PLSC 502 – Autumn 2022 Measures of Association for Ordinal + Interval/Ratio Variables

November 10, 2022

Ordinal Variates

Ordinal variables:

- Key issue: how to retain the information present in the ordering of the categories without giving the numerical values assigned to them cardinal content.
- Key concept: Concordance

For a pair of values on two observations $i = \{1, 2\}$ and two variables X and Y, a concordant pair has:

$$\operatorname{sign}(X_2 - X_1) = \operatorname{sign}(Y_2 - Y_1)$$

and a discordant pair has:

$$\operatorname{sign}(X_2 - X_1) = -\operatorname{sign}(Y_2 - Y_1).$$

A(nother) Contingency Table

Consider two ordinal variables X and Y:

			X		
		1	2	3	
	1	n ₁₁	n ₁₂	n ₁₃	n_{1X}
Y	2	n_{21}	n_{22}	n_{23}	n_{2X}
	3	n_{31}	n_{32}	n_{33}	n_{3X}
		n_{Y1}	n _{Y2}	n _{Y3}	Ν

Concordant and Discordant Pairs

Concordance with $\{1,1\}$ observations:

Concordance with $\{1,2\}$ observations:

Concordant and Discordant Pairs

Discordance with $\{1,2\}$ observations:

			X		
		1	2	3	
	1	n ₁₁	(n ₁₂)	n ₁₃	n_{1X}
Y	2	n_{21}	n_{22}	n_{23}	n_{2X}
	3	n_{31}	n_{32}	n_{33}	n_{3X}
		n_{Y1}	n_{Y2}	n _{Y3}	Ν

Discordance with $\{1,3\}$ observations:

			X		
		1	2	3	
	1	n ₁₁	n ₁₂	(n ₁₃)	n_{1X}
Y	2	n_{21}	n ₂₂	n_{23}	n_{2X}
	3	<i>n</i> ₃₁	n ₃₂	n ₃₃	n_{3X}
		n_{Y1}	n _{Y2}	n _{Y3}	N

Concordant and Discordant Pairs

For a 3×3 table, the total number of *concordant pairs* is:

$$N_c = n_{11}(n_{22} + n_{23} + n_{32} + n_{33}) + n_{12}(n_{23} + n_{33}) + n_{21}(n_{32} + n_{33}) + n_{22}(n_{33})$$

and the total number of discordant pairs is:

$$N_d = n_{13}(n_{21} + n_{22} + n_{31} + n_{32}) + n_{12}(n_{21} + n_{31}) + n_{23}(n_{31} + n_{32}) + n_{22}(n_{31}).$$

This extends to a table of arbitrary size $M \times N$ straightforwardly...

Gamma (γ)

Gamma (γ) is the normed difference between the number of concordant and discordant pairs in the data:

$$\gamma = \frac{N_c - N_d}{N_c + N_d}$$

Equivalently:

$$\gamma = \frac{N_c}{N_c + N_d} - \frac{N_d}{N_c + N_d}$$

Gamma:

- does not count "ties"
- $\gamma \in [-1, 1]$
- $\gamma = 0 \leftrightarrow$ no association between X and Y, though it can also happen whenever $N_c = N_d$. That is, $\gamma = 0$ is necessary but not sufficient for statistical independence
- Higher absolute values of γ correspond to stronger associations between X and Y
- $\gamma=\pm 1.0$ under conditions of (at least) weak monotonicity (e.g., γ will equal 1.0 whenever, as X increases, Y only increases or stays the same)

γ and 2 \times 2 Tables

For a 2×2 table:

we have:

$$\hat{\gamma} = \text{"Yule's Q"} \\ = \frac{n_{00}n_{11} - n_{01}n_{10}}{n_{00}n_{11} + n_{01}n_{10}} \\ = \frac{OR - 1}{OR + 1}$$

