Middle-Product Learning with Rounding Problem and its Applications

Shi Bai 1 Katharina Boudgoust 2 Dipayan Das 3 Adeline Roux-Langlois 2 Weiqiang Wen 2 Zhenfei Zhang 4

¹ Department of Mathematical Sciences, Florida Atlantic University.

² Univ Rennes, CNRS, IRISA.

³ Department of Mathematics, National Institute of Technology, Durgapur.

⁴ Algorand.

Monash Cybersecurity Seminar, 3rd December 2019, Melbourne. Australia

Preview

We define a Learning With Errors (LWE) variant which

- is at least as hard as exponentially many P-LWE instances,
- is deterministic and
- can be used to build **efficient** public key encryption.

Introduction

Intro

Advantage: security based on all Euclidean lattices

Disadvantages: (1) large public keys

(2) Gaussian sampling

Two ideas: structured and deterministic variants

¹For simplicity, take the power-of-two cyclotomic case, where P-LWE and R-LWE (resp. P-LWR and R-LWR) coincide.

Two ideas: structured and deterministic variants

Disadvantages:

- (1) security based on **restricted** class of lattices, **depending** on *f*
- (2) decisional P-LWR: super-polynomial modulus

¹For simplicity, take the power-of-two cyclotomic case, where P-LWE and R-LWE (resp. P-LWR and R-LWR) coincide.

Previous work:

Solution: (1) Middle-Product LWE reduction for exponentially many f

²For the sake of lucidity, we simplified the graph. In fact, their reduction was shown for the corresponding ring variants.

Previous work:

Solution: (1) Middle-Product LWE reduction for exponentially many f

(2) Computational P-LWR^f allows provable secure PKE

²For the sake of lucidity, we simplified the graph. In fact, their reduction was shown for the corresponding ring variants.

Our work

Contributions

We define:

(1) Computational Middle-Product Learning with Rounding Problem (Comp-MP-LWR)

We show:

(2) Efficient reduction from MP-LWE to Comp-MP-LWR

We construct:

(3) Public Key Encryption based on Comp-MP-LWR

Computational Middle-Product Learning with Rounding

Middle-Product

Given polynomials
$$a = \sum_{i=0}^{n-1} a_i x^i \in \mathbb{Z}^{< n}[x], b = \sum_{i=0}^{2n-2} b_i x^i \in \mathbb{Z}^{<2n-1}[x].$$

Their product is

$$a \cdot b = c_0 + \dots + c_{n-2} x^{n-2}$$

$$+ \mathbf{c}_{n-1} x^{n-1} + \mathbf{c}_n x^n + \dots + \mathbf{c}_{2n-2} x^{2n-2}$$

$$+ c_{2n-1} x^{2n-1} + \dots + c_{3n-3} x^{3n-3} \in \mathbb{Z}^{<3n-2}[x].$$

Their middle-product is

$$a \odot_n b = c_{n-1} + c_n x + \cdots + c_{2n-2} x^{n-1} \in \mathbb{Z}^{< n}[x].$$

Matrix representation of the middle-product

Given a polynomial
$$b = \sum_{i=0}^{2n-2} b_i x^i \in \mathbb{Z}^{<2n-1}[x]$$
. Its **Hankel matrix** is

$$\mathsf{Hankel}(b) = \begin{pmatrix} b_0 & b_1 & \dots & b_{n-1} \\ b_1 & b_2 & \dots & b_n \\ & & \ddots & \\ b_{n-1} & b_n & \dots & b_{2n-2} \end{pmatrix} \in \mathbb{Z}^{n \times n}.$$

For any $a \in \mathbb{Z}^{< n}[x]$ it yields

$$a \odot_n b = \mathsf{Hankel}(b) \cdot \overline{\mathbf{a}},$$

where
$$\overline{\mathbf{a}} = (a_{n-1}, \dots, a_0)^T$$
.

Image: wikipedia.de

Middle-Product LWE+LWR

Let χ be a distribution on $\mathbb{R}^{< n}[x]$ (e.g., Gaussian)

Definition (MP-LWE_{$$q,n,\chi$$} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$)

Sample
$$a \leftarrow U\left(\mathbb{Z}_q^{< n}[x]\right)$$
 and $e \leftarrow \chi$.

Return
$$(a, b = a \odot_n s + e) \in \mathbb{Z}_q^{n}[x] \times \mathbb{R}_q^{n}[x]$$

Middle-Product LWE+LWR

Let χ be a distribution on $\mathbb{R}^{< n}[x]$ (e.g., Gaussian)

Definition (MP-LWE_{$$q,n,\chi$$} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$)

Sample
$$a \leftarrow U\left(\mathbb{Z}_q^{< n}[x]\right)$$
 and $e \leftarrow \chi$.

