

CAREER DURATION OF NBA ROOKIE PLAYERS

THE UNIVERSITY OF TEXAS AT ARLINGTON | FALL 2021

INSY-5339-002-PRIN OF BUSINESS DATA MINING

Abstract:

National basketball association (NBA) is one of the prominent worldwide basketball leagues. This dataset consists of each rookie players score point analysis upon which we will be predicting the career longevity for the rookie player. This project focuses on predicting if a rookie is successful or not and uses statistical analysis methods to decide if the player will last for 5 years or more in the NBA or not. Logistic regressionis one method for evaluating the model. From both an empirical and observational approach, our model predicts player's career duration. The default value for the threshold is 0.5. The player is considered as successful if the estimated probability is greater than 0.5.

Business Problem:

In the NBA, player acquisitions can have a significant impact on a team's success. Without the correct players, teams might easily fall short of their goals. Coaches and general managers (GMs) have begun to embrace a more statistics-based approach as analytical approaches have gained prominence in recent years. A traditional way to analyze player is by looking at previous stats with no future predicted analysis which is still an issue that GMs are struggling with today. These adopted traditional methods are limited to deciding whether the player is good/bad. We, as a digital consulting company are providing an added and ameliorated approach of predicting the longevity of these players. For instance, as per these 1-year statistics player A and player B were a good choice to be signed by any franchise. But through our analysis, we can predict if these stats are indeed correct or not. Our consultancy can help and guide the investors and sponsors to invest in right player by predicting that may be player A would have been the right choice but instead of player B, some other player has a promising longevity over 5 years.

Our project attempts to determine the following questions:

1. As a sports manager or coach, if given one year's data, they can tell if the player is good or not. But weas a digital consulting company focus to offer more by predicting if a player will survive in the league forat least for 5 years in NBA.

- 2. Which factors are significant in determining the performance of the rookie player (in their first year)?
- 3. Who will be benefitted by this analysis?
 - i) A club franchise that invests a large amount of revenue into the players
 - ii) Players can improve their performance in specific area

Data for Business Problem Analysis:

To work on the appropriate analysis of the above business problem, the data set containing information about NBA rookie players is used. This data set is a collection of information about 1340 rookie players gathered over a time span of 1 year. This data is primarily focused on the fields that can be used for analyzing the efficiency of any rookie player. The variables of the data set are further explained in detail. This data set has 1340 unique values. We divided the data into training, validation and test in the ratio of 70:20:10. We have used the testing data as the new data to compare and predict the career longevity. We as a consulting firm will use this one-year long performance statistics of these rookie players and predict their career longevity after time span of 5 years.

Independent variables:

- Index indicates serial numbers.
- Name indicates name of NBA rookie player
- Games played (gp) indicates number of games played by a player
- Minutes played (min) indicates the time in minutes a rookie player has played the game.
- Points per game (pts) indicates number of points a player scored for number of games played.
- Field goals made (fgm) indicates the number of points/baskets scored on any shot or tap other than a free throw.
- Field goal attempts (fga) indicates the number of points scored depending on the distance of the attempt from the basket.
- Field goal percentage (fg) indicates the percentage which is used to measure how well a player or team shoots the ball during a game.
- 3 points made (3p_made) indicates the number of points scored when distance of a player's feet from 3point line (which must be completely behind the 3point line at the time of shot or jump).
- 3 points attempt (3pa) indicates the number of points scored (up to 3 points) for a successful attempt upon scoring a 2-point field goal.
- Free throw made (ftm) indicates number of points scored when a throw of unopposed attempt ismade by shooting the ball from behind the free throw line.
- Free throw attempts (fta) indicates number of points scored when an undefended score attempt isawarded to a player after an opposing team commits a foul.
- Free throw percentage (ft) indicates the percentage of number of free throws made by a player.
- Offensive rebounds (oreb) indicates the number of points scored when a rebound is made by an offensive player on the same team.
- Defensive rebounds (dreb) indicates the number of points scored when defensive player gains possession of the basketball after an offensive player misses a field goal.

- Rebounds (reb) indicates the number of points scored when a team gains possession of the basketball.
- Assists (ast) indicates the number of points scored when a player passes the ball to teammate in a way that leads to score by field goal.
- Steals (stl) indicates the number of points scored when a defensive player takes/intercepts the ball from offensive player.
- Blocks (blk) indicates the number of points scored upon a successful deflection of an attempted shot by a defender.
- Turnovers (tov) indicates the number of points scored when a team loses possession of the ball to the opposing team before a player takes a shot.

