

Perceptron

Gradient descent

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

Brain

- Neuron
- Complex connectome
 - -10^{40} neurons
 - -10^{4-5} connections per neuron
- Neuroplasticity
 - learning and memory

Perceptron (1957)

Simulates a biological neuron

McCulloch-Pitts

if
$$net \ge 0$$
 if $net < 0$

Perceptron

- Perceptron goal: correctly classify an observation $\mathbf{x} = \{x_1, x_2, \dots x_m\}$ into one of the classes c_1 and c_2
 - the output for class c_1 is t=1 and for c_2 is t=-1 (hereafter we use t and z interchangeably)
 - example for m=2

$$o = f(\mathbf{x}) = sign\left(\sum_{j=0}^{m} w_j x_j\right)$$

with
$$\sum_{j=0}^{m} w_j x_j = \langle \mathbf{x} | \mathbf{w} \rangle = \mathbf{x}^T \mathbf{w} = \mathbf{w}^T \mathbf{x} = \langle \mathbf{w} | \mathbf{x} \rangle$$

where $x_0 = 1$ (bias)

Linearly separable patterns

$$\sum_{j=0}^{m} w_j x_j > 0, \qquad \text{for } c_1$$

$$\sum_{j=0}^{m} w_j x_j \le 0, \quad \text{for } c_2$$

Linearly separable patterns

(a) data points separated by (change in sign $(-1 + x_1 + x_2)$)

(b) without activation, the hyperplane the line $-1 + x_1 + x_2 = 0$ $-1 + x_1 + x_2 = net$ also separates the input observations

Frank Rosenblatt (1928-1971)

- Rosenblatt's bitter rival and professional nemesis was
 Marvin Minsky of Carnegie Mellon University
- Minsky despised Rosenblatt, hated the concept of the perceptron, and wrote several polemics against him
- For years Minsky crusaded against Rosenblatt on a very nasty and personal level, denouncing him as a charlatan, hoping to cut all funding for his research in neural nets

Perceptron learning rule

- Consider linearly separable problems
- How to find appropriate weights?
 - supervised learning: assess network against correct answers
 - look if the output o (+1,-1) belongs to the expected target t
 - -(t-o) plays the role of the error signal
 - perceptron learning rule

$$\mathbf{w}^{new} = \mathbf{w}^{old} + \Delta \mathbf{w}$$

$$\Delta \mathbf{w} = \eta \cdot (t - o) \cdot \mathbf{x}$$

- $-\eta$ is called the learning rate
- $-0<\eta\leq 1$

Perceptron learning rule

- Rosenblatt's perceptron algorithm
 - Initialize all weights w_i with random values
 - − initialize $\eta \in]0,1]$, iterations = 0 and max_iterations
 - Until there is no change in weights or iterations > max_iterations
 - choose a observation \mathbf{x}_i out of training data
 - compute $o_i = sign\left(\sum_{j=0}^m w_j x_{ij}\right)$
 - compute $\Delta w_j = \eta \cdot (t_i o_i) \cdot x_{ij}$
 - update the weights $w_i = w_i + \Delta w_i$
 - iterations++

Perceptron learning

- The algorithm converges to the correct classification
 - if the training data is linearly separable
 - $-\eta$ is sufficiently small

- When assigning a value to η we must keep in mind two conflicting requirements:
 - averaging past inputs to provide stable weights estimates, which requires small η
 - fast adaptation with respect to real changes in the underlying distribution of the process responsible for the generation of the input vector \mathbf{x} , which requires large η

Perceptron limitations

- The **XOR** problem!
 - shown by Minsky and Papert, 1960

Linearly separable?

- What about **convergence** of Rosenblatt algorithm?
 - all updates with same strength, $\eta \cdot (t_i o_i)$, irrespectively of how close or far wrongly classified observations are from the hyperplane **slow** and **unstable**!

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

Gradient

- To understand how can we improve the perceptron learning (fast convergence to good weights), we first need to introduce a new concept...
- Consider a continuously differentiable function $f(\mathbf{x})$

$$f: \mathbb{R}^D \to \mathbb{R}: f(\mathbf{x}) = \mathbf{z}$$

- mapping the observation x into a real value
- The **gradient** operator for \mathbf{x} in $f(\mathbf{x})$ is

$$\nabla = \left[\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \cdots, \frac{\partial}{\partial x_D}\right]^T$$

