

AD-A103 892

WOODS HOLE OCEANOGRAPHIC INSTITUTION MA
VAX-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM C--ETC(U)
AUG 81 N A BRAY
N00014-76-C-0197

F/G 8/10

NL

UNCLASSIFIED WHOI-81-70

1 x 2
10
20
30
40

UNCLASSIFIED 8/81

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(14)</i> WHOI-81-70	2. GOVT ACCESSION NO. <i>AD-A103 892</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) <i>(9)</i> VAX-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA.	5. TYPE OF REPORT & PERIOD COVERED Technical rept.,	
6. AUTHOR(s) <i>(10)</i> Nancy Amanda Bray	7. PERFORMING ORG. REPORT NUMBER <i>(15)</i> Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543	
8. PERFORMING ORGANIZATION NAME AND ADDRESS Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543	9. CONTRACT OR GRANT NUMBER(S) * N00014-76-C-0197 ** N00014-79-C-0021 OCE-77-19403	
10. CONTROLLING OFFICE NAME AND ADDRESS NORDA/National Space Technology Laboratory Bay St. Louis, MS 39529	11. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS * NR 083-400 ** NR 083-004	
12. REPORT DATE <i>(11)</i> August 1981	13. NUMBER OF PAGES 135 pages	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>(12) 140</i>	15. SECURITY CLASS. (of this report) Unclassified	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	17. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
19. SUPPLEMENTARY NOTES This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-81-70.		
20. KEY WORDS (Continue on reverse side if necessary and identify by block number) 1. Oceanic available potential energy 2. Definitions of horizontal density surfaces 3. Hydrographic data	21. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report documents the W.H.O.I. VAX-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the programs may be used, as well as complete listings of all the required FORTRAN files.	

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By	
Distribution/	
Availability Codes	
1st	Avail and/or Special
A	

WHOI-81-70

VAX-11 PROGRAMS FOR COMPUTING AVAILABLE
POTENTIAL ENERGY FROM CTD DATA

by

Nancy Amanda Bray

WOODS HOLE OCEANOGRAPHIC INSTITUTION
Woods Hole, Massachusetts 02543

August 1981

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contracts N00014-76-C-197; NR 083-400 and N00014-79-C-0071; NR 083-004 and by the National Science Foundation under Grant OCE-77-19403.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-81-70.

Approved for public release; distribution unlimited.

Approved for Distribution:

Valentine Worthington
Valentine Worthington, Chairman
Department of Physical Oceanography

DTIC
ELECTRONIC
S SEP 3 1981 D

D

TABLE OF CONTENTS

	Page
Abstract	3
List of Tables	4
List of Figures	5
Introduction	6
1. General Structure of programs	7
2. POTEN Documentation	13
3. PEPLT Documentation	27
4. Modification of POTEN to accept data in other than CTD78 disc format	51
Acknowledgements	53
References	54
Appendix A: Command files for generating standard output from POTEN and PEPLT	55
A1 ENERGY.COM	56
A2 POTEN.COM	67
A3 PEPLT.COM	68
A4 TABLE.COM	69
A5 DYNHT.COM	70
Appendix B: Program Listings for POTEN	71
B1 POTEN.DOC	72
B2 COMPOTEN.FOR	73
B3 IDXREC.DIM	74
B4 POTEN.FOR	75
B5 PTENS.FOR	76
B6 COMPS.FOR	81
B7 AVRCP.FOR	85
B8 DATA.FOR	91
B9 POTENSUB.FOR	95

	Page
Appendix C: Program Listings for PEPLT	102
C1 PEPLS.DOC	103
C2 PEPLS3.DOC	104
C3 AVRGS.DOC	105
C4 COMPEPLT.FOR	106
C5 PEPLT.FOR	107
C6 PEPLS.FOR	108
C7 AVRGS.FOR	110
C8 TABLE.FOR	118
C9 TDATA.FOR	121
C10 PEPLTSUB.FOR	123

Abstract

This report documents the W.H.O.I. VAX-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the programs may be used, as well as complete listings of all the required FORTRAN files.

List of Tables

Table	Subject	Page
1	FORTRAN and Object files	11
2	Accessory files	12
3	Example of a JSHP.PTN file	16
4	POTEN Data Output Variables	18
5	POTEN Parameters	22
6	PEPLT Variables	31
7	PEPLT:PEPLS Parameters	40
8	PEPLT:AVRGS Parameters	43

List of Figures

Figure	Title	Page
1	POTEN Schematic	8
2	PEPLT Schematic	9
3	AVRGS Schematic	10
4	Example plots from TABLE subroutine	
	a. Buoyancy frequency	28
	b. Vertical displacements	29
5	Example plot from ENERGY.COM - APE	59
6	Example plot from ENERGY.COM - Rms displacement	60
7	- Salinity	61
8	- Potential temperature....	62
9	- Buoyancy frequency	63
10	- Reference steric anomaly.	64
11	- θ vs. S	65
12	- deep θ vs S	66

Introduction

This report describes the structure and usage of programs designed for calculating and displaying available potential energy (APE), adiabatically leveled steric surfaces, and related variables from a group of CTD stations. For a general discussion of the technique it is strongly recommended that the reader refer to Bray and Fofonoff (1981). The programs have an inherent requirement that the input CTD data be an even series in pressure, although the input pressure interval may be specified. This report describes specifically the structure of the programs as used on the W.H.O.I. VAX-11, with input data in the standard CTD78 disc format (Millard, et al (1978)). Other input formats can be accommodated through modification of the data input subroutine as described in section 4.

The calculation and display are divided into separate programs. POTential ENergy (POTEN) reads the input data, calculates the adiabatically leveled reference steric field (see Bray and Fofonoff, 1981) and variables related to the leveled field. Potential Energy PLoT (PEPLT) calculates variables derived from the leveled field variables and displays POTEN output in the form of lists and plots.

This report is divided into four sections. The first, General Structure, covers the non-FORTRAN aspects of the programs: file structure, linkage and general usage. The second and third sections contain detailed documentation for POTEN and PEPLT. The fourth section describes modifications to the data read subroutine in POTEN, to allow input data in other than CTD78 disc format. Documented examples of how to run the programs interactively and in batch mode on the VAX-11 are found in Appendix A. Listings of programs appear in Appendices B and C.

1. General Structure of Programs

Both POTEN and PEPLT are accessed through a short main program which performs initializations of parameters as requested by the user. Control is then transferred to one of three major subroutines, from which point the user is free to access different branches within that subroutine, or request entrance into either of the other two major subroutines. The various branches are described in detail in the following sections. Schematics of POTEN and PEPLT are shown in Figures 1, 2 and 3. The remainder of POTEN and PEPLT consist of secondary subroutines: data read, physical properties of seawater, etc., which are accessed as part of the various branches available to the user in the major subroutines. The file structure reflects the program structure (Table 1). POTEN and PEPLT are linked by linking the object files in Table 1. Accessory files are listed in Table 2.

The input data in CTD78 disc format is accessed using subroutines from CTDATA/LIB, and the plots in PEPLT are created using the NCAR plot package. The plot package creates a file on logical unit 8 which must be read and translated into plot(s) by a Metacode translator. Those translators are available both for the high speed Calcomp plotter and for various screens, for plot previewing. The absolute plot dimensions may be altered after the file is created, and the plots can be plotted as many times as desired. The use of the translators is described at the end of section 3.

The multiple branch structure of the programs provides an extremely powerful and flexible framework for computations which are often not routine; however useful documentation of such programs is correspondingly difficult. It is suggested that the new user begin by studying Figs. 1., 2 and 3. A documented command file (ENERGY.COM) for a routine computation and display is found in Appendix A. This file allows the new user to become familiar gradually with the options available in the programs. After studying and experimenting with the command file, the user may wish to explore other options available by referring to the detailed branch descriptions found in sections 2 and 3 of this report.

POTEN SCHEMATIC

Figure 1: POTEN Schematic

PEPLT SCHEMATIC

Figure 2: PEPLT Schematic

AVRGS SCHEMATIC

Figure 3: AVRGS Schematic

TABLE 1: FORTRAN and Object Files

	<u>POTEN Files</u>	<u>PEPLT Files</u>
Main program	POTEN	PEPLT
Major subroutines	PTENS COMPS AVRCP	PEPLS AVRGS TABLE
Data read subroutine	DATA	TDATA
Secondary subroutines	POTENSUB	PEPLTSUB
		POTENSUB
Library subroutines	CTDATA/LIB	
System subroutines (associated with the NCAR plot package)		AUTOGRAPH DASHCHAR NCAR

TABLE 2

<u>Accessory Files</u>	<u>POTEN</u>	<u>PEPLT</u>
Common, dimension and equivalence required for compilation (FORTRAN)	COMPOTEN.FOR	COMPEPLT.FOR
Station lists (JSHP.PTN is generated by COMPS -- unit 12)	JSHP.PTN	JSHP.PTN
Input data	*.CTD	*.AVG
*.CTD is CTD file	*.REG	
*.REG is generated by COMPS		
*.AVG is generated by AVRCP		
* is the station identifier		
Common storage (binary file)	KPTCM.DAT	KPLCM.DAT
POTEN and PEPLT generate these if they do not exist in the directory		
Documentation files (formatted)	POTEN.DOC	PEPLS.DOC
		PEPLS3.DOC
		AVRGS.DOC
Command file used to set up assignments and start an interactive job	POTEN.COM	PEPLT.COM
Command file used to run POTEN and PEPLT sequentially in batch mode, supplying standard output.	ENERGY.COM	
Command file to create plots shown in Fig. 4 using TABLE subroutine.		TABLE.COM
Command file to compute dynamic height station by station and output in map format.		DYNHT.COM

2. Documentation of POTEN

In this section, the major subroutines in POTEN described above are documented in detail. They are all structured around the multiple GO TO statement of the form

GO TO (#1, #2, #3,..., n) BRANCH

with #1 through #n FORTRAN statement numbers, and the BRANCH # an index such that BRANCH # = n transfers control to Statement #n. The BRANCH is input by the user following an appropriate program prompt. The branch numbers are keyed to various computations which may be accessed at the user's option. The keys are listed later in this section, and short versions of them may be obtained on the terminal any time the program prompts the user for branch number input, by typing Ø/.

Within each branch there may be options which are accessible by varying parameters input by the user at the time the branch number is input. These options are also listed in the branch keys.

In addition to input parameter options, there is an array called ISSW with 16 elements found in both programs. Within the different branches, different elements of ISSW may be tested for values of -1 or 0, and options either accessed or skipped depending upon the value. In general, ISSW elements determine whether a given type of output is generated. (Historically, the ISSW array derives from the binary switches available on the shipboard computer, the HP2100 series.) The elements of ISSW may be altered by accessing the appropriate branch in both POTEN and PEPLT as described below.

As described earlier, POTEN is accessed as a short main program which initializes parameters if requested by the user, or reads from a binary file KPTCM.DAT the most recently stored parameters, if no initialization is requested. The main program POTEN then transfers control to the major subroutine PTENS which, as shown in the schematic Fig. 1, controls the various branches available to the user. PTENS is the only component of POTEN in which branches may be accessed. The two remaining major subroutines are COMPS, in which the regressions are performed, and AVRCP, in which the horizontal averaging is performed.

This subsection charts the branches available to the user in detail, and describes briefly the working of COMPS and AVRCP. Short versions of the branch documentation are found in the Appendix, and may also be printed on the screen while the program is (interactively) on line by typing 0/ whenever the program prompts for branch input.

2a. Main Program:

The main program queries the user 'Initialize common (YES or NO)?'. A NO response causes the present elements of KPTCM.DAT, the binary storage file, to be read into common. (If no file KPTCM.DAT exists in the directory, the program will create a new file named KPTCM.DAT, but if the response to the initialization query was NO, an 'end of file during read' error will result. Therefore, the proper sequence of commands to create a new KPTCM.DAT file is to run POTEN, respond YES to the initialization, thereby creating a new KPTCM.DAT, but not attempting to read from it. Later in the program (in branch 3) common may be stored to the newly created file, for use next time the program is run.) A YES response initializes the data selection parameters (subroutine DATA), and certain other parameters not related to the regressions.

Following this query, control is transferred to PTENS, and the user is asked: 'Initialize regression parameters (YES or NO)?'. A YES response initializes the regression parameters. A NO response reads them from KPTCM.DAT. (Again, with a newly created KPTCM.DAT file, the correct response is YES.) Finally, PTENS asks for the resolution of the input data, before going to branch mode. At this point the user may input up to 7 variables, as listed in the program prompt. The current values of the variables are printed on the screen along with the prompt list. The variables are: KBR, the branch number; ISW and JSW, which may access different options in branch KBR; KLIST, usually the list output logical device number (reset to 6 each time the prompt is printed); KOUT and KTP, the data output and input logical device numbers (note that the program uses named files for data input and output via OPEN statements which use

KTP and KOUT as unit numbers); KIN, the program input device for screen or command file. (Changing the value of KIN to 6 part way through a COM file transfers control to the screen, allowing interactive mode -- see Appendix A for an example command file, POTEN.COM.)

2b. Branches (KBR)

0: Short documentation printed on screen. See Appendix B for a listing of this documentation.

SUMMARY - POTEN:PTENS: KBR = 0

Function: List on terminal the short documentation for PTENS

ISW, JSW options: None

Output device: unit KTTX

Input device: None

ISSW options: None

- 1: Calls COMPS subroutine, which performs the following sequence:
 - a. Calls subroutine DATA, which opens the subindex directory for the default file specifications of the input data. (Those specifications may be changed by calling KBR = 13, which is identical to branch 1 except for allowing file specifications to be changed.) Then the header for the ISWth sequential station in that subindex file is examined to see if it meets data selection criteria. If so, a file name is written to file corresponding to logical unit 12. Throughout this report that file is called JSHP.PTN; an example is given in Table 3. The temperature and salinity data are transferred to array DATA_X, using Millard subroutine GETDAT. Pressure is stored in the zeroth element of DATA_X, which is equivalenced to array PRESS. PRESS is used throughout COMPS and AVRCP. The total number of scans (NTOT) is also noted. The above occurs in subroutine DATA, after which control returns to COMPS.
 - b. COMPS then sets up the regression for the first interval using parameters which may be changed using branch 3 and continues the computation through all the intervals requested,

TABLE 3

Example of a JSHP.PTN file generated by COMPS

<u>Consec.</u>	<u>Station I.D.</u>	<u>Weight</u>
<u>Number</u>		
1	GY001002	1.0
2	GY001003	1.0
3	GY001004	1.0

or until the end of the data (determined by NTOT) is reached. For each interval potential temperature and steric anomaly referred to p_f (the level pressure) are calculated for each data scan to be used in the regression. Potential temperature is calculated according to Fofonoff (1977), using the polynomial formula of Bryden (1973) for the adiabatic temperature gradient. Steric anomaly δ is calculated as:

$$\delta = 10^5 \times (\alpha(p, \theta(p, T, S, p_f), \delta) - \alpha(p, 0, 35))$$

with α the specific volume calculated according to the SCOR Working Group 51 new equation of state for seawater (Millero, et al, 1980), for which an algorithm is given by Fofonoff (1981). Within each interval an editing process occurs in which points exceeding three standard deviations of the regression estimate at a given steric anomaly are flagged. Temperature and salinity are then regressed against pressure over the interval. Any points in T or S which exceed three standard deviations are replaced by the regression estimate. The regression of steric anomaly is performed again and rechecked. The number of standard deviations for both tests may be changed -- see KBR = 3. The interpolated scans are printed out on unit KLIST and data scans which are flagged but not interpolated are also listed as such on KLIST if ISSW (3) is set to -1. (ISSW values may be changed using branch 5.) Pressure p and potential temperature θ (referred to the level pressure p_f) are regressed against steric volume anomaly (also referred to p_f) and the coefficients for both p and θ are stored in arrays CP and CT for each interval. Data output occurs if ISSW (13) = -1, and is written into a file with the name *.REG, where * identifies the station, a two character (alpha) ship name, a 3 digit cruise number and a 3 digit station number. The format of the ouput file is a header of 150 words equivalenced to an I*4 array followed by a variable number of data records (each 46 words, also an I*4 array), one record per level

TABLE 4
POTEN Data Output Variables

HEADER RECORD: 150 WORDS

VARIABLE	
<u>NAME</u>	<u>DESCRIPTION</u>
LTYPE	Identifies record as header record (LTYPE = 1)
MHDR	Number of elements in header
ICON	Sequential number of station (in POTEN calculation)
ISHP	Ship name (A2 format)
KCAST	Station number
IDAY	Julian year day
IPR	First pressure
LPR	Last pressure
XLAT	Latitude of station
XLONG	Longitude of station
WGT	Weight
XLTD	Latitude of origin for distance computations in kilometers (negative for south latitude)
XLGD	Longitude of origin (negative for west)
LBL(3)	Short station label (3A4 format)
LBL(13)	Run identification label (13A4 format)
NSC(60)	Regression parameters } see text
NPR(60)	Regression parameters
NSECTION	Number of sections in the water column

DATA RECORD: 46 WORDS

KTYPE	Identifies record as data record (KTYPE = 0)
MBUF	Number of elements in data record
IREC	Level number
N	Polynomial order
NDP	Number of data scans used in regression
KSW	Not used

TABLE 4 (continued)

<u>NAME</u>	<u>DESCRIPTION</u>
L1	Not used
L2	Not used
PF	Level pressure
TØ, SØ, DVO	Temperature, salinity and steric anomaly from input data, averaged about PF ± PDIFF (see branch 3 description and Table 5)
PI	Pressure of the reference steric anomaly (DVF) in the unleveled or initial field
THF	Local potential temperature (referred to PF) as estimated by the regressions: $\theta_f(P_f)$
DVI	Steric anomaly corresponding to PF in the initial field
DVF	Steric anomaly corresponding to PF in the leveled field
PM, THM, SM, DVM	Average of pressure, potential temperature, salinity and steric anomaly over the regression interval.
DH	$d\delta/dp$ based on the averaged regression coefficients
PE	Potential energy anomaly }
XPE	Horizontally average PE Recommended that these not be used, but calculated in PEPLT
CP(8)	Pressure vs. steric anomaly coefficients
Z1	Standard deviation of regression pressure estimate (Fofonoff and Bryden, 1975)
CT(8)	Potential temperature vs. steric anomaly regression coefficients
Z2	Standard deviation of regression temperature estimate
F1, F2, F3	Steric volume minimum, maximum and average over regression interval
XLTO:	Latitude of origin: default is 40.0
XLGO:	Longitude of origin: default is -70.0

p_f . The output is in binary (unformatted) files. The variables output are identified in Table 4. Some information at each level may be output to unit KLIST if ISSW (12) = -1, for purposes of checking. Header information is ouput to unit KLIST if ISSW (11) = -1. The input data scans are output to unit KLIST if ISSW (5) = -1 and the regression coefficients and residuals are output to unit KLIST if ISSW (10) = -1. If ISSW (6) = -1 statistics of the coefficients are printed on unit KLIST. The ratio of each coefficient to its standard deviation (see Fofonoff and Bryden, 1975, Appendix) is computed. For an infinite number of degrees of freedom, at 95% confidence that ratio should equal or exceed 1.96. The statistic which is listed is (a_i , the coefficients):

$$\frac{a_i}{\text{std dev } (a_i)} .$$

When stations with subindex reference number (sequential number) ISW through JSW have been tested for data selection criteria and either been skipped or have gone through the regression calculation, COMPS returns control to PTENS.

SUMMARY - POTEN:PTENS: KBR = 1

Function: calls COMPS subroutine

ISW, JSW Options: ISW to JSW are the station reference numbers

Output device: data goes automatically to *.REG file if
ISSW (13) = -1; other information output goes
to unit KLIST, as requested by elements of ISSW

ISSW options:	3 = -1 Print out interpolated scans
(to unit KLIST)	5 = -1 Print out input data scans
	6 = -1 Print out coefficient statistics
	10 = -1 Print out regression coefficients for each scan
	11 = -1 Print out header information
	12 = -1 Print out selected data following regression

13 = -1 Data output to *.REG

2: Initializes data selection parameters described in Table 5

SUMMARY - POTEN:PTENS: KBR = 2

Function: Initialize data selection parameters

ISW, JSW Options: None

Output device: None

ISSW Options: None

3: Changes or lists regression and data selection parameters described in Table 5. The data selection parameters are straightforward. For the regression parameters the water column is divided into a maximum of nine sections, each of which may have a number of levels whose regression parameters are the same. The regression parameters consist of the total number of sections; in each section, the interval between leveled surfaces, the interval over which the regression is performed, the polynomial order, and start and end pressures for the section. All of these parameters are input using subroutine PARAM, which branch 3 calls. The prompts are (hopefully) self-explanatory. After parameters have been entered for all sections, PARAM translates them into internal parameters which control the way the program performs the regressions. These internal parameters are stored in arrays NPR and NSC. Since the arrays NPR and NSC are included in common stored to KPTCM.DAT, the user form parameters need be entered only once, until a change is required. The old parameters may be retrieved by responding 'NO' to the initial query in PTENS 'Initialize regression parameters?'. Stored common is written to KPTCM.DAT at the end of branch 3, so any changes in regression parameters will overwrite the most recent ones in KPTCM.DAT, provided branch 3 is completed. It is not possible to change only a single regression parameter; if a change is required, all the parameters must be re-entered. (This is because the internal parameters NPR and NSC have elements whose value depends upon parameters for more than

TABLE 5
POTEN Parameters: Branch KBR = 3

<u>Parameter</u>	<u>Definition</u>	<u>Default if Initialized</u>
ICON	Consecutive number	1 for first station. Increments with stations processed
KSW	Not used	1
A2	Number of standard deviations allowed for a regression point in $p(\delta)$ before flagging.	3.
A3	Number of standard deviations allowed for a regression point in $T(p)$ and $S(p)$ before interpolation	3.
WGT	Weight	1.
PDIFF	Interval (db) about P_f for averaging $T\bar{\theta}, S\bar{\theta}, P\bar{\theta}$	6.
DELP	Pressure series interval for input CTD data (db)	2.

REGRESSION Parameters -- as described in program prompts

Data selection parameters: windows such that data inside all windows is accessed; all other data skipped

IDAY1	: Minimum Julian year day	0
IDAY2	: Maximum Julian year day	365
JDO	: Additive constant to actual day	0
XEMN	: Minimum longitude	-180.0
XEMX	: Maximum longitude	180.0
XMN	: Minimum longitude	-90.0
XNMX	: Maximum latitude	90.0

one section. PARAM requires that parameters be input sequentially.) It is not necessary to understand how NPR and NSC work in order to run the program (that is the purpose of the PARAM subroutine); however, modifications of the program may require that the programmer know how these arrays function. A brief description is therefore presented here. The pressure p_f for each level is given by:

For IREC less than NPR(section #)

$$P_f = \text{NPR}(\text{section } \# + \text{total number of sections}) \times \\ (\text{IREC} - \text{NPR}(\text{section } \# + 2 \times \text{total number of sections}))$$

NPR (section # + total number of sections) contains the interval between pressure levels; NPR(section # + 2 x total number of sections) contains an index which allows the correct p_f to be determined, while NPR(section #) contains the level number at which the section commences. Some care should be taken to assure that the parameters input are consistent.

Specifically, the first level of a new section must have a pressure p_f such that p_f is some integral multiple of the pressure interval between leveled surfaces in that section. The use of the total number of sections allows the program to treat NPR as a variable length two-dimensional array, even though it is in fact singly dimensioned. Subroutine PARAM adds an additional 'dummy' section below those input by the user to assure that COMPS does not continue below the desired depth. Thus, the total number of sections (NSECTION) will always be one greater than the number input by the user.

Array NSC contains the remainder of the parameters: start pressure in NSC(section#), polynomial order in NSC(NSECTION + section #), number of data scans in the regression interval in NSC(2*NSECTION + section #).

SUMMARY - POTEN:PTENS: KBR = 3

Function: Change or list regression and data selection parameters
ISW, JSW Options: ISW = 0: short list only

ISW = 1: full list
JSW: no options
Input device: unit KIN
Output device: unit KLIST
ISSW Options: None

- 4: Call AVRCP - averaging subroutine. The pressure and potential temperature coefficients from the regressions performed in COMPS are averaged horizontally, level by level. The average pressure polynomial at each p_f is set equal to p_f (corresponding to a mass conservation constraint between the initial and leveled fields) and the resultant polynomial is inverted to obtain the reference steric anomaly (δ_f) corresponding to that p_f . (See Bray and Fofonoff, 1981 for a more detailed discussion.)

The averaging is actually done in two 'passes' through the data, but a single call to AVRCP with ISSW(7) = 0 will automatically average and output new station data files based on the leveled field. (Data output occurs if ISSW(13) = -1, as in COMPS. The new files are called *.AVG with * as before the station identifier.) Information about the averaged pressure coefficients is output to unit KLIST if ISSW(12) = -1. Information about the averaged steric field is output to unit KLIST if ISSW(11) = -1.

The two averaging 'passes' may be accessed individually, and separately from the data output by setting ISSW(7) = -1 and entering KBR = 4, ISW = 1 for the first pass, KBR = 4, ISW = 2 for the second pass and KBR = 4, ISW = 3 to output the new station data files. However, since the second pass must be performed directly after the first, and the output directly after the averaging it is recommended that the automatic access be used (ISSW(7) = 0). If no output is desired, ISSW(13) should be set to 0.

SUMMARY - POTEN:PTENS: KBR = 4

Function: Call AVRCP averaging subroutine

ISW, JSW options: If ISSW(7) = -1 ISW = 1: First averaging pass
ISW = 2: Second averaging pass
ISW = 3: Output of data to
*.AVG files if
ISSW(13) = -1
If ISSW(7) = 0: ISW = 1: Averaging and output
performed
automatically.

Input files: *.REG

Output files, data: *.AVG

Output files, lists: unit KLIST

ISSW Options: ISSW(7) = -1: individual access of averaging passes
ISSW(11) = -1: List of averaged steric field on
unit KLIST
ISSW(12) = -1: List of averaged pressure
coefficients on unit KLIST
ISSW(13) = -1: Leveled field based data output to
*.AVG files

5: Not used

6: Print data label. This label is input by the user in branch 3,
and is carried in both the *.REG and *.AVG files as an identifier
of the group of stations, the version of the POTEN run, etc. Its
format is 13 A4 or a total of 52 characters. Branch 6 lists this
label to unit KLIST.

SUMMARY - POTEN:PTENS: KBR = 6

Function: Write data label

ISW, JSW options: None

Output device: unit KLIST

ISSW options: None

7: Not used

8: Write header record to unit KLIST: Station label, position,
origin, LTYPE, MHDR, ICON, ISHP, ICAST, JDAY, IPR, LPR. This is
also done automatically in subroutine DATA when COMPS accesses the
station, provided ISSW(11) = -1.

SUMMARY - POTEN:PTENS: KBR = 8

Function: Write station header information

ISW, JSW options: None

Output device: unit KLIST

ISSW options: None

9: Write *.REG or *.AVG single data record to unit KLIST. Of doubtful usefulness, this branch was part of the original program.

SUMMARY - POTEN:PTENS: KBR = 9

Function: Write single output data record to unit KLIST

ISW, JSW options: None

Output device: unit KLIST

ISSW options: None

10: Not used

11: Set the values of the ISSW array. One call allows up to 16 inputs. Each input consists of element number followed by a comma and the value to assign to that element. Whenever input is complete, if less than 16, the branch may be terminated with a /.

SUMMARY - POTEN:PTENS: KBR = 11

Function: Set ISSW array

ISW, JSW options: None

Output device: unit KTX

Input device: unit KIN

ISSW options: None

12: Exit program. Program queries 'Exit program '. A YES response results in a FORTRAN stop statement execution. A NO response returns the PTENS branch prompt.

SUMMARY - POTEN:PTENS: KBR = 12

Function: Exit program

Input device: unit KIN

If a value of KBR greater than 12 or less than 0 is entered, the short documentation is printed on the screen.

3. PEPLT Documentation

Like POTEN, PEPLT is accessed through a short main program, which initializes parameters as requested by the user, and then transfers control to a major subroutine, PEPLS. From PEPLS, the user may call subroutine TABLE, which plots and lists station by station, and subroutine AVRGS which computes and displays horizontally averaged quantities as a function of depth. Subroutine AVRGS has its own set of internal branches, one of which returns program control to PEPLS. Subroutine TABLE has no internal branches. As in POTEN, short documentation can be displayed on the screen while the program is running interactively, by typing $\emptyset/$ as a response to branch prompts in either PEPLS or AVRGS.

3a. Main Program: PEPLT

The main program queries 'Load in previously stored common?'. A YES response causes the elements of the binary array KPLCM.DAT to be read into common, beginning with the common element KTTX. a 'NO' response causes no action by the program. Control is then transferred to subroutine PEPLS.

3b. Branches - PEPLT

- 1: Calls subroutine TABLE. TABLE plots and lists station by station. It also outputs requested information in a format appropriate as input to objective mapping programs. The plot section of TABLE is designed to permit a number of stations to be plotted on the same frame, with the origin of each station within the larger frame. Examples are shown in Fig. 4. In Fig. 4a the buoyancy frequency N is plotted as a function of geographical position (relative to an origin at 37°N , 69.65°W), the coordinates of the frame; and, for each station, as a function of depth, where the station axes represent 0 to 3000 db vertically and -3 to 3 cph horizontally. This is accomplished by scaling the buoyancy frequency, and adding it to the X-coordinate (in

Figure 4: Example plots from TABLE.COM

4a. Buoyancy Frequency, N in cph. Inset axes represent ± 3 cph (horizontal), 0 to 3000 db in pressure (vertical). The origin on the inset axes (0,0) represents the station location.

4b. Vertical displacement π in db. Inset axes represent ± 100 db (horizontal) and 0 to 3000 db (vertical).

this example, kilometers east of the origin) and scaling the pressure and subtracting from the Y-coordinate (here km north of the origin). The program allows up to four variables to be included in such a sum for X and Y. The length of the station axes are determined by the variables X2DIM and Y2DIM, which are input in user units (i.e. cph in Fig. 4a) for the variables being plotted. In the example, Y2DIM is 3000 (db) and X2DIM is 3 (cph). One frame is created for each call to TABLE; it will encompass ND station plots. The plot parameters may be initialized by calling TABLE (KBR = 1) with ISW \geq 2. Control then returns to PEPLS. Plot parameters may be changed by calling TABLE with ISW = 1. Control again returns to PEPLS. Plotting commences only when TABLE is called with ISW = 0. Figure 4b is the same type of plot as 4a, with vertical displacements plotted instead of N. Both of these plots were created using the documented command file TABLE.COM found in Appendix A.

