

مستوى:السنة الأولى من سلك الباكالوريا

- شعّبة التعليم الأصيل: مسلّك العلوم الشرعية و مسلك اللغة العربية
- · شعبة الآداب و العلوم الإنسانية: مُسْلك الْآداب و مسلك العلوم الْإنسانية

محتوى الدرس و الأهداف القدرات المنتظرة من الدرس و التعليمات الرسمية

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
ـ يتم قبول الفروع اللانهائية لمنحنى دالة حدودية	_ استعمال عناصر تماثل منحنى في	- المقارب الأفقي؛ المقارب العمودي؛
من الدرجة الثالثة؛	اختصار مجموعة دراسة دالة؛	$x \rightarrow ax^2 + bx + c$ امثلة لدر اسة وتمثيل الدو ال
_ ينبغي تناول الحل المبياني لمعادلات	_ تمثيل دوال حدودية من الدرجة الثانية	$x \rightarrow ax^3 + bx^2 + cx + d$ \mathfrak{I} $x \rightarrow \frac{ax + b}{cx + d}$ \mathfrak{I}
$f(x) \le c$ ومتر اجمات من النوع $f(x) = c$	ومن الدرجة الثالثة ودوال متخاطة؛	cx+d
حيث و دالة من بين الدوال الواردة في	_ استعمال التمثيل المبياني لدالة أو جدول	
البرنامج إذا لم يكن الحل الجبري في المتناول.	تغير اتها لدر اسة حلول بعض المعادلات	
	والمتراجحات.	

آ المستقيمات المقاربة

في جميع فقرات الدرس , ننسب المستوى إلى معلم متعامد $\left(o; \vec{i}; \vec{j}\right)$

1. المفاارب الموازي لمحور الأراتيب

تعریف

$$\lim_{\substack{x \to a \\ x \succ a}} f(x) = -\infty$$
 أو $\lim_{\substack{x \to a \\ x \succ a}} f(x) = +\infty$ أو

$$\lim_{\substack{x \to a \\ x \prec a}} f(x) = -\infty \quad \text{if} \quad \lim_{\substack{x \to a \\ x \prec a}} f(x) = +\infty$$

 (C_f) نقول إن المستقيم ذا المعادلة x=a مقارب للمنحنى

ين نعتبر الدالة العددية f للمتغير الحقيقي χ المعرفة كالتالي:

$$f(x) = \frac{2x-1}{3x-6}$$

حدد $\lim_{x \to 2^-} f(x)$ وأول النتيجتين هندسيا حدد $\lim_{x \to 2^+} f(x)$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{2x - 1}{3x - 6} : \frac{1}{2x - 1}$$

$$\begin{array}{c|cccc} x & -\infty & 2 & +\infty \\ 3x-6 & - & 0 & + \end{array}$$

 $\lim_{x \to 2^{-}} 3x - 6 = 0^{-} \mathbf{J} \lim_{x \to 2^{+}} 3x - 6 = 0^{+} \mathbf{J} \lim_{x \to 2^{+}} 2x - 1 = 3$

 $\lim_{x \to 2^{-}} f(x) = -\infty$ $\lim_{x \to 2^{+}} f(x) = +\infty$:

 (C_f) مقارب المنحنى والمعادلة المعادلة المنحنى المنحنى المنحنى

تمرين 1: أحسب النهايات التالية و أول مبيانيا النتائج:

$$\lim_{x \to 1^{-}} \frac{1}{x - 1} \quad \text{o} \quad \lim_{x \to 1^{+}} \frac{1}{x - 1}$$

2. المفاارب الموازي لمحور الأفاصيل

تعريف

, $(\lim_{x\to-\infty} f(x) = a)$ او $\lim_{x\to+\infty} f(x) = a$

 $\left(C_{f}
ight)$ مقارب للمنحنى y=a قول إن المستقيم ذا المعادلة

بجوار ∞+(أو بجوار ∞−)

f نعتبر الدالة العددية

$$f(x) = \frac{6x+1}{2x-5}$$
 : المعرفة كالتالي x المعرفة كالتالي

حدد $\lim_{x \to -\infty} f(x)$ عدد $\lim_{x \to \infty} f(x)$ عدد النتیجتین هندسیا

