

10/589113
IAP11 Rec'd PCT/PTO 10 AUG 2006

PYRIMIDINE DERIVATIVES AND USE THEREOF AS AGRICULTURAL AND HORTICULTURAL FUNGICIDES

The present invention relates to the use of benzylpyrimidine derivatives as agricultural and horticultural fungicides, to novel benzylpyrimidine derivatives and to a process for their preparation.

- 5 It has been already known that some kinds of pyrimidine derivatives show an action as fungicides (cf. for example, German Patent Specification No. 4029649, PCT International Laid-open Pamphlet WO 02/74753, PCT International Laid-open Pamphlet WO 03/43993, European Patent Specification No. 4034762, European Patent Specification No. 407899, Japanese Laid-open Patent Publication No. 283246/1996).
- 10 It has been also known that some kinds of pyrimidine derivatives have various physiological activities (cf. for example, PCT International Laid-open Pamphlet WO 92/18498: Enhancement of anti-tumor activities, PCT International Laid-open Pamphlet WO 99/19305: Action to central nervous system, PCT International Laid-open Pamphlet WO 00/61562: Action to nervous system, Swiss Patent Specification No. 479591: Pharmacological action).
- 15 Further, in the field of organic chemistry, various pyrimidine derivatives have been synthesized and reported (cf. for example, Journal of Organic Chemistry, Vol.65, p.9261-9264 (2000), Armyanskii Khimicheskii Zhurnal, Vol.22, No.5, p.401-405 (1969), Armyanskii Khimicheskii Zhurnal, Vol.23, No.5, p.462-468 (1970), Armyanskii Khimicheskii Zhurnal, Vol.24, No.1, p.45-50 (1971), Armyanskii Khimicheskii Zhurnal, Vol.24, No.8, p.721-726 (1971),).
- 20 It has now been found that a group of benzylpyrimidine derivatives of the following formula (I) have fungicidal activities;

wherein

- 25 R^1 and R^2 form, together with the nitrogen atom to which they are bonded, a 3 to 10-membered heterocyclic group that may be optionally substituted, and may contain further one to three hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and $S(O)_n$, besides the

nitrogen atom to which R¹ and R² are bonded,

n represents 0, 1 or 2,

- R³ represents hydrogen, halogen, cyano, hydroxy, amino, azido, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, alkenyloxy, haloalkenyloxy, alkylthio, alkenylthio, haloalkenylthio, alkylsulfinyl, alkylsulfonyl, phenoxy that may be optionally substituted, benzyloxy that may be optionally substituted, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted with a group selected from the group consisting of halogen, alkyl and haloalkyl, or

R³ represents a group selected from the group consisting of the following groups A-H and J-M

in which

R⁷ represents hydrogen atom, alkyl or haloalkyl, and

- 15 R⁸ represents alkyl, phenyl, alkoxy or cyano, or

R⁷ and R⁸ form, together with the carbon atom to which they are bonded, cycloalkylidene,

R⁹ represents alkyl, haloalkenyl or benzyl,

R¹⁰ represents hydrogen atom or alkyl,

R¹¹ represents alkyl, alkoxyalkyl, dialkylaminoalkyl, phenyl, benzyl or cyano,

R¹² represents alkyl or phenyl,

R¹³ represents alkyl or benzyl,

5 R¹⁴ represents hydrogen atom or alkyl,

R¹⁵ represents hydrogen atom, haloalkyl or phenyl,

R¹⁶ represents hydrogen atom or alkyl,

R¹⁷ represents hydrogen atom, alkyl or haloalkyl,

R¹⁸ represents alkyl or phenyl,

10 R¹⁹ represents hydrogen atom or alkyl,

R²⁰ represents alkyl,

R²¹ represents alkyl,

R²² represents alkyl, alkenyl, haloalkenyl, alkoxyalkyl, phenoxyalkyl or
alkoxycarbonylalkyl,

15 R²³ represents alkyl,

R²⁴ represents hydrogen atom or alkyl,

R²⁵ represents alkyl or phenyl,

20 R²⁴ and R²⁵ form, together with the nitrogen atom to which they are bonded, a 5 to 8-membered
saturated-monoheterocyclic group that may be optionally substituted, and may contain further one
or two hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and S(O)_n,
besides the nitrogen atom to which R²⁴ and R²⁵ are bonded,

R⁴ represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy,
alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl or group

R⁵ and R⁶ each independently represents hydrogen atom, halogen, alkyl, haloalkyl, or phenyl that may be optionally substituted, and

- 5 Q represents aryl that may be optionally substituted or a 5 or 6- membered heterocyclic group that contains one hetero atom selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted.

The benzylpyrimidine derivatives of the following formula (IA) being included in the aforementioned formula (I), according to the present invention are novel compounds that have not

- 10 been described in the existing publications.

The formula

wherein

R^{1A} and R^{2A} form, together with the nitrogen atom to which they are bonded, a

- 15 3 to 10-membered heterocyclic group that may be optionally substituted, and may contain further one to three hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and S(O)_m besides the nitrogen atom to which R^{1A} and R^{2A} are bonded,

m represents 0, 1 or 2,

- 20 R^{3A} represents hydrogen, halogen, cyano, hydroxy, amino, azido, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, alkenyloxy, haloalkenyloxy, alkylthio, alkenylthio, haloalkenylthio, alkylsulfinyl, alkylsulfonyl, phenoxy that may be optionally substituted, benzyloxy that may be optionally substituted, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or

5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted with a group selected from the group consisting of halogen, alkyl and haloalkyl, or

R^{3A} represents a group selected from the group consisting of the following groups A-H and J-M

5

in which

R^{7A} represents hydrogen atom, alkyl or haloalkyl, and

R^{8A} represents alkyl, phenyl, alkoxy or cyano, or

R^{7A} and R^{8A} form, together with the carbon atom to which they are bonded, cycloalkylidene,

10 R^{9A} represents alkyl, haloalkenyl or benzyl,

R^{10A} represents hydrogen atom or alkyl,

R^{11A} represents alkyl, alkoxyalkyl, dialkylaminoalkyl, phenyl, benzyl or cyano,

R^{12A} represents alkyl or phenyl,

R^{13A} represents alkyl or benzyl,

R^{14A} represents hydrogen atom or alkyl,

R^{15A} represents hydrogen atom, haloalkyl or phenyl,

R^{16A} represents hydrogen atom or alkyl,

R^{17A} represents hydrogen atom, alkyl or haloalkyl,

5 R^{18A} represents alkyl or phenyl,

R^{19A} represents hydrogen atom or alkyl,

R^{20A} represents alkyl,

R^{21A} represents alkyl,

R^{22A} represents alkyl, alkenyl, haloalkenyl, alkoxyalkyl, phenoxyalkyl or

10 alkoxycarbonylalkyl,

R^{23A} represents alkyl,

R^{24A} represents hydrogen atom or alkyl,

R^{25A} represents alkyl or phenyl,

15 R^{24A} and R^{25A} form, together with the nitrogen atom to which they are bonded, a 5 to 8-membered saturated-monoheterocyclic group that may be optionally substituted, and may contain further one or two hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and $S(O)_n$, besides the nitrogen atom to which R^{24A} and R^{25A} are bonded,

20 R^{4A} represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl or group

20

R^{5A} and R^{6A} each independently represents hydrogen atom, halogen, alkyl, haloalkyl, or phenyl that may be optionally substituted, and

25 Q^A represents aryl that may be optionally substituted or a 5 or 6-membered heterocyclic group that contains one hetero atom selected from the group consisting of nitrogen atom, oxygen atom and

sulfur atom and may be optionally substituted,

provided that, the following cases (T-1)-(T-6) are excluded:

(T-1) the case in which group

- 5 represents 1-indolyl, 1-pyrrolyl, 1-imidazolyl, 3-oxopiperidino or 4-oxopiperidino, R^{3A} represents hydrogen atom, R^{4A} represents hydrogen atom, and Q^A represents 1-naphthyl or phenyl group that may be optionally substituted by one or two groups selected from the group consisting of chloro, bromo, methyl, ethyl and trifluoromethyl,

(T-2) the case in which group

- 10 represents 3-oxopiperidino, 4-oxopiperidino, 4-hydroxypiperidino, 4-carbamoylpiperidino, 4-methylpiperazino, 4-ethylpiperazino, 4-(2-hydroxyethyl)piperazino or morpholino, R^{3A} represents amino, R^{4A} represents hydrogen atom, and Q^A represents 3-pyridyl or phenyl group that may be optionally substituted by one to three groups selected from the group consisting of fluoro, chloro, bromo, methyl, ethyl, isopropyl, trifluoromethyl, hydroxy, methoxy and 4-chlorobenzyloxy,

(T-3) the case in which group

- 20 represents piperidino, 4-hydroxypiperidino, 4-methylpiperazino, morpholino, 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl or 6,7-dimethoxy-1-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroisoquinolin-2-yl, R^{3A} represents chloro, dimethylamino, anilino, 2-(2-hydroxyethoxy)ethyl-amino, piperidino, 4-hydroxypiperidino, 4-carbamoylpiperidino, 4-methylpiperazino or morpholino,

- 25 R^{4A} represents hydrogen atom, and Q^A represents phenyl group that may be optionally substituted by one or two groups selected from the group consisting of methyl and methoxy,

(T-4) the case in which group

represents 1-pyrrolidinyl, piperidino, morpholino or 1-pyrrolyl, R^{3A} represents

- 5 methyl or methoxymethyl, R^{4A} represents chloro, and Q^A represents phenyl or 1-naphthyl,

(T-5) the case in which group

represents 1-azilidinyl, piperidino or morpholino, R^{3A} represents methylthio, R^{4A} represents chloro,

- 10 and Q^A represents phenyl group substituted by methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy or allyloxy,

(T-6) the case in which group

- 15 represents 1-azilidinyl, R^{3A} represents hydrogen atom or amino, R^{4A} represents chloro, and Q^A represents phenyl group substituted by methoxy, ethoxy or allyloxy.

The compound of the formula (IA) can be obtained by a process in which

- a) In case that R^{3A} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkylthio, alkenylthio, haloalkenylthio, phenyl that may be optionally substituted, phenylalkyl that may be
20 optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and R^{4A} represents hydrogen atom, halogen, alkyl, haloalkyl or alkenyl:

compounds of the formula (II)

5 wherein

Xa represents halogen, preferably chloro or bromo,

10 R^{3Aa} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkylthio, alkenylthio, haloalkenylthio, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and

R^{4Aa} represents hydrogen atom, halogen, alkyl, haloalkyl or alkenyl,

15 R^{5A}, R^{6A} and Q^A have the same definition as aforementioned, are reacted with compounds of the formula (III)

wherein

20 R^{1A} and R^{2A} have the same definition as aforementioned,

in the presence of inert solvents, and if appropriate, in the presence of an acid binder,

or

b) in case that R^{3A} represents alkylsulfinyl or alkylsulfonyl and R^{4A} represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy or group

25

or

5 R^{3A} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and R^{4A} represents alkylsulfinyl or alkylsulfonyl:

compounds of the formula (IAb)

10

wherein

15 R^{3Ab} represents alkylthio, and R^{4Ab} represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy or group

or

20 R^{3Ab} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and R^{4Ab} represents alkylthio,

25 R^{1A} , R^{2A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

are reacted with an oxidizing agent in the presence of inert solvents,

or,

- c) in case that R^{3A} represents cyano, hydroxy, azido, alkynyl, alkoxy, haloalkoxy, alkenyloxy, haloalkenyloxy, alkylthio, alkenylthio, haloalkenylthio, phenoxy that may be optionally substituted, benzylxy that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains
 5 one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, or represents the aforementioned group A, group B, group C, group F, group G or group H, and

R^{4A} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy,
 10 cyano or group

compounds of the formula (IAc)

wherein

Xc represents halogen, preferably chloro, bromo or iodo, or methylsulfonyl,
 20 R^{4Ac} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, cyano or group

R^{1A} , R^{2A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

25 are reacted with compounds of the formula (IV)

$Y-R^{3Ac}$ (IV)

wherein

- Y represents hydrogen, sodium, potassium, copper, trimethylsilyl or tetraalkylammonium,
- R^{3Ac} represents cyano, hydroxy, azido, alkynyl, alkoxy, haloalkoxy, alkenyloxy, haloalkenyloxy, alkylthio, alkenylthio, haloalkenylthio, phenoxy that may be optionally substituted, benzyloxy that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, or represents the aforementioned group A, group B, group C, group F, group G or group H,
- 10 in the presence of inert solvents, and if appropriate, in the presence of an acid binder, and if appropriate, in the presence of a catalyst,
- or
- d) In case that R^{3A} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkylthio, alkenylthio, haloalkenylthio, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and

R^{4A} represents cyano, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio or group

20

compounds of the formula (IAd)

25

wherein

X_d represents halogen, preferably chloro, bromo or iodo, or methylsulfonyl,

R^{3Ad} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkenyl, alkylthio, alkenylthio, haloalkenylthio, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic

5 group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl,

R^{1A} , R^{2A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

are reacted with compounds of the formula (V)

10 $Y-R^{4Ad}$ (V)

wherein

Y represents hydrogen, sodium, potassium, copper, trimethylsilyl or tetraalkylammonium,

R^{4Ad} represents cyano, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, or group

in the presence of inert solvents, and if appropriate, in the presence of an acid binder, and if appropriate, in the presence of a catalyst,

or

e) In case that R^{3A} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkylthio, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, and

25 R^{4A} represents hydrogen:

compounds of the formula (IAe)

wherein

Xe represents halogen, preferably chloro, bromo or iodo,

R^{3Ae} represents hydrogen, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkylthio, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl,

R^{1A}, R^{2A}, R^{5A}, R^{6A} and Q^A have the same definition as aforementioned,

15 are hydrogenated in the presence of inert solvents, and if appropriate, in the presence of a catalyst, and if appropriate, in the presence of an acid binder,

or

f) In case that R^{3A} represents hydrogen, halogen, cyano, hydroxy, amino, azido, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, 20 alkylsulfonyl, phenoxy that may be optionally substituted, benzyloxy that may be optionally substituted, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, or the aforementioned groups A-H or groups J-M,

R^{4A} represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

compounds of the formula (IAf)

wherein

- 10 R^{3Af} represents hydrogen, halogen, cyano, hydroxy, amino, azido, alkyl, haloalkyl, alkoxyalkyl, cycloalkyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, phenoxy that may be optionally substituted, benzyloxy that may be optionally substituted, phenyl that may be optionally substituted, phenylalkyl that may be optionally substituted, phenoxyalkyl that may be optionally substituted, or 5 to 10-membered heterocyclic group that contains one to
15 four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom and may be optionally substituted by a group selected from the group consisting of halogen, alkyl and haloalkyl, or the aforementioned groups A-H or groups J-M,

R^{4Af} represents hydrogen atom, halogen, cyano, alkyl, haloalkyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

20

R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

R^{26A} represents alkyl, p - represents 1 or 2, q represents 0, 1 or 2,

are reacted with difluorocarbene derived from sodium chlorodifluoroacetate or with
25 dichlorocarbene derived from chloroform, in the presence of inert solvents, and if appropriate, in the presence of a phase transfer catalyst,

or

g) In case that R^{3A} represents amino:

compounds of the formula (IAg)

5

wherein

R^{1A}, R^{2A}, R^{4A}, R^{5A}, R^{6A} and Q^A have the same definition as aforementioned,
are hydrogenated or reacted with metal hydride in the presence of inert solvents, and if
10 appropriate, in the presence of a catalyst,

or

h) In case that R^{3A} represents halogen:

First step:

compounds of the formula (IAh)

15

wherein

R^{1A}, R^{2A}, R^{4A}, R^{5A}, R^{6A} and Q^A have the same definition as aforementioned,
are reacted with nitrite ester or nitrous acid in the presence of inert solvents, and if appropriate, in
20 the presence of acid catalyst to form a diazonium salt,

Second step:

The diazonium salts obtained in the above-mentioned first step is reacted according to Sandmeyer process or Gattermann process in the presence of copper halide , potassium halide or copper powder,

- 5 in the presence innert sollvents, and if appropriate, in the presence of acid catalyst,

or

- i) In case that R^{3A} represents the aforementioned group E:

First step:

- 10 compounds of the aforementioned formula (IAh) are reacted with dimethylformamide dimethylacetal in the presence of innert solvents,

Second step:

compounds of the formula (VI), obtained in the above-mentioned first step,

15

wherein

R^{1A} , R^{2A} , R^{4A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

- 20 are reacted with compounds of the formula (VII)

wherein

R^{13A} has the same definition as aforementioned,

in the presence of inert solvents, and if appropriate, in the presence of an acid binder, and if appropriate, in the presence of an acid catalyst,

or

j) In case that R^{3A} represents the aforementioned group D:

5 compounds of the formula (IAh) are reacted with compounds of the formula (VIII)

wherein

R^{26A} represents chloro or group

wherein

R^{12A} has the same definition as aforementioned,

10 in the presence of inert solvents, and if appropriate, in the presence of an acid binder,

or

k) In case that R^{3A} represents the aforementioned group K, and

R^{4A} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

15

:

compounds of the formula (IAk)

wherein

R^{4A} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

and

5 R^{1A} , R^{2A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

are reacted with compounds of the formula (IX)

wherein

Xk represents halogen, preferably chloro, bromo or iodo,

10 R^{20A} has the same definition as aforementioned,

in the presence of inert solvents,

or

1) In case that R^{3A} represents the aforementioned group L or group M, and

R^{4A} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy,

15 alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

compounds of the formula (IA)

wherein

R^{27A} represents alkyl,

R^{4AI} represents hydrogen atom, halogen, alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, haloalkoxy,

5 alkylthio, haloalkylthio, alkylsulfinyl, alkylsulfonyl, or group

and

R^{1A} , R^{2A} , R^{5A} , R^{6A} and Q^A have the same definition as aforementioned,

are reacted with compounds of the formula (X)

10 wherein

R^{28A} represents group

or group

wherein

R^{22A} , R^{24A} , and R^{25A} have the same definition as aforementioned,

In the presence of inert solvents, and if appropriate, in the presence of acid

binder, and if appropriate, in the presence of acid catalyst,

5 or

m) In case that R^{3A} represents the aforementioned group J, and

compounds of the formula (IAk) are reacted with compounds of the formula (XI)

wherein

10 R^{19A} has the same definition as aforementioned,

In the presence of inert solvents, and if appropriate, in the presence of acidbinder, and if appropriate, in the presence of acid catalyst.

Active component compounds of the formula (I) of the present invention show a strong plant disease controlling action, in particular against phytopathogenic fungi.

15 In the present specification,

“Halogen” represents fluoro, chloro, bromo or iodo, preferably represents fluoro, chloro or bromo.

“Alkyl” can be straight-chain or branched-chain and there can be mentioned, for example, C₁₋₆alkyl, specifically methyl, ethyl, n- or iso-propyl, n-, iso-, sec- or tert-butyl, n- or neo-pentyl, n-hexyl etc.

“Cycloalkyl”: there can be mentioned, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, etc.

20 “Cycloalkylidene”: there can be mentioned, for example, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclooctylidene, etc.

“Alkenyl” can be straight-chain or branched-chain and there can be mentioned, for example, C₂₋₇alkenyl, specifically vinyl, allyl, isopropenyl, 1-propenyl, 1-but enyl, 2-but enyl, 3-but enyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-pentenyl, 2-pentenyl, 1-hexenyl, 2-hexenyl, 1-heptenyl, 2-heptenyl, etc.

- 5 “Alkynyl” can be straight-chain or branched-chain and there can be mentioned, for example, C₂₋₇alkynyl, specifically ethynyl, 1-propynyl, 2-propynyl, 1-butynyl 2-butynyl, 3-butynyl, 1-penty-nyl, 2-pentynyl, 1-hexynyl, 2-hexynyl, 1-heptynyl, 2-heptynyl, etc.

- “Alkoxy” represents an alkyl-O-group, whose alkyl part has the above-mentioned meaning and can be, for example, C₁₋₆alkoxy, and there can be specifically mentioned methoxy, ethoxy, n- or 10 iso-propoxy, n-, iso-, sec- or tert-butoxy, n-pentyloxy, n-hexyloxy, etc.

“Alkenyloxy” represents an alkenyl-O-group, whose alkenyl part has the above-mentioned meaning and there can be mentioned, for example, allyloxy, 2-butenyloxy, 3-butenyloxy, 2-methyl-4-pentenyloxy, etc.

- 15 “Alkylthio” represents an alkyl-S-group, whose alkyl part has the above-mentioned meaning and can be, for example, C₁₋₆alkylthio, and there can be specifically mentioned methylthio, ethylthio, n- or iso-propylthio, n-, iso-, sec- or tert-butylthio, n-pentylthio, n-hexylthio, etc.

“Alkenylthio” represents an alkenyl-S-group, whose alkenyl part has the above-mentioned meaning and there can be mentioned, for example, allylthio, 2-butenylthio, 3-butenylthio, etc.

- 20 “Alkylsulfinyl” represents an alkyl-S(O)-group, whose alkyl part has the above-mentioned meaning and can be, for example, C₁₋₆alkylsulfinyl, and there can be specifically mentioned, for example, methylsulfinyl, ethylsulfinyl, n- or iso-propylsulfinyl, n-, iso-, sec- or tert-butylsulfinyl, n-pentylsulfinyl, n-hexylsulfinyl, etc.

- 25 “Alkylsulfonyl” represents an alkyl-SO₂-group, whose alkyl part has the above-mentioned meaning and can be, for example, C₁₋₆alkylsulfonyl, and there can be specifically mentioned, for example, methylsulfonyl, ethylsulfonyl, n- or iso-propylsulfonyl, n-, iso-, sec- or tert-butylsulfonyl, n-pentylsulfonyl, n-hexylsulfonyl, etc.

“Alkylcarbonyl”: there can be mentioned, for example, methylcarbonyl (acetyl), ethylcarbonyl (propionyl), etc.

- 30 “Alkylcarbonylamino”: there can be mentioned, for example, methylcarbonylamino, ethylcarbonylamino, etc.

“Alkoxycarbonyl”: there can be mentioned, for example, methoxycarbonyl, ethoxycarbonyl, etc.

"Haloalkyl" represents a straight-chain or branched-chain alkyl, at least one of whose hydrogen is substituted by halogen and there can be mentioned, for example, C₁₋₆alkyl substituted by one to six fluoro, chloro and /or bromo, and as specific examples there can be mentioned fluoromethyl, chloromethyl, dichloromethyl, bromomethyl, difluoromethyl, trifluoromethyl, chlorodifluoro-
5 methyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-chloro-1,1,2-trifluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3,3,3-pentafluoropropyl, 1,2,2,3,3,3-hexafluoropropyl, etc.

"Haloalkylene": there can be mentioned, for example, difluoromethylene, dichloromethylene, etc.

Haloalkyl part in "haloalkoxy", "haloalkylthio", "haloalkylcarbonyl" and "haloalkylcarboxyl-amino" can be of the same definition as the aforementioned "haloalkyl" and specifically as "halo-
10 alkoxy" there can be mentioned, for example, difluoromethoxy, trifluoromethoxy, chloro-difluoromethoxy, dichloromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 3-chloropropoxy, etc., as "haloalkylthio" there can be mentioned, for example, difluoromethylthio,

15 trifluoromethylthio, 2,2,2-trifluoroethylthio, 3-fluoropropylthio, etc., as "haloalkylcarbonyl" there can be mentioned, for example, trifluoromethylcarbonyl, trichloromethylcarbonyl, 1,1,2,2-tetra-fluoroethylcarbonyl, perfluoroethylcarbonyl, perfluoroheptylcarbonyl, etc. and as "haloalkyl-carbonylamino" there can be mentioned, for example, trifluoromethylcarbonylamino, etc.

"Haloalkenyl" represents a straight-chain or branched-chain alkenyl, at least one of whose hydrogen is substituted with halogen and there can be mentioned, for example, 2-chloro-2-propenyl,
20 3-chloro-2-propenyl, 3,3-dichloro-2-propenyl, 3-chloro-4,4,4-trifluoro-2-butenyl, etc.

