(Def) Let CEIR" be convex

Convex

The Ametion +: C -> IR is (Strictly) convex

if for all x:x∈C and ∠∈ [0,1], (1-1)fai) + far) ≥ f(1-1)x+1 ar)
(∠ ∈ (0,1))

The function A: C - IR is (Strictly) concave it - A is (strictly) conver

The hypograph of the function $f: C \rightarrow \mathbb{R}$ is defined as hyp $f:= \{(x,y) \in \mathbb{R}^{n+1} \mid x \in C \text{ and } f(x) \geq 43\}$

The epigraph of the function f: C - K is defined as

epif:= {(x,y) ∈ IRMI | x ∈ C and fox) ≤ y?

the pif famoure hypf hypf famoure

Thus 1) Let $C \subseteq \mathbb{R}^n$ be convex and $f: C \to \mathbb{R}$. The f is convex (concave) if and only if its epigraph (hyppyraph) is convex.

- proof) (=) Lee f is concave. (x,y) and $(x',y') \in hypf$, and $\lambda \in [0,1]$.

 Then $y\lambda := (+\lambda)y + \lambda y' \leq (+\lambda)f(x) + \lambda f(x') \leq f((+\lambda)x + \lambda (x')) = f(xx)$.

 This implies that $(x',y\lambda) \in hypf$
 - (1=) Suppose the hypograph is convex.

 Given arbitrary $x, x' \in C$ and $\lambda \in [0,1]$, (a, fax) and (x', fax) lie in the hypograph.

 Setting $x^{\lambda} := (1-\lambda)x + \lambda x'$, we get $(a\lambda, (1-\lambda) fax + \lambda fax')$ lies in the hypograph. Therefore, $(1-\lambda) fax + \lambda fax' \leq f(x\lambda)$ Since this holds for arbitrary $x, x' \in C$, and $\lambda \in [0,1]$, f is concave. II

Thm 58) Let C = IR" be convex and f: C -> IR be concave

If 1/2 is a local maximizer of f,

then it is a global n that is for $s = f(x^n)$ for all $x \in C$.

proof) Fix on arbitrary or C.

Since x^{**} is a local maximizer, we get that $6r \lambda > 0$ small enough $f(x^{**}) \ge f((r\lambda)x^{**} + \lambda x) \ge (-\lambda)f(x^{**}) + \lambda f(x)$ Recoveringing this, we get that $f(x^{**}) \ge f(x)$. II

I fort) = A for i.e. for = for)

Def) Let $X \subseteq IR^n$. $x \in X$ is an extreme point of X if there are no distinct $x_1, x_2 \in X$ such that $x = \frac{x_1 + x_2}{x_2}$.

Thinso Let $C \subseteq IR^n$ be an vex, $X \subseteq C$, and let $f: C \longrightarrow IR$ be strictly convex. If $X^\#$ maximizes f over X, then it is an extreme point of X.

In particular, if X is compact, then the set of extreme points is non-empty.

Proof) Suppose for anticolletion that $X^\#$ is not an extreme point of X.

Then there exist \$1.76 \in X such that \$1.472 and \$2 = \frac{91+72}{2}.

Thus, form > \frac{1}{2} (foxi) + foxi)] because \$A\$ is strictly gavex.

This controllers optimality of n^* . If X is compart, the Extrem Value thm implies that every continuous function f achieves maximum over X at some $n^* \in X$. If f is in addition strictly convex, (as for example for) = 11011^2) then the first part implies that n^* is an extreme point of X. II

Lemma 11 (Three - chord - lemma)

Let $[a,b] \subseteq IR$, $x^{\circ}, x', x' \in (a,b)$ satisfy $x \circ \langle x' < x' \rangle$ and let $f \in [a,b] \to IR$ be concave. Given $x,y \in [a,b]$ satisfying $x \neq y$ define $f(x,y) = \frac{f(y) - f(x)}{y - x}$

Then, $S(x^0, x^1) \ge S(x^0, x^1) \ge S(x^1, x^1)$

proof)
$$\chi' = \frac{\chi^2 - \chi'}{\chi^2 - \chi^0} \chi^0 + \frac{\chi' - \chi^0}{\chi^2 - \chi^0} \chi^-$$

Then, $f(x') \ge \frac{\chi^2 - \chi'}{\chi^2 - \chi'} f(\chi'') + \frac{\chi' - \chi''}{\chi^2 - \chi''} f(\chi''')$ by concavity.

which implies $f(x') - f(x^0) \ge \frac{x'-x^0}{x^2-x^0} [f(x^2) - f(x^0)]$

Hence we get the first enequility. The second follows similarly. 11

(Thm 60) Let IG, b] SIR and f: [G, b] - R be ancave

For any or, yell satisfying a coxyclo, the one-sided delivative,

f'(x) := lim fanth - for exist and satisfy

 $f'(m) \ge f'(m) \ge \frac{f(y) - f(m)}{y - x} \ge f(y) \ge f(y)$

proof) HW. (HINT: Lemna 11)

(Thm6) Let $[a,b] \subseteq |R|$ and $f: [a,b] \to |R|$ be concave.

