Arithmétique dans \mathbb{Z}

1 Divisibilité, division euclidienne

Exercice 1

Sachant que l'on a $96842 = 256 \times 375 + 842$, déterminer, sans faire la division, le reste de la division du nombre 96842 par chacun des nombres 256 et 375.

Indication ▼

Correction ▼

Vidéo

[000251]

Exercice 2

Montrer que $\forall n \in \mathbb{N}$:

n(n+1)(n+2)(n+3) est divisible par 24,

n(n+1)(n+2)(n+3)(n+4) est divisible par 120.

Correction ▼

Vidéo 📕

[000257]

Exercice 3

Montrer que si n est un entier naturel somme de deux carrés d'entiers alors le reste de la division euclidienne de n par 4 n'est jamais égal à 3.

Correction ▼

Vidéo 🔳

[000267]

Exercice 4

Démontrer que le nombre $7^n + 1$ est divisible par 8 si n est impair ; dans le cas n pair, donner le reste de sa division par 8.

Indication ▼

Correction ▼

Vidéo

[000254]

Exercice 5

Trouver le reste de la division par 13 du nombre 100^{1000} .

Indication ▼

Correction ▼

Vidéo 🔳

[000250]

Exercice 6

- 1. Montrer que le reste de la division euclidienne par 8 du carré de tout nombre impair est 1.
- 2. Montrer de même que tout nombre pair vérifie $x^2 = 0 \pmod{8}$ ou $x^2 = 4 \pmod{8}$.
- 3. Soient a, b, c trois entiers impairs. Déterminer le reste modulo 8 de $a^2 + b^2 + c^2$ et celui de 2(ab + bc + ca).
- 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab + bc + ca non plus.

Indication ▼

Correction ▼

Vidéo 📕

[000285]

2 pgcd, ppcm, algorithme d'Euclide

Exercice 7

Calculer le pgcd des nombres suivants :

- 1. 126, 230.
- 2. 390, 720, 450.
- 3. 180, 606, 750.

Correction ▼

Vidéo 📕

[000290]

Exercice 8

Déterminer les couples d'entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Correction ▼ [000292]

Exercice 9

Calculer par l'algorithme d'Euclide : pgcd(18480,9828). En déduire une écriture de 84 comme combinaison linéaire de 18480 et 9828. Correction ▼ Vidéo ■ [000296]

Exercice 10

Notons a = 1 111 111 111et b = 123 456 789.

- 1. Calculer le quotient et le reste de la division euclidienne de a par b.
- 2. Calculer $p = \operatorname{pgcd}(a,b)$.
- 3. Déterminer deux entiers relatifs u et v tels que au + bv = p.

Correction ▼ Vidéo ■ [000303]

Exercice 11

Résoudre dans \mathbb{Z} : 1665x + 1035y = 45.

Indication ▼ Correction ▼ Vidéo ■ [000305]

3 Nombres premiers, nombres premiers entre eux

Exercice 12

Combien 15! admet-il de diviseurs?

Indication ▼ Correction ▼ Vidéo ■ [000249]

Exercice 13

Démontrer que, si a et b sont des entiers premiers entre eux, il en est de même des entiers a+b et ab.

Indication ▼ Correction ▼ Vidéo ■ [000337]

Exercice 14

Soient a, b des entiers supérieurs ou égaux à 1. Montrer :

- 1. $(2^a-1)|(2^{ab}-1)$;
- 2. $2^p 1$ premier $\Rightarrow p$ premier ;
- 3. $\operatorname{pgcd}(2^a 1, 2^b 1) = 2^{\operatorname{pgcd}(a,b)} 1$.

Indication ▼ Correction ▼ [000336]

Exercice 15

Soit $a \in \mathbb{N}$ tel que $a^n + 1$ soit premier, montrer que $\exists k \in \mathbb{N}, n = 2^k$. Que penser de la conjecture : $\forall n \in \mathbb{N}, 2^{2^n} + 1$ est premier ? [000349]

Exercice 16

Soit *p* un nombre premier.

1. Montrer que $\forall i \in \mathbb{N}, 0 < i < p$ on a :

 C_p^i est divisible par p.

