From Cosmic Shear to Subhalo Detection:

Leveraging Simulation-Based Inference for Precision Cosmology

Maximilian von Wietersheim-Kramsta 08/11/2024 - FLAT Talk

Cosmological Inference

Posterior given a model

Simulation-Based Inference (SBI)

a.k.a. Likelihood-free inference or implicit likelihood inference

 $\boldsymbol{\theta}$: Model parameters

d: Data

Simulation-Based Inference (SBI)

Density Estimation

Approximate Bayesian Computation

Neural Density Estimation

Neural Density Estimation

e.g. Normalising flows

Cosmic Shear & Large-Scale Structure

Weak Gravitational Lensing

Cosmic shear:

Distant galaxy population

Kilo-Degree Survey: KiDS-1000

KiDS-1000 Galaxy Population

Forward Simulations

Simulating the Matter Field

Adding Realism: Variable Depth

Adding Realism: Variable Depth

Adding Realism: PSF Shape Variations

Cosmic Shear Measurement

SBI: Neural Likelihood Estimation

SBI in Cosmic Shear

Strong Gravitational Lensing & Substructure

Search for Substructure

[He et al. 2022]

Forward Simulations

(Same as used in He et al. 2022)

Source:

Elliptical Core-Sersic

Z = 1

Lens:

Power law mass

Z = 0.5

No external shear

Subhalos:

Truncated NFW mass

 $M_{\rm hf} = 10^7$

 $n_{\text{subbaless}} \in [0, 30]$

All other parameters fixed

SBI: Neural Posterior Estimation

Data Compression

Image Power Spectra

2. CNN

Learn weights based on all simulated images

0

input Convolutional layer

SBI for Substructure Search

Truth: *n*_{subhalos} = **10**

Measuring P(k) from a noisy image

Measuring CNN from a noisy image (\mathbb{R}^{10})

Conclusions

SBI allows for an arbitrarily complex model

SBI gives an **implicit likelihood** function (can be non-Gaussian)

 d_0 , d_1 , d_2 ... SBI can be **amortisable** (all model evaluations can be data-independent)