Visualização em Grafo de Redes Metabólicas via Web

Gabriella de Oliveira Esteves

Setembro de 2016

Sumário

- ¶ Fundamentação Teórica
 - Biologia molecular
 - Bioinformática
 - Grafos
 - Banco de dados NoSQL
- Problema
- Objetivos
- 2Path
 - Design
 - Implementação
- Método
- 6 Referências

Síntese de RNA e síntese de proteína

Figure 1: A transcrição ocorre no núcleo celular

Figure 2: A tradução ocorre no retículo endoplasmático rugoso

Enzima

Figure 3: Estruturas das proteínas

- Enzimas são proteínas que *catalizam* reações químicas
- Catabolismo é a ação de degradar moléculas para produção de energia
- Isoenzimas são enzimas com as mesmas funções, mas com estruturas diferentes
- Cofatores são pequenas moléculas que se ligam às enzimas e ou realçam ou limitam sua atividade

Biologia molecular Bioinformática Grafos Banco de dados NoSQL

Metabolismo

Metabolismo

Metabolismo é o *conjunto* de todas as reações bioquímicas de síntese e degradação de susbtâncias em certo organismo. Uma **reação bioquímica** possui uma ou mais entradas (**substratos**) e uma ou mais saídas (**produtos**). Um produto pode ser substrato.

Via metabólica

Sequência de reações bioquímicas que ocorrem num organismo que podem ser catalisadas por enzimas com ajuda de cofatores

Rede metabólica

Conjunto de Vias metabólicas

Rede Metabólica

Figure 4: As vias metabólicas mais importantes dos seres humanos

Biologia molecular Bioinformática Grafos Banco de dados NoSQL

Desafios das ômicas

		Desafio na Bioinformática			
DNA	Genoma	Sequenciamento de Gene			
RNA	Transcriptoma	Expressão do mRNA			
		Sequenciamento de RNA			
Proteína	Proteoma	Expressão da proteína			
		Estrura da proteína			
	Metaboloma	Concentração de metabólitos			
		Pathways metabólicos			
	Interactoma	Interações entre proteínas			

Visualização de dados ômicos

Grafos

Grafo é um par ordenado $G=(V_G,\,E_G)$, onde $V_G=\{v_1,\,v_2,\,...\}$ é um conjunto de vértices e $E_G=\{e_1,\,e_2,\,...\}$ é um conjunto de arestas.

Grafo **orientado**: $e_i = (v_j, v_k)$ Grafo **não-orientado**: $e_i = \{v_j, v_k\}$

Figure 6: Grafo orientado

Passeio: Sequência de vértices distintos $(v_1, v_2, ..., v_k)$ tal que (v_i, v_{i+1}) é aresta para $1 \le i \le k$ **Trilha**: Passeio tal que $e_i \ne e_j \ \forall_{i,j}$ **Caminho**: Trilha tal que $v_i \ne v_i \ \forall_{i,j}$

Circuito: Trilha fechada $(v_1=v_k)$ **Ciclo**: Caminho fechado $(v_1=v_k)$

Biologia molecular Bioinformática Grafos Banco de dados NoSQL

Banco de dados NoSQL orientado a grafo

Banco de dados NoSQL (Não-Relacional ou Não-só-SQL)

- Fácil escalabilidade e distribuição (replicação ou fragmentação) de dados entre vários servidores
- Uso eficiente de indexação distribuída e de memória RAM
- (CAP Theorem, 2000) Somente duas destas propriedades: consistência forte, disponibilidade alta ou tolerância a particionamento dos dados na rede

Banco de dados orientado a grafo

- Armazenamento distribuído eficiente
- Relacionamentos (arestas) dispensam uso de JOIN

Análise de redes metabólicas

Problema

Prover uma visualização interativa de redes metabólicas armazenadas em bancos de dados orientados a grafos.