Return
$$(a, b = a \odot_n s + e) \in \mathbb{Z}_q^{< n}[x] \times \mathbb{R}_q^{< n}[x]$$

Given p < q and $y \in \mathbb{Z}_q$. Rounding $\lfloor y \rceil_p = \left\lfloor \frac{p}{q} \cdot y \right\rfloor \mod p$.

Definition (MP-LWR_{$$p,q,n$$} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$)

Sample
$$a \leftarrow U(\mathbb{Z}_q^{< n}[x])$$
.

Return
$$(a, \lfloor b \rfloor_p = \lfloor a \odot_n s \rfloor_p) \in \mathbb{Z}_q^{< n}[x] \times \mathbb{R}_p^{< n}[x]$$

Challenger

Adversary

Images: flaticon.com

Intuition

Images: flaticon.com

Images: flaticon.com

Intuition

Assumption (Comp-MP-LWR)

The adversary can't obtain more information from the MP-LWR distribution than from the rounded uniform distribution.

$$\begin{array}{c} \mathsf{MP\text{-}LWE}_{q,n,\chi} & \xrightarrow{\hspace*{1cm}} (1) \\ & & \mathsf{MP\text{-}LWE}_{q,n,\chi}^{\times} \\ & & \downarrow \\ & & \downarrow \\ \mathsf{Comp\text{-}MP\text{-}LWR}_{p,q,n,t} & \xleftarrow{\hspace*{1cm}} \mathsf{Comp\text{-}MP\text{-}RLWE}_{p,q,n,t,\chi} \end{array}$$

(1) If secret s with full-rank Hankel matrix: (e.g., for q prime, happens with probability $\geq 1 - 1/q$) a uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform

- (1) If secret s with **full-rank** Hankel matrix: (e.g., for q prime, happens with probability $\geq 1 - 1/q$) a uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform
- (2) Round second component of MP-LWE sample

- (1) If secret s with **full-rank** Hankel matrix: (e.g., for q prime, happens with probability $\geq 1 - 1/q$) a uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform
- (2) Round second component of MP-LWE sample
- (3) Using Rényi divergence: fix number of samples t a priori

The reduction is dimension-preserving and works for polynomial-sized modulus q.

Elements sampled from χ are bounded by B with probability at least δ , s.t.

$$q > 2pBnt$$
 and $\delta \ge 1 - \frac{1}{tn}$.

PKE based on Comp-MP-LWR

High level: Adapt encryption scheme from [CZZ18] to middle-product setting.

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ REC $(y,\langle x\rangle_2) = \lfloor x \rfloor_2$, if $|x-y| < \frac{q}{8}$ (for more details, see [Pei14])

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ REC $(y,\langle x\rangle_2) = \lfloor x \rfloor_2$, if $|x-y| < \frac{q}{8}$ (for more details, see [Pei14])

KeyGen(1^{λ}). Sample $s \leftarrow U\left(\mathbb{Z}_q^{<2n-1}[x]\right)$ s.t. rank(Hankel(s)) = n and $a_i \leftarrow U\left(\mathbb{Z}_q^{< n}[x]\right)$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = [a_i \odot_n s]_p)_{i \le t}$$
 and $\mathbf{sk} = s$.

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \rightarrow \{0,1\}^{n/2}$

$$REC(y,\langle x\rangle_2) = \lfloor x \rfloor_2$$
, if $|x-y| < \frac{q}{8}$ (for more details, see [Pei14])

KeyGen(1^{λ}). Sample $s \leftarrow U\left(\mathbb{Z}_q^{<2n-1}[x]\right)$ s.t. rank(Hankel(s)) = n and $a_i \leftarrow U\left(\mathbb{Z}_q^{< n}[x]\right)$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = [a_i \odot_n s]_p)_{i \le t}$$
 and $\mathbf{sk} = s$.

Enc(
$$\mu$$
, **pk**). Sample $r_i \leftarrow U(\{0,1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \le t} r_i a_i$$
 and $v = \sum_{i \le t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$.

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$

$$REC(y,\langle x\rangle_2) = \lfloor x \rfloor_2$$
, if $|x-y| < \frac{q}{8}$ (for more details, see [Pei14])

KeyGen(1^{λ}). Sample $s \leftarrow U\left(\mathbb{Z}_q^{<2n-1}[x]\right)$ s.t. rank(Hankel(s)) = n and $a_i \leftarrow U\left(\mathbb{Z}_q^{< n}[x]\right)$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = [a_i \odot_n s]_p)_{i \le t}$$
 and $\mathbf{sk} = s$.