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{6x}{2x} = \frac{6}{2} = 3 \quad \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{6x}{2x} = \frac{6}{2} = 3 \quad \frac{1}{2} = \frac{6}{2} = \frac{6}{2}$$

التأويل المبياني : المستقيم ذا المعادلة y=3 مقارب للمنحنى (C_{i})

تمرين2: أحسب النهاية التالية و أول مبيانيا النتيجة:

$$\lim_{x \to +\infty} \frac{x}{x+2}$$

تمرين 3: أحسب النهايات التالية و أول مبيانيا النتائج:

$$\lim_{x \to 2^{-}} \frac{x+3}{x-2} \quad \text{im} \quad \frac{x+3}{x-2} \quad (1$$

$$f$$
 أرسم المنحنى الممثل للدالة أرسم (7

$$f(x) = 2x^2 - 2x - 3$$
 لنكن f دالة معرفة ب:

- f حدد مجموعة تعريف الدالة
- $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$: التالية (2
 - ا أحسب مشتقة الدالة f وأدرس اشارتها
 - f حدد جدول تغيرات الدالة f
- حدد نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور (5 الأفاصيل
- حدد نقط تقاطع $\left(C_{f}
 ight)$ المنحنى الممثل للدالة f مع محور (6
 - f أرسم (C_f) المنحنى الممثل للدالة (7

III. دراسة دالة متخاطة:

 $g(x) = \frac{2x+1}{1}$ نعتبر الدالة العددية g المعرفة ب

- 1. حدد حيز تعريف الدالة g.
- 2. أحسب نهايات الدالة g في محدات حيز التعريف و أول النتائج هندسيا.
- g أحسب الدلة المشتقة. ثم ضع جدول تغيرات الدالة
 - 4. أنشئ منحني الدالة g.

$$D = \{x \in \mathbb{R}/x + 1 \neq 0\} = \mathbb{R} - \{-1\}$$
 عریف الدالة g هو: $\{x \in \mathbb{R}/x + 1 \neq 0\} = \mathbb{R} - \{-1\}$ و منه $[x \in \mathbb{R}/x + 1 \neq 0] = [-\infty, -1]$

$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{2x+1}{x+1} = \lim_{x \to \infty} \frac{2x}{x} = 2 \cdot \lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{2x+1}{x+1} = \lim_{x \to \infty} \frac{2x}{x} = 2(2 \cdot \lim_{x \to \infty} \frac{2x+1}{x+1} - \lim_{x \to \infty} \frac{2x}{x}) = 2(2 \cdot \lim_{x \to \infty} \frac{2x+1}{x+1} - \lim_{x \to \infty} \frac{2x+1}{x+1} - \lim_{x \to \infty} \frac{2x+1}{x+1} = \lim_{x$$

يعني المستقيم ذا المعادلة
$$y=2$$
 مقارب أفقي للمنحنى (C_f) .
$$\lim_{x \to \Gamma} g(x) = \lim_{x \to \Gamma} \frac{2x+1}{x+1} = +\infty \lim_{x \to \Gamma^+} g(x) = \lim_{x \to \Gamma^+} \frac{2x+1}{x+1} = -\infty$$

يعنى المستقيم ذا العادلة x=-1 مقارب عمودي للمنحنى

$$g'(x) = \frac{\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix}}{(x+1)^2} = \frac{1}{(x+1)^2}$$
:اکال x من x لدینا

 $(\forall x \in D) g'(x) > 0$ يعني:

4)جدول تغيرات الدالة

x	$-\infty$	L +∞
f'(x)	+	+
f(x)	2	

منحنى الدالة م.

