Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Revisione dell'interfaccia grafica di un software CRM con l'uso di AngularJS

Tesi di laurea triennale

Relatore	
Prof.Paolo Baldan	
	Lav

Laureando
Davide Stocco

Anno Accademico 2017-2018

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Pinco Pallino presso l'azienda Azienda S.p.A. Gli obbiettivi da raggiungere erano molteplici.

In primo luogo era richiesto lo sviluppo di ... In secondo luogo era richiesta l'implementazione di un ... Tale framework permette di registrare gli eventi di un controllore programmabile, quali segnali applicati Terzo ed ultimo obbiettivo era l'integrazione ...

Organizzazione del testo

```
Il primo capitolo descrive ...
Il secondo capitolo descrive ...
Il terzo capitolo approfondisce ...
Il quarto capitolo approfondisce ...
Il quinto capitolo approfondisce ...
Il sesto capitolo approfondisce ...
Nel settimo capitolo descrive ...
```

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- * per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[g]}$;
- * i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

"Life is really simple, but we insist on making it complicated"

— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. NomeDelProfessore, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Settembre 2018

Davide Stocco

Elenco delle figure

1.1	Logo di Sanmarco Informatica
1.2	Logo di StageIT
	Logo di Java
2.2	Logo di Liferay
2.3	Logo di Google Web Toolkit
2.4	Logo di Apache Tomcat
3.1	Caso d'uso generale-funzionalità amministratore
4.1	Use Case - UC0: Scenario principale

Elenco delle tabelle

1.1	Obiettivi dello stage	4
1.2	Pianificazione del lavoro	4
1.3	Analisi preventiva dei rischi	Ę
4.1	Tabella del tracciamento dei requisti funzionali	17
4.2	Tabella del tracciamento dei requisiti qualitativi	17

Capitolo 1

Introduzione

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea site:agile-manifesto.

1.1 L'azienda

Figura 1.1: Logo di Sanmarco Informatica

Sanmarco Informatica Spa è un'azienda italiana leader nella progettazione e realizzazione di soluzioni a supporto della riorganizzazione di tutti i processi aziendali e professionali.

Ha sede a Grisignano di Zocco (VI), è attiva da 35 anni, può contare su più di 400 dipendenti e collaboratori, per seguire quotidianamente più di 1000 aziende clienti.

Il punto di forza dell'azienda sta nella formazione del personale e nella ricerca, campi nei quali viene investito in media il 20% del fatturato annuo.

, Il prodotto di punta di Sanmarco Informatica è JGalileo, un software gestionale $ERP^{[g]}$ utilizzato, oltre che da aziende europee, anche in USA, Russia e Cina.

Nel Centro di Sviluppo dell'azienda viene adottato il metodo Agile: esso nasce nel 2001 e definisce i dodici principi fondamentali per sviluppare con tempistiche e procedure ottimizzate un software che sia per il cliente una soluzione di successo. La metodologia "Agile" privilegia gli individui e le interazioni più che i processi e gli strumenti, il software funzionante più che la documentazione esaustiva, la collaborazione col cliente più che la negoziazione dei contratti, rispondere al cambiamento più che seguire un piano.

L'obiettivo è quello di garantire all'azienda tutta la flessibilità e la versatilità necessaria alla realizzazione di progetti efficaci. Questo metodo di lavoro si concentra su una collaborazione più face-to-face fra colleghi con cadenza regolare e ravvicinata, permettendo di mantenere e perfezionare man mano il focus sui progetti, valorizzando i nuovi punti di vista e le nuove risposte alle problematiche da affrontare.

In particolare, il metodo di gestione progetti "SCRUM" prevede di dividere il progetto in blocchi (Sprint), all'interno dei quali vengono sviluppate delle funzioni/moduli/applicazioni complete (denominate storie) pronte per la potenziale installazione al cliente. Il termine Scrum è mutuato dal termine del Rugby che indica il pacchetto di mischia ed è una metafora del team di sviluppo che deve lavorare insieme in modo che tutti gli attori del progetto spingano nella stessa direzione, agendo come un'unica entità coordinata.

1.2 L'offerta di Stage

Da anni l'azienda collabora con l'università di Padova alla ricerca di neolaureati da formare ed inserire nel proprio organico e, grazie ad iniziative come StageIt le possibilità di incontro tra studenti ed aziende sono molto più concrete e produttive.

