

Better EVERYWHERE. Smarter EVERYDAY. เก่งขึ้นได้ทุกที่ ดีขึ้นได้ทุกวัน

ชื่อ-สกุล:	_วันที่สอบ:	_เวลาที่สอบ:
กฎระเบียบและรายละเอียดของการสอบ		
า 1. ข้อสอบมีทั้งหมด 45 ข้อ 33 หน้า(ไม่รวม	หน้าปก) 100 คะแนน	
ตอนที่ 1: ปรนัย 40 ข้อ(ข้อ 1-40)	ข้อละ 2 คะแนน	
ตอนที่ 2: อัตนัย 5 ข้อ(ข้อ 41-45)	ข้อละ 4 คะแนน	
2. เวลาสอบทั้งหมด 90 นาที		
3. กรอกค้ำตอบลงบนกระดาษคำตอบบนเ	ว็บไซต์ให้ชัดเจน	
4. ในกรณีที่เป็น ข้อเติมคำ ต้องเลือกตอบใง	ห ้<u>ครบทั้งหกหลัก</u> โ ดยใ	นหลักที่ไม่มีค่าให้กดเลือก
เลข 0 ให้ ครบ		
5. หากหมดเวลาสอบ จะ ไม่สามารถกดค ำ	าตอบ ลงบนเว็บไซต์แล ะ	ะระบบจะ บังคับให้ส่ง
<u>ข้อสอบ</u> ทันที่		
6. ห้ามใช้เครื่องคำนวณในการทำข้อสอบ		
	ลงชื่อผู้เข้าสอบ_	
	วันที่_	

วิชาสามัญเคมี มี.ค. 65

<u>ตอนที่ 1</u> แบบปรนัย 5 ตัวเลือก เลือก 1 คำตอบที่ถูกที่สุด จำนวน 40 ข้อ ข้อละ 2 คะแนน

1. ทำการทดลองไทเทรตหาความเข้มข้นที่แน่นอนของสารละลายกรดไฮโดรคลอริก (HCl) ด้วยสารละลาย มาตรฐานโซเดียมไฮดรอกไซต์ (NaOH) เข้มข้น 0.10 โมลาร์ โดยใช้ฟินอล์ฟทาลีนเป็นอินดิเคเตอร์ นักเรียนแต่ละกลุ่มได้แสดงผลการทดลองโดยเขียนปริมาตร NaOH ที่ใช้บนกระดานและครูบันทึกสิ่งที่ สังเกตเห็น เพื่อการอภิปราย ดังนี้

5041	ปริมาตร	NaOH ที่ใ	ř (mL.)	สิ่งที่ครูสังเกตเห็น	
กลุ่ม	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	สมาเครื่องเปดเหน	
A	10.50	10.55	10.55	แบ่งงานกันโดยให้หนึ่งคนปีเปตต์ และอีกหนึ่งคนไทเทรต ตลอดการทดลอง	
В	10.10	10.00	9.90	ปิเปตต์กรดลงในปีกเกอร์ แล้วใช้แท่งแก้วคนสารขณะไทเทรต และล้างแท่งแก้วก่อนทำการไทเทรดแต่ละครั้ง	
С	9.90	9.80	9.90	ใช้น้ำกลั่นปริมาณมากชะสารที่ติดข้างในขวดรูปกรวย	
D	9.00	9.10	8.90	ใช้โบรโมไทมอลบลูเป็นอินดิเคเตอร์ แทนฟินอล์ฟทาลีน	

กำหนดให้ ช่วง pH ที่เปลี่ยนสีและสีที่เปลี่ยนของอินดิเคเตอร์ เป็นดังนี้

อินดิเคเตอร์	ช่วง pH ที่เปลี่ยนสี	สีที่เปลี่ยน
โบรโมไทมอลบลู	6.0 - 7.6	เหลือง - น้ำเงิน
ฟีนอล์ฟทาลีน	8.3 - 10.0	ไม่มีสี - ชมพู

สแกนตรงนี้ มีเฉลยให้ดูฟรีนะ !!!

4	
ର୍ମ ବ	•
1111	_

เบอร์โทร:

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

การอภิปรายผลการทดลองในข้อใดถูกต้อง และสมเหตุสมผลมากที่สุด

- 1) ค่าเฉลี่ยของกลุ่ม A น่าจะใกล้ค่าจริงที่สุด เพราะความชำนาญของนักเรียนทำให้ได้ค่าที่มีความเที่ยง สูง
- 2) ค่าเฉลี่ยของกลุ่ม **B** มีความแม่น เนื่องจากเลือกใช้อุปกรณ์เครื่องแก้วสำหรับการไทเทรตและเทคนิค ที่เหมาะสม
- 3) ค่าเฉลี่ยของกลุ่ม C เชื่อถือได้ เนื่องจากการผสมน้ำกลั่นลงไปไม่ส่งผลต่อปริมาตรของ NaOH ที่ใช้ ในการไทเทรต
- 4) ปริมาตร NaOH ที่กลุ่ม D ใช้น้อยกว่ากลุ่มอื่น เพราะโบรโมไทมอลบลูเป็นอินดิเคเตอร์ที่ ไม่เหมาะสม
- 5) ปริมาตร NaOH ที่น่าเชื่อถือที่สุด คือ 9.90 mL เนื่องจากเป็นค่าเดียวที่มีการทำซ้ำได้ถึงสามครั้ง

- 2. ข้อใดเป็นโมเลกุลที่โครงสร้างลิวอิสมีอะตอมกลางเป็นไปตามกฎออกเตต และประกอบด้วยอิเล็กตรอนคู่ โดดเดี่ยวในทุกอะตอมรวมกันมีจำนวนมากที่สุด
 - 1) **SO**₃
- 2) **AsH**₃
- 3) **PF**₃
- 4) OF₂
- 5) **HNO**₃

ชื่อ:

เบอร์โทร:

EXAM1 3 / 33

01

วิชาสามัญเคมี มี.ค. 65

3. ไฮโดรเจนไดซัลไฟด์ (H_2S_2) เป็นสารประกอบที่มีพันธะไดซัลไฟด์ (disulfide bond) ซึ่งเป็นพันธะ ระหว่าง อะตอมกำมะถันต่อกันด้วยพันธะเดี่ยว (-S-S-) มีลักษณะโมเลกุลใกล้เคียงกับไฮโดรเจนเปอร์ ออกไซด์ (H_2O_2) ข้อใดเปรียบเทียบสมบัติของ H_2S_2 กับ H_2O_2 ได้ถูกต้อง

