Stochastic Processes

An Introduction

Second Edition

Peter W. Jones
Peter Smith

Texts in Statistical Science

Stochastic Processes An Introduction

Second Edition

Peter W. Jones
Peter Smith

CHAPMAN & HALL/CRC

Texts in Statistical Science Series

Series Editors

Bradley P. Carlin, University of Minnesota, USA

Julian J. Faraway, University of Bath, UK

Martin Tanner, Northwestern University, USA

Jim Zidek, University of British Columbia, Canada

Analysis of Failure and Survival Data

P.J. Smith

The Analysis of Time Series — An Introduction, Sixth Edition

C. Chatfield

Applied Bayesian Forecasting and Time Series Analysis

A. Pole, M. West and J. Harrison

Applied Nonparametric Statistical Methods, Fourth Edition

P. Sprent and N.C. Smeeton

Applied Statistics — Handbook of GENSTAT Analysis

E.J. Snell and H. Simpson

Applied Statistics — Principles and Examples

D.R. Cox and E.J. Snell

Applied Stochastic Modelling, Second Edition

B.J.T. Morgan

Bayesian Data Analysis, Second Edition

A. Gelman, J.B. Carlin, H.S. Stern

and D.B. Rubin

Bayesian Methods for Data Analysis,

Third Edition

B.P. Carlin and T.A. Louis

Beyond ANOVA — Basics of Applied Statistics

R.G. Miller, Jr.

Computer-Aided Multivariate Analysis,

Fourth Edition

A.A. Afifi and V.A. Clark

A Course in Categorical Data Analysis

T. Leonard

A Course in Large Sample Theory

T.S. Ferguson

Data Driven Statistical Methods

P. Sprent

Decision Analysis — A Bayesian Approach

J.Q. Smith

Elementary Applications of Probability Theory,

Second Edition

H.C. Tuckwell

Elements of Simulation

B.J.T. Morgan

Epidemiology — Study Design and Data Analysis, Second Edition

M. Woodward

Essential Statistics, Fourth Edition

D.A.G. Rees

Extending the Linear Model with R — Generalized Linear, Mixed Effects and Nonparametric Regression

Models

J.J. Faraway

A First Course in Linear Model Theory

N. Ravishanker and D.K. Dey

Generalized Additive Models:

An Introduction with R

S. Wood

Interpreting Data — A First Course

in Statistics

A.J.B. Anderson

An Introduction to Generalized

Linear Models, Third Edition

A.J. Dobson and A.G. Barnett

Introduction to Multivariate Analysis

C. Chatfield and A.J. Collins

Introduction to Optimization Methods and Their

Applications in Statistics

B.S. Everitt

Introduction to Probability with R

K. Baclawski

Introduction to Randomized Controlled Clinical

Trials, Second Edition

I.N.S. Matthews

Introduction to Statistical Inference and Its

Applications with R

M.W. Trosset

Introduction to Statistical Methods for

Clinical Trials

T.D. Cook and D.L. DeMets

Large Sample Methods in Statistics

P.K. Sen and J. da Motta Singer

Linear Models with R

J.J. Faraway

Logistic Regression Models

J.M. Hilbe

Markov Chain Monte Carlo —

Stochastic Simulation for Bayesian Inference,

Second Edition

D. Gamerman and H.F. Lopes

Mathematical Statistics

K. Knight

Modeling and Analysis of Stochastic Systems

V. Kulkarni

Modelling Binary Data, Second Edition

D. Collett

Modelling Survival Data in Medical Research,

Second Edition

D. Collett

Multivariate Analysis of Variance and Repeated Measures — A Practical Approach for Behavioural

Scientists

D.J. Hand and C.C. Taylor

 $Multivariate\ Statistics - A\ Practical\ Approach$

B. Flury and H. Riedwyl

Pólya Urn Models

H. Mahmoud

Practical Data Analysis for Designed Experiments

B.S. Yandell

Practical Longitudinal Data Analysis

D.J. Hand and M. Crowder

Practical Statistics for Medical Research

D.G. Altman

A Primer on Linear Models

I.F. Monahan

Probability — Methods and Measurement

A. O'Hagan

Problem Solving — A Statistician's Guide,

Second Edition

C. Chatfield

Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition

B.F.J. Manly

Readings in Decision Analysis

S. French

Sampling Methodologies with Applications

P.S.R.S. Rao

Statistical Analysis of Reliability Data

M.J. Crowder, A.C. Kimber, T.J. Sweeting, and R.L. Smith

Statistical Methods for Spatial Data Analysis

O. Schabenberger and C.A. Gotway

Statistical Methods for SPC and TQM

D. Bissell

Statistical Methods in Agriculture and Experimental

Biology, Second Edition

R. Mead, R.N. Curnow, and A.M. Hasted

Statistical Process Control — Theory and Practice,

Third Edition

G.B. Wetherill and D.W. Brown

Statistical Theory, Fourth Edition

B.W. Lindgren

Statistics for Accountants

S. Letchford

Statistics for Epidemiology

N.P. Jewell

Statistics for Technology — A Course in Applied

Statistics, Third Edition

C. Chatfield

Statistics in Engineering — A Practical Approach

A.V. Metcalfe

Statistics in Research and Development,

Second Edition R. Caulcutt

Stochastic Processes: An Introduction,

Second Edition

P.W. Iones and P. Smith

Survival Analysis Using S — Analysis of

Time-to-Event Data

M. Tableman and J.S. Kim

The Theory of Linear Models

B. Jørgensen

Time Series Analysis

H. Madsen

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20130920

International Standard Book Number-13: 978-1-4398-7122-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com

Contents

Pr	Preface		
1	Som	e Background on Probability	1
	1.1	Introduction	1
	1.2	Probability	1
	1.3	Conditional probability and independence	5
	1.4	Discrete random variables	7
	1.5	Continuous random variables	9
	1.6	Mean and variance	10
	1.7	Some standard discrete probability distributions	12
	1.8	Some standard continuous probability distributions	14
	1.9	Generating functions	17
	1.10	Conditional expectation	21
	1.11	Problems	24
2	Some Gambling Problems		29
	2.1	Gambler's ruin	29
	2.2	Probability of ruin	29
	2.3	Some numerical simulations	33
	2.4	Duration of the game	34
	2.5	Some variations of gambler's ruin	38
		2.5.1 The infinitely rich opponent	38
		2.5.2 The generous opponent	38
		2.5.3 Changing the stakes	39
	2.6	Problems	39
3	Random Walks		
	3.1	Introduction	45
	3.2	Unrestricted random walks	46
	3.3	The general probability distribution of a walk	48
	3.4	First returns of the symmetric random walk	50
	3.5	Problems	52
4	Mar	kov Chains	59
	4.1	States and transitions	59
	4.2	Transition probabilities	60

vi	CONTENTS

	4.3	General two-state Markov chains	64
	4.4	Powers of the general transition matrix	66
	4.5	Gambler's ruin as a Markov chain	73
	4.6	Classification of states	76
	4.7	Classification of chains	83
	4.8	Problems	86
5		son Processes	93
		Introduction	93
		The Poisson process	93
	5.3	Partition theorem approach	96
	5.4	Iterative method	97
	5.5	The generating function	98
	5.6	Variance in terms of the probability generating function	100
	5.7	Arrival times	101
	5.8	Summary of the Poisson process	103
	5.9	Problems	104
6		h and Death Processes	107
		Introduction	107
	6.2	The birth process	107
	6.3	Birth process: Generating function equation	110
	6.4	The death process	112
	6.5	The combined birth and death process	115
	6.6	General population processes	119
	6.7	Problems	122
7	Que		131
		Introduction	131
	7.2	The single-server queue	132
	7.3	The stationary process	134
	7.4	Queues with multiple servers	140
	7.5	Queues with fixed service times	144
	7.6	Classification of queues	147
	7.7	A general approach to the $M(\lambda)/G/1$ queue	147
	7.8	Problems	151
8	Reli	ability and Renewal	157
	8.1	Introduction	157
	8.2	The reliability function	157
	8.3	Exponential distribution and reliability	159
	8.4	Mean time to failure	160
	8.5	Reliability of series and parallel systems	161
	8.6	Renewal processes	163
	8.7	Expected number of renewals	165

CO	NTE	ENTS	vii
	8.8	Problems	167
9	Bra	nching and Other Random Processes	171
	9.1	Introduction	171
	9.2	Generational growth	171
	9.3	Mean and variance	174
	9.4	Probability of extinction	176
	9.5	Branching processes and martingales	179
	9.6	Stopping rules	182
	9.7	The simple epidemic	184
	9.8	An iterative solution scheme for the simple epidemic	186
	9.9		188
10	Con	nputer Simulations and Projects	195
An	swer	rs and Comments on End-of-Chapter Problems	203
Аp	pend	lix	211
Re	ferer	nces and Further Reading	215
Ind	lex		217

Preface

This textbook was developed from a course in stochastic processes given by the authors over many years to second-year students studying Mathematics or Statistics at Keele University. At Keele the majority of students take degrees in Mathematics or Statistics jointly with another subject, which may be from the sciences, social sciences or humanities. For this reason the course has been constructed to appeal to students with varied academic interests, and this is reflected in the book by including applications and examples that students can quickly understand and relate to. In particular, in the earlier chapters, the classical gambler's ruin problem and its variants are modeled in a number of ways to illustrate simple random processes. Specialized applications have been avoided to accord with our view that students have enough to contend with in the mathematics required in stochastic processes.

Topics can be selected from Chapters 2 to 9 for a one-semester course or module in random processes. It is assumed that readers have already encountered the usual first-year courses in calculus and matrix algebra and have taken a first course in probability; nevertheless, a revision of relevant basic probability is included for reference in Chapter 1. Some of the easier material on discrete random processes is included in Chapters 2, 3, and 4, which cover some simple gambling problems, random walks, and Markov chains. Random processes continuous in time are developed in Chapters 5 and 6. These include Poisson, birth and death processes, and general population models. Continuous time models include queues in Chapter 7, which has an extended discussion on the analysis of associated stationary processes. The book ends with two chapters on reliability and other random processes, the latter including branching processes, martingales, and a simple epidemic. An appendix contains key mathematical results for reference.

There are over 50 worked examples in the text and 205 end-of-chapter problems with hints and answers listed at the end of the book.

 $Mathematica^{TM}$ is a mathematical software package able to carry out complex symbolic mathematical as well as numerical computations. It has become an integral part of many degree courses in Mathematics or Statistics. The software has been used throughout the book to solve both theoretical and numerical examples and to produce many of the graphs.

R is a statistical computing and graphics package which is available free of charge, and can be downloaded from:

http://www.r-project.org

x PREFACE

Like *R*, *S-PLUS* (not freeware) is derived from the *S* language, and hence users of these packages will be able to apply them to the solution of numerical projects, including those involving matrix algebra presented in the text. *Mathematica* code has been applied to all the projects listed by chapters in Chapter 10, and *R* code to some as appropriate. All the *Mathematica* and *R* programs can be found on the Keele University Web site:

http://www.scm.keele.ac.uk/books/stochastic_processes/

Not every topic in the book is included, but the programs, which generally use standard commands, are intended to be flexible in that inputs, parameters, data, etc., can be varied by the user. Graphs and computations can often add insight into what might otherwise be viewed as rather mechanical analysis. In addition, more complicated examples, which might be beyond hand calculations, can be attempted.

We are grateful to staff of the School of Computing and Mathematics, Keele University, for help in designing the associated Web site.

Finally, we would like to thank the many students at Keele over many years who have helped to develop this book, and to the interest shown by users of the first edition in helping us to refine and update this second edition.

Peter W. Jones Peter Smith Keele University

CHAPTER 1

Some Background on Probability

1.1 Introduction

We shall be concerned with the modeling and analysis of random experiments using the theory of probability. The outcome of such an experiment is the result of a *stochastic* or *random process*. In particular we shall be interested in the way in which the results or outcomes vary or evolve over time. An experiment or trial is any situation where an outcome is observed. In many of the applications considered, these outcomes will be numerical, sometimes in the form of counts or enumerations. The experiment is random if the outcome is not predictable or is uncertain.

At first we are going to be concerned with simple mechanisms for creating random outcomes, namely games of chance. One recurring theme initially will be the study of the classical problem known as *gambler's ruin*. We will then move on to applications of probability to modeling in, for example, engineering, medicine, and biology. We make the assumption that the reader is familiar with the basic theory of probability. This background will however be reinforced by the brief review of these concepts which will form the main part of this chapter.

1.2 Probability

In random experiments, the list of all possible outcomes is termed the **sample space**, denoted by S. This list consists of individual **outcomes** or **elements**. These elements have the properties that they are **mutually exclusive** and that they are **exhaustive**. Mutually exclusive means that two or more outcomes cannot occur simultaneously: exhaustive means that all possible outcomes are in the list. Thus each time the experiment is carried out one of the outcomes in S must occur. A collection of elements of S is called an **event**: these are usually denoted by capital letters, A, B, etc. We denote by P(A) the **probability** that the event A will occur at each repetition of the random experiment. Remember that A is said to have occurred if one element making up A has occurred. In order to calculate or estimate the probability of an event A there are two possibilities. In one approach an experiment can be performed a large number of times, and P(A) can be approximated by the relative frequency with which A occurs. In order to analyze random experiments we make the assumption that the conditions surrounding the trials remain the same, and are independent of one another. We hope

that some regularity or settling down of the outcome is apparent. The ratio

the number of times a particular event A occurs

total number of trials

is known as the **relative frequency** of the event, and the number to which it appears to converge as the number of trials increases is known as the probability of an outcome within A. Where we have a finite sample space it might be reasonable to assume that the outcomes of an experiment are equally likely to occur as in the case, for example, in rolling a fair die or spinning an unbiased coin. In this case the probability of A is given by

$$\mathbf{P}(A) = \frac{\text{number of elements of } S \text{ where } A \text{ occurs}}{\text{number of elements in } S}.$$

There are, of course, many 'experiments' which are not repeatable. Horse races are only run once, and the probability of a particular horse winning a particular race may not be calculated by relative frequency. However, a punter may form a view about the horse based on other factors which may be repeated over a series of races. The past form of the horse, the form of other horses in the race, the state of the course, the record of the jockey, etc., may all be taken into account in determining the probability of a win. This leads to a view of probability as a 'degree of belief' about uncertain outcomes. The odds placed by bookmakers on the horses in a race reflect how punters place their bets on the race. The odds are also set so that the bookmakers expect to make a profit.

It is convenient to use **set** notation when deriving probabilities of events. This leads to S being termed the **universal set**, the set of all outcomes: an event A is a **subset** of S. This also helps with the construction of more complex events in terms of the unions and intersections of several events. The **Venn diagrams** shown in Figure 1.1 represent the main set operations of **union** (\cup) , **intersection** (\cap) , and **complement** (A^c) which are required in probability.

• Union. The union of two sets A and B is the set of all elements which belong to A, or to B, or to both. It can be written formally as

$$A \cup B = \{x | x \in A \text{ or } x \in B \text{ or both}\}.$$

• Intersection. The intersection of two sets A and B is the set $A \cap B$ which contains all elements common to both A and B. It can be written as

$$A\cap B=\{x|x\in A \text{ and } x\in B\}.$$

• Complement. The complement A^c of a set A is the set of all elements which belong to the universal set S but do not belong to A. It can be written as

$$A^c = \{ x \not\in A \}.$$

So, for example, in an experiment in which we are interested in two events A and B, then $A^c \cap B$ may be interpreted as 'only B', being the intersection of the **complement** of A and B (see Figure 1.1d): this is alternatively expressed in the difference notation $B \setminus A$ meaning B but not A. We denote by ϕ the **empty set**, that is the set which contains no elements. Note that $S^c = \phi$. Two events A and B are

PROBABILITY 3

Figure 1.1 (a) the union $A \cup B$ of A and B; (b) the intersection $A \cap B$ of A and B; (c) the complement A^c of A: S is the universal set; (d) $A^c \cap B$ or $B \setminus A$

said to be **mutually exclusive** if A and B have no events in common A and B so that $A \cap B = \phi$, the empty set: in set terminology A and B are said to be **disjoint** sets. The probability of any event satisfies however calculated the three axioms

- Axiom 1: $0 \le P(A) \le 1$ for every event A
- **Axiom 2**: P(S) = 1
- Axiom 3: $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive $(A \cap B = \phi)$

Axiom 3 may be extended to more than two mutually exclusive events, say k of them represented by

$$A_1, A_2, \ldots, A_k$$

where $A_i \cap A_j = \phi$ for all $i \neq j$. This is called a **partition** of S if

- (a) $A_i \cap A_j = \phi$ for all $i \neq j$,
- (b) $\bigcup_{i=1}^k A_i = A_1 \cup A_2 \cup \ldots \cup A_k = S$,
- (c) $P(A_i) > 0$.

In this definition, (a) states that the events are mutually exclusive, (b) that every event in S occurs in one of the events A_i , and (c) implies that there is a nonzero probability that any A_i occurs. It follows that

$$1 = \mathbf{P}(S) = \mathbf{P}(A_1 \cup A_2 \cup \dots \cup A_k) = \sum_{i=1}^k \mathbf{P}(A_i).$$

Theorem

- (a) $P(A^c) = 1 P(A);$
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (a) Axiom 3 may be combined with Axiom 2 to give $P(A^c)$, the probability that the

complement A^c occurs, by noting that $S = A \cup A^c$. This is a partition of S into the mutually exclusive exhaustive events A and A^c . Thus

$$1 = \mathbf{P}(S) = \mathbf{P}(A \cup A^c) = \mathbf{P}(A) + \mathbf{P}(A^c),$$

giving

$$\mathbf{P}(A^c) = 1 - \mathbf{P}(A).$$

(b) For any sets A and B

$$A \cup B = A \cup (B \cap A^c),$$

and

$$B = (\cap B) \cup (B \cap A^c),$$

in which A and $B \cap A^c$ are disjoint sets, and $A \cap B$ and $B \cap A^c$ are disjoint sets. Therefore, by Axiom 3,

$$\mathbf{P}(a \cup B) = \mathbf{P}(A) + \mathbf{P}(B \cap A^c),$$

and

$$\mathbf{P}(B) = \mathbf{P}(A \cap B) + \mathbf{P}(B \cap A^c).$$

Elimination of $P(B \cap A^c)$ between these equations leads to

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B) \tag{1.1}$$

as required.

Example 1.1. Two distinguishable fair dice a and b are rolled and the values on the uppermost faces noted. What are the elements of the sample space? What is the probability that the sum of the face values of the two dice is 7? What is the probability that at least one 5 appears?

We distinguish first the outcome of each die so that there are $6 \times 6 = 36$ possible outcomes for the pair. The sample space has 36 elements of the form (i, j) where i and j take all integer values 1, 2, 3, 4, 5, 6, and i is the outcome of die a and j is the outcome of b. The full list is

$$S = \{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \},$$

and they are all assumed to be equally likely since the dice are fair. If A_1 is the event that the sum of the dice is 7, then from the list,

$$A_1 = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

which occurs for 6 elements out of 36. Hence

$$P(A_1) = \frac{6}{36} = \frac{1}{6}$$
.

The event that at least one 5 appears is the list

$$A_2 = \{(1,5), (2,5), (3,5), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,5)\},\$$

which has 11 elements. Hence

$$P(A_2) = \frac{11}{36}$$
.

Example 1.2 From a well-shuffled pack of 52 playing cards a single card is randomly drawn. Find the probability that it is a heart or an ace.

Let A be the event that the card is an ace, and B the event that it is a heart. The event $A \cap B$ is the ace of hearts. We require the probability that it is an ace or a heart, which is $\mathbf{P}(A \cup B)$. However, since one of the aces is a heart the events are not mutually exclusive. Hence, we must use eqn (1.1). It follows that

the probability that an ace is drawn is P(A) = 4/52,

the probability that a heart is drawn is P(B) = 13/52 = 1/4,

the probability that the ace of hearts is drawn is $P(A \cap B) = 1/52$.

From (1.1)

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B) = \frac{4}{52} + \frac{1}{4} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}.$$

This example illustrates events which are not mutually exclusive. The result could also be obtained directly by noting that 16 of the 52 cards are either hearts or aces.

In passing note that $A \cap B^c$ is the set of aces excluding the ace of hearts, whilst $A^c \cap B$ is the heart suit excluding the ace of hearts. Hence

$$\mathbf{P}(A \cap B^c) = \frac{3}{52}, \quad \mathbf{P}(A^c \cap B) = \frac{12}{52} = \frac{3}{13}.$$

1.3 Conditional probability and independence

If the occurrence of an event B is affected by the occurrence of another event A then we say that A and B are dependent events. We might be interested in a random experiment with which A and B are associated. When the experiment is performed, it is known that event A has occurred. Does this affect the probability of B? This probability of B now becomes the **conditional probability** of B given A, which is now written as $\mathbf{P}(B|A)$. Usually this will be distinct from the probability $\mathbf{P}(B)$. Strictly speaking, this probability is conditional since we must assume that B is conditional on the sample space occurring, but it is implicit in $\mathbf{P}(B)$. On the other hand the conditional probability of B is restricted to that part of the sample space where A has occurred. This conditional probability is defined as

$$\mathbf{P}(B|A) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}, \qquad \mathbf{P}(A) > 0. \tag{1.2}$$

In terms of counting, suppose that an experiment is repeated N times, of which A occurs N(A) times, and A given by B occurs $N(B \cap A)$ times. The proportion of times that B occurs is

$$\frac{\mathcal{N}(B \cap A)}{\mathcal{N}(A)} = \frac{\mathcal{N}(A \cap B)}{\mathcal{N}} \frac{\mathcal{N}}{\mathcal{N}(B)},$$

which justifies (1.2).

If the probability of B is unaffected by the prior occurrence of A, then we say that A and B are **independent** or that

$$\mathbf{P}(B|A) = \mathbf{P}(B),$$

which from above implies that

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B).$$

Conversely, if P(B|A) = P(B), then A and B are independent events. Again this result can be extended to 3 or more independent events.

Example 1.3 Let A and B be independent events with $P(A) = \frac{1}{4}$ and $P(B) = \frac{2}{3}$. Calculate the following probabilities: (a) $P(A \cap B)$; (b) $P(A \cap B^c)$; (c) $P(A^c \cap B^c)$; (d) $P(A^c \cap B)$; (e) $\mathbf{P}((A \cup B)^c)$.

Since the events are independent, then $P(A \cap B) = P(A)P(B)$. Hence

- (a) $\mathbf{P}(A \cap B) = \frac{1}{4} \cdot \frac{2}{3} = \frac{1}{6}$. (b) The independence A and B^c follows by eliminating $\mathbf{P}(A \cap B)$ between the equations

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B) = \mathbf{P}(A)[1 - \mathbf{P}(B^c)]$$

and

$$\mathbf{P}(A) = \mathbf{P}[(A \cap B^c) \cup (A \cap B)] = \mathbf{P}(A \cap B^c) + \mathbf{P}(A \cap B).$$

Hence

$$\mathbf{P}(A \cap B^c) = \mathbf{P}(A)\mathbf{P}(B^c) = \mathbf{P}(A)[1 - \mathbf{P}(B)] = \frac{1}{4}(1 - \frac{2}{3}) = \frac{1}{12}.$$

(c) Since A^c and B^c are independent events,

$$\mathbf{P}(A^c \cap B^c) = \mathbf{P}(A^c)\mathbf{P}(B^c) = [1 - \mathbf{P}(A)][1 - \mathbf{P}(B)] = \frac{3}{4} \cdot \frac{1}{3} = \frac{1}{4}.$$

- (d) Since A^c and B are independent events, $\mathbf{P}(A^c \cap B) = \mathbf{P}(A^c)\mathbf{P}(B) = [1 \frac{1}{4}]\frac{2}{3} = \frac{1}{2}$. (e) $\mathbf{P}((A \cup B)^c) = 1 \mathbf{P}(A \cup B) = 1 \mathbf{P}(A) \mathbf{P}(B) + \mathbf{P}(A \cap B)$ by (1.1). Hence

$$\mathbf{P}((A \cup B)^c) = 1 - \mathbf{P}(A) - \mathbf{P}(B) + \mathbf{P}(A)\mathbf{P}(B) = 1 - \frac{1}{4} - \frac{2}{3} + \frac{1}{6} = \frac{1}{4}.$$

Example 1.4. For three events A, B, and C, show that

$$\mathbf{P}(A \cap B|C) = \mathbf{P}(A|B \cap C)\mathbf{P}(B|C),$$

where $\mathbf{P}(C) > 0$.

By using (1.2) and viewing $A \cap B \cap C$ as $(A \cap B) \cap C$ or $A \cap (B \cap C)$,

$$\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A \cap B | C)\mathbf{P}(C) = \mathbf{P}(A | B \cap C)\mathbf{P}(B \cap C).$$

Hence

$$\mathbf{P}(A \cap B|C) = \mathbf{P}(A|B \cap C) \frac{\mathbf{P}(B \cap C)}{\mathbf{P}(C)} = \mathbf{P}(A|B \cap C)\mathbf{P}(B|C)$$

by (1.2) again.

A result known as the **law of total probability** or the **partition theorem** will

Figure 1.2 Schematic set view of a partition of S into 5 events A_1, \ldots, A_5 .

be used extensively later, for example, in the discrete gambler's ruin problem (Section 2.1) and the Poisson process (Section 5.2). Suppose that A_1, A_2, \ldots, A_k represents a partition of S into k mutually exclusive events in which, interpreted as sets, the sets fill the space S but with none of the sets overlapping. Figure 1.2 shows such a scheme. When a random experiment takes place one and only one of the events can take place.

Suppose that B is another event associated with the same random experiment (Figure 1.2). Then B must be made up of the sum of the intersections of B with each of the events in the partition. Some of these will be empty but this does not matter. We can say that B is the union of the intersections of B with each A_i . Thus

$$B = \bigcup_{i=1}^{k} B \cap A_i,$$

but the significant point is that any pair of these events is mutually exclusive. It follows that

$$\mathbf{P}(B) = \sum_{i=1}^{k} \mathbf{P}(B \cap A_i). \tag{1.3}$$

Since, from equation (1.2),

$$\mathbf{P}(B \cap A_i) = \mathbf{P}(B|A_i)\mathbf{P}(A_i),$$

equation (1.3) can be expressed as

$$\mathbf{P}(B) = \sum_{i=1}^{k} \mathbf{P}(B|A_i)\mathbf{P}(A_i),$$

which is the law of total probability or the partition theorem.

1.4 Discrete random variables

In most of the applications considered in this text, the outcome of the experiment will be numerical. A **random variable** usually denoted by the capital letters X, Y, or Z, say, is a numerical value associated with the outcome of a random experiment.

If s is an element of the original sample space S, which may be numerical or symbolic, then X(s) is a real number associated with s. The same experiment, of course, may generate several random variables. Each of these random variables will, in turn, have sample spaces whose elements are usually denoted by lower case letters such as x_1, x_2, x_3, \ldots for the random variable X. We are now interested in assigning probabilities to events such as $\mathbf{P}(X=x_1)$, the probability that the random variable X is x_1 and $\mathbf{P}(X \leq x_2)$, the probability that the random variable is less than or equal to x_2 .

If the sample space is finite or countably infinite on the integers (that is, the elements x_0, x_1, x_2, \ldots can be counted against integers, say $0, 1, 2, \ldots$) then we say that the random variable is **discrete**. Technically, the set $\{x_i\}$ will be a countable subset \mathcal{V} , say, of the real numbers \mathcal{R} . We can represent the $\{x_i\}$ generically by the variable x with $x \in \mathcal{V}$. For example, \mathcal{V} could be the set

$$\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \ldots\}.$$

In many cases V consists simply of the integers or a subset of the integers, such as

$$V = \{0, 1\}$$
 or $V = \{0, 1, 2, 3, \ldots\}.$

In the random walks of Chapter 3, however, V may contain all the positive and negative integers

$$\ldots -3, -2, -1, 0, 1, 2, 3, \ldots$$

In these *integer* cases we can put $x_i = i$.

The function

$$p(x_i) = \mathbf{P}(X = x_i)$$

is known as the **probability mass function**. The pairs $\{x_i, p(x_i)\}$ for all i in the sample space define the **probability distribution** of the random variable X. If $x_i = i$, which occurs frequently in applications, then $p(x_i) = p(i)$ is replaced by p_i . Since the x values are mutually exclusive and exhaustive then it follows that

- (a) $0 \le p(x_i) \le 1$ for all i,
- (b) $\sum_{i=0}^{\infty} p(x_i) = 1$, or in generic form $\sum_{x \in \mathcal{V}} p(x) = 1$,
- (c) $P(X \le x_k) = \sum_{i=0}^k p(x_i)$, which is known as the **distribution function**.

Example 1.5. A fair die is rolled until the first 6 appears face up. Find the probability that the first 6 appears at the n-th throw.

Let the random variable N be the number of throws until the first 6 appears face up. This is an example of a discrete random variable N with an infinite number of possible outcomes

$$\{1, 2, 3, \ldots\}$$
.

The probability of a 6 appearing for any throw is $\frac{1}{6}$ and of any other number appearing is $\frac{5}{6}$.

Hence the probability of n-1 numbers other than 6 appearing followed by a 6 is

$$\mathbf{P}(N=n) = \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right) = \frac{5^{n-1}}{6^n},$$

which is the probability mass function for this random variable.

1.5 Continuous random variables

In many applications the discrete random variable, which for example might take the integer values $1,2,\ldots$, is inappropriate for problems where the random variable can take any real value in an interval. For example, the random variable T could be the time measured from time t=0 until a light bulb fails. This could be any value $t\geq 0$. In this case T is called a **continuous random variable**. Generally, if X is a continuous random variable there are mathematical difficulties in defining the event X=x: the probability is usually defined to be zero. Probabilities for continuous random variables may only be defined over intervals of values as, for example, in $\mathbf{P}(x_1 < X < x_2)$.

We define a **probability density function** (pdf) f(x) over $-\infty < x < \infty$ which has the properties:

- (a) $f(x) \ge 0$, $(-\infty < x < \infty)$;
- (b) $\mathbf{P}(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f(x) dx$ for any x_1, x_2 such that $-\infty < x_1 < x_2 < \infty$;
- (c) $\int_{-\infty}^{\infty} f(x)dx = 1.$

A possible graph of a density function f(x) is shown in Figure 1.3. By (a) above the curve must remain nonnegative, by (b) the probability that X lies between x_1

Figure 1.3 A probability density function.

and x_2 is the shaded area, and by (c) the total area under the curve must be 1 since $\mathbf{P}(-\infty < X < \infty) = 1$.

We define the (cumulative) distribution function (cdf) F(x) as the probability

that X is less than or equal to x. Thus

$$F(x) = \mathbf{P}(X \le x) = \int_{-\infty}^{x} f(u)du.$$

It follows from (c) above that

$$F(x) \to 1$$
 as $x \to \infty$,

and that

$$\mathbf{P}(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f(u) du = F(x_2) - F(x_1).$$

A possible cdf is shown in Figure 1.4.

Figure 1.4 A (cumulative) distribution function.

Example 1.6. Show that

$$f(x) = \begin{cases} 1/(b-a) & a \le x \le b \\ 0 & \text{for all other values of } x \end{cases}$$

is a possible probability density function. Find its cumulative distribution function.

The function f(x) must satisfy conditions (a) and (c) above. This is the case since $f(x) \ge 0$ and

$$\int_{-\infty}^{\infty} f(x)dx = \int_{a}^{b} \frac{1}{b-a}dx = 1.$$

Also its cumulative distribution function F(x) is given by

$$F(x) = \int_{a}^{x} \frac{1}{b-a} dx = \frac{x-a}{b-a} \quad \text{for} \quad a \le x \le b.$$

For x < a, F(x) = 0 and for x > b, F(x) = 1.

The pdf f(x) is the density function of the **uniform distribution**.

1.6 Mean and variance

The **mean** (or **expectation** or **expected value**), $\mathbf{E}(X)$, of a discrete random variable X is defined as

$$\boldsymbol{\mu} = \mathbf{E}(X) = \sum_{i=0}^{\infty} x_i p(x_i),$$

where $p(x_i) = \mathbf{P}(X = x_i)$, and, for a continuous random variable X by

$$\mu = \mathbf{E}(X) = \int_{-\infty}^{\infty} x f(x) dx,$$

where f(x) is the probability density function. It can be interpreted as the weighted average of the values of X in its sample space, where the weights are either the probability function or the density function. It is a measure which may be used to summarize the probability distribution of X in the sense that it is a central value. In the discrete case the summation over 'all x' includes both finite and infinite sample spaces.

A measure which is used in addition to the mean as a summary measure is the **variance** of X denoted by V(X) or σ^2 . This gives a measure of variation or spread (dispersion) of the probability distribution of X, and is defined by

$$\begin{split} \boldsymbol{\sigma}^2 &= \mathbf{V}(X) \\ &= \mathbf{E}[(X - \mathbf{E}(X))^2] = \mathbf{E}[(X - \boldsymbol{\mu})^2] \\ &= \begin{cases} \sum_{i=0}^{\infty} (x_i - \boldsymbol{\mu})^2 p(x_i) \text{ or } \sum_{x \in \mathcal{V}} (x - \boldsymbol{\mu})^2 p(x), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{\infty} (x - \boldsymbol{\mu})^2 f(x) dx, & \text{if } X \text{ is continuous.} \end{cases} \end{split}$$

The variance is the mean of the squared deviations of each value of X from the central value μ . In order to give a measure of variation which is in the same units as the mean, the square root σ of V(X) is used, namely

$$\sigma = \sqrt{\mathbf{V}(X)}$$
.

This is known as the **standard deviation** (sd) of X.

A function of a random variable is itself a random variable. If h(X) is a function of the random variable X, then it can be shown that the expectation of h(X) is given by

$$\mathbf{E}[h(X)] = \begin{cases} \sum_{i=0}^{\infty} h(x_i) p(x_i) \text{ or } \sum_{x \in \mathcal{V}} h(x) p(x), & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} h(x) p(x) dx, & \text{if } X \text{ continuous.} \end{cases}$$

It is relatively straightforward to derive the following results for the expectation and variance of a linear function of X:

$$\mathbf{E}(aX + b) = a\mathbf{E}(X) + b = a\mu + b,$$

$$\mathbf{V}(aX + b) = \mathbf{E}[(aX + b - a\mu - b)^{2}]$$

$$= \mathbf{E}[(aX - a\mu)^{2}] = a^{2}\mathbf{E}[(X - \mu)^{2}] = a^{2}\mathbf{V}(X),$$

where a and b are constants. Note that the *translation* of the random variable does not affect the variance. Also

$$\mathbf{V}(X) = \mathbf{E}(X^2) - \boldsymbol{\mu}^2,$$

which is sometimes known as the *computational formula for the variance*. These results hold whether X is discrete or continuous and enable us to interpret expectation and variance as operators on X. Of course, in all cases mean and variance only exist where the summations and infinite integrals are finite.

For expectations, it can be shown more generally that

$$\mathbf{E}\left[\sum_{i=1}^{k} a_i h_i(X)\right] = \sum_{i=1}^{k} a_i \mathbf{E}[h_i(X)],$$

where a_i , i = 1, 2, ..., k are constants and $h_i(X)$, i = 1, 2, ..., k are functions of the random variable X.

1.7 Some standard discrete probability distributions

In this section we shall look at discrete random variables X with probability mass function $p(x_i)$ or p_i , where x_i takes integer values. Each of the random variables considered are numerical outcomes of independent repetitions (or trials) of a simple experiment knowns as a **Bernoulli experiment**. This is an experiment where there are only two outcomes: a 'success' (X=1) or a 'failure' (X=0). The value of the random variable X is used as an **indicator** of the outcome which may also be interpreted as the presence or absence of a particular characteristic. For example, in a single coin toss X=1 is associated with the occurrence, or the presence of the characteristic, of a *head* and X=0 with a *tail*, or the absence of a head.

The probability function of this random variable may be expressed in algebraic terms as

$$p_i = p^i q^{1-i}$$
, over the two values $i = 0, 1$,

where $p = \mathbf{P}(X = 1)$ is known as the **parameter** of the probability distribution, and q = 1 - p. We say that the random variable has a **Bernoulli distribution**.

The expected value of X is easily seen to be

$$\boldsymbol{\mu} = \mathbf{E}(X) = 0 \times q + 1 \times p = p,$$

and the variance of X is

$$\sigma^2 = \mathbf{V}(X) = \mathbf{E}(X^2) - \mu^2 = 0^2 \times q + 1^2 \times p - p^2 = pq.$$

Suppose now that we are interested in random variables associated with independent repetitions of Bernoulli experiments each with a probability of success, p. Consider first the probability distribution of a random variable X (a different X from that defined above) which is the number of successes in a fixed number of independent trials, n. Independence of the trials gives the probability of any sequence of 1's and 0's without order, which are mutually exclusive, leading to X = k as $p^k q^{n-k}$. The number of ways in which x successes can be arranged in x0 trials is the binomial expression

$$\frac{n!}{k!(n-k)!}$$
 or $\binom{n}{k}$.

Since each of these mutually exclusive sequences occurs with probability p^kq^{n-k} ,

the probability function of this random variable is given by

$$p(k) \text{ or } p_k = \binom{n}{k} p^k q^{n-k}, \qquad k = 0, 1, 2, \dots, n.$$
 (1.4)

This is the k-th term in the binomial expansion of $(p+q)^n$, and for this reason is known as the **binomial distribution** with parameters n and p. A consequence of this observation is that

$$\sum_{k=0}^{n} p_k = \sum_{k=1}^{n} \binom{n}{k} p^k q^{n-k} = (p+q)^n = 1.$$

The mean and variance may be easily shown to be np and npq respectively, which is n times the mean and variance of the Bernoulli distribution.

Instead of fixing the number of trials, suppose now that the number of successes, r, is fixed, and that the sample size required in order to reach this fixed number is the random variable X: this is sometimes called **inverse sampling**. Then in the case r=1, the probability that k-1 failures is followed by 1 success is

$$p_k = q^{k-1}p, \qquad k = 1, 2, \dots,$$

which is the **geometric probability function** with parameter p. Note that successive probabilities form a geometric series with common ratio q = 1 - p. Note that the sample space is now countably infinite. After some algebra it can be shown that the mean is given by $\mu = 1/p$, and the variance by $\sigma^2 = q/p^2$.

The geometric probability distribution possesses an interesting property known as the 'no memory', which can be expressed by

$$\mathbf{P}(X > a + b | X > a) = \mathbf{P}(X > b),$$

where a and b are positive integers. What this means is that if a particular event has *not* occurred in the first a repetitions of the experiment, then the probability that it will occur in the next b repetitions is the same as in the first b repetitions of the experiment. The result can be proved as follows, using the definition of conditional probabilty in Section 1.3:

$$\mathbf{P}(X > a + b | X > a) = \frac{\mathbf{P}(X > a + b \cap X > a)}{\mathbf{P}(X > a))} = \frac{\mathbf{P}(X > a + b)}{\mathbf{P}(X > a)}.$$

Since $P(X > x) = q^x$,

$$\mathbf{P}(X > a + b|X > a) = \frac{q^{a+b}}{q^a} = q^b = \mathbf{P}(X > b).$$

The converse is also true, but the proof is not given here.

In the case where r > 1, the probability function of the number of trials may be derived by noting that X = k requires that the k-th trial results in the r-th success and that the remaining r - 1 successes may occur in any order in the previous k - 1 trials. Arguments based on counting the number of possible sequences of 1's and 0's,

and independence of trials, lead to

$$p_k = {\binom{k-1}{r-1}} p^r q^{k-r}, \qquad k = r, r+1, \dots.$$

This is known as a **Pascal** or **negative binomial distribution**. Its mean is r/p and its variance rq/p^2 , which are respectively r times the mean and r times the variance of the geometric distribution. Hence a similar relationship exists between the geometric and the Pascal distributions as between the Bernoulli and the binomial distributions.

The binomial random variable arises as the result of observing n independent identically distributed Bernoulli random variables, and the Pascal by observing r sets of geometric random variables.

Certain problems involve the counting of the number of events which have occurred in a fixed time period. For example, the number of emissions of alpha particles by an X-ray source or the number of arrivals of customers joining a queue. It has been found that the **Poisson distribution** is appropriate in modeling these counts when the underlying process generating them is considered to be completely random. We shall spend some time in Chapter 5 defining such a process which is known as a **Poisson process**.

As well as being a probability distribution in its own right, the Poisson distribution also provides a convenient approximation to the binomial distribution to which it converges when n is large and p is small and $np = \alpha$, a constant. This is a situation where rounding errors would be likely to cause computational problems, if the numerical probabilities were to be calculated.

The Poisson probability function with parameter α is

$$p_k = \frac{e^{-\alpha}\alpha^k}{k!}, \qquad k = 0, 1, 2, \dots$$

with mean and variance both equal to α .

The **discrete uniform distribution** with integer parameter n has a random variable X which can take the values $r, r+1, r+2, \ldots r+n-1$ with the same probability 1/n (the continuous uniform distribution was introduced in Example 1.6). It is easy to show that the mean and variance of X are given by

$$\mu = \frac{1}{2}(n+1), \qquad \sigma^2 = \mathbf{V}(X) = \frac{1}{12}(n^2 - 1).$$

A simple example of the uniform discrete distribution is the fair die in which the faces 1, 2, 3, 4, 5, 6 are equally likely to appear each with probability $\frac{1}{6}$.

1.8 Some standard continuous probability distributions

The **exponential distribution** is a continuous distribution which will be used in subsequent chapters to model the random variable, say X, which is the *time* to a particular event. In a Poisson process, we shall see that this is the time between successive occurrences of the event of interest. For example, the inter-arrival time of customers in a queue, or the lifetime or the time to failure of a component, where the failure rate α is constant, in reliability theory, can be modelled by exponential distributions.

The density function is

$$f(x) = \begin{cases} \alpha e^{-\alpha x}, & x \ge 0\\ 0 & x < 0 \end{cases}$$

where α is a positive parameter. It is a density function since

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} \alpha e^{-\alpha x} dx = 1.$$

The mean and variance are given by

$$\mu = \mathbf{E}(X) = \int_0^\infty \alpha x e^{-\alpha x} dx = \frac{1}{\alpha},$$

and

$$\sigma^2 = \mathbf{V}(X) = \int_0^\infty \left(x - \frac{1}{\alpha} \right)^2 \alpha e^{-\alpha x} dx = \frac{1}{\alpha^2}.$$

The distribution function F(x) of this random variable is given by

$$F(x) = \int_{-\infty}^{x} f(u) du = \int_{0}^{x} \alpha e^{-\alpha y} dy = 1 - e^{-\alpha x}.$$

A closed form for F(x) is not always possible for continuous random variables, and tables are sometimes necessary. Like the geometric distribution considered in the last section, the exponential distribution possesses the 'no memory' property

$$\mathbf{P}(X > a + b|X > a) = \mathbf{P}(X > b), \qquad a, b > 0.$$
(1.5)

This may be proved using the definition of conditional probability in Section 1.3, and noting that $\mathbf{P}(X>x)=e^{-\alpha x}$. It can be shown that if (1.5) is true, then X has an exponential distribution.

A random variable X has a **normal distribution** with mean μ and variance $\mathbf{V}(X)$ or σ^2 , if its probability density function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \qquad (-\infty < x < \infty). \tag{1.6}$$

That

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

follows from the standard integral

$$\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}.$$

For the normal distribution it can be verified that the mean and variance are

$$\int_{-\infty}^{\infty} x f(x) dx = \mathbf{E}(X) = \boldsymbol{\mu}, \qquad \int_{-\infty}^{\infty} (x - \boldsymbol{\mu})^2 f(x) dx = \boldsymbol{\sigma}^2.$$

The normal distribution is often denoted by $N(\mu, \sigma^2)$.

The **gamma distribution** depends on the properties of the gamma function $\Gamma(n)$

defined by

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx.$$

Integration by parts produces the recurrence formula

$$\Gamma(n) = (n-1)\Gamma(n-1),$$

since

$$\Gamma(n) = -\int_0^\infty x^{n-1} \frac{de^{-x}}{dx} dx$$

$$= [-x^{n-1}e^{-x}]_0^\infty + \int_0^\infty \frac{dx^{n-1}}{dx} e^{-x} dx$$

$$= (n-1) \int_0^\infty x^{n-2} e^{-x} dx = (n-1)\Gamma(n-1).$$

When n is an integer it follows that

$$\Gamma(n) = (n-1)!.$$

The gamma distribution has two parameters n, α , and has the density function

$$f(x) = \frac{\alpha^n}{\Gamma(n)} x^{n-1} e^{-\alpha x}, \qquad x > 0.$$

Note that by setting n=1, we obtain the exponential distribution. The mean is given by

$$\mathbf{E}(X) = \frac{\alpha^n}{\Gamma(n)} \int_0^\infty x^n e^{-\alpha x} dx = \frac{\alpha^n}{\Gamma(n)\alpha^{n+1}} \int_0^\infty y^n e^{-y} dy,$$

after the change of variable $y = \alpha x$. Hence

$$\mathbf{E}(X) = \frac{\Gamma(n+1)}{\alpha \Gamma(n)} = \frac{n}{\alpha}.$$

It can be shown that the variance of the gamma distribution is n/α^2 . Note that the mean and variance are respectively n times the mean and variance of the exponential distribution with parameter α .

It will be proved later that if X_1, X_2, \dots, X_n are independent identically distributed exponential random variables, then

$$Y = \sum_{i=1}^{n} X_i$$

has a gamma distribution with parameters α , n.

Another distribution arising in reliability (Chapter 8) is the **Weibull distribution** which depends on two positive parameters α , β , and has density

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \qquad t > 0.$$

This enables more complex lifetime data to be modeled, especially where a constant failure rate is not a reasonable assumption. Note that setting $\beta=1$ gives the exponential distribution. After some algebra, it may be shown that the mean and variance

of the Weibull distribution are

$$\boldsymbol{\mu} = \frac{1}{\alpha^{\frac{1}{\beta}}} \Gamma\left(\frac{1}{\beta} + 1\right),$$

$$\boldsymbol{\sigma}^2 = \frac{1}{\alpha^{\frac{2}{\beta}}} \left[\Gamma\left(\frac{2}{\beta} + 1\right) - \left\{\Gamma\left(\frac{1}{\beta} + 1\right)\right\}^2 \right].$$

1.9 Generating functions

In this section we are going to consider two generating functions. The main purpose is to use their uniqueness properties to identify the probability distributions of functions of random variables. The first is the **moment generating function** (mgf). This function depends on a dummy variable s and uses the series expansion of e^{sx} to generate the **moments** $\mathbf{E}(X^r), \ (r \geq 1)$ of the random variable X. The expected value $\mathbf{E}(X^r)$ is called the r-th moment of the random variable X about zero. The power series expansion of e^{sX} is given by

$$e^{sX} = 1 + sX + \frac{(sX)^2}{2!} + \dots + \frac{(sX)^r}{r!} + \dots,$$

a series which converges for all sX. The mgf is obtained by taking expected values of both sides of this equation,

$$M_X(s) = \mathbf{E}(e^{sX}) = \mathbf{E}\left[1 + sX + \frac{(sX)^2}{2!} + \dots + \frac{(sX)^r}{r!} + \dots\right].$$
 (1.7)

We mentioned in Section 1.6 that the expected value of a finite sum of functions was equal to the sum of the expected values, and that $\mathbf{E}(aX) = a\mathbf{E}(X)$. We now wish to apply this result to an infinite sum, making the assumption that this result holds (it does so under fairly general conditions). Thus we assume that

$$M_X(s) = 1 + s\mathbf{E}(X) + \frac{s^2}{2!}\mathbf{E}(X^2) + \dots + \frac{s^r}{r!}\mathbf{E}(X^r) + \dots = \sum_{r=0}^{\infty} \frac{s^r}{r!}\mathbf{E}(X^r).$$

The coefficient of $s^r/r!$ is therefore the r-th moment of X. Taking successive derivatives of the mgf with respect to s, and then setting s=0 we can obtain these moments. For example,

$$M'_X(0) = \mathbf{E}(X) = \mu, \qquad M''_X(0) = \mathbf{E}(X^2),$$

and the variance is therefore given by (see Section 1.6)

$$\sigma^2 = M''(0) - [M'(0)]^2.$$

Let X have a gamma distribution with parameters n, α . Then

$$M_X(s) = \mathbf{E}(e^{sX}) = \int_0^\infty \frac{\alpha^n}{\Gamma(n)} e^{sx} x^{n-1} e^{-\alpha x} dx,$$
$$= \int_0^\infty \frac{\alpha^n}{\Gamma(n)} x^{n-1} e^{-x(\alpha - s)} dx.$$

The change of variable $x = u/(\alpha - s)$ leads to the result

$$M_X(s) = \left(\frac{\alpha}{\alpha - s}\right)^n$$
 provided that $s < \alpha$.