Figura 1.2: Logo di StageIT

Gli studenti hanno infatti l'occasione di conoscere svariate realtà, anche piccole, che operano nel settore nei più disparati rami applicativi mentre per le aziende, oltre ad essere un'importante vetrina ed un momento di confronto con potenziali partner e concorrenti, costituisce anche la possibilità di conoscere tanti giovani studenti in un

breve arco temporale.

1.2.1 Il progetto

Tra le varie proposte di stage che quest'azienda offriva, mi è stato proposto di collaborare a quello riguardante il loro software CRM.

Un software CRM, acronimo di Costumer Relationship Management, è un prodotto che permette all'utilizzatore di mantenere una rete di relazioni con clienti e potenziali clienti, non soltanto al fine di mantenere una relazione commerciale ma di fiducia reciproca che si possa protrarre nel tempo, anche attraverso l'impiego di strumenti di fidelizzazione come newsletters, campagne ed eventi.

In questo contesto si inserisce lo stage cui ho preso parte e che aveva come obiettivo la ridefinizione della form principale di tale software, dapprima realizzato in Java con traduzione in JavaScript a cura della libreria GWT ed ora richiesto in JavaScript nativo, utilizzando una libreria da definire in fase di svolgimento dello stage dopo un'adeguata analisi delle alternative open-source disponibili sul mercato¹.

1.2.2 Gli obiettivi

Gli obiettivi del progetto di stage sono elencati nella tabella 1. Essi sono classificati da:

- * un ID, che rappresenta univocamente l'obiettivo;
- * un aggettivo di importanza dell'obiettivo;
- * una breve descrizione testuale.

L'ID è formato da una lettera iniziale (P o F), ad indicare se il requisito da soddisfare sia di tipo *Produttivo* o *Formativo*, e da un numero sequenziale.

L'agettivo di importanza può essere: Obbligatorio, Desiderabile oppure Facoltativo, in base alla necessità che ha lo lo stesso di essere soddisfatto.

La breve descrizione testuale descrive nel modo più concreto e riassuntivo possibile l'obiettivo.

1.2.3 Pianificazione del lavoro

In accordo con l'azienda, è stato redatto un piano di lavoro a granularità settimanale. Il piano, mostrato in tabella, descrive per ogni settimana di stage il lavoro di approfondimento e sviluppo necessari al raggiungimento degli obiettivi.

Settimana 1:

La prima settimana è stata volta all'introduzione nell'azienda, al concetto di CRM, all'installazione dell'ambiente di sviluppo ed ad una prima fase di formazione sul funzionamento del software JGalileo CRM.

Settimane 2 e 3:

Nella seconda settimane di stage ho approfondito la conoscenza del software JGalileo CRM e attuato l'analisi dei requisiti tecnici ed applicativi, che si è protratta fino alla

 $^{^1\}mathrm{queste}$ ed altre tecnologie verranno discusse nel dettaglio nei capitoli seguenti.

Importanza Descrizione F1 Obbligatorio Acquisizione delle competenze di base sulla famiglia di software denominata CRM. $\overline{F2}$ Obbligatorio Acquisizione delle competenze di base sul software di sviluppo GWT. F3 Desiderabile Acquisizione di competenze avanzate sul linguaggio di programmazione utilizzato per lo sviluppo del prototipo. P1 Obbligatorio Analisi dei requisiti tecnici ed applicativi. P2Obbligatorio Analisi dell'User Interface. P3 Analisi degli Use Case. Obbligatorio Sviluppo di un prototipo che implementi le P4Obbligatorio stesse funzionalità del componente esistente. $\overline{P5}$ Facoltativo Implementazione di nuove funzionalità di interazione con l'utente sul prototipo sviluppato.

Tabella 1.1: Obiettivi dello stage

fine della terza settimana.

Settimane 4:

La quarta settimana è stata dedicata all'analisi di varie alternative open-source per il successivo sviluppo del prototipo.

Settimane 5-8:

La seconda metà dello stage è stata interamente dedicata allo sviluppo del prototipo, utilizzando la tecnologia scelta durante il precedente periodo.

