Improving Distributional Similarity with Lessons Learned from Word Embeddings

Omer Levy, Yoav Goldberg, Ido Dagan (Bar-Ilan University) [TACL 2015]

発表: 原 忠義 (東京大学 坂田・森研究室)

前置き

- 時間の都合で内容をかなり割愛しています
 - ◆ 多少補足を付けましたので、発表後ご質問 or 必要に応じご確認いただければ...
 - ◆ 人工知能学会での岡崎先生の講演資料 http://www.slideshare.net/naoakiokazaki/20 150530-jsai2015
 - 本論文含む近年の分散表現研究を整理
 - 本紹介が解りづらいようでしたらご参考に...

概要:

単語分散表現モデルの性能比較

【対象】: 4モデル

- ◆ ニューラルモデル (SGNS, GloVe)
- ◆ 頻度ベースモデル (PPMI, SVD)

【知見】: ニューラルモデル の優位性は 「ハイパーパラメータの最適化」によるもの

- ◆ ニューラルモデルのパラメータを頻度べー スモデルにも導入することで同等の性能に
 - global にはアプローチの有利不利はない

比較する4手法(モデル)

- 頻度ベース表現モデル
 - ◆ Positive Pointwise Mutual Information (PPMI) 行列
 - Singular Value Decomposition (<u>SVD</u>)
- ニューラルモデル
 - ◆ Skip-grams with negative sampling (**SGNS**)
 - Global Vectors (GloVe)
- どれも単語を bag of context-words で表現
 - ◆ シンプルかつ高性能*

^{* [}Mikolov et al. 2013, Pennington et al., 2014]

対象モデル (1/4): Positive Pointwise Mutual Information (**PPMI**) 行列*

- $\blacksquare M_{i,j}^{PPMI} = PPMI(w_i, c_j) = \max(PMI(w_i, c_j), 0)$
 - $igoplus PMI(w_i, c_j) = \log \frac{\hat{P}(w_i, c_j)}{\hat{P}(w_i)\hat{P}(c_j)}$ 負の発散を防ぐ
 - ◆ 対象単語 w と文脈 c の相互情報量
 - ◆ 0との max をとることで正の値のみに
 - ◆【弱点】希な文脈 c で頻度少の w の影響大

↓w c→	have	new	drink	bottle	ride	speed	read
beer	0	0	2.04	1.97	0	0	0
car	0.09	0.49	0	0	0.13	0.55	0

^{* [}Bullinaria and Levy, 2007]

対象モデル (2/4): Singular Value Decomposition (**SVD**)*

- M^{PPMI}を rank d の密な空間へ低次元化
- $\blacksquare M^{PPMI} = U \cdot \Sigma \cdot V^{\mathsf{T}}$
 - ◆ *U,V*: 直交行列
 - \bullet Σ: 固有値対角行列 \to Σ_d : ランク d に限定
- $\blacksquare M_d^{SVD} = U_d \cdot \Sigma_d \cdot V_d^{\mathsf{T}}$
 - $igoplus W^{SVD} = U_d \cdot \Sigma_d, \quad C^{SVD} = V_d$
- 計算効率向上, より一般化

対象モデル (3/4): Skip-grams with negative sampling (**SGNS**)*1

- ニューラルモデル
 - ◆ 単語と文脈を d-次元ベクトル \vec{w} , \vec{c} で表現
- 観測 $\vec{w} \cdot \vec{c}$ を最大/非観測 $\vec{w} \cdot \vec{c_N}$ を最小に
 - - unigram分布 $P_D(c) = \#(c)/|D|$ (D:ドメイン)
- word2vec において実装*1
- ■【特徴】Shifted PMI*2

 - $iglaw W \cdot C^{\mathsf{T}}$ を $\log k$ でシフトした M^{PMI} で分解

^{*1} Mikolov et al., 2013 *2 Levy and Goldberg, 2014

対象モデル (4/4): Global Vectors (**GloVe**)*

- ニューラルモデル, 単語と文脈: *d*-次元
- 単語・文脈ベクトルは以下を充足

 - ◆ *b_w*, *b_c*: バイアス項 ← <u>自由度追加</u>
- 目的関数: 頻度対数化行列 + バイアス項
- 単語 w: context ベクトルと<u>その context</u> における単語ベクトルの和 $(\vec{c} + \vec{w})$ で表現

モデル性能の従来知見 に対する疑問

- ニューラル > 頻度ベース *1 ... ?
- GloVe > SGNS *2 ... ?
- 数学的な目的や利用情報は似通っている
 - ◆ 単語の bag-of-contexts 表現に基づく
 - ◆ SGNS は暗に単語-文脈 PMI行列を分解
- → モデルの差以外に、明示・非明示的に調整 されているパラメータが影響しているのでは?

