Содержание

1	Асимптотические оптимальные оценки					
	1.1	Лемма Слуцкого	2			
	1.2	Теорема Бахадура	4			
2	Проверка статистических гипотез					
	$2.\overline{1}$	Лемма Неймана-Пирсона	12			
	2.2	Критерий Фишера $(F$ -критерий) в Гауссовской линейной регрессии				
	2.3	Критерий согласия Хи-квадрат Пирсона. Проверка простой гипотезы в схеме				
		Бернулли	21			
	2.4	Теорема Пирсона				
	2.5	Теорема Фишера				
3	Введение в робастное оценивание					
4	Ста	атистистический анализ авторегрессионных моделей.	32			
	4.1	Метод максимального правдоподобия и метод наименьших квадратов в авто-				
		регрессии	32			
	4.2	Об оценке наименьших квадратов в авторегрессии				

1 Асимптотические оптимальные оценки

Пусть сл. векторы $\xi_n, \xi \in \mathbb{R}^K$, и определены на (Ω, \mathcal{F}, P) . Пусть функция распределения ξ_n есть $F_n(x)$, хар. ф-ция есть $\phi_n(t)$, а распределение есть Q_n . Для вектора ξ функцию распределения, хар. ф-цию и распреденеие обозначим F(x), $\phi(t)$, Q соответственно.

Опр. 1. Функция распределения $F_n(x)$ сходится к F(x) при $n \to \infty$ в основном (пишем $F_n(x) \Rightarrow F$), если $F_n(x) \to F(x)$ $\forall x \in C(F)$

Опр. 2. Распределение Q_n сходится κ распределению Q слабо (пишем $Q_n \xrightarrow{w} Q$), если \forall непреревной и ограниченной $g: \mathbb{R}^K \to \mathbb{R}^1$

$$\int_{\mathbb{R}^K} g(x)Q_n(dx) \to \int_{\mathbb{R}^K} g(x)Q(dx)$$

или, эквивалентно, $Eg(\xi_n) \to Eg(\xi)$.

Теорема 1.

Следующие условия эквивалентны:

- 1. $F_n(x) \Rightarrow F$
- 2. $Q_n \xrightarrow{w} Q$
- 3. $\phi_n(t) \to \phi \ \forall t \in \mathbb{R}^K$

Если выполненое любое из условий 1-3, будем писать $\xi_n \stackrel{d}{\to} \xi$ и говорить, что ξ_n сходится $\kappa \xi$ по распределению.

Теорема 2 (О наследовании сходимости).

Пусть сл. векторы $\xi_n, \ \xi \in \mathbb{R}^K, \ H : \mathbb{R}^K \to \mathbb{R}^1$ непрерывная. Тогда:

- 1. Ecsu $\xi_n \xrightarrow{d} \xi$, mo $H(\xi_n) \xrightarrow{d} H(\xi)$
- 2. Ecau $\xi_n \xrightarrow{P} \xi$, mo $H(\xi_n) \xrightarrow{P} H(\xi)$

1.1 Лемма Слуцкого

Пусть $\xi_n, \xi, \eta_n, a \in \mathbb{R}^1, \xi_n \xrightarrow{d} \xi$, а $\eta_n \xrightarrow{P} a$. Тогда:

- 1. $\xi_n + \eta_n \xrightarrow{d} \xi + a$
- 2. $\xi_n \eta_n \xrightarrow{d} a \xi$

Доказательство. Достаточно показать, что вектор

$$(\xi_n, \eta_n)^T \xrightarrow{d} (\xi, a)^T \tag{1}$$

Действительно, если (1) верно, то при H(x,y) = x + y в силу Теоремы 2 получаем пункт (1) леммы, а при H(x,y) = xy - пункт (2).

Для доказательства (1), проверим, что хар. ф-ция вектора $(\xi_n, \eta_n)^T$ сходится к хар. функции вектора $(\xi, \eta)^T$. Имеем:

$$\left| \mathbf{E}e^{it\xi_n + is\eta_n} - \mathbf{E}e^{it\xi + isa} \right| \le \left| \mathbf{E}e^{it\xi_n + is\eta_n} - \mathbf{E}e^{it\xi_n + isa} \right| + \left| \mathbf{E}e^{it\xi_n + isa} - \mathbf{E}e^{it\xi + isa} \right| = \alpha_n + \beta_n$$

$$\alpha_n \le \mathrm{E} \left| e^{it\xi_n} (e^{it\eta_n + isa}) \right| = \mathrm{E} \left| e^{it\eta_n + isa} \right| = \mathrm{E} g(\eta_n), \ g(x) \stackrel{\mathrm{def}}{=} \left| e^{isx} - e^{isa} \right|$$

Ф-ция g(x) непрерывна и ограничена, а т.к. $\eta_n \xrightarrow{d} a$, то в силу Теоремы 2 $Eg(\eta_n) \to Eg(a) = 0$ Итак, $\alpha \to 0$.

$$\beta_n = \left| \mathrm{E} e^{isa} (e^{it\xi_n} - e^{it\xi}) \right| = \left| e^{isa} \mathrm{E} (e^{it\xi_n} - e^{it\xi}) \right| = \left| \mathrm{E} (e^{it\xi_n} - e^{it\xi}) \right| \to 0$$
 т.к. $\xi_n \xrightarrow{d} \xi$ и $\phi_n(t) \to \phi(t)$.

Пусть наблюедние $X \sim P_{\theta}, \; \theta \in \Theta \subseteq \mathbb{R}^K,$ а $\widehat{\theta}_n$ - оценка θ

Опр. 3. Если $\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{d} N(0, \Sigma(\theta)) \ \forall \theta \in \Theta$ и ковариционная матрица $0 < \Sigma(\theta) < \infty$, то $\widehat{\theta}_n$ называется асимптотической нормальной оценкой.

Опр. 4. Если $\widehat{\theta}_n \stackrel{\mathrm{P}}{\to} \theta \ \forall \theta \in \Theta$, то $\widehat{\theta}_n$ называется состоятельной оценкой.

Замечание 1. Дальше $\theta \in \Theta \subseteq \mathbb{R}^1$, то есть θ и $\widehat{\theta}_n$ - скаляры.

Если $\widehat{\theta}_n$ - состоятельная оценка θ , то при больших и $\widehat{\theta}_n \approx \theta$ с вероятностью, близкой к единице.

Если $\widehat{\theta}_n$ - асимптотическая нормальная оценка θ (так как θ и $\widehat{\theta}_n$ скаляры: $\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$ $0 < \sigma^2 < \infty, \ \forall \theta \in \Theta$), то:

- 1. $\widehat{\theta}_n$ состоятельная оценка θ , так как $\widehat{\theta}_n \theta = n^{-1/2} \sqrt{n} (\widehat{\theta}_n \theta) \xrightarrow{P} 0$ в силу п. (2) леммы Слуцкого.
- 2. Скорость сходимости $\widehat{\theta}_n$ к θ есть $O(\sqrt{n})$
- 3. При больших n со сл. в. $\sqrt{n}(\widehat{\theta}_n \theta)$ можно обращаться (с осторожностью!) как с Гауссовской величиной.

Например, пусть дисперсия предельного Гауссовского закона $\sigma^2(\theta)$ будет непреревной ф-цией θ . Тогда

$$\frac{\sqrt{n}(\widehat{\theta}_n - \theta)}{\sigma(\widehat{\theta}_n)} = \underbrace{\frac{\sqrt{n}(\widehat{\theta}_n - \theta)}{\sigma(\theta)}}_{\stackrel{d}{\longrightarrow} N(0,1)} \underbrace{\frac{\sigma(\theta)}{\sigma(\widehat{\theta}_n)}}_{\stackrel{P}{\longrightarrow} 1} \stackrel{d}{\longrightarrow} \eta \sim N(0,1)$$

в силу п. 2 леммы Слуцкого. Значит,

$$P_{\theta} \left(\left| \frac{\sqrt{n}(\widehat{\theta}_n - \theta)}{\sigma(\widehat{\theta}_n)} \right| < \xi_{1-\alpha/2} \right) \to P(|\eta| < \xi_{1-\alpha/2}) = 1 - \alpha$$

То есть примерно с вероятностью $1-\alpha$ выполнено неравенство, или эквивалентно раскроем по модулю

$$\underbrace{\widehat{\theta}_n - n^{-1/2} \sigma(\widehat{\theta}_n) \xi_{1-\alpha/2} < \theta < \widehat{\theta}_n + n^{-1/2} \sigma(\widehat{\theta}_n) \xi_{1-\alpha/2}}_{}$$

Асимптотический доверительный интервал уровня $1-\alpha$

4. Асимптотические Гауссовские оценки можно сравнивать между собой: Если $\sqrt{n}(\widehat{\theta}_{i,n}-\theta) \xrightarrow{d} N(0,\sigma_i^2(\theta)), i=1,2,\ldots$, то можно посчитать асимптотическую относительную эффективность (AOЭ):

$$e_{1,2} = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)}$$

Напомним,
$$e_{1,2} = \lim_{n \to \infty} \frac{n'(x)}{n(x)}$$
, где $\sqrt{n}(\widehat{\theta}_{1,n} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta))$ и $\sqrt{n}(\widehat{\theta}_{2,n'} - \theta) \xrightarrow{d} N(0, \sigma_1^2(\theta))$.

Вопрос: Есть ли такая оценка θ_n^* , что АОЭ $e_{\theta_n^*,\widehat{\theta}_n}(\theta) \ge 1 \ \forall \widehat{\theta}_n$ и всех $\theta \in \Theta$, то есть эффективнее всех остальных?

Если да, то θ_n^* требует не больше наблюдений, чем любая $\widehat{\theta}_n$, чтобы достичь одинаковой с $\widehat{\theta}_n$ точности. Ясно, что пределеная дисперсия $\sqrt{n}(\theta_n^* - \theta)$ должна быть не больше асимптотической дисперсии $\sqrt{n}(\widehat{\theta}_n - \theta)$ для любой асимптотической Гауссовской оценки $\widehat{\theta}_n$. Но какова самая маленькая асимптотическая дисперсия у $\sqrt{n}(\widehat{\theta}_n - \theta)$?

1.2 Теорема Бахадура

Пусть X_1, \ldots, X_n - н. о. р. сл. в., X_1 имеет плотность вероятности $f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^1$, по мере ν . Пусть выполнены следующие условия:

- 1. Θ интервал.
- 2. Носитель $N_f = \{x : f(x, \theta) > 0\}$ не зависит от θ .
- 3. $\forall x \in N_f$ плотность $f(x,\theta)$ дважды непрерывно дифференцируема по θ
- 4. Интеграл $\int f(x,\theta)\nu(dx)$ можно дважды дифференцировать по θ , внося знак дифференцирования под знак интеграла.
- 5. Информация Фишера $0 < i(\theta) < \infty \ \forall \theta \in \Theta$
- 6. $\left| \frac{\partial^2}{\partial \theta^2} \ln(f(x,\theta)) \right| \le M(x) \ \forall x \in N_f, \ \theta \in \Theta, \ \mathbb{E}_{\theta} M(X_1) < \infty$

Тогда, если $\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$, то $\sigma^2(\theta) \ge \frac{1}{i(\theta)}$ всюду за исключением множества Лебеговой меры нуль.

Замечание 2. Если вдобавок $\sigma^2(\theta)$ и $i(\theta)$ непрерывны, то $\sigma^2(\theta) \geq \frac{1}{i(\theta)}$ при всех $\theta \in \Theta$.

Доказательство. Без доказательства.

Oпр. 5. Если $\theta, \widehat{\theta}_n \in \mathbb{R}^1$ и $\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \frac{1}{i(\theta)}), \ n \to \infty, \ \forall \theta \in \Theta, \ npuчем \ 0 < i(\theta) < \infty, \ model$ называется асимптотически эффективной оценкой.

Вопрос: Вообще можно ли найти такую оценку $\widehat{\theta}_n$? Да

Дальше $X=(X_1,\ldots,X_n),\ X\sim \mathrm{P}_{\theta},\ \theta\in\Theta\subseteq\mathbb{R}^1$. Условие (A):

- 1. Θ интервал, $P_{\theta_1} \neq P_{\theta_2}$ при $\theta_1 \neq \theta_2$.
- 2. X_1, \dots, X_n независимые одинаково распределенные случайные величины
- 3. X_1 имеет плотность вероятности $f(x,\theta)$ по мере ν
- 4. Носитель $N_f = \{x : f(x, \theta) > 0\}$ не зависит от θ .
- 5. Плотность вектора X есть $p(x,\theta) = \prod_{i=1}^n f(x_i,\theta)$.

Опр. 6. Функция $p(X, \theta)$ как функция θ при фиксированном X называется **правдоподобием** функции.

$$L_n(X, \theta) = \ln p(X, \theta) = \sum_{i=1}^n \ln f(X_i, \theta)$$

называется логарифмическим правдоподобием.

Пусть θ_0 будет истинное значение параметра.

Лемма 1 (Неравенство Йенсена). Пусть g(x) выпукла книзу борелевская функция, $E |\xi| < \infty$, $E |g(\xi)| < \infty$. Тогда $g(E\xi) \le Eg(\xi)$. Если ξ не является почти наверное константой и g строго выпукла, то неравенство строгое.

Теорема 1 (Экстремальное свойство правдоподобия).

Пусть выполнено Условие (A). Пусть $E_{\theta_0} |\ln f(X_1, \theta)| < \infty, \ \forall \theta \in \Theta.$ Тогда

$$P_{\theta_0}(p(X, \theta_0) > p(X, \theta)) \to 1, \ n \to \infty, \ \theta_0 \neq \theta$$

Доказательство.

$$p(X, \theta_0) > p(X, \theta) \Leftrightarrow \ln p(X, \theta_0) > \ln p(X, \theta) \Leftrightarrow$$

$$\eta_n \stackrel{\text{def}}{=} n^{-1} \sum_{i=1}^n \ln \left(\frac{f(X_i, \theta)}{f(X_i, \theta_0)} \right) < 0$$

То есть надо показать, что $P_{\theta_0}(\eta_n < 0) \to 1$. Но по слабому закону больших чисел:

$$\eta_n = n^{-1} \sum \ln \left(\frac{f(X_i, \theta)}{f(X_i, \theta_0)} \right) \xrightarrow{P} E_{\theta_0} \ln \left(\frac{f(X_1, \theta)}{f(X_1, \theta_0)} \right)$$

Возьмем функцию $-\ln x$ - строго выпукла вниз и $\frac{f(X_1,\theta)}{f(X_1,\theta_0)}$ не является п.н. константой (так как иначе если плотности п.н. совпадают, то и распределения при разных значениях совпадают, что противоречит Условию(A)(1)).

В силу неравенства Йенсена:

$$E_{\theta_0} \ln \frac{f(X_1, \theta)}{f(X_1, \theta_0)} < \ln E_{\theta_0} \frac{f(X_1, \theta)}{f(X_1, \theta_0)} = \ln \int_{N_t} \frac{f(x, \theta)}{f(x, \theta_0)} f(x, \theta_0) \nu(dx) = \ln 1 = 0$$

Но если η_n сходится по вероятности к отрицательному числу, то $P_{\theta_0}(\eta_n < 0) \to 1$

В силу теоремы 1 естественно брать оценкой то значение θ , которое максимизирует $p(X,\theta)$ при данном X

Опр. 7. Случайная величина $\widehat{\theta}_n \in \Theta$ называется **оценкой максимального правдоподо- бия (о.м.п.)**, если $p(X,\widehat{\theta}_n) = \max_{\theta \in \Theta} p(X,\theta)$, или эквивалентно $L_n(X,\widehat{\theta}_n) = \max_{\theta \in \Theta} L_n(X,\theta)$

Итак, о.м.п $\widehat{\theta}_n = \arg\max_{\theta \in \Theta} L_n(X, \theta)$.