Haloalkenyl part in "haloalkenyloxy" and "haloalkenylthio" can be of the same definition as the aforementioned "haloalkenyl" and specifically as "haloalkenyloxy" there can be mentioned, for example, 2-chloro-2-propenyloxy, 3-chloro-2-propenyloxy, 3,3-dichloro-2-propenyloxy, 3-chloro-4,4,4-trifluoro-2-butenyloxy, etc., and as "haloalkenylthio" there can be mentioned, for
25 example, 2-chloro-2-propenylthio, 3-chloro-2-propenylthio, 3,3-dichloro-2-propenylthio, 3-chloro-4,4,4-trifluoro-2-butenylthio, etc.

"Phenylalkyl": there can be mentioned, for example, benzyl, 1-phenylethyl, phenethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, etc.

"Phenoxyalkyl": there can be mentioned, for example, phenoxyethyl, 1-phenoxyethyl, 2-phenoxyethyl, 1-phenoxypropyl, 2-phenoxypropyl, 3-phenoxypropyl, etc.

"Alkoxyalkyl": there can be mentioned, for example, methoxymethyl, 2-methoxyethyl, 1-methoxyethyl, 3-methoxypropyl, ethoxymethyl, 2-ethoxyethyl, etc.

“Dialkylaminoalkyl”: there can be mentioned, for example, dimethylaminomethyl, 2-dimethylaminoethyl, 1-dimethylaminoethyl, 3-dimethylaminopropyl, diethylaminomethyl, 2-diethylaminoethyl, etc.

“Alkoxy carbonylalkyl”: there can be mentioned, for example, methoxycarbonylmethyl, ethoxy carbonylmethyl, (n- or iso-) propyloxycarbonylmethyl, (n-, iso-, sec.-or tert-) butyloxycarbonylmethyl, 2-methoxycarbonylethyl, 3-methoxycarbonylpropyl, etc.

“Hydroxyalkyl”: there can be mentioned, for example, hydroxymethyl, 2-hydroxyethyl, etc.

“Anilinoalkyl”: there can be mentioned, for example, anilinomethyl, 2-anilinoethyl, etc.

“Aryl”: there can be mentioned, for example, phenyl, 1-naphthyl, 2-naphthyl, etc.

- 10 The heterocyclic group in “R¹ and R² form, together with the nitrogen atom to which they are bonded, a 3 to 10-membered heterocyclic group that may contain further one to three hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and S(O)_n besides the nitrogen atom to which R¹ and R² are bonded” and “5 to 10-membered heterocyclic group that contains one to four hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom”, defined in the group
- 15 and

- and
- the heterocyclic group in “R²⁴ and R²⁵ form, together with the nitrogen atom to which they are bonded, a 5 to 8-membered, saturated, monocyclic, heterocyclic group that may contain further hetero one or two atoms selected from the group consisting of nitrogen atom, oxygen atom and S(O)_n, besides the nitrogen atom to which R²⁴ and R²⁵ are bonded”, defined in the group
- 20

includes saturated heterocyclic group, unsaturated heterocyclic group and aromatic heterocyclic group.

Thus, as “saturated heterocyclic group” there can be mentioned monovalent group derived from,

for example, aziridine, azetidine, pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, thiomorpholine-1,1-dioxide, perhydroazepine, perhydroazocine, perhydro-1,2-diazepine, perhydro-1,2,5-oxadiazepine, perhydroindole, perhydroquinoline, perhydroisoquinoline, etc.

“Unsaturated heterocyclic group”: there can be mentioned monovalent group derived from, for 5 example, 3-pyrroline, 2-pyrazoline, thiazolidine, 2,3-dihydroindole, 1,2,3,3a,4,7,7a-hepta-hydroisoindole, 1,2,3,6-tetrahydropyridine, 1,4,5,6-tetrahydropiridazine, etc.

“Aromatic heterocyclic group”: there can be mentioned monovalent group derived from, for example, pyrrole, furan, thiophene, pyrazole, imidazole, thiazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,2,3-triazole, 1,2,4-triazole, tetrazole, 1H-indazole, quinoline, isoquinoline, etc.

10 In the plant pest controlling active compounds of the aforementioned formula (I), preferably there can be mentioned the compounds in which

R¹ and R² form, together with the nitrogen atom to which they are bonded, a heterocyclic group which is a monovalent group derived from a heterocycle selected from aziridine, azetidine, pyrrolidine, 3-pyrroline, piperidine, perhydroazepine, perhydroazocine, perhydro-1,2-diazepine, 15 perhydro-1,2,5-oxadiazepine, 2-pyrazoline, thiazolidine, perhydroindole, 1,2,3,3a,4,7,7a-hepta-hydroisoindole, 1,2,3,6-tetrahydropyridine, perhydroquinoline, perhydroisoquinoline, 1,4,5,6-te-trahydropyridazine, morpholine, thiomorpholine, thiomorpholine-1,1-dioxide, piperazine, pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole or 1H-indazole and may be optionally substituted by one to three groups selected from the group consisting of fluoro, bromo, C₁₋₄alkyl, 20 C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄alkylthio, benzylthio, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, anilinoC₁₋₄alkyl, C₁₋₄haloalkylene, C₁₋₄alkoxy-carbonyl, benzyloxy-carbonyl, C₁₋₄alkyl-carbonyl, C₁₋₇haloalkyl-carbonyl, phenyl, benzyl, pyridyl, hydroxy, oxo, cyano, carboxy, carbamoyl, C₁₋₄alkoxy-carbonylC₁₋₄alkyl, C₁₋₄alkyl-carbonylamino and C₁₋₄haloalkyl-carbonylamino,

25 R³ represents hydrogen, chloro, bromo, cyano, hydroxy, amino, azido, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxyC₁₋₆alkyl, C₃₋₇cycloalkyl, C₂₋₇alkenyl, C₂₋₇alkynyl, C₁₋₆alkoxy, C₁₋₆haloalkoxy, C₂₋₇alke-nyloxy, C₂₋₇haloalkenyloxy, C₁₋₆alkylthio, C₂₋₇alkenylthio, C₂₋₇haloalkenylthio, C₁₋₆alkylsulfinyl, C₁₋₆alkylsulfonyl, phenoxy, benzyloxy, phenyl that may be optionally substituted by one or two groups selected from the group consisting of chloro, C₁₋₄alkyl, C₁₋₆alkoxy and C₁₋₆haloalkyl, phenylC₁₋₄alkyl that may be optionally chloro-substituted, or phenoxyC₁₋₄alkyl that may be 30 optionally chloro-substituted, or

R³ represents a heterocyclic group which is a monovalent group derived from a heterocycle selected from pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, thiophene, thiazole, pyridine, quinoline, isoquinoline, pyrazine, pyridazine, pyrimidine, imidazole, pyrazole, tetrazole,

1,2,4-triazole and 2,3-dihydroindole, and may be optionally substituted by a group selected from the group consisting of chloro, bromo, C₁₋₆alkyl and C₁₋₆haloalkyl, or

R³ represents a group selected from the group consisting of the following groups A-H and J-M

5 in which

R⁷ represents hydrogen atom, C₁₋₆alkyl or C₁₋₆haloalkyl,

R⁸ represents C₁₋₆alkyl, phenyl, C₁₋₆alkoxy or cyano,

R⁷ and R⁸ form, together with the carbon atom to which they are bonded, C₅₋₈cycloalkylidene,

R⁹ represents C₁₋₆alkyl, C₂₋₇haloalkenyl or benzyl,

10 R¹⁰ represents hydrogen atom or C₁₋₆alkyl,

R¹¹ represents C₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

phenyl, benzyl or cyano,

R¹² represents C₁₋₆alkyl or phenyl,

R¹³ represents C₁₋₆alkyl or benzyl,

15 R¹⁴ represents hydrogen atom or C₁₋₆alkyl,

R¹⁵ represents hydrogen atom, C₁₋₆haloalkyl or phenyl,

R¹⁶ represents hydrogen atom or C₁₋₆alkyl,

R¹⁷ represents hydrogen atom, C₁₋₄alkyl or C₁₋₆haloalkyl,

R¹⁸ represents C₁₋₆alkyl or phenyl,

5 R¹⁹ represents hydrogen atom or C₁₋₆alkyl,

R²⁰ represents C₁₋₆alkyl,

R²¹ represents C₁₋₆alkyl,

R²² represents C₁₋₆alkyl, C₂₋₇alkenyl, C₂₋₇haloalkenyl, C₁₋₆alkoxyC₁₋₆alkyl, phenoxyC₁₋₆alkyl or C₁₋₆alkoxycarbonylC₁₋₆alkyl,

10 R²³ represents C₁₋₆alkyl,

R²⁴ represents hydrogen atom or C₁₋₆alkyl,

R²⁵ represents C₁₋₆alkyl or phenyl,

R²⁴ and R²⁵ form, together with the nitrogen atom to which they are bonded, a saturated-monocyclic,heterocyclic group which is a monovalent group derived from a monoheterocycle selected from the group consisting of pyrrolidine, piperidine, morpholine and piperazine and may be optionally substituted by C₁₋₄alkyl,

R⁴ represents hydrogen atom, fluoro, chloro, cyano, C₁₋₆alkyl,

C₁₋₆haloalkyl, C₂₋₇alkenyl, C₂₋₇alkynyl, C₁₋₆alkoxy, C₁₋₆haloalkoxy, C₁₋₆alkylthio,

20 C₁₋₆haloalkylthio, C₁₋₆alkylsulfinyl, C₁₋₆alkylsulfonyl or pyrazolyl that may be optionally C₁₋₆alkyl-substituted or C₁₋₆haloalkyl-substituted,

R⁵ and R⁶ each independently represents hydrogen atom, fluoro, C₁₋₄alkyl, C₁₋₄haloalkyl or phenyl, and

25 Q represents naphthyl, phenyl that may be optionally substituted, pyridyl that may be optionally substituted, thienyl that may be optionally substituted, or furyl that may be optionally substituted, wherein substituents to phenyl, pyridyl, thienyl and furyl are one to five groups selected from the group consisting of fluoro, chloro, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄haloalkoxy, cyano, nitro, amino and phenyl.

In the plant pest controlling active compounds of the aforementioned formula (I), particularly preferably there can be mentioned the compounds in which

R¹ and R² form, together with the nitrogen atom to which they are bonded, a heterocyclic group which is a monovalent group derived from a heterocycle selected from the group consisting of
5 aziridine, azetidine, pyrrolidine, 3-pyrroline, piperidine, perhydroazepine, perhydroazocine, perhydro-1,2-diazepine, perhydro-1,2,5-oxadiazepine, 2-pyrazoline, thiazolidine, perhydroindole, 1,2,3,3a,4,7,7a-heptahydroisoindole, 1,2,3,6-tetrahydropyridine, perhydroquinoline, perhydroisoquinoline, 1,4,5,6-tetrahydropyridazine, morpholine, thiomorpholine, thiomorpholine-1,1-dioxide, piperazine, pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4-triazole,
10 tetrazole and 1H-indazole and may be optionally substituted with 1-3 groups selected from the group consisting of fluoro, bromo, methyl, ethyl, n-propyl, fluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, methoxy, methylthio, benzylthio, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, anilinomethyl, difluoromethylene, dichloromethylene, methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, acetyl, trifluoromethylcarbonyl, trichloromethylcarbonyl,
15 1,1,2,2-tetrafluoroethylcarbonyl, perfluoroethylcarbonyl, perfluoroheptylcarbonyl, phenyl, benzyl, 2-pyridyl, hydroxy, oxo, cyano, carboxy, carbamoyl, ethoxycarbonylmethyl, methylcarbonylamino and trifluoromethylcarbonylamino,

R³ represents hydrogen, chloro, cyano, hydroxy, amino, azido, methyl, ethyl, iso-propyl, tert-butyl, trifluoromethyl, methoxymethyl, cyclopropyl, allyl, ethynyl, 1-propynyl, methoxy, ethoxy, 20 n-propyloxy, n-butyloxy, 2,2,2-trifluoroethoxy, allyloxy, 2-methyl-4-pentenoxy, 3-chloro-4,4,4-trifluoro-2-butenyloxy, methylthio, ethylthio, n- or iso-propylthio, n-, sec- or tert-butylthio, allylthio, 3,3-dichloroallylthio, methylsulfinyl, methylsulfonyl, phenoxy, benzyloxy, phenyl that may be optionally substituted with 1-2 groups selected from the group consisting of chloro, methyl, methoxy and trifluoromethyl, benzyl that may be optionally chloro-substituted, or
25 phenoxy that may be optionally chloro-substituted, or

R³ represents a heterocyclic group which is a monovalent group derived from a heterocycle selected from the group consisting of pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, thiophene, thiazole, pyridine, quinoline, isoquinoline, pyrazine, pyridazine, pyrimidine, imidazole, pyrazole, tetrazole, 1,2,4-triazole and 2,3-dihydroindole, and may be optionally substituted with a group selected from the group consisting of chloro, bromo, methyl and trifluoromethyl, or
30

R³ represents a group selected from the group consisting of the following groups A-H and J-M

in which

R^7 represents hydrogen atom, methyl or trifluoromethyl,

R^8 represents methyl, iso- or tert-butyl, neo-pentyl, phenyl, ethoxy or cyano, or

5 R^7 and R^8 form, together with the carbon atom to which they are bonded, cyclopentylidene or cyclohexylidene,

R^9 represents methyl, 3,3-dichloroallyl or benzyl,

R^{10} represents hydrogen atom, methyl or ethyl,

10 R^{11} represents methyl, ethyl, iso-propyl, methoxyethyl, dimethylaminoethyl, phenyl, benzyl or cyano,

R^{12} represents methyl or phenyl,

R^{13} represents methyl or benzyl,

R^{14} represents hydrogen atom or methyl,

R^{15} represents hydrogen atom, 2,2,2-trifluoroethyl or phenyl,

15 R^{16} represents hydrogen atom or methyl,

R¹⁷ represents hydrogen atom, methyl or trifluoromethyl,

R¹⁸ represents methyl or phenyl,

R¹⁹ represents hydrogen atom or methyl,

R²⁰ represents methyl, ethyl, n- or iso-propyl,

5 R²¹ represents methyl or ethyl,

R²² represents methyl, ethyl, n-propyl, n- or tert-butyl, allyl, 2-chloro-2-propenyl, 3-chloro-2-propenyl, 3,3-dichloro-2-propenyl, 2-methoxyethyl, 2-phenoxypropyl or tert-butoxycarbonylmethyl,

R²³ represents methyl,

10 R²⁴ represents hydrogen atom or methyl,

R²⁵ represents iso-propyl or phenyl,

R²⁴ and R²⁵ form, together with the nitrogen atom to which they are bonded, a saturated-monoheterocyclic group which is a monovalent group derived from a monoheterocycle selected from the group consisting of pyrrolidine, piperidine, morpholine and piperazine and may 15 be optionally substituted with methyl,

R⁴ represents hydrogen atom, chloro, cyano, methyl, trifluoromethyl, allyl, ethynyl, 1-propynyl, methoxy, 2,2,2-trifluoroethoxy, methylthio, C₁₋₆haloalkylthio, methylsulfinyl, methylsulfonyl or pyrazolyl that may be optionally methyl-substituted or trifluoromethyl-substituted,

20 R⁵ and R⁶ each independently represents hydrogen atom, fluoro, methyl, ethyl, iso-propyl, trifluoromethyl or phenyl, and

Q represents naphthyl, phenyl that may be optionally substituted, pyridyl that may be optionally substituted, thienyl that may be optionally substituted, or furyl that may be optionally substituted, wherein substituents to phenyl, pyridyl, thienyl and furyl are 1-5 groups selected from the group consisting of fluoro, chloro, methyl, tert-butyl, trifluoromethyl, methoxy, trifluoromethoxy, cyano, 25 nitro, amino and phenyl,

Similarly, in the compounds of the aforementioned formula (IA), there can be mentioned the compounds in which R^{1A}, R^{2A}, R^{3A}, R^{4A}, R^{5A}, R^{6A}, R^{7A}, R^{8A}, R^{9A}, R^{10A}, R^{11A}, R^{12A}, R^{13A}, R^{14A}, R^{15A}, R^{16A}, R^{17A}, R^{18A}, R^{19A}, R^{20A}, R^{21A}, R^{22A}, R^{23A}, R^{24A}, R^{25A} and Q^A each has the same definition as the definition of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹,

R²², R²³, R²⁴, R²⁵ and Q mentioned in the definition of the preferable compounds of the aforementioned formula (I), respectively,

provided that, the following cases (T-1)-(T-6) are excluded:

(T-1) the case in which group

5

represents 1-pyrrolyl, 1-imidazolyl, 3-oxopiperidino or 4-oxopiperidino, R^{3A} represents hydrogen atom, R^{4A} represents hydrogen atom, and Q^A represents 1-naphthyl or phenyl group that may be optionally substituted by one or two groups selected from the group consisting of chloro, methyl,
10 ethyl and trifluoromethyl,

(T-2) the case in which group

represents 3-oxopiperidino, 4-oxopiperidino, 4-hydroxypiperidino, 4-carbamoylpiperidino,
4-methylpiperazino, 4-ethylpiperazino, 4-(2-hydroxyethyl)piperazino or morpholino, R^{3A}
15 represents amino, R^{4A} represents hydrogen atom, and Q^A represents 3-pyridyl or phenyl group that
may be optionally substituted by one to three groups selected from the group consisting of fluoro,
chloro, methyl, ethyl, isopropyl, trifluoromethyl and methoxy,

(T-3) the case in which group

20 represents piperidino, 4-hydroxypiperidino, 4-methylpiperazino or morpholino, R^{3A} represents
chloro, dimethylamino, anilino, piperidino, 4-methylpiperazino or morpholino, R^{4A} represents
hydrogen atom, and Q^A represents phenyl group that may be optionally substituted by one or two
groups selected from the group consisting of methyl and methoxy,

(T-4) the case in which group

represents 1-pyrrolidinyl, piperidino, morpholino or 1-pyrrolyl, R^{3A} represents methyl or methoxymethyl, R^{4A} represents chloro, and Q^A represents phenyl or 1-naphthyl,

(T-5) the case in which group

represents 1-azilidinyl, piperidino or morpholino, R^{3A} represents methylthio, R^{4A} represents chloro, and Q^A represents phenyl group substituted by methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy or iso-butoxy,

(T-6) the case in which group

represents 1-azilidinyl, R^{3A} represents hydrogen atom or amino, R^{4A} represents chloro, and Q^A represents phenyl group substituted by methoxy or ethoxy,

as preferable.

Moreover, in the compounds of the aforementioned formula (IA), the compounds in which R^{1A}, R^{2A}, R^{3A}, R^{4A}, R^{5A}, R^{6A}, R^{7A}, R^{8A}, R^{9A}, R^{10A}, R^{11A}, R^{12A}, R^{13A}, R^{14A}, R^{15A}, R^{16A}, R^{17A}, R^{18A}, R^{19A}, R^{20A}, R^{21A}, R^{22A}, R^{23A}, R^{24A}, R^{25A} and Q^A each has the same definition as the definition of R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵ and Q mentioned in the definition of the particularly preferable compounds of the aforementioned formula (I), respectively,

20 provided that, the following cases (T-1)-(T-6) are excluded:

(T-1) the case in which group

represents 1-pyrrolyl, 1-imidazolyl, 3-oxopiperidino or 4-oxopiperidino, R^{3A} represents hydrogen atom, R^{4A} represents hydrogen atom, and Q^A represents 1-naphthyl or phenyl group that may be optionally substituted by one or two groups selected from the group consisting of chloro, methyl and trifluoromethyl,

- 5 (T-2) the case in which group

represents 3-oxopiperidino, 4-oxopiperidino, 4-hydroxypiperidino, 4-carbamoylpiperidino, 4-methylpiperazino, 4-ethylpiperazino, 4-(2-hydroxyethyl)piperazino or morpholino, R^{3A} represents amino, R^{4A} represents hydrogen atom, and Q^A represents 3-pyridyl or phenyl group that may be optionally substituted by one to three groups selected from the group consisting of fluoro, chloro, methyl, trifluoromethyl and methoxy,

- (T-3) the case in which group

represents piperidino, 4-hydroxypiperidino, 4-methylpiperazino or morpholino, R^{3A} represents chloro, dimethylamino, anilino, piperidino, 4-methylpiperazino or morpholino, R^{4A} represents hydrogen atom, and Q^A represents phenyl group that may be optionally substituted by one or two groups selected from the group consisting of methyl and methoxy,

- (T-4) the case in which group

20 represents 1-pyrrolidinyl, piperidino, morpholino or 1-pyrrolyl, R^{3A} represents methyl or methoxymethyl, R^{4A} represents chloro, and Q^A represents phenyl or 1-naphthyl,

- (T-5) the case in which group

represents 1-azilidinyl, piperidino or morpholino, R^{3A} represents methylthio, R^{4A} represents chloro, and Q^A represents phenyl group substituted with methoxy,

(T-6) the case in which group

represents 1-azilidinyl, R^{3A} represents hydrogen atom or amino, R^{4A} represents chloro, and Q^A represents phenyl group substituted with methoxy,

are particularly preferable.

The aforementioned preparation process (a) can be illustrated by the following reaction scheme in
10 case that, for example, 5-benzyl-4,6-dichloropirimidine and pyrrolidine are used as starting materials.

The aforementioned preparation process (b) can be illustrated by the following reaction scheme in
15 case that, for example, 5-benzyl-4-chloro-2-methylthio-6-pyrrolidin-1-yl-pirimidine is used as starting material and, for example, m-chloroperbenzoic acid, as oxidizing agent.

The aforementioned preparation process (c) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-2-methanesulfonyl-6-pyrrolidin-1-yl-pirimidine and pyrazole are used as starting materials.

- 5 The aforementioned preparation process (d) can be illustrated by the following reaction scheme in case that, for example, 4-chloro-5-(3-fluorobenzyl)-6-pyrrolidin-1-yl-pirimidine and sodium methoxide are used as starting materials.

- 10 The aforementioned preparation process (e) can be illustrated by the following reaction scheme in case that a starting material, for example, 4-chloro-5-(3-fluorobenzyl)-6-pyrrolidin-1-yl-pirimidine is catalytically hydrogenated.

The aforementioned preparation process (f) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-(2,5-dihydropyrrol-1-yl)pyrimidine and sodium chlorodifluoroacetate are used as starting materials.

- 5 The aforementioned preparation process (g) can be illustrated by the following reaction scheme in case that, for example, 2-azido-5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidine and sodium borohydride are used as starting materials.

- 10 The aforementioned preparation process (h) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-ylamine and tert-butyl nitrite and copper (II) chloride are used as starting materials (Sandmeyer process).

The aforementioned preparation process (i) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-ylamine and dimethylformamide dimethylacetal and O-methylhydroxylammonium chloride are used as starting materials.

The aforementioned preparation process (j) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-ylamine and acetic anhydride are used as starting materials.

- 10 The aforementioned preparation process (k) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidine-2-carbonitrile and methyl magnesium bromide are used as starting materials.

- 15 The aforementioned preparation process (l) can be illustrated by the following reaction scheme in case that, for example, 1-(5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-yl)ethanone and O-ethylhydroxylammonium chloride are used as starting materials.

The aforementioned preparation process (m) can be illustrated by the following reaction scheme in case that, for example, 5-benzyl-4-chloro-6-

(pyrrolidin-1-yl)pyrimidine-2-carbonitrile and hydroxylammonium chloride are

5 used as starting materials.

The compounds of the formula (II), starting materials in the above-mentioned preparation process (a), which are partly novel compounds and are not described in the existing literatures, can be easily prepared, for example, by reacting a compound represented by the formula

10

wherein

R^{4Aa2} represents hydrogen atom, hydroxy, alkyl, haloalkyl or alkenyl,

R^{3Aa} , R^{5A} , R^{6A} and Qa have the same definition as aforementioned,

with a halogenating agent, for example, phosphorus oxychloride, phosphorus oxybromide, etc. according to the process described in Journal of Heterocyclic Chemistry, Vol.29, p.1369-1370 (1992); Journal of Organic Chemistry, Vol.32, No.2, p.1591-1596 (1967), etc.

