

L'apprentissage par renforcement

Philippe PREUX Laboratoire d'Informatique du Littoral Université du Littoral Côte d'Opale Calais, France

philippe.preux@lil.univ-littoral.fr http://www-lil.univ-littoral.fr/~preux

Plan

L'apprentissage par renforcement :

- c'est quoi ?
- comment on fait?
- à quoi ça sert ?
- état des lieux / conclusion.

C'est quoi ? (1/14)

Qu'est ce qu'un agent autonome peut apprendre, et comment, s'il agît dans un environnement *a priori* inconnu, sans que l'on puisse lui fournir d'aide (telle que des exemples de ce qu'il faut faire ou ne pas faire dans telle ou telle situation)?

Seule information reçue : un « retour » lui donne une estimation \pm précise de son comportement.

- un agent situé dans et en interaction avec son environnement
- il est dans un état perçu $s_t \in S$ à l'instant t
- ensemble d'actions possibles à l'instant t : $A_t \subset A$
- l'émission de l'action $a \in A_t$ entraı̂ne :
 - un retour immédiat r_t
 - le passage dans un état s_{t+1}

C'est quoi ? (4/14)

Remarques:

- l'état perçu peut être différent de l'état réel
- le retour immédiat reçu et l'état atteint suite à l'émission d'une certaine action dans un certain état peuvent varier au cours du temps
- S peut varier au cours du temps (S_t)
- A_t peut dépendre de s_t
- le système ne reçoit jamais aucune information qui lui indiquerait :
 - quelle aurait été la meilleure action à effectuer dans un état donné
 - quel meilleur retour il aurait pu recevoir
- le retour (immédiat) perçu peut être la conséquence d'une action émise il y a longtemps
- les conséquences à court ou long terme des actions émises peuvent être contradictoires

C'est quoi ? (5/14) Formalisons un peu :

- S = ensemble des états de l'agent
- A = ensemble des actions que l'agent peut émettre
- dans l'état $s \in S$, l'agent peut émettre les actions $A_s \subset A$.
- le temps est discrétisé : $t \in \{0, ...\}$;
- $P[s_{t+1}=s|t+1,s_t,s_{t-1},...s_0,a_t,a_{t-1},...a_0] \in [0, 1]$: probabilité que l'état à l'étape t+1 soit s si les états précédents ont été $s_t,s_{t-1},...s_0$ et que les actions dans chacun de ces états ont été respectivement $a_t,a_{t-1},...a_0$.
- $R[s_{t+1}=s|t+1,s_t,s_{t-1},...s_0,a_t,a_{t-1},...a_0]$ réel : espérance de retour à l'étape t+1 pour la transition vers l'état s_{t+1} si les états précédents ont été $s_t,s_{t-1},...s_0$ et que les actions dans chacun de ces états ont été respectivement $a_t,a_{t-1},...a_0$.

C'est quoi ? (6/14) Formalisons un peu (suite):

Remarques:

- S, A, P et R peuvent varier au cours du temps (non stationnaires);
- S et A peuvent être finis ou infinis ;
- l'effet d'une action sur l'environnement n'est pas forcément déterministe (d'où P et R);

C'est quoi ? (7/14) les retours

- Le retour fournit une information quant à la qualité de l'action et des actions qui ont été effectuées jusqu'alors ;
- le retour peut être quelconque ; mais c'est très généralement un nombre
- le retour doit spécifier ce que l'on veut obtenir, pas comment l'obtenir
- en général, l'objectif de l'agent est de maximiser ses retours au cours de son fonctionnement : $\frac{T}{T}$

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots = \sum_{k=0}^{T} \gamma^{k} r_{t+k+1}$$

où $\gamma \in [0, 1]$ est le facteur de dépréciation

Deux cas:

- la tâche a une fin : tâche épisodique/horizon fini : T est fini ; il existe des états terminaux
- la tâche n'a pas de fin : tâche en horizon infini : $T = +\infty$; prendre $\gamma < 1$ pour que R_t demeure fini.