$$\lim_{x \to 3^{-}} \frac{5}{2x - 6} \quad \text{im} \quad \frac{5}{2x - 6} \quad (2)$$

$$\lim_{x \to -\infty} \frac{2x+5}{x+2} \quad \text{im} \quad \frac{2x+5}{x+2} \quad (3)$$

$$\lim_{x \to -\infty} \frac{3x - 1}{6x + 2} \quad \text{iim} \quad \frac{3x - 1}{6x + 2} \quad (4$$

II. دراسة دالة حدودية من الدرجة الثانية

 $f(x) = x^2 + 4x + 3$: لتكن $f(x) = x^2 + 4x + 3$

- f حدد مجموعة تعريف الدالة
- $\lim f(x)$ و $\lim f(x)$ و (2
 - المسب مشتقة الدالة f وأدرس اشارتها f
 - f عدد جدول تغيرات الدالة f
- حدد نقط تقاطع (C_f) المنحنى الممثل للدالة f مع محور (5)
- حدد نقط تقاطع (C_f) المنحنى الممثل للدالة f مع محور (6 الأراتيب.
- المنحنى الممثل للدالة f و المستقيم (C_f) الذي (C_f) $(o;\vec{i};\vec{j})$ معادلته (D):y=3 معادلته
 - (D) عدد نقط تقاطع (C_f) و (8
 - $x^2 + 4x \ge 0$ حل مبيانيا في \mathbb{R} المتراجحة (9

 $f(x) = -x^2 + 2x + 3$ دالة معرفة ب: 4 لتكن $f(x) = -x^2 + 2x + 3$

- f حدد مجموعة تعريف الدالة
- $\lim f(x)$ و $\lim f(x)$ و $\lim f(x)$
 - المسب مشتقة الدالة f وأدرس اشارتها (3
 - f عدد جدول تغيرات الدالة f
- حدد نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور (5 الأفاصيل
- حدد نقط تقاطع $\left(C_{f}
 ight)$ المنحنى الممثل للدالة f مع محور (6 الأراتيب.
 - f أرسم (C_f) المنحنى الممثل للدالة (7

تمرین5: لتکن f دالة معرفة ب:

$$f(x) = -\frac{1}{2}x^2 + 2x + 1$$

- f حدد مجموعة تعريف الدالة
- $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ التهایات التالیة: (2
 - المسب مشتقة الدالة f وأدرس اشارتها f
 - f عدد جدول تغیرات الداله f
- حدد نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور
- حدد نقط تقاطع $\left(C_{f}
 ight)$ المنحنى الممثل للدالة f مع محور (6 الأراتيب.

الأستاذ: عثماني نجيب ص 2

$$f(x) = \frac{2x+3}{x+2}$$
 : دالة معرفة ب دالة معرفة ب

- f حدد مجموعة تعريف الدالة (1
- $\lim_{x \to -\infty} f(x)$ e $\lim_{x \to +\infty} f(x)$: (2)
 - $\lim_{x \to -2^{-}} f(x) \quad \text{o} \quad \lim_{x \to -2^{+}} f(x) \quad \text{o}$
 - ا أحسب مشتقة الدالة f وأدرس إشارتها
 - . f حدد جدول تغیرات الداله (4
 - حدد نقط تقاطع $\left(C_f\right)$ المنحنى الممثل للدالة f مع محور الأفاصيل.
 - مع محور (6 مع محور المنتنى الممثل للدالة f مع محور الأراتيب.
 - f أرسم المنحنى الممثل للدالة C_f

$$f(x) = \frac{2x+1}{x-1}$$
 : دالة معرفة ب التكن $f(x)$

- f عدد مجموعة تعريف الدالة f
- $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) : \text{im} \int_{x \to +\infty} f(x) = 2x + 1$

$$\lim_{x \to 1^{-}} \frac{2x+1}{x-1} \quad \text{g} \quad \lim_{x \to 1^{+}} \frac{2x+1}{x-1} \quad \text{g}$$

