

ЭТИКЕТКА <u>УПЗ.487.361 ЭТ</u>

Микросхема интегральная 564 ЛС2В Функциональное назначение – Четыре логических элемента «И – ИЛИ»

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход	9	Вход
2	Вход	10	Выход
3	Вход	11	Выход
4	Вход	12	Выход
5	Вход	13	Выход
6	Вход	14	Вход
7	Вход	15	Вход
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IL}	-	/-0,1/	
2. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IH}	-	0,1	
3. Ток потребления в статическом режиме, мкА, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B $U_{\rm CC}$ = 15 B	I_{CC}	- - -	5,0 10,0 20,0	
4. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 B, 10 B$	U_{OL}	-	0,01	
5. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	Uoн	4,99 9,99		
6. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 B, U_O = 0,5 B \\ U_{CC} = 10 B, U_O = 0,5 B$	I_{OL}	0,5 1,0		
7. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_0 = 4,5 \; B \\ U_{CC} = 10 \; B, \; U_0 = 9,5 \; B$	I_{OH}	/-0,5/ /-1,0/		

Продолжение таблицы 1			
1	2	3	4
8. Время задержки распространения при включении, нС, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	320
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	130
9. Время задержки распространения при выключении, нС, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH}$	-	320
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	130
10. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC} = 5 \text{ B}, U_I = 1,5 \text{ B}$	U _{OL max}	-	0,8
$U_{CC} = 10 \text{ B}, U_I = 3.0 \text{ B}$		-	1,0
11. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC} = 5 \text{ B}, U_{I} = 3.5 \text{ B}$	$U_{ m OHmin}$	4,2	-
$U_{CC} = 10 \text{ B}, U_I = 7,0 \text{ B}$		4,2 9,0	-
12. Входная емкость, пФ, при:			
$U_{CC} = 10 B$	_		
на выводах 9, 14	C_{I}	=	12
на выводах 1, 2, 3, 4, 5, 6, 7, 15		-	8

1.2	2 Содержание	прагоненных	метаппов в	1000 m	т микросуем
1.4	Содержание	драгоценных	металлов в	тооо ш	I. MUKDOCXEM

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C - не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

Микросхемы 564 ЛС2В соответствуют техническим условиям бК0.347.064 ТУ 7 и признаны годными для эксплуатации.

Приняты по		ОТ			
•	(извещение, акт и др.)			(дата)	
Место для шт	гампа ОТК				Место для штампа ВП
Место для шт	гампа « Перепроверка	произ	ведена	ı	
Приняты по	(извещение, акт и др.)	ОТ		(дата)	_
Место для шт	гампа ОТК				Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.