An Adaptive *p*-Norms-based Kinematic Calibration Model for Industrial Robot Positioning Accuracy Promotion: Supplementary File

Tinghui Chen, Weiyi Yang, Shuai Li, Senior Member, IEEE, and Xin Luo, Senior Member, IEEE

This is the supplementary file for this paper. Additional tables and figures regarding the experimental results are placed here.

I. ADDITIONAL TABLES

TABLE S.I. CALIBRATION ACCURACY OF TEN L_F -KC MODELS ON D1-3.

$L_p ext{-KC}$	D1				D2		D3			
Models	RMSE/mm	MEAN/mm	MAX/mm	RMSE/mm	MEAN/mm	MAX/mm	RMSE/mm	MEAN/mm	MAX/mm	
p=1	$0.727_{\pm 2.1E-2}$	$0.627_{\pm 1.8E-2}$	1.320 _{±1.6E-2}	0.561 _{±2.6E-2}	$0.461_{\pm 1.7E-2}$	1.335 _{±1.2E-2}	$0.691_{\pm 1.8E-2}$	$0.631_{\pm 1.9E-2}$	1.266 _{±2.0E-2}	
p=2	$0.676_{\pm 2.2E-2}$	$0.577_{\pm 1.5 \text{E-}2}$	$1.219_{\pm 1.8E-2}$	$0.545_{\pm 9.9E-3}$	$0.443_{\pm 2.8E-2}$	$1.267_{\pm 2.0E-2}$	$0.603_{\pm 1.9E-2}$	$0.583_{\pm 1.5E-2}$	$1.127_{\pm 2.2E-2}$	
p=3	$0.650_{\pm 1.5E\text{-}2}$	$0.553_{\pm 2.2E-2}$	$1.128_{\pm 2.1E-2}$	$0.525_{\pm 1.9E\text{-}2}$	$0.425_{\pm 2.2E-2}$	$1.166_{\pm 2.6E-2}$	$0.553_{\pm 3.0E-2}$	$0.535_{\pm 2.3E-2}$	$1.083_{\pm 2.0E-2}$	
p=4	$0.630_{\pm 2.1E-2}$	$0.530_{\pm 1.2E-2}$	$1.062_{\pm 1.7E-2}$	$0.501_{\pm 1.2E-2}$	$0.403_{\pm 1.8E-2}$	$1.113_{\pm 1.0E-2}$	$0.511_{\pm 1.6E-2}$	$0.491_{\pm 1.5E-2}$	$0.901_{\pm 1.2E-2}$	
p=5	$0.608_{\pm 1.0E-2}$	$0.510_{\pm 9.0E-3}$	$1.006_{\pm 8.9E-3}$	$0.482_{\pm 7.6E-3}$	$0.380_{\pm 1.1E-2}$	$1.061_{\pm 9.0E-3}$	$0.495_{\pm 9.2E-3}$	$0.473_{\pm 7.4E-3}$	$0.881_{\pm 8.2E-3}$	
p=6	$0.599_{\pm 1.1E-2}$	$0.499_{\pm 8.9E-3}$	$0.922_{\pm 9.5E-3}$	$0.453_{\pm 1.3E-2}$	$0.353_{\pm 9.1E-3}$	$0.959_{\pm 7.1E-3}$	$0.530_{\pm 6.3E-3}$	$0.510_{\pm 8.0E-3}$	$0.963_{\pm 5.9E-3}$	
p=7	$0.623_{\pm 1.1E-2}$	$0.523_{\pm 1.7E-2}$	$1.108_{\pm 8.9E-3}$	$0.505_{\pm 1.6E-2}$	$0.406_{\pm 1.2E-2}$	$1.110_{\pm 1.2E-2}$	$0.551_{\pm 1.1E-2}$	$0.526_{\pm 6.8E-3}$	$1.055_{\pm 8.8E-3}$	
p=8	$0.651_{\pm 2.1E-2}$	$0.550_{\pm 2.0E-2}$	$1.220_{\pm 2.0E-2}$	$0.519_{\pm 1.8E-2}$	$0.419_{\pm 1.8E-2}$	$1.220_{\pm 1.9E-2}$	$0.583_{\pm 2.1E-2}$	$0.563_{\pm 1.7E-2}$	$1.113_{\pm 2.1E-2}$	
p=9	$0.685_{\pm 1.6E\text{-}2}$	$0.585_{\pm 2.1E-2}$	$1.266_{\pm 2.1E-2}$	$0.532_{\pm 1.6E-2}$	$0.442_{\pm 1.9E-2}$	$1.253_{\pm 1.9E-2}$	$0.623_{\pm 2.3E-2}$	$0.589_{\pm 2.6E-2}$	$1.168_{\pm 2.9E-2}$	
p = 10	$0.716_{\pm 2.2E-2}$	$0.616_{\pm 3.6E-2}$	$1.290_{\pm 3.0E-2}$	$0.545_{\pm 3.1E-2}$	$0.446_{\pm 2.8E-2}$	$1.285_{\pm 3.2E-2}$	$0.642_{\pm 1.6E-3}$	$0.618_{\pm 2.8E\text{-}2}$	$1.203_{\pm 2.0E-2}$	

