Decoherence of Primordial Perturbations in the View of a Local Observer

Fumiya Sano

Institute of Science Tokyo / IBS CTPU-CGA

Seminar talk

July 7, 2025 at Perimeter Institute

Based on 2504.10472 with Junsei Tokuda (McGill University)

Outline

☐ Introduction

- ☐ Decoherence in cosmology
 - Wavefunction formalism
 - Decoherence rate and divergences
- ☐ IR divergence: local observer effect

☐ UV divergence: time-averaged observables

Outline

☐ Introduction

- ☐ Decoherence in cosmology
 - Wavefunction formalism
 - Decoherence rate and divergences
- ☐ IR divergence: local observer effect

☐ UV divergence: time-averaged observables

Inflation as a Source for Cosmological Perturbations

[Planck 1807.06211]

[Millennium Simulation 2005]

Classical anisotropy and inhomogeneity

Quantum curvature perturbation

$$h_{ij} = (e^{\zeta(x)}a(t))^2(\delta_{ij} + \gamma_{ij})$$

Inflation as a Source for Cosmological Perturbations

Quantum curvature perturbation

$$h_{ij} = (e^{\zeta(x)}a(t))^2(\delta_{ij} + \gamma_{ij})$$

Inflationary perturbations in a nutshell

 \square Expanding $S_{\rm EH}=rac{1}{2}\int dx^4\sqrt{-g}R$ using perturbations around flat FLRW metric $h_{ij}=(e^{\zeta(x)}a(t))^2\delta_{ij}$

 $\epsilon \equiv -\frac{H}{H^2} \ll 1,$

slow-roll parameter

 $\eta \equiv \frac{\dot{\epsilon}}{\epsilon H} \ll 1$

 \Box Initial condition for the universe after inflation: $\langle 0_{\rm ini}|U^{\dagger}\hat{\mathcal{O}}(t_{\rm f})U|0_{\rm ini}\rangle$

✓ 3 or higher: perturbatively calculable. Expected in future observations.

"Quantumness" and "Classicalization"

☐ Intuitively...

Large scale Classical
$$a/k \gg 1/H$$

Formally?

☐ Coherence,

$$\hat{
ho}[\zeta,\widetilde{\zeta}]$$
 vs. $P(\zeta)$

- ✓ Stochastic formalism, PBH [Weenink and Prokopec 1108.3994]
- ✓ (Absence of) interference?

 [Observational effects of decoherence:

 Martin and Vennin 1801.09949, 1805.05609]

Entanglement,

$$|\Psi\rangle_{AB} \neq |\phi\rangle_A \otimes |\varphi\rangle_B$$

 ✓ Bell test [Martin and Vennin 1706.04516, 2203.03505 etc. Sou et al. 2405.07141]

$$\mathcal{H}_{ ext{tot}} = igotimes_{k?,x?, ext{fields}?} \mathcal{H}_i$$

Uncertainty, ...

$$\Delta \zeta \Delta \pi \gtrsim \hbar$$

 $\Leftrightarrow [\zeta_{\mathbf{k}}, \pi_{\mathbf{k}'}] = i\hbar (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}')$

✓ Gaussian minimal uncertainty

Two mode squeezed state [Polarski and Starobinsky gr-qc/9504030]

$$|\Psi\rangle = \prod_{\mathbf{k}} \left(\sum_{n} \alpha_{n,\mathbf{k}} |n_{\mathbf{k}}\rangle \otimes |n_{-\mathbf{k}}\rangle \right)$$

"Quantumness" and "Classicalization"

☐ Intuitively...

Large scale Classical
$$a/k \gg 1/H$$

Formally?

$$\hat{
ho}[\zeta,\widetilde{\zeta}]$$
 vs. $P(\zeta)$

- ✓ Stochastic formalism, PBH [Weenink and Prokopec 1108.3994]
- ✓ (Absence of) interference?

