





# Introduction to simulation and analysis

**Unit 17** 

## Unit objectives

After completing this unit, you should be able to:

- Explain business process analysis
- Explain the purpose of running simulations
- Define relevant simulation terminology

### Simulation and analysis are core Modeler features



## **Business process analysis**

- An analysis discipline focused on how an organization:
  - Reduces overall costs
  - Effectively uses its resources
  - Supports its customers better
- Takes an end-to-end view of the business
- Closely related to requirements definition
  - Changes to polices, processes, and information systems
- Key to business process management
  - Making process more efficient, effective, and adaptable
- Based on simulating a process under real-life conditions
  - Varying times, costs, schedules, and resources

## What is process simulation?

- Simulation:
  - The imitative representation of the functioning of one system or process by means of the functioning of another (a computer simulation of an industrial process).
- Process simulation:
  - Using a computer program based on a set of mathematical formulas to imitate the behavior of a business process to determine how it behaves under different conditions.
  - If the model behaves in the same manner as the real process:
    - There is a good chance that the underlying variables are correct.
    - The model can be used to test the impact of changing conditions.
- Process simulation is a simulated performance of a real-world business process in a virtual environment.
  - The business process might be a model of:
    - An existing business process.
    - One that is planned for the future.

## The value of simulating business processes

- Simulation is a core component of WebSphere Business Modeler.
  - Can run simulations of non-business processes with limitations
- Simulations can be used to:
  - Observe a process in action
  - Examine the statistics generated by a process as it runs
  - Perform analysis on the simulation results (dynamic analysis)
- Changing a diagram or other model elements allows comparative analysis.
  - Quantify the effects of the changes
    - Assess the costs and benefits of changing your business processes
  - Observe how a process will perform in response to variations on inputs to the process
    - · Vary process input volume over time

## Simulation terminology (1)

- Simulation snapshot:
  - A record of the model that will be simulated
- Simulation profile:
  - A record of the model plus the simulation attributes
- Statistics and results:
  - The information produced by the simulation
- Probabilities or expressions:
  - The way decisions are handled during a simulation
- Tokens:
  - Representations of units of work passing through the process

## Simulation terminology (2)

- Process instances:
  - Each execution of a process simulation
- Process cases:
  - Each path through a process
- Random number generation:
  - The introduction of real-life variability into a simulation

## **Simulation snapshots**

- A record of the complete process model at the moment you ran a simulation of the process.
  - A copy of all the elements in the project that the process uses
    - · Business items, resources, and global tasks
- Need to create multiple snapshots for each set of changes to compare the effects of those changes.
- Elements created by a snapshot:
  - Simulation snapshot settings
  - Simulation profile
- Once a snapshot is created, the changes to the original model will not be reflected in the snapshot.
  - To include changes, a new snapshot needs to be generated.

## Simulation profiles

- A simulation profile is a copy of a process model augmented with simulation attributes used to run the simulation.
  - The profile is based on the process model at the time the snapshot was created.
- Attribute values you set in a simulation profile are used when you analyze the profile or run a simulation.
  - Attributes are copies of snapshot settings: token creation, cost, revenue, duration, and resource requirements.
  - Attributes can override values inherited from the simulation snapshot.
- Multiple simulation profiles can be created for a single simulation snapshot.
  - Compare the results of your process in different "what-if" business scenarios
    - · For example, increase in volume
- You can add breakpoints and interrupts to a simulation profile to cause a process to pause in the middle of a simulation run.
  - Breakpoint pauses the simulation run when that activity is activated by an incoming token.
  - An interrupt pauses the simulation run when a specified condition occurs.

#### Statistics and results

- Simulations provide two kinds of information about processes:
  - Simulation statistics are generated while the simulation is running.
  - Simulation results are compiled when the simulation has completed.
  - You can enable or disable the collection of statistics and results in the simulation control panel.
- Simulation statistics are details about the instances of processes, tasks, and connections.
  - The simulation control panel displays simulation statistics on the Processes, Tasks, and Connections tabs.
  - Statistics are constantly updated while the simulation is in progress.
  - Choose to display either:
    - · Statistics for individual process instances
    - Collected statistics based on all process instances
- Simulation results are sets of data recorded during each simulation run and are used in dynamic analyses.
  - Results are stored in a database.
  - A results node is added to the Project Tree as a child of the simulation profile.
    - Each run produces its own simulation results node.

## **Probabilities and expressions (1)**

- Profiles can be set up to use one of two different methods of selecting a path:
  - Probabilities are specified in the attributes as percentages.
  - Expressions are created with the expression editor.
- Probabilities:
  - Probabilities allow you to set up and run a simulation more quickly.
    - Relatively little data setup in a model
  - Specify probabilities on decision choices, loops, and task outputs.
  - Sufficient to perform most simulations.
    - Except for very detailed low-level analysis
  - Use probability-based simulation for current state modeling and possible future state analysis.