2. Montrer par récurence que :

 $\forall p$ premier, $\forall a \in \mathbb{N}^*$, on a $a^p - a$ est divisible par p.

Indication ▼ Correction ▼ [000339]

Exercice 17

1. Montrer par récurrence que $\forall n \in \mathbb{N}, \forall k \geqslant 1$ on a :

$$2^{2^{n+k}} - 1 = \left(2^{2^n} - 1\right) \times \prod_{i=0}^{k-1} (2^{2^{n+i}} + 1).$$

2. On pose $F_n = 2^{2^n} + 1$. Montrer que pour $m \neq n$, F_n et F_m sont premiers entre eux.

3. En déduire qu'il y a une infinité de nombres premiers.

Indication ▼ Correction ▼ [000341]

Exercice 18

Soit *X* l'ensemble des nombres premiers de la forme 4k + 3 avec $k \in \mathbb{N}$.

- 1. Montrer que *X* est non vide.
- 2. Montrer que le produit de nombres de la forme 4k + 1 est encore de cette forme.
- 3. On suppose que X est fini et on l'écrit alors $X = \{p_1, \dots, p_n\}$. Soit $a = 4p_1p_2 \dots p_n - 1$. Montrer par l'absurde que a admet un diviseur premier de la forme 4k + 3.
- 4. Montrer que ceci est impossible et donc que *X* est infini.

Correction ▼ [000348]

Indication pour l'exercice 1 ▲

Attention le reste d'une division euclidienne est plus petit que le quotient!

Indication pour l'exercice 4 A

Utiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo 8. Ici vous pouvez commencer par calculer $7^n \pmod{8}$.

Indication pour l'exercice 5

Il faut travailler modulo 13, tout d'abord réduire 100 modulo 13. Se souvenir que si $a \equiv b \pmod{13}$ alors $a^k \equiv b^k \pmod{13}$. Enfin calculer ce que cela donne pour les exposants $k = 1, 2, 3, \ldots$ en essayant de trouver une règle générale.

Indication pour l'exercice 6 ▲

- 1. Écrire n = 2p + 1.
- 2. Écrire n = 2p et discuter selon que p est pair ou impair.
- 3. Utiliser la première question.
- 4. Par l'absurde supposer que cela s'écrive comme un carré, par exemple $a^2 + b^2 + c^2 = n^2$ puis discuter selon que n est pair ou impair.

Indication pour l'exercice 11 ▲

Commencer par simplifier l'équation! Ensuite trouver une solution particulière (x_0, y_0) à l'aide de l'algorithme d'Euclide par exemple. Ensuite trouver un expression pour une solution générale.

Indication pour l'exercice 12 A

Il ne faut surtout pas chercher à calculer $15! = 1 \times 2 \times 3 \times 4 \times \cdots \times 15$, mais profiter du fait qu'il est déjà "presque" factorisé.

Indication pour l'exercice 13 ▲

Raisonner par l'absurde et utiliser le lemme de Gauss.

Indication pour l'exercice 14 ▲

Pour 1. utiliser l'égalité

$$x^{b} - 1 = (x - 1)(x^{b-1} + \dots + x + 1).$$

Pour 2. raisonner par contraposition et utiliser la question 1.

La question 3. est difficile! Supposer $a \ge b$. Commencer par montrer que $pgcd(2^a-1,2^b-1) = pgcd(2^a-2^b,2^b-1) = pgcd(2^{a-b}-1,2^b-1)$. Cela vour permettra de comparer l'agorithme d'Euclide pour le calcul de pgcd(a,b) avec l'algorithme d'Euclide pour le calcul de $pgcd(2^a-1,2^b-1)$.

Indication pour l'exercice 15

Raisonner par contraposition (ou par l'absurde) : supposer que n n'est pas de la forme 2^k , alors n admet un facteur irréductible p > 2. Utiliser aussi $x^p + 1 = (x+1)(1-x+x^2-x^3+\ldots+x^{p-1})$ avec x bien choisi.

Indication pour l'exercice 16

1. Écrire

$$C_p^i = \frac{p(p-1)(p-2)\dots(p-(i+1))}{i!}$$

et utiliser le lemme de Gauss ou le lemme d'Euclide.