Dependent/Outcome variable:

Career duration more than 5 years (target_5yrs) – indicates 1 as yes for a rookie whose career in NBA is predicted to be more than 5 years in the team and indicates 0 for no for a rookie whose career in NBA is predicted to be not more than 5 years in the team.

Statistical Analysis:

As per our stat explorer analysis on the data we got the following results, and the mentioned top 7 variables are more significant in predicting our target variable.

- 1. Games played (gp)
- 2. Field goals made (fgm)
- 3. Points per game (pts)
- 4. Free throw made (ftm)
- 5. Rebounds (reb)
- 6. Minutes played (min)
- 7. Field goal percentage (fg)

Data Pre-Processing:

We have performed histogram analysis on our data to analyze the distribution and to find if our variables are skewed. From this we found that our data variables are skewed so we performed transformation of variables (to log10) in SAS EM.

The below are results screenshots of our initial histogram analysis.

THE UNIVERSITY OF TEXAS AT ARLINGTON|FALL 2021

Data Visualization:

Scatter plots:

For our analysis, we used Scatter Plot to perform data Visualization. Scatter plot are used for identification of correlational relationships between variables.

From the plots, we can say that games played have correlation with the minutes played.

Bar chart:

Bar charts to visualize the cutoff values for players to analyze their career longevity with less than 5 years of career duration.

Histograms:

We used histograms to find the distributions of 3 most significant variables. The plots show that the data has been skewed.

Data Predictions techniques:

As mentioned in dataset definitions, the response variable is defined as binary output. Particularly in the case, Rookie of the Year Award would be defined as 1 (or successful) and 0 (or unsuccessful) for the rest. We have used two supervised learning techniques for our analysis:

- 1. Logistic Regression
- 2. Linear Regression
- 1. Logistic Regression:

Logistic function is regarded as a sigmoid function. Consequently, the function approaches in determining the probability of either 0 or 1.

Logistic Regression (Model-None selected):
This technique is used to predict the target variable for rookie player being successful for 5 years.

From the above graph, we can see that 60% of our training data which is predicted as successful is 1.25 times likely to be positive and successful.

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation	Test
target_5yrs	target_5yrs	_AIC_	Akaike's Information Criterion	1503.279		
target_5yrs	target_5yrs	_ASE_	Average Squared Error	0.006007	0.256221	0.24175
target_5yrs	target_5yrs	_AVERR_	Average Error Function	0.016852	1.129606	0.840119
target_5yrs	target_5yrs	_DFE_	Degrees of Freedom for Error	11		
target_5yrs	target_5yrs	_DFM_	Model Degrees of Freedom	739		
target_5yrs	target_5yrs	_DFT_	Total Degrees of Freedom	750		
target_5yrs	target_5yrs	_DIV_	Divisor for ASE	1500	428	216
target_5yrs	target_5yrs	_ERR_	Error Function	25.27856	483.4712	181.4657
target_5yrs	target_5yrs	_FPE_	Final Prediction Error	0.813068		
target_5yrs	target_5yrs	_MAX_	Maximum Absolute Error	0.508364	1	0.999956
target_5yrs	target_5yrs	_MSE_	Mean Square Error	0.409537	0.256221	0.24175
target_5yrs	target_5yrs	_NOBS_	Sum of Frequencies	750	214	108
target_5yrs	target_5yrs	_NW_	Number of Estimate Weights	739		
target_5yrs	target_5yrs	_RASE_	Root Average Sum of Squares	0.077502	0.506183	0.49168
target_5yrs	target_5yrs	_RFPE_	Root Final Prediction Error	0.901703		
target_5yrs	target_5yrs	_RMSE_	Root Mean Squared Error	0.639951	0.506183	0.49168
arget_5yrs	target_5yrs	_SBC_	Schwarz's Bayesian Criterion	4917.513		
target_5yrs	target_5yrs	_SSE_	Sum of Squared Errors	9.009819	109.6628	52.21792
target_5yrs	target_5yrs	_SUMW_	Sum of Case Weights Times Free	1500	428	216
target_5yrs	target_5yrs	_MISC_	Misclassification Rate	0.012	0.415888	0.361111