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_D} \end{pmatrix}$$

Gradient

Some properties of the gradient:

$$\nabla (a \cdot f(\mathbf{x}) + b \cdot g(\mathbf{x})) = a \cdot \nabla f(\mathbf{x}) + b \cdot \nabla g(\mathbf{x}), \quad a, b \in \mathbb{R}$$
$$\nabla_{x} (\mathbf{y}^{T} \mathbf{x}) = \mathbf{y}$$
$$\nabla (\mathbf{x}^{T} \cdot A \cdot \mathbf{x}) = (A + A^{T}) \cdot \mathbf{x}$$

- if A is a symmetric matrix

$$A^{T} = A$$

$$\nabla(\mathbf{x}^{T} \cdot A \cdot \mathbf{x}) = 2 \cdot A \cdot \mathbf{x}$$

Numerical solution

- Quest: answer machine learning as an optimization problem
 - use the gradient to infer the parameters of a descriptive or predictive model, examples:
 - weights of a linear regression (regression task)
 - weights of a perceptron (classification)
- Let us consider a univariate case, given a continuously differentiable function z = f(x)
 - the function has extreme points for 0 = f'(x)
 - we can determine solutions numerically by approximating the real zeros f'(x)=0
 - critical points:

Approximate optimization

• Given a particular point x, how to move to a better state?

Gradient descent for one dimension

Gradient descent for one dimension

• Gradient descent for 1 dimension:

$$x_{n+1} = x_n - \eta \cdot f'(x_n)$$

$$-\eta \cdot f'(x_n) = (x_{n+1} - x_n)$$

by first-order Taylor series expansion, we have

$$f(x_{n+1}) \approx f(x_n) + f'(x_n) \cdot (x_{n+1} - x_n) = f(x_n) - \eta f'(x_n)^2$$

$$-\dots$$
 and it follows
$$f(x_{n+1}) \le f(x_n)$$

The gradient descent for m dimensions

• Gradient descent for *m* dimensions:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \eta \cdot \nabla f(\mathbf{x}_n)$$

$$-\eta \cdot \nabla f(\mathbf{x}_n) = (\mathbf{x}_{n+1} - \mathbf{x}_n)$$

by first-order Taylor series expansion, we have

$$f(\mathbf{x}_{n+1}) \approx f(\mathbf{x}_n) + (\nabla f(\mathbf{x}_n))^T \cdot (\mathbf{x}_{n+1} - \mathbf{x}_n)$$
$$f(\mathbf{x}_{n+1}) \approx f(\mathbf{x}_n) - \eta (\nabla f(\mathbf{x}_n))^T (\nabla f(\mathbf{x}_n))$$
$$f(\mathbf{x}_{n+1}) \approx f(\mathbf{x}_n) - \eta \|\nabla f(\mathbf{x}_n)\|^2$$

and it follows

$$f(\mathbf{x}_{n+1}) \le f(\mathbf{x}_n)$$

Learning parameter η

- The method of steepest descent converges to the optimal solution slowly
- The learning-rate parameter η has a profound influence on its convergence behavior:
 - when η is small: the transient response of the algorithm follows a smooth path (slow)
 - when η is large: the transient response of the algorithm follows a zigzagging (oscillatory) path
 - when η exceeds a certain critical value: the algorithm becomes unstable (i.e., it diverges)

Learning parameter η

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

- Recall that according to the Rosenblatt's rule, all updates have a strength of either 2η or -2η
 - to further guide convergence we should be able to further differentiate weights
 - even correctly classified observations can still provide guidance to update the hyperplane
- Consider a simpler <u>linear unit</u> f(x) = x instead of a sign function, i.e., $o = \sum_{j=0}^{m} w_j x_j$
 - the threshold $\theta=0$ is used to classify observations as positive ($o \geq \theta$) or negative
- Using gradient descent, let's learn w_i that minimize the squared errors, $\{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=0}^{n} (t_i - o_i)^2$$

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_m}\right]^T$$

• We want to move the weights \mathbf{w} in the direction that decrease $E(\mathbf{w})$

$$w_j = w_j + \Delta w_j$$
 $\mathbf{w} = \mathbf{w} + \Delta \mathbf{w}$
 $\Delta w_j = -\eta \frac{\partial E}{\partial w_j}$ $\Delta \mathbf{w} = -\eta \nabla E(\mathbf{w})$

