Reinforcement Learning

Alexandru Pascariu, Davide Panarella, Federica Azzalini, Lorenzo Bonin

September 24, 2021

Problem statement

- Environment
 - 7 DOF open-chain stationary robot
- Task
 - Fetch and reach: the robot moves its end-effector to a certain goal position

Tools

- OpenAi Gym: Toolkit for simulated robotics environments
- Mujoco: Physics engine for model-based control tasks
- Stable-baselines3: a set of implementations of RL algorithms [1]

Environment

FetchReach-v1

- Model-free, full observability
- Observations
 - 10 values describing Cartesian position, linear velocity, fingers opening, fingers opening/closing velocity of the gripper
 - 6 values describing target position, achieved goal position
- Actions
 - 4 values
 - Desired movement of the gripper + desired distance between the 2 fingers
- **Reward**: 0 if the the goal is achieved (within a tolerance of 5 cm), -1 otherwise.

DDPG-Background

Consider a standard reinforcement learning setup

- Actions $a_t \in R^N$, action space $A = R^N$
- History of observation, action pairs $s_t = (x_1, a_1, ..., a_{t-1}, x_t)$
 - assume fully-observable so $s_t = x_t$
- Policy $\pi: \mathcal{S} \mapsto \mathcal{P}(\mathcal{A})$
- Environment modeled as Markov Decision Process
 - initial state distribution $p(s_1)$
 - transition dynamics $p(s_{t+1}|s_t, a_t)$
- Discounted future reward $R_t = \sum_{i=t}^T \gamma^{i-t} r(s_i, a_i) \mapsto \gamma \in [0, 1]$
- Goal learn a π which maximizes the expected return from the start distribution $J = \mathbb{E}_{r_i, s_i \sim E, a_i \sim \pi}[R_1]$
- ullet Discounted state visitation distribution for a policy: ho^π

DDPG-Background

- Action-value function: Bellman equation $\mathcal{Q}^{\pi}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim E}[r(s_t, a_t) + \gamma \mathbb{E}_{a_{t+1} \sim \pi}[\mathcal{Q}^{\pi}(s_{t+1}, a_{t+1})]]$
- With deterministic policy $\mu: \mathcal{S} \to \mathcal{A}$ $\mathcal{Q}^{\mu}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim \mathcal{E}}[r(s_t, a_t) + \gamma \mathcal{Q}^{\mu}(s_{t+1}, \mu(s_{t+1}))]$
- Minimizing the loss $L(\theta^{Q}) = \mathbb{E}_{s_{t} \sim \rho^{\beta}, a_{t} \sim \beta, r_{t} \sim E}[(Q(s_{t}, a_{t} | \theta^{Q}) y_{t})^{2}]$ where $y_{t} = r(s_{t}, a_{t}) + \gamma Q(s_{t+1}, \mu(s_{t+1}) | \theta^{Q})$

DDPG-Implementation

- Actor-Critic approach
- Neural network as function approximators
- Replay buffer and minibatch
- Target networks
- Batch normalization
- Noise

DDPG

DDPG-Pseudocode I

Algorithm 1: DDPG Algorithm[2]

Randomly initialize critic network $Q(s,a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network \mathcal{Q} 'and μ ' with weights $\theta^{\mathcal{Q}'} \leftarrow \theta^{\mathcal{Q}}$, $\theta^{\mu'} \leftarrow \theta^{\mu}$ Initialize replay buffer R

 $\quad \text{for } \mathsf{episode} = 1 \; \mathsf{,} \; \mathsf{M} \; \; \text{do}$

Initialize a random process ${\mathcal N}$ for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t$ according to the current policy and exloration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_t, a_t, r_t, s_{t+1}) from R

DDPG-Pseudocode II

Set
$$y_i = r_i + \gamma \mathcal{Q}'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{\mathcal{Q}'})$$

Update critic by minimizing the loss $L = \frac{1}{N} \sum_i (y_i - \mathcal{Q}(s_i, a_i|\theta^{\mathcal{Q}}))^2$
Update the actor policy using the sampled policy gradient:
$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_i \nabla_{a} \mathcal{Q}(s, a|\theta^{\mathcal{Q}})|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu})|_{s_i}$$

Update the target networks:

$$egin{aligned} heta^{\mathcal{Q}'} &\leftarrow au heta^{\mathcal{Q}} + (1- au) heta^{\mathcal{Q}'} \ heta^{\mu'} &\leftarrow au heta^{\mu} + (1- au) heta^{\mu'} \end{aligned}$$

end for end for

Twin Delayed DDPG (TD3)

Quick facts

- Successor of DDPG algorithm
- Model free, Off-policy algorithm
- Only for continuous action spaces
- Combination of Deep Double Q-learning, Policy Gradient, Actor Critic

Twin Delayed DDPG (TD3)

main features

• Clipped Double Q-learning: A trick for reducing overestimation bias

Variant of Double Q-learning

 \rightarrow pair of critic networks estimate the value function and the minimum between the two is chosen for the target update

$$y \leftarrow r + \gamma \min_{i=1,2} Q'_{\theta_i}(s', \tilde{a})$$

Twin Delayed DDPG (TD3)

main features

• Target Policy Smoothing: To address the problem of the policy overfitting to sharp peaks in the value estimate

$$\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \ \epsilon \sim clip(\mathcal{N}(0, \tilde{\sigma}), -c, c)$$

