Lecture 2

POLAR COORDINATES

- Polar Coordinates
- 2 Unit vectors \hat{r} and $\hat{ heta}$
- Polar & Cartesian components of a vector
- Velocity and Acceleration in Polar Coordinates
- 5 Examples

Lecture 2

POLAR COORDINATES

- Polar Coordinates
- 2 Unit vectors \hat{r} and $\hat{ heta}$
- Polar & Cartesian components of a vector
- Velocity and Acceleration in Polar Coordinates
- 5 Examples

Two Dimensional Plane

• Cartesian Coordinates: (x, y)

- Cartesian Coordinates: (x, y)
- Polar Coords: (r, θ)

- Cartesian Coordinates: (x, y)
- Polar Coords: (r, θ)
- $\bullet \ r \in [0, \infty),$ $\theta \in [0, 2\pi]$

- Cartesian Coordinates: (x, y)
- Polar Coords: (r, θ)
- $\bullet \ r \in [0, \infty),$ $\theta \in [0, 2\pi]$
- $r = \sqrt{x^2 + y^2}$, $\tan \theta = \frac{y}{x}$

- Cartesian Coordinates: (x, y)
- Polar Coords: (r, θ)
- $r \in [0, \infty)$, $\theta \in [0, 2\pi]$
- $x = r \cos \theta,$ $y = r \sin \theta$

- Cartesian Coordinates: (x, y)
- Polar Coords: (r, θ)
- $\bullet \ r \in [0, \infty),$ $\theta \in [0, 2\pi]$
- $r = \sqrt{x^2 + y^2},$ $\tan \theta = \frac{y}{x}$
- $x = r \cos \theta$, $y = r \sin \theta$
- Use of Polar Coords nothing to do with rotational motion

 \hat{r} points along increasing r

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{ heta}$ points along increasing heta

 $\hat{\boldsymbol{r}}$ points along increasing r

 $\hat{ heta}$ points along increasing heta

 \hat{r} and $\hat{\theta}$ not constant unit vectors!

$$\hat{m{r}}(heta), \hat{m{ heta}}(heta)$$

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{m{ heta}}$ points along increasing heta

 \hat{r} and $\hat{\theta}$ not constant unit vectors!

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{m{ heta}}$ points along increasing heta
- \hat{r} and $\hat{ heta}$ not constant unit vectors!

- \hat{r} points along increasing r
- $\hat{m{ heta}}$ points along increasing heta

 \hat{r} and $\hat{ heta}$ not constant unit vectors!

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{m{ heta}}$ points along increasing heta
- \hat{r} and $\hat{ heta}$ not constant unit vectors!

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{m{ heta}}$ points along increasing heta
- \hat{r} and $\hat{ heta}$ not constant unit vectors!

- $\hat{\boldsymbol{r}}$ points along increasing r
- $\hat{m{ heta}}$ points along increasing heta

 \hat{r} and $\hat{ heta}$ not constant unit vectors!

Ex: What are \hat{r} , $\hat{\theta}$ at the points

$$(x,y) = (1,0); (-1,0);$$

 $(0,1); (0,-1)?$

 $\hat{\boldsymbol{r}}$ points along increasing r

 $\hat{ heta}$ points along increasing heta

 \hat{r} and $\hat{\theta}$ not constant unit vectors!

$\overline{\hat{r}\&\hat{ heta}}$ in terms of $\hat{i}\&\hat{j}$

$\hat{m{r}}\&\hat{m{ heta}}$ in terms of $\hat{m{i}}\&\hat{m{j}}$

$\hat{m{r}}\&\hat{m{ heta}}$ in terms of $\hat{m{i}}\&\hat{m{j}}$

$|\hat{r}\&\hat{ heta}|$ in terms of $\hat{i}\&\hat{j}$

$oxed{\hat{r}\&\hat{ heta}}$ in terms of $\hat{i}\&\hat{j}$

$$\hat{\boldsymbol{r}} = \cos\theta \, \hat{\boldsymbol{i}} + \sin\theta \, \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\sin\theta \, \hat{\boldsymbol{i}} + \cos\theta \, \hat{\boldsymbol{j}}$$

$\hat{m{r}}\&\hat{m{ heta}}$ in terms of $\hat{m{i}}\&\hat{m{j}}$

$$\hat{r} = \cos\theta \, \hat{i} + \sin\theta \, \hat{j}$$

 $\hat{\theta} = -\sin\theta \, \hat{i} + \cos\theta \, \hat{j}$

$$\overrightarrow{A} = A_x \, \hat{\boldsymbol{i}} + A_y \, \hat{\boldsymbol{j}}$$

$\hat{m{r}}\&\hat{m{ heta}}$ in terms of $\hat{m{i}}\&\hat{m{j}}$

$$\hat{\boldsymbol{r}} = \cos\theta \, \hat{\boldsymbol{i}} + \sin\theta \, \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\sin\theta \, \hat{\boldsymbol{i}} + \cos\theta \, \hat{\boldsymbol{j}}$$

$$\overrightarrow{A} = A_x \, \hat{\boldsymbol{i}} + A_y \, \hat{\boldsymbol{j}}$$
$$= A_r \, \hat{\boldsymbol{r}} + A_\theta \, \hat{\boldsymbol{\theta}}$$

