Lecture 1 Simple Machine Learning & Neural Network

A-Task/Yeolkyo Choi 2023. 7. 5

Coarse Introduction

Basic	Intermediate
신경망 관련 기본 내용 - 신경망의 구성 / 기본 용어 - 신경망의 작동 원리 - 활성화 함수 (activation function) - 최적화 함수 (optimizers) 기본 딥러닝 알고리즘 - Feedforward Neural Network (FNN) - Convolution Neural Network (CNN) - Recurrent Neural Network (RNN)	생성모델 - Autoencoder (AE) - Variational Autoencoder (VAE) - Generative Adversarial Network (GAN) CNN 심화 - 주요 CNN 아키텍쳐 - 사전학습 모형 사용하기 (Transfer Learning) RNN 심화 - LSTM, GRU, seq2seq
	Attention & Transformer

Prerequisites

- Linear Algebra
- Basic python

Contents

딥러닝의 기본 내용

- 신경망의 구성 / 기본 용어
- 기본 신경망 (ANN or FNN, a.k.a., MPL)의 작동원리
- 활성화 함수 (Activation function)
- 신경망에서의 경사하강법
 - Backward propagation of errors
 - Vanishing Gradient
 - Various Optimizers
 - Weight Initialization
- 신경망에서의 과적합문제

Regularization, Dropout, Early Stopping, Batch Normalization

파이썬 코딩

- Pytorch tutorial
- 선형회귀문제

Deep Learning

3 basic layers

Input layer: put feature information and

transfer it to the hidden layer

Hidden layer: extract important feature

Output layer: prediction

of hidden layer ≥ 1

Machine Learning vs Deep Learning

Multivariable Linear regression

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

Convolution Neural Network

Example of DNN

simle CNN: https://transcranial.github.io/keras-js/#/mnist-cnn Neural Network: https://playground.tensorflow.org/

Regression vs Classification

How many the number of output nodes?

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Type of Neural Network

A. feed-forward neural network (NN)

B. recurrent neural network (RNN)

C. convolutional neural network (CNN)

D. graph neural network (GNN)