This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

			10		
ACC.					
	*				
2					-96-7
	9	٠,			,
				* •	
¢:					
·		e e			0.
				* 4 * 4	
\$	× **		h	•	ŧ
					13/5
					*
· .	e e d Vision de	, iv			* *
		* .			· 1
ž,					- ig
4					
).					0.4
	3				
10.		· · · · · · · · · · · · · · · · · · ·		*	
€ 3		r • t	44.		
*		* '	error in the second		
*,			43.	*	
ŧ.					
*		T .	,		
r _i .					
3-	*				
		* *	Asset V.		· · · · · · · · · · · · · · · · · · ·
42-				Ψ.	
				* * * * * * * * * * * * * * * * * * * *	2 1
*			air X	*	3 AB
			a n		
5.48 ·					
Ġ.					, x
		4.0	. S. Mary		
			*		
		•		*	4
7.	NAME OF THE PROPERTY OF THE PR	, sec			
		* *		0.8	
		* . (
man like	المعلق المراجع المناصل المناصل المناطق المراجع المناصل المناص		المام ما الرفايا المشهدة من المطارب الا والمراجع الله الفراغ الروايا الأفراع	in the second se	
		.,			
		€			
,		- Ng	*		
ž.				*	
<i>Y</i>					
• •					
					H .
		· · · · · · · · · · · · · · · · · · ·		• \	
T.					
			ı		4
* 1		• •			
-14		* ***			* 2.19

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C11D 3/20, 1/62		A1	(11) International Publication Number:	WO 97/03169	
			(43) International Publication Date:	30 January 1997 (30.01.97)	
(21) International Application Number:	PCT/US	96/1155	(72) Inventors; and (75) Inventors/Applicants (for US only	TOINIU Too (LIC/LIC).	
(22) International Filing Date:	11 July 1996 (11.07.9			

US

US

(60) Parent Applications or Grants

(30) Priority Data:

60/001,057

08/621,019

Filed on

Filed on

Filed on

Filed on

Filed on

US

US

US

US

•
08/621,019 (CIP)
22 March 1996 (22.03.96)
08/620,627 (CIP)
22 March 1996 (22.03.96)
08/620,513 (CIP)
22 March 1996 (22.03.96)
08/621,285 (CIP)
22 March 1996 (22.03.96)
08/621,299 (CIP)
22 March 1996 (22.03.96)
08/621,298 (CIP)
22 March 1996 (22.03.96)
08/620,626 (CIP)

11 July 1995 (11.07.95)

22 March 1996 (22.03.96)

22 March 1996 (22.03.96)

22 March 1996 (22.03.96)

22 March 1996 (22.03.96)

22 March 1996 (22.03.96) 08/620,514 (CIP)

08/620,625 (CIP)

08/620,772 (CIP)

08/620,281 (CIP)

22 March 1996 (22.03.96) US 08/620,958 (CIP) 22 March 1996 (22.03.96) Filed on US 08/620,767 (CIP) Filed on 22 March 1996 (22.03.96)

(71) Applicant (for all designated States except US): THE PROC-TER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US).

TORDIL, Helen, Bernardo [US/US]; 7590 West Chester Road, West Chester, OH 45069 (US). WAHL, Errol, Hoffman [US/US]; 8021 Deershadow Lane, Cincinnati, OH 45242 (US). RINKER, Jennifer, Lea [US/US]; Apartment 4, 3529 Woodridge Boulevard, Fairfield, OH 45014 (US). VOGEL, Alice, Marie [US/US]; 6025 Dartford Way, Middletown, OH 45044 (US). DEMEYERE, Hugo, Jean, Marie [BE/BE]; Linthout Straat 59, B-1785 Merchtem (BE). DECLERCQ, Marc, Johan [BE/BE]; Ringlaan 77, Strombeek, B-1853 Bever (BE). GOSSELINK, Eugene, Paul [US/US]; 3754 Susanna Drive, Cincinnati, OH 45239 (US). LETTON, James, Carey [US/US]; 1247 Jeremy Court, Forest Park, OH 45240 (US), BACK, Deborah, Jean [US/US]; 7189 State Route 128, Cleves, OH 45002 (US). SEVERNS, John, Cort [US/US]; 7168 Basswood Drive, West Chester, OH 45069 (US). SIVIK, Mark, Robert [US/US]; 40-F Clubhouse Lane, Fairfield, OH 45014 (US).

(74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS. JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD. MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CONCENTRATED, STABLE FABRIC SOFTENING COMPOSITION

(57) Abstract

Principal solvents, especially mono-ol and diol principal solvents, having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, are disclosed that have the ability to make clear aqueous fabric softener compositions containing relatively high concentrations of fabric softener actives having ester linkages in their long, hydrophobic chains. The fabric softener actives are either unsaturated, or have intermediate length chains (~C₁₂₋₁₄) and the said principal solvents are used at levels of less than about 40 %. Other solvents may be present. Some of the said principal solvents are novel compounds and/or novel mixtures. Premixes of the fabric softening actives, the principal solvents, and, optionally, other solvents are useful in the preparation of complete formulations by obviating/limiting the need for heating.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	
BR	Brazil	KE	Kenya	RO	Portugal Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	КР	Democratic People's Republic	SD	
CF	Central African Republic		of Korea	SE SE	Sudan
CG	Congo	KR	Republic of Korea	SG	Sweden
CH	Switzerland	KZ	Kazakhstan		Singapore
CI	Côte d'Ivoire	ü	Liechtenstein	SI	Slovenia
CM	Cameroon	LK	Sri Lanka	SK	Slovakia
CN	China	LR	Liberia	SN	Senegal
CS	Czechoslovakia	LT	Lithuania	SZ	Swaziland
CZ	Czech Republic	LU	Luxembourg	TD	Chad
DE	Germany	LV	Latvia	TG	Togo
DK	Denmark	MC	Monsco	TJ	Tajikistan
EE	Estonia	MD		TT	Trinidad and Tobago
ES	Spain	MG	Republic of Moldova	UA	Ukraine
FI	Finland	MG ML	Madagascar	UG	Uganda
FR	France		Mali	US	United States of America
GA	Gabon	MN	Mongolia	UZ	Uzbekistan
UA.	Cason	MR	Mauritania	VN	Viet Nam

Concentrated, stable fabric softening composition

This is a continuation-in-part of our thirteen copending United States Patent Applications: 08/621,019; 08/620,627; 08/620,767; 08/620,513; 08/621,285; 08/621,299; 08/621,298; 08/620,626; 08/620,625; 08/620,772; 08/621,281; 08/620,514; and 08/620,958, all filed March 22, 1996 and all having the title "CONCENTRATED, STABLE, PREFERABLY CLEAR, FABRIC SOFTENING COMPOSITION."

TECHNICAL FIELD

The present invention relates to preferably translucent, or, more preferably, clear, aqueous, concentrated, liquid softening compositions useful for softening cloth. It especially relates to textile softening compositions for use in the rinse cycle of a textile laundering operation to provide excellent fabric-softening/static-control benefits, the compositions being characterized by, e.g., reduced staining of fabric, excellent water dispersibility, rewettability, and/or storage and viscosity stability at sub-normal temperatures, i.e., temperatures below normal room temperature, e.g., 25°C.

BACKGROUND OF THE INVENTION

The art discloses problems associated with formulating and preparing clear, concentrated fabric conditioning formulations. For example, European Patent Application No. 404,471, Machin et al., published Dec. 27, 1990, teaches isotropic liquid softening compositions with at least 20% by weight softener and at least 5% by weight of a short chain organic acid.

Fabric softening compositions containing high solvent levels are known in the art. However, softener agglomerates can form and can deposit on clothes which can result in staining and reduced softening performance. Also, compositions may thicken and/or precipitate at lower temperatures, i.e., at about 40°F (about 4°C) to about 65°F (about 18°C). These compositions can also be costly for the consumer due to the high solvent levels associated with making a concentrated, clear product.

The present invention provides concentrated aqueous liquid textile treatment compositions with low organic solvent level (i.e., below about 40%, by weight of the composition), that have improved stability (i.e., remain clear or translucent and do not precipitate, gel, thicken, or solidify) at normal, i.e., room temperatures and subnormal temperatures under prolonged storage conditions. Said compositions also provide reduced staining of fabrics, good cold water dispersibility, together with

excellent softening, anti-static and fabric rewettability characteristics, as well as reduced dispenser residue buildup and excellent freeze-thaw recovery.

The object of the present invention is to provide aqueous, concentrated, translucent, or, preferably, clear, rinse-added liquid fabric softening compositions which provide one, or more benefits such as reduced staining on fabrics, ready dispersibility in rinse water, phase stability at low temperatures, and/or, preferably acceptable viscosity and viscosity stability at low temperatures, and/or recovery from freezing.

SUMMARY OF THE INVENTION

The compositions herein comprise:

A. from about 2% to about 80%, preferably from about 13% to about 75%, more preferably from about 17% to about 70%, and even more preferably from about 19% to about 65%, by weight of the composition, of biodegradable fabric softener active selected from the group consisting of:

1. softener having the formula:

$$\left[(R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{\frac{1}{2}}_m] \right] X^{(-)}$$
(1)

wherein each R substituent is H or a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl (most preferred), ethyl, propyl, hydroxyethyl, and the like, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, preferably -O-(O)C-; the sum of carbons in each R¹, plus one when Y is -O-(O)C- or -(R)N-(O)C- (hereinafter, R¹ and YR¹, the "YR¹ sum" are used interchangeably to represent the hydrophobic chain, the R1 chain lengths in general being even numbered for fatty alcohols and amines and odd for fatty acids), is C6-C22, preferably C₁₄-C₂₀, but no more than one YR¹ sum being less than about 12 and then the other YR¹ sum is at least about 16, with each R¹ being a long chain C₆-C₂₂ (or C5-C21) hydrocarbyl, or substituted hydrocarbyl substituent, preferably C10-C20 (or C9-C19) alkyl or alkenyl (unsaturated alkyl, including polyunsaturated alkyl, also referred to sometimes as "alkylene"), most preferably C12-C18 (or C11-C17) alkyl or alkenyl, and where, when said sum of carbons is C16-C18 and R1 is a straight chain group, the Iodine Value (hereinafter referred to as IV) of the parent fatty acid of this R¹ group is preferably from about 20 to about 140, more preferably from about 50 to about 130; and most preferably from about 70 to about 115 (As used

herein, the Iodine Value of a "parent" fatty acid, or "corresponding" fatty acid, is used to define a level of unsaturation for an R¹ group that is the same as the level of unsaturation that would be present in a fatty acid containing the same R¹ group.); and wherein the counterion, X-, can be any softener-compatible anion, preferably, chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate, more preferably chloride;

2. softener having the formula:

$$\begin{bmatrix} R_3 N^{(+)} CH_2 CH & CH_2 YR^1 \\ CH_2 YR^1 \end{bmatrix} X^{(-)}$$
 (2)

wherein each Y, R, R¹, and X⁽⁻⁾ have the same meanings as before (Such compounds include those having the formula:

$$[CH_3]_3 N^{(+)}[CH_2CH(CH_2O(O)CR^1)O(O)CR^1] C1^{(-)}$$

where $C(O)R^1$ is derived from unsaturated, e.g., oleic, fatty acid and, preferably, each R is a methyl or ethyl group and preferably each R^1 is in the range of C_{15} to C_{19} with degrees of branching and substitution optionally being present in the alkyl chains); and

3. mixtures thereof:

-1

[In one preferred biodegradable quaternary ammonium fabric softening compound, -(O)CR¹ is derived from unsaturated fatty acid, e.g., oleic acid, and/or fatty acids and/or partially hydrogenated fatty acids, derived from vegetable oils and/or partially hydrogenated vegetable oils, such as: canola oil; safflower oil; peanut oil; sunflower oil; soybean oil; corn oil; tall oil; rice bran oil; etc. and in another preferred biodegradable quaternary ammonium fabric softening compound, -(O)CR¹ is a saturated, (the Iodine Value is preferably 10 or less, more preferably less than about 5), C8-C14, preferably a C12-14 hydrocarbyl, or substituted hydrocarbyl substituent derived from, e.g., coconut oil.] [As used hereinafter, these biodegradable fabric softener actives containing ester linkages are referred to as "DEQA", which includes both diester, triester, and monoester compounds containing from one to three, preferably two, long chain hydrophobic groups. The corresponding amide softener actives and the mixed ester-amide softener actives can also contain from one to three, preferably two, long chain hydrophobic groups. Preferred fabric softener actives

have the characteristic that they can be processed by conventional mixing means at ambient temperature, at least in the presence of about 15% of solvent C. as disclosed hereinafter.]

B. less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition of principal solvent having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said principal solvent containing insufficient amounts of solvents selected from the group consisting of: 2,2,4-trimethyl-1,3-pentanediol; the ethoxylate, diethoxylate, or triethoxylate derivatives of 2,2,4-trimethyl-1,3-pentanediol; and/or 2-ethyl-1,3-hexanediol, and/or mixtures thereof, when used by themselves, to provide a clear product, preferably insufficient to provide a stable product, more preferably insufficient to provide a detectable change in the physical characteristics of the composition, and especially completely free thereof, and the principal solvent preferably being selected from the group consisting of:

I. mono-ols including:

- a. n-propanol; and/or
- b. 2-butanol and/or 2-methyl-2-propanol;
- II. hexane diol isomers including: 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 4-methyl-; and/or 1,2-hexanediol;
- Ш. heptane diol isomers including: 1,3-propanediol, 2-butyl-; 1,3-propanediol, 2,2-diethyl-; 1,3-propanediol. 2-(1-methylpropyl)-; 1.3-propanediol, 2-(2methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-2-methyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,4-dimethyl-; 1,5-pentanediol, 3,3dimethyl-; 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 3-methyl-; 2,3-hexanediol, 4methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; and/or 1,6-heptanediol;

IV. octane diol isomers including: 1,3-propanediol, 2-(2-methylbutyl)-; 1,3propanediol, 2-(1,1-dimethylpropyl)- 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(1-methylbutyl)-: 1,3propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(3-methylbutyl)-; 1,3propanediol, 2-butyl-2-methyl-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1.3propanediol, 2-ethyl-2-propyl-; 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2methyl-; 1,3-butanediol, 2,2-diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1dimethylethyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol. 2-methyl-2isopropyl-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3dimethyl-: 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(1,1dimethylethyl)-: 1,4-butanediol, 2-(2-methylpropyl)-: 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2.3.4-trimethyl-; 2.4-pentanediol, 2.3.3-trimethyl-; 2.4-pentanediol, 2.3.4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,3-pentanediol, 2-ethyl-3-methyl-: pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 1,5pentanediol, 2-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-1.4-hexanediol, 2.5-dimethyl-; dimethyl-; 1,4-hexanediol, 2,4-dimethyl-; 1,4-3.4-dimethyl-: 1.4-hexanediol, 3,5hexanediol, 3,3-dimethyl-; 1,4-hexanediol, 1.4-hexanediol, 4.5-dimethyl-; dimethyl-; 1.3-hexanediol, 4.4-dimethyl-; 1.4-

hexanediol. 5,5-dimethyl-; 1,5-hexanediol, 2,2-dimethyl-; 1,5-hexanediol, 2,3dimethyl-: 1,5-hexanediol. 2,4-dimethyl-; 1,5-hexanediol, 2,5-dimethyl-; 1,5hexanediol. 3,3-dimethyl-; 1,5-hexanediol, 3,4-dimethyl-; 1,5-hexanediol, 3,5dimethyl-: 1,5-hexanediol. 1.6-hexanediol, 2,2-dimethyl-; 4,5-dimethyl-; 1,6hexanediol, 2,3-dimethyl-; 1,6-hexanediol, 2,4-dimethyl-; 1,6-hexanediol, 2,5dimethyl-; 1,6-hexanediol, 3,3-dimethyl-; 1,6-hexanediol. 3,4-dimethyl-; 2,4hexanediol. 2,3-dimethyl-; 2,4-hexanediol, 2,4-dimethyl-; 2,4-hexanediol, 2,5dimethyl-; 2,4-hexanediol, 3,3-dimethyl-; 2,4-hexanediol, 3,4-dimethyl-; 2,4hexanediol, 3,5-dimethyl-; 2,4-hexanediol, 4,5-dimethyl-; 2,4-hexanediol, 5,5dimethyl-; 2,5-hexanediol, 2,3-dimethyl-; 2,5-hexanediol, 2,4-dimethyl-; 2,5hexanediol, 2,5-dimethyl-; 2,5-hexanediol, 3,3-dimethyl-; 2,5-hexanediol, dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-; 2,4-heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5heptanediol, 4-methyl-; 2,5-heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 3,5-heptanediol, 3-methyl-; 3,5heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7octanediol; 3,5-octanediol; and/or 3,6-octanediol;

V. nonane diol isomers including: 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,4-trimethyl-; 2,4-hexanediol, 3,3,5-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; and/or 2,5-hexanediol, 3,3,5-trimethyl-;

VI. glyceryl ethers and/or di(hydroxyalkyl)ethers including: 1,2-propanediol, 3-(n-pentyloxy)-; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(so-amyloxy)-; 1

propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3-propanediol, 2-(3methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1cyclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, triethoxylated; 1,2-3-(butyloxy)-, tetraethoxylated; 1,2-propanediol, propanediol, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; 1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated; propanediol, 3-(butyloxy)-, tributyleneoxylated; 1,2-propanediol, 3-phenyloxy-; 1,2propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, 3-(1-phenyl-2-propanyloxy)-; 1,3-propanediol, 2-phenyloxy-; 1,3-propanediol, 2-(mcresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, -benzyloxy-; 1,3propanediol, 2-(2-phenylethyloxy)-; 1,3-propanediol, 2-(1-phenylethyloxy)-; bis(2hydroxybutyl)ether; and/or bis(2-hydroxycyclopentyl)ether;

VII. saturated and unsaturated alicyclic diols and their derivatives including:

(a) the saturated diols and their derivatives, including:

1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 2,4,5-trimethyl-1.3-cyclopentanediol: 3,3-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2cyclopentanediol; 3.5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1,1bis(hydroxymethyl)cyclohexane; 1,2-bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol; 1,3-bis(hydroxymethyl)cyclohexane; 1.3-dimethyl-1.3cyclohexanediol; 1,6-dimethyl-1,3-cyclohexanediol; 1-hydroxy-cyclohexaneethanol; 1-ethyl-1,3-cyclohexanediol; 1-methyl-1,2-1-hydroxy-cyclohexanemethanol; cyclohexanediol; 2,2-dimethyl-1,3-cyclohexanediol; 2,3-dimethyl-1,4-2,4-dimethyl-1,3-cyclohexanediol; 2,5-dimethyl-1,3cyclohexanediol: cyclohexanediol; 2,6-dimethyl-1,4-cyclohexanediol; 2-ethyl-1,3-cyclohexanediol; 2hydroxycyclohexaneethanol; 2-hydroxyethyl-1-cyclohexanol; 2-3hydroxymethylcyclohexanol; 3-hydroxyethyl-1-cyclohexanol; 3-methyl-1,2hydroxycyclohexaneethanol; 3-hydroxymethylcyclohexanol; 4,5-dimethyl-1,3cyclohexanediol: 4.4-dimethyl-1.3-cyclohexanediol; cyclohexanediol; 4,6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4-4-methyl-1,2hydroxyethyl-1-cyclohexanol; 4-hydroxymethylcyclohexanol;

cyclohexanediol; 5,5-dimethyl-1,3-cyclohexanediol; 5-ethyl-1,3-cyclohexanediol; 1,2cycloheptanediol; 2-methyl-1,3-cycloheptanediol; 2-methyl-1,4-cycloheptanediol; 4methyl-1,3-cycloheptanediol; 5-methyl-1,3-cycloheptanediol: 5-methyl-1,4cycloheptanediol: 6-methyl-1,4-cycloheptanediol; ; 1,3-cyclooctanediol; 1,4cyclooctanediol; 1,5-cyclooctanediol: 1,2-cyclohexanediol. diethoxylate: 1,2cyclohexanediol triethoxylate; 1,2-cyclohexanediol. tetraethoxylate; 1,2cyclohexanediol, pentaethoxylate; 1,2-cyclohexanediol. hexaethoxylate: 1,2cyclohexanediol. heptaethoxylate; 1,2-cyclohexanediol. octaethoxylate; 1,2cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; 1,2cyclohexanediol, monobutylenoxylate; 1,2-cyclohexanediol, dibutylenoxylate; and/or 1,2-cyclohexanediol, tributylenoxylate; and

(b). the unsaturated alicyclic diols including: 1,2-cyclobutanediol, 1-ethenyl-2-ethyl-; 3-cyclobutene-1,2-diol, 1,2,3,4-tetramethyl-; 3-cyclobutene-1,2-diol, 3,4-diethyl-; 3-cyclobutene-1,2-diol, 3-butyl-; 1,2-cyclopentanediol, 1,2-dimethyl-4-methylene-; 1,2-cyclopentanediol, 1-ethyl-3-methylene-; 1,2-cyclopentanediol, 4-(1-propenyl); 3-cyclopentene-1,2-diol, 1-ethyl-3-methyl-; 1,2-cyclohexanediol, 1-ethenyl-; 1,2-cyclohexanediol, 1-methyl-4-methylene-; 1,2-cyclohexanediol, 3-ethenyl-; 1,2-cyclohexanediol, 4-ethenyl-; 3-cyclohexanediol, 2,6-dimethyl-; 3-cyclohexene-1,2-diol, 2,6-dimethyl-; 4-cyclohexene-1,2-diol, 3,6-dimethyl-; 4-cyclohexene-1,2-diol, 4,5-dimethyl-; 3-cyclooctene-1,2-diol; 4-cyclooctene-1,2-diol; and/or 5-cyclooctene-1,2-diol;

VIII. Alkoxylated derivatives of C_{3-8} diols [In the following disclosure, "EO" means polyethoxylates, i.e., $-(CH_2CH_2O)_nH$; Me-E_n means methyl-capped polyethoxylates $-(CH_2CH_2O)_nCH_3$; "2(Me-En)" means 2 Me-En groups needed; "PO" means polypropoxylates, $-(CH(CH_3)CH_2O)_nH$; "BO" means polybutyleneoxy groups, $(CH(CH_2CH_3)CH_2O)_nH$; and "n-BO" means poly(n-butyleneoxy) or poly(tetramethylene)oxy groups $-(CH_2CH_2CH_2CH_2O)_nH$. The use of the term " (C_x) " herein refers to the number of carbon atoms in the base material which is alkoxylated.] including:

1. 1,2-propanediol (C3) 2(Me- E_{1-4}); 1,2-propanediol (C3) PO₄; 1,2-propanediol, 2-methyl- (C4) (Me- E_{4-10}); 1,2-propanediol, 2-methyl- (C4) 2(Me- E_{1}); 1,2-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol (C3) 2(Me- E_{6-8}); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7) E₁₋₇; 1,3-propanediol, 2,2-diethyl- (C7) PO₁; 1,3-propanediol, 2,2-diethyl- (C5) 2(Me E_{1-2}); 1,3-propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7)

E₁₋₇; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-(2-methylpropyl)- (C7) E₁₋₇; 1,3-propanediol, 2-(2-methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-ethyl- (C5) (Me E₆₋₁₀); 1,3-propanediol, 2-ethyl- (C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) BO₁; 1,3-propanediol, 2-isopropyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me E₂₋₅); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) E₂₋₉; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) E₁₋₇; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C6) Me E₁₋₄); 1,3-propanediol, 2-propyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2-propyl- (C6) BO₁;

1,2-butanediol (C4) (Me E₂₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3dimethyl- (C6) n-BO₁₋₂; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl-(C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl-(C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) E_{1-6} ; 1,2-butanediol, 3,3-dimethyl-(C6) n-BO₁₋₂; 1,2-butanediol, 3-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 3-methyl-(C5) PO₁; 1,3-butanediol (C4) 2(Me E₃₋₆); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3trimethyl- (C7) PO₁₋₂; 1,3-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₈); 1,3butanediol, 2,2-dimethyl- (C6) PO3; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E3-8); 1,3-butanediol, 2,3-dimethyl- (C6) PO3, 1,3-butanediol, 2-ethyl- (C6) (Me E₁₋₆), 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3butanediol, 2-ethyl-2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3methyl- (C7) (Me E1); 1,3-butanediol, 2-ethyl-3-methyl- (C7) PO1; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me E₁); 1,3butanediol, 2-isopropyl- (C7) PO1; 1,3-butanediol, 2-isopropyl- (C7) n-BO2-4; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E2-9; 1,3-butanediol, 2-propyl- (C7) PO1; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol (C4) BO2; 1,4-butanediol, 2,2,3-trimethyl- (C7) E2-9; 1,4-butanediol,

2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO1; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E1-6); 1,4-butanediol, 2,3-dimethyl- (C6) PO2; 1,4-butanediol, 2,3-dimethyl- (C6) BO1; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E1-7, 1,4butanediol, 2-ethyl-2-methyl- (C7) PO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n- BO_{1-2} ; 1,4-butanediol, 2-ethyl-3-methyl- (C7) E_{1-7} ; 1,4-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2isopropyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-methyl- (C5) (Me E_{6-10}); 1,4butanediol, 2-methyl- (C5) 2(Me E1); 1,4-butanediol, 2-methyl- (C5) PO3; 1,4butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7) E₁₋₅; 1,4butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₂₋₉; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO1; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₃; 2,3-butanediol (C4) (Me E_{6-10}); 2,3-butanediol (C4) 2(Me E_{1}); 2,3butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉; 2,3-butanediol, 2,3-dimethyl- (C6) PO₁; 2,3-butanediol, 2,3-dimethyl- (C6) n-BO₁₋₃; 2,3-butanediol, 2-methyl- (C5) (Me E₁₋₅); 2,3-butanediol, 2-methyl- (C5) PO₂; 2,3-butanediol, 2-methyl- (C5) BO₁;

1,2-pentanediol (C5) E_{3-10} ; 1,2-pentanediol, (C5) PO_1 ; 1,2-3. pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2methyl (C6) n-BO1; 1,2-pentanediol, 2-methyl (C6) BO1; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me-E₁₋₂); 1,3pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6) $2(Me-E_{1-6})$; 1,3-pentanediol, 2-methyl- (C6) PO_{2-3} ; 1,3-pentanediol, 2methyl- (C6) BO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,3pentanediol, 3-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3pentanediol, 3-methyl- (C6) BO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E₁); 1,3-

pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me- E_{1-6}); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 2-methyl- (C6) BO₁; 1,4pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl-(C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl- (C6) BO₁; 1,4-pentanediol, 4methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋₁₀); 1,5-pentanediol (C5) 2(Me- E_1); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7) E_{1-7} ; 1,5pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO_{1.2}; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2-ethyl- (C7) E₁₋₅; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁ 2; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 3-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me-E₁₋₃); 2,3pentanediol, (C5) PO₂; 2,3-pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3methyl- (C6) E₁₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl-(C6) n-BO₁₋₂; 2,3-pentanediol, 4-methyl- (C6) E₁₋₇, 2,3-pentanediol, 4-methyl-(C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me- E_{1-4}); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me- E_{1-4}); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₅₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl(C7) (Me- E_{1-4}); 2,4-pentanediol, 3,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 3-methyl- (C6) (Me- E_{5-10}); 2,4-pentanediol, 3-methyl- (C6) PO₃;

1,3-hexanediol (C6) (Me-E₁₋₅); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 2methyl- (C7) BO1; 1,3-hexanediol, 3-methyl- (C7) E2-9; 1,3-hexanediol, 3-methyl-(C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7) E₂₋₉; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 5-methyl- (C7) E₂₋₉; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol (C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉; 1,4hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 3-methyl- (C7) E2-9; 1,4-hexanediol, 3-methyl- (C7) PO1; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO1; 1,4-hexanediol, 4-methyl- (C7) n-BO1-3; 1,4hexanediol, 5-methyl- (C7) E2-9; 1,4-hexanediol, 5-methyl- (C7) PO1; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7) E2-9; 1,5-hexanediol, 3-methyl- (C7) PO1; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7) E₂₋₉; 1,5hexanediol, 4-methyl- (C7) PO1; 1,5-hexanediol, 4-methyl- (C7) n-BO1-3; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7) E₁₋₅; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂; 2,3-hexanediol (C6) E₁₋₅; 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 3-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 4-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 4-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;

- 5. 1,3-heptanediol (C7) E_{1-7} ; 1,3-heptanediol (C7) PO_1 ; 1,3-heptanediol (C7) n-BO₁₋₂; 1,4-heptanediol (C7) E_{1-7} ; 1,4-heptanediol (C7) PO_1 ; 1,4-heptanediol (C7) n-BO₁₋₂; 1,5-heptanediol (C7) E_{1-7} ; 1,5-heptanediol (C7) PO_1 ; 1,5-heptanediol (C7) PO_1 ; 1,6-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,6-heptanediol (C7) PO_1 ; 3,5-heptanediol (PO_1) PO_1 ; 3,5-
- 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO1; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8) E_{2-5} ; 2,4-hexanediol, 3,3-dimethyl- (C8) E_{2-5} ; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8) E_{2-5} ; 2,4-hexanediol, 5,5-dimethyl- (C8) E_{2-5} ; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅, 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E_{2-5} ; 2,5-hexanediol, 3,3-dimethyl- (C8) E_{2-5} ; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO₁; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO1; 2,4-hexanediol, 4-ethyl- (C8) n-BO1; 2,4-heptanediol, 2-

methyl- (C8) n-BO1; 2,4-heptanediol, 3-methyl- (C8) n-BO1; 2,4-heptanediol, 4methyl- (C8) n-BO1; 2,4-heptanediol, 5-methyl- (C8) n-BO1; 2,4-heptanediol, 6methyl- (C8) n-BO1; 2,5-heptanediol, 2-methyl- (C8) n-BO1; 2,5-heptanediol, 3methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl- (C8) n-BO₁; 2,5-heptanediol, 5methyl- (C8) n-BO1; 2,5-heptanediol, 6-methyl- (C8) n-BO1; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁; 2,6-heptanediol, 4methyl- (C8) n-BO1; 3,5-heptanediol, 2-methyl- (C8) n-BO1; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) E_{1-3} ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8) E_{1-3} ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃, 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8) E_{1-3} ; 1,3-pentanediol, 2,4,4-trimethyl- (C8) E_{1-3} ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 3,3,4-trimethyl-(C8) E₁₋₃; 2,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 2,4-hexanediol, 4-ethyl- (C8) E_{1-3} ; 2,4-heptanediol, 2-methyl- (C8) E_{1-3} ; 2,4-heptanediol, 3-methyl- (C8) E_{1-3} ; 2,4-heptanediol, 4-methyl- (C8) E₁₋₃; 2,4-heptanediol, 5-methyl- (C8) E₁₋₃; 2,4heptanediol, 6-methyl- (C8) E₁₋₃; 2,5-heptanediol, 2-methyl- (C8) E₁₋₃; 2,5heptanediol, 3-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 4-methyl- (C8) E_{1-3} ; 2,5heptanediol, 5-methyl- (C8) E₁₋₃; 2,5-heptanediol, 6-methyl- (C8) E₁₋₃; 2,6heptanediol, 2-methyl- (C8) E_{1-3} ; 2,6-heptanediol, 3-methyl- (C8) E_{1-3} ; 2,6heptanediol, 4-methyl- (C8) E_{1-3} ; and/or 3,5-heptanediol, 2-methyl- (C8) E_{1-3} ; and

7. mixtures thereof:

IX. aromatic diols including: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; and/or 1-phenyl-2,3-butanediol;

X. principal solvents which are homologs, or analogs, of the above structures where one, or more, CH₂ groups are added while, for each CH₂ group added, two hydrogen atoms are removed from adjacent carbon atoms in the molecule to form one carbon-carbon double bond, thus holding the number of hydrogen atoms in the molecule constant, including the following:

1,3-Propanediol, 2,2-di-2-propenyl-; 1,3-Propanediol, 2-(1-pentenyl)-; 1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-; 1,3-Propanediol, 2-(4-pentenyl)-; 1,3-Propanediol, 2-ethyl-2-propenyl)-; 1,3-Propanediol, 2-methyl-2-propenyl)-; 1,3-Propanediol, 2-methyl-2-propenyl-; 1

(3-methyl-3-butenyl)-; 1,3-Butanediol, 2,2-diallyl-; 1,3-Butanediol, 2-(1-ethyl-1propenyl)-; 1,3-Butanediol, 2-(2-butenyl)-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2butenyl)-; 1,3-Butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-Butanediol, 2-methyl-2-(1methyl-2-propenyl)-; 1,4-Butanediol, 2,3-bis(1-methylethylidene)-; 1,4-Butanediol, 2-(3-methyl-2-butenyl)-3-methylene-; 2-Butene-1,4-diol, 2-(1,1-dimethylpropyl)-; 2-Butene-1,4-diol, 2-(1-methylpropyl)-; 2-Butene-1,4-diol, 2-butyl-; 1,3-Pentanediol, 2-ethenyl-3-ethyl-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 1,4-Pentanediol, 3methyl-2-(2-propenyl)-; 1,5-Pentanediol, 2-(1-propenyl)-; 1,5-Pentanediol, 2-(2propenyl)-; 1,5-Pentanediol, 2-ethylidene-3-methyl-; 1,5-Pentanediol, 2-propylidene-; 2,4-Pentanediol, 3-ethylidene-2,4-dimethyl-; 4-Pentene-1,3-diol, dimethylethyl)-; 4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-; 1,4-Hexanediol, 4-ethyl-2-methylene-; 1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-; 1,5-Hexadiene-3,4-diol, 5ethyl-3-methyl-; 1,5-Hexanediol, 2-(1-methylethenyl)-; 1,6-Hexanediol, 2-ethenyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 2-Hexene-1,5diol, 4-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 2,5dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-1,3-diol, 3-(2-propenyl)-; 5-Hexene-2,3-diol, 2,3-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3diol, 3,5-dimethyl-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 1,4-Heptanediol, 6methyl-5-methylene-; 1,5-Heptadiene-3,4-diol, 2,3-dimethyl-; 1,5-Heptadiene-3,4diol, 2,5-dimethyl-: 1,5-Heptadiene-3,4-diol, 3,5-dimethyl-: 1,7-Heptanediol, 2,6bis(methylene)-; 1,7-Heptanediol, 4-methylene-; 1-Heptene-3,5-diol, 2,4-dimethyl-; 1-Heptene-3,5-diol, 2,6-dimethyl-; 1-Heptene-3,5-diol, 3-ethenyl-5-methyl; 1-Heptene-3,5-diol, 6,6-dimethyl-; 2,4-Heptadiene-2,6-diol, 4,6-dimethyl-; 2,5-Heptadiene-1,7-diol, 4,4-dimethyl-; 2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-; 2-Heptene-1,4-diol, 5,6-dimethyl-; 2-Heptene-1,5-diol, 5-ethyl-; 2-Heptene-1,7-diol, 2methyl-; 3-Heptene-1,5-diol, 4,6-dimethyl-; 3-Heptene-1,7-diol, methylene-; 3-Heptene-2,5-diol, 2,4-dimethyl-; 3-Heptene-2,5-diol, 2,5-dimethyl-; 3-Heptene-2,6-diol, 2,6-dimethyl-; 3-Heptene-2,6-diol, 4,6-dimethyl-; 5-Heptene-1,3diol, 2,4-dimethyl-; 5-Heptene-1,3-diol, 3,6-dimethyl-; 5-Heptene-1,4-diol, 2,6dimethyl-; 5-Heptene-1,4-diol, 3,6-dimethyl-; 5-Heptene-2,4-diol, 2,3-dimethyl-; 6-Heptene-1,3-diol, 2,2-dimethyl-; 6-Heptene-1,4-diol, 4-(2-propenyl)-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 6-Heptene-1,5-diol, 2,4-dimethyl-; 6-Heptene-1,5-diol, 2ethylidene-6-methyl-; 6-Heptene-2,4-diol, 4-(2-propenyl)-; 6-Heptene-2,4-diol, 5,5dimethyl-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 6-Heptene-2,5-diol, 5-ethenyl-4methyl-; 1.3-Octanediol, 2-methylene-; 1,6-Octadiene-3,5-diol, 2,6-dimethyl-; 1,6-Octadiene-3,5-diol. 3,7-dimethyl-; 1,7-Octadiene-3,6-diol, 2,6-dimethyl-; 1,7-

Octadiene-3,6-diol, 2,7-dimethyl-; 1,7-Octadiene-3,6-diol, 3,6-dimethyl-; 1-Octene-3,6-diol, 3-ethenyl-; 2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-; 2,4-Octadiene-1,7-diol, 3,7-dimethyl-; 2,5-Octadiene-1,7-diol, 2,6-dimethyl-; 2,5-Octadiene-1,7-diol, 3,7dimethyl-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 2,6-Octadiene-1,8-diol, 2-methyl-; 2,7-Octadiene-1,4-diol, 3,7-dimethyl-; 2,7-Octadiene-1,5-diol, 2,6dimethyl-; 2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool): 2,7-Octadiene-1,6-diol, 2,7-dimethyl-; 2-Octene-1,4-diol; 2-Octene-1,7-diol; 2-Octene-1,7-diol, 2methyl-6-methylene-; 3,5-Octadiene-1,7-diol, 3,7-dimethyl-; 3,5-Octadiene-2,7-diol, 2,7-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,7-Octadiene-1,6-diol, 2,6-dimethyl-; 3,7-Octadiene-2,5-diol, 2,7-dimethyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 3-Octene-1,5-diol, 4-methyl-; 3-Octene-1,5-diol, 5-methyl-; 4,6-Octadiene-1,3-diol, 2,2-dimethyl-; 4,7-Octadiene-2,3-diol, 2,6-dimethyl-; 4,7-Octadiene-2,6-diol, 2,6dimethyl-; 4-Octene-1,6-diol, 7-methyl-; 2,7-bis(methylene)-; 2-methylene-; 5,7-Octadiene-1,4-diol, 2,7-dimethyl-; 5,7-Octadiene-1,4-diol, 7-methyl-; 5-Octene-1,3diol; 6-Octene-1,3-diol, 7-methyl-; 6-Octene-1,4-diol, 7-methyl-; 6-Octene-1,5-diol; 6-Octene-1,5-diol, 7-methyl-; 6-Octene-3,5-diol, 2-methyl-; 6-Octene-3,5-diol, 4methyl-; 7-Octene-1,3-diol, 2-methyl-; 7-Octene-1,3-diol, 4-methyl-; 7-Octene-1,3diol, 7-methyl-; 7-Octene-1,5-diol; 7-Octene-1,6-diol; 7-Octene-1,6-diol, 5-methyl-; 7-Octene-2,4-diol, 2-methyl-6-methylene-; 7-Octene-2,5-diol, 7-methyl-; 7-Octene-3,5-diol, 2-methyl-; 1-Nonene-3,5-diol; 1-Nonene-3,7-diol; 3-Nonene-2,5-diol; 4,6-Nonadiene-1,3-diol, 8-methyl-; 4-Nonene-2,8-diol; 6,8-Nonadiene-1,5-diol; 7-Nonene-2,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,5-diol; 1,9-Decadiene-3,8-diol; and/or 1,9-Decadiene-4,6-diol; and

XI. mixtures thereof;

- C. optionally, but preferably, an effective amount, sufficient to improve clarity, of low molecular weight water soluble solvents like ethanol, isopropanol, propylene glycol, 1,3-propanediol, propylene carbonate, etc., said water soluble solvents being at a level that will not form clear compositions by themselves;
- D. optionally, but preferably, an effective amount to improve clarity, of water soluble calcium and/or magnesium salt, preferably chloride; and
- E. the balance being water.

Preferably, when the fabric softener active is one in which R is hydrogen, or hydroxy alkyl, and especially when the Y group is an amido group, the solvent is not a mono-ol, especially t-butanol, or 2-methyl-pentanediol.

Preferably, the compositions herein are aqueous, translucent or clear, preferably clear, compositions containing from about 3% to about 95%, preferably from about 5% to about 80%, more preferably from about 15% to about 70%, and

even more preferably from about 40% to about 60%, water and from about 3% to about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, of the above principal alcohol solvent B. These preferred products (compositions) are not translucent or clear without principal solvent B. The amount of principal solvent B. required to make the compositions translucent or clear is preferably more than 50%, more preferably more than about 60%, and even more preferably more than about 75%, of the total organic solvent present.

The principal solvents are desirably kept to the lowest levels that provide acceptable stability/clarity in the present compositions. The presence of water exerts an important effect on the need for the principal solvents to achieve clarity of these compositions. The higher the water content, the higher the principal solvent level (relative to the softener level) is needed to attain product clarity. Inversely, the less the water content, the less principal solvent (relative to the softener) is needed. Thus, at low water levels of from about 5% to about 15%, the softener active-to-principal solvent weight ratio is preferably from about 55:45 to about 85:15, more preferably from about 60:40 to about 80:20. At water levels of from about 15% to about 70%, the softener active-to-principal solvent weight ratio is preferably from about 45:55 to about 70:30, more preferably from about 55:45 to about 70:30. But at high water levels of from about 70% to about 80%, the softener active-to-principal solvent weight ratio is preferably from about 30:70 to about 55:45, more preferably from about 35:65 to about 45:55. At higher water levels, the softener to principal solvent ratios should be even higher.

Some of the above solvents are new compounds and/or mixtures of compounds, as discussed hereinafter.

The pH of the compositions should be from about 1 to about 7, preferably from about 1.5 to about 5, more preferably from about 2 to about 3.5.

DETAILED DESCRIPTION OF THE INVENTION

I. FABRIC SOFTENING ACTIVE

The present invention contains as an essential component from about 2% to about 80%, preferably from about 13% to about 75%, more preferably from about 17% to about 70%, and even more preferably from about 19% to about 65% by weight of the composition, of a fabric softener active selected from the compounds identified hereinafter, and mixtures thereof.

(A) <u>Diester Quaternary Ammonium Fabric Softening Active</u>

<u>Compound (DEQA)</u>

(1) The first type of DEQA preferably comprises, as the principal active, compounds of the formula

$$\left[(R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{1}]_m \right] X^{(-)}$$
(1)

wherein: each R substituent is H or a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl (most preferred), ethyl, propyl, hydroxyethyl, and the like, benzyl or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, preferably -O(O)C-, but not -OC(O)O-; the sum of carbons in each R1, plus one when Y is -O-(O)C- or -(R)N-(O)C-, is C₆-C₂₂, preferably C₁₄-C₂₀, but no more than one YR1 sum being less than about 12 and then the other YR1 sum is at least about 16, with each R1 being a long chain C8-C22 (or C7-C21)hydrocarbyl, or substituted hydrocarbyl substituent, preferably C10-C20 (or C9-C19) alkyl or alkenyl, most preferably C12-C18 (or C11-C17) alkyl or alkenyl, and where, when said sum of carbons is C16-C18 and R1 is a straight chain alkyl or alkenyl group, the Iodine Value (hereinafter referred to as IV) of the parent fatty acid of this R¹ group is preferably from about 20 to about 140, more preferably from about 50 to about 130; and most preferably from about 70 to about 115. (As used herein, the Iodine Value of a "parent" fatty acid, or "corresponding" fatty acid, is used to define a level of unsaturation for an R¹ group that is the same as the level of unsaturation that would be present in a fatty acid containing the same R1 group.)

The counterion, $X^{(-)}$ above, can be any softener-compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and the like, more preferably chloride. The anion can also, but less preferably, carry a double charge in which case $X^{(-)}$ represents half a group.

Preferred biodegradable quaternary ammonium fabric softening compounds can contain the group -(O)CR¹ which is derived from unsaturated, and polyunsaturated, fatty acids, e.g., oleic acid, and/or partially hydrogenated fatty acids, derived from vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. Non-limiting examples of DEQAs prepared from preferred fatty acids have the following approximate distributions:

Fatty Acyl Group

DEQA¹ DEQA² DEQA³ DEQA⁴ DEQA⁵

WO 97/03169 PCT/US96/11556

		•	- 19 -	•	
C12	trace	trace	0	0	0
C14	3	3	0	0	0
C16	4	4	5	5	5
C18	0	0	5	6	6
C14:1	3	3	0	0	0
C16:1	11	7	0	0	3
C18:1	74	73	7 I	68	67
C18:2	4	8	8	11	11
C18:3	0	1	1	2	2
C20:1	0	0	2	2	2
C20 and up	0	0	2	0	0
Unknowns	0	0	6	6	7
Total	99	99	100	100	102
IV	86-90	88-95	99	100	95
cis/trans (C18:1)	20-30	20-30	4	5	5
TPU	4	9	10	13	13

Mixtures of fatty acids, and mixtures of DEQAs that are derived from different fatty acids can be used, and are preferred. Nonlimiting examples of DEQA's that can be blended, to form DEQA's of this invention are as follows:

Fatty Acyl Group	DEOA10	DEQA11
C14	0 .	1
C16	11	25
C18	4	20
C14:1	0	0
C16:1	1	0
C18:1	27	45
C18:2	50	6
C18:3	7	0
Unknowns	0	3
Total	100	100
īV	125-138	56
cis/trans (C18:1)	Not Available	7
TPU	57	6 .

 $DEQA^{10}$ is prepared from a soy bean fatty acid, and $DEQA^{11}$ is prepared from a slightly hydrogenated tallow fatty acid.

Also optionally, but preferably, R¹ groups can comprise branched chains, e.g., from isostearic acid, for at least part of the R¹ groups. The total of active represented by the branched chain groups, when they are present, is typically from

about 1% to about 90%, preferably from about 10% to about 70%, more preferably from about 20% to about 50%.

Fatty Acyl Group	DEOA12	DEQA13	DEOA14
Isomyristic acid		1-2	
Myristic acid	7-11	0.5-1	••
Isopalmitic acid	6-7	6-7	1-3
Palmitic acid	4-5	6-7	
Isostearic acid	70-76	80-82	60-66
Stearic acid		2-3	8-10
Isoleic acid	*=		13-17
Oleic acid	••		6-12
IV	3	2	7-12

DEQA¹² - DEQA¹⁴ are prepared from different commercially available isostearic acids.

The more preferred DEQA's are those that are prepared as a single DEQA from blends of all the different fatty acids that are represented (total fatty acid blend), rather than from blends of mixtures of separate finished DEQA's that are prepared from different portions of the total fatty acid blend.

It is preferred that at least a majority of the fatty acyl groups are unsaturated, e.g., from about 50% to 100%, preferably from about 55% to about 95%, more preferably from about 60% to about 90%, and that the total level of active containing polyunsaturated fatty acyl groups (TPU) be from about 3% to about 30%, preferably from about 5% to about 25%, more preferably from about 10% to about 18%. The cis/trans ratio for the unsaturated fatty acyl groups is usually important, with the cis/trans ratio being from 1:1 to about 50:1, the minimum being 1:1, preferably at least 3:1, and more preferably from about 4:1 to about 20:1. (As used herein, the "percent of softener active" containing a given R¹ group is the same as the percentage of that same R¹ group is to the total R¹ groups used to form all of the softener actives.)

The unsaturated, including the preferred polyunsaturated, fatty acyl groups, discussed hereinbefore and hereinafter, surprisingly provide effective softening, but also provide better rewetting characteristics, good antistatic characteristics, and especially, superior recovery after freezing and thawing.

The highly unsaturated materials are also easier to formulate into concentrated premixes that maintain their low viscosity and are therefore easier to process, e.g., pump, mixing, etc. These highly unsaturated materials with only the low amount of solvent that normally is associated with such materials, i.e., from about 5% to about

20%, preferably from about 8% to about 25%, more preferably from about 10% to about 20%, weight of the total softener/solvent mixture, are also easier to formulate into concentrated, stable compositions of the present invention, even at ambient temperatures. This ability to process the actives at low temperatures is especially important for the polyunsaturated groups, since it mimimizes degradation. Additional protection against degradation can be provided when the compounds and softener compositions contain effective antioxidants, chelants, and/or reducing agents, as disclosed hereinafter.

The present invention can contain medium-chain biodegradable quaternary ammonium fabric softening compound, DEQA, as a preferred component, having the above formula (1) and/or formula (2), below, wherein:

each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, preferably -O-(O)C-;

m is 2 or 3, preferably 2;

each n is 1 to 4, preferably 2;

each R substituent is H or a C_1 - C_6 alkyl, preferably a methyl, ethyl, propyl, benzyl groups or mixtures thereof, more preferably a C_1 - C_3 alkyl group;

each R^1 , or YR^1 hydrophobic group is a saturated, C_8 - C_{14} , preferably a C_{12} -14 hydrocarbyl, or substituted hydrocarbyl substituent (the IV is preferably about 10 or less, more preferably less than about 5), [The sum of the carbons in the hydrophobic group is the number of carbon atoms in the R^1 group, or in the YR^1 group when Y is -O-(O)C- or -(R)N-(O)C-.] and the counterion, X-, is the same as above. Preferably X- does not include phosphate salts.

The saturated C₈-C₁₄ fatty acyl groups can be pure derivatives or can be mixed chainlengths.

Suitable fatty acid sources for said fatty acyl groups are coco, lauric, caprylic, and capric acids.

For C_{12} - C_{14} (or C_{11} - C_{13}) hydrocarbyl groups, the groups are preferably saturated, e.g., the IV is preferably less than about 10, preferably less than about 5.

It will be understood that substituents R and R¹ can optionally be substituted with various groups such as alkoxyl or hydroxyl groups, and can be straight, or branched so long as the R¹ groups maintain their basically hydrophobic character. The preferred compounds can be considered to be biodegradable diester variations of ditallow dimethyl ammonium chloride (hereinafter referred to as "DTDMAC"), which is a widely used fabric softener.

A preferred long chain DEQA is the DEQA prepared from sources containing high levels of polyunsaturation, i.e., N,N-di(acyl-oxyethyl)-N,N-dimethyl ammonium

chloride, where the acyl is derived from fatty acids containing sufficient polyunsaturation, e.g., mixtures of tallow fatty acids and soybean fatty acids. Another preferred long chain DEQA is the dioleyl (nominally) DEQA, i.e., DEQA in which N,N-di(oleoyl-oxyethyl)-N,N-dimethyl ammonium chloride is the major ingredient. Preferred sources of fatty acids for such DEQAs are vegetable oils, and/or partially hydrogenated vegetable oils, with high contents of unsaturated, e.g., oleoyl groups. Preferred medium chain DEQAs are dicocoyl DEQA (derived from coconut fatty acids), i.e., N,N-di(coco-oyl-oxyethyl)-N,N-dimethyl ammonium chloride, exemplified hereinafter as DEQA⁶, and N,N-di(lauroyl-oxyethyl)-N,N-dimethyl ammonium chloride.

As used herein, when the diester is specified, it can include the monoester that is present. Preferably, at least about 80% of the DEQA is in the diester form, and from 0% to about 20% can be DEQA monoester, e.g., one YR¹ group is either OH, or -C(O)OH, and, for Formula 1., m is 2. The corresponding diamide and/or mixed ester-amide can also include the active with one long chain hydrophobic group, e.g., one YR¹ group is either -N(R)H, or -C(O)OH. In the following, any disclosure, e.g., levels, for the monoester actives is also applicable to the monoamide actives. For softening, under no/low detergent carry-over laundry conditions the percentage of monoester should be as low as possible, preferably no more than about 5%. However, under high, anionic detergent surfactant or detergent builder carry-over conditions, some monoester can be preferred. The overall ratios of diester to monoester are from about 100:1 to about 2:1, preferably from about 50:1 to about 5:1, more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11:1. The level of monoester present can be controlled in manufacturing the DEQA.

The above compounds, used as the biodegradable quaternized ester-amine softening material in the practice of this invention, can be prepared using standard reaction chemistry. In one synthesis of a di-ester variation of DTDMAC, an amine of the formula RN(CH₂CH₂OH)₂ where R is e.g., alkyl, is esterified at both hydroxyl groups with an acid chloride of the formula R¹C(O)Cl, to form an amine which can be made cationic by acidification (one R is H) to be one type of softener, or then quaternized with an alkyl halide, RX, to yield the desired reaction product (wherein R and R¹ are as defined hereinbefore). However, it will be appreciated by those skilled in the chemical arts that this reaction sequence allows a broad selection of agents to be prepared.

Yet another DEQA softener active that is suitable for the formulation of the concentrated, clear liquid fabric softener compositions of the present invention has

the above formula (1) wherein one R group is a C₁₋₄ hydroxy alkyl group, preferably one wherein one R group is a hydroxyethyl group. An example of such a hydroxyethyl ester active is di(acyloxyethyl)(2-hydroxyethyl)methyl ammonium methyl sulfate, wherein the acyl group is the same as that of DEQA¹, exemplified hereinafter as DEOA⁸.

(2) The second type of DEQA active has the general formula:

$$\begin{bmatrix} R_3 N^{(+)}CH_2CH & YR^1 \\ CH_2YR^1 \end{bmatrix} X^{(-)}$$
(2)

wherein each Y, R, R^1 , and $X^{(-)}$ have the same meanings as before. Such compounds include those having the formula:

where each R is a methyl or ethyl group and preferably each R^1 is in the range of C_{15} to C_{19} . Degrees of branching and substitution can be present in the alkyl or alkenyl chains. The anion $X^{(-)}$ in the molecule is the same as in DEQA (1) above. As used herein, when the diester is specified, it can include the monoester that is present. The amount of monoester that can be present is the same as in DEQA (1). An example of a preferred DEQA of formula (2) is the "propyl" ester quaternary ammonium fabric softener active having the formula 1,2-di(acyloxy)-3-trimethylammoniopropane chloride, wherein the acyl group is the same as that of DEQA⁵, exemplified hereinafter as DEQA⁹.

These types of agents and general methods of making them are disclosed in U.S. Pat. No. 4,137,180, Naik et al., issued Jan. 30, 1979, which is incorporated herein by reference..

In preferred softener actives (1) and (2), each R¹ is a hydrocarbyl, or substituted hydrocarbyl, group, preferably, alkyl, monounsaturated alkenyl, and polyunsaturated alkenyl groups, with the softener active containing polyunsaturated alkenyl groups being at least about 3%, preferably at least about 5%, more preferably at least about 10%, and even more preferably at least about 15%, by weight of the total softener active present; the actives preferably containing mixtures of R¹ groups, especially within the individual molecules, and also, optionally, but preferably, the saturated R¹ groups comprising branched chains, e.g., from isostearic acid, for at

least part of the saturated R¹ groups, the total of active represented by the branched chain groups preferably being from about 1% to about 90%, preferably from about 10% to about 70%, more preferably from about 20% to about 50%. The DEQAs herein can contain a low level of fatty acid, which can be from unreacted starting material used to form the DEQA and/or as a by-product of any partial degradation (hydrolysis) of the softener active in the finished composition. It is preferred that the level of free fatty acid be low, preferably below about 10%, and more preferably below about 5%, by weight of the softener active.

II. PRINCIPAL SOLVENT SYSTEM

The compositions of the present invention comprise less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, of the principal solvent, by weight of the composition. Said principal solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition. For example, isopropyl alcohol is not very effective and has a strong odor. n-Propyl alcohol is more effective, but also has a distinct odor. Several butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a principal solvent system to minimize their odor. The alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about 6.7°C).

The suitability of any principal solvent for the formulation of the liquid, concentrated, preferably clear, fabric softener compositions herein with the requisite stability is surprisingly selective. Suitable solvents can be selected based upon their octanol/water partition coefficient (P). Octanol/water partition coefficient of a principal solvent is the ratio between its equilibrium concentration in octanol and in water. The partition coefficients of the principal solvent ingredients of this invention are conveniently given in the form of their logarithm to the base 10, logP.

The logP of many ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP" program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database. The "calculated logP" (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J.

B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990, incorporated herein by reference). The fragment approach is based on the chemical structure of each ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding. The ClogP values, which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of the principal solvent ingredients which are useful in the present invention. Other methods that can be used to compute ClogP include, e.g., Crippen's fragmentation method as disclosed in J. Chem. Inf. Comput. Sci., 27, 21 (1987); Viswanadhan's fragmentation method as disclose in J. Chem. Inf. Comput. Sci., 29, 163 (1989); and Broto's method as disclosed in Eur. J. Med. Chem. - Chim. Theor., 19, 71 (1984).

The principal solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said principal solvent preferably being asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes. The more asymmetric solvents appear to be very desirable, whereas the highly symmetrical solvents, having center 1,7-heptanediol, of symmetry, such as bis(hydroxymethyl)cyclohexane, appear to be unable to provide the essentially clear compositions when used alone, even though their ClogP values fall in the preferred range. One can select the most suitable principal solvent by determining whether a composition containing about 27% di(oleyoyloxyethyl)dimethylammonium chloride, about 16-20% of principal solvent, and about 4-6% ethanol remains clear during storage at about 40°F (about 4.4°C) and recovers from being frozen at about 0°F (about -18°C).

The most preferred principal solvents can be identified by the appearance of the freeze-dried dilute treatment compositions used to treat fabrics. These dilute compositions appear to have dispersions of fabric softener that exhibit a more unilamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform. These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active. The compositions also inherently provide improved perfume deposition as compared to conventional fabric softening compositions, especially when the perfume is added to the compositions at, or near, room temperature.

Operable principal solvents are listed below under various listings, e.g., aliphatic and/or alicyclic diols with a given number of carbon atoms; monols; derivatives of glycerine; alkoxylates of diols; and mixtures of all of the above. The preferred principal solvents are in italics and the most preferred principal solvents are in bold type. The reference numbers are the Chemical Abstracts Service Registry numbers (CAS No.) for those compounds that have such a number. Novel compounds have a method identified, described hereinafter, that can be used to prepare the compounds. Some inoperable principal solvents are also listed below for comparison purposes. The inoperable principal solvents, however, can be used in mixtures with operable principal solvents. Operable principal solvents can be used to make concentrated fabric softener compositions that meet the stability/clarity requirements set forth herein.

Many diol principal solvents that have the same chemical formula can exist as many stereoisomers and/or optical isomers. Each isomer is normally assigned with a different CAS No. For examples, different isomers of 4-methyl-2,3-hexanediol are assigned to at least the following CAS Nos: 146452-51-9; 146452-50-8; 146452-49-5; 146452-48-4; 123807-34-1; 123807-33-0, 123807-32-9; and 123807-31-8.

In the following listings, for simplicity, each chemical formula is listed with only one CAS No. This disclosure is only for exemplification and is sufficient to allow the practice of the invention. The disclosure is not limiting. Therefore, it is understood that other isomers with other CAS Nos, and their mixtures, are also included. By the same token, when a CAS No. represents a molecule which contains some particular isotopes, e.g., deuterium, tritium, carbon-13, etc., it is understood that materials which contain naturally distributed isotopes are also included, and vice versa.

TABLE I MONO-OLS

n-propanol	<u>CAS No.</u> 71-23-8
2-butanol 2-methyl-2-propanol	<u>CAS No.</u> 15892-23-6 75-65-0
Inoperable Isomer	
2-methyl-1-propanol	78-83-1

- 27 -

TABLE II C6 DIOLS

Operable Isomers	CAS No.
2,3-butanediol, 2,3-dimethyl-	76-09-5
1,2-butanediol, 2,3-dimethyl-	66553-15-9
1,2-butanediol, 3,3-dimethyl-	59562-82-2
2,3-pentanediol, 2-methyl-	7795-80-4
2,3-pentanediol, 3-methyl-	63521-37-9
2,3-pentanediol, 4-methyl-	7795-79-1
2,3-hexanediol	617-30-1
3,4-hexanediol	922-17-8
1,2-butanediol, 2-ethyl-	66553-16-0
1,2-pentanediol, 2-methyl-	20667-05-4
1,2-pentanediol, 3-methyl-	159623-53-7
1,2-pentanediol, 4-methyl-	72110-08-8
1,2-hexanediol	6920-22-5

Inoperable Isomers

- 1,3-propanediol, 2-ethyl-2-methyl-
- 1,3-propanediol, 2-isopropyl-
- 1,3-propanediol, 2-propyl-
- 1,3-butanediol, 2,2-dimethyl-
- 1,3-butanediol, 2,3-dimethyl-
- 1,3-butanediol, 2-ethyl-
- 1,4-butanediol, 2,2-dimethyl-
- 1,4-butanediol, 2,3-dimethyl-
- 1,4-butanediol, 2-ethyl-
- 1,3-pentanediol, 2-methyl-
- 1,3-pentanediol, 3-methyl-
- 1,3-pentanediol, 4-methyl-
- 1,4-pentanediol, 2-methyl-
- 1,4-pentanediol, 3-methyl-
- 1,4-pentanediol, 4-methyl-
- 1,5-pentanediol, 2-methyl-
- 1,5-pentanediol, 3-methyl-
- 2,4-pentanediol, 2-methyl-
- 2,4-pentanediol, 3-methyl-
- 1,3-hexanediol
- 1,4-hexanediol
- 1,5-hexanediol
- 1,6-hexanediol

2,4-hexanediol 2,5-hexanediol

TABLE III C7 DIOLS

Operable Isomers	CAS No.
1,3-propanediol, 2-butyl-	2612-26-2
1,3-propanediol, 2,2-diethyl-	115-76-4
1,3-propanediol, 2-(1-methylpropyl)-	33673-01-7
1,3-propanediol, 2-(2-methylpropyl)-	26462-20-8
1,3-propanediol, 2-methyl-2-propyl-	78-26-2
1,2-butanediol, 2,3,3-trimethyl-	Method B
1,4-butanediol, 2-ethyl-2-methyl-	76651-98-4
1,4-butanediol, 2-ethyl-3-methyl-	66225-34-1
1,4-butanediol, 2-propyl-	62946-68-3
1,4-butanediol, 2-isopropyl-	39497-66-0
1,5-pentanediol, 2,2-dimethyl-	3121-82-2
1,5-pentanediol, 2,3-dimethyl-	81554-20-3
1,5-pentanediol, 2,4-dimethyl-	2121-69-9
1,5-pentanediol, 3,3-dimethyl-	53120-74-4
2,3-pentanediol, 2,3-dimethyl-	6931-70-0
2,3-pentanediol, 2,4-dimethyl-	66225-53-4
2,3-pentanediol, 3,4-dimethyl-	37164-04-8
2,3-pentanediol, 4,4-dimethyl-	89851-45-6
3,4-pentanediol, 2,3-dimethyl-	Method B
1,5-pentanediol, 2-ethyl-	14189-13-0
1,6-hexanediol, 2-methyl-	25258-92-8
1,6-hexanediol, 3-methyl-	4089-71-8
2,3-hexanediol, 2-methyl-	59215-55-3
2,3-hexanediol, 3-methyl-	139093-40-6
2,3-hexanediol, 4-methyl-	***
2,3-hexanediol, 5-methyl-	Method B
3,4-hexanediol, 2-methyl-	Method B
3,4-hexanediol, 3-methyl-	18938-47-1
1,3-heptanediol	23433-04-7
1,4-heptanediol	40646-07-9
1,5-heptanediol	60096-09-5
1,6-heptanediol	13175-27-4
Preferred Isomers	
1,3-propanediol, 2-butyl-	2612-26-2
1,4-butanediol, 2-propyl-	62946-68-3
1,5-pentanediol, 2-ethyl-	14189-13-0
2,3-pentanediol, 2,3-dimethyl-	6931-70-0

PCT/US96/11556

WO 97/03169

-	29	

66225-53-4
37164-04-8
89851-45-6
Method B
25258-92-8
4089-71-8
23433-04-7
40646-07-9
60096-09-5
13175-27-4

More Preferred Isomers

2,3-pentanediol, 2,3-dimethyl-	6931-70-0		
2,3-pentanediol, 2,4-dimethyl-	66225-53-4		
2,3-pentanediol, 3,4-dimethyl-	37164-04-8		
2,3-pentanediol, 4,4-dimethyl-	89851-45-6		
3,4-pentanediol, 2,3-dimethyl-	Method B		

Inoperable Isomers

- 1,3-propanediol, 2-methyl-2-isopropyl-
- 1,2-butanediol, 2-ethyl-3-methyl-
- 1,3-butanediol, 2,2,3-trimethyl-
- 1,3-butanediol, 2-ethyl-2-methyl-
- 1,3-butanediol, 2-ethyl-3-methyl-
- 1,3-butanediol, 2-isopropyl-
- 1,3-butanediol, 2-propyl-
- 1,4-butanediol, 2,2,3-trimethyl
- 1,4-butanediol, 3-ethyl-1-methyl-
- 1,2-pentanediol, 2,3-dimethyl-
- 1,2-pentanediol, 2,4-dimethyl-
- 1,2-pentanediol, 3,3-dimethyl-
- 1,2-pentanediol, 3,4-dimethyl-
- 1,2-pentanediol, 4,4-dimethyl-
- 1,2-pentanediol, 2-ethyl-
- 1,3-pentanediol, 2,2-dimethyl-
- 1,3-pentanediol, 2,3-dimethyl-
- 1,3-pentanediol, 2,4-dimethyl-
- 1,3-pentanediol, 2-ethyl-
- 1,3-pentanediol, 3,4-dimethyl-
- 1,3-pentanediol, 4,4-dimethyl-
- 1,4-pentanediol, 2,2-dimethyl-
- 1,4-pentanediol, 2,3-dimethyl-
- 1,4-pentanediol, 2,4-dimethyl-
- 1,4-pentanediol, 3,3-dimethyl-

1,4-pentanediol, 3,4-dimethy
2,4-pentanediol, 2,3-dimethy
2,4-pentanediol, 2,4-dimethy
2,4-pentanediol, 3,3-dimethy
1,2-hexanediol, 2-methyl-
1,2-hexanediol, 3-methyl-
1,2-hexanediol, 4-methyl-
1,2-hexanediol, 5-methyl-
1,3-hexanediol, 2-methyl-
1,3-hexanediol, 3-methyl-
1,3-hexanediol, 4-methyl-
1,3-hexanediol, 5-methyl-
1,4-hexanediol, 2-methyl-
1,4-hexanediol, 3-methyl-
1,4-hexanediol, 4-methyl-
1,4-hexanediol, 5-methyl-
1,5-hexanediol, 2-methyl-
1,5-hexanediol, 3-methyl-
1,5-hexanediol, 4-methyl-
1,5-hexanediol, 5-methyl-
2,4-hexanediol, 2-methyl-
2,4-hexanediol, 3-methyl-
2,4-hexanediol, 4-methyl-
2,4-hexanediol, 5-methyl-
2,5-hexanediol, 2-methyl-
2,5-hexanediol, 3-methyl-
1,2-heptanediol
2,3-heptanediol
2,4-heptanediol
2,5-heptanediol
2,6-heptanediol
3,4-heptanediol

*** 146452-51-9; 146452-50-8; 146452-49-5; 146452-48-4; 123807-34-1; 123807-33-0; 123807-32-9; 123807-31-8; and mixtures thereof.

