NAME: SHINE POLABADI USN: 1BM20CS150

MACHINE LEARNING LAB OBSERVATION

Date: 1-04-2023

Lab 1: Exploring Datasets

IRIS DATASET:

- Features in the Iris dataset:
 - 1. sepal length in cm
 - 2. sepal width in cm
 - 3. petal length in cm
 - 4. petal width in cm
- Target classes to predict:
 - 1. Iris Setosa
 - 2. Iris Versicolour
 - 3. Iris Virginica

```
In [8]: from sklearn.datasets import load_iris
          iris=load_iris()
 In [9]: print(iris)
          {'data': array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                  [4.7, 3.2, 1.3, 0.2],
                  [4.6, 3.1, 1.5, 0.2],
                  [5., 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                  [4.6, 3.4, 1.4, 0.3],
                 [5., 3.4, 1.5, 0.2],
                  [4.4, 2.9, 1.4, 0.2],
                 [4.9, 3.1, 1.5, 0.1],
                 [5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
                  [4.8, 3., 1.4, 0.1],
                  [4.3, 3. , 1.1, 0.1],
                 [5.8, 4., 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
                  [5.4, 3.9, 1.3, 0.4],
                  [5.1, 3.5, 1.4, 0.3],
                  [5.7, 3.8, 1.7, 0.3],
 In [5]: type(iris)
 Out[5]: function
In [12]: iris.kevs()
Out[12]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
In [13]: iris
                  [4.7, 3.2, 1.6, 0.2],
                  [4.8, 3.1, 1.6, 0.2],
                  [5.4, 3.4, 1.5, 0.4],
                  [5.2, 4.1, 1.5, 0.1],
                  [5.5, 4.2, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.2],
                  [5., 3.2, 1.2, 0.2],
                  [5.5, 3.5, 1.3, 0.2],
                  [4.9, 3.6, 1.4, 0.1],
                  [4.4, 3., 1.3, 0.2],
                  [5.1, 3.4, 1.5, 0.2],
                  [5., 3.5, 1.3, 0.3],
                  [4.5, 2.3, 1.3, 0.3],
                  [4.4, 3.2, 1.3, 0.2],
                  [5., 3.5, 1.6, 0.6],
                  [5.1, 3.8, 1.9, 0.4],
                  [4.8, 3., 1.4, 0.3],
                  [5.1, 3.8, 1.6, 0.2],
```

```
In [17]: print(iris['target_names'])
          ['setosa' 'versicolor' 'virginica']
In [20]: n_samples,n_features=iris.data.shape
          print("no.of samples:",n_samples)
          print("no.of features:",n_features)
          no.of samples: 150
          no.of features: 4
In [28]: iris.data[[12,26,89,114]]
Out[28]: array([[4.8, 3., 1.4, 0.1],
                 [5., 3.4, 1.6, 0.4],
[5.5, 2.5, 4., 1.3],
[5.8, 2.8, 5.1, 2.4]])
In [29]: print(iris.data.shape)
          (150, 4)
In [31]: print(iris.target.shape)
          (150,)
In [32]: import numpy as np
          np.bincount(iris.target)
```

Scattered graph for samples vs features.

```
In [32]: import numpy as np
         np.bincount(iris.target)
Out[32]: array([50, 50, 50], dtype=int64)
In [42]: import matplotlib.pyplot as plt
         plt.scatter(n_samples,n_features)
Out[42]: <matplotlib.collections.PathCollection at 0x1d1c8c45550>
           4.20
           4.15
           4.10
           4.05
           4.00
           3.95
           3.90
           3.85
           3.80
               142
                       144
                               146
                                       148
                                               150
                                                      152
                                                              154
                                                                      156
                                                                              158
```

Scattered graph: with first two features(septal width vs septal length) The three colors represents three different classes respectively.

7.5

8.0

7.0

WINE DATASET:

4.5

5.0

5.5

6.0

sepal length (cm)

6.5

```
In [51]: from sklearn.datasets import load_wine
          wine=load wine()
 In [52]: print(wine)
          {'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                  1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
In [57]: wine.data
Out[57]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                 1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                 [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
                 8.400e+02],
                 [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
                  5.600e+02]])
In [58]: wine.keys()
Out[58]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])
In [60]: print(wine['target_names'])
         ['class_0' 'class_1' 'class_2']
```

Date: 15/04/2023

Lab 2: FIND-S ALGORITHM FOR ENJOY SPORT:

Program 2 – Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file Data set:Enjoysport

a. Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Algorithm:

initialize h to the most specific hypothesis in H h- $(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$

- 1. First training example X1=< Sunny, Warm. Normal, Strong Warm Same>. EnjoySport=+ve Observing. The first trainin example, it is clear that hypothesis h is too specific. None of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example h1 = < Sunny, Warm, Normal, Strong Warm, Same>.
- 2. Consider the second training example x2 < Sunny, Warm, High, Strong, Warm, Same>. EnjoySport+ve. The second training example forces the algorithm to further generalize h, this time substituting a "?" in place of any attribute value in h that is not satisfied by the new example. Now h2 =< Sunny, Warm, ?, Strong, Warm, Same>
- 3. Consider the third training example x3< Rainy, Cold, High, Strong, Warm. Change EnjoySport ve. The FIND-S algorithm simply ignores every negative example. So the hypothesis remain as before, so 13=< Sunny, Warm, ?, Strong, Warm, Same>
- 4. Consider the fourth training example x4 <Sunny, Warm, High. Strong. Cool, Change, EnjoySport +ve. The fourth example leads to a further generalization of h as h4=< Sunny, Warm, ?, Strong, ?, ?>
- 5. So the final hypothesis is < Sunny, Warm, ?, Strong, ?, ?>

