Quiz	Course Title:	Course	Date:	Duration of	Number of	Instructor:	University:	Department:
Number	Systems and	Code:	June 20,	Quiz:	Questions:	Siamak Najarian,	UBC	Electrical and
2	Control	ELEC 341	2019	20 minutes	5	Ph.D., P.Eng.		Computer Engineering

Student First Name: Student Last Name: Student ID Number:

Please carefully read the following instructions and guidelines:

- 1. Write your name and student ID number on Page 1 and Page 4.
- 2. This quiz is closed books/notes.
- 3. Cell phones and laptops are not allowed.
- 4. Regular non-graphing calculators are allowed but you cannot share your calculators.
- 5. Please do not detach the binding staple.
- 6. No need to show your detailed calculations. They will not be marked.
- 7. The answer sheet is on the last page (Page 4). Please **blacken** your answer choice.
- 8. Only the answer sheet will be marked.
- 9. If needed, you may use the formulas listed at the end of questions part (Page 4).

Please do not write in this table.

Question	Marks
Number	(out of 1)
1	
2	
3	
4	
5	
Total Grade	
(out of 5)	

Question 1: Consider the following open-loop transfer function:

$$L(s) = \frac{(s+4)(s+0.5)}{s(s+1)(s+3)(s+5)}$$

The number of asymptotes, the centroid, and the angles of asymptotes are, ______, and _____, respectively.

- A) 2; -2.25; ±90°
- B) 2; -2.50; ±90°
- C) 3; -1.25; $\pm 60^{\circ}$ and 180°
- D) 3; -1.75; $\pm 60^{\circ}$ and 180°

Question 2: The root locus of the system with the open-loop transfer given below has a break-away point located at ______ with the corresponding gain (*K*) of ______.

$$H(s) = \frac{1}{s(s+2)(s+3)}$$

- A) -0.683; 3.116
- B) -0.784; 3.116
- C) -0.784; 2.114
- D) -0.683; 2.114

Question 3: The following Bode plot (in the form of straight line approximation) most probably belongs to the open-loop frequency function of L(s) =_______.

- A) $\frac{(s+1)}{s(2s+1)}$
- $B) \ \frac{1}{s(s+1)}$
- C) $\frac{1}{s(2s+1)}$
- D) $\frac{(s+1)}{(2s+1)}$

Question 4: Consider the following open-loop transfer function of a closed-loop control system:

$$G(s) = \frac{s}{(s+2)^3(s+4)^2}$$

For the above OLTF, the approximate values of magnitude $M(\omega)$ (in dB) and phase angle $\Phi(\omega)$ (in degrees) at an angular frequency of 8 rad/s are ______ , and _____ , respectively.

- A) -85 and -265
- B) -75 and -280
- C) -85 and -280
- D) -75 and -265

Question 5: The Nyquist plot of an open-loop transfer function is given as below. Knowing that the open-loop transfer function has no poles in the open RHP, we can claim that the closed-loop system is ______.

- A) stable.
- B) unstable.
- C) marginally stable.
- D) stable under certain conditions.

Formula Sheet:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$Z = P + N$$

$$Z = P + N$$

$$\frac{\pi}{r} \times (2k+1), \ k = 0, 1, \dots, (r-1)$$

$$r = \underbrace{n}_{\text{deg (den)}} - \underbrace{m}_{\text{deg (num)}}$$

$$r = \underbrace{n}_{\text{deg (den)}} - \underbrace{m}_{\text{deg (num)}}$$

Answer Sheet:

Question Number	Α	В	С	D
1				
2				
3				
4				
5				

Student First Name:

Student Last Name:

Student ID Number:

Answer Sheet:

Question	Α	В	С	D
Number				
1				
2				
3				
4				
5				