

Chapter 4 Acids and bases

Section 4.1 Introducing acids and bases

4.1 KEY QUESTIONS

- **1** $HBr(g) + H_2O(I) \rightarrow H_3O^+(aq) + Br^-(aq)$
- 2 H_2SO_4/HSO_4 and H_2NO_3 / HNO_3
- **3 a** H₂O
 - **b** H₃O⁺
 - c CH₃NH₂
- 4 a NH₄+
 - **b** CH₂COOH
 - **c** H₂PO₄-
 - d HCO₃-
- **5** Brønsted–Lowry acid–base reactions are those involving the exchange of a proton (H⁺ ion). The acid donates the proton to the base. In the reaction below, the HCl loses a proton to the base.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(l)$$

The ionic equation provides a clearer way (by eliminating spectator ions) of noting the reaction between the H⁺ and OH⁻ ions neutralising to form water.

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$

- **6** Acting as an acid, whereby the reactant donates one proton:
 - **a** $HCO_3^- + H_2O(I) \rightarrow CO_3^{2-}(aq) + H_3O^+(aq)$
 - **b** $HPO_4^{2-} + H_2O(1) \rightarrow PO_4^{3-}(aq) + H_3O^+(aq)$
 - c $HSO_4^- + H_2O(1) \rightarrow SO_4^{2-}(aq) + H_3O^+(aq)$
 - **d** $H_2O(I) + H_2O(I) \rightarrow OH^-(aq) + H_3O^+(aq)$

Acting as a base, whereby the reactant accepts one proton:

- **a** $HCO_3^- + H_2O(I) \rightarrow H_2CO_3(aq) + OH^-(aq)$
- **b** $HPO_4^{2-} + H_2O(I) \rightarrow H_2PO_4^{-}(aq) + OH^{-}(aq)$
- **c** $HSO_4^- + H_2O(I) \rightarrow H_2SO_4(aq) + OH^-(aq)$
- **d** $H_2O + H_2O(I) \rightarrow H_3O^+(aq) + OH^-(aq)$

Section 4.2 Strength of acids and bases

4.2 KEY QUESTIONS

- **1 a** $HCIO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CIO_4^-(aq)$
 - **b** $HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$
 - c $CH_3NH_2(aq) + H_2O(I) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$
- 2 Stage 1: $H_3AsO_4(aq) + H_2O(1) \rightarrow H_3O^+(aq) + H_2AsO_4^-(aq)$
 - Stage 2: $H_2AsO_4^-(aq) + H_2O(I) \rightarrow H_3O^+(aq) + HAsO_4^{2-}(aq)$
 - Stage 3: $HAsO_4^{2-}(aq) + H_2O(1) \rightarrow H_3O^+(aq) + AsO_4^{3-}(aq)$
- **3** A. A strong acid readily donates a proton to a water molecule to form the hydronium ion. The complete ionisation of the acid molecule is indicated by the use of a single arrow, →.
- 4 Stronger acids ionise more readily, forming ions in solution. As perchloric acid is a stronger acid, more hydronium ions would be present in solution than in a solution of ethanoic acid, making it a better conductor of electricity.
- 5 **a** HF(aq) + H₂O(l) \rightleftharpoons H₃O⁺(aq) + F⁻(aq); $K_a = \frac{[H_3O][F^-]}{[HF]}$
 - **b** $HCIO(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CIO^-(aq);$ $K_a = \frac{[H_3O^+][CIO^-]}{[HCIO]}$
 - **c** $H_2S(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HS^-(aq);$ $K_a = \frac{[H_3O^+][HS^-]}{[H_2S]}$
 - **d** $NH_4^+(aq) + H_2^-O(1) \rightleftharpoons H_3^-O^+(aq) + NH_3^-(aq);$ $K_a = \frac{[H_3O^+][NH_3^-]}{[NH_4^+]}$

Section 4.3 Acidity of solutions

Worked example: Try yourself 4.3.1

CALCULATING CONCENTRATION OF HYDRONIUM AND HYDROXIDE IONS IN AN AQUEOUS SOLUTION

For a $5.6 \times 10^{-6} \mathrm{mol} \mathrm{L^{-1}} \mathrm{HNO_3}$ solution at 25°C, calculate [H ₃ O+] and [OH-].	
Thinking	Working
Find the concentration of hydronium (H ₃ O+) ions.	HNO $_3$ is a strong acid, so it will ionise completely in solution. Each molecule of HNO $_3$ donates one proton to water to form one H $_3$ O $^+$ ion: HNO $_3$ (aq) + H $_2$ O(I) \rightarrow H $_3$ O $^+$ (aq) + NO $_3$ $^-$ (aq) Because HNO $_3$ is completely ionised in water, 5.6×10^{-6} mol L $^{-1}$ will produce a solution with a concentration of H $_3$ O $^+$ ions of 5.6×10^{-6} mol L $^{-1}$: i.e [H $_3$ O $^+$] = 5.6×10^{-6} mol L $^{-1}$
Use the expression for the ionisation constant of water to calculate the concentration of OH- ions.	$\begin{split} K_{\rm w} &= [{\rm H_3O^+}][{\rm OH^-}] = 1.00 \times 10^{-14} \\ [{\rm OH^-}] &= \frac{1.00 \times 10^{-14}}{[{\rm H_3O^+}]} \\ {\rm Since} \ [{\rm H_3O^+}] &= 5.6 \times 10^{-6} {\rm mol} {\rm L^{-1}} \\ [{\rm OH^-}] &= \frac{1.00 \times 10^{-14}}{5.6 \times 10^{-6}} \\ &= 1.8 \times 10^{-9} {\rm mol} {\rm L^{-1}} \end{split}$

Worked example: Try yourself 4.3.2

CALCULATING pH OF AN AQUEOUS SOLUTION FROM [H₂O+]