TABLE IV OCTANEDIOL ISOMERS

PROPANEDIOL DERIVATIVES

1,7-heptanediol 3,5-heptanediol

Chemical Name	CAS No.
Operable Isomers	
1,3-propanediol, 2-(2-methylbutyl)-	87194-40-9
1,3-propanediol, 2-(1,1-dimethylpropyl)-	Method D

1,3-propanediol, 2-(1,2-dimethylpropyl)-	Method D
1,3-propanediol, 2-(1-ethylpropyl)-	25462-28-6
1,3-propanediol, 2-(1-methylbutyl)-	22131-29-9
1,3-propanediol, 2-(2,2-dimethylpropyl)-	Method D
1,3-propanediol, 2-(3-methylbutyl)-	25462-27-5
1,3-propanediol, 2-butyl-2-methyl-	3121-83-3
1,3-propanediol, 2-ethyl-2-isopropyl-	24765-5 5-7
1,3-propanediol, 2-ethyl-2-propyl-	25450-88-8
1,3-propanediol, 2-methyl-2-(1-methylpropyl)-	813-60-5
1,3-propanediol, 2-methyl-2-(2-methylpropyl)-	25462-42-4
1,3-propanediol, 2-tertiary-butyl-2-methyl-	25462-45-7

More Preferred Isomers

1,3-propanediol, 2-(1,1-dimethylpropyl)-	Method D
1,3-propanediol, 2-(1,2-dimethylpropyl)-	Method D
1,3-propanediol, 2-(1-ethylpropyl)-	25462-28-6
1,3-propanediol, 2-(2,2-dimethylpropyl)-	Method D
1,3-propanediol, 2-ethyl-2-isopropyl-	24765-55-7
1,3-propanediol, 2-methyl-2-(1-methylpropyl)-	813-60-5
1,3-propanediol, 2-methyl-2-(2-methylpropyl)-	25462-42-4
1,3-propanediol, 2-tertiary-butyl-2-methyl-	25462-45-7

Inoperable Isomers

1,3-propanediol, 2-pentyl-

BUTANEDIOL DERIVATIVES

Operable Isomers

1,3-butanediol, 2,2-diethyl-	99799-77-6
1,3-butanediol, 2-(1-methylpropyl)-	Method C
1,3-butanediol, 2-butyl-	83988-22-1
1,3-butanediol, 2-ethyl-2,3-dimethyl-	Method D
1,3-butanediol, 2-(1,1-dimethylethyl)-	67271-58-3
1,3-butanediol, 2-(2-methylpropyl)-	Method C
1,3-butanediol, 2-methyl-2-isopropyl-	Method C
1,3-butanediol, 2-methyl-2-propyl-	99799-79-8
1,3-butanediol, 3-methyl-2-isopropyl-	Method C
1,3-butanediol, 3-methyl-2-propyl-	Method D
1,4-butanediol, 2,2-diethyl-	Method H
1,4-butanediol, 2-methyl-2-propyl-	Method H
1,4-butanediol, 2-(1-methylpropyl)-	Method H
1,4-butanediol, 2-ethyl-2,3-dimethyl-	Method F
1,4-butanediol, 2-ethyl-3,3-dimethyl-	Method F
1.4-butanediol. 2-(1.1-dimethylethyl)-	36976-70-2

- 32 -

1,4-butanediol, 2-(2-methylpropyl)-	Method F
1,4-butanediol, 2-methyl-3-propyl-	90951-76-1
1,4-butanediol, 3-methyl-2-isopropyl-	99799-24-3

Preferred Isomers

99799-77-6
Method C
83988-22-1
Method D
67271-58-3
Method C
Method C
99799-79-8
Method D
Method H
Method F
Method F
36976-70-2
99799-24-3

More Preferred Isomers

1,3-butanediol, 2-(1-methylpropyl)-	Method C
1,3-butanediol, 2-(2-methylpropyl)-	Method C
1,3-butanediol, 2-butyl-	83988-22-1
1,3-butanediol, 2-methyl-2-propyl-	99799-79-8
1,3-butanediol, 3-methyl-2-propyl-	Method D
1,4-butanediol, 2,2-diethyl-	Method H
1,4-butanediol, 2-ethyl-2,3-dimethyl-	Method F
1,4-butanediol, 2-ethyl-3,3-dimethyl-	Method F
1,4-butanediol, 2-(1,1-dimethylethyl)-	36976-70-2

Inoperable Isomers

1 4	1		••			
1.4	-ou	tan	edi(M. 2	2-DL	ıtyl-

- 1,2-butanediol, 2-ethyl-3,3-dimethyl-
- 1,4-butanediol, 2-methyl-2-isopropyl-
- 1,2-butanediol, 3-methyl-2-isopropyl-
- 1,4-butanediol, 2,2,3,3-tetramethyl-

TRIMETHYLPENTANEDIOL ISOMERS

Operable Isomers

1,3-pentanediol, 2,2,3-trimethyl-	35512-54-0
1.3-pentanediol, 2.2.4-trimethyl-	144-19-4

1,3-pentanediol, 2,3,4-trimethyl-	116614-13-2
1,3-pentanediol, 2,4,4-trimethyl-	109387-36-2
1,3-pentanediol, 3,4,4-trimethyl-	81756-50-5
1,4-pentanediol, 2,2,3-trimethyl-	Method H
1,4-pentanediol, 2,2,4-trimethyl-	80864-10-4
1,4-pentanediol, 2,3,3-trimethyl-	Method H
1,4-pentanediol, 2,3,4-trimethyl-	92340-74-4
1,4-pentanediol, 3,3,4-trimethyl-	16466-35-6
1,5-pentanediol, 2,2,3-trimethyl-	Method F
1,5-pentanediol, 2,2,4-trimethyl-	3465-14-3
1,5-pentanediol, 2,3,3-trimethyl-	Method A
1,5-pentanediol, 2,3,4-trimethyl-	85373-83-7
2,4-pentanediol, 2,3,3-trimethyl-	24892-51-1
2,4-pentanediol, 2,3,4-trimethyl-	24892-52-2

Preferred Isomers

1,3-pentanediol, 2,2,3-trimethyl-	35512-54-0
1,3-pentanediol, 2,2,4-trimethyl-	144-19-4
1,3-pentanediol, 2,3,4-trimethyl-	116614-13-2
1,3-pentanediol, 2,4,4-trimethyl-	109387-36-2
1,3-pentanediol, 3,4,4-trimethyl-	81756-50-5
1,4-pentanediol, 2,2,3-trimethyl-	Method H
1,4-pentanediol, 2,2,4-trimethyl-	80864-10-4
1,4-pentanediol, 2,3,3-trimethyl-	Method F
1,4-pentanediol, 2,3,4-trimethyl-	92340-74-4
1,4-pentanediol, 3,3,4-trimethyl-	16466-35-6
1,5-pentanediol, 2,2,3-trimethyl-	Method A
1,5-pentanediol, 2,2,4-trimethyl-	3465-14-3
1,5-pentanediol, 2,3,3-trimethyl-	Method A
2,4-pentanediol, 2,3,4-trimethyl-	24892-52-2

More Preferred Iomers

1,3-pentanediol, 2,3,4-trimethyl-	116614-13-2
1,4-pentanediol, 2,3,4-trimethyl-	92340-74-4
1,5-pentanediol, 2,2,3-trimethyl-	Method A
1,5-pentanediol, 2,2,4-trimethyl-	3465-14-3
1,5-pentanediol, 2,3,3-trimethyl-	Method A

Inoperable Isomers

1,2-pentanediol, 2,3,3-trimethyl-1,2-pentanediol, 2,3,4-trimethyl-1,2-pentanediol, 2,4,4-trimethyl-1,2-pentanediol, 3,4,4-trimethyl-1,2-pentanediol, 3,4,4-trimethyl-

- 2,3-pentanediol, 2,3,4-trimethyl-
- 2,3-pentanediol, 2,4,4-trimethyl-
- 2,3-pentanediol, 3,4,4-trimethyl-

ETHYLMETHYLPENTANEDIOL ISOMERS

Operable Isomers

1,3-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 2-ethyl-2-methyl- 1,4-pentanediol, 2-ethyl-3-methyl- 1,4-pentanediol, 2-ethyl-4-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-2-methyl- Method F 1,5-pentanediol, 2-ethyl-2-methyl- Method F	1,3-pentanediol, 2-ethyl-2-methyl-	Method C
1,3-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 2-ethyl-3-methyl- 1,4-pentanediol, 2-ethyl-4-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,3-pentanediol, 2-ethyl-3-methyl-	Method D
1,3-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 2-ethyl-3-methyl- 1,4-pentanediol, 2-ethyl-4-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,3-pentanediol, 2-ethyl-4-methyl-	148904-97-6
1,4-pentanediol, 2-ethyl-3-methyl- 1,4-pentanediol, 2-ethyl-4-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2		55661-05-7
1,4-pentanediol, 2-ethyl-4-methyl- 1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,4-pentanediol, 2-ethyl-2-methyl-	Method H
1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,4-pentanediol, 2-ethyl-3-methyl-	Method F
1,4-pentanediol, 3-ethyl-2-methyl- 1,4-pentanediol, 3-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,4-pentanediol, 2-ethyl-4-methyl-	Method G
1,5-pentanediol, 2-ethyl-2-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 2-ethyl-3-methyl- 57740-12-2		Method F
1,5-pentanediol, 2-ethyl-3-methyl-54886-83-81,5-pentanediol, 2-ethyl-4-methyl-Method F1,5-pentanediol, 3-ethyl-3-methyl-57740-12-2	1,4-pentanediol, 3-ethyl-3-methyl-	Method F
1,5-pentanediol, 2-ethyl-3-methyl-54886-83-81,5-pentanediol, 2-ethyl-4-methyl-Method F1,5-pentanediol, 3-ethyl-3-methyl-57740-12-2	1,5-pentanediol, 2-ethyl-2-methyl-	Method F
1,5-pentanediol, 2-ethyl-4-methyl- 1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2	1,5-pentanediol, 2-ethyl-3-methyl-	54886-83-8
1,5-pentanediol, 3-ethyl-3-methyl- 57740-12-2		Method F
		57740-12-2

More Preferred Isomers

1,3-pentanediol, 2-ethyl-2-methyl-	Method C
1,3-pentanediol, 2-ethyl-3-methyl-	Method D
1,3-pentanediol, 2-ethyl-4-methyl-	148904-97-6
1,3-pentanediol, 3-ethyl-2-methyl-	55661-05-7
1,4-pentanediol, 2-ethyl-2-methyl-	Method H
1,4-pentanediol, 2-ethyl-3-methyl-	Method F
1,4-pentanediol, 2-ethyl-4-methyl-	Method G
1,5-pentanediol, 3-ethyl-3-methyl-	57740-12-2
2,4-pentanedial, 3-ethyl-2-methyl-	Method G

Inoperable Isomers

- 1,2-pentanediol, 2-ethyl-3-methyl-
- 1,2-pentanediol, 2-ethyl-4-methyl-
- 1,2-pentanediol, 3-ethyl-2-methyl-
- 1,2-pentanediol, 3-ethyl-3-methyl-
- 1,2-pentanediol, 3-ethyl-4-methyl-
- 1,3-pentanediol, 3-ethyl-4-methyl-
- 1,4-pentanediol, 3-ethyl-4-methyl-
- 1,5-pentanediol, 3-ethyl-2-methyl-
- 2,3-pentanediol, 3-ethyl-2-methyl-
- 2,3-pentanediol, 3-ethyl-4-methyl-

2,4-pentanediol, 3-ethyl-3-methyl-

PROPYLPENTANEDIOL ISOMERS

Operable Isomers

1,3-pentanediol, 2-isopropyl-	Method D
1,3-pentanediol, 2-propyl-	Method C
1,4-pentanediol, 2-isopropyl-	Method H
1,4-pentanediol, 2-propyl-	Method H
1,4-pentanediol, 3-isopropyl-	Method H
1,5-pentanediol, 2-isopropyl-	90951-89-6
2,4-pentanediol, 3-propyl-	Method C

More Preferred Isomers

1,3-pentanediol, 2-isopropyl-	Method D
1,3-pentanediol, 2-propyl-	Method C
1,4-pentanediol, 2-isopropyl-	Method H
1,4-pentanediol, 2-propyl-	Method H
1,4-pentanediol, 3-isopropyl-	Method H
2,4-pentanediol, 3-propyl-	Method C

Inoperable Isomers

- 1,2-pentanediol, 2-propyl-
- 1,2-pentanediol, 2-isopropyl-
- 1,4-pentanediol, 3-propyl-
- 1,5-pentanediol, 2-propyl-
- 2,4-pentanediol, 3-isopropyl-

DIMETHYLHEXANEDIOL ISOMERS

Operable Isomers

1,3-hexanediol, 2,2-dimethyl-	22006-96-8
1,3-hexanediol, 2,3-dimethyl-	Method D
1,3-hexanediol, 2,4-dimethyl-	78122-99-3
1,3-hexanediol, 2,5-dimethyl-	Method C
1,3-hexanediol, 3,4-dimethyl-	Method D
1,3-hexanediol, 3,5-dimethyl-	Method D
1,3-hexanediol, 4,4-dimethyl-	Method C
1,3-hexanediol, 4,5-dimethyl-	Method C
1,4-hexanediol, 2,2-dimethyl-	Method F
1,4-hexanediol, 2,3-dimethyl-	Method F
1,4-hexanediol, 2,4-dimethyl-	Method G

	- 50 -
1,4-hexanediol, 2,5-dimethyl-	22417-60-3
1,4-hexanediol, 3,3-dimethyl-	Method F
1,4-hexanediol, 3,4-dimethyl-	Method E
1,4-hexanediol, 3,5-dimethyl-	Method H
1,4-hexanediol, 4,5-dimethyl-	Method E
1,4-hexanediol, 5,5-dimethyl-	38624-38-3
1,5-hexanediol, 2,2-dimethyl-	Method A
1,5-hexanediol, 2,3-dimethyl-	62718-05-2
1,5-hexanediol, 2,4-dimethyl-	73455-82-0
1,5-hexanediol, 2,5-dimethyl-	58510-28-4
1,5-hexanediol, 3,3-dimethyl-	41736-99-6
1,5-hexanediol, 3,4-dimethyl-	Method A
1,5-hexanediol, 3,5-dimethyl-	Method G
1,5-hexanediol, 4,5-dimethyl-	Method F
1,6-hexanediol, 2,2-dimethyl-	13622-91-8
1,6-hexanediol, 2,3-dimethyl-	Method F
1,6-hexanediol, 2,4-dimethyl-	Method F
1,6-hexanediol, 2,5-dimethyl-	49623-11-2
1,6-hexanediol, 3,3-dimethyl-	Method F
1,6-hexanediol, 3,4-dimethyl-	65363-45-3
2,4-hexanediol, 2,3-dimethyl-	26344-17-2
2,4-hexanediol, 2,4-dimethyl-	29649-22-7
2,4-hexanediol, 2,5-dimethyl-	3899-89-6
2,4-hexanediol, 3,3-dimethyl-	42412-51-1
2,4-hexanediol, 3,4-dimethyl-	90951-83-0
2,4-hexanediol, 3,5-dimethyl-	159300-34-2
2,4-hexanediol, 4,5-dimethyl-	Method D
2,4-hexanediol, 5,5-dimethyl-	108505-10-8
2,5-hexanediol, 2,3-dimethyl-	Method G
2,5-hexanediol, 2,4-dimethyl-	Method G
2,5-hexanediol, 2,5-dimethyl-	110-03-2
2,5-hexanediol, 3,3-dimethyl-	Method H
2,5-hexanediol, 3,4-dimethyl-	99799-30-1
2,6-hexanediol, 3,3-dimethyl-	Method A

More Preferred Isomers

1,3-hexanediol, 2,2-dimethyl-	22006-96-8
1,3-hexanediol, 2,3-dimethyl-	Method D
1,3-hexanediol, 2,4-dimethyl-	78122-99-3
1,3-hexanediol, 2,5-dimethyl-	Method C
1,3-hexanediol, 3,4-dimethyl-	Method D
1,3-hexanediol, 3,5-dimethyl-	Method D
1,3-hexanediol, 4,4-dimethyl-	Method C
1,3-hexanediol, 4,5-dimethyl-	Method C
1,4-hexanediol, 2,2-dimethyl-	Method H
1,4-hexanediol, 2,3-dimethyl-	Method F

1,4-hexanediol, 2,4-dimethyl-	Method G
1,4-hexanediol, 2,5-dimethyl-	22417-60-3
1,4-hexanediol, 3,3-dimethyl-	Method F
1,4-hexanediol, 3,4-dimethyl-	Method E
1,4-hexanediol, 3,5-dimethyl-	Method H
1,4-hexanediol, 4,5-dimethyl-	Method E
1,4-hexanediol, 5,5-dimethyl-	38624-38-3
1,5-hexanediol, 2,2-dimethyl-	Method A
1,5-hexanediol, 2,3-dimethyl-	62718-05-2
1,5-hexanediol, 2,4-dimethyl-	73455-82-0
1,5-hexanedial, 2,5-dimethyl-	58510-28-4
1,5-hexanediol, 3,3-dimethyl-	41736-99-6
1,5-hexanediol, 3,4-dimethyl-	Method A
1,5-hexanediol, 3,5-dimethyl-	Method G
1,5-hexanediol, 4,5-dimethyl-	Method F
2,6-hexanediol, 3,3-dimethyl-	Method A

Inoperable Isomers

- 1,2-hexanediol, 2,3-dimethyl-
- 1,2-hexanediol, 2,4-dimethyl-
- 1,2-hexanediol, 2,5-dimethyl-
- 1,2-hexanediol, 3,3-dimethyl-
- 1,2-hexanediol, 3,4-dimethyl-
- 1,2-hexanediol, 3,5-dimethyl-1,2-hexanediol, 4,4-dimethyl-
- 1,2-hexanediol, 4,5-dimethyl-
- 1,2-hexanediol, 5,5-dimethyl-
- 2,3-hexanediol, 2,3-dimethyl-
- 2,3-hexanediol, 2,4-dimethyl-
- 2,3-hexanediol, 2,5-dimethyl-
- 2,3-hexanediol, 3,4-dimethyl-
- 2,3-hexanediol, 3,5-dimethyl-
- 2,3-hexanediol, 4,4-dimethyl-
- 2,3-hexanediol, 4,5-dimethyl-
- 2,3-hexanediol, 5,5-dimethyl-
- 3,4-hexanediol, 2,2-dimethyl-
- 3,4-hexanediol, 2,3-dimethyl-
- 3,4-hexanediol, 2,4-dimethyl-
- 3,4-hexanediol, 2,5-dimethyl-
- 3,4-hexanediol, 3,4-dimethyl-

PCT/US96/11556

ETHYLHEXANEDIOL ISOMERS

More Preferred Isomers

1,3-hexanediol, 2-ethyl-	94-96-2
1,3-hexanediol, 4-ethyl-	Method C
1,4-hexanediol, 2-ethyl-	148904-97-6
1,4-hexanediol, 4-ethyl-	1113-00-4
1,5-hexanediol, 2-ethyl-	58374-34-8
2,4-hexanediol, 3-ethyl-	Method C
2,4-hexanediol, 4-ethyl-	33683-47-5
2,5-hexanediol, 3-ethyl-	Method F

Inoperable Isomers

1,5-hexanediol,	4-ethyl-
-----------------	----------

- 1,6-hexanediol, 2-ethyl-
- 1,4-hexanediol, 3-ethyl-
- 1,5-hexanediol, 3-ethyl-
- 1,6-hexanediol, 3-ethyl-
- 1,2-hexanediol, 2-ethyl-
- 1,2-hexanediol, 3-ethyl-
- 1,2-hexanediol, 4-ethyl
- 2,3-hexanediol, 3-ethyl-
- 2,3-hexanediol, 4-ethyl-
- 3,4-hexanediol, 3-ethyl-
- 1,3-hexanediol, 3-ethyl-

METHYLHEPTANEDIOL ISOMERS

Operable Isomers

121	
1,3-heptanediol, 2-methyl-	109417-38-1
1,3-heptanediol, 3-methyl-	165326-88-5
1,3-heptanediol, 4-methyl-	Method C
1,3-heptanediol, 5-methyl-	Method D
1,3-heptanediol, 6-methyl-	Method C
1,4-heptanediol, 2-methyl-	15966-03-7
1,4-heptanediol, 3-methyl-	7748-38-1
1,4-heptanediol, 4-methyl-	72473-94-0
1,4-heptanediol, 5-methyl-	63003-04-3
1,4-heptanediol, 6-methyl-	99799-25-4
1,5-heptanediol, 2-methyl-	141605-00-7
1,5-heptanediol, 3-methyl-	Method A
1,5-heptanediol, 4-methyl-	Method A
1,5-heptanediol, 5-methyl-	99799-26-5
1,5-heptanediol, 6-methyl-	57740-00-8

WO 97/03169 PCT/US96/11556

- 39 -

1,6-heptanediol, 2-methyl-	132148-22-2
1,6-heptanediol, 3-methyl-	Method G
1,6-heptanediol, 4-methyl-	156307-84-5
1,6-heptanediol, 5-methyl-	Method A
1,6-heptanediol, 6-methyl-	5392-57-4
2,4-heptanediol, 2-methyl-	38836-26-9
2,4-heptanediol, 3-methyl-	6964-04-1
2,4-heptanediol, 4-methyl-	165326-87-4
2,4-heptanediol, 5-methyl-	Method C
2,4-heptanediol, 6-methyl-	79356-95-9
2,5-heptanediol, 2-methyl-	141605-02-9
2,5-heptanediol, 3-methyl-	Method G
2,5-heptanediol, 4-methyl-	156407-38-4
2,5-heptanediol, 5-methyl-	148843-72-5
2,5-heptanediol, 6-methyl-	51916-46-2
2,6-heptanediol, 2-methyl-	73304-48-0
2,6-heptanediol, 3-methyl-	29915-96-6
2,6-heptanediol, 4-methyl-	106257-69-6
3,4-heptanediol, 3-methyl-	18938-50-6
3,5-heptanediol, 2-methyl-	Method C
3,5-heptanediol, 3-methyl-	99799-27-6
3,5-heptanediol, 4-methyl-	156407-37-3
- · · · · · · · · · · · · · · · · · · ·	

More Preferred Isomers

1,3-heptanediol, 2-methyl-	109417-38-1
1,3-heptanediol, 3-methyl-	165326-88-5
1,3-heptanediol, 4-methyl-	Method C
1,3-heptanediol, 5-methyl-	Method D
1,3-heptanediol, 6-methyl-	Method C
1,4-heptanediol, 2-methyl-	15966-03-7
1,4-heptanediol, 3-methyl-	7748-38-1
1,4-heptanediol, 4-methyl-	72473-94-0
1,4-heptanediol, 5-methyl-	63003-04-3
1,4-heptanediol, 6-methyl-	99799-25-4
1,5-heptanediol, 2-methyl-	141605-00-7
1,5-heptanediol, 3-methyl-	Method A
1,5-heptanediol, 4-methyl-	Method A
1,5-heptanediol, 5-methyl-	99799-26-5
1,5-heptanediol, 6-methyl-	57740-00-8
1,6-heptanediol, 2-methyl-	132148-22-2
1,6-heptanediol, 3-methyl-	Method G
1,6-heptanediol, 4-methyl-	156307-84-5
1,6-heptanediol, 5-methyl-	Method A
1,6-heptanediol, 6-methyl-	5392-57-4
2,4-heptanediol, 2-methyl-	38836-26-9
2,4-heptanediol, 3-methyl-	6964-04-1

WO 97/03169 PCT/US96/11556

- 40 -

165326-87-4
Method C
79356-95-9
141605-02-9
Method H
156407-38-4
148843-72-5
51916-46-2
73304-48-0
29915-96-6
106257-69-6
18938-50-6
Method C
156407-37-3

Inoperable Isomers

*, * incremitation, Z-member	1,7-1	reptaneo	diol. 2	-methyl-
------------------------------	-------	----------	---------	----------

- 1,7-heptanediol, 3-methyl-
- 1,7-heptanediol, 4-methyl-
- 2,3-heptanediol, 2-methyl-
- 2,3-heptanediol, 3-methyl-
- 2,3-heptanediol, 4-methyl-
- 2,3-heptanediol, 5-methyl-
- 2,3-heptanediol, 6-methyl-
- 3,4-heptanediol, 2-methyl-
- 3,4-heptanediol, 4-methyl-
- 3,4-heptanediol, 5-methyl-3,4-heptanediol, 6-methyl-
- 1,2-heptanediol, 2-methyl-
- 1,2-heptanediol, 3-methyl-
- 1,2-heptanediol, 4-methyl-
- 1,2-heptanediol, 5-methyl-
- 1,2-heptanediol, 6-methyl-

OCTANEDIOL ISOMERS

More Preferred Isomers

2,4-octanediol	90162-24-6
2,5-octanediol	4527-78-0
2,6-octanediol	Method A
2,7-octanediol	19686-96-5
3,5-octanediol	24892-55-5
3,6-octanediol	24434-09-1

-41 -

Inoperable Isomers

1,2-octanediol	1117-86-8
1,3-octanediol	23433-05-8
1,4-octanediol	51916-47-3
1,5-octanediol	2736-67-6
1,6-octanediol	4060-76-6
1,7-octanediol	13175-32-1
1,8-octanediol	629-41-4
2,3-octanediol	e.g., 98464-24-5
3,4-octanediol	e.g., 99799-31-2
3,5-octanediol	e.g., 129025-63-4

TABLE V NONANEDIOL ISOMERS

Chemical Name Preferred Isomers	CAS No.
2,4-pentanediol, 2,3,3,4-tetramethyl-	19424-43-2
Operable Isomers	
2,4-pentanediol, 3-tertiarybutyl-	142205-14-9
2,4-hexanediol, 2,5,5-trimethyl-	97460-08-7
2,4-hexanediol, 3,3,4-trimethyl-	Method D
2,4-hexanediol, 3,3,5-trimethyl-	27122-58-3
2,4-hexanediol, 3,5,5-trimethyl-	Method D
2,4-hexanediol, 4,5,5-trimethyl-	Method D
2,5-hexanediol, 3,3,4-trimethyl-	Method H
2,5-hexanediol, 3,3,5-trimethyl-	Method G

Inoperable Isomers

There are over 500 inoperable isomers in	cluding the following:
2,4-hexanediol, 2,4,5-trimethyl-	36587-81-2
0.4 have 21.1 0.2 f (2) at 1	06044.00.7

2,4-hexanediol, 2,3,5-trimethyl-, erythro-2,4-hexanediol, 2,3,5-trimethyl-, threo-1,3-propanediol, 2-butyl-2-ethyl-2,4-hexanediol, 2,3,5-trimethyl-, threo-26343-49-7 115-84-4 2,4-hexanediol, 2,3,5-trimethyl-, threo-

TABLE VI

ALKYL GLYCERYL ETHERS, DI(HYDROXYALKYL) ETHERS, AND ARYL GLYCERYL ETHERS

Preferred Monoglycerol Ethers and Derivatives

- 1,2-propanediol, 3-(butyloxy)-, triethoxylated
- 1,2-propanediol, 3-(butyloxy)-, tetraethoxylated

More Preferred Monoglycerol Ethers

and Derivatives

CAS No. 22636-32-4

1,2-propanediol, 3-(n-pentyloxy)-

1,2-propanediol, 3-(2-pentyloxy)-

1,2-propanediol, 3-(3-pentyloxy)-

1,2-propanediol, 3-(2-methyl-1-butyloxy)-

1,2-propanediol, 3-(iso-amyloxy)-

1,2-propanediol, 3-(3-methyl-2-butyloxy)-

1,2-propanediol, 3-(cyclohexyloxy)-

1,2-propanediol, 3-(1-cyclohex-1-envloxy)-

1,3-propanediol, 2-(pentyloxy)-

1,3-propanediol, 2-(2-pentyloxy)-

1,3-propanediol, 2-(3-pentyloxy)-

1,3-propanediol, 2-(2-methyl-1-butyloxy)-

1,3-propanediol, 2-(iso-amyloxy)-

1,3-propanediol, 2-(3-methyl-2-butyloxy)-

1,3-propanediol, 2-(cyclohexyloxy)-

1,3-propanediol, 2-(1-cyclohex-1-enyloxy)-

1,2-propanediol, 3-(butyloxy)-, pentaethoxylated

1,2-propanediol, 3-(butyloxy)-, hexaethoxylated

1,2-propanediol, 3-(butyloxy)-, heptaethoxylated

1,2-propanediol, 3-(butyloxy)-, octaethoxylated

1,2-propanediol, 3-(butyloxy)-, nonaethoxylated

1,2-propanediol, 3-(butyloxy)-, monopropoxylated

1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated

1,2-propanediol, 3-(butyloxy)-, tributyleneoxylated

More Preferred Di(hydroxyalkyl) Ethers

bis(2-hydroxybutyl) ether

bis(2-hydroxycyclopentyl) ether

Inoperable Monoglycerol Ethers

1,2-propanediol, 3-ethyloxy-

1,2-propanediol, 3-propyloxy-

1.2-propanediol, 3-isopropyloxy-

1,2-propanediol, 3-butyloxy-

1,2-propanediol, 3-isobutyloxy-

1,2-propanediol, 3-tert-butyloxy-

1,2-propanediol, 3-octyloxy-

1,2-propanediol, 3-(2-ethylhexyloxy)-

1,2-propanediol, 3-(cyclopentyloxy)-

1,2-propanediol, 3-(1-cyclohex-2-enyloxy)-

1,3-propanediol, 2-(1-cyclohex-2-envloxy)-

- 43 -

AROMATIC GLYCERYL ETHERS

Operable Aromatic Glyceryl Ethers

- 1,2-propanediol, 3-phenyloxy-
- 1,2-propanediol, 3-benzyloxy-
- 1,2-propanediol, 3-(2-phenylethyloxy)-
- 1,2-propanediol, 3-(1-phenyl-2-propanyloxy)-
- 1,3-propanediol, 2-phenyloxy-
- 1,3-propanediol, 2-(m-cresyloxy)-
- 1,3-propanediol, 2-(p-cresyloxy)-
- 1,3-propanediol, 2-benzyloxy-
- 1,3-propanediol, 2-(2-phenylethyloxy)-
- 1,3-propanediol, 2-(1-phenylethyloxy)-

Preferred Aromatic Glyceryl Ethers

- 1,2-propanediol, 3-phenyloxy-
- 1,2-propanediol, 3-benzyloxy-
- 1,2-propanediol, 3-(2-phenylethyloxy)-
- 1,3-propanediol, 2-(m-cresyloxy)-
- 1,3-propanediol, 2-(p-cresyloxy)-
- 1,3-propanediol, 2-benzyloxy-
- 1,3-propanediol, 2-(2-phenylethyloxy)-

Preferred Aromatic Glyceryl Ethers

- 1,2-propanediol, 3-phenyloxy-
- 1,2-propanediol, 3-benzyloxy-
- 1,2-propanediol, 3-(2-phenylethyloxy)-
- 1,3-propanediol, 2-(m-cresyloxy)-
- 1,3-propanediol, 2-(p-cresyloxy)-
- 1,3-propanediol, 2-(2-phenylethyloxy)-

TABLE VII ALICYCLIC DIOLS AND DERIVATIVES

~ . ~ . .

Chemical Name Preferred Cylic Diols and Derivatives	CAS No.
1-isopropyl-1,2-cyclobutanediol 3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol	59895-32-8
3-isopropyl-1,2-cyclobutanediol	42113-90-6
I-ethyl-1,2-cyclopentanediol	67396-17-2

1,2-dimethyl-1,2-cyclopentanediol	33046-20-7
1,4-dimethyl-1,2-cyclopentanediol	89 794-56-9
2,4,5-trimethyl-1,3-cyclopentanediol	
3,3-dimethyl-1,2-cyclopentanediol	89794-57-0
3,4-dimethyl-1,2-cyclopentanediol	70051-69-3
3,5-dimethyl-1,2-cyclopentanediol	89794-58-1
3-ethyl-1,2-cyclopentanediol	
4,4-dimethyl-1,2-cyclopentanediol	70197-54-5
4-ethyl-1,2-cyclopentanediol	
1,1-bis(hydroxymethyl)cyclohexane	<i>2658-60-8</i>
1,2-bis(hydroxymethyl)cyclohexane	76155-27-6
1,2-dimethyl-1,3-cyclohexanediol	53023-07-7
1,3-bis(hydroxymethyl)cyclohexane	13022-98-5
1,3-dimethyl-1,3-cyclohexanediol	128749-93-9
1,6-dimethyl-1,3-cyclohexanediol	164713-16-0
1-hydroxy-cyclohexaneethanol	40894-17-5
1-hydroxy-cyclohexanemethanol	15753-47-6
1-ethyl-1,3-cyclohexanediol	10601-18-0
1-methyl-1,2-cyclohexanediol	52718-65-7
2,2-dimethyl-1,3-cyclohexanediol	114693-83-3
2,3-dimethyl-1,4-cyclohexanediol	70156-82-0
2,4-dimethyl-1,3-cyclohexanediol	70100-03-0
2,5-dimethyl-1,3-cyclohexanediol	
2,6-dimethyl-1,4-cyclohexanediol	34958-42-4
2-ethyl-1,3-cyclohexanediol	155433-88-8
2-hydroxycyclohexaneethanol	24682-42-6
2-hydroxyethyl-1-cyclohexanol	24002-42-0
2-hydroxymethylcyclohexanol	89794-52-5
3-hydroxyethyl-1-cyclohexanol	05754-52-5
3-hydroxycyclohexaneethanol	86576-87-6
3-hydroxymethylcyclohexanol	00370 07-0
3-methyl-1,2-cyclohexanediol	23477-91-0
4,4-dimethyl-1,3-cyclohexanediol	14203-50-0
4,5-dimethyl-1,3-cyclohexanediol	14205-50-0
4,6-dimethyl-1,3-cyclohexanediol	16066-66-3
4-ethyl-1,3-cyclohexanediol	10000-00-3
4-hydroxyethyl-1-cyclohexanol	
	3389 3- 85 - 5
4-hydroxymethylcyclohexanol	23832-27-1
4-methyl-1,2-cyclohexanediol	51335-83-2
5,5-dimethyl-1,3-cyclohexanediol	31333-03-2
5-ethyl-1,3-cyclohexanediol	
1,2-cycloheptanediol	108268-28-6
2-methyl-1,3-cycloheptanediol	101375-80-8
2-methyl-1,4-cycloheptanediol	1010/0 00-0
4-methyl-1,3-cycloheptanediol	
т-тетут-1, э-с устопертипешог	

5-methyl-1,3-cycloheptanediol	
5-methyl-1,4-cycloheptanediol	90201-00-6
6-methyl-1,4-cycloheptanediol	
1,3-cyclooctanediol	101935-36-8
1,4-cyclooctanediol	73982-04-4
1,5-cyclooctanediol	23418-82-8
1,2-cyclohexanediol, diethoxylate	
1,2-cyclohexanediol, triethoxylate	
1,2-cyclohexanediol, tetraethoxylate	
1,2-cyclohexanediol, pentaethoxylate	
1,2-cyclohexanediol, hexaethoxylate	
1,2-cyclohexanediol, heptaethoxylate	
1,2-cyclohexanediol, octaethoxylate	
1,2-cyclohexanediol, nonaethoxylate	
1,2-cyclohexanediol, monopropoxylate	
1,2-cyclohexanediol, monobutylenoxylate	
1,2-cyclohexanediol, dibutylenoxylate	
1,2-cyclohexanediol, tributylenoxylate	
1,2 Oyolonexusecutos, intrasystemoxytate	
Chemical Name	CAS No.
More Preferred Cylic Diols and Derivatives	
1-isopropyl-1,2-cyclobutanediol	59895-32-8
3-ethyl-4-methyl-1,2-cyclobutanediol	59895-32-8
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol	
3-ethyl-4-methyl-1,2-cyclobutanediol	59895-32-8 42113-90-6
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol	42113-90-6
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol	
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,1-bis(hydroxymethyl)cyclohexane	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-bis(hydroxymethyl)cyclohexane	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-bis(hydroxymethyl)cyclohexane 1,2-dimethyl-1,3-cyclohexanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6 53023-07-7
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-dimethyl-1,3-cyclohexanediol 1,3-bis(hydroxymethyl)cyclohexane	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6 53023-07-7 13022-98-5
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-bis(hydroxymethyl)cyclohexane 1,2-dimethyl-1,3-cyclohexanediol 1,3-bis(hydroxymethyl)cyclohexane 1-hydroxy-cyclohexanemethanol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6 53023-07-7 13022-98-5 15753-47-6
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 3-isopropyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-bis(hydroxymethyl)cyclohexane 1,2-dimethyl-1,3-cyclohexanediol 1,3-bis(hydroxymethyl)cyclohexane 1-hydroxy-cyclohexanemethanol 1-methyl-1,2-cyclohexanediol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6 53023-07-7 13022-98-5
3-ethyl-4-methyl-1,2-cyclobutanediol 3-propyl-1,2-cyclobutanediol 1-ethyl-1,2-cyclopentanediol 1,2-dimethyl-1,2-cyclopentanediol 1,4-dimethyl-1,2-cyclopentanediol 3,3-dimethyl-1,2-cyclopentanediol 3,4-dimethyl-1,2-cyclopentanediol 3,5-dimethyl-1,2-cyclopentanediol 3-ethyl-1,2-cyclopentanediol 4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 4,4-dimethyl-1,2-cyclopentanediol 1,1-bis(hydroxymethyl)cyclohexane 1,2-bis(hydroxymethyl)cyclohexane 1,2-dimethyl-1,3-cyclohexanediol 1,3-bis(hydroxymethyl)cyclohexane 1-hydroxy-cyclohexanemethanol	42113-90-6 67396-17-2 33046-20-7 89794-56-9 89794-57-0 70051-69-3 89794-58-1 70197-54-5 2658-60-8 76155-27-6 53023-07-7 13022-98-5 15753-47-6

- 46 -

1,2-cycloheptanediol	108268-28-6
4-methyl-1,2-cyclohexanediol	23832-27-1
4-hydroxymethylcyclohexanol	33893-85-5
4-hydroxyethyl-1-cyclohexanol	
4-ethyl-1,3-cyclohexanediol	
4,6-dimethyl-1,3-cyclohexanediol	16066-66-3
4,5-dimethyl-1,3-cyclohexanediol	
4,4-dimethyl-1,3-cyclohexanediol	14203-50-0

1,2-cyclohexanediol, pentaethoxylate

1,2-cyclohexanediol, hexaethoxylate

1,2-cyclohexanediol, heptaethoxylate

1,2-cyclohexanediol, octaethoxylate

1,2-cyclohexanediol, nonaethoxylate

1,2-cyclohexanediol, monopropoxylate 1,2-cyclohexanediol, dibutylenoxylate

The unsaturated alicyclic diols include the following known unsaturated alicyclic diols:

Operable Unsaturated Alicyclic Diols

Chemical Name	CAS No.
1,2-Cyclobutanediol, 1-ethenyl-2-ethyl-	58016-14-1
3-Cyclobutene-1,2-diol, 1,2,3,4-tetramethyl-	90112-64-4
3-Cyclobutene-1,2-diol, 3,4-diethyl-	142543-60-0
3-Cyclobutene-1,2-diol, 3-(1,1-dimethylethyl)-	142543-56-4
3-Cyclobutene-1,2-diol, 3-butyl-	142543-55-3
1,2-Cyclopentanediol, 1,2-dimethyl-4-methylene	-103150-02-3
1,2-Cyclopentanediol, 1-ethyl-3-methylene-	90314-52-6
1,2-Cyclopentanediol, 4-(1-propenyl)	128173-45-5
3-Cyclopentene-1,2-diol, 1-ethyl-3-methyl-	90314-43-5
1,2-Cyclohexanediol, 1-ethenyl-	134134-16-0
1,2-Cyclohexanediol, 1-methyl-3-methylene-	98204-78-5
1,2-Cyclohexanediol, 1-methyl-4-methylene-	133358-53-9
1,2-Cyclohexanediol, 3-ethenyl-	55310-51-5
1,2-Cyclohexanediol, 4-ethenyl-	85905-16-4
3-Cyclohexene-1,2-diol, 2,6-dimethyl-	81969-75-7
3-Cyclohexene-1,2-diol, 6,6-dimethyl-	61875-93-2
4-Cyclohexene-1,2-diol, 3,6-dimethyl-	156808-73-0
4-Cyclohexene-1,2-diol, 4,5-dimethyl-	154351-54-9
3-Cyclooctene-1,2-diol	170211-27-5

4-Cyclooctene-1,2-diol	124791-61-3
5-Cyclooctene-1,2-diol	117468-07-2
Inoperable Unsaturated Cyclic Diols	
1,2-Cyclopentanediol, 1-(1-methylethenyl)-	61447-83-4
1,2-Propanediol, 1-cyclopentyl-	55383-20-5
1,3-Cyclopentanediol, 2-(1-methylethylidene)-	65651-46-9
1,3-Propanediol, 2-(1-cyclopenten-1-yl)-	77192-43-9
1,3-Propanediol, 2-(2-cyclopenten-1-yl)-	25462-31-1
1,2-Ethanediol, 1-(1-cyclohexen-1-yl)-	151674-61-2
1,2-Ethanediol, 1-(3-cyclohexen-1-yl)	64011-53-6
2-Cyclohexene-1,4-diol, 5,5-dimethyl-	147274-55-3
4-Cyclohexene-1,3-diol, 3,6-dimethyl-	127716-90-9
1,3-Cycloheptanediol, 2-methylene-	132292-67-2
5-Cycloheptene-1,3-diol, 1-methyl-	160813-33-2
5-Cycloheptene-1,3-diol, 5-methyl-	160813-32-1
2-Cyclooctene-1,4-diol	37996-40-0

TABLE VIII C₃C₇DIOL ALKOXYLATED DERIVATIVES

In the following tables, "EO" means polyethoxylates, i.e., -(CH2CH2O)nH; Me-E_n means methyl-capped polyethoxylates -(CH₂CH₂O)_nCH₃; "2(Me-E_n)" means 2 Me-En groups needed; "PO" means polypropoxylates, (CH(CH₃)CH₂O)_nH "BO" polybutyleneoxy means groups, (CH(CH₂CH₃)CH₂O)_nH "n-BO" and means poly(n-butyleneoxy) poly(tetramethylene)oxy groups -(CH2CH2CH2CH2O)nH. alkoxylated derivatives are all operable and those that are preferred are in bold type and listed on the second line. Non-limiting, typical synthesis methods to prepare the alkoxylated derivatives are given hereinafter.

TABLE VIIIA

Base Material ^(a)	Base Material CAS No.	EO's	1(Me-En)	2(Me- En)	PO's	n-BO's	BO's
		(b)	(c)	(d)	(e)	(f)	(g)
1,2-propanediol (C3)	57-55-6			1-4			
		1		3-4	4		
1,2-propanediol,	558-43-0		4-10				1
2-methyl- (C4)		1	8-10	1	3		

1,3-propanediol (C3)	504-63-2			6-8 8	5-6		
1,3-propanediol, 2,2-diethyl- (C7)	115-76-4	1-7 4-7			1	1-2	
1,3-propanediol, 2,2-dimethyl- (C5)	126-30-7			1-2	3-4		
1,3-propanediol, 2-(1- methylpropyl)- (C7)	33673-01-7	1-7 4-7			1	1-2 2	
1,3-propanediol, 2-(2- methylpropyl)- (C7)	26462-20-8	1-7 4-7			1	1-2 2	
1,3-propanediol, 2-ethyl- (C5)	2612-29-5		6-10 9-10	1	3		
1,3-propanediol, 2- ethyl-2-methyl- (C6)	77-84-9		1-6 3-6		2		1
1,3-propanediol, 2-isopropyl- (C6)	2612-27-3		1-6 3-6		2		1
1,3-propanediol, 2-methyl- (C4)	2163-42-0			2-5 4-5	4-5		2
1,3-propanediol, 2- methyl-2-isopropyl- (C7)	2109-23-1	2-9 6-9			1	1-3 2-3	-
1,3-propanediol, 2- methyl-2-propyl- (C7)	78-26-2	1-7 4-7			1	1-2 2	
1,3-propanediol, 2-propyl- (C6)	2612-28-4		1-4		2		ì

- (a) The number of indicated alkoxylated groups in this and following Tables VIII are all operable, the generic limits being listed on the first line, and those that are preferred are in bold type and listed on the second line.
- (b) The numbers in this column are average numbers of (CH₂CH₂O) groups in the polyethoxylated derivative.
- (c) The numbers in this column are average numbers of (CH₂CH₂O) groups in the one methyl-capped polyethoxylate substituant in each derivative.
- (d) The numbers in this column are average numbers of (CH₂CH₂O) groups in each of the two methyl-capped polyethoxylate substituants in each derivative.
- (e) The numbers in this column are average numbers of (CH(CH₃)CH₂O) groups in the polypropoxylated derivative.
- (f) The numbers in this column are average numbers of (CH₂CH₂CH₂CH₂O) groups in the polytetramethyleneoxylated derivative.
- (g) The numbers in this column are average numbers of (CH(CH₂CH₃)CH₂O) groups in the polybutoxylated derivative.

TABLE VIIIB

Base Material ^(a)	Base Material CAS No.	EO's	1(Me-En)	2(Me-En)	PO's	n-BO's	BO's
		(b)	(c)	(d)	(e)	(f)	(g)
1,2-butanediol (C4)	584-03-2		2-8				
	}	j	6-8		2-3	!	1

					_		
1,2-butanediol,	66553-15-9	1-6		1		1-2	
2,3-dimethyl- (C6)	<u> </u>	2-5			<u> </u>	1	<u> </u>
1,2-butanediol,	66553-16-0	1					1
2-ethyl- (C6)		1-3				1	
1,2-butanediol,	41051-72-3						1
2-methyl- (C5)			1-2		1	<u></u>	
1,2-butanediol,	59562-82-2	1-6	1	:II		1-2	1
3,3-dimethyl- (C6)		2-5				1	<u> </u>
1,2-butanediol,	50468-22-9	1	1		1	j	
3-methyl- (C5)			1-2		1		
1,3-butanediol (C4)	107-88-0			3-6 5-6	5		2
1,3-butanediol, 2,	16343-75-2				1-2		
2,3-trimethyl- (C7)		ļ	1-3]	2		
1,3-butanediol, 2,	76-35-7		3-8				
2-dimethyl- (C6)		•	6-8	{	3		}
1,3-butanediol,	24893-35-4		3-8	<u> </u>	-		
2,3-dimethyl- (C6)			6-8		3		1 1
1,3-butanediol.	66553-17-1		1-6		 		
2-ethyl- (C6)			4-6		2 to 3		1 1
1,3-butanediol, 2-	Method C					2-4	-
ethyl-2-methyl- (C7)			1		1	3	
1,3-butanediol, 2-	68799-03-1	-				2-4	
ethyl-3-methyl- (C7)			1		1	3	
1,3-butanediol,	66567-04-2					2-4	
2-isopropyl- (C7)			1		1	3	
1,3-butanediol,	684-84-4			1-3			
2-methyl- (C5)				2-3	4		
1,3-butanediol,	66567-03-1	2-9				1-3	
2-propyl- (C7)		6-8			1	2-3	
1,3-butanediol,	2568-33-4			1-3			
3-methyl- (C5)				2-3	4		
1,4-butanediol (C4)	110-63-4		_	2-4	4-5		2
				3-4	4-5		
1,4-butanediol, 2,	162108-60-3	2-9				1-3	
2,3-trimethyl- (C7)		6-9			1	2-3	
1,4-butanediol,	32812-23-0		1-6				
2,2-dimethyl- (C6)			3-6		2		1
1,4-butanediol,	57716-80-0		1-6				
2,3-dimethyl- (C6)			3-6		2		1
1,4-butanediol,	57716-79-7				l i		1
2-ethyl- (C6)			1-4		2		
1,4-butanediol, 2-	76651-98-4	1-7				1-2	1
ethyl-2-methyl- (C7)		4-7			1	2	
1,4-butanediol, 2-	66225-34-1	1-7]]	1-2	
ethyl-3-methyl- (C7)		4-7			1	.2	
1,4-butanediol,	39497-66-0	1-7			[1-2	l
2-isopropyl- (C7)		4-7			1	2	

1,4-butanediol,	2938-98-9		6-10		7		1
2-methyl- (C5)			9-10	1	3		-
1,4-butanediol,	62946-68-3	1-5				1-2	
2-propyl- (C7)		2-5				1	l
1,4-butanediol, 3-	Method F	2-9				1-3	
ethyl-i-methyl- (C7)	İ	6-8			1	2-3	i
2,3-butanediol (C4)	513-85-9		6-10		- -		1
		} }	9-10	1	3-4		-
2,3-butanediol,	76-09-5	3-9				1-3	
2,3-dimethyl- (C6)	Į.	7-9	- 1		1	2-3	
2,3-butanediol,	5396-58-7		1-5		 -		
2-methyl- (C5)			2-5		2		1

- (a) The number of indicated alkoxylated groups in this Table are all operable, the generic limits being listed on the first line, and those that are preferred are in bold type and listed on the second line.
- (b) The numbers in this column are average numbers of (CH₂CH₂O) groups in the polyethoxylated derivative.
- (c) The numbers in this column are average numbers of (CH₂CH₂O) groups in the one methyl-capped polyethoxylate substituant in each derivative.
- d) The numbers in this column are average numbers of (CH₂CH₂O) groups in each of the two methyl-capped polyethoxylate substituants in each derivative.
- (e) The numbers in this column are average numbers of (CH(CH₃)CH₂O) groups in the polypropoxylated derivative.
- (f) The numbers in this column are average numbers of (CH₂CH₂CH₂CH₂O) groups in the polytetramethyleneoxylated derivative.
- (g) The numbers in this column are average numbers of (CH(CH₂CH₃)CH₂O) groups in the polybutoxylated derivative.

TABLE VIIIC

		IADI	TE AILC				
Base Material ^(a)	Base Material CAS No.	EO's		2(Me-En)	PO's	n-BO's	BO's
		(b)	(c)	(d)	(e)	(f)	(g)
1,2-pentanediol	5343-92-0	3-10				2-3	
(C5)		7-10			1	3	
1,2-pentanediol,	20667-05-4						
2-methyl- (C6)	1	1-3				1	
1,2-pentanediol,	159623-53-7					-	
3-methyl- (C6)		1-3				1	
1,2-pentanediol,	72110-08-8						
4-methyl- (C6)		1-3				1	
1,3-pentanediol	3174-67-2						
(C5)	1			1-2	3-4		
1,3-pentanediol,	2157-31-5					2-4	
2,2-dimethyl- (C7)	1		1		1	3	
1,3-pentanediol,	66225-52-3					2-4	
2,3-dimethyl- (C7)	<u> </u>		1		1	3	

1,3-pentanediol,	60712-38-1	[1	2-4	}
2,4-dimethyl- (C7)			1		1	3	1
1,3-pentanediol,	29887-11-4	2-9		į		1-3	
2-ethyl- (C7)	<u> </u>	6-8			1	2-3	<u> </u>
1,3-pentanediol,	149-31-5		1-6				1
2-methyl- (C6)			4-6		2-3		
1,3-pentanediol,	129851-50-9					2-4	{
3,4-dimethyl- (C7)		L	1		1	3	
1,3-pentanediol,	33879-72-0	[1-6				1
3-methyl- (C6)			4-6	1	2-3	ł	
1,3-pentanediol,	30458-16-3					2-4	
4,4-dimethyl- (C7)		ļ <u>.</u>	1	1	1	3]
1,3-pentanediol,	54876-99-2		1-6				1
4-methyl- (C6)			4-6	ł	2-3		ļ
1,4-pentanediol	626-95-9	1					
(C5)	1		1	1-2	3-4		
1,4-pentanediol,	Method F				-	2-4	
2,2-dimethyl- (C7)		}	1	j	1	3	
1,4-pentanediol.	Method F		 	 	-	2-4	
2,3-dimethyl- (C7)		}	1	}	1	3	1
1,4-pentanediol.	Method F			 	 `	2-4	
2,4-dimethyl- (C7)	l mediac i	l	l 1	1	1	3	
1,4-pentanediol,	6287-17-8	 	1-6	 			1
2-methyl- (C6)	0207-17-0		4-6	l,	2-3		•
1,4-pentanediol,	81887-62-9			 		2-4	
3,3-dimethyl- (C7)	01007-02-3	!	1]	1	3	
1,4-pentanediol,	63521-36-8			 		2-4	
3,4-dimethyl- (C7)	03321-30-6		1	İ	1	3]
1,4-pentanediol,	26787-63-3		1-6		-		1
3-methyl- (C6)	20/8/40343		4-6	}	2-3	,	•
1,4-pentanediol,	1462-10-8		1-6	 	2-3		1
4-methyl- (C6)	1402-10-0		4-6	}	2-3	·	1
1,5-pentanediol	111-29-5		4-10	 	2-3		
(C5)	111-29-3	}	8-10	1	3		
1,5-pentanediol,	3121-82-2	1-7	0-10			1-2	
12.2-dimethyl- (C7)	3121-02-2	4-7			1	2	l
1,5-pentanediol,	81554-20-3	1-7		 		1-2	
2,3-dimethyl- (C7)	81334-20-3	4-7		į	1	2	
1,5-pentanediol,	2121-69-9	1-7				1-2	
2,4-dimethyl- (C7)	2121-09-9	4-7]	1	2	
1,5-pentanediol,	14189-13-0	1-5		 		1-2	
2-ethyl- (C7)	14102-12-0	2-5		1		1	
1,5-pentanediol,	42856-62-2			 		_	<u>-</u>
	+2030-02-2		1-4		2		1
2-methyl- (C6)	53120-74-4	1-7	1-7	 		1-2	
1,5-pentanediol,	33120-74-4	4-7		1	1	2	} }
3,3-dimethyl- (C7)	4457 71 0	4-/			┝╌┸╌┑		
1,5-pentanediol,	4457-71-0		, ,]	,		
3-methyl- (C6)	<u> </u>		1-4	1	2		لـــــا

2,3-pentanediol (C5)	42027-23-6		1-3		2		
2,3-pentanediol, 2-methyl- (C6)	7795-80-4	1-7 4-7			1	1-2	
2,3-pentanediol, 3-methyl- (C6)	63521-37-9	1-7 4-7			1	1-2	
2,3-pentanediol, 4-methyl- (C6)	7795-79-1	1-7 4-7			1	1-2	
2,4-pentanediol (C5)	625-69-4			1-4 2-4	4		
2,4-pentanediol, 2,3-dimethyl- (C7)	24893-39-8		1-4 2-4		2	:	
2,4-pentanediol, 2,4-dimethyl- (C7)	24892-49-7		1-4 2-4		2		
2,4-pentanediol, 2-methyl- (C6)	107-41-5		5-10 8-10		3		
2,4-pentanediol, 3,3-dimethyl- (C7)	24892-50-0		1-4 2-4		2		
2,4-pentanediol, 3-methyl- (C6)	Method H		5-10 8-10		3		

- (a) The number of indicated alkoxylated groups in this Table are all operable, the generic limits being listed on the first line, and those that are preferred are in bold type and listed on the second line.
- (b) The numbers in this column are average numbers of (CH₂CH₂O) groups in the polyethoxylated derivative.
- (c) The numbers in this column are average numbers of (CH₂CH₂O) groups in the one methyl-capped polyethoxylate substituant in each derivative.
- (d) The numbers in this column are average numbers of (CH₂CH₂O) groups in each of the two methyl-capped polyethoxylate substituants in each derivative.
- (e) The numbers in this column are average numbers of (CH(CH₃)CH₂O) groups in the polypropoxylated derivative.
- (f) The numbers in this column are average numbers of (CH₂CH₂CH₂CH₂O) groups in the polytetramethyleneoxylated derivative.
- (g) The numbers in this column are average numbers of (CH(CH₂CH₃)CH₂O) groups in the polybutoxylated derivative.

TABLE VIIID

Base Material ⁽²⁾	Base Material CAS No.	EO's	1(Me-En)	PO's	n-BO's	BO's
		(b)	(c)	(e)	(f)	(g)
1,3-hexanediol (C6)	21531-91-9		1-5			
		1	2-5	2		1
1,3-hexanediol, 2-methyl-	66072-21-7	2-9			1-3	1
(C7)		6-8		1	2-3	
1,3-hexanediol, 3-methyl-	Method D	2-9			1-3	
(C7)		6-8		1	2-3	

1,3-hexanediol, 4-methyl- (C7)	Method C	2-9 6-8		1	1-3 2-3	
1,3-hexanediol, 5-methyl-	109863-14-1	2-9	 	 	1-3	
(C7)	100005-14-1	6-8		1	2-3	1
1,4-hexanediol (C6)	16432-53-4		1-5	 		
-,] .	2-5	2	1	1
1,4-hexanediol, 2-methyl-	Method F	2-9			1-3	
(C7)	I I I I I I I I I I I I I I I I I I I	6-8		1	2-3	}
1,4-hexanediol, 3-methyl-	66225-36-3	2-9			1-3	
(C7)	00225 50 5	6-8		1	2-3	ł
1,4-hexanediol, 4-methyl-	40646-08-0	2-9		 	1-3	
(C7)	10010 00 0	6-8		1	2-3	
1,4-hexanediol, 5-methyl-	38624-36-1	2-9		 	1-3	
(C7)	30024 50 7	6-8		1	2-3	l
1,5-hexanediol (C6)	928-40-5		1-5	 		
(00)	1,20,103		2-5	2	l	1
1,5-hexanediol, 2-methyl-	Method F	2-9			1-3	<u> </u>
(C7)	Wicalda I	6-8		1	2-3	
1,5-hexanediol, 3-methyl-	Method F	2-9			1-3	
(C7)	Michiga 1	6-8		1	2-3	
1,5-hexanediol, 4-methyl-	66225-37-4	2-9			1-3	
(C7)	00223-37-4	6-8		1	2-3	
1,5-hexanediol, 5-methyl-	1462-11-9	2-9			1-3	
(C7)	1402-117	6-8		1 1	2-3	
1,6-hexanediol (C6)	629-11-8	- 00				
	327 11 0		1-2	1-2	4	
1,6-hexanediol, 2-methyl-	25258-92-8	1-5			1-2	
(C7)		2-5			1	
1,6-hexanediol, 3-methyl-	4089-71-8	1-5			1-2	
(C7)	1	2-5			1	
2,3-hexanediol (C6)	617-30-1	1-5			1-2	
		2-5			1	
2,4-bexanediol (C6)	19780-90-6		3-8			
			5-8	3		
2,4-hexanediol, 2-methyl-	66225-35-2	1				
(C7)			1-2	1-2		
2,4-hexanediol, 3-methyl-	116530-79-1	}				
(C7)	_		1-2	1-2		
2,4-hexanediol, 4-methyl-	38836-25-8					
(C7)			1-2	1-2		
2,4-hexanediol, 5-methyl-	54877-00-8					
(C7)			1-2	1-2		
2,5-hexanediol (C6)	2935-44-6		3-8	}		
			5-8	3		
2,5-hexanediol, 2-methyl-	29044-06-2	Ì				
(C7)			1-2	1-2		
2,5-hexanediol, 3-methyl-	Method H			[
(C7)	1 1	ı [1-2	1-2	i	i !

3,4-hexanediol (C6)	922-17-8	1-5		
		2-5	1 1	· • • • •

- (a) The number of indicated alkoxylated groups in this Table are all operable, the generic limits being listed on the first line, and those that are preferred are in bold type and listed on the second line.
- (b) The numbers in this column are average numbers of (CH₂CH₂O) groups in the polyethoxylated derivative.
- (c) The numbers in this column are average numbers of (CH₂CH₂O) groups in the one methyl-capped polyethoxylate substituant in each derivative.
- (e) The numbers in this column are average numbers of (CH(CH₃)CH₂O) groups in the polypropoxylated derivative.
- (f) The numbers in this column are average numbers of (CH₂CH₂CH₂CH₂O) groups in the polytetramethyleneoxylated derivative.
- (g) The numbers in this column are average numbers of (CH(CH₂CH₃)CH₂O) groups in the polybutoxylated derivative.

TABLE VIIIE

Base Material ⁽²⁾	Base Material CAS No.	EO's	1(Me-En)	PO's	n-BO's
		(b)	(c)	(e)	(f)
1,3-heptanediol (C7)	23433-04-7	1-7			1-2
		3-6	<u> </u>	1	2
1,4-heptanediol (C7)	40646-07-9	1-7	1		1-2
		3-6	1 1	1	2
1,5-heptanediol (C7)	60096-09-5	1-7			1-2
·		3-6	} }	1	2
1,6-heptanediol (C7)	13175-27-4	1-7			1-2
		3-6	1 1	1	2
1,7-heptanediol (C7)	629-30-1		 		<u> </u>
		1-2	1		1
2,4-heptanediol (C7)	20748-86-1	3-10			·
		7-10	1 1	1	3
2,5-heptanediol (C7)	70444-25-6	3-10			
		7-10	1	1	3
2,6-heptanediol (C7)	5969-12-0	3-10			
		7-10	1 1	1	3
3,5-heptanediol (C7)	86632-40-8	3-10			
		7-10	1 1	1	3

- (a) The number of indicated alkoxylated groups in this Table are all operable, the generic limits being listed on the first line, and those that are preferred are in bold type and listed on the second line.
- (b) The numbers in this column are average numbers of (CH₂CH₂O) groups in the polyethoxylated derivative.
- (c) The numbers in this column are average numbers of (CH₂CH₂O) groups in the one methyl-capped polyethoxylate substituant in each derivative.

- (e) The numbers in this column are average numbers of (CH(CH₃)CH₂O) groups in the polypropoxylated derivative.
- (f) The numbers in this column are average numbers of (CH₂CH₂CH₂CH₂O) groups in the polytetramethyleneoxylated derivative.

Table IX AROMATIC DIOLS

Suitable aromatic diols include:

Chemical Name	CAS No.
Operable Aromatic Diols	
1-phenyl-1,2-ethanediol	93-56-1
I-phenyl-1,2-propanediol	1855-09-0
2-phenyl-1,2-propanediol	87760-50-7
3-phenyl-1,2-propanediol	17131-14-5
1-(3-methylphenyl)-1,3-propanediol	51699-43-5
1-(4-methylphenyl)-1,3-propanediol	159266-06-5
2-methyl-1-phenyl-1,3-propanediol	139068-60-3
1-phenyl-1,3-butanediol	118100-60-0
3-phenyl-1,3-butanediol	68330-54-1
1-phenyl-1,4-butanediol	136173-88-1
2-phenyl-1,4-butanediol	95840-73 - 6
1-phenyl-2,3-butanediol	169437-68-7
Preferred Aromatic Diols	
1-phenyl-1,2-ethanediol	93-56-1
1-phenyl-1,2-propanediol	1855-09-0
2-phenyl-1,2-propanediol	<i>87760-50-7</i>
3-phenyl-1,2-propanediol	17131-14-5
1-(3-methylphenyl)-1,3-propanediol	51699-43-5
1-(4-methylphenyl)-1,3-propanediol	159266-06-5
2-methyl-1-phenyl-1,3-propanediol	139068-60-3
I-phenyl-1,3-butanediol	118100-60-0
3-phenyl-1,3-butanediol	68330-54-1
I-phenyl-1,4-butanediol	136173-88-1
More Preferred Aromatic Diols	
1-phenyl-1,2-propanediol	1855-09-0
2-phenyl-1,2-propanediol	87760-50-7
3-phenyl-1,2-propanediol	17131-14-5
1-(3-methylphenyl)-1,3-propanediol	51699-43-5
1-(4-methylphenyl)-1,3-propanediol	159266-06-5
2-methyl-1-phenyl-1,3-propanediol	139068-60-3

- 56 -

3-phenyl-1,3-butanediol	68330-54-1
1-phenyl-1,4-butanediol	136173-88-1
Inoperable Aromatic Diols	
1-phenyl-1,3-propanediol	
2-phenyl-1,3-propanediol	
1-phenyl-1 2-hutanadial	154000 00 6

1-phenyl-1,2-butanediol 154902-08-6
2-phenyl-1,2-butanediol 157008-55-4
3-phenyl-1,2-butanediol 141505-72-8
4-phenyl-1,2-butanediol 143615-31-0
2-phenyl-1,3-butanediol 103941-94-2
4-phenyl-1,3-butanediol 81096-91-5
2-phenyl-2,3-butanediol 138432-94-7

X. principal solvents which are homologs, or analogs, of the above structures where the total number of hydrogen atoms is increased by the addition of one, or more additional CH₂ groups, the total number of hydrogen atoms being kept at the same number by introducing double bonds, are also useful with examples including the following known compounds:

TABLE X EXAMPLES OF UNSATURATED COMPOUNDS

Operable Unsaturated Diols	
1,3-Propanediol, 2,2-di-2-propenyl-	55038-13-6
1,3-Propanediol, 2-(1-pentenyl)-	138436-18-7
1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-	121887-76-1
1,3-Propanediol, 2-(3-methyl-1-butenyl)-	138436-17-6
1,3-Propanediol, 2-(4-pentenyl)-	73012-46-1
1,3-Propanediol, 2-ethyl-2-(2-methyl-2-propenyl)-	91367-61-2
1,3-Propanediol, 2-ethyl-2-(2-propenyl)-	27606-26-4
1,3-Propanediol, 2-methyl-2-(3-methyl-3-butenyl)-	132130-95-1
1,3-Butanediol, 2,2-diallyl-	103985-49-5
1,3-Butanediol, 2-(1-ethyl-1-propenyl)-	116103-35-6
1,3-Butanediol, 2-(2-butenyl)-2-methyl-	92207-83-5
1,3-Butanediol, 2-(3-methyl-2-butenyl)-	98955-19-2
1,3-Butanediol, 2-ethyl-2-(2-propenyl)-	122761-93-7
1,3-Butanediol, 2-methyl-2-(1-methyl-2-propenyl)-	141585-58-2
1,4-Butanediol, 2,3-bis(1-methylethylidene)-	52127-63-6
1,4-Butanediol, 2-(3-methyl-2-butenyl)-3-methylene-	115895-78-8
2-Butene-1,4-diol, 2-(1,1-dimethylpropyl)-	91154-01-7
2-Butene-1,4-diol, 2-(1-methylpropyl)-	91154-00-6
2-Butene-1,4-diol, 2-butyl-	153943-66-9

1,3-Pentanediol, 2-ethenyl-3-ethyl-	104683-37-6
1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-	143447-08-9
1,4-Pentanediol, 3-methyl-2-(2-propenyl)-	139301-86-3
1,5-Pentanediol, 2-(1-propenyl)-	84143-44-2
1,5-Pentanediol, 2-(2-propenyl)-	134757-01-0
1,5-Pentanediol, 2-ethylidene-3-methyl-	42178-93-8
1,5-Pentanediol, 2-propylidene-	58203-50-2
2,4-Pentanediol, 3-ethylidene-2,4-dimethyl-	88610-19-9
4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-	109788-04-7
4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-	90676-97-4
1,4-Hexanediol, 4-ethyl-2-methylene-	66950-87 - 6
1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-	18984-03-7
1,5-Hexadiene-3,4-diol, 5-ethyl-3-methyl-	18927-12-3
1,5-Hexanediol, 2-(1-methylethenyl)-	96802-18-5
1,6-Hexanediol, 2-ethenyl-	66747-31-7
1-Hexene-3,4-diol, 5,5-dimethyl-	169736-29-2
1-Hexene-3,4-diol, 5,5-dimethyl-	120191-04-0
2-Hexene-1,5-diol, 4-ethenyl-2,5-dimethyl-	70101-76-7
3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-	112763-52-7
3-Hexene-1,6-diol, 2-ethyl-	84143-45-3
3-Hexene-1,6-diol, 3,4-dimethyl-	125032-66-8
4-Hexene-2,3-diol, 2,5-dimethyl-	13295-61-9
4-Hexene-2,3-diol, 3,4-dimethyl-	135367-17-8
5-Hexene-1,3-diol, 3-(2-propenyl)-	74693-24-6
5-Hexene-2,3-diol, 2,3-dimethyl-	154386-00-2
5-Hexene-2,3-diol, 3,4-dimethyl-	135096-13-8
5-Hexene-2,3-diol, 3,5-dimethyl-	134626-63-4
5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-	155751-24-9
1,4-Heptanediol, 6-methyl-5-methylene-	100590-29-2
1,5-Heptadiene-3,4-diol, 2,3-dimethyl-	18927-06-5
1,5-Heptadiene-3,4-diol, 2,5-dimethyl-	22607-16-5
1,5-Heptadiene-3,4-diol, 3,5-dimethyl-	18938-51-7
1,7-Heptanediol, 2,6-bis(methylene)-	139618-24-9
1,7-Heptanediol, 4-methylene-	71370-08-6
1-Heptene-3,5-diol, 2,4-dimethyl-	155932-77-7
1-Heptene-3,5-diol, 2,6-dimethyl-	132157-35-8
1-Heptene-3,5-diol, 3-ethenyl-5-methyl	61841-10-9
1-Heptene-3,5-diol, 6,6-dimethyl-	109788-01-4
2,4-Heptadiene-2,6-diol, 4,6-dimethyl-	102605-95-8
2,5-Heptadiene-1,7-diol, 4,4-dimethyl-	162816-19-5
2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-	115346-30-0
2-Heptene-1,4-diol, 5,6-dimethyl-	103867-76-1
2-Heptene-1,5-diol, 5-ethyl-	104683-39-8
2-Heptene-1,7-diol, 2-methyl-	74868-68-1
3-Heptene-1,5-diol, 4,6-dimethyl-	147028-45-3

3-Heptene-1,7-diol, 3-methyl-6-methylene-	109750-55-2
3-Heptene-2,5-diol, 2,4-dimethyl-	98955-40-9
3-Heptene-2,5-diol, 2,5-dimethyl-	24459-23-2
3-Heptene-2,6-diol, 2,6-dimethyl-	160524-66-3
3-Heptene-2,6-diol, 4,6-dimethyl-	59502-66-8
5-Heptene-1,3-diol, 2,4-dimethyl-	123363-69-9
5-Heptene-1,3-diol, 3,6-dimethyl-	96924-52-6
5-Heptene-1,4-diol, 2,6-dimethyl-	106777-98-4
5-Heptene-1,4-diol, 3,6-dimethyl-	106777-99-5
5-Heptene-2,4-diol, 2,3-dimethyl-	104651-56-1
6-Heptene-1,3-diol, 2,2-dimethyl-	140192-39-8
6-Heptene-1,4-diol, 4-(2-propenyl)-	1727-87-3
6-Heptene-1,4-diol, 5,6-dimethyl-	152344-16-6
6-Heptene-1,5-diol, 2,4-dimethyl-	74231-27-9
6-Heptene-1,5-diol, 2-ethylidene-6-methyl-	91139-73-0
6-Heptene-2,4-diol, 4-(2-propenyl)-	101536-75-8
6-Heptene-2,4-diol, 5,5-dimethyl-	98 7 53 - 77 - 6
6-Heptene-2,5-diol, 4,6-dimethyl-	134876-94-1
6-Heptene-2,5-diol, 5-ethenyl-4-methyl-	65757-31-5
1,3-Octanediol, 2-methylene-	108086-78-8
1,6-Octadiene-3,5-diol, 2,6-dimethyl-	91140-06-6
1,6-Octadiene-3,5-diol, 3,7-dimethyl-	75654-19-2
1,7-Octadiene-3,6-diol, 2,6-dimethyl-	51276-33-6
1,7-Octadiene-3,6-diol, 2,7-dimethyl-	26947-10-4
1,7-Octadiene-3,6-diol, 3,6-dimethyl-	31354-73-1
1-Octene-3,6-diol, 3-ethenyl-	65757-34-8
2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-	162648-63-7
2,4-Octadiene-1,7-diol, 3,7-dimethyl-	136054-24-5
2,5-Octadiene-1,7-diol, 2,6-dimethyl-	91140-07-7
2,5-Octadiene-1,7-diol, 3,7-dimethyl-	117935-59-8
2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol)	101391-01-9
2,6-Octadiene-1,8-diol, 2-methyl-	149112-02-7
2,7-Octadiene-1,4-diol, 3,7-dimethyl-	91140-08-8
2,7-Octadiene-1,5-diol, 2,6-dimethyl-	91140-09-9
2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool)	103619-06-3
2,7-Octadiene-1,6-diol, 2,7-dimethyl-	60250-14-8
2-Octene-1,4-diol	40735-15-7
2-Octene-1,7-diol	73842-95-2
2-Octene-1,7-diol, 2-methyl-6-methylene-	91140-16-8
3,5-Octadiene-1,7-diol, 3,7-dimethyl-	62875-09-6
3,5-Octadiene-2,7-diol, 2,7-dimethyl-	7177-18-6
3,5-Octanediol, 4-methylene-	143233-15-2
3,7-Octadiene-1,6-diol, 2,6-dimethyl- 3,7-Octadiene-2,5-diol, 2,7-dimethyl-	127446-29-1
	171436-39-8
3,7-Octadiene-2,6-diol, 2,6-dimethyl-	150283-67-3
3-Octene-1,5-diol, 4-methyl-	147028-43-1

PCT/US96/11556

- 59 -

3-Octene-1,5-diol, 5-methyl-	1976 4-77- 3
4,6-Octadiene-1,3-diol, 2,2-dimethyl-	39824-01-6
4,7-Octadiene-2,3-diol, 2,6-dimethyl-	51117-38-5
4,7-Octadiene-2,6-diol, 2,6-dimethyl-	59076-71-0
4-Octene-1,6-diol, 7-methyl-	84538-24-9
4-Octene-1,8-diol, 2,7-bis(methylene)-	109750-56-3
4-Octene-1,8-diol, 2-methylene-	109750-58-5
5,7-Octadiene-1,4-diol, 2,7-dimethyl-	105676-78-6
5,7-Octadiene-1,4-diol, 7-methyl-	105676-80-0
5-Octene-1,3-diol	130272-38-7
6-Octene-1,3-diol, 7-methyl-	110971-19-2
6-Octene-1,4-diol, 7-methyl-	152715-87-2
6-Octene-1,5-diol	145623-79-6
6-Octene-1,5-diol, 7-methyl-	116214-61-0
6-Octene-3,5-diol, 2-methyl-	65534-66-9
6-Octene-3,5-diol, 4-methyl-	156414-25-4
7-Octene-1,3-diol, 2-methyl-	155295-38-8
7-Octene-1,3-diol, 4-methyl-	142459-25-4
7-Octene-1,3-diol, 7-methyl-	132130-96-2
7-Octene-1,5-diol	7310-51-2
7-Octene-1,6-diol	159099-43-1
7-Octene-1,6-diol, 5-methyl-	144880-56-8
7-Octene-2,4-diol, 2-methyl-6-methylene-	72446-81-2
7-Octene-2,5-diol, 7-methyl-	152344-12-2
7-Octene-3,5-diol, 2-methyl-	98753-85-6
1-Nonene-3,5-diol	119554-56-2
1-Nonene-3,7-diol	23866-97-9
3-Nonene-2,5-diol	165746-84-9
4,6-Nonadiene-1,3-diol, 8-methyl-	124099-52-1
4-Nonene-2,8-diol	154600-80-3
6,8-Nonadiene-1,5-diol	108586-03-4
7-Nonene-2,4-diol	30625-41-3
8-Nonene-2,4-diol	119785-59-0
8-Nonene-2,5-diol	132381-58-9
1,9-Decadiene-3,8-diol	103984-04-9
1,9-Decadiene-4,6-diol	138835-67-3
Preferred Unsaturated Diols	102005 40 5
1,3-Butanediol, 2,2-diallyl-	103985-49-5
1,3-Butanediol, 2-(1-ethyl-1-propenyl)-	116103-35-6
1,3-Butanediol, 2-(2-butenyl)-2-methyl-	92207-83-5
1,3-Butanediol, 2-(3-methyl-2-butenyl)-	98955-19-2
1,3-Butanediol, 2-ethyl-2-(2-propenyl)-	122761-93-7
1,3-Butanediol, 2-methyl-2-(1-methyl-2-propenyl)-	141585-58-2
1,4-Butanediol, 2,3-bis(1-methylethylidene)-	<i>52127-63-6</i>

1,3-Pentanediol, 2-ethenyl-3-ethyl-	104683-37-6
1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-	143447-08-9
1,4-Pentanediol, 3-methyl-2-(2-propenyl)-	139301-86-3
4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-	109788-04-7
4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-	90676-97-4
1,4-Hexanediol, 4-ethyl-2-methylene-	66950-87-6
1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-	18984-03-7
1,5-Hexanediol, 2-(1-methylethenyl)-	96802-18-5
2-Hexene-1,5-diol, 4-ethenyl-2,5-dimethyl-	70101-76-7
1,4-Heptanediol, 6-methyl-5-methylene-	100590-29-2
2,4-Heptadiene-2,6-diol, 4,6-dimethyl-	102605-95-8
2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-	115346-30-0
2-Heptene-1,4-diol, 5,6-dimethyl-	103867-76-1
3-Heptene-1,5-diol, 4,6-dimethyl-	147028-45-3
5-Heptene-1,3-diol, 2,4-dimethyl-	123363-69-9
5-Heptene-1,3-diol, 3,6-dimethyl-	96924-52-6
5-Heptene-1,4-diol, 2,6-dimethyl-	106777-98-4
5-Heptene-1,4-diol, 3,6-dimethyl-	106777-99-5
6-Heptene-1,3-diol, 2,2-dimethyl-	140192-39-8
6-Heptene-1,4-diol, 5,6-dimethyl-	152344-16-6
6-Heptene-1,5-diol, 2,4-dimethyl-	74231-27-9
6-Heptene-1,5-diol, 2-ethylidene-6-methyl-	91139-73-0
6-Heptene-2,4-diol, 4-(2-propenyl)-	101536-75-8
I-Octene-3,6-diol, 3-ethenyl-	<i>65757-34-</i> 8
2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-	162648-63-7
2,5-Octadiene-1,7-diol, 2,6-dimethyl-	91140-07-7
2,5-Octadiene-1,7-diol, 3,7-dimethyl-	117935-59-8
2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol)	101391-01-9
2,6-Octodiene-1,8-diol, 2-methyl-	149112-02-7
2,7-Octadiene-1,4-diol, 3,7-dimethyl-	91140-08-8
2,7-Octadiene-1,5-diol, 2,6-dimethyl-	91140-09-9
2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool)	103619-06-3
2,7-Octadiene-1,6-diol, 2,7-dimethyl-	60250-14-8
2-Octene-1,7-diol, 2-methyl-6-methylene-	91140-16-8
3,5-Octadiene-2,7-diol, 2,7-dimethyl-	7177-18-6
3,5-Octanediol, 4-methylene-	143233-15-2
3,7-Octadiene-1,6-diol, 2,6-dimethyl-	127446-29-1
4-Octene-1,8-diol, 2-methylene-	109750-58-5
6-Octene-3,5-diol, 2-methyl-	65534-66-9
6-Octene-3,5-diol, 4-methyl-	156414-25-4
7-Octene-2,4-diol, 2-methyl-6-methylene-	72446-81-2
7-Octene-2,5-diol, 7-methyl-	152344-12-2
7-Octene-3,5-diol, 2-methyl-	98753-85-6

PCT/US96/11556

1-Nonene-3,5-diol	119554-56-2
1-Nonene-3,7-diol	23866-97-9
3-Nonene-2,5-diol	165746-84-9
4-Nonene-2,8-diol	154600-80-3
6,8-Nonadiene-1,5-diol	108586-03-4
7-Nonene-2,4-diol	30625-41-3
8-Nonene-2,4-diol	119785-59-0
8-Nonene-2,5-diol	132381-58-9
1,9-Decadiene-3,8-diol	103984-04-9
1,9-Decadiene-4,6-diol	138835-67-3
: and	

XI. mixtures thereof.

There are no C₁₋₂ mono-ols that provide the clear concentrated fabric softener compositions of this invention. Only one C₃ mono-ol, n-propanol, provides acceptable performance (forms a clear product and either keeps it clear to a temperature of about 4°C, or allows it to recover upon rewarming to room temperature), although its boiling point (BP) is undesirably low. Of the C₄ mono-ols, only 2-butanol and 2-methyl-2-propanol provide very good performance, but 2-methyl-2-propanol has a BP that is undesirably low. There are no C₅₋₆ mono-ols that provide clear products except for unsaturated mono-ols as described above and hereinafter.

It is found that some principal solvents which have two hydroxyl groups in their chemical formulas are suitable for use in the formulation of the liquid concentrated, clear fabric softener compositions of this invention. It is discovered that the suitability of each principal solvent is surprisingly very selective, dependent on the number of carbon atoms, the isomeric configuration of the molecules having the same number of carbon atoms, the degree of unsaturation, etc. Principal solvents with similar solubility characteristics to the principal solvents above and possessing at least some asymmetry will provide the same benefit. It is discovered that the suitable principal solvents have a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60.

For example, for the 1,2-alkanediol principal solvent series having the general formula HO-CH₂-CHOH-(CH₂)_n-H, with n being from 1 to 8, only 1,2-hexanediol (n=4), which has a ClogP value of about 0.53, which is within the effective ClogP range of from about 0.15 to about 0.64, is a good principal solvent, and is within the claim of this invention, while the others, e.g., 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-octanediol, 1,2-decanediol, having ClogP values outside the effective 0.15 - 0.64 range, are not. Furthermore, of the hexanediol isomers, again, the 1,2-hexanediol is a good principal solvent, while many other isomers such as 1,3-

hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, 2,4-hexanediol, and 2,5-hexanediol, having ClogP values outside the effective 0.15 - 0.64 range, are not. These are illustrated by the Examples and Comparative Examples I-A and I-B (vide infra).

There are no C₃-C₅ diols that provide a clear concentrated composition in the context of this invention.

Although there are many C₆ diols that are possible isomers, only the ones listed above are suitable for making clear products and only: 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and 1,2-hexanediol are preferred, of which the most preferred are: 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and 1,2-hexanediol.

There are more possible C7 diol isomers, but only the listed ones provide clear products and the preferred ones are: 1,3-butanediol, 2-butyl-; 1,4-butanediol, 2-propyl-; 1,5-pentanediol, 2-ethyl-; 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3-methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; 1,6-heptanediol; of which the most preferred are: 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; and 3,4-pentanediol, 2,3-dimethyl-.