C'est quoi ? (8/14) les retours (suite)

- une action a des conséquences à court terme et à plus long terme ;
- aussi, on doit ternir compte des conséquences à court terme et des conséquences à long terme ;
- d'autres actions futures peuvent avoir également un effet sur les conséquences à long terme : aussi, il est intuitivement sain de mettre plus l'accent sur les conséquences à court terme que sur les conséquences à long terme , sans toutefois négliger ces dernières totalement ;
- plus γ s'approche de 1, plus l'agent prend en compte les conséquences à long terme de ses actions ; γ =0 : agent myope.

C'est quoi ? (9/14) Que cherche-t-on ?

 \rightarrow une stratégie π qui spécifie l'action à émettre à un moment donné pour maximiser son espérance de retours

C'est quoi ? (10/14) Formalisons un peu (suite):

Définitions:

- valeur d'un état : $V^{\pi}(s)$: espérance de retour R si l'agent se trouve dans l'état s et suit la stratégie π . La fonction V^{π} est dénommée la fonction valeur pour la stratégie π ;
- qualité d'une paire (état, action) : $Q^{\pi}(s,a)$: espérance de R si l'agent se trouve dans l'état s et émet l'action a, puis suit la stratégie π . La fonction Q^{π} est dénommée la fonction qualité pour la stratégie π .

Il est clair que $V^{\pi}(s)$ et $Q^{\pi}(s,a)$ représentent la même chose. À un moment donné, on a :

$$V^{\pi}(s) = \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

C'est quoi ? (11/14) Formalisons un peu (suite):

Propriété de Markov:

un système est markovien si son état courant résume toute son histoire.

Dans un système markovien :

- $P[s_{t+1}=s|t+1,s_t,s_{t-1},\ldots s_0,a_t,a_{t-1},\ldots a_0] = P[s_{t+1}=s|s_t,a_t] = P^{a_t}_{s_{t+1},s_t}$ probabilité d'atteindre l'état s' en partant de l'état s et en émettant l'action a
- $R[s_{t+1}=s|t+1,s_t,s_{t-1},\ldots s_0,a_t,a_{t-1},\ldots a_0]=R[s_{t+1}=s|s_t,a_t]=R^{a_t}_{s_{t+1},s_t}$ retour moyen si on atteint l'état s' en partant de l'état s et en émettant l'action a

C'est quoi ? (12/14) Formalisons un peu (suite):

Si S et A sont finis et que le système est markovien, on a un problème de décision de Markov fini (PDMF).

Dans ce cas, il existe une stratégie optimale π^* , une fonction valeur optimale V^* et une fonction qualité optimale Q^* .

Et on a alors une jolie équation définissant V* par récurrence :

$$V^{*}(s) = \max_{a} \sum_{s'} P_{s,s'}^{a} \left[R_{s,s'}^{a} + \gamma V^{*}(s') \right]$$

(équation de Bellman, 1957)

On a une équation du même genre pour Q* :

$$Q^*(s,a) = \sum_{s'} P_{s,s'}^a \left[R_{s,s'}^a + \gamma \max_{a'} Q^*(s',a') \right]$$

C'est quoi ? (13/14) Formalisons un peu (suite):

Disposant de V*, on en déduit aisément une stratégie déterministe π^* :

- → dans l'état s, associer une probabilité non nulle aux actions qui amènent dans un état suivant auquel est associé un maximum de l'équation de Bellman (et seulement à ces actions-là).
- → stratégie gloutonne par rapport à V*
- \rightarrow principe des algos pour déterminer π : on calcule V* et on en déduit π^* Question : faut-il calculer V* pour tous les états avant de pouvoir calculer une bonne stratégie ?

Réponse : heureusement, non

C'est quoi ? (14/14)

Exemples d'application:

Tâches épisodiques:

- jeu constitué de parties (dames, échecs, tarot, ...)
- robot devant accomplir une certaine tâche dans une usine :
 - saisir une pièce,
 - fixer une pièce sur une autre,
 - ramasser des boîtes de boisson vides dans des bureaux,
 - peindre une carrosserie, ...