2. Raisonner avec les modulos, c'est-à-dire prouver $a^p \equiv a \pmod{p}$.

Indication pour l'exercice 17 ▲

- 1. Il faut être très soigneux : n est fixé une fois pour toute, la récurrence se fait sur $k \in \mathbb{N}$.
- 2. Utiliser la question précédente avec m = n + k.

chaussettes.			

Correction de l'exercice 1

La seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les divisions euclidiennes s'écrivent : $96842 = 256 \times 378 + 74$ et $96842 = 258 \times 375 + 92$.

Correction de l'exercice 2

Il suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un diviseur de 2, un diviseur de 3, un diviseur de 4 (tous distincts). Donc le produit de 4 nombres consécutifs est divisible par $2 \times 3 \times 4 = 24$.

Correction de l'exercice 3

Ecrire $n = p^2 + q^2$ et étudier le reste de la division euclidienne de n par 4 en distinguant les différents cas de parité de p et q.

Correction de l'exercice 4

Raisonnons modulo 8:

$$7 \equiv -1 \pmod{8}$$
.

Donc

$$7^n + 1 \equiv (-1)^n + 1 \pmod{8}$$
.

Le reste de la division euclidienne de $7^n + 1$ par 8 est donc $(-1)^n + 1$ donc Si n est impair alors $7^n + 1$ est divisible par 8. Et si n est pair $7^n + 1$ n'est pas divisible par 8.

Correction de l'exercice 5

II sagit de calculer 100^{1000} modulo 13. Tout d'abord $100 \equiv 9 \pmod{13}$ donc $100^{1000} \equiv 9^{1000} \pmod{13}$. Or $9^2 \equiv 81 \equiv 3 \pmod{13}$, $9^3 \equiv 9^2.9 \equiv 3.9 \equiv 1 \pmod{13}$, Or $9^4 \equiv 9^3.9 \equiv 9 \pmod{13}$, $9^5 \equiv 9^4.9 \equiv 9.9 \equiv 3 \pmod{13}$. Donc $100^{1000} \equiv 9^{1000} \equiv 9^{3.333+1} \equiv (9^3)^{333}.9 \equiv 1^{333}.9 \equiv 9 \pmod{13}$.

Correction de l'exercice 6 ▲

- 1. Soit *n* un nombre impair, alors il s'écrit n=2p+1 avec $p \in \mathbb{N}$. Maintenant $n^2=(2p+1)^2=4p^2+4p+1=4p(p+1)+1$. Donc $n^2\equiv 1 \pmod 8$.
- 2. Si n est pair alors il existe $p \in \mathbb{N}$ tel que n = 2p. Et $n^2 = 4p^2$. Si p est pair alors p^2 est pair et donc $n^2 = 4p^2$ est divisible par 8, donc $n^2 \equiv 0 \pmod{8}$. Si p est impair alors p^2 est impair et donc $n^2 = 4p^2$ est divisible par 4 mais pas par 8, donc $n^2 \equiv 4 \pmod{8}$.
- 3. Comme a est impair alors d'après la première question $a^2 \equiv 1 \pmod 8$, et de même $c^2 \equiv 1 \pmod 8$, $c^2 \equiv 1 \pmod 8$. Donc $a^2+b^2+c^2 \equiv 1+1+1 \equiv 3 \pmod 8$. Pour l'autre reste, écrivons a=2p+1 et b=2q+1, c=2r+1, alors 2ab=2(2p+1)(2q+1)=8pq+4(p+q)+2. Alors 2(ab+bc+ca)=8pq+8qr+8pr+8(p+q+r)+6, donc $2(ab+bc+ca)\equiv 6 \pmod 8$.
- 4. Montrons par l'absurde que le nombre $a^2+b^2+c^2$ n'est pas le carré d'un nombre entier. Supposons qu'il existe $n \in \mathbb{N}$ tel que $a^2+b^2+c^2=n^2$. Nous savons que $a^2+b^2+c^2\equiv 3 \pmod 8$. Si n est impair alors $n^2\equiv 1 \pmod 8$ et si n est pair alors $n^2\equiv 0 \pmod 8$ ou $n^2\equiv 4 \pmod 8$. Dans tous les cas n^2 n'est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l'hypothèse de départ est fausse donc $a^2+b^2+c^2$ n'est pas un carré. Le même type de raisonnement est valide pour 2(ab+bc+ca).

