OT_IP_Supervised_Learning_R_Part1.R

telly

2022-03-27

```
# 1. Statement of the Problem
#A Kenyan entrepreneur has created an online cryptography course and would want to advertise it on her
#She currently targets audiences originating from various countries.
#In the past, she ran ads to advertise a related course on the same
#blog and collected data in the process.
#She would now like to employ your services as a Data Science Consultant
#to help her identify which individuals are most likely to click on her ads.
#Metric for Success
#Build a model with at least 95% accuracy in classifying whether an advert will
#be clicked or not
#Experimental Design
#1. Data Cleaning
#2. Data Exploration
#3. Recommendations & Conclusions
#Downloading the relevant Packages
#install.packages("Hmisc")
#install.packages("ggthemes")
#install.packages("moments")
#install.packages("corrplot")
#install.packages("DataExplorer")
#install.packages("caTools")
#install.packages("caret")
#install.packages("rsample")
#install.packages("tidymodels")
#install.packages("kernlab")
#install.packages("GGally")
#Loading the relevant libraries
library(data.table)
```

```
## Warning: package 'data.table' was built under R version 4.0.5
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purr 0.3.4

## v tibble 3.1.6 v dplyr 1.0.8

## v tidyr 1.2.0 v stringr 1.4.0

## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'stringr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::between() masks data.table::between()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
library(ggplot2)
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
```

```
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
##
      src, summarize
## The following objects are masked from 'package:base':
##
      format.pval, units
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.5
library(moments)
library(corrplot)
## corrplot 0.92 loaded
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.0.5
library(caTools)
## Warning: package 'caTools' was built under R version 4.0.5
library(tidymodels)
## Warning: package 'tidymodels' was built under R version 4.0.5
## -- Attaching packages ------ tidymodels 0.2.0 --
                 0.7.12
## v broom
                          v rsample
                                        0.1.1
## v dials
                 0.1.0
                           v tune
                                         0.2.0
## v infer
                1.0.0
                                         0.2.6
                          v workflows
## v modeldata
                 0.1.1
                          v workflowsets 0.2.1
                         v yardstick
## v parsnip
                 0.2.1
                                        0.0.9
## v recipes
                 0.2.0
## Warning: package 'broom' was built under R version 4.0.5
## Warning: package 'dials' was built under R version 4.0.5
## Warning: package 'scales' was built under R version 4.0.5
```

```
## Warning: package 'infer' was built under R version 4.0.5
## Warning: package 'modeldata' was built under R version 4.0.5
## Warning: package 'parsnip' was built under R version 4.0.5
## Warning: package 'recipes' was built under R version 4.0.5
## Warning: package 'rsample' was built under R version 4.0.5
## Warning: package 'tune' was built under R version 4.0.5
## Warning: package 'workflows' was built under R version 4.0.5
## Warning: package 'workflowsets' was built under R version 4.0.5
## Warning: package 'yardstick' was built under R version 4.0.5
## -- Conflicts ----- tidymodels_conflicts() --
## x dplyr::between()
                        masks data.table::between()
## x scales::discard() masks purrr::discard()
## x dplyr::filter()
                        masks stats::filter()
## x dplyr::first()
                        masks data.table::first()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag()
                       masks stats::lag()
## x dplyr::last()
                        masks data.table::last()
## x yardstick::spec() masks readr::spec()
## x Hmisc::src()
                     masks dplyr::src()
## x recipes::step()
                        masks stats::step()
## x Hmisc::summarize() masks dplyr::summarize()
## x parsnip::translate() masks Hmisc::translate()
## x purrr::transpose()
                         masks data.table::transpose()
## * Dig deeper into tidy modeling with R at https://www.tmwr.org
library(caret)
## Warning: package 'caret' was built under R version 4.0.5
##
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
##
##
      precision, recall, sensitivity, specificity
## The following object is masked from 'package:survival':
##
      cluster
##
## The following object is masked from 'package:purrr':
##
##
      lift
```

```
library(class)
library(rsample)
library(kernlab)
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:scales':
##
##
       alpha
## The following object is masked from 'package:purrr':
##
##
       cross
## The following object is masked from 'package:ggplot2':
##
##
       alpha
library(GGally)
## Warning: package 'GGally' was built under R version 4.0.5
## Registered S3 method overwritten by 'GGally':
    method from
##
     +.gg
            ggplot2
#Loading the Dataset
advert <- fread('http://bit.ly/IPAdvertisingData')</pre>
#Data Exploration
#Checking the first 6 rows
head(advert)
      Daily Time Spent on Site Age Area Income Daily Internet Usage
##
## 1:
                         68.95 35
                                      61833.90
                                                              256.09
## 2:
                         80.23 31
                                       68441.85
                                                              193.77
## 3:
                         69.47 26
                                       59785.94
                                                              236.50
## 4:
                         74.15 29
                                      54806.18
                                                              245.89
## 5:
                         68.37 35
                                      73889.99
                                                              225.58
## 6:
                         59.99 23
                                      59761.56
                                                              226.74
##
                              Ad Topic Line
                                                       City Male
                                                                    Country
## 1:
         Cloned 5thgeneration orchestration
                                               Wrightburgh
                                                                    Tunisia
                                                               0
## 2:
         Monitored national standardization
                                                  West Jodi
                                                                      Nauru
## 3:
                                                               O San Marino
           Organic bottom-line service-desk
                                                   Davidton
## 4: Triple-buffered reciprocal time-frame West Terrifurt
                                                               1
                                                                      Italy
## 5:
              Robust logistical utilization
                                               South Manuel
                                                               0
                                                                    Iceland
## 6:
            Sharable client-driven software
                                                  Jamieberg 1
                                                                     Norway
##
                Timestamp Clicked on Ad
```

```
## 1: 2016-03-27 00:53:11
## 2: 2016-04-04 01:39:02
                                     0
## 3: 2016-03-13 20:35:42
                                    0
## 4: 2016-01-10 02:31:19
                                    0
## 5: 2016-06-03 03:36:18
                                     0
## 6: 2016-05-19 14:30:17
                                     Λ
#Checking the last 6 rows
tail(advert)
     Daily Time Spent on Site Age Area Income Daily Internet Usage
##
## 1:
                        43.70 28
                                     63126.96
                                                            173.01
## 2:
                        72.97 30
                                     71384.57
                                                            208.58
## 3:
                        51.30 45
                                     67782.17
                                                            134.42
                        51.63 51
## 4:
                                    42415.72
                                                            120.37
## 5:
                        55.55 19
                                     41920.79
                                                            187.95
## 6:
                        45.01 26
                                     29875.80
                                                            178.35
##
                            Ad Topic Line
                                                   City Male
## 1:
            Front-line bifurcated ability Nicholasland
## 2:
            Fundamental modular algorithm
                                          Duffystad
          Grass-roots cohesive monitoring New Darlene
## 3:
## 4:
             Expanded intangible solution South Jessica
                                                           1
## 5: Proactive bandwidth-monitored policy West Steven
          Virtual 5thgeneration emulation Ronniemouth
## 6:
                    Country
                                      Timestamp Clicked on Ad
##
                    Mayotte 2016-04-04 03:57:48
## 1:
## 2:
                    Lebanon 2016-02-11 21:49:00
                                                            1
## 3: Bosnia and Herzegovina 2016-04-22 02:07:01
                  Mongolia 2016-02-01 17:24:57
                                                           1
                  Guatemala 2016-03-24 02:35:54
## 5:
                                                           0
                     Brazil 2016-06-03 21:43:21
## 6:
                                                            1
#Data Structure
str(advert)
## Classes 'data.table' and 'data.frame': 1000 obs. of 10 variables:
## $ Daily Time Spent on Site: num 69 80.2 69.5 74.2 68.4 ...
                             : int 35 31 26 29 35 23 33 48 30 20 ...
## $ Age
## $ Area Income
                             : num 61834 68442 59786 54806 73890 ...
                             : num 256 194 236 246 226 ...
## $ Daily Internet Usage
## $ Ad Topic Line
                             : chr
                                    "Cloned 5thgeneration orchestration" "Monitored national standardi
## $ City
                             : chr "Wrightburgh" "West Jodi" "Davidton" "West Terrifurt" ...
## $ Male
                             : int 0 1 0 1 0 1 0 1 1 1 ...
                            : chr "Tunisia" "Nauru" "San Marino" "Italy" ...
## $ Country
## $ Timestamp
                             : POSIXct, format: "2016-03-27 00:53:11" "2016-04-04 01:39:02" ...
                             : int 000000100...
## $ Clicked on Ad
## - attr(*, ".internal.selfref")=<externalptr>
#Dimension of Dataset
dim(advert)
```

