Metrics

Classification Practical Issues

Huiping Cao

Outline

Criteria to evaluate a classifier

Underfitting and overfitting

■ Model evaluation

Model Evaluation

■ How to evaluate the performance of a model? Metrics for Performance Evaluation

How to obtain reliable estimates? Methods for Performance Evaluation

How to compare the relative performance among competing models? Methods for Model Comparison

Evaluating Classification Methods

- Accuracy
 - Classifier accuracy: predicting class label
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability: understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Evaluation

Confusion matrix

		Predicte	ed Class	
		Class=1	Class=0	
Actual Class	Class=1	f_{11}	f_{10}	
Actual Class	Class=0	f_{01}	f_{00}	

Performance metric

$$Accuracy = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Error rate =
$$\frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Desirable classifier: high accuracy, low error rate

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If a model predicts everything to be class 0, accuracy is 9990/10000 = 99.9%
- Accuracy is misleading because model does not detect any class 1 example

Why more measures?

- Existence of data sets with imbalanced class distributions.
 E.g., deffective products and non-defective products.
- The accuracy measure, may not be well suited for evaluating models derived from imbalanced data sets.
- Analyzing imbalanced data sets, where the rare class is considered more interesting than the majority class.
- Binary classification, the rare class is denoted as the positive class.

Precision, Recall, F₁

Confusion matrix

		Predicted Class				
		+	_			
Actual Class	+	f ₁₁ (TP)	f_{10} (FN)			
Actual Class	_	f ₀₁ (FP)	f_{00} (TN)			

■ Performance metric

$$Precision = p = \frac{TP}{TP + FP}$$

$$Recall = r = \frac{TP}{TP + FN}$$

Desirable classifier: high precision, high recall

$$F_1 = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN} = \frac{2}{\frac{1}{r} + \frac{1}{p}}$$

Combined metrics

- Given *n* numbers x_1, \dots, x_n
 - Arithmetic mean: $\frac{\sum_{i=1}^{n} x_i}{n}$
 - Harmonic mean: $\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$
 - Geometric mean: $\sqrt[n]{x_1 \cdot \dots \cdot x_n}$

Mean

- Given a = 1, b = 5
- Mean values
 - Arithmetic mean: 3
 - Geometric mean: $\sqrt{1 \times 5} = 2.236$
 - Harmonic mean: $\frac{2}{1+\frac{1}{5}}=\frac{10}{6}=1.667$, closer to the smaller value between a and b

Confusion matrix

Confusion matrix (or contingency table)

	$Predicated\ class = Yes$	Predicated class= No
Actual class $=$ Yes	TP	FN
$Actual\ class = No$	FP	TN

Alternative metrics

■ True positive rate: $TPR = \frac{TP}{TP+FN}$, also called recall or sensitivity

■ True negative rate: $TNR = \frac{TN}{TN+FP}$

■ False positive rate: $FPR = \frac{FP}{FP+TN} = 1 - SPC$

■ False negative rate: $FNR = \frac{FN}{TP+FN}$

• Specificity $SPC = \frac{TN}{N} = \frac{TN}{FP + TN}$

ROC (Receiver Operating Characteristic)

- Developed for signal detection theory
- Characterize the trade-off between true positive rate (TPR)
 and false positive rate (FPR)
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each instance represented as a point on the ROC curve

ROC – Properties

- (TPR=0, FPR=0): every instance is predicted to be a negative class
- (TPR=1, FPR=1): every instance is predicted to be a positive class
- (TPR=1, FPR=0): the ideal model
- Diagonal line: random guessing
- A good classification model should be located as close as possible to the upper-left corner of the diagram.
- No model consistently outperforms the other
- M1 is better than M2 when FPR is smaller
- M2 is better than M1 when FPR is bigger

AUC (Area under the ROC Curve)

■ AUC can evaluate which model is better on average.

lacksquare AUC = 1: the model is perfect.