Inference on γ

It can be shown that:

$$\hat{\gamma} \sim \mathcal{N}(\gamma, \sigma_{\gamma}^2)$$

where

$$\sigma_{\gamma}^2 = \frac{N(1-\hat{\gamma}^2)}{N_c + N_d}$$

So we can approximate:

$$t \approx (\hat{\gamma} - \gamma) \sqrt{\frac{N_c + N_d}{N(1 - \hat{\gamma}^2)}}.$$

The $\tau(s)$

(Goodman-Kruskal's) "Tau-a":

$$au_{\mathsf{a}} = rac{ extstyle N_c - extstyle N_d}{rac{1}{2} extstyle N (extstyle N - 1)}$$

(Kendall's) "Tau-b":

$$\tau_b = \frac{N_c - N_d}{\sqrt{[(N_c + N_d + N_{Y^*})(N_c + N_d + N_{X^*})]}}$$

where N_{Y^*} and N_{X^*} are the number of pairs *not tied* on Y and X, respectively.

(Stuart's) "Tau-c":

$$au_c = (N_c - N_d) imes \left\{ rac{2m}{[N^2 2(m-1)]}
ight\}$$

where m is the number of rows or columns, whichever is smaller.

au Traits & Tips

Tau tips:

- All except τ_a have $\tau_{(.)} \in [-1,1]$
- ullet For all aus, the numerator signs the statistic.
- Like γ , τ_a doesn't do "ties" \rightarrow attenuated range
- $|\tau_b| = 1.0$ only under strict monotonicity
- $\tau_b \rightarrow$ "square" tables
- ullet $au_c
 ightarrow$ "rectangular" (asymmetrical) tables
- $\gamma \geq \tau \ \forall \ \tau_{(\cdot)}$

γ and the τ s Compared (2 × 2 Tables)

γ / τ s Comparison (Random 3 × 3 Tables)

Example: Sarah Palin Support...

September 2008 "Battleground" Poll in PA:

```
> summary(MamaGriz)
     caseid
                    female
                                               palin
                                                                    pid
 Min.
                Male :2221
                              Very Unfavorable
                                                   :1200
                                                          Democrat
                                                                      :1709
                              Somewhat Unfavorable: 739 Independent:1391
 1st Qu.:30034
                Female:2370
 Median :31831
                              Somewhat Favorable :1132
                                                          GOP
                                                                      :1491
        :36776
 Mean
                              Very Favorable
                                                   :1520
 3rd Qu.:60674
 Max.
        :62125
```

- > palinpid<-with(MamaGriz, xtabs(~palin+pid))
- > addmargins(palinpid)

]	pia			
palin	Democrat	Independent	GOP	Sum
Very Unfavorable	881	282	37	1200
Somewhat Unfavorable	441	245	53	739
Somewhat Favorable	291	412	429	1132
Very Favorable	96	452	972	1520
Sum	1709	1391	1491	4591

Plotting: Don't

Plotting: Do

Estimating γ and the τ s

```
> # Gamma:
> GoodmanKruskalGamma(palinpid,conf.level=0.95)
  gamma lwr.ci ups.ci
0.73376 0.71529 0.75223
> #Tau-A:
> KendallTauA(palinpid,conf.level=0.95)
 tau_a lwr.ci ups.ci
0.38762 0.38639 0.38884
> # Tau-B:
> KendallTauB(palinpid,conf.level=0.95)
 tau_b lwr.ci ups.ci
0.55453 0.53784 0.57121
> # Tau-C:
> StuartTauC(palinpid,conf.level=0.95)
  tauc lwr.ci ups.ci
0.58130 0.56401 0.59859
```

γ and the $\tau \mathrm{s} \colon$ Party Identification

Men vs. Women on Palin

- > palinfemale<-with(MamaGriz, xtabs(~palin+female))</pre>
- > addmargins(palinfemale)

:	female				
palin	Male	${\tt Female}$	Sum		
Very Unfavorable	508	692	1200		
Somewhat Unfavorable	328	411	739		
Somewhat Favorable	575	557	1132		
Very Favorable	810	710	1520		
Sum	2221	2370	4591		

