

83. Les équations séparées des asymptotes à la conique d'équation

$$y^2 + xy - 2x^2 + 3y - 2x + 2 = 0$$
 sont

1. $2x - y - 1 = 0$

3. $y - x - 1 = 0$

5. $3y + 6x + 8 = 0$

y - 3x - 3 = 0

y - 3x - 1 = 0

3y - 3x + 1 = 0

2. $5y + 4x + 8 = 0$

4. $y - 2 = 0$

(M.-88)

2y - 2x + 1 = 0

y - 2x = 0

84. Déterminer les ordonnées des points de rencontre de la droite d'équation $x = -6$ avec chacune de deux tangentes issues du point P de coordonnées $(2 ; -1)$ à la parabole d'équation $y^2 = -4x$

1. -5 et 1 2. -5 et -1 3. -5 et 7 4. -1 et 5 5. -7 et 5 (B.-89)

85. La conique qui admet les asymptotes $y - x - 3 = 0$ et $y + x - 1 = 0$ et qui est tangente à Oy est :

1. $y^2 - x^2 - 4y - 3x + 4 = 0$

4. $y^2 - x^2 - 4y - 2x + 4 = 0$

2. $y^2 - x^2 - 6y - 2x + 9 = 0$

5. $y^2 - x^2 - 2y - 2x + 1 = 0$

3. $y^2 - x^2 - 4y - 5x + 4 = 0$

www.ecoles-rdc.net

(M.-89)

86. Déterminer les valeurs de α et de β pour que la courbe d'équation $y^2 - 2\beta xy + 3\alpha x^2 + 2\alpha y + 4\beta x - 6 = 0$ ait son centre au point $(1 ; 1)$. La somme $\alpha + \beta$ vaut :

1. 6 2. 2 3. -1/2 4. 1 5. -3

(M. 89)

87. On donne le point A(-3 ; 2) et la droite (d) $\equiv x + 3 = 0$. L'équation de la droite qui relie le point de contact des tangentes issues de A à la parabole qui a son foyer à l'origine et qui a comme directrice la droite (d) est :

1. $2y - x = 0$

3. $3y - 2x = 0$

5. $y - 2x = 0$

2. $y - x = 0$

4. $2y - 3x = 0$

(M.-89)

88. On mène les tangentes à l'hyperbole $\frac{x^2}{16} - \frac{y^2}{64} = 1$, parallèle à la droite $10x - 3y + 9 = 0$. La distance vaut :

1. $\sqrt{109}$ 2. $\frac{32\sqrt{109}}{109}$ 3. $\frac{48\sqrt{109}}{109}$ 4. $\frac{64\sqrt{109}}{109}$ 5. $\frac{\sqrt{109}}{109}$ (M.-89)

89. On donne la parabole $y^2 = 1/3x$. Le cercle qui est tangent à la parabole au point $(3 ; 1)$ et qui a son centre sur Ox a comme rayon :

1. $\frac{\sqrt{37}}{6}$

2. $\frac{\sqrt{10}}{3}$

3. $\frac{\sqrt{17}}{4}$

4. $\frac{37}{6}$

5. $\frac{\sqrt{26}}{5}$

(MB.-76)