 [Observational effects of decoherence:

 Martin and Vennin 1801.09949, 1805.05609]

Entanglement,

$$|\Psi\rangle_{AB} \neq |\phi\rangle_A \otimes |\varphi\rangle_B$$

✓ Bell test [Martin and Vennin 1706.04516, 2203.03505 etc. Sou et al. 2405.07141]

$$\mathcal{H}_{\mathrm{tot}} = \bigotimes_{k?,x?,\mathrm{fields}?} \mathcal{H}_i$$

Uncertainty, ...

$$\Delta \zeta \Delta \pi \gtrsim \hbar$$

 $\Leftrightarrow [\zeta_{\mathbf{k}}, \pi_{\mathbf{k}'}] = i\hbar (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}')$

✓ Gaussian minimal uncertainty

Two mode squeezed state [Polarski and Starobinsky gr-qc/9504030]

$$|\Psi\rangle = \prod_{\mathbf{k}} \left(\sum_{n} \alpha_{n,\mathbf{k}} |n_{\mathbf{k}}\rangle \otimes |n_{-\mathbf{k}}\rangle \right)$$

Quantum Interference and Decoherence

$$|\Psi\rangle = \alpha |\psi_1\rangle + \beta |\psi_2\rangle$$

$$\langle \Psi | \widehat{A} | \Psi \rangle = |\alpha|^2 \langle \psi_1 | \widehat{A} | \psi_1 \rangle + |\beta|^2 \langle \psi_2 | \widehat{A} | \psi_2 \rangle$$

$$+ (\alpha \beta^* \langle \psi_2 | \widehat{A} | \psi_1 \rangle + \text{c.c.})$$

$$|\Psi\rangle = \alpha |\psi_1\rangle |\phi_1\rangle + \beta |\psi_2\rangle |\phi_2\rangle$$

$$\rho_{\psi} = \operatorname{Tr}_{\phi}[|\Psi\rangle \langle \Psi|] = \begin{pmatrix} |\alpha|^2 & \alpha\beta^* \langle \phi_2 | \phi_1 \rangle \\ \alpha^* \beta \langle \phi_1 | \phi_2 \rangle & |\beta|^2 \end{pmatrix}$$

 $\langle \phi_2 | \phi_1 \rangle \sim 0$ if scattered to independent states.

More scattering, more independent, less interference.

[✓] Measure of coherence: ρ_{ij}

^{*} Representation independent measure of coherence: Rényi entropy, purity, quantum discord, etc. [Streltsov et al. 1612.07570, Henderson and Vedral quant-ph/0105028, etc. Comparison: Martin et al. 2211.10114]

Outline

☐ Introduction

- ☐ Decoherence in cosmology
 - Wavefunction formalism
 - Decoherence rate and divergences
- ☐ IR divergence: local observer effect
- ☐ UV divergence: time-smeared observables

Wavefunction Formalism

☐ Observables: correlation functions

$$\langle \Omega | \widehat{\zeta}^{n}(t) | \Omega \rangle = \int \mathcal{D}\zeta(t) \langle \Omega | \zeta; t \rangle \langle \zeta; t | \Omega \rangle \zeta^{n} \equiv \int \mathcal{D}\zeta(t) |\Psi[\zeta(t)]|^{2} \zeta^{n}$$

$$\widehat{\zeta}(t) |\zeta; t \rangle = \zeta(t) |\zeta; t \rangle$$

$$\checkmark$$
 E.g., $\mathcal{H}=\mathcal{H}_{\mathbf{k}_{\mathrm{S}}}\otimes\mathcal{H}_{\mathbf{k}_{\mathrm{E}}}$ with $k_{\mathrm{S}}\in\{k_{\mathrm{CMB}}\}$

