

Implementation of the ecRad Radiation Module Using Physics Informed Machine Learning

**Doctorate Proposal Exam - Eduardo Furlan Miranda** 

Supervisors: Dr. Roberto Pinto Souto & Dr. Stephan Stephany

**APPLIED COMPUTING POST-GRADUATE PROGRAM (CAP/INPE)** 



#### INTRODUCTION Physics-Informed Machine Learning (PIML)

- Class of methods that integrate ML algorithms with physical constraints and mathematical models
- Applicable to complex problems
- Physics-Informed Neural Network (PINN) was the "initial" class of PIML methods for problems with PDEs - Partial Differential Equations
- PINN data-driven models are derived using law of physics described by general nonlinear PDEs and constraints (ICs and BCs)



# INTRODUCTION Why PIML?

- Recent approach proposed for identifying and solving dynamical systems
- The literature shows promising speedups when porting a standard module of a numerical meteorological model to PIML
- DNN and GPU can be used to achieve performance
- Availability of frameworks for execution on GPU, such as Nvidia Modulus, Uber Horovod and others



#### INTRODUCTION Challenges of using PIML approaches

- Lack of reproducibility in related articles
- Incomplete/lacking availability of real-world PIML implementations - code, documentation and/or datasets
- Porting parts/modules of standard numerical code to PIML
- PIML execution using new frameworks like Nvidia Modulus



#### INTRODUCTION PIML - some approaches and resources

- Recent PIML approaches for dynamical system modeling and control:
  - Physics-informed learning for system identification
  - Physics-informed learning for control
  - Analysis and verification of PIML models
- Some PIML classes of methods:
  - Physics-Informed Neural Network (PINN)
  - O Physics-constrained ML
  - O Physics-guided ML
  - O Physics-encoded ML
  - Deep Operator Networks (DeepONets)



#### INTRODUCTION Physics-Informed Neural Network (PINN)

- PINN class of methods is PIML !!!
- PINN direct problem (solution of PDEs)
- PINN inverse problem (PDE parameter discovery)
- Suitable for sparse, limited, incomplete, noisy data, irregular domains and complex non-linear patterns
- Former toy problem of this thesis already developed (PINN application for the 1D Burgers' Equation, parameter discovery & solution)



#### INTRODUCTION PINN - some approaches and resources

- PINN architecture
  - MLP: the most common
  - Oconvolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Auto-Encoder (AE), etc.
- PINN variations
  - Variational hp-VPINN, conservative PINN (CPINN), and physically constrained DNNs (PCNN), etc.
- PINN frameworks and implementations
  - Deep Ritz Method (DRM), Deep Ritz Method (DRM),
     Deep Galerkin Method (DGM), etc.



#### INTRODUCTION PINN - some approaches and resources

- Current research explores architectures, activation functions, loss functions, and gradient optimization
- The PINN mainstream is still the PDE direct problem, but the number of works to solve inverse problems has increased
- Soft BCs: PINN model the PDE with unknown IC/BC
- Hard BCs: impose known IC/BC via a customized DNN architecture



#### INTRODUCTION Objectives of this thesis - I

- Propose and implement performance improvements using PIML <u>only in the gas-optical scheme</u> of the ecRad radiation module of a weather/climate model
- Current trend in Meteorology and Climate models
- The ecRad radiation module is used in an operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF)
- Any radiation module is processing demanding and thus is not executed every timestep or grid point



#### INTRODUCTION Objectives of this thesis - II

- Target part of the ecRad radiation module is the gasoptical scheme (most processing demanding)
- Former approach proposed by Ukkonen et al. (2024), already reproduced using a DNN-based stand-alone gas-optical scheme, part of an offline ecRad implementation, which is the current toy problem
- GOAL: a improved PIML-based gas-optical scheme with good accuracy and less processing demanding
- Incremental approach: DNN, PINN, other PIML (eventually even proposing a new PIML approach)



