

제 8 장 IEC 61850 소개

김 태 완

차세대전력기술연구센터

1. 표준화 동향

2. Substation Automation with IEC 61850

3. IEC 61850 현황

1. 표준화 동향

다양한 프로토콜

IEC 61850 소개

UCA: Utility Communication Architecture / DNP: Distributed Network Protocol / MVB: Multipurpose Vehicle Bus

표준규격에 대한 시장의 요구사항

IEC 61850 소개

- ◈ 시장의 세계화
 - 국제 표준규격이 요구됨
 - 표준규격에는 설계 및 운영에 관련된 모든 것이 포함하여야 함
- ◈ 원가절감의 요인과 효과
 - 경쟁에 의한 원가절감
 - 지능화된 기능에 의한 원가절감
 - 투자에 대한 이익실현
- ◈ 개방적이고 미래에도 사용할 수 있는 표준규격
 - 안심하고 투자할 수 있음
 - 미래의 기술발전을 수용
 - 변전소자동화 규모나 기능의 확장이 가능

IEC 61850 소개

UCA: Utility Communication Architecture / EPRI: Electric Power Research Institute / IEC: International Electrotechnical Commission

Superset of UCA 2.0

IEC 61850 소개

XML : Extensible Markup Language / UCA : Utility Communication Architecture / GOOSE : Generic Object Oriented System-wide Event

International Standard developed by IEC

1st edition in 2003, 2nd in progress

Communication networks and systems in 'substations' power utility automation'

IEC 61850 Extensions (E2)

IEC 61850 소개

Statistical/Historical Model

Power Quality Model

Programmable Scheme Logic Model

Redundancy

Time Synchronization, etc.

2. IEC 61850-BASED SAS

기존 변전소

SA용 통신표준에 요구되는 특징

IEC 61850 소개

Interoperability

서로 다른 제작회사에서 만들어진 이질적인 IED들이 정보를 교환하고 정보를 활용할 수 있는 능력

Free configuration

IED의 역할(기능)을 정의나 통신네트워크 구성등 변전소의 구성을 자유롭게 할 수 있는 능력. 예를들어, RTU기반 집중시스템이나 분산환경 (SCS)에서 모두 잘 동작할 수 있는 장치

Long term stability

변전소자동화를 구성하는 기술이 일부가 비약 적으로 발전했을 때 (특히 통신기술) 이를 수용 하면서도 유지될 수 있는 구조의 표준규격

Interoperability - 표준 프로토콜의 필요성

현재는 다양한 프로토콜이 사용되므로 상호통신이 어려우므로 표준이 필요함

◆ 여러 제조업체 IED간의 정보교환 능력

Free Configuration

IEC 61850 소개

◆ 기능의 자유로운 할당, 중앙화 또는 분산화 설계

Long Term Stability – 전력기술, 통신기술의 분리

IEC 61850 소개

전력기술:

SA내 장치들 간에 공유되어야 할 정보

통신기술: 데이타가 전달되는 통신 방법

Data Model

정의

SA에서 사용되는 데이터와 장치가 제공해야 할 서비스

맵핑

통신 스택에 사용될 데이터 모델

선택

실제 데이터 전송에 사용되는 ISO/OSI 통신스택

Interfaces telecontrol

IEC 61850 소개

Example IEC 60870-6

- Telecontrol CC-CC TASE.2 (MMS) **Example IEC 60870-5**
- Telecontrol -101, -102, -103, -104

Standardisation

- Object model
- Services
- Communication Stack (OSI layer 1-7)

Interfaces in substation

IEC 61850 소개

Example IEC 61850

- Substation bus (MMS, ..)
- Process bus

Standardisation

- Device model
- Object model
- Services
- Communication Stack (OSI layer 1-7)

Interfaces in control centre

IEC 61850 소개

Communication Standards outside of Substations

Communication Standards within Substations

IEC 61850 소개

SU - Station Unit

PU - Protection Unit

CU - Control Unit

C/P - Control/Protection Unit

CT/VT - Instrument Transformer

ComU - Communication Unit

SB - Station Bus

PB - Process Bus

SG - Switchgear

21

IEC 61850 SAS

- ◈ OSI 7 계층 통신 모델을 사용
- ◆ 통신의 부하 조절 및 역할 분담을 위하여 두개의 bus 사용
 - Station Bus, Process bus
- ◈ 스테이션 버스 (station bus) 역할
 - IED와 상위운영시스템간의 통신
 - IED로부터 마스터에 주기적 데이터 수집(polling)
 - 멀티캐스트 GOOSE 메시지를 통한 IED간의 이벤트 데이터 교환
- ◈ 프로세스 버스 (process bus):
 - 플랜트 장비(개폐장치, 계측장치)와 IED간의 통신
 - 디지털화된 샘플값의 전송

SCL(Substation Configuration description Language) 이란?

IEC 61850 소개

- ◈ 변전소의 구성을 기술하는 언어
- ◈ XML을 기반으로 작성됨
- ◆ IEC 61850 표준규격의 Part 6에 정의됨
- ◈ 다음을 정보를 작성하는 규칙으로 사용됨
 - IED Capability Description (ICD) 파일
 - System Configuration Description (SCD) 파일
 - System functional specification (SSD) 파일
- 엔지니어링에 관한 정보를 담은 파일들은 다른 어떤 엔 지니어링 툴(Tool) 에서 읽을 수 있고 수정가능 하여야 한다.


```
<Substation name="">
   <VoltageLevel name="E1">
      <Bay name="Q1">
         <Equipment name="QA1" Type="CBR">
             <Connection nodeName="L1"/>
             <LNode inst="1" lnClass="CSWI"/>
          </Equipment>
          <Equipment Ref="QB1" Type="DIS">
             <Connection nodeName="L1"/>
             <LNode inst="2" lnClass="CSWI"/>
          </Equipment>
      </Bay>
  </VoltageLevel>
</Substation>
```

아래에 기술된 내용은 다음의 설명을 포함하고 있다. 변전소에 있는 E1Q1 라는 베이(bay)에서 차단기 QA1과 단로기 QB1는 모두 L1이라는 노드에 전기적으로 연결되어 있다.

