DATABANKEN

C# programmeur

DATABANKEN – Planning

Vrij VM 16/10/2020	Normalisatie	Ontwerp database, tables ontwerpen / aanmaken	
Vrij NM 16/10/2020	Normalisatie	relaties, indexen, unieke ID	
Di VM 20/10/2020	Queries	DML: Select query, Joins	
Di NM 20/10/2020	Queries	DML: Update en delete queries,	
Do VM 22/10/2020	Queries	DML: Subqueries, single row functions	
Do NM 22/10/2020	Werken met data	DDL	
Vrij VM 23/10/2020	Werken met data	DDL	
Vrij NM 23/10/2020	T SQL	T-Sql meest gebruikte functies	
Di VM 27/10/2020	Stored procedures	Aanmaken, wijzigen en verwijderen	
Di NM 27/10/2020	Advanced topics	Query performance; Index strategieën	
Do VM 29/10/2020	Opdracht databanken	20 pt voor dagelijks werk	
Do NM 29/10/2020	Examen Databanken	40pt EX (Theorie) + 40pt EX (Praktijk)	

DATABANKEN – INHOUD DEZE LES

Introductie

- Gegevens versus informatie
- Soorten informatie
- Databanksystemen DBMS

Relationele databanken

- Wat is een relationele databank
- Terminologie:

entiteiten, attributen, relaties, tabellen, rijen (records), kolommen, PK, FK

Normalisatie (1NF, 2NF, 3NF)

DATABANKEN

Introductie

Gegevens vs informatie

GEGEVENS:

10

14

15

INFORMATIE:

Brussel	februari	maart	april
Gemiddelde temperatuur	10	14	15

Samengestelde gegevens

= verzameling van elementaire gegevens die bij elkaar horen

voorbeeld: adres

adres = (straat, huisnr, postnr, woonplaats)

Berekende gegevens

- worden afgeleid uit andere gegevens
- worden niet opgenomen in een database

voorbeeld: totaalprijs

totaalprijs = eenheidsprijs x aantal

Gegevens verzameling

bevat een aantal gegevens die logisch bij elkaar horen

voorbeeld: Een kasboek

Een winkelier(ster) houdt zijn/haar kosten en inkomsten bij in een kasboek. De kasboek is hier een gegevensverzameling.

database

Wordt gebruikt om gegevensverzamelingen te bewaren.

Een database is een gecentraliseerde, gestructureerde verzameling van gegevens die op een computer bewaard wordt.

DATA APPLICATIF **GEBRUIKERS**

OEFENING KLANTENBESTAND

Download de volgende bestanden van Github

https://github.com/CSharpSyntraWest/LESSEN_DATABANK

Onder Les 1:

- OEFENING_KLANTENGEGEVENS.docx
- Oefening_KlantenBestand.xlsx

Database Management System (DBMS)

= Data + Software die de data aanspreekt en beheert (bv Ms Access,...)

Vereisten voor een DBMS

- Simultaan gebruik van gegevens
- Beveiliging van toegang
- Beveiliging van gegevens
- Gedistribueerde gegevens (= gegevens zijn verdeeld over sub-databases maar worden centraal beheerd)
- Backup mogelijkheid van gegevens

Voorbeelden van verschillende DBMS

• Relationele databankSysteem(RDBMS)

DBMS gebaseerd op relationeel modelBv: Microsoft SQL Server, Microsoft Access, Oracle, and MySql,...

Gebruiken **SQL** (Structured Query Language) om databank-gegevens op te halen en te manipuleren

- Objectgeoriënteerde databanken
- Hierarchische databanken
- XML databanken

DATABANKEN

Relationele databases

Relationele Databanken

- Een relationele databank organiseert gegevens in 2-dimensionale tabellen die uit kolommen en rijen bestaan:
- Bv MS Access:

	OrderID	CustomerID	EmployeeID	OrderDate	RequiredDate
•	10248	VINET	5	7/4/1996 12:00:00 AM	8/1/1996 12:00:
	10249	TOMSP	6	7/5/1996 12:00:00 AM	8/16/1996 12:00
	10250	HANAR	4	7/8/1996 12:00:00 AM	8/5/1996 12:00:
	10251	VICTE	3	7/8/1996 12:00:00 AM	8/5/1996 12:00:
	10252	SUPRD	4	7/9/1996 12:00:00 AM	8/6/1996 12:00:
	10253	HANAR	3	7/10/1996 12:00:00 AM	7/24/1996 12:00
	10254	CHOPS	5	7/11/1996 12:00:00 AM	8/8/1996 12:00:
∢ 🔚		ı			

