CS60050 MACHINE LEARNING

Logistic Regression

Somak Aditya Assistant Professor Sudeshna Sarkar

Department of CSE, IIT Kharagpur August 11, 2023

Logistic Regression for Classification

Regression vs. Classification

We want the possible outputs of $f_{\theta}(x) = \theta^T x$ to be discrete-valued Use an *activation function* (e.g., *sigmoid or logistic function*)

If y = 1, we want $g(z) \approx 1$ (i.e., we want a correct prediction) For this to happen, $z \gg 0$

If y = $\mathbf{0}$, we want $g(z) \approx 0$ (i.e., we want a correct prediction) For this to happen, $\mathbf{z} \ll \mathbf{0}$

Classification

Thresholding:

predict "y = 1" if
$$h_{\theta}(x) \ge 0.5$$

predict "y = 0" if
$$h_{\theta}(x) < 0.5$$

Classification

$$x = [x_0, \dots, x_m]$$

$$g(\theta^T x)$$

$$h_{\theta}(x) \in [0,1]$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Thresholding:

predict "y = 1" if
$$h_{\theta}(x) \ge 0.5$$

$$\mathbf{z} = \boldsymbol{\theta}^{\top} \boldsymbol{x} \ge \mathbf{0}$$
predict "y = 0" if $h_{\theta}(x) < 0.5$

$$\mathbf{z} = \boldsymbol{\theta}^{\top} \boldsymbol{x} < \mathbf{0}$$

Alternative Interpretation: $h_{\theta}(x) =$ estimated probability that y = 1 on input x

Decision boundary

Cost function for Logistic Regression

Logistic Regression

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$= -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(\mathbf{h}_{\theta}(x^{(i)}), y^{(i)}))$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(\mathbf{h}_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - \mathbf{h}_{\theta}(x^{(i)}) \right) \right]$$

Cost

Gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Goal: $\min_{\theta} loss(\theta)$

Good news: Convex function!

Bad news: No analytical solution

Gradient descent

$$loss(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

$$\frac{\partial}{\partial \theta_j} loss(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient descent

```
Repeat {
\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} loss(\theta)
```

(Simultaneously update all θ_i)

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient descent for Linear Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad \qquad h_\theta(x) = \theta^\top x$$
 }

Gradient descent for Logistic Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
 }
$$h_\theta(x) = \frac{1}{1 + e^{-\theta^\top x}}$$

Multiclass classification

Binary classification

Multiclass classification

Multi-class Classification

- Multi-class Classification: y can take on K different values $\{1,2,\ldots,k\}$
- $f_{\theta}(x)$ estimates the probability of belonging to each class

$$P(y = k | x, \theta) \propto \exp(\theta_k^T x)$$

$$\theta = \begin{bmatrix} \vdots & \vdots & \vdots \\ \theta_1 & \theta_2 & \theta_k \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$P(y = k | x, \theta) = \frac{\exp(\theta_k^T x)}{\sum_{j=1}^K \exp(\theta_j^T x)}$$

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{j=1}^{K} 1\{y^{(i)} = k\} \log \frac{\exp(\theta_k^T x^{(i)})}{\sum_{j=1}^{K} \exp(\theta_j^T x^{(i)})}\right]$$