梅卷工

7 1 re ·		
Milsen Copy 2	Fall 2022	Oct, 31, 2022
Suggested solutions	Dr.Y.Chen	0.1
		age 1.
Question 1: (1) A (2) D (3)	A (4) A (5) C	
Question 2: (1) $\begin{bmatrix} 1 - \frac{x^2}{2} & \frac{x^2-2y}{8} \\ 0 & \frac{1}{2} & -\frac{x}{8} \\ 0 & 0 & 4 \end{bmatrix}$		/ 2 へ
(4) -1	$ \begin{bmatrix} 0 & -A^2 \\ I_n & 0 \end{bmatrix} $	[75] -7]
Question 3: $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -4 & 1 \end{bmatrix}$	1 2 3 0 1 -4 0 0 -24	
Question 4: (a) A busis for -	the Column space i	5:
(b) No. C(A) LN(A ^T).		[\(\sigma_3\) \(\sigma_3\) \(\righta_3\)
(c) $C(A) = C(B)$ $B = [N(B)]$		
Question 5: (a) $f(A+B) = f($	A) + S(B), for all	A,BEIR2x2
$\zeta(\lambda B) = \lambda$	f(A) for all	HERZXZ, XER
(b) Verify that Ker(f) is closed A E Ker(E) <=> A is	dunder addition	and Scalar multiplication
A E Ker(k) <=> A is	symmetric.	7
A basis of Ker(s) is: {[00] [01]	
$\begin{array}{c cccc} (c) & \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\lambda = 2 A = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	
Question 6: Case 1: Xiaomenz	can get to SUSTec	h by hot out ballon
Case 2: Xiao meng	can't get to SUSTea	h.

Midterm	Copy 2		
1 (101.101111	Copy	2	

Page 2

Question 7.

(a)
$$R = \begin{bmatrix} \frac{1}{2} & -\sqrt{3}/2 \\ \sqrt{3}/2 & \frac{1}{2} \end{bmatrix}$$
 $T = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

(b) Yes, for example

$$T' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, R' = \begin{bmatrix} -1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{bmatrix}$$

Question 8:

(a)
$$\begin{bmatrix} I_n - AB \\ O \end{bmatrix} M = \begin{bmatrix} I_n - AB \\ O \end{bmatrix} \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

$$C = \begin{bmatrix} A - A & B - A B A \end{bmatrix}$$

$$A^{-1}$$

$$\begin{bmatrix} B = BA \\ B \end{bmatrix} = \begin{bmatrix} O & O \\ B^{-1} & A^{-1} \end{bmatrix} = \begin{bmatrix} O & O \\ B^{-1} & A^{-1} \end{bmatrix}$$

D is NOT invertible

=) Mis NOT invertible

(b) $rank(CM) = rank(D) \leq rank M$