BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-330319

(43)Date of publication of application: 15.11.2002

(51)Int.Cl.

H04N 5/225 GO2B 7/02 H01L 27/14 H01L 27/148 HO4N 5/335 H05K H05K 1/18 H05K 7/14

(21)Application number: 2001-132583

(71)Applicant:

KYOCERA CORP

(22)Date of filing:

27.04.2001

(72)Inventor:

AIZAWA MITSUAKI

(54) MOUNTING STRUCTURE FOR IMAGING DEVICE MODULE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a mounting structure for an imaging device module the thickness and the component mounting area of which are reduced in order to realize a low profile and miniaturizing more than those of a conventional imaging device module.

SOLUTION: The mounting structure is configured such that the imaging device module 2 is mounted on an uppermost end of a main board 10 in one case of a mobile telephone 1. A lens 5 of the imaging device module 2 is fitted to a lens attachment section 7a of a holder 7, an imaging device 6 and an IC 3 are mounted on a flexible printed circuit board 3, which is folded in three and fitted to a flexible printed circuit board container section 7b of a holder 7b. The tip of the flexible printed circuit board 3 is inserted to an FPC(Flexible Printed Circuit) connector mounted on the main board 10 to make electric connection between the main board and the flexible printed circuit board 3. Thus, the thickness of the mobile unit such as a mobile telephone can be made thin.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-330319 (P2002-330319A)

(43)公開日 平成14年11月15日(2002.11.15)

(51) Int.Cl. ⁷		識別記号		FΙ			テ	-マコード(参考)
H 0 4 N	5/225			H04	N 5/225		D	2H044
G 0 2 B	7/02			G 0 2	B 7/02		Α	4M118
H01L	27/14			H04	N 5/335		v	5 C O 2 2
	27/148			H05	K 1/02		D	5 C 0 2 4
H04N	5/335				1/18		S	5 E 3 3 6
			審査請求	未請求	請求項の数4	OL	(全 5 頁)	最終頁に続く

(21)出願番号 特願2001-132583(P2001-132583)

(22)出願日 平成13年4月27日(2001.4.27)

(71)出願人 000006633

京セラ株式会社

京都府京都市伏見区竹田鳥羽殿町6番地

(72)発明者 相澤 充昭

東京都世田谷区玉川台2丁目14番9号 京

セラ株式会社東京用賀事業所内

(74)代理人 100075144

弁理士 井ノ口 壽

最終頁に続く

(54)【発明の名称】 撮像素子モジュールの実装構造

(57)【要約】

【課題】 従来の撮像素子モジュールに比較し薄形および小形化を実現するため、撮像素子モジュールの厚さ、および部品搭載面積を削減した撮像素子モジュールの実装構造を提供する。

【解決手段】 撮像素子モジュール2は携帯電話1のケース内のメイン基板10の最上端に搭載されている。撮像素子モジュール2は、レンズ5がホルダ7のレンズ取付部7aに取り付けられ、撮像素子6およびIC3がフレキシブルプリント基板3に搭載され、このフレキシブルプリント基板3が3つに折り重ねられて、ホルダ7bのフレキ収容部7bに取り付けられることにより構成される。フレキシブルプリント基板3の先端はメイン基板とフレキシブルプリント基板3の電気的接続がなされている。これにより携帯電話などの携帯機器の厚さを薄くすることができる。

【特許請求の範囲】

【請求項1】 固体撮像素子および該固体撮像素子の上面に配置したレンズ光学ユニットからなるモジュールと、

前記モジュールを水平および垂直走査するためのドライブチップと、露出、色相、バランスなどを制御するプロセスチップとをフレキシブルプリント基板の上に搭載し、前記フレキシブルプリント基板上のパターンによって前記モジュールと各チップの電気的接続を行い、前記モジュール搭載部分と前記ドライブチップおよびプロセスチップ搭載部分とは前記フレキシブルプリント基板を2つ以上に折り重ねて配置可能に構成したことを特徴とする携帯通信機器用の撮像素子モジュールの実装構造。

【請求項2】 前記モジュール搭載部分と前記ドライブ チップおよびプロセスチップ搭載部分の裏側に補強のた めの裏打ち板を貼り合わせたことを特徴とする請求項1 記載の携帯通信機器用の撮像素子モジュールの実装構 造。

【請求項3】 前記フレキシブルプリント基板は多層構造であることを特徴とする請求項1または2記載の携帯通信機器用の撮像素子モジュールの実装構造。

【請求項4】 前記フレキシブルプリント基板の両面に I Cチップを搭載したことを特徴とする請求項1, 2または3記載の携帯通信機器用の撮像素子モジュールの実装構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、携帯電話やPHS など薄形を要求される携帯通信機器筐体に内蔵される撮像素子モジュールの構造に関する。

[0002]

