APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

STUDY MATERIALS

a complete app for ktu students

Get it on Google Play

www.ktuassist.in

CS201: DISCRETE COMPUTATIONAL STRUCTURES

Semester III

Module III

Lecturer: Jestin Joy Class: CSE-B

Syllabus: Groups, definition and elementary properties, subgroups, Homomorphism and Isomorphism, Generators - Cyclic Groups, Cosets and Lagrange's Theorem Algebraic systems with two binary operations- rings, fields-sub rings, ring homomorphism

Disclaimer: These may be distributed outside this class only with the permission of the Instructor.

Federal Institute of Science And Technology (FISAT)

Contents

3.1 Groups	1
3.2 Subgroups	2
3.3 Isomorphism and Homomorphism	2
3.4 Cyclic Group	2
3.5 Cosets and Lagrange's Theorem	3
3.5.1 Langrange's Theorem	4
3.6 Algebraic Systems with two binary properties	4
3.6.1 Rings	4
3.6.2 Fields	4
3.6.3 Field Properties	4
3.7 Subrings	5
3.7.1 Properties of Subrings	5
3.8 Ring Homomorphism	5

3.1 Groups

Group is special type of Monoid that has applications in Mathematics, Physics, and Chemistry etc.

Definition 3.1 A Group (G, *) is a monoid ,with identity e, that has the additional property that for every element $a \in G$ there exists an element a' such that a * a' = a' * a = e.

Thus a Group is a set together with operation * on G such that

- 1. For all a, b in G, the result of the operation, a * b, is also in G
- 2. (a*b)*c = a*(b*c) for any elements a, b, and c in G.
- 3. There is a unique elemente in G such that a*e=e*a for any $a\in G$
- 4. For every $a \in G$, there is an element $a' \in G$, called inverse of a such that a * a' = a' * a = e

We shall write the product a * b of the elements a and b in the group (G, *) simply as ab, and we shall also refer to (G, *) simply as G. A Group is said to be Abelian if ab = ba for all elements a and b in G.

Examples of Group include

- (Z, +)
- (Q, +)
- (R, +)
- (C, +)
- ullet $(Q^*,X):Q^*$ is the set of non zero rationals and X is the multiplication operation

3.2 Subgroups

Given a group G under a binary operation *, a **subset** H of G is called a subgroup of G if H also forms a group under the operation *.

For the group $(Z_8, +)$, $(\{0, 4\}, +)$ and $(\{0, 2, 4, 6\}, +)$ are subgroups.

3.3 Isomorphism and Homomorphism

Let (S,*) and (T,*') be two groups . A function $f:S\to T$ is called an Isomorphism from (S,*) to (T,*') if it is a one-to-one correspondance (one-one and onto) from S to T ,and if

$$f(a*b) = f(a)*' f(b)$$

for all a, b in S.

Let (S,*) and (T,*') be two groups .A function $f:S\to T$ is called Homomorphism from (S,*) to (T,*') if

$$f(a * b) = f(a) *' f(b)$$

for all a and b in S.

3.4 Cyclic Group

Definition 3.2 A group G is called cyclic if there is an element $x \in G$, such that for each $a \in G$, $a = x^n$ for some $n \in Z$.

Such an element x is called a **generator** of G.

We may indicate that G is a cyclic group generated by x, by writing $G = \langle x \rangle$.

Example: The group $H = (Z_4, +)$ is cyclic. Here, the operation is addition.

We can find that both 1 and 3 generate H. For the case of 3, we have

- 1 mod 4=1
- $(1+1) \mod 4=2$
- $(1+1+1) \mod 4=3$
- $(1+1+1+1) \mod 4=0$

Since 1 generates all the elements of \mathbb{Z}_4 we can say that 1 is a generator.

Like wise 3 is also a generator.

Therefore H = <1> = <3>

Example: Consider the multiplicative group, $U_9 = 1, 2, 4, 5, 7, 8$. Here we find that $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 7, 2^5 = 5, 2^6 = 1$.

So U_9 is a cyclic group of order 6 and $U_9 = <2>$. It is also true that $U_9 = <5>$ because

- $5^1 \mod 9=5$
- $5^2 \mod 9 = 7$
- $5^3 \mod 9 = 8$
- $5^4 \mod 9 = 4$
- $5^5 \mod 9 = 2$
- $5^6 \mod 9 = 1$

3.5 Cosets and Lagrange's Theorem

Let (A,*) be an algebraic system , where * is a binary operation.Let a be an element in A and B be a subset of A. The left coset of B with respect to B, which we shall denote B is the set of elements $\{a*x \mid x \in B\}$.

