1

Probability&RV Assignment-10

Anuradha U-ee21resch01008

Download Latex code from

https://github.com/Anuradha-Uggi/Assignments-AI5002-Probability-and-Random-Variables/ blob/main/Prob ass10/rvsp 10.tex

Download Python code from

https://github.com/Anuradha-Uggi/Assignments-AI5002-Probability-and-Random-Variables/ blob/main/Prob ass10/rvsp 10.py

I. QUESTION(GATE-Q18)

A fair coin is tossed till a head appears for the first time.the probability that the number of required tosses is odd,is..

- 1) $\frac{1}{3}$
- 2) $\frac{1}{2}$
- 3) $\frac{2}{3}$
- 4) $\frac{3}{4}$

II. SOLUTION

Let X be the random variable represents odd number of tosses to get first Head. possibilities are

X	1	3	5	7
P(X)	$\frac{1}{2}$	$(\frac{1}{2})^3$	$(\frac{1}{2})^5$	$(\frac{1}{2})^7$

probability of odd tosses for first head can be computed as

$$P(X) = \frac{1}{2} + (\frac{1}{2})^3 + (\frac{1}{2})^5 + (\frac{1}{2})^7 + \dots$$
 (1)

we can observe that above series is a Geometric Series so the sum of infinite terms in Geometric Series can be computed as

$$Sum = \frac{FirstTerm}{1 - CommonRatio}$$
 (2)

from equation (2)

$$P(X) = \frac{0.5}{1 - 0.5^2} = \frac{2}{3} \tag{3}$$

similarly for even number of tosses getting first head can be computed as below

$$X = 2, 4, 6, \dots$$
 (4)

$$P(X) = (\frac{1}{2})^2 + (\frac{1}{2})^4 + (\frac{1}{2})^6 \dots$$
 (5)

$$P(X) = \frac{0.5^2}{1 - 0.5^2} = \frac{1}{3} \tag{6}$$

III. CONCLUSION

Correct Option is: 3