Teorema de Heine-Borel

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Teorema de Heine-Borel

Con la experiencia al tratar de probar que [0,1] es compacto, se plantea como pregunta de trabajo si es que existe un criterio para decidir si un conjunto es compacto, sin el recurso de usar cubiertas y subcubiertas.

Teorema (de Heine-Borel)

Un subconjunto de \mathbb{R}^p es compacto si y sólo si es cerrado y acotado.

- (\Rightarrow) Supongamos que K es compacto.
 - K es acotado.

Para $m \in \mathbb{N}$ sea $H_m = B_m(\vec{0})$, de manera que $K \subset \bigcup_{m \geq 1} H_m$. Por ser K compacto se puede extraer una subcubierta finita, es decir $K \subseteq H_1 \cup \cdots \cup H_N = H_N$. Esto significa que K es acotado.

• K es cerrado.

Sea $x \in K^c$ y defínanse los conjuntos

$$G_m := \{y \in \mathbb{R}^p : \|y - x\| > 1/m\}$$
 para $m \in \mathbb{N}$.

Prueba del Teorema de Heine-Borel - 2

Nótese que los G_m son conjuntos abiertos cumpliendo:

$$G_m \subset G_{m+1}, \qquad \bigcup_{m>1} G_m = \mathbb{R}^p \setminus \{x\}$$

Como $x \notin K$ entonces $K \subset \bigcup_{m \geq 1} G_m$.

Por compacidad de K, se tiene $K \subset G_1 \cup \cdots \cup G_M = G_M$, o sea $G_M^c \subset K^c$.

Es decir $\{y \in \mathbb{R}^p : \|y - x\| \le 1/M\} \subset K^c$, por lo que $B_{\frac{1}{2M}}(x) \subset K^c$, es decir K^c es abierto.

(\Leftarrow) Ahora supongamos que K es cerrado y acotado, y sea $\mathcal{G} := \{G_{\alpha} : \alpha \in \mathcal{A}\}$ una cubierta abierta de K.

Por otro lado, como K es acotado, supongamos que $K \subseteq I_1 = \{(x_1, \dots, x_p) \in \mathbb{R}^p : |x_j| < r, j = 1, 2, \dots, p\}.$

Para argumentar por contradicción, supongamos que K no está contenido en alguna unión finita de conjuntos dentro de $\mathcal G$

Prueba del Teorema de Heine-Borel - 3

Hacemos ahora una descomposición diádica de I_1 , obteniendo 2^p subceldas cerradas $\{I_{2,j}\}$ de I_1 , y preguntamos si $K \cap I_{2,j}$ está contenida an alguna unión finita de elementos de \mathcal{G} .

No puede ocurrir que todas las $K \cap I_{2,j}$ esten contenidas an alguna unión finita de elementos de \mathcal{G} , por lo que seleccionamos una de las que no cumplen esta propiedad, y la llamamos I_2 .

Repetimos este procedimiento, y obtenemos $\{I_n : n \in \mathbb{N}\}$ celdas cerradas, no vacías y anidadas.

Por el Teorema de celdas anidadas existe $y \in \bigcap_{n=1}^{\infty} I_n$, y además $y \in K'$.

Como K es cerrado sabemos que de hecho $y \in K$, y entonces $y \in G_{\lambda}$ para alguna $\lambda \in \mathcal{A}$. Y como G_{λ} es abierto, existe $\epsilon > 0$ tal que $B_{\epsilon}(Y) \subseteq G_{\lambda}$.

Prueba del Teorema de Heine-Borel - 4

Ahora notamos que $\ell(I_k) = \frac{I}{2k-2}$.

Por tanto $I_k \subset B_{r\sqrt{p}/2^{k-1}}(y)$, pues $w \in I_k$ implica que $||y-w|| \le r\sqrt{p}/2^{k-1}$.

Nótese que ésto implica que tomando k suficientemente grande, se cumplirá

$$I_k \subset B_{r\sqrt{p}/2^{k-1}}(y) \subset B_{\epsilon}(y) \subset G_{\lambda}.$$

Pero ésto contradice el hecho de que $I_k \cap K$ no está contenida en alguna unión finita de elementos de \mathcal{G} .

Esta contradicción implica que K sí está contenido en alguna unión finita de conjuntos dentro de \mathcal{G} .

Primavera de 2020

Algunas consecuencias del T. de Heine-Borel

Primero obtendremos una generalización del Teroema de las celdas anidadas, donde se permite que se tomen intersecciones de cerrados, no necesariamente celdas cerradas.

Teorema (de intersección de Cantor)

Sean $F_1 \subseteq \mathbb{R}^p$ compacto, no vacío, y sean $F_j \subseteq \mathbb{R}^p$ cerrados no vacíos tales que $F_j \supseteq F_{j+1}$, $j=1,2,\ldots$ Entonces $\bigcap_{k>1} F_k \neq \emptyset$.

Para la prueba se considera la familia $\mathcal{G} = \{G_k = F_k^c : k = 1, 2, \dots\}.$

Ahora, si suponemos que $\bigcap_{k>1} F_k = \emptyset$, tendremos que $\mathcal G$ es una cubierta abierta de

 $K = F_1$. Por la compacidad de K escribimos $F_1 = G_1 \cup \cdots \cup G_N \subseteq G_N$.

Al ser $G_N = F_N^c$, tendremos que $F_1 \cap F_N = \emptyset$, pero $F_1 \cap F_N = F_N$, por lo que $F_N = \emptyset$. (!!)

Algunas consecuencias del T. de Heine-Borel

Teorema (del punto más cercano)

Si $F \subseteq \mathbb{R}^p$ es cerrado, no vacío y $x \notin F$, entonces existe $y \in F$ tal que

$$||z-x|| \ge ||y-x||$$
 para toda $z \in F$

Como F es cerrado, y $x \notin F$, existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \cap F = \emptyset$. De aquí que

$$d:=\inf\{\|x-z\|:z\in F\}\geq\epsilon>0.$$

Sea $F_k = \{z \in F : ||x - z|| \le d + 1/k\}$, $k \in \mathbb{N}$. Por un argumento de *salto de ínfimo* tenemos que $F_k \ne \emptyset$ para toda $k \in \mathbb{N}$.

Además todos los F_k son cerrados y acotados, es decir compactos, para $k \in \mathbb{N}$.

Como también cumple $F_j \supseteq F_{j+1}$, por el Teorema de Intersección de Cantor existe $y \in \bigcap_{k \ge 1} F_k \subseteq F$. Por lo mismo $\|y - x\| \le d + 1/k$ para toda k y en conclusión $\|y - x\| \le d$.

Si ocurriera que $\|y-x\| < d$ se violaría la propiedad del ínfimo, por lo que $\|y-x\| = d$