【従来の技術】携帯用通信機器は、持ち運びを容易にするため薄形化が要求される。薄形を達成するためには例えば携帯電話の回路基板なども薄くすることが必要である。図5に従来の撮像モジュールの実装構造を示す。第1のリジッド基板45aの上にCCD43をボールコンタクトハンダで取り付け、さらにその上側にレンズ42を支持したホルダ41が取り付けられる。一方、第2のリジッド基板45bの上にプロセスチップ48およびドライブチップ47が取り付けられ、ワイヤボンディング46によって電気接続される。リジット基板45bの端部にはコネクト端子49が取り出されている。

【0003】第1および第2のリジッド基板45aと45bの間はフレキシブルプリント基板44によって電気的に接続される。フレキシブルプリント基板44で折り曲げて重ね合わせることによって小さくし、小形の機器に搭載することができる。

[0004]

【発明が解決しようとする課題】従来の撮像モジュール

は、上述したようにリジッド基板を用いており、一定の厚さを有し、例えば、図5(a)に示すように折り曲げない状態において、撮像モジュールは7~8mm程度の厚さが限界であり、これより薄くすることはできない。また、フレキシブルプリント基板の位置で折り曲げた場合、折り曲げた部分のチップ搭載部分は密接したとしても上記倍以上の厚さとなる。したがって、7~8mm程度の薄さにはできるが、例えば5mm以下の薄さにすることは困難である。

【0005】さらにリジッド基板に設けられるパターン間隔は80μが限界であり、チップやICパッケージを搭載するためのスペースは所定の面積が必要となり、搭載面積の縮小化に限界がある。本発明の目的は、従来の撮像素子モジュールに比較し薄形および小形化を実現するため、撮像素子モジュールの厚さ、および部品搭載面積を削減した撮像素子モジュールの実装構造を提供することにある。

[0006]

【課題を解決するための手段】前記目的を達成するため に本発明による撮像素子モジュールの実装構造は、固体 撮像素子および該固体撮像素子の上面に配置したレンズ 光学ユニットからなるモジュールと、前記モジュールを 水平および垂直走査するためのドライブチップと、露 出、色相、バランスなどを制御するプロセスチップとを フレキシブルプリント基板の上に搭載し、前記フレキシ ブルプリント基板上のパターンによって前記モジュール と各チップの電気的接続を行い、前記モジュール搭載部 分と前記ドライブチップおよびプロセスチップ搭載部分 とは前記フレキシブルプリント基板を2つ以上に折り重 ねて配置可能に構成されている。本発明は、上記構成に おいて前記モジュール搭載部分と前記ドライブチップお よびプロセスチップ搭載部分の裏側に補強のための裏打 ち板を貼り合わせて構成されている。本発明における前 記フレキシブルプリント基板は、多層構造で構成されて いる。本発明は、上記構成において前記フレキシブルプ リント基板の両面にICチップを搭載して構成されてい る。

[0007]

【作用】上記構成によれば、30µ間隔のパターンを用いることができる。また、リジッド基板(ビルドアップ基板)の厚さがフレキシブルプリント基板の厚さにおき変わるため従来に比較しパターン間が小さくなって実装スペースを小さくでき、一層の小形化、薄形化を実現できる。

[8000]

【発明の実施の形態】以下、図面を参照して本発明をさらに詳しく説明する。図1は本発明による撮像モジュールの実装構造を適用した携帯電話の実施の形態を示す図で、(a)は携帯電話のフリップを開いた状態の正面

図, (b) は携帯電話の一部を破断して示した側面図,

(c) は携帯電話のA-A断面図である。図に示すように撮像素子モジュール2は携帯電話1のケース内のメイン基板10の最上端に搭載されている。

【0009】撮像素子モジュール2は、レンズ5がホルダ7のレンズ取付部7aに取り付けられ、撮像素子6およびIC3がフレキシブルプリント基板3に搭載され、このフレキシブルプリント基板3が3つに折り重ねらこれ、ホルダ7のフレキ収容部7bに取り付けられることにより構成される。フレキシブルプリント基な3の先ははメイン基板10ととフレキシブルプリント基板3の電気的接続がなされている。撮像素子モジュール2の小形化を実現できる。よりできるため、チップ搭載面積部分を小さくでき、撮像素子モジュール2の小形化を実現できる。

【0010】図2は、本発明の他の実装構造の実施の形態を示す図で、携帯電話のメイン基板に撮像モジュールを2つ折りにして取り付けた場合である。フレキシブルプリント基板13を折り曲げてレンズ光学ユニット11および撮像素子IC12の搭載部分とプロセスIC15の搭載部分を重ね合わせコネクト端子を携帯等のメイン基板16のコネクタ14に差し込んである。

【0011】図3は、本発明による撮像モジュールの実装構造を説明するための図で、(a)は正面から見た図、(b)は2つ折りにした状態を示す図である。この実施の形態は、フレキシブルプリント基板として多層フレキシブルプリント基板23を用いている。CCD22がボールコンタクトハンダ24で多層フレキシブル20がCCD22の上型ント基板23の略左半分に取り付けられ、レンズ20がCCD22の上側に配置されるように取り付けられる。一方、多層フレキシブルプリント基板23の略右半分には、ドライブチップ27およびプロセスチップ28はワイヤボンディング26により多層フレキシブルプリント基板23に電気接続される。