	ความยาวพันธะ	สภาพขั้วของโมเลกุล	แรงแผ่กระจายลอนดอน
1)	-S-S- น้อยกว่า O-O	$ m H_2S_2$ สูงกว่า $ m H_2O_2$	$\mathbf{H_{2}S_{2}}$ อ่อนกว่า $\mathbf{H_{2}O_{2}}$
2)	-S-S- น้อยกว่า O-O	$ m H_2S_2$ สูงกว่า $ m H_2O_2$	$\mathbf{H_2S_2}$ แข็งแรงกว่า $\mathbf{H_2O_2}$
3)	-S-S- มากกว่า O-O	$ m H_2S_2$ สูงกว่า $ m H_2O_2$	$\mathbf{H_2S_2}$ แข็งแรงกว่า $\mathbf{H_2O_2}$
4)	-S-S- มากกว่า O-O	$ m H_2S_2$ ต่ำกว่า $ m H_2O_2$	$\mathbf{H_2S_2}$ แข็งแรงกว่า $\mathbf{H_2O_2}$
5)	-S-S- มากกว่า O-O	$ m H_2S_2$ ต่ำกว่า $ m H_2O_2$	$ m H_2S_2$ อ่อนกว่า $ m H_2O_2$

4. พิจารณาปฏิกิริยาระหว่างสารประกอบฟลูออไรด์กับแก๊สฟลูออรีนได้ผลิตภัณฑ์ดังสมการเคมีต่อไปนี้

$$\text{n. } SF_4 + F_2 \rightarrow SF_6.$$

$$2. \quad ClF + F_2 \rightarrow ClF_3.$$

$$\text{ \it P. } ClF_3 + F_2 \rightarrow ClF_5 \, .$$

$$3. \quad XeF_2 + F_2 \rightarrow XeF_4$$

ปฏิกิริยาเคมีใดที่สารตั้งต้นเป็นโมเลกุลมีขั้วและเมื่อทำปฏิกิริยากับแก๊สฟลูออรีนแล้วได้ ผลิตภัณฑ์เป็น โมเลกุลไม่มีขั้ว

1) ก. เท่านั้น

2) ก. และ ข.

3) ก. และ ง.

4) ข. และ ค.

5) ค. และ ง.

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

- 5. กำหนดธาตุสมมติ 5 ชนิด ได้แก่ $_{25}A$ $_{29}D$ $_{30}E$ $_{33}G$ $_{35}J$ ข้อใดเป็นไอออนที่มีเวเลนซ์อิเล็กตรอนอยู่ในระดับพลังงานหลักสูงสุดแตกต่างจากไอออนในข้ออื่น
 - 1) A^{2+}
- 2) D^{2+}
- 3) E^{4+}
- 4) G^{5+}
- 5) J^{2+}

6. ไอโซโทป Z สังเคราะห์ได้จากการยิงนิวเคลียส $^{248}_{96}Cm$ ด้วย $^{23}_{11}Na$ ดังสมการ

$$^{248}_{96}$$
Cm + $^{23}_{11}$ Na \rightarrow Z + $^{1}_{0}$ n

และไอโซโทป Z ยังสามารถเกิดจากไอโซโทป X แผ่รังสีแอลฟา จำนวน 3 อนุภาค ไอโซโทป X ในข้อใด มีความเป็นไปได้มากที่สุด

- 1) $^{254}_{101}X$ 2) $^{266}_{104}X$ 3) $^{266}_{107}X$
- 4) $_{109}^{270}$ X 5) $_{113}^{278}$ X

EXAM1 5 / 33

01

วิชาสามัญเคมี มี.ค. 65

7. กราฟพลังงานใอออในเซชันลำดับต่างๆ ของธาตุสมมติ 8 ชนิดที่มีเลขอะตอมไม่เกิน 20 เป็นดังนี้

การเปรียบเทียบขนาดอะตอมและขนาดไอออนของธาตุสมมติที่พบในสารประกอบไอออนิก ข้อใดถูกต้อง

- 1) ไอออน M เล็กกว่าอะตอม M
- 2) ไอออน A เล็กกว่าอะตอม E
- 3) ใอออน Q เล็กกว่าอะตอม R
- 4) อะตอม D เล็กกว่าอะตอม G
- 5) ใอออน L เล็กกว่าใอออน Q

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

- 8. แอมโมเนียมในเทรต (NH_4NO_3) เป็นส่วนประกอบสำคัญในปุ๋ย สังเคราะห์ได้โดยผ่าน 3 ขั้นตอน ดังนี้ ขั้นตอนที่ 1 นำแก๊ส N_2 และ O_2 มาทำปฏิกิริยาเคมีกันที่อุณหภูมิสูงจนเกิดแก๊ส NO_2 ขั้นตอนที่ 2 ผ่านแก๊ส NO_2 ลงในน้ำ ได้กรด HNO_3 และแก๊ส NO เป็นผลิตภัณฑ์ ขั้นตอนที่ 3 นำกรด HNO_3 ที่ผลิตขึ้นมาไปทำปฏิกิริยากับ NH_3 เพื่อให้ได้ NH_4NO_3 ถ้าต้องการผลิต NH_4NO_3 80 ล้านตัน จะต้องใช้แก๊ส N_2 อย่างน้อยกี่ล้านตัน กำหนดให้ มวลต่อโมลของ NH_4NO_3 เท่ากับ 80.0 กรัมต่อโมล
 - 1) 14
- 2) 21
- 3) 28
- 4) 37
- 5) 60

9. พิจารณาสมการเคมีต่อไปนี้

 $NaCN + CuCO_3 \rightarrow Na_2CO_3 + Cu(CN)_2$ (สมการยังไม่ดุล)

ถ้า $CuCO_3$ ทำปฏิกิริยาพอดีกับ $NaCN \ 0.600$ โมล จะมี $Cu(CN)_2$ เกิดขึ้นกี่กรัม

- 1) 14.7
- 2) 29.4
- 3) 34.6
- 4) 69.3
- 5) 139

EXAM1 7 / 33

วิชาสามัญเคมี มี.ค. 65

10. โซเดียมไดไธโอในด์ $(\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_4)$ เป็นตัวรีดิวซ์ที่ใช้ในอุตสาหกรรมฟอกสี สังเคราะห์ได้จากปฏิกิริยาเคมี ดังสมการ

$$NaBH_4 + 8NaOH + 8SO_2 \rightarrow 4Na_2S_2O_4 + NaBO_2 + 6H_2O$$

ถ้าใช้แก๊สซัลเฟอร์ไดออกไซด์ (SO_2) ปริมาตร 2.24×10^5 ลิตร ที่ STP ทำปฏิกิริยากับโซเดียม โบโรไฮไดรด์ $(NaBH_4)$ 304 กิโลกรัม และสารละลายโซเดียมไฮดรอกไซด์ (NaOH) เข้มข้น 0.800โมลาร์ ปริมาตร $2.50 imes 10^4$ ลิตร แล้วได้โซเดียมไดไธโอไนต์ 580 กิโลกรัม ผลได้ร้อยละของปฏิกิริยา เคมีนี้เป็นเท่าใด

