

- \bullet The protein hemoglobin can be in either the ${\bf R}$ or ${\bf T}$ states.
- **R** binds O_2 tightly, **T** binds O_2 weakly.
- The molecule BPG can binds \mathbf{T} (with affinity K_D) but not \mathbf{R} .
- 1. The amount of O_2 you can transport from your lungs depends on [R]. Intuitively: if you increase the concentration of BPG, what happens to the concentration of [R]? Why?

- 2. List the possible hemoglobin deoxygenated "species" below. (There are three).
- 3. Write an equation for the fraction of molecules in the **R** state (θ_R) in terms of the concentrations of these species.

4. Which terms in your equation depend on [BPG]?

5. Can you justify your intuition from #1 mathematically?