[1] 1000 10

```
#We have 1000 rows and 10 columns in the dataset
#Checking the Data Types of the columns
sapply(advert, class)
## $'Daily Time Spent on Site'
## [1] "numeric"
##
## $Age
## [1] "integer"
## $'Area Income'
## [1] "numeric"
##
## $'Daily Internet Usage'
## [1] "numeric"
##
## $'Ad Topic Line'
## [1] "character"
##
## $City
## [1] "character"
##
## $Male
## [1] "integer"
## $Country
## [1] "character"
##
## $Timestamp
## [1] "POSIXct" "POSIXt"
## $'Clicked on Ad'
## [1] "integer"
#3. Data Cleaning
# Standardize column names by using upper case and replacing the
#spaces with underscores using gsub() function
names(advert) <- gsub(" ","_", names(advert))</pre>
# lower the case of the column names using toupper() function
names(advert) <- toupper(names(advert))</pre>
# Confirming the changes
colnames(advert)
## [1] "DAILY_TIME_SPENT_ON_SITE" "AGE"
   [3] "AREA_INCOME"
##
                                    "DAILY_INTERNET_USAGE"
## [5] "AD_TOPIC_LINE"
                                    "CITY"
## [7] "MALE"
                                    "COUNTRY"
## [9] "TIMESTAMP"
                                    "CLICKED_ON_AD"
```

```
#Checking for Missing Data in columns using the colSums \ensuremath{\mathfrak{G}} is.na
colSums(is.na(advert))
## DAILY_TIME_SPENT_ON_SITE
                                                    AGE
                                                                      AREA_INCOME
##
                                                      0
##
                                         AD_TOPIC_LINE
                                                                              CITY
       DAILY_INTERNET_USAGE
##
##
                        MALE
                                                COUNTRY
                                                                        TIMESTAMP
##
                                                      0
                                                                                 0
                           0
##
               CLICKED_ON_AD
##
#There are no missing entries in the dataset
#Checking for Duplicates in the Dataset
anyDuplicated((advert))
## [1] 0
#There are no duplicated records in the Dataset
#Renaming the Columns to make them precise
names(advert)[1] <- "BROWSE_TIME"</pre>
names(advert)[4] <- "NET_USAGE"</pre>
names(advert)[10] <- "CLICKS"</pre>
names(advert)[5] <- "TOPIC"</pre>
names(advert)[3] <- "INCOME"</pre>
names(advert)[7] <- 'GENDER'</pre>
#Preview Dataset
head(advert, 3)
                                                                          TOPIC
##
      BROWSE TIME AGE
                         INCOME NET USAGE
## 1:
            68.95 35 61833.90
                                    256.09 Cloned 5thgeneration orchestration
## 2:
            80.23 31 68441.85
                                    193.77 Monitored national standardization
## 3:
            69.47 26 59785.94
                                    236.50
                                             Organic bottom-line service-desk
             CITY GENDER
                             COUNTRY
                                                 TIMESTAMP CLICKS
                             Tunisia 2016-03-27 00:53:11
                                                                 Ω
## 1: Wrightburgh
                        0
        West Jodi
                        1
                               Nauru 2016-04-04 01:39:02
                                                                 0
## 2:
                        0 San Marino 2016-03-13 20:35:42
## 3:
         Davidton
                                                                 0
#Checking for Unique Values in the Gender Column to ensure
#alignment with expectations
distinct(select(advert, GENDER ))
```

```
##
     GENDER
## 1:
## 2:
#Gender column consists of expected values 0 & 1
#Checking for unique values in the Number of Clicks per Ad
distinct(select(advert, CLICKS))
     CLICKS
##
## 1:
## 2:
          1
#Clicks column has expected values of 0 for NO and 1 for Yes
#Gender and Clicks are erroneously classed as integers
#They are categorical features. Therefore we convert them
#to factors
advert$GENDER <- factor(advert$GENDER)</pre>
advert$CLICKS <- factor(advert$CLICKS)</pre>
#Checking Structure of Data
str(advert)
## Classes 'data.table' and 'data.frame': 1000 obs. of 10 variables:
## $ BROWSE TIME: num 69 80.2 69.5 74.2 68.4 ...
## $ AGE
               : int 35 31 26 29 35 23 33 48 30 20 ...
## $ INCOME
                : num 61834 68442 59786 54806 73890 ...
## $ NET_USAGE : num 256 194 236 246 226 ...
## $ TOPIC
              : chr "Cloned 5thgeneration orchestration" "Monitored national standardization" "Orga
## $ CITY
                : chr "Wrightburgh" "West Jodi" "Davidton" "West Terrifurt" ...
## $ GENDER
               : Factor w/ 2 levels "0","1": 1 2 1 2 1 2 1 2 2 2 ...
## $ COUNTRY : chr "Tunisia" "Nauru" "San Marino" "Italy" ...
## $ TIMESTAMP : POSIXct, format: "2016-03-27 00:53:11" "2016-04-04 01:39:02" ...
## $ CLICKS : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>
#Outlier Detection
#Checking for Outliers in the Income Column
advert %>%
 ggplot(aes(x=1, y=INCOME)) +
 geom_boxplot(fill = "grey", color= 'blue') +
 ggtitle("Outlier Detection in the Income Column") +
 theme(axis.text = element_text(size=18),
       axis.title = element_text(size = 18),
       plot.title = element_text(hjust = 0.5, size = 20))
```

