Übersicht – Übung 4

Wiederholung / Hausaufgabe Bit-Stuffing

IPv4

Router

- → Im Allgemeinen
- → Distanzvektorverfahren (RIP)

IPv4

- Auf welcher OSI-Schicht operiert das "Internet Protocol"?
- Erläutern Sie die Felder im IPv4-Header.

https://advancedinternettechnologies.files.wordpress.com/2012/01/ipv4-header.png

Router

 Skizzieren Sie den schematischen Aufbau eines Routers, der nach dem Store-and-Forward-Prinzip arbeitet. Nennen Sie Hard- und Softwareoptimierungen, um eine möglichst schnelle Weiterleitung der Pakete zu gewährleisten.

Router

- Warteschlangen / Queues (FIFO)
- Für Router besonders wichtige Felder im IP-Header:
 Zieladresse, Header- / Paketlänge, TTL, FCS (nur Header), ToS / DSCP
- Intern: Pointer auf Pakete
- DMA

Router

- Was wird unter dem Begriff "Cut-Through-Routing" verstanden? Wie unterscheidet sich die Arbeitsweise des Routers im Vergleich zu Storeand-Forward? Diskutieren Sie Vor- und Nachteile beider Prinzipien.
 - Pakete werden nicht zwischengespeichert
 - Höherer Durchsatz, geringerer Speicherplatzbedarf
 - Destination Address am Ende des (statischen) IP-Headers, FCS über den gesamten Header → Header muss gepuffert werden
 - Schicht 2: Medium muss bereit sein, Fehlersituationen während der Übertragung möglich

- Autonomous System (AS)
- Host A aus Netz 1 möchte ein Paket an Host B in Netz 2 senden. Erläutern Sie an diesem Beispiel das Problem des Routings bzw. der Suche nach dem kürzesten Weg. Greifen Sie auf Elemente aus der Graphentheorie zurück.
- Graph $G = \{V, E\}$:
 - Knoten $V = \{R_{1}, R_{2}, R_{3}, R_{4}\}$
 - Kanten $E = \{\{R_1, R_2\}, ...\}$
 - Kantengewichte $g:E \rightarrow \Re$

- Diskutieren Sie unterschiedliche Metriken zur Festlegung der Pfadkosten.
 - Hop-Count (Kante: 1)
 - Theoretischer / tatsächlicher Durchsatz
 - Latenz
 - Fehlerrate / Verlässlichkeit
 - Finanzielle Kosten
 - MTU

- Erklären Sie das
 Optimalitätsprinzip (nach
 Richard Bellman). Inwiefern
 erleichtert es das Routing
 entlang des kürzesten Weges?
- Die optimalen Lösungen einiger Optimierungsprobleme setzen sich aus optimalen Teillösungen zusammen.
- $R_1, R_2, ..., R_n$ kürzester Weg von R_1 nach R_n
 - $\rightarrow R_{2,...}, R_{n}$ kürzester Weg von R_{2} nach R_{n}

Interior-Gateway-Routing

 Weisen Sie den vier Routern in Abbildung 1 statische Routingtabellen zu. Verfolgen Sie damit den Weg eines Pakets von Host A zu Host B nach. Welche Vor- und Nachteile bietet diese Vorgehensweise?

R1		
N1	G1	0
N2	L1	2
N3	L1	3
N4	L4	2

R2		
N1	L1	2
N2	G2	0
N3	L2	1
N4	L5	1

Interior-Gateway-Routing

 Weisen Sie den vier Routern in Abbildung 1 statische Routingtabellen zu. Verfolgen Sie damit den Weg eines Pakets von Host A zu Host B nach. Welche Vor- und Nachteile bietet diese Vorgehensweise?