Now consider the result quoted but not proved in the previous section on the distribution of **independent and identically distributed** (**iid**) exponential random variables X_1, X_2, \ldots, X_n .

We may now use the two results above to prove this. We first need to note that since the random variables are independent, it follows that

$$\mathbf{E}\Big(g_1(X_1)g_2(X_2)\cdots g_n(X_n)\Big) = \mathbf{E}\Big(g_1(X_1)\Big)\mathbf{E}\Big(g_2(X_2)\Big)\cdots \mathbf{E}\Big(g_n(X_n)\Big).$$

Let $Y = \sum_{i=1}^{n} X_i$. Then

$$\begin{split} M_Y(s) &= \mathbf{E}(e^{sY}) = \mathbf{E}(e^{s\sum_{i=1}^n X_i}) \\ &= \mathbf{E}(\prod_{i=1}^n e^{sX_i}) = \prod_{i=1}^n \mathbf{E}(e^{sX_i}) \text{ (using the result above)} \\ &= \prod_{i=1}^n M_{X_i}(s), \end{split}$$

but since the X_i s are identically distributed, they have the same mgf $M_X(s)$. Hence

$$M_Y(s) = \left[M_X(s) \right]^n$$
.

Of course this result holds for any iid random variables. If X is exponential, then

$$M_X(s) = \frac{\alpha}{\alpha - s},$$

and

$$M_Y(s) = \left(\frac{\alpha}{\alpha - s}\right)^n,$$

which is the mgf of a gamma-distributed random variable.

Example 1.7 n rails are cut to a nominal length of a meters, with an error exponentially distributed with parameter α independently of each other. The rails are welded end-to-end to form a continuous rail of nominal length na. Find the expected length and variance of the composite rail.

Let X_i be the random variable representing the length of rail i. Let Y be the random variable of the length of the whole rail so that

$$Y = X_1 + X_2 + \cdots + X_n.$$

Since the random variables are independent and identically distributed, and the errors exponentially distributed, the moment generating function is (see above)

$$M_Y(s) = [M_X(s)]^n,$$

where X is exponentially distributed. Therefore

$$M_Y(s) = \left(\frac{\alpha}{\alpha - s}\right)^n = \left(1 - \frac{s}{\alpha}\right)^{-n}$$
$$= 1 + \frac{n}{\alpha}s + \frac{1}{2}\frac{n(n-1)}{\alpha^2}s^2 + \cdots$$

Hence the expected value of the length of the composite rail and its variance are given by

$$\mathbf{E}(Y) = \frac{n}{\alpha}, \qquad \boldsymbol{\sigma}^2 = \mathbf{E}(Y^2) - [\mathbf{E}(Y)]^2 = \frac{n(n-1)}{\alpha^2} - \frac{n}{\alpha^2}.$$

The latter result is an example of the result that

$$V(X_1 + X_2 + \dots + X_n) = V(X_1 + V(X_2) + \dots + V(X_n),$$

provided X_1, X_2, \ldots, X_n are independent.

Moment generating functions may be defined for both discrete and continuous random variables but the **probability generating function** (pgf) is only defined for integer-valued random variables. To be specific, we consider the probability distribution $p_n = \mathbf{P}(N=n)$, where the random variable N can only take the values $0,1,2,\ldots$ (We use the notation p_n rather than p(n) in this context since it conforms to the usual notation for coefficients in power series.) Again it is expressed in terms of a power series in a dummy variable s, and is defined as the expected value of s^N :

$$G_N(s) = \mathbf{E}(s^N) = \sum_{n=0}^{\infty} p_n s^n,$$

provided the right-hand side exists. The question of uniqueness arises with generating functions, since we deduce distributions from them. Later we shall represent the probability generating function by G(s) without the random variable subscript. It can be shown (see Grimmett and Welsh (1986)) that two random variables X and Y have the same probability generating function if and only if they have the same probability distributions.

In many cases the pgf will take a closed form: this will occur if the outcomes can only be a finite number. In others, such as in birth and death processes (Chapter 6), in which there is, theoretically, no upper bound to the population size, the series for the pgf will be infinite. However, in all cases the coefficient of s^n will give the probability p_n . If $G_N(s) = \sum_{n=0}^{\infty} p_n s^n$, then

$$\frac{\mathrm{d}G_N}{\mathrm{d}s} = G'_N(s) = \sum_{n=1}^{\infty} n p_n s^n, \quad (0 \le s \le 1),$$

$$\frac{\mathrm{d}^2 G_N}{\mathrm{d}s^2} = G_N''(s) = \sum_{n=2}^{\infty} n(n-1)p_n s^{n-2}, \quad (0 \le s \le 1).$$

The pgf has the following properties:

• (a)
$$G_N(1) = \sum_{n=0}^{\infty} p_n = 1.$$

• (b)
$$G_N'(1) = \sum_{n=0}^{\infty} n p_n = \mathbf{E}(N) = \boldsymbol{\mu}$$
, the mean.

• (c)
$$G_N''(1) = \sum_{n=0}^{\infty} n(n-1)p_n = \mathbf{E}(N^2) - \mathbf{E}(N)$$
, so that the variance is given by

$$\mathbf{V}(N) = \boldsymbol{\sigma}^2 = \mathbf{E}(N^2) - \boldsymbol{\mu}^2 = G''(1) + G'(1) - [G'(1)]^2.$$

- (d) $G_N^{(m)}(1) = d^m G(1)/ds^m = \mathbf{E}[N(N-1)\dots(N-m+1)]$, which is called the **factorial moment** of N.
- (e) If N_1, N_2, \dots, N_r are independent and identically distributed discrete random variables, and $Y = \sum_{i=1}^r N_i$, then

$$G_Y(s) = \mathbf{E}[s^Y] = \mathbf{E}\left[s^{\sum_{i=1}^r N_i}\right] = \mathbf{E}\left[\prod_{i=1}^r (s^{N_i})\right]$$
$$= \prod_{i=1}^r G_{N_i}(s),$$

and since the N_i 's are identically distributed

$$G_Y(s) = [G_X(s)]^r,$$

which is similar to the result for moment generating functions.

Example 1.8 The random variable N has a binomial distribution with parameters m, p. Its probability function is given by

$$p(n) = p_n = \mathbf{P}(N=n) = \binom{m}{n} p^n q^{m-n}, \qquad n = 0, 1, 2, \dots, m$$

(see Eqn(1.4)). Find its pgf.

The pgf of N is

$$G_N(s) = G(s) = \sum_{n=0}^m s^n \binom{m}{n} p^n q^{m-n} = \sum_{n=0}^m \binom{m}{n} (ps)^n q^{m-n}$$

= $(q+ps)^m$

using the binomial theorem. It follows that

$$G'(s) = mp(q + ps)^{m-1},$$

$$G''(s) = m(m-1)p^{2}(q + ps)^{m-2}.$$

Using the results above, the mean and variance are given by

$$\mu = G'(1) = mp$$

and

$$\sigma^2 = G''(1) + G'(1) - [G'(1)]^2 = m(m-1)p^2 + mp - m^2p^2 = mpq.$$

The Bernoulli distribution is the binomial distribution with n=1. Hence its pgf is

$$G_X(s) = q + ps.$$

Consider n independent and identically distributed Bernoulli random variables X_1, X_2, \dots, X_n , and let $Y = \sum_{i=1}^n X_i$. Then from the results above

$$G_Y(s) = [G_X(s)]^n = (q + ps)^n,$$

which is again the pgf of a binomial random variable.

It is possible to associate a generating function with any sequence $\{a_n\}$, (n = 0, 1, 2, ...) in the form

$$H(s) = \sum_{n=0}^{\infty} a_n s^n$$

provided that the series converges in some interval containing the origin s=0. Unlike the pgf this series need not satisfy the conditions H(1)=1 for a probability distribution nor $0 \le a_n \le 1$. An application using such a series is given Problem 1.24, and in Section 3.3 on random walks.

1.10 Conditional expectation

In many applications of probability we are interested in the possible values of two or more characteristics in a problem. For this we require two or more random variables which may or may not be independent. We shall only consider the case of two discrete random variables X and Y which form a two-dimensional random variable denoted by (X,Y), which can take pairs of values (x_i,y_j) $(i=1,2,\ldots;j=1,2,\ldots)$ (either sequence may be finite or infinite) with joint probability (mass) function $p(x_i,y_j)$, which is now a function of two variables. As in Section 1.4, the probabilities must satisfy

- (a) $0 \le p(x_i, y_i) \le 1$ for all (i, j),
- (b) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p(x_i, y_j) = 1.$

The random variables X and Y are said to be **independent**, if and only if,

$$p(x_i, y_j) = q(x_i)r(y_j) \quad \text{for all } i \text{ and } j,$$
(1.8)

where, of course,

$$\sum_{i=1}^{\infty} q(x_i) = 1, \quad \sum_{i=1}^{\infty} r(y_i) = 1.$$

If the random variable Z = H(X,Y) is a function of the random variables X and Y, then we will state without proof that the expected value of Z is given by

$$\mathbf{E}(Z) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} H(x_i, y_j) p(x_i, y_j).$$

We can also consider the **conditional expectation** of X for a given value y_j of Y. This is defined as

$$\mathbf{E}(X|Y = y_j) = \sum_{i=1}^{\infty} x_i \mathbf{P}(X = x_i | Y = y_j) = \sum_{i=1}^{\infty} x_i p_X(x_i | y_j)$$

where $p_X(x_i|y_j)$ is the probability that $X=x_i$ occurs given that $Y=y_j$ has occurred. We can view this expectation as a function of y_i . We can also interpret it as the same function of the random variable Y: we denote this function of Y as $\mathbf{E}(X|Y)$. Similarly

$$\mathbf{E}(Y|X=x_i) = \sum_{i=1}^{\infty} y_j p_Y(y_j|x_i)$$

and $\mathbf{E}(Y|X)$ can be defined. The conditional probability $p(x_i|y_j)$ is given by (see Section 1.4)

$$p_X(x_i|y_j) = \frac{p(x_i, y_j)}{p_Y(y_j)}$$
 $(p_Y(y_j) \neq 0),$

where

$$p_Y(y_j) = \sum_{i=1}^{\infty} p_X(x_i, y_j)$$

is the marginal probability distribution of Y.

As we have observed the expectations $\mathbf{E}(X|Y)$ and $\mathbf{E}(Y|X)$ are **random variables** which are functions of Y and X respectively. However, if X and Y are independent random variables, then $p(x_i, y_j) = q(x_i)r(y_j)$ by Eqn(1.9) so that

$$p_X(x_i|y_j) = \frac{p(x_i, y_j)}{p_Y(y_j)} = \frac{q(x_i)r(y_j)}{\sum_{i=1}^{\infty} q(x_i)r(y_j)} = q(x_i),$$

and, similarly,

$$p_Y(y_i|x_j) = r(y_j).$$

Note that, for independent random variables, the marginal probability distributions with respect to Y and X are $r(y_i)$ and $q(x_i)$ respectively. Hence

$$\mathbf{E}(X|Y) = \sum_{i=1}^{\infty} x_i p_X(x_i|y_j) = \sum_{i=1}^{\infty} x_i q(x_i) = \mathbf{E}(X).$$

By a similar argument, $\mathbf{E}(Y|X) = \mathbf{E}(Y)$.

On the other hand if X and Y are dependent random variables, then $\mathbf{E}(X|Y)$ and $\mathbf{E}(Y|X)$ can themselves have expectations. Thus

$$\mathbf{E}(\mathbf{E}(X|Y)) = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} x_i \frac{p(x_i, y_j)}{p_Y(y_j)} \right) p_Y(y_j),$$

since $p(y_j)$ is the probability that $Y = y_j$ occurs. Hence

$$\mathbf{E}(\mathbf{E}(X|Y)) = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_i p(x_i, y_j) = \mathbf{E}(X).$$

Similarly

$$\mathbf{E}(\mathbf{E}(Y|X)) = \mathbf{E}(Y).$$

Example 1.9. A bird lays Y eggs in a nest, where Y has a binomial distribution with parameters m and p. Each egg hatches with probability r independently of the other eggs. If X is the number of young in the nest, find the conditional expectations $\mathbf{E}(X|Y)$, the expected value that an egg hatches given y eggs have been laid, and $\mathbf{E}(Y|X)$, the expected value that y eggs were laid given x eggs hatching.

Let $y_j = j$, $(0 \le j \le m)$ be possible values of Y. Since Y is binomial, using the notation above,

$$p_Y(y_j) = \binom{m}{j} p^j (1-p)^{m-j}, \quad (0 \le j \le m).$$

Let $x_i = i$, $(0 \le i \le j)$ be possible numbers of the young in the nest. Then the conditional mass function

$$p_X(x_i|y_j) = \mathbf{P}(X = x_i|Y = y_j) = \binom{j}{i} r^i (1-r)^{j-i}, \quad (0 \le j \le m, \quad 0 \le i \le j),$$

which is the number of ways in which i items can be chosen from j items. This distribution is also binomial but with parameters j and i. Hence

$$\mathbf{E}(X|Y = y_j) = \sum_{i=1}^{j} i p(x_i|y_j) = \sum_{i=1}^{j} i \binom{j}{i} r^i (1-r)^{j-i}$$

$$= (1-r)^j \sum_{i=1}^{j} k \binom{j}{i} \left(\frac{r}{1-r}\right)^i$$

$$= (1-r)^j \cdot \frac{r}{1-r} \cdot j \left(1 + \frac{r}{1-r}\right)^{j-1}$$

$$= ir = y_i r.$$

Hence $\mathbf{E}(X|Y)$ is the random variable rY, $(0 \le Y \le m)$.

To obtain the conditional expectation $\mathbf{E}(Y|X)$, start from Eqn(1.2) which can be written as

$$\mathbf{P}(Y \cap X) = \mathbf{P}(X|Y)\mathbf{P}(Y) = \mathbf{P}(X \cap Y) = \mathbf{P}(Y|X)\mathbf{P}(X).$$

Hence the conditional mass function

$$p_X(y_j, x_i) = \mathbf{P}(Y = y_j | X = x_i) = \frac{\mathbf{P}(X = x_i | Y = y_j) \mathbf{P}(Y = y_j)}{\mathbf{P}(X = x_i)}$$
$$= \frac{p(x_i | y_j) p(y_j)}{p_X(x_i)}.$$

where

$$p_X(x_i) = \mathbf{P}(X = x_i) = \sum_{s=i}^m \binom{s}{i} r^i (1-r)^{s-i} \cdot \binom{m}{s} p^s (1-p)^{m-s}$$
$$= \left(\frac{r}{1-r}\right)^i (1-p)^m \sum_{s=i}^m \binom{s}{i} \binom{m}{s} \rho^s$$

where

$$\rho = \frac{p(1-r)}{1-p}.$$

It follows that

$$p(y_j|x_i) = \frac{\binom{j}{i}\binom{m}{j}\rho^j}{\sum_{s=i}^m \binom{s}{i}\binom{m}{s}\rho^s}.$$

Finally

$$\mathbf{E}(Y|X=x_i) = \frac{\sum_{j=i}^{m} j\binom{j}{i}\binom{m}{j}\rho^j}{\sum_{j=i}^{m} \binom{s}{j}\binom{m}{j}\rho^s} = u(i,r,p,m) = u(x_i,r,p,m),$$

say. Hence the conditional expectation $\mathbf{E}(Y|X)$ is the random variable u(X,r,p,m).

1.11 Problems

1.1. The Venn diagram of three events is shown in Figure 1.5. Indicate on the diagram the

Figure 1.5

following events:

(a)
$$A \cup B$$
; (b) $A \cup (B \cup C)$; (c) $A \cap (B \cup C)$; (d) $(A \cap C)^c$; (e) $(A \cap B) \cup C^c$.

- 1.2. In a random experiment, A, B, C are three events. In set notation write down expressions for the events:
- (a) only A occurs;
- (b) all three events A, B, C occur;
- (c) A and B occur but C does not;
- (d) at least one of the events A, B, C occurs;
- (e) exactly one of the events A, B, C occurs;
- (f) not more than two of the events occur.
- 1.3. For two events A and B, $\mathbf{P}(A)=0.4$, $\mathbf{P}(B)=0.5$, and $\mathbf{P}(A\cap B)=0.3$. Calculate (a) $\mathbf{P}(A\cup B)$; (b) $\mathbf{P}(A\cap B^c)$; (c) $\mathbf{P}(A^c\cup B^c)$.
- 1.4. Two distinguishable fair dice a and b are rolled. What are the elements of the sample

PROBLEMS 25

space? What is the probability that the sum of the face values of the two dice is 9? What is the probability that at least one 5 or at least one 3 appears?

- 1.5. Two distinguishable fair dice are rolled. What is the probability that the sum of the faces is not more than 6?
- 1.6. A probability function $\{p_n\}$, (n = 0, 1, 2, ...) has a probability generating function

$$G(s) = \sum_{n=0}^{\infty} p_n s^n = \frac{1}{4} (1+s)(3+s)^{\frac{1}{2}}.$$

Find the probability function $\{p_n\}$ and its mean.

1.7. Find the probability generating function G(s) of the Poisson distribution (see Section 1.7) with parameter α given by

$$p_n = \frac{e^{-\alpha}\alpha^n}{n!}, \qquad n = 0, 1, 2, \dots$$

Determine the mean and variance of $\{p_n\}$ from the generating function.

1.8. A panel contains n warning lights. The times to failure of the lights are the independent random variables T_1, T_2, \ldots, T_n which have exponential distributions with parameters $\alpha_1, \alpha_2, \ldots, \alpha_n$ respectively. Let T be the random variable of the time to first failure, that is

$$T = \min\{T_1, T_2, \dots, T_n\}.$$

Show that T has an exponential distribution with parameter $\sum_{j=1}^{n} \alpha_j$. Show also that the probability that the i-th panel light fails first is $\alpha_i/(\sum_{j=1}^{n} \alpha_j)$.

1.9. The geometric probability function with parameter p is given by

$$p(x) = q^{x-1}p, \quad x = 1, 2, \dots$$

where q = 1 - p (see Section 1.7). Find its probability generating function. Calculate the mean and variance of the geometric distribution from its pgf.

- 1.10. Two distinguishable fair dice a and b are rolled. What are the probabilities that:
- (a) at least one 4 appears;
- (b) only one 4 appears;
- (c) the sum of the face values is 6;
- (d) the sum of the face values is 5 and one 3 is shown;
- (e) the sum of the face values is 5 or only one 3 is shown?
- 1.11. Two distinguishable fair dice a and b are rolled. What is the expected sum of the face values? What is the variance of the sum of the face values?
- 1.12. Three distinguishable fair dice a, b, and c are rolled. How many possible outcomes are there for the faces shown? When the dice are rolled, what is the probability that just two dice show the same face values and the third one is different?
- 1.13. In a sample space S, the events B and C are mutually exclusive, but A and B, and A and C are not. Show that

$$\mathbf{P}(A \cup (B \cup C)) = \mathbf{P}(A) + \mathbf{P}(B) + \mathbf{P}(C) - \mathbf{P}(A \cap (B \cup C)).$$

From a well-shuffled pack of 52 playing cards a single card is randomly drawn. Find the probability that it is a club or an ace or the king of hearts.

1.14. Show that

$$f(x) = \begin{cases} 0 & x < 0 \\ 1/(2a) & 0 \le x \le a \\ e^{-(x-a)/a}/(2a) & x > a \end{cases}$$

is a possible probability density function. Find the corresponding probability function.

- 1.15. A biased coin is tossed. The probability of a head is p. The coin is tossed until the first head appears. Let the random variable N be the total number of tosses including the first head. Find P(N = n), and its pgf G(s). Find the expected value of the number of tosses.
- 1.16. The n random variables X_1, X_2, \ldots, X_m are independent and identically distributed each with a gamma distribution with parameters n and α . The random variable Y is defined

$$Y = X_1 + X_2 + \dots + X_m.$$

Using the moment generating function, find the mean and variance of Y.

1.17. A probability generating function with parameter $0 < \alpha < 1$ is given by

$$G(s) = \frac{1 - \alpha(1 - s)}{1 + \alpha(1 - s)}.$$

Find $p_n = \mathbf{P}(N = n)$ by expanding the series in powers of s. What is the mean of the probability function $\{p_n\}$?

1.18. Find the moment generating function of the random variables X which has the uniform distribution

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b, \\ 0, & \text{for all other values of } x. \end{cases}$$

Deduce $\mathbf{E}(X^n)$.

- 1.19. A random variable has a normal distribution $N(\mu, \sigma^2)$. Find its moment generating function.
- 1.20. Find the probability generating functions of the following distributions, in which 0 <p < 1:
- (a) Bernoulli distribution: $p_n = p^n (1-p)^n$, (n=0,1); (b) geometric distribution: $p_n = p(1-p)^{n-1}$, $(n=1,2,\ldots)$;
- (c) negative binomial distribution with parameter r expressed in the form:

$$p_n = {r+n-1 \choose r-1} p^r (1-p)^n, \qquad (n=0,1,2,\ldots)$$

where r is a positive integer. In each case find also the mean and variance of the distribution using the probability generating function.

1.21. A word of five letters is transmitted by code to a receiver. The transmission signal is

weak, and there is a 5% probability that any letter is in error independently of the others. What is the probability that the word is received correctly? The same word is transmitted a second time with the same errors in the signal. If the same word is received, what is the probability now that the word is correct?

1.22. A random variable N over the positive integers has the probability distribution with

$$p_n = \mathbf{P}(N=n) = -\frac{\alpha^n}{n \ln(1-\alpha)}, \quad (0 < \alpha < 1; \ n = 1, 2, 3, \ldots).$$

What is its probability generating function? Find the mean of the random variable.

1.23. The source of a beam of light is a perpendicular distance d from a wall of length 2a, with the perpendicular from the source meeting the wall at its midpoint. The source emits a pulse of light randomly in a direction θ , the angle between the direction of the pulse and the perpendicular, chosen uniformly in the range $-\tan^{-1}(a/d) \le \theta \le \tan^{-1}(a/d)$. Find the probability distribution of x ($-a \le x \le a$), where the pulses hit the wall. Show that its density function is given by

$$f(x) = \frac{d}{2(x^2 + d^2)\tan^{-1}(a/d)}$$

(this the density function of a **Cauchy distribution**). If $a \to \infty$, what can you say about the mean of this distribution?

1.24. Suppose that the random variable X can take the integer values $0, 1, 2, \ldots$ Let p_j and q_j be the probabilities

$$p_i = \mathbf{P}(X = j), \quad q_i = \mathbf{P}(X > j), \quad (j = 0, 1, 2, \ldots).$$

Show that, if

$$G(s) = \sum_{j=0}^{\infty} p_j s^j, \qquad H(s) = \sum_{j=0}^{\infty} q_j s^j,$$

then (1-s)H(s) = 1 - G(s). Show also that $\mathbf{E}(X) = H(1)$.

CHAPTER 2

Some Gambling Problems

2.1 Gambler's ruin

Consider a game of chance between two players A, the gambler and B, the opponent. It is assumed that at each play, A either wins one unit from B with probability p or loses one unit to B with probability q=1-p. Similarly, B either wins from A or loses to A with probabilities q or p. The result of every play of the game is independent of the results of previous plays. The gambler A and the opponent B each start with a given number of units and the game ends when either player has lost his or her initial stake. What is the probability that the gambler loses all his or her money or wins all the opponent's money assuming that an unlimited number of plays are possible? This is the classic **gambler's ruin** problem. In a simple example of gambler's ruin, each play could depend on the spin of a fair coin in which case $p=q=\frac{1}{2}$.

The problem will be solved by using results from conditional probability which then leads to a **difference equation** and we shall have more to say about methods of solution later. There are other questions associated with this problem, such as how many plays are expected before the game finishes. In some games the player might be playing against a casino which has a very large (effectively infinite) initial stake.

2.2 Probability of ruin

The result of each play of the game is a (modified) Bernoulli random variable (Section 1.7) which can only take the values -1 and +1. After a series of plays, we are interested in the current capital or stake of A, the gambler. This is simply the initial capital of A plus the sum of the values of the Bernoulli random variables generated by these plays. We are also interested in how the random variable which represents the current capital changes or evolves with the number of plays. This is measured at discrete points when the result of each play is known.

Suppose that A has an initial capital of k units and B starts with a-k, where a and k are positive integers and a>k. If X_n is a random variable representing A's stake after n plays (or at time point n), then $X_0=k$. If $X_n=0$, then the gambler A is ruined (note that we must have $n\geq k$), whilst if $X_n=a$ ($n\geq a-k$) then B is ruined, and in both cases the game terminates. Our initial objective is the derivation of $\mathbf{P}(X_n=0)$ for all $n\geq k$.

The sequence of random variables $X_0, X_1, X_2 \dots$ represents what is known as a

random process with a finite sample space consisting of the integers from 0 to a. These values are known as the **state** of the process at each **stage** or time point n. If C_k is the event that A is eventually ruined when starting with initial capital k, then, by using the fact that the events $X_n = 0$ $(n = k, k + 1, k + 2, \ldots)$ are mutually exclusive, it follows that

$$\mathbf{P}(C_k) = \sum_{n=k}^{\infty} \mathbf{P}(X_n = 0).$$

Note again that the summation starts at n=k since the minimum number of steps in which the game could end must be k. Note also that the results of each trial are independent, but X_n , $n=0,1,2,\ldots$ are not. This is easily seen to be true by considering a particular value of X_n , say x, (0 < x < a), after n plays, say. This event may only occur if previously $X_{n-1} = x - 1$ or x + 1. The state reached in any play depends on the state of the previous play only: in other words the process is said to display the **Markov** property, of which more will be explained later.

Clearly the calculation of $P(X_n = 0)$ for all n is likely to be a long and tedious process. However, we now introduce a method for the calculation of these probabilities which avoids this: it is based on the solution of **linear homogeneous difference equations**.

Due to the sequential nature of this process, after the result of a play is known, then A's stake is either increased or decreased by one unit. This capital then becomes the new stake which, in turn, becomes the initial stake for the next play. Hence if we define $u_k = \mathbf{P}(C_k)$, then after the first play the probability of ruin is either $u_{k+1} = \mathbf{P}(C_{k+1})$ or $u_{k-1} = \mathbf{P}(C_{k-1})$. Let us consider the result of the first play, and define D to be the event that A wins and D^c the event that A loses. Using the law of total probability (Section 1.3), it follows that

$$\mathbf{P}(C_k) = \mathbf{P}(C_k|D)\mathbf{P}(D) + \mathbf{P}(C_k)|D^c)\mathbf{P}(D^c). \tag{2.1}$$

Now $\mathbf{P}(C_k|D) = \mathbf{P}(C_{k+1})$ and $\mathbf{P}(C_k|D^c) = \mathbf{P}(C_{k-1})$, whilst $\mathbf{P}(D) = p$ and $\mathbf{P}(D^c) = q$, which means that equation (2.1) can be written as

$$u_k = u_{k+1}p + u_{k-1}q,$$
 $(1 \le k \le a - 1).$

This equation can be re-arranged into

$$pu_{k+1} - u_k + qu_{k-1} = 0, (2.2)$$

which is a **second-order linear homogeneous difference equation**. It is described as homogeneous since there is no term on the right-hand side of Eqn (2.2), and second-order since the sequence difference between u_{k+1} and u_{k-1} is (k+1) - (k-1) = 2. If the gambler starts with zero stake then ruin is certain, whilst if the gambler starts with all the capital a, then ruin is impossible. These translate into

$$u_0 = \mathbf{P}(C_0) = 1$$
 and $u_a = \mathbf{P}(C_a) = 0,$ (2.3)

which are the **boundary conditions** for the difference equation (2.2).

It is possible to enumerate the solution (see Tuckwell (1995)): this will also be the subject of Problem 2.17. However here we shall describe a method which also has a more general application (see Jordan and Smith (2008) for a more detailed explanation of the solution of difference equations). Consider a solution of the form

$$u_k = m^k$$

where m is to be determined. Direct substitution into the left-hand side of Eqn (2.2) yields

$$pu_{k+1} - u_k + qu_{k-1} = m^{k-1}[pm^2 - m + q].$$

This is zero if either m=0, which is known as the trivial solution and is not usually of interest in this context, or if m satisfies the quadratic equation

$$pm^2 - m + q = (pm - q)(m - 1) = 0,$$
 $(p + q = 1),$

which is known as the **characteristic equation** of the difference equation (2.2). The roots of the equation are $m_1 = 1$ and $m_2 = q/p$. Since the difference equation is linear, the general solution is, provided that $p \neq q$, any linear combination of the two solutions with $m = m_1$ and $m = m_2$, that is

$$u_k = A_1 m_1^k + A_2 m_2^k = A_1 + A_2 \left(\frac{q}{p}\right)^k$$

where A_1 and A_2 are arbitrary constants. The boundary conditions $u_0=1$ and $u_a=0$ imply that

$$A_1 + A_2 = 1$$
 and $A_1 + A_2 s^a = 0$,

so that

$$A_1 = -\frac{s^a}{1 - s^a}$$
 and $A_2 = \frac{1}{1 - s^a}$,

where s=q/p. Hence the probability that the gambler is ruined given an initial capital of k is, if $p\neq \frac{1}{2}$,

$$u_k = \frac{s^k - s^a}{1 - s^a}. (2.4)$$

The special case $p=q=\frac{1}{2}$ has to be treated separately. The characteristic equation of

$$\frac{1}{2}u_{k+1} - u_k + \frac{1}{2}u_{k-1} = 0$$

is

$$m^2 - 2m + 1 = 0,$$

which has the repeated root $m_1 = m_2 = 1$. In this case one solution is 1, but we still require a second independent solution. For a repeated root of difference equations we try $k \times$ (the repeated root). Hence

$$\frac{1}{2}u_{k+1} - u_k + \frac{1}{2}u_{k-1} = \frac{1}{2}(k+1) - k + \frac{1}{2}(k-1) = 0.$$

Thus the general solution is

$$u_k = A_1 + A_2 k.$$

With the same boundary conditions, it follows that

$$u_k = \frac{a-k}{a}. (2.5)$$

If the game is now looked at from B's viewpoint, then to obtain his/her probability of ruin, v_{a-k} , say, there is no need to derive this from first principles. In the above derivation, simply interchange p and q, and replace k by a-k in the results (2.4) and (2.5). Hence B is ruined with probability

$$v_{a-k} = \left(\frac{1}{s^{a-k}} - \frac{1}{s^a}\right) / \left(1 - \frac{1}{s^a}\right) = \frac{s^k - 1}{s^a - 1},$$

if $s \neq 1$, and with probability

$$v_{a-k} = \frac{k}{a},$$

if s = 1.

It follows that

$$u_k + v_{a-k} = \frac{a-k}{a} + \frac{k}{a} = 1.$$

Hence the game must terminate eventually with one of the players losing.

Example 2.1. Suppose the possibility of a draw is now included. Let the probability that the gambler wins, loses or draws against the opponent in a play be respectively p, q, or r. Since these are the only possible outcomes p + q + r = 1. Show that the probability of ruin u_k is given by

$$u_k = \frac{s^k - s^a}{1 - s^a}, \qquad s = \frac{q}{p} \neq 1, \quad (p \neq \frac{1}{2}),$$

where the gambler's initial stake is k and the total at stake is a.

In this case the law of total probability given by (2.1) is extended to include a third possible outcome. In the draw the stakes remain unchanged after the play. Hence the probability of ruin u_k satisfies

$$u_k = u_{k+1}p + u_kr + u_{k-1}q,$$

or

$$pu_{k+1} - (1-r)u_k + qu_{k-1} = 0. (2.6)$$

As in the main problem, the boundary conditions are $u_0 = 1$ and $u_a = 0$. Replace 1 - r by p + q in the difference equation. Its characteristic equation becomes

$$pm^2 - (p+q)m + q = (pm-q)(m-1) = 0,$$

which has the general solution

$$u_k = A_1 + A_2 \left(\frac{q}{p}\right)^k.$$

Notice that this is the same solution as the standard problem with no draws; q/p is still the ratio of the probability of losing to winning at each play. The only difference is that $p+q \neq 1$ in this case. Hence as in (2.4)

$$u_k = \frac{s^k - s^a}{1 - s^a},$$

where s = q/p.

Example 2.2. In a gambler's ruin game the initial stakes are k and a - k for the two players: if the gambler wins then she or he wins two units but if the gambler loses then she or he loses

one unit. The probability of win or lose at each play is $p = \frac{1}{3}$ or $q = \frac{2}{3}$. What are the boundary conditions and what is the probability of ruin?

If u_k is the probability of the gambler's ruin, then the law of total probability has to be changed in this problem to

$$u_k = pu_{k+2} + (1-p)u_{k-1},$$

for $1 \le k \le a - 2$.

The boundary conditions $u_0 = 1$ and $u_a = 0$ still hold. If k = a - 2, then the law of total probability has to be amended to

$$u_{a-1} = pu_a + (1-p)u_{a-2},$$

or

$$u_{a-1} - (1-p)u_{a-2} = 0,$$

and this becomes the third boundary condition. Three boundary conditions are required since the difference equation for u_k is now the *third-order* equation

$$pu_{k+2} - u_k + (1-p)u_{k-1} = 0.$$

Its characteristic equation is, with $p = \frac{1}{3}$,

$$m^3 - 3m + 2 = (m-1)^2(m+2) = 0$$

which has the roots 1, 1, -2. Hence the general solution is (note the repeated root)

$$u_k = A_1 + A_2 k + A_3 (-2)^k. (2.7)$$

The three boundary conditions above lead to

$$A_1 + A_3 = 1,$$

$$A_1 + A_2 a + A_3 (-2)^a = 0,$$

$$A_1 + A_2 (a - 1) + A_3 (-2)^{a - 1} = \frac{2}{3} (A_1 + A_2 (a - 2) + A_3 (-2)^{a - 2}),$$

for A_1 , A_2 , and A_3 . The solutions are

$$A_1 = 1 - A_3 = \frac{(1+3a)(-2)^a}{(1+3a)(-2)^a - 1}, \qquad A_2 = \frac{-3(-2)^a}{(1+3a)(-2)^a - 1},$$

from which it follows that

$$u_k = \frac{(1+3a-3k)(-2)^a - (-2)^k}{(1+3a)(-2)^a - 1}.$$

2.3 Some numerical simulations

It is very easy now with computers and symbolic computation to simulate probability problems with simple programs. Figure 2.1 shows a simulation of the gambler's ruin in the case a=20, k=10, and $p=\frac{1}{2}$: the theoretical probability of ruin is given by Eqn (2.5), namely $u_k=(a-k)/a=\frac{1}{2}$. The program runs until the gambler's stake is either 0 or 20 in this example. Some sample probabilities computed from Eqn (2.4) and Eqn (2.5):

$$u_k = \frac{s^k - s^a}{1 - s^a}, \quad (p \neq \frac{1}{2}), \quad u_k = \frac{a - k}{a}, \quad (p = \frac{1}{2}).$$

Figure 2.1 The figure shows the steps in a simulation of a gambler's ruin problem with a=20 and k=10 with probability $p=\frac{1}{2}$ at each play. Ruin occurs after 40 steps in this case, although by (2.5) the gambler has even chances of winning or losing the game.

Figure 2.2 The ruin probability $u_k = (s^k - s^a)/(1 - s^a)$, $(p \neq \frac{1}{2})$, $u_k = (a - k)/a$, $(p = \frac{1}{2})$ versus k for a = 20 and a sample of probabilities p.

are shown in Figure 2.2 again with a=20 for various initial probabilities and play probabilities p. So, for example, the probability of ruin with p=0.42 and initial stake of 17 is about 0.62. The figure shows that, in a game in which both parties start with the same initial stake 10, the gambler's probability of ruin becomes very close to certainty for any p less than 0.35. An alternative view is shown in Figure 2.3, which shows the value of u_{10} versus p. The figure emphasizes that there is only a real contest between the players if p lies between 0.4 and 0.6.

2.4 Duration of the game

It is natural in the gambler's ruin problem to be curious about how long, or really how many plays we would expect the game to last. This is the number of steps to termination in which either the gambler or the opponent loses the game. Let us first consider a situation where the state of the game is defined in terms of two variables k, the initial capital and n, the remaining number of plays until the end of the game.

Figure 2.3 The probability u_{10} is shown against the play probability p for the case a=20.

Now n is unknown, and is a value of the random variable N which depends, in turn, on the results of the remaining plays.

Let p(n|k) be the conditional probability that the game ends in n steps given that the initial capital is k. Clearly n will be any positive integer greater or equal to the smaller of k and a-k since if the gambler won (lost) *every* play then s/he would win (lose) the game in a-k (k) plays. Hence the expected number of plays to termination or, as it is known also, the **expected duration** will be

$$\mathbf{E}(N) = \sum_{n=0}^{\infty} np(n|k) = d_k, \tag{2.8}$$

say. We have proved in Section 2.2 that termination is certain eventually so that p(n|k) is a probability function and must therefore satisfy

$$\sum_{n=0}^{\infty} p(n|k) = 1,$$

for each fixed k. After the result of the next play is known then the process will move from state (k,n) to either state (k+1,n-1) with probability p, or to state (k-1,n-1) with probability q=1-p. By the law of total probability it follows that

$$p(n|k) = p(n-1|k+1)p + p(n-1|k-1)q, \qquad (n, k \ge 1).$$

Substituting for p(n|k) in Eqn (2.8), we obtain the expected duration d_k given by

$$d_k = p \sum_{n=1}^{\infty} np(n-1|k+1) + q \sum_{m=1}^{\infty} mp(n-1|k-1).$$

The change of variable r = n - 1 in both summations leads to

$$d_k = p \sum_{r=0}^{\infty} (r+1)p(r|k+1) + q \sum_{r=0}^{\infty} (r+1)p(r|k-1),$$

= $p \sum_{r=0}^{\infty} rp(r|k+1) + q \sum_{r=0}^{\infty} rp(r|k-1) + p \sum_{r=0}^{\infty} p(r|k+1) + q \sum_{r=0}^{\infty} rp(r|k-1) +$

$$\begin{split} q \sum_{r=0}^{\infty} p(r|k-1), \\ &= p \sum_{r=0}^{\infty} rp(r|k+1) + q \sum_{r=0}^{\infty} rp(r|k-1) + p + q, \end{split}$$

since for the probability functions p(r|k+1) and p(r|k-1),

$$\sum_{r=0}^{\infty} p_{k+1}(r) = \sum_{r=0}^{\infty} p_{k-1}(r) = 1.$$

Hence the expected duration d_k satisfies the difference equation

$$d_k = pd_{k+1} + qd_{k-1} + 1,$$

since p + q = 1 and

$$d_{k+1} = \sum_{r=0}^{\infty} rp(r|k+1)$$
 and $d_{k-1} = \sum_{r=0}^{\infty} rp(r|k-1)$.

This equation can be re-arranged into

$$pd_{k+1} - d_k + qd_{k-1} = -1, (2.9)$$

which is similar to the difference equation for the probability u_k except for the term on the right-hand side. This is now a linear **inhomogeneous second-order difference equation**. The boundary conditions are again obtained by considering the extremes where the players lose. Thus if k=0 or k=a, then the game terminates so that the expected durations must be zero, that is

$$d_0 = d_a = 0.$$

The solution to this type of difference equation is the sum of the general solution of the corresponding *homogeneous* equation, known as the **complementary function**, and a **particular solution** of the complete equation. The homogeneous equation has, for $s \neq 1$, the general solution

$$A_1 + A_2 s^k$$
.

For the particular solution we look at the right-hand side and try a suitable function. Since any constant is a also solution of the homogeneous equation, it cannot be a solution of the homogeneous equation. Instead, we try $d_k = Ck$, where C is a constant. Thus

$$pd_{k+1}-d_k+qd_{k-1}+1=pC(k+1)-Ck+qC(k-1)+1=C(p-q)+1=0,$$

for all k if C = 1/(q - p). Hence the full general solution is

$$d_k = A_1 + A_2 s^k + \frac{k}{q - p}.$$

The boundary conditions imply

$$A_1 + A_2 = 0$$
, and $A_1 + A_2 s^a + \frac{a}{q-p} = 0$.

Hence

$$A_1 = -A_2 = -\frac{a}{(q-p)(1-s^a)},$$

with the result that the expected duration for $s \neq 1$ is

$$d_k = -\frac{a(1-s^k)}{(q-p)(1-s^a)} + \frac{k}{q-p} = \frac{1}{1-2p} \left[k - \frac{a(1-s^k)}{1-s^a} \right]. \tag{2.10}$$

If s = 1, the difference equation (2.9) becomes

$$d_{k+1} - 2d_k + d_{k-1} = -2.$$

The general solution of the homogeneous equation is

$$A_1 + A_2 k$$
,

which means that neither C nor Ck can satisfy the homogeneous equation. Instead we try Ck^2 for the particular solution. Thus

$$d_{k+1} - 2d_k + d_{k-1} + 2 = C(k+1)^2 - 2Ck^2 + C(k-1)^2 + 2 = 2C + 2 = 0,$$

if C = -1. Hence

$$d_k = A_1 + A_2k - k^2 = k(a - k).$$

The boundary conditions imply $A_1 = 0$ and $A_2 = a$, so that

$$d_k = k(a - k). (2.11)$$

A sample of expected durations are shown in Figure 2.4 for a total stake of a=20 and different probabilities p. For $p=\frac{1}{2}$ the expected duration has a maximum

Figure 2.4 Expected duration d_k against k for a = 20 and a selection of play probabilities p.

number of 100 when k=10. On average a game in which both players start with 10 units each will last for 100 plays. Generally if a=2k and $p=\frac{1}{2}$, then the expected duration behaves as k^2 .

2.5 Some variations of gambler's ruin

2.5.1 The infinitely rich opponent

Consider the gambler's ruin problem in which the opponent is assumed to be infinitely rich. This models a gambler playing against a bank or a casino whose resources are very large. As before the gambler's initial stake is a finite integer k, but effectively the bank's resources are infinite, that is, $a=\infty$. We approach the problem by looking at the finite case, and then find the limits of u_k and the expected duration, d_k as $a\to\infty$. As we might expect, the results depend on magnitude of s=q/p, the ratio of the probabilities.

(a) s=q/p<1, $(p>\frac{1}{2})$. The gambler A has the advantage in each play. Since $\lim_{a\to\infty}s^a=0$, it follows from equation (2.4) that

$$\lim u_k = \lim_{a \to \infty} \frac{s^k - s^a}{1 - s^a} = s^k < 1.$$

The expected number of plays until this happens is given by Eqn (2.10), which states that

$$d_k = -\frac{a(1-s^k)}{(q-p)(1-s^a)} + \frac{k}{q-p}.$$

Again $s^a \to 0$, since s < 1, so that a in the first term dominates with the result that $\lim_{a \to \infty} d_k = \infty$. Hence A is not certain to be ruined but the game would be expected to take an infinite number of plays, which itself is to be anticipated since B has an infinite stake.

(b) s>1, $(p<\frac{1}{2})$. B has the advantage in each play. In this case $\lim_{a\to\infty}s^a=\infty$, so that, from Eqn (2.4),

$$\lim_{a \to \infty} u_k = \lim_{a \to \infty} \frac{(s^k/s^a) - 1}{(1/s^a) - 1} = 1,$$

and

$$\lim_{a \to \infty} d_k = \lim_{a \to \infty} \frac{-a}{s^a} \frac{(1 - s^k)}{(\frac{1}{s^a} - 1)(q - p)} + \frac{k}{q - p} = \frac{k}{q - p},$$

since

$$\lim_{a \to \infty} \frac{a}{s^a} = 0.$$

As might be anticipated, ruin is certain and the expected duration is finite.

(c) s = 1 or $p = \frac{1}{2}$. For the case of equal probabilities,

$$\lim_{a\to\infty}u_k=\lim_{a\to\infty}\left(1-\frac{k}{a}\right)=1,\quad\text{and}\quad\lim_{a\to\infty}d_k=\lim_{a\to\infty}k(a-k)=\infty.$$

Ruin is certain but it may take a great deal of time.

2.5.2 The generous opponent

Suppose that both players start with finite capital, and suppose that whenever A loses his/her last unit one unit is returned to A so that A is never ruined. The opponent B is the generous gambler. As a consequence we might expect that B must be ruined

since A cannot lose. Hence there can be no possibility, other than $u_k = 0$. This can be checked by solving Eqn (2.2) subject to the boundary conditions

$$u_0 = u_1$$
, and $u_a = 0$.

For the expected duration the boundary condition at k=0 must be modified. Since one unit is returned, the expected duration at k=0 must be the same as that at k=1. The boundary conditions become

$$d_0 = d_1,$$
 and $d_a = 0.$

Consider the case of equal odds at each play. Then for $p = \frac{1}{2}$,

$$d_k = A_1 + A_2k - k^2.$$

Hence $A_1 = a^2 - a$ and $A_2 = 1$, so that

$$d_k = (a-k)(a+k-1).$$

There are thus (a - k)(a - 1) more plays than in the standard game.

2.5.3 Changing the stakes

Suppose that in the original game the stakes per play are halved for both players so that in the new game A has effectively 2k units and B has 2(a-k) units. How is the probability of ruin changed?

Let v_k be the probability of ruin. Then, by analogy with the formula for u_k given by equation (2.4),

$$v_k = \frac{s^{2k} - s^{2a}}{1 - s^{2a}} = \frac{(s^k - s^a)(s^k + s^a)}{1 - s^a)(1 + s^a)} = u_k \frac{s^k - s^a}{1 + s^a}, \qquad s \neq 1.$$

If s < 1, then

$$\frac{s^k + s^a}{1 + s^a} < 1$$

so that $v_k < u_k$. On the other hand if s > 1 then

$$\frac{s^k + s^a}{1 + s^a} > 1$$

so that $v_k > u_k$. If s < 1 that is $p > \frac{1}{2}$, then it could be wise for A to agree to this change of play. As might be expected for s = 1, that is equal odds with $p = \frac{1}{2}$, the probability of ruin is unaffected.

2.6 Problems

2.1. In the standard gambler's ruin problem with total stake a and gambler's stake k and the gambler's probability of winning at each play is p, calculate the probability of ruin in the following cases;

(a)
$$a = 100, k = 5, p = 0.6;$$

- (b) a = 80, k = 70, p = 0.45;
- (c) a = 50, k = 40, p = 0.5.

Also find the expected duration in each case.

- 2.2. In a casino game based on the standard gambler's ruin, the gambler and the dealer each start with 20 tokens and one token is bet on at each play. The game continues until one player has no further tokens. It is decreed that the probability that any gambler is ruined is 0.52 to protect the casino's profit. What should the probability that the gambler wins at each play be?
- 2.3. Find general solutions of the following difference equations:
- (a) $u_{k+1} 4u_k + 3u_{k-1} = 0$;
- (b) $7u_{k+2} 8u_{k+1} + u_k = 0$;
- (c) $u_{k+1} 3u_k + u_{k-1} + u_{k-2} = 0$;
- (d) $pu_{k+2} u_k + (1-p)u_{k-1} = 0$, (0 .
- 2.4 Solve the following difference equations subject to the given boundary conditions:
- (a) $u_{k+1} 6u_k + 5u_{k-1} = 0$, $u_0 = 1, u_4 = 0$;
- (b) $u_{k+1} 2u_k + u_{k-1} = 0$, $u_0 = 1, u_{20} = 0$;
- (c) $d_{k+1} 2d_k + d_{k-1} = -2$, $d_0 = 0, d_{10} = 0$;
- (d) $u_{k+2} 3u_k + 2u_{k-1} = 0$, $u_0 = 1, u_{10} = 0, 3u_9 = 2u_8$.
- 2.5. Show that a difference equation of the form

$$au_{k+2} + bu_{k+1} - u_k + cu_{k-1} = 0,$$

where $a,b,c \geq 0$ are probabilities with a+b+c=1, can never have a characteristic equation with complex roots.

- 2.6. In the standard gambler's ruin problem with equal probabilities $p=q=\frac{1}{2}$, find the expected duration of the game given the usual initial stakes of k units for the gambler and a-k units for the opponent.
- 2.7. In a gambler's ruin problem the possibility of a draw is included. Let the probability that the gambler wins, loses, or draws against an opponent be, respectively, p, p, 1 2p, (0 . Find the probability that the gambler loses the game given the usual initial stakes of <math>k units for the gambler and a k units for the opponent. Show that d_k , the expected duration of the game, satisfies

$$pd_{k+1} - 2pd_k + pd_{k-1} = -1.$$

Solve the difference equation and find the expected duration of the game.