Similarly, there are even more Cg diol isomers, but only the listed ones provide clear products and the preferred ones are: 1,3-propanediol, 2-(1,1dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1ethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-ethyl-2isopropyl-; 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2methyl-2-(2-methylpropyl)-: 1,3-propanediol, 2-tertiary-butyl-2-methyl-; butanediol, 2,2-diethyl; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1-dimethylethyl)-; 1,3butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2diethyl-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(1,1-dimethylethyl)-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol,

2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 2,4-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,3-pentanediol, 2-ethyl-3-methyl-; 1,3-pentanediol, 2-ethyl-4-methyl-; 1,3pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3methyl-; 2,4-pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,2dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3-hexanediol, 3,5dimethyl-; 1.3-hexanediol. 4,4-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1.4hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl-; 1,4-hexanediol, 2,4dimethyl-; 1.4-hexanediol 2.5-dimethyl-: 1.4-hexanediol. 3.3-dimethyl-: 1.4hexanediol. 3.4-dimethyl-: 1,4-hexanediol, 3,5-dimethyl-; 1,4-hexanediol, 4.5dimethyl-: 1,4-hexanediol, 5,5-dimethyl-; 1,5-hexanediol, 2,2-dimethyl-; 1.5hexanediol. 2.3-dimethyl-: 1,5-hexanediol, 2,4-dimethyl-; 1,5-hexanediol, 2,5dimethyl-; 1,5-hexanediol, 3,3-dimethyl-; 1,5-hexanediol, 3,4-dimethyl-; 1,5hexanediol, 3,5-dimethyl-; 1,5-hexanediol, 4,5-dimethyl-; 2,6-hexanediol, 3,3dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4-ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 2-methyl-; 1,3heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3-heptanediol, 5-methyl-; 1,3heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4-heptanediol, 3-methyl-; 1,4heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4-heptanediol, 6-methyl-; 1,5heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5-heptanediol, 4-methyl-; 1,5heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6-heptanediol, 2-methyl-; 1,6heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6-heptanediol, 5-methyl-; 1,6heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4-heptanediol, 3-methyl-; 2,4heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4-heptanediol, 6-methyl-; 2,5heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5-heptanediol, 4-methyl-; 2,5heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6-heptanediol, 2-methyl-; 2,6heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5heptanediol, 2-methyl-; 3,5-heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or 3,6-octanediol of which the following are the most preferred: 1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1-ethylpropyl)-; 1,3-

propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3propanediol, 2-methyl-2-(1-methylpropyl)-: 1,3-propanediol, 2-methyl-2-(2methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2-methyl-; 1,3-butanediol, 2-(1methylpropyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3dimethyl-; 1,4-butanediol, 2-(1,1-dimethylethyl)-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,3-pentanediol, 2-ethyl-3methyl-; 1,3-pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 2,4pentanediol, 3-propyl-; 1,3-hexanediol, 2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,4-dimethyl-; 1.3hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3dimethyl-; 1,4-hexanediol, 2,4-dimethyl-; 1,4-hexanediol, 2,5-dimethyl-; 1.4hexanediol, 3,3-dimethyl-; 1.4-hexanediol, 3,4-dimethyl-; 1,4-hexanediol, 3,5dimethyl-; 1,4-hexanediol, 4,5-dimethyl-; 1.4-hexanediol, 5.5-dimethyl-; 1,5hexanediol, 2,2-dimethyl-; 1,5-hexanediol, 2,3-dimethyl-; 1,5-hexanediol, 2,4dimethyl-; 1,5-hexanediol, 2,5-dimethyl-; 1,5-hexanediol, 3,3-dimethyl-; 1,5hexanediol, 3,4-dimethyl-; 1,5-hexanediol, 3,5-dimethyl-; 1,5-hexanediol, 4,5dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-; 2,4-heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5heptanediol. 4-methyl-; 2.5-heptanediol, 5-methyl-; 2.5-heptanediol, 6-methyl-; 2,66

heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 3,5-heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or 3,6-octanediol.

Preferred mixtures of eight-carbon-atom-1,3 diols can be formed by the condensation of mixtures of butyraldehyde, isobutyraldehyde and/or methyl ethyl ketone (2-butanone), so long as there are at least two of these reactants in the reaction mixture, in the presence of highly alkaline catalyst followed by conversion by hydrogenation to form a mixture of eight-carbon-1,3-diols, i.e., a mixture of 8-carbon-1,3-diols primarily consisting of: 2,2,4-trimethyl-1,3-pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-pentanediol; 2-ethyl-3-methyl-1,3-pentanediol; 3,5-octanediol; 2,2-dimethyl-2,4-hexanediol; 2-methyl-3,5-heptanediol; and/or 3-methyl-3,5-heptanediol, the level of 2,2,4-trimethyl-1,3-pentanediol being less than half of any mixture, possibly along with other minor isomers resulting from condensation on the methylene group of 2-butanone, when it is present, instead of on the methyl group.

The formulatability, and other properties, such as odor, fluidity, melting point lowering, etc., of some C₆₋₈ diols listed above in Tables II-IV which are not preferred, can be improved by polyalkoxylation. Also, some of the C₃₋₅ diols which are alkoxylated are preferred. Preferred alkoxylated derivatives of the above C₃₋₈ diols [In the following disclosure, "EO" means polyethoxylates, "E_n" means - (CH₂CH₂O)_nH; Me-E_n means methyl-capped polyethoxylates -(CH₂CH₂O)_nCH₃; "2(Me-En)" means 2 Me-En groups needed; "PO" means polypropoxylates, - (CH(CH₃)CH₂O)_nH; "BO" means polybutyleneoxy groups, (CH(CH₂CH₃)CH₂O)_nH; and "n-BO" means poly(n-butyleneoxy) groups - (CH₂CH₂CH₂CH₂O)_nH.] include:

1. 1,2-propanediol (C3) 2(Me-E₃₋₄); 1,2-propanediol (C3) PO₄; 1,2-propanediol, 2-methyl- (C4) (Me-E₈₋₁₀); 1,2-propanediol, 2-methyl- (C4) 2(Me-E₁); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,3-propanediol (C3) 2(Me-E₈); 1,3-propanediol (C3) PO₆; 1,3-propanediol, 2,2-diethyl- (C7) E₄₋₇; 1,3-propanediol, 2,2-diethyl- (C7) n-BO₂; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me E₁₋₂); 1,3-propanediol, 2,2-dimethyl- (C5) PO₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7) E₄₋₇; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7) n-BO₂; 1,3-propanediol, 2-(2-methylpropyl)- (C7) E₄₋₇; 1,3-propanediol, 2-(2-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(2-methylpropyl)- (C7) n-BO₂; 1,3-propanediol, 2-ethyl- (C5) (Me E₉₋₁₀); 1,3-propanediol, 2-ethyl- (C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5)

PO₃; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me E_{3-6}); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) (Me E_{3-6}); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me E_{4-5}); 1,3-propanediol, 2-methyl- (C4) PO₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) E₆₋₉; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) n-BO₂₋₃; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) n-BO₂; 1,3-propanediol, 2-propyl- (C6) (Me E_{1-4}); 1,3-propanediol, 2-propyl- (C6) PO₂;

1,2-butanediol (C4) (Me E_{6-8}); 1,2-butanediol (C4) PO_{2-3} ; 1,2-butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₂₋₅; 1,2-butanediol, 2,3-dimethyl-(C6) n-BO₁; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl- (C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl- (C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) E₂₋₅; 1,2-butanediol, 3,3-dimethyl- (C6) n-BO₁; 1,2-butanediol, 3-methyl- (C5) (Me E_{1-2}); 1,2-butanediol, 3-methyl- (C5) PO₁; 1,3-butanediol (C4) 2(Me E₅₋₆); 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3-trimethyl- (C7) PO₂; 1,3butanediol, 2,2-dimethyl- (C6) (Me E₆₋₈); 1,3-butanediol, 2,2-dimethyl- (C6) PO₃; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E₆₋₈); 1,3-butanediol, 2,3-dimethyl- (C6) PO₃; 1,3-butanediol, 2-ethyl- (C6) (Me E₄₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3-butanediol, 2-ethyl--2-methyl- (C7) (Me E₁), 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₃; 1,3-butanediol, 2-ethyl-3-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-3methyl- (C7) PO1; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO3; 1,3-butanediol, 2isopropyl- (C7) (Me E1); 1,3-butanediol, 2-isopropyl- (C7) PO1; 1,3-butanediol, 2isopropyl- (C7) n-BO3; 1,3-butanediol, 2-methyl- (C5) 2(Me E2-3); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3-butanediol, 2-propyl- (C7) E₆₋₈; 1,3-butanediol, 2-propyl-(C7) PO₁; 1,3-butanediol, 2-propyl- (C7) n-BO₂₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₂₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₃₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₆₋₉; 1,4butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₂-3; 1,4-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO₁; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E₃₋₆); 1,4-butanediol, 2,3-dimethyl- (C6) PO₂; 1,4-butanediol, 2,3-dimethyl-(C6) BO₁; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₄₋₇; 1,4-butanediol, 2-ethyl-2-methyl(C7) PO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂; 1,4-butanediol, 2-ethyl-3-methyl- (C7) E₄₋₇; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₂; 1,4-butanediol, 2-isopropyl- (C7) E₄₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2-isopropyl- (C7) n-BO₂; 1,4-butanediol, 2-methyl- (C5) (Me E₉₋₁₀); 1,4-butanediol, 2-methyl- (C5) 2(Me E₁); 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4-butanediol, 2-propyl- (C7) E₂₋₅; 1,4-butanediol, 2-propyl- (C7) n-BO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₆₋₈; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₂₋₃; 2,3-butanediol (C4) (Me E₉₋₁₀); 2,3-butanediol (C4) 2(Me E₁); 2,3-butanediol (C4) PO₃₋₄; 2,3-butanediol, 2,3-dimethyl- (C6) BO₂₋₃; 2,3-butanediol, 2-methyl- (C5) (Me E₂₋₅); 2,3-butanediol, 2-methyl- (C5) BO₁;

3. 1,2-pentanediol (C5) E₇₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2pentanediol, (C5) n-BO₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2methyl (C6) n-BO₁, 1,2-pentanediol, 3-methyl (C6) E₁₋₃, 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n- BO_1 ; 1,3-pentanediol (C5) 2(Me- E_{1-2}); 1,3-pentanediol (C5) PO_{3-4} ; 1,3pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl-(C7) n-BO₃; 1,3-pentanediol, 2,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,4dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 2ethyl- (C7) E₆₋₈; 1,3-pentanediol, 2-ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₂₋₃; 1,3-pentanediol, 2-methyl- (C6) 2(Me-E₄₋₆); 1,3-pentanediol, 2-methyl-(C6) PO₂₋₃; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 3methyl- (C6) 2(Me- E_{4-6}); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3pentanediol, 4,4-dimethyl- (C7) n-BO₃, 1,3-pentanediol, 4-methyl- (C6) 2(Me-E₄-6); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO3; 1,4-pentanediol, 2-methyl- (C6) (Me-E₄₋₆); 1,4-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-

pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₄₋₆); 1,4-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl-(C6) 2(Me-E₄₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,5-pentanediol, (C5) (Me-E₈₋₁₀); 1,5-pentanediol (C5) 2(Me-E₁); 1,5-pentanediol (C5) PO₃; 1,5pentanediol, 2,2-dimethyl- (C7) E₄₋₇; 1,5-pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5pentanediol, 2,2-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₄₋₇; 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₄₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 2-ethyl- (C7) E₂-5; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO2; 1,5-pentanediol, 3,3-dimethyl- (C7) E₄₋₇; 1,5pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 3-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me-E₁₋₃); 2,3-pentanediol, (C5) PO₂; 2,3-pentanediol, 2methyl- (C6) E₄₋₇; 2,3-pentanediol, 2-methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl-(C6) n-BO₂; 2,3-pentanediol, 3-methyl- (C6) E₄₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl- (C6) n-BO₂; 2,3-pentanediol, 4-methyl- (C6) E₄₋₇; 2,3-pentanediol, 4-methyl- (C6) PO1; 2,3-pentanediol, 4-methyl- (C6) n-BO2; 2,4pentanediol, (C5) 2(Me-E₂₋₄); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3dimethyl- (C7) (Me-E₂₋₄); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4pentanediol, 2,4-dimethyl- (C7) (Me-E₂₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₈₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₂₋₄); 2,4-pentanediol, 3,3-dimethyl-(C7) PO2; 2,4-pentanediol, 3-methyl- (C6) (Me-E₈₋₁₀); 2,4-pentanediol, 3-methyl-(C6) PO₃;

4. 1,3-hexanediol (C6) (Me-E₂₋₅); 1,3-hexanediol (C6) PO₂; 1,3-hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₆₋₈; 1,3-hexanediol, 2-methyl- (C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) E₆₋₈; 1,3-hexanediol, 3-methyl- (C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₂₋₃; 1,3-hexanediol, 4-methyl- (C7) E₆₋₈; 1,3-hexanediol, 4-methyl- (C7) n-BO₂₋₃; 1,3-hexanediol, 5-methyl- (C7) E₆₋₈; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3-hexanediol, 5-methyl- (C7) n-BO₂₋₃; 1,4-hexanediol (C6) (Me-E₂₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₂₋₃; 1,4-hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₂₋₃; 1,4-hexanediol, 3-methyl- (C7) E₆₋₈; 1,4-hexanediol, 3-methyl- (C7)

WO 97/03169 PCT/US96/11556

hexanediol, 3-methyl- (C7) PO₁; 1,4-hexanediol, 3-methyl- (C7) n-BO₂₋₃; 1,4hexanediol, 4-methyl- (C7) E₆₋₈, 1,4-hexanediol, 4-methyl- (C7) PO₁; 1,4hexanediol, 4-methyl- (C7) n-BO₂₋₃; 1,4-hexanediol, 5-methyl- (C7) E_{6-8} ; 1,4hexanediol, 5-methyl- (C7) PO₁; 1,4-hexanediol, 5-methyl- (C7) n-BO₂₋₃; 1,5hexanediol (C6) (Me-E₂₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₆₋₈; 1,5-hexanediol, 2-methyl- (C7) PO₁; 1,5hexanediol, 2-methyl- (C7) n-BO₂₋₃; 1,5-hexanediol, 3-methyl- (C7) E_{6-8} ; 1,5hexanediol, 3-methyl- (C7) PO₁; 1,5-hexanediol, 3-methyl- (C7) n-BO₂₋₃; 1,5hexanediol, 4-methyl- (C7) E₆₋₈; 1,5-hexanediol, 4-methyl- (C7) PO₁; 1,5hexanediol, 4-methyl- (C7) n-BO₂₋₃; 1,5-hexanediol, 5-methyl- (C7) E₆₋₈; 1,5hexanediol, 5-methyl- (C7) PO₁; 1,5-hexanediol, 5-methyl- (C7) n-BO₂₋₃; 1,6hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₂₋₅; 1,6-hexanediol, 2-methyl- (C7) n-BO₁; 1,6-hexanediol, 3-methyl- (C7) E₂₋₅; 1,6-hexanediol, 3-methyl- (C7) n-BO₁; 2,3hexanediol (C6) E₂₋₅; 2,3-hexanediol (C6) n-BO₁; 2,4-hexanediol (C6) (Me-E₅₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 3methyl- (C7) PO₁₋₂; 2,4-hexanediol, 4-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 4methyl- (C7) PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₅₋₈); 2,5-hexanediol (C6) PO₃; 2,5hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4hexanediol (C6) EO₂₋₅; 3,4-hexanediol (C6) n-BO₁;

- 5. 1,3-heptanediol (C7) E_{3-6} ; 1,3-heptanediol (C7) PO_1 ; 1,3-heptanediol (C7) n-BO₂; 1,4-heptanediol (C7) E_{3-6} ; 1,4-heptanediol (C7) PO_1 ; 1,4-heptanediol (C7) PO_1 ; 1,5-heptanediol (C7) PO_2 ; 1,6-heptanediol (C7) PO_2 ; 1,6-heptanediol (C7) PO_1 ; 1,6-heptanediol (C7) PO_2 ; 1,7-heptanediol (C7) PO_2 ; 1,7-heptanediol (C7) PO_1 ; 1,6-heptanediol (C7) PO_2 ; 1,7-heptanediol (C7) PO_2 ; 1,7-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,4-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,5-heptanediol (C7) PO_1 ; 2,6-heptanediol (C7) PO_1 ; 2,6-heptanediol (C7) PO_1 ; 2,6-heptanediol (C7) PO_1 ; 2,6-heptanediol (C7) PO_1 ; 3,5-heptanediol (PO_1)
- 6. 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO_1 ; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO_1 ; 1,3-butanediol, 2,2-diethyl- (C8) E_{2-5} ; 2,4-hexanediol, 2,4-dimethyl- (C8) E_{2-5} ; 2,4-hexanediol, 2,4-dimethyl- (C8) E_{2-5} ; 2,4-hexanediol,

2,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅, 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅, 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁₋ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8) $n-BO_{1-2}$; 2,5-hexanediol, 3,3-dimethyl- (C8) $n-BO_{1-2}$; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO1; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO1; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO₁; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl- (C8) n-BO₁; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl- (C8) n-BO₁; 2,4-heptanediol, 6methyl- (C8) n-BO₁; 2,5-heptanediol, 2-methyl- (C8) n-BO₁; 2,5-heptanediol, 3methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl- (C8) n-BO₁; 2,5-heptanediol, 5methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl- (C8) n-BO₁; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁; 2,6-heptanediol, 4methyl- (C8) n-BO1; 3,5-heptanediol, 2-methyl- (C8) n-BO1; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) E_{1-3} ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8) E_{1-3} ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8) E_{1-3} ; 1,3-pentanediol, 2,4,4-trimethyl- (C8) E_{1-3} ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 3,3,4-trimethylWO 97/03169 PCT/US96/11556

-71 -

(C8) E_{1-3} ; 2,4-pentanediol, 2,3,4-trimethyl- (C8) E_{1-3} ; 2,4-hexanediol, 4-ethyl- (C8) E_{1-3} ; 2,4-heptanediol, 2-methyl- (C8) E_{1-3} ; 2,4-heptanediol, 5-methyl- (C8) E_{1-3} ; 2,4-heptanediol, 6-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 2-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 3-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 4-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 5-methyl- (C8) E_{1-3} ; 2,5-heptanediol, 6-methyl- (C8) E_{1-3} ; 2,6-heptanediol, 2-methyl- (C8) E_{1-3} ; 2,6-heptanediol, 2-methyl- (C8) E_{1-3} ; 2,6-heptanediol, 4-methyl- (C8) E_{1-3} ; 2,6-heptanediol, 4-methyl- (C8) E_{1-3} ; and/or 3,5-heptanediol, 2-methyl- (C8) E_{1-3} ; and

7. mixtures thereof.

Of the nonane isomers, only 2,4-pentadiol, 2,3,3,4-tetramethyl- is highly preferred.

In addition to the aliphatic diol principal solvents, and some of their alkoxylated derivatives, discussed hereinbefore and hereinafter, some specific diol ethers are also found to be suitable principal solvents for the formulation of liquid concentrated, clear fabric softener compositions of the present invention. Similar to the aliphatic diol principal solvents, it is discovered that the suitability of each principal solvent is very selective, depending, e.g., on the number of carbon atoms in the specific diol ether molecules. For example, as given in Table VI, for the glyceryl ether series having the formula HOCH2-CHOH-CH2-O-R, wherein R is from C2 to C8 alkyl, only monopentyl ethers with the formula HOCH2-CHOH-CH2-O-C5H11 (3-pentyloxy-1,2-propanediol), wherein the C₅H₁₁ group comprises different pentyl isomers, have ClogP values within the preferred ClogP values of from about 0.25 to about 0.62 and are suitable for the formulation of liquid concentrated, clear fabric softeners of the present invention. These are illustrated by the Examples and Comparative Examples XXXIIA-7 to XXXIIA-7F. It is also found that the cyclohexyl derivative, but not the cyclopentyl derivative, is suitable. selectivity is exhibited in the selection of aryl glyceryl ethers. Of the many possible aromatic groups, only a few phenol derivatives are suitable.

The same narrow selectivity is also found for the di(hydroxyalkyl) ethers. It is discovered that bis(2-hydroxybutyl) ether, but not bis(2-hydroxypentyl) ether, is suitable. For the di(cyclic hydroxyalkyl) analogs, the bis(2-hydroxycyclopentyl) ether is suitable, but not the bis(2-hydroxycyclohexyl) ether. Non-limiting examples of synthesis methods for the preparation of some preferred di(hydroxyalkyl) ethers are given hereinafter.

The butyl monoglycerol ether (also named 3-butyloxy-1,2-propanediol) is not well suited to form liquid concentrated, clear fabric softeners of the present invention. However, its polyethoxylated derivatives, preferably from about

triethoxylated to about nonaethoxylated, more preferably from pentaethoxylated to octaethoxylated, are suitable principal solvents, as given in Table VI.

All of the preferred alkyl glyceryl ethers and/or di(hydroxyalkyl)ethers that have been identified are given in Table VI and the most preferred are: 1,2propanediol, 3-(n-pentyloxy)-; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(isoamyloxy)-; 1,2-propanediol, 3-(3-methyl-2-butyloxy)-; 1,2-propanediol, (cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3propanediol, 2-(3-methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2-propanediol. 3-(butyloxy)-. pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; 1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated; and/or 1,2propanediol, 3-(butyloxy)-, tributyleneoxylated. Preferred aromatic glyceryl ethers include: 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3-benzyloxy-; 1,2propanediol. 3-(2-phenylethyloxy)-; 1,2-propanediol, 1,3-propanediol, 2-(mcresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, 2-benzyloxy-; 1,3propanediol, 2-(2-phenylethyloxy)-; and mixtures thereof. The more preferred aromatic glyceryl ethers include: 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3benzyloxy-: 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, 2-(2-phenylethyloxy)-; and mixtures thereof. The most preferred di(hydroxyalkyl)ethers include: bis(2-hydroxybutyl)ether: and bis(2hydroxycyclopentyl)ether:

An illustrative and non-limiting example of synthesis methods to prepare the preferred alkyl and aryl monoglyceryl ethers is given hereinafter.

The alicyclic diols and their derivatives that are preferred include: (1) the saturated diols and their derivatives including: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2-cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 2,4,5-trimethyl-1,3-cyclopentanediol; 3,3-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2-cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 1,1-bis(hydroxymethyl)cyclohexane; 1,2-

bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol; 1,3bis(hydroxymethyl)cyclohexane; 1,3-dimethyl-1,3-cyclohexanediol; 1,6-dimethyl-1,3cyclohexanediol; 1-hydroxy-cyclohexaneethanol; 1-hydroxy-cyclohexanemethanol; 1ethyl-1,3-cyclohexanediol; 1-methyl-1,2-cyclohexanediol; 2,2-dimethyl-1,3cyclohexanediol; 2,3-dimethyl-1,4-cyclohexanediol: 2,4-dimethyl-1,3cyclohexanediol: 2,5-dimethyl-1,3-cyclohexanediol: 2.6-dimethyl-1.4cyclohexanediol; 2-ethyl-1,3-cyclohexanediol; 2-hydroxycyclohexaneethanol; hydroxyethyl-1-cyclohexanol; 2-hydroxymethylcyclohexanol; 3-hydroxyethyl-1cyclohexanol; 3-hydroxycyclohexaneethanol; 3-hydroxymethylcyclohexanol; methyl-1,2-cyclohexanediol; 4,4-dimethyl-1,3-Cyclohexanediol; 4,5-dimethyl-1,3cyclohexanediol; 4,6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4hydroxyethyl-1-cyclohexanol; 4-hydroxymethylcyclohexanol: 4-methyl-1.2cyclohexanediol; 5,5-dimethyl-1,3-cyclohexanediol; 5-ethyl-1,3-cyclohexanediol; 1,2cycloheptanediol; 2-methyl-1,3-cycloheptanediol; 2-methyl-1,4-cycloheptanediol; 4methyl-1,3-cycloheptanediol; 5-methyl-1,3-cycloheptanediol; 5-methyl-1,4cycloheptanediol: 6-methyl-1,4-cycloheptanediol; 1.3-cyclooctanediol; 1,4cyclooctanediol: 1,5-cyclooctanediol; 1,2-cyclohexanediol, diethoxylate; 1,2cyclohexanediol. triethoxylate; 1,2-cyclohexanediol. tetraethoxylate; 1,2cyclohexanediol. pentaethoxylate: 1.2-cyclohexanediol. hexaethoxylate: 1,2cyclohexanediol. 1,2-cyclohexanediol, 1,2heptaethoxylate; octaethoxylate; cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; 1,2cyclohexanediallohemanbdiplemanbbetylehosyslatexapodiallollibunyddiobydibetyladiosylate; and/c 1,2-cyclolikanediol, tributylenoxylate. The most preferred saturated alicyclic diols and their derivatives are: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2cyclobutanediol; 3-propyl-1,2-cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-3,4-dimethyl-1,2cyclopentanediol; 3,3-dimethyl-1,2-cyclopentanediol; cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1.1bis(hydroxymethyl)cyclohexane; 1,2-bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1.3-bis(hydroxymethyl)cyclohexane; 1-hydroxy-1,3-cyclohexanediol: cyclohexanemethanol; 1-methyl-1,2-cyclohexanediol; 3-hydroxymethylcyclohexanol; 3-methyl-1,2-cyclohexanediol; 4,4-dimethyl-1,3-cyclohexanediol; 4,5-dimethyl-1,3cyclohexanediol; 4.6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4-4-hydroxymethylcyclohexanol; 4-methyl-1,2hydroxyethyl-1-cyclohexanol; cyclohexanediol; 1,2-cycloheptanediol; 1,2-cyclohexanediol, pentaethoxylate; 1,2heptaethoxylate; cyclohexanediol. hexaethoxylate: 1.2-cyclohexanediol,

WO 97/03169 PCT/US96/11556

cyclohexanediol, octaethoxylate; 1,2-cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; and/or 1,2-cyclohexanediol, dibutylenoxylate.

Preferred aromatic diols include: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; and/or 1-phenyl-1,4-butanediol, of which, 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; and/or 1-phenyl-1,4-butanediol are the most preferred.

As discussed hereinbefore, all of the unsaturated materials that are related to the other preferred principal solvents herein by the same relationship, i.e., having one more CH2 group than the corresponding saturated principal solvent and remaining within the effective ClogP range are preferred. However, the specific preferred unsaturated diol principal solvents are: 1,3-butanediol, 2,2-diallyl-; 1,3-butanediol, 2-(1-ethyl-1-propenyl)-; 1,3-butanediol, 2-(2-butenyl)-2-methyl-; 1,3-butanediol, 2-(3methyl-2-butenyl)-; 1,3-butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-butanediol, 2methyl-2-(1-methyl-2-propenyl)-; 1,4-butanediol, 2,3-bis(1-methylethylidene)-; 1,3pentanediol, 2-ethenyl-3-ethyl-; 1,3-pentanediol, 2-ethenyl-4,4-dimethyl-; 1,4pentanediol, 3-methyl-2-(2-propenyl)-; 4-pentene-1,3-diol, 2-(1,1-dimethylethyl)-; 4pentene-1,3-diol, 2-ethyl-2,3-dimethyl-; 1,4-hexanediol, 4-ethyl-2-methylene-; 1,5hexadiene-3,4-diol, 2,3,5-trimethyl-; 1,5-hexanediol, 2-(1-methylethenyl)-; 2-hexene-1,5-diol, 4-ethenyl-2,5-dimethyl-; 1,4-heptanediol, 6-methyl-5-methylene-; 2,4heptadiene-2,6-diol, 4,6-dimethyl-; 2,6-heptadiene-1,4-diol, 2,5,5-trimethyl-; 2heptene-1,4-diol, 5,6-dimethyl-; 3-heptene-1,5-diol, 4,6-dimethyl-; 5-heptene-1,3diol, 2,4-dimethyl-; 5-heptene-1,3-diol, 3,6-dimethyl-; 5-heptene-1,4-diol, 2,6dimethyl-; 5-heptene-1,4-diol, 3,6-dimethyl-; 6-heptene-1,3-diol, 2,2-dimethyl-; 6heptene-1,4-diol. 5.6-dimethyl-; 6-heptene-1,5-diol, 2,4-dimethyl-; 6-heptene-1,5diol, 2-ethylidene-6-methyl-; 6-heptene-2,4-diol, 4-(2-propenyl)-; 1-octene-3,6-diol, 3-ethenyl-; 2,4,6-octatriene-1,8-diol, 2,7-dimethyl-; 2,5-octadiene-1,7-diol, 2,6dimethyl-, 2,5-octadiene-1,7-diol, 3,7-dimethyl-; 2,6-octadiene-1,4-diol, 3.7dimethyl- (Rosiridol); 2,6-octadiene-1,8-diol, 2-methyl-; 2,7-octadiene-1,4-diol, 3,7dimethyl-; 2,7-octadiene-1,5-diol, 2,6-dimethyl-; 2,7-octadiene-1,6-diol, dimethyl- (8-hydroxylinalool); 2,7-octadiene-1,6-diol, 2,7-dimethyl-, 2-octene-1,7diol, 2-methyl-6-methylene-; 3,5-octadiene-2,7-diol, 2,7-dimethyl-; 3,5-octanediol, 4methylene-; 3,7-octadiene-1,6-diol, 2,6-dimethyl-; 4-octene-1,8-diol, 2-methylene-; 6-octene-3,5-diol, 2-methyl-; 6-octene-3,5-diol, 4-methyl-; 7-octene-2,4-diol, 2methyl-6-methylene-; 7-octene-2,5-diol, 7-methyl-; 7-octene-3,5-diol, 2-methyl-; 1-nonene-3,5-diol; 1-nonene-3,7-diol; 3-nonene-2,5-diol; 4-nonene-2,8-diol; 6,8-nonadiene-1,5-diol; 7-nonene-2,4-diol; 8-nonene-2,4-diol; 8-nonene-2,5-diol; 1,9-decadiene-3,8-diol; and/or 1,9-decadiene-4,6-diol.

Said principal alcohol solvent can also preferably be selected from the group consisting of: 2,5-dimethyl-2,5-hexanediol; 2-ethyl-1,3-hexanediol; 2-methyl-2-propyl-1,3-propanediol; 1,2-hexanediol; and mixtures thereof. More preferably said principal alcohol solvent is selected from the group consisting of 2-ethyl-1,3-hexanediol; 2-methyl-2-propyl-1,3-propanediol; 1,2-hexanediol; and mixtures thereof. Even more preferably, said principal alcohol solvent is selected from the groups consisting of 2-ethyl-1,3-hexanediol; 1,2-hexanediol; and mixtures thereof.

When several derivatives of the same diol with different alkyleneoxy groups can be used, e.g., 2-methyl-2,3-butanediol having 3 to 5 ethyleneoxy groups, or 2 propyleneoxy groups, or 1 butyleneoxy group, it is preferred to use the derivative with the lowest number of groups, i.e., in this case, the derivative with one butyleneoxy group. However, when only about one to about four ethyleneoxy groups are needed to provide good formulatability, such derivatives are also preferred.

UNSATURATED DIOLS

It is found surprisingly that there is a clear similarity between the acceptability (formulatability) of a saturated diol and its unsaturated homologs, or analogs, having higher molecular weights. The unsaturated homologs/analogs have the same formulatability as the parent saturated principal solvent with the condition that the unsaturated principal solvents have one additional methylene (viz., CH2) group for each double bond in the chemical formula. In other words, there is an apparent "addition rule" in that for each good saturated principal solvent of this invention, which is suitable for the formulation of clear, concentrated fabric softener compositions, there are suitable unsaturated principal solvents where one, or more, CH2 groups are added while, for each CH2 group added, two hydrogen atoms are removed from adjacent carbon atoms in the molecule to form one carbon-carbon double bond, thus holding the number of hydrogen atoms in the molecule constant with respect to the chemical formula of the "parent" saturated principal solvent. This is due to a surprising fact that adding a -CH2- group to a solvent chemical formula has an effect of increasing its ClogP value by about 0.53, while removing two adjacent hydrogen atoms to form a double bond has an effect of decreasing its ClogP value by about a similar amount, viz., about 0.48, thus about compensating for the -CH2- addition. Therefore one goes from a preferred saturated principal solvent to the preferred higher molecular weight unsaturated analogs/homologs containing at least one more carbon atom by inserting one double bond for each additional CH₂ group, and thus the total number of hydrogen atoms is kept the same as in the parent saturated principal solvent, as long as the ClogP value of the new solvent remains within the effective 0.15-0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, range. The following are some illustrative examples:

- 2,2-Dimethyl-6-heptene-1,3-diol (CAS No. 140192-39-8) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to either of the following preferred C8-diol principal solvents: 2-methyl-1,3-heptanediol or 2,2-dimethyl-1,3-hexanediol.
- 2,4-Dimethyl-5-heptene-1,3-diol (CAS No. 123363-69-9) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to either of the following preferred C8-diol principal solvents: 2-methyl-1,3-heptanediol or 2,4-dimethyl-1,3-hexanediol.
- 2-(1-Ethyl-1-propenyl)-1,3-butanediol (CAS No. 116103-35-6) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to either of the following preferred C8-diol principal solvents: 2-(1-ethylpropyl)-1,3-propanediol or 2-(1-methylpropyl)-1,3-butanediol.
- 2-Ethenyl-3-ethyl-1,3-pentanediol (CAS No. 104683-37-6) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to either of the following preferred C8-diol principal solvents: 3-ethyl-2-methyl-1,3-pentanediol or 2-ethyl-3-methyl-1,3-pentanediol.
- 3,6-Dimethyl-5-heptene-1,4-diol (e.g., CAS No. 106777-99-5) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to any of the following preferred C8-diol principal solvents: 3-methyl-1,4-heptanediol; 6-methyl-1,4-heptanediol; or 3,5-dimethyl-1,4-hexanediol.
- 5,6-Dimethyl-6-heptene-1,4-diol (e.g., CAS No. 152344-16-6) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to any of the following preferred C8-diol principal solvents: 5-methyl-1,4-heptanediol; 6-methyl-1,4-heptanediol; or 4,5-dimethyl-1,3-hexanediol.
- 4-Methyl-6-octene-3,5-diol (CAS No. 156414-25-4) is a preferred C9-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to any of the following preferred C8-diol principal solvents: 3,5-octanediol, 3-methyl-2,4-heptanediol or 4-methyl-3,5-heptanediol.

Rosiridol (CAS No. 101391-01-9) and isorosiridol (CAS No. 149252-15-3) are two isomers of 3,7-dimethyl-2,6-octadiene-1,4-diol, and are preferred C10-diol principal solvents. They can be considered to be derived by appropriately adding two CH₂ groups and two double bonds to any of the following preferred C8-diol principal solvents: 2-methyl-1,3-heptanediol; 6-methyl-1,3-heptanediol; 3-methyl-1,4-heptanediol; 6-methyl-1,4-heptanediol; 2,5-dimethyl-1,3-hexanediol; or 3,5-dimethyl-1,4-hexanediol.

8-Hydroxylinalool (CAS No. 103619-06-3, 2,6-dimethyl-2,7-octadiene-1,6-diol) is a preferred C10-diol principal solvent and can be considered to be derived by appropriately adding two CH₂ groups and two double bonds to any of the following preferred C8-diol principal solvents: 2-methyl-1,5-heptanediol; 5-methyl-1,5-heptanediol; 2-methyl-1,6-heptanediol; 6-methyl-1,6-heptanediol; or 2,4-dimethyl-1,4-hexanediol.

2,7-Dimethyl-3,7-octadiene-2,5-diol (CAS No. 171436-39-8) is a preferred C10-diol principal solvent and can be considered to be derived by appropriately adding two CH₂ group and two double bond to any of the following preferred C8-diol principal solvents: 2,5-octanediol; 6-methyl-1,4-heptanediol; 2-methyl-2,4-heptanediol; 6-methyl-2,4-heptanediol; 6-methyl-2,5-heptanediol; 6-methyl-2,5-heptanediol; and 2,5-dimethyl-2,4-hexanediol.

4-Butyl-2-butene-1,4-diol (CAS No. 153943-66-9) is a preferred C8-diol principal solvent and can be considered to be derived by appropriately adding a CH₂ group and a double bond to any of the following preferred C7-diol principal solvents: 2-propyl-1,4-butanediol or 2-butyl-1,3-propanediol.

By the same token, there are cases where a higher molecular weight unsaturated homolog which is derived from a poor, inoperable saturated solvent is itself a poor solvent. For example, 3,5-dimethyl-5-hexene-2,4-diol (e.g., CAS No. 160429-40-3) is a poor unsaturated C8 solvent, and can be considered to be derived from the following poor saturated C7 solvents: 3-methyl-2,4-hexanediol; 5-methyl-2,4-hexanediol; or 2,4-dimethyl-1,3-pentanediol; and 2,6-dimethyl-5-heptene-1,2-diol (e.g., CAS No. 141505-71-7) is a poor unsaturated C9 solvent, and can be considered to be derived from the following poor saturated C8 solvents: 2-methyl-1,2-heptanediol; 6-methyl-1,2-heptanediol; or 2,5-dimethyl-1,2-hexanediol.

It is also found, surprisingly, that there is an exception to the above addition rule, in which saturated principal solvents always have unsaturated analogs/homologs with the same degree of acceptability. The exception relates to saturated diol principal solvents having the two hydroxyl groups situated on two adjacent carbon atoms. In some cases, but not always, inserting one, or more, CH₂ groups between

the two adjacent hydroxyl groups of a poor solvent results in a higher molecular weight unsaturated homolog which is more suitable for the clear, concentrated fabric softener formulation. For example, the preferred unsaturated 6,6-dimethyl-1heptene-3,5-diol (CAS No. 109788-01-4) having no adjacent hydroxyl groups can be considered to be derived from the inoperable 2,2-dimethyl-3,4-hexanediol which has adjacent hydroxyl groups. In this case, it is more reliable to consider that the 6,6dimethyl-1-heptene-3,5-diol is derived from either 2-methyl-3,5-heptanediol or 5,5dimethyl-2,4-hexanediol which are both preferred principal solvents and do not have adjacent hydroxyl groups. Conversely, inserting CH2 groups between the adjacent hydroxyl groups of a preferred principal solvent can result in an inoperable higher molecular weight unsaturated diol solvent. For example, the inoperable unsaturated 2,4-dimethyl-5-hexene-2,4-diol (CAS No. 87604-24-8) having no adjacent hydroxyl groups can be considered to be derived from the preferred 2,3-dimethyl-2,3pentanediol which has adjacent hydroxyl groups. In this case, it is more reliably to derive the inoperable unsaturated 2,4-dimethyl-5-hexene-2,4-diol from either 2methyl-2,4-hexanediol or 4-methyl-2,4-hexanediol which are both inoperable solvents and do not have adjacent hydroxyl groups. There are also cases where an inoperable unsaturated solvent having no adjacent hydroxyl groups can be considered to be derived from an inoperable solvent which has adjacent hydroxyl groups, such as the pair 4,5-dimethyl-6-hexene-1,3-diol and 3,4-dimethyl-1,2-pentanediol. Therefore, in order to deduce the formulatability of an unsaturated solvent having no adjacent hydroxyl groups, one should start from a low molecular weight saturated homolog also not having adjacent hydroxyl groups. I.e., in general, the relationship is more reliable when the distance/relationship of the two hydroxy groups is maintained. I.e., it is reliable to start from a saturated solvent with adjacent hydroxyl groups to deduce the formulatability of the higher molecular weight unsaturated homologs also having adjacent hydroxyl groups.

It has been discovered that the use of these specific principal alcohol solvents can produce clear, low viscosity, stable fabric softener compositions at surprisingly low principal solvent levels, i.e., less than about 40%, by weight of the composition. It has also been discovered that the use of the principal alcohol solvents can produce highly concentrated fabric softener compositions, that are stable and can be diluted, e.g. from about 2:1 to about 10:1, to produce compositions with lower levels of fabric softener that are still stable.

As previously discussed, the principal solvents are desirably kept to the lowest levels that are feasible in the present compositions for obtaining translucency or clarity. The presence of water exerts an important effect on the need for the

principal solvents to achieve clarity of these compositions. The higher the water content, the higher the principal solvent level (relative to the softener level) is needed to attain product clarity. Inversely, the less the water content, the less principal solvent (relative to the softener) is needed. Thus, at low water levels of from about 5% to about 15%, the softener active-to-principal solvent weight ratio is preferably from about 55:45 to about 85:15, more preferably from about 60:40 to about 80:20. At water levels of from about 15% to about 70%, the softener active-to-principal solvent weight ratio is preferably from about 45:55 to about 70:30, more preferably from about 55:45 to about 70:30. But at high water levels of from about 70% to about 80%, the softener active-to-principal solvent weight ratio is preferably from about 30:70 to about 55:45, more preferably from about 35:65 to about 45:55. At even higher water levels, the softener to principal solvent ratios should also be even higher.

Mixtures of the above principal solvents are particularly preferred, since one of the problems associated with large amounts of solvents is safety. Mixtures decrease the amount of any one material that is present. Odor and flammability can also be mimimized by use of mixtures, especially when one of the principal solvents is volatile and/or has an odor, which is more likely for low molecular weight materials. Suitable solvents that can be used at levels that would not be sufficient to produce a clear product are 2,2,4-trimethyl-1,3-pentane diol; the ethoxylate, diethoxylate, or triethoxylate derivatives of 2,2,4-trimethyl-1,3-pentane diol; and/or 2-ethyl-1,3-hexanediol. For the purposes of this invention, these solvents should only be used at levels that will not provide a stable, or clear product. Preferred mixtures are those where the majority of the solvent is one, or more, that have been identified hereinbefore as most preferred. The use of mixtures of solvents is also preferred, especially when one, or more, of the preferred principal solvents are solid at room temperature. In this case, the mixtures are fluid, or have lower melting points, thus improving processability of the softener compositions.

It is also discovered that it is possible to substitute for part of a principal solvent or a mixture of principal solvents of this invention with a secondary solvent, or a mixture of secondary solvents, which by themselves are not operable as a principal solvent of this invention, as long as an effective amount of the operable principal solvent(s) of this invention is still present in the liquid concentrated, clear fabric softener composition. An effective amount of the principal solvent(s) of this invention is at least greater than about 5%, preferably more than about 7%, more preferably more than about 10% of the composition, when at least about 15% of the softener active is also present. The substitute solvent(s) can be used at any level, but

preferably about equal to, or less than, the amount of operable principal solvent, as defined hereinbefore, that is present in the fabric softener composition.

For example, even though 1,2-pentanediol, 1,3-octanediol, and hydroxy pivalyl hydroxy pivalate (hereinafter, HPHP) having the following formula:

HO-CH₂-C(CH₃)₂-CH₂-O-CO-C(CH₃)₂-CH₂-OH (CAS # 1115-20-4) are inoperable solvents according to this invention, mixtures of these solvents with the principal solvent, e.g., with the preferred 1,2-hexanediol principal solvent, wherein the 1,2-hexanediol principal solvent is present at effective levels, also provide liquid concentrated, clear fabric softener compositions.

Some of the secondary solvents that can be used are those listed as inoperable hereinbefore and hereinafter, as well as some parent, non-alkoxylated solvents disclosed in Tables VIIIA-VIIIE.

The principal solvent can be used to either make a composition translucent or clear, or can be used to reduce the temperature at which the composition is translucent or clear. Thus the invention also comprises the method of adding the principal solvent, at the previously indicated levels, to a composition that is not translucent, or clear, or which has a temperature where instability occurs that is too high, to make the composition translucent or clear, or, when the composition is clear, e.g., at ambient temperature, or down to a specific temperature, to reduce the temperature at which instability occurs, preferably by at least about 5°C, more preferably by at least about 10°C. The principal advantage of the principal solvent is that it provides the maximum advantage for a given weight of solvent. It is understood that "solvent", as used herein, refers to the effect of the principal solvent and not to its physical form at a given temperature, since some of the principal solvents are solids at ambient temperature.

Alkyl Lactates

Some alkyl lactate esters, e.g., ethyl lactate and isopropyl lactate have ClogP values within the effective range of from about 0.15 to about 0.64, and can form liquid concentrated, clear fabric softener compositions with the fabric softener actives of this invention, but need to be used at a slightly higher level than the more effective diol solvents like 1,2-hexanediol. They can also be used to substitute for part of other principal solvents of this invention to form liquid concentrated, clear fabric softener compositions. This is illustrated in Example I-C.

NOVEL COMPOUNDS

Several of the above principal solvents are novel compounds including: 1,2-butanediol, 2,3,3-trimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 2,3-hexanediol, 4-methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-pentanediol, 2,3-

dimethyl-; 1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2dimethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-butanediol, 2-(1methylpropyl)-: 1.3-butanediol. 2-ethyl-2.3-dimethyl-: 1.3-butanediol. 2-(2methylpropyl)-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4butanediol, 2-methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(2methylpropyl)-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4pentanediol, 3-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 2,4-pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,3dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2dimethyl-; 1,4-hexanediol, 2.3-dimethyl-: 1,4-hexanediol, 2,4-dimethyl-; 1,4hexanediol, 3.3-dimethyl-; 1.4-hexanediol, 3.4-dimethyl-: 1.4-hexanediol. 3.5-1,4-hexanediol, 4,5-dimethyl-; dimethyl-; 1,3-hexanediol, 4.4-dimethyl-; 1,5hexanediol, 2,2-dimethyl-; 1,5-hexanediol, 3,4-dimethyl-; 1,5-hexanediol, 3.5dimethyl-; 1,5-hexanediol. 4,5-dimethyl-; 1,6-hexanediol, 2.3-dimethyl-; 1,6hexanediol, 2.4-dimethyl-; 1.6-hexanediol, 3.3-dimethyl-; 2.4-hexanediol, 4,5dimethyl-; 2,5-hexanediol, 2,3-dimethyl-; 2,5-hexanediol, 2,4-dimethyl-; 2,5hexanediol, 3,3-dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 4-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 5-methyl-; 2,4heptanediol, 5-methyl-; 2,5-heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 2,6octanediol; 2,4-hexanediol, 3,3,4-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; 2,5-hexanediol, 3,3,5trimethyl-; 1,2-propanediol, 3-(butyloxy)-, triethoxylated; 1,2-propanediol, 3-(butyloxy)-, tetraethoxylated; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(iso-3-(3-methyl-2-butyloxy)-; 1,2-propanediol, 3amyloxy)-: 1,2-propanediol, (cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-;

- 82 -

1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3propanediol, 2-(3-methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-. pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; bis(2-hydroxybutyl) ether; and bis(2-hydroxycyclopentyl) ether.

Similarly, the unsaturated analogs of the operable principal solvents are novel, especially the unsaturated C7-12 diols, more preferably unsaturated C8-10 diols, with the exception of the specifically mentioned unsaturated diols listed above in Table IX. These principal solvents all provide the unobvious benefit described hereinbefore.

III. **OPTIONAL INGREDIENTS**

(A) Low molecular weight water soluble solvents can also be used at levels of of from 0% to about 12%, preferably from about 1% to about 10%, more preferably from about 2% to about 8%. The water soluble solvents cannot provide a clear product at the same low levels of the principal solvents described hereinbefore but can provide clear product when the principal solvent is not sufficient to provide completely clear product. The presence of these water soluble solvents is therefore highly desirable. Such solvents include: ethanol; isopropanol; 1,2-propanediol; 1,3propanediol; propylene carbonate; etc. but do not include any of the principal solvents (B). These water soluble solvents have a greater affinity for water in the presence of hydrophobic materials like the softener active than the principal solvents.

(B) Brighteners

The compositions herein can also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.001% to 1% by weight of such optical brighteners.

The hydrophilic optical brighteners useful in the present invention are those having the structural formula:

wherein R₁ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R₂ is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino,

morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.

When in the above formula, R₁ is anilino, R₂ is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX® by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the rinse added compositions herein.

When in the above formula, R₁ is anilino, R₂ is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX® by Ciba-Geigy Corporation.

When in the above formula, R₁ is anilino, R₂ is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX® by Ciba Geigy Corporation.

(C) Dispersibility Aids

(J) Optional Viscosity/Dispersibility Modifiers

Relatively concentrated compositions containing both saturated and unsaturated diester quaternary ammonium compounds can be prepared that are stable without the addition of concentration aids. However, the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients. These concentration aids which typically can be viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels are used. The surfactant concentration aids are typically selected from the group consisting of (1) single long chain alkyl cationic surfactants; (2) nonionic surfactants; (3) amine oxides; (4) fatty acids; and (5) mixtures thereof. These aids are described in P&G Copending Application Serial No. 08/461,207, filed June 5, 1995, Wahl et al., specifically on page 14, line 12 to page 20, line 12, which is herein incorporated by reference.

When said dispersibility aids are present, the total level is from about 2% to about 25%, preferably from about 3% to about 17%, more preferably from about 4% to about 15%, and even more preferably from 5% to about 13% by weight of the composition. These materials can either be added as part of the active softener raw

WO 97/03169 PCT/US96/11556

material, (I), e.g., the mono-long chain alkyl cationic surfactant and/or the fatty acid which are reactants used to form the biodegradable fabric softener active as discussed hereinbefore, or added as a separate component. The total level of dispersibility aid includes any amount that may be present as part of component (I).

(1) Mono-Alkyl Cationic Quaternary Ammonium Compound

When the mono-alkyl cationic quaternary ammonium compound is present, it is typically present at a level of from about 2% to about 25%, preferably from about 3% to about 17%, more preferably from about 4% to about 15%, and even more preferably from 5% to about 13% by weight of the composition, the total mono-alkyl cationic quaternary ammonium compound being at least at an effective level.

Such mono-alkyl cationic quaternary ammonium compounds useful in the present invention are, preferably, quaternary ammonium salts of the general formula:

$$[R^4N^+(R^5)_3] X^-$$

wherein

 R^4 is C_8 - C_{22} alkyl or alkenyl group, preferably C_{10} - C_{18} alkyl or alkenyl group; more preferably C_{10} - C_{14} or C_{16} - C_{18} alkyl or alkenyl group;

each R^5 is a C_1 - C_6 alkyl or substituted alkyl group (e.g., hydroxy alkyl), preferably C_1 - C_3 alkyl group, e.g., methyl (most preferred), ethyl, propyl, and the like, a benzyl group, hydrogen, a polyethoxylated chain with from about 2 to about 20 oxyethylene units, preferably from about 2.5 to about 13 oxyethylene units, more preferably from about 3 to about 10 oxyethylene units, and mixtures thereof; and

X- is as defined hereinbefore for (Formula (I)).

Especially preferred dispersibility aids are monolauryl trimethyl ammonium chloride and monotallow trimethyl ammonium chloride available from Witco under the trade name Varisoft[®] 471 and monooleyl trimethyl ammonium chloride available from Witco under the tradename Varisoft[®] 417.

The R⁴ group can also be attached to the cationic nitrogen atom through a group containing one, or more, ester, amide, ether, amine, etc., linking groups which can be desirable for increased concentratability of component (I), etc. Such linking groups are preferably within from about one to about three carbon atoms of the nitrogen atom.

Mono-alkyl cationic quaternary ammonium compounds also include C_8 - C_{22} alkyl choline esters. The preferred dispersibility aids of this type have the formula:

$$R^{1}C(O)-O-CH_{2}CH_{2}N^{+}(R)_{3}X^{-}$$

wherein R1, R and X- are as defined previously.

Highly preferred dispersibility aids include C_{12} - C_{14} coco choline ester and C_{16} - C_{18} tallow choline ester.

Suitable biodegradable single-long-chain alkyl dispersibility aids containing an ester linkage in the long chains are described in U.S. Pat. No. 4,840,738, Hardy and Walley, issued June 20, 1989, said patent being incorporated herein by reference.

When the dispersibility aid comprises alkyl choline esters, preferably the compositions also contain a small amount, preferably from about 2% to about 5% by weight of the composition, of organic acid. Organic acids are described in European Patent Application No. 404,471, Machin et al., published on Dec. 27, 1990, supra, which is herein incorporated by reference. Preferably the organic acid is selected from the group consisting of glycolic acid, acetic acid, citric acid, and mixtures thereof.

Ethoxylated quaternary ammonium compounds which can serve as the dispersibility aid include ethylbis(polyethoxy ethanol)alkylammonium ethyl-sulfate with 17 moles of ethylene oxide, available under the trade name Variquat[®] 66 from Sherex Chemical Company; polyethylene glycol (15) oleammonium chloride, available under the trade name Ethoquad[®] 0/25 from Akzo; and polyethylene glycol (15) cocomonium chloride, available under the trade name Ethoquad[®] C/25 from Akzo.

Although the main function of the dispersibility aid is to increase the dispersibility of the ester softener, preferably the dispersibility aids of the present invention also have some softening properties to boost softening performance of the composition. Therefore, preferably the compositions of the present invention are essentially free of non-nitrogenous ethoxylated nonionic dispersibility aids which will decrease the overall softening performance of the compositions.

Also, quaternary compounds having only a single long alkyl chain, can protect the cationic softener from interacting with anionic surfactants and/or detergent builders that are carried over into the rinse from the wash solution.

(2) Amine Oxides

Suitable amine oxides include those with one alkyl or hydroxyalkyl moiety of about 8 to about 22 carbon atoms, preferably from about 10 to about 18 carbon atoms, more preferably from about 8 to about 14 carbon atoms, and two alkyl moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups with about 1 to about 3 carbon atoms.

Examples include dimethyloctylamine oxide, diethyldecylamine oxide, bis-(2-hydroxyethyl)dodecyl-amine oxide, dimethyldodecylamine oxide, dipropyl-tetradecylamine oxide, methylethylhexadecylamine oxide, dimethyl-2-hydroxyoctadecylamine oxide, and coconut fatty alkyl dimethylamine oxide.

(D) Stabilizers

Stabilizers can be present in the compositions of the present invention. The term "stabilizer," as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01% to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01% to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions. Antioxidants and reductive agent stabilizers are especially critical for unscented or low scent products (no or low perfume).

Examples of antioxidants that can be added to the compositions of this invention include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox® S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox®-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustanc® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox® TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox® GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C₈-C₂₂) of gallic acid, e.g., dodecyl gallate; Irganox® 1010; Irganox® 1035; Irganox® B 1171; Irganox® 1425; Irganox® 3114; Irganox® 3125; and mixtures thereof; preferably Irganox® 3125, Irganox® 1425, Irganox® 3114, and mixtures thereof; more preferably Irganox® 3125 alone or mixed with citric acid and/or other chelators such as isopropyl citrate, Dequest@ 2010, available from Monsanto with a chemical name of 1-hydroxyethylidene-1, 1-diphosphonic acid (etidronic acid), and Tiron®, available from Kodak with a chemical name of 4,5-dihydroxy-m-benzenesulfonic acid/sodium salt, and DTPA®, available from Aldrich with a chemical name of diethylenetriaminepentaacetic acid.

The chemical names and CAS numbers for some of the above stabilizers which can be used in the compositions of the present invention are listed in Table I below.

(E) Soil Release Agent

In the present invention, an optional soil release agent can be added. The addition of the soil release agent can occur in combination with the premix, in combination with the acid/water seat, before or after electrolyte addition, or after the final composition is made. The softening composition prepared by the process of the present invention herein can contain from 0% to about 10%, preferably from 0.2% to about 5%, of a soil release agent. Preferably, such a soil release agent is a polymer.

Polymeric soil release agents useful in the present invention include copolymeric blocks of terephthalate and polyethylene oxide or polypropylene oxide, and the like.

A preferred soil release agent is a copolymer having blocks of terephthalate and polyethylene oxide. More specifically, these polymers are comprised of repeating units of ethylene terephthalate and polyethylene oxide terephthalate at a molar ratio of ethylene terephthalate units to polyethylene oxide terephthalate units of from 25:75 to about 35:65, said polyethylene oxide terephthalate containing polyethylene oxide blocks having molecular weights of from about 300 to about 2000. The molecular weight of this polymeric soil release agent is in the range of from about 5,000 to about 55,000.

Another preferred polymeric soil release agent is a crystallizable polyester with repeat units of ethylene terephthalate units containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight of from about 300 to about 6,000, and the molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the crystallizable polymeric compound is between 2:1 and 6:1. Examples of this polymer include the commercially available materials Zelcon 4780[®] (from Dupont) and Milease T[®] (from ICI).

Highly preferred soil release agents are polymers of the generic formula:

in which each X can be a suitable capping group, with each X typically being selected from the group consisting of H, and alkyl or acyl groups containing from about 1 to about 4 carbon atoms. p is selected for water solubility and generally is from about 6 to about 113, preferably from about 20 to about 50. u is critical to formulation in a liquid composition having a relatively high ionic strength. There should be very little material in which u is greater than 10. Furthermore, there should be at least 20%, preferably at least 40%, of material in which u ranges from about 3 to about 5.

The R¹⁴ moieties are essentially 1,4-phenylene moieties. As used herein, the term "the R¹⁴ moieties are essentially 1,4-phenylene moieties" refers to compounds where the R¹⁴ moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkenyl moieties, alkenylene moieties, or mixtures thereof. Arylene and alkarylene moieties which can be partially substituted for 1,4-phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene,

1,4-naphthylene, 2,2-biphenylene, 4,4-biphenylene, and mixtures thereof. Alkylene and alkenylene moieties which can be partially substituted include 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.

For the R¹⁴ moieties, the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent. Generally the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties. Usually, compounds where the R¹⁴ comprise from about 50% to about 100% 1,4-phenylene moieties (from 0% to about 50% moieties other than 1,4-phenylene) have adequate soil release activity. For example, polyesters made according to the present invention with a 40:60 mole ratio of isophthalic (1,3-phenylene) to terephthalic (1,4-phenylene) acid have adequate soil release activity. However, because most polyesters used in fiber making comprise ethylene terephthalate units, it is usually desirable to minimize the degree of partial substitution with moieties other than 1,4-phenylene for best soil release activity. Preferably, the R¹⁴ moieties consist entirely of (i.e., comprise 100%) 1,4-phenylene moieties, i.e., each R¹⁴ moiety is 1,4-phenylene.

For the R¹⁵ moieties, suitable ethylene or substituted ethylene moieties include ethylene, 1,2-propylene, 1,2-butylene, 1,2-hexylene, 3-methoxy-1,2-propylene, and mixtures thereof. Preferably, the R¹⁵ moieties are essentially ethylene moieties, 1,2-propylene moieties, or mixtures thereof. Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of compounds. Surprisingly, inclusion of a greater percentage of 1,2-propylene moieties tends to improve the water solubility of compounds.

Therefore, the use of 1,2-propylene moieties or a similar branched equivalent is desirable for incorporation of any substantial part of the soil release component in the liquid fabric softener compositions. Preferably, from about 75% to about 100%, are 1,2-propylene moieties.

The value for each p is at least about 6, and preferably is at least about 10. The value for each n usually ranges from about 12 to about 113. Typically the value for each p is in the range of from about 12 to about 43.

A more complete disclosure of soil release agents is contained in U.S. Pat. Nos.: 4,661,267, Decker, Konig, Straathof, and Gosselink, issued Apr. 28, 1987; 4,711,730, Gosselink and Diehl, issued Dec. 8, 1987; 4,749,596, Evans, Huntington, Stewart, Wolf, and Zimmerer, issued June 7, 1988; 4,818,569, Trinh, Gosselink, and

Rattinger, issued April 4, 1989; 4,877,896, Maldonado, Trinh, and Gosselink, issued Oct. 31, 1989; 4,956,447, Gosselink et al., issues Sept. 11, 1990; and 4,976,879, Maldonado, Trinh, and Gosselink, issued Dec. 11, 1990, all of said patents being incorporated herein by reference.

These soil release agents can also act as scum dispersants.

(F) Scum Dispersant

In the present invention, the premix can be combined with an optional scum dispersant, other than the soil release agent, and heated to a temperature at or above the melting point(s) of the components.

The preferred scum dispersants herein are formed by highly ethoxylating hydrophobic materials. The hydrophobic material can be a fatty alcohol, fatty acid, fatty amine, fatty acid amide, amine oxide, quaternary ammonium compound, or the hydrophobic moieties used to form soil release polymers. The preferred scum dispersants are highly ethoxylated, e.g., more than about 17, preferably more than about 25, more preferably more than about 40, moles of ethylene oxide per molecule on the average, with the polyethylene oxide portion being from about 76% to about 97%, preferably from about 81% to about 94%, of the total molecular weight.

The level of scum dispersant is sufficient to keep the scum at an acceptable, preferably unnoticeable to the consumer, level under the conditions of use, but not enough to adversely affect softening. For some purposes it is desirable that the scum is nonexistent. Depending on the amount of anionic or nonionic detergent, etc., used in the wash cycle of a typical laundering process, the efficiency of the rinsing steps prior to the introduction of the compositions herein, and the water hardness, the amount of anionic or nonionic detergent surfactant and detergency builder (especially phosphates and zeolites) entrapped in the fabric (laundry) will vary. Normally, the minimum amount of scum dispersant should be used to avoid adversely affecting softening properties. Typically scum dispersion requires at least about 2%, preferably at least about 4% (at least 6% and preferably at least 10% for maximum scum avoidance) based upon the level of softener active. However, at levels of about 10% (relative to the softener material) or more, one risks loss of softening efficacy of the product especially when the fabrics contain high proportions of nonionic surfactant which has been absorbed during the washing operation.

Preferred scum dispersants are: Brij 700[®]; Varonic U-250[®]; Genapol T-500[®], Genapol T-800[®]; Plurafac A-79[®]; and Neodol 25-50[®].

(G) Bactericides

Examples of bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex

Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol[®], and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon about 1 to about 1,000 ppm by weight of the agent.

(H) Perfume

The present invention can contain any softener compatible perfume. Suitable perfumes are disclosed in U.S. Pat. 5,500,138, Bacon et al., issued March 19, 1996, said patent being incorporated herein by reference.

As used herein, perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances. Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of "perfume", as used herein. Typically, perfumes are complex mixtures of a plurality of organic compounds.

Examples of perfume ingredients useful in the perfumes of the present invention compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7dimethyl-cis-2,6-octadien-1-ol; 2,6-dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7-dimethyl-trans-2,6-octadien-1-ol; dimethyl-6-octen-1-ol; 3,7-dimethyl-1-octanol; 2-methyl-3-(para-tertbutylphenyl)-propionaldehyde; 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1carboxaldehyde; tricyclodecenyl propionate; tricyclodecenyl acetate; anisaldehyde; 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde; ethyl-3methyl-3-phenyl glycidate; 4-(para-hydroxyphenyl)-butan-2-one; 1-(2,6,6trimethyl-2-cyclohexen-1-yl)-2-buten-1-one; para-methoxyacetophenone; paramethoxy-alpha-phenylpropene; methyl-2-n-hexyl-3-oxo-cyclopentane carboxylate; undecalactone gamma.

Additional examples of fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert-butylcyclohexyl acetate; alpha,alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; Schiff's base of 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1-

nitrile; ionone gamma methyl; ionone alpha; ionone beta; petitgrain; methyl cedrylone; 7-acetyl-1,2,3,4,5,6,7,8-octahydro-1,1,6,7-tetramethyl-naphthalene; ionone methyl; methyl-1,6,10-trimethyl-2,5,9-cyclododecatrien-1-yl ketone; 7-acetyl-1,1,3,4,4,6-hexamethyl tetralin; 4-acetyl-6-tert-butyl-1,1-dimethyl indane; benzophenone; 6-acetyl-1,1,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1,1,2,6-tetramethyl indane; 1-dodecanal; 7-hydroxy-3,7-dimethyl octanal; 10-undecen-1-al; iso-hexenyl cyclohexyl carboxaldehyde; formyl tricyclodecan; cyclopentadecanolide; 16-hydroxy-9-hexadecenoic acid lactone; 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-

benzopyrane; ambroxane; dodecahydro-3a,6,6,9a-tetramethylnaphtho-[2,1b]furan; cedrol; 5-(2,2,3-trimethylcyclopent-3-enyl)-3-methylpentan-2-ol; 2-ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1-yl)-2-buten-1-ol; caryophyllene alcohol; cedryl acetate; para-tert-butylcyclohexyl acetate; patchouli; olibanum resinoid; labdanum; vetivert; copaiba balsam; fir balsam; and condensation products of: hydroxycitronellal and methyl anthranilate; hydroxycitronellal and indol; phenyl acetaldehyde and indol; 4-(4-hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate.

More examples of perfume components are geraniol, geranyl acetate; linalool; linalyl acetate; tetrahydrolinalool; citronellol; citronellyl acetate; dihydromyrcenol; dihydromyrcenyl acetate; tetrahydromyrcenol; terpinyl acetate; nopol; nopyl acetate; 2-phenylethanol, 2-phenylethyl acetate; benzyl alcohol; benzyl acetate; benzyl salicylate; benzyl benzoate; styrallyl acetate; dimethylbenzylcarbinol; trichloromethylphenylcarbinyl methylphenylcarbinyl acetate; isononyl acetate; vetiveryl acetate; vetiverol; 2-methyl-3-(p-tertbutylphenyl)-propanal; 2-methyl-3-(p-isopropylphenyl)-propanal; 3-(p-tertbutylphenyl)-propanal; 4-(4-methyl-3-pentenyl)-3-cyclohexenecarbaldehyde; 4acetoxy-3-pentyltetrahydropyran; methyl dihydrojasmonate: 2-nheptylcyclopentanone: 3-methyl-2-pentyl-cyclopentanone: n-decanal: dodecanal; 9-decenol-1; phenoxyethyl isobutyrate; phenylacetaldehyde dimethylacetal; phenylacetaldehyde diethylacetal; geranonitrile; citronellonitrile; cedryl acetal; 3-isocamphylcyclohexanol; cedryl methylether; isolongifolanone; aubepine nitrile; aubepine; heliotropine; eugenol; vanillin; diphenyl oxide; hydroxycitronellal ionones; methyl ionones; isomethyl ionomes; irones; cis-3hexenol and esters thereof; indane musk fragrances; tetralin musk fragrances; isochroman musk fragrances; macrocyclic ketones; macrolactone musk fragrances; ethylene brassylate.

The perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.

Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycol, monoethyl ether, dipropylene glycol, diethyl phthalate, triethyl citrate, etc. The amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution.

Perfume can be present at a level of from 0% to about 10%, preferably from about 0.1% to about 5%, and more preferably from about 0.2% to about 3%, by weight of the finished composition. Fabric softener compositions of the present invention provide improved fabric perfume deposition.

(I) Chelating Agents

The compositions and processes herein can optionally employ one or more copper and/or nickel chelating agents ("chelators"). Such water-soluble chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined. The whiteness and/or brightness of fabrics are substantially improved or restored by such chelating agents and the stability of the materials in the compositions are improved.

Amino carboxylates useful as chelating agents herein include ethylenediaminetetraacetates (EDTA), N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates (NTA), ethylenediamine tetraproprionates, ethylenediamine-N,N-diglutamates, 2-hyroxypropylenediamine-N,N-disuccinates, triethylenetetraamine-hexacetates, diethylenetriaminepentaacetates (DETPA), and ethanoldiglycines, including their water-soluble salts such as the alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.

Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates), diethylenetriamine-N,N,N,N",N"-pentakis(methane phosphonate) (DETMP) and 1-hydroxyethane-1,1-diphosphonate (HEDP). Preferably, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.

The chelating agents are typically used in the present rinse process at levels from about 2 ppm to about 25 ppm, for periods from 1 minute up to several hours' soaking.

The preferred EDDS chelator used herein (also known as ethylenediamine-N,N'-disuccinate) is the material described in U.S. Patent 4,704,233, cited hereinabove, and has the formula (shown in free acid form):

As disclosed in the patent, EDDS can be prepared using maleic anhydride and ethylenediamine. The preferred biodegradable [S,S] isomer of EDDS can be prepared by reacting L-aspartic acid with 1,2-dibromoethane. The EDDS has advantages over other chelators in that it is effective for chelating both copper and nickel cations, is available in a biodegradable form, and does not contain phosphorus. The EDDS employed herein as a chelator is typically in its salt form, i.e., wherein one or more of the four acidic hydrogens are replaced by a water-soluble cation M, such as sodium, potassium, ammonium, triethanolammonium, and the like. As noted before, the EDDS chelator is also typically used in the present rinse process at levels from about 2 ppm to about 25 ppm for periods from 1 minute up to several hours' soaking. At certain pH's the EDDS is preferably used in combination with zinc cations.

A wide variety of chelators can be used herein. Indeed, simple polycarboxylates such as citrate, oxydisuccinate, and the like, can also be used, although such chelators are not as effective as the amino carboxylates and phosphonates, on a weight basis. Accordingly, usage levels may be adjusted to take into account differing degrees of chelating effectiveness. The chelators herein will preferably have a stability constant (of the fully ionized chelator) for copper ions of at least about 5, preferably at least about 7. Typically, the chelators will comprise from about 0.5% to about 10%, more preferably from about 0.75% to about 5%, by weight of the compositions herein, in addition to those that are stabilizers. Preferred chelators include DETMP, DETPA, NTA, EDDS and mixtures thereof.

(J) Other Optional Ingredients

The present invention can include optional components conventionally used in textile treatment compositions, for example: colorants; preservatives; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, and the like.

Particularly preferred ingredients include water soluble calcium and/or magnesium compounds, which provide additional stability. The chloride salts are preferred, but acetate, nitrate, etc. salts can be used. The level of said calcium and/or

magnesium salts is from 0% to about 2%, preferably from about 0.05% to about 0.5%, more preferably from about 0.1% to about 0.25%.

The present invention can also include other compatible ingredients, including those as disclosed in copending applications Serial Nos.: 08/372,068, filed January 12, 1995, Rusche, et al.; 08/372,490, filed January 12, 1995, Shaw, et al.; and 08/277,558, filed July 19, 1994, Hartman, et al., incorporated herein by reference.

PREPARATION OF PRINCIPAL SOLVENTS PREPARATION OF DIOL PRINCIPAL SOLVENTS

Many synthesis methods can be used to prepare the diol principal solvents of this invention. The appropriate method is selected for each specific structural requirement of each principal solvent. Futhermore, most principal solvents can also be prepared by more than one method. Therefore, the methods cited herein for each specific principal solvent are for illustrative purposes only and should not be considered as limiting.

METHOD A

Preparation of 1,5-, 1,6-, and 1,7-Diols

Method 1

This synthesis method is a general preparation of α, ω -type diols derived from substituted cyclic alkenes. Examples of cyclic alkenes are the alkylated isomers of cyclopentene, cyclohexene, and cycloheptene. The general formula of useful alkylated cyclic alkenes is

wherein each R is H, or C₁-C₄-alkyl, and where x is 3, 4, or 5.

Cyclic alkenes may be converted to the terminal diols by a three step reaction sequence.

Step 1 is the reaction of the cyclic alkene with ozone (O₃) in a solvent such as anhydrous ethyl acetate to form the intermediate ozonide. In Step 2 the ozonide is reduced by, e.g., palladium catalyst /H₂ to the dialdehyde which is then converted in Step 3 to the target diol by borohydride reduction.

The 1,2- diols are generally prepared by direct hydroxylation of the appropriate substituted olefins. Example:

$$R > C = C < R$$

wherein each R is H, alkyl, etc.

In a typical reaction the alkene is reacted with hydrogen peroxide (30%) and a catalytic amount of osmium tetroxide in t-butyl alcohol or other suitable solvent. The reaction is cooled to about 0°C and allowed to run overnight. Unreacted compounds and solvent are removed by distillation and the desired 1,2- diol isolated by distillation or crystallization.

Method 2 An alternate method is the conversion of the olefin to the epoxide by the reaction of m-chloroperbenzoic acid, or peracetic acid, in a solvent such as methylene chloride at temperatures below about 25°C. The epoxide generated by this chemistry is then opened to the diol by, e.g., hydrolysis with dilute sulfuric acid.

Step 3 to the target diol by borohydride reduction.

Method 3

An alternate method for the preparation of these compounds is by direct hydroxylation of the cyclic alkene with hydrogen peroxide and a catalytic amount of osmium tetroxide. The reaction yields the cyclic diol which is then converted to the open chain dialdehyde by periodate or lead tetraacetate. The dialdehyde is then reduced with borohydride as in Method 1, to give the desired 1,5- or 1,6- diols, etc.

METHOD B

Preparation of 1,2 Diols

Method 1

METHOD C

Preparation of 1,3-Diols

Acylation of Enamines

This preparation is for the general type of 1,3-diols and accommodates a variety of structural features. Enamines are formed from both ketones and aldehydes which react with acid chlorides to form the acylated product. The acylated amine derivative is hydrolyzed back to its acylated carbonyl compound which is the 1,3-dicarbonyl precursor to the desired 1,3-diol. The diol is generated by borohydride reduction of the 1,3-dicarbonyl compound.

Thus acetaldehyde (aldehydes) may be reacted with a secondary amine, preferably cyclic amines such as pyrrolidine or morpholine, by heating at reflux in a solvent such as toluene and with a catalytic amount of p-toluene sulfonic acid. As the amine reacts (condenses) with the carbonyl compound, water is produced and is removed, e.g., by reflux through a water trap. After the theoretical amount of water has been removed, the reaction mixture is stripped, e.g., under vacuum, to remove

the solvent, if desired (the acylation can be done in the same solvent systems in most cases).

The anhydrous crude enamine containing some excess amine is reacted with the appropriate acid chloride at about 20°C to give the acylated enamine. This reaction is usually allowed to stir overnight at room temperature. The total reaction mixture is then poured over crushed ice, stirred, and the mixture made acidic with 20% HCl. This treatment hydrolyzes the enamine to the acylated dicarbonyl compound. This intermediate is then isolated by extraction and distillation to remove low boiling impurities, then reduced by sodium borohydride to the desired 1,3- diol.

METHOD D

Preparation of 1,4 Diols, by Aldol Condensation and Reduction

The typical reactions involve one or more aldehydes, one or more ketones, and mixtures thereof, which have at least one alpha-hydrogen atom on the carbon atom next to the carbonyl group. Typical examples of some reactants and some potential final products are as follows

2 R-CH₂-CHO
$$\rightarrow$$
 HO-CH₂-CH(R)-CHOH-CH₂-R

R-CH₂-CHO + R'-CH₂-CHO
$$\rightarrow$$
 HO-CH₂-CH(R)-CHOH-CH₂-R + HO-CH₂-CH(R')-CHOH-CH₂-R' + HO-CH₂-CH(R')-CHOH-CH₂-R + HO-CH₂-CH(R)-CHOH-CH₂-R'

$$R-CH_2-CHO + R'-CO-CH_3 \rightarrow HO-CH_2-CH(R)-CHOH-CH_2-R + R-CH_2-CHOH CH_2-CHOH-R'$$

The aldehyde, ketone, or mixture thereof which is to be condensed is placed in an autoclave under an inert atmosphere with a solvent such as butanol or with a phase transfer medium such as polyethylene glycol. When a mixed condensation such as with a ketone and an aldehyde is the target, typically the two reactants are used in about 1:1 mole ratio. A catalytic amount of strongly alkaline catalyst such as sodium methoxide is added, typically about 0.5-10 mole% of the reactants. The autoclave is sealed, and the mixture is heated at about 35-100°C until most of the original reactants have been converted, usually about 5 minutes to about 3 hours. The crude mixture is neutralized and the carbonyl functions present are reduced by hydrogenation over Raney Ni at about 100°C and about 50 atm for about 1 hour. Volatile components are removed by distillation and the desired diol principal solvents are obtained by vacuum distillation.

More information about this preparation process is disclosed in Synthesis, (3), 164-5 (1975), A. Pochini and R. Ungaro; PCT Int. Appl. WO 9,507,254, Kulmala et al, 16 Mar. 1995; Japan Pat. Appl. No. 40,333, Sato et al, 9 Feb. 1990; Japan Pat. Appl. No. 299,240, Sato et al, 4 Dec. 1989; Eur. Pat. Appl. No. 367,743, Ankner et al, 9 May 1990; all of said article and patents being incorporated herein by reference.

Illustrative Examples:

Condensation of Butyraldehyde and/or Isobutyraldehyde and Conversion to Form Eight-Carbon-1,3-Diols

A portion of n-butanol (about 148 g, about 2 mole, Aldrich) in a 500 ml, 3neck, round-bottom flask equipped with a stirring bar, internal thermometer, condenser, and connection for blanketing with a nitrogen atmosphere is treated with sodium metal (about 2.3 g, about 0.1 mole, Aldrich) until the sodium has all dissolved. Then, a mixture of butyraldehyde (about 72 g, about 1 mole, Aldrich) and isobutyraldehyde (about 72 g, about 1 mole, Aldrich) is added and the system is held at about 40°C until most of the original aldehydes have undergone reaction. The base catalyst is neutralized by careful addition of sulfuric acid, any salts are removed by filtration, and the solution is hydrogenated over Raney Ni at about 100°C at about 50 atm of pressure for about 1 hour to yield a mixture of 8-carbon 1,3-diols. The butanol solvent and any isobutanol formed during the hydrogenation are removed by distillation to yield the eight-carbon-1,3-diol mixture of: 2,2,4-trimethyl-1,3pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; and 2-ethyl-4methyl-1,3-pentanediol. Optionally, this mixture is further purified by vacuum distillation, or by decolorization with activated charcoal. The recovered solvent is used for further batches of diol production.

