Advanced Monetary Economics

Lecture 4

Malte Rieth
Martin-Luther-Universität Halle-Wittenberg

Aim of this class

- Last week, we have learned what monetary policy does.
- Monetary policy determines the overnight rate.
- Monetary policy has the following tools available:
 - 1. Open market operations
 - 2. Standing facilities
 - 3. Minimum reserve requirements
- This week, we study, through which channels monetary policy influences the economy.

1 The yield curve

- How does a change in the short-term interest rate change the remaining interest rates?
- The yield curve connects interest rates for different time horizons.
- A yield curve represents the relationship between interest rates (in the same currency with comparable risk and liquidity) and the remaining time to maturity.
- Yield curves can be flat (short-term \approx long-term rates), upward sloping (short-term < long-term rates) or downward sloping (short-term > long-term rates, sometimes called "inverted").

• Euro area yield curve for AAA rated government bonds on Oct. 23, 2024

• Find the latest data on euro area yield curves here: https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html

• Evolution of German government bond yields for different maturities

• Evolution of 10y-1y spread and 1y yield in Germany

- 3 facts on yield curves
 - 1. Interest rates on bonds of different maturities move together over time.
 - 2. When short-term interest rates are low, yield curves are more likely to have an upward slope and vice versa.
 - 3. Yield curves almost always slope upward.
- 3 theories to explain the facts
 - 1. Expectations theory
 - 2. Segmented markets theory (not part of this class)
 - 3. Liquidity premium theory

Monetary Economics 7

2 Expectations theory

• Basic intuition: long-term rates are an average of the expected short-term rates over the duration of the long-term bond.

- Yields on bonds with different maturities may differ because of changing shortterm rates in the future.
- Assumption: bonds with different maturities are perfect substitutes. All that matters is the expected return.
- Example with two periods: investors are indifferent between
 - 1. one bond with two period maturity
 - 2. two one-period bonds

Investment strategy 1

- Notation: $i_{n,t}$ agreed interest rate for n periods at period t:
- ullet bond with two-period maturity pays $i_{2,0}$
- Investment of 1 euro yields after two periods:

$$(1+i_{2,0})(1+i_{2,0})=1+2i_{2,0}+(i_{2,0})^2$$

- $(i_{2,0})^2$ is very small if $i_{2,0}$ is small.
- Subtract the investment of 1 euro, the profits are: $2i_{2,0}$.

Investment strategy 2

- We now consider two bonds:
 - 1. one-period bond from period 0 to 1, paying interest rate $i_{1,0}$.
 - 2. one-period bond from period 1 to 2, paying expected interest rate $i_{1,1}^e$.
- Expected interest rate of 1 euro after two periods is:

$$(1+i_{1,0})(1+i_{1,1}^e)=1+i_{1,0}+i_{1,1}^e+i_{1,0}i_{1,1}^e$$

• Neglecting the last term and subtracting the investment, profit is: $i_{1,0} + i_{1,1}^e$.

Comparing both strategies

- Investors are indifferent between both ways to invest by assumption.
- It has to hold:

$$i_{2,0} = i_{1,0} + i_{1,1}^e$$

 $i_{2,0} = \frac{i_{1,0} + i_{1,1}^e}{2}$

- Expected interest rates determine the interest rate for the two-period bond.
- Two-period interest rate is equal to the average interest rate over two periods.

Example with numbers and general formula

- ullet One-period bonds: $i_{1,0}=5\%, i_{1,1}^e=6\%, i_{1,2}^e=7\%, i_{1,3}^e=8\%, i_{1,4}^e=9\%.$
- Interest-rate for a two period bond is then: $i_{2,0} = \frac{5\% + 6\%}{2} = 5.5\%$.
- Interest-rate for a five period bond is then: $i_{5,0} = \frac{5\%+6\%+7\%+8\%+9\%}{5} = 7\%$.
- The yield curve is increasing.
- General formula

$$i_{n,t} = \frac{i_{1,0} + i_{1,1}^e + i_{1,2}^e + \dots + i_{1,n-1}^e}{n}$$

Facts vs. expectations theory

1. Interest rates on bonds of different maturities move together over time. \checkmark

Expectations theory implies that interest rates on bonds with different maturities influence each other (change in $i_{1,1}^e$, for example, affects $i_{2,0}$ and $i_{5,0}$ in same direction).