- 2.8. In the changing stakes game in which a game is replayed with each player having twice as many units, 2k and 2(a-k) respectively, suppose that the probability of a win for the gambler at each play is $\frac{1}{2}$. Whilst the probability of ruin is unaffected by how much is the expected duration of the game extended compared with the original game?
- 2.9. A roulette wheel has 37 radial slots of which 18 are red, 18 are black and 1 is green. The gambler bets one unit on either red or black. If the ball falls into a slot of the same color, then the gambler wins one unit, and if the ball falls into the other color (red or black), then the casino wins. If the ball lands in the green slot, then the bet remains for the next spin of the wheel or more if necessary until the ball lands on a red or black. The original bet is either

returned or lost depending on whether the outcome matches the original bet or not (this is the Monte Carlo system). Show that the probability u_k of ruin for a gambler who starts with k chips with the casino holding a-k chips satisfies the difference equation

$$36u_{k+1} - 73u_k + 37u_{k-1} = 0.$$

Solve the difference equation for u_k . If the house starts with $\epsilon 1,000,000$ at the roulette wheel and the gambler starts with $\epsilon 10,000$, what is the probability that the gambler breaks the bank if $\epsilon 5,000$ are bet at each play?

In the US system the rules are less generous to the players. If the ball lands on green then the player simply loses. What is the probability now that the player wins given the same initial stakes? (See Luenberger (1979).)

2.10. In a single trial the possible scores 1 and 2 can occur each with probability $\frac{1}{2}$. If p_n is the probability of scoring *exactly* n points at some stage, show that

$$p_n = \frac{1}{2}p_{n-1} + \frac{1}{2}p_{n-2}.$$

Calculate p_1 and p_2 , and find a formula for p_n . How does p_n behave as n becomes large? How do you interpret the result?

2.11. In a single trial the possible scores 1 and 2 can occur with probabilities q and 1-q, where 0 < q < 1. Find the probability of scoring exactly n points at some stage in an indefinite succession of trials. Show that

$$p_n \to \frac{1}{2-a}$$

as $n \to \infty$.

2.12. The probability of success in a single trial is $\frac{1}{3}$. If u_n is the probability that there are no two consecutive successes in n trials, show that u_n satisfies

$$u_{n+1} = \frac{2}{3}u_n + \frac{2}{9}u_{n-1}.$$

What are the values of u_1 and u_2 ? Hence show that

$$u_n = \frac{1}{6} \left[(3 + 2\sqrt{3}) \left(\frac{1 + \sqrt{3}}{3} \right)^n + (3 - 2\sqrt{3}) \left(\frac{1 - \sqrt{3}}{3} \right)^n \right].$$

- 2.13. A gambler with initial capital k units plays against an opponent with initial capital a-k units. At each play of the game the gambler either wins one unit or loses one unit with probability $\frac{1}{2}$. Whenever the opponent loses the game, the gambler returns one unit so that the game may continue. Show that the expected duration of the game is k(2a-1-k) plays.
- 2.14. In the usual gambler's ruin problem, the probability that the gambler is eventually ruined is

$$u_k = \frac{s^k - s^a}{1 - s^a}, \qquad s = \frac{q}{p}, \qquad (p \neq \frac{1}{2}).$$

In a new game the stakes are halved, whilst the players start with the same initial sums. How does this affect the probability of losing by the gambler? Should the gambler agree to this change of rule if $p < \frac{1}{2}$? By how many plays is the expected duration of the game extended?

2.15. In a gambler's ruin game, suppose that the gambler can win £2 with probability $\frac{1}{3}$ or lose £1 with probability $\frac{2}{3}$. Show that

$$u_k = \frac{(3k - 1 - 3a)(-2)^a + (-2)^k}{1 - (3a + 1)(-2)^a}.$$

Compute u_k if a = 9 for k = 1, 2, ..., 8.

2.16. Find the general solution of the difference equation

$$u_{k+2} - 3u_k + 2u_{k-1} = 0.$$

A reservoir with total capacity of a volume units of water has, during each day, either a net inflow of two units with probability $\frac{1}{3}$ or a net outflow of one unit with probability $\frac{2}{3}$. If the reservoir is full or nearly full any excess inflow is lost in an overflow. Derive a difference equation for this model for u_k , the probability that the reservoir will eventually become empty given that it initially contains k units. Explain why the upper boundary conditions can be written $u_a = u_{a-1}$ and $u_a = u_{a-2}$. Show that the reservoir is certain to be empty at some time in the future.

2.17. Consider the standard gambler's ruin problem in which the total stake is a and gambler's stake is k, and the gambler's probability of winning at each play is p and losing is q = 1 - p. Find u_k , the probability of the gambler losing the game, by the following alternative method. List the difference Eqn (2.2) as

$$u_2 - u_1 = s(u_1 - u_0) = s(u_1 - 1)$$

$$u_3 - u_2 = s(u_2 - u_1) = s^2(u_1 - 1)$$

$$\vdots$$

$$u_k - u_{k-1} = s(u_{k-1} - u_{k-2}) = s^{k-1}(u_1 - 1),$$

where $s=q/p\neq \frac{1}{2}$ and $k=2,3,\ldots a$. The boundary condition $u_0=1$ has been used in the first equation. By adding the equations show that

$$u_k = u_1 + (u_1 - 1)\frac{s - s^k}{1 - s}.$$

Determine u_1 from the other boundary condition $u_a = 0$, and hence find u_k . Adapt the same method for the special case $p = q = \frac{1}{2}$.

- 2.18. A car park has 100 parking spaces. Cars arrive and leave randomly. Arrivals or departures of cars are equally likely, and it is assumed that simultaneous events have negligible probability. The 'state' of the car park changes whenever a car arrives or departs. Given that at some instant there are k cars in the car park, let u_k be the probability that the car park first becomes full before it becomes empty. What are the boundary conditions for u_0 and u_{100} ? How many car movements can be expected before this occurs?
- 2.19. In a standard gambler's ruin problem with the usual parameters, the probability that the gambler loses is given by

$$u_k = \frac{s^k - s^a}{1 - s^a}, \qquad s = \frac{1 - p}{p}.$$

If p is close to $\frac{1}{2}$, given say by $p=\frac{1}{2}+\varepsilon$ where $|\varepsilon|$ is small, show, by using binomial expansions, that

 $u_k = \frac{a-k}{a} \left[1 - 2k\varepsilon - \frac{4}{3}(a-2k)\varepsilon^2 + O(\varepsilon^3) \right]$

as $\varepsilon \to 0$. (The order O terminology is defined as follows: we say that a function $g(\varepsilon) = O(\varepsilon^b)$ as $\varepsilon \to 0$ if $g(\varepsilon)/\varepsilon^b$ is bounded in a neighborhood which contains $\varepsilon = 0$.)

- 2.20. A gambler plays a game against a casino according to the following rules. The gambler and casino each start with 10 chips. From a deck of 53 playing cards which includes a joker, cards are randomly and successively drawn with replacement. If the card is red or the joker the casino wins 1 chip from the gambler, and if the card is black the gambler wins 1 chip from the casino. The game continues until either player has no chips. What is the probability that the gambler wins? What will be the expected duration of the game?
- 2.21. In the standard gambler's ruin problem with total stake a and gambler's stake k, the probability that the gambler loses is

$$u_k = \frac{s^k - s^a}{1 - s^a},$$

where s=(1-p)/p. Suppose that $u_k=\frac{1}{2}$, that is fair odds. Express k as a function of a. Show that

$$k = \frac{\ln[\frac{1}{2}(1+s^a)]}{\ln s}.$$

2.22. In a gambler's ruin game the probability that the gambler wins at each play is α_k and loses is $1-\alpha_k$, $(0<\alpha_k<1,\ 0\le k\le a-1)$, that is, the probability varies with the current stake. The probability u_k that the gambler eventually loses satisfies

$$u_k = \alpha_k u_{k+1} + (1 - \alpha_k) u_{k-1}, \quad u_o = 1, \quad u_a = 0.$$

Suppose that u_k is a specified function such that $0 < u_k < 1$, $(1 \le k \le a - 1)$, $u_0 = 1$ and $u_a = 0$. Express α_k in terms of u_{k-1} , u_k , and u_{k+1} .

Find α_k in the following cases:

- (a) $u_k = (a k)/a$;
- (b) $u_k = (a^2 k^2)/a^2$;
- (c) $u_k = 1/(a+k)$.
- 2.23. In a gambler's ruin game the probability that the gambler wins at each play is α_k and loses is $1-\alpha_k$, $(0<\alpha_k<1,\ 1\le k\le a-1)$, that is, the probability varies with the current stake. The probability u_k that the gambler eventually loses satisfies

$$u_k = \alpha_k u_{k+1} + (1 - \alpha_k) u_{k-1}, \quad u_0 = 1, \quad u_n = 0.$$

Reformulate the difference equation as

$$u_{k+1} - u_k = \beta_k (u_k - u_{k-1}),$$

where $\beta_k = (1 - \alpha_k)/\alpha_k$. Hence show that

$$u_k = u_1 + \gamma_{k-1}(u_1 - 1), \quad (k = 2, 3, \dots, a)$$

where

$$\gamma_k = \beta_1 + \beta_1 \beta_2 + \dots + \beta_1 \beta_2 \dots \beta_k.$$

Using the boundary condition at k = a, confirm that

$$u_k = \frac{\gamma_{a-1} - \gamma_{k-1}}{1 + \gamma_{a-1}}.$$

Check that this formula gives the usual answer if $\alpha_k=p\neq \frac{1}{2}$, a constant.

- 2.24. Suppose that a fair n-sided die is rolled n independent times. A match is said to occur if side i is observed on the ith trial, where $i = 1, 2, \ldots, n$.
- (a) Show that the probability of at least one match is

$$1 - \left(1 - \frac{1}{n}\right)^n.$$

- (b) What is the limit of this probability as $n \to \infty$?
- (c) What is the probability that just one match occurs in n trials?
- (d) What value does this probability approach as $n \to \infty$?
- (e) What is the probability that two or more matches occur in n trials?

CHAPTER 3

Random Walks

3.1 Introduction

Another way of modeling the gambler's ruin problem of the last chapter is as a one-dimensional **random walk**. Suppose that a+1 positions are marked out on a straight line and numbered $0,1,2,\ldots,a$. A person starts at k where 0 < k < a. The walk proceeds in such a way that at each step there is a probability p that, the walker goes 'forward' one pace to k+1, and a probability q=1-p that the walker goes 'back' one pace to k-1. The walk continues until either 0 or a is reached, and then ends. Generally, in a random walk, the position of a walker after having moved n times is known the **state** of the walk after n **steps** or after covering n **stages**. Thus the walk described above starts at stage k at step 0 and moves to either stage k-1 or stage k+1 after 1 step, and so on.

If the walk is bounded, then the ends of the walk are known as **barriers**, and they may have various properties. In this case the barriers are said to be **absorbing** which implies that the walk must end once a barrier is reached since there is no escape. A useful diagrammatic way of representing random walks is by a **transition** or **process diagram** as shown in Figure 3.1. In a transition diagram the possible stages of the walker can be represented by points on a line. If a transition between two points can occur in one step then those points are joined by a curve or **edge** as shown with an arrow indicating the direction of the walk and a *weighting* denoting the probability of the step occurring. In discrete mathematics or graph theory the transition diagram is known as a **directed graph**. A walk in the transition diagram is a succession of edges covered without a break. In Figure 3.1 the closed loops with weightings of 1 at the ends of the walk indicate the absorbing barriers with no escape.

Figure 3.1 Transition diagram for gambler's ruin.

In Section 2.5.1 we met a variant of the gambler's ruin problem. The case of the infinitely rich opponent is a random walk with an absorbing barrier at 0 but is unrestricted above 0, so that it becomes a semi-infinite random walk.

The generous opponent encountered in Section 2.5.2 has an absorbing barrier at a

46 RANDOM WALKS

but a **reflecting barrier** at 0. After reaching 0 with probability 1 - p the walker is returned to the previous position 1 in the *same* step with probability 1. The transition diagram is shown in Figure 3.2.

Figure 3.2 Transition diagram for the generous opponent problem.

3.2 Unrestricted random walks

A simple random walk on a line or in one dimension occurs when a step forward (+1) has probability p and a step back (-1) has probability q(=1-p). At the ith step the modified Bernoulli random variable W_i is observed, and the position of the walk at the nth step is the random variable

$$X_n = X_0 + \sum_{i=1}^n W_i = X_{n-1} + W_n.$$
(3.1)

The random variable W_i can take the values +1 or -1, which is a modified Bernoulli trial (see Section 1.7) in that the outcomes are $\{-1,+1\}$ rather than $\{0,1\}$. In the gambler's ruin problem $X_0=k$, but in the following discussion it is assumed, without loss of generality, that walks start from the origin so that $X_0=0$.

The random walks described so far are restricted by boundaries. We now consider random walks without boundaries, or unrestricted random walks as they are known. In these walks, the position x can take any of the positions $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$. In particular, we are interested in the position of the walk after a number of steps and the probability of a return to the origin, the start of the walk. As seen from equation (3.1), the position of the walk at step X_n simply depends on the position at the (n-1)th step. This means that the simple random walk possesses what is known as the **Markov** property: the current state of the walk depends on its immediate previous state, not on the history of the walk up to the present state. Furthermore $X_n = X_{n-1} \pm 1$, and we know that the transition probabilities from one position to another

$$\mathbf{P}(X_n = j | X_{n-1} = j - 1) = p,$$

and

$$\mathbf{P}(X_n = j | X_{n-1} = j+1) = q,$$

are independent of n, the number of steps in the walk.

It is straightforward to find the mean and variance of X_n :

$$\mathbf{E}(X_n) = \mathbf{E}\left(\sum_{i=1}^n W_i\right) = n\mathbf{E}(W),$$

$$\mathbf{V}(X_n) = \mathbf{V}\left(\sum_{i=1}^n W_i\right) = n\mathbf{V}(W),$$

since the W_i are independent and identically distributed random variables and where W is the common or typical Bernoulli random variable in the sequence $\{W_i\}$. Thus

$$\mathbf{E}(W) = 1.p + (-1).q = p - q.$$

Since

$$\mathbf{V}(W) = \mathbf{E}(W^2) - [\mathbf{E}(W)]^2,$$

and

$$\mathbf{E}(W^2) = 1^2 \cdot p + (-1)^2 q = p + q = 1,$$

then

$$\mathbf{V}(W) = 1 - (p - q)^2 = 4pq.$$

Hence the probability distribution of the position of the random walk at stage n has mean and variance

$$\mathbf{E}(X_n) = n(p-q),$$
 and $\mathbf{V}(X_n) = 4npq.$

If $p>\frac{1}{2}$ then we would correctly expect a drift away from the origin in a positive direction, and if $p<\frac{1}{2}$, it would be expected that the drift would be in the negative direction. However, since $\mathbf{V}(X_n)$ is proportional to n, and thus grows with increasing n, we would be increasingly uncertain about the position of the walker as n increases.

For the symmetric random walk, when $p = \frac{1}{2}$, the expected position after n steps is the origin. However, this is precisely the value of p which yields the maximum value of $\mathbf{V}(X_n) = 4npq = 4np(1-p)$ (check where $d\mathbf{V}(X_n)/dp = 0$). Thus $\max_p \mathbf{V}(X_n) = n$.

Knowing the mean and standard variation of a random variable does not enable us to identify the probability distribution. For large n, however, we may apply the central limit theorem which gives

$$Z_n = \frac{X_n - n(p - q)}{\sqrt{4npq}} \approx N(0, 1),$$
 (3.2)

where N(0,1) is the normal distribution with mean 0 and variance 1. By applying a continuity correction, approximate probabilities may be obtained for the position of the walk. For example, consider the unrestricted random walk with n=100 and p=0.7. Then

$$\mathbf{E}(X_{100}) = 40, \quad \mathbf{V}(X_{100}) = 84.$$

Suppose that we are interested in deriving the probability that the position of the walk at the 100-th step is between 35 and 45 paces from the origin. Since X_n is discrete, we use the approximation

$$\mathbf{P}(35 \le X_{100} \le 45) \approx \mathbf{P}(34.5 < X_{100} < 45.5). \tag{3.3}$$

From the approximation (3.2), the inequality for X_{100} in the probability on the right in Eqn (3.3) is equivalent to

$$-0.60 = -\frac{5.5}{\sqrt{84}} < Z_{100} = \frac{X_{100} - 40}{\sqrt{84}} < \frac{5.5}{\sqrt{84}} = 0.60.$$

48 RANDOM WALKS

Hence

$$\mathbf{P}(-0.60 < Z_{100} < 0.60) = \Phi(0.60) - \Phi(-0.60) = 0.45,$$

where $\Phi(s)$ is the standard normal distribution function.

3.3 The general probability distribution of a walk

As before we assume that the walk starts at x = 0 with steps to the right or left occurring with probabilities p and q = 1 - p. The probability distribution of the random variable X_n , the position after n steps, is a more difficult problem. The position X_n , after n steps, can be written as

$$X_n = R_n - L_n,$$

where R_n is the random variable of the number of right (positive) steps (+1) and L_n is that of the number of left (negative) steps (-1). Furthermore

$$N = R_n + L_n,$$

where N is the random variable of the number of steps. Hence

$$R_n = \frac{1}{2}(N + X_n),$$

which is only an integer when N and X_n are both even or both odd (for example, to go from x=0 to x=9 must take an odd number of steps). Now, let $v_{n,x}$ be the probability that the walk is at state x after n steps. Assume that x is a positive integer. Thus

$$v_{n,x} = \mathbf{P}(X_n = x) = \mathbf{P}(R_n = \frac{1}{2}(n+x)),$$

and R_n is a binomial random variable with index n and probability p since the walk either moves to the right or not at every step, and the steps are independent. It follows that

$$v_{n,x} = \binom{n}{\frac{1}{2}(n+x)} p^{\frac{1}{2}(n+x)} q^{\frac{1}{2}(n-x)}, \tag{3.4}$$

where (n, x) are both even or both odd, $-n \le x \le n$. A similar argument can be constructed if x is a negative integer.

An alternative combinatorial argument for the case in which $p=\frac{1}{2}$ goes as follows. Starting from the origin there are 2^n different paths of length n since there is a choice of right or left at each step. How many of these paths end at x (assumed positive)? As we saw above the number of steps in the right direction must be $\frac{1}{2}(n+x)$, and the total number of paths must be the number of ways in which $\frac{1}{2}(n+x)$ can be chosen from n: this is

$$h_{n,x} = \binom{n}{\frac{1}{2}(n+x)}$$

provided $\frac{1}{2}(n+x)$ is an integer. Hence by counting, the probability that the walk ends at x after n steps is given by the ratio of this number and the total number of paths since all paths are equally likely. Hence

$$v_{n,x} = \frac{h_{n,x}}{2^n} = \binom{n}{\frac{1}{2}(n+x)} \frac{1}{2^n}.$$
 (3.5)

Example 3.1 Find the probability that $X_5 = 3$, the random variable that the walk ends in state 3 after 5 steps, occurs in a random walk with p = 0.6.

The event $X_5 = 3$ must occur as a result of observing four 1's and one -1 in any order. The probability of any one these sequences is p^4q and there are $\binom{5}{1}$ ways in which they can occur giving

 $\mathbf{P}(X_3 = 3) = \binom{5}{1} p^4 q = 0.259.$

Alternatively we can use the formula (3.4) which appears different at first sight but is the same since

$$\binom{5}{4} = \binom{5}{1}.$$

The probability $v_{n,x}$ is the probability that the walk ends at stage x after n steps: the walk could have overshot x before returning there. A related probability is the probability that the *first* visit to position x occurs at the n-th step. This is sometimes known also as the **first passage** through x, and will be considered in the next section for x=0. The following is a descriptive derivation of the associated probability generating function for the symmetric random walk in which the walk starts at the origin, and we consider the probability that the walk is at the origin.

From the last section the probability that a walk is at the origin at step n is

$$v_{n,0} = \frac{1}{2^n} \binom{n}{\frac{1}{2}n} = p_n$$
 (say), $(n = 2, 4, 6, ...)$: (3.6)

we assume that $p_n = 0$ if n is odd. Form a generating function (see Section 1.9):

$$H(s) = \sum_{n=0}^{\infty} p_n s^n = \sum_{n=0}^{\infty} p_{2n} s^{2n} = \sum_{n=0}^{\infty} \frac{1}{2^{2n}} {2n \choose n} s^{2n},$$

noting that $p_0 = 1$. For this reason H(s) cannot be a *probability* generating function since clearly H(1) > 1: H(1) = 1 is a requirement of a probability generating function. Subject to convergence a generating function can be defined for any sequence. The binomial coefficient can be re-arranged as follows:

Hence

$$H(s) = \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} s^{2n} = (1 - s^2)^{-\frac{1}{2}}$$
 (3.7)

by the binomial theorem provided |s| < 1. Note that this expansion guarantees that $p_n = 0$ if n is odd.

The distribution $\{p_n\}$ has some unusual features. The implication from Eqn (3.7) is that

$$\sum_{n=0}^{\infty} p_n = \lim_{s \to 1^-} H(s) = \infty;$$

in other words the probabilities do *not* sum to one as remarked previously. (The notation $\lim_{s\to 1^-}$ means that s approaches 1 only through values of s which are less than 1.) This is a so-called **defective distribution** which still, however, gives the probability that the walk is at the origin at step n. We can estimate the behavior of p_n for large n by using **Stirling's formula**, which is an asymptotic estimate for n! for large n. The approximation is

$$n! \approx \sqrt{(2\pi)} n^{n + \frac{1}{2}} e^{-n}.$$

It follows from Eqn (3.6) that (we need only consider an even number of steps)

$$p_{2n} = \frac{1}{2^{2n}} \binom{2n}{n} = \frac{1}{2^{2n}} \frac{(2n)!}{n!n!} \approx \frac{1}{2^{2n}} \frac{\sqrt{(2\pi)(2n)^{2n+\frac{1}{2}}}e^{-2n}}{[\sqrt{(2\pi)(n)^{n+\frac{1}{2}}}e^{-n}]^2} = \frac{1}{\sqrt{(\pi n)}}$$

for large n. Hence

$$2np_{2n} \approx \frac{2\sqrt{n}}{\sqrt{\pi}} \to \infty,$$

which confirms that the series $\sum_{n=0}^{\infty} p_n$ must diverge.

3.4 First returns of the symmetric random walk

As we remarked in the previous section, a related probability is that for the event that the *first* visit to position x occurs at the n-th step given that the walk starts at the origin, that is the first passage through x. We shall look in detail at the case x=0, which will lead to the probability of the first return to the origin. We shall approach the first passage by using total probability (Section 1.3). Let A be the event that $X_n=0$, and let B_k be the event that the first visit to the origin occurs at the k-th step. Then by the law of total probability

$$\mathbf{P}(A) = \sum_{k=1}^{n} \mathbf{P}(A|B_k)\mathbf{P}(B_k). \tag{3.8}$$

Let $f_k = \mathbf{P}(B_k)$. The conditional probability $\mathbf{P}(A|B_k)$ is the probability that the walk returns to the origin after n-k steps, that is, $\mathbf{P}(A|B_k) = p_{n-k}$. As in the previous section p_n is the probability that the walk is at the origin at step n. Note that $p_n = 0$ if n is odd. Hence, Eqn (3.8) can be written as

$$p_n = \sum_{k=1}^{n} p_{n-k} f_k. (3.9)$$

Multiply both sides of Eqn (3.9) by s^n , and sum for all $n \ge 1$ so that

$$\sum_{n=1}^{\infty} p_n s^n = H(s) - 1 = \sum_{n=1}^{\infty} p_n s^n = \sum_{n=1}^{\infty} \sum_{k=1}^{n} p_{n-k} f_k s^n.$$
 (3.10)

Since $p_0 = 1$ and $f_0 = 0$, we can replace (3.10) by

$$H(s) - 1 = \sum_{n=1}^{\infty} p_n s^n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n-k} f_k s^n = \sum_{n=0}^{\infty} p_n s^n \sum_{k=0}^{\infty} f_k s^k$$
 (3.11)

by the formula for the product of two power series. This also known as a **convolution** of the distributions. If

$$F(s) = \sum_{n=0}^{\infty} f_n s^n$$

is the probability generating function of the first return distribution, then

$$H(s) - 1 = H(s)F(s).$$
 (3.12)

From Eqn (3.7) it follows that

$$F(s) = [H(s) - 1]/H(s) = 1 - (1 - s^2)^{\frac{1}{2}}.$$

The probability that the walk will, at some step, return to the origin is

$$\sum_{n=1}^{\infty} f_n = F(1) = 1;$$

in other words return is certain. In this walk the origin (or any point by translation) is **persistent**. However, the mean number of steps until this return occurs is

$$\sum_{n=1}^{\infty} n f_n = \lim_{s \to 1^-} F'(s) = \lim_{s \to 1^-} \frac{s}{(1 - s^2)^{\frac{1}{2}}} = \infty.$$

In other words a symmetric random walk which starts at the origin is certain to return there in the future, but, on average, it will take an infinite number of steps.

Example 3.2 Find the probability that a symmetric random walk starting from the origin returns there for the first time after 6 steps.

We require the coefficient of s^6 in the power series expansion of the pgf Q(s), which is

$$Q(s) = 1 - (1 - s^2)^{\frac{1}{2}} = 1 - \left[1 - \frac{1}{2}s^2 = \frac{1}{8}s^4 - \frac{1}{16}s^6 + O(s^8)\right]$$
$$= \frac{1}{2}s^2 + \frac{1}{8}s^4 + \frac{1}{16}s^6 + O(s^8).$$

Hence the probability of a first return at step 6 is $\frac{1}{16}$.

Long term random walks are easy to compute. Figure 3.3 shows a computer simulation of two sample walks of 1000 steps starting at k=0 with forward or backward steps equally likely. It might be expected intuitively that the walk would tend to oscillate about the starting position k=0 by some law of averages. But a feature of such walks is how few times the walk recrosses the axis k=0. In fact in the first case, after a brief oscillation about k=0, the walk never returns to the start and finishes some 70 paces away. Intuition can be misleading in these problems. Remember the expected state is the average of many walks. A full discussion of this phenomena can be found in Feller (1968).

52 RANDOM WALKS

Figure 3.3 Two computer simulations of simple random walks of 1000 steps each.

3.5 Problems

3.1. In a simple random walk the probability that the walk advances by one step is p and retreats by one step is q=1-p. At step n let the position of the walker be the random variable X_n . If the walk starts at x=0, enumerate all possible sample paths which lead to the value $X_4=-2$. Verify that

$$\mathbf{P}\{X_4 = -2\} = \binom{4}{1} pq^3.$$

- 3.2. A symmetric random walk starts from the origin. Find the probability that the walker is at the origin at step 8. What is the probability, also at step 8, that the walker is at the origin but that it is not the first visit there?
- 3.3. An asymmetric walk starts at the origin. From Eqn (3.4), the probability that the walk reaches x in n steps is given by

$$v_{n,x} = \binom{n}{\frac{1}{2}(n+x)} p^{\frac{1}{2}(n+x)} q^{\frac{1}{2}(n-x)},$$

where n and x are both even or both odd. If n=4, show that the mean value position x is 4(p-q), confirming the result in Section 3.2.

3.4. The pgf for the first return distribution $\{f_n\}$ to the origin in a symmetric random walk is given by

$$Q(s) = 1 - (1 - s^2)^{\frac{1}{2}}$$

(see Section 3.4).

(a) Using the binomial theorem find a formula for f_n , the probability that the first return occurs at the n-th step.

- (b) What is its variance of the probability distribution f_n , $n = 1, 2, \dots$?
- 3.5. A coin is spun 2n times and the sequence of heads and tails is recorded. What is the probability that the number of heads equals the number of tails after 2n spins?
- 3.6. For an asymmetric walk with parameters p and q = 1 p, the probability that the walk is at the origin after n steps is

$$q_n = v_{n,0} = \begin{cases} \binom{n}{\frac{1}{2}n} p^{\frac{1}{2}n} q^{\frac{1}{2}n} & n \text{ even,} \\ 0 & n \text{ odd} \end{cases}$$

from Eqn (3.4). Show that its generating function is

$$H(s) = (1 - 4pqs^2)^{-\frac{1}{2}}.$$

If $p \neq q$, show that the mean number of steps to the return is

$$m = H'(1) = \frac{4pqs}{(1 - 4pqs^2)^{\frac{3}{2}}} \bigg|_{s=1} = \frac{4pq}{(1 - 4pq)^{\frac{3}{2}}}.$$

What is its variance?

3.7. Using the results of Problem 3.6 and Eqn (3.12) relating to the generating functions of the returns and first returns to the origin, namely

$$H(s) - 1 = H(s)Q(s),$$

which is still valid for the asymmetric walk, show that

$$Q(s) = 1 - (1 - 4pqs^2)^{\frac{1}{2}},$$

where $p \neq q$. Show that a first return to the origin is not certain unlike the situation in the symmetric walk. Find the mean number of steps to the first return.

3.8. A symmetric random walk starts from the origin. Show that the walk does not revisit the origin in the first 2n steps with probability

$$h_n = 1 - f_2 - f_4 - \dots - f_{2n},$$

where f_n is the probability that a first return occurs at the n-th step.

The generating function for the sequence $\{f_n\}$ is

$$Q(s) = 1 - (1 - s^2)^{\frac{1}{2}}$$

(see Section 3.4). Show that

$$f_n = \begin{cases} (-1)^{\frac{1}{2}n+1} {\frac{1}{2} \choose \frac{1}{2}n} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}, \quad (n = 1, 2, 3, \ldots).$$

Show that h_n satisfies the first-order difference equation

$$h_{n+1} - h_n = (-1)^{n+1} \binom{\frac{1}{2}}{n+1}.$$

Verify that this equation has the general solution

$$h_n = C + \binom{2n}{n} \frac{1}{2^{2n}},$$

where C is a constant. By calculating h_1 , confirm that the probability of no return to the origin in the first 2n steps is $\binom{2n}{n}/2^{2n}$.

3.9. A walk can be represented as a connected graph between coordinates (n, y) where the ordinate y is the position on the walk, and the abscissa n represents the number of steps. A walk of 7 steps which joins (0, 1) and (7, 2) is shown in Fig. 3.4. Suppose that a walk starts

Figure 3.4 Representation of a random walk.

at $(0, y_1)$ and finishes at (n, y_2) , where $y_1 > 0$, $y_2 > 0$, and $n + y_2 - y_1$ is an even number. Suppose also that the walk first visits the origin at $n = n_1$. Reflect that part of the path for which $n \le n_1$ in the n-axis (see Figure 3.4), and use a reflection argument to show that the number of paths from $(0, y_1)$ to (n, y_2) which touch or cross the n-axis equals the number of all paths from $(0, -y_1)$ to (n, y_2) . This is known as the **reflection principle**.

3.10. A walk starts at (0,1) and returns to (2n,1) after 2n steps. Using the reflection principle (see Problem 3.9) show that there are

$$\frac{(2n)!}{n!(n+1)!}$$

different paths between the two points which do not ever revisit the origin. What is the probability that the walk ends at (2n, 1) after 2n steps without ever visiting the origin, assuming that the random walk is symmetric?

Show that the probability that the first visit to the origin after 2n+1 steps is

$$p_n = \frac{1}{2^{2n+1}} \frac{(2n)!}{n!(n+1)!}.$$

3.11. A symmetric random walks starts at the origin. Let $f_{n,1}$ be the probability that the first

visit to position x=1 occurs at the n-th step. Obviously, $f_{2n,1}=0$. The result from Problem 3.10 can be adapted to give

$$f_{2n+1,1} = \frac{1}{2^{2n+1}} \frac{(2n)!}{n!(n+1)!}, \qquad (n=0,1,2,\ldots).$$

Suppose that its pgf is

$$G_1(s) = \sum_{n=0}^{\infty} f_{2n+1,1} s^{2n+1}.$$

Show that

$$G_1(s) = [1 - (1 - s^2)^{\frac{1}{2}}]/s.$$

[Hint: the identity

$$\frac{1}{2^{2n+1}} \frac{(2n)!}{n!(n+1)!} = (-1)^n \binom{\frac{1}{2}}{n+1}, \qquad (n=0,1,2,\ldots)$$

is useful in the derivation of $G_1(s)$.]

Show that any walk starting at the origin is certain to visit x > 0 at some future step, but that the mean number of steps in achieving this is infinite.

3.12. A symmetric random walk starts at the origin. Let $f_{n,x}$ be the probability that the first visit to position x occurs at the n-th step (as usual, $f_{n,x} = 0$ if n + x is an odd number). Explain why

$$f_{n,x} = \sum_{k=1}^{n-1} f_{n-k,x-1} f_{k,1}, \qquad (n \ge x > 1).$$

If $G_x(s)$ is its pgf, deduce that

$$G_x(s) = \{G_1(s)\}^x,$$

where $G_1(s)$ is given explicitly in Problem 3.11. What are the probabilities that the walk first visits x=3 at the steps n=3, n=5, and n=7?

3.13. Problem 3.12 looks at the probability of a first visit to position $x \ge 1$ at the n-th step in a symmetric random walk which starts at the origin. Why is the pgf for the first visit to position x where $|x| \ge 1$ given by

$$G_x(s) = \{G_1(s)\}^{|x|},$$

where $G_1(s)$ is defined in Problem 3.11?

3.14. An asymmetric walk has parameters p and $q=1-p\neq p$. Let $g_{n,1}$ be the probability that the first visit to x=1 occurs at the n-th step. As in Problem 3.11, $g_{2n,1}=0$. It was effectively shown in Problem 3.10 that the number of paths from the origin, which return to the origin after 2n steps, is

$$\frac{(2n)!}{n!(n+1)!}.$$

Explain why

$$g_{2n+1,1} = \frac{(2n)!}{n!(n+1)!} p^{n+1} q^n.$$

Suppose that its pgf is

$$G_1(s) = \sum_{n=0}^{\infty} g_{2n+1,1} s^{2n+1}.$$

Show that

$$G_1(s) = [1 - (1 - 4pqs^2)^{\frac{1}{2}}]/(2qs).$$

(The identity in Problem 3.11 is required again.)

What is the probability that the walk ever visits x > 0? How does this result compare with that for the symmetric random walk?

What is the pgf for the distribution of first visits of the walk to x = -1 at step 2n + 1?

3.15. It was shown in Section 3.3 that, in a random walk with parameters p and q = 1 - p, the probability that a walk is at position x at step p is given by

$$v_{n,x} = \binom{n}{\frac{1}{2}(n+x)} p^{\frac{1}{2}(n+x)} q^{\frac{1}{2}(n-x)}, \qquad |x| \le n,$$

where $\frac{1}{2}(n+x)$ must be an integer. Verify that $v_{n,x}$ satisfies the difference equation

$$v_{n+1,x} = pv_{n,x-1} + qv_{n,x+1},$$

subject to the initial conditions

$$v_{0,0} = 1,$$
 $v_{n,x} = 0,$ $(x \neq 0).$

Note that this difference equation has differences on two arguments.

Can you develop a direct argument which justifies the difference equation for the random walk?

3.16. In the usual notation, $v_{2n,0}$ is the probability that, in a symmetric random walk, the walk visits the origin after 2n steps. Using the difference equation from Problem 3.15, $v_{2n,0}$ satisfies

$$v_{2n,0} = \frac{1}{2}v_{2n-1,-1} + \frac{1}{2}v_{2n-1,1} = v_{2n-1,1}.$$

How can the last step be justified? Let

$$G_1(s) = \sum_{n=1}^{\infty} v_{2n-1,1} s^{2n-1}$$

be the pgf of the distribution $\{v_{2n-1,1}\}$. Show that

$$G_1(s) = [(1-s^2)^{-\frac{1}{2}} - 1]/s.$$

By expanding $G_1(s)$ as a power series in s show that

$$v_{2n-1,1} = \binom{2n-1}{n} \frac{1}{2^{2n-1}}.$$

By a repetition of the argument show that

$$G_2(s) = \sum_{n=0}^{\infty} v_{2n,2} s^{2n} = [(2-s)(1-s^2)^{-\frac{1}{2}} - 2]/s.$$

3.17. A random walk takes place on a circle which is marked out with n positions. Thus, as shown in Figure 3.5, position n is the same as position O. This is known as the **cyclic random walk** of **period** n. A symmetric random walk starts at O. What is the probability that the walk is at O after j steps in the cases:

(a)
$$j < n$$
;

(b)
$$n \le j < 2n$$
?

Figure 3.5 *The cyclic random walk of period* n.

Distinguish carefully the cases in which j and n are even and odd.

3.18. An unrestricted random walk with parameters p and q starts from the origin, and lasts for 50 paces. Estimate the probability that the walk ends at 12 or more paces from the origin in the cases:

(a)
$$p = q = \frac{1}{2}$$
;

(b)
$$p = 0.6$$
, $q = 0.4$.

- 3.19. In an unrestricted random walk with parameters p and q, for what value of p are the mean and variance of the probability distribution of the position of the walk at stage n the same?
- 3.20. Two walkers each perform symmetric random walks with synchronized steps both starting from the origin at the same time. What is the probability that they are both at the origin at step n?
- 3.21. A random walk takes place on a two-dimensional lattice as shown in Figure 3.6. In the example shown the walk starts at (0,0) and ends at (2,-1) after 13 steps. In this walk di-

Figure 3.6 A two-dimensional random walk.

rect diagonal steps are not permitted. We are interested in the probability that the symmetric

58 RANDOM WALKS

random walk, which starts at the origin, has returned there after 2n steps. Symmetry in the two-dimensional walk means that there is a probability of $\frac{1}{4}$ that, at any position, the walk goes right, left, up, or down at the next step. The total number of different walks of length 2n which start at the origin is 4^{2n} . For the walk considered, the number of right steps (positive x direction) must equal the number of left steps, and the number of steps up (positive y direction) must equal those down. Also the number of right steps must range from 0 to n, and the corresponding steps up from n to n. Explain why the probability that the walk returns to the origin after n steps is

$$p_{2n} = \frac{(2n)!}{4^{2n}} \sum_{r=0}^{n} \frac{1}{[r!(n-r)!]^2}.$$

Prove the two identities

$$\frac{(2n)!}{[r!(n-r)!]^2} = \binom{2n}{n} \binom{n}{r}^2, \qquad \binom{2n}{n} = \sum_{r=0}^n \binom{n}{r}^2.$$

[Hint: compare the coefficients of x^n in $(1+x)^{2n}$ and $[(1+x)^n]^2$.] Hence show that

$$p_{2n} = \frac{1}{4^{2n}} \binom{2n}{n}^2.$$

Calculate $1/(\pi p_{40})$ and $1/(\pi p_{80})$. How would you guess that p_{2n} behaves for large n?

- 3.22. A random walk takes place on the positions $\{\dots, -2, -1, 0, 1, 2, \dots\}$. The walk starts at 0. At step n, the walker has a probability q_n of advancing one position, or a probability $1-q_n$ of retreating one step (note that the probability depends on the step not the position of the walker). Find the expected position of the walker at step n. Show that if $q_n = \frac{1}{2} + r_n$, $(-\frac{1}{2} < r_n < \frac{1}{2})$, and the series $\sum_{j=1}^{\infty} r_j$ is convergent, then the expected position of the walk will remain finite as $n \to \infty$.
- 3.23. A symmetric random walk starts at k on the positions $0, 1, 2, \ldots, a$, where 0 < k < a. As, in the gambler's ruin problem, the walk stops whenever 0 or a is first reached. Show that the expected number of visits to position j where 0 < j < k is 2j(a k)/a before the walk stops.

CHAPTER 4

Markov Chains

4.1 States and transitions

The random walk discussed in the previous chapter is a special case of a more general Markov process. Suppose that a random process passes through a discrete sequence of steps or trials numbered $n=0,1,2,\ldots$, where the outcome of the n-th trial is the random variable X_n ; X_0 is the initial position of the process. This discrete random variable can take one of the values $i=1,2,\ldots$ The actual outcomes are called the **states** of the system, and are denoted by E_i ($i=1,2,\ldots$) (states can be any consecutive sequence of integers, say starting with i=0 or some other integer, but they can be renumbered to start with i=1). In most but not quite all cases in this text, we shall investigate systems with a *finite* number, m, of states $E_1, E_2, \ldots E_m$. However, in the unrestricted random walk of Section 3.2, for example, the states will be all possible locations of the walker which must be infinite in number including all positive and negative integers. Since both forward and backward steps can occur, the list of states can be expressed as the unbounded sequence

$$\{\ldots E_{-2}, E_{-1}, E_0, E_1, E_2, \ldots\}.$$

In this sequence E_r is the state in which the walker is at step n, that is the state in which $X_n = r$.

If the random variables $X_{n-1}=i$ and $X_n=j$, then the system has made a **transition** $E_i\to E_j$, that is, a transition from state E_i to state E_j at the n-th trial. Note that i can equal j, so that transitions within the same state may be possible. We need to assign probabilities to the transitions $E_i\to E_j$. This discrete process is known as a **chain**. Generally in chains the probability that $X_n=j$ will depend on the whole sequence of random variables starting with the initial value X_1 . The **Markov chain** has the characteristic property that the probability that $X_n=j$ depends only on the immediate previous state of the system. Formally this means that we need no further information at each step other than, for each i and j,

$$\mathbf{P}\{X_n = j | X_{n-1} = i\},\,$$

which means the probability that $X_n = j$ given that $X_{n-1} = i$: this probability is *independent* of the values of $X_{n-2}, X_{n-3}, \dots, X_1$.

In some chains the probabilities $P\{X_n = j | X_{n-1} = i\}$ are functions of n, the step or trial number. If this is not the case, so that the probabilities are the same at every step, then the chain is said to be **homogeneous**.

4.2 Transition probabilities

For a finite Markov chain with m states E_1, E_2, \ldots, E_m , introduce the notation

$$p_{ij} = \mathbf{P}\{X_n = j | X_{n-1} = i\},\tag{4.1}$$

where i, j = 1, 2, ..., m. The numbers p_{ij} are known as the **transition probabilities** of the chain, and must satisfy

$$p_{ij} \ge 0, \quad \sum_{i=1}^{m} p_{ij} = 1$$

for each $i=1,2,\ldots,m$. If $p_{ij}>0$, then we say that state E_i can **communicate** with E_j : two-way communication is possible if additionally $p_{ji}>0$. Obviously for each fixed i, the list $\{p_{ij}\}$ is a **probability distribution**, since at any step one of the outcomes E_1, E_2, \ldots, E_m must occur: the states E_i , $(i=1,2,\ldots m)$ are exhaustive and mutually exclusive.

Transition probabilities form an $m \times m$ array which can be assembled into a **transition matrix** T, where

$$T = [p_{ij}] = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \dots & p_{mm} \end{bmatrix}.$$
(4.2)

Note that each row of T is a probability distribution. Any square matrix for which $p_{ij} \ge 0$ and $\sum_{j=1}^{m} p_{ij} = 1$ is said to be **row-stochastic**

Example 4.1. The matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are $m \times m$ row-stochastic matrices. Show that C = AB is also row-stochastic.

By the multiplication rule for matrices

$$C = AB = [a_{ij}][b_{ij}] = \left[\sum_{k=1}^{m} a_{ik} b_{kj}\right].$$

Hence c_{ij} , the general element of C, is given by

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}.$$

Since $a_{ij} \ge 0$ and $b_{ij} \ge 0$ for all $i, j = 1, 2, \dots, m$, it follows that $c_{ij} \ge 0$. Also

$$\sum_{j=1}^{m} c_{ij} = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{ik} b_{kj} = \sum_{k=1}^{m} a_{ik} \sum_{j=1}^{m} b_{kj} = \sum_{k=1}^{m} a_{ik} \cdot 1 = 1,$$

since
$$\sum_{i=1}^{m} b_{kj} = 1$$
 and $\sum_{k=1}^{m} a_{ik} = 1$.

It follows from this example that any power T^n of the transition matrix T must also be row-stochastic.

The absolute probability $p_j^{(n)}$ One further probability which will be of interest is the probability of outcome E_j after n steps, given an **initial probability distribution** $\{p_i^{(0)}\}$. Here $p_i^{(0)}$ is the probability that initially the system occupies state E_i . Of course we must have $\sum_{i=1}^m p_i^{(0)} = 1$. Let $p_j^{(1)}$ be the probability E_j is occupied after one step. Then, by the law of total probability (see Section 1.3)

$$p_j^{(1)} = \sum_{i=1}^m p_i^{(0)} p_{ij}. \tag{4.3}$$

We can express this more conveniently in vector form. Let $\mathbf{p}^{(0)}$ and $\mathbf{p}^{(1)}$ be the probability (row) vectors given by

$$\mathbf{p}^{(0)} = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} & \dots & p_m^{(0)} \end{bmatrix}$$
 (4.4)

and

$$\mathbf{p}^{(1)} = \left[\begin{array}{ccc} p_1^{(1)} & p_2^{(1)} & \dots & p_m^{(1)} \end{array} \right]. \tag{4.5}$$

Here $\mathbf{p}^{(0)}$ is the initial distribution, and the components of $\mathbf{p}^{(1)}$ will be the probabilities that each of the states E_1, E_2, \dots, E_m is reached after one step. Equation (4.3) can be represented as a matrix product as follows:

$$\mathbf{p}^{(1)} = \left[p_j^{(1)} \right] = \left[\sum_{i=1}^m p_i^{(0)} p_{ij} \right] = \mathbf{p}^{(0)} T,$$

where T is the transition matrix given by (4.2). If $\mathbf{p}^{(2)}$ is the distribution after two steps, then

$$\mathbf{p}^{(2)} = \mathbf{p}^{(1)}T = \mathbf{p}^{(0)}TT = \mathbf{p}^{(0)}T^2.$$

Hence after n steps by repeating the process

$$\mathbf{p}^{(n)} = \mathbf{p}^{(n-1)}T = \mathbf{p}^{(0)}T^n, \tag{4.6}$$

where

$$\mathbf{p}^{(n)} = \left[\begin{array}{ccc} p_1^{(n)} & p_2^{(n)} & \dots & p_m^{(n)} \end{array} \right]. \tag{4.7}$$

More generally

$$\mathbf{p}^{(n+r)} = \mathbf{p}^{(r)} T^n.$$

In (4.7), the component $p_i^{(n)}$ is the absolute or unconditional probability of out**come** E_j at the *n*-th step given the initial distribution $\mathbf{p}^{(0)}$, that is, $\mathbf{P}\{X_n=j\}=p_j^{(n)}$. Note that

$$\sum_{j=1}^{m} p_j^{(n)} = 1.$$

The n-step transition probability $p_{ij}^{(n)}$

We now define $p_{ij}^{(n)}$ as the probability that the chain is in state E_j after n steps given that the chain started in state E_i . The first step transition probabilities $p_{ij}^{(1)} = p_{ij}$

are simply the elements of the transition matrix T. We intend to find a formula for $p_{ij}^{(n)}$. Now, by definition,

$$p_{ij}^{(n)} = \mathbf{P}(X_n = j | X_0 = i),$$

and by the Markov property (Section 4.1)

$$p_{ij}^{(n)} = \sum_{k=1}^{m} \mathbf{P}(X_n = j, X_{n-1} = k | X_0 = i)$$

for $n \ge 2$, since the chain must have passed through one of all the m possible states at step n-1.

For any three events A, B, and C, we have available the identity

$$\mathbf{P}(A \cap B|C) = \mathbf{P}(A|B \cap C)\mathbf{P}(B|C)$$

(see Example 1.4). Interpreting A as $X_n=j$, B as $X_{n-1}=k$, and C as $X_0=i$, it follows that

$$p_{ij}^{(n)} = \mathbf{P}(A \cap B|C) = \mathbf{P}(X_n = j, X_{n-1} = k|X_0 = i)$$

$$= \sum_{k=1}^{m} \mathbf{P}(X_n = j|X_{n-1} = k, X_0 = i)\mathbf{P}(X_{n-1} = k|X_0 = i)$$

$$= \sum_{k=1}^{m} \mathbf{P}(X_n = j|X_{n-1} = k)\mathbf{P}(X_{n-1} = k|X_0 = i)$$

$$= \sum_{k=1}^{m} p_{kj}^{(1)} p_{ik}^{(n-1)},$$

using the Markov property again. These are known as the **Chapman–Kolmogorov** equations. Putting n successively equal to $2, 3, \ldots$, we find that the matrices with these elements are, using the product rule for matrices,

$$\begin{split} \left[p_{ij}^{(2)}\right] &= \left[\sum_{k=1}^m p_{ik}^{(1)} p_{kj}^{(1)}\right] = T^2, \\ \left[p_{ij}^{(3)}\right] &= \left[\sum_{k=1}^m p_{ik}^{(2)} p_{kj}^{(1)}\right] = T^2 T = T^3, \end{split}$$

since $p_{ik}^{(2)}$ are the elements of T^2 , and so on. Generalizing this rule

$$[p_{ij}^{(n)}] = T^n.$$

Example 4.2. In a certain region the weather patterns have the following sequence. A day is described as sunny (S) if the sun shines for more than 50% of daylight hours and cloudy (C) if the sun shines for less than 50% of daylight hours. Data indicate that if it is cloudy one day then it is equally likely to be cloudy or sunny on the next day; if it is sunny there is a probability $\frac{1}{3}$ that it is cloudy and $\frac{2}{3}$ that it is sunny the next day.