Если в $\forall \theta \in \Theta$ максимум не достигается, то о.м.п. не существует.

Если Θ - интервал, $L_n(X,\theta)$ - гладкая по θ функция, то θ удовлетворяет уравнению правдоподобия

$$\frac{\partial}{\partial \theta} L_n(X, \theta) = 0 \tag{2}$$

Теорема 2 (О состоятельности решения уравнения правдоподобия).

Пусть выполнено Условие (A). Пусть $\forall x \in N_f \exists$ непрерывная производная $f'_{\theta}(x,\theta)$. Тогда уравнение (2) с вероятностью, стремящейся к 1 при $n \to \infty$ имеет решение $\in \Theta$. При этом среди всех таких решений есть такой корень $\widehat{\theta}_n$, что он является состоятельнаой оценкой θ_0

Доказательство. Пусть $S_n = \{\omega\}$, при которых уравнение (2) имеет решение для $\theta \in \Theta$. Тогда теорема 2 утверждает:

- 1. $P_{\theta_0}(S_n) \to 1$.
- 2. Существует такое решение $\widehat{\theta}_n \in \Theta,$ что

$$P_{\theta_0}\left(\left|\widehat{\theta}_n - \theta_0\right| < \varepsilon, S_n\right) \to 1, \ n \to \infty, \ \forall \varepsilon > 0$$

Докажем пункт 1: Выберем малое a>0 так, что на $(\theta_0-a,\theta_0+a)\subseteq\Theta$. Пусть

$$S_n^a = \{\omega : L_n(X, \theta_0) > L_n(X, \theta_0 - a), L_n(X, \theta_0) > L_n(X, \theta_0 + a)\}$$

В силу теоремы 1 $P_{\theta_0}(S_n^a) \to 1$

При $\omega \in S_n^a$ функция $L_n(X,\theta)$ имеет локальный максимум $\widehat{\theta}_n^a$ на интервале (θ_0-a,θ_0+a)

Значит, $\frac{\partial}{\partial \theta}L_n(X,\widehat{\theta}_n^a)=0$. Тогда $\mathrm{P}_{\theta_0}(S_n)\geq \mathrm{P}_{\theta_0}(S_n^a)\to 1$, так как $S_n^a\subseteq S_n$, и пункт 1 доказан.

<u>Докажем пункт 2</u>: $\forall n$ при $\omega \in S_n$ может сущестовать целое множество корней $\{\theta_n^*\}$. Выберем в этом множестве корень $\hat{\theta}_n$, ближайший к θ_0 . Это можно сделать, так как функция $\frac{\partial}{\partial \theta} L_n(x,\theta)$ непрерывна по θ , и последовательность корней есть корень. Этот корень $\hat{\theta}_n$ и есть состоятельная оценка θ . Покажем это:

 \forall малого $\varepsilon > 0$:

$$P_{\theta_0}(\left|\widehat{\theta}_n - \theta_0\right| < \varepsilon, S_n) \ge P_{\theta_0}(\left|\widehat{\theta}_n^{\varepsilon} - \theta_0\right| < \varepsilon, S_n^{\varepsilon})$$
(3)

Так как $S_n^{\varepsilon} \subseteq S_n$, $(\omega : \left| \widehat{\theta}_n^{\varepsilon} - \theta_0 \right| < \varepsilon) \subseteq (\omega : \left| \widehat{\theta}_n - \theta_0 \right| < \varepsilon)$

Ho
$$P_{\theta_0}(\left|\widehat{\theta}_n^{\varepsilon} - \theta_0\right| < \varepsilon, S_n^{\varepsilon}) = P_{\theta_0}(S_n^{\varepsilon}) \to 1$$
, значит в силу (3)

$$P_{\theta_0}(\left|\widehat{\theta}_n - \theta_0\right| < \varepsilon, S_n) \to 1$$

Замечание 3. Пусть

 $\theta_n^* = \begin{cases} cocm. \ \kappa opho \ ypashehus \ npasdonodoбия, если он сущ. \\ \theta', \ \theta' \in \Theta, uhaчe \end{cases}$

Тогда случайная величина θ_n^* всегда определена, и $\theta_n^* \xrightarrow{P} \theta_0$, так как

$$P(|\theta_n^* - \theta_0| < \varepsilon) = P(|\widehat{\theta}_n - \theta_0| < \varepsilon, S_n) + P(|\theta' - \theta_0| < \varepsilon, \overline{S}_n) \to 1$$

Ясно, что

$$\frac{\partial}{\partial \theta} L_n(X, \theta_n^*) = \overline{\overline{o}}_p(1) \tag{4}$$

Tак как производная отлична от нуля только на \overline{S}_n .

Будем называть θ_n^* обобщенным состоятельным корнем уравнения правдоподобия

Теорема 3 (Об асимптотической эффективности состоятельности решения).

Пусть $X = (X_1, \dots, X_n)$, $\{X_i\}$ - н.о.р. сл.в., и удовлетворяются предположения Теоремы Бахадура, в которых условия 3 и 6 заменены на предположения о третьей, а не второй производной. То есть

$$\left| \frac{\partial^3}{\partial \theta^3} \ln f(x, \theta) \right| \le M(x) \ \forall x \in N_f, \ \forall \theta \in \Theta, \ E_{\theta_0} M(X_1) < \infty$$

Тогда, если θ_n^* - обобщенный состоятельный корень из теоремы 2, то

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \frac{1}{i(\theta_0)})$$

To есть θ_n^* - асимптотическая эффективная оценка.

Доказательство. Будем обозначать $\frac{\partial}{\partial \theta}L_n(X,\theta), \frac{\partial^2}{\partial \theta^2}L_n(X,\theta), \dots$ через $L'_n(\theta), L_n^{(2)}(\theta), \dots$ Для фиксированного X в силу формулы Тейлора и последнего замечания:

$$\overline{\overline{o}}_p(1) = L'_n(\theta_n^*) = L'_n(\theta_0) + L_n^{(2)}(\theta_0)(\theta_n^* - \theta_0) + \frac{1}{2}L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0)^2, \ \widetilde{\theta}_n \in (\theta_0, \theta_n^*)$$

Отсюда,

$$\sqrt{n}(\theta_n^* - \theta_0) = -\frac{n^{-1/2}L_n'(\theta_0) + \overline{\overline{o}}_p(1)}{n^{-1}(L_n^{(2)}(\theta_0) + \frac{1}{2}L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0))}$$
(5)

Рассмотрим числитель (5) и покажем, что

$$n^{-1/2}L'_n(\theta_0) = n^{-1/2} \sum_{i=1}^n \frac{f'_{\theta}(X_i, \theta_0)}{f(X_i, \theta_0)} \xrightarrow{d} \xi \sim N(0, i(\theta_0))$$
 (6)

Действительно,

$$E_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)} = \int_{N_f} \frac{f'_{\theta}(x, \theta_0)}{f(x, \theta_0)} f(x, \theta_0) \nu(dx) = 0$$

$$D_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)} = E_{\theta_0} \left(\frac{\partial}{\partial \theta} \ln f(X_1, \theta_0)\right)^2 - \underbrace{\left(E_{\theta_0} \frac{f'_{\theta_0}(X_1, \theta_0)}{f(X_i, \theta_0)}\right)^2}_{\text{по опр.}} = i(\theta_0)$$

Так как f, f' - борелевские функции, то случайные величины $\{\frac{f'_{\theta}(X_i, \theta_0)}{f(X_i, \theta_0)}, i = 1, \dots, n\}$ - н.о.р., соотношение (6) следует из Центр. пред. Теоремы.

В силу Леммы Слуцкого числитель (5) $\stackrel{\text{P}^-}{\to} N(0,i(\theta_0))$

Теперь рассмотрим знаменатель (5):

$$n^{-1}L_n^{(2)}(\theta_0) = n^{-1} \sum_{i=1}^n \left[\frac{f_{\theta}^{(2)}(X_i, \theta_0)}{f(X_i, \theta_0)} - \left(\frac{f_{\theta}'(X_i, \theta_0)}{f(X_i, \theta_0)} \right)^2 \right] \xrightarrow{P} -i(\theta)$$
 (7)

Действительно, в силу ЗБЧ

$$n^{-1} \sum_{i=1}^{n} \frac{f_{\theta}^{(2)}(X_{i}, \theta_{0})}{f(X_{i}, \theta_{0})} \xrightarrow{P} E_{\theta_{0}} \frac{f_{\theta}^{(2)}(X_{1}, \theta_{0})}{f(X_{1}, \theta_{0})} = \int_{N_{f}} \frac{f_{\theta}^{(2)}(x, \theta_{0})}{f(x, \theta_{0})} f(x, \theta_{0}) \nu(dx) = 0$$

$$n^{-1} \sum_{i=1}^{n} \left(\frac{f_{\theta}'(X_{i}, \theta_{0})}{f(X_{i}, \theta_{0})} \right)^{2} \xrightarrow{P} E_{\theta_{0}} \left(\frac{\partial}{\partial \theta} \ln f(X_{1}, \theta_{0}) \right)^{2} = i(\theta)$$

Применяя лемму Слуцкого, получим (7).

Далее рассмотрим второе слагаемое в знаменете (5)

$$\left| \frac{1}{2n} L_n^{(3)}(\widetilde{\theta}_n)(\theta_n^* - \theta_0) \right| \le \frac{1}{2} \left| \theta_n^* - \theta_0 \right| n^{-1} \sum_{i=1}^n M(X_i) \xrightarrow{\mathcal{P}} 0 \tag{8}$$

В силу (7) и (8) и Леммы Слуцкого знаменатель (5) сходится по вероятности к $-i(\theta_0)$ Значит, что вся дробь (5) сходится по распределению к $\frac{1}{i(\theta_0)}\xi \sim N(0,\frac{1}{i(\theta_0)})$

Оценки максимального правдоподобия для векторого параметра

Пусть $X = (X_1, \dots, X_n)$ - н.о.р., $X_1 \sim f(x, \theta), \ \theta \in \Theta \subseteq \mathbb{R}^k, \ \Theta$ - открытое множество Тогда логарифмические правдоподобие имеет вид

$$L_n(X, \theta) = \sum_{i=1}^n \ln f(X_i, \theta)$$

Система уравнений правдоподобия

$$\frac{\partial L_n(X,\theta)}{\partial \theta_i} = 0, \ i = 1, 2, \dots, k$$

При условиях регулярности, похожих на условия теоремы 3, показыватся:

- 1. С вероятностью, стремящейся к единице при $n \to \infty$, система уравнений (1.2) имеет такое решение $\widehat{\theta}_n \in \Theta$, что $\widehat{\theta}_n$ сходится к истинному значению θ_0 .
- 2. Соответствующая оценка θ_n^* асимптотически нормальна. А именно

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, I^{-1}(\theta_0)), \ n \to \infty$$

Здесь $I(\theta) > 0$ - матрица информации Фишера, то есть

$$I(\theta) = (I_{ij}(\theta)), \ I_{ij}(\theta) = \mathcal{E}_{\theta} \left\{ \frac{\partial \ln f(X, \theta)}{\partial \theta_i} \cdot \frac{\partial \ln f(X, \theta)}{\partial \theta_j} \right\}$$

Пример. $X = (X_1, ..., X_n)$, где $\{X_i\}$ - н.о.р., $X_1 \sim N(0, \sigma^2)$, $a < \theta < b$, a u b - известные конечные числа, дисперсия σ^2 известна. Построим асимптотически эффективную оценку θ_n^* для θ .

$$3 \partial e c b \ p(x,\theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2},$$
 значит

$$L_n(X,\theta) = \ln\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \theta)^2$$

Уравнение правдоподобия имеет вид

$$\frac{\partial L_n(X,\theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \theta) = 0$$

Его решение существует и единственно, это \overline{X} , причем в т. $\theta = \overline{X}$ $L_n(X,\theta)$ достигает максимума, так как $\frac{\partial^2 L_n(X,\overline{X})}{\partial \theta^2} = -\frac{1}{\sigma^2} < 0$

Таким образом, если $a < \overline{X} < b$, то о.м.п. существует и равна \overline{X} , в противном случае о.м.п. не существует. Если положить

$$\theta_n^* = \begin{cases} \overline{X}, \ a < \overline{X} < b \\ \frac{a+b}{2}, \ \overline{X} \notin (a,b) \end{cases} \tag{9}$$

То в силу теоремы 3 (её условия выполнены, проверьте сами), θ_n^* - асимптотически эффективная оценка, то есть

$$\sqrt{n}(\theta_n^* - \theta_0) \xrightarrow{d} N(0, \sigma^2)$$
 (10)

Напомним, что в этой модели $i(\theta) = \frac{1}{\sigma^2}$. Справедливость (10) с θ_n^* из (9) легко проверить непосредственно.

Пример. Если Θ - компакт (то есть отрезок [a,b]), то о.м.п. существует всегда, так как непрерывная функция на отрезке всегда достигает своего максимума. Значит значение о.м.п.

$$\theta_n^* = \begin{cases} \overline{X}, \ a < \overline{X} < b \\ a, \ \overline{X} < a \\ b, \ \overline{X} > b \end{cases}$$

Но на границах теряется асимптотическая Гауссовость.

2 Проверка статистических гипотез

 $X=(X_1,\ldots,X_n)$ имеет плотность вероятности $p(X,\theta)$ по мере $\mu,\ \theta\in\Theta\subseteq\mathbb{R}^1$

Опр. 1. Предположение вида $H_0: \theta \in \Theta_0$, где $\Theta_0 \in \Theta$, называется параметрической гипотезой. Альтернатива $H_1: \theta \in \Theta_1$, где $\Theta_1 \in \Theta \backslash \Theta_0$

Опр. 2. Если $\Theta_0(\Theta_1)$ состоит из одной точки, то гипотеза H_0 (альтернатива H_1) называется простой. В противном случае $H_0(H_1)$ - сложная

Постановка задачи:

Необходимо построить правило (статистический критерий - test), который позволяет заключить, согласуется ли наблюдение X с H_0 или нет.

Правило.

 $\overline{\text{Выберем}}$ в множестве значений x вектора X (у нас либо $x = \mathbb{R}^n$, либо $x = N_p \subseteq \mathbb{R}^n$ носитель плотности) подмножество S. Если $X \in S$, то H_0 отвергается и принимается H_1 . Если $X \in \overline{S} = X \setminus S$, то H_0 принимается.

Опр. 3. Множество S называется критическим множеством или критерием, \overline{S} - область принятия гипотезы.

Опр. 4. *Ошибка 1-го рода* - принять H_1 , когда верна H_0 . Вероятность ошибки 1-го рода $\alpha = P(H_1|H_0)$ (это условная запись, а не условная вероятность). *Ошибка 2-го рода* - принять H_0 , когда верна H_1 . Вероятность ошибки 2-го рода $\beta = P(H_0|H_1)$.

