0.1. Understanding Alpha-Mixing Conditions

Formal Definition and Interpretation

Mathematical Setup

Let $\{X_t\}_{t=-\infty}^{\infty}$ be a stochastic process on a probability space (Ω, \mathcal{F}, P) . We define:

- $\mathcal{F}_{-\infty}^t = \sigma(..., X_{t-1}, X_t)$: the σ -algebra generated by all events up to time t
- $\mathcal{F}_{t+h}^{\infty} = \sigma(X_{t+h}, X_{t+h+1}, ...)$: the σ -algebra generated by all events from time t+h onward

Alpha-Mixing Coefficient

The α -mixing coefficient is defined as:

$$\alpha(h) = \sup_{A \in \mathcal{F}_{-\infty}^t, B \in \mathcal{F}_{t+h}^\infty} |P(A \cap B) - P(A)P(B)| \tag{1}$$

Interpretation:

- $P(A \cap B)$ is the joint probability of events A and B
- P(A)P(B) is what the joint probability would be if A and B were independent
- $\alpha(h)$ measures the maximum deviation from independence at lag h
- As $h \to \infty$, $\alpha(h) \to 0$ for mixing processes

Necessity of Alpha-Mixing

Statistical Requirements

Alpha-mixing is needed for:

1. Law of Large Numbers:

$$\frac{1}{T} \sum_{t=1}^{T} X_t \stackrel{p}{\to} E[X_t] \tag{2}$$

2. Central Limit Theorem:

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} (X_t - E[X_t]) \xrightarrow{d} N(0, \sigma^2)$$
(3)

3. Moment Bounds:

$$E\left|\frac{1}{T}\sum_{t=1}^{T}X_{t} - E[X_{t}]\right|^{p} \le CT^{-p/2} \tag{4}$$

Understanding the Paper's Mixing Condition

The condition:

$$\sum_{h=1}^{\infty} h^2 \alpha(h)^{\delta/(2+\delta)} < \infty \tag{5}$$

Component Analysis

1. The Role of h:

- h represents the time lag
- h^2 ensures rapid decay of dependence
- Larger h means events further apart in time

2. The Role of $\alpha(h)$:

- Measures dependence at lag h
- Must decay faster than h^{-2} for summability
- Typical decay: $\alpha(h) \sim h^{-\beta}$ for some $\beta > 2$

3. The Role of δ :

- Controls moment existence
- Larger δ means stronger moment conditions
- Typically $\delta = 2$ for financial applications

Intuitive Examples of Mixing

Financial Market Examples

1. Market Microstructure Effects:

$$R_t = \phi R_{t-1} + \epsilon_t, \quad |\phi| < 1 \tag{6}$$

- Bid-ask bounce creates short-term dependence
- Effect dies out exponentially: $\alpha(h) \sim |\phi|^h$

2. Volatility Clustering:

$$R_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \omega + \alpha R_{t-1}^2 + \beta \sigma_{t-1}^2 \tag{7}$$

- GARCH processes are α -mixing
- Dependence decays geometrically

Verifying Mixing Conditions in Practice

Statistical Tests

1. Correlation-based Tests:

$$\hat{\rho}(h) = \frac{\sum_{t=h+1}^{T} (X_t - \bar{X})(X_{t-h} - \bar{X})}{\sum_{t=1}^{T} (X_t - \bar{X})^2}$$
(8)

2. Mixing Coefficient Estimation:

$$\hat{\alpha}(h) = \sup_{i,j} |\hat{P}(A_i \cap B_j) - \hat{P}(A_i)\hat{P}(B_j)| \tag{9}$$

Practical Approaches

- 1. Graphical Analysis:
 - Plot ACF/PACF
 - Examine decay patterns
 - Check for long-range dependence

2. Model-based Verification:

- Fit ARMA/GARCH models
- Check residual properties
- Verify model stability

Connection to Other Time Series Concepts

Related Dependencies

1. Relationship to Ergodicity:

$$\alpha$$
-mixing \Longrightarrow ergodicity (10)

2. Comparison with Other Mixing Types:

- β -mixing (absolute regularity)
- ϕ -mixing (uniform mixing)
- ρ -mixing (maximal correlation)

Hierarchy of Conditions

i.i.d.
$$\implies \phi$$
-mixing $\implies \rho$ -mixing $\implies \beta$ -mixing $\implies \alpha$ -mixing (11)