Pour ab+bc+ca l'argument est similaire : d'une part $2(ab+bc+ca) \equiv 6 \pmod{8}$ et d'autre part si, par l'absurde, on suppose $ab+bc+ca=n^2$ alors selon la parité de n nous avons $2(ab+bc+ca) \equiv 2n^2 \equiv 2 \pmod{8}$ ou à $0 \pmod{8}$. Dans les deux cas cela aboutit à une contradiction. Nous avons montrer que ab+bc+ca n'est pas un carré.

Correction de l'exercice 7 ▲

Il s'agit ici d'utiliser la décomposition des nombres en facteurs premiers.

- 1. $126 = 2.3^2.7$ et 230 = 2.5.23 donc le pgcd de 126 et 230 est 2.
- 2. 390 = 2.3.5.13, $720 = 2^4.3^2.5$, $450 = 2.3^2.5^2$ et donc le pgcd de ces trois nombres est 2.3.5 = 30.
- 3. pgcd(180,606,750) = 6.

Correction de l'exercice 8 ▲

Soient a, b deux entiers de pgcd 18 et de somme 360. Soit a', b' tel que a = 18a' et b = 18b'. Alors a' et b' sont premiers entre eux, et leur somme est 360/18 = 20.

Nous pouvons facilement énumérer tous les couples d'entiers naturels (a',b') $(a' \le b')$ qui vérifient cette condition, ce sont les couples :

Pour obtenir les couples (a,b) recherchés $(a \le b)$, il suffit de multiplier les couples précédents par 18 :

$$(18,342), (54,306), (126,234), (162,198).$$

Correction de l'exercice 9

- 1. pgcd(18480, 9828) = 84;
- 2. $25 \times 18480 + (-47) \times 9828 = 84$.

Correction de l'exercice 10 ▲

- 1. a = 9b + 10.
- 2. Calculons le pgcd par l'algorithme d'Euclide. a = 9b + 10, $b = 12345678 \times 10 + 9$, $10 = 1 \times 9 + 1$. Donc le pgcd vaut 1;
- 3. Nous reprenons les équations précédentes en partant de la fin : 1 = 10 9, puis nous remplaçons 9 grâce à la deuxième équation de l'algorithme d'Euclide : $1 = 10 (b 12345678 \times 10) = -b + 1234679 \times 10$. Maintenant nous remplaçons 10 grâce à la première équation : 1 = -b + 12345679(a 9b) = 12345679a 111111112b.

Correction de l'exercice 11 ▲

En divisant par 45 (qui est le pgcd de 1665, 1035, 45) nous obtenons l'équation équivalente :

$$37x + 23y = 1$$
 (*E*)

Comme le pgcd de 37 et 23 est 1, alors d'après le théorème de Bézout cette équation (E) a des solutions.

L'algorithme d'Euclide pour le calcul du pgcd de 37 et 23 fourni les coefficients de Bézout : $37 \times 5 + 23 \times (-8) = 1$. Une solution particulière de (E) est donc $(x_0, y_0) = (5, -8)$.

Nous allons maintenant trouver l'expression générale pour les solutions de l'équation (E). Soient (x,y) une solution de l'équation 37x + 23y = 1. Comme (x_0, y_0) est aussi solution, nous avons $37x_0 + 23y_0 = 1$. Faisons la différence de ces deux égalités pour obtenir $37(x - x_0) + 23(y - y_0) = 0$. Autrement dit

$$37(x - x_0) = -23(y - y_0) \quad (*)$$

On en déduit que $37|23(y-y_0)$, or pgcd(23,37)=1 donc par le lemme de Gauss, $37|(y-y_0)$. (C'est ici qu'il est important d'avoir divisé par 45 dès le début!) Cela nous permet d'écrire $y-y_0=37k$ pour un $k \in \mathbb{Z}$.