Tâches non épisodiques:

- contrôleur de systèmes temps réel à longue durée de vie :
 - ascenseurs
 - robot aspirateur
 - robot explorateur

• . . .

Comment on fait ? (1/)

Face à un problème à résoudre :

- 1. le mettre sous la forme d'un problème de renforcement
- 2. appliquer un algorithme de résolution :
 - 2 grandes approches :
 - si on connaît S, A (S et A finis pas trop grands), P et R : programmation dynamique
 - sinon : apprentissage par renforcement : méthodes basées sur la différence temporelle (TD)

Comment on fait ? (2/) Méthodes TD

(temporal difference learning)

Principe:

algorithme itératif d'apprentissage par interaction avec l'environnement :

- à chaque itération, étant dans un certain état s, l'apprenant agît sur son environnement par l'émission d'une action a de laquelle il attend un certain retour ;
- un retour (immédiat) est perçu;
- la différence entre le retour perçu et le retour attendu est utilisée pour modifier ses attentes (i.e. l'estimation de la qualité Q(s,a) ou de la valeur V(s)).

Petit à petit, commençant par émettre un comportement aléatoire, l'apprenant apprend quelle action doit être émise dans les différents états.

Comment on fait ? (3/) Méthodes TD

Deux composants essentiels d'un l'algorithme TD :

- sélection d'une action à émettre ;
- mise à jour des attentes.

Comment on fait ? (4/) Méthodes TD

Sélection de l'action :

étant dans l'état s, il faut choisir une action à émettre parmi $A_s \subset A$

On suppose que l'algorithme dispose d'une estimation de la qualité de chaque paire (s, a): Q(s,a).

Dans ce cas, on peut déterminer la meilleure action : $\underset{a \in A_s}{\operatorname{arg}} \max_{a \in A_s} Q(s, a)$

celle que l'algorithme estime, pour l'instant, comme étant celle qui rapporte la plus grande quantité de retour, donc l'action dont la qualité est la plus grande dans l'état courant.

Comment on fait ? (5/) Méthodes TD

Mise à jour des attentes :

Attente = retour attendu dans un état donné s si l'algorithme émet une certaine action a : Q(s,a).

Après l'émission de l'action a dans l'état s, l'algorithme reçoit un retour r.

Rappel : Q(s,a) = somme pondérée (par γ) des retours à percevoir dans le futur si l'action a est émise dans l'état s.

Donc, on peut produire une nouvelle estimation de Q(s,a):

$$Q_{\text{nouvelle valeur}}(s,a) = r + \gamma \max_{a'} Q(s',a')$$

où s' est l'état atteint effectivement après l'émission de a dans l'état s.

Comment on fait ? (6/) Méthodes TD

Structure de données pour représenter cette quantité?

Nombreuses possibilités :

• la plus simple : une table Q[s][a] : qualité de la paire (s, a) ;

Problème : si |S| est grand, cette table est immense!

Solutions plus compactes:

- réseau de neurones : on place (s,a) en entrée, il sort Q(s,a) ;
- polynôme;
- arbre de décision;
- ...

Comment on fait ? (7/) Méthodes TD

Q-Learning tabulaire [Watkins, 1989]:

- Initialiser les Q(s,a) arbitrairement
- Répéter
 - t←0
 - Initialiser l'état initial : s_t
 - Répéter // Effectuer un épisode
 - sélectionner l'action à émettre dans l'état s_t : a_t
 - émettre cette action
 - observer le retour r_t et le nouvel état s_{t+1}
 - mettre à jour Q(s,a) :

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)]$$

- $t\leftarrow t+1$
- Jusqu'à ce que s, soit un état terminal
- Jusque condition d'arrêt remplie

Comment on fait ? (8/) Méthodes TD

Q-Learning tabulaire:

la **mise à jour** de Q(s,a) :

Taux d'apprentissage €]0,1]

Estimation précédente

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)]$$

Différence entre estimation courante et nouvelle estimation Nouvelle estimation des retours à venir.

correction à apporter à Q(s,a) pour améliorer cette estimation

Comment on fait ? (9/) Méthodes TD

Sélection de l'action à émettre :

- ε -gloutonne : soit $\varepsilon \in [0,1]$:
 - prendre arg $\max_{a} Q(s_{t},a)$ avec probabilité ε
 - prendre une action au hasard avec probabilité 1-ε.