Similarly the right coset of H with respect to a, which we shall denote Ha is the set of elements $\{x*a \mid x \in H\}$.

Example 1

Let $G = S_3$ and $H\{(1), (13)\}$. Then the left coset of H in G are:

$$(1)H = H$$

$$(12)H = \{(12), (12)(13)\} = \{(12), (132)\} = (132)H$$

$$(13)H = \{(13), (1)\} = H$$

$$(23)H = \{(23), (23)(13)\} = |(23), (123) = (123)H$$

Example 2:

Let $H = \{0, 3, 6\}$ in Z_9 under addition. In the case that the group operation is addition, we use the notation a + H instead of aH. Then the cosets of H in Z_9 are:

$$0 + H = \{0, 3, 6\} = 3 + H = 6 + H,$$

$$1 + H = \{1, 4, 7\} = 4 + H = 7 + H,$$

$$2 + H = \{2, 5, 8\} = 5 + H = 8 + H$$

A subgroup H of a group G is normal in G if and only if aH = Ha for all a in G; i.e., the sets of left and right cosets coincide.

3.5.1 Langrange's Theorem

Definition 3.3 If G is a finite group of order n with H a subgroup of order m, then m divides n (or equivalently |H|divides|G|). Also the number of cosets is equal to $\frac{G}{H}$

3.6 Algebraic Systems with two binary properties

3.6.1 Rings

Definition 3.4 Let S be a non empty set with two binary operations + and *. The structure (S, +, *) is called a Ring if

- 1. (S, +) is abelian
- 2. (S,*) is a semigroup
- 3. * is distributive over +. That is for any $a, b, c \in S$
 - a * (b + c) = a * b + a * c
 - (b+c)*a = b*a + c*a

Example: The set $Z_n = \{0, 1, n - 1\}$ under addition and multiplication modulo n is a commutative ring with unity 1.

- If * is commutative, then it is called **commutative ring**
- If * is a monoid. Then it is a ring with identity

3.6.2 Fields

Definition 3.5 Suppose that F is a commutative ring with identity. We say that F is a Field if every **non-zero** element x in F has a multiplicative inverse.

3.6.3 Field Properties

F has two binary operations; an addition + and a multiplication *, and has two special elements denoted by 0 and 1, so that for all x, y and z in F.

- 1. x + y = y + x
- 2. x * y = y * x
- 3. (x + y) + z = x + (y + z)
- 4. (x * y) * z = x * (y * z)
- 5. x + 0 = x
- 6. x * 1 = x
- 7. x * (y + z) = (x * y) + (x * z)
- 8. (y+z)*x = (y*x) + (z*x)
- 9. For each x in F there is a unique element in F denoted by -x so that x+(-x)=0
- 10. For each $x \neq 0$ in F there is a unique element in F denoted by x^{-1} so that $x * x^{-1} = 1$

Example: $(Z_5, +, *), (Z_7, +, *)$, where is + is modulo addition and * is modulo multiplication.

3.7 Subrings

Subsets of rings which are themselves rings are called **subrings**. So a non empty subset B of a ring A with respect to operation + is a subring of A if and only if B satisfies all conditions needed for a ring.

3.7.1 Properties of Subrings

- 1. A subring of a commutative ring is a commutative ring.
- 2. A subring of a is a ring in its own right.

Example 2: $\{0, 2, 4\}$ is a subring of the ring Z_6 , the integers modulo 6.

3.8 Ring Homomorphism

Definition 3.6 A ring homorphism ϕ from a ring R to ring S is a mapping from R to S that preserves the two ring operations; that is, for all a, b in R, $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$ A ring homomorphism that is both one-to-one and onto is called ring isomorphism.

An isomorphism is used to show that two rings are algebraically identical; a homomorphism is used to simplify a ring while retaining certain of its features.

Example 1:

For any positive integer n, the mapping $k \to k \mod n$ is a ring homomorphism from Z to Z_n . This mapping is called the natural homomorphism from Z to Z_n .

A KTU STUDENTS PLATFORM

SYLLABUS
OF VOICES OF VOIC

IT FROM GOOGLE PLAY

> CHAT A FAQ LOGIN E N D A

M U

DOWNLOAD APP

ktuassist.in

instagram.com/ktu_assist

facebook.com/ktuassist