Análisis Matemático I Unidad II

Unidad II

Función exponencial y logaritmo

Objetivos

Calcular ejercicios para luego modelizar problemas concretos mediante el uso de dichas funciones

Conceptos teóricos requeridos para cumplir los objetivos:

Función exponencial: Definición y propiedades. Gráfica. Comportamiento en el infinito. **Función logaritmo**: Definición y propiedades-Gráfica- Comportamiento en el infinito y en un punto.

Ejercicio 1

Completar las siguientes tablas y hacer un gráfico aproximado de cada función:

i)

х	-4	-3	-2	-1	0	1	2	3	4
$f(x) = 5^x$	0,0016					5			625

ii)

х	-4	-3	-2	-1	0	1	2	3	4
$f(x) = 5^{x-2}$				0,008			1		25

iii)

х	-4	-3	-2	-1	0	1	2	3	4
$f(x) = -5^{x-2}$				-0,008			-1	-5	

iv)

х	-4	-3	-2	-1	0	1	2	3	4
$f(x) = -5^{x-2} + 3$	-2,9999						2		-22

Ejercicio 2

Hallar dominio, graficar las siguientes funciones y dar su imagen:

$$2.1 g(x) = e^x + 4$$

$$2.2 h(x) = e^{x-2}$$

$$2.1 \ g(x) = e^{x} + 4$$
 $2.2 \ h(x) = e^{x-2}$ $2.3 \ g(u) = e^{u+1} + 5$
 $2.4 \ s(r) = -4 - e^{-r}$ $2.5 \ g(x) = 1 + 2 \cdot e^{x}$ $2.6 \ f(t) = 1 + e^{-t}$

$$2.4 \ s(r) = -4 - e^{-r}$$

$$2.5 g(x) = 1 + 2.e^{x}$$

$$2.6 f(t) = 1 + e^{-t}$$

Ejercicio 3

Para cada gráfico conteste las siguientes preguntas:

3.1) ¿A qué valor se acerca la variable "f(x) = y" cuando la variable x se acerca a $+\infty$?

3.2) ¿A qué valor se acerca la variable "f(x) = y" cuando la variable x se acerca a $-\infty$?

i)

ii)

19

iii)

iv)

Ejercicio 4

Completar las siguientes tablas con <u>valores aproximados</u> de ser necesario y hacer un gráfico aproximado de cada función:

i)

х	-4	-3	-2	-1	0	1	2	3	4	5	6
f(x) = ln(x)	∄			∄	∄	0				1,6	

Aclaración: El símbolo "∄" significa "no existe".

ii)

х	-4	-3	-2	-1	0	1	2	3	4	5	6
$f(x) = -\ln(x)$	∄			∄	∄	0				-1,6	

iii)

x	-4	-3	-2	-1	0	1	2	3	4	5	6
f(x) = ln(-x)				0			∄			∄	∄

iv)

х	-4	-3	-2	-1	0	1	2	3	4	5	6
f(x) = ln(x+2)	∄	∄		0	0,69						

Ejercicio 5

Hallar dominio, graficar las siguientes funciones y dar su imagen:

$$5.1 g(x) = ln(-x+3)$$

5.2
$$h(u) = ln(3 - u)$$

5.1
$$g(x) = ln(-x+3)$$
 5.2 $h(u) = ln(3-u)$ 5.3 $g(u) = ln(u) + 5$

$$5.4 \ s(r) = ln(r+4) - 2$$

$$5.5 g(x) = -\ln(-x-1)$$

$$5.4 \ s(r) = ln(r+4) - 2$$
 $5.5 \ g(x) = -ln(-x-1)$ $5.6 \ f(t) = -ln(-t-1) + 1$

Ejercicio 6

Para cada gráfico conteste las siguientes preguntas:

- 6.1 A qué valor se acerca f(x)=y cuando x se acerca por el lado derecho al número 4.
- 6.2 A qué valor se acerca f(x)=y cuando x se acerca $a + \infty$.

ii)

Ejercicio 7

Hallar el dominio de las siguientes funciones:

7.1
$$f(x) = ln(\frac{x-1}{x+4})$$

7.2
$$h(u) = ln(\frac{2u-4}{4u+1}) + 1$$

7.3
$$g(t) = ln(\sqrt{t}) + 3$$

7.1
$$f(x) = ln(\frac{x-1}{x+4})$$
 7.2 $h(u) = ln(\frac{2u-4}{4u+1}) + 1$
7.3 $g(t) = ln(\sqrt{t}) + 5$ 7.4 $s(r) = 5.ln(\sqrt{r+3}) - 2$

Ejercicio 8

Hallar dominio e imagen de cada función dada a continuación y de su función inversa.

