

Problem: Z be the set of all integers. Define a relation R on the set $Z \times Z$ by $_{(a,b)}R_{(c,d)}$ if and only if ad = bc, $\forall a,b,c,d \in Z$. Prove or disprove: R is a partial-order relation.

- Claim 1: Verify whether R is reflexive. (Yes/No)
- Claim 2: Verify whether R is anti-symmetric. (Yes/No)
- Claim 3: Verify whether R is transitive. (Yes/No)

Partial-Order Set (POSET)

- A non-empty set in which the partial-order relation is defined, is called the partial-order set (poset/POSET).
- Example: In the above example, the set *N* is POSET under which partial-order relation *R* is defined.

Equivalence classes

- Let A be a non-empty set and R be an equivalence relation defined in A.
- Let $a \in A$ be an arbitrary element. Then the elements $x \in A$ which satisfy ${}_{x}R_{a}$ form a subset of A which is called the *equivalence* class of a in A with respect to (w.r.to) R.
- Thus, A_a or [a] or cl(a) or \bar{a} = $\{x|_x R_a, x \in A\}$ is called the equivalence class of a in A w.r.to R.

Important properties of equivalence classes

- Let A be a non-empty set and R be an equivalence relation defined in A.
- Let $a \in A$ and $b \in A$ be two arbitrary elements. Then,
 - $\mathbf{0}$ $a \in [a];$
 - **2** $b \in [a] \Rightarrow [b] = [a];$

 - either [a] = [b] or $[a] \cap [b] = \emptyset$, that is, either two equivalence classes are identical or disjoint.

Problem(Equivalence classes): Let A be the set of triangles in a plane. Let R be a relation in A defined by "x is similar to y", where $x, y \in A$. Verify whether R is an equivalence relation. If so, find the equivalence classes.

- Part 1. Claim: R is an equivalence relation.
- Part 2. Here $R = \{(x, y) | x, y \in A, x \text{ is similar to } y\}$. Let $a \in A$ be an arbitrary triangle in the plane. Then,

$$[a] = \{x | x \in A \text{ and } {}_xR_a\}$$
$$= \{x | x \in A, x \text{ is similar to } a\}$$

is an equivalence class of $a \in A$.

Partitions

- Let S be a non-empty set. Then a partition of S is a collection of non-empty disjoint sub-sets of S whose union is S.
- In other words, if A_1, A_2, \ldots, A_n be the non-empty sub-sets of S, then the set $\mathcal{P} = \{A_1, A_2, \ldots, A_n\}$ is said to be a partition of S, if

 - ② either $A_i = A_j$ or $A_i \cap A_j = \emptyset$, for all i, j = 1, 2, ..., n.

Example (Partitions)

• Consider a set $S = \{1, 2, 3, ..., 22\}$. Now consider three subsets A, B and C of S as follows:

$$A = \{1, 4, 7, \dots, 22\},\ B = \{2, 5, 8, \dots, 20\},\ C = \{3, 6, 9, \dots, 21\}.$$

See that

$$\bigcirc$$
 $A \cup B \cup C = S$, and

Hence, the set $(P) = \{A, B, C\}$ forms a partition of S.

Relationship between Partitions and Equivalence relations

Theorem (Fundamental Theorem on Equivalence Relations)

An equivalence relation R in a non-empty set A partitions A and conversely, a partition of A defines an equivalence relation.

Problem(Equivalence classes): Let Z be the set of integers. Let R be a relation in Z defined by the open sentence "(x - y) is divisible by m", where $x, y \in Z$. Verify whether R is an equivalence relation. If so, find the equivalence classes.

- Part 1. Claim: R is an equivalence relation.
- Part 2. Equivalence classes.