Periodo	Dal	Al	Descrizione
Prima settimana	21-05	25-05	Ricerca, studio e documentazione per inquadra-
			mento del progetto. Introduzione al concetto
			di CRM ed al software JGalileo CRM
Seconda settimana	28-05	Al 1-06	Analisi dei requisiti applicativi e tecnici
Terza settiamana	04-06	08-06	Analisi dei requisiti applicativi e tecnici
Quarta settiamana	11-06	15-06	Ricerca degli ambienti di sviluppo open sour-
			ce soddisfacenti i requisiti richiesti e scelta
			dell'ambiente di sviluppo
Quinta settimana	18-06	22-06	Sviluppo prototipo
Sesta settimana	25-06	29-06	Sviluppo prototipo
Settima settimana	02-07	06-07	Sviluppo prototipo
Ottava settimana	09-07	13-07	Sviluppo prototipo

Tabella 1.2: Pianificazione del lavoro

1.3 Analisi dei rischi

Ho voluto analizzare una serie di rischi che sarebbero potuti incorrere durante il periodo di stage. Sono riassunti nella tabella

Tabella 1.3: Analisi preventiva dei rischi

Descrizione	Trattamento	Rischio
La scelta di una libreria Java-	Analisi approfondita delle alter-	Alto
Script che non soddisfacesse gli	native disponibili e dialogo con	
scopi dello stage avrebbe signifi-	il Tutor aziendale per trovare la	
cato una grande perdita di tempo	soluzione più adeguata	
e il dover ripartire da capo con lo		
sviluppo		

1.4 Obiettivi personali

Nell'intraprendere il mio percorso di stage, oltre agli obiettivi stabiliti nel Piano di Lavoro, avevo anche degli obiettivi personali da raggiungere, di seguito elencati:

- * Conoscere uno dei rami lavorativi in cui è possibile inserirsi al termine del percorso di studi;
- * Conoscere tecnologie nuove e non affrontate durante il percorso di studi;
- * Confrontarmi con software di larga scala;
- * Confrontarmi con altre persone già inserite nel mondo del lavoro;
- * Migliorarmi grazie all'aiuto del tem di lavoro;
- * Migliorarmi nella gestione di tempi/risorse nel contesto di un lavoro assegnatomi.

Capitolo 2

Processi e metodologie

In questo capitolo verranno descritte le principali tecnologie che ho approfondito durante l'esperienza di stage.

2.1 Tecnologie utilizzate

Durante la mia esperienza di stage ho potuto prendere contatto con molte tecnologie differenti e che non avevo incontrato durante il corso di studi. Esse spaziano dall'ambiente server a quello client. L'approfondimento di tali tecnologie, specialmente nelle prime settimane di stage, è stato fondamentale per capire il funzionamento del software

da modificare

2.1.1 Java

Figura 2.1: Logo di Java

Java è uno dei linguaggi di programmazione general-purpose più popolari al mondo. Rilasciato nel 1995, riprende molta della sintassi dal linguaggio C e C++, ma spostando parte delle responsabilità prima lasciate ai programmatori, come la gestione della memoria, alla *Java Virtual Machine (JVM)*: una macchina virtuale su chi viene eseguito tutto il codice Java.

La presenza di una macchina virtuale crea un livello aggiuntivo tra il sistema operativo e l' *IDE* di sviluppo: Questo permette al linguaggio Java di aderire al principio *Write Once Run Anywhere (WORA)*: Il codice compilato (bytecode) può essere eseguito da qualsisasi computer provvisto di una JVM, senza necessitare di ricompilazioni e perfino adattamenti del codice sorgente in base al sistema operativo presente sul computer. Java è inoltre molto utilizzato per eseguire applicazioni client-server, cioè applicazioni (Client) che per ottentere i dati necessari si appoggiano ad un fornitore (Server), che recupera per loro i dati necessari, in maniera del tutto trasparente al client e quindi all'utente.

 Java dispone di una libreria proprietaria specializzata, ma in J
Galileo CRM tale libreria è sostituita da $\it Liferay$.

2.1.2 Liferay

Figura 2.2: Logo di Liferay

Liferay è una tecnologia *enterprise portal* open source, realizzato in Java. Per enterprise portal si intende un sistema informatico evoluto, in grado di integrare informazioni, processi e persone allo scopo di fornire valore aggiunto in termini di:

- * Gestione del Single Sign On;
- * Semplice personalizzazioni ad hoc per ogni cliente;
- * Analisi delle pagine, in termini di accessi, click, download molto semplice;
- * Integrazione tra funzionalità e dati di diversi sistemi in nuove componenti definite portlets.

Le portlets sono il cuore del sistema di Liferay. Esse infatti permettono di concentrare lo sviluppo solamente sulla gestione della funzionalità principale, lasciando a liferay la gestione degli accessi, dei menù di navigazione e degli altri componenti globali dell'applicazione.