Outlier Detection in the Income Column

Outlier Detection in the Age Column

Boxplot for Internet Usage

Daily Internet Usage

```
#With the exception of the Individual Income Level which had circa eight
#outliers on the higher side, the rest of the columns had no outliers. Given that
#the outlier values are valid data points, we make the decision to retain them
#in the dataset.

#Leveraging power of Regular Expressions to check for non-charnumeric values
sum(grepl(':', advert))
```

[1] 0

```
#There are no non-charnumeric values

#FEATURE ENGINEERING

#Additional Feature Engineering to get the Gender factors to easily comprehensible
#types

# replace the ones and zeros in 'gender' column with 'male' and 'female' using
#the ifelse() function

advert$GENDER <- ifelse(advert$GENDER == 1, "Male", "Female")
advert$CLICKS <- ifelse(advert$CLICKS == 1, "Yes", "No")</pre>
```

```
#Grouping Countries by Continent
AFRICA <- advert %>%
  mutate(AFRICA = COUNTRY %in% c("Lesotho", "Mozambique", "Namibia", "Cape Verde",
                                 "Comoros", "Ethiopia", "Mali", "Djibouti", "Sudan",
                                 "Cameroon", "Egypt", "Burundi", "Ghana", "Tunisia"))
EUROPE <- advert %>%
  mutate(EUROPE = COUNTRY %in% c("Slovakia (Slovak Republic)", "Andorra",
                                 "Denmark", "Slovenia", "Romania", "Isle of Man",
                                 "Greece", "Monaco", "Russian Federation", "Spain",
                                 "Bosnia and Herzegovina", "Norway", "Iceland",
                                 "Italy", "San Marino"))
ASIA <- advert %>%
  mutate(ASIA = COUNTRY %in% c("Armenia", "Kiribati", "Marshall Islands",
                               "India", "Nepal", "Vanuatu", "Macao", "Tuvalu",
                               "Tokelau" , "Korea",
                               "British Indian Ocean Territory (Chagos Archipelago)",
                               "Australia", "Myanmar", "Nauru"))
AMERICA <- advert %>%
  mutate(AMERICA = COUNTRY %in% c("South Georgia and the South Sandwich Islands",
                                  "Uruguay", "Cayman Islands", "United States Virgin Islands",
                                  "Aruba", "Peru", "British Virgin Islands",
                                  "Bouvet Island (Bouvetoya)", "Barbados", "Grenada"))
MID_EAST <- advert %>%
  mutate(MID_EAST = COUNTRY %in% c("Syrian Arab Republic", "Yemen", "Afghanistan",
                                   "Palestinian Territory", "Qatar"))
#Creating Region Column in Our Dataset
advert <- mutate (advert, REGION = ifelse(COUNTRY %in% c("Congo", "Uganda", "Sierra Leone", "Angola", "
                                          ifelse(COUNTRY %in% c("Saint Barthelemy", "Germany", "Pitcair
                                                 ifelse(COUNTRY %in% c("Saint Martin", "Panama", "Guam"
                                                        ifelse(COUNTRY %in% c("Niue", "Mauritius", "Fij
                                                               ifelse(COUNTRY %in% c("Kuwait", "Jordan"
#Subsetting the Other Region Sub-classification to ensure we have all the countries
#in the Region Column
OTHER <- subset(advert, advert$REGION == "OTHER_REGION")
OTHER.
## Empty data.table (0 rows and 11 cols): BROWSE TIME, AGE, INCOME, NET USAGE, TOPIC, CITY...
#Previewing the dataset
tail(advert)
      BROWSE_TIME AGE INCOME NET_USAGE
                                                                        TOPIC
##
           43.70 28 63126.96 173.01
## 1:
                                                Front-line bifurcated ability
## 2:
           72.97 30 71384.57
                                  208.58
                                                Fundamental modular algorithm
           51.30 45 67782.17
## 3:
                                  134.42
                                              Grass-roots cohesive monitoring
```