 'Delayed' Policy and Target Updates: Policy updates are delayed so that the value network becomes more stable before it updates the policy network

Algorithm 2: TD3 Algorithm[3]

Initialize critic networks $Q_{\theta 1}$, $Q_{\theta 2}$, and actor network π_{ϕ} with random parameters θ_1 , θ_2 , ϕ Initialize target networks $\theta_1' \leftarrow \theta_1$, $\theta_2' \leftarrow \theta_2$, $\phi' \leftarrow \phi$ Initialize replay buffer B for t=1 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$

Observe reward r and new state s'

Store transition tuple (s, a, r, s') from B

Twin Delayed DDPG II

Pseudocode

Sample mini-bach of N transitions
$$(s, a, r, s')$$
 from B $\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon$, $\epsilon \sim clip(\mathcal{N}(0, \tilde{\sigma}), -c, c)$ $y \leftarrow r + \gamma min_{i=1,2} Q'_{\theta_i}(s', \tilde{a})$ Update Critics $\theta_i \leftarrow argmin_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$ if t mod d then Update ϕ by the deterministic policy gradient: $\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_a Q_{\theta_1}(s, a)|_{a=\pi_{\phi(s)}} \nabla_{\phi} \pi_{\phi}(s)$ Update target networks: $\theta'_i \leftarrow \tau \theta_i + (1 - \tau) \theta'_i$ $\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$ end if end for

Main features

- Stochastic policy $\pi(a|s)$
- Both for discrete and continuous spaces
- 3 main ingredients:
 - Actor-critic architecture with separate policy and value function networks
 - Off-policy formulation
 - Entropy maximization
 - $H(P) = \underset{x \sim P}{\mathbb{E}} [-\log P(x)]$
 - $\pi^* = \underset{\pi}{\operatorname{argmax}} \sum_{t} \mathrm{E}_{(s_t, a_t) \sim \rho_{\pi}} [r(s_t, a_t) + \alpha H(\pi(\cdot | s_t))]$
 - ullet Temperature parameter lpha (exploration/exploitation trade-off)
- Sample efficient learning + robustness

Soft policy iteration

- Soft policy evaluation
 - Bellman operator $\mathcal{T}^{\pi}Q(s_t, a_t) \triangleq r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho}[V(s_{t+1})]$ where $V(s_t) = \mathbb{E}_{a_t \sim \pi}[Q(s_t, a_t) - \alpha \log \pi(a_t | s_t)]$
- Soft policy improvement

•
$$\pi_{\text{new}} = \underset{\pi' \in \Pi}{\operatorname{argminD}_{\text{KL}}} \left(\pi'(\cdot|s_t) \middle\| \frac{\exp(\frac{1}{\alpha}Q^{\pi_{\text{old}}}(s_t,\cdot))}{\mathcal{Z}^{\pi_{\text{old}}}(s_t)} \right)$$

 Convergence to the optimal maximum entropy policy among the policy in ∏ (in the tabular case)

How it works-1

- ullet Soft policy iteration + Function approximation for both π and Q
- Alternate between optimizing both networks with stochastic gradient descent
- Learning of two *Q*-functions (clipped double-Q trick)
- Learning of Q: minimize the soft Bellman residual

$$J_{Q}(\theta) = E_{(s_{t},a_{t})\sim\mathcal{D}} \left[\frac{1}{2} (Q_{\theta}(s_{t},a_{t}) - (r(s_{t},a_{t}) + \gamma E_{s_{t+1}\sim p}[V_{\bar{\theta}}(s_{t+1})])^{2} \right]$$

$$\hat{\nabla}_{\theta} J_{Q}(\theta) = \nabla_{\theta} Q_{\psi}(s_{t},a_{t}) (Q_{\theta}(s_{t},a_{t}) - (r(s_{t},a_{t}) - \gamma (Q_{\bar{\theta}}(s_{t+1},a_{t+1}) - \alpha \log(\pi_{\phi}(a_{t+1},s_{t+1}))))$$

where $Q_{\bar{\theta}}$ is the **target soft Q-function**

How it works-2

- Reparameterization trick: $a_t = f_{\phi}(\epsilon_t; s_t)$, where ϵ is a noise vector sampled from some distribution
- Learning of π : minimize the expected **KL-divergence** $J_{\pi}(\phi) = E_{s_{t} \sim \mathcal{D}, \epsilon_{t} \sim \mathcal{N}}[\alpha \log \pi_{\phi}(f_{\phi}(\epsilon_{t}; s_{t})|s_{t}) Q_{\theta}(s_{t}, f_{\phi}(\epsilon_{t}; s_{t}))]$ $\hat{\nabla}_{\phi}J_{\pi}(\phi) = \nabla_{\phi}log\pi_{\phi}(a_{t}|s_{t}) + (\nabla_{a_{t}}log\pi_{\phi}(a_{t}|s_{t}) \nabla_{a_{t}}Q(s_{t}, a_{t}))\nabla_{\phi}f_{\phi}(\epsilon_{t}; s_{t})$
- ullet Automatic tuning of lpha
 - ullet Constant lpha would need to be tuned for each task
 - Minimization of $J(\alpha) = E_{a_t \sim \pi_t} [-\alpha \log \pi_t(a_t|s_t) \alpha \bar{\mathcal{H}}]$ where $\bar{\mathcal{H}}$ is the minimum expected entropy (slightly different from the actual implementation)

