ISOM5610 Project

Team 1

14 December 2018

```
setwd("~/MSBA/ISOM5610/final")
claim <- read.table("Claim.csv", sep = ",", header = TRUE)</pre>
str(claim)
## 'data.frame':
                    412412 obs. of 10 variables:
   $ PolicyID : int 1 2 3 4 5 6 7 8 9 10 ...
             : int 0000000000...
## $ Claim
## $ Exposure : num 0.09 0.84 0.52 0.45 0.15 0.75 0.81 0.05 0.76 0.34 ...
              : Factor w/ 12 levels "d", "e", "f", "g", ...: 4 4 3 3 4 4 1 1 1 6 ...
   $ Power
## $ CarAge : int 0 0 2 2 0 0 1 0 9 0 ...
## $ DriverAge: int 46 46 38 38 41 41 27 27 23 44 ...
##
   $ Brand
              : Factor w/ 7 levels "Fiat", "Japanese (except Nissan) or Korean",..: 2 2 2 2 2 2 2 1 2
##
   $ Gas
               : Factor w/ 2 levels "Diesel", "Regular": 1 1 2 2 1 1 2 2 2 2 ...
               : Factor w/ 10 levels "R11", "R23", "R24",...: 9 9 5 5 6 6 9 9 5 1 ...
   $ Density : int 76 76 3003 3003 60 60 695 695 7887 27000 ...
claim <- claim[-1]</pre>
summary(claim)
##
        Claim
                         Exposure
                                             Power
                                                              CarAge
                                                :95538
##
   Min.
          :0.00000
                      Min.
                           :0.002732
                                         f
                                                         Min.
                                                                : 0.000
##
   1st Qu.:0.00000
                      1st Qu.:0.200000
                                                :91050
                                                         1st Qu.: 3.000
                                         g
   Median :0.00000
                      Median :0.530000
                                                :76863
                                                         Median : 7.000
                                         е
  Mean
         :0.03548
                      Mean :0.560810
                                                :67889
                                                         Mean
                                                               : 7.533
##
   3rd Qu.:0.00000
                      3rd Qu.:1.000000
                                                :26650
                                                         3rd Qu.: 12.000
##
   Max.
           :1.00000
                      Max. :1.990000
                                         i
                                                :18002
                                                         Max.
                                                                :100.000
##
                                         (Other):36420
##
     DriverAge
                                                   Brand
         :18.00
##
  Min.
                    Fiat
                                                      : 16691
                    Japanese (except Nissan) or Korean: 78898
##
   1st Qu.:34.00
  Median :44.00
                   Mercedes, Chrysler or BMW
##
                                                      : 19248
  Mean
          :45.32
                    Opel, General Motors or Ford
                                                      : 37330
##
   3rd Qu.:54.00
                    Renault, Nissan or Citroen
                                                       :217822
##
   Max.
           :99.00
                    Volkswagen, Audi, Skoda or Seat
                                                       : 32575
##
                    other
                                                         9848
##
         Gas
                         Region
                                         Density
   Diesel :205559
                                                  2
##
                     R24
                            :160392
                                      Min.
                                      1st Qu.:
##
   Regular:206853
                     R11
                            : 69603
                                                 67
##
                     R53
                            : 42047
                                      Median :
                                               287
##
                     R52
                            : 38675
                                      Mean : 1983
##
                     R72
                            : 31263
                                      3rd Qu.: 1408
##
                     R31
                            : 27219
                                             :27000
                                      Max.
                     (Other): 43213
sum(is.na(claim)) # check missing value
```

[1] 0

```
summary(claim$Power)
                                h
                                                   k
                                                         1
                                      i
                          g
                                             j
## 67889 76863 95538 91050 26650 17589 18002 9521 4673 1829 1303 1505
summary(claim$Region)
                                                                 R72
##
      R11
             R23
                     R24
                            R25
                                   R31
                                           R52
                                                  R53
                                                         R54
                                                                        R74
    69603
            8773 160392 10870 27219 38675
                                               42047
                                                       19015
                                                               31263
                                                                       4555
avg_power <- data.frame(sapply(split(claim$Claim$Power),mean))</pre>
# colnames(avg_power) <- 'avg'</pre>
# avg_power$Power <- rownames(avg_power)</pre>
avg_brand <- sapply(split(claim$Claim$Claim$Brand),mean)</pre>
avg_region <- sapply(split(claim$Claim$Claim$Region),mean)</pre>
## this chunk calculate average values in different categories
```

There is no missing value. Claim: binary. Power: 12 categories. Brand:7 categories. Gas: binary. Region: 10 regions.