【0012】多層フレキシブルプリント基板23は、所定の添加剤を加えたポリイミド樹脂であり、30μの間隔でパターンを形成することができる。したがって、従来に比較し、パターン間隔およびランド間隔を狭くすることができ、フレキシブルプリント基板全体のサイズを小さくすることができる。CCD22が取り付けられた左半分とドライブチップ27およびプロセスチップ28が取り付けられた右半分の多層フレキシブルプリント基板23の裏面には、裏打ち板25が取り付けられている。この裏打ち板25は、補強のためであり、従来のリジッド基板に比較し、厚さはかなり薄くなっている。

【0013】多層フレキシブルプリント基板23の端部

にはコネクト端子29が取り出されている。(b)に示すよう2つ折りにした場合、リジッド板を用いて2つ折にした場合に比較し、厚さを薄くすることができる。

【0014】図4は、本発明による撮像モジュールを2つ以上に折り曲げて搭載した状態を示す図である。このようにパイプ状の保持部37に、4つ折りにして搭載することができる。撮像素子モジュール38をフレキシブルプリント基板34に搭載し、さらに多数のICチップ36を搭載したものである。ICチップ36は封止材35で覆い被せられている。このように折り曲げた部分を180度方向を変えて折り曲げるのではなく、一定の角度で折り曲げて固定することも可能である。保持部37は携帯通信機器のスペースを確保できる部分に内蔵させることが可能である。

[0015]

【発明の効果】以上、説明したように本発明は、固体撮 像素子および該固体撮像素子の上面に配置したレンズ光 学ユニットからなるモジュールと、モジュールを水平お よび垂直走査するためのドライブチップと、露出、色 相、バランスなどを制御するプロセスチップとをフレキ シブルプリント基板の上に搭載し、フレキシブルプリン ト基板上のパターンによってモジュールと各チップの電 気的接続を行い、モジュール搭載部分とドライブチップ およびプロセスチップ搭載部分とはフレキシブルプリン ト基板を2つ以上に折り重ねて配置可能に構成したもの である。したがって、撮像モジュールの厚さを5mm以 下に薄く抑えることができ、しかもパターン間隔を2. **7分の1(80μ/30μ)程度にできるため撮像モジ** ュール自体を小形化でき、当該撮像素子モジュールを搭 載する携帯電話、PHSなどの携帯通信機器の小形化お よび薄形化を一層進めることができる。

【図面の簡単な説明】

【図1】本発明による撮像モジュールの実装構造を適用した携帯電話の実施の形態を示す図で、(a)は携帯電話のフリップを開いた状態の正面図, (b)は携帯電話の一部を破断して示した側面図, (c)は携帯電話のAーA断面図である。

【図2】本発明の他の実装構造の実施の形態を示す図で、携帯電話のメイン基板に撮像モジュールを2つ折りにして取り付けた場合である。

【図3】本発明による撮像モジュールの実装構造を説明するための図で、(a)は正面から見た図、(b)は2つ折りにした状態を示す図である。

【図4】本発明による撮像モジュールを2つ以上に折り 曲げて搭載した状態を示す図である。

【図5】従来の撮像モジュール実装構造を説明するための図である。

【符号の説明】

- 1 携帯電話
- 2 撮像素子モジュール

BEST AVAILABLE COPY

- 3. 13, 44 フレキシブルプリント基板 (FPC)
- **4** FPCコネクタ
- 5, 20, 42 レンズ
- 6, 12 撮像素子(撮像素子IC)
- 7, 21, 41 ホルダ
- 8 I C
- 9 液晶画面
- 11 レンズ光学ユニット
- 14 コネクタ
- 15 プロセスIC

- 10, 16 メイン基板
- 22, 43 CCD
- 23 多層フレキシブルプリント基板
- 24 ボールコンタクトハンダ
- 25 裏打ち板
- 26, 46 ワイヤボンディング
- 27, 47 ドライブチップ
- 28,48 プロセスチップ
- 29, 49 コネクト端子
- 45a, 45b リジッド基板

【図2】

【図3】

【図4】

BEST AVAILABLE COPY

【図5】

(a)

フロントページの続き

(51) Int. CI. 7

識別記号

FI

テーマコート*(参考) HO5K 1/02

1/18

H05K 7/14 HO1L 27/14 K 5E338 D 5E348

в

// H05K 7/14 Fターム(参考) 2H044 AA04 AB01 AJ04 AJ06

4M118 AA10 AB01 BA10 FA06 GD03

GD07 HA22 HA27 HA30 HA31

5C022 AA12 AB43 AC06 AC54 AC61

AC63 AC70 AC77

5C024 AX01 BX07 CY47 CY48 CY49

CY50 EX22 EX23 EX24 EX42

5E336 AA04 AA11 AA12 AA16 BB12

BC21 CC55 GG30

5E338 AA03 AA12 BB51 BB54 BB55

BB72 BB75 EE22 EE23 EE26

EE31

5E348 AA03 AA28 AA29