Homework 4

Before you do problems 5 and 6, read Section 4.6 of Casella & Berger.

- 1. Does a distribution exist for which $M_X(t) = \frac{t}{1-t}$, |t| < 1? If yes, find it; if not, explain why not.
- 2. Let $X \sim exp(1)$ and let Y be X + 1 rounded down to the nearest integer.
 - (a) What is the distribution of Y?
 - (b) What is the distribution of X-4 conditional on $Y \geq 5$?
- 3. Let X and $Y \sim f(x, y)$, and let U = aX + b and V = cY + d where a and c are positive. What is $f_{U,V}(u, v)$?
- 4. Let X, Y, and Z be independent unif(0,1) random variables. Find $P(\frac{XY}{Z} < t)$.
- 5. Let $X_1, ..., X_n$ be independent $exp(\lambda)$ random variables. Find the distribution of $Y = X_1 + X_2 + ... + X_n$ by finding the joint distribution of $Z_1 = X_1, Z_2 = X_1 + X_2, ..., Z_n = Y$ and then finding the marginal of Z_n .
- 6. The random vector $X = (X_1, X_2, X_3)$ is distributed according to $f_{\mathbf{X}}(\mathbf{x}) = \frac{2}{2e-5}x_1^2 \cdot x_2 \cdot e^{x_1x_2x_3}I$ {0 < $x_1, x_2, x_3 < 1$ }. What is the marginal distribution of X_1 ? What is the conditional distribution of X_2 and X_3 given X_1 ? Are X_1 , X_2 , and X_3 mutually independent? Are X_2 and X_3 independent conditional on X_1 ?