 \blacksquare AUC = 0.5: random guess

Construct a ROC curve

Instance	P(+ A)	True class
1	0.95	+
2	0.93	+
3	0.87	_
4	0.86	+
5	0.85	_
6	0.84	_
7	0.76	_
8	0.53	+
9	0.43	_
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

Construct a ROC curve (2)

class	+	_	+	_	_	_	+	_	+	+	
	0.25	0.43	0.53	0.76	0.84	0.85	0.86	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

- lacksquare Sort the instances according to P(+|A) in decreasing order
- lacksquare Apply threshold at each unique value of P(+|A)
- \blacksquare Count the number of TP, FP, TN, FN at each threshold δ
 - Assign the selected record with $p \ge \delta$ to the positive class.
 - \blacksquare Assign those records with with $p<\delta$ as negative class
- TPR = TP/(TP+FN)
- FPR = FP/(FP+TN)

Construct a ROC curve (3)

class	+	_	+	_	_	_	+	_	+	+	
	0.25	0.43	0.53	0.76	0.84	0.85	0.86	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	8.0	8.0	0.6	0.4	0.2	0.2	0	0	0

Construct a ROC curve (4) - Tie

 ROC curve when some probability values are duplicated? Use only distinct probabilities

class	+	_	+	_	+	_	_	_	+	+		
	0	0	0.7	0.76	0.85	0.85	0.85	0.85	0.95	0.95	1.00	
boundary	()	0.7	0.76	0.85				0.85 0.95		95	1.00
TP	Ĺ	5	4	3	3				3 2		2	0
FP	į	5	4	4		3)	0	
TN	()	1	1		2	2		Ĺ	5	5	
FN	()	1	2		2	2		(1)	3	5	
TPR	1	L	0.8	3/5	3/5				0.	.4	0	
FPR	1	L	0.8	3/4	3/5				()	0	

Construct a ROC curve - normal case

```
import numpy as np
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
pred = np.array([0.95, 0.93, 0.87, 0.86, 0.85, 0.84, 0.76, 0.53, 0.43, 0.25])
labels = np.array([1,1,0,1,0,0,0,1,0,1])
fpr, tpr, _ = roc_curve(labels,pred)
print("fpr = ", fpr) # fpr = [0. 0. 0. 0.2 0.2 0.8 0.8 1. 1.]
print("tpr = ", tpr) # tpr = [0. 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.]
roc_auc = auc(fpr, tpr)
print("roc_auc=", roc_auc) # roc_auc= 0.6000000000000001
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot(fpr, tpr)
```


Construct a ROC curve - special case (ties)

```
limport numpy as np
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

pred = np.array([0.95,0.95,0.85,0.85,0.85,0.85,0.76,0.7,0,0])
labels = np.array([1,1,0,0,0,1,0,1])

fpr, tpr, _ = roc_curve(labels,pred)
roc_auc = auc(fpr, tpr)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot(fpr, tpr)
```


Classification errors

■ Training errors: the number of misclassification errors on training records

 Generalization errors: the expected error of the model on previously unseen records

Overfitting and Underfitting

Model overfitting: A model fits the training data too well, but has poorer generalization error than a model with a higher training error.

Model underfitting: a model has not learned the true structure
of the data. Has high training error and generalization error.
 Underfitting: when a model is too simple, both training and
test errors are large

Training set:

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
porcupine	warm-blooded	yes	yes	yes	mammals
cat	warm-blooded	yes	yes	no	mammals
bat	warm-blooded	yes	no	yes	non-mammals*
whale	warm-blooded	yes	no	no	non-mammals*
salamander	cold-blooded	no	yes	yes	non-mammals
komodo	cold-blooded	no	yes	no	non-mammals
python	cold-blooded	no	no	yes	non-mammals
salmon	cold-blooded	no	no	no	non-mammals
eagle	warm-blooded	no	no	no	non-mammals
guppy	cold-blooded	yes	no	no	non-mammals

Training error: 0.0

Testing set:

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
human	warm-blooded	yes	no	no	?
pigeon	warm-blooded	no	no	no	?
elephant	warm-blooded	yes	yes	no	?
leopard shark	cold-blooded	yes	no	no	?
turtle	cold-blooded	no	yes	no	?
penguin	cold-blooded	no	no	no	?
eel	cold-blooded	no	no	no	?
dolphin	warm-blooded	yes	no	no	?
spiny anteater	warm-blooded	no	yes	yes	?
gila monster	cold-blooded	no	yes	yes	?

