Lecture-13

Functional Dependencies - Determining Keys

CS211 - Introduction to Database

Two principles of database design

- 1. Capture all the information needed by the underlying application
 - Collect user requirements
 - Translates user requirements into a conceptual schema (ER-Model)
 - -Entity
 - -Attribute
 - -Relationship
 - -Key
- 2. Design the database with little redundancy/anomaly
 - Normalization

Different Keys and their meaning

- Super Key is the set of one or more column (ie attributes) which uniquely identifies a record.
 - o (A, B, D, E)
 - o (C, H, F, G)
- Candidate key is a minimal Super key. (it mean we cant remove any attributes from it otherwise it will not remain Super key anymore).
 - o (A, B)
 - o (C, H)
- Primary Key is a arbitrary selected Candidate key. There must be only One primary key.
 (A, B)
- Alternate Keys are the other candidate keys which are not chosen as the Primary key.
 - o (C, H)
- If Primary Key have more then one column (or attributes), it is called Composite Key.
 - o (A, B)

Keys

```
Employee {Emp_Code, Emp_Number,Emp_Name}
```

Super keys: All of the following sets are able to uniquely identify rows of the employee table.

```
{Emp_Code}
{Emp_Number}
{Emp_Code, Emp_Number}
{Emp_Code, Emp_Name}
{Emp_Code, Emp_Number, Emp_Name}
{Emp_Number, Emp_Name}
```

Candidate keys: They are the minimal super keys with no redundant attributes.

```
{Emp_Code} {Emp_Number}
```

Primary key: The designer can select any candidate key as the primary key. {Emp Code}

Alternate keys: {candidate keys} - primary key → alternate keys. {Emp Number}

Database Redundancy

Redundancy and Anomalies

Student Relation

Sid is the Primary Key

Sid	Name	Credits	Dept	Building	Room_no	HOD	••••••	Redundant Storage
							•	Storage
1	John	5	CS	B1	101 _	_		Update
2	Adam	8	CS	B1	101 —	<u>-</u>		Anomaly
3	Jiya	9	DS	B2	201	-		Dolotion
4	Salim	9	DS	B2	201	-		Deletion Anomaly
5	Xi	7	Civil	B1	110	-		
6	Chen	6	EC	B2	115	- /		
7	Rahul	8	Civil	B1	120	/-		In a cution
8	Allan	9	CS	B1	101	-		Insertion Anomaly
NULL	NULL	NULL	ME	B2	120	-		6

Functional Dependencies

Dependency

X-determinant, Y-dependent

X	Υ
5	25
2	4
3	9

$$x \rightarrow y^2$$

if X is unique, X->Y is always TRUE

What is Dependency?

X->Y

X-determinant Y-dependent

X	Υ
5	25
2	4
3	9
5 2	?
2	?

$$x \rightarrow y^2$$

Definition: Functional Dependencies

• A functional dependency (FD) has the form of X → Y, where X and Y are sets of attributes.

- FD means that whenever two tuples are identical on all the attributes in X, ie, t1[X]=t2[X], they must also be identical on all the attributes in Y ie, t1[Y]=t2[Y].
 - Each possible value of X correspond to exactly one value of Y

Α	В	С
1	2	3
4	2	3
5	3	3

FDs:

•
$$A \rightarrow B$$

•
$$B \rightarrow A$$

•
$$B \rightarrow C$$

•
$$C \rightarrow B$$

NO

Α	В	С	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

FDs:

- $A \rightarrow B$
- $A \rightarrow C$

YES

NO

• $A \rightarrow D$

NO

• $B \rightarrow A$

NO

• $B \rightarrow C$

NO

• $B \rightarrow D$

NO

• $D \rightarrow B$

YES

FD:
$$X \rightarrow Y$$

cID	Title	Semester	Dept
cs211	Database	2018su	CS
cs211	Database	2018s	CS
cs211	Database	2017s	ir

FDs:

• cID \rightarrow title

YES

• title → dept

NO

• cID, semester → dept

YES

• cID, semester → cID, dept YES

FD: $X \rightarrow Y$

<u>sld</u>	Name	Marks	Dept	Course
1	a	78	CS	C1
2	b	60	EE	C1
3	а	78	CS	C2
4	b	60	EE	C3
5	С	80	IT	C3
6	d	80	EC	C2

• sld → Name

YES

• Name \rightarrow sld

NO

• sld \rightarrow Marks

YES

• Dept→ Course

NO

• Course → Dept

NO

• Name → Marks

YES

• {sld, Name} → Dept

YES

• {Name, Marks} → Dept

YES

• {Name, Matrks} → {Dept, Course}

No

Self Study

then t1[Y]=t2[Y]

Check if FDs correct?

