LPC82X 培训资料

开关矩阵

MAY, 2016

内容

- 开关矩阵 简介
- 开关矩阵 配置及寄存器
- 开关矩阵 LPCOPEN API
- 开关矩阵 物理特性
- 开关矩阵 软件配置工具
- 开关矩阵 手动配置

开关矩阵 简介

LPC82x 开关矩阵 简介

- 开关矩阵可分配的引脚和功能
 - 除了电源和地管脚以外,任意外部管脚均可被SWM分配功能
 - 可分配的功能包括 UART、SPI、I2C、SCT、比较器输出、CLKOUT、逻辑匹配输出
- 特定功能引脚仅可被管理(不能被分配)
 - 如外部晶振引脚、比较器输入口、ADC采样、复位口、SWD调试接口、GPIO口

LPC82x 开关矩阵 优势

- 开关矩阵可以将外设功能灵活的分配到指定的管脚
- 解决原理图设计错误
 - -在原理图管脚功能设计有误的情况下,可以通过软件重新分配外设功能
- 优化硬件布线设计
 - -根据布线需求合理的分配外设功能到各个管脚
- 实时动态改变管脚上的外设功能
- 合理的情况下分配多个外设功能到指定的管脚

LPC82x 开关矩阵 在芯片上的位置

- 开关矩阵可以管理 以下外设
 - GPIO
 - SCT定时器
 - SPI
 - I2C
 - UART
- 开关矩阵配置好后,不需要时钟源

LPC82x 开关矩阵 功能框图

LPC82x 配置多种外设功能到同一个管脚

- 初始化分配好后, 在接下来的程序中仍然可以修改开关矩阵的配置
- 多种输入功能分配到一个管脚
 - 最优的解决方式是根据用户的需求分时切换不同的功能到指定的I/O管脚

LPC82x 配置多种外设功能到同一个管脚

- 多项输出功能分配到一个管脚
 - 开关矩阵是一组复用的逻辑关系,不允许多路信号驱动一个输出缓冲
 - 如果使能了多组输出到一个管脚,则信号会被混合在一起

开关矩阵 配置及寄存器

设置开关矩阵的主要步骤

SYSCON

• 通过SYSCON模块(SYSAHBCLKCTRL.bit7) 开启 开关矩阵模块的时钟

SŴM, IOCON • 通过SWM分配引脚,通过IOCON正确配置引脚属性

USART#

• 通过SYSCON模块(SYSAHBCLKCTRL.bit7) 关闭 开关矩阵模块的时钟

LPC82x 开关矩阵 基础设置

- •默认状态,只有RESET和串口0被分配到了对应的管脚上
 - 调试无关的引脚,默认状态下均为GPIO
 - 在配置I/O管脚上的功能前,需要通过PINENABLEO寄存器先禁用,然后再分配功能
 - 一旦I/O管脚被设置为ADC功能,则对应的数字功能自动从该管脚上移除
- 在配置开关矩阵的寄存器时,是需要打开系统时钟的
 - 在设置完开关矩阵后,关闭其时钟源可以降低系统的功耗
 - 锁住I/O配置可以保护设置
 - SYSAHBCLKCTRL (第7位)中矩阵开关时钟的控制位
- 在使能或者使用外设前,需要先通过设置PINASSIGN[0:11]寄存器配置好外设对应的管脚
- 注意:如果分配外设功能到SWD相关的引脚,会禁用SWD功能

LPC82x 管脚分配 寄存器 PINASSIGN[0:11]

- ·配置外设功能连接到对应I/O管脚
- CMSIS 标准函数名称: LPC_SWD->PINASSIGNn
- LPCOPEN API 名称: Chip_SWM_MovablePinAssign
- 举例:

UARTO_CTS_I	UARTO_RTS_O	UARTO_RXD_I	UARTO_TXD_O		PINASSIGNO (读/写)
31	23	15	7	0	

位	功能	值	描述 ····································	复位
0:7	UARTO_TXD_O	028	分配UART0_TXD功能。数值代表着分配该功能到该值的I/O管脚上 。 PIO0_0 = 0(0x00),, PIO0_28 = 28(0x1C) .	0xFF
15:8	UARTO_RXD_I	028	分配UART0_RXD功能。数值代表着分配该功能到该值的I/O管脚上 。 PIO0_0 = 0(0x00),, PIO0_28 = 28(0x1C) .	0xFF
23:16	UARTO_RTS_O	028	分配UART0_RTS_O功能。数值代表着分配该功能到该值的I/O管脚上 。 PIO0_0 = 0(0x00),, PIO0_28 = 28(0x1C) .	0xFF
31:24	UARTO_CTS_I	028	分配UART0_CTS_I功能。数值代表着分配该功能到该值的I/O管脚上 。 PIO0_0 = 0(0x00),, PIO0_28 = 28(0x1C) .	0xFF