Likelih	nood Ra	tio Test for	Global Null	. Hypothesis:	BETA=0					
-		hood								
Intercept	In	tercept &	Ratio)						
Only	C	ovariates	Chi-Square	DF	Pr > ChiSq					
1000.851		25.279	975.5719	738	<.0001					
ТУІ	Type 3 Analysis of Effects									
		Wald								
Effect	DF	Chi-Square	Pr > Chi	.Sq						
LG10_ast	1	0.0220	0.88	320						
LG10_blk	1	0.0001	0.99	29						
LG10_fg	1	0.0000	1.00	100						
LG10_fgm	1	0.5088	0.47	57						
LG10_ft	1	0.0000	1.00	100						
LG10_ftm	1	0.0100	0.92	:05						
LG10_gp	1	0.0004	0.98	37						
LG10_min	1	0.2797	0.59	169						
LG10_pts	1	0.0000	1.00	100						
LG10_reb	1	0.0000	1.00	100						
LG10_st1	1	0.0070	0.93	32						
LG10_tov	1	0.0315	0.85	91						
S_no	1	0.0118	0.91	.33						
name	725	26.7980	1.00	000						

The P value, low misclassification rates and low average squared errors shows that the model issignificant.

b. Logistic Regression (Model - Backward regression):

This technique is also known for fitting regression models in which the choice of predictive variables is carried out byan automatic procedure. Initially this model takes all our variables into consideration and in each step, it gradually eliminates the variable from the final model based on its significance (prespecified

10

From the above graph, we can see that 50% of our training data which is predicted as successful is 1.3 times likely to be positive and successful.

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation
target_5yrs	target_5yrs	_AIC_	Akaike's Information Criterion	1503.279	
target_5yrs	target_5yrs	_ASE_	Average Squared Error	0.006007	0.25622
target_5yrs	target_5yrs	_AVERR_	Average Error Function	0.016852	1.12960
target_5yrs	target_5yrs	_DFE_	Degrees of Freedom for Error	11	
target_5yrs	target_5yrs	_DFM_	Model Degrees of Freedom	739	
target_5yrs	target_5yrs	_DFT_	Total Degrees of Freedom	750	
target_5yrs	target_5yrs	_DIV_	Divisor for ASE	1500	42
target_5yrs	target_5yrs	_ERR_	Error Function	25.27856	483.471
target_5yrs	target_5yrs	_FPE_	Final Prediction Error	0.813068	
target_5yrs	target_5yrs	_MAX_	Maximum Absolute Error	0.508364	
target_5yrs	target_5yrs	_MSE_	Mean Square Error	0.409537	0.25622
target_5yrs	target_5yrs	_NOBS_	Sum of Frequencies	750	21
target_5yrs	target_5yrs	_WW_	Number of Estimate Weights	739	
target_5yrs	target_5yrs	_RASE_	Root Average Sum of Squares	0.077502	0.50618
target_5yrs	target_5yrs	_RFPE_	Root Final Prediction Error	0.901703	
target_5yrs	target_5yrs	_RMSE_	Root Mean Squared Error	0.639951	0.50618
target_5yrs	target_5yrs	_SBC_	Schwarz's Bayesian Criterion	4917.513	
target_5yrs	target_5yrs	_SSE_	Sum of Squared Errors	9.009819	109.662
target_5yrs	target_5yrs	_SUMW_	Sum of Case Weights Times Freq	1500	42
target 5yrs	target 5yrs	_MISC_	Misclassification Rate	0.012	0.41588

The selecte	d node	l is the model	trained in	the last s	tep (Step 12)	. It consists	of the followi	ng effects:
Intercept	LG10_b	lk LG10_fgm						
Likeli	hood R	atio Test for	Global Null	Hypothesis	: BETA=0			
-2 Log	Likel	ihood	Likelihood					
Intercept	I	ntercept &	Ratio					
0nly		Covariates	Chi-Square	DF	Pr > ChiSq			
1000.851		896.770	104.0809	2	<.0001			
Ту	реЗА	nalysis of Eff	ects					
		Wald						
Effect	DF	Chi-Square	Pr > Chis	ď				
LG10_b1k	1	8.6411	0.003	3				
LG10_fgm	1	57.6562	<.000	1				
			Analysis	of Maximum	Likelihood E	stimates		
					Standard	17-14		Standardized
Parameter			DF	Estimate	Error		Pr > ChiSq	
Intercept			1	-1.0865	0.1529	50.47	<.0001	
LG10_b1k			1	1.6279	0.5538	8.64	0.0033	0.1721
LG10_fgm			1	2.3887	0.3146	57.66	<.0001	0.4301

The P value

low average the model is (<0.0001), low misclassification rates and squared errors shows that significant.

c. Logistic regression (Model - Forward Regression):

This technique is a type of regression which begins with an empty model and adds in significant variables one by one which results in final best model

From the above graph, we can see that 35% of our training data which is predicted as successful is 1.4 times likely to be positive and successful