(i) Construct the transition matrix T for this process.

- (ii) If it is cloudy today, what are the probabilities that it is (a) cloudy, (b) sunny, in three days'
- (iii) Compute T^5 and T^{10} . How do you think that T^n behaves as $n \to \infty$? How does $\mathbf{p}^{(n)}$ behave as $n \to \infty$? Do you expect the limit to depend on $\mathbf{p}^{(0)}$?
- (i) It is assumed that the process is Markov and homogeneous so that transition probabilities depend only on the state of the weather on the previous day. This a two-state Markov chain with states

$$E_1 =$$
(weather cloudy, C), $E_2 =$ (weather sunny, S).

The transition probabilities can be represented by the table below which defines the transition matrix T:

$$\begin{array}{c|cccc}
C & S \\
\hline
C & \frac{1}{2} & \frac{1}{2} \\
S & \frac{1}{2} & \frac{2}{2}
\end{array}$$
 or $T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$.

The actual transition probabilities are

$$p_{11} = \frac{1}{2}$$
, $p_{12} = \frac{1}{2}$, $p_{21} = \frac{1}{3}$, $p_{22} = \frac{2}{3}$.

(ii) Measuring steps from today, we define

$$\mathbf{p}^{(0)} = \left[\begin{array}{cc} p_1^{(0)} & p_2^{(0)} \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \end{array} \right]$$

which means that it is cloudy today. In three days' time

$$\mathbf{p}^{(3)} = \mathbf{p}^{(0)} T^3 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}^3$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 29/72 & 43/72 \\ 43/108 & 65/108 \end{bmatrix}$$
$$= \begin{bmatrix} 29/72 & 43/72 \end{bmatrix} = \begin{bmatrix} 0.403 & 0.600 \end{bmatrix}.$$

Hence the probabilities of cloudy or sunny weather in three days' time are respectively:

- (a) $p_1^{(3)} = 29/72$ (b) $p_2^{(3)} = 43/72$.
- (iii) The computed values of T^5 and T^{10} are (to 6 decimal places):

$$T^5 = \begin{bmatrix} 0.400077 & 0.599923 \\ 0.399949 & 0.600051 \end{bmatrix}, \qquad T^{10} = \begin{bmatrix} 0.400000 & 0.600000 \\ 0.400000 & 0.600000 \end{bmatrix}.$$

Powers of matrices can be easily computed using software such as Mathematica or R. It appears that

$$T^n \to \left[\begin{array}{cc} 0.4 & 0.6\\ 0.4 & 0.6 \end{array} \right] = Q,$$

say, as $n \to \infty$. From Eqn (4.6)

$$\mathbf{p}^{(n)} = \mathbf{p}^{(0)} T^n.$$

If $T^n \to Q$ as $n \to \infty$, then we might expect

$$\begin{split} \mathbf{p}^{(n)} &\to \mathbf{p}^{(0)}Q &= \begin{bmatrix} p_1^{(0)} & p_2^{(0)} \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} \\ &= \begin{bmatrix} (p_1^{(0)} + p_2^{(0)})0.4 & (p_1^{(0)} + p_2^{(0)})0.6 \end{bmatrix} \\ &= \begin{bmatrix} 0.4 & 0.6 \end{bmatrix} \end{split}$$

since $p_1^{(0)} + p_2^{(0)} = 1$. It appears that for all the transition matrix in the problem $\lim_{n\to\infty} \mathbf{p}^n$ is independent of $\mathbf{p}^{(0)}$. The limit indicates that, in the long run, 40% of days are cloudy and 60% are sunny.

This example indicates that it would be useful if we had a general algebraic formula for the n-th power of a matrix. The algebra required for this aspect of Markov chains will be looked at in the next two sections.

4.3 General two-state Markov chains

Consider the two-state chain with transition matrix

$$T = \left[\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array} \right], \qquad 0 < \alpha, \beta < 1.$$

We want to construct a formula for T^n . First find the **eigenvalues** (λ) of T: they are given by the solutions of the determinant equation $\det(T - \lambda I_2) = 0$, that is

$$\left|\begin{array}{cc} 1-\alpha-\lambda & \alpha \\ \beta & 1-\beta-\lambda \end{array}\right|=0, \quad \text{or} \quad (1-\alpha-\lambda)(1-\beta-\lambda)-\alpha\beta=0.$$

Hence λ satisfies the quadratic equation

$$\lambda^2 - \lambda(2 - \alpha - \beta) + 1 - \alpha - \beta = 0,$$

or

$$(\lambda - 1)(\lambda - 1 + \alpha + \beta) = 0. \tag{4.8}$$

Let the eigenvalues of T be $\lambda_1=1$ and $\lambda_2=1-\alpha-\beta=s$, say. We now find the **eigenvectors** associated with each eigenvalue. Let \mathbf{r}_1 be the (column) eigenvector of λ_1 which is defined by

$$(T - \lambda_1 I_2)\mathbf{r}_1 = \mathbf{0}, \quad \text{or} \quad \begin{bmatrix} 1 - \alpha - \lambda_1 & \alpha \\ \beta & 1 - \beta - \lambda_1 \end{bmatrix} \mathbf{r}_1 = \mathbf{0},$$

or

$$\left[\begin{array}{cc} -\alpha & \alpha \\ \beta & -\beta \end{array}\right] \mathbf{r}_1 = \mathbf{0}.$$

Choose any (nonzero) solution of this equation, say

$$\mathbf{r}_1 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Similarly the second eigenvector \mathbf{r}_2 satisfies

$$\left[\begin{array}{ccc} 1-\alpha-\lambda_2 & \alpha \\ \beta & 1-\beta-\lambda_2 \end{array}\right]\mathbf{r}_2=\mathbf{0}, \quad \text{or} \quad \left[\begin{array}{ccc} \beta & \alpha \\ \beta & \alpha \end{array}\right]\mathbf{r}_2=\mathbf{0}.$$

In this case we can choose

$$\mathbf{r}_2 = \left[\begin{array}{c} -\alpha \\ \beta \end{array} \right].$$

Now form the matrix C which has the eigenvectors \mathbf{r}_1 and \mathbf{r}_2 as columns, so that

$$C = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} = \begin{bmatrix} 1 & -\alpha \\ 1 & \beta \end{bmatrix}. \tag{4.9}$$

Now find the inverse matrix C^{-1} of C:

$$C^{-1} = \frac{1}{\alpha + \beta} \left[\begin{array}{cc} \beta & \alpha \\ -1 & 1 \end{array} \right].$$

If we now expand the matrix product $C^{-1}TC$, we now find that

$$C^{-1}TC = \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & -\beta \end{bmatrix} \begin{bmatrix} 1 & -\alpha \\ 1 & \beta \end{bmatrix}$$
$$= \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\alpha s \\ 1 & \beta s \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = D, \tag{4.10}$$

say. Now D is a **diagonal matrix** with the eigenvalues of T as its diagonal elements: this process is known in linear algebra as the **diagonalization of a matrix**. The result is significant since diagonal matrices are easy to multiply. From (4.10), if we premultiply D by matrix C and post multiply by C^{-1} , then we find that $T = CDC^{-1}$. Thus

$$T^2 = (CDC^{-1})(CDC^{-1}) = (CD)(C^{-1}C)(DC^{-1})$$

= $(CD)I_2(DC^{-1}) = CDDC^{-1} = CD^2C^{-1}$,

where

$$D^2 = \left[\begin{array}{cc} \lambda_1^2 & 0 \\ 0 & \lambda_2^2 \end{array} \right].$$

Extending this product to higher powers, it is readily seen that

$$T^n = CD^nC^{-1}, (4.11)$$

where

$$D^n = \left[\begin{array}{cc} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & s^n \end{array} \right].$$

The product of the matrices in (4.11) can be expanded to give

$$T^{n} = CD^{n}C^{-1} = \frac{1}{\alpha + \beta} \begin{bmatrix} 1 & -\alpha \\ 1 & \beta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & s^{n} \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ -1 & 1 \end{bmatrix}$$
$$= \frac{1}{\alpha + \beta} \begin{bmatrix} 1 & -\alpha s^{n} \\ 1 & \beta s^{n} \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ -1 & 1 \end{bmatrix}$$
$$= \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix} + \frac{s^{n}}{\alpha + \beta} \begin{bmatrix} \alpha & -\alpha \\ -\beta & \beta \end{bmatrix}. \quad (4.12)$$

Since $0 < \alpha, \beta < 1$, it follows that |s| < 1, and consequently that $s^n \to 0$ as $n \to \infty$. Hence, from (4.12),

$$T^n o rac{1}{\alpha + \beta} \left[egin{array}{cc} eta & lpha \ eta & lpha \end{array}
ight].$$

Further, for *any* initial probability distribution \mathbf{p}_0 , the distribution over the states after n steps is given by (see Eqn (4.6))

$$\mathbf{p}^{(n)} = \mathbf{p}^{(0)} T^n = \begin{bmatrix} p_1^{(0)} & p_2^{(0)} \end{bmatrix} T^n$$

$$\rightarrow \begin{bmatrix} p_1^{(0)} & p_2^{(0)} \end{bmatrix} \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix} = \begin{bmatrix} \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \end{bmatrix}, \quad (4.13)$$

as $n \to \infty$, and the limit is independent of $\mathbf{p}^{(0)}$. This limiting distribution, usually denoted by π , is an example of a **stationary distribution** of the Markov chain, since it is *independent of the initial distribution*. The chain is said to be in **equilibrium** or **stationary**.

It is obvious that not all chains have stationary distributions. Let $\alpha=1$ and $\beta=1$ in the two-state chain above so that

$$T = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Then

$$\left[\begin{array}{cc} p_1^{(0)} & p_2^{(0)} \end{array} \right] T^n = \left\{ \begin{array}{cc} \left[\begin{array}{cc} p_1^{(0)} & p_2^{(0)} \end{array} \right] & \text{if n even} \\ \left[\begin{array}{cc} p_2^{(0)} & p_1^{(0)} \end{array} \right] & \text{if n odd.} \end{array} \right.$$

This chain has no limiting or stationary distribution.

Alternatively, some chains have **limiting distributions** which are not stationary but depend on the initial state of the system.

4.4 Powers of the general transition matrix

The method derived for the two-state chain in the previous section can be generalized to m-state chains. We shall sketch the diagonalization method here. Let T be an $m \times m$ stochastic matrix, in other words, a possible transition matrix. The eigenvalues of T are given by

$$|T - \lambda I_m| = 0, (4.14)$$

where I_m is the identity matrix of order m. Assume that the eigenvalues are *distinct*, and denoted by $\lambda_1, \lambda_2, \ldots, \lambda_m$. The corresponding eigenvectors \mathbf{r}_i satisfy the equations

$$[T - \lambda_i I_m] \mathbf{r}_i = \mathbf{0}, \quad (i = 1, 2, \dots, m).$$
 (4.15)

Construct the matrix

$$C = \left[\begin{array}{cccc} \mathbf{r}_1 & \mathbf{r}_2 & \dots & \mathbf{r}_m \end{array} \right],$$

which has the eigenvectors as columns. By matrix multiplication

$$TC = T \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \dots & \mathbf{r}_m \end{bmatrix} = \begin{bmatrix} T\mathbf{r}_1 & T\mathbf{r}_2 & \dots & T\mathbf{r}_m \end{bmatrix}$$

= $\begin{bmatrix} \lambda_1 \mathbf{r}_1 & \lambda_2 \mathbf{r}_2 & \dots & \lambda_m \mathbf{r}_m \end{bmatrix}$ (by (4.15))

$$= \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \dots & \mathbf{r}_m \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{bmatrix}$$
$$= CD, \tag{4.16}$$

where D is the diagonal matrix of eigenvalues defined by

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{bmatrix}.$$
 (4.17)

Hence if (4.16) is multiplied on the right by C^{-1} , then

$$T = CDC^{-1}$$
.

Powers of T can now be easily found since

$$\begin{split} T^2 &= (CDC^{-1})(CDC^{-1}) = (CD)(CC^{-1})(DC^{-1}) \\ &= (CD)I_m(DC^{-1}) = CD^2C^{-1}. \end{split}$$

Similarly, for the general power n,

$$T^n = CD^nC^{-1}, (4.18)$$

where

$$D^{n} = \begin{bmatrix} \lambda_{1}^{n} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{n} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{m}^{n} \end{bmatrix}.$$

Although Eqn (4.18) is a useful formula for T^n , the algebra involved can be very heavy even for quite modest chains with m=4 or 5, particularly if T contains unknown constants or parameters. On the other hand mathematical software is now very easy to apply for the numerical calculation of eigenvalues, eigenvectors, and powers of matrices for quite large systems.

Example 4.3 Find the eigenvalues and eigenvectors of the stochastic matrix

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}.$$

Construct a formula for T^n , and find $\lim_{n\to\infty} T^n$.

The eigenvalues of T are given by

$$\det(T - \lambda I_3) = \begin{vmatrix} \frac{1}{4} - \lambda & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} - \lambda & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} - \lambda \end{vmatrix}$$

$$= \begin{vmatrix} 1 - \lambda & 1 - \lambda & 1 - \lambda \\ \frac{1}{2} & \frac{1}{4} - \lambda & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} - \lambda \end{vmatrix}$$
 (adding all the rows)
$$= (1 - \lambda) \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{4} - \lambda & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{4} - \lambda & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} - \lambda \end{vmatrix}$$
 (subtracting $\frac{1}{4}$ of row 1 from row 3)
$$= (1 - \lambda)(\frac{1}{4} - \lambda)(-\frac{1}{4} - \lambda) = 0.$$

Define the eigenvalues to be

$$\lambda_1 = 1, \qquad \lambda_2 = \frac{1}{4}, \qquad \lambda_3 = -\frac{1}{4}.$$

(Note that a row stochastic matrix always has a unit eigenvalue, which can be deduced by adding all the columns of $\det(T - \lambda I_3)$.)

The eigenvectors $\mathbf{r}_i (i = 1, 2, 3)$ satisfy

$$(T - \lambda_i I_3) \mathbf{r}_i = \mathbf{0}, \qquad (i = 1, 2, 3).$$

Some routine calculations give

$$\mathbf{r}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{r}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

We now let

$$C = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{bmatrix}.$$

Finally, from (4.18)

$$T^n = CD^nC^{-1}$$

$$= \frac{1}{6} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\frac{1}{4})^n & 0 \\ 0 & 0 & (-\frac{1}{2})^n \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ -1 & -1 & 2 \\ 3 & -3 & 0 \end{bmatrix}.$$

As $n \to \infty$,

$$\begin{split} T^n & \to & \frac{1}{6} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ -1 & -1 & 2 \\ 3 & -3 & 0 \end{bmatrix} \\ & = & \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = Q, \text{ say.} \end{split}$$

Suppose now that T is the transition matrix of a 3-state Markov chain, and that the initial probability distribution is $\mathbf{p}^{(0)}$. Then the probability distribution after n steps is

$$\mathbf{p}^{(n)} = \mathbf{p}^{(0)} T^n.$$

The invariant probability distribution **p** is

$$\mathbf{p} = \lim_{n \to \infty} \mathbf{p}^{(n)} = \lim_{n \to \infty} \mathbf{p}^{(0)} T^n = \mathbf{p}^{(0)} Q = \left[\begin{array}{cc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right].$$

The vector \mathbf{p} gives the long-term probability distribution across the three states. In other words if any snapshot of the system is eventually taken for large n, then the system is equally likely (in this example) to lie in each of the states, and this is independent of the initial distribution $\mathbf{p}^{(0)}$.

Absorbing states are recognizable in Markov chains by a value 1 in a diagonal element of the transition matrix. Since such matrices are stochastic, then all other elements in the same row must be zero. This means that once entered, there is no escape from absorbing state. For example, in the Markov chain with

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}, \tag{4.19}$$

then the state E_2 is absorbing.

As we illustrated in Section 3.1 diagrams showing transitions between states are particularly helpful. The states are represented by dots with linking directed curves or edges if a transition is possible: if no transition is possible then no directed edge is drawn. Thus the transition diagram for the three-state chain with transition matrix given by Eqn (4.19) is shown in Figure 4.1. In graph theory terminology, Figure 4.1 shows a **directed graph**. It can be seen that once entered, there is no escape from the

Figure 4.1 Transition diagram for the transition matrix in Eqn (4.19).

absorbing state E_2 .

The eigenvalues of T given by Eqn (4.19) are $\lambda_1 = 1$, $\lambda_2 = \frac{1}{4}$, $\lambda_3 = \frac{3}{4}$. The corresponding matrix of eigenvectors is

$$C = \left[\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} \right].$$

Using the method illustrated by Example 4.3, it follows that

$$T^{n} = CD^{n}C^{-1}$$

$$= \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\frac{1}{4})^{n} & 0 \\ 0 & 0 & (\frac{3}{4})^{n} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = Q,$$

say, as $n \to \infty$. This implies that

$$\mathbf{p} = \lim_{n \to \infty} \mathbf{p}^{(0)} T^n = \mathbf{p}^{(0)} Q = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

for any initial distribution $\mathbf{p}^{(0)}$: hence is invariant. This means that the system ultimately ends in E_2 with probability 1.

Example 4.4 (An illness-death model) A possible simple illness-death model can be represented by a four-state Markov chain in which E_1 is a state in which an individual is free of a particular disease, E_2 is a state in which the individual has the disease, and E_3 and E_4 are respectively death states arising as a consequence of death as a result of the disease, or from other causes. During some appropriate time interval (perhaps an annual cycle), we assign probabilities to the transition between the states. Suppose that the transition matrix is (in the order of the states).

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. \tag{4.20}$$

Find the probabilities that a person ultimately dies after a large number of transitions from the disease given that he or she did not have the disease initially.

As we might expect this Markov chain has two absorbing states E_3 and E_4 . The individual probabilities can be interpreted as follows for example: $p_{11}=\frac{1}{2}$ means that an individual, given that s/he is free of the disease in a certain period, has probability $\frac{1}{2}$ of remaining free of the disease; $p_{24}=\frac{1}{8}$ means that the probability that an individual who has the disease but dies from other causes is $\frac{1}{8}$, and so on.

The transition diagram is shown in Figure 4.2.

In this example it is simpler to **partition** the matrix T as follows. Let

$$T = \left[\begin{array}{cc} A & B \\ O_{22} & I_2 \end{array} \right],$$

where the **submatrices** A and B are given by

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & \frac{1}{4} \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix}, \qquad O_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Figure 4.2 Transition diagram for the illness-death model.

Note that A and B are not stochastic matrices. We then observe that

$$T^{2} = \begin{bmatrix} A & B \\ O_{22} & I_{2} \end{bmatrix} \begin{bmatrix} A & B \\ O_{22} & I_{2} \end{bmatrix} = \begin{bmatrix} A^{2} & (A+I_{2})B \\ O_{22} & I_{2} \end{bmatrix},$$
$$T^{3} = \begin{bmatrix} A^{3} & (A^{2}+A+I_{2})B \\ O_{22} & I_{2} \end{bmatrix},$$

and, in general,

$$T^{n} = \left[\begin{array}{cc} A^{n} & (I_{2} + A + A^{2} + \dots + A^{n-1})B \\ O_{22} & I_{2} \end{array} \right].$$

Now let

$$S_n = I_2 + A + \dots + A^{n-1}.$$

It then follows that

$$(I_2 - A)S_n = (I_2 + A + \dots + A^{n-1}) - (A + A^2 + \dots + A^n) = I_2 - A^n,$$

so that

$$S_n = (I_2 - A)^{-1}(I_2 - A^n).$$

Hence

$$T^{n} = \left[\begin{array}{cc} A^{n} & (I_{2} - A)^{-1}(I_{2} - A^{n})B \\ O_{22} & I_{2} \end{array} \right].$$

In the matrix T, A is *not* a stochastic matrix but the method of Section 4.3 to find A^n still works. The eigenvalues of A are given by

$$\det(A - \lambda I_2) = \begin{vmatrix} \frac{1}{2} - \lambda & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} - \lambda \end{vmatrix} = (\lambda - \frac{1}{4})(\lambda - \frac{3}{4}) = 0.$$

Let $\lambda_1 = \frac{1}{4}$ and $\lambda_2 = \frac{3}{4}$ (note that there is not a unit eigenvalue in this case since A is not row-stochastic). The matrix C of eigenvectors is

$$C = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right].$$

Hence

$$A^{n} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} (\frac{1}{4})^{n} & 0 \\ 0 & (\frac{3}{4})^{n}) \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

For the submatrix $A, A^n \to 0$ as $n \to \infty$, so that

$$T^{n} \to \begin{bmatrix} O_{22} & (I_{2} - A)^{-1}B \\ O_{22} & I_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{1}{6} & \frac{5}{6} \\ 0 & 0 & \frac{1}{3} & \frac{3}{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = Q,$$

say. In this case

$$\mathbf{p} = \left[\begin{array}{ccc} 0 & 0 & \frac{1}{6}p_1^{(0)} + \frac{1}{3}p_2^{(0)} + p_3^{(0)} & \frac{5}{6}p_1^{(0)} + \frac{2}{3}p_2^{(0)} + p_4^{(0)} \end{array} \right].$$

This is a **limiting distribution** not a stationary distribution since the result depends on the initial distribution. For example, if $\mathbf{p}^{(0)} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$, then

$$\mathbf{p} = \begin{bmatrix} 0 & 0 & \frac{1}{6} & \frac{5}{6} \end{bmatrix},$$

from which it can be seen that the probability of an individual not having the disease initially subsequently for large n dies as a result of the disease is $\frac{1}{6}$.

The examples we have considered so far have stochastic matrices which have *real* eigenvalues. How do we proceed if the eigenvalues are complex? Consider the following example.

Example 4.5 Find the eigenvalues and eigenvectors of the stochastic matrix

$$T = \left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\ 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{array} \right].$$

Construct a formula for T^n , and find $\lim_{n\to\infty} T^n$.

The eigenvalues of T are given by

$$\det(T - \lambda I_3) = \begin{vmatrix} \frac{1}{2} - \lambda & \frac{1}{8} & \frac{3}{8} \\ 1 & -\lambda & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 1 & \frac{1}{8} & \frac{3}{8} \\ 1 & -\lambda & o \\ 1 & \frac{1}{2} & \frac{1}{4} - \lambda \end{vmatrix}$$
 (adding all the columns)
$$= (1 - \lambda) \begin{vmatrix} 0 & \frac{1}{8} + \lambda & \frac{3}{8} \\ 1 & -\lambda & 0 \\ 0 & \frac{1}{2} + \lambda & \frac{1}{4} - \lambda \end{vmatrix}$$
 (subtracting row 2 from rows 1 and 3)
$$= (1 - \lambda) \begin{vmatrix} \frac{1}{8} + \lambda & \frac{3}{8} \\ \frac{1}{2} + \lambda & \frac{1}{4} - \lambda \end{vmatrix}$$

$$= (1 - \lambda)(\lambda^2 - \frac{1}{4}\lambda - \frac{3}{16}).$$

Hence the eigenvalues are

$$\lambda_1 = 1, \qquad \lambda_2 = \frac{1}{8}(-1+3i), \qquad \frac{1}{8}(-1-3i),$$

two of which are complex conjugates. However, we proceed to find the (complex) eigenvectors which are given, as before, by

$$(T - \lambda_i I_3) \mathbf{r}_i = \mathbf{0}, \qquad (i = 1, 2, 3).$$

They can be chosen as

$$\mathbf{r}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} -7 - 9i \\ -16 + 24i \\ 26 \end{bmatrix}, \quad \mathbf{r}_3 = \begin{bmatrix} -7 + 9i \\ -16 - 24i \\ 26 \end{bmatrix}.$$

We now define C by

$$C = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix} = \begin{bmatrix} 1 & -7 - 9i & -7 + 9i \\ 1 & -16 + 24i & -16 - 24i \\ 1 & 26 & 26 \end{bmatrix}.$$

Inevitably the algebra becomes heavier for the case of complex roots. It is advisable to check calculations using symbolic computation programs such as Mathematica. The inverse of C is given by

$$C^{-1} = \frac{1}{780} \left[\begin{array}{ccc} 416 & 156 & 208 \\ -8 + 14i & -3 - 11i & 11 - 3i \\ -8 - 14i & -3 - 11i & 11 + 3i \end{array} \right].$$

The diagonal matrix D of eigenvalues becomes

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & (\frac{-1+3i}{8})^n & 0 \\ 0 & 0 & (\frac{-1-3i}{8})^n \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

as $n \to \infty$ since $|(-1 \pm 3i)/8| = \sqrt{10/8} < 1$. Finally, T^n can be calculated from the formula

$$T^n = CD^nC^{-1}.$$

As $n \to \infty$,

$$T^n \to \begin{bmatrix} \frac{8}{15} & \frac{1}{5} & \frac{4}{15} \\ \frac{8}{15} & \frac{1}{5} & \frac{4}{15} \\ \frac{8}{15} & \frac{1}{5} & \frac{4}{15} \end{bmatrix} = Q.$$

We conclude that complex eigenvalues can be dealt with by the same procedure as real ones: the resulting formulas for \mathbb{T}^n and its limit \mathbb{Q} will turn out to be real matrices.

4.5 Gambler's ruin as a Markov chain

We start by summarizing the game (see Section 2.1). It is a game of chance between two players A and B. The gambler A starts with k units (pounds or dollars, etc.) and the opponent B with a-k units, where a and k are integers. At each play, A either wins from B one unit with probability p or loses one unit to B with probability q=1-p. The game ends when either player A or B has no stake. What is the probability that A loses?

The states are E_0, E_1, \ldots, E_a (it is convenient in this application to let the list run from 0 to a), where E_r is the state in which the gambler A has r units. This is a Markov chain, but the transitions are only possible between neighboring states. This

is also the case for the simple random walk. We interpret E_0 and E_a as absorbing states since the game ends when these states are reached. From the rules of the game, the transition matrix is

$$T = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 - p & 0 & p & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 - p & 0 & p \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{bmatrix}$$
 (an $(a+1) \times (a+1)$ matrix). (4.21)

T is an example of a **tridiagonal matrix**.

The diagonalization of T is not really a practical proposition for this $(a+1) \times (a+1)$ matrix except for small a. This is often the case for chains with a large number of states.

The initial distribution $\mathbf{p}^{(0)}$ for the gambler's ruin problem has the elements

$$p_i^{(0)} = \left\{ \begin{array}{ll} 0 & i \neq k, \\ 1 & i = k, \end{array} \right. \ (0 \leq i \leq a, \quad 1 \leq k \leq a-1), \label{eq:pi_0}$$

assuming an initial stake of k units. In $\mathbf{p}^{(n)}$, the component $p_0^{(n)}$ is the probability that the gambler loses the game by the nth play, and $p_a^{(n)}$ is the probability that the gambler has won by the nth play.

Example 4.6 In a gambler's ruin problem suppose that p is the probability that the gambler loses at each play, and that a=5 and that the gambler's initial stake is k=3 units. Compute the probability that the gambler loses/wins by the fourth play (note by not at the fourth play). What is the probability that the gambler actually wins at the fourth play?

In this example, the transition matrix Eqn (4.21) is the 6×6 matrix

$$T = \left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 1-p & 0 & p & 0 & 0 & 0 \\ 0 & 1-p & 0 & p & 0 & 0 \\ 0 & 0 & 1-p & 0 & p & 0 \\ 0 & 0 & 0 & 1-p & 0 & p \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right],$$

and

$$\mathbf{p}^{(0)} = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 0 & 0 \end{array} \right].$$

Then

$$\mathbf{p}^{(4)} = \mathbf{p}^{(0)} T^4$$

$$= \begin{bmatrix} (1-p)^3 & 3(1-p)^3 & 0 & 5(1-p)^2 p^2 & 0 & p^2 + 2(1-p)p^3 \end{bmatrix}.$$

Symbolic computation is helpful for the matrix powers. Alternatively the distribution can be obtained using probability arguments. The probability that the gambler loses by the fourth play is

$$p_0^{(4)} = (1-p)^3,$$

which can only occur as the probability of three successive losses. The probability that the gambler wins at the fourth play is

$$p_5^{(4)} = p^2 + 2(1-p)p^3,$$

derived from two successive wins, or from the sequences win/lose/win/win or lose/win/win/win which together give the term $2(1-p)p^3$. The probability that the gambler actually wins at the fourth play is $2(1-p)p^3$.

For the general $(a+1) \times (a+1)$ transition matrix (4.21) for the gambler's ruin, whilst T^n is difficult to obtain, $Q = \lim_{n \to \infty} T^n$ can be found if we make a guess that the limiting matrix is of the form

$$Q = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ u_1 & 0 & \dots & 0 & 1 - u_1 \\ u_2 & 0 & \dots & 0 & 1 - u_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{a-1} & 0 & \dots & 0 & 1 - u_{a-1} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix},$$

where $u_1, u_2, \ldots, u_{a-1}$ are to be determined. The implication of the zeros in columns 2 to a-1 is that eventually the chain must end in either state E_0 or E_a (see Section 2.2). We then observe that, after rearranging indices,

$$Q = \lim_{n \to \infty} T^{n+1} = (\lim_{n \to \infty} T^n)T = QT, \tag{4.22}$$

and

$$Q = \lim_{n \to \infty} T^{n+1} = T(\lim_{n \to \infty} T^n) = TQ.$$

$$(4.23)$$

In this case (4.22) turns out to be an identity. However (4.23) implies

$$TQ - Q = (T - I_{a+1})Q$$

$$= \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 - p & -1 & p & \dots & 0 & 0 & 0 \\ 0 & 1 - p & -1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 - p & -1 & p \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & 1 - u_1 \\ u_1 & 0 & \dots & 0 & 1 - u_1 \\ u_2 & 0 & \dots & 0 & 1 - u_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{a-1} & 0 & \dots & 0 & 1 - u_{a-1} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & \dots & 0 & 0 & 0 \\ (1 - p) - u_1 + pu_2 & 0 & \dots & 0 & -(1 - p) + u_1 - pu_2 \\ (1 - p)u_1 - u_2 + pu_3 & 0 & \dots & 0 & -(1 - p)u_1 + u_2 - pu_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (1 - p)u_{a-2} - u_{a-1} & 0 & \dots & 0 & -(1 - p)u_{a-2} + u_{a-1} \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}.$$

The right-hand side is zero, implying TQ=Q, if the elements in the first and last columns are all zero. However, note that the elements in the last column duplicate the ones in the first column. The result is the set of difference equations

$$pu_2 - u_1 + (1 - p) = 0,$$

$$pu_{k+2} - u_{k+1} + (1 - p)u_k = 0, (k = 1, 2, ..., a - 3),$$

$$-u_{a-1} + (1-p)u_{a-2} = 0.$$

This is equivalent to writing

$$pu_{k+2} - u_{k+1} + (1-p)u_k = 0,$$
 $(k = 0, 1, 2, \dots, a-2),$ $u_0 = 1,$ $u_a = 0,$

the latter two equations now defining the boundary conditions. These are the difference equations and boundary conditions for the gambler's ruin problem derived using the law of total probability in eqns (2.2) and (2.3).

4.6 Classification of states

Let us return to the general m-state chain with states E_1, E_2, \ldots, E_m and transition matrix

$$T = [p_{ij}], \qquad (1 \le i, j \le m).$$

For a homogeneous chain, recollect that p_{ij} is the probability that a transition occurs between E_i and E_j at any step or change of state in the chain. We intend to investigate and classify some of the more common types of states which can occur in Markov chains. This will be a brief treatment, using mainly examples of what is an extensive algebraic problem.

(a) Absorbing state

We have already met one state—namely the **absorbing state** (see —Section 3.1). Once entered there is no escape from an absorbing state. An absorbing state E_i is characterized by the probabilities

$$p_{ii} = 1,$$
 $p_{ij} = 0, (i \neq j, j = 1, 2, \dots m),$

in the i-th row of T.

(b) Periodic state

The probability of a return to E_i at step n is $p_{ii}^{(n)}$. Let t be an integer greater than 1. Suppose that

$$p_{ii}^{(n)} = 0 \text{ for } n \neq t, 2t, 3t, \dots$$

 $p_{ii}^{(n)} \neq 0 \text{ for } n = t, 2t, 3t, \dots$

In this case the state E_i is said to be **periodic** with period t. If, for a state, no such t exists with this property, then the state is described as **aperiodic**.

Let

$$d(i) = \gcd\{n|p_{ii}^{(n)} > 0\},\$$

that is, the greatest common divisor (gcd) of the set of integers n for which $p_{ii}^{(n)}>0$. Then the state E_i is said to be **periodic** if d(i)>1 and **aperiodic** if d(i)=1. This definition, which includes the earlier case, covers the appearance of *delayed* periodicity in which a sequence of initial terms are zero (see Problem 4.12 for an example of such periodic states which satisfy this general definition but not the one above).

Example 4.7. A four-state Markov chain has the transition matrix

$$T = \left[\begin{array}{cccc} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right].$$

Show that all states have period 3.

The transition diagram is shown in Fig. 4.3, from which it is clear that all states are period 3. For example, if the chain starts in E_1 , then returns to E_1 are only possible at steps $3, 6, 9, \ldots$

Figure 4.3 The transition diagram for Example 4.7.

either through E_2 or E_3 .

The analysis of chains with periodic states can be complicated. However, one can check for a suspected periodicity as follows. By direct computation

$$S = T^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

In this example,

$$S^2 = T^6 = SS = S,$$

so that

$$S^r = T^{3r} = S,$$
 $(r = 1, 2, ...),$

which always has nonzero elements on its diagonal. On the other hand

$$S^{r+1} = S^r S = \left[\begin{array}{cccc} 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right], \qquad S^{r+2} = S^r S^2 = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 0 \end{array} \right],$$

and both these matrices have zero diagonal elements for $r=1,2,3,\ldots$ Hence, for i=1,2,3,4,

$$p_{ii}^{(n)} = 0 \text{ for } n \neq 3, 6, 9, \dots,$$

$$p_{ii}^{(n)} \neq 0 \text{ for } n = 3, 6, 9, \dots,$$

which means that all states are period 3.

(c) Persistent state

Let $f_j^{(n)}$ be the probability that the **first return** or **visit** to E_j occurs at the n-th step. This probability is not the same as $p_{jj}^{(n)}$ which is the probability that a return occurs at the n-th step, and includes possible returns at steps $1, 2, 3, \ldots, n-1$ also. It follows that

$$p_{ij}^{(1)}(=p_{jj}) = f_i^{(1)}, (4.24)$$

$$p_{jj}^{(2)} = f_j^{(2)} + f_j^{(1)} p_{jj}^{(1)}, (4.25)$$

$$p_{jj}^{(3)} = f_j^{(3)} + f_j^{(1)} p_{jj}^{(2)} + f_j^{(2)} p_{jj}^{(1)}, (4.26)$$

and, in general,

$$p_{jj}^{(n)} = f_j^{(n)} + \sum_{r=1}^{n-1} f_j^{(r)} p_{jj}^{(n-r)} \qquad (n \ge 2).$$
 (4.27)

The terms in Eqn (4.26) imply that the probability of a return at the third step is the probability of a first return at the third step, or the probability of a first return at the first step and a return two steps later, or the probability of a first return at the second step and a return one step later.

Equations (4.24) and (4.27) become iterative formulas for the sequence of first returns $f_i^{(n)}$ which can be expressed as:

$$f_j^{(1)} = p_{jj}, (4.28)$$

$$f_j^{(n)} = p_{jj}^{(n)} - \sum_{r=1}^{n-1} f_j^{(r)} p_{jj}^{(n-r)} \qquad (n \ge 2).$$
 (4.29)

The probability that a chain returns at some step to the state E_j is

$$f_j = \sum_{n=1}^{\infty} f_j^{(n)}.$$

If $f_j = 1$, then a return to E_j is certain, and E_j is called a **persistent state**.

Example 4.8 A three-state Markov chain has the transition matrix

$$T = \left[\begin{array}{ccc} p & 1-p & 0 \\ 0 & 0 & 1 \\ 1-q & 0 & q \end{array} \right],$$

where 0 , <math>0 < q < 1. Show that the state E_1 is persistent.

For simple chains a direct approach using the transition diagram is often easier than the formula (4.29) for $f_j^{(n)}$. For this example the transition diagram is shown in Fig. 4.4. If a sequence starts in E_1 , then it can be seen that *first returns* to E_1 can be made to E_1 at every

Figure 4.4 The transition diagram for Example 4.8.

step except for n=2, since after two steps the chain must be in state E_3 . From the figure it can be argued that

$$f_1^{(1)} = p,$$
 $f_1^{(2)} = 0,$ $f_1^{(3)} = (1-p).1.(1-q),$ $f_1^{(n)} = (1-p).1.q^{n-3}.(1-q),$ $(n \ge 4).$

The last result for $f_1^{(n)}$ for $n \ge 4$ follows from the following sequence of transitions:

$$E_1 E_2 \xrightarrow{E_3 E_3 \cdots E_3} E_1.$$

The probability f_1 that the system returns at least once to E_1 is

$$f_1 = \sum_{n=1}^{\infty} f_1^{(n)} = p + \sum_{n=3}^{\infty} (1-p)(1-q)q^{n-3},$$

$$= p + (1-p)(1-q)\sum_{s=0}^{\infty} q^s, \quad (s=n-3)$$

$$= p + (1-p)\frac{(1-q)}{(1-q)} = 1,$$

using the sum formula for the geometric series. Hence $f_1 = 1$, and consequently the state E_1 is persistent.

In this example, it is almost self-evident that all states in this chain will be persistent since there is no escape route to an absorbing state for example.

Persistent states can have a further distinction. The **mean recurrence time** μ_j of a persistent state E_j , for which $\sum_{n=1}^{\infty} f_j^{(n)} = 1$, is given by

$$\mu_j = \sum_{n=1}^{\infty} n f_j^{(n)}. \tag{4.30}$$

In Example 4.8 above, the state E_1 is persistent and its mean recurrence time is given

by

$$\mu_1 = \sum_{n=1}^{\infty} n f_1^{(n)} = p + (1-p)(1-q) \sum_{n=3}^{\infty} n q^{n-3}$$
$$= p + (1-p)(1-q) \left[\frac{3-2q}{1-q)^2} \right] = \frac{3-2p-2q+pq}{1-q},$$

which is finite. For some chains, however, the mean recurrence time can be infinite; in other words, the mean number of steps to a first return is unbounded.

A persistent state E_j is said to be **null** if $\mu_j = \infty$, and **nonnull** if $\mu_j < \infty$. All states in Example 4.8 are nonnull persistent.

To create a simple example of a finite chain with a persistent null state, we consider a chain in which the transition probabilities depend on the step number n. Null states are not possible in finite chains with a *constant* transition matrix, but a proof will not be given here.

Example 4.9 A three-state inhomogeneous Markov chain has the transition matrix

$$T_n = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1\\ 1/(n+1) & 0 & n/(n+1) \end{bmatrix},$$

where T_n is the transition matrix at step n. Show that E_1 is a persistent null state.

The transition diagram at a general step n is shown in Fig. 4.5. From the figure

Figure 4.5 The transition diagram for Example 4.9.

$$\begin{split} f_1^{(1)} &= \frac{1}{2}, \qquad f_1^{(2)} = 0, \qquad f_1^{(3)} = \frac{1}{2} \cdot 1 \cdot \frac{1}{4}, \\ f_1^{(n)} &= \frac{1}{2} \cdot 1 \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \cdot \cdot \frac{n-1}{n} \cdot \frac{1}{n+1} = \frac{3}{2n(n+1)}, \qquad (n \geq 4). \end{split}$$

Hence

$$f_1 = \frac{1}{2} + \frac{1}{8} + \frac{3}{2} \sum_{n=4}^{\infty} \frac{1}{n(n+1)}.$$

Since

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$$

it follows that

$$\sum_{n=4}^{\infty} \frac{1}{n(n+1)} = \lim_{N \to \infty} \sum_{n=4}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \lim_{N \to \infty} \left(\frac{1}{4} - \frac{1}{N+1} \right) = \frac{1}{4}.$$

Hence

$$f_1 = \frac{5}{8} + \frac{3}{8} = 1,$$

which means that E_1 is persistent. On the other hand, the mean recurrence time

$$\mu_1 = \sum_{n=1}^{\infty} n f_1^{(n)} = \frac{7}{8} + \frac{3}{2} \sum_{n=4}^{\infty} \frac{n}{n(n+1)},$$

$$= \frac{7}{8} + \frac{3}{2} \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots \right) = \frac{7}{8} + \frac{3}{2} \sum_{n=4}^{\infty} \frac{1}{n}.$$

The series in the previous equation is the harmonic series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots,$$

minus the first four terms. The harmonic series is a well-known divergent series, which means that $\mu_1 = \infty$. Hence E_1 is persistent and null.

States can be both persistent and periodic. In the four-state chain with transition matrix

$$T = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{array} \right],$$

all states are period 3, persistent, and non-null

(d) Transient state

For a persistent state the probability of a first return at some step in the future is certain. For some states

$$f_j = \sum_{n=1}^{\infty} f_j^{(n)} < 1, \tag{4.31}$$

which means that the probability of a first return is *not* certain. Such states are described as **transient**.

Example 4.10 A four state Markov chain has the transition matrix

$$T = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Show that E_1 is a transient state.

Figure 4.6 The transition diagram for Example 4.10.

The transition diagram is shown in Fig. 4.6. From the figure

$$f_1^{(1)} = 0$$
, $f_1^{(2)} = \frac{1}{2} \cdot \frac{1}{2} = (\frac{1}{2})^2$, $f_1^{(3)} = (\frac{1}{2})^3$, $f_1^{(n)} = (\frac{1}{2})^n$.

Hence

$$f_1 = \sum_{n=1}^{\infty} f_1^{(n)} = \sum_{n=2}^{\infty} (\frac{1}{2})^n = \frac{1}{2} < 1$$

implying that E_1 is a transient state. The reason for the transience of E_1 can be seen from Fig. 4.6, where transitions from E_3 or E_4 to E_1 or E_2 are not possible.

(e) Ergodic state

An important state which we will return to in the next section is the state which is persistent, nonnull, and aperiodic. This state is called **ergodic**. Ergodic states are important in the classification of chains, and the existence of limiting probability distributions as we shall see in the following section.

Example 4.11 In Example 4.8 we considered the three-state Markov chain with transition matrix

$$T = \left[\begin{array}{ccc} p & 1-p & 0 \\ 0 & 0 & 1 \\ 1-q & 0 & q \end{array} \right]$$

where 0 , <math>0 < q < 1. Show that state E_1 is ergodic.

It was shown in Example 4.8 that E_1 was persistent with

$$f_1^{(1)} = p,$$
 $f_1^{(2)} = 0,$ $f_1^{(n)} = (1-p)(1-q)q^{n-3},$ $(n \ge 3).$

It follows that its mean recurrence time is

$$\mu_1 = \sum_{n=1}^{\infty} n f_1^{(n)} = p + (1-p)(1-q) \sum_{n=3}^{\infty} n q^{n-3} = \frac{3-2q}{(1-q)^2} < \infty.$$

The convergence of μ_1 implies that E_1 is nonnull. Also the diagonal elements $p_{ii}^{(n)} > 0$ for $n \geq 3$ and i = 1, 2, 3, which means that E_1 is aperiodic. Hence from the definition above E_1 (and E_2 and E_3 also) is ergodic.

4.7 Classification of chains

In the previous section we considered some defining properties of individual states. In this section we define properties of chains which are common properties of states in the chain.

(a) Irreducible chains

An **irreducible chain** is one in which every state can be **reached** or is **accessible** from every other state in the chain in a finite number of steps. That any state E_j can be reached from any other state E_i means that $p_{ij}^{(n)}>0$ for some integer n. A matrix $A=[a_{ij}]$ is said to be **positive** if $a_{ij}>0$ for all i,j. A Markov chain

A matrix $A = [a_{ij}]$ is said to be **positive** if $a_{ij} > 0$ for all i, j. A Markov chain with transition matrix T is said to be **regular** if there exists an integer N such that T^N is positive.

A regular chain is obviously irreducible. However the converse is not necessarily true as can be seen from the simple two-state chain with transition matrix

$$T = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right],$$

since

$$T^{2n}=\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]=I_2 \qquad ext{and} \qquad T^{2n+1}=\left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight]=T,$$

for $n = 1, 2, 3 \dots$ No power of T is a positive matrix.

Example 4.12 Show that the three-state chain with transition matrix

$$T = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

defines a regular (and hence irreducible) chain.

For the transition matrix T

$$T^2 = \begin{bmatrix} \frac{4}{9} & \frac{1}{9} & \frac{4}{9} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \qquad T^3 = \begin{bmatrix} \frac{16}{27} & \frac{4}{27} & \frac{7}{27} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{4}{9} & \frac{1}{9} & \frac{4}{9} \end{bmatrix}.$$

Hence T^3 is a positive matrix which means that the chain is regular.

An important feature of an irreducible chain is that all its states are of the same type, that is, either all transient or all persistent (null or nonnull), or all have the same period. A proof of this is given by Feller (1968, p. 391). This means that the classification of all states in an irreducible chain can be inferred from the known classification of one state. It is intuitively reasonable to infer also that the states of a finite irreducible chain cannot all be transient since it would mean that a return to *any* state would not be certain even though all states are accessible from all other states in a finite number of steps. This requires a proof which will not be included here.

84 MARKOV CHAINS

(b) Closed sets

A Markov chain may contain some states which are transient, some which are persistent, absorbing states, and so on. The persistent states can be part of closed subchains. A set of states C in a Markov chain is said to **closed** if any state within C can be reached from any other state within C, and no state outside C can be reached from any state inside C. Algebraically a *necessary* condition for this to be the case is that

$$p_{ij} = 0 \quad \forall \quad E_i \in C \quad \text{and} \quad \forall \quad E_j \notin C.$$

An absorbing state is closed with just one state. Note also that a closed subset is itself an irreducible subchain of the full Markov chain.

Example 4.13 Discuss the status of each state in the 6-state Markov chain with transition matrix

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

A diagram representing the chain is shown in Figure 4.7. As usual the figure is a great help in settling questions of which sets of states are closed. It can be seen that $\{E_1, E_2\}$ is a

Figure 4.7 The transition diagram for Example 4.13.

closed irreducible subchain since no states outside the states can be reached from E_1 and E_2 . Similarly $\{E_5, E_6\}$ is a closed irreducible subchain. The states E_3 and E_4 are transient. All states are aperiodic which means that E_1 , E_2 , E_5 , and E_6 are ergodic.

(c) Ergodic chains

As we have seen all the states in an irreducible chain belong to the same class. If all states are ergodic, that is, persistent, nonnull, and aperiodic, then the chain is described as an **ergodic chain**.

Example 4.14 Show that all states of the chain with transition matrix

$$T = \left[\begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

are ergodic.

This is the same chain as in Example 4.12 where it was shown to be irreducible and regular, which means that all states must be persistent, nonnull, and aperiodic. Hence all states are ergodic.

Example 4.15 Consider the three-state Markov chain with transition matrix

$$T = \left[\begin{array}{ccc} \frac{1}{5} & \frac{4}{5} & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{array} \right].$$

Show that all states are ergodic. Find the eigenvalues of T and $Q = \lim_{n\to\infty} T^n$. Determine the mean recurrence times μ_1 , μ_2 , μ_3 for each state, and confirm that the rows of Q all have the elements $1/\mu_1$, $1/\mu_2$, $1/\mu_3$.