各モデルで共通化・調整可能にし、性能比較を

^{*2} Pennington et al., 2014

- 【準備】: ハイパーパラメータの共通化
 - ◆ ニューラルモデル側のパラメータを明示化→ 従来モデルでも調整できるよう導入
- 【実施】: 複数タスクセット上での比較検証
 - ◆モデルの(最適パラメータでの)性能比較
 - ◆各パラメータの有効性検証

【まとめ】:

- 【準備】: ハイパーパラメータの共通化
 - ◆ ニューラルモデル側のパラメータを明示化→ 従来モデルでも調整できるよう導入
 - 【実施】: 複数タスクセット上での比較検証
 - ◆モデルの(最適パラメータでの)性能比較
 - ◆各パラメータの有効性検証

【まとめ】:

- 【準備】: ハイパーパラメータの共通化
 - ◆ ニューラルモデル側のパラメータを明示化→ 従来モデルでも調整できるよう導入
- 【実施】: 複数タスクセット上での比較検証
 - ◆モデルの(最適パラメータでの)性能比較
 - ◆各パラメータの有効性検証

【まとめ】:

実験設定 (1/2): 単語表現の学習

- コーパス: 英語 Wikipedia (2013/8 dump)
 - ◆ 非テキスト除外・文区切り・tokenization
 - ◆ 7750万文、15億トークン
 - ◆ 出現100回未満の単語は無視 → 189,533語
- SVD, SGNS, GloVe: 500次元で学習
- SGNS: word2vec (の改造版)を使用
- GloVe: オリジナル実装を用いて 50 iteration

実験設定 (2/2):タスクセット (**単語類似度**/Analogy)

割愛

- 6種類(人手による類似度スコア付)
 - ◆ WordSim353*1 Similarity*2 ("WS-S")
 - ◆ WordSim353 Relatedness*2 ("WS-R")
 - ◆ MEN*3 ("MEN")
 - ◆ Mechanical Turk*⁴ ("M. T.")
 - ◆ Rare Words*5 ("Rare")
 - ◆ SimLex-999*6 ("SimL")
- 評価:単語ペアをコサイン類似度で順位付 →人間判定との相関関係(Spearman's p)

^{*1}Finkelstein et al., 2002 *2Zesch et al., 2008他 *3Brui et al., 2012, *4Radinsky et al., 2013, *5Luong et al., 2013, *6Hill et al., 2014

→ 各データセットでのベスト性能

性能比較 (1/3):

【 頻度ベースモデルに近い設定*】

【*設定値(各詳細は後ほど)】
context window (win) = 2
dynamic context (dyn) = none
subsampling (sub) = none

negative samples (**neg**) = $\underline{1}$ context smoothing (**cds**) = $\underline{1}$ add context vector (**w+c**) = $\underline{\text{only } w}$ eigenvalue weight (**eig**) = $\underline{0.0}$ ◆ SGNSがベストを達成 ◆ SGNS以外がベストを達成

性能比較 (2/3):

【word2vec (SGNS) での設定*】

【*設定値(各詳細は後ほど)】 context window (win) = 2 dynamic context (dyn) = with subsampling (sub) = dirty

negative samples (**neg**) = $\frac{5}{2}$ context smoothing (**cds**) = $\frac{0.75}{2}$ add context vector (**w+c**) = $\frac{0.19}{2}$ eigenvalue weight (**eig**) = $\frac{0.0}{2}$

▶ 各データセットでのベスト性能

性能比較 (3/3):

【 win = 2 以外をモデル毎に調整】

頻度ベース設定 → word2vec 設定 → 個別調整 で性能の大幅改善(最大 +0.157, 平均 +0.06)

モデル選択よりパラメータ調整の方がインパクト大

従来の知見は正しいのか?

- ニューラルモデル > 頻度ベース *1 → △
 - × 類似度: SGNS平均 < SVD平均
 - O Analogy: [SGNS, GloVe] >> [PPMI, SVD]
- GloVe > SGNS *2 \rightarrow ×
 - Analogy の1件を除いて全て SGNS > GloVe

^{*1} Baroni et al., 2014

^{*2} Pennington et al., 2014

- 【準備】: ハイパーパラメータの共通化
 - ◆ ニューラルモデル側のパラメータを明示化→ 従来モデルでも調整できるよう導入
- 【実施】: 複数タスクセット上での比較検証
 - ◆モデルの(最適パラメータでの)性能比較
 - ◆各パラメータの有効性検証

【まとめ】:

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	dyn	none, with	全モデル
処	sub	none, dirty, clean	全モデル
理	del	none, with	全モデル
Ħ	neg	1, 5, 15	PPMI, SVD, SGNS
算	cds	1, 0.75	PPMI, SVD, SGNS
後	W+C	only w , $w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, both	全モデル

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	dyn	none, with	ムナ <u>ニ</u> ョ ま 会 中 粉 ス 並 田 <i>ナ</i> コ
処	sub	none, dirty, cles	事前実験で効果なし(説明は割愛)
理	del	none, with	(記り)は可复/
計	neg	1, 5, 15	PPMI, SVD, SGNS
算	cds	1,00	PPMI, SVD, SGNS
後	W+C	Orly $w, w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, botl	h 全モデル

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	dyn	none, with	全モデル
処	sub	none, dirty, clean	全モデル
理	del	none, with	全モデル
計	neg	1, 5, 15	PPMI, SVD, SGNS
算	cds	1, 0.75	PPMI, SVD, SGNS
後	W+C	only w , $w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, both	全モデル

Context Window Size と その効果

- **Context Window Size**: win = [2 / 5 / 10]
 - ◆ 単語の前後 win 単語ずつを context にする
- ■【知見】: PPMI,SVD は狭めが良い?

↓ベスト性能モデルにおける Window Size (8テスト内訳)

	win = 2	win = 5	win = 10	計テスト数
PPMI	7	1	0	8
SVD	7	1	0	8
SGNS	2	3	3	8
GloVe	1	3	4	8

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	dyn	none, with	全モデル
処	sub	none, dirty, clean	全モデル
理	del	none, with	全モデル
計	1	4 5 15	PPMI, SVD, SGNS
算	人刀テー	タに影響 75	PPMI, SVD, SGNS
後	W+C	only w , $w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, both	全モデル

前処理における共通化: SGNS のパラメータ → 全手法へ

- **Dynamic context window**: **dyn** = [none/with]
 - ◆ 各トークン毎に context を 1~window size (win) でサンプリング→ 距離に基づく重みを動的に決定
- <u>Subsampling</u>: sub = [none/dirty/clean]
 - ◆ 頻度 $f \ge$ 閾値tの単語を確率 $1 \sqrt{t/f}$ で除去*
- Deleting Rare Words: del = [none/with]
 - ◆ 希単語の除去(事前実験で効果なし→カット)

前処理パラメータの効果 (1/2): Dynamic Context Window

■ 悪化傾向(一部 Analogy タスクには有効)

↑ dyn = none → with での変化(他パラメータは最適化)

前処理パラメータの効果 (2/2): Subsampling

■ (言及はないが…)SVD には割と有効? 5.0% 0.0% -5.0% -10.0% ■ SGNS ■ GloVe -15.0% NS'S NS'R WEN WIT. Bare

↑ **sub** = none → dirty での変化(他パラメータは最適化)

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	—• 当 =五	文脈の関連度計算	全モデル
処	半 市	スMV/別廷及司 昇	全モデル
理	de	none, with	全モデル
計	neg	1, 5, 15	PPMI, SVD, SGNS
算	cds	1, 0.75	PPMI, SVD, SGNS
後	W+C	only w , $w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, both	全モデル

関連度計算における共通化: SGNS から PPMI (SVD)への導入

- **Shifted PMI**: neg = [1 / 5 / 15]
 - ◆ 負例サンプリング [PMI (w,c) log k] を PPMI へ
 - Shifted PPMI (SPPMI):
 - SPPMI (w,c) = max ((PMI(w,c) log k), 0)
- Context Distribution Smoothing: cds = [1 / 0.75]
 - ◆ 全ての context count を α乗で底上げ*
 - 希単語に対する PMI の偏重を軽減 → PPMIにも
 - - $\bullet \widehat{P_{\alpha}}(c) = \#(c)^{\alpha} / \sum_{c} \#(c)^{\alpha}$

^{*} $\alpha = 0.75$ が良好 (Mikolov et al. 2013)

関連度計算パラメータの効果 (1/2): Shifted PMI

【GloVe】: 設定不可 【SGNS】: >1が良い

【SVD】: >1で劇的悪化【PPMI】:タスク次第

↑ neg = 1 → > 1 での変化(他パラメータは最適化)

関連度計算パラメータの効果 (1/2): Shifted PMI

【GloVe】: 設定不可 【SGNS】: >1が良い

【SVD】: >1で劇的悪化【PPMI】:タスク次第

`neg = 1 → > 1 での変化 (他パラメータは最適化)

関連度計算パラメータの効果 (2/2): Context Distribution Smoothing

- ■どの手法にも有効 (GloVeには適用不可)
 - ◆希な単語の影響を抑えることができる
 - → PMIの弱みを克服できる

↑ cds = 1 → 0.75 での変化(他パラメータは最適化)