Enc(μ , pk). Sample $r_i \leftarrow U(\{0,1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \le t} r_i a_i$$
 and $v = \sum_{i \le t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$.

Dec $(c_1, c_2, c_3, \mathbf{sk})$. Compute $w = c_1 \odot_{n/2} s$ and return $u' = c_2 \oplus H(REC(w, c_2))$.

Correctness

KeyGen(
$$1^{\lambda}$$
). $pk = (a_i, b_i = [a_i \odot_n s]_p)_{i \le t}$ and $sk = s$.

Enc(μ , pk). Sample $r_i \leftarrow U(\{0,1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \le t} r_i a_i$$
 and $v = \sum_{i \le t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$.

Dec $(c_1, c_2, c_3, \mathbf{sk})$. Compute $w = c_1 \odot_{n/2} s$ and return $\mu' = c_3 \oplus H(REC(w, c_2))$.

For correctness, reconciliation mechanism has to work:

$$REC(w, \langle v \rangle_2) = \lfloor v \rfloor_2 \text{ if } |w - v| < \frac{q}{8}$$

$$\mathbf{pk} = (a_i, b_i), \ \mathbf{sk} = s \ \text{and ciphertext} \ c = (c_1, c_2, c_3), \ \text{where}$$

$$c_1 = \sum r_i a_i, \quad v = \sum r_i \odot_{n/2} b_i, \quad c_2 = \langle v \rangle_2 \quad \text{and}$$

$$c_3 = H(\lfloor v \rfloor_2) \oplus \mu.$$

Sequence of steps:

 Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,

$$\mathbf{pk} = \left(a_i, \$\right), \ \mathbf{sk} = s \ \text{and ciphertext} \ c = (c_1, c_2, c_3), \ \text{where}$$

$$c_1 = \sum r_i a_i, \quad v = \sum r_i \odot_{n/2} \$, \quad c_2 = \langle v \rangle_2 \quad \text{and}$$

$$c_3 = H(\lfloor v \rceil_2) \oplus \mu.$$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),

$$\mathbf{pk}=(a_i,\$), \ \mathbf{sk}=s \ \text{and ciphertext} \ c=(c_1,c_2,c_3), \ \text{where}$$

$$c_1=\sum r_i a_i, \quad v=\$, \quad c_2=\langle\$\rangle_2 \quad \text{and}$$

$$c_3=H(\left\lfloor \$\right\rfloor_2)\oplus \mu.$$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),
- Replace v by uniform sample, thus c_2 is also uniform (use Generalized LHL),

$$\mathbf{pk}=(a_i,\$), \ \mathbf{sk}=s \ \text{and ciphertext} \ c=(c_1,c_2,c_3), \ \text{where}$$

$$c_1=\sum r_i a_i, \quad v=\$, \quad c_2=\langle\$\rangle_2 \quad \text{and}$$

$$c_3=H(\left\lfloor\$\right\rfloor_2)\oplus\mu.$$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage $|v|_2$ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),
- Replace v by uniform sample, thus c_2 is also uniform (use Generalized LHL).
- As c₁ and c₂ are independent, adversary can only guess preimage of H.

Open Questions

- Reduction from decisional MP-LWE to decisional MP-LWR³,
- Alternatively: search-to-decision reduction for MP-LWR,
- PKE based on MP-LWR in the standard model,
- Using small secret to gain in efficiency.

³Carries over to other structured LWR variants.

Thank you

References I

- A. Banerjee, C. Peikert, and A. Rosen, **Pseudorandom functions and lattices**, Advances in Cryptology EUROCRYPT 2012, Proceedings, 2012, pp. 719–737.
- L. Chen, Z. Zhang, and Z. Zhang, **On the hardness of the computational ring-lwr problem and its applications**, Advances in Cryptology ASIACRYPT 2018, Proceedings, Part I, 2018, pp. 435–464.
- V. Lyubashevsky, C. Peikert, and O. Regev, **On ideal lattices** and learning with errors over rings, Advances in Cryptology EUROCRYPT 2010, Proceedings, 2010, pp. 1–23.
- C. Peikert, Lattice cryptography for the internet, Post-Quantum Cryptography 6th International Workshop, PQCrypto 2014, Proceedings, 2014, pp. 197–219.

References II

- - O. Regev, **On lattices, learning with errors, random linear codes, and cryptography**, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 2005, pp. 84–93.
- M. Rosca, A. Sakzad, D. Stehlé, and R. Steinfeld, Middle-product learning with errors, Advances in Cryptology - CRYPTO 2017, Proceedings, Part III, 2017, pp. 283–297.
- D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, **Efficient public key encryption based on ideal lattices**, Advances in Cryptology ASIACRYPT 2009, Proceedings, 2009, pp. 617–635.