• Differentiating $E(\mathbf{w})$

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=0}^n (t_i - o_i)^2 = \frac{1}{2} \sum_{i=0}^n \frac{\partial}{\partial w_j} (t_i - o_i)^2$$

$$= \frac{1}{2} \sum_{i=0}^n 2(t_i - o_i) \frac{\partial}{\partial w_i} (t_i - o_i) = \sum_{i=0}^n (t_i - o_i) \frac{\partial}{\partial w_j} (t_i - \mathbf{w}^T \mathbf{x}_i)$$

$$\frac{\partial E}{\partial w_j} = \sum_{i=0}^n (t_i - o_i) (-x_j^{(i)})$$

We reach our target update rule for the linear activation

$$\Delta w_j = -\eta \frac{\partial E}{\partial w_j} = \eta \sum_{i=0}^n (t_i - o_i) x_j^{(i)}$$

- Quite similar with Rosenblatt's update rule!
 Yet there are two major differences:
 - 1. Rosenblatt's $o_i \in \{0,1\}$, while with linear activation $o_i \in \mathbb{R}$, producing arbitrary $(t_i oi)$ differences
 - 2. the inferred update rule first sums the contributions from all observations, only then updates the plane (different than Rosenblatt's iterative updates from each observation)
- These differences produce distinct learning settings convergence can radically differ

- Limitations of gradient descent update using linear unit?
 - unbounded activation function (i.e. no lower/upper limits on o_i)
 - radical contributions when $|t_i o_i|$ is high (superseding other relevant contributions), thus hampering convergence (unstable)
- Solutions?
 - using alternative activation functions
 - sign and step units?
 - not differentiable thus unable to apply in the Gradient Descent
 - we need to explore further alternatives

step (sign variant)
$$f(x) = sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Alternative activation functions

bounded linear

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0.5 \\ x & \text{if } -0.5 > x > 0.5 \\ 0 & \text{if } x \le -0.5 \end{cases}$$

sigmoid

$$f(x) = \sigma(ax) = \frac{1}{1 + e^{-ax}}$$

hyperbolic tangent (tanh)

$$f(x) = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Rule for continuous activation functions

- Let us infer a general rule for differentiable activation functions
 - given a continuous activation ϕ

$$o_i = \phi\left(\sum_{j=0}^m w_j x_{ij}\right)$$

we can define the gradient descent rule as follows

$$\begin{split} \frac{\partial E}{\partial w_j} &= \frac{\partial}{\partial w_j} \frac{1}{2} \sum_{i=0}^n (t_i - o_i)^2 \\ &= \frac{1}{2} \sum_{i=0}^n 2(t_i - o_i) \frac{\partial}{\partial w_i} (t_i - o_i) = \sum_{i=0}^n (t_i - o_i) \frac{\partial}{\partial w_j} \left(-\phi \left(\sum_{j=0}^m w_j x_{ij} \right) \right) \\ &= -\sum_{i=0}^n (t_i - o_i) \phi' \left(\sum_{j=0}^m w_j x_{ij} \right) \frac{\partial}{\partial w_j} \left(\sum_{j=0}^m w_j x_{ij} \right) \\ &= -\sum_{i=0}^n (t_i - o_i) \phi' (\mathbf{w}^T \mathbf{x}_i) x_{ij} \end{split}$$

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

Gradient descent for sigmoid unit

- Let us recall that until now we have two major ways of learning a perceptron
 - classic Rosenblatt's update
 - gradient descent rule with linear unit $\Delta w_j = \eta \sum_{i=1}^n (t_i o_i) x_j^{(i)}$

- Nevertheless we encountered limitations for both options
- Alternative?
 - consider **sigmoid unit**, $\sigma(net) = \frac{1}{1 + e^{-\alpha \cdot net}} = \frac{e^{\alpha \cdot net}}{1 + e^{\alpha \cdot net}}$

$$-o_i = \sigma\left(\sum_{j=0}^m w_j x_j^{(i)}\right)$$
 for $\alpha = 1$

- knowing $\sigma'(x) = \sigma(x) \cdot (1 \sigma(x))$
- minimizing the squared error to compute the update rule:

Gradient descent for sigmoid unit

■ When considering squared errors, gradient descent with sigmoid differs from previous solutions:

$$\Delta w_j = -\eta \frac{\partial E(\mathbf{w})}{\partial w_i} = \eta \cdot \alpha \cdot \sum_{i=0}^n (t_i - o_i) \cdot o_i \cdot (1 - o_i) \cdot x_j^{(i)}$$

- these novel components in the update ensure a generally more stable convergence
- however as $o_i \in [0,1]$, the number of required updates can be considerably high
- How to address this last observation?
 - what if instead of the sum of squared errors, we consider an alternative loss function?
 - solution: gradient descent with cross-entropy error

$$E(\mathbf{w}) = -\log(p(t|\mathbf{w})) = -\sum_{i=1}^{n} (t_i \log(o_i) + (1 - t_i) \log(1 - o_i))$$