■ Wavefunction at a certain time slice

Gaussian

Gravitational non-linearity

$$\Psi[\zeta(t)] \equiv \langle \zeta; t | \Omega \rangle = \exp\left[-\frac{1}{2} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int \frac{d^3 \mathbf{k}_1}{(2\pi)^3} \frac{d^3 \mathbf{k}_2}{(2\pi)^3} \frac{d^3 \mathbf{k}_3}{(2\pi)^3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots\right]$$

$$(\approx e^{iS_{\text{cl}}[\zeta]})$$

 \checkmark Free propagation: $e^{-\int_{\mathbf{k}} \psi_2 \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}}}$ no entanglement between \mathbf{k}_{S} and \mathbf{k}_{E} (no scattering)

Formulation of Decoherence

[Nelson 1601.03734, Sou et al. 2207.04435]

Another method: quantum master equation [Burgess et al. astro-ph/061646, Burgess et al. 2211.11046, etc.]

■ Density matrix

$$\begin{split} \rho_{\mathrm{S}}[\zeta_{\mathrm{S}},\widetilde{\zeta}_{\mathrm{S}}] &= \int \mathcal{D}\zeta_{\mathrm{E}}(t)\Psi[\zeta_{\mathrm{S}},\zeta_{\mathrm{E}}]\Psi^{*}[\widetilde{\zeta}_{\mathrm{S}},\zeta_{\mathrm{E}}] \\ &\simeq \Psi_{\mathrm{G}}[\zeta_{\mathrm{S}}]\Psi^{*}_{\mathrm{G}}[\widetilde{\zeta}_{\mathrm{S}}] \int \mathcal{D}\zeta_{\mathrm{E}}|\Psi_{\mathrm{G}}[\zeta_{\mathrm{E}}]|^{2}e^{-\frac{1}{6}\int_{\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}}(\zeta_{1}\zeta_{2}\zeta_{3}\psi_{3}+\widetilde{\zeta}_{1}\widetilde{\zeta}_{2}\widetilde{\zeta}_{3}\psi_{3}^{*})} \\ &\equiv \rho_{\mathrm{diag}}\times\exp\left[-\int_{\mathbf{k}_{\mathrm{S}}}\Gamma\ \Delta\zeta_{\mathbf{k}_{\mathrm{S}}}^{2}\right] \\ &\geqslant (\zeta_{\mathrm{S}})^{2} \end{split}$$
 Decoherence rate

Decoherence rate

(decay rate of off-diagonal component)

$$\Gamma \approx \frac{\psi_3}{\Delta \zeta_{\rm S}} \sum_{\zeta_{\rm E}}^{\zeta_{\rm E}} \frac{\mathcal{L}_{\rm int}^{(3)}}{\Delta \zeta_{\rm S}} \sim \frac{1}{\epsilon^2} \left(\frac{aH}{k_{\rm S}}\right)^6 + \epsilon^2 \left(\frac{aH}{k_{\rm S}}\right)^3$$

Loop at the time slice

Boundary term

Bulk term

WITH IR divergence and UV divergence $\Gamma \supset \log \frac{k_{
m S}}{k_{
m ID}}, \Lambda_{
m UV}^{\#}$ Some cancellations? Regularization?

[Sou et al. 2207.04435]

Consistency condition for loop calculations

[Sano and Tokuda 2504.10472]

[Nelson 1601.03734]
$$S_{3} = \int dt d^{3}x \left\{ a^{3} \epsilon^{2} \zeta \dot{\zeta}^{2} + a \epsilon^{2} \zeta (\partial \zeta)^{2} - 2a \epsilon \dot{\zeta} \partial \zeta \partial \chi + 2f(\zeta) \left. \frac{\delta \mathcal{L}}{\delta \zeta} \right|_{1} + \mathcal{L}_{b} \right\}, \quad \partial^{2}\chi \equiv a^{2} \epsilon \dot{\zeta}$$