The compounds of the above-mentioned formula (XII), which are partly novel compounds and are not described in the existing literatures, can be easily prepared, for example, by reacting a compound represented by the formula

wherein

R^{4Aa3} represents hydrogen atom, alkyl, haloalkyl, alkenyl or C_{1-4} alkoxy,

R^{26A} represents C_{1-4} alkyl,

10 R^{SA} , R^{6A} and QA have the same definition as aforementioned,

with a compound represented by the formula

15 wherein

R^{3A_3} has the same definition as aforementioned,

according to the process described in, for example, Journal of the American Chemical Society, Vol.77, p.745-749 (1955); Journal of the American Chemical Society, Vol.69, p.2941-2942 (1938), etc.

The above-mentioned formula (XIII), which is also partly novel compounds that are not described in the existing literatures, can be easily prepared, for example, by reacting a compound represented by the formula

5

wherein

R^{4Aa3} and R^{26A} have the same definition as aforementioned,

10 with a compound represented by the formula

wherein

X¹ represents halogen, preferably chloro, bromo or iodo,

R^{5A}, R^{6A} and Q^A have the same definition as aforementioned,

15 according to the process described in, for example, Japanese Laid-open Patent Publication No. 228500/1999 etc.

The compounds of the above-mentioned formulae (XV) and (XVI) are per se known compounds.

The above-mentioned formula (XIV), which is partly novel compounds that are not described in the existing literatures, can be easily prepared, for example, from a compound represented by the

20 formula

wherein

R^{3A_2} has the same definition as aforementioned,

by treating according to the process described in Journal of Organic Chemistry, Vol.26, p.412-418 (1961); Journal of Organic Chemistry, Vol.34, p.292-296 (1969); Chemical Reviews Washington, D. C., Vol.35, p.351-425 (1944), etc.

- 5 The compounds of the above-mentioned formula (XVII) are per se known compounds.

The compounds of the formula (III), starting materials in the above-mentioned preparation process (a), are per se known compounds.

As specific examples for the compounds of the formula (II), used as the starting materials in the above-mentioned preparation process (a), can be mentioned as follows:

- 10 5-benzyl-4,6-dichloropyrimidine

5-benzyl-4,6-dichloro-2-methylpyrimidine

4,6-dichloro-5-(3-fluorobenzyl)pyrimidine

4,6-dichloro-5-(3-chlorobenzyl)pyrimidine

4,6-dichloro-5-(2,6-difluorobenzyl)pyrimidine

- 15 4,6-dichloro-5-(3,5-difluorobenzyl)pyrimidine

5-benzyl-4-chloro-6-methylpyrimidine

5-benzyl-4,6-dichloro-2-methylthiopyrimidine

5-benzyl-4,6-dichloro-2-(pyridin-2-yl)pyrimidine

5-benzyl-4,6-dichloro-2-(pyridin-3-yl)pyrimidine

- 20 5-benzyl-4,6-dichloro-2-(pyridin-4-yl)pyrimidine

5-benzyl-4,6-dichloro-2-(pyrazin-2-yl)pyrimidine, and so on.

As specific examples for the compounds of the formula (XII), used as starting materials in the preparation of the compounds of the aforementioned formula (II), the following can be mentioned:

5-benzylpyrimidin-4,6-diol,

- 25 5-(3-fluorobenzyl)pyrimidin-4,6-diol,

5-(3-chlorobenzyl)pyrimidin-4,6-diol,
5-benzyl-2-(pyridin-2-yl)pyrimidin-4,6-diol,
5-benzyl-2-methylpyrimidin-4,6-diol,
5-benzyl-2-methylthiopyrimidin-4,6-diol, and so on.

5 As specific examples for the compounds of the formula (XIII), used as starting materials in the preparation of the compounds of the aforementioned formula (XII), the following can be mentioned:

- diethyl benzylmalonate,
ethyl 2-benzylacetooacetate
10 diethyl 2-(3-fluorobenzyl)malonate,
diethyl 2-(3-chlorobenzyl)malonate, and so on.

As specific examples for the compounds of the formula (XIV), used as starting materials in the preparation of the compounds of the aforementioned formula (XII), the following can be mentioned:

- 15 formamidine hydrochloride,
acetamidine hydrochloride,
tert-butylcarbamidine hydrochloride,
trifluoroacetamidine,
cyclopropylcarbamidine hydrochloride,
20 benzamidine hydrochloride,
2-(4-chlorophenoxy)-acetamidine hydrochloride,
pyrrolidinoformamidine hydrobromide,
morpholinoformamidine hydrobromide,
2-amidinothiophene hydrochloride,

3-amidinopyridine hydrochloride,

2-methylthiazole-4-carboxyamidine hydrochloride, and so on.

As specific examples for the compounds of the formula (XV), used as the starting materials in the preparation of the compounds of the aforementioned formula (XIII), the following can be

5 mentioned:

diethyl malonate

methyl actoacetate

ethyl butyrylacetate

ethyl 4,4,4-trifluoroacetoacetate

10 methyl 3-oxo-6-octenoate, and so on.

As specific examples for the compounds of the formula (XVI), used as the starting materials in the preparation of the compounds of the aforementioned formula (XIII), the following can be mentioned:

benzyl bromide,

15 1-phenylethyl bromide,

3-methylbenzyl bromide,

2-nitrobenzyl bromide,

3-fluorobenzyl bromide,

3-chlorobenzyl bromide,

20 3-(bromomethyl)benzonitrile,

4-tert-butylbenzyl bromide,

4-(trifluoromethyl)benzyl bromide,

2-(bromomethyl)naphthalene,

3-chloro-2-(chloromethyl)-5-(trifluoromethyl)pyridine,

2-chloro-5-(chloromethyl)pyridine,
2-chloro-5-(chloromethyl)thiophene,
2-(bromomethyl)-5-nitrofuran, and so on.

As specific examples for the compounds of the formula (XVII), used as the starting materials in the
5 preparation of the compounds of the aforementioned formula (XIV), the following can be
mentioned:

- benzonitrile,
2-cyanopyridine,
2-quinolinecarbonitrile,
10 1-isoquinolinecarbonitrile,
3-isoquinolinecarbonitrile,
cyanopyrazine, and so on.

As specific examples for the compounds of the formula (III), used as
the starting materials in the above-mentioned preparation process (a), the following can be
15 mentioned:

- 2-methylazolidine
azetidine,
pyrrolidine,
2-pyrrolidone,
20 2-methylpyrrolidine,
3-pyrrolidine,
thiazolidine,
pyrrole,
2-pyrazoline,

- pyrazole,
- imidazole,
- 1H-1,2,3-triazole,
- 1H-1,2,4-triazole,
- 5 1H-tetrazole,
- indoline,
- piperidine,
- 4-methylpiperidine,
- morpholine,
- 10 thiomorpholine,
- piperazine,
- hexamethyleneimine,
- heptamethyleneimine,
- octahydroindole, and so on.
- 15 The compounds of the formula (IAb), used as the starting materials in the above-mentioned preparation process (b), can be prepared by the aforementioned preparation processes (a), (d), (e) or (f) and as their specific examples the following can be mentioned:
- 5-benzyl-4-chloro-2-methylthio-6-(pyrrolidin-1-yl)pyrimidine,
- 5-benzyl-4-chloro-2-methylthio-6-(piperidin-1-yl)pyrimidine,
- 20 5-benzyl-4-chloro-6-(4-methylpiperidin-1-yl)-2-methylthiopyrimidine,
- 4-(5-benzyl-6-chloro-2-methylthiopyrimidin-4-yl)morpholine,
- 2-allylthio-5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidine,
- 5-benzyl-4-chloro-2-(3,3-dichloroallylthio)-6-(pyrrolidin-1-yl)pyrimidine, and so on.
- As oxidizing agents used in the above-mentioned preparation process (b), there can be mentioned,

for example, m-chloroperbenzoic acid, hydrogen peroxide, and so on.

The compounds of the formula (IAc), used as the starting materials in the above-mentioned preparation process (c), are compounds that can be prepared by the aforementioned preparation processes (b) or (h) and as their specific examples the following can be mentioned:

- 5 5-benzyl-4-chloro-2-methylsulfonyl-6-(pyrrolidin-1-yl)pyrimidine,
 5-benzyl-4-chloro-2-methylsulfonyl-6-(piperidin-1-yl)pyrimidine,
 5-benzyl-4-chloro-2-methylsulfonyl-6-(4-methylpiperidin-1-yl)pyrimidine,
 4-(5-benzyl-6-chloro-2-methylsulfonylpyrimidin-4-yl)morpholine,
 5-benzyl-2,4-dichloro-6-(pyrrolidin-1-yl)pyrimidine, and so on.
- 10 The compounds of the formula (IV), used as the starting materials in the above-mentioned preparation process (c), are per se known compounds and can be prepared according to the process described in, for example, Bulletin of the Chemical Society of Japan, Vol.64, p.2948-2953 (1991); Journal of Organic Chemistry, Vol.31, p.677-681 (1966); Journal of the American Chemical Society, Vol.75, p.4053-4054 (1953), etc. As their specific examples the following can be mentioned:
15 sodium cyanide, copper cyanide, tetrabutylammonium cyanide, sodium azide, 1-hexyne, ethynyltrimethylsilane, sodium methoxide, 2,2,2-trifluoroethanol, allyl alcohol, 3-chloro-4,4,4-trifluoro-2-buten-1-ol, sodium thiomethoxide, phenol, benzyl alcohol, pyrrolidine, pyrazole, imidazole, 1,2,4-triazole, cyclopentane oxime, 2-(hydroxyimino)propanenitrile, O-benzylhydroxylamine, aniline, hydrazine hydrate, N-methyl-N-(1-phenylethylidene)hydrazine,
20 N-phenylguanidine, and so on.

The compounds of the formula (IAd), used as the starting materials in the above-mentioned preparation process (d), can be prepared by the aforementioned preparation processes (a) or (f) and as their specific examples the following can be mentioned:

- 4-chloro-5-(3-fluorobenzyl)-6-(pyrrolidin-1-yl)pyrimidine,
- 25 5-benzyl-4-chloro-2-(pyrazol-1-yl)-6-(pyrrolidin-1-yl)pyrimidine,
 5-benzyl-4-chloro-6-(piperidin-1-yl)-2-(pyridin-2-yl)pyrimidine,
 3-(5-benzyl-6-chloropyrimidin-4-yl)-6,6-difluoro-3-azabicyclo[3.1.0]hexane, and so on.

The compounds of the formula (V), used as the starting materials in the above-mentioned

preparation process (d) are per se known compounds and as their specific examples the following can be mentioned:

- sodium cyanide, potassium cyanide, copper (I) cyanide, sodium methoxide, 2,2,2-trifluoroethanol, sodium thiomethoxide, 2,2,2-trifluoroethanethiol, 1-hexyne, pyrazole, imidazole, 1,2,4-triazole,
5 and so on.

The compounds of the formula (IAe), used as the starting materials in the above-mentioned preparation process (e), are compounds that can be prepared by the above-mentioned preparation processes (a) or (f) and as their specific examples the following can be mentioned:

- 4-chloro-5-(3-fluorobenzyl)-6-(pyrrolidin-1-yl)pyrimidine,
10 5-benzyl-4-chloro-2-(pyrazol-1-yl)-6-(pyrrolidin-1-yl)pyrimidine,
5-benzyl-4-chloro-6-(piperidin-1-yl)-2-(pyridin-2-yl)pyrimidine,
3-(5-benzyl-6-chloropyrimidin-4-yl)-6,6-difluoro-3-azabicyclo[3.1.0]hexane, and so on.

As catalyst used in the above-mentioned preparation process (e), there can be mentioned, for example, palladium-carbon and so on.

- 15 The compounds of the formula (IAf), used as the starting materials in the above-mentioned preparation process (f), can be prepared by the aforementioned preparation processes (a), (c) or (d) and as their specific examples the following can be mentioned:

- 5-benzyl-4-chloro-6-(2,5-dihydropyrrol-1-yl)pyrimidine,
5-benzyl-4-(2,5-dihydropyrrol-1-yl)-6-methoxypyrimidine,
20 4-chloro-6-(3,6-dihydro-2H-pyridin-1-yl)-5-(3-fluorobenzyl)-2-(1,2,4-triazol-1-yl) pyrimidine, and so on.

The compounds of the formula (IAg), use as the starting materials in the above-mentioned preparation process (g), can be prepared by the aforementioned preparation process (c) and as their specific examples the following can be mentioned:

- 25 2-azido-4-chloro-5-(3-chlorobenzyl)-6-(pyrrolidin-1-yl) pyrimidine,
2-azido-5-(6-chloropyridin-3-ylmethyl)-4-(pyrrolidin-1-yl) pyrimidine,
2-azido-4-chloro-6-(2,5-dihydropyrrol-1-yl)-5-(naphthalen-2-ylmethyl) pyrimidine and so on.

As catalyst used in the above-mentioned preparation process (g), there can be mentioned, for example, palladium-carbon and so on.

As metal hydrides used in the above-mentioned preparation process (g), there can be mentioned, for example, sodium borohydride, lithium aluminium hydride, and so on.

- 5 The compounds of the formula (IAh), used as the starting materials in the first step of the above-mentioned preparation process (h), the first step of the above-mentioned preparation process (i) and the above-mentioned preparation process (j) can be prepared by the aforementioned preparation processes (c) or (g) and as their specific examples the following can be mentioned:

4-chloro-6-(pyrrolidin-1-yl)-5-(3,4,5-trifluorobenzyl)pyrimidin-2-ylamine,

- 10 5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-ylamine,

5-benzyl-4-chloro-6-(4,5-dihydropyrazol-1-yl)pyrimidin-2-ylamine, and so on.

As nitrite esters used in the first step of the above-mentioned preparation process (h), there can be mentioned, for example, tert-butyl nitrite etc., and nitrous acid can be formed on the spot, for example, by exposing sodium nitrite to an acidic condition.

- 15 As copper halides or potassium halides used in the second step of the above-mentioned preparation process (h), there can be mentioned, for example, copper (I) chloride, copper (II) chloride, copper (I) bromide, copper (II) bromide, potassium iodide, and so on.

As specific examples of the compounds of the formula (VI), used as the starting materials in the second step of the above-mentioned preparation process (i), the following can be mentioned:

- 20 N'-(5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-yl)-N,N-dimethylformamidine,

N'-(4-chloro-6-(piperidin-1-yl)-5-(pyridin-2-ylmethyl)pyrimidin-2-yl)-N,N-dimethyl
formamidine,

N'-(4-chloro-5-(5-nitrofuran-2-ylmethyl)-6-(pyrrolidin-1-yl)pyrimidin-2-yl)-N,N-
dimethylformamidine, and so on.

- 25 The compounds of the formula (VII), used as the starting materials in the above-mentioned preparation process (i) are per se known compounds and as their specific examples the following can be mentioned:

O-methylhydroxylamine,

O-ethylhydroxylamine,

O-isopropylhydroxylamine,

O-benzylhydroxylamine, and so on.

- 5 The compounds of the formula (VIII), used as the starting materials in the above-mentioned preparation process (j) are per se known compounds and as their specific examples the following can be mentioned:

acetic anhydride, propionic anhydride, acetyl chloride, n-butyryl chloride, benzoyl chloride, and so on.

- 10 The compounds of the formula (IAk), used as the starting materials in the above-mentioned preparation process (k) and the above-mentioned preparation process (m) can be prepared by the aforementioned preparation processes (c) or (d) and as their specific examples the following can be mentioned:

5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidine-2-carbonitrile,

- 15 5-(3-fluorobenzyl)-4-(4-methylpiperadin-1-yl)pyrimidine-2-carbonitrile,

4-(2,3-dihydroindol-1-yl)-5-(3-fluoro-4-trifluoromethylbenzyl)pyrimidine-2-carbonitrile, and so on.

- The compounds of the formula (IX), used as the starting materials in the above-mentioned preparation process (k) are per se known compounds and can be also prepared according to the process described in, for example, Journal of the American Chemical Society, Vol.94, p.5421-5434 (1972) etc. As their specific examples the following can be mentioned:

methyl magnesium bromide,

isopropyl magnesium bromide,

pentyl magnesium bromide, and so on.

- 25 The compounds of the formula (IAI), used as the starting materials in the above-mentioned preparation process (l) can be prepared by the aforementioned preparation process (k) and as their specific examples the following can be mentioned:

1-(5-benzyl-4-chloro-6-(pyrrolidin-1-yl)pyrimidin-2-yl)ethanone,
1-(5-benzyl-4-methyl-6-(pyrrolidin-1-yl)pyrimidin-2-yl)ethanone,
1-(5-benzyl-4-methoxy-6-(piperidin-1-yl)pyrimidin-2-yl)propan-1-one, and so on.

The compounds of the formula (X), used as the starting materials in the above-mentioned
5 preparation process (l) are per se known compounds and as their specific examples the following
can be mentioned:

- O-ethylhydroxylamine,
O-(3-chloroallyl)hydroxylamine,
O-(2-methoxyethyl)hydroxylamine,
10 phenylhydrazine,
1-methyl-1-phenylhydrazine, and so on.

The compounds of the formula (XI), used as the starting materials in the above-mentioned
preparation process (m) are per se known compounds and as their specific examples the following
can be mentioned:

- 15 hydroxylamine,
O-methylhydroxylamine,
O-ethylhydroxylamine, and so on.

The compounds of the formula (IAc), Xc of which represents iodo, used as the starting materials in
the above-mentioned preparation process (c), can be easily prepared from compounds, Xc of which
20 is chloro, according to the process described in, for example, Journal of Heterocyclic Chemistry,
Vol.23, p.1079-1084 (1986); Journal of the Chemical Society, (c), p.1204-1209 (1967), etc. and the
compounds of the formula (IAd), Xd of which represents iodo, starting materials in the
above-mentioned preparation process (d), can be easily prepared from compounds, Xd of which is
chloro, according to the similar process,

25 The reaction of the above-mentioned preparation process (a) can be conducted in an appropriate
diluent. As examples of the diluent usable in that case there can be mentioned aliphatic, alicyclic
and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane,
cyclohexane, petroleum ether, ligoine, benzene, toluene, xylene, dichloromethane, chloroform,

- carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK), etc.; nitriles, for example, acetonitrile, propionitrile, acrylonitrile, etc.; esters, for example, ethyl acetate, amyl acetate, etc.; acid amides, for example, dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA), etc.; sulfones, sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane, etc.; bases, for example, pyridine etc.
- 10 The preparation process (a) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.; inorganic alkali metal amides, for example, lithium amide, sodium amide, potassium amide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.; organic amine hydrochlorides, for example, pyridine hydrochloride, triethylamine hydrochloride, etc.; amine sulfonates, for example, pyridine p-toluenesulfonate, triethylamine p-toluenesulfonate, etc.
- 15 The preparation process (a) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about 20°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.
- 20 In conducting the preparation process (a), the aimed compound can be obtained, for example, by reacting 1.1 to 8.0 moles of a compound of the formula (III) to 1 mole of a compound of the formula (II) in a diluent, for example, tetrahydrofuran, in the presence of triethylamine.
- 25 The reaction of the above-mentioned preparation process (b) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; alcohols, for

example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.; esters, for example, ethyl acetate, amyl acetate, etc.; carboxylic acids, for example, acetic acid etc.

The preparation process (b) can be conducted in the presence of a catalyst and as example of said catalyst there can be mentioned, for example, tungstates etc.

- 5 The preparation process (b) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about 120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

- In conducting the preparation process (b), the aimed compound can be obtained, for example, by
10 reacting 2.0 to 2.4 moles of m-chloroperbenzoic acid (MCPBA) to 1 mole of a compound of the formula (IAb) in a diluent, for example,
dichloromethane.

- The reaction of the above-mentioned preparation process (c) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned aliphatic, alicyclic
15 and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; ketones, for example,
20 acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK), etc.; nitriles, for example, acetonitrile, propionitrile, acrylonitrile, etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.; acid amides, for example, dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA), etc.; sulfones,
25 sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane, etc.; bases, for example, pyridine etc.

- The preparation process (c) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.; inorganic alkali metal amides, for example, lithium amide, sodium amide, potassium amide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and

- pyridines, for example, triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.; organic lithium compounds, for example, methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, dimethyl copper lithium, lithium diisopropyl amide, lithium cyclohexyl isopropyl amide, lithium dicyclohexyl amide, n-butyl lithium · DABCO, n-butyl lithium · DBU, n-butyl lithium · TMEDA, etc.; organic amine hydrochlorides, for example, pyridine hydrochloride, triethylamine hydrochloride, etc.; amine sulfonates, for example, pyridine p-toluenesulfonate, triethylamine p-toluenesulfonate, etc.
- 10 The preparation process (c) can be conducted in the presence of a catalyst and as example of said catalyst there can be mentioned, for example, palladium catalysts such as dichlorobis(triphenylphosphine) palladium, etc., metal catalysts such as copper (I) iodide etc.
- The preparation process (c) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about 0 to about 15 150°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.
- In conducting the preparation process (c), the aimed compound can be obtained, for example, by reacting 1.5 to 2.5 moles of a compound of the formula (IV) to 1 mole of a compound of the formula (IAc) in a diluent, for example, DMF, in the presence of potassium carbonate.
- 20 The reaction of the above-mentioned preparation process (d) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligoine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, 25 ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK), etc.; nitriles, for example, acetonitrile, propionitrile, acrylonitrile, etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.; esters, for example, ethyl acetate, 30 amyl acetate, etc.; acid amides, for example, dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA), etc.; sulfones, sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane, etc.; bases, for example, pyridine etc.

The preparation process (d) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, 5 potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.; inorganic alkali metal amides, for example, lithium amide, sodium amide, potassium amide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminocarbanilines and pyridines, for example, triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 10 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.; organic lithium compounds, for example, methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, dimethyl copper lithium, lithium diisopropyl amide, lithium cyclohexyl isopropyl amide, lithium dicyclohexyl amide, n-butyl lithium · DABCO, n-butyl lithium · DBU, n-butyl lithium · TMEDA, etc.; organic amine hydrochlorides, for example, pyridine 15 hydrochloride, triethylamine hydrochloride, etc.; amine sulfonates, for example, pyridine p-toluenesulfonate, triethylamine p-toluenesulfonate, etc.

The preparation process (d) can be conducted in the presence of a catalyst and as example of said catalyst there can be mentioned, for example, palladium catalysts such as dichlorobis(triphenylphosphine) palladium etc. and metal catalysts such as copper (I) iodide etc.

20 The preparation process (d) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about 120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

In conducting the preparation process (d), the aimed compound can be obtained, for example, by reacting 1.5 to 2.5 moles of a compound of the formula (V) to 1 mole of a compound of the 25 formula (IAd) in a diluent, for example, THF, in the presence of triethylamine.

The reaction of the above-mentioned preparation process (e) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aromatic hydrocarbons, for example, benzene, toluene, xylene, etc.; alcohols, for example, methanol, ethanol, 30 isopropanol, butanol, ethylene glycol, etc.; esters, for example, ethyl acetate, amyl acetate, etc.; carboxylic acids, for example, acetic acid etc.

The preparation process (e) can be conducted in the presence of a catalyst and as said catalyst there can be mentioned, for example, palladium carbon etc.

The preparation process (e) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, 5 potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.

The preparation process (e) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -40 to about 180°C, preferably about 0 to about 140°C. Although said reaction is conducted desirably under normal pressure, it can be conducted 10 optionally under elevated pressure or under reduced pressure.

In conducting the preparation process (e), the aimed compound can be obtained, for example, by reacting a catalytic amount of palladium carbon to 1 mole of a compound of the formula (IAe) in a diluent, for example, toluene-ethanol, in the presence of aqueous solution of sodium carbonate and in hydrogen atmosphere.

15 The reaction of the above-mentioned preparation process (f) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; nitriles, for example, acetonitrile, propionitrile, acrylonitrile, etc.

20 The preparation process (f) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -40 to about 200°C, preferably about 0 to about 180°C. Although said reaction is conducted desirably under normal pressure, it can be conducted 25 optionally under elevated pressure or under reduced pressure.

In conducting the preparation process (f), the aimed compound can be obtained, for example, by reacting 5 to 20 moles of sodium chlorodifluoroacetate to 1 mole of a compound of the formula (IAf) at about 180°C in a diluent, for example, diglyme.