Опр. 5. Мощность критерия S называется функция $W(S, \theta) = W(\theta) \stackrel{def}{=} P_{\theta}(X \in S)$ (вероятность отвергнуть H_0 , когда значение параметра есть θ).

Тогда

$$\alpha = \alpha(\theta) = W(\theta), \ \theta \in \Theta_0;$$

 $\beta = \beta(\theta) = 1 - W(\theta), \ \theta \in \Theta_1$

Опр. 6. Обычно H_0 более важна. Поэтому рассматривают критерии такие, что

$$\alpha(\theta) = W(\theta) = P_{\theta}(X \in S) \le \alpha \ \forall \theta \in \Theta_0$$

Число α называют **уровнем значимости критерия**. Пишут S_{α} - критерий уровня α . Обычно α - маленькое число, которое мы задаем сами.

Опр. 7. Если критерий $S_{\alpha}^* \in \{S_{\alpha}\}$ и $\forall \theta \in \Theta_1$ и $\forall S_{\alpha} \ W(S_{\alpha}^*, \theta) \geq W(S_{\alpha}, \theta)$, то критерий S_{α}^* называется **РНМ-критерием (равномерно наиболее мощным)**.

Если $H_0: \theta = \theta_0, \ H_1: \theta = \theta_1$ (то есть H_0 и H_1 - простые), то задача отыскания РНМ-критерия заданного уровня α имеет вид:

$$P_{\theta_0}(X \in S_{\alpha}^*) \le \alpha,$$

$$P_{\theta_1}(X \in S_{\alpha}^*) \ge P_{\theta_1}(X \in S_{\alpha}) \ \forall S_{\alpha}$$

Положим для краткости: $p_0(x) \stackrel{\text{def}}{=} p(x, \theta_0)$, $E_0 = E_{\theta_0}$, $p_1(x) = p(x, \theta_1)$, $E_1 = E_{\theta_1}$ Введем множество

$$S(\lambda) = \{x : p_1(x) - \lambda p_0(x) > 0\}, \lambda > 0$$

2.1 Лемма Неймана-Пирсона

Пусть для некоторого $\lambda > 0$ и критерия R (когда X попадает в R, то H_0 отвергается) выполнено:

- 1. $P_0(X \in R) \le P_0(X \in S(\lambda))$ Тогда:
- 2. $P_1(X \in R) \leq P_1(X \in S(\lambda))$
- 3. $P_1(X \in S(\lambda)) \ge P_0(X \in S(\lambda))$

Замечание 1. $X \in S(\lambda) \Leftrightarrow \frac{p_1(x)}{p_0(x)} > \lambda$. Так как $p_1(X)$ и $p_0(X)$ - правдоподобие, то критерий называется критерием отношения правдоподобия Неймана-Пирсона.

Замечание 2. Утверждение 3 для $S(\lambda)$ означает, что

$$P(H_1|H_1) \ge P(H_1|H_0) \Leftrightarrow W(S(\lambda), \theta_1) \ge W(S(\lambda), \theta_0)$$

Это свойство называется несмещенностью критерия $S(\lambda)$

Доказательство. Дальше для краткости $S(\lambda) = S$. Пусть $I_R(x) = \begin{cases} 1, x \in \mathbb{R} \\ 0, x \notin \mathbb{R} \end{cases}$, $I_S(x)$ определяем аналогично. Тогда Условие (A) имеет вид:

$$E_0 I_R(x) \le E_0 I_S(x) \tag{1}$$

Докажем пункт 2: Верно неравенство

$$I_R(x)[p_1(x) - \lambda p_0(x)] \le I_S(x)[p_1(x) - \lambda p_0(x)] \tag{2}$$

Действительно, если $(p_1(x) - \lambda p_0(x)) > 0$, то $I_S(x) = 1$ и (2) очевидно.

Если же $p_1(x) - \lambda p_0(x) \le 0$, то правая часть (2) есть ноль, а левая \le нуля.

Итак, (2) верно: интегрируем это неравенство по $x \in \mathbb{R}^n$:

$$E_{1}I_{R}(X) - \lambda E_{0}I_{R}(X) \leq E_{1}I_{S}(X) - \lambda E_{0}I_{S}(X)$$

$$E_{1}I_{S}(X) - E_{1}I_{R}(X) \geq \lambda \underbrace{\left[E_{0}I_{S}(X) - E_{0}I_{R}(X)\right]}_{\geq 0 \text{ по условию (1)}}$$
(3)

В силу (1), (3) и условия $\lambda > 0$ получаем:

$$E_1I_S(X) > E_1I_{\mathbb{R}}(X)$$

Докажем пункт 3: Пусть $\lambda \geq 1$. Из определения $S \ p_1(x) > p_0(x) \ \forall x \in S$. Отсюда

$$P_0(X \in S) = \int_{\mathbb{R}^n} I_S(X) p_0(x) \mu(dx) \le \int_{\mathbb{R}^n} I_S(X) p_1(x) \mu(dx) = P_1(X \in S)$$

То есть $P(H_1 | H_0) \le P(H_1 | H_1)$

Пусть $\lambda < 1$. Рассмотрим $\overline{S} = \{x : p_1(x) \le \lambda p_0(x)\}$. При $\lambda < 1$ $p_1(x) < p_0(x)$ при $x \in \overline{S}$. Отсюда

$$P_1(X \in \overline{S}) = \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_1(x) \mu(dx) \le \int_{\mathbb{R}^n} I_{\overline{S}}(X) p_0(x) \mu(dx) = P_0(X \in \overline{S})$$

То есть
$$1 - P_1(X \in S) \le 1 - P_0(X \in S)$$
, откуда $P_1(X \in S) \ge P_0(X \in S)$

Пример. $X = (X_1, \dots, X_n), \{X_i\}$ - н.о.р., $X_1 \sim N(\theta, \sigma^2)$, дисперсия σ^2 известна. Построим наиболее мощный критерий для проверки $H_0: \theta = \theta_0$ против $H_1: \theta = \theta_1$ (в случае $\theta_1 > \theta_0$). Уровень значимости возьмем α .

1. Имеем

$$p_{0} = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}\right\}, \quad p_{1} = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^{n} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}\right\};$$

$$S(\lambda) = \left\{x : p_{1}(x) - \lambda p_{0}(x) > 0\right\} \underset{\partial e \wedge u \wedge m}{\Leftrightarrow} \exp\left\{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left[(x_{i} - \theta_{1})^{2} - (x_{i} - \theta_{0})^{2}\right]\right\} > \lambda \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n} \left[(x_{i} - \theta_{1})^{2} - (x_{i} - \theta_{0})^{2}\right] < \lambda_{1} = -2\sigma^{2} \ln \lambda \underset{apu \notin Memuka}{\Leftrightarrow} (\theta_{0} - \theta_{1}) \sum_{i=1}^{n} x_{i} \leq \lambda_{2} \Leftrightarrow$$

$$\Leftrightarrow \sum_{i=1}^{n} x_{i} > \widetilde{\lambda}, \quad \widetilde{\lambda}(\lambda, n, \sigma^{2}, \theta_{0}, \theta_{1})$$

 $Ита\kappa$,

$$S(\lambda) = \left\{ x : \sum_{i=1}^{n} x_i > \widetilde{\lambda} \right\}$$
 при некотором $\widetilde{\lambda}$

2. Определим $\widetilde{\lambda}=\widetilde{\lambda}_{\alpha}$ из уравнения

$$\alpha = P_{\theta_0}(X \in S(\widetilde{\lambda}_{\alpha})) = P_{\theta_0}\left(\sum_{i=1}^n X_i > \widetilde{\lambda}_{\alpha}\right)$$

Преобразуем левую сумму в стандартную Гауссовскую величину. Тогда

$$\alpha = P_{\theta_0} \left(\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (X_i - \theta_0) > \frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{n}\sigma} \right) = 1 - \Phi \left(\frac{\widetilde{\lambda}_{\alpha} - n\theta_0}{\sqrt{\pi}\sigma} \right)$$

 $\max \kappa a \kappa \frac{1}{\sqrt{n}\sigma} \sum_{i} (X_i - \theta_0) \sim N(0, 1) \ npu \ H_0.$

Значит $\Phi\left(\frac{\tilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma}\right)=1-\alpha,\;\left(\frac{\tilde{\lambda}_{\alpha}-n\theta_{0}}{\sqrt{\pi}\sigma}\right)=\xi_{1-\alpha}$ - квантиль станд. норм. закона уровня $1-\alpha$. Окончательно, $\tilde{\lambda}_{\alpha}=n\theta_{0}+\sqrt{n}\sigma\xi_{1-\alpha}$

3. Положим $S_{\alpha}^* = \{x: \sum_{i=1}^n x_i > \widetilde{\lambda}_{\alpha}\}$. Тогда:

$$P_{\theta_0}(X \in S_{\alpha}^*) = \alpha \ u \ \forall S_{\alpha} \ P_{\theta_0}(X \in S_{\alpha}) \le \alpha = P_{\theta_0}(X \in S_{\alpha}^*)$$

Значит, выполнено условие 1 Леммы Неймана-Пирсона, и в силу пункта 2 этой леммы

$$P_{\theta_1}(X \in S_\alpha) \le P_{\theta_1}(X \in S_\alpha^*)$$

To есть S_{α}^* - наиболее мощный критерий уровня $\alpha.$

Так как S_{α}^* не зависит от θ_1 , то S_{α}^* - РНМ-критерий для $H_0: \theta = \theta_0$ против $H_1^+: \theta > \theta_1$ Мощность критерия S_{α}^* для H_0 при альт. H_1^+

$$W(\theta, S_{\alpha}^{*}) = P_{\theta} \left(\sum_{i=1}^{n} X_{i} > n\theta_{0} + \sqrt{n}\sigma \xi_{1-\alpha} \right) =$$

$$= P_{\theta} \left(\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (X_{i} - \theta) > \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma} + \xi_{1-\alpha} \right) = 1 - \Phi \left(\xi_{1-\alpha} + \frac{\sqrt{n}(\theta - \theta_{0})}{\sigma} \right)$$

О связи между доверительным оцениванием и проверкой гипотез

Опр. 8. Случайное подмножесто $\Theta^* = \Theta^*(X, \alpha) \subseteq \Theta$ называется доверительным множеством уровня $1 - \alpha$, $0 < \alpha < 1$, если

$$P_{\theta}(\theta \in \Theta^*(X, \alpha)) \ge 1 - \alpha \ \forall \theta \in \Theta$$

- **Теорема 1.** 1. Пусть $\forall \theta_0 \in \Theta$ гипотеза $H_0: \theta = \theta_0$ при альтернативе $H_1: \theta \neq \theta_0$ имеет $S_{\alpha}(\theta_0)$ критерием уровня α . Пусть $\Theta^*(x,\alpha) = \{\theta: x \in \overline{S_{\alpha}}(\theta)\}$. тогда $\Theta^*(X,\alpha) = \{\theta : x \in \overline{S_{\alpha}}(\theta)\}$. тогда $\Theta^*(X,\alpha) = \{\theta : x \in \overline{S_{\alpha}}(\theta)\}$ построить доверительное множество уровня 1α . (Если есть критерий, то можно по этому построить доверительное множество)
 - 2. Если $\Theta^*(X,\alpha)$ доверительное множество уровня $1-\alpha$, то $\overline{S_{\alpha}}(\theta_0) = \{x : \theta_0 \notin \Theta(x,\alpha)\}$ есть область применения гипотезы H_0 (следовательно и критерий).

Замечание 3. Пункт 2 означает, что если θ_0 попало в доверительное множество, то H_0 надо принимать.

Доказательство.

1.
$$P_{\theta}(\theta \in \Theta^*(X, \alpha)) = P_{\theta}(X \in \overline{S_{\alpha}}(\theta)) = 1 - \underbrace{P_{\theta}(X \in S_{\alpha}(\theta))}_{\leq \alpha} \geq 1 - \alpha \ \forall \theta \in \Theta$$

2.
$$P_{\theta_0}(X \in S_{\alpha}(\theta_0)) = 1 - P_{\theta_0}(X \in \overline{S_{\alpha}}(\theta_0)) = 1 - \underbrace{P_{\theta_0}(\theta_0 \in \Theta^*(X, \alpha))}_{\geq 1 - \alpha} \leq 1 - (1 - \alpha) = \alpha$$

Пример. Пусть $X = (X_1, ..., X_n)$, $\{X_i\}$ - н.о.р. сл.в., $X_1 \sim N(0, \sigma^2)$, $\theta \in \mathbb{R}^1$. Построим критерий для $H_0: \theta = \theta_0$ против $H_1: \theta \neq \theta_0$. Уровень значимости пусть будет α , $0 < \alpha < 1$. Построим доверительное множество для θ уровня $1 - \alpha$. Пусть $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ - оптимальная оценка θ . Тогда $\frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \sim N(0, 1)$,

$$P_{\theta} \left(\left| \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} \right| < \xi_{1-\alpha/2} \right) = 1 - \alpha$$

$$\Phi(\xi_{1-\alpha/2}) = 1 - \alpha/2$$

То есть $\Theta^*(X,\alpha) = \{\theta : \left|\frac{\sqrt{n}(\overline{X}-\theta)}{\sigma}\right| < \xi_{1-\alpha/2}\}$. В силу замечания к Теореме 1 $S_{\alpha}(\theta_0) = \{X : \left|\frac{\sqrt{n}(\overline{X}-\theta_0)}{\sigma}\right| \ge \xi_{1-\alpha}\}$ есть критическое множество для H_0 . Мощность

$$W(\theta) = P_{\theta}(X \in S_{\alpha}(\theta_{0})) = P_{\theta}\left(\left|\frac{\sqrt{n}(\overline{X} - \theta_{0})}{\sigma}\right| \ge \xi_{1-\alpha/2}\right) = 1 - P_{\theta}\left(\left|\frac{\sqrt{n}(\overline{X} - \theta_{0})}{\sigma}\right| < \xi_{1-\alpha/2}\right) =$$

$$= 1 - P\left(-\xi_{1-\alpha/2} + \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma} < \frac{\sqrt{n}(\overline{X} - \theta)}{\sigma} < \xi_{1-\alpha} + \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma}\right) =$$

$$= 1 - \left[\Phi\left(\xi_{1-\alpha/2} + \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma}\right) - \Phi\left(-\xi_{1-\alpha/2} + \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma}\right)\right] =$$

$$= \left[\Phi\left(\xi_{\alpha/2} + \frac{\sqrt{n}(\theta_{0} - \theta)}{\sigma}\right) + \Phi\left(\xi_{\alpha/2} + \frac{\sqrt{n}(\theta - \theta_{0})}{\sigma}\right)\right]$$

 $\Pi pu \ n \to \infty \ W(\theta) \to 1 \ \forall \theta \neq \theta_0$. То есть $S_{\alpha}(\theta_0)$ состоятелен против любой фиксированной

альтернативы.