What is the pH of a solution in which $[H_3O^+]$ is 6.0×10^{-9} mol L ⁻¹ ? Express your answer to two significant figures.	
Thinking	Working
Write down [H ₃ O+] in the solution.	$[H_3O^+] = 6.0 \times 10^{-9} \text{mol L}^{-1}$
Substitute the value of $[H_3O^+]$ into: $pH = -log_{10}[H_3O^+]$ Use the logarithm function on your calculator to calculate the answer.	$pH = -log_{10}[H_3O^+]$ $= -log_{10}(6 \times 10^{-9}) \text{ (use your calculator)}$ $= 8.2$

Worked example: Try yourself 4.3.3

CALCULATING pH IN A SOLUTION OF A BASE

What is the pH of a 0.01 mol L ⁻¹ solution of Ba(OH) ₂ at 25°C?	
Thinking	Working
Write down the reaction in which Ba(OH) ₂ dissociates.	In water, each mole of $Ba(OH)_2$ completely dissociates to release 2 moles of OH^- ions. $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^-(aq)$
Determine [OH-].	$[OH^{-}] = 2 \times [Ba(OH)_{2}]$ = 2 × 0.01 mol L ⁻¹ = 0.02 mol L ⁻¹

Determine [H $_3$ O $^+$] in the diluted solution by substituting [OH $^-$] into the ionic product of water: $K_{\rm w}=[{\rm H}_3{\rm O}^+][{\rm OH}^-]=1.00\times 10^{-14}$	$K_{w} = [H_{3}O^{+}][OH^{-}] = 1.00 \times 10^{-14}$ $[H_{3}O^{+}] = \frac{K_{w}}{[OH^{-}]}$ $= \frac{1.00 \times 10^{-14}}{0.02}$ $= 5 \times 10^{-13}$
Substitute the value of $[H_3O^+]$ into: $pH = -log_{10}[H_3O^+]$ Use the logarithm function on your calculator to calculate the answer.	pH = $-\log_{10}[H_3O^+]$ = $-\log_{10}(5 \times 10^{-13})$ (use your calculator) = 12.3

Worked example: Try yourself 4.3.4

CALCULATING pH IN A SOLUTION WHEN SOLUTE CONCENTRATION IS NOT GIVEN

What is the pH of a solution at 25°C that contains 0.50 g KOH in 500 mL of solution?	
Thinking	Working
Determine the number of moles of KOH.	$n(KOH) = \frac{m}{M}$ = $\frac{0.50}{56.0}$ = 8.9×10^{-3} mol
Write the equation for dissociation of KOH.	KOH(aq) → K ⁺ (aq) + OH ⁻ (aq) KOH is completely dissociated in water.
Determine the number of moles of OH- based on the dissociation equation.	$n(OH^{-}) = n(KOH)$ = 8.9 × 10 ⁻³ mol
Use the formula for determining concentration given the number of moles and volume: $c = \frac{n}{V}$	$n = 8.9 \times 10^{-3} \text{ mol}$ V = 0.500 L $c = \frac{8.9 \times 10^{-3}}{0.500}$ $= 0.0179 \text{ mol L}^{-1}$
Determine [H $_3$ O $^+$] in the diluted solution by substituting [OH $^-$] into the ionic product of water: $K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$	$K_{w} = [H_{3}O^{+}][OH^{-}] = 1.00 \times 10^{-14}$ $[H_{3}O^{+}] = \frac{K_{w}}{[OH^{-}]}$ $= \frac{1.00 \times 10^{-14}}{0.0179}$ $= 5.6 \times 10^{-13}$
Substitute the value of $[H_3O^+]$ into: $pH = -log_{10}[H_3O^+]$ Use the logarithm function on your calculator to calculate the answer.	$pH = -log_{10}[H_3O^+]$ = $-log_{10}(5.6 \times 10^{-13})$ (use your calculator) = 12.3

Worked example: Try yourself 4.3.5

CALCULATING [H₃O+] IN A SOLUTION OF A GIVEN pH

Calculate [H ₃ O+] in a solution of pH 10.4 at 25°C.	
Thinking	Working
Decide which form of the relationship between pH and $[H_3O^+]$ should be used: $pH = -log_{10}[H_3O^+]$	As you have the pH and are calculating [H $_3$ O $^+$], use: [H $_3$ O $^+$] = 10 $^{-pH}$
or	
$[H_3O^+] = 10^{-pH}$	

Substitute the value of pH into the relationship expression and use a calculator to determine the answer.	$[H_3O^+] = 10^{-pH}$ = $10^{-10.4}$
	$= 3.98 \times 10^{-11} \text{mol} \text{L}^{-1}$

Worked example: Try yourself 4.3.6

CALCULATING pH OF A SOLUTION AFTER PARTIAL NEUTRALISATION

43.0 mL of 0.200 mol L⁻¹ nitric acid is added to 15.0 mL of 0.300 mol L⁻¹ barium hydroxide (at 25°C). Calculate the pH of the final solution.