- sld \rightarrow {Name, Marks}
- Name → Course
- {sld, Marks} → Dept
- {Dept, Course} → Name
- {Name, Matrks, Dept} → sld

<u>sld</u>	Name	Marks	Dept	Course
1	а	78	CS	C1
2	b	60	EE	C1
3	а	78	CS	C2
4	b	60	EE	C3
5	С	80	IT	C3
6	d	80	EC	C2

Propose possible FDs

customer(cID, cName, cGroup, phone, productID, productName, quantity, dateArrival)

```
cID \rightarrow (cName, cGroup, phone)
```

 $productID \rightarrow productName$

 $(cID, productID, dateArrival) \rightarrow quantity$

 $(cID, productID, dateArrival) \rightarrow (quantity, cName, cGroup, phone)$

• •

Propose possible FDs

```
employee(eID, eName, birthDate, phone, highestQualification, graduateSchool, dateTrain, courseTrain)
```

```
eID \rightarrow eName
eID \rightarrow birthDate
eID \rightarrow phone
eID \rightarrow (highestQulification, graduateSchool)
(eID, dateTrain) \rightarrow courseTrain
```

Facts of FD

- Ideally, we do not want to miss any FD, i.e., we want to obtain a complete set of FD that is as large as possible.
- However, in practice, FD collection is a **difficult process**. No one can guarantee always discovering all FDs.
- In practice, it is often the case that some FDs are **easier to see**, while others are more subtle and **harder to observe**.
 - Some of the subtle FDs can be derived from easy ones.
 - Some may not be discovered.

Uses of FDs

- FDs are a form of **integrity constraint** in relational databases.
- FDs promote data correctness, consistency, and integrity.
- FDs help to create "good" database schema where data redundancy (repetition of data) is minimized.
- FDs help in **Normalization** of database.
 - → Normalization is a data organization technique used to prevent redundancy, insertion, update and deletion anomalies.
- FDs allows us to identify poor designs.
- FDs are used to determine keys.

Armstrong's Axioms (A set of inference rules used to infer all the functional dependencies on a relational database

employee(eID, firstName, lastName, address, dept, position, salary)

• A1 Reflexivity rule: $X \rightarrow Y$ if $Y \subseteq X$ $(firstName, lastName) \rightarrow firstName$

Relation R={A1, A2, ... An}, and $\alpha \rightarrow \beta$ is a FD in R

• A2 Augmentation rule: if $X \rightarrow Y$, then $XZ \rightarrow YZ$

 $position \rightarrow salary$

 $(position, eID) \rightarrow (salary, eID)$

• A3 Transitivity rule: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

These rules are:

- sound (generate only functional dependencies that actually hold), and
- complete (generate all functional dependencies that hold).

Armstrong's Lemmas (Intermediate theorems: It is possible to use Armstrong's axioms to prove that these rules are sound)

Relation R={A1, A2, ... An}, and $\alpha \rightarrow \beta$ is a FD in R

• Union rule: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

• Pseudo Transitivity: if $X \rightarrow Y$ and $YW \rightarrow Z$, then $XW \rightarrow Z$

• Decomposition rule: if $X \rightarrow Y$ and $Z \subseteq Y$, then $X \rightarrow Z$

Armstrong's Lemmas (Intermediate theorems: It is possible to use Armstrong's axioms to prove that these rules are sound)

• Union rule: if X \rightarrow Y and X \rightarrow Z, then X \rightarrow YZ $eID \rightarrow (firstName, lastName)$ $eID \rightarrow address$ $eID \rightarrow address$

• Pseudo Transitivity: if X \rightarrow Y and WY \rightarrow Z, then XW \rightarrow Z $eID \rightarrow (firstName)$ (lastname, $eID) \rightarrow address$ (lastName, $firstName) \rightarrow address$

• Decomposition rule: if $X \rightarrow Y$ and $Z \subseteq Y$, then $X \rightarrow Z$

 $eID \rightarrow (firstName, lastName)$ ($eID) \rightarrow firstName$ ($eID) \rightarrow firstName$

Determining the candidate Key

R(A B C D), $F=\{A \rightarrow C, B \rightarrow D\}$, is $\{A, B\}$ a candidate key?

Step1: Find if {A,B} is a Super key

 $does\ AB \rightarrow ABCD$?

$$A \to C$$

$$B \to D$$

$$AAB \to ABC$$

$$BABC \to ABCD$$

$$\begin{array}{ccc}
AB \to ABC \\
ABC \to ABCD
\end{array}$$

$$AB \to ABCD$$

Step2: Find if {A,B} is a Candidate key

is A a superkey? no

is B a superkey? no

SO

AB is a candidate key

Determining the candidate Key

R(A B C D E), $F=\{AB \rightarrow C, AE \rightarrow D, D \rightarrow B\}$, prove $\{AE\}$ is a candidate key.