2.1.3 GWT

Figura 2.3: Logo di Google Web Toolkit

GWT, acronimo di *Google Web Toolkit* è un insieme di tool open source che permette la creazione ed il mantenimento di complesse applicazioni front-end JavaScript scritte in Java.

GWT infatti si occupa di tradurre il codice scritto in Java in codice JavaScript, interpretabile da tutti i moderni browsers Tutto il codice Java può essere compilato ed eseguito grazie ai file Ant inclusi. Ant è un progetto open source della Apache foundation, volto ad automatizzare il processo di build. è simile al comando make di Unix, ma scritto in Java.

Il plug-in di Google per Eclipse (IDE in uso presso Sanmarco Informatica) è molto comleto, offrendo la possibilità di creare progetti, farne il debug, il testing, meccanismi di validazione e di controllo della sintassi.

2.1.4 Apache Tomcat

Apache Tomcat è un web server, cioè un' applicazione web che, in esecuzione su di un server, gestisce le richieste di trasferimento tra le varie pagine web di un client. In particolare, Tomcat opera utilizzando servlet, cioè oggetti scritti in Java molto

Figura 2.4: Logo di Apache Tomcat

usati nella generazione di pagine web dinamiche. Queste servlet, in JGalileoCRM non vengono direttamente scritte in Java, ma sono scritte con JavaServer Pages (JSP): JSP è una tecnologia di programmazione web, scritta in Java, che si basa sull'uso di speciali tag all'interno di una pagina HTML, con cui possono essere chiamate funzioni scritte in linguaggio Java o JavaScript. A runtime, le pagine JSP vengono tradotte automaticamente in servlet utilizzabili da Tomcat.

Il vantaggio principale di questa tecnologia rispetto, ad esempio, a PHP, consiste nel poter scrivere tutto il codice, frontend e backend in un solo linguaggio di programmazione: Java.

Inoltre permette la creazioni di applicazioni web dinamiche, rispetto all'utilizzo di codice HTML statico.

2.1.5 Databases

Un database, o base di dati, è un insieme di dati omogeneo memorizzato in un elaboratore, che può essere interrogato attraverso uno dei linguaggi di interrogazione esistenti, con lo scopo di ottenere una parte dei dati memorizzati. JGalileoCRM utilizza due databases per gestire i propri dati:

Database SQL

Il primo database utilizzato dal software sopracitato è un comune database SQL: esso è un database relazionale, cioè opera creando tabelle che vengono messe in relazione tra loro tramite gli attributi inseriti nelle tabelle stesse.

Questo database è utilizzato per la gestione di tutti i dati diversi dai dati personali dei clienti e dei contatti.

Database AS400

AS/400 (Application System 400)è un è un minicomputer sviluppato a partire dal 1988 dall'IBM per usi prevalentemente aziendali, come supporto del sistema informativo gestionale.

Il punto di forza sta nel database integrato con il sistema operativo, che permette la gestione dei dati attraverso una suite di programmi e librerie altamente specializzati. Attualmente consente di eseguire tutte le operazioni disponibili su di un comune server web, grazie ai continui aggiornamenti che hanno portato, ad esempio, all'installazione di PHP direttamente a livello di sistema operativo. Questo database viene usato, in

Sanmarco Informatica, per contenere tutti i dati degli utenti, sia interni che esterni, nonchè i dati relativi ai contatti.

2.1.6 Hibernate

Hibernate è una piattaforma middleware open-source per gestire la persistenza dei dati in un database.

è largamente utilizzato per la gestione dei dati di applicazioni web scritte in Java, in quanto i dati vengono rappresentati attraverso degli oggetti Java chiamati entità. Un'entità hibernate si sostituisce logicamente alla tabella reale del database. In questo modo il programmatore può operare sul database come fosse un oggetto Java, semplificando di molto le operazioni di lettura/scrittura e di modifica delle tabelle stesse.

2.1.7 DBeaver

DBeaver è un client SQL, con anche la funzione di tool di amministrazione. La sua applicazione desktop è scritta in Java e si basa sulla piattaforma Eclipse. Dbeaver consente la visualizzazione grafica delle tabelle del database SQL sopra citato ed inoltre su di esse è possibile eseguire queries scritte in appositi file di script.