กำหนดให้ มวลต่อโมลของ ${
m Na}_2{
m S}_2{
m O}_4$ เท่ากับ 174.0 กรัมต่อโมล มวลต่อโมลของ ${
m NaBH_4}$ เท่ากับ 38.0 กรัมต่อโมล

- 1) 10.4
- 2) 16.7
- 3) 33.3
- 4) 41.7
- 5) 66.7

- 11. สารประกอบออกไซด์ของธาตุวาเนเดียม (\mathbf{V}) หลายชนิด เมื่อให้ความร้อนกับของผสมที่ประกอบด้วย สารประกอบวาเนเดียมออกไซด์ชนิดหนึ่ง 0.75 กรัม และแคลเซียมที่มากเกินพอจะเกิดโลหะวาเนเดียม 0.51 กรัม และสารประกอบแคลเซียมออกไซด์ 0.84 กรัม สูตรเคมีของสารประกอบวาเนเดียมออกไซด์ ชนิดนี้คือข้อใด
 - 1) **VO**
- 2) VO_2 3) V_2O_3 4) V_2O_5
- 5) V_4O_9

EXAM1	8 / 33
	1

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

12. **กำหนดให้** สาร A เป็นของแข็งที่ระเหิดได้ที่อุณหภูมิห้อง

ทำการทดลองโดยนำลูกโป่งที่ภายในเป็นสุญญากาศมาบรรจุสาร A มวล 1.92 กรัม มัดปากลูกโป่ง ไม่ให้อากาศเข้า แล้ววางลูกโป่งนี้ไว้ที่อุณหภูมิห้อง พบว่า เมื่อสาร A ในลูกโป่ง ระเหิดหมด ลูกโป่งจะพอง เต็มที่ และมีปริมาตรที่ STP เท่ากับ 336 มิลลิลิตร

ถ้าปริมาตรแก๊สที่เกิดจากการระเหิดของสาร A ทั้งหมดเท่ากับปริมาตรของลูกโป่งที่พองเต็มที่ สาร A มีค่ามวลต่อโมลกี่กรัมต่อโมล

- 1) 7.81
- 2) 14.4
- 3) 28.8
- 4) 128
- 5) 175

01

วิชาสามัญเคมี มี.ค. 65

13.พิจารณากราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสาร X ในตัวทำละลาย ABC และ D กับ จุดเดือดที่เพิ่มขึ้นของสารละลายเมื่อเทียบกับตัวทำละลายบริสุทธิ์ โดยสาร X เป็นสารประกอบที่ระเหย ยาก และไม่แตกตัวเป็นไอออน

ข้อใดไม่ถูกต้อง

- 1) ค่าคงที่การเพิ่มขึ้นของจุดเดือดของ $\mathbf{A} < \mathbf{B} < \mathbf{C} < \mathbf{D}$
- 2) ค่าคงที่การเพิ่มขึ้นของจุดเดือดของ C มีค่าเท่ากับ $2.0^{\circ}~C/m$
- 3) จุดเดือดของสารละลาย X เข้มข้น $2 \ mol/kg$ ใน A < B < C < D
- 4) สารละลาย X ใน B เข้มข้น $0.5~\mathrm{mol/kg}$ จะมีจุดเดือดเพิ่มขึ้น $0.5^{\circ}\mathrm{C}$ จากจุดเดือดของ B
- 5) ถ้าสารละลาย X ใน A เข้มข้น $3~{
 m mol/kg}$ มีจุดเดือดที่ $101.5^{\circ}{
 m C}$ ดังนั้น A มีจุดเดือด $100^{\circ}{
 m C}$

EXAM1	10 / 33

CHEMISTRY

วิชาสามัญเคมี มี.ค. 65

- 14. ลูกโป่งสองใบทำจากวัสดุทนความร้อนชนิดเดียวกันและสามารถขยายตัวได้สูงสุด 4.48 ลิตร หากใบที่ 1บรรจุแก๊สอาร์กอน 0.150 โมล และใบที่ 2 บรรจุแก๊สนีออนปริมาตร 3.92 ลิตร ที่ ${
 m STP}$ ถ้าเริ่มทำการ ทดลองที่ STP และเพิ่มอุณหภูมิขึ้นเรื่อย ๆ โดยควบคุมให้ความดันคงที่ตลอดการทดลอง ลูกโป่งใบใดจะ แตกก่อน และอุณหภูมิที่ลูกโป่งแต่ละใบแตกมีค่าแตกต่างกันกี่องศาเซลเซียส
 - 1) ใบที่ 1 แตกก่อน โดยอุณหภูมิที่ลูกโป่งแต่ละใบแตกมีค่าแตกต่างกัน 39 องศาเซลเซียส
 - 2) ใบที่ 1 แตกก่อน โดยอุณหภูมิที่ลูกโป่งแต่ละใบแตกมีค่าแตกต่างกัน 52 องศาเซลเซียส
 - 3) ใบที่ 2 แตกก่อน โดยอุณหภูมิที่ลูกโป่งแต่ละใบแตกมีค่าแตกต่างกัน 39 องศาเซลเซียส
 - 4) ใบที่ 2 แตกก่อน โดยอุณหภูมิที่ลูกโป่งแต่ละใบแตกมีค่าแตกต่างกัน 52 องศาเซลเซียส
 - 5) ลูกโป่งใบที่ 1 แตกพร้อมกับลูกโป่งใบที่ 2

==:

EXAM1 11 / 33

วิชาสามัญเคมี มี.ค. 65

15.การแยกไอโซโทปกัมมันตรังสีของยูเรเนียม U-235 และ U-238 ทำได้โดยเปลี่ยนยูเรเนียม ให้อยู่ในรูป
แก๊ส UF₆ แล้วนำไปแพร่ผ่านแผ่นกั้นที่มีรูพรุนไปยังภาชนะบรรจุ โดยอัตราส่วนของไอโซโทปที่ต้องการเพิ่ม
ความเข้มข้นก่อนและหลังการแพร่เป็นไปตามอัตราการแพร่ผ่านที่แตกต่างกัน ตามกฎการแพร่ผ่านของ
เกรแฮม

