Exploiting weak modularity in cancer progression to infer large Mutual Hazard Networks

Simon Pfahler¹, Leon Ernstberger¹, Peter Georg¹, Andreas Lösch¹, Rudolf Schill², Lars Grasedyck³, Rainer Spang¹, Tilo Wettig¹

¹ University of Regensburg, ² ETH Zürich, ³ RWTH Aachen

Mutual Hazard Networks

Transition rates:

$$\mathbf{Q}_{\mathbf{x}^{+i},\mathbf{x}} = \Theta_{ii} \prod_{\mathbf{x}=1}^{d} \Theta_{ij}$$

Learning process

step
$$\Theta_{ii}^{(n)} \to \Theta_{ii}^{(n+1)}$$

for Θ_{ii} , do:

- get a cluster containing events i and j
- perform one step of training for the MHN defined only on this cluster
- set $\Theta_{ij}^{(n+1)}$ from this smaller MHN

