ESERCIZIO 1 - CONICHE

Si consideri la conica C di equazione $x^2 + xy - 2y^2 + 3y - 1 = 0$

- 1. Si discuta il tipo affine della conica $\mathcal C$
- 2. Si dica se la conica è a centro e, nel caso in cui lo sia, si calcolino le coordinate del centro
- 3. Si trasli ora il centro della conica nell'origine e si caratterizzi lo stabilizzatore della nuova conica (ovvero si dica quali sono le affinità che mandano la nuova conica in sè stessa)

ESERCIZIO 2 - DOMANDINE

- 1. Sia $f \in \text{Isom}(\mathbb{R}^3)$. Sappiamo che f è diretta e con almeno un punto fisso. Che tipo di isometria può essere?
- 2. Possono esistere due matrici $A, B \in \mathfrak{M}(n, \mathbb{R})$ tali che AB BA = I?
- 3. $\phi \in PS(V)$ definito positivo. (V, ϕ) euclideo. $f \in End(V)$. $\Psi(x, y) := \phi(f(x), f(y))$. Calcolare la segnatura di Ψ .

ESERCIZIO 3 - APPLICAZIONI LINEARI

Sia $A \in GL(n, \mathbb{R})$ una matrice fissata e sia $S : \mathfrak{M}(n, \mathbb{R}) \to \mathfrak{M}(n, \mathbb{R})$ la funzione lineare così definita:

$$S_A(X) = {}^t X A - {}^t A X$$

- 1. Si dica per quali A, S_A è diagonalizzabile
- 2. Si calcolino polinomio minimo e caratteristico di S_A

ESERCIZIO 4 - PRODOTTI SCALARI

Sia $\langle \cdot \mid \cdot \rangle$ un prodotto scalare definito positivo su \mathbb{R}^n e sia $V = \operatorname{Hom}(\mathbb{R}^k, \mathbb{R}^n)$. Fissato $v \in \mathbb{R}^k, v \neq 0$, si consideri l'applicazione $b : V \times V \to \mathbb{R}$ definita da $b(f,g) = \langle f(v) \mid g(v) \rangle$. Verificare che b è un prodotto scalare su V e determinarne la segnatura.

ESERCIZIO 1 - CONTI E PRODOTTI SCALARI

Al variare di $\alpha \in \mathbb{R}$ si consideri la matrice reale

$$A_{\alpha} = \left(\begin{array}{ccc} 1 & 2 & 1\\ 2 & 0 & \alpha\\ 1 & \alpha & \alpha^2 \end{array}\right)$$

Determinare, al variare degli α , gli indici di positività, negatività e nullità del prodotto scalare φ_{α} su \mathbb{R}^3 associato ad A_{α} rispetto alla base canonica

ESERCIZIO 2 - APPLICAZIONI LINEARI

Per ogni $f \in \text{End }(\mathbb{R}^n)$ si consideri il sottoinsieme $W_f = \{g \in \text{End }(\mathbb{R}^n) \mid g \circ f = f \circ g\}.$

- 1. Verificare che W_f è un sottospazio di End (\mathbb{R}^n)
- 2. Dimostrare che se $f' = h \circ f \circ h^{-1}$ per qualche $h \in \text{End } (\mathbb{R}^n)$, allora dim $W_f = \dim W_{f'}$
- 3. Supponiamo che f sia diagonalizzabile. Dimostrare che dim $W_f=n$ se e solo se f ha n autovalori distinti

ESERCIZIO 3 - MISTO MARE

Siano V e W spazi vettoriali su \mathbb{R} di dimensione n ed m rispettivamente. Siano inoltre V_1 e V_2 sottospazi di V di dimensione n_1 ed n_2 rispettivamente, con $V_1 \cap V_2 = \{0\}$. Sia infine $W_1 \subseteq W$ un sottospazio di dimensione m_1 .

Supponiamo che W sia dotato di un prodotto scalare ϕ definito positivo. Dimostrare che l'insieme

$$\{f: V \to W \text{ lineari } | f(V_1) \subseteq W_1, f(V_2) \subseteq W_1^{\perp}\}$$

è un sottospazio vettoriale di Hom (V, W) e calcolarne la dimensione.