#### INTRODUCTION Related state-of-the art work

- Speedup of 3 by refactoring the solver and replacing the gas optics module with a PINN (Ukkonen et al., 2024, 2023, 2020)
- Speedup of 7 in the ECMWF Long-wave Radiative Transfer model (Chevallier et al., 2020)
- Speedup of up to 10<sup>5</sup> of the Longwave Radiation parameterization for the NCAR CAM and NSIPP GCM (Krasnopolsky et al., 2006)



## CURRENT TOY PROBLEM Non-PIML approach reproduced

- DNN-based approach proposed (Ukkonen & Hogan 2024, 2023, 2020, and others), for the ecRad gasoptics scheme
- In this work, executed and analyzed using local PC and the LNCC Santos Dumont supercomputer
- Comparison of ecRad module using gas-optics original F90 scheme and new DNN-based scheme
- TensorFlow/Python is used only for DNN training



# CURRENT TOY PROBLEM ecRad gas-optics scheme

- Atmospheric radiation is the most influential scheme in numerical climate and weather models, but is processing demanding...
- GPROF showed that the gas-optical scheme is the most costly of the radiation module
- DNN-based version of ecRad gas-optical scheme replacing the standard F90 RRTMGP implementation, improved processing performance
- Training of the DNN using TensorFlow/Python and porting of the resulting model to F90 ecRad



#### **CURRENT TOY PROBLEM** Esquematic of ecRad module - 5 main schemes





#### CURRENT TOY PROBLEM RRTMGP numerical gas optics scheme



T - temperature, p - pressure, Gas - relative abundance, Band - LW or SW, gpoints - correlated k-distribution method, Level - atmospheric layer, Look-up table table kernels



# CURRENT TOY PROBLEM DNN-based gas-optics scheme





## CURRENT TOY PROBLEM DNN gas-optics scheme

#### MLP architecture

| Predicted     | Input | 2 Layers | Output |
|---------------|-------|----------|--------|
| LW absorption | 18    | 58-58    | 256    |
| LW emission   | 18    | 16-16    | 256    |
| SW absorption | 7     | 48-48    | 224    |
| SW scattering | 7     | 16-16    | 224    |



#### **CURRENT TOY PROBLEM DNN loss function**

$$loss = \alpha \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + (1 - \alpha) \sum_{\substack{i=1 \ i \text{ odd}}}^{N} ((y_{i+1} - y_i) - (\hat{y}_{i+1} - \hat{y}_i))^2$$

- α is a coefficient representing a trade-off between heating rate and radiative forcing errors
- y is the target vector
- $\circ$   $\hat{y}$  is the DNN output vector
- N is the size of dataset
- The loss function uses the Mean Squared Error (MSE)
- The training dataset is derived from a variety of sources



#### FORMER TOY PROBLEM PINN applied to the 1D Burgers' Equation

- Comparing accuracy of PINN and a numerical method (SINDy) for PDE parameter discovery of the 1D Burgers' Equation
- Evaluating PINN performance for different CP sizes and hyperparameters of this toy problem
- PINN-based neural network training generated a model then used for parameter discovery & solution
- Visual evaluation of the PINN solution using the exact solution as reference



# FORMER TOY PROBLEM 1D Burgers' Equation

Velocity field u of a fluid ( dimension x and time t )

$$u_t + \lambda_1 u u_x - \lambda_2 u_{xx} = 0$$
  $x \in [-1, 1], t \in [0, 1],$ 

IC: 
$$u(0, x) = -\sin(\pi x),$$

**BC**: 
$$u(t,-1) = u(t,1) = 0$$

• Unknown parameters: coefficients of the differential operators:  $λ_1 = 1.0$ ,  $λ_2 = v = 0.01/π$  or 0.1/π (high viscosity and low viscosity, respectively, the latter causes discontinuities)