2.1.8 JavaScript

JavaScript è un linguaggio di scripting orientato agli oggetti ed agli eventi. Viene utilizzato principalmente come linguaggio per la logica di presenti

Viene utilizzato principalmente come linguaggio per la logica di presentazione di applicazioni web. Ciò consiste nella creazione di script, scatenati dall'utente per mezzo di strumenti quali mouse e tastiera, che producono effetti dinamici ed interattivi lato client, cioè nell'interfaccia utente. Questo linguaggio eredita la sintassi dal sopracitato Java (derivato comunque dal linguaggio C), ma differisce sostanzialmente da esso per alcuni motivi:

- * JavaScript è un linguaggio interpretato: cio significa che non è necessaria la compilazione perchè esso venga eseguito, bensì sarà il browser che, a runtime, interpreta il codice ed esegue i calcoli necessari;
- * a differenza di Java, javascript è debolmente tipizzato: ciò significa che una variabile può assumere diversi tipi, a seconda del suo utilizzo;
- * Javascript è un linguaggio debolmente orientato all'ereditarietà tra oggetti, altro aspetto dai cui differisce in maniera sostanziale da Java.

Analisi delle alternative

Durante la mia esperienza di stage era richiesto, come illustrerò dettagliatamente nel capitolo successivo, l'analisi e la successiva scelta di librerie JavaScript open-source da impiegare nella reimplementazione della componente form di JGalileo CRM, con campi che fossero creati dinamicamente a partire da file JSON.

Ho impiegato circa 40 ore di lavoro per documentarmi sulle varie librerie oggi esistenti, e mi sono focalizzato sulle librerie che seguono:

React

React è una libreria JavaScript open-source sviluppata da Facebook a partire dal 2013. è utilizzata, oltre che per Facebook stesso, per una moltitudine di applicazioni web come WhatsAppWeb, Netflix, Aribnb, BBC,...

Le principali caratteristiche di React sono:

- * One way data binding: Singifica che l'HTML, quindi la pagina visibile all'utente, non è in grado di modificare il componente stesso. L'unico modo per modificare un componente è scatenare un evento che modifichi il componente, che a sua volta renderizzerà la modifica sullo schermo.
- * VirtualDOM: React opera su di una rappresentazione del DOM, ciò vuol dire che il programmatore può sviluppare pensando che ad ogni cambiamento la pagina venga interamente renderizzata nuovamente: in realtà React valuta le differenze tra il DOM reale e quello virtuale, renderizzando in maniera efficiente solamente le parti interessate al cambiamento.

Alcuni aspetti negativi comprendono invece:

- * Consumo di risorse: a causa del virtualDOM, sono necessarie molte risorse per l'esecuzione, specialente in termini di RAM da parte del browser;
- * Difficoltà con le form: I valori dei campi dati delle form sono passati utilizzando dei riferimenti (a causa del one way data flow descritto in precedenza), ciò va contro le best practices ed, in form molto grandi, causa sensibili peggioramenti in termini di prestazioni.

Angular

Angular è un framework, cioè un'infrastruttura per la creazione di applicazioni composta da un'insieme di funzionalità, sviluppato da Google e disponibile in due versioni: AngularJS ed Angular.

AngularJS viene rilasciato nel 2012 e si dichiara, citando la documentazione ufficiale

quello che HTML avrebbe dovuto essere se fosse stato progettato per sviluppare applicazioni.

AngularJS ha quindi l'obiettivo di esaltare l'aspetto dichiarativo dell'HTML da un lato, e fornire degli strumenti per la creazioni di componenti per la gestione della logica applicativa di un'applicazione.

Le principali caratteristiche comprendono:

- * Supporto al pattern MVC;
- * Two ways data binding: La pagina HTML modifica direttamente lo stato del componente, che viene realizzato mediante l'uso di controller;
- * Dependency injection.

Nonostante fosse ormai uno dei framework più adottati a livello mondiale per costruire SPA, Google ha deciso di far uscire, nel 2016, una versione (chiamata genericamente Angular oppure Angular 2+) che modifica radicalmente il framework, tanto da non essere compatibile con Angular JS.

Questo cambiamento, dapprima molto criticato dalla comunità di sviluppatori, non ha

inficiato sulla popolarità di Angular, che rimane anche nella nuova versione uno dei framework più utilizzati.