ถ้าเริ่มต้น ให้แก๊สผสมที่ตำแหน่ง A เคลื่อนที่ผ่านอุปกรณ์แยก ดังรูปข้างต้น แก๊สผสมที่ได้ ณ ตำแหน่ง C จะมีอัตราส่วนของไอโซโทปชนิดใดเพิ่มขึ้น และเพิ่มขึ้นเป็นกี่เท่าของตำแหน่ง A

1) U-235 และเพิ่มขึ้น
$$\sqrt{\frac{352}{349}}$$
 เท่า

2) U-235 และเพิ่มขึ้น
$$\sqrt{\frac{238}{235}}$$
 เท่า

3) U-238 และเพิ่มขึ้น
$$\sqrt{\frac{238}{235}}$$
 เท่า

4) U-238 และเพิ่มขึ้น
$$\sqrt{\frac{352}{349}}$$
 เท่า

5) U-238 และเพิ่มขึ้น
$$\sqrt{\frac{349}{352}}$$
 เท่า

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

16.การวิเคราะห์ใอน้ำในอากาศแห่งหนึ่ง ทำโดยเปิดถังขนาด 10.0 ลิตร ใบหนึ่งไว้ที่ระดับน้ำทะเล จากนั้น ปิดฝาถังให้สนิทแล้วนำไปเชื่อมต่อกับถังสุญญากาศขนาด 10.0 ลิตร อีกหนึ่งใบด้วยท่อขนาดเล็กซึ่งบรรจุ สารดูดความชื้นไว้มากเกินพอ เมื่อปล่อยให้อากาศถ่ายเทเข้าสู่สมดุลระหว่างถังทั้งสอง วัดค่าความมดัน ภายในถังทั้งสองได้ 0.480 บรรยากาศ

อากาศที่นำมาวิเคราะห์นี้ มีไอน้ำเป็นองค์ประกอบอยู่ประมาณร้อยละโดยปริมาตรเท่าใด

กำหนดให้ ผลคูณระหว่างค่าคงที่ของแก๊สกับอุณหภูมิขณะทำการทดลอง (RT) มีค่าเท่ากับ

25.0 L•atm•mol¹ และไม่ต้องพิจารณาปริมาตรของท่อขนาดเล็ก

- 1) 0.020
- 2) 0.40
- 3) 2.0
- 4) 4.0
- 5) 40

17. พิจารณาค่าคงที่สมดุลของปฏิกิริยาเคมีต่อไปนี้

$$A (aq) \rightleftharpoons B (aq) + 2C (aq)$$

$$K_1 = x$$

$$3A (aq) \rightleftharpoons 6D (aq)$$

$$K_2 = y$$

$$A (aq) + C (aq) \rightleftharpoons B (aq) + 2D (aq)$$

$$K_3 = z$$

ค่าคงที่สมดุลของสมการเคมี A (aq) \rightleftharpoons 3C (aq) เป็นเท่าใด

- $1) \frac{xy^{\frac{1}{3}}}{z}$
- $2) \frac{xz}{y^{\frac{1}{3}}}$
- 3) $\frac{xy}{z}$
- 4) $\frac{xy}{3z}$
- 5) $x + \frac{y}{3} + z$

EXAM1 13 / 33

01

วิชาสามัญเคมี มี.ค. 65

18. สมดุลของปฏิกิริยาเคมีหนึ่งเป็นดังสมการเคมี

 $A (aq) + 2B (aq) \rightleftharpoons 2C (aq)$ เป็นปฏิกิริยาดูดความร้อน เมื่อรบกวนสมดุลของปฏิกิริยาโดยกำจัดสารชนิดหนึ่งออก พบว่าเกิดการเปลี่ยนแปลงดังกราฟ

หากรบกวนปฏิกิริยาที่สมดุลใหม่โดยการลดอุณหภูมิลง จะทำให้เกิดการเปลี่ยนแปลงดังกราฟในข้อใด

01

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

- 19.ทดลองเผาหินปูน $(CaCO_3)$ ที่อุณหภูมิ 500 องศาเซลเซียส ในภาชนะปิดที่ภายในเป็นสุญญากาศ พบว่าที่ สมดุล ภายในภาชนะมีปูนสุก (CaO) กับหินปูนผสมอยู่ด้วยกัน และมีแก๊สคาร์บอนไดออกไซด์ (CO_2) อยู่ด้วย ข้อความใดไม่ถูกต้อง
 - 1) หากชั่งมวลทั้งภาชนะที่บรรจุหินปูนก่อนเผาและหลังจากปฏิกิริยาเข้าสู่สมดุลแล้ว มวลทั้งสอง จะเท่ากัน
 - 2) หากเติม \mathbf{CO}_2 ที่มี $\mathbf{C}\text{-}14$ เป็นองค์ประกอบเพิ่มเข้าไปในภาชนะหลงัจากเข้าสู่สมดุลแล้ว และปล่อย ให้เข้าสู่สมดุลใหม่จะสามารถตรวจพบ \mathbf{CaCO}_3 ที่มี $\mathbf{C}\text{-}14$ เป็นองค์ประกอบในภาชนะด้วย
 - 3) หากเพิ่มอุณหภูมิในการเผาเป็น 600 องศาเซลเซียส และปล่อยให้ระบบเข้าสู่สมดุลใหม่ ร้อยละ โดยมวลของ CaCO₃ ต่อ CaO จะเปลี่ยนแปลงไปจากสมดุลเดิม
 - 4) จากการทดลอง ที่สมดุล อัตราส่วนโดยมวลของ ${
 m CaCO_3}$ ต่อ ${
 m CaO}$ มีค่าคงที่
 - 5) หากเติม CO₂ ที่มี O-18 เป็นองค์ประกอบ 1 อะตอม เพิ่มเข้าไปในภาชนะหลังจากเข้าสู่สมดุลแล้ว และปล่อยให้เข้าสู่สมดุลใหม่ จะสามารถตรวจพบ CaCO₃ ที่มี O-18 เป็นองค์ประกอบ แต่จะ ไม่พบ CaO ที่มี O-18 เป็นองค์ประกอบ

