Семинар №2 по курсу «Основы высшей алгебры и теории кодирования»

Репеев Роман, Шиманогов Игорь

Определение 1 Подгруппа	1
Теорема 1 Критерий подгруппы	2
Лемма 1 Пересечение подгрупп	2
Определение 2 Смежные классы	2
Определение 3 Нормальная подгруппа	3
Теорема 2 Теорема о смежных классах	3
Определение 4 Индекс подгруппы	4
Теорема 3 — Теорема Лагранжа	4
Определение 5 Циклическая группа	4
Теорема 4 Коммутативность циклических групп	4
Определение 6 Порядок элемента	5
Определение 7 Группа, порожденная элементом	5
Теорема 5 О порядках элементов	5
Лемма 3 О группах простого порядка	6
Теорема 6 О подгруппах циклических групп	6
Задача 1 Группы многогранников	6

Подгруппы

Определение 1 (Подгруппа)

H называется подгруппой группы $G = \langle M, * \rangle,$ если $H = \langle M', * \rangle$ — это группа и $M' \subset M.$ Это обозначается H < G.

Замечание 1

Hесложно убедиться, что для того, чтобы H была подгруппой G необходимо и достаточно выполнение трёх условий (помимо $H\subseteq G$):

- 1. $e \in H$
- 2. $\forall a, b \in H \quad a \cdot b \in H$
- 3. $\forall x \in H \quad x^{-1} \in H$

В учебнике, например, именно они даны как определение подгруппы.

Пример 1

В группе целых чисел по сложению, числа кратные т образуют подгруппу.

Теорема 1 (Критерий подгруппы)

$$H < G \Leftrightarrow \forall a, b : a, b \in H \quad a \cdot b^{-1} \in H$$

Доказательство \Rightarrow . В эту сторону все достаточно очевидно. Если H < G, то

$$\forall a, b \in H \quad b^{-1} \in H \ (3 \text{ акс.}) \Rightarrow ab^{-1} \in H (\text{замкнутость})$$

- \Leftarrow . Пусть $\forall a,b \in H \ ab^{-1} \in H$. Тогда
 - 1. Если H непусто, то $\exists x \in H$. Пусть a = b = x, тогда

$$ab^{-1} = xx^{-1} = e \in H$$

2. Пусть a = e, тогда

$$\forall b \in H \ eb^{-1} = b^{-1} \in H$$

3. Возьмем произвольные $x,y \in H$. Из п.2 $y^{-1} \in H$. Пусть $a=x,b=y^{-1}$, тогда

$$\forall x, y \in H \ ab^{-1} = x(y^{-1})^{-1} = xy \in H$$

Лемма 1 (Пересечение подгрупп)

Пересечение подгрупп является подгруппой.

Доказательство Пусть $H_1, H_2 < G$. Пусть $a, b \in H_1 \cap H_2$. То есть $a, b \in H_1$; $a, b \in H_2$, откуда $ab^{-1} \in H_1$; $ab^{-1} \in H_2$.

Значит, $ab^{-1} \in H_1 \cap H_2 \Rightarrow H_1 \cap H_2 < G$, ч.т.д.

Определение 2 (Смежные классы)

Пусть H < G, а x — это элемент G.

Левым смежным классом с представителем x называется

$$xH = \{y \mid y = xh, h \in H\}$$

Правым смежным классом с представителем x называется

$$Hx = \{y \mid y = hx, h \in H\}$$

Замечание 2

Мы используем общую нотацию перемножения множеств:

$$AB = \{ab \mid a \in A, b \in B\}$$

2

Исходя из этого определения, ясно что

$$A = B \iff XA = XB$$

B частности, это верно для одноэлементных множеств (мы опускаем скобки, записывая $\{x\}A$ как xA).

Стоит обратить внимание, что существует понятие левых и правых смежных классов. В общем случае группы некомутативны, и левый и правый смежные классы с одним и тем же представителем могут различаться. В связи с этим, выделяют подгруппы, где этого не происходит.

Определение 3 (Нормальная подгруппа)

Подгруппа H < G называется *нормальной* подгруппой группы G, если

$$\forall x \in G \quad xH = Hx$$

Замечание 3

Очевидно, что в коммутативной группе все подгруппы являются нормальными.

