

Exercice 1

1) Compléter les égalités de congruences suivantes avec les plus petits entiers naturels possible :

a)
$$7541 \equiv _1 [2]$$

b)
$$1753 \equiv _3[10]$$

c)
$$152 \equiv _5 = [7]$$

2) Montrer que $15^5 - 27^5$ est un multiple de 12.

$$15^5 - 27^5 \equiv 3^5 - 3^5 \equiv 0$$
 [12] donc $15^5 - 27^5$ est un multiple de 12.

3) Montrer que $8^8 - 6^8$ est un multiple de 7.

$$8^8 - 6^8 \equiv 1^8 - (-1)^8 \equiv 1^8 - 1^8 \equiv 0$$
 [7] donc $8^8 - 6^8$ est un multiple de 7.

- 4) Déterminer le reste de la division euclidienne par 11 de :
- a) 12

$$12 = 1 \times 11 + 1$$
 donc le reste est 1.

b) 78

$$78 = 11 \times 7 + 1$$
 donc le reste est 1.

c) 12^{15}

$$12^{15} \equiv 1^{15} \equiv 1$$
 [11] donc le reste est 1.

d) 7815

$$78^{15} \equiv 1^{15} \equiv 1 \, [11] \, donc \, le \, reste \, est \, 1.$$

5) Quel est le reste de la division euclidienne de 57383¹¹⁴ par 19 ?

$$57383^{114} \equiv 3^{114} \equiv 3^{18 \times 6 + 6} \equiv (3^{18})^6 \times 3^6 \equiv 1^6 \times 729 \equiv 7 [19]$$

Exercice 2

En informatique, le connecteur logique « xor », appelé « ou exclusif » est très utile. Le « xor » est défini par la table de vérité suivante :

P	Q	P xor Q
0	0	0
0	1	1
1	0	1
1	1	0

Par exemple les deux premières lignes signifient que 0 xor 0 = 0 et que 0 xor 1 = 1.

1. Compléter la table de vérité ci-dessous :

P	Q	P xor Q	(P xor Q) xor Q	
0	0	0	0	
0	1	1	0	
1	0	1	1	
1	1	0	1	

2. Parmi les quatre propositions P, Q, (P xor Q) et ((P xor Q)xor Q), deux sont équivalentes. Déterminer lesquelles en expliquant la réponse.

$$((P xor Q)xor Q) \Leftrightarrow P$$

Exercice 3

L'implication et sa contraposée

1) Grâce à une table de vérité, montrer que $(P \Longrightarrow Q) \Longleftrightarrow (\bar{Q} \Longrightarrow \bar{P})$.

Р	Q	$P \Longrightarrow Q$	$ar{Q}$	$ar{P}$	$\bar{Q} \Longrightarrow \bar{P}$	$(P \Longrightarrow Q) \Longleftrightarrow (\bar{Q} \Longrightarrow \bar{P})$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	1	0	0	1	1

- 2) Appliquer le résultat pour écrire des propositions équivalentes aux propositions suivantes :
- a) "Si la télévision est allumée, alors quelqu'un la regarde".

Si quelqu'un ne regarde pas la télévision alors le télévision n'est pas allumée.

b)
$$(x > 1) \Longrightarrow (x^2 > 1)$$
.

$$(x^2 \le 1) \Longrightarrow (x \le 1)$$

Exercice 4

Donner la traduction en français des propositions suivantes :

On rappelle que $\mathbb R$ est l'ensemble des nombres réels et que $\mathbb N$ représente l'ensemble des entiers naturels. $\mathbb N=\{0\;;1\;;2\;;3\;;\dots\dots\}$

1) A : «
$$\exists x \in \mathbb{R}, 2x = 5$$
 »

Il existe x reel tel que 2x = 5.

2) B : «
$$\forall x \in \mathbb{N}, x \ge 0$$
 »

Pour tout x entier naturel, on a $x \ge 0$.

3) Donner les négations (en écriture symbolique) des propositions A et B, notées respectivement \bar{A} et \bar{B} .

$$\bar{A}: \forall x \in \mathbb{R}, 2x \neq 5$$

$$\bar{B}: \exists x \in \mathbb{N}, x < 0$$