Encore mieux : faire varier ε au cours des itérations : $\varepsilon = 1/t$ par exemple

- softmax:
 - déterminer pour chaque action une probabilité qu'elle soit émise :
 - proportionnelle à sa qualité Q
 - ou selon une distribution de Boltzmann (prop. à $e^{Q/\tau}$)
 - choisir l'action à émettre en fonction de cette probabilité

Comment on fait ? (10/) Méthodes TD

Propriété de convergence :

pour un problème de décision markovien fini, Q-learning converge vers Q* si :

- toutes les paires (s,a) sont visitées une infinité de fois ;
- $\alpha_{v}(s,a) \in [0, 1[$

$$\bullet \sum_{v=1}^{\infty} \alpha_v(s,a) = \infty$$

$$\sum_{v=1}^{\infty} [\alpha_v(s,a)]^2 < \infty$$

où $\alpha_{v}(s,a)$ est la v^{e} visite de la paire (s,a)

Comment on fait ? (11/) Méthodes TD

Remarque : on suppose que Q(s,a)=0 à t=0

Comment on fait ? (12/) Méthodes TD

Intérêt:

apprentissage plus rapide : en un seul épisode, on apprend une estimation pour plusieurs paires (s,a)

Remarque:

plus on s'éloigne de l'état terminal, plus la mise à jour de Q(s,a) diminue ; elle diminue d'un facteur λ

Comment on fait ? (13/) Méthodes TD

Mécanisme de mémorisation des paires (s,a) parcourues durant l'épisode : trace d'éligibilité (*eligibility trace*)

e(s,a):

- initialisée à 0 pour toutes les paires (s,a)
- à chaque visite à (s,a) durant l'épisode : $e(s,a) \leftarrow e(s,a) + 1$
- à chaque mise à jour d'une qualité $(Q(s_t, a_t))$, on met à jour en même temps toutes les qualités pour les paires(s, a) dont $e(s, a) \neq 0$ et e(s, a) décroît d'un facteur λ .

 \rightarrow Algorithme Q(λ)

Comment on fait ? (14/) Méthodes TD

$Q(\lambda)$ tabulaire :

- Initialiser les Q(s,a) arbitrairement
- Répéter
 - t←0
 - e(s,a)←0
 - Initialiser l'état initial : s_t
 - choisir l'action a_t
 - Répéter // Effectuer un épisode

- émettre l'action a_t
- observer le retour r_t et le nouvel état s_{t+1}
- choisir a_{t+1} en fonction de s_{t+1}
- $a^*\leftarrow arg \max_b Q(s_{t+1},b)$
- $\delta \leftarrow r_t + \gamma Q(s_{t+1}, a^*) Q(s_t, a_t)$
- $e(s_t, a_t) \leftarrow e(s_t, a_t) + 1$
- Pour toutes les paires (s,a) Faire
 - $Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$
 - $e(s,a) \leftarrow \gamma \lambda e(s,a)$
- Jusqu'à ce que s, soit un état termina
- Jusque condition d'arrêt remplie

- 7 Fait
- t←t+1

Comment on fait ? (15/) Méthodes TD

$Q(\lambda)$:

Il y a plusieurs versions de cet algorithme :

- la précédente est qualifiée de naïve ;
- celle proposée originalement par [Watkins, 1989] est :
- une autre version a été proposée par[Peng & Williams, 1994].

