Catalogue

Niels Feld*

27 octobre 2024

Question 1 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$.

On peut définir une courbe elliptique E sur K comme l'ensemble

$$\{(x,y) \in \overline{K} \mid y^2 = x^3 + Ax + B\}$$

muni d'un élément à l'infini noté ∞ .

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse: On veut aussi que $4A^3 + 27B^2 \neq 0$

Question 2 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et L/K une extension de K.

et L/K une extension de K. Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$. Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Alors, l'ensemble de points L-rationnels est défini par

$$E(L) = \{(x, y) \in L \times L \mid y^2 = x^3 + Ax + B\}.$$

Commentaire après réponse:

Ne pas oublier le point à l'infini ∞ .

Question 3 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\overline{K}) \setminus \{\infty\}$ et $P_3 = (x_3, y_3)$ tels que $P_1 + P_2 = P_3$ et $x_1 = x_2$ et $y_1 \neq y_2$. Alors,

$$P_1 + P_2 = \infty.$$

0 %	40 %	80%
10%	50%	90%
\square 20%	\Box 60%	100%
30%	70 %	

Commentaire après réponse: Voir le cours [Washington, p. 28].

Question 4 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$. Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit $P \in E(\overline{K})$. Alors,

$$P + \infty = P$$
.

100%

0%	40%
10%	50%
20%	60%
30%	70%

Commentaire après réponse: Voir le cours [Washington, p. 28].

^{*}Merci à Damien Mégy

Question 5 Vrai ou faux? Donner votre Question 8 degré de confiance dans ce qui suit : degré de co

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit
$$P = (x, y) \in E(\overline{K}) \setminus \{\infty\}.$$

Alors,

$$-P = (-x, y).$$

Commentaire après réponse:

Voir le cours [Washington, p. 29].

Question 6 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit E la courbe elliptique sur $\mathbb Q$ définie par l'équation

$$y^2 = \frac{x(x+1)(2x+1)}{6}$$

Alors, on a

$$(1,1) + (\frac{1}{2}, \frac{-1}{2}) = (24, -70)$$

dans E.

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse:

$$(1,1) + (\frac{1}{2}, \frac{-1}{2}) = (24, -70)$$

dans E.

Question 7 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit K un corps de caractéristique $p \notin \{2, 3\}$. Soit E une courbe elliptique sur K.

Alors, l'ensemble E(K) est un groupe fini.

	0%	40%	80%
	10%		\square 90%
	20%	\Box 60%	100 %
Γ	30%	70%	

Commentaire après réponse:

C'est faux si $K = \mathbb{Q}$.

 $\begin{array}{ll} {\bf Question~8} & {\bf Vrai~ou~faux~?~Donner~votre} \\ {\bf degr\'e~de~confiance~dans~ce~qui~suit~:} \end{array}$

Le polynôme

$$x^3 + 3x^2z + 2y^2z$$

est homogène.

Commentaire après réponse:

Voir le cours [Washington, p. 32-33]

Question 9 Vrai ou faux ? Donner votre degré de confiance dans ce qui suit : Le polynôme

$$x^3 + 3x^2z + 2uz$$

est homogène.

Commentaire après réponse:

Voir le cours [Washington, p. 32-33]

Question 10 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps, soit $G(u,v) \in K[u,v]$ un polynôme non-nul et $(u_0,v_0) \in K^2 \setminus \{0,0\}$.

Alors, il existe un entier $k \geq 0$ et un polynôme $H(u,v) \in K[u,v]$ tels que $H(u_0,v_0) \neq 0$ et

$$G(u, v) = (v_0 u - u_0 v)^k H(u, v).$$

Commentaire après réponse:

Prendre $K = \mathbb{Q}$, $G(u, v) = u^2 - v$ et $(u_0, v_0) = (2, 4)$.

