## LECTURE 11 - DATE : **08 JUNE 2021**

## 1. PROBLEMS ON TRIPLE INTEGRALS

Problem 1.1. Using triple integrals, find the volume of the ellipsoid  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{y^2}{b^2}$ 

$$\frac{z^2}{c^2} = 1.$$

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

$$\Rightarrow \frac{7^{2}}{C^{2}} = 1 - \frac{\chi^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}$$

$$\Rightarrow Z = \pm C \sqrt{1 - \frac{\chi^2}{Q^2} - \frac{y^2}{L^2}}$$



Regid volume, V= 8x Volume of the solid 9n the first octant.

$$=8x$$

$$\chi=0 \quad y=0 \quad z=0$$

$$= 8 \times \int_{1}^{3} \int_{0}^{3} \frac{1 - x^{2}}{a^{2} - x^{2}} dy dx$$

$$= 8 \times \int_{1}^{3} \int_{0}^{3} \frac{1 - x^{2} - y^{2}}{a^{2} - b^{2}} dy dx$$

**Problem 1.2.** Using triple integrals, find the volume of the paraboloid of revolution  $x^2 + u^2 - 4x$  cut off by the plane x - 4

lution  $x^2 + y^2 = 4z$  cut off by the plane z = 4. V = 4 x Volume of the portion 9nthe Ist Oetant  $\int_{x=0}^{4} \int_{y=0}^{\sqrt{16-x^2}} \left[ (16-x^2) - y^2 \right] dy dx$ 

$$\begin{array}{lll}
 &=& \int_{0}^{4} \left[ (6-x^{2})y - \frac{y3}{3} \right] y = \sqrt{16-x^{2}} \\
 &=& \int_{0}^{4} \left[ (16-x^{2})^{3/2} - (16-x^{2})^{3/2} \right] dx \\
 &=& \frac{2}{3} \int_{0}^{4} (16-x^{2})^{3/2} dx \quad \text{put } x = 4 \sin 0 \\
 &=& \frac{2}{3} \int_{0}^{4} (16-x^{2})^{3/2} dx \quad \text{put } x = 4 \sin 0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \, d0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad 4 \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4} x \cos 0 \quad \text{follows} d0 \\
 &=& \frac{2}{3} \int_{0}^{4$$

Problem 1.3. Using triple integrals, find the volume of the region bounded by the paraboloid  $x^2 + y^2 = az$  where a > 0 and the cylinder  $x^2 + y^2 = R^2$ .



Changing to cyclindrical polar coordinates,  $x = y\cos\phi$ ,  $y = y\sin\phi$ , z = z, dadydz =  $y = y\sin\phi$ . Read volume, y = 4x  $\sqrt{\frac{1}{2}}$   $\int_{0}^{R} \frac{x^2+y^2}{a}$   $\int_{0}^{R} \frac{x^2+y^2}{a}$ 

$$= 4 \times \int_{-\infty}^{\pi/2} \int_{-\infty}^{R} \int_{-\infty}^{\sqrt{2}} dx \, dx \, d\phi$$

$$= 4 \times \int_{-\infty}^{\pi/2} \int_{-\infty}^{R} \int_{-\infty}^{\sqrt{2}} dx \, dx \, d\phi$$

$$= 4 \times \int_{-\infty}^{\pi/2} \int_{-\infty}^{R} \int_{-\infty}^{\sqrt{2}} dx \, dx \, d\phi$$

$$= 4 \int_{0}^{\pi/2} \int_{0}^{R} \frac{y^3}{a} dy d\phi$$

$$0=0 \quad Y=0$$

$$=\frac{4}{\alpha}\int_{0=0}^{\pi/2}\left(\frac{\gamma 4}{4}\right)^{R}d\phi = \frac{R^{4}}{\alpha}\frac{\pi}{2} \text{ cubic units}$$

Problem 1.4. Using triple integrals, find the volume of the portion of the sphere  $x^2+y^2+z^2=a^2$  lying inside the cylinder  $x^2+y^2=ay$  where a>0 above

 $\chi^2 + (y - \frac{a}{2})^2 = \frac{a^2}{4}$ 





Regid Volume = 
$$2x \iint dx dy dz$$
  
=  $2x \int_{z=0}^{1/2} a\sin \phi \sqrt{a^2-r^2}$   
=  $2x \int_{z=0}^{1/2} r dz dr d\phi$ 

(a, a, iv)

1 22-142 = 22 = a2

$$=\frac{Ans:-2a^3}{3}\left(\frac{1}{2}-\frac{2}{3}\right) \text{ cubic units}$$

## PROPER INTEGRAL

- (1) [a,b], finite înterval
- (ii) f(x) is bounded in (a,b)

ie; f(x) doern't take 'w' for any point x in [a,b].