	パラメータ名	確かめた設定値	導入可能なモデル
	win	2, 5, 10	全モデル
前	dyn	none, with	全モデル
処	sub	none, dirty, clean	全モデル
理	del	none with	全モデル
計	結果の単	語ベクトルを修正	PPMI, SVD, SGNS
算	C¢'	1, 0.75	PPMI, SVD, SGNS
後	w+c	only w , $w + c$	SVD, SGNS, GloVe
処	eig	0, 0.5, 1	SVD
理	nrm	none, row, col, both	全モデル

後処理におけるパラメータ: 出力=単語ベクトルの修正 (1/3)

- Adding Context Vectors: w+c = [only w/w+c]
 - ◆ GloVe: 出力において文脈ベクトルを足す
 - $\bullet \ \vec{v}_{cat} = \vec{w}_{cat} + \vec{c}_{cat}$
 - ◆ 単語間 cosine 類似度への効果(詳細割愛)
 - ●「2単語が近い文脈で現れやすい」という基準に 「お互いの文脈でも現れやすい」という基準を追加
 - ◆ 導入方針
 - SVD, SGNS: w, c で異なるベクトル作成 → 可能
 - PPMI: 疎で、追加基準の殆どが無効に → 見送り

後処理パラメータの効果 (1/3): Adding Context Vectors

■(言及はないが...)効果はまちまち →(可能なら)事前試行での検証は有意義?

↑ **w+c** = only w → w+c での変化 (他パラメータは最適化)

後処理におけるパラメータ: 出力=単語ベクトルの修正 (2/3)

- **Eigenvalue Weighting: eig = [0, 0.5, 1]**
 - igoplus SVDで $W^{SVD} = U_d \cdot \Sigma_d^p$ として p (=eig) を調整*
 - → W^{SVD}, C^{SVD} に「対称性」を持たせる
 - SGNS の対称性: W^{W2V}, C^{W2V}(非正規直交)
 - 一方に bias かからず → 経験的に良好に働く
 - \bullet SVD のデフォルト値 (p=1) では非対称的
 - $W = U_d \cdot \Sigma_d$ (正規直交) $\leftrightarrow C = V_d$ (非正規直交)
 - p = 0.5: $W = U_d \cdot \sqrt{\Sigma_d} \leftrightarrow C = V_d \cdot \sqrt{\Sigma_d}$
 - ullet p = 0: $W = U_d \leftrightarrow C = V_d$

後処理パラメータの効果 (2/3): Eigenvalue Weighting

- eig = 1: eig=0.5 / 0 と比べて結果が伴わず
 - ◆ 過去研究における SVD 低性能*の原因
 - → モチベーションは正しいが、デフォルト (eig
 - = 1)のまま利用するのは×

↓各 window size での eig に伴う性能(他パラメータ最適化)

win	eig	性能	win	eig	性能	win	eig	性能
	0	.612	5	0	.616		0	.584
	0.5	.611		0.5	.612	10	0.5	.567
	1	.551		1	.534		1	.484

^{*} Baroni et al. (2014)

性能比較の流れ

- 【準備】: ハイパーパラメータの共通化
 - ◆ ニューラルモデル側のパラメータを明示化→ 従来モデルでも調整できるよう導入
- 【実施】: 複数タスクセット上での比較検証
 - ◆モデルの(最適パラメータでの)性能比較
 - ◆各パラメータの有効性検証

【まとめ】:

◆実用上おすすめのモデル・パラメータ選択

まとめ: モデル・パラメータ選択に関する【実用上の】オススメ

- context distribution smoothing (cds = 0.75) は PMI の修正として常に使う
 - ◆ PPMI, SVD, SGNS にも利用可能
- SVD をデフォルトのまま (eig = 1) 使わない → symmetric variants のどれかを使用
- SGNS は頑健なベースライン
 - ◆必ずしもベストではないがさほど悪くもない
 - ◆最も学習が早くディスク・メモリを消費せず
- SGNS では多くの負例を利用
- SGNS, GloVe では w+c を試す価値あり
 - ◆再学習の必要もないので試し易い

結論

- よりマイナーと思われがちな最適化部分が 実は性能にインパクトがあることを示す
 - ◆ 近年のニューラルモデル導入における過度なデザイン偏重に疑問を投げる
- 十分に変数をコントロールした実験が重要
- 透明性のある & 再現可能な実験を
 - ◆ 皆コードを公開してはどうでしょうという話
 - ◆ この研究はコードを公開
 - http://bitbucket.org/omerlevy/hyperwords

時間の都合でスキップした内容 (ご質問あれば紹介いたします...)

