SOC 4930/5050: Lab-05 - The Distribution of Random Variables

Christopher Prener, Ph.D. September 25th, 2017

Directions

Please complete all steps below. The final parts of this lab use the auto17 data from the testDriveR package. Your your work "by hand" as well as your well-formatted R Notebook source (the .Rmd file) and html output should be uploaded to your GitHub assignment repository by 4:15pm on Monday, October 2nd, 2017.

Part 1: Binomial Distribution

Complete this section in R/RStudio.

- 1. What is the probability of more than 24 successes occurring in a sequence of 250 independent trials with a binary outcome where the probability of success is .4 for each trial?
- 2. What is the probability of 25 or fewer successes occurring in a sequence of 250 independent trials with a binary outcome where the probability of success is .4 for each trial?
- 3. What is the probability of exactly 25 successes occurring in a sequence of 250 independent trials with a binary outcome where the the probability of success is .4 for each trial?

Part 2: Poisson Distribution

Complete this section in R/RStudio.

- 4. The probability of a catastrophic failure of a rocket carrying satellites into space is .025. Over 1,000 launches, what is the probability of observing more than 4 failures?
- 5. What is the probability of observing exactly 18 failures?
- 6. What is the probability of observing 15 for fewer failures?

Part 3: Normal Distribution

Complete this section in R/RStudio.

7. A literature review shows the distribution of literacy test scores on a given instrument to be normally distributed. The population average test score is 21 with a standard deviation of 3. What is the probability of drawing a individual whose score is a 25?

Part 4: Skew and Kurtosis

Complete this section by hand.¹

8. The following are a distribution of scores on a simple functional capacity task for individuals recovering from a stroke: 1, 4, 3, 2, 4, 2, 1, 4, 3, 3. What is the skewness and kurtosis of this distribution of scores?

¹ You can check your work in R, however, and I've included some basic instructions for how to read the arbitrary data below into R in the Wiki/Jotter for Week-05.

Part 5: Normality Testing in R

Complete this section in R/RStudio.

- 9. Use the variable fuelCost from the auto17 data set in the testDriveR package to conduct a full set of normality tests:
 - (a) What is the variable's skew?
 - (b) What is the variable's kurtosis?
 - (c) Create and interpret a q-q plot.
 - (d) What are the results of a Shapiro-Francia test?