- 3. أحسب مشتقة الدالة f وأدرس إشارتها
 - f عدد جدول تغيرات الداله f .
- مع محور f مدد نقط تقاطع C_f المنحنى الممثل للدالة f مع محور الأفاصيل.
- مع محور f مع محور (C_f) المنحنى الممثل للدالة f مع محور الأراتيب.
 - f أرسم المنحنى الممثل للدالة أ.7

IV. دراسة دالة حدودية من الدرجة الثالثة مثال:

 $f(x) = \frac{1}{3}x^3 - 4x$: نعتبر الدالة f المعرفة كالتالي

- f عيز تعريف الدالة D_f عدد .1
 - f أدرس زوجية الدالة 2
- D_f عند محدات الدالة f غند محدات .3
- 4. أحسب مشتقة الدالة f و أدرس إشارتها
 - f حدد جدول تغيرات الدالة f
- في f في الممثل للدالة f في معادلة لمماس المنحني (C_f) الممثل للدالة $X_0=-1$ التي أفصولها A
- 7. حدد نقط تقاطع المنحني $\left(C_{f}\right)$ الممثل للدالة مع محوري المعلم.
- 8. أرسم المنحني (C_f) الممثل للدالة f في معلم متعامد ممنظم $D_f = \mathbb{R} (1_{f(x)} = \frac{1}{3} x^3 4x)$ أجوبة :
 - $-x \in \mathbb{R}$ فان $x \in \mathbb{R}$ أ) اذا كانت

- $f(-x) = \frac{1}{3}(-x)^3 4(-x) = -\frac{1}{3}x^3 4(-x) = -\left(\frac{1}{3}x^3 4x\right) = -f(x)$ ومنه f دالة فردية
- $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = -\infty \quad \lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = +\infty$ (3) لأن نهاية دالة حدودية عند مالانهاية هي نهاية حدها الأكبر درجة

$$f'(x) = \left(\frac{1}{3}x^3 - 4x\right)' = \frac{1}{3}3 \times x^2 - 4 = x^2 - 4$$
 (4

$$(x-2)(x+2)=0 \Leftrightarrow x^2-2^2=0 \Leftrightarrow x^2-4=0 \Leftrightarrow f'(x)=0$$

x = -2 $x = 2 \Leftrightarrow$

(5

 $x_{\scriptscriptstyle 0} = -1$ معادلة لمماس ل $\left(C_{\scriptscriptstyle f}
ight)$ في النقطة A التي أفصولها (6

$$f'(-1) = -3$$
 $g_{f(-1)} = \frac{11}{3}$ $g_{f(-1)} = f(x_0) + f'(x_0)(x - x_0)$

$$y = -3x + \frac{2}{3} \Leftrightarrow y = \frac{11}{3} - 3(x+1) \Leftrightarrow y = f(-1) + f'(-1)(x+1)$$

المنحنى الممثل للدالة f مع محور الأفاصيل $\left(C_{_f}
ight)$ بقط تقاطع $\left(C_{_f}
ight)$

$$\frac{1}{3}x^3 - 4x = 0$$
 يعني $f(x) = 0$: نحل فقط المعادلة

$$\frac{1}{3}x^2 - 4 = 0$$
 يعني $x = 0$ يعني $x = 0$ يعني $x = 0$

$$x = -\sqrt{12}$$
يعني $x = 0$ او $x = \sqrt{12}$ يعني $x = 0$ او $x = \sqrt{12}$ او $x = 0$ يعني $x = 0$ او $x = 2\sqrt{3}$ $x = 0$ يعني $x = 0$ او $x = 2\sqrt{3}$

$$O(0,0)$$
 و $B(-2\sqrt{3};0)$ و $A(2\sqrt{3};0)$: ومنه نقط النقاطع هم

ب) نقط تقاطع $\binom{C_f}{f}$ المنحنى الممثل للدالة f مع محور الأراتيب نحسب فقط : f(0)=0 لدينا f(0)=0 ومنه نقطة التقاطع هي: f(0)=0 دريات شاريا المرتب

