Domain Generalization with Small Data

International Journal of Computer Vision (IJCV) 2024

Kecheng Chen¹, Elena Gal², Hong Yan¹, Haoliang Li¹

¹ Department of Electrical Engineering, City University of Hong Kong

² Department of Mathematics, University of Oxford

What is Domain Generalization (DG)?

What is DG in the context of small data?

Healthcare Data due to potential privacy concerns or rare diseases

Chip design data due to IP protection

Deterministic Neural Networks (e.g., CNNs, FCNs)

Bayesian Neural Networks

1. Richer representations and predictions from cheap model averaging.

Deterministic Neural Networks (e.g., CNNs, FCNs)

Bayesian Neural Networks

2. Model parameters can be regularized by a prior distribution with less overfitting risk in the context of small data scenarios

$$\begin{split} \theta^{\star} &= \arg\min_{\theta} \mathrm{KL}[q(\mathbf{w}|\theta)||P(\mathbf{w}|\mathcal{D})] \\ &= \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} \mathrm{d}\mathbf{w} \\ &= \arg\min_{\theta} \underbrace{\mathrm{KL}\left[q(\mathbf{w}|\theta) \mid\mid P(\mathbf{w})\right]}_{\text{prior-dependent}} - \underbrace{\mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right]}_{\text{Data-dependent}} \\ &= \operatorname{complexity term} & \operatorname{Likelihood term} \end{split}$$

Deterministic Neural Networks (e.g., CNNs, FCNs)

Bayesian Neural Networks

- 1. Richer representations and predictions from cheap model averaging.
- 2. Less overfitting risk in the context of small data scenarios

distance

As a distribution for each domain

 $\bullet x_3$

The probability measure can be mapped into a reproducing kernel Hilbert space (RKHS) as an element

distance

As a distribution for each domain

 $\bullet x_3$

The probability measure can be mapped into a reproducing kernel Hilbert space (RKHS) as an element

The probability measure can be mapped into a reproducing kernel Hilbert space (RKH as an element

As a distribution over distributions for each domain

distance

$$\mathbb{P}_{l} = \{\Pi_{l_1}, \dots, \Pi_{l_{n_l}}\}$$

No previous works explore such distribution distance

Probabilistic MMD (P-MMD) for the distribution over distributions

Introduce a level-1 kernel κ and a level-2 kernel K

$$K(\Pi_{l_{i}}, \Pi_{t_{j}}) = \kappa(\mu_{\Pi_{l_{i}}}, \mu_{\Pi_{t_{j}}}) = \langle \psi(\mu_{\Pi_{l_{i}}}), \psi(\mu_{\Pi_{t_{j}}}) \rangle_{\mathcal{H}_{\kappa}}$$
Direct extension
$$MMD(\mathbb{P}_{l}, \mathbb{P}_{t})^{2} = \|\frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \phi(\mathbf{z}_{l_{i}}) - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \phi(\mathbf{z}_{t_{j}}) \|_{\mathcal{H}_{\kappa}}^{2}$$

$$P-MMD(\mathbb{P}_{l}, \mathbb{P}_{t})^{2} = \|\frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \psi(\mu_{\Pi_{l_{i}}}) - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} \psi(\mu_{\Pi_{t_{j}}}) \|_{\mathcal{H}_{\kappa}}^{2}$$

$$= \frac{1}{n_{l}^{2}} \sum_{i=1}^{n_{l}} \sum_{i'=1}^{n_{l}} K(\Pi_{l_{i}}, \Pi_{l_{i'}}) + \frac{1}{n_{t}^{2}} \sum_{j=1}^{n_{t}} \sum_{j'=1}^{n_{t}} K(\Pi_{t_{j}}, \Pi_{t_{j'}})$$

$$- \frac{2}{n_{l}n_{t}} \sum_{i=1}^{n_{l}} \sum_{i=1}^{n_{t}} K(\Pi_{l_{i}}, \Pi_{t_{j}}).$$

$$K(\Pi_{l_{i}}, \Pi_{t_{j}}) = \kappa(\mu_{\Pi_{l_{i}}}, \mu_{\Pi_{t_{j}}}) = \exp(-\frac{\lambda}{2} \|\mu_{\Pi_{l_{i}}} - \mu_{\Pi_{t_{j}}}\|_{\mathcal{H}_{\kappa}}^{2})$$

$$= \exp(-\frac{\lambda}{2} (\langle \mu_{\Pi_{l_{i}}}, \mu_{\Pi_{l_{i}}} \rangle_{\mathcal{H}_{\kappa}}) - 2 \langle \mu_{\Pi_{l_{i}}}, \mu_{\Pi_{t_{j}}} \rangle_{\mathcal{H}_{\kappa}}$$

$$+ \langle \mu_{\Pi_{t_{j}}}, \mu_{\Pi_{t_{j}}} \rangle_{\mathcal{H}_{\kappa}}))$$

$$= \exp(-\frac{\lambda}{2} (\frac{1}{m_{l}^{2}} \sum_{i=1}^{m_{l}} \sum_{i'=1}^{m_{l}} k(\mathbf{z}_{l_{i}}, \mathbf{z}_{l_{i}'})$$

$$-\frac{2}{m_{l}m_{t}} \sum_{i=1}^{m_{l}} \sum_{j=1}^{m_{t}} k(\mathbf{z}_{l_{i}}, \mathbf{z}_{t_{j}})) + \frac{1}{m_{t}^{2}} \sum_{j=1}^{m_{t}} \sum_{j'=1}^{m_{t}} k(\mathbf{z}_{t_{j}}, \mathbf{z}_{t_{j}'}),$$