[Sou et al. 2207.04435]
$$S_{3} = \int dt d^{3}x \left\{ a^{3} \epsilon^{2} \zeta \dot{\zeta}^{2} + a \epsilon^{2} \zeta (\partial \zeta)^{2} - 2a \epsilon \dot{\zeta} \partial \zeta \partial \chi \right.$$

$$\left. + 2f(\zeta) \left. \frac{\delta \mathcal{L}}{\delta \zeta} \right|_{1} + \mathcal{L}_{b} \right\}, \quad \partial^{2}\chi \equiv a^{2} \epsilon \dot{\zeta}$$

$$\left. - \frac{1}{4aH^{3}} (\partial \zeta)^{2} \partial^{2}\zeta - \frac{a \epsilon}{H} \zeta (\partial \zeta)^{2} \right.$$

$$\left. - \frac{\epsilon a^{3}}{H} \zeta \dot{\zeta}^{2} + \frac{1}{2aH^{2}} \zeta (\partial_{i}\partial_{j}\zeta \partial_{i}\partial_{j}\chi - \partial^{2}\zeta \partial^{2}\chi) \right.$$

$$\left. - \frac{\eta a}{2} \zeta^{2} \partial^{2}\chi - \frac{1}{2aH} \zeta (\partial_{i}\partial_{j}\chi \partial_{i}\partial_{j}\chi - \partial^{2}\chi \partial^{2}\chi) \right]$$

Necessary for correlation function

■ Maldacena's consistency condition for wavefunction [Pimentel 1309.1793]

$$\lim_{k_1 \to 0} \psi_3(k_1, k_3) = \left(3 - k_3 \frac{d}{dk_3}\right) \psi_2(k_3)$$

$$\lim_{k_1 \to 0} \psi_3(k_1, k_3) = \left(3 - k_3 \frac{d}{dk_3}\right) \psi_2(k_3)$$

$$\lim_{k_1 \to 0} \psi_3(k_1, k_3) = \left(3 - k_3 \frac{d}{dk_3}\right) \psi_2(k_3)$$

$$\lim_{k_1 \to 0} \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\langle \zeta_1 \zeta_1 \rangle \left(3 + k_3 \frac{d}{dk_3}\right) \langle \zeta_3 \zeta_3 \rangle$$
[Maldacena astro-ph/0210603]
$$\langle \zeta_1 \zeta_2 \rangle = \frac{1}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\frac{2 \operatorname{Re}[\psi_3]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

Loop diagram at the time slice

IR:
$$k_1 \ll k_2 \simeq k_3 \ll aH$$

$$\longrightarrow$$
 $\log k_1$ from $\int \langle \zeta_1 \zeta_1 \rangle$

$$V: \quad k_1 \simeq k_2 \gg aH \gg k_3 \quad \longrightarrow \quad k$$

from
$$\partial_t (a\zeta(\partial_i\zeta)^2/H)$$

False decoherence during inflation

[Sano and Tokuda 2504.10472]

figspace IR and UV divergences $(
ho_{
m off-diag} \sim e^{-\Gamma})$

$$\Gamma \sim \left[\frac{1}{\epsilon^2} \left(\frac{aH}{k_{\rm S}}\right)^6 + \epsilon^2 \left(\frac{aH}{k_{\rm S}}\right)^3\right] (1 + \log(k_{\rm IR}/k_{\rm S})) + \frac{1}{\epsilon^2} \left(\frac{\Lambda}{aH}\right)^5$$
IR cutoff UV cutoff

IR div.: Affected by very beginning of inflation?

UV div.: Divergent offset to decoherence exists. Never quantum?

✓ Proper observables should be insensitive to deep IR and deep UV contributions. (e.g., adiabaticity: rapid modes decouple to slow modes. [Unruh 1110.2199 for QFT])

IR: local observer's coordinate

UV: time averaged observables as well as renormalization

Outline

☐ Introduction

- ☐ Decoherence in cosmology
 - Wavefunction formalism
 - Decoherence rate and divergences
- ☐ IR divergence: local observer effect

☐ UV divergence: time-averaged observables

Approaches to IR divergence

☐ Cut-off

[Sou et al. 2207.04435]

- $\checkmark k_{\rm IR}$ as the largest scale
 - Finite duration of inflation
- ✓ The easiest way
- ✓ Works for every observables

☐ Resummation

[Real part of ψ_n : Céspedes et al. 2311.17990 etc.]