123	Classmate
6/4/23	Page 3
	Lab Program
	100 00000
	Dataset: enjoysports. CEV file
2 60	- C C - C - C - C - C - C - C - C -
Sample	Sky Airmy Humidity Wind Water Forcast epolits
	Strong harm same yes
	warm high stome warm same yest
	Strong Warm Same No-
4)	Sunny warm high strong warm same Yes.
	Districted of Street 1
*	Find S algorithm: Es a basic-concept-learning algo
	W Till.
*	St finds what is next excile to Buryle west fits
	It finds what is most -specific hypothesis that fits all the "Positive" examples.
	* A Maria
×	This algo starts with the most specific hybothesis
	and moves to the most general hypothesis.
	1 Nost photos
	? -> accepts any value general.
	O - accepte No Value. Specition value)
	MSD -> (& 9 P) accepts None
	initial nys : (d, d, d) & T
steration	2 hi = < 'Sunny', wasm', 'normal, 'strong' warr
stevation	Same > + ve maga A mo
) coldon 2	be - " Course " barne " high "Strong" Warm " San
Lecolina 2	hz = c 'Raing' cold' high strong' warm, Change's
Devaling 4	huse Sunny 'norm' high' Strong cool 'Change's
TYCAMINOST	Clark X STAY SE CANGON FIFT & STAR
	(Not considered) (.x) 2019126A W/ SYNDAN
	(N Hishais ! Man
	(of (singuistical) toing
	(A (Six HS) SH H/) Young
į)	The state of the s
i)	Builtialize 'h' to the most specific hypo in H.
	Enitialize 'h' to the most specific hypo in H.
	Builtialize 'h' to the most specific hypo in H. For each paintare training instance 'x' each attribute
	Enitialize 'h' to the most specific hypo in H. For each paintare training instance 'x' each attribute constraint as in his if the countraint as is
	Enitialize 'h' to the most specific hypo in H. For each paritive training instance 'x' each attribute Constraint as in him if the countraint ai is
	Enitialize 'h' to the most specific hypo in H. For each paritive training instance 'x' each attribute Constraint as in him if the countraint ai is
	Enitialize 'h' to the most specific hypo in H. For each paritive training instance 'x' each attribute Constraint as in him if the countraint ai is
	Enitialize 'h' to the most specific hyso in H. For each paritive training instance 'x' each attribute Constraint as in him if the constraint as is
	Enitialize 'h' to the most specific hypo in H. For each painter training instance 'x' each attribute Constraint as in his if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h.
	Enitialize 'h' to the most specific hypo in H. For each paritive training instance 'x' each attribute Constraint as in him if the countraint ai is
	Enitialite 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute Countraint as in ba if the caustraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h.
	Enitialize 'h' to the most specific hypo in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more genera Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram
3)	Enitialize 'h' to the most specific hypo in H. Fox each paistore training instance 'x' each attribute Constraint as in bir if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram import CIV
	Enitialize 'h' to the most specific hypo in H. Fox each paistore training instance 'x' each attribute Constraint as in bir if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram import CIV
3)	Enitialize 'h' to the most specific hypo in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more genera Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram
3)	Enitialize 'h' to the most specific hypo in H. Fox each painare training instance 'x' each attribute Constraint ai in he if the constraint ai is set latisfied by 'x' then do nothing else replace ai in he by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram import csv det updatetypothesis(xs); if h == []
3)	Enitialize 'h' to the most specific hypo in H. For each paintore training instance 'x' each attribute Constraint as in him if the countraint as is set latisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram import av det updatetyly Pothusis (xs); if h == [] return x
3)	Enitialize 'h' to the most specific hypo in H. Fox each painere training instance 'x' each attribute Constraint ai in he if the constraint ai is set latisfied by 'x' then do nothing else replace ai in he by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import CSV des updatetypothesis(x). if h == [] *cturn x for; in range (0, len(h)).
3)	Enitialite 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute Countraint as in ba if the countraint as is set talisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Brogram import av det updatetypothusis(xo); if n == [] return x for; in range (0, len(n)); if x[i], upper()! = h[i], upper().
3)	Enitialize 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute Countraint as in ba if the countraint as is sell talisfical by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cw del updatetypothesis(xs). if h == [] return x for; in range [0, len(n)). h [i] = '?'
3)	Enitialite 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute Countraint as in box if the countraint as is set talisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import av def updatetypothusis(xo): if n == [] return x for; in range (0, len(n)): h [i] = '2' Yeturn h
3)	Enitialize 'h' to the most specific hypo in H. Fox each pairiore training invotance 'x' each attribute Constraint as in he if the constraint as is set satisfied by 'x' then do nothing. else replace as in he by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cov del uplatetypothusis(xo). if h == [] return x for; in range [0, len(n)). h [i] = '?' return h if name == 'main'
3)	Enitialite 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute Countraint as in box if the countraint as is set talisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import av def updatetypothusis(xo): if n == [] return x for; in range (0, len(n)): h [i] = '2' Yeturn h
3)	Enitialite 'h' to the most specific hypo in H. Fox each positive training instance 'x' each attribute countraint as in ba if the countraint as is sell talisfical by 'x' then do nothing. else replace as in h by the next more general constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cw del updatetypothesis(xs). if h == [] return x for; in range [0, len(n)). h[i] = '?' Yeturn h if name == 'main' data = [] h = C]
3)	Enitialize 'h' to the most specific hyso in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the countraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hysothese h. Output hysothesis h. Brogram import cuy def updatetysothusis(xa): if h == [] return x for; in range [0, len(n)): h[i]='?' Yeturn h if name == 'main' data = [] with gen ("Deutop Finds: csv', 'x') as file!
3)	Enitialize 'h' to the most specific hyso in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the countraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hysothese h. Output hysothesis h. Brogram import cuy def updatethysothesis(xa): if h == [] return x for; in range [0, len(n)): h[i]='?' Yeturn h if name == main data = [] with gen ("Deutop Finds. csv' 'x') as file! reader = csv, reader (file)
3)	Enitialize 'h' to the most specific hyso in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the countraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hysothese h. Output hysothesis h. Brogram import cuy def updatethysothesis(xa): if h == [] return x for; in range [0, len(n)): h[i]='?' Yeturn h if name == main data = [] with gen ("Deutop Finds. csv' 'x') as file! reader = csv, reader (file)
3)	Enitialize 'h' to the most specific hyso in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hysothese h. Constraint that is required by 'x' hysothese h. Constraint hysothesis h. Rogram import csv def updatetylyothusis(xa): if h == [] return x for; in range [0, len(h)): if x [i] = '?' Yeturn h if name == 'main' data = [] with gren (Deultop Finds. csv' x') as file! reader = csv, reader (file)
3)	Enitialize 'h' to the most specific hyso in H. Fox each paistore training instance 'x' each attribute Constraint as in his if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hysothese h. Constraint that is required by 'x' hysothese h. Rogram import csv det updatetylyothusis(xa): if h == [] return x for; in range [0, len(h)): if x [i] = '?' Yeturn h if name == 'main' data = [] with gren (Deultop Finds. csv' x') as file! reader = csv, reader (file) print (Data:") olara. append (Yow)
3)	Enitialize 'h' to the most specific hypo in H. Fox each paintere training instance 'x' each attribute Constraint ai in he if the cautraint ai is set tatisfied by 'x' then do nothing. else replace ai in he by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv det updatetypothusis(xs). if h == [] *cturn x for i in range [0, len(h)). if x [i] upper ()! = h [i], upper (). h [i] = '? Yeturn h if name == 'main' data = [] h = C] evith gen (Deuktop Finds csv' 'x') ay file! yeader = csv. reader (file) print (Data:") clata. append (Yow)
3)	Enitialize 'h' to the most specific hypo in H. Fox each paistore training instance 'x' each attribute Constraint as in he if the constraint as is sell satisfied by 'x' then do nothing else replace as in he by the next more general Constraint that is required by 'x' hypothese h. Quitput hypothesis h. Program import cuv det updateHypothusis(xs). if h == [] return x for; in range [0, len(h)). if x[i] upper()! = h[i], upper(): h[i] = 'y' Yeturn h if name == 'main' data = [] with gen (Deuktop Finds. csv' 'v') as file! reader = Csv, reader (file) print (Data:') clata. append (vow) if data:
3)	Enitialize 'h' to the most specific hyso in H. For each paisture training instance 'x' each attribute Constraint as in he if the constraint as is set satisfied by 'x' then do nothing else replace as in he by the next more general Constraint that is required by 'x' hysothese h. Quitput hysothesis h. Program Import cuv det updateHysothusis(xo): if h == [] *Ectarn x for i'm range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = '? Yesturn h if name == 'main' data = [] h = [] with gen ("Delutop Finds. csv" x' appfile! reader = csv, reader (file) print ("Data:") obata. append (vow) if data! for x in data.
3)	Shitialize 'h' to the most specific hypo in H. For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set tatisfied by 'x' then do nothing. Let existing by 'x' then do nothing of the rest more general constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cuv det updatethypothesis(xa): if n = [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = '?' Yeturn h if name == 'main' data = [] with open ('Deutop Finds.csv' 'x') as file! reader = Csv. reader (file) print ('Data:') clara appeard (vow) print ('row) if data: for x in data if x[1], upper() == 'Yei': x hol)
3)	Enitialize 'h' to the most specific hyso in H. For each paistore training instance 'x' each attribute Constraint as in he if the constraint as is set that sisted by 'x' then do nothing else replace as in he by the next more general Constraint that is required by 'x' hysothese h. Quitput hysothesis h. Program Import CIV det updateHysothesis (xo): if h == [] *Ethan x for in range [0, len(n)): if x [i] upper ()! = h [i], upper (): h [i] = '? Yeturn h if name == 'main' data = [] h = (] with gen ("Delutop Finds. csv" x' ay file! reader = csv. reader (file) print ("Data:") olata. append (vow) if data! for x in data.

