Curs 2010-11

- 1. a) Definiu el concepte de conjunt obert. Proveu que la intersecció d'un nombre finit d'oberts és un obert. És sempre oberta la intersecció d'infinits oberts?
 - b) Calculeu l'adherència del conjunt

$$C = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x + y < 0 \}.$$

Justifiqueu detalladament les respostes.

Solució:

a) Definició de conjunt obert: Un conjunt $A \subset \mathbb{R}^n$ és obert quan cada punt d'A és el centre d'una bola oberta continguda en A, és a dir, per a cada $a \in A$ existeix r > 0 tal que $B(a,r) \subset A$.

La intersecció d'un nombre finit d'oberts és un obert: Siguin $A_1, \ldots, A_m \subset \mathbb{R}^n$ conjunts oberts. Volem provar que $A = A_1 \cap \cdots \cap A_m$ també és obert, és a dir. per a cada $a \in A$ existeix r > 0 tal que $B(a, r) \subset A$.

Sigui $a \in A$. Llavors $a \in A_j$, per a j = 1, ..., m, i, com que cada A_j és obert, existeix $r_j > 0$ tal que $B(a, r_j) \subset A_j$. Ara $r = \min(r_1, ..., r_m) > 0$ i compleix que $r \leq r_j$, per a j = 1, ..., m. Per tant, $B(a, r) \subset B(a, r_j) \subset A_j$, per a j = 1, ..., m. En conseqüència, $B(a, r) \subset A$. I hem provat que A és obert.

La intersecció d'infinits oberts no sempre és oberta: Provarem aquesta afirmació trobant una familia infinita de conjunts oberts tal que la seva intersecció no és oberta.

Sigui $a \in \mathbb{R}^n$. Per a cada r > 0 considerem la bola oberta B(a, r) centrada en a i de radi r. Aleshores $\bigcap_{r>0} B(a, r) = \{a\}$:

- $\cap_{r>0}B(a,r)\supset \{a\}$: És obvi!!
- $\cap_{r>0}B(a,r)\subset\{a\}$: Sigui $x\in\cap_{r>0}B(a,r)$. Llavors ||x-a||< r, per a tot r>0, i per tant $||x-a||\leq \lim_{r\to 0^+}r=0$. En conseqüència, ||x-a||=0, és a dir, x=a.

I és clar que el conjunt $\{a\}$ no és obert, ja que tota bola oberta centrada en a conté punts diferents de a: si $a=(a_1,\ldots,a_n)$ i r>0 llavors $(a_1+r/2,a_2,\ldots,a_n)\in B(a,r)\setminus\{a\}$.

b) El conjunt C està dibuixat en la figura següent:

Per tant, \overline{C} ha de ser el conjunt següent:

Així doncs, volem demostrar que

$$\overline{C} = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x + y \le 0 \}.$$

Per fer això provarem les dues inclusions següents:

- $\overline{C} \subset \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x + y \le 0\}$: Sigui $(x,y) \in \overline{C}$. Aleshores $(x,y) = \lim(x_n,y_n)$, essent $\{(x_n,y_n)\}_n$ una successió de punts de C. Com que $(x_n,y_n) \in C$, tenim que $x_n^2 + y_n^2 \le 1$ i $x_n + y_n < 0$, i passant al límit obtenim que $x^2 + y^2 = \lim x_n^2 + y_n^2 \le 1$ i $x + y = \lim x_n + y_n \le 0$, és a dir, $x^2 + y^2 \le 1$ i $x + y \le 0$, com voliem demostrar.
- $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x + y \le 0\} \subset \overline{C}$: Sigui $(x,y) \in \mathbb{R}^2$ tal que $x^2 + y^2 \le 1$ i $x + y \le 0$. Si x + y < 0 llavors $(x,y) \in C \subset \overline{C}$. Suposem doncs que x + y = 0, i per a cada enter $n \ge 1$ considerem el punt

$$(x_n, y_n) = \frac{n}{n+1}(x, y) + \frac{1}{n+1}\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \left(\frac{nx - \frac{1}{\sqrt{2}}}{n+1}, \frac{ny - \frac{1}{\sqrt{2}}}{n+1}\right).$$

