tifl) ->F(P) SH) -> 1 t24(t-2) = d/2/2 au(+) -> 1.a rampe at -> at $t^n \longrightarrow \frac{n!}{p^{n+1}}$ e-at p+a te-at (Pta) A+1 1-eat p(P+a) Sim(wit) - NO P2+ NOT trim (wt) -> 2 pro (P+w2) Cas(wt) -> P+wr $t \cos(\omega t) \rightarrow \frac{P^2 - \omega^2}{(p^2 + \omega^2)^2}$ J=f(+) -> P2F(P)-Pf(v)-f(0)

JJHdE -> FP) $f(\kappa t) \rightarrow \frac{1}{\kappa} F(\frac{1}{\kappa})$ F(K) -> KF(KP) Décalage $f(t-T) \rightarrow e^{PE}F(P)$ tfu) -> - d F(P) par veceire Un Branne régiente de système Ks = 41 Gain Statique $K_s = \lim_{t \to \infty} f(t)$ lim u(t) | t-soo] u(t) cte t->0=>P Combigne System Sortie (Vine Chine Chine (Captar) Josmul palynomiale G(p) = bpn + cpn-1 - am pm+ Em pm-1 formule des pretes et zéras 1) (P) = \frac{hn(P-Z_1)(P-Z_2)}{am(P^m-P_1)(P-P_2)}

 $\mathcal{E}(P) = \frac{U(P)}{1 + G(P) \cdot H(P)}$ (P) = (1+-- bm Pm) clare desyla Spa 1+ -+ anpn * Dépanse in d'aielle La farction vationmelle Gain statique Ks ae(t) - 2 1.0 * <u>Réponse impulsionnell</u>. S(t) -> 1 -> t 5 pB clare de sys. ls poles (les racines de parumarater * Déponce à Une rompe $at \rightarrow \frac{a}{p^2}$ les zeras: les racines de Numérateurs Systeme Ner ordre Soi U(P) = 0 l'Egnatrien ha forme générale? Caractéristique de système H(P) = Ks $|\mathcal{F}(p)| = \frac{S(p)}{E(p)}$ * le Temps de réponse 30 Sheme Cananique up) S G(P) Y(P) O, g & K, Eo Eo=a Patré $G(P) = \frac{G}{1 + GH}$ echlar (Échlon) fanction de Transfert en bancle india'elle convert $\frac{X(P)}{X(P)} = G(P) \cdot H(P)$ (impulsionselle) E(P) p ferrant 1+G(P)+H(P)

Table des Transformées de Laplace		
$f(t)$ $(t \ge 0)$	$F(p) = \mathscr{L}\{f(t)\}$	
Impulsion unitaire		
$\delta(t)$	1	
Echelon unitaire	1	
u(t)	\overline{p}	
rompe	$\frac{1}{p^2}$	
t^n	$\frac{n!}{p^{n+1}}$	
e^{-at}	$\frac{1}{p+a}$	
te^{-at}	$\frac{1}{(p+a)^2}$	
$t^n e^{-at}$	$\frac{n!}{(p+a)^{n+1}}$	
$1-e^{-at}$	$\frac{a}{p(p+a)}$	
$e^{-at} - e^{-bt}$	$\frac{b-a}{(p+a)(p+b)}$	
$sin(\omega t)$	$\frac{\omega}{p^2 + \omega^2}$	
$cos(\omega t)$	$\frac{p}{p^2 + \omega^2}$	
$t.sin(\omega t)$	$\frac{2p\omega}{(p^2+\omega^2)^2}$	
$t.cos(\omega t)$	$\frac{p^2-\omega^2}{(p^2+\omega^2)^2}$	
$e^{-at}.sin(\omega t)$	$\frac{\omega}{(p+a)^2 + \omega^2}$	
$e^{-at} \cdot cos(\omega t)$	$\frac{p+a}{(p+a)^2+\omega^2}$	

(n: entier positif) $\lim_{t\to 0} f(t) = \lim_{t\to 0} f(t)$ $\lim_{t\to 0} f(t) = \lim_{t\to 0} f(t)$