When only butyraldehyde is used in the reaction, the major product obtained is 2-ethyl-1,3-hexanediol.

When only isobutyraldehyde is used in the reaction, the major product obtained is 2,2,4-trimethyl-1,3-pentanediol.

Mixed Condensation of Butyraldehyde and Methyl Ethyl Ketone and Conversion to Form a Mixture of Eight-Carbon-1,3-Diols

Condition A. A portion of n-butanol (about 148 g, about 2 mole, Aldrich) in a 500 ml, 3-neck, round-bottom flask equipped with a stirring bar, internal thermometer, condenser, and connection for blanketing with a nitrogen atmosphere is treated with sodium metal (about 2.3 g, about 0.1 mole, Aldrich) until the sodium has all dissolved. Then, a mixture of butyraldehyde (about 72 g, about 1 mole, Aldrich) and 2-butanone (about 72 g, about 1 mole, Aldrich) is added and the system is held at about 40°C until

most of the original butyraldehyde has undergone reaction. The base catalyst is neutralized by careful addition of sulfuric acid and any salts are removed by filtration. Optionally, unreacted starting materials are removed by distillation along with the reaction solvent. The mixture containing the condensation products is hydrogenated over Raney Ni at about 100°C and about 50 atm. for about 1 hour to yield a mixture of 8-carbon-1,3-diols including 2-ethyl-1,3-hexanediol, 2-ethyl-3-methyl-1,3-pentanediol, 3,5-octanediol; 3-methyl-3,5-heptanediol; and lesser amounts of other 1,3-diol isomers, e.g., 3-methyl-2,4-heptanediol and 3,4-dimethyl-2,4-hexanediol. The crude diol mixture can be further purified by fractional distillation.

Condition B. The above reaction is repeated except that about 2 moles of butyraldehyde are used for each one mole of 2-butanone. This results in a reaction product with a higher proportion of diols resulting from self-condensation of the aldehyde (i.e., 2-ethyl-1,3-hexanediol), and from mixed condensation of aldehyde and 2-butanone (e.g., 2-ethyl-3-methyl-1,3-pentanediol and 3,5-octanediol), and a smaller proportion of those diols resulting from self-condensation of 2-butanone (e.g., 3-methyl-3,5-heptanediol and 3,4-dimethyl-2,4-hexanediol).

Condition C. The above condensation is repeated except that about one mole of 2-butanone is placed in the reaction vessel with the solvent and catalyst and about one mole of butyraldehyde is gradually added. Conditions are adjusted such that the self-condensation rate of 2-butanone is slow and the more reactive carbonyl of the aldehyde reacts promptly upon addition. This results in a reaction product with a higher proportion of the diols resulting from the condensation of 2-butanone with butyraldehyde and from self-condensation of 2-butanone and a smaller proportion of thediol resulting from self-condensation of butyraldehyde.

Condition D. The above condensation C. is repeated under low temperature conditions. About 1.0 mole portion of 2-butanone is dissolved in about 5 volumes of dry tetrahydrofuran. The solution is cooled to about -78°C, and about 0.95 mole of potassium hydride is added in portions. After the hydrogen evolution has ceased, the solution is held for about one hour to allow for equilibration to the more stable enolate and then one mole of n-butyraldehyde is added slowly with good stirring while maintaining the temperature at about -78°C. After addition is complete, the solution is allowed to gradually warm to room temperature and is neutralized by careful addition of sulfuric acid. Salts are removed by filtration. Optionally, unreacted starting materials are removed by distillation along with the reaction solvent. The mixture containing the condensation products is hydrogenated over Raney Ni at about 100°C and about 50 atm. for about 1 hour to yield predominantly the diol resulting from the

condensation of the enolate of 2-butanone with butyraldehyde, 3,5-octanediol. Purification is optionally accomplished by distillation.

Mixed Condensation of Isobutyraldehyde and Methyl Ethyl Ketone and Conversion to Form a Mixture of Eight-Carbon-1,3-Diols

The reaction of Condition A above is repeated except that the butyraldehyde is replaced by isobutyraldehyde. The condensation and reduction proceed analogously, and the final diol products are mainly 2,2,4-trimethyl-1,3-pentanediol; 2,2,3-trimethyl-1,3-pentanediol; 2-methyl-3,5-heptanediol; and 3-methyl-3,5-heptanediol.

Mixed Condensation of Butyraldehyde, Isobutyraldehyde and Methyl Ethyl Ketone and Conversion to Form a Mixture of Eight-Carbon-1,3-Diols

The reaction of Condition A above is repeated, except that about one mole each of butyraldehyde, isobutyraldehyde, and 2-butanone are used. The condensation and reduction proceed analogously to yield a mixture of 8-carbon-1,3-diols primarily consisting of: 2,2,4-trimethyl-1,3-pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; 2-ethyl-4-methyl-1,3-pentanediol; 2-ethyl-3-methyl-1,3-pentanediol; 3,5-octanediol; 2,2,3-trimethyl-1,3-pentanediol; 2-methyl-3,5-heptanediol; and 3-methyl-3,5-heptanediol, along with other minor isomers resulting from condensation on the methylene of 2-butanone instead of the methyl.

The mixtures prepared by the condensation of butyraldehyde, isobutyraldehyde, and/or methyl ethyl ketone, preferably have no more than about 90%, preferably no more than about 80%, more preferably no more than about 70%, even more preferably no more than about 60%, and most preferably no more than about 50%, by weight of any one specific compound. Also, the reaction mixtures should not contain more than about 95%, preferably no more than about 90%, more preferably no more than about 85%, and most preferably no more than about 80%, by weight, of butyraldehyde or isobutyraldehyde.

METHOD E

Preparation of 1,4 Diols, by the Addition of Acetylide to Carbonyl Compounds

Dimetallic acetylides Na⁺ -: C=C: Na⁺ react with aldehydes or ketones to form unsaturated alcohols, e.g.,

The resulting acetylenic diol is then reduced to the alkene or completely reduced to the saturated diol. The reaction can also be done by using an about 18% slurry of mono-sodium acetylide with the carbonyl compound to form the acetylenic alcohol which can be converted to the sodium salt and reacted with another mole of

carbonyl compound to give the unsaturated 1,4- diol. Where mixed carbonyl compounds are used with the diacetylides, diol mixtures will result. Where the mono-acetylide is used, specific structures can be made in higher yields.

Illustrative Example: Preparation of 6-Methyl-2,5-heptanediol

A sodium acetylide (about 18% in xylene) slurry is reacted with isobutryaldehyde to form the acetylenic alcohol

$$(CH_3)_2CH$$
-CHO + NaC=CH \rightarrow $(CH_3)_2CH$ -CHOH-C=C-H

The acetylenic (ethynyl) alcohol is converted with base to the sodium acetylide R-CHOH-C=CNa which is then reacted with a mole of acetaldehyde to give the ethynyl diol R-CHOH-C=C-CHOH-R'. This compound, (CH₃)₂CH-CHOH-C=C-CHOH-CH₃, can be isolated as the unsaturated diol, if desired, reduced by catalytic hydrogenation to the corresponding material containing a double bond in place of the acetylenic bond, or further reduced by catalytic hydrogenation to the saturated 1,4- diol.

METHOD F

Preparation of Substituted Diols Derived from Cyclic Anhydrides, Lactones and Esters of Dicarboxylic Acids

This method of preparation is for the synthesis of diols, especially several 1,4-diols, which are derived from dicarboxylic acid anhydrides, diesters and lactones, but not limited to the 1,4-diols or four-carbon diacids.

These types of diols are generally synthesized by the reduction of the parent anhydride, lactone or diester with sodium bis(2-methoxyethoxy)aluminum hydride (Red-Al) as the reducing agent. This reducing agent is commercially available as a 3.1 molar solution in toluene and delivers one mole of hydrogen per mole of reagent. Diesters and cyclic anhydrides require about 3 moles of Red-Al per mole of substrate. Using an alkyl substituted succinic anhydride to illustrate this method, the typical reduction is carried out as follows.

The anhydride is first dissolved in anhydrous toluene and placed in a reaction vessel equipped with dropping funnel, mechanical stirrer, thermometer and a reflux

condenser connected to calcium chloride and soda lime tubes to exclude moisture and carbon dioxide. The reducing agent, in toluene, is placed in the dropping funnel and is added slowly to the stirred anhydride solution. The reaction is exothermic and the temperature is allowed to reach about 80°C. It is maintained at about 80°C during the remaining addition time and for about two hours following addition.

The reaction mixture is then allowed to cool back to room temperature. Next, the mixture is added to a stirred aqueous HCl solution (about 20% concentration) which is cooled in an ice bath, and the temperature is maintained at about 20 to 30°C. After acidification the mixture is separated in a separatory funnel and the organic layer washed with a dilute salt solution until neutral to pH paper. The neutral diol solution is dried over anhydrous magnesium sulfate, filtered, then stripped under vacuum to yield the desired 1,4-diol.

METHOD G

Preparation of Diols with One or Both Alcohol Functions Being Secondary or Tertiary

This is a general method to prepare substituted diols from lactones and/or diesters by alkylation of the carboxyl group(s) using methyl magnesium bromide (Grignard reagent) or alkyl lithium compounds usually methyl lithium, e.g.,

This type of alkylation can be extended to diesters. An excess of methylating reagent will generate diols where both alcohol groups are tertiary.

METHOD H

Preparation of Substituted 1,3-, 1,4- and 1,5-Diols

This method is a general preparation of some 1,3-, 1,4- and 1,5-diols which utilizes the chemistry outlined in Method A-1 and Method A-2. The variation here is the use of a cyclic alkadienes in place of the cycloalkenes described in Methods A. The general formula for the starting materials is

wherein each R is H, or C₁-C₄-alkyl and wherein x is 1, 2 or 3.

The reactions are those of Methods A with the variation of having one mole of ethylene glycol generated for each mole of the desired diol principal solvent formed, e.g., the following preparation of 2,2-dimethyl-1,4-haxanediol from 1-ethyl-5,5-dimethyl-1,3-cyclohexanediol (CAS No. 79419-18-4):

PREPARATION OF POLYETHOXYLATED DERIVATIVES

The polyethoxylated derivatives of diol principal solvents are typically prepared in a high-pressure reactor under a nitrogen atmosphere. A suitable amount of ethylene oxide is added to a mixture of a diol solvent and potassium hydroxide at high temperature (from about 80°C to about 170°C). The amount of ethylene oxide is calculated relative to the amount of the diol solvent in order to add the right number of ethylene oxide groups per molecule of diol. When the reaction is completed, e.g., after about 1 hour, residual unreacted ethylene oxide is removed by vacuum.

Illustrative Example: Preparation of Tetraethoxylated 3,3-Dimethyl-1,2-butanediol

To a 2-liter Parr reactor that is equipped for temperature control, is charged with about 354 grams (about 3.0 moles) of 3,3-dimethyl-1,2-butanediol and about 0.54 grams of potassium hydroxide. The reactor is sparged with nitrogen and evacuated three times to a pressure of about 30 mm Hg. The reactor is then filled again with nitrogen to atmospheric pressure, and heated to about 130°C. The pressure of the reactor is then adjusted to slightly below the atmospheric pressure by applying a slight vacuum. Ethylene oxide (about 528 grams, about 12.0 moles) is added over one hour while controlling the temperature to about 130°C. After about an additional one hour reaction time, the contents are cooled to about 90°C and a vacuum is pulled to remove any residual ethylene oxide.

PREPARATION OF METHYL-CAPPED POLYETHOXYLATED DERIVATIVES

Methyl-capped polyethoxylated derivatives of diols are typically prepared either by reacting a methoxypoly(ethoxy)ethyl chloride (i.e., CH₃O-(CH₂CH₂O)_n-

CH₂CH₂-Cl) of the desired chain length with the selected diol, or by reacting a methyl-capped polyethylene glycol (i.e., CH₃O-(CH₂CH₂O)_n-CH₂CH₂-OH) of the desired chain length with the epoxy precursor of the diol, or a combination of these methods.

Illustrative Examples: Synthesis of (CH₃)₂C(OH)CH(CH₃)(OCH₂CH₂)₄ OCH₃, the methyl-capped tetraethoxylated derivative of 2-methyl-2,3-butanediol.

To a 1-liter, three-neck round bottom flask equipped with a magnetic stirbar, condenser, thermometer, and temperature controller (Thermowatch I²R)® is added tetraethylene glycol methyl ether (about 208 grams, about 1.0 mole) and sodium metal (Aldrich, about 2.3 grams, about 0.10 mole), and the mixture is heated to about 100°C under argon. After the sodium dissolves, 2-methyl-2,3-epoxybutane (about 86 grams, about 1.0 mole) is added and the solution is stirred overnight under argon at about 120°C. A ¹³C-NMR (dmso-d₆) shows that the reaction is complete by the disappearance of the epoxide peaks. The reaction mixture is cooled, poured into an equal volume of water, neutralized with 6 N HCl, saturated with sodium chloride, and extracted twice with dichloromethane. The combined dichloromethane layers are dried over sodium sulfate and solvent is stripped to yield the desired polyether alcohol in crude form. Optionally, purification is accomplished by fractional vacuum distillation.

Synthesis of Methoxytriethoxyethyl Chloride

To a 1-liter, three-neck round bottom flask equipped with a magnetic stirring bar, condenser, and temperature controller (Thermowatch, I²R) is added tetraethylene glycol methyl ether (about 208 grams, about 1.0 mole) under argon. Thionyl chloride (about 256.0 grams, about 2.15 moles) is added dropwise with good stirring over about 3 hours, keeping the temperature in the 50-60°C range. The reaction mixture is then heated overnight at about 55°C. A ¹³C-NMR (D₂O) is taken which shows only a small peak at ~60ppm for unreacted alcohol and a sizable peak at ~43.5ppm representing chlorinated product (-CH₂Cl). Saturated sodium chloride solution is slowly added to the material until the thionyl chloride is destroyed. The material is taken up in about 300 ml of saturated sodium chloride solution and extracted with about 500 ml of methylene chloride. The organic layer is dried and solvent is stripped on a rotary evaporator to yield crude methoxyethoxyethyl chloride. Optionally, purification is accomplished by fractional vacuum distillation.

Synthesis of C₂H₅CH(OH)CH(CH₃)CH₂(OCH₂CH₂)₄OCH₃, the Methyl-Capped Tetraethoxylated Derivative of 2-Methyl-1,3-pentanediol.

The alcohol, C₂H₅CH(OH)CH(CH₃)CH₂OH (about 116 grams, about 1.0 mole), is placed in a 1-liter, three-neck round bottom flask equipped with a magnetic stirring bar, condenser, and temperature controller (Thermowatch®, I2R) along with about 100 ml of tetrahydrofuran as solvent. To this solution, sodium hydride (about 32 grams, about 1.24 moles) is added in portions and the system is held at reflux until gas evolution ceases. Methoxytriethoxyethyl chloride (about 242 grams, about 1.2 moles, prepared as above) is added and the system is held at reflux for about 48 hours. The reaction mixture is cooled to room temperature and water is cautiously added dropwise with stirring to decompose excess hydride. The tetrahydrofuran is stripped off on a rotary evaporator. The crude product is dissolved in about 400 ml of water and enough sodium chloride is dissolved in the water to bring it nearly to the saturation level. The mixture is then extracted twice with about 300 ml portions of dichloromethane. The combined dichloromethane layers are dried over sodium sulfate and the solvent is then stripped on a rotary evaporator to yield the crude product. Optionally, purification is accomplished by further stripping of unreacted starting materials and low MW by-products by utilizing a kugelrohr apparatus at about 150°C under vacuum. Optionally, further purification is accomplished by vacuum distillation to yield the title polyether.

PREPARATION OF POLYPROPOXYLATED DERIVATIVES

A three neck, round bottom flask is equipped with a magnetic stir bar, a solid CO₂-cooled condenser, an addition funnel, a thermometer, and a temperature control device (Therm-O-Watch, I2R). The system is swept free of air by a stream of nitrogen and then is equipped for blanketing the reaction mixture with a nitrogen atmosphere. To the reaction flask is added the dry alcohol or diol to be propoxylated. About 0.1-5 mole % of sodium metal is added cautiously to the reaction vessel in portions with heating if necessary to get all the sodium to react. The reaction mixture is then heated to about 80-130°C and propylene oxide (Aldrich) is added dropwise from the dropping funnel at a rate to maintain a small amount of reflux from the solid CO2-cooled condenser. Addition of propylene oxide is continued until the desired amount has been added for the target degree of propoxylation. Heating is continued until all reflux of propylene oxide ceases and the temperature is maintained for about an additional hour to ensure complete reaction. The reaction mixture is then cooled to room temperature and is neutralized by careful addition of a convenient acid such as methanesulfonic acid. Any salts are removed by filtration to give the desired propoxylated product. The average degree of propoxylation is typically confirmed by integration of the ¹H-NMR spectrum.

PREPARATION OF POLYBUTOXYLATED DERIVATIVES

A three neck, round bottom flask is equipped with a magnetic stir bar, a solid CO₂-cooled condenser, an addition funnel, a thermometer, and a temperature control device (Therm-O-Watch, I2R). The system is swept free of air by a stream of nitrogen and then is equipped for blanketing the reaction mixture with a nitrogen atmosphere. To the reaction flask is added the dry alcohol or diol to be butoxylated. About 0.1-5 mole % of sodium metal is added cautiously to the reaction vessel in portions with heating if necessary to get all the sodium to react. The reaction mixture is then heated to about 80-130°C and α-butylene oxide (Aldrich) is added dropwise from the dropping funnel at a rate to maintain a small amount of reflux from the solid CO₂-cooled condenser. Addition of butylene oxide is continued until the desired amount has been added for the target degree of butoxylation. Heating is continued until all reflux of butylene oxide ceases and the temperature is maintained for about an additional one to two hours to ensure complete reaction. The reaction mixture is then cooled to room temperature and is neutralized by careful addition of a convenient acid such as methanesulfonic acid. Any salts are removed by filtration to give the desired butoxylated product. The average degree of butoxylation is typically confirmed by integration of the ¹H-NMR spectrum.

PREPARATION OF POLYTETRAMETHYLENEOXYLATED DERIVATIVES

A dry portion of about 0.1 mole of the desired alcohol or diol starting material is placed in a 3-neck, round bottom flask equipped with magnetic stirrer, condenser, internal thermometer and an argon blanketing system. If the desired average degree of "tetramethyleneoxylation" is about one per hydroxyl group, about 0.11 moles of 2-(4-chlorobutoxy)tetrahydropyran (ICI) is added per mole of alcohol function. A solvent is added if necessary such as dry tetrahydrofuran, dioxane or dimethylformamide. Then sodium hydride (about 5 mole % excess relative to the chloro compound) is added in small portions with good stirring while maintaining a temperature of about 30-120°C After all the hydride has reacted, the temperature is maintained until all of the alcohol groups have been alkylated, usually about 4-24 After the reaction is complete, it is cooled and the excess hydride is decomposed by careful addition of methanol in small portions. Then about an equal volume of water is added and the pH is adjusted to about 2 with sulfuric acid. After warming to about 40°C and holding it there for about 15 minutes to hydrolyze the tetrahydropyranyl protecting group, the reaction mixture is neutralized with sodium hydroxide and the solvents are stripped on a rotary evaporator. The residue is taken up in ether or methylene chloride and salts are removed by filtration. Stripping

yields the crude tetramethyleneoxylated alcohol or diol. Further purification may be accomplished by vacuum distillation. If a final average degree of tetramethyleneoxylation of less than one is desired, a correspondingly lesser amount of chloro compound and hydride are used. For average degrees of tetramethyleneoxylation greater than one, the entire process is repeated in cycles until the buildup reaches the target level.

PREPARATION OF ALKYL AND ARYL MONOGLYCERYL ETHERS

A convenient method to prepare alkyl and/or aryl monoglycerol ethers consists of first preparing the corresponding alkyl glycidyl ether precursor. This is then converted to a ketal, which is then hydrolyzed to the monoglyceryl ether (diol). Following is the illustrative example of the preparation of the preferred n-pentyl monoglycerol ether, (i.e., 3-(pentyloxy)-1,2-propanediol) n-C₅H₁₁-O-CHOH-CH₂OH.

Preparation of 3-(pentyloxy)-1,2-propanediol

A 3-neck, 2-liter round bottomed reaction flask (equipped with overhead stirrer, cold water condenser, mercury thermometer and addition funnel) are charged with about 546 g of aqueous NaOH (about 50% concentration) and about 38.5 g of tetrabutylammonium hydrogen sulfate (PTC, phase transfer catalyst). The content of the flask is stirred to achieve dissolution and then about 200 g of 1-pentanol is added along with about 400 ml hexanes (a mixture of isomers, with about 85% n-hexane). Into the addition funnel is charged about 418 g of epichlorohydrin which is slowly added (dropwise) to the stirring reaction mix. The temperature gradually rises to about 68°C due to the reaction exotherm. The reaction is allowed to continue for about 1 hr after complete addition of the epichlorohydrin (no additional heat).

The crude reaction mix is diluted with about 500 ml of warm water, stirred gently and then the aqueous layer is settled and removed. The hexane layer is mixed diluted again with about 1 liter of warm water and the pH of the mix is adjusted to about 6.5 by the addition of dilute aqueous sulfuric acid. The water layer is again separated and discarded and the hexane layer is then washed 3 times with fresh water. The hexane layer is then separated and evaporated to dryness via a rotary evaporator to obtain the crude n-pentyl glycidyl ether.

Acetonation (Conversion to the Ketal)

A 3-neck, 2 liter round bottomed flask (equipped with an overhead stirrer, cold water condenser, mercury thermometer and addition funnel) is charged with about 1 liter of acetone. To the acetone is added about 1 ml of SnCl4 with stirring. Into an addition funnel positioned over the reaction flask is added about 200 g of the just prepared n-pentyl glycidyl ether. The glycidyl ether is added very slowly to the

stirring acetone solution (the rate is adjusted to control the exotherm). The reaction is allowed to proceed for about 1 hr after complete addition of the glycidyl ether (maximum temperature about 52°C).

Hydrolysis

The apparatus is converted for distillation and a heating mantle and temperature controller are added. The crude reaction mix is concentrated via distillation of about 600 ml of acetone. To the cooled concentrated solution are added about 1 liter of aqueous sulfuric acid (about 20% concentration) and about 500 ml of hexanes. The content of the flask is then heated to about 50°C with stirring (the apparatus is adjusted to collect and separate the liberated acetone). The hydrolysis reaction is continued until TLC (Thin Layer Chromatography) analysis confirms the completion of reaction.

The crude reaction mix is cooled and the aqueous layer is separated and discarded. The organic layer is then diluted with about 1 liter of warm water and the pH is adjusted to about 7 by the addition of dilute aqueous NaOH (1N). The aqueous layer is again separated and the organic phase is washed 3 times with fresh water. The organic phase is then separated and evaporated via a rotary evaporator. The residue is then diluted with fresh hexanes and the desired product is extracted into methanol/water solution (about 70/30 weight ratio). The methanol/water solution is again evaporated to dryness via a rotary evaporator (with additional methanol added to facilitate the water evaporation). The residue is then filtered hot through glass microfiber filter paper to obtain the n-pentyl monoglycerol ether.

PREPARATION OF DI(HYDROXYALKYL) ETHERS Synthesis of bis(2-hydroxybutyl) ether

A 500 ml, three neck, round bottom flask equipped with magnetic stirrer, internal thermometer, addition funnel, condenser, argon supply, and heating mantle, is flushed with argon. Then 1,2-butanediol (about 270g, about 3 moles, Aldrich) is added and sodium metal (about 1.2 g, about 0.05 moles, Aldrich) is added and the sodium is allowed to dissolve. Then the reaction mixture is heated to about 100°C and epoxybutane (about 71g. about 1 mole, Aldrich) is added dropwise with stirring. Heating is continued until the reflux of epoxybutane has ceased and heating is continued for an additional hour to drive the conversion to completion. The reaction mixture is neutralized with sulfuric acid, the salts are removed by filtration, and the liquid is fractionally distilled under vacuum to recover the excess butanediol. The desired ether is obtained as a residue. Optionally, it is purified by further vacuum distillation.

Synthesis of bis(2-hydroxycyclopentyl) ether

A 1-liter, three neck, round bottom flask equipped with magnetic stirrer, internal thermometer, addition funnel, condenser, argon supply, and heating mantle, is flushed with argon. Then 1,2-cyclopentanediol (about 306 g, about 3 moles, Aldrich) is added and boron trifluoride diethyl etherate (about 0.14 g, about 0.01 moles, cis-trans isomer mixture, Aldrich) is added. Then the reaction mixture is held at about 10-40°C as cyclopentene oxide (about 84 g. about 1 mole, Aldrich) is added dropwise with stirring until all the cyclopentene oxide has reacted. The reaction mixture is neutralized with sodium hydroxide, and the liquid is fractionally distilled under vacuum to recover the excess cyclopentanediol. The desired ether is obtained as a residue. Optionally, it is purified by further vacuum distillation.

The above disclosed methods are illustrative only, for purposes of assisting those skilled in the art in the practice of the invention, and are not limiting.

All percentages, ratios and proportions herein are by weight, unless otherwise specified, and all numbers are approximations. All documents cited are, in relevant part, incorporated herein by reference.

The following non-limiting Examples show clear, or translucent, products with acceptable viscosities.

The compositions in the Examples below are made by first preparing an oil seat of DEQA softener active at ambient temperature. The softener active can be heated to melting at, e.g., about 130-150°F (about 55-66°C), if the softener active is not fluid at room temperature. The softener active is mixed using an IKA RW 25® mixer for about 2 to about 5 minutes at about 150 rpm. Separately, an acid/water seat is prepared by mixing the HCl with deionized (DI) water at ambient temperature. If the softener active and/or the principal solvent(s) are not fluid at room temperature and need to be heated, the acid/water seat should also be heated to a suitable temperature, e.g., about 100°F (about 38°C) and maintaining said temperature with a water bath. The principal solvent(s) (melted at suitable temperatures if their melting points are above room temperature) are added to the softener premix and said premix is mixed for about 5 minutes. The acid/water seat is then added to the softener premix and mixed for about 20 to about 30 minutes or until the composition is clear and homogeneous. The composition is allowed to air cool to ambient temperature.

The following are suitable N,N-di(fatty acyl-oxyethyl)-N,N-dimethyl ammonium chloride fabric softening actives (DEQA's), with approximate distributions of fatty acyl groups given, that are used hereinafter for preparing the following compositions.

- 109 -

Fatty Acyl					
Group	DEQA1	DEQA ²	DEQA ³	DEQA4	DEQA5
C12	trace	trace	0	0	0
C14	3	3	0	0	0
C16	4	4	5	5	5
C18	0	0	5	6	6
C14:1	3	3	0	0	
C16:1	11	7	0	0	3
C18:1	74	73	71	68	67
C18:2	4	8	8	11	11
C18:3	0	1	1	2	2
C20:1	0	0	2	2	2
C20 and up	0	0	2	0	0
Unknowns	0	0	6	6	7
Total	99	99	100	100	102
IV	86-90	88-95	99	100	95
cis/trans	20-30	20-30	4	5	5
TPU	4	9	10	13	13

TPU = Total polyunsaturated fatty acyl groups, by weight.

			<u>EXAM</u>	IPLE I				
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2	· <u>8</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	43.2	_	26.6		26.6	26.6	26.6
DEQA ⁶			27.5		27.5			_
Ethanol	6	10	5.1	6	3.1	6	4	6
2-Ethyl-1,3-								
hexanediol	8			8	9	8	9	-
1,2-Hexanediol	8	20	16	8	9	8	9	16
HCI (pH 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Perfume	_	_		***		1.0		
Kathon			3 ppm	3 ppm				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

DEQA⁶ N,N-di(coco-oyl-oxyethyl)-N,N-dimethyl ammonium chloride.

ClogP values of 2-ethyl-1,3-hexanediol and 1,2-hexanediol are 0.60 and 0.53, respectively, and are within the preferred ClogP range.

The above Examples show clear, or translucent, products with acceptable viscosities.

- 110 - EXAMPLE IA

		Compa rative	Compa rative	Compa rative	Compa rative	Compa rative	Compa rative
Component	8	8A	8B	8C	8D	8E	8F
•	Wt.%	Wt.%	Wt.%	Wt.%	Wt.%	Wt.%	Wt.%
DEQA ¹	26.6	26.6	26.6	26.6	26.6	26.6	26.6
1,2-Hexanediol	16						
1,2-Propanediol		16		-			
1,2-Butanediol			16	-		Tipel	***
1,2-Pentanediol		-	~	16	***	-	
1,2-Heptanediol	_	***		_	16		
1,2-Octanediol			_			16	-
1,2-Decanediol	-						16
Ethanol	6	6	6	6	6	6	6
HCl (pH 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

All 1,2-alkanediols in Example IA, except 1,2-hexanediol, have ClogP values outside the effective 0.15 to 0.64 range. Only the composition of Example I-8, containing 1,2-hexanediol, is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples I-8A to I-8F are not clear and/or do not have acceptable viscosities.

EXAMPLE IB

Component	8 <u>Wt.%</u>	Compa rative 8G <u>Wt.%</u>	Compa rative 8H Wt.%	Compa rative 8I <u>Wt.%</u>	Compa rative 8J Wt.%	Compa rative 8K <u>Wt.%</u>	Compa rative 8L
DEQA ¹	26.6	26.6	26.6	26.6	26.6	26.6	<u>Wt.%</u> 26.6
1,2-	16		20.0	20.0	20.0	20,0	20.0
Hexanediol							
1,3-	_	16					
Hexanediol		••					
1,4-	-		16				
Hexanediol							
1,5-				16			
Hexanediol							
1,6-	-		_		16		
Hexanediol					•••		
2,4-		-	-			16	****
Hexanediol							
2,5-			-				16
Hexanediol							
Ethanol	6	6	6	6	6	6	6
HCl (pH 2-							-
3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

All hexanediol isomers in Example IB, except 1,2-hexanediol, have ClogP values outside the effective 0.15 to 0.64 range. Only the composition of Example I-8, containing 1,2-hexanediol, is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples I-8G to I-8L are not clear and/or do not have acceptable viscosities.

		EX	AMPLE I	<u>-C</u>		
Component	8	8M	8N	80	8P	Compa- rative 8Q
	Wt.%	<u>Wt.%</u>	Wt.%	Wt.%	Wt.%	Wt.%
DEQA ¹	26.6	26.6	26.6	26.6	26.6	26.6
1,2-Hexanediol	16	9.2	13	9	9	
1,2-Pentanediol	-	6.8	2			6.8
1,2-Octanediol		***	1			9.2
Ethyl lactate		-	_	9		
Isopropyl lactate	•	_		_	9	_
Ethanol	6	6	6	6.	6	6
HCl (pH 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

The compositions of Example I-8, I-8M, and I-8N which contain effective levels of the preferred 1,2-hexanediol principal solvent are clear compositions with acceptable viscosities both at room temperature and at about 40°F (about 4°C). The compositions of Example I-8O and I-8P which contain effective levels of the preferred 1,2-hexanediol principal solvent are clear compositions with acceptable viscosities at room temperature, and are clear at about 40°F (about 4°C) with a small layer which is separated on top, but recover and become clear when brought back to room temperature. The compositions of Comparative Examples I-8Q which does not contain an effective amount of the preferred 1,2-hexanediol is not clear and/or does not have acceptable viscosities.

		EXA	MPLE I	Ī			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹		26.6	-	20.0	20.0	26.6	
DEQA ⁶	27.5		27.5	6.8	6.8		27.5

		-	112 -				
Ethanol	5.1	6	5.1	3.8		4	5.1
Isopropanol			-			2	
2-Ethyl-1,3-hexanediol				16	18	_	
1,2-Hexanediol 2,5-Dimethyl-2,5-	16					16	
hexanediol 2-Methyl,-2-propyl-1,3-	-						16
propanediol		16	16				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bai.	Bal.	Bal.	Bal.
		EXAN	IPLE III	<u>I</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹		26.6		26.6	26.6	26.6	
DEQA ²	26		26		·		26
Ethanol	5.1	6	5.1	3.8	-	4	5.1
Isopropanoi					-	2	-
n-Propanol	18						
2-Butanol		16		****			-
2-methyl-1-propanol	_		18	-		2	
2-methyl-2-propanol				20			
2,3-butanediol, 2,3- dimethyl- 1,2-butanediol, 2,3-	****		-	_	18		
dimethyl- 1,2-butanediol, 3,3-		_	-	****		16	-
dimethyl-	•		_				18
CaCl ₂		0.25	-				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
			PLE IV	4			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
1	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA	26.6	26.6	-		26	26	
DEQA ³			26	26		***	26
Ethanol	4	6	6	6		4	6

2

Isopropanol

2

- 113 -

2,3-pentanediol, 2-	18						
methyl-	10						
2,3-pentanediol, 3-methyl		18					
2,3-pentanediol, 4- methyl-			18	•			***
2,3-hexanediol				17		_	
3,4-hexanediol	•			****	18		
1,2-butanediol, 2-ethyl-	***					17	
1,2-pentanediol, 2- methyl-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	<u> 1PLE V</u>				
Component	1	2	3	<u>4</u>	5	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	-	•	26	26	_
DEQA ⁴			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	_	-	-	6	2	
1,2-pentanediol, 3- methyl-	18				_		_
1,2-pentanediol, 4- methyl-		18				_	
1,2-hexanediol	-	-	18	-	_		-
1,3-propanediol, 2-butyl- 1,3-propanediol, 2,2-	-			17			
diethyl-			-	_	18	_	
1,3-propanediol, 2-(1- methylpropyl)- 1,3-propanediol, 2-(2-	_		****		_	17.	
methylpropyl)-				_			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
• •		EXAM	IPLE VI	·			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	2/	24	26	26	26
DEQA ⁵	-	_	26	26	***		26
Ethanol	4	6	6	6		4	6
Isopropanol	2	***	-		6	2	

- 114 -

		-					
1,2-butanediol, 2,3,3- trimethyl-	10						
l,4-butanediol, 2-ethyl-	18						
2-methyl-		18					
1,4-butanediol, 2-ethyl- 3-methyl-			10				
l,4-butanediol, 2-propyl-		_	18	17			-
1,4-butanediol, 2-							-
isopropyl- 1,5-pentanediol, 2,2-					18	-	
dimethyl-		_				17	-
1,5-pentanediol, 2,3- dimethyl-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Di Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
				- 41.	Dai.	Dai.	Dat.
		EXAMI	PLE VII				
Component		1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>
_		Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵			26.6		20.0	20.0	26.6
DEQA ²		27.5		27.5	6.8	6.8	
Ethanol		5.1	6	5.1	3.8		4
Isopropanol 1,5-pentanediol, 2,4-dimeth	1					***	2
1,5-penianemoi, 2,4-minem	ıyı-	18				***	
1,5-pentanediol, 3,3-dimeth	ıyl-						
2,3-pentanediol, 2,3-dimeth	wl-		18			_	
	-			18			
2,3-pentanediol, 2,4-dimeth	ıyl-				16		
2,3-pentanediol, 3,4-dimeth	ıyl-	_	_	_	10		
2.2 mantanadia	1	-			_	18	-
2,3-pentanediol, 4,4-dimeth	ıyı-						16
HCl (pH about 2-3.5)		0.005	0.005	0.005	0.005	0.005	0.005
DI Water		Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMP.	LE VIII				
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. % 26	Wt. % 26	<u>Wt. %</u>
DEQA ⁵	20.0	20.0	26	26	20	20	26
DEQA ³	4	6	6	6	_	4	6
Ethanol	~	U	U	U		7	U

		- i	115 -				
Isopropanol 3,4-pentanediol, 2,3-	2		-	<u></u>	6	2	<u> </u>
dimethyl-	18		_	***		***	-
1,5-pentanediol, 2-ethyl-		18			_		
1,6-hexanediol, 2-			10				
methyl- 1,6-hexanediol, 3-		_	18	17		_	
methyl-				.,		_	_
2,3-hexanediol, 2-							
methyl-					18		
2,3-hexanediol, 3- methyl-						17	
2,3-hexanediol, 4-					_	17	
methyl-			-		-		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE IX				
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	-
DEQA ⁴			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-	-		6	2	
2,3-hexanediol, 5-							
methyl- 3,4-hexanediol, 2-	18	-				-	
methyl-		18					
3,4-hexanediol, 3-							
methyl-			18		_		-
1,3-heptanediol 1,4-heptanediol			_	17	18		
1,5-heptanediol						17	
1,6-heptanediol							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
·		EXAN	IPLE X				
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2

Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	
DEQA ⁵			26	26			26
Ethanol	4	6	6	6		4	6

		• :	116 -				-
Isopropanol	2				6	2	
1,3-propanediol, 2-(2-methylbutyl)-	18	****	***				_
1,3-propanediol, 2-(1-methylpropyl)-		18		-	-	_	
1,3-propanediol, 2-(1,1-dimethylpropyl)- 1,3-propanediol, 2-(1,2-			18				
dimethylpropyl)- 1,3-propanediol, 2-(1-	_	_		17			
ethylpropyl)- 1,3-propanediol, 2-(1-		-			18	*****	
methylbutyl)- 1,3-propanediol, 2-(2,2-	_				-	17	_
dimethylpropyl)-						****	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE XI	I			
Component	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	<u>=</u> <u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u>	⊻ <u>Wt. %</u>	⊻ Wt. %	<u>Vt. %</u>
DEQAl	26.6	26.6	***		26	26	••••
DEQA ²			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	
1,3-propanediol, 2-(3-methylbutyl)- 1,3-propanediol, 2-butyl-	18		-			Wiles	
2-methyl- 1,3-propanediol, 2-ethyl-		18	_				
2-isopropyl- 1,3-propanediol, 2-ethyl-			18			-	****
2-propyl- 1,3-propanediol, 2-			***	17			. —
methyl-2-(1- methylpropyl)- 1,3-propanediol, 2- methyl-2-(2-					18	_	
methylpropyl)- 1,3-propanediol, 2-	****		-	-		17	
tertiary-butyl-2-methyl-		~	-				18
HCl (pH about 2-3.5) DI Water	0.005	0.005	0.005	0.005	0.005	0.005	0.005

- 117 -

FV	A 1	MPI	F	VII
EA.	Α.	VI T L	æ	AH

		LAMIVI	I DE A	≟			
Component	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA	26.6	26.6	<u> </u>		26	26	****
		_	26	26		_	26
DEQA ³	4	_	•				
Ethanol		6	6	6		4	6
Isopropanol	2		_	-	6	2	
1,3-butanediol, 2,2-							
diethyl-	18	***			-		
1,3-butanediol, 2,2- diethyl-		10					
1,3-butanediol, 2-(1-		18					
methylpropyl)-	-		18	-			
1,3-butanediol, 2-butyl-				17			
1,3-butanediol, 2-ethyl-							
2,3-dimethyl-			_	-	18		
1,3-butanediol, 2-(1,1-							
dimethylethyl)-		_		-		17	
1,3-butanediol, 2-(2-							10
methylpropyi)-		_					18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	PLE XII	1			
C				-			
Component	1	2	3	4	5	6	7
Component	1	2	3	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	3 Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	7 Wt. %
DEQA ¹			<u>Wt. %</u>	<u>Wt. %</u>			Wt. %
	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u>	<u>Wt. %</u> 26 —	Wt. % 26
DEQA ¹	Wt. %	Wt. %	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u>	Wt. %	Wt. %
DEQA ¹ DEQA ⁴ Ethanol	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u>	<u>Wt. %</u> 26 —	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol	Wt. % 26.6 — 4	Wt. % 26.6	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol	Wt. % 26.6 — 4	Wt. % 26.6	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl-	Wt. % 26.6 - 4 2	Wt. % 26.6	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	<u>Wt. %</u> - 26	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	Wt. %	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl- 2-propyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	<u>Wt. %</u> 26	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	Wt. %	<u>Wt. %</u> 26 —	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl- 2-propyl- 1,4-butanediol, 2,2- diethyl- 1,4-butanediol, 2-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	Wt. %	<u>Wt. %</u> 26 6	Wt. % 26 4 2	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl- 2-propyl- 1,4-butanediol, 2,2- diethyl- 1,4-butanediol, 2-methyl- 2-propyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	Wt. %	<u>Wt. %</u> 26 6	Wt. % 26 — 4	Wt. % 26
DEQA ¹ DEQA ⁴ Ethanol Isopropanol 1,3-butanediol, 2-methyl- 2-isopropyl- 1,3-butanediol, 2-methyl- 2-propyl- 1,3-butanediol, 3-methyl- 2-isopropyl- 1,3-butanediol, 3-methyl- 2-propyl- 1,4-butanediol, 2,2- diethyl- 1,4-butanediol, 2-methyl-	Wt. % 26.6 - 4 2	Wt. % 26.6 6 	Wt. %	Wt. %	<u>Wt. %</u> 26 6	Wt. % 26 4 2	Wt. % 26

HCl (all about 2.2.5)	0.005	0.005	0.005										
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005						
DI Water	Bal.	Bal.	Bai.	Bal.	Bal.	Bal.	Bal.						
	EXAMPLE XIV												
Component	1	2	<u>3</u>	<u>.</u> 4	<u>5</u>	6	<u>7</u>						
	Wt. %	Wt. %	<u>wt. %</u>	± Wt. %	<u>y</u> Wt. %	<u>6</u>							
DEQA	26.6	26.6	<u>vrt. 78</u>	<u>vv t. 70</u>	26	<u>Wt. %</u> 26	Wt. %						
DEQA ⁵		400	26	26		_	26						
Ethanol	4	6	6	6		4	6						
Isopropanol	2		-		6	2	_						
1,4-butanediol, 2-ethyl-					J								
2,3-dimethyl-	18	-	-				-						
1,4-butanediol, 2-ethyl- 3,3-dimethyl-		10											
1,4-butanediol, 2-(1,1-		18		****									
dimethylethyl)-			18			***							
1,4-butanediol, 2-(2- methylpropyl)-													
1,4-butanediol, 2-methyl-				17									
3-propyl-			_		18	-							
1,4-butanediol, 3-methyl- 2-isopropyl-							.*						
1,4-butanediol, 3-methyl-			_			17							
2-isopropyl-		-					18						
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005						
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.						
		EXAM	PLE XV	-									
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>						
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %						
DEQA ¹	26.6	26.6		_	26	26	_						
DEQA ⁵			26	26		***	26						
Ethanol	4	6	6	6	~~~	4	6						
Isopropanol	2				6	2							
1,3-pentanediol, 2,2,3- trimethyl-	18												
1,3-pentanediol, 2,2,4-	10												
trimethyl-		18		 .									
1,3-pentanediol, 2,3,4-			10										
trimethyl- 1,3-pentanediol, 2,4,4-		-	18										
trimethyl-		-		17		****							

- 119 -

		_								
1,3-pentanediol, 3,4,4- trimethyl- 1,4-pentanediol, 2,2,3-			***		18		•••			
trimethyl- 1,4-pentanediol, 2,2,4-	****			_		17				
trimethyl-							18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE XVI										
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	. 2			
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ⁵	26.6	26.6			26	26	-			
DEQA ²			26	26		***	26			
Ethanol	4	6	6	6		4	6			
Isopropanol 1,4-pentanediol, 2,3,3-	2				6	2.				
trimethyl- 1,4-pentanediol, 2,3,4-	18	-		-	-					
trimethyl- 1,4-pentanediol, 3,3,4-		18								
trimethyl- 1,5-pentanediol, 2,2,3-	-	***	18							
trimethyl- 1,5-pentanediol, 2,2,4-	-	_	-	17						
trimethyl- 1,5-pentanediol, 2,3,3-	_				18					
trimethyl- 1,5-pentanediol, 2,3,4-	-	-		-		17				
trimethyl-	-	-	_				18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE XVII										
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7			
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ⁵	26.6	26.6			26	26				
DEQA ³			26	26	-		26			
Ethanol	4	6	6	6	-	4	6			
Isopropanol 2,4-pentanediol, 2,3,4-	2	-	decisions	•	6	2				
trimethyl-	18		-	-	_					

2,4-pentanediol, 2,3,3-		••					
trimethyl- 2,4-pentanediol, 2,3,4-		18	****	•••		***	:
trimethyl-			18	****	•		
2,4-pentanediol, 2,3,3- trimethyl- 2,4-pentanediol, 2,3,3-	-	-		17	_		
trimethyl- 2,4-pentanediol, 2,3,4-					18	_	
trimethyl- 1,3-pentanediol, 2-ethyl-						17	
2-methyl-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMP		Ш			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	Wt. %	<u>Wt. %</u>	Wt. % 26	<u>Wt. %</u> 26	<u>Wt. %</u>
DEQA ⁴			26	26		_	26
Ethanol	4	6	6	6		4	6
Ізоргораної	2	-	_	-	6	2	
1,3-pentanediol, 2-ethyl- 3-methyl-	18			_		_	
1,3-pentanediol, 2-ethyl- 4-methyl- 1,3-pentanediol, 3-ethyl-		18				_	
2-methyl- 1,4-pentanediol, 2-ethyl-	***		18		***		-
2-methyl- 1,4-pentanediol, 2-ethyl-	***			17			
3-methyl- 1,4-pentanediol, 2-ethyl-			-		18		
4-methyl- 1,4-pentanediol, 3-ethyl-					-	17	
2-methyl-	-						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE XIX	ζ			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
DEQA ¹	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u> 26	<u>Wt. %</u> 26	<u>Wt. %</u>
DEQA ⁶			26	26			26
-							

		- ;	121 -	•			
Ethanol	4	6	6	6		4	6
Isopropanol	2		_	-	6	2	
1,4-pentanediol, 3-ethyl- 3-methyl- 1,5-pentanediol, 2-ethyl-	18					_	
2-methyl- 1,5-pentanediol, 2-ethyl-	***	18		_			
3-methyl-	_		18	-		•	
1,5-pentanediol, 2-ethyl- 4-methyl-				17			
1,5-pentanediol, 3-ethyl- 3-methyl-	_		and the		18		
1,5-pentanediol, 2-ethyl- 4-methyl-					-	17	
1,5-pentanediol, 3-ethyl- 3-methyl-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
Component	<u>l</u> Wt. %	EXAM 2 Wt. %	PLE XX 3 Wt. %	4 Wt. %	<u>5</u>	<u>6</u> Wt. %	7
	VV 1. /0	VV L. /0	W L. /0	WL. 70	Wt. %	W (. 70	Wt. %
DEOA1	26.6	26.6			26	26	
DEQA ¹ DEQA ⁵	26.6		26	26	26		26
DEQA ⁵	26.6 4		-	_	26 —		ميت
DEQA ⁵ Ethanol Isopropanol		26.6	26	26	26 - 6	26 —	26
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl-	4	26.6	26	26		26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl-	4 2	26.6	26	26		26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl- 1,3-pentanediol, 2- isopropyl-	4 2	26.6 6 	26	26		26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl- 1,3-pentanediol, 2- isopropyl- 1,3-pentanediol, 2- propyl-	4 2	26.6 6 	26 6 	26		26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl- 1,3-pentanediol, 2- isopropyl- 1,3-pentanediol, 2- propyl- 1,4-pentanediol, 2- isopropyl-	4 2	26.6 6 	26 6 	26 6 		26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 1,3-pentanediol, 2- isopropyl- 1,3-pentanediol, 2- propyl- 1,4-pentanediol, 2-	4 2	26.6 6 	26 6 	26 6 	6	26 — 4	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl- 1,3-pentanediol, 2- isopropyl- 1,3-pentanediol, 2- propyl- 1,4-pentanediol, 2- isopropyl- 1,4-pentanediol, 2- propyl- 1,4-pentanediol, 2- propyl-	4 2	26.6 6 	26 6 	26 6 	6	26 	<u> </u>
DEQA ⁵ Ethanol Isopropanol 2,4-pentanediol, 3-ethyl- 2-methyl- 2,4-pentanediol, 3-ethyl- 2-methyl- 1,3-pentanediol, 2- isopropyl- 1,4-pentanediol, 2- isopropyl- 1,4-pentanediol, 2- propyl- 1,4-pentanediol, 2- propyl- 1,4-pentanediol, 3-	4 2	26.6 6 	26 6 	26 6 	6	26 	

- 122 -

		EXAM	PLE X	<u> </u>			
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	
DEQA ²			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol 1,5-pentanediol, 2-	2	****	•		6	2	
isopropyl- 2,4-pentanediol, 3-	18		-				
propyl- 1,3-hexanediol, 2,2-		18					
dimethyl- 1,3-hexanediol, 2,3-			18	_			
dimethyl- 1,3-hexanediol, 2,4-				17	-	***	
dimethyl- 1,3-hexanediol, 2,5-			-		18		
dimethyl- 1,3-hexanediol, 3,4-	-	_	-			17	
dimethyl-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bai.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE XXI	<u>u</u>			
Component	1	2	3	4	<u>5</u>	<u>6</u>	7
DEQAl	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	Wt. %	Wt. % 26	Wt. % 26	<u>Wt. %</u>
DEQA ³		~	26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol 1,3-hexanediol, 3,5-	2	-	-		6	2	
dimethyl- 1,3-hexanediol, 4,5-	18						
dimethyl- 1,4-hexanediol, 2,2-		18			•	~	***
dimethyl- 1,4-hexanediol, 2,3-			18		-	-	-
dimethyl- 1,4-hexanediol, 2,4-	-	-	- Carlon	17			
dimethyl- 1,4-hexanediol, 2,5-		***			18		
dimethyl- 1,4-hexanediol, 3,3-		-			_	17	
dimethyl-	-	***		****			18

- 123 -

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE XX	m			
Component	1	2	3	4	<u>5</u>	<u>6</u>	2
· ·	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵		26.6		20.0	20.0	26.6	
DEQA ⁶	27.5		27.5	6.8	6.8	****	27.5
Ethanol	5.1	6	5.1	3.8		4	5.1
Isopropanol	-					2	
1,4-hexanediol, 3,4-dimethyl-	18		****				_
1,4-hexanediol, 3,5- dimethyl- 1,3-hexanediol, 4,4-		18	-		-	_	_
dimethyl- 1,4-hexanediol, 4,5-	****		18		-		, 1700
dimethyl- 1,4-hexanediol, 5,5-				17	-		
dimethyl- 1,5-hexanediol, 2,2-					18		
dimethyl- 1,5-hexanediol, 2,3-	-					16	-
dimethyl-		-			_		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.
		EXAMP	LE XXI	v ·			
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	<u>=</u> <u>Wt. %</u>	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQAl	26.6	26.6	_	•	26	26	_
DEQA ³			26	26			26
Ethanol	4	6	6	6		4 .	6
Isopropanol 1,5-hexanediol, 2,4-	2		***	-	6	2	
dimethyl- 1,5-hexanediol, 2,5-	18		_				~~~
dimethyl- 1,5-hexanediol, 3,3-		18			-	-	_
dimethyl- 1,5-hexanediol, 3,4-			18		-		
dimethyl-			-	17			

- 124 -

1,5-hexanediol, 3,5-dimethyl- 1,5-hexanediol, 4,5-	-			*******	18	dratings	:					
dimethyl- 1,6-hexanediol, 2,2- dimethyl-				-		17	 18					
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005						
DI Water	Bal.	Bal.					0.005					
DI Water	Dai.	Dai.	Bal.	Bal.	Bal.	Bal.	Bal.					
EXAMPLE XXV												
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2					
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ¹	26.6	26.6	-		26	26						
DEQA ⁴			26	26			26					
Ethanol	4	6	6	6		4	6					
Isopropanol	2				6	2						
1,6-hexanediol, 2,3-					- ,	_						
dimethyl-	18	-										
1,6-hexanediol, 2,4-												
dimethyl-	-	18			-	_						
1,6-hexanediol, 2,5-dimethyl-			10									
1,6-hexanediol, 3,3-			18									
dimethyl-		_		17		<u></u>						
1,6-hexanediol, 3,4-												
dimethyl-		_	_		18	_						
2,4-hexanediol, 2,3-dimethyl-						17						
2,4-hexanediol, 2,4-	_		-	445-49) / /	4000					
dimethyl-	-	_					18					
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.					
						-						
EXAMPLE XXVI												
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>					
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ¹	26.6	26.6			26	26						
DEQA ⁵			26	26		-	26					
Ethanol	4	6	6	6		4	6					
Isopropanol	2	_			6	2	•					
2,4-hexanediol, 2,5-dimethyl-	18	4-4-			-		-					
•	-											

- 125 -

2.4 h							•
2,4-hexanediol, 3,3-dimethyl-		18					_
2,4-hexanediol, 3,4-dimethyl-	•••		18	***		-	
2,4-hexanediol, 3,5-dimethyl-			_	17			
2,4-hexanediol, 4,5-dimethyl-			_		18	-	*****
2,4-hexanediol, 5,5-dimethyl-	-					17	
2,5-hexanediol, 2,3-dimethyl-						-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
]	EXAMP	LE XXV	711			
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	~		26	26	
DEQA ⁵		_	26	26			26
Ethanol	4	6	6	6	_	4	6
Isopropanol	2	-			6	2	_
2,5-hexanediol, 2,4-dimethyl-	18	-					-
2,5-hexanediol, 2,5-dimethyl-		18		-			
2,5-hexanediol, 3,3-dimethyl-			18	***		-	***
2,5-hexanediol, 3,4-dimethyl-	•••	_		17		-	
2,6-hexanediol, 3,3- dimethyl-					18		
1,3-hexanediol, 2-ethyl-				-	_	17	
1,3-hexanediol, 4-ethyl-				_		·	18
HCl (pH about 2-3.5)	0.005				0. 0 05		0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	10	'V A BÆDY	E VVII	YYY			
Component		XAMPI				4	7
Component	<u>1</u> Wt. %	<u>2</u> Wt. %	<u>3</u> Wt. %	<u>4</u> <u>Wt. %</u>	<u>5</u> <u>Wt. %</u>	<u>6</u> Wt. %	<u>7</u> Wt. %
DEQA ⁵	26.6	26.6	<u> </u>	₩ L, /0	26	26	<u> </u>
DEQA ⁶			26	26		-	26
Ethanol	4	6	6	6		4	6

		-	126 -							
Isopropanol 1,3-hexanediol, 2-ethyl- 1,3-hexanediol, 4-ethyl- 1,4-hexanediol, 2-ethyl- 1,5-hexanediol, 2-ethyl- 1,5-hexanediol, 2-ethyl- 1,5-hexanediol, 4-ethyl- 1,5-hexanediol, 2-ethyl- HCl (pH about 2-3.5) DI Water	2 18 0.005 Bal.	 18 0.005 Bal.	18 — 18 — 0.005	17 	6 18 0.005 Bal.	2 ————————————————————————————————————	 18 0.005 Bal.			
	2	24.	Dail.	Dat.	Dai.	Dai.	Dai.			
EXAMPLE XXIX										
Component	1	2	<u>3</u>	<u>4</u>	<u> 5</u>	<u>6</u>	1			
DEQA ²	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	Wt. %	<u>Wt. %</u> 26	<u>Wt. %</u> 26	<u>Wt. %</u>			
DEQA ⁵	-		26	26			26			
Ethanol	4	6	6	6	-	4	6			
Isopropanol	2				6	2				
2,4-hexanediol, 3-ethyl-	18					-				
2,4-hexanediol, 4-ethyl- 2,5-hexanediol, 3-ethyl-		18	18			-				
2,5-hexanediol, 3-ethyl-	_	_		17						
1,3-heptanediol, 2- methyl-		-			18					
1,3-heptanediol, 3- methyl- 1,3-heptanediol, 4-				-		17				
methyl-		_					18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
		EXAMI	LE XX	<u>x</u>						
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2			
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ³	26.6	26.6			26	26				
DEQA ⁵			26	26		~~	26			
Ethanol	4	6	6	6	-	4	6			
Isopropanol 1,3-heptanediol, 5-	2			 ,	6	2.				
methyl- 1,3-heptanediol, 6-	18									
methyl-		18			-	****				