A number of variables relating to the leveled field, the initial field, and the location, and time of each station may be examined using PEPLT. A list of these variables is found in Table 6; they are computed in function subroutine VRBL, coded by number. Thus a call to VRBL (3) returns the latitude of the station being examined (variable XLAT). Subroutine TABLE plots the following for x and y:

$$\begin{aligned} x &= A1*VRBL(NX1) + A2*VRBL(NX2) + A3*VRBL(NX3) \\ &\quad + A4*C(IREC,1) \end{aligned}$$

$$\begin{aligned} y &= B1*VRBL(NY1) + B2*VRBL(NY2) + B3*VRBL(NY3) \\ &\quad + B4*C(IREC,2) \end{aligned}$$

Here C(IREC,n) refers to an array which may be filled using AVRGS subroutine (see branch 4). A1 to A4, B1 to B4, NX1 to NX3, and NY1 to NY3 may be changed by accessing branch 3. The default values (initialized by KBR = 1, ISW = 2) are:

TABLE 6 -- PEPLT Variables
 (Nomenclature follows that of Bray and Fofonoff, 1981)

VARIABLE NUMBER	NAME OR SYMBOL	UNITS	DESCRIPTION
-1	1	None	Returns the number 1 (counts number of observations at each level).
0	Ø	None	Returns Ø
1	XPL	km	Zonal distance from origin (XLTØ,XLGØ)
2	YPL	km	Meridional distance from origin
3	XLAT	degrees	Signed decimal latitude (south negative)
4	XLONG	degrees	Signed decimal longitude (west negative)
5	ICON	None	Consecutive station number in POTEN computation
6	WGT	None	Averaging weight
7	JDAY	days	Julian year day
8	ISHP	None	Ship code
9	ICAST	None	Station number
10	N	None	Polynomial order
11	NDP	None	Number of data scans in regression interval
12	PF	db	Level pressure
13	TØ	°C	T, S, Ø averaged over the interval PF ≠ PDIFF
14	SØ	ppt	
15	DVØ	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1}$	
16	PI	db	Pressure of reference steric anomaly (δ_f) in the initial field

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
17	THF	°C	<u>Local</u> potential temperature referred to PF. (See 65.)
18	DVI	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1}$	Initial steric anomaly δ_i on PF
19	DVF	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1}$	Reference steric anomaly (δ_f) on PF
20	PM	db	Pressure, local θ , salinity and steric anomaly referred to Pf averaged over regression interval
21	THM	°C	
22	SM	ppt	
23	DVM	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1}$	
24	$a_{p_f}^*$	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1} \text{db}^{-1}$	$d\delta/dp$ based on averaged regression coefficients
25	X		Potential energy anomaly calculated by POTEN
26	APE		APE calculated by POTEN
27 to 34	CP(1) to CP(8)	$(\text{db})^{-1}$	Regression coefficients for pressure
35	Z1	db	Standard deviation of pressure regression estimate
36 to 43	CT(1) to CP(8)	$({}^\circ\text{C})^{-1}$	Regression coefficients for local potential temperature
44	Z2	°C	Standard deviation of local potential temperature regression estimate
46,47,48	F1,F2,F3	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1}$	Minimum, maximum and average values of steric anomaly over regression interval

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
48	π^*	db	'Boussinesq' displacements: $\pi^* = -(\delta_i - \bar{\delta}_i)/(\frac{d\delta}{dp})^*$
49	PI*	db	$\pi^* + PF$
50	π	db	Displacement of initial field from reference field PI-PF. Positive implies downward.
51	$\Delta\delta$	$10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1}$	$\delta_i - \delta_f$
52	Vortex stretching	db	$PI \times \frac{\sin(XLAT)}{\sin(XLTD)}$
53	$\frac{APE_B^*}{g}$		$\frac{1}{g}$ 'Boussinesq' APE with true displacements $- \frac{1}{2g} \alpha_p^* \pi^*^2$
54			$gPF\Delta D - PE$
55	$\frac{APE_B}{g}$		$\frac{1}{g}$ Boussinesq APE with Boussinesq displacements $- \frac{1}{2g} \alpha_p^* \pi^*^2$
56	$E\theta$	$(10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1})^{-1} \text{ db}$	Inverse of local specific volume gradient with pressure $(\frac{dp}{d\delta})$
57	$1/E\theta$	$(10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1}) \text{ db}^{-1}$	Local specific volume gradient with pressure
58	N^2	$10^{-6} (\text{rad} \cdot \text{sec}^{-1})^2$	Squared buoyancy frequency
59	e_p	$^{\circ}\text{C db}^{-1}$	Potential temperature gradient $\frac{de_f}{dp}$

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
60	s_p	$\text{ppt } \text{db}^{-1}$	Salinity gradient $\frac{ds_f}{dp}$
61	s_f	ppt	Salinity corresponding to θ_f, p_f, δ_f
62	$\frac{ds_f}{d\theta_f}$	$\text{ppt } (\text{ }^\circ\text{C})^{-1}$	Gradient of salinity with potential temperature
63	π^2	$(\text{db})^2$	Squared displacement of initial field from reference field
64	N	cph	Buoyancy frequency
65	θ_f	$^\circ\text{C}$	Potential temperature at δ_f referred to zero pressure
66	σ_θ	$10^{-3} \text{gm}\cdot\text{cm}^{-3}$	Sigma theta of p_f , s_f, θ_f
67	a_f	$\text{cm}^3 \cdot \text{gm}^{-1}$	Specific volume anomaly in reference field
68	$-\frac{1}{2} \Gamma_k \pi^2$		Vertical gradient of compressibility contribution to GPE
69	Not used		
70	Γ_k	$10^{-5} \text{cm}^3 \cdot \text{gm}^{-1} \cdot \text{db}^2$	$\frac{dk}{dp} - \left(\frac{\partial k}{\partial p}\right)_a$ (see Bray and Fofonoff, 1981)
71	Not used		

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
72	ΔS_f	ppt	Salinity anomaly from cubic spline fit to Worthington-Metcalf and Iselin θ -s curves $\Delta S(p_f, \theta_f, S_f)$ (Armi and Bray, 1981)
73	ΔS_i	ppt	Same as 72 but using the initial field $\Delta S(P_i, \theta(T\theta), S(\theta))$
74	θ_f^2	(°C) ²	Leveled field potential temperature squared. (Used in calculating horizontal standard deviation using AVRGS branch ISW = 21.)
75	RME	($\times 10^{-4}$ J·kg ⁻¹) ²	Random measurement error (based on pressure error of ±5db magnitude, temperature error of .007°C, salinity error of .005 ppt) for APE. See Bray and Fofonoff, 1981, Appendix, for details of error calculations. $V(\alpha_p * \pi^2 / 2)$
76	Not used		
77	RFE	($\times 10^{-4}$ J·kg ⁻¹) ²	Same as 78 but π
78	RFE*	($\times 10^{-4}$ J·kg ⁻¹) ²	Random finestructure error: (based on 3xZ1 as error in π^*): $V(\alpha_p * \pi^2 / 2)$

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
79	RME	$(10^{-4} \text{ J}\cdot\text{kg}^{-1})^2$	Same as 75 but pressure error only
80	RFEC	$(10^{-4} \text{ J}\cdot\text{kg}^{-1})^2$	Random finestructure errors in the vertical compressibility term (must be integrated using AVRGS branch ISW = 17) $V(r_k\pi^2/2)$
81	RMEC	$(10^{-4} \text{ J}\cdot\text{kg}^{-1})^2$	Random measurement error in the vertical compressibility term (pressure error only)
82,83	Not used		
84	κ	$10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1} \cdot \text{db}^{-1}$	Compressibility $(\frac{\partial \delta}{\partial p})_a$
85	κ_s	$10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1} \cdot \text{ppt}^{-1}$	Derivative of specific volume with respect to salinity; temperature and pressure held constant: $(\frac{\partial \delta}{\partial S})_{P,T}$
86	κ_π		Contribution to GPE from horizontal gradients of compressibility
87	APE_B	$10^{-4} \text{ J}\cdot\text{kg}^{-1}$	'Boussinesq' APE per unit mass with true displacements
88-90	Not used		
91	$(\delta_i - \bar{\delta}_i)$	$10^{-5} \text{ cm}^3 \cdot \text{gm}^{-1}$	
92	$(-\epsilon_p\pi)^{-1}$	$(^\circ\text{C})^{-1}$	
93	Not used		

TABLE 6 (Continued)

VARIABLE NUMBER	NAME or SYMBOL	UNITS	DESCRIPTION
94	θ_i^2		Potential temperature corresponding to p_f in initial field squared
95	$-(\theta_i - \bar{\theta}_i)/\theta_p^\pi$	None (if $\bar{\theta}_i$ is in column 4)	
96	$-(\theta_f - \bar{\theta}_f)/\theta_p^\pi$	None (if $\bar{\theta}_f$ is in column 4)	
97	θ_i	°C	Local potential temperature at δ_i
98	Not used		

A1 = 1	B1 = 1	NX1 = 1	NY1 = 2
A2 = 2	B2 = -.003	NX2 = 64	NY2 = 12
A3 = 0	B3 = 0	NX3 = 0	NY3 = 0
A4 = 0	B4 = 0		

These values will cause the buoyancy frequency in cph to be plotted as a function of meridional position (y-axis), time (x-axis) and pressure (station axis). X2DIM defaults to 3 (cph) and Y2DIM to 3000 (db), resulting in station axes representing ±3 cph for the displacements and 0 to 3000 db for the pressure. The default number of stations (variable ND) is 1 and may be changed by calling KBR = 1, ISW = 1. The plot information is stored in the file corresponding to unit 8. It must be read and translated by a Metacode translator. PEPLT may be run on any terminal, but the translators are only available for graphics terminals and the Calcomp plotter. See the last part of this section for instructions on the access of the translators. The origin co-ordinates may be changed in PEPLS branch 2.

Branch 1 with ISW = 0 may be used to change PMIN and PMAX, thereby selecting a range in pressure over which data will be used (all other data is excluded), X2DIM and Y2DIM, described above, JMIN, the level number corresponding to the pressure at which the plot is to start (this allows the user to skip over shallow points which may have anomalous values), and various plot parameters. The plot parameters include PLABL, the overall plot label; XMIN, XMAX, YMIN, YMAX, the axis limits; XLBL and YLBL the x and y-axis labels, respectively.

In addition to plots, if ISSW(10) = -1 TABLE outputs to unit KOUT the following list of variables in format (GF8.3):

PF, XPL, YPL, (VRBL(NV(K))),K = 1,6).

(See Table 6 for descriptions of these variables.)

If ISSW(12) = -1, a short list of variables is output to unit KLIST: pressure (PF), and the variables x, y and z, z given by

$$z = C1*VRBL(NZ1) + C2*VRBL(NZ2) + C3*VRBL(NZ3) + C4*C(IREC,3)$$

SUMMARY - PEPLT:PEPLS: KBR = 1

Function: Call subroutine TABLE - multiple station plots, map format output, lists by station.

ISW, JSW options: ISW = 2 Initialize plot parameters

ISW = 1 Change plot, map format and list

parameters

ISW = 0 Plot, list, map

format output

JSW No options

ISSW options: ISSW(5) = -1 No interior axes on plot

ISSW(6) = -1 No plot

ISSW(10) = -1 List variables

ISSW(12) = -1 List p, x, y, z.

2: Change data selection variables. Calls subroutine to change time and space windows and origin co-ordinates.

3: Change plot and list parameters. This branch prints a short documentation on the screen each time it is called. Parameters which may be changed and their descriptions are listed in Table 7. This branch has internal branches 1 through 8, which are prompted by '**: PARAMETERS: KBR3, ISW3, KX, MV, MW'. Only KBR3 and ISW3 have any effect in this branch. KX is the total number of parameter input branches (5). To return to PEPLS from branch 3 the user must enter KBR3 = 1, ISW3 = 0 followed by /. This will cause the new parameter values to be written on unit KLIST, and stored common to be written to KPLCM.DAT.

SUMMARY - PEPLT:PEPLS: KBR = 3

Function: Change or list plot and listing parameters

ISW, JSW options: None

Input device: KIN

Output device: KLIST

ISSW options: None

TABLE 7
PEPLT: PEPLS Branch 3 Parameters

<u>VARIABLE</u>	<u>DEFAULT</u>	<u>DESCRIPTION</u>
NX1	12	
NX2	0	
NX3	0	
NY1	19	Variable codes for VRBL used in AVRGS and TABLE computations
NY2	0	
NY3	0	
NZ1	25	
NZ2	0	
NZ3	0	
A1 B1 C1	1.	Scaling factors used in AVRGS and TABLE computations
A2-A6, B2-B6, C2-C6	0	
D1 to D6	1.	
TMIN to YT	None	Not used
SMIN to ST	None	Not used

4: Calls AVRGS subroutine. This subroutine calculates horizontal averages, allows operations such as vertical integration and column addition, multiplication, exponentiation and division. There are 23 internal branches in AVRGS, accessed with different values of ISW(0 to 22). These internal branches are described below, with a summary at the end of each. As an overview, AVRGS reads the requested data from *.AVG files into a two-dimensional array C(100,6). The rows (1 to \leq 100) correspond to the pressure levels and the columns to variables requested by the user and computed in function subroutine VRBL (see PEPLS branch 1 for a description of VRBL). As each successive station is read, the elements of C are added to, forming sums of all data available at all levels. These sums must then be divided by the total number of observations at each level, to obtain the average values. For reasons of flexibility, the reading/summing and division are performed in separate ISW branches within AVRGS. Once the array C is filled (one column of which must be the number of observations) and averaged, then a number of operations can be performed on the averages. The remaining ISW branches of AVRGS are devoted to these operations.

AVRGS has its own prompt 'AVRGS:KBR,ISW,JSW,KLIST', and control does not return to PEPLS unless KBR = 4 ISW = 12 is accessed. Therefore, only four variables (or < 4 followed by a /) need be input following the AVRGS prompt. In order to keep track of the operations performed in AVRGS, if ISSW(2) = -1 the four parameters are written to unit 4 each time an AVRGS branch is accessed, along with other pertinent information. This ISSW option will not be noted in the summaries.

Branches in AVRGS: (ISW)

ISW = 0: Prints short documentation on unit KTTX

ISW = 1: Reads station data into C array. Variables corresponding to NV(JSW) to NV(KLIST) (maximum of six) are read into columns

JSW to KLIST of array C for ND number of stations from file JSHP.PTN (logical unit 12), starting with the first station in that file. All data between PMIN and PMAX is accessed for each station. The array C is stored to KPLCM.DAT before returning to the AVRGS prompt. If ISSW(15) = -1, the weights (WT) from JSHP.PTN file are used; otherwise a weight of 1. is used. Each element of C is a sum of

$$\begin{aligned} C(IREC, I) = & C(IREC, I) + D(I)*WT*(AV*VRBL(NV(I))) \\ & + (BV+CV*VRBL(NV(I)))*VRBL(NX(I))) \end{aligned}$$

The default parameters are set such that

$$C(IREC, I) = C(IREC, I) + WT*VRBL(NV(I))$$

Some of the parameters used by this branch may be changed in branch 3 of AVRGS, and some in branch 3 of PEPLS.

SUMMARY - PEPLT:AVRGS: KBR = 4: ISW = 1

Function: Read and store data to C array

JSW, KLIST options: JSW is first column, KLIST last column

Output device: Array is stored to KPLCM.DAT for emergency retrieval. No other output.

ISSW options: None

ISW = 2: Zeros columns JSW to KLIST of array C

ISW = 3: Changes or lists parameters. Parameters involved are listed in Table 8. JSW = 1 initializes the parameters (defaults also in Table 9) before allowing changes; JSW = 0 retains previous values. (The first access to this branch must initialize.)

SUMMARY - PEPLT:AVRGS: KBR = 4: ISW = 3

Function: Change parameters

JSW, KLIST option: JSW = 1 initializes
JSW = 0 prints current values

Output device: KTTX

ISSW options: None

ISW = 4: Average table: divide columns JSW to KLIST by column 6,
which should have the number of observations at each level.

TABLE 8
PEPLT: AVRGS Branch ISW = 3 Parameters

<u>VARIABLE</u>	<u>DEFAULT</u> <u>(Initialized)</u>	<u>DESCRIPTION</u>
ND	1	Number of stations to be processed
NV(1)	51	Variables to compute for C array as
NV(2)	68	VRBL(NV(I)) in column I.
NV(3)	86	See Table 6 for VRBL codes.
NV(4)	87	
NV(5)	63	
NV(6)	-1	
JREF	50	Number of levels to be calculated
JMAX	55	Level number corresponding to reference pressure for integrations over pressure
NX(I),I=1,6	0	Optional additive quantities in C array element calculation (see text).
A1	1.	
A2	0.	
A3	0.	X and Y scaling factors for plots
B1	1.	
B2	0.	Initialized when PEPLS is called by responding YES to 'Initialize common '
NX1	12	
NX2	0	Optional plot parameters (see text for AVRGS branch ISW = 7).
NY1	19	
NY2	0	Initialized in PEPLS as above

ISW = 5: Add column JSW vertically, starting from level 2 and going to JMAX:

$$C(IREC,JSW) = C(IREC - 1,JSW)$$

ISW = 6: List C array to unit KLIST. Includes data label, parameters, level number and pressure, and C array.

ISW = 7: Plot one frame. Up to six curves allowed per frame. NCAR plot package outputs to unit 8 a file which must be read and translated into a plot by a Metacode translator. PEPLT may be run on any terminal, but the plot files may only be translated on graphics terminals and the Calcomp plotter. Instructions for running the translators are found at the end of this section of the report. The plot branch asks for the number of curves (default 1, maximum 6), the level number for the first point (default 1), the plot label, the minimum and maximum coordinates for x and y (unless the user opts to have the NCAR plot package compute the scales, by responding YES to the query 'Use default axis parameters?'), x and y axis labels, and the column number to be plotted.

The program actually plots:

$$x = B1*C(J,JSW) + B2*C(J,NX2) + B3*PF$$

$$y = A1*PF + A2*C(J,NV1) + A3*C(J,NY2)$$

The default values of the parameters plots

$C(J,JSW)$ vs PF (pressure).

However, if for example the user wished to plot potential temperature θ vs salinity S, with θ (VRBL(65)) in column 1 and S(VRBL(61)) in column 2, then the values of the above parameters should be changed (using AVRGS branch 3)

$$A1 = 0. \quad B1 = 1 \quad NY1 = 1$$

$$A2 = 1. \quad B2 = 0$$

$$A3 = 0. \quad B3 = 0.$$

The y-axis runs backwards (maximum at the bottom to minimum at the top) unless A1 is equal to 0. An example is given in ENERGY.COM -- see Appendix A.

Characters of the user's choice which mark the actual data points may also be plotted if ISSW(5) = -1. Note should be made that these are not centered characters, so that the data point actually occurs wherever the plotter commences drawing the character.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 7

Function: Plot one frame containing up to six curves.

JSW option: JSW is the column number to be plotted. It may be changed while in the plotting branch.

Output device: Plot information goes to Metacode file, unit 8.

ISSW options: ISSW(5) = -1 plots character to mark actual data points. Character is requested while in plot branch.

ISW = 8: Calculates gravitational available potential energy per unit mass (GPE) and per unit area (TGPE), from the horizontal averaged steric volume \overline{DVI} (VRBL(18)) in column 1 and for the reference steric volume DVF (VRBL(19)) in column 2, except for a constant of integration. GPE and TGPE relative to some reference pressure are calculated by subtracting from GPE and TGPE at each level the value at the level corresponding to the desired reference pressure (denoted by level number JREF) in AVRGS branch ISW = 10. GPE is stored in column 1, TGPE in column 2. The units are 10^{-4} $J \cdot kg^{-1}$ and $10^{+4} J \cdot m^{-2}$, respectively.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 8

Function: Calculate GPE and TGPE except for a constant of integration

JSW options: None

Output device: None (GPE and TGPE replace \overline{DVI} and DVF in columns 1 and 2, respectively, of array C.)

ISSW options: None

ISW = 9: Integrate over pressure columns JSW to KLIST. This is an alternate method for calculating GPE and subsequently TGPE,

with DVI - DVF (VRBL(51)) in column JSW. It may also be used to compute the compressibility effects in the GPE calculation (see equation 28 in Bray and Fofonoff, 1981).

The integration is performed starting with the first element in the column, and continuing to the last; the reference value must be subtracted in a separate operation, using AVRGS branch ISW = 10.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 9

Function: Integration over pressure (except for a constant) of columns JSW to KLIST

JSW options: Columns JSW to KLIST are integrated

Output device: None

ISSW options: None

ISW = 10: Subtract value at reference pressure (level corresponding to JREF) from all other elements in columns JSW to KLIST

Output device: None

ISSW option: None

ISW = 11: Add up to four scaled columns, according to

J = IREC

$$C(J,JC1) = CR1*C(J,JC1) + CR2*C(J,JC2) + CR3*C(J,JC3) \\ + CR4*C(JREF,JC4)$$

If JSW = 1, JC1, CR1 to JC4, CR4 are entered; no addition is performed.

If JSW = 0, addition is performed using most recently input parameters.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 11

Function: Add up to four scaled columns, row by row

JSW Option: 0: perform addition

1: input scaling and column parameters

Output device: None

ISSW option: None

ISW = 12: Return to PEPLS

ISW = 13: Multiply up to three scaled columns, row by row according to
 $C(IREC,I) = CON1*C(REC,I)*\{CON2*C(IREC,J)*[CON3*C(IREC,K)]\}$
If I = -1 no operation is performed.
If J = -1 then the expression in {} is set to 1; if
K = -1, the expression in [] is set to one, allowing one,
two or three scaled columns to be multiplied together. The
parameters may be changed when the branch is accessed. The
default values are I,J,K = -1; CON1, CON2, CON3 = 1.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 13

Function: Multiply up to three columns, row by row

JSW options: None

Output device: None

ISSW options: None

ISW = 14: Output in map format to unit KTO. Branch requests output
file name and level number (JREC) desired. Variables output
are:

IDSTN (station identifier: ship, station), XLAT, XLONG,
(VRBL(NV(K)), K = 1,3), (C(JREC,K),K = 4,5)
in format (1H ,A5,2(F8.2),5F(8.3)).

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 14

Function: Output in map format

JSW option: None

Output device: Unit KTO (may be changed in branch; default
is 60)

ISSW options: None

ISW = 15: Not used

ISW = 16: Take any single column to any power, row by row. Operations
are performed on the absolute value of all elements. If
JSW = 1, exponent and column inputs are prompted. If
JSW = 0, exponentiation is performed. The call to JSW = 0
should immediately follow that to JSW = 1, as the variables
used for exponent and column number are not unique to this
branch.

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 16

Function: Exponentiation of a single column

JSW options: JSW = 0: Operation performed

JSW = 1: Exponent and column entered

Output device: None

ISSW options: None

ISW = 17: Integration of error terms: interval pressure squared as the integration variable. This is intended for the calculation of measurement and finestructure errors in GPE and TGPE; as such it may be used on columns containing averaged values of VRBL (75 and 77 through 81) -- see Table 6. This branch uses the same algorithm as AVRGS branch ISW = 9, with ΔP^2 instead of ΔP as the integration variable. See AVRGS branch ISW = 9 for a summary.

ISW = 18: Writes into column 5 the difference in pressure between each pair of levels, beginning at the top.

ISW = 19: Exchange columns JSW and KLIST.

ISW = 20: Input a new single element of C. Branch prompts for column and row of element to be changed.

ISW = 21: Compute the standard deviation and store in column 1 of any quantity X for which \bar{X} (the average value) is stored in column 4 and \bar{X}^2 in column 3.

ISW = 22: Compute the dynamic height for each station at any range of levels referred to level JREF and output in map format.

Branch prompts for output device (default is 60), and level numbers (JREC1, JREC2) for dynamic height calculation.

Reference level JREF may be changed in AVRGS branch

ISW = 3. To calculate dynamic height NV(1) must be 18,

NV(2) 19. Variables output are:

IDSTN (station identifier), XLAT, XLONG, Dynamic height
(in dynamic centimeters), (NV(K),K = 3,6).

Output occurs for ND stations, beginning with the first station in JSHP.PTN (unit 12).

SUMMARY - PEPLT:AVRGS: KBR = 4, ISW = 22

Function: Compute dynamic height relative to JREF for any range of pressure, for each of ND stations and output in map format. Four optional variables are also output, for the same range of pressure. An example command file, DYNHT.COM is found in Appendix A.

ISW options: None

Output device: Unit KTO (default 60; may be changed by the user when the branch is accessed).

ISSW options: None

PEPLT Branches (KBR), continued

- 5: Set values of elements in the ISSW array. Up to 16 inputs are allowed, each consisting of the element number followed by the element value (-1 or Ø). Terminate before 16 by typing /.
- 6: Restart main program.
- 7: Exit program: a YES response to the branch query 'EXIT PROGRAM ' results in the execution of a FORTRAN stop. A NO response returns the PEPLS prompt.

Metacode Translators

The translators for the plot files (written to unit 8) created in AVRGS (branch ISW = 7) and TABLE (PEPLS branch KBR = 1) are device specific. That is, each graphics terminal has its own version. The CALCOMP high speed plotter has two versions: one with default plotting parameters, and one which allows the user to enlarge or stretch the plots, alter their distribution on the plotter paper, etc. The IMLAC and Tektronix terminals also have versions of the translator to allow plot previewing.

For all translators:

If the plot file was written to any other file than that named FOR008.DAT (via an ASSIGN statement before running PEPLT) then you must

assign that ouput file name to unit 8 before running the translators.

For example, if your plot file is named PLOT.PPT, you must make the following assignment:

ASSIGN PLOT.PPT FOR008.

For the CALCOMP (both versions) you must also assign terminal TTA4: to FOR061:

ASSIGN TTA4: FOR061

Then

RUN MCTRNPLOT (for MetaCode TRAnslator PLOT)
plots with default parameters, and

RUN MCTRNP LT2

prompts the user for changes in the plotting parameters before executing the plots. MCTRNP LT2 asks three questions: first, how many plots in the y-direction (across plotter)? The default is 1, and is retained if a / is entered. Second, what size shall the plots be? The default is 10 by 10 inches. The new dimensions are entered in inches, and need not be equal for x and y. Again a / retains the default values. Finally, the program asks for the distance between plots, in inches. The default is 2 inches in both x and y. All plots in the file assigned to unit 8 are plotted, sequentially.

For the Tektronix (or the IMLAC in Tektronix mode):

RUN MCTRNTK

starts the plot previewer. If there is more than one plot, the program prompts for continuing to the next plot by asking 'Option ?' to which the user should respond C for continue, until all plots in the file assigned to unit 8 have been plotted.

For the IMLAC (recommended over the IMLAC in Tektronix mode, since it is simpler, and uses more of the screen):

RUN MCTRNDYNI

starts the plot previewer. This program also prompts for continuation if there is more than one plot.

This translator information is accurate as of December 1980. If you encounter difficulties you should refer to the current VAX manual.

4. Modification of POTEN to accept input CTD data in other than CTD78 disc format.

This section is intended as a guide to assist users who wish to use POTEN on CTD data with formats other than that read by the standard version. In this section the header information required by POTEN is described in detail, and the procedure for reading data is explained. The only subroutine which must be changed is DATA, providing that the input data is an even series in pressure with no gaps.

DATA requires the following header information for each station:

Description	Variable Name	Format
Ship Name	ISHP	A2
Cruise	ICRUIS	A3
Station	ISTAS	I3
Decimal Latitude (south negative)	XLAT	F
Decimal Longitude (west negative)	XLONG	F
Day	IDA	I2
Month	IMO	I2
Year (last two digits)	IYR	I2
Time (24 hour clock)	ISTME	I4
Station Label	LBBL(3)	3A4
Minimum Pressure	PMIN or IPR	F or I
Maximum Pressure	LPR	I

The CTADATA library subroutines not needed for formats different from the disc version of CTD78 are:

PVER	
CRUISE	Header Information
STATION	
DATIDX	Data Retrieval
GETDAT	

Also, the common file IDXREC.DIM should not be included in DATA -- see the statement INCLUDE 'IDXREC.DIM'. The variable LLREC is the total number of stations in the subindex directory; all statements in DATA and COMPS which refer to LLREC may be deleted. The data are stored in arrays PRESS and DATAIX.

Pressure is stored in PRESS,(#), temperature in DATA(1, #), salinity in DATA(2, #) with # the data scan number. Subroutine DATA must fill DATA and PRESS (all scans) when it is called for each station. Finally, DATA must return to COMPS the total number of data scans, JRMAX.

Stations are selected by the call to DATA in COMPS. The call is
CALL DATA (KST,1)

In COMPS, KST is the sequential number in the DO loop from ISW to JSW in branch 1 (or 13). If the input data is on magnetic tape, the user may wish to change the DO loop in COMPS to go from 1 to JSW: that is, start at the beginning of the tape and read through ISW stations.

The section of DATA in which the ship and cruise specification may be changed (NSW = 2) can be readily modified to accept similar information (in branch 13) pertinent to the user's input data.

The header information should be read in following statement # 5, replacing the statements between # 5 and # 54. The data should be read in in statements which replace the calls to DATIDX and GETDAT.

Acknowledgements

Nick Fofonoff was responsible for early versions of most of the programs and subroutines documented here; his contribution to this work is gratefully acknowledged. Jerry Needell, Dan Georgi and Marie-Noelle Houssais used these programs, discovered errors, and suggested improvements. The manuscript was improved by constructive criticism from Bac-Lien Hua, and was typed by Mary Ann Lucas and Audrey Williams.

This work was supported by the Office of Naval Research under contracts N00014-76-C-197, NR083-400 and N00014-79-C-0071, NR083-004 and by NSF grant OCE-77-19403.

References

- Armi, L., and N. A. Bray, 1981. A standard analytic curve of potential temperature vs salinity for the western North Atlantic. Deep-Sea Res., submitted.
- Bray, N. A., and N. P. Fofonoff, 1981. Available potential energy for MODE eddies. J. Phys. Oceanogr., 11(1), 30-47.
- Bryden, H. L., 1973. New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, 401-408.
- Fofonoff, N. P., 1977. Computation of potential temperature of seawater for an arbitrary reference pressure. Deep-Sea Res., 24, 489-491.
- Fofonoff, 1981. Algorithms for oceanographic computations to appear as a publication of SCOR Working Group 51.
- Fofonoff, N. P., and H. L. Bryden, 1975. Specific gravity and density of seawater at atmospheric pressure. J. Mar. Res. (Suppl.), 33, 69-82.
- Millard, R. C., Blumer, A., and N. Galbraith, 1978. A digital tape format for Woods Hole Institution CTD Data. W.H.O.I. Technical Report 78-43.
- Millero, F. J., Chen, C.-T., Bradshaw, A., and K. Schleicher, 1980. A new high pressure equation of state for seawater. Deep-Sea Res., 27A, 255-264.

