

10

Fig. 1

Fig. 2

BRAND PROFILER
PRODUCT ATTRIBUTE
LEADERSHIP STRATEGY

40

ATTRIBUTE	ATTRIBUTE CLASS	PRIORITY (RANK)	PRIMARY BRAND POSITIONING	NAMEPLATE BRAND POSITIONING	PROGRAM SPECIFICS		PRESENT NAMEPLATE ENTRY
					TARGET OBJECTIVES	STATUS	
USAGE EXPERIENCE	D	1	L A C M	L A C M	L A C M	L A C M	L A C U
INTERIOR ROOMINESS	D	2	L A C M	L A C M	L A C M	L A C M	L A C U
ERGONOMICS/FLEXIBILITY/COMFORT							
LUGGAGE/CARGO SPACE	D	3	L A C M	L A C M	L A C M	L A C M	L A C U
DURABILITY/CRAFTSMANSHIP	D	6	L A C M	L A C M	L A C M	L A C M	L A C U
QUIETNESS	I	8	L A C M	L A C M	L A C M	L A C M	L A C U
EASE OF ENTRY/EXIT	I	11	L A C M	L A C M	L A C M	L A C M	L A C U
RANGE/FUEL ECONOMY	G	15	L A C M	L A C M	L A C M	L A C M	L A C U
CLIMATE CONTROL	G	17	L A C M	L A C M	L A C M	L A C M	L A C U
EXTERIOR VISIBILITY	G	20	L A C M	L A C M	L A C M	L A C M	L A C U
COST OF OWNERSHIP	G	25	L A C M	L A C M	L A C M	L A C M	L A C U
DRIVING EXPERIENCE							
PERFORMANCE/TOWING	D	4	L A C M	L A C M	L A C M	L A C M	L A C U
RIDE	I	9	L A C M	L A C M	L A C M	L A C M	L A C U

42

Fig. 4 :

% SATISFACTION vs. RELATIVE LEVERAGE

Fig. 5

Fig. 6

KANO ANALYSIS

Fig. 9

Critical to Satisfaction (CTS) Scorecard

Attributed:

Project Description:

Sij. 10

162

INPUTS

- KANO DIAGRAM
- CTS Y's, WITH TARGETS & RANGES
- CUSTOMER SATISFACTION
- FUNCTIONAL BOUNDARIES AND INTERFACES FROM VDS/SDS
- EXISTING HARDWARE FMEA DATA
- ETC.

164

TECHNICAL ACTIVITY

- DECOMPOSE Y INTO CONTRIBUTING ELEMENTS, y_i AND IDENTIFY RELATED X's AND n's
- IDENTIFY FUNCTIONS ASSOCIATED WITH CTS's
- CREATE FUNCTION STRUCTURE OR OTHER MODEL FOR IDENTIFIED FUNCTIONS
- SELECT y's THAT MEASURE THE INTENDED FUNCTION
- IDENTIFY CONTROL AND NOISE FACTORS
- CREATE GENERAL OR EXPLICIT TRANSFER FUNCTION
- PEER REVIEW

166

OUTPUTS

- FUNCTION DIAGRAM(S)
- MAPPING OF Y → FUNCTIONS CRITICAL FUNCTIONS → y's
- P-DIAGRAM, INCLUDING CRITICAL
 - TECHNICAL METRICS. y's,
 - CONTROL FACTORS, x's,
 - NOISE FACTORS, n's
- TRANSFER FUNCTION
- SCORECARD WITH TARGET & RANGE FOR y's AND x's
- PLAN FOR
 - OPTIMIZATION
 - VERIFICATION (ROBUSTNESS & RELIABILITY CHECKLIST)

Dig. II

160

UNDERSTAND SYSTEM $y \rightarrow \text{FUNCTIONS} \rightarrow y$	FUNCTION MAPPING $y \rightarrow f(x, n)$
<ul style="list-style-type: none"> • MODELING FUNCTION • FUNCTIONS VERSUS CONSTRAINTS • FUNCTION STRUCTURES • ACTIVITY DIAGRAMS • FLOW CHAINS • Y-FUNCTION MATRIX • FUNCTION-FUNCTION MATRIX • TECHNICAL MATRIX: y's • FUNCTIONAL MEASUREMENT • UPDATE Y-y MATRIX (QFD) 	<ul style="list-style-type: none"> • FACTORS: x's AND n's • AREA ANALYSIS • EXPLORATORY EXPERIMENTATION • CORRELATION • TRANSFER FUNCTIONS • AREA ANALYSIS • REGRESSION • FLOW ANALYSIS • CAE TOOLS • ESTABLISHING CRITICAL x's • P-DIAGRAMMING • CORRELATION • SENSITIVITY ANALYSIS

Dsgn. 12b

Dsgn. 12a

174

Fig. 13

Dig. 14

TRANSFER FUNCTIONS

- A QUANTITIVE RELATIONSHIP BETWEEN DEPENDENT AND INDEPENDENT VARIABLES THAT CAN BE EXPRESED AS AN EQUATION OF THE FORM

$$\begin{aligned} Y &= F(y_1, \dots, y_n) \\ \text{OR} \\ y &= f(x_1, \dots, x_n) \end{aligned} \quad \left. \right\} 190$$

