

Modelos de previsão do preço do Bitcoin baseados em Machine Learning

Aluno: Luiz Carlos

Professora: Karla Figueiredo

Universidade do Estado do Rio de Janeiro – UERJ

Trabalho da disciplina de Inteligência Artificial Rio de Janeiro, 8 de Agosto de 2022

Agenda

- 1 Introdução
- 2 Motivação
- 3 Objetivo
- 4 Revisão Bibliográfica
- 5 Análise dos Dados
- 6 Metodologia
- 7 Resultados
- 8 Conclusão
- 9 Referências

Introdução

O que é a blockchain do Bitcoin?

O Preço dos bitcoins

- O que é a cotação dos bitcoins?
- É possível prever o seu preço?

Machine Learning e Séries Temporais

- Séries temporais:
- Algoritmos de Machine Learning;
- Algoritmos de Machine Learning aplicados a séries temporais.

Motivação

Motivação

- O Bitcoin como um ativo financeiro
 - Cotação diária em \$ USD
 - Variáveis intrínsecas à blockchain do Bitcoin
 - difficulty
 - hash_rate
 - n_transactions
 - block_size
 - Variáveis extrínsecas
 - câmbio
 - cotação da bolsa
 - notícias
 - pesquisas no Google e na Wikipedia
 - publicações no Twitter
- Aplicação de modelos de previsão de preço de ativos.

Objetivo

Objetivos

- Objetivo geral:
 - Geração de modelos de Machine Learning capazes de prever com um nível de confiança o preço do Bitcoin.
- Objetivos específicos:
 - Esclarecer fundamentos a respeito de modelos de Machine Learning aplicados à previsão de séries temporais;
 - Comparar os resultados obtidos pelo modelo treinado com os resultados obtidos por outros métodos vistos em literatura especializada.

Revisão Bibliográfica

Predicting the price of Bitcoin using Machine Learning

Sean McNally x15021581 MSc Reseach Project in Data Analytics 9th September 2016

Abstract

This research is concerned with predicting the price of Bitcoin using machine learning. The goal is to ascertain with what accuracy can the direction of Bitcoin price in USD can be predicted. The price data is sourced from the Bitcoin Price Index. The task is achieved with varying degrees of success through the implementation of a Bayesian optimised recurrent neural network (RNN) and Long Short Term Memory (LSTM) network. The LSTM achieves the highest classification accuracy of 52% and a RMSE of 8%. The popular ARIMA model for time series forecasting is implemented as a comparison to the deep learning models. As expected, the non-linear deep learning methods outperform the ARIMA forecast which performs poorly. Wavelets are explored as part of the time series narrative but not implemented for prediction purposes. Finally, both deep learning models are benchmarked on both a GPU and a CPU with the training time on the GPU outperforming the CPU implementation by 67.7%.

Figure 3: Long Short Term Memory⁶

Figure 2: Recurrent Neural Network

An Empirical Study on Modeling and Prediction of Bitcoin Prices With Bayesian Neural Networks Based on Blockchain Information

HUISU JANG AND JAEWOOK LEE®

Department of Industrial Engineering, Seoul National University, Seoul 151742, South Korea Corresponding author: Jaewook Lee (iaewook@snu.ac.kr)

FIGURE 3. the formation of the Blockchain.

FIGURE 7. Prediction results of (a) the log value of the Bitcoin price and (b) the log volatility of the Bitcoin price.

UERJ

Shintate & Pichl, 2019

Article

Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning

Takuya Shintate and Lukáš Pichl *

UERJ

Graduate School of Arts and Sciences, International Christian University, Osawa 3-10-2, Mitaka, Tokyo 181-8585, Iapan; g196729a@icu.ac.ip

* Correspondence: lukas@icu.ac.ip: Tel.: +81-422-33-3286

Received: 25 December 2018: Accepted: 17 January 2019: Published: 21 January 2019

Table 2 Model evaluation scores on accuracy, recall, precision, and F1 measure. Bitcoin price in U.S. dollar (BTCUSD) from the OkCoin market was used as the dataset. We used the last 120k data points for the evaluation, which were not used in training and validation.

	Accuracy	Recall	Precision	F1 Score
MLP	0.5559	0.4945	0.4978	0.4786
LSTM	0.5759	0.5464	0.5717	0.5034
RSM (ours)	0.6264	0.5538	0.5488	0.5367

Figure 2. Visualization of the pipeline. Given inputs $x_i^{(nput)}$, sequences $x_i^{(up)}$, $x_i^{(dotic)}$ are randomly sampled in the red window. Then, the input and samples are independently encoded with LSTMMet (Equation (3)) and be directional LSTMMet (Equation (4)). Refer to the text for more details.