Repartant de l'égalité (*) : nous obtenons $37(x-x_0) = -23 \times 37 \times k$. Ce qui donne $x-x_0 = -23k$. Donc si (x,y) est solution de (E) alors elle est de la forme : $(x,y) = (x_0 - 23k, y_0 + 37k)$, avec $k \in \mathbb{Z}$.

Réciproquement pour chaque $k \in \mathbb{Z}$, si (x,y) est de cette forme alors c'est une solution de (E) (vérifiez-le!).

Conclusion: les solutions sont

$$\{(5-23k, -8+37k) \mid k \in \mathbb{Z}\}.$$

Correction de l'exercice 12 A

Écrivons la décomposition de 15! = 1.2.3.4...15 en facteurs premiers. $15! = 2^{11}.3^6.5^3.7^2.11.13$. Un diviseur de 15! s'écrit $d = 2^{\alpha}.3^{\beta}.5^{\gamma}.7^{\delta}.11^{\epsilon}.13^{\eta}$ avec $0 \le \alpha \le 11$, $0 \le \beta \le 6$, $0 \le \gamma \le 3$, $0 \le \delta \le 2$, $0 \le \epsilon \le 1$, $0 \le \eta \le 1$. De plus tout nombre d de cette forme est un diviseur de 15!. Le nombre de diviseurs est donc (11+1)(6+1)(3+1)(2+1)(1+1)(1+1) = 4032.

Correction de l'exercice 13 A

Soit a et b des entiers premiers entre eux. Raisonnons par l'absurde et supposons que ab et a+b ne sont pas premiers entre eux. Il existe alors un nombre premier divisant ab et a+b. Par le lemme d'Euclide comme p|ab alors p|a ou p|b. Par exemple supposons que p|a. Comme p|a+b alors p divise aussi (a+b)-a, donc p|b. δ ne divise pas b cela implique que δ et b sont premiers entre eux. D'après le lemme de Gauss, comme δ divise ab et δ premier avec b alors δ divise a. Donc b est un facteur premier de b et b ce qui est absurde.

Correction de l'exercice 14

1. Nous savons que

$$x^{b} - 1 = (x - 1)(x^{b-1} + \dots + x + 1),$$

pour $x = 2^a$ nous obtenons :

$$2^{ab} - 1 = (2^a)^b - 1 = (2^a - 1)(2^{a(b-1)} + \dots + 2^a + 1).$$

Donc $(2^a - 1)|(2^{ab} - 1)$.

- 2. Montrons la contraposée. Supposons que p ne soit pas premier. Donc p = ab avec 1 < p, q < a. Par la question précédente $2^a 1$ divise $2^p 1$ (et $1 < 2^a 1 < 2^p 1$). Donc $2^p 1$ n'est pas un nombre premier.
- 3. Nous supposons $a \ge b$. Nous allons montrer que faire l'algorithme d'Euclide pour le couple $(2^a-1,2^b-1)$ revient à faire l'algorithme d'Euclide pour (a,b). Tout d'abord rappellons la formule qui est à la base de l'algorithme d'Euclide : $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(a-b,b)$. Appliqué à 2^a-1 et 2^b-1 cela donne directement $\operatorname{pgcd}(2^a-1,2^b-1) = \operatorname{pgcd}(2^a-2^b,2^b-1)$. Mais $2^a-2^b=2^b(2^{a-b}-1)$ d'où $\operatorname{pgcd}(2^a-1,2^b-1) = \operatorname{pgcd}(2^b(2^{a-b}-1),2^b-1) = \operatorname{pgcd}(2^{a-b}-1,2^b-1)$. La dernière égalité vient du fait 2^b et 2^b-1 sont premiers entre eux (deux entiers consécutifs sont toujours premiers entre eux).