Expanded intangible solution

120.37

4:

51.63 51 42415.72

```
## 5:
            55.55 19 41920.79
                                  187.95 Proactive bandwidth-monitored policy
## 6:
            45.01 26 29875.80
                                  178.35
                                               Virtual 5thgeneration emulation
               CITY GENDER
                                                             TIMESTAMP CLICKS
##
                                           COUNTRY
      Nicholasland Female
## 1:
                                           Mayotte 2016-04-04 03:57:48
                                                                           Yes
## 2:
          Duffystad
                                           Lebanon 2016-02-11 21:49:00
                                                                           Yes
## 3:
       New Darlene
                      Male Bosnia and Herzegovina 2016-04-22 02:07:01
                                                                          Yes
## 4: South Jessica
                                         Mongolia 2016-02-01 17:24:57
                                                                          Yes
        West Steven Female
## 5:
                                        Guatemala 2016-03-24 02:35:54
                                                                           No
## 6:
        Ronniemouth Female
                                            Brazil 2016-06-03 21:43:21
                                                                           Yes
##
        REGION
## 1:
        AFRICA
## 2: MID_EAST
## 3:
       EUROPE
## 4:
          ASIA
## 5: AMERICA
## 6: AMERICA
#We will Split Date and Time from Timestamp in order to carry out further analysis
advert$DATE <- as.Date(advert$TIMESTAMP)</pre>
advert$TIME <- format(as.POSIXct(advert$TIMESTAMP), format = "%H:%M:%S")
#Extracting time from the date/time stamp
advert <- advert %>% separate(TIME, c("HOUR", "MINUTE", "SECONDS"))
#Apportioning the Hour Column into features that can be analyzed
advert$HOUR = ifelse(advert$HOUR >= "00" & advert$HOUR <= "06", "Wee Hours",
                     ifelse(advert$HOUR >= "07" & advert$HOUR <= "12", "Morning Hours",</pre>
                            ifelse(advert$HOUR >= "13" & advert$HOUR <= "18",
                                    "Afternoon Hours", "Night")))
#Previewing the dataset
head(advert)
##
      BROWSE TIME AGE
                        INCOME NET USAGE
                                                                           TOPIC
## 1:
            68.95 35 61833.90
                                  256.09
                                             Cloned 5thgeneration orchestration
## 2:
            80.23 31 68441.85
                                  193.77
                                             Monitored national standardization
## 3:
            69.47 26 59785.94
                                  236.50
                                               Organic bottom-line service-desk
## 4:
            74.15 29 54806.18
                                  245.89 Triple-buffered reciprocal time-frame
## 5:
            68.37 35 73889.99
                                  225.58
                                                  Robust logistical utilization
## 6:
            59.99 23 59761.56
                                  226.74
                                                Sharable client-driven software
                CITY GENDER
                               COUNTRY
                                                  TIMESTAMP CLICKS REGION
##
## 1:
         Wrightburgh Female
                               Tunisia 2016-03-27 00:53:11
                                                                No AFRICA
## 2:
           West Jodi
                       Male
                                 Nauru 2016-04-04 01:39:02
                                                                     ASIA
## 3:
            Davidton Female San Marino 2016-03-13 20:35:42
                                                                No EUROPE
## 4: West Terrifurt
                       Male
                                  Italy 2016-01-10 02:31:19
                                                                No EUROPE
## 5:
        South Manuel Female
                               Iceland 2016-06-03 03:36:18
                                                                No EUROPE
## 6:
                                Norway 2016-05-19 14:30:17
                                                                No EUROPE
           Jamieberg
                            HOUR MINUTE SECONDS
##
            DATE
## 1: 2016-03-27
                       Wee Hours
                                      53
                                              11
                                      39
## 2: 2016-04-04
                       Wee Hours
                                              02
## 3: 2016-03-13
                           Night
                                      35
                                              42
## 4: 2016-01-10
                       Wee Hours
                                      31
                                              19
```

```
## 5: 2016-06-03
                       Wee Hours
                                              18
## 6: 2016-05-19 Afternoon Hours
                                      30
                                              17
#Dropping Columns we don't need for analysis
advert <- select(advert, -c(TOPIC, CITY, TIMESTAMP, MINUTE, DATE, SECONDS))</pre>
numeric <- select(advert, c(BROWSE_TIME, AGE, INCOME, NET_USAGE) )</pre>
non.numeric <- select(advert, c(GENDER, COUNTRY, CLICKS, REGION, HOUR))</pre>
#EXPLORATORY DATA ANALYSIS
#UNIVARIATE ANALYSIS
top.countries <-advert %>%
  select(COUNTRY, CLICKS) %>%
  filter(CLICKS== "Yes") %>%
  count(COUNTRY) %>%
  arrange(desc(n)) %>%
  head(5)
#Australia, Turkey and Ethiopia are the countries with the most clicks
top.countries <-advert %>%
  select(COUNTRY, CLICKS) %>%
  filter(CLICKS== "Yes") %>%
  count(COUNTRY) %>%
  arrange(-desc(n)) %>%
  head(5)
#THe list number of clicks per country was 1 click
nop.countries <-advert %>%
  select(COUNTRY, CLICKS) %>%
  filter(CLICKS== "No") %>%
  count(COUNTRY) %>%
  arrange(desc(n)) %>%
  head(5)
#Bolivia, Croatia & Gabon registered the highest number of Zero CLicks on an advert
nop.countries <-advert %>%
  select(COUNTRY, CLICKS) %>%
  filter(CLICKS== "No") %>%
  count(COUNTRY) %>%
  arrange(-desc(n)) %>%
  head(5)
#Measures of Central Tendency
#Summary of the numeric values using the function summary
summary(numeric)
    BROWSE TIME
                                         INCOME
                                                       NET USAGE
                         AGE
```

:13996

:104.8

Min.

