CS 310-0

Homework Assignment No. 5

Due Fri 2/18/2000

- 1. Find the number of diagonals in a regular n-side polygon.
- 2. Find the number of integer solutions to the following equation

$$x_1 + x_2 + x_3 + x_4 = 16$$

with each one of the following restrictions:

- (a) $x_1, x_2, x_3, x_4 \ge 0$.
- (b) $x_1, x_2, x_3, x_4 > 0$.
- (c) $1 \le x_1, 2 \le x_2, 3 \le x_3, 4 \le x_4$.
- 3. Find the number of integer solutions to the following equation

$$x_1 + x_2 + x_3 = 12$$

with the restrictions: $0 \le x_1$, $0 \le x_2 < 6$, $0 \le x_3 < 10$.

- 4. A group of people are in a meeting. Of this group, 26 people are married, 29 are from Illinois, 30 are male, 9 are married and from Illinois, 7 are married and male, and 8 are from Illinois and male. What is the minimum possible number of people in that meeting?
- 5. In a class the students must choose 3 out of 4 subjects A, B, C, D to write an essay about. Subject A is chosen by 21 students, subject B by 18, subject C by 15 and subject D by 12. How many students are there in the class?
- 6. Let A be the set of all 8-digit numbers in base 3 (so they are written with the digits 0, 1, 2 only), including those with leading zeroes such as 00120010. The *Hamming distance* between two elements of A is the number of places where they differ, for instance the Hamming distance between 11201001 and 11020020 is 5, because they differ in the 3rd, 4th, 5th, 7th and 8th places.
 - (a) Find the number of elements in A.
 - (b) Given an element $a \in A$, find the number of elements in A whose Hamming distance to a is exactly 3.
 - (c) Given an element $a \in A$, find the number of elements in A whose Hamming distance to a is 3 or less.
 - (d) Prove that given 12 elements from A, two of them coincide in at least 2 places.

7. Prove the following by induction:

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{2n^{3} + 3n^{2} + n}{6}.$$

8. We define recursively a sequence x_n in the following way:

$$x_0 = 0;$$
 $x_{n+1} = \sqrt{2 + x_n}$ $(n \ge 0),$

i.e.:
$$x_1 = \sqrt{2}$$
, $x_2 = \sqrt{2 + \sqrt{2}}$, $x_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}$, etc.

Prove the following by induction:

- (a) x_n is nonnegative, increasing and less than 2, i.e.: $x_n < x_{n+1} < 2$ for every $n \ge 0$.

(b) $0 < 2 - x_n \le 2^{-n+1}$ for every $n \ge 0$. What is the value of the following infinite nested radical?:

$$\lim_{n \to \infty} x_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}} =$$