Voir aussi le cours [Washington, p. 36]

Question 11 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$ et E la courbe elliptique sur K définie par l'équation

$$y^2 = (x - e_1)(x - e_2)(x - e_3)$$

où $e_1, e_2, e_3 \in K$. On note

$$x_1 = (e_2 - e_1)^{-1}(x - e_1)$$
$$y_1 = (e_2 - e_1)^{-3/2}y$$
$$\lambda = \frac{e_2 - e_1}{e_3 - e_1}.$$

Alors, $\lambda \notin \{0,1\}$ et

$$y_1^2 = x_1(x_1 - 1)(x_1 - \lambda).$$

Commentaire après réponse:

On a

$$y_1^2 = x_1(x_1 - 1)(x_1 - \lambda^{-1}).$$

Voir aussi le cours [Washington, p. 49]

Question 12 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, A_1 , A_2 , B_1 , $B_2 \in K$ et, pour $i \in \{1,2\}$, E_i la courbe elliptique sur K, de j-invariant notée j_i , définie par l'équation

$$y_i^2 = x_i^3 + A_i x_i + B_i.$$

Supposons que $j_1=j_2$ et montrons qu'il existe $\mu\in\overline{K}$ tel que

$$A_2 = \mu^4 A_1$$

$$B_2 = \mu^6 B_1$$
.

Tout d'abord, supposons que $A_1 \neq 0$. Puisque cela équivaut à $j_1 \neq 0$, nous avons également $A_2 \neq 0$. Choisissons μ tel que $A_2 = \mu^4 A_1$. Alors

$$\frac{4A_2^3}{4A_2^3 + 27B_2^2} = \frac{4A_1^3}{4A_1^3 + 27B_1^2}$$

$$=\frac{4\mu^{-12}A_2^3}{4\mu^{-12}A_2^3+27B_1^2}=\frac{4A_2^3}{4A_2^3+27\mu^{12}B_1^2},$$

ce qui implique que

$$B_2^2 = (\mu^6 B_1)^2.$$

Par conséquent, $B_2=\pm \mu^6 B_1$. Si $B_2=\mu^6 B_1$, nous avons terminé. Si $B_2=-\mu^6 B_1$, alors changeons μ en $i\mu$ (où $i^2=-1$). Cela préserve la relation $A_2=\mu^4 A_1$ et donne également $B_2=\mu^6 B_1$. Si $A_1=0$, alors $A_2=0$. Comme (pour $i\in\{1,2\}$) $4A_i^3+27B_i^2\neq 0$, nous avons $B_1,B_2\neq 0$. Choisissons alors μ tel que $B_2=\mu^6 B_1$.

0%	40%	80%
10 %	\square 50%	90%
\square 20%	60%	100%
30%	70%	

Commentaire après réponse: Cf [Washington, p.60].

Vrai ou faux? Donner Question 13 votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K et α un endomorphisme non-trivial de E. On écrit

$$\alpha(x,y) = (r_1(x), r_2(x)y)$$

où r_1, r_2 sont des fractions rationnelles. On écrit $r_1(x) = p(x)/q(x)$ où p,q sont des polynômes premiers entre eux.

Alors, α est séparable si $p' \neq 0$ et $q' \neq 0$.

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse: Cf [Washington, p.65].

Question 14 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $n \in \mathbb{N}^*$, p un nombre premier, $q = p^n$, \mathbb{F}_q un corps à q éléments et E une courbe elliptique sur \mathbb{F}_q d'équation

$$y^2 = x^3 + Ax + B$$

où $A, B \in \mathbb{F}_a$.

Le Frobenius de E est l'endomorphisme ϕ_q défini par

$$\phi_q(x,y) = (x^q, y^q).$$

Lorsque n = 1, le théorème de Fermat implique que

$$\forall x \in \mathbb{F}_n, x^p = x$$

et donc, dans ce cas particulier, on a

$$\phi_p(x,y) = (x,y)$$

pour tout point (x, y) de E, d'où $\phi_p = \mathrm{Id}$.