Test error: 30%

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
human	warm-blooded	yes	no	no	non-mammals
pigeon	warm-blooded	no	no	no	non-mammals
elephant	warm-blooded	yes	yes	no	mammals
leopard shark	cold-blooded	yes	no	no	non-mammals
turtle	cold-blooded	no	yes	no	non-mammals
penguin	cold-blooded	no	no	no	non-mammals
eel	cold-blooded	no	no	no	non-mammals
dolphin	warm-blooded	yes	no	no	non-mammals
spiny anteater	warm-blooded	no	yes	yes	non-mammals
gila monster	cold-blooded	no	yes	yes	non-mammals

Training error: 20%

Test error: 10%

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
human	warm-blooded	yes	no	no	mammals
pigeon	warm-blooded	no	no	no	non-mammals
elephant	warm-blooded	yes	yes	no	mammals
leopard shark	cold-blooded	yes	no	no	non-mammals
turtle	cold-blooded	no	yes	no	non-mammals
penguin	cold-blooded	no	no	no	non-mammals
eel	cold-blooded	no	no	no	non-mammals
dolphin	warm-blooded	yes	no	no	mammals
spiny anteater	warm-blooded	no	yes	yes	non-mammals
gila monster	cold-blooded	no	yes	yes	non-mammals

Overfitting Reason 2 – Insufficient Examples

Training set:

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
salamander	cold-blooded	no	yes	yes	non-mammals
guppy	cold-blooded	yes	no	no	non-mammals
eagle	warm-blooded	no	no	no	non-mammals
poorwill	warm-blooded	no	no	yes	non-mammals
platypus	warm-blooded	no	yes	yes	mammals

Overfitting Reason 2 – Insufficient Examples

Overfitting Reason 2 – Insufficient Examples

Name	Body Tempera-	Give	Four-	Hibernates	Class
	ture	Birth	legged		
human	warm-blooded	yes	no	no	non-mammals
elephant	warm-blooded	yes	yes	no	non-mammals
dolphin	warm-blooded	yes	no	no	non-mammals

Notes on Overfitting

■ What is the primary reason for overfitting? a subject of debate

- Generally agreed: the complexity of a model has an impact on model overfitting
- E.g., Overfitting results in decision trees that are more complex than necessary
- Need new ways for estimating generalization errors

Estimating Generalization Errors

- Training errors: error on training $(\sum_{i=1}^{n} e(t_i))$
- Generalization errors: error on testing $(\sum_{i=1}^{m} e'(t_i))$
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Reduced error pruning (REP):
 - Uses validation data set to estimate generalization error
 - Incorporating model complexity.
 - The ideal complexity is that of a model that produces the lowest generalization error.
 - The problem: the learning algorithm has no knowledge of the test data in building the model.

Incorporating model complexity - Occam's Razor

 Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

Metrics

Incorporating model complexity - Pessimistic approach

- For each leaf node: e'(t) = (e(t) + 0.5)
- Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
- For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 - Training error = 10/1000 = 1%
 - \blacksquare Generalization error = (10 + 30× 0.5)/1000 = 2.5%

Incorporating model complexity - Minimum Description Length (MDL)

Х	у	
X ₁	?	
X_2	?	
X ₃	?	ĺ
X_4	?	
\mathbf{X}_{n}	?	

