Analyse de regroupements

Analyse multidimensionnelle appliquée

Léo Belzile

HEC Montréal

automne 2022

Analyse de regroupements

Objectif: regrouper des observations de telle sorte que

- les observations d'un même groupe soient le plus semblables possible,
- les groupes soient le plus différent possible les uns des autres.

Chaque observation se voit assigner une étiquette de groupe.

On procède ensuite à une analyse **descriptive**, segment par segment.

Figure 1: Données simulées avec deux regroupements hypothétiques.

Analogie avec analyse factorielle

En analyse factorielle, on combine des variables similaires (colonnes).

Pour l'analyse de regroupements, on regroupe des observations (lignes).

Ce sont des méthodes dites d'**apprentissage non-supervisé**: l'objectif est de déduire la structure présente dans un ensemble de points **X** sans étiquette préalable (contrairement à la classification).

Exemples

- Programmes de fidélisation et résolution d'entités
- Segmentation de la clientèle de transport en commun et élaboration de forfaits
- Démarchage d'organismes de charité
- Segmentation de quartiers de Los Angeles et de New York selon leur vote
- Profils des électeurs albertains

Structure de la base de données

Quelles variables $\mathbf{X}_1,\dots,\mathbf{X}_p$ sont d'intérêt?

- Choisir des variables pertinentes pour faire ressortir les différences
- Créer de nouvelles variables explicatives

Pour les données longitudinales, on va typiquement aggréger les bases de données marketing par identifiant client.

Exemple avec transport en commun

La carte Opus enregistre

- les temps de passage
- le type de déplacement (REM, métro, bus)
- le nombre de passages
- les abonnements
- le profil client (études, rabais pour personnes âgées)

Quelles variables créer ou conserver?

- Nombre de passages mensuels
- Abonnement mensuel ou annuel (oui/non)
- Type de déplacement (soir, jour)
- Nombre d'allers-retours hebdomadaires en heure de pointe
- Variabilité de la fréquentation

Diviser pour régner

Souvent, il existe une division naturelle des données.

Les jeunes avec des abonnements de transport publics l'utilisent principalement pour aller à l'école.

On peut faire la segmentation **séparément** pour ces sous-groupes.

À votre tour

Vous avez toutes les données transactionnelles associées à des comptes d'épicerie avec un compte de fidélisation.

Quelles variables créez vous à partir des données aggrégées pour créer des segments?

Choix des variables

Recommandations: choisir les variables pertinentes qui font ressortir les effets voulus.

- inclure de nombreuses variables similaires dilue les différences.
- transformer les variables pour diminuer la corrélation

Typiquement, ne pas utiliser les variables sociodémographiques (âge, revenu, sexe, etc.)

on compare plutôt leur répartition au sein des regroupements.

Exemple: typologie des votants en France

Exemple - dons à un organisme de charité

La base de données dons contient 49730 observations pour 16 variables.

- Trois grandes catégories: personnes qui n'ont pas donné, dons uniques, dons multiples.
- variables sociodémographiques, valeur des dons (min, max) et des promesses, nombre de dons, fréquence,

Une rapide exploration des données révèle que près de 61% des employé(e)s n'ont pas donné à l'organisme.

Une poignée de dons sont très élevés, mais la plupart des montants tourne autour de 5\$, 10\$, 20\$, etc.

Étapes d'une analyse de regroupements

- Choisir les variables pertinentes à l'analyse. Cette étape peut nécessiter de créer, transformer de nouvelles variables ou d'aggréger les données.
- 2. Décider quel méthode et quelle mesure de dissemblance/similarité seront utilisées pour la segmentation.
- 3. Choisir les hyperparamètres de l'algorithme (nombre de regroupements, rayon, etc.)
- 4. Procéder à l'analyse de regroupements.
- 5. Calculer une mesure de qualité.
- Assigner les étiquettes aux observations et calculer un prototype de groupe.
- 7. Interpréter les regroupements obtenus à partir des prototypes.

