Machine Learning Clustering and Dimensionality Reduction

Assignment #1

Rhichard Koh

```
In [ ]: import pandas as pd
```

Apply PCA to the train set

```
df = pd.read_csv('creditcard.csv')
                                                V2
                                                           V3
                                                                      V4
                                                                                            V6
Out[]:
                       Time
                0
                         0.0
                              -1.359807
                                         -0.072781
                                                     2.536347
                                                                1.378155 -0.338321
                                                                                      0.462388
                                                                                                 0.239599
                                                                                                            0.0986
                1
                        0.0
                               1.191857
                                          0.266151
                                                     0.166480
                                                                0.448154
                                                                           0.060018
                                                                                     -0.082361
                                                                                                 -0.078803
                                                                                                            0.0851
                2
                         1.0
                              -1.358354
                                         -1.340163
                                                     1.773209
                                                                0.379780
                                                                          -0.503198
                                                                                      1.800499
                                                                                                 0.791461
                                                                                                            0.2476
                3
                         1.0
                               -0.966272
                                         -0.185226
                                                     1.792993
                                                                -0.863291
                                                                           -0.010309
                                                                                      1.247203
                                                                                                 0.237609
                                                                                                            0.3774
                        2.0
                              -1.158233
                                                     1.548718
                                                                0.403034
                                          0.877737
                                                                          -0.407193
                                                                                      0.095921
                                                                                                 0.592941
                                                                                                            -0.2705
          284802
                  172786.0
                             -11.881118
                                         10.071785
                                                     -9.834783
                                                                -2.066656
                                                                          -5.364473
                                                                                     -2.606837
                                                                                                 -4.918215
                                                                                                            7.3053
          284803 172787.0
                              -0.732789
                                         -0.055080
                                                     2.035030
                                                                -0.738589
                                                                           0.868229
                                                                                      1.058415
                                                                                                 0.024330
                                                                                                            0.2948
          284804 172788.0
                               1.919565
                                         -0.301254
                                                    -3.249640
                                                               -0.557828
                                                                           2.630515
                                                                                      3.031260
                                                                                                -0.296827
                                                                                                            0.7084
          284805 172788.0
                              -0.240440
                                          0.530483
                                                     0.702510
                                                                0.689799
                                                                           -0.377961
                                                                                      0.623708
                                                                                                -0.686180
                                                                                                            0.6791
          284806 172792.0
                              -0.533413 -0.189733
                                                     0.703337 -0.506271 -0.012546 -0.649617
                                                                                                 1.577006 -0.4146
```

Out[]:		Time	V1	V2	V3	V4	V5	V6	V7	1
	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.0986
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.0851
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.2476
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.3774
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.2705
	•••									
	284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.3053
	284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.2948
	284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.7084
	284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.6791
	284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.4146

```
4
   In [ ]: X.columns
            Index(['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',
  Out[]:
                    'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount'],
                   dtype='object')
   In [ ]: y = df['Class']
            У
                       0
  Out[]:
            1
                       0
            2
                       0
            3
                       0
            4
                       0
            284802
                       0
            284803
                       0
            284804
                       0
            284805
            284806
            Name: Class, Length: 284807, dtype: int64
   In [ ]: from sklearn.model_selection import train_test_split
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=
   In [ ]: from sklearn.preprocessing import StandardScaler
            scaler = StandardScaler()
            X_train_scaled = scaler.fit_transform(X_train)
```

Visualize Correlation matrix (heatmap) before and after PCA

Before PCA

In []: import matplotlib.pyplot as plt
import seaborn as sb

X_train_scaled_df = pd.DataFrame(data=X_train_scaled, columns= X_train.columns)
X_train_scaled_df