R3		
N1	L2	3
N2	L2	1
N3	G3	0
N4	L2 L3	2

R4		
N1	L4	2
N2	L5	1
N3	L3 L5	2
N4	G4	0

Interior-Gateway-Routing

- Ersetzen Sie die statischen Routingtabellen durch ein dynamisches Flooding-Verfahren nach den folgenden Regeln:
 - Paket für ein fremdes Netz
 → Kopie auf alle Links
 weiterleiten, Eingangslink
 ausnehmen
 - Paket für ein eigenes Netz
 → nur an das jeweilige
 Netz weiterleiten

Stellen Sie die Weiterleitung der Pakete als Baumstruktur dar.

Netz 2 Netz 3 L2 (1) R₂ **R3 L3** (2) **L1** (2) R1 **R4** L4 (2) Netz 1 Netz 4 Host A

ASBR

Host B

Interior-Gateway-Routing

Jonas Treumer treumer@tu-freiberg.de

Interior-Gateway-Routing

- Wie funktionieren Distanzvektorverfahren im Allgemeinen? Auf welchem graphentheoretischen Algorithmus basieren sie?
- Jeder Knoten verfügt nur über eine lokale Sicht auf die Topologie.
- Bellman-Ford-Algorithmus:
 - Startknoten S
 - Zu Beginn: Alle Distanzen auf ∞, alle Vorgänger auf null, Distanz für S auf 0
 - -|V|-1 mal iterieren:
 - Über alle Kanten {A,B} mit Gewicht g iterieren:
 - Wenn Distanz(A) + g < Distanz(B), dann:

Distanz(B) := Distanz(A) + g

Vorgänger(B) := A

- Am Schluss: Noch eine Iteration über alle Kanten → negative Zyklen erkennen
- Komplexität: $\mathcal{O}\left(n\cdot m\right)$
- Erläutern Sie die Funktionsweise des Routing Information Protocols (RIP).
 - Metrik: Hop-Count
 - Alle 30 Sekunden: Senden der eigenen Routing-Tabelle an die unmittelbaren Nachbarn (Advertisement), Update der kürzesten Wege
 - Beschränkung der Netze auf 15 Hops
 - " ∞=16"

- Stellen Sie die Konvergenz der Routingtabellen in aufeinanderfolgenden Zeitschritten dar:
 - Im 0. Zeitschritt weiß jeder Router nur von den von ihm verwalteten Netzen.
 - In jedem weiteren Zeitschritt erhält jeder Router die aktuellen Routingtabellen seiner Nachbarn und passt seine eigene Tabelle an.
 - Interpretieren Sie die Kantengewichte als Hops über weitere, hier nicht abgebildete Zwischenstationen.

Interior-Gateway-Routing

R1 (t = 0)

R2 (t = 0)

N1 G1 0

N2 G2 0

R3 (t = 0)

R4 (t = 0)

N3 G3 0

N4 G4 0

Interior-Gateway-Routing

R1 (t = 1) N1 G1 0

R2 (t = 1)		
N2	G2	0
N3	L2	1
N4	L5	1

R3 (t = 1)

N2 L2 1

N3 G3 0

R1 (t = 2)		
N1	G1	0
N2	L1	2
N4	L4	2

R2 (t = 2)		
N1	L1	2
N2	G2	0
N3	L2	1
N4	L5	1

R3 (t = 2)		
N2	L2	1
N3	G3	0
N4	L2 L3	2

R1 (t = 3)		
N1	G1	0
N2	L1	2
N3	L1	3
N4	L4	2

R2 (t = 3)		
N1	L1	2
N2	G2	0
N3	L2	1
N4	L5	1

R3 (t = 3)		
N1	L2	3
N2	L2	1
N3	G3	0
N4	L2 L3	2

R4 (t = 3)		
N1	L4	2
N2	L5	1
N3	L3 L5	2
N4	G4	0

- Wie viel Zeit vergeht bis zur Konvergenz? Wie sieht das allgemeine Worst-Case-Szenario aus?
- Erläutern Sie das Count-to-Infinity-Problem, das im Zusammenhang mit dem RIP auftritt. Welche Gegenmaßnahmen können ergriffen werden? Wie wirkungsvoll sind sie?