Modification des données

On se concentre sur les personnes qui ont fait plusieurs dons.

```
donsmult <- hecmulti::dons |>
     filter(ndons > 1L) |>
     mutate(mtdons = vdons/ndons,
            snrefus = nrefus/anciennete*mean(anciennete),
            mpromesse = case when(
              npromesse > 0 ~ vpromesse/npromesse,
              TRUE ~ 0)) |>
     select(!c(
       vradiations, # valeurs manquantes
       nindecis, vdons, ddonsmax,
       ddonsmin, vdonsmin, npromesse,
11
       vpromesse, nrefus, nradiations)) |>
12
     relocate(mtdons)
```

Corrélation pour nouvelles données

Mesures de dissemblance et de similarité

Comment mesurer si deux observations appartiennent à un même regroupement et sont similaires?

Une mesure de dissemblance sert à quantifier la proximité de deux objets à partir de leurs coordonnées.

Elle mesure la distance entre deux vecteurs d'observations (deux lignes de la base de données) et en se basant sur les variables explicatives.

Mesures de dissemblance

Quelques propriétés des mesures de dissemblance:

- positivité: la distance entre deux observations est nulle si et seulement si on a les mêmes caractéristiques pour toutes les variables explicatives et strictement positive sinon.
- 2. la dissemblance est la même peu importe l'ordre des observations (symmétrie)

Toute distance est une mesure de dissemblance.

Distance Euclidienne

La mesure de dissemblance la plus utilisée en pratique est la distance euclidienne entre sujets.

La distance entre les vecteurs ligne \mathbf{X}_i et \mathbf{X}_j est

$$d(\mathbf{X}_i,\mathbf{X}_j;l_2) = \left\{ (X_{i1} - X_{j1})^2 + \dots + (X_{ip} - X_{jp})^2 \right\}^{1/2}.$$

C'est tout simplement la longueur du segment qui relie deux points dans l'espace p dimensionnel.

Autres mesures de dissemblance

- La distance de Manhattan est la somme des valeurs absolues entre chaque composante, $|X_{i1}-X_{i1}|+\cdots+|X_{ip}-X_{ip}|$.
- \blacksquare La distance l_{∞} , soit le maximum des différences entre les coordonnées des vecteurs d'observations i et j , $\max_{k=1}^p |X_{ik}-X_{jk}|$

Autres mesures de dissemblance

Pour les données catégorielles nominales, on peut assigner une dissemblance de 0 si les variables ont la même modalité et 1 sinon.

Pour le cas de variables mixtes, la distance de Gower permet de traiter les valeurs manquantes et standardise automatiquement.

Dissemblances dans R

Avec notre base de données donsmult, le stockage des distances prend environ 1.5GB!

```
# Distance Euclidienne, de Manhattan, de Gower
d1 <- dist(donsmult, method = "euclidean")
d2 <- dist(donsmult, method = "minkowski", p = 1)
d3 <- cluster::daisy(donsmult, metric = "gower")
# Voir aussi ?flexclust::dist2</pre>
```

Les objets de class dist ne stockent que la matrice triangulaire inférieure (symmétrie).

Être aux abonnés absents

Attention aux valeurs manquantes, rarement supportées par les algorithmes d'analyse de regroupements.

Quelques solutions

- ignorer la variable explicative
- faire une segmentation manuelle si les valeurs manquantes déterminent des regroupements (ex: temps entre dons valide uniquement pour dons multiples).
- imputer les données manquantes (voir chapitre sur les données manquantes)

Au plus fort la poche

Le poids accordé à une variable explicative dépend de son étendu et de sa variabilité.

- Plus la variable est grande, plus elle aura un impact dans le calcul des distances
- Problème de standardisation (résultats différents selon les unités de mesure)

Standardisation

Généralement, on standardise les données avant l'analyse de regroupements.

