Information Retrieval

Natural Language Processing

University of Maryland

Evaluation

Example Adapted from Ethen Liu

Collection

Doc Frequency

How many docs did each term appear in?

Doc Frequency

How many docs did each term appear in?

```
Doc Frequency
blue
   1.000000
bright
          3.000000
can 1.000000
in 1.000000
is 3.000000
see 1.000000
shining
       1.000000
   2.000000
sky
     3.000000
sun
the 4.000000
today 1.000000
     1.000000
W⊖
```

Term Frequency

Original Salton paper uses absolute frequency and makes vectors unit length later; let's use raw frequency immediately.

Term Frequency

Original Salton paper uses absolute frequency and makes vectors unit length later; let's use raw frequency immediately.

blue	0.25	0.00	0.00	0.00
bright	0.00	0.20	0.14	0.11
can	0.00	0.00	0.00	0.11
in	0.00	0.00	0.14	0.00
is	0.25	0.20	0.14	0.00
see	0.00	0.00	0.00	0.11
shining	0.00	0.00	0.00	0.11
sky	0.25	0.00	0.14	0.00
sun	0.00	0.20	0.14	0.22
the	0.25	0.20	0.29	0.22
today	0.00	0.20	0.00	0.00
we	0.00	0.00	0.00	0.11

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

$$\mathbf{w}_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

sky	0.08	0.00	0.04	0.00
sun	0.00	0.02	0.02	0.03
can	0.00	0.00	0.00	0.07
bright	0.00	0.02	0.02	0.01
blue	0.15	0.00	0.00	0.00
shining	0.00	0.00	0.00	0.07
see	0.00	0.00	0.00	0.07
we	0.00	0.00	0.00	0.07
is	0.03	0.02	0.02	0.00
in	0.00	0.00	0.09	0.00
the	0.00	0.00	0.00	0.00
today	0.00	0.12	0.00	0.00

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

sky	0.08	0.00	0.04	0.00
sun	0.00	0.02	0.02	0.03
can	0.00	0.00	0.00	0.07
bright	0.00	0.02	0.02	0.01
blue	0.15	0.00	0.00	0.00
shining	0.00	0.00	0.00	0.07
see	0.00	0.00	0.00	0.07
we	0.00	0.00	0.00	0.07
is	0.03	0.02	0.02	0.00
in	0.00	0.00	0.09	0.00
the	0.00	0.00	0.00	0.00
today	0.00	0.12	0.00	0.00

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

sky	0.08	0.00	0.04	0.00
sun	0.00	0.02	0.02	0.03
can	0.00	0.00	0.00	0.07
bright	0.00	0.02	0.02	0.01
blue	0.15	0.00	0.00	0.00
shining	0.00	0.00	0.00	0.07
see	0.00	0.00	0.00	0.07
we	0.00	0.00	0.00	0.07
is	0.03	0.02	0.02	0.00
in	0.00	0.00	0.09	0.00
the	0.00	0.00	0.00	0.00
today	0.00	0.12	0.00	0.00

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

sky	0.08	0.00	0.04	0.00
sun	0.00	0.02	0.02	0.03
can	0.00	0.00	0.00	0.07
bright	0.00	0.02	0.02	0.01
blue	0.15	0.00	0.00	0.00
shining	0.00	0.00	0.00	0.07
see	0.00	0.00	0.00	0.07
we	0.00	0.00	0.00	0.07
is	0.03	0.02	0.02	0.00
in	0.00	0.00	0.09	0.00
the	0.00	0.00	0.00	0.00
today	0.00	0.12	0.00	0.00

Query Document

The shining sky ball

Don't use UNK token—just make unknown zero (but will in HW)

- 1. term frequency
- 2. document frequency
- 3. vector

1. term frequency

$$tf^{\text{the}} = 0.33 \tag{2}$$

$$tf^{shining} = 0.33$$
 (3)

$$tf^{Sky} = 0.33 \tag{4}$$

- 2. document frequency
- 3. vector

1. term frequency

$$tf^{the} = 0.33 \tag{2}$$

$$tf^{shining} = 0.33$$
 (3)

$$tf^{Sky} = 0.33 \tag{4}$$

2. document frequency

$$df^{\text{the}} = 4.00 \tag{5}$$

$$df^{shining} = 1.00 (6)$$

$$df^{sky} = 2.00 \tag{7}$$

3. vector

- term frequency
- 2. document frequency

$$df^{\text{the}} = 4.00 \tag{2}$$

$$df^{shining} = 1.00 (3)$$

$$df^{sky} = 2.00 (4)$$

3. vector

tf-idf^{the} =
$$\frac{1}{3}\log_1 0\left(\frac{4}{4.00}\right) = 0.000000$$
 (5)

tf-idf^{shining} =
$$\frac{1}{3} \log_1 0 \left(\frac{4}{1.00} \right) = 0.200486$$
 (6)

tf-idf^{Sky} =
$$\frac{1}{3} \log_1 0 \left(\frac{4}{2.00} \right) = 0.100243$$
 (7)

Most similar document?

Use dot product $\sum_i f_i \cdot g_i$

Most similar document?

Use dot product $\sum_i f_i \cdot g_i$

- 0 The sky is blue 0.008
- 1 The sun is bright today 0.0
- 2 The sun in the sky is bright 0.004
- 3 We can see the shining sun the bright sun 0.013

What we left out!

- UNK token
- Making vectors unit length
- Efficient computation

Exam-Style Question

Consider the source document (edited so it would have ten words): One Fish Two Fish Red Fish Blue Fish

If you have two queries:

- blue
- fish

that have the same similarity to the source document and that "blue" (b=10) and "fish" (f=100) appear in the given number of documents, how many total documents are there (N)?

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

- (9)
- (10)
- (11)

Representation is term frequency times idf. Blue appears only once in the source document (with eight words), query only has one word, so $1 \cdot \frac{1}{8}$.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

- (9)
- (10)
- (11)

Fish appears $\frac{4}{8}$ times.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

(9)

(10)

(11)

The idf for both the query and the source are $\log \frac{N}{\# \text{ docs with type}}$, but it is in both the query and the source, so the idf is squared.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

- (9)
- (10)
- (11)

Multiply both sides by 8 and take the square root.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{9}$$

- (10)
- (11)

Bring exponent inside

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{9}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{10}$$

(11)

Exponentiate both sides, solve for N

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{9}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{10}$$

$$N = \frac{f^2}{h} \tag{11}$$

Put in values

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{8}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{9}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{10}$$

$$N = \frac{f^2}{b} = \frac{100 \cdot 100}{10} = 1000 \tag{11}$$