Ondas viajeras y estacionarias

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

Parámetros de una onda propagante

1. Verifique si las siguientes expresiones matemáticas cumplen la ecuación de las ondas unidimensional. Grafique las funciones dadas.

a)
$$\Psi(x,t) = A e^{-\lambda(x-vt)^2}$$
 b) $\Psi(x,t) = \beta(x+vt)$

b)
$$\Psi(x,t) = \beta(x+vt)$$

c)
$$\Psi(x,t) = A \operatorname{sen} [k(x-vt)]$$

d)
$$\Psi(x,t) = B \operatorname{sen}^2(kx - \omega t)$$
 e) $\Psi(x,t) = C \cos(kx) \operatorname{sen}(\omega t)$ f) $\Psi(x,t) = D \operatorname{e}^{i(kx - \omega t)}$

e)
$$\Psi(x,t) = C\cos(kx)\sin(\omega t)$$

f)
$$\Psi(x,t) = D e^{i(kx - \omega t)}$$

2. La ecuación de una onda transversal en una cuerda está dada por: $y(x,t) = 0.1 \,\mathrm{m\,sen}\,(x\pi\,\mathrm{m}^{-1} - t4\pi\,\mathrm{s}^{-1})$. Determine para la onda que se propaga en ella:

a) amplitud,

b) frecuencia de vibración, y

c) velocidad de propagación.

- d) $x = 2 \,\mathrm{m}$ y $t = 1 \,\mathrm{s}$, desplazamiento, velocidad y la aceleración de la cuerda.
- 3. La frecuencia angular y número de onda de una onda transversal que se propaga en \hat{x} es $\omega = 10\,\mathrm{s}^{-1}$ y $k = 100 \,\mathrm{m}^{-1}$. En $x_1 = 1 \,\mathrm{km}$ y $t_1 = 1 \,\mathrm{s}$ tiene por fase $\phi = \frac{3\pi}{2}$.
 - a) ¿Cuál es la fase en ese mismo punto para t = 0?
 - b) Considerando que $\phi(x,t) = kx \omega t + \phi_0$, ¿cuánto vale ϕ_0 ?
 - c) ¿A qué velocidad se propaga la onda?
 - d) ¿En qué tiempo el frente de onda arriba a un $x_2 = 2x_1$?
- 4. Una cuerda con densidad lineal $\mu=0.005\,{\rm kg\over m}$ se tensa aplicando una fuerza de $0.25\,{\rm N}$. El extremo izquierdo se mueve hacia arriba y hacia abajo con un movimiento armónico simple de período $0.5 \, \mathrm{s}$ y amplitud $0.2 \, \mathrm{m}$ mientras se mantiene la tensión constante. Encontrar:
 - a) La velocidad de la onda generada en la cuerda, la frecuencia y la longitud de onda.
 - b) La expresión matemática para el desplazamiento: y(x,t).
 - c) La energía cinética media por unidad de longitud, de una partícula del medio.
 - d) La energía potencial media por unidad de longitud, de una partícula.

Estacionaria en una cuerda como superposición de propagantes

5. Una cuerda de longitud $L=0.6\,\mathrm{m}$, fija en sus dos extremos, oscila en uno de sus modos normales. La velocidad de propagación de las 8mmondas en dicha cuerda es $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$. En el momento que presenta su máxima amplitud pico a pico ésta es de 8 mm.

- a) Escribir $\Psi(x,t)$, sabiendo que $\Psi(x,0)=0 \ \forall x, y \ \text{que} \ \dot{\Psi}(L/2,0)>0$.
- b) Hallar las ondas propagantes $\Psi_{1,2}$ tales que $\Psi(x,t)$ sea una combinación lineal de éstas.
- 6. Una cuerda de longitud $L=1\,\mathrm{m}$, con un extremo fijo y uno libre, oscila en uno de sus modos normales. La velocidad de propagación de las ondas en dicha cuerda es $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$. En t=0 presenta su máxima 8mmamplitud pico a pico de 8 mm, siendo $\Psi(L,0) > 0$.

- a) Resolver, para esta situación, todo lo pedido en el problema anterior.
- b) Si ahora la cuerda está oscilando en un modo normal arbitrario n, con las mismas condiciones iniciales dadas arriba, repetir (a) (expresar en función de n).