Men vs. Women on Palin

```
> GoodmanKruskalGamma(palinfemale,conf.level=0.95)
   gamma lwr.ci ups.ci
-0.136410 -0.179514 -0.093306
> KendallTauA(palinfemale,conf.level=0.95)
   tau_a lwr.ci ups.ci
-0.050259 -0.051137 -0.049382
> KendallTauB(palinfemale,conf.level=0.95)
   tau_b lwr.ci
                     ups.ci
-0.082912 -0.109268 -0.056556
> StuartTauC(palinfemale,conf.level=0.95)
    tauc lwr.ci ups.ci
-0.100497 -0.132442 -0.068552
```

γ and the $\tau \mathrm{s} :$ Men vs. Women

Interval + Ratio-Level Data

Linearity

Linearity means:

$$\frac{\partial Y}{\partial X}=m;$$

$$Y = mX + b$$

Other monotonic + "smooth" alternatives:

• Logarithmic:

$$\frac{\partial^2 Y}{\partial X \partial X} < 0$$

• Exponential:

$$\frac{\partial^2 Y}{\partial X \partial X} > 0$$

Linear, Logarithmic, Exponential

Other Possibilities

Linear Association: Pearson's r

"Pearson's product-moment correlation coefficient":

$$r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

$$= \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{N} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}}$$

$$= \frac{\sum_{i=1}^{N} \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)}{N - 1}$$

Pearson's r: Intuition

Pearson's r: Characteristics

- $r \in [-1, 1]$
- $r = 0 \leftrightarrow \text{no linear}$ association between Y and X.
- Sign $(r) \rightarrow$ "direction" of the *linear* association
- ullet |r|
 ightarrow "strength" of the *linear* association
- In general:
 - $\cdot \ |r| <$ 0.3 ightarrow "weak" linear association
 - \cdot 0.3 < |r| < 0.7 ightarrow "moderate" linear association
 - $|r| > 0.7 \rightarrow$ "strong" linear association

Examples

$r = \pm 1.0 \rightarrow ?$

Nonlinearity, etc.

Inference on *r*

The sampling distribution of r is:

- complex, and
- skewed as $|r| \rightarrow 1.0$.

Fisher:

$$\hat{w} \equiv \frac{1}{2} \ln \left(\frac{1+\hat{r}}{1-\hat{r}} \right) \ \sim \ \mathcal{N} \left[\frac{1}{2} \ln \left(\frac{1+\hat{r}}{1-\hat{r}} \right), \frac{1}{\sqrt{N-3}} \right]$$

implying:

$$z_r = rac{rac{1}{2} \ln \left(rac{1+\hat{r}}{1-\hat{r}}
ight) - rac{1}{2} \ln \left(rac{1+r}{1-r}
ight)}{\sqrt{rac{1}{N-3}}} \sim \mathcal{N}(0,1)$$

Fisher's z Transformation of r

Alternative Approach (t)

Under r = 0, the standard error of \hat{r} is:

$$\sigma_r = \sqrt{\frac{1 - r^2}{N - 2}}$$

This means that we can construct confidence intervals using a t distribution, as:

$$\frac{\hat{r}}{\sigma_r} = \frac{\hat{r}\sqrt{N-2}}{\sqrt{1-\hat{r}^2}} \sim t_{N-2}.$$

Note that this converges to z as $N \to \infty$.

Alternative Measure: Spearman's ρ

For sorted data on X and Y, where R_{Y_i} and R_{X_i} are the respective ranks,

$$\rho = 1 - \frac{6\sum_{i=1}^{N}(R_{Y_i} - R_{X_i})^2}{N(N^2 - 1)}$$

Characteristics:

- $\rho \in [-1, 1]$
- Same interpretation as r.
- Also appropriate for use with ordinal data; but
- When many "ties" occur, calculate Pearson's r on the ranks R_{Y_i} and R_{X_i} , and assign "partial" (or "half") ranks to tied individuals.

r vs. ρ Comparison (Simulation)

