Linear Algebra: Homework #2

Due on September 4, 2019

 $Professor\ MacArthur$

Carson Storm

Problem 1 (1.6#4)

Suppose an economy has four sectors, Agriculture (A), Energy (E), Manufacturing (M), and Transportation (T). Sector A sells 10% of its output to E and 25% to M and reatins the rese. Sectore E sells 30% of its output to A, 35% to M, and 25% to T and reatins the rest. Sector M sells 30% of its output to A, 15% to E, and 40% to T and reatins the rest. Sector T sells 20% of its output to A, 10% to E, and 30% to M and retains the rest.

- a. Construct the exchange table for this economy.
- b. [M] Find a set of equilibrium prices for the economy.

Problem 2 (1.6#7)

Alka-Seltzer contains sodium bicarbonate $(NaHCO_3)$ and citric acid $(H_3C_6H_5O_7)$. When a tablet is dissolved in water, the following reaction produces sodium citrate, water, and carbon dioxide (gas):

$$NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + H_2O + CO_2$$

Balance the chemical equaion using the vector equation approach.

Problem 3 (1.6#11)

Find the general flow pattern of the network shown in the figure. Assuming that the flows are all nonnegative, what is the largest possible value for x_3 ?

Problem 4 (1.6#13)

- a. Find the general flow pattern in the network shown in the figure.
- b. Assuming that the flow must be in the directions indicated, find the minimum flows in the branches denoted by x_2, x_3, x_4 and x_5 .

Problem 5 (1.7#1)

Determine if the vectors are linearly independent. Justify answer.

$$\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$$

Problem 6 (1.7#3)

Determine if the vectors are linearly independent. Justify answer.

$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \end{bmatrix}$$

Problem 7 (1.7#5)

Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} 0 & -8 & 5 \\ 3 & -7 & 4 \\ -1 & 5 & -4 \\ 1 & -3 & 2 \end{bmatrix}$$

Problem 8 (1.7#7)

Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} 1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5 \end{bmatrix}$$

Problem 9 (1.7#11)

Find the value(s) of h for which the vectors are linearly dependent. Justify your answer.

$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ h \end{bmatrix}$$

Problem 10 (1.7#13)

Find the value(s) of h for which the vectors are linearly dependent. Justify your answer.

$$\begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}, \begin{bmatrix} -2 \\ -9 \\ 6 \end{bmatrix}, \begin{bmatrix} 3 \\ h \\ -9 \end{bmatrix}$$

Problem 11 (1.7#15)

Determine by inspection whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 7 \end{bmatrix}$$

Problem 12 (1.7#17)

Determine by inspection whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -6 \\ 5 \\ 4 \end{bmatrix}$$

Problem 13 (1.7#19)

Determine by inspection whether the vectors are linearly independent. Justify your answer.

$$\begin{bmatrix} -8\\12\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-3\\-1 \end{bmatrix}$$

Problem 14 (1.7#21)

Mark each statment True or False. Justify each answer on the basis of a careful reading of the text.

- 1. The columns of a matrix A are linearly independent if the equation Ax = 0 has the trivial solution
- 2. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
- 3. The columns of any 4×5 matrix are linearly dependent.
- 4. If x and y are linearly independent, and if $\{x, y, z\}$ is linearly dependent, then z is in $Span\{x, y\}$

Problem 15 (1.7#23)

Describe the possible echelon forms of A, a 3×3 matrix with linearly independent columns. Use the notation of Example 1 in Section 1.2

Problem 16 (1.7#25)

Describe the possible echelon forms of A, a 2×2 matrix with linearly dependent columns. Use the notation of Example 1 in Section 1.2

Problem 17 (1.8#1)

Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, and define $T : \mathbb{R}^2 \to R^2$ by $T(\boldsymbol{x}) = A\boldsymbol{x}$. Find the images under T of $\boldsymbol{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, and $\boldsymbol{v} = \begin{bmatrix} a \\ b \end{bmatrix}$.

Problem 18 (1.8#2)

Let
$$A = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Define $T : \mathbb{R}^3 \to R^3$ by $T(\mathbf{x}) = A\mathbf{x}$. Find $T(\mathbf{u})$ and $T(\mathbf{v})$.

Problem 19 (1.8#3)

Find a vector \boldsymbol{x} whose image under T is \boldsymbol{b} and determine whether x is unique. $T(\boldsymbol{x}) = A\boldsymbol{x}$.

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$$

Problem 20 (1.8#5)

Find a vector \boldsymbol{x} whose image under T is \boldsymbol{b} and determine whether x is unique. $T(\boldsymbol{x}) = A\boldsymbol{x}$.

$$A = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Problem 21 (1.8#7)

Let A be 6×5 matrix. What must a and b be in order to define $T: \mathbb{R}^a \to \mathbb{R}^b$ by T(x) = Ax?

Problem 22 (1.8#9)

Find all x in \mathbb{R}^4 that are mapped into the zero vector by the transofmration $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix A.

$$\begin{bmatrix} 1 & -4 & 7 & -5 \\ 0 & 1 & -4 & 3 \\ 2 & -6 & 6 & -4 \end{bmatrix}$$

Problem 23 (1.8#11)

Let $\boldsymbol{b} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, and let A be the matrix be the matrix in Exercise 9. Is \boldsymbol{b} in the range of the linear transofmration $\boldsymbol{x} \mapsto A\boldsymbol{x}$? Why or why not?

Problem 24 (1.8#13)

Use a rectangular coordinate system to plot $\boldsymbol{u} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, and their images under the given transformation T. Describe geometrically what T does to each vector x in \mathbb{R}^2 .

$$T(\boldsymbol{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Problem 25 (1.8#16)

Use a rectangular coordinate system to plot $\boldsymbol{u} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, and their images under the given transformation T. Describe geometrically what T does to each vector x in \mathbb{R}^2 .

$$T(\boldsymbol{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Problem 26 (1.8#30)

An affine transofmation $T: \mathbb{R}^n \to R^m$ has the form $T(\boldsymbol{x}) = A\boldsymbol{x} + \boldsymbol{b}$, with A an $m \times n$ matrix and \boldsymbol{b} in \mathbb{R}^m . Show that T is not a linear transofmation when $\boldsymbol{b} \neq 0$

Problem 27 (1.8#33)

Show that the transformation T defined by $T(x_1, x_2) = (2x_1 - 3x_2, x_1 + 4, 5x_2)$ is not linear.