- $\checkmark \sum_{n} (n\text{-loop}) \xrightarrow{\text{IR}} \sum_{n} \alpha_{n} (\log k)^{n}$
- ✓ Requires higher order loops
- ✓ Less physical subtlety

☐ Local observer effect

[Correlators: Tanaka and Urakawa 1103.1251, Pajer et al. 1305.0824 etc.]

- ✓ Renormalizes constant IR modes to metric
 - Turning off interactions with IR modes
- ✓ Interpreted as free-falling observer's coordinate
- ✓ Enables us order-by-order calculation

Local Observer Effect in Correlation Function

[Tanaka and Urakawa 1103.1251, Pajer et al. 1305.0824]

$$\langle \zeta(x_1)\zeta(x_2)\zeta(x_3)\rangle \supset \int_{k_1 \ll k_3} \frac{k_1^2 dk_1 \ k_3^2 dk_3}{k_1^3 k_3^3} \sim \log k_1 \Big|_{k_1 \to 0}$$

Short modes strongly correlates with constant long modes (?)

- Conformal free-falling observer ${\bf x}_{\rm F}\simeq (1+\zeta_{\rm L}){\bf x}$, $ds^2=a^2(-d\tau^2+d{\bf x}_{\rm F}^2)+\cdots$ (Conformal Fermi normal coordinate)
 - $\zeta_{\mathrm{F},\mathbf{k}} \simeq \zeta_{\mathbf{k}} + \zeta_{\mathrm{L}}(3 + k\partial_k)\zeta_{\mathbf{k}}$
 - $\lim_{k_1 \to 0} \left\langle \zeta_1 \zeta_2 \zeta_3 \right\rangle_{\mathrm{F}} = \lim_{k_1 \to 0} \left\langle \zeta_1 \zeta_2 \zeta_3 \right\rangle + \left\langle \zeta_1 \zeta_1 \right\rangle \left(3 + k_3 \frac{d}{dk_3} \right) \left\langle \zeta_3 \zeta_3 \right\rangle = 0 \qquad \text{IR correlations are turned off } k_1 = 0$
 - $\langle \zeta(x_1)\zeta(x_2)\zeta(x_3)\rangle_{\mathrm{F}} \xrightarrow{\mathrm{IR}} \int_{k_1\ll k_3} \frac{k_1}{k_3^3} dk_1 \ dk_3$ Finite result

Local Observer Effect in Wavefunction Formalism

[Sano and Tokuda 2504.10472]

■ Wavefunction in free-falling coordinate

$$\Psi[\zeta] = \exp\left[-\frac{1}{2} \int_{\mathbf{k}_1,\mathbf{k}_2} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int_{\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots\right] \qquad \zeta_{\mathbf{k}} \simeq \zeta_{\mathbf{F},\mathbf{k}} - \zeta_{\mathbf{L}} (3+k\partial_k) \zeta_{\mathbf{F},\mathbf{k}}$$
 Changing the expansion basis
$$= \Psi_{\mathbf{F}}[\zeta_{\mathbf{F}}] = \exp\left[-\frac{1}{2} \int_{\mathbf{k}_1,\mathbf{k}_2} \psi_{\mathbf{F},2} \zeta_{\mathbf{F},k_1} \zeta_{\mathbf{F},k_2} - \frac{1}{3!} \int_{\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3} \psi_{\mathbf{F},3} \zeta_{\mathbf{F},k_1} \zeta_{\mathbf{F},k_2} \zeta_{\mathbf{F},k_3} - \cdots\right]$$

