Wintersemester 2020/21

Dirk Hachenberger, Tobias Mömke, Kathrin Gimmi

Übungsblatt 5

Aufgabe 1 Zeigen Sie mit vollständiger Induktion die beiden folgenden Formeln für alle $n \in \mathbb{N}$:

a)
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

b)
$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Aufgabe 2 Zeigen Sie mit Hilfe vollständiger Induktion: Für alle $n \in \mathbb{N}$ ist $n^3 - n$ durch 3 teilbar.

Aufgabe 3 Beweisen Sie mit Hilfe der vollständigen Induktion, dass folgende Formel für alle $n \in \mathbb{N}^*$ gültig ist:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Aufgabe 4 Es sei r eine reelle Zahl mit $r \ge -1$. Zeigen Sie (mit vollständiger Induktion), dass für alle $n \in \mathbb{N}^*$ gilt:

$$(1+r)^n \ge 1 + nr.$$

Machen Sie deutlich, an welcher Stelle Ihres Beweises die Voraussetzung $r \geq -1$ eingeht.

Aufgabe 5 Die Folge der Fibonacci-Zahlen ist durch folgende Vorschriften rekursiv definiert:

$$F_0 := 0, F_1 := 1, F_n := F_{n-1} + F_{n-2}$$
 für $n \ge 2$.

Die ersten elf Folgenglieder sind somit

Beweisen Sie, dass die n-te Fibonacci-Zahl F_n durch folgende explizite Formel gegeben ist:

$$F_n = \frac{1}{\sqrt{5}} \cdot (a^n - b^n),$$

wobei

$$a := \frac{1 + \sqrt{5}}{2}$$
 und $b := \frac{1 - \sqrt{5}}{2}$.

Hinweise: Zeigen Sie zunächst, dass $a^2 = a + 1$ und $b^2 = b + 1$ gilt und verwenden Sie dann vollständige Induktion.

Aufgabe 6 Für $n \in \mathbb{N}^*$ ist die *n*-te harmonische Zahl H_n definiert durch

$$H_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{j=1}^{n} \frac{1}{j}.$$

Zeigen Sie (mit vollständiger Induktion), dass für alle $n \in \mathbb{N}^*$ die folgende Gleichung erfüllt ist:

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n.$$

Aufgabe 7 Zeigen Sie (mit Hilfe der vollständigen Induktion), dass es genau eine natürliche Zahl $n \in \mathbb{N}$ gibt mit

$$2^n < n^2$$
.

Aufgabe 8 Ein Land habe n Städte, so dass je zwei Städte durch eine Einbahnstraße verbunden sind. Zeigen Sie, dass es eine Route gibt, die jede Stadt genau einmal besucht.

Aufgabe 9 Was ist falsch am folgenden Beweis?

Behauptung: Alle Autos auf dem Uniparkplatz haben dieselbe Farbe.

Beweis: Wir zeigen induktiv für alle natürlichen Zahlen $n \geq 1$, dass in jeder Menge von n Autos, alle dieselbe Farbe haben. Die Behauptung folgt, da es nur endlich viele Autos auf dem Uniparkplatz gibt.

I.A. (n = 1): In jeder Menge bestehend aus einem einzigen Auto haben alle offenbardieselbe Farbe.

I.S. $(n \to n+1)$: Nehmen wir als Induktionsvoraussetzung an, die Behauptung stimme für eine natürliche Zahl $n \ge 1$, und betrachten wir eine Menge von n+1 Autos. Fahren wir ein Auto A weg, so haben die verbleibenden n Autos nach I. V. dieselbe Farbe.

Fahren wir ein anderes Auto B aus derselben Menge (die also wieder n Autos enthält, darunter auch A), so haben alle Autos in dieser Menge ebenfalls nach I. V. dieselbe Farbe. Insbesondere hat also A dieselbe Farbe wie die restlichen Autos, die ja - wie gerade gesehen - alle dieselbe Farbe haben. Damit haben alle n+1 Autos dieselbe Farbe. Somit ist die Behauptung für n+1 bewiesen.

Aufgabe 10 Was halten Sie von der folgenden Behauptung (und ihrem angeblichen Beweis)?

Behauptung: Alle natürlichen Zahlen sind gleich.

Beweis: Um diese Behauptung zu zeigen, zeigen wir folgende Hilfsaussage per Induktion: Für alle $n \in \mathbb{N}$ gilt: Sind x und y zwei natürliche Zahlen kleiner gleich n, so gilt x = y.

I. A. (n = 1): Dann gilt also $x \le 1$ und $y \le 1$. Da 1 die kleinste natürliche Zahl ist, muss dann aber bereits x = 1 und y = 1 gelten. Und deswegen natürlich auch x = 1 = y.

I. V. $(n \to n+1)$: Wir nehmen an, die Aussage gilt bereits für n und wollen zeigen, dass sie auch für n+1 gilt. Wir haben also $x \le n+1$ und $y \le n+1$. Dann gilt aber auch $x-1 \le n$ und $y-1 \le n$. Und für n gilt unsere Behauptung ja bereits, also ist x-1=y-1 und damit natürlich auch x=y.