Target	Target Label	Fit Statistics	Statistics Label	Train	Validation
target_5yrs	target_5yrs	_AIC_	Akaike's Information Criterion	854.3114	
target_5yrs	target_5yrs	_ASE_	Average Squared Error	0.190712	0.194183
target_5yrs	target_5yrs	_AVERR_	Average Error Function	0.562874	0.574334
target_5yrs	target_5yrs	_DFE_	Degrees of Freedom for Error	745	
target_5yrs	target_5yrs	_DFM_	Model Degrees of Freedom	5	
target_5yrs	target_5yrs	_DFT_	Total Degrees of Freedom	750	
target_5yrs	target_5yrs	_DIV_	Divisor for ASE	1500	428
target_5yrs	target_5yrs	_ERR_	Error Function	844.3114	245.8149
target_5yrs	target_5yrs	_FPE_	Final Prediction Error	0.193272	
target_5yrs	target_5yrs	MAX	Maximum Absolute Error	0.94746	0.947835
target_5yrs	target_5yrs	_MSE_	Mean Square Error	0.191992	0.194183
target_5yrs	target_5yrs	_NOBS_	Sum of Frequencies	750	214
target_5yrs	target 5yrs	NW	Number of Estimate Weights	5	
target_5yrs	target 5yrs	_RASE_	Root Average Sum of Squares	0.436706	0.440662
target_5yrs	target_5yrs	_RFPE_	Root Final Prediction Error	0.439628	
target 5yrs	target 5yrs	RMSE	Root Mean Squared Error	0.438169	0.440662
target_5yrs	target 5yrs	_SBC_	Schwarz's Bayesian Criterion	877.4118	
target_5yrs	target_5yrs	SSE	Sum of Squared Errors	286.0687	83.11023
target 5yrs	target 5yrs	SUMW	Sum of Case Weights Times Freq	1500	428
target_5yrs	target_5yrs	_MISC_	Misclassification Rate	0.284	0.313084

target_5yrs			MISC_		MISCIASSI	fication Rate		
Intercept L	G10_fq	f LG10_ftm	re10_gp re1	0_reb				
Likelih	ood Ra	atio Test for	Global Null	Hypothesis:	BETA=0			
-2 Log	Likeli	hood	Likelihood					
Intercept		ntercept &	Ratio					
Only	0	Covariates	Chi-Square	DF	Pr > ChiSq	1		
1000.851		844.311	156.5391	. 4	<.0001			
Тур	e 3 Ar	alysis of Ef	fects					
		Wald						
Effect	DF	Chi-Square		Sq				
LG10 fq	1	6.6818	0.00	97				
		4.1626						
		39.0288						
LG10_reb	1	2.9799	0.08	43				
			Analysis	of Maximum	Likelihood E	Stimates		
					Standard	Wald		Standardized
Parameter			DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate
Intercept			1	-9.2991	1.6601	31.38	<.0001	
LG10_fg			1	2.4882	0.9626	6.68	0.0097	0.1498
LG10_ftm			1	0.9515	0.4664	4.16	0.0413	0.1482
LG10_gp			1	2.7371				0.3949
LG10_reb			1	0.6391	0.3702	2.98	0.0843	0.1290

The P value (<0.0001), low misclassification rates and low average squared errors shows that the model is significant.

d. Logistic Regression (Model- Stepwise regression):

This technique is a step-by-step iterative approach that involves selection of our significant variables from the data to be used in final model.

From the above graph, we can see that 35% of our training data which is predicted as successful is 1.4 times likely to be positive and successful

Fit Statistics					
Target	Target Label	Fit Statistics	Statistics Label	Train	Validation
target_5yrs	target_5yrs	_AIC_	Akaike's Information Criterion	855.2975	
target_5yrs	target_5yrs	_ASE_	Average Squared Error	0.191594	0.196768
target_5yrs	target_5yrs	_AVERR_	Average Error Function	0.564865	0.5811
target_5yrs	target_5yrs	_DFE_	Degrees of Freedom for Error	746	
target_5yrs	target_5yrs	_DFM_	Model Degrees of Freedom	4	
target_5yrs	target_5yrs	_DFT_	Total Degrees of Freedom	750	
target_5yrs	target_5yrs	_DIV_	Divisor for ASE	1500	428
target_5yrs	target_5yrs	_ERR_	Error Function	847.2975	248.7107
target_5yrs	target_5yrs	_FPE_	Final Prediction Error	0.193649	
target_5yrs	target_5yrs	_MAX_	Maximum Absolute Error	0.935575	0.968193
target_5yrs	target_5yrs	_MSE_	Mean Square Error	0.192621	0.196768
target_5yrs	target_5yrs	_NOBS_	Sum of Frequencies	750	214
target_5yrs	target_5yrs	_NW_	Number of Estimate Weights	4	
target_5yrs	target_5yrs	_RASE_	Root Average Sum of Squares	0.437715	0.443585
target_5yrs	target_5yrs	_RFPE_	Root Final Prediction Error	0.440055	
target_5yrs	target_5yrs	_RMSE_	Root Mean Squared Error	0.438887	0.443585
target_5yrs	target_5yrs	_SBC_	Schwarz's Bayesian Criterion	873.7778	
target_5yrs	target_5yrs	_SSE_	Sum of Squared Errors	287.3912	84.21668
target_5yrs	target_5yrs	_SUMW_	Sum of Case Weights Times Freq	1500	428
target_5yrs	target_5yrs	_MISC_	Misclassification Rate	0.297333	0.327103