Pseudocode

Algorithm 3: SAC Algorithm [4]

```
input \theta_1, \theta_2, \phi
      \bar{\theta}_1 \leftarrow \theta_1, \bar{\theta}_2 \leftarrow \theta_2, \mathcal{D} \leftarrow \emptyset
      for each iteration do
             for each environment step do
                   a_t \sim \pi_{\phi}(a_t|s_t)
                   s_{t+1} \sim p(s_{t+1}|s_t, a_t)
                   \mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r(s_t, a_t), s_{t+1})\}
             end for
             for each gradient step do
                   \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
                   \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)
                   \alpha \leftarrow \alpha - \lambda \hat{\nabla}_{\alpha} J(\alpha)
                   \bar{\theta}_i \leftarrow \tau \theta_i + (1 - \tau) \bar{\theta}_i for i \in \{1, 2\}
             end for
      end for
output \theta_1, \theta_2, \phi
```

Hindsight Experience Replay (HER)

- Idea: learn from failure!
- Goal decided in hindsight
- Way better with sparse rewards than with dense ones
- Typically for off-policy algorithms (however, integrations between HER and on-policy algorithms do exist)

Quick facts

- On-Policy algorithm
 - Policy gradient method
 - Sampling data \leftrightarrows optimize objective function
- Optimize the stochastic policy avoiding large updates
 - Constraint embedded in the objective function
- Actor-Critic architecture

Actor-Critic scheme

Objective function

- Probability ratio : $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$
- Normal policy gradient objective function : $L(\theta) = \hat{\mathbb{E}}_t(r_t(\theta) \, \hat{A}_t)$
 - Advantage estimate : $\hat{A}_t = R_t V_t$
- PPO objective : $L_{clip}(\theta) = \hat{\mathbb{E}}_t(\min(L(\theta), clip(r_t(\theta), \epsilon) \, \hat{A}_t))$
 - $clip(K, \epsilon) = \begin{cases} (1+\epsilon)K & \text{if } K > 0 \\ (1-\epsilon)K & \text{if } K < 0 \end{cases}$

Clipping

Algorithm 4: PPO Algorithm[5]

initialize policy and value function parameters θ_0 , ϕ_0 . for each iteration 1,2,... do for actor=1,2...N do Run policy $\pi_{\theta old}$ in environment for T timesteps Compute advantage estimates $\hat{A}_1,...,\hat{A}_T$ based on $V_{\phi_{old}}$ end for $\theta_{new} = \operatorname{argmax}(\mathbb{E}_{actor}(L_{clip}(\theta)))$ via SGA $\phi_{new} = \underset{\phi}{\operatorname{argmin}} \left(\frac{1}{NT} \sum_{actor=1}^{N} \sum_{t=1}^{T} (V_{\phi}(S_t) - R_t)^2 \right)$ via SGD $\theta_{old} = \theta_{new}$ end for

Plots and results

Default parameters

Figure: rew-mean

Figure: rew-mean-her

Hyperparameter tuning

- Optuna: Automatic hyperparameter optimization software framework[6]
- DDPG, TD3, SAC: hyperparameters from https://github.com/araffin/rl-baselineszoo/blob/master/hyperparams/her.ymlL125
- PPO: tuned ourselves

Plots and results

Tuned parameters

Figure: rew-mean

Figure: rew-mean-her

Conclusions

- Off-policy algorithms outperform on-policy algorithms
 - On policy-learning suffers from poor sample efficiency
- DDPG is able to achieve very good performances but it is heavily dependent on its hyperparameters and tends to overestimate bias
- TD3 clearly improves the DDPG robustness to hyperparameters settings
- SAC has very good performances and is pretty independent of hyperparameters tuning
- HER always improves learning speed

Thank You

We thank you for your kind attention

References

- Antonin Raffin et al. *Stable Baselines3*. URL: https://stable-baselines3.readthedocs.io/en/master/index.html.
- Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2019. arXiv: 1509.02971 [cs.LG].
- Scott Fujimoto, Herke van Hoof, and David Meger. *Addressing Function Approximation Error in Actor-Critic Methods*. 2018. arXiv: 1802.09477 [cs.AI].
- Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2019. arXiv: 1812.05905 [cs.LG].
- John Schulman et al. *Proximal Policy Optimization Algorithms*. 2017. arXiv: 1707.06347 [cs.LG].
- Takuya Akiba et al. "Optuna: A Next-generation Hyperparameter Optimization Framework". In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2019.