(iii)  $\frac{d}{dx} \left( \phi(x) = f(x) \right)$  then  $\int_{a}^{b} f(x) dx = \phi(b) - \phi(a)$ 

then Such Integrals are called PROPER INTEGRALS.

Of (i) doen't hold (ie, either a or b
or both a 4 b are infinite) of fondx
is called an improper integral of
FIRST KIND.



 $\frac{\int_0^1 x^{m-1} (1-x)^{n-1} dx}{\left(1-x\right)^{n-1}}$ 

BETA AND GAMMA FUNCTION

Definition Description Description Description Description The definite integral  $\int_{\infty}^{\infty} m^{-1} (1-x)^{n-1} dx$  is a function of m and n is called beta function of m and n. It is denoted by  $f(m,n) = \int_{\infty}^{\infty} x^{m-1} (1-x)^{n-1} dx$ 

## PROPERTIES OF BETA FUNCTION

Beta function is symmetric. i.e.  $\beta(m,n)=\beta(n,m)$ ..

By deft,  $\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ put  $(1-x)=y \Rightarrow dx = -dy$ when x=0, y=1 x=1, y=0 x=1, y=0 x=1, y=0 x=1, y=0 y=1 y=1

\* 
$$\beta(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
.

For, By  $def^{n}$ ,  $\beta(m_{1}n) = \int_{0}^{\pi/2} \chi^{m-1} (1-\chi)^{n-1} d\chi$ 

put  $\chi = \sin^{2}\theta = 0$   $\Rightarrow 0 = \sin^{2}(\sqrt{\chi})$ 
 $d\chi = 2\sin^{2}\theta \cos\theta d\theta$ 
 $\chi = 0 \Rightarrow 0 = 0$ 
 $\chi = 1 \Rightarrow 0 = 0$ 
 $\chi = 1 \Rightarrow 0 = 11/2$ 

...  $\beta(m_{1}n) = \int_{0}^{\pi/2} (\sin^{2}\theta)^{m-1} (1-\sin^{2}\theta)^{n-1} 2\sin^{2}\theta \cos\theta d\theta$ 
 $= 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$ .

 $= 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$ .

\* For 
$$p > -1$$
 and  $q > -1$ ,  $\int_0^{\pi/2} \sin^p x \cos^q x \, dx = \frac{1}{2}\beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right)$ .

For  $p > -1$  and  $q > -1$ ,  $\int_0^{\pi/2} \sin^p x \cos^q x \, dx = \frac{1}{2}\beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right)$ .

$$puf 2m-1=p$$
  
 $\Rightarrow m=p+1$   
 $\frac{2}{2}$ 

$$put 2m-1=p$$
 and  $2n-1=q$   
 $\Rightarrow m=pt1$   $\Rightarrow n=qt1$ 

: 
$$B(P+1) = 2 \int_{0}^{1/2} \sin \alpha \cos \alpha d\alpha$$

$$\Rightarrow \int_{0}^{\sqrt{2}} \sin x \cos x \, dx = \frac{1}{2} \beta \left( \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)$$
for  $\frac{1}{2} > 0$ ,  $\frac{1}{2} > 0$ 