30 The reaction of the above-mentioned preparation process (g) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aromatic hydrocarbons, for example, benzene, toluene, xylene, etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.; esters, for example, ethyl acetate, amyl acetate, etc.; acid amides, for example, dimethylformamide (DMF), dimethylacetamide (DMA),

N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA), etc.; sulfones, sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane, etc.; carboxylic acids, for example, acetic acid etc.

5 The preparation process (g) can be conducted in the presence of an appropriate catalyst and as said catalyst there can be mentioned, for example, palladium carbon etc.

The preparation process (g) can be conducted also by using an appropriate metal hydride and as said metal hydrides there can be mentioned, for example, sodium borohydride, lithium aluminium hydride, etc.

10 In conducting the preparation process (g), the aimed compound can be obtained, for example, by reacting a catalytic amount of palladium carbon to 1 mole of a compound of the formula (IAg) in a diluent, for example, ethanol, in hydrogen atmosphere.

15 The reaction of the first step and the second step of the above-mentioned preparation process (h) can be conducted continuously in one pot in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water, ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK), etc.; nitriles, for example, acetonitrile, propionitrile, etc.; sulfones, sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane, etc.; carboxylic acids, for example, acetic acid; mineral acids, for example, hydrochloric acid, sulfuric acid, etc.

20 The preparation process (h) can be conducted in the presence of an acid catalyst and as example of said acid catalyst there can be mentioned mineral acids, for example, nitric acid, hydrobromic acid, etc.

The preparation process (h) can be conducted in the presence of a catalyst and as example of such catalyst there can be mentioned copper halide compounds, for example, copper (I) chloride, copper (II) chloride, etc.

25 The reaction of the first step and the second step of the preparation process (h) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -40 to about 180°C, preferably about -20 to about 120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

30 In conducting the preparation process (h), the aimed compound can be obtained, for example, by reacting 1.2 to 2.5 moles of tert-butyl nitrite to 1 mole of a compound of the formula (IAh) in a diluent, for example, acetonitrile, in the presence of copper (II) chloride.

The reaction of the first step of the above-mentioned preparation process (i) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned aromatic hydrocarbons, for example, benzene, toluene, xylene, etc.; acid amides, for example, dimethylformamide (DMF), dimethylacetamide (DMA), N-methylpyrrolidone,

- 5 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA), etc

The first step of the preparation process (h) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -40 to about 180°C, preferably about 0 to about 140°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

- 10 In conducting the first step of the preparation process (i), the aimed compound of the formula (VI) can be obtained, for example, by reacting 1.1 to 2.0 moles of dimethylformamide dimethylacetal to 1 mole of a compound of the formula (IAh) in a diluent, for example, DMF.

The reaction of the second step of the above-mentioned preparation process (i) can also be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.

- 25 The second step of the preparation process (i) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.

- 30 The second step of the preparation process (i) can also be conducted in the presence of an acid catalyst. As examples of said acid catalyst there can be mentioned organic acids, for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, etc.; organic amine hydrochlorides, for example, pyridine hydrochloride, triethylamine hydrochloride, etc.; amine sulfonates, for example, pyridine

p-toluenesulfonate, triethylamine p-toluenesulfonate, etc

The second step of the preparation process (i) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -40 to about 180°C, preferably about 0 to about 140°C. Although said reaction is conducted desirably under normal pressure, it can 5 be conducted optionally under elevated pressure or under reduced pressure.

In conducting the second step of the preparation process (i), the objective compound can be obtained, for example, by reacting 1.1 to 8.0 moles of the compound of the formula (VII) to 1 mole of a compound of the formula (VI) in a diluent, for example, toluene, in the presence of triethylamine

- 10 In conducting the second step of the preparation process (i), the compound of the formula (IA) can also be obtained by continuously conducting reactions starting from a compound of the formula (IAh) and without isolating and purifying the compound of the formula (VI) intermediately.

The reaction of the above-mentioned preparation process (j) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned aliphatic, alicyclic 15 and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; bases, for example, pyridine 20 etc.

The preparation process (j) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, triethylamine, 1,1,4,4-tetramethylmethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 25 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.

The preparation process (j) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about 120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

- 30 In conducting the preparation process (j), the aimed compound can be obtained, for example, by reacting 0.8 to 1.5 moles of a compound of the formula (VIII) to 1 mole of a compound of the formula (IAh) in a diluent, for example, pyridine.

The reaction of the above-mentioned preparation process (k) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.

- 5 The preparation process (k) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about 120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

- In conducting the preparation process (k), the aimed compound can be obtained, for example, by
10 reacting 1.1 to 3.3 moles of a compound of the formula (IX) to 1 mole of a compound of the formula (IAk) in a diluent, for example, ethyl ether.

- The reaction of the above-mentioned preparation process (l) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water, aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane,
15 cyclohexane, petroleum ether, ligoine, benzene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.
- 20 The preparation process (l) can be conducted in the presence of an acid binder, and as said acid binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium
25 hydroxide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, triethylamine, 1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.

- The preparation process (l) can also be conducted in the presence of an acid catalyst. As
30 examples of said acid catalyst there can be mentioned p-toluenesulfonic acid, etc.; organic aminesalts, for example, pyridine p-toluenesulfonate etc.

The preparation process (l) can be conducted in a substantially wide range of temperature. There can be applied temperatures generally of about -78 to about 180°C, preferably about -20 to about

120°C. Although said reaction is conducted desirably under normal pressure, it can be conducted optionally under elevated pressure or under reduced pressure.

In conducting the preparation process (l), the objective compound can be obtained, for example, by reacting 1.1 to 8.0 moles of a compound of the formula (X) to 1 mole of a compound of the 5 formula (IAI) in a diluent, for example, ethanol, in the presence of sodium hydrogen carbonate.

The reaction of the above-mentioned preparation process (m) can be conducted in an appropriate diluent. As examples of the diluent usable in that case there can be mentioned water; aliphatic, alicyclic and aromatic hydrocarbons (may be optionally chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, 10 carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM), etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.

The preparation process (m) can be conducted in the presence of an acid binder, and as said acid 15 binder there can be mentioned, for example, as inorganic bases, hydrides, hydroxides, carbonates and bicarbonates, etc. of alkali metals and alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, etc.; as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, 20 for example, triethylamine,

1,1,4,4-tetramethylethylenediamine (TMEDA), N,N-dimethylaniline, N,N-diethylaniline, pyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), etc.

The preparation process (m) can also be conducted in the presence of an acid catalyst. As 25 examples of said acid catalyst there can be mentioned organic acids, for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, etc.; organic amine hydrochlorides, for example, pyridine hydrochloride, triethylamine hydrochloride, etc.; amine sulfonates, for example, pyridine p-toluenesulfonate, triethylamine p-toluenesulfonate, etc.

30 In conducting the preparation process (m), the aimed compound can be obtained, for example, by

reacting 1.1 to 8.0 moles of a compound of the formula (XI) to 1 mole of a compound of the formula (IAk) in a diluent, for example, toluene in the presence of triethylamine.

The active component compounds of the formula (I) of the present invention show a strong fungicidal and bactericidal action and in fact, they can be used to control undesirable plant pathogens.

5 The active component compounds of the formula (I) of the present invention can be used generally as fungicidal and bacteriacidal agents against various plant diseases by Plasmodiophoromycetes, Oomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.

According to the present invention the active component compounds of the formula (I) show 10 excellent controlling effect particularly against such plant pathogens as Sphaerotheca fuliginea, Gibberella fujikuroi, Alternaria mali, Pyricularia oryzae, Phytophthora infestans, Cochliobolus miyabeanus, Botrytis cinerea, etc.

15 The active component compounds of the formula (I) of the present invention show good compatibility to plants at the concentration of the active compound necessary to control plant pathogens and, in case of using, chemical treatment of aboveground parts of plant, chemical treatment of stocks and seeds, and soil treatment are possible.

The active component compounds of the formula (I) of the present invention can be used further, in 20 the protection of various materials, to protect them from infection and destruction by undesirable microorganisms.

25 The materials in the present specification are understood to mean inanimate objects manufactured to be widely used.

As the materials to be able to be protected by the active compounds of the present invention from changes or destruction by attack of microorganisms they can be, for example, adhesives, sizes, paper and cardboard, textiles, leather, wood, (synthetic) paints, cooling lubricants, heat exchange 30 liquid and other materials that can be infected and destructed by microorganisms, among which wood is particularly favorable. In the scope of materials to be protected there can be included a part of a manufacturing plant, for example, a cooling water circuit that can be damaged by proliferation of microorganisms.

As examples of the microorganisms that cause deterioration or changes of materials there can be 35 mentioned bacteria, molds, yeasts, algae, slime organisms, etc. The active compounds of the formula (I) of the present invention show actions preferably against molds, molds that discolor wood and/or destruct wood (Basidiomycetes).

As controlling objects, microorganisms of the following genera can be mentioned as examples:

Alternaria, for example, Alternaria tenuis;

Aspergillus, for example, Aspergillus niger;

Chaetomium, for example, Chaetomium globosum;

5 Coniophora, for example, Coniophora puetana;

Lentinus, for example, Lentinus tigrinus;

Penicillium, for example, Penicillium glaucum;

Polyporus, for example, Polyporus versicolor;

Aureobasidium, for example, Aureobasidium pullulans;

10 Sclerophoma, for example, Sclerophoma pityophila;

Trichoderma, for example, Trichoderma viride.

Moreover, the active component compounds of the formula (I) of the present invention are low toxic against warm-blooded animals and can be used safely.

15 The active component compounds of the formula (I), according to the present invention, can be made into customary formulation forms, in case that they are used as agricultural chemicals. As formulation forms there can be mentioned, for example, solutions, wettable powders, emulsions, suspensions, powders, foaming agents, pastes, tablets, granules, aerosols, active compound-impregnated natural and synthetic substances, microcapsules, seed coating agents, ULV [cold mist, warm mist], etc.

20 These formulations can be prepared according to per se known methods, for example, by mixing the active compounds with extenders, namely liquid diluents, solid diluents or carriers, and optionally with surface-active agents, namely emulsifiers and/or dispersants and/or foam-forming agents

25 As liquid diluents or carriers there can be mentioned, for example, aromatic hydrocarbons (for example, xylene, toluene, alkylnaphthalene, etc.), chlorinated aromatic or chlorinated aliphatic hydrocarbons (for example, chlorobenzenes, ethylene chlorides, methylene chloride, etc.), aliphatic hydrocarbons [for example, cyclohexane etc. or paraffins (for example, mineral oil fractions etc.)], alcohols (for example, butanol, glycols etc.) and their ethers, esters, etc., ketones (for example,

acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, etc.), strongly polar solvents (for example, dimethylformamide, dimethyl sulfoxide, etc.), water, etc. In case of using water as extender, for example, organic solvents can be used as auxiliary solvents.

As solid diluents there can be mentioned, for example, ground natural minerals (for example, 5 kaolin, clay, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, etc.), ground synthetic minerals (for example, highly dispersed silicic acid, alumina, silicates, etc.).

As solid carriers for granules there can be mentioned, for example, crushed and fractionated rocks (for example, calcite, marble, pumice, sepiolite, dolomite, etc.) synthetic granules of inorganic and 10 organic meals, particles of organic materials (for example, saw dust, coconut shells, maize cobs, tobacco stalks, etc.), etc.

As emulsifiers and/or foam-forming agents there can be mentioned, for example, nonionic and anionic emulsifiers [for example, polyoxyethylene fatty acid esters, polyoxyethylene fatty acid alcohol ethers (for example, alkylaryl polyglycol ethers, alkylsulfonates, alkylsulfates, arylsulfonates, etc.)], albumin hydrolysis products, etc.

15 Dispersants include, for example, lignin sulfite waste liquor, methyl cellulose, etc.

Tackifiers can also be used in preparations (powders, granules, emulsifiable concentrates). As the tackifiers usable in that case there can be mentioned, for example, carboxymethyl cellulose, natural and synthetic polymers (for example, gum Arabic, polyvinyl alcohol, polyvinyl acetate, etc.).

Colorants can also be used. As said colorants there can be mentioned inorganic pigments (for 20 example, iron oxide, titanium oxide, Prussian Blue, etc.), organic dyestuffs such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs, and further traces nutrients such as iron, manganese, boron, copper, cobalt, molybdenum, zinc and salts of such metals.

Said formulations can contain the active component compounds of the formula (I) of the present invention at the concentration in the range of generally 0.1 to 95 % by weight, preferably 0.5 to 25 90 % by weight.

The active component compounds of the formula (I), according to the present invention can exist, in the above-mentioned formulations or various application forms, together with other known active compounds, for example, germicides (fungicides, bactericides), insecticides, miticides, nematicides, herbicides, bird repellents, growth regulators, fertilizers and/or soil improvement 30 agents.

The active component compounds of the formula (I), according to the present invention can be

used directly as they are or used in such a form as ready-to use solutions, emulsifiable concentrates, suspensions, powders, tablets, pastes, microcapsules, granules, etc., or used in application forms prepared by further dilution, when they are practically used. And the active component compounds of the formula (I), according to the present invention can be applied in a usual way, for 5 example, watering, soaking, spraying, atomizing, misting, drenching, suspension formation, painting, dusting, seed dressing, etc.

In case of treating each part of the plant, the concentration of the active component compounds in the actual application form can be varied in a substantial range and can be in the range of generally 0.0001 to 1% by weight, preferably 0.001 to 0.5% by weight.

10 In case of seed treatment, the active component compounds, according to the present invention can be used in the range of generally 0.001 to 50g, preferably 0.01 to 10g per 1kg of seeds.

In case of soil treatment, the active component compounds, according to the present invention can be used in the range of concentration of generally 0.00001 to 0.1% by weight, particularly 0.0001 to 0.02% by weight at the application point.

15 Then the present invention is described more specifically by Examples. The present invention, however, should not be restricted to them in any way.

Synthesis Example 1

5-Benzyl-4,6-dichloropyrimidine (960mg, 4.0mmol) was dissolved in tetrahydrofuran (20ml), to which then pyrrolidine (660µl, 8.0mmol) and triethylamine (1.2ml, 8.6mmol) were added and the mixture was refluxed for 3 hours. After finishing the reaction, the precipitation was removed and the filtrate was concentrated under reduced pressure. The residue was purified by flush column chromatography (eluent n-hexane: ethyl acetate = 4:1) to obtain 5-benzyl-4-chloro-6-pyrrolidin-1-yl-pyrimidine (1.05g).

¹H NMR (CDCl₃, 300MHz) δ 1.80-1.85 (4H, m), 3.54-3.58 (4H, m),
10 4.27 (2H, s), 7.082H, d, J=6.9H, z), 7.21-7.31 (3H, m), 8.31 (1H, s).

Synthesis Example 2

5-Benzyl-4,6-dichloro-2-methylthiopyrimidine (1.14g, 4.0mmol) was dissolved in tetrahydrofuran (20ml), to which then pyrrolidine (660µl, 8.0mmol) and triethylamine (1.2ml, 8.6mmol) were added and the mixture was refluxed for 3 hours. After finishing the reaction, the precipitation was removed and the filtrate was concentrated under reduced pressure. The residue was purified by flush column chromatography (eluent n-hexane: ethyl acetate = 4:1) to obtain 5-benzyl-4-chloro-2-methylthio-6-pyrrolidin-1-yl-pyrimidine (1.1g).

20 mp 97-99°C.

Synthesis Example 3

5-Benzyl-4-chloro-2-methylsulfonyl-6-pyrrolidin-1-yl-pyrimidine (1.9g, 6mmol) was dissolved in 30ml of dichloromethane, to which m-chloroperbenzoic acid (3g, 12mmol) was added under ice cooling
5 and the mixture was stirred at room temperature for 1 hour. After finishing the reaction, an aqueous solution of sodium thiosulfate was added thereto and the precipitation was filtered off. Then the reaction solution was washed with an aqueous solution of sodium hydrogen carbonate and a saturated aqueous solution of sodium chloride and the solvent was removed under reduced pressure. The residue was purified by flush column chromatography (eluent n-hexane: ethyl
10 acetate = 4:1) to obtain 2.0g of 5-benzyl-4-chloro-2-methylsulfonyl-6-pyrrolidin-1-yl-pyrimidine.

mp 136-138°C.

Synthesis Example 4

15 4-Chloro-5-(3-fluorobenzyl)-6-pyrrolidin-1-yl-pyrimidine (370mg, 1.3mmol) was dissolved in tetrahydrofuran (20ml), to which 28% methanol solution of sodium methoxide (370mg, 1.9mmol)
was added dropwise at room temperature and the mixture was stirred at room temperature for 2 hours. After finishing the reaction, the reaction solution was poured into ice water and

extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure and the obtained crude product was purified by silica gel column chromatography (eluent n-hexane: ethyl acetate = 5:1 (v/v)) to obtain 5-(3-fluorobenzyl)-4-methoxy-6-pyrrolidin-1-yl-pyrimidine (0.3g).

5 mp 74-76°C.

Synthesis Example 5

10 5-Benzyl-4-chloro-2-methanesulfonyl-6-pyrrolidin-1-yl-pyrimidine (500mg, 1.42mmol) was dissolved in N,N-dimethylformamide (50ml), to which potassium carbonate (390mg, 2.8mmol) and pyrazole (145mg, 2.1mmol) were added and the mixture was stirred at 50°C for 3 hours. After finishing the reaction, the reaction solution was poured into water and extracted with ethyl acetate. The solvent was distilled off under reduced pressure and the residue was purified by flush column chromatography (eluent n-hexane: ethyl acetate = 4:1) to obtain 5-benzyl-4-chloro-2-pyrazol-1-yl-pyrimidine (400mg).

15 mp 149-151°C.

Synthesis Example 6

20 4-Chloro-5-(3-fluorobenzyl)-6-pyrrolidin-1-yl-pyrimidine (500mg, 1.7mmol) was dissolved in toluene (7ml) and ethanol (5ml), to which an aqueous solution prepared by dissolving sodium carbonate (0.1g) in water (1ml) was added. Further, 5%

palladium carbon (0.15g) was added thereto and the mixture was contacted with hydrogen gas at room temperature for 1 hour. After finishing the reaction, the catalyst was filtered off, and the filtrate was separated by adding chloroform and water. The organic layer was dried with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure and the obtained 5 crude product was purified by silica gel column chromatography (eluent hexane: ethyl acetate = 5:1 (v/v) to obtain 5-(3-fluorobenzyl)-4-pyrrolidin-1-yl-pyrimidine (0.35g).

mp 51-54°C.

Specific examples of the compounds obtained in the same manner to the above-mentioned Synthesis Examples 1-6 are shown, together with the compounds synthesized in Synthesis 10 Examples 1-6, in the following Tables 1-3, and their physical and chemical properties are shown in Table 4.

In the compounds of the formula (IA) of the present invention, examples of the compounds in case that they represent the formula

15 are shown in Tabel 1, examples of the of the compounds in case that they represent the formula

are shown in Table 1, examples of the compounds in case that they represent the formula

are shown in Table 3.

In Table 1, Table 2 and Table 3, Ph represents phenyl and Naph represents naphthyl.

Table 1

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1	Ph	N		-CH ₂ -CH(CH ₃)-	H		Cl	H
1-2	3,5-(F) ₂ -Ph	N		-CH ₂ -CH(CH ₃)-	H		Cl	H
1-3	Ph	N		-CH ₂ -CH ₂ -CH-	H		Cl	H
1-4	3,5-(F) ₂ -Ph	N		-CH ₂ -CH ₂ -CH ₂ -	H		Cl	H
1-5	Ph	N		-CH ₂ (CH ₂) ₂ CH-	H		Cl	H
1-6	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		Cl	CH ₃
1-7	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		Cl	CH ₂ CH ₃
1-8	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		Cl	CH(CH ₃)CH ₃
1-9	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		Cl	CF ₃
1-10	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		Cl	Ph
1-11	Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	H
1-12	Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	CH ₃
1-13	Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	C(CH ₃) ₃		Cl	H
1-14	3-F-Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	H
1-15	3-Cl-Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	H
1-16	3,4-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	H
1-17	3,5-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH(CH ₃)-	H		Cl	H
1-18	Ph	N		-CH ₂ (CH ₂) ₂ CH(CF ₃)-	H		Cl	H
1-19	Ph	N		-CH ₂ (CH ₂) ₂ -C(=O)-	H		Cl	H
1-20	Ph	N		-CH(CH ₃)-CH ₂ -C(=O)-	H		Cl	H
1-21	Ph	N	H ₂ (CH ₂) ₂ -CH(CH ₂ OH)-	(S)-configuration	H		Cl	H
1-22	Ph	N	H ₂ (CH ₂) ₂ -CH(CH ₂ OH)-	(R)-configuration	H		Cl	H
1-23	Ph	N	-CH ₂ (CH ₂) ₂ -CH(CH ₂ OCH ₃)-		H		Cl	H
1-24	Ph	N	-CH ₂ (CH ₂) ₂ -CH(COOH)-		H		Cl	H
1-25	Ph	N	-CH ₂ (CH ₂) ₂ -CH(COOCH ₃)-		H		Cl	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-26	Ph	N	-CH ₂ (CH ₂) ₂ -CH(COOCH ₂ Ph)-	H	H	H	H	H
1-27	Ph	N	-CH ₂ (CH ₂) ₂ -CH(CH ₂ NHPh)-	H	H	H	H	H
1-28	Ph	N	-CH(CH ₃)-(CH ₂) ₂ -CH(CH ₃)-	H	H	H	H	H
1-29	Ph	N	-CH(CH ₂ OCH ₃)-(CH ₂) ₂ -CH(CH ₂ OCH ₃)-	H	H	H	H	H
1-30	Ph	N	-(CH ₂) ₂ -CH(OH)-CH ₂ -	H	H	H	H	H
1-31	Ph	N	-(CH ₂) ₂ -CH(NHCOCH ₃)-CH ₂ -	H	H	H	H	H
1-32	Ph	N	-(CH ₂) ₂ -CH(NHCOCF ₃)-CH ₂ -	H	H	H	H	H
1-33	Ph	N	-CH ₂ -CH=CH-CH ₂ -	H	H	H	H	H
1-34	Ph	N	-CH ₂ -CH=CH-C(COOH)-	H	H	H	H	H
1-35	Ph	N	-CH ₂ -CH=CH-C(COOCH ₃)-	H	H	H	H	H
1-36	Ph	N	-CH(CH ₃)-CH=CH-CH(CH ₃)-	H	H	H	H	H
1-37	Ph	N	-CH ₂ CH ₂ -SCH ₂ -	H	H	H	H	H
1-38	Ph	N	-CH ₂ CH ₂ -S-CH ₂ -	H	H	H	CH ₃	H
1-39	Ph	N	-CH ₂ CH ₂ -S-CH ₂ -	C(CH ₃) ₃	H	H	H	H
1-40	3-F-Ph	N	-CH ₂ CH ₂ -S-CH ₂ -	H	H	H	H	H
1-41	3-Cl-Ph	N	-CH ₂ CH ₂ -S-CH ₂ -	H	H	H	H	H
1-42	Ph	N	-CH ₂ CH ₂ -CH=N-	H	H	H	H	H
1-43	1-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-44	2-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-45	2-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-46	2-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-47	2-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-48	2-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-49	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-50	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-51	2-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-52	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-53	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-54	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-55	2-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-56	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-57	3-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-58	3-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-59	3-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H
1-60	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-61	3-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-62	3-CN-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-63	3-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-64	3-OCF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-65	3-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-66	3-NH ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-67	3-Ph-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-68	4-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-69	4-Cl-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-70	4-Br-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-71	4-CH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-72	4-C(CH ₃) ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-73	4-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-74	4-CN-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-75	4-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-76	4-OCF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-77	4-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-78	4-NH ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-79	4-Ph-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-80	2-Cl-4-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-81	2-Cl-6-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-82	2,3-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-83	2,4-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-84	2,5-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-85	2,6-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-86	3,4-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-87	3,5-(F) ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-88	2,3,4-(F) ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-89	2,3,6-(F) ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-90	2,3,6-(F) ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-91	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-92	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		F	F
1-93	pyridin-2-yl	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-94	6-Cl-pyridin-2-yl	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H
1-95	3-Cl-5-CF ₃ -pyridin-2-yl	N		-CH ₂ (CH ₂) ₂ CH ₂ -	H		C	H

