Chapter 6: Face Recognition

Face recognition

What is face recognition?

Face verification vs. face recognition

- >> Verification
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
- -> Recognition
 - Has a database of K persons
 - Get an input image
 - Output ID if the image is any of the K persons (or "not recognized")

Face recognition

One-shot learning

One-shot learning

Learning a "similarity" function

→ d(img1,img2) = degree of difference between images

If d(img1,img2)
$$\leq \tau$$
 "Sow
 $> \tau$ "O."

Face recognition

Siamese network

Siamese network

Goal of learning

Parameters of NN define an encoding $f(x^{(i)})$

Learn parameters so that:

If
$$x^{(i)}$$
, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.

If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

Face recognition

Triplet loss

Learning Objective

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

Andrew Ng

Loss function

Training set: 10k pictures of 1k persons

Choosing the triplets A,P,N

During training, if A,P,N are chosen randomly, $d(A,P) + \alpha \le d(A,N)$ is easily satisfied. $\|f(A) - f(P)\|^2 + \alpha \le \|f(A) - f(N)\|^2$

Choose triplets that're "hard" to train on.

$$A(A,P)$$
 +2 $A(A,N)$
 $A(A,P)$ $A(A,N)$
 $A(A,N)$

Training set using triplet loss

Face recognition

Face verification and binary classification

Learning the similarity function

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

Face verification supervised learning

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

Neural Style Transfer

What is neural style transfer?

Neural style transfer

Neural Style Transfer

What are deep ConvNets learning?

Visualizing what a deep network is learning

Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

Visualizing deep layers

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 5

Layer 4

Layer 5

Layer 5

Neural Style Transfer

Cost function

Neural style transfer cost function

$$J(G) = d J_{content}(G, G)$$

$$+ \beta J_{style}(S, G)$$

Find the generated image G

1. Initiate G randomly

$$G: 100 \times 100 \times 3$$

2. Use gradient descent to minimize J(G)

$$G:=G-\frac{\lambda}{\lambda G}J(G)$$

Neural Style Transfer

Content cost function

Content cost function

$$\underline{J(G)} = \alpha \underline{J_{content}(C,G)} + \beta J_{style}(S,G)$$

- Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $\underline{a^{[l](C)}}$ and $\underline{a^{[l](G)}}$ be the activation of layer l on the images
- If $a^{[l](C)}$ and $a^{[l](G)}$ are similar, both images have similar content $\int_{\text{content}} \left(\zeta, \zeta \right) = \frac{1}{2} \left\| a_{\text{content}} \left(\zeta, \zeta \right) \right\|^{2}$

Andrew Ng

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Generated Image

Style matrix

Let
$$a_{i,j,k}^{[l]} = \text{activation at } (i,j,k)$$
. $\underline{G}^{[l]} \text{ is } \mathbf{n}_{\mathbf{c}}^{[l]} \times \mathbf{n}_{\mathbf{c}}^{[l]}$

$$\Rightarrow C_{kk'}^{[l]} = \sum_{i=1}^{l} \sum_{j=1}^{l} c_{ijk}^{(l)} C_{ijk'}^{(l)} C_{$$

$$\int_{S+yle} \left(S, C_k \right) = \frac{1}{\left(\frac{1}{2} \frac{1}{N_H^2 N_W^2 N_W^2 N_W^2} \right)^2} - \left(\frac{123(C_k)}{C_k N_H^2 N_W^2 N_W^2 N_W^2 N_W^2} - \frac{123(C_k)}{C_k N_H^2 N_W^2 N_W^2 N_W^2 N_W^2} \right)^2 + \frac{1}{(C_k N_H^2 N_W^2 N$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_{k} \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})$$

Convolutional Networks in 1D or 3D

1D and 3D generalizations of models

Convolutions in 2D and 1D

$$\rightarrow$$
 6 \star 32 Andrew Ng

3D convolution