LPC82x 管脚功能使能 寄存器 PINENABLE0

- •特定功能可通过该寄存器禁用或使能并连接到特定的I/O管脚
- CMSIS 标准函数名称: LPC_SWD->PINENABLEO
- LPCOPEN API 名称: Chip_SWM_EnableFixedPin
- 举例:

Reserved		 ADC_0	 ACMP_I3	ACMP_I2	ACMP_I1	PINENABLEO (读/写)
31	25	 13	 2	1	0	

位	功能	值	描述	复位
0	ACMP_I1		ACMP_I1模拟比较器输入1	1
		0	0 禁用	
		1	使能	
1	ACMP_I2		ACMP_I2模拟比较器输入2	1
		0x0	禁用	-
		0x1	使能	-

LPC82x 可以被开关矩阵分配的外设功能-1

- 每组外设配置寄存器均有对应的详细描述
- 参考 LPC82x数据手册 第7章 Table4

外设功能名称	类型	描述	SWM 分配寄存器
UO_TXD	输出	USARTO 数据 发送	PINASSIGNO
UO_RXD	输入	USARTO 数据 接收	PINASSIGNO
UO_RTS	输出	USARTO 数据 发送请求	PINASSIGNO
UO_CTS	输入	USARTO 数据 接收请求	PINASSIGNO
UO_SCLK	输入/输出	USARTO 同步模式 串行时钟输入或输出	PINASSIGN1
U1_TXD	输出	USART1 数据 发送	PINASSIGN1
U1_RXD	输入	USART1 数据 接收	PINASSIGN1
U1_RTS	输出	USART1 数据 发送请求	PINASSIGN1
U1_CTS	输入	USART1 数据 接收请求	PINASSIGN2
U1_SCLK	输入/输出	USART1 同步模式 串行时钟输入或输出	PINASSIGN2
U2_TXD	输出	USART2 数据 发送	PINASSIGN2
U2_RXD	输入	USART2 数据 接收	PINASSIGN2
U2_RTS	输出	USART2 数据 发送请求	PINASSIGN3
U2_CTS	输入	USART2 数据 接收请求	PINASSIGN3
U2_SCLK	输入/输出	USART2 同步模式 串行时钟输入或输出	PINASSIGN3
SPIO_SCK	输入/输出	SPIO 时钟	PINASSIGN3
SPIO_MOSI	输入/输出	SPIO 主发从收	PINASSIGN4
SPIO_MISO	输入/输出	SPIO 从发主收	PINASSIGN4
SPIO_SSELO	输入/输出	SPIO 片选O	PINASSIGN4
SPIO_SSEL1	输入/输出	SPIO 片选1	PINASSIGN4