#### FORMER TOY PROBLEM PINN applied to the 1D Burgers' Equation

- MLP architecture: 2-neuron input layer, 1-to-8 hidden layers, hyperbolic tangent activation function, 10to-30 neurons per hidden layer and a single-neuron output layer
- The loss function uses the Mean Squared Error (MSE), being minimized by the Generalized Limitedmemory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm
- Each iteration is one epoch (singe batch per epoch)



#### FORMER TOY PROBLEM PINN training input data (set of CPs)

- CPs Collocation Points (exact/true points)
- Problem sizes (1D grid points x timesteps)
  - 128x64, 256x100, 256x128, 512x256
  - Exact solution: Gaussian Quadrature Method (GQM)
- No division of PINN input data into training, validation and test sets (training -> resulting model)
  - Random sample of 2,000 CPs from given dataset
  - PDE parameters discovery (from training)
  - PDE predicted solution (no further training)



#### FORMER TOY PROBLEM PINN loss function

Two-term MSE (iterations k and k-1)

$$MSE^k = MSE_u^k + MSE_f^{k-1}$$

MSE<sub>u</sub> - PINN solution matching of CPs points at iteration k:

$$MSE_u^k = \frac{1}{N} \sum_{i=1}^N |u(t_u^i, x_u^i) - u^i|^2$$

 MSE<sub>f</sub> - residual of the known PDE for the set of CPs predicted by the PINN at iteration (k-1)

$$MSE_f^{k-1} = \frac{1}{N} \sum_{i=1}^{N} |f(t_u^i, x_u^i)|^2$$



#### FORMER TOY PROBLEM PINN loss function





#### FORMER TOY PROBLEM Numerical SINDy parameter discovery

- Sparse Identification of Nonlinear Dynamical Systems (SINDy) method (Brunton et al., 2016)
- Uses sparse regression to create a linear combination of basis functions to capture the dynamic behavior of the considered physical system
- Iterative optimization using an objective function
- Applications: linear and nonlinear oscillators, chaotic systems, fluid dynamics, and others



#### FORMER TOY PROBLEM Numerical SINDy parameter discovery

 Temporal evolution of x(t) is modeled using the nonlinear function

$$\frac{d}{dt}x(t) = f(x(t))$$

The vector  $x(t)=[x_1(t), x_2(t), ... x_n(t)]^{\top}$  represents the state of the physical system at time t



#### FORMER TOY PROBLEM Numerical SINDy parameter discovery

The problem solved by SINDy is

$$\dot{X} = \Theta(X) \Xi$$

- " $\Theta$ ": matrix f(x(t)) of basis **functions** applied to the input data X, i.e.  $\Theta(X)$
- $\bullet$  " $\Xi$ " : matrix of **coefficients** that indicates which terms in  $\Theta(X)$  are significant
  - Reconstructs the governing equations of the dynamical system
- Along the iterations, these coefficients are optimized until achieving convergence



#### FORMER TOY PROBLEM Numerical SINDy parameter discovery

Includes 4 different Sparse Regression Optimizers

- Sequentially Threshold Least Squares (STLSQ)
- Orthogonal Least Squares of Forward Regression (FROLS)
- Sparse Relaxed Regularized Regression (SR3)
- Sparse Stepwise Regression (SSR)



#### FORMER AND CURRENT TOY PROBLEMS 29 Computing environment

- PC local machine 1: CPU 6-core Intel i7 9750h, 8 GB RAM, GPU Nvidia GTX 1050, 3 GB VRAM
- PC local machine 2: CPU 2-core Intel i7 7500U, 16 GB RAM, GPU Nvidia Geforce 940MX, 4 GB VRAM
- LNCC SDumont single Bull Sequana X1120, CPU 2x 24-core Intel Xeon Gold 6252 Skylake, 384 GB RAM, GPU 4x Nvidia Volta V100, 32 GB VRAM
- Python 3.7, TensorFlow 1.15 and 2.16, PySINDy 1.7.5