0%	\square 40%	80%
10%	50 %	90%
20%	\Box 60%	100%
30%	70 %	

Commentaire après réponse:

Un point de E désigne, par abus de langage, un Commentaire après réponse: élément de l'ensemble

$$E(\overline{\mathbb{F}_q}) = \{\infty\} \cup \{(x,y) \in \overline{\mathbb{F}_q}^2 \,|\, y^2 = x^3 + Ax + B\}.$$

Tout ce que l'on peut dire, c'est que la restriction de ϕ_q à $E(\mathbb{F}_q)$ est l'identité.

Question 15 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α un endomorphisme non-trivial séparable de E. Alors,

Commentaire après réponse: Voir [Washington, p.67].

Question 16 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α un endomorphisme non-trivial séparable de E. Alors,

	$deg(\alpha)$	>	Card $\ker(\alpha)$	
0%	[40%	80%
10%	Ī		50%	90%
20%	[60%	100%
30%	[70%	

Commentaire après réponse: Voir [Washington, p.67].

Question 17 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α un endomorphisme non-trivial inséparable de E. Alors,

$\deg($	$(\alpha) < \operatorname{Card} \ker(\alpha)$	α)
0% 10% 20% 30%	40% 50% 60% 70%	80% 90% 100%

Voir [Washington, p.67].

Question 18 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, $A,B \in K$, E la courbe elliptique sur K définie par l'équation

$$y^2 = x^3 + Ax + B$$

et α un endomorphisme non-trivial séparable de E. On considère r_1, r_2 des fractions rationnelles et p, q des polynômes premiers entre eux tels que, pour tout point (x, y) de E, on a $\alpha(x, y) = (r_1(x), r_2(x)y)$ et $r_1 = p/q$. On note S l'ensemble des $x \in \overline{K}$ tel que

$$(pq' - p'q)(x)q(x) = 0.$$

Alors, pour tout $(a,b) \in E(\overline{K})$, au moins l'une des conditions suivantes est satisfaite :

- 1. a = 0,
- 2. b = 0,
- 3. $(a, b) = \infty$,
- 4. $\deg(p(x) aq(x)) \neq \deg(\alpha)$,
- 5. $a \in r_1(S)$,
- 6. $(a,b) \notin \alpha(E(\overline{K}))$.

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse: Voir [Washington, p.68].

Question 19 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α un endomorphisme non-trivial de E. Alors,

$$\alpha: E(K) \to E(K)$$

est surjectif.

Commentaire après réponse: Voir [Washington, p.69]. Question 20 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $n \in \mathbb{N}, \, p \notin \{2,3\}$ un nombre premier, $q = p^n, \, \mathbb{F}_q$ un corps à q élément, $(r,s) \in \mathbb{Z}^2 \setminus \{0,0\}, \, \phi_q$ l'endomorphisme de Frobenius de E. Alors, $r \cdot \phi_q + s$ est séparable si, et seulement si, p ne divise pas s.

0%	$\boxed{40\%}$	80%
10%	50%	90%
\square 20%	\Box 60%	100%
30%	70%	

Commentaire après réponse: Voir [Washington, p.72].

Question 21 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, A, $B \in K$, E la courbe elliptique sur K définie par l'équation

$$y^2 = x^3 + Ax + B$$

et $(x, y) \neq \infty$ un point de E. Si y = 0, alors, $3x^2 + A = 0$.

0%	\Box 40%	80%
10%	50%	90%
\square 20%	\Box 60%	100 %
30%	70%	

Commentaire après réponse:

En fait, on a $3x^2 + A \neq 0$.

Par hypothèse, le polynôme $p(X) = X^3 + AX + B$ possède x comme racine et x est une racine simple, donc $p'(x) \neq 0$.

Commentaire après réponse: Voir [Washington, p. 91].