Min. :32.60 Min. :19.00 Min.

```
## 1st Qu.:51.36 1st Qu.:29.00 1st Qu.:47032 1st Qu.:138.8
## Median :68.22 Median :35.00 Median :57012 Median :183.1
## Mean :65.00 Mean :36.01 Mean :55000 Mean :180.0
## 3rd Qu.:78.55 3rd Qu.:42.00 3rd Qu.:65471
                                              3rd Qu.:218.8
## Max. :91.43 Max. :61.00 Max. :79485 Max. :270.0
#The average Browse time was 65, average age of users 36 years, average region income
#being 55000 and the average network usage 180.
#The maximum time spent online was 91.43 while the least was 32.60
#The oldest person online was age 61 whilst the youngest was only 19
#The highest area income was around 79000 whilst the least was around 14000
#The highest internet usage per day was 270 whilst the least was 105
#Description of the entire Dataset using the Describe function
describe(advert)
## advert
##
## 9 Variables 1000 Observations
## BROWSE_TIME
      n missing distinct Info Mean
                                             \operatorname{\mathsf{Gmd}} .05
                                                             .10
                     900 1
.75 .90
                                    65
.95
      1000 0 900
                                             18.11 37.58 41.34
##
     .25
##
              .50
##
     51.36 68.22 78.55 83.89
                                     86.20
## lowest : 32.60 32.84 32.91 32.99 33.21, highest: 90.97 91.10 91.15 91.37 91.43
    n missing distinct Info Mean Gmd .05
##
                                                             .10
           .50 43 0.999 36.01
.50 .75 .90 .95
                             0.999
                                           9.943 23.95
##
      1000
                                     36.01
##
     . 25
     29.00 35.00 42.00 49.00 52.00
```

lowest : 19 20 21 22 23, highest: 57 58 59 60 61 ## -----## INCOME Gmd .05 Info Mean ## n missing distinct .10 1 55000 .90 .95 ## 1000 0 1000 55000 15037 28275 35223 .75 ## . 25 .50 ## 47032 57012 65471 70506 73601 ## lowest : 13996.50 14548.06 14775.50 15598.29 15879.10 ## highest: 78092.95 78119.50 78520.99 79332.33 79484.80 ## -----## NET USAGE Gmd .05 ## n missing distinct Info Mean .10 0 966 1 .50 .75 .90 ## 1000 0 966 180 50.63 113.5 120.5 . 25 ## .95

```
138.8 183.1 218.8 236.2 246.7
##
##
## lowest : 104.78 105.00 105.04 105.15 105.22, highest: 259.76 261.02 261.52 267.01 269.96
##
  n missing distinct
##
     1000 0 2
##
## Value Female Male
## Frequency 519 481
## Proportion 0.519 0.481
## COUNTRY
## n missing distinct
##
     1000 0 237
##
## lowest : Afghanistan Albania
                             Algeria
                                            American Samoa
                                                              Andorra
## highest: Wallis and Futuna Western Sahara Yemen
                                                Zambia
                                                               Zimbabwe
## CLICKS
##
  n missing distinct
##
     1000 0
##
## Value
          No Yes
## Frequency 500 500
## Proportion 0.5 0.5
                 _____
## REGION
##
   n missing distinct
##
     1000 0
##
## lowest : AFRICA AMERICA ASIA EUROPE MID_EAST
## highest: AFRICA AMERICA ASIA EUROPE MID_EAST
##
## Value AFRICA AMERICA ASIA EUROPE MID_EAST
## Frequency
           205 224
                          236 273 62
## Proportion 0.205 0.224 0.236 0.273 0.062
## HOUR
##
  n missing distinct
     1000 0 4
##
## Value Afternoon Hours Morning Hours Night Wee Hours
## Frequency 241 255
                                          224
                                                       280
## Proportion 0.241 0.255 0.224
                                                0.280
# Pie-chart displaying the distribution of the countries in the Dataset
region_perc <- advert %>%
 filter(REGION != "NA") %>%
 group_by(REGION) %>%
 count() %>%
 ungroup() %>%
```

```
arrange(desc(REGION)) %>%
  mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage)- 0.5 * percentage)
ggplot(region_perc, aes(x = "", y= percentage, fill = REGION)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage,"%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "Set1") + labs(title= "Distribution of Countries in 2016 D
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Countries in 2016 Dataset


```
#Europe was the most represented region in the dataset whilst the Mid_East was
#the least represented

#Display of the most active hours
hour_perc <- advert %>%
  filter(HOUR != "NA") %>%
  group_by(HOUR) %>%
  count() %>%
  ungroup() %>%
  ungroup() %>%
  arrange(desc(HOUR)) %>%
  mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage)- 0.5 * percentage)
ggplot(hour_perc, aes(x = "", y= percentage, fill = HOUR)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage, "%", sep = "")), col = "black") +
```

```
theme_void() + scale_fill_brewer(palette = "PRGn") + labs(title= "Distribution of Activity by Hour in theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Activity by Hour in the 2016 Data


```
#Most browsing activity took place in the wee Hours of the night and the morning
#hours
#Display of whether an advert was clicked or not
click_perc <- advert %>%
  filter(CLICKS != "NA") %>%
  group_by(CLICKS) %>%
  count() %>%
  ungroup() %>%
  arrange(desc(CLICKS)) %>%
  mutate( percentage = round(n/sum(n), 1)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(click_perc, aes(x = "", y= percentage, fill = CLICKS)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage,"%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "Set1") + labs(title= "Distribution of Site Clicks in 2016
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Distribution of Site Clicks in 2016


```
# There was no split on whether an advert was clicked or not. There was always
#a 50% chance that a user would click on an advert
#Plotting Pie Chart for Gender Distribution
#Filtering the gender df
pie_gender <- advert %>%
  filter(GENDER != "NA") %>%
  group_by(GENDER) %>%
  count() %>%
  ungroup() %>%
  arrange(desc(GENDER)) %>%
  mutate( percentage = round(n/sum(n), 2)*100, lab.pos = cumsum(percentage) - 0.5 * percentage)
ggplot(pie_gender, aes(x = "", y= percentage, fill = GENDER)) +
  geom_bar(stat = "identity")+
  coord_polar("y", start = 200) +
  geom_text(aes(y = lab.pos, label = paste(percentage, "%", sep = "")), col = "black") +
  theme_void() + scale_fill_brewer(palette = "Spectral") + labs(title= "Gender Distribution in 2016") +
  theme(plot.title = element_text(hjust = 0.4, size = 20))
```

Gender Distribution in 2016

Density Plot of Age