Outline

☐ Introduction

- ☐ Decoherence in cosmology
 - Wavefunction formalism
 - Decoherence rate and divergences
- ☐ IR divergence: local observer effect
- ☐ UV divergence: time-averaged observables

UV divergence in Equal Time

□ Scattering

$$S_{\rm ren} = S_0 + S_{\rm CT}$$

☐ Equal time correlators

[Balasubramanian et al. 1108.3568 and Bucciotti 2410.01903 for flat spacetime examples etc.]

$$\langle \mathcal{O}_{1,\mathrm{ren}}^{\mathbf{k}} \mathcal{O}_{2,\mathrm{ren}}^{-\mathbf{k}}(t) \rangle \sim \int d(\mathbf{x}_1 - \mathbf{x}_2) \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|^{2\Delta}} \qquad \text{diverges even after renormalization when } \Delta \geq \frac{3}{2}.$$

"Equal time" is beyond IR effective theory?

Time averaged observables naturally shows decoupling of UV physics

(Observers do not have much time resolution to see the equal time correlators)

Tomographic approach to quantum state

[Sano and Tokuda 2504.10472]

- \blacksquare Wavefunction $\Psi[\zeta(t)] = \langle \zeta(t) | \psi \rangle$: defined in equal time. How to consider time averaging?
- ☐ Quantum state tomography

$$\langle \zeta_1 \zeta_2 \rangle = \frac{1}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \zeta_1 \zeta_2 \zeta_3 \rangle = -\frac{2 \operatorname{Re}[\psi_3]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

$$\langle \pi_1 \zeta_2 \rangle = -\frac{\operatorname{Im}[\psi_2(k_1)]}{2 \operatorname{Re}[\psi_2(k_1)]}, \quad \langle \pi_1 \zeta_2 \zeta_3 \rangle = \frac{2 \operatorname{Im}[\psi_2(k_1) \psi_3^*]}{\prod_{i=1}^3 2 \operatorname{Re}[\psi_2(k_i)]}$$

$$Quantum \text{ state is reconstructed from observables}$$

$$\Psi[\zeta] = \exp\left[-\frac{1}{2} \int_{k_1, k_2} \psi_2 \zeta_{k_1} \zeta_{k_2} - \frac{1}{3!} \int_{k_1, k_2, k_3} \psi_3 \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} - \cdots\right]$$

- Quantum state is identified as a probability distribution of canonical variables.
 - ✓ E.g., tree-level of averaged quantum fields

$$\langle \overline{\zeta}_1 \overline{\zeta}_2 \rangle \equiv \frac{1}{2 \mathrm{Re}[\overline{\psi}_2(k_1)]}, \quad \langle \overline{\pi}_1 \overline{\zeta}_2 \rangle \equiv \frac{\mathrm{Im}[\overline{\psi}_2(k_1)]}{2 \, \mathrm{Re}[\overline{\psi}_2(k_1)]}, \quad \longleftarrow \quad \Psi[\overline{\zeta}] \equiv \exp\left[-\frac{1}{2} \int_{k_1, k_2} \overline{\psi}_2 \overline{\zeta}_{k_1} \overline{\zeta}_{k_2} - \cdots\right]$$
with $[\overline{\zeta}_{\mathbf{k}}, \overline{\pi}_{\mathbf{k}'}] \approx i \hbar (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}')$
Mathematical identity

$$\zeta_{\Delta} = \zeta_{\Delta} \qquad \zeta_{\Delta} \qquad \text{is included in one-loop corrections of correlation functions}$$

