Chapter 10 Differential Equations

Functions of one variable: y, p, q, u, g, h, G, H, r, z

Arguments (independent variables): x, y

Functions of two variables: f(x,y), M(x,y), N(x,y)

First order derivative: y', u', \dot{y} , $\frac{dy}{dt}$, ...

Second order derivatives: y'', \ddot{y} , $\frac{d^2I}{dt^2}$, ...

Partial derivatives: $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial x^2}$, ...

Natural number: n

Particular solutions: y₁, y_p

Real numbers: k, t, C, C_1 , C_2 , p, q, α , β

Roots of the characteristic equations: λ_1 , λ_2

Time: t

Temperature: T, S

Population function: P(t)

Mass of an object: m Stiffness of a spring: k

Displacement of the mass from equilibrium: y

Amplitude of the displacement: A

Frequency: ω

Damping coefficient: y

Phase angle of the displacement: δ

Angular displacement: θ

Pendulum length: L

Acceleration of gravity: g

Current: I Resistance: R Inductance: L Capacitance: C

10.1 First Order Ordinary Differential Equations

1164. Linear Equations

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x).$$

The general solution is

$$y = \frac{\int u(x)q(x)dx + C}{u(x)},$$

where

$$u(x) = \exp(\int p(x)dx).$$

1165. Separable Equations

$$\frac{dy}{dx} = f(x,y) = g(x)h(y)$$

The general solution is given by

$$\int \frac{dy}{h(y)} = \int g(x)dx + C,$$

or

$$H(y) = G(x) + C.$$

1166. Homogeneous Equations

The differential equation $\frac{dy}{dx} = f(x, y)$ is homogeneous, if the function f(x, y) is homogeneous, that is f(tx, ty) = f(x, y).

The substitution $z = \frac{y}{x}$ (then y = zx) leads to the separable equation

$$x\frac{dz}{dx}+z=f(1,z).$$

1167. Bernoulli Equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y^{n}.$$

The substitution $z = y^{1-n}$ leads to the linear equation

$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1-n)p(x)z = (1-n)q(x).$$

1168. Riccati Equation

$$\frac{dy}{dx} = p(x) + q(x)y + r(x)y^2$$

If a particular solution y_1 is known, then the general solution can be obtained with the help of substitution

$$z = \frac{1}{y - y_1}$$
, which leads to the first order linear equation

$$\frac{\mathrm{d}z}{\mathrm{d}x} = -[q(x) + 2y_1 r(x)]z - r(x).$$

1169. Exact and Nonexact Equations

The equation

$$M(x,y)dx + N(x,y)dy = 0$$

is called exact if

$$\frac{\partial \mathbf{M}}{\partial \mathbf{y}} = \frac{\partial \mathbf{N}}{\partial \mathbf{x}},$$

and nonexact otherwise.

The general solution is $\int M(x,y)dx + \int N(x,y)dy = C.$

1170. Radioactive Decay

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\mathbf{k}y$$
,

where y(t) is the amount of radioactive element at time t, k is the rate of decay.

The solution is

 $y(t) = y_0 e^{-kt}$, where $y_0 = y(0)$ is the initial amount.

1171. Newton's Law of Cooling

$$\frac{dT}{dt} = -k(T-S),$$

where T(t) is the temperature of an object at time t, S is the temperature of the surrounding environment, k is a positive constant.

The solution is

$$T(t) = S + (T_0 - S)e^{-kt}$$
,

where $T_0 = T(0)$ is the initial temperature of the object at time t = 0.

1172. Population Dynamics (Logistic Model)

$$\frac{\mathrm{dP}}{\mathrm{dt}} = \mathbf{kP} \left(1 - \frac{\mathbf{P}}{\mathbf{M}} \right),$$

where P(t) is population at time t, k is a positive constant, M is a limiting size for the population.

The solution of the differential equation is

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kt}}$$
, where $P_0 = P(0)$ is the initial popu-

lation at time t = 0.

10.2 Second Order Ordinary Differential Equations

1173. Homogeneous Linear Equations with Constant Coefficients y'' + py' + qy = 0.

The characteristic equation is

$$\lambda^2 + p\lambda + q = 0.$$

If λ_1 and λ_2 are distinct real roots of the characteristic equation, then the general solution is

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$
, where

C₁ and C₂ are integration constants.

If $\lambda_1 = \lambda_2 = -\frac{p}{2}$, then the general solution is

$$y = (C_1 + C_2 x)e^{-\frac{p}{2}x}$$
.