- ■スキップした実験など
 - ◆ Analogy タスクにおけるモデル比較
 - ◆ ハイパーパラメータ vs. ビッグデータ
 - ◆ CBOW との比較
- ■スキップした分析・データなど
 - ◆ GloVe において「context を足す (c+w)」 ことが cosine 類似度へ与える効果の解釈
 - ◆ 過去の知見に関する検証の補足資料
 - ◆ Context Window Size に関する結果詳細

(補足1) Analogy タスクにおける モデル比較

実験設定 (2/2):タスクセット (単語類似度/Analogy)

- 「**a** is to **a*** as **b** is to **b***」の **b***を全語彙から推測する問題セット(2種類)
 - ◆ MSR's analogy [Mikolov et a., 2013]
 - 8,000問: 形態論・統語的な問題設定
 - ●「good is to best as smart is to smartest」
 - Google's analogy [Mikolov et al., 2013]
 - 19,544問: 統語的5割•意味的問題5割
 - ●「Paris is to France as Tokyo is to <u>Japan</u>」
- Wikipedia 出現100回以上語彙のみに絞る
 - → MSR: 7,118 問/Google: 19,258 問

Analogy タスクの回答手法

■ 以下の argmax を求める2種方法を実施 $arg \max_{b^* \in V_W \setminus \{a^*,b,a\}} \cos(b^*,a^*-a+b)$

Analogy タスクの回答手法

■ 以下の argmax を求める2種方法を実施

$$\arg \max_{b^* \in V_W \setminus \{a^*, b, a\}} \cos(b^*, a^* - a + b)$$

■ 3CosAdd (ベクトル和・差で)

$$\arg \max_{b^* \in V_W \setminus \{a^*, b, a\}} (\cos(b^*, a^*) - \cos(b^*, a) + \cos(b^*, b))$$

■ 3CosMul (乗算で・state-of-the-art*)

$$\arg\max_{b^* \in V_W \setminus \{a^*,b,a\}} \frac{\cos(b^*,a^*) \cdot \cos(b^*,b)}{\cos(b^*,a) + \varepsilon}$$
 $\varepsilon = 0.001$
(0除算を回避)

■ argmax が正解単語になる割合で評価

^{* [}Levy and Goldberg, 2014]

Analogy タスクの回答手法

- 以下の argmax を求める2種方法を実施 $arg max cos(b^*, a^* a + b)$ $b^* \in V_W \setminus \{a^*, b, a\}$
- 3CosAdd (ベクトル和・差で)

$$\operatorname{arg}$$
 データセット名: MS-Add, G-Add $(b^*,a)+\cos(b^*,b))$

■ 3CosMul (乗算で・state-of-the-art*)

$$\text{arg}$$
 データセット名: MS-Mul, G-Mul $\varepsilon = 0.001$ $\delta^* \in V_W \setminus \{a^*, b, a\}$ $\cos(b^*, a) + \varepsilon$ (0除算を回避)

■ argmax が正解単語になる割合で評価

^{* [}Levy and Goldberg, 2014]

→ 各データセットでのベスト性能

性能比較 (1/3):

【 頻度ベースモデルに近い設定*】

【*設定値(各詳細は後ほど)】
context window (win) = 2
dynamic context (dyn) = none
subsampling (sub) = none

negative samples (**neg**) = $\underline{1}$ context smoothing (**cds**) = $\underline{1}$ add context vector (**w+c**) = $\underline{\text{only } w}$ eigenvalue weight (**eig**) = $\underline{0.0}$ ◆ SGNSがベストを達成 ◆ SGNS以外がベストを達成

性能比較 (2/3):

【word2vec (SGNS) での設定*】

【*設定値(各詳細は後ほど)】 context window (win) = 2 dynamic context (dyn) = with subsampling (sub) = dirty

negative samples (**neg**) = $\frac{5}{2}$ context smoothing (**cds**) = $\frac{0.75}{2}$ add context vector (**w+c**) = $\frac{0.0}{2}$ eigenvalue weight (**eig**) = $\frac{0.0}{2}$

▶ 各データセットでのベスト性能

性能比較 (3/3):

【 win = 2 以外をモデル毎に調整】

頻度ベース設定 → word2vec 設定 → 個別調整 で性能の大幅改善(最大 +0.157, 平均 +0.06)

モデル選択よりパラメータ調整の方がインパクト大

ハイパーパラメータ vs アルゴリズム: (4/4): 学習と評価を分離 (win = 2)

- ・同データを用いた2分割交差検定
- ・未知データ上評価・学習量半分でも平均 1% 程度の差
- どの手法がベストとは一概に言えない結果

従来の知見は正しいのか?