- Soustraire la moyenne et diviser par l'écart-type empiriques (fonction scale dans R)
- utiliser mesures robustes: soustraire médiane et diviser par l'écart absolu à la médiane (mad)

Notez qu'il est illogique de standardiser les variables catégorielles (déclarer obligatoirement variables en facteurs!)

```
# Standardisation usuelle
# (soustraire la moyenne, diviser par écart-type)
donsmult std <- scale(donsmult)</pre>
# Extraire moyenne et écart-type
dm moy <- attr(donsmult std, "scaled:center")</pre>
dm std <- attr(donsmult std, "scaled:scale")</pre>
# Standardisation robuste
donsmult_std_rob <- apply(</pre>
  donsmult,
  MARGIN = 2,
  FUN = function(x)\{(x - median(x))/mad(x)\})
```

Algorithmes pour la segmentation

L'analyse de regroupements cherche à créer une division de n observations de p variables en k regroupements.

- méthodes basées sur la connectivité (regroupements hiérarchiques, AGNES et DIANA)
- 2. méthodes basées sur les centroïdes et les médoïdes (k-moyennes, k-médoides PAM, CLARA)
- mélanges de modèles (mélanges Gaussiens, etc.)
- méthodes basées sur la densité (DBScan)
- 5. méthodes spectrales

Critères pour sélection

- Complexité: plus un algorithme a une complexité élevée (temps de calcul et de stockage), moins il sera susceptible d'être applicable à des mégadonnées.
- Choix des hyperparamètres: plusieurs paramètres (nombre de groupes, rayon, choix de la dissemblance, etc.) à spécifier selon les méthodes.

Méthodes basées sur les centroïdes et les médoïdes

On assigne chaque observation à un de K regroupements (le nombre K est fixé apriori) représenté par un prototype, disons μ_k pour le regroupement k.

On cherche à assigner les observations aux groupes de manière à minimiser la distance avec les prototypes.

\overline{K} moyennes

Probablement la méthode de regroupement la plus populaire en raison de son faible coût (linéaire en n et p).

La fonction objective considère la distance totale entre observations et prototypes

$$\min_{\mu_1,\dots,\mu_K} \frac{1}{n} \sum_{i=1}^n \min_{\substack{c_i \in \{1,\dots,K\}\\ \text{distance entre obs. } i \text{ et son prototype} \mu_j}} d(\mathbf{X}_i,\mu_{c_i}) \tag{1}$$

L'allocation optimale de n observations à K groupes est un problème NP complet.

Initialisation des K-moyennes

Initialisation: on sélectionne préalablement

- \blacksquare un nombre K de regroupements et
- les coordonnées de départ pour les prototypes.

Algorithme EM

L'algorithme de type EM itère entre deux étapes:

- Assignation (étape E): calculer la distance entre chaque observation et les prototypes; assigner chaque observation au prototype le plus près.
- 2. **Mise à jour** (étape M): calculer les nouveaux prototypes de chaque groupe.

L'algorithme termine après un nombre prédéfini d'itérations ou lorsque l'assignation ne change plus (solution locale).

Visionner l'animation en ligne.

Séparation linéaire de l'espace

Avec la distance Euclidienne, la partition de l'espace est linéaire.

Figure 2: Partitions de Voronoï pour les regroupements avec séparateur linéaire.

Forces et faiblesses

- (+) Complexité linéaire dans la dimension et dans le nombre de variables.
- (+) L'algorithme converge rapidement vers une solution locale (garantie théorique).
- (—) Regroupements globulaires d'apparence sphérique (distance Euclidienne).
- (+) Pour les prédictions, on peut assigner les nouvelles observations au barycentre le plus près. # Performance
- (—) Chaque observation est assignée à un seul des K regroupements (partition rigide). (—) Valeurs aberrantes pas étiquetées à part (manque de robustesse pour moyenne).
- (—) Sensible aux valeurs initiales des prototypes.
- (—) Les prototypes ne correspondent pas à des observations du groupe.