#### RESULTS - CURRENT TOY PROBLEM RRTMGP numerical gas-optics (GPROF)

#### (local PC machine)

| %            | cumulative | self    |       | self    | total   |           |
|--------------|------------|---------|-------|---------|---------|-----------|
| $_{ m time}$ | seconds    | seconds | calls | ms/call | ms/call | routine   |
| 17.42        | 0.27       | 0.27    | 12    | 22.50   | 34.06   | CloudsSW  |
| 12.90        | 0.47       | 0.20    | 12    | 16.67   | 49.17   | GasOptics |
| 12.90        | 0.67       | 0.20    | 12    | 16.67   | 30.10   | CloudsLW  |
| 9.68         | 0.82       | 0.15    | 11    | 13.64   | 13.64   | Aerosol   |
| 7.74         | 0.94       | 0.12    | 4817  | 0.02    | 0.02    | TransSW   |
|              |            |         |       |         |         |           |

| routine   | name                                                 |
|-----------|------------------------------------------------------|
| CloudsSW  | radiation_tripleclouds_sw_MOD_solver_tripleclouds_sw |
| GasOptics | radiation_ifs_rrtm_MOD_gas_optics                    |
| CloudsLW  | radiation_tripleclouds_lw_MOD_solver_tripleclouds_lw |
| Aerosol   | radiation_aerosol_optics_MOD_add_aerosol_optics      |
| TransSW   | radiation_two_stream_MOD_calc_ref_trans_sw           |



#### RESULTS - CURRENT TOY PROBLEM DNN-based gas-optics scheme (GPROF)

(local PC machine)

| 72 | %     | cumulative | self    |       | self    | total   |           |
|----|-------|------------|---------|-------|---------|---------|-----------|
|    | time  | seconds    | seconds | calls | ms/call | ms/call | routine   |
|    | 16.67 | 0.25       | 0.25    | 12    | 20.83   | 50.83   | GasOptics |
|    | 16.67 | 0.50       | 0.25    | 12    | 20.83   | 40.00   | CloudsSW  |
|    | 14.00 | 0.71       | 0.21    | 832   | 0.25    | 0.25    | TransSW   |
|    | 9.33  | 0.85       | 0.14    | 12    | 11.67   | 11.67   | Aerosol   |
|    | 6.00  | 0.94       | 0.09    | 12    | 7.50    | 20.00   | CloudsLW  |

- CloudsLW time dropped from 200 to 90 ms (PC)
- Same test could not be repeated in the LNCC
   Santos Dumont supercomputer



## RESULTS - FORMER TOY PROBLEM PINN x SINDy models - elapsed times

(local PC machine)

 $0.01/\pi$  (low viscosity)

 $0.1/\pi$  (high viscosity)

| Model        | Elapsed [s] | Model        | Elapsed [s] |
|--------------|-------------|--------------|-------------|
| 128x64       |             | 128x64       |             |
| PINN Train   | 47.567      | PINN Train   | 22.633      |
| PINN Predict | 0.371       | PINN Predict | 0.361       |
| STLSQ        | 0.031       | STLSQ        | 0.013       |
| FROLS        | 0.140       | FROLS        | 0.060       |
| SR3          | 0.054       | SR3          | 0.015       |
| SSR          | 0.068       | SSR          | 0.043       |
| 256x128      |             | 256x128      |             |
| PINN Train   | 53.033      | PINN Train   | 36.100      |
| PINN Predict | 0.732       | PINN Predict | 0.995       |
| STLSQ        | 0.049       | STLSQ        | 0.033       |
| FROLS        | 0.071       | FROLS        | 0.074       |
| SR3          | 0.098       | SR3          | 0.015       |
| SSR          | 0.086       | SSR          | 0.060       |
| 512x256      |             | 512x256      |             |
| PINN Train   | 52.633      | PINN Train   | 23.133      |
| PINN Predict | 3.067       | PINN Predict | 3.020       |
| STLSQ        | 0.105       | STLSQ        | 0.086       |
| FROLS        | 0.625       | FROLS        | 0.588       |
| SR3          | 0.118       | SR3          | 0.095       |
| SSR          | 0.181       | SSR          | 0.262       |



#### RESULTS - FORMER TOY PROBLEM PINN visual assessment, 128x64, low viscosity





PINN performed the simulation accurately capturing the non-linear behavior, but SINDy would require a finer discretization...



