Contents

- Principles of DA and AD conversion
- Static performance characteristics of DAC and ADC
- Review of DA converter structures
- Exercices
- References

Converter's basics

AD & DA Converters are not only circuits but must be seen as a SYSTEM, with two kind of processes:

Quantization of the AMPLITUDE (today)

Quantization of the TIME (next week!)

AMPLITUDE Quantization

(Analog) Signal Vs (Digital) Number [1.2]

Figure 2.1: Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC) Input and Output Definitions

Analog Side: Full Scale

- * Amplitude of the analog domain must meet the Full Scale of the converter (FS value)
 - FS is a technological constraint of the converter (Circuit selection!)
- # FS is related to a Reference Value (V_{per})
- **# « Input Voltage » right understanding!**
 - Input Channel single-ended (SE) or differential (Diff)?
 - Unipolar or bipolar ? Middle value of FS at 0V or $V_{cc}/2$ (or ...)

Analog Side: Dynamic Range

- # The Dynamic Range is the ratio of the larger and the smaller voltage of the INPUT SIGNAL
- # DR is a primary caracteristic of the application, not of the converter!
- # Converter have to be better than signal's DR, but how much better?

Def.: Resolution

- # Resolution Step is the analog value of the interval between two adjacent code values, also called « 1 LSB »
- $\# 2^{N}$ digital levels (codes): [0 to 2^{N} -1]
 - $Nbr_{MAX} = 2^{N} 1 : « 11111111... »$
 - By def. « all-1's code » => 1 lsb below FS value

Coding style of numbers

- # Number's coding: format of codes are ...
 - Straight binary
 - (Gray)
 - Offset binary
 - 2's complement
 - (1's complement)
 - (sign + magnitude)

MSE

Def.: Transfer Function

Amplitude quantization error

Power: $E_{N} = \frac{1}{V_{LSB}} \int_{-q/2}^{q/2} V_{ERR}^{2}(V_{IN}) dV_{IN} = \frac{V_{LSB}^{2}}{12}$

- Quantization error is assumed to be white
 noise: folded in the base band, the noise
 level is (1.76 + N*6.02)dB below the full-scale
 SINUS power level.
 - => quantization is distortion!

(of synchronously sampled, periodic signals,

in all other cases, assimilate with white noise)

HARMONICS OF F_{SIGNAL}

(EXAGGERATED FOR CLARITY)

RMS

QUANTIZATION NOISE

SIGNAL

 $F_s/2$

Fs

Real Transfer Function

Ideality don't exist in physics!

Figure 2.19: Transfer Functions for Non-Ideal 3-Bit DAC and ADC

Def.: INL

- Integral Non-Linearity: a mesure of the distance of the current Transfer line Function to the ideal TF
 - A static parameter
 - Mesure on the analog side!
 - Unity : in #LSB or in %FS

				7.1	
DC ACCURACY					S, B versions, V _{DD} = (2.35 V to 3.6 V) ⁴ ;
					A version, $V_{DD} = (2.7 \text{ V to } 3.6 \text{ V})$
Resolution	12	12	12	Bits	1 SE
Integral Nonlinearity ³		±1.5	±1.5	LSB max	
	±1	±0.6	±0.6	LSB typ	
Differential Nonlinearity ³		-0.9/+1.5	-0.9/+1.5	LSB max	Guaranteed no missed codes to 12 bits
	±0.75	±0.75	±0.75	LSB typ	
Offset Error ³		±1.5	±2	LSB max	
	±0.5			LSB typ	
Gain Error ³		±1.5	±2	LSB max	
	±0.5			LSB typ	

INL values are « lower » as we choose a best fitting line!

- Zero-based line
- Best fitting line

INL

- **# INL** is the measure of the overall linearity (also called « precision »)
 - INL's profile is significative of the internal structure of the converter.
- # INL isn't allways needed! (feedback loop systems)

 \mathbb{H}

MS=

INL example

***** AD 7687, Analog Devices

Figure 1. Integral Nonlinearity vs. Code

Def.: DNL

Bifferential Non-Linearity: difference of each current step value of the TF from the ideal one

Measure on the analog side

– Unity : in #LSB or in %FS

Figure 2.20: Details of DAC Differential Nonlinearity

DNL

- DNL > -1: non-monotonic
- DNL > +1: missing code
- DNL is important for:
 - Closed loop systems
 - When small variations most significatives than big DC steps (video, graphics, sensors ...)