Performance des K-moyennes

Illustration de segmentations problématiques avec K-moyennes

Hyperparamètres avec K-moyennes

- 1. le choix de la mesure de distance
- 2. les valeurs initiales des prototypes
- 3. le nombre de groupes K

Distance

Avec la distance Euclidienne l_2 , les prototypes correspondent avec le barycentre (moyenne variable par variable) des observations du regroupement.

Avec la distance de Manhattan l_1 , les prototypes correspondent avec la médiane variable par variable (K-médianes).

Autrement, optimisation nécessaire dans l'étape M de l'algorithme.

Initialisation

Choisir aléatoirement K observations dans la base de données.

Répéter plusieurs fois et prendre la segmentation avec la valeur optimale de la fonction objective.

Figure 3: Résultat d'une analyse de regroupement avec K=3 groupes avec une mauvaise initialisation principale (gauche) et une bonne initialisation

```
set.seed(60602)
kmoy5 <- kmeans(
   x = donsmult_std, # données
   centers = 5L, # nb groupes
   nstart = 10, # nb initialisation aléatoire
   iter.max = 25) # nb étapes maximum dans optimisation
kmoy5$cluster # étiquettes
kmoy5$size # répartition
kmoy5$tot.withinss # fonction objective minimal
kmoy5$centers # barycentres (données standardisées)
```

Algorithme des K-moyennes⁺⁺

Choisir des observations comme valeurs initiales, mais avec échantillonnage préférentiel (points éloignés les uns des autres).

0. sélectionner une observation au hasard pour $\mu_{\scriptscriptstyle 1}$

Pour
$$k = 2, \dots, K$$

1. calcul de la distance carrée minimale entre l'observation \mathbf{X}_i et les prototypes précédemment choisis,

$$p_i = \min\{d(\mathbf{X}_i, \boldsymbol{\mu}_1; l_2)^2, \dots, d(\mathbf{X}_i, \boldsymbol{\mu}_{k-1}; l_2)^2)\}$$

2. Choisir le prototype initial μ_k au hasard parmi les observations avec une probabilité de $p_i/\sum_j p_j$ pour l'observation \mathbf{X}_i .

K-moyennes $^{++}$ dans ${f R}$

Utiliser le paquet flexclust

```
set.seed(60602)
kmoypp5 <- flexclust::kcca(
x = donsmult std
k = 5, # nb groupes
  family = flexclust::kccaFamily("kmeans"),
  control = list(initcent = "kmeanspp"))
# Vérifier répartition
kmed5@clusinfo
# Coordonnées des prototypes standardisés
kmed5@centers
# Étiquettes
kmed5@cluster
```

Choix du nombre de regroupements

Plusieurs critères généralement applicables

- silhouettes(cluster::silhouette)
- statistique d'écart (cluster::clusGap)

Critères plus spécifiques aux K-moyennes rattachés à la fonction objective

- lacksquare graphique du R^2
- critère d'information bayésien "BIC"

Somme du carré des distances intra-groupes

La fonction objective de l'Equation 1 avec la distance Euclidienne représente la somme du carré des distances (SCD)

$$\mathsf{SCD}_K = \mathsf{SCD}_{1,K} + \dots + \mathsf{SCD}_{K,K};$$

ΟÙ

$$\mathrm{SCD}_{k,K} = \sum_{i \in G_k} \|\mathbf{X}_i - \boldsymbol{\mu}_k\|_2,$$

est la somme des distance l_2 entre les observation du groupe ${\cal G}_k$ et leur barycentre $\mu_{\iota}.$

Avec un seul groupe, la distance par rapport à la moyenne est $\mathsf{SCT} = \mathsf{SCD}_1$.

Somme du carré des distances

La valeur optimale de la somme du carré des distances mesure va mécaniquement* diminuer quand K augmente $\mathrm{SCD}_1 > \mathrm{SCD}_2 \cdots$.

En pratique, cela peut ne pas être le cas si le minimum local est sous-optimal.

Si la réduction de la somme du carré des distances est négligeable, on pourrait penser que l'ajout d'un groupe supplémentaire.

