Data Preprocessing

- ▶ Why preprocess the data?
- Data integration
- Data cleaning
- transformation
- Data reduction
 - ▶ Feature Selection
 - Case Reduction
 - Value Reduction
- Discretization

49

What is discretization?

- ▶ A discretization algorithm
 - ▶ converts continuous attributes into discrete attributes by partitioning the range of a continuous attribute into intervals.
 - ▶ Interval labels can then be used to replace actual data values.

Why Need Discretization?

- ▶ Some learning algorithms are limited to discrete inputs.
- ► Efficiency: handling (lots of) continuous values tends to slow down learning considerably. (*Value reduction*)
- Accuracy: in the presence of noise good discretization can sometimes improve predictive accuracy. (*Smoothing out noise*)
- ▶ Intelligibility: discretization may lead to smaller sizes of induced trees or rule sets.

51

Two Architectures

 Discretization before learning starts (Static discretization)

 Discretization during the learning process (Dynamic discretization)

Classification of Discretization Methods

- ▶ Supervised vs. unsupervised.
 - ▶ Supervised discretization uses class information.
 - ▶ Unsupervised does not use class labels.
- ▶ Bottom-up vs. top-down
 - ▶ Bottom-up: start from intervals with one value each and repeatedly merge intervals until some stopping criterion is satisfied.
 - ► Top-down: start from one interval with all values and repeatedly split intervals until some stopping criterion is satisfied.
- ▶ Global vs. local
 - ▶ Global: an attribute is partitioned over the entire continuous range, using global information and independent of other attributes.
 - Local: partition is applied to local regions of an attribute range.

Unsupervised Discretization

- ▶ Equal-width binning
 - ▶ Use discrete values, such as 1, 2, 3, ..., to represent intervals instead of bin means or boundaries
- ► Equal-depth/frequency binning
 - ▶ Use discrete values, such as 1, 2, 3, ..., to represent intervals instead of bin means or boundaries
- k-means clustering
 - ▶ Given k bins, distribute the values in the bins to minimize the average distance of a value from its bin mean.

54

K-mean Clustering

- ▶ Input: (1) a set of values for an attribute
 - (2) k = number of bins
- Sort the input values and keep the unique values
- Create k bins using equal-depth binning
- Compute bin means $(mean_1, mean_2,, mean_k)$
- ► Compute global distance: $D_{new} = \sum_{i}^{new} \sum_{j}^{new} (v_{ij} mean_{i})^{2}$ where $mean_{i}$ is the mean in bin_{i} and v_{ij} is the jth value in bin_{i} .
- Repeat
 - $ightharpoonup D_{old} = D_{new}$
 - ▶ for each bin;
 - for each v_{ij} in bin_i
 - ▶ If $(v_{ij}$ mean_{i-1}) < $(v_{ij}$ mean_i), move v_{ij} to bin_{i-1} .
 - ▶ If $(v_{ij}$ -mean_{i+1}) $\leq (v_{ij}$ -mean_i), move v_{ij} to bin_{i+1} .
 - ▶ Compute new bin means and D_{new}
- Until D_{new} is not less than D_{old} .

55

Supervised Discretization

- ▶ ChiMerge
 - ▶ Based on chi-square test
- ▶ Entropy-based discretization method
 - ▶ Based on an entropy minimization heuristic

ChiMerge: a Bottom-up Supervised Method

- ▶ ChiMerge is based on the statistical χ^2 test
- ► The purpose of a χ^2 test is to determine whether two variables are related.
 - ▶ E.g., we want know if there is any relationship between the gender of undergraduate students in a university and their footwear preferences.
- ► Observations about the two variables in a sample are usually expressed in a contingency table:

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

57

Chi Square Significance Test

- ► The null hypothesis is that the two variables are unrelated (that is, only randomly related).
- λ χ^2 test determines whether we should reject the null hypothesis and at what significance level (p-value) we should reject the null hypothesis.
- ▶ For the example in the previous slide,
 - ► The null hypothesis is that gender is unrelated with footwear preference
 - ▶ But the χ^2 test shows that we should reject this hypothesis at the significance level of 0.01, which means that we are 99% sure that gender and footwear preferences are related.
 - ▶ Usually, p-value should be at most 0.05 in order to reject the null hypothesis.

How to Calculate χ^2

▶ Given the contingency table:

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

- ▶ Compute the expected frequency for each cell
 - \blacktriangleright The expected frequency of $\text{cell}_{i,j}$ is

$$E_{ij} = \frac{\text{the total of row i} \times \text{the total of column j}}{\text{sample size}}$$

▶ For example, the expected frequency of the upper left cell

$$\frac{100}{100}$$

E0

How to Calculate χ^2 (Cont'd)

▶ Compute the chi-square value for the table

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

ightharpoonup Let O_{ij} denote the observed value in $\operatorname{cell}_{i,j}$

$$\chi^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

► For example, the chi-square value of the above table is 14.026

How to Calculate χ^2 (Cont'd)

▶ Calculate the degrees of freedom for the table

	Sandals	Sneakers	Leather shoes	Boots	Other	Total
Male	6	17	13	9	5	50
Female	13	5	7	16	9	50
Total	19	22	20	25	14	100

$$df = (r-1)(c-1)$$

- ▶ where *r* is the number of rows and *c* is the number of columns
- ► For example, the degrees of freedom for the above table is 4
- ► This is because, given row or column totals, all but one of the values in a given row or column are free to vary.