## **Probabilities and expressions (2)**

- Expressions:
  - The expression editor is required to create an expression for each possible path.
  - Used for:
    - Low-level future state business models
    - Models that clearly define the interfaces in and out of tasks and other elements
- Expressions specify how specific data will be treated as it passes through the process.
  - For example, an order might be handled differently depending on the customer type or depending on the total cost of the order.
    - Business item creation rules could be used to determine the specifics of each order.
    - Expressions on decisions and activities evaluate the incoming order and handle it according to the specific details it contains.

#### **Tokens**

- A token represents a unit of work that is received by a process and transferred between different activities in the process flow.
  - Some tokens represent the transfer of data between activities, while other tokens represent only a transfer of control.
- Token creation settings define the quantity and rate of inputs that the process receives in a simulation run.
  - The frequency can be generated at a constant rate or a statistically distributed rate.
  - The number of tokens can be generated individually or in bundles.
- A large number of tokens may have to be run through a process to achieve a statistically significant simulation result that can be used for dynamic analysis.
  - One formula that can be used to determine the minimum number of tokens to use in a probability based simulation is:
    - Number of cases times (highest case probability / lowest case probability)

#### **Process instances**

- A process instance is a unique occurrence of the process during simulation.
- Arrival of tokens initiates a process instance defined by a model.
  - The process run either completes successfully or fails.
  - For example, in a model of a call center, a process instance represents the handling of a call from an individual customer.
- Instance analysis looks at the activities within a particular instance of a process that is created during a simulation run.
- Aggregated analysis looks at specific elements within a process aggregated across all process instances in a simulation run.
- A task instance is the execution of a specific task within a process instance.

#### Process cases

- A process case is a path a process instance can take.
- In a process case, units of work follow a particular pattern of connections and activities through a branching process flow.
  - The path followed during simulation is determined by probabilities or expressions.
- Cases include both the main paths and all the exception paths.
- The greater the number of cases, the larger the number of tokens that need to be generated for a statically significant result.
- Analyzing the process cases helps identify the variations in performance between different patterns of process flow.
  - Individual cases may have a significant effect on the overall process.

## Random number generator

- A random number generator is a computational or physical device designed to generate a sequence of numbers that lack any pattern.
- Random numbers are used to drive the variation in frequencies, times, and costs.
- Statistical distributions can be used to generate the values used in the model calculations.
- A random number seed is used to start the random number generation.
  - You can control the random number seed.
- The random pattern makes the model more realistic.
  - For example, you may say an order comes on average of 1 every 5 minutes, but in reality the time between orders is continually varying.

## Random number seed (1)

- The random number seed is the starting point for a series of numbers.
  - This setting defines a random number, which determines a fixed starting point for the sequence of random values that are used in a simulation.
    - Setting a random number seed other than zero makes it possible to precisely reproduce a simulation run for each simulation with an identical profile.
  - Setting a value of zero causes the system to generate the random number seed.
    - This means that multiple runs of an identical profile may result in different simulated behavior because random decisions are made differently from run to run.
- When to use zero:
  - Use zero when trying to understand how a process behaves under normal conditions.
  - Each time it runs there are slight statistical variations which is very realistic.
  - Use zero to understand the effect of variations on the performance of a process.

## Random number seed (2)

- When to use a fixed number:
  - Use fixed numbers when trying to compare two different processes under similar conditions.
  - Use fixed numbers to hold the statistical variation constant while comparing two processes.
- When to use multiple fixed numbers:
  - Use multiple fixed numbers to compare two different processes under varying statistical conditions.

## **Checkpoint: Simulations**

Your instructor will review these questions with you as a group. If time permits, the instructor may provide you time to answer the questions on your own before the group discussion.

- 1. What is the difference between a simulation profile and a simulation snapshot?
- What two methods can be used to determine a path in a model?
- 3. What is the purpose of the random number seed?
- 4. When would you use a fixed random number seed instead of zero?

## **Checkpoint solutions: Simulations**

- 1. A simulation snapshot is a record of the model that will be simulated. A simulation profile is a record of the model plus the simulation attributes.
- 2. Probabilities and expressions.
- 3. The random number seed is the starting point for a series of numbers. This setting defines a random number, which determines a fixed starting point for the sequence of random values that are used in a simulation.
- 4. Use fixed numbers when trying to compare two different processes under similar conditions. Use fixed numbers to hold the statistical variation constant while comparing two processes.

## **Unit summary**

Having completed this unit, you should be able to:

- Explain business process analysis
- Explain the purpose of running simulations
- Define relevant simulation terminology