

SCATS DATA FORMATS

Copyright © 1997-1999 Roads and Traffic Authority of New South Wales, AUSTRALIA

The information in this document is furnished under a licence and may be used or copied only in accordance with the terms of such licence.

Every attempt was made to ensure that the information in this document was correct at the time of publication. Any errors should be reported as soon as possible so that corrections can be issued. Comments and suggestions for future editions are welcomed.

Issue: (A)	1-August	1997
Issue: (B)	20-February	1998
Issue: (B.2)	31 July	1998
Issue: (C)	30 April	1999
Issue: (D)	27 June	1999
Issue: (E)	27 October	1999

All rights reserved.

Document No: RTA-TC-226

Roads and Traffic Authority of NSW

Transport Management Centre Traffic Technology Branch 25 Garden Street EVELEIGH, NSW 1430 AUSTRALIA

International:

Telephone	61 2 8396 1602
FAX	61 2 8396 1600

Local:

Telephone	(02) 8396 1602
FAX	(02) 8396 1600

SCATS DATA FORMATS	<u> 1</u>
SCATS REGION WALLMAP MESSAGES	1
MESSAGE PACKET	
DATA MESSAGES	
DATE AND TIME	
REGION STATUS	
LAMP TEST	
INTERSECTION STATUS MESSAGE	
SCATS 5 FORMAT	
SCATS 6 FORMAT	
INTERSECTION STATUS MESSAGE (continued)	
Phase byte	
Status byte	
Alarms byte	
Strategic Input (VK/VO) data	
SENDING INTERSECTION STATUS MESSAGES	7
UPDATING ALL MESSAGES	
SCATS GRAPHICS SUBSYSTEM COLOURS	
SYSTEM MONITOR DATA	
SM HEADER - OLD FORMAT	
SA MODE	
SA VOTE TITLE	
SM HEADER - NEW FORMAT	
SA MODE	
SA VOTE TITLE	
SA/LK DATA - OLD FORMAT	
SA/LK DATA - NEW FORMAT	
SA FLAGS	
SA MODE	
DISPLAYING DS VALUES	
DISPLAYING THE VOTE VALUE	
PLAN 0 DATA	
OLD FORMAT	
NEW FORMAT	
EXPLANATION OF PHASE TIME	
SAMPLE SM DISPLAY	
SCATS SERIAL COMMUNICATIONS PROTOCOL	
MESSAGE PACKET	
START OF HEADER CODE	
ACK/NAK MESSAGES	-
DATA MESSAGES	
SCATSIM SERIAL COMMUNICATIONS	
INTERSECTION DATA MESSAGE	
SCATS TO SIMULATION	
SIMULATION TO SCATS	
VOLUME/OCCUPANCY DATA	
TIME FROM SIMULATION	
BUS PRIORITY SYSTEM	
MESSAGES FROM BIPS TO SCATS	
Request for Intersection data	
Replace remaining phase time	

Replace plan data	22
APPLY A DWELL	23
REMOVE A DWELL	23
RELOAD PLAN DATA	23
MESSAGES FROM SCATS TO BIPS	24
INTERSECTION DATA	
USE OF MESSAGES FROM SCATS TO BIPS	26
DETERMINING THE OFFSET BETWEEN TWO INTERSECTIONS	
TRAFFIC INCIDENT MANAGEMENT SYSTEM (TIMS)	28
TIMS TO VAX	
REQUEST FOR SYSTEM MONITOR	
REQUEST FOR INTERSECTION STATUS	28
REQUEST FOR UNUSUAL CONGESTION	28
TIMS SHUTDOWN	
VAX TO TIMS	
INITIALISATION	29
UNUSUAL CONGESTION DATA	29
INTERSECTION STATUS DATA	
INTERSECTION STATUS RECORD	31
SYSTEM MONITOR DATA FOR TIMS	32
SM HEADER	
SA MODE	32
SA VOTE TYPE	
SA/LK DATA	
SA FLAGS	34
SA MODE	34
CMS MAP MESSAGES	35
REGION ENQUIRY	35
INTERSECTION STATUS	36
MAP MODE	38
TIME	38
TIME REPLY MESSAGE FORMAT	
COMMUNICATIONS STATUS	39
SUMMARY OF ALARM ON A REGION	39
STATUS FLAGS	40
CMCS INTERFACE	
MESSAGE FORMATS - SCATS TO CMCS	
MESSAGES FROM CMCS TO SCATS	
CMCS INTERFACE PROGRAM SHUTDOWN	41
READING AN ENTRY FROM A TC FILE	
MESSAGE TYPE 9	
VOLUME AND DS FOR STRATEGIC APPROACHES	
MESSAGE TYPE 11	
REGION STATUS	
MESSAGE TYPE 100	
STATUS REQUEST	
FAULT DATA FOR SCATS MONITORING SITES	
MESSAGE TYPE 101	
FAULT DATA REQUEST	
CONGESTION ALERTS	
MESSAGE TYPE 103	
TRAVEL TIME REQUESTS	
MESSAGE TYPE 104	
TRAVEL TIME REPLY	48

MESSAGE TYPE 105	48
CONTROL OF TIDAL FLOW OPERATION	49
CONTROL OF DRIVER ADVISORY SYSTEMS	49
TIME SYNCHRONISATION	49
HEARTBEAT	
FORMAT OF INTERSECTION GRAPHICS FILE	50
FILE NAME: PCINTGRF.TXT	50
LOCATION RECORD - Record type 0	50
COORDINATES RECORD - Record type 1	50
ARM RECORD - Record type 2	51
SIGNAL GROUP RECORD - Record type 3	52
PHASE RECORD - Record type 4	53
STREET RECORD - Record type 5	54
DETECTOR RECORD - Record type 6	
ALARM AND EVENT FILES	
ALARM FILE	56
EVENT FILE	
ALARM FILE FORMATS	
Intersection status	57
MODE	
REGION ALARM SUMMARY	
CMS MAILBOX STATUS	58
MAILBOX STATE	
REGION STATUS RECORD	59
STATUS	
EVENT FILE RFA POINTER	60
TYPE POINTER	60
FLAG	
EVENT FILE RECORD FORMAT	
DIAGNOSTIC RECORD	61
FAULT CODES	
OPERATOR COMMANDS	
TEXT MESSAGES	65
NOTES	
VAX VOLUME STORE DETECTOR FILE FORMAT	
COMMENT RECORDS	
DATE/TIME STAMP RECORD	
INTERSECTION DETECTOR VOLUME RECORD	68

Notes

SCATS REGION WALLMAP MESSAGES

A SCATS regional computer can be configured to supply data through a dedicated wallmap port to an external service. The port characteristics are the same as a standard SCATS terminal port with 8 bits, no parity.

The baud rate is as set in the system file [1,2]SYSPARAM.DAT (for a Micro/RSX operating system) or in file [1,2]TERMINALS.CMD (for an RSX11M operating system).

MESSAGE PACKET

Messages from the wallmap port on a regional computer are sent as packets. The packet format is:

81 Hex	Start of packet					
Byte count	unt Number of data bytes following					
Data	Variable length data area containing one or more messages					
Checksum	The sum of all characters from the start of the message to the checksum (inclusive) is zero.					

DATA MESSAGES

Data messages are encapsulated within the message packet. A message packet is of variable length and may contain one or more data messages.

DATE AND TIME

The date and time message allows the map to receive the date and time to the nearest second. The message consists of 7 bytes, starting with an ID of decimal 255.

255	Message identification (decimal)
Year	Year since 1900 to a maximum value of 127
Month	Month number within range of 1 to 12
Day	Day number with range of 1 to 12
Hour	Hour number within range of 0 to 23
Minute	Minutes within range of 0 to 59
Seconds	Seconds with range of 0 to 59

REGION STATUS

The region status message contains a bit mask of the region status codes that are normally displayed on the top line of a SCATS workstation. It thus contains a summary of all alarms and conditions on the regional computer. It consists of 3 bytes:

254	Message identification 254 decimal								
	bit 0	UD	Failure to update RAM at an intersection						
	bit 1	BSY	Disk write in progress (SYS.LX or INTFIL.DAT)						
data	bit 2	TIM	System time is incorrect						
byte 1	bit 3	DET	An intersection has a detector alarm						
	bit 4	LC	An intersection has a long Clearance alarm						
	bit 5	MAJ	An intersection has a major alarm						
	bit 6	LA	An intersection has a Lamp Failure						
	bit 7	SC	An intersection Short Clearance						
	bit 0	FBK	A subsystem is on fallback						
	bit 1	HID	A subsystem has a high density alarm						
data	bit 2	INF	A subsystem has an increment failure alarm						
byte 2	bit 3	PL#	A plan lock is present						
	bit 4	CL^	A subsystem has a cycle time locked						
	bit 5	TMP	CPU over-temperature warning						
	bit 6	TRM	An intersection plan has been trimmed						
	bit 7	DWL	An intersection has been dwelled						

LAMP TEST

252

The lamp test messages allow an operator at a SCATS workstation to send a message to the map port for use in testing the display status of all indicators on the wallmap. The SCATS commands are **LT!** And **LT/** corresponding to a <u>lamp on</u> and a <u>lamp off</u> message. These are single byte messages.

253	Lamp on (LT!) - 253 decimal

INTERSECTION STATUS MESSAGE

The intersection status message is for a single intersection, identified by its SCATS slot number. It contains information relating to alarms, running mode, special status bits (MSS or Miscellaneous Status bits), and traffic conditions etcetera. Each message starts with a slot number ID.

SCATS 5 FORMAT

7	6	5	4	3	2	1	0	Data
Slot Number								ID byte (decimal 1 to 128)
M	F	FBK	+GR	^	curre	nt phase	1 to 7	Phase byte
PK	DWL	TRM				SI	MSS	Status byte
во	FY	LF	MAJ	MIN	COM	DA		Alarms byte
								Optional MSS bits 1-16
								if MSS "present" set
		SI	numbe	r (1 to 2	250)			Optional SI data if SI
1 VK/VO DS/4						"present" bit set		
							More SI data if bit 7 set	
Possible more SI data							in the DS byte of the preceding SI data	
SI number (1 to 250)							The last SI has a 0 in bit	
0	VK	VK/VO DS/4				7 of the DS byte		

SCATS 6 FORMAT

SCATS 6 can have 999 SIs compared to 250 in SCATS 5. As a result, and extra byte is required per SI. The SI number only requires 10 bits (the low 8 bits in the first byte and the top 2 bits in the first two bit positions of the next byte). The remaining 6 bits of the second byte contain the VK/VO data and a continuation bit if more SI data follows. The last byte for the SI contains the DS value.