Com que $\lim x_n = x$ i $\lim y_n = y$, tenim que $\lim (x_n, y_n) = (x, y)$. A més a més, $(x_n, y_n) \in C$, ja que

$$x_n^2 + y_n^2 = \frac{n^2(x^2 + y^2) - n\sqrt{2}(x + y) + 1}{(n+1)^2} = \frac{n^2(x^2 + y^2) + 1}{(n+1)^2} \le \frac{n^2 + 1}{(n+1)^2} < 1$$

i

$$x_n + y_n = \frac{n(x+y) - \sqrt{2}}{n+1} = \frac{-\sqrt{2}}{n+1} < 0.$$

I hem provat que $(x, y) \in \overline{C}$.

- 2. a) Definiu els conceptes de límit d'una funció en un punt i de límit d'una funció en un punt segons un subconjunt. Relacioneu els dos conceptes.
 - b) Sigui $U = \{ (x, y) \in \mathbb{R}^2 : x + y \neq 0 \}$. Per a cada $n \in \mathbb{Z}$ considereu la funció $f_n : U \to \mathbb{R}$ definida per

$$f_n(x,y) = \frac{\sin(x+y)}{(x+y)^n}.$$

Per a quins enters n existeix una funció contínua $g_n : \mathbb{R}^2 \to \mathbb{R}$ tal que $g_n(x,y) = f_n(x,y)$, per a tot $(x,y) \in U$?

Justifiqueu detalladament les respostes.

Solució:

- a) Definició de límit d'una funció en un punt: Siguin $a \in \mathbb{R}^n$ un punt d'acumulació d'un conjunt $D \subset \mathbb{R}^n$ i $f: D \to \mathbb{R}^m$ una funció. El límit de la funció f en a és $\ell \in \mathbb{R}^m$ ($\lim_{x \to a} f(x) = \ell$) quan es compleix qualsevol de les dues afirmacions (equivalents) següents:
- a) Per a cada $\varepsilon > 0$ existeix $\delta > 0$ tal que si $x \in D$ i $0 < \|x a\| < \delta$ llavors $\|f(x) \ell\| < \varepsilon$.
- b) Si $\{x_j\}_{j\geq 1}$ és una successió de punts de $D\setminus\{a\}$ tal que $\lim x_j=a$ llavors $\lim f(x_j)=\ell$.

Definició de límit d'una funció en un punt segons un subconjunt: Siguin $D \subset \mathbb{R}^n$ un conjunt i $f: D \to \mathbb{R}^m$ una funció. Siguin $a \in \mathbb{R}^n$ un punt d'acumulació d'un subconjunt E de D. Diem que el límit de la funció f en a segons el conjunt E és $\ell \in \mathbb{R}^m$ $(\lim_{\substack{x \to a \\ x \in E}} f(x) = \ell)$

quan el límit de $f_{/E}$ en a és $\ell \in \mathbb{R}^m$, és a dir, quan es compleix qualsevol de les dues afirmacions (equivalents) següents:

- a) Per a cada $\varepsilon > 0$ existeix $\delta > 0$ tal que si $x \in E$ i $0 < \|x a\| < \delta$ llavors $\|f(x) \ell\| < \varepsilon$.
- b) Si $\{x_j\}_{j\geq 1}$ és una successió de punts d' $E\setminus\{a\}$ tal que $\lim x_j=a$ llavors $\lim f(x_j)=\ell$.