It is easy to check that T^4 is a positive matrix, which implies that the chain is ergodic. The eigenvalues of T are given by

$$\det(T - \lambda I_3) = \begin{vmatrix} \frac{1}{5} - \lambda & \frac{4}{5} & 0\\ 0 & -\lambda & 1\\ 1 & 0 & -\lambda \end{vmatrix} = -\lambda^3 + \frac{1}{5}\lambda^2 + \frac{4}{5}$$
$$= \frac{1}{5}(1 - \lambda)(5\lambda^2 + 4\lambda + 4) = 0.$$

Hence the eigenvalues can be denoted by

$$\lambda_1 = 1, \qquad \lambda_2 = -\frac{2}{5} + \frac{4}{5}i, \qquad \lambda_3 = -\frac{2}{5} - \frac{4}{5}ii.$$

The corresponding eigenvectors are

$$\mathbf{r}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right], \qquad \mathbf{r}_2 = \left[\begin{array}{c} -\frac{2}{5} + \frac{4}{5}\mathrm{i} \\ -\frac{1}{2} - \mathrm{i} \\ 1 \end{array} \right], \qquad \mathbf{r}_3 = \left[\begin{array}{c} -\frac{2}{5} - \frac{4}{5}\mathrm{i} \\ -\frac{1}{2} + \mathrm{i} \\ 1 \end{array} \right].$$

We use the method of Section 4.4 to find T^n . Let

$$C = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{2}{5} + \frac{4}{5}i & -\frac{2}{5} - \frac{4}{5}i \\ 1 & -\frac{1}{2} - i & -\frac{1}{2} + i \\ 1 & 1 & 1 \end{bmatrix}.$$

The computed inverse is given by

$$C^{-1} = \frac{1}{52} \left[\begin{array}{cccc} 20 & 16 & 16 \\ -10 - 30\mathrm{i} & -8 + 14\mathrm{i} & 18 + \mathrm{i} \\ -10 + 30\mathrm{i} & -8 - 14\mathrm{i} & 18 - \mathrm{i} \end{array} \right].$$

As in Example 4.5, it follows that

$$T^{n} = C \begin{bmatrix} 1 & 0 & 0 \\ 0 & (-\frac{2}{5} + \frac{4}{5}i)^{n} & 0 \\ 0 & 0 & (-\frac{2}{7} - \frac{4}{7}i)^{n} \end{bmatrix} C^{-1}.$$

Hence

$$Q = \lim_{n \to \infty} T^n = C \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} C^{-1} = \frac{1}{13} \begin{bmatrix} 5 & 4 & 4 \\ 5 & 4 & 4 \\ 5 & 4 & 4 \end{bmatrix}.$$

The invariant dustribution is therefore $\mathbf{p} = \begin{bmatrix} \frac{5}{13} & \frac{4}{13} & \frac{4}{13} \end{bmatrix}$. Note that the elements in \mathbf{p} are the same as the *first row* in C^{-1} . Is this always the case for ergodic chains if the first eigenvalue $\lambda_1 = 1$?

The first returns $f_i^{(n)}$ for each of the states can be easily calculated from the transition diagram Fig. 4.8. Thus

Figure 4.8 The transition diagram for Example 4.15.

$$\begin{split} f_1^{(1)} &= \tfrac{1}{5}, \qquad f_1^{(2)} = 0, \qquad f_1^{(3)} = \tfrac{4}{5}.1.1 = \tfrac{4}{5}, \\ f_2^{(1)} &= f_3^{(1)} = 0, \qquad f_2^{(2)} = f_3^{(2)} = 0, \qquad f_2^{(n)} = f_2^{(n)} = \tfrac{4}{5} \left(\tfrac{1}{5}\right)^{n-3}, \quad (n \geq 3). \end{split}$$
 Hence, by Eqn (4.30),
$$\boldsymbol{\mu}_1 = \sum_{n=1}^\infty n f_1^{(n)} = \tfrac{1}{5} + 3.\tfrac{4}{5} = \tfrac{13}{5}. \end{split}$$

$$\mu_2 = \mu_3 = \sum_{n=1}^{\infty} n f_2^{(n)} = \frac{4}{5} \sum_{n=3}^{\infty} n (\frac{1}{5})^{n-3} = \frac{13}{4}.$$

The vector of reciprocals

$$\left[\begin{array}{ccc} \frac{1}{\pmb{\mu}_1} & \frac{1}{\pmb{\mu}_2} & \frac{1}{\pmb{\mu}_3} \end{array}\right] = \left[\begin{array}{ccc} \frac{5}{13} & \frac{4}{13} & \frac{4}{13} \end{array}\right]$$

agrees with the vector **p** above calculated by the eigenvalue method.

For ergodic chains this is always the case: the *invariant distribution is the vector* of mean recurrence time reciprocals.

4.8 Problems

4.1. If
$$T = [p_{ij}]$$
, $(i, j = 1, 2, 3)$ and

$$p_{ij} = \frac{i+j}{6+3i},$$

PROBLEMS 87

show that T is a row-stochastic matrix. What is the probability that a transition between states E_2 and E_3 occurs at any step?

If the initial probability distribution in a Markov chain is

$$\mathbf{p}^{(0)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix},$$

what are the probabilities that states E_1 , E_2 , and E_3 are occupied after one step? Explain why the probability that the chain finishes in state E_2 is $\frac{1}{3}$ irrespective of the number of steps.

4.2. If

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix},$$

calculate $p_{22}^{(2)}$, $p_{31}^{(2)}$, and $p_{13}^{(2)}$.

4.3. For the transition matrix

$$T = \left[\begin{array}{cc} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{4} & \frac{3}{4} \end{array} \right]$$

calculate $p_{12}^{(3)}, p_2^{(2)}$ and $\mathbf{p}^{(3)}$ given that $\mathbf{p}^{(0)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Also find the eigenvalues of T, construct a formula for T^n and obtain $\lim_{n \to \infty} T^n$.

4.4. Sketch transition diagrams for each of the following three-state Markov chains.

$$\text{(a) } A = \left[\begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]; \quad \text{(b) } B = \left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{array} \right]; \quad \text{(c) } C = \left[\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right].$$

4.5. Find the eigenvalues of

$$T = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}, \quad (a > 0, b > 0, c > 0).$$

Show that the eigenvalues are complex if $b \neq c$. (If a + b + c = 1, then T is a **doubly-stochastic matrix**.)

Find the eigenvalues and eigenvectors in the following cases:

- (a) $a = \frac{1}{2}$, $b = \frac{1}{4}$, $c = \frac{1}{4}$;
- (b) $a = \frac{1}{2}$, $b = \frac{1}{8}$, $c = \frac{3}{8}$.
- 4.6. Find the eigenvalues, eigenvectors, the matrix of eigenvectors C, its inverse C^{-1} , a formula for T^n and $\lim_{n\to\infty}T^n$ for each of the following transition matrices:

(a)
$$T = \left[\begin{array}{cc} \frac{1}{8} & \frac{7}{8} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right];$$
 (b)

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\ \frac{1}{4} & \frac{3}{8} & \frac{3}{8} \\ \frac{1}{1} & \frac{5}{2} & \frac{1}{1} \end{bmatrix}.$$

4.7. The weather in a certain region can be characterized as being sunny (S), cloudy (C), or rainy (R) on any particular day. The probability of any type of weather on one day depends only on the state of the weather on the previous day. For example, if it is sunny one day then sun or clouds are equally likely on the next day with no possibility of rain. Explain what other the day-to-day possibilities are if the weather is represented by the transition matrix

$$T = \begin{array}{c|cccc} S & C & R \\ \hline S & \frac{1}{2} & \frac{1}{2} & 0 \\ C & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ R & 0 & \frac{1}{2} & \frac{1}{2} \end{array}$$

Find the eigenvalues of T and a formula for T^n . In the long run what percentage of the days are sunny, cloudy, and rainy?

4.8. The eigenvalue method of Section 4.4 for finding general powers of stochastic matrices is only guaranteed to work if the eigenvalues are distinct. Several possibilities occur if the stochastic matrix of a Markov chain has a repeated eigenvalue. The following three examples illustrate these possibilities.

(a) Let

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

be the transition matrix of a three-state Markov chain. Show that T has the repeated eigenvalue $\lambda_1=\lambda_2=-\frac{1}{4}$ and $\lambda_3=1$, and two distinct eigenvectors

$$\mathbf{r}_1 = \begin{bmatrix} 1 \\ -4 \\ 1 \end{bmatrix} \qquad \mathbf{r}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

In this case diagonalization of T is not possible. However it is possible to find a nonsingular matrix C such that

$$T = CJC^{-1},$$

where J is the **Jordan decomposition matrix** given by

$$J = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{4} & 1 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$C = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \mathbf{r}_3 \end{bmatrix},$$

and \mathbf{r}_2 satisfies

$$(T - \lambda_1 I_3)\mathbf{r}_2 = \mathbf{r}_1.$$

Show that we can choose

$$\mathbf{r}_2 = \left[\begin{array}{c} -10 \\ 24 \\ 0 \end{array} \right].$$

Find a formula for J^n and confirm that, as $n \to \infty$,

$$T^n \to \begin{bmatrix} \frac{12}{25} & \frac{1}{5} & \frac{8}{25} \\ \frac{12}{25} & \frac{1}{5} & \frac{8}{25} \\ \frac{12}{25} & \frac{1}{5} & \frac{8}{25} \\ \frac{12}{25} & \frac{1}{5} & \frac{8}{25} \end{bmatrix}.$$

PROBLEMS 89

(b) A four-state Markov chain has the transition matrix

$$S = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Sketch the transition diagram for the chain, and note that the chain has two absorbing states and is therefore not a regular chain. Show that the eigenvalues of S are $-\frac{1}{4},\frac{1}{4}$, and 1 repeated. Show that there are four distinct eigenvectors. Choose the diagonalizing matrix C as

$$C = \left[\begin{array}{rrrr} 0 & 0 & -4 & -5 \\ -1 & 1 & -3 & 4 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right].$$

Find its inverse, and show that, as $n \to \infty$,

$$S^n \to \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{4}{5} & 0 & 0 & \frac{1}{5} \\ \frac{1}{5} & 0 & 0 & \frac{4}{5} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Note that since the rows are not the same this chain does not have an invariant distribution: this is caused by the presence of two absorbing states.

(c) Show that the transition matrix

$$U = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{5}{2} \end{bmatrix}$$

has a repeated eigenvalue, but that, in this case, three independent eigenvectors can be associated with U. Find a diagonalizing matrix C, and find a formula for U^n using $U^n = CD^nC^{-1}$, where

$$D = \left[\begin{array}{ccc} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Confirm also that this chain has an invariant distribution.

4.9. Miscellaneous problems on transition matrices. In each case find the eigenvalues of T, a formula for T^n , and the limit of T^n as $n \to \infty$. The special cases discussed in Problem 4.8 can occur.

(a)
$$T = \begin{bmatrix} \frac{1}{2} & \frac{7}{32} & \frac{9}{32} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix};$$
 (b)
$$T = \begin{bmatrix} \frac{1}{3} & \frac{1}{4} & \frac{5}{12} \\ 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix};$$
 (c)
$$T = \begin{bmatrix} \frac{1}{4} & \frac{3}{16} & \frac{9}{16} \\ \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix};$$

(d)
$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{5}{12} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix};$$
 (e)
$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}.$$

4.10. A four-state Markov chain has the transition matrix

$$T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} \\ \frac{3}{4} & 0 & \frac{1}{4} & 0 \end{bmatrix}.$$

Find f_i , the probability that the chain returns at some step to state E_i , for each state. Determine which states are transient and which are persistent. Which states form a closed subset? Find the eigenvalues of T, and the limiting behavior of T^n as $n \to \infty$.

4.11. A six-state Markov chain has the transition matrix

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

Sketch its transition diagram. From the diagram which states do you think are transient and which do you think are persistent? Which states form a closed subset? Determine the invariant distribution in the subset.

4.12. Draw the transition diagram for the seven-state Markov chain with transition matrix

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Hence discuss the periodicity of the states of the chain. From the transition diagram calculate $p_{11}^{(n)}$ and $p_{44}^{(n)}$ for n=2,3,4,5,6. (In this example you should confirm that $p_{11}^{(3)}=\frac{1}{2}$ but that $p_{44}^{(3)}=0$; however, $p_{44}^{(3n)}\neq 0$ for $n=2,3,\ldots$ confirming that state E_4 is periodic with period 3.)

4.13. The transition matrix of a 3-state Markov chain is given by

$$T = \left[\begin{array}{ccc} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{array} \right].$$

PROBLEMS 91

Show that $S=T^2$ is the transition matrix of a regular chain. Find its eigenvectors and confirm that S has an invariant distribution given by $\begin{bmatrix} \frac{14}{37} & \frac{13}{37} & \frac{10}{37} \end{bmatrix}$.

4.14. An insect is placed in the maze of cells shown in Figure 4.9. The state E_j is the state

Figure 4.9 Insect in a maze.

in which the insect is in cell j. A transition occurs when the insect moves from one cell to another. Assuming that exits are equally likely to be chosen where there is a choice, construct the transition matrix T for the Markov chain representing the movements of the insect. Show that all states are periodic with period 2. Show that T^2 has two subchains which are both regular. Find the invariant distributions of both subchains. Interpret the results.

4.15. The transition matrix of a four-state Markov chain is given by

$$T = \begin{bmatrix} 1-a & a & 0 & 0 \\ 1-b & 0 & b & 0 \\ 1-c & 0 & 0 & c \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad (0 < a, b, c < 1).$$

Draw a transition diagram, and, from the diagram, calculate $f_1^{(n)}$, (n = 1, 2, ...), the probability that a first return to state E_1 occurs at the n-th step. Calculate also the mean recurrence time μ_1 . What type of state is E_1 ?

4.16. Show that the transition matrix

$$T = \left[\begin{array}{cccc} 1 - a & a & 0 & 0 \\ 1 - a & 0 & a & 0 \\ 1 - a & 0 & 0 & a \\ 1 & 0 & 0 & 0 \end{array} \right]$$

has two imaginary (conjugate) eigenvalues where 0 < a < 1. If $a = \frac{1}{2}$, confirm that T has the invariant distribution $\mathbf{p} = \begin{bmatrix} \frac{8}{15} & \frac{4}{15} & \frac{2}{15} & \frac{1}{15} \end{bmatrix}$.

4.17. A production line consists of two manufacturing stages. At the end of each manufacturing stage each item in the line is inspected, where there is a probability p that it will be scrapped, q that it will be sent back to that stage for reworking, and (1 - p - q) that it will be passed to the next stage or completed. The production line can be modelled by a Markov chain with four states: E_1 , item scrapped; E_2 , item completed; E_3 , item in first manufacturing stage; E_4 ,

item in second manufacturing stage. We define states E_1 and E_2 to be absorbing states so that the transition matrix of the chain is

$$T = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ p & 0 & q & 1 - p - q \\ p & 1 - p - q & 0 & q \end{array} \right].$$

An item starts along the production line. What is the probability that it is completed in two stages? Calculate $f_3^{(n)}$ and $f_4^{(n)}$. Assuming that $0 , what kind of states are <math>E_3$ and E_4 ? What is the probability that an item starting along the production line is ultimately completed?

4.18. The step-dependent transition matrix of Example 4.9 is

$$T_n = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1\\ 1/(n+1) & 0 & n/(n+1) \end{bmatrix}, \quad (n=1,2,3,\ldots).$$

Find the mean recurrence time for state E_3 , and confirm that E_3 is a persistent, nonnull state.

4.19. In Example 4.9, a persistent, null state occurred in a chain with step-dependent transitions: such a state cannot occur in a finite chain with a constant transition matrix. However, chains over an infinite number of states can have persistent, null states. Consider the following chain which has an infinite number of states E_1, E_2, \ldots with the transition probabilities

$$p_{11} = \frac{1}{2}, \quad p_{12} = \frac{1}{2}, \quad p_{j1} = \frac{1}{j+1}, \quad p_{j,j+1} = \frac{j}{j+1}, \quad (j \ge 2).$$

Find the mean recurrence time for E_1 , and confirm that E_1 is a persistent, null state.

4.20. A random walk takes place on $1, 2, \ldots$ subject to the following rules. A jump from position i to position 1 occurs with probability q_i , and from position i to i+1 with probability $1-q_i$ for $i=1,2,3,\ldots$, where $0< q_i<1$. Sketch the transition diagram for the chain. Explain why to investigate the persistence of every state, only one state, say state 1, need be considered. Show that the probability that a first return to state 1 occurs at some step is

$$f_1 = \sum_{i=1}^{\infty} \prod_{k=1}^{j-1} (1 - q_k) q_j.$$

If $q_i = q$ (j = 1, 2, ...), show that every state is persistent.

CHAPTER 5

Poisson Processes

5.1 Introduction

In many applications of stochastic processes, the random variable can be a continuous function of the time t. For example, in a population births and deaths can occur at any time, and any random variable representing such a probability model must take account of this dependence on time. Other examples include the arrival of telephone calls at an office, or the emission of radioactive particles recorded on a Geiger counter. Interpreting the term population in the broad sense (not simply individuals, but particles, telephone calls, etc. depending on the context) we might be interested typically in the probability that the population size is, say, n at time t. We shall represent this probability usually by $p_n(t)$. For the Geiger counter application it will represent that the probability that n particles have been recorded up to time t, whilst for the arrival of telephone calls it could represent the number of calls logged up to time t.

5.2 The Poisson process

Let N(t) be a time-varying random variable representing the population size at time t. Consider the continuous-time probability distribution given by

$$p_n(t) = \mathbf{P}[N(t) = n] = \frac{(\lambda t)^n e^{-\lambda t}}{n!}, \qquad (t \ge 0)$$
 (5.1)

for $n=0,1,2,\ldots$ It is assumed that N(t) can take the integer values $n=0,1,2,\ldots$ Since (5.1) is a probability distribution we observe that

$$\sum_{n=0}^{\infty} p_n(t) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} = e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} = 1,$$

using the power series expansion for the exponential function (see the Appendix).

In fact (see Section 1.7) $p_n(t)$ is a **Poisson function** with **parameter** or **intensity** λ . For this reason any application for which Eqn (5.1) holds is known as a **Poisson process**: we shall give a full formal statement of the process in Section 5.8. Examples of some sample distributions for $p_n(t)$ versus λt in the cases n=0,1,2,3 are shown in Figure 5.1. The Poisson process is a special case of the more general birth process which is developed in Chapter 6.

Figure 5.1 Probabilities $p_n(t)$ for $\lambda = 0.5$ and n = 0, 1, 2, 3.

Since, for n > 1,

$$\frac{dp_n(t)}{dt} = \frac{(n-\lambda t)}{n!} \lambda^n t^{n-1} e^{-\lambda t},\tag{5.2}$$

the maximum values of the probabilities for fixed n occur at time $t = n/\lambda$, where $dp_n(t)/dt = 0$. For n = 0,

$$\frac{dp_0(t)}{dt} = -\lambda e^{-\lambda t}. ag{5.3}$$

The mean $\mu(t)$ of the Poisson distribution will be a function of time given by the sum of the products of the possible outcomes n and their probable occurrences $p_n(t)$, (n = 1, 2, ...), namely,

$$\mu(t) = \mathbf{E}[N(t)] = \sum_{n=1}^{\infty} n p_n(t) = \sum_{n=1}^{\infty} n \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$
$$= e^{-\lambda t} \lambda t \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!} = e^{-\lambda t} \lambda t e^{\lambda t} = \lambda t.$$
 (5.4)

Note that the mean value increases linearly with time at rate λ .

This observation that the mean increases steadily with time gives a pointer as to why the Poisson distribution is appropriate for cumulative recording such as the Geiger counter application and the call-logging problem for the telephone operator. For the Geiger counter, the recording of radioactive particle hits is assumed to occur at random with probability of a new subsequent hit being independent of any previous recordings. This independence requirement is crucial for the Poisson process. We can show how this arises from the Poisson process as follows.

Example 5.1. Find the variance of the Poisson distribution $p_n(t)$ (n = 0, 1, 2, ...).

Expressing the variance in terms of means, the variance is given by (see Section 1.6)

$$V[N(t)] = E[N(t)^{2}] - [E[N(t)]]^{2} = E[N(t)^{2}] - (\lambda t)^{2}$$

by (5.4). Also

$$\mathbf{E}[N(t)^{2}] = \sum_{n=1}^{\infty} \frac{n^{2}(\lambda t)^{n}}{n!} e^{-\lambda t} = e^{-\lambda t} \sum_{n=1}^{\infty} \frac{n(\lambda t)^{n}}{(n-1)!}$$
$$= e^{-\lambda t} t \frac{d}{dt} \sum_{n=1}^{\infty} \frac{\lambda^{n} t^{n}}{(n-1)!} = e^{-\lambda t} t \frac{d}{dt} [\lambda t e^{\lambda t}] = \lambda t + (\lambda t)^{2}.$$

Thus

$$\mathbf{V}[N(t)] = \lambda t + (\lambda t)^2 - (\lambda t)^2 = \lambda t.$$

Note that the Poisson distribution has the property that its mean is the same as its variance.

From Eqns (5.1), (5.2), and (5.3) it follows that

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t),\tag{5.5}$$

$$\frac{dp_n(t)}{dt} = \lambda [p_{n-1}(t) - p_n(t)], \qquad (n \ge 1).$$
 (5.6)

These are **differential-difference equations** for the sequence of probabilities $p_n(t)$. From the definition of differentiation, the derivatives are obtained by the limiting process

$$\frac{dp_n(t)}{dt} = \lim_{\delta t \to 0} \frac{p_n(t + \delta t) - p_n(t)}{\delta t},$$

so that approximately, for small $\delta t > 0$,

$$\frac{dp_n(t)}{dt} \approx \frac{p_n(t+\delta t) - p_n(t)}{\delta t}.$$

Thus eliminating the derivatives in Eqns (5.5) and (5.6) in favor of their approximations, we can replace the equations by

$$\frac{p_0(t+\delta t)-p_0(t)}{\delta t}\approx -\lambda p_0(t),$$

$$\frac{p_n(t+\delta t)-p_n(t)}{\delta t}\approx \lambda [p_{n-1}(t)-p_n(t)],$$

so that

$$p_0(t) \approx (1 - \lambda \delta t) p_0(t)$$

$$p_n(t + \delta t) \approx p_{n-1}(t) \lambda \delta t + p_n(t) (1 - \lambda \delta t), \qquad (n \ge 1)$$

$$(5.7)$$

We can interpret the equations as follows. For the Geiger counter, we can infer from these formulas that the probability that a particle is recorded in the short time interval δt is $\lambda \delta t$, and that the probability that two or more particles are recorded is negligible, and consequently that no recording takes place with probability $(1 - \lambda \delta t)$. In Eqn (5.7) the only way in which the outcome reading $n(\geq 1)$ can occur at time $t + \delta t$ is that either one particle was recorded in the interval δt when n particles were recorded at time t, or that nothing occurred with probability $(1 - \lambda \delta t)$ when n particles were recorded at time t. In fact, Eqn (5.7) is really a re-statement of the **partition theorem** or **law of total probability**, and is often the starting point for

the modeling of random processes in continuous time. We will look at this approach for the Poisson process in the next section, before we develop it further in the next chapter for birth and death processes and queues.

5.3 Partition theorem approach

We can use Eqn (5.7) as the starting approach using the partition theorem (Section 1.3). We argue as in the last paragraph of the previous section but tighten the argument. For the Geiger counter application (a similar argument can be adapted for the call-logging problem, etc.) we assume that the probability that one particle is recorded in the short time interval δt is

$$\lambda \delta t + o(\delta t)$$
.

(The term $o(\delta t)$ described in words as 'little o δt ' means that the remainder or error is of lower order than δt , that is (see the Appendix),

$$\lim_{\delta t \to 0} \frac{o(\delta t)}{\delta t} = 0.$$

The probability of two or more hits is assumed to be $o(\delta t)$, that is, negligible as $\delta t \to 0$, and the probability of no hits is $1 - \lambda \delta t + o(\delta t)$. We now apply the partition theorem on the possible outcomes. The case n=0 is special since reading zero can only occur through no event occurring. Thus

$$p_0(t + \delta t) = [1 - \lambda \delta t + o(\delta t)]p_0(t),$$

$$p_n(t+\delta t) = p_{n-1}(t)(\lambda \delta t + o(\delta t)) + p_n(t)(1-\lambda \delta t + o(\delta t)) + o(\delta t), \ (n \ge 1).$$

Dividing through by δt and re-organizing the equations, we find that

$$\frac{p_0(t+\delta t) - p_0(t)}{\delta t} = -\lambda p_0(t) + o(1),$$

$$\frac{p_n(t + \delta t) - p_n(t)}{\delta t} = \lambda [p_{n-1}(t) - p_n(t)] + o(1).$$

Now let $\delta t \to 0$. Then, by the definition of the derivative and o(1),

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t),\tag{5.8}$$

$$\frac{dp_n(t)}{dt} = \lambda [p_{n-1}(t) - p_n(t)], \qquad (n \ge 1).$$
 (5.9)

All terms o(1) tend to zero as $\delta t \to 0$. Not surprisingly we have recovered Eqns (5.5) and (5.6).

We started this chapter by looking at the Poisson distributions defined by Eqn (5.1). We now look at techniques for solving Eqns (5.8) and (5.9), although for the Poisson process we know the solutions. The methods give some insight into the solution of more general continuous-time random processes.

5.4 Iterative method

Suppose that our model of the Geiger counter is based on Eqn (5.8), and that we wish to solve the equations to recover $p_n(t)$, which we assume to be unknown for the purposes of this exercise. Equation (5.8) is an ordinary differential equation for one unknown function $p_0(t)$. It is of first-order, and it can be easily verified that its general solution is

$$p_0(t) = C_0 e^{-\lambda t}, (5.10)$$

where C_0 is a constant. We need to specify **initial conditions** for the problem. Assume that the instrumentation of the Geiger counter is set to zero initially. Thus we have the *certain* event for which $p_0(0)=1$, and consequently $p_n(0)=0$, $(n\geq 1)$: the probability of any reading other than zero is zero at time t=0. Hence $C_0=1$ and

$$p_0(t) = e^{\lambda t}. (5.11)$$

Now put n = 1 in (5.9) so that

$$\frac{dp_1(t)}{dt} = \lambda p_0(t) - \lambda p_1(t),$$

or

$$\frac{dp_1(t)}{dt} + \lambda p_1(t) = \lambda p_0(t) = \lambda e^{-\lambda t},$$

after substituting for $p_0(t)$ from Eqn (5.11). This first order differential equation for $p_1(t)$ is of **integrating factor** type with integrating factor

$$e^{\int \lambda dt} = e^{\lambda t}$$
.

in which case it can be rewritten as the following separable equation:

$$\frac{d}{dt}\left(e^{\lambda t}p_1(t)\right) = \lambda e^{\lambda t}e^{-\lambda t} = \lambda.$$

Hence, integration with respect to t results in

$$e^{\lambda t}p_1(t) = \int \lambda dt = \lambda t + C_1.$$

Thus

$$p_1(t) = \lambda t e^{-\lambda t} + C_1 e^{-\lambda t} = \lambda t e^{-\lambda t}$$

since $p_1(0) = 0$. We now repeat the process by putting n = 2 in Eqn (5.9) and substituting in the $p_1(t)$ which has just been found. The result is the equation

$$\frac{dp_2(t)}{dt} + \lambda p_2(t) = \lambda p_1(t) = \lambda t e^{-\lambda t}.$$

This is a further first-order integrating-factor differential equation which can be solved using the same method. The result is, using the initial condition $p_2(0) = 0$,

$$p_2(t) = \frac{(\lambda t)^2 e^{-\lambda t}}{2!}.$$

The method can be repeated for n = 3, 4, ..., and the results imply that

$$p_n(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!},\tag{5.12}$$

which is the probability given by Eqn (5.1) as we would expect. The result in Eqn (5.12) can be justified rigorously by constructing a proof by induction.

The initial condition is built into the definition of the Poisson process (see the summary in Section 5.8). The iterative approach outlined above does permit the use of other initial conditions such as the assumption that the Geiger counter is set to reading n_0 , say, at time t=0 (see Problem 5.8).

The iterative method works for the differential-difference equations (5.9) because they contain forward differencing only in n. In many applications both forward and backward differencing appear in the equations with the result that successive methods of solution can no longer be applied. The alternative generating function approach will be explained in the next section.

5.5 The generating function

An alternative approach to the solution of differential-difference equations uses the **probability generating function** first introduced in Section 1.9. For continuous-time random processes, we define a generating function as a power series in a dummy variable s, say, in which the coefficients in the series are the probabilities, the $p_n(t)$'s in our notation here. Thus we construct a generating function G(s,t) as

$$G(s,t) = \sum_{n=0}^{\infty} p_n(t)s^n.$$
 (5.13)

Here s is a dummy variable which is in itself not of much direct interest. However, given the function G(s,t), $p_n(t)$ can be recovered from the series obtained by expanding G(s,t) in powers of s, and looking at their coefficients.

The practical steps involved in expressing the differential-difference equations in terms of the generating function are as follows. Multiply Eqn (5.9) by s^n , and add the equations together including Eqn (5.8). In summation notation the result is

$$\sum_{n=0}^{\infty} \frac{dp_n(t)}{dt} s^n = \lambda \sum_{n=1}^{\infty} p_{n-1}(t) s^n - \lambda \sum_{n=0}^{\infty} p_n(t) s^n.$$
 (5.14)

Note carefully the lower limits on the summations. Note also that the right-hand side of Eqn (5.8) has been included in the second series on the right-hand side of Eqn (5.14). We attempt to express each of the series in Eqn (5.14) in terms of the generating function G(s,t) or its partial derivatives with respect to either s or t. Thus looking at each of the series in turn, we find that

$$\sum_{n=0}^{\infty} \frac{dp_n(t)}{dt} s^n = \frac{\partial}{\partial t} \sum_{n=0}^{\infty} p_n(t) s^n = \frac{\partial G(s,t)}{\partial t},$$

$$\sum_{n=1}^{\infty} p_{n-1}(t)s^n = \sum_{m=0}^{\infty} p_m(t)s^{m+1} = sG(s,t), \quad \text{(putting } n=m+1),$$

$$\sum_{n=0}^{\infty} p_n(t)s^n = G(s,t).$$

We can now replace Eqn (5.14) by the equation

$$\frac{\partial G(s,t)}{\partial t} = \lambda s G(s,t) - \lambda G(s,t) = \lambda (s-1)G(s,t). \tag{5.15}$$

This partial differential equation in G(s,t) replaces the set of differential-difference Eqns (5.8) and (5.9). If Eqn (5.15) can be solved for the generating function G(s,t), and if this function can then be expanded in powers of s, then the probabilities can be read off from this expansion, and it is possible by using the uniqueness property that the distribution could be identified by name.

Since Eqn (5.15) only contains a derivative with respect to t, it behaves more like an ordinary differential equation. We can integrate it with respect to t (it is a similar equation to (5.8)) so that

$$G(s,t) = A(s)e^{\lambda(s-1)t}, \qquad (5.16)$$

where A(s) is the 'constant of integration' but nevertheless can be a function of the other variable s. That (5.16) is the solution can be verified by direct substitution in Eqn (5.15).

The function A(s) is determined by the initial conditions which must now be expressed in terms of the generating function. The initial conditions $p_0(0)=1$, $p_n(0)=0$, $(n \ge 1)$ translate into

$$G(s,0) = \sum_{n=0}^{\infty} p_n(0)s^n = 1.$$

Generally the initial conditions will lead to G(s,0) being a specified function in s. Thus in Eqn (5.16), A(s)=1 and the required generating function for this Poisson process is

$$G(s,t) = e^{\lambda(s-1)t}. (5.17)$$

To obtain the individual probabilities, we expand the generating function in powers of s. In this case we need the power series for the exponential function, which is

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Applying this result to G(s, t), we obtain

$$G(s,t) = e^{\lambda(s-1)t} = e^{-\lambda t}e^{\lambda st} = e^{-\lambda t}\sum_{n=0}^{\infty} \frac{(\lambda st)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(\lambda t)^n e^{\lambda t}}{n!} s^n.$$

Hence the probability $p_n(t)$ is confirmed again as

$$p_n(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}, \qquad (n = 0, 1, 2, \ldots).$$

The mean value at time t can also be expressed in terms of the generating function. Quite generally the mean is given by (see also Section 1.9)

$$\boldsymbol{\mu}(t) = \sum_{n=1}^{\infty} n p_n(t) = \left[\frac{\partial G(s,t)}{\partial s} \right]_{s=1} = G_s(1,t). \tag{5.18}$$

This is a useful general formula. For the Poisson process above

$$\mu(t) = \left[\frac{\partial}{\partial s} e^{\lambda(s-1)t}\right]_{s=1} = \lambda t e^{\lambda(s-1)t} \bigg|_{s=1} = \lambda t,$$

which confirms (5.4) again.

5.6 Variance in terms of the probability generating function

In a similar manner the variance of a process can be represented by a formula in terms of G(s,t): this is a simple extension of the result in Section 1.9 to G(s,t). From Section 1.6, the variance of a random variable X is defined as

$$\sigma^{2} = \mathbf{V}(X) = \mathbf{E}(X^{2}) - [\mathbf{E}(X)]^{2} = \sum_{n=1}^{\infty} n^{2} p_{n}(t) - \boldsymbol{\mu}(t)^{2},$$
 (5.19)

if the probability distribution is $\{p_n(t)\}$, $(n=0,1,2,\ldots)$. As we saw in the previous section

$$\boldsymbol{\mu}(t) = G_s(1, t).$$

Differentiating G(s,t) twice with respect to s, we have

$$\frac{\partial^2}{\partial s^2} G(s,t) = G_{ss}(s,t) = \frac{\partial^2}{\partial s^2} \sum_{n=0}^{\infty} p_n(t) s^n = \sum_{n=2}^{\infty} n(n-1) p_n(t) s^{n-2}$$
$$= \sum_{n=2}^{\infty} p_n(t) s^{n-2} - \sum_{n=2}^{\infty} n p_n(t) s^{n-2}.$$

Now put s = 1 in this derivative:

$$G_{ss}(1,t) = \sum_{n=2}^{\infty} n^2 p_n(t) - G_s(1,t) + p_1(t) = \sum_{n=1}^{\infty} n^2 p_n(t) - G_s(1,t). \quad (5.20)$$

From Eqns (5.19) and (5.20) we obtain the general formula

$$\sigma^2 = \mathbf{V}(X) = G_{ss}(1,t) + G_s(1,t) - G_s(1,t)^2. \tag{5.21}$$

Example 5.2. Find the variance of the Poisson process with parameter λ .

The probability generating function of the Poisson process is $G(s,t)=e^{\lambda(s-1)t}$. From the previous section

$$\mu(t) = G_s(1,t) = \lambda t.$$

ARRIVAL TIMES 101

Also

$$\frac{\partial^2}{\partial s^2}G(s,t) = \lambda^2 t^2 e^{\lambda(s-1)t}.$$

Hence from Eqn (5.21), the variance is given by

$$\mathbf{V}(X) = \lambda^2 t^2 + \lambda t - \lambda^2 t^2 = \lambda t,$$

which is the same as the mean for the Poisson process. This confirms the result obtained directly in Example 5.1.

5.7 Arrival times

For the Geiger counter the **arrival time** T_n for reading n is defined as the earliest time at which the random variable $N_t = n$. We can set $T_0 = 0$. Figure 5.2 shows how the times might occur in a Poisson process. The **inter-arrival time** $Q_n = T_n - T_n$

Figure 5.2 The Poisson process and some typical arrival times T_0, T_1, T_2, \ldots

 T_{n-1} is the time between successive hits. We have assumed that the particles hit the Geiger counter randomly and independently. Hence we might reasonably expect that the random variable giving the arrival time of the first particle will have the same distribution as the inter-arrival times between any two successive readings. It is as if the counter has reset itself to zero and is awaiting the arrival of the next particle, that is, it has no memory property (see Problem 5.2). At time t the probability that no particle has been detected by the Geiger counter is $p_0(t) = e^{-\lambda t}$. The distribution function of the arrival times of the *next* reading is therefore given by

$$F(x) = 1 - p_0(x) = 1 - e^{-\lambda x}, \quad (x \ge 0)$$

which leads to the exponential probability density function

$$f(x) = \frac{dF(x)}{dx} = \lambda e^{-\lambda x}, \quad (x \ge 0.$$

The mean or expected value of the inter-arrival times is given by

$$\boldsymbol{\mu} = \int_0^\infty \lambda x e^{-\lambda x} \mathrm{d}x \tag{5.22}$$

$$= \left[-xe^{-\lambda x}\right]_0^\infty + \int_0^\infty e^{-\lambda x} dx, \quad \text{(integrating by parts)} \quad (5.23)$$

$$= 0 + \left[-\frac{e^{-\lambda x}}{\lambda} \right]_0^\infty = \frac{1}{\lambda}. \tag{5.24}$$

Hence the mean of the inter-arrival times or the times between successive readings for the Geiger counter is the reciprocal of the rate λ . The variance is given by

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \boldsymbol{\mu})^{2} f(x) ds = \int_{0}^{\infty} \left(x - \frac{1}{\lambda} \right)^{2} \lambda e^{-\lambda x} dx$$
$$= \frac{\lambda^{4} - 4\lambda^{3} + 8}{4\lambda^{3}}.$$

Example 5.3 Incoming telephone calls to an operator are assumed to be a Poisson process with parameter λ . Find the density function of the length of time for n calls to be received, and find the mean time and variance of the random variable of the length of time for n calls.

We are now interested in the time T_n , which is the earliest time at which the random variable N(t)=n occurs, and its distribution. The probability distribution of the random variable T_n is given by

$$F(t) = \mathbf{P}\{T_n \le t\}$$

$$= \mathbf{P}\{n \text{ or more calls have arrived in the time interval } (0,t)\}$$

$$= p_n(t) + p_{n+1}(t) + \cdots$$

$$= \sum_{n=1}^{\infty} p_r(t) = \sum_{n=1}^{\infty} \frac{(\lambda t)^n e^{-\lambda t}}{r!}$$

using (5.1). The corresponding density function is

$$f(t) = \frac{dF(t)}{dt} = \sum^{\infty} \left[\frac{\lambda(\lambda t)^{r-1} e^{-\lambda t}}{(r-1)!} - \frac{\lambda(\lambda t)^r e^{-\lambda t}}{r!} \right] = \frac{\lambda(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t},$$

which is the density function of a gamma distribution with parameters n and λ . The mean of this density function is

$$\boldsymbol{\mu} = \mathbf{E}(T_n) = \int_0^\infty t f(t) dt = \int_0^\infty \frac{(\lambda t)^n e^{-\lambda t}}{(n-1)!} dt = \frac{1}{\lambda (n-1)!} \int_0^\infty u^n e^{-u} du = \frac{n}{\lambda}.$$

(see Section 1.8).

The variance of this gamma distribution is given by (see Section 1.8, again)

$$\mathbf{V}(T_n) = \mathbf{E}(T_n^2) - [\mathbf{E}(T_n)]^2 = \int_0^\infty \frac{t^2 \lambda (\lambda t)^{n-1}}{(n-1)!} e^{\lambda t} dt - \mu^2$$
$$= \frac{1}{\lambda (n-1)!} \int_0^\infty (\lambda t)^{n+1} e^{-\lambda t} dt - \frac{n^2}{\lambda^2}$$

$$\begin{split} &= \quad \frac{1}{\lambda^2(n-1)!} \int_0^\infty u^{n+1} e^{-u} du - \frac{n^2}{\lambda^2} \\ &= \quad \frac{(n+1)!}{\lambda^2(n-1)!} - \frac{n^2}{\lambda^2} = \frac{n(n+1)}{\lambda^2} - \frac{n^2}{\lambda^2} = \frac{n}{\lambda^2}. \end{split}$$

Example 5.4 A fire and emergency rescue service receives calls for assistance at a rate of 10 per day. Teams man the service in 12 hour shifts. Assume that requests for help form a Poisson process.

- (i) From the beginning of a shift how long would the team expect to wait until their first call?
- (ii) What is the probability that a team would receive 6 requests for help in a shift?
- (iii) What is the probability that a team has no requests for assistance in a shift?
- (iv) Of calls for assistance one in five is a false alarm. What is the probability that a team has 6 requests for help in a shift but no false alarms?

Let time be measured in hours. Then 10 calls per day is equivalent to 10/24 per hour. Hence the Poisson rate is $\lambda=0.4167$. In this problem $p_n(t)=(\lambda t)^n e^{-\lambda t}/n!$ is the probability that there are n calls in time t, where t is measured in hours.

- (i) From Eqn (5.19) the team would expect to wait for $1/\lambda=2.4$ hours until the first emergency.
- (ii) Using Eqn (5.12) the required probability is

$$\mathbf{P}[N(12) = 6] = p_6(12) = \frac{1}{6!} \left[\frac{10}{24} . 12 \right]^6 e^{-\frac{10}{24} . 12} = 0.146.$$

(iii) The probability of no request will be

$$\mathbf{P}[N(12) = 0] = p_0(12) = e^{-\frac{10}{24} \cdot 12} = e^{-5} = 0.00674.$$

(iv) The genuine calls will be Poisson with rate $\lambda'=8/24$, say. If N'(t) is the random variable of the genuine calls with distribution $p'_n(t)$, then there will be six genuine calls in a shift with probability

$$\mathbf{P}\{X'_{12} = 6\} = p'_6(12) = \frac{4^6}{6!}e^{-4} = 0.104.$$

5.8 Summary of the Poisson process

We have introduced the Poisson process in an informal way mainly through the illustrative model application of the Geiger counter. We can formally summarize what is meant by a Poisson process as follows.

Consider the random process with the random variable N(t), $(t \ge 0)$. Then N(t) is a random variable of a Poisson process if

- (i) N(t) can take the values $\{0, 1, 2, ...\}$;
- (ii) N(0) = 0;

- (iii) $N(t_1) \leq N(t_2)$ if $t_2 \geq t_1$;
- (iv) for any sequence $0 < t_1 < t_2 \cdots < t_n$, the random variables $N(t_i) N(t_{i-1})$ are mutually independent;
- (v) $\mathbf{P}\{X_{t+\delta t} = n + 1 | X_t = n\} = \lambda \delta t + o(\delta t),$ $\mathbf{P}\{X_{t+\delta t} \ge n + 2 | X_t = n\} = o(\delta t).$
- (vi) the probability generating function is

$$G(s,t) = e^{\lambda(s-1)t},$$

subject to $p_0(0) = 1$.

• (vii) the inter-arrival times are exponentially distributed.

In (v) the first conditional probability specifies that the probability of an event in the time interval (t,t+h) behaves linearly in h for h small, whilst the second conditional probability states that the likelihood of two or more events taking place in this time interval is negligible.

5.9 Problems

- 5.1. The number of cars which pass a roadside speed camera within a specified hour is assumed to be a Poisson process with parameter $\lambda=92$ per hour. It is also found that 1% of cars exceed the designated speed limit. What are the probabilities that (a) at least one car exceeds the speed limit, (b) at least two cars exceed the speed limit in the hour?
- 5.2. If the between-event time in a Poisson process has an expected distribution with parameter λ and with density $\lambda e^{-\lambda t}$, then the probability that the time for the next event to occur is at least t is

$$\mathbf{P}\{Q_t > t\} = e^{-\lambda t}.$$

Show that, if $t_1, t_2 > 0$, then

$$\mathbf{P}\{Q_t > t_1 + t_2 | Q_t > t_1\} = \mathbf{P}\{Q_t > t_2\}.$$

What does this result imply about the Poisson process and its memory of past events?

- 5.3. The number of cars which pass a roadside speed camera is assumed to behave as a Poisson process with intensity λ . It is found that the probability that a car exceeds the designated speed limit is σ .
 - (a) Show that the number of cars which break the speed limit also forms a Poisson process.
- (b) If n cars pass the camers in time t, find the probability function for the cars which exceed the speed limit.
- 5.4. The variance of a random variable X_t is given by

$$\mathbf{V}(X_t) = \mathbf{E}(X_t^2) - \mathbf{E}(X_t)^2.$$

In terms of the generating function G(s, t), show that

$$\mathbf{V}(X_t) = \left[\frac{\partial}{\partial s} \left(s \frac{\partial G(s, t)}{\partial s} \right) - \left(\frac{\partial G(s, t)}{\partial s} \right)^2 \right]_{s=1}$$

PROBLEMS 105

(an alternative formula to Eqn (5.20)). Obtain the variance for the Poisson process using its generating function

$$G(s,t) = e^{\lambda(s-1)t}$$

given by Eqn (5.17), and check your answer with that given in Problem 5.3.

5.5. A telephone answering service receives calls whose frequency varies with time but independently of other calls perhaps with a daily pattern—more during the day than the night. The rate $\lambda(t) \geq 0$ becomes a function of the time t. The probability that a call arrives in the small time interval $(t, t + \delta t)$ when n calls have been received at time t satisfies

$$p_n(t+\delta t) = p_{n-1}(t)(\lambda(t)\delta t + o(\delta t)) + p_n(t)(1-\lambda(t)\delta t + o(\delta t)), \qquad (n > 1),$$

with

$$p_0(t + \delta t) = (1 - \lambda(t)\delta t + o(\delta t))p_0(t).$$

It is assumed that the probability of two or more calls arriving in the interval $(t,t+\delta t)$ is negligible. Find the set of differential-difference equations for $p_n(t)$. Obtain the probability generating function G(s,t) for the process and confirm that it is a stochastic process with parameter $\int_0^t \lambda(x) dx$. Find $p_n(t)$ by expanding G(s,t) in powers of s. What is the mean number of calls received at time t?

- 5.6. For the telephone answering service in Problem 5.5, suppose that the rate is periodic given by $\lambda(t)=a+b\cos(\omega t)$ where a>0 and |b|<a. Using the probability generating function from Problem 5.5, find the probability that n calls have been received at time t. Find also the mean number of calls received at time t. Sketch graphs of $p_0(t)$, $p_1(t)$, and $p_2(t)$ when a=0.5, b=0.2, and $\omega=1$.
- 5.7. A Geiger counter is pre-set so that its initial reading is n_0 at time t = 0. What are the initial conditions on $p_n(t)$, the probability that the reading is n at time t, and its generating function G(s,t)? Find $p_n(t)$, and the mean reading of the counter at time t.
- 5.8. A Poisson process with probabilities

$$p_n(t) = \mathbf{P}[N(t) = n] = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

has a random variable N(t). If $\lambda=0.5$, calculate the following probabilities associated with the process:

- (a) P[N(3) = 6];
- (b) P[N(2.6) = 3];
- (c) P[N(3.7) = 4|N(2.1) = 2];
- (d) P[N(7) N(3) = 3].
- 5.9. A telephone banking service receives an average of 1,000 calls per hour. On average a customer transaction takes one minute. If the calls arrive as a Poisson process, how many operators should the bank employ to avoid an expected accumulation of expected incoming calls?
- 5.10. A Geiger counter automatically switches off when the nth particle has been recorded, where n is fixed. The arrival of recorded particles is assumed to be a Poisson process with parameter λt . What is the expected value of the switch-off times?

5.11. Particles are emitted from a radioactive source, and, N(t), the random variable of the number of particles emitted up to time t from t=0, is a Poisson process with intensity λ . The probability that any particle hits a certain target is p, independently of any other particle. If M_t is the random variable of the number of particles that hit the target up to time t, show, using the law of total probability, that M_t forms a Poisson process with intensity λp .

CHAPTER 6

Birth and Death Processes

6.1 Introduction

We shall now continue our investigation of further random processes in continuous time. In the Poisson process in Chapter 5, the probability of a further event was independent of the current number of events or readings in the Geiger counter analogy: this is a specific assumption in the definition of the Poisson process (Section 4.7). On the other hand in birth and death processes, the probability of a birth or death will depend on the population size at time t. The more individuals in the population, the greater the possibility of a death for example. Birth and death processes and Poisson processes form part of a wider class of random processes which are often referred to as **Markov processes**. Additionally they include queueing processes, epidemics, predator-prey competition, and others. Markov processes are characterized by the condition that future development of these processes depends only on their current states and not their history up to that time. Generally Markov processes are easier to model and analyze, and they do include many interesting applications. Non-Markov processes in which the future state of a process depends on its whole history are generally harder to analyze mathematically.

We have adopted a gradual approach to the full problem. The birth and death processes are looked at separately, and then combined into the full birth and death process. Generally the partition theorem approach is used to derive the equations for $p_n(t)$, the probability that the population size is n at time t, and the probability generating function approach is the preferred method of solution.

6.2 The birth process

In this process everyone lives forever: there are no deaths. This process could model a bacterium in which each cell randomly and independently divides into two cells at some future time, and same happens for each divided cell. The births could start with n_0 cells at time t=0. We shall assume in this first model that the probability that any individual cell divides in the time interval $(t,t+\delta t)$ is proportional to δt for small δt . If λ is the birth-rate associated with this process, then the probability that the cell divides is $\lambda \delta t$ in the interval, and this is mutually exclusive from any other event. The probability that n cells divide is simply $\lambda n \delta t$. To avoid complications, we assume that the probability that two or more births take place in the time interval

 δt is $o(\delta t)$ (that is, it can be ignored: see Section 5.3) with the consequence that the probability that no cell divides is $1 - \lambda n \delta t - o(\delta t)$.

There are many assumptions which are excluded in this model, including multiple births (twins, triplets, etc.) which may be significant in any real situation. The probability that a cell divides may not be homogeneous in time—it could decline with time, for example; the probability could also depend both on the state of the host and the number of cells in which case the parameter λ could be a function of the population size n. However, the *simple* birth process described above is an interesting starting point for studying a stochastic model of growth. It is also known as the **Yule process** named after one of its originators.

This birth process is an example of a continuous-time Markov chain (see Chapter 4) with an unbounded set of states E_{n_0} , E_{n_0+1} , E_{n_0+2} , ..., where E_n is the state in which the population size is n. In this chain, however, transitions can only take place between n and n+1 since there are no deaths. The probability that a transition occurs from E_n to E_{n+1} in time δt is approximately $\lambda n \delta t$ and that no transition occurs is approximately $1 - \lambda n \delta t$. In a continuous-time Markov chain, the chain may spend varying periods of time in any state as the population grows.