Unbiased estimation 🖶

Reduce computation complexity from $O(n2) \Rightarrow O(n)$

$$P-MMD(\mathbb{P}_{l}, \mathbb{P}_{t})^{2} \approx \frac{2}{n_{l}} \sum_{i=1}^{\frac{2}{n_{l}}} [K(\Pi_{l_{2i}}, \Pi_{l'_{2i+1}}) + K(\Pi_{l_{2i}}, \Pi_{t'_{2i+1}}) - K(\Pi_{l_{2i}}, \Pi_{t_{2i+1}}) - K(\Pi_{l_{2i+1}}, \Pi_{t_{2i}})$$

Local view:

$$\mathcal{L}_{local}^{pos} = \frac{1}{2} \| \frac{1}{T} \sum_{i=1}^{T} \phi\left(M_{\Theta}(\mathbf{z}_{n_i})\right) - \frac{1}{T} \sum_{j=1}^{T} \phi\left(M_{\Theta}(\mathbf{z}_{q_j})\right) \|_{\mathcal{H}}^2, \quad \textit{Same category}$$

$$\mathcal{L}_{local}^{neg} = \frac{1}{2} \max[0, \xi - \text{MMD}(\Pi_n, \Pi_q)^2] = \frac{1}{2} \max[0, \xi]$$
$$- \|\frac{1}{T} \sum_{i=1}^{T} \phi\left(M_{\Theta}(\mathbf{z}_{n_i})\right) - \frac{1}{T} \sum_{j=1}^{T} \phi\left(M_{\Theta}(\mathbf{z}_{q_j})\right)\|_{\mathcal{H}}^2],$$

Different category

Performance on skin lesion classification task

 Table 2
 Domain generalization results on skin lesion classification

Method	DMF	D7P	MSK	PH2	SON	UDA	Average
DeepAll	0.2492 ± 0.0127	0.5680±0.0181	0.6674 ± 0.0083	0.8000±0.0167	0.8613±0.0296	0.6264 ± 0.0312	0.6287
MASF (Dou et al., 2019)	0.2692 ± 0.0146	0.5678 ± 0.0361	0.6815 ± 0.0122	0.7833 ± 0.0101	0.9204 ± 0.0227	0.6538 ± 0.0196	0.6460
LDDG (Li et al., 2020)	0.2793 ± 0.0244	0.6007 ± 0.0187	0.6967 ± 0.0211	0.8167 ± 0.0209	0.9272 ± 0.0117	0.6978 ± 0.0182	0.6697
KDDG (Wang et al., 2021)	0.3189 ± 0.0256	0.5829 ± 0.0212	0.7014 ± 0.0178	0.9021 ± 0.0314	0.9398 ± 0.0213	0.6882 ± 0.0139	0.6889
SWAD (Cha et al., 2021)	0.3582 ± 0.0234	0.5491 ± 0.0231	0.6842 ± 0.0156	0.9167 ± 0.0121	0.9824 ± 0.0012	0.7240 ± 0.0251	0.7024
BDIL (Xiao et al., 2021)	0.2985 ± 0.0452	0.6204 ±0.0212	0.7059 ± 0.0145	0.8967 ± 0.0096	0.9860 ± 0.0198	0.7219 ± 0.0284	0.7049
DNA (Chu et al., 2022)	0.3532 ± 0.0133	0.5581 ± 0.0178	0.7120 ± 0.0194	0.9333 ± 0.0045	0.9851 ± 0.0032	0.7314 ± 0.0141	0.7122
DSU (Li et al., 2022)	0.3830 ± 0.0267	0.5739 ± 0.0147	0.6935 ± 0.0165	0.8833 ± 0.0231	0.9841 ± 0.0098	0.7201 ± 0.0121	0.7063
MIRO (Cha et al., 2022)	0.3432 ± 0.0092	0.5863 ± 0.0113	0.6919 ± 0.0101	0.9300 ± 0.0021	0.9659 ± 0.0292	0.7328 ± 0.0233	0.7084
Ours (in this paper)	0.3781 ± 0.0136	0.6120 ± 0.0115	0.7276 ± 0.0201	0.9416 ±0.0103	0.9889 ±0.0041	0.7486 ± 0.0123	0.7328

Each column denotes a cross-domain task. For example, in the second column, we use DMF dataset as the target domain and the remaining datasets as the source domains. The best and second-best performance on each target domain are bolded and underlined, respectively. Note that all baseline methods adopt the SWAD method (Cha et al., 2021) for weight averaging. The baseline in the sixth row, namely SWAD, denotes the ERM training strategy with the SWAD method

Performance on gray matter segmentation task

Table 3 Domain generalization results on gray matter segmentation task. For the DSC, CC, TPR, and JI, the higher the better. For the ASD, the lower the better. Note that all baseline methods adopt the SWAD method (Cha et al., 2021) for weight averaging. The baseline, namely SWAD, denotes the ERM training strategy with the SWAD method.