- émettre l'action a_t
- observer le retour r_t et le nouvel état s_{t+1}
- choisir a_{t+1} en fonction de s_{t+1}
- $a^* \leftarrow arg \max_b Q(s_{t+1},b)$
- $\delta \leftarrow r_t + \gamma Q(s_{t+1}, a^*) Q(s_t, a_t)$
- $e(s_t, a_t) \leftarrow e(s_t, a_t) + 1$
- Pour toutes les paires (s,a) Faire
 - $Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$
 - Si $a_{i+1}=a^*$ Alors $e(s,a)\leftarrow \gamma \lambda e(s,a)$
 - Sinon $e(s,a) \leftarrow 0$
- Fait
- t←t+1

Comment on fait ? (16/) Méthodes TD

Généralisation de l'apprentissage?

```
Très faible ; quelques propositions pour l'améliorer : idée : quand on met à jour la qualité, on met en même temps à jour la qualité d'autres paires état, action.
```

Autre approche : utiliser une structure de données qui généralise mieux qu'une table :

- réseau de neurones;
- arbre de décision;
- polynôme;
- . . .

Comment on fait ? (17/) Méthodes TD

Algorithme TD utilisant un réseau de neurones (PMC) pour stocker Q(s,a) :

Comment on fait ? (18/) Méthodes TD

Les poids des connexions du réseau sont responsables de la valeur en sortie du réseau.

→ mettre à jour Q revient à modifier les poids pour que la sortie (estimation de Q)
prédise mieux le retour effectivement reçu (exactement le même principe que dans la version tabulaire).

Mise à jour des connexions : rétro-propagation du gradient.

Pour la sélection de l'action, c'est exactement comme pour la version tabulaire : on place en entrée les différentes actions possibles pour l'état courant ; on regarde la valeur en sortie (estimation de Q(s,a)). On sélectionne la meilleure avec une probabilité ε .

Comment on fait ? (19/) Méthodes TD

Intérêt d'utiliser un réseau de neurones :

quand on met à jour les poids pour mettre à jour Q, toutes les estimations de Q sont modifiées en même temps (et non pas seulement celle pour la paire qui vient d'être visitée dans le Q-learning tabulaire ou les dernières paires visitées dans le $Q(\lambda)$ tabulaire).

→ généralisation de l'apprentissage importante.

Outre le PMC, les réseaux de Kohonen ont été utilisés.

Méthodes TD (20/20) Quelques sujets chauds

Apprentissage de modèle de l'environnement : (Dyna, Dyna-Q, prioritized sweeping, ...)

➤ Dans un contexte continu : discrétisation de l'espace ; différentes approches pour discrétiser utilement (partigame et successeurs : R. Munos par ex.)

- ➤ Qu'est ce qu'un état ? apprentissage d'états (A. Dutech par ex.)
- Environnement non markovien (POMDP)

 Idée: transformer un problème non markovien en une succession de problèmes markovien
 approche hiérarchique (Dietterich, Wiering, ...)
- > Systèmes multi-agents apprenant par renforcement N agents coopérant apprennent-ils mieux qu'un seul à résoudre une tâche donnée
- Apprentissage hybride
 Combinaison apprentissage par renforcement et apprentissage avec des exemples

A quoi ça sert ? (1/6)

- Contextes dans lesquels on ne sait pas très bien ce qu'il faut faire :
 - On ne peut pas donner d'exemples de ce qu'il faut faire, mais on est capable de juger si telle option est plus ou moins correcte.
- Quelques applications :
 - Jeux : TD-Gammon, KnightCap (échecs)
 - Contrôle d'ascenseurs
 - Contrôle de robot mobile
 - Gestion de la réservation de places d'avions
 - Allocation dynamique de canaux téléphone cellulaire
 - Ordonnancement de tâches
 - Vision
 - Système d'aide à l'apprentissage intelligent (ITS)
 - Jeux vidéo
 - Modèle du comportement animal

A quoi ça sert ? (2/6) TD-Gammon

Tesauro, 1992–1995

Initialement : réseau aléatoire

Joue de très nombreuses parties contre lui-même et apprend ainsi une fonction valeur (1,5x10⁶ parties pour la version 3.0, 80 neurones cachés)

Réseau (PMC) ayant : 198 entrées et 40 à 80 neurones cachés.