Out[]:		Time	V1	V2	V3	V4	V5	V6	V7	\
	0	1.022555	0.997851	-0.229626	-0.207385	0.234215	-0.367791	-0.064022	-0.505889	0.03060
	1	0.471283	-0.205221	-0.378220	1.027544	-1.424101	-0.078380	0.126364	0.013567	-0.3375!
	2	1.153387	0.036558	0.495563	-0.370033	-0.500363	0.777856	-0.268414	0.632710	0.09898
	3	-0.023638	-0.273682	0.612684	1.156521	1.957021	0.359664	0.750211	0.680997	-0.06809
	4	-0.255590	-2.056777	1.145573	-0.283165	-0.019856	-0.617403	-0.358912	-0.351206	1.1055{
	•••									
	227840	-0.403774	0.598760	0.061075	0.324476	0.327051	-0.214298	-0.159001	-0.133772	0.10062
	227841	1.352067	-0.396713	0.087171	-0.753679	-0.875555	1.397573	2.926905	-0.375714	1.14500
	227842	-0.315815	-0.075332	0.599620	1.007243	0.344127	0.251006	-0.609354	0.864946	-0.3322!
	227843	-0.144489	-1.506155	1.421728	-1.664055	-2.682097	1.344205	2.040924	-0.380267	1.86593
	227844	-0.387707	0.629238	-0.473540	0.255988	-0.492355	-0.745868	-0.476073	-0.404876	-0.15789

227845 rows × 30 columns

In []: X_train_scaled_df.corr()

Out[]:		Time	V1	V2	V3	V4	V5	V6	V7	
	Time	1.000000	0.117203	-0.010844	-0.421238	-0.104487	0.171204	-0.063108	0.083313	-0.0387
	V1	0.117203	1.000000	0.007295	-0.000782	-0.000227	0.001902	-0.003035	-0.011855	0.0005
	V2	-0.010844	0.007295	1.000000	0.008112	-0.003559	0.008695	-0.003240	-0.005729	0.0014
	V3	-0.421238	-0.000782	0.008112	1.000000	-0.001850	0.002671	-0.004517	-0.014211	0.0022
	V4	-0.104487	-0.000227	-0.003559	-0.001850	1.000000	-0.002312	0.002631	0.005144	-0.0001
	V5	0.171204	0.001902	0.008695	0.002671	-0.002312	1.000000	-0.008561	-0.020789	0.0031
	V6	-0.063108	-0.003035	-0.003240	-0.004517	0.002631	-0.008561	1.000000	0.010363	-0.0011
	V7	0.083313	-0.011855	-0.005729	-0.014211	0.005144	-0.020789	0.010363	1.000000	-0.0069
	V8	-0.038743	0.000546	0.001479	0.002246	-0.000180	0.003117	-0.001161	-0.006947	1.0000
	V9	-0.010310	-0.001120	-0.000090	-0.001977	0.000379	-0.001800	0.000045	-0.005432	0.0005
	V10	0.029694	-0.001860	0.004352	-0.000745	0.000909	-0.001075	0.000081	-0.011277	-0.0023
	V11	-0.247385	-0.000448	-0.001157	0.000983	0.002178	-0.001301	0.000622	-0.000509	0.0030
	V12	0.125590	-0.001497	-0.000544	-0.000075	-0.001699	-0.000569	0.000067	-0.001953	-0.0035
	V13	-0.066410	-0.001924	-0.001757	-0.001095	-0.000702	-0.000614	-0.000054	0.001543	-0.0007
	V14	-0.098385	0.000033	-0.001041	0.000494	-0.000707	0.000905	0.000656	0.001256	-0.0025
	V15	-0.183030	-0.001857	0.000280	-0.001326	0.001253	-0.001777	0.001112	0.002246	-0.0001
	V16	0.012980	-0.002791	0.000076	-0.001699	0.000616	-0.002415	0.002639	0.005372	-0.0041
	V17	-0.071968	-0.001581	0.000843	-0.000341	0.000288	0.000645	-0.000140	-0.002626	-0.0046
	V18	0.091128	-0.000757	0.000502	-0.001566	0.001995	0.000903	0.000657	0.000283	-0.0026
	V19	0.029596	0.001869	0.001993	0.001622	-0.001183	-0.001521	0.000371	-0.002998	-0.0006
	V20	-0.051246	-0.001306	-0.004863	0.001906	0.000714	0.005301	-0.002250	-0.000800	0.0015
	V21	0.045097	-0.001346	0.002492	-0.000554	0.001492	0.001764	-0.001328	-0.008404	-0.0064
	V22	0.144891	0.003286	0.001870	0.000905	0.000647	-0.000594	-0.000003	0.000382	0.0037
	V23	0.050655	0.005771	0.004074	0.004907	-0.002682	0.001927	-0.001865	0.000138	0.0025
	V24	-0.015464	-0.001356	-0.000414	-0.000579	-0.000989	-0.001035	0.000782	0.000365	-0.0002
	V25	-0.232573	0.001797	0.001938	0.000258	-0.001542	-0.000433	0.000644	0.000310	-0.0018
	V26	-0.042594	-0.000779	0.000773	-0.000720	0.001766	-0.000076	-0.000277	0.001284	-0.0011
	V27	-0.005570	-0.002175	-0.000278	-0.003023	0.001041	-0.008595	0.004883	0.008366	-0.0058
	V28	-0.009371	-0.003073	-0.004816	0.002885	0.002495	0.008496	-0.005313	-0.006193	0.0011
	Amount	-0.009936	-0.233925	-0.536033	-0.218054	0.103808	-0.394113	0.221781	0.411463	-0.1054

```
In [ ]: plt.figure(figsize=(25, 25))
sb.heatmap(X_train_scaled_df.corr(), annot=True)
```

