Link prediction

Hands-on Tutorial

Neo4J + PySpark

Program

	Setup check
28/06	Introduction slides
	Hands-on tutorial - Part 1: data exploration and preparation (notebooks 1-4)
30/06	Hands-on tutorial - Part 2: modelling and evaluation (notebook 5)

Objectives

- Understand why link prediction is useful
- o Get an overview of link prediction methods
- o Identify real-world challenges
- o Build a recommender system based on link prediction with a toy example

What is link prediction

- Predict a missing or future link in a network using its graph structure.
- o Renewal of interest since 2004 with a paper from Liben-Nowell and Kleinberg

Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the *link prediction problem*, and develop approaches to link prediction based on measures for analyzing the "proximity" of nodes in a network.

Use cases

Use cases

Objectives

Recommender systems

Definition

user-item graph

link prediction = recommending an item to a user

Networks analysis

social graph

Methods

Dude

link prediction = predicting a relationship

Devon

Real-world

Use cases - Industries

SecurityCounter-terrorism, mass monitoring

BiologyMolecules network

Social media
People and communities

Methods - With heuristics

Idea

Objectives

Use a measure of proximity / similarity computed from the graph topology (number of common neighbors, Jaccard's coeff., etc.)

Use cases

00

If two unconnected nodes are close enough \rightarrow (according to a threshold), then they should be linked

Remarks

- Unsupervised method
- Which measure is the best one?

Indices	PPI	NS	Grid	PB	INT	USAir
CN	0.889	0.933	0.590	0.925	0.559	0.937
Salton	0.869	0.911	0.585	0.874	0.552	0.898
Jaccard	0.888	0.933	0.590	0.882	0.559	0.901
Sørensen	0.888	0.933	0.590	0.881	0.559	0.902
HPI	0.868	0.911	0.585	0.852	0.552	0.857
HDI	0.888	0.933	0.590	0.877	0.559	0.895
LHN1	0.866	0.911	0.585	0.772	0.552	0.758
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	0.590	0.922	0.559	0.925
RA	0.890	0.933	0.590	0.931	0.559	0.955

Comparison of similarity indices (AUC) - Lu 2010

Real-world

000

Methods - With supervised learning

Idea

- → Combine various similarity measure to predict if two nodes should be linked or not
- → Train a binary classifier with features describing pairs of nodes (common neighbors, etc.)
- → For two unconnected nodes, if the model predicts 1, then a link should exist between them, otherwise no.

Create a feature vector for a pair of nodes

Methods - With supervised learning

Process

- 1. Extract pairs of nodes from the grapha. pairs of connected nodes (labeled with 1)b. pairs of unconnected nodes (labeled with 0)
- 2. Train / test split this dataset of pairs
- **3.** Extract features for each pair (i.e. compute similarity measures)
- 4. Train the model (classification algorithm on tabular data)
- 5. Evaluate the model

Real-world considerations

Density and class imbalance

- → Real graphs are usually very sparse, i.e. if we consider all the possible pairs of nodes in the graph, very few are actually linked.
- → That is to say: the link density is very low (e.g. 0.00001).
- → In the supervised learning approach, if we considered all possible pairs of nodes to build our dataset, we would have a lot more pairs labeled with 0 than with 1.
- → We need to produce a train set with a 50% / 50% class repartition (ideal for learning). However, we should make sure that our test set respects the actual link density of our graph.

Class imbalance

Real-world considerations

Train and test sets design

- → We should not share information between the train and test set to get a fair performance evaluation.
- → The train/test split is challenging with graphs, because:
 - it should not break any links
 - each node should be in exactly on dataset (train or test)
 - a node in the train dataset should not be linked to a node in the test dataset

Real-world considerations

Model evaluation

- → Just respecting the density in the test dataset is not enough because a "stupid" classifier that would always predict 0 still has a very high score and is very hard to beat.
- → We can use *average* precision and recall: we compute these measures for various test datasets with various link densities and plot these results.

Recap

- Understand why link prediction is useful
 - -> Various use cases, as long as data can be represented as a graph
- Get an overview of link prediction methods
 - -> Unsupervised / supervised methods
- Identify real-world challenges
 - -> Class imbalance and performance evaluation design
- → Build a recommender system based on link prediction with a toy example

Download the notebooks from github.com/raphaaal/link-prediction

References

- Link Prediction with GDSL and scikit-learn Developer Guides. Neo4j Graph Database Platform. (n.d.).
 https://neo4j.com/developer/graph-data-science/link-prediction/scikit-learn/.
- Link Prediction Developer Guides. Neo4j Graph Database Platform. (n.d.). https://neo4j.com/developer/graph-data-science/link-prediction/.
- ML Pipelines. ML Pipelines Spark 3.1.2 Documentation. (n.d.). https://spark.apache.org/docs/latest/ml-pipeline.html.
- Use Apache Spark MLlib on Databricks. Use Apache Spark MLlib on Databricks | Databricks on AWS. (n.d.). https://docs.databricks.com/applications/machine-learning/train-model/mllib/index.html#binary-classification-example.
- Cazabet, R. (n.d.). Link Prediction and Graph Reconstruction. CazabetRemy. http://cazabetremy.fr/Teaching/catedra/5-Linkprediction.pdf.