Relacions entre els dos conceptes anteriors:

- 1. Si el límit de la funció f en a és $\ell \in \mathbb{R}^m$ aleshores el límit de la funció f en a segons qualsevol subconjunt E de D tal que a sigui punt d'acumulació d'E també és ℓ . Això és conseqüència directa de les dues definicions anteriors.
- 2. El recíproc de la implicació anterior és fals, és a dir, si existeix el límit d'una funció en un punt segons un subconjunt, pot no existir el límit d'aquesta funció en el punt. Per exemple, la funció $f: \mathbb{R}^2 \to \mathbb{R}$, definida per f(x,y) = 0, si $y \neq 0$, i f(x,0) = 1, compleix que $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E}} f(x) = 1$, essent $E = \mathbb{R} \times \{0\}$, ja que $f_{/E} \equiv 1$, i també que

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E'}}f(x)=0, \text{ essent } E'=\{0\}\times\mathbb{R}, \text{ ja que } f_{/E'\setminus\{(0,0)\}}\equiv 0. \text{ Per tant, 1 implica}$

que no existeix el límit de f en (0,0).

- 3. Siguin $D \subset \mathbb{R}^n$ un conjunt, $f: D \to \mathbb{R}^m$ una funció i $\ell \in \mathbb{R}^m$. Suposem que existeix un entorn V d'a tal que $V \cap (D \setminus \{a\}) = E_1 \cup \cdots \cup E_N$, essent a punt d'acumulació de cada conjunt $E_i \subset \mathbb{R}^n$. Aleshores són equivalents les dues afirmacions següents:
 - (a) $\lim_{x \to a} f(x) = \ell$
 - (b) $\lim_{\substack{x \to a \\ x \in E_j}} f(x) = \ell$, per a $j = 1, \dots, N$.

Demostració: (a) \Rightarrow (b): És conseqüència directa de 1.

(b) \Rightarrow (a): Com que V és un entorn d'a, existeix r > 0 tal que $B(a, r) \subset V$. Sigui $\varepsilon > 0$. La hipòtesi (b) implica que, per a $j = 1, \ldots, N$, existeix $\delta_j > 0$ tal que si

 $x \in E_j$ i $0 < \|x-a\| < \delta_j$ llavors $\|f(x)-\ell\| < \varepsilon$. Aleshores $\delta = \min(r, \delta_1, \dots, \delta_N) > 0$ i cada punt $x \in D$ tal que $0 < \|x-a\| < \delta$ compleix que

$$x \in B(a,r) \cap (D \setminus \{a\}) \subset V \cap (D \setminus \{a\}) = E_1 \cup \cdots \cup E_N,$$

per tant existeix $j \in \{1, ..., N\}$ tal que $x \in E_j$ i $0 < ||x - a|| < \delta_j$, i en conseqüència $||f(x) - \ell|| < \varepsilon$. I hem provat (a).

4. El resultat anterior és fals si canviem la descomposició finita $V \cap (D \setminus \{a\}) = \bigcup_{j=1}^N E_j$ per una descomposició infinita $V \cap (D \setminus \{a\}) = \bigcup_{j \in J} E_j$. Per exemple, considerem la funció $f : \mathbb{R}^2 \to \mathbb{R}$, definida per $f(x,y) = \frac{x^2}{y}$, si $y \neq 0$, i f(x,0) = 0. Aleshores $\mathbb{R}^2 \setminus \{(0,0)\}$ és la unió del conjunt $E' = \{(x,0) : x \in \mathbb{R} \setminus \{0\}\}$ i dels conjunts $E_c = \{(cy,y) : y \in \mathbb{R} \setminus \{0\}\}$, amb $c \in \mathbb{R}$. Observeu que (0,0) és punt d'acumulació de tots aquests conjunts, $\lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in E'}} f(x,y) = 0$ (ja que $f_{E'} \equiv 0$) i

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in E_c}} f(x,y) = \lim_{y\to 0} f(cy,y) = \lim_{y\to 0} \frac{(cy)^2}{y} = \lim_{y\to 0} c^2 y = 0, \text{ per a cada } c \in \mathbb{R}.$$