2.2 Критерий Фишера (F-критерий) в Гауссовской линейной регрессии

Опр. 9. Если $\xi \sim N(0,1), \ \eta_k \sim \chi^2(k), \ \xi \ u \ \eta_k$ независимы, а константа $\mu \in \mathbb{R}^1, \ mo \ c.r.e.$

$$t_k(\mu) \stackrel{d}{=} \frac{\xi + \mu}{\sqrt{\eta_k/k}} \sim S(k,\mu)$$

имеет нецентральное распределение Стьюдента с k степенями свободы и параметром нецентральности μ

Опр. 10. Если $\xi_i \sim N(a_i, 1), i = 1, ..., k, u \{\xi_1, ..., \xi_k\}$ независимы, а $\Delta^2 = \sum_{j=1}^k a_j^2$, то сл. в.

$$\eta_k(\Delta) \stackrel{d}{=} \xi_1^2 + \ldots + \xi_k^2 \sim \chi^2(k, \Delta^2)$$

имеет нецентральное распределение хи-квадрат Пирсона с k степенями свободы и параметром нецентральности Δ^2

Опр. 11. Если $\eta_k \sim \chi^2(k, \Delta^2), \ \nu_m \sim \chi^2(m), \ u \ \eta_k \ u \ \nu_m$ независимы, то сл.в.

$$f_{k,m}(\Delta) \stackrel{d}{=} \frac{\frac{1}{k}\eta_k}{\frac{1}{m}\nu_m} \sim F(k, m, \Delta^2)$$

имеет нецентральное распределение Фишера с (k,m) степенями свободы и параметром нецентральности Δ^2

Лемма 1. 1. Распределение сл.в. $\eta_k \sim \chi^2(k, \Delta^2)$ зависит лишь от Δ , но не от a_1, \ldots, a_k . А именно

$$\eta_k \stackrel{d}{=} (z_1 + \Delta)^2 + z_2^2 + \ldots + z_k^2$$
, $\epsilon \partial e \{z_1, \ldots, z_k\}$ - n.o.p. $N(0, 1)$ cn.e.

2. Если вектор $\xi \in \mathbb{R}^k, \xi \sim N(a, \Sigma), \Sigma > 0$, то

$$\xi^T \Sigma^{-1} \xi \sim \chi^2(k, \Delta^2), \Delta^2 = a^T \Sigma^{-1} a$$

Доказательство. 1. По определению $\eta_k(\Delta) \stackrel{d}{=} \sum_{i=1}^k \xi_i^2$, где (ξ_1, \dots, ξ_k) - н.о.р. $N(a_i, 1)$ сл.в. Пусть $\xi = (\xi_1, \dots, \xi_k)^T$, ортогональная матрица

$$C = \begin{pmatrix} \frac{a_1}{\Delta} & \cdots & \frac{a_k}{\Delta} \\ \cdots & \cdots & \cdots \end{pmatrix}, \ \nu = C\xi$$

Тогда $\eta_k \stackrel{d}{=} |\xi|^2 = |\nu|^2$, так как C - ортог. Но

$$u = C \begin{pmatrix} a_1 \\ \vdots \\ a_k \end{pmatrix} + C \overset{\circ}{\xi} = \begin{pmatrix} \Delta \\ 0 \\ \vdots \\ 0 \end{pmatrix} + Z,$$
где $\overset{\circ}{\xi} = \xi - \mathrm{E}\xi, Z = C \overset{\circ}{\xi} \sim N(0, \mathrm{E}_k)$

Итак, $\eta_k \stackrel{d}{=} |\nu|^2 = (z_1 + \Delta)^2 + z_2^2 + \ldots + z_k^2$

2. $\xi^T \Sigma^{-1} \xi = \left| \Sigma^{-1/2} \xi \right|^2$, причем $\Sigma^{-1/2} \xi \sim N(\Sigma^{-1/2} a, \mathbf{E}_k)$. Отсюда $\left| \Sigma^{-1/2} \xi \right|^2 \sim \chi^2(k, \Delta^2)$ с $\Delta^2 = \left| \Sigma^{-1/2} a \right|^2 = a^T \Sigma^{-1} a$

Пемма 2. Случайная величина $t_k(\mu)$ обладает следующим свойством стохастической упорядоченности. при $\mu_2 > \mu_1$

$$P(t_k(\mu_2) > x) > P(t_k(\mu_1) > x) \quad npu \quad scex \quad x \in \mathbb{R}^1$$
(4)

Аналогично

$$P(\eta_k(\Delta_2) > x) > P(\eta_k(\Delta_1) > x), \Delta_2 > \Delta_1$$
(5)

$$P(f_{k,m}(\Delta_2) > x) > P(f_{k,m}(\Delta_1) > x), \Delta_2 > \Delta_1$$
(6)

16

Нецентральные распределения Пирсона и Фишера стохастически упорядочены по параметру нецентральности.

Доказательство. Докажем соотношение 4, 5 и 6 доказываются аналогично.

Заметим, что, если ξ и η - независимые случайные величины, и $\mathrm{E} \left| \phi(\xi, \eta) \right| < \infty$, то

$$E\phi(\xi,\eta) = E\left\{ \left. E\phi(\xi,\eta) \right|_{\xi=\eta} \right\} \tag{7}$$

В силу (7)

$$\begin{split} \mathrm{P}(t_k(\mu_2)>x)&=\mathrm{P}\left(\frac{\xi+\mu_2}{\sqrt{\frac{1}{k}\eta_k}}>x\right)=\mathrm{E}I\left(\xi>x\sqrt{\frac{1}{k}\eta_k}-\mu_2\right)=\\ &=\mathrm{E}\left\{1-I\left(\xi\leq x\sqrt{\frac{1}{k}\eta_k}-\mu_2\right)\right\}=1-E\left\{EI(\xi\leq y)\Big|_{y=x\sqrt{\frac{\eta_k}{k}}-\mu_2}\right\}=\\ &=1-\mathrm{E}\Phi\left(x\sqrt{\frac{1}{k}\eta_k}-\mu_2\right)>1-\mathrm{E}\Phi\left(x\sqrt{\frac{1}{k}\eta_k}-\mu_1\right)=\mathrm{P}(t_k(\mu_1)>x) \end{split}$$
 так как $\mathrm{E}\Phi\left(x\sqrt{\frac{1}{k}\eta_k}-\mu_2\right)<\mathrm{E}\Phi\left(x\sqrt{\frac{1}{k}\eta_k}-\mu_1\right)$ в силу возрастающей $\Phi(y)$

Обратимся к линейной гауссовской модели

$$X = Zc + \mathcal{E}$$

$$X=(X_1,\dots,X_n)^T$$
 - наблюдения, Z - $n imes p$ матрица регрессоров $p< n$
$$\mathcal{E}\sim N(0,\sigma^2\mathrm{E}_n),\ c=(c_1,\dots,c_p)^T$$

$$\underline{c}\ \mathrm{u}\ \sigma^2\ \mathrm{неизвестны}$$

Рассмотрим новый вектор $\beta = Ac$, $A - k \times p$ матрица, $rkA = k, k \le p$.

Построим для β доверительное множество уровня $1-\alpha$

Пусть \widehat{c}_n - оценка наименьших квадратов (о.н.к.) для c, \widehat{s}_n^2 - о.н.к. для σ^2 . Пусть $\widehat{\beta}_n = A\widehat{c}_n$.

$$\widehat{c}_n \sim N(c, \sigma^2(Z^TZ)^{-1}) \Rightarrow \widehat{\beta}_n \sim N(\underbrace{Ac}_{\beta}, \sigma^2D)$$
, где $D = A(Z^TZ)^{-1}A^T$

Заметим, что D > 0, так как для $\alpha \in \mathbb{R}^k$, $\alpha \neq 0$,

$$\alpha^T D \alpha = (A^t \alpha)^T (Z^T Z)^{-1} (A^T \alpha) > 0$$
, т.к. $(Z^T Z)^{-1} > 0$, $A^T \alpha \neq 0$ при $rkA = k, \alpha \neq 0$

В силу пункта 2 леммы 1

$$\frac{1}{\sigma^2} \left(\widehat{\beta}_n - \beta \right) D^{-1} \left(\widehat{\beta}_n - \beta \right) \sim \chi^2(k)$$

так как $\frac{(n-p)\widehat{s}_n^2}{\sigma^2} \sim \chi^2(n-p),\, \widehat{\beta}_n$ и \widehat{s}_n^2 независимы, то

$$f_{k,n-p}(X,\beta) \stackrel{\text{def}}{=} \frac{\frac{1}{k}(\widehat{\beta}_n - \beta)^T D^{-1}(\widehat{\beta}_n - \beta)/\sigma^2}{\frac{1}{n-p}(n-p)\widehat{s}_n^2/\sigma^2} = \frac{(\widehat{\beta}_n - \beta)D^{-1}(\widehat{\beta}_n - \beta)}{k\widehat{s}_n^2} \sim F(k, n-p)$$

Значит,

$$P_{\beta,\sigma^2}\left((\widehat{\beta}_n - \beta)^T D^{-1}(\widehat{\beta}_n - \beta) \le k\widehat{s}_n^2 f_{1-\alpha}(k, n-p)\right) = 1 - \alpha$$

 $f_{1-\alpha}(k, n-p)$ - квантиль уровня $1-\alpha \ F(k, n-p)$. Доверительное множество для β уровня $1-\alpha$

$$\Theta^*(X,\alpha) = \left\{\beta: (\widehat{\beta}_n - \beta)^T D^{-1}(\widehat{\beta}_n - \beta) < k \widehat{s}_n^2 f_{1-\alpha}(k,n-p)\right\} =$$

$$= \left\{\beta: f_{k,n-p}(X,\beta) < f_{1-\alpha}(k,n-p)\right\} \text{ - доверительный эллипсоид}$$

Рассмотрим проверку гипотезы $\underline{H_0}: \beta = \beta_0$ против $H_1: \beta \neq \beta_0$. H_0 называют линейной гипотезой, так как $\beta = Ac$ получается линейным преобразованием c. В силу замечания 3 H_0 надо принимать, если $\beta_0 \in \Theta^*(X, \alpha)$, то есть область принятия H_0 :

$$\overline{S}_{\alpha}(\beta_0) = \{x : f_{k,n-p}(x,\beta_0) \le f_{1-\alpha}(k,n-p)\}$$

То есть критическое множество (критерий уровня α):

$$S_{\alpha}(\beta_0) = \{x : f_{k,n-p}(x,\beta_0) > f_{1-\alpha}(k,n-p)\}$$
(8)

Критерий 8 называют **критерием Фишера** или F-критерием. $f_{k,n-p}(X,\beta_0)$ - статистика F-критерия.

Рассмотрим поведение F-критерия при альтернативе H_1 . При H_1 в силу пункта 2 Леммы 1

$$f_{k,n-p}(X,\beta_0) = \frac{\frac{1}{k} (\widehat{\beta}_n - \beta)^T D^{-1} (\widehat{\beta}_n - \beta) / \sigma^2}{\frac{1}{n-p} (n-p) \widehat{s}_n^2 / \sigma^2} \sim F(k, n-p, \Delta^2)$$

Параметр нецентральности

$$\Delta^{2} = \frac{1}{\sigma^{2}} (\beta - \beta_{0})^{T} D^{-1} (\beta - \beta_{0})$$
(9)

Мощность F-критерия

$$W(\beta, S_{\alpha}(\beta_0)) = P_{\beta, \sigma^2}(f_{k,n-p}(X, \beta_0) > f_{1-\alpha}(k, n-p)) = 1 - F_{k,n-p}(f_{1-\alpha}(k, n-p), \Delta^2)$$

Свойства мощности

1. Так как $\Delta = \Delta(\beta) = \Delta(\beta_0) > 0$ при $\beta \neq \beta_0$, то в силу соотношения 6

$$P_{\beta,\sigma^2}(f_{k,n-p}(X,\beta_0) > f_{1-\alpha}(k,n-p)) > P_{\beta_0,\sigma}(f_{k,n-p}(X,\beta_0) > f_{1-\alpha}(k,n-p)) = \alpha$$

То есть при $\beta \neq \beta_0 \ \mathrm{P}(H_1|H_1) > \mathrm{P}(H_1|H_0)$. То есть F-критерий несмещенный!

2. Мощность $W(\beta, S_{\alpha}(\beta_0))$ строго монотонна по Δ из соотношения 9

Пример (Определение порядка регрессии). $c_n^T = (\underbrace{c_{(1)n}^T}_{m-sekmop}, \underbrace{c_{(2)n}^T}_{p-m-sekmop}), \ 1 \leq m \leq p$

 $H_0: c_{(2)} = 0 \quad (порядок не больше m)$

 $H_1: c_{(2)} \neq 0$

Рассмотрим матрицу

$$A = \overbrace{\begin{pmatrix} 0 & & 1 \\ & \ddots & & \ddots \\ & & 0 & & 1 \end{pmatrix}}^{p} \Rightarrow Ac = c_{(2)} \Rightarrow H_{0} \Leftrightarrow Ac = 0$$

$$m \qquad p - m$$

Пусть $\widehat{c}_n^T = (\underbrace{\widehat{c}_{(1)n}^T}_{m-\text{B-p}}, \underbrace{\widehat{c}_{(2)n}^T}_{p-m-\text{B-p}})$. Тогда $\widehat{\beta}_n = A\widehat{c}_n = \widehat{c}_{(2)n}$.

$$(Z^T Z)^{-1} = \left(\begin{array}{c|c} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{array}\right) \to D = A(Z^T Z)^{-1} A^T = B_{22} \Rightarrow$$

$$\Rightarrow f_{p-m,n-p}(X,0) = \frac{\widehat{c}_{(2)n}^T B_{22}^{-1} \widehat{c}_{(2)n}}{(p-m)\widehat{s}_n^2} \underset{H_0}{\sim} F(p-m,n-p)$$

 H_0 отвергается, если $f_{p-m,n-p}(X,0) > f_{1-\alpha}(p-m,n-m)$, то есть

$$S_{\alpha}(0) = \left\{ x : \frac{\widehat{c}_{(2)n}^T B_{22}^{-1} \widehat{c}_{(2)n}}{(p-m)\widehat{s}_n^2} > f_{1-\alpha}(p-m,n-m) \right\}$$
(10)

$$f_{p-m,n-p}(X,0) \underset{H_1}{\sim} F(p-m,n-p,\Delta^2)$$
, где $\Delta^2 = \frac{c_{(2)}^T B_{22}^{-1} c_{(2)}}{\sigma^2}$ (11)

Критерий 10 - несмещенный, то есть $P(H_1|H_1) > P(H_1|H_0) = \alpha$. Его мощность

$$W(c_{(2)}, S_{\alpha}(0)) = P_{c_{(2),\sigma^2}}(f_{p-m,n-p}(X,0) > f_{1-\alpha}(p-m,n-p)) = 1 - F_{p-m,n-p}(f_{1-\alpha}(p-m,n-p), \Delta^2)$$

строго возрастает по Δ^2 . Параметр нецентральности Δ^2 определен в 11.

Пример (Проверка однородности двух выборок). $X = (X_1, \ldots, X_m), \ Y = (Y_1, \ldots, Y_n)$ - независимые гауссовские выборки. То есть $\{X_i\}, \ \{Y_i\}$ - н.о.р., $X_1 \sim N(a, \sigma^2), \ Y_1 \sim N(b, \sigma^2)$. Совокупность $\{X_i\}$ и $\{Y_j\}$ независимы, m+n>2.

Дисперсии DX_1 , DY_1 одинаковы $(=\sigma^2)$, неизвестны, средние a и b неизвестны.