```
# Skewness and kurtosis of Daily Browsing cat('The skewness and kurtosis of daily browsing', '\n')
```

The skewness and kurtosis of daily browsing

```
cat("Skewness: ", skewness(advert$BROWSE_TIME), '\n')
```

Skewness: -0.3712026

```
cat("Kurtosis: ", kurtosis(advert$BROWSE_TIME), '\n')
```

Kurtosis: 1.903942

```
cat("Variance: ", var(advert$BROWSE_TIME), '\n')
```

Variance: 251.3371

```
cat("Standard Deviation: ", sd(advert$BROWSE_TIME), '\n')
```

Standard Deviation: 15.85361

```
#Skewness, variance, standard deviation and Kurtosis of Income
cat('The skewness and kurtosis of Area Income', '\n')
## The skewness and kurtosis of Area Income
cat("Skewness: ", skewness(advert$INCOME), '\n')
## Skewness: -0.6493967
cat("Kurtosis: ", kurtosis(advert$INCOME), '\n')
## Kurtosis: 2.894694
cat("Variance: ", var(advert$INCOME), '\n')
## Variance: 179952406
cat("Standard Deviation: ", sd(advert$INCOME), '\n')
## Standard Deviation: 13414.63
#Skewness and Kurtosis of Age
cat('The skewness and kurtosis of Age', '\n')
## The skewness and kurtosis of Age
cat("Skewness: ", skewness(advert$AGE), '\n')
## Skewness: 0.4784227
cat("Kurtosis: ", kurtosis(advert$AGE), '\n')
## Kurtosis: 2.595482
cat("Variance: ", var(advert$AGE), '\n')
## Variance: 77.18611
cat("Standard Deviation: ", sd(advert$AGE), '\n')
## Standard Deviation: 8.785562
```

```
#The values are fairly symmetrical, very slightly skewed to the right and platykurtic

#Bivariate Analysis

#Correlation Plot

options(repr.plot.width = 18, repr.plot.height = 18)

plot_correlation(advert, type = 'c',cor_args = list( 'use' = 'complete.obs'))
```


#Pairwise Scatterplot

head(advert)

```
##
      BROWSE_TIME AGE
                        INCOME NET_USAGE GENDER
                                                    COUNTRY CLICKS REGION
## 1:
            68.95
                  35 61833.90
                                  256.09 Female
                                                    Tunisia
                                                                No AFRICA
            80.23 31 68441.85
## 2:
                                  193.77
                                           Male
                                                      Nauru
                                                                     ASIA
                                                                No
## 3:
            69.47
                   26 59785.94
                                  236.50 Female San Marino
                                                                No EUROPE
## 4:
            74.15
                  29 54806.18
                                  245.89
                                           Male
                                                      Italy
                                                                No EUROPE
## 5:
            68.37
                  35 73889.99
                                  225.58 Female
                                                    Iceland
                                                                No EUROPE
            59.99 23 59761.56
## 6:
                                  226.74
                                           Male
                                                     Norway
                                                                No EUROPE
##
                 HOUR
## 1:
            Wee Hours
## 2:
            Wee Hours
## 3:
                Night
```

```
## 4:
            Wee Hours
## 5:
            Wee Hours
## 6: Afternoon Hours
df.pw <- select(advert, -c(COUNTRY, REGION))</pre>
head(df.pw)
                        INCOME NET_USAGE GENDER CLICKS
                                                                   HOUR
##
      BROWSE_TIME AGE
## 1:
                                                             Wee Hours
            68.95 35 61833.90
                                  256.09 Female
                                                    No
## 2:
           80.23 31 68441.85
                                  193.77
                                           Male
                                                    No
                                                             Wee Hours
                                                    No
## 3:
            69.47 26 59785.94
                                  236.50 Female
                                                                 Night
## 4:
            74.15 29 54806.18
                                  245.89
                                           Male
                                                    No
                                                              Wee Hours
            68.37 35 73889.99
                                                             Wee Hours
## 5:
                                  225.58 Female
                                                    No
## 6:
            59.99 23 59761.56
                                  226.74
                                           Male
                                                    No Afternoon Hours
options(repr.plot.width = 18, repr.plot.height = 18)
ggpairs(df.pw, mapping= aes(color = CLICKS), upper = list(continuous = wrap("cor", size = 10))) +
 labs(title = "Pairwise plots of the Numerical variables") +
 theme(plot.title = element_text(hjust = 0.6))
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
```

Pairwise plots of the Numerical variables

Faceted Histogram of Age Distribution by Gende

Faceted Histogram of Income across Clicks

Scatterplot of Age Vs Income in 2016

Scatterplot of Age Vs Browse Time in 2016

Side-Barchart of Clicks by Gender

Barchart of Clicks by Hours

Barchart of Region by Hours

Barchart of Region according to Gender

Proportional Barchart of Clicks by Region

Trend of Age Vs Income by Region

Trend of Age Vs Browse Time by Region

Trend of Browse Time Vs Net Usage by Region

 ${\it \#Net\ usage\ increases\ as\ the\ Browse\ time\ increases.}$

#FOLLOW UP QUESTIONS

#Reflecting on whether we have achieved the objectives we set out

#1. Did we have the right data? Yes, we did

#2. Do we need other Data top answer our question? Yes, it would go along way in #explaining and validating certain observations in the current dataset e.g #why they is a 50% chance of CLicking or not clicking an add $\mathfrak G$ a fair representation #of countries in the Mid_East

#3. Did we have the right Question? Yes, we did.

#COnclusions & Recommendations

#In conclusion, women are the least likely to click on a link.
#Perhaps focus should be placed on items or topics likely to get women interested in clicking a link.

#Men are most likely to click a link. We recommend that the be targeted the most. #A lot of traffic be directed to men.

