Assignment KNN for Regression

The Minkowski Distance-

$$d_{\text{m}}(P_{i}2) = \left(\sum_{i=1}^{d} \left| \chi_{i}^{(p)} - \chi_{i}^{(2)} \right|^{n}\right)^{n}$$

when, $n=1$, Manhattan Distance

Age	Income (K)	Manhattan_ Distance
21	60	.1
20	55	2
22	60	0
22	61	10
23	65	1
21	62	1
25	65	3
30	70	8
31	68	9
22	2	

Age	ADSSENDING OTEDETE
22_	.0
22	0
2.1	1
23	1
2.1	1
20	2
25	3
30	8
3.1	9

Fore, K=3Income fore age 22 Income (mean) = $\frac{60+61+60}{3}$ = $\frac{60\cdot33}{3}$