

Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Exercices calcul intégral / Compléments

Exercice 1

Déterminer l'ensemble de définition de chacune des fonctions ci-dessous puis calculer les dérivées lorsqu'elles existent.

$$F_1(x) = \int_1^{1+x^2} \text{lntdt}$$
; $F_2(x) = \int_{1-x^2}^{1+x^2} \text{lntdt}$.

Soit f une fonction continue sur un intervalle I, u, v deux fonctions dérivables sur un intervalle J tel que $u(J) \subset I$ et $v(J) \subset I$.

Démontrer que la fonction F définie sur I par

 $F(x) = \int_{u(x)1}^{v(x)} f(t)dt$, est dérivable sur l et que pour tout de l

$$F'(x) = f[v(x)] \times v'(x) - f[u(x)] \times u'(x).$$

Exercice 3

Soit f une fonction continue sur IR+ et F la fonction définie sur IR+ par :*

$$F(x) = \frac{1}{x} \int_0^x f(t) dt \text{ si } x \neq 0 \text{ et } F(0) = f(0).$$

- 1. Démontrer que f est continue en 0.
- 2. Démontrer que F est dérivable sur IR*+ et calculer F'(x) pour x > 0.

Exercice 4

Soit f une fonction continue dans IR telle qu'il existe $M \in IR^+$ tel que $\forall t \in IR$, $|f(t)| \leq M$.

Soit F la fonction définie sur IR par :

$$F(x) = \int_0^x f(t) dt.$$

Démontrer que pour tous réels x et y :

$$|F(x) - F(y)| \le M|x - y|.$$

Exercice 5

- 1) Calculer $I_0 = \int_0^1 e^x dt$ et $I_1 = \int_0^1 x e^x dt$.
- 2) Pour tout entier naturel n non nul, on pose : $I_n = \int_0^1 x^n e^x dt$
- a) Montrer que (I_n) est une suite décroissante.
- b) Montrer que (I_n) est convergente.
- c)Trouver à l'aide d'une intégration par parties, une relation entre I_n et I_{n+1} .
- d) Déterminer la limite de (In).
- e) Calculer I₅.

Exercice 6

1. Montrer que pour tout réel $x \neq -1$, on a :

$$1 - x + x^2 - x^3 + \dots + (-1)^{n-1}x^{n-1} = \frac{1}{x+1} - \frac{(-x)^n}{1+x}$$
.

2. En déduire que :

$$\int_0^1 \frac{(-x)^n}{1+x} dx = \ln 2 - \left(1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}\right).$$

3. Montrer que $\forall n \in \mathbb{N}^*, \forall x \in [0; 1]$

$$-x^n \le \frac{(-x)^n}{1+x} \le x^n.$$

4. En déduire la limite de la suite (u_n) définie sur

IN* par:
$$u_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n}$$
.

Exercice 7

On considère la suite (u_n) définie sur IN* par :

$$u_n = \frac{1}{n} \sum_{n=1}^{n} \ln \frac{p}{n}.$$

1. Soit p∈ IN*. Justifier que

$$\tfrac{1}{n} \ln \tfrac{p}{n} \leq \int_{\underline{p}}^{\underline{p+1}}_{\underline{n}} lnx dx \leq \tfrac{1}{n} \ln \tfrac{p+1}{n}.$$

2. Démontrer que :
$$\frac{1}{n}ln\frac{1}{n}+\int_{\frac{1}{n}}^{1}lnxdx\leq u_{n}\leq \int_{\frac{1}{n}}^{1}lnxdx.$$

- 3. En déduire que (u_n) converge vers -1.
- 4. Soit la suite (v_n) définie sur IN* par : $v_n = \frac{\sqrt[n]{n!}}{n!}$.
- a) Montrer que \forall $n \in IN^* v_n = e^{u_n}$.
- b) En déduire la limite de la suite (v_n).

Exercice 8

Soit la suite (u_n) définie sur IN par : $u_0 = \int_0^{\frac{\pi}{2}} dt$ et $u_n = \int_0^{\frac{n}{2}} \cos^n t dt$, si $n \in \mathbb{N}^*$.

- 1. Calculer u_{0° ; u_1 et u_2
- 2. Montrer que $u_{n+2} = \frac{n+1}{n+2} u_n$.
- 3. En déduire que pour tout n : $u_{2n} = \frac{(2n)!}{(n!)^2} \frac{\pi}{2^{2n+1}}.$
- 4. a)Montrer que (n+1) u_{n+1}u_n est indépendant de n. Calculer ce réel
 - b) En déduire une expression de u_{2n+1} en fonction de n.

Exercice 9

Soit la suite (I_n) définie sur IN* par :

$$I_n = \frac{1}{n!} \int_0^1 (1-x)^n e^x dx$$
.

- Calculer I₁.
- 2. Exprimer I_n en fonction de I_{n-1} pour $n \ge 2$.
- 3. En déduire que pour $n \ge 1$

$$I_n = e - \sum_{p=0}^n \frac{1}{p!}$$

4.a)Majorer sur [0;1], la fonction $x \mapsto (1-x)^n e^x$.

- b) En déduire la limite de (I_n) .
- c. Montrer que e = $\lim_{n \to +\infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right)$.