Nous avons montrer: $\operatorname{pgcd}(2^a-1,2^b-1)=\operatorname{pgcd}(2^{a-b}-1,2^b-1)$. Cette formule est à mettre en parallèle de $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(a-b,b)$. En itérant cette formule nous obtenons que si a=bq+r alors: $\operatorname{pgcd}(2^a-1,2^b-1)=\operatorname{pgcd}(2^{a-bq}-1,2^b-1)=\operatorname{pgcd}(2^a-1,2^b-1)$ à comparer avec $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(a-bq,b)=\operatorname{pgcd}(r,b)$. Nous avons notre première étape de l'algorithme d'Euclide. En itérant l'algorithme d'Euclide pour (a,b), nous nous arêtons au dernier reste non nul: $\operatorname{pgcd}(a,b)=\operatorname{pgcd}(b,r)=\cdots=\operatorname{pgcd}(r_n,0)=r_n$. Ce qui va donner pour nous $\operatorname{pgcd}(2^a-1,2^b-1)=\operatorname{pgcd}(2^b-1,2^r-1)=\cdots=\operatorname{pgcd}(2^{r_n}-1,2^0-1)=2^{r_n}-1$.

Bilan: $pgcd(2^a - 1, 2^b - 1) = 2^{pgcd(a,b)} - 1.$

Correction de l'exercice 15

1. Supposons que $a^n + 1$ est premier. Nous allons montrer la contraposée. Supposons que n n'est pas de la forme 2^k , c'est-à-dire que $n = p \times q$ avec p un nombre premier > 2 et $q \in \mathbb{N}$. Nous utilisons la formule

$$x^{p} + 1 = (x+1)(1-x+x^{2}-x^{3}+...+x^{p-1})$$

avec $x = a^q$:

$$a^{n} + 1 = a^{pq} + 1 = (a^{q})^{p} + 1 = (a^{q} + 1)(1 - a^{q} + (a^{q})^{2} + \dots + (a^{q})^{p-1}).$$

Donc $a^q + 1$ divise $a^n + 1$ et comme $1 < a^q + 1 < a^n + 1$ alors $a^n + 1$ n'est pas premier. Par contraposition si $a^n + 1$ est premier alor $n = 2^k$.

2. Cette conjecture est fausse, mais pas facile à vérifier sans une bonne calculette! En effet pour n = 5 nous obtenons:

$$2^{2^5} + 1 = 4294967297 = 641 \times 6700417.$$

Correction de l'exercice 16 ▲

1. Étant donné 0 < i < p, nous avons

$$C_p^i = \frac{p!}{i!(p-i)!} = \frac{p(p-1)(p-2)\dots(p-(i+1))}{i!}$$

Comme C_p^i est un entier alors i! divise $p(p-1)\dots(p-(i+1))$. Mais i! et p sont premiers entre eux (en utilisant l'hypothèse 0 < i < p). Donc d'après le théorème de Gauss : i! divise $(p-1)\dots(p-(i+1))$, autrement dit il existe $k \in \mathbb{Z}$ tel que $ki! = (p-1)\dots(p-(i+1))$. Maintenant nous avons $C_p^i = pk$ donc p divise C_p^i .

2. Il s'agit de montrer le petit théorème de Fermat : pour p premier et $a \in \mathbb{N}^*$, alors $a^p \equiv a \pmod{p}$. Fixons p. Soit l'assertion

$$(\mathscr{H}_a)$$
 $a^p \equiv a \pmod{p}$.

Pour a=1 cette assertion est vraie! Étant donné $a \ge 1$ supposons que \mathcal{H}_a soit vraie. Alors

$$(a+1)^p = \sum_{i=0}^p C_p^i a^i.$$

Mais d'après la question précédente pour 0 < i < p, p divise C_p^i . En termes de modulo nous obtenons :

$$(a+1)^p \equiv C_p^0 a^0 + C_p^p a^p \equiv 1 + a^p \pmod{p}.$$

Par l'hypothèse de récurrence nous savons que $a^p \equiv a \pmod{p}$, donc

$$(a+1)^p \equiv a+1 \pmod{p}$$
.

Nous venons de prouver que \mathcal{H}_{a+1} est vraie. Par le principe de récurrence alors quelque soit $a \in \mathbb{N}^*$ nous avons :

$$a^p \equiv a \pmod{p}$$
.