Definition: Closure of attributes

- Let α be a set of attributes.
- We call the set of all attributes functionally determined by α under a set F of functional dependencies the closure of α under F.
- We denote it by α^{+} .

Given F:

- 1. cID \rightarrow title
- 2. title \rightarrow dept
- 3. $\{cID, semester\} \rightarrow dept$
- 4. $\{cID, semester\} \rightarrow \{cID, semester\}$

```
\alpha = \{cID\}
\alpha^+ ?
```

```
\alpha^{+} = \{cID\}
\alpha^{+} = \{cID, title\}
\alpha^{+} = \{cID, title, dept\}
```

Example of Closure

Given F:

- 1. cID \rightarrow title
- 2. title \rightarrow dept
- 3. $\{cID, semester\} \rightarrow dept$
- 4. $\{cID, semester\} \rightarrow \{cID, semester\}$

```
\alpha ={cID, semester}
\alpha^+ ?
```

```
\alpha^{+} = \{cID, semester\}
\alpha^{+} = \{cID, semester, title\}
\alpha^{+} = \{cID, semester, title, dept\}
```

Finding the Closure of attributes

Given F:

- 1. $cID \rightarrow title$
- 2. title \rightarrow dept
- 3. $\{cID, semester\} \rightarrow dept$
- 4. $\{cID, semester\} \rightarrow \{cID, semester\}$

```
\alpha = \{cID, semester\}
```

$$\alpha^+$$
 ?

$$\alpha^+ = \{cID, semester\}$$

$$\alpha^+ = \{cID, semester, title\}$$

$$\alpha^+ = \{cID, semester, title, dept\}$$

algorithm (F, α)

/* F is a set of FDs, and α is an attribute set */

1.
$$\alpha^+ = \alpha$$

2. while F has a FD $A \rightarrow B$ such that $A \subseteq \alpha^+ do$

$$\alpha^+ = \alpha^+ \cup B$$

remove $A \rightarrow B$ from F

3. return α^+ /* closure of α^* /

Example

$$R = \{A,B,C,D,E,G\}$$

Given F:

$${A,B}\rightarrow{C}$$

 ${C}\rightarrow{A}$
 ${B,C}\rightarrow{D}$
 ${A,C,D}\rightarrow{B}$
 ${D}\rightarrow{E,G}$
 ${B,E}\rightarrow{C}$
 ${C,G}\rightarrow{B,D}$
 ${C,E}\rightarrow{A,G}$

$$\alpha = \{B, D\}, \alpha^+$$
?

$$\alpha^+ = \{B, D\}$$

$$\alpha^+ = \{B, D, E, G\} \text{ since } \{D\} \rightarrow \{E,G\}$$

$$\alpha^+ = \{B, C, D, E, G\} \text{ since } \{B, E\} \rightarrow \{C\}$$

$$\alpha^+ = \{A, B, C, D, E, G\} \text{ since } \{C\} \rightarrow \{A\}$$

Candidate key

- So far we have been specifying candidate keys based on our preferences.
- In fact, candidate keys are not up to us at all.
- Instead, they are uniquely determined by the set F of functional dependencies.
- A candidate key is a set X of attributes in R such that X^+ includes all the attributes in R. There is no proper subset Y of X such that Y^+ includes all the attributes in R.

Example – Candidate Key

Consider a table R(A,B,C,D), and that $F = \{A \rightarrow B, B \rightarrow C\}$.

- 1. A is not a candidate key, because $A^+ = \{A, B, C\}$ which does not include D.
- 2. AD is a candidate key because $AD^+ = \{A, B, C, D\}$.
- 3. ABD is not a candidate key even though $ABD^+ = \{A, B, C, D\}$. This is because $AD^+ = \{A, B, C, D\}$.

To check for all the candidate keys of a relation R having N attributes, we need to find $\approx 2^n$ closures.

Identifying all the candidate Keys (Trick-1)

Consider a table R(A,B,C,D, E) and F = {A \rightarrow B, D \rightarrow E}.

Step -1: Determining the prime attributes (The attributes present in candidate keys are the prime attributes)

 $\{ABCDE\}^+ = \{ABCDE\}$ So, **[ABCDE]** is the **super-key**.