#### RESULTS - FORMER TOY PROBLEM Parameter discovery results - low viscosity

| Correct PDE: | $0.003183 \text{ u\_xx} - 1.0 \text{ uu\_x} \text{ (viscosity} = 0.01/pi)$                                          |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Model        | Model Discovered equation and parameters                                                                            |  |  |  |  |  |  |
|              | 128x64 problem size                                                                                                 |  |  |  |  |  |  |
| PINN         | 0.0033735 u_xx - 0.99912 uu_x                                                                                       |  |  |  |  |  |  |
| CITI CO      | $0.06420 \text{ u} + 0.00505 \text{ u} \text{_xx} - 1.06304 \text{ uu} \text{_x} +$                                 |  |  |  |  |  |  |
| STLSQ        | + 0.00469 uuu_xx - 0.00001 uu_xxx                                                                                   |  |  |  |  |  |  |
| FROLS        | -0.418 u                                                                                                            |  |  |  |  |  |  |
| SR3          | $0.064 \text{ u} + 0.005 \text{ u} \text{_xx} - 1.063 \text{ uu} \text{_x} + 0.005 \text{ uuu} \text{_xx}$          |  |  |  |  |  |  |
| SSR          | $0.064~\mathrm{u} + 0.005~\mathrm{u}_\mathrm{xx}$ - $1.063~\mathrm{uu}_\mathrm{x} + 0.005~\mathrm{uuu}_\mathrm{xx}$ |  |  |  |  |  |  |
|              | 256x128 problem size                                                                                                |  |  |  |  |  |  |
| PINN         | 0.0031779 u_xx - 0.99942 uu_x                                                                                       |  |  |  |  |  |  |
| STLSQ        | $0.00395~u\_xx - 1.00869~uu\_x + 0.00126~uuu\_xx$                                                                   |  |  |  |  |  |  |
| FROLS        | $0.015 \text{ u} + 0.004 \text{ u} \text{_xx} - 1.003 \text{ uu} \text{_x}$                                         |  |  |  |  |  |  |
| SR3          | $0.004 \ u_x x - 1.009 \ uu_x + 0.001 \ uuu_x x$                                                                    |  |  |  |  |  |  |
| SSR          | $0.011 \text{ u} + 0.004 \text{ u\_xx} - 1.011 \text{ uu\_x} + 0.001 \text{ uuu\_xx}$                               |  |  |  |  |  |  |
|              | 512x256 problem size                                                                                                |  |  |  |  |  |  |
| PINN         | 0.0031403 u_xx - 0.99850 uu_x                                                                                       |  |  |  |  |  |  |
| STLSQ        | $0.00339 \ u_x - 1.00534 \ uu_x + 0.00041 \ uuu_x$                                                                  |  |  |  |  |  |  |
| FROLS        | $0.006 \text{ u} + 0.004 \text{ u} \text{_xx} - 1.006 \text{ uu} \text{_x}$                                         |  |  |  |  |  |  |
| SR3          | 0.003 u_xx - 1.005 uu_x                                                                                             |  |  |  |  |  |  |
| SSR          | $0.006 \text{ u} + 0.003 \text{ u\_xx} - 1.007 \text{ uu\_x}$                                                       |  |  |  |  |  |  |