Appendix A
Example command files for different routine
calculations using POTEN and PEPLT.

In this appendix documented command files which perform various routine calculations are listed. In the order in which they appear they are: ENERGY.COM, POTEN.COM, PEPLT.COM, TABLE.COM, and DYNHT.COM. Brief descriptions of these files are also found in Table 2. The files themselves contain detailed documentation. Example plots from ENERGY.COM are also included: see Figures 5 to 12. Example plots from TABLE.COM are found in Figure 4.

5 \$! ***** ENERGY.COM *****

 10 \$!COMMAND FILE TO COMPUTE APE FROM CTD78 FORMAT DATA. CREATES

 18 \$!STANDARD PRINTOUT AND PLOTS. INTENDED AS AN AID IN LEARNING

 26 \$!TO USE THE VAX-11 PROGRAMS POTEN AND PEPLT.

 34 \$!4 JULY 81. NAN BRAY

 42 \$!

 50 \$SET DEFAULT DRAZ:<316316.LDES

 100 \$ASSIGN JSHPF5.PTN FOR012 !FILE TO BE CREATED BY POTEN CONTAINING

 150 \$! STATION IDENTIFIERS.

 200 \$ASSIGN PRINT.PTN FOR004 !FILE FOR LINEPRINTER OUTPUT FROM POTEN

 300 RUN/NODEB POTEN

 400 YES INITIALIZE COMMON

 500 NO DO NOT INITIALIZE REGRESSION PARAMETERS

 600 2.5 !PRESSURE INTERVAL FOR INPUT DATA

 700 3.1.1747 !SET PARAMETERS FOR REGRESSION

 800 ,,,.,2./ !SET PDIFF TO 208--INTERVAL OVER WHICH TO,SO,OVO AVERAGED

 900 / !DO NOT CHANGE DELP--PRESSURE INTERVAL FOR INPUT DATA

 1000 NO DO NOT CHANGE REGRESSION PARAMETERS

 1100 / !LEAVE TIME WINDOW AT DEFAULT 0-365 DAYS

 1200 / !LEAVE EAST-WEST SPACE WINDOW AT DEFAULT: -180,180 DEG

 1300 / !LEAVE NORTH-SOUTH SPACE WINDOW AT DEFAULT: -90,90 DEG

 1400 YES CHANGE DATA LABEL

 1500 LDE F55 TEST--STANDARD VERSION, NEW EOS--22 JULY 81

 1600 11/ !SET ISSW ARRAY

 1700 11,-17 !LIST STATION INFORMATION TO UNIT KLIST (FILE PRINT.PTN)

 1800 11/

 1900 12,0/ !DO NOT LIST REGRESSION SUMMARY AT EACH DEPTH FOR EACH STATION

 1950 11/

 2000 13,-1/ !CREATE *.REG,*.AVG FILES

 2050 11/

 2100 5,0/ !DO NOT LIST INDIVIDUAL INPUT DATA SCANS

 2150 11/

 2200 10,0/ !DO NOT LIST REGRESSION COEFFICIENTS FOR EACH LEVEL

 2500 1,229,236,4/ !USING DEF CRUISE SPECS, REGRESS STA REF # ISW TO JSW

 2660 13,201,208,4/ !CHANGE THE CRUISE SPECS, THEN AS IN PREVIOUS COMMAND

 2675 W !SUBDIRECTORY VERSION

 2690 ISODD003 !SHIP, CRUISE, PROJECT NUMBER

 2900 11/ !RESET ISSW ARRAY

 3000 12,-17 !LIST AVERAGED REGRESSION COEFFICIENTS

 3100 4,1,0,4/ !PROCEED THROUGH ENTIRE AVERAGING PROCESS. LISTS TO PRINT.PTN

 3200 12/ ?EXIT PROGRAM?

 3300 YES

 3400 \$ASSIGN PRINT.PPT FOR004 !LISTING FILE FOR PEPLT OUTPUT

 3500 \$ASSIGN PLOT.PPT FOR008 !INCAR PLOT FILE FOR PEPLT PLOTS

 3600 RUN/NODEB PEPLT

 3700 NO DO NOT READ IN PREVIOUSLY STORED COMMON

 3800 YES INITIALIZE DATA SELECTION PARAMETERS

 3900 5/ !SET ISSW ARRAY

 4000 2,-17 !LIST OPERATIONS PERFORMED, IN PRINT.PPT

 4050 5/

 4100 5,-17 !PLOT CHARACTERS ON PLOTS FOR IDENTIFICATION

 4200 4,2,1,6/ !ZERO C ARRAY IN AVRGs. PROGRAM CONTROL NOW IN AVRGs.

 4300 4,3,17 !SET VARIABLE SELECTION PARAMETERS

 4400 1000,.,.,.,50/ !CHANGE 1000 TO # OF STATIONS IF ND < ALL

 4500 / !DO NOT CHANGE AV THROUGH NXIT

 4600 / !DO NOT CHANGE A1 THROUGH B3

 4700 / !DO NOT CHANGE NXI THROUGH NYZ

 4800 4,1,1,6 !READ VARIABLES AS SELECTED INTO C ARRAY.

 4900 4,4,1,3 !DIVIDE COLUMNS 1-5 BY #NUMBER OF STATIONS TO AVERAGE

 5000 4,6,1,4 !WRITE C ARRAY TO PRINT.PPT

 5100 4,9,1,3 !INTEGRATE COLUMNS 1-3 WITH RESPECT TO PRESSURE

5200 4,10,1,3 !SUBTRACT FROM ALL LEVELS THE VALUE AT LEVEL JREF
 5325 4,6,1,4 !WRITE C ARRAY TO PRINT.PPT
 5400 4,11,0/ !SUBTRACT FROM COL 1 COLS 2,3; ADD VALUE AT JREF FROM COL 4
 5500 4,6,1,4 !WRITE C ARRAY TO PRINT.PPT
 5600 4,11,1/ !RESET ADDITIVE CONSTANTS
 5700 1,1.,+2*1.,+3,1.,+4,0. !REPLACE COMPRESSIBILITY TERMS
 5800 4,11,0/
 5900 4,16,1/
 6000 .5,5 !TAKE COLUMN 5 TO THE POWER .5
 6100 4,16,0/
 6200 4,6,1,4 !WRITE C ARRAY TO PRINT.PPT
 6300 4,7/ !CALL PLOT BRANCH
 6400 4,3 !4 PLOTS IN THIS FRAME, STARTING AT LEVEL 3 ON EACH
 6500 YES INPUT NEW PLOT LABEL
 6600 LDE F55 NFW EOS--22 JULY 81
 6700 NO DO NO USE DEFAULT AXIS PARAMETERS
 6800 -20,200,0,3000 !XMIN,XMAX,YMIN,YMAX
 6900 YES CHANGE X-AXIS LABEL
 7000 APE (CM/SEC)*42
 7100 YES CHANGE Y-AXIS LABEL
 7200 PRESSURE, DB
 7300 1 !PLOT COL 1
 7400 * !* IS PLOT CHARACTER IDENTIFIER (NOT CENTERED!!)
 7500 2 !PLOT COL 2
 7600 *
 7700 3 !PLOT COL 3
 7800 0
 7900 4 !PLOT COL 4
 8000 X
 8100 4,7/ !CALL PLOT BRANCH FOR NEXT PLOT
 8200 1,1/ !PLOT IN THIS FRAME; STARTING AT LEVEL 1
 8300 NO DO NOT CHANGE PLOT LABEL
 8400 NO DO NOT USE DEFAULT AXIS PARAMETERS
 8500 0,100,0,3000
 8600 YES CHANGE X-AXIS LABEL
 8700 RMS DISPLACEMENTS, DB
 8800 NO DO NOT CHANGE Y-AXIS LABEL
 8900 5 !PLOT COL 5
 9000 *
 9100 4,2,1,5 !ZERO COLUMNS 1-5 OF C ARRAY
 9200 4,3,0/ !RESET SELECTED VARIABLE PARAMETERS, LEAVING OTHERS AS BEFORE
 9300 ,50,61,65,64,19/
 9400 /
 9500 /
 9600 /
 9700 4,1,1,5 !READ VARIABLES INTO COLUMNS 1-5; START AT TOP OF JSHP.PTN LTS
 9800 4,4,1,5 !DIVIDE COLUMNS 1-5 BY NUMBER OF STATIONS
 9900 4,6,1,4 !WRITE C ARRAY TO PRINT.PPT
 10000 4,17/ !RETURN CONTROL TO PEPLS
 10100 5/ !SET ISSW ARRAY
 10200 5,0/ !END CHARACTERS TO IDENTIFY PLOTS
 10300 4,7/ !CALL PLOT BRANCH FOR NEXT FRAME; SEE EARLIER DESCRIPTION
 10400 1,1/
 10500 NO
 10600 NO
 10700 34,8,36,8,0,3000
 10800 YF
 10900 SALINITY, PPT
 11000 NO
 11100 2
 11200 4,7/

11300	1,1/
11400	NO
11500	NN
11600	2,22,0,3000
11700	YE
11800	POTENTIAL TEMPERATURE, DEG C
11900	NO
12000	3
12100	4,7/
12200	1,1
12300	NO
12400	NO
12500	0,5,0,3000
12600	YE
12700	N, CPH
12800	NO
12900	4
13000	4,7/
13100	1,1
13200	NO
13300	NO
13400	40,220,0,3000
13500	YE
13600	DELTA-F, 1E-5 CM**3/GM
13700	NO
13800	5
13900	4,3,0/ !RESET SELECTED VARIABLE PARAMETERS
14000	/
14100	/
14200	0.,1./ !NOW GOING TO PLOT S(THETA) RATHER THAN S(P), CHANGE A1,A2
14300	,,3/
14400	4,7/
14500	1,1
14600	NO
14700	NN
14800	34.8+36.8+2,22
14900	YE
15000	SALINITY, PPT
15100	YE
15200	POTENTIAL TEMPERATURE, DEG C
15300	2
15400	4,7/ !CALL PLOT BRANCH FOR FINAL FRAME; DEEP THETA-S
15500	1,37
15600	NO
15700	NO
15800	34.93,35.03,2.6,4.8
15900	NN
16000	NN
16100	2
16200	4,12/ !RETURN CONTROL TO PFPLS
16300	7/ !EXIT PROGRAM?
16400	YES
16500	SPRINT/DEL PRINT.PTN,PRNT.PPT

Figure 5: Example plot from ENERGY.COM: APE

Figure 6: Example plot from ENERGY.COM.
Rms vertical displacements, π , in db.

Figure 7: Example plot from ENERGY.COM
Averaged salinity in ppt along adiabatically leveled surfaces.

Figure 8: Example plot from ENERGY.COM
Potential temperature in °C averaged along adiabatically leveled surfaces.

Figure 9: Example plot from ENERGY.COM
Buoyancy frequency N in cph averaged along adiabatically leveled surfaces.

Figure 10: Example plot from ENERGY.COM
Reference (adiabatically leveled) steric anomaly in units of
 $10^{-5} \text{ cm}^3/\text{gm}$.

Figure 11: Example plot from ENERGY.COM
Potential temperature vs salinity computed as averages
along adiabatically leveled surfaces.

Figure 12: Example plot from ENERGY.COM
Deep potential temperature vs salinity.

50 \$! ***** POTEN.COM *****
100 \$! TASK IS TO SET UP PARAMETERS FOR AN INTERACTIVE RUN OF POTEN
110 \$! FINAL INSTRUCTION IN THIS COM FILE CHANGES KIN TO 8, THEREBY
120 \$! RETURNING CONTROL TO THE TERMINAL.
130 \$!
200 S\$ASSIGN PRINT.PTN FOR004
300 S\$ASSIGN JSHPFSS.PTN FOR01? !CHANGE JSHPFSS TO CORRECT STATION LIST
500 RUN/NOODER POTEN
600 YES INITIALIZE COMMON
700 NO DO NOT INITIALIZE REGRESSION PARAMETERS
716 2.5 !PRESSURE INTERVAL FOR INPUT DATA
1200 0.....6/ !CONTROL NOW RETURNS TO TERMINAL FOR INTERACTIVE SESSION

5 S! ##### PEPLT.COM #####
10 S! TASK IS TO SET UP PARAMETERS FOR AN INTERACTIVE RUN OF PEPLT
20 S! LAST STATEMENT IN THIS COM FILE CHANGES KIN TO 6, THEREBY
30 S! RETURNING CONTROL TO THE TERMINAL.
40 S!
100 S\$SIGN JSHPFS.PTN FOR012 !CHANGE JSHPFS TO CORRECT STATION LIST
125 S\$SIGN PLOT.PPT FOR008 !PLOT.PPT IS METACODE FILE
150 S\$SIGN PRINT.PPT FOR004 !PRINT.PPT IS LIST FILE
200 RUN/NOJOB PEPLT
300 NO DO NOT READ IN PREVIOUSLY STORED COMMON
500 YES INITIALIZE DATA SELECTION PARAMETERS
600 4,2,1,6,,,6/ !CONTROL NOW RETURNS TO TERMINAL FOR INTERACTIVE SESSION

50 \$! ##### TABLE.COM #####
 100 \$! TASK IS TO CREATE TWO PLOTS CORRESPONDING TO FIGURES
 200 \$! 4 AND 5 IN BRAV(1981) BLUE COVER REPORT. THE FIRST
 300 \$! FIGURE IS BUOYANCY FREQUENCY N AS A FUNCTION OF DEPTH
 400 \$! AND POSITION. THE SECOND IS VERTICAL DISPLACEMENT.
 500 \$! BOTH ARE CREATED USING TABLE SUBROUTINE OF PPPLT;
 600 \$! THE FIRST FIGURE USES THE DEFAULT PLOT SPECIFICATIONS.
 700 SASSIGN JSHPF5.PTN FOR008
 800 SASSIGN JSHPF5.PTN FOR012
 900 RUN/NODES PPPLT
 1000 NO DO NOT READ IN PREVIOUSLY STORED COMMON
 1100 YES INITIALIZE DATA SELECTION PARAMETERS
 1200 1.?/ !INITIALIZE PLOT PARAMETERS IN TABLE
 1300 16/ !ENTER NUMBER OF STATIONS IN PLOT
 1350 3/ !3 IS FIRST LEVEL PLOTTED
 1400 YES INPUT NEW PLOT LABEL
 1500 LDF FSS: N,CPH
 1600 NO DO NOT USE DEFAULT AXIS PARAMETERS
 1700 / !USE THESE MIN AND MAX
 1800 YES CHANGE X-AXIS LABEL
 1900 KM EAST OF ORIGIN
 2000 YES CHANGE Y-AXIS LABEL
 2100 KM NORTH OF ORIGIN
 2200 1.0/ !PLOT
 2300 1,1/ !CHANGE PARAMETERS FOR SECOND PLOT
 2400 16,,,100,3000/ !100 IS DISPLACEMENT AXIS IN DB
 2500 3/
 2500 YES CHANGE PLOT LABEL
 2600 LDF FSS: VERTICAL DISPLACEMENTS, DB
 2633 NO DO NOT USE DEFAULT AXIS PARAMETERS
 2666 / !USE THESE MIN,MAX VALUES
 2700 NO DO NOT CHANGE X-AXIS LABEL
 2800 NO DO NOT CHANGE Y-AXIS LABEL
 2816 4,3,0/ !CHANGE PLOT PARAMETERS--AVRGS
 2832 /
 2848 /
 2864 .05/ !RESCALE DISPLACEMENTS
 2880 .50/ !PLOT DISPLACEMENTS RATHER THAN N
 2890 4,127 !RETURN TO PEPLS
 2900 1.0/ !PLOT
 3000 7/ !EXIT PROGRAM
 3100 YES

70

10 \$! ##### DYNHT.COM #####
25 \$! TASK IS TO CREATE GPCP COMPATIBLE OUTPUT FROM *.AVG FILES AT
31 \$! SPECIFIED LEVELS PF. VARIABLES OUTPUT ARE STN ID,PF,XLAT,
37 \$! XLONG,DYN HT REF TO PF AT LEVEL SO,TO,SO,REF SPECIFIC VOL,TIME
43 \$! (JULIAN DAYS FROM 1 JAN+DECIMAL HOURS); FORMAT IS
46 \$! 1H 4A5,14,2F18.2),3F8.3) 28 MAY 81 NAN BRAY
54 \$! NUMBER OF STATIONS OUTPUT, OUTPUT VARIABLES, AND REFERENCE PRESSURE
58 \$! FOR DYNAMIC HEIGHT MAY BE CHANGED IN AVRGS BRANCH 3.
74 \$! DYNAMIC HEIGHT OUTPUT IN DYNAMIC CENTIMETERS.
89 \$!
100 \$ASSIGN JSHPF5.PTN FOR012 !CHANGE JSHPF5 TO APPROPRIATE STATION LIST
200 RUN/NODEB PEPLT
300 NO DO NOT READ IN INITIALIZED COMMON
500 YF INITIALIZE DATA SELECTION PARAMETERS
600 4,7,1,6/ !ZERO C ARRAY
700 4,3,1/ !SET DATA VARIABLES
800 1000,18,19,13,14,19,7,50,55/
900 /
1000 /
1100 /
1200 4,22,1,6/ !CREATE FILES FOR EACH LEVEL REQUIRED
1250 YES INPUT NEW FILE NAME
1300 TTEST.DAT
1400 15,17 !RANGE OF LEVELS FOR WHICH DH WILL BE OUTPUT
3400 4,12/ !RETURN CONTROL TO PEPES
3500 7/ !EXIT PROGRAM?
3600 YES
3700 SSORT/KEY=(POSITION:7,SIZE:6) TEST.DAT TESTP.DAT !SORTS BY PRESSURE

Appendix B.
Program Listings for POTEN

50	POTENT PTENS: SHORT DOCUMENTATION	KBR	ISW	JSW	KLIST	DESCRIPTION
100		-	-	-	-	
150	0	-	-	-	-	SHORT DOCUMENTATION
200	1	-	-	-	-	COMPUTE REGRESSIONS FOR ISW
300						SEQUENTIAL STATIONS.
400	2	-	-	-	-	INITIALIZE DATA SELECTION
500						PARAMETERS.
600	3	0	-	-	-	SET PARAMETERS: SHORT LIST.
700	1	-	-	-	-	SET PARAMETERS: FULL LIST;
800						STORES COMMON IN FILE KPTCM
900	4	1	-	-	LU	AVRCP AVERAGING SUBROUTINE.
1000	5	-	-	-	-	NOT USED
1100	6	-	-	-	-	LIST LABEL
1300	7	-	-	-	-	NOT USED
1400	8	-	-	-	-	LIST HEADER INFORMATION.
1500	9	-	-	-	-	LIST DATA RECORD.
1600	10	-	-	-	-	NOT USED
2000	11	-	-	-	-	SET ISSW (SWITCH) ARRAY.
2100	12	-	-	-	-	EXIT PROGRAM.

```

93   C COMPTEN.FOR FILE: DTENSION,COMMON AND EQUIVALENCE FOR POTEN
96   C AVAILABLE POTENTIAL ENERGY PROGRAMS. N.BRAY
98   C
100      PARAMETER KCM= 235
300      BYTE LB,PROVER
400      C
433      C DIMENSION
466      C
500      DIMENSION KHUG(150),KBUF(46),VR(1)
600      DIMENSION KPTCH(KCM)
650      DIMENSION PRESS(3300)
700      C
716      C BLANK COMMON
732      C
750      COMMON KIN
775      C BEGINNING OF STORED COMMON
800      COMMON KTTX,KLIST,KOUT,KTP,ISW,JSH,KBR
825      C
850      C BEGINNING OF HEADER
875      C
900      COMMON LTYPE,NHHR,ICON,ISHP,KCAST,DAY,TPR,LPR
1000     COMMON XLAT,XLONG,WGT,XLTO,XLGO
1100     COMMON LBL(3),LBL'(13),NSC(60),NPR(60),NSECTION
1125     C
1150     C BEGINNING OF DATA BUFFER KBUF
1175     C
1200     COMMON KTYPE,NBUF,IREC,N,NDP,KSH,LI,LZ
1300     COMMON PF,TO,SO,DV0
1400     COMMON PI,THF,SF,DVF
1500     COMMON PM,THM,SM,DVM
1600     COMMON DH,PE,XPE
1700     COMMON CP(8),Z1,CT(8),Z2,F1,F2,F3
1712     C
1724     C END OF KBUF
1736     C
1750     COMMON DELP,DP
1800     COMMON A1,A2,A3,N1,N2,N3
1850     COMMON C(6),ISSWF16)
1896     COMMON ICROUTS,TPROJ,PROVER
1899     COMMON JMAX
1962     C
1874     C END OF STORED COMMON
1886     C
2000     COMMON P(3300),T(3300),S(3300),DV(3300)
2100     COMMON TH(3300),PT(3300),IT(3300)
2200     COMMON B(8),BP(8),BT(8),BA(8),CO(36),MRFB8)
2300     COMMON EX(6),JEX(6)
2400     COMMON WT(600),JSHP(600)
2425     COMMON DATA(3300,0:2)
2450     COMMON JSTN,JRMAX,M1,M2
2475     COMMON LRECG,KKST
2500     C
2533     C FOUTVALENCE
2566     C
2600     FOUTVALENCE (KHUG,LTYPE), (KBUF,KTYPE)
2700     FOUTVALENCE (PDIF, A1), (VR,PF), (KTTX,KPTCH)
2750     FOUTVALENCE (PRPSS,DATA)
2800     C

```

```

100 C INDEX RECORD FIELDS DECOMPOSED
200 C USES LABELLED COMMON & USE INCLUDE STATEMENT TO MERGE INTO PROGS.
300 C RCM MAR 27 1980
400 C ARRAY IDXREC CONTAINS THE INDEX RECORD
500 C ALWAYS THE FIRST RECORD OF A DATA FILE
600 C IDXREC HAS THE SAME STRUCTURE IN THE SUBINDEX FILE
700 C
800 COMMON/TNDX/ IDXREC(256)
900 *****
1000 C      LPGVER IS AN ASCII DESCRIPTION OF LOADING PROGRAM VERSION
1100      INTEGER LPGVER(4),LSTREC
1200 *****
1300 C LDATE AND LTIME CONTAIN ASCII DATE & TIME FILE CREATED
1400      INTEGER LDATE(3),LTIME(2)
1500 C DEVICE AND FILSPEC FORM A COMPLETE FILE SPECIFIER
1600      INTEGER FILSPEC(8),DEVICE
1700 C IFHED ARRAY HAS THE SAME STRUCTURE AS CTD78 VAX FORMAT
1800      INTEGER IFHED(90),ICMNT(35)
1900 C CNTRL HAS THE LOCATIONS OF THE BEGINNING WORD OF
2000 C INFORMATION FIELDS OF THE INDEX RECORD
2100 C 1=CTD78 HEADER 2=ABREVIATED DATA DESCRIPTORS 3=TAPE 4=FILE SPEC
2200      INTEGER CNTRL(6)
2300 C VARDES ARRAYS CONTAIN ABREVIATED VARIABLE DESCRIPTORS
2400 C MIN/MAX VALUES IVARDES CONTAINS MNEMONIC IDENTIFIERS
2500      DIMENSION VARDES(4,16),IVARDES(4,16)
2600      EQUIVALENCE(KEYWD,IDXREC(1))
2700      EQUIVALENCE(CNTRC(1),IDXREC(2))
2800 C LSTREC IS THE NEXT AVAILABLE RECORD IN SUBINDEX FILE 1ST REC. ONLY
2900      EQUIVALENCE(LSTREC,IDXREC(9))
3000      EQUIVALENCE(IFHED(1),IDXREC(13))
3100      EQUIVALENCE(IVARDES(1,1),IDXREC(115)),IVARDES(1,1),IDXREC(115))
3200      EQUIVALENCE(ISCAN,IDXREC(105))
3300      EQUIVALENCE(IRECLG,IDXREC(107))
3400      EQUIVALENCE(INSCAW,IDXREC(106)),INSCAWS,IDXREC(112))
3500      EQUIVALENCE(PMTN,YDXREC(110)),PRSINT,YDXREC(111))
3600      EQUIVALENCE(INTOT,IDXREC(108))
3700      EQUIVALENCE(TMPVAR,IDXREC(109)),TPLLOC,YDXREC(114))
3800      EQUIVALENCE
3900      1,(IFHED(3),ISHIP1),(YFHED(4),ICRUZ),(IFHED(5),ISTAS)
4000      2,(IFHED(7),IYR),(IFHED(8),IMO),(IFHED(9),IDA)
4100      3,(IFHED(11),ILPSD),(IFHED(12),ILTSN)
4200      4,(IFHED(13),ILNSD),(IFHED(14),ILNSM)
4300      5,(IFHED(15),INWST),(IFHED(16),IHRZ),(IFHED(17),IHRZT)
4400      6,(IFHED(19),ILTSD),(IFHED(20),ILTEM)
4500      7,(IFHED(21),ILNEU),(IFHED(22),ILNET)
4600      8,(IFHED(23),IETME),(IFHED(10),ISTME)
4700      9,(IFHED(38),ICAST),(IFHED(27),JOAY),(IFHED(28),INST)
4800      X,(IFHED(55),ICANT)
4900 *****
5000      EQUIVALENCE
5100      1,(DEVICE,IDXREC(193)),(FILSPEC(1),IDXREC(200))
5200      2,(LDATE(1),IDXREC(195)),(LTIME(1),IDXREC(198))
5300      3,(LPGVERT(1),IDXREC(99))
5400 C RMAX IS THE LAST RECORD OF A DATA FILE
5500 C TDXLOC IS THE RECORD # OF THE INDEX FILE = 1 FOR SINGLE STATION FILE
5600      4,(RMAX,IDXREC(209)),(IDXLLOC,IDXREC(208))
5700 *****
5800 *****
5900 C END LABELLED COMMON FOR INDEX RECORD
6000 *****

```

```

100 C POTEN MAIN PROG *****
200 PROGRAM POTEN
300 C *****
400 C
500 C PROGRAM TO COMPUTE REFERENCE SURFACES RELATIVE TO PF FOR
600 C CALCULATION OF AVAILABLE POTENTIAL ENERGY. REGRESSION
700 C FITS ARE MADE TO PRESSURE AND POTENTIAL TEMPERATURE AS
800 C FUNCTIONS OF SPECIFIC VOLUME ANOMALY AT PF.
900 C
1000 C JUNE 28 1976 N FOFONOFF
1100 C
1200 INCLUDE 'COMPOTEN.FOR'
1300 C
1400 C OPEN BINARY FILE FOR STORAGE OF COMMON
1500 C
1600 OPEN(UNIT=10,NAME='KPTCM.DAT',ACCESS='DIRECT',TYPE='OLD',
1700 * RECORDTYPE='FIXED',RECORDSIZE=RCH,ERR=1100)
1800 1 CONTINUE
1900 C
2000 KIN = 5
2100 KITX = 6
2200 KLIST = 4
2300 KOUT = 9
2400 KTP = 1
2500 30 WRITE(KITX,1000)
2600 1000 FORMAT(1H , 'POTEN: POTENTIAL ENERGY PROGRAM')
2700 CALL PTENS
2800 GO TO 50
2900 C
3000 C CREATE NEW BINARY FILE FOR STORAGE OF COMMON IF NO OLD ONE EXISTS
3100 C
3200 1100 OPEN(UNIT=10,NAME='KPTCM.DAT',ACCESS='DIRECT',TYPE='NEW',
3300 * RECORDTYPE='FIXED',RECORDSIZE=RCH,ERR=1100)
3400 GO TO 1
3500 50 END

```

```

100 C PTENS SUBPROG POTEN **** PTENS.FOR FILE ****
200      SUBROUTINE PTENS
300 C ****
400 C
500 C PROGRAM TO COMPUTE REFERENCE SURFACES RELATIVE TO PF FOR
600 C CALCULATION OF AVAILABLE POTENTIAL ENERGY. REGRESSION
700 C FITS ARE MADE TO PRESSURE AND POTENTIAL TEMPERATURE AS
800 C FUNCTIONS OF SPECIFIC VOLUME ANOMALY AT PF.
900 C
1000 C JUNE 28 1976 N FOFONOFF
1100 C
1200 C MODIFIED TO ACCEPT CTD78 VAX DISC DATA AS INPUT 15DEC80 N.BRAY.
1300 C
1400      DIMENSION D(5),DOC(10)
1500 C
1600      INCLUDE 'COMPOTEN.FOR'
1700 C
1800      CHARACTER*8 DOC
1900 C
2000      KIN = 5
2100      KTTX = 6
2200      WRITE(KTTX,40)
2220      40 FORMAT(1H ,'INITIALIZE COMMON (YES OR NO)?')
2280      IF(NOYES(KIN,KTTX).NE.1)GO TO 14
2340 C
2400 C INITIALIZE DATA SELECTION PARAMETERS
2460 C
2520      CALL DATA(KTP,-1)
2580      GO TO 30
2640      14 READ(10,1)KPTCM
2700      18 WRITE(KTTX,20)
2800      20 FORMAT(1H ,'INITIALIZE REGRESSION PARAMETERS (YES OR NO)?')
2900      IF(NOYES(KIN,KTTX).EQ.1)GO TO 29
3000      RFAD(10,1,END=10)KPTCM
3200      5 WRITE(KTTX,23)
3300      25 FORMAT('WHAT IS THE RESOLUTION OF THE INPUT DATA, IN DB?')
3400      READ(KIN,*1)DEL
3450      KLIST = 6
3500      10 WRITE(KTTX,1005)KBR,ISH,JSH,KLIST,KOUT,KTP,KIN
3600      1005 FORMAT(1H ,'POTEN3KBR,ISH,JSH,KLIST,KOUT,KTP,KIN',/,7I4)
3800      READ(KIN,*1)KBR,ISH,JSH,KLIST,KOUT,KTP,KIN
3900      IF(KBR.GT.12)KBR=13
4000      IF(KBR>1300,1300,12)
4100      12 GO TO(100,200,300,400,500,600,703,800,900,1000,1100,1200,100,
4190      *1300)KBR
4200 C
4300 C ****INITIALIZATION ****
4400      15 KTYPE = 0
4500      MHDR = 150
4600      MRUF = 46
4700      NSECTION=9
4800      NPR(1) = 4
4900      NPR(2) = 12
5000      NPR(3) = 17
5100      NPR(4) = 24
5200      NPR(5) = 50
5300      NPR(6) = 90
5400      NPR(7) = 100
5500      NPR(8) = 200
5600      NPR(9) = 500
5700      NPR(10) = 500

