SINGAPORE POLYTECHNIC

2021/2022 Semester 1 Mid-Semester Test

No.	SOLUTION		
1(a)	$\mathbf{A}_{13} = \mathbf{A}_{31} : b = 2$		
	$\mathbf{A}_{12} = \mathbf{A}_{21}: \ 4a = b + 2$		
	4a = 2 + 2 = 4		
	a=1		
	$\mathbf{A}_{23} = \mathbf{A}_{32}: b+c=a-c$ 2c=a-b=1-2=-1		
	$c = -\frac{1}{2}$		
1(b)	$\mathbf{E} = 3\mathbf{I}_2 - 2\mathbf{F}$		
	$\mathbf{F} = \frac{1}{2} \begin{pmatrix} 3\mathbf{I}_2 - \mathbf{E} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} -1 & 6 \\ 4 & -3 \end{bmatrix} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} 4 & -6 \\ -4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -2 & 3 \end{bmatrix}$		
1(c)	Not possible to evaluate, because D does not have the same number of rows and columns		
(i)	(or D is not a square matrix).		
1(c) (ii)	$\mathbf{C}\mathbf{D}^{T} = \begin{bmatrix} -2 & -1 & -6 \\ 7 & 5 & 8 \\ 8 & 2 & 9 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -2 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -10 & -14 \\ 19 & 29 \\ 29 & 18 \end{bmatrix}$		
1(c)			
(iii)	$2\mathbf{E} - \mathbf{E}^T = \begin{bmatrix} -2 & 12 \\ 8 & -6 \end{bmatrix} - \begin{bmatrix} -1 & 4 \\ 6 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 8 \\ 2 & -3 \end{bmatrix}$		
1(d) (i)	$\mathbf{C} - 2\mathbf{I}_3 = \begin{bmatrix} -2 & -1 & -6 \\ 7 & 5 & 8 \\ 8 & 2 & 9 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -1 & -6 \\ 7 & 3 & 8 \\ 8 & 2 & 7 \end{bmatrix}$		
	$\mathbf{B}(\mathbf{C} - 2\mathbf{I}_3) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -2 \\ -2 & 0 & -1 \end{bmatrix} \begin{bmatrix} -4 & -1 & -6 \\ 7 & 3 & 8 \\ 8 & 2 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$		
1(d)	Given $GC = C + 2G$:		
(ii)	$\mathbf{GC} - 2\mathbf{G} = \mathbf{C}$		
	G(C-2I) = C		
	G(C-2I)B = CB $G(5I) GB$		
	$\mathbf{G}(5\mathbf{I}) = \mathbf{C}\mathbf{B}$		
	$\mathbf{G} = \frac{1}{5}\mathbf{C}\mathbf{B} = \frac{1}{5} \begin{bmatrix} -2 & -1 & -6 \\ 7 & 5 & 8 \\ 8 & 2 & 9 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -2 \\ -2 & 0 & -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 7 & -2 & 4 \\ 6 & 13 & -4 \\ -4 & 0 & 3 \end{bmatrix}$		

SINGAPORE POLYTECHNIC 2021/2022 Semester 1 Mid-Semester Test

2(a) $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$

(i) $A = \{2, 4, 6, 8\}$

 $B = \{1, 2, 3, 4\}$

 $C = \{4,8\}$

2(a) $A-C = \{2,6\}$

(ii) $B \cap \overline{C} = \{1, 2, 3\}$

 $\overline{A \cup B} = \{5, 7\}$

2(b)

2(c)

SINGAPORE POLYTECHNIC 2021/2022 Semester 1 Mid-Semester Test

3(a)				
(i)	Integral part:			
	2	627		
	2	313	1	
	2	156	1	
	2	78	0	
	2	39	0	
	2	19	1	
	2	9	1	
	2	4	1	
	2	2	0	
	2	1	0	
		0	1	
		•		

Fractional part:				
2	0.45			
2	0.9	0		
2	0.8	1		
2	0.6	1		
2	0.2	1		
2	0.4	0		
2	0.8	0		
2	0.6	1		
2	0.2	1		
2	0.4	0		
2	0.8	0		
2	0.6 (rep)	1		

 $\therefore 627.45_{10} = 1001110011.01\overline{1100}_2$

- $\begin{array}{c|c} 3(a) & 9E4.A_{16} = (1001)(1110)(0100).(1010)_{2} = 100111100100.101_{2} \end{array}$
- 3(b) Smallest 12-bit binary number = 000011111.111_2 $11111.111_2 = 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} = 31.875_{10}$
- 3(c) $189C_{16} = 1 \times 16^3 + 8 \times 16^2 + 9 \times 16^1 + 12 \times 16^0 = 6300_{10}$

After winning two prizes, the count will be: $6300 + 300 \times 2 = 6900$

Convert 6900₁₀ to hexadecimal:

$$6900 = 431(16) + 4$$

$$431 = 26(16) + 15$$

$$26 = 1(16) + 10$$

$$1 = 0(16) + 1$$

Hence, $6900_{10} = 1AF4_{16}$

SINGAPORE POLYTECHNIC

2021/2022 Semester 1 Mid-Semester Test

$$\begin{vmatrix} 4(a) \\ (i) \end{vmatrix} \mathbf{T}_{1} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} ; \mathbf{T}_{2} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \mathbf{T}_{3} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 4(a) \\ (iii) \end{vmatrix} \mathbf{P}' = \mathbf{C}\mathbf{P} = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & -3 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} \mathbf{T}_{3}^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

4(b) T_a : Shearing in the x-direction by a factor of 1

(i) \mathbf{T}_b : Rotation 90° clockwise about the origin

 \mathbf{T}_c : Translation 2 units upwards

$$\mathbf{T}_{a} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \; \; \mathbf{T}_{b} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \; ; \; \; \mathbf{T}_{c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U}' = \mathbf{T}\mathbf{U} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{(verified)}$$