

UNSUPERVISED LEARNING IN PYTHON

Non-negative matrix factorization (NMF)

Non-negative matrix factorization

- NMF = "non-negative matrix factorization"
- Dimension reduction technique
- NMF models are interpretable (unlike PCA)
- Easy to interpret means easy to explain!
- However, all sample features must be non-negative (>= 0)

Interpretable parts

NMF expresses documents as combinations of topics (or "themes")

DataCamp

DataCamp is the first and foremost leader in Data Science Education offering skill-based training, pioneering technical innovation

≈ 0.6 *

python
r
program
function
method
...

data
analysis
cluster
statistics
mean
...

+ 0.7 *

learn teaching lesson lessons course

Interpretable parts

NMF expresses images as combinations of patterns

Using scikit-learn NMF

- Follows fit() / transform() pattern
- Must specify number of components e.g. NMF(n_components=2)
- Works with NumPy arrays and with csr_matrix

Example word-frequency array

- Word frequency array, 4 words, many documents
- Measure presence of words in each document using "tf-idf"
- "tf" = frequency of word in document
- "idf" reduces influence of frequent words

```
document0
document1
...
```

```
0.2, 0.3, 0.0, 0.1 0.0, 0.1 ...
```


Example usage of NMF

samples is the word-frequency array

```
In [1]: from sklearn.decomposition import NMF
In [2]: model = NMF(n_components=2)
In [3]: model.fit(samples)
Out[3]: NMF(alpha=0.0, ...)
In [4]: nmf_features = model.transform(samples)
```


NMF components

- NMF has components
- i.i. just like PCA has principal components
- Dimension of components = dimension of samples
- Entries are non-negative

NMF features

- NMF feature values are non-negative
- Can be used to reconstruct the samples
- ... combine feature values with components

Reconstruction of a sample

```
In [7]: print(samples[i,:])
[ 0.12  0.18  0.32  0.14]
In [8]: print(nmf_features[i,:])
[ 0.15  0.12]
```

```
0.15 * + 0.12 *
```

[0.1203 0.1764 0.3195 0.141]

reconstruction of sample

Sample reconstruction

- Multiply components by feature values, and add up
- Can also be expressed as a product of matrices
- This is the "Matrix Factorization" in "NMF"

NMF fits to non-negative data, only

- Word frequencies in each document
- Images encoded as arrays
- Audio spectrograms
- Purchase histories on e-commerce sites
- ... and many more!

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

NMF learns interpretable parts

Example: NMF learns interpretable parts

- Word-frequency array articles (tf-idf)
- 20,000 scientific articles (rows)
- 800 words (columns)

article0
article1
. articles
.

Applying NMF to the articles

```
In [1]: print(articles.shape)
(20000, 800)
In [2]: from sklearn.decomposition import NMF
In [3]: nmf = NMF(n_components=10)
In [4]: nmf.fit(articles)
Out[4]: NMF(alpha=0.0, ...)
In [5]: print(nmf.components_.shape)
(10, 800)
```


NMF components are topics

NMF components are topics

NMF components

- For documents:
 - NMF components represent topics
 - NMF features combine topics into documents
- For images, NMF components are parts of images

Grayscale images

- "Grayscale" image = no colors, only shades of gray
- Measure pixel brightness
- Represent with value between 0 and 1 (o is black)
- Convert to 2D array

Grayscale image example

An 8x8 grayscale image of the moon, written as an array

Grayscale images as flat arrays

- Enumerate the entries
- Row-by-row
- From left to right

```
[[ 0. 1. 0.5]
[ 1. 0. 1. ]]
```


Encoding a collection of images

- Collection of images of the same size
- Encode as 2D array
- Each row corresponds to an image
- Each column corresponds to a pixel
- ... can apply NMF!

Visualizing samples

```
In [1]: print(sample)
[ 0. 1. 0.5 1. 0. 1. ]
In [2]: bitmap = sample.reshape((2, 3))
In [3]: print(bitmap)
[[0. 1. 0.5]
 [ 1. 0. 1. ]]
In [4]: from matplotlib import pyplot as plt
In [5]: plt.imshow(bitmap, cmap='gray', interpolation='nearest')
  [6]: plt.show()
```


UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Building recommender systems using NMF

Finding similar articles

- Engineer at a large online newspaper
- Task: recommend articles similar to article being read by customer
- Similar articles should have similar topics

Strategy

- Apply NMF to the word-frequency array
- NMF feature values describe the topics
- ... so similar documents have similar NMF feature values
- Compare NMF feature values?

Apply NMF to the word-frequency array

articles is a word frequency array

```
In [1]: from sklearn.decomposition import NMF
In [2]: nmf = NMF(n_components=6)
In [3]: nmf_features = nmf.fit_transform(articles)
```


Strategy

- Apply NMF to the word-frequency array
- NMF feature values describe the topics
- ... so similar documents have similar NMF feature values
- Compare NMF feature values?

Versions of articles

- Different versions of the same document have same topic proportions
- ... exact feature values may be different!
- E.g. because one version uses many meaningless words
- But all versions lie on the same line through the origin

strong version

Dog bites man! Attack by terrible canine leaves man paralyzed...

weak version

You may have heard, unfortunately it seems that a dog has perhaps bitten a man ...

topic: pets

Cosine similarity

- Uses the angle between the lines
- Higher values means more similar
- Maximum value is 1, when angle is o°

Calculating the cosine similarities

DataFrames and labels

- Label similarities with the article titles, using a DataFrame
- Titles given as a list: titles

```
In [9]: import pandas as pd
In [10]: norm_features = normalize(nmf_features)
In [11]: df = pd.DataFrame(norm_features, index=titles)
In [12]: current_article = df.loc['Dog bites man']
In [13]: similarities = df.dot(current_article)
```


DataFrames and labels

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Building recommender systems using NMF

Finding similar articles

- Engineer at a large online newspaper
- Task: recommend articles similar to article being read by customer
- Similar articles should have similar topics

Strategy

- Apply NMF to the word-frequency array
- NMF feature values describe the topics
- ... so similar documents have similar NMF feature values
- Compare NMF feature values?

Apply NMF to the word-frequency array

articles is a word frequency array

```
In [1]: from sklearn.decomposition import NMF
In [2]: nmf = NMF(n_components=6)
In [3]: nmf_features = nmf.fit_transform(articles)
```


Strategy

- Apply NMF to the word-frequency array
- NMF feature values describe the topics
- ... so similar documents have similar NMF feature values
- Compare NMF feature values?

Versions of articles

- Different versions of the same document have same topic proportions
- ... exact feature values may be different!
- E.g. because one version uses many meaningless words
- But all versions lie on the same line through the origin

strong version

Dog bites man! Attack by terrible canine leaves man paralyzed...

weak version

You may have heard, unfortunately it seems that a dog has perhaps bitten a man ...

topic: pets

Cosine similarity

- Uses the angle between the lines
- Higher values means more similar
- Maximum value is 1, when angle is o°

Calculating the cosine similarities

DataFrames and labels

- Label similarities with the article titles, using a DataFrame
- Titles given as a list: titles

```
In [9]: import pandas as pd
In [10]: norm_features = normalize(nmf_features)
In [11]: df = pd.DataFrame(norm_features, index=titles)
In [12]: current_article = df.loc['Dog bites man']
In [13]: similarities = df.dot(current_article)
```


DataFrames and labels

UNSUPERVISED LEARNING IN PYTHON

Let's practice!