If N(t) is the random variable associated with the process then we write

$$\mathbf{P}\{N(t) = n\} = p_n(t),$$

where $p_n(t)$ is the probability that the population size is n at time t. If the initial population size is $n_0 \ge 1$ at time t = 0, then

$$p_{n_0}(0) = 1$$
, and $p_n(0) = 0$ for $n > n_0$. (6.1)

According to the rules outlined above, a population of size n at time $t+\delta t$ can arise either from a population of size n-1 at time t with a birth occurring with probability $\lambda(n-1)\delta t + o(\delta t)$ or through no event, which can occur with probability $1-\lambda n\delta t + o(\delta t)$, so that for $n \geq n_0+1$,

$$p_n(t+\delta t) = p_{n-1}(t)[\lambda(n-1)\delta t + o(\delta t)] + p_n(t)[1 - \lambda n\delta t + o(\delta t)], \ (n \ge n_0 + 1)$$

(for explanations of the notations $o(\delta t)$ and o(1), see the Appendix). This equation can be re-arranged into

$$\frac{p_n(t+\delta t) - p_n(t)}{\delta t} = \lambda(n-1)p_{n-1}(t) - \lambda n p_n(t) + o(1).$$

For the special case $n = n_0$, since no birth is possible at $n = n_0 - 1$,

$$p_{n_0}(t + \delta t) = p_{n_0}(t)[1 - \lambda n_0 \delta t + o(\delta t)],$$

which is equivalent to

$$\frac{p_{n_0}(t+\delta t) - p_{n_0}(t)}{\delta t} = -\lambda n_0 p_{n_0}(t) + o(1).$$

Let $\delta t \to 0$ with the result that

$$\frac{dp_{n_0}(t)}{dt} = -\lambda n p_{n_0}(t),
\frac{dp_n(t)}{dt} = \lambda (n-1) p_{n-1}(t) - \lambda n p_n(t), \quad (n \ge n_0 + 1)$$
(6.2)

This is the differential-difference equation for the simple birth process. Since this is a *birth* process it follows that $p_n(t) = 0$ for $n < n_0$.

The system of Eqn (6.2) can be solved successively starting with $n = n_0$. The first equation

$$\frac{dp_{n_0}(t)}{dt} = -\lambda n_0 p_{n_0}(t)$$

has the solution

$$p_{n_0}(t) = e^{-\lambda n_0 t},$$

since $p_{n_0}(0) = 1$. Put $n = n_0 + 1$ in Eqn (6.2). Then the next equation is

$$\frac{dp_{n_0+1}(t)}{dt} - \lambda(n_0+1)p_{n_0+1}(t) = \lambda n_0 p_{n_0}(t) = \lambda n_0 e^{-\lambda n_0 t},$$

which is a standard first-order equation of the integrating-factor type. This can be solved to give

$$p_{n_0+1}(t) = e^{-\lambda n_0 t} (1 - e^{-\lambda t}),$$

since $p_{n_0}(0)=0$. This process can be continued, but it is easier to use the probability generating function method which is also more general in its applicability. This generating function was first introduced in Section 1.9, and used also in Section 5.5 for the Poisson process.

Let

$$G(s,t) = \sum_{n=0}^{\infty} p_n(t)s^n,$$
(6.3)

but do not include the initial condition at this stage: in other words do not put $p_n(t) = 0$ for $n < n_0$. The set of equations in (6.1) must be expressed in terms of the probability generating function G(s,t) and its derivatives. Multiply both sides of (6.1) by s^n and sum from the lowest value of n to infinity as appropriate. Then

$$\sum_{n=0}^{\infty} \frac{dp_n(t)}{dt} s^n = \lambda \sum_{n=2}^{\infty} (n-1)p_{n-1}(t)s^n - \lambda \sum_{n=1}^{\infty} np_n(t)s^n.$$
 (6.4)

Now

$$\frac{\partial G(s,t)}{\partial t} = \sum_{n=0}^{\infty} \frac{dp_n(t)}{dt} s^n, \tag{6.5}$$

and

$$\frac{\partial G(s,t)}{\partial s} = \sum_{n=0}^{\infty} n p_n(t) s^{n-1}.$$
 (6.6)

Thus on the right-hand side of (6.4),

$$\sum_{n=2}^{\infty} (n-1)p_{n-1}(t)s^n = \sum_{m=1}^{\infty} mp_m(t)s^{m+1} = s^2 \frac{\partial G(s,t)}{\partial s},$$

and

$$\sum_{n=1}^{\infty} n p_n(t) s^n = s \frac{\partial G(s,t)}{\partial s}.$$

Equation (6.4) can be replaced therefore by the partial differential equation

$$\frac{\partial G(s,t)}{\partial t} = \lambda s^2 \frac{\partial G(s,t)}{\partial s} - \lambda s \frac{\partial G(s,t)}{\partial s} = \lambda s(s-1) \frac{\partial G(s,t)}{\partial s}.$$
 (6.7)

We now have to solve this generating function equation. The initial condition $p_{n_0}(0)=1$ translates into

$$G(s,0) = s^{n_0} (6.8)$$

for the generating function.

6.3 Birth process: Generating function equation

We shall look at the solution of Eqns (6.7) and (6.8) in some detail since the method of solution is used in other applications. A change of variable is applied to Eqn (6.7) to remove the term $\lambda s(s-1)$. We achieve this by putting

$$\frac{ds}{dz} = \lambda s(s-1),\tag{6.9}$$

and we shall assume that 0 < s < 1 (for convergence reasons we are interested in the series for G(s,t) for small s). This is a *first-order separable equation* which can be separated and integrated as follows:

$$\int \frac{ds}{s(1-s)} = -\lambda dz = -\lambda z$$

(the value of any constant of integration is immaterial so we set it to a convenient value, in this case, to zero). Partial fractions are required on the left-hand side. Thus

$$\int \left[\frac{1}{s} + \frac{1}{1-s} \right] ds = -\lambda z,$$

or

$$\ln\left[\frac{s}{1-s}\right] = -\lambda z.$$

The solution of this equation for s gives

$$\frac{s}{1-s} = e^{-\lambda z} \qquad \text{or} \qquad s = \frac{1}{1+e^{\lambda z}}.$$
 (6.10).

Let

$$Q(z,t) = G(s,t) = G(1/(1+e^{\lambda z}),t).$$

We can check that

$$\frac{\partial Q(z,t)}{\partial z} = \frac{\partial G(1/(1+e^{\lambda z}),t)}{\partial z} = \frac{\partial G(s,t)}{\partial s} \cdot \frac{ds}{dz} = \lambda s(s-1) \frac{\partial G(s,t)}{\partial s},$$

using the chain rule in differentiation. Thus Eqn (6.7) becomes

$$\frac{\partial Q(z,t)}{\partial t} = \frac{\partial Q(z,t)}{\partial z}.$$

The general solution of this equation for Q(z,t) is any differentiable function, w, say, of z + t, that is, Q(z,t) = w(z + t). This can be verified since

$$\frac{\partial}{\partial z}Q(z,t) = \frac{\partial}{\partial z}w(z+t) = w'(z+t).\frac{\partial(z+t)}{\partial z} = w'(z+t),$$
$$\frac{\partial}{\partial t}Q(z,t) = \frac{\partial}{\partial t}w(z+t) = w'(z+t).\frac{\partial(z+t)}{\partial t} = w'(z+t),$$

where w'(z+t) means dw(z+t)/d(z+t), in other words the derivative of w with respect to its argument. Note that if w is a function of z+t, then

$$w'(z+t) = \frac{\partial w(z+t)}{\partial z} = \frac{\partial w(z+t)}{\partial t}.$$

The function w is determined by the initial conditions. Thus, from Eqns (6.8) and (6.10),

$$G(s,0) = s^{n_0} = \frac{1}{(1 + e^{\lambda z})^{n_0}} = w(z) = Q(z,0).$$
 (6.11)

The function is defined in the middle of Eqn (6.11). Thus by changing the argument in w from z to z+t, we obtain

$$G(s,t) = Q(z,t) = w(z+t) = \frac{1}{[1+e^{\lambda(z+t)}]^{n_0}}$$

$$= \frac{1}{[1+\frac{(1-s)}{e^{\lambda t}}]^{n_0}} = \frac{s^{n_0}e^{-\lambda n_0 t}}{[1-(1-e^{-\lambda t})s]^{n_0}},$$
(6.12)

using the change of variable Eqn (6.10) again. The probability generating function for the simple birth process is given by Eqn (6.12). The individual probabilities are the coefficients of s^n in the power series expansion of Eqn (6.12), which can be obtained by applying the binomial theorem to the denominator to derive a power series in s. Thus

$$G(s,t) = \frac{s^{n_0}e^{-\lambda n_0 t}}{[1 - (1 - e^{-\lambda t})s]^{n_0}}$$

$$= s^{n_0}e^{-\lambda n_0 t} \left[1 + \frac{n_0}{1!}(1 - e^{-\lambda t})s + \frac{n_0(n_0 + 1)}{2!}(1 - e^{-\lambda t})^2 s^2 + \cdots \right]$$

$$= s^{n_0}e^{-\lambda n_0 t} \sum_{m=0}^{\infty} {m + n_0 - 1 \choose n_0 - 1} (1 - e^{-\lambda t})^m s^m,$$

$$= e^{-\lambda n_0 t} \sum_{n=n_0}^{\infty} {n - 1 \choose n_0 - 1} (1 - e^{-\lambda t})^{n-n_0} s^n,$$
(6.13)

putting $m = n - n_0$, where

$$\binom{r}{s} = \frac{r!}{s!(r-s)!}$$

is the **binomial coefficient**. The binomial coefficient with s=0 is

$$\binom{r}{0} = \frac{r!}{0!r!} = \frac{1}{0!} = 1,$$

for all $r \ge 0$, since 0! is defined to be 1. Hence if $n_0 = 1$, then

$$\binom{n-1}{0} = 1,$$

for all $n \ge 1$. Finally from (6.13) the coefficients of the powers of s imply that, since the leading power is s^{n_0} ,

$$p_n(t) = 0, (n < n_0),$$

$$p_n(t) = \binom{n-1}{n_0 - 1} e^{-\lambda n_0 t} (1 - e^{-\lambda t})^{n - n_0}, (n \ge n_0),$$

which is a Pascal distribution with parameters $(n_0, e^{-\lambda t})$ (see Section 1.7). Some graphs of the first four probabilities are shown in Fig. 6.1 for the birth process starting with just one individual $n_0=1$.

Figure 6.1 The probabilities $p_n(t)$ shown for an initial population $n_0 = 1$ and n = 1, 2, 3, 4: a dimensionless time scale $\tau = \lambda t$ has been used.

The mean population size at time t is given by (Eqns (5.18) and (6.12))

$$\mu(t) = G_s(1,t) = \frac{\partial}{\partial s} \left[\frac{s^{n_0} e^{-\lambda n_0 t}}{[1 - (1 - e^{-\lambda t})s]^{n_0}} \right]_{s=1}$$

$$= \left[\frac{n_0 s^{n_0 - 1} e^{-\lambda n_0 t}}{[1 - (1 - e^{-\lambda t})s]^{n_0}} + \frac{n_0 s^{n_0} e^{-\lambda n_0 t} (1 - e^{-\lambda t})}{[1 - (1 - e^{-\lambda t})s]^{n_0 + 1}} \right]_{s=1}$$

$$= n_0 (1 - e^{-\lambda t}) e^{\lambda t} + n_0 = n_0 e^{\lambda t},$$

or it can be deduced directly from the Pascal mean. The expected population size grows exponentially with time.

6.4 The death process

In this case there are no births and the population numbers decline through deaths. Again we assume that the probability that any individual dies in a short time interval δt is $\mu \delta t$ where μ is the death rate. The probability that a death occurs in a population

of size n is $\mu n \delta t$ and as before the probability of multiple deaths is assumed to be negligible. By arguments similar to those for the birth process

$$p_0(t + \delta t) = [\mu \delta t + o(\delta t)]p_1(t),$$

 $p_n(t+\delta t) = [\mu(n+1)\delta t + o(\delta t)]p_{n+1}(t) + [1-\mu n\delta t - o(\delta t)]p_n(t), \ (1 \le n \le n_0 - 1).$ If the initial population size is n_0 , then $p_n(t) = 0$ for $n > n_0$ for all t, and since this

If the initial population size is n_0 , then $p_n(t) = 0$ for $n > n_0$ for all t, and since this is a death process

$$p_{n_0}(t + \delta t) = [1 - \mu n_0 \delta t + o(\delta t)] p_{n_0}(t)$$

Thus, after rearrangement, the three previous equations can be expressed in the forms

$$\frac{p_0(t+\delta t) - p_0(t)}{\delta t} = \mu p_1(t) + o(1),$$

$$\frac{p_n(t+\delta t) - p_n(t)}{\delta t} = \mu(n+1)p_{n+1}(t) - \mu n p_n(t) + o(1), \qquad (n \ge 1),$$

$$\frac{p_{n_0}(t+\delta t) - p_{n_0}(t)}{\delta t} = -\mu n_0 p_{n_0}(t) + o(1).$$

Now let $\delta t \to 0$ to obtain the differential-difference equations for the death process:

$$\frac{dp_0(t)}{dt} = \mu p_1(t),$$

$$\frac{dp_n(t)}{dt} = \mu(n+1)p_{n+1}(t) - \mu n p_n(t) \quad (1 \le n \le n_0 - 1)$$

$$\frac{dp_{n_0}(t)}{dt} = -\mu n_0 p_{n_0}(t)$$
(6.14)

If the initial population size is n_0 at time t=0, then $p_{n_0}(0)=1$. We expect the probability generating function to be a *finite series*. Multiply each equation in Eqn (6.14) by s^n as appropriate, and sum over $0 \le n \le n_0$:

$$\sum_{n=0}^{n_0} \frac{dp_n(t)}{dt} s^n = \mu \sum_{n=0}^{n_0-1} (n+1)p_{n+1}(t)s^n - \mu \sum_{n=1}^{n_0} np_n(t)s^n.$$
 (6.15)

Define the probability generating function G(s,t) as

$$G(s,t) = \sum_{n=0}^{n_0} p_n(t)s^n.$$

Then the left-hand side of Eqn (6.15) is $\partial G(s,t)/\partial t$, and the two series on the right-hand side can be represented by

$$\sum_{n=0}^{n_0-1} (n+1)p_{n+1}(t)s^n = \frac{\partial G(s,t)}{\partial s} \qquad \sum_{n=0}^{n_0} np_n(t)s^{n-1} = s\frac{\partial G(s,t)}{\partial s}.$$

Finally G(s,t) satisfies the partial differential equation

$$\frac{\partial G(s,t)}{\partial t} = \mu \frac{\partial G(s,t)}{\partial s} - \mu s \frac{\partial G(s,t)}{\partial s} = \mu (1-s) \frac{\partial G(s,t)}{\partial s}.$$
 (6.16)

The method of solution now tracks that given for the birth process in the previous

section. The difference between Eqns (6.7) and (6.16) lies solely in a different change of variable

$$\frac{ds}{dz} = \mu(1-s).$$

On this occasion

$$\int \frac{ds}{1-s} = \int \mu dz = \mu z.$$

Hence, for 0 < s < 1,

$$-\ln(1-s) = \mu z$$
, or $s = 1 - e^{-\mu z}$.

For the death process we let

$$Q(z,t) = G(s,t) = G(1 - e^{-\mu z}, t),$$

where Q(z,t) now satisfies

$$\frac{\partial Q(z,t)}{\partial t} = \frac{\partial Q(z,t)}{\partial z}$$

which is the same partial differential equation as for the birth process but with a *different* change of variable. As before the general solution is

$$G(s,t) = w(t+z).$$

If the initial population size is n_0 , then $G(s,0) = s^{n_0}$. Then

$$G(s,0) = s^{n_0} = (1 - e^{-\mu z})^{n_0} = w(z) = Q(z,0).$$

Hence

$$G(s,t) = Q(z,t) = w(z+t) = (1 - e^{-\mu(z+t)})^{n_0}$$

$$= [1 - e^{-\mu t}(1-s)]^{n_0}$$

$$= (1 - e^{-\mu t})^{n_0} \left[1 + \frac{se^{-\mu t}}{1 - e^{-\mu t}}\right]^{n_0}.$$
(6.17)

The individual probabilities can be found by expanding the right-hand side of this formula for G(s,t) using the binomial theorem (see Problem 6.3).

Example 6.1. Find the mean size $\mu(t)$ of the population in the death process at time t. Show that $\mu(t)$ satisfies the differential equation

$$\frac{d\boldsymbol{\mu}(t)}{dt} = -\mu \boldsymbol{\mu}(t),$$

where $p_{n_0}(0) = 1$. Interpret the result.

The mean is given by

$$\mu(t) = G_s(1,t) = \frac{\partial}{\partial s} \left[1 - e^{-\mu t} (1-s) \right]^{n_0} \bigg|_{s=1}$$

$$= n_0 e^{-\mu t} [1 - e^{-\mu t} (1-s)]^{n_0-1} \bigg|_{s=1}$$

$$= n_0 e^{-\mu t}.$$

Hence

$$\frac{d\boldsymbol{\mu}(t)}{dt} = -\mu n_0 e^{-\mu t} = -\mu \boldsymbol{\mu}(t)$$

with $\mu(0) = n_0$ as required.

Suppose that we consider a **deterministic model** of a population in which the population n(t) is a continuous function of time rather than a random variable with *discrete* values. This is a justifiable approximation at least for large populations. We could then model the population change by postulating that the rate of decrease of the population is proportional to the current population size n(t). Thus

$$\frac{dn(t)}{dt} \propto n(t)$$
 or $\frac{dn(t)}{dt} = -\mu n(t)$

where μ is the death-rate. This is the **Malthus model** for the death process. We can deduce from this that the mean of the stochastic process satisfies the differential equation of the simple deterministic model. This provides some justification for using deterministic models in large populations.

It is easy to calculate from the probability generating function the probability of **extinction** at time t. It is the probability that the population size is zero at time t, namely,

$$p_0(t) = G(0, t) = [1 - e^{-\mu t}]^{n_0}.$$

The probability of ultimate extinction is

$$\lim_{t \to \infty} p_0(t) = \lim_{t \to \infty} G(0, t) = \lim_{t \to \infty} [1 - e^{-\mu t}]^{n_0} = 1,$$

since $\lim_{t\to\infty} e^{-\mu t} = 0$. In other words the probability of ultimate extinction is certain, as we would expect in a death process.

6.5 The combined birth and death process

Both processes of Sections 6.2 and 6.4 are now combined into one with a birth-rate λ and a death-rate μ , although this is not achieved by simple addition of the equations. However, using similar arguments as to how a population of size n can arise at time $t+\delta t$, we obtain

$$p_0(t + \delta t) = [\mu \delta t + o(\delta t)]p_1(t) + [1 + o(\delta t)]p_0(t),$$

$$p_n(t + \delta t) = [\lambda(n-1)\delta t + o(\delta t)]p_{n-1}(t) + [1 - (\lambda n + \mu n)\delta t + o(\delta t)]p_n(t) + [\mu(n+1)\delta t + o(\delta t)]p_{n+1}(t), \quad (n \ge 1).$$

In the limit $\delta t \to 0$, $p_n(t)$ satisfies

$$\frac{dp_0(t)}{dt} = \mu p_1(t)$$

$$\frac{dp_n(t)}{dt} = \lambda(n-1)p_{n-1}(t) - (\lambda + \mu)np_n(t) + \mu(n+1)p_{n+1}(t), (n \ge 1)$$
(6.18)

Since births occur the probability generating function will be an infinite series defined by

$$G(s,t) = \sum_{n=0}^{\infty} p_n(t)s^n.$$

Multiplying the appropriate equations in Eqn (6.18) by s^n and summing over $n \ge 0$ we obtain (see Sections 6.2 and 6.4 for the sums of the series):

$$\frac{\partial G(s,t)}{\partial t} = \lambda s(s-1) \frac{\partial G(s,t)}{\partial s} + \mu (1-s) \frac{\partial G(s,t)}{\partial s}
= (\lambda s - \mu)(s-1) \frac{\partial G(s,t)}{\partial s}.$$
(6.19)

There are two cases to consider, namely $\lambda \neq \mu$ and $\lambda = \mu$.

(a)
$$\lambda \neq \mu$$

For the birth and death process, the required change of variable is given by the differential equation

$$\frac{ds}{dz} = (\lambda s - \mu)(s - 1).$$

This simple separable equation can be integrated to give

$$z = \int dz = \int \frac{ds}{(\lambda s - \mu)(s - 1)} = \frac{1}{\lambda} \int \frac{ds}{(\frac{\mu}{\lambda} - s)(1 - s)}$$

$$= \frac{1}{\lambda - \mu} \int \left[\frac{1}{\frac{\mu}{\lambda} - s} - \frac{1}{1 - s} \right] ds, \quad \text{(using partial fractions)}$$

$$= \frac{1}{\lambda - \mu} \ln \left[\frac{1 - s}{\frac{\mu}{\lambda} - s} \right], \quad (0 < s < \min(1, \frac{\mu}{\lambda})). \quad (6.20)$$

The inversion of this formula defines s as

$$s = \frac{\lambda - \mu e^{(\lambda - \mu)z}}{\lambda - \lambda e^{(\lambda - \mu)z}}.$$
(6.21)

After the change of variable, let Q(z,t) = G(s,t), so that Q(z,t) satisfies

$$\frac{\partial Q(z,t)}{\partial t} = \frac{Q(z,t)}{\partial t},$$

which has the general solution Q(z,t) = w(z+t).

If the initial population size is n_0 , then

$$G(s,0) = s^{n_0} = \left[\frac{\lambda - \mu e^{(\lambda - \mu)z}}{\lambda - \lambda e^{(\lambda - \mu)z}}\right]^{n_0} = w(z) = Q(z,0).$$

Hence

$$G(s,t) = Q(z,t) = w(z+t) = \left[\frac{\lambda - \mu e^{(\lambda-\mu)(z+t)}}{\lambda - \lambda e^{(\lambda-\mu)(z+t)}}\right]^{n_0}.$$
 (6.22)

From (6.20)

$$e^{(\lambda-\mu)z} = \frac{1-s}{\frac{\mu}{\lambda}-s} = \frac{\lambda(1-s)}{\mu-\lambda s}.$$

Finally, elimination of z in Eqn (6.22) leads to

$$G(s,t) = \left[\frac{\mu(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}}{\lambda(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}} \right]^{n_0}.$$
 (6.23)

The expansion of G(s,t) as a power series in s is the product of two binomial series, which can be found but is complicated.

The expected population size is, at time t, for $\lambda \neq \mu$,

$$\mu(t) = \sum_{n=1}^{\infty} n p_n(t) = G_s(1, t)$$

$$= \frac{n_0(-\mu + \lambda e^{-(\lambda - \mu)t})}{-(\mu - \lambda)e^{-(\lambda - \mu)t}} - \frac{n_0(-\lambda + \lambda e^{(\lambda - \mu)t})}{-(\mu - \lambda)e^{-(\lambda - \mu)t}}$$

$$= n_0 e^{(\lambda - \mu)t}.$$

(b) $\lambda = \mu$.

In this case Eqn (6.19) becomes

$$\frac{\partial G(s,t)}{\partial t} = \lambda (1-s)^2 \frac{\partial G(s,t)}{\partial s}.$$

Let

$$\frac{ds}{dz} = \lambda (1 - s)^2.$$

Then the change of variable is

$$z = \frac{1}{\lambda} \int \frac{ds}{(1-s)^2} = \frac{1}{\lambda(1-s)}$$
 or $s = \frac{\lambda z - 1}{\lambda z}$.

It follows that

$$w(z) = s^{n_0} = \left[\frac{\lambda z - 1}{\lambda z}\right]^{n_0}.$$

Finally the probability generating function for the special case in which the birth and death rates are the same is given by

$$G(s,t) = \left[\frac{\lambda(z+t) - 1}{\lambda(z+t)}\right]^{n_0} = \left[\frac{1 + (\lambda t - 1)(1-s)}{1 + \lambda t(1-s)}\right]^{n_0}.$$
 (6.24)

The expected value of the population size at time t in the case $\lambda = \mu$ is left as a problem at the end of the Chapter. The probability of extinction at time t for the case $\lambda = \mu$ is, from (6.24),

$$p_0(t) = G(0,t) = \left[\frac{1+(\lambda t-1)}{1+\lambda t}\right]^{n_0} = \left[\frac{\lambda t}{1+\lambda t}\right]^{n_0}.$$

As t becomes large this value approaches 1 since

$$\lim_{t \to \infty} p_0(t) = \lim_{t \to \infty} \left[\frac{1}{1 + \frac{1}{\lambda t}} \right]^{n_0} = 1.$$

We obtain the interesting conclusion that, if the birth and death rates are in balance then ultimate extinction is certain.

That the probability generating functions in Eqns (6.23) and (6.24) are powers of certain functions of s and t is not surprising if we recollect the definition of the generating function (see Section 1.9) as

$$G(s,t) = \mathbf{E}[s^{N(t)}],$$

where N(t) is a random variable of the number of individuals in the population at time t. Suppose that we identify the n_0 individuals of the initial population and let $N_i(t)$ represent the number of descendants of the i-th individual so that

$$N(t) = N_1(t) + N_2(t) + \dots + N_{n_0}(t).$$

Hence

$$G(s,t) = \mathbf{E}[s^{N(t)}] = \mathbf{E}[s^{N_1(t)+N_2(t)+\dots+N_{n_0}(t)}].$$

Since the $N_i(t)$, $(i = 1, 2, ..., n_0)$, are independent and identically distributed (iid), it follows that

$$G(s,t) = \mathbf{E}[s^{N_1(t)}]\mathbf{E}[s^{N_2(t)}]\dots\mathbf{E}[s^{N_{n_0}(t)}] = [\mathbf{E}[s^{N_1(t)}]]^{n_0},$$

where $N_1(t)$ has been chosen since the means are all the same values (see Section 1.9e). Hence G(s,t) must be the n_0 -th power of some function of s and t.

Example 6.2. In the birth and death process with $\lambda = \mu$, show that the mean time to extinction is infinite for any initial population size n_0 .

We require the probability distribution F(t) for the time T_{n_0} to extinction, that is,

$$F(t) = \mathbf{P}\{T_{n_0} \le t\}$$
$$= p_0(t) = \left[\frac{\lambda t}{1 + \lambda t}\right]^{n_0}$$

from (6.25). The density function f(t) of this distribution is

$$f(t) = \frac{dF(t)}{dt} = \frac{n_0 \lambda^{n_0} t^{n_0 - 1}}{(1 + \lambda t)^{n_0}} - \frac{n_0 (\lambda t)^{n_0} \lambda}{(1 + \lambda t)^{n_0 + 1}} = \frac{n_0 \lambda^{n_0} t^{n_0 - 1}}{(1 + \lambda t)^{n_0 + 1}}.$$

The expected value of the random variable T_{n_0} will be given by

$$\mathbf{E}(T_{n_0}) = \int_0^\infty t f(t) dt$$

only if the integral on the right converges. In this case

$$tf(t) = \frac{n_0 \lambda^{n_0} t^{n_0}}{(1 + \lambda t)^{n_0 + 1}}.$$

For large t, $1 + \lambda t \approx \lambda t$ and

$$tf(t) \approx \frac{n_0 \lambda^{n_0} t^{n_0}}{(\lambda t)^{n_0+1}} = \frac{n_0}{\lambda} \frac{1}{t}.$$

Although $tf(t) \to 0$ as $t \to \infty$, it is too slow for the integral to converge. For example, the integral

$$\int_{1}^{\tau} \frac{dt}{t} = \left[\ln t\right]_{1}^{\tau} = \ln \tau \to \infty$$

as $au o \infty$ has the same behavior for large t and this integral diverges. We conclude that $\mathbf{E}(T_{n_0}) = \infty$.

This is another interesting result to add to that of the probability of extinction which is certain. Notwithstanding that extinction is ultimately certain, we expect it to take an infinite time. A graph of $p_0(t)$ is shown in Figure 6.2.

Figure 6.2 The graph shows the behavior of the probability of extinction $p_0(t) = [\lambda t/(1 + \lambda t)]^{n_0}$ against λt for an initial population size of $n_0 = 1000$ in the case $\lambda = \mu$. The actual time scale will depend on the parameter λ .

6.6 General population processes

The previous models for birth and death processes assume that the rates of births and deaths are simply proportional to the population size. In more general population processes the rates can be more general functions of n which perhaps could represent more realistic models such as higher death rates for overcrowded larger populations.

Assume that the birth and death rates are λ_n and μ_n respectively. Using arguments which lead to Eqns (6.2) and (6.14) but with the new coefficients, the governing differential-difference equations are replaced by

$$\frac{dp_0(t)}{dt} = -\lambda_0 p_0(t) + \mu_1 p_1(t)$$

$$\frac{dp_n(t)}{dt} = \lambda_{n-1} p_{n-1}(t) - (\lambda_n + \mu_n) p_n(t) + \mu_{n+1} p_{n+1}(t), (n \ge 1)$$

$$, (6.25)$$

but note that λ_0 must be included since we cannot assume it is zero. The simple birth and death process is given by the particular case in which $\lambda_n=n\lambda$ and $\mu_n=n\mu$ are *linear* functions of n. The Poisson process of the previous Chapter corresponds to $\lambda_n=\lambda$ and $\mu_n=0$.

The following example develops a population model in which the birth rate is constant, perhaps sustained by immigration, and the death rate is simple and given by $\mu_n = n\mu$. In other words there are no indigenous births.

Example 6.3. In a population model, the immigration rate $\lambda_n = \lambda$ is a constant, and the

death rate is $\mu_n = n\mu$. Assuming that the initial population size is n_0 , find the probability generating function for this process, and find the mean population size at time t.

Insert λ_n and μ_n into (6.25) multiply by s^n and sum over $n=0,1,2,\ldots$ The result is

$$\sum_{n=0}^{\infty} \frac{dp_n(t)}{dt} s^n = \lambda \sum_{n=1}^{\infty} p_{n-1}(t) s^n - \lambda \sum_{n=0}^{\infty} p_n(t) s^n - \mu \sum_{n=1}^{\infty} n p_n(t) s^n + \mu \sum_{n=0}^{\infty} (n+1) p_{n+1}(t) s^n.$$
(6.26)

Using the series for G(s,t) and those given by (6.5) and (6.6) for its partial derivatives, Eqn (6.26) becomes

$$\frac{\partial G(s,t)}{\partial t} = \lambda s G(s,t) - \lambda G(s,t) - \mu s \frac{\partial G(s,t)}{\partial s} + \mu \frac{\partial G(s,t)}{\partial s}
= \lambda (s-1)G(s,t) + \mu (1-s) \frac{\partial G(s,t)}{\partial s}.$$
(6.27)

This is a partial differential equation of a type we have not encountered previously since it includes the term G(s,t) in addition to the partial derivatives. This term can be removed by introducing a new function S(s,t) through the transformation

$$G(s,t) = e^{\lambda s/\mu} S(s,t).$$

Then

$$\frac{\partial G(s,t)}{\partial t} = e^{\lambda s/\mu} \frac{\partial S(s,t)}{\partial t}, \qquad \frac{\partial G(s,t)}{\partial s} = e^{\lambda s/\mu} \frac{\partial S(s,t)}{\partial s} + \frac{\lambda}{\mu} e^{\lambda s/\mu} S(s,t).$$

Substitution of the partial derivatives into (6.27) leads to

$$\frac{\partial S(s,t)}{\partial t} = \mu(1-s)\frac{\partial S(s,t)}{\partial s}$$

for S(s,t). In fact S(s,t) now satisfies the same equation as that for the death process in Section 4.4. However, the initial condition is different since, for an initial population of n_0 ,

$$G(s,0) = s^{n_0}$$
, but $S(s,0) = e^{-\lambda s/\mu} s^{n_0}$.

The change of variable is

$$s = 1 - e^{-\mu z}.$$

Hence

$$S(s,0) = e^{-\lambda s/\mu} s^{n_0} = e^{-\lambda(1-e^{-\mu z})/\mu} (1 - e^{-\mu z})^{n_0} = w(z),$$

from which it follows that

$$\begin{split} G(s,t) &= e^{\lambda s/\mu} w(z+t) \\ &= e^{\lambda s/\mu} \exp[-\lambda (1-e^{-\mu(z+t)})/\mu] [1-e^{-\mu(z+t)}]^{n_0} \\ &= e^{\lambda s/\mu} \exp[-\lambda (1-(1-s)e^{-\mu t})/\mu] [1-(1-s)e^{-\mu t}]^{n_0}. \end{split}$$

Notice that unlike the probability generating function for the birth and death process in Section 6.5, this generating function is *not* an n_0 power of a function of s and t. The reason for this difference lies in the immigration, or, equivalently, the birth rate, which, for any individual depends on n, the number of individuals in the population at any time. This means that the random variables $N_i(t)$, $(i=1,2,\ldots n_0)$, are not independent which is a requirement of the result in Section 1.9(e).

To find the mean, take the logarithm of both sides of this equation:

$$\ln G(s,t) = \frac{\lambda s}{\mu} - \frac{\lambda}{\mu} [1 - (1-s)e^{-\mu t}] + n_0 \ln[1 - (1-s)e^{-\mu t}].$$

Differentiate with respect to s and put s = 1:

$$\frac{G_s(1,t)}{G(1,t)} = \frac{\lambda}{\mu} - \frac{\lambda}{\mu} e^{-\mu t} + n_0 e^{-\mu t}.$$

Now $G(1,t) = \sum_{n=0}^{\infty} p_n(t) = 1$, and the mean is therefore

$$\mu(t) = G_s(1,t) = \frac{\lambda}{\mu}(1 - e^{-\mu t}) + n_0 e^{-\mu t}.$$

As $t \to \infty$, the long-term mean approaches the ratio of the rates λ/μ .

The birth and death rates can be functions of time in addition to population size. This might reflect declining fertility or seasonal variations in births or deaths. The setting up of the equation for the probability generating function presents no particular problem although its solution inevitably becomes more complicated. The following example illustrates a birth process with a declining birth-rate.

Example 6.4. A colony of bacteria grows without deaths with a birth-rate which is time-dependent. The rate declines exponentially with time according to $\lambda(t) = \alpha e^{-\beta t}$, where α and β are constants. Find the mean population size at time t given that the initial size of the colony is n_0 .

For a time-varying birth-rate the construction of the equation for the probability generating function is still given by (6.7) but with λ as a function of time. Thus G(s,t) satisfies

$$\frac{\partial G(s,t)}{\partial t} = \lambda(t)s(s-1)\frac{\partial G(s,t)}{\partial s} = \alpha e^{-\beta t}s(s-1)\frac{\partial G(s,t)}{\partial s}$$

with $G(s,0) = s^{n_0}$. We now apply the *double* change of variable

$$\frac{ds}{dt} = \alpha s(s-1),$$
 $\frac{dt}{d\tau} = e^{\beta t}.$

As in Section 6.3,

$$s = \frac{1}{1 + e^{\alpha z}},$$

whilst

$$\tau = \frac{1}{\beta}(1 - e^{-\beta t})$$

so that $\tau = 0$ when t = 0. With these changes of variable

$$Q(z,\tau) = G(s,t) = G(1/(1+e^{\alpha z}), -\beta^{-1}\ln(1-\beta\tau)),$$

where $Q(z, \tau)$ satisfies

$$\frac{\partial Q(z,\tau)}{\partial \tau} = \frac{\partial Q(z,\tau)}{\partial z}.$$

As in Section 6.3

$$Q(z,\tau) = w(z+\tau)$$

for any differentiable function w. The initial condition determines w through

$$G(s,0) = s^{n_0} = \frac{1}{(1 + e^{\alpha z})^{n_0}} = w(z) = Q(z,0).$$

Hence

$$\begin{split} G(s,t) &= Q(z,\tau) = w(z+\tau) = [1+e^{\alpha(z+\tau)}]^{-n_0} \\ &= [1+\left(\frac{1-s}{s}\right)e^{\alpha(1-e^{-\beta t})/\beta}]^{-n_0} \\ &= s^{n_0}[1+(1-s)e^{\alpha(1-e^{-\beta t})/\beta}]^{-n_0}. \end{split}$$

The mean population size at time t is

$$\mu(t) = G_s(1,t) = \frac{\partial}{\partial s} \left[\frac{s^{n_0}}{[1 + (1-s)e^{\alpha(1-e^{-\beta t})/\beta}]^{n_0}} \right]_{s=1} = n_0 e^{\alpha(1-e^{-\beta t})/\beta}.$$

As $t \to \infty$, then the mean population approaches the limit $n_0 e^{\alpha/\beta}$.

6.7 Problems

6.1. A colony of cells grows from a single cell. The probability that a cell divides in a time interval δt is

$$\lambda \delta t + o(\delta t)$$
.

There are no deaths. Show that the probability generating function for this death process is

$$G(s,t) = \frac{se^{-\lambda t}}{1 - (1 - e^{-\lambda t})s}.$$

Find the probability that the original cell has not divided at time t, and the mean and variance of population size at time t (see Problem 5.4, for the variance formula using the probability generating function).

6.2. A simple birth process has a constant birth-rate λ . Show that its mean population size $\mu(t)$ satisfies the differential equation

$$\frac{d\boldsymbol{\mu}(t)}{dt} = \lambda \boldsymbol{\mu}(t).$$

How can this result be interpreted in terms of a deterministic model for a birth process?

6.3. The probability generating function for a simple death process with death-rate μ and initial population size n_0 is given by

$$G(s,t) = (1 - e^{-\mu t})^{n_0} \left[1 + \frac{se^{-\mu t}}{1 - e^{-\mu t}} \right]^{n_0}$$

(see Eqn (6.17)). Using the binomial theorem find the probability $p_n(t)$ for $n \le n_0$. If n_0 is an *even* number, find the probability that the population size has halved by time t. A large number of experiments were undertaken with live samples with a variety of initial population sizes drawn from a common source and the times of the halving of deaths were recorded for each sample. What would be the expected time for the population to halve?

6.4. A birth process has a probability generating function G(s,t) given by

$$G(s,t) = \frac{s}{e^{\lambda t} + s(1 - e^{-\lambda t})}.$$

PROBLEMS 123

- (a) What is the initial population size?
- (b) Find the probability that the population size is n at time t.
- (c) Find the mean and variance of the population size at time t.
- 6.5. A random process has the probability generating function

$$G(s,t) = \left(\frac{2+st}{2+t}\right)^r,$$

where r is a positive integer. What is the initial state of the process? Find the probability $p_n(t)$ associated with the generating function. What is $p_r(t)$? Show that the mean associated with G(s,t) is

$$\boldsymbol{\mu}(t) = \frac{rt}{2+t}.$$

6.6. In a simple birth and death process with unequal birth and death-rates λ and μ , the probability generating function is given by

$$G(s,t) = \left[\frac{\mu(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}}{\lambda(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}} \right]^{n_0},$$

for an initial population size n_0 (see Equation (6.23)).

- (a) Find the mean population size at time t.
- (b) Find the probability of extinction at time t.
- (c) Show that, if $\lambda < \mu$, then the probability of ultimate extinction is 1. What is it if $\lambda > \mu$?
- (d) Find the variance of the population size.
- 6.7. In a population model, the immigration rate $\lambda_n = \lambda$, a constant, and the death rate $\mu_n = n\mu$. For an initial population size n_0 , the probability generating function is (Example 6.3)

$$G(s,t) = e^{\lambda s/\mu} \exp[-\lambda (1 - (1-s)e^{-\mu t})/\mu] [1 - (1-s)e^{-\mu t}]^{n_0}.$$

Find the probability that extinction occurs at time t. What is the probability of ultimate extinction?

6.8. In a general birth and death process a population is maintained by immigration at a constant rate λ , and the death rate is $n\mu$. Using the differential-difference equations (6.26) directly, obtain the differential equation

$$\frac{d\boldsymbol{\mu}(t)}{dt} + \mu \boldsymbol{\mu}(t) = \lambda,$$

for the mean population size $\mu(t)$. Solve this equation assuming an initial population n_0 and compare the answer with that given in Example 6.3.

6.9. In a death process the probability of a death when the population size is $n \neq 0$ is a constant μ but obviously zero if the population size is zero. Verify that, if the initial population is n_0 , then $p_n(t)$, the probability that the population size is n at time t is given by

$$p_n(t) = \frac{(\mu t)^{n_0 - n}}{(n_0 - n)!} e^{-\mu t}, \qquad (1 \le n \le n_0),$$

$$p_0(t) = \frac{\mu^{n_0}}{(n_0 - 1)!} \int_0^t s^{n_0 - 1} e^{-\mu s} ds.$$

Show that the mean time to extinction is n_0/μ .

6.10. In a birth and death process the birth and death rates are given by

$$\lambda_n = n\lambda + \alpha, \qquad \mu_n = n\mu,$$

where α represents a constant immigration rate. Show that the probability generating function G(s,t) of the process satisfies

$$\frac{\partial G(s,t)}{\partial t} = (\lambda s - \mu)(s-1)\frac{\partial G(s,t)}{\partial s} + \alpha(s-1)G(s,t).$$

Show also that, if

$$G(s,t) = (\mu - \lambda s)^{-\alpha/\lambda} S(s,t),$$

then S(s,t) satisfies

$$\frac{\partial S(s,t)}{\partial t} = (\lambda s - \mu)(s-1)\frac{\partial S(s,t)}{\partial s}.$$

Let the initial population size be n_0 . Solve the partial differential equation for S(s,t) using the method of Section 6.5 and confirm that

$$G(s,t) = \frac{(\mu - \lambda)^{\alpha/\lambda}[(\mu - \lambda s) - \mu(1-s)e^{(\lambda-\mu)t}]^{n_0}}{[(\mu - \lambda s) - \lambda(1-s)e^{(\lambda-\mu)t}]^{n_0 + (\alpha/\lambda)}}.$$

(Remember the modified initial condition for S(s, t).)

Find $p_0(t)$, the probability that the population is zero at time t (since immigration takes place even when the population is zero there is no question of extinction in this process). Hence show that

$$\lim_{t \to \infty} p_0(t) = \left(\frac{\mu - \lambda}{\mu}\right)^{\alpha/\lambda}$$

if $\lambda < \mu$. What is the limit if $\lambda > \mu$?

The long term behavior of the process for $\lambda < \mu$ can be investigated by looking at the limit of the probability generating function as $t \to \infty$. Show that

$$\lim_{t \to \infty} G(s, t) = \left(\frac{\mu - \lambda}{\mu - \lambda s}\right)^{\alpha/\lambda}.$$

This is the probability generating function of a **stationary distribution** and it indicates that a balance has been achieved between the birth and immigration rates, and the death rate. What is the long term mean population?

If you want a further lengthy exercise investigate the probability generating function in the special case $\lambda = \mu$.

6.11. In a birth and death process with immigration, the birth and death rates are respectively

$$\lambda_n = n\lambda + \alpha, \qquad \mu_n = n\mu.$$

Show directly from the differential-difference equations for $p_n(t)$, that the mean population size $\mu(t)$ satisfies the differential equation

$$\frac{d\boldsymbol{\mu}(t)}{dt} = (\lambda - \mu)\boldsymbol{\mu}(t) + \alpha.$$

Deduce the result

$$\mu(t) \to \frac{\alpha}{\mu - \lambda}$$

as $t \to \infty$ if $\lambda < \mu$. Discuss the design of a deterministic immigration model based on this equation.

PROBLEMS 125

6.12. In a simple birth and death process with equal birth and death rates λ , the initial population size has a Poisson distribution with probabilities

$$p_n(0) = e^{-\alpha} \frac{\alpha^n}{n!}, \quad (n = 0, 1, 2, \ldots)$$

with parameter α . It could be thought of as a process in which the initial distribution has arisen as the result of some previous process. Find the probability generating function for this process, and confirm that the probability of extinction at time t is $\exp[-\alpha/(1+\lambda t)]$ and that the mean population size is α for all t.

6.13. A birth and death process takes place as follows. A single bacterium is allowed to grow and assumed to behave as a simple birth process with birth rate λ for a time t_1 without any deaths. No further growth then takes place. The colony of bacteria is then allowed to die with the assumption that it is a simple death process with death rate μ for a time t_2 . Show that the probability of extinction after the total time $t_1 + t_2$ is

$$\sum_{n=1}^{\infty} e^{\lambda t_1} (1 - e^{-\lambda t_1})^{n-1} (1 - e^{-\mu t_2})^n.$$

Using the formula for the sum of a geometric series, show that this probability can be simplified to

$$\frac{e^{\mu t_2} - 1}{e^{\lambda t_1} + e^{\mu t_2} - 1}.$$

6.14. As in the previous problem a single bacterium grows as a simple birth process with rate λ and no deaths for a time τ . The colony numbers then decline as a simple death process with rate μ . Show that the probability generating function for the death process is

$$\frac{(1-e^{-\mu t}(1-s))e^{-\lambda \tau}}{1-(1-e^{-\lambda \tau})(1-e^{-\mu t}(1-s))},$$

where t is measured from the time τ . Show that the mean population size during the death process is $e^{\lambda \tau - \mu t}$.

6.15. For a simple birth and death process the probability generating function (Eqn (6.23)) is given by

$$G(s,t) = \left[\frac{\mu(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}}{\lambda(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}} \right]^{n_0}$$

for an initial population of n_0 . What is the probability that the population size is (a) zero, (b) 1 at time t?

6.16. (An alternative method of solution for the probability generating function) The general solution of the first-order partial differential equation

$$A(x, y, z) \frac{\partial z}{\partial x} + B(x, y, z) \frac{\partial z}{\partial y} = C(x, y, z)$$

is f(u,v)=0, where f is an arbitrary function, and $u(x,y,z)=c_1$ and $v(x,y,z)=c_2$ are two independent solutions of

$$\frac{dx}{A(x,y,z)} = \frac{dy}{B(x,y,z)} = \frac{dz}{C(x,y,z)}.$$

This is known as Cauchy's method.

Apply the method to the partial differential equation for the probability generating function for the simple birth and death process, namely (equation (6.19))

$$\frac{\partial G(s,t)}{\partial t} = (\lambda s - \mu)(s-1)\frac{\partial G(s,t)}{\partial s},$$

by solving

$$\frac{ds}{(\lambda s - \mu)(1 - s)} = \frac{dt}{1} = \frac{dG}{0}.$$

Show that

$$u(s,t,G) = G = c_1,$$
 and $v(s,t,G) = e^{-(\lambda-\mu)t} \left(\frac{1-s}{\frac{\mu}{\lambda}-s}\right) = c_2.$

are two independent solutions. The general solution can be written in the form

$$G(s,t) = H\left[e^{-(\lambda-\mu)t}\left(\frac{1-s}{\frac{\mu}{\lambda}-s}\right)\right].$$

Here H is a function determined by the initial condition $G(s,0) = s^{n_0}$. Find H and recover formula (6.22) for the probability generating function.

6.17. Apply the Cauchy's method outlined in Problem 6.16 to the immigration model in Example 6.3. In this application the probability generating function satisfies

$$\frac{\partial G(s,t)}{\partial t} = \lambda(s-1)G(s,t) + \mu(1-s)\frac{\partial G(s,t)}{\partial s}.$$

Solve the equation assuming an initial population of n_0 .

6.18. In a population sustained by immigration at rate λ with a simple death process with rate μ (see Example 6.3), the probability $p_n(t)$ satisfies (equation (6.25))

$$\frac{\mathrm{d}p_0(t)}{\mathrm{d}t} = -\lambda p_0(t) + \mu p_1(t),$$

$$\frac{dp_n(t)}{dt} = \lambda p_{n-1}(t) - (\lambda + n\mu)p_n(t) + (n+1)\mu p_{n+1}(t).$$

Investigate the steady-state behaviour of the system by assuming that

$$p_n(t) \to p_n, \quad \frac{dp_n(t)}{dt} \to 0$$

for all n, as $t \to \infty$. Show that the resulting difference equations for what is known as the corresponding *stationary process*

$$-\lambda p_0 + \mu p_1 = 0,$$

$$\lambda p_{n-1} - (\lambda + n\mu)p_n + (n+1)\mu p_{n+1} = 0, \qquad (n = 1, 2, ...)$$

can be solved iteratively to give

$$p_1 = \frac{\lambda}{\mu} p_0, \quad p_2 = \frac{\lambda^2}{2!\mu^2} p_0, \quad \cdots \quad p_n = \frac{\lambda^n}{n!\mu^n} p_0, \quad \cdots.$$

Using the condition $\sum_{n=0}^{\infty} p_n = 1$, and assuming that $\lambda < \mu$, determine p_0 . Find the mean steady-state population size, and compare the result with that obtained in Example 6.3.