Density of Claims by Exposure

Density of Claims by Car Age

Density of Claims by Driver Age

Distribution of Claims among different Brands

Distribution of Claims among different Gas Types

Distribution of Claims among different Regions


```
# check inter-correlation between non-categorical variables
claim1<-claim[c(2,4,5,9)]
library(corrplot)</pre>
```

```
## corrplot 0.84 loaded
corrplot.mixed(cor(claim1), upper = "ellipse", lower.col = "black")
```



```
# check relationship between categorical variables
attach(claim)
r1 <- ggplot() +
  aes(x = Brand, color = Power, group = Power, y = Claim) +
  stat_summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Brand:Power')+
  theme(axis.text.x = element_text(angle = 20, hjust = 1,size=8))
r2 <- ggplot() +
  aes(x = Brand, color = Gas, group = Gas, y = Claim) +
  stat_summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Brand:Gas')+
  theme(axis.text.x = element text(angle = 20, hjust = 1,size=8))
r3 <- ggplot() +
  aes(x = Brand, color = Region, group = Region, y = Claim) +
  stat_summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Brand:Region')+
  theme(axis.text.x = element_text(angle = 20, hjust = 1,size=8))
r4 <- ggplot() +
  aes(x = Region, color = Gas, group = Gas, y = Claim) +
  stat_summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Region:Gas')
```

```
r5 <- ggplot() +
  aes(x = Region, color = Power, group = Power, y = Claim) +
  stat summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Region:Power')
r6 <- ggplot() +
  aes(x = Power, color = Gas, group = Gas, y = Claim) +
  stat_summary(fun.y = mean, geom = "point") +
  stat_summary(fun.y = mean, geom = "line") + ggtitle('Power:Gas')
library(gridExtra)
grid.arrange(r1, r2, r3, r4, r5, r6, nrow = 3, ncol=2)
                                                                                 Gas
                                                        Brand:Gas
        Brand:Power
                                                                                  Diesel
                                                                                    Regular
                       roen Seat other
                                     Region
                                       - R23
                  Brand
                                                                Brand
                                       ► R24
                                       ► R25
                                                        Region:Gas
        Brand:Region
                                                  0.045 -
                                        - R31
                                                                                 Gas
                                                  0.040 -
                                                ain
                                                  0.035 -
                                                                                  Diesel
                                      Power
                                                  0.030 -
                                               Ō 0.025
                                                                                     Regular
                                                  0.020 -
                                                        R1R2R2R2R3R5R5R5R7R74
                                                               Region
                  Brand
         Region:Power
                                                       Power:Gas
                                                  0.05
                                                                                 Gas
   0.075 -
                                               0.04
E0.03
Claim
   0.050 -
                                                                                  Diesel
   0.025
                                                                                     Regular
                                                  0.02 -
    0.000 -
         R1R2\R2\R2\R3\R5\R5\R5\R7\R74
                                                        defghijklmno
                  Region
                                                               Power
# geographical plot of claim %
# library(dplyr)
# claim_by_region <- tapply(claim$Claim, claim$Region, sum)
# count_by_region <- summary(claim$Region)</pre>
# regionID <- names(count_by_region)</pre>
# regionIdx <- sub('.', '', regionID)</pre>
# Sys.setlocale('LC_ALL', 'French')
# library(readxl)
# url1<-'https://insee.fr/fr/statistiques/fichier/1893198/estim-pop-dep-sexe-gca-1975-2018.xls '
```

```
# tempdb <- tempfile()</pre>
# download.file(url1, tempdb, mode="wb")
# raw_db <- as.data.frame(read_excel(path = tempdb, range="2018!A6:B101", col_names=FALSE))</pre>
\# names(raw\_db) \leftarrow c("RIdx", "RName")
# region_table <- data.frame(regionID=regionID,</pre>
                              regionName=raw_db$RName[match(regionIdx, raw_db$RIdx)],
                              regionCount=count_by_region,
#
#
                               regionClaim=claim_by_region,
#
                               regionClaimPct=claim_by_region/count_by_region*100
#
# library(maps)
# france_map <- map_data("france")</pre>
# claim_map < -merge(france_map, region_table, by.x = "region", by.y = "regionName", all.x = TRUE)
# claim_map <- arrange(claim_map, group, order)</pre>
\# ggplot(claim\_map, aes(x = long, y = lat, group = group, fill = regionClaimPct)) +
     geom_polygon(colour = "white")+
     labs(title="Claim Rate (\%) by Region", fill = "Claim Rate \n(\%)") +
#
#
     scale_fill_viridis_c() +
# theme void()
```