 $H_0: a=b$ (гипотеза однородности)

 $H_1: a \neq b$

Замечание. При $DX_1 \neq DY_1$ эта задача называется проблемой Беренса-Фишера.

$$\begin{cases} X_i = a + \varepsilon_i, & i = 1, \dots, m, \ \varepsilon_i = X_i - a \\ Y_i = b + \widehat{\varepsilon}_j, & j = 1, \dots, n, \ \widehat{\varepsilon}_j = Y_j - b \end{cases} \Rightarrow \varepsilon_1, \dots, \varepsilon_m, \widehat{\varepsilon}_1, \dots, \widehat{\varepsilon}_n - \text{h.o.p. } N(0, \sigma^2) \text{ c.n.e.}$$

$$\widehat{X} \stackrel{def}{=} (X_1, \dots, X_m, Y_1, \dots, Y_n)^T \\
c = (a, b)^T \\
\mathcal{E}^T = (\varepsilon_1, \dots, \varepsilon_m, \widehat{\varepsilon}_1, \dots, \widehat{\varepsilon}_n)^T$$

$$Z = \begin{pmatrix}
m \begin{cases} 1 \\ \vdots \\ n \end{cases} & 0 \\ 1 \\ 0 & n \begin{cases} 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$\Rightarrow \widehat{X} = Zc + \mathcal{E} \\ \text{raycc. num. perpeccus.}$$

$$0 & n \begin{cases} 1 \\ \vdots \\ 1 \end{cases}$$

Положим A = (1, -1). Тогда $Ac = a - b = \beta$.

 $H_0: Ac = a - b = \beta = 0 \quad (= \beta_0)$ $H_1: Ac = a - b \neq 0 \quad (\beta \neq 0)$

О.н.к. для вектора c - решение задачи

$$\sum_{i=1}^{m} (X_i - a)^2 + \sum_{j=1}^{n} (Y_j - b)^2 \to \min_{a,b} \Leftrightarrow \begin{cases} -2\sum_i (X_i - a) = 0\\ -2\sum_j (Y_j - b) = 0 \end{cases}$$

Решением системы является $\widehat{a}_m = \overline{X}$, $\widehat{b}_n = \overline{Y}$ - оптимальные оценки a u b, $\widehat{c}_n = (\overline{X}, \overline{Y})^T$ - оптимальная оценка для c. Оптимальная оценка для σ^2 :

$$\widehat{S}_{m+n}^2 = \frac{1}{m+n-2} \left[\sum_i (X_i - \overline{X})^2 + \sum_j (Y_j - \overline{Y})^2 \right]$$

Тогда

$$\widehat{\beta}_n = A\widehat{c}_n = \overline{X} - \overline{Y}$$

$$Z^{T}Z = \begin{pmatrix} \overbrace{1 \dots 1}^{m} & 0 \\ 0 & \underbrace{1 \dots 1}_{n} \end{pmatrix} \begin{pmatrix} 1 \\ 0 & \vdots \\ 1 \\ 1 \\ \vdots & 0 \\ 1 \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & n \end{pmatrix} \Rightarrow \boxed{f_{1,m+n-2}(X,0) = \frac{(\overline{X} - \overline{Y})^{2}}{\left(\frac{1}{n} + \frac{1}{m}\right)\widehat{S}_{m+n}^{2}}}$$

$$D = A(Z^{T}Z)^{-1}A^{T} = (1 - 1)\left(\begin{array}{cc} \frac{1}{m} & 0 \\ 0 & \frac{1}{n} \end{array}\right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{n} + \frac{1}{m}$$

F-критерий для H_0 имеет вид

$$S_{\alpha}(0) = \{ x \in \mathbb{R}^{m+n} : f_{1,m+n-2}(x,0) > f_{1-\alpha}(1,m+n-2) \}$$
$$f_{1,m+n-2}(X,0) \underset{H_0}{\sim} F(1, m+n-2)$$
$$f_{1,m+n-2}(X,0) \underset{H_1}{\sim} F(1, m+n-2, \Delta^2),$$

где параметр нецентральности $\Delta^2 = \Delta^2(\beta) = \frac{(a-b)^2}{\sigma^2(\frac{1}{n} + \frac{1}{m})}$

- 1. Если |a-b| возрастает, то мощность F-теста возрастает
- 2. Если $\sigma \to 0$ или $\frac{1}{n} + \frac{1}{m} \to 0$, то мощность возрастает

2.3 Критерий согласия Хи-квадрат Пирсона. Проверка простой гипотезы в схеме Бернулли.

Пусть проводятся n независимых испытаний, и в каждом испытании возможны $m \geq 2$ исходов A_1, \ldots, A_m таких, что $A_i A_j = \emptyset$, $i \neq j$, $\sum A_i = \Omega$, тогда $P(A_j) = p_j > 0$, $\sum_{j=1}^m p_j = 1$. Пусть $\nu = (\nu_1, \ldots, \nu_m)^T$, а ν_j - число появления A_j в n опытах, тогда $\sum_{j=1}^m \nu_j = n$. По вектору наблюдений ν необходимо проверить следующую гипотезу:

 $H_0: p_j = p_j^{\circ}, j = 1, \dots, m$

 $H_1: \ p_j
eq p_j^\circ$ хотя бы при одном j

Замечание. H_0 - простая гипотеза, т.к. полностью определяет распределение вектора ν .

$$P(\nu_1 = k_1, \dots, \nu_m = k_m) = \frac{n!}{k_1! \dots k_m!} (p_1^{\circ})^{k_1} \dots (p_m^{\circ})^{k_m}$$

Это полиномиальное распределение $\prod (n, p_1^{\circ}, \dots, p_m^{\circ})$. Статистика Хи-квадрат Пирсона:

$$\chi_n^2 \stackrel{\text{def}}{=} \sum_{j=1}^m \frac{(\nu_j - np_j^\circ)^2}{np_j^\circ}$$

Поведение при альтернативе: Очевидно

$$\chi_n^2 = n \sum_{j=1}^m \frac{(\nu_j/n - p_j^\circ)^2}{p_j^\circ}$$

В силу теоремы Бернулли $\frac{\nu_j}{n} \xrightarrow{P} p_j$. Поэтому

$$\sum_{j=1}^m \frac{(\nu_j/n-p_j^\circ)^2}{p_j^\circ} \xrightarrow[\text{Т. о наслед. сход.}]{\mathrm{P}} \sum_{j=1}^m \frac{(p_j-p_j^\circ)^2}{p_j^\circ} \underset{H_1}{>} 0$$

Значит,

$$\chi_n^2 \xrightarrow{P} \infty, \ n \to \infty$$

Поэтому большие значения χ_n^2 часто свидетельсвтуют о том, что стоит отвергнуть H_0 . Но насколько "большие" значения?

2.4 Теорема Пирсона

$$\chi_n^2 \xrightarrow[H_0]{d} \chi^2(m-1), \ n \to \infty$$

<u>Правило</u>: Если $\chi_n^2 \le \chi_{1-\alpha}(m-1)$, то принимаем H_0 , иначе принимаем H_1 .

Замечание. Тогда

$$P(H_1|H_0) = P(\chi_n^2 > \chi_{1-\alpha}(m-1)|H_0) \to \alpha$$

 $P(H_0|H_1) = P(\chi_n^2 \le \chi_{1-\alpha}(m-1)|H_1) \to 0$

 $To \ ecmb$

$$\begin{cases} P(H_0|H_0) \to 1 - \alpha \\ P(H_1|H_1) \to 1 \end{cases}$$

Вероятность принять правильную гипотезу близка к единице!

Доказательство. Покажем, что вектор $\nu = (\nu_1, \dots, \nu_m)^T$ асимптотически нормален, то есть

$$\sqrt{n}(\nu/n-p) \xrightarrow{d} N(0, P-pp^T),$$
где $P \stackrel{\text{def}}{=} \begin{pmatrix} p_1^{\circ} & 0 \\ & \ddots & \\ 0 & p_m^{\circ} \end{pmatrix}$ (13)

Введем вектора X_1,\dots,X_n , где $X_i=(0,\dots,0,\frac{1}{j},0,\dots,0)^T$, если в i-ом испытании произошло A_j . Тогда $\nu=\sum_{i=1}^n X_i$

$$\sqrt{n}(\nu/n - p) = \sqrt{n} \sum_{i=1}^{n} (X_i - p)$$
 (14)

Здесь $\{X_i\}$ - н.о.р., $EX_1 = p$, $\operatorname{cov}(X_1, X_1) = \operatorname{E}(X_1 - p)(X_1 - p)^T = \operatorname{E}X_1X_1^T - pp^T = P - pp^T$. Поэтому соотношение (13) следует из соотноешния (14) и ЦПТ.

Матрица $P-pp^T$ вырождена, так как сумма ее столбцов равна нулю: если $e=(1,\dots,1)^T$, то $(P-pp^T)e=p-p(p^Te)=p-p=0$

Пусть

$$P^{-1/2} \stackrel{\text{def}}{=} \begin{pmatrix} \frac{1}{\sqrt{p_1^\circ}} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\sqrt{p_n^\circ}} \end{pmatrix}, \ \xi_n \stackrel{\text{def}}{=} \sqrt{n} P^{-1/2} (\nu/n - p)$$

В силу теоремы о наследовании слабой сходимости и соотношения (13)

$$\xi_n \xrightarrow{d} N(0, P^{-1/2}(P - pp^T)(P^{-1/2})^T) = N(0, E_m - zz^T),$$
где $z = (\sqrt{p_1^{\circ}}, \dots, \sqrt{p_m^{\circ}})^T$ (15)

Пусть ортогональная матрица $U = \begin{pmatrix} \sqrt{p_1^{\circ}} & \cdots & \sqrt{p_m^{\circ}} \\ \cdots & \cdots & \cdots \end{pmatrix}$. Тогда

$$U(E_m - zz^T)U^T = E_m - (Uz)(Uz)^T =$$

$$= \begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} = \begin{pmatrix} 0 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix} = \widetilde{E}_1$$

В силу (15) и теоремы о слабой сходимости

$$U\xi_n \xrightarrow{d} N(0, \widetilde{E}_1) = (0, \eta_2, \dots, \eta_m)^T$$
(16)

где $\{\eta_2,\ldots,\eta_m\}$ - независимые N(0,1) сл.в. Из (16) и теоремы о наследовании слабой сходимости следует:

$$|U\xi_n|^2 \xrightarrow{d} \eta_2^2 + \ldots + \eta_m^2 \sim \chi^2(m-1)$$
 (17)

Осталось заметить, что

$$|U\xi_n|^2 = |\xi_n|^2 = \sum_{j=1}^m \left[\frac{1}{\sqrt{p_j^\circ}} \sqrt{n} (\nu_j/n - p_j^\circ) \right]^2 = \sum_{j=1}^m \frac{(\nu_j - np_j^\circ)^2}{np_j^\circ} = \chi_n^2$$

Из этого равенства и соотноешния (17) следует теорема Пирсона.

Пример (Проверка простой гипотезы о виде функции распределения). $X = (X_1, \dots, X_n)$, $\{X_i\}$ - n.o.p., $X_1 \sim F(x)$.

 $H_0: F(x) = F_0(x), (F_0 \ uзвестна)$

 $H_1: F(x) = F_1(x), F_1(x) \neq F_0(x)$

Разобъем носитель X_1 на непересекающиеся отрезки $\Delta_1,\ldots,\Delta_m,\ m\geq 2$ так, что $X_1\in\Delta_1\cup\Delta_2\cup\ldots\cup\Delta_m$

$$p_j^{\circ} \stackrel{\text{def}}{=} P(X_1 \in \Delta_j | H_0) = \int_{\Delta_j} dF_0(x) > 0 \ \forall j$$

Тогда $\sum_{j=1}^{m} p_{j}^{\circ} = 1$. С каждой величиной X_{i} свяжем испытание с исходами A_{1}, \ldots, A_{m} , причем A_{j} происходит тогда и только тогда, когда $X_{i} \in \Delta_{j}$. При H_{0} $P(A_{j}) = p_{j}^{\circ}$. Тогда наблюдения X_{1}, \ldots, X_{n} порождают полиномиальную схему независимых испытаний. Пусть ν_{j} -число исхода A_{j} в этих испытаниях, то есть число наблюдений среди X_{1}, \ldots, X_{n} , попавших в Δ_{j} . В силу теоремы Пирсона:

$$\chi_n^2 \stackrel{def}{=} \sum_{j=1}^m \frac{(\nu_j - np_j^\circ)^2}{np_j^\circ} \xrightarrow[H_0]{d} \chi^2(m-1)$$

<u>Правило</u>: H_0 будем отвергать, если $\chi_n^2 > \chi_{1-\alpha}(m-1)$. (α задано) Тогда $\mathrm{P}(H_1|H_0) \to \alpha$, $n \to \infty$.

$$p_j \stackrel{def}{=} P(X_1 \in \Delta_j | H_1) = \int_{\Delta_j} dF_1(x)$$

Если верна H_1 и хоть при одном j $p_j \neq p_j^{\circ}$, то $P(H_0|H_1) = P(\chi_n^2 < \chi_{1-\alpha}(m-1)|H_1) \to 0$

Замечание. Если $F_0 \not\equiv F_1$, но $p_j = p_j^{\circ} \ \forall j$, то $P(H_0|H_1) = P(H_0|H_0) \to 1 - \alpha \neq 0$. Например:

Здесь $P(X_1 \in \Delta_1|H_0) = F_0(0) = P(X_1 \in \Delta_1|H_1) = F_1(0)$. Значит, $u P(X_1 \in \Delta_2|H_0) = 1 - F_0(0) = P(X_1 \in \Delta_1|H_1) = 1 - F_1(0)$.

Проверка сложной гипотезы в схеме испытаний Бернулли

Пусть проводится n независимых испытаний, исходы $A_1, \ldots, A_m, \nu = (\nu_1, \ldots, \nu_m)^T$ - вектор наблюдений. Пусть $H_0: P(A_j) = p_j(\theta), \ \theta \in \Theta \in \mathbb{R}^k, \ k < m-1.$

Условия регулярности

1.
$$\sum_{j=1}^{m} p_j(\theta) = 1, \ \theta \in \Theta$$

2.
$$p_j(\theta) \ge c > 0 \ \forall j = 1, \dots, m \ \text{if} \ \exists \frac{\partial p_j(\theta)}{\partial \theta_l}, \frac{\partial^2 p_j(\theta)}{\partial \theta_l \partial \theta_r}$$

3.
$$rank(\underbrace{\frac{\partial p_j(\theta)}{\partial \theta_l}}) = k, \ \forall \theta \in \Theta$$

В качестве оценки θ при H_0 будем использовать мультиномиальные оценки максимального правдоподобия:

$$P(\nu_1 = k_1, \dots, \nu_m = k_m) = \frac{n!}{k_1! \dots k_m!} p_1^{k_1}(\theta) \dots p_m^{k_m}(\theta)$$

логарифмического правдоподобия:

$$L_n(\nu, \theta) = \ln\left(\frac{n!}{\nu_1! \dots \nu_m!}\right) + \sum_{j=1}^m \nu_j \ln p_j(\theta)$$

оценки максимального правдоподобия (мультиномиальные):

$$L_n(\nu,\theta) \to \max_{\theta \in \Theta}$$

2.5Теорема Фишера

Пусть выполнены условия регулярности, $\widehat{\theta}_n$ - мульт. о.м.п. Тогда

$$\widehat{\chi}_n^2 = \sum_{j=1}^m \frac{(\nu_j - np_j(\widehat{\theta}_n))^2}{np_j(\widehat{\theta}_n)} \xrightarrow[H_0]{d} \chi(m - k - 1)$$

Правило: Если $\widehat{\chi}_n^2 \leq \chi_{1-\alpha}(m-k-1)$, то принимаем H_0 , иначе принимаем H_1 . Тогда $P(\overline{H_0}|H_0) \to$

Пример (Проверка независимости признаков). Пусть объект классифицирован по двум А $u B, A = \{A_1, \ldots, A_s\}, B = \{B_1, \ldots, B_r\}, s > 1, r > 1.$ Проводится п опытов, и пусть ν_{ij} число объектов, имеющих признаки A_iB_i .

