Problem 1

- a. f is not one-to-one, both 1 and 3 map to 6
- b. f is not onto, f does not cover 10
- c. f is a correspondence
- d. g is one-to-one
- e. g is onto
- f. g is a correspondence

Problem 2

Proof.

Suppose \mathcal{B} is countable. Then there is a correspondence between the naturals, \mathbb{N} , and \mathcal{B} . We define a function, f(n), which maps each natural to an element in \mathcal{B} . It may look something like this:

n	f(n)
1	01000101
2	10011101
3	01111101
4	01010000
÷	:

now suppose we take the sequence $s \in \mathcal{B}$, which is constructed like so: $s_i = 0$ when $f(i)_i = 1$, and $s_i = 1$ when $f(i)_i = 0$. Essentially, the *i*'th position of *s* is always the opposite of a single bit in every f(n). Because $s \in \mathcal{B}$, but f cannot produce s, there is no bijection between \mathcal{B} and \mathbb{N} , so \mathcal{B} is not countable.

Problem 3

Proof.

Suppose T is decided by \mathcal{R} . We can construct TM \mathcal{Z} as follows:

$$\mathcal{Z}$$
, on input $\langle M, w \rangle$:

- 1. Create a TM \mathcal{Z}_0 as follows. On input x:
 - (a) Reject if x is not 10, or 01

1

CS 483 Section 01 Fall 2020 Assignment 5

Christopher K. Schmitt

- (b) Accept if x is 01
- (c) Run M on w, and accept if M accepts
- 2. Run \mathcal{R} on $\langle \mathcal{Z}_0 \rangle$
- 3. Accept if \mathcal{R} accepts, otherwise reject

We know that T in undecidable because $\mathcal Z$ decides A_{TM} (which is not decidable).