1,4-heptanediol, 2- methyl-			18			:	,		
1,4-heptanediol, 3- methyl-		***		17					
I,4-heptanediol, 4- methyl-			***		- 18		_		
1,4-heptanediol, 5- methyl-		_			-	17			
1,4-heptanediol, 6- methyl-							18		
Perfume	1	1.2	1	1.35	1	1	1.3		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE XXXI									
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7		
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	<u>Wt. %</u>		
DEQA ⁴			26	26			26		
Ethanol	4	6.	6	6		4	6		
Isopropanol	2				6	2	_		
1,5-heptanediol, 2- methyl-	18		_	****		,			
1,5-heptanediol, 3- methyl- 1,5-heptanediol, 4-		18		-		***			
methyl- 1,5-heptanediol, 5-		-	18			_			
methyl- 1,5-heptanediol, 6-			_	17		_	-		
methyl- 1,6-heptanediol, 2-	•••	-	_	-	18				
methyl- 1,6-heptanediol, 3-		_	-	-		17	_		
methyl-				-		_	18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
	E	XAMPI	E XXX	<u>LA</u>					
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7		
DEQA ¹	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	<u>Wt. %</u>		
DEQA ⁵	-	***	26	26	_		26		
~~~.									

		<b>-</b> )	128 -						
Ethanol	4	6	6	6		4	6		
Isopropanol	2		-		6	2			
1,6-heptanediol, 4- methyl- 1,6-heptanediol, 5-	18				-				
methyl- 1,6-heptanediol, 6-		18	***	-	Tille				
methyl- 2,4-heptanediol, 2-			18	-	_				
methyl- 2,4-heptanediol, 3-		****	-	17		<u> </u>			
methyl- 2,4-heptanediol, 4-					18	_			
methyl- 2,4-heptanediol, 5-					**-	17			
methyl-				***			18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE XXXI B									
Commonant	•	•			_	_	_		
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	2		
	Wt. %	Wt. %	<u>3</u> Wt. %	<u>4</u> <u>Wt. %</u>	Wt. %	Wt. %	7 Wt. %		
DEQAl			<u>Wt. %</u>	<u>Wt. %</u>			<u>Wt. %</u>		
	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>  26	<u>Wt. %</u>  26	Wt. %	Wt. % 26 —	Wt. % - 26		
DEQAl	Wt. % 26.6 — 4	Wt. %	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	<u>Wt. %</u>		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>  26	<u>Wt. %</u>  26	Wt. %	Wt. % 26 —	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl-	Wt. % 26.6 — 4	Wt. % 26.6	<u>Wt. %</u>  26	<u>Wt. %</u>  26	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl-	Wt. % 26.6 — 4 2	Wt. % 26.6	<u>Wt. %</u>  26	<u>Wt. %</u>  26	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl- 2,5-heptanediol, 3-methyl-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	<u>Wt. %</u>  26	<u>Wt. %</u>  26	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl- 2,5-heptanediol, 3-methyl- 2,5-heptanediol, 4-methyl-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	Wt. %	<u>Wt. %</u>  26	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6- methyl- 2,5-heptanediol, 2- methyl- 2,5-heptanediol, 3- methyl- 2,5-heptanediol, 4- methyl- 2,5-heptanediol, 5- methyl-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	Wt. %	Wt. %  26 6	<u>Wt. %</u> 26 —	<u>Wt. %</u> 26 — 4	Wt. % - 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl- 2,5-heptanediol, 3-methyl- 2,5-heptanediol, 4-methyl- 2,5-heptanediol, 5-methyl- 2,5-heptanediol, 6-methyl- 2,5-heptanediol, 6-methyl-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	Wt. %	Wt. %  26 6	Wt. % 26 6	<u>Wt. %</u> 26 — 4	<u>Wt. %</u> — 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl- 2,5-heptanediol, 3-methyl- 2,5-heptanediol, 4-methyl- 2,5-heptanediol, 5-methyl- 2,5-heptanediol, 5-methyl- 2,5-heptanediol, 6-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	Wt. %	Wt. %  26 6	Wt. % 26 6	Wt. % 26 4 2	<u>Wt. %</u> — 26		
DEQA ¹ DEQA ⁶ Ethanol Isopropanol 2,4-heptanediol, 6-methyl- 2,5-heptanediol, 2-methyl- 2,5-heptanediol, 3-methyl- 2,5-heptanediol, 4-methyl- 2,5-heptanediol, 5-methyl- 2,5-heptanediol, 6-methyl- 2,6-heptanediol, 2-	Wt. % 26.6 — 4 2	Wt. % 26.6  - 6	Wt. %	Wt. %  26 6	Wt. % 26 6	Wt. % 26 4 2	Wt. %		

- 129 -

	<u> </u>	EXAMP	LE XXX	IC			•
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	-
DEQA ²			26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-	-		6	2	
2,6-heptanediol, 3-							
methyl- 2,6-heptanediol, 4-	18					-	
methyl-		18			•••		
3,4-heptanediol, 3-							
methyl-	-	•••	18				_
3,5-heptanediol, 2- methyl-				17			
3,5-heptanediol, 3-				1,	_		
methyl-					18	***	-
3,5-heptanediol, 4-							
methyl- 2,4-octanediol	_		_			17	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
DI WALL	Dai.	Dai.	Dai.	Dai.	Dai.	Dai.	Dat.
	E	XAMPI	E XXX	I D			
Component	1	<u>2</u>	3	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	_
DEQA ³			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-	•	-	6	2	-
2,5-octanediol	18	سنيب		-			
2,7-octanediol		18	-	-	_		-
3,5-octanediol			18				
3,6-octanediol				17	-		
2,4-pentanediol, 2,3,3,4-							
tetramethyl-					18		
2,4-pentanediol, 3- tertiarybutyl-		***				17	
2,4-hexanediol, 2,5,5-		<del>-</del>				.,	
trimethyl-					_		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

- 130 -

DV A	MIDI	T	IIXXX
LAA	IVIPL	Æ	ллли

		1	EXAMP	LE XX	XII			
Component	•	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
		Wt. %	Wt. %	Wt. %	<u>6 Wt. %</u>	Wt. %	Wt. %	Wt. %
<b>DEQA</b> ¹		26.6	26.6		-	26	26	
DEQA ⁴		-		26	26	·		26
Ethanol		4	6	6	6		4	6
Isopropanol 2,4-hexanediol, 3,3	4.	2			_	6	2	
trimethyl- 2,4-hexanediol, 3,3		18		***	***		_	
trimethyl- 2,4-hexanediol, 3,5,			18		***	***		
trimethyl- 2,4-hexanediol, 4,5		****		18	***			
trimethyl- 2,5-hexanediol, 3,3		_		****	17	***		
trimethyl- 2,5-hexanediol, 3,3,			-			18	_	
trimethyl- 1,2-propanediol, 3-		_	-			-	17	_
pentyloxy)-	•	-		-		-		18
HCl (pH about 2-3.	5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water		Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		E.	KAMPL	E XXI	ZTT A			
		Com			Compa	Comp	Compa	Compa
Component		rativ		ive	rative	arative	rative	rative
	7	7A		В	7C	7D	7E	7F
	Wt.%			_ . <u>%</u>	Wt.%	Wt.%	Wt.%	Wt.%
DEQA1	26.6	26.6		5.6	26.6	26.6	26.6	26.6
1,2-propanediol,	20.0	20.4			20.0	20.0	20.0	20.0
3-(n-pentyloxy)-	16	•						
1,2-propanediol,								
3-ethyloxy-		16	-					
1,2-propanediol,		10	_					
3-butyloxy-			1	6				
1,2-propanediol,			•	•				
3-octyloxy-			•		16			
1,2-propanediol, 3-(2-					10			
ethylhexyloxy)-			•	••		16		
Glyceryl								
monooleate			-		***		16	
Glyceryl								

16 6

monosteate

Ethanol

Isopropanol

			- 131 -		•		
CaCl ₂	0.5	0.5	0.5	0.5	0.5	0.5	0.5
HCl (pH 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal	Bal.	Bal.	Bal.	Bal.

3-(n-Pentyloxy)-1,2-propanediol has a ClogP of 0.54, which is within the preferred range of 0.40 to 0.60, and all other 1,2-propanediol derivatives in Example XXXIIA have ClogP values outside the effective 0.15 to 0.64 range. Only the composition of Example XXXII-7, which contains 3-(n-pentyloxy)-1,2-propanediol is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples XXXII-7A to XXXII-7F are not clear and/or do not have acceptable viscosities.

EXAMPLE XXXIII									
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2		
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %		
DEQA ¹	26.6	26.6		-	26	26			
DEQA ⁵			26	26			26		
Ethanol	4	6	6	6		4	6		
Isopropanol	2		-	_	6	2			
1,2-propanediol, 3-(2-									
pentyloxy)- 1,2-propanediol, 3-(3-	18		_		-	<del></del> ,			
pentyloxy)-		18		_	_				
1,2-propanediol, 3-(2-									
methyl-1-butyloxy)-	-	_	18	-	-				
1,2-propanediol, 3-(iso-amyloxy)-				17					
1,2-propanediol, 3-(3-									
methyl-2-butyloxy)-	-				18	_	-		
1,3-pentanediol, 2-propyl						17	_		
2,6-octanediol		_		_			18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE XXXIV									
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>		
	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %		
DEQA ⁵	26.6	26.6	-		26	26	26		
DEQA ⁶			26	26					
Ethanol	4	6	6	6		4	4		
Isopropanol	2				6	2	2		

		•	132 -				
l-isopropyl-1,2-							
cyclobutanediol	18						
3-ethyl-4-methyl-1,2-							
cyclobutanediol		18		-	***		:
3-propyl-1,2- cyclobutanediol			10				
3-isopropyl-1,2-			18		-		
cyclobutanediol				17			_
1-ethyl-1,2-				• •		_	_
cyclopentanediol 1,2-dimethyl-1,2-	***		•		18	'	
cyclopentanediol 2,4-pentanediol, 2,3,4-		a-m-a			-	17	
trimethyl- n-BO ₁							10
HCl (pH about 2-3.5)	0.006	0.006	0.006	0.005			18
	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
	]	<u>EXAMP</u>	LE XXX	<u>(V</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ²	26.6	26.6			26	26	
DEQA ⁵			26	26	_		26
Ethanol	4	6	6	6		4	6
Isopropanol	2	_			6	2	
1,4-dimethyl-1,2-							
cyclopentanediol	18						
2,4,5-trimethyl-1,3-							
cyclopentanediol	_	18					
3,3-dimethyl-1,2- cyclopentanediol		_	18				
3,4-dimethyl-1,2-			10			_	_
cyclopentanediol	_	-	_	17	-		
3,5-dimethyl-1,2-							
cyclopentanediol				~~	18		
3-ethyl-1,2-							
cyclopentanediol l-phenyl-1,2-ethanediol				_		17	18
	0.005	0.005	0.005				
HCl (pH about 2-3.5)	0. <b>005</b>	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	:101	v a bent	TO MANAGE	7.4			

EXAMPLE XXXV.	A	
---------------	---	--

		Comparative	Comparative	Comparative
Component	5	5A	5B	5C
	Wt.%	<u>Wt.%</u>	Wt.%	Wt.%
DEQA ¹	26.6	26.6	26.6	26.6

PCT/US96/11556

cis-1,2-bis(hydroxy-				
methyl)cyclohexane	16			
1,4-bis(hydroxy-				
methyl)cyclohexane		16		-
1,2-Cyclohexanediol			16	
4,5-Dimethyl-1,2-				
cyclohexanediol			****	16
Ethanol	6	6	6	6
HCl (pH 2-3.5)	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.

Cis-1,2-bis(hydroxymethyl)cyclohexane has a ClogP of 0.47, which is within the preferred range of 0.40 to 0.60. 1,4-Bis(hydroxymethyl)cyclohexane also has a ClogP of 0.47, which is within the preferred range of 0.40 to 0.60, but has a center of symmetry, and does not form an acceptable composition (Composition XXXVA-5A). 1,2-cyclohexanediol and 4,5-dimethyl-1,2-cyclohexanediol have ClogP values which are outside the effective range of 0.15-0.64. Only the composition of Example XXXVA-5 is a clear composition with acceptable viscosities both at room temperature and at about 40°F (about 4°C); compositions of Comparative Examples XXXVA-5A to XXXVA-5C are not clear and/or do not have acceptable viscosities.

#### **EXAMPLE XXXVI**

Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
•	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	_
DEQA ³			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	_
1,2-propanediol 2(Me-							
E ₃ )	18		-				
1,2-propanediol PO ₄		18		_			-
1,2-propanediol, 2-							
methyl- (Me-Eg)			18		-	_	
1,2-propanediol, 2-							
methyl- 2(Me-E ₁ )	_	-		17	_	-	_
1,2-propanediol, 2-					• •	**	
methyl-PO3				****	18		
1,3-propanediol 2(Me-							
E ₈ )	•	***				17	
1,3-propanediol PO ₆							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

- 134 -

		-	134 -				
	E	XAMP	LE XXX	<u>VII</u>			
Component	1	2	<u>3</u>	4	<u>5</u> .	<u>6</u>	<u>7</u>
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	_
DEQA ⁴			26	26	-	_	26
Ethanol	4	6	6	6		4	6
Isopropanol 1,3-propanediol, 2,2-	2				6	2	
diethyl- E ₅ 1,3-propanediol, 2,2-	18						
diethyl- PO ₁ 1,3-propanediol, 2,2-		18			-		-
dimethyl- 2(Me E ₂ ) 1,3-propanediol, 2,2-			18				
dimethyl- PO ₄ 1,3-propanediol, 2-(1-		_	-	17		'	-
methylpropyl)- E ₅ 1,3-propanediol, 2-(1-					18		
methylpropyl)- PO ₁ 1,3-propanediol, 2-(2-					~~	17	-
methylpropyl)- E ₅				-			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	E	XAMPL	E XXXV	TIII			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	-		26	26	
DEQA ⁵	_		26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	
1,3-propanediol, 2-(2-methylpropyl)- PO ₁ 1,3-propanediol, 2-ethyl-	18				•••	_	
(Me Eg) 1,3-propanediol, 2-ethyl-	-	18		_	. —		
2(Me E ₁ ) 1,3-propanediol, 2-ethyl-			18				
PO ₃ 1,3-propanediol, 2-ethyl-		_	•••	17		***	
2-methyl- (Me E ₄ ) 1,3-propanediol, 2-ethyl-					18		
2-methyl- PO ₂ 1,3-propanediol, 2-ethyl-	_					17	
2-methyl- BO ₁							

- 135 -

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
EXAMPLE XXXIX											
Component	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2				
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %				
DEQA ⁵	26.6	26.6			26	26					
DEQA ¹			26	26			26				
Ethanol	4	6	6	6		4	6				
Isopropanol	2				6	2	_				
1,3-propanediol, 2-	18										
isopropyl- (Me E ₄ ) 1,3-propanediol, 2-	10						_				
isopropyl- PO ₂		18	-	-			_				
1,3-propanediol, 2-			18								
isopropyl- BO ₁ 1,3-propanediol, 2-	-		18								
methyl- 2(Me E ₄ )	_	_		17		<u> </u>					
1,3-propanediol, 2-											
methyl- PO ₅ 1,3-propanediol, 2-	-				18						
methyl- BO ₂						17					
1,3-propanediol, 2-											
methyl-2-isopropyl- E ₆	•						18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
	1	EXAMP	LE XXX	X							
Component	<u>1</u>	2	3		<u>5</u>	<u>6</u>	2				
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %				
DEQA	26.6	26.6			26	26					
DEQA ⁶			26	26	-		26				
Ethanol	4	6	6	6	-	4	6				
Isopropanol	2				6	2					
1,3-propanediol, 2-				,							
methyl-2-isopropyl-PO1	18	_		•••			. —				
1,3-propanediol, 2- methyl-2-propyl- E ₄		18				_					
1,3-propanediol, 2-		10	_	_							
methyl-2-propyl- PO ₁			18								
1,3-propanediol, 2- propyl- (Me E ₃ )				17							

- 136 -

		_	150 -								
1,3-propanediol, 2- propyl- PO ₂ 1,2-butanediol, 2-ethyl-		_	_		18		-				
E ₂ 1,2-butanediol, 2-ethyl- n-BO ₁					cites	17	10				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	18				
DI Water	Bal.	Bai.			0.005	0.005	0.005				
DI Watti	Баі.	Dai.	Bal.	Bal.	Bal.	Bal.	Bal.				
EXAMPLE XXXXI											
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7				
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %				
DEQA ²	26.6	26.6			26	26	***				
DEQA ¹			26	26	_		26				
Ethanol	4	6	6	6		4	6				
Isopropanol 1,2-butanediol, 2-methyl-	2		-	_	6	2					
(Me E ₂ ) 1,2-butanediol, 2-methyl-	18						•••				
PO ₁ 1,2-butanediol, 3,3-		18		_		-					
dimethyl- E ₄ 1,2-butanediol, 3,3-	-		18	-			-				
dimethyl- n-BO ₁ 1,2-butanediol, 3-methyl-	-		Milesy	17	wee		-				
(Me E ₂ ) 1,2-butanediol, 3-methyl-	-		-		18	_	-				
PO ₁ 1,3-butanediol 2(Me E ₅ )						17	18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
	<b></b> .	Dui.	Dai.	Dat.	Dat.	Dai.	Dat.				
EXAMPLE XXXXII											
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>				
DEQA ³	Wt. % 26.6	<u>Wt. %</u> 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	<u>Wt. %</u>				
DEQA ¹			26	26			26				
Ethanol	4	6	6	6		4	6				
Isopropanol	2			-	6	2	_				
1,3-butanediol PO ₅	18		***								
1,3-butanediol BO ₂ 1,3-butanediol, 2,2,3-		18	-		****	-					
trimethyl- (Me E ₂ )			18	-		******	4-44-				

- 137 -

		_						
1,3-butanediol, 2,2,3- trimethyl- PO ₂ 1,3-butanediol, 2,2-				17		_		
dimethyl- (Me E ₆ ) 1,3-butanediol, 2,2-	•••				18		-	
dimethyl- PO ₃ 1,3-butanediol, 2,3-	-			_		17	-	
dimethyl- (Me E ₆ )		-					18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
	<u>E</u> :	XAMPL	E XXXX	KIII				
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	
DEQA ⁴	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	<u>Wt. %</u> 26	<u>Wt. %</u>	
DEQAI	•		26	26	_		26	
Ethanol	4	6	6	6	-	4	6	
Isopropanol	2			_	6	2		
1,3-butanediol, 2,3-	•							
dimethyl- PO ₃ 1,3-butanediol, 2-ethyl-	18		-	-	_		-	
(Me E ₄ ) 1,3-butanediol, 2-ethyl-		18	•••			•	-	
PO ₂ 1,3-butanediol, 2-ethyl-		-	18			_		
BO ₁ 1,3-butanediol, 2-ethyl—		-	****	17	_			
2-methyl- (Me E ₁ ) 1,3-butanediol, 2-ethyl-				_	18	-		
2-methyl- PO ₁ 1,3-butanediol, 2-ethyl-	_	-	_		_	17		
3-methyl- (Me E ₁ )				-			18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
EXAMPLE XXXXIV								
Component	1	<u>2</u>	3	<u>4</u>	<u>5</u>	<u>6</u>	7	
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	
DEQA ⁵	26.6	26.6			26	26		
DEQA ¹		_	26	26		-	26	
Ethanol	4	6	6	6	-	4	6	
Isopropanol	2				6	2		

DEQA²

Ethanol

		-	136 -				
1,3-butanediol, 2-ethyl-							
3-methyl- PO ₁ 1,3-butanediol, 2-	18			-			
isopropyl- (Me E ₁ )		18		***			-
1,3-butanediol, 2- isopropyl- PO ₁			18				
1,3-butanediol, 2-methyl- 2(Me E ₂ )		_	_	17			
1,3-butanediol, 2-methyl-PO ₄				.,	_		<del></del>
1,3-butanediol, 2-propyl-		-			18	-	******
E ₆ 1,3-butanediol, 2-propyl-			****	_		17	-
PO ₁							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	E	XAMPI	LE XXX	<u>xv</u>			
Component	1	2	3	4	<u>5</u>	<u>6</u>	2
nn 6	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	20.0	20.0	~		26	26	
DEQA ⁶	_		26	26		-	26
Ethanol	4	6	6	6	444	4	6
Isopropanol 1,3-butanediol, 3-methyl-	2	***			6	2	
2(Me E ₂ ) 1,3-butanediol, 3-methyl-	18						-
PO ₄		18	-		_		_
1,4-butanediol 2(Me E ₃ )			18				
1,4-butanediol PO ₄	***	-	-	17		-	
1,4-butanediol BO ₂ 1,4-butanediol, 2,2,3-					18		
trimethyl- E ₆ 1,4-butanediol, 2,2,3-			· 		****	17	
trimethyl- PO ₁			-				18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	E	XAMPL	E XXXX	(VI			
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	<u>7</u>
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	<u>Wt. %</u>
DEQA ¹	26.6	26.6			26	26	-
n=0.47			26	26			26

26

6

6

26

6

26

6

DI Water

Bal.

Bal.

Bal.

Bal.

Bal.

Bal.

Bal.

Isopropanol	2		_		6	2	
1,4-butanediol, 2,2-							•
dimethyl- (Me E ₄ )	18					_	
1,4-butanediol, 2,2-							
dimethyl-PO ₂		18	***				
1,4-butanediol, 2,2-			10				
dimethyl- BO ₁ 1,4-butanediol, 2,3-			18				
dimethyl- (Me E ₅ )				17			
1,4-butanediol, 2,3-				17			
dimethyl- PO ₂		_			18	_	
1,4-butanediol, 2,3-					10		_
dimethyl- BO ₁					_	17	
1,4-butanediol, 2-ethyl-							
(Me E ₃ )						_	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		24.		Dan.	wa.	Dui.	1761.
	E	KAMPL	E XXXX	VII			
Component	1	<u>2</u>	<u>3</u>	. <u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQAI	26.6	26.6			26	26	
		-	26	26			26
DEQA ³	4	6	6	6		4	6
Ethanol	-	•	•		_		Ū
Isopropanol	2				6	. 2	_
1,4-butanediol, 2-ethyl-							
BO1	18	_		_			
1,4-butanediol, 2-ethyl-		10					
(C6) PO ₂ 1,4-butanediol, 2-ethyl-		18				_	400
2-methyl- E ₄	_		18	_			
1,4-butanediol, 2-ethyl-	—	<u>-</u>	10				
2-methyl- PO	***	-		17		ine	
1,4-butanediol, 2-ethyl-				•		•	
3-methyl- E ₄	_		_		18		
1,4-butanediol, 2-ethyl-							
3-methyl-PO1						17	
1,4-butanediol, 2-						•	
isopropyl- E ₄					-		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005

- 140 -

EXAMPLE XXXXVIII								
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	
_	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %	
DEQA ¹	26.6	26.6			26	26	•	
DEQA ⁴	-		26	26			26	
Ethanol	4	6	6	6		4	6	
Isopropanol	2		-		6	2		
1,4-butanediol, 2- isopropyl- PO ₁	18	_						
1,4-butanediol, 2-methyl-								
(Me E ₈ ) 1,4-butanediol, 2-methyl-		18	***			_	<del></del> !	
2(Me E ₁ ) 1,4-butanediol, 2-methyl-	***	-	18					
PO ₃ 1,4-butanediol, 2-propyl-		-	***	17		-	_	
E ₅ 1,4-butanediol, 3-ethyl-		-			18	-		
1-methyl- E ₆ 1,4-butanediol, 3-ethyl-	_	-		***		17		
1-methyl- PO ₁			_			-	18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
		EXAM	PLE IL					
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2	
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	
DEQA ¹	26.6	26.6			26	26		
DEQA ⁵			26	26	***	***	26	
Ethanol	4	6	6	6		4	6	
Isopropanol	2				6	2		
2,3-butanediol (Me E ₉ )	18						***	
2,3-butanediol 2(Me E ₁ ) 2,3-butanediol PO ₄		18	18					
2,3-butanediol, 2,3-			10					
dimethyl- E ₇ 2,3-butanediol, 2,3-	-		-	17		_		
dimethyl-PO ₁			-		18			
2,3-butanediol, 2,3- dimethyl- n-BO ₂				***	_	17	-	
2,3-butanediol, 2-methyl- (Me E ₄ )			***			989	18	
HCl (pH about 2-3.5)								
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	

		EXAN	MPLE L				
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	_		26	26	
DEQA ⁶			26	26			26
Ethanol	4	6	6	6	-	4	6
Isopropanol	2	_		-	6	2	
2,3-butanediol, 2-methyl-					٠		
PO ₂	18					-	_
2,3-butanediol, 2-methyl-							
BOl		17		-	_	-	
1,2-pentanediol E ₇	_		18				
1,2-pentanediol PO ₁			****	17			-
1,2-pentanediol n-BO ₃ 1,2-pentanediol 2-methyl	***	-			18		_
E ₂					-	17	
1,2-pentanediol 2-methyl	ě					• •	
n-BO ₁	-					-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
C	•		PLE LI				•
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %
DEQA ²	26.6	26.6			26	26	
DEQA ⁵	_	-	26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2				_		
1,2-pentanediol 3-methyl					6	2	
				-	6	2	-
E ₂	.18					2 —	<u>-</u>
E ₂ 1,2-pentanediol 3-methyl	.18			_	- -	<u>-</u>	_
1,2-pentanediol 3-methyl n-BO ₁	18	<del>-</del>			- -	- -	_
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl	18	18			- -	- -	_
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂		18				- - -	
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂ 1,2-pentanediol 4-methyl	18 	18	18		- 	- -	
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂ 1,2-pentanediol 4-methyl n-BO ₁	- 18 	18 -			- - -	2 - - -	
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂ 1,2-pentanediol 4-methyl n-BO ₁ 1,3-pentanediol 2(Me-		18	18			2 - - -	
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂ 1,2-pentanediol 4-methyl n-BO ₁ 1,3-pentanediol 2(Me-E ₂ )	.18   	18 -			- - - 18	2 - - - - - 17	
1,2-pentanediol 3-methyl n-BO ₁ 1,2-pentanediol 4-methyl E ₂ 1,2-pentanediol 4-methyl n-BO ₁ 1,3-pentanediol 2(Me-		18	18			-	

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
							<del></del>
		EXAM	PLE LI	I			
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ³	26.6	26.6			26	26	
DEQA ⁵			26	26	_		26
Ethanol	4	6	6	6	-	4	6
Isopropanol	2	•			6	2	
1,3-pentanediol 2,3-							
dimethyl- (Me-E ₁ ) 1,3-pentanediol 2,3-	18		-		-	-	
dimethyl- PO ₁		18				_	
1,3-pentanediol 2,4-							,
dimethyl- (Me-E ₁ ) 1,3-pentanediol 2,4-			18	_		-	
dimethyl- PO ₁				17			-
1,3-pentanediol, 2-ethyl-							
E ₆ 1,3-pentanediol, 2-ethyl-		-			18		
PO1	_			-		17	_
1,3-pentanediol, 2-							
methyl- 2(Me-E ₄ )	0.005						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE LII	I			
Component	1	2	<u>3</u>	- <u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁴	26.6	26.6			26	26	
DEQA ⁵		_	26	26	_		26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	
1,3-pentanediol, 2-							
methyl- PO ₂ 1,3-pentanediol, 2-	18	1000			-	-	
methyl- BO ₁		18	-	-		-	
1,3-pentanediol 3,4-							
dimethyl- (Me-E ₁ ) 1,3-pentanediol 3,4-			18				
dimethyl-PO ₁				17			

1,3-pentanediol, 3- methyl- 2(Me-E ₄ ) 1,3-pentanediol, 3-		; <del></del>	***	-	18				
methyl-PO ₃ 1,3-pentanediol, 3-			****		***	17			
methyl- BO ₁					-		18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE LIV									
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2		
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %		
DEQA ¹	26.6	26.6	_		26	26	-		
DEQA ⁵		-	26	26			26		
Ethanol	4	6	6	6		4	6		
lsopropanol	2	_		•	6	2			
1,3-pentanediol 4,4-									
dimethyl- (Me-E ₁ ) 1,3-pentanediol 4,4-	18		-	_	-				
dimethyl- PO ₁		18		-	-				
1,3-pentanediol, 4-									
methyl- PO ₃ 1,3-pentanediol, 4-			18			-			
methyl-BO1		****	_	17					
1,4-pentanediol 2(Me-					18				
E ₂ ) 1,4-pentanediol PO ₃				_	10		_		
•					-	17	-		
1,4-pentanediol, 2,2- dimethyl- (Me-E ₁ )	_						18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
DI Wall.	200.			241.	2-42.				
		EXAM	PLE LY	<u>.</u>					
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	· <u>7</u>		
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %		
DEQA ¹	26.6	26.6	_		26	26			
DEQA ⁶	_		26	26	***	-	26		
Ethanol	4	6	6	6		4	6		
Isopropanol	2	•	-	<del></del>	6	<b>2</b>			
1,4-pentanediol, 2,2-									
dimethyl- PO ₁	18					~~			

DEQA³

	AA	

		-	144 -		•		
1,4-pentanediol 2,3-dimethyl- (Me-E ₁ )		18	-	-			
1,4-pentanediol 2,3-							
dimethyl- PO ₁ 1,4-pentanediol 2,4-		-	18	*******		<u>-</u>	_
dimethyl- (Me-E ₁ ) 1,4-pentanediol 2,4-	****			17	•		
dimethyl- PO ₁ 1,4-pentanediol, 2-	****				18	-	
methyl- 2(Me-E ₄ ) 1,4-pentanediol, 2-						17	-
methyl-PO3							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE LV	1	•		
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	
DEQA ²	***		26	26		_	26
Ethanol	4	6	6	6		4	6
Isopropanol	2			_	6	2	
1,4-pentanediol, 2-							
methyl- BO ₁ 1,4-pentanediol 3,3-	18			-			
dimethyl- (Me-E ₁ )	-	18			_		
1,4-pentanediol 3,3-		••				<del></del>	_
dimethyl- PO ₁	-		18	-			-
1,4-pentanediol 3,4- dimethyl- (Me-E ₁ )		_	_	17	-		
1,4-pentanediol 3,4-		-		17	_		
dimethyl- PO ₁	_	_		_	18		
1,4-pentanediol, 3- methyl- 2(Me-E _d )						17	
1,4-pentanediol, 3-			_	_		17	
methyl- PO ₃					-	-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMP	LE LVI	I			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6		-	26	26	
			26	26			26

26

26

	- 145 -								
Ethanol	4	6	6	6	****	4	6		
Isopropanoi	2				6	2			
1,4-pentanediol, 3-									
methyl-BO ₁	18					-			
1,4-pentanediol, 4-		10							
methyl- 2(Me-E ₄ ) 1,4-pentanediol, 4-		18	<del></del> ,						
methyl- PO ₃			18				-		
1,4-pentanediol, 4-							•		
methyl-BO ₁		-		17		-	-		
1,5-pentanediol (Me-E ₆ ) 1,5-pentanediol 2(Me-	_				18				
$E_1$ )						17			
1,5-pentanediol PO ₃	_					-	18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
		EXAMP	LE LVI	<u>II</u>					
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	7		
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %		
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u> 26	<u>Wt. %</u> 26	Wt. %		
DEQA ⁵ DEQA ⁴			<u>Wt. %</u>  26	<u>Wt. %</u> — 26			<u>Wt. %</u>  26		
				-			_		
DEQA ⁴ Ethanol	26.6 	26.6	<del>-</del> 26	<del>-</del> 26		26 —	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2-	26.6 — 4 2	26.6	<del>-</del> 26	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅	26.6 — 4	26.6	<del>-</del> 26	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2-	26.6 — 4 2	26.6  6 	<del>-</del> 26	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁	26.6 — 4 2	26.6	<del>-</del> 26	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄	26.6 — 4 2	26.6  6 	<del>-</del> 26	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3-	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁	26.6 — 4 2	26.6  6 	26 6 —	<del>-</del> 26	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4-	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- E ₅ 1,5-pentanediol, 2,4-	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 — 6 — —	26 	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- E ₅ 1,5-pentanediol, 2,4- dimethyl- PO ₁	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 — 6 — —	26  4	26		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- E ₅ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4-	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 — 6 — —	26 	26 6 		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- E ₅ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2-ethyl- E ₄	26.6  4 2 18	26.6 	26 6 	26 6 	26 ————————————————————————————————————	26 	26 6 		
DEQA ⁴ Ethanol Isopropanol 1,5-pentanediol, 2,2- dimethyl- E ₅ 1,5-pentanediol, 2,2- dimethyl- PO ₁ 1,5-pentanediol, 2,3- dimethyl- E ₄ 1,5-pentanediol, 2,3- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- E ₅ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4- dimethyl- PO ₁ 1,5-pentanediol, 2,4-	26.6 — 4 2	26.6  6 	26 6 —	26 6 -	26 — 6 — —	26 	26 6 		

- 146 -

EXAMPLE LIX							
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	
DEQA ⁵			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	_			6	2	***
1,5-pentanediol, 2-							
methyl- (Me-E ₂ )	18	***			-	_	
1,5-pentanediol, 2- methyl- PO ₂		18					
1,5-pentanediol, 3,3-		10	_				_
dimethyl- E ₄	-		18	***		-	
1,5-pentanediol, 3,3-							
dimethyl- PO ₁ 1,5-pentanediol, 3-	-	*-		17	-	-	
methyl- (Me-E ₂ )			-		18		
1,5-pentanediol, 3-					10		
methyl-PO ₂						17	
2,3-pentanediol (Me-E ₂ )	-			-			- 18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE LX				
Component	1	2	<u>3</u>	. <u>4</u>	<u>5</u>	4	7
	Wt. %	<u>Wt. %</u>	<u>y</u> Wt. %			<u>6</u>	7
DEQA ¹	26.6	26.6	W1. 70	Wt. %	Wt. % 26	<u>W1. %</u> 26	<u>Wt. %</u>
DEQA ⁶	•	-	26	26	_		26
Ethanol	4	6 -	6	6		4	6
	2	-		_	6	2	_
Isopropanol 2,3-pentanediol PO ₂	18						
2,3-pentanediol, 2-	10		_	_	_		
methyl- E ₄	-	18	-		_	-	•••
2,3-pentanediol, 2-							
methyl- PO ₁ 2,3-pentanediol, 2-	-		18				
methyl- n-BO ₂				17			***
1,3-pentanediol, 2,2-							
dimethyl- PO ₁			-		18		
2,3-pentanediol, 3- methyl- E ₄						17	
2,3-pentanediol, 3-				- <b>-</b>		17	****
methyl-PO1		-			***	-	18

						,	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
•							
		<b>EXAM</b>	PLE LX	I			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6		-	26	26	-
DEQA ²		-	26	26		_	26
Ethanol	4	6	6	6	-	4	6
Isopropanol	2	-			6	2	
1,4-butanediol, 3-ethyl-							
1-methyl- n-BO ₂	18		****	-			
2,3-pentanediol, 3- methyl- n-BO ₂		18					
2,3-pentanediol, 4-		10					
methyl- E ₄		-	18		-		
2,3-pentanediol, 4- methyl- PO ₁		_		17			
2,3-pentanediol, 4-		-		17			
methyl- n-BO ₂	_		_	_	18		
1,3-pentanediol, 2,2-						17	
dimethyl- n-BO ₃ 2,4-pentanediol 2(Me-			-			17	
E ₃ )		-	_			-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE LX	<u> </u>			
Component	<u>1</u>	<u>2</u>	3	4	<u>5</u>	<u>6</u>	2
<u></u>	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	
DEQA ³			26	26	-	<del></del> .	26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	
2,4-pentanediol PO ₄	18		-	-			_
2,4-pentanediol, 2,3-							
dimethyl- (Me-E ₃ ) 2,4-pentanediol, 2,3-	_	18					
dimethyl- PO ₂		_	18			<u></u>	
2,4-pentanediol, 2,4-							
dimethyl- (Me-E ₃ )		-		17			

2,4-pentanediol, 2,4-dimethyl- PO ₂ 2,4-pentanediol, 2-		***			18			
methyl- (Me-E ₈ ) 2,4-pentanediol, 2-				-	***	17	-	
methyl- PO ₃				-			18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
		EXAM	PLE LX	Ш				
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	
	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	$\underline{\mathbf{w}}_{\mathbf{t}}$	Wt. %	Wt. %	
DEQAl	26.6	26.6	-	_	<u>%</u> 26	26		
DEQA ⁴	-		26	26			26	
Ethanol	4	6	6	6		4	6	
Isopropanol	2				6	2	-	
2,4-pentanediol, 3,3-								
dimethyl- (Me-E ₂ )	18		•					
2,4-pentanediol, 3,3- dimethyl- PO ₂		18					•	
2,4-pentanediol, 3-					_		_	
methyl- (Me-Eg)		-	18	_	_			
2,4-pentanediol, 3- methyl- PO ₃		-		17				
1,3-hexanediol (Me-E ₃ )	-	-			18			
1,3-hexanediol PO ₂	-					17		
1,3-hexanediol BO ₁	-			-			18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
	]	EXAMP	LE LXI	<u>Y</u>				
Component	1	2	3	4	<u>5</u>	<u>6</u>	2	
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	
DEQA ¹	26.6	26.6	-		26	26		
DEQA ⁵			26	26		-	26	
Ethanol	4	6	6	6	-	4	6	
Isopropanol	2				6	2		
1,3-hexanediol, 2-	••							
methyl- E ₆ 1,3-hexanediol, 2-	18					-	700	
methyl-PO ₁		18		***		***	***	

1,3-hexanediol, 3-			10				<i>*</i>
methyl- E ₆ 1,3-hexanediol, 3-	-		18		-	-	
methyl- PO ₁ 1,3-hexanediol, 4-	-			17		-	. —
methyl- E ₅ 1,3-hexanediol, 4-					18	-	
methyl- PO ₁ 1,3-hexanediol, 5-					-	17	-
methyl- E ₅							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	PLE LX	<u>v</u>			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. % 26	Wt. % 26	Wt. %
DEQA ¹	20.0	20.0	26	26		20	26
DEQA ⁶	_	_			_		6
Ethanol	4	6	6	6		4	0
Isopropanol	2				6	2	
1,3-hexanediol, 5-	10						
methyl- PO ₁ 1,4-hexanediol (Me-E ₃ )	18	18	_		_		
1,4-hexanediol BO ₁			18				
1,4-hexanediol PO ₂			_	17			
1,4-hexanediol, 2-							
methyl- E ₆			-		18	_	
1,4-hexanediol, 2-						17	
methyl- PO ₁ 1,4-hexanediol, 3-			_	_		1,	
methyl- E ₆				_			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
•		EXAMI	LE LXV	<u>/I</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>
DEQA ²	26.6	26.6	_		26	26	
DEQA ⁵			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2		-	-	6	2	-
1,4-hexanediol, 3- methyl-PO ₁	18			-	-	-	

Ethanol

Isopropanol

	-		
	1	EΛ	
_	- 4	31,	•

		-	150 -							
1,4-hexanediol, 4-methyl- E ₆	. ~	18		-						
1,4-hexanediol, 4- methyl- PO ₁ 1,4-hexanediol, 5-			18	_		vena	<del></del> .			
methyl- E ₆ 1,4-hexanediol, 5-			Annu	17		_				
methyl- PO ₁ 1,5-hexanediol (Me-E ₃ ) 1,5-hexanediol PO ₂			_		18	17				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	18 0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	0.003 Bal.			
EXAMPLE LXVII										
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	6	2			
DEQA ³	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ⁵	-		26	26	_		26			
Ethanol	4	6	6	6		4	6			
	2				6	,	0			
Isopropanol  1,5-hexanediol BO ₁	18				O	2				
1,5-hexanediol, 2-	10					-	-			
methyl- E ₆ 1,5-hexanediol, 2-		18					-			
methyl- PO ₁ 1,5-hexanediol, 3-	_	_	18	-						
methyl- E ₆ 1,5-hexanediol, 3-				17		_				
methyl- PO ₁ 1,5-hexanediol, 4-		_	_	-	18					
methyl- E ₅ 1,5-hexanediol, 4-	-	*****			_	17				
methyl-PO ₁	_	•	-				18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
	E	XAMPI	E LXV	ш						
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7			
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ⁴	26.6	26.6			26	26				
DEQA ⁵			26	26		****	26			
			_	_						

1,5-hexanediol, 5-							
methyl- E ₅	18				-		
1,5-hexanediol, 5-		10					
methyl- PO ₁ 1,6-hexanediol (Me-E ₂ )		18					
1,0 Homaiodioi (MC-L2)			18				
1,6-hexanediol PO2				17		*	
1,6-hexanediol, 2-			-		18		-
methyl- E ₃							
1,6-hexanediol, 3- methyl- E ₃						13	
2,3-hexanediol E ₃						17	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.						
DI Water	Dau.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EV A ME	LE LXI	v			
Component	· ·						-
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	_
DEQA ⁵	-		26	26			.26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	
2,3-hexanediol n-BO ₁	18			-			
2,4-hexanediol (Me-E ₅ )		18		-		<del></del> `	_
2,4-hexanediol PO ₃ 2,4-hexanediol, 2-			18	_	_		
methyl- (Me-E ₂ )		_	-	17	-		_
2,4-hexanediol 2-methyl-							
PO ₂		_			18		,
2,4-hexanediol, 3-							
methyl- (Me-E ₂ )			-		-	17	
2,4-bexanediol 3-methyl-PO ₂		_				_	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water						Bal.	Bal.
Di Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.	да.
		EVAMI	LE LX	v.			
C	1			-	•		7
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	1
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	
DEQA ⁶			26	26			26
Ethanol	4	6	6	6		4 :	6
Isopropanol	2	_			6	2	

	•	-	
•	1:	١2	•

18						
	18					
		18				
		•	17			
	_	-	-	18		
	****			***	17	
			~		-	18
0.005	0.005	0.005	0.005	0.005	0.005	0.005
Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		- 18	- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	-       18       -       -         -       -       18       -         -       -       -       17         -       -       -       -         -       -       -       -         0.005       0.005       0.005       0.005	- 18	-       18       -       -       -         -       -       18       -       -       -         -       -       -       17       -       -       -         -       -       -       -       18       -       -       -       17         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -

## **EXAMPLE LXXI**

Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹		26.6	-	20.0	20.0	20.0	20.0
DEQA ²	26	4-0-	27	6.8	6.8	6.8	6.8
Ethanol	5	4	5.1	4	***		
Isopropanol				2			
2,5-hexanediol 2-							
methyl-PO ₂	18						
2,5-hexanediol, 3-							
methyl- (Me-E ₂ )		18		-			
2,5-hexanediol 3-							
methyl-PO ₁			18			-	
3,4-hexanediol E ₃	-	-		17			
3,4-hexanediol n-BO ₁			~~		18		
4-ethyl-1,2-							
cyclopentanediol			***	-		18	
bis(2-hydroxy-							,
cyclopentyl) ether					_		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

## **EXAMPLE LXXII**

Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ³	26.6	26.6			26	26	
DEQA ¹	-		26	26	_	-	26

		- 1	153 -							
Ethanol	4	6	6	6	-	4 %	6			
Isopropanol	2				6	2 .	elling.			
4,4-dimethyl-1,2- cyclopentanediol	18			***						
1,3-heptanediol E ₄		18					_			
1,3-heptanediol PO ₁ 1,3-heptanediol n-BO ₂			18			·	-			
1,4-heptanediol E ₄				17	18					
1,4-heptanediol PO1		_		_		17				
1,4-heptanediol n-BO ₂						-	18			
HCl (pH about 2-3,5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE LXXIII										
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>			
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	<u>Wt. %</u>			
DEQA ⁶			26	26		_	26			
Ethanol	4	6	6	6	-	4	6			
Isopropanol	2		_		6	2				
1,5-heptanediol E ₄	18									
1,5-heptanediol PO ₁		18								
1,5-heptanediol n-BO ₂ 1,6-heptanediol E ₄	_		18	17	_	'				
1,6-heptanediol PO ₁	_			-	18	:				
1,6-heptanediol n-BO ₂		_	-	***		17	_			
1,7-heptanediol E ₁			_				18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bai.	Bal.	Bal.	Bal.			
	E	XAMPI	LE LXX	<u>IV</u>						
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7			
DEQA ¹	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	Wt. %	Wt. % 26	Wt. % 26	<u>Wt. %</u>			
DEQA ⁴			26	26			26			
Ethanol	4	6	6	6		4	6			
	2				6	2	***			
Isopropanol  1,7-heptanediol n-BO ₁	18			_		'				
2,4-heptanediol E ₇	****	18			_		•			
2,4-heptanediol (Me-E ₁ ) 2,4-heptanediol PO ₁			18	<del>-</del> 17						
2,4-heptanediol n-BO ₃					18	-				
2,5-heptanediol E ₇						17				

		-	124 -				
2,5-heptanediol (Me-E ₁ )			-		****		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAME	LE LXX	<u>(V</u>			
Component	1	<u>2</u>	<u>3</u>		<u>5</u>	<u>6</u>	<u>7</u>
DEQA ²	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. %	Wt. % 26	Wt. %
DEQA ⁵	-		26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	***	-	÷	6	2	
3-cyclooctene-1,2-diol	18			-			
4-cyclooctene-1,2-diol		18	_				
5-cyclooctene-1,2-diol 4-cyclohexene-1,2-diol,			18		-		
3,6-dimethyl- 4-cyclohexene-1,2-diol,	-			17			****
4,5-dimethyl- 1,2-Cyclobutanediol, 1-					18		
ethenyl-2-ethyl- 3-Cyclobutene-1,2-diol,				~~~	-	17	
1,2,3,4-tetramethyl-		_		~-	-	erena.	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	<u> </u>	XAMPI	LE LXX	<u>VI</u>			
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	<u>Wt. %</u> 26	<u>Wt. %</u>
DEQA ³			26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol	2			-	6	2	***
3-Cyclobutene-1,2-diol, 3,4-diethyl- 3-Cyclobutene-1,2-diol,	18			-	-	-	-
3-(1,1-dimethylethyl)- 3-Cyclobutene-1,2-diol,		18	-	-			_
3-butyl- 1,2-Cyclopentanediol,	***	~	18		artice.		
1,2-dimethyl-4- methylene- 1,2-Cyclopentanediol, 1-			-	17			
ethyl-3-methylene-			-		18	-	****

1,2-Cyclopentanediol, 4- (1-propenyl) 3-Cyclopentene-1,2-diol,				***	*******	17					
1-ethyl-3-methyl-	0.005	0.005	0.005	0.005		0.005	18				
HCl (pH about 2-3.5) DI Water	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
Di water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
EXAMPLE LXXVII											
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7				
	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %				
DEQA ⁵	26.6	26.6	-		26	. 26					
DEQA ⁴	_		26	26			26				
Ethanol	4	6	6	6		4	6				
Isopropanol	2	-	-	-	6	2 .	_				
1,2-Cyclohexanediol, 1- ethenyl- 1,2-Cyclohexanediol, 1-	18		•	•••		_	-				
methyl-3-methylene- 1,2-Cyclohexanediol, 1-		18	****				_				
methyl-4-methylene- 1,2-Cyclohexanediol, 3-	_	. —	18	_	-		•				
ethenyl- 1,2-Cyclohexanediol, 4-	-			17	-						
ethenyl- 3-Cyclohexene-1,2-diol,		-		•	18	-					
2,6-dimethyl- 3-Cyclohexene-1,2-diol,	***	-	-			17	-				
6,6-dimethyl-	_	_	_			_	18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
	<u>E</u> :	XAMPL	E LXXV	<u>/III</u>							
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>				
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %				
DEQA6	26.6	26.6	-		26	26					
DEQA ¹	•	-	26	26			26				
Ethanol	4	6	6	6		4	6				
Isopropanol 1,3-Propanediol, 2,2-di-	2	•			6	2					
2-propenyl- 1,3-Propanediol, 2-(1-	18										
pentenyl)-	-	18		***							

1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-1,3-Propanediol, 2-(3-methyl-1-butenyl)-1,3-Propanediol, 2-(4-pentenyl)-1,3-Propanediol, 2-ethyl-2-(2-methyl-2-propenyl)-1,3-Propanediol, 2-ethyl-2-(2-propenyl)-HCl (pH about 2-3.5) DI Water	   0.005	   0.005	18    0.005	 17   0.005	 18  0.005	- 17 - 0.005				
Di Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE LXXIX										
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7			
·	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQAI	26.6	26,6	-		26	26				
DEQA ⁵			26	26	-	i	26			
Ethanol	4	6	6	6	-	4 .	6			
Isopropanol	2	_		4	6	2	. —			
1,3-Propanediol, 2- methyl-2-(3-methyl-3- butenyl)- 1,3-Butanediol, 2,2- diallyl-	18	 18	_			-				
1,3-Butanediol, 2-(1-		10		_	_					
ethyl-1-propenyl)-		-	18							
1,3-Butanediol, 2-(2-butenyl)-2-methyl- 1,3-Butanediol, 2-(3-		-	_	17	-	-				
methyl-2-butenyl)-					18					
1,3-Butanediol, 2-ethyl- 2-(2-propenyl)- 1,3-Butanediol, 2- methyl-2-(1-methyl-2-	_			-		17	1			
propenyl)-		-				_	18			
HCl (pH about 2-3.5)	0. <b>0</b> 05	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bai.	Bal.	Bal.			
EXAMPLE LXXX										
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	7			
	Wt. %	= <u>₩t. %</u>	<u>Wt. %</u>	Wt. %	⊻ Wt. %	⊻ <u>Wt. %</u>	<u>.</u> Wi. %			
DEQA ²	26.6	26.6			26	26	71.11.60			

	- 157 -									
DEQA ⁵			26	26			26			
Ethanol	4	6	6	6		4	6			
Isopropanol 1,4-Butanediol, 2,3-	2		-		6	2	-			
bis(1-methylethylidene)- 1,4-Butanediol, 2-(3- methyl-2-butenyl)-3-	18			-			-			
methylene- 2-Butene-1,4-diol, 2-	-	18		-	_	-				
(1,1-dimethylpropyl)- 2-Butene-1,4-diol, 2-(1-			18		_					
methylpropyl)- 2-Butene-1,4-diol, 2-				17	-	<del>-</del>	_			
butyl- 1,3-Pentanediol, 2-	_	_		•••	18					
ethenyl-3-ethyl- 1,3-Pentanediol, 2-	****	gitera	****	***		17				
ethenyl-4,4-dimethyl-			•			-	18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE LXXXI										
Component	11/4 0/	2	3	<u>4</u>	<u>5</u>	<u>6</u>	7			
DEQA ³	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u> —	Wt. % 26	Wt. % 26	<u>Wt. %</u>			
DEQA ⁵	-		26	26			26			
Ethanol	4	6	6	6		4	6			
Isopropanol	2	_			6	2				
1,4-Pentanediol, 3- methyl-2-(2-propenyl)- 1,5-Pentanediol, 2-(1-	18					<u> </u>				
propenyl)- 1,5-Pentanediol, 2-(2-	_	18	_							
propenyl)-			18				-			
1,5-Pentanediol, 2- ethylidene-3-methyl-		-		17			شبيت			
1,5-Pentanediol, 2- propylidene-					18					
2,4-Pentanediol, 3- ethylidene-2,4-dimethyl- 4-Pentene-1,3-diol, 2-	_	-		•		17	-			
(1,1-dimethylethyl)-				_		-	18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.			

- 158 -

	E	EXAMP	LE LXX	<u>XII</u>			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁴	26.6	26.6		-	26	26	
DEQA ⁵			26	26	•	-	26
Ethanol	4	6	6	6		4	6
Isopropanol 4-Pentene-1,3-diol, 2-	2				6	2	-
ethyl-2,3-dimethyl- 1,4-Hexanediol, 4-ethyl-	18				-		
2-methylene- 1,5-Hexadiene-3,4-diol,		18				-	-
2,3,5-trimethyl- 1,5-Hexadiene-3,4-diol,		_	18			-	
5-ethyl-3-methyl- 1,5-Hexanediol, 2-(1-			*****	17	_		
methylethenyl)- 1,6-Hexanediol, 2-		-		-	18	-	
ethenyl- 1-Hexene-3,4-diol, 5,5-	-		-		_	17	_
dimethyl-			-	_			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	F	<u>XAMPL</u>	FLYYY	an a			
Component							~
Composition	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>
nno.45	Wt. % 26.6	Wt. % 26.6	Wt. %	<u>Wt. %</u>	Wt. % 26	Wt. % 26	Wt. %
DEQA ⁵	20.0	20.0	26	24	20	20	***
DEQAI			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol 1-Hexene-3,4-diol, 5,5-	2			-	6	2	
dimethyl- 2-Hexene-1,5-diol, 4-	18	-		-	<del></del>	•••	-
ethenyl-2,5-dimethyl- 3-Hexene-1,6-diol, 2-		18	-		-		
ethenyl-2,5-dimethyl- 3-Hexene-1,6-diol, 2-		-	18	****	-		
ethyl- 3-Hexene-1,6-diol, 3,4-	***			17			
dimethyl-					18		
4-Hexene-2,3-diol, 2,5- dimethyl- 4-Hexene-2,3-diol, 3,4-					•	17	
dimethyl-							18

- 159 -

****** * * * * * * * * * * * * * * * *							
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	E	<u>XAMPI</u>	E LXX	<u> XIV</u>			
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁶	26.6	26.6			26	26	
DEQA ¹		-	26	26	_		26
Ethanol	4	6	6	6		4	6
Isopropanol	2			Annua .	6	2	
5-Hexene-1,3-diol, 3-(2-	•						
propenyl)-	18			_	-	***	
5-Hexene-2,3-diol, 2,3-dimethyl-		18					
5-Hexene-2,3-diol, 3,4-		10	-				
dimethyl-			18				
5-Hexene-2,3-diol, 3,5-							
dimethyl- 5-Hexene-2,4-diol, 3-			-	17			
ethenyl-2,5-dimethyl-				-	18	-	
1,4-Heptanediol, 6-							
methyl-5-methylene-		-			-	17	
1,5-Heptadiene-3,4-diol, 2,3-dimethyl-						_	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water							
Di water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	E	XAMPI	E LXX	<u>XV</u>			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQAI	26.6	26.6		-	26	26	
DEQA ²		_	26	26			26
Ethanol	4	6	6	6	_	4	6
Isopropanol	2				6	2	
1,5-Heptadiene-3,4-diol,							
2,5-dimethyl-	18				***	-	_
1,5-Heptadiene-3,4-diol,		10					
3,5-dimethyl- 1,7-Heptanediol, 2,6-		18					
bis(methylene)-			18		*****		
1,7-Heptanediol, 4-							
methylene-				17			

1-Heptene-3,5-diol, 2,4-dimethyl- 1-Heptene-3,5-diol, 2,6-	****			***	18						
dimethyl- 1-Heptene-3,5-diol, 3-				-		17	***				
ethenyl-5-methyl					-		18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
EXAMPLE LXXXVI											
Component	1	<u>2</u>	3	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>				
	Wt. %	= Wt. %	<u>Wt. %</u>	Wt. %	<u>wt. %</u>	¥ Wt. %	<u>/</u> Wt. %				
DEQA ¹	26.6	26.6			26	26					
DEQA ³	-		26	26			26				
Ethanol	4	6	6	6		4	6				
Isopropanol	2				6	2					
1-Heptene-3,5-diol, 6,6-	••										
dimethyl- 2,4-Heptadiene-2,6-diol,	18	-	-								
4,6-dimethyl-		18									
2,5-Heptadiene-1,7-diol, 4,4-dimethyl-			10.								
2,6-Heptadiene-1,4-diol,			18 -								
2,5,5-trimethyl-			***	17							
2-Heptene-1,4-diol, 5,6-dimethyl-		-	_		18						
2-Heptene-1,5-diol, 5-					••						
ethyl- 2-Heptene-1,7-diol, 2-					***	17					
methyl-							18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.	Bal.				
•											
	E	KAMPL	E LXXX	VII							
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>				
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %				
DEQA ¹	26.6	26.6		•	26	26					
DEQA ⁴			26	26		-	26				
Ethanol	4	6	6	6	***	4	6				
Isopropanol	2				6	2					
3-Heptene-1,5-diol, 4,6-dimethyl-	18			-			-				

- 161 -

3-Heptene-1,7-diol, 3-							
methyl-6-methylene- 3-Heptene-2,5-diol, 2,4-		18				<del>.</del>	
dimethyl- 3-Heptene-2,5-diol, 2,5-			18		-	_	
dimethyl- 3-Heptene-2,6-diol, 2,6-	_	•		17			
dimethyl- 3-Heptene-2,6-diol, 4,6-		_			18		
dimethyl- 5-Heptene-1,3-diol, 2,4-				-		17	
dimethyl-			_	-			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	EX	<u> AMPLI</u>	ELXXX	VIII			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	1
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	-		26	26	-
DEQA ⁵	-	-	26	` 26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-			6	2	-
5-Heptene-1,3-diol, 3,6-	• •						
dimethyl- 5-Heptene-1,4-diol, 2,6-	18	-	-		_		
dimethyl-		18				-	_
5-Heptene-1,4-diol, 3,6-			10				
dimethyl- 5-Heptene-2,4-diol, 2,3-			18		_		
dimethyl-				17	_		
6-Heptene-1,3-diol, 2,2-					10		
dimethyl- 6-Heptene-1,4-diol, 4-(2-				_	18	<del></del>	
propenyl)-						17	
6-Heptene-1,4-diol, 5,6-dimethyl-							18
•	0.005	0.005	0.005	0.005	0.005	0.005	0.005
HCl (pH about 2-3.5) DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
Di Water	Dai.	Dai.	pa.	Dai.	Dat.	Dist.	Dat.
	<u>E</u> :	XAMPL	E LXXX	<u>KIX</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	
DEQA ²	~		26	26	_		26

		-	162 -				
Ethanol	4	6	. 6	6		4 -	6
Isopropanol	2		***		6	2	
6-Heptene-1,5-diol, 2,4- dimethyl- 6-Heptene-1,5-diol, 2-	18						-
ethylidene-6-methyl- 6-Heptene-2,4-diol, 4-(2-		18	-	-	•		-
propenyl)- 6-Heptene-2,4-diol, 5,5-		-	18		***		
dimethyl- 6-Heptene-2,5-diol, 4,6-	*****	-		17			<del>-</del> .
dimethyl- 6-Heptene-2,5-diol, 5-				_	18		
ethenyl-4-methyl- 1,3-Octanediol, 2-	-		****	***		17	
methylene-	Trailine.	****					18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.	Bal.
Component	<u>E</u>	XAMPI 2	<u>E LXX</u>	<u>XX</u> 4	<u>5</u>	<u>6</u>	2
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	***	_			
DEQA ³	26.6	26.6	26	<del>-</del> 26	Wt. %	Wt. % 26 —	<u>Wt. %</u>  26
-	26.6		***	_	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol,	26.6	26.6	26	<del>-</del> 26	Wt. %	Wt. % 26 —	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol,	26.6	26.6	26	<del>-</del> 26	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol,	26.6 — 4 2	26.6	26	<del>-</del> 26	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl- 1,7-Octadiene-3,6-diol,	26.6 — 4 2	26.6 — 6 —	26	<del>-</del> 26	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl-	26.6 — 4 2	26.6 — 6 —	26 6 —	<del>-</del> 26	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl- 1,7-Octadiene-3,6-diol, 2,7-dimethyl- 1,7-Octadiene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3,6-dimethyl-	26.6 — 4 2	26.6 — 6 —	26 6 —	26 6 —	<u>Wt. %</u> 26 —	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl- 1,7-Octadiene-3,6-diol, 2,7-dimethyl- 1,7-Octadiene-3,6-diol, 3,6-dimethyl-	26.6 — 4 2	26.6 — 6 —	26 6 —	26 6 —	Wt. % 26 6	Wt. % 26  4	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl- 1,7-Octadiene-3,6-diol, 2,7-dimethyl- 1,7-Octadiene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3,6-dimethyl- 2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-	26.6 — 4 2	26.6 — 6 —	26 6 —	26 6 —	Wt. % 26 6	Wt. % 26 4 2	<u>Wt. %</u>  26
DEQA ³ Ethanol Isopropanol 1,6-Octadiene-3,5-diol, 2,6-dimethyl- 1,6-Octadiene-3,5-diol, 3,7-dimethyl- 1,7-Octadiene-3,6-diol, 2,6-dimethyl- 1,7-Octadiene-3,6-diol, 2,7-dimethyl- 1,7-Octadiene-3,6-diol, 3,6-dimethyl- 1-Octene-3,6-diol, 3-ethenyl- 2,4,6-Octatriene-1,8-diol,	26.6 — 4 2	26.6 — 6 —	26 6 —	26 6 —	Wt. % 26 6	Wt. % 26 4 2	Wt. %

		- 1	63 -				
	E	XAMPL	E LXX	<u>XXI</u>			
Component	1	2	3	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁴	26.6	26.6			26	26	-
DEQA ⁵			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol 2,4-Octadiene-1,7-diol,	2	-	-		6	2	
3,7-dimethyl-	18	•					
2,5-Octadiene-1,7-diol, 2,6-dimethyl-		18		-		•	-
2,5-Octadiene-1,7-diol,			10				
3,7-dimethyl- 2,6-Octadiene-1,4-diol,	***		18				
3,7-dimethyl- (Rosiridol) 2,6-Octadiene-1,8-diol,		-	-	17	_	-	
2-methyl-		***			18	***	
2,7-Octadiene-1,4-diol, 3,7-dimethyl- 2,7-Octadiene-1,5-diol,	_			apreciate to	_	17	
2,6-dimethyl-	_		_				18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	EX	(AMPL)	E LXXX	ХII			
Component	1	2	3	4	<u>5</u>	<u>6</u>	7
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	Wt. %	<u>Wt. %</u>	Wt. %	Wt. % 26	<u>Wt. %</u>
DEQA ⁶			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2		_		6	2	<del></del> .
2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-							
Hydroxylinalool) 2,7-Octadiene-1,6-diol,	18					-	
2,7-dimethyl-		18			-		
2-Octene-1,4-diol	-		18				
2-Octene-1,7-diol 2-Octene-1,7-diol, 2-	-	***		17	-		***
methyl-6-methylene-			-		18		
1,4-pentanediol, 2,2,4- trimethyl- n-BO ₁ 3,5-Octadiene-1,7-diol,				_		17	-
3,7-dimethyl-	-						18

- 164 -

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
•	E	XAMPL	E LXXX	XIII			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQAI	26.6	26.6	***	***	26	26	_
DEQA ²			26	26			26
Ethanoi	4	6	6	6		4	6
Isopropanol	2	•			6	2	•
3,5-Octadiene-2,7-diol, 2,7-dimethyl- 3,5-Octanediol, 4-	18			-	_	e-shar	
methylene- 3,7-Octadiene-1,6-diol,	-	18		-		_	
2,6-dimethyl- 3,7-Octadiene-2,5-diol,			18	distres		-	
2,7-dimethyl- 3,7-Octadiene-2,6-diol,	-		_	17	-	-	entes .
2,6-dimethyl- 3-Octene-1,5-diol, 4-	_	-			18	***	-
methyl- 3-Octene-1,5-diol, 5-						17	
methyl-	-						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	FV	<u> </u>	FIVVV	ww.			
Component		2	3				~
Component	<u>]</u>			4	<u>5</u>	6	7
DEQA ¹	<u>Wt. %</u> 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u> —	<u>Wt. %</u> 26	Wt. % 26	Wt. %
DEQA ³			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-			6	2	
4,6-Octadiene-1,3-diol, 2,2-dimethyl- 4,7-Octadiene-2,3-diol,	18						
2,6-dimethyl- 4,7-Octadiene-2,6-diol,		18			_	-	
4,7-Octamene-2,0-moi, 2,6-dimethyl- 4-Octene-1,6-diol, 7-			18				
methyl-	-			17	•		

- 165 -

1,4-pentanediol, 2,3,3-												
trimethyl- n-BO1			-	_	18	***	_					
4-Octene-1,8-diol, 2,7- bis(methylene)- 4-Octene-1,8-diol, 2-			-			17						
methylene-			-	-			18					
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.					
EXAMPLE LXXXXV												
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2					
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ¹	26.6	26.6		_	26	26						
DEQA ⁴			26	26			26					
Ethanol	4	6	6	6		4	6					
Isopropanol	2			_	6	2	_					
5,7-Octadiene-1,4-diol,												
2,7-dimethyl-	18				-		-					
5,7-Octadiene-1,4-diol, 7-methyl-		18	•••									
5-Octene-1,3-diol		_	18									
6-Octene-1,3-diol, 7-												
methyl- 6-Octene-1,4-diol, 7-		-		17			***					
methyl-					18							
6-Octene-1,5-diol		_		-	_	17	_					
6-Octene-1,5-diol, 7- methyl-				_			18					
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.					
· · · <del>- · ·</del>												
	EX	AMPLI	E LXXX	<u>XVI</u>								
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	7					
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ¹	26.6	26.6		_	26	26						
DEQA ⁵	-		26	26		_	26					
Ethanol	4	6	6	6		4	6					
Isopropanol	2	محيد	_		6	2						
6-Octene-3,5-diol, 2-												
methyl- 6-Octene-3,5-diol, 4-	18											
methyl-		18										
-												

	• • • •	-
_	166	٠-

7-Octene-1,3-diol, 2-methyl-			10								
7-Octene-1,3-diol, 4-	200		18	***	-						
methyl- 7-Octene-1,3-diol, 7-				17							
methyl-					18	***					
7-Octene-1,5-diol 7-Octene-1,6-diol	_		-	-	-	17	- 10				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	18 0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
EXAMPLE LXXXXVII											
Component	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>				
DEQA ¹	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	Wt. %				
DEQA ⁶			26	26		20	26				
Ethanol	4	6	6	6		4	6				
Isopropanol	2	-			6	2					
7-Octene-1,6-diol, 5- methyl-	10										
7-Octene-2,4-diol, 2-	18					~					
methyl-6-methylene- 7-Octene-2,5-diol, 7-	-	18	~~	_			-				
methyl-	***	-	18								
7-Octene-3,5-diol, 2- methyl-		_		17	_	-					
1-Nonene-3,5-diol	-				18						
1-Nonene-3,7-diol 1-Nonene-3,7-diol		_			_	17	18				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005				
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.				
	EX	AMPLE	LXXXX	vm							
Component	1	2	3	4	<u>5</u>	<u>6</u>	7				
_	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	Wt. %				
DEQA ⁵	26.6	26.6	<del></del> 26	26	26	26	- 26				
DEQA ²	4	6	6	6		4	26 6				
Ethanol	2				6	2					
Isopropanol 3-Nonene-2,5-diol	18	***					-				
3-Nonene-2,5-diol		18	•••								
4,6-Nonadiene-1,3-diol, 8-methyl-			18								
•											

		·								
		- ]	167 -							
4-Nonene-2,8-diol 6,8-Nonadiene-1,5-diol 7-Nonene-2,4-diol 8-Nonene-2,4-diol				17 — —	18 —		18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE IC										
Component	1	2	3	4	<u>5</u>	<u>6</u>	1			
	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	Wt. %	<u>Wt. %</u> 26	<u>Wt. %</u> 26	<u>Wt. %</u>			
DEQA ⁵	20.0	20.0	26	26	20	20	26			
DEQA ³	4	6	6	6		4	6			
Ethanol	2				6	2				
Isopropanol 8-Nonene-2,5-diol	18				O	2				
1,9-Decadiene-3,8-diol		18	_							
1,9-Decadiene-4,6-diol	-		18	_						
bis(2-hydroxy- cyclopentyl)ether 1,2-propanediol,	_			17						
3-butyloxy-, dibutyleneoxylated 1,2-propanediol,	*****	-	•	_	18	-	-			
3-butyloxy-, tributyleneoxylated 1-(3-methylphenyl)-1,3-				•		17				
propanediol			-		-		18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
		EXAN	IPLE C							
Component	1	2	3	4	<u>5</u>	<u>6</u>	<u>7</u>			
	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. %	Wt. % 26	<u>W1. %</u>			
DEQA ⁵	20.0	20.0	26	26	20		26			
DEQA ⁴		_				4	6			
Ethanol	4	6	6	6	_	•	O			
Isopropanol 1-(4-methylphenyl)-1,3- propanediol	2 18				6	2				
2-methyl-1-phenyl-1,3-	.0	_ <del>_</del>	-							
propanediol 1,2-propanediol, 3-	-	18					gardens.			
(cyclohexyloxy)-		_	18				Np. all Np.			

DEQA1

Ethanol

		-	168 -	•						
1,2-propanediol, 3-(1-cyclohex-1-enyloxy)- 1,3-propanediol, 2-				17		<u></u>				
(pentyloxy)- 1,3-propanediol, 2-(2-				_	18	***				
pentyloxy)- 1,3-propanediol, 2-(3-	****		-			17				
pentyloxy)-							18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE CI										
Component	1	2	3	- <u>4</u>	<u>5</u>	<u>6</u>	2			
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. % 26	Wt_% 26	Wt. %			
DEQA ⁶			26	26	_	-	26			
Ethanol	4	6	6	6		4	6			
	. 2		_	· <u> </u>	6	2	_			
Isopropanol 1,3-propanediol, 2-(2-					•	•				
methyl-1-butyloxy)- 1,3-propanediol, 2-(iso-	18	-				•••				
amyloxy)- 1,3-propanediol, 2-(3-		18		***			-			
methyl-2-butyloxy)- 1,3-propanediol, 2-			18	_	-					
(cyclohexyloxy)- 1,3-propanediol, 2-(1-			-	17						
cyclohex-1-enyloxy)- 1,2-propanediol, 3-	- Charles			_	18	_				
(butyloxy)-, triethoxylated 1,2-propanediol, 3- (butyloxy)-,		-		wate	***	17				
tetraethoxylated	-		-				18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
		EXAM	PLE CII	!						
Component	1	2	<u>3</u>	• <u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>			
	Wt. %	Wt. %	<u>Vt. %</u>	<u>Wt. %</u>	Wt. %	Wt. %	<u>/</u> <u>Wt. %</u>			
DEQA6	26.6	26.6			26	26	_			

26

6

26

6

26

0.005

Bal.

1,3-dimethyl-1,3cyclohexanediol

DI Water

HCl (pH about 2-3.5)

		- 1	69 -				
Isopropanol 1,2-propanediol, 3-	2		***	****	6	2	
(butyloxy)-, pentaethoxylated 1,2-propanediol, 3-	18	-	_			<u></u> :	
(butyloxy)-, hexaethoxylated 1,2-propanediol, 3- (butyloxy)-,	-	18				-	:
heptaethoxylated 1,2-propanediol, 3-			18	_	-		-
(butyloxy)-, octaethoxylated 1,2-propanediol, 3- (butyloxy)-,	*******		-	17			
nonaethoxylated	_		_		18	_	
2,6-octanediol	_					17	
3,5-octanediol		_		_		_	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE CU	<u>I</u>			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6		-	26	26	
DEQA ²			26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol 4,4-dimethyl-1,2-	2		•	-	6	2	_
cyclopentanediol 4-ethyl-1,2-	18			_			
cyclopentanediol 1,1-bis(hydroxymethyl)-		18	-				_
cyclohexane 1,2-bis(hydroxymethyl)-			18				
cyclohexane 1,2-dimethyl-1,3-	<i>-</i>			17			
cyclohexanediol 1,3-bis(hydroxymethyl)-					18		
cyclohexane						17	

0.005

Bal.

0.005

Bal.

0.005

Bal.

0.005

Bal.

0.005

Bal.

0.005

Bal.

- 170 -

		EXAM	PLE CI	$\underline{\mathbf{v}}$			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ³	26.6	26.6		-	26	26	
DEQA ¹		•	26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol 1,6-dimethyl-1,3-	2				6	2	
cyclohexanediol 1-hydroxy-	18					-	
cyclohexaneethanol 1-hydroxy-		18					~~
cyclohexanemethanol 1-ethyl-1,3-		-	18	-		*****	-
cyclohexanediol 1-methyl-1,2-		-		17		-	-
cyclohexanediol 2,2-dimethyl-1,3-		-			18	_	
cyclohexanediol 2,3-dimethyl-1,4-	natura .			•	_	17	
cyclohexanediol		_		-	-		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bai.	Bal.	Bal.	Bal.
		EXAM	PLE CV	<u>'</u>			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
DEQA ¹	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>	<u>Wt. %</u> 26	Wt. %	<u>Wt. %</u>
DEQA ⁴			26	26			26
Ethanol	4	6	6	6		4	6
	2	_	_		6	2	U
Isopropanol 2,4-dimethyl-1,3-		_			0	2	
cyclohexanediol 2,5-dimethyl-1,3-	18					-	****
cyclohexanediol 2,6-dimethyl-1,4-	_	18					
cyclohexanediol 2-ethyl-1,3-			18				
cyclohexanediol 2-hydroxycyclohexane-				17	-		_
ethanol 2-hydroxyethyl-1-			***		18	***	
cyclohexanol 2-hydroxymethyl-						17	
cyclohexanol					****		-18

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		<b>EXAM</b>	PLE CV	I		•	
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	***		26	26	
DEQA ⁵			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	_			6	2	_
3-hydroxyethyl-1-						•	
cyclohexanol 3-hydroxycyclohexane-	18			-			
ethanol		18		_		_	
3-hydroxymethyl-							
cyclohexanol 3-methyl-1,2-		-	18				
cyclohexanediol				17		-	
4,4-dimethyl-1,3-							
Cyclohexanediol 4,5-dimethyl-1,3-	-	-		_	18		
cyclohexanediol	-				-	17	****
4,6-dimethyl-1,3-							
cyclohexanediol	-						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bai.	Bal.	Bal.	Bal.	Bal.	Bal.
		EV A BAT	LE CV	rir			
Component		<u> 2</u>	<u>1E C V )</u>		•	:	7
Component	<u>l</u> Wt. %	∠ Wt. %	<u>Wt. %</u>	<u>4</u> <u>Wt. %</u>	<u>5</u> Wt. %	<u>6</u> Wt. %	7 Wt. %
DEQA ¹	26.6	26.6	<u></u>	<u>VV1. 70</u>	26	26	<u>vv t. 76</u>
DEQA ⁶	•		26	26			26
Ethanol	4	6	6	6		4	6
	2			-	6	2	
Isopropanol 4-ethyl-1,3-							
cyclohexanediol	18						
4-hydroxyethyl-1-		10					
cyclohexanol 4-hydroxymethyl-	_	18		-			
cyclohexanol			18				-
4-methyl-1,2-	•						
cyclohexanediol	-			17		-	•

- 172 -

5,5-dimethyl-1,3- cyclohexanediol 5-ethyl-1,3-			u-mus		18		·
cyclohexanediol					-	17	
1,2-cycloheptanediol	****			-		-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	PLE CV	Ш			
Component	1	2	3		<u>5</u>	<u>6</u>	7
DEQA6	Wt. % 26.6	Wt. % 26.6	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵			26	26		***	26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-	_		6	2	مشه
2-methyl-1,3- cycloheptanediol 2-methyl-1,4-	18		_				
cycloheptanediol 4-methyl-1,3-		18			-		
cycloheptanediol 5-methyl-1,3-		-	18		-		_
cycloheptanediol 5-methyl-1,4-				17			***
cycloheptanediol 6-methyl-1,4-		_			18		
cycloheptanediol 1,3-cyclooctanediol		_				17	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	0.003 Bal.	Bal.	Bal.	0.005 Bal.
		EXAM	PLE CD	<u>K</u>			
Component	1	2	3	- <u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	
DEQA ²			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	. 2		***		6	2	
1,4-cyclooctanediol	18						-
1,5-cyclooctanediol 1,2-cyclohexanediol,		18	-				
diethoxylate		_	18		-		

		- 1	13 -				
1,2-cyclohexanediol, triethoxylate 1,2-cyclohexanediol,	· —			17			
tetraethoxylate 1,2-cyclohexanediol,	-		•		18		-
pentaethoxylate 1,2-cyclohexanediol,						17	
hexaethoxylate		-					18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE CX				
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	
DEQA ³		_	26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2	•			6	2	<del>-</del> -
1,2-cyclohexanediol,						•	
heptaethoxylate 1,2-cyclohexanediol,	18	_				-	
octaethoxylate		18	-	_	-	-	
1,2-cyclohexanediol,							
nonaethoxylate 1,2-cyclohexanediol,			18				
monopropoxylate	***	-		17		_	
1,2-cyclohexanediol, monobutylenoxylate				_	18	_	-
1,2-cyclohexanediol, dibutylenoxylate		_				17	_
1,2-cyclohexanediol,							
tributylenoxylate							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAM	PLE CX	Ī			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>
DEQA ⁴	26.6	26.6		-	26	26	***
DEQA ⁵			26	26	_		26
Ethanol	2.3	6	6	6		4	6
Isopropanol	-			_	6	2	
1,2-hexanediol	16	10		8		***	
1-phenyl-1,2-propanediol		18					

		-	174 -				
2-phenyl-1,2-propanediol			18	8	***		
3-phenyl-1,2-propanediol					18		
1-(3-methylphenyl)-1,3- propanediol							
1-(4-methylphenyl)-1,3-	***					18	
propanediol	•						18
MgCl ₂	0.125		***				
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
			PLE CX	П			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA	26.6	26.6	_		26	26	-
DEQA ⁶	-	_	26	26			26
Ethanol	. 6	6	6	6		4	6
Isopropanol			-		6	2	
2-methyl-1-phenyl-1,3- propanediol	10						
1-phenyl-1,3-butanediol	18	18	-	***	•		
3-phenyl-1,3-butanediol			18				
1-phenyl-1,4-butanediol	-			18			