6

How to Calculate χ^2 (Cont'd)

▶ Using the chi-square table to determine the p-value for rejecting the null hypothesis

df	P = 0.05	P = 0.01	P = 0.001
1	3.84	6.64	10.83
2	5.99	9.21	13.82
3	7.82	11.35	16.27
4	9.49	13.28	18.47
5	11.07	15.09	20.52

- ▶ The table lists the critical values (i.e., thresholds)
- ► The calculated chi-square value for a contingency table must be greater than the critical value corresponding to the df of the table and a p-value (e.g., 0.05) in order to reject the null hypothesis at the significance level (p-value).

ChiMerge: a Bottom-up Supervised Method

- ▶ Sort all examples according to the values of the attribute to be discretized.
- ▶ Place each value in its own interval.
- ▶ Merge intervals repeatedly in the following manner:
 - ▶ For each pair of adjacent intervals:
 - Calculate the χ^2 value: $\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{(O_{ij} E_{ij})^2}{E_{ij}}$

where k = # of classes, $O_{ij} = \#$ of examples in the ith interval and jth class, $E_{ij} = \text{expected frequency of } O_{ij} = \frac{R_i \times C_j}{N}$, in which N is # of examples, $R_i = \#$ of examples in the ith interval, and $C_i = \#$ of examples in the jth class.

- ▶ If the lowest χ^2 value is smaller than a threshold, merge the two adjacent intervals with the lowest χ^2 value.
- ▶ This process is repeated until all χ^2 values exceeds this threshold.
- ▶ The threshold can be obtained from the standard χ^2 table

63

Entropy-Based Discretization

- ▶ Supervised, top-down discretization
- ▶ Employs an entropy minimization heuristic for splitting the range of a continuous attribute.
- ▶ Given a set *S* of examples and *k* classes, the *entropy* of *S* with respect to the *k* classes is defined as:

Ent
$$(S) = -\sum_{i=1}^{k} P(C_i) \log_2(P(C_i))$$

where $P(C_i)$ is the probability of examples in S that belong to C_i .

▶ The bigger Ent(S) is, the more impure S is.

Entropy-Based Discretization

Given an attribute *A* and a set *S* of training examples:

- Sort the examples in a set S by increasing values of the attribute A: $\{v_1, v_2, ..., v_n\}$.
- A potential cut-point T: midpoint between v_i and v_{i+1} dividing S into S_i : $\{v_1, v_2, ..., v_i\}$ and S_2 : $\{v_{i+1}, ..., v_n\}$.
- \blacktriangleright A total of n-1 potential cut-points.
- ▶ Suppose a cut-point T partitions S into S_1 and S_2 . Entropy (with respect to the class attribute) after the partition induced by cutpoint T:

Ent
$$(T, S) = \frac{|S_1|}{|S|} Ent (S_1) + \frac{|S_2|}{|S|} Ent (S_2)$$

where $\langle S \rangle$, $\langle S_1 \rangle$ and $\langle S_2 \rangle = \#$ of examples in S, S_1 and S_2

- ▶ Select T_A for which $E(T_A, S)$ is minimal to split the range into two subranges
- ► The process is recursively applied to partitions obtained until some stopping criterion is met.

65

Stopping Criteria for Entropy-Based Discretization

▶ Stopping criteria in D-2 (Catlett, 1991):

Recursive partitioning stops if any of the following is satisfied:

- all the examples in the interval belong to the same class.
- number of examples in an interval is below a given level;
- maximum number of cut-points for an attribute is reached;
- the entropy reduction on all possible cut-points is equal;
- ▶ Stopping criterion based on Minimum Description Length Principle (MDLP) (Fayyad and Irani, 1993):

Recursive partitioning stops iff

$$Ent(S) - Ent(T,S) \le \frac{\log_2(N-1)}{N} + \frac{\Delta(T;S)}{N}$$

$$\Delta(T; S) = \log_2(3^k - 2) - [kEnt(S) - k_1Ent(S_1) - k_2Ent(S_2)]$$

where k, k_1 and k_2 are the number of classes in S, S_1 and S_2 , respectively, and N is the number of examples in S.

Summary

- ▶ Data preparation is a big issue for data mining
- Data preparation includes
 - ▶ Data integration
 - Data cleaning
 - ▶ Handle missing values
 - Detect and remove noise
 - ▶ Data transformation
 - Data reduction
 - feature selection, case reduction and value reduction
 - Discretization
- A lot of methods have been developed but still an active area of research

67

Readings

- ▶ Chapter 3 in Jiawei Han's book
- ► Chapters 3 and 4 in "Predictive Data Mining, a Practical Guide" by Sholom M. Weiss and Nitin Indurkhya.
- ▶ U. M. Fayyad and K. B. Irani, "Multi-interval discretization of continuousvalued attributes for classification learning," Proc. of the 13th Int. Joint Conf. on Artificial Intelligence, pp. 1022--1027, Morgan Kaufmann, 1993.