```

```

5800      NPR(11) = 0
5900      NPR(12) = 2
6000      NPR(13) = 7
6100      NPR(14) = 13
6200      NPR(15) = 13
6300      NSC(1) = 0
6400      NSC(2) = 400
6500      NSC(3) = 1000
6600      NSC(4) = 1800
6700      NSC(5) = 3500
6800      NSC(6) = 6
6900      NSC(7) = 5
7000      NSC(8) = 4
7100      NSC(9) = 3
7200      NSC(10) = 3
7300      NSC(11) = 20
7400      NSC(12) = 30
7500      NSC(13) = 40
7600      NSC(14) = 50
7700      NSC(15) = 60
7710      PRVER = 'W'
7720      ISHP = 'GY'
7730      ICRUIS = 1
7740      IPPROJ = 3
7750      GO TO 5
7800      30 DFLP=2.
7900      DO 16 J=1,36
8000      16 VR(J) = 0.0
8100      PDIFF = 6.0
8200      A2 = 3.0
8300      A3 = 3.0
8400      LTTYPE = 1
8500      ICON = 0
8600      N = 2
8700      NDP = 10
8800      KSW = 1
8900      WGT = 1.0
8925      DO 17 J=1,16
8930      ISSHIFT=0
8975      17 CONTINUE
9000      GO TO 18
9100      C ***** SELECT DATA AND COMPUTE #1 *****
9200      100 CALL COMPS
9300      GO TO 10
9400      C
9500      C INITIALIZE DATA SELECTION PARAMETERS #2 *****
9600      C
9700      200 CALL DATA(KTP,-1)
9800      C *****SET PARAMETERS #3 *****
9900      300 WRITEIKLIST,3000ICON,KSW,A2,A3,WGT,PDIFF
10000     READIKIN,*ICON,KSW,A2,A3,WGT,PDIFF
10100     WRITEIKLIST,3020IDELP
10200     READIKIN,*IDELP
10300     IF(ISSHIFT,10,320
10400     C
10500     C SUBROUTINE TO ACCEPT REGRESSION PARAMETERS IN ENGLISH AND
10600     C CONVERT TO POTEN PARAMETERS
10700     C
10800     310 CALL PARAM
10900     WRITEIKLIST,3201
11000     C PRINT OUT POTEN FORMAT PARAMETERS

```

```

11100 320 FORMAT('SECTION LEVEL LEVEL INDEX START # OF # OF %,/,,
11200 X 1H , 'NUMBER NUMBER INTERVAL PRESSURE TERMS CYCLES')
11300      NSF=NSECTION
11400      DO 330 I=1,NSE
11500      I1=I+NSE
11600      I2=I+2*NSE
11700      WRITE(KLIST,335)I,NPR(1),NPR(11),NPR(12),NSC(1),NSC(11),NSC(12)
11800      335 FORMAT(13,6I8)
11900      330 CONTINUE
12000 C CHANGE OR LIST DATA SELECTION PARAMETERS
12100      CALL DATA(KTP,0)
12200 C
12300 C CHANGE OR LIST DATA LABEL (IDENTIFIES THE DATA SOURCES)
12400 C
12500      WRITE(KTTX,3015)(LBL(I),I=1,13)
12600      IF(INDYES(KIN,KTTX).EQ.1)THEN
12700      WRITE(KLIST,3010)
12800      READ(KIN,6005)(LBL(K),K=1,13)
12900      ENDIF
13000 C
13100 C STORE COMMON TO BINARY FILE KPTCH
13200 C
13250      IF(JSW.NE.2)THEN
13300      WRITE(10'1)KPTCH
13350      ENDIF
13400      GO TO 10
13500 C
13600 3000  FORMAT(1H , 'ICON,KSW,SOP,SDT,WGT,PDIPF',/,2I4,3F6.2,F7.0)
13700 3005  FORMAT(1H , 'NSC:P,N,NDP',/,5I5,10I3)
13800 3006  FORMAT(1H , 'PRESSURE CONSTANTS',/,15I4)
13900 3010  FORMAT(1H , 'INSERT LABEL <27 CHAR.')
14000 3015  FORMAT(1H , 'INPUT NEW LABEL? OLD LABEL IS: ',/,2H ,13A4)
14100 3020  FORMAT(1H , 'INPUT DATA RESOLUTION',/,F6.1)
14200 C
14300 C *****AVERAGING SUBROUTINE #4 *****
14400 400  CALL AVRCP
14500      GO TO 10
14600 C ***** #5 NOT PRESENTLY USED *****
14700 500  GO TO 10
14800 C      NGR = 5
14900 C      KINP = 5
15000 C      JMAX = 23
15100 C      KOUT = 1
15200 C 501 DO 505 M=9,13
15300 C 505 DO 505 K=1,100
15400 C 505 CR(K,M) = 0.0
15500 C 507 WRITE(KTTX,5010)KOUT,NGR,JMAX,KINP
15600 C 5010 FORMAT(1H , 'AVDVF:KOUT,NGR,JMAX,KINP',/,4I4)
15700 C 512 READ(KIN,512)KOUT,NGR,JMAX,KINP
15800 C 512 DO 530 J=1,NGR
15900 C 520 DO 520 JR=1,JMAX
16000 C 520 READ(KINP,520)NST,KPR,(DI(K),K=1,5)
16100 C 520 IIPR(I) = KPR
16200 C 520 DO 520 M=9,13
16300 C 520 CR(I,M) = CR(I,M) + N(M-R)
16400 C 530 CONTINUE
16500 C 540 DO 540 J=1,JMAX
16600 C 540 CR(I,J) = CR(I,J)/FLOAT(NGR)
16700 C 545 DO 550 I=1,JMAX
16800 C 545 WRITE(KOUT,50001)NST,IIPR(I),CR(I,K),K=9,13
16900 C

```

```

17000 C 550 CONTINUE
17100 C KOUT = 24
17200 C READ(KIN,*),ISW,KOUT
17300 C GO TO (501,507,545,10)ISW
17400 C5000 FORMAT(2I4,I3,5F10.4)
17500 C *****LIST DATA LABEL #6 *****
17600 600 WRITE(KLIST,6005)(LBL(K),K=1,13)
17900 GO TO 10
18000 6005 FORMAT(IH ,13A4)
18100 C ***** #7 NOT PRESENTLY USED *****
18200 C 703 MEOF = 0
18300 C 702 CALL READ(KOUT,KBUF,MBUF,IEOF)
18400 C IF(IEOF)1720,704,704
18500 C 704 MEOF = 0
18600 C 705 IF(ICTYPE)900,900,710
18700 C 710 DO 715 M=1,MHDR
18800 C 715 KHDG(M) = KBUFM(M)
18900 C GO TO 800
19000 C 720 IF(MEOF)10,725,10
19100 C 725 MEOF = 1
19200 C GO TO 10
19300 703 GO TO 10
19400 C *****LIST HEADER RECORD #8 *****
19500 800 WRITE(KLIST,8000)(LBL(K),K=1,3),XLAT,XLONG,XLTO,XLG0
19600 WRITE(KLIST,8005)ICTYPE,MHDR,ICON,ISHP,ICAST,JDAY,TPR,LPR
19800 GO TO 10
20100 9000 FORMAT(1,3A4,4FB.3)
20200 8005 FORMAT(1,' TYPE MHDR ICON SHIP CAST JDAY TPR LPR',/,8I5)
20300 C *****LIST DATA RECORD #9 *****
20400 900 WRITE(KLIST,9000)IREC,PF,T0,S0,DV0,PM,THM,SM,DVM,Z1,Z2
20500 903 IF(ISSW(8))905,10,10
20600 905 WRITE(KLIST,9005)(CP(K),K=1,N)
20700 WRITE(KLIST,9010)(CT(K),K=1,N)
20800 GO TO 10
20900 9000 FORMAT(IH ,12.2F7.1,F7.3,F7.3,F7.21,P6.2,F6.5)
21000 9005 FORMAT(IH ,3HCP ,6E11.4)
21100 9010 FORMAT(IH ,3RCT ,6E11.4)
21200 C *****MAG TAPE FUNCTIONS #10 *****
21300 C1000 CALL PTAPET(I$H,J$H,KLIST)
21400 C KLIST = 6
21500 1000 GO TO 10
21600 C5 ***** SET ISSW SWITCHES #11 *****
21700 1100 WRITE(KTTX,1150)(K,K=1,16),(ISSW(K),K=1,16)
21800 1150 FORMAT(2(IH ,X,16I4,/),' ENTER K,ISSW(K)')1
21900 READ(KIN,*),K,ISSW(K),K=1,16
22000 GO TO 10
22100 C
22200 C ***** EXIT PROGRAM #12 *****
22300 1200 WRITE(KTTX,1210)
22400 TF(NOYES(KIN,KTTX).NE.1)GO TO 10
22500 STOP
22600 1210 FORMAT(IH ,'EXIT PROGRAM?')
22700 C** POTEN: SHORT DOCUMENTATION--BRANCH 0 *****
22800 1300 OPEN(UNIT=50,NAME='POTEN.DOC',TYPE='BLT',READONLY)
22900 DO 1350 N=1,200
23000 READ(50,1325,PND=1312)(DOC(I)/I=1,8)
23100 WRITE(KTTX,1330)(DOC(I),I=1,8)
23200 1350 CONTINUE
23300 1312 CLOSE(UNIT=50)
23400 1325 FORMAT(RA8)
23500 1330 FORMAT(IH ,RA8)

```

23600
23700

GO TO 10
END

```

100 C COMPS SURPROG POTEN *****
200 C *****
300 C SUBROUTINE COMPS
400 C *****
500 C
600 C TO COMPUTE REGRESSION COEFFICIENTS AT SPECIFIED DEPTHS.
700 C
800 C JUNE 28 1976 N FOFONOFF
900 C MODIFIED FOR CTDTA FORMAT INPUT DATA (VAX DISC VERSION) 15 DEC 80
1000 C N.BRAY
1100 C
1200 C INCLUDE 'COMPOTEN.FOR'
1300 C
1400 C
1500 C IF OUTPUT IS REQUESTED THEN OUTPUT TO JSHP.PTN FILE THE
1600 C NUMBER OF STATIONS
1700 C
1800 C 100 CONTINUE
2100 C
2200 C INITIALIZE AND ACCESS INDEX FILE AND CRUISE INFORMATION
2300 C
2400 C CALL DATA(KTP,2)
2500 C
2600 C BEGIN COMPUTATION FOR ISW TOTAL STATIONS
2700 C
2800 C IF (ISW.GT.LLREC) ISW=LLREC
2900 C DO 106 KST=ISW,JSW
3000 C
3100 C READ STATION HEADER FROM UNIT KTP AND CHECK IF IT MEETS
3200 C SELECTION CRITERIA
3300 C READ TEMPERATURE AND SALINITY DATA INTO DATA ARRAY.
3400 C
3500 C 101 CALL DATA(KST,1)
4000 C GO TO 200
4100 C 106 CONTINUE
4200 C
4300 C RETURN TO PTENS
4400 C
4500 C 295 RETURN
4600 C
4700 C COMPUTE REGRESSION VERSION OF DATA
4800 C IF TSSW(13)=1 OUTPUT TO FILE *.REG
4900 C MISCELLANEOUS INFORMATION MAY BE REQUESTED TO BE PRINTED
5000 C TO FILE PRINT.PTN (KLIST=4) BY SETTING ISSW VALUES.
5100 C SEE DETAILED WRITE UP.
5200 C
5300 C KTYPE DISTINGUISHES BETWEEN HEADER AND DATA RECORDS:
5400 C 0=DATA, 1=HEADER.
5500 C KF,KT,KM ARE INDICES
5600 C N IS POLYNOMIAL ORDER
5700 C NDP IS # OF DATA CYCLES OVER WHICH REGRESSION IS PERFORMED
5800 C KERR COUNTS THE # OF REPLACEMENTS MADE BY SUBR EDIT
5900 C IN EACH REGRESSION INTERVAL
6000 C IPR AND LJP KEEP TRACK OF PRESSURE AS AN INDEX
6100 C IREC INDEXES THE LEVELS OF
6200 C
6300 C 200 CONTINUE
6400 C KF = 2
6500 C N = NSC(NSECTION+1)
6600 C NDP = NSC(2*NSECTION+1)
6700 C XNDP = NDP

```

```

6800
7000      KERR = 0
7200      IREC = 1
7400      C
7500      C COMPUTE REGRESSIONS
7600      C
7633      C JMAX IS THE TOTAL NUMBER OF LEVELS.
7666      C
7682      DO 2155 M = 1, JRMAX
7714          P(M) = PRESS(M)
7730          T(M) = DATA(X(M,1))
7746          S(M) = DATA(X(M,2))
7778      2155 CONTINUE
7800      210 DO 270 J = 1, JMAX
7890      C
7900      C SUBR JPR COMPUTES CORRECT PRESSURE PF GIVEN SECTION AND
8000      C INTERVAL INFORMATION
8100      C
8200          IP = JPR(IREC,NPR,NSECTION)
8300          IF(IP.EQ.NSC(KF)) THEN
10500      2152      N = NSC(KF+NSECTION)
10600          NDP = NSC(KF+2*NSECTION)
10700          XNDP = NDP
10733          KF = KF + 1
10766          ENDIF
10800          IND = (IP-PRESS(1))/DELP + 1
10900          M1 = IND-NDP/2
11000          M2 = IND+NDP/2-1
11020          IF(M1.LT.1) THEN
11040              M1=1
11060              M2=NDP
11080          ENDIF
11100          IF(M2.GT.JRMAX) GO TO 280
13400      C      IF FSSW(5)=-1 WRITE OUT SCAN #, SCALED PRESSURE, TEMP,
13500      C      SALINITY.
13600      C
13700          IF(FSSW(5)) 216, 217, 217
13800      216      WRITE(KLIST,2160)(K, P(K), T(K), S(K), K=M1,M2)
13900      2160      *FORMAT(IH,14,3F9.3)
14000      217      CONTINUE
14800      C
14900      C      PERFORM REGRESSIONS OVER INTERVAL CORRESPONDING TO PF
15000      C
15100      C      FIRST, FIND MEANS OF P,S.
15200      C
15300      220      PF = IP
15400          PM = 0.0
15500          SM = 0.0
15600          THM = 0.0
15700          DVM = 0.0
15800          TO = 0.0
15900          SO = 0.0
16000          DVO = 0.0
16100          XN = 0.0
16200      231      DO 230 M=M1,M2
16300          PM = PM + P(M)
16400      230      SM = SM + S(M)
16500          PM = PM/XNDP
16600          SM = SM/XNDP
16700      235      DO 250 M = M1,M2
16800      C

```

```

16900 C CALCULATE POTENTIAL TEMP AND SPECIFIC VOLUME ANOMALY
17000 C REFERRED TO PF.
17100 C
17200 2350 TH(M) = THETA(P(M),T(M),S(M),PF)
17300 DV(M) = DVA(PF,TH(M),S(M))
17400 2352 THM = THM + TH(M)
17500 DVM = DVM + DV(M)
17600 PT(M) = P(M)
17700 TTM = TH(M)
17800 DVX = DV(M)
17900 C
18000 C F1,F2 ARE MIN AND MAX SPECIFIC VOLUME ANOMALY WITHIN
18100 C THE REGRESSION INTERVAL.
18200 C
18300 IF(M=M1)236,236,237
18400 236 F1 = DVX
18500 F2 = DVX
18600 237 IF(DVX-F1)2372,238,238
18700 2372 F1 = DVX
18800 238 IF(F2-DVX)2382,239,239
18900 2382 F2 = DVX
19000 239 CONTINUE
19400 IF(ABS(P(M)-PF)=PDIFF)240,240,250
19500 C
19600 C AVERAGE T,S,DV OVER PF +- PDIFF
19700 C
19800 240 TO = TO + T(M)
19900 SO = SO + S(M)
20000 DVO = DVO + DV(M)
20100 XN = XN + 1.0
20200 250 CONTINUE
20300 THM = THM/XNDP
20400 DVM = DVM/XNDP
20500 DVF = DVM
20600 TO = TO/XN
20700 SO = SO/XN
20800 DVO = DVO/XN
20900 C
21000 C CALL REGRESSION SUBROUTINE
21100 C
21200 2503 CALL LSFT
21300 C
21400 C IF ISSW(10)==1 PRINT OUT REGRESSION COEFFICIENTS FOR THIS LEVEL
21500 C
21600 2507 IF(ISSW(10))291,253,253
21700 2510 M=M1,M2
21800 DVI = DVA(P(M),T(M),S(M))
21900 PTD = PT(M) - PM
22000 TTD = TT(M) - THM
22100 2510 WRITE(KLIST,2511)M,P(M),TH(M),S(M),DVI,DV(M),PTD,TTD
22200 * ,21,22
22300 2511 FORMAT(1H ,I4,F7.1,2F7.3,3F7.2,F7.3,X,F6.3,F7.4,2F3.0)
22400 WRITE(KLIST,2515)(P(M),M=1,N),PM
22500 WRITE(KLIST,2515)(CT(M),M=1,N),DVM
22600 2515 FORMAT(1H ,6EI1.5)
22700 C
22800 C IF # OF EDIT ERRORS IS LESS THAN 4, CHECK FOR ANY POINTS EXCEEDING
22900 C A2 TIMES THE STD DEV Z1 (DEFAULT IS 3), AND EXCLUDE. RE-EDIT.
23000 C
23100 253 IF(KERR.GT.3)THEN
23133 WRITE(KLIST,25300)

```

```

23166 25300 FORMAT(1H , 'KERR IS GREATER THAN 3--EDIT GIVES UP')
23177      GO TO 2536
23188      ENDIF
23194      IF(KERR)2536,2532,2532
23200      2532 00 2535 M=M1,M2
23300      IF(ABS(PT(M)-PM)-A2#7)2535,2534,2534
23400      C
23500      C CALL EDITING SUBROUTINE
23600      C
23700      2534  CALL FDIT(KERR)
23750      TF(KERR)2537,220,220
23775      2537  IF(ISSW(3).EQ.-1)THEN
23800          DVI=DVA(PF,THETA(P(M)),T(M),SM(P(M),PF1,SM))
23825          WRITE(KLIST,25370)P(M),DVI
23850      25370  FORMAT(1H ,F9.1,F9.2,*) FLAGGED IN CMPS, BUT NO
23875      X INTERPOLATION OF T OR S)
23883      ENDIF
23891      GO TO 220
23900      2535 CONTINUE
24000      2536  KERR = 0
24100      C
24200      C IF OUTPUT IS REQUESTED WRITE DATA BUFFER KBUF TO FILE *.REG
24300      C
24400      IF(ISSW(13)1255,260,260
24500      255  WRITE(KOUT)KBUF
24600      C
24700      C IF ISSW(12)=1 WRITE REGRESSION ESTIMATES TO UNIT KLIST
24800      C
24900      260  IF(ISSW(12)1265+267,267
25000      265  WRITE(KLIST,2650)IREC,PF,T0,S0,DV0,DVM,SM,THM,Z1,Z2,N,NDP
25100      2650  FORMAT(1H ,I4,F7.1,ZF7.3,3F7.2,F7.3,X,F6.3,F7.4,2T4)
25200      267  CONTINUE
25300          IREC = IREC + 1
25400      270  CONTINUE
25500      280  IF(ISSW(13)1285+295,295
25600      285  CLOSE(UNIT=KOUT)
25700      GO TO 105
25800      FND

```

```

100  C AVRCP SURPROG POTEN ***** AVRCP *****
150  C *****
200  C          SUBROUTINE AVRCP
300  C *****
400  C
500  C SUBROUTINE TO AVERAGE SPECIFIC VOLUME AND COEFFICIENTS.
600  C
700  C JUNE 28 1976 N FOFONOFF
750  C MODIFIED FOR VAX DISC CT078 FORMAT 15DEC8D N. BRAY
800  C
900  C          INCLUDE 'COMPOTEN.FOR'
1000 C
1100 C DIMENSION
1200 C
1300      DIMENSION CR(100,15), SWGT(100), CP(15), SVAT(100)
1400      DIMENSION APF(100), SVI(100), EOB(100)
1500      DIMENSION VMIN(100), VMAX(100)
1600 C
1700 C CHARACTER
1800 C
1900      CHARACTER*12 FNAME(600), GNAME
2000      CHARACTER*1 IV1,IV2,IV3
2100 C
2200 C EQUIVALENCE
2300 C
2400      EQUIVALENCE (CR,IHDG),(PF,VR)
2500      EQUIVALENCE (CR(1,9),SWGT),(CR(1,10),SVAT),(CR(1,11),SVI)
2600      EQUIVALENCE (CR(1,12),APE),(VMIN,CR(1,12)),(VMAX,CR(1,13))
2800 C
2900 C READ IN STATION #'S TO BE AVERAGED. ENCODE INTO CORRESPONDING
3000 C FILE NAMES.
3100 C
3200      IF (ISW.EQ.1) THEN
3300          REWIND 12
3500          DO 61 K=1,1000
3600          READ(12,610,END=62) M,FNAME(K),WT(K)
3700          610  FORMAT(14,A12,F5.2)
3900          61  CONTINUE
3926          62  CONTINUE
3932          JSTN=K-1
3950          GNAME(9:12)='AVG'
4000          ENDIF
4100 C
4200 C AVERAGING
4300 C
4400      100  ISW2 = ISW - 2
4500      IF (ISW2) 101,113,113
4600 C
4700 C BRANCH 1--INITIAL AVERAGING--BEGINS HERE
4800      101  DO 110 J=1,100
4900      110  T=1,13
5000      110  CR(J,1) = 0.0
5100      112  IRMX = 0
5200 C
5300 C BRANCHES 2 AND 3 BEGIN HERE
5400 C
5500      113  NST = 0
5600 C
5700 C OPRN APPROPRIATE FILE, READ HEADER
5800 C
5900      DO 1200 KK=1,JSTN

```

```

6000      OPEN(UNIT=KOUT,NAME=FNAME(KK),READONLY,TYPE="OLD")
6050      * FORM="UNFORMATTED")
6100      READ(KOUT)KHDC
6200      NSW=5
6300      C
6400      C CHECK IF DATA SELECTION PARAMETERS ARE SATISPIED. IF NOT,
6500      NSW IS RETURNED FROM DATA AS 4, AND STATION IS SKIPPED.
6600      C
6700      CALL DATA(KOUT,NSW)
6800      IF(NSW.NE.5)GO TO 1200
6900      NST=NST+1
7000      DELB=0.0
7100      PPR=0.0
7200      B2=0.0
7300      B3=0.0
7400      C
7500      C IF ISSW(15)=-1 WEIGHTS ARE TAKEN FROM JSHP.PTN FILES OTHERWISE;
7600      C THEY ARE SET TO 1.
7700      C
7800      IF(ISSW(15))1350,1357,1357
7900      1350  WGT = WT(K)
8000      GO TO 1370
8100      1357  WGT = 1.0
8200      1370  IF(ISW2)120,120,138
8300      C
8400      C BRANCHES 1 AND 2 CONTINUE HERE FROM STATEMENT #1370
8500      C
8600      120  READ(KOUT,END=160)KBUF
8700      GO TO 140
8800      C
8900      C BRANCH 3 (WRITE OUT AVERAGED FILES) CONTINUES HERE FROM STATEMENT #1370
9000      C
9100      138  IF(ISSW(13))139,120,120
9200      139  CONTINUE
9300      C
9400      C OPEN NEW FILE NAMED *.AVG CORRESPONDING TO INPUT *.REG, FOR OUTPUT
9500      C ON UNIT 11.
9600      C
9900      GNAME(1:8)=FNAME(KK)(1:8)
10000      OPEN(UNIT=11,NAME=GNAME,TYPE="NEW",FORM="UNFORMATTED")
10100      C
10200      C WRITE HEADER TO *.AVG
10300      C
10400      WRITE(11)KHDC
10500      GO TO 120
10600      C
10700      C BRANCHES 1 AND 2 CONTINUE HERE FROM STATEMENT #120
10800      C
10900      140  IF(TREC=IRMX)146,142,142
11000      142  IRMX = TREC
11100      146  IF(ISW2)155,147,300
11200      C
11300      C BRANCH 2 CONTINUES HERE FROM STATEMENT #146
11400      C
11500      147  CONTINUE
11600      1475  DEL = SVA(TREC) - DVM
11700      CALL COEFFIT(0,DEL,CP,CPH,N)
11800      CPM(1) = CPM(1) + PM - PF
11900      DO 150 J=1,N
12000      150 CR(TREC,J) = CR(TREC,J) + WGT*CPM(J)
12100      C

```

12200 C BRANCH 2 RETURNS TO READ NEXT DATA RECORD FROM *.*.REC
 12300 C
 12400 GO TO 120
 12500 C
 12600 C BRANCH 1 CONTINUES FROM STATEMENT #146
 12700 C
 12800 155 CONTINUE
 12900 158 SVAT(IREC) = SVAT(IREC) + WGT*BVM
 13000 VMIN(IREC) = VMIN(IREC) + WGT*F1
 13100 VMAX(IREC) = VMAX(IREC) + WGT*F2
 13200 SVI(IREC) = SVI(IREC) + WGT*DVZR0(PF,DVM,PM,CP,N,NDP,F1,F2);
 13250 * ISHP,KCAST,ICON,DELP
 13300 SWGT(IREC) = SWGT(IREC) + WGT
 13400 C
 13500 C BRANCH 1 RETURNS TO READ NEXT DATA RECORD FROM *.*.REC
 13600 C
 13700 GO TO 120
 13800 160 CLOSE(UNIT=KOUT)
 13900 CLOSE(UNIT=11)
 14000 IF(IKK.LT.JSTN) GO TO 1200
 14100 IF(ISSH2) 161,1610,420
 14200 C
 14300 C BRANCH 1 CONTINUES FROM PREVIOUS STATEMENT
 14400 C
 14500 161 DO 1605 J=1,IRMX
 14600 VMIN(J) = VMIN(J)/SWGT(J)
 14700 VMAX(J) = VMAX(J)/SWGT(J)
 14800 SVI(J) = SVI(J)/SWGT(J)
 14900 1605 SVAT(J) = SVAT(J)/SWGT(J)
 15000 IF(ISSH2) 180,280,300
 15100 C
 15200 C BRANCH 2 CONTINUES FROM STATEMENT PRECEEDING #161
 15300 C AVERAGE REGRESSION COEFFICIENTS
 15400 C
 15500 1610 DELB = 0.0
 15600 PPR = 0.0
 15700 KF = 2
 15800 N = NSC(NSECTION+1)
 15900 NDP = NSC(KF+NSECTION+1)
 16000 IF(ISSH(11).EQ.-1) WRITE(KLIST,16230)
 16100 DO 163 J=1,IRMX
 16200 IF(JPR(J,NPR,NSECTION)-NSC(KF)) 1612,1611,1612
 16300 1611 N = NSC(KF+NSECTION)
 16400 NDP = NSC(KF+2*NSECTION)
 16500 KF = KF + 1
 16600 1612 DO 162 I=1,N
 16700 162 CPM(I) = CPM(J,I)/SWGT(J)
 16800 PF = JPR(J,NPR,NSECTION)
 16900 IF(ISSH(11)1111621,1624,1624
 17000 1621 WRITE(KLIST,1623)PF,(CPM(I),I=1,N)
 17100 1623 FORMAT(1H ,F6.0,8G11.4)
 17200 16230 FORMAT(1H , 'AVERAGED REGRESSION COEFFICIENTS: ', /,
 17300 * 'PRESSURE', 2X, 'CP(1)', '5X, 'CP(2)', '5X, 'CP(3)', '5X, 'CP(4)',
 17400 * '5X, 'CP(5)', '5X, 'CP(6)',
 17500 1624 DVI = SVAT(J)
 17600 DVF = DVZR0(PF,DVI,PF,CPM,N,NDP,VMIN(J),VMAX(J),ISHP,KCAST,IC
 17700 DELA = SVI(J) - DVF
 17800 SVAT(J) = DVF
 17900 DELPI = PF - PPR
 17933 EOB(J) = DPOV(DVF,DVI,CPM,N,VMIN(J),VMAX(J))
 17966 EOB(J) = 1./EOB(J)

```

18000      82 = .50968E-6*(PF*DELA+PPR*DELB)*DELP1
18100      B3 = 0.5E-5*(DELA+DELB)*DELP1
18200      IF(J=1)1625,1620+1625
18300      1620      APE(J) = B2
18400      VMAX(1) = B3
18500      GO TO 1626
18600      1625      APE(J) = APE(J-1) + B2
18700      VMAX(J) = VMAX(J-1) + B3
18800      1626      DELB = DELA
18900      PPR = PF
19000      163 CONTINUE
19100      C
19200      C BRANCHES 1 AND 2 CONTINUE HERE FROM STATEMENT #120; END QUALIFIER
19300      C IMPLIED END OF STATION.
19400      C IF ISSW(12)=-1 PRINT OUT AVERAGES
19500      180 IF(ISSW(12))182,400,400
19600      182 WRITE(KLIST,1832)
19700      1832 FORMAT(1H , 'IREC NST PF',6X,'SUM OF',5X,'DVM',5X,'DVF',5X,
19800      * 'DV',5X,'DV',1H ,19X,'WGT',6X,'BAR',5X,'BAR',5X,'HINT',5X,
19900      * 'MAX')
20000      00 183 I=1,IRMX
20100      KPR = JPR(1,NPR,NSECTION)
20200      IF(I$W.EQ.1)WRITE(KLIST,1835)I,NST,KPR,(CR(I,K),K=9,13)
20250      183 IF(I$W.EQ.2)WRITE(KLIST,1835)I,NST,KPR,(CR(I,K),K=9,11)
20300      1835 FORMAT(1H ,214,15,5F10.4)
20400      GO TO 400
20500      C
20600      C BRANCH 3 CONTINUES HERE FROM STATEMENT #146
20700      C
20800      300 DVF = SVA(IREC)
20900      F3 = SVI(IREC)
21000      PI = POLY(DVF,DVM,CP,N,F1,F2) + PM
21100      IFPI1301,302,302
21200      301 PI = 0.0
21300      302 THF = POLY(DVF,DVM,CP,N,F1,F2) + THM
21400      303 SF = DVZRD(PF,DVM,PM,CP,N,NDP,F1,F2,ISHP,KCAST,ICON)
21500      DELA = SF - DVF
21600      DELP1 = PF - PPR
21700      MF((IREC-1)305,304,305
21800      304 DELB = DELA
21900      305 B2 = B2 + 0.5E-5*(DELA+DELB)*DELP1
22000      B3 = B3 + 0.50968E-6*(PF*DELA+PPR*DELB)*DELP1
22100      DFLB = DELA
22200      PPR = PF
22300      DH = EOF(IREC)
22400      PE = B3
22500      XPE = APE(IREC)
22600      C
22700      C IF OUTPUT REQUESTED WRITE DATA TO FILE *.AVG
22800      C
22900      IF(ISSW(13))310,316,316
23000      310 WRITE(11)KBUF
23100      316 IF(I$W1317,320,3245
23200      C
23300      C IF MAP FORMAT OUTPUT REQUESTED INITIALIZE AND REQUEST INPUT
23400      C
23500      317 IF(ISSW(14).EQ.-1)THEN
23600      3170 FORMAT(1H , 'N1,N2,N3,KTO,IYR,ITH,IV1,IV2,IV3',6E5,3FX,A11)
23700      KTO = 1
23800      IYR = 73
23900      ITH = 0