2-phenyl-1,4-butanediol			~~		18		
1-phenyl-2,3-butanediol			•••			18	
1,2-propanediol, 3- phenyloxy-							10
MgCl ₂	0.125			***			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.006	0.006		0.005
DI Water	Bal.		0.005	0.005	0.005	0.005	0.005
DI Watti	Dai.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	]	EXAMP	LE CXI	ū			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26.6	26.6	
DEQA ²			26.6	26.6		~~~	26.6
Ethanol	4	6	4	6		4	6
Isopropanol					6	2	
Propylene carbonate	2		2		to grin		
1,2-propanediol, 3-							
benzyloxy-	18						-

- 175 -

1,2-propanediol, 3-(2-phenylethyloxy)-	•••	18					-
1,2-propanediol, 3-(1-phenyl-2-propanyloxy)- 1,3-propanediol, 2-	****		18	***	***		
phenyloxy- 1,3-propanediol, 2-(m-			-	18	•••		-
cresyloxy)- 1,3-propanediol, 2-(p-			***		18		
cresyloxy)-		-	***	~~~		18	
1,3-propanediol, 2- benzyloxy-							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE CX	<u>v</u>			
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6		-	26	26	
DEQA ³			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	_
1,3-propanediol, 2-(2-							
phenylethyloxy)-	18						
1,3-propanediol, 2-(1- phenylethyloxy)-		18					
1,3-butanediol, 3-methyl-		10					
2-isopropyl- PO ₁	***		18				
2,4-pentanediol, 2,3,3-							
trimethyl- PO ₁ 1,3-butanediol, 2,2-				17		••-	****
diethyl- n-BO ₂					18		
1,3-butanediol, 2,2-				<del></del>	10		
diethyl- E ₄						17	
1,3-butanediol, 2-ethyl-		•	•				
2,3-dimethyl n-BO ₁			-	***			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		<u>EXAMI</u>	PLE CX	<u>v</u>	**		
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6		-	26	26	

		•	170 -				
DEQA ⁴			26	26		-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2			-	6	2	
1,3-butanediol, 2-				•			
methyl-2-isopropyl- n- BO ₁	18				•		
1,3-pentanediol, 2,2,3-							
trimethyl- n-BO ₁		18		-		-	
1,3-pentanediol, 2,2,4-							
trimethyl- n-BO ₁	***		18	-	<b></b> ,		
2,4-hexanediol, 2,3-							
dimethyl- n-BO ₂ 2,4-hexanediol, 2,3-	-		-	17			
dimethyl- E ₄					10		
2,4-hexanediol, 2,4-				***	18		
dimethyl- n-BO ₁			-	***	***	17	
2,4-hexanediol, 2,4-						• •	
dimethyl- E ₃	****						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMP		<u>/I</u>			
Component	1	2	3	<u>4</u>	<u>5</u>	<u>6</u>	2
					<u>5</u> Wt. %	<u>6</u> Wt. %	7 Wt. %
DEQA	1	2	3	4			
	1 <u>Wt. %</u>	2 Wt. %	3	4	Wt. %	Wt. %	
DEQA	1 <u>Wt. %</u>	2 Wt. %	3 Wt. %	4 Wt. %	Wt. %	Wt. %	<u>Wt. %</u>
DEQA ^I DEQA ⁵ Ethanol Isopropanol	1 <u>Wt. %</u> 26.6	2 Wt. % 26.6	3 Wt. % - 26	4 Wt. %  26	Wt. %	<u>Wt. %</u> 26 —	<u>Wt. %</u>  26
DEQA ^I DEQA ⁵ Ethanol Isopropanol 2,4-bexanediol, 2,5-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6	3 Wt. % - 26	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂	1 <u>Wt. %</u> 26.6 - 4	2 Wt. % 26.6	3 Wt. % - 26	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl-n-BO ₂ 2,4-hexanediol, 2,5-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. % - 26	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-bexanediol, 2,5-dimethyl- n-BO ₂ 2,4-bexanediol, 2,5-dimethyl- E ₄	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6	3 Wt. % - 26	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl-n-BO ₂ 2,4-hexanediol, 2,5-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. % - 26	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂ 2,4-hexanediol, 2,5-dimethyl- E ₄ 2,4-hexanediol, 3,3-dimethyl- n-BO ₂ 2,4-hexanediol, 3,3-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂ 2,4-hexanediol, 2,5-dimethyl- E ₄ 2,4-hexanediol, 3,3-dimethyl- n-BO ₂ 2,4-hexanediol, 3,3-dimethyl- E ₃	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂ 2,4-hexanediol, 2,5-dimethyl- E ₄ 2,4-hexanediol, 3,3-dimethyl- n-BO ₂ 2,4-hexanediol, 3,3-dimethyl- E ₃ 2,4-hexanediol, 3,4-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26 6  	Wt. % 26 6	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂ 2,4-hexanediol, 2,5-dimethyl- E ₄ 2,4-hexanediol, 3,3-dimethyl- n-BO ₂ 2,4-hexanediol, 3,3-dimethyl- E ₃ 2,4-hexanediol, 3,4-dimethyl- n-BO ₂	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26 6  	<u>Wt. %</u> 26 —	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-hexanediol, 2,5-dimethyl- n-BO ₂ 2,4-hexanediol, 2,5-dimethyl- E ₄ 2,4-hexanediol, 3,3-dimethyl- n-BO ₂ 2,4-hexanediol, 3,3-dimethyl- E ₃ 2,4-hexanediol, 3,4-dimethyl- n-BO ₂ 2,4-hexanediol, 3,4-dimethyl- n-BO ₂ 2,4-hexanediol, 3,4-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26 6  	Wt. % 26 6	Wt. % 26 4 2	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-bexanediol, 2,5- dimethyl- n-BO ₂ 2,4-bexanediol, 2,5- dimethyl- E ₄ 2,4-bexanediol, 3,3- dimethyl- n-BO ₂ 2,4-bexanediol, 3,3- dimethyl- E ₃ 2,4-bexanediol, 3,4- dimethyl- n-BO ₂ 2,4-bexanediol, 3,4- dimethyl- n-BO ₂ 2,4-bexanediol, 3,5-	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26 6  	Wt. % 26 6	Wt. % 26 - 4	<u>Wt. %</u>  26
DEQA ¹ DEQA ⁵ Ethanol Isopropanol 2,4-bexanediol, 2,5-dimethyl- n-BO ₂ 2,4-bexanediol, 2,5-dimethyl- E ₄ 2,4-bexanediol, 3,3-dimethyl- n-BO ₂ 2,4-bexanediol, 3,3-dimethyl- E ₃ 2,4-bexanediol, 3,4-dimethyl- n-BO ₂ 2,4-bexanediol, 3,4-dimethyl- n-BO ₂ 2,4-bexanediol, 3,4-dimethyl- E ₄	1 Wt. % 26.6 - 4 2	2 Wt. % 26.6 — 6 —	3 Wt. %  26 6 	4 Wt. %  26 6  	Wt. % 26 6	Wt. % 26 4 2	<u>Wt. %</u>  26

- 177 -

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
EXAMPLE CXVII										
Component	1	2	3	4	<u>5</u>	<u>6</u>	7			
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %			
DEQA ⁵	26.6	26.6	-		26	26				
DEQA ²			26	26		-	26			
Ethanol	4	6	6	6	***	4	6			
Isopropanol	2		~		6	2				
2,4-hexanediol, 3,5- dimethyl- E ₃	18						-			
2,4-hexanediol, 4,5-	10									
dimethyl- n-BO ₂	***	18								
2,4-hexanediol, 4,5- dimethyl- E ₄			10							
2,4-hexanediol, 5,5-			18							
dimethyl- n-BO2				17						
2,4-hexanediol, 5,5-										
dimethyl- E ₃ 2,5-hexanediol, 2,3-				***	18					
dimethyl- n-BO ₁				-		17				
2,5-hexanediol, 2,3-										
dimethyl- E ₄							18			
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005			
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.			
	-		E CRIS	***						
		XAMPI			_		9			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7			
	Wt. %	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	<u>Wt. %</u>			
DEQA ⁵	26.6	26.6			26	26	 26			
DEQA ³		_	26	26			26			
Ethanol	4	6	6	6		4	6			
Isopropanol 2,5-hexanediol, 2,4-	2	-	_		6	2				
dimethyl- n-BO ₁	17			***						
2,5-hexanediol, 2,4-		,								
dimethyl- E ₄		18			***					
2,5-hexanediol, 2,5- dimethyl- n-BO ₂			18							
Thinking I was a	<del></del>		10							

PCT/US96/11556

WO 97/03169	PCT/U

		- 1	178 -				
2,5-hexanediol, 2,5-dimethyl- E ₄ 2,5-hexanediol, 3,3-	Standard Nov			18	<del></del>		
dimethyl- n-BO ₁					17		
2,5-hexanediol, 3,3-dimethyl- E ₄ 2,5-hexanediol, 3,4-						18	
dimethyl- n-BO ₂							18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMP	LE CXI	x			
Component	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	<u>Wt. %</u>	Wt. %	Wt. %	<u>⊻</u> Wt. %	<u></u> <u>Wt. %</u>
DEQA ⁵	26.6	26.6	-		26	26	
DEQA ⁴			26	26	_		26
Ethanol	4	6	6	6		4	6
Isopropanol 2,5-hexanediol, 3,4-	2				6	2 .	
dimethyl- E ₄ 3,5-heptanediol, 3-	18	-		•			
methyl- n-BO ₁ 3,5-heptanediol, 3-		18		***		***	
methyl-E ₃			18	***			
1,3-propanediol, 2-(1,2-dimethylpropyl)- E ₃ 1,3-butanediol, 2-ethyl-				17			
2,3-dimethyl- E ₃ 1,3-butanediol, 2-methyl-			***	***	18	***	
2-isopropyl- E ₃ 1,4-butanediol, 3-methyl-					***	17	
2-isopropyl- E ₃	•						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
		EXAMI	LE CX	<u>K</u>			
Component	1	<u>2</u>	3	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA1	26.6	26.6	_		26	26	
DEQA6	_		26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2			-	6	2	

1,3-pentanediol, 2,2,3- trimethyl- E ₃	. 18			para			, <del>.</del>		
1,3-pentanediol, 2,2,4- trimethyl- E ₃		18	•••						
1,3-pentanediol, 2,4,4- trimethyl- E ₃	-	***	18		,		***		
1,3-pentanediol, 3,4,4- trimethyl- E ₃	***		-	17					
1,4-pentanediol, 2,2,3- trimethyl- E ₃ 1,4-pentanediol, 2,2,4-				art reprise	18				
trimethyl- E ₃	***	•••	•			17			
1,4-pentanediol, 2,3,3- trimethyl- E ₃	***		-				18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE CXXI									
Component	1	2	3		<u>5</u>	<u>6</u>	<u>7</u>		
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %		
DEQA ¹	26.6	26.6	-	_	26	26			
DEQA ²			26	26	-	_	26		
Ethanol	4	6	6	6		4	6		
Isopropanol	2		-		6	2			
1,4-pentanediol, 3,3,4-	_				•	_			
trimethyl- E ₃	18	_				•	***		
1,3-pentanediol, 2,4,4- trimethyl- n-BO ₁		10							
2,4-pentanediol, 2,3,4-		18		~~	***	-	-		
trimethyl- E ₃	•••		18						
1,3-pentanediol, 3,4,4-									
trimethyl- n-BO ₁				17					
1,3-propanediol, 2- (1,2-dimethylpropyl)-					18				
n-BO ₁									
2,4-hexanediol, 4-						17			
ethyl- E ₂ 2,4-hexanediol, 4-						* '			
ethyl- E ₂							18		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		

- 180 -

EXA	MPL	EC	XXII

	•	224 11 14114					
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6	-		26	26	
DEQA ³			26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	_
2,4-heptanediol, 2-	10						,
methyl- E ₂ 2,4-heptanediol, 3-	18	***	****	-			
methyl- E ₂	•••	18		***			-
2,4-heptanediol, 4-							
methyl- E ₂			18			<del></del>	
2,4-heptanediol, 5- methyl- E ₂				17			
2,4-heptanediol, 6-	<b></b>			1,			
methyl- E ₂		***			18		
2,5-heptanediol, 2-							
methyl- E ₂ 2,5-heptanediol, 3-						17	
methyl- E ₂			***				18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	-						
	<u> </u>	XAMPI	LE CXX	<u>m</u>			
Component	1	2	3	4	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQAl	26.6	26.6	-		26	26	-
DEQA ⁴	-	_	26	26			26
Ethanol	4	6	6	6		4	6
Isopropanol	2		***		6	2	
2,5-heptanediol, 4-							
methyl- E ₂ 2,5-heptanediol, 5-	18			<b></b> ,			***
methyl- E ₂	***	18					
2,5-heptanediol, 6-							
methyl- E ₂			18	***			***
2,6-heptanediol, 2-				17			
methyl- E ₂ 2,6-heptanediol, 3-	ii ne		~~~	17			
methyl- E ₂	-				18		
2,6-heptanediol, 4-							
methyl- E ₂						17	

- 181 -

3,5-heptanediol, 2- methyl- E ₂	-		***	***			18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bai.	Bal.	Bal.	Bal.	Bal.	
			•					
	I	XAMP	LE CXX	IV				
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	2	
_	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	
DEQAI	26.6	26.6			26	26		
DEQA ⁵	-		26	26		_	26	
Ethanol	4	6	6	6		4	6	
Isopropanol 1,4-butanediol, 3-	2				6	2		
methyl-2-isopropyl- n-BO ₁	18							
1,4-pentanediol, 2,2,3- trimethyl- n-BO ₁ 2,4-hexanediol, 4-ethyl-		18		•••	-	·	-	
n-BO ₁ 2,4-hexanediol, 4-ethyl-		***	18			***		
n-BO ₁ 2,4-heptanediol, 2-		***		17		***	***	
methyl- n-BO ₁ 2,4-heptanediol, 3-				***	18	45000		
methyl- n-BO ₁ 2,4-heptanediol, 4-		***		<del></del>	***	17		
methyl- n-BO _I							18	
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005	
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	
EXAMPLE CXXV								
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	
DEQA ¹	26.6	26.6	_		26	26		
DEQA ⁶			26	26			26	
Ethanol	4	6	6	6		4	6	
Isopropanol 2,4-heptanediol, 5-	2		_	•	6	2		
methyl- n-BO ₁ 2,4-heptanediol, 6-	18			in again				
methyl- n-BO ₁	***	18		~~~	***			

WO 97/03169 PCT/US96/11556

- 182 -

		-	184 -				
2,5-heptanediol, 2- methyl- n-BO ₁	•••		18				
2,5-heptanediol, 3-			10				
methyl-n-BO ₁			***	17		<u> </u>	
2,5-heptanediol, 4-							
methyl- n-BO ₁ 2,5-heptanediol, 5-		***			18		
methyl- n-BO ₁ 2,5-heptanediol, 6-	-	***				17	
methyl- n-BO ₁					***		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	1	EXAMP	LE CXX	VI			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ²	26.6	26.6		_	26	26	
DEQA ⁵	-		26	26	_	_	26
Ethanol	4	6	6	6		4	6
Isopropanol	2				6	2	***
2,6-heptanediol, 2- methyl- n-BO ₁	18						
2,6-heptanediol, 3-	10		***				
methyl- n-BO ₁		18				***	
2,6-heptanediol, 4-			10				
methyl- n-BO ₁ 3,5-heptanediol, 2-			18	***		***	
methyl- (C8) n-BO ₁				17			
1,2-hexanediol					8	8	8
1,3-pentanediol, 2,2,4- trimethyl-				•	0	•	
1,3-hexanediol, 2-ethyl-					8	8	8
Perfume	1.2	1.35		1.35			
HCl (pH about 2-3.5)							
DI Water	Bal.		Bal.				
	E	XAMPL	E CXX	VIII			
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
	Wt. %			Wt. %		Wt. %	Wt. %
DEQA ³	26.6	26.6			26.6	26.6	
DEQA ⁵							26
Ethanol	4	2.3	6	4	-	4	2

Isopropanol			-		4	-	2		
1,2-hexanediol	10	10	10	10	12	9	9		
1,3-propanediol, 2-ethyl-	7								
1,3-propanediol, 2- methyl-2-propyl-		8				•			
1,3-butanediol, 2,3-		0							
dimethyl-			6		-				
1.3-pentanediol, 2-									
methyl-				7					
2.4-pentanediol, 2- methyl-			_		6				
2,4-hexanediol			_			8	-		
2,4-hexanediol, 5-									
methyl-	-					_	8		
Perfume	1	1	1	1.35	1.35	1.35	1.2		
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.		
EXAMPLE CXXVIII									
Component	1	2	3	4	<u>5</u>	<u>6</u>	2		
Component	<u>1</u> Wt. %	<u>2</u> Wt. %	<u>3</u> Wt. %	<u>4</u> Wt. %	<u>5</u> Wt. %	<u>6</u> Wt. %	7 Wt. %		
	Wt. %	Wt. %	3 <u>Wt. %</u>	4 <u>Wt. %</u>	Wt. %	Wt. %	7 <u>Wt. %</u>		
DEQA ⁴			<u>Wt. %</u>	<u>Wt. %</u>			<u>Wt. %</u>		
DEQA ⁴ DEQA ⁵	<u>Wt. %</u> 26.6	Wt. % 26.6	<u>Wt. %</u> — 26	<u>Wt. %</u> 	Wt. %	<u>Wt. %</u> 26 —	<u>Wt. %</u> — 26		
DEQA ⁴ DEQA ⁵ Ethanol	Wt. %	Wt. %	<u>Wt. %</u>	<u>Wt. %</u> 26 4	Wt. %	Wt. % 26 — 4	<u>Wt. %</u>		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol	<u>Wt. %</u> 26.6	Wt. % 26.6	<u>Wt. %</u> — 26	<u>Wt. %</u> 	Wt. %	<u>Wt. %</u> 26 —	<u>Wt. %</u> — 26		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4-	Wt. % 26.6 — 4	Wt. % 26.6	<u>Wt. %</u> 26 4	<u>Wt. %</u> 26 4	Wt. % 26	Wt. % 26 4 2	<u>Wt. %</u> — 26		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol	<u>Wt. %</u> 26.6	Wt. % 26.6	<u>Wt. %</u> — 26	<u>Wt. %</u> 26 4	Wt. %	Wt. % 26 — 4	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	<u>Wt. %</u> 26 4	<u>Wt. %</u> 26 4	Wt. % 26	Wt. % 26 4 2	<u>Wt. %</u> — 26		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl-	Wt. % 26.6 — 4	Wt. % 26.6 4	<u>Wt. %</u> 26 4	Wt. %	Wt. % 26	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	<u>Wt. %</u> 26 4	Wt. %	Wt. % 26	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl- 2.4-pentanediol, 2-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26 10	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl- 2.4-pentanediol, 2- methyl-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26	Wt. % 26 4 2 10	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl- 2.4-pentanediol, 2- methyl- 2,4-hexanediol	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26 10	Wt. % 26 4 2	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl- 2.4-pentanediol, 2- methyl- 2,4-hexanediol 2,4-hexanediol 5-	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26 10	Wt. % 26 4 2 10	Wt. %		
DEQA ⁴ DEQA ⁵ Ethanol Isopropanol 1,3-pentanediol, 2,2,4- trimethyl- 1,3-pentanediol, 2,2,4- trimethyl- E ₂ 1,3-propanediol, 2-ethyl- 1,3-butanediol, 2,3- dimethyl- 1.3-pentanediol, 2- methyl- 2.4-pentanediol, 2- methyl- 2,4-hexanediol	Wt. % 26.6 4 10	Wt. % 26.6 4 - 10	Wt. %	Wt. %	Wt. % 26 10	Wt. % 26 4 2 10	Wt. %		

Bal.

Bal.

DI Water

Bal.

Bal.

Bal.

Bal.

Bal.

TO 4.7		TWO T	7 ~ ×	CXTX
M X				
	C 171			$\Delta$

	_						
Component	1	2	<u>3</u>	4	5	<u>6</u>	2
1	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁸ (Hydroxyethyl							
Ester Quat)	29.8	29.8	29.8	•	29.8	29.8	
DEQA ⁹ (Propyl Ester	****			29.6			29.6
Quat)							
Ethanol	2	2	2	***		3	2
Isopropanol	-			2	2		
1,2-hexanediol	16		***	17	8	8	8
1,3-hexanediol, 2-ethyl-		16			8		8
1,3-pentanediol, 2,2,4-							
trimethyl-	-		16		-	8	
CaCl ₂		0.125	•	-			
MgCl ₂	-	_	0.125				-
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

DEQA⁸ Di(acyloxyethyl) (2-hydroxyethyl) methyl ammonium methyl sulfate wherein the acyl group is the same as that of DEQA¹, about 89.4% active in ethanol.

DEQA⁹ 1,2-Di(oleoyloxy)-3-trimethylammoniopropane chloride wherein the acyl group is the same as that of DEQA⁵, about 88% active in ethanol.

# **EXAMPLE CXXX**

	•						
Component	1	2	<u>3</u>	4	5	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹	26.6	26.6			26	26	
DEQA ⁶	-		26	26		<del></del>	26
Ethanol	4	6	6	6	4	7000	4
1,2-hexanediol	9	8	10	8		10	9
1,3-propanediol, 2,2,4-							
trimethyl- 1,2-propanediol, 3-(n-	ARQue.	-	-	-	9	-	
pentyloxy)-	8				_		-
1,2-propanediol, 3-	_					-	
cyclohexyloxy-		8				_	
bis(2-hydroxybutyl) ether							
		***	6				
1,2-propanediol, 3-							
benzyloxy-		***		8	-		
1,2-bis(hydroxymethyl)-							
cyclohexane	-	****			8		

- 185 -

1,2-propanediol, 2- phenyl- 2,6-octadiene-1,4-diol,		***		-		· ·	
3,7-dimethyl- CaCl ₂	_					0.25	8
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	I	XAMPI	LE CXX	<u>XI</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>7</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ³	26.6	26.6			26	26	
DEQA ¹		-	26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol	2	-		_	6	2	
2,5-heptanediol PO	18						
2,5-heptanediol n-BO ₃ 2,6-heptanediol E ₇	•	18	18	•			-
2,6-heptanediol (Me-E ₁ )	_			17	_	_	
2,6-heptanediol PO ₁					18		
2,6-heptanediol n-BO ₃	_		_	_		17	
2,7-heptanediol E ₇	•	_	-		•••		18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	<u>E</u>	<u>XAMPI</u>	E CXX	<u>XII</u>			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ⁵	26.6	26.6			26	26	-
DEQA ⁶	_		26	26	-		26
Ethanol	4	6	6	6		4	6
Isopropanol	2			-	6	2	
2,7-heptanediol (Me-E ₁ )	18	_	-				
2,7-heptanediol PO ₁		18	10	-	-		
2,7-heptanediol n-BO ₃ 1,3-propanediol, 2,2-			18			-	
diethyl-n-BO2				17	***		
1,3-propanediol, 2-(1- methylpropyl)- n-BO ₂		-		***	18	_	•
1,3-propanediol, 2-(2- methylpropyl)- n-BO ₂	_					17	-
1,3-butanediol, 2-ethyl- 2-methyl- n-BO ₃		-	-				18

HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.					
EXAMPLE CXXXIII												
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2					
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ¹	26.6	26.6	•••	****	26	26						
DEQA ⁴		-	26	26		****	26					
Ethanol	4	6	6	6	-	4	6					
Isopropanol	2		***	-	6	2	-					
1,3-propanediol, 2- methyl-2-isopropyl- n- BO ₂ 1,3-propanediol, 2-	18	-					****					
methyl-2-propyl-n-BO ₂		18			***							
1,2-butanediol (Me-E ₆ ) 1,2-butanediol PO ₂	-		18			***						
1,2-butanediol BO ₁				17	18							
1,2-butanedial, 2,3-												
dimethyl E ₄ 1,2-butanediol, 2,3-						17	***					
dimethyl n-BO ₁			***		-		18					
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005					
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.					
	<u>E</u>	KAMPL	E CXXX	<u>(IV</u>								
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	2					
	<u>W1. %</u> 26.6	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %					
DEQA ⁵	20.0	26.6	26	24	26	26						
DEQA ³			26	26		-	26					
Ethanol	4	6	6	6		4	6					
Isopropanol	2				6	2						
1,3-butanediol, 2-ethyl- 3-methyl- n-BO ₃ 1,3-butanediol, 2-	18		-				-					
isopropyl- n-BO ₃ 1,3-butanediol, 2-propyl-		18	•	_		****	-					
n-BO ₃ 1,4-butanediol, 2,2,3-	-		18									
trimethyl- n-BO ₂ 1,4-butanediol, 2-ethyl-				17			-					
2-methyl- n-BO ₂	***	***	-		18							

- 187 -

1,4-butanediol, 2-ethyl- 3-methyl- n-BO ₂ 1,4-butanediol, 2-	. <del></del>			_		17	
isopropyl- n-BO ₂	***					-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bai.	Bal.
	E	XAMPI	LE CXX	<u>xv</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
DEQA ⁵	Wt. % 26.6	Wt. % 26.6	Wt. %	<u>Wt. %</u>	Wt. % 26	<u>Wt. %</u> 26	<u>Wt. %</u>
DEQA ⁴			26	26	-	-	26
Ethanol	4	6	6	6		4	6
Isopropanol	2	_		_	6	2	
1,4-butanediol, 2-propyl- n-BO ₁ 1,3-pentanediol, 2,4-	18	-			-	_	_
dimethyl- n-BO ₃ 1,3-pentanediol, 2-ethyl-	-	18		***	-	_	
n-BO ₂ 1,3-pentanediol, 3,4-	•••	_	18	-		<del>atala</del>	-
dimethyl- n-BO ₃ 1,3-pentanediol, 4,4-		-		17	-	***	
dimethyl- n-BO ₃ 1,3-pentanediol, 4-	•	-		_	18	***	
methyl- (Me-E ₅ ) 1,4-pentanediol, 2,2-		-	_	-	_	17	
dimethyl- n-BO3		_	_				18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	<u>E</u> :	XAMPL	E CXXX	<u>(VI</u>		•	
Component	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7
DEQA ²	Wt. % 26.6	Wt. % 26.6	Wt. %	<u>Wt. %</u>	Wt. % 26	<u>Wt. %</u> 26	<u>Wt. %</u>
DEQA ¹			26	26		÷	26
Ethanol	4	6	6	6	_	4	6
Isopropanol	2			_	6	2	
1,4-pentanediol, 2,3- dimethyl- n-BO ₃	18		-			***	
1,4-pentanediol, 2,4-dimethyl-n-BO ₃		18			_		

Ethanol

	1	00	
•	-1	ለለ	•

		_	100 -				
1,4-pentanediol, 3,3- dimethyl- n-BO ₃ 1,4-pentanediol, 3,4-	****		18				
dimethyl- n-BO ₃ 1,5-pentanediol, 2,2-	4	-	****	17	_	_	-
dimethyl- n-BO ₂ 1,5-pentanediol, 2,3-			***		18		***
dimethyl- n-BO ₂ 1,5-pentanediol, 2,4- dimethyl- n-BO ₂			-	****	-	17	
HCl (pH about 2-3.5)	0.005	0.005	0.005				18
DI Water	Bal.	Bal.	Bal.	0.005	0.005	0.005	0.005
	va.	Dai.	Dau.	Bal.	Bal.	Bal.	Bal.
	<u>E</u>	XAMPL	E CXX	<u>KVII</u>			
Component	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	2
DEQA ³	Wt. % 26.6	<u>Wt. %</u> 26.6	<u>Wt. %</u>	<u>Wt. %</u>	Wt. % 26	Wt. % 26	Wt. %
DEQA ¹			26	26		_	26
Ethanol	4	6	6	6		4	6
Isopropanol 1,5-pentanediol, 2-ethyl-	2			_	6	2	, <del>-</del>
n-BO ₁ 1,5-pentanediol, 3,3-	18		****				
dimethyl- n-BO ₂ 1,3-hexanediol, 2-		8			-	-	
methyl- n-BO ₂ 1,3-hexanediol, 3-	-	-	18			-	· —
methyl- n-BO ₂ 1,3-hexanediol, 4-	_	-		17		_	
methyl- n-BO ₂ 1,3-hexanediol, 5-	_			-	18	-	_
methyl- n-BO ₂ 1,4-hexanediol, 2-				•		17	
methyl- n-BO ₂	****		-			-	18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.
	EX	AMPLE	CXXX	<u>VIII</u>			
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7
prov1	Wt. % 26.6	Wt. % 26.6	<u>Wt. %</u>	<u>Wt. %</u>			Wt. %
DEQA ¹	<b>20.0</b>	20.0	26	26	26	26	26
DEQA ⁴		_	20	20	****	_	26

•	_						
Isopropanol	2		-		6	2	_
1,4-hexanediol, 3-	•						
methyl- n-BO ₂	18		_		-		
1,4-hexanediol, 4-							
methyl- n-BO2	_	18		-			
1,4-hexanediol, 5-							
methyl- n-BO ₂	_		18				
1,5-hexanediol, 2-							
methyl- n-BO ₂				17			
1,5-bexanediol, 3-							
methyl- n-BO ₂					18		-
1,5-hexanediol, 4-							
methyl-n-BO ₂		_	-			17	-
1,5-hexanediol, 5-							
methyl-n-BO ₂	-						18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.						

# **EXAMPLE CXXXIX**

				_		
Component	1	<u>2</u>	<u>3</u>	4	<u>5</u>	<u>6</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ²	26.6	26.6		26.6	26.6	
DEQA ⁵			26			26
Ethanol	4	6	6	4	6	6
Isopropanol	2	_		2	_	_
1,6-hexanediol, n-BO ₄	18		-	-		
1,6-hexanediol, 2- methyl- n-BO ₁	_	18	_			
1,6-hexanediol, 3- methyl- n-BO ₁	_		18	•		_
1,4-pentanediol, 2,3,4-dimethyl-	_	-	-	18		
1,4-pentanediol, 2,3,4- dimethyl- n-BO ₁ 1,4-pentanediol, 2,3,4-	_		_	_	18	_
dimethyl- E ₃			_			18
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.	Bal.

# **EXAMPLE CXXXX**

	1	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	Z
Component	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹		9.1	_	9.1			
DEOA ⁵	•••	_	9.1		9.1		

DEQA ¹⁰	17.7				***		
DEQA ¹¹	8.3				_		***
DEQA ¹²		16.9	16.9			_	
DEQA ¹³			****	16.9	-		
DEQA ¹⁴	_				16.9	-	
DEQA ¹⁵						26	-
DEQA ¹⁶					-		26
Ethanol	6.6	6.6	6.6	6.6	6.6	6.6	6.6
1,2-hexanediol	17	17	17	17	17 .	17	17
HCl (pH about 2-3.5)	0.005	0.005	0.005	0.005	0.005	0.005	0.005
DI Water	Bal.						

DEQA¹⁵: N,N-di(acyloxyethyl)-N,N-dimethyl ammonium chloride, wherein acyl group is derived from a mixture of partially hydrogenated soya fatty acid (fatty acid of DEQA¹⁰) and slightly hydrogenated tallow fatty acid (fatty acid of DEQA¹¹) at an approximate 65:35 weight ratio.

DEQA¹⁶: N,N-di(acyloxyethyl)-N,N-dimethyl ammonium chloride, wherein acyl group is derived from a mixture of fatty acid of DEQA¹ and isostearic acid of DEQA¹² at an approximate 65:35 weight ratio.

In mixed branched chain and unsaturated chain DEQAs, where R¹ is a long chain C₅-C₂₁ (or C₆-C₂₂), preferably C₁₀-C₂₀ (or C₉-C₁₉) branched alkyl or unsaturated alkyl, most preferably C₁₂-C₁₈ (or C₁₁-C₁₇) branched alkyl and unsaturated alkyl, the ratio of branched alkyl to unsaturated alkyl is preferably from about 95:5 to about 5:95, more preferably from about 75:25 to about 25:75, and even more preferably from about 50:50 to about 30:70, and for the unsaturated alkyl group, the Iodine Value of the parent fatty acid of this R¹ group is preferably from about 20 to about 140, more preferably from about 50 to about 130, and most preferably from about 70 to about 115.

#### **PROCESSING ASPECTS**

The principal solvents B. and some mixtures of principal solvents B. and secondary solvents, as disclosed hereinbefore, allow the preparation of premixes comprising the softener active A. (from about 55% to about 85%, preferably from about 60% to about 80%, more preferably from about 65% to about 75%, by weight of the premix); the principal solvent B. (from about 10% to about 30%, preferably from about 13% to about 25%, more preferably from about 15% to about 20%, by weight of the premix); and optionally, the water soluble solvent C (from about 5% to

about 20%, preferably from about 5% to about 17%, more preferably from about 5% to about 15%, by weight of the premix). The principal solvents B. can optionally be replaced by a mixture of an effective amount of principal solvents B. and some inoperable solvents, as disclosed hereinbefore. These premixes contain the desired amount of fabric softening active A. and sufficient principal solvent B., and, optionally, solvent C., to give the premix the desired viscosity for the desired temperature range. Typical viscosities suitable for processing are less than about 1000 cps, preferably less than about 500 cps, more preferably less than about 300 cps. Use of low temperatures improves safety, by minimizing solvent vaporization, minimizes the degradation and/or loss of materials such as the biodegradable fabric softener active, perfumes, etc., and reduces the need for heating, thus saving on the expenses for processing. Additional protection for the softener active can be provided by adding, e.g., chelant such as ethylenediaminepentaacetic acid, during preparation of the active. The result is improved environmental impact and safety from the manufacturing operation.

Examples of premixes and processes using them include premixes which typically contain from about 55% to about 85%, preferably from about 60% to about 80%, more preferably from about 65% to about 75%, of fabric softener active A., as exemplified with DEQA¹ and DEQA⁸ in the Examples hereinafter, mixed with from about 10% to about 30%, preferably from about 13% to about 25%, more preferably from about 15% to about 20%, of principal solvent such as 1,2-hexanediol, and from about 5% to about 20%, preferably from about 5% to about 15%, of water soluble solvent C. like ethanol and/or isopropanol.

When the DEQA¹, containing about 13% ethanol, as disclosed hereinafter, is used as the fabric softening active, and 1,2-hexanediol is used as the principal solvent, the temperatures at which the premix is clear and/or liquid for various levels of principal solvent are as follows:

about 25% 1,2-hexanediol = clear below about -5°C, liquid below about -10°C. about 17% 1,2-hexanediol = clear down to about 0°C, liquid down to about -10°C. about 0% 1,2-hexanediol = clear down to about 17°C, liquid down to about 0°C.

These premixes can be used to formulate finished compositions in processes comprising the steps of:

- 1. Make premix of fabric softening active, e.g., about 72% DEQA¹, about 11% ethanol, and about 17% principal solvent, e.g., 1,2-hexanediol, let cool to ambient temperature.
- 2. Mix perfume in the premix.

- 3. Make up water seat of water and HCl at ambient temperature. Optionally add chelant.
- 4. Add premix to water under good agitation.
- 5. Trim with CaCl₂ solution to desired viscosity.
- 6. Add dye solution to get desired colour.

The fabric softening actives (DEQAs); the principal solvents B.; and, optionally, the water soluble solvents, can be formulated as premixes which can be used to prepare the following compositions.

### **EXAMPLE CXXXXI**

Component	1	<u>2</u>	3	<u>4</u>	<u>5</u>
	Wt. %	Wt. %	Wt. %	Wt. %	Wt. %
DEQA ¹ (100% active)	2	5	10.5	10.5	
DEQA ⁸ (100% active)		-			10.5
Ethanol	0.35	88.0	1.85	1.85	
Isopropanol	-				1.16
1,2-Hexanediol	0.48	1.2	2.53	2.53	2.39
Perfume	0.7	0.16	1.75	1.75	1.75
Chelant		-	-	250 ppm	250 ppm
HCI (100%)	0.02	0.02	0.02	0.02	0.02
CaCl ₂			630 ppm	675 ppm	495 ppm
Dye	3 ppm	3 ppm	6 ppm	6 ppm	6 ppm
DI Water	Bal.	Bal.	Bal.	Bal.	Bal.

For commercial purposes, the above compositions are introduced into containers, specifically bottles, and more specifically clear bottles (although translucent bottles can be used), made from polypropylene (although glass, oriented polyethylene, etc., can be substituted), the bottle having a light blue tint to compensate for any yellow color that is present, or that may develop during storage (although, for short times, and perfectly clear products, clear containers with no tint, or other tints, can be used), and having an ultraviolet light absorber in the bottle to minimize the effects of ultraviolet light on the materials inside, especially the highly unsaturated actives (the absorbers can also be on the surface). The overall effect of the clarity and the container being to demonstrate the clarity of the compositions, thus assuring the consumer of the quality of the product.

#### WHAT IS CLAIMED IS:

- 1. Material capable of forming clear, concentrated, biodegradable, fabric softener compositions, said material being selected from the group consisting of:
- A. compound selected from the group consisting of:
- 1,2-butanediol, 2,3,3-trimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 2.3-hexanediol, 4methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 1,2-butanediol, 2,3,3trimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3butanediol. 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4butanediol, 2,2-diethyl-; 1,4-butanediol, 2-methyl-2-propyl-; 1,4-butanediol, 2-(1methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3dimethyl-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,4pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; pentanediol, 3-propyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,5dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl-; 1.4hexanediol, 2,4-dimethyl-; 1,4-hexanediol, 3,3-dimethyl-; 1,4-hexanediol, 3,4dimethyl-; 1.4-hexanediol. 3.5-dimethyl-; 1.3-hexanediol, 4,4-dimethyl-; 1,4hexanediol, 4,5-dimethyl-; 1,5-hexanediol, 2,2-dimethyl-; 1,5-hexanediol, 3,4dimethyl-: 1.5-hexanediol. 3,5-dimethyl-; 1,5-hexanediol, 4.5-dimethyl-: 1,6hexanediol, 2,3-dimethyl-; 1,6-hexanediol, 2,4-dimethyl-; 1,6-hexanediol, 3,3dimethyl-; 2,4-hexanediol, 4,5-dimethyl-; 2,5-hexanediol, 2,3-dimethyl-; 2,5hexanediol, 2.4-dimethyl-; 2.5-hexanediol, 3,3-dimethyl-; 2,6-hexanediol, 3,3dimethyl-: 1.3-hexanediol, 4-ethyl-: 2.4-hexanediol, 3-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 4-methyl-; 1,3-heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,5-heptanediol, 3-methyl-; 1,5-heptanediol, 4-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 5-methyl-; 2,4-heptanediol, 5-methyl-; 2,5-heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-, 2,6-octanediol, 2,4-hexanediol, 3,3,4-trimethyl-, 2,4-

hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; 2,5-hexanediol, 3,3,5-trimethyl-;

- B. ether solvent selected from the group consisting of: 1,2-propanediol, 3-(2pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1butyloxy)-; 1,2-propanediol, 3-(iso-amyloxy)-; 1,2-propanediol, 3-(3-methyl-2butyloxy)-; 1,2-propanediol, 3-(cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3propanediol, 2-(iso-amyloxy)-, 1,3-propanediol, 2-(3-methyl-2-butyloxy)-; 1,3propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2propanediol, 3-(butyloxy)-, triethoxylated; 1.2-propanediol. 3-(butyloxy)-. tetraethoxylated; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; propanediol, 3-(butyloxy)-, dibutyleneoxylated; and 1,2-propanediol, 3-(butyloxy)-, tributyleneoxylated; bis(2-hydroxybutyl)ether; and bis(2-hydroxycyclopentyl)ether;
- C. compounds which are homologs, or analogs, of the following compounds in which each homolog, or analog, contains at least one additional CH₂ group and the total number of hydrogen atoms is kept the same by inserting one double bond for each additional CH₂ group:
- I: n-propanol;
- II. 2-butanol and/or 2-methyl-2-propanol;
- III. 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol, 4-methyl-; 2,3-hexanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and/or 1,2-hexanediol;
- IV. 1,3-propanediol, 2-butyl-; 1,3-propanediol, 2,2-diethyl-; 1,3-propanediol, 2-(1-methylpropyl)-; 1,3-propanediol, 2-(2-methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-2-methyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,4-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3-methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-meth

methyl-; 2,3-hexanediol, 4-methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3-methyl-; 1,3-heptanediol; 1,4-; heptanediol; 1,5-heptanediol; and\or 1,6-heptanediol;

V. 1,3-propanediol, 2-(2-methylbutyl)-; 1,3-propanediol, 2-(1,1-dimethylpropyl)-1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1-ethylpropyl)-; 1,3propanediol, 2-(1-methylbutyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3propanediol. 2-(3-methylbutyl)-; 1,3-propanediol, 2-butyl-2-methyl-; 1,3propanediol, 2-ethyl-2-isopropyl-; 1,3-propanediol, 2-ethyl-2-propyl-; 1,3propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2-methyl-2-(2methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2-methyl-; 1,3-butanediol, 2,2diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3butanediol. 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1-dimethylethyl)-; 1,3butanediol. 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3butanediol, 2-methyl-2-propyl-; 1.3-butanediol. 3-methyl-2-isopropyl-; 1,3butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3dimethyl-: 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1.4-butanediol. 2-(1,1dimethylethyl)-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1.5-pentanediol, 2.3.3-trimethyl-; 1.5-pentanediol, 2.3.4-trimethyl-; 2.4-pentanediol, 2,3,3-trimethyl-; 2,4-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-: 1.3-pentanediol, 2-ethyl-3-methyl-; 1,3-pentanediol, 2-ethyl-4-methyl-; 1,3pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,4-pentanediol, 3-ethyl-2methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-2-methyl-; 1,5pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 1,5-pentanediol, 2-isopropyl-; 2,4-pentanediol, 3-2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3propyl-; 1,3-hexanediol, hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl-; 1,4-hexanediol, 2,4-

dimethyl-; 1,4-hexanediol, 2.5-dimethyl-: 1,4-hexanediol, 3,3-dimethyl-; 1,4hexanediol. 3,4-dimethyl-: 1,4-hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,4dimethyl-: 1,4-hexanediol, 4,5-dimethyl-; 1,4-hexanediol. 5,5-dimethyl-; 1,5hexanediol. 2,2-dimethyl-; 1,5-hexanediol, 2.3-dimethyl-; 1,5-hexanediol. 2,4dimethyl-; 1,5-hexanediol, 2,5-dimethyl-; 1,5-hexanediol 3,3-dimethyl-; 1,5hexanediol. 3,4-dimethyl-; 3,5-dimethyl-; 1,5-hexanediol, 1,5-hexanediol, 4,5dimethyl-; 1,6-hexanediol. 2,2-dimethyl-; 1,6-hexanediol. 2,3-dimethyl-; 1,6hexanediol. 2,4-dimethyl-: 1,6-hexanediol, 2,5-dimethyl-; 1,6-hexanediol, 3,3dimethyl-; 1,6-hexanediol. 3,4-dimethyl-; 2,4-hexanediol. 2.3-dimethyl-: 2,4hexanediol, 2,4-dimethyl-: 2.4-hexanediol. 2,5-dimethyl-; 2,4-hexanediol, 3,3dimethyl-; 2,4-hexanediol. 3,4-dimethyl-: 2,4-hexanediol. 3,5-dimethyl-; 2,4hexanediol, 4,5-dimethyl-; 2.4-hexanediol. 5,5-dimethyl-; 2,5-hexanediol, 2,3dimethyl-; 2,5-hexanediol, 2.4-dimethyl-: 2.5-hexanediol, 2.5-dimethyl-; 2,5hexanediol, 3,3-dimethyl-; 2,5-hexanediol, 3,4-dimethyl-; 2,6-hexanediol, 3,3dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4-ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 2-methyl-; 1,3heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3-heptanediol, 5-methyl-; 1,3heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4-heptanediol, 3-methyl-; 1,4heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4-heptanediol, 6-methyl-; 1,5heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5-heptanediol, 4-methyl-; 1,5heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6-heptanediol, 2-methyl-; 1,6heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6-heptanediol, 5-methyl-; 1,6heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4-heptanediol, 3-methyl-; 2,4heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4-heptanediol, 6-methyl-; 2,5heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5-heptanediol, 4-methyl-; 2,5heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6-heptanediol, 2-methyl-; 2,6heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5heptanediol, 2-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-heptanediol, 4-methyl-; 2,4octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or 3,6-octanediol; VI. 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-

VI. 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,4-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; and/or 2,5-hexanediol, 3,3,5-trimethyl-;

VII. Alkoxylated derivatives of C₃₋₈ diols including:

- 1. 1,2-propanediol (C3) 2(Me-E₁₋₄); 1,2-propanediol (C3) PO₄; 1,2propanediol, 2-methyl- (C4) (Me-E₄₋₁₀); 1,2-propanediol, 2-methyl- (C4) 2(Me-E₁); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,2-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol (C3) 2(Me-E₆₋₈); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7) E₁₋₇; 1,3-propanediol, 2,2-diethyl- (C7) PO₁; 1,3-propanediol, 2,2-diethyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7) E₁₋₇; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-(2-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3propanediol, 2-(2-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(2-methylpropyl)-(C7) n-BO₁₋₂; 1,3-propanediol, 2-ethyl- (C5) (Me  $E_{6-10}$ ); 1,3-propanediol, 2-ethyl-(C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3propanediol, 2-ethyl-2-methyl- (C6) BO₁; 1,3-propanediol, 2-isopropyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me E₂₋₅); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2isopropyl- (C7) E₂₋₉; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3propanediol, 2-methyl-2-isopropyl- (C7) n-BO₁₋₃; 1,3-propanediol, 2-methyl-2propyl- (C7) E₁₋₇; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2-propyl- (C6) (Me E₁₋₄); 1,3propanediol, 2-propyl- (C6) PO₂; 1,3-propanediol, 2-propyl- (C6) BO₁;
- 2. 1,2-butanediol (C4) (Me E₂₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2-butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3-dimethyl- (C6) n-BO₁₋₂; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl- (C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl- (C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) n-BO₁₋₂; 1,2-butanediol, 3-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 3-methyl- (C5) PO₁; 1,3-butanediol (C4) 2(Me E₃₋₆); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3-trimethyl- (C7) PO₁₋₂; 1,3-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₈); 1,3-butanediol, 2,3-dimethyl- (C6) (Me E₃₋₈); 1,3-butanediol, 2,3-dimethyl- (C6) (Me E₃₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) (PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-methyl-3-

PCT/US96/11556

2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me E₁); 1,3butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2-isopropyl- (C7) n-BO₂₋₄; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E₂₋₉; 1,3-butanediol, 2-propyl- (C7) PO₁; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol (C4) BO₂; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₂₋₉; 1,4-butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO1; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E1-6); 1,4-butanediol, 2,3-dimethyl- (C6) PO2; 1,4-butanediol, 2,3-dimethyl- (C6) BO1; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E1-7; 1,4butanediol, 2-ethyl-2-methyl- (C7) PO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n- $BO_{1-2}$ ; 1,4-butanediol, 2-ethyl-3-methyl- (C7)  $E_{1-7}$ ; 1,4-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2isopropyl- (C7) n-BO₁₋₂, 1,4-butanediol, 2-methyl- (C5) (Me  $E_{6-10}$ ); 1,4butanediol, 2-methyl- (C5) 2(Me E₁); 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7) E₁₋₅; 1,4butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₂₋₉; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO1; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₃; 2,3-butanediol (C4) (Me  $E_{6-10}$ ); 2,3-butanediol (C4) 2(Me  $E_{1}$ ); 2,3butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉; 2,3-butanediol, 2,3-dimethyl- (C6) PO₁; 2,3-butanediol, 2,3-dimethyl- (C6) n-BO₁₋₃; 2,3-butanediol, 2-methyl- (C5) (Me E₁₋₅); 2,3-butanediol, 2-methyl- (C5) PO₂; 2,3-butanediol, 2-methyl- (C5) BO₁;

3. 1,2-pentanediol (C5) E₃₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2-pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2-methyl (C6) BO₁; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me-E₁₋₂); 1,3-pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7)

dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6) 2(Me-E₁₋₆); 1,3-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 2methyl- (C6) BO1; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E1); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,3pentanediol, 3-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3pentanediol, 3-methyl- (C6) BO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) (Me- $E_{1-6}$ ); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁, 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁), 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁, 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me- $E_{1-6}$ ); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 2-methyl- (C6) BO₁; 1,4pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl-(C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl- (C6) BO₁; 1,4-pentanediol, 4methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋₁₀); 1,5-pentanediol (C5) 2(Me-E₁); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7) E₁₋₇; 1,5pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₁₋₇, 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2-ethyl- (C7) E₁₋₅; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁ 2; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 3-methyl- (C6) (Me- $E_{1-4}$ ); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me- $E_{1-3}$ ); 2,3pentanediol, (C5) PO₂; 2,3-pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3methyl- (C6) E₁₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methylWO 97/03169 PCT/US96/11556

(C6) n-BO₁₋₂; 2,3-pentanediol, 4-methyl- (C6)  $E_{1-7}$ ; 2,3-pentanediol, 4-methyl- (C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me-E₁₋₄); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₅₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 3,3-dimethyl- (C6) (Me-E₅₋₁₀); 2,4-pentanediol, 3-methyl- (C6) PO₃;

1,3-hexanediol (C6) (Me-E₁₋₅); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 2methyl- (C7) BO1; 1,3-hexanediol, 3-methyl- (C7) E2-9; 1,3-hexanediol, 3-methyl-(C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7) E₂₋₉; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 5-methyl- (C7) E2-9; 1,3-hexanediols; 51molthylan(GID), POmethyl- (C7) PO1 hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanedidE(C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉; 1,4hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 3-methyl- (C7) E₂₋₉; 1,4-hexanediol, 3-methyl- (C7) PO₁; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO₁; 1,4-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 5-methyl- (C7) E₂₋₉; 1,4-hexanediol, 5-methyl- (C7) PO₁; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7) E₂₋₉; 1,5-hexanediol, 3-methyl- (C7) PO₁; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7) E₂₋₉; 1,5hexanediol, 4-methyl- (C7) PO₁; 1,5-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7) E₁₋₅; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂; 2,3-hexanediol (C6)  $E_{1-5}$ ; 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 3-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 4-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 4-methyl- (C7)

WO 97/03169 PCT/US96/11556

PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;

- 5. 1,3-heptanediol (C7)  $E_{1-7}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7) n-BO₁₋₂; 1,4-heptanediol (C7)  $E_{1-7}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,6-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,6-heptanediol (C7)  $PO_1$ ; 3,5-heptanediol (PPI)
- 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO1; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 2,4-dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 2,5dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 3,3-dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO1; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4-

trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO1; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO1; 2,4-hexanediol, 4-ethyl- (C8) n-BO1; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO1; 2,4-heptanediol, 5-methyl- (C8) n-BO1; 2,4-heptanediol, 6methyl- (C8) n-BO1; 2,5-heptanediol, 2-methyl- (C8) n-BO1; 2,5-heptanediol, 3methyl- (C8) n-BO1; 2,5-heptanediol, 4-methyl- (C8) n-BO1; 2,5-heptanediol, 5methyl- (C8) n-BO1; 2,5-heptanediol, 6-methyl- (C8) n-BO1; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁; 2,6-heptanediol, 4methyl- (C8) n-BO1; 3,5-heptanediol, 2-methyl- (C8) n-BO1; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 3,3,4-trimethyl-(C8)  $E_{1-3}$ , 2,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ , 2,4-hexanediol, 4-ethyl- (C8) E₁₋₃; 2,4-heptanediol, 2-methyl- (C8) E₁₋₃; 2,4-heptanediol, 3-methyl- (C8) E₁₋₃; 2,4-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,4heptanediol, 6-methyl- (C8)  $E_{1-3}$ , 2,5-heptanediol, 2-methyl- (C8)  $E_{1-3}$ , 2,5heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 5-methyl- (C8) E₁₋₃; 2,5-heptanediol, 6-methyl- (C8) E₁₋₃; 2,6heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 4-methyl- (C8) E₁₋₃; and/or 3,5-heptanediol, 2-methyl- (C8) E₁₋₃;

# 7. mixtures thereof, and

VIII. aromatic diols including: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; and/or 1-phenyl-2,3-butanediol; and mixtures thereof; and

IX. mixtures thereof,

with the exception of the following specific compounds:

3,7-Octadiene-2,5-diol, 2,7-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 6-Heptene-1,4-diol, 4-methyl-; 4-Octene-3,6-diol; 4-Octene-3,6-diol; 3-Octene-1,2-diol; 3-Nonene-2,5-diol; 7-Nonene-4,5-diol; 7-Nonene-4,5diol; 6-Nonene-2,3-diol; 6-Heptene-2,4-diol, 5-methyl-; 6-Octene-1,2-diol, 7-methyl-3-methylene-; 2,7-Octadiene-1,6-diol. 2,6-dimethyl-; 1,3-Propanediol, methylenepentyl)-; 3-Heptene-2,6-diol, 2,6-dimethyl-; 3-Heptene-2,6-diol, 2,6dimethyl-; 5-Hexene-2,4-diol, 3,5-dimethyl-; 4-Hexene-1,2-diol, 2,5-dimethyl-; 4-Hexene-1,2-diol, 2,5-dimethyl-; 7-Octene-1,6-diol; 2-Hexene-1,4-diol, 2,5-dimethyl-; 2-Hexene-1,4-diol, 2,5-dimethyl-; 1,4-Hexanediol, 5-methyl-2-methylene-; 4-Octene-2,3-diol; Nonene-1,4-diol; 6-Heptene-1,4-diol, 4-methyl-; 6-Octene-3,5-diol, 4methyl-; 2,6-Octadiene-1,8-diol, 2,6-dimethyl-; (8-Hydroxygeraniol); 1-Heptene-3,5-diol, 2,4-dimethyl- 2,4-Hexanediol, 5-methyl-3-methylene-; 2,4-Hexanediol, 5methyl-3-methylene-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 6-Heptene-2,4-diol, 5-methyl-; 4,9-Decadiene-1,8-diol; 5-Hexene-1.3-diol, 2,4-dimethyl-; 7-Octene-1,3-diol, 2-methyl-; 5-Heptene-3-d-1,2diol, 2,6-dimethyl-; 5-Heptene-3-d-1,2-diol, 2,6-dimethyl-; 4-Nonene-2,8-diol; 4-Nonene-2,8-diol; 5-Hexene-2,3-diol, 2,3-dimethyl-; 2-Butene-1,4-diol, 2-butyl-; 2,4-Hexadiene-1,6-diol, 3-(1,1-dimethylethyl)-; 6-Octene-1,4-diol, 7-methyl-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 7-Octene-2,5-diol, 7methyl-; 7-Octene-2,5-diol, 7-methyl-; 4-Hexene-1,3-diol, 2,4-dimethyl-; 4-Octene-2,7-diol; 4-Octene-2,7-diol; 3-Heptene-1,2-diol, 5-methyl-; 3-Heptene-1,2-diol, 5methyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 8-Nonene-1,7-diol; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Isorosiridol); 5-Hexene-1,4-diol, 2,4-dimethyl-; 1-Heptene-3,4-diol, 6-methyl-; 3-Heptene-1,5-diol, 4.6-dimethyl-; 3-Octene-1,5-diol, 4-methyl-; 3,9-Decadiene-1,2-diol; 7-Octene-2,3-diol, 2-methyl-; 7-Octene-2,3-diol, 2-methyl-; 6-Nonene-2.3-diol: 2.5-Hexanediol, 3-methyl-4-methylene-; 6-Heptene-1,4-diol, 2methyl-; 6-Octene-1,5-diol; 1-Octene-3,4-diol; 7-Octene-1,6-diol, 5-methyl-; 7-Octene-1,6-diol, 5-methyl-; 1,3-Butanediol, 2-methyl-2-(1-methylethenyl)-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,5-Octanediol, 4-methylene-; 6-Heptene-2,3-diol, 2-methyl-; 6-Heptene-2,3-diol, 2,6-dimethyl-; 6-Heptene-2,3-diol, 2-methyl-; 7-Octene-1,3-diol, 4-methyl-; 1,3-Butanediol, 2-methyl-2-(1-methyl-2-propenyl)-; 5-Heptene-1,2-diol, 2,6-dimethyl-; 1-Nonene-3,4-diol; 5-Heptene-1,2-diol, 3-methyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 6-Heptene-1,3diol, 2,2-dimethyl-; 4-Nonene-1,3-diol; 1,4-Pentanediol, 3-methyl-2-(2-propenyl)-; 1-Nonene-3,4-diol; 8-Nonene-1,2-diol; 3-Octene-1,2-diol; 1,9-Decadiene-4,6-diol; 1,9-

Decadiene-4,6-diol; 5-Hexene-1,3-diol, 2,2-dimethyl-; 1,3-Propanediol, pentenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-; 8-Nonene-1,3-diol; 2,4-Octadiene-1,8-diol, 2,7-dimethyl-; 5-Heptene-1,2-diol, 6-methyl-; 3,9-Decadiene-1,2-diol; 3-Nonene-1,2-diol; 6-Nonene-1,2-diol; 4-Hexene-1,3-diol, 2,4-dimethyl-; 2,4-Octadiene-1,7-diol, 3,7-dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 3,4dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 1,3-Butanediol, 2methyl-2-(2-propenyl)-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 6-Heptene-1,5-diol, 6methyl-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 1,5-Pentanediol, 2-(2-propenyl)-; 5-Hexene-2,3-diol, 3,5-dimethyl-, 5-Hexene-2,3-diol, 3,5-dimethyl-, Nonenediol, Octenediol; 5-Hexene-1,3-diol, 3,5-dimethyl-; 4-Nonene-1,8-diol; 4-Nonene-1,7diol; 4-Nonene-1,6-diol; 6-Nonene-1,4-diol; 2-Nonene-1,4-diol; 8-Nonene-2,5-diol; 5-Heptene-1,2-diol, 2-ethenyl-6-methyl-; 4-Hexene-2,3-diol, 2,5-dimethyl-; 5-Heptene-2,3-diol, 2,6-dimethyl-; 1-Heptene-3,5-diol, 2,6-dimethyl-; 1-Heptene-3,5diol, 2,6-dimethyl-; 7-Octene-1,3-diol, 7-methyl-; 1,3-Propanediol, 2-methyl-2-(3methyl-3-butenyl)-; 5-Heptene-1,2-diol, 2,6-dimethyl-; 5,7-Octadiene-2,3-diol, 2,6dimethyl-; 5,7-Octadiene-2,3-diol, 2,6-dimethyl-; 5-Hexene-1,2-diol, 2-ethyl-; 2,4-Nonadiene-4-d-1,7-diol, 6-methyl-; 2,4-Nonadiene-1,6,7-d3-1,7-diol, 6-methyl-; 2,4-Nonadiene-1,7-diol, 6-methyl-; 7-Octene-2,3-diol, 2-methyl-6-methylene-; 1,3-Butanediol. 3-methyl-2-(4-pentenylidene)-; 1.3-Butanediol, 3-methyl-2-(4pentenylidene)-; 2-Hexene-1,4-diol, 5,5-dimethyl-; 2-Hexene-1,4-diol, 5,5-dimethyl-; 2-Nonene-1,4-diol; 2-Nonene-1,4-diol; 7-Octene-2,3-diol, 2-methyl-6-methylene-; 5-Octene-1,3-diol; 7-Octene-1,3-diol, 2-methyl-; 4-Heptene-1,3-diol, 2-methyl-; 4-Octene-2,3-d2-1,2-diol; 4-Octene-2,3-d2-1,2-diol; 5-Heptene-1,2-diol, 3-methyl-; 5-Octene-1,2-diol; 3,7-Octadiene-1,6-diol, 2,6-dimethyl-; 5-Heptene-1,2-diol, 2,6dimethyl-; 1,7-Octadiene-4,5-diol, 4,5-dimethyl-; 1,7-Octadiene-4,5-diol, 4,5dimethyl-; 5-Heptene-1,3-diol, 2-methyl-; 5-Heptene-1,3-diol, 2-methyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 2,6-Octadiene-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1,8-diol, 2,6-dimethyl-; 2-Heptene-1,5diol, 6-methyl-; 2-Heptene-1,5-diol, 6-methyl-; 8,9-Decadiene-3,5-diol; 8,9-Decadiene-3,5-diol; 4,6-Nonadiene-1,3-diol, 8-methyl-; 3,5-Nonadiene-1,7-diol, 8methyl-; 5-Heptene-1,3-diol, 2,4-dimethyl-; 2-Nonene-1,9-diol; 2-Nonene-1,9-diol; 2-ethyl-2-(2-propenyl)-: 3-Heptene-1.5-diol. 1,3-Butanediol, 6-methyl-: Pentanediol, 2-ethenyl-4-methyl-; 1.3-Pentanediol, 2-ethenyl-4-methyl-; 5-Hexene2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 2,3,4-trimethyl-; 4-Pentene-1,2-diol, 2,3,3-trimethyl-; 1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-; 1,3-Propanediol, 2-(2-butenyl)-2-(2-propenyl)-; 5-Hexene-1,2-diol, 2-ethyl-; Butanediol, 2-(4-methyl-3-pentenylidene)- (\beta-Acaridiol); 6-Heptene-1,3-diol, 2methyl-; 2,6-Octadiene-1,8-diol-2-13C, 2,6-dimethyl-; 1-Hexene-3,4-diol, 5,5dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 1-Nonene-3,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,4-diol; 7-Octene-1,2-diol; 2-methyl-; 1-Nonene-3,5-diol; 2,7-Octadiene-1,6-diol, 2,6-dimethyl-; 7-Octene-1,2-diol; 7-Octene-1,2-diol; 2,5-Octadiene-1,7diol, 3,7-dimethyl-; 1,3-Propanediol, 2-(2,2-dimethylpropylidene)-; 6-Octene-1,2diol, 7-methyl-3-methylene-, 2,8-Decadiene-1,10-diol, 6-Octene-1,5-diol, 7-methyl-; 1,3-Butanediol, 2-(1-ethyl-1-propenyl)-; 4-Hexene-1,2-diol, 4-ethyl-3-methyl-; 8-Nonene-1,3-diol: 1,4-Butanediol, 2-(3-methyl-2-butenyl)-3-methylene-; 2.6-Heptadiene-1,4-diol, 2,5,5-trimethyl-; 2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-; 8-Nonene-2,4-diol; 2,6-Heptanediol, 4-methylene-; 3-Hexene-3,4-diol, 2,5-dimethyl-; 4-Octene-4,5-diol; 5-Hexene-1,2-diol, 2,3-dimethyl-; 3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-; 3-Hexene-1,5-diol, 2,4-dimethyl-; 3-Hexene-1,5-diol, 2,4-dimethyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 3,6-Octadiene-1,2-diol, 3,7-dimethyl-; 7-Octene-2,3-diol, 6-methyl-; 7-Octene-2,3-diol, 6-methyl-; 7-Octene-2,3-diol, 6methyl-; 2,5-Octadiene-1,7-diol, 3,7-dimethyl-; 6-Octene-1,3-diol, 7-methyl-; Decadienediol; 6-Heptene-1,2-diol, 2,3-dimethyl-; 4-Hexene-1,3-diol, 3,5-dimethyl-; 4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-; 4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-1-Heptene-3,5-diol, 6,6-dimethyl-; 1-Heptene-3,5-diol, 6,6-dimethyl-; 1,3-Hexanediol, 5-methyl-4-methylene-; 4-Octene-1,2-diol; 2,3-Heptanediol, 3-ethenyl-; 2,3-Heptanediol, 3-ethenyl-; 5-Hexene-1,3-diol, 2,4-dimethyl-; 5-Hexene-1,3-diol, 2,4-dimethyl-; 5-Hexene-1,3-diol, 2,4-dimethyl-; 2,6-Octadiene-1-t-1,8-diol, 3,7dimethyl-; 8-Nonene-2,4-diol; 8-Nonene-2,4-diol; 1,3-Octanediol, 2-methylene-; 8-Nonene-1,3-diol; 5-Heptene-1,4-diol, 3,6-dimethyl-; 5-Heptene-1,4-diol, 2,6dimethyl-; 4-Octene-2,3-diol; 4-Octene-2,3-diol; 5,7-Octadiene-1,4-diol, dimethyl-; 7-Octene-1,3-diol, 7-methyl-; 2-Heptene-1,5-diol, 5-ethyl-; 2-Heptene-1,5-diol, 5-ethyl-; 1,3-Pentanediol, 2-ethenyl-3-ethyl-; 5-Heptene-2,4-diol, 2,3dimethyl-: 5-Heptene-2.4-diol, 2.3-dimethyl-; 8-Nonene-3,4-diol; 8-Nonene-3,4-diol; 5-Hexene-1,3-diol, 4,5-dimethyl-; 5-Hexene-1,3-diol, 4,5-dimethyl-; 4,6-Octadiene-2,3-diol, 3,7-dimethyl-; 1,3-Butanediol, 2,2-diallyl-; 1,9-Decadiene-3,8-diol; 2-Heptene-1,4-diol, 5,6-dimethyl-; 2-Heptene-1,4-diol, 5-methyl-; 2-Heptene-1,4-diol, 2,8-Decadiene-5,6-diol; 2-Heptene-1,4-diol, 5-methyl-; 5,6-dimethyl-; Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool); 6-Heptene-1,2-diol, 2-methyl-; 5-Hexene-1,3-diol, 2,3-dimethyl-; 2,6-Octadiene-1,8-diol, 6-methyl-2-(methyl-

13C)-; 1,3-Propanediol, 2-(5-hexenyl)-; 8-Nonene-3,4-diol; 5-Hexene-1,3-diol, 3ethyl-, 7-Octene-3,4-diol, 6-Heptene-1,2-diol, 2-methyl-, 6-Heptene-2,4-diol, 4-(2propenyl)-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 8-Nonene-3,4-diol; 6-Heptene-2,3-diol, 6-methyl-, 6-Heptene-2,3-diol, 2,6-dimethyl-, 4-Hexene-2,3-diol, 2,5-dimethyl-; 4,6-Octadiene-2,3-diol, 2,6-dimethyl-; 7-Octene-2,3-diol, 2-methyl-6methylene-; 7-Octene-2,3-diol, 6-methyl-; 4,6-Octadiene-2,3-diol, 2,6-dimethyl-; 1,4-Heptanediol, 6-methyl-5-methylene-; 2-Butene-1,4-diol, 2-(4-methyl-3-pentenyl)- (α-Acaridiol); 4-Octene-1,2-diol; 4-Octene-1,2-diol; 7-Octene-2,4-diol; 6-Heptene-2,4diol, 3-methyl-; 6-Heptene-2,4-diol, 3-methyl-; 3-Heptene-2,5-diol, 2,4-dimethyl-; 1,3-Butanediol, 2-(3-methyl-2-butenyl)-; 7-Octene-3,5-diol, 2-methyl-; 7-Octene-3,5-diol, 2-methyl-; 6-Heptene-2,4-diol, 5,5-dimethyl-; 6-Heptene-2,4-diol, 5,5dimethyl-; 1,3-Propanediol, 2-methyl-2-(2-methylallyl)-; 2-Heptene-1,6-diol, 6methyl-; 1,3-Butanediol, 2-allyl-3-methyl-; 2-Nonene-1,4-diol; 5-Hexene-2,3-diol, 4ethenyl-2,5-dimethyl-; 5-Hexene-2,3-diol, 4-ethenyl-2,5-dimethyl- 2-Nonene-1,4diol; 5-Heptene-1,3-diol, 3,6-dimethyl-; 1,5-Hexanediol, 2-(1-methylethenyl)-; and 1,3-Propanediol, 2-(1-pentenvl)-; and

D. mixtures of the above compounds; and

E. mixtures of 8-carbon-diol isomers primarily consisting of: 2,2,4-trimethyl-1,3-pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; 2-ethyl-4-methyl-1,3-pentanediol; 2-ethyl-3-methyl-1,3-pentanediol; 3,5-octanediol; 2,2-dimethyl-2,4-hexanediol; 2-methyl-3,5-heptanediol; and/or 3-methyl-3,5-heptanediol, the level of any individual 1,3-diol being less than about 90% of any mixture.

2. The material of Claim 1 that is a compound selected from the group consisting of:

1,2-butanediol, 2,3,3-trimethyl-, 3,4-pentanediol, 2,3-dimethyl-; 2,3-hexanediol, 4-methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-3-

WO 97/03169 PCT/US96/11556

methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4pentanediol, 3-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 2,4-pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-, 1,4-pentanediol, 2-isopropyl-, 1,4-pentanediol, 2-propyl-, 1,4-pentanediol, 3-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,3dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3.4-dimethyl-, 1,3hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2dimethyl-; 1,4-hexanediol, 2,3-dimethyl-, 1,4-hexanediol, 2,4-dimethyl-; 1,4hexanediol, 3,3-dimethyl-; 1,4-hexanediol, 3,4-dimethyl-; 1,4-hexanediol, 3,5dimethyl-; 1,3-hexanediol 4,4-dimethyl-; 1,4-hexanediol, 4,5-dimethyl-; 1,5hexanediol, 2,2-dimethyl-; 1,5-hexanediol, 3,4-dimethyl-; 1,5-hexanediol, 3,5dimethyl-; 1,5-hexanediol, 4,5-dimethyl-; 1,6-hexanediol, 2,3-dimethyl-; 1,6hexanediol, 2,4-dimethyl-; 1,6-hexanediol, 3,3-dimethyl-; 2,4-hexanediol, 4.5dimethyl-; 2,5-hexanediol, 2,3-dimethyl-; 2,5-hexanediol, 2,4-dimethyl-; 2,5hexanediol, 3,3-dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 4-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 5-methyl-; 2,4heptanediol, 5-methyl-; 2.5-heptanediol, 3-methyl-; 3.5-heptanediol, 2-methyl-; 2.6octanediol; 2,4-hexanediol, 3,3,4-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; 2,5-hexanediol, 3,3,5trimethyl-; 1,2-propanediol, 3-(butyloxy)-, triethoxylated; 1,2-propanediol, 3-(butyloxy)-, tetraethoxylated; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(iso-3-(3-methyl-2-butyloxy)-; 1,2-propanediol, amyloxy)-; 1,2-propanediol, (cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3propanediol, 2-(3-methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; 1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated; and 1,2propanediol, 3-(butyloxy)-, tributyleneoxylated.

- 3. The material of Claim 1 that is an ether solvent selected from the group consisting of: 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-, 1,2-propanediol, 3-(iso-amyloxy)-, 1,2propanediol, 3-(3-methyl-2-butyloxy)-; 1,2-propanediol, 3-(cyclohexyloxy)-; 1,2propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3-propanediol, 2-(3methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1cvclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, triethoxylated: propanediol, 3-(butyloxy)-, tetraethoxylated; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; 1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated; and 1,2propanediol, 3-(butyloxy)-, tributyleneoxylated; bis(2-hydroxybutyl)ether; and bis(2hydroxycyclopentyl)ether.
- 4. The material of Claim 1 that is a compound which is a homolog, or analog, of the following compounds in which each homolog, or analog, contains at least one additional CH₂ group and the total number of hydrogen atoms is kept the same by inserting one double bond for each additional CH₂ group:
- I. n-propanol:
- II. 2-butanol and/or 2-methyl-2-propanol;
- III. 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol, 4-methyl-; 2,3-hexanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and/or 1,2-hexanediol;
- IV. 1,3-propanediol, 2-butyl-; 1,3-propanediol, 2,2-diethyl-; 1,3-propanediol, 2-(1-methylpropyl)-; 1,3-propanediol, 2-(2-methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-2-methyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,4-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3-methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-methyl-; 3-met

methyl-; 2,3-hexanediol, 4-methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3-methyl-; 1,3-heptanediol; 1,4-; heptanediol; 1,5-heptanediol; and 1,6-heptanediol;

1,3-propanediol, 2-(2-methylbutyl)-; 1,3-propanediol, 2-(1,1-dimethylpropyl)-1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1-ethylpropyl)-; 1,3propanediol, 2-(1-methylbutyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3propanediol, 2-(3-methylbutyl)-; 1,3-propanediol, 2-butyl-2-methyl-; 1,3propanediol, 2-ethyl-2-isopropyl-; 1,3-propanediol, 2-ethyl-2-propyl-; 1,3propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2-methyl-2-(2methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2-methyl-; 1,3-butanediol, 2,2diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3butanediol. 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1-dimethylethyl)-; 1,3butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-isopropyl-; 1,3butanediol. 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3dimethyl-; 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(1,1dimethylethyl)-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,3,4-trimethyl-; 2,4-pentanediol, 2,3,3-trimethyl-; 2,4-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,3-pentanediol, 2-ethyl-3-methyl-; 1,3-pentanediol, 2-ethyl-4-methyl-; 1,3pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,4-pentanediol, 3-ethyl-2methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-2-methyl-; 1,5pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2.4-pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1.3-pentanediol, 2-propyl-; 1.4-pentanediol, 2-isopropyl-; 1.4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 1,5-pentanediol, 2-isopropyl-; 2,4-pentanediol, 3-1,3-hexanediol, 2,3-dimethyl-; 1.3-hexanediol, 2,2-dimethyl-; 1.3propyl-: hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl-; 1,4-hexanediol, 2,4-