- Cost is the number of bits needed for encoding.
- A DT algorithm aims at obtaining the smallest decision tree that can capture the relations, that is, the DT that requires the MDL.
- Search for the least costly model.
 Cost(Model, Data) = Cost(Data|Model) + Cost(Model)
 - Cost(Data|Model): the cost of encoding the misclassification errors.
 - Cost(Model): uses node encoding (number of children) plus splitting condition encoding.

Minimum Description Length (MDL) - several words more

- Given a body of data D and a representation language L, one seeks the shortest possible representation of D in L.
- Many different forms of learning can be characterized in terms of the MDL principle:
 - General rules: The assertion of a general rule eliminates the need to specify each instance.
 E.g., given a table of animals and their features, the rule "All crows are black" means that the "color" field can be omitted for each crow in the table.
 - Numerical rules. E.g., data consisting of the pairs "X=1.0, Y=3.0; X=1.2, Y=3.2; X=2.7, Y=4.7; X=5.9, Y=7.9" can be replaced by the rule "Y=X+2.0"
 - There are other rules.

Minimum Description Length (MDL) - several words more

- Explanation of overfitting.
- The MDL theory gives an elegant explanation of why too rich representational schemes tend to overfit
 - When the encoding of the classifier itself is longer than the original data, or almost as long, then nothing is gained in terms of description length.
 - You can exactly fit a decision tree to data, if there is a separate leaf for each datum, but again no gain.

How to Address Overfitting – Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if the number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures or estimated generalization error. (Threshold)

How to Address Overfitting - Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- Replace a subtree by
 - a leaf node: class label is determined from majority class of instances in the sub-tree (subtree replacement)
 - most frequently used branch of the subtree (subtree raising)
- Termination: no further improvement on generalization errors

Example of Post-Pruning

Class=Yes	20			
Class=No	10			
Error = 10/30				

- Training Error (Before splitting) = 10/30
- Pessimistic error = (10 + 0.5)/30 = 10.5/30
- Training Error (After splitting) = 9/30
- Pessimistic error (After splitting) = $(9 + 4 \times 0.5)/30 = 11/30$

Model Evaluation

■ How to evaluate the performance of a model? Metrics for Performance Evaluation

 How to obtain reliable estimates? Methods for Performance Evaluation

How to compare the relative performance among competing models? Methods for Model Comparison

Holdout

- \blacksquare Reserve 2/3 (half) for training and 1/3 (half) for testing
- Limitations
 - Fewer for training
 - Highly depend on the composition of training and the test sets
 - Training set is not independent of the test set

Random Subsampling

- Repeated holdout k times
- Overall accuracy:

$$acc_{sub} = \frac{\sum_{i=1}^{k} acc_i}{k}$$

- Limitations
 - Still it does not use all the original data for training.
 - No control over the number of times each record is used for testing and training.

Cross validation

- Each record is used the same number of times for training and exactly once for testing.
- General k-fold cross-validation
 - Partition data into k disjoint equal-sized subsets
 - k-fold: train on k-1 partitions, test on the remaining one
- Special case: Leave-one-out: k = N, the size of the data set
- Limitations
 - Computationally expensive
 - High variance in estimated performance metric

The 0.632 Bootstrap (S.S.)

- Belong to one special sampling strategy (sampling with replacement)
- Format training "set" by sampling (with replacement) *N* times from a dataset of *N* instances
 - strictly speaking, not actually a set
 - a set cannot, by definition, contain duplicates
- It is very likely that:
 - some instances in the training set will be repeated
 - some of the original instances will not have been picked
- Unpicked instances are put in test set

Related work

■ Kohavi compared random subsampling, bootstrapping, and k-fold cross-validation.

The best is ten-fold stratified cross-validation.

- Ron Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In IJCAI 1995, 1137-1145.
- B. Efron and R. Tibshirani: Cross-validation and the Bootstrap: Estimating the Error Rate of a prediction Rule. Technical report, Stanford University, 1995.
 This includes theoretical and empirical comparison.