Пусть $p_{ij} = P(A_iB_j)$. Гипотеза независимости H_0 : $p_{ij} = p_{i\bullet}p_{\bullet j}$ для положительных $p_{i\bullet}$ и $p_{\bullet j}$ таких, что $\sum_{i=1}^s p_{i\bullet} = 1$, $\sum_{j=1}^r p_{\bullet j} = 1$. При H_0 логарифмическое правдоподобие

$$L_n(\nu, p_{i\bullet}, p_{\bullet j}) = \ln \frac{n!}{\prod_{i,j} \nu_{ij}} + \sum_{i=1}^s \sum_{j=1}^r \nu_{ij} \ln(p_{i\bullet} p_{\bullet j})$$

Максимизируя эту функцию по $p_{i\bullet}$, $p_{\bullet j}$ при условиях, что $\sum_{i=1}^{s} p_{i\bullet} = 1$, $\sum_{j=1}^{r} p_{\bullet j} = 1$, находим оценки

$$\widehat{p}_{i\bullet} = \frac{\nu_{i\bullet}}{n}, \ \widehat{p}_{\bullet j} = \frac{\nu_{\bullet j}}{n}, \ \textit{ede} \ \nu_{i\bullet} = \sum_{j} \nu_{ij}, \ \nu_{\bullet j} = \sum_{i} \nu_{ij}$$

Статистика Хи-квадрат имеет вид

$$\widehat{\chi}_n^2 = \sum_{i=1}^s \sum_{j=1}^r \frac{(\nu_{ij} - n\widehat{p}_{i\bullet}\widehat{p}_{\bullet j})^2}{n\widehat{p}_{i\bullet}\widehat{p}_{\bullet j}}$$

$$\widehat{\chi}_n^2 \xrightarrow[H_0]{d} \chi((s-1)(r-1))$$

 $\max \max m - k - 1 = sr - (s + r - 2) - 1 = (s - 1)(r - 1).$

<u>Правило</u>: Если $\widehat{\chi}_n^2 > \chi_{1-\alpha}((s-1)(r-1))$, то отвергаем H_0 . Асимптотический уровень теста есть а

Пример (W.H.Gilby. Biometrika, 8,94). 1725 школьников классифицировали в соответствии с их качеством одежды и в соответствии с умственными способностями. Использовали следующие градации:

A – умственно отсталый

B — медлительный и тупой

C – mynoŭ

D - медлительный, но умный

 H_0 : признаки независимы

E — достаточно умный

F – cnocoбный

G — очень способный

	Способности						
Как одевается	АиВ	С	D	Е	F	G	Сумма
Очень хорошо	33	48	113	209	194	39	636
Хорошо	41	100	202	255	138	15	751
Сносно	39	58	70	61	33	4	256
Очень плохо	17	13	22	10	10	1	73
Сумма	130	219	407	535	375	59	1725

Здесь
$$\chi_n^2=174.92>\chi_{0.999}(15)=37.697.$$
 Здесь $15=(s-1)(r-1)=(4-3)(6-1)\Rightarrow$ Отвергаем H_0

3 Введение в робастное оценивание

Схема засорений Мартина-Йохаи имеет вид:

$$y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, \dots, n$$

Здесь $\{u_t\}$ - "полезный сигнал" (временной ряд);

 $\{z_t^\gamma\}$ - н.о.р. сл.в., $z_1^\gamma \sim Bin(1,\gamma)$ с $0 \le \gamma \le 1$ (γ - уровень засорения);

 $\{\xi_t\}$ - н.о.р. сл.в. - грубые выбросы, ξ_1 - имеет распределение $\mu_{\xi} \in M_{\xi}$; Распределение μ_{ξ} неизвестно, а множество M_{ξ} известно;

Последовательности $\{u_t\}, \{z_t^\gamma\}, \{\xi_t\}$ независимы между собой.

Пусть y_1, \ldots, y_n - наблюдения, и распределение вектора $Y_n = (y_1, \ldots, y_n)$ зависит от неизвестного параметра β . Пусть $\hat{\beta}_n$ - некоторая оценка β

Основное предположение

При любом $0 \le \gamma \le 1$ существует предел

$$\hat{\beta}_n \xrightarrow{P} \theta_{\gamma}, \ n \to \infty; \ \theta_0 = \beta$$

Опр. 1. Если существует предел

$$IF(\theta_{\gamma}, \mu_{\xi}) \stackrel{def}{=} \lim_{\gamma \to +0} \frac{\theta_{\gamma} - \theta_{0}}{\gamma}$$

то $IF(\theta_{\gamma},\mu_{\xi})$ называется функционалом влияния оценки $\widehat{\beta}_n$

Если функционал влияния существует, то

$$\theta_{\gamma} = \theta_0 + IF(\theta_{\gamma}, \mu_{\xi})\gamma + \overline{\overline{o}}(\gamma), \ \gamma \to +0$$

 $IF(\theta_\gamma,\mu_\xi)$ характеризует главный линейный по γ член в разложении по γ асимптотического смещения $\theta_\gamma-\theta_0=\theta_\gamma-\beta$

Опр. 2. Величина $GES(\theta_{\gamma}, M_{\xi}) \stackrel{def}{=} \sup_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}, \mu_{\xi})|$ называется чувствительностью оценки $\widehat{\beta}_n$ к засорениям (выбросам).

Если $GES(\theta_{\gamma}, M_{\xi}) < \infty$, то главный член по γ асимптотического смещения $IF(\theta_{\gamma}, \mu_{\xi})\gamma$ равномерно по μ_{ξ} таких γ

Опр. 3. Если $GES(\theta_{\gamma}, M_{\xi}) < \infty$, то оценка $\widehat{\beta}_n$ называется **робастной по смещению**, или B-робастной.

Пример (Выборочное среднее).

$$\begin{cases} u_t = a + \varepsilon_t \\ y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, \dots, n \end{cases}$$

 $\{\varepsilon_t\}$ - н.о.р. сл.в., $\mathrm{E}\varepsilon_1=0$ (тогда $\mathrm{E} u_t=a$), $\mathrm{E} |\xi_1|<\infty$

Возьмем оценкой а эмпирическое среднее $\overline{y} = \frac{1}{n} \sum_{t=1}^{n} y_t$. Тогда $\overline{y} \xrightarrow{P} E(u_1 + z_1^{\gamma} \xi_1) = a + \gamma E \xi_1 = \theta_{\gamma}^{LS}$ Функция θ_{γ}^{LS} определена при всех γ ,

$$\frac{d\theta_{\gamma}^{LS}}{d\gamma} = E\xi_1 = IF(\theta_{\gamma}^{LS}, \mu_{\xi})$$

Eсли M_1 - класс распределений с конечным первым моментом, то

$$GES(\theta_{\gamma}^{LS}, M_1) = \sup_{\mu_{\xi} \in M_1} |E\xi_1| = \infty$$

Oценка \overline{y} не B-робастна на классе $M_1!$

Пример (Выборочная медиана). Пусть

$$u_t = a + \varepsilon_t, \ t = 1, \dots, n, \ \epsilon \partial e \left\{ \varepsilon_t \right\} - \text{h.o.p. c.n.e.}$$
 (1)

 $\varepsilon_1 \sim G(x),$ функция распределения G(x) неизвестна, G(0) = 1/2. Тогда функция распределения u_1 есть F(x) = G(x-a), то есть F(a) = 1/2. Таким образом, медиана G(x) это 0, медиана F(x) - a.

Eсли ε_1 имеет симметричное относительно 0 распределение (то есть $\varepsilon_1 \stackrel{d}{=} -\varepsilon_1$, что для непрерывной G(x) равносильно условию $G(x) + G(-x) = 1 \ \forall x$), то автоматически G(0) = 1/2. Если вдобавок $E|\varepsilon_1| < \infty$, то $E\varepsilon_1 = 0$, $Eu_1 = a$

Итак, при сформулированных условия оценку медианы можно использовать как оценку математического ожидания.

 $\Pi y cm v \ u_{(1)} \leq u_{(2)} \leq \ldots \leq u_{(n)}$ будет вариационный ряд наблюдений u_1, \ldots, u_n .

Опр. 4. Величина

$$\widehat{m}_n = \begin{cases} u_{(k+1)} & n = 2k - 1\\ \frac{u_{(k+1)} + u_{(k)}}{2} & n = 2k \end{cases}$$

называется выборочной медианой наблюдений u_1, \ldots, u_n .

Мы знаем, что если G(x) дифф. в нуле, u g(0) = G'(0) > 0, то для выборочной медианы справедлива асимптотическая нормальность:

$$\sqrt{n}(\widehat{m}_n - a) \xrightarrow{d} N(0, \frac{1}{4q^2(0)}), \ n \to \infty$$

Если в (1) $\{\varepsilon_t\}$ - н.о.р., $E\varepsilon_1 = 0$, $0 < E\varepsilon_1^2 = \sigma^2 < \infty$, то $\sqrt{n}(\widetilde{u} - a) \xrightarrow{d} N(0, \sigma^2)$. Значит асимптотическая оптимальная эффективность выборочной медианы относительно \widetilde{u} равна

$$e_{\widehat{m}_n, \ \overline{X}} = 4g^2(0)\sigma^2$$

Изучим В-робастность выборочной медианы. Пусть

$$\begin{cases} u_t = a + \varepsilon_t \\ y_t = u_t + z_t^{\gamma} \xi_t, \ t = 1, \dots, n \end{cases} \widehat{m}_n^y = \begin{cases} y_{(k+1)}, \ n = 2k - 1 \\ \frac{y_{(k)} + y_{(k+1)}}{2}, \ n = 2k \end{cases}$$

Теорема 1.

Пусть $\exists g(x) = G'(x), g(x)$ непрерывна и ограничена, g(0) > 0, G(0) = 1/2. Тогда:

1.
$$\widehat{m}_n^y \xrightarrow{P} \theta_\gamma^m, \ \theta_0 = a$$

2. Существует функционал влияния выборочной медианы

$$IF(\theta_{\gamma}^{m}, \mu_{\xi}) = \frac{1 - 2EG(-\xi_{1})}{2g(0)}$$

3. Чувствительность выборочной медианы на классе всех возможных распределений M_{ξ}

$$GES(\theta_{\gamma}^m, \mu_{\xi}) = \sum_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}^m, \mu_{\xi})| = \frac{1}{2g(0)} < \infty$$

то есть выборочная медиана В-робастна.

Доказательство. 1. Выборочная медиана \widehat{m}_n^y удовлетворяет уравнению

$$l_n(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^n sgn(y_t - \theta) = 0, \text{ где } sgn(x) = \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 0 \end{cases}$$
 (2)

Справедливость формулы (2) легко понять из следующих рисунков:

Так бывает всегда: при нечетном n решение уравнения (2) всегда $\exists !$, это \widehat{m}_n^y ; при четном n решений целый интервал и \widehat{m}_n^y - его середина.

В силу Закона Больших Чисел при любом θ и любом $0 \leq \gamma \leq 1$

$$l_n(\theta) = \frac{1}{n} \sum_{t=1}^n sgn(y_t - \theta) \xrightarrow{P} Esgn(y_1 - \theta) \stackrel{\text{def}}{=} \Lambda_M(\gamma, \theta)$$

Задача: Пусть ξ и η - независимые случайные векторы, причем η - дискретный вектор со значениями η_1, η_2, \dots Проверить, что

$$\mathrm{E}\phi(\xi,\eta)=\sum_{k\geq 1}\mathrm{E}\phi(\xi,\eta_k)\mathrm{P}(\eta=\eta_k)=\sum_{k\geq 1}\mathrm{E}(\phi(\xi,\eta_k)|H_k)\mathrm{P}(H_k),$$
 где гипотеза $H_k=(\eta=\eta_k)$

Найдем удобный вид для $\Lambda_M(\gamma, \theta)$. Имеем

$$\Lambda_M(\gamma, \theta) = E(1 - 2I(y_1 - \theta \le 0)) = 1 - 2EI(\varepsilon_1 \le \theta - a - z_1^{\gamma} \xi_1) = 1 - 2EG(\theta - a - z_1^{\gamma} \xi_1)$$
 (3)

так как $signx=1-2I(x<0),\ x\neq 0.$ Чтобы упростить (3), введем две гипотезы $H_1=(z_1^{\gamma}=0)$ и $H_2=(z_2^{\gamma}=1).$ Тогда, используя задачу, получаем из (3):

$$\Lambda_M(\gamma, \theta) = 1 - 2(1 - \gamma)G(\theta - a) - 2\gamma EG(\theta - a - \xi_1)$$

Функция $\Lambda_M(\gamma, \theta)$ определена при всех γ, θ .

- 2. Функция $\Lambda_M(\gamma, \theta)$ в окрестности точки (0, a) удовлетворяет всем предположениям теормы о неявной функции. А именно:
 - (a) $\Lambda_M(0,a) = 1 2G(0) = 0$
 - (b) Существует и непрерывны по паре (γ, θ) функции $\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \gamma}$ и $\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta}$

(c)

$$\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta} = -2g(0) \neq 0$$

Значит, в окрестности точки (0,a) определена функция $\theta_m(\gamma)=\theta_\gamma^m$ такая, что

$$\Lambda_M(\gamma, \theta_{\gamma}^m) = 0$$

Кроме того, $\theta_0^m=a;\;\theta_\gamma^m\to\theta_0$ при $\gamma\to0;$ Функция θ_0^m дифференцируема в точке $\gamma=0,$ и

$$\frac{d\theta_{\gamma}^{m}}{d\gamma}\bigg|_{\gamma=0} = -\left(\frac{\partial \Lambda_{m}(0,a)}{\partial \theta}\right)^{-1} \frac{\partial \Lambda_{m}(0,a)}{\partial \gamma} = \frac{1 - 2EG(-\xi_{1})}{2g(0)} \tag{4}$$

3. Покажем, что

$$\widehat{m}_n^y \xrightarrow{\mathrm{P}} \theta_{\gamma}^m, \ n \to \infty$$
 (5)

Тогда из (4)-(5) будет слеовать, что функционал влияния выборочной медианы равен

$$IF(\theta_{\gamma}^{m}, \mu_{\xi}) = \frac{1 - 2EG(-\xi_{1})}{2g(0)}$$
 (6)

Модуль числителя в (6) не больше единицы, причем если θ_1 неслучайно и $\theta_1 \to \infty$, то числитель стремится к единице. Значит,

$$GES(\theta_{\gamma}^{m}, M_{\xi}) = \sup_{\mu_{\xi} \in M_{\xi}} |IF(\theta_{\gamma}^{M}, \mu_{\xi})| = \frac{1}{2g(0)}$$

то есть мы докажем теорему.