Versions récentes combinent TD avec un minimax (peu profond).

A quoi ça sert ? (3/6) Le jeu de « checkers »

Samuel, 1959:

- logiciel apprenant à jouer aux checkers.
- essaie d'associer à la configuration de jeu courante sa valeur.

A quoi ça sert ? (4/6) Contrôle d'ascenseurs

Crites and Barto, 1996

10 étages, 4 ascenseurs couplés

ETAT: état des boutons; position, direction et état de déplacement des ascenseurs; nombre de passagers dans les ascenseurs et en attente

ACTIONS: arrêter à ou passer l'étage suivant, ; quand arrêté, monter ou descendre

RETOURS: -1 par pas d'attente par personne en train d'attendre

A quoi ça sert ? (5/6) Contrôle d'ascenseurs

Réseau de neurones composé de 47 entrées, 20 neurones cachés, 1 ou 2 sorties.

A quoi ça sert ? (6/6) Contrôle de robots mobiles

Navigation dans des environnements a priori inconnu.

Voir par exemple:

- travaux de C. Touzet
- projet MARS au MIT (http://www.ai.mit.edu/people/lpk/mars/)
 - Combinaison apprentissage par renforcement et supervisé
- robotique collective

La communauté

- En cours de développement
- Peu développée en Europe
- Groupe PDMIA (http://www.loria.fr/~buffet/pdm-et-ia)
- Travaux sur les robots autonomes (logiciel ou matériel)

Conclusion (1/2)

- L'apprentissage par renforcement peut trouver sa place dans de très nombreuses situations réelles qui sont peu ou mal formalisées
- Proximité avec AG et algo. en essaim qui sont également des algorithmes reposant sur des notions d'essai/erreur et de retour (fitness, phéromone)
- Liens forts avec la programmation dynamique (cf. prog. dyn. asynchrone et la prog. dyn. temps réel)

Conclusion (2/2)

L'apprentissage par renforcement est un peu dans la situation des AG il y a encore peu!

- mal connu en dehors de son cercle
- apprendre à maîtriser ce type d'apprentissage
- de très nombreuses questions plus ou moins techniques restent à étudier :
 - paramètres, problèmes de représentation, fonction de renforcement, ...
 - méthodologie : comment formuler un problème sous la forme qu'il faut pour qu'il soit traité au mieux par ce genre d'algos ?
 - préciser sa niche
 - étudier l'hybridation de ce type d'apprentissage avec d'autres, voire avec d'autres algorithmes de recherche (pas nécessairement d'apprentissage)
 - formaliser ses performances (convergence, apprenabilité, dim. VC?, ...)
 - adapter des techniques de l'apprentissage supervisé à l'apprentissage par renforcement (*boosting*, ...)

• ...

Conclusion

- L'apprentissage par renforcement peut trouver sa place dans de très nombreuses situations réelles qui sont peu ou mal formalisées
- Proximité avec AG et algo. en essaim qui sont également des algorithmes reposant sur des notions d'essai/erreur et de retour (fitness, phéromone)
- Liens forts avec la programmation dynamique (cf. prog. dyn. asynchrone et la prog. dyn. temps réel)

Où démarrer pour en savoir plus ?

- Dépôt RL : http://www-anw.cs.umass.edu/rlr
- Tutoriels sur le web:
 - Moore, littman, kaelbling: http://www.cs.washington.edu/research.jair/volume4/kaelbling96a-html/rl-survey.html
 - C. Touzet : http://saturn.epm.ornl.gov/~touzetc/Publi/Bq Jutten.pdf
 - Sur les POMDP : http://www.cs.brown.edu/research/ai/pomdp/tutorial/index.html
- Des livres :
 - Sutton, Barto, Reinforcement Learning, MIT Press, 1998
 - Bertsekas, Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996
 - Bertsekas, *Dynamic Programming and Optimal Control*, Athena Scientific, 2000 (2 vol.)
 - Les actes des conférences ICML, ECML et SAB.
 - Les revues Machine Learning, Adaptive Behavior, JAIR, JMLR