Susceptible - likely or liable to be influenced or harmed by a particular thing -18- (SIR Model)
The Threshold Theorem of Epidemiology
1. A small group of people introduces an
Desa infections disease in a large population
4. The disease has a short incubation period
3. Recovered in dividuals gain permanent immunit
(SIR) There are there claves of both lation There are
(SIR) There are three classes of population. They are: i) 2 -> The infected class, ii) you, The susceptible class.
iii) 7 -> The removed class (recovered class).
Rule 1: x(t) + y(t) + z(t) = N, where N
in the fixed total number of papulation. (Conserved Condition)
Kule 2: dy x xy => dy = - Any A => The infection
Khle 3: $dZ \propto \chi \Rightarrow dZ = Bx B \rightarrow the removal AiB + constants)$
Using Rule 1 we can write \dx = -dy - dz,
Which gives dr = Any-Bx. In all the three
dryat, dr/at and dz/dt equations, the right
Land Side does not depend on Z. This a psendo-

I) The x-y equation:

$$\frac{dx/dt}{dy/dt} = \frac{dx}{dy} = \frac{Any-Bx}{-Axy} = -1 + \frac{B}{Ay}$$

$$\Rightarrow \int dx = \left(\frac{B}{Ay} - 1\right) dy \Rightarrow \left[x = \frac{B}{A} \ln y - y + c_1\right]$$

$$\frac{(c_1 - h_1 \log x_{A})}{(c_2 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_1 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h_2 \log x_{A})} = \frac{(c_3 - h_1 \log x_{A})}{(c_3 - h$$

III.) The Z-x equation:

$$\frac{dx/dt}{dz/dt} = \frac{dx}{dz} = \frac{Axy - Bx}{Bx} = \frac{Ay - 1}{B}$$

=)
$$\chi = \int_{B}^{A} y_{0} e^{-\frac{A}{B}z} dz - \frac{Z}{B} + C_{3}$$
 $C_{3} \rightarrow C_{3}$
=) $\chi = \frac{A}{B} y_{0} e^{-\frac{Az}{B}} - Z + C_{3}$ $C_{3} \rightarrow C_{3}$

$$= \chi = \frac{A}{B} \times \frac{A}{B} = -Z + C_3$$

When (att=0),
$$\chi = \chi_0$$
 and $Z = 0$.

$$C_3 = \chi_0 + \chi_0 \Rightarrow \chi = \chi_0 + \chi_0 (1 - e^{-Az/s}) - Z$$

Or $\chi_0 = \chi_0 + \chi_0 \Rightarrow \chi_0 = \chi_0 + \chi_0 (1 - e^{-Az/s}) - Z$

(P.T.O.)
$$\frac{d^2x}{dy^2} = -\frac{B}{Ay^2}$$
 At $y = \frac{B}{A}$,
$$\frac{d^2x}{dy^2} = -\frac{A}{B} < 0$$
. Hence,
$$y = \frac{B}{A}$$
 is a maximum.