CREATING CSV FILE:

The final hypothesis is: ['Sunny' 'Warm' '?' 'Strong' '?' '?']

SECOND DATASET: FIND-S ALGORITHM

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE


```
import numpy as np
     import pandas as pd
[ ] from google.colab import drive
     drive.mount("/content/drive")
     Mounted at /content/drive
[ ] path ="/content/finds_1BM20CS066 - Sheet1.csv"
[ ] data = pd.read_csv(path)
[ ] print(data,"\n")
       citation
                 size inLibrary price editions buy
                small no affordable many big no expensive one
     0
          some
     1
           many
                                                 one yes
     2
                  big always expensive
                                                  few
          some
                                                       no
          many medium no expensive
     3
                                                many yes
     4
           many small
                            noo affordable many yes
[ ] d = np.array(data)[:,:-1]
    print("\n The attributes are: ",d)
     The attributes are: [['some' 'small' 'no' 'affordable' 'many'] ['many' 'big' 'no' 'expensive' 'one']
     ['some' 'big' 'always' 'expensive' 'few']
     ['many' 'medium' 'no' 'expensive' 'many']
     ['many' 'small' 'noo' 'affordable' 'many']]
target = np.array(data)[:,-1]
    print("\n The target is: ",target)
\Box
     The target is: ['no' 'yes' 'no' 'yes' 'yes']
                                                          + Code + Text
[ ] def find s(d, target):
       for i, val in enumerate(target):
          if val=='yes':
            hypothesis=d[i].copy()
            break
       for i, var in enumerate(d):
          if target[i]=="yes":
            for x in range(len(hypothesis)):
              if var[x]!=hypothesis[x]:
                hypothesis[x]='?'
              else:
                pass
       return hypothesis
     print("The Hypothesis is",find_s(d,target))
     The Hypothesis is ['many' '?' '?' '?']
```

DATE: 15/04/2023

LAB 3: CANDIDATE- ELIMINATION- ENJOY SPORT

Program 3:For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. Data set:Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

ALGORITHM:

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

if attribute_value == hypothesis_value:

Do nothing

else:

replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

Make generalize hypothesis more specific.

14/23	Classmate Date Page 5
	Lah P
351 F	Lab Program 2
12.70	Candidate Elimination Algorithm
	Example Sky from Humidity wind water
	Samy Warm Al 16
	M M M
Mark 1	8 Kaing Cold high at
MILL SON	The state of the s
	and a
	forcalt Enjoy sport Target
	Same Yes the variable.
	Same Yes + ve 6 attributes candida
	Change No -ve Concept learning
	Change Yes +ve/
	gives out binary results.
	Coulidors both negative and Poxitive values.
	Anna Maria Maria
4	To find consistent hypothesis for a given solution of
	training example
	most General Go = ????
	Most specific So = 2 \$ \$ \$ \$ \$ \$
	Hard from Generic Boundary,
	Personal Control of the State o
	first takes generic attribute values. hypothesi
	Whenever matches retain generic value if
	matches experted is the and outcome the.
	Gree Go
	Alul value in so is replaced by si
	So 1 \$60 \$ 007
JL N	No match > negative classification
	at antiquenty and a state of Africa American and according
	All question marks match with example, hence
X	

*	All null values doesn't match, hence -ve
	Classifier. But expected = +ve classifier, therefore
	it is inconsistent langue in consis
	it is inconsistent hypothesis. when inconsis
	exist write next general hypothesis that is:
+	Replace Null values by 1st examples.
	For the second s
1	G1 = 2 ? ? ? ? ? > 60
	S1 = < ? ? ? ? ? ? > sarm, Mormal, Strong, warm, un
TI)	G1 = < ? ? ? ????
/	Consider prev generic hypothesis.
	S2 = G1
	if generic +ve > retain
	it match retain
	It larger value -ve - Ctart from -
	if Target value +ve - start from 5
L IV	Sz = 2 Sunny, warm, ?, Strong, warm, same>
*	6B, all ? matches with Si, hence +ve
	Classification and experd
*	SB, when inconsistency make it General (?)
TIN	Silvery was 7 Change 120100 Mars - VE
27	53 = < Sunny, warm, ? Strong, warm, same > - 12 63 = { Sunny, ? ? ? ? ? ? ? .
*	Since all values are generic in Previous
	hypothesis, only Polible when example is the
	and if there exist inconsistency then all hybothetic
	which are consistent with all the training examples seen now.
u)	
	A STATE OF THE PARTY OF THE PAR