- ACTUAL TRANSFER FUNCTION MAY LOOK SOMETHING LIKE THIS

$$\begin{aligned} Y &= \alpha \sin y_1 + \beta \cos y_2 + \gamma y_3, \\ y &= \beta_0 + \beta_1 x_1^{\alpha_1} + \beta_2 x_2^{\alpha_2} + \beta_3 x_3^{\alpha_3} + \lambda_1 n_1, \\ &\text{etc.} \end{aligned} \quad \left. \right\} 192$$

Fig. 15

Fig. 16

Simp. 112a

卷之三

NOISE 1: TOTAL DESIGN/MFG. VARIABILITY
Piece-to-piece variation or
drawing tolerance,.....
.....whichever is greater and
.....total scope applicable

NOISE 2: COMPONENT CHANGES OVER TIME

Change in dimension or
change in strength
over Useful Life Period
(assumptions above)

NOISE 3: DUTY CYCLE/CUSTOMER USAGE

"Typical" Customer usage over Useful Life Period
(Assumption above)

NOISE 4: EXTERNAL ENVIRONMENT									
Climatic conditions geographic conditions									
A	B	C	D	E	F	G	1	2	3
.....	1	2	3
.....	4	5	6
.....	7	8	9

NOISE 5: IN VEHICLE SYSTEMS ENVIRONMENT									
Physical interfaces with associated systems or mating components over Useful Life Period (assumptions above) loads from or interaction with									
A	B	C	D	E	F	G	1	2	3
.....	1	2	3
.....	4	5	6
.....	7	8	9

Physical interfaces
with associated systems
or mating components
over Useful Life Period
(assumptions above)
loads from or
interactions with

४३

Sieg. 1126

308 310

306

Sig. 18

340

"SHIFT"

- WHEN $f(x)$ IS LINEAR, THE NOMINAL VALUE OF THE CONTROL FACTOR x HAS NO EFFECT ON THE VARIABILITY OF THE RESPONSE, $f(x)$.
- CHANGE THE LEVEL OF THIS CONTROL FACTOR TO SHIFT THE RESPONSE WITHOUT AFFECTING VARIABILITY.

"SHRINK"

- WHEN $f(x)$ IS NON-LINEAR, THE NOMINAL VALUE OF THE CONTROL FACTOR x CAN HAVE A MAJOR EFFECT ON THE VARIABILITY OF THE RESPONSE, $f(x)$.
- CHANGE THE LEVEL OF THIS CONTROL FACTOR TO DESENSITIZE THE RESPONSE TO THE CONTROL FACTOR VARIABILITY.

Fig. 19a

Fig. 19b

"SHIFT"

- WHEN THE CONTROL FACTOR x DOES NOT INTERACT WITH THE NOISE, THE NOMINAL VALUE OF x HAS NO EFFECT ON THE RESPONSE VARIABILITY.
- CHANGE THE LEVEL OF THIS CONTROL FACTOR TO SHIFT THE RESPONSE WITHOUT AFFECTING VARIABILITY.

"SHRINK"

- WHEN THE CONTROL FACTOR x INTERACTS WITH THE NOISE, THE NOMINAL VALUE OF x CAN HAVE A MAJOR EFFECT ON RESPONSE VARIABILITY.
- CHANGE THE LEVEL OF THIS CONTROL FACTOR TO DESENSITIZE PERFORMANCE TO THE NOISE AND SHRINK THE RESPONSE VARIABILITY.

Fig. 20a

Fig. 20b

19/21

Vehicle/Part Name: 5.4L Engine Compression Ratio
 Description: Compression Ratio Contribution
to Engine Quietness

Performance		Transfer Function	
Characteristic	Units	Y/N	Formula (enter here)
CR	Ratio	Y	$y = f(x, n)$

372 380 374 382 376

Variables		Range		Contribution	
No.	Characteristic	Units	Min	Max	Sensitivity
1	Cyl Hd Cmbr Vol	cc			-0.27
2	Blk Dk Crk/Deck Cl	mm	255.91	256.04	-0.12
3	Head Gasket Thk	mm	0.97	1.06	-0.055
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					

15				
16				
17				
18				
19				
20				

Cell Shading Key

 Enter Data

 Do not enter data (Calculation)

Confidence Ratings

High (H)	Estimate based on customer-correlated model of same parts
Med (M)	Estimate based on partial customer correlation or surrogate parts
Low (L)	Estimate without customer correlation or no process data available

370

Fig. 21a

Specification			Predicted Performance Capability			
Target	LSL	USL	mean: μ	s.d.: σ	Short/Long	Confidence
9	8.85	9.15	8.898125	0.094551	Short	High

384

390

386

x's, Input Control Factors

n's, Input Control Factors

— 10 —

Enter Formula (must refer to cells J13, J14, ... representing x_1, x_2, \dots)

| Do not enter data (Not applicable for Noise Factors)

Fig. 216

22