```

```

24000      IV1='X'
24100      IV2='Y'
24200      IV3='Z'
24300      N1 = 1
24400      N2 = 2
24500      N3 = 3
24600      NV1 = 6
24700      NV2 = 4
24800      NV3 = 8
24900      WRITE(KTTX,3170)N1,N2,N3,KTO,IYR,ITM,IV1,IV2,IV3
25000      READ(KIN,*IN1,N2,N3,KTO,IYR,ITM
25100      READ(KIN,3175)IV1,IV2,IV3
25200      WRITE(IRTX,3176)NV1,NV2,NV3
25300      READ(KIN,*INV1,NV2,NV3
25400      3175 FORMAT(3A1)
25500      3176 FORMAT(1H , 'NV1,NV2,NV3',315)
25600      ENDIF
25700      JSW = 0
25800      C
25900      C N1 TO N3 ARE EFFECTIVELY IGNORED. UNLESS ISSW(8)==-1. SEE STATEMENT #450.
26000      C
26100      320 IF(IIREC-N1)321,450,321
26200      321 IF(IIREC-N2)322,470,322
26300      322 IF(IIREC-N3)120,324,120
26400      324 CONTINUE
26500      C
26600      C SET VALUES FROM MAP FORMAT VARTABLES
26700      C
26800      3245 VR1 = VR(NV1)
26900      VR2 = VR(NV2)
27000      VR3 = VR(NV3)
27100      C
27200      C IF ISSW(10)=-1 WRITE MAP VARTABLES TO UNIT KLIST (NOT IN MAP FORMAT--FOR
27300      C CHECK PURPOSES ONLY).
27400      C
27500      325 IF(ISSW(10))326,327,327
27600      326 WRITE(KLIST,3250)ICON,IREC,ISHP,ICAST,PF,PI,TO,VR1,VR2,VR3,
27700      X DM,PE
27800      C
27900      C IF MAP FORMAT NOT REQUESTED, RETURN TO STATEMENT #120 TO READ NEXT DATA
28000      C RECORD.
28100      C
28200      C MAP FORMAT WRITTEN TO UNIT KTO
28300      C
28400      327 IF(ISSW(14))330,120,120
28500      330 LFILE = 0
28600      IPF = PF
28700      XLG = XLONG
28800      335 WRITE(IRT0,3300)(LBBL(M),M=1,2),ISHP,ICAST,LFILE,IPF,
28900      X XLAT,XLG,IYR,JDAY,ITM,IV1,VR1,IV2,VR2,IV3,VR3
29000      1FILFILE1990,120,990
29100      3150 FORMAT(1H ,I3,X,2I2,I4,X,2F5.0,2F7.3,2F8.3,F6.3,F7.2)
29200      3300 FORMAT(12A4,I1,I4,X,I1,I5,F7.2,F8.2,X,I2,I4,I2,X,3(AT,F9.4))
29300      C
29400      C ISSW(8)==-1 ALLOWS SPECIAL FUNCTIONS TO BE COMPUTED--SUBTRACTING VALUES
29500      C AT ONE LEVEL FROM ANOTHER BEFORE OUTPUTTING IN MAP FORMAT.
29600      C
29700      450 IF(ISSW(8))455,324,324
29800      455 VR1 = VR(NV1),
29900      VR2 = VR(NV2)
30000      VR3 = VR(NV3)

```

30100 GO TO 120
30200 470 IF(ISSH(8)1475,324,324
30300 475 VR1 = VR(NV1) - VR1
30400 VR2 = VR(NV2) - VR2
30500 VR3 = VR(NV3) - VR3
30600 GO TO 325
30700 C
30800 C BRANCHES 1 AND 2 CONTINUE FROM 103 OR 180
30900 C
31000 C IF ISSH(7)=0 CONTINUE THROUGH BRANCH 3 AUTOMATICALLY.
31100 C
31200 400 IF(ISSH(7)1550,410,410
31300 410 ISW = ISW + 1
31400 IF(ISW-3)100,100,420
31500 C
31600 C BRANCH 3 CONTINUES HERE FROM STATEMENT PRECEDING #161
31700 C
31800 C IF MAP OUTPUT REQUESTED SET LFILE TO 1 TO INDICATE EOF IN MAP FORMAT.
31900 C
32000 420 IF(ISSH(14)1422,560,560
32100 422 LFILE = 1
32200 GO TO 335
32300 550 CONTINUE
32400 1200 CONTINUE
32450 IF(NSW.NE.5.AND.ISW.EQ.1)GO TO 161
32475 IF(NSW.NE.5.AND.ISW.EQ.2)GO TO 1610
32487 IF(NSW.NE.5.AND.ISW.EQ.3)GO TO 420
32500 560 RETURN
32600 END

```

200 C DATA SUBR POTEN **** DATA ****
500 C ****
600 C SUBROUTINE DATATRNU(NSW)
700 C ****
800 C
900 C TO SELECT AND ACCESS CTD78 FORMAT DATA FROM VAX DISC FORMAT
1000 C ACCESSES VARIOUS MILLARD SUBROUTINES FOUND IN CTOKTAZLTH
1100 C
1200 C
1300 C JAN 6 1976 N FOFONOFF
1400 C MODIFIED FOR CTD78 FORMAT INPUT 15 DEC 80. N BRAY
1500 C
1550 C INCLUDE "COMPOTEN.FOR"
1600 C
1700 C INCLUDE MILLARD DIMENSION STATEMENTS
1800 C
1900 C INCLUDE "IOXREC.DTM"
2100 C
2200 C CHARACTER
2300 C
2400 C CHARACTER#1? CNAPF
2500 C
2600 C PROGRAM
2700 C
2800 C IF(NSW.EQ.5) GO TO 80
2900 C IF(NSW.EQ.2) GO TO 30
3000 C FTNSWIT,20,5
3100 C
3200 C NSW LESS THAN ZERO: INITIALIZE SELECTION PARAMETERS
3300 C
3400 C I CONTINUE
3500 C JDO = 0
3600 C DAY1 = 0.
3700 C DAY2 = 365.
3800 C XEMN = -180.0
3900 C XEMX = 180.0
4000 C XNMN = -90.0
4100 C XNMX = 90.0
4200 C XLTO = 40.00
4300 C XLGO = 70.00
4400 C JSTN = 1
4500 C RETURN
4600 C
4700 C NSW=0: LIST OR CHANGE SELECTION PARAMETERS
4800 C
4900 C 20 CONTINUE
5000 C 172 WRITE(KLIST,173)DAY1,DAY2,JDO
5100 C 173 FORMAT(1H ,5HDAY1:F8.3,X,5HDAY2:,F8.3,X,4HJDO:,I4)
5200 C READ(KIN,*1DAY1,DAY2,JDO
5300 C 174 WRITE(KLIST,175)XEMN,XEMX,XNMN,XNMX
5400 C 175 FORMAT(1H ,7H=XEMN,XEMX,XNMN,XNMX
5500 C RFAD(KIN,*1XEMN,XEMX,XNMN,XNMX
5600 C 176 WRITE(KLIST,177)XLTO,XLGO
5700 C 177 FORMAT(1H ,8HXLTO:,XLGO
5800 C READ(KIN,*1XLTO,XLGO
5900 C RETURN
6000 C
6100 C NSW = 2: READ FROM FILE STATIONS.PTN INFORMATION TO IDENTIFY
6200 C STATIONS
6300 C
6400 C 30 CONTINUE

```

```

6450      IF(KBR.EQ.13)THEN
6500          WRITE(KTDX,310)
6600          READ(KIN,300)PROVER
6607          WRITE(KTDX,320)
6614          READ(KIN,330)PSHP,TCRUIS,TPROJ
6650      300  FORMAT(A)
6662      310  FORMAT(1H ,'ENTER SUBDIRECTORY VERSION #')
6674      320  FORMAT(1H ,'ENTER SHIP CODE,CRUISE #,PROJ #')
6686      330  FORMAT(AZ,213)
6693          ENDIF
6700      C
6800      C MILLARD HEADER RELATED SUBROUTINES
6900      C
7000          CALL PVER(PROVER)
7100          CALL CRUISET(SHP,TCRUIS,TPROJ)
7150          CALL STATION(I0,O,KTP)
7200          CALL INDEX(II)
7300          LREC = IDXREC(9)
7325          LLREC = LREC
7337          KKST = 0
7400          N=0
7500          RETURN
7600      C
7700      C NSW = 1: READ STATION HEADER, CHECK AGAINST DATA SELECTION CRITERIA,
7800      C AND READ TEMPERATURE AND SALINITY INTO DATA ARRAY.
7900      C
8000      5 CONTINUE
8300          IF(KUN.GT.LLREC) GO TO 620
8800          CALL RECIDX(KUN)
9200          XLAT=SLAT()
9300          XLONG=SLNG()
9316          IPR = PMIN
9333          XN = NTOT-1
9366          LPR = XN+PRSINT+PMIN
9400          LBBL(1)=IFHED(3)
9500          ENCODE(4,53,LBBL(2))IFHED(4)
9600          ENCODE(4,54,LBBL(3))IFHED(5)
9700      53  FORMAT(I3,'-')
9800      54  FORMAT(I4)
9900      C
10000     C COMPUTE JULIAN YEAR DAY
10100     C CHECK AGAINST SELECTION PARAMETERS
10200      C
10300          IDAY=KDAY(TDA,IHO,IYR)-KDAY(31,12,IYR-1)
10350          DAY = FLOAT(IDAY) + FLOAT(TSHUT/2400.)
10400          IF(DAY-DAY1)1620,602,602
10500      602  IF(DAY-DAY2)1604,604,620
10600      604  CONTINUE
10700      C
10800     C CHECK LAT AND LONG AGAINST SELECTION PARAMETERS.
10900      C
11000          IF(XLONG-XMMN)1620,606,606
11100      606  IF(XLONG-XMMX)1608,608,620
11200      608  IF(XLAT-XMMN)620,610,610
11300      610  IF(XLAT-XMMX)616,616,620
11400      616  LTYPE = 1
11500          ICN = ICAST
11600          DAY = DAY + 300
11700          KCAST = TSTAT
11750          JPNAX = NTOT
11800      C

```

```

11900 C IF TSSW(11)=-1 WRITE OUT HEADER INFORMATION ON UNIT KLIST
12000 C
12100 IFTISSW(11)=-16160,620,620
12200 6160 WRITE(KLIST,8000)(LBBL(K),K=1,3),XLAT,XLONG,XLTD,XLCG
12300 WRITE(KLIST,8005)TYPE,MHDR,TSHP,ISTAS,PCON,DAY,IPR
12400 C
12500 C IF TSSW(12)=-1, WRITE OUT HEADINGS FOR OUTPUT WHICH IS WRITTEN IN COMPS.
12600 C
12700 IFTISSW(12).EQ.-1)WRITE(KLIST,8010)
12800 8010 FORMAT('DIREC PF TO SO DVO DVM SM THM
12900 X 71 22 N NDP')
13000 8000 FORMAT(1H,*3A4,4F8.3)
13100 8005 FORMAT(1H,* TYPE MDHR SHIP STN CAST DAY PRT*,/
13150 * 215,2X,A2,2X,215,F8.3,215)
13200 6005 FORMAT(15,X,3A4,17+14*X,15,F7.2,F8.2,X,12+14,F8.5)
13300 C
13400 C RTLLARD SUBROUTINE TO FILL DATA ARRAY WITH TEMP AND SALINITY
13500 C DATA FOR ALL OBSERVATIONS.
13600 C
13608 WGT=1.
13616 IFTISSW(13).EQ.-1)THEN
13617 M=M+1
13618 JTCR=ICRUS
13620 JIST=ISTAS
13622 CALL L2(JTCR)
13624 CALL L2(JIST)
13626 ENCODE(12,92,GNAME,TSHP,JTCR,JIST
13628 52 FORMAT(A2,A3,A3,'.REG')
13632 WRITE(12,8020)M,GNAME,WGT
13640 8020 FORMAT(14,A12,F5.2)
13648 OPEN(UNIT=KOUT,NAME=GNAME,TYPE='NEW',FORM='UNFORMATTED')
13664 WRITE(KOUT,1KHG)
13680 ENDIF
13690 CALL DATDX(KUNI)
13700 CALL GFTDAT(KTP,DATAX,3300,2)
13800 620 RETURN
13900 C
14000 C NSW=5: CHECK ONLY LAT AND LONG OF HEADER ALREADY READ AGAINST
14100 C SELECTION PARAMETERS.
14200 C
14300 80 IFT(XLONG-XFMN)85,87,87
14400 87 IFT(XLONG-XFMX)89,89,85
14500 89 IFT(XLAT-XNMN)85,83,83
14600 83 IFT(XLAT-XNMX)82,82,85
14700 82 CONTINUE
14800 RETURN
14900 C
15000 C NSW=4 IMPLIES SELECTION CRITERIA ABOVE NOT MET.
15100 C
15200 85 NSW=4
15300 RETURN
15400 FND
15403 C ***** SLAT FUNCTION *****
15407 REAL FUNCTION SLAT
15410 C ****
15414 INCLUDE 'DXREC.DIM'
15421 C FUNCTION RETURNS DECIMAL DEGREE VALUE SIGNED - FOR SOUTH E WEST
15428 XLAT=ILTSD
15435 XLATM=ILTSR
15438 XLATM=XLATM/5000.
15442 SLAT=XLAT+SIGNXLATM,XLAT

```

AD-A103 892 WOODS HOLE OCEANOGRAPHIC INSTITUTION MA F/G 8/10
VAX-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM C--ETC(U)
AUG 81 N A BRAY N00014-76-C-0197
UNCLASSIFIED WHOI-81-70 NL

END
DRAFTED
Q.B.
DTG

```

15449      RETURN
15456      ENTRY SLNG
15463      XLAT=ILNSD
15470      XLATM=ILNSM
15473      XLATH=XLATH/6000.
15477      SLNG=XLAT+SIGN(XLATM,XLAT)
15484      RETURN
15491      END
15500      C ***** SUBROUTINE LZ(IA) *****
15503      SUBROUTINE LZ(IA)
15504      C ****
15506      INTEGER IA(1),IW(1)
15512      IF(IA(1).GE.100) GO TO 100
15515      IF(IA(1).GE.10) GO TO 10
15518      IF(IA(1).GE.0) GO TO 1
15521      RETURN
15524      100 CONTINUE
15527      ENCODE(3,2,IW(1)) IA(1)
15530      TA(1)=IW(1)
15533      2 FORMAT(1I3)
15536      RETURN
15539      10 CONTINUE
15542      ENCODE(3,3,IW(1)) IA(1)
15545      TA(1)=IW(1)
15548      3 FORMAT(1H0,1I)
15551      RETURN
15554      1 CONTINUE
15557      ENCODE(3,4,IW(1)) IA(1)
15560      4 FORMAT(2H00,1I)
15563      IA(1)=IW(1)
15566      RETURN
15564      END

```

```

12000 C POTENSUR.FOR FILE: SUBROUTINES FOR POTEN,PEPLT POTENTIAL ENERGY
12100 C PROGRAMS. VAX VERSION. N.BRAY.
12600 C ****
12700 C SUBROUTINE SMINVIA,N,P,O,MR,IFAIL)
12800 C ****
12900 C
13000 C TO INVERT SYMMETRIC MATRIX FOR TRIANGULAR SECTION ARRANGED
13100 C IN A LINEAR ARRAY A(J).
13200 C FROM SYMINV?,,,CACH #150 BY RUEYSHAUSER VIA J. MALLYA.
13300 C
13400 C APRIL 27 1975 N. FOFONOFF
13500 C
13600 C DIMENSION A(1),P(1),O(1),MR(1)
13700 C
13800 C      TFAIL = 0
13900 DO 10 I=1,N
14000   10 MR(I) = 0
14100 C SEARCH FOR PIVOT
14200 DO 100 I=1,N
14300 BIGAJ = 0.0
14400 JJ = -N
14500 DO 20 J=1,N
14600 JJ = JJ+N-J+2
14700 B = ABS(A(JJ))
14800 IF(MR(J)120,12,20
14900 12 IF(B-BIGAJ)120,20,14
15000 14 BIGAJ = B
15100 K = J
15200 KK = JJ
15300 20 CONTINUE
15400 IF(BIGAJ)16,15,15
15500 15 TFAIL = 1
15600 RETURN
15700 C PREPARATION OF ELIMINATION
15800 16 MR(K) = 1
15900 Q(K) = 1./A(KK)
16000 P(K) = 1.0
16100 A(KK) = 0.0
16200 KM1 = K-1
16300 IF(KM1)15,19,160
16400 160 JK = K - N
16500 DO 30 J=1,KM1
16600 JK = JK+N-J+I
16700 P(J) = A(JK)
16800 IF(MR(J)18,17,18
16900 17 Q(J) = -A(JK)*Q(K)
17000 18 Q(J) = Q(J)+Q(K)
17100 19 A(JK) = 0.0
17200 20 A(KJ) = 0.0
17300 19 KP1 = K+1
17400 KJ = KK
17500 IF(KP1-N)21,21,41
17600 21 DO 40 J=KP1,N
17700 KJ = KJ + 1
17800 IF(MR(J)134,32,34
17900 32 P(J) = A(KJ)
18000 20 GU 10 35
18100 34 P(J) = -A(KJ)
18200 35 Q(J) = -A(KJ)*Q(K)
18300 40 A(KJ) = 0.0
18400 C ELIMINATION PROPER

```

```

18500      41 JK = 0
18600      00 50 J=1,N
18700      00 50 K = J,N
18800      JK = JK + 1
18900      50 A(JK) = A(JK) + P(J)*Q(K)
19000      100 CONTINUE
19100      150 RETURN
19200      END
19300      C SUBROUTINE TO INPUT PARAMETERS FOR REGRESSION IN POTEN
19400      C POTENTIAL ENERGY PROGRAM
19500      C
19600      C*****+
19700      SUBROUTINE PARAM
19800      C*****+
19900      C
20000      INCLUDE 'COMPOTEN.FOR'
20100      C
20200      INTEGER PFDELTA,PDELTA
20300      C
20400      C
20500      WRITE(KTTX,10)
20600      10 FORMAT('0INPUT NEW PARAMETERS?')
20700      IF(NOYESIKYN,KTTX).NE.1)RETURN
20800      15 WRITE(KTTX,20)
20900      20 FORMAT("0ENTER THE NUMBER OF SECTIONS (GROUPS OF LEVELS WITH
21000      X THE SAME PARAMETERS")
21100      READ(KIN,*NSECTION
21200      IF(NSECTION.GT.19)THEN
21300      WRITE(KTTX,22)
21400      22 FORMAT('0MAXIMUM ALLOWED IS 19')
21500      GO TO 15
21600      ENDIF
21700      WRITE(KTTX,23)
21800      25 FORMAT('0ENTER THE PRESSURE FOR THE FIRST LEVEL')
21900      READ(KIN,*INITIALP
22000      NLEV=1
22100      NPREV=-1
22200      NSE=NSECTION+1
22300      00 1000 I=1,NSECTION
22400      I2=I+NSE
22500      I3=I+2*NSE
22600      WRITE(KTTX,100)
22700      100 FORMAT("0FOR SECTION",I4," ENTER THE INTERVAL IN DB BETWEEN
22800      X LEVELED SURFACES:")
22900      READ(KIN,*IPFDELTA
23000      WRITE(KTTX,120)
23100      120 FORMAT("0ENTER THE INTERVAL SIZE IN DB FOR THE REGRESSIONS")
23200      READ(KIN,*PDELTA
23300      WRITE(KTTX,140)
23400      140 FORMAT("0ENTER THE FIRST PRESSURE IN THE NEXT SECTION:")
23500      READ(KIN,*IP2
23600      NLEVEL=(IP2-INITIALP)/PFDELTA
23700      WRITE(KTTX,160)
23800      160 FORMAT("0ENTER THE NUMBER OF TERMS IN THE REGRESSIONS",/,,
23900      X *(N=2 IMPLIES A LINEAR FIT; MAXIMUM N IS 81)
24000      READ(KIN,*IN
24100      IPIN.GT.87IN=8
24200      C***** COMPUTE NPR(I) *****
24300      NPR(I)=NLEVEL+NLEV
24400      C***** COMPUTE NPR(82)
24500      NPR(82)=PDELTA

```

```

24600 C***** COMPUTE NSC(I) *****
24700 IF(I.F0.1)THEN
24800   NSC(1)=INITIALP-PFDELTA
24900   IPREV=INITIALP
25000   ENDIF
25100   NSC(I+1)=IPREV+NLEVEL*PFDelta
25200 C***** COMPUTE NPR(I3) *****
25300   NPR(I3)=NLEVp-(IPREV/PFDelta)
25500   NPREV=NPR(I3)
25600   IPREV=NSC(I+1)
25700   NLEVp=NPR(I3)
25800   INITIALP=IPREV
25900 C***** COMPUTE NSC(I2)
26000   NSC(I2)=N
26100 C***** COMPUTE NSC(I3) *****
26200   NSC(I3)=PDELTA/DELP
26300   1000 CONTINUE
26400   ITOTAL=IPREV
26450   JMAX=NLEVp
26500   WRITE(KTX,200)NSECTION,NLEVp,ITOTAL
26600   200 FORMAT('A TOTAL OF ',I4,'SECTIONS; ',I6,'LEVELS; THE DEEPEST
26700   X LEVEL IS AT ',I6,'DR.')
26800   WRITE(KTX,220)
26900   220 FORMAT('ENTER MAXIMUM DEPTH OF THE DATA: ')
27000   READ(KIN,*)JMAX
27100   I=NSECTION+1
27200   IZ=2*I
27300   IZ=3*I
27400   NPR(I)=NLEVp+5
27500   NPR(I2)=(JMAX+500)/(NLEVp-NPREV)
27600   NPR(I3)=NPREV
27700   NSC(I)=IPREV
27800   NSC(I2)=N
27900   NSC(I3)=PDELTA/DELP
28000   NSECTION=NSECTION+1
28100   RETURN
28200   END
28300 C COEFF SUBROUTINE PTSB1 *****
28400   SUBROUTINE COEFF(A,B,C,D,N)
28500   C *****
28600   C
28700   C COMPUTES COEFFICIENTS FOR A LINEAR TRANSFORMATION X=AX+B
28800   C FOR POLYNOMIAL OF ORDER N-1. INPUT ARRAY C, OUTPUT D.
28900   C
29000   C OCT 22 1975 N. FOFONOFF
29100   C
29200   DIMENSION C(1),D(1)
29300   C
29400   DO 25 I=1,N
29500   R = 1.0
29600   S = 0.0
29700   NM1 = N - I
29800   IF(NM1)12,12,5
29900   5 DO 10 J=1,NM1
30000   TPJ = I + J
30100   R = (FLOAT(TPJ+1)/FLOAT(J))*B0R
30200   10 S = S + R*C(TPJ)
30300   12 T01 = I - 1
30400   T01M1)15,15,20
30500   15 R = 1.0
30600   GO TO 25

```

```

30700    20 R = A**IM1
30800    25 D(I) = S*R
30900    RETURN
31000    PND
31100    C
32300    C *(N) FCN ***** PTSB1 *****
32400    FUNCTION R(N)
32500    C *****
32600    C
32700    INTEGER*2 IA,N
32800    PA = 77777
32900    IF(N)1,2,2
33000    1 R = FLOAT(TTANDN,IA) + 32768.
33100    RETURN
33200    2 R = FLOAT(N)
33300    RETURN
33400    END
33500    C
36900    C *****
37000    SUBROUTINE EDIT(JERR)
37100    C *****
37200    C
37300    C EDIT TEMP AND SALINITY IN REGRESSION TABLES
37400    C
37500    C JAN 28 1975 N FOFONOFF
37600    C
37700    INCLUDE 'COMPUTEN.FOR'
37800    EQUIVALENCE (PDIF, A1)
37900    C
37950    IERR = 0
37975    DVPMAX = -.12
38000    DO 10 M=M1,M2
38100    DV(M) = PM
38200    PM = S(M)
38300    10 TH(M) = T(M)
38400    15 DVM = 0.0
38500    PM = 0.0
38600    THM = 0.0
38700    XNDP = NDP
38800    DO 20 M=M1,M2
38900    DVM = DVM + DV(M)
39000    PM = PM + P(M)
39100    THM = THM + TH(M)
39200    PT(M) = P(M)
39300    TH(M) = TH(M)
39400    20 CONTINUE
39500    DVM = DVM/XNDP
39600    PM = PM/XNDP
39700    THM = THM/XNDP
39800    CALL LSFT
39900    KERR = 0
40000    DO 60 M=M1,M2
40100    IF(ABS(PT(M)-PM)=A3*Z1)40,30,30
40200    30 CORR = POLY(BV(M),DVM,CP,N,0.0,6000.0) + PM
40300    KERR = 1
40400    IF(ISSW(3)131,32,32
40450    31 DELTA = CORR-PT(M)
40451    S1 = DATA(X(M+1,2))
40452    S2 = DATA(X(M,2))
40453    S3 = DATA(X(M-1,2))
40454    THI = THETA(DV(M-1),DATA(X(M-1,2)),S1,PF)

```

```

40455      TH2 = THETA(DVPM),DATA(X(M,1),S2,PF)
40456      TH3 = THETA(DV(M+1),DATA(X(M+1,1),S3,PF))
40458      DV1 = DVA(PF,TH1,S1)
40470      DV2 = DVA(PF,TH2,S2)
40476      DV3 = DVA(PF,TH3,S3)
40482      DVP1 = (DV1-DV2)/DELP
40490      DVP2 = (DV2-DV3)/DELP
40500      WRITE(1,LIST,3100)DV(M),P(M),CORR,DELTA,DVP1,DVP2
40500      32 P(M) = CORR
40700      40 IF(ABS(TT(M)-THM)-A3*Z2155,50,50
40800      50 CORR = POLY(DV(M),DVH,CT,N,0.0,6000.0)+THM
40900      KERR = 1
41000      IF(ISSW(3))51,52,52
41050      51 DELTA = CORR+TH(M)
41091      S1 = DATA(X(M-1,2)
41052      S2 = DATA(X(M,2)
41053      S3 = DATA(X(M+1,2)
41054      TH1 = THETA(DV(M-1),DATA(X(M-1,1),S1,PF))
41055      TH2 = THETA(DV(M),DATA(X(M,1),S2,PF))
41056      TH3 = THETA(DV(M+1),DATA(X(M+1,1),S3,PF))
41058      DV1 = DVA(PF,TH1,S1)
41066      DV2 = DVA(PF,TH2,S2)
41074      DV3 = DVA(PF,TH3,S3)
41082      DVP1 = (DV1-DV2)/DELP
41090      DVP2 = (DV2-DV3)/DELP
41100      WRITE(1,LIST,3100)DV(M),TH(M),CORR,DELTA,DVP1,DVP2
41200      97 TH(M) = CORR
41300      55 IF(KERR.F0.0.AND.IERR.EQ.0)THEN
41312          JERR=-2
41343          ENDIF
41350          IERR = IERR + 1
41400          60 CONTINUE
41500      IF(KERR170,70,15
41600      70 DO 75 M=M1,M2
41700          S(M) = P(M)
41800          T(M) = TH(M)
41900      75 P(M) = DV(M)
42000          JERR = JERR + 1
42100          80 RETURN
42200      3100 FORMAT(F7.1,F9.3,'REPLACED BY: ',F9.3,
42250          *     ' SP. VOL. GRADIENTS: ABOVE = ',F9.3,' BELOW = ',F9.3)
42300          END
42400      C
42500      C *****
42600      SUBROUTINE LSFT
42700      C *****
42800      C
42900      C LEAST SQUARES REGRESSION SUBROUTINE FOR POTEN.
43000      C
43100      C PAR A 1976 N FOFONOFF
43200      C
43300          INCLUDE 'COMPOTEN.FOR'
43400      C
43500          1 NA = N*(N+1)/2
43600          L = 1
43700          DO 10 I=1,NA
43800      10 COTT = 0.0
43900          DO 12 I=1,N
44000          CP(I) = 0.0
44100          12 CT(I) = 0.0
44200          15 DO 20 I=1,N

