Parameter Estimation for the PABM

First, we note that the $\lambda^{(kl)}$ are only identifiable up to multiplicative constant. Instead, we aim to identify each block $P^{(kl)} = \lambda^{(kl)} (\lambda^{(lk)})^{\top}$.

Let
$$M^{(kl)} = \begin{bmatrix} 0 & P^{(kl)} \\ P^{(lk)} & 0 \end{bmatrix}$$
. We can consider $M^{(kl)}$ as the edge probability matrix of a GRDPG with latent configuration $X = \frac{1}{2} \begin{bmatrix} \lambda^{(kl)} & \lambda^{(kl)} \\ \lambda^{(lk)} & -\lambda^{(lk)} \end{bmatrix}$ and signature $(1,1)$.

Treating $M^{(kl)}$ as an edge probability matrix, draw $\hat{M}^{(kl)} \sim BernoulliGraph(M^{(kl)})$, and let \hat{X} be its ASE. Then $\hat{M}^{(kl)} = \begin{bmatrix} 0 & A^{(kl)} \\ A^{(lk)} & 0 \end{bmatrix}$ and $\|\hat{X}Q - X\|_{2\to\infty} = O_P(\frac{(\log n_{kl})^c}{\sqrt{n_{kl}}})$ where $n_{kl} = n_{lk} = n_k + n_l$.

Then we get
$$\|\hat{M}^{(kl)} - M^{(kl)}\| = \|(\hat{X}Q - X)I_{1,1}X^{\top} + XI_{1,1}(\hat{X}Q - X)^{\top} + (\hat{X}Q - X)I_{1,1}(\hat{X}Q - X)^{\top}\|$$

 $\leq 2\|\hat{X}Q - X\|\|I_{1,1}\|\|X\| + \|I_{1,1}\|\|\hat{X}Q - X\|^2$
 $= O(\frac{(\log n_{kl})^c}{\sqrt{n_{kl}}})$