Voorbeeld TABLE Product

ProductID	Product	Enkcal	Eiwit	KH	Suikers	Vet
1	Brood, bruin	242	7	45,6	2,9	3,6
2	Tahin sesampasta	576	22	6	0	51,6
3	Melk, halfvolle	46	3,3	4,8	4,8	1,5
4	Cacaopoeder gezoet	385	4	87	78	2,5
5	Selderij, bleek	19	0,6	3,4	0	0,2
6	Mandarijn	42	0,8	9,5	9,5	0
7	Chili Sin Carne 1 portie	62	3,8	7,8	3,7	1,8
8	Room, 8% vet	107	2,9	5,9	5,1	8
9	Wijn, rood 12°	68	0,1	0,2	0,2	0
10	Rijst, bruin, gekookt	141	2,6	30,2	0	1,1
11	Linzen, gekookt	88	8,3	12,7	0,3	0,5
12	Wijn, rood 12°	67	0	0,3	0,3	0
13	Yoghurt, magere	52	4,6	6,4	6,4	0,8
14	Cashewnoten	575	18,8	22,5	0	46,3
15	Kiwi	56	1	12,4	8,5	0,2

Relationele databases

- Voor een gebruiker (beheerder) bestaat een relationele databank uit een verzameling van tabellen (en niets anders dan tabellen)
- In een relationele databank worden entiteiten bijgehouden (cursist, cursus) en hun attributen (Voornaam, geboortedatum) en relaties tussen die entiteiten (cursist Jan is ingeschreven voor cursus databanken)
- Zowel entiteiten, attributen als relaties worden bijgehouden in tabellen

Relationele databanken

Cursustabel

id	titel
1	databanken
2	SQL

Cursisttabel

id	naam
1	Jan
2	Rita

Inschrijvingtabel

id	cursistid	cursusid
1	1	1
2	2	1
3	1	2

Cursist Jan is ingeschreven voor de cursussen "databanken" en "SQL". Cursiste Rita is ingeschreven voor de cursus "databanken"

Metadata en data

METADATA

= namen van tabellen,kolomnamen, datatype vanelke kolom, security

bv:

Cursus: id (int, uniek) en titel (max 20 karakters)

Cursist: id (int, uniek) en naam (max 25 karakters)

Inschrijving: id (int, uniek), cursusid (int gekoppeld aan id in cursus), cursistid (int gekoppeld aan id in cursist)

ledereen mag alle gegevens lezen. Cursusgegevens mogen alleen gewijzigd worden door cursusbeheerders.

DATA

1	databanken
2	SQL

1	Jan
2	Rita

1	1	1
2	2	1
3	1	2

Tabellen

- Tabellen bestaan uit rijen (records) en kolommen (velden)
- Elke kolom in een tabel heeft een unieke naam (in die tabel)
- Een kolom bevat een bepaald datatype: int, float, tekst,...
- Records in een relationele databank hebben geen volgorde

De primaire sleutel (Primary Key of PK)

- Elke rij (record) in een tabel moet aangesproken worden via een sleutel Moet uniek zijn voor elke record
- Uniek veld aanwezig? → primaire sleutel
- Combinatie van velden uniek? → gecombineerde primaire sleutel
- Andere gevallen: een extra uniek veld toevoegen. (dikwijls met autonummering)

De Foreign Key (FK)

= een attribuut in de tabel die verwijst naar een andere tabel waar deze attribuut tevens voorkomt en de primary key vormt van die andere tabel.

Voorbeeld: Een klantnr in tabel facturen verwijst naar het klantnr in de tabel klanten. Het klantnr van de tabel klanten is de PK van de tabel.

Entiteiten

= elke persoon, plaats, gebeurtenis, concept, enz... waarover de gebruiker gegevens wil bijhouden. -> worden omgezet tot tabellen

Voorbeelden van entiteiten:

Product

Klant

Leverancier

Bestelling

Factuur

Attributen

Elke entiteit heeft één of meerdere kenmerken of attributen. -> worden kolommen in tabel

Enkele voorbeelden van attributen

Enkele attributen van entiteit **Klant**:

VoorNaam

FamilieNaam

Email

Enkele attributen van entiteit **Product**:

Naam

Beschrijving

. . .

Relaties

Relaties geven het verband weer tussen entiteiten.