Propriétés des Transformées de Laplace		
f(t) (t≥0)	F (p) = L{ f(t) }	
f(t)	$\int_{0}^{\infty} e^{-pt} f(t) dt$	
$\lambda_1 f_1(t) + \lambda_2 f_2(t)$	$\lambda_1 F_1(p) + \lambda_2 F_2(p)$	
$rac{df(t)}{dt}$	pF(p)-f(0)	
$\frac{\frac{d}{dt}}{\frac{d^2f(t)}{dt^2}}$	$p^2F(p) - pf(0) - \dot{f}(0)$	
$\frac{d^n f(t)}{dt^n}$	$p^{n}F(p) - \sum_{r=n+1}^{r=2n} p^{2n-r} \cdot \frac{d^{(r-n-1)}f(0)}{dt^{(r-n-1)}}$	
$\int\limits_0^t\int\limits_0^t\int\limits_0^tf(t).dt^n$ $\int\limits_0^to_0^tc_0$ $\int\limits_0^te_0^tc_0^tc_0^t$ $\int\limits_0^t\int\limits_0^t\int\limits_0^tf(t).dt^n$	$rac{F(p)}{p^n}$	
f(kt)	$\frac{1}{k}.F\left(rac{p}{k} ight)$	
$f(\frac{t}{k})$	k.F (kp)	
$e^{-at}f(t)$	F(p+a)	
$f(t-\tau)$ $pour \ (t \ge \tau)$	$e^{-p au}.F(p)$	
$\left \int\limits_0^t f_1(t-\tau).f_2(\tau)d\tau\right $	$F_{1}\left(p\right) .F_{2}\left(p\right)$	
t.f(t)	$-rac{d}{dp}F(p)$	
 f(t) fonction périodique f(t) fonction définie s 		
• $f_1(t)$ fonction définie sur la 1 ^{tre} période de $f(t)$. $F(p) = \frac{F_1(p)}{1 - e^{-pT}}$		
$f(0^+) = \lim_{p \to \infty} \left\{ pF\left(p\right) \right\}$	$f(\infty) = \lim_{p \to 0} \{pF(p)\}$	
Si les limites existent		

7 Déplacement d'un comparateur en aval d'un élément	$ \begin{array}{c c} A + \otimes & A - B \\ \hline B & G \end{array} $ AG- BG	$ \begin{array}{c c} A & G & AG + & AG-BG \\ \hline B & G & BG \\ \end{array} $
8 Déplacement d'un point de dérivation en amont d'un élément	A G AG AG	$\begin{array}{c c} A & G & AG \\ \hline & G & AG \\ \hline & G & AG \\ \hline \end{array}$
9 Déplacement d'un point de dérivation en aval d'un élément	A G AG A	A G AG AG AG AG G AG AG G AG
Déplacement d'un point de dérivation en amont d'un comparateur	A + A - B A - B	A A-B A-B B
Retrait d'un élément d'une boucle de retour	$A + \bigcirc G_1$ G_2	$ \begin{array}{c c} A & I \\ \hline G_2 & + \\ \hline G_2 & - \\ \hline G_2 & B \end{array} $
Elimination d'une boucle de retour	$A + \bigcirc G_1$ B G_2	$ \begin{array}{c c} A & G_1 & B \\ \hline 1 & G_1 & G_2 \end{array} $

II.3.5.4. Algèbre des Schémas Fonctionnels :