Critères \mathbb{R}^2 et "BIC"

On peut mesurer le pourcentage de variance expliquée,

$$R_K^2 = 1 - \frac{\mathsf{SCD}_K}{\mathsf{SCT}}.$$

On cherche un point d'inflexion (coude) à partir duquel l'amélioration est négligeable.

Puisque la somme du carré des distances diminue avec K, on peut considérer l'ajout d'une pénalité pour le nombre de paramètres estimés

$$\mathsf{BIC} = \mathsf{SCD}_K + \ln(n)Kp$$

La plus petite valeur du "BIC" est préférable.

Graphique de coefficient de détermination R^2

Le pourcentage de variance expliqué augmente de manière plus ou moins constante jusqu'à 8 ou 9 composantes.

Critère BIC

Le critère suggère aussi un nombre élevé de regroupements, ici 15 (nombre maximum de 15).

Silhouettes

Pour chaque observation \mathbf{X}_i , on calcule

- $\blacksquare \ a_i$, la moyenne des dissimilarités entre \mathbf{X}_i et les observations de son regroupement
- lacksquare b_i , le minimum parmi les K-1 dissimilarités moyennes entre \mathbf{X}_i et les observations de chaque autre regroupement.

On calcule la silhouette

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

Il est possible que la silhouette s_i soit négative: cela indique généralement des observations mal regroupées.

De bons regroupements seront obtenus si la silhouette moyenne est élevée.

Graphique des silhouettes

Coûteux en calcul (nécessite matrice de dissemblance), possible de faire avec un sous-échantillon aléatoire.

La segmentation de droite de la Figure 4 est supérieure parce que les regroupements sont plus homogènes et mieux équilibrés.

Figure 4: Profil des silhouettes pour deux regroupements d'un jeu de données.

Silhouettes avec segmentation des K-moyennes

annouette moyenne. 0.32

Règle importante pour le choix de ${\cal K}$

Utilisez votre jugement (et le gros bon sens).

Les segments doivent être interprétables.

Vérifiez que la taille des segments n'est pas fortement débalancée.

Statistiques descriptives par segment

Table 1: Moyenne des variables explicatives par segment (segmentation avec K-moyennes et cinq regroupements).

	1	2	3	4	5
décompte	991	77	4480	4231	3838
mtdons	13.91	408.42	15.33	12.11	24.16
ndons	2.97	12.16	3.98	4.61	13.64
recence	64.62	60.55	29.02	172.41	27.72
anciennete	219.36	259.48	83.25	247.80	252.41
vdonsmax	22.39	991.30	22.55	19.23	58.90
ddons	7.50	1.91	1.60	1.87	1.65
nrefusconsec	1.82	0.56	0.62	3.16	0.47
snrefus	3.18	0.87	4.24	2.72	1.05
mpromesse	15.32	554.82	17.67	7.63	44.24

Interprétation des segments

Les regroupements obtenus sont interprétables:

- Groupe 1: Petits donateurs, faible nombre de dons. N'ont pas donné depuis longtemps. Refus fréquents et délai entre dons élevés
- Groupe 2: Grands donateurs fidèles: plus petit groupe. Ces personnes ont fait plusieurs dons, leur valeur maximale est élevée. N'ont pas donné récemment.
- Groupe 3: Petits donateurs récidivistes. Dons plus élevés que la moyenne mais beaucoup de dons de faible valeur et peu fréquents.
- Groupe 4: Petits nouveaux. Moins d'ancienneté, dons fréquents et refus fréquents relativement à l'ancienneté.
- Groupe 5: Petits donateurs inactifs. Plutôt anciens, plusieurs refus.

Récapitulatif

- L'analyse de regroupement (clustering) est une méthode d'apprentissage non-supervisée
- Plusieurs choix de l'analyste (mesure de dissemblance, algorithme, choix des hyperparamètres) peut donner une segmentation différente
- L'algorithme des K-moyennes est le plus employé et son faible coût permet son utilisation avec des mégadonnées.