of the final solution.	
Thinking	Working
Identify the type of reaction and write an equation for the reaction.	acid + base \rightarrow salt + water 2HNO ₃ (aq) + Ba(OH) ₂ (aq) \rightarrow BaCl ₂ (aq) + 2H ₂ O(I)
Identify the values for the concentrations and volumes of the reactants.	HNO ₃ Ba(OH) ₂ $c = 0.200 \text{mol} L^{-1} c = 0.300 \text{mol} L^{-1}$ V = 43.0 mL V = 15.0 mL
Calculate the number of moles of H ⁺ and OH ⁻ .	$n(\text{HNO}_3) = \frac{43}{1000} \times 0.2 = 8.6 \times 10^{-3} \text{mol}$ $n(\text{Ba(OH)}_2) = \frac{15}{1000} \times 0.3 = 4.5 \times 10^{-3} \text{mol}$ $\text{Total } n(\text{OH}^-) = 2 \times 4.5 \times 10^{-3} = 9 \times 10^{-3} \text{mol}$
Identify the relationship between the number of moles of H ⁺ and OH ⁻ . (This will always be 1:1.)	1 mol of H ⁺ reacts with 1 mol of OH ⁻ .
Identify which of H ⁺ and OH ⁻ is in excess.	OH- is in excess.
Calculate the number of moles of reactant in excess.	$n(OH^{-})$ left = $9 - 8.6 \times 10^{-3} = 4 \times 10^{-4}$ mol
Calculate the concentration of the excess OH	$[OH^-] = \frac{4 \times 10^{-4}}{0.058} = 6.897 \times 10^{-3} \text{mol}\text{L}^{-1}$
Calculate the concentration of H ⁺ (H ₃ O ⁺).	$[H^{+}] = \frac{K_{w}}{OH^{-}}$ $[H^{+}] = \frac{1 \times 10^{-14}}{6.897 \times 10^{-3}} = 1.45 \times 10^{-12} \text{mol L}^{-1}$
Calculate pH using: $pH = -log_{10}[H_3O^+]$ Use the logarithm function on your calculator to determine pH.	pH = $-\log_{10}[H_3O^+]$ pH = $-\log_{10}(1.45 \times 10^{-12}) = 11.8$

4.3 KEY QUESTIONS

1
$$K_{\rm w} = [H_3 O^+][OH^-] = 1.00 \times 10^{-14}$$

$$\begin{split} \left[OH^{-}\right] &= \frac{1.00 \times 10^{-14}}{\left[H_{3}0^{+}\right]} \\ \left[OH^{-}\right] &= \frac{1.00 \times 10^{-14}}{0.001} = 1.00 \times 10^{-11} \, mol \, L^{-1} \end{split}$$

2
$$K_{\rm w} = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$$

$$\text{[OH-]} = \frac{1.00 \times 10^{-14}}{\text{[H}_3O^+]}$$

$$\label{eq:ohmol} \mbox{[OH$^-$]} = \frac{1.00 \times 10^{-14}}{5.70 \times 10^{-9}} = 1.75 \times 10^{-6} \, \mbox{mol} \, \mbox{L}^{-1}$$

3
$$K_{\rm w} = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$$

$$[OH^{-}] = \frac{1.00 \times 10^{-14}}{[OH^{-}]}$$

$$\label{eq:ohmology} \text{[OH-]} = \frac{1.00 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9} \, \text{mol} \, \text{L}^{-1}$$

4 pH =
$$-log_{10}[H_3O^+]$$

= $-log_{10}0.01$
= 2

5 As nitric acid is a strong acid, the concentration of H_3O^+ ions is 0.0010 mol L^{-1} .

$$pH = -log_{10}[H_3O^+]$$
$$= -log_{10}0.0010$$
$$= 3$$

6
$$[H_3O^+] = 10^{-pH}$$

= 10^{-6}
= 1.0×10^{-6} (or 0.0000010) mol L^{-1}

7
$$M(HCI) = M(H) + M(CI)$$

= 1.0 + 35.5
= 36.5

As HCl completely dissociates to H_3O^+ and Cl^- , $n(HCl) = n(H_3O^+)$, therefore $n(H_3O^+) = 0.01$ mol.

$$c = \frac{n}{V} = \frac{0.01}{0.20} = 0.050 \,\text{mol}\,L^{-1}$$
$$[H_3O^+] = 0.050 \,\text{mol}\,L^{-1}$$
$$pH = -log...[H.O^+]$$

$$\begin{aligned} pH &= -log_{10}[H_3O^+] \\ &= -log_{10}O.050 = 1.3 \\ &= 1.3 \end{aligned}$$

$$[H_3O^+] = 10^{-2} = 0.01 \, \text{mol} \, L^{-1}$$

$$n(HCI) = c \times V = 0.01 \times 0.1 = 0.001 \text{ mol}$$

NaOH

$$[H_3 0^+] = 10^{-11} \, mol \, L^{-1}$$

$$\text{[OH^-]} = \frac{1.00 \times 10^{-14}}{\text{H}_3\text{O}^+}$$

$$[OH^{-}] = 10^{-3} \, mol \, L^{-1}$$

$$n(NaOH) = c \times V = 0.001 \times 0.2 = 0.002 \,\text{mol}$$

Neutralisation

$$NaOH + HCI \rightarrow NaCI + H_2O$$

1 mol of HCl react with 1 mol of NaOH; NaOH is in excess.

 $n(OH^{-})$ remaining = 0.002 - 0.001 = 0.001 mol

$$C = \frac{n}{V}$$

$$c = \frac{0.001}{0.3} = 0.0033 \, mol \, L^{-1}$$

$$[H_3O^+] = \frac{K_w}{[OH^-]}$$

$$[H_3O^+] = \frac{10^{-14}}{0.0033} = 3 \times 10^{-12}$$

$$pH = -log_{10}[H_3O^+] = 11.5$$

Section 4.4 Dilution of acids and bases

Worked example: Try yourself 4.4.1

CALCULATING MOLAR CONCENTRATION AFTER DILUTION

Calculate the molar concentration of nitric acid when 80.0 mL of water is added to 20.0 mL of $5.00\mathrm{molL^{-1}}$ HNO $_3$.	
Thinking	Working
The number of moles of solute does not change during a dilution. So, $c_1V_1=c_2V_2$, where c is the concentration in mol L ⁻¹ and V is the volume of the solution. (Each of the volume units must be the same, litres or millilitres.)	$c_1 V_1 = c_2 V_2$
Identify given values for concentrations and volumes before and after dilution. Identify the unknown.	Remember that 80.0 mL was added to 20.0 mL, so the final volume is 100.0 mL. $c_1 = 5.00\mathrm{mol}\mathrm{L}^{-1}$ $V_1 = 20.0\mathrm{mL}$ $V_2 = 100.0\mathrm{mL}$ You are required to calculate c_2 , the concentration after dilution.
Transpose the equation and substitute the known values into the equation to find the required value.	$c_2 = \frac{c_1 \times V_1}{V_2}$ $= \frac{5.00 \times 20.0}{100.0}$ $= 1.00 \text{ mol } L^{-1}$

