Digital Transistors (BRT) R1 = 4.7 k Ω , R2 = 47 k Ω

PNP Transistors with Monolithic Bias Resistor Network

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector-Emitter Voltage	V_{CEO}	50	Vdc
Collector Current – Continuous	I _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	30	Vdc
Input Reverse Voltage	V _{IN(rev)}	5	Vdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

STYLE 1 XXX = Specific Device Code

X ML 1

= Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking, and shipping information on page 2 of this data sheet.

SOT-1123

CASE 524AA

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2133T1G	6K	SC-59 (Pb-Free)	3000 / Tape & Reel
MMUN2133LT1G, NSVMMUN2133LT1G	A6K	SOT-23 (Pb-Free)	3000 / Tape & Reel
MUN5133T1G, SMUN5133T1G	6K	SC-70/SOT-323 (Pb-Free)	3000 / Tape & Reel
DTA143ZET1G, NSVDTA143ZET1G	6K	SC-75 (Pb-Free)	3000 / Tape & Reel
DTA143ZM3T5G	6K	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSBA143ZF3T5G	E(90°)*	SOT-1123 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 $^{*(}XX^{\circ})$ = Degree rotation in the clockwise direction.

Figure 1. Derating Curve

- (1) SC-75 and SC-70/SOT-323; Minimum Pad
- (2) SC-59; Minimum Pad
- (3) SOT-23; Minimum Pad
- (4) SOT-1123; 100 mm², 1 oz. copper trace
- (5) SOT-723; Minimum Pad

Table 2. THERMAL CHARACTERISTICS

Characteristic		Symbol	Max	Unit
THERMAL CHARACTERISTICS (SC-59) (MUN2133)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	230 338 1.8 2.7	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	540 370	°C/W
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$R_{ hetaJL}$	264 287	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SOT-23) (MMUN2133L)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	246 400 2.0 3.2	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	508 311	°C/W
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$R_{ hetaJL}$	174 208	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Thermal Characteristics (SC-70/SOT-323) (MUN5133)	•		•	
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	202 310 1.6 2.5	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	618 403	°C/W
Thermal Resistance, Junction to Lead	(Note 1) (Note 2)	$R_{ heta JL}$	280 332	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Thermal Characteristics (SC-75) (DTA143ZE)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P_D	200 300 1.6 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	600 400	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Thermal Characteristics (SOT-723) (DTA143ZM3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	260 600 2.0 4.8	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	480 205	°C/W

- 1. FR-4 @ Minimum Pad.
- 2. FR-4 @ 1.0 x 1.0 Inch Pad.
- 3. FR 4 @ 100 mm², 1 oz. copper traces, still air. 4. FR 4 @ 500 mm², 1 oz. copper traces, still air.

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Characteristics (SOT-1123) (NSBA143ZF3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 3) (Note 4) (Note 3) (Note 4)	P _D	254 297 2.0 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 3) (Note 4)	$R_{ hetaJA}$	493 421	°C/W
Thermal Resistance, Junction to Lead	(Note 3)	$R_{ hetaJL}$	193	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C

- 1. FR-4 @ Minimum Pad.
- 2. FR-4 @ 1.0 x 1.0 Inch Pad.
- 3. FR -4 @ 100 mm², 1 oz. copper traces, still air. 4. FR -4 @ 500 mm², 1 oz. copper traces, still air.

Table 3. ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-	•	•	
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	Ісво	-	_	100	nAdc
Collector-Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	I _{CEO}	_	_	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0)	I _{EBO}	_	_	0.18	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V _(BR) CBO	50	_	_	Vdc
Collector–Emitter Breakdown Voltage (Note 5) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	_	_	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 5) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	80	140	_	
Collector – Emitter Saturation Voltage (Note 5) (I _C = 10 mA, I _B = 0.3 mA)	VCE(sat)	-	_	0.25	Vdc
Input Voltage (off) $(V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A})$	V _{i(off)}	-	0.7	0.5	Vdc
Input Voltage (on) $(V_{CE} = 0.3 \text{ V}, I_C = 5.0 \text{ mA})$	V _{i(on)}	1.3	0.9	_	Vdc
Output Voltage (on) ($V_{CC} = 5.0 \text{ V}$, $V_B = 2.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$)	V _{OL}	_	_	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	_	_	Vdc
Input Resistor	R1	3.3	4.7	6.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.08	0.1	0.14	

^{5.} Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS MUN2133, MMUN2133L, MUN5133, DTA143ZE, DTA143ZM3

Figure 2. V_{CE(sat)} vs. I_C

Figure 3. DC Current Gain

Figure 4. Output Capacitance

Figure 5. Output Current vs. Input Voltage

Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS NSBA143ZF3

Figure 9. Output Capacitance

Figure 10. Output Current vs. Input Voltage

Figure 11. Input Voltage vs. Output Current

PACKAGE DIMENSIONS

SC-59 CASE 318D-04 **ISSUE H**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.15	1.30	0.039	0.045	0.051
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.35	0.43	0.50	0.014	0.017	0.020
O	0.09	0.14	0.18	0.003	0.005	0.007
D	2.70	2.90	3.10	0.106	0.114	0.122
Е	1.30	1.50	1.70	0.051	0.059	0.067
е	1.70	1.90	2.10	0.067	0.075	0.083
٦	0.20	0.40	0.60	0.008	0.016	0.024
ΗE	2.50	2.80	3.00	0.099	0.110	0.118

- STYLE 1: PIN 1. BASE
 - 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR**

- DISS.

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 CONTROLLING DIMENSION: MILLIMETERS.

 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.

 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
- THE BASE MATERIAL.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
ΗE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10 °	0 °		10 °
STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR						

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE N

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	MILLIMETERS INCHES					
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 REF	
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC			0.026 BSC	;
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SC-75/SOT-416 CASE 463 **ISSUE G**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MIL	LIMETE	ERS		INCHES	;
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1	.00 BSC)	(0.04 BSC	
L	0.10	0.15	0.20	0.004	0.006	0.008
He	1.50	1.60	1.70	0.060	0.063	0.067

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-723 CASE 631AA ISSUE D

BOTTOM VIEW

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS IS THE MINIMUM THEORY AND THE PER AND THE PER
- THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
Е	0.75	0.80	0.85	
е		0.40 BS0		
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

- STYLE 1:
 PIN 1. BASE
 2. EMITTER
 3. COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-1123 CASE 524AA ISSUE C

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.34	0.40	
b	0.15	0.28	
b1	0.10	0.20	
U	0.07	0.17	
D	0.75	0.85	
Е	0.55	0.65	
e	0.35	0.40	
HE	0.95	1.05	
L	0.185 REF		
L2	0.05	0.15	

STYLE 1:

PIN 1. BASE 2. EMITTER

3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81-3-5817-1050

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MMUN2133LT1G MUN5133T1G NSBA143ZF3T5G SMUN5133T1G NSVMMUN2133LT1G