- 73 -

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}	R ^{8A}
1-96	Pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	Cl	H	H	H
1-97	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	Cl	H	H	H	H
1-98	Pyridin-4-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	Cl	H	H	H	H
1-99		N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	Cl	H	H	H	H
1-100		N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	Cl	H	H	H	H
1-101	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H	H
1-102	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	H	H	H
1-103	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	F	H	H	H	H
1-104	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	CH ₃	H	H	H	H
1-105	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	CH ₂ CH=CH ₂	H	H	H	H
1-106	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	CF ₃	H	H	H	H
1-107	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	OCH ₃	H	H	H	H
1-108	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	OCH ₃	H	H	H	H
1-109	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	OCH ₂ CF ₃	H	H	H	H
1-110	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	SCH ₃	H	H	H	H
1-111	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	SCH ₂ CF ₃	H	H	H	H
1-112	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	SOCH ₃	H	H	H	H
1-113	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	SO ₂ CH ₃	H	H	H	H
1-114	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H	CN	H	H	H	H
1-115	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H	H	H
1-116	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	H		H	H	H	H
1-117	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₃	Cl	H	H	H	H
1-118	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₂ CH ₃	Cl	H	H	H	H
1-119	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₂ CH=CH ₂	Cl	H	H	H	H
1-120	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CF ₃	Cl	H	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-121	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	C(CH ₃) ₃	Cl	H	H	H
1-122	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH(CH ₃) ₂	Cl	H	H	H
1-123	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	cyclopropyl	Cl	H	H	H
1-124	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	Cl	Cl	H	H	H
1-125	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	Ph	Cl	H	H	H
1-126	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-O-Ph	Cl	H	H	H
1-127	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	3,5-(Cl) ₂ -Ph	Cl	H	H	H
1-128	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₂ 2,6-(Cl) ₂ -Ph	Cl	H	H	H
1-129	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₂ O-4-Cl-Ph	Cl	H	H	H
1-130	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CH ₂ OCH ₃	Cl	H	H	H
1-131	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-CH ₃ -Ph	Cl	H	H	H
1-132	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-CF ₃ -Ph	Cl	H	H	H
1-133	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	3,5-(CF ₃) ₂ -Ph	Cl	H	H	H
1-134	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-OCH ₃ -Ph	Cl	H	H	H
1-135	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OH	Cl	H	H	H
1-136	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₃	Cl	H	H	H
1-137	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CH ₃	Cl	H	H	H
1-138	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CF ₃	Cl	H	H	H
1-139	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CH ₂ CH ₃	Cl	H	H	H
1-140	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	O(CH ₂) ₃ CH ₃	Cl	H	H	H
1-141	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH(CH ₃) ₂	Cl	H	H	H
1-142	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OC(CH ₃) ₃	Cl	H	H	H
1-143	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH(CH ₃)CH ₂ CH ₃	Cl	H	H	H
1-144	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CH=CH ₂	Cl	H	H	H
1-145	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CH=C(C)CF ₃	Cl	H	H	H
1-146	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OCH ₂ CH(CH ₃)CH ₂ CH=CH ₂	Cl	H	H	H
1-147	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	OPh	OCH ₂ Ph	Cl	H	H
1-148	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=CHCH ₃	Cl	H	H	H
1-149	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=C(CH ₃)C(CH ₃) ₃	Cl	H	H	H
1-150	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=C(ClCH ₃) ₂	Cl	H	H	H
1-151	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=C(CN)CH ₃	Cl	H	H	H
1-152	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=C(CH ₃)C(CH ₃) ₃	Cl	H	H	H
1-153	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-O-N=C(=O)C ₅ H ₉	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-154	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-155	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CH ₃)Ph	Cl	H	H	H
1-156	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=CHPh	Cl	H	H	H
1-157	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CF ₃)CH ₃	Cl	H	H	H
1-158	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CF ₃)Ph	Cl	H	H	H
1-159	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CH ₃)OCH ₂ CH ₃	Cl	H	H	H
1-160	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CH ₃)CH ₂ CH(CH ₃) ₂	Cl	H	H	H
1-161	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	ON=(CH ₃)CH ₂ C(CH ₃) ₃	Cl	H	H	H
1-162	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHOCH ₃	Cl	H	H	H
1-163	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHOCH ₂ Ph	Cl	H	H	H
1-164	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHOCH ₂ CH=CCl ₂	Cl	H	H	H
1-165	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH ₃	Cl	H	H	H
1-166	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH ₂ CH ₃	Cl	H	H	H
1-167	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH ₂ CH ₂ CH ₃	Cl	H	H	H
1-168	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	S(CH ₂) ₃ CH ₃	Cl	H	H	H
1-169	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SC(CH ₃) ₃	Cl	H	H	H
1-170	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH(CH ₃) ₂	Cl	H	H	H
1-171	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH(CH ₃)CH ₂ CH ₃	Cl	H	H	H
1-172	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH ₂ CH=CH ₂	Cl	H	H	H
1-173	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SCH ₂ CH=Cl ₂	Cl	H	H	H
1-174	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SOCH ₃	Cl	H	H	H
1-175	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	SO ₂ CH ₃	Cl	H	H	H
1-176	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHPh	Cl	H	H	H
1-177	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	N ₃	Cl	H	H	H
1-178	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NH ₂	Cl	H	H	H
1-179	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	N(CH ₃) ₂	Cl	H	H	H
1-180	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	N(CH ₂ CH ₃) ₂	Cl	H	H	H
1-181	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHCH(CH ₃) ₂	Cl	H	H	H
1-182	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHCH ₂ CH ₂ OCH ₃	Cl	H	H	H
1-183	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHCH ₂ CH ₂ N(CH ₃) ₂	Cl	H	H	H
1-184	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NH ₂ CH ₂ Ph	Cl	H	H	H
1-185	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	NHCN	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-186	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-187	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-188	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-189	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-190								
1-191	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-192	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-193	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-194	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-195	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-196	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-197	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-198	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-199	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-200	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-201	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-202	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-203	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-204	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-205	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-206	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-207	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-208	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	CN	Cl	H	H	H

Comp. No.	Q ^A	V	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-209	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-210	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-211	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(=O)CH ₃	Cl	H	H
1-212	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(=O)CH ₂ CH ₃	Cl	H	H
1-213	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(=O)CH(CH ₃) ₂	Cl	H	H
1-214	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(=O)CH ₂ CH ₂ CH ₃	Cl	H	H
1-215	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₃	Cl	H	H
1-216	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH ₃	Cl	H	H
1-217	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH ₂ CH ₃	Cl	H	H
1-218	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NO(CH ₂) ₃ CH ₃	Cl	H	H
1-219	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₂ CH ₃)=NOCH ₃	Cl	H	H
1-220	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOC(CH ₃) ₃	Cl	H	H
1-221	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH=CH ₂	Cl	H	H
1-222	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH=CHCl	Cl	H	H
1-223	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CCl=CH ₂	Cl	H	H
1-224	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH=Cl ₂	Cl	H	H
1-225	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Cl	H	H
1-226	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ CH(CH ₃)OPh	Cl	H	H
1-227	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NOCH ₂ C(=O)OC(CH ₃) ₃	Cl	H	H
1-228	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NNHCO(CH ₃) ₂	Cl	H	H
1-229	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		C(CH ₃)=NN(CH ₃)Ph	Cl	H	H
1-230	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-231	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-232	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -					

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-233	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-234	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-235	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		OCH ₃	H	H	H
1-236	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-237	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-238	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-239	1-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-240	2-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-241	2-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-242	2-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-243	2-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-244	2-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-245	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-246	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-247	2-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-248	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-249	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-250	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-251	2-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-252	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-253	3-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-254	3-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-255	3-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-256	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-257	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H
1-258	3-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-259	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-260	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-261	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-262	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-263	3-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-264	4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-265	4-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-266	4-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-267	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-268	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-269	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-270	4-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-271	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-272	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-273	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-274	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-275	4-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-276	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-277	2-Cl-6-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-278	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-279	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-280	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-281	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-282	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-283	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-284	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-285	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-286	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-287	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	F	F
1-288	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-289	pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-290	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-291	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-292	pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-293	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyridin-2-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-294	pyridin-4-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-2-yl	Cl	H	H
1-295		N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-2-yl	Cl	H	H
1-296		N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-2-yl	Cl	H	H
1-297	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-2-yl	H	H	H
1-298	Ph	N	-CH ₂ (CH ₂) ₂ -CH(CF ₃)-		pyridin-2-yl	Cl	H	H
1-299	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		3-CH ₃ -pyridin-2-yl	Cl	H	H
1-300	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		4-CH ₃ -pyridin-2-yl	Cl	H	H
1-301	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		5-CF ₃ -pyridin-2-yl	Cl	H	H
1-302	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		6-CH ₃ -pyridin-2-yl	Cl	H	H
1-303	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-3-yl	Cl	H	H
1-304	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyridin-4-yl	Cl	H	H
1-305	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		2,6-(Cl) ₂ -pyridin-4-yl	Cl	H	H
1-306	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-307	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -			Cl	H	H
1-308	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H
1-309	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrimidin-2-yl	Cl	H	H
1-310	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyridazin-3-yl	Cl	H	H
1-311	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazin-2-yl	Cl	H	H
1-312	1-Naph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazin-2-yl	Cl	H	H
1-313	2-Naph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazin-2-yl	Cl	H	H
1-314	2-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazin-2-yl	Cl	H	H
1-315	2-Cl-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazin-2-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-316	2-Br-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		Cl	H	H
1-317	2-i-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		Cl	H	H
1-318	2-CH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-319	2-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-320	2-CN-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-321	2-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-322	2-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-323	2-NH ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-324	2-Ph-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-325	3-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-326	3-Cl-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-327	3-Br-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-328	3-I-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-329	3-CH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-330	3-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-331	3-CN-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-332	3-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-333	3-OCF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-334	3-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-335	3-NH ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-336	3-Ph-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-337	4-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-338	4-Cl-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-339	4-Br-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-340	4-CH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-341	4-C(CH ₃) ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-342	4-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-343	4-CN-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-344	4-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-345	4-OCF ₃ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-346	4-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-347	4-NH ₂ -Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-348	4-Ph-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-349	2-Cl-4-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		
1-350	2-Cl-6-F-Ph	N		-CH ₂ (CH ₂) ₂ CH ₂		pyrazin-2-yl		

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-351	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-352	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-353	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-354	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-355	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-356	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-357	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-358	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-359	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-360	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	F
1-361	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	F
1-362	Pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-363	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-364	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-365	Pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-366	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-367	Pyridin-4-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-368		N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-369		N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazin-2-yl	Cl	H	H
1-370	1-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-371	2-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-372	2-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-373	2-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-374	2-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-375	2-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-376	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-377	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-378	2-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-379	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H

Comp. No.	Q ^A	V	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-380	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-381	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-382	2-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-383	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-384	3-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-385	3-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-386	3-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-387	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-388	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-389	3-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-390	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-391	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-392	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-393	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-394	3-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-395	4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-396	4-Ci-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-397	4-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-398	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-399	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-400	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-401	4-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-402	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-403	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-404	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-405	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-406	4-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-407	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-408	2-Cl-6-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-409	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-410	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-411	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-412	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-413	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H
1-414	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Ci	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-415	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-416	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-417	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-418	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-419	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	F	F
1-420	pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-421	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-422	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-423	pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-424	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-425	pyridin-4-yl	N	-CH ₂ (CH ₂) ₂ CH ₂ -		pyrazol-1-yl	Cl	H	H
1-426		N	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Cl	H	H	
1-427		N	-CH ₂ (CH ₂) ₂ CH ₂ -	pyrazol-1-yl	Cl	H	H	
1-428	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	3,5-(CH ₃) ₂ -pyrazol-1-yl	Cl	H	H	
1-429	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	3-CF ₃ -pyrazol-1-yl	Cl	H	H	
1-430	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	3,5-(CF ₃) ₂ -pyrazol-1-yl	Cl	H	H	
1-431	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-Br-pyrazol-1-yl	Cl	H	H	
1-432	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	4-CH ₃ -pyrazol-1-yl	Cl	H	H	
1-433	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	imidazol-1-yl	Cl	H	H	
1-434	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		Cl	H	H	
1-435	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	
1-436	1-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	
1-437	2-Naph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	
1-438	2-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	
1-439	2-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	
1-440	2-Bz-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -	1,2,4-triazol-1-yl	Cl	H	H	

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-441	2-i-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-442	2-CH ₃ Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-443	2-CF ₃ Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-444	2-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-445	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-446	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-447	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-448	2-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-449	3-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-450	3-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-451	3-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-452	3-I-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-453	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-454	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-455	3-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-456	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-457	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-458	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-459	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-460	3-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-461	4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-462	4-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-463	4-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-464	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-465	4-(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-466	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-467	4-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-468	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-469	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-470	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-471	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-472	4-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-473	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-474	2-Cl-6-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-475	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H

Comp. No.	Q ^A	V	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-476	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-477	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-478	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-479	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-480	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-481	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-482	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-483	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-484	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-485	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	F	F
1-486	pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-487	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-488	3,5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-489	pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-490	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-491	pyridin-4-yl	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	Cl	H	H
1-492		N	-CH ₂ (CH ₂) ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H
1-493		N	-CH ₂ (CH ₂) ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H
1-494	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,4-triazol-1-yl	H	H	H
1-495	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,3-triazol-1-yl	Cl	H	H
1-496	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂		1,2,5-triazol-1-yl	Cl	H	H
1-497	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	tetrazol-1-yl	Cl	H	H	H
1-498	Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	tetrazol-2-yl	Cl	H	H	H
1-499	Ph		pyrrol-1-yl	H	Cl	H	H	H
1-500	Ph		2-C(=O)CF ₃ -pyrrol-1-yl	H	Cl	H	H	H
1-501	Ph		2-C(=O)Cl ₃ -pyrrol-1-yl	H	Cl	H	H	H
1-502	Ph		2-CN-pyrrol-1-yl	H	Cl	H	H	H
1-503	Ph		3-CH ₃ -pyrrol-1-yl	H	Cl	H	H	H
1-504	Ph		2,4-(CH ₂) ₂ -pyrrol-1-yl	H	Cl	H	H	H
1-505	Ph		pyrazol-1-yl	H	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-506	3-F-Ph		pyrazol-1-yl	H		Cl	H	H
1-507	3-F-Ph		pyrazol-1-yl	pyrazol-1-yl	pyrazol-1-yl	Cl	H	H
1-508	Ph		pyrazol-1-yl	pyrazol-1-yl	pyridin-2-yl	Cl	H	H
1-509	Ph		pyrazol-1-yl	pyrazol-1-yl	pyrazin-2-yl	Cl	H	H
1-510	Ph		pyrazol-1-yl	pyrazol-1-yl	pyrazol-1-yl	Cl	H	H
1-511	Ph		pyrazol-1-yl	pyrazol-1-yl	1,2,4-triazol-1-yl	Cl	H	H
1-512	Ph		imidazo[1-2-yl]	H		Cl	H	H
1-513	Ph		imidazo[1-2-yl]	pyridin-2-yl		Cl	H	H
1-514	Ph		imidazo[1-2-yl]	pyrazin-2-yl		Cl	H	H
1-515	Ph		imidazo[1-2-yl]	pyrazol-1-yl		Cl	H	H
1-516	Ph		imidazo[1-2-yl]	1,2,4-triazol-1-yl		Cl	H	H
1-517	Ph			H		H	H	H
1-518	Ph			3-CF ₃ -pyrazol-1-yl		Cl	H	H
1-519	3-CF ₃ -Ph			3-CF ₃ -pyrazol-1-yl		Cl	H	H
1-520	3-CF ₃ -Ph			3-CF ₃ -pyrazol-1-yl		3-CF ₃ -pyrazol-1-yl	H	H
1-521	Ph			3,5-(CH ₃) ₂ -pyrazol-1-yl		Cl	H	H
1-522	3-F-Ph			3,5-(CH ₃) ₂ -pyrazol-1-yl		Cl	H	H
1-523	Ph			3,5-(CH ₃) ₂ -pyrazol-1-yl	CH ₃	Cl	H	H
1-524	Ph			3,5-(CH ₃) ₂ -pyrazol-1-yl	CH ₃	3,5-(CH ₃) ₂ -pyrazol-1-yl	H	H
1-525	Ph			3,5-(CH ₃) ₂ -pyrazol-1-yl	H	Cl	H	H
1-526	Ph			3,5-(CF ₃) ₂ -pyrazol-1-yl	H	Cl	H	H
1-527	Ph			3-CF ₃ -5-OCH ₃ -pyrazol-1-yl	H	Cl	H	H
1-528	Ph			4-Br-pyrazol-1-yl	H	Cl	H	H
1-529	Ph			4-CH ₃ -pyrazol-1-yl	H	Cl	H	H
1-530	Ph			1,2,3-triazol-1-yl	H	Cl	H	H
1-531	Ph			1,2,4-triazol-1-yl	H	Cl	H	H
1-532	3-F-Ph			1,2,4-triazol-1-yl	H	Cl	H	H
1-533	Ph			1,2,4-triazol-1-yl	pyridyl-2-	Cl	H	H
1-534	Ph			1,2,4-triazol-1-yl	pyrazin-2-yl	Cl	H	H
1-535	Ph			1,2,4-triazol-1-yl	pyrazol-1-yl	Cl	H	H
1-536	Ph			1,2,4-triazol-1-yl	1,2,4-triazol-1-yl	Cl	H	H
1-537	Ph			3-SCH ₃ -1,2,4-triazol-1-yl	H	Cl	H	H
1-538	Ph			3-SCH ₂ Ph-1,2,4-triazol-1-yl	H	Cl	H	H
1-539	Ph			1,2,5-triazol-1-yl	H	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-540	Ph		1,3,4-triazol-1-yl	H	Cl	H	H	H
1-541	Ph		tetrazol-1-yl	H	Cl	H	H	H
1-542	Ph		tetrazol-2-yl	H	Cl	H	H	H

Table 1 (continued)

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-543	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	H
1-544	Ph	N		-CH ₂ (CH ₂) ₄ CH ₂	H	Cl	H	H
1-545	3,5-(F) ₂ Ph	N		-CH ₂ (CH ₂) ₄ CH ₂	H	Cl	H	H
1-546	Ph	N		-(CH ₂) ₅ NH-	H	Cl	H	H
1-547	Ph	N		-(CH ₂) ₂ O(CH ₂) ₂ NH-	H	Cl	H	H
1-548	Ph	N		-CH ₂ (CH ₂) ₅ CH ₂	H	Cl	H	H
1-549	3,5-(F) ₂ Ph	N		-CH ₂ (CH ₂) ₅ CH ₂	H	Cl	H	H
1-550	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	CH ₃	
1-551	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	CH ₂ CH ₃	
1-552	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	CH(CH ₃)CH ₃	
1-553	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Ph	
1-554	Ph	N		-(CH ₂) ₂ -CH=CH-CH ₂	H	Cl	H	
1-555	3,5-(F) ₂ Ph	N		-(CH ₂) ₂ -CH=CH-CH ₂	H	Cl	H	
1-556	Ph	N		-(CH ₂) ₂ C(P)=CH-CH ₂	H	Cl	H	
1-557	Ph	N		-(CH ₂) ₂ C(F-CI-PH)=CH-CH ₂	H	Cl	H	
1-558	Ph	N		-(CH ₂) ₂ C(COOH)=CH-CH ₂	H	Cl	H	
1-559	Ph	N		-(CH ₂) ₂ CH=C(COOH)-CH ₂	H	Cl	H	
1-560	Ph	N		-(CH ₂) ₃ CH=N-	H	Cl	H	
1-561	1-Naph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-562	2-Naph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-563	2-F-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-564	2-Cl-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-565	2-Br-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-566	2-I-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-567	2-CH ₃ -Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-568	2-CF ₃ -Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-569	2-CN-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-570	2-OCH ₃ -Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	
1-571	2-NO ₂ -Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	H	

Comp. No.	Q ^A	W	R ^A	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-572	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-573	2-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-574	3-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-575	3-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-576	3-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-577	3-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-578	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-579	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-580	3-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-581	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-582	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-583	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-584	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-585	3-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-586	4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-587	4-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-588	4-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-589	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-590	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-591	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-592	4-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-593	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-594	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-595	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-596	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-597	4-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-598	2-C(4-F)-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-599	2-C(6-F)-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-600	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-601	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-602	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-603	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-604	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-605	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-606	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H
1-607	2,3,9-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	H	Ci	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-608	2,4,6-(F) ₃ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-609	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-610	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	F	F
1-611	Pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-612	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-613	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-614	Pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-615	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-616	Pyridin-4-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-617		N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-618		N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-619	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	H	H
1-620	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	Cl	Cl	F	F
1-621	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	CH ₃	CH ₃	H	H
1-622	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	CF ₃	CF ₃	H	H
1-623	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	OCH ₃	OCH ₃	H	H
1-624	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	SCH ₃	SCH ₃	H	H
1-625	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H	SO ₂ CH ₃	CN	H	H
1-626	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H			H	H
1-627	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H			H	H
1-628	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	H				H
1-629	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	CH ₃	Cl	Cl	H	H
1-630	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	CF ₃	Cl	Cl	H	H
1-631	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	C(CH ₃) ₃	Cl	Cl	H	H
1-632	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	cyclopentyl	Cl	Cl	H	H
1-633	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	OCH ₃	Cl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-634	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	O(CH ₂) ₃ CH ₃	Cl	H	H	H
1-635	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	ON=C(CH ₃) ₂	Cl	H	H	H
1-636	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	SCH ₃	Cl	H	H	H
1-637	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	SO ₂ CH ₃	Cl	H	H	H
1-638	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	NHPh	Cl	H	H	H
1-639	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	NH(CH ₂)NH ₂	Cl	H	H	H
1-640	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	N(CH ₂)N=C(CH ₃) ₂	Cl	H	H	H
1-641	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	N(CH ₂)N=(Ph)CH ₃	Cl	H	H	H
1-642	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	CN	Cl	H	H	H
1-643	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	C(=NOH)NH ₂	Cl	H	H	H
1-644	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	C(=NOCH ₃)NH ₂	Cl	H	H	H
1-645	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	C(CH ₃)=NOCH ₂ CH ₃	Cl	H	H	H
1-646	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	C(CH ₃)=NOCH ₂ CH=CHOCl	Cl	H	H	H
1-647	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Cl	H	H	H
1-648	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	CH ₃	OCH ₃	H	H	H
1-649	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		Cl	H	H	H
1-650	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		Cl	H	H	H
1-651	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-652	1-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-653	2-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-654	2-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-655	2-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-656	2-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-657	2-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-658	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-659	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-660	2-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-661	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-662	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-663	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-664	2-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H
1-665	3-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -	Pyridin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-666	3-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-667	3-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-668	3-i-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-669	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-670	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-671	3-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-672	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-673	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-674	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-675	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-676	3-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-677	4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-678	4-Cl-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-679	4-Br-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-680	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-681	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-682	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-683	4-CN-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-684	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-685	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-686	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-687	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-688	4-Ph-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-689	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-690	2-CI-6-F-Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-691	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-692	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-693	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-694	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-695	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-696	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-697	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-698	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-699	2,4,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-700	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	H	H	H
1-701	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₂ CH ₂	Pyridin-2-yl	Cl	F	F	F

