

98

Déterminer la valeur de a pour la fonction f définie sur \mathbb{R} par $f(x)=ax^3$ sachant que h(4)=32.

99

Déterminer la valeur de a pour la fonction g définie sur \mathbb{R} par $g(x)=ax^3$ sachant que g(2)=16.

100

Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^3 + b$. Déterminer les valeurs de a et b sachant que f(1) = 9 et f(-2) = -27.

101

Soit g la fonction définie sur \mathbb{R} par $g(t)=at^3+b$. Déterminer les valeurs de a et b sachant que g(1)=5 et g(-2)=-15.

102

Soit f la fonction polynôme de degré 3 définie sur $\mathbb R$ et qui admet trois racines : 4, -1 et 6, et telle que g(0)=48. Déterminer l'expression de g.

103

Soit g la fonction polynôme de degré 3 définie sur \mathbb{R} et qui admet trois racines : -2, 1 et 3, et telle que g(0)=9. Déterminer l'expression de g.

104

Déterminer l'expression de la fonction polynôme de degré 3 dont la représentation graphique est donnée ci-dessous.

105

Donner l'expression de la fonction g dont on obtient une représentation graphique par la translation de vecteur \vec{u} appliquée à la courbe représentative de la fonction f.

- 1. f est définie sur $[-8\ ;\ 8]$ par $f(x)=-6x^3$ et $\vec{u}\left(egin{array}{c} 0 \\ 15 \end{array}
 ight)$.
- 2. f est définie sur $\mathbb R$ par $f(x)=-20x^3$ et $\vec u \left(egin{array}{c} 0 \\ -10 \end{array} \right)$.

106

Donner l'expression de la fonction h dont on obtient une représentation graphique par la translation de vecteur \vec{v} appliquée à la courbe représentative de la fonction g.

- 1. g est définie sur $[-2 \ ; \ 4]$ par $g(x)=-3x^3$ et $\vec{v} \left(egin{array}{c} 0 \\ 5 \end{array} \right)$.
- 2. g est définie sur \mathbb{R} par $g(x)=-10x^3$ et $\vec{v}\begin{pmatrix}0\\-3\end{pmatrix}$.

107

Dans chacun des cas ci-dessous, indiquer quelle transformation permet de passer de la courbe représentative de la fonction f à celle de q.

- 1. f et g sont définies sur $[-4 \ ; \ 4]$ par $f(x)=-4x^3$ et $g(x)=-4x^3+3$.
- 2. f et g sont définies sur $[-6 \ ; \ 6]$ par $f(x)=5x^3$ et $g(x)=5x^3-7$.

108

Dans chacun des cas ci-dessous, indiquer quelle transformation permet de passer de la courbe représentative de la fonction g à celle de h.

- 1. g et h sont définies sur $[-10 \; ; \; 10]$ par $g(x) = -15x^3$ et $h(x) = -15x^3 + 3$.
- 2. g et h sont définies sur [-8 ; 12] par $g(x) = 6x^3$ et $h(x) = 6x^3 12$.

109

Associer chacune des fonctions représentées cidessous sur \mathbb{R} à sa courbe représentative.

- 1. $f(x) = 1.5x^3$
- 2. $g(x) = -2.5x^3$

110

Associer chacune des fonctions représentées cidessous sur \mathbb{R} à sa courbe représentative.

- 1. $f(x) = -0.4x^3 + 6$
- 2. $q(x) = 0.7x^3 4.5$

111

Pour chacune des fonctions suivantes, indiquer son sens de variation sur \mathbb{R} .

- 1. $f_1(x) = 3x^3$
- 2. $f_2(x) = -0.2x^3$
- 3. $f_3(x) = x^3 5$
- **4.** $f_4(x) = \frac{1}{4}x^3 + 7$

112

Pour chacune des fonctions suivantes, indiquer son sens de variation sur \mathbb{R} .

- 1. $g_1: x \mapsto 2x^3$
- 2. $g_2: x \mapsto -0.7x^3$
- 3. $g_3: x \mapsto x^3 1$
- **4.** $g_4: x \mapsto \frac{1}{5}x^3 + 2$

Problèmes

113

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - x - 2$. On note C sa courbe représentative dans un repère du plan. Un des points d'intersection de C avec l'axe des abscisses a pour coordonnées :

A. (-1; 0) **B.** (-2; 0) **C.** (0; -2) **D.** (5; 0)

114

On considère le point D de coordonnées D(6,5;-1,69). Soit f la fonction définie sur [0;6,5] par :

$$f(x) = 0.04x^3 - 0.3x^2.$$

On note C_f sa courbe représentative.

- 1. Le point O appartient-il à C_f ? Justifier la réponse par le calcul.
- 2. Calculer f(6,5).

115

On considère la fonction définie sur [-6; 6] par

$$f(x) = x^2 - 7x + 12.$$