7	6	5	4	3	2	1	0	Data
			Slot N	ID byte (decimal 1 to 250)				
M	F	FBK	+GR	<>	curre	nt phase	1 to 7	Phase byte
PK	DWL	TRM				SI	MSS	Status byte
ВО	FY	LF	MAJ	MIN	COM	DA		Alarms byte
								Optional MSS bits 1-16
								if MSS "present" set
	S	I numb	er (1 to	999) –	low 8 b	its		Optional SI data if SI
1	VK	/VO	Bit	s 2-4 unu	sed	SI (bit	s 9-10)	"present" bit set in
			DS (0	to 255)				the Status byte
Possible more SI data							More SI data if bit 7 is set in the VK/VO byte of the preceding SI data	
SI number (1 to 999) – low 8 bits						The last SI has a 0 in bit		
1	1 VK/VO Bits 2-4 unused SI (bits 9-10)						7 of the VK/VO byte	
	DS (0 to 255)							

INTERSECTION STATUS MESSAGE (continued)

The data in the Phase byte, Status byte and Alarms byte of the message to the Wallmap port is the same in SCATS 5 and SCATS 6, as is the VK/VO value returned.

Phase byte

M	The intersection is running Masterlink
F	The intersection is running Flexilink (no M or F = Isolated)
FBK	The intersection has been forced to fallback mode
+GR	The running phase is in the intergreen period
<>	The intersection is running the stretch phase

Status byte

PK	The intersection alarms are parked					
DWL	The phase is being dwelled					
TRM	TRM The intersection plan has been manually trimmed					
SI	SI data exists in this message					
MSS	Miscellaneous data bits exist in this message					

Alarms byte

во	Lamps are blacked out
FY	Lamps are flashing yellow
LF	The intersection has a lamp fail alarm
MAJ	The intersection has a major alarm (BD,CK,FL,GT,GW,IR,PE,SF or UD)
MIN	The intersection has a minor alarm (CF,IH,LC,NF,OD,SC,SI or XU)
COM	Communications alarm present (DZ,NC,PF,ST or WD)
DA	The intersection has a detector alarm

Strategic Input (VK/VO) data

DS/4	Highest lane degree of saturation divided by four (limited to 127/4)
VK/VO	VK (reconstituted volume) divided by VO (counted volume) ratio value, where:
0	VK:VO ration is less than 2:1
1	VK:VO ratio is more than 2:1 but less than or equal to 3:1
2	VK:VO ratio is more than 3:1 but less than or equal to 4:1

3 VK:VO ratio is more than 4:1

SENDING INTERSECTION STATUS MESSAGES

Intersection status messages are sent when:
☐ A new phase starts at an intersection
☐ An intersection's alarms change
\square A intersection plan trim or lock goes on or off
☐ MSS bits change at an intersection
☐ A slot has its intersection number changed
☐ An intersection has its alarms parked
☐ AL/ clears any alarms at an intersection
☐ The region to CMS link fails

UPDATING ALL MESSAGES

Send an upper case U followed by a ${\color{blue} carriage}$ ${\color{blue} return}$ to the wallmap port to request an update of all messages on the region.

SCATS GRAPHICS SUBSYSTEM COLOURS

COLOUR	VALUE	CONDITIONS	MEANING	
White	0	CL < SCL and RL < XCL-5 or SS has no LM=M intersections	Low CL, light traffic	
Green	1	XCL > CL => SCL	Medium CL, light traffic	
Yellow	2	CL >= XCL and $RL < XCL$ -5	High CL, medium traffic	
Orange 3		CL >= XCL and $RL >= XCL5 and VK/VO <= 2.4$	High CL, heavy traffic	
Blue 4		CL < SCL and RL >= XCL-5 or Increment Fail	Low CL, heavy traffic	
Red	7	CL >= XCL and $RL >= XCL5 and VK/VO > 2.4 (HiDensity)$	High CL, congested traffic	

- Note that FALLBACK can be set for all conditions except if SS has no LM=M intersections.
- SCL is the highest SCL value for a subsystem (LCL is used if SCL is undefined).
- HCL is used instead of XCL if XCL is not defined.

SYSTEM MONITOR DATA

If a regional computer is connected to a CMS system, System Monitor or SM data collected on the VAX will be preceded by a comment record. A comment record contains a description of the collection period and the susbsystem number for which data was collected.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
1-4	ID		A comment record has a zero in the first 4 bytes								
5	Type		^S for SM data (<i>^V for VS data</i>)								
6-11	Region		Region	n name in	ASCII						
12	Year			ear (since							
13	Month		Start n	nonth							
14	Day		Start d	lay							
15	Year		End ye	ear (since	1900)						
16	Month		End m	onth							
17	Day		End da	ay							
18	Hour		Daily	period 1 -	start hour						
19	Minutes		Daily	period 1 -	start minu	tes					
20	Hour		Daily	period 1 -	end hour						
21	Minutes		Daily	period 1 -	end minut	es					
22	Hour		Daily	period 2 -	start hour						
23	Minutes		Daily	period 2 -	start minu	tes					
24	Hour		Daily	period 2 -	end hour						
25	Minutes		Daily	period 2 -	end minut	es					
26	SS		First s	ubsystem	number						
	Additional SS numbers		 The following bytes from byte 27 up to byte 88 can contain more subsystem numbers. (the maximum subsystem number is 63). A positive SS number means that a full SM was collected for that SS. A negative SS number means that only the SM header (no SA or LK data) was collected. A zero SS number terminates the SS numbers collected. 								
128	0		Last b	yte is alwa	ays zero - o	only 1 com	ment reco	rd for SM	data		

SM HEADER - OLD FORMAT

This format is used on all PDP SCATS 1 regions.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	byte
1	0		SS no. (0-63)					
FBK			Year since 1900 (0-127)					
ISS	LP#	CL^	SP#		Month	(1-12)		3
FTP CL	FTP LP	FTP SP			Day (1-31)			4
VF'	VF"	DV#]	Hour (0-23))		5
M-	M+			Mins	(0-59)			6
1	SM=HD			SA mode		SK=SV	SK=VO	7
Married	Scats V4	LP	(0-3=plan	1-4)	SP ((0-7=plans	1-8)	8
LP	vote		ISS SP	vote (no IS	SS = bits 0	2 only)		9
			Nominal C	L				10
	Actual CL (includes rotation)						11	
	RL						12	
	Representative SA							13
			DS (SCAT	S v5.x only)			14

SA MODE

This mode is in byte 7, bits 2, 3 and 4.

Bit 4	Bit 3	Bit 2	Value	Meaning
0	0	0	0	VOVK
0	0	1	1	CVK
0	1	0	2	GVK
0	1	1	3	VK

Bit 4	Bit 3	Bit 2	Value	Meaning
1	0	0	4	unused
1	0	1	5	CVO
1	1	0	6	GVO
1	1	1	7	VO

SA VOTE TITLE

Byte 7 also determines the type of SA vote data.

Bit 7	Bit 1	Bit 0	Title	Meaning
1	0	0	ADS	Average DS
1	1	0	AVK	Average VK
1	1	1	AVO	Average VO

SM HEADER - NEW FORMAT

This is the format of an System Monitor record collected on a CMS system from a SCATS 6 region.

If System Monitor data is collected **locally** on a SCATS 6 region, each record will be preceded by a two byte record length (low byte first). If the record length is **odd**, the record will contain a trailing null character as padding to make the overall record length **even**!

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	byte
			()				1
			SS	no.				2
FBK			Year s	ince 1900 (0-127)			3
ISS	LP#	CL^	SP#		Month	(1-12)		4
FTP CL	FTP LP	FTP SP			Day (1-31)	1		5
VF'	VF"	DV#			Hour (0-23)		6
M-	M+			Mins	(0-59)			7
1	SM=HD			SA mode		SK=SV	SK=VO	8
Married	Scats V4	LP	(0-3=plan	1-4)	SP	(0-7=plans	1-8)	9
LP	vote		ISS SP	vote (no IS	SS = bits 0	2 only)		10
			Nominal C	L				11
			Actual CL	(includes re	otation)			12
	RL							13
Representative SA (low byte)						14		
			Represent	ative SA (h	igh byte)			15
			DS (SCAT	S v5.x only)			16

SA MODE

This mode is in byte 8, bits 2, 3 and 4.

Bit 4	Bit 3	Bit 2	Value	Meaning
0	0	0	0	VOVK
0	0	1	1	CVK
0	1	0	2	GVK
0	1	1	3	VK

Bit 4	Bit 3	Bit 2	Value	Meaning
1	0	0	4	unused
1	0	1	5	CVO
1	1	0	6	GVO
1	1	1	7	VO

SA VOTE TITLE

Byte 8 also determines the type of SA vote data.

Bit 7	Bit 1	Bit 0	Title	Meaning
1	0	0	ADS	Average DS
1	1	0	AVK	Average VK
1	1	1	AVO	Average VO

SA/LK DATA - OLD FORMAT

This format is produced by all PDP 11 SCATS systems for the SA and the LK data record. The data is for an SA if bit 5 in byte 5 is clear, else it is for an LK.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Byte
1	1	0	1=VPH]	Bit mask fo	r lanes in u	se	1
		Ir	ntersection	no. (Low by	yte)			2
		Ir	ntersection	no. (high by	yte)			3
			SA or L	K number				4
SA	flags	LK		SA mode		VF'/LQ	VF"	5
SG	SG Phase bit mask (or signal group in bits 0-4 if SG set)							6
			Phas	e time				7
DS for fir	st lane of la	ne bitmap	- if >200 sh	ow *nnn, i	f >100 show	w >nnn else	show !nnn	8
Either 1 o	Either 1 or 2 byte volume for first lane of lane bitmap depending on "SA mode"							
The number of sets of DS and volume data in the message is determined by the bit mask for lanes in use in byte 1 (4 lanes maximum)								
Volume for last lane used								
			Vote	value			_	n

SA/LK DATA - NEW FORMAT

This is the format of an SA or LK record collected on a CMS system from a SCATS 6 regional computer. The data is for an SA if bit 5 in byte 5 is clear, else it is for an LK.