ESERCIZIO 4 - MORTE

Si consideri \mathbb{R}^3 come spazio affine euclideo con il prodotto scalare standard.

- 1. Siano $S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 1\},\,P=\{(x,y,z)\in\mathbb{R}^3\mid z=-2\}.$ Si calcoli il luogo dei punti equidistanti dai due insiemi S e P e se ne determini il tipo affine (come quadrica).
- 2. Si consideri il fascio di coniche $\{C_t\}_{t\in\mathbb{R}}$ dove la conica C_t ha equazione $(x^2-y)+t(xy-2)$. Si dimostri che date due qualsiasi coniche distinte C_α, C_β appartenenti al fascio, la loro intersezione consiste sempre degli stessi punti (cioè non dipendono dalle coniche scelte).

ESERCIZIO 1 - MATRICI

Siano A, B due matrici reali simmetriche $n \times n$. Dimostrare che

- 1. AB è simmetrica se e solo se AB = BA
- 2. Se AB è simmetrica, allora esiste un autovettore comune per A e per B
- 3. Se AB è simmetrica, allora esiste una base ortonormale di \mathbb{R}^n (rispetto al prodotto scalare ordinario) formata da autovettori comuni per A e per B

ESERCIZIO 2 - APPLICAZIONI LINEARI

Sia $L_k: \mathbb{R}_2[t] \to \mathbb{R}_2[t]$ l'applicazione lineare definita da

$$L_k(p(t)) = p(0) + p(k)t + p(1)t^2$$

 $con k \in \mathbb{R}$.

- 1. Dire per quali valori di $k \in \mathbb{R}$, L_k è diagonalizzabile
- 2. Detta $G_k : \mathbb{R}^3 \to \mathbb{R}_2[t]$ l'applicazione lineare definita da

$$G_k(x, y, z) = 2kx + ky + (y - 2z)t + (kx - y + 3z)t^2$$

determinare i valori di $k \in \mathbb{R}$ tali che

$$\mathbb{R}_2[t] = \operatorname{Im} G_k \oplus \operatorname{Ker} L_k$$

ESERCIZIO 3 - PRODOTTI SCALARI

Si consideri \mathbb{R}^n dotato del prodotto scalare canonico. Sia F lo spazio vettoriale

$$F = \{ A \in \mathfrak{M}(n, \mathbb{R}) \mid \forall v \in \mathbb{R}^n \quad Av \in v^{\perp} \}$$

Dimostrare che F coincide con l'insieme delle matrici antisimmetriche.

ESERCIZIO 4 - VERO O FALSO

Si dica se le seguenti affermazioni sono vere o false, producendo un controesempio nel caso in cui siano false e dimostrandole se sono vere.

- 1. Tutte le quadriche degeneri di \mathbb{R}^3 sono a centro
- 2. Sia m < n e si consideri $\mathbb{R}^n, \mathbb{R}^m$ come spazi euclidei con il prodotto scalare standard. Si consideri un'applicazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ di rango massimo. Allora nessuna base ortonormale di \mathbb{R}^n viene mandata in una base ortonormale di \mathbb{R}^m
- 3. Date due matrici ortogonali reali $M, N \in O(\mathbb{R}^k)$ esiste sempre una applicazione lineare $f : \mathfrak{M}(k, \mathbb{R}) \to \mathfrak{M}(k, \mathbb{R})$ tale che f(M) = N e tale che $\exists \mathcal{B}$ base di $\mathfrak{M}(k, \mathbb{R})$ in cui f è ortogonale, ovvero $[f]_{\mathcal{B}} \in O(\mathbb{R}^{k^2})$

ESERCIZIO 1 - ENDOMORFISMI

Sia V uno spazio vettoriale di dimensione finita e $\phi:V\to V$ un endomorfismo diagonalizzabile. Dato uno spazio vettoriale T di dimensione n, si consideri l'endomorfismo $\boldsymbol{\beta}:\operatorname{Hom}\,(T,V)\to\operatorname{Hom}\,(T,V)$ definito da $\boldsymbol{\beta}(\xi)=\phi\circ\xi.$