A més a més, $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in P}} f(x) = 1$, essent $P = \{(x,x^2): x\in\mathbb{R}\}$, ja que $f_{/P} \equiv 1$, i per tant 1 implica que no existeix el límit de f en (0,0).

b) Si existeix una funció contínua $g_n: \mathbb{R}^2 \to \mathbb{R}$ tal que $g_n(x,y) = f_n(x,y)$, per a tot $(x,y) \in U$, aleshores, per a cada $(x_0,y_0) \in \mathbb{R}^2 \setminus U$, tenim que

$$g_n(x_0, y_0) \stackrel{(a)}{=} \lim_{(x,y)\to(x_0,y_0)} g_n(x,y) \stackrel{(b)}{=} \lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in U}} g_n(x,y) \stackrel{(c)}{=} \lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in U}} f_n(x,y).$$

((a): perquè g_n és contínua en (x_0, y_0) ; (b): per 1; (c): ja que $g_n = f_n$ en U.) Ara, per a cada $(x_0, y_0) \in \mathbb{R}^2 \setminus U$, com que $\lim_{(x,y)\to(x_0,y_0)} (x+y) = 0$, es compleix que

$$\lim_{(x,y)\to(x_0,y_0)} f_n(x,y) = \lim_{(x,y)\to(x_0,y_0)} \frac{\sin(x+y)}{(x+y)^n} = \lim_{t\to 0} \frac{\sin t}{t^n} = \lim_{t\to 0} t^{1-n} \frac{\sin t}{t},$$

i com que
$$\lim_{t\to 0}\frac{\sin t}{t}=1 \quad \text{i} \quad \lim_{t\to 0}t^{1-n}=\left\{\begin{array}{ll} \text{no existeix,} & \text{si } n>1 \text{ i } n \text{ \'es parell,} \\ +\infty, & \text{si } n>1 \text{ i } n \text{ \'es senar,} \\ 1, & \text{si } n=1, \\ 0, & \text{si } n<1, \end{array}\right.$$

resulta que

(1)
$$\lim_{(x,y)\to(x_0,y_0)} f_n(x,y) = \begin{cases} \text{no existeix,} & \text{si } n > 1 \text{ i } n \text{ és parell,} \\ +\infty, & \text{si } n > 1 \text{ i } n \text{ és senar,} \\ 1, & \text{si } n = 1, \\ 0, & \text{si } n < 1. \end{cases}$$

En conseqüència, si existeix una funció contínua $g_n : \mathbb{R}^2 \to \mathbb{R}$ tal que $g_n(x,y) = f_n(x,y)$, per a tot $(x,y) \in U$, llavors $n \leq 1$ i, a més a més, $g_n \equiv 1$ en $\mathbb{R}^2 \setminus U$, si n = 1, i $g_n \equiv 0$ en $\mathbb{R}^2 \setminus U$, si n < 1.

Recíprocament, anem a comprovar que si $n \leq 1$ aleshores existeix una funció contínua $g_n : \mathbb{R}^2 \to \mathbb{R}$ tal que $g_n(x,y) = f_n(x,y)$, per a tot $(x,y) \in U$. Només cal comprovar que,

per a cada $n \leq 1$, la funció $g_n : \mathbb{R}^2 \to \mathbb{R}$ definida per $g_n = f_n$ en U, $g_n \equiv 0$ en $\mathbb{R}^2 \setminus U$, si n < 1, i $g_1 \equiv 0$ en $\mathbb{R}^2 \setminus U$, és contínua.