Model Evaluation

■ How to evaluate the performance of a model? Metrics for Performance Evaluation

How to obtain reliable estimates? Methods for Performance Evaluation

How to compare the relative performance among competing models? Methods for Model Comparison

Test of Significance

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?

Confidence Interval for Accuracy

- Derive confidence intervals by modeling the classification task as a binomial experiment.
- Prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes: correct or wrong
 - The probability of success *p* in each trial is constant
 - Collection of Bernoulli trials has a Binomial distribution:
 - $\mathbf{x} \sim Bin(N, p)$ where x: number of correct predictions
 - mean $N \cdot p$, variance $N \cdot p \cdot (1-p)$

Confidence Interval

- A confidence interval gives an estimated range of values which is likely to include an unknown population parameter, the estimated range being calculated from a given set of sample data.
- Confidence level: if independent samples are taken repeatedly from the same population, and a confidence interval calculated for each sample, then a certain percentage (confidence level) of the intervals will include the unknown population parameter.

 Confidence intervals are usually calculated so that this percentage is 95%, but we can produce 90%, 99%, 99.9% (or whatever) confidence intervals for the unknown parameter.
- The width of the confidence interval gives us some idea about how uncertain we are about the unknown parameter.
 A very wide interval may indicate that more data should be collected before anything very definite can be said about the parameter.

Confidence Interval for Accuracy (cont.)

- Given a test set that contains N records
- Let X be the number of records correctly predicted by a model
- Let *p* be the true accuracy of the model
- Empirical accurace $acc = \frac{X}{N}$ has a binomial distribution
- According to the central limit theorem (CLT), for large test set (N > 30), acc has a normal distribution with mean p and variance p(1-p)/N (i.e., $\mathcal{N}(p,\frac{p(1-p)}{N})$).

$$P(Z_{\alpha/2} \le \frac{acc - p}{\sqrt{p(1-p)/N}} \le Z_{1-\alpha/2}) = 1 - \alpha$$

- $Z = \frac{acc-p}{\sqrt{p(1-p)/N}}$ is a standard normal distribution (mean 0, variance 1, i.e., $\mathcal{N}(0,1)$) from $\mathcal{N}(\rho,\frac{p(1-p)}{N})$
- **2** $Z_{\alpha/2}$ and $Z_{1-\alpha/2}$: upper and lower bounds from $\mathcal{N}(0,1)$ at confidence level $1-\alpha$.
- $-Z_{\alpha/2} = Z_{1-\alpha/2} \text{ for } \mathcal{N}(0,1)$

Confidence Interval for Accuracy – Example

- Let $1 \alpha = 0.95$ (95% confidence)
- From probability table, $Z_{\alpha/2} = 1.96$

$1-\alpha$	0.99	0.98	0.95	0.9	8.0	0.7	0.5
$Z_{\alpha/2}$	2.58	2.33	1.96	1.65	1.28	1.04	0.67

- Given the observed accuracy *acc* and the size of observations N, what is the confidence interval for its true accuracy p at a 95% $(1-\alpha)$ confidence level?
 - Get $Z_{\alpha/2}$ from probability table using 1- α
 - Put $Z_{\alpha/2}$, N, acc to the formula to solve p

Confidence Interval for Accuracy (cont.)

■ Confidence interval for *p*:

$$\frac{2\times \textit{N} \times \textit{acc} + \textit{Z}_{\alpha/2}^2 \pm \textit{Z}_{\alpha/2} \sqrt{\textit{Z}_{\alpha/2}^2 + 4\textit{N} \cdot \textit{acc} - 4\textit{N} \cdot \textit{acc}^2}}{2(\textit{N} + \textit{Z}_{\alpha/2}^2)}$$