- Since $A \rightarrow B$, we can remove B from the super-key. So, [ACDE] is the super-key.
- Since D→E, we can remove E from the super-key. So, [ACD] is the super-key.
- Now, the **proper subsets** of the super-key [ACD] are [A], [C], [D], [AC], [AD], [CD] and none of whose **closures** determine all the attributes {ABCDE} of R. **So, the super-key [ACD] is a candidate-key**.

The prime attributes are {A,C, D}

Step -2: Check if prime attributes are on the RHS of any FDs

• If NO, then we have found the only available candidate-key.

Identifying all the candidate Keys (Trick-2)

Consider a table R(A,B,C,D) and F = {A \rightarrow B, B \rightarrow C, C \rightarrow A}.

Step -1: Determining the prime attributes

 $\{ABCD\}^+ = \{ABCD\}$ So, **[ABCD]** is the **super-key**.

- Since A→B, we can remove B from the super-key. So, [ACD] is the super-key.
- Since $B \rightarrow C$, using transitivity property (A \rightarrow B, B \rightarrow C So, A \rightarrow C). We can remove C from the super-key. So, [AD] is the super-key.
- Now, the **proper subsets** of the super-key [AD] are [A] and [D], and none of whose **closures** determine all the attributes {ABCD} of R. **So, super-key [AD] is a candidate-key.**

The prime attributes are {A,D}

Step -2: Check if prime attributes are on the RHS of any FDs

- **YES.** The prime attribute A is on the RHS of C \rightarrow A.
- Replace A with C in the existing candidate-key [AD] as [CD]. It is a super-key now.
- Since none of the closures of the proper subsets of [CD] determine all the attributes {ABCD}, it is the new candidate-key.

Identifying all the candidate Keys (Trick-2)

Consider a table R(A,B,C,D) and F = {A \rightarrow B, B \rightarrow C, C \rightarrow A}.

- The candidate-keys so far are [AD] and [CD]
- The prime attributes so far are {A,D,C}

Step -3: Check if any unaccounted prime attributes are on the RHS of any FDs

- **YES.** The prime attribute C is on the RHS of B \rightarrow C.
- Replace C with B in the existing candidate-key [CD] as [BD]. It is a super-key now.
- Since none of the closures of the proper subsets of [BD] determine all the attributes {ABCD}, it is the new candidate-key.
 - The candidate-keys so far are [AD], [CD] and [BD]
 - The prime attributes so far are {A,B,C,D}

Step -4: Check if any unaccounted prime attributes are on the RHS of any FDs

• NO. All the prime attributes are accounted for. So, we have found all the candidate-keys in R.

Quiz

Consider relation R(A,B,C,D,E,F) with functional dependencies:

 $CDE \rightarrow B$, $ACD \rightarrow F$, $BEF \rightarrow C$, $B \rightarrow D$

Which of the following is a candidate key?

- BDF
- ABDF
- ACDE
- ADEF

Quiz

Consider relation R(A,B,C,D,E,F) with functional dependencies: $CDE \rightarrow B$, $ACD \rightarrow F$, $BEF \rightarrow C$, $B \rightarrow D$

Which of the following is a candidate key?

- BDF
- ABDF
- ACDE
- ADEF

Types of Functional dependencies:

- 1. Trivial functional dependency
- 2. Non-Trivial functional dependency
- 3. Transitive functional dependency
- 4. Multivalued functional dependency

1. Trivial functional dependency

In **Trivial FD**, a dependent is always a subset of the determinant.

i.e. If $X \rightarrow Y$ and $Y \subseteq X$.

roll_no	name	age	roll_no → roll_no
42	Alex	17	{roll_no, name} → name
43	Eva	18	
44	John	18	

2. Non-Trivial functional dependency

In **Non-trivial FD**, the dependent is **strictly not a subset** of the determinant. i.e. If $X \rightarrow Y$ and $Y \nsubseteq X$.

roll_no	name	age	
42	Alex	17	roll_no → name
43	Eva	18	{roll_no, name} → age
44	John	18	

3. Transitive functional dependency

In transitive FD, dependent is indirectly dependent on determinant.

i.e. If $\mathbf{a} \rightarrow \mathbf{b} \otimes \mathbf{b} \rightarrow \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \rightarrow \mathbf{c}$.

roll_no	name	dept	building_no		
42	Alex	CO	4		
43	Eva	EC	2		
44	John	IT	1		
45	Jacob	EC	2		
			$rolll_no \rightarrow dept$		roll_no → building_no
			dept → building_no	,	

4. Multivalued functional dependency

In Multivalued FD, entities of the dependent set are not dependent on each other. i.e. If $a \rightarrow \{b, c\}$ and there exists no functional dependency between b and c.

roll_no	name	age	
42	Alex	17	roll_no → {name, age}
43	Eva	18	
44	John	18	