50%

60%

70%

90%

100%

10%

20%

30%

Commentaire après réponse: Voir [Washington, p. 102].

votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, $\overline{\mathbb{F}}_q$ une clôture algébrique, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et P un point de E . Alors, $P \in E(\overline{\mathbb{F}}_q)$ si, et seulement si $\phi_q(P) = P$.	votre degré de confiance dans ce qui suit Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $k \in \mathbb{Z}$ tels que $\phi_q^2 - k\phi_q + q = 0$.
	Alors, $k=q+1-\operatorname{Card}(E(\mathbb{F}_q))$.
Question 35 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$, $\ker(\phi_q^n - 1) = E(\mathbb{F}_{q^n}).$	Voir [Washington, p.114]. Question 39
Commentaire après réponse: Voir [Washington, p.112]. Question 36 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$. Alors, $\phi_q^n - 1$ est inséparable. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Question 37 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$. Alors, $ \text{Card}(E(\mathbb{F}_{q^n})) = \deg(\phi_q^n - 1). $	
Voir [Washington, p.113].	

Commentaire après réponse: Voir [Washington, p.143].

50%

60%

70%

90%

100%

10%

20%

30%

Question	47	\mathbf{Vrai}	ou	faux?	Donner
votre degi	ré de d	confian	ce d	ans ce d	qui suit :
Soient $p \notin$	$\{2, 3\}$	un non	nbre	premier	$n \in \mathbb{N}^*$
$q = p^n, I$	E une	courbe	ellij	ptique s	ur \mathbb{F}_q , et
$m \in \mathbb{N}^*$. So	oit l ur	nombr	e pre	emier tel	que l di-
vise Card(A	$E(\mathbb{F}_q)$	$, E[l] \not\subset$	E(I	\mathbb{F}_q), et l	ne divise
pas $q(q-1)$).				
Si					

 $q^m \equiv 1 \pmod{l}$.

alors, $E[l] \subset E(\mathbb{F}_{q^m})$.

	0% 10%	40% 50%	80% 90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse: Voir [Washington, p.171].

Question 48 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, $n \in \mathbb{N}^*$, $q = p^n$, E une courbe elliptique sur \mathbb{F}_q , et $m \in \mathbb{N}^*$.

Si $Card(E(\mathbb{F}_q)[m]) = 1$, alors,

$$\operatorname{Card}(E(\mathbb{F}_q)/mE(\mathbb{F}_q)) = 1.$$

0%	\square 40%	80%
10 %	\square 50%	90%
\square 20%	\Box 60%	100%
30%	\square 70%	

Commentaire après réponse: La multiplication par m est injective si et seulement si elle est surjective car $E(\mathbb{F}_q)$ est fini.

Plus généralement :

D'après le premier théorème d'isomorphisme et le théorème de Lagrange, si f est un endomorphisme d'un groupe fini G, alors l'indice de f(G) dans G est égal au cardinal du noyau de G. En particulier, c'est vrai si $G = E(\mathbb{F}_q)$ et f est la multiplication par m.

Question 49 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3,5\}$ un nombre premier, E une courbe elliptique sur \mathbb{F}_p . Si $E(\mathbb{F}_p)$ contient un élément d'ordre p, alors

$$\operatorname{Card} E(\mathbb{F}_p) = p + 1.$$

Commentaire après réponse: Cf [Washington, p. 180]. Question 50 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier tel que $p \equiv 2 \pmod{3}, b \in \mathbb{F}_p^{\times}, E$ la courbe elliptique sur \mathbb{F}_p définie par l'équation

$$y^2 = x^3 + b.$$

Alors, le groupe $E(\mathbb{F}_p)$ est cyclique.

Commentaire après réponse: Cf [Washington, p. 201].

Question 51 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K, α et β deux endomorphismes non-nuls de E.

Si α est inséparable et β est inséparable, alors $\alpha \circ \beta$ est inséparable.

Commentaire après réponse:

Question 52

On suppose qu'il existe x,y,z des rationnels tels que

$$x^3 + y^3 + z^3 = 0$$

et $xyz \neq 0$. On pose

$$x_1 = -12\frac{z}{x+y}$$

$$y_1 = 36\frac{x - y}{x + y}.$$

Alors, il existe $\lambda \in \mathbb{N}$ tel

$$y_1^3 = x_1^2 - \lambda.$$

Calculer λ .

