

Classification Metrics

- Classification Accuracy
- Confusion matrix
- Logarithmic Loss
- Area under curve (AUC)
- F-Measure or F1 Score

Classification Accuracy

- Accuracy is a common evaluation metric for classification problems
- Number of correct predictions made as a ratio of all predictions made

Accuracy = No. of Correct Predictions

Total No. of Predictions Made

- <u>Disadv</u>: Accuracy will yield misleading results if the data set is unbalanced
- Eg: If there were 95 cats and only 5 dogs in the data, a particular classifier might classify all the observations as cats
 - Overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cat class but a 0% recognition rate for the dog class

Confusion Matrix

- TP, TN, FP, FN
- Classification system trained to distinguish between cats and dogs
- Sample of 13 animals —> 8 cats and 5 dogs

-> Actual =
$$[1,1,1,1,1,1,1,1,0,0,0,0,0]$$

-> Prediction = [0,0,0,1,1,1,1,1,1,0,0,0,1,1]

	Actual Class		
- " - "		Cat	Dog
Predicted Class	Cat	5	2
Ciass	Dog	3	3

	Actual Class		
		Cat	Non-cat
Predicted Class	Cat	5 TP	2 FP
Ciass	Non-cat	3 FN	3 TN

<u>Accuracy</u>

• Accuracy: Measure of the effectiveness of the algorithm

$$Accuracy(ACC) = \frac{\sum TP + \sum TN}{\sum TP + TN + FP + FN} = \frac{5+3}{5+3+2+3} = 61.5\%$$

	Actual Class		
		Cat	Dog
Predicted Class	Cat	5	2
Cid55	Dog	3	3

	Actual Class		
		Cat	Non-cat
Predicted Class	Cat	5 TP	2 FP
Ciass	Non-cat	3 FN	3 TN

Drawback of Accuracy

$$Accuracy(ACC) = \frac{\sum TP + \sum TN}{\sum TP + TN + FP + FN} = \frac{5+3}{5+3+2+3} = 61.5\%$$

	Actual Class	
Predicted	10 TP	15 FN
Class	25 FP	100 TN

- No. of Samples = 150
- Class 1 = 35 (Aim to detect)
 Class 0= 115
- Accuracy = (10 + 100) / (10 + 100 + 25 + 15) = 73.3%

	Actual Class	
Predicted	0 TP	25 FN
Class	0 FP	125 TN

	Actual Class	
Predicted Class	0 TP	35 FN
	0 FP	115 TN

• Accuracy =
$$(0 + 115) / (0 + 115 + 0 + 35) = 76.7\%$$

Precision & Recall

 Precision: Ratio of correctly predicted positive values to the total predicted positive values

'how much the model is right when it says it is right'

Precision =
$$\frac{TP}{TP + FP} = \frac{5}{5+2} = 71.4\%$$

 Recall/Sensitivity/True Positive Rate: Percentage of total relevant results correctly classified by the algorithm

'how much extra right ones, the model missed when it showed

the right ones'

Re
$$call = \frac{TP}{TP + FN} = \frac{5}{5+3} = 62.5\%$$

	Actual Class		
- " - "		Cat	Dog
Predicted Class	Cat	5	2
Class	Dog	3	3

Precision and Recall are used when class imbalance is present and also the detection of positive classes is very important

	Actual Class		
		Cat	Non-cat
Predicted Class	Cat	5 TP	2 FP
	Non-cat	3 FN	3 TN ⁶

F1 Score

- F1 Score: Weighted harmonic mean of Precision and Recall
- Measure of a test's accuracy that considers both precision and recall of the test to compute the score

$$F1 \, Score = 2 * \frac{\text{Re} \, call * \text{Pr} \, ecision}{\text{Re} \, call + \text{Pr} \, ecision} = 2 * \frac{0.714 * 0.625}{0.714 + 0.625} = 66.6\%$$

	Actual Class		
		Cat	Dog
Predicted Class	Cat	5	2
Ciuss	Dog	3	3

	Actual Class		
		Cat	Non-cat
Predicted Class	Cat	5 TP	2 FP
Ciass	Non-cat	3 FN	3 TN

Specificity

Percentage of negative instances out of the total actual negative instances

Like finding out how many healthy patients were not having cancer and were told they don't have cancer

$$Specificity = \frac{TN}{TN + FP}$$

Receiver Operator Characteristic (ROC)

...and the Logistic Regression, with the classification threshold set to 0.5, correctly classifies it as not obese.

		——Actual——	
		Is Obese	Is Not Obese
Predicted —	Is Obese	3	1
	Is Not Obese	1	3

		Actual	
		Is Obese	Is Not Obese
Predicted Is Not	ls Obese	4	2
	Is Not Obese	0	2

Instead of being overwhelmed with Confusion Matrices, ROC graphs provide a simple way to summarize all of the information

Re
$$call = \frac{TP}{TP + FN} = \frac{5}{5+3} = 62.5\%$$

TPR tells you what proportion of obese samples that were correctly classified

Predicted Is Not False True			——Actual——	
Predicted Is Not False Positives True			Is Obese	
Is Not False True	Dradiated	Is Obese		False Positives
Tregatives Regatives	Predicted	Is Not Obese	False Negatives	True Negatives

—— <i>•</i>			ctual——	
		Is Obese	Is Not Obese	
Predicted Is	Is Obese	4	2	
	Is Not Obese	0	2	

Area Under the Curve (AUC)

AUC

Discussion

Precision is the proportion of positive results that were correctly classified

$$\begin{array}{c} \text{Pr} \textit{ecision} = \frac{TP}{TP + FP} = \frac{5}{5 + 2} = 71.4\% \\ & ---- \text{Actual} ---- \\ & \text{Is Obese} \quad \begin{array}{c|c} \text{Is Not Obese} \\ \text{Obese} \end{array}$$

If there were lots of samples that were **not obese** relative to the number of **obese** samples, then **Precision** might be more useful than the **False Positive Rate**.

PR Curve

This is because **Precision** does not include the number of **True Negatives** in its calculation, and is not effected by the imbalance.

In practice, this sort of imbalance occurs when studying a rare disease. In this case, the study will contain many more people without the disease than with the disease.

ROC curve makes it easy to identify the best threshold for making a decision and AUC can help you decide which categorization method is better

- https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-forclassification-in-python/
- https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

Thank You