En efecte, com que f_n és una funció contínua en l'obert U (ja que és el quocient de dues funcions contínues en U i la del denominador no té cap zero en U), g_n és contínua en cada punt d'U. Sigui $(x_0, y_0) \in \mathbb{R}^2 \setminus U$. Aleshores

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in U}} g_n(x,y) = \lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in U}} f_n(x,y) \stackrel{\text{per }(1)}{=} \left\{ \begin{array}{l} 1, & \text{si } n=1\\ 0, & \text{si } n<1 \end{array} \right\} = g_n(x_0,y_0).$$

D'altra banda,
$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in\mathbb{R}^2\setminus U}} g_n(x,y) = \left\{ \begin{array}{ll} 1, & \text{si } n=1\\ 0, & \text{si } n<1 \end{array} \right\} = g_n(x_0,y_0).$$

Per tant,

$$\lim_{(x,y)\to(x_0,y_0)} g_n(x,y) = g_n(x_0,y_0)$$

(aqui hem utilitzat 3), i en conseqüència g_n és contínua en (x_0, y_0) .

En conclusió, existeix una funció contínua $g_n : \mathbb{R}^2 \to \mathbb{R}$ tal que $g_n(x,y) = f_n(x,y)$, per a tot $(x,y) \in U$, si i només si $n \leq 1$.

- 3. a) Demostreu que si una funció és diferenciable en un punt aleshores també és contínua en aquest punt.
 - b) Per a cada $\alpha \in \mathbb{R}$ considereu la funció $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}$ definida per

$$f_{\alpha}(x,y) = \begin{cases} \frac{(x^2 - y^2)^2}{(x^2 + y^2)^{\alpha}}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

- (b.1) Determineu els nombres $\alpha \in \mathbb{R}$ per als quals f_{α} és contínua.
- (b.2) Determineu els nombres $\alpha \in \mathbb{R}$ per als quals f_{α} és diferenciable.

Justifiqueu detalladament les respostes.

Solució:

a) Sigui $U \subset \mathbb{R}^n$ un obert i $f: U \to \mathbb{R}^m$ una funció diferenciable en un punt $a \in U$. Volem demostrar que f és contínua en a, és a dir,

$$\lim_{x \to a} f(x) = f(a)$$
 o, equivalentment, $\lim_{x \to a} (f(x) - f(a)) = 0$.

En efecte, si $x \in U \setminus \{a\}$ llavors f(x) - f(a) = g(x) ||x - a|| + Df(a)(x - a), on

$$g(x) = \frac{f(x) - f(a) - Df(a)(x - a)}{\|x - a\|}.$$

Però $\lim_{x\to a}g(x)=0$ (perquè f és diferenciable en a), $\lim_{x\to a}\|x-a\|=0$ i

$$\lim_{x \to a} Df(a)(x-a) = \lim_{y \to 0} Df(a)(y) = Df(a)(0) = 0$$

(perquè $Df(a): \mathbb{R}^n \to \mathbb{R}^m$ és lineal i per tant contínua en a i compleix que Df(a)(0) = 0). En conseqüència,

$$\lim_{x \to a} (f(x) - f(a)) = \left(\lim_{x \to a} g(x) \right) \left(\lim_{x \to a} \|x - a\| \right) + \lim_{x \to a} Df(a)(x - a) = 0.$$

b) Observeu que f_{α} és diferenciable en $\mathbb{R}^2 \setminus \{(0,0)\}$, ja que és el quocient de dues funcions diferenciables en $\mathbb{R}^2 \setminus \{(0,0)\}$ i la del denominador no té cap zero en $\mathbb{R}^2 \setminus \{(0,0)\}$. En conseqüència, f_{α} és diferenciable (i per tant contínua) en cada punt $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

(b.1) Ja sabem que f_{α} és contínua en cada punt $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Per tant, f_{α} és contínua si i només si f_{α} és contínua en l'origen, és a dir,

(2)
$$\lim_{(x,y)\to(0,0)} f_{\alpha}(x,y) = f_{\alpha}(0,0) = 0.$$

Com que

(3)
$$|f_{\alpha}(x,y)| \le \frac{(x^2+y^2)^2}{(x^2+y^2)^{\alpha}} = (x^2+y^2)^{2-\alpha}, \text{ per a cada } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},$$

i $\lim_{(x,y)\to(0,0)} (x^2+y^2)^{2-\alpha} = 0$, si $2-\alpha > 0$, resulta que f_{α} és contínua si $\alpha < 2$.