Commentaire après réponse: Voir aussi [Washington, p. 50].

Question 53

Soient A = 123 et B = 456. Soit E la courbe elliptique sur \mathbb{Q} définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P) = 2P$. Alors α est un homomorphisme et

$$\alpha(x, y) = (R_1(x, y), R_2(x, y)),$$

où R_1, R_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$R_1(x,y) = \left(\frac{3x^2 + \lambda}{2y}\right)^2 - 2x.$$

Calculer λ .

Question 54

Soient A = 123 et B = 789. Soit E la courbe elliptique sur \mathbb{Q} définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P) = 2P$. Alors α est un homomorphisme et on écrit

$$\alpha(x,y) = (r_1(x), r_2(x)y),$$

où r_1, r_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$r_1(x) = \frac{x^4 - 2A \cdot x^2 - 8 \cdot Bx + A^2}{4(x^3 + Ax + \lambda)}.$$

Calculer λ .

Commentaire après réponse:

On a

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$$

et

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - 2x^2$$

Voir aussi [Washington, p. 64].

Commentaire après réponse:

$$r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}.$$

Voir aussi [Washington, p. 66].

Question 55

Soient K un corps de caractéristique $p \notin \{2,3\}$, $R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y$. Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur E, et E une courbe elliptique sur E, et E une courbe elliptique sur E, et E une courbe elliptique sur E. suppose que la multiplication par n est donnée

$$n(x,y) = (R_n(x), S_n(x)y)$$

pour tout point (x, y) de E, où $R_n, S_n \in K(x, y)$. On suppose n = 16, calculer

$$\frac{R'_n}{S'_n}$$
.

Commentaire après réponse: Voir [Washington, p. 72].

Question 56

Soient A = 12, B = -21, E la courbe elliptique sur \mathbb{Q} définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit $(x, y) \in E[3] \setminus \{\infty\}$. Calculer $3x^4 + 6Ax^2 + 12Bx$.

0 1	2	3	4	5	6	7 _	8
$\square 0 \square 1$	<u></u>	3	4]5	6]7 []8 [
$\square 0 \square 1$	<u></u>	3	4]5	6]7 []8 [

Commentaire après réponse:

On a $3x^4 + 6Ax^2 + 12Bx = A^2$. Cf [Washington, p. 92].

Question 57

Soient x, y, A, B des indéterminées, modulo la relation

$$y^2 = x^3 + Ax + B.$$

On définit les polynômes de division $\psi_m \in \mathbb{Z}[x, y, A, B]$ par

$$\psi_0 = 0$$

$$\psi_1 = 1$$

$$\psi_2 = 2y$$

$$\psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$$

$$\psi_4 =$$

 $4y(x^{6}+5Ax^{4}+20Bx^{3}-5A^{2}x^{2}-4ABx-8B^{2}-A^{3})$ $\psi_{2m+1} = \psi_{m+2}\psi_{m}^{3} - \psi_{m-1}\psi_{m+1}^{3} \quad \text{pour } m \ge 2$ $\psi_{2m} = (2y)^{-1} \left(\psi_{m}\right) \left(\psi_{m+2}\psi_{m-1}^{2} - \psi_{m-2}\psi_{m+1}^{2}\right)\right)$

pour $m \geq 3$.

Pour $m \in \mathbb{N}^*$, on définit aussi

$$\varphi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}$$

et on considère φ_n, ψ_n^2 comme des polynômes en x.

Soit n = 9. On note $\lambda_n \max(\deg(\psi_n^2(x)), \deg(\varphi_n(x)))$. Calculer λ_n .

Question 58

Soient E une courbe elliptique sur \mathbb{Q} , e_2 l'accouplement de Weil associé à E, et P,Q deux points distincts de E d'ordre 2.

Calculer $e_2(P,Q) + 100$.