Try to fit

```
fit.full <- glm(Claim~.,family=binomial,data = claim) ## this one with default link func
summary(fit.full)
##
## Call:
## glm(formula = Claim ~ ., family = binomial, data = claim)
## Deviance Residuals:
                10
                    Median
                                  ЗQ
                                          Max
      Min
## -0.7432 -0.3130 -0.2491 -0.2050
                                       3.0881
## Coefficients:
##
                                            Estimate Std. Error z value
## (Intercept)
                                          -3.585e+00 6.208e-02 -57.740
## Exposure
                                           1.195e+00 2.623e-02 45.557
## Powere
                                           7.988e-02 3.024e-02
                                                                2.641
## Powerf
                                           1.052e-01 2.948e-02
                                                                 3.570
## Powerg
                                           7.115e-02 2.928e-02
                                                                 2.430
## Powerh
                                           1.024e-01 4.186e-02
                                                                2.446
## Poweri
                                           2.131e-01 4.603e-02 4.629
                                           1.956e-01 4.726e-02
## Powerj
                                                                 4.138
## Powerk
                                           2.531e-01 6.010e-02
                                                                 4.212
                                           1.328e-01 8.960e-02 1.483
## Powerl
## Powerm
                                           1.648e-01 1.273e-01 1.294
## Powern
                                           1.732e-01 1.506e-01 1.151
## Powero
                                           2.242e-01 1.498e-01
                                                                 1.497
                                          -1.064e-02 1.686e-03 -6.311
## CarAge
                                          -7.203e-03 6.191e-04 -11.635
## DriverAge
```

```
## BrandJapanese (except Nissan) or Korean -4.645e-01 4.919e-02 -9.442
## BrandMercedes, Chrysler or BMW
                                           -6.532e-03 5.701e-02 -0.115
## BrandOpel, General Motors or Ford
                                            6.876e-02 4.812e-02
                                                                    1.429
## BrandRenault, Nissan or Citroen
                                           -6.456e-02 4.211e-02
                                                                  -1.533
## BrandVolkswagen, Audi, Skoda or Seat
                                            1.984e-02 4.938e-02
                                                                    0.402
## Brandother
                                           -6.564e-02 6.687e-02
                                                                  -0.982
## GasRegular
                                           -8.982e-02 1.850e-02
                                                                  -4.856
## RegionR23
                                           -2.666e-01
                                                       7.747e-02
                                                                  -3.441
## RegionR24
                                           -7.121e-02 3.374e-02
                                                                  -2.110
## RegionR25
                                           -3.716e-02 5.891e-02
                                                                  -0.631
## RegionR31
                                           -6.040e-02 4.556e-02
                                                                  -1.326
## RegionR52
                                           -1.401e-02 4.008e-02
                                                                   -0.350
## RegionR53
                                           -1.625e-02 3.933e-02
                                                                  -0.413
                                                                    0.563
## RegionR54
                                            2.729e-02 4.849e-02
                                           -7.362e-02 4.402e-02
## RegionR72
                                                                  -1.672
## RegionR74
                                            1.404e-01
                                                       8.356e-02
                                                                    1.680
                                            1.487e-05 2.146e-06
## Density
                                                                    6.932
##
                                           Pr(>|z|)
## (Intercept)
                                            < 2e-16 ***
## Exposure
                                            < 2e-16 ***
## Powere
                                           0.008260 **
## Powerf
                                           0.000357 ***
## Powerg
                                           0.015080 *
## Powerh
                                           0.014446 *
## Poweri
                                           3.68e-06 ***
## Powerj
                                           3.51e-05 ***
## Powerk
                                           2.53e-05 ***
                                           0.138192
## Powerl
## Powerm
                                           0.195543
## Powern
                                           0.249869
## Powero
                                           0.134409
## CarAge
                                           2.77e-10 ***
## DriverAge
                                            < 2e-16 ***
## BrandJapanese (except Nissan) or Korean < 2e-16 ***
## BrandMercedes, Chrysler or BMW
                                           0.908787
## BrandOpel, General Motors or Ford
                                           0.153009
## BrandRenault, Nissan or Citroen
                                           0.125280
## BrandVolkswagen, Audi, Skoda or Seat
                                           0.687900
## Brandother
                                           0.326302
## GasRegular
                                           1.20e-06 ***
## RegionR23
                                           0.000579 ***
## RegionR24
                                           0.034817 *
## RegionR25
                                           0.528118
## RegionR31
                                           0.184926
## RegionR52
                                           0.726691
                                           0.679464
## RegionR53
## RegionR54
                                           0.573653
## RegionR72
                                           0.094449 .
## RegionR74
                                           0.092947 .
## Density
                                           4.15e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
## Null deviance: 126452 on 412411 degrees of freedom
## Residual deviance: 123394 on 412380 degrees of freedom
## AIC: 123458
##
## Number of Fisher Scoring iterations: 6
```

brand and region should be recategorized, the other 6 predictors should be significant.