05 - Energija

05 - Energija

- efikasnost/manja potrošnja je uglavnom puno bitnija od brzine mikrokontrolera!!
- naprajanje regulator, baterija, energija iz okoline (npr. solar power)...
- efikasnot, stabilnost i točnost napona su bitni parmetri napajanja
- regulator prilagođava ulazni napon na napon mikorkontrolera
- dva osnovna tipa regulatora
 - 1. linearni/serijski jednostavan, ali neželjena disipacija energije proporcionalna je padu napona i jakosti stuje (npr. 3.3V napajanje, 2.5V jezgre -> 25% energije se bezveze troši)

Fig. 1: linearni regulator

- 2. preklopni (switching) PWM modulacija struje kroz zavojnicu, puno efikasniji od linearnog (npr. za pad napona sa 3.3 na 1.5V postotak bezveze potrošene energija pada sa 54% na 10%), ali viša cijena (jer treba dodati vanjsku zavojnicu) i veće elektromagnetsko zračenje
 - npr. preklopni *step-down/buck* regulator:

Fig. 2: preklopni regulator

Baterije

- baterija izvor električne energije
- primarne baterije jednosmjeran izvor energije, ne mogu se puniti, cink-ugljik ili alkalne najčešće
- sekundarne baterije

- o mogu se puniti
- karakteristike ovise o kemijskom satavu (litij, olovo, nikl...)
- o wet i dry cells
- o nikal trajna i otporna baterija velike gustoće ali štetno za okoliš i otrovno!!
- o litij velika gustoća, lagana, bolja za okoliš, ali treba imat zaštitu od velikih napona i struje
- o olovo jeftino, ali niska gustoća i teška, štetno za okoliš

Tip baterije	NiCd	NiMh	Olovne	Lilon (kobalt)	Lilon (fosfat)
Gustoća energije [Wh/kg]	45-80	60-120	30-50	150-190	90-120
Životni ciklus (pad do 80% kap.)	1500	300-500	200-300	300-500	>1000
Brzo punjenje	1h	2-4h	8-16h	1.5-3h	>= 1h
Podnosi prepunjenje	umjereno	slabo	dobro	jako slabo	jako slabo
Samopražnjenje (mjesečno)	20%	30%	5%	<10%	<10%
Napon ćelije	1.25V	1.25V	2V	3.6V	3.3V
Radna temperatura	-40 do 60	-20 do 60	-20 do 60	-20 do 60	-20 do 60
Otrovnost	Visoka	Relativno niska	Visoka	Nis	ka

Fig. 3: tablica parametara tipova baterija

 ostali tipovi baterija - fuel cells/flow cells (pretvara energiju goriva u el. energiju, slično kako vozila rade) i superkondenzatori (jako velika gustoća energije, 1000x)

Tehnologije izvedbe i potrošnja

• što sve troši?

0

- o CMOS ne troši energiju kad se ne mijenja
- o kod promjene stanja se korisit switching power, gubi se energija (parazitni kapaciteti)

$$E_t = \frac{1}{2} C_L V_{DD}^2$$

- o short-circuit potrošnja kad se dogodi kratki spoj i P i N tranzistori vode pa se troši energija
- leakage current dio struje curi na svakim vratima tranzistora, mjeri se u nano-amperima pa je generalno zanemarivo
- tehnologije izvedbe:
 - TTL troši i u aktivnom i u statičnom stanju

Fig. 4: TTL shema

o kod NMOS-a ako se koristi slabiji otpornik se brže promijeni stanje ali dolazi do veće disipacije

Fig. 5: NMOS shema

 CMOS ima jako malu potrošnju u statičkom stanju ali se stanje sporo mijenja zbog parazitnih kapaziteta!!

Fig. 6: CMOS shema

Fig. 7: CMOS promjena stanja

o CMOS potrošnja se računa po formuli:

$$P_C = rac{1}{2}f*V_{DD}^2*\sum (A_gC_L^g)$$

 $f = frequency; A_g = activity\ factor; C_l^g = gate\ load\ capacitance$

 treba smanjiti V_DD, A_g (isključiti one sklopove koji ne rade), broj tranzistora i frekvenciju takta kako bi se smanjila potrošnja