If System Monitor data is collected **locally** on a SCATS 6 region, each record will be preceded by a two byte record length (low byte first). If the record length is **odd**, the record will contain a trailing null character as padding to make the overall record length **even**!

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Byte
0	1	0	1=VPH	,	Bit mask fo	r lanes in u	se	1
		Ir	ntersection	no. (Low b	yte)			2
		Ir	ntersection	no. (high b	yte)			3
		SA	or LK nun	nber (Low	byte)			4
		SA	or LK nun	nber (High	byte)			5
SA	flags	LK		SA mode		VF'/LQ	VF"	6
SG		Phase bi	t mask (or s	signal group	o in bits 0-4	if SG set)		7
			Phas	se time				8
DS for fir	st lane of la	ne bitmap	- if >200 sh	ow *nnn, i	f >100 show	w >nnn else	show !nnn	9
Either 1 o	Either 1 or 2 byte volume for first lane of lane bitmap depending on "SA mode"							10
The number of sets of DS and volume data in the message is determined by the bit mask for lanes in use in byte 1 (4 lanes maximum)								
Volume for last lane used								
			Vote	value				n

SA FLAGS

Byte 6 (new format) or byte 5 (old format), contain the SA flags in bits 6 and 7 which have the following meaning:

Bit 7	Bit 6	Value	Display	Meaning
0	0	0	S	SA controls both CL and SP plan voting
0	1	1	#	SA controls CL only
1	0	2	^	SA controls SP plan vote only
1	1	3	*	SA controls nothing (for monitoring)

SA MODE

Byte 6 (new format) or byte 5 (old format), also contains the SA volume mode in bits 2 to 4, which determines how many volume bytes each lane has, using the following table.

Bit 4	Bit 3	Bit 2	Value	Meaning	Number of bytes
0	0	0	0	VOVK	1 byte VO, 1 byte VK
0	0	1	1	CVK	2 bytes (low byte first)
0	1	0	2	GVK	2 bytes (low byte first)
0	1	1	3	VK	1 byte
1	0	0	4	unused	-
1	0	1	5	CVO	2 bytes (low byte first)
1	1	0	6	GVO	2 bytes (low byte first)
1	1	1	7	vo	1 byte

DISPLAYING DS VALUES

The lane separator on an SM display is normally an exclamation mark. However, this changes depending on the value of the DS. If DS > 200, use an asterisk (eg. *223). If the DS is between 101 and 200, use a greater than symbol (eg. >123) else use the exclamation mark (eg. !78).

DISPLAYING THE VOTE VALUE

convert from a flow in three minutes.

The last byte of the message contains the vote value, the last item displayed on an SM data line
☐ If the VPH bit is clear in byte 1, the value is displayed as is.
☐ If the VPH bit is set, convert the value to vehicles per hour by multiplying the value by 20 to

PLAN 0 DATA

This message is only sent if the SM is from a subsystem running ISS mode.

The number of bytes in the message varies with the number of phases at the critical intersection, and ranges from 3 bytes for a 2 phase intersection, up to 8 bytes for a 7 phase intersection.

OLD FORMAT

This is the format from a PDP 11 region.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Byte
1	1	1	0	0	0	0	0	1
A phase time								
	E	phase time	e					3
C phase time (if message has at least 4 bytes)								
	Γ	phase tim	e (if messa	ge has at le	ast 5 bytes)		5
E phase time (if message has at least 6 bytes)								
F phase time (if message has at least 7 bytes)								
G phase time (if message has 8 bytes)								

NEW FORMAT

This is the format of a plan 0 record collected on a CMS system from a SCATS 6 region. Bit 7 in the first byte is zero for consistency with all other SM records from a SCATS 6 regional computer.

If System Monitor data is collected **locally** on a SCATS 6 region, each record will be preceded by a two byte record length (low byte first). If the record length is **odd**, the record will contain a trailing null character as padding to make the overall record length **even**!

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Byte	
0	1	1	0	0	0	0	0	1	
A phase time									
	E	phase tim	e					3	
	C phase time (if message has at least 4 bytes)								
D phase time (if message has at least 5 bytes)									
E phase time (if message has at least 6 bytes)									
F phase time (if message has at least 7 bytes)									
G phase time (if message has 8 bytes)									

EXPLANATION OF PHASE TIME

If bit 7 is set in the phase time (ie. the unsigned byte value is equal to or greater than 128), it signifies the stretch phase (<>). Subtract 128 from the value and display the remainder inside angled brackets. Eg. A value of 163 gives <35>

If the value is less than 128, but exceeds 80, it is for a fixed time phase (ie. a phase time in seconds). Subtract 80 from the byte value and display the remainder, preceded by a cross hatch. Eg. A value of 92 gives #12.

Values of 80 or less are percentage times, displayed as is.

SAMPLE SM DISPLAY

This a sample system monitor for subsystem 12.

```
18:18 SS12M+ PL8.2
                       PV19.2 CL 110-03 RL106'SA 42 DS135
  INT SA/LK PH
                   PT! DS VO VK! DS VO VK! DS VO VK!
                                                           DS VO VK!ADS
  253 S 33 '
                       98
                            14 15!
                                    65
                    31!
                                         9
                                          10!
                                                        -!
                                                                       69
  253 S 38 '
                             5
                                 6>104 10 14!
               2
                   33!
                        51
                                                68
                                                      10!
                                                                       73
                                                     7
  253 S 43^
                   11!
                         0
                             0
                                0!
                                                                       31
               3
                                            -!
                                                        -!
                                                                    -!
                                            – !
                                                        – !
  253 S 62^
               4
                   11! 44
                             2
                                2!
                                                                    -!
                                                                       36
  253 S 86 'D
                    32! 45
                             8
                                6!
                                    54
                                            7!
                                                42
                                                     7
                                                        6!
                                                                    -! 52
                                         4
                                    65
  253 L 35<sup>^</sup>!
               1
                    31! 98 14 15!
                                         9
                                          10!
                                                        -!
                                                                    - !
                                                                       860
  253 L 40^
               2
                                 ->104 10 14! 68
                                                                       600
                    33!
                                                     7 10!
    A=<34>
             B = 13
                     C=1
                            D=40
                                   E=13
```


SCATS SERIAL COMMUNICATIONS PROTOCOL

A SCATS regional computer can be configured to send and receive data through a dedicated port to an external service such as **TRITRAM** (which supplies simulated traffic data) or **BIPS** (the Bus Information and Priority System).

The port characteristics are the same as a standard SCATS terminal port with 8 bits, no parity.

The baud rate is as set in the system file [1,2]SYSPARAM.DAT (for a Micro/RSX operating system) or in file [1,2]TERMINALS.CMD (for an RSX11M operating system).

MESSAGE PACKET

Messages from the port on a regional computer are sent as packets. The packet format is:

SOH	Start of header
Byte count	Number of data bytes following (255 maximum)
Data	Variable length data area containing one or more messages
Checksum	The sum of all characters from the start of the message to the checksum (inclusive) is zero.

START OF HEADER CODE

The message protocol caters for message acknowledgement and retransmission of lost messages. The lower two bits of the SOH determine the message number and the ACK code as follows. This allows acknowledgement as part of the next data message.

SOH	BIT 1 message no.	BIT O ACK
80H	0	0
81H	0	1
82H	1	0
83H	1	1

When initiating communications, the following points should be taken in account.

At startup, SCATS initialises it "last message received" to zero. This means that the first message that SCATS can process is an 82H or 83H message. If the remote program starts by sending an 80H or 81H message, SCATS will only acknowledge the receipt of the message but will not send any requested data. This is because, SCATS assumes that it has previously received and processed this message type.

To guarantee synchronisation at startup, it is recommended to send off an 80H message with no data. That is, a 3 byte message of 80H 00H 80H. SCATS will reply with a an ACK of 04H. The next message from the remote program must then be an 82H. SCATS will reply with an ACK of 05H.

From then on, subsequent messages from the remote program must then toggle the message bit and set the appropriate ACK bit for messages to remain synchronised.

Note that if SCATS receives a message with the same message number as the last message received, SCATS will always reply with an ACK and will not process the message.

Also note that SCATS may first send an ACK prior to sending data if transmission of the data is delayed in SCATS.

ACK/NAK MESSAGES

Alternatively, if no data needs be sent, an ACK message will suffice.

ACK	Checksum
NAK	Checksum

The ACK code for a message with an SOH of 80H or 81H is 4.

The ACK code for a message with an SOH of 82H or 83H is 5.

The NAK code for a message with an SOH of 80H or 81H is 15H

The NAK code for a message with an SOH of 82H or 83H is 14H

If data is ready to be sent in the reverse direction, ACK need not be sent. Instead, BIT0 of the data message SOH is an implied ACK. If neither ACK, NAK or a reply message is received within a timeout period of about 2 seconds, the data message will be retransmitted.

DATA MESSAGES

Data messages are encapsulated within the message packet. A message packet is of variable length and may contain one or more data messages. An ID byte of 63 indicates more data to follow.

SCATSIM SERIAL COMMUNICATIONS

INTERSECTION DATA MESSAGE

SCATS TO SIMULATION

Item	Size	Remarks
Slot number	1 byte	bits 0-5 = slot number in range 1-32 bit 6 = miscellaneous flags follow bit 7 = signal group status follows (2 bytes - low byte first)
Signal groups	2 bytes	bit $0 = \text{group } 1$, bit $1 = \text{group } 2$ etc
Miscellaneous flags	1 byte	bit 0 = FVO data follows (2 bytes of detector flags) bit 1 = BVO data follows (2 bytes of detector flags)
Next slot		

Worst case is 8 data bytes per slot. If all data to send will not fit in a single message, the last byte of data will be an ID of 63 indicating more to follow.

SIMULATION TO SCATS

VOLUME/OCCUPANCY DATA

Item	Size	Remarks
Slot number	1 byte	bits 0-5 = slot number within range 1-32 bit 6 = vol/occ data follows (3 bytes per detector) bit 7 = pedestrian demands follow
Detector status	2 bytes	16 bits for 16 vehicle detectors
Pedestrian demands	1 byte	8 bits for 8 push buttons
Volume/occupancy	3 bytes	byte 1 = detector number 1-16 - bit 7 set=more detectors follow byte 2 = low byte of occupancy byte 3 = bits 0-1 high 2 bits of occupancy, bits 2-7=volume
Vol/occ for next detector		Present only if the continuation bit 7 is set in byte 1 of the preceding vol/occ data.

