Vektorinė ir mišrioji sandaugos

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2014 m. rugsėjo 12 d.

Apibrėžimai

Apibrėžimas 1

Sakome, kad trys nekomplanarūs (nepriklausantys vienai plokštumai) vektoriai \vec{a} , \vec{b} ir \vec{c} , išeinantys iš vieno taško, sudaro **dešininę sistemą**, kai stovėdami vieno iš vektorių, pavyzdžiui, \vec{c} kryptimi, iš vektoriaus \vec{a} į vektorių \vec{b} einame prieš laikrodžio rodyklę. Kitu atveju sakome, kad šie vektoriai sudaro **kairinę sistemą**.

Vektorinė sandauga

Apibrėžimas 2

Nekolinearių vektorių \vec{a} ir \vec{b} vektorine sandauga vadiname vektorių, žymimą $\vec{a} \times \vec{b}$, kuris tenkina šias sąlygas:

1) vektoriaus $\vec{a} \times \vec{b}$ ilgis lygus vektorių \vec{a} ir \vec{b} ilgių ir kampo α tarp jų sinuso sandaugai, t.y.

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha;$$

- 2) vektorius $\vec{a} \times \vec{b}$ yra statmenas vektoriui \vec{a} ir vektoriui \vec{b} ;
- 3) vektoriai \vec{a} , \vec{b} ir $\vec{a} \times \vec{b}$ sudaro dešininę sistemą.

Jei vektoriai \vec{a} ir \vec{b} yra kolinearūs, tai apibrėžiame $\vec{a} \times \vec{b} := \vec{0}$.

Vektorinė sandauga

Pastaba 3

Vektorių \vec{a} ir \vec{b} vektorinės sandaugos ilgis lygus vektorių \vec{a} ir \vec{b} sudaromo lygiagretainio plotui.

Vektorinės sandaugos savybės

Teiginys 4

Bet kuriems vektoriams \vec{a} , \vec{b} , \vec{c} ir bet kuriam skaičiui $\alpha \in \mathbb{R}$ teisingos šios lygybės:

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a};$$

 $(\alpha \vec{a}) \times \vec{b} = \alpha (\vec{a} \times \vec{b});$
 $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}.$

Teiginys 5

Du vektoriai \vec{a} ir \vec{b} yra kolinear \vec{u} s tada ir tik tada, kai jų vektorinė sandauga lygi nuliniam vektoriui.

Vektorinės sandaugos savybės

Įrodymas.

 $B\bar{u}tinumas$. Jei $\vec{a} \mid \mid \vec{b}$, tai, pagal vektorinės sandaugos apibrėžimą, $\vec{a} \times \vec{b} = \vec{0}$.

Pakankamumas. Tarkime, kad $\vec{a} \times \vec{b} = \vec{0}$.

Jei $\vec{a} = \vec{0}$ arba $\vec{b} = \vec{0}$, tai $\vec{a} || \vec{b}$.

Jei $\vec{a} \neq \vec{0}$ ir $\vec{b} \neq \vec{0}$, tai iš

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha = 0$$

gauname, kad $\alpha=0^\circ$ arba 180°. Bet kuriuo atveju $\vec{a}\,||\vec{b}.$

Vienetinių koordinatinių vektorių vektorinės sandaugos

Teiginys 6

Vienetiniai kooordinatiniai vektoriai \vec{i} , \vec{j} ir \vec{k} tenkina lygybes

$$\vec{i} \times \vec{i} = \vec{0}$$

$$\vec{j} \times \vec{i} = -\vec{k}$$
 $\vec{j} \times \vec{j} = \vec{0}$ $\vec{j} \times \vec{k} = \vec{i}$ $\vec{k} \times \vec{i} = \vec{i}$ $\vec{k} \times \vec{k} = \vec{0}$

$$\vec{i} \times \vec{j} = \vec{k}$$

$$\vec{j} \times \vec{j} = \vec{0}$$

$$\vec{k} imes \vec{j} = -\vec{i}$$

$$\vec{i} \times \vec{k} = -\vec{i}$$

$$\vec{j} \times \vec{k} = \vec{i}$$

$$\vec{k} \times \vec{k} = \vec{0}$$

Vektorinės sandaugos koordinatinė išraiška

Teiginys 7

Vektorių $\vec{a}(x_1, y_1, z_1)$ ir $\vec{b}(x_2, y_2, z_2)$ vektorinę sandaugą galima skaičiuoti pagal formulę

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \left(\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \right).$$

Teiginys 8

Trikampio, kurio viršūnės yra taškai $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ ir $C(x_3, y_3, z_3)$, plotas lygus pusei vektorių \overrightarrow{AB} ir \overrightarrow{AC} vektorinės sandaugos ilgio, t.y.

$$S_{\triangle ABC} = \frac{1}{2} |\vec{AB} \times \vec{AC}|.$$

Trikampio plotas

Išvada 9

Trikampio, kurio viršūnės yra taškai $A(x_1, y_1)$, $B(x_2, y_2)$ ir $C(x_3, y_3)$, plotas

$$S_{\triangle ABC} = rac{1}{2} \cdot \left| \det egin{pmatrix} x_2 - x_1 & y_2 - y_1 \ x_3 - x_1 & y_3 - y_1 \end{pmatrix}
ight|.$$