Angular 2+: La seconda versione di Angular si differenzia con la precedente per queste caratteristiche:

- * typeScript: Angular2+ è stato scritto in typeScript, una sorta di super-set di JavaScript a cui vengono aggiunti costrutti come classi, interfacce e moduli.
- * Sparisce il two ways data binding: Quello che era stato il punto di forza di AngularJS si è rivelato una debolezza in termini di prestazioni e soprattutto di memory leak. Resta comunque attivabile quando necessario.
- * Componenti: spariscono l'idea di scope e controllers, tutta la logica di un componente un è racchiusa all'interno di un componente, esportato poi da un modulo.

Vue.js

Vue.js è un framework rilasciato nel 2014 da Evan You, ex dipendente Google, con l'intento di prendere solo le parti migliori di AngularJS per creare qualcosa di molto più leggero.

è stato sviluppato soprattutto per la costruzione di interfacce utente, ma comunque è possibile creare intere SPA.

Vue.js prende spunto sia da AngularJS (two way binding ottimizzato) che da React(VirtualDOM, componenti).

La diffusione relativamente ridotta rende difficoltosa la ricerca della soluzione a problemi che si presenteranno durante lo sviluppo.

Scelta finale

Nella scelta finale del framework sono stati presi in considerazione i pregi e difetti illustrati sopra, naturalmente riportati all'obiettivo finale dello stage, ma anche i vincoli personali che mi sono imposto ed i vincoli aziendali che mi sono stati imposti.

- * Angular: La prima scelta ricadeva su Angular2+, per la grande diffusione e per le API specifiche per le form, ma il vincolo aziendale che mi è stato imposto è stato quello di non appesantire troppo il software, riutilizzando se possibile i framework già presenti.
 - Essendo AngularJS già utilizzato in alcune portlet, la mia scelta è alla fine ricaduta su quello, anche a causa dell'impossibilità che hanno i due framework a coesistere;
- * React: Ho scartato l'utilizzo di questa libreria a causa della già citata mancanza di soluzioni ad-hoc per le form e perché ho già utilizzato questa tecnologia durante lo sviluppo del progetto di ingegneria del software;
- * Vue: Ho scartato Vue.js soprattutto a causa del vincolo che mi è stato imposto, consideravo affascinante l'idea di cimentarmi con un linguaggio nuovo e di crescente popolarità.

2.1.9 IDE e Sistema Operativo

Sanmarco informatica utilizza l'IDE Eclipse nella versione 4.4 (Luna), mentre per quanto riguarda il sistema operativo ho sviluppato con Windows 7 Professional, ma alcuni colleghi utilizzano indifferentemente macOS.

2.2 Vincoli implementativi

Come già anticipato, mi sono stati imposti alcuni vincoli da rispettare durante l'esperienza di stage:

- st Tutte le tecnologie eventualmente utilizzate avrebbero necessariamente dovuto essere open-source;
- * Evitare il più possibile di appesantire ultieriormente il software con nuove librerie o framework, ma possibilmente riutilizzare quelli già in uso.

Capitolo 3

Descrizione dello stage

In questo capitolo descriverò in maniera approfondita lo scopo dello stage, focalizzandomi sugli obiettivi da raggiungere e le metodologie per farlo. Seguirà poi una descrizione dettagliata dei casi d'uso di interesse.

3.1 Introduzione al progetto

3.2 Dominio applicativo

3.2.1 Tipi di utenti

JGalileo CRM è stato pensato per essere utilizzato da svariate tipologie di utenti: i casi d'uso seguiranno solamente i due utenti più importanti:

* amministratore: che ha il potere di creare nuovi utenti e configurare l'interfaccia finale aggiungendo e togliendo portlet. Inoltre può accedere al pannello di controllo e monitorare la lista di utenti, modificarne i permessi e visualizzare svariate statistiche di utilizzo del prodotto;

3.3. CASI D'USO 13

* utente semplice, cui è permesso solamente utilizzare il software, senza aggiungere o togliere portlet e naturalmente senza avere la possibilità di creare altri utenti.

Quest'ultima è la tipologia di utenti più comune, infatti la clientela di JGalileo CRM è composta solamente da utenti semplici, mentre solamente i membri del team di sviluppo possiedono i permessi di amministratore.