TIME FROM SIMULATION

Message 62	byte 1
Hour	byte 2
Minutes	byte 3
Seconds	byte 4

BUS PRIORITY SYSTEM

The SCATS serial communications protocol must be used for communicating with the Bus Information and Priority System (BIPS).

The data messages are as follows:

Messages from BIPS to SCATS

Request for Intersection data

Data	Size	Remarks
Message type 1	1 byte	request for intersection data
Sequence number	1 byte	Number of this request
Flags	1 byte	set bit 0 to request CL and master subsystem no. set bit 1 to request Offset, CG, no. of phases and plan data
Intersection count	1 byte	number of intersections in this message
Intersection no.	2 bytes	low byte of desired intersection no. high byte of desired intersection no.
Append 2 byte intersection no. for each additional intersection		

Replace remaining phase time

This has the effect of making the current phase run longer or shorter than the time calculated by SCATS.

Data	Size	Remarks
Message type 2	1 byte	replace remaining phase time
Intersection count	1 byte	number of intersections in this message
Intersection no.	2 bytes	low byte of intersection no. high byte of intersection no.
Running phase (in case original phase has ended)	1 byte	bits 0 to 2 - phase (1=A7=G). bit 7 set for "No gapping allowed"
New time until phase ends	1 byte	replaces current value if phase has not terminated. zero = leave existing value untouched - allows application of "no gap" by itself if necessary.
Append 2 byte intersection no. and 2 byte data for each additional intersection		

Replace plan data

This allows full control over an intersection.

Data	Size	Remarks	
Message type 3	1 byte	replace plan data	
Intersection count	1 byte	number of intersections in this message	
Intersection no.	2 bytes	low byte of intersection no. high byte of intersection no.	
No. of phases	1 byte	bits 0-2 = phase bit 7 = lock the plan	
New plan data	2 bytes	the following data is present for each phase in ascending order of phase (ie ABC):	
		low byte: bits 0-6 = phase split bit 7 = NG (no gap)	
		high byte: bits 0-2 = next phase in sequence (NIS) bit 3 = NS (no skip) bit 4 = AS (CL dependant permanent demand) bit 5 = TG (time gain) bit 6 = FS (CL dependant forced skip) bit 7 = FG (false green)	
		NB: NS and FS both set = permanent demand (PD)	
Data for next phase			
Data for next intersection.	Data for next intersection		

APPLY A DWELL

A dwell forces an intersection to the nominated phase where it will rest until the dwell is removed.

Data	Size	Remarks
Message type 4	1 byte	apply a dwell
Intersection count	1 byte	number of intersections in this message
Intersection no.	2 bytes	low byte of intersection no. high byte of intersection no.
Phase to be dwelled	1 byte	bits 0-2
Next intersection number and phase to be dwelled		

REMOVE A DWELL

Data	Size	Remarks
Message type 5	1 byte	remove a dwell
Intersection count	1 byte	number of intersections in this message
Intersection no.	2 bytes	low byte of intersection no. high byte of intersection no.
Phase	1 byte	bits 0-2
Next intersection number and phase to have a dwell removed		

RELOAD PLAN DATA

This message asks SCATS to reload the active plan with the data from the currently selected stored plan and is used after BIPS has sent down new plan data that has now been finished with. This ensures that the phase flags are restored as per the SCATS plan data.

Data	Size	Remarks
Message type 6	1 byte	reload plan data
Intersection count	1 byte	number of intersections in this message
Intersection no.	2 bytes	low byte of intersection no. high byte of intersection no.
Next intersection number		

Messages from SCATS to BIPS

INTERSECTION DATA

Data	Size	Remarks
Message type 1	1 byte	intersection data - reply to a type 1 request
Sequence number	1 byte	This is the same number as sent by BIPS
Flags	1 byte	bit 0 = CL and Master Subsystem no. is included in message bit 1 = Offset, CG, no. of phases and plan data is included
Intersection count	1 byte	number of intersections in this message (3 maximum))
Intersection no.	2 bytes	low byte, high byte (range 1 to 64999)
Running phase data	1 byte	bits 0-2 = running phase (1=A7=G) bits 3-5 = phase step (0=LST, 1=MIN, 2=VIG, 3=GRN, 4=ECG, 5=R/Y, 6=YEL, 7=RED bit 6 = the phase is dwelled bit 7 = the phase cannot gap
Next scheduled phase	1 byte	bits 0-2 = next phase scheduled to run (ie demanded) 0 means no demands
Remaining green time for phase	1 byte	range: 0 to 255 (excludes intergreen - eg YEL+RED and is the time until SCATS instructs the intersection to terminate the current phase).
		Zero means phase is terminating.
Cycle length	1 byte	range: 20 to 240 (includes rotation)
Master Subsystem no.	1 byte	range: 0 to 63
Plan Offset	2 bytes	low byte: offset from CG=0 (in seconds, signed) high byte: bits 0-2 = phase that ends at that offset bit 3 = this is a slave intersection - no offset bit 4 = intersection is double cycling
Cycle generator step	1 byte	range: 0 to 99
No. of phases	1 byte	bits $0-2 = \text{no.}$ of phases in plan - range: 2-7
Running plan data	2 bytes	the following data is present for each phase in ascending order of phase (ie ABC):
		low byte: bits 0-6 = phase split bit 7 = NG (no gap)
		high byte: bits 0-2 = next phase in sequence (NIS) bit 3 = NS (no skip) bit 4 = AS (CL dependant permanent demand) bit 5 = TG (time gain) bit 6 = FS (CL dependant forced skip) bit 7 = FG (false green)
		NB: NS and FS both set = permanent demand (PD)
Data for next phase	•	

Data for next intersection...

USE OF MESSAGES FROM SCATS TO BIPS

Determining the Offset between two Intersections

The data items in the message from SCATS to BIPS that are used to determine offset are, for each of the pair of intersections:-

- master subsystem number
- cycle length
- plan offset
- cycle generator step
- 1. Determine whether the two intersections have a defined offset ie are coordinated.
 - if both master subsystems are zero, there is NO defined offset
 - if the master subsystem numbers for the two intersections are the same (but not zero), there is a defined offset
 - if the master subsystem numbers for the two intersections are NOT the same, there is NO defined offset
- 2. Determine whether the offset is has reached stability ie no rotation:-
 - if the cycle lengths for the two intersections are the same, the offset is stable
 - if the cycle lengths for the two intersections are NOT the same, the offset is NOT stable
 - NB cycle lengths which differ by less than 3 seconds can be considered the same.
- 3. Determine whether an offset can be calculated. An offset CANNOT be calculated:-
 - if there is no defined offset (step 1), or
 - if there is no (or incomplete) plan offset data, or
 - if the intersection is a slave (bit 3 set)
 - if one or both values of CL are zero (intersection probably not Masterlink)
- 4. Calculate the offset in seconds. Notation is:-
 - **PP1** is plan offset for the first intersection
 - **CG1** is the cycle generator step for the first intersection
 - **PP2** is plan offset for the second intersection
 - **CG2** is the cycle generator step for the second intersection
 - **CL** is the common cycle length (average if not exactly equal)
 - calculate the difference in the zero points of the two cycle generators by DIFF = (CG1 - CG2)*CL/100
 - calculate the offset as

PP1 - PP2 - DIFF

The sign of the offset has the following meaning

- if the sign is **POSITIVE** it means that the specified phase at intersection 1 ends **AFTER** the specified phase at intersection 2
- if the sign is **NEGATIVE** it means that the specified phase at intersection 1 ends **BEFORE** the specified phase at intersection 2

EXAMPLE 1

ie the end of C phase at intersection 1 is 6 seconds before the end of B phase at intersection 2

EXAMPLE 2

ie the end of C phase at intersection 1 is 26 seconds after the end of B phase at intersection 2

TRAFFIC INCIDENT MANAGEMENT SYSTEM (TIMS)

TIMS TO VAX

The TIMS link software sends and receives messages via mailboxes to the SMCOLLECT program for requesting SCATS SM (System Monitor) data.

Program SMCOLLECT checks for the existence of the logical name SCATS_TIMS_ENABLED. If found, SMCOLLECT attempts connection to the TIMS link message channel.

REQUEST FOR SYSTEM MONITOR

Data	Byte	Remarks
^S	1	Message request code
Interval	2	Auto repeat time in minutes (unsigned) - 0=single shot
Region name	3-8	ASCII
Subsystem mask	9-16	64 bits - masks for SS 1-63

Note: To terminate auto repeat requests, send a non zero interval with a zero SS bitmask.

REQUEST FOR INTERSECTION STATUS

Data	Byte	Remarks
^N	1	Message request code
1	2	
Region name	3-8	Optional! ASCII region name - If no region, then ALL regions

REQUEST FOR UNUSUAL CONGESTION

Data	Byte	Remarks
^U (15Hex)	1	Message request code
0	2	NUL
Region name	3-8	Optional - ASCII - if not used, set field to blanks
Intersection number	9-10	Low byte of intersection number comes first.

TIMS SHUTDOWN

Data	Byte	Remarks		
^Z	1	Shutdown message		
State	2	1=OK, 0=FAULTY		

VAX TO TIMS

INITIALISATION

Sent to the TIMS link software.

Data	Byte	Remarks
^I	1	Control I
^S	2	Control S
NULL	3	0
NULL	4	0

UNUSUAL CONGESTION DATA

Data	Byte	Remarks			
∿U	1	(hexadecimal 15)			
Date/time	2-3	bits 0-5 = minutes bits 6-10 = hour bits 11-15 = day			
Number of reports	4	0 = No report, bit 7 set to indicate one or more packets following			
Region Name	5-10	(ASCII)			
Subsystem	11				
Strategic Approach	12				
Intersection number	13-14	Low byte of intersection first			
Direction	14	Direction (ASCII, 'N', 'S', 'E', 'W', 'X'=Combined)			
Alarm Duration	16	in minutes			
Congestion	17-20	byte 1 = minutes 1-8 byte 2 = minutes 9-16 byte 3 = minutes 17-24 byte 4 = minutes 25-39			

Next set of data. Byte 5 to 20 are repeated for each unusual congestion report.

Up to 8 reports can be transmitted with each packet (max length of 140 bytes).

