Kirill Zakharov Trigonometric interpolation

trigInter[fun_, n_, L_, point_] := Module[{n2 = 2 (n + 1), xm, ym, a0, an, ak, bk}, xm = Table[
$$\frac{L}{n2}$$
 m, {m, 1, n2}]; ym = fun /@ xm // N; a0 = $\frac{1}{n2}$ Sum[ym[i], {i, 1, n2}]; ak = Table[$\frac{2}{n2}$ Sum[ym[i]] Cos[k 2 $\frac{Pi}{n2}$ i], {i, 1, n2}], {k, 1, n - 1}]; bk = Table[$\frac{2}{n2}$ Sum[ym[i]] Sin[k 2 $\frac{Pi}{n2}$ i], {i, 1, n2}], {k, 1, n - 1}]; an = $\frac{1}{n2}$ Sum[(-1) ym[i], {i, 1, n2}]; a0 + Sum[ak[k]] Cos[k * 2 $\frac{Pi}{L}$ * point] + bk[k] Sin[k * 2 $\frac{Pi}{L}$ * point], {k, 1, n - 1}] + an] visualization[fun_, n_, L_] := Show[{Plot[fun[k], {k, -2 Pi, 2 Pi}, PlotLegends \rightarrow {"Initial function"}], Plot[trigInter[fun, n, L, x] /. x \rightarrow k, {k, -Pi, Pi}, PlotStyle \rightarrow Red, PlotLegends \rightarrow {"Interpolant"}]}, PlotRange \rightarrow Full] trigInter[Cos, 6, 2 Pi, x] 7.93016 \times 10⁻¹⁸ + 1. Cos[x] + 7.93016 \times 10⁻¹⁸ Sin[x] + 3.17207 \times 10⁻¹⁷ Sin[2 x]

Test

visualization[Cos, 4, 2 Pi]

 $fun[x_] := Cos[x] + Sin[x]$

visualization[fun, 3, 2 Pi]

 $fun1[x_] := (Sin[3x])^2$

visualization[fun1, 3, Pi/3]