```

```

44300      BP(I) = 0.0
44400      BT(I) = 0.0
44500      20 CONTINUE
44600      DO 8 I=ML,M2
44700      X = DV(I) - DVM
44800      DO 100 J=1,N
44900      IF(J-1)90,90,95
45000      90  B(J) = 1.0
45100      GO TO 100
45200      95  B(J) = X**(J-1)
45300      100 CONTINUE
45400      JK = 0
45500      X = PT(I) - PM
45600      XT = TT(I) - THM
45700      DO 8 J=1,N
45800      BP(J) = BP(J) + B(J)*X
45900      BT(J) = BT(J) + B(J)*XT
46000      IF(L-1)105,105,8
46100      105 DO 7 K=J,N
46200      JK = JK + 1
46300      7 COTJKI = COTJKI + BT(J)*B(K)
46400      8 CONTINUE
46500      IF(L-1)173,173,174
46600      173  CALL SMINV(C0,N,B,BA,MR,IFAIL)
46700      174 DO 200 M=1,N
46800      SP = 0.0
46900      ST = 0.0
47000      JM = M-N
47100      DO 1745 J=1,N
47200      IF(J-M)1740,1740,1742
47300      1740  JM = JM + N - J + 1
47400      GO TO 1744
47500      1742  JM = JM + 1
47600      1744  SP = SP + CO(JM)*BP(J)
47700      1745  ST = ST + CO(JM)*BT(J)
47800      CP(M) = CP(M) + SP
47900      200  CT(M) = CT(M) + ST
48000      C COMPUTE RESIDUALS
48100      175  RP = 0.0
48200      RT = 0.0
48300      DO 185 I=ML,M2
48400      FP = 0.0
48500      FT = 0.0
48600      X = DV(I) - DVM
48700      DO 180 J=1,N
48800      NJ = N-J+1
48900      FP = FP*X + CP(NJ)
49000      180  FT = FT*X + CT(NJ)
49100      SP = P(I) - FP
49200      PT(I) = SP
49300      ST = TH(I) - FT
49400      TT(I) = ST
49500      IF(L-KSW)185,183,183
49600      183  RP = (SP-PM)**2 + RP
49700      RT = (ST-THM)**2 + RT
49800      185 CONTINUE
49900      L = L + 1
50000      IF(L-KSW)15,15,195
50100      195  XN = NDP - N
50200      Z1 = SORT(RP/XN)
50300      Z2 = SORT(RT/XN)

```

50400 IF ITSSW(6) 1300,350,350
50500 300 TO 310 I=1,N
50600 TT = I + ((Z*N-I)*I-1)/2
50700 B(I) = ABS(CP(I))/((Z*I-SORT(ABS(CO(I))))).
50800 BP(I) = ABS(CT(I))/((Z*I-SORT(ABS(CO(I))))).
50900 310 CONTINUE
51000 WRITE(KLIST,3100)PF,N,NDP,TBKT,K=1,N)
51100 WRITE(KLIST,3110)(BP(K),K=1,N)
51200 350 RETURN
51300 3100 FORMAT(F6.0,I4,I3,8F8.3)
51400 3110 FORMAT(13X,8F8.3)
51500 END

Appendix C.
Program Listings for PEPLT

100	PEPLT/PEPLS:	SHORT DOCUMENTATION			
200	KBR	ISW	JSW	KLIST	DESCRIPTION
250	0	-	-	-	SHORT DOCUMENTATION
300	1	0	-	-	CALL TABLE SUBROUTINE: LIST,
400					PLOT, OUTPUT IN MAP FORMAT
450					PLOT IS:
466		X = A1*VRBL(NX1)+A2*VRBL(NX2)+A3*VRBL(NX3)+A4*CPIREC(2)			
482		Y = B1*VRBL(NY1)+B2*VRBL(NY2)+B3*VRBL(NY3)+B4*CPIREC(2)			
488	1	1	-	-	CHANGE PARAMETERS FOR PLOT
494		2	-	-	INITIALIZE PARAMETERS FOR PLOT
500	2	-	-	-	CHANGE DATA SELECTION VARIABLES
600	3	-	-	-	CHANGE PLOT PARAMETERS
700	4	-	-	-	CALL AVRGS SUBROUTINE: HORIZONTAL
800					AVERAGES. FOR DETAILED DOCUMENTA-
900					TION, ACCESS KBR=0 AFTER ENTERING
950					AVRGS BRANCH.
1000	5	-	-	-	SET JSW (SWITCH) ARRAY
1100	6	-	-	-	RESTART MAIN PROGRAM
1200	7	-	-	-	EXIT PROGRAM

PFPLT/PEPLS: BRANCH 3--PARAMETERS--SHORT DOCUMENTATION			
300	KRR3	ISW3	DESCRIPTION
400	1	0	PRINT OUT PARAMETERS ON KLIST; STORE COMMON TO FILE KPLCM. RETURN TO PEPLS.
500		1	INPUT VARIABLE SELECTORS NX1 TO NZ3
600		2	ENTER A1 TO A6
700		2	ENTER B1 TO B6
1100	2	2	ENTER C1 TO C6
1200	3	2	ENTER D1 TO D6
1300	4	2	ENTER D1 TO D6

PEPLT/AVRGS: SHORT DOCUMENTATION					
200	KBR	PSW	JSW	KLIST	DESCRIPTION
250	4	0	-	-	SHORT DOCUMENTATION
300	4	1	#	#	READ FROM DATA FILES VARIABLES IN COLUMNS JSW TO KLIST
400					ZERO COLUMNS JSW TO KLIST
500		2	#	#	INITIALIZE AND INPUT PARAMETERS
600		3	1	-	INPUT PARAMETERS--NO INITIALIZATION
700		0	-		DIVIDE COLUMNS JSW TO KLIST BY COLUMN 6
800		4	#	#	ADD COLUMN JSW VERTICALLY FROM THE TOP
900		5	#	-	PRINT OUT DATA ARRAY ON UNIT KLIST
1000		6	-	LU	CALL NCAR PLOT PACKAGE TO PLOT ONE FRAME. DEFAULT IS COLUMN JSW AGAINST PRESSURE.
1100		7	#	-	GENERAL PLOTS:
1200					$X=R1*C(I,JSW)+B2*C(I,NXZ)+B3*PR$
1300					$Y=A1*PP+A2*C(I,NY1)+A3*C(I,NY2)$
1400					MULTIPLE PLOTS ON ONE FRAME ALLOWED
1500					
1600					
1700	KBR	ISW	JSW	KLIST	
1800		8	-	-	COMPUTE DYNAMIC HEIGHT AND POTENTIAL ENERGY: ASSUMES DVI IN COLUMN I (NV(1)=18) AND DVF IN COLUMN 2 (NV(2)=19).
1900					INTEGRATE COLUMNS JSW TO KLIST AS A FUNCTION OF PRESSURE
2000					SUBTRACT REFERENCE LEVEL VALUE C(JREF,*) FROM COLUMNS JSW TO KLIST
2100		9	#	#	INPUT JC1,CR1 TO JC4,CR4
2200					
2300		10	#	#	PERFORM THE FOLLOWING COLUMN ADDITION: $C1I,JC11=CR1*C(I,JC1)+CR2*C(I,JC2)+$
2400					$CR3*C(I,JC3)+CR4*C(I,JREF,JC4)$
2500		11	1	-	RETURN TO PEPLS
2600		11	0	-	INPUT COLUMN #'S AND CONSTANTS TO PERFORM THE FOLLOWING COLUMN MULTIPLICATION:
2700					$C(IREC,I)=CON1*C(IREC,I)*CON2*C(IREC,J)*$
2800					$CON3*C(IREC,K)$. INPUT ORDER: I,J,K,CON1 CON2,CON3; AN INDEX (I,J,OR K) OF VALUE -1 PREVENTS THE INCLUSION OF THE ASSOCIATED AND FOLLOWING COLUMN(S).
2900		12	-	-	
3000		13	-	-	
3100					
3200					
3300					
3400					
3500					
3600					
3700	KBR	ISW	JSW	KLIST	
3800		14	-	-	OUTPUT FIRST THREE COLUMNS IN MAP FORMAT: ACCESS TO THIS BRANCH QUERIES WHAT HORIZONTAL LEVEL # IS DESIRED
3900					
4000					
4100		15	-	-	NOT USED
4200		16	1	-	INPUT X,J
4300		0	-		$C(IREC,J)=C(IREC,J)**X$. (SHOULD FOLLOW #16,1 IMMEDIATELY IN EXECUTION.)
4400					
4500		17	-	-	ERROR SUMMATION: VERTICAL INTEGRATION WITH (DELTA P)**2 AS THE INCREMENT
4600					
4700		18	-	-	INPUT DELTA P INTO C(IREC,5)
4800		19	-	-	EXCHANGE TWO COLUMNS OF C
4900		20	-	-	CHANGE A SINGLE ELEMENT OF C
5000		21	-	-	COMPUTE STANDARD DEVIATION OF X GIVEN X-BAR IN C(IREC,4) AND X**X-BAR IN C(IREC,3). RESULT IS STORED IN C(IREC,1).
5100					
5200					
5300		22	1	1	CALCULATE DYNAMIC HEIGHT AT A GIVEN LEVEL RELATIVE TO PRESSURE CORRESPONDING TO JREF AND OUTPUT IN MAP FORMAT, ALONG WITH VARIABLES FROM COLUMNS 3 AND 4 AT THAT PRESSURE.
5400					
5500					
5600					
5700					NV(1) MUST BE = 18 AND NV(2)=19.

```

5   C COMPEPLT.FOR FILE: DIMENSION,COMMON AND EQUIVALENCE FOR PEPET
7   C DISPLAY PROGRAM. N.BRAY
10  PARAMETER KCM=943
32  PARAMETER JDIM=100
55  CHARACTER#8 DOC
77  CHARACTER#12 GRAME
100 DIMENSION CST(674),VR(35)
200 DIMENSION KHOG(150),KBUF(46)
300 DIMENSION KPLCH(KCH)
378 C
391 C COMMON
404 C
450  COMMON KIN
475  C BEGINNING OF STORED COMMON
500  COMMON KTX,KYST,KTP,KOUT,KBR
600  COMMON NX1,NX2,NX3,NY1,NY2,NY3,NZ1,NZ2,NZ3
700  COMMON ISW,JSW,IV,MW,YN,ND
800 C
1100 COMMON XMIN,XMAX,YMIN,YMAX
1300 COMMON A1,A2,A3,A4,A5,A6
1400 COMMON B1,B2,B3,B4,B5,B6
1500 COMMON C1,C2,C3,C4,C5,C6
1600 COMMON D1,D2,D3,D4,D5,D6
1700 COMMON X1,ZLTO,ZLG0,DAY,XPL,YPL
1800 COMMON WT
1900 COMMON NV(6),NX(6),AV,BV,CV
2000 COMMON JC1,JC2,JC3,JC4
2100 COMMON CR1,CR2,CR3,CR4
2200 COMMON JMAX,JREF
2300 COMMON NX4,NY4,NZ4
2400 COMMON IV1,IV2,IV3,JBUF,JHWR,JDD
2500 COMMON JSHP(6),DAY1,DAY2,PMIN,PMAX
2600 COMMON XEMX,XEMX,XNMX,XNMX
2633 COMMON C(100,6)
2666 COMMON ISWI161
2683 COMMON PLABL(10),XLABL(10),YLABL(10)
2700 C
2800 COMMON LTYPF,MHDR,ICON,ISHP,ICAST,XDAY,TPR,LPR
2900 COMMON XLAT,XLONG,WST,XLTO,XLG0
3000 COMMON LBL(3),LBL(13),NSC(60),NPR(60),NSECTION
3100 COMMON KTYPE,MUF,IREC,N,NDP,KSW,LI,LZ
3200 COMMON PF,T0,S0,DVO
3300 COMMON PT,THF,SF,DVF
3400 COMMON PH,THM,SM,DVM
3500 COMMON DH,PE,XPE
3600 COMMON CP(8),Z1,CT(8),Z2,F1,F2,F3
3616 C END OF STORED COMMON
3632 COMMON XDAT(100,7),YDAT(100,7)
3650 COMMON TDELP,DP
4100 C
4200 C CHAR
4300 COMMON/CHARACTER/ GRAME(200),DOC(10)
4400 C
4425 EQUIVALENCE (A1,CST),(VR,PF)
4430 EQUIVALENCE (KHOG,LTYPF),(KBUF,KTYPE)
4475 EQUIVALENCE (KTX,KPLCH)
4500 C

```

```

100 C PEPLT PROG ***** SEPT 24 1977 *****
200 C ****
300 C PROGRAM PEPLT
400 C ****
500 C
600 C PROGRAM TO PLOT POTEN VARIABLES.
700 C JUNE 27 1976 N FOFONOFF
800 C VAX VERSION
900 C NOV 1980 N.BRAY
1000 C INCLUDE 'COMPEPLT.FOR'
1100 C
1200 C
1300 C OPEN(UNIT=10,NAME='KPLCM.DAT',ACCESS='DIRECT',TYPE='OLD',
1400 * RECORDTYPE='FIXED',RECORDSIZE=KCM,ERR=1100)
1500 C
1600 10 KIN = 5
1700 KTTX = 6
1800 KLIST = 6
1900 KOUT = 9
2000 KTP = 11
2100 KBR = 3
2200 WRITE(KTTX,1000)
2300 IF(NOYES(KIN,KTTX).EQ.1)THEN
2400 20 READ(10*1,ERR=1100)KPLCM
2500 ELSE
2508 C
2516 DD 107 I = 1,6
2524 DD 107 J = 1,9
2532 107 EST(I,J) = 0.0
2540 DD 108 I=1,100
2548 DD 108 J=1,6
2556 108 C(I,J) = 0.0
2564 DD 109 J=1,16
2572 ISSW(J)=0
2580 109 CONTINUE
2588 C
2594 ENDIF
2600 CALL PEPLS
2700 GO TO 20
2800 1000 FORMAT(1H ,PEPLT: LOAD IN PREVIOUSLY STORED COMMON?")
2900 1100 OPEN(UNIT=10,NAME='KPLCM.DAT',ACCESS='DIRECT',TYPE='NEW',
3000 * RECORDTYPE='FIXED',RECORDSIZE=KCM,ERR=1100)
3100 GO TO 10
3200 END

```

```

100 C PEPL'S SUBROUTINE ***** SEPT 24 1977 *****
200      SUBROUTINE PEPLS
300 C *****
400 C
500 C PROGRAM TO PLOT POTEN VARIABLES.
600 C JUNE 27 1976 N FOFONOFF
700 C VAX VERSION--NOV 1980
800      INCLUDE 'COMPEPL.FOR'
900 C
1000      WRITE(KTDX,40)
1100      40 FORMAT(1H , "INITIALIZE DATA, VARIABLE SELECTION PARAMETERS
1150      * (YES OR NO)?")
1200      IF(INDYES(KIN,KTDX).EQ.1)GO TO 106
1300      120 WRITE(KTDX,1200)KBR,ISH,JSH,KLIST,KTP,KOUT,KIN
1400      1200 FORMAT(*PEPLT(KBR,ISH,JSH,KLIST,KTP,KOUT,KIN)*,
1500      * 6X,3I3,15,I3,W4,I3)
1600      KLIST = 6
1700      KOUT = 8
1800      KTP = 11
1900      READ(KIN,*1KBR,ISH,JSH,KLIST,KTP,KOUT,KIN
2000      1F(KBR.GT.7)KBR=7
2100      1F(KBR)120,800W130
2200      130 GO TO 120,20,30,400,500,600,700)KBR
2300 C *****
2400 C INITIALLYZE
2500 C
3300      106 XMIN=-20
3400      XMAX = 100.0
3500      YM1N = 0.0
3600      YM4X = 5000.0
3700      A1 = 1.0
3800      B1 = 1.0
3900      C1 = 1.0
4000      D1 = 1.0
4100      D2 = 1.0
4200      D3 = 1.0
4300      D4 = 1.0
4400      D5 = 1.0
4500      D6 = 1.0
4600      NX1 = 12
4700      NX2 = 0
4800      NX3 = 0
4900      NY1 = 19
5000      NY2 = 0
5100      NY3 = 0
5200      NZ1 = 25
5300      NZ2 = 0
5400      NZ3 = 0
5500      MV = 3
5600      MW = 0
5700      KTP = 11
5800      CALL DATA(-1,IEOF)
5900      GO TO 120
6000 C ***** BRANCH 1--CALL TABLE SUBROUTINE *****
6100      700 CALL TABLE
6200      GO TO 120
6300 C ***** BRANCH 2--CHANGE DATA SELECTION VARIABLES *****
6400      20 CALL DATA(0,IEOF)
6500      GO TO 120
6600 C ***** BRANCH 3--CHANGE OR LIST COEFFICIENTS *****
6700      30 OPEN(UNIT=50,NAME="PEPLS3.DOC",TYPE="OLD",READONLY)

```

```

6800      00 3350 N=1,200
6900      READ(50,3325,END=3340)(DOC(I),I=1,9)
7000      WRITE(KTTX,3330)(DOC(I),I=1,9)
7100      3350 CONTINUE
7200      3325 FORMAT(9A8)
7300      3330 FORMAT(1H ,9A8)
7400      3340 CLOSE (UNIT=70)
7500      300  WRITE(KTTX,3000)
7600      3000 FORMAT(1H ,*'*** PARAMETERS: KBR3,ISW3,KX,MV,MW')
7700      KX = 4
7800      READ(KIN,*)(KBR3,ISW3,KX,MV,MW)
7900      IF(KBR3)30,350,31
8000      31  IF(ISW3-1)32,32,34
8100      32  WRITE(KLIST,3200)NX1,NX2,NX3,NY1,NY2,NY3,NZ1,NZ2,NZ3
8200      3200 FORMAT(1H ,*'NX1,NX2,NX3,NY1,NY2,NY3,NZ1,NZ2,NZ3'//,9T4)
8300      IF(ISW3-1)34,33,30
8400      33  READ(KIN,*)(NX1,NX2,NX3,NY1,NY2,NY3,NZ1,NZ2,NZ3
8500      GO TO 300
8600      C
8700      34  WRITE(KLIST,3400)KBR3,(CST(JC,KBR3),JC=1,6)
8800      3400 FORMAT(1Z,6(X,P10.4))
8900      IF(ISW3)30,38,35
9000      35  READ(KIN,*)(CST(JC,KBR3),JC=1,6)
9100      37  GO TO 300
9200      38  KBR3 = KBR3 + 1
9300      IF(KBR3-KX)34,34,350
9400      C
9500      350  WRITE(10*1)KPLCM
9700      GO TO 120
9800      C
9900      C ***** AVERAGES #4 *****
10000     400  CALL AVRG5
10100     GO TO 120
10200     C ***** SET ISSW SWITCHES *****
10300     500  WRITE(KTTX,5000)(K,K=1,16),(ISSW(K),K=1,16)
10400     5000 FORMAT(2(1H ,X,16I4,/),* ENTER K,ISSW(K)*)
10500     READ(KIN,*)(K,ISSW(K),K=1,16)
10600     GO TO 120
10700     C ***** RETURN TO MAIN PROGRAM *****
10800     600 RETURN
10900     C ***** EXIT PROGRAM *****
11000     700  WRITE(KTTX,7000)
11100     IF(NOYES(KIN,KTTX).NE.1)GO TO 120
11200     STOP
11300     7000 FORMAT(1H ,*EXIT PROGRAM?*)
11400     C** PEPLS: SHORT DOCUMENTATION--BRANCH 0 *****
11500     800  OPEN(UNIT=50,NAME='PEPLS.DOC',TYPE='BCD',READONLY)
11600     00 850 N=1,200
11700     READ(50,825,END=812)(DOC(I),I=1,9)
11800     WRITE(KTTX,830)(DOC(I),I=1,9)
11900     850 CONTINUE
12000     812  CLOSE(UNIT=50)
12100     825  FORMAT(9A8)
12200     830  FORMAT(1H ,9A8)
12300     GO TO 120
12400     END

```

```

100 C AVROS SUBPROG ****
200      SUBROUTINE AVRGS
300 C ****
400 C
500 C FOR HORIZONTAL AVERAGES COMPUTE LIST AND PENT.
600 C JUNE 27 1976 N FOFONOFF
700 C VAX VERSION--NOV 1980: N.BRAY
800      DIMENSION D(6)
900      DIMENSION TCHART(6)
1000     DIMENSION XYM(9)
1050     CHARACTER*12 OUTNAME
1100     INCLUDE 'COMPEPET.FOR'
1200 C
1300     EQUIVALENCE (D,E,D)
1400 C
1450     CHARACTER*5 IDSTN
1500 C
1600    10  GOTO(100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,
1700      * 1400,1550,1600,E700,1800,1900+2000,2100,2200,1300)YSW
1800 C
1900 C ***** READ DATA TO C-TABLE *****
2000    100 CONTINUE
2200    DO 101 K=1,ND
2300      READ(12,1011,END=1012)M,GNAME(K),WT
2400    1011  FORMAT(14,A12,F5.2)
2500      GNAME(K1(9:12)='AVG'
2600    101 CONTINUE
2625    GO TO 1013
2650    1012 CONTINUE
2675      ND = K-1
2687      REWIND 12
2700    1013  CONTINUE
2800    DU 170 NST=1,ND
2900      IEOF = 0
3000      OPEN(UNIT=RTP,NAME=GNAME(NST),READONLY,TYPE='OLD',FORM=
3100      * 'UNFORMATTED',PRR=168)
3200    102  CALL DATA(I,IEOF)
3300      IF(IEOF)165,105,105
3400    105  WT = 1.0
3500      IF((SSW(15))110/115,115
3600    110  WT = WGT
3700    115  DO 160 I=JSW,KLST
3900    120  XT = VRBLIN(X(I))
4000      C(IREC,I)=C(IREC,I) + D(I)*WT*FAV*XT+(BV+CV*XT)*
4100      * VRBLIN(X(I)))
4200    160 CONTINUE
4300      GO TO 102
4350    165  IF((ISH.EQ.22)GO TO 800
4366    166  GO TO 170
4382    168  WRITE(KTX,*1"ERROR READING",GNAME(NST))
4400    170 CONTINUE
4600      WRITE(10*1)KPLCH
4700    180  GO TO 1500
4800 C ***** #2 ZERO TABLE SET PARAMETERS ****
4900    200  DU 210 I=JSW,KLST
5000      DO 210 J=1,100
5100    210 CT(J,I) = 0.0
5200      IF((ISH.EQ.22).AND.LFILE.EQ.0)GO TO 170
5300      GO TO 1500
5400 C ***** #3 SET PARAMETERS ****
5500    300  TFTJSW(320,320)=310

```

```

5600      310  ND = 1
5700          NV(1) = 51
5800          NV(2) = 68
5900          NV(3) = 86
6000          NV(4) = 87
6100          NV(5) = 63
6200          NV(6) = -1
6300          DO 312 I=1,6
6400 312 NX(I)=0
6500          JC1 = 1
6600          CR1 = 1.0
6700          JC2 = 2
6800          CR2 = -1.0
6900          JC3 = 3
7000          CR3 = -1.0
7100          JC4 = 4
7200          CR4 = 1.0
7300          AV=1.
7400          BV=0.
7500          CV=0.
7600          JMAX = 55
7700          JREF = 50
7800      320  IF(JSW)340,325,325
7900      325  WRITE(KTTX,3200)ND,(NV(K),K=1,6),JREF,JMAX
8000          READ(KIN,*)ND,(NV(K),K=1,6),JREF,JMAX
8100      330  WRITE(KTTX,3300)AV,BV,CV,(NX(I),I=1,6)
8200          READ(KIN,*),AV,BV,CV,(NX(I),I=1,6)
8300      340  WRITE(KTTX,3400)A1,A2,A3,B1,B2,B3
8400          READ(KIN,*),A1,A2,A3,B1,B2,B3
8500          WRITE(KTTX,3500)NX1,NX2,NY1,NY2
8600          READ(KIN,*),NX1,NX2,NY1,NY2
8700      225  GO TO 1500
8800      3200 FORMAT(1H ,*ND,NV(6),JREF,JMAX*,/,919)
8900      3300 FORMAT(1H ,*AV,BV,CV,NX(6)*,/,3F6.3,6I3)
9000      3400 FORMAT(1H ,*PLOT PARAMETERS:   A1           A2           A3
9100          *           B1           B2           B3*,/,1E6X,6F9.3)
9200      3500 FORMAT(1H ,* NX1       NX2       NY1       NY2*,/,4I5)
9300  C ***** #4 AVERAGE TABLE ****
9400      400  DO 410 J=1,100
9500          IF(C(J,6))405,415,405
9600      405  DO 410 I=JSW,KLIST
9700          410  C(I,J) = C(I,J)/C(J,6)
9800          415  JMAX = J - I
9900          IF(ISSW(2))420,1500,1500
10000     420  WRITE(4,425)KMR,ISW,JSW,KLIST
10100     425  FORMAT(1H ,4(13.2X))
10200          GO TO 1500
10300  C ***** #5 ADD COLUMN JSW ****
10400      500  DO 510 J=2,JMAX
10500          510  C(J,JSW) = C(J-1,JSW) + C(J,JSW)
10600          GO TO 1500
10700  C ***** #6 LIST TABLE ****
10800      600  WRITE(KLIST,6000)NBBLT(K),K=1,131
10900          WRITE(KLIST,6055)ND,JREF,JMAX,(NV(K),K=1,6)
11000          WRITE(KLIST,6056)AV,BV,CV,(NX(I),I=1,6)
11100          DO 610 J=1,JMAX
11200      609  KP = JPRT(J,NPR,NSECTION)
11300          WRITE(KLIST,6050)J,KP,(C(J,K),K=1,6)
11400          610  CONTINUE
11500          GO TO 1500
11600      6000  FORMAT(1H ,13X)

```

```

11700 6050 FORMAT(13,15,2X,6F10.4)
11800 6055 FORMAT(1H ,3I4,6I8)
11900 6056 FORMAT(1H ,3F4.2,6T8)
12000 C ***** #7 PLOT TABLE *****
12100 700 CONTINUE
12200 JMIN=1
12300 NCURV=1
12400 WRITE(KTTX,7000)
12500 READ(KIN,* )NCURV,JMIN
12600 IF( NCURV.GT.6)NCURV=6
12700 WRITE(KTTX,7010)PLABL
12800 IF( NOYES(KIN,KTTX).EQ.1)THEN
12900 READ(KIN,7020)PLABL
13000 CALL STRIP(PLABL)
13100 ENDIF
13200 WRITE(KTTX,7030)
13300 IF( NOYES(KIN,KTTX).EQ.-1)THEN
13400 WRITE(KTTX,7040)XMIN,XMAX,YMIN,YMAX
13500 READ(KIN,* )XMIN,XMAX,YMIN,YMAX
13600 CALL AGSETF(6HX/MIN.,XMIN)
13700 CALL AGSETF(6HX/MAX.,XMAX)
13800 CALL AGSETF(6HY/MIN.,YMIN)
13900 CALL AGSETF(6HY/MAX.,YMAX)
14000 ENDIF
14100 WRITE(KTTX,7050)XLABL
14200 IF( NOYES(KIN,KTTX).EQ.1)THEN
14300 READ(KIN,7020)XLABL
14400 CALL STRIP(XLABL)
14500 ENDIF
14600 WRITE(KTTX,7060)YLABL
14700 IF( NOYES(KIN,KTTX).EQ.1)THEN
14800 READ(KIN,7020)YLABL
14900 CALL STRIP(YLABL)
15000 ENDIF
15100 C SET UP PLOT LABEL
15200 C CALL AGSETF(11HLABEL/NAME.,1HT)
15300 C CALL AGSETF(12HLINE/NUMBER.,*85)
15400 C SET PARAMETERS FOR EZMXY PLOT
15500 C CALL AGSETF(1/HTOP/NUMERIC/TYPE.,1.E18)
15600 CALL AGSETF(4HROW..2.)
15700 CALL AGSETF(6HFRAME.,2)
15800 C READ DATA INTO PLOT ARRAYS
15900 DO 710 K=1,NCURV
16000 WRITE(KTTX,7070)JSW
16100 READ(KIN,* )JSW
16200 IF( ISSW(5).EQ.-1)THEN
16300 WRITE(KTTX,7080)
16400 READ(KIN,7090)ICHAR(K)
16500 ENDIF
16600 705 IJM=0
16700 DO 710 J=JMIN,JMAX
16800 IJM=IJM+1
16900 PR=FLOAT(JPRTJ,NPR,NSECTION)
17000 XDAT(IJM,K)=B1+C(J,JSW)+B2*C(J,NX29)+B3*PR
17100 YDAT(IJM,K)=A1*PR+A2*C(J,NY21)+A3*C(J,NY29)
17200 710 CONTINUE
17300 IF(IJ.I.NE.0.)THEN
17400 CALL AGSETF(8HY/ORDER.,1.)
17500 ELSE
17600 CALL AGSETF(8HY/ORDER.,0.)
17700 ENDIF

```

```

17800      CALL ANOTAT(XLABL,YLABL,0,0,0,0)
17900      CALL F7MXY(XDAT,YDAT,JDIM,NCURV,IJM,PABL)
18000      CALL AGGETP(15HSECONDARY/USER.,XYH,4)
18100      IF(0.GT.XYH(1).AND.0.LT.XYH(2))THEN
18200          CALL LINENCAR(0.,XYH(3),0.,XYH(4))
18300      ENDIF
18400      IF(ISSW(5).EQ.-1)THEN
18500          DO 720 I=1,NCURV
18600              CALL POINTS(XDAY(I,1),YDAY(I,1),IJM,YCHAR(I,1))
18700      720 CONTINUE
18800      ENDIF
18900      CALL AGSETF(6HX/MIN.,1.E36)
19000      CALL AGSETF(6HX/MAX.,1.E36)
19100      CALL AGSETF(6HY/MIN.,1.E36)
19200      CALL AGSETF(6HY/MAX.,1.E36)
19300      CALL FRAME
19400      GO TO 1500
19500      C FORMATS
19600      7000 FORMAT(1H , 'INPUT # OF CURVES IN THIS PLOT (MAX IS 6):')
19700      * AND INDEX OF FIRST POINT: ')
19800      7010 FORMAT(1H , 'CHANGE PLOT LABEL? OLD LABEL IS: ',/4H      ,10A4)
19900      7020 FORMAT(10A4)
20000      7030 FORMAT(1H , 'USE DEFAULT AXIS PARAMETERS?')
20100      7040 FORMAT(1H , 'CURRENT VALUES OF XMIN,XMAX,YMIN,YMAX: ',/,4F10.3)
20200      7050 FORMAT(1H , 'CHANGE X-AXIS LABEL? OLD LABEL IS: ',/4H      ,10A4)
20300      7060 FORMAT(1H , 'CHANGE Y-AXIS LABEL? OLD LABEL IS: ',/4H      ,10A4)
20400      7070 FORMAT(1H , 'INPUT COLUMN # (1 TO 6) TO BE PLOTTED: ')
20500      7080 FORMAT(1H , 'INPUT IDENTIFYING CHARACTER: ')
20600      7090 FORMAT(A1)
20700      C ***** #8 COMPUTE DH AND PE *****
20800      800  PPR = 0.0
20900      DELA = C(1,1)-C(1,2)
21000      DELB = DELA
21100      DO 820 J=1,JMAX
21200      805 PR = JPR(J,NPR,NSECTION)
21300      DELP = PR-PPR
21400      DELA = C(J,1)-C(J,2)
21500      DHX = 0.5*(DELA+DELB)*DELP
21600      PEX = 0.50968E-1*(PR*DELA+PPR*DELB)*DELP
21700      IF(J-1)815,810,815
21800      810 C(1,1) = DHX
21900      C(1,2) = PEX
22000      GO TO 817
22100      815 C(J,1) = C(J-1,1) + DHX
22200      C(J,2) = C(J-1,2) + PEX
22300      817 DELB = DELA
22400      820 PPR = PR
22500      IF(IJSW.EQ.22)THEN
22525          KLTST=2
22550          GO TO 1000
22575      ENDIF
22600      IF(ISSW(2)1825+1500 ,1500
22700      825 WRITE(4,425)KBR,IJSW,JSW,KLTST
22800      GO TO 1500
22900      C ***** #9 INTEGRATE OVER PRESSURE *****
23000      900 DO 950 I=JSW,KLTST
23100          PPR = 0.0
23200          CPR = C(I,1)
23300          DO 940 J=I,JMAX
23400      910 PR = JPR(J,NPR,NSECTION)
23500      IF(IJSW.EQ.17) GO TO 917