Докажем (5). Имеем при малых γ , ξ , θ (γ -фикс.) вблизи a:

$$\frac{\partial \Lambda_M(\gamma, \theta)}{\partial \theta} = -2(1 - \gamma)g(\theta - a) - 2\gamma Eg(\theta - a - \xi_1) < 0$$

то есть $\underline{\Lambda_M(\gamma,\theta)}$ убывает по $\underline{\theta}$. Значит, $\begin{cases} \Lambda_M(\gamma,\theta_\gamma^m-\Delta)>0\\ \Lambda_M(\gamma,\theta_\gamma^m+\Delta)<0 \end{cases}$ Но

$$\begin{cases}
l_n(\theta_{\gamma}^m - \Delta) \xrightarrow{P} \Lambda_M(\gamma, \theta_{\gamma}^m - \Delta) > 0 \\
l_n(\theta_{\gamma}^m + \Delta) \xrightarrow{P} \Lambda_M(\gamma, \theta_{\gamma}^m + \Delta) < 0
\end{cases}$$
(7)

Функция $l_n(\theta)$ монотонно убывает (точнее, не возрастает) по θ . В силу (7) с вероятностью сколь угодно близкой к единице при достаточно больших n все корни уравнения $l_n(\theta)=0$ лежат в интервале $(\theta_{\gamma}^m-\Delta,\theta_{\gamma}^m+\Delta)$. А значит и выборочная медиана тоже! Поскольку $\Delta>0$ любое, то получаем

$$\widehat{m}_n^y \xrightarrow{\mathrm{P}} \theta_\gamma^m, \ n \to \infty$$

что и доказывает теорему.

Как находить функционал влияния в общей ситуации?

Пусть оценка $\widehat{\beta}_n$ ищется как корень уравнения:

$$l_n(\theta) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{t=1}^n \phi_t(J_n, \theta) = 0$$
 (8)

Пусть будут выполнены следующие условия

1.

$$l_n(\theta) = \frac{1}{n} \sum_{t=1}^n \phi_t(J_n, \theta) \xrightarrow{P} \Lambda(\gamma, \theta)$$

при всех $|\theta - \beta| < \delta, \ 0 \le \gamma < \gamma_0$

- 2. $\Lambda(0,\beta) = 0$
- 3. Пусть $\Lambda(\gamma, \theta)$ можно продолжить на отрезок малых γ так, что при $|\theta \beta| < \delta$, $|\gamma| < \gamma_0$ сущесвтуют и непрерывны по паре аргументов (γ, θ) частные производные $\frac{\partial \Lambda(\gamma, \theta)}{\partial \gamma}$, $\frac{\partial \Lambda(\gamma, \theta)}{\partial \theta}$.
- 4. Пусть $\lambda(\beta) \stackrel{\text{def}}{=} \frac{\partial \Lambda(0,\theta)}{\partial \theta} \neq 0$

Теорема 2.

Пусть выполнены условия (1)-(4), и функции $\phi_t(J_n, \theta)$ непрерывны по θ . Тогда уравнение (8) с вероятностью, стремящейся к единице при $n \to \infty$, имеет при достаточно малых $\gamma > 0$ решение $\widehat{\beta}_n$, что соответствующая оценка $\widetilde{\beta}_n \stackrel{P}{\to} \theta_{\gamma}$, $\theta_0 = 0$, и существует функционал влияния:

$$IF(\theta_{\gamma}, \mu_{\xi}) = -\frac{1}{\lambda(\beta)} \frac{\partial}{\partial \gamma} \Lambda(0, \beta)$$

Пример (М-оценка медианы). Пусть

$$\begin{cases} u_t = a + \varepsilon_t \\ y_t = u_t + z_t^{\gamma} \xi_t \end{cases} \quad \{\varepsilon_t\} \text{-n.o.p.}, \ \varepsilon_1 \sim g(x) = G'(x), \ g(x) = g(-x)$$

Tогда a - медиана функции распределения случайной величины u_1 .

Будем искать оценку a, обозначим ее как \widehat{a}_n , как корень уравнения

$$\sum_{t=1}^{n} \psi(y_t - \theta) = 0 \tag{9}$$

Тогда оценка называется М**-оценкой**. В частности, при $\psi(x) = x$, $\widehat{a}_n = \overline{y}$; при $\psi(x) = sgn(x)$, $\widehat{a}_n = \widehat{m}_n^y$.

Пусть выполняются условия:

1. $\psi(x)$ - нечетная строго возрастающая фунцкия

$$\lim_{x \to +\infty} \psi(x) = c_1 > 0, \ \lim_{x \to -\infty} \psi(x) = c_2 < \infty$$

2. Существует непрерывная и ограниченая $\psi'(x)$, $E\psi'(\varepsilon_1) \neq 0$

Тогда уравнение (9) всегда имеет и притом <u>единственное</u> решение. Условия (1)-(2) выполнены, например, для $\psi(x) = \arctan(x)$.

Hайдем функционал влияния и чувствительность M-оценки, используя теорему 2. Проверим ее условия:

1.

$$\frac{1}{n} \sum_{t=1}^{n} \psi(y_t - \theta) \xrightarrow{P} E\psi(y_1 - \theta) \stackrel{def}{=} \Lambda(\gamma, \theta), \ \forall \theta, \ \forall 0 \le \gamma \le 1$$

Введем гипотезы $H_1=(z_1^{\gamma}=0),\ H_2=(z_2^{\gamma}=0).$ Тогда

$$\Lambda(\gamma, \theta) = \sum_{i=1}^{2} E(\psi(\underbrace{\varepsilon_1 + a + z_1^{\gamma} \xi_1}_{y_1} - \theta) | H_i) P(H_i) = (1 - \gamma) E\psi(\varepsilon_1 + a - \theta) + \gamma E\psi(\varepsilon_1 + \xi_1 + a - \theta)$$

- 2. $\Lambda(0,a) = \mathrm{E}\psi(\varepsilon_1) = 0$, так как $\psi(x)$ нечетная, а g(x)-четная.
- 3. Функция $\Lambda(\gamma,\theta)$ определена при всех γ и θ . Частные производные $\frac{\partial \Lambda(\gamma,\theta)}{\partial \gamma}$, $\frac{\partial \Lambda(\gamma,\theta)}{\partial \theta}$ существуют при условиях (1)-(2) и непрерывны по паре (γ,θ) . В частности,

$$\frac{\partial \Lambda(0, a)}{\partial \gamma} = -E\psi(\varepsilon_1) + E\psi(\varepsilon_1 + \xi_1) = E\psi(\varepsilon_1 + \xi_1)$$

4.
$$\frac{\partial \Lambda(0,a)}{\partial \theta} = -E\psi'(\varepsilon_1) \neq 0$$

B силу теоремы 2

$$\widehat{a}_n \xrightarrow{P} \theta_{\gamma}, \ \theta_0 = a$$

$$IF(\theta_{\gamma}, \mu_{\xi}) = \frac{E\psi(\varepsilon_1 + \xi_1)}{E\psi'(\varepsilon_1)}$$

$$GES(\theta_{\gamma}, M_{\xi}) \leq \frac{\max\{|c_1|, |c_2|\}}{\mathrm{E}\psi'(\varepsilon_1)} < \infty, \ M_{\xi}$$
-класс всех вер. распределений

4 Статистический анализ авторегрессионных моделей.

Пусть $\ldots, S_{-1}, S_0, S_1, \ldots$ - стоимости ценных бумаг, например, акций. Величины

$$u_t = \ln(S_t/S_{t-1}) = \ln S_t - \ln S_{t-1}$$

называются логарифмическими приращениями и для описания их поведения часто используют стохастические разностные уравнения. Например, AR(p)-уравнение имеет вид

$$u_t = \beta_1 u_{t-1} + \beta_2 u_{t-2} + \ldots + \beta_p u_{t-p} + \varepsilon_t, \ t \in \mathbb{Z}$$

Здесь $\{\varepsilon_t\}$ - н.о.р. сл.в., $\mathrm{E}\varepsilon_1=0,\,0<\mathrm{E}\varepsilon_1^2=\sigma^2<\infty;\,\beta_1,\ldots,\beta_p\in\mathbb{R}^1\ (\beta_p\neq 0)$ - это неизвестные коэффициенты авторегрессии.

Иногда удобно рассматривать AR(p)-уравнение для $t\equiv 1,2,\ldots$ при начальных условиях $u_{1-p},\ldots,u_n.$

ARCH(p)-уравнение имеет вид:

$$u_t = \sigma_t \varepsilon_t$$
, где $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \ldots + \alpha_p u_{t-p}^2$, $t \in \mathbb{Z}$

Здесь $\alpha_0 > 0$, $\alpha_k \ge 0$, $\alpha_p > 0$, $\{\varepsilon_t\}$ - н.о.р., $\mathrm{E}\varepsilon_1 = 0$, $\mathrm{E}\varepsilon_1^2 = 1$

4.1 Метод максимального правдоподобия и метод наименьших квадратов в авторегрессии.

AR(1)-модель.

$$u_t = \beta u_{t-1} + \varepsilon_t, \ t = 1, 2, \dots; \ u_0 = 0, \ \beta \in \mathbb{R}^1, \ \{\varepsilon_t\}$$
 - н.о.р. сл.в, $\mathrm{E}\varepsilon_1 = 0, \ 0 < \mathrm{E}\varepsilon_1^2 < \infty$ (1)

Тогда

$$u_t = \beta(\beta u_{t-2} + \varepsilon_{t-1}) + \varepsilon_t = \varepsilon_t + \beta \varepsilon_{t-1} + \beta^2 u_{t-2} = \dots = \varepsilon_t + \beta \varepsilon_{t-1} + \dots + \beta^{t-1} \varepsilon_1$$

1. Стационарный случай $|\beta| < 1$.

$$u_t \xrightarrow{\text{c.k.}} u_t^0 \stackrel{\text{def}}{=} \sum_{j>0} \beta^j \varepsilon_{t-j}$$

и ряд средне-квадратично сходится, так как

$$E(u_t - u_t^{\circ})^2 = E(\sum_{j \ge t} \beta^j \varepsilon_{t-j})^2 = E\varepsilon_1^2 \sum_{j \ge t} \beta^{2j} = \underline{\underline{\mathcal{O}}}(\beta^{2t}) = \overline{\overline{\mathcal{O}}}(1), \ t \to \infty$$

- 2. Критический случай (неустойчивая авторегрессия) $|\beta|=1$
- 3. Взрывающаяся авторегрессия $|\beta|>1$

$$\mathrm{D}u_t = \mathrm{D}\sum_{j=1}^{t-1}\beta^j\varepsilon_{t-j} = \mathrm{E}\varepsilon_1^2\sum_{j=0}^{t-1}\beta^{2j} = \underbrace{\mathrm{E}\varepsilon_1^2(1-\beta^{2t})}_{1-\beta^2} = \underline{\underline{\mathcal{Q}}}(\beta^{2t}) \to \infty, \ t \to \infty \text{ эксп. быстро}$$

Мы знаем: оптимальный средне-квадратичный прогноз u_{n+1} по u_1, \ldots, u_n есть $\widetilde{u}_{n+1} = \beta u_n$. Надо уметь оценивать β !

Пусть $\varepsilon_1 \sim g(x)$, ???. Положим

$$\mathcal{E} \stackrel{\text{def}}{=} (\varepsilon_1, \dots, \varepsilon_n)^T, \ U = (u_1, \dots, u_n)^T, \ B = \begin{pmatrix} 1 & & 0 \\ -\beta & \ddots & \\ & \ddots & \ddots \\ 0 & & -\beta & 1 \end{pmatrix}$$

Тогда из (1)

$$\mathcal{E} = BU \Rightarrow U = B^{-1}\mathcal{E} \tag{2}$$

Пл.в. вектора \mathcal{E} есть $g_{\mathcal{E}}(x_1,\ldots,x_n)=\prod_{i=1}^n g(x_i)$. Тогда пл.в. вектора U есть в силу (2)

$$g_n(y,\beta) = \frac{1}{|\det(B^{-1})|} g_{\mathcal{E}}(By) = \begin{vmatrix} By = \begin{pmatrix} y_1 - \beta * 0 \\ y_2 - \beta y_1 \\ \vdots \\ y_n - \beta y_{n-1} \end{pmatrix} = \prod_{t=1}^n g(y_t - \beta y_{t-1}),$$
где $y = (y_1, \dots, y_n)$

О.м.п. для β - решение задачи

$$\ln g_U(U,\theta) = \sum_{t=1}^n \ln g(u_t - \theta u_{t-1}) \to \max_{\theta \in \mathbb{R}^1}$$
 (3)

Для гладкой g уравнение максимального правдоподобия

$$\sum_{t=1}^{n} u_{t-1} \frac{g'(u_t - \theta u_{t-1})}{g(u_t - \theta u_{t-1})} = 0$$
(4)

Пример $(\varepsilon_1 \sim N(0, \sigma^2))$. Тогда $g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{x^2}{2\sigma^2}\right\}$ и задача (3) имеет вид

$$\sum_{t=1}^{n} \ln \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ -\frac{(u_t - \theta u_{t-1})^2}{2\sigma^2} \right\} \to \max_{\theta \in \mathbb{R}^1}$$

Последняя задача эквивалентна следующей:

$$\sum_{t=1}^{n} (u_t - \theta u_{t-1})^2 \to \min_{\theta \in \mathbb{R}^1}$$
 (5)

Peшeнue задачи (5) - o.м.n.

$$\widehat{\beta}_{n,ML} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2}$$
 (6)

Если мы не предполагаем гауссовость ε_1 , то решение задачи (5) есть о.н.к.

$$\widehat{\beta}_{n,LS} = \frac{\sum_{t=1}^{n} u_{t-1} u_t}{\sum_{t=1}^{n} u_{t-1}^2}$$
 (7)

Oценка $\widehat{\beta}_{n,ML}$ - параметрическая, а $\widehat{\beta}_{n,LS}$ - непараметрическая.

Пример $(\varepsilon_1 \sim Lap(\lambda))$. Тогда $g(x) = \frac{\lambda}{2} \exp\{-\lambda |x|\}, \ \lambda > 0$. Задача (5) имеет вид:

$$\sum_{t=1}^{n} \ln \frac{\lambda}{2} \exp \left\{ -\lambda |u_t - \theta u_{t-1}| \right\} \to \max_{\theta \in \mathbb{R}^1}$$

что эквивалентно задаче

$$\sum_{t=1}^{n} |u_t - \theta u_{t-1}| \to \min_{\theta \in \mathbb{R}^1}$$
 (8)

Решение (8) - о.м.п. $\widehat{\beta}_{n,ML}$. Если распредение ε_1 неизвестно, то решение (8) - о.н.м. $\widehat{\beta}_{n,LS}$. Оценка $\widehat{\beta}_{n,LS}$ не выписывается явно!