20. พิจารณาสมการเคมีต่อไปนี้

$$Ca^{2+}(aq) + SO_4^{2-}(aq) \rightleftharpoons CaSO_4(s)$$

$$K = 1.0 \times 10^5$$

$$Pb^{2+}$$
 (aq) + SO_4^{2-} (aq) $\rightleftharpoons PbSO_4$ (s)

$$K = 1.0 \times 10^8$$

ในสารละลายชนิดหนึ่งมีความเข้มข้นเริ่มต้นของ ${\bf Ca}^{2+}$ ${\bf Pb}^{2+}$ และ ${\bf SO}_4^{2-}$ อย่างละ 1.0 โมลาร์ เมื่อ เข้าสู่สมดุล สารละลายนี้จะมีอัตราส่วนความเข้มข้นของ ${\bf Ca}^{2+}$ ต่อ ${\bf Pb}^{2+}$ เป็นเท่าใด

1)
$$1.0 \times 10^{-13}$$

2)
$$1.0 \times 10^{-3}$$

3)
$$1.0 \times 10^3$$

4)
$$1.0 \times 10^5$$

5)
$$1.0 \times 10^{13}$$

EXAM1 15 / 33

วิชาสามัญเคมี มี.ค. 65

21. ปฏิกิริยาสลายตัวของไฮโดรเจนเปอร์ออกไซด์เป็นดังสมการเคมีต่อไปนี้

$$2H_2O_2$$
 (aq) $\stackrel{K}{\rightarrow}$ O_2 (g) + $2H_2O$ (l)

เพื่อทำการทดลองโดยใช้สารละลายที่มีความเข้มข้นของ $\mathbf{H}_2\mathbf{O}_2$ และ $\mathbf{K}\mathbf{I}$ ที่อุณหภูมิต่างๆ ดังแสดงใน ตาราง

การทดลองที่	อุณหภูมิ(°C)	ความเข้มข้นเริ่	อัตราการ เกิดปฏิกิริยาเคมี	
11 10 717101 🗆 171	المواقعة الم	H_2O_2	KI	เฉลี่ย $\left(\mathbf{M}\mathbf{s}^{\text{-1}} ight)$
1	30	\mathbf{M}_1		R_1
2	30	\mathbf{M}_1	, C	R_2
3	.30	\mathbf{M}_1	C	\mathbf{R}_3
4	30	M_2	C	R_4

กำหนดให้

- 1. ${f M}$ และ ${f C}$ คือ ความเข้มข้นของสารละลาย โดยค่าความเข้มข้น ${f M}_{_1}$ ไม่เท่ากับ ${f M}_{_2}$
- 2. \mathbf{R} คือ อัตราการเกิดปฏิกิริยาเคมีเฉลี่ยในช่วงเวลา 0-60 วินาที โดยอัตราการเกิดปฏิกิริยาเคมี เฉลี่ยของแต่ละการทดลอง $(\mathbf{R}_1 \ \mathbf{R}_2 \ \mathbf{R}_3 \ \mathbf{R}_4)$ มีค่าไม่เท่ากัน
- 3. ในการทดลองที่ 1 ไม่มีสารละลาย KI พบว่า อัตราการเกิดปฏิกิริยาเคมีเฉลี่ยของการทดลอง ที่ 1 (\mathbf{R}_1) มีค่าน้อยมาก ๆ เกือบเป็นศูนย์ เมื่อเทียบกับ $\mathbf{R}_2,\mathbf{R}_3$ และ \mathbf{R}_4

พิจารณาการกระทำที่เกี่ยวข้องกับการทดลองข้างต้นต่อไปนี้

- ก) เพิ่มอุณหภูมิ
- ข) เติมตัวเร่งปฏิกิริยา ค) เพิ่มความเข้มข้นของสารตั้งต้น

ข้อใดเป็นการกระทำที่ทำให้อนุภาคของสารตั้งต้นที่มีพลังงานมากกว่าพลังงานก่อกัมมันต์ของปฏิกิริยามี จำนวนมากขึ้น

1) ก. เท่านั้น

- 2) ก. และ ข. เท่านั้น
- 3) ก. และ ค. เท่านั้น

- 4) ข. และ ค. เท่านั้น
- 5) ก. ข. และ ค.

วิชาสามัญเคมี มี.ค. 65

22.พิจารณากราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารตั้งต้นและผลิตภัณฑ์ ณ เวลาต่าง ๆ ดังรูป

จากกราฟความสัมพันธ์นี้ ข้อสรุปใด<u>ไม่</u>ถูกต้อง

- 1) อัตราการสลายตัวเฉลี่ยของ ${f A}$ สำหรับ 100 วินาทีแรก มีค่ามากกว่า $30~{
 m mMs}^{-1}$
- 2) อัตราการเกิดปฏิกิริยาเคมี ณ ขณะหนึ่ง ๆ ขึ้นกับความเข้มข้นของสารตั้งต้น
- 3) อัตราการสลายตัวของ A ที่เวลา 50 วินาที เกิดขึ้นเร็วกว่าที่เวลา 150 วินาที
- 4) สมการเคมีแสดงปฏิกิริยาเคมีที่เกิดขึ้น คือ 2A o 2B + C
- 5) สาร A จะสลายตัวไปครึ่งหนึ่งทุก ๆ 24 วินาที
- 23. จากการศึกษาปฏิกิริยาเคมีที่เกิดขึ้นระหว่างสารเคมี 2 ชนิด คือ A และ B ในรูปสารละลาย ที่ 25 องศา เซลเซียส เกิดเป็นผลิตภัณฑ์ได้ 2 ชนิด คือ C และ D โดยมีข้อสังเกตต่าง η ดังนี้
 - 1. สาร $\mathbf A$ ทำปฏิกิริยาเคมีกับสาร $\mathbf B$ เกิดเป็นสาร $\mathbf X$ ดังสมการเคมี

$$A + B \rightarrow X$$

- 2. เมื่อตรวจวัดปริมาณของสาร X พบว่า มีปริมาณที่น้อยมาก เนื่องจากสาร X เกิดการสลายตัว อย่างรวดเร็วได้สาร 2 ชนิด ดังสมการเคมี
 - X o C เป็นปฏิกิริยาดูดความร้อน $5~{
 m kJ/mol}$
 - X o D เป็นปฏิกิริยาดูดความร้อน 20~kJ/mol

ชื่อ:

เบอร์โทร:

EXAM1 17 / 33

วิชาสามัญเคมี มี.ค. 65

01

3. เมื่อติดตามความเข้มข้นของสารชนิดต่าง ๆ ในช่วงต้นของปฏิกิริยาได้ผลดังตาราง

เวลา (s) ความเข้มข้น (M)	0	10	20	30	40
[B]	1.00	0.90	0.83	0.76	0.71
[C]	0.00	0.02	0.04	0.06	0.07
[D]	0.00	0.07	0.13	0.18	0.22

ข้อใดเป็นรูปแบบแผนภาพแสดงการเปลี่ยนแปลงพลังงานของปฏิกิริยาเคมีนี้

ชื่อ:

เบอร์โทร:

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

24. พิจารณาสารละลาย 3 ชนิด ต่อไปนี้

- ก. สารละลาย ${
 m HA}~({
 m pKa}=6)$ ที่มีความเข้มข้น 0.010~ โมลาร์ ปริมาตร 1.00~ ลิตร
- ข. สารละลาย ${
 m NH_4Cl}$ ที่มีค่า ${
 m pH}$ เท่ากับ 4.0 ปริมาตร 100.00 มิลลิลิตร
- ค. สารละลายเบสที่มีความเข้มข้นของ $ext{OH}$ เท่ากับ $1.00 imes 10^{-5}$ โมลาร์ ปริมาตร $10{,}000$ ลิตร สารละลายในข้อใดมีจำนวนไอออน H+ เท่ากัน
- 1) ก. และ ข. เท่านนั้น

2) ข. และ ค. เท่านนั้น

3) ก. และ ค. เท่านนั้น

4) ก. ข. และ ค.

5) ไม่เท่ากันทั้ง ก. ข. และ ค.

25. ปีเปตต์สารละลายเบสชนิดหนึ่งที่ไม่ทราบค่าความเข้มข้น ปริมาตร 10.00 มิลลิลิตร ลงในขวดรูปกรวย จากนั้นนำไปไทเทรตกับสารละลาย HCl 0.10 โมลาร์ โดยใช้เครื่องวัด pH บันทึกค่า pH ของ สารละลายในขวดรูปกรวย ได้ผลดังกราฟ

กำหนดให้ $\log 2 = 0.3 \log 2.5 = 0.4$ และ $\log 2.5 = 0.4$ ค่า $pK_{_{\mathrm{h}}}$ ของเบสดังกล่าว มีค่าเท่าใด

- 1) 1.7
- 2) 3.0
- 3) 5.4 4) 8.6
- 5) 11.0

EXAM1 19 / 33

วิชาสามัญเคมี มี.ค. 65

01

26. พิจารณาสมการเคมีต่อไปนี้

$$KCl + SnCl_{2} \rightarrow K^{+} + [SnCl_{3}]^{-}$$

$$AsF_{3} + SbF_{5} \rightarrow [AsF_{2}]^{+} + [SbF_{6}]^{-}$$

$$I_{2} + I^{-} \rightarrow I_{3}^{-}$$

$$(CH_{3})_{3}CCl + AlCl_{3} \rightarrow (CH_{3})_{3}C^{+} + AlCl_{4}^{-}$$

สารคู่ใดทำหน้าที่แตกต่างกันตามทฤษฎีกรด-เบสของลิวอิส

1) SnCl₂ และ SbF₅

2) I^- และ $(CH_3)_3 CC1$

3) AsF₃ และ AlCl₃

4) I₂ และ SbF₅

5) KCl และ AsF₃

27. สารละลายผสมระหว่างสารละลายที่ 1 และสารละลายที่ 2 คู่ใดสามารถควบคุม pH ได้ดีที่สุด

	สารละลายที่ 1 ปริมาตร 10 mL	สารละลายที่ 2 ปริมาตร 10 mL
1)	HCl 0.50 M	NH ₄ Cl 0.50 M
2)	$H_3PO_4 0.50 M$	NaH ₂ PO ₄ 0.50 M
3)	CH ₃ COOH 0.10 M	CH ₃ COONa 0.10 M
4)	NaHCO ₃ 0.10 M	Na ₂ CO ₃ 0.20 M
5)	H ₂ SO ₄ 0.50 M	NaHSO ₄ 0.50 M

EXAM1	20 / 33

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

28. ยาส่วนใหญ่มีสมบัติเป็นกรดอ่อนหรือเบสอ่อน ซึ่งเมื่อละลายน้ำ จะได้สารละลายที่ประกอบด้วยสารที่มีรูป แบบไม่มีประจุและมีประจุ โดยยาที่มีอัตราส่วนความเข้มข้นของ

$$\frac{31$$
แบบไม่มีประจุ $\geq \frac{10}{1}$

จะสามารถดูดซึมเข้าสู่เซลล์ได้ดี

ยา 3 ชนิด ได้แก่ X Y และ Z เป็นกรดอ่อนที่มี H^+ 1 โปรตอน มีค่า pKa เท่ากับ 3 4 และ 5ตามลำดับ ถ้ากระเพาะอาหารมี pH เท่ากับ 2.5 ยาชนิดใดถูกดูดซึมที่กระเพาะอาหาร

- 1) ยา X เท่านนั้น
- 2) ยา **Z** เท่านนั้น
- 3) ยา Y และ Z เท่านนั้น
- 4) ยาทั้ง 3 ชนิดถูกดูดซึมที่กระเพาะอาหารได้ดี
- 5) ไม่มียาชนิดใดถูกดูดซึมที่กระเพาะอาหารได้ดี

EXAM1 21 / 33

วิชาสามัญเคมี มี.ค. 65

29. สาร ${f A}$ เป็นสารอินทรีย์ที่มีสูตรอย่างง่ายเป็น ${f C}_2{f H}_2{f O}$ มีสมบัติดังนี้

- 1. ไม่เปลี่ยนสีกระดาษลิตมัสสีน้ำเงิน
- 2. ไม่ฟอกจางสีสารละลายโบรมีนในที่มืด
- 3. เมื่อสาร A 1 โมล เกิดปฏิกิริยาไฮโดรลิซิส ได้ผลิตภัณฑ์ประเภทกรดคาร์บอกซิลิก 1 โมล และ ประเภทแอลกอฮอล์มากกว่า 1 โมล

ข้อใดแสดงสูตรโครงสร้างที่เป็นไปได้ของสาร A ได้ถูกต้อง

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

30. เอสเทอร์ A มีสูตรโมเลกุลคือ $C_6H_{12}O_2$ เมื่อนำไปทำปฏิกิริยาไฮโดรลิซิสในกรด พบว่าได้ผลิตภัณฑ์สอง ชนิด คือ B และ propan-1-ol จากนั้นเมื่อนา B ไปทำปฏิกิริยากับ butan-2-amine ที่อุณหภูมิสูง พบว่าได้ผลิตภัณฑ์เป็นสาร C