Замечание 4

Стоит обратить внимание, что, говоря о совпадении классов, мы говорим о равенстве множеств. Из того, что при любом x выполняется xH = Hx не следует, что для всех $h \in H$ выполняется xh = hx. Поэтому нормальные подгруппы бывают не только y абелевых групп.

Теорема 2 (Теорема о смежных классах)

Левые (правые) смежные классы по одной подгруппе либо совпадают, либо не пересекаются.

Доказательство Зафиксируем какую-то H < G. По сути, утверждение теоремы таково: если $xH \cap yH \neq \varnothing$, то xH = yH.

Пусть $xH \cap yH \ni z$. Тогда $z = xh_1 = yh_2$. Отсюда $x = yh_2h_1^{-1} \in yH; y = xh_1h_2^{-1} \in xH$.

Итак, $x \in yH$, то есть $\exists h_x : x = yh_x$. Возьмем произвольный $t \in xH$.

 $t = xh_t = yh_xh_t \in yH$. Значит, $xH \subseteq yH$.

Аналогично, $yH \subseteq xH$. Значит, xH = yH.

 $e \in H$, поэтому $\forall g \in G$ $g \in gH$, то есть всякий элемент группы лежит в каком-то классе. Тогда теорема о смежных классах по сути говорит нам, что при фиксированной подгруппе H вся группа разивается на так называемые *классы смежности* по данной подгруппе. Рассмотрим какой-то класс xH. Возьмем $h_1, h_2 \in H, h_1 \neq h_2$. Мы знаем, что $xh_1 \neq xh_2$ (мы говорили об этом на прошлом семинаре, в учебнике это называется свойством *сократимости*, которое есть у всех групп). Тогда |xH| = |H|.

Таким образом, вся группа разбивается на объединение смежных классов одинаковой мощности, равной мощности H.

Определение 4 (Индекс подгруппы)

 $\mathit{Индексом}$ подгруппы H < G называется число смежных классов по данной подгруппе.

Обозначение: (G:H).

Таким образом, мы доказали важную теорему.

Теорема 3 (Теорема Лагранжа)

Пусть H < G. Тогда

$$|G| = (G:H) \cdot |H|$$

В частности, порядок H делит порядок группы.

Из этих же рассуждений ясно, что число левых и правых смежных классов по подгруппе совпадает (но не факт, что совпадают сами классы!). Таким образом, понятие индекса подгруппы корректно.

Сформулируем утверждение о принадлежности элементов одному классу смежности.

Лемма 2

Два элемента группы g_1 и g_2 принадлежат одному классу смежности по подгруппе H тогда и только тогда, когда $g_1^{-1}g_2\in H$.

Доказательство Это ясно из того, что $g_1H = g_2H \iff H = g_1^{-1}g_2H$ (мы домножили обе части уравнения на g^{-1}).

Циклические группы

Определение 5 (Циклическая группа)

Группа называется циклической, если выполнено следующее

$$\exists a : a \in M \quad \forall b : b \in M \quad \exists k : k \in \mathbb{Z} \quad b = a^k$$

Элемент а называют порождающим элементом.

Пример 2

Группа корней из единицы, о которой мы говорили ранее, является циклической группой. В ней порождающим элементом является $\exp \frac{2\pi i}{n}$.

Теорема 4 (Коммутативность циклических групп)

Циклические группы коммутативны.

Доказательство Пусть a — это порождающий элемент.

$$\forall \ b,c: \ b*c = a^k*a^t = a^{k+t} = a^{t+k} = a^t*a^k = c*b$$

4

Пример 3

Порождающий элемент может быть не единственным. Например, рассмотрим группу остатков от деления на 4. В ней, очевидно, 1 является порождающим элементом, но можно так же заметить, что им является и 3.

$$3 = 3$$
; $3 + 3 = 2$; $3 + 3 + 3 = 1$; $3 + 3 + 3 + 3 = 0$

Рассмотрим устройство циклических групп.

