

Science Computer

DATAS STRUCTURE ADVANCED-CRT0026

Exercises And Resumes

Discente Victor Gabriel Martins de Oliveira Loiola Matrícula 473091

Professor

Msc. Luiz Alberto do Carmo Viana

Sumário

1	Exercises Resolved	2
	1.1 Binary Search Tree	2
	1.2 AVL Tree	
	1.3 Red-Black Tree	١
2	Resumes	f

1 Exercises Resolved

1.1 Binary Search Tree

Exercise 1. O que aconteceria caso remove(leftMaxkey); fosse posta como a última instrução em seu bloco?

Prova

Se deslocamos remove(leftMaxKey) como última instrução do seu bloco resultaria em uma falha de segmentação além do mais estaria também duplicando as chave e valor do leftMaxKey. Assim o conteúdo e a chave do nó que deseja-se apagar tem chave e valor do leftMaxKey.

Exercise 2. Por que o nó de leftMaxkey tem ao menos uma sub-árvore vazia?

Prova

Já que <u>leftMaxKey</u> é a chave com maior valor das sub-árvores da esquerda do nó pai, mas perceba que <u>leftMaxKey</u> está restrito somente a ter filho esquerdo ou não,resultando uma sub-árvore vazia que nesse caso seria a da direita.Logo concluir-se que <u>leftMaxKey</u> não deve ter filhos com chaves maiores que a sua, pois se tivesse ele não seria leftMaxKey e sim alguma chave maior na sub-árvore a sua direita.

Portanto <u>leftMaxKey</u> se tiver filho <u>só pode te</u>r-lo na sub-árvore a esquerda, o que resta uma sub-árvore vazia, mas no <u>caso de não</u> possuí filhos terá duas sub-árvores vazias.

Exercise 3. Pesquise sobre move semantics em C++.

Prova

TODO escreve isso quando ou transcrever do caderno ou pesquisar.

Exercise 4. Prove que, se um nó em uma Árvore Binária de Busca tem dois filhos, então seu sucessor não tem filho esquerdo e seu antecessor não tem filho direito.

Prova

TODO escreve isso quando ou transcrever do caderno ou pesquisar.

TODO escreve o restante das questões quando termina-las ou transcrever do caderno.

1.2 AVL Tree

Exercise 5. Prove que uma árvore binária de altura h tem no máximo $2^{h+1} - 1$ nós. Dica: tente usar indução.

Prova via indução

Caso Base:

Com altura 0 tempos 1 nó, com altura 1 tempos 2 nós e com altura 2 tempos 7 nós.

h = 0 contém 1 nó. h = 1 contém 3 nós. h = 2 contém 7 nós.

 2^0 tem no máximo 1 nó. $2^0 + 2^1$ tem no máximo 3 nós. $2^0 + 2^1 + 2^2$ tem no máximo 7 nós.

Agora utilizando a fórmula $2^{h+1}-1$ para verificarmos o **primeiro caso onde a altura é 0**, como será utilizada o **primeiro princípio da indução**, vulgo indução fraca, verificar até a altura 2 é opcional. Atente-se ao fato que a segunda quantidade máxima (2^1) de nós depende da primeira (2^0) , a terceira depende (2^2) da primeira quantidade de nós e da segunda. Assim temos que pegar a 2^h e somar com quantidade de nós máximos anteriores ao nó que deseja-se calcular a quantidade máxima de nós, é válido ressaltar que 2^h com $h \geq 0$, onde h é a altura, é a base para que que possa fazer os cálculos dos determinados níveis.

$$\begin{array}{c} \operatorname{com}\,h=0\\ \text{pela fórmula}\,\,2^{h+1}-1\;\operatorname{obtemos:}\,\,2^{0+1}-1=1\;\operatorname{n\acute{o}}\\ \operatorname{com}\,h=1\\ \text{pela fórmula}\,\,2^{h+1}-1\;\operatorname{obtemos:}\,\,2^{1+1}-1=3\;\operatorname{n\acute{o}s}\\ \text{pela fórmula}\,\,2^{h+1}-1\;\operatorname{obtemos:}\,\,2^{2+1}-1=7\;\operatorname{n\acute{o}s} \end{array}$$

Como o caso base é verdadeiro, partiremos para o passo indutivo.

Passo Indutivo: $P(1) \rightarrow (h+1)$.

Temos que a fórmula $2^{h+1}-1$ funciona até 2^h , com $h \ge 0$, sendo assim a hipótese de indução(H.I). Desejaja provar que a fórmula vale para os h+1-ésimos termos observe a estrutura abaixo:

$$2^0 + 2^1 + 2^2 + \ldots + 2^h + 2^{h+1}$$

Perceba que fórmula válida para calcular a quantidade de nós máximos em uma árvore de até 2^h que dá liberdade suficiente para utiliza-se a hipótese de indução(H.I).

Substituindo H.I no somatório e desenvolvendo a equação após a inserção:

$$\begin{array}{lll} 2^0 + 2^1 + 2^2 + \dots + 2^h + 2^{h+1} \\ &= & 2^{h+1} - 1 + 2^{h+1} \\ &= & 2^{h+1} + 2^{h+1} - 1 \\ &= & 2^h (2^1 + 2^1) - 1 \\ &= & 2^h \cdot 4 - 1 \\ &= & 2^h \cdot 2^2 - 1 \\ &= & 2^{h+2} - 1 \end{array}$$

Como concluímos os passos base e passo indutivo, sendo ambos verdadeiros, concluímos que $2^{h+1} - 1$ com $h \ge 0$ é capaz de resultar no número de nós máximo em uma **árvore binária de busca** com altura h.

 \mathbf{TODO} escreve o restante das questões quando termina-las ou transcrever do caderno.

1.3 Red-Black Tree

 \mathbf{TODO} escreve o restante das questões quando termina-las ou transcrever do caderno.

2 Resumes

 \mathbf{TODO} escreve isso quando elaborá uma certa quantidade X de pequenos resumos.