Worked example: Try yourself 4.4.2

CALCULATING THE VOLUME OF WATER TO BE ADDED IN A DILUTION

How much water must be added to 15.0 mL of 10.0 mol L ⁻¹ NaOH to dilute the solution to 2.00 mol L ⁻¹ ?	
Thinking	Working
The number of moles of solute does not change during a dilution. So, $c_1V_1=c_2V_2$, where c is the concentration in mol L^{-1} and V is the volume of the solution. (Each of the volume units	$c_1 V_1 = c_2 V_2$
must be the same, although not necessarily litres.)	
Identify given values for concentrations and volumes before and after dilution. Identify the unknown.	$\begin{aligned} c_1 &= 10.0 \text{mol L}^{-1} \\ V_1 &= 15.0 \text{mL} \\ c_2 &= 2.00 \text{mol L}^{-1} \\ \text{You are required to calculate } V_2 \text{, the volume of the diluted} \end{aligned}$
Transport the counties and substitute the lungue value	solution.
Transpose the equation and substitute the known values into the equation to find the required value.	$V_{2} = \frac{c_{1} \times V_{1}}{c_{2}}$ $= \frac{10.0 \times 15.0}{2.00}$ $= 75.0 \text{mL}$
Calculate the volume of water to be added.	Volume of dilute solution = 75.0 mL Initial volume of NaOH = 15.0 mL So 75.0 – 15.0 = 60.0 mL of water must be added.

Worked example: Try yourself 4.4.3

CALCULATING pH OF A DILUTED ACID

10.0 mL of 0.10 mol L⁻¹ HCl is diluted to 30.0 mL. Calculate the pH of the diluted solution.	
Thinking	Working
Identify given values for concentrations and volumes before and after dilution.	$c_1 = 0.10 \text{mol}\text{L}^{-1}$ $V_1 = 10.0 \text{mL}$ $V_2 = 30.0 \text{mL}$ $c_2 = ?$
Calculate c_2 , which is the concentration of H_3O^+ after dilution, by transposing the formula: $c_1V_1=c_2V_2$	$c_2 = \frac{c_1 \times V_1}{V_2}$ $= \frac{0.10 \times 10.0}{30.0}$ $= 0.03 \text{ mol } L^{-1}$
Calculate pH using: $pH = -log_{10}[H_3O^+]$ Use the logarithm function on your calculator to calculate pH.	$pH = -log_{10}[H_3O^+]$ $= -log_{10}(0.03)$ $= 1.5$

Worked example: Try yourself 4.4.4

CALCULATING pH OF A DILUTED BASE

15.0 mL of 0.020 mol L ⁻¹ KOH is diluted to 60.0 mL. Calculate the pH of the diluted solution.	
Thinking	Working
Identify given values for concentrations and volumes before and after dilution.	$c_1 = 0.020 \text{mol L}^{-1}$ $V_1 = 15.0 \text{mL}$ $V_2 = 60.0 \text{mL}$ $c_2 = ?$
Calculate c_2 , which is the concentration of [OH-] after dilution, by transposing the formula: $c_1V_1=c_2V_2$	$c_2 = \frac{c_1 \times V_1}{V_2}$ $= \frac{0.020 \times 15.0}{60.0}$ $= 0.005 \text{ mol L}^{-1}$
Determine [H $_3$ O $^+$] in the diluted solution by substituting [OH $^-$] into the ionic product of water: $K_{\rm w}=[{\rm H}_3{\rm O}^+][{\rm OH}^-]=1.00\times 10^{-14}$	$\begin{split} K_{w} &= [H_{3}O^{+}][OH^{-}] = 1.00 \times 10^{-14} \\ [H_{3}O^{+}] &= \frac{K_{w}}{[OH^{-}]} \\ &= \frac{1.00 \times 10^{-14}}{0.005} \\ &= 2 \times 10^{-12} \text{mol L}^{-1} \end{split}$
Calculate pH using: $pH = -\log_{10}[H_3O^+]$ Use the logarithm function on your calculator to calculate pH.	$pH = -log_{10}[H_3O^+]$ $= -log_{10}(2 \times 10^{-12})$ $= 11.7$

4.4 KEY QUESTIONS

1 $c_1V_1 = c_2V_2$, $c_1 = 0.10 \text{ mol L}^{-1}$, $V_1 = 3.0 \text{ L}$, $V_2 = 4.0 \text{ L}$, $c_2 = ?$

$$0.10 \times 3.0 = c_2 \times 4.0$$

$$c_2 = \frac{0.10 \times 3.0}{4.0} = 0.075 \,\text{mol}\,L^{-1}$$

2 $c_1V_1 = c_2V_2$, $c_1 = 2.0 \,\text{mol L}^{-1}$, $V_1 = 10 \,\text{mL}$, $V_2 = ?$, $c_2 = 0.50 \,\text{mol L}^{-1}$

$$2.0 \times 10 = 0.50 \times V_2$$

$$V_2 = \frac{2.0 \times 10}{0.50} = 40 \,\text{mL}$$

Final volume – initial volume = $40 - 10 = 30 \,\text{mL}$, so $30 \,\text{mL}$ of water needs to be added.

