Decyzje projektowe:

Przedstawienie funkcji w postaci klasy -> obliczanie wartości i różniczki dla parametrów w jednym miejscu

Wybrane stałe:

Ilość wylosowanych punktów: 1_000

Ilość kroków: 1_000

Epsilon: 10^-4

Punkty losowe z przedziału: [-5, 5]

• Próbowałem znaleźć balans pomiędzy ilością kroków i liczbą wygenerowanych punktów

Symetryczne przedział (względem 0) względnie blisko 0 -> f(x) szybko nabiera wartości

Funkcja f(x):

Wpływ kroku na średnią, minimum i odchylenie standardowe dla wylosowanych punktów

Krok	10^-6	10^-4	10^-2	5 * 10^-2	10^-1
Średnia	31.03	33.71	14.40	0.78	34.49
Minimum	2.22 * e^- 10	4.82 * e^- 10	8.50 * e- 14	1.87 * e^- 17	1.74 * e^- 11
Odchylenie Standardowe	41.30	43.20	15.67	0.79	113.04

Zwiększanie kroku ma luźne powiązanie z odległością osiągniętego minimum do absolutnego -> zapewne dlatego, że jest w stanie szybciej dotrzeć w jego pobliże.

Zwiększanie kroku zmniejsza także średnią oraz odchylenie standardowe -> najpewniej umożliwia to funkcji zbliżenie się na mniejszą odległość do minimum lokalnego, a tym samym zmniejszenie różnicy wartości algorytmu dla różnych punktów.

Ważne jest zauważenie, różnicy dla kroków 5 * 10^-2 i 10^-1. 10^-1 jest zbyt dużym krokiem, przez co funkcja "przeskakuje" minimum co zwiększa dystans znalezionego minimum do minimum absolutnego a także znacznie zwiększa średnią i odchylenie standardowe.

Funkcja g(x):

Wpływ kroku na średnią, minimum i odchylenie standardowe dla wylosowanych punktów

Krok	10^-6	10^-4	10^-2	10^-1	1
Średnia	1.95	1.97	1.97	1.93	1.92
Minimum	1.50	1.50	1.54	1.18	1.00
Odchylenie Standardowe	0.14	0.13	0.09	0.15	0.21

Średnia wskazuje na to, że punkty zbyt oddalone od lokalnego minimum nie są w stanie się do niego w zauważalnym stopniu zbliżyć z powodu zbyt małego gradientu.

Zwiększanie kroku ma luźne powiązanie z odległością osiągniętego minimum do absolutnego -> zapewne dlatego, że jest w stanie szybciej dotrzeć w jego pobliże, co jest dużym problemem dla tej funkcji.

Wysokie odchylenie standardowe jest zapewne powodowane tym, że:

- funkcja zbyt powolno zbliża się do minimum, przez co tylko dla części punktów dystans zauważalnie się zmniejsza
- funkcja zbyt szybko zbliża się do minimum i je "przeskakuje"