Notes on simplicial stuffs

Author: 秦宇轩(Qin Yuxuan) Last complied at 2025-03-29

Contents

- 1. The canonical category of *finite ordered sets* with *order preserving maps* is denoted by Δ , with a bunch of handy morphisms between neighboors:
 - co-face map $\delta_i^n: [n-1] \to [n]$, whose image is [0,1,..., (without i),...,n];
 - co-degeneracy map $\sigma_i^n : [n] \to [n-1]$, which is almost indentity but send both i and i+1 in [n] to i in [n-1].
- 2. A **simplicial object** in category C is just a functor $F: \Delta^{op} \to C$. We denote F([k]) by F_k , which is more convenient.
- 3. Since simplicial objects are contra-variant, we obtain:
 - face map $d_i^n := F(\delta_i^n) : F_n \to F_{n-1}$;
 - degeneracy map: $s_i^n := F(\sigma_i^n) : F_{n-1} \to F_n$.
- 4. An n-simplex of simplicial set F is just an element of set F_n .
- 5. A simplex is called **degenerate** if it is the degeneracy of another simplex. For example, we say an k-simplex x (i.e., $x \in X_k$) is degenerate if there exists (k-1)-simplex y (i.e., $y \in X_{k-1}$) and some number i such that $x = s_i(y)$.
 - Sometimes we use $D(X_k) \coloneqq \cup_i \left(s_i^k(X_{i-1}) \right)$ to denote all the degenerate k-simplex in X_k , for simplicial set X.
- 6. **Moore complex**: Given a simplicial object U in an abelian category \mathcal{A} , its associated *Moore complex* is a chain complex in \mathcal{A} , which looks like:

$$\ldots \to U_2 \to U_1 \to U_0 \to 0 \to 0 \to \ldots$$

where the boundary map $\partial_n:U_n\to U_n-1$ is defined by the alternating sum of face maps:

$$\partial_n \coloneqq \sum_{i=0}^n (-1)^i d_i^n.$$

Note that $d_k^n:U_n\to U_{n-1}$ for all k.

- Also named the alternating face map chain complex.
- 7. **Singular simplicial complex**: For a topological space X, its *singular simplicial compelx* is indeed the simplicial set induced by the nerv-realization relation of the canonical inclusion $\Delta \to \text{Top}$.
 - So a **singular** n-**simplex** for such a space X is just a morphism from Δ^n to X in Top, by the Yoneda lemma.
 - The **singular homology** of a space X is just the homology of the moore complex of its singular simplicial compelx. One usually writes $H_n(X,\mathbb{Z})$ or just $H_n(X)$ for the singular homology of X in degree n.