LPC82x 可以被开关矩阵分配的外设功能-2

外设功能名称	类型	描述	SWM 分配寄存器
SPIO_SSEL2	输入/输出	SPI0 片选2	PINASSIGN5
SPIO_SSEL3	输入/输出	SPIO 片选3	PINASSIGN5
SPI1_SCK	输入/输出	SPI1 时钟	PINASSIGN5
SPI1_MOSI	输入/输出	SPI1 主发从收	PINASSIGN5
SPI1_MISO	输入/输出	SPI1 从发主收	PINASSIGN6
SPI1_SSEL0	输入/输出	SPI1 片选0	PINASSIGN6
SPI1_SSEL1	输入/输出	SPI1 片选1	PINASSIGN6
SCT_PIN0	输入	SCT定时器 输入0	PINASSIGN6
SCT_PIN1	输入	SCT定时器 输入1	PINASSIGN7
SCT_PIN2	输入	SCT定时器 输入2	PINASSIGN7
SCT_PIN3	输入	SCT定时器 输入3	PINASSIGN7
SCT_OUTO	输出	SCT定时器 输出0	PINASSIGN7
SCT_OUT1	输出	SCT定时器 输出1	PINASSIGN8
SCT_OUT2	输出	SCT定时器 输出2	PINASSIGN8
SCT_OUT3	输出	SCT定时器 输出3	PINASSIGN8
SCT_OUT4	输出	SCT定时器 输出4	PINASSIGN8
SCT_OUT5	输出	SCT定时器 输出5	PINASSIGN9
I2C1_SDA	输入/输出	I2C1 数据	PINASSIGN9
I2C1_SCL	输入/输出	I2C1 时钟	PINASSIGN9
I2C2_SDA	输入/输出	I2C2 数据	PINASSIGN9
I2C2_SCL	输入/输出	I2C2 时钟	PINASSIGN10
I2C3_SDA	输入/输出	I2C3 数据	PINASSIGN10
I2C3_SCL	输入/输出	I2C3 时钟	PINASSIGN10
ADC_PINTRIGO	输入	ADC外部触发输入0	PINASSIGN10
ADC_PINTRIG1	输入	ADC外部触发输入1	PINASSIGN11
ACMP_O	输出	模拟比较器 输出	PINASSIGN11
CLKOUT	输出	时钟信号输出	PINASSIGN11
GPIO_INT_BMAT	输出	逻辑匹配输出	PINASSIGN11

开关矩阵的物理属性

LPC82x 开关矩阵 功耗

• 参考 LPC82x数据手册 第12章 Table10

		典型功耗 µA		
外设	MCU主频			
	N/A	12Mhz	30Mhz	
开关矩阵	-	59	145	

- 在配置开关矩阵的寄存器时,是需要打开系统时钟的
- 在设置完开关矩阵后,关闭其时钟源可以降低系统的功耗

开关矩阵 图形配置工具

- 配置非常简单易用!
- 用户可以使用图形界面工具生成配置文件,或者手工通过软件配置
- 通过以下链接下载LPC82x开关矩阵图形配置工具
- 开关矩阵 配置工具,支持网页版,Windows,Linux和MAC
- 本地版的配置工具,需要预先安装JAVA

https://www.lpcware.com/content/nxpfile/lpc820-pinmuxing-tool

Utility	Downloads/More information	Function
LPCScrypt	Downloads for Windows, Linux or MacOS	LPC18xx and LPC43xx OTP and Flash Programming. Now also provides functionality to program LPC-Link2 and LPCXpresso V2/V3 firmware (replacing LCT)
LPC Initializer and Pinmux	Web app Windows:32-bit 64-bit Linux:32-bit 64-bit Mac OS X 64-bit	Pin configuration tool. Supports:LPC8xx, LPC11E6x, LPC11U6x, LPC15xx, LPC541xx

第一步:选择对应封装的器件,选择完器件/封装后,会显示管脚 默认分配的功能。

• 第二步:点击"Focal Peripheral"选择需要配置的外设,这里我们以USART1功能为例,选择好外设后,会弹出需要定义的功能。

• 第三步:鼠标选择需要配置的引脚功能(选中后,功能绿色方格会变成橙色)。然后,鼠标选择需要分配到的I/O管脚,即可。这里,以USART1_RXD功能分配到PIO0_14为例。

• 第三步也可以先选择需要设置的管脚,然后在这里,以 USART1_RXD功能分配到PIO0_14为例。

• 此时, U1_RXD功能引脚就被分配到原先的PIO0_14的位置

• 第四步,按照前述步骤三,分配好用户所需要的功能。

• 若需要删除分配的功能,则点击对应管脚上的"X"图标即可

- 用户选择"SWM.C"对话框后,可以找到最终生成的初始化程序
- 直接复制到用户的代码中并调用即可配置好开关矩阵
- 别忘了关闭开关矩阵的时钟源,以降低系统功耗!-Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_SWM)