			(a) MAS	F						(b) KDD	G		
source	target	DSC	CC	JI	TPR	ASD	source	e targe	t DSC	CC	JI	TPR	ASD
2,3,4	1	0.8502	64.22	0.7415	0.8903	0.2274	2,3,4	1	0.8745	70.75	0.7795	0.8949	0.0539
$1,\!3,\!4$	2	0.8115	53.04	0.6844	0.8161	0.0826	1,3,4	2	0.8229	56.71	0.6997	0.8226	0.0490
1,2,4	3	0.5285	-99.3	0.3665	0.5155	1.8554	1,2,4	3	0.5676	63.1	0.3866	0.5904	1.2805
1,2,3	4	0.8938	76.14	0.8083	<u>0.8991</u>	0.0366	1,2,3	4	0.8894	75.06	0.8011	0.9222	0.0377
Ave	rage	0.7710	23.52	0.6502	0.7803	0.5505	Av	erage	0.7886	34.86	0.6667	0.8075	0.3553
	(c) LDDG							(d) SWAD	1				
source	e target	t DSC	CC	JI	TPR	ASD	source	target	t DSC	CC	JI	TPR	ASD
2,3,4	1	0.8708	69.29	0.7753	0.8978	0.0411	2,3,4	1	0.8726	70.23	0.7702	0.8995	0.0502
1,3,4	2	0.8364	60.58	0.7199	0.8485	0.0416	1,3,4	2	0.8378	60.71	0.7230	0.8176	0.0424
1,2,4	3	0.5543	-71.6	0.3889	0.5923	1.5187	$1,\!2,\!4$	3	0.5388	-99.0	0.3789	0.5083	1.4789
1,2,3	4	0.8910	75.46	0.8039	0.8844	0.0289	1,2,3	4	0.8903	75.89	0.8026	0.8859	0.0302
Av	verage	0.7881	33.43	0.6720	0.8058	0.4076	Av	erage	0.7849	26.96	0.6687	0.7778	0.4002
	(e) DSU									(f) Ours			
source	target	DSC	CC	JI	TPR	ASD	source	target	DSC	CC	JI	TPR	ASD
2,3,4	1	0.8739	70.32	0.7794	0.9210	0.0793	2,3,4	1	0.8786	71.57	0.7873	0.9293	0.0422
$1,\!3,\!4$	2	0.8474	63.58	0.7367	$\boldsymbol{0.8502}$	0.0494	$1,\!3,\!4$	2	0.8485	63.78	0.7389	0.8401	0.0401
$1,\!2,\!4$	3	0.5574	-70.4	0.3923	0.6097	1.5049	$1,\!2,\!4$	3	0.5634	<u>-68.0</u>	0.3992	0.6103	1.2239
1,2,3	4	0.8897	75.10	0.8018	0.9225	0.0415	1,2,3	4	0.8921	75.69	0.8058	0.9245	0.0362
Aver	age	0.7921	34.65	0.6775	0.8225	0.4362	Aver	age	0.7957	35.76	0.6828	0.8260	0.3356

Performance on extremely small-data scenarios

Table 5 Domain generalization results on MSK dataset by randomly picking same proportion of samples from each source domain

Proportion (%)	BDIL	DNA	Ours
100	0.7059 ± 0.0284	0.7121 ± 0.0141	0.7276 ±0.0123
80	0.6625 ± 0.0920	0.6591 ± 0.0022	0.6975 ±0.0036
60	0.6468 ± 0.0106	0.6149 ± 0.0112	0.6641 ± 0.0114
40	0.6491 ± 0.0171	0.6065 ± 0.0111	0.6579 ± 0.0057
Average (80,60,40) ↑	0.6528	0.6268	0.6732
Average Attenuation Rate \downarrow	7.67%	11.98%	7.37%

A smaller proportion (< 40%) is unavailable because equal batch sizes cannot be maintained in PH2 dataset

Table 6 Domain generalization results on MSK dataset by randomly picking same number of samples from each class in each domain

Number of sample	BDIL	DNA	Ours
40	0.5897 ± 0.0029	0.5412 ± 0.0143	0.6368 ± 0.0074
30	0.5762 ± 0.0101	0.5132 ± 0.0229	0.6138 ± 0.0291
20	0.5573 ± 0.0011	0.5048 ± 0.0087	0.6037 ± 0.0121
Average (40,30,20) ↑	0.5744	0.5196	0.6183
Average attenuation rate ↓	5.49%	6.72%	5.19%

SDDG:

1. BNN is more adaptive to small-data scenarios.

Thanks!

- 2. A new extension of MMD is proposed to compute the distribution distance between distributions over distributions.
- 3. A more generalized model can be learned by DG in the context of small data