DEPARTAMENT DE MATEMÀTICA APLICADA (etsinf)

CUESTIONARIO DE LA CUARTA PRÁCTICA (Modelo A)

1.	Calcula una primitiva de la función $f(x) = \frac{x - \sqrt{\operatorname{atan}(2x)}}{1 + 4x^2}$
2.	Determina las coordenadas de los puntos en los que se alcanzan el máximo y el mínimo de la función
	$F(x) = x + \int_x^0 \left(t^2 - 2t\right) dt$
	El máximo se alcanza en $M=\begin{pmatrix} & & \\ & & \end{pmatrix}$ y el mínimo en $m=\begin{pmatrix} & & \\ & & \end{pmatrix}$
3.	Representa gráficamente la región encerrada por la función $f(x) = \frac{\sin(x)}{x}$ y el eje de abscisas sobre el intervalo $[0, 2\pi]$. La región pedida se obtiene al simplificar la expresión
	PlotInt(, x, , y)
	El valor aproximado del área es .
4.	Representa gráficamente la región encerrada entre las funciones $f(x) = x^3$ y $g(x) = 2x + 1$. La región pedida se obtiene al simplificar la expresión
	$\label{eq:AreaBetweenCurves} \texttt{AreaBetweenCurves}(\ \ \ \ , \ \ \ \ , \ \ \ \ , \ \ \ \ $
	El valor del área es $lpha$.
5.	Obtén el valor aproximado de la integral $\int_0^1 \frac{\cos(x)}{x+1} dx$ mediante el método de los trapecios considerando $n=10$
	$\int_0^1 \frac{\cos(x)}{x+1} dx \approx $
	Calcula la derivada segunda de la función $f(x) = \frac{\cos(x)}{x+1}$ y a partir de una gráfica adecuada halla M_2 , cota de f' en el intervalo $[0,1]$. $M_2 = $
	Acota el error cometido en la aproximación, de donde se deduce que la aproximación garantiza decimales correctos, al menos.
	La aproximación que proporciona DERIVE para la integral anterior será
	$\int_0^1 \frac{\cos(x)}{x+1} dx \approx $
	Compara este valor con el resultado anterior.

APELLIDOS: NOMBRE: GRUPO: