

PARADIGMAS E LINGUAGENS DE PROGRAMAÇÃO

ENGENHARIA DA COMPUTAÇÃO – UFC/SOBRAL

Prof. Danilo Alves

danilo.alves@alu.ufc.br

ANÁLISE LÉXICA

 Análise léxica: A análise léxica (AL) é responsável por ler o código fonte e separá-lo em partes significativas agrupando os caracteres em lexemas e produzir uma sequência de símbolos léxicos conhecidos como tokens.

- Classes de lexemas mais comuns:
 - Palavras reservadas;
 - Números inteiros sem sinal;
 - Números reais;
 - Cadeias de caracteres;

ANÁLISE LÉXICA

- Exemplos de tokens que podem ser reconhecidos em uma linguagem de programação como C
 - palavras reservadas if else while do
 - operadores relacionais < > <= >= == !=
 - operadores aritméticos + * / -
 - operadores lógicos && || & | !
 - operador de atribuição =
 - delimitadores;,
 - caracteres especiais ()[]{}

ÁRVORE SINTÁTICA

A análise sintática fornece uma árvore abstrata construída a partir das regras da gramática

```
int gcd(int a, int b)
{
  while (a != b) {
    if (a > b) a -= b;
    else b -= a;
  }
  return a;
}
```


ANÁLISE SEMÂNTICA

A análise semântica resolve símbolos, com tipos checados

```
int gcd(int a, int b)
{
  while (a != b) {
    if (a > b) a -= b;
    else b -= a;
  }
  return a;
}
```


ANÁLISE LÉXICA

- Análise léxica: pode ser feita através de autômatos finitos (AF) ou expressões regulares
- AF é uma máquina de estados finitos. Formada por um conjunto de estados (um estado inicial e um ou mais estados finais)

ANÁLISE LÉXICA

- AF: exemplos...
 - I. Cadeia de caracteres a,b,c
 - 2. Números inteiros (com ou sem sinal)
 - 3. Números reais (com ou sem sinais)
 - 4. Identificador
 - 5. Comparação (>, >=, <, <=, !=) entre dois identificadores</p>
 - 6. Atribuição (=) entre dois identificadores
 - 7. Comando IF if(condicao){ comandos;} else { comandos;}
 - 8. Comando While

INTRODUÇÃO AOS AUTÔMATOS

- Alfabeto: Conjunto finito e não vazio de símbolos (ou caracteres), que são denominados elementos do alfabeto.
- Símbolos: são representações gráficas indivisíveis.
 - Exemplos: b, abc, begin, if, 7045, 2.017e4.
- Palavra (ou cadeia de caracteres): uma palavra ou cadeia de caracteres sobre um alfabeto é uma sequência finita de símbolos do alfabeto justapostos.
 - As palavras sobre um alfabeto são denotadas por letras gregas minúsculas: α ; β ; γ ; ...
- Comprimento da cadeia: quantidade de símbolos que a compõem.
 - Representada por |letra_grega|
- Σ representa um alfabeto

UNIVERSIDADE FEDERAL DO CEARÁ

INTRODUÇÃO AOS AUTÔMATOS

- O conjunto dos dígitos hexadecimais
- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f\}.$
- 12ab, 8854 laaf, e4, cdfee03, 8, são exemplos de palavras formadas
- Exemplo:
- Considerando as cadeias $\alpha = ab56d$; $\beta = 2$; e $\gamma = 4e$ sobre Σ , então, temos que $|\alpha| = ?$; $|\beta| = ?e$ | $\gamma = ?e$
- Cadeia Vazia: Uma cadeia sem símbolos.
 - Símbolo ε , formalmente por $|\varepsilon|$
 - Σ * é o conjunto de todas as palavras possíveis

AUTÔMATOS FINITOS

- Modelo matemático de um sistema com entradas e saídas discretas que pode assumir um número finito e pré-definido de estados.
- O primeiro modelo computacional de definição de linguagens
- Verificar se uma palavra w pertence a uma linguagem L, ou seja, o autômato verifica se
 - $w \in L$ ou $w \notin L$.
- A linguagem reconhecida pelo autômato finito é constituída por todas as palavras que passem no teste.

