Číselné soustavy, binární aritmetické operace, převody mezi soustavami (10, 2, 16), doplňkový a adiktivní kód, zobrazení čísla bez a se znaménkem, přetečení

Číselné soustavy

Nepoziční

- Zářezy II (2); III (3); IIII (4); IIIII (5)
- Římské číslice I (1); V (5); X (10); L (50); C (100); D (500); M (1000)

Poziční

- Dvojková (binární)
 - Každá číslice odpovídá na n-té mocnině čísla dvě, kde n je pozice dané číslice v zapsaném čísle
 - Logické stavy zapnuto: 1; vypnuto: 0
 - o Digitální elektronické obvody
- Osmičková (oktalová)
- Desítková (dekadická)
- Dvanáctková (tucet)
 - Málo používaná
- Šestnáctková (hexadecimální)
 - o Použity číslice 1-9 a A-F
 - o Např. pro zápis barvy, registrů
- Šedesátková
 - o K měření času

Binární aritmetické operace

Sčítání

Odčítání

Násobení

• Stejné jako pro desítkovou soustavu

$$\begin{array}{r}
1001_{2} \\
110_{2} \\
\hline
0000 \\
1001 \\
\underline{1001} \\
110110_{2}
\end{array}$$

Dělení

- Stejné jako pro desítkovou soustavu
- Kolikrát se dělitel vejde do dělence (ANO/NE)

Převody mezi soustavami

Převod z dvojkové do desítkové

• Definice jednotlivých vah v binárním čísle a následné sčítání

Příklad

10100110b = 166d

binární číslo	1	0	1	0	0	1	1	0
pozice čísla	7	6	5	4	3	2	1	0
mocnina čísla dvě	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 °
hodnoty mocnin (váhy)	128	64	32	16	8	4	2	1
krát binární číslice	x 1	x 0	x 1	x 0	x 0	x 1	x 1	x 0
výsledek součinu	128	0	32	0	0	4	2	0

Převod z desítkové do dvojkové

• Opakované dělení číslem dvě (se zbytkem), pokud zbyde jednička, zapisování zprava doleva

Příklad

 $52:2 = 26 \rightarrow z$ bytek: 0 lsb $26:2 = 13 \rightarrow z$ bytek: 0 $13:2 = 6 \rightarrow z$ bytek: 1 $6:2 = 3 \rightarrow z$ bytek: 0 $3:2 = 1 \rightarrow z$ bytek: 1 $1:2 = 0 \rightarrow z$ bytek: 1 msb

Výsledek: 110100

Převod z desítkové do šestnáctkové (a naopak)

- Funguje stejně jako dvojkové
- Při převodu z desítkové do šestnáctkové dělím 16
- Pří převodu z šestnáctkové do desítkové definuju váhy 16

Převod z dvojkové do šestnáctkové

 Dvojkové číslo rozdělím po 4bitech a každou čtveřici převedu zvlášť (na desítkové, potom na šestnáctkové, např. 1011 -> 11 -> B)

Příklad

Doplňkový kód (dvojková doplněk)

- Zjednodušuje konstrukci ALU díky tomu, že sčítání a odečítání provádí pro čísla se znaménkem stejně jako pro čísla bez znaménka
- Díky dvojkovému doplňku dokážeme zobrazit záporné číslo
- Násobení čísel v doplňkovém kódu převést na kladná, vynásobit a pak podle znaménka výsledek upravit.

```
11101100 (-20)
00010011 negace (1->0 a 0->1, po bitech)
00010100 +1 => 20
```

Adiktivní kód

- Reprezentace celých čísel
- Převod mezi doplňkovým a adiktivní spočívá v nejvýznamnějším bitu

Posun (offset)

- takový, aby nejnižší číslo odpovídalo nule a nejvyšší číslo odpovídalo největšímu číslo
- pro datové typy o n bitech obvykle 2ⁿ⁻¹

Desítkový zápis	Aditivní kódování s posunem 8	Dvojkový doplněk
7	1111	0111
6	1110	0110
5	1101	0101
4	1100	0100
3	1011	0011
2	1010	0010
1	1001	0001
0	1000	0000
-1	0111	1111
-2	0110	1110
-3	0101	1101
-4	0100	1100
-5	0011	1011
-6	0010	1010
-7	0001	1001
-8	0000	1000

Přetečení (carry a overflow)

Celá kladná čísla

- Jev, který nastane, pokud nelze výsledek operace vyjádřit v daném číselném formátu
- Pokud přeteče výsledek operace přes nejvyšší bit, nastaví se příznak přenosu (carry)

Čísla ve dvojkovém kódu

- Výsledek je nesprávný
- Pokud přeteče výsledek operace přes nejvyšší bit, nastaví se příznak přenosu (overflow)

Nenastane přetečení (overflow):

