ROBOTIC ARM TASK 1

Note: YOU ARE FREE TO USE ANY PROGRAMMING LANGUAGE OF YOUR CHOICE. (The most common ones are python, MATLAB)

Q1) We have provided you with a 2 Degree of freedom(DOF) Robotic Arm. The position of the base of the arm (a0 below) is located at the origin (0, 0). There are 2 links attached with it with a joint (a1) in between them. The links are free to rotate about both a0 and a1.

Take link lengths (L1, L2) and the angles (θ 1, θ 2) between them as input and output the final position (x, y) of the end effector.

Q2)

i) Following are the Denavit-Hartenberg parameters of a 2 link Robotic Arm. Output the end-effector position using transformation matrices. Show all the transformation matrices in your code.

Link	a _i (metres)	a _i	d _i	θ _i (degrees)
1	1.2	0	0	34
2	1.6	0	0	22

ii) Starting from the x-axis, simulate (using the same language) the links to reach their final positions in a time interval of 5 sec -(θ 1 varies from 0 degrees to 34 degrees, θ 2 from 0 degrees to 22 degrees). Sample simulation (not to time) -

https://drive.google.com/file/d/1PFnAwp4meTnxlCSqiEA0q7uutLWWdJW4/view?usp=sharing

Resources

Denavit-Hartenberg convention-

https://youtu.be/JSEPoylypHQ

https://robotacademy.net.au/lesson/denavit-hartenberg-notation/

Mathematical modelling-

https://www.ijeert.org/papers/v6-i11/3.pdf

Python-

 $\underline{https://www.geeks for geeks.org/python-programming-language/}$

https://www.w3schools.com/python/

MATLAB-

https://in.mathworks.com/learn/tutorials/matlab-onramp.html

Overview of Robotics-

https://www.youtube.com/watch?v=IUBD9JRYpzc&list=PLjx2FAhpTe3FGbcjBbxlhf56qVR0XbVNO (Rotation Matrices, Transformation Matrices, DH Parameter, Forward Kinematics, Inverse Kinematics)

Deep dive into robotics (Mathematically intense, not really needed right now)-

https://see.stanford.edu/Course/CS223A

SAR videos (2020)-

https://www.youtube.com/watch?v=sX_j-rXieeE&list=PLdPXMBV9SaMoP2EnJLIJ2HZFd8el51q1B (carefully observe the robotic arm from ATLEAST 10 videos - will be really helpful for upcoming tasks)