21.SOME MORE EXAMPLES OF FOR LOOP TIME COMPLEXITIES

Suppose we have :

$$p = 1;$$
 $for (i = 1; p \le n; i + +) \{$
 $k = k + 1; -- statement$
 $p = p + i;$
 $\}$

SOLUTION:

THEN WHAT IS THE UPPER BOUND HERE?

\boldsymbol{p}	i	\boldsymbol{n}	i + +	p + i
1	1	n	2	1 + 1
2	2	n	3	1+1+2
4	3	n	4	1+1+2+3
1+1+2+3	k	n		1+1+2+3++
$+\cdots+k-1$				k-1+k

$$p=1+(1+2+3+....+k-1+k)$$

And if we exclude the 1 we get:

$$p = 1 + 2 + 3 + 4 + \dots + k - 1 + k$$

$$p = 1 + 2 + 3 + \dots + k - 1 + k = \frac{k(k+1)}{2} \le n$$

$$\Rightarrow \frac{k(k+1)}{2} \le n$$

$$\Rightarrow \frac{k^2 + k}{2} \le n$$

$$\implies k^2 + k \le 2n$$

$$\implies k^2 + k - 2n \le 0$$

By quadratic equation:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times -2n}}{2}$$

$$\Rightarrow \frac{-1 \pm \sqrt{1 + 8n}}{2}$$

WE GET:

$$\frac{-1 + \sqrt{1 + 8n}}{2}$$
 and $\frac{-1 - \sqrt{1 + 8n}}{2}$

AND THE GENERAL TERM UP TO WHICH (k = k + 1) will get printed:

ceil of
$$\left[\frac{-1+\sqrt{1+8n}}{2}\right]$$

Hence time complexity is $\sqrt{n} = O(\sqrt{n})$