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-702	pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-703	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-704	3-(Cl-5-CF ₃ -pyridin-2-yl)	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-705	pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-706	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-707	pyridin-4-yl	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-708		N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-709		N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	Cl	H	H	H
1-710	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-2-yl	H	H	H	H
1-711	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	3-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-712	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	4-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-713	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	6-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-714	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-3-yl	Cl	H	H	H
1-715	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridin-4-yl	Cl	H	H	H
1-716	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	2,6-(CH ₃ -pyridin-4-yl)	Cl	H	H	H
1-717	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		Cl	H	H	H
1-718	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		Cl	H	H	H
1-719	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		Cl	H	H	H
1-720	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrimidin-2-yl	Cl	H	H	H
1-721	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyridazin-3-yl	Cl	H	H	H
1-722	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-723	1-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-724	2-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-725	2-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-726	2-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-727	2-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-728	2-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-729	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-730	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-731	2-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-732	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-733	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-734	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-735	2-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-736	3-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-737	3-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-738	3-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-739	3-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-740	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-741	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-742	3-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-743	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-744	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-745	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-746	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-747	3-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-748	4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-749	4-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-750	4-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-751	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-752	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-753	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-754	4-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-755	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-756	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-757	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-758	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-759	4-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-760	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	pyrazin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-761	2-C ₆ F ₅ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-762	2,3-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-763	2,4-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-764	2,5-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-765	2,6-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-766	3,4-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-767	3,5-(F) ₂ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-768	2,3,4-(F) ₃ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-769	2,3,6-(F) ₃ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-770	2,4,6-(F) ₃ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-771	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-772	2,3,4,5,6-(F) ₅ Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	F	F
1-773	pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-774	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-775	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-776	pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-777	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-778	pyridin-4-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-779		N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-780		N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-781	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazin-2-yl	Ci	H	H
1-782	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-783	1-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-784	2-Naph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-785	2-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-786	2-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-787	2-Bi-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-788	2-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-789	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H
1-790	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Ci	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-791	2-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-792	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-793	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-794	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-795	2-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-796	3-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-797	3-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-798	3-Bi-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-799	3-i-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-800	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-801	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-802	3-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-803	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-804	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-805	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-806	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-807	3-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-808	4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-809	4-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-810	4-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-811	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-812	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-813	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-814	4-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-815	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-816	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-817	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-818	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-819	4-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-820	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-821	2-Cl-6-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-822	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-823	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-824	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-825	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-826	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-827	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-828	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-829	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-830	2,4,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-831	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-832	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	F	F
1-833	Pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-834	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-835	3-CI-5-CF ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-836	Pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-837	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-838	Pyridin-4-yl	N	-CH ₂ (CH ₂) ₃ CH ₂		pyrazol-1-yl	Cl	H	H
1-839		N		-CH ₂ (CH ₂) ₃ CH ₂	pyrazol-1-yl	Cl	H	H
1-840		N		-CH ₂ (CH ₂) ₃ CH ₂	pyrazol-1-yl	Cl	H	H
1-841	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	pyrazol-1-yl	H	H	H
1-842	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	3-CH ₃ -pyrazol-1-yl	Cl	H	H
1-843	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	3,5-(CH ₃) ₂ -pyrazol-1-yl	Cl	H	H
1-844	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	3-CF ₃ -pyrazol-1-yl	Cl	H	H
1-845	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	3,5-(CF ₃) ₂ -pyrazol-1-yl	Cl	H	H
1-846	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	4-Br-pyrazol-1-yl	Cl	H	H
1-847	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	4-CH ₃ -pyrazol-1-yl	Cl	H	H
1-848	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	Imidazol-1-yl	Cl	H	H
1-849	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂		Cl	H	H
1-850	Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-851	1-Naph	N		-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-852	2-Naph	N		-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-853	2-F-Ph	N		-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}	R ^{8A}
1-854	2-Cl-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-855	2-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-856	2-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-857	2-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-858	2-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-859	2-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-860	2-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-861	2-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-862	2-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-863	2-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-864	3-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-865	3-Ol-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-866	3-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-867	3-I-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-868	3-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-869	3-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-870	3-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-871	3-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-872	3-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-873	3-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-874	3-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-875	3-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-876	4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-877	4-Ol-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-878	4-Br-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-879	4-CH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-880	4-C(CH ₃) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-881	4-CF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-882	4-CN-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-883	4-OCH ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-884	4-OCF ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-885	4-NO ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-886	4-NH ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-887	4-Ph-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-888	2-Cl-4-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H
1-889	2-Cl-6-F-Ph	N	-CH ₂ (CH ₂) ₃ CH ₂	1,2,4-triazol-1-yl	Cl	H	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-890	2,3-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-891	2,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-892	2,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-893	2,6-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-894	3,4-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-895	3,5-(F) ₂ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-896	2,3,4-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-897	2,3,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-898	2,4,6-(F) ₃ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-899	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-900	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	F	F
1-901	Pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-902	6-Cl-pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-903	3-Cl-5-Cl ₃ -pyridin-2-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-904	Pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-905	6-Cl-pyridin-3-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-906	Pyridin-4-yl	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-907		N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-908		N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-909	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,4-triazol-1-yl	H	H	H
1-910	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,3-triazol-1-yl	Cl	H	H
1-911	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		1,2,5-triazol-1-yl	Cl	H	H
1-912	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		tetrazol-1-yl	Cl	H	H
1-913	Ph	N	-CH ₂ (CH ₂) ₃ CH ₂ -		tetrazol-2-yl	Cl	H	H

Table 1 (continued)

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-914	Ph	N	-	-(CH ₂) ₄ -CH(CH ₃)-	H	Cl	H	H
1-915	Ph	N	-	-(CH ₂) ₄ -CH(CF ₃)-	H	Cl	H	H
1-916	Ph	N	-	-(CH ₂) ₄ -CH(CH ₂ CH ₃)-	H	Cl	H	H
1-917	Ph	N	-	-(CH ₂) ₄ -CH(CH ₂ CH ₂ CH ₃)-	H	Cl	H	H
1-918	Ph	N	-	-(CH ₂) ₄ -CH(CH ₂ O)-	H	Cl	H	H
1-919	Ph	N	-	-(CH ₂) ₄ -CH(CH ₂ CH ₂ O)-	H	Cl	H	H
1-920	Ph	N	-	-(CH ₂) ₄ -CH(COOH)-	H	Cl	H	H
1-921	Ph	N	-	-(CH ₂) ₄ -CH(COOCH ₃)-	H	Cl	H	H
1-922	Ph	N	-	-(CH ₂) ₄ -CH(COOCH ₂ CH ₃)-	H	Cl	H	H
1-923	Ph	N	-	-(CH ₂) ₄ -CH(=O)-	H	Cl	H	H
1-924	Ph	N	-	-(CH ₂) ₃ -CH(CH ₃)-CH ₂ -	H	Cl	H	H
1-925	Ph	N	-	-(CH ₂) ₃ -C(CH ₃)CH ₃ -CH ₂ -	H	Cl	H	H
1-926	Ph	N	-	-(CH ₂) ₃ -CH(CH ₂ O)-CH ₂ -	H	Cl	H	H
1-927	Ph	N	-	-(CH ₂) ₃ -CH(COOH)-CH ₂ -	H	Cl	H	H
1-928	Ph	N	-	-(CH ₂) ₃ -CH(COOCH ₂ CH ₃)-CH ₂ -	H	Cl	H	H
1-929	Ph	N	-	-(CH ₂) ₃ -CH(F)-CH ₂ -	H	Cl	H	H
1-930	Ph	N	-	-(CH ₂) ₃ -CH(OH)-CH ₂ -	H	Cl	H	H
1-931	Ph	N	-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Cl	H	H
1-932	Ph	N	-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Cl	CH ₃	H
1-933	Ph	N	-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Cl	CH ₂ CH ₃	H
1-934	Ph	N	-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Cl	CH(CH ₃)CH ₃	H
1-935	Ph	N	-	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Cl	Ph	H
1-936	Ph	N	-	-(CH ₂) ₂ -CH(CF ₃)-(CH ₂) ₂ -	H	Cl	H	H
1-937	Ph	N	-	-(CH ₂) ₂ -CH(CF ₃)-C(CONH ₂)=CH-	- H	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A} .	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-938	Ph	N	-[CH ₂] ₂ -CH(CF ₃)-[CH ₂] ₂ -	H		Cl	H	H
1-939	Ph	N	-[CH ₂] ₂ -CH(CH ₂ CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-940	Ph	N	-[CH ₂] ₂ -CH(CH ₂ OH)-(CH ₂) ₂ -	H		Cl	H	H
1-941	Ph	N	-[CH ₂] ₂ -CH(CH ₂ CH ₂ OH)-(CH ₂) ₂ -	H		Cl	H	H
1-942	Ph	N	-[CH ₂] ₂ -CH(COOH)-(CH ₂) ₂ -	H		Cl	H	H
1-943	Ph	N	-[CH ₂] ₂ -CH(COOCH ₂ CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-944	Ph	N	-[CH ₂] ₂ -CH(Ph)-(CH ₂) ₂ -	H		Cl	H	H
1-945	Ph	N	-[CH ₂] ₂ -CH(CH ₂ Ph)-(CH ₂) ₂ -	H		Cl	H	H
1-946	Ph	N	-[CH ₂] ₂ -CH(F)-(CH ₂) ₂ -	H		Cl	H	H
1-947	Ph	N	-[CH ₂] ₂ -CF-(CH ₂) ₂ -	H		Cl	H	H
1-948	Ph	N	-[CH ₂] ₂ -CH(Br)-(CH ₂) ₂ -	H		Cl	H	H
1-949	Ph	N	-[CH ₂] ₂ -CH(=O)-(CH ₂) ₂ -	H		Cl	H	H
1-950	Ph	N	-[CH ₂] ₂ -CH(OH)-(CH ₂) ₂ -	H		Cl	H	H
1-951	Ph	N	-[CH(CH ₃)-CH ₂] ₃ -CH(CH ₃)-	H		Cl	H	H
1-952	3,5-(F) ₂ -Ph	N	-CH(CH ₃)-CH ₂ ,CH(CH ₃)-CH ₂ -	H		Cl	H	H
1-953	Ph	N	-CH ₂ -CH(CH ₃)-CH ₂ ,CH(CH ₃)-CH ₂ -	H		Cl	H	H
1-954	Ph	N	-CH(CH ₃)-CH ₂ -CH(CH ₃)-CH ₂ -CH(CH ₃)-	H		Cl	H	H
1-955	1-Naph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-956	2-Naph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-957	2-F-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-958	2-Cl-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-959	2-Br-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-960	2-I-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-961	2-CH ₃ -Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-962	2-CF ₃ -Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-963	2-CN-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-964	2-OCH ₃ -Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-965	2-NO ₂ -Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-966	2-NH ₂ -Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-967	2-Ph-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H
1-968	3-F-Ph	N	-[CH ₂] ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-969	3-Cl-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-970	3-Br-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-971	3-I-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-972	3-CH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-973	3-CF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-974	3-CN-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-975	3-OCH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-976	3-OCF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-977	3-NO ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-978	3-NH ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-979	3-Ph-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-980	4-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-981	4-Cl-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-982	4-Br-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-983	4-CH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-984	4-C(CH ₃) ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-985	4-CF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-986	4-CN-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-987	4-OCH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-988	4-OCE ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-989	4-NO ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-990	4-NH ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-991	4-Ph-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-992	2-Cl-4-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-993	2-Cl-6-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-994	2,3-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-995	2,4-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-996	2,5-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-997	2,6-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-998	3,4-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H
1-999	3,5-(F) ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2\text{-}$	H	Ci	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1000	2,3,4-(F) ₃ -Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	H
1-1001	2,3,6-(F) ₃ -Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	H
1-1002	2,4,6-(F) ₃ -Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	H
1-1003	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	H
1-1004	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	F		
1-1005	pyridin-2-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1006	6-Cl-pyridin-2-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1007	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1008	Pyridin-3-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1009	6-Cl-pyridin-3-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1010	pyridin-4-yl	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1011		N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1012		N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	Ci	H	H	
1-1013	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	H	H	H	H
1-1014	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	F	H	H	H
1-1015	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	CH ₃	H	H	H
1-1016	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	CF ₃	H	H	H
1-1017	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	OCH ₃	H	H	H
1-1018	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	SCH ₃	H	H	H
1-1019	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	SO ₂ CH ₃	H	H	H
1-1020	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H	CN	H	H	H
1-1021	Ph	N	-CH ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		H	H	

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1022	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	H		H	H	H
1-1023	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	CH ₃	Cl	H	H	H
1-1024	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	CF ₃	Cl	H	H	H
1-1025	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(CH ₃) ₃	Cl	H	H	H
1-1026	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	cyclopropyl	Cl	H	H	H
1-1027	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	OCH ₃	Cl	H	H	H
1-1028	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	O(CH ₂) ₃ CH ₃	Cl	H	H	H
1-1029	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	ON=C(CH ₃) ₂	Cl	H	H	H
1-1030	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	SC(CH ₃) ₃	Cl	H	H	H
1-1031	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	SO ₂ CH ₃	Cl	H	H	H
1-1032	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	NHPh	Cl	H	H	H
1-1033	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	NH(CH ₃)NH ₂	Cl	H	H	H
1-1034	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	N(CH ₃)N=C(CH ₃) ₂	Cl	H	H	H
1-1035	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	N(CH ₃)N=PhCH ₃	Cl	H	H	H
1-1036	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	CN	Cl	H	H	H
1-1037	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(=NOH)NH ₂	Cl	H	H	H
1-1038	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(=NOCH ₃)NH ₂	Cl	H	H	H
1-1039	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(CH ₃)=NOCH ₂ CH ₃	Cl	H	H	H
1-1040	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(CH ₃)=NOCH ₂ CH=CHCl	Cl	H	H	H
1-1041	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Cl	H	H	H
1-1042	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	CH ₃	OCH ₃	H	H	H
1-1043	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	H	H	H
1-1044	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	H	H	H
1-1045	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-2-yl	Cl	H	H	H
1-1046	1-Naph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1047	2-Naph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1048	2-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1049	2-Cl-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1050	2-Br-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1051	2-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1052	2-CH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1053	2-CF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1054	2-CN-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1055	2-OCH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1056	2-NO ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1057	2-NH ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1058	2-Ph-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1059	3-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1060	3-Cl-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1061	3-Br-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1062	3-I-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1063	3-CH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1064	3-CF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1065	3-CN-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1066	3-OCH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1067	3-OCF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1068	3-NO ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1069	3-NH ₂ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1070	3-Ph-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1071	4-F-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1072	4-Cl-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1073	4-Br-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1074	4-CH ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1075	4-C(CH ₃) ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1076	4-CF ₃ -Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H
1-1077	4-CN-Ph	N	- $(\text{CH}_2)_2\text{-CH}(\text{CH}_3)\text{-}(\text{CH}_2)_2$		pyridin-2-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A} .	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1078	4-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1079	4-OCF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1080	4-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1081	4-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1082	4-PhPh	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1083	2-Cl-4-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1084	2-Cl-6-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1085	2,3-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1086	2,4-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1087	2,5-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1088	2,6-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1089	3,4-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1090	3,5-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1091	2,3,4-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1092	2,3,6-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1093	2,4,6-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1094	2,3,4,5,6-(F) ₅ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	F	F
1-1095	2,3,4,5,6-(F) ₅ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1096	Pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1097	6-Cl-pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1098	3-Cl-5-CF ₃ -pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1099	pyridin-3-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1100	6-Cl-pyridin-3-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1101	pyridin-4-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyridin-2-yl	Cl	H	H
1-1102		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-2-yl	Cl	H	H	
1-1103		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-2-yl	Cl	H	H	

Comp. No.	Q ^A	W	R ^{1A} .	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1104	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-2-yl	H	H	H	H
1-1105	Ph	N	-(CH ₂) ₄ -CH(CF ₃)-	pyridin-2-yl	Cl	H	H	H
1-1106	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	3-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-1107	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	4-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-1108	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	6-CH ₃ -pyridin-2-yl	Cl	H	H	H
1-1109	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-3-yl	Cl	H	H	H
1-1110	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridin-4-yl	Cl	H	H	H
1-1111	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	2,6-(Cl) ₂ -pyridin-4-yl	Cl	H	H	H
1-1112	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	H	H	H
1-1113	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	H	H	H
1-1114	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	H	H	H
1-1115	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrimidin-2-yl	Cl	H	H	H
1-1116	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyridazin-3-yl	Cl	H	H	H
1-1117	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1118	1-Naph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1119	2-Naph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1120	2-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1121	2-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1122	2-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1123	2-I-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1124	2-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1125	2-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1126	2-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H
1-1127	2-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1128	2-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1129	2-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1130	2-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1131	3-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1132	3-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1133	3-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1134	3-I-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1135	3-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1136	3-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1137	3-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1138	3-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1139	3-OCF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1140	3-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1141	3-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1142	3-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1143	4-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1144	4-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1145	4-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1146	4-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1147	4-C(CH ₃) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1148	4-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1149	4-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1150	4-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1151	4-OCF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1152	4-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1153	4-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1154	4-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1155	2-Cl-4-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1156	2-Cl-6-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1157	2,3-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H
1-1158	2,4-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂		pyrazin-2-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A'}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}	R ^{8A}
1-1159	2,5-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1160	2,6-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1161	3,4-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1162	3,5-(F) ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1163	2,3,4-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1164	2,3,6-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1165	2,4,6-(F) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1166	2,3,4,5,6-(F) ₅ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	F	F	F	F
1-1167	2,3,4,5,6-(F) ₅ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1168	pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1169	6-Cl-pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1170	3-Cl-5-CF ₃ -pyridin-2-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1171	pyridin-3-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1172	6-Cl-pyridin-3-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1173	pyridin-4-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1174		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1175		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	Cl	H	H	H	H
1-1176	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazin-2-yl	H	H	H	H	H
1-1177	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1178	1-Naph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1179	2-Naph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1180	2-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1181	2-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1182	2-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1183	2-I-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H
1-1184	2-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂	pyrazol-1-yl	Cl	H	H	H	H

Comp. No.	Q ^A	W	R ^{1A} .	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1185	2-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1186	2-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1187	2-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1188	2-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1189	2-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1190	2-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1191	3-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1192	3-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1193	3-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1194	3-I-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1195	3-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1196	3-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1197	3-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1198	3-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1199	3-OCF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1200	3-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1201	3-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1202	3-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1203	4-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1204	4-Cl-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1205	4-Br-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1206	4-CH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1207	4-C(CH ₃) ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1208	4-CF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1209	4-CN-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1210	4-OCH ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1211	4-OCF ₃ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1212	4-NO ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1213	4-NH ₂ -Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1214	4-Ph-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H
1-1215	2-Cl-4-F-Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		pyrazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1216	2-Cl-6-F-Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1217	2,3-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1218	2,4-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1219	2,5-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1220	2,6-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1221	3,4-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1222	3,5-(F) ₂ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1223	2,3,4-(F) ₃ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1224	2,3,6-(F) ₃ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1225	2,4,6-(F) ₃ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1226	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1227	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	F	F	F
1-1228	pyridin-2-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1229	6-Cl-pyridin-2-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1230	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1231	pyridin-3-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1232	6-Cl-pyridin-3-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1233	pyridin-4-yl	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1234		N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1235		N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	Cl	H	H	H
1-1236	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	pyrazol-1-yl	H	H	H	H
1-1237	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	3-CH ₃ -pyrazol-1-yl	Cl	H	H	H
1-1238	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	3,5-(CH ₃) ₂ -pyrazol-1-yl	Cl	H	H	H
1-1239	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	3-CF ₃ -pyrazol-1-yl	Cl	H	H	H
1-1240	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	3,5-(CF ₃) ₂ -pyrazol-1-yl	Cl	H	H	H
1-1241	Ph	N	-CH ₂ ₂ -CH(CH ₃)-(CH ₂) ₂ -	4-Br-pyrazol-1-yl	Cl	H	H	H

Comp. No.	Q^A	W	R^{1A}	R^{2A}	R^{3A}	R^{4A}	R^{5A}	R^{6A}
1-1242	Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	4-CH ₃ -pyrazol-1-yl	Cl	H	H	H
1-1243	Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	imidazol-1-yl	Cl	H	H	H
1-1244	Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$		Cl	H	H	H
1-1245	Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1246	1-Naph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1247	2-Naph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1248	2-F-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1249	2-C1-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1250	2-Br-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1251	2-I-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1252	2-CH ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1253	2-CF ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1254	2-CN-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1255	2-OCH ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1256	2-NO ₂ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1257	2-NH ₂ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1258	2-Ph-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1259	3-F-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1260	3-Cl-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1261	3-Br-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1262	3-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1263	3-CH ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1264	3-CF ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1265	3-CN-Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1266	3-OCH ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1267	3-OCF ₃ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1268	3-NO ₂ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H
1-1269	3-NH ₂ -Ph	N	$-(CH_2)_2-CH(CH_3)-(CH_2)_2-$	1,2,4-triazol-1-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1270	3-Ph-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1271	4-F-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1272	4-Cl-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1273	4-Bi-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1274	4-CH ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1275	4-C(CH ₃) ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1276	4-CF ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1277	4-CN-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1278	4-OCH ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1279	4-OCF ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1280	4-NO ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1281	4-NH ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1282	4-Ph-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1283	2-Cl-4-F-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1284	2-Cl-6-F-Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1285	2,3-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1286	2,4-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1287	2,5-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1288	2,6-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1289	3,4-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1290	3,5-(F) ₂ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1291	2,3,4-(F) ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1292	2,3,6-(F) ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1293	2,4,6-(F) ₃ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1294	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	F	F
1-1295	2,3,4,5,6-(F) ₅ -Ph	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1296	pyridin-2-yl	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1297	6-Cl-pyridin-2-yl	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1298	3-Cl-5-CF ₃ -pyridin-2-yl	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1299	pyridin-3-yl	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H
1-1300	6-Cl-pyridin-3-yl	N	-CH ₂ z-CH(CH ₃)-(CH ₂) ₂ -		1,2,4-triazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1301	Pyridin-4-yl	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,4-triazol-1-yl	Cl	H	H	H
1-1302		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,4-triazol-1-yl	Cl	H	H	H
1-1303		N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,4-triazol-1-yl	Cl ^b	H	H	H
1-1304	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,4-triazol-1-yl	H	H	H	H
1-1305	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,3-triazol-1-yl	Cl	H	H	H
1-1306	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	1,2,5-triazol-1-yl	Cl	H	H	H
1-1307	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	tetrazol-1-yl	Cl	H	H	H
1-1308	Ph	N	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	tetrazol-2-yl	Cl	H	H	H

Table 1 (continued)

