Common Uses for Data

Justin Post

Big Picture

- 5 V's of Big Data
 - Volume
 - Variety
 - Velocity
 - Veracity (Variability)
 - Value
- Will look at the Big Data pipeline later
 - o Databases/Data Lakes/Data Warehouses/etc.
 - SQL basics
 - Hadoop & Spark

What to do with the data?

Statistical Learning

Statistical learning - Inference, prediction/classification, and pattern finding

- Supervised learning a variable (or variables) represents an output or response of interest
 - May model response and
 - Make **inference** on the model parameters
 - **predict** a value or **classify** an observation
- Unsupervised learning No output or response variable to shoot for
 - Goal learn about patterns and relationships in the data

Standard Rectangular Data

	Α	В	С	D	E	F	G	Н	1	J	K	L	М
1 X		Υ	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
2		7	5 mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0	0
3		7	4 oct	tue	90.6	35.4	669.1	6.7	18	33	0.9	0	0
4		7	4 oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0	0
5		8	6 mar	fri	91.7	33.3	77.5	9	8.3	97	4	0.2	0
6		8	6 mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0	0
7		8	6 aug	sun	92.3	85.3	488	14.7	22.2	29	5.4	0	0
8		8	6 aug	mon	92.3	88.9	495.6	8.5	24.1	27	3.1	0	0
9		8	6 aug	mon	91.5	145.4	608.2	10.7	8	86	2.2	0	0
10		В	6 sep	tue	91	129.5	692.6	7	13.1	63	5.4	0	0
11		7	5 sep	sat	92.5	88	698.6	7.1	22.8	40	4	0	0
12		7	5 sep	sat	92.5	88	698.6	7.1	17.8	51	7.2	0	0
13		7	5 can	cat	92.8	72 2	712	22.6	19 2	38	1	0	0

Four major goals when using data:

1. Description

		mean	median		
	AtotalYds	HtotalYds	AtotalYds	HtotalYds	
season					
2002	324.161049	333.782772	327	336	
2003	308.247191	331.340824	311	327	
2004	321.161049	335.659176	318	330	
2005	308.378277	322.722846	304	318	
2006	316.449438	328.745318	323	330	
2007	321.906367	328.112360	327	323	
2008	318.760300	334.932584	317	339	
2009	323.977528	347.640449	323	346	
2010	329.734082	341.441948	327	349	
2011	341.655431	354.734082	336	351	
2012	347.089888	351.573034	352	347	
2013	340.685393	357.524345	341	352	
2014	343.310861	352.838951	343	349	

Four major goals when using data:

2. Prediction/Classification

Prediction for Stopping Distance Based on Speed

Four major goals when using data:

- 3. Inference
 - Confidence Intervals
 - Hypothesis Testing

Four major goals when using data:

4. Pattern Finding

Iris k-means clustering

Describing Data

Goal: Describe the **distribution** of the variable

- Distribution = pattern and frequency with which you observe a variable
- Numeric variable entries are a numerical value where math can be performed

For a single numeric variable,

- Shape: Histogram, Density plot, ...
- Measures of center: Mean, Median, ...
- Measures of spread: Variance, Standard Deviation, Quartiles, IQR, ...

For two numeric variables,

- Shape: Scatter plot
- Measures of Dependence: Correlation

Quick Example

Read in some data

```
import pandas as pd
wine_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/winequality-full.csv")
wine_data.head()
##
      fixed acidity volatile acidity citric acid ...
                                                        alcohol
                                                                 quality
                                                                           type
## 0
                                             0.00 ...
                                0.70
               7.4
                                                                           Red
                                0.88
## 1
                                                                           Red
## 2
               7.8
                                0.76
                                                            9.8
                                                                           Red
                                0.28
## 3
              11.2
                                                            9.8
                                                                           Red
## 4
               7.4
                                0.70
                                             0.00 ...
                                                            9.4
                                                                           Red
##
## [5 rows x 13 columns]
```

Lots of Summaries!

• Use the describe() method on a pandas data frame

```
wine_data.describe()
##
          fixed acidity
                         volatile acidity
                                                      alcohol
                                                                    quality
## count
            6497.000000
                               6497.000000
                                                  6497.000000
                                                               6497.000000
## mean
               7.215307
                                  0.339666
                                                    10.491801
                                                                   5.818378
## std
               1.296434
                                  0.164636
                                                     1.192712
                                                                   0.873255
## min
               3.800000
                                  0.080000
                                                     8.000000
                                                                   3.000000
## 25%
               6.400000
                                  0.230000
                                                     9.500000
                                                                   5.000000
## 50%
               7.000000
                                  0.290000
                                                    10.300000
                                                                   6.000000
## 75%
               7.700000
                                  0.400000
                                                    11.300000
                                                                   6.000000
## max
              15.900000
                                  1.580000
                                                    14.900000
                                                                   9.000000
## [8 rows x 12 columns]
```

Graphs

• Many standard graphs to summarize with as well

wine_data.alcohol.plot.density()

wine_data.plot.scatter(x = "alcohol", y = "residual sugar")

2. Prediction/Classification

- A mathematical representation of some phenomenon on which you've observed data
- Form of the model can vary greatly!

Simple Linear Regression Model

$$response = intercept + slope*predictor + Error$$

$$Y_i = \beta_0 + \beta_1 x_i + E_i$$

• Assumptions often made about the data generating process to make inference (not required)

Simple Linear Regression Model

• We'll learn how to 'fit' this model later

```
from sklearn import linear_model
reg = linear_model.LinearRegression() #Create a reg object
reg.fit(X = wine_data['alcohol'].values.reshape(-1,1), y = wine_data['residual sugar'].values)

<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container
print(round(reg.intercept_, 3), round(reg.coef_[0], 3))

## 20.486 -1.434
```

Simple Linear Regression Model

```
import seaborn as sns
sns.regplot(x = wine_data["alcohol"], y = wine_data["residual sugar"], scatter_kws={'s':2})
```


2. Prediction/Classification

- A mathematical representation of some phenomenon on which you've observed data
- Form of the model can vary greatly!

Regression Tree

• This model can be used for prediction

```
from sklearn.tree import DecisionTreeRegressor
reg_tree = DecisionTreeRegressor(max_depth=2)
reg_tree.fit(X = wine_data['alcohol'].values.reshape(-1,1), y = wine_data['residual sugar'].values)
<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container
```

Regression Tree

• This model can be used for prediction

from sklearn.tree import plot_tree
plot_tree(reg_tree)

2. Prediction/Classification

- A mathematical representation of some phenomenon on which you've observed data
- Form of the model can vary greatly!

Logistic Regression

• Consider binary response and classification as the task

$$P(\text{success}|\text{predictor}) = \frac{e^{\text{intercept} + \text{slope*predictor}}}{1 + e^{\text{intercept} + \text{slope*predictor}}}$$

$$P(ext{success}| ext{predictor}) = rac{e^{eta_0 + eta_1 x}}{1 + e^{eta_0 + eta_1 x}}$$

We'll investigate a number of different models later in the course!

Recap

Four major goals with data:

- 1. Description
- 2. Prediction/Classification
- 3. Inference
- 4. Pattern Finding
- Descriptive Statistics try to summarize the distribution of the variable
- Supervised Learning methods try to relate predictors to a response variable through a model
 - Some models used for inference and prediction/classification
 - Some used just for prediction/classification