```

```

23600      PEX = 0.5*(C(J,II)+CPRT)+(PR-PPR)
23700      GO TO 918
23800      917      PEX = .5*(C(J,II)+CPRT)+(PR-PPR)*#2
23900      918      IF(J=11930,920,930
24000      920      C(I,II) = PEX
24100      GO TO 940
24200      930      CPP = CTJ,II
24300      C(J,I) = C(J+1,I) + PEX
24400      940      PPR = PR
24500      950      CONTINUE
24600      IF(ISSW(2)=1975,1500,1500
24700      975      WRITE(4,425)KBR,ISW,JSW,KLST
24800      GO TO 1500
24900      C ***** #10 SUBTRACT REFERENCE VALUE *****
25000      1000 DO 1090 I=JSW,KLST
25100      CREF = C(JREF,I)
25200      DO 1040 J=1,JMAX
25300      1010      C(J,I) = CREF - C(J,II)
25400      1040      CONTINUE
25450      IF(ISW,F0.22) GO TO 1425
25500      1050      CONTINUE
25600      IF(ISSW(2)=1075,1500,1500
25700      1075      WRITE(4,425)KBR,ISW,JSW,KLST
25800      GO TO 1500
25900      C ***** #11 ADD COLUMNS ****
26000      1100      IF(JSW)1110,1120,1110
26100      1110      WRITE(KTTX,1115)JC1,CR1,JC2,CR2,JC3,CR3,JC4,CR4
26200      READ(KIN,*1)JC1,CR1,JC2,CR2,JC3,CR3,JC4,CR4
26300      GO TO 1500
26400      1115      FORMAT(1H,'JC1,CR1,JC2,CR2,JC3,CR3,JC4,CR4',F.4E14,E12.4)
26500      1120 DO 1125 J=1,JMAX
26600      1125      C(J,JC1) = CR1+C(J,JC1)+CR2+C(J,JC2)+CR3+C(J,JC3)
26700      Y +CR4+C(JREF,JC4)
26800      IF(ISSW(2)=1150,1500,1500
26900      1150      WRITE(4,425)KBR,ISW,JSW,KLST
27000      WRITE(4,1115)JC1,CR1,JC2,CR2,JC3,CR3,JC4,CR4
27100      GO TO 1500
27200      C ****
27300      1200      RETURN
27400      C ***** #13 MULTIPLY UP TO 3 COLUMNS ****
27500      1300      I=-1
27600      J=-1
27700      K=-1
27800      CON1=1
27900      CON2=1
28000      CON3=1
28100      WRITE(KTTX,1310)
28200      1310      FORMAT(1H,'INPUT COLUMN NUMBERS UP TO 3 VALUES, AND CORRESPONDING'
28300      X MULTPLICATIVE CONSTANTS')
28400      READ(KIN,*1)I,J,K,CON1,CON2,CON3
28500      DO 1390 IREC=1,JMAX
28600      IF(I.LF.0)GO TO 1500
28700      A=C1IREC,I)*CON1
28800      IF(J.LF.0)GO TO 1380
28900      B=C2IREC,J)*CON2
29000      IF(K.LF.0)GO TO 1381
29100      C0=C3IREC,K)*CON3
29200      GO TO 1385
29300      1380      CONTINUE
29400      R=1.
29500      1381      CONTINUE

```

```

29700      CO=1.
29800      1389   C(IREC,I)=A*B*C0
29900      1390   CONTINUE
30000      IF(ISSH(2))1395,1500,1500
30100      1395   WRITE(4,425)K8R,T8W,J8W,KLYST
30200      WRITE(4,1319)J,K,CON1,CON2,CON3
30300      1311   FORMAT(1H ,3(F3.2X),3(F12.6,2X))
30400      GO TO 1500
30500      C ***** BRANCH 14--OUTPUT IN MAP FORMAT *****
30600      1400   KTO = 60
30700      JREC = 1
30800      WRITE(KTTX,1404)OUTNAME
30825      IF(ENOYESIKIN,KTTX).EQ.11THEN
30850      READ(KIN,1402)OUTNAME
30862      ENDIF
30875      1402   FORMAT(A12)
30887      WRITE(KTTX,1403)JRECI,JRECZ
30900      READ(KIN,*1)JRECI,JRECZ
31000      WRITE(KTTX,1401)OUTNAME
31050      OPEN(UNIT=KTO,NAME=OUTNAME,TYPE='NEW')
31068      JSW=1
31082      KLIST=6
31100      GO TO 100
31206      142   IF(IREC.NE.JRECI)GO TO 102
31212      1425   LFILE = 0
31218      IDSTN(1:2)=GNAME(NST)(1:2)
31224      IDSTN(3:5)=GNAME(NST)(6:8)
31236      IF(ISSH.NE.22) GO TO 1430
31242      DO 145 KREC=JRECI,JRECZ
31248      VR1 = C(KREC,JSW)*1.E-3
31254      VR2=C(KREC,3)
31260      VR3=C(KREC,4)
31266      VR4=C(KREC,5)
31272      VR5=C(KREC,6)
31278      KP=JPR(KREC,NPR,NSECTION)
31284      WRITE(KTO,1421)IDSTN,KP,XLAT,XLONG,VR1,VR2,VR3,VR4,VR5
31290      145   CONTINUE
32183      IF(INST.EQ.ND)LFILE=1
32200      GO TO 1490
32300      1430   VR1 = VRBL(NV(1))
32400      VR2 = VRBL(NV(2))
32500      VR3 = VRBL(NV(3))
32550      1490   CONTINUE
32552      KP=JPR(KREC,NPR,NSECTION)
32554      IDSTN(1:2)=GNAME(INST)(1:2)
32577      IDSTN(3:5)=GNAME(NST)(6:8)
32600      WRITE(KTO,1421)IDSTN,KP,XLAT,XLONG,VR1,VR2,VR3,VR4,VR5
32800      1421   FORMAT(1H ,A5,F6.2,F8.2),4(F8.3),F8.3)
32900      IF(ISSH.EQ.22).AND.(LFILE.EQ.0) THEN
32912      KLIST=6
32924      GO TO 200
32936      ENDIF
32950      IF(ISSH.EQ.22.AND.LFILE.EQ.1)WRITE(KTO,1422)
32958      1422   FORMAT(/)
32979      CLOSE(UNIT=KTO)
33000      IF(LFILE)200,102,200
33100      1401   FORMAT(1H ,*'NEW OUTPUT FILE NAME IS ',SR12)
33150      1403   FORMAT(1H ,*'LEVEL NUMBERS ARE ',SR13)
33175      1404   FORMAT(1H ,*'INPUT NEW OUTPUT FILE NAME Y/E OR NO? ',SR12)
33200      C ***** BRANCH 0--SHORT DOCUMENTATION *****
34100      1550   GO TO 1500

```

```

34200 C *****
34300 1500 WRITE(KTTX,1505)KBR,ISH,JSH,KLIST
34400 1705 FORMAT(1H ,*AVRGSTKBR,ISH,JSH,KLIST*,7.5X,314,15)
34500 KLIST = 6
34600 READ(KIN,*1)KBR,ISH,JSH,KLIST
34700 IF(KBR.EQ.0) GO TO 2300
34800 IF(KBR.GT.22)GO TO 1500
34900 GO TO 10
35000 C ***** N15 TAKE CIIREC,J*** X *****
35100 1600 PF(JSW)1610,1620,1610
35200 1610 WRITE(KTTX,1611)
35300 READ(KIN,*1)X,J
35400 GO TO 1500
35500 1620 DO 1630 IREC=1,JMAX
35600 CIIREC,JJ=ABST(CIIREC,J))**X
35700 1630 CONTINUE
35800 IF(TSSW(2))1630,1500,1500
35900 1650 WRITE(4,425)KBR,ISH,JSH,KLIST
36000 WRITE(4,1651)X,J
36100 1651 FORMAT(1H ,F12.6,2X,I2)
36200 GO TO 1500
36300 1611 FORMAT(1H ,*INPUT EXPONENT,COLUMN*)
36400 C ***** BRANCH 17--SUMMATION OF ERRORS OVER P *****
36500 1700 GO TO 900
36600 1755 FORMAT(1H ,2(12,2X))
36700 C ***** #18--DELP INTO CIIREC,5) *****
36800 1800 PPR=0.0
36900 DO 1810 J=1,JMAX
37000 PR=JPR(J,NPR,NESECTION)
37100 DELP=PR-PPR
37200 PPR=PR
37300 C(J,5)=DELP
37400 1910 CONTINUE
37500 IF(TSSW(2))1825,1500,1500
37600 1825 WRITE(4,425)KBR,ISH,JSH,KLIST
37700 GO TO 1500
37800 C ***** N19-- EXCHANGE COLUMNS *****
37900 1900 WRITE(KTTX,1910)
38000 1910 FORMAT(1H ,*INPUT COLUMN NUMBERS TO BE EXCHANGED*)
38100 READ(KIN,*1)I,J
38200 DO 1920 IREC=1,JMAX
38300 CIIREC = C(IREC,I)
38400 C(IREC,I) = C(IREC,J)
38500 C(IREC,J) = CIIREC
38600 1920 CONTINUE
38700 IF(TSSW(2))1925,1500,1500
38800 1925 WRITE(4,425)KBR,ISH,JSH,KLIST
38900 WRITE(4,1755)I,J
39000 GO TO 1500
39100 C ***** CHANGE SINGLE ELEMENT OF C -- #20
39200 2000 WRITE(KTTX,2010)
39300 2010 FORMAT(1H ,*INPUT COLUMN, ROW, NEW VALUE*)
39400 READ(KIN,*1)I,J,XCHG
39500 C(J,I) = XCHG
39600 IF(TSSW(2))2025,1500,1500
39700 2025 WRITE(4,425)KBR,ISH,JSH,KLIST
39800 WRITE(4,2030)I,J,XCHG
39900 2030 FORMAT(1H ,2(12,2X),F12.6)
40000 GO TO 1500
40100 C ***** COMPUTE STD.DEV.(X) IN COL 1 FOR X-BAR,X#X-BAR IN COL 4,3 ***
40200 2100 IF(TSSW(2))2110,2120,2120

```

40300 2110 WRITE(4,425)KBR,ISW,JSW,KLST
40400 2120 DO 2130 IREC = Z,JMAX
40500 Z = C(IREC,4)
40600 C(IREC,1) = SORT(IND*(C(IREC,3)-Z*Z)/(END-1))
40700 2130 CONTINUE
40800 GO TO 1500
40900 C *****\$22--CALCULATE DH FOR EACH STATION--OUTPUT IN MAP FORMAT
41000 2200 GO TO 1400
41100 C ***** BRANCH 0--SHORT DOCUMENTATION--AVRGS *****
41200 2300 OPEN(UNIT=50,NAME='AVRGS.DOC',TYPE='OLD',READONLY)
41300 DO 2350 N=1,200
41400 READ(50,2325,END=2355)(DOC(I),I=1,9)
41500 WRITE(KTYX,2330)(DOC(I),I=1,9)
41600 2350 CONTINUE
41700 2325 FORMAT(9A8)
41800 2330 FORMAT(1H ,9A8)
41900 2355 CLOSE (UNIT=50)
42000 GO TO 1500
42100 END

```

100 C TABLE SUBPROG PEPLT ***** OCT 27 1977 *****
200      SUBROUTINE TABLE
300 C *****
400 C
500 C TO COMPUTE AND PLOT POTEN VARTABLES.
600 C JUNE 27 1976 N FOFONOFF
700 C VAX VERSION--NOV 1980 N.BRAY
800 C
900      INCLUDE 'COMPEPLT.FOR'
950      DIMENSION VAR(100,9)
1000 C
1100 C PROG
1200      IF(IISH=11600,15,10
1300      10      NOSTN = 0
1400      ND = 1
1500      NX1=1
1600      NX2=64
1700      NY1=2
1800      NY2=12
1900      A1=1.
2000      A2=2
2100      B1=1.
2200      B2=-.003
2600      X2DIM=3.
2700      Y2DIM=3000.
2720      XMIN=-110.
2740      XMAX=40.
2760      YMIN=-100.
2780      YMAX=-30
2800      15      WRITE(IKTTX,1505)ND,PMIN,PMAX,X2DIM,Y2DIM
2900      1505      FORMAT(IH,'NN: STATIONS?:ND,PMIN,PMAX,X2DIM,Y2DIM: ',I4,4F7.0)
3000      READIKIN,*ND,PMIN,PMAX,X2DIM,Y2DIM
3100      JMIN=1
3200      WRITE(IKTTX,7000)
3300      READIKIN,*JMIN
3400      WRITE(IKTTX,7010)PLABL
3500      IF(NOYES(KIN,KTTX).EQ.1)THEN
3600      READIKIN,7020)PLABL
3700      CALL STRIP(PLABL)
3800      ENDIF
4100      WRITE(IKTTX,7040)XMIN,XMAX,YMIN,YMAX
4200      READIKIN,*XMIN,XMAX,YMIN,YMAX
4300      CALL AGSETF(6HX/MIN.,XMIN)
4400      CALL AGSETF(6HX/MAX.,XMAX)
4500      CALL AGSETF(6HY/MIN.,YMIN)
4600      CALL AGSETF(6HY/MAX.,YMAX)
4800      WRITE(IKTTX,7050)XLABL
4900      IF(NOYES(KIN,KTTX).EQ.1)THEN
5000      READIKIN,7020)XLABL
5100      CALL STRIP(XLABL)
5200      ENDIF
5300      WRITE(IKTTX,7060)YLABL
5400      IF(NOYES(KIN,KTTX).EQ.1)THEN
5500      READIKIN,7020)YLABL
5600      CALL STRIP(YLABL)
5700      ENDIF
5800      CALL AGSETF(6HFRAME.,Z.)
5900      RETURN
6000      C *****
6100      7000      FORMAT(IH,'INPUT INDEX OF FIRST POINT: ')
6200      7010      FORMAT(IH,'CHANGE PLOT LABEL? OLD LABEL IS: ',I5,I5,I5),IOSTAT

```

```

6300 7020 FORMAT(10A4)
6500 7040 FORMAT(1H , 'CURRENT VALUES OF XMIN,XMAX,YMIN,YMAX= ', /,4F10.3)
6600 7050 FORMAT(1H , 'CHANGE X-AXIS LABEL? OLD LABEL IS: ', /,4H ,10A4)
6700 7060 FORMAT(1H , 'CHANGE Y-AXIS LABEL? OLD LABEL IS: ', /,4H ,10A4)
7100 600 CONTINUE
7200 C
7300 18 DD 180 J=4,6
7400 00 180 I=1,100
7500 180 C11,J1 = 0.0
7800 00 101 K=1,ND
7900 READ(12,1010,FND=106)M,CNAME(K),WT
8000 1010 FORMAT(I4,A12,F5.2)
8100 CNAME(K)(9:12)='AVG'
8200 101 CONTINUE
8250 106 IF(ND.GT.K-1)ND=K-1
8300 REWIND 12
8400 90 DD 175 JST=I,ND
8500 IEOF=0
8600 OPEN(UNIT=KTP,NAME=CNAME(JST),READONLY,TYPE='OLD',FORM=
8700 * 'UNFORMATTED',ERR=175)
8800 95 CALL DATAT1,IEOF)
8900 IF(IEOF.EQ.-1)GO TO 111
9000 X = A1*VRBL(NX1)+A2*VRBL(NX2)+A3*VRBL(NX3)+A4*C1IREC,1)
9100 Y = B1*VRBL(NY1)+B2*VRBL(NY2)+B3*VRBL(NY3)+B4*C1IREC,2)
9200 Z = C1*VRBL(NZ1)+C2*VRBL(NZ2)+C3*VRBL(NZ3)+C4*C1IREC,3)
9300 XPR=A1*VRBL(NX1)
9400 YPR=B1*VRBL(NY1)
9500 WT = 1.0
9509 VARIIREC,1)=PF
9518 VARIIREC,2)=XPL
9527 VARIIREC,3)=YPL
9536 00 950 M=1,6
9545 VARIIREC,M+3)=VRBL(NV(M))
9554 950 CONTINUE
9578 IF(ISSW(10).EQ.1)THEN
9581 WRITE(KOUT,1421)(VARIIREC,K),K=1,9)
9587 ENDIF
9590 1421 FORMAT(9F8.3)
9595 1422 FORMAT(/)
9600 940 IF(ISSW(15))980,985,985
9700 980 WT = WGT
9800 985 C1IREC,4)=X
9900 C1IREC,5)=Y
10000 C1IREC,6)=Z
10100 105 IF(ISSW(12))110,113,113
10200 110 WRITE(KLIST,*1PF,X,Y,Z
10300 1100 FORMAT(2I4,A2,I4,F7.0,3F10.3)
10400 113 GO TO 95
10500 111 CONTINUE
10600 IF(ISSW(10).EQ.-1.AND.JST.EQ.ND)
10700 *WRITE(KOUT,1422)
11300 IF(ISSW(6).EQ.-1)GO TO 175
11400 171 IJH = 0
11500 00 172 K=JMIN,IREC
11600 IJM=IJH+1
11700 XDAT(IJM,1) = C(K,4)
11800 YDAT(IJM,2) = C(K,5)
11900 172 CONTINUE
12000 IF(JST.GT.11)THEN
12100 CALL AGSETF(11HBACKGROUND.,4.)
12200 ENDTF

```

12300 CALL FRSTPT(XDAT(1,1),YDAT(1,1))
12400 CALL ANOTAT(XLBL,YLBL,0,0,0,0.)
12500 CALL EZXY1(XDAT,YDAT,JOIM,I,JIN,PLBL)
12550 IF(ISSW(5).EQ.-1)GO TO 175
12600 YPR2=YPR+A2*X2DTM
12700 XPR2=XPR-A2*X2DTM
12800 XPR3=XPR+A2*X2DTM
12900 CALL LINENCAR(XPR,YPR,XPR,YPR2)
13000 CALL LINENCAR(XPR2,YPR,XPR3,YPR)
13100 175 CONTINU
13150 IF(ISSW(6).EQ.-1)GO TO 178
13200 CALL FRAME
13300 CALL AGSETF(6HY/MIN.,1.E36)
13400 CALL AGSETF(6HX/MAX.,1.E36)
13500 CALL AGSETF(6HY/MIN.,1.E36)
13600 CALL AGSETF(6HY/MAX.,1.E36)
13700 CALL AGSETF(11HBACKGROUND.,1.)
13800 178 IF(ISSW(10).EQ.-1)CLOSE(UNIT=ROUT)
13900 RETURN
14000 END

```

100 C DATA SUAR PFPLT ***** SEPT 15 1977 *****
200      SURROUNTING DATA(NSH,TEOF)
300 C *****
400 C
500 C PROGRAM TO READ AND SELECT POTEN DATA.
600 C JUNE 27 1976 N EOFONOFF
700 C VAX VERSION--NOV 1980. N.BRAY
800      INCLUDE 'COMPEPLT.FOR'
850      REAL*4 JDO
900 C
1000 C
1100      MW = 1
1200      IF(NSW>1,20,200
1300      1 CONTINUE
1400      JBUF = 46
1500      JHDR = 150
1600      JDO = 0.
1700      PMIN = 0.0
1800      PMAX = 6000.0
1900      DAY1 = 0.
2000      DAY2 = 365.
2100      XEMN = -180.0
2200      XEMX = 180.0
2300      XNMN = -90.0
2400      XNMX = 90.0
2500      ZLTO = 31.0
2600      ZLGO = 69.50
2700      IFLAG=0
2800      RETURN
2900 C
3000      20 CONTINUE
3400      172      WRITE(KTTX,173)DAY1,DAY2
3500      173      FORMAT(1H ,5HDAY1,F8.3,5HDAY2,F8.3)
3600      READ(KIN,* )DAY1,DAY2
3700      174      WRITE(KTTX,175)XEMN,XEMX,XNMN,XNMX
3800      175      FORMAT(1H ,7HE-N L1M,4F7.2)
3900      READ(KIN,* )XEMN,XEMX,XNMN,XNMX
4000      WRITE(KTTX,177)ZLTO,ZLGO,JDO,PMIN,PMAX
4100      177      FORMAT(9H DRYGYN: ,2(X,F8.3),X,4HJDO,F8.2,10HPMIN,PMAX ,2F7.1)
4200      READ(KIN,* )ZLTO,ZLGO,JDO,PMIN,PMAX
4300      RETURN
4400 C
4600      200      IF(IFLAG.EQ.1)GO TO 212
4700      READ(KTP,END=280)KMDG
4800      IFLAG=1
4875 C
5000      251      IF(XDAY-DAY1)>280,252,252
5100      252      IF(DAY2-XDAY)>280,254,254
5200      254      IF(XLONG-XEMN)>280,256,256
5300      256      IF(XEMX-XLONG)>280,258,258
5400      258      IF(XLAT-XNMN)>280,260,260
5500      260      IF(XNMX-XLAT)>280,262,262
5600      262      YPL = -111.12*(XLONG-ZLGO)*COS((XLAT+ZLT0)/114.592)
5650      *      * JDO*FLOAT(TICON)
5700      YPL = 111.12*(XLAT-ZLT0)
5800      DAY = XDAY
5850      212      READ(KTP,END=280)KBUF
5900      2615     IF(ISSH(13)>2620,263,263
6000      2620     IF(IREC .GT. 112630,2625,2630
6100      2625     WRITE(KOUT)KMDG
6200      2630     WRITE(KROUT)KBUF

```

6300	263	CONTINUE
6700	270	IF(PF-PMIN)200,272,272
6800	272	IF(PMAX-PFT)200,274,274
6900	274	RETURN
7000	280	IENF=-1
7100		CLOSE(UNIT=KTP)
7200		IFLAG=0
7300		RETURN
7400		END

```

50 C PPELT SUBR ***** PPELTSUR SEPT 15 1977*****
100 C VAX VERSION NOV 1980. N.BRAY.
150 C FUNCTION POLY(V0,DVN,CP,N,VNN,VNX)
200 C *****
250 C
300 C TO EVALUATE POLYNOMIAL OF ORDER N-1 WITH COEFF CP(I).
350 C
400 C JAN 28 1976 N. FOFONOFF
450 C
500 C DIMENSION CP(1)
550 C
600 C V = V0
650 C TF(V-VNN)I,2,2
700 C 1 V = VNN
750 C 2 TF(VNX-V)3,4,4
800 C 3 V = VMX
850 C 4 POLY = 0.0
900 C X = V - DVN
950 C DO 10 I=1,N
1000 C NI = N - I + 1
1050 C 10 POLY = POLY*X + CP(NI)
1100 C RETURN
1150 C END
1200 C DPDV FCN *****
1250 C FUNCTION DPDV(V0,DVN,CP,N,VNN,VNX)
1300 C *****
1350 C
1400 C TO COMPUTE DERIVATIVE OF POLYNOMIAL
1450 C
1500 C JAN 28 1976 N. FOFONOFF
1550 C
1600 C DIMENSION CP(1)
1650 C
1700 C V = V0
1750 C TF(V-VNN)I,2,2
1800 C 1 V = VNN
1850 C 2 TF(VNX-V)3,4,4
1900 C 3 V = VMX
1950 C 4 NM1 = N - I
2000 C X = V - DVN
2050 C DPDV = 0.0
2100 C DO 20 I=1,NM1
2150 C NM1 = N - I
2200 C 20 DPDV = DPDV*X + FLOAT(NM1)*CP(NM1+1)
2250 C RETURN
2300 C END
2350 C BND FCN *****
2400 C FUNCTION BND(Z,ZMIN,ZMAX)
2450 C *****
2500 C
2550 C TEST AND LIMIT VARIABLES.
2600 C
2650 C BND = Z
2700 C TF(Z-ZMIN)10,20,20
2750 C 10 BND = ZMIN
2800 C RETURN
2850 C 20 TF(ZMAX-Z)30,40,40
2900 C 30 BND = ZMAX
2950 C 40 RETURN
3000 C END
3050 C JPR FCN **** PTSKI ****

```

```

3100      FUNCTION JPR(IREC,NPR,NST)
3150      C *****
3200      C
3250      C GENERATES PRESSURES CORRESPONDING TO IREC.
3300      C
3350      C OCT 28 1975 N FOFONOFF
3400      C
3450      DIMENSION NPR(1)
3500      C
3550      DO 100 J=1,NS
3600      IF(IREC.LT.NPR(J))THEN
3650      JPR=NPR(NS+J)*(IREC-NPR(2+NS+J))
3700      RETURN
3750      ENDIF
3800      100 CONTINUE
3850      JPR=NPR(2+NS)*(IREC-NPR(3+NS))
3900      RETURN
3950      END
4000      C *****
4050      SUBROUTINE STRIP(A)
4100      C *****
4150      C
4200      C STRIPS TRAILING BLANKS AND PUTS A $ AT THE END OF CHARACTERS
4250      C IN ARRAY A FOR CONFORMANCE WITH NCAR PLOT PACKAGE LABELS
4300      C N.BFAY 17NOV80
4350      C
4400      DIMENSION A(1)
4450      C
4500      B=T
4550      DO 100 J=1,10
4600      K=10-J+1
4650      IF(A(K)-B)200,100,200
4700      100 CONTINUE
4750      200  NCH=K+1
4800      IF(NCH.GT.10)NCH=10
4850      A(NCH)='$'
4900      RETURN
4950      END
5000      C PFFLY SURR ***** PFSBZ 4 MAY 1979 *****
5050      C D2PDV FN--SECOND DERIVATIVE OF POLYNOMIAL
5100      FUNCTION D2PDV(V0,DVN,CP,N,VNN,VNX)
5150      C *****
5200      C
5250      C
5300      C JAN 28 1976 N. FOFONOFF
5350      C
5400      DIMENSION CP(I)
5450      C
5500      V = V0
5550      IF(V-VNN)1,2,2
5600      1  V = VNN
5650      2  IF(VMX-V)3,4,4
5700      3  V = VMX
5750      4  NM1 = N - 2
5800      X = V - DVN
5850      D2PDV = 0.0
5900      DO 20 I = 1,NNI
5950      NNI = N - I
6000      NNI2 = NNI - 1
6050      20 D2PDV = D2PDV*X + FLOAT(NNI*NNI2)*CP(NNI+1)
6100      RETURN