UNIVERSIDADE FEDERAL DO CEARÁ

AUTÔMATO FINITO DETERMINÍSTICO (AFD)

- Um autômato finito determinístico (AFD), ou simplesmente autômato finito (M) é uma quíntupla:
 - $M = (\Sigma, \Omega, \delta, qo, F)$
- Q Conjunto finito de estados possíveis do autômato
- Σ Alfabeto de símbolos de entrada
- δ Função de Transição ou Função Programa
 - $\delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$
 - $\delta(q, a) = p$
- F Conjunto de estados finais, tais que $F \subseteq Q$.

REPRESENTAÇÃO DE UM AUTÔMATO

- O estados do autômato é representado por nós
- Arcos representam transições
- q0 é o nodo destino de uma seta de origem
- qf (estado final) é representado de forma diferenciada, sendo o traço da circunferência do nó mais forte ou duplo.

REPRESENTAÇÃO DE UM AUTÔMATO

- O processamento de um autômato finito M para uma palavra de entrada w consiste na sucessiva aplicação da Função de Transição para cada símbolo de w, da esquerda para direita, até ocorrer uma condição de parada.
- Ex: autômato finito $M = (\{a, b\}, \{q0, q1, q2, qf\}, \delta, q0, \{qf\})$
- Função de transição δ dada por:

$\boldsymbol{\delta}$	a	b
q_0	q_1	q_2
q_1	q_f	q_2
q_2	q_1	q_f
q_f	q_f	q_f

REPRESENTAÇÃO DE UM AUTÔMATO

- Pode-se deduzir que:
- $Q = \{q0, q1, q2, qf\}$ são os estados possíveis
- $\delta: (Q \times \Sigma) \rightarrow Q$ é a função de transição
- Q = {qf} é o estado final
- Diagrama de estados:
 - $\delta(q0, a) = qI$

δ	a	b
q_0	q_1	q_2
q_1	q_f	q_2
q_2	q_1	q_f
q_f	q_f	q_f

LINGUAGEM DEFINIDA POR UM AF

A linguagem L definida por um autômato finito M é o conjunto de todas as cadeias w sobre o alfabeto
 Σ que levam M da sua configuração inicial para alguma configuração final por meio da aplicação sucessiva de transições definidas pela função δ.

$$L(M) = \{ w \in \Sigma^* \mid \delta(q0, w) \in F \}$$

- Linguagens reconhecidas pelo autômato anterior
- LI = {aa, aaa, aaaa, ...}
- L2 = {bb, bba, bbab, bbaaba, bbabb}
- L3 = {abaa, abb, abba, abbb, aab}

EXEMPLO PRÁTICO

- Considere MI o autômato finito ilustrado na figura abaixo, o qual representa a interface "homem x máquina" de uma máquina de vendas de refrigerante, cigarro e doce.
- Configuração desse autômato?

APLICAÇÃO NA LÉXICA

- Reconhecer a cadeia de caracteres a,b,c
- Reconhecer as cadeias de comparação (>, >=, <, <=, !=)</p>

APLICAÇÃO NA LÉXICA

Reconhecimento da palavra reservada IF

- Façam os demais AF para reconhecimento dos tokens
 - palavras reservadas (if else while do)
 - operadores lógicos (&& || & | !)

Exemplos

	0	1
→ q ₀	q ₂	q ₀
* q ₁	q ₁	q ₁
q_2	9 ₂	q _{.1}

MÁQUINA DETURING

- Dispositivo teórico conhecido como máquina universal
- Alan Turing em 1936, muito antes dos computadores digitais
- Modelo abstrato de um computador, que se restringe apenas aos aspectos lógicos
- Modelar qualquer computador digital
- Invenção automática capaz de manipular símbolos em uma fita de acordo com uma série de regras para guardar informação

CÓDIGO INTERMEDIÁRIO

Geração de código intermediário

SINTAXE DE UMA LINGUAGEM

 O conhecimento da sintaxe da linguagem de programação usada, bem como do significado de suas construções – semântica – está diretamente relacionado com a capacidade que o programador terá de se expressar nessa linguagem

O que o seguinte código faz?

```
1 #include <stdio.h>
2
3 #define resp(x) x>17? 1: 0
4
5 void f1() { /* ... */ }
6 void f2() { /* ... */ }
7
8 int main(void) {
9 int x;
10 scanf("%d", &x);
11 if (resp(x)) f1(); else f2();
12
13 return 0;
14 }
```