ข้อใดแสดงสูตรโครงสร้างที่เป็นไปได้ของสาร C

$$\begin{array}{c} O \\ \\ N \end{array}$$

$$\begin{array}{c} O \\ N \end{array}$$

01

CHEMISTRY วิชาสามัญเคมี มี.ค. 65

31. ข้อใดเป็นใอโซเมอร์โครงสร้างของ methyl butanoate ที่มีจุดเดือดสูงที่สุด

m@nkey everyddy

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

32. ข้อใดเรียกชื่อสารประกอบอินทรีย์ตามระบบ IUPAC และเขียนสูตรโครงสร้างของสารประกอบอินทรีย์ นั้นได้ถูกต้อง

	ชื่อสารประกอบอินทรีย์	สูตรโครงสร้าง
1)	5-butyloct-6-ene	
2)	1,4-dimethylbenzene	$H_{3}C$ CH_{3} H
3)	4-methylhexanone	$H_{3}C-CH_{2}-CH_{2}-CH_{3}$
4)	butyl propanoate	
5)	4-ethylhexanamine	CH ₃ CH ₂ CH(CH ₂ CH ₃)CH ₂ CH ₂ CONH ₂

ชื่อ:

เบอร์โทร:

EXAM1 25 / 33

วิชาสามัญเคมี มี.ค. 65

33. หากน้ำน้ำมันดอกทานตะวันบริสุทธิ์มาต้มกับสารละลายโซเดียมไฮดรอกไซด์ และต้องการทราบว่า ปฏิกิริยาเกิดขึ้นสมบูรณ์แล้วหรือไม่ โดยการนำของผสมจากปฏิกิริยา 2 หยด ไปทดสอบ วิธีการทดสอบและผลการสังเกตในข้อใด แสดงให้เห็นว่าปฏิกิริยาเกิดขึ้นสมบูรณ์

	วิธีการทดสอบ	ผลการสังเกต	
1)	หยดลงในน้ำ 5 มิลลิลิตร	ได้สารเนื้อเดียว	
2)	หยดลงบนกระดาษลิตมัสสีน้ำเงิน	กระดาษลิตมัสเปลี่ยนเป็นสีแดง	
3)	หยดลงบนกระดาษลิตมัสสีแดง	กระดาษลิตมัสเปลี่ยนเป็นสีน้ำ เงิน	
4)	หยดลงในสารละลาย 0.01 % w/v KMnO ₄ 1 หยด	ได้สารละลายสีม่วง	
5)	หยดลงในสารละลาย 0.01 % w/v KMnO ₄ 1 หยด	เห็นตะกอนสีน้ำ ตาล ในสารละลาย ไม่มีสี	

- 1		
4		
୩୭	•	
шш		

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

34.หากน้ำพอลิไวนิลแอลกอฮอล์ไปทำปฏิกิริยายาเคมีกับกรดกลูตาริก จะได้พอลิเมอร์ X ที่ไม่หลอมเหลว เมื่อได้รับความร้อน ดังสมการเคมี

พิจารณาข้อความต่อไปนี้

- ก. พอลิเมอร์ X เป็นพอลิเมอร์เทอร์มอพลาสติก
- ข. พอลิเมอร์ X มีความแข็งแรงมากกว่าพอลิไวนิลแอลกอฮอล์
- ค. โครงสร้างที่เป็นไปได้ของพอลิเมอร์ ${f X}$ คือ

ข้อความใดถูกต้อง

- 1) ก. เท่านั้น
- 2) ข. เท่านั้น
- 3) ค. เท่านั้น
- 4) ก. และ ค.
- 5) ข. และ ค.

EXAM1 27 / 33

วิชาสามัญเคมี มี.ค. 65

35. พอลิไอโซพรินเป็นพอลิเมอร์ที่เป็นองค์ประกอบในยางธรรมชาติ อาจพบโครงสร้างได้ 2 แบบ ดังนี้

พิจารณาข้อความต่อไปนี้

- ก. พอลิไอโซพรีนทั้งสองชนิด สังเคราะห์ได้จากปฏิกิริยาพอลิเมอร์ไรเซชันแบบควบแน่น
- ข. มอนอเมอร์ที่นำมาสังเคราะห์ ซิส- และ ทรานส์- พอลิไอโซพรีน มีสูตรโมเลกุลแตกต่างกัน
- ค. พอลิไอโซพรีนทั้งสองชนิด สามารถปรับปรุงสมบัติความทนทานได้ด้วยกระบวนการ
 วัลคาในเซชัน

ข้อความใดถูกต้อง

- 1) ก. เท่านั้น
- 2) ค. เท่านั้น
- 3) ก. และ ข.
- 4) ก. และ ค.
- 5) ข. และ ค.

m@nkey e**verydd**y

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

36. พอลิเมอร์ชนิดหนึ่งมีโครงสร้างดังแสดง

สารใดสามารถใช้เป็นมอนอเมอร์ในการสังเคราะห์พอลิเมอร์ชนิดนี้ได้

1)

2)

3)

4)

5)

ข้อสอบ > วิชาสามัญเคมี

EXAM1 29 / 33

01

วิชาสามัญเคมี มี.ค. 65

37.พิจารณาข้อความ สมการรีดอกซ์ และแผนภาพเซลล์ ต่อไปนี้

ก) แช่โลหะ D ในสารละลายของ A^{2+} เกิดปฏิกิริยารีดอกซ์ $E^0 cell = 0.4\,V$

1) $D(S) + G^{2+}(aq) \rightarrow G(S) + D^{2+}(aq)$ $E^{0}cell = -0.6V$

P) $G(S)|G^{2+}(aq)| J^{2+}(aq)| J(S)$ $E^{0}cell = 0.5V$

เซลล์กัลป์วานิกที่ประกอบด้วยแอโนดและแคโทดในข้อใด ให้ค่าศักย์ไฟฟ้าของเซลล์มากที่สุดและ ค่า ศักย์ไฟฟ้าของเซลล์นี้มีค่าเท่าใด

แอโนด	แคโทด	E^0 cell (V)
โลหะ ${f G}$ ในสารละลาย ${f G}^{2+}$	โลหะ ${f D}$ ในสารละลาย ${f D}^{2+}$	0.6
โลหะ ${f G}$ ในสารละลาย ${f G}^{2+}$	โลหะ ${f A}$ ในสารละลาย ${f A}^{2+}$	1.0
โลหะ ${f A}$ ในสารละลาย ${f A}^{2+}$	โลหะ ${f G}$ ในสารละลาย ${f G}^{2+}$	1.0
โลหะ ${f A}$ ในสารละลาย ${f A}^{2+}$	โลหะ ${f J}$ ในสารละลาย ${f J}^{2+}$	1.5
โลหะ $f J$ ในสารละลาย $f J^{2+}$	โลหะ ${f A}$ ในสารละลาย ${f A}^{2+}$	1.5

