山东大学____________学院

计算机组成与设计 课程实验报告

学号: 202000130143 | 姓名: 郑凯饶 | 班级: 2020 级 1 班

实验题目:

LPM_RAM 实验

实验目的:

- 1. 了解 FPGA 中 RAMIpm_ram_dp 的功能;
- 2. 掌握 Ipm_ram_dp 的参数设置和使用方法;
- 3. 掌握 Ipm_ram_dp 作为随机存储器 RAM 的仿真测试方法,工作特性和读写方法。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

定制 ROM 元件符号:

- → 打开 MegaWizard Plug-In Manager 初始对话框
- → 选择 create ·······
- → 选择 Memory Compiler 项下的 ROM: 1-PORT
- → 选择 Cyclone 器件和 VHDL 语言方式
- → 选择 ROM 控制线、地址线和数据线

→ 单击 NEXT 后, Do you want to specify the initial content of the memory?下选 择指定路径上的 mif 文件初始化存储器

图 7-1 LPM_ROM 的结构

Addr	+0	+1	+2	+3	+4	+5	+6	+7
00	018108	00ED82	00C050	00E004	00B005	01A206	959A01	00E00F
08	00ED8A	00ED8C	00A008	008001	062009	062009	070A08	038201
10	001001	00ED83	00ED87	00ED99	00ED9C	31821D	31821F	318221
18	318223	00E01A	00A01B	070A01	00D181	21881E	019801	298820
20	019801	118822	019801	198824	019801	018110	000002	000003
28	000004	000005	000006	000007	800000	000009	00000A	00000B
30	00000C	00000D	00000E	00000F	000010	000011	000012	000013
38	000014	000015	000016	000017	000018	000019	00001A	00001C

图 7-2 ROM 初始化文件 ROM_A.mif 的内容

实验步骤:

创建 mif 文件, 自定义规则填充单位: Addr +0 +1 +2 +3 +4 +5 +6 +7 ASCII

连接电路原理图:

使用[x..y]作为引脚命名的后缀,可以将连线改为总线形式。

引脚分配:

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
address[5]	Input	PIN_83	5	B5_N0	PIN_83	2.5 V (default)		8mA (default)		
address[4]	Input	PIN_77	5	B5_N0	PIN_77	2.5 V (default)		8mA (default)		
address[3]	Input	PIN_74	5	B5_N0	PIN_74	2.5 V (default)		8mA (default)		
address[2]	Input	PIN_70	4	B4_N0	PIN_70	2.5 V (default)		8mA (default)		
address[1]	Input	PIN_65	4	B4_N0	PIN_65	2.5 V (default)		8mA (default)		
Laddress[0]	Input	PIN_60	4	B4_N0	PIN_60	2.5 V (default)		8mA (default)		
clock	Input	PIN_84	5	B5_N0	PIN_84	2.5 V (default)		8mA (default)		
≝ q[7]	Output	PIN_54	4	B4_N0	PIN_54	2.5 V (default)		8mA (default)	2 (default)	
∰ q[6]	Output	PIN_59	4	B4_N0	PIN_59	2.5 V (default)		8mA (default)	2 (default)	
≝ q[5]	Output	PIN_50	3	B3_N0	PIN_50	2.5 V (default)		8mA (default)	2 (default)	
¼ q[4]	Output	PIN_51	3	B3_N0	PIN_51	2.5 V (default)		8mA (default)	2 (default)	
∰ q[3]	Output	PIN_46	3	B3_N0	PIN_46	2.5 V (default)		8mA (default)	2 (default)	
≝ q[2]	Output	PIN_49	3	B3_N0	PIN_49	2.5 V (default)		8mA (default)	2 (default)	
₩ q[1]	Output	PIN_43	3	B3_N0	PIN_43	2.5 V (default)		8mA (default)	2 (default)	
≝ q[0]	Output	PIN_44	3	B3_N0	PIN_44	2.5 V (default)		8mA (default)	2 (default)	
< <new node="">></new>										

测试、调试:

读取存储单元 22 为 4A

读取存储单元 4 为 26

读取存储单元 23 为 48

读取存储单元 27 为 54

读取存储单元 29 为 58

读取存储单元 6 为 2A

以上符合实验预期。

结论分析与体会:

这次我们进行 ROM 的初始化、读实验,练习了 Quartus 中 ROM 的设置,使用了平台的模式 1 进行电路结构的实现。ROM 是非易失性存储器,可以存储系统程序。希望再进一步学习其他类型存储器的使用,在此基础上设计有记忆功能的系统。