WebGPU 技术进展及社区组状态更新

邵嘉炜 jiawei.shao@intel.com 何云超 yunchao.he@intel.com 张敏 belem.zhang@intel.com

英特尔开源技术中心 2018.11.17

WebGL 架构

Web 应用 工具,测试,应用等

WebGL CTS

Aquarium

WebML

WebXR

Web 应用

框架

为非专业程序员 提供可访问性

浏览器 API

提供WebGL 3D 引擎 以及其他HTML5技术

原生 API

OpenGL ES 2.0

基于 Direct3D 9+ 的 Angle for OpenGL ES 2.0

GPU

WebGL 演化及面临的问题

无处不在的 OpenGL ES 2.0

OpenGL 和 OpenGL ES 在桌面和移动系统上可用, Web 上的 3D 成为现实

几乎所有变换和照明阶段的渲染特征被 可编程的顶点和片元着色器取代

功能增强

渲染管道增强: 遮挡查询, 变换反馈, 实例渲染

着色语言:整数和32位浮点运算支持 纹理功能增强:浮点纹理,3D纹理,深 度纹理,顶点纹理,NPOT纹理,R/RG 纹理,不可变纹理,2D阵列纹理...

Compute Shaders

独立的顶点和片元着色器,几乎所有变换 和照明阶段的渲染特征被可编程的顶点 和片元着色器取代

Apple 从未在 iOS上 添加对 OpenGL ES 3.1 或更高版本的支持,同样 macOS 也 不会超越 OpenGL 4.1 (现在Khronos高 达4.6), 无法将 Compute Shader 引入 WebGL

更先进

几何和曲面细分着色器: 有效处理 GPU 的复杂场景

浮点渲染目标: 提高高精度计操作的灵活性

ASTC压缩: 减少处理纹理的内存占用和带宽

调试和健壮性功能

WebGL 及 WebGPU 的对比

- WWDC 2018: Apple 宣布在 macOS 10.14 和 iOS 12 中弃用 OpenGL 并鼓励过渡到 Metal
- 使用 OpenGL ES 构建的应用程序将继续在 iOS 12 中运行,但不再不推荐使用 OpenGL ES
 2018-06-01: [blink-dev] Intent to Implement: WebGPU (Google)

WebGPU 概要

- 下一代 Web 的 3D 图形 API 标准
- 更低的驱动开销, 更好地支持多线程, 更可预测的性能
- 动机
 - Web 应用对可编程 3D 图形,图像处理和 GPU 访问需求持续增强
 - WebGL 和 WebGL 2 满足这些需求,但与现代本机图形 API 的功能或性能不匹配
 - 为 Web 引入 "GPU Compute" 功能
 - 将需要原生功能的应用移植到 WASM,并在 Web 中运用 GPU 加速提升科学计算性能
- 在所有主流的操作系统上支持 GPU 通用计算
 - Vulkan: Windows 7/8, Linux, Chrome OS, Android and Android WebView
 - Metal: Mac, iOS
 - Direct3D 12: Windows 10
- 由 W3C GPU for the Web 社区组开发

W3C GPU for the Web 社区组

- 2017-02-10: W3C WebGPU 社区组成立
- 2017-03-29: GPU for the Web CG 章程
- 设计一个新的 Web API,以高效,强大和安全的方式公开 这些现代技术
- 在拥有现代3D图形和计算功能的原生系统和 Web 平台之间 提供接口
 - Direct3D 12 (Microsoft)
 - Vulkan (Khronos Group)
 - Metal (Apple)
- 将现代 GPU 中可用的通用计算工具暴露给 Web, 并研究着色器语言以生成跨平台解决方案

W3C GPU for the Web 社区组

- 主席: Dean Jackson (Apple), Corentin Wallez (Google)
- 社区组参与者
 - Apple, Google, Microsoft, Mozilla
 - Intel, AMD, Huawei, Samsung, LG
 - Adobe, Autodesk, Yandex, Unity, Netflix
 - Alibaba, iQiyi
 - ..
- 邀请浏览器引擎开发人员, GPU 硬件供应商, 3D 软件工程师等的广泛参与
- WebGPU 每周会议纪要
- 邮件列表: public-gpu@w3.org

WebGPU 规范, 实现进展

- WebIDL 规范: gpuweb/blob/master/design/sketch.webidl
- WebGPU 提案
 - Dawn (aka, NXT) (Google)
 - Obsidian (Mozilla)
 - WebMetal (Apple)
- WebGPU MVP (Minimum Viable Product) 路线图
- WebGPU 目前正在积极开发中,当前的开发计划
 - 2019 年初完成 WebGPU 的 MVP (Minimum Viable Product) 版本
 - 2019 年内完成 WebGPU 1.0 版本的开发

近期 Intel 在 WebGL 的工作

- 在 WebGL 2.0 Compute 中实现 GLES31 的功能
- WEBGL_video_texture 的实现以改进 WebXR 360 video 的性能
- Parallel Shader Compilation 的实现, 达到双线程下 1.4x~1.8x 的性能提升
- 移植 WebGL benchmark 到原生应用以测试和改进 WebGL 性能

• ..

Intel Web Team 在 WebGPU 的工作

- 与 Chromium GPU team 紧密合作, 每两周开会讨论 WebGPU 的最新进展
- WebGPU CG 主席 Corentin Wallez 将于明年早些时候到访 Intel Web Team
- WebGPU API 的调研和设计
- 基于 Google 维护的开源项目 Dawn 在 Chromium 中实现 WebGPU API
- WebGPU MVP 功能开发
 - push constants
 - texture view
 - render pipeline descriptorization
 - MSAA
 -

谢谢!