- 4、 4 位并行输入-串行输出曼切斯特编码电路(第 12 周)
- a) 完成 4 位并行输入-串行输出曼切斯特编码设计方案、包含详细的设计过程和 电路原理图

图 3.2 曼切斯特编码

由曼切斯特码的性质可以得出 $M = \overline{D}CP + \overline{CP}D = CP \oplus D$

所以可以根据把 D 分为 D0, D1, D2, D3 四个, 然后每 4 个周期用 74194 载入一次, 并在这四个周期内逐步右移, 一次输出 D, 接着再利用异或实现曼切斯特码。 然后可以利用 74161 来是实现每四位的重置

Q3	Q2	Q1	Q0	LND	S0
0	0	0	0	1	0(左移)
0	0	0	1	1	0(左移)
0	0	1	0	1	0(左移)
0	0	1	1	0	1(置数)

这个时候 QA=D

所以 S0=Q1Q0 LND=非(Q1Q0) $M=\overline{D}CP+\overline{CP}D=CP\oplus D$

所以可以设计出电路图

仿真模拟得:

可以看出有一定时延但是输出结果大致准确。

(提高)而为了给串行数据增加起始位和结束位,其中起始位为"0",结束位为"1",就会出现六种状态,这时候使用 74151 会比较方便

列出状态图

次数	QCQBQA	LDN	S0	74151 输出(D)
0	000	1	1(置数)	0
1	001	1	0(左移)	D0
2	010	1	0(左移)	D1
3	011	1	0(左移)	D2
4	100	1	0(左移)	D3
5	101	0	0(左移)	1

所以是 LND=非(QCQA) $S0=\overline{QA}~\overline{QB}~\overline{QC}$

而 74151 在不同次数下的输出也如表所示, 所以可以画出电路图如下:

而仿真结果为:

对于输入数据 0001,显示被转化为 000011,加上了开头和结尾,符合预期,同时输出的 Q 除了存在部分毛刺,其余也基本符合要求

对于输入数据 1001,显示被转化为 010011,加上了开头和结尾,符合预期,同时输出的 Q 除了存在部分毛刺,其余也基本符合要求画出电路图:

完成实物预期搭建:

b) 自行设计合理的电路验证方案

使用 Electronics pioneer 验证

对于输入数据 1111

可以看到 D 为 011111,输出的 M 符合预期

对于数据 1011

可以看到 D 为 010111,输出的 M 符合预期 对于数据 0101

可以看到 D 为 001011,输出的 M 符合预期综上所述,验证成功