Transformation	Schéma de départ	Schéma équivalent
Redisposition des comparateurs	$ \begin{array}{c c} A + & A-B + & A-B+C \\ \hline B & C & + \\ \end{array} $	$ \begin{array}{c c} A + \otimes A+C + \otimes A-B+C \\ \hline C & B & \end{array} $
Redisposition des comparateurs	B A + A-B+C C +	$ \begin{array}{c c} C \\ \hline A + \otimes A-B + \otimes +A-B+C \\ \hline B \end{array} $
Association d'éléments en cascade	$\begin{array}{c c} A & G_1 & AG_1G_2 \\ \hline \end{array}$	$\begin{array}{c c} A & \hline G_2 & AG_2 & \hline G_1 & AG_1G_2 \\ \hline \end{array}$
Association d'éléments en cascade	$ \begin{array}{c c} A & G_1 & AG_1 \\ \hline G_2 & AG_1G_2 \end{array} $	$\begin{array}{c c} A & G_1G_2 \end{array}$
Association d'éléments en parallèle	$\begin{array}{c c} A & G_1 & AG_1 + AG_2 \\ \hline G_2 & AG_2 & + \\ \end{array}$	$A \longrightarrow G_1 + G_2$
Déplacement d'un comparateur en amont d'un élément	A G AG-B B	$ \begin{array}{c c} A & B \\ \hline A & G \\ \hline G & AG-B \\ \hline B & G \\ \hline G & B \\ G & B \\ \hline G & B \\ G & B \\ \hline G & B \\ G & B \\ \hline G & B \\ G & B \\ \hline G & B \\ G & B \\ \hline G & B \\ G &$

Décomposition d'un quotient de polynôme en fractions partielles

Lorsque le degré du polynôme P(s) est supérieur à celui de Q(s), il faut d'abord effectuer la division de P(s) par Q(s). On obtient alors

$$\frac{P(s)}{Q(s)} = d(s) + \frac{R(s)}{Q(s)}$$

La décomposition en fractions partielles s'effectue alors sur le quotient $\frac{R(s)}{\mathcal{Q}(s)}$.

Toutefois, dans le contexte de la résolution des ED avec les transformées de Laplace, le degré du polynôme P(s) sera généralement inférieur à celui du polynôme Q(s) de sorte que le développement se fera directement sur le quotient obtenu lorsqu'on détermine l'expression de Y(s), la transformée de Laplace de la solution de l'ED.

$$Y(s) = \frac{P(s)}{Q(s)}$$

Les règles suivantes s'appliquent dans la décomposition en fractions partielles. Il faut tout en premier lieu décomposer Q(s) en facteurs qui seront linéaire(s) ou quadratique(s), ces derniers étant ou non répétés. Les cas suivants peuvent se présenter

1) Si Q(s) est un produit de facteurs linéaires non répétés, on aura la décomposition comme dans le cas suivant pour lequel $Q(s) = (s+\alpha)(s+\beta)(s+\gamma)$

$$\frac{P(s)}{Q(s)} = \frac{P(s)}{(s+\alpha)(s+\beta)(s+\gamma)} = \frac{A}{s+\alpha} + \frac{B}{s+\beta} + \frac{C}{s+\gamma}$$

Exemple (cas de 2 facteurs non répétés): $\frac{2s+5}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} = \frac{3}{s+1} - \frac{1}{s+2}$

2) Si $Q(s) = (s+\alpha)(s+\beta)^2$, les facteurs sont linéaires, mais le facteur $(s+\beta)$ est répété 2 fois, comme sont exposant l'indique. Alors on aura

$$\frac{P(s)}{Q(s)} = \frac{P(s)}{(s+\alpha)(s+\beta)^2} = \frac{A}{s+\alpha} + \frac{B}{s+\beta} + \frac{C}{(s+\beta)^2}$$

Exemple:
$$\frac{s^2 + 3s}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2} = -\frac{2}{s+1} + \frac{3}{s+2} + \frac{2}{(s+2)^2}$$

Exemple : le cas d'un facteur linéaire répété 3 fois :

$$\frac{s^2 + 3s}{(s+2)^3} = \frac{A}{s+2} + \frac{B}{(s+2)^2} + \frac{C}{(s+2)^3} = \frac{1}{s+2} - \frac{1}{(s+2)^2} - \frac{2}{(s+2)^3}$$

3) Si $Q(s) = (s + \alpha)(s^2 + \beta^2)$, alors on a un facteur quadratique non répété (en plus d'un facteur linéaire non répété), alors :

$$\frac{P(s)}{Q(s)} = \frac{P(s)}{(s+\alpha)(s^2+\beta^2)} = \frac{A}{s+\alpha} + \frac{Bs+C}{s^2+\beta^2}$$