Stock Return Properties and Mixing

Empirical Evidence

1. Return Characteristics:

- Weak serial correlation in returns
- Strong dependence in volatility
- Leverage effects

2. Market Efficiency Implications:

$$\alpha(h) \le Ch^{-\beta}, \quad \beta > 2 \tag{12}$$

- Consistent with weak-form efficiency
- Allows for volatility clustering
- Permits predictability in higher moments

0.2. Understanding Moment Conditions

Overview of Moment Conditions

The moment conditions in our assumption require finite $(4 + \delta)$ -th moments for returns, errors, and factors. Let's understand why each condition is necessary and what it buys us in terms of asymptotic theory.

Detailed Analysis of Each Condition

Condition (a): $E|R_{it}|^{4+\delta} < \infty$

This condition on asset returns is needed for several crucial reasons:

1. Convergence Rates:

$$\sqrt{T}(\hat{w}_T - w_0) \xrightarrow{d} N(0, V) \tag{13}$$

The fourth moment ensures:

- Existence of the asymptotic variance V
- Validity of the CLT for sample moments
- Uniform convergence of sample covariances

2. Berry-Esseen Bounds:

$$\sup_{x} |P(\sqrt{T}(\hat{w}_T - w_0) \le x) - \Phi(x)| \le \frac{C}{\sqrt{T}}$$
(14)

The extra δ moment $(E|R_{it}|^{\delta} < \infty)$ provides:

- Better convergence rates
- Uniform integrability
- Tighter finite sample bounds

Condition (b): $E|\epsilon_{it}|^{4+\delta} < \infty$

This condition on error terms is crucial for:

1. Variance Estimation:

$$\hat{\Sigma}_T - \Sigma = O_p(T^{-1/2}) \tag{15}$$

Where:

- $\hat{\Sigma}_T$ is the sample variance of errors
- Fourth moments ensure consistency of variance estimators
- Extra δ provides uniform convergence

2. HAC Estimation:

$$\|\hat{\Omega}_T - \Omega\|_2 = O_p((T/m_T)^{-1/2} + m_T^{-q})$$
(16)

Where:

- $\hat{\Omega}_T$ is the HAC estimator
- Fourth moments ensure kernel estimator convergence
- δ allows for optimal bandwidth selection

Condition (c): $\sup_t E ||F_t||^{4+\delta} < \infty$

This condition on factors enables:

1. Factor Structure Analysis:

$$R_{it} = \beta_i' F_t + \epsilon_{it} \tag{17}$$

Providing:

- Well-defined factor loadings
- Stable estimation procedures
- Valid cross-sectional inference

2. Uniform Bounds:

$$\sup_{t,T} E \| \frac{1}{\sqrt{T}} \sum_{s=1}^{t} (F_s F_s' - E[F_s F_s']) \|_2 < \infty$$
 (18)

Technical Implications

Why $4 + \delta$ Specifically?

1. Fourth Moments:

- Required for CLT with dependent data
- Needed for convergence of sample covariances
- Essential for HAC estimation

2. The Role of δ :

- Provides room for Lyapunov condition
- Ensures uniform integrability
- Allows for stronger convergence rates

Practical Considerations

Verification in Financial Data

1. Return Distributions:

$$Kurtosis = \frac{E[R_{it}^4]}{(E[R_{it}^2])^2}$$
(19)

Typical findings:

- Daily returns: kurtosis $\approx 5-10$
- Weekly returns: kurtosis $\approx 4-6$
- Monthly returns: kurtosis $\approx 3-4$

2. Factor Properties:

Tail Index =
$$\lim_{x \to \infty} \frac{\log P(|F_t| > x)}{\log x}$$
 (20)

Common observations:

- Market factor: tail index $\approx 4-5$
- Size factor: tail index $\approx 3-4$
- Value factor: tail index $\approx 4-5$

Consequences of Violation

If moment conditions fail:

1. Statistical Issues:

- Inconsistent variance estimation
- Invalid confidence intervals
- Poor finite sample properties

2. Econometric Problems:

- Unstable parameter estimates
- Unreliable hypothesis tests
- Invalid bootstrap procedures

0.3. Understanding Weight Convergence

Basic Concepts of Convergence

What is Convergence?

