Lab04

Experiment 1:

1 Construct a 4-bit synchronous binary down counter (b₃b₂b₁b₀) with the 1-Hz clock frequency from lab3 and use 4 LEDs to show the binary values.

I/O	$f_{ m crystal}$	b_3	b_2	b_1	b_0
Site	W5	V19	U19	E19	U16

Result:

https://lurl.cc/mrb00

Experiment 2:

2 Combine the 4-bit synchronous binary down counter from exp1 with a binary-to-sevensegment-display decoder (from lab2) to show the binary counting in 7-segment display.

Result:

https://lurl.cc/4veMc

Experiment 3:

- 3 Construct a single digit BCD down counter with a 2-Hz clock as the clock frequency and display on the seven-segment display.
 - 3.1 Construct a single digit BCD down counter.
 - 3.2 Construct a BCD-to-seven-segment display decoder.
 - 3.3 Combine the above two together.

Result:

https://lurl.cc/ZjWt0

Experiment 4:

4 Construct a 2-digit BCD up counter with a 1-Hz clock as the clock frequency and display on the seven-segment display.

Result:

https://lurl.cc/GIK2a