Real Data: ANES 2016 Feeling Thermometers

> describe(Therms,range=FALSE)

	vars	n	mean	sd	skew	kurtosis	S
Asian-Americans				20.20			
Hispanics	2	2387	69.35	20.91	-0.41	0.01	0.43
Blacks	3	2387	69.00	21.19	-0.35	-0.24	0.43
Illegal Immigrants	4	2387	42.54	27.31	0.13	-0.71	0.56
Whites	5	2387	71.63	19.40	-0.46	0.08	0.40
Dem. Pres. Candidate				34.91			
GOP Pres. Candidate	7	2387	40.53	35.65	0.23	-1.43	0.73
Libertarian Pres. Candidate	8	2387	43.61	19.92	-0.58	0.25	0.4
Green Pres. Candidate	9	2387	43.20	20.87	-0.54	0.22	0.43
Dem. VP	10	2387	48.24	25.91	-0.22	-0.44	0.53
GOP VP	11	2387	49.59	33.42	-0.10	-1.21	0.68
John Roberts	12	2387	53.75	18.39	-0.41	1.44	0.38
Pope Francis				25.17			
Christian Fundamentalists	14	2387	48.59	28.48	-0.07	-0.72	0.58
Feminists						-0.47	
Liberals	16	2387	52.27	27.35	-0.24	-0.67	0.56
Labor Unions						-0.29	
Poor People	18	2387	72.20	19.63	-0.36	-0.06	0.40
Big Business	19	2387	49.34	22.52	-0.15	-0.18	0.46
Conservatives	20	2387	55.22	25.91	-0.24	-0.45	0.53
SCOTUS	21	2387	59.34	19.38	-0.32	0.54	0.40
Gays & Lesbians	22	2387	62.83	26.86	-0.46	-0.20	0.59
Congress	23	2387	41.17	22.32	0.02	-0.34	0.46
Rich People	24	2387	53.53	20.69	-0.13	0.52	0.42
Muslims				25.64			
Christians	26	2387	74.40	23.80	-0.87	0.35	0.49
Jews	27	2387	72.20	21.19	-0.45	-0.14	0.43
Tea Party	28	2387	42.97	27.08	-0.06	-0.70	0.59
Police	29	2387	75.57	22.50	-1.15	1.13	0.46
Transgender People	30	2387	57.29	26.88	-0.28	-0.31	0.5
Scientists	31	2387	77.74	19.23	-0.77	0.39	0.39
BLM	32	2387	48.26	32.66	-0.06	-1.15	0.67

Feeling Thermometers: Clinton vs. Trump


```
> rCT<-with(Therms, cor('Dem. Pres. Candidate', 'GOP Pres. Candidate'))
> rCT
Γ11 -0.71227
> rCT2<-with(Therms, cor.test('Dem. Pres. Candidate', 'GOP Pres. Candidate'))
> rCT2
Pearson's product-moment correlation
data: Dem. Pres. Candidate and GOP Pres. Candidate
t = -49.6, df = 2385, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.73148 -0.69192
sample estimates:
     cor
-0.71227
> # Identical:
> (rCT*sqrt(nrow(Therms)-2)) / sqrt(1-(rCT^2))
```

[1] -49.557

Liberals and Conservatives


```
> rLC<-with(Therms, cor.test(Liberals,Conservatives))
> rLC

Pearson's product-moment correlation

data: Liberals and Conservatives

t = -28.2, df = 2385, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.52983 -0.46966
sample estimates:
cor
-0.50035

> rhoLC<-with(Therms, SpearmanRho(Liberals,Conservatives))
> rhoLC
```

[1] -0.49128

Pairwise FT Differences between r and ρ

Biggest Differences Between r and ρ

Summary: Measures of Association

Which bivariate measure of association should I use?

				Χ	
		Nominal	Binary	Ordinal	Interval/Ratio
	Nominal	χ^2	χ^2	χ^2	t -test (and η)
V	Binary	χ^2	ϕ , Q	γ, τ_c	t-test
,	Ordinal	χ^2	γ, τ_c	$\gamma, \tau_{a}, \tau_{b}$	Spearman's $ ho$
	Interval / Ratio	t -test (and η)	t-test	Spearman's $ ho$	r