```
#Clearly the afternoons are the worst possible times to advertise online.
#It appears the wee hours of the night are the best times to advertise Crypto topics.
#Asia is clearly a key focus area as most of the clicks were registered there
#MODEL DEVELOPMENT
#In this section we will create a supervised learning model that would
#help identify the individuals most likely to click on the ads in the blog
#1. Data Preprocessing
#Checking & Confirming that the Dataset is machine learning worthy
#Renaming the Dataset to avoid confusion as we manipulate it further
df <- advert
#Previewing the columns
str(df)
                                         1000 obs. of 9 variables:
## Classes 'data.table' and 'data.frame':
## $ BROWSE_TIME: num 69 80.2 69.5 74.2 68.4 ...
                : int 35 31 26 29 35 23 33 48 30 20 ...
## $ AGE
## $ INCOME
               : num 61834 68442 59786 54806 73890 ...
## $ NET USAGE : num 256 194 236 246 226 ...
               : chr "Female" "Male" "Female" "Male" ...
## $ GENDER
## $ COUNTRY : chr "Tunisia" "Nauru" "San Marino" "Italy" ...
## $ CLICKS : chr "No" "No" "No" "No" ...
## $ REGION
                : chr "AFRICA" "ASIA" "EUROPE" "EUROPE" ...
                : chr "Wee Hours" "Wee Hours" "Night" "Wee Hours" ...
## $ HOUR
## - attr(*, ".internal.selfref")=<externalptr>
#We have categorical variables in the dataset i.e'., Gender, Country
#Clicks, Region & Hour
#Dropping the Country column as we have the Regions column in the dataset
#which contains the countries anyway
df <- select(df, -COUNTRY)</pre>
#Checking the Dimensions
dim(df)
```

[1] 1000 8

```
#We need to convert the four remaining categorical variables into a format
#our machine learning model can comprehend
#Encoding the Categorical columns
#CLICKS
df$CLICKS <- ifelse(df$CLICKS== "No", 1, 2)</pre>
#GENDER
df$GENDER <- ifelse(df$GENDER== "Female", 0, 1)</pre>
#REGION
df$REGION <- ifelse(df$REGION == "AFRICA", 1,</pre>
                   ifelse(df$REGION == "ASIA", 2,
                          ifelse(df$REGION == "EUROPE", 3,
                                 ifelse(df$REGION == "MID_EAST", 4, 5))
                   ))
#Hour
df$HOUR <- ifelse(df$HOUR == "Wee Hours", 1,</pre>
                  ifelse(df$HOUR == "Morning", 2,
                        ifelse(df$HOUR == "Afternoon", 3, 4)))
#Confirming the changes
head(df)
     BROWSE TIME AGE INCOME NET USAGE GENDER CLICKS REGION HOUR
##
## 1:
           68.95 35 61833.90 256.09
                                             0
                                                    1
## 2:
           80.23 31 68441.85 193.77
                                             1
                                                    1
                                                           2
                                                                1
## 3:
           69.47 26 59785.94 236.50
                                             0
                                                   1
                                                           3
           74.15 29 54806.18 245.89
                                                    1
                                                           3
## 4:
                                             1
                                                                1
                                             0
## 5:
           68.37 35 73889.99 225.58
                                                   1
                                                           3
                                                              1
## 6:
           59.99 23 59761.56
                                 226.74
#Factorizing the independent variable
df$CLICKS <- as.factor(df$CLICKS)</pre>
#K-Nearest Neighbours (KNN)
#KNN is a supervised learning algorithm that can perform both regression
#and classification. It predicts the correct class for the test data by calculating
#the distance between the test data and all the training points.
#Given our problem, KNN could help create an algorithm to predict whether a user
#with the various features in our dataset will click an advert.
#Some of the Merits of KNN include: training is not complex, it works with any number
#of classes, it is easy to add more data and it requires very few parameters
```

```
#Splitting the Dataset into Training & Test set
#Setting a seed
set.seed(32)
# splitting dataset into train and test
split = initial_split(df, prop = 0.65)
train = training(split)
test = testing(split)
#Confirming the dataset is split as anticipated
dim(train)
## [1] 650
             8
dim(test)
## [1] 350
#Creating the KNN model
#First using the traincontrol method from Caret, we specify the parameters.
# We start with 10 resampling iterations and 3 complete sets of folds to
#recompute the cross-validation
trctrl = trainControl(method = "repeatedcv", number = 10, repeats = 3 )
# Training
#The Browse time, Age, Income and net usage are not scaled and this could
#be problematic. Most machine learning algorithms work with euclidean distances
#and not scaling the data assures of wrong results. Thus we include preProcess a
#step to ensure our data is scaled and centered.
knn.mod <- train(CLICKS ~., train, method = "knn", trControl = trctrl,</pre>
                 preProcess = c("center", "scale"), tuneLength = 10 )
knn.mod
## k-Nearest Neighbors
##
## 650 samples
    7 predictor
    2 classes: '1', '2'
##
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 585, 586, 584, 585, 584, 585, ...
## Resampling results across tuning parameters:
##
```