3 $c_1V_1 = c_2V_2$, $c_1 = 0.60 \,\text{mol}\,\text{L}^{-1}$, $V_1 = 20 \,\text{mL}$, $V_2 = ?$, $c_2 = 0.10 \,\text{mol}\,\text{L}^{-1}$

$$0.60 \times 20 = 0.10 \times V_2$$

$$V_2 = \frac{0.60 \times 20}{0.10} = 120 \,\mathrm{mL}$$

Final volume – initial volume = $120 - 20 = 100 \,\text{mL}$, so $100 \,\text{mL}$ of water needs to be added.

- 4 This increases the pH by one unit.
- **5** $c_1V_1 = c_2V_2$, $c_1 = 0.100 \,\text{mol L}^{-1}$, $V_1 = 20.0 \,\text{mL}$, $V_2 = 50.0 \,\text{mL}$, $c_2 = ?$

$$0.100 \times 20.0 = c_2 \times 50.0$$

$$c_2 = \frac{0.100 \times 20.0}{50.0} = 0.040 \,\text{mol}\,L^{-1}$$

As NaOH dissociates completely to Na⁺ and OH⁻, [NaOH] = [OH⁻], therefore $[OH^-] = 0.040 \,\text{mol}\,\text{L}^{-1}$

$$K_{w} = [H_{3}O^{+}][OH^{-}] = 1.00 \times 10^{-14}$$

$$1.00 \times 10^{-14} = [H_3O^+] \times 0.040$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{0.040} = 2.5 \times 10^{-13}$$

$$pH = -log_{10}[H_3O^+]$$

$$pH = -log_{10}2.5 \times 10^{-13} = 12.6$$

6 a i The concentration of H_3O^+ ions equals the concentration of a monoprotic acid = 0.001 mol L^{-1}

$$\textbf{ii} \quad \text{[OH$^{-}$]} = \frac{1.00 \times 10^{-14}}{\text{[H_3O^{+}]}} = \frac{1.00 \times 10^{-14}}{0.001 \, \text{mol L}^{-1}} = 1 \times 10^{-11} \, \text{mol L}^{-1}$$

iii pH =
$$-\log_{10}[H_3O^+] = -\log(10^{-3} \, \text{mol L}^{-1}) = 3$$

b i $[H_3O^+] = 0.03 \, mol \, L^{-1}$

$$\textbf{ii} \quad \text{[OH-]} = \frac{1.00 \times 10^{-14}}{\text{[H}_3\text{O}^+]} = \frac{1.00 \times 10^{-14}}{0.003 \, \text{mol L}^{-1}} = 3.33 \times 10^{-13} \, \text{mol L}^{-1}$$

iii pH =
$$-\log_{10}[H_3O^+] = -\log(0.030 \,\text{mol}\,L^{-1}) = 1.5$$

c i NaOH dissociates completely to Na+ and OH-, [NaOH] = [OH-], therefore [OH-] = 0.010 mol L-1.

$$[H_3O^+] = \frac{1.00 \times 10^{-14}}{0.010 \, \text{mol L}^{-1}} = 1.0 \times 10^{-12} \, \text{mol L}^{-1}$$

- ii From part i, $[OH^{-}] = 0.010 \,\text{mol}\,L^{-1}$
- iii pH = $-\log_{10}[H_3O^+] = -\log(10^{-12} \text{mol L}^{-1}) = 12$
- **d** i $10^{-4.5} \, \text{mol} \, L^{-1} \, \, \text{HCl} = [\text{H}_3 \text{O}^+] = 3.16 \times 10^{-5} \, \text{mol} \, L^{-1}$

$$\textbf{ii} \quad \text{[OH-]} = \frac{1.00 \times 10^{-14}}{\text{[H}_3\text{O}^*]} = \frac{1.00 \times 10^{-14}}{3.16 \times 10^{-5} \, \text{mol} \, \text{L}^{-1}} = 3.16 \times 10^{-10} \, \text{mol} \, \text{L}^{-1}$$

iii
$$pH = -log_{10}[H_3O^+] = -log(3.16 \times 10^{-5} \, mol \, L^{-1}) = 4.5$$

e i $[OH^{-}] = 2 \times [Ba(OH)_{2}] = 2 \times 0.005 \,\text{mol}\,L^{-1} = 0.01 \,\text{mol}\,L^{-1}$

$$[H_3O^+] = \frac{1.00 \times 10^{-14}}{0.010 \text{ mol L}^{-1}} = 1.0 \times 10^{-12} \text{ mol L}^{-1}$$

- ii From part i, $[OH^{-}] = 0.01 \,\text{mol}\,L^{-1}$
- iii pH = $-\log_{10}[H_3O^+] = -\log(1.0 \times 10^{-12} \,\text{mol}\,L^{-1}) = 12$

Section 4.5 pH of salt solutions

Worked example: Try yourself 4.5.1

DETERMINING THE ACIDITY OF A SALT PRODUCED IN A NEUTRALISATION REACTION

Determine the acidity of the salt produced by the reaction of calcium hydroxide $(Ca(OH)_2)$ and oxalic acid $(H_2C_2O_4)$.			
Thinking	Working		
Write the equation for the neutralisation reaction.	$Ca(OH)_2(aq) + H_2C_2O_4(aq) \rightarrow Na_2C_2O_4(aq) + 2H_2O(I)$		
Identify the anion and cation in the salt.	Ca ²⁺ and C ₂ O ₄ ²⁻		
Determine whether the ions will react with water in a hydrolysis reaction. (Are the ions neutral, acidic or basic?)	Ca ²⁺ cannot accept a proton from water (Ca ²⁺ is a neutral ion) $C_2O_4^{2-}(aq) + H_2O(I) \rightleftharpoons HC_2O_4^{-}(aq) + OH^{-}(aq)$ (C ₂ O ₄ ²⁻ is a basic ion)		
If an ion accepts a proton from water, it is basic. If an ion donates a proton to water, it is acidic.	The salt is basic.		

