PROGRAMACION LINEAL CONTINUA SOLUCIONES INFINITAS

Max
$$Z = 4X_1 + 14X_2$$

Sujeto a:

$$2X_1 + 7X_2 \le 21$$

 $7X_1 + 2X_2 \le 21$

$$X_1, X_2 >= 0$$

a) Formular el problema en forma normal de máximo.

Max
$$Z = 4X_1 + 14X_2 + 0X_3 + 0X_4$$

Sujeto a:

$$2X_1 + 7X_2 + X_3 <= 21$$

 $7X_1 + 2X_2 + X_4 <= 21$

$$X_1, X_2, X_3, X_4 >= 0$$

b) Seleccionar una base posible inicial:

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{; por cuanto, } \overline{\overline{X}}^B = \begin{bmatrix} \overline{\overline{X}}_3 \\ \overline{\overline{X}}_4 \end{bmatrix} = \begin{bmatrix} 21 \\ 21 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

c) Calcular la matriz: Y , Z^R , $C^R - Z^R$, $\overline{\overline{Z}}{}^B$, $\overline{\overline{Z}}$

$$Y = B^{-1}R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

$$Z^{R} = C^{B}Y = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$C^{R} - Z^{R} = \begin{bmatrix} 4 & 14 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 14 \end{bmatrix}$$

$$\overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{3} \\ \overline{\overline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 21 \\ 21 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\overline{\overline{Z}} = C^B \overline{\overline{X}}^B = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = 0$$

d) Disponer en un tablero simplex

	\boldsymbol{X}_1	X_2	X_3	X_4	X_5
$-\overline{\overline{Z}}=0$	4	14	0	0	θ
$\overline{\overline{X}}_3 = 21$	2	7	1	0	3
$\overline{\overline{X}}_4 = 21$	7	2	0	1	21/2

1º. ITERACION:

Cálculos Auxiliares:

Fila del Pivote:

Fila Cero:

$$\begin{bmatrix} 3 & 2/7 & 1 & 1/7 & 0 \end{bmatrix} \begin{bmatrix} -14 \end{bmatrix}$$

$$42 & -4 & -14 & -2 & 0 \\ 0 & 4 & 14 & 0 & 0 \\ \hline 42 & 0 & 0 & -2 & 0 \\ \hline$$

Fila Dos:

	\boldsymbol{X}_1	X_2	X_3	$X_{\scriptscriptstyle 4}$	
$-\overline{\overline{Z}} = -42$	0	0	-2	0	θ
$\overline{\overline{X}}_2 = 3$	2/7	1	7	0	21/2
$\overline{\overline{X}}_4 = 15$	45/7	0	-2/7	1	7/3

Solución:

$$\overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{2} \\ \overline{\overline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 3 \\ 15 \end{bmatrix} \qquad \overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{3} \\ \overline{\overline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\overline{\overline{Z}} = C^B \overline{\overline{X}}^B = \begin{bmatrix} 14 & 0 \\ 15 \end{bmatrix} = 42$$

En la fila cero, la variable no básica X_1 está asociada a un valor cero. Esta es una indicación de que existe una solución alternativa. X_1 puede ser la variable de entrada en tanto que la variable saliente lo constituye la variable X_4 . Por tanto:

Cálculos Auxiliares:

Fila del Pivote:

Fila Cero:

Fila Uno:

7/3	0	1	7/45	-2/45

	\boldsymbol{X}_1	X_{2}	X_3	$X_{\scriptscriptstyle 4}$	
$-\overline{\overline{Z}} = -42$	0	0	-2	0	θ
$\overline{\overline{X}}_2 = 7/3$	0	1	7/45	-2/45	
$\overline{\overline{X}}_1 = 7/3$	1	0	-2/45	7/45	

Solución:

$$\overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{2} \\ \overline{\overline{X}}_{1} \end{bmatrix} = \begin{bmatrix} 7/3 \\ 7/3 \end{bmatrix} \qquad \overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{3} \\ \overline{\overline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\overline{\overline{Z}} = C^B \overline{\overline{X}}^B = 42$$