Claims:

SubAIT

1. A receiver responsive to an n_o plurality of antennas comprising:

a pre-filter having an $n_o \times n_i$ plurality of FIR filters, each responsive to a signal that is derived from one of said n_o antennas and applied to an input point, and each developing an output signal that contributes to one of n_i pre-filter outputs; and

decision logic responsive to said n_i outputs.

10

- **2.** The receiver of claim **1** further comprising a sampling circuit interposed between said n_o plurality of antennas and said pre-filter that samples received signal at rate $T_s = \frac{T}{I}$, where I is an integer and T is symbol rate of a transmitter whose signals said receiver receives.
 - 3. The receiver of claim 2 where I>1.
- **4.** The receiver of claim **1** where coefficients of said FIR filters are computed in a processor in response to a block of N_r symbols.
 - 5. The receiver of claim 4 where said processor is part of said pre-filter.

6. The receiver of claim 4 where said coefficients of said FIR filters are computed once every time interval during which transfer characteristics of said transmission channel, H, are substantially constant.

7. The receiver of claim 6 where said processor installs computed coefficients of said FIR filters in said FIR filters following each computation.

5

10

25

30

- r of claim 1 where said FIR filters form an array of filters,
- 8. The receiver of claim 1 where said FIR filters form an array of filters, and said array has one FIR filter connected between each of said n_o input points and said n_i outputs.
- **9.** The receiver of claim **8** where said h_0 plurality of antennas receive signals, via said transmission channel, from a transmitter having a multiple number of transmitting antennas.
- **10.** The receiver of claim $\mathbf{9}$ where said transmitter has n_i transmitting antennas.
- 11. The receiver of claim 10 wherein said decision logic is adapted to receive from said transmitted signals that were encoded in a space-time encoding schema.
- 12. The receiver of claim 2 where said plurality of FIR filters is expressed by matrix **W**, and **W** is computed by $\mathbf{W}_{opt}^{\star} = \tilde{\mathbf{B}}_{opt}^{\star} \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1}$,

 $\mathbf{W}_{opt}^{\star} = \tilde{\mathbf{B}}_{opt}^{\star} \mathbf{R}_{xx} \mathbf{H}^{\star} (\mathbf{H} \mathbf{R}_{xx} \mathbf{H}^{\star} + \mathbf{R}_{nn})^{-1}$, or $\mathbf{W}_{opt}^{\star} = \tilde{\mathbf{B}}_{opt}^{\star} (\mathbf{R}_{xx}^{-1} + \mathbf{H}^{\dagger} \mathbf{R}_{nn}^{-1} H)^{-1} \mathbf{H}^{\dagger} \mathbf{R}_{nn}^{-1}$, where \mathbf{R}_{xx} is an autocorrelation matrix of a block of signals transmitted by a plurality of transmitting antennas to said n_o antennas via a channel having a transfer characteristic \mathbf{H} , \mathbf{R}_{nn} is an autocorrelation matrix of noise received by said plurality of n_o antennas during said block of signals transmitted by said transmitting antennas, $\mathbf{R}_{xy} = \mathbf{R}_{xx} \mathbf{H}^{\dagger}$, $\mathbf{R}_{yy} = \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^{\dagger} + \mathbf{R}_{nn}$, and

- $\tilde{\mathbf{B}}_{opt}$ is a sub-matrix of matrix \mathbf{B}_{opt} , where \mathbf{B}_{opt} = argmin_B trace(\mathbf{R}_{ee}) subject to a selected constraint, \mathbf{R}_{ee} being the error autocorrelation function.
- 13. The receiver of claim 12 wherein said plurality of FIR filters are subjected to designer constraints relative to any one or a number of members of the following set: transmission channel memory, size of said block, effective memory of the combination consisting of said transmission channel and said pre-

Al-Dhahir 2

filter; n_i , n_o , autocorrelation matrix \mathbf{R}_{xx} , autocorrelation matrix \mathbf{R}_{nn} , value of factor I in said sampling circuit, and decision delay.

- 14. The receiver where said matrix **W** is expressible by $\mathbf{W} = \begin{bmatrix} \mathbf{W}_0 & \mathbf{W}_1 & \cdots & \mathbf{W}_{N_r-1} \end{bmatrix}^t \text{ where matrix } \mathbf{W}_q \text{ is a matrix that specifies q}^{th} \text{ tap coefficients of said FIR filters.}$
 - **15.** The receiver of claim **12** where said constraint restricts **B** so that $\mathbf{B}^* \mathbf{\Phi} = \mathbf{I}_{n_i}$, where $\mathbf{\Phi}^* \equiv \begin{bmatrix} \mathbf{0}_{n_i \times n_i (N_b m)} \end{bmatrix}$ and m is a selected constant.
 - **16.** The receiver of claim **15** where $\mathbf{B} = \overline{\mathbf{R}}^{-1} \Phi (\Phi^{\dagger} \overline{\mathbf{R}}^{-1} \Phi)^{-1}$, $\overline{\mathbf{R}}$ is a sub-matrix of a matrix $\mathbf{R}^{\perp} = \mathbf{R}_{xx} \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1} \mathbf{R}_{yx}$.
 - **17.** The receiver of claim **12** where said constraint restrict **B** so that $\mathbf{B}^{\mathbf{B}} = \mathbf{I}_{n_i}$.
 - 18. The receiver of claim 17 where $\mathbf{B} = \mathbf{U} \begin{bmatrix} e_{n_i N_b} & \cdots & e_{n_i (N_b+1)-1} \end{bmatrix}$, each element e_p is a vector having a 0 element in all rows other than row p, at which row the element is 1, and U is a matrix that satisfies the equation $\mathbf{\bar{R}} \equiv \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}}$, $\mathbf{\Sigma}$ being a diagonal matrix.

20

10