

Universidade Federal do Amazonas INSTITUTO DE COMPUTAÇÃO

ICC041 - Introdução a Teoria dos Grafos, 2023/02 PGINF575 - Teoria dos Grafos, 2024/02

Profa. Rosiane de Freitas

Prova Parcial I

Obs: MARQUE a OPÇÃO CORRETA de cada questão nesta FOLHA DE PROVA.

1. (2,0) Considere o grafo abaixo. Qual das sequências de vértices não foi gerada por uma busca em largura?

- (a) $v_6, v_7, v_5, v_9, v_8, v_1, v_0, v_4, v_2, v_3$
- (b) $v_0, v_1, v_9, v_2, v_4, v_5, v_8, v_3, v_6, v_7$
- (c) $v_9, v_0, v_8, v_7, v_1, v_5, v_6, v_2, v_4, v_3$
- (d) Nenhuma das sequências.

Dê a sequência, iniciando no vértice v_0 (com escolhas considerando a ordem crescente de rotulação), resultante da aplicação do algoritmo de DFS:

2. (1,0) Considere o grafo abaixo. Qual das sequências de vértices é uma ordenação topológica?

- (a) 3,7,5,2,11,9,10,8
- (b) 7,3,5,11,8,10,9,2
- (c) 5,11,2,3,10,8,7,9
- (d) Nenhuma das sequências.

3. (2,0) Considere o grafo abaixo.

Marque a opção que indicam o custo da árvore obtida pelo algoritmo de Kruskal?

(a) 138 (b) 159 (c) 146 (d) 116

Qual é o subgrafo resultante? Cubra à caneta e defina-o.

- **4.** (1,0) Se a soma dos graus dos vértices de um grafo é igual a duas vezes o seu número de arestas, pode-se concluir que:
- (a) Em qualquer grafo, o número de vértices de grau ímpar é ímpar.
- (b) Em qualquer grafo, o número de vértices de grau ímpar é par.
- (c) Em qualquer grafo, o número de vértices de grau par é ímpar.
- (d) Em qualquer grafo, o número de vértices de grau par é par.
- **5.** (1,0) Seja $G(V_1 \cup V_2, E)$ um grafo bipartido qualquer, $v_1, \dots v_k$ um ciclo de comprimento k de G e $v_1 \in V_1$. Então $v_2 \in V_2, \ v_3 \in V_1, \ v_4 \in V_2$, e assim por diante. Como $(v_k, v_1) \in E$, logo:
- (a) $v_k \in V_1$. (b) $v_k \in V_2$. (c) $v_k \in V_1 \cup V_2$. (d) $v_k \in V_1 \cap V_2$. Desenhe o grafo e mostre o vértice v_k .
- **6.** (1,0) Qual das condições abaixo é suficiente para que um grafo com pelo menos três vértices seja hamiltoniano?
- (a) Cada vértice possui grau maior ou igual a |V|.
- (b) Cada vértice possui grau maior ou igual a |V| = 2.
- (c) O número de componentes conexas de G-S é menor ou igual a |S|, em que G é o grafo em questão e S é um subconjunto proprio de vértices de G.
- (d) Todos os vértices possuem o mesmo grau.
- 7. (1,0) Em qual dos grafos abaixo todos os vértices estão no centro? Desenhe o grafo e mostre o seu centro.
- (a) C_5 (b) P_4 (c) $K_{3,3}$ (d) $K_{2,3}$
- 8. (1,0) Quantos grafos simples conexos contendo exatamente quatro vértices não são isomorfos entre si? Desenhe os grafos resultantes.
- (a) 8 (b) 11 (c) 2 (d) 6
- 9. (1,0) Se G possui vértices $v_1, v_2, ..., v_n$, a sequência $(d(v_1), d(v_2), ..., d(v_n))$ é denominada sequência de graus de G.
- (a) Existe um multigrafo com a seguinte sequência de graus: 1, 1, 3, 3, 3, 3, 5, 6, 8, 9?
- (b) Existe um grafo simples com a sequência de graus do item anterior?
- (c) Existe um multigrafo com a seguinte sequência de graus: 3, 3, 3, 3, 5, 6, 6, 6, 6?
- (d) Demonstre que a sequência $(d_1, d_2, ... d_n)$ de inteiros não negativos é uma sequência de graus de algum multigrafo se e somente se $\sum_{i=1}^n d_i$ for par.
- 10. (2,0) Apresente a esquete de prova (esquema gráfico e frases/palavras-chave) de um dos teoremas dados nesta 1a parte do curso (e que não tenham sido cobrados nas questões anteriores). Resuma em um esquema gráfico abaixo tal prova (e descreva-a em folha anexa).