Correction de l'exercice 17 ▲

1. Fixons n et montrons la récurrence sur $k \in \mathbb{N}$. La formule est vraie pour k = 0. Supposons la formule vraie au rang k. Alors

$$\begin{split} (2^{2^n}-1) \times \prod_{i=0}^k (2^{2^{n+i}}+1) &= (2^{2^n}-1) \times \prod_{i=0}^{k-1} (2^{2^{n+i}}+1) \times (2^{2^{n+k}}+1) \\ &= (2^{2^{n+k}}-1) \times (2^{2^{n+k}}+1) = (2^{2^{n+k}})^2 - 1 = 2^{2^{n+k+1}} - 1. \end{split}$$

Nous avons utiliser l'hypothèse de récurrence dans ces égalités. Nous avons ainsi montrer la formule au rang k + 1. Et donc par le principe de récurrence elle est vraie.

2. Écrivons m = n + k, alors l'égalité précédente devient :

$$F_m + 2 = (2^{2^n} - 1) \times \prod_{i=n}^{m-1} F_i.$$

Soit encore:

$$F_n \times (2^{2^n} - 1) \times \prod_{i=n+1}^{m-1} F_i - F_m = 2.$$

Si d est un diviseur de F_n et F_m alors d divise 2 (ou alors on peut utiliser le théorème de Bézout). En conséquent d=1 ou d=2. Mais F_n est impair donc d=1. Nous avons montrer que tous diviseurs de F_n et F_m est 1, cela signifie que F_n et F_m sont premiers entre eux.

3. Supposons qu'il y a un nombre fini de nombres premiers. Nous les notons alors $\{p_1, \ldots, p_N\}$. Prenons alors N+1 nombres de la famille F_i , par exemple $\{F_1, \ldots, F_{N+1}\}$. Chaque F_i , $i=1,\ldots,N+1$ est divisible par (au moins) un facteur premier p_j , $j=1,\ldots,N$. Nous avons N+1 nombres F_i et seulement N facteurs premiers p_j . Donc par le principe des tiroirs il existe deux nombres distincts F_k et $F_{k'}$ (avec $1 \le k, k' \le N+1$) qui ont un facteur premier en commun. En conséquent F_k et $F_{k'}$ ne sont pas premiers entre eux. Ce qui contredit la question précédente. Il existe donc une infinité de nombres premiers.

Correction de l'exercice 18 ▲

- 1. *X* est non vide car, par exemple pour k = 2, 4k + 3 = 11 est premier.
- 2. $(4k+1)(4\ell+1) = 16k\ell + 4(k+\ell) + 1 = 4(4k\ell+k+\ell) + 1$. Si l'on note l'entier $k' = 4k\ell + k + \ell$ alors $(4k+1)(4\ell+1) = 4k' + 1$, ce qui est bien de la forme voulue.
- 3. Remarquons que 2 est le seul nombre premier pair, les autres sont de la forme 4k + 1 ou 4k + 3. Ici a n'est pas divisible par 2, supposons −par l'absurde− que a n'a pas de diviseur de la forme 4k + 3, alors tous les diviseurs de a sont de la forme 4k + 1. C'est-à-dire que a s'écrit comme produit de nombre de la forme 4k + 1, et par la question précédente a peut s'écrire a = 4k' + 1. Donc a ≡ 1 (mod 4). Mais comme a = 4p₁p₂...p_n − 1, a ≡ −1 ≡ 3 (mod 4). Nous obtenons une contradiction. Donc a admet une diviseur premier p de la forme p = 4ℓ + 3.
- 4. Dans l'ensemble $X = \{p_1, \dots, p_n\}$ il y a tous les nombres premiers de la formes 4k + 3. Le nombre p est premier et s'écrit $p = 4\ell + 3$ donc p est un élément de X, donc il existe $i \in \{1, \dots, n\}$ tel que $p = p_i$. Raisonnons modulo $p = p_i : a \equiv 0 \pmod{p}$ car p divise a. D'autre part $a = 4p_1 \dots p_n 1$ donc $a \equiv -1 \pmod{p}$. (car p_i divise $p_1 \dots p_n$). Nous obtenons une contradiction, donc X est infini : il existe une infinité de nombre premier de la forme 4k + 3. Petite remarque, tous les nombres de la forme 4k + 3 ne sont pas des nombres premiers, par exemple pour k = 3, 4k + 3 = 15 n'est pas premier.