```

6150 END
 6200 C SEAWATER PROPERTIES *****
 6250 C
 6300 C SG0 *****
 6350 FUNCTION SG0(S)
 6400 C *****
 6450 C SIGMA-O KNUDSEN
 6500 C FEB 15 1976 N. FOFONOFF
 6550 C
 6600 SG0 = ((6.76786136E-6*S-4.8249614E-4)*S+0.814876577)*S
 6650 X -0.0934458632
 6700 RETURN
 6750 FND
 6800 C SGT FCN *****
 6850 FUNCTION SG1(T,S,SG)
 6900 C *****
 6950 C SIGMA-T KNUDSEN
 7000 C FEB 15 1976 N FOFONOFF
 7050 C
 7100 SG = SG0(S)
 7150 Z0 SG1 = ((((-1.49803061E-7*T-1.98258399E-3)*T-0.545939111)*T
 7200 X +4.53168426)*T)/(T+67.26)+(((1.667E-8*T-8.164E-7)*T
 7250 X +1.803E-5)*T)*SG+((-1.0843E-6*T+9.8185E-5)*T-4.7867E-3)*T
 7300 X +1.0)*SG
 7350 RETURN
 7400 FND
 7450 C EQUATION OF STATE FOR SEAWATER EOS80
 7500 C *****
 7550 REAL FUNCTION EOS80(P1,T,S)
 7600 C *****
 7650 C EQUATION OF STATE FOR SEAWATER PROPOSED BY JPOTS 1980
 7700 C REFERENCES
 7750 C MILLER ET AL 1980, DEEP-SEA RES., 27A, 255-269
 7800 C JPOTS NINTH REPORT 1978, TENTH REPORT 1980
 7850 C UNITS:
 7900 C PRESSURE P BARS
 7950 C INPUT PRESSURE PI DECBARS
 8000 C TEMPERATURE T DEG CELSIUS (PPTS-68)
 8050 C SALINITY S NSU (IPSS-78)
 8100 C DENSITY RHO KG/M**3
 8150 C SPEC. VOL. EOS80 M**3/KG
 8200 C CHECK VALUE: EOS80 = 9.435561E-4 M**3/KG FOR S = 40 NSU.
 8250 C T = 40 DEG C, P = 1000 BARS.
 8300 C
 8350 C IN FOFONOFF REVISED OCT 7 1980
 8400 C MODIFIED TO TAKE DB INPUT PRESSURE, AND OUTPUT IN CM**3/GM 28NOV80
 8450 C N.BRAY
 8500 REAL P1,P,T,S,RHO,SR,R1,R2,R3,R4
 8550 REAL A,B,C,D,E,A1,B1,AM,BM,K,KO,KW
 8600 C FOUTIV
 8650 FOUTIVALENCE (E,D,B1,R4),(BW,B,R3),(C,A1,R2)
 8700 EQUIVALENCE (AM,A,R1,R0),(KW,KD,K)
 8750 C CONVERT PRESSURE TO BARS AND SQUARE ROOT SALINITY.
 8800 P = P1*.1
 8850 SR = SQRT(ABS(S))
 8900 C COMPUTE DENSITY PURE WATER AT ATM PRESSURE
 8950 R1 = ((16.536332E-9*T-1.120083E-6)*T+1.001685E-4)*T
 9000 X-9.095290E-3)*T+8.793952E-21*T+999.842994
 9050 C SEAWATER DENSITY ATM PRESS.
 9100 R2 = ((15.3875E-9*T-8.2467E-7)*T+7.6438E-5)*T-4.0899E-3)*T
 9150 X+8.24493E-1

```

9200      R3 = (-1.6546E-6*T+1.0227E-4)*T-5.72456E-3
9250      R4 = 4.8314E-4
9300      RHO = TR4*S + R3*SR + R21*S + RI
9350      C SPECIFIC VOLUME AT ATMOSPHERIC PRESSURE
9400      ALPHA = 1.E+3/RHO
9450      EOSAO = ALPHA
9500      TFP,EO,0.0TRETURN
9550      C COMPUTE COMPRESSION TERMS
9600      F = 19.1597E-10*T+2.0816E-8*T-9.9348E-7
9650      BW = (5.2787E-8*T-6.12293E-6)*T+8.50935E-5
9700      R = BW + E+S
9750      C
9800      N = 1.91075E-4
9850      C = (-1.6078E-6*T-1.0981E-5*T+2.2838E-3
9900      BW = 11-9.77909E-7*T+1.16092E-9*T+1.43713E-31*T
9950      X+3.23990R
10000     A = TD*SR + C1*S + BW
10050     C
10100     RI = (-5.3009E-4*T+1.6483E-21*T+7.944E-7
10150     A1 = ((-6.1570E-5*T+1.09987E-2)*T-0.603459)*T+54.6746
10200     KW = 111-5.155288E-5*T+1.360477E-21*T-2.327105*T
10250     X+148.42061*T+19552.21
10300     K0 = TB1*SR + A11*S + KW
10350     C
10400     K = ER*P + A1*P + K0
10450     ALPHA = ALPHA*(1.0 - P/K)
10500     EOSAO = ALPHA
10550     RETURN
10600     END
10650     C V350P FCN ***** OCT 7 1980 *****
10700     REAL FUNCTION V350P(P1)
10750     C *****
10800     C SPECIFIC VOLUME (CM**3/GM) FOR S = 35 NSU (IPSS-78)-
10850     C TEMPERATURE 0 DEG CELSIUS (IPTS-68) AND PRESSURE IN DECIBARS.
10900     C EQUATION DERIVED FROM EOSAO
10950     C CHECK VALUE: V350P = 9.337431E-4 CM**3/KG FOR P = 1000 BARS.
11000     C ADJUSTED TO ACCEPT INPUT PRESSURE IN DB AND OUTPUT SP.VOL IN
11050     C CM**3/GM 28 NOV 80. N BRAY.
11100     P = P1*.1
11150     ALPHA = 9.72662E-4*(1.0-P/121582.27+(3.33941+5.032E-5*P1+P1))
11200     ALPHA = 1.E+3*ALPHA
11250     V350P = ALPHA
11300     RETURN
11350     END
11400     C DEPTH FCN ***** OCT 7 1980 *****
11450     REAL FUNCTION DEPTH(P1,LAT)
11500     C *****
11550     C DEPTH IN METERS FROM PRESSURE IN DECIBARS USING
11600     C SAUNDERS AND FOFONOFF'S METHOD.
11650     C DEEP-SEA RES., 1976,23,109-111.
11700     C FORMULA REFITTED FOR EOSAO
11750     C
11800     REAL LAT
11850     C
11900     P = P1*.1
11950     X = SIN(LAT/57.29578)
12000     X = XXX
12050     GR = 9.780318*(1.0+(5.2788E-3+2.36E-5*X)+X) + 1.092E-5*P
12100     DEPTH = ((-1.82F-110P+2.279E-71*T-2.2312E-31*T+97.26591*P
12150     DEPTH = DEPTH/GR
12200     RETURN

```

```

12250      FND
12300  C ATG FCN *****
12350  FUNCTION ATG(P,T,S)
12400  C *****
12450  C
12500  C ADIABATIC TEMPERATURE GRADIENT. BRYDEN 1973.
12550  C
12600  DS = S - 35.0
12650  ATG = ((-2.1687E-16*T+1.8676E-14)*T-4.6206E-13)*P
12700  X+(12.7759E-12*T-1.1351E-10)*DS+(-5.4481E-14)*T
12750  X+8.733E-12)*T-6.7795E-10)*T+1.8741E-8)*P
12800  X+(-4.2393E-8*T+1.8932F-6)*DS
12850  X+(16.6228E-10*T-6.836E-8)*T+8.5258E-6)*T+3.5803E-5
12900  RETURN
12950  FND
12954  C DVA FCN ***** PTSB1 *****
12958  FUNCTION DVA(P,T,S)
12962  C *****
12966  C
12970  C SPECIFIC VOLUME ANOMALY
12974  C
12978  DVA = SVAN(P,T,S,SPV)
12982  RETURN
12986  FND
12990  C
13000  C SVAN FCN *****
13050  FUNCTION SVAN(P,T,S,V)
13100  C *****
13150  C SPECIFIC VOLUME ANOMALY*1E5
13200  C FEB 15 1976 N FOFONOFF
13250  V = F0580(P,T,S)
13300  SVAN = 1.0E5*(V - V350P(P))
13450  RETURN
13500  END
13550  C THETA FCN *****
13600  FUNCTION THETA(P0,T0,S,PF)
13650  C *****
13700  C
13750  C TO COMPUTE LOCAL POTENTIAL TEMPERATURE AT PF
13800  C FOURTH-ORDER RUNGE-KUTTA INTEGRATION USING STEPS OF 100 DB
13850  C OR LF55. (RALSTON-WILF VOL 1 PT15, ED 26)
13900  C
13950  C OCT 12 1975 N. FOFONOFF
14000  C
14050  P = P0
14100  T = T0
14150  H = PF - P
14200  N = ABS(H)/1000.0 + 1.0
14250  H = H/FLOAT(N)
14300  DO 10 I=1,N
14350  XK = H*ATG(P,T,S)
14400  T = T + 0.5*XK
14450  O = XK
14500  P = P + 0.5*H
14550  XK = H*ATG(P,T,S)
14600  T = T + 0.29289322*(XK-O)
14650  O = 0.58578644*XK + 0.121320344*O
14700  XK = H*ATG(P,T,S)
14750  T = T + 1.707106781*(XK-O)
14800  O = 3.414213562*XK - 4.121320344*O
14850  P = P + 0.5*H

```

```

14900      XK = H*ATG(P,T,S)
14950      T = T + (XK-2.000)/6.0
15000      TO CONTINUE
15050      THETA = T
15100      RETURN
15150      FND
15200      C T68 FCN *****
15250      FUNCTION T68(T)
15300      C *****
15350      C TO CONVERT T-48 TO T-68 TEMPERATURE SCALE
15400      C FEB 15 1976 N FOFONOFF
15450      C
15500      T68 = T - 4.4E-6*T*(100.0-T)
15550      RETURN
15600      FND
15650      C T48 FCN *****
15700      FUNCTION T48(T)
15750      C *****
15800      C TO CONVERT T-68 TO T-48 TEMPERATURE SCALE
15850      C FEB 15 1976 N FOFONOFF
15900      C
15950      T48 = T + 4.4E-6*T*(100.0-T)
16000      RETURN
16050      FND
16100      C DVDT FCN *****
16150      FUNCTION DVDT(P,T,S)
16200      C *****
16250      C DERIVATIVE OF SPECIFIC VOL. WITH TEMPERATUREIES
16300      C FEB 20 1976 N FOFONOFF
16350      C
16400      H = 0.25
16450      DVDT = (5.0E4/H)*(EOS80(P,T+H,S)-EOS80(P,T-H,S))
16500      RETURN
16550      FND
16600      C DVDS FCN *****
16650      FUNCTION DVDS(P,T,S)
16700      C *****
16750      C DERIVATIVE OF SPECIFIC VOL. WITH SALINITYIES
16800      C FEB 20 1976 N FOFONOFF
16850      C
16900      H = 0.5
16950      DVDS = (5.0E4/H)*(EOS80(P,T,S+H)-EOS80(P,T,S-H))
17000      RETURN
17050      FND
17100      C DVDP FCN *****
17150      FUNCTION DVDP(P,T,S)
17200      C *****
17250      C ADIABATIC DERIVATIVE OF SPEC. VOL. WITH PRESSUREIES
17300      C FEB 20 1976 N FOFONOFF
17350      C
17400      H = 6.0
17450      DVDP = (5.0E4/H)*(EOS80(P+H,T,S)-EOS80(P-H,T,S))
17500      X + ATG(P,T,S)*DVDT(P,T,S)
17550      RETURN
17600      FND
17650      C DKDT FCN *****
17700      FUNCTION DKDT(P,T,S)
17750      C *****
17800      C ADIABATIC COMPRESSIBILITY TEMP DERIVATIVE
17850      C FEB 20 1976 N FOFONOFF
17900      C

```

```

17950      H = 1.0
18000      DKDT = (0.5/H)*(DVD(P,T+H,S) - DVD(P,T-H,S))
18050      RETURN
18100      END
18150      C DKDS FCN *****
18200      FUNCTION DKDS(P,T,S)
18250      C *****
18300      C ADIABATIC COMPRESSIBILITY SALINITY DERIVATIVE.
18350      C FFB 20 1976 N FOFONOFF
18400      C
18450      H = 2.0
18500      DKDS = (0.5/H)*(DVD(P,T,S+H) - DVD(P,T,S-H))
18550      RETURN
18600      END
18650      C SAL FCN *****
18700      FUNCTION SAL(P,T,D)
18750      C *****
18800      C COMPUTE SALINITY GIVEN PRESSURE, TEMPERATURE AND SPECIFIC
18850      C VOLUME ANOMALY(10**5*DELTA)
18900      C FFB 16 1976 N FOFONOFF
18950      C
19000      K = 0
19050      SAL = 35.0
19100      10 S = SAL
19150      SAL = S + (D-S*VAN(P,T,S,V))/DVDSP(T,S)
19200      K = K+1
19250      TFK=50)20,30,30
19300      20 IF(LRS(SAL-S)-0.0005)30,10,10
19350      30 RETURN
19400      END
19450      C NOYES FUNCTION **** DEC 3 1979 ****
19500      FUNCTION NOYES(KIN,KTX)
19550      C *****
19600      C RETURNS 1 FOR YES -1 FOR NO
19650      NOYES = 0
19700      1 READ(KIN,10)LB
19750      10 FORMAT(A2)
19800      C
19850      TF(LB.EQ.2HYE)NOYES=1
19900      TF(LB.EQ.2HN)NOYES=-1
19950      TF(NOYES)30,20,30
20000      C FRR09
20050      20 WRITE(KTX,100)
20100      100 FORMAT('S YES OR NO? ')
20150      0N 10 1
20200      C
20250      30 RETURN
20300      END
20350      C CTOSD FILE **** JULY 15 1977 ****
20400      C THSAL FCN **** JULY 6 1977 ****
20450      FUNCTION THSAL(KIN,1)
20500      C *****
20550      C
20600      C TAKES UP TO 25 CUBIC SPLINES TO GENERATE A SALINITY FROM
20650      C POTENTIAL TEMPERATURE REFERRED TO THE SURFACE. INPUT DATA
20700      C CONSISTS OF LOWER SPLINE BOUNDARY FOLLOWED BY FOUR COEFFICIENTS.
20750      C COEFFICIENTS ARE FROM THE FIT OF ARM AND BRAY (1981) TO
20800      C ISELIN AND WORTHINGTON METCALF THETA-SAL DATA.
20850      C
20900      DIMENSION C(5,25)
20950      C DATA

```

```

21000 DATA C/0.00,34.738063,0.0,0.0,0.0,
21050 *0.50,34.738053,.107290,.584849E-02,-.253429E-02,
21100 *1.20,34.815152,.111753,.523726E-03,.582151E-01,
21150 *1.50,34.850297,.127785,.529320E-01,-.135379,
21200 *1.75,34.883436,.128868,-.485828E-01,-.129913,
21250 *2.00,34.910587,.802174E-01,-.146093,.228920,
21300 *2.25,34.925087,.500936E-01,.255484E-01,-.267382E-01,
21350 *2.50,34.938790,.578544E-01,.552526E-02,-.359945E-01,
21400 *2.75,34.953036,.538681E-01,-.214953E-01,-.374594E-01,
21450 *3.00,34.964575,.360969E-01,-.495364E-01,.509274E-01,
21500 *3.20,34.970220,.223936E-01,-.189292E-01,.580683E-01,
21550 *3.40,34.974406,.217901E-01,.157868E-01,.479730E-02,
21600 *3.60,34.979434,.286805E-01,.185975E-01,-.294172E-01,
21650 *3.80,34.985679,.325895E-01,.102998E-02,-.279688E-01,
21700 *4.00,34.992014,.296450E-01,-.157123E-01,.643397E-02,
21750 *5.00,35.01238,.175223E-01,.357759E-02,.114377E-02,
21800 *7.00,35.07089,.455579E-01,.104386E-01,.865592E-05,
21850 *10.00,35.30174,.108423,.105172E-01,-.763343E-03,
21900 *13.00,35.70106,.150916,.364790E-02,.310805E-04,
21950 *16.00,36.18748,.173643,.392926E-02,-.689782E-02,
22000 *19.00,36.55753,.109775E-01,-.581443E-01,.696380E-01,
22050 *21.00,36.9040118,0.0,0.0,0.0,15#0.0/
22100 C
22150 DATA KNOTS/22/
22200 C
22250 250 X = 0.0
22300 00 310 T=1,KNOTS
22350 DT = C(1,1) - T
22400 IF(DT)305,320,320
22450 305 X = -DT
22500 310 CONTINUE
22550 320 D = X
22600 TD = T-1
22650 IF(ID)325,325,330
22700 325 TD = 1
22750 D = 0.0
22800 330 THSAL = ((C15,T0)*D+C14,T0)+D+C13,T0)+D+C12,T0)
22850 RETURN
22900 END
22950 C
23000 C VRBL FUNCTION: PEPLT *****
23050 FUNCTION VRBL(NVR)
23100 C *****
23150 C
23200 C PROGRAM TO SELECT PNTEN VARIABLES
23250 C MAR 25 1976 N FOFONOFF
23300 C VAX VERSION--INDIAN OCEAN DATA (1976). NOV 1980. N.BRAY
23350 INCLUDE 'COMPEPLT.FOR'
23400 C
23450 C
23500 TFINVR110,20,30
23550 10 VRBL = 1.0
23600 RETURN
23650 20 VRBL = 0.0
23700 RETURN
23750 30 GO TO (31,32,33,34,35,36,37,38,39,40,41,42)NVR
23800 TFINVR.GT.121GO TO 42
23850 31 VRBL = XPL
23900 RETURN
23950 32 VRBL = YPL
24000 RETURN

```

24050 33 VRBL = XLAT
 24100 RETURN
 24150 34 VRRL = XLONG
 24200 RETURN
 24250 35 VRBL = ICON
 24300 RETURN
 24350 36 VRBL = WGT
 24400 RETURN
 24450 37 VRBL = DAY
 24500 RETURN
 24550 38 VRBL = TSHP
 24600 RETURN
 24650 39 VRBL = ICAST
 24700 RETURN
 24750 40 VRBL = N
 24800 RETURN
 24850 41 VRBL = NDP
 24900 RETURN
 24950 42 IF (NVR=48) GOTO 43,43
 25000 420 VRBL = VR(NVR-11)
 25050 RETURN
 25100 43 EO = DPDV(DVF,DVM,CP,N,FI,F2)
 25150 PDF = PT - PF
 25200 F1 = -.050968*PDF**2/E0
 25250 E2 = (F3-SF1)*E0
 25300 F3 = -.050968*E2**2/E0
 25350 E5 = DPDV(SF,DVM,CP,N,FI,F2)
 25400 NVRX = NVR - 47
 25450 GO TO (48,49,50,51,52,53,54,55,56,57,58) NVRX
 25500 IF (NVRX.GT.11) GO TO 58
 25550 48 VRBL = EZ
 25600 RETURN
 25650 49 VRBL = EZ*PF
 25700 RETURN
 25750 50 VRBL = PDF
 25800 RETURN
 25850 51 VRBL = SF - DVF
 25900 RETURN
 25950 52 VRBL = PT*SIN(XC*PI/57.296)/SIN(XLAT/57.296)
 26000 RETURN
 26050 53 VRBL = FI
 26100 RETURN
 26150 54 VRBL = 0.10193*PF*DH - PE
 26200 RETURN
 26250 55 VRBL = E3
 26300 RETURN
 26350 56 VRBL = EO
 26400 RETURN
 26450 57 VRBL = I.O/E0
 26500 RETURN
 26550 58 SHF = SAL(TPF,THF,DVF)
 26600 VF = EOS80(PF,THF,SHF) + 1.0
 26650 THF = DPDV(DVF,DVM,CT,N,FI,F2)/E0
 26700 SHP = (1.0/E0 - DVDT(PF,THF,SHF)*THP)/DVDS(PF,THF,SHF)
 26750 GR = -1.981/VF**2
 26800 BVI = 100.0*GR/E0
 26850 E6 = VRT137
 26900 THI = POLY(SF,DVM,CT,N,FI,F2) + THM
 26950 SI = SAL(TPF,THI,SF)
 27000 IF (NVR=67) GOTO 582,582
 27050 582 GR = (DKDT(PF,THF,SHF)*THP+DKDS(PF,THF,SHF)*SHP)

```

27100   F4 = -50.968*GK*PDF**2
27150   585 NVRX = NVR - 57
27200   GIU TIT (580,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
27250   +76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,
27300   +97,98,20)NVRX
27350   TF(NVRX.GT.39)GO TO 20
27400   580 VRBL = BV1
27450   RETURN
27500   59 VRBL = THP
27550   RETURN
27600   60 VRBL = SHP
27650   RETURN
27700   61 VRBL = SHF
27750   RETURN
27800   62 VRBL = SHP/THP
27850   RETURN
27900   63 VRAL = PDF*PDF
27950   RETURN
28000   64 E5 = 0.572958*50RT(AB5(BVI))
28050   VRBL = SIGN(E5,BV1)
28100   RETURN
28150   65 VRBL = THETA(PF,THF,SHF,0.01)
28200   RETURN
28250   66 E5 = THETA(PF,THF,SHF,0.01)
28300   VRAL = SGT(E5,SHF,SG1)
28350   RETURN
28400   67 VRBL = VF
28450   RETURN
28500   68 VRBL = -.5*GK*PDF*PDF
28550   RETURN
28600   69 VRBL = BV1 + GR*PF*GK
28650   RETURN
28700   70 VRBL = GR
28750   RETURN
28800   71 VRBL = GR*PF*GR
28850   RETURN
28900   72 Z = THETA(PF,THF,SHF,0)
28950   Z0=SHF
29000   GO TIT 720
29050   73 Z=THETA(PI,T0,S0,0.01)
29100   Z0=S0
29150   720 Z1=THSAL(1,Z)
29200   VRAL=Z0-Z1
29250   RETURN
29300   74 Z = THETA(PF,THF,SHF,0.0)
29350   VRAL = Z*Z
29400   RETURN
29450   75 X = DVDP(PF,THP,SHF)
29500   Y = DVDT(PF,THF,SHF)
29550   Z = DVDS(PF,THP,SHF)
29600   VRPA = 16.*XXX + 49.0E-06*YYY + 25.0E-06*ZZZ
29650   VRPI = VRPA+E0*FO
29700   GO TO 770
29750   76 Z = DVDP(PF,THF,SHF)
29800   VRBL = 16.*ZZZ
29850   RETURN
29900   77 CONTINUE
29950   VRPI = Z1*21
30000   770 Y = VRPI + Z*PDF*PDF
30050   VRBL = .5*VRPI*E6*E6*Y
30100   RETURN

```

```

30150      78 VRPI = 3.*71*Z1/NDP
30200      GO TO 770
30250      79 VRPI = 16.
30300      GO TO 770
30350      80 VRPI = Z1*Z1/NDP
30400      800 Y = .5*VRPI*(VRPI + 2*PDF)
30450      VRBL = GK**2*Y
30500      RETURN
30550      81 VRPI = 16.
30600      GO TO 800
30650      82 VRBL = -1
30700      RETURN
30750      83 VRBL = -1
30800      RETURN
30850      84 VRBL = DVDP(PF,THF,SHF)
30900      RETURN
30950      85 VRBL = DVDS(PF,THF,SHF)
31000      RETURN
31050      86 VRBL = DVDP(PF,THF,SHF)+PDF
31100      RETURN
31150      87 VRBL = -.5*PDF*PDF*E0
31200      RETURN
31250      88 VRBL = -1
31300      RETURN
31350      89 VRBL = -1
31400      RETURN
31450      90 VRBL = -1
31500      RETURN
31550      91 VRBL = (SF-F3)**2
31600      RETURN
31650      92 Z = -THP*PDF
31700      VRBL = 1/Z
31750      RETURN
31800      93 VRBL = 1/(E0*E0)
31850      RETURN
31900      94 VRBL = THI*THI
31950      RETURN
32000      95 THMM = C(IREC,4)
32050      VRBL = -(THI-THMM)/(THP*PDF)
32100      RETURN
32150      96 THMM = C(IREC,4)
32200      VRBL = -(THF-THMM)/(THP*PDF)
32250      RETURN
32300      97 VRBL = THI
32350      RETURN
32400      98 E0 = 1.0/E0
32450      VRBL = -.5*E6*D2PDV(DVF,DVM,CP,WIFI,F23*PDF*E0)*Z
32500      RETURN
32550      2000 END
32600      C KDAY FCN ***** KDAY JULY 6 1977 *****
32650      FUNCTION KDAY(IM0,IYR,IYR)
32700      C *****
32750      C CONVERT GREGORIAN DATE TO JULIAN DAY
32800      C USES LAST 4 DIGITS OF JULIAN DAY. ADD 2440000 TO GET
32850      C FULL JULIAN DAY.
32900      C
32950      C JULY 12 1975
33000      C
33050      IY = IYR - 68
33100      TF(2-IM0)10,20,20
33150      10 M = IM0 - 3

```

```

35050      00 TO 30
35100      20 M = IMO + 9
35150      IY = IY - 1
35200      30 KDAY = (1461*IY)/4+(153*M+2)/5 + ID - 84
35250      RETURN
35300      END
35350      C KDATE **** CTDSB JULY 7 1977. ****
35400      SUBROUTINE KDATR(KD, ID, M, IY)
35450      C *****
35500      C CONVERT JULIAN DAY TO GREGORIAN DATE
35550      C
35600      K=KD+84
35650      YY=(4*K-1)/1461
35700      TD=4*K-1-1461*IY
35750      IY = IY + 68
35800      ID=(TD+4)/4
35850      M=(5*ID-3)/153
35900      TD=5*ID-3-153*M
35950      TD=(TD+5)/5
36000      IF(M=10)20,10,10
36050      10 M=M-9
36100      PY=IY+1
36150      RETURN
36200      20 M=M+3
36250      RETURN
36300      END
36350      C VKE FCN **** SWPR1 ****
36400      FUNCTION VKE(P,T,S)
36450      C *****
36500      C SPECIFIC VOLUME KNUDSEN/FKMAN
36550      C FEB 15 1976 N EOFONOFF
36600      C
36650      VO = 0.001*SG1(T,S,SG1)
36700      VO = -VO/(1.0 + VO)
36750      20 VKE = (-4.896E-6*T/(1.0+1.83E-5*T) + ((1.5E-17*T*T
36800      X +((-6.0E-17*T+1.8E-15)*SG1-2.0E-16*T+1.206E-14)*T
36850      X -4.248E-131*SG1+2.14E-14*T-1.24064E-121*T-6.68E-141*T
36900      X +((1.0E-12*T-4.5E-11)*SG1
36950      X +(4.0E-12*T-3.28E-10)*T+1.725E-8)*SG1
37000      X +((4.0E-12*T-6.63E-10)*T+3.673E-8)*T-2.2072E-7*T)
37050      VKE = VO + VKE*(1.0 + VO)
37100      RETURN
37150      END
37200      C DVZRD FCN *****
37250      FUNCTION DVZRD(TP0,DVM,PH,CP,N,NDP,VNN,VMX,WISHP,KCAST,ICON,DELP)
37300      C *****
37350      C
37400      C TO INVERT POLYNOMIAL FOR INDEPENDENT VARIABLE.
37450      C
37500      C FEB 1 1976 N. EOFONOFF
37550      C
37600      DIMENSION CP(1)
37650      C
37700      YN = 0.0
37750      VR = 0.0
37800      PDF = P0
37850      RN = 0
37900      DV = (VMX-VMN)/FLOAT(NDP-1)
37950      DO 50 J=1,NDP
38000      V = VMX - DV*FLOAT(J-1)
38050      P = POLY(V,DVM,CP,N,VNN,VMX) + PH

```

```

38100      DP = DPDV(V,DVM,CP,N,VNN,VMX)
38150      IF (J.F0.NDP/2) THEN
38200          DPO=DP
38250          VO=V
38300          FNDIF
38350          TF(DP15,50,50)
38400      5 PD = PO - P
38450      7 IF(KN)7,7,9
38500      7 PPD = PD
38550      KN = KN + 1
38600      9 TF(ABS(PD)-PDF)12,10,10
38650      12 PDF = ABS(PD)
38700      VS = V
38750      10 TF(PPD*PD)15,50,50
38800      15 VR = VR + V
38850      XN = XN + 1.0
38900      PPD = PD
38950      50 CONTINUE
39000      60 TF(XN - 1.0)66,70,65
39050      65 DVZRD = VR/XN
39100      GO TO 90
39150      66 DVZRD = VS
39200      GO TO 90
39250      70 K = 0
39300      V = VR
39350      75 VP = V
39400      P = POLY(V,DVM,CP,N,VNN,VMX) + PH
39450      V = VP + (PO-P)/DPDV(V,DVM,CP,N,VNN,VMX)
39500      K = K + 1
39550      TF(K-100)80,R5,85
39600      80 TF(ABS(PO-P)-0.05)85,75,75
39650      85 DVZRD = V
39700      90 TF(DVZRD-VNN)95,100,100
39750      95 CONTINUE
39800          PO=ABS((DVZRD-VO)*DP0)
39850          PPO=ABS(PO-NDP*DELP/2)
39900          WRITE(KTTX,1000)ISHP,KCAST,ICON,PO,PPO
39950      1000 FORMAT(1H , 'FOR STATION ',A2,Z13,' AT ',F8.0,' DB LEVEL,
* YOU SHOULD INCREASE REGRESSION INTERVAL BY ',F8.0,' DB.')
40000      DVZRD = VNN
40100      100 TF(VMX-DVZRD)105,110,110
40150      105 CONTINUE
40200          PO=ABS((DVZRD-VO)*DP0)
40250          PPO=ABS(PO-NDP*DELP/2)
40300          WRITE(KTTX,1000)ISHP,KCAST,ICON,PO,PPO
40350          DVZRD = VMX
40400      110 RETURN
40450      END

```

MANDATORY DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS
OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION
OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

- 1 Deputy Under Secretary of Defense
(Research and Advanced Technology)
Military Assistant for Environmental Science
Room 3D129
Washington, D.C. 20301

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
- 3 ATTN: Code 483
- 1 ATTN: Code 460
- 2 ATTN: 102B
- 1 CDR Joe Spigai, (USN)
ONR Representative
Woods Hole Oceanographic Inst.
Woods Hole, MA 02543

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375
- 6 ATTN: Library, Code 2627
- 12 Defense Technical Information Center
Cameron Station
Alexandria, VA 22314
ATTN: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522
- 1 ATTN: Code 8100
- 1 ATTN: Code 6000
- 1 ATTN: Code 3300
- 1 NODC/NOAA
Code D781
Wisconsin Avenue, N.W.
Washington, D.C. 20235
- 1 Mr. Michael H. Kelly
Administrative Contracting Officer
Department of the Navy
Office of Naval Research
Eastern/Central Regional Office
Building 114, Section D
666 Summer Street
Boston, MA 02210

Woods Hole Oceanographic Institution WHOI-81-70	1. Oceanic available potential energy Woods Hole Oceanographic Institution WHOI-81-70	1. Oceanic available potential energy 2. Definitions of horizontal density surfaces 3. Hydrographic data I. Bray, Nancy Amanda II. WHOI14-76-C-0197; MR 083-400 III. WHOI14-79-C-0071; MR 083-004 IV. OCE-77-19403
	VAN-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA by Nancy Amanda Bray, 135 pages August 1981. Prepared for the Office of Naval Research under Contracts WHOI14-76-C-0197; MR 083-400 and WHOI14-79-C-0071; MR 083-004 and for the National Science Foundation under Grant OCE-77-19403	This report documents the W.H.O.I. VAN-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the program may be used, as well as complete listings of all the required FORTRAN files. This card is UNCLASSIFIED
	VAN-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA by Nancy Amanda Bray, 135 pages August 1981. Prepared for the Office of Naval Research under Contracts WHOI14-76-C-0197; MR 083-400 and WHOI14-79-C-0071; MR 083-004 and for the National Science Foundation under Grant OCE-77-19403	This report documents the W.H.O.I. VAN-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the program may be used, as well as complete listings of all the required FORTRAN files. This card is UNCLASSIFIED
	VAN-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA by Nancy Amanda Bray, 135 pages August 1981. Prepared for the Office of Naval Research under Contracts WHOI14-76-C-0197; MR 083-400 and WHOI14-79-C-0071; MR 083-004 and for the National Science Foundation under Grant OCE-77-19403	This report documents the W.H.O.I. VAN-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the program may be used, as well as complete listings of all the required FORTRAN files. This card is UNCLASSIFIED
	VAN-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA by Nancy Amanda Bray, 135 pages August 1981. Prepared for the Office of Naval Research under Contracts WHOI14-76-C-0197; MR 083-400 and WHOI14-79-C-0071; MR 083-004 and for the National Science Foundation under Grant OCE-77-19403	This report documents the W.H.O.I. VAN-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the program may be used, as well as complete listings of all the required FORTRAN files. This card is UNCLASSIFIED
	VAN-11 PROGRAMS FOR COMPUTING AVAILABLE POTENTIAL ENERGY FROM CTD DATA by Nancy Amanda Bray, 135 pages August 1981. Prepared for the Office of Naval Research under Contracts WHOI14-76-C-0197; MR 083-400 and WHOI14-79-C-0071; MR 083-004 and for the National Science Foundation under Grant OCE-77-19403	This report documents the W.H.O.I. VAN-11 programs used to calculate available potential energy and related quantities from CTD data using the technique described in Bray and Fofonoff (1981). The report includes examples of how the program may be used, as well as complete listings of all the required FORTRAN files. This card is UNCLASSIFIED