Program (Ungrouped Data):

```
import pandas as pd
from statistics import variance
from statistics import stdev
data = pd.read_csv('../Country Wise Gender.csv')[0:10]
# df = pd.DataFrame(data)
# mean median mode
print('\nComputation of Central Tendency')
print("\nMean of the Country Wise Gender Dataset")
print(data.mean())
print("\nMedian of the Country Wise Gender Dataset")
print(data.median())
print("\nMode of the Country Wise Gender Dataset")
print(data.mode())
print('\nComputation of Dispersion')
# range
print("\nRange: ")
range1 = data['2020 Male'].max() - data['2019 Male'].min()
range2 = data['2020 Female'].max() - data['2020 Male'].min()
print("Range of 2019: " + str(rangel))
print("Range of 2020: " + str(range2))
# variance
print("\nVariance: ")
variance1 = variance(data['2019 Male'])
variance2 = variance(data['2020 Male'])
print("Variance of 2019: " + str(variance1))
print("Variance of 2020: " + str(variance2))
# standard deviation
```

Output (Ungrouped Data):

Computation of Central Tendency

```
Mean of the Country Wise Gender Dataset
2014 Male
             54.390
2014 Female
             45.610
2015 Male 54.890
2015 Female
            45.110
          54.660
2016 Male
2016 Female 45.340
2017 Male
            53.770
2017 Female 46.230
2018 Male
            53.090
2018 Female 46.910
2019 Male
          53.920
2019 Female
             46.080
2020 Male
            52.103
2020 Female
             47.897
dtype: float64
```

```
Median of the Country Wise Gender Dataset
2014 Male
             54.550
2014 Female
             45.450
2015 Male
             54.450
2015 Female 45.550
2016 Male
             54.550
2016 Female 45.450
2017 Male
             53.800
2017 Female
             46.200
2018 Male
            53.350
2018 Female
             46.650
2019 Male
           54.300
2019 Female
             45.700
2020 Male
             53.155
2020 Female
             46.845
dtype: float64
```

Mode of the Country Wise Gender Dataset						
		of Nationality			e 2015 Male	2015 Female \
0		Argentina	53.7	46.	3 47.2	39.1
1		Austria	n NaN	Na	N 51.9	40.8
2		Belgium	n NaN	Na	N 53.8	42.8
3		Brazil	. NaN	Na	N 54.3	44.5
4		Canada	NaN	Na	N 54.4	45.5
5		Denmark	NaN NaN	Nai	N 54.5	45.6
6		Finland	NaN	Na	N 55.5	45.7
7		France	e NaN	Nai	N 57.2	46.2
8		Mexico		Na	N 59.2	48.1
9	United Sta	tes Of America	n NaN	Na	N 60.9	52.8
	2016 Male	2016 Female	2017 Male	2017 Female	2018 Male	2018 Female \
0	45.7	38.5	43.2	39.5	42.6	40.4
1	50.8	41.3	48.8	41.2	47.8	41.8
2	53.4	41.8	52.9	41.9	51.7	43.2
3	54.1	44.9	53.0	45.2	52.7	45.2
4	54.5	45.4	53.6	46.0	53.1	46.4
5	54.6	45.5	54.0	46.4	53.6	46.9
6	55.1	45.9	54.8	47.0	54.8	47.3
7	58.2	46.6	58.1	47.1	56.8	48.3
8	58.7	49.2	58.8	51.2	58.2	52.2

61.5 54.3 60.5 56.8 59.6 57.4

Computation of Dispersion

Range:

Range of 2019: 15.580000000000005 Range of 2020: 22.18000000000007

Variance:

Variance of 2019: 20.6417777777776 Variance of 2020: 34.95800111111112

Standard Deviation:

Standard Deviation of 2019: 4.543322328184274 Standard Deviation of 2020: 5.912529163658402

Skewness of Dataset

Skewness of 2019: -1.1064388117087678 Skewness of 2020: 1.1064388117087725