499	The selecte	ed model	l is the mode.	l trained in	the last s	tep (Step 5).	It consists	of the followin	ng effects:			
500												
501	Intercept	Intercept LG10_fg LG10_ftm LG10_gp										
502												
503												
504	Likeli	ihood Ra	atio Test for	Global Null	Hypothesis	: BETA=0						
505												
506	-2 Log	g Likel:	ihood	Likelihood								
507	Intercept	: In	ntercept 4	Ratio								
508	Only	7 (Covariates	Chi-Square	DF	Pr > ChiSq						
509												
510	1000.851	L	847.297	153.5530	3	<.0001						
511												
512												
513	Ty	ppe 3 An	nalysis of Eff	fects								
514												
515			Wald									
516	Effect	DF	Chi-Square	Pr > Chis	3q							
517												
518	LG10_fg	1	12.5699	0.000								
519	LG10_ftm	1	11.3511	0.000	08							
520	LG10_gp	1	43.7517	<.000	01							
521												
522												
523				Analysis	of Maximum	Likelihood E	stimates					
524												
525						Standard	Wald		Standardized			
526	Parameter			DF	Estimate	Error	Chi-Square	Pr > ChiSq	Estimate			
527												
528	Intercept			1	-10.3892	1.5438	45.29	<.0001				
529	LG10_fg			1	3.1437	0.8867	12.57	0.0004	0.1893			
530	LG10_ftm			1	1.3575	0.4029	11.35	0.0008	0.2114			
531	LG10_gp			1	2.8646	0.4331	43.75	<.0001	0.4132			
532												

The P value (<0.0001), low misclassification rates and low average squared errors shows that the model is significant.

2. Multiple linear regression:

We have used Multiple linear regression to estimate how our dependent variable change as the independent variable(s) changes

This technique estimates how our dependent variable changes as the independent variable(s) change. This method is used to estimate the relationship between two or more independent variables and one dependent variable.

Analysis of Variance

	5	Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	13	40.857031	3.142849	18.55	<.0001
Error	808	136.904526	0.169436		
Corrected Total	821	177.761557	7		

Model Fit Statistics

R-Square	0.2298	Adj R-S	q 0.2175
AIC	-1445.3993	BIC	-1442.9148
SBC	-1379.4350	C(p)	14.0000

From the above results we can see that our data does not fit the model as our R square value is not significant.

Model Comparison- Best model:

Upon performing the prediction techniques on our data set all our regression techniques have similar results and Stepwise Regression has least averaged squared error and misclassification rate, so we have selected "STEP WISE REGRESSION" model as our best model

Business Problem Solution:

As we have been discussing throughout the analysis, there are lot of attributes that would define a player's performance. After running our models, we got the best model as:

Intercept LG10_fg LG10_ftm LG10_gp LG10_reb

The significant variables that would determine a rookie player's performance are FG, FTM, GP and REB.

For every 1 field goal made the player might have a better chance to have successful career or better performance, which is similar with other significant variables.

We as a digital consulting firm can now target the right group of rookie players for our client Houston rockets team. This helps management team to evaluate the team's budget for trading/extending the contract of that that rookie player. For instance, we have selected 3 players from our test data who are the current rookie players in Houston rockets team and compared them with our training data which comprises of rookie players who were successful for at least 5 years and not successful for 5 years.

From the results we can say that the current rookie player who has played a fewer number of games is successful compared with the rookie player who had failed despite playing a greater number of games. Hereby, we conclude that this prediction analysis is different from the traditional way of analyzing the player's performance and it also helps the coaches and players to evaluate the performance.