TABLE S.II. TIME COSTS AND TRAINING ITERATION COUNTS OF TEN L_p -KC MODELS ON D1-3.

No.	Item	p=1	p=2	p=3	p=4	p=5	p=6	p=7	p=8	p=9	p=10
D1	Iteration	13	14	13	12	14	11	13	15	15	14
	Time/s	$13.6_{\pm 1.25}$	$14.3_{\pm 1.63}$	$13.8_{\pm 0.91}$	$12.5_{\pm 2.03}$	$14.5_{\pm 1.07}$	$11.6_{\pm 0.96}$	$13.9_{\pm 2.36}$	$16.1_{\pm 1.72}$	$16.2_{\pm 1.74}$	$14.9_{\pm 1.64}$
D2	Iteration	15	14	13	14	16	11	13	14	15	15
	Time/s	$16.4_{\pm 0.93}$	$14.2_{\pm 0.91}$	$13.7_{\pm 2.13}$	$15.9_{\pm 1.82}$	$16.8_{\pm 1.24}$	$11.8_{\pm 0.93}$	$14.0_{\pm 1.79}$	$16.2_{\pm 2.82}$	$16.4_{\pm 1.93}$	$16.6_{\pm 1.53}$
D3	Iteration	13	14	14	13	11	12	11	15	15	12
	Time/s	$13.2_{\pm 0.98}$	$14.3_{\pm 0.75}$	$14.5_{\pm 0.96}$	$13.6_{\pm 0.75}$	$10.3_{\pm 0.91}$	$12.2_{\pm 1.43}$	$11.8_{\pm 1.79}$	$15.2_{\pm 1.64}$	$14.9_{\pm 1.34}$	$13.1_{\pm 1.23}$

TABLE S.III. CALIBRATION ACCURACY OF M1-8 ON D1-3.

