

Βιομηχανική Ηλεκτρονική 5ου Εξαμήνου

Συστήματα Ηλεκτρικής Κίνησης ΣΡ

Στ. Παπαθανασίου Καθ. ΕΜΠ

Μηχανή συνεχούς ρεύματος

Σχηματική απεικόνιση

Λειτουργία στοιχειώδους συλλέκτη

Θέση 1

Μηχανή συνεχούς ρεύματος

Τυλίγματα πεδίου και τυμπάνου

Κατασκευαστική διαμόρφωση

©		KATA	ΣK	EYA	ΣΤΗ	Σ	
HP	10	RPM	11	80	VOLTS	500)
ARM A	MPS	17.0		WOUN	D SI	TUNT	
FLD AMPS 1		1.4/2.8		FLD OH	MS 25C	156	
INSUL	CLASS	DUTY	CO	NT	MAX AM	BIENT -	40° C
PWR SUP CODE	С			FLD VO	LTS	300/15	50
		=====					
TYPE	<u>E</u>	ENCL	DP		INSTR		
MOD				SER			
NP36A4	24835AP				MC	RECT CUR OTOR MADE IN U.S.	6

Συνδεσμολογίες διέγερσης των κινητήρων ΣΡ

Διέγερση σειράς

Ξένη διέγερση

Παράλληλη διέγερση

Σύνθετη διέγερση

Διέγερση μονίμων μαγνητών

Χαρακτηριστικές της μηχανής ΣΡ

Ισοδύναμο κύκλωμα

Χαρακτηριστικές ροπής-στροφών

Βασικές σχέσεις

$$\begin{array}{l} V_a = R_a I_a + E_a \approx E_a \\ E_a = k \omega I_f \end{array} \right\} \quad \omega = \frac{E_a}{k I_f} \approx \frac{V_a}{k I_f} \quad \text{ Tarabananase} \\ T = k I_a I_f \qquad \qquad I_f = \sigma \tau \alpha \theta. \end{array}$$

$$\omega = \frac{E_a}{kI_f} \approx \frac{V_a}{kI_f}$$

 $I_f = \sigma \tau \alpha \theta$.

 $T \sim I_a$

5

Αρχή ελέγχου ταχύτητας κινητήρα ΣΡ

Ροπή: $T_{\text{max}} = k\Phi I_{a,\text{max}} \xrightarrow{\Phi = \sigma \tau \alpha \theta} T_{\text{max}} = \sigma \tau \alpha \theta.$

Ισχύς: $P_{\text{max}} = T_{\text{max}} ω \xrightarrow{T_{\text{max}} = σταθ.} P_{\text{max}} ∼ ω$

Ροπή:
$$T_{\text{max}} = k\Phi I_{a,\text{max}} \xrightarrow{\Phi \sim 1/\omega} T_{\text{max}} \sim \frac{1}{\omega}$$

Ισχύς:
$$P_{\text{max}} = T_{\text{max}} \omega \xrightarrow{T_{\text{max}} \sim 1/\omega} P_{\text{max}} = \sigma \tau \alpha \theta.$$

Μετατροπείς ισχύος συστημάτων κίνησης ΣΡ

Μονοφασικοί μετατροπείς ΕΡ/ΣΡ

Έλεγχος της τάσης μέσω της γωνίας έναυσης α των θυρίστορ

Μετατροπείς ισχύος συστημάτων κίνησης ΣΡ

Τριφασικοί μετατροπείς ΕΡ/ΣΡ

Έλεγχος της τάσης μέσω της γωνίας έναυσης α των θυρίστορ

Μετατροπείς ισχύος συστημάτων κίνησης ΣΡ

Μετατροπέας ΣΡ/ΣΡ υποβιβασμού της τάσης

Μετατροπείς ΣΡ/ΣΡ

Έλεγχος της τάσης μέσω του duty cycle του μετατροπέα

Μετατροπέας ΣΡ/ΣΡ ανύψωσης της τάσης v_s v_a v_a

Μετατροπέας ΣΡ/ΣΡ δύο τεταρτημορίων

3Φ ελεγχόμενη ανόρθωση πλήρους γέφυρας

Μέση τιμή της τάσης εξόδου συναρτήσει της γωνίας έναυσης α

Μέση τιμή τάσης εξόδου:
$$V_d \cong \frac{3\sqrt{2}}{\pi} V_{LL}^{\mathit{rms}} \cos a = 1.35 V_{LL}^{\mathit{rms}} \cos a$$

Μετατροπέας ΣΡ/ΣΡ (chopper)

Ενδεικτική κυματομορφή τάσης εξόδου

Σχέση εισόδου και εξόδου (μέσες τιμές)

$$\begin{split} V_L = & \frac{T_{on}}{T_{on} + T_{off}} V_s = \gamma V_s \\ \gamma = & \frac{T_{on}}{T_{on} + T_{off}} \quad \text{duty cycle} \end{split}$$

Μετατροπέας ΣΡ/ΣΡ υποβιβασμού της τάσης

Διακοπτόμενη αγωγή

Μέση τιμή τάσης εξόδου:

$$V_L = \gamma V_s$$

για συνεχή αγωγή

$$V_L = \gamma V_s + \left(1 - rac{X}{2\pi}
ight)\!E_b$$
 για διακοπτόμενη αγωγή

Μέση τιμή

Ημι-ελεγχόμενος μονοφασικός μετατροπέας γέφυρας ΕΡ/ΣΡ

Μέση τιμή τάσης εξόδου:
$$V_a = \frac{E_m}{\pi} \big(1 + \cos \alpha \big)$$

Μέση τιμή
$$\label{eq:Ia} \text{ρεύματος εξόδου:} \qquad I_a = \frac{V_a - E_b}{R_a}$$

Ελεγχόμενος μονοφασικός μετατροπέας γέφυρας ΕΡ/ΣΡ

Διακοπτόμενη αγωγή

$$V_a = \frac{2E_m}{\pi} \cos \alpha$$

$$V_a = \frac{E_m}{\pi} \left(\cos \alpha - \cos X \right) + \frac{E_b}{\pi} \left(\pi + \alpha - X \right)$$

Μέση τιμή ρεύματος εξόδου:

$$I_a = \frac{V_a - E_b}{R_a}$$

Ελεγχόμενος τριφασικός μετατροπέας γέφυρας ΕΡ/ΣΡ

Μέση τιμή τάσης εξόδου:

$$V_a = \frac{3\sqrt{3}E_m}{\pi}\cos\alpha$$

Μέση τιμή ρεύματος εξόδου:

$$I_a = \frac{V_a - E_b}{R_a}$$

Ελεγχόμενος τριφασικός μετατροπέας γέφυρας ΕΡ/ΣΡ

Διακοπτόμενη αγωγή

Αντιστροφή φοράς περιστροφής

Αντιστροφή πολικότητας τάσης τυμπάνου

ή

Αντιστροφή πολικότητας τάσης πεδίου

Υλοποίηση αντιστροφής πολικότητας της τάσης του τυλίγματος διέγερσης

Κανονική φορά περιστροφής

Αντίθετη φορά περιστροφής

Πέδηση συστημάτων κίνησης ΣΡ

Τα 4 τεταρτημόρια της κίνησης

Βασικές μέθοδοι

- Φυσική πέδηση (ροπή φορτίου, τριβές)
- Δυναμική πέδηση
- Αναγεννητική πέδηση

Πέδηση συστημάτων κίνησης ΣΡ

Αναγεννητική πέδηση