Commentaire après réponse:

Soit R = P + Q de sorte que $E[2] = \{\infty, P, Q, R\}$.. Par l'absurde, si $e_2(P, Q) = 1$, alors $e_2(R, P) = e_2(R, Q) = 1$ donc $R = \infty$, ce qui est absurde.

Question 59

Soit E la courbe elliptique sur \mathbb{F}_5 définie par l'équation

$$y^2 = x^3 + x + 1.$$

Il existe $a, b \in \{0, \dots, 4\}$ tels que

$$(3,1) + (2,4) = (a \cdot 1_{\mathbb{F}_5}, b \cdot 1_{\mathbb{F}_5}).$$

Calculer $a + b \in \mathbb{N}$.

$\boxed{0} \boxed{1} \boxed{2} \boxed{3} \boxed{4} \boxed{5} \boxed{6} \boxed{7} \boxed{8} \boxed{9}$

Commentaire après réponse:

Voir [Washington, p. 109]. (3, 1) + (2, 4) = (4, 2).

Question 60

Soit E la courbe elliptique sur \mathbb{F}_7 définie par l'équation

$$y^2 = x^3 + 2.$$

On note $A=\max\{\operatorname{ord}(P)\,|\,P\in E(\mathbb{F}_7)\}$ où $\operatorname{ord}(P)$ désigne l'ordre de $P\in E(\mathbb{F}_7).$ Calculer A.

Commentaire après réponse:

Cf [Washington, p. 97].

Question 61

Soit E une courbe elliptique sur le corps fini \mathbb{F}_q . On suppose qu'il existe $n \in \mathbb{N}^*$ tel que

$$E(\mathbb{F}_q) \simeq \mathbb{Z}/(n) \oplus \mathbb{Z}/(n)$$
.

On note $a = q + 1 - \text{Card}(E(\mathbb{F}_q))$. On suppose que n > 1302.

Calculer le reste r dans la division euclidienne de a par n.

Question 64

Soient q = 625, E une courbe elliptique sur le corps fini \mathbb{F}_q telle que

$$\operatorname{Card}(E(\mathbb{F}_q)) = q + 1 - 2\sqrt{q}.$$

Il existe deux entiers $k, l \in \mathbb{N}$ tels que

Commentaire après réponse:

Voir [Washington, p.154].

Question 65

 $k = l = p^m - 1 = 24$ où m = 2, p = 5.

$$E(\mathbb{F}_q) \simeq \mathbb{Z}/(k) \oplus \mathbb{Z}/(l).$$

Calculer k + l.

9

Commentaire après réponse:

Voir [Washington, p.121].

Question 62

Soit $u \in \mathbb{F}_{37}$. On note $\left(\frac{u}{\mathbb{F}_{37}}\right)$ le symbole de Legendre de u dans \mathbb{F}_{37} .

Calculer

$$\sum_{x \in \mathbb{F}_{37}} \left(\frac{x+u}{\mathbb{F}_{37}} \right).$$

4

5

6

Commentaire après réponse: Voir [Washington, p.152].

2

3

1

$x = |\sqrt{\operatorname{Card}(E(\mathbb{F}_q))} - \sqrt{q}|.$

 $E(\mathbb{F}_q) \simeq \mathbb{Z}/(k) \oplus \mathbb{Z}/(l)$.

On considère l'ensemble S des réels x < 999 vé-

Calculer $|\max(\mathcal{S})|$ (la partie entière du plus grand élément de \mathcal{S}).

Question 63

Soient $p \notin \{2,3\}, l \in \mathbb{N}^*, q = p^l, E$ une courbe elliptique sur le corps fini \mathbb{F}_q , $n, m \in \mathbb{N}^*$ tels que

$$E(\mathbb{F}_q) \simeq \mathbb{Z}/(n) \oplus \mathbb{Z}/(nm).$$

On note r le reste dans la division euclidienne de q par n.

Calculer r.

Commentaire après réponse: Voir [Washington, p.155].

Commentaire après réponse:

Voir [Washington, p.153]