$$\frac{1}{2} > 0$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} +$$

Gamma Function: Let 170 Then the definite integral  $\int_{x}^{\infty} e^{x} x^{n-1} dx$ , is a function of n, is called the Gamma function of n. It is denoted by  $Tn = \int_{-\infty}^{\infty} e^{x} x^{n-1} dx$ =0+1=1 Réduction formula for In. |n| = (n-1) |n-1| + or all n > 0for, By defn, In = so ex xn-1 dx  $\Rightarrow \ln = \left(x^{n-1} \frac{\overline{e}^{\chi}}{\overline{-1}}\right)^{\infty} - \int_{0}^{\infty} ((n-1)x^{n-2} \frac{\overline{e}^{\chi}}{\overline{-1}}) dx$  $6 + (m-1) \int_{0}^{\infty} e^{x} x^{(m-1)-1} dx$ 

```
Tn = (n-1)! \forall n \in \mathbb{Z}^+
   Result:
                  By the reduction fermula,
                  In = (n-1) In-1
                         = (m-1)(m-2)[m-2]
                          = (M-1) (N-2) (N-3) [N-3]
                           = (n-1)(n-2)(n-3)-\cdots 3.2.111
                            = (M-1)(N-2)(N-3) - - 3-2-1
                   \lceil m = (m-1) \rceil
              By def, Tn = \int_{-\infty}^{\infty} e^{t} \cdot t^{n-1} dt
Result: - 1/2 = 1T
             put t=\chi^2 \Rightarrow dt=2\chi d\chi
                         t = 0 \Rightarrow x = 0 ; t = \infty \Rightarrow x = \infty
           \frac{1}{2} \cdot \sqrt{N} = \sqrt{\frac{2}{2}} \cdot \sqrt{\frac{2N-2}{2N}} \cdot 2N dx
           \Rightarrow \overline{N} = 2 \int_{0}^{\infty} e^{\chi^{2}} \chi^{2N-1} d\chi
\Rightarrow \overline{V}_{2} = 2 \int_{0}^{\infty} e^{\chi^{2}} d\chi
```

Illary -if we put  $t=y^2$  we get  $\frac{7}{2} = 2 \int_{-\infty}^{\infty} \sqrt{2^2} dy - 2$ From O(Q)  $(\sqrt{1/2})^2 = 2 \int_0^\infty e^{\chi^2} d\chi \times 2\chi \int_0^\infty e^{Q^2} dy$  $= 4 \int_{\infty}^{\infty} \sqrt{2 - \chi^2 - y^2} dy dx$ X=0 Y=6 Changing to polar coordinates, 2-YCOSQ 4-YSINQ andy = Y dydo  $\frac{1}{2} \left( \frac{1}{2} \right)^2 = 4 \left( \frac{1}{2} \left( \frac{1}{2} \right)^2 \right) \left( \frac{1}{2} \right)^2 \left($ put Y=u =3  $du = 2\gamma d\gamma$  $=4\times \int_{-2}^{11/2} \int_{-4}^{\infty} \frac{dy}{2} dx$ => Y dr = du 7=0 => U=0  $=2\int_{0=0}^{\pi/2}(e^{4})^{\infty}d0=2x\int_{0}^{\pi/2}V=\infty+u=\infty$ 

Eg: 
$$find$$
  $\int_{0}^{\infty} x^{4}e^{x} dx$ 

Ans:  $\int_{0}^{\infty} x^{4}e^{x} dx = \int_{0}^{\infty} e^{x^{5}} dx = \int_{0}^{\infty} e^{-x^{5}} dx =$ 

9. Find 
$$\int_{0}^{\infty} (\log x)^{4} dx$$

Ans: Let  $I = \int_{0}^{\infty} (\log x)^{4} dx$ 

Put  $t = \log x$ 
 $\Rightarrow -dt = \frac{1}{x}$ 
 $\Rightarrow dx = -e^{t}dt$ 
 $\Rightarrow dx = -e^{t}dt$ 

when  $x = 0 \Rightarrow t = \infty$ 
 $\Rightarrow -\frac{1}{x} = \frac{1}{x}$ 
 $\Rightarrow -\frac{1}{x} = \frac{1}{x}$ 

Put  $x^{3} = t$ 

Let  $I = \int_{0}^{\infty} \sqrt{x} e^{x^{3}} dx$ 

Ans: Put  $x^{3} = t$ 

Let  $I = \int_{0}^{\infty} \sqrt{x} e^{x^{3}} dx$ 
 $= \frac{1}{3} \int_{0}^{\infty} e^{t} \cdot t^{2} dt$ 
 $= \frac{1}{3} \int_{0}^{\infty} e^{t} \cdot t^{2} dt$ 
 $= \frac{1}{3} \int_{0}^{\infty} e^{t} \cdot t^{2} dt$ 
 $= \frac{1}{3} \int_{0}^{\infty} e^{t} \cdot t^{2} dt$