- 1:1 relaties (één op één relaties) Elke instantie van een bepaalde entiteit komt maximaal met één instantie van de andere entiteit overeen.
- 1:N relaties (één op veel relaties) Voor elke entiteit zijn er meerdere instanties van de andere entiteit mogelijk
- N:N relaties (veel op veel relaties) Voor elke entiteit zijn er meerdere instanties van de andere entiteit en vice versa

Hoe gegevens verzamelen?

- 1. Doel bepalen: Wat komt in de database, wat niet? Zo beperkt mogelijk houden.
- 2. Bronnen bekijken: Hoe is de situatie nu?
- 3. Goed luisteren
- 4. Inventariseren: Breng eisen en wensen in kaart
- 5. Analyseren: Werk je inventaris volledig uit
- 6. Terugkoppelen: Betrek de klant regelmatig terug in het denkproces

OFFENING MULTIPLE CHOICE Db

Download het volgende bestand van Github

OEFENING DATABASE MULTIPLE CHOICE.docx

DATABANKEN

Normalisatie

Data anomalieën

Bookld	BookName	Categoryld	CategoryName
1	Cooking Light	1001	Cooking
2	Prophecy	1002	Mystery & Thriller
3	Shift	1003	Business
4	The Confession	1002	Mystery & Thriller

Insert anomalie

 Je kan geen nieuwe gegevens invoegen in de tabel vanweg een 'unrelated dependency'

Delete Anomalie

 1 gegeven weggeven geeft een onwenselijk verlies van andere gegevens

Update Anomalie

 Aanpassing van een enkele gegevenswaarde vereist een aanpassing van meerdere rijen

Databank normalisatie

Om voorgaande data-anomalieën te vermijden, Gaat men relationele databanken normaliseren.

Databank Normalisatie=

Het proces dat garandeert dat een databaseontwerp vrij is van problemen (data-anomalieën) die kunnen leiden tot:

- verlies van gegevens
- integriteit van gegevens

Eenvoudig gezegd: vermijd verlies van gegevens en zorg dat er geen rommel in de database kan komen!

Databank ontwerp: 3 eerste normalizaties

- Een goed ontwerp beantwoordt aan de drie normaalvormen:
- 1ste normaalvorm: velden mogen alleen enkelvoudige attributen bevatten
- 2de normaalvorm: in een tabel met een samengestelde primaire sleutel moet elk attribuut afhankelijk zijn van de volledige primaire sleutel
- 3de normaalvorm: attributen mogen alleen afhankelijk zijn van de primaire sleutel, niet van de andere attributen

Eerste Normaal Vorm (1NF)

Om aan de eerste normaalvorm te voldoen, mag geen niet op dezelfde kolom en rij dezelfde rij van een tabel meerdere waarden bevatten staan

Bv: de volgende tabel is NIET in 1 NF want kolom PhoneNumber bevat op rij 2 en 3 meerdere waarden:

<u>ld</u>	FirstName	LastName	PhoneNumber
1	Jane	Doe	(503) 555-6874
2	John	Doe	(509) 555-7969, (509) 555-7970
3.	Howard	Steel	(604) 555-3392, (604) 555-3393

Tweede Normaal Vorm (2 NF)

- Een tabel voldoet aan de 2^{de} Normaalvorm, moet het eerst voldoen aan 1NF
- Daarenboven moeten alle niet-key kolommen functioneel afhankelijk zijn van de volledige PK

Bv: de volgende tabel is NIET in 2 NF want de niet-key kolommen zijn functioneel afhankelijk van een gedeelte van de PK:

<u>Orderld</u>	<u>Customerld</u>	OrderDate	CustomerName	
101	1	10/1/2010	Jane Doe	
102	2	10/5/2010	John Doe	
103	1	10/4/2010	Jane Doe	

Derde Normaal Vorm (3 NF)

- Een tabel voldoet aan de 3^{de} Normaalvorm, moet het eerst voldoen aan 2NF
- 3NF vereist ook dat er geen functionele afhankelijkheid is tussen niet-key attributen (d.i kolommen)

Bv: de volgende tabel is NIET in 3 NF want 2 niet-key kolommen zijn functioneel afhankelijk van elkaar (SupplierID & Fax)

<u>ItemId</u>	SupplierId	Fax
101	100	(514) 555-2955
102	11	(514) 555-9022
103	525	(313) 555-5735

Voorbeeld normaliseren: De bestelbon

PIZZERIA

LUIGI

Order nr: 12034

Datum: 13/01/2014

Klantnr: 00259

Alberto Pinacolada Steenbrugstraat 135

1930 Zaventem

artikelnr	omschrijving	aantal	prijs	totaal
10015	Pizza Polo	1	€7,00	€7,00
10280	Pizza Margeritte	3	€6,50	€19,50
10147	Pizza Mozzerella en tomaat	2	€6,50	€13,00

TOTAAL

€49,50

Voorbereiding: de nulde normaalvorm

ORDERS

ordernr

orderdatum

klantnr

klantnaam

adres

postcode

plaats

artnr

artomschrijving

aantal

prijs

regeltotaal

eindtotaal

Eerst moeten we de informatiebehoefte gaan inventariseren.