- 1. Si dica se β è diagonalizzabile e se ne discutano lo spettro, le molteplicità e le nullità in funzione dello spettro di ϕ
- 2. Si considerino le analoghe domande a proposito dell'endomorfismo $\Psi: {\sf Hom}\,(V,T) \to {\sf Hom}\,(V,T)$ definito da $\Psi(\xi) = \xi \circ \phi$

ESERCIZIO 2 - PRODOTTI SCALARI

Sia $V = \mathfrak{M}(n, \mathbb{R})$ e sia φ il prodotto scalare su V dato da $\varphi(B, C) = \operatorname{tr}({}^tBC)$ per ogni B, C in V. Fissata $A \in V$, sia $f_A : V \to V$ l'endomorfismo tale che $f_A(X) = AX$ per ogni $X \in V$.

- 1. Calcolare la segnatura di φ
- 2. Provare che $\lambda \in \mathbb{R}$ è autovalore di $A \Leftrightarrow \lambda$ è autovalore di f_A
- 3. Provare che se A è simmetrica allora f_A è φ -autoaggiunta

ESERCIZIO 3 - CONICHE

Sia C_k la conica di equazione

$$C_k$$
: $x^2 + kxy + y^2 - 4 = 0$

 $con k \in \mathbb{R}$.

- 1. Trovare le coniche degeneri della famiglia
- 2. Mostrare che tutte le ellissi appartenenti alla famiglia sono reali

ESERCIZIO 4 - ENDOMORFISMI

Sia V uno spazio vettoriale di dimensione n su $\mathbb C$ e sia $\phi:V\to V$ un endomorfismo con autovalori c_1,\ldots,c_r .

- 1. Si mostri, che dato un polinomio $P(x) \in \mathbb{C}[x]$, $P(c_1), \dots, P(c_r)$ sono autovalori dell'endomorfismo $P(\phi)$
- 2. Si mostri che se ϕ è diagonalizzabile, anche $P(\phi)$ è diagonalizzabile.
- 3. Vale anche il viceversa?

ESERCIZIO 1 - COSTRUZIONE DI PRODOTTI SCALARI

Siano $v_1=(1,1,0), v_2=(2,2,3), v_3=(1,-1,-1), v_4=(1,0,0), U=\{(x,y,z)\in\mathbb{R}^3\mid z=x+y\}$. Costruire, se esiste, un prodotto scalare Φ su \mathbb{R}^3 tale che Span $(v_1,v_2)^\perp=U$, v_3 è ortogonale a v_4 e $\Phi(v_1,v_1)=4$. Tale prodotto scalare è unico?

ESERCIZIO 2 - MATRICI

Sia $V=\mathfrak{M}(n,\mathbb{R})$ e, dato $v\in\mathbb{R}^n$, definiamo $F_v:V\to\mathbb{R}^n$ tramite la formula $F_v(A)=Av$ per ogni $A\in V$. Sia $W=\{A\in V\mid {}^tAA\in \operatorname{Span}(I)\}$

- 1. Verificare che W è un sottospazio di V
- 2. Verificare che F_v è lineare per ogni $v \in \mathbb{R}^n$
- 3. Per quali $v \in \mathbb{R}^n$ l'applicazione F_v è surgettiva?
- 4. Per quali $n \in \mathbb{N}$ e $v \in \mathbb{R}^n$, W è isomorfo a Ker (F_v) ?

ESERCIZIO 3 - MISCELLANEA

- 1. Sia $D \in \mathfrak{M}(n,\mathbb{C})$ una matrice diagonale. Si mostri che ogni matrice diagonale si scrive come combinazione lineare di $I, D, D^2, \dots, D^{n-1}$ se e solo se gli autovalori di D sono a due a due distinti.
- 2. Sia V uno spazio vettoriale di dimensione finita sul campo $\mathbb C$. Siano poi Φ un automorfismo di V, N un endomorfismo di V e λ una costante di modulo minore di 1, legati dalla relazione: $\Phi N = \lambda N \Phi$. Si mostri che, sotto tali ipotesi, N è un endomorfismo nilpotente.

