$$\begin{aligned} \cdot & \text{Cov} \left[\hat{\beta}_{\text{OUE}} \right] = & \text{Cov} \left[\beta^* + (x^T X)^{-1} X^T \varepsilon \right] = & \text{Cov} \left[(x^T X)^{-1} X^T \varepsilon \right] \\ & = (x^T X)^{-1} X^T & \text{Cov} \left[\varepsilon \right] \left((x^T X)^{-1} X^T \right)^T \\ & = & \sigma^2 \left(x^T X \right)^{-1} X^T \times (x^T X)^{-1} \\ & = & \sigma^2 \left(x^T X \right)^{-1} = & \sigma^2 S^{-1} \end{aligned}$$

$$\begin{aligned} & \cdot \operatorname{Cov} \left[\hat{\beta}_{\tau} \right] = \operatorname{Cov} \left[\left(X^{\tau} X + \tau \mathbf{1} \right)^{-1} X^{\tau} Y \right] = \operatorname{Cov} \left[\left(X^{\tau} X + \tau \mathbf{1} \right)^{-1} X^{\tau} X \left(X^{\tau} X \right)^{-1} X^{\tau} Y \right] \\ & = \operatorname{Cov} \left[S_{\tau}^{-1} S \hat{\beta}_{ous} \right] = S_{\tau}^{-1} S \operatorname{Cov} \left[\hat{\beta}_{ous} \right] \left(S_{\tau}^{-1} S \right)^{\tau} \end{aligned} \end{aligned} = \hat{\beta}_{ous}$$

$$= S_{\tau}^{-1} S \left(\sigma^{2} S^{-1} \right) S S_{\tau}^{-1}$$