*	2 moteh with all the attribute but expected -ve,
-	hence inconsistency. The attribute but expected -ve
	V.
¥	All hypothesis which
>	All hypothesis which are consistent till now.
	Tronger at the same
	import numa
	import numpy as up import Rundas as pd.
	Concepts = np. array (data = pd. read car (enjoyaport 15v)
	Print (concepts) data: iloc (:, 0, - 1)
	target = np. array (data:1/oc[:0,-1]). Print (general: h)
	Print (specific n).
	frie (specific h).
	X ₁ (+)
	Sy = < ? large light ? thick > . Gu = < 2 ? light ?? > , < ???? thick >
	94 = < 2? light, ?? > , ??? +hich
	D. I. I.
	Dataset Fuel Not - Taxast
	Size Trunk economy Passengers Type Target
	Small Available High 4 economy Y
	Big Available low 2 sports N
	Sonall Available high -4 economy v
	small Northvallable low 2 donors al
	60 = < ? ? ? ? ? ? >
	So 2 < P, g, 9, 9, 9,
	Co. M. 10. In Manual S.
	S. = < &mall, available, high, L, economys
	G. = ? ? ? ? ? ? .</td
	Sz = < Small 2 Inigh 4 Cconomus
	Sz = < Small, ? high, 4, economy, Gz = { Small, ?' ? ? ?? > ; < ??, high ? ?>
	a singh, i singh singh
	{ < ? ? ? ! ! ? > ; < ???? economy s . }

CREATING CSV FILE:


```
[ ] import numpy as np
        import pandas as pd
 [ ]
        from google.colab import drive
        drive.mount('/content/drive')
 [ ]
        data = pd.DataFrame(data=pd.read_csv('/content/enjoysport.csv.csv'))
 [ ] print(data,"\n")
              Sky AirTemp Humidity Wind Water Forecast EnjoySport
        0 Sunny Warm Normal Strong Warm Same Yes
       1 Sunny Warm High Strong Warm Same
2 Rainy Cold High Strong Warm Change
3 Sunny Warm High Strong Cool Change
                                                                                 Yes
                                                                                  No
                                                                                 Yes
[ ] concepts = np.array(data.iloc[:,0:-1])
[ ] print(concepts)
      [['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']]
[ ] target = np.array(data.iloc[:,-1])
print(target)
      ['Yes' 'Yes' 'No' 'Yes']
[ ] import csv
```

```
csv_file = csv.reader(f)
          data = list(csv file)
          specific = data[1][:-1]
          general = [['?' for i in range(len(specific))] for j in range(len(specific))]
          for i in data:
             if i[-1] == "Yes":
                 for j in range(len(specific)):
                     if i[j] != specific[j]:
                         specific[j] = "?"
                         general[j][j] = "?"
             elif i[-1] == "No":
                 for j in range(len(specific)):
                     if i[j] != specific[j]:
                         general[j][j] = specific[j]
                     else:
                         general[j][j] = "?"
             print("\nStep " + str(data.index(i)) + " of Candidate Elimination Algorithm")
              print(specific)
             print(general)
          gh = [] # gh = general Hypothesis
          for i in general:
              for j in i:
                 if j != '?':
                     gh.append(i)
                     break
          print("\nFinal Specific hypothesis:\n", specific)
          print("\nFinal General hypothesis:\n", gh)
  Step 1 of Candidate Elimination Algorithm
  Final Specific hypothesis:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
  Final General hypothesis:
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
[ ] def learn(concepts, target):
        specific_h = concepts[0].copy()
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
print("Step 0:")
print("Specific Hypothesis: ", specific_h)
print("General Hypothesis: ", general_h)
print("------")
         for i, h in enumerate(concepts):
             if target[i] == "Yes":
    for x in range(len(specific_h)):
                     if h[x] != specific_h[x]:
    specific_h[x] = '?'
                         general_h[x][x] = '?'
             if target[i] == "No":
    for x in range(len(specific_h)):
                    if h[x] != specific_h[x]:
    general_h[x][x] = specific_h[x]
        general_h[x][x] = '?'
print("Step", i+1, ":")
print("Specific Hypothesis: ", specific_h)
print("General Hypothesis: ", general_h)
print("-------------)
indices = [i for i,val in enumerate(general_h) if val == ['?', '?', '?', '?', '?']]
for i in indices:
         for i in indices:
         general_h.remove(['?', '?', '?', '?', '?'])
return specific_h, general_h
```

with open("'/content/enjoysport.csv.csv'") as f:

s_final, g_final = learn(concepts, target)
print("Final S:", s_final, sep="\n")
print("Final G:", g_final, sep="\n")

```
Step 0:
Specific Hypothesis: [Sunny' [Narm' [Normal] [Strong' [Narm' [Same']]]
Seneral Hypothesis: [[[?', ?', '?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'], [?', '?', '?'],
```

SECOND DATASET:

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE:

[] target = np.array(data.iloc[:,-1])
 print("\n The target is: ",target)

```
[ ] def learn(concepts, target):
      specific h = concepts[0].copy()
       print("\n Initialization of specific_h and general_h")
      print(specific_h)
      general_h = [["?" for i in range(len(specific_h))] for i in
     range(len(specific_h))]
      print(general_h)
      for i, h in enumerate(concepts):
           if target[i] == "yes":
                for x in range(len(specific_h)):
                    if h[x]!= specific_h[x]:
                         specific_h[x] ='?'
                        general_h[x][x] = '?'
                    print(specific_h)
           print(specific_h)
           if target[i] == "no":
                for x in range(len(specific_h)):
                    if h[x]!= specific_h[x]:
                        general_h[x][x] = specific_h[x]
                        general_h[x][x] = '?'
           print("\n Steps of Candidate Elimination Algorithm", i+1)
           print(specific_h)
           print(general_h)
      indices = [i for i, val in enumerate(general_h) if val ==
      ['?', '?', '?', '?', '?', '?']]
      for i in indices:
           general_h.remove(['?', '?', '?', '?', '?', '?'])
      return specific_h, general_h
     s final, g final = learn(concepts, target)
 Initialization of specific_h and general_h
['some' 'small' 'no' 'affordable' 'many']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?']]
['some' 'small' 'no' 'affordable' 'many']
  Steps of Candidate Elimination Algorithm 1
 [['some' 'small' 'no' 'affordable' 'many']
[['?', '?', '?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?']]
['?' 'small' 'no' 'affordable' 'many']
  '?' '?' 'no' 'affordable' 'many']
 ['?' '?' 'no' 'affordable' 'many']
['?' '?' 'no' '?' 'many']
 [,5, ,5, ,uo, ,5, ,5,]
[,5, ,5, ,uo, ,5, ,5,]
  Steps of Candidate Elimination Algorithm 2
 Steps of Candidate Elimination Algorithm 3
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?'
 ['?' '?' 'no' '?' '?']
 [,;, ,;, ,uo, ,;, ,;,]
[,;, ,;, ,uo, ,;, ,;,]
  Steps of Candidate Elimination Algorithm 4
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', 'no', '?', '?'], ['?', '?', '?', '?'], ['?', '?'],
['?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 [,5, ,5, ,5, ,5, ,5, ,5, ]
 ַנִינִי ינִי ינִי ינִי ינִי ינִי ינִי<sup>י</sup>
  Steps of Candidate Elimination Algorithm 5
 print("\nFinal Specific_h:", s_final, sep="\n")
print("\nFinal General_h:", g_final, sep="\n")
Final Specific_h:
[.5. .5. .5. .2. .5.]
Final General_h:
```

