PCS3225 - Sistemas Digitais II Atividade Formativa 3 - Memórias

Edson Midorikawa

Data: 23/08/2023

O objetivo desta atividade é desenvolver uma aplicação de memórias ROM. O enunciado é baseado em uma questão de prova de PCS3225 aplicada em 2022.

Aplicação de ROM

Enunciado

Uma forma de implementar funções combinatórias em circuitos digitais é por meio de memórias ROM assíncronas (sem *clock*). Cria-se uma memória ROM cujos bits da entrada de endereço correspondam às variáveis binárias de entrada da função, e a palavra de dados armazenada em cada endereço corresponderá à saída da função para aquela entrada. Ou seja, esse método corresponde a armazenar diretamente a tabela verdade da função na memória ROM, em que as variáveis binárias de entrada servem para endereçar a memória e as palavras de dados correspondem ao resultado da função para aquela entrada (endereço). No diagrama abaixo, temos uma função f qualquer com M bits de entrada e N bits de saída implementada por uma ROM.

ROM para implementar uma função combinatória

endereço
$$f(ROM)$$
 N dados

Deseja-se implementar um multiplicador, por meio de uma única memória ROM, para 2 operandos de 4 bits cada (Va e Vb). O resultado Vresultado deve ser completo, ou seja, conter todos os bits necessários para armazenar o maior resultado possível. Considere apenas multiplicação de inteiros sem sinal (não negativos).

Multiplicador binário com ROM

Etapas da Atividade

Responda:

- 1. Desenhe um diagrama de blocos do circuito digital do multiplicador usando a memória ROM. Mostre como os sinais de entrada Va e Vb e o sinal de saída V*resultado* são ligados à ROM.
- 2. Quantos bits de endereço esta ROM deve possuir?
- 3. Qual o tamanho, em bits, da palavra de dados? Considere que ela deve ter exatamente o tamanho necessário.
- 4. Qual a capacidade total de armazenamento, em bits, desta memória ROM?

- 5. Como o conteúdo da ROM deve ser calculado?
- 6. Qual conteúdo deve ser armazenado nos primeiros 16 endereços (0 a 15) desta memória ROM? Responda em binário, com o bit mais significativo (MSB) à esquerda. Os bits de cada operando correspondem a bits contíguos do endereço, sem intercalá-los.
- 7. Qual conteúdo deve ser armazenado nos 16 endereços seguintes (16 a 31) desta memória ROM?
- 8. Qual conteúdo deve ser armazenado no endereço $6C_{16}$ desta memória ROM?

Ao final, o grupo deve elaborar um breve relato das tarefas realizadas e submeter o arquivo PDF na respectiva tarefa da atividade no e-Disciplinas.

Instruções para os Grupos

As atividades formativas devem ser realizadas em grupos de até 5 alunos. Recomenda-se que sejam desenvolvidas no horário da aula, com auxílio do professor.

Dicas

Os diagramas abaixo mostram dicas para o projeto do circuito da atividade.

X	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100