```
##
    k Accuracy
                    Kappa
##
     5 0.9518347 0.9036557
##
     7 0.9548963 0.9097804
##
     9 0.9538551 0.9077019
##
     11 0.9564275 0.9128423
##
    13 0.9538865 0.9077660
##
    15 0.9538789 0.9077488
     17 0.9564435 0.9128826
##
##
     19 0.9585031 0.9169975
##
    21 0.9564591 0.9129122
##
     23 0.9549204 0.9098302
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 19.
#Using predict() method to predict the results
pred = predict(knn.mod, newdata = test)
# Obtaining the confusion matrix
plot.knn <- confusionMatrix(pred, test$CLICKS)</pre>
#Function to Visualize Our results
draw_confusion_matrix <- function(cm) {</pre>
  layout(matrix(c(1,1,2)))
  par(mar=c(2,2,2,2))
  plot(c(100, 345), c(300, 450), type = "n", xlab="", ylab="", xaxt='n', yaxt='n')
  title('CONFUSION MATRIX', cex.main=2)
  # create the matrix
  rect(150, 430, 240, 370, col='#3F97D0')
  text(195, 435, 'Class1', cex=1.2)
  rect(250, 430, 340, 370, col='#F7AD50')
  text(295, 435, 'Class2', cex=1.2)
  text(125, 370, 'Predicted', cex=1.3, srt=90, font=2)
  text(245, 450, 'Actual', cex=1.3, font=2)
  rect(150, 305, 240, 365, col='#F7AD50')
  rect(250, 305, 340, 365, col='#3F97D0')
  text(140, 400, 'Class1', cex=1.2, srt=90)
  text(140, 335, 'Class2', cex=1.2, srt=90)
  # add in the cm results
  res <- as.numeric(cm$table)</pre>
  text(195, 400, res[1], cex=1.6, font=2, col='white')
  text(195, 335, res[2], cex=1.6, font=2, col='white')
  text(295, 400, res[3], cex=1.6, font=2, col='white')
  text(295, 335, res[4], cex=1.6, font=2, col='white')
  # add in the specifics
  plot(c(100, 0), c(100, 0), type = "n", xlab="", ylab="", main = "DETAILS", xaxt='n', yaxt='n')
  text(10, 85, names(cm$byClass[1]), cex=1.2, font=2)
  text(10, 70, round(as.numeric(cm$byClass[1]), 3), cex=1.2)
```

```
text(30, 85, names(cm$byClass[2]), cex=1.2, font=2)
text(30, 70, round(as.numeric(cm$byClass[2]), 3), cex=1.2)
text(50, 85, names(cm$byClass[5]), cex=1.2, font=2)
text(50, 70, round(as.numeric(cm$byClass[5]), 3), cex=1.2)
text(70, 85, names(cm$byClass[6]), cex=1.2, font=2)
text(70, 70, round(as.numeric(cm$byClass[6]), 3), cex=1.2)
text(90, 85, names(cm$byClass[7]), cex=1.2, font=2)
text(90, 70, round(as.numeric(cm$byClass[7]), 3), cex=1.2)

# add in the accuracy information
text(30, 35, names(cm$overall[1]), cex=1.5, font=2)
text(30, 20, round(as.numeric(cm$overall[1]), 3), cex=1.4)
text(70, 35, names(cm$overall[2]), cex=1.5, font=2)
text(70, 20, round(as.numeric(cm$overall[2]), 3), cex=1.4)
}
draw_confusion_matrix(plot.knn)
```


DETAILS

Sensitivity	Specificity	Precision	Recall 0.994	F1
0.994	0.931	0.935		0.964
	Accuracy 0.963		Kappa 0.926	

```
#The model is 96.3% accurate

#Parameter Tuning to further improve performance of the model
search_grid <- expand.grid( k = seq(1, 25, by=2))</pre>
```


DETAILS


```
#Our Model performance does not improve with the further tuning of parameters
#the optimal k= 7

#Challenging the Solution

#Random Forest

#Leveraging the Carets Library we only change the method from knn to random forest using ranger

#Creating Random Forest model and training data
```

note: only 6 unique complexity parameters in default grid. Truncating the grid to 6 .

```
random.forest
```

```
## Random Forest
##
## 650 samples
   7 predictor
##
##
    2 classes: '1', '2'
## Pre-processing: centered (7), scaled (7)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 584, 584, 586, 586, 585, 586, ...
## Resampling results across tuning parameters:
##
##
    mtry splitrule Accuracy
                                 Kappa
##
                     0.9723422 0.9446846
          gini
          extratrees 0.9636932 0.9273827
##
          gini
##
    3
                      0.9723735 0.9447477
##
    3
        extratrees 0.9626362 0.9252668
##
        gini
                0.9698169 0.9396351
##
    4
         extratrees 0.9646797 0.9293541
##
    5
        gini
                 0.9693354 0.9386708
##
       extratrees 0.9651926 0.9303815
##
    6
          gini
                   0.9662660 0.9325279
          extratrees 0.9657139 0.9314251
##
    6
##
    7
                      0.9606320 0.9212561
          gini
    7
##
          extratrees 0.9651930 0.9303853
##
## Tuning parameter 'min.node.size' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were mtry = 3, splitrule = gini
## and min.node.size = 1.
#Fitting model to the test data
pred <- predict(random.forest, newdata=test)</pre>
#Evaluating the model performance
plot.randomforest <- confusionMatrix(pred, test$CLICKS)</pre>
```

draw_confusion_matrix(plot.randomforest)

DETAILS

1	sitivity 931	Specificity 0.966	Precision 0.964	Recall 0.931	F1 0.948
		Accuracy 0.949		Kappa 0.897	

DETAILS

Sensitivity	Specificity	Precision	Recall 0.971	F1
0.971	0.966	0.966		0.969
	Accuracy 0.969		Kappa 0.937	

#The SVM model has the most accurate prediction of 97%

#Model Development Conclusion

 $\#The\ K\ Nearest\ Neighbour\ Model\ has\ a\ decent\ accuracy\ of\ 96\%$ and is not improved by the $\#parameter\ tuning\ endevours$

#The Linear Support Vector Machine Model we build to challenge the results of the KNN
#Model performs much better than the KNN Model. We achieve a classification accuracy of
#circa 97%. It also has the highest precision and a high specificity output. This means
#it better responds to the question of how many people who didn't click on the advert were
#correctly classified as such and an even higher Sensitivity (more people who clicked ad add were corre

 $\textit{\#With Random Forest, there was a significant drop in accuracy and it underperformed on Sensitivity, } \\ \textit{\#Specificity and precision compared to KNN and the SVM models}$

#We therefore implement our classification prediction using the Linear Support Vector Machine.

#We have also achieved our objective of building a model with at least 95% accuracy