Comp. No.	Q ^A	R ^{1A}	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1309	Ph	N			-CH ₂ CH ₂ O-CH ₂ CH ₂ -	H	Cl	H	H
1-1310	Ph	N			-CH ₂ CH ₂ O-CH ₂ CH ₂ -	H	Cl	CH ₃	H
1-1311	Ph	N			-CH ₂ CH ₂ O-CH ₂ CH ₂ -	H	Cl	OH ₂ CH ₃	H
1-1312	Ph	N			-CH ₂ CH ₂ O-CH ₂ CH ₂ -	H	Cl	CH(CH ₃)CH ₃	H
1-1313	Ph	N			-CH ₂ CH ₂ O-CH ₂ CH ₂ -	H	Cl	Ph	H
1-1314	Ph	N			-CH ₂ CH(CH ₃)O-CH(CH ₃)CH ₂ -	H	Cl	H	H
1-1315	3,5-(F) ₂ Ph	N			-CH ₂ CH(CH ₃)O-CH(CH ₃)CH ₂ -	H	Cl	H	H
1-1316	Ph	N			-CH ₂ CH ₂ S-CH ₂ CH ₂ -	H	Cl	H	H
1-1317	3,5-(F) ₂ Ph	N			-CH ₂ CH ₂ S-CH ₂ CH ₂ -	H	Cl	H	H
1-1318	Ph	N			-CH ₂ CH ₂ SO ₂ CH ₂ CH ₂ -	H	Cl	H	H
1-1319	Ph	N			-CH ₂ CH ₂ NH-CH ₂ CH ₂ -	H	Cl	H	H
1-1320	3,5-(F) ₂ Ph	N			-CH ₂ CH ₂ NH-CH ₂ CH ₂ -	H	Cl	H	H
1-1321	Ph	N			-CH ₂ CH ₂ NH-CH ₂ CH(CH ₃)-	H	Cl	H	H
1-1322	Ph	N			-CH(CH ₃)CH ₂ NH-CH ₂ CH(CH ₃)-	H	Cl	H	H
1-1323	Ph	N			-CH ₂ CH(CH ₃)-NH-CH(CH ₃)CH ₂ -	H	Cl	H	H
1-1324	Ph	N			-CH ₂ CH(CH ₃)-NH-CH ₂ CH(CH ₃)-	H	Cl	H	H
1-1325	Ph	N			-CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1326	Ph	N			-CH ₂ CH ₂ N(CH ₂ CH ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1327	Ph	N			-CH ₂ CH ₂ N(CH ₂ CF ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1328	Ph	N			-CH ₂ CH ₂ N(CH ₂ CH ₂ OH)CH ₂ CH ₂ -	H	Cl	H	H
1-1329	Ph	N			-CH ₂ CH ₂ N(COOCH ₂ CH ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1330	Ph	N			-CH ₂ CH ₂ N(CH ₂ COOCH ₂ CH ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1331	Ph	N			-CH ₂ CH ₂ N(PPh)CH ₂ CH ₂ -	H	Cl	H	H
1-1332	Ph	N			-CH ₂ CH ₂ N(CH ₂ PPh)CH ₂ CH ₂ -	H	Cl	H	H
1-1333	Ph	N			-CH ₂ CH ₂ N((Dip) ₂)CH ₂ CH ₂ -	H	Cl	H	H
1-1334	Ph	N			-CH ₂ CH ₂ N(COCH ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1335	Ph	N			-CH ₂ CH ₂ N(COCF ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1336	Ph	N			-CH ₂ CH ₂ N(COCF ₂ CF ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1337	Ph	N			-CH ₂ CH ₂ N(COCF ₂ CF ₃)CH ₂ CH ₂ -	H	Cl	H	H
1-1338	Ph	N			-CH ₂ CH ₂ N(COCF ₂ CF ₂ CF ₂ CF ₃)CH ₂ CH ₂ -	H	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}		R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1339	1-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1340	2-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1341	2-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1342	2-Cl-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1343	2-Br-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1344	2-I-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1345	2-CH ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1346	2-CF ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1347	2-CN-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1348	2-OCH ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1349	2-NO ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1350	2-NH ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1351	2-Ph-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1352	3-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1353	3-Cl-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1354	3-Br-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1355	3-I-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1356	3-CH ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1357	3-CF ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1358	3-CN-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1359	3-OCH ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1360	3-OCF ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1361	3-NO ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1362	3-NH ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1363	3-Ph-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1364	4-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1365	4-Cl-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1366	4-Br-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1367	4-CH ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1368	4-C(CH ₃) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1369	4-CF ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1370	4-CN-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1371	4-OCH ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1372	4-OCF ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1373	4-NO ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1374	4-NH ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1375	4-Ph-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H
1-1376	2-Cl-4-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1377	2-Cl-6-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1378	2,3-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1379	2,4-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1380	2,5-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1381	2,6-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1382	3,4-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1383	3,5-(F) ₂ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1384	2,3,4-(F) ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1385	2,3,6-(F) ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1386	2,4,6-(F) ₃ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1387	2,3,4,5,6-(F) ₅ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1388	2,3,4,5,6-(F) ₅ Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		F
1-1389	Pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1390	6-Cl-pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1391	3-Cl-5-CF ₃ pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1392	Pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1393	6-Cl-pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1394	Pyridin-4-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1395		N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1396		N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Ci		H
1-1397	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H		H
1-1398	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		H		H
1-1399	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		CH ₃		H
1-1400	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		CF ₃		H
1-1401	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		OCH ₃		H
1-1402	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		SCH ₃		H
1-1403	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		SO ₂ CH ₃		H
1-1404	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		CN		H
1-1405	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂				H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1406	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	H			H	H
1-1407	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	CH ₃	Cl		H	H
1-1408	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	CF ₃	Cl		H	H
1-1409	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(CH ₃) ₃	Cl		H	H
1-1410	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	cyclopenty	Cl		H	H
1-1411	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	OCH ₃	Cl		H	H
1-1412	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	O(CH ₂) ₂ CH ₃	Cl		H	H
1-1413	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	ON=C(CH ₃) ₂	Cl		H	H
1-1414	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	SCH ₃	Cl		H	H
1-1415	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	SO ₂ CH ₃	Cl		H	H
1-1416	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	NHPh	Cl		H	H
1-1417	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	NH(CH ₃)NH ₂	Cl		H	H
1-1418	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	N(CH ₃)N=C(CH ₃) ₂	Cl		H	H
1-1419	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	N(CH ₃)N=(P)CH ₃	Cl		H	H
1-1420	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	CN	Cl		H	H
1-1421	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(=NOH)NH ₂	Cl		H	H
1-1422	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(=NOCH ₃)NH ₂	Cl		H	H
1-1423	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(CH ₃)=NOCH ₂ CH ₃	Cl		H	H
1-1424	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(CH ₃)=NOCH ₂ CH=CHCl	Cl		H	H
1-1425	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Cl		H	H
1-1426	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	CH ₃	OCH ₃		H	H
1-1427	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		Cl		H	H
1-1428	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		Cl		H	H
1-1429	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1430	1-Naph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1431	2-Naph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1432	2-F-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1433	2-Cl-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1434	2-Br-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1435	2-I-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H
1-1436	2-CH ₃ Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂		pyridin-2-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1437	2-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1438	2-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1439	2-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1440	2-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1441	2-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1442	2-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1443	3-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1444	3-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1445	3-Br-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1446	3-I-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1447	3-CH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1448	3-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1449	3-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1450	3-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1451	3-OCF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1452	3-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1453	3-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1454	3-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1455	4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1456	4-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1457	4-Br-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1458	4-OH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1459	4-C(CH ₃) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1460	4-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1461	4-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1462	4-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1463	4-OCF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1464	4-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1465	4-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1466	4-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1467	2-CI-4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1468	2-CI-6-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1469	2,3-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1470	2,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1471	2,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1472	2,6-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1473	3,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H
1-1474	3,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	Pyridin-2-yl	Cl	H	H

Comp. No.	Q ^A	V	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1475	2,3,4-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1476	2,3,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1477	2,4,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1478	2,3,4,5-(F) ₅ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1479	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	F	F
1-1480	Pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1481	6-Cl-pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1482	3-Cl-5-CF ₃ -pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1483	Pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1484	6-Cl-pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1485	Pyridin-4-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1486		N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1487		N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	Cl	H	H
1-1488	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	pyridin-2-yl	H	H	H
1-1489	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	3-CH ₃ -pyridin-2-yl	Cl	H	H
1-1490	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	4-CH ₃ -pyridin-2-yl	Cl	H	H
1-1491	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	6-CH ₃ -pyridin-2-yl	Cl	H	H
1-1492	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	Pyridin-3-yl	Cl	H	H
1-1493	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	Pyridin-4-yl	Cl	H	H
1-1494	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	2,6-(Cl) ₂ -pyridin-4-yl	Cl	H	H
1-1495	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -		Cl	H	H
1-1496	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -		Cl	H	H
1-1497	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -		Cl	H	H
1-1498	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	Pyrimidin-2-yl	Cl	H	H
1-1499	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂ -	Pyridazin-3-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1500	Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1501	1-Naph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1502	2-Naph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1503	2-F-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1504	2-Cl-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1505	2-Br-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1506	2-I-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1507	2-CH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1508	2-CF ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1509	2-CN-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1510	2-OCH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1511	2-NO ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1512	2-NH ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1513	2-Ph-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1514	3-F-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1515	3-Cl-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1516	3-Bi-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1517	3-i-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1518	3-OCH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1519	3-CF ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1520	3-CN-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1521	3-OCH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1522	3-OCF ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1523	3-NO ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1524	3-NH ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1525	3-Ph-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1526	4-F-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1527	4-Cl-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1528	4-Br-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1529	4-CH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1530	4-C(CH ₃) ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1531	4-CF ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1532	4-CN-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1533	4-OCH ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1534	4-OCF ₃ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1535	4-NO ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1536	4-NH ₂ -Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H
1-1537	4-Ph-Ph	N	-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1538	2-Cl-4-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1539	2-Cl-6-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1540	2,3-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1541	2,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1542	2,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1543	2,6-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1544	3,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1545	3,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1546	2,3,4-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1547	2,3,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1548	2,4,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1549	2,3,4,5-(F) ₄ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	F	F
1-1550	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1551	Pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1552	6-Cl-pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1553	3-Cl-5-CF ₃ -Pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1554	Pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1555	6-Cl-pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1556	Pyridin-4-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1557		N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1558		N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	Cl	H	H
1-1559	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazin-2-yl	H	H	H
1-1560	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1561	1-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1562	2-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1563	2-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1564	2-Cl-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1565	2-Br-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1566	2-I-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1567	2-Ch ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1568	2-CF ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1569	2-CN-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^A	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1570	2-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		Cl	H	H
1-1571	2-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1572	2-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1573	2-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1574	3-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1575	3-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1576	3-Br-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1577	3-I-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1578	3-CH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1579	3-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1580	3-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1581	3-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1582	3-OCE ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1583	3-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1584	3-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1585	3-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1586	4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	H	H
1-1587	4-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1588	4-Bi-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1589	4-CH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1590	4-C(CH ₃) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1591	4-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1592	4-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1593	4-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1594	4-OCE ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1595	4-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1596	4-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1597	4-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1598	2-Cl-4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1599	2-Cl-6-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1600	2,3-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1601	2,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1602	2,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1603	2,6-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1604	3,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1605	3,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1606	2,3,4-(F) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1
1-1607	2,3,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂ -		pyrazol-1-yl	C1	C1

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1608	2,4,6-(F ₃)Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1609	2,3,4,5,6-(F ₅)Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1610	2,3,4,5,6-(F ₅)Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	F	F
1-1611	Pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1612	6-Cl-pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1613	3-Cl-5-CF ₃ pyridin-2-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1614	Pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1615	6-Cl-pyridin-3-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1616	Pyridin-4-yl	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1617		N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1618		N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	Cl	H	H
1-1619	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	pyrazol-1-yl	H	H	H
1-1620	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	3-CH ₃ pyrazol-1-yl	Cl	H	H
1-1621	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	3-(CH ₃) ₂ pyrazol-1-yl	Cl	H	H
1-1622	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	3-OF ₃ pyrazol-1-yl	Cl	H	H
1-1623	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	3,5-(CF ₃) ₂ pyrazol-1-yl	Cl	H	H
1-1624	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	4-Bz-pyrazol-1-yl	Cl	H	H
1-1625	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	4-CH ₃ pyrazol-1-yl	Cl	H	H
1-1626	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	Imidazol-1-yl	Cl	H	H
1-1627	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂		Cl	H	H
1-1628	Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1629	1-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1630	2-Naph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1631	2-F-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1632	2-Cl-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1633	2-Br-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1634	2-I-Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1635	2-CH ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1636	2-CF ₃ -Ph	N		-CH ₂ CH ₂ O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1637	2-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1638	2-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1639	2-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1640	2-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1641	2-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1642	3-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1643	3-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1644	3-Br-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1645	3-i-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1646	3-CH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1647	3-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1648	3-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1649	3-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1650	3-OCF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1651	3-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1652	3-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1653	3-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1654	4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1655	4-Cl-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1656	4-Br-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1657	4-Ch ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1658	4-C(CH ₃) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1659	4-CF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1660	4-CN-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1661	4-OCH ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1662	4-OCF ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1663	4-NO ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1664	4-NH ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1665	4-Ph-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1666	2-CI-4-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1667	2-CI-6-F-Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1668	2,3-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1669	2,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1670	2,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1671	2,6-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1672	3,4-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1673	3,5-(F) ₂ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H
1-1674	2,3,4-(F) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Ci	H	H

Comp. No.	Q ^A	W	R ^{1A}	R ^{2A}	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
1-1675	2,3,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1676	2,4,6-(F) ₃ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1677	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1678	2,3,4,5,6-(F) ₅ -Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	F	F
1-1679	pyridin-2-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1680	6-Cl-pyridin-2-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1681	3-CI-5-CF ₃ -pyridin-2-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1682	pyridin-3-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1683	6-Cl-pyridin-3-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1684	pyridin-4-yl	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1685		N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1686		N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	Cl	H	H
1-1687	Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,4-triazol-1-yl	H	H	H
1-1688	Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,3-triazol-1-yl	Cl	H	H
1-1689	Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	1,2,5-triazol-1-yl	Cl	H	H
1-1690	Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	tetrazol-1-yl	Cl	H	H
1-1691	Ph	N		-CH ₂ CH ₂ -O-CH ₂ CH ₂	tetrazol-2-yl	Cl	H	H
1-1692	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂	pyrazol-2-yl	H	H	H
1-1693	Ph	N		-CH ₂ (CH ₂) ₂ CH ₂	pyrazol-1-yl	Cl	H	H

Table 2

Comp. No.	Q^A	Z^a	Z^b	Z^c	Z^d	R^{3A}	R^{4A}	R^{5A}	R^{6A}
2-1	Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-2	Ph	H	-CF ₂ -	H	H	Cl	CH ₃	H	H
2-3	1-Naph	H	-CF ₂ -	H	H	Cl	H	H	H
2-4	2-Naph	H	-CF ₂ -	H	H	Cl	H	H	H
2-5	2-F-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-6	2-Cl-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-7	2-Br-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-8	2-I-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-9	2-CH ₃ -Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-10	2-CF ₃ -Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-11	2-CN-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-12	2-OCH ₃ -Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-13	2-NO ₂ -Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-14	2-NH ₂ -Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-15	2-Ph-Ph	H	-CF ₂ -	H	H	Cl	H	H	H
2-16	3-F-Ph	H	-CF ₂ -	H	H	Cl	H	H	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-17	3-Cl-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-18	3-Br-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-19	3-I-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-20	3-CH ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-21	3-CF ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-22	3-CN-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-23	3-OCH ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-24	3-OCF ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-25	3-NO ₂ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-26	3-NH ₂ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-27	3-Ph-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-28	4-F-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-29	4-Cl-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-30	4-Br-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-31	4-CH ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-32	4-C(CH ₃) ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-33	4-CF ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-34	4-CN-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-35	4-OCH ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-36	4-OCF ₃ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-37	4-NO ₂ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-38	4-NH ₂ -Ph	H		-CF ₂ -	H	H	Ci	H	H
2-39	4-Ph-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-40	2-Cl-4-F-Ph	H		-CF ₂ -	H	H	Ci	H	H
2-41	2-Cl-6-F-Ph	H		-CF ₂ -	H	H	Ci	H	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-42	2,3-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-43	2,4-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-44	2,5-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-45	2,6-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-46	3,4-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-47	3,5-(F) ₂ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-48	2,3,4-(F) ₃ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-49	2,3,6-(F) ₃ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-50	2,4,6-(F) ₃ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-51	2,3,4,5,6-(F) ₅ -Ph	H	-CF ₂ -	H	H	Ci	H	H	H
2-52	2,3,4,5,6-(F) ₅ -Ph	H	-CF ₂ -	H	H	Ci	F	F	F
2-53	pyridyl-2-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-54	6-Cl-pyridyl-2-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-55	3-Cl-5-CF ₃ -pyridyl-2-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-56	pyridyl-3-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-57	6-Cl-pyridyl-3-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-58	pyridyl-4-yl	H	-CF ₂ -	H	H	Ci	H	H	H
2-59		H	-CF ₂ -	H	H	Ci	H	H	H
2-60		H	-CF ₂ -	H	H	Ci	H	H	H
2-61	Ph	H	-CF ₂ -	H	OCH ₃	Ci	H	H	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-62	Ph	H	-CF ₂ -	H	H	O(CH ₂) ₃ CH ₃	Ci	H	H
2-63	Ph	H	-CF ₂ -	H	H	CN	Ci	H	H
2-64	Ph	H	-CF ₂ -	H	H	ON=C(CH ₃) ₂	Ci	H	H
2-65	Ph	H	-CF ₂ -	H	H	NH(CH ₃)NH ₂	Ci	H	H
2-66	Ph	H	-CF ₂ -	H	H	N(CH ₃)N=C(CH ₃) ₂	Ci	H	H
2-67	Ph	H	-CF ₂ -	H	H	N(CH ₃)N=(Ph)CH ₃	Ci	H	H
2-68	Ph	H	-CF ₂ -	H	H	C(=NOH)NH ₂	Ci	H	H
2-69	Ph	H	-CF ₂ -	H	H	C(=NOCH ₃)NH ₂	Ci	H	H
2-70	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₃	Ci	H	H
2-71	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH=CHCl	Ci	H	H
2-72	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Ci	H	H
2-73	Ph	H	-CF ₂ -	H	H	pyridyl-2-yl	Ci	H	H
2-74	Ph	H	-CF ₂ -	H	H	pyrazin-2-yl	Ci	H	H
2-75	Ph	H	-CF ₂ -	H	H	pyrazol-1-yl	Ci	H	H
2-76	Ph	H	-CF ₂ -	H	H	1,2,4-triazol-1-yl	Ci	H	H
2-77	Ph	H	-CF ₂ -	H	H				
2-78	Ph	CH ₃	-CF ₂ -	H	H				
2-79	Ph	CH ₃	-CF ₂ -	CH ₃	H				
2-80	Ph	H	-CCl ₂ -	H	H				
2-81	Ph	H	-CCl ₂ -	H	H			Ci	CH ₃
2-82	1-Naph	H	-CCl ₂ -	H	H			Ci	H
2-83	2-Naph	H	-CCl ₂ -	H	H			Ci	H
2-84	2-F-Ph	H	-CCl ₂ -	H	H			Ci	H
2-85	2-Cl-Ph	H	-CCl ₂ -	H	H			Ci	H
2-86	2-Br-Ph	H	-CCl ₂ -	H	H			Ci	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-87	2-I-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-88	2-CH ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-89	2-CF ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-90	2-CN-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-91	2-OCH ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-92	2-NO ₂ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-93	2-NH ₂ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-94	2-Ph-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-95	3-F-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-96	3-Cl-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-97	3-Br-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-98	3-I-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-99	3-CH ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-100	3-CF ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-101	3-CN-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-102	3-OCH ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-103	3-OCF ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-104	3-NO ₂ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-105	3-NH ₂ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-106	3-Ph-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-107	4-F-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-108	4-Cl-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-109	4-Br-Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-110	4-CH ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H
2-111	4-C(CH ₃) ₃ -Ph	H	-CCl ₂ -	H	H	Cl	H	H	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-112	4-CF ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-113	4-CN-Ph	H	-CCl ₂	H		H	Ci	H	H
2-114	4-OCH ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-115	4-OCF ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-116	4-NO ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-117	4-NH ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-118	4-Ph-Ph	H	-CCl ₂	H		H	Ci	H	H
2-119	2-Cl-4-F-Ph	H	-CCl ₂	H		H	Ci	H	H
2-120	2-Cl-6-F-Ph	H	-CCl ₂	H		H	Ci	H	H
2-121	2,3-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-122	2,4-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-123	2,5-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-124	2,6-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-125	3,4-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-126	3,5-(F) ₂ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-127	2,3,4-(F) ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-128	2,3,6-(F) ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-129	2,4,6-(F) ₃ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-130	2,3,4,5,6-(F) ₅ -Ph	H	-CCl ₂	H		H	Ci	H	H
2-131	2,3,4,5,6-(F) ₅ -Ph	H	-CCl ₂	H		H	Ci	F	F
2-132	pyridin-2-yl	H	-CCl ₂	H		H	Ci	H	H
2-133	6-Cl-pyridin-2-yl	H	-CCl ₂	H		H	Ci	H	H
2-134	3-Cl-5-CF ₃ -pyridin-2-yl	H	-CCl ₂	H		H	Ci	H	H
2-135	pyridin-3-yl	H	-CCl ₂	H		H	Ci	H	H
2-136	6-Cl-pyridin-3-yl	H	-CCl ₂	H		H	Ci	H	H

Comp. No.	Q ^A	Z ^a	Z ^b	Z ^c	Z ^d	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
2-137	pyridin-4-yl	H	-CCl ₂ -	H	H		Cl	H	H
2-138		H	-CCl ₂ -	H	H		Cl	H	H
2-139		H	-CCl ₂ -	H	H		Cl	H	H
2-140	Ph	H	-CCl ₂ -	H	OCH ₃		Cl	H	H
2-141	Ph	H	-CCl ₂ -	H	O(CH ₂) ₃ CH ₃		Cl	H	H
2-142	Ph	H	-CCl ₂ -	H	CN		Cl	H	H
2-143	Ph	H	-CCl ₂ -	H	ON=C(CH ₃) ₂		Cl	H	H
2-144	Ph	H	-CCl ₂ -	H	NH(CH ₃)NH ₂		Cl	H	H
2-145	Ph	H	-CCl ₂ -	H	N(CH ₃)N=C(CH ₃) ₂		Cl	H	H
2-146	Ph	H	-CCl ₂ -	H	N(CH ₃)N=(Ph)CH ₃		Cl	H	H
2-147	Ph	H	-CCl ₂ -	H	C(=NOH)NH ₂		Cl	H	H
2-148	Ph	H	-CCl ₂ -	H	C(=NOCH ₃)NH ₂		Cl	H	H
2-149	Ph	H	-CCl ₂ -	H	C(CH ₃)=NOCH ₂ CH ₃		Cl	H	H
2-150	Ph	H	-CCl ₂ -	H	C(CH ₃)=NOCH ₂ CH=CHCl		Cl	H	H
2-151	Ph	H	-CCl ₂ -	H	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃		Cl	H	H
2-152	Ph	H	-CCl ₂ -	H	pyridyl-2-yl		Cl	H	H
2-153	Ph	H	-CCl ₂ -	H	pyrazin-2-yl		Cl	H	H
2-154	Ph	H	-CCl ₂ -	H	pyrazol-1-yl		Cl	H	H
2-155	Ph	H	-CCl ₂ -	H	1,2,4-triazol-1-yl		Cl	H	H
2-156	Ph	H	-CCl ₂ -	H	H		H	H	H

Comp. No.	Q^A	Z^a	Z^b	Z^c	Z^d	R^{3A}	R^{4A}	R^{5A}	R^{6A}
2-157	Ph	CH ₃	-CCl ₂ -	H		H	H	Cl	H
2-158	Ph	CH ₃	-CCl ₂ -	CH ₃		H	H	Cl	H
2-159	Ph	=O	-CH ₂ -CH=CH-CH ₂ -	=O		H	H	H	H
2-160	Ph		-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	C	H	H

Table 3

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-1	Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-2	Ph	H	-CF ₂ -	H	H	H	C ₁	CH ₃	H	
3-3	1-Naph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-4	2-Naph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-5	2-F-Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-6	2-Cl-Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-7	2-Br-Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-8	2-I-Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-9	2-CH ₃ -Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-10	2-CF ₃ -Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-11	2-CN-Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-12	2-OCH ₃ -Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	
3-13	2-NO ₂ -Ph	H	-CF ₂ -	H	H	H	C ₁	H	H	

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-14	2-NH ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-15	2-Ph-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-16	3-F-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-17	3-Cl-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-18	3-Br-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-19	3-I-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-20	3-CH ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-21	3-CF ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-22	3-CN-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-23	3-OCH ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-24	3-OCF ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-25	3-NO ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-26	3-NH ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-27	3-Ph-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-28	4-F-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-29	4-Cl-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-30	4-Br-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-31	4-CH ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-32	4-C(CH ₃) ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-33	4-CF ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-34	4-CN-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-35	4-OCH ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-36	4-OCF ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-37	4-NO ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-38	4-NH ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-39	4-Ph-P _h	H	-CF ₂ -	H	H			Ci	H	H
3-40	2-Cl-4-F-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-41	2-Cl-6-F-Ph	H	-CF ₂ -	H	H			Ci	H	H
3-42	2,3-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-43	2,4-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-44	2,5-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-45	2,6-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-46	3,4-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-47	3,5-(F) ₂ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-48	2,3,4-(F) ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-49	2,3,6-(F) ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-50	2,4,6-(F) ₃ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-51	2,3,4,5,6-(F) ₅ -Ph	H	-CF ₂ -	H	H			Ci	H	H
3-52	2,3,4,5,6-(F) ₅ -Ph	H	-CF ₂ -	H	H			Ci	F	F
3-53	pyridin-2-yl	H	-CF ₂ -	H	H			Ci	H	H
3-54	6-Cl-pyridin-2-yl	H	-CF ₂ -	H	H			Ci	H	H
3-55	3-Cl-5-CF ₃ -pyridin-2-yl	H	-CF ₂ -	H	H			Ci	H	H
3-56	pyridin-3-yl	H	-CF ₂ -	H	H			Ci	H	H
3-57	6-Cl-pyridin-3-yl	H	-CF ₂ -	H	H			Ci	H	H
3-58	pyridin-4-yl	H	-CF ₂ -	H	H			Ci	H	H