Time Averaged Observables

[Sano and Tokuda 2504.10472]

au: Conformal time

Time averaging

$$\int^{\Lambda} k^{\#} dk \longrightarrow \Lambda^{\#}$$

☐ Time averaging

$$W_{\tau}(\tau_1) = \frac{e^{-(\tau_1 - \tau)^2/2\sigma_W^2}}{\sqrt{2\pi\sigma_W^2}},$$

$$G(k; \tau_1, \tau_2) \propto e^{-ik_1(\tau_1 - \tau_2)}$$

Green function

$$\langle \overline{\Phi}_1 \overline{\Phi}_2(\tau) \rangle = \int d\tau_1 d\tau_2 W_{\tau}(\tau_1) W_{\tau}(\tau_2) \langle \Phi_1(\tau_1) \Phi_2(\tau_2) \rangle$$

$$\supset \int d\tau_1 d\tau_2 W_{\tau}(\tau_1) W_{\tau}(\tau_2) \left[\tau_1 - \underbrace{\Phi} \Phi \right]$$

$$\frac{1}{|\tau_1 - \tau_2|^\#}$$

From time-ordered loop contributions. This is (expected to be) renormalized.

$$\frac{e^{-ik(\tau_1 - \tau_2)}}{|\tau_1 - \tau_2|^{\#}}$$

From Wightman function.

Not renormalized in standard procedure.

$$\Gamma_{\rm UV} \sim \int_{k>aH} dk \ k^{\#} e^{-k^2 \sigma_W^2}$$

Exponential decay in sub-horizon

Averaging Scale

[Sano and Tokuda 2504.10472]

$$\Gamma_{\rm UV} \sim \int_{k>aH} dk \ k^\# e^{-k^2 \sigma_W^2} \qquad \qquad \stackrel{(a\Lambda_{\rm UV})^{-1} \lesssim \sigma_W \ll k_{\rm S}^{-1}}{\rm to \ ensure \ the \ time \ sme}$$

$$(a\Lambda_{
m UV})^{-1}\lesssim\sigma_W\ll k_{
m S}^{-1}$$
 to ensure the time smearing

- lacksquare What is σ_W ?
 - \checkmark Theoretical resolution $\sigma_W \sim \frac{1}{a\Lambda_{\rm HW}}$
 - \checkmark Phenomenological scale? E.g., $\Delta \tau_{\rm CMB}$ When is ζ "measured"?
 - ✓ Observational device's resolution?

When is
$$\zeta$$
 "measured"?

Observational effect on UV, rather than theoretical resolution, may affect signals

Summary: Genuine decoherence during inflation

□ False contributions $(\rho_{\text{off-diag}} \sim e^{-\Gamma})$

$$\Gamma_{\rm false} \approx \frac{1}{\Delta \zeta_{\rm S}} \sum_{\Delta \zeta_{\rm S}} \left[- \frac{1}{\epsilon^2} \left(\frac{aH}{k_{\rm S}} \right)^6 + \epsilon^2 \left(\frac{aH}{k_{\rm S}} \right)^3 \right] + \frac{1}{\epsilon^2} \left(\frac{\Lambda}{aH} \right)^5}$$
Loop at the time slice

Long mode is absorbed in geodesic coordinate.

$$ds^{2} = a^{2}(-d\tau^{2} + e^{2\zeta}d\mathbf{x}^{2}) = a^{2}(-d\tau^{2} + d\mathbf{x}_{F}^{2}) + \cdots$$

$$\lim_{k_{1} \to 0} \psi_{F,3} = \lim_{k_{1} \to 0} \psi_{3} - \left(3 - k_{3} \frac{d}{dk_{3}}\right)\psi_{2} = 0$$

✓ Leading scaling in the previous work is genuine

Classified to two components when averaging in time.

$$rac{1}{| au_1- au_2|^\#}$$
 $rac{e^{-ik(au_1- au_2)}}{| au_1- au_2|^\#}$ Renormalized Averaged out $\Gamma_{
m UV}\sim\int_{k>aH}dk\;k^\#e^{-k^2\sigma_W^2}$

$$\Gamma_{
m genuine} \sim rac{1}{\epsilon^2} igg(rac{aH}{k_{
m S}}igg)^6 + \epsilon^2 igg(rac{aH}{k_{
m S}}igg)^3$$
 boundary term bulk term

