Heart Disease Classification Project

Project Description

A heart disease classifier based on the CDC dataset (319,795 samples).

The project implements a classification pipeline to predict the occurrence of heart disease based on medical and lifestyle indicators.

To build an efficient classification model that predicts the occurrence of heart disease in the population using medical and demographic data.

M Key Performance Indicators (KPIs)

- F1-score (weighted) ≥ 0.75 (tracked in MLflow)
- LogLoss as an indicator of probabilistic classification quality
- Stability of cross-validation metrics (std ≤ 0.05)
- Automated hyperparameter tuning with Optuna
- Code and model version tracking via MLflow + Git

↑ Risk Assessment

- **Data imbalance risk:** highly imbalanced classes (91.4% "No", 8.6% "Yes") requires balancing (class weight, stratified sampling)
- Model dependency risk: use of a specific framework (CatBoost)
- Overfitting risk: controlled through early stopping and cross-validation
- Reproducibility risk: minimized with version control (joblib, MLflow, git hash, random_state)

Dataset Description

The dataset consists of **319,795 samples and 18 columns** (17 features + 1 target).

Columns:

Column Description

HeartDisease Heart disease diagnosis (Yes/No) – target variable

BMI Body Mass Index

Smoking Smoking status (Yes/No)
AlcoholDrinking Alcohol consumption (Yes/No)

Stroke Stroke history (Yes/No)

PhysicalHealth Days of poor physical health (0–30) MentalHealth Days of poor mental health (0–30)

DiffWalking Difficulty walking (Yes/No)
Sex Gender (Male/Female)

AgeCategory Age category
Race Race/ethnicity

Diabetic Diabetes status (Yes/No/Borderline/Yes during

pregnancy)

Physical Activity Physical activity (Yes/No)

General health (Excellent/Very

good/Good/Fair/Poor)

SleepTime Hours of sleep per day

Asthma Asthma (Yes/No)

KidneyDisease Kidney disease (Yes/No) SkinCancer Skin cancer (Yes/No)

Target variable distribution:

GenHealth

- No (no heart disease): 292,422 samples (91.4%)
- **Yes** (heart disease): 27,373 samples (8.6%)

⚠ Significant class imbalance – addressed with class_weights in CatBoost and stratified sampling.

Model Description

Model: CatBoostClassifier (gradient boosting)

CatBoost features:

- Native categorical support (no one-hot encoding required)
- Ordered boosting reduces overfitting risk
- Built-in handling of class imbalance (class_weights)

Hyperparameter Tuning

- Implemented using Optuna + mlflow.start_run(nested=True)
- · Best parameters stored in best params.pkl and logged in MLflow
- Key parameters optimized:
 - iterations
 - learning rate
 - o depth
 - I2 leaf reg
 - class_weights

Cross-Validation

- Implemented with catboost.cv using 5-fold stratified shuffle
- Metrics tracked: F1, LogLoss, AUC-ROC
- Results visualized with error bands using Plotly

Project Structure

devcontainer/	# Codespaces / Docker configuration
github/workflows/	# CI/CD pipeline
├── data/	# project data (raw, interim, processed, etc.)
— models/	# saved models and monitoring artifacts
L—docs/	# documents

- reports/ # reports, visualizations # experiment / prediction outputs — results/ – notebooks/ # Jupyter notebooks (EDA, experiments) - ARISA_DSML/ # main source code (data prep, training, prediction, utilities) — tests/ # unit / integration tests Makefile # automation (lint, test, train) - README.md # project description pyproject.toml # package and dependency configuration setup.cfg # tool configuration (flake8, black) # list of dependencies requirements.txt gitignore # ignored files and folders

Prerequisites

- Python 3.11+
- Pandas & NumPy
- Scikit-learn
- Matplotlib & Plotly
- Jupyter Notebook
- MLflow
- Git & GitHub

Installation & Run

1. Clone the repository

git clone https://github.com/Pawel20240101/PZ_ARISA_MLOps_Final.git cd PZ_ARISA_MLOps_Final

2. Create a virtual environment

python -m venv .venv

Windows

.\.venv\Scripts\activate

Linux/Mac

source .venv/bin/activate

3. Install dependencies

pip install -r requirements.txt

4. Place the dataset

skopiuj heart 2020 cleaned.csv do data/raw/

Start MLflow UI

mlflow ui

Lub

mlflow ui --host 127.0.0.1 --port 5000

/ Data Preprocessing

- Target conversion (Yes/No → 1/0)
- Train/test split (stratified)
- Validation of categorical columns
- Class balancing: class_weight + stratified sampling

Evaluation Metrics

Tracked metrics:

- F1-score (weighted)
- Precision & Recall for the positive class
- AUC-ROC
- Confusion Matrix
- LogLoss

Monitoring & Support

- MLflow experiment tracking, metrics, artifacts, model versions
- NannyML data drift detection
- **Git** version control

CI/CD Pipeline

Automated workflows:

- lint-code.yml linting triggered on every PR to main
- ci.yml linting, formatting, and tests on push/PR to main and test

Safeguards:

- main branch protection
- Required code review
- Pre-commit hooks (flake8, black)

Code Quality

- Linting: flake8 + black + isort
- Unit tests: (to be implemented)

• Documentation: docstrings + README.md

III Experiment Results

Cross-Validation (N=5):

- Mean F1 Score: ~0.77 (stable after ~50 iterations)
- Mean LogLoss: ~0.49 (after convergence)
- Standard deviation ≪ 0.05 → no signs of overfitting

SHAP Analysis:

- Most important features: AgeCategory, GenHealth, Stroke, BMI
- Less important features: Race → model is fair (non-discriminatory)

1 Medical Insights

- Key risk factors: older age, poor general health, stroke history, high BMI
- Model achieved KPIs (F1 ≈ 0.77, LogLoss ≈ 0.49)
- Interpretability provided via SHAP values
- Results consistent with medical knowledge