Out[]: <Axes: >

After PCA

```
In [ ]: from sklearn.decomposition import PCA
    pca = PCA()
    X_train_PCA = pca.fit_transform(X_train_scaled)
    X_train_PCA
```

In []: X_train_PCA_df = pd.DataFrame(data=X_train_PCA, columns = X_train.columns)
X_train_PCA_df

Out[]:		Time	V1	V2	V3	V4	V5	V6	V7	1
	0	-0.451718	-1.295597	0.042155	-0.017005	-0.558668	-0.103815	-0.540228	-0.405253	-1.88707
	1	-0.251349	-1.310617	-0.103259	0.402708	-0.246232	0.388712	-1.104457	1.130561	-0.90238
	2	-0.407067	-1.424533	0.320458	0.460765	0.406264	0.957740	-0.135362	0.880158	0.3985
	3	0.195144	0.444337	0.441017	-0.301536	-0.288001	2.739601	-1.813253	-0.484622	0.27349
	4	-0.496166	0.505630	0.756510	0.071279	0.729322	-0.565272	0.492185	-0.453229	-1.0448!
	•••									
	227840	-0.432766	1.085389	0.103383	0.134239	0.101425	-0.207721	-0.077260	-0.501031	-0.4309
	227841	-0.050833	-2.107870	0.347575	1.184980	-0.696713	-0.527504	0.206993	0.797536	-0.69992
	227842	-0.418314	0.616269	0.264342	-0.615669	-0.494755	-0.551815	0.203305	1.002262	0.20252
	227843	-0.586625	-0.217943	0.246259	0.750738	0.238745	-1.475042	-0.287662	0.415580	-0.01622
	227844	0.129750	0.747154	0.078540	-0.175870	0.115263	-0.629163	0.838574	0.687421	0.54297

```
In [ ]: X_train_PCA_df.corr()
```