TERMINOLOGIA DA SINTAXE

- Uma sentença é uma cadeia de caracteres formada a partir do alfabeto da linguagem
- Uma linguagem é uma cadeia de sentenças
- Um lexema é a unidade sintática de mais baixo nível de uma linguagem
 - Identificadores, literais, operadores, palavras especiais

Ex.: *, sum, begin

- Um (símbolo) token é uma categoria de lexemas
 - Ex.: identificador, literal inteiro, operador soma, operador de multiplicação

TERMINOLOGIA DA SINTAXE

Instrução em C: index = 2 * cont + 17;

Lexemas	Símbolos (<i>Token</i>)	
index	identificador	
=	sinal_igualdade	
2	literal_inteiro	
*	op_mult	
cont	identificador	
+	op_soma	
17	literal_inteiro	
•	ponto_e_virgula	

CONCEITO DE LINGUAGEM

- Linguagem é uma coleção de cadeias de símbolos, de comprimento finito. Estas cadeias são denominadas sentenças da linguagem, e são formadas pela justaposição de elementos individuais, os símbolos ou átomos da linguagem.
- Alfabeto = Conjunto de símbolos
- Cadeia = União de símbolos
 - Cadeia vazia ε
- A sintaxe de uma linguagem é descrita por uma gramática

DESCRIÇÃO DA SINTAXE DA LINGUAGEM

- Gramáticas livres de contexto
 - Desenvolvido por Noam Chomsky no meio dos anos 1950
 - Geradores de linguagem, feitos para descrever a sintaxe de linguagens naturais
 - Define classes de linguagens, das quais uma se chamadas de **livres de contexto** e uma segunda se chama **linguagens regulares**
- Forma de Backus-Naur (1959)
 - BNF é uma notação natural para descrever sintaxe.
 - Inventada por **John Backus** para descrever **Algol 58** e modificada por Peter Naur para descrever o Algol 60
 - Forma de Backus-Naur (BNF) é equivalente às gramáticas livres de contexto (gramáticas)

DESCRIÇÃO DA SINTAXE DA LINGUAGEM

- Metalinguagem é uma linguagem usada para descrever outra. Ex: BNF.
- Símbolos terminais: cadeias que estão no programa
 - while, do, for, id
- Símbolos não-terminais: não aparecem no programa
- Produções: como produzir cadeias que formam o programa
 - <cmd_while> => while (<expressão>) <comandos>
- Símbolo inicial: não-terminal a partir do qual se inicia a produção do programa
 - programa>

FORMA DE BACKUS-NAUR

- Metalinguagem
 - A BNF é uma metalinguagem para descrever as LP
 - Uma descrição BNF, ou gramática, é uma coleção de regras.
- Abstrações
 - Símbolos Não-terminais
- Lexemas
 - Símbolos Terminais
- Produção
 - É uma definição de uma abstração;
 - O lado esquerdo corresponde à abstração;
 - O lado direito pode ser uma definição ou um conjunto de definições.

FUNDAMENTOS DE BNF

- Uma regra tem um lado esquerdo (LHS), que é um não terminal, e um lado direito (RHS), que é uma cadeia de terminais e não terminais
- O LHS é a abstração que está sendo definida
- O RHS é a definição de LHS, sendo composto por um misto de tokens, lexemas e referências a outras abstrações
- A definição completa, com LHS e RHS é chamada de regra ou produção
 - Exemplos das regras de BNF:

"abstração <assign> é definida como uma instância da abstração <var>, seguida pelo lexema =, seguido por uma instância da abstração <expression>"

FUNDAMENTOS DE BNF

- <assign> representa uma atribuição
- < > indica um não-terminal termo que precisa ser expandido, por
- exemplo <variavel>
- Símbolos não cercados por < > são terminais;
 - Eles são representativos por si
 - Exemplo: if, while, (, =
- Os símbolos => significam é definido como

REGRAS DE BNF

Uma abstração (ou símbolo não terminal) pode ter mais de uma definição ao lado direito

```
<stmt> → <single_stmt> ← Sentença única

| begin <stmt_list> end ← Sentença composta
| Sentença composta
```


DESCREVENDO LISTAS E GRAMÁTICA

- Utiliza recursão
- Uma regra é recursiva se seu lado esquerdo aparecer em seu lado direito

- Gramática: é um dispositivo de geração para definir linguagens
- Sequencias de aplicações de regras iniciando com um não terminal especial da gramática chamado de símbolo inicial
- O símbolo inicial representa um programa completo e é chamado de program>
- A geração de uma sentença é chamada de derivação.