INTERSECTION STATUS DATA

This message is a snapshot of an intersection showing the operating status. It is sent when an alarm state or an operating state changes. It contains flags showing items such as:

• operating **mode** (0-7) where:

0=	Isolated	4=	Police Off
1=	Flexilink	5=	Police Manual
2=	Masterlink	6=	Police Red
3=	Hurry call	7=	Maintenance

- LM# is set if the operating mode (link mode) is locked (M#, F# or I#)
- running phase (1=A, 7=G)
- phase step where:

0=	LST	Late Start	4=	ECG	Early cut-off Green
1=	MIN	Minimum Green	5=	YEL	Yellow
2=	VIG	Variable Initial Green	6=	RED	Red
3=	GRN	Rest	7=	R/Y	Rd/Yellow

- active Special Facilities: Z- Z+ Y- Y+
- dwell state
- intersection alarms, vehicle detector alarms (1-24) and pedestrian push button alarms (1-8)
- running intersection plan (IP) 0-8 where 0=plan 0 trim 15=plan 0 lock (PL0#)
- running offset plan (PP) 0-4 where 0=PP0 trim 7=PP 0 lock (PP0#)
- subsystem locks is set if a plan locks (PM#) and/or a cycle lock (CL^) is active
- subsystem alarms: HID=High Density, FBK=Fallback
- FTP shows Fixed Time Plans are active
- clock alarm (0=none) error range is +/-59 seconds ('80'x means LARGE error)

INTERSECTION STATUS RECORD

Byte	DATA	bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0								
1	Header		201 octal								
2	Byte count			16 decima	ıl						
3	Intersection		intersection number (low byte)								
4	number		intersection number (high byte)								
5	Plans	SS locks		PP			I	P			
6	Mode	mod	de (see ab	ove)		Z-	Z+	Y-	Y+		
7	Phase step	v4.xx									
8	Next phase	Dwell	Dwell HID FTP FBK LM# phase called								
9		PK	PK ST SC LC OD BO WD PF								
10	Alarms		NC FY FL UD DA BD CK								
11		CE	PE	SY	IV	NF	CF	GW	SF		
12		DZ	IH	XU	SI	LF	GT	IR			
13	Detector			detector a	larms (1-8) bit 0=1					
14	alarms 1-16		detector alarms (9-16) bit 0=9								
15	PB 1-8		push button alarms (1-8) bit 0=1								
16	CA+/-59		clock error (in secs) ('80'x = CA^{**})								
17	DA 17-24		detector alarms (17-24) bit $0=17$								
18	CL			cycle leng	th	·			·		
19	Checksum			checksum	(negated .	sum of byt	es 1-18)		-		

SYSTEM MONITOR DATA FOR TIMS

SM HEADER

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	byte	
			^S reco	ord type				1	
1	0			SS no.	(0-63)			2	
		region	name (wit	h trailing b	lanks)			3-8	
FBK			Year s	ince 1900 (0-127)			9	
ISS LP# CL^ SP# Month (1-12)									
FTP CL FTP LP FTP SP Day (1-31)								11	
VF' VF" DV# Hour (0-23)									
M- M+ Mins (0-59)									
1 SM=HD SA mode SK=SV SK=VO									
Married	Married Scats V4 LP (0-3=plan 1-4) SP (0-7=plans 1-8)								
LP vote ISS SP vote (no ISS = bits 0-2 only)									
Nominal CL									
Actual CL (includes rotation)									
RL								19	
			Representa	tive SA				20	
			DS (SCAT	S v5.x only	·)			21	

SA MODE

This mode is in byte 14, bits 2, 3 and 4.

Bit 4	Bit 3	Bit 2	Value	Meaning
0	0	0	0	VOVK
0	0	1	1	CVK
0	1	0	2	GVK
0	1	1	3	VK

Bit 4	Bit 3	Bit 2	Value	Meaning
1	0	0	4	unused
1	0	1	5	CVO
1	1	0	6	GVO
1	1	1	7	VO

SA VOTE TYPE

Byte 14 also determines the type of SA vote data.

Bit 7	Bit 1	Bit 0	Title	Meaning
1	0	0	ADS	Average DS
1	1	0	AVK	Average VK

1 1 1 AVO Average VO

SA/LK DATA

This is format for the SA and the LK data record. The data is for an SA if bit 5 in byte 12 is clear, else it is for an LK. *Note that LK data is NOT sent to TIMS!*

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Byte			
	^S record type										
1	1 1 0 1=VPH Bit mask for lanes in use										
	region name (with trailing blanks)										
Intersection no. (Low byte)											
	Intersection no. (high byte)										
	SA or LK number										
SA flags LK SA mode VF'/LQ VF"											
SG Phase bit mask (or signal group in bits 0-4 if SG set)											
Phase time											
DS for first lane of lane bitmap - if >200 show *nnn, if >100 show >nnn else show !nnn											
Either 1 or 2 byte volume for first lane of lane bitmap depending on "SA mode"								16			
The number of sets of DS and volume data in the message is determined by the bit mask for lanes in use in byte 2 (4 lanes maximum)											
	Volume for last lane used										
			Vote	value				n			

SAFLAGS

Bits 6 and 7 in byte 12 contain the SA flags which have the following meaning:

Bit 7	Bit 6	Value	Display	Meaning
0	0	0	S	SA controls both CL and SP plan voting
0	1	1	#	SA controls CL only
1	0	2	^	SA controls SP plan vote only
1	1	3	*	SA controls nothing (for monitoring)

SA MODE

Byte 12, bits 2 to 4, define the SA volume mode, which in turn defines how many volume bytes each lane has, using the following table.

Bit 4	Bit 3	Bit 2	Value	Meaning	Number of bytes
0	0	0	0	VOVK	1 byte VO, 1 byte VK
0	0	1	1	CVK	2 bytes (low byte first)
0	1	0	2	GVK	2 bytes (low byte first)
0	1	1	3	VK	1 byte
1	0	0	4	unused	-
1	0	1	5	CVO	2 bytes (low byte first)
1	1	0	6	GVO	2 bytes (low byte first)
1	1	1	7	vo	1 byte

CMS MAP MESSAGES

REGION ENQUIRY

This is an ASCII message which is received from the map.

It requests the following data for a specific region:

- region status
- a specific intersection
- all intersections

Byte	Data
1-6	ASCII region name with trailing spaces
7	ASCII intersection number (most significant digit first), where:
	o requests a region status message 1-64999 requests an intersection status message for the nominated intersection 65535 requests intersection status messages for ALL intersections
n	a carriage return character terminates the message

INTERSECTION STATUS

This message is a snapshot of an intersection showing the operating status. It is sent when an alarm state or an operating state changes. It contains flags showing items such as:

• operating **mode** (0-7) where:

0= Isolated
1= Flexilink
2= Masterlink
3= Hurry call
4= Police Off
5= Police Manual
6= Police Red
7= Maintenance

- LM# is set if the operating mode (link mode) is locked (M#, F# or I#)
- running phase (1=A, 7=G)
- phase step where:

0= LST Late Start 4= ECG Early cut-off Green

1= MIN Minimum Green 5= YEL Yellow

2= VIG Variable Initial Green 6= RED Red

3= GRN Rest **7= R/Y** Rd/Yellow

- active Special Facilities: Z- Z+ Y- Y+
- dwell state
- intersection alarms, vehicle detector alarms (1-24) and pedestrian push button alarms (1-8)
- running intersection plan (IP) 0-8 where 0=plan 0 trim 15=plan 0 lock (PL0#)
- running offset plan (PP) 0-4 where 0=PP0 trim 7=PP 0 lock (PP0#)
- subsystem locks is set if a plan locks (PM#) and/or a cycle lock (CL^) is active
- subsystem alarms: HID=High Density, FBK=Fallback
- FTP shows Fixed Time Plans are active
- clock alarm (0=none) error range is +/-59 seconds ('80'x means LARGE error)

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
1	Header			201 octal						
2	Byte count			16 decima	.1					
3	Intersection			intersection	n number	(low byte)				
4	number		intersection number (high byte)							
5	Plans	SS locks		PP			I	P		
6	Mode	mod	mode (see above) Z- Z+ Y- Y+							
7	Phase step	v4.xx	v4.xx v5.xx phase phase step							
8	Next phase	Dwell	Dwell HID FTP FBK LM# phase called							
9		PK	PK ST SC LC OD BO WD PF							
10	Alarms		NC FY FL UD DA BD CK							
11		CE	PE	SY	IV	NF	CF	GW	SF	
12		DZ	IH	XU	SI	LF	GT	IR		
13	Detector			detector al	larms (1-8)) bit 0=1				
14	alarms 1-16		detector alarms (9-16) bit 0=9							
15	PB 1-8		push button alarms (1-8) bit 0=1							
16	CA+/-59		clock error (in secs) ('80'x = CA^{**})							
17	DA 17-24			detector a	larms (17-	24) bit $0=$	17			
18	CL			cycle leng	th					

19 checksum (negated sum of bytes 1-18) Checksum

MAP MODE

The **map mode** message is sent to the map.

Byte	DATA	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									
1	message header	201 octal									
2	byte count	2 decimal									
3	mode	0 = normal display 200 = printers are OK 1 = detector alarm display 201 = Event log printer faulty 17 = lamp test 202 = Fault log printer faulty									
4		377									
5	Negated sum of bytes 1-4	Checksum									

TIME

The time request is an ASCII message which is received from the map.

Byte	Data
1-4	4 byte ASCII string "TIME"
5	a carriage return terminates the message

TIME REPLY MESSAGE FORMAT

The reply is sent to the map.

Byte	DATA	DATA bit 7 bit 6 bit		bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	message header	20	01 octal						
2	byte count			8	decimal				
3	1 word message code			22	2 octal				
4				37	77 octal				
5				ye	ear (since	e 1900)			
6				m	onth				
7	date and time			da	ay				
8				ho	ours				
9				m	inutes				
10				se	econds				
11	Negated sum of bytes 1-10			C	hecksum	l			

COMMUNICATIONS STATUS

This message the status of the communications link to a region..