Out[]:		Time	V1	V2	V3	V4	V5	
	Time	1.000000e+00	7.839378e-17	1.708444e-16	-1.868911e- 16	-7.130918e- 17	-1.278624e- 18	1.850
	V1	7.839378e-17	1.000000e+00	1.586145e-17	4.744220e-17	3.927787e-17	1.291499e-17	1.004
	V2	1.708444e-16	1.586145e-17	1.000000e+00	-3.124562e- 16	2.323815e-16	6.032887e-17	1.374
	V3	-1.868911e- 16	4.744220e-17	-3.124562e- 16	1.000000e+00	3.768324e-16	2.144041e-17	-6.7
	V4	-7.130918e- 17	3.927787e-17	2.323815e-16	3.768324e-16	1.000000e+00	9.352089e-17	-4.6
	V5	-1.278624e- 18	1.291499e-17	6.032887e-17	2.144041e-17	9.352089e-17	1.000000e+00	-2.5
	V6	1.850432e-17	1.004389e-17	1.374008e-17	-6.739788e- 17	-4.612447e- 16	-2.591059e- 16	1.0000
	V7	-3.954003e- 18	-3.221124e- 17	1.924877e-17	1.474727e-17	1.499357e-17	5.091816e-17	-2.4
	V8	9.460095e-17	4.235341e-18	-3.849014e- 17	-3.222983e- 17	3.990450e-17	6.472387e-16	-7.2
	V9	-5.799076e- 19	-1.543606e- 17	-8.561077e- 18	-8.950723e- 17	-4.318201e- 17	1.124380e-16	1.890
	V10	1.376964e-16	-2.502082e- 17	5.300461e-17	-4.520668e- 16	-9.448290e- 17	-3.576772e- 18	-4.1
	V11	-3.046093e- 19	2.671807e-17	-4.289011e- 16	8.111923e-17	4.650798e-17	1.806107e-16	4.113
	V12	-1.010646e- 16	-1.730079e- 17	4.223591e-17	-3.273198e- 17	-1.405945e- 16	2.476665e-16	-1.6
	V13	5.161963e-17	9.557533e-18	-1.139906e- 16	3.559297e-17	-5.964028e- 17	1.548470e-16	6.481
	V14	1.097591e-16	1.582437e-17	7.103984e-18	-1.620744e- 16	-2.064736e- 17	2.188318e-17	-9.6
	V15	-2.124862e- 17	2.554684e-17	2.258294e-17	2.283802e-17	-2.277063e- 17	1.145358e-16	4.835
	V16	-7.528998e- 17	5.555474e-17	2.558791e-17	-1.197628e- 16	-1.729398e- 16	-2.073014e- 16	-1.7
	V17	1.561661e-16	6.777082e-17	2.066603e-16	1.450569e-17	1.242875e-16	-1.331043e- 16	-8.0
	V18	-2.146808e- 17	1.104800e-17	-8.919885e- 17	-2.533323e- 16	-1.955507e- 16	1.068794e-16	-5.1
	V19	-7.599261e- 17	1.750763e-17	2.561093e-18	-2.465785e- 16	-2.236296e- 16	1.954372e-16	-7.5
	V20	5.734832e-17	-4.964350e- 18	1.024628e-16	1.043208e-16	1.777355e-16	8.674517e-18	-1.4

	Time	V1	V2	V3	V4	V5	
V21	-2.409424e- 17	5.719831e-18	-6.970960e- 17	1.091305e-16	2.194394e-16	-3.663227e- 16	-6.9
V22	-6.295647e- 17	-2.254200e- 17	1.148360e-16	-8.685002e- 17	1.316876e-16	3.648188e-16	2.540
V23	1.446412e-16	8.123133e-17	-1.049816e- 16	-7.088991e- 17	4.172204e-17	-1.880598e- 16	6.161
V24	7.828680e-18	3.572490e-19	8.026503e-17	4.922013e-17	2.317600e-16	1.434056e-16	4.123
V25	-1.392130e- 17	2.766950e-17	-5.555925e- 18	2.393508e-16	4.345410e-17	-1.597242e- 16	1.873
V26	1.799874e-16	2.429678e-17	4.658041e-16	-2.328068e- 16	-1.715146e- 16	1.783046e-17	-1.7
V27	6.937767e-17	2.880595e-18	-3.584702e- 16	-7.615352e- 16	1.153877e-16	5.038011e-17	1.191
V28	-2.641047e- 17	-4.021459e- 16	3.332590e-17	2.806540e-17	-4.258394e- 17	1.372546e-17	1.616
Amount	3.141768e-16	-5.310173e- 18	-4.573220e- 16	1.104138e-16	-3.666818e- 16	-7.347193e- 17	5.878

```
In [ ]: plt.figure(figsize=(25, 25))
        sb.heatmap(X_train_PCA_df.corr(), annot=True)
Out[]: <Axes: >
```


Visualize the classes in 2D. Discuss corner cases.

```
In []: import matplotlib.pyplot as plt

plt.figure(figsize=(10, 7))

plt.scatter(X_train_PCA_df.iloc[:, 0], X_train_PCA_df.iloc[:, 1], c=y_train, cmap='vir
    plt.xlabel('PC1')
    plt.ylabel('PC2')
    plt.title('Scatter plot of the first two principal components')
    plt.grid(True)
    plt.show()
```