4.5 KEY QUESTIONS

1	Reactants	Name of salt formed	Formulae of ions present in the salt solution
	Hydrochloric acid + magnesium hydroxide	Magnesium chloride	Mg ²⁺ (aq) + Cl ⁻ (aq)
	Sulfurous acid + zinc hydroxide	Zinc sulfite	$Zn^{2+}(aq) + SO_3^{2-}(aq)$
	Phosphoric acid + potassium hydroxide	Potassium phosphate	K ⁺ (aq) + PO ₄ ³⁻ (aq)
	Ethanoic acid + calcium hydroxide	Calcium ethanoate	$Ca^{2+}(aq) + CH_3COO^-(aq)$
	Ammonia + nitric acid	Ammonium nitrate	NH ₄ ⁺ (aq) + NO ₃ ⁻ (aq)
	Phosphoric acid + sodium hydroxide	Sodium dihydrogenphosphate	Na ⁺ (aq) + H ₂ PO ₄ ⁻ (aq)

- **2 a** $S^{2-}(aq) + H_2O(1) \rightleftharpoons HS^{-}(aq) + OH^{-}(aq)$
 - **b** $CIO_2^-(aq) + H_2O(I) \rightleftharpoons HCIO_2(aq) + OH^-(aq)$
 - c $PH_4^+(aq) + H_2O(1) \rightleftharpoons PH_3(aq) + H_3O^+(aq)$
 - **d** $F^{-}(aq) + H_2O(I) \rightleftharpoons HF(aq) + OH^{-}(aq)$
- **3 a** Neutral: KNO₃ is the salt of a strong acid and a strong base (KOH and HNO₃). Neither ion can hydrolyse in aqueous solution.
 - **b** Acidic: NH_4NO_3 is the salt of a strong acid and a weak base (HNO_3 and NH_3). The nitrate ion cannot hydrolyse but the ammonium ion can.
 - $NH_4^+(aq) + H_2O(1) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$
 - **c** Basic: $Ca(H_3COO)_2$ is the salt of a weak acid (CH_3COOH) and a strong base ($Ca(OH)_2$). The calcium ion cannot hydrolyse but the ethanoate ion can.
 - $CH_3COO^-(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$
 - **d** Neutral: MgBr₂ is the salt of a strong acid (HBr) and a strong base (Mg(OH)₂). Neither ion can hydrolyse in aqueous solution.

CHAPTER 4 REVIEW

1 B

NH₄Cl dissolves, producing NH₄⁺ and Cl⁻.

NH₄⁺ hydrolyses, producing NH₃ and H₃O⁺.

Cl- does not hydrolyse in water, therefore is most abundant.

- 2 D. A base is a proton acceptor. CH₃NH₂ accepts a proton to produce CH₃NH₃+.
- 3 a NH₄+
 - **b** HCI
 - c HCO,
 - **d** H₃O+
 - e CH₃COOH(aq)
- 4 Remember that if a chemical acts as a base, it will accept a proton. In this question, the proton comes from a water molecule, but this is not always the case. If a chemical acts as an acid, it must be able to donate one or more protons.
 - **a** $PO_a^{3-}(aq) + H_2O(1) \rightarrow HPO_a^{2-}(aq) + OH^{-}(aq)$
 - **b** The H₂PO₄ accepts a proton from water, and acts as a base:

$$H_2PO_4^-(aq) + H_2O(I) \rightarrow H_3PO_4(aq) + OH^-(aq)$$

The H₂PO₄ donates a proton to the water, and acts as an acid:

$$H_2PO_4^{-}(aq) + H_2O(I) \rightarrow HPO_4^{2-}(aq) + H_3O^{+}(aq)$$

- **c** $H_2S(aq) + H_2O(1) \rightarrow HS^{-}(aq) + H_3O^{+}(aq)$
- **5** a CI
 - **b** H₂O
 - c OH-
 - **d** SO₄2-
- **6** a Sulfuric acid (H₂SO₄) is a diprotic acid because each molecule can donate two protons to a base:

i.e.
$$H_2SO_4(aq) + H_2O(1) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

$$HSO_{4}^{-}(aq) + H_{2}O(1) \rightarrow H_{3}O^{+}(aq) + SO_{4}^{2-}(aq)$$

The HSO_4^- ion, however, is amphiprotic because it can act as either an acid or a base, depending on the environment. In water it will undergo both acid and base reactions. For example:

As an acid:
$$HSO_4^-(aq) + H_2O(I) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$$

As a base:
$$HSO_4^-(aq) + H_2O(I) \rightarrow OH^-(aq) + H_2SO_4(aq)$$

- **b** A strong acid is one that ionises completely in solution (e.g. HCl). A concentrated acid is one in which there is a large amount of acid dissolved in a given volume of solution; for example, 5 mol L⁻¹ HCl and 5 mol L⁻¹ CH₃COOH are concentrated acids.
- 7

- **8** The first step, as in the development of any equation, is to write the correct chemical formulas for each of the chemicals involved.
 - a $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$

$$OH^-(aq) + H^+(aq) \rightarrow H_2O(I)$$

This is a Brønsted-Lowry acid-base reaction. H+ donated to OH-.

b $2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$

This is an acid reacting with a metal, not a Brønsted-Lowry acid-base reaction.

c $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$

This a precipitation reaction.

d $CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(l)$

$$CuO(s) + 2H^{+}(aq) \rightarrow Cu^{2+}(aq) + H_{2}O(l)$$

This is a Brønsted-Lowry acid-base reaction. H+ donated to O2-.

9 г

 K_{a} is a measure of the extent to which a reaction occurs

 K_a for accepting a proton > K_a for donating a proton. This means that $H_2PO_4^-$ more readily accepts a proton than donates a proton in water.