In our context, convergence means that our estimated weights (w_T^*) get arbitrarily close to the true weights (w^0) as our sample size (T) increases:

$$\|w_T^* - w^0\| \xrightarrow{p} 0 \tag{21}$$

This means:

- For any small error $\epsilon > 0$
- The probability of being more than ϵ away from w^0
- Goes to zero as $T \to \infty$

Why Do We Need Assumptions 1-3?

Assumption 1: Data Generating Process

$$R_{it} = \mu_i(F_t) + \epsilon_{it} \tag{22}$$

This assumption is needed because:

- Ensures returns have a factor structure
- Guarantees existence of synthetic portfolios
- Provides structure for identification

Assumption 2: Mixing Conditions

$$\sum_{h=1}^{\infty} h^2 \alpha(h)^{\delta/(2+\delta)} < \infty \tag{23}$$

This is crucial because:

- Allows for dependent data
- Ensures sample averages converge
- Permits use of uniform LLN

Assumption 3: Moment Conditions

$$E|R_{it}|^{4+\delta} < \infty \tag{24}$$

Required for:

- Existence of limiting distributions
- Uniform convergence of sample moments
- Well-behaved asymptotic theory

Understanding Uniform Convergence

What is Uniform Convergence?

For functions f_n , f on space W:

$$\sup_{w \in \mathcal{W}} |f_n(w) - f(w)| \xrightarrow{p} 0 \tag{25}$$

Key aspects:

- Convergence happens simultaneously for all w
- Rate of convergence is uniform across \mathcal{W}
- Stronger than pointwise convergence

Why Do We Need Uniform Convergence?

Critical because:

- Ensures consistency of extremum estimators
- Prevents convergence from failing at the optimum
- Allows interchange of limits and optimization

The Uniform Law of Large Numbers (ULLN)

What is ULLN?

For a sequence of functions $\{g_t(w)\}$:

$$\sup_{w \in \mathcal{W}} \left| \frac{1}{T} \sum_{t=1}^{T} g_t(w) - E[g_t(w)] \right| \xrightarrow{p} 0 \tag{26}$$

Why we need it:

- Ensures objective function converges uniformly
- Provides rate of convergence
- Handles dependent data through mixing

The Second Moment Return Matrix

Definition

The second moment return matrix Σ is:

$$\Sigma = E[R_t R_t'] \tag{27}$$

where $R_t = (R_{1t}, ..., R_{Jt})'$

Positive Definiteness

A matrix Σ is positive definite if:

$$x'\Sigma x > 0 \quad \text{for all } x \neq 0$$
 (28)

Why it matters:

- Ensures unique solution exists
- Guarantees identification
- Provides stability for estimation

Establishing Identification

What is Identification?

Identification means:

$$w^0 = \arg\min_{w \in \mathcal{W}} Q(w)$$
 uniquely (29)

Where:

- Q(w) is the population objective function
- w^0 is the unique minimizer
- No other weights give same synthetic returns

Role of Positive Definiteness

The objective function can be written as:

$$Q(w) = (w - w^{0})'\Sigma(w - w^{0})$$
(30)

Positive definiteness ensures:

- Q(w) > 0 for all $w \neq w^0$
- $Q(w^0) = 0$
- Unique minimum at w^0

Why is the Return Matrix Positive Definite?

Economic Arguments

1. No Arbitrage:

- Perfect correlation implies arbitrage
- Markets eliminate arbitrage
- Therefore, returns can't be perfectly correlated

2. Diversification:

- Assets have unique risk components
- Not all risk can be diversified away
- Implies linear independence of returns

Statistical Verification

We can verify positive definiteness by:

$$\lambda_{min}(\hat{\Sigma}) > 0 \tag{31}$$

Where:

- λ_{min} is the smallest eigenvalue
- $\hat{\Sigma}$ is the sample covariance
- Test statistic follows chi-square distribution

Full Proof Structure

1. Show Uniform Convergence:

$$\sup_{w \in \mathcal{W}} |Q_T(w) - Q(w)| \xrightarrow{p} 0 \tag{32}$$

2. Apply ULLN:

$$||Q_T(w) - Q(w)||_{\infty} = O_p(T^{-1/2}\log T)$$
(33)

- 3. Use Identification:
 - Positive definiteness ensures unique minimum
 - ULLN ensures sample objective converges
 - Therefore, minimizer converges to w^0
- 4. Conclude:

$$\|w_T^* - w^0\| \xrightarrow{p} 0 \tag{34}$$