

WHAT IS CLAIMED IS:

1. A method of calculating, by the use of a computer, a numerical value V_A representative of a circuit property of a logic level circuit, from a numerical value V_B , which shows a block property of a logic block included in the logic level circuit, comprising the steps of:

- (a) calculating the V_B from numerical values V_C 's each of which represents a transistor property of a transistor included in the logic block; and,
- (b) calculating the V_A from the V_B .

2. A method as in claim 1 wherein, in the step (a), each V_C shows a specific one of the transistor property of the transistor connected to an input pin of the logic block and another V_C shows another specific one of the transistor property of the transistor connected to an output pin of the logic block.

3. A method of calculating, by the use of a computer, a delay time of a signal passing through a logic level circuit which consists of a plurality of logic blocks from pin-to-pin delay time, which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time, which is delay time of a signal passing between two logic blocks connected to each other, comprising the steps of:

- (a) calculating the pin-to-pin delay time and the block-to-block delay time without calculating in aging caused by hot carrier effect;
- (b) calculating variations of delay times that signals pass through transistors connected to the input and output pin caused by said aging; and,
- (c) modifying the pin-to-pin delay time and the block-to-block delay time calculated in step (a) by the variations calculated in step (b).

4. A method of calculating, by the use of a computer, pin-to-pin delay time T_{pin_aged} , which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{connect_aged}$,

23

which is delay time of a signal passing between said two logic blocks connected to each other, comprising the steps of:

(a) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

when it is assumed that a load capacitance is represented by C [pF], constants

$$S = \alpha \left(\frac{C}{W} \right)^\beta$$

depending on change of inputted waveform are represented by α and β , and width of channel of the transistor connected to the pin is represented by W [μm];

(b) calculating an aged delay time of the input pin δ in [%] and an aged delay time δ_{out} [%] according to the following expression:

when it is assumed that a constant depending on physical structure of the pin

$$\delta = \gamma \left(\frac{\tau S f}{\varepsilon_1 e^{\kappa T}} \right)^{\frac{1}{\varepsilon_2}}$$

is represented by γ , the term of a guarantee of the LSI is represented by τ [hour], constants depending on process are represented by ε_1 , ε_2 and κ , working frequency is represented by f [Hz], and absolute temperature is represented by T [K];

(c) calculating the pin-to-pin delay time T_{iopath_aged} and the block-to-block delay time $T_{connect_aged}$ according to the following expressions:

when it is assumed that pin-to-pin delay time and block-to-block delay time

$$T_{iopath_aged} = T_{iopath_fresh} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{connect_aged} = T_{connect_fresh} (1 + \lambda_{out} \delta_{out})$$

calculated ignoring aging caused by hot carrier effect are represented by

~~T_{iopath_fresh} [ps] and $T_{connected_fresh}$ [ps], and ratios of delay times occurred at the input stage and the output stage to whole delay time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} .~~

5. A method of calculating, by the use of a computer, a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, comprising the steps of:

- (a) calculating delay times of all said logic blocks according to the method as in claim 3; and,
- (b) calculating the delay time of the logic level circuit from the result of step (a).

6. A method of calculating, by the use of a computer, a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, comprising the steps of:

- (a) calculating delay times of all said logic blocks according to the method as in claim 4; and,
- (b) calculating the delay time of the logic level circuit from the result of step (a).

7. A computer software product for calculating a numerical value V_A , which shows a property of a logic level circuit, from a numerical value V_B , which shows a property of a logic block constituting the logic level circuit, the product making a computer execute the following processes:

- (a) calculating the V_B from numerical value V_C 's each of which shows property of a transistor constituting part of the logic block; and,
- (b) calculating the V_A from the V_B .

8. A computer software product as in claim 7 wherein in process (a) one V_C shows a property of a transistor connected to an input pin of the logic block and another V_C shows a property of a transistor connected to an output pin of the logic block.

9. A computer software product for calculating a delay time of a signal passing through a logic level circuit which consists of a plurality of logic blocks from pin-to-pin delay time, which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time, which is delay time of a signal passing between two logic blocks connected to each other, the product making a computer execute the following processes:

(a) calculating the pin-to-pin delay time and the block-to-block delay time without calculating in aging caused by hot carrier effect;

(b) calculating variations of delay times that signals pass through transistors connected to the input and output pin caused by said aging; and,

(c) modifying the pin-to-pin delay time and the block-to-block delay time calculated in step (a) by the variations calculated in step (b).

10. A computer software product for calculating pin-to-pin delay time T_{iopath_aged} , which is delay time of a signal passing between an input pin and an output pin of a logic block, and block-to-block delay time $T_{connect_aged}$, which is delay time of a signal passing between said two logic blocks connected to each other by a computer, the product making a computer execute the following processes:

(a) calculating an amount of stress S_{in} cast by the input pin and an amount of stress S_{out} cast by the output pin according to the following expression:

when it is assumed that a load capacitance is represented by C [pF], constants

$$S = \alpha \left(\frac{C}{W} \right)^\beta$$

depending on change of inputted waveform are represented by α and β , and width of channel of the transistor connected to the pin is represented by W [μm];

(b) calculating an aged delay time of the input pin δ in [%] and an aged delay time δ_{out} [%] according to the following expression:
when it is assumed that a constant depending on physical structure of the pin

$$\delta = \gamma \left(\frac{\tau Sf}{\varepsilon_1 e^{\kappa T}} \right)^{\frac{1}{\varepsilon_2}}$$

is represented by γ , the term of a guarantee of the LSI is represented by τ [hour], constants depending on process are represented by ε_1 , ε_2 and κ , working frequency is represented by f [Hz], and absolute temperature is represented by T [K];

(c) calculating the pin-to-pin delay time T_{iopath_aged} and the block-to-block delay time $T_{connect_aged}$ according to the following expressions:

$$T_{iopath_aged} = T_{iopath_fresh} (1 + \lambda_{in} \delta_{in} + \lambda_{out} \delta_{out})$$

$$T_{connect_aged} = T_{connect_fresh} (1 + \lambda_{out} \delta_{out})$$

when it is assumed that pin-to-pin delay time and block-to-block delay time calculated ignoring aging caused by hot carrier effect are represented by T_{iopath_fresh} [ps] and $T_{connect_fresh}$ [ps], and ratios of delay times occurred at the input stage and the output stage to whole delay time occurred from the input pin to the output pin are represented by λ_{in} and λ_{out} .

11. A computer software product for calculating a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, the product making a computer execute the following processes:

(a) calculating delay times of all said logic blocks according to the product as in claim 9; and,

(b) calculating the delay time of the logic level circuit from the result of step (a).

27

12. A computer software product for calculating a delay time occurred to a signal passing through a logic level circuit that consists of a plurality of logic blocks, the product making a computer execute the following processes:

- (a) calculating delay times of all said logic blocks according to the product as in claim 10; and,
- (b) calculating the delay time of the logic level circuit from the result of step (a).

Add B7