- ニューラル > 頻度ベース *1 → △
 - × 類似度: SGNS平均 < SVD平均
 - O Analogy: [SGNS, GloVe] >> [PPMI, SVD]
- GloVe > SGNS *2 \rightarrow ×
 - 3CosAdd の1件を除いて全て SGNS > GloVe
- (analogy において) PPMI ≒ SGNS *3 → ×
 - SGNS の方が (MSR analogy で特に) 優勢
- **■** 3CosMul > 3CosAdd *3 → ○

^{*1} Baroni et al., 2014

^{*2} Pennington et al., 2014

^{*3} Levy & Goldberg, 2014

(補足2) ハイパーパラメータ VS. ビッグデータ

ハイパーパラメータ vs ビッグデータ (1/3): 実験設定

- 105億語超(7倍)からなるコーパスを作成
 - ◆ word2vec 用 85億語のコーパス* + UKWaC [Ferraresi et al., 2008]
 - ◆ 100回以上登場単語だけ使用→ 62万語
- 以下の範囲(24 = 16通り)で実験
 - broad context window (win = 10)
 - dynamic context window (dyn = with)
 - subsampling (sub = none, dirty)
 - \bullet shifted PMI (neg = 1, 5)
 - context distribution smoothing (cds = 1, 0.75)
 - adding context vectors (w+c = only w, w+c)

^{*}word2vec.googlecode.com/svn/trunk/demo-train-big-model-v1.sh

ハイパーパラメータ vs ビッグデータ (2/3): 使用手法の挙動

- SGNS: 半日で完了 ("SGNS-LS")
- GloVe: 50-iteration を数日で ("GloVe-LS")
- Count-base の手法をビッグデータで動かす のは技術的に challenging → 実施せず

ハイパーパラメータ vs ビッグデータ (3/3): 実験結果

- 単語類似度タスクの3/6がコーパス増加より パラメータ調整の方が効果あり(赤の矢印)
- Analogy にはコーパス増加が有効そう(青の矢印)

(補足3) CBOWとの比較

CBOW との比較 (1/2): 背景

- word2vec のもう一つのアルゴリズム
 - ◆ context window の各トークンを更に単語ベクトルの和で表現 → more expressive
 - ◆ より良い単語表現を引き出せる可能性
- 異なる知見の報告
 - ◆ SGNS > CBOW [Mikolov et al. 2013]
 - ◆ CBOW > SGNS [Baroni et al. 2014]

CBOW との比較 (2/2): 比較

- MSR Analogy タスクのみベスト
- (単語類似性タスクで改善されたという報告もある [Melamud et al. 2014])

(補足4) GloVe において 「context を足す (c+w)」 ことが cosine類似度へ与える 効果の解釈

後処理ハイパーパラメータ (1/3): Adding Context Vectors (w+c)

- GloVe 出力では context ベクトルを足す
- cosine 類似度への効果(の別解釈)
 - = 二次オーダの類似度関数に一次オーダ
 - の類似タームを追加

$$cos(x,y) = \frac{\vec{v}_{x} \cdot \vec{v}_{y}}{\sqrt{\vec{v}_{x}} \cdot \vec{v}_{x}} \sqrt{\vec{v}_{y} \cdot \vec{v}_{y}} = \frac{(\vec{w}_{x} + \vec{c}_{x}) \cdot (\vec{w}_{y} + \vec{c}_{y})}{\sqrt{(\vec{w}_{x} + \vec{c}_{x})} \cdot (\vec{w}_{x} + \vec{c}_{x})} \sqrt{(\vec{w}_{y} + \vec{c}_{y}) \cdot (\vec{w}_{y} + \vec{c}_{y})}$$

$$= \frac{\vec{w}_{x} \cdot \vec{w}_{y} + \vec{c}_{x} \cdot \vec{c}_{y} + \vec{w}_{x} \cdot \vec{c}_{y} + \vec{c}_{x} \cdot \vec{w}_{y}}{\sqrt{\vec{w}_{x}^{2} + 2\vec{w}_{x} \cdot \vec{c}_{x} + \vec{c}_{x}^{2}} \sqrt{\vec{w}_{y}^{2} + 2\vec{w}_{y} \cdot \vec{c}_{y} + \vec{c}_{y}^{2}}}$$

$$= \frac{\vec{w}_{x} \cdot \vec{w}_{y} + \vec{c}_{x} \cdot \vec{c}_{y} + \vec{w}_{x} \cdot \vec{c}_{y} + \vec{c}_{x} \cdot \vec{w}_{y}}{2\sqrt{\vec{w}_{x} \cdot \vec{c}_{x} + 1} \sqrt{\vec{w}_{y} \cdot \vec{c}_{y} + 1}}$$

$$(4)$$

Word, context ベクトルは正規化されている

後処理ハイパーパラメータ (1/3): Adding Context Vectors (w+c)