3.2.2 Funzionalità

Le funzionalità prese in esame si sviluppano soprattutto sull'interazione tra l'utente semplice e la form la cui creazione era l'obiettivo del mio stage. Quindi i casi d'uso riguarderanno principalmente:

- * Inserimento di un nuova categoria di clienti;
- * Inserimento di attività ed opportunità;
- * visualizzazione dettagliata dei clienti già inseriti;
- * visualizzazione dettagliata delle attività ed opportunità già inserite;
- * modifica e salvataggio dei dati;
- * invio di email, fax e newsletter.

In particolare, le categorie di clienti inseribili tramite form sono:

- * Leads: Sono persone ed aziende che possono avere interesse ai prodotti e servizi dell'utente. Anche un primo contatto, come ad esempio un biglietto da visita, è considerato un lead;
- * **Accounts**: Contengono i dati di un'azienda con cui è già presente un qualche tipo di relazione commerciale, anche solo una roposta d'acquisto;
- * Contatti: I contatti consistono in persone fisiche con cui è già presente un qualche tipo di relazione commerciale. Spesso account e contatto sono in relazione tra di loro, ma è anche possibile che un contatto non abbia nessun account associato (ad esempio un privato).

Per quanto riguarda la parte di amministrazione, verrà illustrata solamente la procedura di inserimento di un nuovo utente.

3.3 Casi d'uso

I casi d'uso (use case) sono una tecnica dell'ingegneria del software per ottenere un'analisi precisa e senza ambiguità dei requisiti di un sistema, con l'obiettivo di perseguire la creazione di software di qualità.

I casi d'uso sono solitamente rappresentati in forma testuale, attraverso la descrizione dettagliata del caso d'uso stesso in termini di attori coinvolti, pre e post condizioni, e da una rappresentazione grafica, definita Use Case Diagram, con l'ausislio di un altro linguaggio, UML.

Tutti i casi d'uso saranno qui presentati attraverso descrizione testuale, mentre la rappresentazione grafica verrà utilizzata solamente per gli scenari più generali.

I casi d'uso qui riportati non si riferiscono all'intero software a causa della sua grande complessità ed ampiezza d'utilizzo, ma solamente agli scenari principali che, direttamente od indirettamente, sono influenzati dal codice da me scritto durante l'esperienza di stage.

3.3.1 Classificazione dei casi d'uso

Ogni caso d'uso è classificato secondo la seguente convenzione:

UC[codice]

UC[codice] Dove [codice] è un codice numerico che identifica univocamente il caso d'uso.

Esso è sequenziale e gerarchico, dunque se ad esempio il caso d'uso "X" necessita di un ulteriore livello di dettaglio si procede individuando i sotto-casi d'uso "X.Y", "X.Y.Z" etc.. dove:

- * X: il codice identificativo del caso d'uso padre, solitamente generico e difficilemte descrivibile nel dettaglio;
- * Y: codice figlio, identifica un caso d'uso più particolare rispetto al padre (che lo contiene).
- * Z: codice nipote, individua lo scenario più particolare possibile.

X parte con indice 1 e valore crescente, mentre Y e Z parto dall'indice 0 con valore crescente.

Indicherò con il suffisso "_G" tutti quei casi d'uso di alto livello, a segnalare che si tratta di una visione generale del contesto.

3.3.2 Struttura dei casi d'uso

Ogni caso d'uso verrà descritto in maniera testuale, utilizzando la seguente struttura:

- * Attori: Gli attori comprendono le entità umane che interagiscono con il sistema. Nella fattispecie, vengono distinti tre tipologie di attori:
 - Amministratore: Questa tipologia di attore è quella riservata solamente agli sviluppatori del prodotto;
 - Utente non autenticato: indica un attore non ancora autenticato nel sistema;
 - Utente autenticato, indicato anche semplicemente come Utente, indica un utente non amministratore che viene riconosciuto dal sistema e può quindi usufruirne.
- * **Pre-condizione**: Indica le condizioni che devono necessariamente essere soddisfatte affinchè sia possibile l'interazione dell'attore con lo specifico caso d'uso;
- * **Post-condizione**: Indica le condizioni in cui l'attore si verrà a trovare dopo la fine dell'interazione con lo specifico caso d'uso;
- * Descrizione: Riporta una breve descrizione testuale del caso d'uso.

3.4 Funzionalità amministratore

Figura 3.1: Caso d'uso generale-funzionalità amministratore

Capitolo 4

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UCO: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

 $V=\,di\,\,vincolo$

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Capitolo 5

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

- 5.4 Design Pattern utilizzati
- 5.5 Codifica

Capitolo 6

Verifica e validazione

Capitolo 7

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A