IN THE CLAIMS

Claims 1-7, and 27-33 remain in the application. Claims 8-26 and 34-40 have been withdrawn from this application. A listing of claims follows:

1. (Original) A method for controlling admittance of a data packet into a memory buffer, the method comprising:

performing, prior to queuing the data packet for routing by a processor, the following:

receiving a data packet from one of at least two different ports;

determining a priority value within the data packet; and

determining an admittance group identifier for the data packet based on
the priority value and the port the data packet was received; and

queuing the data packet from the memory buffer to one of a number of queues for routing by the processor upon determining that a number of data packets stored in the memory buffer and having the admittance group identifier is not greater than a threshold value.

- 2. (Original) The method of claim 1, further comprising discarding the data packet upon determining that the number of data packets stored in the memory buffer and having the admittance group identifier is greater than the threshold value.
- 3. (Original) The method of claim 1, wherein determining the priority value within the data packet is based on classifying the data packet as one of a number of packet formats.

- 4. (Original) The method of claim 3, wherein classifying the data packet received from one of the at least two different ports comprises classifying the data packet using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of the number of packet formats.
- 5. (Original) The method of claim 4, wherein the number of packet formats are selected from the group consisting of Internet Protocol and Ethernet.
- 6. (Original) The method of claim 1, wherein determining the admittance group identifier includes traversing a table of admittance group identifiers based on the priority value and the port that the data packet was received from.
- 7. (Original) The method of claim 6, further comprising selectively outputting the data packets from the memory buffer through the number of queues based on the admittance group identifier.

8.	(Withdrawn) A-method comprising:
	- receiving data packets from at least two different-ports;
	for each of the data packets, performing, prior to queving the data packet for
routii	ng by a processor, the following:
	classifying the data packet received from one of the at least two different
ports	;
	locating a priority value within the data packet based on the classifying of
	t he data packet;
	determining an admittance group identifier for the data packet based on
	the priority value and the port the data packet was received:

exceeded the threshold value.

retrieving a threshold value-for storing of data packets into the memory
buffer that have the admittance group identifier;

retrieving a stored value, the stored value representing a number of data

packets; stored in the memory buffer that have the admittance group identifier;

maintaining the data packet in the memory buffer upon determining that
the stored value has not exceeded the threshold value; and
discarding the data packet upon determining that the stored value has

- 9. (Withdrawn) The method of claim 8, further comprising assigning the data packet to a queue of a number of queues to output the data packet from the memory buffer based on the priority value and the port that the data packet was received from.
- 10. (Withdrawn) The method of claim 9, further comprising selectively outputting the data packets from the memory buffer through the number of quoues based on the priority value and the port that the data packets were received from:
- 11. (Withdrawn) The method-of claim-8, wherein classifying the data packet received from one of the at-least-two different ports comprises classifying the data packet using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of a number of packet formats.
- 12. (Withdrawn) The method-of-claim-11, wherein the number of packet formats are selected from the group consisting of Internet Protocol and Ethernet.
- 13. (Withdrawn) The method of claim 11, wherein classifying the data packet using instructions in a number of instruction streams comprises:

	- selecting a hyte of the data packet based on an offset value stored in the
instr	netion;
	masking the selected byte of the data packet based on a mask value stored in the
instr	a ction; and
	emparing the masked selected byte of the data-packet to a comparison value
store	d in the instruction based on an operation code stored in the instruction.
14.	(Withdrawn) The method of claim 13, further comprising:
	changing a state of one of the number of instruction streams to failed upon
deter	mining that the comparing for an instruction in the one of the number of instruction
st r oa	ms failed; and
	classifying the data packet using instructions in the number of instruction streams
t hat c	do not have a failed state.
15.	(Withdrawn) An apparatus comprising:
	proclassification circuitry coupled to receive a number of data packets from a
num	ber of ports, wherein the proclassification circuitry is to determine a priority value for
each	of the number of data packets;
	eontrol sirouitry coupled to the preclassification circuitry, and
-	- a memory-buffer coupled to the control circuitry;
	a-number of quoues coupled to a number of processors, wherein the control
oireu	nitry is to queue a data packet of the number of data packets into the number of
queu	es from the memory buffer upon determining that a number of the data packets
skare	nd in the memory buffer, which are received on the port that the that the data packet is
recei	ved and have a priority value that equals the priority value of the data packet, has not
ежее	eded a threshold value.

- 16. (Withdrawn) The apparatus of claim-15, wherein the control circuitry is to discard the data packet upon determining that the number of data packets stored in the memory buffer, which are received on the port that the data packet was received and have a same priority value that was determined for the data packet, has exceeded the threshold value.
- 17. (Withdrawn) The apparatus of claim 15, wherein the preclassification circuitry is to determine the priority value based on classifications of the number of data packets as one of a number of packet formats.
- 18. (Withdrawn) The apparatus of claim 17, wherein the preclassification circuitry is to determine the priority value based on classifications using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of the number of packet formats.
- 19. (Withdrawn) The apparatus of claim-18, wherein the number of packet formats are selected from the group consisting of Internet Protocol and Ethernet.
- 20. (Withdrawn) The apparatus of claim 15, wherein the preclassification circuitry is to assign each of the number of data packets to an admission group and a queue to output the data packet from the memory buffer based on the priority value and the port that the data packet is received from:
- 21. (Withdrawn) The apparatus of claim 20, wherein the control circuitry is to selectively output the number of data packets from the memory buffer through the number of queues based on the priority value and the port that the number of data packets are received from.