- GloVe: 出力では context ベクトルを足す
- cosine 類似度への効果 = 二次オーダの 類似度関数に一次オーダの類似項を追加

$$cos(x,y) = \frac{\vec{w}_x \cdot \vec{w}_y + \vec{c}_x \cdot \vec{c}_y + \vec{w}_x \cdot \vec{c}_y + \vec{c}_x \cdot \vec{w}_y}{2\sqrt{\vec{w}_x \cdot \vec{c}_x + 1}\sqrt{\vec{w}_y \cdot \vec{c}_y + 1}}$$

後処理ハイパーパラメータ (1/3): Adding Context Vectors (w+c)

- GloVe: 出力では context ベクトルを足す
- cosine 類似度への効果 = 二次オーダの 類似度関数に一次オーダの類似項を追加

2単語が似た context で出現傾向に基づき「置換可能」か否か

片方の単語がもう一方の単語の context で出現する傾向 [SVD, SGNS → PMI(w,c) / GloVe → log-count (+bias)]

$$cos(x,y) = \frac{\vec{w}_x \cdot \vec{w}_y + \vec{c}_x \cdot \vec{c}_y + \vec{w}_x \cdot \vec{c}_y + \vec{c}_x \cdot \vec{w}_y}{2\sqrt{\vec{w}_x \cdot \vec{c}_x + 1}\sqrt{\vec{w}_y \cdot \vec{c}_y + 1}}$$

後処理ハイパーパラメータ (1/3): Adding Context Vectors (w+c)

- GloVe: 出力では context ベクトルを足す
- cosine 類似度への効果 = 二次オーダの 類似度関数に一次オーダの類似項を追加

$$sim(x,y) = \frac{sim_2(x,y) + sim_1(x,y)}{\sqrt{sim_1(x,x) + 1}\sqrt{sim_1(y,y) + 1}}$$

■ 2単語が近い

=「2単語が近いcontext で現れやすい」 or「お互いの context で現れやすい」

後処理ハイパーパラメータ (1/3): Adding Context Vectors (w+c)

- GloVe: 出力では context ベクトルを足す
- cosine 類似度への効果 = 二次オーダの 類似度関数に一次オーダの類似項を追加
- 導入方針
 - ◆ SVD, SGNS: w, c で異なるベクトル作成 → trivial に導入可能
 - ◆ PPMI: 疎で、一次類似の殆どが無効→ 今回は導入を見送る
- \blacksquare w+c = [only w / w+c]

(補足5) 過去の知見に関する 検証の補足資料

従来の知見は正しいのか?

- ニューラル > 頻度ベース *1 → △
 - × 類似度: SGNS平均 < SVD平均
 - O Analogy: [SGNS, GloVe] >> [PPMI, SVD]
- GloVe > SGNS *2 \rightarrow ×
 - 3CosAdd の1件を除いて全て SGNS > GloVe
- (analogy において) PPMI ≒ SGNS *3 → ×
 - SGNS の方が (MSR analogy で特に) 優勢
- **■** 3CosMul > 3CosAdd *3 → ○

^{*1} Baroni et al., 2014

^{*2} Pennington et al., 2014

^{*3} Levy & Goldberg, 2014

過去の主張の再評価 (1/4): embedding は優れている*のか?

- 類似度: [SGNS平均] < [SVD平均] (win=2,5)
- analogy: [SGNS, GloVe] >> [PPMI, SVD]

* Baroni et al., 2014 による一連の評価

過去の主張の再評価 (1/4): embedding は優れている*のか?

- 類似度: [SGNS平均] < [SVD平均] (win=2,5)
- analogy: [SGNS, GloVe] >> [PPMI, SVD]

-貫した優劣なし

* Baroni et al., 2014 による一連の評価

過去の主張の再評価 (2/4): GloVe はSGNSより優れている*のか?

- あらゆるタスクで SGNS > GloVe
 - ◆ 3CosAdd のみ GloVe が 0.8point上回る

^{*} Pennington et al., 2014 による一連の実証

過去の主張の再評価 (2/4): GloVe はSGNSより優れている*のか?