Program 4:Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

ALGORITHM:

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples

 Otherwise Begin
- A ← the attribute from Attributes that best* classifies Examples
- The decision attribute for Root \leftarrow A
- For each possible value, v_i , of A,
- Add a new tree branch below *Root*, corresponding to the test $A = v_i$
- Let Examples v_i , be the subset of Examples that have value v_i for A
- If $Examples_{vi}$, is empty
- Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
- Else below this new branch add the subtree ID3(*Examples* _{vi}, Targe_tattribute, Attributes {A}))
- End
- Return Root

19/4/23	3			(Dele Poge Q	0		
	Decisi	on Free - Pla	y Glot		Tark			
0	Day	Dutlook	5	1.1		~1		
		Sunny	The second second second second		ity Wind	Plac		
	2	Sanny	Hot	high	weak	No		
	3	Overcast	Hot	high	Strong	No		
	U	Rain	Hot	high	weak ?	Yes		
	- 5	Rain	Mild	high	Weak	Yes		
-1.	6		100	Moronal -	Weak	Yus		
	7	Rain	Cool	Mormal.	Strong	No		
	8	Overcast	Cool	Normal	Strong	Yes		
	9	Sunny	Mild-	high	weak	No		
		Sunny	Cool	Mormal	Weak	Yes		
	10	Rain	Mild	Marmal	weak	YU		
	Н	Sunny	Mild-	Morrisal	Strong	Ye		
	12	Overcast	Mild	high	Strong	Ye		
	13	DVercait	hot	Normal	weak	Ye		
	14	Rain	wild.	High.	Strong	No		
10.25	2(-0	1146 0-637G	0 + (-	5/14/-1.	4854))			
	3	= 1- (10)		Carrie Lynd	210			
			OLD-					
	0 (a) = (a) =							
	Putor	mation Gain:	G(C. A.T	-)				
		= E(s)		1 1	(4)			
			VEAL (A	NS	1	-		
			(0)	L ().		9		
	En	tropy (s) =	- Po log	2 Pm - Pe	1092 PO			
	1111	0131	I D					
	- (4	11 21 - 12 - Ch	dd color					

	Algorithm
	103 (Example, Target-attribute, attribute)
*	Create a root node for the tree.
*	3f all examples are the,
	return the single node tree
	Root with label = +ve.
87 I D	A ST OF THE PARTY
+	It all examples are -ve,
	return the single mode tree
	Root with label = -ve.
*	Otherwise Begin
\rightarrow	A the attribute from attributes that best *
	Classifies examples.
→	The decision attribute for root & A
7	Add a new tree-branch below root, corresponding to
	the test A = Vi
\rightarrow	Let example V? be the subject of example that have
	values vi from A-
\rightarrow	By example Vi, that is empty.
	Then a below this new branch at a reat
	node with label 3' most Common value of
	Target- attribute in example.


```
 [58] def entropy(S):
          attr=list(set(S))
          if len(attr)==1:
              return 0
          counts=[0,0]
          for i in range(2):
              counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
          sums=0
          for cnt in counts:
              sums+=-1*cnt*math.log(cnt,2)
          return sums
[59] def compute_gain(data,col):
          attr,dic = subtables(data,col,delete=False)
          total_size=len(data)
          entropies=[0]*len(attr)
          ratio=[0]*len(attr)
          total_entropy=entropy([row[-1] for row in data])
          for x in range(len(attr)):
              ratio[x]=len(dic[attr[x]])/(total_size*1.0)
              entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
              total_entropy-=ratio[x]*entropies[x]
          return total_entropy
[60] def build_tree(data,features):
          lastcol=[row[-1] for row in data]
          if(len(set(lastcol)))==1:
              node=Node("")
              node.answer=lastcol[0]
              return node
          n=len(data[0])-1
          gains=[0]*n
          for col in range(n):
              gains[col]=compute_gain(data,col)
          split=gains.index(max(gains))
          node=Node(features[split])
          fea = features[:split]+features[split+1:]
          attr,dic=subtables(data,split,delete=True)
          for x in range(len(attr)):
              child=build_tree(dic[attr[x]],fea)
              node.children.append((attr[x],child))
          return node
            def print_tree(node,level):
                   if node.answer!="":
                         print(" "*level, node.answer)
                         return
                  print(" "*level, node.attribute)
                  for value, n in node.children:
                         print(" "*(level+1), value)
                         print_tree(n,level+2)
```

```
[62] def classify(node,x_test,features):
            if node.answer!="":
                print(node.answer)
                return
            pos=features.index(node.attribute)
            for value, n in node.children:
                if x_test[pos]==value:
                    classify(n,x_test,features)
✓ [63]
        dataset, features=load_csv("1BM20CS066_ID3.csv")
        node1=build_tree(dataset,features)
        print("The decision tree for the dataset using ID3 algorithm is")
        print_tree(node1,0)
        testdata, features=load_csv("1BM20CS066_ID3.csv")
        for xtest in testdata:
            print("The test instance:",xtest)
            print("The label for test instance:")
            classify(node1,xtest,features)
        The decision tree for the dataset using ID3 algorithm is
          outlook
```

The decision tree for the dataset using ID3 algorithm is outlook
rain
wind
weak
yes
strong
no
sunny
humidity
high
no
normal
yes
overcast
yes

```
The test instance: ['sunny', 'hot', 'high', 'weak', 'no']
The label for test instance:
no
The test instance: ['sunny', 'hot', 'high', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'hot', 'high', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'high', 'weak', 'yes']
The label for test instance:
The test instance: ['rain', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
The test instance: ['rain', 'cool', 'normal', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'cool', 'normal', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['sunny', 'mild', 'high', 'weak', 'no']
The label for test instance:
The test instance: ['sunny', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'normal', 'weak', 'yes']
The label for test instance:
ves
The test instance: ['sunny', 'mild', 'normal', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['overcast', 'mild', 'high', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['overcast', 'hot', 'normal', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'high', 'strong', 'no']
The label for test instance:
no
```

PROGRAM 5: Simple linear regression program

Dataset used:

	Α		В
1	x		у
2		1	1
3		2	2
4		3	1.3
5		4	3.75
6		5	2.25
7			

ALGORITHM:

- The main function to calculate values of coefficients
- Initialize the parameters.
- Predict the value of a dependent variable by giving an independent variable.
- Calculate the error in prediction for all data points.
- Calculate partial derivatives w.r.t a0 and a1.
- Calculate the cost for each number and add them.
- Update the values of a0 and a1.


```
[ ] import numpy as np
    import matplotlib.pyplot as plt
[ ] def plot_regression_line(x, y, b):
      plt.scatter(x, y, color = "m",
           marker = "o", s = 30)
      y_pred = b[0] + b[1]*x
      plt.plot(x, y_pred, color = "g")
      plt.xlabel('x CO-EFF')
      plt.ylabel('y CO-EFF')
      plt.show()
[ ] def estimate_coef(x, y):
      n = np.size(x)
      m_x = np.mean(x)
      m_y = np.mean(y)
      SS_xy = np.sum(y*x) - n*m_y*m_x
      SS_x = np.sum(x*x) - n*m_x*m_x
      b_1 = SS_xy / SS_xx
      b_0 = m_y - b_1*m_x
      return (b_0, b_1)
def plot_regression_line(x, y, b):
      plt.scatter(x, y, color = "b",
          marker = "*", s = 30)
      y \text{ pred} = b[0] + b[1]*x
      plt.plot(x, y_pred, color = "y")
      plt.xlabel('x')
      plt.ylabel('y')
      plt.show()
```

```
def main():
  x = np.array([1,2,3,4,5])
  y = np.array([1,2,1.3,3.75,2.25])
  b = estimate_coef(x, y)
  print("Estimated coefficients:\nb_0 = {} \
    h_1 = {}^{.}format(b[0], b[1])
  plot_regression_line(x, y, b)
if __name__ == "__main__":
  main()
Estimated coefficients:
b_0 = 0.7850000000000001
b_1 = 0.42499999999999966
   3.5
   3.0
   2.5
   2.0
   1.5
   1.0
                         2.0
                                2.5
         1.0
                 1.5
                                        3.0
                                               3.5
                                                       4.0
                                                              4.5
                                                                      5.0
                                         X
```

Conclusion:

This model is not appropriate for this model. All the points of this dataset are away from the prediction line.

Program 6:Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

Data set used:

4	Α	В
1	outlook	play
2	rainy	Yes
3	sunny	Yes
4	overcast	Yes
5	overcast	Yes
6	sunny	No
7	rainy	Yes
8	sunny	Yes
9	overcast	Yes
10	rainy	No
11	sunny	No
12	sunny	Yes
13	rainy	No
14	overcast	Yes
15	overcast	Yes

Algorithm:

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Formula for naive bayes classifier is as follows →

- 1. Convert the given dataset into frequency tables.
- 2. Generate Likelihood table by finding the probabilities of given features.
- 3. Now, use Bayes theorem to calculate the posterior probability.
- 4. Test accuracy of the result and visualizing the test set result.

```
△ 1BM20CS066_NBC.ipynb ☆
      File Edit View Insert Runtime Tools Help All changes saved
                                        + Code + Text
                               \square \times
✓ [7] import numpy as np
                                               import math
                                               import csv
    sample_data
                                               import pdb
      ■ 1BM20CS066_NBC.csv
                                        def read_data(filename):
                                                   with open(filename, 'r') as csvfile:
                                                      datareader = csv.reader(csvfile)
                                                      metadata = next(datareader)
                                                      traindata=[]
                                                       for row in datareader:
                                                          traindata.append(row)
                                                   return (metadata, traindata)
                                        (9] def splitDataset(dataset, splitRatio):
                                                   trainSize = int(len(dataset) * splitRatio)
                                                   trainSet = []
                                                   testset = list(dataset)
                                                   while len(trainSet) < trainSize:
                                                      trainSet.append(testset.pop(i))
                                                   return [trainSet, testset]
```

```
Y 0
```

```
def classify(data,test):
        total size = data.shape[0]
        print("\n")
        print("training data size=",total_size)
        print("test data size=",test.shape[0])
        countYes = 0
        countNo = 0
        probYes = 0
        probNo = 0
        print("\n")
        print("target
                       count
                                probability")
        for x in range(data.shape[0]):
            if data[x,data.shape[1]-1] == 'Yes':
                countYes +=1
            if data[x,data.shape[1]-1] == 'No':
                countNo +=1
        probYes=countYes/total size
        probNo= countNo / total_size
        print('Yes',"\t",countYes,"\t",probYes)
        print('No',"\t",countNo,"\t",probNo)
        prob0 =np.zeros((test.shape[1]-1))
        prob1 =np.zeros((test.shape[1]-1))
        accuracy=0
        print("\n")
        print("instance prediction target")
        for t in range(test.shape[0]):
            for k in range (test.shape[1]-1):
                count1=count0=0
                for j in range (data.shape[0]):
                    #how many times appeared with no
                    if test[t,k] == data[j,k] and data[j,data.shape[1]-1]=='No':
                        count0+=1
                    #how many times appeared with yes
                    if test[t,k]==data[j,k] and data[j,data.shape[1]-1]=='Yes':
                        count1+=1
```

```
prob0[k]=count0/countNo
       prob1[k]=count1/countYes
   probno=probNo
   probyes=probYes
    for i in range(test.shape[1]-1):
       probno=probno*prob0[i]
       probyes=probyes*prob1[i]
   if probno>probyes:
       predict='No'
       predict='Yes'
   print(t+1,"\t",predict,"\t ",test[t,test.shape[1]-1])
   if predict == test[t,test.shape[1]-1]:
       accuracy+=1
final_accuracy=(accuracy/test.shape[0])*100
print("accuracy",final_accuracy,"%")
return
```

```
metadata,traindata= read_data("/content/1BM20CS066_NBC.csv")
splitRatio=0.6
trainingset, testset=splitDataset(traindata, splitRatio)
training=np.array(trainingset)
print("\n The Training data set are:")
for x in trainingset:
    print(x)

testing=np.array(testset)
print("\n The Test data set are:")
for x in testing:
    print(x)
classify(training,testing)
```

output:

```
The Training data set are:
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
['overcast', 'Yes']
['sunny', 'No']
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
The Test data set are:
['rainy' 'No']
['sunny' 'No']
['sunny' 'Yes']
['rainy' 'No']
['overcast' 'Yes']
['overcast' 'Yes']
training data size= 8
test data size= 6
target count probability
Yes 7 0.875
      1
              0.125
No
instance prediction target
              No
1
      Yes
2
       Yes
                 No
3
      Yes
                  Yes
      Yes
4
                  No
5
       Yes
                  Yes
                 Yes
       Yes
accuracy 50.0 %
```

		Na	ve Bayes	Aller I		
	This is					
	Cleaning	Datalet	gin Stolen.			
	Pal	YPE Oix	gin Stolen	lui I		
	Ron	orts don	nestic, yes]			
	Red" Co	xts, Done	utic No	Size	=6	
	Vellow	xts, Domest	vetic, No			
	Vellan	Ports Dom	estic, No			
	- Crango	DVV, Imp	forted Yes			
		ita Set.				
		Set.				-
	Colox	Type	Ovigin	CHI		
	Yellow	SUV	CO. 111	Stolen.		
	Yellow		imported Domestic		all .	=LI
	0 0	SUV	Proported		SICE	
	Red	Sports	Burgarted			
		91	247			
	Target	Count Proba		bility.		
_	Yes'		6	32		
_	No	3	1/2			
_	7	D	· ·	r		
	Zustance		And the second s	Γ.		_
	2	No	No.			
	3	No	100			
_	4	\lei	- UA. (N.)			
		14	16			
	Accuracy	: 70	.0%			
	The Country			70		4
	P	(h D)	= P(Dh)). P(W		
			P(D))		
		96.				

