ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆ

ԻՆՖՈՐՄԱՏԻԿԱՅԻ ԵՎ ԿԻՐԱՈԱԿԱՆ ՄԱԹԵՄԱՏԻԿԱՅԻ ՖԱԿՈͰԼՏԵՏ ԴԻՍԿՐԵՏ ՄԱԹԵՄԱՏԻԿԱՅԻ ԵՎ ՏԵՍԱԿԱՆ ԻՆՖՈՐՄԱՏԻԿԱՅԻ ԱՄԲԻՈՆ

Կուրսային աշխատանք

Թեմա` Նեյրոնային ցանցերում տվյալների ձևափոխությունների մեթոդներ

Ուսանող` Խաժակ Գալստյան

Ղեկավար` Հրանտ Խաչատրյան

1. Ներածություն

Նեյրոնային ցանցերի արդյունավետության մեջ շատ մեծ դեր է խաղում տվյալների քանակը և զանազանությունը։ Տվյալները շատացնելու և բազմազան դարձնելու մեթոդներից է՝ տրված տվյալները ենթարկել ինչ-որ ձևափոխությունների և դիտարկել որպես նոր տվյալ, ենթադրելով, որ անհրաժեշտ առանձնահատկությունները (օրինակ` պիտակը) պահպանվել են։ Այս աշխատանքում կդիտարկենք տվյալները (մեր դեպքում նկարները), ձևափոխությունների ենթարկելու մի քանի մեթոդներ և նրանց տված արդյունքները CIFAR-10 տվյալների բազայի վրա։

2. Ընդհանուր հասկացություններ

Մեր ներկայացրած մեթոդները օգտագործում են ձևափոխությունների 13 տեսակ.

- Identity: Թոդնում է նկարը նույնը
- ShearX: Թեքում է նկարը x առանցքի նկատմամբ
- ShearY: Թեքում է նկարը y առանցքի նկատմամբ
- TranslateX: Նկարը տանում է աջ կամ ձախ ըստ x առանցքի
- TranslateY: Նկարը տանում է աջ կամ ձախ ըստ y առանցքի
- Rotate: Պտտում է նկարը
- Equalize: Հավասարեցնում է նկարը ըստ պիքսելների
- AutoContrast: Նորմալիզացնում է նկարը, ամենափոքր պիքսելը դարձնում է սև, ամենամեծը` սպիտակ
- Color։ Շատացնում կամ պակասեցնում է գույները
- Posterize: Φոխում է գունային գամման
- Solarize: Շրջում է ֆիքսված թվից մեծ արժեք ունեցող պիքսելների արժեքները
- Contrast: Փոխում է պիքսելների արժեքները, հարաբերությունը թողնելով նույնը
- Brightness: բարձրացնում կամ իջեցնում է նկարի պայծառությունը
- Sharpness: Փոխում է նկարի սրությունը

ձևափոխությունների օրինակներ

Մեր հիմնական խնդիրը ամեն նկարի համար օպտիմալ ձևափոխությունների և դրանց հերթականության ընտրությունն է։

3. Ավտոմատ Ձևափոխումներ (AA)

Google ընկերության հետազոտողների առաջարկած Auto augmentation մեթոդը [1] ընտրում է օպտիմալ ձևափոխությունները, նրանց ամեն նկարի համար ընտրվելու հավանականությունները և հերթականությունները օգտագործելով Reinforcement Learning (ամրապնդմամբ ուսուցում)։ Տարբերակներից լավագույնը ընտրելու համար վերցվում է այն մեկը, որի դեպքում ցանցի տված սխալանքը վերջնական տվյալների բազայի վրա նվազագույնն է։ Այս մեթոդր բավականին դանդաղ է, քանի որ ընտրության միջակայքը մեծ է։

4. Ձևափոխություններ բնակչության հիման վրա (PBA)

Population Based Augmentation մեթոդը [2] առաջարկում է ոչ թե ֆիքսել ինչ-որ օպտիմալ ձևափոխություններ, այլ կազմել կազմել ձևափոխությունների "ժամանակացույց"։ PBA-ն որոշ բազաների վրա դրսևորում է AA-ից ոչ պակաս արդյունավետություն, սակայն ավելի արագ է աշխատում։

5. Պատահական Ձևափոխումներ (RA)

AutoAugment-ի հեղինակների առաջարկած RandAugment մեթոդը [3] առաջարկում է ընտրել օպտիմալ ձևափոխությունները համեմատաբար փոքր բազայի վրա և ընտրել մեկ նկարի վրա կատարվող ձևափոխությունների քանակ և ուժգնություն (magnitude)։ Մեթոդը առաջարկում է օպտիմալացնել 2 հիպերպարամետրերը` հաջորդաբար օգտագործվող ձևափոխությունների քանակը և ուժգնությունը։

Ուսումնասիրությունները ցույց են տվել, որ ուժգնության մակարդակի օպտիմալ արժեքը կախված չէ նկարից, այսինքն կարելի է օպտիմալ մակարդակը գտնել սկզբից և կիրառել նույնը բոլոր նկարների վրա առանց ձևափոխելու։ Հեղինակները նաև նկատել են, որ հիպերպարամետրերի ընտրության համար բավական է դիտարկել ընդամենը 20-30 նկարից բաղկացած բազայի վրա տված արդյունքները։ CIFAR-10 բազայի համար հեղինակները առաջարկում են ընտրել 3 որպես հաջորդաբար կիրառվող գործողությունների քանակ և 4 (առավելագույնը 20 է) որպես ուժգնություն։ Ձևափոխությունները ունեն ընտրվելու հավասար հավանականություն ($\frac{1}{13}$)։ Առաջարկված ալգորիթմը անհամեմատ ավելի արագ է և իրագործելի է ամենասովորական համակարգչով։ Այն նաև ավելի արդյունավետ է, քան նախորդ դիտարկվածները։

6. Արդյունքներ

Մեթոդ	AA	PBA	RA (hոդված)	Մերը առանց ոչինչ	RA (մեր)
Ցուցադրած արդյունք	98.5	98.5	98.5	54	51

Հոդվածներում գրանցած արդյունքները օգտագործում են բարդ նեյրոնային ցանցեր։ Մենք օգտագործել ենք PyTorch tutorial-ի [5] առաջարկած ցանցը ընդամենը 3 (epoch)-ով, որպեսզի հնարավոր լինի հաշվարկները կատարել սովորական համակարգչով։ (Epoch)-ների սակավությունը կարող է բացատրել RA-ի ցուցադրած վատ արդյունքը մեր ցանցի վրա։ Կարևոր է նաև նշել, որ RA-ը ցուցադրում է state-of-the-art արդյունք հայտնի մի քանի բազաների վրա՝ CIFAR-10/100, SVHN, ImageNet, COCO:

Մշակված ծրագիրը հասանելի է github-ում. https://github.com/Khazhak/courseWork

Գրականություն

- 1. Cubuk, Ekin D., Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. "AutoAugment: Learning Augmentation Strategies From Data." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113-123. 2019.
- 2. Ho, Daniel, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. "Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules." arXiv preprint arXiv:1905.05393 (2019).
- 3. Cubuk, Ekin D., Barret Zoph, Jonathon Shlens, and Quoc V. Le. "RandAugment: Practical automated data augmentation with a reduced search space." arXiv preprint arXiv:1909.13719 (2019).
- 4. Ildoo Kim, Unofficial PyTorch Reimplementation of RandAugment, https://github.com/ildoonet/pytorch-randaugment
- 5. PyTorch tutorials, https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/cifar10_tutorial.py