PROBLEMS 127

6.19. In a simple birth process the probability that the population is of size n at time t given that it was n_0 at time t = 0 is given by

$$p_n(t) = \binom{n-1}{n_0 - 1} e^{-\lambda n_0 t} (1 - e^{-\lambda t})^{n - n_0}, \qquad (n \ge n_0)$$

(see Section 6.3 and Figure 6.1). Show that the probability achieves its maximum value for given n and n_0 when $t = (1/\lambda) \ln(n/n_0)$. Find also the maximum value of $p_n(t)$ at this time.

6.20. In a birth and death process with equal birth and death parameters λ , the probability generating function is (see Eqn (6.24))

$$G(s,t) = \left[\frac{1 + (\lambda t - 1)(1 - s)}{1 + \lambda t(1 - s)} \right]^{n_0}.$$

Find the mean population size at time t. Show also that its variance is $2n_0\lambda t$.

6.21. In a death process the probability that a death occurs in time δt is the time-dependent parameter $\mu(t)n$ when the population size is n. The pgf G(s,t) satisfies

$$\frac{\partial G}{\partial t} = \mu(t)(1-s)\frac{\partial G}{\partial s}$$

as in Section 6.4. Show that

$$G(s,t) = [1 - e^{-\tau}(1-s)]^{n_0},$$

where

$$\tau = \int_0^t \mu(s)ds.$$

Find the mean population size at time t.

In a death process it is found that the expected value of the population size at time t is given by

$$\boldsymbol{\mu}(t) = \frac{n_0}{1 + \alpha t}, \qquad (t \ge 0),$$

where α is a positive constant. Estimate the corresponding death-rate $\mu(t)$.

6.22. A population process has a probability generating function G(s,t) which satisfies the equation

$$e^{-t}\frac{\partial G}{\partial t} = \lambda(s-1)^2 \frac{\partial G}{\partial s}.$$

If, at time t = 0, the population size is n_0 , show that

$$G(s,t) = \left[\frac{1 + (1-s)(\lambda e^t - \lambda - 1)}{1 + \lambda(1-s)(e^t - 1)} \right]^{n_0}.$$

Find the mean population size at time t, and the probability of ultimate extinction.

6.23. A population process has a probability generating function given by

$$G(s,t) = \frac{1 - \mu e^{-t}(1-s)}{1 + \mu e^{-t}(1-s)},$$

where μ is a parameter. Find the mean of the population size at time t, and its limit as $t \to \infty$. Expand G(s,t) in powers of s, and determine the probability that the population size is n at time t.

6.24. In a birth and death process with equal rates λ , the probability generating function is given by (see Eqn (6.24))

$$G(s,t) = \left[\frac{\lambda(z+t)-1}{\lambda(z+t)}\right]^{n_0} = \left[\frac{1+(\lambda t-1)(1-s)}{1+\lambda t(1-s)}\right]^{n_0},$$

where n_0 is the initial population size. Show that p_i , the probability that the population size is i at time t, is given by

$$p_{i}(t) = \sum_{m=0}^{i} \binom{n_{0}}{m} \binom{n_{0} + i - m - 1}{i - m} \alpha(t)^{m} \beta(t)^{n_{0} + i - m}$$

if $i \leq n_0$, and by

$$p_i(t) = \sum_{m=0}^{n_0} \binom{n_0}{m} \binom{n_0 + i - m - 1}{i - m} \alpha(t)^m \beta(t)^{n_0 + i - m}$$

if $i > n_0$, where

$$\alpha(t) = \frac{1 - \lambda t}{\lambda t}, \qquad \beta(t) = \frac{\lambda t}{1 + \lambda t}.$$

6.25. We can view the birth and death process by an alternative differencing method. Let $p_{ij}(t)$ be the conditional probability

$$p_{ij}(t) = \mathbf{P}(N(t) = j|N(0) = i),$$

where N(t) is the random variable representing the population size at time t. Assume that the process is in the (fixed) state N(t)=j at times t and $t+\delta t$ and decide how this can arise from an incremental change δt in the time. If the birth and death rates are λ_j and μ_j , explain why

$$p_{ij}(t+\delta t) = p_{ij}(t)(1-\lambda_i\delta t - \mu_i\delta t) + \lambda_i\delta t p_{i+1,j}(t) + \mu_i\delta t p_{i-1,j}(t)$$

for $i=1,2,3,\ldots,j=0,1,2,\ldots$ Take the limit as $\delta t\to 0$, and confirm that $p_{ij}(t)$ satisfies the differential equation

$$\frac{dp_{ij}(t)}{dt} = -(\lambda_i + \mu_i)p_{ij}(t) + \lambda p_{i+1,j}(t) + \mu_i p_{i-1,j}(t).$$

How should $p_{0,i}(t)$ be interpreted?

6.26. Consider a birth and death process in which the rates are $\lambda_i = \lambda i$ and $\mu_i = \mu i$, and the initial population size is $n_0 = 1$. If

$$p_{1,j} = \mathbf{P}(N(t) = j | N(0) = 1),$$

it was shown in Problem 6.25 that $p_{1,j}$ satisfies

$$\frac{dp_{1,j}(t)}{dt} = -(\lambda + \mu)p_{1,j}(t) + \lambda p_{2,j}(t) + \mu p_{0,j}(t), \quad (i = 1, 2, \ldots),$$

where

$$p_{0,j}(t) = \begin{cases} 0, & j > 0\\ 1, & j = 0. \end{cases}$$

If

$$G_i(s,t) = \sum_{j=0}^{\infty} p_{ij}(t)s^j,$$

PROBLEMS 129

show that

$$\frac{\partial G_1(s,t)}{\partial t} = -(\lambda + \mu)G_1(s,t) + \lambda G_2(s,t) + \mu.$$

Explain why $G_2(s,t) = [G_1(s,t)]^2$ (see Section 6.5). Hence solve what is effectively an ordinary differential equation for $G_1(s,t)$, and confirm that

$$G_1(s,t) = \frac{\mu(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}}{\lambda(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}},$$

as in eqn (6.23) with $n_0 = 1$.

6.27. In a birth and death process with parameters λ and μ , ($\mu > \lambda$), and initial population size n_0 , show that the mean of random variable of the time to extinction T_{n_0} is given by

$$\mathbf{E}(T_{n_0}) = n_0 \mu (\mu - \lambda)^2 \int_0^\infty \frac{t e^{-(\mu - \lambda)t} [\mu - \mu e^{-(\mu - \lambda)t}]^{n_0 - 1}}{[\mu - \lambda e^{-(\mu - \lambda)t}]^{n_0 + 1}} dt.$$

If $n_0=1$, using integration by parts, evaluate the integral over the interval $(0,\tau)$, and then let $\tau\to\infty$ to show that

$$\mathbf{E}(T_1) = -\frac{1}{\lambda} \ln \left(\frac{\mu - \lambda}{\mu} \right).$$

6.28. A death process (see Section 6.4) has a parameter μ and the initial population size is n_0 . Its probability generating function is

$$G(s,t) = [1 - e^{-\mu t}(1-s)]^{n_0}.$$

Show that the mean time to extinction is

$$\frac{n_0}{\mu} \sum_{k=0}^{n_0-1} \frac{(-1)^k}{(k+1)^2} \binom{n_0-1}{k}.$$

6.29. A colony of cells grows from a single cell without deaths. The probability that a single cell divides into two cells in a time interval δt is $\lambda \delta t + o(\delta t)$. As in Problem 6.1, the probability generating function for the process is

$$G(s,t) = \frac{se^{-\lambda t}}{1 - (1 - e^{-\lambda t})s}.$$

By considering the probability

$$F(t) = 1 - \sum_{k=n}^{n-1} p_k(t),$$

that is, the probability that the population is n or greater by time t, show that the expected time T_n for the population to first reach $n \geq 2$ is given by

$$\mathbf{E}(T_n) = \frac{1}{\lambda} \sum_{k=1}^{n-1} \frac{1}{k}.$$

6.30. In a birth and death process, the population size represented by the random variable N(t) grows as a simple birth process with parameter λ . No deaths occur until time T when the whole

population dies. The distribution of the random variable T is exponential with parameter μ . The process starts with one individual at time t = 0. What is the probability that the population exists at time t, namely that $\mathbf{P}[N(t) > 0]$?

What is the conditional probability $\mathbf{P}[N(t)=n|N(t)>0]$ for $n=1,2,\ldots$? Hence show that

$$\mathbf{P}[N(t) = n] = e^{(\lambda + \mu)t} (1 - e^{\lambda t})^{n-1}.$$

Construct the probability generating function of this distribution, and find the mean population size at time t.

6.31. In a birth and death process, the variable birth and death rates are, for t > 0, respectively given by

$$\lambda_n(t) = \lambda(t)n > 0, (n = 0, 1, 2, ...)$$
 $\mu_n(t) = \mu(t)n > 0, (n = 1, 2, ...).$

If $p_n(t)$ is the probability that the population size at time t is n, show that its probability generating function

$$G(s,t) = \sum_{n=0}^{\infty} p_n(t)s^n,$$

satisfies

$$\frac{\partial G}{\partial t} = (s-1)[\lambda(t)s - \mu(t)] \frac{\partial G}{\partial s}.$$

Suppose that $\mu(t)=\alpha\lambda(t)$ ($\alpha>0,\,\alpha\neq1$), and that the initial population size is n_0 . Show that

$$G(s,t) = \left[\frac{1-\alpha q(s,t)}{1-q(s,t)}\right]^{n_0} \quad \text{where} \ \ q(s,t) = \left(\frac{1-s}{\alpha-s}\right) \exp\left[(1-\alpha)\int_0^t \lambda(u)du\right].$$

Find the probability of extinction at time t.

6.32. A continuous time process has three states E_1 , E_2 , and E_3 . In time δt the probability of a change from E_1 to E_2 is $\lambda \delta t$, from E_2 to E_3 is also $\lambda \delta t$, and from E_2 to E_1 is $\mu \delta t$. E_3 can be viewed as an absorbing state. If $p_i(t)$ is the probability that the process is in state E_i (i=1,2,3) at time t, show that

$$p_1'(t) = -\lambda p_1(t) + \mu p_2(t), \quad p_2'(t) = \lambda p_1(t) - (\lambda + \mu) p_2(t), \quad p_3'(t) = \lambda p_2(t).$$

Find the probabilities $p_1(t)$, $p_2(t)$, $p_3(t)$, if the process starts in E_1 at t = 0.

The process survives as long as it is in states E_1 or E_2 . What is the *survival probability* of the process?

6.33. In a birth and death process, the birth and death rates are given respectively by $\lambda(t)n$ and $\mu(t)n$ in Eqn (6.25). Find the equation for the probability generating function G(s,t). If $\mu(t)$ is the mean population size at time t, show, by differentiating the equation for G(s,t) with respect to s, that

$$\boldsymbol{\mu}'(t) = [\lambda(t) - \mu(t)]\boldsymbol{\mu}(t)$$

(assume that $(s-1)\partial^2 G(s,t)/\partial s^2=0$ when s=1). Hence show that

$$\mu(t) = n_0 \exp \left[\int_0^t [\lambda(u) - \mu(u)] du \right],$$

where n_0 is the initial population size.

CHAPTER 7

Queues

7.1 Introduction

Queues appear in many aspects of life. Some are clearly visible as in the queues at supermarket check-out tills: others may be less obvious as in call-stacking at airline information telephone lines, or in hospital waiting lists. In the latter an individual waiting may have no idea how many persons are in front of him or her in the hospital appointments list. Generally we are interested in the long-term behavior of queues for future planning purposes—does a queue increase with time or does it have a steady state, and if it does have a steady state then, on average, how many individuals are there in the queue and what is the mean waiting time?

We can introduce some of the likely hypotheses behind queues by looking at a familiar example from banking. Consider a busy city center cash dispensing machine (often called an ATM) outside a bank. As an observer what do we see? Individuals or **customers** as they are known in queueing processes approach the dispenser or **server**. If there is no one using the machine, then the customer inserts a cash card obtains cash or transacts other business. There is a period of time when the customer is being served. On the other hand if there is already someone at the till then the assumption is that the customer and succeeding ones form a queue and wait their turn.

We have to make assumptions about both the **service time** and the **customer arrivals**. We could assume that service takes a *fixed* time (discussed in Section 7.5), or more likely, that the service times are random variables which are independent for each customer. They could perhaps have a negative exponential density

$$f(t) = \mu e^{-\mu t}, \qquad t \ge 0.$$

This means that the customer spends on average time $1/\mu$ at the dispenser or being served.

For most queues the assumption is that customers are served in the order of arrival at the end of the queue. The basis of this is the 'first come, first served' rule. However, if queueing is not taking place, then the next customer could be chosen at random from those waiting. This could be the case where the 'customers' are components in a manufacturing process which are being delivered, stored until required, and then chosen at random for the next process. In this application the arrivals could be regular and predictable. The simplest assumption with arrivals at a queue is that they have a Poisson distribution with parameter λ , so that λ is the average number of arrivals

132 QUEUES

per unit time. From our discussion of Poisson process in Chapter 5, this implies that the probability of an arrival in the time interval $(t,t+\delta t)$ is $\lambda \delta t$ regardless of what happened before time t. And, of course, the probability of two or more arrivals in the time interval is negligible. As with the service time the density function of the time interval between arrivals is negative exponential:

$$\lambda e^{-\lambda t}$$
.

In practice, however, there may be busy periods. Arrivals at our cash dispenser are unlikely to be uniformly distributed over a 24-hour operation: there will be more customers at peak periods during the day, and hence, in reality, an overall Poisson distribution does not hold. If a queue lengthens too much at peak times to the point of deterring customers, the bank might wish to install a second cash dispenser. Hence a queue with a **single server** now becomes a **two-server queue**. Generalizing this we can consider *n*-server queues, which are typical queueing processes which occur in supermarkets, the customer having to choose which check-out appears to have the quickest service time. Alternatively, the *n* servers could be approached through a single queue with customers being directed to the next free server, known as a **simple feeder queue**.

There many aspects of queues which can be considered but not all of them will be investigated here. Customers could baulk at queueing if there are too many people ahead of them. Queues can have a maximum length: when the queue reaches a prescribed length further customers are turned away.

Generally, we are not concerned with how queues begin when, say, a bank opens, but how they develop over time as the day progresses. Do the queues become longer, and if not what is the average length of the queue? Often, therefore, we look at the underlying **stationary process** associated with the queue. We shall see that this effectively takes time variations out of the problem with the result differential-difference equations for recurrent probabilities of the Markov process reduce to difference equations. Queueing processes are related to Poisson, and birth and death processes of Chapters 5 and 6 when they are Markov and the construction of the difference equations follows from similar arguments and hypotheses. In population terminology, joining a queue corresponds to a 'birth', and then end of the serving a 'death'.

7.2 The single-server queue

We will now put together a simple model of a queue. Let the random variable N(t) denote the number of individuals in the queue *including the person being served*. We assume that there is a single counter or server with an orderly-forming queue served on a first come, first served basis. As before we write

$$\mathbf{P}(N(t) = n) = p_n(t),$$

which is the probability that there are n individuals in the queue at time t. We now look at the probability that there are n persons in the queue at time $t+\delta t$. We have to specify the probability that an individual arrives at the end of the queue in the time interval δt . Probably the simplest assumption is that the probability of an arrival is

 $\lambda \delta t$, where λ is a constant. In other words the arrivals form a Poisson process with intensity λ . We must also make an assumption about the service time of any customer at the counter. Assume that these form random time intervals with exponential density given by

$$f(t) = \mu e^{-\mu t}, \qquad t \ge 0,$$

these times being measured from the arrival of a customer at the counter. The question is: what is the probability that a customer leaves the counter between the times t and $t + \delta t$? If T is a random variable representing the service time (the time spent at the counter by the customer), then

$$\mathbf{P}(t \le T \le t + \delta t | T \ge t)$$

represents the probability that the service will be completed in the interval $(t, t + \delta t)$, given that it is still in progress at time t. For this conditional probability (see Sections 1.3 and 1.5):

$$\mathbf{P}(t \le T \le t + \delta t | T \ge t) = \frac{\mathbf{P}(t \le T \le t + \delta t)}{\mathbf{P}(T \ge t)} = \frac{\int_t^{t+\delta t} \mu e^{-\mu s} ds}{\int_t^{\infty} \mu e^{-\mu s} ds}$$

$$= \frac{[-e^{-\mu s}]_t^{t+\delta t}}{[-e^{-\mu s}]_t^{\infty}} = \frac{-e^{-\mu(t+\delta t)} + e^{-\mu t}}{e^{-\mu t}}$$

$$= 1 - e^{-\mu \delta t} \approx 1 - (1 - \mu \delta t + o(\delta t)) = \mu \delta t + o(\delta t)$$

for small δt , using a two-term Taylor expansion for $e^{-\mu\delta t}$. As we would expect with this exponential distribution the probability of the service being completed in the interval $(t,t+\delta t)$ is independent of the current state of the service—recall the no memory property.

By the law of total probability (Section 1.3) we have

$$p_n(t+\delta t) = \lambda \delta t p_{n-1}(t) + \mu \delta t p_{n+1}(t) + (1-\lambda \delta t - \mu \delta t) p_n(t) + o(\delta t),$$
$$p_0(t+\delta t) = \mu \delta t p_1(t) + (1-\lambda \delta t) p_0(t),$$

where the probability of multiple arrivals are assumed to be negligible. Thus

$$\frac{p_n(t+\delta t) - p_n(t)}{\delta t} = \lambda p_{n-1}(t) + \mu p_{n+1}(t) - (\lambda + \mu) p_n(t) + o(1),$$
$$\frac{p_0(t+\delta t) - p_0(t)}{\delta t} = \mu p_1(t) - \lambda p_0(t) + o(1).$$

Let $\delta t \to 0$, so that

$$\frac{dp_n(t)}{dt} = \lambda p_{n-1}(t) + \mu p_{n+1}(t) - (\lambda + \mu) p_n(t), \qquad (n = 1, 2, ...)
\frac{dp_0(t)}{dt} = \mu p_1(t) - \lambda p_0(t).$$
(7.1)

These equations are difficult to solve by the probability generating function method. However, it is possible to solve the equations using this method, and the result, after considerable analysis, leads to the formulas for probabilities in terms of special functions known as Bessel functions. The partial differential equation for the probability

generating function is derived in Problem 7.7. Fortunately we can obtain considerable information about queues by looking at the underlying **stationary process** in Eqn (7.1). Whilst time-dependent solutions are interesting, for planning purposes, the stationary process (if it exists) gives us a long-term view.

7.3 The stationary process

In the stationary process we look at the long term behavior of the queue assuming that it has a limiting state. Not all queues do: if rate of arrivals is large compared with the service time then we might expect the queue to continue to grow without bound as time progresses. For the moment let us assume that there is a limiting state, that $\lambda < \mu$, and that we can write

$$\lim_{t\to\infty} p_n(t) = p_n.$$

The probabilities now approach a *constant* distribution which do not depend on time. In this case it is reasonable to assume that

$$\lim_{t \to \infty} \frac{dp_n(t)}{dt} = 0.$$

If the limits turn out to be not justifiable then we might expect some inconsistency to occur in the limiting form of the equations or in their solution, which is a backward justification.

Equations (7.1) now become

$$\lambda p_{n-1} + \mu p_{n+1} - (\lambda + \mu) p_n = 0, \qquad (n = 1, 2, ...)$$

$$\mu p_1 - \lambda p_0 = 0. \qquad (7.2)$$

The general equation in (7.2) is a second-order **difference equation**. It is easy to solve iteratively since

$$p_1 = \frac{\lambda}{\mu} p_0$$

and, with n=1,

$$p_2 = \frac{1}{\mu} [(\lambda + \mu)p_1 - \lambda p_0] = \frac{1}{\mu} [(\lambda + \mu)\frac{\lambda}{\mu}p_0 - \lambda p_0] = \left(\frac{\lambda}{\mu}\right)^2 p_0.$$

The next iterate is

$$p_3 = \left(\frac{\lambda}{\mu}\right)^3 p_0,$$

and, in general,

$$p_n = \left(\frac{\lambda}{\mu}\right)^n p_0. \tag{7.3}$$

Alternatively the second-order difference equation can be solved using the characteristic equation method (see Section 2.2). The characteristic equation of (7.2) is

$$\mu m^2 - (\lambda + \mu)m + \lambda = 0$$
, or $(\mu m - \lambda)(m - 1) = 0$.

The roots are $m_1 = 1$, $m_2 = \lambda/\mu$. If $\lambda \neq \mu$, then the general solution is

$$p_n = A + B \left(\frac{\lambda}{\mu}\right)^n; \tag{7.4}$$

if $\lambda = \mu$, it is

$$p_n = C + Dn$$
,

where A, B, C, and D are constants. Since $\mu p_1 = \lambda p_0$, it follows that A = 0 or D = 0, and that $B = C = p_0$: the result is (7.3) again.

Let $\rho = \lambda/\mu$ for future reference: ρ is known as the **traffic density**. Generally, the traffic density is defined as the ratio of expected values:

$$\rho = \frac{\mathbf{E}(S)}{\mathbf{E}(I)},$$

where S and I are independent random variables of the service and inter-arrival times respectively. When S and I are both negative exponentially distributed, then $\mathbf{E}(S) = 1/\mu$ and $\mathbf{E}(I) = 1/\lambda$. We still require the value of p_0 . However, since $\sum_{n=0}^{\infty} p_n = 1$, it follows that

$$\left(\sum_{n=0}^{\infty} \rho^n\right) p_0 = 1,$$

but the geometric series on the right will only *converge* if $|\rho|<1$. Its sum is then given by

$$\sum_{n=0}^{\infty} \rho^n = \frac{1}{1-\rho}.$$

Hence

$$p_0 = 1 - \rho$$
,

and

$$p_n = (1 - \rho)\rho^n, \qquad (n = 0, 1, 2, ...),$$
 (7.5)

which is a geometric distribution with parameter $1 - \rho$ (see Section 1.7).

If $\rho \geq 1$ then the series does not converge and $\{p_n\}$ cannot represent a probability distribution. In this case the queue simply increases in length to infinity as $t \to \infty$ whatever its initial length. On the other hand if $\rho < 1$, then $\lambda < \mu$ and the rate of arrivals is less than the average service time with the result that a steady state should be achieved as we might expect.

There are various items of further information about the single-server queue which we can deduce from the distribution $\{p_n\}$ assuming $\rho < 1$.

(i) **Server free.** The probability that the server is free when a customer arrives is

$$p_0 = 1 - \rho$$
.

If the service time parameter ρ can be varied, for example, then the question might arise as to what might be an acceptable figure for p_0 . If ρ cannot be significantly changed then perhaps more servers are required (see Section 7.4).

(ii) **Length of queue.** The mean length of the queue (including the person being served) is, if N represents a random variable of the number in the queue,

$$\mathbf{E}(N) = \sum_{n=1}^{\infty} n p_n = \sum_{n=1}^{\infty} n (1 - \rho) \rho^n = \sum_{n=1}^{\infty} n \rho^n - \sum_{n=1}^{\infty} n \rho^{n+1}$$
$$= \sum_{n=1}^{\infty} n \rho^n - \sum_{n=1}^{\infty} (n-1) \rho^n = \sum_{n=1}^{\infty} \rho^n = \frac{\rho}{1 - \rho},$$

or the result could be quoted directly if the mean of the geometric distribution is known. Hence if $\rho=\frac{3}{4}$, then a customer might expect one person being served and two queueing. If, for example, the service time parameter μ can be varied (customers are served more efficiently perhaps), then $\mathbf{E}(N)=2$ could be set at a level acceptable to arriving customers. For example setting $\mathbf{E}(N)=2$ implies that $\rho=\frac{2}{3}$, or $\mu=\frac{3}{2}\lambda$.

(iii) Waiting time. How long will a customer expect to wait for service on arrival at the back of the queue, and how long will the customer expect to queue and be served? A customer arrives and finds that there are n individuals ahead including the person being served. Let T_i be the random variable representing the time for the service of customer i. We are interested in the random variable

$$S_n = T_1 + T_2 + \dots + T_n,$$

the sum of the random variables of service times of the first n queueing customers. These random variables are independent each with an exponential density function with the same parameter μ , that is,

$$f(s) = \mu e^{-\mu s}.$$

The moment generating function (see Section 1.9) of the random variable T_i is

$$M_{T_i}(s) = \mathbf{E}(e^{sT_i}) = \int_0^\infty e^{su} f(u) du = \mu \int_0^\infty e^{su} e^{-\mu u} du,$$
$$= \mu \int_0^\infty e^{-(\mu - s)u} du,$$
$$= \frac{\mu}{\mu - s}, \qquad (s < \mu).$$

We need the result that the moment generating function of the sum

$$S_n = T_1 + T_2 + \cdots + T_n$$

is

$$M_{S_n}(s) = \mathbf{E}(e^{sS_n}) = \mathbf{E}(e^{s(T_1 + T_2 + \dots + T_n)})$$

$$= \mathbf{E}(e^{sT_1})\mathbf{E}(e^{sT_2}) \cdots \mathbf{E}(e^{sT_n}) = M_{T_1}(t)M_{T_2}(s) \cdots M_{T_n}(s)$$

$$= \left(\frac{\mu}{\mu - s}\right)^n$$

(see Section 1.9). This is the moment generating function of the gamma density func-

tion with parameters μ and n. Its density is

$$f_{S_n}(t) = \frac{\mu^n}{(n-1)!} t^{n-1} e^{-\mu t}$$

(see Section 1.8). (Alternatively, it is known that the sum of exponential distributions is the gamma distribution.)

Let

$$S = \lim_{n \to \infty} S_n,$$

which is the limiting waiting time assuming that it exists. Using the law of total probability, the probability that S is greater than a time t is given by

$$\mathbf{P}(S > t) = \sum_{n=1}^{\infty} \mathbf{P}(S_n > t) p_n.$$

Hence

$$\begin{split} \mathbf{P}(S > t) &= \sum_{n=1}^{\infty} p_n \int_{t}^{\infty} f_{S_n}(s) ds, \\ &= \sum_{n=1}^{\infty} (1 - \rho) \rho^n \int_{t}^{\infty} \frac{\mu^n}{(n-1)!} s^{n-1} e^{-\mu s} ds, \\ &= (1 - \rho) \mu \rho \int_{t}^{\infty} e^{-\mu s} \sum_{n=0}^{\infty} \frac{(\mu \rho s)^n}{n!} ds, \\ &= (1 - \rho) \mu \rho \int_{t}^{\infty} e^{-\mu (1 - \rho) s} ds, \\ &= \rho e^{-\mu (1 - \rho) t}. \end{split}$$

The associated density function is

$$g(t) = \frac{d}{dt} [1 - \rho e^{-\mu(1-\rho)t}] = \rho \mu (1-\rho) e^{-\mu(1-\rho)t}, \quad (t \ge 0).$$

Finally, the expected value of S is

$$\begin{split} \mathbf{E}(S) &= \int_0^\infty t g(t) dt = \int_0^\infty t \rho \mu (1-\rho) e^{-\mu(1-\rho)t} dt, \\ &= \rho \mu (1-\rho) . \frac{1}{\mu^2 (1-\rho)^2} \int_0^\infty s e^{-s} ds, \quad [s = \mu (1-\rho)t], \\ &= \frac{\rho}{\mu (1-\rho)}, \quad [\text{see the Appendix for this integral}], \end{split}$$

which turns out to be the expected value $1/\mu$ of the service time T multiplied by the expected length of the queue $\rho/(1-\rho)$ from (ii) above. Hence in this case, it occurs that

$$\mathbf{E}(S) = \mathbf{E}(N)\mathbf{E}(T).$$

To use this result directly we would need to show that N and T are independent random variables. With n customers ahead the next customer could expect to wait

for a time $\rho/(\mu(1-\rho))$ to reach the server. Until service is completed the customer could expect to spend time

$$\frac{\rho}{\mu(1-\rho)} + \frac{1}{\mu} = \frac{1}{\mu(1-\rho)}$$

since the expected service time is $1/\mu$.

This is a lengthy argument: the difficulty is mainly caused by the problem of finding the density function of the sum of a set of random variables.

(iv) **Busy periods.** If N(t) is the random number representing the number of individuals in a single-server queue at time t in the nonstationary process, then an actual bar chart of a queue with $\rho = \lambda/\mu < 1$ might look as in Figure 7.1. Being now a display of a continuous time process, the numbers in the queue will change up or down at varying times. There will be periods where the server is free (called **slack periods**),

Figure 7.1 An sample queue for the number in the queue n(t) against time in the nonstationary process: the queue starts with no customers and $\{s_i\}$ are the slack periods and $\{b_i\}$ are the busy periods.

periods of lengths

$$s_1 = t_1, \quad s_2 = t_3 - t_2, \quad s_3 = t_5 - t_4, \dots,$$

and periods when the server is busy, namely

$$b_1 = t_2 - t_1$$
, $b_2 = t_4 - t_3$, $b_3 = t_6 - t_5$, ...

The times t_1, t_3, t_5, \ldots are the times when a new customer arrives when the server is free, and t_2, t_4, t_6, \ldots are the times at which the server becomes free. The periods denoted by b_1, b_2, \ldots are known as **busy periods**. A question whose answer is of interest is: what is the expected length of a busy period? Here we present an informal argument which points to the result.

Suppose that the server is free as at time $t=t_2$. Then since the arrivals form a Poisson process with parameter λ , the expected time until the next customer arrives is $1/\lambda$, since the density function is $\lambda e^{-\lambda t}$. It seems a reasonable intuitive result that

the average lengths of a large number n of slack periods should approach $1/\lambda$, that is,

$$\lim_{n \to \infty} \left[\frac{\sum_{i=1}^{n} s_i}{n} \right] = \frac{1}{\lambda}.$$

In the stationary process, the probability that the server is free is p_0 and that the server is busy is $1-p_0$. Hence the ratio of the average lengths of the slack periods to that of the busy periods is $p_0/(1-p_0)$. Hence

$$\lim_{n \to \infty} \left[\frac{\sum_{i=1}^{n} s_i}{n} \cdot \frac{n}{\sum_{i=1}^{n} b_i} \right] = \frac{p_0}{1 - p_0} = \frac{1 - \rho}{\rho}.$$

Since the limit of the product is the product of the limits, it follows using the limit above that

$$\lim_{n\to\infty} \left[\frac{1}{n}\sum_{i=1}^n b_i\right] = \frac{1}{\lambda}\frac{\rho}{1-\rho} = \frac{1}{\mu-\lambda},$$

which is the mean length of the busy periods.

Example 7.1 (The baulked queue) In this queue not more than $m \geq 2$ people (including the person being served) are allowed to form a queue. If there are m individuals in the queue, then any further arrivals are turned away. It is assumed that the service distribution is exponential with rate μ . Find the probability distribution for the queue length.

If n < m we assume a Poisson process for the arrivals with parameter $\lambda_n = \lambda$, but if $n \ge m$ we assume that $\lambda_n = 0$. The difference equations in (7.2) are modified so that they become the finite system

$$\mu p_1 - \lambda p_0 = 0,$$

$$\lambda p_{n-1} + \mu p_{n+1} - (\lambda + \mu) p_n = 0, \qquad (1 \le n \le m - 1),$$

$$\lambda p_{m-1} - \mu p_m = 0.$$

The general solution is (see equation (7.4))

$$p_n = A + B\rho^n, \qquad (\rho \neq 1).$$

For the baulked queue there is no restriction on the size of $\rho = \lambda/\mu$, unlike the foregoing, but the case $\rho = 1$ must be treated separately.

The boundary conditions imply

$$\mu(A+B\rho) - \lambda(A+B) = 0,$$

$$\lambda(A+B\rho^{m-1}) - \mu(A+B\rho^m) = 0,$$

or,

$$A(1-\rho)=0$$

in both cases. Since $\rho \neq 1$, we conclude that A = 0. Hence

$$p_n = B\rho^n, \qquad (n = 0, 1, 2, \dots, m).$$

This distribution must satisfy $\sum_{n=0}^{m} p_n = 1$. Hence

$$B\sum_{n=0}^{m} \rho^n = 1,$$

140 QUEUES

or, after summing the geometric series,

$$B\frac{1-\rho^{m+1}}{1-\rho} = 1.$$

Hence, the probability that there are n individuals in the queue is given by

$$p_n = \frac{\rho^n (1 - \rho)}{(1 - \rho^{m+1})}, \qquad (n = 0, 1, 2, \dots, m) \quad (\rho \neq 1).$$

If $\rho = 1$, then the general solution for p_n is

$$p_n = A + Bn$$
,

and the boundary condition $p_1-p_0=0$ implies B=0. Hence $p_n=A$ $(n=0,1,2,\ldots m)$, but since $\sum_{n=0}^m p_n=1$, it follows that A=1/(m+1). Finally

$$p_n = \frac{1}{m+1}, \qquad (n = 0, 1, 2, \dots m).$$

7.4 Queues with multiple servers

In many practical applications of queueing models, there is more than one server, as in banks, supermarkets, and hospital admissions. Usually in supermarkets shoppers, at check-outs, choose a till with the shortest queue or, more accurately, a queue with the smallest number of likely purchases. On the other hand banks and post offices, for example, often guide arrivals into a single queue, and then direct them to tills or counters as they become free. It is the second type of queue which we will investigate. A plan of such a scheme is shown in Figure 7.2.

Figure 7.2 A single queue with 4 servers.

Suppose that the queue faces r servers. As for the single-server queue assume that the arrivals form a Poisson process with parameter λ , and that the service time at each counter has exponential density with rate μ . Let $p_n(t)$ be the probability that there are n people in the queue at time t including those being served. The queue length is governed by different equations depending on whether n < r or $n \ge r$. If $n \ge r$

then all counters will be occupied by a customer, but some will be free if n < r. As before, if n < r the probability of a counter becoming free in time δt will be $n\mu\delta t$: if $n \ge r$ the probability will be $r\mu\delta t$. Proceeding as in Section 6.2, the equations or $p_n(t)$ are, for $r \ge 2$,

$$\frac{dp_{0}(t)}{dt} = \mu p_{1}(t) - \lambda p_{0}(t),$$

$$\frac{dp_{n}(t)}{dt} = \lambda p_{n-1}(t) + (n+1)\mu p_{n+1}(t) - (\lambda + n\mu)p_{n}(t), \qquad 1 \le n < r,$$

$$\frac{dp_{n}(t)}{dt} = \lambda p_{n-1}(t) + r\mu p_{n+1}(t) - (\lambda + r\mu)p_{n}(t), \qquad n \ge r.$$

The corresponding stationary process (if it exists) for the queue with r servers is

$$\mu p_1 - \lambda p_0 = 0, (7.6)$$

$$\lambda p_{n-1} + (n+1)\mu p_{n+1} - (\lambda + n\mu)p_n = 0, \qquad 1 \le n < r, \tag{7.7}$$

$$\lambda p_{n-1} + r\mu p_{n+1} - (\lambda + r\mu)p_n = 0, \qquad n \ge r.$$
 (7.8)

This is not now a set of constant-coefficient difference equations, and the characteristic equation method of solution no longer works. However, it is easy to solve the equations iteratively. For n = 1 in Eqn (7.7), we have

$$\lambda p_0 + 2\mu p_2 - (\lambda + \mu)p_1 = 0,$$

or, using Eqn (7.6),

$$2\mu p_2 - \lambda p_1 = 0.$$

Provided n < r we can repeat this procedure for n = 2 giving

$$3\mu p_3 = (\lambda + 2\mu)p_2 - \lambda p_1 = (\lambda = 2\mu)p_2 - 2\mu p_2 = \lambda_2,$$

and so on:

$$4\mu p_{r+1} = \lambda p_3, \dots, r\mu p_r = \lambda p_{r-1}.$$

For $n \ge r$, we switch to the difference equations (7.8) and the sequence then continues as

$$r\mu p_{r+1} = (\lambda + r\mu)p_r - \lambda p_{r-1} = \lambda p_r, \ldots, r\mu p_n = \lambda p_{n-1}, \ldots$$

etc. To summarize: the set of difference equations (7.6)–(7.8) reduce to the equivalent set

$$n\mu p_n = \lambda p_{n-1}, \qquad 1 \le n < r, \tag{7.9}$$

$$r\mu p_n = \lambda p_{n-1}, \qquad n \ge r. \tag{7.10}$$

Starting with n=1,

$$p_1 = \frac{\lambda}{\mu} p_0 = \rho p_0,$$

where $\rho = \lambda/\mu$. Then for n = 2,

$$p_2 = \frac{\rho}{2} p_1 = \frac{\rho^2}{2} p_0,$$

and so on. Thus for n < r,

$$p_n = \frac{\rho^n}{n!} p_0,$$

and for n > r

$$p_n = \frac{\rho^n}{r^{n-r}r!}p_0.$$

Since $\sum_{n=0}^{\infty} p_n = 1$, we can determine p_0 from

$$p_0 \left[\sum_{n=0}^{r-1} \frac{\rho^n}{n!} + \frac{r^r}{r!} \sum_{n=r}^{\infty} \left(\frac{\rho}{r} \right)^n \right] = 1,$$

in which the infinite geometric series converges if $\rho < r$. As we would expect in the multiple-server queue, it is possible for the arrival rate λ to be greater than the service rate μ . Summing the second geometric series, we obtain

$$p_0 = 1 / \left[\sum_{n=0}^{r-1} \frac{\rho^n}{n!} + \frac{\rho^r}{(r-\rho)(r-1)!} \right]. \tag{7.11}$$

If N is the random variable of the queue length n, then the expected queue length excluding those being served is

$$\mathbf{E}(N) = \sum_{n=r+1}^{\infty} (n-r)p_n,$$

$$= \frac{p_0 \rho^r}{r!} \sum_{n=r+1}^{\infty} (n-r) \left(\frac{\rho}{r}\right)^{n-r}.$$

We need to sum the series. Let

$$R = \sum_{n=r+1}^{\infty} (n-r) \left(\frac{\rho}{r}\right)^{n-r} = \frac{\rho}{r} + 2 \left(\frac{\rho}{r}\right)^2 + 3 \left(\frac{\rho}{r}\right)^3 + \cdots$$

Multiply both sides by ρ/r and subtract the new series from the series for R. Hence

$$R\left(1-\frac{\rho}{r}\right) = \left(\frac{\rho}{r}\right) + \left(\frac{\rho}{r}\right)^2 + \left(\frac{\rho}{r}\right)^3 + \dots = \frac{\rho}{r-\rho}$$

using the formula for the sum of a geometric series. Hence

$$R = \frac{\rho r}{(r - \rho)^2},$$

and, therefore

$$\mathbf{E}(N) = \frac{p_0 \rho^{r+1}}{(r-1)!(r-\rho)^2},\tag{7.12}$$

where p_0 is given by Eqn (7.11).

This formula gives the expected length of those actually waiting for service. The expected length including those being served can be found in the solution to Problem 7.10.

For a queue with r servers $\rho/r=\lambda/(r\mu)$ is a measure of the traffic density of the queue, and it is this parameter which must be less than 1 for the expected length of the queue to remain finite.

Example 7.2. A bank has two tellers but one is inexperienced and takes longer than average

to complete the service required by a customer. If customers arrive as a Poisson process with parameter λ , and the service times are independent and exponentially distributed with rates μ_1 and μ_2 , find the probability that the queue contains, in the stationary state, n individuals excluding those being served. What condition must λ , μ_1 , and μ_2 satisfy for the queue to remain bounded in length? What is its expected length?

When one counter is occupied the probability that it becomes free is either $\mu_1 \delta t$ or $\mu_2 \delta t$ in a small time interval δt with the choice of each counter being equally likely. Use the law of total probability (see Section 1.3) as follows. Let B, A_1 , and A_2 be the events

 $B = \text{exactly one counter becomes free in time } \delta t$,

$$A_1 =$$
counter 1 occupied, $A_2 =$ counter 2 occupied.

Now

$$\mathbf{P}(B|A_1) = \mu_1 \delta t, \quad \mathbf{P}(B|A_2) = \mu_2 \delta t, \quad \mathbf{P}(A_1) = \mathbf{P}(A_2) = \frac{1}{2}.$$

Hence

$$\mathbf{P}(B) = \mathbf{P}(B|A_1)\mathbf{P}(A_1) + \mathbf{P}(B|A_2)\mathbf{P}(A_2) = \frac{1}{2}(\mu_1 + \mu_2)\delta t.$$

When both counters are occupied the probability that a server becomes free is

P(counter 1 becomes free or counter 2 becomes free) =
$$(\mu_1 + \mu_2)\delta t$$

in time δt since the events are mutually exclusive. By comparison with Eqns (7.6) – (7.8), the difference equations for the stationary process are

$$\frac{1}{2}(\mu_1 + \mu_2)p_1 - \lambda p_0 = 0,$$

$$(\mu_1 + \mu_2)p_2 + \lambda p_0 - \left[\lambda + \frac{1}{2}(\mu_1 + \mu_2)\right]p_1 = 0,$$

$$(\mu_1 + \mu_2)p_{n+1} + \lambda p_{n-1} - \left[\lambda + (\mu_1 + \mu_2)\right]p_n = 0, \qquad N \ge 2$$

If we let $\mu = \frac{1}{2}(\mu_1 + \mu_2)$, then this is equivalent to the two-server queue each with exponential distribution with the same rate μ . Hence the required answers can be read off from the results for the multi-server queue presented immediately before this example. Thus, provided $\lambda < 2\mu$,

$$p_1 = \rho p_0,$$
 $p_n = \frac{\rho^n}{2^{n-2}2!}, \qquad n \ge 2,$

where $\rho = \lambda/\mu$, and

$$p_0 = 1 / \left[1 + \rho + \frac{\rho^2}{2 - \rho} \right] = \frac{2 - \rho}{2 + \rho}.$$

In this case the expected length of the queue is (excluding those being served)

$$\mathbf{E}(N) = \frac{p_0 \rho^3}{(2 - \rho)^2} = \frac{\rho^3}{4 - \rho^2}.$$

Example 7.3. Customers arrive in a bank with two counters at a rate $2\lambda\delta t$ in any small time interval δt . Service at either counter is exponentially distributed with rate μ . Which of the following schemes leads to the shorter overall queue length?

- (a) A single queue feeding two servers.
- (b) Two separate single-server queues with the assumptions that customers arrive at each queue with parameter $\lambda \delta t$, and choose servers at random.

(a) This is the two-server queue with rate 2λ . Hence, from (7.11) with r=2,

$$p_0 = \frac{2 - \rho_1}{(1 + \rho_1)(2 - \rho_1) + \rho_1^2} = \frac{1 - \rho_1}{1 + \rho_1},$$

where $\rho_1=2\lambda/\mu$. From (7.12), the expected queue length will be, except for those being served,

$$\mathbf{E}_a(N) = \frac{p_0 \rho_1^3}{(2 - \rho_1)^2} = \frac{\rho_1^3}{(4 - \rho_1^2)} = \frac{(2\lambda/\mu)^3}{4 - (2\lambda/\mu)^2} = \frac{2\rho^3}{1 - \rho^2},\tag{7.13}$$

where $\rho = \lambda/\mu$.

(b) Note that customers do not exert a choice in this queueing scheme: it is not quite the same problem as customers arriving and choosing the shorter queue. For the scheme as described, the expected length of the two single-server queues is twice that of one, and is, excluding those being served,

$$\mathbf{E}_b(N) = 2\sum_{n=2}^{\infty} (n-1)p_n,$$

where $p_n = (1 - \rho)\rho^n$ from (7.4). Hence

$$\mathbf{E}_b(N) = 2 \left[\frac{\rho}{1-\rho} - p_1 - (1-p_0 - p_1) \right]$$

using the results

$$\sum_{n=1}^{\infty} n p_n = \frac{\rho}{1-\rho}, \qquad \sum_{n=0}^{\infty} p_n = 1.$$

Hence, since $p_0 = 1 - \rho$ and $p_1 = (1 - \rho)\rho$

$$\mathbf{E}_b(N) = \frac{2\rho^2}{1-\rho}.\tag{7.14}$$

We must compare $\mathbf{E}_a(N)$ and $\mathbf{E}_b(N)$ given by (7.13) and (7.14). Thus

$$\mathbf{E}_a(N) = \frac{2\rho^3}{1-\rho^2} = \frac{\rho}{1+\rho} \mathbf{E}_b(N) < \mathbf{E}_b(N)$$

for all ρ such that $0 < \rho < 1$. We conclude in this model that the two single-server queues have a longer expected total queue length than the two-server queue which might perhaps be expected. Comparative graphs of $\mathbf{E}_a(N)$ and $\mathbf{E}_b(N)$ versus r are shown in Figure 7.3.

7.5 Queues with fixed service times

In some queues the service time is a fixed value, say τ , since the customers all go through the same service. This could arise, for example, at a bank ATM where cash is dispensed. Suppose that the density function of the interval between arrivals is negative exponential with parameter λ , namely $\lambda e^{-\lambda t}$, that is, a Poisson arrival rate.

This queueing problem requires a different approach. As before let $p_n(t)$ be the probability that there are n persons in the queue at time t including the person being served. We consider time intervals of duration τ , the service time, and start by asking: what is the probability $p_0(t+\tau)$ that the queue has no customers at time $t+\tau$? This can arise if there was either no one in the queue at time t, or one person at time t

Figure 7.3 Comparison of expected queue lengths for the two-server queue and the two single-server queues against {arrival rate}/{service rate} ratio.

who must have been served and left. The probability that this occurs is $p_0(t)+p_1(t)$. Also there must have been no arrivals. Since the inter-arrival times have a negative exponential distribution, the probability of no arrivals in any time interval of duration τ is $e^{-\lambda \tau}$ (see Section 5.6, and remember its no memory property). Hence

$$p_0(t+\tau) = [p_0(t) + p_1(t)]e^{-\lambda \tau}.$$

We now generalize this equation. Suppose that there are n persons in the queue at time $t + \tau$. This could have arisen in any of the ways listed below:

Number in queue at time t	Number of arrivals	Probability
0	n	$p_0(t)e^{-\lambda\tau}(\lambda\tau)^n/n!$
1	n	$p_1(t)e^{-\lambda \tau}(\lambda \tau)^n/n!$
2	n-1	$p_2(t)e^{-\lambda\tau}(\lambda\tau)^{n-1}/(n-1)!$
• • •		• • •
n	1	$p_n(t)e^{-\lambda \tau}\lambda \tau/1!$
n+1	0	$p_{n+1}(t)e^{-\lambda \tau}$

In the table the probability of r arrivals in time τ is $e^{-\lambda \tau} (\lambda \tau)^r / r!$. Thus $p_n(t+\tau)$ is the sum of the probabilities in the third column:

$$p_n(t+\tau) = e^{-\lambda \tau} \left[p_0(t) \frac{(\lambda \tau)^n}{m!} + \sum_{r=1}^{n+1} \frac{p_r(t)(\lambda \tau)^{n+1-r}}{(n+1-r)!} \right] \quad (n=0,1,\ldots).$$

Suppose now that we just consider the long term behavior of the queue by assuming that

$$\lim_{t \to \infty} p_n(t) = \lim_{t \to \infty} p_n(t + \tau) = p_n,$$

and that the limits exist. Then the sequence $\{p_n\}$ satisfies the difference equations

$$p_n = e^{-\lambda \tau} \left[p_0 \frac{(\lambda \tau)^n}{m!} + \sum_{r=1}^{n+1} \frac{p_r (\lambda \tau)^{n+1-r}}{(n+1-r)!} \right] \quad (n = 0, 1, \ldots).$$

For the next step it is more convenient to write the equations as a list as follows:

$$p_{0} = e^{-\lambda \tau} (p_{0} + p_{1})$$

$$p_{1} = e^{-\lambda \tau} [(p_{0} + p_{1})\lambda \tau + p_{2}]$$

$$p_{2} = e^{-\lambda \tau} \left[(p_{0} + p_{1}) \frac{(\lambda \tau)^{2}}{2!} + p_{2}(\lambda \tau) + p_{3} \right]$$

$$\vdots = \vdots$$

$$p_{n} = e^{-\lambda \tau} \left[(p_{0} + p_{1}) \frac{(\lambda \tau)^{n}}{n!} + p_{2} \frac{(\lambda \tau)^{n-1}}{(n-1)!} + \dots + p_{n}(\lambda \tau) + p_{n+1} \right]$$

$$\vdots = \vdots$$

We now construct the probability generating function for the sequence $\{p_n\}$ by multiplying p_n by s^n in the list above, and summing over n by columns to give

$$\begin{split} G(s) &= \sum_{n=0}^{\infty} p_n s^n &= e^{-\lambda \tau} \left[(p_0 + p_1) e^{\lambda \tau s} + p_2 s e^{\lambda \tau s} + p_3 s^2 e^{\lambda \tau s} + \cdots \right] \\ &= e^{-\lambda \tau (1-s)} \left[p_0 + p_1 + p_2 s + p_3 s^2 + \cdots \right] \\ &= e^{-\lambda \tau (1-s)} \left[p_0 + \frac{1}{s} \left\{ G(s) - p_0 \right\} \right]. \end{split}$$

Hence, solving this equation for G(s), we obtain

$$G(s) = \frac{p_0(1-s)}{1 - se^{\lambda \tau (1-s)}}.$$

However this formula for G(s) still contains an unknown constant p_0 . For G(s) to be a pgf, we must have G(1)=1. Since both the numerator and denominator tend to zero as $s\to 1$, we must use an expansion to cancel a factor (1-s). Let u=1-s. Then

$$G(s) = H(u) = \frac{p_0 u}{1 - (1 - u)e^{\lambda \tau u}}.$$

The Taylor series expansion of H(u) about u = 0 is

$$H(u) = \frac{p_0}{1 - \lambda \tau} - \frac{p_0 \lambda \tau (2 - \lambda \tau)}{2(1 - \lambda \tau)^2} u + O(u^2)$$

as $u \to 0$. Hence

$$G(s) = \frac{p_0}{1 - \lambda \tau} - \frac{p_0 \lambda \tau (2 - \lambda \tau)}{2(1 - \lambda \tau)^2} (1 - s) + O((1 - s)^2)$$
 (7.15)

as $s \to 1$. G(1) = 1 implies $p_0 = 1 - \lambda \tau$.