#### RESULTS - FORMER TOY PROBLEM L2 error & Training time x Hidden Layers

(SDumont Sequana X1129)

| Hidden | Hidden Number of neurons per hidden layer |              |              |        |       |  |
|--------|-------------------------------------------|--------------|--------------|--------|-------|--|
| layers | 10                                        | 15           | 20           | 25     | 30    |  |
|        |                                           | Relative L2  | Error (%)    |        | 8     |  |
| 1      | 18.54                                     | 17.77        | 17.80        | 17.53  | 17.47 |  |
| 2      | 3.70                                      | 2.52         | 1.52         | 1.77   | 1.59  |  |
| 4      | 0.30                                      | 0.41         | 0.44         | 0.39   | 0.16  |  |
| 6      | 0.22                                      | 0.19         | 0.10         | 0.18   | 0.17  |  |
| 8      | 0.26                                      | 0.13         | 0.19         | 0.16   | 0.23  |  |
|        | Traini                                    | ng - process | ing time (se | conds) | 9     |  |
| 1      | 4.2                                       | 5.4          | 5.0          | 21.7   | 9.4   |  |
| 2      | 35.9                                      | 51.8         | 39.3         | 55.5   | 70.7  |  |
| 4      | 51.2                                      | 43.1         | 33.4         | 40.9   | 47.4  |  |
| 6      | 59.7                                      | 40.3         | 42.5         | 35.2   | 38.6  |  |
| 8      | 58.7                                      | 60.0         | 58.6         | 54.4   | 84.5  |  |



#### **RESULTS - FORMER TOY PROBLEM Relative L2 error (%) - low viscosity**

(SDumont Sequana X1129)





## RESULTS - FORMER TOY PROBLEM Processing times - low viscosity





#### RESULTS - FORMER TOY PROBLEM PINN visual assessment, 128x64, high viscosity





 Both PINN and SINDy performed the simulation accurately



#### RESULTS - FORMER TOY PROBLEM Parameter discovery results, high viscosity

| Correct PDE:        | $0.03183 \text{ u_xx} - 1.0 \text{ uu_x} \text{ (viscosity} = 0.1/pi)$ |  |  |  |  |
|---------------------|------------------------------------------------------------------------|--|--|--|--|
| Model               | Discovered equation and parameters                                     |  |  |  |  |
| 128x64 problem size |                                                                        |  |  |  |  |
| PINN                | 0.0318582 u_xx - 0.99928 uu_x                                          |  |  |  |  |
| STLSQ               | 0.03222 u_xx - 1.00012 uu_x                                            |  |  |  |  |
| FROLS               | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SR3                 | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SSR                 | 0.003 u + 0.032 u_xx - 1.002 uu_x                                      |  |  |  |  |
|                     | 256x128 problem size                                                   |  |  |  |  |
| PINN                | 0.0318372 u_xx - 0.99924 uu_x                                          |  |  |  |  |
| STLSQ               | 0.03193 u_xx - 1.00002 uu_x                                            |  |  |  |  |
| FROLS               | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SR3                 | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SSR                 | 0.001 u + 0.032 u_xx - 1.000 uu_x                                      |  |  |  |  |
|                     | 512x256 problem size                                                   |  |  |  |  |
| PINN                | 0.0318292 u_xx - 0.99936 uu_x                                          |  |  |  |  |
| STLSQ               | 0.03186 u_xx - 1.00001 uu_x                                            |  |  |  |  |
| FROLS               | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SR3                 | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |
| SSR                 | 0.032 u_xx - 1.000 uu_x                                                |  |  |  |  |