Objetivos

Objetivo

Construir um sistema que acesse redes metabólicas armazenadas em bancos de dados em grafo e gere uma visualização interativa.

Objetivos específicos

- Implementar buscas de vias metabólicas a partir de parâmetros informados pelo pesquisador no sistema
- Recuperar a informação desejada e exibí-la de forma interativa e ergonômica
- Implementar algoritmos de busca em grafos para recuperar eficientemente a informação solicitada e/ou sugerir informação relevante

Login

Sing In		
admin		
••••		
	SING IN	
	Forgot Password?	
New User		
	SING UP	

Busca de chave em organismo

Figure 8: Página de seleção de Organismo e keyword do banco de dados do sistema

Busca específica

Figure 9: Página de seleção de resultado da busca anterior

Java

- ▼ 👸 > EnzymeGraph [EnzymeGraph master]
 - ▼ # src/main/java
 - ▼ # com.system.model
 - ▶ ☐ CellularLocus.java
 - ▶ 🖪 Cofactor.iava
 - ▶ ☐ Compound.java
 - ▶ 🍱 Enzvme.iava
 - ▶ 🛂 Feature.java
 - Organism.java
 - ▶ 🛂 Reaction.java

```
<modelVersion 4.0.0 </pre>
<modelVersion 5.0.0 </pre>
<modelVersion 6.0 </pre>
<modelVersion 7.0 </pre>
<modelV
```

<distribution>repo</distribution>

</license>

OrientDB

conexão com banco

```
public List<Organism> getAllOrganisms() {
    List<Organism> allOrganisms = new ArrayList⇔();

OrientGraph graph = new OrientGraph("plocal:DBs/Teste");
try {
    for (Vertex v: graph.getVerticesOfClass("Organism")) {
        Organism organism = new Organism((String) v.getProperty("taxName"));
        organism.setId((Long) v.getProperty("id"));
        organism.setId((Long) v.getProperty("id"));
        allOrganisms.add(organism);
    }
} finally {
    graph.shutdown();
}

return allOrganisms;
```


Figure 10: Modelo de dados proposto para o 2Path (Waldeyr e Maristela)

AngularJS

Aprendendo:

- Learn AngularJS 1.X, Code Academy https://www.codecademy.com/learn/learn-angularjs
- D3 for Mere Mortals, por Luke Francl http://www.recursion.org/d3-for-mere-mortals/
- D3 Tutorials, por Scott Murray http://alignedleft.com/tutorials/d3

Cronograma

Table 1: Cronograma

Atividades	2016			
Attividades	Set	Out	Nov	Dez
Familiaridade com as	Χ			
ferramentas e linguagens				
Implementação da aplicação	Χ	Χ		
Implementação de algoritmos		Χ	Χ	
de busca em grafo				
Interpretação dos resultados			Χ	Χ
Defesa				Χ

Referências

- 1 Vincent Lacroix, Ludovic Cottret, Patricia Thébault, and Marie-France Sagot. An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans. Comput. Biology Bioinform., 5(4):594–617, 2008
- 2 João Carlos Setubal and João Meidanis. Introduction to computational molecular biology. PWS Publishing Company, 1997
- 3 Jing Han, E. Haihong, Guan Le, and Jian Du. Survey on NoSQL database. In Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on, pages 363–366. IEEE. October 2011.

Figuras

- 1 History of biology, visitado em 2016-09-23, https://en.wikipedia.org/wiki/History_of_biology
- 2 Transcription (Gene Expression), visitado em 2016-01-02, https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=22
- 3 Protein structure, 2009, visitado em 2016-09-22, http://www.particlesciences.com/news/technical-briefs/2009/protein-structure.html
- 4 Prof. Doutor Pedro Silva. Uma panorâmica geral das vias metabólicas, 2002, visitado em 2016-09-22, http://homepage.ufp.pt/pedros/bq/integracao.htm

Perguntas e Respostas

Perguntas?