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	message header				201 oct	al			
2	byte count				9 decin	ıal			
3	1 word message code				20 octa	l			
4			377 octal						
5-10	region name:				ASCII	with trai	ling nulls	5	
11	Communication status flags						${f L}$	\mathbf{W}	C
12	Negated sum of bytes 1-11 Checksum								

The communications status flags in byte 11 are:

Bit		meaning when set					
0	C	Carrier OK					
1	W	Watchdog OK					
2	L	Communications link OK					

SUMMARY OF ALARM ON A REGION

Byte	Data	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1	Header			201 octa	etal					
2	Byte count			10 deci	mal					
3		21 octal								
4				377 octa	al					
5-10	Region name	ASCII with trailing nulls								
11	Status	SC	LA	MAJ	LC	DET	TIM	BSY	UD	
12	Flags	DWL	TRM	TMP	CL^	PL#	INF	HID	FBK	
13	Checksum		checksum (negated sum of bytes 1-12)							

STATUS FLAGS

Bytes 11 and 12 of the record showing a summary of regions alarms contain flags with the following meaning.

	bit 0	UD	Failure to update RAM at an intersection				
	bit 1	BSY	Disk write in progress (SYS.LX or INTFIL.DAT)				
flag	bit 2	TIM	System time is incorrect				
byte	bit 3	DET	An intersection has a detector alarm				
11	bit 4	LC	An intersection has a long Clearance alarm				
	bit 5	MAJ	An intersection has a major alarm				
	bit 6	LA	An intersection has a Lamp Failure				
	bit 7	SC	An intersection Short Clearance				
	bit 0	FBK	A subsystem is on fallback				
	bit 1	HID	A subsystem has a high density alarm				
flag	bit 2	INF	A subsystem has an increment failure alarm				
byte	bit 3	PL#	A plan lock is present				
12	bit 4	CL^	A subsystem has a cycle time locked				
	bit 5	TMP	CPU over-temperature warning				
	bit 6	TRM	An intersection plan has been trimmed				
	bit 7	DWL	An intersection has been dwelled				

CMCS INTERFACE

This section provides details on messages between SCATS and the Central Management Computer System (CMCS) in the RTA Traffic Management Centre (TMC).

MESSAGE FORMATS - SCATS TO CMCS

This is a description of the messages formats between SCATS and the CMCS.

- Messages will mostly be of variable length and will not exceed 1k bytes.
- They will be sent via a mailbox.
- Depending on the message type, a six character region name may be present to indicate the source of a message
- One or more sets of data specific to the message type will then follow.
- The number of sets of data will be determined from the total number of bytes in the message retrieved from the mailbox.

Where SCATS already has existing messages containing the necessary information, those messages will be passed on from the region to the CMCS process without modification.

MESSAGES FROM CMCS TO SCATS

Scats processes will assign to CMCS_MAIL (the logical name for the VAX), then send a message consisting of:

Byte	Meaning
1	Message type 255
2	Mail box unit number for CMCS request (low byte)
3	Mail box unit number for CMCS request (high byte)
4	First message types accepted by the mailbox

This message is sent by each SCATS VAX process to the CMCS interface process, notifying the CMCS interface of the mailbox ID to which the CMCS should send requests of the type(s) specified from byte 4 onwards.

The CMCS interface is to have one input mailbox which must have a logical name of CMCS MAIL.

If the CMCS interface terminates, it must delete the logical name CMCS_MAIL then deassign the mailbox before the program exits.

It must assign to the mailbox of each VAX process from which it requires data.

CMCS INTERFACE PROGRAM SHUTDOWN

The program must delete the logical name CMCS_MAIL before deassigning the mailbox and terminating, to guarantee that other processes do not keep an assignment to an unused mailbox.

READING AN ENTRY FROM A TC FILE

MESSAGE TYPE 9

This message is to be sent by the CMCS to request that the set of commands defined by the TC number in bytes 8 and 9 be read from the SYS.TC file at the nominated SCATS region.

As confirmation that the command has been received by the region, the command will be echoed to the CMCS by the region.

FORMAT

Byte	Meaning
1	Message type 9
2-7	Region name (ASCII)
8	TC number (low byte)
9	TC number (high byte)

VOLUME AND DS FOR STRATEGIC APPROACHES

MESSAGE TYPE 11

This message consists of a message type, regional computer source and a starting SA number, followed by sets of volume and degree of saturation (DS) data. The SA number in byte 8 defines the SA source for the first set of volume and DS data. Subsequent sets of data are from SAs numbered contiguously from that SA. A regional computer can have up to 250 SAs. This data will be sent by each region at a regular interval.

FORMAT

Byte	Meaning
1	Message Type 11
2-7	Region name - ASCII with trailing blanks
8	The SA number providing the first set of data
9	Sum of volumes from all active lanes in the SA as a flow in 90 seconds
10	VO/VK expressed as a % from the lane with the highest DS
11	Highest lane DS
12	Volume for the next contiguously numbered SA (flow in 90 seconds)
13	VO/VK as a %
14	DS
15	Additional sets of Volumes and DS values - The number of sets of SA data is calculated by taking the total number of bytes in the message, subtracting 8 for the message type, Region name and starting SA number, then dividing by 3 - eg: if the message had 212 bytes, there would be (212-8)/3 or 68 sets of data. If the first SA was number 125 (ie in byte 8), the message would contain Volume, VO/VK ratio and DS values for SA 125 to SA 192 inclusive.
n-2	Last Volume of this set (flow in 90 seconds)
n-1	last VO/VK as a %
n	Last DS

REGION STATUS

MESSAGE TYPE 100

The region status message shows the operating condition of a regional computer. This message will be sent to the CMCS interface at a regular interval or when a condition changes.

FORMAT

Byte		Meaning						
1	Message	lessage type 100						
2-7	ASCII Re	gion name	(with traili	ng blanks)				
8						Comms	Traffic	Carrier

where:

Comms	Bit2	clear if communication has been lost with the region
Traffic	Bit1	clear if the "TRAFFIC" program on the region is not operating
Carrier	Bit0	clear if the carrier has been lost between the region and the CMS

STATUS REQUEST

The status for all regions can be requested by the CMCS by sending a single byte containing a message type of 100.

Byte	Meaning
1	Message type 100 - request status of all regions

FAULT DATA FOR SCATS MONITORING SITES

MESSAGE TYPE 101

Byte 1 is the message type. Subsequent data will be grouped in sets of 3 bytes. The first two bytes of a set contain the intersection number. The last byte of the set contains the alarm flags for the fault conditions.

Data will be sent to the CMCS interface for those intersections where a change of state occurs. This is a variable length message.

FORMAT

Byte	Meaning							
1	Message type 101 decimal (65Hex)							
2	First Inte	rsection nu	ımber (low	byte)				
3	First Inte	rsection nu	ımber (high	ı byte)				
4	Dwell	Trim	FBK	Mode	Major	Warn	FY/BO	DA
5								
6	Second Intersection number (low byte)							
7	Second In	itersection	number (hi	igh byte)				
8	Dwell	Trim	FBK	Mode	Major	Warn	FY/BO	DA
9								
•••	Additional data - the number of sets of intersections in the message is the total number of bytes divided by 4 - eg if the message contained 112 bytes, there are 112/4 or 28.intersections in the message. Note that the second data byte is currently unused.							
n-3	Last Intersection number (low byte)							
n-2	Last Intersection number (high byte)							
n-1	Dwell	Trim	FBK	Special	Major	Warn	FY/BO	DA
n								

where a bit set in the first data byte means:

Dwell	Bit7	the intersection has an active stage dwell (ie manual control)	
Trim	Bit6	the intersection or its subsystem has a manual lock ie LM# PL# PP# SP#, LP# or CL^	
FBK	Bit5	the intersection has been forced to fallback mode by its subsystem	
Special	Bit4	the intersection is operating under a special mode - ie. Police manual, Police Red, police OFF, Hurry call or Maintenance Interrupt	
Major	Bit3	the intersection has a major alarm: NC, FY, FL, BD, CK, ST, BO, WD, PF, DZ, GT, IR, PE, CF, GW, SF	
Warn	Bit2	the intersection has a minor alarm: UD, SC, LC, OD, IH, XU, LF	
FY/BO	Bit1	the lamps are either Flashing Yellow or Blacked Out	

DA Bi	it0	the intersection has a DA or SI alarm
-------	-----	---------------------------------------

FAULT DATA REQUEST

The fault data for all intersections can be requested by the CMCS by sending a single byte containing a message type of 101.

Byte	Meaning
1	Message type 101 - request fault data for all intersections

CONGESTION ALERTS

MESSAGE TYPE 103

This message shows the state of non-recurrent congestion for each Strategic Approach at the nominated SCATS region. A message will be sent for each region at one minute intervals.

Byte	Meaning
1	Message type 103
2-7	Region name (ASCII)
8-39	32 bytes of congestion alert for SA 1-250 by bit position - ie bit 0 is set in byte 8 if SA 1 has a congestion alert, Bit1 is set if SA 2 has a congestion alert etc.

TRAVEL TIME REQUESTS

MESSAGE TYPE 104

The CMCS may request travel times between a start and an end junction.

Byte	Meaning
1	Message type 104 - Travel time request
2	First intersection - low byte
3	First intersection - high byte
4	Last intersection - low byte
5	Last intersection - high byte

TRAVEL TIME REPLY

MESSAGE TYPE 105

Byte	Meaning
1	Message type 104 - Travel time reply
2	First intersection - low byte
3	First intersection - high byte
4	Last intersection - low byte
5	Last intersection - high byte
6	Travel time in seconds - low byte
7	Travel time in seconds - high byte

CONTROL OF TIDAL FLOW OPERATION

To be advised

CONTROL OF DRIVER ADVISORY SYSTEMS

To be advised

TIME SYNCHRONISATION

The system time can be obtained from the VAX using the system service **SYS\$NUMTIM**.

HEARTBEAT

To be determined.

FORMAT OF INTERSECTION GRAPHICS FILE

File name: PCINTGRF.TXT

LOCATION RECORD - Record type 0

Maximum record size is 42 bytes.

All characters in this record are ASCII.

Byte	Item	Comments
1-5	5 digit intersection number	right justified
6	Record type 0	
7	Suburb name	20 characters maximum plus a % delimiter
•••	RTA Division	4 characters maximum plus a % delimiter
•••	UBD map reference	8 characters maximum plus a % delimiter
•••	Change flag	! = data has changed, blank otherwise

COORDINATES RECORD - Record type 1

Record size 30 bytes

Byte	Item	Comments
1-5	5 digit intersection number	right justified
6	Record type 1	
7-8*	Scale	
9-10*	X coordinate of centre of intersection	X + 1024
11-12*	Y coordinate of centre of picture	Y + 1024
13-14*	X coordinate of first signal group display box	
15-16*	Y coordinate of first signal group display box	
17-18*	X coordinate of second signal group display box	
19-20*	Y coordinate of second signal group display box	
21-25*	X coordinate of intersection location	
26-30*	Y coordinate of intersection location	

ARM RECORD - Record type 2

Record size 38 bytes.