Scatter plot of the first two principal components

Apply SVC on Model 1, raw

```
In [ ]: from sklearn.svm import SVC
        from sklearn.metrics import roc_curve, auc
        from sklearn.preprocessing import label_binarize
        model = SVC(probability=True)
        model.fit(X_train_scaled, y_train)
Out[]:
                   SVC
        SVC(probability=True)
In [ ]: X_test_scaled = scaler.transform(X_test)
        y_score = model.predict_proba(X_test_scaled)
        y_score
        array([[2.92213182e-01, 7.07786818e-01],
Out[ ]:
               [9.99546134e-01, 4.53865621e-04],
               [9.99447428e-01, 5.52572344e-04],
               [9.99653336e-01, 3.46663971e-04],
               [9.99671487e-01, 3.28513334e-04],
               [9.99248522e-01, 7.51477857e-04]])
```

```
In [ ]: y_score_m1 = model.predict_proba(X_test_scaled)[:,1]
fpr_m1, tpr_m1, _ = roc_curve(y_test, y_score_m1)
roc_auc_m1 = auc(fpr_m1, tpr_m1)
```

M2 transformed data. (all features (PCs))

M3-6 reduced data from (top, 1, 2, 3, 4, 5 features (PCs))

```
In [ ]: models_m3_to_m7 = []

for i in range(1, 6):
    svc = SVC(probability=True)
    svc.fit(X_train_PCA[:, :i], y_train)

    X_test_PCA_reduced = pca.transform(scaler.transform(X_test))[:, :i]

    y_score = svc.predict_proba(X_test_PCA_reduced)[:, 1]

fpr, tpr, _ = roc_curve(y_test, y_score)
    roc_auc = auc(fpr, tpr)

models_m3_to_m7.append({
        'fpr': fpr,
        'tpr': tpr,
        'roc_auc': roc_auc,
        'label': f'M{i+2} (Top {i} PCs)'
})
```

Report the findings for all six models in terms of ROC curves on one plot.

```
In [ ]: plt.figure(figsize=(10, 8))
    plt.plot(fpr_m1, tpr_m1, label=f'M1 (Raw Data) (area = {roc_auc_m1:.2f})')
    plt.plot(fpr_m2, tpr_m2, label=f'M2 (All Features - PCA) (area = {roc_auc_m2:.2f})')
```

```
for model in models_m3_to_m7:
    plt.plot(model['fpr'], model['tpr'], label=f"{model['label']} (area = {model['roc_
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Different Models')
plt.legend(loc="best")
plt.show()
```


Discuss the merits/de-merits of each model.

Model 1:

Strengths: The model works really well with the untouched data, showing that the original details are quite helpful and a good fit for sorting or categorizing.

Weaknesses: Keeping all the original details could make the model more complicated and might lead to it being too tailored to the training data (overfitting). This could also mean it takes more time to learn from the data and to make predictions, especially with a big dataset.

Model 2:

Strengths: It works as well as Model 1, showing that the PCA method kept most of the important changes in the data. It could also be better at handling random variations and differences in the data than Model 1.

Weaknesses: Like Model 1, using all the components doesn't simplify the model. It might be harder to understand how the model makes decisions because the PCA components don't directly match up with the original details.

Model 3:

Strengths: The model is straightforward and quick to train because it uses only the most important principal component.

Weaknesses: There's a big decrease in how well it performs compared to Models 1 and 2, indicating that relying solely on the top principal component isn't sufficient for precise categorization.

Model 4:

Strengths: It's a bit more complex than Model 3 but remains simpler and quicker than Models 1 and 2.

Weaknesses: The model's AUC (Area Under the Curve) is below 0.5, which means it performs worse than if it were just making random guesses. This suggests that including the top two principal components might add confusing patterns or noise to the model, leading to poor predictions.

Model 5:

Strengths: Using three principal components is more informative than using just one or two, and it also simplifies the model more than using all the original features.

Weaknesses: The model's performance is much worse than random guessing, as indicated by an AUC (Area Under the Curve) significantly lower than 0.5. This suggests that the top three principal components may not be capturing the necessary information for this specific classification task.

Model 6:

Strengths: There's a small improvement compared to Models 4 and 5, which implies that adding the fourth principal component provides some useful information for classifying.

Weaknesses: The model's effectiveness is still close to what you'd expect from random guesses, showing that the top four principal components don't provide enough detail for strong classification results.

Model 7:

Strengths: There's a notable boost in how well it works, nearly matching the levels of Models 1 and 2. This indicates that using the top five principal components gets most of the crucial details needed for sorting or categorizing, and adding just a few more details could further help.

Weaknesses: Although it outperforms Models 3 to 6, it's still not quite as precise as Models 1 and 2. This suggests there could be a balance to find between keeping the model simple and achieving the best possible performance.