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

38. ทิศทางการถ่ายโอนอิเล็กตรอนในเซลล์เคมีไฟฟ้าและค่าศักย์ไฟฟ้าของเซลล์ $\left(E_{ ext{cell}}
ight)$ ในแต่ละการทดลอง เป็นดังรูป

กำหนดให้ สารละลาย ${f A}^{2+}$ ${f B}^{2+}$ ${f C}^{2+}$ และ ${f D}^{2+}$ เข้มข้นอย่างละ 1 โมลาร์ ข้อใดเรียงลำดับ ความสามารถในการเป็นตัวรีดิวซ์จากมากไปน้อยได้ถูกต้อง

1) B D C A

2) A C D B

3) B D A C

4) C A D B

5) B A D C

39. ปฏิกิริยาการสลายตัวของสารละลาย ${
m MnO_4^{2-}}$ เกิดขึ้น ได้ทั้งในภาวะกรดและเบส และได้ ${
m MnO_4^{-}}$ และ ${
m MnO}_2$ เป็นผลิตภัณฑ์เหมือนกัน ดังสมการเคมี

$$\mathrm{MnO_4^{2-}}(\mathrm{aq}) o \mathrm{MnO_4^{-}}(\mathrm{aq}) + \mathrm{MnO_2}(\mathrm{s})$$
 (สมการยังไม่ดูล)

อัตราส่วนโดยโมลของ ${
m MnO_4}$ ต่อ ${
m MnO_2}$ ตามสมการที่ดุลแล้วเป็นเท่าใด

- 1) 1:3
- 2) 1:2
- 3) 1:1
- 4) 2:1
- 5) 3:1

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 65

40. จากปฏิกิริยาการแยกสลายด้วยไฟฟ้า หรืออิเล็กโทรลิซิสของสารละลาย AD โดยใช้โลหะ แพลทินัมเป็น ขั้วไฟฟ้า ดังรูป

กำหนดให้

$$A^+(aq) + e^- \rightarrow A(s)$$

$$E^0 = -2.71V$$

$$D_2(s) + 2e^- \rightarrow 2D^-(aq)$$

$$E^0 = 0.54 V$$

$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(1)$$

$$E^0 = 1.23 V$$

$$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

$$E^0 = -0.83 V$$

พิจารณาข้อความต่อไปนี้

- ก) เมื่อเวลาผ่านไปโลหะที่ต่อกับขั้วลบของแบตเตอรี่จะหนาขึ้น
- ข) ถ้าใช้แบตเตอรี่ที่ให้ค่าอีเอ็มเอฟมากกว่า 1.37~
 m V~ ปฏิกิริยานี้สามารถเกิดขึ้นได้
- ค) มีแก๊สเกิดขึ้นที่ขั้วแคโทด

ข้อความใดถูกต้อง

- 1) ก. เท่านั้น
- 2) ค. เท่านั้น
- 3) ก. และ ข. เท่านั้น
- 4) ข. และ ค. เท่านั้น
- 5) ก. ข. และ ค.

m@nkey

วิชาสามัญเคมี มี.ค. 65

CHEMISTRY

<u>ตอนที่</u> 2 แบบอัตนัย ระบายตัวเลขที่เป็นคำตอบ จำนวน 5 ข้อ (ข้อ 41 - 45) ข้อละ 4 คะแนน

41. กำหนดให้ เลขออกซิเดชันของธาตุโครเมียม (Cr) ในสารประกอบ

 $Cr_2(CH_3COO)_4$

CrO₂F₂

 $KCr(SO_4)_2 \cdot 12H_2O$

เป็น a b และ c ตามลำดับ ค่าของ 100a + 10b + c เป็นเท่าใด

42. เมื่อเติมโพแทสเซียมคาร์บอเนต $(\mathbf{K}_2\mathbf{CO}_3)$ 3.45 กรัม ลงในสารละลายโพแทสเซียมคลอไรด์ (\mathbf{KCl}) เข้มข้น 0.10 โมลาร์ ปริมาตร 150 มิลลิลิตร แล้วปรับปริมาตรสารละลาย ให้เป็น 500 มิลลิลิตร สารละลายที่ได้มีความเข้มข้นของ $\mathbf{K}^{\scriptscriptstyle +}$ เป็นกี่โมลาร์ **กำหนดให้** มวลต่อโมลของ $\mathbf{K}_{2}\mathbf{CO}_{3}$ เท่ากับ 138 กรัมต่อโมล

43. แก๊สอะเซทิลีน $(\mathbf{C}_2\mathbf{H}_2)$ สามารถนำมาใช้ในการบ่มผลไม้ให้สุกเร็วขึ้นได้ โดยเตรียมได้จากปฏิกิริยา ระหว่าง ถ่านแก๊ส (CaC_2) กับน้ำ ดังสมการเคมี

$$CaC_2 + H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

หากการบ่มมะม่วงในภาชนะขนาด 5.00 ลิตร ต้องใช้แก๊สอะเซทิลีนความเข้มข้น 0.130 กรัมต่อลิตร จะต้องใช้ถ่านแก๊สอย่างน้อยกี่กรัม เมื่อผลได้ร้อยละของปฏิกิริยานี้เท่ากับร้อยละ 80

ชื่อ:

เบอร์โทร:

EXAM1 33 / 33

01

วิชาสามัญเคมี มี.ค. 65

44. กำหนดให้พลังงานต่าง ๆ ที่เกี่ยวข้องกับวัฏจักรบอร์น-ฮาเบอร์ ของสารประกอบไอออนิก $\mathbf{A}\mathbf{X}$ เป็นดังนี้

$$A(s) + \frac{1}{2}X_2(g) \to AX(s)$$

พลังงานการระเห็ดของ A =150 kJ/mol

พลังงานไอออในเซชัน ล าดับที่ 1 ของ A = 500 kJ/mol

พลังงานพันธะของ X2 = 300 kJ/mol

สัมพรรคภาพอิเล็กตรอนของ X $= 350 \, \mathrm{kJ/mol}$

พลังงานการเกิดสารประกอบ AX $=-400 \, \mathrm{kJ/mol}$

พลังงานแลตทิชของสารประกอบ AX คายพลังงานเท่ากับกี่กิโลจูลต่อโมล

45. พิจารณาสารต่อไปนี้

หากนำสารนี้มาทำกับปฏิกิริยากับโบรมีนในที่สว่าง โดยเกิดปฏิกิริยาการแทนที่ด้วยโบรมีนเพียง 1 ตำแหน่ง จะได้ผลิตภัณฑ์ที่เป็นไปได้กี่ไอโซเมอร์โครงสร้าง