$\hat{r}\&\hat{ heta}$ in terms of $\hat{i}\&\hat{j}$

$$\hat{\boldsymbol{r}} = \cos \theta \, \hat{\boldsymbol{i}} + \sin \theta \, \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\sin \theta \, \hat{\boldsymbol{i}} + \cos \theta \, \hat{\boldsymbol{j}}$$

$$\overrightarrow{A} = A_x \, \hat{\boldsymbol{i}} + A_y \, \hat{\boldsymbol{j}}$$
$$= A_r \, \hat{\boldsymbol{r}} + A_\theta \, \hat{\boldsymbol{\theta}}$$

$$A_r = A_x \cos \theta + A_y \sin \theta$$

$$A_\theta = -A_x \sin \theta + A_y \cos \theta$$

Particle moving from

Particle moving from \vec{r}_1 at time t_1

Particle moving from \vec{r}_1 at time t_1

$$d\hat{\boldsymbol{r}} \sim d\theta \hat{\boldsymbol{\theta}}$$
 $d\hat{\boldsymbol{\theta}} \sim -d\theta \hat{\boldsymbol{r}}$

$$\vec{r}(t) = r(t)\hat{r}$$

$$\vec{\boldsymbol{r}}(t) = r(t)\hat{\boldsymbol{r}}$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$\vec{r}(t) = r(t)\hat{r}$$

$$\vec{\boldsymbol{v}}(t) = \frac{d\vec{\boldsymbol{r}}}{dt} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}}$$

$$\vec{\boldsymbol{a}}(t) = \frac{d\vec{\boldsymbol{v}}}{dt} = \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\boldsymbol{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\boldsymbol{\theta}}$$

$$\vec{r}(t) = r(t)\hat{r}$$

$$\vec{\boldsymbol{v}}(t) = \frac{d\vec{\boldsymbol{r}}}{dt} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}}$$

$$\vec{\boldsymbol{a}}(t) = \frac{d\vec{\boldsymbol{v}}}{dt} = \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\boldsymbol{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\boldsymbol{\theta}}$$

Note:

$$\vec{r}(t) = r(t)\hat{r}$$

$$\vec{\boldsymbol{v}}(t) = \frac{d\vec{\boldsymbol{r}}}{dt} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}}$$

$$\vec{\boldsymbol{a}}(t) = \frac{d\vec{\boldsymbol{v}}}{dt} = \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\boldsymbol{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\boldsymbol{\theta}}$$

Note:

• $-r\dot{\theta}^2$ "looks" like Centrifugal force and $2\dot{r}\dot{\theta}$ like Coriolis force

$$\vec{r}(t) = r(t)\hat{r}$$

$$\vec{\boldsymbol{v}}(t) = \frac{d\vec{\boldsymbol{r}}}{dt} = \dot{r}\hat{\boldsymbol{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}}$$

$$\vec{\boldsymbol{a}}(t) = \frac{d\vec{\boldsymbol{v}}}{dt} = \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\boldsymbol{r}} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\hat{\boldsymbol{\theta}}$$

Note:

- $-r\dot{\theta}^2$ "looks" like Centrifugal force and $2\dot{r}\dot{\theta}$ like Coriolis force
- But we are in a inertial frame with no fictitious forces

$$\vec{r}(t) = r(t)\hat{r}$$

$$ec{m{v}}(t) = rac{dec{m{r}}}{dt} = \dot{r}\hat{m{r}} + r\dot{m{ heta}}\hat{m{ heta}}$$

$$ec{m{a}}(t) = rac{dec{m{v}}}{dt} = \left(\ddot{r} - r\dot{m{ heta}}^2\right)\hat{m{r}} + \left(r\ddot{m{ heta}} + 2\dot{r}\dot{m{ heta}}\right)\hat{m{ heta}}$$

Note:

- $-r\dot{\theta}^2$ "looks" like Centrifugal force and $2\dot{r}\dot{\theta}$ like Coriolis force
- But we are in a inertial frame with no fictitious forces
- Polar coords used for general motion in plane,
 NOT for rotational motion alone

$$\vec{\boldsymbol{r}}(t) = (vt)\hat{\boldsymbol{i}} + b\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = v\hat{\boldsymbol{i}}$$

$$\vec{\boldsymbol{r}}(t) = (vt)\hat{\boldsymbol{i}} + b\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = v\hat{\boldsymbol{i}}$$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = (vt)\hat{\boldsymbol{i}} + b\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = v\hat{\boldsymbol{i}}$$

$$\hat{\boldsymbol{r}} = \frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{i}} + \frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{i}} + \frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\frac{b}{\sqrt{(vt)^2 + b^2}}\hat{\boldsymbol{i}} + \frac{vt}{\sqrt{(vt)^2 + b^2}}$$

$$ec{r}(t) = r\hat{r}$$

$$ec{v}(t) = v \left(\frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{r} - \frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\theta} \right)$$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = (vt)\hat{\boldsymbol{i}} + b\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = v\hat{\boldsymbol{i}}$$

Polar:

$$\hat{\boldsymbol{r}} = \frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{i}} + \frac{1}{\sqrt{(vt)^2 + b$$

$$\hat{\boldsymbol{r}} = \frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{i}} + \frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{i}} + \frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{\boldsymbol{j}}$$

$$\vec{r}(t) = r\hat{r}$$

$$\vec{v}(t) = v \left(\frac{vt}{\sqrt{(vt)^2 + b^2}} \hat{r} - \frac{b}{\sqrt{(vt)^2 + b^2}} \hat{\theta} \right)$$

Question: What is \vec{a} ?