10 C

pH of 0.00001 mol L⁻¹ H⁺ is 5

A monoprotic strong acid (HA) hydrolyses so that $[H^+] = [HA] = 0.00001 \text{ mol } L^{-1}$

I, II and IV must be diprotic or triprotic and may be strong or weak

- **11** $HCIO_4(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CIO_4^-(aq)$
- **12** $HCIO_3(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CIO_3^-(aq)$
- 13 $NH_3(aq) + H_2O(I) \rightleftharpoons OH^-(aq) + NH_4^+(aq)$
- **14** $H_2PO_4^-(aq) + H_2O(1) \rightleftharpoons H_3PO_4^-(aq) + OH^-(aq)$
- **15** At 25°C, $[OH^-] \times [H_3O^+] = 1 \times 10^{-14}$

(Note: [] denotes concentration in molar units.)

$$\therefore \text{ [OH^-]} = \frac{1.00 \times 10^{-14}}{\text{[H}_3O^+]}$$

- **a** 10⁻¹¹ mol L⁻¹
- **b** 10⁻⁹ mol L⁻¹
- c $1.8 \times 10^{-6} \, \text{mol} \, \text{L}^{-1}$
- **d** $2.9 \times 10^{-3} \, mol \, L^{-1}$
- $e 1.5 \times 10^{-13} \, mol \, L^{-1}$
- **f** $4.48 \times 10^{-2} \,\text{mol}\,\text{L}^{-1}$

16 a pH =
$$-\log_{10}[H_3O^+]$$

$$[H_3O^+] = 10^{-pH}$$
 (or 10 to the power of pH)
= 10^{-1}
= $0.1 \,\text{mol}\,\text{L}^{-1}$

At 25°C,
$$[OH^{-}] \times [H_{3}O^{+}] = 1 \times 10^{-14}$$

$$\begin{split} \therefore \ \left[\text{OH}^{-} \right] &= \frac{1.00 \times 10^{-14}}{\left[\text{H}_{3}\text{O}^{+} \right]} \\ &= \frac{1.00 \times 10^{-14}}{0.10 \ \text{mol L}^{-1}} = 1.0 \times 10^{-13} \ \text{mol L}^{-1} \end{split}$$

- **b** $[H_3O^+] = 10^{-3} \, \text{mol} \, L^{-1}$
 - $[OH^{-}] = 10^{-11} \, mol \, L^{-1}$
- $c [H_3O^+] = 10^{-7} \, mol \, L^{-1}$
 - $[OH^{-}] = 10^{-7} \, mol \, L^{-1}$
- **d** $[H_3O^+] = 2 \times 10^{-12} \text{mol L}^{-1}$ $[OH^-] = 5 \times 10^{-3} \text{mol L}^{-1}$
- **17** A solution with a pH of 7.4 is basic.

The concentration of hydroxide ions will be greater than the concentration of hydronium ions.

18 Remember: $pH = -log_{10}[H_3O^+]$

$$pH = 3$$

∴
$$[H_2O^+] = 10^{-3} \,\text{mol}\,L^{-1}$$

$$pH = 5$$

$$\therefore [H_3O^+] = 10^{-5} \, \text{mol} \, L^{-1}$$

: the difference is a factor of 100.

19 a $[H^+] = 10^{-pH} = 0.001 \, \text{mol} \, L^{-1}$

$$\text{[OH^-]} = \frac{1.00 \times 10^{-14}}{\text{[H^+]}} = \frac{1.00 \times 10^{-14}}{10^{-3} \text{ mol L}^{-1}} = 1.0 \times 10^{-11} \, \text{mol L}^{-1}$$

- **b** $[H^+] = 10^{-10} \, \text{mol L}^{-1}, \, [OH^-] = 10^{-4}$
- $\label{eq:continuous} \textbf{c} \quad [\text{H}^+] = 3.16 \times 10^{-9} \, \text{mol} \, \text{L}^{-1}, \, [\text{OH}^-] = 3.16 \times 10^{-6} \, \text{mol} \, \text{L}^{-1}$
- **d** $[H^+] = 1.58 \times 10^{-6} \, \text{mol} \, L^{-1}$, $[OH^-] = 6.3 \times 10^{-9} \, \text{mol} \, L^{-1}$
- **e** $[H^+] = 2.5 \times 10^{-10} \, \text{mol} \, L^{-1}$, $[OH^-] = 4.0 \times 10^{-5} \, \text{mol} \, L^{-1}$
- $f [H^+] = 3.16 \times 10^{-14} \,\text{mol}\,L^{-1}, [OH^-] = 0.316 \,\text{mol}\,L^{-1}$

20 pH =
$$-\log_{10}[H_3O^+] = -\log_{10}5.3$$

$$[H_3O^+] = 10^{-5.3}, [OH^-] = \frac{1.00 \times 10^{-14}}{10^{-53} \text{ mol } I^{-1}} = 2.0 \times 10^{-9} \text{mol } L^{-1}$$

- **21** Remember to use $[OH^-] \times [H_3O^+] = 1 \times 10^{-14}$ at 25°C and pH = $-\log_{10}[H_3O^+]$.
 - **a** pH = 2, \therefore [H₃O⁺] = 10⁻² or 0.01 mol L⁻¹
 - **b** The formula for amounts of substance in solution is $n = c \times V$ (where n is the amount in moles, c the concentration in mol L⁻¹ and V the volume of the solution in litres).

$$n = 0.01 \times 0.500 = 0.005 \,\text{mol}$$

- 22 These three questions have two steps.
 - Step 1. Dilution questions are best answered using the formula $c_1V_1 = c_2V_2$, where c is the concentration in mol L⁻¹ and V is the volume of the solution. Each of the volume units needs to be the same, although not necessarily litres.

