$$ES1)$$
 $g(x,y) = 9 - (x^2 + y^2)$

b) $\chi = 9 - (\chi^2 + y^2)$ è un parabolòide circolare di V(0,0,9) rivolto Verso il basso, a=1 (è il parabolòide di basse $\chi = \chi^2 + y^2$ capo, volto e alzato di 9). $\Lambda \chi = 0$ on $\chi^2 + y^2 = 9$ $\chi = 3$

Po
$$\in$$
 graf $g \to 4 = 9 - (1 + y_0^2)$
 $y_0^2 = 4$ $y_0 = \pm 2 \to y_0 = -2$

$$\nabla g(x_1y) = (-2x_1 - 2y) \nabla g(x_1 - 2) = (-2,4)$$

d) se r L graf g = δ r ha come vettore direttore il vettore NORTALE al piano tangente piano tang 2x-4y+2-14=0 $\vec{N}=(2,-4,1)=\delta$ $\vec{V}_{n}=(2,-4,1)$

$$x = 1 + 2t$$

$$y = -2 - 4t \text{ tell}$$

$$z = 4 + t$$

e) sostituendo le coordinate di Po mell'eque della rette otteniamo
$$\begin{cases} -2=-2.1 \text{ ok sono verificate} = 70 \in S \\ 4=1+3 \text{ ok} \end{cases}$$

cerchiamo un vettore direttore di s per controllare se SIIN:

$$P_1 = (-2, 4, 1)$$
 $\vec{y}_3 = P_1 - P_0 = (-3, 6, -3)$ $\vec{y}_3 = \vec{y}_r$ some lin. indip.
 $x = -2$

quindi le due rette NON SONO parallele e pertauto

s NON è perpendicolare al grafq in Po-

(*)
$$-\frac{2}{3}\vec{v}_{s} = (2,-4,2) \neq \vec{v}_{n} = (2,-4,1)$$

2)
$$f(x,y) = 3 + \sqrt{25 - x^2 - y^2}$$

)
$$f(x,y) = 3 + \sqrt{25 - x - y}$$

a) $douf = g(x,y) \in \mathbb{R}^2$: $x^2 + y^2 \le 25 g = C \in \mathbb{R}$ CHIUSD = 1000 P = 5

(internot bords) di C(0,0) R=5

$$P_{o} = (x_{o}, 0, 7)$$

$$nell(eq) = 7 = 3 + \sqrt{25 - x_{o}^{2}}$$

$$\sqrt{25 - x_{o}^{2}} = 4 \quad 25 - x_{o}^{2} = 16 \quad x_{o}^{2} = 9$$

$$x_{o} = \pm 3 \rightarrow x_{o} = 3$$

$$x_{o} = 5$$

$$\nabla f(x,y) = \left(\frac{-x}{\sqrt{25-x^2-y^2}}, \frac{-y}{\sqrt{25-x^2-y^2}}\right)$$

$$\sqrt{25-x^2-y^2} \quad \sqrt{25-x-y^2}$$

$$\sqrt{25-x^2-y^2} \quad \sqrt{25-x-y^2}$$
eq. PianoTan $\chi = \chi - \frac{3}{4}(x-3) + O(\gamma - 0)$

$$\frac{925}{4} \quad \chi = -\frac{3}{4}x + \frac{37}{4}$$

piano inclinato per $(0,0,\frac{37}{4})$ e $(\frac{37}{3},0,0)$, Name y ϕ con la $\approx 12,3$ caratteristica di essere indip. da y (quindi si obti ene dalla netta $Z = -\frac{3}{4}x + \frac{37}{4}$ nel piano $(x_1 z)$ trascinata nella diverione dell'assey.

$$\vec{U}_{R} = \vec{N}_{Pianotalup}$$
 $\frac{3}{4}X + Z - \frac{37}{4} = 0$

$$3x+4x-37=0$$
 $\vec{N}=(3,0,4)$

$$R \begin{cases} x = 3 + 3t \\ y = 0 \end{cases}$$
 tere

e) Po
$$\epsilon$$
 s per $t_0 = 1$

$$\begin{cases} 3 = 3t \rightarrow t = 1 \\ 0 = 0 \\ 7 = 3 + 4t \rightarrow t = 1 \end{cases}$$

S e scritta in forma parametrica come la vetta per (0,0,3) di Vettore direttore $\tilde{U}_S = (3,0,4)$

essends Fs=Fr le due rette se r sons parallèle, da cui se I grafico di j in Po- Dunque se r sons la stessa retta.

3)
$$g(x,y) = 6 - \frac{3}{2} \sqrt{x^2 + y^2}$$

a) doug = {(xiy) eR?: x²+y²>0}=R? in quanto x²+y²è una somma diquadratie allora è sempre >0

eque del graf $g = 6 - \frac{3}{2} \sqrt{x^2 + y^2}$

b) rappresenta un cono circolare di V(0,0,6) versoil basso, apertura $\alpha = \frac{3}{2} > 1$ ($0 \angle \alpha \hat{p} < 45^\circ$)

ap=anctan=3=33,7°), N=0 on X2+y2=42 R=4

c)
$$\lambda_0 = g(\frac{3}{2}, 2) = 6 - \frac{3}{2}\sqrt{\frac{9}{4} + 4} = 6 - \frac{3}{2} \cdot \frac{5}{2} = 6 - \frac{15}{4} = \frac{9}{4}$$
 $P_0 = (\frac{3}{2}, 2, \frac{9}{4})$
cerco un vettore direttore di n che contituiza

il vettore mormale al piàno tampeute

 $P_1 = (3, 4, \frac{47}{12})$
 $V_2 = P_1 - P_0 = (\frac{3}{2}, 2, \frac{20}{12}) = (\frac{3}{2}, 2, \frac{5}{3})$
 $V_3 = 4$
Essendo $all P_1 = (3, 4, \frac{47}{12})$
 $V_4 = (3, 4, \frac{47}{12})$
 $V_5 = (3, 2, \frac{5}{12}) = (3, 2, \frac{5}{2})$
 $V_7 = (3, 2, \frac{5}{12}) = (3, 2, \frac{5}{3})$
 $V_8 = (\frac{3}{2}, 2, \frac{5}{3})$
 $V_8 = (\frac{3}{2}$

e)
$$\vec{N}_{pianotang} = (\frac{3}{2}, \frac{2}{3})$$
 o anche $\vec{N} = (\frac{9}{10}, \frac{6}{5}, \frac{1}{5})$
o $\vec{N} = (9, 12, 10)$

Piano // Pianotono ha lo steros vettore normale

$$(P-P_1) \cdot \vec{N} = 0 \quad 9(x-4) + 12(y-4) + 10(z-2) = 0$$

$$10z = -9x - 12y + 36 + 48 + 20 \quad z = -\frac{9}{10}x - \frac{6}{5}y + \frac{52}{5}$$