D'altra banda, tenim que $\lim_{x\to 0} f_{\alpha}(x,0) = \lim_{x\to 0} (x^2)^{2-\alpha} = \lim_{x\to 0^+} t^{2-\alpha} = \begin{cases} 1, & \text{si } \alpha=2, \\ +\infty, & \text{si } \alpha>2. \end{cases}$

Per tant, si $\alpha \geq 2$, no es compleix (2) i en conseqüència f_{α} no és contínua.

En conclusió, f_{α} és contínua si i només si $\alpha < 2$.

(b.2) Ja sabem que f_{α} és diferenciable en cada punt $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, i per tant f_{α} és diferenciable si i només si f_{α} és diferenciable en (0, 0).

Si f_{α} és diferenciable en (0,0) llavors existeixen $\frac{\partial f_{\alpha}}{\partial x}(0,0)$ i $\frac{\partial f_{\alpha}}{\partial y}(0,0)$, i

$$Df(0,0)(x,y) = \frac{\partial f_{\alpha}}{\partial x}(0,0)x + \frac{\partial f_{\alpha}}{\partial y}(0,0)y$$
, per a cada $(x,y) \in \mathbb{R}^2$.

Observeu que

$$\lim_{x \to 0} \frac{f_{\alpha}(x,0) - f_{\alpha}(0,0)}{x} = \lim_{x \to 0} x(x^2)^{1-\alpha} = \lim_{x \to 0} \frac{x}{|x|} |x|^{3-2\alpha} = \begin{cases} 0, & \text{si } \alpha < 3/2, \\ \text{no existeix, si } \alpha \ge 3/2, \end{cases}$$

ja que

$$\lim_{x \to 0^+} \frac{x}{|x|} |x|^{3-2\alpha} = \left\{ \begin{array}{ll} 0, & \text{si } \alpha < 3/2 \\ 1, & \text{si } \alpha = 3/2 \\ +\infty, & \text{si } \alpha > 3/2 \end{array} \right\} \quad \text{i} \quad \lim_{x \to 0^-} \frac{x}{|x|} |x|^{3-2\alpha} = \left\{ \begin{array}{ll} 0, & \text{si } \alpha < 3/2, \\ -1, & \text{si } \alpha = 3/2, \\ -\infty, & \text{si } \alpha > 3/2. \end{array} \right.$$

A més a més, $f_{\alpha}(x,y) = f_{\alpha}(y,x)$, per a cada $(x,y) \in \mathbb{R}^2$. Per tant:

$$\frac{\partial f_\alpha}{\partial x}(0,0) = \frac{\partial f_\alpha}{\partial y}(0,0) = 0, \text{ si } \alpha < 3/2, \text{ i } \frac{\partial f_\alpha}{\partial x}(0,0) \text{ i } \frac{\partial f_\alpha}{\partial y}(0,0) \text{ no existeixen, si } \alpha \geq 3/2.$$

En definitiva, si f_{α} és diferenciable en (0,0) llavors $\alpha < 3/2$ i $Df(0,0) \equiv 0$.

Recíprocament, suposem que $\alpha < 3/2$. Com que

$$\frac{|f_{\alpha}(x,y) - f_{\alpha}(0,0)|}{\|(x,y)\|} \stackrel{\text{per }(3)}{\leq} \frac{(x^2 + y^2)^{2-\alpha}}{\|(x,y)\|} = \|(x,y)\|^{3-2\alpha}, \text{ per a cada } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},$$

i $\lim_{(x,y)\to(0,0)} \|(x,y)\|^{3-2\alpha} = 0$, resulta que $\lim_{(x,y)\to(0,0)} \frac{f_{\alpha}(x,y) - f_{\alpha}(0,0)}{\|(x,y)\|} = 0$, i per tant f_{α} és diferenciable en (0,0).

En conclusió, f_{α} és diferenciable si i només si $\alpha < 3/2$.