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-59		H	-CF ₂ -	H	H			Cl	H	H
3-60		H	-CF ₂ -	H	H			Cl	H	H
3-61	Ph	H	-CF ₂ -	H	H	OCH ₃		Cl	H	H
3-62	Ph	H	-CF ₂ -	H	H	O(CH ₂) ₃ CH ₃		Cl	H	H
3-63	Ph	H	-CF ₂ -	H	H	CN		Cl	H	H
3-64	Ph	H	-CF ₂ -	H	H	ON=C(CH ₃) ₂		Cl	H	H
3-65	Ph	H	-CF ₂ -	H	H	NH(CH ₃)NH ₂		Cl	H	H
3-66	Ph	H	-CF ₂ -	H	H	N(CH ₃)N=C(CH ₃) ₂		Cl	H	H
3-67	Ph	H	-CF ₂ -	H	H	N(CH ₃)N=(Ph)CH ₃		Cl	H	H
3-68	Ph	H	-CF ₂ -	H	H	C(=NOH)NH ₂		Cl	H	H
3-69	Ph	H	-CF ₂ -	H	H	C(=NOCH ₃)NH ₂		Cl	H	H
3-70	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₃		Cl	H	H
3-71	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH=CHCl		Cl	H	H
3-72	Ph	H	-CF ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃		Cl	H	H
3-73	Ph	H	-CF ₂ -	H	H	pyridin-2-yl		Cl	H	H
3-74	Ph	H	-CF ₂ -	H	H	pyrazin-2-yl		Cl	H	H
3-75	Ph	H	-CF ₂ -	H	H	pyrazol-1-yl		Cl	H	H

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-76	Ph	H	-CF ₂ -	H	H	1,2,4-triazol-1-yl	Ci	H	H	
3-77	Ph	H	-CF ₂ -	H	H		H	H	H	
3-78	Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-79	Ph	H	-CCl ₂ -	H	H		Ci	CH ₃	H	
3-80	1-Naph	H	-CCl ₂ -	H	H		Ci	H	H	
3-81	2-Naph	H	-CCl ₂ -	H	H		Ci	H	H	
3-82	2-F-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-83	2-Cl-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-84	2-Br-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-85	2-I-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-86	2-CH ₃ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-87	2-CF ₃ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-88	2-CN-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-89	2-OCH ₃ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-90	2-NO ₂ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-91	2-NH ₂ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-92	2-Ph-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-93	3-F-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-94	3-Cl-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-95	3-Br-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-96	3-I-Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-97	3-CH ₃ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	
3-98	3-CF ₃ -Ph	H	-CCl ₂ -	H	H		Ci	H	H	

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-99	3-CN-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-100	3-OCH ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-101	3-OCF ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-102	3-NO ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-103	3-NH ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-104	3-Ph-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-105	4-F-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-106	4-Cl-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-107	4-Br-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-108	4-CH ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-109	4-C(CH ₃) ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-110	4-CF ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-111	4-CN-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-112	4-OCH ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-113	4-OCF ₃ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-114	4-NO ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-115	4-NH ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-116	4-Ph-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-117	2-Cl-4-F-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-118	2-Cl-6-F-Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-119	2,3-(F) ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-120	2,4-(F) ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	
3-121	2,5-(F) ₂ -Ph	H	-CCl ₂ -	H	H	H	Ci	H	H	

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-122	2,6-(F) ₂ -Ph	H	-CCl ₂ -	H	H				Ci	H
3-123	3,4-(F) ₂ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-124	3,5-(F) ₂ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-125	2,3,4-(F) ₃ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-126	2,3,6-(F) ₃ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-127	2,4,6-(F) ₃ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-128	2,3,4,5,6-(F) ₅ -Ph	H	-CCl ₂ -	H	H			Ci	H	H
3-129	2,3,4,5,6-(F) ₅ -Ph	H	-CCl ₂ -	H	H			F	H	H
3-130	pyridin-2-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-131	6-Cl-pyridin-2-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-132	3-Cl-5-CF ₃ -pyridin-2-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-133	pyridin-3-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-134	6-Cl-pyridin-3-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-135	pyridin-4-yl	H	-CCl ₂ -	H	H			Ci	H	H
3-136		H	-CCl ₂ -	H	H			Ci	H	H
3-137		H	-CCl ₂ -	H	H			Ci	H	H
3-138	Ph	H	-CCl ₂ -	H	H	OCH ₃		Ci	H	H

Comp. No.	Q ^A	Z ^e	Z ^f	Z ^g	Z ^h	Z ⁱ	R ^{3A}	R ^{4A}	R ^{5A}	R ^{6A}
3-139	Ph	H	-CCl ₂ -	H	H	O(CH ₂) ₃ CH ₃	Cl	H	H	
3-140	Ph	H	-CCl ₂ -	H	H	CN	Cl	H	H	
3-141	Ph	H	-CCl ₂ -	H	H	ON=C(CH ₃) ₂	Cl	H	H	
3-142	Ph	H	-CCl ₂ -	H	H	NH(CH ₃)NH ₂	Cl	H	H	
3-143	Ph	H	-CCl ₂ -	H	H	N(CH ₃)N=C(CH ₃) ₂	Cl	H	H	
3-144	Ph	H	-CCl ₂ -	H	H	N(CH ₃)N=(Ph)CH ₃	Cl	H	H	
3-145	Ph	H	-CCl ₂ -	H	H	C(=NOH)NH ₂	Cl	H	H	
3-146	Ph	H	-CCl ₂ -	H	H	C(=NOCH ₃)NH ₂	Cl	H	H	
3-147	Ph	H	-CCl ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₃	Cl	H	H	
3-148	Ph	H	-CCl ₂ -	H	H	C(CH ₃)=NOCH ₂ CH=CHCl	Cl	H	H	
3-149	Ph	H	-CCl ₂ -	H	H	C(CH ₃)=NOCH ₂ CH ₂ OCH ₃	Cl	H	H	
3-150	Ph	H	-CCl ₂ -	H	H	pyridin-2-yl	Cl	H	H	
3-151	Ph	H	-CCl ₂ -	H	H	pyrazin-2-yl	Cl	H	H	
3-152	Ph	H	-CCl ₂ -	H	H	pyrazol-1-yl	Cl	H	H	
3-153	Ph	H	-CCl ₂ -	H	H	1,2,4-triazol-1-yl	Cl	H	H	
3-154	Ph	H	-CCl ₂ -	H	H	H	H	H	H	
3-155	Ph	H	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	Cl	H	H	
3-156	Ph	H	-CH ₂ (CH ₂) ₂ CH ₂ -	H	H	H	Cl	H	H	

Table 4

Comp. No.	m. p. (°C) or nD ₂₀
1-5	* 1
1-6	1,6119
1-11	1,6050
1-12	95~98°C
1-13	1,5639
1-14	1,5914
1-15	1,6112
1-21	1,6140
1-22	1,6150
1-25	1,5950
1-30	144~147°C
1-31	165°C
1-32	166~167°C

1-33	* 2
1-36	87~90°C
1-37	88~89°C
1-38	1,6388
1-39	1,5907
1-40	90~94°C
1-41	83~85°C
1-42	112~115°C
1-45	106~107°C
1-46	123~124°C
1-56	* 3
1-57	* 4
1-61	97~98°C
1-62	137~139°C

1-68	108~109°C
1-69	97~98°C
1-73	119~120°C
1-85	86~89°C
1-87	99~100°C
1-93	51~52°C
1-102	51~54°C
1-104	1,5935
1-108	74~76°C
1-117	1,6027
1-121	111~112°C
1-165	97~99°C
1-175	136~138°C
1-235	98~99°C

1-238	128~130°C
1-303	169~170°C
1-304	206~207°C
1-311	183~184°C
1-435	158~160°C
1-506	1,5915
1-507	73~74°C
1-522	1,5765
1-523	1,5825
1-524	1,5850
1-532	82~83°C
1-543	66~68°C
1-550	1,5962
1-563	97~98°C
1-564	82~85°C

1-574	52~54°C
1-575	68~71°C
1-579	* 5
1-580	1,6088
1-586	1,5830
1-587	103~105°C
1-591	82~83°C
1-629	1,5923
1-631	1,5682
1-651	129~130°C
1-714	156°C
1-715	134~135°C
1-722	132~134°C
1-1045	118~119°C
1-1309	92~93°C

1-1429	153~155°C
1-1693	149~151°C

*1: 1H NMR(CDCl₃, 300MHz)δ 1.80-1.85(4H, m), 3.54-3.58(4H, m),

4.278(2H, s), 7.082H, d, J=6.9Hz), 7.21-7.31(3H, m), 8.31, 8.31(1H, s).

*2: 1H NMR(CDCl₃, 300MHz)δ 4.34(2H,S), 4.43(4H,S), 5.76(2H,S), 7.07(2H,d),

7.21-7.31(3H,m), 8.34(1H,S).

5 *3: 1H NMR(CDCl₃,300MHz)δ 1.77-1.85(4H,m), 3.51-3.56(4H, m), 4.24(2H,s),

6.76-6.93(3H,m), 7.22-7.29(1H,m), 8.30(1H,s).

*4: 1H NMR(CDCl₃, 300MHz)δ 1.83-1.87(4H,m), 3.52-3.57(4H, m), 4.24(2H,s),

6.94-7.25(4H,m), 8.32(1H,s).

*5: 1H NMR(CDCl₃, 300MHz)δ 1.59-1.65(6H,m), 3.29-3.31(4H,m), 4.12(2H,s),

10 7.29-7.48(4H,m), 8.46(1H,s).

Synthesis Example 7 (Synthesis of an intermediate)

First step

To a suspension of formamidine acetate (46g, 0.44mol) and ethanol (300ml), 28% methanol solution of sodium methoxide (250g, 1.3 mol) was added under ice cooling and, after stirring the mixture for 1 hour under continuous ice cooling diethyl benzylmalonate (100g, 0.4mol) was added thereto. After stirring the mixture for 2 hours under ice cooling and for 19 hours at room temperature and then refluxed for 4 hours. After finishing the reaction, the precipitation, formed by adding concentrated hydrochloric acid (130g) under ice cooling, was filtered, washed with ethanol and then with diethyl ether, and dried in a desiccator to obtain 5-benzyl-1H-purimidine-4,6-dione (145g) which was used in the next reaction without purification.

Second step

To 5-benzyl-1H-pyrimidine-4,6-dione (145g), phosphorus oxychloride (300ml) and dichloroethane (200ml) were added and the mixture was refluxed for 3 hours. After finishing the reaction, the solvent and an excess of phosphorus oxychloride were removed under reduced pressure. After adding ice water and dichloromethane to the reaction mixture, the precipitation was removed and the filtrate was extracted with dichloromethane. The dichloromethane layer was dried with anhydrous magnesium sulfate, and filtered with a glass filter, filled with silica gel, by using ethyl acetate. The filtrate was concentrated under reduced pressure and the obtained crude product was dissolved in ethanol, to which ice water was added, and the formed precipitation was filtered, washed with water and then with diethyl ether, and dried in a desiccator to obtain 5-benzyl-4,6-dichloropyrimidine (51.8g)

mp 91-92°C.

Synthesis Example 8 (Synthesis of an intermediate)

15 First step

Ethyl 2-pyridylimidate (45g, 0.3 mol) and ammonium chloride (19.3g, 0.36 mol) were suspended in ethanol (150ml) and the mixture was refluxed for 4 hours. After finishing the reaction, the reaction solution was concentrated to about 1/3 of the volume under reduced pressure. The precipitation, formed by adding diethyl ether (100ml) thereto, was filtered, washed with diethyl ether and then with acetone, and dried in a desiccator to obtain 2-amidinopyridine hydrochloride (42.15g).

Second step

- To a suspension of 2-amidinopyridine hydrochloride (25g, 0.1mol) and ethanol, 28% methanol solution of sodium methoxide (60g, 0.31 mol) was added under ice cooling and, after stirring the mixture for 15 minutes under continuous ice cooling, diethyl benzylmalonate (100g, 0.4mol) was added thereto. After stirring the mixture for 1.5 hours under ice cooling and for 1 hour at room temperature, it was refluxed for 4 hours. After finishing the reaction, the precipitation, formed by adding concentrated hydrochloric acid (32g) under ice cooling, was filtered, washed with ethanol and then with diethyl ether, and dried in a desiccator to obtain 5-benzyl-2-pyridin-2-yl-1H-pyrimidine-4,6-dione hydrochloride (38.7g) which was used in the next reaction without purification.

Third step

- To 5-benzyl-2-pyridin-2-yl-1H-pyrimidine-4,6-dione hydrochloride (38.7g), phosphorus oxychloride (200ml) was added and the mixture was refluxed for 3 hours. After finishing the reaction, an excess of phosphorus oxychloride was removed under reduced pressure. After adding ice water and dichloromethane to the reaction mixture, the precipitation was removed and the filtrate was extracted with dichloromethane. The dichloromethane layer was dried with anhydrous magnesium sulfate, and filtered with a glass filter, filled with silica gel, by using ethyl acetate. The filtrate was concentrated under reduced pressure and the obtained product was dried in a desiccator to obtain 5-benzyl-4,6-dichloro-2-pyridin-2-yl-pyrimidine (15.8g) which was used in the next reaction without purification.

mp 96-97°C.

Synthesis Example 9 (Synthesis of an intermediate)

First step

- 5 To a suspension of thiourea (25g, 0.1mol) and ethanol (300ml), 28% methanol solution of sodium methoxide (58g, 0.3 mol) and diethyl benzylmalonate (25g, 0.1mol) were added under ice cooling and, after stirring for 1 hour at room temperature, the mixture was refluxed for 4 hours. After finishing the reaction, the precipitation, formed by acidifying the mixture through addition of concentrated hydrochloric acid under ice cooling, was filtered, washed with ethanol and then with diethyl ether, and dried in a desiccator to obtain 5-benzyl-2-mercaptopurine-4,6-dione (23g) which was used in the next reaction without purification.
- 10

Second step

- 15 To a solution of 5-benzyl-2-mercaptopurine-4,6-dione (23g, 0.1mol) in methanol (300ml), 28% methanol solution of sodium methoxide (29g, 0.15 mol) was added dropwise under ice cooling. Then methyl iodide (7.5ml, 0.12mol) was added to the mixture, which was stirred at room temperature for 1 hour. After finishing the reaction, the reaction solution was poured into ice water, acidified with hydrochloric acid, and the formed crystals were filtered and dried in a desiccator to obtain 5-benzyl-2-methylthiopurine-4,6-dione (24.8g).
- 20

Third step

To 5-benzyl-2-methylthiopyrimidine-4,6-dione (24.8g), phosphorus oxychloride (200ml) was added and the mixture was refluxed for 3 hours. After finishing the reaction, an excess of phosphorus oxychloride was removed under reduced pressure. After adding ice water and dichloromethane to the reaction mixture, the precipitation was removed and the filtrate was extracted with dichloromethane. The dichloromethane layer was dried with anhydrous magnesium sulfate, and filtered with a glass filter, filled with silica gel, by using ethyl acetate. The filtrate was concentrated under reduced pressure and the obtained product was dried in a desiccator to obtain 5-benzyl-4,6-dichloro-2-methylthiopyrimidine (20.2g) which was used in further reaction without purification.

Synthesis Example 10 (Synthesis of an intermediate)

To pyrazinecarbonitrile (11.7g, 0.11mol), 28% methanol solution of sodium methoxide (2.0g, 10mmol) was added and the mixture was refluxed for 4 hours and, after adding ammonium chloride (6.4g, 0.12mol), for further 6 hours. After finishing the reaction, the precipitation, formed by adding diethyl ether (50ml) to the mixture, was filtered, washed with diethyl ether and then with acetone, and dried in a desiccator to obtain amidinopyrazine hydrochloride (17.2g), which was used in further reaction without purification.

Synthesis Example 11 (Synthesis of an intermediate)

- 3-Fluorobenzyl bromide (18.9, 0.1mol), diethyl malonate (120ml, 0.8mol) and potassium carbonate (30g, 0.22mol) were suspended in acetone (60ml) and stirred at room temperature for 10 hours.
- 5 After finishing the reaction, the precipitation was filtered and washed with acetone. The solvent and an excess of diethyl malonate were removed under reduced pressure and the residue was purified by flush column chromatography (eluent n-hexane: ethyl acetate = 4:1) to obtain diethyl 3-fluorobenzylmalonate (23.6g), which was used in further reaction without purification.

Test Example 1: Test for effect of foliage application against Pyricularia oryzae

Preparation of testing compound

Active compound: 5 parts by weight

5 Organic solvent: Acetone 142.5 parts by weight

Emulsifier: Polyoxyethylene alkyl phenyl ether 7.5 parts by weight

The above-mentioned active compound, acetone and emulsifier were mixed, diluted to a prescribed concentration with water and used for test.

Test method

10 Paddy rice (variety: KOSHIHIKARI) was cultivated in a plastic pot of 4cm diameter. At its 1.5-2 leaf stage a previously prepared diluted solution of an active compound of the prescribed concentration was sprayed in an amount of 6ml per 3 pots. One day after spraying, a suspension of spores of artificially cultured Pyricularia oryzae was inoculated by spraying (once) and infected in keeping at 25°C and 100% relative humidity. Seven days after the inoculation, the contraction rate per pot was classified and evaluated to obtain the controlling value (%). Phytotoxicity was
15 also studied at the same time. This test is an average of the results of 1 section 3 pots.

Evaluation of contraction rate and calculation method of controlling value are as follows

Contraction rate Lesion area ratio (%)

0	0
20 0.5	less than 2
1	2-less than 5
2	5-less than 10
3	10-less than 20
4	20-less than 40
25 5	more than 40

Controlling value (%) = $(1 - \{ \text{contraction rate of treated section} \div \text{contraction rate of untreated section} \}) \times 100$

Test results

Compounds of the compound numbers 1-5, 1-11, 1-14, 1-15, 1-16, 1-17, 1-22, 1-33, 1-36, 1-37, 1-45, 1-56, 1-57, 1-68, 1-86, 1-87, 1-102 and 1-238 showed controlling values of more than 80% at the chemical concentration (500 ppm). No phytotoxicity was observed.

5 Test Example 2: Test for effect of foliage application against Sphaerotheca fuliginea**Test method**

Cucumber (variety: SAGAMI HANPAKU) was cultivated in a plastic pot of 4cm diameter. A diluted solution of an active compound of the prescribed concentration, prepared in a similar manner as in the above-mentioned Test Example 1, was sprayed to seedlings reached to cotyledon 10 in an amount of 6ml per 3 pots. One day after the spraying, a suspension of spores, prepared by washing spores of Sphaerotheca fuliginea taken from previously infected cucumber into distilled water, was inoculated to the plant to be treated by spraying (once) and infected in a green house. Seven days after the inoculation, the contraction rate per pot was classified and evaluated to obtain the controlling value (%). Phytotoxicity was also studied at the same time. This test is an 15 average of the results of 1 section 3 pots.

Evaluation of contraction rate and calculation method of controlling value are as follows

	Contraction rate	Lesion area ratio (%)
	0	0
	0.5	less than 2
20	1	2-less than 5
	2	5-less than 10
	3	10-less than 20
	4	20-less than 40
	5	more than 40
25	Controlling value (%) = (1 - {contraction rate of treated section ÷ contraction rate of untreated section}) × 100	

Test results

Compounds of the compound numbers 1-5, 1-6, 1-11, 1-14, 1-15, 1-16, 1-17, 1-46, 1-56, 1-57, 1-68, 1-86 and 1-87 showed controlling values of more than 80% at the chemical concentration (500 ppm). No phytotoxicity was observed.

Test Example 3: Test for effect of foliage application against Phytophthora infestans

Test method

Tomato (variety: REGINA) was cultivated in a plastic pot of 4cm diameter. A diluted solution of an active compound of the prescribed concentration, prepared in a similar manner as in the above-mentioned Test Example 1, was sprayed to seedlings reached to 2-3 leaf stage in an amount of 6ml per 3 pots. One day after the spraying, a suspension of zoosporangia, prepared by washing zoosporangia of Phytophthora infestans formed on the lesion of the previously infected tomato into distilled water by using a brush, was inoculated to the plant to be treated by spraying (once) and infected in keeping at 20°C and 100% relative humidity. Four days after the inoculation, the contraction rate per pot was classified and evaluated to obtain the controlling value (%). Phytotoxicity was studied at the same time. This test is an average of the results of 1 section 3 pots.

Evaluation of contraction rate and calculation method of controlling value are as follows

	Contraction rate	Lesion area ratio (%)
15	0	0
	0.5	less than 2
	1	2-less than 5
	2	5-less than 10
	3	10-less than 20
20	4	20-less than 40
	5	more than 40

$$\text{Controlling value (\%)} = (1 - \{\text{contraction rate of treated section} \div \text{contraction rate of untreated section}\}) \times 100$$

Test results

25 Compounds of the compound numbers 1-5, 1-165 and 1-238 showed controlling values of more than 80% at the chemical concentration (500 ppm). No phytotoxicity was observed.

Test Example 4: Test for effect of foliage application against Alternaria mali**Test method**

A nursery stock (variety: OREGON SUPER DELICIOUS) was cultivated in a plastic pot of 30cm diameter and its leaves, which had reached at perfect extension stage, were detached from the petiole, were cultivated under hydroponic condition by using a water-holding carrier. After that, a diluted solution of an active compound of the prescribed concentration, prepared in a similar manner as in the above-mentioned Test Example 1, was sprayed to the leaves in an amount of 6ml per 3 leaves. One day after the spraying, a suspension of spores of artificially cultured Alternaria mali was inoculated to the leaves by spraying (once) and infected by transferring them into a moisturizing box and keeping at 20°C. Four days after the inoculation, the contraction rate per pot was classified and evaluated according to the following standard and the controlling value (%) was obtained. Phytotoxicity was also studied at the same time. This test is an average of the results of 1 section 3 leaves.

Evaluation of contraction rate and calculation method of controlling value are as follows

15 Contraction rate Lesion area ratio (%)

0	0
0.5	less than 2
1	2-less than 5
2	5-less than 10
20 3	10-less than 20
4	20-less than 40
5	more than 40

$$\text{Controlling value (\%)} = (1 - \{\text{contraction rate of treated section} \div \text{contraction rate of untreated section}\}) \times 100$$

25 Test results

Compounds of the compound numbers 1-5, 1-14, 1-33, 1-36, 1-41, 1-42, 1-46, 1-56, 1-102, 1-121, 1-304, 1-311, 1-435, 1-520 and 1-523 showed controlling values of more than 80% at the chemical concentration (500 ppm). No phytotoxicity was observed.

Formulation Example 1 (Granule)

To a mixture of the compound of the present invention No. 1-5 (10 parts), bentonite (montmorillonite) (30 parts), talc (58 parts) and ligninsulfonate salt (2 parts), water (25 parts) is added, well kneaded, made into granules of 10-40 mesh by an extrusion granulator and dried at 5 40-50°C to obtain granules.

Formulation Example 2 (Granules)

Clay mineral particles having particle size distribution in the range of 0.2-2mm (95 parts) are put in a rotary mixer. While rotating it, the compound of the present invention No. 1-56 (5 parts) are sprayed together with a liquid diluent, wetted uniformly and dried at 10 40-50°C to obtain granules.

Formulation Example 3 (Emulsifiable concentrate)

The compound of the present invention No. 1-57 (30 parts), xylene (55 parts), polyoxyethylene alkyl phenyl ether (8 parts) and calcium alkylbenzenesulfonate (7 parts) are mixed and stirred to obtain an emulsifiable concentrate.

15 Formulation Example 4 (Wettable powder)

The compound of the present invention No. 1-238 (15 parts), a mixture of white carbon (hydrous amorphous silicon oxide fine powder) and powder clay (1:5) (80 parts), sodium alkylbenzenesulfonate (2 parts) and sodium alkylnaphthalenesulfonate-formalin-condensate (3 parts) are crushed and mixed to make a wettable powder.

20 Formulation Example 5 (Water dispersible granule)

The compound of the present invention No. 1-14 (20 parts), sodium ligninsulfonate (30 parts), bentonite (15 parts) and calcined diatomaceous earth powder (35 parts) are well mixed, added with water, extruded with 0.3mm screen and dried to obtain water dispersible granules.