提示:为了降低功耗,用户在配置完开关矩阵后可以关闭其时钟源

```
LPC Initialization
A LPC Initialization
                        📑 New 🏊 Load 🔛 Save 🥾 Download 🖼 Feedback 🕜 Help 🙈 About 🗀 🗀
Choose code library to compile against: LPCOpen -
                                                                                         Switch Matrix code
                                                                                         This view contains the code generated to
                                                                                         configure the switch matrix on your
void SwitchMatrix_Init()
          /* Enable the clock to the Switch Matrix */
                                                                                         If there are more than one libraries
                                                                                         supported for this part you can pick the
          Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SWM);
                                                                                         library to use in the drop down box at
                                                                                         the ton
          /* Pin Assign 8 bit Configuration */
          /* U1_TXD */
                                                                                         Note: this code is included in the zip
          /* U1 RXD */
                                                                                         bundle that you can get via the
          /* U1 RTS */
                                                                                         download button.
          LPC SWM->PINASSIGN[1] = 0x010e08ffUL;
          /* U1 CTS */
          /* U1 SCLK */
                                                                                         Toolbar
          LPC SWM->PINASSIGN[2] = 0xffff0009UL;
                                                                                             · New - choose a different chip to
          /* Pin Assign 1 bit Configuration
          /* SWCLK */
                                                                                             · Load - upload a previously
          /* SWDIO */
                                                                                              downloaded .nxp configuration
          LPC_SWM->PINENABLEO
                                                                                             · Save - downloads a .nxp file
                                                                                              describing this configuration
                                                                                             · Download - downloads a zip
                                                                                              containing the generated code to
                                                                                              configure the chip as well as
                                                                                              the .nxp configuration file.
Workspace Pin List Function List swm.c IO Config locon.c inmus.c
```


开关矩阵手动配置

- 本章节介绍手工配置开关矩阵。开关矩阵相关寄存器比较简单, PINASSIGN[0:11]寄存器组和PINENABLE0寄存器;此外,用 户还需要配置SYSAHBCLKCTRL的第7位使能和禁用开关矩阵。
- 我们以配置PIO0_0为U2_TXD和PIO0_19位U2_RXD为例:

第一步:找对对应功能的PINASSIGN[0:11]寄存器。本例,
 U2_TXD和U2_RXD均对应PINASSIGN2。

7.5.3 Pin assign register 2

Table 69. Pin assign register 2 (PINASSIGN2, address 0x4000 C008) bit description

Bit	Symbol	Description	Reset value	
7:0	U1_CTS_I	U1_CTS function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	0xFF	U2_TXD
15:8	U1_SCLK_IO	U1_SCLK function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	0xFF	
23:16	U2_TXD_O	U2_TXD function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	0x4	U2_RXD
31:24	U2_RXD_I	U2_RXD function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	0x5E	

• 第二步:根据需要分配的I/O管脚,设置PINASSIGN[0:11]寄存器。

7.5.3 Pin assign register 2

Table 69. Pin assign register 2 (PINASSIGN2, address 0x4000 C008) bit description

Bit	Symbol	Description	Reset value		
7:0	U1_CTS_I	U1_CTS function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	PIO0_23/ADC_3/ACMP_I4		20 PIO0 14/ADC 2/ACMP I3 19 PIO0_0/ACMP_I1/TDO
15:8	U1_SCLK_IO	U1_SCLK function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	PIO0_13/ADC_10 3 PIO0_12 4 RESET/PIO0_5 5	TSSOP20	18 VREFP 17 VREFN 16 V _{SS}
23:16	U2_TXD_O	U2_TXD function assignment. The value is the pin number to be assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	PIO0_4/ADC_11/WAKEUP/TRST 6 SWCLK/PIO0_3/TCK 7 SWDIO/PIO0_2/TMS 8		15 V _{DD} 14 PIO0_8/XTALIN 13 PIO0_9/XTALOUT
31:24	U2_RXD_I	U2_RXD function assignment. The value is the pin number to se assigned to this function. The following pins are available: PIO0_0 (= 0) to PIO0_28 (= 0x1C).	PIO0_11/I2C0_SDA 9 PIO0_10/I2C0_SCL 10	aaa-01139:	12 PIO0_1/ACMP_I2/CLKIN/TDI 11 PIO0_15

• 配置PINASSIGN2寄存器如下:

• 最终配置源码

```
Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_SWM); // 打开 开关矩阵 时钟源 LPC_SWM->PINASSIGN2=(LPC_SWM->PINASSIGN2 & ~(0xFF<<16)) | (0<<16); // 设置 P0.0 = U2TxD0 LPC_SWM->PINASSIGN2 & ~(0xFF<<24)) | (1<<24); // 设置 P0.1 = U2RxD0 Chip Clock DisablePeriphClock(SYSCTL CLOCK SWM); // 关闭 开关矩阵 时钟源
```


SECURE CONNECTIONS FOR A SMARTER WORLD