

Case Study: Predicting Patient Readmission

September 5th, 2018

Table of Contents

Problem Statement

Metrics and Assumptions

Approach and Process

Model

Retrospective

Problem Statement

Chronic disease readmission is one of the leading cost drivers in US healthcare

By the Numbers

2017 Readmission Cost: \$310M across top 10 heath systems

Growth: 9.5-15% Expected CAGR from 2017-2022

Key Challenges

Readmission penalties

Expensive specialty treatments

Resource allocation challenges

Top Readmission Cases

Schizophrenia

Diabetes

Surgical complications

In this study, we analyzed a patient dataset from 2001-2011 that contains demographic and treatment information for 100,000 diabetes cases, and built a classification model to predict whether or not a given patient would be readmitted within 30 days of discharge

Problem Statement (Cont.)

Identifying high-risk readmission cases is key to reducing mortality rates related to chronic health complications

Dataset, Assumptions, and Metrics

Dataset Assumptions

Data was pulled from the UCLA medical learning library

101,776 Rows x 50 Columns

Messy: Contained missing values, string and number pairs, ambiguous features

Results from the dataset should only be generalized for patients with diabetes

Assumed data was accurate for a given patient

Assumed that dataset was pulled from a random sample of diabetes patients

Key Metrics

Model was evaluated against a **null model that predicted that the patient would not be readmitted for all cases**, because that is currently the industry standard.

Goal: Outperform null model

Data

63768 1.15E+08 Caucasian Male	[70-80)	?	1	1	7	5 ?	?	73	0	12	0	0	0	428
12522 48330783 Caucasian Female	[80-90)	?	2	1	4	13 ?	?	68	2	28	0	0	0	398
15738 63555939 Caucasian Female	[90-100)	?	3	3	4	12 ?	InternalM	33	3	18	0	0	0	434
28236 89869032 AfricanAm Female	[40-50)	?	1	1	7	9 ?	?	47	2	17	0	0	0	250.7
36900 77391171 AfricanAm Male	[60-70)	?	2	1	4	7 ?	?	62	0	11	0	0	0	157
40926 85504905 Caucasian Female	[40-50)	?	1	3	7	7 ?	Family/Ge	60	0	15	0	1	0	428
42570 77586282 Caucasian Male	[80-90)	?	1	6	7	10 ?	Family/Ge	55	1	31	0	0	0	428
62256 49726791 AfricanAm Female	[60-70)	?	3	1	2	1 ?	?	49	5	2	0	0	0	518
73578 86328819 AfricanAm Male	[60-70)	?	1	3	7	12 ?	?	75	5	13	0	0	0	999
77076 92519352 Africa	[50-60)	?	1	1	7	4 ?	?	45	4	17	0	0	0	410
84222 1.09E+08 Caucasian Female	[50-60)	?	1	1	7	3 ?	Cardiolog _\	29	0	11	0	0	0	682
89682 1.07E+08 AfricanAm Male	[70-80)	?	1	1	7	5 ?	?	35	5	23	0	0	0	402
148530 69422211 ? Male	[70-80)	?	3	6	2	6 ?	?	42	2	23	0	0	0	737
150006 22864131 ? Female	[50-60)	?	2	1	4	2 ?	?	66	1	19	0	0	0	410
150048 21239181 ? Male	[60-70)	?	2	1	4	2 ?	?	36	2	11	0	0	0	572
182796 63000108 AfricanAm Female	[70-80)	?	2	1	4	2 ?	?	47	0	12	0	0	0	410
183930 1.07E+08 Caucasian Female	[80-90)	?	2	6	1	11 ?	?	42	2	19	0		9 V5	57
216156 62718876 AfricanAm Female	[70-80)	?	3	1	2	3 ?	?	19	4	18	0	0	0	189
221634 21861756 Other Female	[50-60)	?	1	1	7	1?	?	33	0	7	0	0	0	786
236316 40523301 Caucasian Male	[80-90)	?	1	3	7	6 ?	Cardiology	64	3	18	0	0	0	427
248916 1.15E+08 Caucasian Female	[50-60)	?	1	1	1	2 ?	Surgery-G	25	2	11	0	0	0	996
250872 41606064 Caucasian Male	[20-30)	?	2	1	2	10 ?	?	53	0	20	0	0	0	277

rosiglitaz	o acarbose	miglitol	troglitazor	tolazamid	examide	citogliptor	insulin	glyburide-	glipizide-n	glimepirid	metformir	metformin	change	diabetesM	readmitte
No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	NO
No	No	No	No	No	No	No	Up	No	No	No	No	No	Ch	Yes	>30
No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	NO
No	No	No	No	No	No	No	Up	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	ady	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	steady	No	No	No	No	No	No	Yes	>30
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	No	No	No	No	No		No	Yes	>30
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	NO
Steady	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	Steady	No	No	No	No	No	No	Yes	>30
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	<30
No	No	No	No	No	No	No	Down	No	No	No	No	No	Ch	Yes	<30
No	No	No	No	No	No	No	Steady	No	No	No	No	No	No	Yes	NO
No	No	No	No	No	No	No	Steady	No	No	No		No	No	Yes	>30
No	No	No	No	No	No	No	Up	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	<30
No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	NO
No	No	No	No	No	No	No	Steady	No	No	No	No	No	No	Yes	>30
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	Down	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	Steady	No	No	No	No	No	Ch	Yes	NO
No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	NO
No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	>30

Approach

Identify Problem

Identified patient readmission as the problem to address and looked for relevant data sources

Pull explore data

Pulled, cleaned, and dropped data as necessary

Model and Predict

Trained decision tree, random forest, and boosted models

Re-engineered data as necessary

Measure Performance and Report

Measured tree accuracy and reported

Model and Solution

Three classification models were trained using the patient dataset, and measured against a null model performance

Decision Tree

No max depth

No min-leaf size

SelectFromModel featureselector was applied to isolate important features

Random Forest Classifier

100 decision trees

No max depth

SelectFromModel featureselector was applied to isolate important features

Ada Boost Classifier

100 decision trees

0.1 learning rate

SelectFromModel featureselector was applied to isolate important features

Accuracy: 47.1%

Accuracy: 57.6%

Accuracy: 59.1%

Null Model Performance: 51%

Retrospective

Spend more time up-front cleaning data

- Features and rows were dropped due to missing data or lack of interpretability, which reduced robustness of the model
- More effort in cleaning features would have increased accuracy

Train models with small n_estimators at first

 Due to high number of features, Random Forest and Ada boost classifiers took a longtime to run (~25-40 minutes) and yielded marginal improvements run-over-run

Incorporate more robust classifiers into ensemble

 Outside of Adaboost, I would have liked to implement XG Boost and potentially a deep learning classifier

Questions?