- <u>あらゆるタスクで SGNS > GloVe</u>
- 過去実験*との設定の違い
 - ◆ ハイパーパラメータが可変(特にw+c)
 - ◆ Google analogy 以外でも評価している
 - ◆ 全手法を同じコーパス上で比較している
- GloVe では shifted PMI(neg) と context distribution smoothing (cds)が利用不可
 - ◆ 代わりに、より潜在性のある bias 調整ができるのに SGNS と決定的な差がつかず

^{*} Pennington et al., 2014 による一連の実証

過去の主張の再評価 (2/4): GloVe はSGNSより優れている*のか?

- <u>あらゆるタスクで SGNS > GloVe</u>
- 過去実験*との設定の違い
 - ◆ ハイパーパラメータが可変(特にw+c)
 - ◆ Google analogy 以外でも評価している
 - ◆ 全手法を同じコーパス上で比較している
- GloVe では shifted PMI(neg) と context distribution smoothing (cds)が利用不可
 - ◆ 代わりに、より潜在性のある bias 調整ができるのに SGNS と決定的な差がつかず

SGNS の方が優れているように見える

過去の主張の再評価 (3/4): analogy タスクにおいてPPMIはSGNSと同等*か?

- SGNS の方が明らかに優勢 (-)
 - ◆ MSR analogy タスクにおいて特に顕著

^{*} Levy & Goldberg, 2014 (Google/MSR analogy タスクでの検証)

過去の主張の再評価 (3/4): analogy タスクにおいてPPMIはSGNSと同等*か?

- SGNS の方が明らかに優勢
 - ◆ MSR analogy タスクにおいて特に顕著
- MSR→統語的関係(単複・時制変化)
 - ◆ context の把握(冠詞・機能語)が重要か
 - SGNS は個々の例への重みの付け方/ (PPMIではfilterされる)負の相関等でうまく 把握可能?
 - PPMI で単語に相対位置情報を付けることにより、比較的良い成績が確認されている*

^{*} Levy & Goldberg, 2014 (Google/MSR analogy タスクでの検証)

過去の主張の再評価 (4/4): 3CosMul は 3CosAdd より多くの analogy を再現可能*か?

- ■過去の知見と今回の知見が一致
- SVD と PPMI で特に顕著

^{*} Levy & Goldberg, 2014 (Google/MSR analogy タスクでの検証)

(補足6) Context Window Size に関する詳細結果

ハイパーパラメータ vs アルゴリズム: (4/6): 学習と評価を分離 (win = 2)

- ・同データを用いた2分割交差検定
- ・未知データ上評価・学習量半分でも平均 1% 程度の差
- どの手法がベストとは一概に言えない結果

ハイパーパラメータ vs アルゴリズム: (5/6): 学習と評価を分離 (win = 5)

- ・同データを用いた2分割交差検定
- ・未知データ上評価・学習量半分でも平均 1% 程度の差
- どの手法がベストとは一概に言えない結果

ハイパーパラメータ vs アルゴリズム: (6/6): 学習と評価を分離 (win = 10)

- ・同データを用いた2分割交差検定
- ・未知データ上評価・学習量半分でも平均 1% 程度の差
- どの手法がベストとは一概に言えない結果

(補足7) その他諸々 (スライドへの追記など)

関連度計算パラメータの効果 (1/2): Shifted PMI

【GloVe】: 設定不可 【SGNS】: >1が良い

【SVD】: >1で劇的悪化【PPMI】:タスク次第

```
5.0 Shifted-PPMI の恩恵が得られず
0.0 -5.0 -5.0 -10.0 -5.0 -10.0 -15.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0
```

↑ neg = 1 → > 1 での変化 (他パラメータは最適化)

性能比較 (4/4): 【学習・評価セットを分離】

- ・同データを用いた2分割交差検定
- 未知データ上評価・学習量半分でも平均 1% 程度の差
- どの手法がベストとは一概に言えない結果

前処理における共通化: SGNS のパラメータ → 全手法へ

- **Dynamic context window**: **dyn** = [none/with]
 - ◆ 各トークン毎に context を 1~window size (win) でサンプリング→ 距離に基づく重みを動的に決定
- <u>Subsampling</u>: sub = [none/dirty/clean]
 - ◆ 頻度f ≥閾値tの単語を確率 $1-\sqrt{t/f}$ で除去*
- Deleting Rare Words: del = [none/with]
 - ◆ 希単語の除去(事前実験で効果なし→カット)

(事前実験により効果がなかったため固定されたパラメータ2)

後処理におけるパラメータ: 出力=単語ベクトルの修正 (3/3)

- **Vector Normalization:**
 - nrm = [row / none / column / both]
 - row: 上記の(行)正規化
 - none: 全く正規化しない
 - column: W の行ではなく列を正規化* [Pennington et al. 2014]
 - both: 列も行も正規化
 - → 事前実験により nrm = [row] で固定