Ph	= Posterior Robotility = Rrior Probability	
PID) = Probability over data so n) = auxient Probability	
	0/8	les 2
	V	

Program 7:K- means clustering

Algorithm:

Initialize k means with random values

For a given number of iterations:

Iterate through items:

Find the mean closest to the item by calculating the euclidean distance of the item with each of the means Assign item to mean

Update mean by shifting it to the average of the items in that cluster

Dataset:

		1 to 22 of 22 entries Filter		
1	Name	Age	Income(\$)	
2	Rob	27	70000	
3	Michael	29	90000	
4	Mohan	29	61000	
5	Ismail	28	60000	
6	Kory	42	150000	
7	Gautam	39	155000	
8	David	41	160000	
9	Andrea	38	162000	
10	Brad	36	156000	
11	Angelina	35	130000	
12	Donald	37	137000	
13	Tom	26	45000	
14	Arnold	27	48000	
15	Jared	28	51000	
16	Stark	29	49500	
17	Ranbir	32	53000	
18	Dipika	40	65000	
19	Priyanka	41	63000	
20	Nick	43	64000	
21	Alia	39	80000	
22	Sid	41	82000	
21	Abdul	39	58000	

Show 25 ✓ per page

	W-means Algorithms
. 0	Select the number K to decide the number of
3	select random & points or centroids.
3	Assign each data point to their closest to which will form the Predefined K Chuster.
0	Calculate the variance and new place centrois
6	Repeat the theird steps, which means re-august controld
(g)	By any re-assignment occurs, go to step 11
(1°)	model is ready.
	amm - Gausian Mixture anodel.

```
[1] import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline
```

df = pd.read_csv('<u>/content/Kmeans_1BM20CS066.csv</u>')
df.head(10)

	1	Name	Age	Income(\$)
0	2	Rob	27	70000
1	3	Michael	29	90000
2	4	Mohan	29	61000
3	5	Ismail	28	60000
4	6	Kory	42	150000
5	7	Gautam	39	155000
6	8	David	41	160000
7	9	Andrea	38	162000
8	10	Brad	36	156000
9	11	Angelina	35	130000

```
[4] scaler = MinMaxScaler()
scaler.fit(df[['Age']])
df[['Age']] = scaler.transform(df[['Age']])

scaler.fit(df[['Income($)']])
df[['Income($)']] = scaler.transform(df[['Income($)']])
df.head(10)
```

	1	Name	Age	Income(\$)
0	2	Rob	0.058824	0.213675
1	3	Michael	0.176471	0.384615
2	4	Mohan	0.176471	0.136752
3	5	Ismail	0.117647	0.128205
4	6	Kory	0.941176	0.897436
5	7	Gautam	0.764706	0.940171
6	8	David	0.882353	0.982906
7	9	Andrea	0.705882	1.000000
8	10	Brad	0.588235	0.948718
9	11	Angelina	0.529412	0.726496

```
plt.scatter(df['Age'], df['Income($)'])
```

<matplotlib.collections.PathCollection at 0x7f43820d1a50>


```
k_range = range(1, 11)
sse = []
for k in k_range:
    kmc = KMeans(n_clusters=k)
    kmc.fit(df[['Age', 'Income($)']])
    sse.append(kmc.inertia_)
sse
```

```
[5.434011511988178,
2.091136388699078,
0.4750783498553096,
0.3491047094419566,
0.2798062931046179,
0.2203764169077067,
0.1685851223602976,
0.13265419827245162,
0.1038375258660356,
0.08510915216361345]
```

```
plt.xlabel = 'Number of Clusters'
     plt.ylabel = 'Sum of Squared Errors'
     plt.plot(k_range, sse)
    [<matplotlib.lines.Line2D at 0x7f438004a6e0>]
      5
      4
      3
      2
      1
      0
                  2
                               4
                                             6
                                                          8
                                                                       10
[8]
     km = KMeans(n_clusters=3)
     km
             KMeans
```


	1	Name	Age	Income(\$)	cluster
0	2	Rob	0.058824	0.213675	1
1	3	Michael	0.176471	0.384615	1
2	4	Mohan	0.176471	0.136752	1
3	5	Ismail	0.117647	0.128205	1
11	13	Tom	0.000000	0.000000	1
12	14	Arnold	0.058824	0.025641	1
13	15	Jared	0.117647	0.051282	1
14	16	Stark	0.176471	0.038462	1
15	17	Ranbir	0.352941	0.068376	1

	1	Name	Age	<pre>Income(\$)</pre>	cluster
16	18	Dipika	0.823529	0.170940	2
17	19	Priyanka	0.882353	0.153846	2
18	20	Nick	1.000000	0.162393	2
19	21	Alia	0.764706	0.299145	2
20	22	Sid	0.882353	0.316239	2
21	21	Abdul	0.764706	0.111111	2

```
[14] km.cluster_centers_
```

```
array([[0.72268908, 0.8974359],
[0.1372549, 0.11633428],
[0.85294118, 0.2022792]])
```

<matplotlib.legend.Legend at 0x7f437d4c73a0>

Program 8: KNN ALGORITHM

Dataset used: Iris dataset

Algorithm:

- Select the number K of the neighbor
- \circ Calculate the Euclidean distance of K number of neighbors
- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def most_common(lst):
    return max(set(lst), key=lst.count)
def euclidean(point, data):
    # Euclidean distance between points a & data
    return np.sqrt(np.sum((point - data)**2, axis=1))
class KNeighborsClassifier:
    def init (self, k=5, dist metric=euclidean):
        self.k = k
        self.dist_metric = dist_metric
    def fit(self, X_train, y_train):
        self.X_train = X_train
        self.y train = y train
    def predict(self, X_test):
        neighbors = []
        for x in X_test:
            distances = self.dist_metric(x, self.X_train)
            y_sorted = [y for _, y in sorted(zip(distances, self.y_train))]
            neighbors.append(y_sorted[:self.k])
        return list(map(most_common, neighbors))
```