Outlook: Importance of late time evolutions

- Boundary terms [Sano and Tokuda '25]
 - ✓ During inflation

$$\Gamma_{\rm inf} \sim \frac{1}{\epsilon^2} \left(\frac{aH}{k_{\rm S}}\right)^6 + \epsilon^2 \left(\frac{aH}{k_{\rm S}}\right)^3$$

Boundary term Bulk term

✓ Late time universe (but before re-entry)

- ☐ Time averaging scale?
- ☐ High-frequency gravitational wave [Takeda and Tanaka '25]
 - ✓ GW with frequency $f_{\rm GW} \gtrsim 100~{\rm Hz}$ (?) may be quantum even today!
 - * Estimation for thermal environment due to a scalar field, keeping reheating in mind
- ☐ Outlook
 - ✓ Systematic approaches to sub-horizon evolution for a more realistic model?
 - ✓ Entanglement harvesting through detectors? Graviton-photon conversion?
 - ✓ What is more than proving quantumness of gravity? QG from bottom up.

Back up slides

Jacobian and momentum correlators

☐ In general, correlation functions are expressed as

$$\langle \hat{\mathcal{O}}[\zeta, \pi] \rangle = \int \mathcal{D}\zeta_c \left(\mathcal{O}\left[\zeta_c, -i\frac{\delta}{\delta\zeta_\Delta}\right] \Psi\left[\zeta_c + \frac{\zeta_\Delta}{2}\right] \Psi^* \left[\zeta_c - \frac{\zeta_\Delta}{2}\right] \right)_{\zeta_\Delta = 0} \qquad \qquad \zeta_c = \frac{\zeta + \widetilde{\zeta}}{2},$$

$$\zeta_c = \frac{\zeta + \widetilde{\zeta}}{2},$$

$$\zeta_\Delta = \zeta - \widetilde{\zeta}$$

$$\langle \hat{\mathcal{O}}[\zeta_{\mathrm{F}}, \pi_{\mathrm{F}}] \rangle = \int \mathcal{D}\zeta_{c,\mathrm{F}} \left| \frac{\delta\zeta_{c}}{\delta\zeta_{c,\mathrm{F}}} \right| \left(\mathcal{O}\left[\zeta_{c,\mathrm{F}}, -i\frac{\delta}{\delta\zeta_{\Delta,\mathrm{F}}}\right] \Psi_{\mathrm{F}} \left[\zeta_{c,\mathrm{F}} + \frac{\zeta_{\Delta,\mathrm{F}}}{2}\right] \Psi_{\mathrm{F}}^* \left[\zeta_{c,\mathrm{F}} - \frac{\zeta_{\Delta,\mathrm{F}}}{2}\right] \right)_{\zeta_{\Delta,\mathrm{F}} = 0}$$
Coord. Transf.

Jacobian

☐ Momentum correlators in the geodesic coordinate

$$\lim_{k_1 \to 0} \langle \pi_{1,F} \zeta_{2,F} \zeta_{3,F} \rangle = -\frac{(3 - k_3 \partial_{k_3}) \operatorname{Im} \psi_2(k_3)}{4(\operatorname{Re} \psi_2(k_3))^2}$$

$$\lim_{k_1 \to 0} \langle \pi_{1,F} \pi_{2,F} \zeta_{3,F} \rangle = \frac{\operatorname{Re}[\psi_2(k_3)(3 - k_3 \partial_{k_3}) \psi_2(k_3)]}{4(\operatorname{Re} \psi_2(k_3))^2}$$

$$\lim_{k_1 \to 0} \langle \pi_{1,F} \pi_{2,F} \pi_{3,F} \rangle = -\frac{\operatorname{Im}[\psi_2^2(k_3)(3 - k_3 \partial_{k_3}) \psi_2(k_3)]}{4(\operatorname{Re} \psi_2(k_3))^2}$$

Non-vanishing contributions in squeezed limit when the conjugate momentum is soft.

