LA DÉRIVATION E05C

EXERCICE N°1 Méthode : dérivée et tableau de variation

Pour chaque fonction f, déterminer sa fonction dérivée f' sur l'intervalle I qui est donné, puis dresser le tableau de signes de f' et en déduire son tableau de variations sur I.

1)
$$f: x \mapsto x^3 - \frac{3}{2}x^2 - 6x + 4$$
 $I =]-4; 4[$

• f est une somme de fonctions de référence définies et dérivables sur I donc f l'est aussi et pour tout $x \in I$,

$$f'(x) = 3x^2 - 3x - 6 = 3(x^2 - x - 2)$$

• On remarque que -1 et 2 sont des racines évidentes, on peut donc écrire : f'(x) = 3(x+1)(x-2)

et dresser le tableau de signes suivant :

х	-4		-1		2	4
3		+		+		+
x+1		_	0	+		+
x-2		_		_	0	+
f'(x)		+	0	_	0	+
f'(x)	-60		7,5		6	20

2)
$$f: x \mapsto 9x - 5 + \frac{16}{x - 2}$$
 $I =]3; 6[$

• f est une somme de fonctions de référence définies et dérivables sur I donc f l'est aussi et pour tout $x \in I$,

$$f'(x) = 9 - \frac{16}{(x-2)^2} = \frac{9(x-2)^2 - 16}{(x-2)^2} = \frac{[3(x-2)-4][3(x-2)+4]}{(x-2)^2} = \frac{(3x-10)(3x-2)}{(x-2)^2}$$

On cherche toujours à avoir une forme factorisée.

x	$\frac{10}{3}$	6
3x-10	- +	
3x-2	+ 0 +	
$(x-2)^2$	+ +	
f'(x)	+ 0 +	
f(x)	38 53	