f(x)=x^2-5$$
 (a) $f(x)=4$ (b) $f(x)=-6$ χ^2-5

(b)
$$f(x) = -6$$
 $\chi^2 - 5 = 4$ $\chi^2 = 9$

11.
$$f(x) = \sqrt{x+7}$$

(a) $f(x) = 4$; $x = 9$ (b) $f(x) = 1$ $x = -6$

12.
$$f(x) = \sqrt[3]{x-1}$$

(a) $f(x) = -2$
(b) $f(x) = 3$
 $|X-1| = -2$
 $|X-1| = -8$
 $|X-1| = 27$
 $|X-1| = 28$

Functions

A rule that assigns to each element in one set a unique element in another set is called a *function*. A function is like a machine that assigns a unique output to every allowable input. The inputs make up the *domain* of the function; the outputs make up the *range*.

A *function* from a set D to a set R is a rule that assigns a unique element in R to each element in D.

In this definition, D is the domain of the function and R is a set containing the range.

- The domains and ranges of many real-valued functions of a real variable are intervals or combinations of intervals. The intervals may be open, closed or half-open, finite or infinite.
- The endpoints of an interval make up the interval's boundary and are called boundary points.
- The remaining points make up the interval's interior and are called interior points.

- Closed intervals contain their boundary points.
- Open intervals contain no boundary points

Name: The set of all real numbers

Notation: $-\infty < x < \infty$ or $(-\infty, \infty)$

Name: The set of numbers greater than a

Notation: a < x or (a, ∞)

Name: The set of numbers greater than

or equal to a

Notation: $a \le x$ or $[a, \infty)$

Name: The set of numbers less than b

Notation: x < b or $(-\infty, b)$

Name: The set of numbers less than or equal to b

Notation: $x \le b$ or $(-\infty, b]$

Identify the domain and range and use a grapher to graph the function $y = \sqrt{x^2 - 4}$

Domain: The function gives a real value of y for each value of $|x| \ge 2$ so the domain is $(-\infty, -2] \cup [2, \infty)$.

Range: Every value of the domain, x, gives a real, positive value of y so the range is $[0,\infty)$.

The graphs of even and odd functions have important symmetry properties.

A function
$$y = f(x)$$
 is a

even function of x if
$$f(-x) = f(x)$$

odd function of x if
$$f(-x) = -f(x)$$

for every x in the function's domain.

Even functions have y-axis symmetry

Odd functions have origin symmetry.

- The graph of an even function is symmetric about the y-axis. A point (x,y) lies on the graph if and only if the point (-x,y) lies on the graph.
- The graph of an **odd** function is **symmetric about the origin.** A point (x,y) lies on the graph if and only if the point (-x,-y) lies on the graph.

Use a grapher to graph the following piecewise function:

$$f(x) = \begin{cases} 2x - 1 & x \le 0 \\ x^2 + 3 & x > 0 \end{cases}$$

The absolute value function y = |x| is defined piecewise by the formula

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Given
$$f(x) = 2x - 3$$
 and $g(x) = 5x$, find $f \circ g = f(g(x))$

$$= f(g(x))$$

$$= 2(5x) - 3$$

$$= 10x - 3$$

$$= 10x - 3$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ f \circ g(x)$$

$$= f \circ f \circ g(x) = f \circ g(x)$$

$$= f \circ g(x) = f \circ g(x)$$

$$= f \circ f \circ g(x)$$

$$= f \circ$$

Standardized Test Questions

- True or False The slope of a vertical line is zero. Justify your answer.
- **48.** True or False The slope of a line perpendicular to the line y = mx + b is 1/m. Justify your answer.
- **49. Multiple Choice** Which of the following is an equation of the line through (−3, 4) with slope 1/2?
 - (A) $y 4 = \frac{1}{2}(x + 3)$ (B) $y + 3 = \frac{1}{2}(x 4)$ (C) y 4 = -2(x + 3) (D) y 4 = 2(x + 3)
 - (E) y + 3 = 2(x 4)
- **50.** Multiple Choice Which of the following is an equation of the vertical line through (-2, 4)?
 - (A) y = 4 (B) x = 2 (C) y = -4
 - **(D)** x = 0 **(E)** x = -2
- **51.** Multiple Choice Which of the following is the x-intercept of the line y = 2x 5?
 - (A) x = -5 (B) x = 5 (C) x = 0
- (D) x = 5/2
 (E) x = -5/2
 Multiple Choice Which of the following is an equation of the line through (-2, -1) parallel to the line y = -3x + 1?
 - (A) y = -3x + 5 (B) y = -3x 7 (C) $y = \frac{1}{3}x \frac{1}{3}$ (D) y = -3x + 1 (E) y = -3x 4

False, because
$$m = Dy_{Dx}$$
and $Dx = D$ in a vertical
line making m undering

False, becase $m(\frac{1}{m}) = 1 + -1$

y-1=-3(x--2)y=-3x-6-1

$$f(x) = \frac{x}{\sqrt{9-x^2}}?$$

(A)
$$x \neq \pm 3$$

(D)
$$(-\infty, -3) \cup (3, \infty)$$
 (E) $(3, \infty)$

(C)
$$[-3, 3]$$

$$(3,\infty)$$
 (E) $(3,\infty)$

$$f(x) = 1 + \frac{1}{x-1}$$
? $g(x) = \frac{1}{x}$

(A)
$$(-\infty, 1) \cup (1, \infty)$$

(B)
$$x \neq 1$$
 (C) all real numbers

(D)
$$(-\infty, 0) \cup (0, \infty)$$
 (E) $x \neq 0$

$$(\mathbf{E}) \ x \neq 0$$

$$\frac{-3(-3)^{2}}{9-x^{2}} = (3+x)(3-x)$$

$$3+x$$

$$3-x$$

$$-3(-3)(3-x)$$

$$3+x$$

$$-3(-3)(3-x)$$

61. Multiple Choice If
$$f(x) = 2x - 1$$
 and $g(x) = x + 3$, which of the following gives $(f \circ g)(2)$? $f(g(2)) = f(3) = 10 - 1 = 9$

(A) 2 (B) 6 (C) 7 (D) 9 (E) 10

(A)
$$A(W) = 3W$$
 (B) $A(W) = \frac{1}{2}W^2$ (C) $A(W) = 2W^2$

(D)
$$A(W) = W^2 + 2W$$
 (E) $A(W) = W^2 - 2W$

$$W = \frac{L=2W}{L} \frac{1}{2} A(w) = \frac{2w^2}{P(L)} = \frac{2L+2(\frac{L}{2})}{2} = \frac{3L}{2}$$