Revisão da literatura

autores	métodos utilizados
Shah and Zhang	bayesian regression
McNally et al.	ARIMA, recurrent neural networks (RNNs), long short-term memory (LSTM)
Jang and Lee	bayesian neural network (BNN), linear regression, support vector regression (SVR)
Jang et al.	rolling window LSTM model
Shintate and Pichl	deep learning-based random sampling model

Análise dos Dados

Base de dados - Campos

- dados.info()
- C→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 2920 entries, 0 to 2919 Data columns (total 24 columns):

Rangernaex. 2020 entites, o to 2010				
	columns (total 24 columns):			
#	Column	Non-Null Count	Dtype	
Θ	Date	2920 non-null	object	
1	btc_market_price	2920 non-null	float64	
2	btc_total_bitcoins	2920 non-null	float64	
3	btc_market_cap	2920 non-null	float64	
4	btc_trade_volume	2899 non-null	float64	
5	btc_blocks_size	2920 non-null	float64	
6	btc_avg_block_size	2920 non-null	float64	
7	btc_n_orphaned_blocks	2920 non-null	float64	
8	btc_n_transactions_per_block	2920 non-null	float64	
9	btc_median_confirmation_time	2920 non-null	float64	
10	btc_hash_rate	2920 non-null	float64	
11	btc_difficulty	2920 non-null	float64	
12	btc_miners_revenue	2920 non-null	float64	
13	btc_transaction_fees	2920 non-null	float64	
14	btc_cost_per_transaction_percent	2920 non-null	float64	
15	btc_cost_per_transaction	2920 non-null	float64	
16	btc_n_unique_addresses	2920 non-null	float64	
17	btc_n_transactions	2920 non-null	float64	
18	btc_n_transactions_total	2920 non-null	float64	
19	btc_n_transactions_excluding_popular	2920 non-null	float64	
20	btc_n_transactions_excluding_chains_longer_than_100	2920 non-null	float64	
21	btc output volume	2920 non-null	float64	
22	btc_estimated_transaction_volume	2920 non-null	float64	
23	btc estimated transaction volume usd	2920 non-null	float64	
	es: float64(23), object(1)			
memo	ry usage: 547.6+ KB			

UERJ

Base de dados - Gráficos das principais variáveis

Matriz de correlação

UERJ

Dispersão dos dados em função do preço de mercado do BTC

Metodologia

Procedimentos

- 1. Geração da base de dados;
- seleção dos atributos a serem utilizados para treinar o modelo;
- verificação e tratamento dos dados faltantes (missing values);
- 4. normalização dos dados;
- 5. treinamento do modelo;
- análise dos resultados obtidos.

Pré-processamento: função feature_importance x correlograma

btc_n_orphaned_blocks	0.000006
btc_median_confirmation_time	0.000337
btc_estimated_transaction_volume	0.000369
btc_cost_per_transaction_percent	0.000517
btc_output_volume	0.000704
btc_n_transactions_excluding_chains_longer_than_100	0.000913
btc_n_transactions	0.001720
btc_n_transactions_excluding_popular	0.002391
btc_n_transactions_per_block	0.005801
btc_transaction_fees	0.006594
btc_n_unique_addresses	0.014158
btc_avg_block_size	0.037979
btc total bitcoins	0.052907
btc_trade_volume	0.073569
btc_cost_per_transaction	0.089108
btc_blocks_size	0.139657
btc_n_transactions_total	0.159972
btc_hash_rate	0.201639
btc_difficulty	0.211659

Modelos testados

- Os seguintes modelos de regressão foram testados (com base nos modelos estudados na disciplina):
 - Regressão Linear
 - Regressão Polinomial
 - Support Vector Machine
 - Regressão por Árvores de Decisão
 - K-Nearest Neighbors (KNN)
- Estatísticas teste consideradas: R² e Erro Quadrático Médio (EQM)

Resultados

Matriz de avaliação dos modelos testados

	R-quadrado	EQM	
Reglin	0.889775	636028.043702	
knnN	0.983700	94053.339735	
svrLnr	0.865279	777376.902766	
arvoreDecisao	0.978034	126746.621656	
ply	0.969387	176642.690674	

Predição do modelo com maior acurácia: K-Nearest Neighbors (KNN)

A título de comparação...

UERJ

Conclusão

Conclusão

- O desenvolvimento do trabalho confirmou a tese de que, apesar da grande volatilidade no preço dos bitcoins, é possível estimar o seu preço no curto (íssimo) prazo com variáveis intrínsecas à própria blockchain do Bitcoin
- Em relação aos modelos preditivos, a regressão estatística do tipo K-Nearest Neighbors (KNN) forneceu os melhores resultados, tanto em termos de precisão quanto de previsão
- Os resultados apresentados neste trabalho contribuem para o desenvolvimento de estratégias de compra e venda de bitcoins, podendo ser estendido, se consideradas as restrições, para outras criptomoedas

Referências

Referências I

Sean McNally, Jason Roche, and Simon Caton.

Predicting the price of bitcoin using machine learning.

In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pages 339–343, 2018.

Bayesian regression and bitcoin, 2014.

📄 Jang Huisu.

Predicting bitcoin prices by using rolling window lstm model.

2018.

Takuya Shintate and Lukáš Pichl.

Trend prediction classification for high frequency bitcoin time series with deep learning.

Journal of Risk and Financial Management, 12(1), 2019.

Referências II

Huisu Jang and Jaewook Lee.

An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information.

IEEE Access, 6:5427-5437, 2018.

Luiz Carlos da Silva Leão.

Jupyter notebook para o artigo trabalho final da disciplina de la 2022-1 do ccomp/uerj.

https:

//github.com/lcs188/IA-CCOMP_20221/blob/main/projeto_artigo_IA.ipynb.

Sylvain Saurel.

UERJ

Bitcoin is the best-performing asset in 2019 and the best is still coming for 2020.

https://medium.com/swlh/

bitcoin-is-the-best-performing-asset-in-2019-and-the-best-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-still-coming-asset-is-st

Modelos de previsão do preço do Bitcoin baseados em Machine Learning

Aluno: Luiz Carlos

Professora: Karla Figueiredo

Universidade do Estado do Rio de Janeiro – UEBJ