Pavyzdys 10

Apskaičiuosime trikampio, kurio viršūnės yra taškai A(1,2,0), B(0,2,2) ir C(1,1,1), plotą.

$$S_{\triangle ABC} = rac{1}{2} |ec{AB} imes ec{AC}| = rac{1}{2} |(-1,0,2) imes (0,-1,1)| = rac{1}{2} |(2,1,1)| = rac{\sqrt{6}}{2}.$$

Vektorių mišrioji sandauga

Apibrėžimas 11

Trijų erdvės vektorių \vec{a} , \vec{b} ir \vec{c} mišriąja sandauga, žymima $(\vec{a}, \vec{b}, \vec{c})$, vadiname skaičių

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

Pastaba 12 (Mišriosios sandaugos geometrinė prasmė)

Vektorių \vec{a} , \vec{b} ir \vec{c} mišriosios sandaugos modulis lygus gretasienio, kurio gretimos briaunos yra šie vektoriai, tūriui.

Vektorių mišriosios sandaugos geometrinė prasmė

$$S = |\vec{a} \times \vec{k}|$$

$$h = |\vec{c}| \cdot \cos \alpha$$

$$V = S \cdot h =$$

$$= |\vec{a} \times \vec{k}| \cdot |\vec{c}| \cos \alpha = h$$

$$= (\vec{a} \times \vec{k}) \cdot \vec{c} =$$

$$= (\vec{a}, \vec{k}, \vec{c})$$

Vektorių mišrioji sandauga

Išvada 13

Nekomplanarūs erdvės vektoriai \vec{a} , \vec{b} ir \vec{c} sudaro dešininę sistemą tada ir tik tada, kai jų mišrioji sandauga yra teigiama.

Teiginys 14

Bet kuriems erdvės vektoriams \vec{a} , \vec{b} ir \vec{c} teisingos tokios lygybės:

- 1) $(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b});$
- 2) $(\vec{a}, \vec{b}, \vec{c}) = -(\vec{b}, \vec{a}, \vec{c});$
- 3) $(\vec{a}, \vec{b}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a});$
- 4) $(\vec{a}, \vec{b}, \vec{c}) = -(\vec{a}, \vec{c}, \vec{b}).$

Trijų vektorių komplanarumo kriterijus

Teiginys 15

Trys erdvės vektoriai \vec{a} , \vec{b} ir \vec{c} yra komplanarūs tada ir tik tada, kai jų mišrioji sandauga lygi nuliui.

Įrodymas.

 $B\bar{u}$ tinumas. Tarkime, kad vektoriai \vec{a} , \vec{b} ir \vec{c} yra komplanarūs, t.y. \vec{a} , \vec{b} , \vec{c} || plokštumai P. Kadangi $\vec{a} \times \vec{b} \perp P$, tai $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = 0$.

Pakankamumas. Sakykime, kad $(\vec{a}, \vec{b}, \vec{c}) = 0$. Todėl vektorių \vec{a} , \vec{b} ir \vec{c} sudaryto gretasienio tūris lygus 0. Todėl šie vektoriai yra komplanarūs.

Mišriosios sandaugos koordinatinė išraiška

Teiginys 16

Vektorių $\vec{a}(x_1,y_1,z_1)$, $\vec{b}(x_2,y_2,z_2)$ ir $\vec{c}(x_3,y_3,z_3)$ mišrioji sandauga

$$(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Jrodymas

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} =$$

$$\begin{pmatrix} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \end{pmatrix} \cdot (x_3, y_3, z_3) =$$

Mišriosios sandaugos koordinatinė išraiška

$$\begin{vmatrix} x_3 & y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} - y_3 \cdot \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} + z_3 \cdot \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = \begin{vmatrix} x_3 & y_3 & z_3 \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_3 & y_3 & z_3 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Pavyzdžiui, vektoriai $\vec{a}(1,2,2)$, $\vec{b}(2,3,2)$ ir $\vec{c}(4,7,6)$ yra komplanarūs, nes

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 3 & 2 \\ 4 & 7 & 6 \end{vmatrix} = 0.$$

Pavyzdys

Pavyzdys 17

Vektoriai $\vec{a}(1,2,2)$, $\vec{b}(2,1,5)$ ir $\vec{c}(0,3,3)$ sudaro kairinę sistemą, nes

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 5 \\ 0 & 3 & 3 \end{vmatrix} = -12 < 0.$$

Teiginys 18

Trikampės piramidės, kurios viršūnės yra taškai A, B, C ir D, tūris

$$V_P = \frac{1}{6} |(\vec{AB}, \vec{AC}, \vec{AD})|.$$

Trikampės piramidės tūris

$$V_G$$
 - gretasienio tūris
 S - pagrindo plotas
 V_P - piramidės tūris
 $V_P = \frac{1}{3} S_{ABC} \cdot h =$

$$= \frac{1}{3} \cdot \frac{1}{4} \cdot S \cdot h =$$

$$= \frac{1}{6} V_G =$$

$$= \frac{1}{6} (\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}).$$