Cartesian:

Cartesian:

$$\vec{r}(t) = b\cos\theta(t)\hat{i} + b\sin\theta(t)\hat{j}$$

Cartesian:

$$\vec{r}(t) = b \cos \theta(t) \hat{i} + b \sin \theta(t) \hat{j}$$

$$\vec{v}(t) = -b \sin \theta(t) \hat{i} + b \cos \theta(t) \hat{j}$$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = b\cos\theta(t)\hat{\boldsymbol{i}} + b\sin\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = -b\sin\theta(t)\hat{\boldsymbol{i}} + b\cos\theta(t)\hat{\boldsymbol{j}}$$

Cartesian:

$$\vec{r}(t) = b\cos\theta(t)\hat{i} + b\sin\theta(t)\hat{j}$$

$$\vec{v}(t) = -b\sin\theta(t)\hat{i} + b\cos\theta(t)\hat{j}$$

$$\vec{r}(t) = b\hat{r}$$

Cartesian:

$$\vec{r}(t) = b\cos\theta(t)\hat{i} + b\sin\theta(t)\hat{j}$$

$$\vec{v}(t) = -b\sin\theta(t)\hat{i} + b\cos\theta(t)\hat{j}$$

$$\vec{r}(t) = b\hat{r}$$

 $\vec{v}(t) = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = b\cos\theta(t)\hat{\boldsymbol{i}} + b\sin\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = -b\sin\theta(t)\hat{\boldsymbol{i}} + b\cos\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{r}}(t) = b\hat{\boldsymbol{r}}$$

$$\vec{\boldsymbol{v}}(t) = \dot{r}\hat{\boldsymbol{r}} + r\dot{\boldsymbol{\theta}}\hat{\boldsymbol{\theta}}$$

$$= b\dot{\boldsymbol{\theta}}\hat{\boldsymbol{\theta}}$$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = b\cos\theta(t)\hat{\boldsymbol{i}} + b\sin\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = -b\sin\theta(t)\hat{\boldsymbol{i}} + b\cos\theta(t)\hat{\boldsymbol{j}}$$

$$\begin{split} \vec{r}(t) &= b\hat{r} \\ \vec{v}(t) &= \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \\ &= b\dot{\theta}\hat{\theta} \\ \vec{a} &= (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta} \\ &= -b\dot{\theta}^2 \hat{r} + b\ddot{\theta} \hat{\theta} \end{split}$$

Cartesian:

$$\vec{\boldsymbol{r}}(t) = b\cos\theta(t)\hat{\boldsymbol{i}} + b\sin\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = -b\sin\theta(t)\hat{\boldsymbol{i}} + b\cos\theta(t)\hat{\boldsymbol{j}}$$

Polar:

$$\vec{r}(t) = b\hat{r}$$

$$\vec{v}(t) = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

$$= b\dot{\theta}\hat{\theta}$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$$

$$= -b\dot{\theta}^2 \hat{r} + b\ddot{\theta} \hat{\theta}$$

Centripetal +

Cartesian:

$$\vec{\boldsymbol{r}}(t) = b\cos\theta(t)\hat{\boldsymbol{i}} + b\sin\theta(t)\hat{\boldsymbol{j}}$$

$$\vec{\boldsymbol{v}}(t) = -b\sin\theta(t)\hat{\boldsymbol{i}} + b\cos\theta(t)\hat{\boldsymbol{j}}$$

Polar:

$$\begin{split} \vec{r}(t) &= b\hat{r} \\ \vec{v}(t) &= \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} \\ &= b\dot{\theta}\hat{\theta} \\ \vec{a} &= (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta} \\ &= -b\dot{\theta}^2 \hat{r} + b\ddot{\theta} \hat{\theta} \end{split}$$

Centripetal + Tangential acceleration

Archimedian spiral

$$r = a + b\theta$$

Archimedian spiral

$$r=a+b\theta$$

Archimedian spiral

$$r=a+b\theta$$

Logarithmic spiral

$$r = ab^{\theta}$$

Archimedian spiral

$$r=a+b\theta$$

Logarithmic spiral

$$r = ab^{\theta}$$

Archimedian spiral

$$r=a+b\theta$$

Logarithmic spiral

$$r = ab^{\theta}$$

Archimedian spiral

$$r=a+b\theta$$

Logarithmic spiral

$$r = ab^{\theta}$$