ESERCIZIO 4 - VERO E FALSO

Si dica se le seguenti affermazioni sono vere o false, producendo un controesempio nel caso in cui siano false e dimostrandole se sono vere.

- 1. Sia $A \in \mathfrak{M}(n, \mathbb{K})$ tale che tr $A = \operatorname{tr} A^2 = \operatorname{tr} A^3 = \ldots = \operatorname{tr} A^n = 0$. Si può dire che A = 0?
- 2. Sia V uno spazio vettoriale di dimensione n, e sia $f:V\to V$ un endomorfismo. Supponiamo che esista un intero k_0 con $0< k_0< n$ tale che tutti i sottospazi di V di dimensione k_0 sono f-invarianti. è necessariamente vero che allora tutti i sottospazi di V (indipendentemente dalla loro dimensione) sono f-invarianti?

ESERCIZIO 1 - COSE

Data una matrice $A \in \mathfrak{M}(n, \mathbb{C})$, si indichi con \mathcal{C}_A il sottospazio vettoriale

$$C_A = \{ X \in \mathfrak{M}(n, \mathbb{C}) \mid XA = AX \}$$

- 1. Si mostri che dim $C_A = \dim C_B$ quando A e B sono simili
- 2. Si mostri che $C_A = \operatorname{Span}(1, A, \dots, A^{n-1})$ quando il polinomio caratteristico di A è prodotto di n fattori lineari distinti

ESERCIZIO 2 - PRODOTTI SCALARI

Sia $A \in \mathfrak{M}(n,\mathbb{R})$ una matrice simmetrica tale che $A^3 = A$. Si consideri il prodotto scalare $\phi(x,y) = {}^t x A y$ per ogni $x,y \in \mathbb{R}^n$.

Si può calcolare la segnatura di ϕ sapendo solo che tr $A^5=k$ e tr $A^2=r$?

In caso positivo esprimere $\sigma(\phi)$ come funzione di r, k, n. In caso negativo trovare due matrici simmetriche che soddisfino le condizioni date ma che inducano due diversi prodotti scalari.

ESERCIZIO 3 - VERO O FALSO

Si dica se le seguenti affermazioni sono vere o false, producendo un controesempio nel caso in cui siano false e dimostrandole se sono vere.

- 1. Se una matrice quadrata A è simile ad una matrice triangolare superiore ed è simile anche ad una matrice triangolare inferiore, allora A è diagonalizzabile
- 2. Sia V uno spazio vettoriale. Sia E il sottoinsieme di Hom (V, V) definito nel seguente modo:

$$E = \{ f : V \to V \mid m_f(0) = 0 \}$$

dove m_f è il polinomio minimo di f. Allora E è un sottospazio vettoriale di Hom (V, V)

ESERCIZIO 4 - CONTI E CONICHE

Si consideri la conica C, di equazione

$$C: \quad 4x^2 + y^2 - 4xy + 10x - 4 = 0$$

Se ne determini il tipo affine, si calcolino gli eventuali centri e si produca inoltre la matrice di una affinità che porta l'equazione della conica nella sua forma canonica

ESERCIZIO 1 - PRODOTTI SCALARI

Sia V uno spazio vettoriale su un campo \mathbb{K} . Siano W_1 e W_2 due sottospazi di V tali che $V=W_1+W_2$. Siano ϕ_1 e ϕ_2 due prodotti scalari, rispettivamente su W_1 e W_2 , tali che $\phi_1\mid_{W_1\cap W_2}=\phi_2\mid_{W_1\cap W_2}$

- 1. Mostrare che esiste un prodotto scalare ϕ su V le cui restrizioni su W_1 e W_2 coincidono rispettivamente con ϕ_1 e ϕ_2
- 2. Sia $\mathbb{K}=\mathbb{R}$. Supponiamo che ϕ_1 sia definito positivo e che ϕ_2 sia non degenere con indice di positività $i_+(\phi_2)=\dim{(W_1\cap W_2)}$. Sia ϕ un prodotto scalare su V che estende ϕ_1 e ϕ_2 (nel senso del punto precedente). Calcolare la segnatura di ϕ