APLICANDO UMA BNF

- O processo de tentar "reduzir" as regras de acordo com a entrada e a partir do símbolo inicial é
 conhecido como derivação.
 - Derivações podem ocorrer mais à esquerda ou mais à direita
- Derivação mais à esquerda: ocorre quando o não-terminal substituído é sempre mais à esquerda.

Gramática:

Entrada: A=B

Derivação:

programa> ::= begin <lista_cmd> end

begin <cmd> end

begin <var> = <expr> end

begin A= <expr> end

begin A= <var> end

begin A= B end

APLICANDO UMA GRAMÁTICA

- Uma gramática simplificada para uma atribuição com operações aritméticas
 - Ex: y = (2*x + 5)*x 7;

UM EXEMPLO DE GRAMÁTICA

Símbolo inicial

EXEMPLO DE DERIVAÇÃO

DERIVAÇÕES

Uma gramática para uma pequena linguagem e aplicação na expressão: A = B + C; B = C

```
<program> \rightarrow begin <stmt_list> end
\langle \text{stmt\_list} \rangle \rightarrow \langle \text{stmt} \rangle
                                                  => begin <stmt> ; <stmt_list> end
             | <stmt>; <stmt_list>
                                                  => begin <var> = <expression> ; <stmt_list> end
<stmt> \rightarrow <var> = <expression>
                                                  => begin A = <expression> ; <stmt_list> end
\langle var \rangle \rightarrow A \mid B \mid C
                                                  => begin A = <var> + <var> ; <stmt_list> end
<expression> \rightarrow <var> + <var>
                                                  => begin A = B + <var> ; <stmt_list> end
               => begin A = B + C ; <stmt_list> end
               | <var>
                                                  => begin A = B + C ; <stmt> end
                                                  => begin A = B + C ; <var>= <expression> end
                                                  => begin A = B + C ; B = <expression> end
                                                  => begin A = B + C ; B = <var> end
                                                  => begin A = B + C ; B = C end
```


- Representação hierárquica de uma derivação
- A = B * (A + C)
- <assign> → <assign> | <assign> ; <assign> >
- <assign> \rightarrow <id> = <expr>
- \blacksquare <id> \rightarrow a | b | c | d
- <expr> → <id> + <expr> | <id> * <expr> | (<expr>) | <id>

 Usando a gramática seguinte represente as seguintes expressões, pelo método da derivação. Em seguida, construa a árvore de análise sintática

a)
$$A = A + B * C + C$$

b)
$$B = B * A + C * B + A$$

c)
$$A = (A + B) * C$$

d)
$$A = (B * C) + A * B$$

UMA GRAMÁTICA PARA LÓGICA PROPOSICIONAL FEDERAL DO CEARÁ

- Sentença → SentençaAtômica | SentençaComplexa
- SentençaAtômica → Verdadeiro | Falso
- Símbolo \rightarrow P | Q | R | S

```
SentençaComplexa → (Sentença)

[Sentença]

[¬ Sentença (Negação)

[Sentença ∧ Sentença (E)

[Sentença ∨ Sentença (OU)

[Sentença ⇒ Sentença (Implica)

[Sentença ⇔ Sentença (Equivalencia)

[Símbolo
```

Precedência: \neg , \land , \lor , \Rightarrow , \Leftrightarrow

EXERCÍCIO

 Usando a gramática seguinte represente as expressões em lógica proposicional, pelo método da derivação. Em seguida, construa a árvore de análise sintática

d)
$$P \vee Q \wedge R$$

f)
$$P \lor Q \Rightarrow R$$

Ex:
$$\neg P \land R \lor Q$$

g)
$$(P \Rightarrow R) \land (Q \Rightarrow R)$$

h)
$$\neg (P => Q)$$

i)
$$P \Leftrightarrow Q \Rightarrow R$$

$$j) (\neg P => Q)$$