Рассмотрим случай гауссовских $\{\varepsilon_t\},\ \varepsilon_1 \sim N(0,1)$. Пусть

$$d_n^2(\beta) \stackrel{\text{def}}{=} \begin{cases} \frac{u}{1-\beta^2}, & |\beta| < 1\\ \frac{u^2}{2}, & |\beta| = 1\\ \frac{\beta^{2n}}{(\beta^2 - 1)^2}, & |\beta| > 1 \end{cases}$$

Покажем, что $d_n^2(\beta) \sim J_n(\beta)$, $n \to \infty$, где $J_n(\beta)$ - информации Фишера о параметре β , содержащаяся в u_1, \ldots, u_n . Действительно, если $U = (u_1, \ldots, u_n), \ y = (y_1, \ldots, y_n)$, то пл. вер.

$$g_U(y,\beta) = \left(\frac{1}{\sqrt{2\pi}}\right) \exp\left\{-\frac{1}{2} \sum_{t=1}^n (y_t - \beta y_{t-1})^2\right\}$$

и поэтому

$$J_n(\beta) = \mathcal{E}_{\beta} \left(\frac{\partial}{\partial \beta} \ln g_U(U, \beta) \right)^2 = \mathcal{E}_{\beta} \left(\frac{\partial}{\partial \beta} \left(-\frac{1}{2} \sum_{t=1}^n (u_t - \beta u_{t-1})^2 \right) \right) =$$

$$= \mathcal{E}_{\beta} \left(\sum_{t=1}^n u_{t-1} (u_t - \beta u_{t-1}) \right)^2 = \mathcal{E}_{\beta} \left(\sum_{t=1}^n u_{t-1} \varepsilon_t \right)^2 = \sum_{t=1}^n \mathcal{E}_{\beta} u_{t-1}^2 = \sum_{t=1}^{n-1} \mathcal{E}_{\beta} u_t^2$$

Ho $u_t = \sum_{j=0}^{t-1} \beta^j \varepsilon_{y-j}$, и

$$Eu_t^2 = E(\sum_{j=0}^{t-1} \beta^j \varepsilon_{t-j})^2 = \sum_{j=1}^{t-1} \beta^{2j} = \begin{cases} \frac{1-\beta^{2t}}{1-\beta^2}, & |\beta| \neq 1\\ t, & |\beta| = 1 \end{cases}$$

Значит,

$$J_N(\beta) = \begin{cases} \frac{u-1}{1-\beta^2} - \frac{\beta^2(1-\beta^{2(n-1)})}{(1-\beta^2)^2}, & |\beta| \neq 1\\ \frac{(n-1)(1+(n-1))}{2}, & |\beta| = 1 \end{cases}$$

Отсюда

$$J_n(\beta) \sim \begin{cases} \frac{u}{1-\beta^2}, & |\beta| < 1\\ \frac{u^2}{2}, & |\beta| = 1\\ \frac{\beta^{2n}}{(\beta^2 - 1)^2}, & |\beta| > 1 \end{cases} = d_n^2(\beta)$$

Распределение Коши с параметрами (0,1) обозначается $K(0,1), f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Пусть $W(s), s \in [0,1]$ - стандартный винеровский процесс. Обозначим $H(\beta), |\beta| = 1$, распределение сл. в. β

$$H(\beta) = \frac{W^2(1) - 1}{2^{3/2} \int_0^1 W^2(s) ds}$$

Теорема 1.

Пусть $\{\varepsilon_t\}$ -н.о.р. сл.в., $\varepsilon_1 \sim N(0,1)$. Тогда

$$d_n(\beta)(\widehat{\beta}_{n,ML} - \beta) \xrightarrow{d} \begin{cases} N(0,1), & |\beta| < 1\\ H(0,1), & |\beta| = 1, \quad n \to \infty\\ K(0,1), & |\beta| > 1 \end{cases}$$

Доказательство.

$$\widehat{\beta}_{n,ML} = \frac{\sum_{t=1}^{n} u_{t-1} u_{t}}{\sum_{t=1}^{n} u_{t-1}^{2}} = \frac{\sum_{t=1}^{n} u_{t-1} (\beta u_{t-1} + \varepsilon_{t})}{\sum_{t=1}^{n} u_{t-1}^{2}} = \beta + \frac{\sum_{t=1}^{n} \varepsilon_{t} u_{t-1}}{\sum_{t=1}^{n} u_{t-1}^{2}}$$

Положим для краткости

$$M_n \stackrel{\text{def}}{=} d_n^{-1}(\beta) \sum_{t=1}^n \varepsilon_t u_{t-1}, \ V_n \stackrel{\text{def}}{=} d_n^{-2}(\beta) \sum_{t=1}^n u_{t-1}^2$$

Тогда

$$d_n(\beta)(\widehat{\beta}_{n,ML} - \beta) = \frac{M_n}{V_n}$$

Пусть $f_n(t,s)$ - совместная характеристическая функция M_n и V_n . Тогда (см [RAO M.M. Statist, 1978, V.6, pp. 185-190])

$$f_n(t,s) \to f(t,s) = \begin{cases} \exp\left\{is - \frac{t^2}{2}\right\}, & |\beta| < 1\\ (1 + t^2 - 2is)^{-1/2}, & |\beta| > 1 \end{cases}$$
 (9)

1. $|\beta| < 1$. Тогда f(t,s) есть характеристическая функция вектора $(\xi,1)^T$, где $\xi \sim N(0,1)$. Действительно,

$$\phi(t,s) = \operatorname{E} \exp\left\{i(t\xi + s)\right\} = e^{is}\phi_{\xi}(t) = \exp\left\{is - \frac{t^2}{2}\right\}$$

Теорема (О наследовании сходимости).

Пусть случайный вектор $S_n \xrightarrow{d} S$, $n \to \infty$, $S_n, S \in \mathbb{R}^k$, $H : R^k \to R^1$ - борелевская функция, непрерывная на множестве A таком, что $P(S \in A) = 1$. Тогда $H(S_n) \xrightarrow{d} H(S)$, $n \to \infty$

В силу (9) $(M_n, V_n)^T \xrightarrow{d} (\xi, 1)^T$. Если $H(x, y) = \frac{x}{y}$, то H(x, y) непрерывна при y > 0. Можно взять $A = \{y : y > 0\}$, $P((\xi, 1)^T \in A) = 1$. В силу теоремы о наследовании слабой сходимости

$$d_n(\beta)(\widehat{\beta}_{n,ML} - \beta) = \frac{M_n}{V_n} = H(M_n, V_n) \xrightarrow{d} H(\xi, 1) = \xi$$

2. $|\beta| > 1$. Тогда f(t,s) есть хар. функция вектора $(\xi \eta, \eta^2)^T$, где $\xi, \eta \sim N(0,1), \xi$ и η независимы. Действительно,

$$\operatorname{E}\exp\left\{it(\xi\eta)+is\eta^2\right\}=\operatorname{EE}\left(\exp\left\{\frac{it(\xi\eta)+is\eta^2}{2}\right\}\right)=\operatorname{E}\exp\left\{is\eta^2\right\}\operatorname{E}\left(\exp\left\{\frac{i(t\xi)\eta}{2}\right\}\right)=$$

$$\begin{split} &= \mathrm{E} \exp \left\{ i s \eta^2 \right\} \exp \left\{ \frac{-t^2 \eta^2}{2} \right\} = \mathrm{E} \exp \left\{ i \left(s + \frac{i t^2}{2} \right) \eta^2 \right\} = \left| \mathrm{E} \exp \left\{ i l x_1^2 \right\} = (1 - 2 i l)^{-1/2} \right| = \\ &= \left(1 - 2 i s + \frac{2 t^2}{2} \right)^{-1/2} = (1 + t^2 - 2 i s)^{-1/2} = \phi(t, s) \end{split}$$

Значит, $(M_n, V_n)^T \xrightarrow{d} (\xi \eta, \eta^2)^T$,

$$d_n(\beta)(\widehat{\beta}_{n,ML} - \beta) = \frac{M_n}{V_n} \xrightarrow{d} \frac{\xi \eta}{\eta^2} = \frac{\xi}{\eta} \sim K(0, 1)$$

3. $|\beta|=1$. Тогда

$$M_n = \frac{\sqrt{2}}{n} \sum_{t=1}^n \varepsilon_t u_{t-1}, \ V_n = \frac{2}{n^2} \sum_{t=1}^n u_{t-1}^2$$

Далее, $u_t = u_{t-1}t\varepsilon_t = \varepsilon_1 + \ldots + \varepsilon_t$.

Введем киферовский последовательный процесс

$$w_n(s) \stackrel{\text{def}}{=} n^{-1/2} \sum_{i \le ns} \varepsilon_i, \ s \in [0, 1], \ w_n(s) = 0, \ 0 \le s \le 1/n$$

Тогда

$$n^{-1/2}u_{t-1} = w_n \left(\frac{t-1}{n}\right)$$

Пусть

$$\Delta w_n\left(\frac{t}{n}\right) \stackrel{\text{def}}{=} w_n\left(\frac{t}{n}\right) - w_n\left(\frac{t-1}{n}\right) = \frac{\varepsilon_t}{\sqrt{n}}$$

Тогда

$$M_n = \sqrt{2} \sum_{t=1}^n w_n \left(\frac{t-1}{n} \right) \Delta w_n \left(\frac{t}{n} \right), \ V_n = 2 \sum_{t=1}^n w_n^2 \left(\frac{t-1}{n} \right) \frac{1}{n}$$

Пусть

$$U_n \stackrel{\text{def}}{=} \left(w_n \left(\frac{1}{n} \right), w_n \left(\frac{2}{n} \right), \dots, w_n \left(\frac{n}{n} \right) \right)^T$$

Тогда $U_n = \left(\frac{\varepsilon_1}{\sqrt{n}}, \frac{\varepsilon_1 + \varepsilon_2}{\sqrt{n}}, \dots, \frac{\varepsilon_1 + \dots + \varepsilon_n}{\sqrt{n}}\right)^T$ и это есть гауссовский вектор со средним ноль, $cov\left(w_n\left(\frac{i}{n}\right), w_n\left(\frac{j}{n}\right)\right) = \frac{\min(i,j)}{n}$

Действительно,

$$U_n \begin{pmatrix} 1 & & 0 \\ \vdots & \ddots & \\ 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Для $i \leq j$

$$cov\left(w_n\left(\frac{i}{n}\right), w_n\left(\frac{j}{n}\right)\right) = E\left(\frac{1}{n}\sum_{t=1}^{i}\varepsilon_t \times \sum_{k=1}^{j}\varepsilon_k\right) = \frac{1}{n}E\left(\sum_{t=1}^{i}\varepsilon_i\right)^2 = \frac{i}{n} = \frac{min(i,j)}{n}$$

Введем вектор $U \stackrel{\text{def}}{=} \left(w\left(\frac{1}{n}\right), w\left(\frac{2}{n}\right), \dots, w\left(\frac{n}{n}\right)\right)^T$, где w(s) - стандартный винеровский. Это гауссовский вектор со средним 0, $cov\left(w\left(\frac{i}{n}\right), w\left(\frac{j}{n}\right)\right) = \frac{\min(i,j)}{n}$. Значит,

$$U_n \stackrel{d}{=} U \Rightarrow \phi(U_n) \stackrel{d}{=} \phi(u)$$
, где ϕ - \forall бор. (10)

Действительно, пусть $\xi = \stackrel{d}{=} \eta$, $\xi, \eta \in \mathbb{R}^k$. Тогда $f(\xi) = \stackrel{d}{=} f(\eta)$, так как $\mathrm{P}(f(\xi) \in A) = \mathrm{P}(\xi \in f^{-1}(A)) = \mathrm{P}(\eta \in f^{-1}(A)) = \mathrm{P}(f(\eta) \in A)$

Пусть

$$\overline{M}_n = \sqrt{2} \sum_{t=1}^n w\left(\frac{t-1}{n}\right) \Delta w\left(\frac{t}{n}\right), \ \overline{V}_n = 2 \sum_{t=1}^n w^2\left(\frac{t-1}{n}\right) \frac{1}{n}$$

Так как M_n , V_n - борелевские функции от U_n , а \overline{M}_n , \overline{V}_n - борелевские функции от U, то из (10) следует:

$$\frac{M_n}{V_n} \stackrel{d}{=} \frac{\overline{M}_n}{\overline{V}_n} \tag{11}$$

Но

$$\overline{M}_n \xrightarrow{\text{c.k.}} \sqrt{2} \int_0^1 w(s) dw(s), \ \overline{V}_n \xrightarrow{\text{c.k.}} 2 \int_0^1 w^2(s) ds$$

Значит, $(\overline{M}_n, \overline{V}_n)^T \xrightarrow{d} \left(\sqrt{2} \int_0^1 w(s) dw(s), 2 \int_0^1 w^2(s) ds\right)$, и, следовательно,

$$\frac{\overline{M}_n}{\overline{V}_n} \to \frac{\sqrt{2} \int_0^1 w(s) dw(s)}{2 \int_0^1 w^2(s) ds} = \frac{w^2(1) - 1}{2^{3/2} \int_0^1 w^2(s) ds}$$
(12)

Поскольку

$$d_n(\beta)(\widehat{\beta}_{n,ML} - \beta) = \frac{M_n}{V_n}$$

то соотношения (11)-(12) влекут утверждение теоремы.

Теорема 2.

Пусть $\{ \varepsilon_t \}$ - н.о.р. N(0,1) сл.в. Тогда

$$\sqrt{\sum_{t=1}^{n} u_{t-1}^{2}} (\widehat{\beta}_{n,ML} - \beta) \xrightarrow{d} \begin{cases} N(0,1), & |\beta| \neq 1 \\ \widetilde{H}(\beta), & |\beta| = 1 \end{cases}$$

Здесь

$$\widetilde{H}(eta)$$
 - pacnp. c.s.s. $\frac{w^2(1)-1}{2\sqrt{\int_0^1 w^2(s)ds}} = \frac{\int_0^1 w(s)dw(s)}{\sqrt{\int_0^1 w^2(s)ds}}$

Доказательство.

$$\sqrt{\sum_{t=1}^{n} u_{t-1}^2} (\widehat{\beta}_{n,ML} - \beta) = \frac{M_n}{\sqrt{V_n}}$$

1. $\underline{|\beta| < 1}$: Тогда $(M_n, V_n)^T \xrightarrow{d} (\xi, 1)^T$, значит

$$\frac{M_n}{\sqrt{V_n}} \xrightarrow{d} \frac{\xi}{\sqrt{1}} \sim N(0,1)$$

2. $\underline{|\beta|>1}$: Тогда $(M_n,V_n)^T\xrightarrow{d} (\xi\eta,\eta^2)^T,$ значит

$$\frac{M_n}{\sqrt{V_n}} \xrightarrow{d} \frac{\xi \eta}{\sqrt{\eta^2}} = \xi \cdot sgn\eta \sim N(0, 1)$$

3. $\underline{|\beta|=1}$: Тогда $(M_n,V_n)^T \xrightarrow{d} \left(\frac{1}{\sqrt{2}}(w^2(1)-1),2\int_0^1 w^2(s)ds\right)^T$, значит

$$\frac{M_n}{\sqrt{V_n}} \xrightarrow{d} \frac{w^2(1) - 1}{2\sqrt{\int_0^1 w^2(s)ds}}$$

4.2 Об оценке наименьших квадратов в авторегрессии