8.1
$$f(x) = ln(x) + 2$$

8.1
$$f(x) = ln(x) + 2$$

8.2 $h(u) = 4$. $ln(3u + 5)$
8.3 $g(t) = \frac{ln(2t - 5)}{-2}$
8.4 $s(r) = ln(\frac{r+2}{r+5})$
8.5 $g(x) = e^{x} + 4$
8.6 $h(x) = e^{x-2}$
8.7 $g(u) = e^{u+1} + 5$
8.8 $f(t) = 1 + e^{-t}$
8.9 $g(x) = 1 + 2 \cdot e^{x}$

8.3
$$g(t) = \frac{\ln(2t-5)}{-2}$$

$$8.4 \ s(r) = ln(\frac{r+2}{r+5})$$

$$8.5 g(x) = e^{x} + 4$$

$$8.6 \ h(x) = e^{x-2}$$

$$8.7 g(u) = e^{u+1} + 3$$

$$8.8 ext{ } f(t) = 1 + e^{-t}$$

$$89 g(x) = 1 + 2e^{x}$$

Análisis Matemático I Unidad II

Ejercicio 9

Hallar dominio, ceros, conjunto de positividad y negatividad de:

9.1
$$f(x) = ln(x-8)$$
 9.2 $h(x) = 4$. $ln(x^2-15)$ 9.3 $g(x) = ln(x^2-3)$
9.4 $s(x) = ln(\frac{x-2}{x+8})$ 9.5 $g(x) = 3-2.e^x$ 9.6 $h(x) = xe^x - 2x$

Ejercicio 10

Determinar la función exponencial de la forma $f(x) = k \cdot r^x$ tal que f(0) = 4 y f(4) = 64.

Ejercicio 11(Problema)

Una muestra de piel, que inicialmente cuenta con 3 millones de células sanas por cm², es expuesta a los rayos UV durante 2 horas. Luego de dicha exposición solar, la cantidad de células sanas se redujo al 10 % de su valor inicial, según la relación siguiente:

$$N(t) = N_o .e^{kt}$$

donde N(t) representa la cantidad total de células sanas en la muestra en un determinado tiempo t medidos en horas , "k" la constante de proporcionalidad y N_o la cantidad inicial de células sanas de la muestra antes de la exposición. Se te pide, usando la relación dada:

- a) Determinar el valor de la constante "k".
- b) Determinar en qué momento la cantidad de células sanas será un 50 % del valor inicial.

Ejercicio 12 (Problema)

El crecimiento de una colonia de bacterias se puede modelar mediante la siguiente función: $N(t) = 6.10^9 e^{kt}$ donde "t" representa el tiempo en horas y k la tasa de crecimiento. Si en 2 horas después el número de bacterias es de 18.10^{12} bacterias/ml se pide:

- Determinar la tasa de crecimiento.
- Calcular en qué momento la población de bacterias llegará a ser 12 veces mayor que la cantidad inicial.

Ejercicio 13 (Problema)

Un compuesto líquido es retirado del calentador cuando alcanza los 100 °C y colocado en un recinto que se encuentra a 15 °C de temperatura ambiente. A medida que pasan los minutos la temperatura del compuesto comienza a disminuir y dicha disminución está modelizada por la siguiente expresión: $T(t) = 15 + 85e^{-0.39t}$, se pide:

- a) Hallar la temperatura del compuesto a los 5 minutos de colocado en en el recinto.
- b) ¿En qué momento la temperatura del compuesto habrá alcanzado los 50°C.

Análisis Matemático I Unidad II

Integrador

Complete las siguientes afirmaciones:

1)	La función ex	ponencial es inver	sa de la función	
----	---------------	--------------------	------------------	--

- 2) El dominio de la función exponencial son.....
- 3) La base de cualquier función exponencial es positiva y distinta de

Determine cuáles de las siguientes afirmaciones son verdaderas y cuales son falsas. Justifique, en todos los casos, la elección escogida:

- i) La función e^x crece más lento que la función ln(x).
- ii) El dominio de la función exponencial coincide con el dominio de su función inversa.
- iii) La imagen de la función logaritmo son todos los reales.