- example $\mathbf{t} = [1,0,1]$, $\mathbf{o} = [0.8,0.15,0.9]$, then $E(\mathbf{w}) = -(1 \times \log(0.8) + 1 \times \log(0.85) + 1 \times \log(0.9)) = 0.7$

Logistic regression

- Logistic regression is a perceptron...
 - with a sigmoid activation and gradient descent update rule for cross-entropy error
 - a classifier despite the reference to regression
- Exercise: infer the update rule for the logistic regression using gradient descent
 - recall that $\frac{\partial \log_a x}{\partial x} = \frac{1}{x} \ln(a)$ and consider a = e for simplicity sake (common assumption)
- Solution: the update rule for the logistic regression is given by:

$$\Delta w_j = \eta \sum_{i=1}^n (t_i - o_i) x_j^{(i)}$$

- rule differs from the previous sigmoid unit with SSE: simpler rule, bolder updates
- although resembling the linear unit rule: o_i is now bounded producing more stable updates

Linear unit versus Logistic regression

- Logistic regression and sigmoid unit generally give us better boundaries than linear unit
 - distant points from the hyperplane have the same impact, while high weight in linear

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Logistic regression
- Stochastic gradient descent

Stochastic gradient descent

- classic/steepest gradient descent training rule
 - updates summing all the training examples X (see previous sections)
- stochastic gradient descent training rule
 - approximates gradient decent by updating weights incrementally
 - calculates error for each observation
 - for instance, $\Delta w_j = \eta(t_i oi)x_j^{(i)}$ instead of $\Delta w_j = \eta \sum_{i=0}^n (t_i - oi)x_j^{(i)}$
 - just like Rosenblatt's observation-specific updates
 - known as delta-rule or LMS weight update

Stochastic gradient descent

- Least Mean Squares (LMS) to estimate weight vector
 - no well-defined trajectory in the weight space

instead a random trajectory (stochastic gradient descent)

converge only asymptotically toward the minimum error

no steepest descent

– can approximate gradient descent arbitrarily closely if made small enough η

Gradient descent exercise

a) Derive the training classic gradient descent rule for a perceptron with the activation

$$o = e^{\left(\sum_{j=1}^{m} w_j \times w_j \times x_j\right)}$$

considering the sum of squared errors error function.

b) Given $\eta = 1$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, do a *stochastic* update for observation $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ with target t = 0.

Solution notes

a)
$$\frac{\partial net}{\partial w_j} = \frac{\partial}{\partial w_j} \left(\sum_{j=1}^m w_j^2 x_j \right) = 2w_j x_j$$

$$\Delta w_j = -\eta \frac{\partial E}{\partial w_j} = \dots = \eta \sum_{i=0}^n (t_i - o_i) \frac{\partial}{\partial w_j} \left(-\exp\left(\sum_{j=1}^m w_j^2 x_j\right) \right) = \dots = 2 \eta w_j \sum_{i=0}^n (t_i - o_i) o_i x_{ij}$$

b)
$$o = \exp(1 \times 1 \times 1 + 0 \times 0 \times 1) = e$$
, $\Delta w_1 = 2 \times (0 - e) \times e \times 1 = -2e$
 $w_1^{new} = 1 - 2e^2 = 13.78$, $\Delta w_2 = 0$, $w_2^{new} = 0$

Going forward...

- Summary: training rules can be inferred for different activation functions
 - gradient or stochastic descent guaranteed to converge to hypothesis with minimum squared error
 - given sufficiently small learning rate η
 - even when training data contains noise
 - even when training data not separable

- Next step: solving frontier problems (e.g. XOR)
 - How? multi-layer preceptrons

Outline

- Perceptron
 - origins
 - learning rule
 - limitations
 - activation functions
- Gradient descent
- Perceptron revised: inferring update rule
- Stochastic gradient descent

Literature

- S. Haykin, Neural Networks and Learning Machine, (3rd Edition), Pearson 2008
 - Chapter 1
- C. Bishop, Pattern Recognition and Machine Learning, Springer 2006
 - Section 1.4
- Deep Learning, I. Goodfellow, Y. Bengio, A. Courville, MIT Press 2016
 - Chapters 2 and 4
- A. Wichert, L. Sá-Couto, Machine Learning A Journey to Deep Learning, World Scientific, 2021
 - Chapters 1 and 3

Thank You

rmch@tecnico.ulisboa.pt andreas.wichert@tecnico.ulisboa.pt