Byte	Item	Comments
1-5	5 digit intersection number	right justified
6	Record type 2	
7*	Arm number	
8*	Street name index + 32	Index to a street name in a STREET RECORD (record type 5)
9-10*	Angle of arm	12 bit value - 0 is 9 o'clock
11-12*	Offset	Offset of arm from centre of intersection in logical units. An intersection picture is 512 x 512 logical units.
13-14*	Lane configuration	Lanes left of centre line + (lanes right of centre lane * 16) + (Slip lanes * 256) (standing in the arm, looking towards the centre of the intersection)
15-16	Pedestrian type	
17	Median type	
18	Break	
19-20*	Side 1	
21-22*	Side 2	
23-24*	Entry	
25-26*	Exit	
27*	Exit arm	
28-29	Slip lane pedestrian crossing	
30-31*	Pedestrian crossing position	
32-35*	Lane arrows	Allows for 8 sets of 3 bits (ie for 8 lanes in order from the centre line to the kerb) where: bit 0 = Left bit 1 = Through bit 2 = Right
36-38*	Next intersection along arm	0 = none, -1 = stub (no next intersection) 1-63999=next intersection number 64000-64999=exception points 65000=unused

SIGNAL GROUP RECORD - Record type 3

Maximum record size is 30 bytes.

Byte	Item	Comments
1-5	5 digit intersection number	right justified
6	Record type 3	
7*	Signal group number	
8-9*	Group direction and type	Entry arm number + (exit arm number * 16) + (type * 256) Type (4 bit field): Top bit = display in Box 2 (else Box 1) Lower 3 bits = type: 1 = Through 2 = Right 3 = Left 4 = Pedestrian
10*	Next signal group number	
11-12	Group direction and type	Entry + (exit * 16) + (type * 256)
•••	maximum	ditional groups of 8 groups per record numbered from 1 to 16
*	Last signal group number in record	
*	Group direction and type	Entry + (exit * 16) + (type * 256)

PHASE RECORD - Record type 4

Maximum record size is 50 bytes

D 4	T ₄	C 4	
Byte	Item	Comments	
1-5	5 digit intersection number	right justified	
6	Record type 4		
7-8	Phase name	eg A or B or F1 etc	
9*	Signal groups associated with this phase.	Up to 8 group numbers may be present, with each group number being stored as (group number + 32).	
•••	Phase group delimiter	% delimiter	
	A record may contain data for up to 4 phases.		
•••	Name of next last phase	eg A or B or F1 etc	
**	Signal groups associated with this phase.	Up to 8 group numbers may be present, with each group number being stored as (group number + 32).	
•••	Phase group delimiter	% delimiter	

STREET RECORD - Record type 5

Maximum record size is 50 bytes

Byte	Item	Comments
1-5	5 digit intersection number	right justified
6	Record type 5	
7*	Index number + 32	Corresponds to the index to a street name in an ARM RECORD (record type 2)
8	First street name	% delimited
**	Index number + 32	Corresponds to the index to a street name in an ARM RECORD (record type 2)
•••	Second street name	% delimited

DETECTOR RECORD - Record type 6

Maximum record size is 38 bytes

Byte	Item	Comments			
1-5	5 digit intersection number	right justified			
6	Record type 6				
7*	Detector number	4 bytes per detector			
8*	Arm number				
9*	Lane number	Lane number + 32			
10*	Detector position	Position + 4 + (slip lane flag * 32)			
	up to 8 detectors per record				

ALARM AND EVENT FILES

When a regional computer is connected to a **CMS** system, all alarms and events that occur at the region are sent to the CMS for storing.

The CMS creates *daily* alarm and event files. These files are in directory SYS\$ALARMS. The files are named after the date and have a .ALM extension for alarms and a .EVT extension for events. For example, the alarm file for the 23rd October 1998 is called **981023.ALM** and the event file is **981023.EVT**.

ALARM FILE

The alarm file is a fixed length record file where each record has 32 bytes. The file contains:

- Intersection alarm records
- regional computer faults
- CMS mailbox status records
- Event file pointer records pointers to records which have more than 32 bytes

EVENT FILE

The event file contains:

- operator commands
- · text messages
- CMS mailbox status records
- Diagnostic messages

ALARM FILE FORMATS

Intersection status

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Year	-	- Year since 1900						
2	Month	-	-	-	-		Mo	nth	
3	Day	-	-	-			Day		
4	Hour	-	-	-			Hour		
5	Minutes	-	-			Min	utes		
6	ID	-	-	-		٨	N characte	er	
7	Intersection			intersection	n number	(low byte)			
8-13	Region			Region na					
14	Intersection			intersection	n number	(high byte)		
15	Plans	SS locks		PP			Ι	P	
16	Mode	mod	de (see bel	low)		Z-	Z+	Y-	Y+
17	Phase step	v4.xx	4.xx v5.xx phase				phase step		
18	Next phase	Dwell	HID	FTP	FBK	LM#	p	hase calle	d
19		PK	ST	SC	LC	OD	ВО	WD	PF
20	Alarms		NC	FY	FL	UD	DA	BD	CK
21		CE	PE	SY	IV	NF	CF	GW	SF
22		DZ	IH	XU	SI	LF	GT	IR	1
23	Detector			detector a	larms (1-8)) bit 0=det	ector 1		
24	alarms 1-16			detector a	larms (9-1	6) bit 0=de	etector 9		
25	PB 1-8		push button alarms (1-8) bit 0=push button 1						
26	CA+/-59		clock error (in secs) ('80'x = CA^{**})						
27	DA 17-24	detector alarms (17-24) bit 0=detector 17							
28	CL	cycle length							
29	spare		-						
30	spare			-					
31	spare			-					
32	Seconds	-	-			Seco	onds		

MODE

SCATS v4.x

Byte 16 (bits 6-7) contain the operating mode:

bit 7 Masterlink bit 6 Flexilink neither set Isolated	bit 7	Masterlink	bit 6	Flexilink	neither set	Isolated
---	-------	------------	-------	-----------	-------------	----------

SCATS v5.x

Byte 16 (bits 5-7) contain the operating mode as a 3 bit value:

0	Isolated	1	Flexilink	2	Masterlink	3	Hurry call
4	Police off	5	Police manual	6	Police red	7	Maintenance interrupt

REGION ALARM SUMMARY

This record provides a summary of all alarms on a regional computer.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Year	-			Ye	ar since 19	900		
2	Month	-	-	•	-		Mo	nth	
3	Day	-	-	-			Day		
4	Hour	-	-	-			Hour		
5	Minutes	-	-			Min	utes		
6	ID	-	- 1E hexadecimal						
7	Alarms	SC	OD	MAJ	LC	DET	TIM	BSY	UD
8-13	Region			Region na	me				
14	Alarms	DWL	TRM	TMP	CL#	PL#	INF	HID	FBK
	unused		bytes 15 to 31 are not used in this record						
32	Seconds	-	-			Seco	onds		

CMS MAILBOX STATUS

This is a message from the VAX computer reporting on the status of the mailbox to a PDP11 CMS computer.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Year	-			Ye	ar since 19	900		
2	Month	-	-	-	-		Mo	nth	
3	Day	-	-	- D ay					
4	Hour	-	-	Hour					
5	Minutes	-	- Minutes						
6	ID	-	-	-		^	Z (1A hex	()	
7	State								state
	spare		bytes 8 to 31 are not used in this record						
32	Seconds	-	-			Sec	onds		

MAILBOX STATE

Byte 7 contains the mailbox state in bit 0.

Bit 0	CMS Mailbox State
0	FAULTY
1	OK

REGION STATUS RECORD

This record shows the operational status of a regional computer.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Year	-			Ye	ar since 19	900		
2	Month	1	-	-	-		Mo	nth	
3	Day	-	-	-			Day		
4	Hour	-	-	-			Hour		
5	Minutes	-	- Minutes						
6	ID	-	1F hexadecimal						
7	Status		Source			Error code statu			status
8-13	Region			Region na	me				
	spare	bytes 14 to 30 are not used in this record							
31	zero ID	-	- 0						
32	Seconds	-	Seconds						

STATUS

Byte 7 contains three items:

Status

This is a 1 bit status code, where:

Value	Status
0	Faulty
1	OK

Error code

This is a 4 bit code where:

Octal value	Fault type
0	Carrier
1	Computer
2	Communications
10	Temperature

Source

The source shows the sender of the record. This is a 3 bit value where:

Value	Source
0	CMS
16	ADC 16
7	VAX

EVENT FILE RFA POINTER

To maintain a relationship between intersection alarms and events, it has been necessary to use a form of record synchronisation between the intersection status records on the .ALM file and events on the .EVT file. This is done by keeping a pointer in the alarm file to all records in the event file. This allows the alarm file to be read sequentially and still be able to extract records from the event file in the order that the conditions occurred. The reverse is not considered necessary.

Therefore, every time the CMS writes a record to the event file, it also writes a record to the alarm file which contains the disk block and byte offset of the location of the event file record.

Knowing the RFA (Record File Address) allows a record on the event file to be directly read without the need to read sequentially from the start of the file.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Year	-			Ye	ar since 19	900		
2	Month	-	-	-	-		Mo	nth	
3	Day	-	-	-			Day		
4	Hour	-	-	-			Hour		
5	Minutes	-	-	Minutes					
6	Type	-	-	-		^C, ^I	or 1F cha	racter	
7	Flag			ID of reco	ord type on	event file			
8-13	Region			Region na	ıme				
14-17	Disk block			RFA disk	block (inte	eger*4)			
18-19	Byte offset			RFA byte	offset (int	eger*2)			
20-30	spare			bytes 20-3	30 are not	used in thi	s record		
31	RFA ID		1F hexad	ecimal - d	enotes tha	t this is an	RFA poin	ter record	
32	Seconds	-	-			Seco	onds		

TYPE POINTER

Byte 6 contains the type of record being pointed to on the event file, where:

Type	Meaning
^C	Operator command
^P	Text message
1F	Diagnostic record

FLAG

Byte 7 contains an identifier for the record in the event file.