If λ_1 and λ_2 are complex numbers:

$$\lambda_{\scriptscriptstyle 1} = \alpha + \beta i$$
 , $\, \lambda_{\scriptscriptstyle 2} = \alpha - \beta i$, where

$$\alpha = -\frac{p}{2}$$
, $\beta = \frac{\sqrt{4q-p^2}}{2}$,

then the general solution is

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x).$$

1174. Inhomogeneous Linear Equations with Constant

Coefficients

$$y'' + py' + qy = f(x).$$

The general solution is given by

$$y = y_p + y_h$$
, where

 y_p is a particular solution of the inhomogeneous equation and y_h is the general solution of the associated homogeneous equation (see the previous topic 1173).

If the right side has the form

$$f(x) = e^{\alpha x} (P_1(x) \cos \beta x + P_1(x) \sin \beta x),$$

then the particular solution y_p is given by

$$y_p = x^k e^{\alpha x} (R_1(x) \cos \beta x + R_2(x) \sin \beta x),$$

where the polynomials $R_1(x)$ and $R_2(x)$ have to be found by using the method of undetermined coefficients.

- If $\alpha + \beta i$ is not a root of the characteristic equation, then the power k = 0,
- If $\alpha + \beta i$ is a simple root, then k = 1,
- If $\alpha + \beta i$ is a double root, then k = 2.

1175. Differential Equations with y Missing

$$y'' = f(x, y').$$

Set u = y'. Then the new equation satisfied by v is y' = f(x, y)

$$\mathbf{u}'=\mathbf{f}(\mathbf{x},\mathbf{u}),$$

which is a first order differential equation.

1176. Differential Equations with x Missing

$$y'' = f(y, y').$$

Set u = y'. Since

$$y'' = \frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} = u \frac{du}{dy}$$
,

we have

$$u\frac{du}{dy} = f(y,u),$$

which is a first order differential equation.

1177. Free Undamped Vibrations

The motion of a Mass on a Spring is described by the equation

$$m\ddot{y} + ky = 0,$$

where

m is the mass of the object,

k is the stiffness of the spring,

y is displacement of the mass from equilibrium.

The general solution is

$$y = A\cos(\omega_0 t - \delta),$$

where

A is the amplitude of the displacement,

 ω_0 is the fundamental frequency, the period is $T = \frac{2\pi}{\omega_0}$,

 δ is phase angle of the displacement.

This is an example of simple harmonic motion.

1178. Free Damped Vibrations

$$m\ddot{y} + \gamma \dot{y} + ky = 0$$
, where

γ is the damping coefficient.

There are 3 cases for the general solution:

Case
$$1.\gamma^2 > 4$$
km (overdamped)

$$y(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t},$$

where

$$\lambda_1 = \frac{-\gamma - \sqrt{\gamma^2 - 4km}}{2m}$$
, $\lambda_2 = \frac{-\gamma + \sqrt{\gamma^2 - 4km}}{2m}$.

Case 2. $\gamma^2 = 4$ km (critically damped)

$$y(t) = (A + Bt)e^{\lambda t}$$
,

where

$$\lambda = -\frac{\gamma}{2m}$$
.

Case 3. $\gamma^2 < 4$ km (underdamped)

$$y(t) = e^{-\frac{\gamma}{2m}t} A \cos(\omega t - \delta)$$
, where $\omega = \sqrt{4km - \gamma^2}$.

1179. Simple Pendulum

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0,$$

where θ is the angular displacement, L is the pendulum length, g is the acceleration of gravity.

The general solution for small angles θ is

$$\theta(t) = \theta_{max} \sin \sqrt{\frac{g}{L}} t$$
, the period is $T = 2\pi \sqrt{\frac{L}{g}}$.

1180. RLC Circuit

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = V'(t) = \omega E_0 \cos(\omega t),$$

where I is the current in an RLC circuit with an ac voltage source $V(t) = E_0 \sin(\omega t)$.

The general solution is

$$I(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \sin(\omega t - \phi),$$

where

$$r_{1,2} = \frac{-R \pm \sqrt{R^2 - \frac{4L}{C}}}{2L},$$

$$A = \frac{\omega E_0}{\sqrt{\left(L\omega^2 - \frac{1}{C}\right)^2 + R^2\omega^2}},$$

$$\varphi = \arctan\left(\frac{L\omega}{R} - \frac{1}{RC\omega}\right),$$

C₁, C₂ are constants depending on initial conditions.

10.3. Some Partial Differential Equations

1181. The Laplace Equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mathbf{0}$$

applies to potential energy function u(x,y) for a conservative force field in the xy-plane. Partial differential equations of this type are called elliptic.

1182. The Heat Equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \frac{\partial \mathbf{u}}{\partial \mathbf{t}}$$

applies to the temperature distribution u(x,y) in the xyplane when heat is allowed to flow from warm areas to cool ones. The equations of this type are called parabolic.

1183. The Wave Equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2}$$

applies to the displacement u(x,y) of vibrating membranes and other wave functions. The equations of this type are called hyperbolic.