```
def evaluate(self, X_test, y_test):
        y_pred = self.predict(X_test)
        accuracy = sum(y_pred == y_test) / len(y_test)
        return accuracy
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
# Split data into train & test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Preprocess data
ss = StandardScaler().fit(X_train)
X_train, X_test = ss.transform(X_train), ss.transform(X_test)
# Test knn model across varying ks
accuracies = []
ks = range(1, 30)
for k in ks:
    knn = KNeighborsClassifier(k=k)
    knn.fit(X_train, y_train)
    accuracy = knn.evaluate(X_test, y_test)
    accuracies.append(accuracy)
# Visualize accuracy vs. k
fig, ax = plt.subplots()
ax.plot(ks, accuracies)
ax.set(xlabel="k",
      ylabel="Accuracy",
      title="Performance of knn")
plt.show()
```

	K-nearest Neighbox Algorithm
4	For each given training example (x, f(x)), and the example to the list training example to the list training example to the list training example classification algorithm.
£.	Given a query instance X to be clasified, Let x xx denote the K instances from train
	examples that are neavest to xq.
7	Return
	f (xg)← Si=1 f(xi)
	T (Xg/E Sii=1+(N)
	So do
	Sepato-
	ONTRAL.
	Sepal-length sepal-width petal-length setal-wi
	Sepal-length sepal-width petal-length Betal-wi [[5-1 3.5 1.4 0.2]
	Sepal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4-a.3 1.40.2]
	OntPate. Sepal-length sepal-width petal-length Retal-wi [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.8 0.2]
	OntPat. Sepal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4-9.3 1.40.2] [4.7 3.2 1.8 0.2] [4.6 3.1 1-5 0.2]
	OntPate. Sepal-length sepal-width petal-length Retal-wi [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.8 0.2]
	OntPat. Sepal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4-9.3 1.40.2] [4.7 3.2 1.8 0.2] [4.6 3.1 1-5 0.2]
	Ontrust. Sepal-length sepal-width petal-length retal-wi [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.2.3 1.40.2] [4.2.3 3.2 1.3 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0-2]
	Epal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0.2] [6.2 3.4 5.4 2-3]
	Ontrust. Sepal-length sepal-width petal-length retal-wi [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.2.3 1.40.2] [4.2.3 3.2 1.3 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0-2]
	Ontrust. Sepal-length sepal-width retal-length retal-wi [(S-1 3.5 1.4 0.2) [4.2.3 1.40.2) [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3-6 1.4 0.2] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8]
	Epal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0.2] [6.2 3.4 5.4 2-3]
	Expal-length sepal-width petal-length setal-wi [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.7 3.2 1.8 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0.2] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8]

[[20	0	utvix 1			
50	10	DJ	Mary 1	NA COLUMN	diam'r.
FO	1 11	Proj	215 7.50	W21 V.C	and the
		ar Juli	31 11 13	Dame.	1
Acuraly	Metr	ics	0 11	fl-score	Support
E-Fr		Precision	Recall	1	1
- Hay		(OL 1988		1200	20
14.5	0)	1.00	0.95	20
	1_	0.91	0.93	०.९न	15
	2	1:00	0.43	F	47.7
	,	0.98	0.98	0.96	45
avgltota		0.48			Sin is
				13000	
				laken =	
140 F 15		NA SERVICE		1/6/23	

Program 9: Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

Algorithm for k means clustering:

- Initialize k means with random values
- For a given number of iterations:
- Iterate through items:
- Find the mean closest to the item by calculating the euclidean distance of the item with each of the means
- Assign item to mean
- Update mean by shifting it to the average of the items in that

clusters Algorithm for EM algorithm:

- The very first step is to initialize the parameter values. Further, the system is provided with incomplete observed data with the assumption that data is obtained from a specific model.
- This step is known as Expectation or E-Step, which is used to estimate or guess the values of the missing or incomplete data using the observed data. Further, E-step primarily updates the variables.
- This step is known as Maximization or M-step, where we use complete data obtained from the 2nd step to update the parameter values. Further, M-step primarily updates the hypothesis.
- The last step is to check if the values of latent variables are converging or

not Dataset: Iris dataset

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']

y = pd.DataFrame(iris.target)
y.columns = ['Targets']

model = KMeans(n_clusters=3)
model.fit(X)

plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
```

```
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# Plot the Models Classifications
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
#xs.sample(5)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
#y_cluster_gmm
```

```
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('EM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
The accuracy score of K-Mean: 0.24
The Confusion matrixof K-Mean: [[ 0 50  0]
```

[48 0 2] [14 0 36]]

[45 0 5] [0 0 50]]

	EM- Algeritam
¥	Expectation step (E step): St involves the estimation of all nussing values in dataset so that after campeleting this step, there should not be any russing value.
*	Maximize step (M-Step): This step involves the Use of estimated data in E-stop and updating the paramete
	Repeal E step and M step until the convergence of
0	Builfialize Parameter Values. Further, the system is provided with incomplete observered data with assumption that data is obtained from specific mode
	E-step, which is used to estimate or guess the value of the missing data Ving the observered data.
3	maxination step, where we use the complete data obtained from and step to update Parameter values.
	The last step is to check if value of variables are covering or not.
X 6	By yes, stop Process else repeat Until Convergence

$\int (x_2-x_1)^2 + (y_2-y_1)^2$
16.5 12 (12.17)
X = x co-ordinate of point 1
y = y co-ordinale of point?
x2 = 2 co-ordinate of pt 2
 Y2 = y co-ordinate of at 2
Juny
Ole was
X(C)

Program 10:Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

Algorithm:

1. F is approximated near Xq using a linear function:

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

2. Minimize the squared error:

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest nbrs of } x_q} K(d(x_q, x)) (f(x) - \hat{f}(x)) a_j(x)$$

It is weighted because the contribution of each training example is weighted by its distance from the query point.

Dataset: tip.csv

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

[] def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

[] def localWeight(point,xmat,ymat,k):
    wei = kernel(point,xmat,k)
    w = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W
```

```
def localWeightRegression(xmat,ymat,k):
        m,n = np.shape(xmat)
        ypred = np.zeros(m)
        for i in range(m):
            ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
        return ypred
[ ] def graphPlot(X,ypred):
        sortindex = X[:,1].argsort(0)
        xsort = X[sortindex][:,0]
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.scatter(bill,tip, color='green')
        ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linewidth=5)
        plt.xlabel('Total bill')
        plt.ylabel('Tip')
        plt.show();
   data = pd.read_csv('/content/tips.csv')
    bill = np.array(data.total_bill)
    tip = np.array(data.tip)
    mbill = np.mat(bill)
    mtip = np.mat(tip)
    m= np.shape(mbill)[1]
    one = np.mat(np.ones(m))
    X = np.hstack((one.T,mbill.T))
    # increase k to get smooth curves
    ypred = localWeightRegression(X,mtip,3)
    graphPlot(X,ypred)
```