Models		D1			D2		D3			
	RMSE/mm	MEAN/mm	MAX/mm	RMSE/mm	MEAN/mm	MAX/mm	RMSE/mm	MEAN/mm	MAX/mm	
M1	0.668 _{±2.6E-2}	$0.567_{\pm 1.9E-2}$	$1.161_{\pm 1.2E-2}$	$0.531_{\pm 4.0E-2}$	$0.435_{\pm 3.3E-2}$	$1.173_{\pm 1.5E-2}$	$0.551_{\pm 1.3E-2}$	$0.530_{\pm 1.7E-2}$	1.073 _{±1.0E-2}	
M2	$0.645_{\pm 1.2E-2}$	$0.546_{\pm 1.3E-2}$	$1.090_{\pm 1.1E-2}$	$0.509_{\pm 9.2E-3}$	$0.410_{\pm 8.8E-3}$	$1.112_{\pm 7.0E-3}$	$0.543_{\pm 5.3E-3}$	$0.510_{\pm 3.5E-3}$	$0.955_{\pm 4.1E-3}$	
M3	$0.626_{\pm 6.7E-2}$	$0.526_{\pm 5.1E-3}$	$1.020_{\pm 4.6E-3}$	$0.478_{\pm 5.1E-3}$	$0.381_{\pm 5.8E-2}$	$1.056_{\pm 5.2E-3}$	$0.512_{\pm 4.2E-3}$	$0.486_{\pm 5.3E-3}$	$0.896_{\pm 3.6E-3}$	
M4	$0.610_{\pm 7.6E-3}$	$0.510_{\pm 5.1E-3}$	$0.941_{\pm 6.9E-3}$	$0.453_{\pm 5.8E-3}$	$0.358_{\pm 6.2E-3}$	$0.961_{\pm 4.6E-3}$	$0.482_{\pm 1.0 \text{E-}2}$	$0.441_{\pm 1.2 \text{E-}2}$	$0.816_{\pm 1.2E-2}$	
M5	$0.549_{\pm 8.5E-3}$	$0.450_{\pm 9.6E-3}$	$0.853_{\pm 9.7E-3}$	$0.437_{\pm 1.7 \text{E-}2}$	$0.334_{\pm 1.2E-2}$	$0.830_{\pm 1.0E\text{-}2}$	$0.482_{\pm 9.8E-3}$	$0.441_{\pm 1.3E-2}$	$0.816_{\pm 8.5E-3}$	
M6	$0.549_{\pm 8.1E-3}$	$0.450_{\pm 9.9E-3}$	$0.853_{\pm 8.8E-3}$	$0.437_{\pm 6.6E-3}$	$0.334_{\pm 5.1E-3}$	$0.830_{\pm 4.3E-3}$	$0.482_{\pm 4.9E-3}$	$0.441_{\pm 4.9E-3}$	$0.816_{\pm 4.6E-3}$	
M7	$0.549_{\pm 9.1E-3}$	$0.450_{\pm 5.9E-3}$	$0.853_{\pm 7.8 \text{E-}3}$	$0.437_{\pm 7.2E-3}$	$0.334_{\pm 1.0 \text{E-}2}$	$0.830_{\pm 5.2E-3}$	$0.482_{\pm 3.2E-3}$	$0.441_{\pm 3.5E-3}$	$0.816_{\pm 3.7E-3}$	
M8	$0.549_{\pm 7.1\text{E-}3}$	$0.450_{\pm 6.0 \text{E-}3}$	$0.853_{\pm 8.0E-3}$	$0.437_{\pm 5.3E-3}$	$0.334_{\pm 8.6E-3}$	$0.830_{\pm 6.3E-3}$	$0.482_{\pm 5.5 \text{E-}3}$	$0.441_{\pm 5.6 \text{E}-3}$	$0.816_{\pm 6.1E-3}$	

TABLE S.IV. TIME COSTS AND TRAINING ITERATION COUNTS OF M1-8 ON D1-3.

No.	Item	M1	M2	M3	M4	M5	M6	M7	M8
D1	Iteration	12	12	11	10	9	9	11	12
	Time/s	$16.1_{\pm 1.36}$	$18.4_{\pm 1.72}$	$19.3_{\pm 1.22}$	$20.1_{\pm 1.21}$	$21.2_{\pm 1.23}$	$23.4_{\pm 1.12}$	$30.9_{\pm 1.81}$	$34.6_{\pm 0.81}$
D2	Iteration	13	12	12	11	11	10	10	11
	Time/s	$17.0_{\pm 1.25}$	$17.9_{\pm 1.53}$	$20.2_{\pm 1.56}$	$21.8_{\pm 0.81}$	$22.9_{\pm 0.93}$	$24.7_{\pm 1.02}$	$26.8_{\pm 1.53}$	$31.9_{\pm 1.53}$
D3	Iteration	12	11	11	11	10	12	12	14
	Time/s	$15.6_{\pm 1.26}$	$16.7_{\pm 1.36}$	$18.7_{\pm 1.55}$	$20.5_{\pm 0.82}$	$21.0_{\pm 1.02}$	$25.0_{\pm 1.11}$	$27.8_{\pm 0.99}$	$35.5_{\pm 1.25}$

II. ADDITIONAL FIGURES

Fig. S.1. Calibration performance of L_p -KC models as p varies on D1-3. The legend displayed in panel (a) applies to all other panels.

Fig. S.2. Calibration performance of M1-8 on D1-3. The legend displayed in panel (a) applies to all other panels.

Fig. S.3. Performance of M9-14 on D1-3. The legend displayed in panel (a) applies to all other panels.

Fig.S.4. Performance of M15-22 on D1-3. The legend displayed in panel (a) applies to all other panels.

Fig. S.5. Training process of M15-22 on D1-3. The legend displayed in panel (a) applies to all other panels.

Fig. S.6. Position accuracy of measurement points by M16, M17, M21 and M22 on D1-3. Notably, the dashed lines are the mean values. Panels (a)-(c) compare the position accuracy on D1-3 before calibration (BC), and after calibration by M22. Panels (d)-(f) illustrate the position accuracy comparison among M16, M17, M21 and M22 on D1-3. The above results show that the calibrator M22 has evidently outperformed its peers in position accuracy. The legends displayed in panels (a) and (d) respectively apply to panels (a)-(b) and panels (e)-(f).