■ Details: Condition for $1 - \alpha$:

$$\begin{split} Z_{\alpha/2} &\leq \frac{\mathit{acc} - \mathit{p}}{\sqrt{\mathit{p}(1-\mathit{p})/\mathit{N}}} \leq Z_{1-\alpha/2} \\ \Longrightarrow \frac{(\mathit{acc} - \mathit{p})^2}{\frac{\mathit{p}(1-\mathit{p})}{\mathit{N}}} \leq Z_{\alpha/2}^2 \\ \Longrightarrow \mathcal{N} \cdot (\mathit{acc} - \mathit{p})^2 \leq \mathit{p} \cdot (1-\mathit{p}) \cdot Z_{\alpha/2}^2 \\ \Longrightarrow \mathcal{N} \cdot \mathit{acc}^2 - 2\mathit{N} \cdot \mathit{p} \cdot \mathit{acc} + \mathit{N} \cdot \mathit{p}^2 \leq \mathit{p} \cdot Z_{\alpha/2}^2 - \mathit{p}^2 \cdot Z_{\alpha/2}^2 \\ \Longrightarrow (\mathit{N} + Z_{\alpha/2}^2) \cdot \mathit{p}^2 - (2\mathit{N} \cdot \mathit{acc} + Z_{\alpha/2}^2) \cdot \mathit{p} + \mathit{N} \cdot \mathit{acc}^2 \leq 0 \end{split}$$

Confidence Interval for Accuracy (cont.)

Solve:

$$(N+Z_{lpha/2}^2)\cdot p^2-(2N\cdot acc+Z_{lpha/2}^2)\cdot p+N\cdot acc^2\leq 0$$

Two roots for $ax^2 + bx + c = 0$ are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Thus,

$$\begin{array}{lll} b^2 - 4ac = & (2N \cdot acc + Z_{\alpha/2}^2)^2 - 4 \cdot (N + Z_{\alpha/2}^2) \cdot (N \cdot acc^2) \\ & = & 4 \cdot N^2 \cdot acc^2 + 4 \cdot N \cdot acc \cdot Z_{\alpha/2}^2 + Z_{\alpha/2}^4 - 4 \cdot N^2 \cdot acc^2 - 4 \cdot N \cdot acc^2 \cdot Z_{\alpha/2}^2 \\ & = & 4 \cdot N \cdot acc \cdot Z_{\alpha/2}^2 + Z_{\alpha/2}^4 - 4 \cdot N \cdot acc^2 \cdot Z_{\alpha/2}^2 \\ & = & Z_{\alpha/2}^2 \cdot (4 \cdot N \cdot acc + Z_{\alpha/2}^2 - 4 \cdot N \cdot acc^2) \end{array}$$

$$\begin{split} \rho = & \frac{(2N \cdot acc + Z_{\alpha/2}^2) \pm \sqrt{b^2 - 4ac}}{2(N + Z_{\alpha/2}^2)} \\ & = & \frac{(2N \cdot acc + Z_{\alpha/2}^2) \pm Z_{\alpha/2} \cdot \sqrt{4 \cdot N \cdot acc + Z_{\alpha/2}^2 - 4 \cdot N \cdot acc^2}}{2(N + Z_{\alpha/2}^2)} \end{split}$$

Confidence Interval for Accuracy – Example

Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:

Let
$$1-\alpha=0.95$$
 (95% confidence), from probability table,
$$\frac{Z_{\alpha/2}=1.96}{1-\alpha\quad 0.99\quad 0.98\quad 0.95\quad 0.9\quad 0.8\quad 0.7\quad 0.5} \frac{Z_{\alpha/2}=2.58\quad 2.33\quad 1.96\quad 1.65\quad 1.28\quad 1.04\quad 0.67}$$

$$N = 100, acc = 0.8$$

- Put $Z_{\alpha/2}$, N, acc to the formula of p
- Confidence intervals for different *N* (71.1%, 86.7%)? 50 100 500 1000 5000 p(lower) 0.670 0.711 0.763 0.774 0.789 0.888 0.866 0.833 0.842 0.811 p(upper)
- \blacksquare The confidence interval is tighter when N increases.

References

- Chapter 3: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- ROC: https://scikit-learn.org/stable/auto_ examples/model_selection/plot_roc.html