تمرين $m{9}$: نعتبر الدالة f المعرفة كالتالي:

$$f(x) = x^3 - 3x^2 + 4$$

 $\left(o, \overrightarrow{i, j}
ight)$ الممثل للدالة f في معلم متعامد ممنظم الدالة الدالة الممثل للدالة الم

- الدالة f عند محدات مجموعة التعريف.
 - ر أحسب مشتقة الدالة f و أدرس إشارتها f
 - f ضع جدول تغیرات الداله f .
- A(1;2) في النقطة (C_f) للمنحني (T) للمنطة 4.

f(2) و f(-1) و انشئ f(2) و .5

 $f(x) = x^3 - 3x^2 + 4$

لأنها دالة حدودية $D_f = \mathbb{R} (1)$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty \quad \Im \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$$

لأن نهاية دالة حدودية عند $^{-\infty}$ و $^{-\infty}$ هي نهاية حدها الأكبر درجة

$$f'(x) = (x^3 - 3x^2 + 4)' = 3 \times x^2 - 6x = 3x(x - 2)$$

$$x-2=0$$
 $\Rightarrow f(x)=0 \Leftrightarrow 3x(x-2)=0 \Leftrightarrow f'(x)=0$

$$x = 2$$
 f $x = 0 \Leftrightarrow$

(3

3x(x-2) + 0 - 0 +	x	$-\infty$	0		2	+∞
` '	3x(x-2)	+	þ	_	þ	+

x	$-\infty$	O		2	$+\infty$
f'(x)	+	þ	_	þ	+
f(x)		×4~		× ₀ /	+∞

 $x_{0}=1$ التي أفصولها A التي أفصولها ($C_{\scriptscriptstyle f}$) معادلة لمماس ل

$$f'(1) = -3$$
 $f(1) = 2$ $y = f(x_0) + f'(x_0)(x - x_0)$
 $y = -3x + 5 \Leftrightarrow y = 2 - 3(x - 1) \Leftrightarrow y = f(1) + f'(1)(x - 1)$

$$f(2)=0$$
 و $f(-1)=0$ و $f(-1)=0$ التمثيل المبياني للدالة

تمرين10:

 $f(x) = x^3 - 3x^2 + 1$: نعتبر الدالة $f(x) = x^3 - 3x^2 + 1$

- f عيز تعريف الدالة D_f حدد
- D_f عند محدات الدالة f أحسب نهايات الدالة (2
- ا أحسب مشتقة الدالة f و أدرس إشارتها f
 - f عدد جدول تغیرات الداله f
- في f في الممثل للدالة f في حدد معادلة لمماس المنحني (C_f) الممثل للدالة $X_0 = -1$ التي أفصولها A
 - أرسم المنحني $\left(C_{f}\right)$ الممثل للدالة f في معلم متعامد ممنظم

$$f(x) = x^3 - 3x^2 + 1$$
: الأجوبة

لأنها دالة حدودية
$$D_{\scriptscriptstyle f}=\mathbb{R}\,(1$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = -\infty \quad \text{9} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty (2)$$

 $f'(x) = (x^3 - 3x^2 + 4)' = 3 \times x^2 - 6x = 3x(x-2)$ (3 $x-2=0 \Leftrightarrow f'(x)=0 \Leftrightarrow$

$$x = 2$$
 $x = 0 \Leftrightarrow$

(4

x	$-\infty$	0		2	$+\infty$
3x(x-2)	+	Ó	_	þ	+

 $x_0=1$ التي أفصولها A التي أفصولها (C_f) معادلة لمماس ل

$$f'(1) = -3 \quad f(1) = -1 \quad y = f(x_0) + f'(x_0)(x - x_0)$$

$$y = -3x + 2 \Leftrightarrow y = -1 - 3(x - 1) \Leftrightarrow y = f(1) + f'(1)(x - 1)$$

ص 4