ESERCIZIO 2 - APPLICAZIONI LINEARI

Sia V uno spazio vettoriale complesso e siano $f,g:V\to V$ due applicazioni lineari. Si supponga f nilpotente e che $f\circ g-g\circ f=f$

- 1. Provare che Ker f è invariante per g
- 2. Provare che esiste un autovettore comune v_0 ad f e g
- 3. Sia W sottospazio di V tale che V= Span $(v_0)\oplus W$ e sia $p_W:V\to W$ la proiezione indotta dalla somma diretta. Se $f'=p_W\circ f\mid_W, g'=p_W\circ g\mid_W$, provare che

$$f' \circ g' - g' \circ f' = f'$$

4. Provare che esiste una base a bandiera comune ad f e g

ESERCIZIO 3 - MATRICI

Per ogni coppia di matrici $A, B \in \mathfrak{M}(n, \mathbb{R})$ si consideri il sottoinsieme

$$E = \{ X \in \mathfrak{M}(n, \mathbb{R}) \mid AX = B \}$$

- 1. Provare che E è non vuoto se e solo se Im $B \subseteq \text{Im } A$
- 2. Determinare le coppie (A, B) per cui l'insieme E è un sottospazio vettoriale di $\mathfrak{M}(n, \mathbb{R})$ e, in tal caso, calcolarne la dimensione

ESERCIZIO 4 - VERO O FALSO

Si dica se le seguenti affermazioni sono vere o false, producendo un controesempio nel caso in cui siano false e dimostrandole se sono vere.

- 1. Sia $P \in \mathfrak{M}(n,\mathbb{R})$ una matrice diagonalizzabile. è vero che $I+P^2$ è invertibile?
- 2. Per ogni coppia di matrici A e B in $\mathfrak{M}(n,\mathbb{C})$ esiste un vettore non nullo $v\in\mathbb{C}^n$ tale che Av e Bv sono linearmente dipendenti
- 3. Il gruppo delle isometrie di \mathbb{R}^3 (Isom(\mathbb{R}^3)) è generato dagli avvitamenti (o twist)
- 4. Sia $V = \mathfrak{M}(n, \mathbb{R})$, $n \geq 3$. Allora il sottospazio vettoriale generato dalle matrici di rango 3 è tutto V (ovvero, $\forall A \in \mathfrak{M}(n, \mathbb{R}) \quad \exists \beta_1, \dots, \beta_k \quad \exists B_1, \dots, B_k \quad \text{rk } B_i = 3 \text{ t.c.} \qquad A = \beta_1 B_1 + \dots + \beta_k B_k$)

ESERCITAZIONE SULLE CONICHE

CONICA PER CINQUE PUNTI

Si consideri una generica conica di equazione $ax^2 + bxy + cy^2 + dx + ey + f = 0$

1. Si imponga il passaggio della conica per cinque punti $(x_1, y_1), \ldots, (x_5, y_5)$, che siano a tre a tre non allineati

Ovvero tali che

$$\det \left(\begin{array}{cc} \frac{x_j}{x_i} & \frac{x_k}{x_i} \\ \frac{y_j}{y_i} & \frac{y_k}{y_i} \end{array}\right) \neq 0 \quad \forall i, j, k \text{ tutti distinti}$$

2. Dimostrare ora con opportune considerazioni che per cinque punti, a tre a tre non allineati, passa una ed una sola conica non degenere (si ricordi che le coniche sono classi di proporzionalità di polinomi)

FASCI DI CONICHE

Chiamiamo fascio di coniche generato da due coniche γ_1 e γ_2 , che si incontrano in quattro punti (reali o no, propri o all'infinito) l'insieme $\mathcal F$ di tutte le coniche la cui equazione di ottiene come combinazione lineare non banale delle equazioni γ_1 e γ_2

- 1. Chiamiamo punti base del fascio i quattro punti comuni a γ_1 e γ_2 . Verificare che *tutte e sole* le coniche di \mathcal{F} passano per tutti e quattro i punti base
- 2. Osservare inoltre che per quattro punti a tre a tre non allineati passano sei rette che, opportunamente considerate a due a due, formano le uniche tre coniche degeneri di \mathcal{F}