# RESULTS - FORMER TOY PROBLEM L2 error and training time x CP size

| Dataset                              | Number of neurons per hidden layer |      |      |      |      |  |  |  |
|--------------------------------------|------------------------------------|------|------|------|------|--|--|--|
| size                                 | 10                                 | 15   | 20   | 25   | 30   |  |  |  |
| Relative L2 Error (%)                |                                    |      |      |      |      |  |  |  |
| 400                                  | 3.12                               | 3.30 | 2.83 | 1.84 | 6.36 |  |  |  |
| 800                                  | 1.79                               | 0.83 | 0.59 | 0.52 | 0.34 |  |  |  |
| 1200                                 | 0.41                               | 0.50 | 0.46 | 0.35 | 0.61 |  |  |  |
| 1600                                 | 0.90                               | 0.51 | 0.19 | 0.46 | 0.13 |  |  |  |
| 2000                                 | 0.26                               | 0.13 | 0.19 | 0.16 | 0.23 |  |  |  |
| Training - processing time (seconds) |                                    |      |      |      |      |  |  |  |
| 400                                  | 57.9                               | 82.3 | 83.3 | 59.8 | 58.6 |  |  |  |
| 800                                  | 79.7                               | 53.5 | 63.2 | 45.0 | 63.0 |  |  |  |
| 1200                                 | 63.7                               | 52.2 | 43.8 | 42.1 | 56.8 |  |  |  |
| 1600                                 | 59.9                               | 27.5 | 45.3 | 46.5 | 56.4 |  |  |  |
| 2000                                 | 58.7                               | 60.0 | 58.6 | 54.4 | 84.5 |  |  |  |



# RESULTS - FORMER TOY PROBLEM Relative L2 error (%) - high viscosity





### RESULTS - FORMER TOY PROBLEM Processing times - high viscosity





### RESULTS - FORMER TOY PROBLEM Prediction time [s] - high viscosity

(SDumont Sequana X1129)

| Number of     | Number of neurons per hidden layer |       |       |  |  |
|---------------|------------------------------------|-------|-------|--|--|
| hidden layers | 10                                 | 20    | 30    |  |  |
| 1             | 0.647                              | 0.636 | 0.675 |  |  |
| 4             | 0.704                              | 0.724 | 0.705 |  |  |
| 8             | 1.092                              | 0.867 | 0.789 |  |  |

(Complements the previous graphs)



### WORK PLAN Proposed tasks/steps of the thesis

- Bibliographic research
- PIML-based radiation module implementation
- Optimization of the former DNN-based module
- PINN-based implementation
- Further PIML approaches implementation
- Further case studies, PIML, PINN
- Article submission
- Thesis writing



#### WORK PLAN Schedule

| Tasks                                       | 2024 | 2025 |     |      | 2026 |     |
|---------------------------------------------|------|------|-----|------|------|-----|
| 1 45 %5                                     |      | 1-4  | 5-8 | 9-12 | 1-4  | 5-8 |
| Bibliographic research                      |      |      |     |      |      |     |
| PIML-based radiation module implementation  |      |      |     |      |      |     |
| Optimization of the former DNN-based module |      |      |     |      |      |     |
| PINN-based implementation                   |      |      |     |      |      |     |
| Further PIML approaches implementation      |      |      |     |      |      |     |
| Further case studies, PIML, PINN            |      |      |     |      |      |     |
| Article submission                          |      |      |     |      |      |     |
| Thesis writing                              |      |      |     |      |      |     |



#### **CONCLUSION Final considerations**

- PIML is an innovative and promising approach that combines data-driven and physics-based strategies
- Propose to replace RRTMGP gas-optics numerical scheme of the ecRad radiation module with an implementation using PIML
- Incremental approach: DNN, PINN, other PIML
- Current toy problem already reproduced DNN-based implementation of the gas-optics scheme



#### CONCLUSION Post-thesis future works

- Explore new PIML-based approaches for 2D/3D inverse and direct problems in other applications
- Real-world problems with limited-size or noisy datasets
- Use of GPU frameworks like Modulus and Horovod
- The resulting PIML-based gas-optical scheme can employed in the microphysis of the MONAN global model (INPE & other institutions)



#### Thanks!

Source code: http://github.com/efurlanm/pd1b24/

Eduardo Furlan Miranda. Applied Computing Postgraduation Program (CAP/INPE). < <a href="mailto:efurlanm@gmail.com">efurlanm@gmail.com</a> >.

Stephan Stephany. Coordination of Applied Research and Technological Development (COPDT/INPE). <stephany@inpe.br>.

Roberto Pinto Souto. National Laboratory for Scientific Computing (LNCC). rpsouto@lncc.br.