DNL example

Integral Non-Linearity (INL) vs Output Code

Differential Non-Linearity (DNL) vs Output Code

Def.: SNR

- **** SNR: Signal over Noise POWER Ratio**
- **** SNR** is one of the expression of the fundamental limitation of the converter
 - => the SNR of the input signal is the most useful specification for the choice of the converter's resolution

Unit:
$$SNR_{dB} = 10 \cdot log \left(\frac{signal Power P_s}{noise Power P_N} \right)$$

$$** Or SNR_{dB} = 20 \cdot log \left(\frac{signal RMS Voltage U_S}{noise RMS Voltage U_N} \right)$$

Harmonic distortion

- # 2nd order and 3rd order TF leads to distortion:
 - Pair and unpair harmonics are growing!
 - Distortion is a « dynamic » parameter but comes from the non-linearity of the TF.

Total Harmonic Distortion THD

- # THD is the ratio of 2 RMS values:
 - RMS value of the fundamental sinus
 - RMS value of a given number of harmonics

$$THD = \sqrt{\frac{\sum U_{h2}^2 + U_{h3}^2 + \dots + U_{hn}^2}{U_{sin}^2}}$$

Signal-to-Noise And Distortion SINAD

Bistance between a sinus @FS amplitude and (noise + distortion) power is called SINAD

SINAD=
$$10 \log \frac{A_{SinFS}^{2}}{\sum$$
 (noise + distortion) power to fs/2

Advanced Electronic Design

Effective Number Of Bits ENOB

 \mathbb{H}

$$ENOB = \frac{SINAD_{dB} - 1.76}{6.02}$$

- # ENOB says that the ADC is equivalent to this number of bits as far as SINAD is concerned
 - That is, a converter with an ENOB of 7.0 has the same SINAD as a theoretically perfect 7-bit converter.

Spurious Free Dynamic Range SFDR

« Distance » to the highest distortion line

Data sheet analysis

Have a look at the following datasheets,

- DAC8411, MAX542
- AD7687, ADS5463

and determine the key performance characteristics: range, resolution, INL, DNL, SNR, THD, SINAD, ENOB, SFDR.

DAC Structures

Unary and binary types

Unary: serie of 2^N times 2⁰ (LSB) values Next value always more: monotonicity guaranteed. Binary: N different values: 20,21,22,23,24 ... 2N-1 small in area, MSB transition is critical:

Unary Structures

Simple D-A using a resistor chain (Kelvin Divider)

- Not practical for large N (2^N resistors!)
- Output is monotonic garanteed

Unary Structures

*** Segmented chains**

Binary-weighted Structure

A simple low-N U-DAC

• Matching of the current sources?

Binary weighted structure

The two schematics below show binary weighted structures for DA conversion. The principal inconvenients of the upper structure are

- The load of Uref is not constant, but depends on z.
- The parasitic capacitances of the switches are (dis)charged when switching.

Explain why the lower schematic solves these problems.

Exercice

Binary-weighted Structure

A simple low-N U-DAC

- Matching easier! (only R &2R values)
- Absolute Value Not Important (typ. 10-20k, +/-20%)

Generalized ladder network

Draw a schematic of a voltage output 4bit-DAC with an R/2R ladder network, using commutators between two output current rails.

With the help of the circuit shown below, express R_l and R_p as functions of R_q , so that

$$U_2/U_1 = \alpha$$

Exercice

Arrays of current sources

Instead of a reference voltage and a set of weighted resistors, a set of weighted current sources can be used for DA converion as shown below.

Propose an alternative circuit using a set of current sources of same value and a ladder network for DA conversion.

Bipolar output

For the circuit shown below, determine U_a as a function of Z, a signed binary number in 2's complement representation. I_k and I_k ' are the two complementary current outputs of the DA converter.

What is the range of U_a?

Multiplication / division

Show that in the circuit below, the output voltage U_a is proportional to U_e/Z .

U-I output

Use Voltage-output DAC for DC applications, Current-output for AC

DAC Summary

Unary (Resistor String)

- Inherent Monotonicity
- Compact Design Leading to the basis of Multi-Channel DACs
- Difficult to get High performance INL

Binary (R-2R Ladder)

- Good DC performance
- Suffer from distributed R-C effects and signal-dependent loading in frequency-domain applications
- Multiplying Capability
- Can Operate in Voltage Mode for Single Supply Applications

DAC Summary

Bipolar Switched Current

 Suffers AC limitations because R-2R is typically required to create LSB currents

CMOS Switched Current

- Best Choice for frequency-domain applications:
- No R-2R to limit AC performance
- Good matching for DC specifications (calibration) sometimes needed)
- Allows for integration with discrete signal processing blocks to ease implementation and improve performance

References

W. Kester (ed.): *Analog-Digital Conversion*, Analog Devices 2004, ISBN 0-916550-27-3

This reference was used as a basis for the present presentation, a series of illustrations are taken from it.

The book is available for download on the moodle server.

Tietze, Schenk: *Halbleiter-Schaltungstechnik*, Springer 1999 (11th ed.), ISBN 3-540-64192-0