Exemple:
$$\frac{5s+15}{(s-1)(s^2+9)} = \frac{A}{s-1} + \frac{Bs+C}{s^2+3^2} = \frac{2}{s-1} + \frac{-2s+3}{s^2+9}$$

Dans le cas de deux facteurs quadratique non répété :

$$\frac{P(s)}{Q(s)} = \frac{P(s)}{(s^2 + \alpha^2)(s^2 + \beta^2)} = \frac{As + B}{s^2 + \alpha^2} + \frac{Cs + D}{s^2 + \beta^2}$$
Exemple:
$$\frac{s + 3}{(s^2 + 4)(s^2 + 9)} = \frac{As + B}{s^2 + 4} + \frac{Cs + D}{s^2 + 9} = \frac{1}{5} \left(\frac{s + 3}{s^2 + 4}\right) - \frac{1}{5} \left(\frac{s + 3}{s^2 + 9}\right)$$

Rappelons qu'un facteur quadratique peut être de la forme suivante :

Exemple:
$$\frac{2s+3}{(s^2+4s+5)(s^2+9)} = \frac{As+B}{s^2+4s+5} + \frac{Cs+D}{s^2+9} = \frac{1}{8} \left(\frac{s+1}{s^2+4s+5}\right) - \frac{1}{8} \left(\frac{s-3}{s^2+9}\right)$$

4) Si la factorisation de Q(s) comporte un facteur quadratique répété comme dans le cas suivant, la décomposition se fait comme suit (on a ajouté un facteur linéaire)

$$\frac{P(s)}{Q(s)} = \frac{P(s)}{(s+\alpha)(s^2+\beta^2)^2} = \frac{A}{s+\alpha} + \frac{Bs+C}{s^2+\beta^2} + \frac{Ds+E}{(s^2+\beta^2)^2}$$

Exemple:

$$\frac{2s-1}{(s+2)(s^2+1)^2} = \frac{A}{s+2} + \frac{Bs+C}{s^2+1} + \frac{Ds+E}{(s^2+1)^2} = -\frac{1}{5} \left(\frac{1}{s+2}\right) + \frac{1}{5} \left(\frac{1}{s^2+1}\right) + \frac{s}{(s^2+1)^2}$$

Autre exemple:

$$\frac{2s^2 + 3s}{\left(s^2 + 4s + 5\right)^2} = \frac{As + B}{s^2 + 4s + 5} + \frac{Cs + D}{\left(s^2 + 4s + 5\right)^2} = \frac{2}{s^2 + 4s + 5} - 5\frac{s + 1}{\left(s^2 + 4s + 5\right)^2}$$

Finalement, signalons que le développement en fraction partielle du quotient de deux polynôme s'effectue simplement avec la calculatrice : on utilise la fonction « expand(P(s)/Q(s)) ». Le résultat peut « inspirer » la décomposition en fractions partielles et effectuer le calcul des valeurs de A, B, C ... qui figurent dans les termes de la décomposition.

/1 3<1 Exent y(t) = KE0[1-1-p2] = Swnt 3P3+@P2+3P+9P° xim (mn/1-516) + p) Stabilité des systèmes les pôles (Racines) Négatif So um sent poeritrif syss instable B=4 Ala fin il fait Vaire le dermier Num (J) po Si -5 + i c - 2 - 22. sys stable Lapartie GP=P4+2P2+5=> riel Niguty G(P) = P 4 0 P 3 + 2 P + 0 P + 5 P° 1 - Seul pôle Nul: Lépanse en rampe, instable P4 1 2 5 5 P1 P1 2 deux pole imaginaire purs instable *Crétère de Ranth 1 Condition: teart les Elements 1 marginalement stable
3 con con a dons le 1º Cielleme Cofferents de l'équation Caractéristique même Signe 0. _s an piek & tg & yol & ~ o 1 Changner signie 2 2 Condition: trent les élements de La partinier Calconne 06-6 il ya dens pale à partie s'él de la table de Reeth out (2)Cz 4 penty (mon stable) le même Signe (- sys stable - sys instable - marginale stable.