Then f is antinuous on [a,b]

proof) Fix $\alpha \in (a,b)$. Then lim $f(\alpha + h) - f(\alpha) = \lim_{h \to 0} \frac{f(\alpha + h) - f(\alpha)}{h}$. Limb = 0

The analogous argument for hoto yields $\lim_{h \to 0} f(\alpha + h) = f(\alpha)$. II

Lemma 13

Let $(a,b) \subseteq \mathbb{R}$ and $f:(a,b) \to \mathbb{R}$ be twice continuously different/able

Then f is amrave if and only if $f'(ax) \leq 0$ for all $x \in (a,b)$ proof): (\Rightarrow) follows from the three-chard lemma $|| \cdot ||$.

(6) Since f is twice continuously differentiable and $f'(x) \leq 0$, this implies (Problem set 8) f(x) is monotone decreasing. Given arbitrary $x, x' \in (a,b)$ satisfying $x \in x'$ and $\lambda \in (0,1)$, we set $x^{\lambda} = (1-\lambda)x + \lambda x'$.

Then, $\frac{f(x^{\lambda}) - f(x)}{\chi^{\lambda} - \chi} \ge \inf_{x \in (x, x^{\lambda})} \frac{f(t)}{\chi^{\lambda} - \chi} \ge \inf_{x \in (x, x^{\lambda})} \frac{f(t)}{\chi^{\lambda} - \chi^{\lambda}} \ge \inf_{x \in (x, x^{\lambda})} \frac{f(t)}{\chi^{\lambda} - \chi^{\lambda}}$

here the first and last inequality follow from the mean value than Note that $x\lambda - x = \lambda(x'-x)$ and $x'-x\lambda = (1-\lambda)(x'-x)$ This yields. $(1-\lambda)(f(x\lambda) - f(x)) \ge \lambda(f(x') - f(x\lambda))$

 $\frac{f(x\lambda)}{(-\lambda)f(x)} + \lambda f(x') = 0$

twice continuously deferminal

(Def) An $n \times n$ matrix is negative (semi) definite if for all $\alpha \in \mathbb{R}^n$, $\alpha \in \mathbb{R}^n \in \mathbb{R}^n$

An $n \times n$ matrix is positive (semi) definite if dx all $n \in \mathbb{R}^n$, $n \in \mathbb{R}^n$, $n \in \mathbb{R}^n$.

Let $X \subseteq IR^n$ be open if $f: X \to IR$ is of class C^* Then its Hessian Matrix D^2 form is defined by D^* form $:= D \nabla form = \left[\frac{\partial f}{\partial x_i x_i} \right]_{i,j}$

Thus Let $X \subseteq IR^n$ be open and convex and let $f: X \to IR$ be in C^* . Then, f is an cave if and only if the Hessian matrix D^*fan is negative semi definite, $\forall x \in X$. * Optimization

Consider anaraint optimization problem

max f(x, a) subject to ME C(a)

X: choice variable

d : a perameter

f: the objective function

C(x): the constraint set

We define the value Amortion and decision values as

 $V(\alpha) := \max_{x \in C(\alpha)} +(x, \alpha)$

 $S(\alpha) := \{y \in C(\alpha) \mid f(y | \alpha) = \max_{\alpha \in C(\alpha)} f(\alpha, \alpha) \}$

- Lagrangian thin for equality anstraints
- Karush Kuhn Tucker than Dr inequality constraints

Def) Let X, T be metric spaces

A correspondence β from X to T, $\beta: X \Longrightarrow T$ associates to each $x \in X$ a subset of T.

(Def): The image of F = X under & is defined by \$(F) := U \$(0)

"Totally contained"

The upper inverse of EST under & is defined by \$\sigma^{u}[E] = \{\pi \in X \ | \sigma(\pi) \in E\}\]

The loner inverse of EST under \$\sigma\$ is defined by \$\sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] = \{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma^{2}[E] \ \left\{\pi \in X \ | \sigma(\pi) \ \n E \ \pi \sigma(\pi) \ \n E \ \pi \sigma(\pi) \ \n E \

"partially contained"

A correspondence $\beta: X = T$ is lower hemi-antinuous at χ Whenever χ is in the lower inverse of am open set $E \subseteq T$,

there is an open set F antaining χ that satisfies $F \subseteq \beta^R(E)$ E is upper bound on $\beta(\chi)$,

lower $\beta(\chi') \cap E \neq \chi'$

=) E is upper bound on $\phi(x)$ for $x' \in B_{\epsilon}(x)$: $\phi(x) \leq \epsilon$

M-M' close. E- pun close

=) E is loner bound on \$(x) for \$1'= 13 \(18x \) :

Ø(x)) NE + &

Def) · A correspondence $\emptyset: X \rightrightarrows Y$ is continuous at \emptyset if it is upper and lower hemi-continuous at $\emptyset: X \rightrightarrows Y$ is compact - valued at $\emptyset: X \rightrightarrows Y$ is compact or $\emptyset: X \rightrightarrows Y$ is compact.