- 1. Все степени порождающего элемента различны. Тогда это бесконечная группа, по существу совпадающая (т.е. $usomop \phi has$ об этом позже) с группой $\langle \mathbb{Z}, + \rangle$.
- 2. Какие-то две степени совпадают, т.е. $a^{n+m} = a^n, \ m \neq 0.$

В этом случае $a^{n+m} = a^n a^m = a^n \Rightarrow a^m = e$.

Так как $a^m = e \Leftrightarrow a^{-m} = e$, то для определенности будем считать m > 0. Тогда получается, что для хотя бы одного натурального числа m выполняется $a^m = e$.

Возьмём наименьшее такое число q.

Определение 6 (Порядок элемента)

 Π орядком элемента a называется наименьшее натуральное число q такое, что $a^q=e$.

Если такого числа нет, то элемент имеет бесконечный порядок.

Рассмотрим два числа $t,l: 1 \le l < t \le q-1$. Пусть $a^t = a^l$.

Тогда $a^{t-l} = e$, но t-l < q, значит q не будет наименьшим. Значит, все a^k , где $0 \leqslant k < q$, различны.

Рассмотрим произвольный a^n . Разделим с остатком: $n = sq + m, \ 0 \leqslant m < q$.

Тогда $a^n = (a^q)^s \cdot a^m = e \cdot a^m = a^m$.

Значит, вся группа выглядит как $G = \left\{ a^n \mid 0 \leqslant n < q, \ n \in \mathbb{N} \right\}$

Циклические подгруппы

Рассмотрим произвольную группу. Возьмём некоторый элемент a и его всевозможные целые степени.

Определение 7 (Группа, порожденная элементом)

Подгруппа, порожденная элементом а группы G:

$$\langle a \rangle = \left\{ a^n \mid n \in \mathbb{Z} \right\}$$

Из предыдущих рассуждений ясно, что это будет циклическая группа с порождающим элементом a. В частности, это подтверждает, что это действительно подгруппа группы G.

Подчеркнём, что **любой** элемент группы будет порождать циклическую подгруппу, причем порядок этой группы совпадает с порядком элемента (отсюда и одно и то же название). Вспомнив теорему Лагранжа, получаем два важных утверждения.

Теорема 5 (О порядках элементов)

Порядок любого элемента делит порядок группы.

Лемма 3 (О группах простого порядка)

Группа простого порядка не имеет nempusuanbhux (т.е. отличных от всей группы и $\{e\}$) подгрупп. Помимо этого, она является циклической.

Также без доказательства (оно есть в учебнике) приведем утверждение о подгруппах циклических групп:

Теорема 6 (О подгруппах циклических групп)

Подгруппы циклических групп также циклические.

Задача 1 (Группы многогранников)

Рассмотрим группы правильных многогранников, то есть группы вращений, переводящих многогранники сами в себя (как ГМТ). Найдём порядки таких групп.

Решение Из геометрических соображений ясно, что вращение должно быть поворотом вокруг оси, проходящей через центр многогранника. При этом вершины переходят в вершины, а соседние (то есть соединенные ребром) вершины переходят также в соседние.

Рассмотрим некоторую вершину A. Пусть вращение оставляет её на месте, тогда ось вращения проходит через центр многогранника O и вершину A. Множество соседних с A вершин должно переходить в себя.

Множество таких вращений — это группа H_A поворотов вокруг оси OA на углы $\frac{2\pi m}{k}$, где k — число соседних с A вершин. Это циклическая группа порядка $|H_A| = k$.

Рассмотрим смежные классы по H_A . Согласно Лемме 2, два элемента g_1 и g_2 лежат в одном классе смежности $\Leftrightarrow g_1^{-1}g_2 \in H_A$.

Последнее условие равносильно $(g_1^{-1}g_2)(A) = A \iff g_1(A) = g_2(A)$. Таким образом, один смежный клас по H_A образуют вращения, переводящие вершину A в определенную вершину B.

Любая вершина многогранника некоторым вращением совмещается с любой другой, поэтому число смежных классов по H_A равно числу вершин многогранника n: $(G:H_A)=n$. По теореме Лагранжа порядок группы: $|G|=(G:H_A)\cdot |H_A|=nk$.