2. When short-term interest rates are low, yield curves are more likely to have an upward slope – and vice versa. \checkmark

This is what the expectations theory implies. When current short-term rates are low, people expect them to rise to a normal level in the future, and vice versa.

3. Yield curves almost always slope upward.

Expectations theory cannot explain this fact.

3 Liquidity premium theory

- Assumption: bonds with different maturities are substitutes (as before), but not perfect substitutes.
- Instead: preference for shorter maturities, for example, because of interest rate risk.
- Liquidity premium theory captures this preference by adding an additional term to the equation of the expectation theory: $l_{n,t}$, which is called liquidity or term premium.
- ullet This additional term is increasing in the maturity n as longer-term bonds bear greater interest rate risk.

Mathematical representation of liquidity premium theory:

$$i_{n,t} = \frac{i_{1,0} + i_{1,1}^e + i_{1,2}^e + \dots + i_{1,n-1}^e}{n} + l_{n,t}$$

• Graphical representation of liquidity premium theory:

Facts vs. liquidity premium theory

- 1. Interest rates on bonds of different maturities move together over time. \checkmark
- 2. When short-term interest rates are low, yield curves are more likely to have an upward slope and vice versa. \checkmark
- 3. Yield curves almost always slope upward. ✓

Expectations theory explains this fact well. Investors prefer bonds with shorter maturities which are more liquid. So longer-term interest rates need to contain a liquidity premium.

Monetary Economics 16

 \bullet Term spread (10y-1y) and annual real GDP growth in the euro area and Germany (in %)

- Germany, Government Benchmarks, Macrobond, 10 Year-1 Year, Yield, End of Period
- Germany, Gross Domestic Product, Total, Calendar Adjusted (X13 JDemetra+), Constant Prices, SA (X13 J...

4 Monetary policy and the yield curve

- On the market for reserves the central bank influences the overnight interest rate.
- Other important interest rates in the economy are mortgage rates and credit rates.
 These are mid- and long-term interest rates
- The yield curve relates the short-term to the long-term rates.
- Monetary policy can influence the long-term interest rates in three ways:
 - 1. Changing the short-term interest rate.
 - 2. Changing expectations about future interest rates.
 - 3. Influencing long-term interest rates.

• Challenge if short-term interest rates are at zero

Policy Rates

- Euro Area, ECB, Main Refinancing Operations Rate, Effective Rate
- United States, Federal Reserve, Target Rates, Federal Funds Target Rate
- · United Kingdom, Bank of England, Bank Rate
- Japan, Bank of Japan, Interest on Excess Reserves (Policy-Rate Balances in Current Accounts Held by Fin...

- ECB PRESS RELEASE, Monetary policy decisions, 29 October 2020: At today's meeting the Governing Council of the ECB took the following monetary policy decisions:
- 1. The interest rate on the main refinancing operations and the interest rates on the marginal lending facility and the deposit facility will remain unchanged at 0.00%, 0.25% and -0.50% respectively.
- Hence, central banks tried the second option (changing expectations about future interest rates, forward guidance) and the third option (influencing long-term interest rates, quantitative easing).
- These measures are called unconventional monetary policy. They aim at influencing the medium to longer end of the yield curve, not through the current short-term rate.

- ECB PRESS RELEASE again and continued:
- 1. "[...] The Governing Council expects the key ECB interest *rates to remain at their present or lower levels until* it has seen the inflation outlook robustly converge to a level sufficiently close to, but below, 2% within its projection horizon, and such convergence has been consistently reflected in underlying inflation dynamics."
- The ECB thus aims at affecting expectations about future short-term rates through its communication.
- ECB PRESS RELEASE continued:
- 2 "The Governing Council will continue its purchases under the *pandemic emergency* purchase programme (PEPP) with a total envelope of €1,350 billion. These purchases contribute to easing the overall monetary policy stance, thereby helping to offset the downward impact of the pandemic on the projected path of inflation. [...]"

Monthly ECB purchases within PEPP

• 18 March 2020: ECB announces PEPP with initially €750 billion

Government Benchmarks, Macrobond, 10 Year, Yield

Summary

• How does monetary policy influence the economy?

 Monetary policy sets short-term interest rates, gives forward guidance and buys assets.

• All tools affect the yield curve.

• These interest rates influence the economy.