Step 2. Also remember, $pH = pH = -log_{10}[H_3O^+]$

a
$$c_2 = 0.25 \times \frac{10}{50} = 0.05 \,\text{mol}\,L^{-1}$$

$$\therefore [H_3O^+] = 0.05 \,\text{mol}\,L^{-1}$$

$$pH = -log_{10}(0.05 \, mol \, L^{-1}) = 1.3$$

b
$$c_2 = 0.0050 \times \frac{20}{500} = 2 \times 10^{-4} \, \text{mol L}^{-1}$$

∴
$$[OH^{-}] = 2.0 \times 10^{-4} \, \text{mol} \, L^{-1}$$

$$\left[H_3O^+\right] = \frac{1.00 \times 10^{-14}}{\left[OH^-\right]} = \frac{1.00 \times 10^{-14}}{2 \times 10^{-4} \; mol \, L^{-1}} = 5.0 \times 10^{-11} \, mol \, L^{-1}$$

$$pH = -log_{10}(5.0 \times 10^{-11} \, mol \, L^{-1}) = 10.3$$

- **c** $c_2 = 0.15 \times \frac{10}{1500}$ (1.5 L has been converted to mL to maintain identical units)
 - $= 0.001 \, \text{mol} \, L^{-1}$
 - $\therefore [H_3O^+] = 0.001 \, mol \, L^{-1} = 10^{-3} \, mol \, L^{-1}$
 - \therefore pH = 3
- **23** $c_1V_1 = c_2V_2$, $c_1 = 18.0 \, \text{mol} \, \text{L}^{-1}$, $V_1 = ?$, $c_2 = 2.00 \, \text{mol} \, \text{L}^{-1}$, $V_2 = 1.00 \, \text{L}^{-1}$

$$V_1 = \frac{2.00 \times 1.00}{18.0} = 0.111 \text{ L} = 111 \text{ mL}$$

24 Initial pH = 2. $[H_3O^+] = 10^{-pH} = 10^{-2} = 0.010 \,\text{mol}\,L^{-1}$

Final pH = 4.
$$[H_3O^+] = 10^{-pH} = 10^{-4} = 1.00 \times 10^{-4} \, \text{mol} \, L^{-1}$$

$$c_1V_1=c_2V_2,\,c_1=0.010\,\mathrm{mol\,L^{-1}},\,V_1=10.0\,\mathrm{mL},\,c_2=1.00\times10^{-4}\,\mathrm{mol\,L^{-1}},\,V_2=?$$

$$V_2 = \frac{0.010 \times 1.00}{1.00 \times 10^{-4}} = 1000 \,\text{mL}$$

25 pH(initial) = $-\log_{10}[H_3O^+] = 1.0$

$${\rm c_1} V_1 = {\rm c_2} V_2, \, {\rm c_1} = 0.10 \, {\rm mol} \, {\rm L^{-1}}, \, V_1 = 40.0 \, {\rm mL}, \, {\rm c_2} = ?, \, V_2 = 500 \, {\rm mL}$$

$$c_2 = \frac{0.10 \times 40.0}{500} = 8.0 \times 10^{-3} \,\text{mol}\,\text{L}^{-1}$$

$$pH(final) = -log_{10}(8 \times 10^{-3}) = 2.10$$

Therefore the pH will increase.

- **26** B
 - In A, the ammonium ion hydrolyses to produce an acid and the ethanoate ion hydrolyses to produce a base. The pH of the salt will be close to neutral (pH = 7)
 - In B, the ammonium ion hydrolyses to produce an acid. The chloride ion cannot accept a proton because it is the conjugate base of a strong acid. The solution will be acidic with pH < 7.
 - In C, the ammonium ion hydrolyses to produce an acid and the phosphate ion hydrolyses to produce a base. The pH of the salt will be close to neutral (pH = 7).
 - In D, the sodium ion cannot accept or donate a proton and the bromide is the conjugate base of a strong acid. The solution will be neutral (pH = 7).

27 a

Salt dissolved	Approximate pH (5, 7 or 9)
Potassium nitrate	7
Ammonium chloride	5
Sodium phosphate	9
Potassium hydrogensulfate	5

b $PH_4^+(aq) + H_2O(I) \rightleftharpoons PH_3(aq) + H_3O^+(aq)$ equation 1 $CH_3COO^-(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$ equation 2 Since pH < 7, [H+] must be greater than [OH-]

And so, the position of equilibrium in equation 1 must be further over to the right-hand side than in equation 2.

28 Solution A: weaker base, few freely moving charged particles—ammonia

Solution B: neutral, no freely moving charged particles—glucose

Solution C: strong base, many freely moving charged particles—sodium hydroxide

Solution D: strong acid, many freely moving charged particles—hydrochloric acid

Solution E: weaker acid, few freely moving charged particles—ethanoic acid

29 a i A Brønsted-Lowry acid is a proton donor.

ii A strong base is a substance that readily accepts hydrogen ions.

iii Molarity is a measure of concentration of a solution expressed in mol L-1.

iv The conjugate acid of a base contains one more hydrogen ion (proton) than the base.

b An amphiprotic substance can act as an acid (proton donor) or a base (proton acceptor).

Acting as an acid: $HCO_3^-(aq) + H_2^-O(I) \rightarrow CO_3^{-2-}(aq) + H_3^-O^+(aq)$

Acting as a base: $HCO_3^-(aq) + H_2O(I) \rightarrow H_2CO_3(aq) + OH^-(aq)$

30

- **31 a** $NH_3(I) + NH_3(I) \rightleftharpoons NH_4^+(am) + NH_2^-(am)$ acid 1 base 2 acid 2 base 1
 - **b** As the value of *K* increases, the concentration of ions increases. Heating a reaction in equilibrium favours the endothermic reaction. Thus the forward for the ionisation of ammonia is endothermic.