Image Processing and Computer Vision

Course Summary

Dylan Cope

1 Modelling and Image

For coordinates $x_1, x_2, ..., x_m$ and colour values $c_1, c_2, ..., c_n$, an image encodes a function $f : \mathbb{R}^m \to \mathbb{R}^n$ mapping between these variables, m is the image dimensionality and n is the number of colour channels.

2 Convolutions

3 Hough Transforms

Given an image $I_{m \times n}$ and a shape described by p parameters, the Hough transform H is a p-dimensional space that maps every possible instance of the given shape to a value indicating its presence in I. The process of detecting shapes in images using Hough transforms is to find shapes that have values in the transform greater than some threshold.

3.1 Line Detecting

Lines are characteristic of two parameters; the r and φ values of the equation $r = x \sin \varphi + y \cos \varphi$. This means the Hough transform for a given image is two-dimensional.

3.2 Circle Detecting

3.3 Generalised Hough Transform

4 Viola-Jones Object Detection

4.1 Integral Image

The integral image $\prod_{m \times n}$ is a transformation of an image $\prod_{m \times n}$ where each entry defined by the following recursive relationship,

$$ii(x,y) = \begin{cases} 0 & \text{if } x \notin [0,n) \text{ or } y \notin [0,m) \\ I_{x,y} + ii(x-1,y) + ii(x,y-1) - ii(x-1,y-1) & \text{otherwise} \end{cases}$$

Through memoization, II is computed in O(mn) time (and II is the resultant memoization table).

- 4.2 Haar-like Features
- 4.3 AdaBoosting
- 4.4 Performance
- 5 Motion
- 5.1 Lucas and Kanade Algorithm
- 5.2 Aperature Problem
- 5.3 Segmentation by Velocity
- 6 Stereo Vision
- 6.1 Calibration
- 6.2 Correspondance Problem