```
dimethyl-; 1,4-hexanediol,
                              2,5-dimethyl-;
                                                               3,3-dimethyl-;
                                              1,4-hexanediol,
                                                                                1,4-
hexanediol.
             3,4-dimethyl-:
                              1,4-hexanediol,
                                               3,5-dimethyl-;
                                                              1,3-hexanediol,
                                                                                4,4-
dimethyl-:
            1.4-hexanediol.
                              4.5-dimethyl-:
                                              1,4-hexanediol,
                                                                5.5-dimethyl-:
                                                                                1,5-
hexanediol, 2,2-dimethyl-;
                                              2,3-dimethyl-;
                              1,5-hexanediol,
                                                              1,5-hexanediol.
                                                                                2,4-
dimethyl-;
            1,5-hexanediol,
                              2,5-dimethyl-;
                                              1,5-hexanediol.
                                                               3,3-dimethyl-;
                                                                                1,5-
hexanediol.
             3.4-dimethyl-:
                             1.5-hexanediol.
                                              3,5-dimethyl-; 1,5-hexanediol,
                                                                                4,5-
dimethyl-:
            1,6-hexanediol.
                                              1,6-hexanediol,
                              2,2-dimethyl-;
                                                               2,3-dimethyl-;
                                                                                1,6-
hexanediol, 2,4-dimethyl-:
                              1,6-hexanediol,
                                              2,5-dimethyl-;
                                                              1,6-hexanediol,
                                                                                3,3-
dimethyl-:
            1,6-hexanediol
                              3,4-dimethyl-:
                                              2,4-hexanediol,
                                                               2,3-dimethyl-;
                                                                                2,4-
hexanediol, 2,4-dimethyl-;
                             2,4-hexanediol.
                                              2,5-dimethyl-; 2,4-hexanediol,
                                                                                3,3-
dimethyl-;
            2.4-hexanediol.
                              3.4-dimethyl-:
                                              2.4-hexanediol.
                                                               3.5-dimethyl-:
                                                                                2,4-
hexanediol. 4.5-dimethyl-;
                             2.4-hexanediol.
                                              5,5-dimethyl-:
                                                              2,5-hexanediol.
                                                                                2,3-
dimethyl-; 2,5-hexanediol,
                              2,4-dimethyl-; 2,5-hexanediol,
                                                               2,5-dimethyl-;
                                                                                2,5-
hexanediol, 3,3-dimethyl-; 2,5-hexanediol, 3,4-dimethyl-; 2,6-hexanediol,
                                                                               3.3-
dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4-ethyl-; 1,4-hexanediol, 2-ethyl-
; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-
hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 2-methyl-; 1,3-
heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3-heptanediol, 5-methyl-; 1,3-
heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4-heptanediol, 3-methyl-; 1,4-
heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4-heptanediol, 6-methyl-; 1,5-
heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5-heptanediol, 4-methyl-; 1,5-
heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6-heptanediol, 2-methyl-; 1,6-
heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6-heptanediol, 5-methyl-; 1,6-
heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4-heptanediol, 3-methyl-; 2,4-
heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4-heptanediol, 6-methyl-; 2,5-
heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5-heptanediol, 4-methyl-; 2,5-
heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6-heptanediol, 2-methyl-; 2,6-
heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5-
heptanediol, 2-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-heptanediol, 4-methyl-; 2,4-
octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or
3,6-octanediol;
VI.
       2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-
```

VI. 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,4-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; and/or 2,5-hexanediol, 3,3,5-trimethyl-;

VIII. Alkoxylated derivatives of C₃₋₈ diols including:

WO 97/03169 PCT/US96/11556

- 1. 1,2-propanediol (C3) 2(Me-E₁₋₄); 1,2-propanediol (C3) PO₄; 1,2propanediol, 2-methyl- (C4) (Me-E₄₋₁₀); 1,2-propanediol, 2-methyl- (C4) 2(Me-E₁); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,2-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol (C3) 2(Me-E₆₋₈); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2,2-diethyl- (C7)  $PO_1$ ; 1,3-propanediol, 2,2-diethyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7) E₁₋₇; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-(2-methylpropyl)- (C7) E₁₋₇; 1,3propanediol, 2-(2-methylpropyl)- (C7) PO₁, 1,3-propanediol, 2-(2-methylpropyl)-(C7) n-BO₁₋₂; 1,3-propanediol, 2-ethyl- (C5) (Me  $E_{6-10}$ ); 1,3-propanediol, 2-ethyl-(C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2methyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3propanediol, 2-ethyl-2-methyl- (C6) BO1; 1,3-propanediol, 2-isopropyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) BO₁, 1,3-propanediol, 2-methyl- (C4) 2(Me E₂₋₅); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2isopropyl- (C7) E₂₋₉; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3propanediol, 2-methyl-2-isopropyl- (C7) n-BO₁₋₃; 1,3-propanediol, 2-methyl-2propyl- (C7) E₁₋₇; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2-propyl- (C6) (Me E₁₋₄); 1,3propanediol, 2-propyl- (C6) PO₂; 1,3-propanediol, 2-propyl- (C6) BO₁;
- 1,2-butanediol (C4) (Me E₂₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2-2. butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3dimethyl- (C6) n-BO₁₋₂; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl-(C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl-(C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 3,3-dimethyl-(C6) n-BO₁₋₂; 1,2-butanediol, 3-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 3-methyl-(C5) PO₁; 1,3-butanediol (C4) 2(Me E₃₋₆); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3trimethyl- (C7)  $PO_{1-2}$ ; 1,3-butanediol, 2,2-dimethyl- (C6) (Me  $E_{3-8}$ ); 1,3butanediol, 2,2-dimethyl- (C6) PO3; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E3-8); 1,3-butanediol, 2,3-dimethyl- (C6) PO3; 1,3-butanediol, 2-ethyl- (C6) (Me E₁₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3butanediol, 2-ethyl-2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3methyl- (C7) (Me E1); 1,3-butanediol, 2-ethyl-3-methyl- (C7) PO1; 1,3-butanediol,

2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me  $E_1$ ); 1,3butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2-isopropyl- (C7) n-BO₂₋₄; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E2-9; 1,3-butanediol, 2-propyl- (C7) PO1; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol (C4) BO₂; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₂₋₉; 1,4-butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO1; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E1-6); 1,4-butanediol, 2,3-dimethyl- (C6) PO2; 1,4-butanediol, 2,3-dimethyl- (C6) BO1; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₁₋₇; 1,4butanediol, 2-ethyl-2-methyl- (C7) PO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-ethyl-3-methyl- (C7) E₁₋₇; 1,4-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2isopropyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-methyl- (C5) (Me E₆₋₁₀); 1,4butanediol, 2-methyl- (C5) 2(Me E1); 1,4-butanediol, 2-methyl- (C5) PO3; 1,4butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7) E₁₋₅; 1,4butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₂₋₉; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7)  $n-BO_{1-3}$ ; 2,3-butanediol (C4) (Me  $E_{6-10}$ ); 2,3-butanediol (C4) 2(Me  $E_{1}$ ); 2,3butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉; 2,3-butanediol, 2,3-dimethyl- (C6) PO₁; 2,3-butanediol, 2,3-dimethyl- (C6) n-BO₁₋₃; 2,3-butanediol, 2-methyl- (C5) (Me E₁₋₅); 2,3-butanediol, 2-methyl- (C5) PO₂; 2,3-butanediol, 2-methyl- (C5) BO₁;

3. 1,2-pentanediol (C5) E₃₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2-pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2-methyl (C6) BO₁; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me-E₁₋₂); 1,3-pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7)

dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6) 2(Me-E₁₋₆); 1,3-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 2methyl- (C6) BO1; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E1); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,3pentanediol, 3-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3pentanediol, 3-methyl- (C6) BO1; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E1); 1,3pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me-E₁₋₆); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 2-methyl- (C6) BO₁; 1,4pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl-(C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl- (C6) BO₁; 1,4-pentanediol, 4methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋₁₀); 1,5-pentanediol (C5) 2(Me- $E_1$ ); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7)  $E_{1-7}$ ; 1,5pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2-ethyl- (C7) E₁₋₅; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁ 2; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 3-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me-E₁₋₃); 2,3pentanediol, (C5) PO₂; 2,3-pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3methyl- (C6) E₁₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl(C6) n-BO₁₋₂; 2,3-pentanediol, 4-methyl- (C6)  $E_{1-7}$ ; 2,3-pentanediol, 4-methyl- (C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me- $E_{1-4}$ ); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me- $E_{1-4}$ ); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me- $E_{1-4}$ ); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me- $E_{5-10}$ ); 2,4-pentanediol, 3,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 3-methyl- (C6) (Me- $E_{5-10}$ ); 2,4-pentanediol, 3-methyl- (C6) PO₃;

4. 1,3-hexanediol (C6) (Me-E₁₋₅); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 2methyl- (C7) BO₁, 1,3-hexanediol, 3-methyl- (C7) E₂₋₉, 1,3-hexanediol, 3-methyl-(C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7) E₂₋₉, 1,3-hexanediol, 4-methyl- (C7) PO₁, 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃. 1,3-hexanediol, 5-methyl- (C7) E₂₋₉; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol (C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉; 1,4hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 3-methyl- (C7) E2-9; 1,4-hexanediol, 3-methyl- (C7) PO1; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO₁; 1,4-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 5-methyl- (C7) E₂₋₉; 1,4-hexanediol, 5-methyl- (C7) PO₁; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7)  $E_{2-9}$ ; 1,5-hexanediol, 3-methyl- (C7)  $PO_1$ ; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7)  $E_{2-9}$ ; 1,5hexanediol, 4-methyl- (C7) PO₁; 1,5-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7)  $E_{1-5}$ ; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂; 2,3-hexanediol (C6) E₁₋₅; 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 3-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 4-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 4-methyl- (C7)

- PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;
- 5. 1,3-heptanediol (C7)  $E_{1-7}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7) n-BO₁₋₂; 1,4-heptanediol (C7)  $E_{1-7}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,6-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,6-heptanediol (C7)  $PO_1$ ; 3,5-heptanediol (PO_1)
- 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO₁; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,4-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 3,5-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8)  $E_{2-5}$ ; 2,5-hexanediol, 3,3-dimethyl- (C8)  $E_{2-5}$ ; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO1; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO₁; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4-

trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl- (C8) n-BO₁; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl- (C8) n-BO₁; 2,4-heptanediol, 6methyl- (C8) n-BO₁; 2,5-heptanediol, 2-methyl- (C8) n-BO₁; 2,5-heptanediol, 3methyl- (C8) n-BO1; 2,5-heptanediol, 4-methyl- (C8) n-BO1; 2,5-heptanediol, 5methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl- (C8) n-BO₁; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁; 2,6-heptanediol, 4methyl- (C8) n-BO₁; 3,5-heptanediol, 2-methyl- (C8) n-BO₁; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3pentanediol, 3,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,2,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,3,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 3,3,4-trimethyl-(C8) E₁₋₃; 2,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 2,4-hexanediol, 4-ethyl- (C8)  $E_{1-3}$ , 2,4-heptanediol, 2-methyl- (C8)  $E_{1-3}$ , 2,4-heptanediol, 3-methyl- (C8)  $E_{1-3}$ , 2,4-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,4heptanediol, 6-methyl- (C8) E₁₋₃; 2,5-heptanediol, 2-methyl- (C8) E₁₋₃; 2,5heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 6-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 4-methyl- (C8) E₁₋₃; and/or 3,5-heptanediol, 2-methyl- (C8) E₁₋₃; and IX. mixtures thereof; with the exception of the following specific compounds: 3,7-Octadiene-2,5-diol, 2,7-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 4,6-Octadiene-1,2-diol, 3,5-dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 6-Heptene-1,4-diol, 4-methyl-; 4-Octene-3,6-diol; 4-Octene-3,6-diol; 3-Octene-1,2-diol; 3-Nonene-2,5-diol; 7-Nonene-4,5-diol; 7-Nonene-4,5-

diol; 6-Nonene-2,3-diol; 6-Heptene-2,4-diol, 5-methyl-; 6-Octene-1,2-diol, 7-methyl-

methylenepentyl)-; 3-Heptene-2,6-diol, 2,6-dimethyl-; 3-Heptene-2,6-diol, 2,6-

1,3-Propanediol,

3-methylene-; 2,7-Octadiene-1,6-diol, 2,6-dimethyl-;

dimethyl-; 5-Hexene-2,4-diol, 3,5-dimethyl-; 4-Hexene-1,2-diol, 2,5-dimethyl-; 4-Hexene-1,2-diol, 2,5-dimethyl-; 7-Octene-1,6-diol; 2-Hexene-1,4-diol, 2,5-dimethyl-; 2-Hexene-1,4-diol, 2,5-dimethyl-; 1,4-Hexanediol, 5-methyl-2-methylene-; 4-Octene-2,3-diol; Nonene-1,4-diol; 6-Heptene-1,4-diol, 4-methyl-; 6-Octene-3,5-diol, 4methyl-; 2,6-Octadiene-1,8-diol, 2,6-dimethyl-; (8-Hydroxygeraniol); 1-Heptene-3,5-diol, 2,4-dimethyl- 2,4-Hexanediol, 5-methyl-3-methylene-; 2,4-Hexanediol, 5methyl-3-methylene-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 6-Heptene-2,4-diol, 5-methyl-; 4,9-Decadiene-1,8-diol; 5-Hexene-1,3-diol, 2,4-dimethyl-; 7-Octene-1,3-diol, 2-methyl-; 5-Heptene-3-d-1,2diol, 2,6-dimethyl-; 5-Heptene-3-d-1,2-diol, 2,6-dimethyl-; 4-Nonene-2,8-diol; 4-Nonene-2,8-diol; 5-Hexene-2,3-diol, 2,3-dimethyl-; 2-Butene-1,4-diol, 2-butyl-; 2,4-Hexadiene-1,6-diol, 3-(1,1-dimethylethyl)-; 6-Octene-1,4-diol, 7-methyl-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 7-Octene-2,5-diol, 7methyl-; 7-Octene-2,5-diol, 7-methyl-; 4-Hexene-1,3-diol, 2,4-dimethyl-; 4-Octene-2,7-diol; 4-Octene-2,7-diol; 3-Heptene-1,2-diol, 5-methyl-; 3-Heptene-1,2-diol, 5methyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 8-Nonene-1,7-diol; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Isorosiridol); 5-Hexene-1,4-diol, 2,4-dimethyl-; 1-Heptene-3,4-diol, 6-methyl-; 3-Heptene-1,5-diol, 4,6-dimethyl-; 3-Octene-1,5-diol, 4-methyl-; 3,9-Decadiene-1,2-diol; 7-Octene-2,3-diol, 2-methyl-; 7-Octene-2,3-diol, 2-methyl-; 6-Nonene-2,3-diol; 2,5-Hexanediol, 3-methyl-4-methylene-; 6-Heptene-1,4-diol, 2methyl-; 6-Octene-1,5-diol; 1-Octene-3,4-diol; 7-Octene-1,6-diol, 5-methyl-; 7-Octene-1,6-diol, 5-methyl-; 1,3-Butanediol, 2-methyl-2-(1-methylethenyl)-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,5-Octanediol, 4-methylene-; 6-Heptene-2,3-diol, 2-methyl-; 6-Heptene-2,3-diol, 2,6-dimethyl-; 6-Heptene-2,3-diol, 2-methyl-; 7-Octene-1,3-diol, 4-methyl-; 1,3-Butanediol, 2-methyl-2-(1-methyl-2-propenyl)-; 5-Heptene-1,2-diol, 2,6-dimethyl-; 1-Nonene-3,4-diol; 5-Heptene-1,2-diol, 3-methyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 6-Heptene-1,3diol, 2,2-dimethyl-; 4-Nonene-1,3-diol; 1,4-Pentanediol, 3-methyl-2-(2-propenyl)-; 1-Nonene-3,4-diol; 8-Nonene-1,2-diol; 3-Octene-1,2-diol; 1,9-Decadiene-4,6-diol; 1,9-Decadiene-4,6-diol; 5-Hexene-1,3-diol, 2,2-dimethyl-; 1,3-Propanediol, 2-(1pentenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-: 8-Nonene-1,3-diol; 2,4-Octadiene-1,8-diol, 2,7-dimethyl-; 5-Heptene-1,2-diol, 6-methyl-; 3,9-Decadiene-1,2-diol; 3-Nonene-1,2-diol; 6-Nonene-1,2-diol; 4-Hexene-1,3-diol, 2,4-dimethyl-; 2,4-Octadiene-1,7-diol, 3,7-dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 3,4dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 1,3-Butanediol, 2-

methyl-2-(2-propenyl)-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 6-Heptene-1,5-diol, 6methyl-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 1,5-Pentanediol, 2-(2-propenyl)-; 5-Hexene-2,3-diol, 3,5-dimethyl-; 5-Hexene-2,3-diol, 3,5-dimethyl-; Nonenediol; Octenediol; 5-Hexene-1,3-diol, 3,5-dimethyl-, 4-Nonene-1,8-diol; 4-Nonene-1,7diol; 4-Nonene-1,6-diol; 6-Nonene-1,4-diol; 2-Nonene-1,4-diol; 8-Nonene-2,5-diol; 5-Heptene-1,2-diol, 2-ethenyl-6-methyl-; 4-Hexene-2,3-diol, 2,5-dimethyl-; 5-Heptene-2,3-diol, 2,6-dimethyl-; 1-Heptene-3,5-diol, 2,6-dimethyl-; 1-Heptene-3,5diol, 2,6-dimethyl-; 7-Octene-1,3-diol, 7-methyl-; 1,3-Propanediol, 2-methyl-2-(3methyl-3-butenyl)-; 5-Heptene-1,2-diol, 2,6-dimethyl-; 5,7-Octadiene-2,3-diol, 2,6dimethyl-; 5,7-Octadiene-2,3-diol, 2,6-dimethyl-; 5-Hexene-1,2-diol, 2-ethyl-; 2,4-Nonadiene-4-d-1,7-diol, 6-methyl-; 2,4-Nonadiene-1,6,7-d3-1,7-diol, 6-methyl-; 2,4-Nonadiene-1,7-diol, 6-methyl-; 7-Octene-2,3-diol, 2-methyl-6-methylene-; 1,3-Butanediol. 3-methyl-2-(4-pentenylidene)-; 1.3-Butanediol. 3-methyl-2-(4pentenylidene)-; 2-Hexene-1,4-diol, 5,5-dimethyl-; 2-Hexene-1,4-diol, 5,5-dimethyl-; 2-Nonene-1,4-diol; 2-Nonene-1,4-diol; 7-Octene-2,3-diol, 2-methyl-6-methylene-; 5-Octene-1,3-diol; 7-Octene-1,3-diol, 2-methyl-; 4-Heptene-1,3-diol, 2-methyl-; 4-Octene-2,3-d2-1,2-diol; 4-Octene-2,3-d2-1,2-diol; 5-Heptene-1,2-diol, 3-methyl-; 5-Octene-1,2-diol; 3,7-Octadiene-1,6-diol, 2,6-dimethyl-; 5-Heptene-1,2-diol, 2,6dimethyl-; 1,7-Octadiene-4,5-diol, 4,5-dimethyl-; 1,7-Octadiene-4,5-diol, 4,5dimethyl-; 5-Heptene-1,3-diol, 2-methyl-; 5-Heptene-1,3-diol, 2-methyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 2,6-Octadiene-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1-t-1,8-diol, 2,6-dimethyl-; 2,6-Octadiene-1-d-1,8-diol, 2,6-dimethyl-; 2-Heptene-1,5diol, 6-methyl-; 2-Heptene-1,5-diol, 6-methyl-; 8,9-Decadiene-3,5-diol; 8,9-Decadiene-3,5-diol; 4,6-Nonadiene-1,3-diol, 8-methyl-; 3,5-Nonadiene-1,7-diol, 8methyl-; 5-Heptene-1,3-diol, 2,4-dimethyl-; 2-Nonene-1,9-diol; 2-Nonene-1,9-diol; 1,3-Butanediol, 2-ethyl-2-(2-propenyl)-; 3-Heptene-1,5-diol, 6-methyl-; Pentanediol, 2-ethenyl-4-methyl-; 1,3-Pentanediol, 2-ethenyl-4-methyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3-diol, 2,3,4-trimethyl-; 4-Pentene-1,2-diol, 2,3,3-trimethyl-; 1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-; 1,3-Propanediol, 2-(2-butenyl)-2-(2-propenyl)-; 5-Hexene-1,2-diol, 2-ethyl-; 1,4-Butanediol, 2-(4-methyl-3-pentenylidene)- (β-Acaridiol); 6-Heptene-1,3-diol, 2methyl-, 2,6-Octadiene-1,8-diol-2-13C, 2,6-dimethyl-, 1-Hexene-3,4-diol, 5,5dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 1-Nonene-3,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,4-diol; 7-Octene-1,2-diol, 2-methyl-; 1-Nonene-3,5-diol; 2,7-Octadiene-1,6-diol, 2,6-dimethyl-; 7-Octene-1,2-diol; 7-Octene-1,2-diol; 2,5-Octadiene-1,7-

diol, 3,7-dimethyl-: 1.3-Propanediol, 2-(2,2-dimethylpropylidene)-: 6-Octene-1,2diol, 7-methyl-3-methylene-, 2.8-Decadiene-1,10-diol; 6-Octene-1,5-diol, 7-methyl-; 1,3-Butanediol, 2-(1-ethyl-1-propenyl)-; 4-Hexene-1,2-diol, 4-ethyl-3-methyl-; 8-Nonene-1.3-diol: 1,4-Butanediol. 2-(3-methyl-2-butenyl)-3-methylene-; Heptadiene-1,4-diol, 2,5,5-trimethyl-, 2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-; 8-Nonene-2.4-diol: 2.6-Heptanediol. 4-methylene-: 3-Hexene-3.4-diol. 2.5-dimethyl-: 4-Octene-4,5-diol: 5-Hexene-1,2-diol, 2,3-dimethyl-; 3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-; 3-Hexene-1,5-diol, 2,4-dimethyl-; 3-Hexene-1,5-diol, 2,4-dimethyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 3,6-Octadiene-1,2-diol, 3,7-dimethyl-; 7-Octene-2,3-diol, 6-methyl-; 7-Octene-2,3-diol, 6-methyl-; 7-Octene-2,3-diol, 6methyl-; 2,5-Octadiene-1,7-diol, 3,7-dimethyl-; 6-Octene-1,3-diol, 7-methyl-; Decadienediol; 6-Heptene-1,2-diol, 2,3-dimethyl-; 4-Hexene-1,3-diol, 3,5-dimethyl-; 4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-; 4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-1-Heptene-3,5-diol, 6,6-dimethyl-; 1-Heptene-3,5-diol, 6,6-dimethyl-; 1,3-Hexanediol, 5-methyl-4-methylene-; 4-Octene-1,2-diol; 2,3-Heptanediol, 3-ethenyl-; 2,3-Heptanediol, 3-ethenyl-; 5-Hexene-1,3-diol, 2,4-dimethyl-; 5-Hexene-1,3-diol, 2,4-dimethyl-, 5-Hexene-1,3-diol, 2,4-dimethyl-, 2,6-Octadiene-1-t-1,8-diol, 3,7dimethyl-; 8-Nonene-2,4-diol; 8-Nonene-2,4-diol; 1,3-Octanediol, 2-methylene-; 8-Nonene-1,3-diol; 5-Heptene-1,4-diol, 3,6-dimethyl-; 5-Heptene-1,4-diol, 2,6dimethyl-; 4-Octene-2,3-diol; 4-Octene-2,3-diol; 5,7-Octadiene-1,4-diol. 2.7dimethyl-; 7-Octene-1,3-diol, 7-methyl-; 2-Heptene-1,5-diol, 5-ethyl-; 2-Heptene-1,5-diol, 5-ethyl-, 1,3-Pentanediol, 2-ethenyl-3-ethyl-, 5-Heptene-2,4-diol, 2,3dimethyl-; 5-Heptene-2,4-diol, 2,3-dimethyl-; 8-Nonene-3,4-diol; 8-Nonene-3,4-diol; 5-Hexene-1,3-diol, 4,5-dimethyl-; 5-Hexene-1,3-diol, 4,5-dimethyl-; 4,6-Octadiene-2,3-diol, 3,7-dimethyl-, 1,3-Butanediol, 2,2-diallyl-, 1,9-Decadiene-3,8-diol, 2-Heptene-1,4-diol, 5,6-dimethyl-; 2-Heptene-1,4-diol, 5-methyl-; 2-Heptene-1,4-diol, 5-methyl-; 2,8-Decadiene-5,6-diol; 5.6-dimethyl-: 2-Heptene-1,4-diol, Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool); 6-Heptene-1,2-diol, 2-methyl-; 5-Hexene-1,3-diol, 2,3-dimethyl-; 2,6-Octadiene-1,8-diol, 6-methyl-2-(methyl-13C)-; 1,3-Propanediol, 2-(5-hexenyl)-; 8-Nonene-3,4-diol; 5-Hexene-1,3-diol, 3ethyl-; 7-Octene-3,4-diol; 6-Heptene-1,2-diol, 2-methyl-; 6-Heptene-2,4-diol, 4-(2propenyl)-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 8-Nonene-3,4-diol; 6-Heptene-2,3-diol, 6-methyl-; 6-Heptene-2,3-diol, 2,6-dimethyl-; 4-Hexene-2,3-diol, 2,5-dimethyl-; 4,6-Octadiene-2,3-diol, 2,6-dimethyl-; 7-Octene-2,3-diol, 2-methyl-6methylene-; 7-Octene-2,3-diol, 6-methyl-; 4,6-Octadiene-2,3-diol, 2,6-dimethyl-; 1.4-Heptanediol, 6-methyl-5-methylene-; 2-Butene-1,4-diol, 2-(4-methyl-3-pentenyl)- (α-Acaridiol); 4-Octene-1,2-diol; 4-Octene-1,2-diol; 7-Octene-2,4-diol; 6-Heptene-2,4diol, 3-methyl-; 6-Heptene-2,4-diol, 3-methyl-; 3-Heptene-2,5-diol, 2,4-dimethyl-; 1,3-Butanediol, 2-(3-methyl-2-butenyl)-; 7-Octene-3,5-diol, 2-methyl-; 7-Octene-3,5-diol, 2-methyl-; 6-Heptene-2,4-diol, 5,5-dimethyl-; 6-Heptene-2,4-diol, 5,5-dimethyl-; 1,3-Propanediol, 2-methyl-2-(2-methylallyl)-; 2-Heptene-1,6-diol, 6-methyl-; 1,3-Butanediol, 2-allyl-3-methyl-; 2-Nonene-1,4-diol; 5-Hexene-2,3-diol, 4-ethenyl-2,5-dimethyl-; 5-Hexene-2,3-diol, 4-ethenyl-2,5-dimethyl-; 5-Hexene-2,3-diol, 4-ethenyl-2,5-dimethyl-; and 1,3-Propanediol, 2-(1-pentenyl)-.

- 5. The material of Claim 1 that is a mixture of the compounds A., B., and/or C.
- 6. The material of Claim 1 which is a mixture of 8-carbon-diol isomers primarily consisting of: 2,2,4-trimethyl-1,3-pentanediol; 2-ethyl-1,3-hexanediol; 2,2-dimethyl-1,3-hexanediol; 2-ethyl-4-methyl-1,3-pentanediol; 2-ethyl-3-methyl-1,3-pentanediol; 3,5-octanediol; 2,2-dimethyl-2,4-hexanediol; 2-methyl-3,5-heptanediol; and/or 3-methyl-3,5-heptanediol, the level of any individual diol isomer being less than about 90% of any mixture.
- 7. The material of Claim 6 wherein the level of any individual diol isomer is less than about 80% of any mixture.
- 8. The material of Claim 6 wherein the level of any individual diol isomer is less than about 70% of any mixture.
- 9. The material of Claim 6 wherein the level of any individual diol isomer is less than about 60% of any mixture.
- 10. The material of Claim 6 wherein the level of any individual diol isomer is less than about 50% of any mixture.
- 11. An aqueous, stable, fabric softener composition comprising:
  - A. from about 2% to about 80% of fabric softener active selected from the group consisting of:
    - 1. fabric softener compound having the formula:

PCT/US96/11556

$$\left[ (R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{1}]_m \right] X^{(-)}$$
(1)

wherein each R substituent is H, or a short chain  $C_1$ - $C_6$  alkyl or hydroxyalkyl group, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4; each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, but not -OC(O)O-; the sum of carbons in each  $R^1$ , or  $YR^1$  when Y is -O-(O)C- or -(R)N-(O)C-, being  $C_6$ - $C_{22}$ , but when the sum of carbons in one  $R^1$ , or  $YR^1$ , is less than about 12, then the other  $R^1$ , or  $YR^1$ , sum is at least about 16, with each  $R^1$  being a long chain hydrocarbyl, or substituted hydrocarbyl substituent group, and for  $R^1$ , or  $YR^1$ ,  $C_{16}$ - $C_{20}$  hydrocarbyl or substituted hydrocarbyl substituent groups, the Iodine Value of a  $YR^1$  fatty acid which contains this  $R^1$  group is from about 20 to about 140, and for  $R^1$ , or  $YR^1$ ,  $C_8$ - $C_{14}$ , hydrocarbyl, or substituted hydrocarbyl substituent groups, the Iodine Value of a fatty acid which contains this  $R^1$  group is about 10 or less;

2. fabric softener compound having the formula:

$$\begin{bmatrix} R_3 N^{(+)} CH_2 CH & YR^1 \\ CH_2 YR^1 \end{bmatrix} X^{(-)}$$
(2)

wherein each Y, R, R¹, and X⁽⁻⁾ have the same meanings as before; and

- 3. mixtures thereof;
- B. less than about 40% by weight of the composition of principal solvent having a ClogP of from about 0.15 to about 0.64, and at least some degree of asymmetry, said principal solvent containing insufficient amounts of solvents selected from the group consisting of: 2,2,4-trimethyl-1,3-pentane diol; the ethoxylate, diethoxylate, or triethoxylate derivatives of 2,2,4-trimethyl-1,3-pentane diol; and/or 2-ethylhexyl-1,3-diol, to provide an aqueous stable composition by themselves;
  - C. optionally, an effective amount, sufficient to improve clarity, of low molecular weight water soluble solvents like ethanol, isopropanol, propylene glycol, 1,3-propanediol, and propylene carbonate, said

water soluble solvents being at a level that will not form clear compositions by themselves;

- D. optionally, an effective amount to improve clarity, of water soluble calcium and/or magnesium salt; and
- E. the balance being water.
- 12. The aqueous, stable, fabric softener composition of Claim 11 comprising:
  - A. from about 13% to about 75% of said fabric softener active selected from the group consisting of:
    - fabric softener compound having the formula:

$$\left[ (R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^1]_m \right] X^{(-)}$$
(1)

wherein each R substituent is H, or a short chain  $C_1$ - $C_3$  alkyl or hydroxyalkyl group, benzyl or mixtures thereof; each m is 2; each n is from 2 to about 3; each Y is -O-(O)C-; each  $R^1$  is a long chain  $C_9$ - $C_{19}$  hydrocarbyl, and for  $R^1$   $C_{15}$ - $C_{19}$  hydrocarbyl or substituted hydrocarbyl substituent groups, the Iodine Value of the corresponding fatty acid of this  $R^1$  group is from about 50 to about 130; and for  $R^1$   $C_7$ - $C_{13}$ , or substituted hydrocarbyl substituent groups, the Iodine Value of the corresponding fatty acid of  $R^1$  group is about 10 or less:

2. fabric softener compound having the formula:

$$\begin{bmatrix} R_3 N^{(+)} CH_2 CH & YR^1 \\ CH_2 YR^1 \end{bmatrix} X^{(-)}$$
(2)

wherein each Y, R, R¹, and X⁽⁻⁾ have the same meanings as before; and

- 3. mixtures thereof;
- B. from about 10% to about 35% by weight of the composition of said principal solvent, said principal solvent having a ClogP of from about 0.25 to about 0.62;

- C. optionally, from about 1% to about 10%, and sufficient to improve clarity, of low molecular weight water soluble solvents like ethanol, isopropanol, propylene glycol, 1,3-propanediol, propylene carbonate, said water soluble solvents being at a level that will not form clear compositions by themselves;
- D. optionally, from 0% to about 2%, and sufficient to improve clarity, achieve the desired viscosity, or improve clarity and achieve the desired viscosity, of water soluble calcium and/or magnesium salt; and
- E. from about 10% to about 80% water.
- 13. The aqueous, stable, fabric softener composition of Claim 12 comprising:
  - A. from about 17% to about 70% of said fabric softener active selected from the group consisting of:
    - 1. fabric softener compound having the formula:

$$\left[ (R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{\frac{1}{2}}]_m \right] X^{(-)}$$
 (1)

wherein each R substituent is H, or a short chain  $C_1$ - $C_3$  alkyl or hydroxyalkyl group, benzyl or mixtures thereof; each m is 2; each n is from 2 to about 3; each Y is -O-(O)C-; each R¹ is a long chain  $C_7$ - $C_{17}$  hydrocarbyl, or substituted hydrocarbyl substituent, and for R¹  $C_{15}$ - $C_{17}$  hydrocarbyl or substituted hydrocarbyl substituent groups, the Iodine Value of the corresponding fatty acid of this R¹ group is from about 70 to about 115; and for R¹  $C_7$ - $C_{13}$ , or substituted hydrocarbyl substituent groups, the Iodine Value of the corresponding fatty acid of R¹ group is about 5 or less;

2. fabric softener compound having the formula:

$$\begin{bmatrix} R_3 N^{(+)}CH_2CH & YR^1 \\ CH_2 YR^1 \end{bmatrix} X^{(-)}$$
(2)

wherein each Y, R,  $R^1$ , and  $X^{(-)}$  have the same meanings as before; and

- mixtures thereof,
- B. from about 12% to about 35% by weight of the composition of said principal solvent, said principal solvent having a ClogP of from about 0.40 to about 0.60;
- C. optionally, from about 2% to 8%, and sufficient to improve clarity, of low molecular weight water soluble solvents like ethanol, isopropanol, propylene glycol, 1,3-propanediol, propylene carbonate;
- D. optionally, from about 0.05% to about 0.5%, and sufficient to improve clarity, achieve the desired viscosity, or improve clarity and achieve the desired viscosity, of water soluble calcium and/or magnesium salt; and
- E. from about 20% to about 80% water.
- 14. The aqueous, stable, fabric softener composition of Claim 13, said composition being clear and comprising:
  - A. from about 19% to about 65% by weight of the composition, of said fabric softener:
    - 1. fabric softener compound having the formula:

$$\left[ (R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{\frac{1}{2}}]_m \right] X^{(-)}$$
(1)

wherein each R substituent is methyl, ethyl, propyl, hydroxyethyl, benzyl or mixtures thereof; each n is 2; each R¹ is a long chain C₁₃-C₁₇ straight chain alkyl or alkylene, and for R¹ C₁₅-C₁₇ hydrocarbyl or substituted hydrocarbyl substituent groups, the Iodine Value of the corresponding fatty acid of this R¹ group is from about 70 to about 115;

- B. from about 14% to about 35% by weight of the composition of said principal solvent, said principal solvent having a ClogP of from about 0.40 to about 0.60;
- C. optionally, from about 2% to 8%, and sufficient to improve clarity, of low molecular weight water soluble solvents selected from the group consisting of: ethanol, isopropanol, propylene glycol, 1,3-propanediol, and propylene carbonate;

- D. optionally, from about 0.1% to about 0.25%, and sufficient to improve clarity, achieve the desired viscosity, or improve clarity and achieve the desired viscosity, of water soluble calcium or magnesium chloride, acetate, or nitrate; and
- E. from about 30% to about 70% water.
- 15. The composition of Claim 11 wherein said ClogP is from about 0.25 to about 0.62.
- 16. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of:
  n-propanol; 2-butanol; 2-methyl-2-propanol; and mixtures thereof.
- 17. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol, 3-methyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; 1,2-hexanediol; and mixtures thereof;
- 18. The composition of Claim 17 wherein said principal solvent is selected from the group consisting of:
- 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol, 4-methyl-; 2,3-hexanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; 1,2-hexanediol; and mixtures thereof.
- 19. The composition of Claim 18 wherein said principal solvent is selected from the group consisting of:
- 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and 1,2-hexanediol; and mixtures thereof.
- 20. The composition of Claim 19 wherein said principal solvent is 1,2-hexanediol.
- 21. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 1,3-propanediol, 2-butyl-; 1,3-propanediol, 2,2-diethyl-; 1,3-propanediol, 2-(1-methylpropyl)-; 1,3-propanediol, 2-(2-diethyl-; 1,3-propanediol, 2-(3-diethyl-; 1,3-propanediol, 2-(3-diethyl-; 1,3-propanediol, 2-(3-diethyl-; 1,3-diethyl-; 1,3-di

methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 3,4-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 3,4-pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3-methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 4-methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3-methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; 1,6-heptanediol; and mixtures thereof.

- 22. The composition of Claim 21 wherein said principal solvent is selected from the group consisting of:
- 1,3-propanediol, 2-butyl-; 1,4-butanediol, 2-propyl-; 1,5-pentanediol, 2-ethyl-; 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3-dimethyl-; 1,6-hexanediol, 3-methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; 1,6-heptanediol; and mixtures thereof.
- 23. The composition of Claim 22 wherein said principal solvent is selected from the group consisting of:
- 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3-pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3-dimethyl-; and mixtures thereof.
- 24. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 1,3-propanediol, 2-(2-methylbutyl)-; 1,3propanediol, 2-(1,1-dimethylpropyl)- 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(1-methylbutyl)-; propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(3-methylbutyl)-; 1,3propanediol, 2-butyl-2-methyl-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3propanediol, 2-ethyl-2-propyl-; 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3propanediol. 2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2methyl-; 1,3-butanediol, 2,2-diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1dimethylethyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2-

isopropyl-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-, 1,4-butanediol, 2-(1-methylpropyl)-, 1,4-butanediol, 2-ethyl-2,3dimethyl-; 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 1.4-butanediol. 2-(1,1dimethylethyl)-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,3,4-trimethyl-; 2,4-pentanediol, 2,3,3-trimethyl-; 2,4-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1,3-pentanediol. 2-ethyl-3-methyl-: pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; pentanediol, 2-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3-hexanediol, 3,5-dimethyl-; 1,3-1,4-hexanediol, 2,2hexanediol. 4,4-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4-1,4-hexanediol, 2,4-dimethyl-; dimethyl-; 1,4-hexanediol, 2.3-dimethyl-; 1,4-hexanediol, 3,4hexanediol, 2,5-dimethyl-; 1.4-hexanediol, 3,3-dimethyl-; 1.4-hexanediol, 4.5-dimethyl-; 1,4-1,4-hexanediol, 3.5-dimethyl-: dimethyl-; 1.5-hexanediol, 1.5-hexanediol, 2.3-2,2-dimethyl-; hexanediol, 5,5-dimethyl-; 2,5-dimethyl-; 1,5dimethyl-; 1,5-hexanediol, 2,4-dimethyl-; 1.5-hexanediol. 3.4-dimethyl-: 1,5-hexanediol, 3,5-1,5-hexanediol, hexanediol. 3.3-dimethyl-; 2.2-dimethyl-; 1,6-1,6-hexanediol, 1.5-hexanediol, 4.5-dimethyl-: dimethyl-; 1,6-hexanediol, 2,5hexanediol. 2,3-dimethyl-; 1.6-hexanediol, 2,4-dimethyl-; 3,4-dimethyl-; 2,4-3.3-dimethyl-; 1.6-hexanediol. dimethyl-; 1,6-hexanediol, 2,4-hexanediol, 2,5-2.4-dimethyl-; 2,4-hexanediol, hexanediol, 2,3-dimethyl-; 3,4-dimethyl-; 2,4-2,4-hexanediol, 3.3-dimethyl-; 2,4-hexanediol, dimethyl-: 2,4-hexanediol, 5,5-2,4-hexanediol, 4.5-dimethyl-; 3.5-dimethyl-; hexanediol. 2,4-dimethyl-; 2,5-2,5-hexanediol, 2.3-dimethyl-; dimethyl-: 2.5-hexanediol.

hexanediol, 2,5-dimethyl-; 2,5-hexanediol, 3,3-dimethyl-; 2,5-hexanediol, 3,4dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-, 2,4-heptanediol, 4-methyl-, 2,4-heptanediol, 5-methyl-, 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5heptanediol, 4-methyl-; 2,5-heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 3,5-heptanediol, 3-methyl-; 3,5heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7octanediol; 3,5-octanediol; and mixtures thereof.

25. The composition of Claim 24 wherein said principal solvent is selected from the group consisting of: 1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3-propanediol, 2methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2-methyl-2-(2-methylpropyl)-; 1,3propanediol, 2-tertiary-butyl-2-methyl-; 1,3-butanediol, 2,2-diethyl; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1-dimethylethyl): 1,3-butanediol, 2-(2-methylpropyl): 1,3butanediol. 2-methyl-2-propyl-; 1,3-butanediol, 2-methyl-2-isopropyl-; butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(1,1dimethylethyl)-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 2.4-pentanediol. 2,3,4-trimethyl-; 1,3-pentanediol, 2-ethyl-2-methyl-; 1.3-

pentanediol, 2-ethyl-3-methyl-; 1,3-pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3methyl-; 1,4-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4pentanediol, 3-ethyl-2-methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 2.4-pentanediol, 3-propyl-: 1,3-hexanediol, 2,2-dimethyl-; 1,3hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5-3,5-dimethyl-; 1,3dimethyl-: 1.3-hexanediol. 3,4-dimethyl-; 1,3-hexanediol. hexanediol. 4,4-dimethyl-; 1,3-hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2dimethyl-; 1,4-hexanediol, 2.3-dimethyl-: 1,4-hexanediol, 2.4-dimethyl-; 1,4hexanediol, 2.5-dimethyl-; 1.4-hexanediol, 3.3-dimethyl-; 1.4-hexanediol. 3.4dimethyl-: 1,4-hexanediol, 3,5-dimethyl-; 1.4-hexanediol. 4.5-dimethyl-: 1,4hexanediol, 5,5-dimethyl-; 1,5-hexanediol, 2,2-dimethyl-; 1.5-hexanediol. 2,3dimethyl-; 1.5-hexanediol. 2,4-dimethyl-; 1,5-hexanediol, 2.5-dimethyl-; 1,5hexanediol, 3,3-dimethyl-; 1,5-hexanediol, 3,4-dimethyl-; 1,5-hexanediol, 3,5dimethyl-; 1.5-hexanediol. 4.5-dimethyl-: 2.6-hexanediol. 3.3-dimethyl-: 1.3hexanediol. 2-ethyl-: 1.3-hexanediol. 4-ethyl-: 1.4-hexanediol. 2-ethyl-: 1.4hexanediol. 4-ethyl-: 1,5-hexanediol, 2-ethyl-: 2,4-hexanediol, 3-ethyl-: 2,4hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3-heptanediol, 2-methyl-; 1,3heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3-heptanediol, 5-methyl-; 1,3heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4-heptanediol, 3-methyl-; 1,4heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4-heptanediol, 6-methyl-; 1,5heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5-heptanediol, 4-methyl-; 1,5heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6-heptanediol, 2-methyl-; 1,6heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6-heptanediol, 5-methyl-; 1,6heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4-heptanediol, 3-methyl-; 2,4heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4-heptanediol, 6-methyl-; 2,5heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5-heptanediol, 4-methyl-; 2,5heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6-heptanediol, 2-methyl-; 2,6heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5heptanediol, 2-methyl-; 3,5-heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; 3,6-octanediol; and mixtures thereof.

26. The composition of Claim 25 wherein said principal solvent is selected from the group consisting of:

1,3-propanediol, 2-(1,1-dimethylpropyl)-; 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3-propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(3,4-dimethylpropyl)-; 1,3-propanediol, 2-(3,4-dimethylpro

propanediol, 2-ethyl-2-isopropyl-, 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3-propanediol, 2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2methyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-butyl-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2-ethyl-2,3-dimethyl-; 1.4-butanediol, 2-ethyl-3.3-dimethyl-; 1,4-butanediol, 2-(1,1-dimethylethyl)-; 1,3pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 2-ethyl-2-methyl-; 1,3-pentanediol. 1.3-pentanediol. 2-ethyl-3-methyl-: pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2-methyl-; 1,3pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4dimethyl-; 1,3-hexanediol, 2,5-dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3hexanediol, 3,5-dimethyl-, 1,3-hexanediol, 4,4-dimethyl-, 1,3-hexanediol, 4,5dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3-dimethyl-; 1,4hexanediol, 2,4-dimethyl-; 1,4-hexanediol, 2,5-dimethyl-; 1,4-hexanediol, 3,3dimethyl-; 1,4-hexanediol, 3,4-dimethyl-; 1,4-hexanediol, 3,5-dimethyl-; 1,4hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 5,5-dimethyl-; 1,5-hexanediol, 2,2dimethyl-; 1,5-hexanediol. 2,3-dimethyl-; 1,5-hexanediol, 2,4-dimethyl-; 1,5hexanediol, 2,5-dimethyl-; 1,5-hexanediol, 3,3-dimethyl-; 1,5-hexanediol, 3,4dimethyl-; 1,5-hexanediol, 3,5-dimethyl-; 1,5-hexanediol, 4,5-dimethyl-; 2,6hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4-ethyl-; 1,4hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-; 2,4-heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5heptanediol, 4-methyl-; 2,5-heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4-heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 3,5-heptanediol, 4-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or 3,6-octanediol; and mixtures thereof.

- 27. The composition of Claim 26 wherein said principal solvent is selected from the group consisting of: 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,5-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; 2,5-hexanediol, 3,3,5-trimethyl-; and mixtures thereof.
- 28. The composition of Claim 27 wherein said principal solvent is 2,4-pentanediol, 2,3,3,4-tetramethyl-.
- 29. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 1,2-propanediol, 3-(n-pentyloxy)-; 1,2propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(iso-amyloxy)-; 1,2-propanediol, 3-(3methyl-2-butyloxy)-; 1,2-propanediol, 3-(cyclohexyloxy)-; 1,2-propanediol, 3-(1cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3-propanediol, 2-(3-methyl-2butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1-cyclohex-1enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, triethoxylated; 1,2-propanediol, 3-(butyloxy)-, tetraethoxylated; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, 3-(1-phenyl-2propanyloxy)-; 1,3-propanediol, 2-phenyloxy-; 1,3-propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, 2-benzyloxy-; 1,3-propanediol, 2-(1-phenylethyloxy)-; bis(2-2-(2-phenylethyloxy)-; 1,3-propanediol, hydroxybutyl)ether; bis(2-hydroxycylclopentyl)ether; and mixtures thereof.
- 30. The composition of Claim 29 wherein said principal solvent is selected from the group consisting of:

1,2-propanediol. 3-(n-pentyloxy)-; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2propanediol, 3-(iso-amyloxy)-; 1,2-propanediol, 3-(3-methyl-2-butyloxy)-; 1,2propanediol, 3-(cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(isoamyloxy)-; 2-(3-methyl-2-butyloxy)-; 1,3-propanediol, 1,3-propanediol, (cyclohexyloxy)-; 1,3-propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-1,3-propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; propanediol, 2-benzyloxy-: 1.3-propanediol, 2-(2-phenylethyloxy)-; bis(2hydroxybutyl)ether; bis(2-hydroxycylclopentyl)ether; and mixtures thereof.

31. The composition of Claim 30 wherein said principal solvent is selected from the group consisting of:

1,2-propanediol. 1.2-propanediol, 3-(n-pentyloxy)-; 3-(2-pentyloxy)-; 1,2propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2propanediol, 3-(iso-amyloxy)-; 1,2-propanediol, 3-(3-methyl-2-butyloxy)-; 1,2propanediol, 3-(cyclohexyloxy)-; 1,2-propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3propanediol, 2-(pentyloxy)-; 1,3-propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(isoamyloxy)-; 1,3-propanediol 2-(3-methyl-2-butyloxy)-: 1,3-propanediol, (cyclohexyloxy)-; 1,3-propanediol, 2-(1-cyclohex-1-enyloxy)-; 1,2-propanediol, 3-(butyloxy)-, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2propanediol. 3-(butyloxy)-. heptaethoxylated; 1,2-propanediol. 3-(butyloxy)-. octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-phenyloxy-; 1,2-propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-1,3-propanediol, 2-(m-cresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1.3propanediol. 2-(2-phenylethyloxy)-; bis(2-hvdroxvbutvl)ether: bis(2hydroxycylclopentyl)ether; and mixtures thereof.

32. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2-cyclobutanediol; 3-isopropyl-1,2-

cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol, 2,4,5-trimethyl-1,3-cyclopentanediol; 3,3dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2-cyclopentanediol; 3,5-dimethyl-1,2cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1, 1-bis(hydroxymethyl)cyclohexane: 1.2bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol: 1,3bis(hydroxymethyl)cyclohexane; 1,3-dimethyl-1,3-cyclohexanediol; 1,6-dimethyl-1,3cyclohexanediol; 1-hydroxy-cyclohexaneethanol; 1-hydroxy-cyclohexanemethanol; 1ethyl-1,3-cyclohexanediol: 1-methyl-1,2-cyclohexanediol; 2,2-dimethyl-1,3cyclohexanediol; 2,3-dimethyl-1,4-cyclohexanediol; 2.4-dimethyl-1.3cyclohexanediol; 2,5-dimethyl-1,3-cyclohexanediol; 2,6-dimethyl-1,4cyclohexanediol; 2-ethyl-1,3-cyclohexanediol; 2-hydroxycyclohexaneethanol; 2hydroxyethyl-1-cyclohexanol; 2-hydroxymethylcyclohexanol; 3-hydroxyethyl-1cyclohexanol; 3-hydroxycyclohexaneethanol; 3-hydroxymethylcyclohexanol; methyl-1,2-cyclohexanediol; 4,4-dimethyl-1,3-cyclohexanediol; 4.5-dimethyl-1.3cyclohexanediol; 4,6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4hydroxyethyl-1-cyclohexanol: 4-hydroxymethylcyclohexanol; 4-methyl-1.2cyclohexanediol; 5,5-dimethyl-1,3-cyclohexanediol; 5-ethyl-1,3-cyclohexanediol; 1,2cycloheptanediol; 2-methyl-1,3-cycloheptanediol; 2-methyl-1,4-cycloheptanediol; 4methyl-1,3-cycloheptanediol; 5-methyl-1,3-cycloheptanediol: 5-methyl-1,4cycloheptanediol; 6-methyl-1,4-cycloheptanediol; 1,3-cyclooctanediol; 1,4cyclooctanediol; 1,5-cyclooctanediol; 1,2-cyclohexanediol, diethoxylate; 1,2-1,2-cyclohexanediol, tetraethoxylate; cyclohexanediol. triethoxylate; 1,2cyclohexanediol, pentaethoxylate; 1,2-cyclohexanediol, hexaethoxylate; 1,2octaethoxylate; cyclohexanediol, heptaethoxylate; 1,2-cyclohexanediol, 1,2cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; 1,2cyclohexanediol, monobutylenoxylate; 1,2-cyclohexanediol, dibutylenoxylate; 1,2tributylenoxylate; 1,2-cyclobutanediol, 1-ethenyl-2-ethyl-; 3cyclohexanediol, cyclobutene-1,2-diol, 1,2,3,4-tetramethyl-; 3-cyclobutene-1,2-diol, 3,4-diethyl-; 3cyclobutene-1,2-diol, 3-(1,1-dimethylethyl)-; 3-cyclobutene-1,2-diol, 3-butyl-; 1,2-1-ethyl-3-1.2-dimethyl-4-methylene-; 1,2-cyclopentanediol, cyclopentanediol, methylene-; 1,2-cyclopentanediol, 4-(1-propenyl); 3-cyclopentene-1,2-diol, 1-ethyl-3-1.2-cyclohexanediol. 1-ethenyl-; 1.2-cvclohexanediol. 1-methyl-3methyl-: methylene-; 1,2-cyclohexanediol, 1-methyl-4-methylene-; 1,2-cyclohexanediol, 3ethenyl-; 1,2-cyclohexanediol, 4-ethenyl-; 3-cyclohexene-1,2-diol, 2,6-dimethyl-; 3cyclohexene-1,2-diol, 6,6-dimethyl-; 4-cyclohexene-1,2-diol, 3,6-dimethyl-; 4cyclohexene-1,2-diol, 4,5-dimethyl-; 3-cyclooctene-1,2-diol; 4-cyclooctene-1,2-diol; 5-cyclooctene-1,2-diol; and mixtures thereof.

The composition of Claim 32 wherein said principal solvent is selected from 33. the group consisting of: 1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 3,3-dimethyl-1,2cyclopentanediol: 3,4-dimethyl-1,2-cyclopentanediol; 3.5-dimethyl-1.2cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1,1-bis(hydroxymethyl)cyclohexane; 1.2bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol; 1.3bis(hydroxymethyl)cyclohexane; 1-hydroxy-cyclohexanemethanol; cyclohexanediol; 3-hydroxymethylcyclohexanol; 3-methyl-1,2-cyclohexanediol; 4,4dimethyl-1,3-cyclohexanediol; 4,5-dimethyl-1,3-cyclohexanediol; 4,6-dimethyl-1,3cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4-hydroxyethyl-1-cyclohexanol; 4hydroxymethylcyclohexanol; 4-methyl-1,2-cyclohexanediol; 1.2-cycloheptanediol; ; 1,2-cyclohexanediol, pentaethoxylate; 1,2-cyclohexanediol, hexaethoxylate; 1,2cyclohexanediol. heptaethoxylate; 1,2-cyclohexanediol. octaethoxylate: cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; cyclohexanediol, dibutylenoxylate; and mixtures thereof.

## 34. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of:

1. 1,2-propanediol (C3) 2(Me- $E_{1-4}$ ); 1,2-propanediol (C3) PO₄; 1,2-propanediol, 2-methyl- (C4) (Me- $E_{4-10}$ ); 1,2-propanediol, 2-methyl- (C4) 2(Me- $E_{1}$ ); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,2-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol (C3) 2(Me- $E_{6-8}$ ); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2,2-diethyl- (C7) PO₁; 1,3-propanediol, 2,2-diethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3-propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(2-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(2-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(2-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-ethyl- (C5) (Me  $E_{6-10}$ ); 1,3-propanediol, 2-ethyl- (C5) 2(Me  $E_{1}$ ); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-

propanediol, 2-ethyl-2-methyl- (C6) BO₁; 1,3-propanediol, 2-isopropyl- (C6) (Me  $E_{1-6}$ ); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me  $E_{2-5}$ ); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2-isopropyl- (C7)  $E_{2-9}$ ; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C6) (Me  $E_{1-4}$ ); 1,3-propanediol, 2-propyl- (C6) PO₂; 1,3-propanediol, 2-propyl- (C6) BO₁;

1,2-butanediol (C4) (Me  $E_{2-8}$ ); 1,2-butanediol (C4)  $PO_{2-3}$ ; 1,2butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3dimethyl- (C6) n-BO₁₋₂; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl-(C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl-(C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6)  $E_{1-6}$ ; 1,2-butanediol, 3,3-dimethyl-(C6) n-BO₁₋₂; 1,2-butanediol, 3-methyl- (C5) (Me  $E_{1-2}$ ); 1,2-butanediol, 3-methyl-(C5) PO₁; 1,3-butanediol (C4) 2(Me E₃₋₆); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3trimethyl- (C7) PO₁₋₂; 1,3-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₈); 1,3butanediol, 2,2-dimethyl- (C6) PO3; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E3-8); 1,3-butanediol, 2,3-dimethyl- (C6) PO₃; 1,3-butanediol, 2-ethyl- (C6) (Me E₁₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3butanediol, 2-ethyl-2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3methyl- (C7) (Me E1); 1,3-butanediol, 2-ethyl-3-methyl- (C7) PO1; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me E₁); 1,3butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2-isopropyl- (C7) n-BO₂₋₄; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E₂₋₉; 1,3-butanediol, 2-propyl- (C7) PO₁; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol (C4) BO₂; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₂₋₉; 1,4-butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO₁; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E₁-6); 1,4-butanediol, 2,3-dimethyl- (C6) PO2; 1,4-butanediol, 2,3-dimethyl- (C6) BO1; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₁₋₇; 1,4butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-ethyl-3-methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-methyl- (C5) (Me E₆₋₁₀); 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4-butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7) E₁₋₅; 1,4-butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₃; 2,3-butanediol (C4) (Me E₆₋₁₀); 2,3-butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉; 2,3-butanediol, 2,3-dimethyl- (C6) n-BO₁₋₃; 2,3-butanediol, 2-methyl- (C5) (Me E₁₋₅); 2,3-butanediol, 2-methyl- (C5) PO₂; 2,3-butanediol, 2-methyl- (C5) BO₁;

3. 1,2-pentanediol (C5) E₃₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2methyl (C6) n-BO1; 1,2-pentanediol, 2-methyl (C6) BO1; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me-E₁₋₂); 1,3pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6) 2(Me-E₁₋₆); 1,3-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 2methyl- (C6) BO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,3pentanediol, 3-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3pentanediol, 3-methyl- (C6) BO1; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E1); 1,3pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) (Me- $E_{1-6}$ ); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7)

PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me- $E_{1-6}$ ); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 2-methyl- (C6) BO₁; 1,4pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl-(C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl- (C6) BO₁; 1,4-pentanediol, 4methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋₁₀); 1,5-pentanediol (C5) 2(Me- $E_1$ ); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7)  $E_{1-7}$ ; 1,5pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2-ethyl- (C7) E₁₋₅; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁₋ 2; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 3-methyl- (C6) (Me- $E_{1-4}$ ; 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me- $E_{1-3}$ ); 2,3pentanediol, (C5) PO₂; 2,3-pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2methyl- (C6) PO₁: 2,3-pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3methyl- (C6) E₁₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl-(C6) n-BO₁₋₂; 2,3-pentanediol, 4-methyl- (C6) E₁₋₇; 2,3-pentanediol, 4-methyl-(C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me- $E_{1-4}$ ); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me- $E_{1-4}$ ); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₅₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl-(C7) (Me-E₁₋₄); 2,4-pentanediol, 3,3-dimethyl- (C7) PO₂, 2,4-pentanediol, 3methyl- (C6) (Me-E₅₋₁₀); 2,4-pentanediol, 3-methyl- (C6) PO₃;

4. 1,3-hexanediol (C6) (Me-E₁₋₅); 1,3-hexanediol (C6) PO₂; 1,3-hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2-methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) BO₁; 1,3-hexanediol, 3-methyl- (C7) E₂₋₉; 1,3-hexanediol, 3-methyl- (C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7)

E₂₋₉; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 5-methyl- (C7)  $E_{2-9}$ ; 1,3-hexanediol, 5-methyl- (C7)  $PO_1$ ; 1,3hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol (C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉; 1,4hexanediol, 2-methyl- (C7) PO1; 1,4-hexanediol, 2-methyl- (C7) n-BO1-3; 1,4hexanediol, 3-methyl- (C7) E₂₋₉; 1,4-hexanediol, 3-methyl- (C7) PO₁; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO₁; 1,4-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 5-methyl- (C7) E₂₋₉; 1,4-hexanediol, 5-methyl- (C7) PO₁; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7) E₂₋₉; 1,5-hexanediol, 3-methyl- (C7) PO₁; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7) E₂₋₉; 1,5hexanediol, 4-methyl- (C7) PO₁; 1,5-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7) E₁₋₅; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂; 2,3-hexanediol (C6) E₁₋₅; 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 3-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 4-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 4-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 5-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;

5. 1,3-heptanediol (C7)  $E_{1-7}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7)  $n-BO_{1-2}$ ; 1,4-heptanediol (C7)  $E_{1-7}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,6-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)

BO₃; 2,6-heptanediol (C7)  $E_{3-10}$ ; 2,6-heptanediol (C7) (Me- $E_1$ ); 2,6-heptanediol (C7) PO₁; 2,6-heptanediol (C7) n-BO₃; 3,5-heptanediol (C7)  $E_{3-10}$ ; 3,5-heptanediol (C7) (Me- $E_1$ ); 3,5-heptanediol (C7) PO₁; 3,5-heptanediol (C7) n-BO₃;

1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO1; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 3,3-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 5,5-dimethyl- (C8)  $E_{2-5}$ ; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO1; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO1; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl-(C8) n-BO₁; 2,4-pentanediol, 2,3,4-trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl-(C8) n-BO₁; 2,4-heptanediol, 2-methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl-(C8) n-BO₁; 2,4-heptanediol, 4-methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl-(C8) n-BO₁; 2,4-heptanediol, 6-methyl- (C8) n-BO₁; 2,5-heptanediol, 2-methyl-(C8) n-BO₁; 2,5-heptanediol, 3-methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl-(C8) n-BO₁; 2,5-heptanediol, 5-methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl-(C8) n-BO₁; 2,6-heptanediol, 2-methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl-(C8) n-BO₁; 2,6-heptanediol, 4-methyl- (C8) n-BO₁; 3,5-heptanediol, 2-methyl-(C8) n-BO₁; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) E₁₋₃; 1,3-butanediol, 2ethyl-2,3-dimethyl- (C8) E₁₋₃; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4butanediol, 3-methyl-2-isopropyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,2,3-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 3,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,2,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,3,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 3,3,4-trimethyl- (C8)  $E_{1-3}$ ; 2,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 4-methyl- (C8)  $E_{1-3}$ 

## 35. The composition of Claim 34 wherein said principal solvent is selected from the group consisting of:

1. 1,2-propanediol (C3) 2(Me-E₃₋₄); 1,2-propanediol (C3) PO₄; 1,2propanediol, 2-methyl- (C4) (Me-E₈₋₁₀); 1,2-propanediol, 2-methyl- (C4) 2(Me-E₁); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,3-propanediol (C3) 2(Me-E₈); 1,3propanediol (C3) PO₆; 1,3-propanediol, 2,2-diethyl- (C7) E₄₋₇; 1,3-propanediol, 2,2-diethyl- (C7) PO1; 1,3-propanediol, 2,2-diethyl- (C7) n-BO2; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3-propanediol, 2,2-dimethyl- (C5) PO₄; 1,3propanediol, 2-(1-methylpropyl)- (C7) E₄₋₇; 1,3-propanediol, 2-(1-methylpropyl)-(C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7) n-BO₂; 1,3-propanediol, 2-(2methylpropyl)- (C7) E₄₋₇, 1,3-propanediol, 2-(2-methylpropyl)- (C7) PO₁; 1,3propanediol, 2-(2-methylpropyl)- (C7) n-BO₂; 1,3-propanediol, 2-ethyl- (C5) (Me E₉₋₁₀); 1,3-propanediol, 2-ethyl- (C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me E₃₋₆); 1,3-propanediol, 2-ethyl-2methyl- (C6) PO2; 1,3-propanediol, 2-ethyl-2-methyl- (C6) BO1; 1,3-propanediol, 2isopropyl- (C6) (Me E₃₋₆); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me E₄₋₅); 1,3-propanediol, 2-methyl- (C4) PO₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3propanediol, 2-methyl-2-isopropyl- (C7) E₆₋₉; 1,3-propanediol, 2-methyl-2isopropyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) n-BO₂₋₃; 1,3propanediol, 2-methyl-2-propyl- (C7) E₄₋₇; 1,3-propanediol, 2-methyl-2-propyl(C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) n-BO₂; 1,3-propanediol, 2-propyl- (C6) (Me  $E_{1-4}$ ); 1,3-propanediol, 2-propyl- (C6) PO₂;

2. 1,2-butanediol (C4) (Me E₆₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2-butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₂₋₅; 1,2-butanediol, 2,3-dimethyl-(C6) n-BO₁; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl- (C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl- (C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) E₂₋₅; 1,2-butanediol, 3,3-dimethyl- (C6) n-BO₁; 1,2-butanediol, 3-methyl- (C5) (Me  $E_{1-2}$ ); 1,2-butanediol, 3-methyl- (C5) PO₁; 1,3-butanediol (C4) 2(Me E₅₋₆); 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3-trimethyl- (C7) PO₂; 1,3butanediol, 2,2-dimethyl- (C6) (Me E₆₋₈); 1,3-butanediol, 2,2-dimethyl- (C6) PO₃; 1,3-butanediol, 2,3-dimethyl- (C6) (Me  $E_{6-8}$ ); 1,3-butanediol, 2,3-dimethyl- (C6) PO₃; 1,3-butanediol, 2-ethyl- (C6) (Me E₄₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3-butanediol, 2-ethyl--2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₃; 1,3-butanediol, 2-ethyl-3-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO₃; 1,3-butanediol, 2isopropyl- (C7) (Me E₁); 1,3-butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2isopropyl- (C7) n-BO3; 1,3-butanediol, 2-methyl- (C5) 2(Me E2-3); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3-butanediol, 2-propyl- (C7) E₆₋₈; 1,3-butanediol, 2-propyl-(C7) PO₁, 1,3-butanediol, 2-propyl- (C7) n-BO₂₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₂₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₃₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₆₋₉; 1,4butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₂. 3; 1,4-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO₁; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E₃₋₆); 1,4-butanediol, 2,3-dimethyl- (C6) PO₂; 1,4-butanediol, 2,3-dimethyl-(C6) BO₁; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₄₋₇; 1,4-butanediol, 2-ethyl-2-methyl-(C7) PO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂; 1,4-butanediol, 2-ethyl-3methyl- (C7) E₄₋₇; 1,4-butanediol, 2-ethyl-3-methyl- (C7) PO₁; 1,4-butanediol, 2ethyl-3-methyl- (C7) n-BO2; 1,4-butanediol, 2-isopropyl- (C7) E4.7; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2-isopropyl- (C7) n-BO₂; 1,4-butanediol, 2methyl- (C5) (Me E₉₋₁₀); 1,4-butanediol, 2-methyl- (C5) 2(Me E₁); 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4-butanediol, 2-propyl- (C7) E₂₋₅; 1,4-butanediol, 2-propyl-(C7) n-BO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₆₋₈; 1,4-butanediol, 3-ethyl-1methyl- (C7) PO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₂₋₃; 2,3-butanediol

- (C4) (Me E₉₋₁₀), 2,3-butanediol (C4) 2(Me E₁), 2,3-butanediol (C4) PO₃₋₄, 2,3-butanediol, 2,3-dimethyl- (C6) E₇₋₉, 2,3-butanediol, 2,3-dimethyl- (C6) PO₁; 2,3-butanediol, 2,3-dimethyl- (C6) BO₂₋₃, 2,3-butanediol, 2-methyl- (C5) (Me E₂₋₅); 2,3-butanediol, 2-methyl- (C5) PO₂, 2,3-butanediol, 2-methyl- (C5) BO₁;
- 1,2-pentanediol (C5) E₇₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2pentanediol, (C5) n-BO₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃, 1,2-pentanediol, 2methyl (C6) n-BO₁; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me- $E_{1-2}$ ); 1,3-pentanediol (C5) PO₃₋₄; 1,3pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl-(C7) n-BO₃; 1,3-pentanediol, 2,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,4dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 2ethyl- (C7) E₆₋₈; 1,3-pentanediol, 2-ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₂₋₃; 1,3-pentanediol, 2-methyl- (C6) 2(Me-E₄₋₆); 1,3-pentanediol, 2-methyl-(C6) PO₂₋₃; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 3methyl- (C6) 2(Me-E₄₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3pentanediol, 4,4-dimethyl- (C7) n-BO₃; 1,3-pentanediol, 4-methyl- (C6) 2(Me-E₄-6); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₃; 1,4-pentanediol, 2-methyl- (C6) (Me-E₄₋₆); 1,4-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₃; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl- (C7) n-BO₃, 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₄₋₆); 1,4-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl-(C6)  $2(Me-E_{4-6})$ ; 1,4-pentanediol, 4-methyl- (C6)  $PO_{2-3}$ ; 1,5-pentanediol, (C5) (Me- $E_{8-10}$ ); 1,5-pentanediol (C5) 2(Me- $E_1$ ); 1,5-pentanediol (C5) PO₃; 1,5pentanediol, 2,2-dimethyl- (C7) E₄₋₇; 1,5-pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5pentanediol, 2,2-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₄₋₇;

1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₄₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁, 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₂, 1,5-pentanediol, 2-ethyl- (C7) E₂-5; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₄₋₇; 1,5pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₂; 1,5-pentanediol, 3-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me-E₁₋₃); 2,3-pentanediol, (C5) PO₂; 2,3-pentanediol, 2methyl- (C6) E₄₋₇; 2,3-pentanediol, 2-methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl-(C6) n-BO₂; 2,3-pentanediol, 3-methyl- (C6) E₄₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl- (C6) n-BO₂; 2,3-pentanediol, 4-methyl- (C6) E₄₋₇; 2,3-pentanediol, 4-methyl- (C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₂; 2,4pentanediol, (C5) 2(Me-E₂₋₄); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3dimethyl- (C7) (Me- $E_{2-4}$ ); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4pentanediol, 2,4-dimethyl- (C7) (Me-E₂₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₈₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₂₋₄); 2,4-pentanediol, 3,3-dimethyl-(C7) PO₂; 2,4-pentanediol, 3-methyl- (C6) (Me-E₈₋₁₀); 2,4-pentanediol, 3-methyl-(C6) PO₃;

4. 1,3-hexanediol (C6) (Me-E₂₋₅); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₆₋₈; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₂₋₃; 1,3-hexanediol, 3methyl- (C7) E₆₋₈; 1,3-hexanediol, 3-methyl- (C7) PO₁; 1,3-hexanediol, 3-methyl-(C7) n-BO₂₋₃; 1,3-hexanediol, 4-methyl- (C7) E₆₋₈; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₂₋₃; 1,3-hexanediol, 5-methyl- (C7) E₆₋₈; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3-hexanediol, 5-methyl- (C7) n-BO₂₋₃; 1,4hexanediol (C6) (Me-E₂₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₆₋₈; 1,4-hexanediol, 2-methyl- (C7) PO₁; 1,4hexanediol, 2-methyl- (C7) n-BO₂₋₃, 1,4-hexanediol, 3-methyl- (C7) E₆₋₈; 1,4hexanediol, 3-methyl- (C7) PO₁; 1,4-hexanediol, 3-methyl- (C7) n-BO₂₋₃; 1,4hexanediol, 4-methyl- (C7) E₆₋₈; 1,4-hexanediol, 4-methyl- (C7) PO₁, 1,4hexanediol, 4-methyl- (C7) n-BO₂₋₃; 1,4-hexanediol, 5-methyl- (C7) E₆₋₈; 1,4hexanediol, 5-methyl- (C7) PO₁; 1,4-hexanediol, 5-methyl- (C7) n-BO₂₋₃; 1,5hexanediol (C6) (Me-E₂₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₆₋₈; 1,5-hexanediol, 2-methyl- (C7) PO₁; 1,5hexanediol, 2-methyl- (C7) n-BO₂₋₃; 1,5-hexanediol, 3-methyl- (C7) E₆₋₈; 1,5hexanediol, 3-methyl- (C7) PO₁; 1,5-hexanediol, 3-methyl- (C7) n-BO₂₋₃; 1,5hexanediol, 4-methyl- (C7)  $E_{6-8}$ ; 1,5-hexanediol, 4-methyl- (C7)  $PO_1$ ; 1,5-hexanediol, 4-methyl- (C7)  $PO_{1-2}$ ; 1,5-hexanediol, 5-methyl- (C7)  $PO_{1-2}$ ; 1,5-hexanediol, 5-methyl- (C7)  $PO_{1-2}$ ; 1,6-hexanediol (C6)  $PO_{1-2}$ ; 1,6-hexanediol (C6)  $PO_{1-2}$ ; 1,6-hexanediol (C6)  $PO_{1-2}$ ; 1,6-hexanediol (C6)  $PO_{1-2}$ ; 1,6-hexanediol, 2-methyl- (C7)  $PO_{1-2}$ ; 1,6-hexanediol, 2-methyl- (C7)  $PO_{1-2}$ ; 1,6-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 1,6-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 2,3-hexanediol (C6)  $PO_{1-2}$ ; 2,4-hexanediol (C6)  $PO_{1-2}$ ; 2,4-hexanediol, 2-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 4-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol 4-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 5-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol (C6)  $PO_{1-2}$ ; 2,5-hexanediol (C6)  $PO_{1-2}$ ; 2,5-hexanediol, 2-methyl- (C7)  $PO_{1-2}$ ; 2,5-hexanediol 2-methyl- (C7)  $PO_{1-2}$ ; 2,5-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 2,5-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 3,4-hexanediol, 3-methyl- (C7)  $PO_{1-2}$ ; 3,4-hexanediol (C6)  $PO_{2-5}$ ; 3,4-hexanediol (PO_{2-5}); 2,5-hexanediol (PO_{2-5}); 2,5-hexanediol (PO_{2-5}); 2,5-hexanediol (PO_{2-5}); 2,5-hexanediol (PO_{2-5}); 2,5-h

- 5. 1,3-heptanediol (C7)  $E_{3-6}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7) n-BO₂; 1,4-heptanediol (C7)  $E_{3-6}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_2$ ; 1,5-heptanediol (C7)  $PO_3$ ; 1,5-heptanediol (C7)  $PO_4$ ; 1,5-heptanediol (C7)  $PO_4$ ; 1,6-heptanediol (C7)  $PO_4$ ; 1,7-heptanediol (C7)  $PO_4$ ; 1,7-heptanediol (C7)  $PO_4$ ; 1,7-heptanediol (C7)  $PO_4$ ; 2,4-heptanediol (C7)  $PO_4$ ; 2,4-heptanediol (C7)  $PO_4$ ; 2,4-heptanediol (C7)  $PO_4$ ; 2,5-heptanediol (C7)  $PO_4$ ; 2,5-heptanediol (C7)  $PO_4$ ; 2,5-heptanediol (C7)  $PO_4$ ; 2,5-heptanediol (C7)  $PO_4$ ; 2,6-heptanediol (C7)  $PO_4$ ; 2,6-heptanediol (C7)  $PO_4$ ; 2,6-heptanediol (C7)  $PO_4$ ; 2,6-heptanediol (C7)  $PO_4$ ; 3,5-heptanediol (P7)  $PO_4$ ; 3,5
- 6. 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO₁; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,2-diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexan

hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁₋ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 3,3-dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO₁; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁, 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁, 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl- (C8) n-BO₁; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl- (C8) n-BO₁; 2,4-heptanediol, 6methyl- (C8) n-BO1; 2,5-heptanediol, 2-methyl- (C8) n-BO1; 2,5-heptanediol, 3methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl- (C8) n-BO₁; 2,5-heptanediol, 5methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl- (C8) n-BO₁; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁, 2,6-heptanediol, 4methyl- (C8) n-BO₁; 3,5-heptanediol, 2-methyl- (C8) n-BO₁; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 3,3,4-trimethyl-(C8)  $E_{1-3}$ ; 2,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 2,4-hexanediol, 4-ethyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 4-methyl- (C8) E₁₋₃; 2,4-heptanediol, 5-methyl- (C8) E₁₋₃; 2,4heptanediol, 6-methyl- (C8) E₁₋₃; 2,5-heptanediol, 2-methyl- (C8) E₁₋₃; 2,5heptanediol, 3-methyl- (C8) E₁₋₃; 2,5-heptanediol, 4-methyl- (C8) E₁₋₃; 2,5heptanediol, 5-methyl- (C8) E₁₋₃; 2,5-heptanediol, 6-methyl- (C8) E₁₋₃; 2,6heptanediol, 2-methyl- (C8) E₁₋₃; 2,6-heptanediol, 3-methyl- (C8) E₁₋₃; 2,6heptanediol, 4-methyl- (C8) E₁₋₃; and/or 3,5-heptanediol, 2-methyl- (C8) E₁₋₃; and