22. (Withdrawn) An apparatus for controlling admittance of a data packet into a		
network element, the apparatus comprising:		
preclassification circuitry coupled to receive a number of data packets from one of		
at least two different ports, wherein the preclassification circuitry is to determine a		
priority value for each of the number of data packets;		
admission control circuitry is coupled to receive the priority value and a port value for the		
port of the one of at least two different ports that the number of data packets are received		
from; and		
admission control circuitry is to queue a data packet of the number of data packets into		
one of a number of processing quoues upon determining that a number of the data packets		
stored in the memory buffer, which are received on the port that the that the data packet is		
received and have a priority value that equals the priority value of the data packet, has not		
exceeded a threshold value.		

- 23. (Withdrawn) The apparatus of claim 22, wherein the proclassification circuitry is to assign each of the number of data packets to an admission group and a processing queue of the number of processing queues to output the data packet from the memory buffer based on the priority value and the port that the data packet is received from.
- 24. (Withdrawn) The apparatus of claim 23, wherein the memory control circuitry is to selectively output the number of data packets from the memory buffer through the number of processing queues-based on the priority value and the port that the number of data packets are received from.

- 25. (Withdrawn) The apparatus of claim 22, wherein the preclassification circuitry is to determine the priority value based on classifications using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of the number of packet formats.
- 26. (Withdrawn) The apparatus of claim 25, wherein the number of packet formats are selected from the group consisting of Internet Protocol and Ethernet.
- 27. (Original) A machine-readable medium that provides instructions for controlling admittance of a data packet into a memory buffer, which when executed by a machine, causes the machine to perform operations comprising:

performing, prior to queuing the data packet for routing by a processor, the following:

receiving a data packet from one of at least two different ports;

determining a priority value within the data packet; and

determining an admittance group identifier for the data packet based on
the priority value and the port the data packet was received; and

queuing the data packet from the memory buffer to one of a number of queues for routing by the processor upon determining that a number of data packets stored in the memory buffer and having the admittance group identifier is not greater than a threshold value.

28. (Original) The machine-readable medium of claim 27, further comprising discarding the data packet upon determining that the number of data packets stored in the memory buffer and having the admittance group identifier is greater than the threshold value.

- 29. (Original) The machine-readable medium of claim 27, wherein determining the priority value within the data packet is based on classifying the data packet as one of a number of packet formats.
- 30. (Original) The machine-readable medium of claim 29, wherein classifying the data packet received from one of the at least two different ports comprises classifying the data packet using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of the number of packet formats.
- 31. (Original) The machine-readable medium of claim 30, wherein the number of packet formats are selected from the group consisting of Internet Protocol and Ethernet.
- 32. (Original) The machine-readable medium of claim 27, wherein determining the admittance group identifier includes traversing a table of admittance group identifiers based on the priority value and the port that the data packet was received from.
- 33. (Original) The machine-readable medium of claim 32, further comprising selectively outputting the data packets from the memory buffer through the number of queues based on the admittance group identifier.

34.	(Withdrawn) A machine readable medium that provides instructions, which when		
өхөөн	ed by a machine, causes the machine to perform operations comprising:		
	receiving data paokots from at least two different ports;		
	for each of the data packets, performing, prior to queuing the data packet for		
couting by a processor, the following:			
norte:			

locating a priority value within the data packet-based on the classifying of the data packet;

determining an admittance group identifier for the data packet based on the priority value and the port the data packet was received;

retrieving a threshold value for storing of data packets into the memory buffer-that-have the admittance-group identifier;

retrieving a stored value, the stored value representing a number of data packets stored in the memory buffer that have the admittance group identifier;

maintaining the data packet in the memory buffer upon determining that the stored value has not exceeded the threshold value; and

disearding the data packet upon determining that the stored value has exceeded the threshold value.

- 35. (Withdrawn) The machine readable medium of claim 34, further comprising assigning the data packet to a queue of a number of queues to output the data packet from the momory buffer based on the priority value and the port that the data packet was received from:
- 36. (Withdrawn) The machine readable medium of claim 35, further comprising selectively outputting the data packets from the memory buffer through the number of queues based on the priority value and the port that the data packets were received from:
- 37. (Withdrawn) The machine readable medium-of claim 34, wherein classifying the data packet received from one of the at least two different ports comprises classifying the data packet using instructions in a number of instruction streams, wherein each of the number of instruction streams are associated with one of a number of packet formats.

38. (Withdrawn) The method of elaim 37, wherein the number of packet formats are		
selected from the group consisting of Internet Protocol and Ethernet.		
39. (Withdrawn) The method of claim 37, wherein classifying the data packet using		
instructions in a number of instruction streams comprises:		
solecting a byte of the data packet based on an offset value stored in the		
instruction;		
masking-the selected byte of the data packet-based on a mask value stored-in-the		
instruction; and		
- comparing the masked selected byte of the data packet to a comparison value		
stored in the instruction based on an operation code stored in the instruction.		
40, (Withdrawn) The method-of claim 39, further comprising:		
changing a state of one of the number of instruction streams to failed upon		
determining that the comparing for an instruction in the one of the number of instruction		
stroums failed; and		
elassifying the data packet using instructions in the number of instruction streams		
that do not have a failed state.		