Alle gegevens op de bestelbon onder elkaar zetten. Bovenaan plaatsen we in hoofdletters de naam van deze lijst.

De aldus bekomen lijst wordt ook wel de nulde normaalvorm (0 NV) genoemd.

ORDERS

ordernr

orderdatum

klantnr

klantnaam

adres

postcode

plaats

artnr

artomschrijving

aantal

prijs

regeltotaal eindtotaal

Stap 1:

Zijn alle attributen enkelvoudig?

Ja -> 1 NV

Berekende velden worden (meestal) verwijderd

ORDERS

<u>ordernr</u>

orderdatum

klantnr

klantnaam

adres

postcode

plaats

artnr

artomschrijving

aantal

prijs

Stap 2: Geef de sleutel aan

(Onderlijn het uniek veld dat het order kan identificeren)

ORDERS

ordernr

orderdatum

klantnr

klantnaam

adres

postcode

plaats

RG artnr

RG artomschrijving

RG aantal

RG prijs

Stap 3: Geef de deelverzameling aan die een herhaald aantal keren voorkomt t.o.v. de primaire sleutel.

Deelverzameling

= RG

= Repeterende Groep

ORDERS ordernr orderdatum klantnr klantnaam adres postcode plaats BESTELDE_ARTIKELEN ordernr artnr artomschrijving aantal prijs

Stap 4: Stop de repeterende groepen in een nieuwe lijst en voeg er de sleutel van de oorspronkelijke groep bij

ORDERS <u>ordernr</u> orderdatum klantnr klantnaam adres postcode plaats BESTELDE_ARTIKELEN <u>ordernr</u> artnr artomschrijving aantal prijs

Stap 5: Bepaal de sleutel van de nieuwe tabel

Ter herinnering:

1ste normaalvorm:

velden mogen alleen enkelvoudige attributen bevatten

2de Normaalvorm

ORDERS

ordernr

orderdatum

klantnr

klantnaam

adres

postcode

plaats

In een tabel met een samengestelde primaire sleutel moet elk attribuut afhankelijk zijn van de volledige primaire sleutel

BESTELDE_ARTIKELEN

<u>ordernr</u>

<u>artnr</u>

aantal

ARTIKELEN

artnr

artomschrijving

prijs

3de Normaalvorm

ORDERS

ordernr orderdatum

klantnr klantnaam adres postcode plaats Attributen mogen alleen afhankelijk zijn van de primaire sleutel, niet van de andere attributen

BESTELDE_ARTIKELEN

<u>ordernr</u>

<u>artnr</u>

aantal

ARTIKELEN

<u>artnr</u>

artomschrijving

prijs

3de Normaalvorm

ORDERS

<u>ordernr</u>

orderdatum

klantnr

KLANTEN

klantnr

klantnaam

adres

postcode

plaats

BESTELDE_ARTIKELEN

ordernr

<u>artnr</u>

aantal

Attributen mogen alleen afhankelijk zijn van de primaire sleutel, niet van de andere attributen

ARTIKELEN

<u>artnr</u>

artomschrijving

prijs

Oefeningen normalisatie

Download het bestand van Github

https://github.com/CSharpSyntraWest/LESSEN_DATAB

ANK onder LES 1

Oefeningen - normalisatie.pdf

OEFENING BIEREN DATABASE

KLASSIKALE OEFENING

Installeer SQL SERVER 2019 (Developer edition of SQL Express) (indien Netwerk dit aankan)

Github/Databanken/INSTALL/

Download de volgende bestanden van Github/Databanken/LES1

- BierenDb.mdf
- BierenDb_log.ldf

In Sql server management studio (na installaties): we bekijken de inhoud van de bieren database

Samenvatting

Introductie

- Gegevens versus informatie
- Soorten informatie
- Databanksystemen DBMS

Relationele databanken

- Wat is een relationele databank
- Terminologie:

entiteiten, attributen, relaties, tabellen, rijen (records), kolommen, PK, FK

Normalisatie (1NF, 2NF, 3NF)

VRAGEN?