사용자에 친근한 객체지향적 데이터 모델

IEC 61850 소개

Logical Node : 데이터 관점에서

IEC 61850 소개

27

- ◈ IED들 사이에서 데이터 교환의 단위
- ◆ 일종의 Container로 객체들을 그룹화
- ◆ 그룹화된 LN은 고유이 이름이 존재함
- ◆ 데이터 교환은 IED들 사이에서 발생한다.
 - IED안에 있는 function 이나 sub-function 사이에 발생
- ◈ 교환되는 데이터는 function에 속해있는 객체들로 그룹 화

데이터 모델의 계층 구조

IEC 61850 소개

- ◆ 서버 = 물리장치(PHD)
- ◈ 논리장치 (LD)
- ◈ 논리노드 (LN)
- ◆ 데이터 (DO)
- ◆ 데이터 속성 (DA)

IEC 397/03

논리노드, 논리장치

IEC 61850 소개

Physical Device: Yongin_Q1_L2

Logical Device: Q1_L2/

Logical Node: LLN0

Logical Node: XCBR

Logical Device: BB_L2/

Logical Node: LLN0

Logical Node: BB0_SIMG

Logical Node: BB1_SIMG

논리노드, 데이터

IEC 434/03

데이터의 구성 과정

IEC 61850 소개

				М	MXU cla	ss			
Attribute Name Attr. Ty		Attr. Typ	De Explanation						
LNName			Shall be inherited from Logical-Node Class (see IEC 61850-7-2)						
Measured va	WYE	class							
v I	Attribute Name		Attribute	Attribute Type		TrgOp		Value/Value Range	
VAr	DataName		Inherited from Data Class (see IEC 61850-7-2)						
	Data	Data							
		phsA CMV class							
,	phsB phsC		Attribute Name	Attribute Type			FC	TrgOp	Value/Value Range
	neut		Data A ttribute						
	measured attributes								
			instCVal	Vector			MX		
			cVal	Vector		MX	dchg		
		/	range	ENUMER	ATED		MX	dchg	normal high low high
			q	Quality			MX	qchg	
		[-	t	TimeSta	mp		MX		

MMXU.A.phsA.cVal

SCL을 이용한 엔지니어링 절차

과거 데이터 처리 방식

NPTE IEC 61850 소개

Application A

- 1. 통신 단계에서의 표준 개념 강함
- 2. 각 APP는 각자의 DS를 구성
- 3. 통신과 DS간의 교환 규칙 작성

Application B

분석 및 변환

통신 프로토콜 DNP3, IEC60870, Modbus....

통신 프로토콜 DNP3, IEC60870, Modbus,...

RS-232/422/485/Ethernet

ВС

IEC61850의 도입 후

IEC 61850 소개

IEC 61850 통신스택

IEC 61850 소개

ACSI

application

IEC 61850과 기존 통신과의 비교

IEC 61850 소개

기존 통신

IEC61850

서버/클라이언트 통신

IEC 61850 소개

NPTE

- ◆ 전형적인 SCADA 어플리 케이션
- ◆ SOE 저장, 검색
- ◈ 파일 전송(예: Comtrade)

피어-투-피어 통신 (Peer-to-peer)

IEC 61850 소개

- ◈ 실시간 성
- ◈ 차단기 트립

ACSI (Abstract Communication Service Interface)

IEC 61850 소개

Application
Presentation
Session
Transport
Network
Data Link
Physical

Service Model of ACSI

IEC 61850 소개

3. IEC 61850 동향

IEC 61850 소개

변전자동화 - 국외

IEC 61850 소개

the interoperability

Tae-Wan Kim 43

products on the market

KEPCO R&D Steps

IEC 61850 소개

- □ 1st Step: 2005. 10 2008. 9 (3 Years)
 - 1) Development of IEC 61850 based SAS Prototype
 - Protection IED algorithm & H/W
 - Server & HMI for digital substation operation
 - Ethernet based Communication Network Construction
 - System performance Verification & Testing
- □ 2nd Step: 2008. 10 2011. 9 (3 Years)
 - 2) Development of Next-Generation Intelli-Station Prototype
 - Intelligent IED algorithm & H/W
 - Integrated Operating System with high reliability
 - Certification Facilities for Standardization & Testing Criterion

Tae-Warkkim

국내 SAS 계획

IEC 61850 소개

Separated
System

Mosaic Panel

Substation Integration Substation Automation

IEC 61850

Conventional

Today

Future

변전설비

집적도

및

자동화율

IEC 표준화의 연관 관계

IEC 61850 소개

IEC 61970

EMS 및 상위 운영 시스템 의 관점에서 정의

전력IT 통신

표준화 IEC

61850

IEC 61968

배전 관리의 DMS에서 이기종간의 전송 규약 정의

IED, MU와 같은 전력계통의 디바이스에 대한 표준

IEC 61850 소개

SMART GRID

IEC 61850 SAS