Flag	Meaning
0	unknown .EVT file record
80x	LF record

EVENT FILE RECORD FORMAT

The event file is a sequential file containing variable length records up to a maximum of 128 bytes. This file contains operator commands, text messages, diagnostic records and region status records.

DIAGNOSTIC RECORD

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Type	-	-	-		1F	hexadecir	nal	
2-7	Sender			ASCII se	ender name	with trail	ing nulls		
8	Date	<<]	Month (41	bits)		I	Day (5 bits	3)	
9	Date			Year s	ince 1900	(7 bits)			Month
10	Time	<< N	Inutes (6	bits)	Seconds (halved) - (5 bits)				
11	Time		Н	ours (5 bit	s)		Minute	es (continu	ed) >>
12	Fault		Source			Fault code Stat			State
13	Flags	Flags Extended fault code							
14	Text			optional t	ext follows	1	•		

FAULT CODES

Byte 12 contains three items.

STATUS

Bit 0 is a 1 bit status code, where:

Value	Status
0	Faulty
1	OK

Fault code

Bits 1 to 4 contain the fault code where:

Value	Fault type
0	CARRIER
1	REGIONAL COMPUTER if the source is CMS or ADCn -or- COUNTING STATION n.m UPLOAD if source is VAX where bytes 13 to 16 contain the 4 byte station number (n.m) stored as n*1000 + m
2	COMMUNICATIONS if source is CMS or ADCn -or- ADP TIMED DISPLAY MESSAGE where byte 13 contains the display period in seconds and byte 14 onwards contains the message to be displayed
3	LAN MESSAGE where byte 13 contains the device type and byte 14 onwards contains the device name. The byte 13 device type is: 1 TERMINAL SERVER 2 TRANSLAN BRIDGE 3 BATCH/PRINT QUEUE 4 PROCESS
8	POWER CONDITIONER
9	AIR CONDITIONER
10	TEMPERATURE ALARM
11	FIRE ALARM
12	VAX WATCHDOG
13	CMS WATCHDOG (PDP11)
15	SPECIAL for EXTENDED STATUS MESSAGE follows in byte 13

Extended Fault codes

If the fault code in byte 12 contains a value of 15, byte 13 contains a 5 bit extended error code in bits 0 to 4, where:

Value	Fault type
1	COMMUNICATIONS STATUS of the computer name from bits 5, 6 and 7 where: 0 = CMS , 1 = ADC1 6 = ADC6 , 7 = VAX
2	STRATEGIC ROAD NETWORK - (bits 5, 6,7 ignored)
	The following byte 14 contains the SRN number, where: 0 = SRNIO - LINE ACCESS 1-127 = SRNIO - SRN No. n ACCESS
	if bit 7 is set, append AFTER CALL-IN FAILURE
3	ADC MAP WATCHDOG (bits 5, 6, 7 ignored)
4	TRANSLAN BRIDGE (bits 5, 6, 7 ignored). The name of the bridge follows from byte 14 onwards.
5	LOGGING PRINTERS where bit 5=EVENT printer and bit 6=FAULT printer

Source

The source shows the sender of the record. This is a 3 bit field in bits 5, 6 and 7, where:

Value	Source
0	CMS
16	ADC1ADC6
7	VAX

If the first character of the sender name (byte 2) is a blank, the sender name is the name of the computer that wrote the message to the log. This may not be the name of the computer which initiated the message. Use the source code from bits 5-7 in byte 12 as the computer reporting the fault.

If the first character of the sender name is not blank, it is a region name whose status is being reported.

OPERATOR COMMANDS

Operator commands are sent whenever a change is made to SCATS data or traffic operation.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Type	-	ı	-		,	^C (03 hex	.)	
2-7	Region			ASCII re	egion name	with trail	ling nulls		
8	Date	<<]	Month (4	bits)		I	Day (5 bits	3)	
9	Date			Year s	ince 1900	(7 bits)			Month
10	Time	<< N	Iinutes (6	bits)		Seconds	s (halved) -	- (5 bits)	
11	Time		Н	lours (5 bit	ts)		Minute	es (continu	ied) >>
12	Commands				Command	byte no.1			
	Commands		additional command bytes						
n	Commands	last c	ommand b	yte (recor	d size is vo	ariable - n	ıaximum s	ize is 128 i	bytes)

TEXT MESSAGES

Text messages include:

- Route Preemption (RPC) messages
- TRAFF STOPPED / TRAFF RUNNING
- Security key LOGON/LOGOFF messages
- Data CHANGE messages
- TC DATA ERROR messages
- Messages from TI operator terminals

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1	Type	-	ı	-		,	^P (10 hex)	
2-7	Region			ASCII re	egion name	with trail	ling nulls		
8	Date	<<]	Month (41	bits)		I	Day (5 bits	s)	
9	Date			Year s	ince 1900	(7 bits)			Month
10	Time	<< N	Inutes (6	bits)		Seconds	(halved)	- (5 bits)	
11	Time		Н	ours (5 bit	ts)		Minute	es (continu	ıed) >>
12	Message				Message	byte no.1			
	Message		additional message bytes						
n	Message	last 1	nessage b	yte (record	d size is va	riable - m	aximum si	ze is 128 b	ytes)

NOTES

If message byte no.1 has bit 7 set, it is a flags byte, not part of the message text. When it is a flags byte:

- if bit 6 is also set, this is a warning message for display on the Alarm Display Panels (ADPs)
- if bit 4 is also set, the next byte (no.13) is an ID for the ADP

Thus, if bit 7 is set in message byte 1:

- when bit 7 and bit 4 are both set, the message starts in byte 14
- when bit 7 is set but bit 4 is clear, the message starts in byte 13
- otherwise, the message start in byte 12

VAX VOLUME STORE DETECTOR FILE FORMAT

When a regional computer is connected to a CMS system, detector volumes can be collected on the VAX management computer. The format of records on this VS file is as follows:

COMMENT RECORDS

The file starts with a comment record which describes the data collection. This record shows the start and finish dates, daily collection periods, intersection numbers and detector numbers.

The first 7 records on a VS file are comment records. Each comment record is 128 bytes.

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
1-4	ID		A comment record has a zero in the first 4 bytes								
5	Type		^V for VS data (^S for SM data)								
6-11	Region		Region name in ASCII								
12	Year		Start y	ear (since	1900)						
13	Month		Start r	nonth							
14	Day		Start d	lay							
15	Year		End ye	ear (since	1900)						
16	Month		End m	onth							
17	Day		End da	ay							
18	Hour		Daily	period 1 -	start hour						
19	Minutes		Daily	period 1 -	start minu	tes					
20	Hour		Daily	period 1 -	end hour						
21	Minutes		Daily	period 1 -	end minut	es					
22	Hour		Daily	period 2 -	start hour						
23	Minutes		Daily	period 2 -	start minu	tes					
24	Hour		Daily	period 2 -	end hour						
25	Minutes		Daily	period 2 -	end minut	es					
26	Intersection		First I	ntersection	number (low byte)					
27	Intersection		First I	ntersection	number (high byte)					
28	Detectors		Bit ma	ask for det	ectors 1 to	8					
29	Detectors		Bit ma	ask for det	ectors 9 to	16					
30	Detectors		Bit ma	ask for det	ectors 17 t	o 24					
31	Detectors		Bit ma	ask for det	ectors 25 t	o 32					
	Additional		Additi	onal inters	section nur	nbers and	detector b	oit masks.			
	Intersection		Six by	tes per int	ersection.						
	/ Detectors				section nu						
128	No.		Comn	nent numb	er for VS 1	ecords (st	arts from r	no.1)			

Each comment record has 17 six byte fields consisting of a 2 byte intersection number and a 4 byte detector bitmask.

Comment records that contain at least one intersection/ detector bitmask are numbered sequentially in byte 128 starting with a value of 1. Bytes 1 to 25 will also be duplicated.

An intersection number of zero terminates the specification of intersection/detector bitmasks.

Comment records that do not contain any intersection/ detector bitmasks have all bytes set to zero!

DATE/TIME STAMP RECORD

A date/time stamp record is generated every 15 minutes (or every 5 minutes if RK=FV). It is generated 2 minutes after the period, so the minutes need to be decremented by 2 to normalise it (ie the time stamp for 12:15 shows 12:17).

A date/time stamp record always has seven bytes.

If VS data is collected **locally** on a SCATS 6 region, each record will be preceded by a two byte record length (low byte first). If the record length is **odd**, the record will contain a trailing null character as padding to make the overall record length **even**!

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
1-2	ID		A time stamp record has a zero in the first 2 bytes								
3	Year			Year (since 1900)							
4	Month						Mo	nth			
5	Day						Day				
6	Hour			Hour							
7	Minutes	5 min				Minut	tes + 2				

- The date and time is for the period ending at that time.
- Note that midnight is sent as 00:02 of the next day.
- If bit 7 is set in the minutes byte, the volume data that follows is for a 5 minute period (ie RK=FV!) otherwise the volume data is for a fifteen minute period.

INTERSECTION DETECTOR VOLUME RECORD

Each intersection for which detectors volumes are collected have their own record. To differentiate a volume record from the rest, the first two bytes contain the intersection number which is never zero (a comment record has the first 4 bytes set to zero and a time stamp has the first 2 bytes set to zero).

If VS data is collected **locally** on a SCATS 6 region, each record will be preceded by a two byte record length (low byte first). If the record length is **odd**, the record will contain a trailing null character as padding to make the overall record length **even**!

Byte	DATA	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
1-2	Intersection	Intersection number (low byte = byte 1, high byte = byte 2)							
3	volume	11 bit volume (ie plus first 3 bits of the next byte)							
4	detector	5 bit detector number					Volume (continued)		
	volume/ detector	Additional volume detector number data							
n-1	volume	11 bit volume (ie plus first 3 bits of the next byte)							
n	detector		5 bit detector number Volume (me (contir	nued)	

- A volume record can contain a minimum of 4 bytes (2 byte intersection number plus 2 byte volume/detector value) up to a maximum of 50 bytes (2 byte intersection number plus 48 bytes of volume/detector values for detectors 1 to 24).
- A volume where all 11 bits are set (a value of 2047) signifies that the detector had a DA alarm.
- A five minute volume of 255 (the controller sends back volumes every 5 minutes in a single byte) would represent a BAD value (possibly an oscillating detector). Note that it would be unlikely the controller would count over 150 vehicles in one lane in 5 minutes as this would represent one vehicle every two seconds for the entire 5 minute period.

Notes

Notes