## 7. mixtures thereof.

- 36. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 1-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; 2-phenyl-1,4-butanediol; 1-phenyl-2,3-butanediol; and mixtures thereof.
- 37. The composition of Claim 36 wherein said principal solvent is selected from the group consisting of:

1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; and mixtures thereof.

- 38. The composition of Claim 37 wherein said principal solvent is selected from the group consisting of:
- 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; and/or 1-phenyl-1,4-butanediol; and mixtures thereof.
- 39. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of: solvents are homologs, or analogs, of the parent compounds below where one, or more, CH₂ groups are added while, for each CH₂ group added, two hydrogen atoms are removed from adjacent carbon atoms in the molecule to form one carbon-carbon double bond, thus holding the number of hydrogen atoms in the molecule constant, the parent compounds including the following:
- I. mono-ols including:
  - a. n-propanol; and/or
  - b. 2-butanol or 2-methyl-2-propanol;
- II. hexane diol isomers including: 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol; 3,4-hexanediol;

1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 3-methyl-; 1,2-pentanediol, 4-methyl-; and/or 1,2-hexanediol;

heptane diol isomers including: 1,3-propanediol, 2-butyl-; 1,3-propanediol, Ш. 2,2-diethyl-1,3-propanediol. 2-(1-methylpropyl)-; 1,3-propanediol, 2-(2methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-2-methyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,4-dimethyl-; 1,5-pentanediol, 3,3dimethyl-; 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 3-methyl-; 2,3-hexanediol, 4methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; and/or 1,6-heptanediol; octane diol isomers including: 1,3-propanediol, 2-(2-methylbutyl)-: 1,3propanediol, 2-(1,1-dimethylpropyl)- 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(1-methylbutyl)-; 1,3propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(3-methylbutyl)-; 1,3propanediol 2-butyl-2-methyl-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3propanediol, 2-ethyl-2-propyl-, 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-, 1,3propanediol. 2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2methyl-; 1,3-butanediol, 2,2-diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1dimethylethyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2isopropyl-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3dimethyl-: 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1.4-butanediol. 2-(1,1dimethylethyl)-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2.3.4-trimethyl-: 2.4-pentanediol, 2.3.3-trimethyl-: 2.4-pentanediol, 2.3.4-trimethyl-: 1.3-pentanediol. 2-ethyl-2-methyl-; 1.3-pentanediol. 2-ethyl-3-methyl-;

pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 1,5pentanediol, 2-isopropyl-, 2,4-pentanediol, 3-propyl-, 1,3-hexanediol, 2,2-dimethyl-, 1,3-hexanediol, 2,3-dimethyl-; 1,3-hexanediol, 2,4-dimethyl-; 1,3-hexanediol, 2,5dimethyl-; 1.3-hexanediol. 3.4-dimethyl-: 1,3-hexanediol. 3.5-dimethyl-: 1,3hexanediol, 4,5-dimethyl-; 1.4-hexanediol 2,2-dimethyl-; 1,4-hexanediol, 2,3dimethyl-; 1,4-hexanediol, 2,4-dimethyl-; 1,4-hexanediol. 2,5-dimethyl-; 1,4hexanediol, 3,3-dimethyl-; 1,4-hexanediol, 3,4-dimethyl-; 1,4-hexanediol, 3,5dimethyl-; 1,3-hexanediol, 4,4-dimethyl-; 1,4-hexanediol, 4.5-dimethyl-: 1,4hexanediol, 5,5-dimethyl-; 1.5-hexanediol. 2,2-dimethyl-: 1.5-hexanediol. 2,3dimethyl-; 1,5-hexanediol, 2,4-dimethyl-; 1,5-hexanediol, 2,5-dimethyl-; 1,5hexanediol, 3,3-dimethyl-; 1,5-hexanediol, 3.4-dimethyl-; 1.5-hexanediol. 3,5dimethyl-; 1,5-hexanediol. 4,5-dimethyl-; 1.6-hexanediol, 2,2-dimethyl-; 1,6hexanediol, 2,3-dimethyl-; 1,6-hexanediol. 2,4-dimethyl-; 1,6-hexanediol. 2,5dimethyl-; 1,6-hexanediol, 3,3-dimethyl-; 1,6-hexanediol, 3,4-dimethyl-; 2,4hexanediol, 2,3-dimethyl-; 2,4-hexanediol, 2,4-dimethyl-; 2,4-hexanediol, 2,5dimethyl-; 2,4-hexanediol, 3,3-dimethyl-; 2,4-hexanediol, 3,4-dimethyl-; 2,4hexanediol, 3,5-dimethyl-; 2,4-hexanediol, 4,5-dimethyl-; 2,4-hexanediol, 5,5dimethyl-; 2,5-hexanediol, 2,3-dimethyl-; 2,5-hexanediol, 2,4-dimethyl-; 2,5hexanediol, 2,5-dimethyl-; 2,5-hexanediol, 3,3-dimethyl-; 2,5-hexanediol, dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl-; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-; 2,4-heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-; 2,5-

(a)

heptanediol, 4-methyl-; 2,5-heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6-heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-heptanediol, 3-methyl-; 2,4-octanediol; 2,5-octanediol; 2,6-octanediol; 2,7-octanediol; 3,5-octanediol; and/or 3,6-octanediol;

V. nonane diol isomers including: 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,5-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4-hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; and/or 2,5-hexanediol, 3,3,5-trimethyl-;

VI. glyceryl ethers and/or di(hydroxyalkyl)ethers including: 1,2-propanediol, 3-(n-pentyloxy)-; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(iso-amyloxy)-; 1,2propanediol, 3-(3-methyl-2-butyloxy)-; 1,2-propanediol, 3-(cyclohexyloxy)-; 1,2propanediol, 3-(1-cyclohex-1-enyloxy)-; 1,3-propanediol, 2-(pentyloxy)-; 1,3propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3-propanediol, 2-(3methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1cyclohex-1-envloxy)-; 1,2-propanediol, 3-(butyloxy)-. triethoxylated: propanediol, 3-(butyloxy)-, tetraethoxylated; 1.2-propanediol, pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; and/or 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated;

VII. saturated and unsaturated alicyclic diols and their derivatives including:

the saturated diols and their derivatives, including:

1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2-cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2-dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 2,4,5-trimethyl-1,3-cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2-cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1,1-bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol; 1,3-bis(hydroxymethyl)cyclohexane; 1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1,3-dimethyl-1

cyclohexanediol; 1,3-bis(nydroxymethyl)cyclonexane; 1,3-dimethyl-1,3-cyclohexanediol; 1-hydroxy-cyclohexaneethanol;

1-hydroxy-cyclohexanemethanol; 1-ethyl-1,3-cyclohexanediol; 1-methyl-1,2-

cyclohexanediol; 2,2-dimethyl-1,3-cyclohexanediol; 2,3-dimethyl-1,4-

cyclohexanediol; 2,4-dimethyl-1,3-cyclohexanediol; 2,5-dimethyl-1,3-

cyclohexanediol; 2,6-dimethyl-1,4-cyclohexanediol; 2-ethyl-1,3-cyclohexanediol; 2hydroxycyclohexaneethanol; 2-hydroxyethyl-1-cyclohexanol; 2hydroxymethylcyclohexanol: 3-hydroxyethyl-1-cyclohexanol; 3hydroxycyclohexaneethanol: 3-hydroxymethylcyclohexanol: 3-methyl-1,2cyclohexanediol: 4,4-dimethyl-1,3-cyclohexanediol; 4.5-dimethyl-1.3cyclohexanediol; 4,6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4hydroxyethyl-1-cyclohexanol: 4-hydroxymethylcyclohexanol; 4-methyl-1,2cyclohexanediol; 5,5-dimethyl-1,3-cyclohexanediol; 5-ethyl-1,3-cyclohexanediol; 1,2cycloheptanediol; 2-methyl-1,3-cycloheptanediol; 2-methyl-1,4-cycloheptanediol; 4methyl-1,3-cycloheptanediol; 5-methyl-1,3-cycloheptanediol: 5-methyl-1,4cycloheptanediol: 6-methyl-1,4-cycloheptanediol; : 1.3-cyclooctanediol: 1.4cyclooctanediol; 1.5-cyclooctanediol; 1,2-cyclohexanediol. diethoxylate: 1,2cyclohexanediol, triethoxylate; 1,2-cyclohexanediol, tetraethoxylate; 1,2cyclohexanediol, pentaethoxylate: 1,2-cyclohexanediol, hexaethoxylate; 1,2cyclohexanediol. heptaethoxylate: 1,2-cyclohexanediol. octaethoxylate: 1,2cyclohexanediol, nonaethoxylate; 1,2-cyclohexanediol, monopropoxylate; 1,2cyclohexanediol, monobutylenoxylate; 1,2-cyclohexanediol, dibutylenoxylate; and/or 1,2-cyclohexanediol, tributylenoxylate; and (b). the unsaturated alicyclic diols including: 1,2-cyclobutanediol, 1-ethenyl-2-ethyl-; 3-cyclobutene-1,2-diol, 1,2,3,4-tetramethyl-; 3-cyclobutene-1,2-diol, 3,4-diethyl-; 3cyclobutene-1,2-diol, 3-(1,1-dimethylethyl)-; 3-cyclobutene-1,2-diol, 3-butyl-; 1,2-1,2-dimethyl-4-methylene-; cyclopentanediol. 1,2-cyclopentanediol. 1-ethyl-3methylene-; 1,2-cyclopentanediol, 4-(1-propenyl); 3-cyclopentene-1,2-diol, 1-ethyl-3methyl-: 1,2-cyclohexanediol. 1-ethenyl-; 1,2-cyclohexanediol, 1-methyl-3methylene-; 1,2-cyclohexanediol, 1-methyl-4-methylene-; 1,2-cyclohexanediol, 3ethenyl-; 1,2-cyclohexanediol, 4-ethenyl-; 3-cyclohexene-1,2-diol, 2,6-dimethyl-; 3cyclohexene-1,2-diol, 6,6-dimethyl-; 4-cyclohexene-1,2-diol, 3,6-dimethyl-; 4cyclohexene-1,2-diol, 4,5-dimethyl-; 3-cyclooctene-1,2-diol; 4-cyclooctene-1,2-diol; and/or 5-cyclooctene-1.2-diol:

#### VIII. Alkoxylated derivatives of C₃₋₈ diols including:

1. 1,2-propanediol (C3) 2(Me- $E_{11-14}$ ); 1,2-propanediol (C3) PO₄; 1,2-propanediol (C3) BO₁; 1,2-propanediol, 2-methyl- (C4) (Me- $E_{4-10}$ ); 1,2-propanediol, 2-methyl- (C4) 2(Me- $E_1$ ); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,2-propanediol, 2-methyl- (C4) n-BO₁₋₂; 1,3-propanediol (C3) 2(Me- $E_{6-8}$ ); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7) E₁₋₇; 1,3-propanediol, 2,2-diethyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3-propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2,2-dimethyl-

propanediol, 2-(1-methylpropyl)- (C7) E₁₋₇; 1,3-propanediol, 2-(1-methylpropyl)-(C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-(2-methylpropyl)- (C7) E₁₋₇; 1,3-propanediol, 2-(2-methylpropyl)- (C7) PO₁; 1,3propanediol, 2-(2-methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-ethyl- (C5) (Me E₆₋₁₀); 1,3-propanediol, 2-ethyl- (C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl- (C5) BO₁; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-ethyl-2methyl- (C6) BO₁; 1,3-propanediol, 2-isopropyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-isopropyl- (C6) PO2; 1,3-propanediol, 2-isopropyl- (C6) BO1; 1,3-propanediol, 2methyl- (C4) 2(Me E₂₋₅); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) E₂₋₉; 1,3propanediol, 2-methyl-2-isopropyl- (C7) PO1; 1,3-propanediol, 2-methyl-2isopropyl- (C7) n-BO₁₋₃; 1,3-propanediol, 2-methyl-2-propyl- (C7)  $E_{1-7}$ ; 1,3propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl-(C7) n-BO₁₋₂; 1,3-propanediol, 2-propyl- (C6) (Me E₁₁₋₁₄); 1,3-propanediol, 2propyl- (C6) PO₂; 1,3-propanediol, 2-propyl- (C6) BO₁;

1,2-butanediol (C4) (Me E₂₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3dimethyl- (C6) BO₁₋₂; 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl-(C6) BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl- (C5) PO₁, 1,2-butanediol, 3,3-dimethyl- (C6)  $E_{1-6}$ , 1,2-butanediol, 3,3-dimethyl- (C6)  $BO_{1-2}$ ; 1,2-butanediol, 3-methyl- (C5) (Me  $E_{1-2}$ ); 1,2-butanediol, 3-methyl- (C5) PO; 1,3-butanediol (C4) 2(Me E₁₁₋₁₄); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3trimethyl- (C7)  $PO_{1-2}$ ; 1,3-butanediol, 2,2-dimethyl- (C6) (Me  $E_{3-8}$ ); 1,3butanediol, 2,2-dimethyl- (C6) PO3; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E3-8); 1,3-butanediol, 2,3-dimethyl- (C6) PO3; 1,3-butanediol, 2-ethyl- (C6) (Me E₁₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3butanediol, 2-ethyl--2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl--2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl--2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3methyl- (C7) (Me E1); 1,3-butanediol, 2-ethyl-3-methyl- (C7) PO1; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me E₁); 1,3butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2-isopropyl- (C7) n-BO₂₋₄; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E2-9; 1,3-butanediol, 2-propyl- (C7) PO1; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅;

1,4-butanediol (C4) BO₂; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₂₋₉; 1,4-butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂; 1,4-butanediol, 2,2-dimethyl- (C6) BO1; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E1-6); 1,4-butanediol, 2,3-dimethyl- (C6) PO2; 1,4-butanediol, 2,3-dimethyl- (C6) BO1; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₁₋₁₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₁₋₇; 1,4butanediol, 2-ethyl-2-methyl- (C7) PO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-ethyl-3-methyl- (C7) E₁₋₇; 1,4-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2isopropyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-methyl- (C5) (Me  $E_{6-10}$ ); 1,4butanediol, 2-methyl- (C5) 2(Me E1); 1,4-butanediol, 2-methyl- (C5) PO3; 1,4butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7) E₁₋₅; 1,4butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₂₋₉; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₃; 2,3-butanediol (C4) (Me  $E_{1-6}$ ); 2,3-butanediol (C4) 2(Me  $E_{1}$ ); 2,3butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉, 2,3-butanediol, 2,3-dimethyl- (C6) PO₁, 2,3-butanediol, 2,3-dimethyl- (C6)  $BO_{1-3}$ ; 2,3-butanediol, 2-methyl- (C5) (Me  $E_{1-5}$ ); 2,3-butanediol, 2-methyl- (C5) 2PO₂; 2,3-butanediol, 2-methyl- (C5) n-BO₁; 2,3-butanediol, 2-methyl- (C5) BO₁;

3. 1,2-pentanediol (C5) E₃₋₁₀; 1,2-pentanediol, (C5) PO₁; 1,2pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2methyl (C6) n-BO₁; 1,2-pentanediol, 2-methyl (C6) BO₁; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 3-methyl (C6) BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) BO₁; 1,3-pentanediol (C5)  $2(Me-E_{1-2})$ ; 1,3pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6)  $2(Me-E_{1-6})$ ; 1,3-pentanediol, 2-methyl- (C6)  $PO_{2-3}$ ; 1,3-pentanediol, 2methyl- (C6) n-BO₁; 1,3-pentanediol, 2-methyl- (C6) BO₁; 1,3-pentanediol, 3,4dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol,

3,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 3-methyl- (C6)  $2(Me-E_{1-6})$ ; 1,3pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 3-methyl- (C6) n-BO₁, 1,3pentanediol, 3-methyl- (C6) BO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 4,4-dimethyl- (C7) PO₁, 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) 2(Me-E₁₋₆); 1,3-pentanediol, 4-methyl- (C6) PO₂-3; 1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5) 2(Me-E₁₋₂); 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me- $E_{1-6}$ ); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃, 1,4-pentanediol, 2-methyl- (C6) n-BO₁, 1,4pentanediol, 2-methyl- (C6) BO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl-(C6) BO₁; 1,4-pentanediol, 4-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl-(C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋ 10); 1,5-pentanediol (C5) 2(Me-E₁); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7)  $E_{1-7}$ ; 1,5pentanediol, 2,3-dimethyl- (C7) PO₁, 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂, 1,5-pentanediol, 2-ethyl- (C7)  $E_{1-5}$ . 1,5-pentarrediol, 2-ethyl- (C7) n-BO₁₋₂; 1,5-pentarrediol, 2-methyl- (C6) (Me-E₁₁₋ 14); 1,5-pentanediol, 2-methyl- (C6) PO2; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇. 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n- $BO_{1-2}$ ; 1,5-pentanediol, 3-methyl- (C6) (Me- $E_{11-14}$ ); 1,5-pentanediol, 3-methyl-(C6) PO₂; 2,3-pentanediol, (C5) (Me- $E_{1-3}$ ); 2,3-pentanediol, (C5) PO₂; 2,3pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2-methyl- (C6) PO₁; 2,3pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3-methyl- (C6) E₁₋₇; 2,3pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl- (C6) n-BO₁₋₂; 2,3pentanediol, 4-methyl- (C6) E₁₋₇; 2,3-pentanediol, 4-methyl- (C6) PO₁; 2,3pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me-E₁₁₋₁₄); 2,4pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁₁₋₁₄); 2,4WO 97/03169 PCT/US96/11556

pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me-E₁₁₋₁₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂; 2,4-pentanediol, 2-methyl- (C7) (Me-E₅₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl- (C7) (Me-E₁₁₋₁₄); 2,4-pentanediol, 3,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 3-methyl- (C6) (Me-E₅₋₁₀); 2,4-pentanediol, 3-methyl- (C6) PO₃;

1,3-hexanediol (C6) (Me- $E_{1-5}$ ); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 2methyl- (C7) BO₁; 1,3-hexanediol, 3-methyl- (C7) E₂₋₉; 1,3-hexanediol, 3-methyl-(C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7) E₂₋₉; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 5-methyl- (C7) E₂₋₉; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol (C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉, 1,4hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 3-methyl- (C7) E₂₋₉; 1,4-hexanediol, 3-methyl- (C7) PO₁; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO₁; 1,4-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 5-methyl- (C7) E₂₋₉; 1,4-hexanediol, 5-methyl- (C7) PO₁; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7) E₂₋₉, 1,5-hexanediol, 3-methyl- (C7) PO₁; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7) E₂₋₉; 1,5hexanediol, 4-methyl- (C7) PO₁; 1,5-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7) E₁₋₅; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂, 2,3-hexanediol (C6) E₁₋₅, 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 2-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 3-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 3-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 4-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 4-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂; 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3methyl- (C7) (Me- $E_{1-2}$ ); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;

- 5. 1,3-heptanediol (C7)  $E_{1-7}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7) n-BO₁₋₂; 1,4-heptanediol (C7)  $E_{1-7}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,5-heptanediol (C7)  $PO_1$ ; 1,6-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,4-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,5-heptanediol (C7)  $PO_1$ ; 2,6-heptanediol (C7)  $PO_1$ ; 3,5-heptanediol (PO_1)
- 1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO₁; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁₋ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 3,3-dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO1; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-

(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl- (C8) n-BO₁; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl- (C8) n-BO₁; 2,4-heptanediol, 6methyl- (C8) n-BO1; 2,5-heptanediol, 2-methyl- (C8) n-BO1; 2,5-heptanediol, 3methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl- (C8) n-BO₁; 2,5-heptanediol, 5methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl- (C8) n-BO₁; 2,6-heptanediol, 2methyl- (C8) n-BO1; 2,6-heptanediol, 3-methyl- (C8) n-BO1; 2,6-heptanediol, 4methyl- (C8) n-BO₁; 3,5-heptanediol, 2-methyl- (C8) n-BO₁; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) E₁₋₃; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8) E₁₋₃; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃, 1,4-pentanediol, 2,3,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 3,3,4-trimethyl-(C8)  $E_{1-3}$ ; 2,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 2,4-hexanediol, 4-ethyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 4-methyl- (C8) E₁₋₃; 2,4-heptanediol, 5-methyl- (C8) E₁₋₃; 2,4heptanediol, 6-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 6-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 4-methyl- (C8) E₁₋₃; and/or 3,5-heptanediol, 2-methyl- (C8) E₁₋₃; and

7. mixtures thereof;

IX. aromatic diols including: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; and/or 1-phenyl-2,3-butanediol; and

#### X. mixtures thereof.

40. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of:

1,3-Propanediol, 2,2-di-2-propenyl-; 1,3-Propanediol, 2-(1-pentenyl)-; 1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-; 1,3-Propanediol, 2-(3-methyl-2-propenyl)-

1-butenyl)-; 1,3-Propanediol, 2-(4-pentenyl)-; 1,3-Propanediol, 2-ethyl-2-(2-methyl-2-propenyl)-; 1,3-Propanediol, 2-ethyl-2-(2-propenyl)-; 1,3-Propanediol, 2-methyl-2-(3-methyl-3-butenyl)-; 1,3-Butanediol, 2,2-diallyl-; 1,3-Butanediol, 2-(1-ethyl-1propenyl)-; 1,3-Butanediol, 2-(2-butenyl)-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2butenyl)-, 1,3-Butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-Butanediol, 2-methyl-2-(1methyl-2-propenyl)-; 1,4-Butanediol, 2,3-bis(1-methylethylidene)-; 1,4-Butanediol, 2-(3-methyl-2-butenyl)-3-methylene-; 2-Butene-1,4-diol, 2-(1,1-dimethylpropyl)-; 2-Butene-1,4-diol, 2-(1-methylpropyl)-; 2-Butene-1,4-diol, 2-butyl-; 1,3-Pentanediol, 2-ethenyl-3-ethyl-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 1,4-Pentanediol, 3methyl-2-(2-propenyl)-; 1,5-Pentanediol, 2-(1-propenyl)-; 1,5-Pentanediol, 2-(2propenyl)-; 1,5-Pentanediol, 2-ethylidene-3-methyl-; 1,5-Pentanediol, 2-propylidene-; 2.4-Pentanediol. 3-ethylidene-2,4-dimethyl-; 4-Pentene-1,3-diol, 2-(1,1dimethylethyl)-; 4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-; 1.4-Hexanediol, 4-ethyl-2-methylene-; 1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-; 1,5-Hexadiene-3,4-diol, 5ethyl-3-methyl-; 1,5-Hexanediol, 2-(1-methylethenyl)-; 1,6-Hexanediol, 2-ethenyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 2-Hexene-1,5diol, 4-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 2,5dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-1,3-diol, 3-(2-propenyl)-; 5-Hexene-2,3-diol, 2,3-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3diol, 3,5-dimethyl-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 1,4-Heptanediol, 6methyl-5-methylene-; 1,5-Heptadiene-3,4-diol, 2,3-dimethyl-; 1,5-Heptadiene-3,4diol, 2,5-dimethyl-; 1,5-Heptadiene-3,4-diol, 3,5-dimethyl-; 1,7-Heptanediol, 2,6bis(methylene)-; 1,7-Heptanediol, 4-methylene-; 1-Heptene-3,5-diol, 2,4-dimethyl-; 1-Heptene-3,5-diol, 2,6-dimethyl-; 1-Heptene-3,5-diol, 3-ethenyl-5-methyl; 1-Heptene-3,5-diol, 6,6-dimethyl-; 2,4-Heptadiene-2,6-diol, 4,6-dimethyl-; 2,5-Heptadiene-1,7-diol, 4,4-dimethyl-; 2,6-Heptadiene-1,4-diol, 2,5,5-trimethyl-; 2-Heptene-1,4-diol, 5,6-dimethyl-; 2-Heptene-1,5-diol, 5-ethyl-; 2-Heptene-1,7-diol, 2methyl-; 3-Heptene-1,5-diol, 4,6-dimethyl-; 3-Heptene-1,7-diol, 3-methyl-6methylene-; 3-Heptene-2,5-diol, 2,4-dimethyl-; 3-Heptene-2,5-diol, 2,5-dimethyl-; 3-Heptene-2,6-diol, 2,6-dimethyl-; 3-Heptene-2,6-diol, 4,6-dimethyl-; 5-Heptene-1,3diol, 2,4-dimethyl-; 5-Heptene-1,3-diol, 3,6-dimethyl-; 5-Heptene-1,4-diol, 2,6dimethyl-; 5-Heptene-1,4-diol, 3,6-dimethyl-; 5-Heptene-2,4-diol, 2,3-dimethyl-; 6-Heptene-1,3-diol, 2,2-dimethyl-; 6-Heptene-1,4-diol, 4-(2-propenyl)-; 6-Heptene-1.4-diol. 5.6-dimethyl-; 6-Heptene-1,5-diol, 2,4-dimethyl-; 6-Heptene-1,5-diol, 2ethylidene-6-methyl-; 6-Heptene-2,4-diol, 4-(2-propenyl)-; 6-Heptene-2,4-diol, 5,5dimethyl-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 6-Heptene-2,5-diol, 5-ethenyl-4-

methyl-; 1,3-Octanediol, 2-methylene-; 1,6-Octadiene-3,5-diol, 2,6-dimethyl-; 1,6-Octadiene-3,5-diol, 3,7-dimethyl-, 1,7-Octadiene-3,6-diol, 2,6-dimethyl-; 1,7-Octadiene-3,6-diol, 2,7-dimethyl-; 1,7-Octadiene-3,6-diol, 3,6-dimethyl-; 1-Octene-3,6-diol, 3-ethenyl-; 2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-; 2,4-Octadiene-1,7-diol, 3,7-dimethyl-; 2,5-Octadiene-1,7-diol, 2,6-dimethyl-; 2,5-Octadiene-1,7-diol, 3,7dimethyl-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 2,6-Octadiene-1,8-diol, 2-methyl-; 2,7-Octadiene-1,4-diol, 3,7-dimethyl-; 2,7-Octadiene-1,5-diol, 2,6dimethyl-; 2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool); 2,7-Octadiene-1,6-diol, 2,7-dimethyl-; 2-Octene-1,4-diol; 2-Octene-1,7-diol; 2-Octene-1,7-diol, 2methyl-6-methylene-; 3,5-Octadiene-1,7-diol, 3,7-dimethyl-; 3,5-Octadiene-2,7-diol, 2,7-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,7-Octadiene-1,6-diol, 2,6-dimethyl-; 3,7-Octadiene-2,5-diol, 2,7-dimethyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 3-Octene-1,5-diol, 4-methyl-; 3-Octene-1,5-diol, 5-methyl-; 4,6-Octadiene-1,3-diol, 2,2-dimethyl-; 4,7-Octadiene-2,3-diol, 2,6-dimethyl-; 4,7-Octadiene-2,6-diol, 2,6dimethyl-; 4-Octene-1,6-diol, 7-methyl-; 2,7-bis(methylene)-; 2-methylene-; 5,7-Octadiene-1,4-diol, 2,7-dimethyl-; 5,7-Octadiene-1,4-diol, 7-methyl-; 5-Octene-1,3diol; 6-Octene-1,3-diol, 7-methyl-; 6-Octene-1,4-diol, 7-methyl-; 6-Octene-1,5-diol; 6-Octene-1,5-diol, 7-methyl-; 6-Octene-3,5-diol, 2-methyl-; 6-Octene-3,5-diol, 4methyl-; 7-Octene-1,3-diol, 2-methyl-; 7-Octene-1,3-diol, 4-methyl-; 7-Octene-1,3diol, 7-methyl-; 7-Octene-1,5-diol; 7-Octene-1,6-diol; 7-Octene-1,6-diol, 5-methyl-; 7-Octene-2,4-diol, 2-methyl-6-methylene-; 7-Octene-2,5-diol, 7-methyl-; 7-Octene-3,5-diol, 2-methyl-; 1-Nonene-3,5-diol; 1-Nonene-3,7-diol; 3-Nonene-2,5-diol; 4,6-Nonadiene-1,3-diol, 8-methyl-; 4-Nonene-2,8-diol; 6,8-Nonadiene-1,5-diol; 7-Nonene-2,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,5-diol; 1,9-Decadiene-3,8-diol; 1,9-Decadiene-4,6-diol; and mixtures thereof.

41. The composition of any of Claims 11-15 wherein said principal solvent is selected from the group consisting of:

1,3-Butanediol, 2,2-diallyl-; 1,3-Butanediol, 2-(1-ethyl-1-propenyl)-; 1,3-Butanediol, 2-(2-butenyl)-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2-butenyl)-; 1,3-Butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-Butanediol, 2-methyl-2-(1-methyl-2-propenyl)-; 1,4-Butanediol, 2,3-bis(1-methylethylidene)-; 1,3-Pentanediol, 2-ethenyl-3-ethyl-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 1,4-Pentanediol, 3-methyl-2-(2-propenyl)-; 4-Pentene-1,3-diol, 2-(1,1-dimethylethyl)-; 4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-; 1,4-Hexanediol, 4-ethyl-2-methylene-; 1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-; 1,5-Hexanediol, 2-(1-methylethenyl)-; 2-Hexene-1,5-diol, 4-ethenyl-2,5-dimethyl-; 1,4-Heptanediol, 6-methyl-5-methylene-; 2,4-Heptadiene-2,6-diol, 4,6-dimethyl-; 2,6-

Heptadiene-1,4-diol, 2,5,5-trimethyl-; 2-Heptene-1,4-diol, 5,6-dimethyl-; 3-Heptene-1,5-diol, 4,6-dimethyl-; 5-Heptene-1,3-diol, 2,4-dimethyl-; 5-Heptene-1,3-diol, 3,6dimethyl-; 5-Heptene-1,4-diol, 2,6-dimethyl-; 5-Heptene-1,4-diol, 3,6-dimethyl-; 6-Heptene-1,3-diol, 2,2-dimethyl-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 6-Heptene-1,5diol, 2,4-dimethyl-; 6-Heptene-1,5-diol, 2-ethylidene-6-methyl-; 6-Heptene-2,4-diol, 4-(2-propenyl)-; 1-Octene-3,6-diol, 3-ethenyl-; 2,4,6-Octatriene-1,8-diol, dimethyl-; 2,5-Octadiene-1,7-diol, 2,6-dimethyl-; 2,5-Octadiene-1,7-diol, dimethyl-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 2,6-Octadiene-1,8-diol, 2-methyl-; 2,7-Octadiene-1,4-diol, 3,7-dimethyl-; 2,7-Octadiene-1,5-diol, 2,6dimethyl-, 2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool), 2,7-Octadiene-1,6-diol, 2,7-dimethyl-; 2-Octene-1,7-diol, 2-methyl-6-methylene-; 3,5-Octadiene-2,7-diol, 2,7-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,7-Octadiene-1,6-diol, 2,6dimethyl-; 4-Octene-1,8-diol, 2-methylene-; 6-Octene-3,5-diol, 2-methyl-; 6-Octene-3,5-diol, 4-methyl-; 7-Octene-2,4-diol, 2-methyl-6-methylene-; 7-Octene-2,5-diol, 7methyl-; 7-Octene-3,5-diol, 2-methyl-; 1-Nonene-3,5-diol; 1-Nonene-3,7-diol; 3-Nonene-2,5-diol; 4-Nonene-2,8-diol; 6,8-Nonadiene-1,5-diol; 7-Nonene-2,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,5-diol; 1,9-Decadiene-3,8-diol; 1,9-Decadiene-4,6diol; and mixtures thereof.

- 42. The composition of any of Claims 11-15 wherein the softener active comprises up to about 20% of monoester compound in which m is 2 and one YR¹ is -OH, -N(R)H, or -C(O)OH.
- 43. The composition of any of Claims 11-15 wherein at low water levels of from about 5% to about 15%, the softener active-to-principal solvent weight ratio is from about 55:45 to about 85:15; at water levels of from about 15% to about 70%, the softener active-to-principal solvent weight ratio is from about 45:55 to about 70:30; and at high water levels of from about 70% to about 80%, the softener active-to-principal solvent weight ratio is from about 30:70 to about 55:45.
- 44. The composition of Claim 43 wherein at low water levels of from about 5% to about 15%, the softener active-to-principal solvent weight ratio is from about 60:40 to about 80:20; at water levels of from about 15% to about 70%, the softener active-to-principal solvent weight ratio is from about 55:45 to about 70:30; and at high water levels of from about 70% to about 80%, the softener active-to-principal solvent weight ratio is from about 35:65 to about 45:55.

- 45. The composition of Claim 11 which is translucent or clear at 25°C, containing solvents other than principal solvent B., the amount of principal solvent B. being at least about 5% by weight of the composition, where the composition is not translucent or clear at 25°C in the absence of principal solvent B.
- 46. The composition of any of Claims 11-15 which contains one, or more, of the following optional ingredients:
- (a) brightener at a level of from about 0.005% to about 5%;
- (b) dispersibility aid at a level of from about 2% to about 25%;
- (c) soil release agent at a level of from 0% to about 10%;
- (d) scum dispersant at a level of from about 2% to about 10%;
- (e) stabilizer selected from the group consisting of antioxidant, reducing agent, chelator, and mixtures thereof, at a level of from 0% to about 2%;
- (f) bactericide at a level of from about 0.005% to about 5%; and
- (g) chelating agent in addition to any chelator in (e), at a level of from about 0.5% to about 10%.
- 47. A premix of the components of any of Claims 11-15 consisting essentially of: said biodegradable fabric softener active A.; said principal solvent B.; and optionally, said water soluble solvent C.
- 48. An article of manufacture comprising the composition of Claim 11 in a clear bottle.
- 49. The article of Claim 48 wherein the bottle has a slight blue tint, sufficient to compensate for any light yellow color of the composition.
- 50. The article of Claim 49 wherein the bottle has an ultraviolet light absorber incorporated in the bottle wall to protect the composition.
- 51. Composition comprising:
- A. from about 2% to about 80% of biodegradable fabric softener active selected from the group consisting of:
  - 1. softener having the formula:

PCT/US96/11556

$$\left[ (R)_{4-m} - N^{(+)} - [(CH_2)_n - Y - R^{-1}]_m \right] X^{(-)}$$
 (1)

wherein each R substituent is H, or a short chain  $C_1$ - $C_6$  alkyl or hydroxyalkyl group, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4; each Y is -O-(O)C-, -(R)N-(O)C-, -C(O)-N(R)-, or -C(O)-O-, the sum of carbons in each  $R^1$  or  $YR^1$  plus one when Y is -O-(O)C- or -(R)N-(O)C-, being  $C_6$ - $C_{22}$ , but when one  $R^1$  or  $YR^1$  sum is less than about 12, then the other  $R^1$  or  $YR^1$  sum is at least about 16, with each  $R^1$  being a long chain hydrocarbyl, or substituted hydrocarbyl substituent, and for  $R^1$  or  $YR^1$  comprising a  $C_{15}$ - $C_{21}$  straight chain alkyl or alkylene group, the lodine Value of a fatty acid which contains this  $R^1$  group being from about 20 to about 140, and wherein the counterion,  $X^-$ , can be any softener-compatible anion;

2. softener having the formula:

$$\begin{bmatrix} R_3 N^{(+)} CH_2 CH & YR^1 \\ CH_2 YR^1 \end{bmatrix} X^{(-)}$$
(2)

wherein each Y, R, R¹, and X⁽⁻⁾ have the same meanings as before; and

- 3. mixtures thereof;
- B. less than about 40% by weight of the composition of principal alcohol solvent selected from the group consisting of:
- I. mono-ols including:
  - a. n-propanol; and/or
  - b. 2-butanol and/or 2-methyl-2-propanol;
- II. hexane diol isomers including: 2,3-butanediol, 2,3-dimethyl-; 1,2-butanediol, 2,3-dimethyl-; 1,2-butanediol, 3,3-dimethyl-; 2,3-pentanediol, 2-methyl-; 2,3-pentanediol, 3-methyl-; 2,3-pentanediol, 4-methyl-; 2,3-hexanediol; 3,4-hexanediol; 1,2-butanediol, 2-ethyl-; 1,2-pentanediol, 2-methyl-; 1,2-pentanediol, 4-methyl-; and/or 1,2-hexanediol;
- III. heptane diol isomers including: 1,3-propanediol, 2-butyl-; 1,3-propanediol, 2,2-diethyl-; 1,3-propanediol, 2-(1-methylpropyl)-; 1,3-propanediol, 2-(2-methylpropyl)-; 1,3-propanediol, 2-methyl-2-propyl-; 1,2-butanediol, 2,3,3-trimethyl-; 1,4-butanediol, 2-ethyl-3-methyl-; 1,4-butanediol, 2-propyl-; 1,4-butanediol, 2-isopropyl-; 1,5-pentanediol, 2,2-dimethyl-; 1,5-

pentanediol, 2,3-dimethyl-; 1,5-pentanediol, 2,4-dimethyl-; 1,5-pentanediol, 3,3dimethyl-; 2,3-pentanediol, 2,3-dimethyl-; 2,3-pentanediol, 2,4-dimethyl-; 2,3pentanediol, 3,4-dimethyl-; 2,3-pentanediol, 4,4-dimethyl-; 3,4-pentanediol, 2,3dimethyl-; 1,5-pentanediol, 2-ethyl-; 1,6-hexanediol, 2-methyl-; 1,6-hexanediol, 3methyl-; 2,3-hexanediol, 2-methyl-; 2,3-hexanediol, 3-methyl-; 2,3-hexanediol, 4methyl-; 2,3-hexanediol, 5-methyl-; 3,4-hexanediol, 2-methyl-; 3,4-hexanediol, 3methyl-; 1,3-heptanediol; 1,4-heptanediol; 1,5-heptanediol; and/or 1,6-heptanediol; IV. octane diol isomers including: 1,3-propanediol, 2-(2-methylbutyl)-; 1,3propanediol, 2-(1,1-dimethylpropyl)- 1,3-propanediol, 2-(1,2-dimethylpropyl)-; 1,3propanediol, 2-(1-ethylpropyl)-; 1,3-propanediol, 2-(1-methylbutyl)-: 1,3propanediol, 2-(2,2-dimethylpropyl)-; 1,3-propanediol, 2-(3-methylbutyl)-; 1,3propanediol. 2-butyl-2-methyl-; 1,3-propanediol, 2-ethyl-2-isopropyl-; 1,3propanediol, 2-ethyl-2-propyl-; 1,3-propanediol, 2-methyl-2-(1-methylpropyl)-; 1,3propanediol, 2-methyl-2-(2-methylpropyl)-; 1,3-propanediol, 2-tertiary-butyl-2methyl-; 1,3-butanediol, 2,2-diethyl-; 1,3-butanediol, 2-(1-methylpropyl)-; 1,3butanediol, 2-butyl-; 1,3-butanediol, 2-ethyl-2,3-dimethyl-; 1,3-butanediol, 2-(1,1dimethylethyl)-; 1,3-butanediol, 2-(2-methylpropyl)-; 1,3-butanediol, 2-methyl-2isopropyl-; 1,3-butanediol, 2-methyl-2-propyl-; 1,3-butanediol, 3-methyl-2-isopropyl-; 1,3-butanediol, 3-methyl-2-propyl-; 1,4-butanediol, 2,2-diethyl-; 1,4-butanediol, 2methyl-2-propyl-; 1,4-butanediol, 2-(1-methylpropyl)-; 1,4-butanediol, 2-ethyl-2,3dimethyl-: 1,4-butanediol, 2-ethyl-3,3-dimethyl-; 1,4-butanediol, 2-(1,1dimethylethyl)-; 1,4-butanediol, 2-(2-methylpropyl)-; 1,4-butanediol, 2-methyl-3propyl-; 1,4-butanediol, 3-methyl-2-isopropyl-; 1,3-pentanediol, 2,2,3-trimethyl-; 1,3-pentanediol, 2,2,4-trimethyl-; 1,3-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol, 2,4,4-trimethyl-; 1,3-pentanediol, 3,4,4-trimethyl-; 1,4-pentanediol, 2,2,3-trimethyl-; 1,4-pentanediol, 2,2,4-trimethyl-; 1,4-pentanediol, 2,3,3-trimethyl-; 1,4-pentanediol, 2,3,4-trimethyl-; 1,4-pentanediol, 3,3,4-trimethyl-; 1,5-pentanediol, 2,2,3-trimethyl-; 1,5-pentanediol, 2,2,4-trimethyl-; 1,5-pentanediol, 2,3,3-trimethyl-; 1,5-pentanediol, 2,3,4-trimethyl-; 2,4-pentanediol, 2,3,3-trimethyl-; 2,4-pentanediol, 2,3,4-trimethyl-; 1,3-pentanediol 2-ethyl-2-methyl-; 1,3-pentanediol, 2-ethyl-3-methyl-; pentanediol, 2-ethyl-4-methyl-; 1,3-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-2-methyl-; 1,4-pentanediol, 2-ethyl-3-methyl-; 1,4-pentanediol, 2-ethyl-4methyl-; 1,4-pentanediol, 3-ethyl-2-methyl-; 1,4-pentanediol, 3-ethyl-3-methyl-; 1,5pentanediol, 2-ethyl-2-methyl-; 1,5-pentanediol, 2-ethyl-3-methyl-; 1,5-pentanediol, 2-ethyl-4-methyl-; 1,5-pentanediol, 3-ethyl-3-methyl-; 2,4-pentanediol, 3-ethyl-2methyl-; 1,3-pentanediol, 2-isopropyl-; 1,3-pentanediol, 2-propyl-; 1,4-pentanediol, 2-isopropyl-; 1,4-pentanediol, 2-propyl-; 1,4-pentanediol, 3-isopropyl-; 1,5-

pentanediol, 2-isopropyl-; 2,4-pentanediol, 3-propyl-; 1,3-hexanediol, 2,2-dimethyl-; 1,3-hexanediol, 2,3-dimethyl-, 1,3-hexanediol, 2,4-dimethyl-, 1,3-hexanediol, 2,5dimethyl-; 1,3-hexanediol, 3,4-dimethyl-; 1,3-hexanediol, 3.5-dimethyl-; 1,3hexanediol, 4,5-dimethyl-; 1,4-hexanediol, 2,2-dimethyl-; 1,4-hexanediol, 2,3dimethyl-; 1,4-hexanediol, 2,4-dimethyl-; 1.4-hexanediol. 2,5-dimethyl-; 1,4hexanediol. 3.3-dimethyl-: 1.4-hexanediol. 3.4-dimethyl-: 1,4-hexanediol, 3,5dimethyl-: 1,3-hexanediol 4.4-dimethyl-: 1,4-hexanediol. 4,5-dimethyl-; 1,4hexanediol, 5.5-dimethyl-: 1.5-hexanediol. 2,2-dimethyl-; 1,5-hexanediol, 2,3dimethyl-; 1,5-hexanediol. 2,4-dimethyl-; 1,5-hexanediol, 2,5-dimethyl-; 1,5hexanediol, 3,3-dimethyl-; 1,5-hexanediol, 3,5-3.4-dimethyl-: 1,5-hexanediol, dimethyl-: 1.5-hexanediol. 4.5-dimethyl-: 1,6-hexanediol. 2,2-dimethyl-; 1,6hexanediol. 2,3-dimethyl-; 1.6-hexanediol. 2,4-dimethyl-: 1.6-hexanediol. 2,5-1,6-hexanediol, dimethyl-: 3.3-dimethyl-: 1.6-hexanediol. 3,4-dimethyl-: 2.4hexanediol. 2.3-dimethyl-: 2,4-hexanediol, 2,4-dimethyl-; 2,4-hexanediol, 2,5dimethyl-; 2,4-hexanediol 3,3-dimethyl-; 2,4-hexanediol. 3.4-dimethyl-; 2,4hexanediol, 3,5-dimethyl-; 2.4-hexanediol. 4,5-dimethyl-; 2.4-hexanediol. 5,5dimethyl-; 2,5-hexanediol, 2.3-dimethyl-; 2.5-hexanediol. 2.4-dimethyl-: 2.5hexanediol. 2,5-dimethyl-; 2,5-hexanediol, 3,3-dimethyl-; 2,5-hexanediol, 3,4dimethyl-; 2,6-hexanediol, 3,3-dimethyl-; 1,3-hexanediol, 2-ethyl-; 1,3-hexanediol, 4ethyl-; 1,4-hexanediol, 2-ethyl-; 1,4-hexanediol, 4-ethyl-; 1,5-hexanediol, 2-ethyl-; 2,4-hexanediol, 3-ethyl-; 2,4-hexanediol, 4-ethyl-; 2,5-hexanediol, 3-ethyl-; 1,3heptanediol, 2-methyl-; 1,3-heptanediol, 3-methyl-; 1,3-heptanediol, 4-methyl-; 1,3heptanediol, 5-methyl-; 1,3-heptanediol, 6-methyl-; 1,4-heptanediol, 2-methyl-; 1,4heptanediol, 3-methyl-; 1,4-heptanediol, 4-methyl-; 1,4-heptanediol, 5-methyl-; 1,4heptanediol, 6-methyl-; 1,5-heptanediol, 2-methyl; 1,5-heptanediol, 3-methyl-; 1,5heptanediol, 4-methyl-; 1,5-heptanediol, 5-methyl-; 1,5-heptanediol, 6-methyl-; 1,6heptanediol, 2-methyl-; 1,6-heptanediol, 3-methyl-; 1,6-heptanediol, 4-methyl-; 1,6heptanediol, 5-methyl-; 1,6-heptanediol, 6-methyl-; 2,4-heptanediol, 2-methyl-; 2,4heptanediol, 3-methyl-; 2,4-heptanediol, 4-methyl-; 2,4-heptanediol, 5-methyl-; 2,4heptanediol, 6-methyl-; 2,5-heptanediol, 2-methyl-; 2,5-heptanediol, 3-methyl-, 2,5heptanediol, 4-methyl-; 2,5-heptanediol, 5-methyl-; 2,5-heptanediol, 6-methyl-; 2,6heptanediol, 2-methyl-; 2,6-heptanediol, 3-methyl-; 2,6-heptanediol, 4-methyl-; 3,4heptanediol, 3-methyl-; 3,5-heptanediol, 2-methyl-; 3,5-heptanediol, 3-methyl-; 3,5-4-methyl-; 2.4-octanediol; 2.5-octanediol; 2.6-octanediol; 2.7heptanediol. octanediol: 3.5-octanediol: and/or 3.6-octanediol: nonane diol isomers including: 2,4-pentanediol, 2,3,3,4-tetramethyl-; 2,4-V.

pentanediol, 3-tertiarybutyl-; 2,4-hexanediol, 2,5,5-trimethyl-; 2,4-hexanediol, 3,3,4-

trimethyl-; 2,4-hexanediol, 3,3,5-trimethyl-; 2,4-hexanediol, 3,5,5-trimethyl-; 2,4hexanediol, 4,5,5-trimethyl-; 2,5-hexanediol, 3,3,4-trimethyl-; and/or 2,5-hexanediol, 3.3.5-trimethyl-:

VI. glyceryl ethers and/or di(hydroxyalkyl)ethers including: 1,2-propanediol, 3-(n-pentyloxy)-; 1,2-propanediol, 3-(2-pentyloxy)-; 1,2-propanediol, 3-(3-pentyloxy)-; 1,2-propanediol, 3-(2-methyl-1-butyloxy)-; 1,2-propanediol, 3-(iso-amyloxy)-; 1,2propanediol, 3-(3-methyl-2-butyloxy)-; 1,2-propanediol, 3-(cyclohexyloxy)-; 1,2propanediol, 3-(1-cyclohex-1-enyloxy)-, 1,3-propanediol, 2-(pentyloxy)-, 1,3propanediol, 2-(2-pentyloxy)-; 1,3-propanediol, 2-(3-pentyloxy)-; 1,3-propanediol, 2-(2-methyl-1-butyloxy)-; 1,3-propanediol, 2-(iso-amyloxy)-; 1,3-propanediol, 2-(3methyl-2-butyloxy)-; 1,3-propanediol, 2-(cyclohexyloxy)-; 1,3-propanediol, 2-(1cyclohex-1-envloxy)-: 1,2-propanediol, 3-(butyloxy)-. triethoxylated; 1.2-3-(butyloxy)-, tetraethoxylated; 1.2-propanediol, 3-(butyloxy)-. pentaethoxylated; 1,2-propanediol, 3-(butyloxy)-, hexaethoxylated; 1,2-propanediol, 3-(butyloxy)-, heptaethoxylated; 1,2-propanediol, 3-(butyloxy)-, octaethoxylated; 1,2-propanediol, 3-(butyloxy)-, nonaethoxylated; 1,2-propanediol, 3-(butyloxy)-, monopropoxylated; 1,2-propanediol, 3-(butyloxy)-, dibutyleneoxylated: propanediol, 3-(butyloxy)-, tributyleneoxylated; 1,2-propanediol, 3-phenyloxy-; 1,2propanediol, 3-benzyloxy-; 1,2-propanediol, 3-(2-phenylethyloxy)-; 1,2-propanediol, 3-(1-phenyl-2-propanyloxy)-; 1,3-propanediol, 2-phenyloxy-; 1,3-propanediol, 2-(mcresyloxy)-; 1,3-propanediol, 2-(p-cresyloxy)-; 1,3-propanediol, -benzyloxy-; 1,3propanediol, 2-(2-phenylethyloxy)-; 1,3-propanediol, 2-(1-phenylethyloxy)-; bis(2hydroxybutyl)ether; and/or bis(2-hydroxycyclopentyl)ether

VII. saturated and unsaturated alicyclic diols and their derivatives including:

(a) the saturated diols and their derivatives, including:

1-isopropyl-1,2-cyclobutanediol; 3-ethyl-4-methyl-1,2-cyclobutanediol; 3-propyl-1,2cyclobutanediol; 3-isopropyl-1,2-cyclobutanediol; 1-ethyl-1,2-cyclopentanediol; 1,2dimethyl-1,2-cyclopentanediol; 1,4-dimethyl-1,2-cyclopentanediol; 2,4,5-trimethyl-1,3-cyclopentanediol: 3,3-dimethyl-1,2-cyclopentanediol; 3,4-dimethyl-1,2cyclopentanediol; 3,5-dimethyl-1,2-cyclopentanediol; 3-ethyl-1,2-cyclopentanediol; 4,4-dimethyl-1,2-cyclopentanediol; 4-ethyl-1,2-cyclopentanediol; 1.1bis(hydroxymethyl)cyclohexane; 1,2-bis(hydroxymethyl)cyclohexane; 1,2-dimethyl-1,3-cyclohexanediol: 1,3-bis(hydroxymethyl)cyclohexane; 1.3-dimethyl-1.3cyclohexanediol; 1,6-dimethyl-1,3-cyclohexanediol; 1-hydroxy-cyclohexaneethanol; 1-hydroxy-cyclohexanemethanol; 1-ethyl-1,3-cyclohexanediol: 1-methyl-1.2cyclohexanediol; 2.2-dimethyl-1.3-cyclohexanediol; 2.3-dimethyl-1.4cyclohexanediol; 2,4-dimethyl-1,3-cyclohexanediol; 2.5-dimethyl-1.3-

cyclohexanediol; 2,6-dimethyl-1,4-cyclohexanediol; 2-ethyl-1,3-cyclohexanediol; 2hydroxycyclohexaneethanol; 2-hydroxyethyl-1-cyclohexanol; 3-hydroxyethyl-1cyclohexanol; 3-hydroxycyclohexaneethanol; 3-hydroxymethylcyclohexanol: methyl-1,2-cyclohexanediol: 4,4-dimethyl-1,3-cyclohexanediol: 4.5-dimethyl-1.3cyclohexanediol; 4,6-dimethyl-1,3-cyclohexanediol; 4-ethyl-1,3-cyclohexanediol; 4hydroxyethyl-1-cyclohexanol; 4-methyl-1,2-cyclohexanediol: 5.5-dimethyl-1.3cyclohexanediol; 5-ethyl-1,3-cyclohexanediol; 1,2-cycloheptanediol; 2-methyl-1,3cycloheptanediol; 2-methyl-1,4-cycloheptanediol; 4-methyl-1,3-cycloheptanediol; 5methyl-1,3-cycloheptanediol; 5-methyl-1,4-cycloheptanediol; 6-methyl-1.4cycloheptanediol; ; 1,3-cyclooctanediol; 1,4-cyclooctanediol; 1,5-cyclooctanediol; 1,2-cyclohexanediol, diethoxylate; 1,2-cyclohexanediol, triethoxylate; 1,2cyclohexanediol. tetraethoxylate; 1,2-cyclohexanediol, pentaethoxylate; 1,2cyclohexanediol, hexaethoxylate; 1,2-cyclohexanediol, heptaethoxylate; 1,2cyclohexanediol. octaethoxylate; 1,2-cyclohexanediol, nonaethoxylate; 1,2cyclohexanediol, monopropoxylate; 1,2-cyclohexanediol, monobutylenoxylate; 1,2cyclohexanediol, dibutylenoxylate; and/or 1,2-cyclohexanediol, tributylenoxylate; and (b). the unsaturated alicyclic diols including: 1,2-cyclobutanediol, 1-ethenyl-2-ethyl-; 3-cyclobutene-1,2-diol, 1,2,3,4-tetramethyl-; 3-cyclobutene-1,2-diol, 3,4-diethyl-; 3cyclobutene-1,2-diol, 3-(1,1-dimethylethyl)-; 3-cyclobutene-1,2-diol, 3-butyl-; 1,2cyclopentanediol. 1,2-dimethyl-4-methylene-; 1,2-cyclopentanediol, 1-ethyl-3methylene-; 1,2-cyclopentanediol, 4-(1-propenyl); 3-cyclopentene-1,2-diol, 1-ethyl-3methyl-: 1,2-cyclohexanediol, 1-ethenyl-; 1,2-cyclohexanediol, 1-methyl-3methylene-; 1,2-cyclohexanediol, 1-methyl-4-methylene-; 1,2-cyclohexanediol, 3ethenyl-; 1,2-cyclohexanediol, 4-ethenyl-; 3-cyclohexene-1,2-diol, 2,6-dimethyl-; 3cyclohexene-1,2-diol, 6,6-dimethyl-; 4-cyclohexene-1,2-diol, 3,6-dimethyl-; 4cyclohexene-1,2-diol, 4,5-dimethyl-; 3-cyclooctene-1,2-diol; 4-cyclooctene-1,2-diol; and/or 5-cyclooctene-1,2-diol;

### VIII. Alkoxylated derivatives of C₃₋₈ diols including:

1. 1,2-propanediol (C3) 2(Me- $E_{1-4}$ ); 1,2-propanediol (C3) PO₄; 1,2-propanediol, 2-methyl- (C4) (Me- $E_{4-10}$ ); 1,2-propanediol, 2-methyl- (C4) 2(Me- $E_{1}$ ); 1,2-propanediol, 2-methyl- (C4) PO₃; 1,2-propanediol, 2-methyl- (C4) BO₁; 1,3-propanediol (C3) 2(Me- $E_{6-8}$ ); 1,3-propanediol (C3) PO₅₋₆; 1,3-propanediol, 2,2-diethyl- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2,2-diethyl- (C7) PO₁; 1,3-propanediol, 2,2-dimethyl- (C5) 2(Me  $E_{1-2}$ ); 1,3-propanediol, 2,2-dimethyl- (C5) PO₃₋₄; 1,3-propanediol, 2-(1-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(1-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(1-methylpropyl)- (C7)  $E_{1-7}$ ; 1,3-propanediol, 2-(2-methylpropyl)- (C7)

propanediol, 2-(2-methylpropyl)- (C7) PO₁; 1,3-propanediol, 2-(2-methylpropyl)- (C7) n-BO₁₋₂; 1,3-propanediol, 2-ethyl- (C5) (Me E₆₋₁₀); 1,3-propanediol, 2-ethyl- (C5) 2(Me E₁); 1,3-propanediol, 2-ethyl- (C5) PO₃; 1,3-propanediol, 2-ethyl-2-methyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-ethyl-2-methyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) (Me E₁₋₆); 1,3-propanediol, 2-isopropyl- (C6) PO₂; 1,3-propanediol, 2-isopropyl- (C6) BO₁; 1,3-propanediol, 2-methyl- (C4) 2(Me E₂₋₅); 1,3-propanediol, 2-methyl- (C4) PO₄₋₅; 1,3-propanediol, 2-methyl- (C4) BO₂; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) E₂₋₉; 1,3-propanediol, 2-methyl-2-isopropyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) E₁₋₇; 1,3-propanediol, 2-methyl-2-propyl- (C7) PO₁; 1,3-propanediol, 2-methyl-2-propyl- (C7) n-BO₁₋₂; 1,3-propanediol, 2-propyl- (C6) Me E₁₋₄); 1,3-propanediol, 2-propyl- (C6) PO₂; 1,3-propanediol, 2-propyl- (C6) BO₁;

1,2-butanediol (C4) (Me E₂₋₈); 1,2-butanediol (C4) PO₂₋₃; 1,2butanediol (C4) BO₁; 1,2-butanediol, 2,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 2,3dimethyl- (C6) n-BO₁₋₂, 1,2-butanediol, 2-ethyl- (C6) E₁₋₃; 1,2-butanediol, 2-ethyl-(C6) n-BO₁; 1,2-butanediol, 2-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 2-methyl-(C5) PO₁; 1,2-butanediol, 3,3-dimethyl- (C6) E₁₋₆; 1,2-butanediol, 3,3-dimethyl-(C6) n-BO₁₋₂; 1,2-butanediol, 3-methyl- (C5) (Me E₁₋₂); 1,2-butanediol, 3-methyl-(C5) PO₁; 1,3-butanediol (C4) 2(Me E₃₋₆); 1,3-butanediol (C4) PO₅; 1,3-butanediol (C4) BO₂; 1,3-butanediol, 2,2,3-trimethyl- (C7) (Me E₁₋₃); 1,3-butanediol, 2,2,3trimethyl- (C7) PO₁₋₂; 1,3-butanediol, 2,2-dimethyl- (C6) (Me E₃₋₈); 1,3butanediol, 2,2-dimethyl- (C6) PO3; 1,3-butanediol, 2,3-dimethyl- (C6) (Me E3-8); 1,3-butanediol, 2,3-dimethyl- (C6) PO₃; 1,3-butanediol, 2-ethyl- (C6) (Me E₁₋₆); 1,3-butanediol, 2-ethyl- (C6) PO₂₋₃; 1,3-butanediol, 2-ethyl- (C6) BO₁; 1,3butanediol, 2-ethyl-2-methyl- (C7) (Me E₁); 1,3-butanediol, 2-ethyl-2-methyl- (C7) PO₁; 1,3-butanediol, 2-ethyl-2-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-ethyl-3methyl- (C7) (Me E1); 1,3-butanediol, 2-ethyl-3-methyl- (C7) PO1; 1,3-butanediol, 2-ethyl-3-methyl- (C7) n-BO₂₋₄; 1,3-butanediol, 2-isopropyl- (C7) (Me E₁); 1,3butanediol, 2-isopropyl- (C7) PO₁; 1,3-butanediol, 2-isopropyl- (C7) n-BO₂₋₄; 1,3butanediol, 2-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 2-methyl- (C5) PO₄; 1,3butanediol, 2-propyl- (C7) E2-9; 1,3-butanediol, 2-propyl- (C7) PO1; 1,3-butanediol, 2-propyl- (C7) n-BO₁₋₃; 1,3-butanediol, 3-methyl- (C5) 2(Me E₁₋₃); 1,3-butanediol, 3-methyl- (C5) PO₄; 1,4-butanediol (C4) 2(Me E₂₋₄); 1,4-butanediol (C4) PO₄₋₅; 1,4-butanediol (C4) BO₂; 1,4-butanediol, 2,2,3-trimethyl- (C7) E₂₋₉; 1,4-butanediol, 2,2,3-trimethyl- (C7) PO₁; 1,4-butanediol, 2,2,3-trimethyl- (C7) n-BO₁₋₃; 1,4butanediol, 2,2-dimethyl- (C6) (Me E₁₋₆); 1,4-butanediol, 2,2-dimethyl- (C6) PO₂;

1,4-butanediol, 2,2-dimethyl- (C6) BO1; 1,4-butanediol, 2,3-dimethyl- (C6) (Me E1 6); 1,4-butanediol, 2,3-dimethyl- (C6) PO₂; 1,4-butanediol, 2,3-dimethyl- (C6) BO₁; 1,4-butanediol, 2-ethyl- (C6) (Me E₁₋₄); 1,4-butanediol, 2-ethyl- (C6) PO₂; 1,4butanediol, 2-ethyl- (C6) BO₁; 1,4-butanediol, 2-ethyl-2-methyl- (C7) E₁₋₇; 1,4butanediol, 2-ethyl-2-methyl- (C7) PO1; 1,4-butanediol, 2-ethyl-2-methyl- (C7) n- $BO_{1-2}$ ; 1,4-butanediol, 2-ethyl-3-methyl- (C7)  $E_{1-7}$ ; 1,4-butanediol, 2-ethyl-3methyl- (C7) PO₁; 1,4-butanediol, 2-ethyl-3-methyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-isopropyl- (C7) E₁₋₇; 1,4-butanediol, 2-isopropyl- (C7) PO₁; 1,4-butanediol, 2isopropyl- (C7) n-BO₁₋₂; 1,4-butanediol, 2-methyl- (C5) (Me  $E_{6-10}$ ); 1,4butanediol, 2-methyl- (C5) 2(Me E₁); 1,4-butanediol, 2-methyl- (C5) PO₃; 1,4butanediol, 2-methyl- (C5) BO₁; 1,4-butanediol, 2-propyl- (C7)  $E_{1-5}$ ; 1,4butanediol, 2-propyl- (C7) n-BO₁₋₂; 1,4-butanediol, 3-ethyl-1-methyl- (C7) E₂₋₉; 1,4-butanediol, 3-ethyl-1-methyl- (C7) PO₁; 1,4-butanediol, 3-ethyl-1-methyl- (C7) n-BO₁₋₃; 2,3-butanediol (C4) (Me  $E_{6-10}$ ); 2,3-butanediol (C4) 2(Me  $E_1$ ); 2,3butanediol (C4) PO₃₋₄; 2,3-butanediol (C4) BO₁; 2,3-butanediol, 2,3-dimethyl- (C6) E₃₋₉; 2,3-butanediol, 2,3-dimethyl- (C6) PO₁; 2,3-butanediol, 2,3-dimethyl- (C6) n- $BO_{1-3}$ ; 2,3-butanediol, 2-methyl- (C5) (Me  $E_{1-5}$ ); 2,3-butanediol, 2-methyl- (C5) PO₂; 2,3-butanediol, 2-methyl- (C5) BO₁;

1,2-pentanediol (C5)  $E_{3-10}$ ; 1,2-pentanediol, (C5)  $PO_1$ ; 1,2pentanediol, (C5) n-BO₂₋₃; 1,2-pentanediol, 2-methyl (C6) E₁₋₃; 1,2-pentanediol, 2methyl (C6) n-BO₁; 1,2-pentanediol, 2-methyl (C6) BO₁; 1,2-pentanediol, 3-methyl (C6) E₁₋₃; 1,2-pentanediol, 3-methyl (C6) n-BO₁; 1,2-pentanediol, 4-methyl (C6) E₁₋₃; 1,2-pentanediol, 4-methyl (C6) n-BO₁; 1,3-pentanediol (C5) 2(Me-E₁₋₂); 1,3pentanediol (C5) PO₃₋₄; 1,3-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,3pentanediol, 2,2-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,3-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 2-ethyl- (C7) E₂₋₉; 1,3-pentanediol, 2ethyl- (C7) PO₁; 1,3-pentanediol, 2-ethyl- (C7) n-BO₁₋₃; 1,3-pentanediol, 2-methyl-(C6) 2(Me-E₁₋₆); 1,3-pentanediol, 2-methyl- (C6) PO₂₋₃; 1,3-pentanediol, 2methyl- (C6) BO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,3-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 3,4-dimethyl- (C7) n-BO₂₋₄; 1,3pentanediol, 3-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 3-methyl- (C6) PO₂₋₃; 1,3pentanediol, 3-methyl- (C6) BO1; 1,3-pentanediol, 4,4-dimethyl- (C7) (Me-E1); 1,3pentanediol, 4,4-dimethyl- (C7) PO₁; 1,3-pentanediol, 4,4-dimethyl- (C7) n-BO₂₋₄; 1,3-pentanediol, 4-methyl- (C6) (Me-E₁₋₆); 1,3-pentanediol, 4-methyl- (C6) PO₂₋₃;

1,3-pentanediol, 4-methyl- (C6) BO₁; 1,4-pentanediol, (C5)  $2(Me-E_{1-2})$ ; 1,4pentanediol (C5) PO₃₋₄; 1,4-pentanediol, 2,2-dimethyl- (C7) (Me-E₁); 1,4pentanediol, 2,2-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,2-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2,4-dimethyl-(C7) (Me-E₁); 1,4-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 2,4dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 2-methyl- (C6) (Me-E₁₋₆); 1,4pentanediol, 2-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 2-methyl- (C6) BO₁; 1,4pentanediol, 3,3-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,3-dimethyl- (C7) n-BO₂₋₄; 1,4-pentanediol, 3,4-dimethyl- (C7) (Me-E₁); 1,4-pentanediol, 3,4-dimethyl- (C7) PO₁; 1,4-pentanediol, 3,4-dimethyl-(C7) n-BO₂₋₄; 1,4-pentanediol, 3-methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 3methyl- (C6) PO₂₋₃; 1,4-pentanediol, 3-methyl- (C6) BO₁; 1,4-pentanediol, 4methyl- (C6) 2(Me-E₁₋₆); 1,4-pentanediol, 4-methyl- (C6) PO₂₋₃; 1,4-pentanediol, 4-methyl- (C6) BO₁; 1,5-pentanediol, (C5) (Me-E₄₋₁₀); 1,5-pentanediol (C5) 2(Me- $E_1$ ); 1,5-pentanediol (C5) PO₃; 1,5-pentanediol, 2,2-dimethyl- (C7)  $E_{1-7}$ ; 1,5pentanediol, 2,2-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,2-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2,4-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 2,4-dimethyl- (C7) PO₁; 1,5-pentanediol, 2,4-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 2-ethyl- (C7) E₁₋₅; 1,5-pentanediol, 2-ethyl- (C7) n-BO₁₋ 2; 1,5-pentanediol, 2-methyl- (C6) (Me-E₁₋₄); 1,5-pentanediol, 2-methyl- (C6) PO₂; 1,5-pentanediol, 3,3-dimethyl- (C7) E₁₋₇; 1,5-pentanediol, 3,3-dimethyl- (C7) PO₁; 1,5-pentanediol, 3,3-dimethyl- (C7) n-BO₁₋₂; 1,5-pentanediol, 3-methyl- (C6) (Me- $E_{1-4}$ ); 1,5-pentanediol, 3-methyl- (C6) PO₂; 2,3-pentanediol, (C5) (Me- $E_{1-3}$ ); 2,3pentanediol, (C5) PO₂; 2,3-pentanediol, 2-methyl- (C6) E₁₋₇; 2,3-pentanediol, 2methyl- (C6) PO₁; 2,3-pentanediol, 2-methyl- (C6) n-BO₁₋₂; 2,3-pentanediol, 3methyl- (C6) E₁₋₇; 2,3-pentanediol, 3-methyl- (C6) PO₁; 2,3-pentanediol, 3-methyl-(C6) n-BO₁₋₂; 2,3-pentanediol, 4-methyl- (C6) E₁₋₇; 2,3-pentanediol, 4-methyl-(C6) PO₁; 2,3-pentanediol, 4-methyl- (C6) n-BO₁₋₂; 2,4-pentanediol, (C5) 2(Me- $E_{1-4}$ ); 2,4-pentanediol (C5) PO₄; 2,4-pentanediol, 2,3-dimethyl- (C7) (Me- $E_{1-4}$ ); 2,4-pentanediol, 2,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 2,4-dimethyl- (C7) (Me-E₁₋₄); 2,4-pentanediol, 2,4-dimethyl- (C7) PO₂, 2,4-pentanediol, 2-methyl- (C7) (Me-E₅₋₁₀); 2,4-pentanediol, 2-methyl- (C7) PO₃; 2,4-pentanediol, 3,3-dimethyl-(C7) (Me- $E_{1-4}$ ); 2,4-pentanediol, 3,3-dimethyl- (C7) PO₂; 2,4-pentanediol, 3methyl- (C6) (Me-E₅₋₁₀); 2,4-pentanediol, 3-methyl- (C6) PO₃;

- 1,3-hexanediol (C6) (Me-E₁₋₅); 1,3-hexanediol (C6) PO₂; 1,3hexanediol (C6) BO₁; 1,3-hexanediol, 2-methyl- (C7) E₂₋₉; 1,3-hexanediol, 2methyl- (C7) PO₁; 1,3-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 2methyl- (C7) BO₁; 1,3-hexanediol, 3-methyl- (C7) E₂₋₉; 1,3-hexanediol, 3-methyl-(C7) PO₁; 1,3-hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 4-methyl- (C7) E₂₋₉; 1,3-hexanediol, 4-methyl- (C7) PO₁; 1,3-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,3-hexanediol, 5-methyl- (C7) E₂₋₉; 1,3-hexanediol, 5-methyl- (C7) PO₁; 1,3hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol (C6) (Me-E₁₋₅); 1,4-hexanediol (C6) PO₂; 1,4-hexanediol (C6) BO₁; 1,4-hexanediol, 2-methyl- (C7) E₂₋₉; 1,4hexanediol, 2-methyl- (C7) PO₁; 1,4-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 3-methyl- (C7) E₂₋₉; 1,4-hexanediol, 3-methyl- (C7) PO₁; 1,4hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,4-hexanediol, 4-methyl- (C7) E₂₋₉; 1,4hexanediol, 4-methyl- (C7) PO₁; 1,4-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,4hexanediol, 5-methyl- (C7) E₂₋₉; 1,4-hexanediol, 5-methyl- (C7) PO₁; 1,4hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol (C6) (Me-E₁₋₅); 1,5-hexanediol (C6) PO₂; 1,5-hexanediol (C6) BO₁; 1,5-hexanediol, 2-methyl- (C7) E₂₋₉; 1,5hexanediol, 2-methyl- (C7) PO₁; 1,5-hexanediol, 2-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 3-methyl- (C7) E₂₋₉; 1,5-hexanediol, 3-methyl- (C7) PO₁; 1,5hexanediol, 3-methyl- (C7) n-BO₁₋₃; 1,5-hexanediol, 4-methyl- (C7)  $E_{2-9}$ ; 1,5hexanediol, 4-methyl- (C7) PO₁; 1,5-hexanediol, 4-methyl- (C7) n-BO₁₋₃; 1,5hexanediol, 5-methyl- (C7) E₂₋₉; 1,5-hexanediol, 5-methyl- (C7) PO₁; 1,5hexanediol, 5-methyl- (C7) n-BO₁₋₃; 1,6-hexanediol (C6) (Me-E₁₋₂); 1,6-hexanediol (C6) PO₁₋₂; 1,6-hexanediol (C6) n-BO₄; 1,6-hexanediol, 2-methyl- (C7) E₁₋₅; 1,6hexanediol, 2-methyl- (C7) n-BO₁₋₂; 1,6-hexanediol, 3-methyl- (C7)  $E_{1-5}$ ; 1,6hexanediol, 3-methyl- (C7) n-BO₁₋₂; 2,3-hexanediol (C6) E₁₋₅; 2,3-hexanediol (C6) n-BO₁; 2,3-hexanediol (C6) BO₁; 2,4-hexanediol (C6) (Me-E₃₋₈); 2,4-hexanediol (C6) PO₃; 2,4-hexanediol, 2-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 2-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 3-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 3-methyl- (C7)  $PO_{1-2}$ ; 2,4-hexanediol, 4-methyl- (C7) (Me- $E_{1-2}$ ); 2,4-hexanediol 4-methyl- (C7) PO₁₋₂; 2,4-hexanediol, 5-methyl- (C7) (Me-E₁₋₂); 2,4-hexanediol 5-methyl- (C7) PO₁₋₂, 2,5-hexanediol (C6) (Me-E₃₋₈); 2,5-hexanediol (C6) PO₃; 2,5-hexanediol, 2methyl- (C7) (Me-E₁₋₂); 2,5-hexanediol 2-methyl- (C7) PO₁₋₂; 2,5-hexanediol, 3methyl- (C7) (Me- $E_{1-2}$ ); 2,5-hexanediol 3-methyl- (C7) PO₁₋₂; 3,4-hexanediol (C6) EO₁₋₅; 3,4-hexanediol (C6) n-BO₁; 3,4-hexanediol (C6) BO₁;
- 5. 1,3-heptanediol (C7)  $E_{1-7}$ ; 1,3-heptanediol (C7)  $PO_1$ ; 1,3-heptanediol (C7) n-BO₁₋₂; 1,4-heptanediol (C7)  $E_{1-7}$ ; 1,4-heptanediol (C7)  $PO_1$ ; 1,4-heptanediol (C7)  $PO_{1-2}$ ; 1,5-heptanediol (C7)  $PO_{1-7}$ ; 1,5-heptanediol (C7)

PO₁; 1,5-heptanediol (C7) n-BO₁₋₂; 1,6-heptanediol (C7) E₁₋₇; 1,6-heptanediol (C7) PO₁; 1,6-heptanediol (C7) n-BO₁₋₂; 1,7-heptanediol (C7) n-BO₁; 2,4-heptanediol (C7) E₃₋₁₀; 2,4-heptanediol (C7) (Me-E₁); 2,4-heptanediol (C7) PO₁; 2,4-heptanediol (C7) n-BO₃; 2,5-heptanediol (C7) E₃₋₁₀; 2,5-heptanediol (C7) (Me-E₁); 2,5-heptanediol (C7) PO₁; 2,5-heptanediol (C7) n-BO₃; 2,6-heptanediol (C7) E₃₋₁₀; 2,6-heptanediol (C7) (Me-E₁); 2,6-heptanediol (C7) PO₁; 2,6-heptanediol (C7) n-BO₃; 3,5-heptanediol (C7) n-BO₃; 3,5-heptanediol (C7) n-BO₃;

1,3-butanediol, 3-methyl-2-isopropyl- (C8) PO1; 2,4-pentanediol, 2,3,3-trimethyl- (C8) PO₁; 1,3-butanediol, 2,2-diethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 2,5-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 3,3-dimethyl- (C8)  $E_{2-5}$ ; 2,4-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 3,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 4,5-dimethyl- (C8) E₂₋₅; 2,4-hexanediol, 5,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,4-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 2,5-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,3-dimethyl- (C8) E₂₋₅; 2,5-hexanediol, 3,4-dimethyl- (C8) E₂₋₅; 3,5-heptanediol, 3-methyl- (C8) E₂₋₅; 1,3-butanediol, 2,2diethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 2,5-dimethyl- (C8) n-BO₁₋₂; 2,4hexanediol, 3,3-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 3,4-dimethyl- (C8) n-BO₁ 2; 2,4-hexanediol, 3,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 4,5-dimethyl- (C8) n-BO₁₋₂; 2,4-hexanediol, 5,5-dimethyl-, n-BO₁₋₂; 2,5-hexanediol, 2,3-dimethyl-(C8) n-BO₁₋₂; 2,5-hexanediol, 2,4-dimethyl- (C8) n-BO₁₋₂; 2,5-hexanediol, 2,5dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5-hexanediol, 3,3-dimethyl- (C8)  $n-BO_{1-2}$ ; 2,5hexanediol, 3,4-dimethyl- (C8) n-BO₁₋₂; 3,5-heptanediol, 3-methyl- (C8) n-BO₁₋₂; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8) n-BO₁; 1,3-butanediol, 2-ethyl-2,3dimethyl- (C8) n-BO₁; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) n-BO₁; 1,4butanediol, 3-methyl-2-isopropyl- (C8) n-BO₁; 1,3-pentanediol, 2,2,3-trimethyl-(C8) n-BO₁; 1,3-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,3-pentanediol, 2,4,4trimethyl- (C8) n-BO₁; 1,3-pentanediol, 3,4,4-trimethyl- (C8) n-BO₁; 1,4pentanediol, 2,2,3-trimethyl- (C8) n-BO1; 1,4-pentanediol, 2,2,4-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,3-trimethyl- (C8) n-BO₁; 1,4-pentanediol, 2,3,4-trimethyl-(C8) n-BO₁; 1,4-pentanediol, 3,3,4-trimethyl- (C8) n-BO₁; 2,4-pentanediol, 2,3,4trimethyl- (C8) n-BO₁; 2,4-hexanediol, 4-ethyl- (C8) n-BO₁; 2,4-heptanediol, 2methyl- (C8) n-BO₁; 2,4-heptanediol, 3-methyl- (C8) n-BO₁; 2,4-heptanediol, 4methyl- (C8) n-BO₁; 2,4-heptanediol, 5-methyl- (C8) n-BO₁; 2,4-heptanediol, 6methyl- (C8) n-BO₁; 2,5-heptanediol, 2-methyl- (C8) n-BO₁; 2,5-heptanediol, 3-

methyl- (C8) n-BO₁; 2,5-heptanediol, 4-methyl- (C8) n-BO₁; 2,5-heptanediol, 5methyl- (C8) n-BO₁; 2,5-heptanediol, 6-methyl- (C8) n-BO₁; 2,6-heptanediol, 2methyl- (C8) n-BO₁; 2,6-heptanediol, 3-methyl- (C8) n-BO₁; 2,6-heptanediol, 4methyl- (C8) n-BO₁; 3,5-heptanediol, 2-methyl- (C8) n-BO₁; 1,3-propanediol, 2-(1,2-dimethylpropyl)- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-ethyl-2,3-dimethyl- (C8)  $E_{1-3}$ ; 1,3-butanediol, 2-methyl-2-isopropyl- (C8) E₁₋₃; 1,4-butanediol, 3-methyl-2isopropyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,3-pentanediol, 2,2,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3-pentanediol, 2,4,4-trimethyl- (C8)  $E_{1-3}$ ; 1,3pentanediol, 3,4,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,3-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,2,4-trimethyl- (C8) E₁₋₃; 1,4-pentanediol, 2,3,3-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 2,3,4-trimethyl- (C8)  $E_{1-3}$ ; 1,4-pentanediol, 3,3,4-trimethyl-(C8) E₁₋₃; 2,4-pentanediol, 2,3,4-trimethyl- (C8) E₁₋₃; 2,4-hexanediol, 4-ethyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,4-heptanediol, 4-methyl- (C8) E₁₋₃; 2,4-heptanediol, 5-methyl- (C8) E₁₋₃; 2,4heptanediol, 6-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; 2,5heptanediol, 5-methyl- (C8)  $E_{1-3}$ ; 2,5-heptanediol, 6-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; 2,6-heptanediol, 3-methyl- (C8)  $E_{1-3}$ ; 2,6heptanediol, 4-methyl- (C8)  $E_{1-3}$ ; and/or 3,5-heptanediol, 2-methyl- (C8)  $E_{1-3}$ ; and

#### 7. mixtures thereof;

- IX. aromatic diols including: 1-phenyl-1,2-ethanediol; 1-phenyl-1,2-propanediol; 2-phenyl-1,2-propanediol; 3-phenyl-1,2-propanediol; 1-(3-methylphenyl)-1,3-propanediol; 1-(4-methylphenyl)-1,3-propanediol; 2-methyl-1-phenyl-1,3-propanediol; 1-phenyl-1,3-butanediol; 3-phenyl-1,3-butanediol; 1-phenyl-1,4-butanediol; and/or 1-phenyl-2,3-butanediol;
- X. solvents which have a ClogP value of from about 0.15 to about 0.64 and are homologs, or analogs, of the above structures where one, or more, CH₂ groups are added while, for each CH₂ group added, two hydrogen atoms are removed from adjacent carbon atoms in the molecule to form one carbon-carbon double bond, thus holding the number of hydrogen atoms in the molecule constant, including the following:
- 1,3-Propanediol, 2,2-di-2-propenyl-; 1,3-Propanediol, 2-(1-pentenyl)-; 1,3-Propanediol, 2-(2-methyl-2-propenyl)-2-(2-propenyl)-; 1,3-Propanediol, 2-(3-methyl-1-butenyl)-; 1,3-Propanediol, 2-(4-pentenyl)-; 1,3-Propanediol, 2-ethyl-2-(2-methyl-2-propenyl)-; 1,3-Propanediol, 2-methyl-2-(3-methyl-3-butenyl)-; 1,3-Butanediol, 2,2-diallyl-; 1,3-Butanediol, 2-(1-ethyl-1-propenyl)-; 1,3-Butanediol, 2-(2-butenyl)-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2-methyl-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2-methyl-2-methyl-2-methyl-; 1,3-Butanediol, 2-(3-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-

butenyl)-; 1,3-Butanediol, 2-ethyl-2-(2-propenyl)-; 1,3-Butanediol, 2-methyl-2-(1methyl-2-propenyl)-; 1,4-Butanediol, 2,3-bis(1-methylethylidene)-; 1,4-Butanediol, 2-(3-methyl-2-butenyl)-3-methylene-; 2-Butene-1,4-diol, 2-(1,1-dimethylpropyl)-; 2-Butene-1,4-diol, 2-(1-methylpropyl)-; 2-Butene-1,4-diol, 2-butyl-; 1,3-Pentanediol, 2-ethenyl-3-ethyl-; 1,3-Pentanediol, 2-ethenyl-4,4-dimethyl-; 1,4-Pentanediol, 3methyl-2-(2-propenyl)-; 1,5-Pentanediol, 2-(1-propenyl)-; 1,5-Pentanediol, 2-(2propenyl)-; 1,5-Pentanediol, 2-ethylidene-3-methyl-; 1,5-Pentanediol, 2-propylidene-; 2,4-Pentanediol 3-ethylidene-2,4-dimethyl-; 4-Pentene-1,3-diol, 2-(1,1dimethylethyl)-; 4-Pentene-1,3-diol, 2-ethyl-2,3-dimethyl-; 1,4-Hexanediol, 4-ethyl-2-methylene-; 1,5-Hexadiene-3,4-diol, 2,3,5-trimethyl-; 1,5-Hexadiene-3,4-diol, 5ethyl-3-methyl-; 1,5-Hexanediol, 2-(1-methylethenyl)-; 1,6-Hexanediol, 2-ethenyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 1-Hexene-3,4-diol, 5,5-dimethyl-; 2-Hexene-1,5diol, 4-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethenyl-2,5-dimethyl-; 3-Hexene-1,6-diol, 2-ethyl-; 3-Hexene-1,6-diol, 3,4-dimethyl-; 4-Hexene-2,3-diol, 2,5dimethyl-; 4-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-1,3-diol, 3-(2-propenyl)-; 5-Hexene-2,3-diol, 2,3-dimethyl-; 5-Hexene-2,3-diol, 3,4-dimethyl-; 5-Hexene-2,3diol, 3,5-dimethyl-; 5-Hexene-2,4-diol, 3-ethenyl-2,5-dimethyl-; 1,4-Heptanediol, 6methyl-5-methylene-; 1,5-Heptadiene-3,4-diol, 2,3-dimethyl-; 1,5-Heptadiene-3,4diol, 2,5-dimethyl-; 1,5-Heptadiene-3,4-diol, 3,5-dimethyl-; 1,7-Heptanediol, 2,6bis(methylene)-; 1,7-Heptanediol, 4-methylene-; 1-Heptene-3,5-diol, 2,4-dimethyl-; 1-Heptene-3,5-diol, 2,6-dimethyl-; 1-Heptene-3,5-diol, 3-ethenyl-5-methyl; 1-Heptene-3,5-diol, 6,6-dimethyl-; 2,4-Heptadiene-2,6-diol, 4,6-dimethyl-; 2,5-Heptadiene-1,7-diol, 4,4-dimethyl-; 2,6-Heptadiene-1,4-diol, 2.5,5-trimethyl-; 2-Heptene-1,4-diol, 5,6-dimethyl-; 2-Heptene-1,5-diol, 5-ethyl-; 2-Heptene-1,7-diol, 2methyl-; 3-Heptene-1,5-diol, 4,6-dimethyl-; 3-Heptene-1,7-diol, 3-methyl-6methylene-; 3-Heptene-2,5-diol, 2,4-dimethyl-; 3-Heptene-2,5-diol, 2,5-dimethyl-; 3-Heptene-2,6-diol, 2,6-dimethyl-; 3-Heptene-2,6-diol, 4,6-dimethyl-; 5-Heptene-1,3diol, 2,4-dimethyl-; 5-Heptene-1,3-diol, 3,6-dimethyl-; 5-Heptene-1,4-diol, 2,6dimethyl-; 5-Heptene-1,4-diol, 3,6-dimethyl-; 5-Heptene-2,4-diol, 2,3-dimethyl-; 6-Heptene-1,3-diol, 2,2-dimethyl-; 6-Heptene-1,4-diol, 4-(2-propenyl)-; 6-Heptene-1,4-diol, 5,6-dimethyl-; 6-Heptene-1,5-diol, 2,4-dimethyl-; 6-Heptene-1,5-diol, 2ethylidene-6-methyl-; 6-Heptene-2,4-diol, 4-(2-propenyl)-; 6-Heptene-2,4-diol, 5,5dimethyl-; 6-Heptene-2,5-diol, 4,6-dimethyl-; 6-Heptene-2,5-diol, 5-ethenyl-4methyl-; 1,3-Octanediol, 2-methylene-; 1,6-Octadiene-3,5-diol, 2,6-dimethyl-; 1,6-Octadiene-3,5-diol, 3,7-dimethyl-; 1,7-Octadiene-3,6-diol, 2,6-dimethyl-; 1,7-Octadiene-3,6-diol, 2,7-dimethyl-; 1,7-Octadiene-3,6-diol, 3,6-dimethyl-; 1-Octene-3,6-diol, 3-ethenyl-; 2,4,6-Octatriene-1,8-diol, 2,7-dimethyl-; 2,4-Octadiene-1,7-diol,

- 3,7-dimethyl-; 2,5-Octadiene-1,7-diol, 2,6-dimethyl-; 2,5-Octadiene-1,7-diol, 3,7dimethyl-; 2,6-Octadiene-1,4-diol, 3,7-dimethyl- (Rosiridol); 2,6-Octadiene-1,8-diol, 2-methyl-; 2,7-Octadiene-1,4-diol, 3,7-dimethyl-; 2,7-Octadiene-1,5-diol, 2,6dimethyl-; 2,7-Octadiene-1,6-diol, 2,6-dimethyl- (8-Hydroxylinalool); 2,7-Octadiene-1,6-diol, 2,7-dimethyl-, 2-Octene-1,4-diol, 2-Octene-1,7-diol, 2-Octene-1,7-diol, 2methyl-6-methylene-; 3,5-Octadiene-1,7-diol, 3,7-dimethyl-; 3,5-Octadiene-2,7-diol, 2,7-dimethyl-; 3,5-Octanediol, 4-methylene-; 3,7-Octadiene-1,6-diol, 2,6-dimethyl-; 3,7-Octadiene-2,5-diol, 2,7-dimethyl-; 3,7-Octadiene-2,6-diol, 2,6-dimethyl-; 3-Octene-1,5-diol, 4-methyl-; 3-Octene-1,5-diol, 5-methyl-; 4,6-Octadiene-1,3-diol, 2,2-dimethyl-; 4,7-Octadiene-2,3-diol, 2,6-dimethyl-; 4,7-Octadiene-2,6-diol, 2,6dimethyl-; 4-Octene-1,6-diol, 7-methyl-; 2,7-bis(methylene)-; 2-methylene-; 5,7-Octadiene-1,4-diol, 2,7-dimethyl-; 5,7-Octadiene-1,4-diol, 7-methyl-; 5-Octene-1,3diol; 6-Octene-1,3-diol, 7-methyl-; 6-Octene-1,4-diol, 7-methyl-; 6-Octene-1,5-diol; 6-Octene-1,5-diol, 7-methyl-; 6-Octene-3,5-diol, 2-methyl-; 6-Octene-3,5-diol, 4methyl-; 7-Octene-1,3-diol, 2-methyl-; 7-Octene-1,3-diol, 4-methyl-; 7-Octene-1,3diol, 7-methyl-; 7-Octene-1,5-diol; 7-Octene-1,6-diol; 7-Octene-1,6-diol; 5-methyl-; 7-Octene-2,4-diol, 2-methyl-6-methylene-; 7-Octene-2,5-diol, 7-methyl-; 7-Octene-3,5-diol, 2-methyl-; 1-Nonene-3,5-diol; 1-Nonene-3,7-diol; 3-Nonene-2,5-diol; 4,6-Nonadiene-1,3-diol, 8-methyl-; 4-Nonene-2,8-diol; 6,8-Nonadiene-1,5-diol; 7-Nonene-2,4-diol; 8-Nonene-2,4-diol; 8-Nonene-2,5-diol; 1,9-Decadiene-3,8-diol; and/or 1,9-Decadiene-4,6-diol; and
- XI. mixtures thereof, said principal solvent containing insufficient amounts of solvents selected from the group consisting of: 2,2,4-trimethyl-1,3-pentane diol; the ethoxylate, diethoxylate, or triethoxylate derivatives of 2,2,4-trimethyl-1,3-pentane diol; and/or 2-ethylhexyl-1,3-diol, to provide an aqueous stable product;
- C. optionally, but preferably, an effective amount, sufficient to improve clarity, of low molecular weight water soluble solvents like ethanol, isopropanol, propylene glycol, 1,3-propanediol, propylene carbonate, etc., said water soluble solvents being at a level that will not form clear compositions by themselves;
- D. optionally, but preferably, an effective amount to improve clarity, of water soluble calcium and/or magnesium salt, preferably chloride; and
- E. the balance being water.
- 52. A composition according to Claim 51 wherein said principal solvent B. is present at an effective amount, but less than the amount required to achieve stability and the composition is made stable by addition of another solvent that is itself inoperable to achieve stability.

- 53. The process of making a clear fabric softening composition using the premix of Claim 47 and adding said premix to a water seat comprising water; acid to create a pH of from about 1.5 to about 5; and, optionally, an effective amount of water soluble calcium and/or magnesium salt.
- 54. The process of making a solvent mixture of Claim 6 comprising the condensation of butyraldehyde, isobutyraldehyde and/or methyl ethyl ketone (2-butanone), so long as the level of butyraldehyde, or isobutyraldehyde is less than about 95% of the reaction mixture, in the presence of highly alkaline catalyst followed by conversion by hydrogenation.
- 55. The process of Claim 54 wherein the level of butyraldehyde, or isobutyraldehyde is less than about 85% of the reaction mixture.
- 56. The process of Claim 54 wherein the level of butyraldehyde, or isobutyraldehyde is less than about 80% of the reaction mixture.
- 57. The mixture prepared by the process of Claim 54.

# INTERNATIONAL SEARCH REPORT

Internal | Application No PCT/US 96/11556

A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C11D3/20 C11D1/62				
According	to International Patent Classification (IPC) or to both national c	lassification and IPC			
B. FIELD:	S SEARCHED				
Minimum of IPC 6	documentation searched (classification system followed by classi C11D	(ication symbols)			
Documenta	tion searched other than minimum documentation to the extent t	that such documents are included in the fields :	searched		
Electronic d	data base consulted during the international search (name of data	a base and, where practical, search terms used)	,		
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the	he relevant passages	Relevant to claim No.		
A	EP,A,O 296 995 (COTELLE S.A.) 2 1988 see page 3, line 26 - page 6, l see claims 1,14		1,11-19, 51		
P.A	US,A.5 525 245 (GRANDMAIRE JF 11 June 1996 see column 1, line 63 - column see claim 1	1,11-19, 51			
P.A	US.A.5 490 944 (SUAZON LAMBERTA 13 February 1996 see column 2, line 3 - line 55	1,11-19, 51			
A	US,A,4 547 301 (00MS JULIUS) 15 October 1985 see column 2, line 40 - column 6, line 40		1,11,51		
		-/			
X Furt	ther documents are listed in the continuation of box C.	X Patent family members are listed	In annex.		
'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but		To later document published after the internanonal filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.  X document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone.  Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  & document member of the same patent family			
	9 November 1996	· ·	Date of mailing of the international search report 2 9. 11. 96		
	mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer  Serbetsoglou, A			

- 1

### INTERNATIONAL SEARCH REPORT

interna 1 Application No PCT/US 96/11556

(Continue	uon) DOCUMENTS CONSIDERED TO BE RELEVANT	/US 96/11556	
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	DE,A,43 07 186 (HENKEL KGAA. ) 15 September 1994 see page 3, line 14; claims	1,11,51	
	US,A,3 644 203 (LAMBERTI VINCENT ET AL. ) 22 February 1972 see claims	1	

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

muormation on patent family members

Interns d Application No PCT/US 96/11556

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-0296995	28-12-88	AU-A- 1962588 DE-D- 3889387 WO-A- 8810294 JP-T- 1501492	19-01-89 09-06-94 29-12-88 25-05-89
US-A-5525245	11-06-96	AU-A- 4525096 WO-A- 9619552	10-07 <b>-9</b> 6 27-06-96
US-A-5490944	13-02-96	CA-A- 2118368	12-02-96
US-A-4547301	15-10-85	CA-A- 1225300 EP-A- 0125103	11-08-87 14-11-84
DE-A-4307186	15-09-94	WO-A- 9420596 EP-A- 068B356	15-09-94 27-12-95
US-A-3644203	22-02-72	AT-A- 298402 BE-A- 742879 CH-B- 498976 CH-A- 1824769 DE-A- 1961451 DK-A- 131432 FR-A- 2025683 GB-A- 1282428 NL-A,B,C 6918426 SE-A,B 368027	15-04-72 09-06-70 15-11-70 02-07-70 11-09-70 19-07-72 11-06-70

	*	