Individual probabilities can be found by expanding G(s) in powers of s. We shall

not discuss convergence here, but simply state the expansion converges for $0 \le \lambda \tau < 1$, a result to be expected intuitively.

The expected queue length is given by G'(1) (see Section 1.9). From (7.15), it follows that

$$\boldsymbol{\mu} = G'(1) = \frac{p_0 \lambda \tau (2 - \lambda \tau)}{2(1 - \lambda \tau)^2} = \frac{\lambda \tau (2 - \lambda \tau)}{2(1 - \lambda \tau)},$$

since $p_0 = 1 - \lambda \tau$.

This can be expressed in terms of the traffic intensity ρ since $1/\lambda$ is the mean inter-arrival time and τ is the actual service time. Thus $\rho=\lambda\tau$, and the mean queue length is

$$\boldsymbol{\mu} = \frac{\rho(1 - \frac{1}{2}\rho)}{1 - \rho}.$$

7.6 Classification of queues

There are three main factors which characterize queues: the probability distributions controlling arrivals, service times, and the number of servers. If the inter-arrival and service distributions are denoted by G_1 and G_2 , and there are n servers then this queue is described as a $G_1/G_2/n$ queue, which is shorthand for

arrival distribution, G_1 / service distribution, G_2 / number of servers, n.

If the inter-arrival and service distributions are negative exponentials with densities $\lambda e^{-\lambda t}$ and $\mu e^{-\mu t}$ (that is, both are Poisson processes), then both processes are Markov with parameters λ and μ respectively. The Markov property means that the probability of the next arrival or the probability of service being completed are independent of any previous occurrences. We denote the processes by $M(\lambda)$ and $M(\mu)$ (M for Markov). Hence the corresponding single-server queue is denoted by $M(\lambda)/M(\mu)/1$, and the n-server queue by $M(\lambda)/M(\mu)/n$.

The single-server queue with Markov inter-arrival but fixed service time τ , discussed in the previous section, is denoted by $M(\lambda)/D(\tau)/1$, where D stands for deterministic.

This can be extended to other distributions. If the service time for a single-server queue has a uniform distribution with density function

$$f(t) = \begin{cases} \mu & 0 \le t \le 1/\mu, \\ 0 & \text{elsewhere,} \end{cases}$$

then this would be described as an $M(\lambda)/U(\mu)/1$ queue.

7.7 A general approach to the $M(\lambda)/G/1$ queue

In this queue the arrivals are given by the usual Poisson process with parameter λ , and the service time has a general distribution denoted by G. We adopt a different approach in which the queue is viewed as a chain in which a step in the chain occurs when an individual completes service and leaves the queue. This enables us to obtain a fairly general result on the expected length of the stationary queue.

Suppose that the server opens for business at time t=0, and that the first customer is served and leaves at time T_1 , the second leaves at time T_2 , and so on, so that T_n is the time of departure of the n-th customer. Let $X(T_n)$ be the random variable which represents the number of customers left in the queue after the n-th customer has departed. Suppose that during the service time of the (n+1)-th customer, that is during the time $T_{n+1}-T_n$, R new customers join the queue. Provided there is a customer in the queue waiting, that is $X(T_n)>0$, then

$$X(T_{n+1}) = X(T_n) + R - 1$$
 for $X(T_n) > 0$, (7.16)

where $X(T_n)$ is the number remaining in the queue at the beginning of the service time, R is the number of new arrivals, and (-1) is the reduction for the person who has just been served. If, on the other hand, $X(T_n) = 0$, then the server would be immediately free, in which case

$$X(T_{n+1}) = R$$
 since $X(T_n) = 0$. (7.17)

Equations (7.16) and (7.17) can be combined into the difference equation

$$X(T_{n+1}) = X(T_n) + R - 1 + h(X), \tag{7.18}$$

where

$$h(X) = \begin{cases} 0 & \text{if } X(T_n) > 0\\ 1 & \text{if } X(T_n) = 0. \end{cases}$$
 (7.19)

We now suppose that a stationary queue length develops over a long period of time. Take the expected values of the random variables in Eqn (7.17):

$$\mathbf{E}[X(T_{n+1})] = \mathbf{E}[X(T_n + R - 1 + h(X))] = \mathbf{E}[X(T_n)] + \mathbf{E}(R) - \mathbf{E}(1) + \mathbf{E}[h(X)].$$

Assuming that a stationary process ultimately exists, we can put

$$\lim_{n\to\infty} \mathbf{E}[X(T_{n+1})] = \lim_{n\to\infty} \mathbf{E}[X(T_n)] = \mathbf{E}(X),$$

say. Hence, since $\mathbf{E}(1) = 1$,

$$\mathbf{E}[h(X)] = 1 - \mathbf{E}(R). \tag{7.20}$$

The expected value $\mathbf{E}(R)$ requires careful explanation. In any given service time, say, τ until the next service starts, the probability that r customers arrive is, for the assumed Poisson process with parameter λ ,

$$p_r(\tau) = \frac{e^{-\lambda \tau} (\lambda \tau)^r}{r!}.$$

Its mean value is

$$\boldsymbol{\mu}(\tau) = \sum_{r=1}^{\infty} r p_r(\tau) = \sum_{r=1}^{\infty} \frac{e^{-\lambda \tau} (\lambda \tau)^r}{(r-1)!} = \lambda \tau.$$
 (7.21)

This mean is itself a random variable since it is a function of the random variable of the service time τ . Let the probability density function for the service time distribution be $f(\tau)$. Hence by the formula for the expected value of a function of a random

variable (Section 1.6), the expected value of R is given by

$$\mathbf{E}(R) = \int_0^\infty \tau f(\tau) d\tau = \lambda \mathbf{E}(S) = \rho, \tag{7.22}$$

say, where $\mathbf{E}(S)$ is the expected value of the random variable S of the service times whose values are denoted by τ . The expected value ρ , as in previous sections, is the traffic density, and it is assumed that $\rho < 1$. From (7.20), it follows that

$$\mathbf{E}[h(X)] = 1 - \rho. \tag{7.23}$$

Now take the square of Eqn (7.18):

$$X(T_{n+1})^{2} = X(T_{n})^{2} + (R-1)^{2} + h(X)^{2} + 2(R-1)h(X)$$
$$+2h(X)X(T_{n}) + 2(R-1)X(T_{n})$$
$$= X(T_{n})^{2} + (R-1)^{2} + h(X)^{2} + 2(R-1)[h(X) + X(T_{n})],$$

in which it should be observed that $h(X)X(T_n)=0$ by Eqn (7.19). The reason for this step is that, as we shall show, the expected value of \mathbb{R}^2 is related to the variance of the service distribution. With this in view take the expected value of the stationary version of this equation so that, with

$$\lim_{n\to\infty} \mathbf{E}[X(T_{n+1})] = \lim_{n\to\infty} \mathbf{E}[X(T_n)] = \mathbf{E}(X),$$

again

$$\mathbf{E}[(R-1)^2] + \mathbf{E}[h(X)^2] + 2\mathbf{E}[Rh(X)] - 2\mathbf{E}[h(X)] + 2\mathbf{E}[(R-1)X] = 0,$$

or

$$\mathbf{E}(R^2) - 2\mathbf{E}(R) + 1 - \mathbf{E}[h(X)] + 2\mathbf{E}(R)\mathbf{E}[h(X)] + 2\mathbf{E}(X)[\mathbf{E}(R) - 1] = 0,$$
 (7.24) since $h(X)^2 = h(X)$ by (7.19), and X and R are independent.

We shall solve this equation for $\mathbf{E}(X)$, the expected length of the stationary queue, but first we need to find a formula for $\mathbf{E}(R^2)$.

Let r be a value of the random variable R. We require the second moment of the Poisson distribution, namely

$$\begin{split} u(\tau) &= \sum_{r=1}^{\infty} r^2 p_r(\tau) = \sum_{r=1}^{\infty} \frac{r e^{-\lambda \tau} (-\lambda \tau)^r}{(r-1)!} \\ &= \tau e^{-\lambda \tau} \frac{d}{d\tau} \left[\sum_{r=1}^{\infty} \frac{(\lambda \tau)^r}{(r-1)!} \right] \\ &= \tau e^{-\lambda \tau} \frac{d}{d\tau} (\lambda \tau e^{\lambda \tau}) = \lambda \tau + (\lambda \tau)^2. \end{split}$$

As before $u(\tau)$ is a function of the service time τ , so that

$$\mathbf{E}(R^2) = \int_0^\infty u(\tau)f(\tau)d\tau = \int_0^\infty [\lambda\tau + (\lambda\tau)^2]f(\tau)d\tau,$$
$$= \mathbf{E}(R) + \lambda^2 \int_0^\infty \tau^2 f(\tau)d\tau.$$

The integral in the last result is $V(\tau) + [E(\tau)]^2$. With S the random variable whose values are given by τ , from the general result for variance (Section 1.6)

$$\mathbf{V}(S) = \mathbf{E}(S^2) - [\mathbf{E}(S)]^2 = \int_0^\infty \tau^2 f(\tau) d\tau - \left[\int_0^\infty \tau f(\tau) d\tau \right]^2.$$

Hence, from the two previous results,

$$\mathbf{E}(R^2) = \mathbf{E}(R) + \lambda^2 \mathbf{V}(S) + [\mathbf{E}(R)]^2 = \rho + \rho^2 + \lambda^2 \mathbf{V}(S). \tag{7.25}$$

Finally solving Eqn (7.24) for $\mathbf{E}(X)$ and using Eqns (7.22), (7.23), and (7.25), we find that

$$\mathbf{E}(X) = \frac{\mathbf{E}(R^2) - 2\mathbf{E}(R) + 1 - \mathbf{E}[h(X)] + 2\mathbf{E}(R)\mathbf{E}[h(X)]}{2 - 2\mathbf{E}(R)}$$

$$= \frac{\mathbf{E}(R^2) - 2\mathbf{E}(R) + 1 - \mathbf{E}[h(X)] + 2\mathbf{E}(R)(1 - \mathbf{E}(R))}{2 - 2\mathbf{E}(R)}$$

$$= \frac{2\rho - \rho^2 + \lambda^2 \mathbf{V}(S)}{2(1 - \rho)}.$$
(7.26)

The expected value $\mathbf{E}(X)$ is the expected length of the queue including the person being served, and it is interesting to note that it is a function of the variance of the service time. If the service times have a negative exponential distribution with density $\mu e^{-\mu t}$ (that is the queue is $M(\lambda)/M(\mu)/1$), then its mean and variance are $\mathbf{E}(S)=1/\mu$ and $\mathbf{V}(S)=1/\mu^2$ respectively. The traffic density $\rho=\lambda/\mu$, and from (7.26),

$$\mathbf{E}(X) = \frac{2\rho - \rho^2 + \rho^2}{2(1 - \rho)} = \frac{\rho}{1 - \rho},$$

which is the mean value obtained in Section 7.2(ii).

Example 7.4. The $M(\lambda)/U/1$ queue has a service time with uniform distribution with density

$$f(t) = \left\{ \begin{array}{ll} 1/\tau & 0 \leq t \leq \tau \\ 0 & \textit{elsewhere}. \end{array} \right.$$

Find the expected length of the queue.

The expected value of the random variable of the service times is

$$\mathbf{E}(S) = \int_{-\infty}^{\infty} t f(t) dt = \frac{1}{\tau} \int_{0}^{\tau} t dt = \frac{1}{2} \tau,$$

and its variance is

$$\begin{aligned} \mathbf{V}(S) &=& \mathbf{E}(S^2) - [\mathbf{E}(S)]^2 = \int_{-\infty}^{\infty} t^2 f(t) dt - \frac{1}{4} \tau^2 \\ &=& \frac{1}{\tau} \int_0^{\tau} t^2 dt - \frac{1}{4} \tau^2 = \frac{1}{3} \tau^2 - \frac{1}{4} \tau^2 = \frac{1}{12} \tau^2. \end{aligned}$$

It follows that $\rho = \frac{1}{2}\lambda\tau$ which must be less than 1 for a finite queue. From (7.26), the expected length of the queue is given by

$$\mathbf{E}(X) = \frac{2\rho - \rho^2 + \frac{1}{12}\lambda^2\tau^2}{2(1-\rho)} = \frac{2\rho - \rho^2 + \frac{1}{3}\rho^2}{2(1-\rho)} = \frac{\rho(3-\rho)}{3(1-\rho)}.$$

PROBLEMS 151

In this particular queue the service time is capped at time τ , so that no service is allowed to take longer than this time.

7.8 Problems

- 7.1. In a single-server queue a Poisson process for arrivals of intensity $\frac{1}{2}\lambda$ and for service and departures of intensity λ are assumed. For the corresponding stationary process find
 - (a) p_n , the probability that there are n persons in the queue,
 - (b) the expected length of the queue,
- (c) the probability that there are not more than two persons in the queue, including the person being served in each case.
- 7.2. Consider a telephone exchange with a very large number of lines available. If n lines are busy the probability that one of them will become free in small time δt is $n\mu\delta t$. The probability of a new call is $\lambda\delta t$ (that is, Poisson), with the assumption that the probability of multiple calls is negligible. Show that $p_n(t)$, the probability that n lines are busy at time t satisfies

$$p_0'(t) = -\lambda p_0(t) + \mu p_1(t),$$

$$p_n'(t) = -(\lambda + n\mu)p_n(t) + \lambda p_{n-1}(t) + (n+1)\mu p_{n+1}(t), \quad (n \ge 1).$$

In the stationary process show by induction that

$$p_n = \lim_{t \to \infty} p_n(t) = \frac{e^{-\lambda/\mu}}{n!} \left(\frac{\lambda}{\mu}\right)^n.$$

Identify the distribution.

7.3. For a particular queue, when there are n customers in the system, the probability of an arrival in the small time interval δt is $\lambda_n \delta t + o(\delta t)$. The service time parameter μ_n is also a function of n. If p_n denotes the probability that there are n customers in the queue in the steady state queue, show by induction that

$$p_n = p_0 \frac{\lambda_0 \lambda_1 \dots \lambda_{n-1}}{\mu_1 \mu_2 \dots \mu_n}, \quad (n = 1, 2, \dots),$$

and find an expression for p_0 .

If $\lambda_n = 1/(n+1)$ and $\mu_n = \mu$, a constant, find the expected length of the queue.

7.4. In a baulked queue (see Example 7.1) not more than $m \ge 2$ people are allowed to form a queue. If there are m individuals in the queue, then any further arrivals are turned away. If the arrivals form a Poisson process with parameter λ and the service distribution is exponential with parameter μ , show that the expected length of the queue is

$$\frac{\rho - (m+1)\rho^{m+1} + m\rho^{m+2}}{(1-\rho)(1-\rho^{m+1})},$$

where $\rho = \lambda/\mu \neq 1$. Deduce the expected length if $\rho = 1$. What is the expected length of the queue if m = 3 and $\rho = 1$?

7.5. Consider the single-server queue with Poisson arrivals occurring with parameter λ , and

exponential service times with parameter μ . In the stationary process, the probability p_n that there are n individuals in the queue is given by

$$p_n = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n, \quad (n = 0, 1, 2, \ldots).$$

Find its probability generating function

$$G(s) = \sum_{n=0}^{\infty} p_n s^n.$$

If $\lambda < \mu$, use this function to determine the mean and variance of the queue length.

- 7.6. A queue is observed to have an average length of 2.8 individuals including the person being served. Assuming the usual exponential distributions for both service times and times between arrivals, what is the traffic density, and the variance of the queue length?
- 7.7. The nonstationary differential-difference equations for a queue with parameters λ and μ are (see Eqn (7.1))

$$\frac{dp_0(t)}{dt} = \mu p_1(t) - \lambda p_0(t),$$

$$\frac{dp_n(t)}{dt} = \lambda p_{n-1}(t) + \mu p_{n+1}(t) - (\lambda + \mu)p_n(t),$$

where $p_n(t)$ is the probability that the queue has length n at time t. Let the probability generating function of the distribution $\{p_n(t)\}$ be

$$G(s,t) = \sum_{n=0}^{\infty} p_n(t)s^n.$$

Show that G(s,t) satisfies the equation

$$s\frac{\partial G(s,t)}{\partial t} = (s-1)(\lambda s - \mu)G(s,t) + \mu(s-1)p_0(t).$$

Unlike the birth and death processes in Chapter 6, this equation contains the unknown probability $p_0(t)$ which complicates its solution. Show that it can be eliminated to leave the following second-order partial differential equation for G(s,t):

$$s(s-1)\frac{\partial^2 G(s,t)}{\partial t \partial s} - (s-1)^2 (\lambda s - \mu) \frac{\partial G(s,t)}{\partial s} - \frac{G(s,t)}{\partial t} - \lambda (s-1)^2 G(s,t) = 0.$$

This equation can be solved by Laplace transform methods.

- 7.8. A call center has r telephones manned at any time, and the traffic density is $\lambda/(r\mu)=100$. Compute how many telephones should be manned in order that the expected number of callers waiting at any time should not exceed 4. Assume a stationary process with inter-arrival times of calls and service times for all operators both exponential with parameters λ and μ respectively (see Section 7.4).
- 7.9. Compare the expected lengths of the two queues $M(\lambda)/M(\mu)/1$ and $M(\lambda)/D(1/\mu)/1$ with $\rho=\lambda/\mu<1$. The queues have parameters such that the mean service time for the former equals the fixed service time in the latter. For which queue would you expect the mean queue length to be the shorter?

PROBLEMS 153

7.10. A queue is serviced by r servers, with the distribution of the inter-arrival times for the queue being exponential with parameter λ and the service times distributions for each server being exponential with parameter μ . If N is the random variable for the length of the queue *including* those being served, show that its expected value is

$$\mathbf{E}(N) = p_0 \left[\sum_{n=1}^{r-1} \frac{\rho^n}{(n-1)!} + \frac{\rho^r [r^2 + \rho(1-r)]}{(r-1)!(r-\rho)^2} \right],$$

where $\rho = \lambda/\mu < 1$, and

$$p_0 = 1 / \left[\sum_{n=0}^{r-1} \frac{\rho^n}{n!} + \frac{\rho^r}{(r-\rho)(r-1)!} \right].$$

(see Eqn (7.11)).

If r=2, show that

$$\mathbf{E}(N) = \frac{4\rho}{4 - \rho^2}.$$

For what interval of values of ρ is the expected length of the queue less than the number of servers?

7.11. For a queue with two servers, the probability p_n that there are n servers in the queue, including those being served, is given by

$$p_0 = \frac{2-\rho}{2+\rho}, \qquad p_1 = \rho p_0, \qquad p_n = 2\left(\frac{\rho}{2}\right)^n p_0, \qquad (n \ge 2),$$

where $\rho = \lambda/\mu$ (see Section 7.4). If the random variable N is the number of people in the queue, find its probability generating function. Hence find the mean length of the queue including those being served.

7.12. The queue $M(\lambda)/D(\tau)/1$, which has a fixed service time of duration τ for every customer, has the probability generating function

$$G(s) = \frac{(1-\rho)(1-s)}{1-se^{\rho(1-s)}},$$

where $\rho = \lambda \tau \ (0 < \rho < 1)$ (see Section 7.5).

- (a) Find the probabilities p_0, p_1, p_2 .
- (b) Find the expected value and variance of the length of the queue.
- (c) Customers are allowed a service time τ which is such that the expected length of the queue is two individuals. Find the value of the traffic density ρ .
- 7.13. For the baulked queue that has a maximum length of m beyond which customers are turned away, the probabilities that there are n individuals in the queue are given by

$$p_n = \frac{\rho^n(1-\rho)}{1-\rho^{m+1}}, \quad (0 < \rho < 1), \quad p_n = \frac{1}{m+1} \quad (\rho = 1),$$

for $n = 0, 1, 2, \dots, m$. Show that the probability generating functions are

$$G(s) = \frac{(1-\rho)[1-(\rho s)^{m+1}]}{(1-\rho^{m+1})(1-\rho s)}, \qquad (\rho \neq 1),$$

and

$$G(s) = \frac{1 - s^{m+1}}{(m+1)(1-s)}, \qquad (\rho = 1).$$

Find the expected value of the queue length including the person being served.

7.14. In Section 7.3(ii), the expected length of the queue with parameters λ and μ , including the person being served, was shown to be $\rho/(1-\rho)$. What is the expected length of the queue *excluding* the person being served?

- 7.15. An $M(\lambda)/M(\mu)/1$ queue is observed over a long period of time. Regular sampling indicates that the mean length of the queue including the person being served is 3, whilst the mean waiting time to completion of service by any customer arriving is 10 minutes. What is the mean service time?
- 7.16. An $M(\lambda)/G/1$ queue has a service time with a gamma distribution with parameters n and α where n is a positive integer. The density function of the gamma distribution is

$$f(t) = \frac{\alpha^n t^{n-1} e^{-\alpha t}}{(n-1)!}, \qquad t > 0.$$

Show that, assuming $\rho = \lambda n/\alpha$, the expected length of the queue including the person being served is given by

$$\frac{\rho[2n-(n-1)\rho]}{2n(1-\rho)]}.$$

- 7.17. The service in a single-server queue must take at least 2 minutes and must not exceed 8 minutes, and the probability that the service is completed at any time between these times is uniformly distributed over the time interval. The average time between arrival is 4 minutes, and the arrival distribution is assumed to be exponential. Calculate expected length of the queue.
- 7.18. A person arrives at an $M(\lambda)/M(\mu)/1$ queue. If there are two people in the queue (excluding customers being served) the customer goes away and does not return. If there are fewer than two queueing then the customer joins the queue. Find the expected waiting time for the customer to the start of service.
- 7.19. A customer waits for service in a bank in which there are four counters with customers at each counter but otherwise no one is queueing. If the service time distribution is negative exponential with parameter μ for each counter, for how long should the queueing customer have to wait?
- 7.20. A hospital has a waiting list for two operating theaters dedicated to a particular group of operations. Assuming that the queue is stationary, and that the waiting list and operating time can be viewed as an $M(\lambda)/M(\mu)/1$ queue, show that the expected value of the random variable N representing the length of the queue is given by

$$\mathbf{E}(N) = \frac{\rho^3}{4 - \rho^2}, \qquad \rho = \frac{\lambda}{\mu} < 2.$$

The average waiting list is very long at 100 individuals. Why will ρ be very close to 2? Put $\rho=2-\varepsilon$ where $\varepsilon>0$ is small. Show that $\varepsilon\approx0.02$. A third operating theater is brought into use with the same operating parameter μ . What effect will this new theater have on the waiting list eventually?

7.21. Consider the $M(\lambda)/M(\mu)/r$ queue which has r servers such that $\rho = \lambda/\mu < r$. Adapting the method for the single-server queue (Section 7.3 (iii)), explain why the average service

PROBLEMS 155

time for (n-r+1) customers to be served is $(n-r+1)/(\mu r)$ if $n \ge r$. What is it if n < r? If $n \ge r$, show that the expected value of the waiting time random variable T until service is

$$\mathbf{E}(T) = \sum_{n=r}^{\infty} \frac{n-r+1}{r\mu} p_n.$$

What is the average waiting time if service is included?

- 7.22. Consider the queue $M(\lambda)/M(\mu)/r$ queue. Assuming that $\lambda < r\mu$, what is the probability in the long term that at any instant there is no one queueing excluding those being served?
- 7.23. Access to a toll road is controlled by a plaza of r toll booths. Vehicles approaching the toll booths choose one at random: any toll booth is equally likely to be the one chosen irrespective of the number of cars queueing (perhaps an unrealistic situation). The payment time is assumed to be negative exponential with parameter μ , and vehicles are assumed to approach as Poisson with parameter λ . Show that, viewed as a stationary process, the queue of vehicles at any toll booth is an $M(\lambda/r)/M(\mu)/1$ queue assuming $\lambda/(r\mu) < 1$. Find the expected number of vehicles queueing at any toll booth. How many cars would you expect to be queueing over all booths?

One booth is out of action, and vehicles distribute themselves randomly over the remaining booths. Assuming that $\lambda/[(r-1)\mu] < 1$, how many extra vehicles can be expected to be queueing overall?

- 7.24. In an $M(\lambda)/M(\mu)/1$ queue, it is decided that the service parameter μ should be adjusted to make the mean length of the busy period 10 times the slack period to allow the server some respite. What should μ be in terms of λ in the stationary process?
- 7.25. In the baulked queue (see Example 7.1) not more than $m \geq 2$ people (including the person being served) are allowed to form a queue, the arrivals having a Poisson distribution with parameter λ . If there are m individuals in the queue, then any further arrivals are turned away. It is assumed that the service distribution is exponential with rate μ . If $\rho = \lambda/\mu \neq 1$, show that the expected length of the busy periods is given by $(1 \rho^m)/(\mu \lambda)$.
- 7.26. The $M(\lambda)/D(\tau)/1$ queue has a fixed service time τ , and from Section 7.5, its probability generating function is

$$G(s) = \frac{(1 - \lambda \tau)(1 - s)}{1 - se^{\lambda \tau(1 - s)}}.$$

Show that the expected length of its busy periods is $\tau/(1-\lambda\tau)$.

7.27. A certain process has the (r+1) states E_n , $(n=0,1,2,\ldots r)$. The transition rates between state n and state n+1 is $\lambda_n=(r-n)\lambda$, $(n=0,1,2,\ldots,r-1)$, and between n and n-1 is $\mu_n=n\mu$, $(n=1,2,\ldots,r)$. These are the only possible transitions at each step in the process. [This could be interpreted as a 'capped' birth and death process in which the population size cannot exceed r.]

Find the differential-difference equation for the probabilities $p_n(t)$, $(n=0,1,2,\ldots,r)$, that the process is in state n at time t. Consider the corresponding stationary process in which $dp_n/dt \to \infty 0$ and $p_n(t) \to p_n$ as $t \to \infty$. Show that

$$p_n = \left(\frac{\lambda}{\mu}\right)^n \binom{r}{n} \frac{\mu^r}{(\lambda + \mu)^r}, \quad (n = 0, 1, 2, \dots, r).$$

CHAPTER 8

Reliability and Renewal

8.1 Introduction

The expected life until breakdown occurs of domestic equipment such as television sets, DVD recorders, washing machines, central heating boilers, etc. is important to the consumer. Failure means the temporary loss of the facility and expense. A television set, for example, has a large number of components, and the failure of just one of them may cause the failure of the set. Increasingly, individual components now have high levels of reliability, and the reduction of the likelihood of failure by the inclusion of alternative components or circuits is probably not worth the expense for a television which will suffer some deterioration with time anyway. Also failure of such equipment is unlikely to be life-threatening.

In other contexts reliability is extremely important for safety or security reasons, as in, for example, aircraft or defense installations where failure could be catastrophic. In such systems back-up circuits and components and fail-safe systems are necessary, and there could still be the remote possibility of both main and secondary failure. Generally, questions of cost, safety, performance, reliability, and complexity have to be resolved together with risk assessment.

In medical situations the interest lies in the survivability of the patient, that is, the expected survival time to death or relapse, under perhaps alternative medical treatments. Again factors such as cost and quality of life can be important.

Reliability is determined by the probability of a device giving a specified performance for an intended period. For a system we might be interested in the probability that it is still operating at time t, the expected time to failure and the failure rate. There are many external factors which could affect these functions such as manufacturing defects (which often cause early failure), unexpected operating conditions or operator error.

8.2 The reliability function

Let T be a nonnegative random variable which is the time to failure or **failure time** for a component, device, or system. Suppose that the **distribution function** of T is F so that

$$\begin{split} F(t) &= \mathbf{P}\{\text{component fails at or before time } t\}, \\ &= \mathbf{P}\{T \leq t\}, \quad t \geq 0. \end{split}$$

The **density** of T is denoted by f, that is,

$$f(t) = \frac{dF(t)}{dt}. (8.1)$$

It is more convenient for the consumer or customer to look at the **reliability** or **survivor function**, R(t), rather than the failure time distribution. The function R(t) is the probability that the device is still operating after time t. Thus

$$R(t) = \mathbf{P}\{T > t\} = 1 - F(t). \tag{8.2}$$

From (8.1)

$$f(t) = \frac{dF(t)}{dt} = \lim_{\delta t \to 0} \frac{F(t + \delta t) - F(t)}{\delta t},$$

$$= \lim_{\delta t \to 0} \frac{\mathbf{P}\{T \le t + \delta t\} - \mathbf{P}\{T \le t\}}{\delta t},$$

$$= \lim_{\delta t \to 0} \frac{\mathbf{P}\{t < T \le t + \delta t\}}{\delta t}.$$

Hence for small δt , $f(t)\delta t$ is approximately the probability that failure occurs in the time interval $(t, t + \delta t)$.

The **failure rate function** or **hazard function** r(t) is defined as that function for which $r(t)\delta t$ is the conditional probability that failure occurs in the interval $(t, t + \delta t)$ given that the device was operating at time t. As the limit of this conditional probability, the failure rate function is given by

$$r(t) = \lim_{\delta t \to 0} \frac{\mathbf{P}\{t < T \le t + \delta t | T > t\}}{\delta t}.$$
(8.3)

There are two important results relating the reliability and failure rate functions which will be be proved in the following theorem.

Theorem 8.1

(i) The failure rate function

$$r(t) = \frac{f(t)}{R(t)}. (8.4)$$

(ii) The reliability function

$$R(t) = \exp\left[-\int_0^t r(s)ds\right]. \tag{8.5}$$

Proof (i) Use the conditional probability definition (Section 1.3):

$$\mathbf{P}\{A|B\} = \mathbf{P}\{A\cap B\}/\mathbf{P}\{B\}.$$

Thus

$$\begin{split} \mathbf{P}\{t < T \leq t + \delta t | T > t\} &= \frac{\mathbf{P}\{(t < T \leq t + \delta t) \cap (T > t)\}}{\mathbf{P}\{T > t\}} \\ &= \frac{\mathbf{P}\{t < T \leq t + \delta t\}}{\mathbf{P}\{T > t\}}. \end{split}$$

From (8.2) and (8.3)

$$r(t) = \lim_{\delta t \to 0} \frac{\mathbf{P}\{t < T \le t + \delta t\}}{\delta t} \frac{1}{\mathbf{P}\{T > t\}} = \frac{f(t)}{R(t)}.$$

(ii) Using (8.1) and the last result

$$r(t) = \frac{f(t)}{R(t)} = \frac{dF(t)}{dt} \frac{1}{R(t)} = -\frac{dR(t)}{dt} \frac{1}{R(t)} = -\frac{d}{dt} (\ln R(t)).$$

Integration of this result gives

$$\ln R(t) = -\int_0^t r(s)ds,$$

since R(0) = 1 (the device must be operating at start-up). Hence

$$R(t) = \exp\left[-\int_0^t r(s)ds\right].$$

Example 8.1 Whilst in use, an office photocopier is observed to have a failure rate function $r(t) = 2\lambda t$ per hour where $\lambda = 0.00028 (hours)^{-2}$; in other words, r(t) is the probability that the photocopier fails within the next hour given that it was working at the beginning of the hour. What is the probability that the photocopier is still operational after 20 hours? Find also the associated probability density function f(t) for the problem.

The failure rate function increases linearly with time. By Theorem 8.1(ii),

$$R(t) = \exp\left[-\int_0^t r(s)ds\right] = \exp\left[-\int_0^t 2\lambda t dt\right] = \exp(-\lambda t^2).$$

Thus the probability that the photocopier is still working after 20 hours is

$$R(20) = e^{-0.00028 \times (20)^2} = 0.89.$$

By Theorem 8.1(i), the associated probability density function is

$$f(t) = r(t)R(t) = 2\lambda t e^{-\lambda t^2},$$

which is a Weibull distribution (see Section 1.8) with parameters 2 and λ .

8.3 Exponential distribution and reliability

For the exponential distribution (see Section 1.8), the probability density function is $f(t)=\lambda e^{-\lambda t}$ $(t\geq 0)$. Thus, for the exponential distibution,

$$R(t) = 1 - F(t) = 1 - \int_0^t f(s)ds = 1 + [e^{-\lambda s}]_0^t = e^{-\lambda t}, \tag{8.6}$$

and

$$r(t) = \frac{f(t)}{R(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda.$$

This constant failure rate implies that the probability of failure in a time interval δt given survival at time t is independent of the time at which this occurs. Thus the conditional survival probability for times t beyond, say, time s is

$$\begin{split} \mathbf{P}\{T>s+t|T>s\} &=& \mathbf{P}\{(T>s+t)\cap(T>s)\}\\ &=& \frac{\mathbf{P}\{T>s+t\}}{\mathbf{P}\{T>s\}}\\ &=& \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}, \end{split}$$

which is the no memory property of the exponential distribution. The implication is that such devices do not deteriorate with age, which means that they can be re-used with the same probability of subsequent failure at any stage in their lives.

8.4 Mean time to failure

In terms of the probability density function, the mean time to failure is

$$\mathbf{E}(T) = \int_0^\infty t f(t) dt. \tag{8.7}$$

The mean can be expressed in terms of the reliability function R(t) as follows. Since, from Eqn (8.1) and Eqn (8.2), f(t) = -dR/dt, then

$$\mathbf{E}(T) = -\int_0^\infty t \frac{dR(t)}{dt} dt = -[tR(t)]_0^\infty + \int_0^\infty R(t) dt$$

after integrating by parts. Assuming that $tR(t) \to 0$ as $t \to \infty$ (this is certainly true for the negative exponential distribution since $R(t) = e^{-\lambda t}$ which tends to zero faster than $t \to \infty$, then

$$\mathbf{E}(T) = \int_0^\infty R(t)dt. \tag{8.8}$$

For the exponential distribution of the previous section, $R(t)=e^{-\lambda t}$ and

$$\mathbf{E}(T) = \int_0^\infty e^{-\lambda t} dt = 1/\lambda. \tag{8.9}$$

Example 8.2 Find the mean time to failure for the photocopier of Example 8.1. What is the variance of the failure times?

It was shown that reliability function was $R(t) = e^{-\lambda t^2}$. Hence the mean time to failure is

$$\mathbf{E}(T) = \int_{0}^{\infty} e^{-\lambda t^{2}} dt = \frac{1}{2} \sqrt{(\pi/\lambda)} = 52.96 \text{ hours},$$

using the standard formula for the integral (see the Appendix).

Now

$$\begin{split} \mathbf{E}(T^2) &= \int_0^\infty t^2 f(t) dt = -\int_0^\infty t^2 \frac{dR(t)}{dt} dt \\ &= -[t^2 R(t)]_0^\infty + \int_0^\infty 2t R(t) dt = \int_0^\infty 2t e^{-\lambda t^2} dt \end{split}$$

$$= 1/\lambda$$
,

since $t^2R(t)=t^2e^{-\lambda t^2}\to 0$ as $t\to\infty$. Hence the variance is given by

$$\mathbf{V}(T) = \mathbf{E}(T^2) - [\mathbf{E}(T)]^2 = \frac{1}{\lambda} - \frac{\pi}{4\lambda} = \frac{4-\pi}{4\lambda} = 766.4 \text{ (hours)}^2.$$

8.5 Reliability of series and parallel systems

In many systems, components can be in series configurations as in Figure 8.1(a), or in parallel configurations as in Figure 8.1(b), or in complex series/parallel systems as in Figure 8.1(c), perhaps with bridges as shown in Figure 8.1(d).

Figure 8.1 (a) Components in series. (b) Components in parallel. (c) Mixed series/parallel system. (d) Mixed system with bridge.

In the series of components in Figure 8.1(a), the system is only operable if all the components are working; if any one fails then the system fails. Suppose that the system has m components c_1, c_2, \ldots, c_m in series with corresponding independent reliability functions $R_1(t), R_2(t), \ldots, R_m(t)$ (generally this is not true any one failure affects other components in the system). The reliability functions are not independent but the results of the reliability of the system depend on assuming the independence of the components. If T is the random variable of the time to failure in the system, and T_i is the random variable of the time to failure of component c_i , then

$$R(t) = \mathbf{P} \{ \text{ all } T > t \}$$

$$= \mathbf{P} \{ T_1 > t \text{ and } T_2 > t \text{ and } \cdots \text{ and } T_m > t \}$$

$$= R_1(t)R_2(t) \dots R_m(t) = \prod_{n=1}^m R_n(t), \tag{8.10}$$

which is simply the product of the individual reliability functions. The failure rate

function

$$r(t) = -\frac{d}{dt} \ln R(t) = -\frac{d}{dt} \ln \prod_{n=1}^{m} R_n(t) = -\frac{d}{dt} \sum_{n=1}^{m} \ln R_n(t) = \sum_{n=1}^{m} r_n(t)$$
(8.11)

is the sum of the individual failure rate functions.

For the parallel configuration in Figure 8.1(b), it is easier to start from the distribution function of the time to failure F(t). Since system failure can only occur when all components have failed,

$$F(t) = \mathbf{P}\{T \le t\} = \mathbf{P}\{\text{system fails at or before time } t\},$$

$$= \mathbf{P}\{\text{all components fail at or before time } t\},$$

$$= \mathbf{P}\{T_1 \le t \text{ and } T_2 \le t \text{ and } \cdots \text{ and } T_m \le t\}$$

$$= F_1(t)F_2(t) \dots F_m(t) = \prod_{n=1}^m F_n(t),$$

where $F_n(t)$ is the distribution function of the time to failure of c_n . Consequently, the reliability function for m parallel components is

$$R(t) = 1 - F(t) = 1 - \prod_{n=1}^{m} F_n(t) = 1 - \prod_{n=1}^{m} (1 - R_n(t)).$$
 (8.12)

A formula for r(t) in terms of the individual functions $r_n(t)$ can be found but it is not particularly illuminating.

Example 8.3 If each component c_n (n = 1, 2, ..., m) in a series arrangement has an exponentially distributed failure time with parameter λ_n respectively, find the reliability function and the mean time to failure if the failure times are independent.

The reliability function for c_n is $R_n(t) = e^{-\lambda_n t}$. Hence by Eqn (8.10), the reliability function for the series of components is

$$R(t) = \prod_{n=1}^{m} R_n(t) = e^{-\lambda_1 t} e^{-\lambda_2 t} \cdots e^{-\lambda_m t} = e^{-(\lambda_1 + \lambda_2 + \cdots + \lambda_m)t},$$

which is the same reliability function for that of a single component with exponentially distributed failure time with parameter $\sum_{n=1}^{m} \lambda_n$. Consequently by Eqn (8.9) the mean time to failure is $1/\sum_{n=1}^{m} \lambda_n$.

Example 8.4 Three components c_1 , c_2 , c_3 in parallel have times to failure which are independent and identically exponential distributions with the same parameter λ . Find the mean time to failure.

From (8.12) the reliability function is, since $R_n(t) = e^{-\lambda t} (n = 1, 2, 3)$,

$$R(t) = 1 - (1 - e^{-\lambda t})^3.$$

The mean time to failure is

$$\mathbf{E}(T) = \int_{0}^{\infty} R(t)dt = \int_{0}^{\infty} \left[1 - (1 - e^{-\lambda t})^{3}\right] dt,$$

$$= \int_0^\infty \left[1 - \left(1 - 3e^{-\lambda t} + 3e^{-2\lambda t} - e^{-3\lambda t} \right) \right] dt,$$

$$= \int_0^\infty \left[3e^{-\lambda t} - 3e^{-2\lambda t} + e^{-3\lambda t} \right] dt$$

$$= \left[\frac{3}{\lambda} - \frac{3}{2\lambda} + \frac{1}{3\lambda} \right] = \frac{11}{6\lambda}.$$

For the mixed system in Figure 8.1(c), each series subsystem has its own reliability function. Thus the series c_1 , c_2 , c_3 has the reliability function $R_1(t)R_2(t)R_3(t)$ and c_5 , c_6 the reliability function $R_5(t)R_6(t)$. These composite components are then in parallel with c_4 . Hence, by (8.12), the reliability function for the system is

$$R(t) = 1 - (1 - R_1(t)R_2(t)R_3(t))(1 - R_4(t))(1 - R_5(t)R_6(t)).$$

In Figure 8.1(d) the effect of the bridge containing c_3 is equivalent to four composite components in parallel from the failure potential point of view. We can re-draw the equivalent series/parallel system without the bridge as shown in Figure 8.2. It can

Figure 8.2 Series/parallel system equivalent to the bridged system in Figure 8.1(d).

be shown that the reliability function is

$$R(t) = 1 - (1 - R_1(t)R_2(t))(1 - R_1(t)R_3(t)R_5(t)) \times (1 - R_4(t)R_3(t)R_2(t))(1 - R_4(t)R_5(t)).$$

8.6 Renewal processes

Consider a system which has a single component which, when it fails, is replaced by an identical component with the same time to failure or **lifetime** probability distribution. It is assumed that there is no delay at replacement. In this **renewal process** we might ask: how many renewals do we expect in a given time t? Let N(t) be the number of renewals up to and including time t (it is assumed that the first component is installed at start-up at time t=0). Let T_r be a nonnegative random variable which

represents the time to failure of the r-th component measured from its introduction. The time to failure of the first n components, S_n , is given by

$$S_n = T_1 + T_2 + \dots + T_n.$$

Assuming that the random variables are independent each with distribution function $F(t_i)$, $(i=1,2,\ldots n)$, then the joint distribution function is the probability that $T_1 \leq t_1, T_2 \leq t_2 \ldots, T_n \leq t_n$, that is,

$$\mathbf{P}\{T_1 \leq t_1 \text{ and } T_2 \leq t_2 \text{ and } \dots \text{ and } T_n \leq t_n\} = F(t_1)F(t_2)\cdots F(t_n),$$

since T_1, T_2, \ldots, T_n are independent random variables. The corresponding probability density function is $f(t_1)f(t_2)\cdots f(t_n)$ where $f(t_i)=dF(t_i)/dt$ $(i=1,2,\ldots n)$.

We want to construct a formula for $P\{S_n \leq t\}$. Consider first the probability

$$\mathbf{P}\lbrace T_1 + T_2 \leq t \rbrace = \int \int_{\substack{x \geq 0, y \geq 0 \\ x + y \leq t}} f(x)f(y)dxdy,$$
$$= \int_0^t \int_0^{t-y} f(x)f(y)dxdy,$$

since the joint density function is integrated over the triangle shown in Figure 8.3. Hence

$$\mathbf{P}\{T_1 + T_2 \le t\} = \int_0^t F(t - y)f(y)dy.$$

If we put

Figure 8.3 Area of integration for nonnegative random variables.

$$\mathbf{P}\{T_1 + T_2 \le t\} = F_2(t),$$

then

$$F_2(t) = \int_0^t F_1(t - y)f(y)dy,$$
(8.13)

putting $F_1(t) = F(t)$ to suggest the iterative scheme. We can now repeat this process to obtain the next distribution

$$F_3(t) = \mathbf{P}\{S_3 \le t\} = \int_0^t F_2(t-y)f(y)dy,$$

and, in general,

$$F_n(t) = \mathbf{P}\{S_n \le t\} = \int_0^t F_{n-1}(t-y)f(y)dy.$$
 (8.14)

Example 8.5 The lifetime random variables of components in a renewal process with instant renewal are independently and identically distributed with constant failure rate λ . Find the probability that at least two components have been replaced at time t.

Since the components have constant failure rates, then they must have exponentially distributed failure times with parameter λ . Hence $f(t) = \lambda e^{-\lambda t}$ and $F(t) = 1 - e^{-\lambda t}$. Two components or more will have failed if $S_2 = T_1 + T_2 \le t$. Hence by Eqn (8.15)

$$P\{S_2 \le t\} = F_2(t) = \int_0^t F(t-y)f(y)dy = \int_0^t (1 - e^{-\lambda(t-y)})\lambda e^{-\lambda y}dy$$

$$= \lambda \int_0^t (e^{-\lambda y} - e^{-\lambda t}dy,$$

$$= \lambda \left[-\frac{e^{-\lambda y}}{\lambda} - ye^{-\lambda t} \right]_0^t,$$

$$= 1 - e^{\lambda t} - \lambda te^{-\lambda t} = 1 - (1 + \lambda t)e^{-\lambda t}.$$
(8.15)

The general formula for the density $f_n(t)$ is derived in the next section.

8.7 Expected number of renewals

We can find the probability that N(t), the number of renewals up to and including t, is n, and the expected value of N(t) as follows. The probability can be expressed as the following difference:

$$\mathbf{P}\{N(t) = n\} = \mathbf{P}\{N(t) \ge n\} - \mathbf{P}\{N(t) \ge n + 1\}.$$

We now use the important relation between S_n , the time to failure of the first n components, and N(t), namely

$$\mathbf{P}\{S_n \le t\} = \mathbf{P}\{N(t) \le n\}.$$

This is true since if the total time to failure of n components is less than t, then there must have been at least n renewals up to time t. Hence

$$\mathbf{P}\{N(t) = n\} = \mathbf{P}\{S_n \le t\} - \mathbf{P}\{S_{n+1} \le t\} = F_n(t) - F_{n+1}(t),$$

by (8.14). Thus the expected number of renewals by time t is

$$\mathbf{E}(N(t)) = \sum_{n=1}^{\infty} n \left[F_n(t) - F_{n+1}(t) \right],$$

$$= \left[F_1(t) + 2F_2(t) + 3F_3(t) + \cdots \right] - \left[F_2(t) + 2F_3(t) + \cdots \right],$$

$$= F_1(t) + F_2(t) + F_3(t) + \cdots,$$

$$= \sum_{n=1}^{\infty} F_n(t),$$
(8.16)

which is simply the sum of the individual distribution functions which are given iteratively by Eqn (8.14). This is a general formula for any cumulative distribution function $F_n(t)$. The corresponding sequence of density functions are given by

$$f_n(t) = \frac{dF_n(t)}{dt} = \frac{d}{dt} \int_0^t F_{n-1}(t-y)f(y)dy,$$

$$= F_n(0)f(t) + \int_0^t F'_{n-1}(t-y)f(y)dy,$$

$$= \int_0^t f_{n-1}(t-y)f(y)dy,$$
(8.17)

since $F_n(0) = 0$. Note that this is the same iterative formula as for the probability distibutions given by Eqn (8.14).

Suppose now that the failure times are exponentially distributed with parameter λ : this is essentially a Poisson process. From Eqn (8.17).

$$f_2(t) = \frac{dF_2(t)}{dt} = \lambda^2 t e^{-\lambda t}.$$
(8.18)

Hence the density function $f_n(t)$ is a gamma distribution with parameters (n, λ) . We can prove this by induction. Assume that

$$f_n(t) = \frac{\lambda^n}{(n-1)!} t^{n-1} e^{-\lambda t}.$$

Then, from (8.19),

$$\int_0^t \frac{\lambda^n}{(n-1)!} (t-y)^{n-1} e^{-\lambda(t-y)} \lambda e^{-\lambda y} dy = \frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda t} \int_0^t (t-y)^{n-1} dy,$$

$$= \frac{\lambda^{n+1}}{n!} (t-y)^n e^{-\lambda t} = f_{n+1}(t).$$

Since the result has already been established for $f_2(t)$ in Eqn (8.18), the result is true by induction for $n=3,4,\ldots$ Thus

$$\sum_{n=1}^{\infty} f_n(t) = \sum_{n=1}^{\infty} \frac{\lambda^n}{(n-1)!} t^{n-1} e^{-\lambda t} = \lambda e^{\lambda t} e^{-\lambda t} = \lambda.$$
 (8.19)

Finally, from (8.19)

$$\mathbf{E}(N(t)) = \sum_{n=1}^{\infty} F_n(t) = \sum_{n=1}^{\infty} \int_0^t f_n(t)dt,$$
$$= \int_0^t \sum_{n=1}^{\infty} f_n(t)dt = \int_0^t \lambda dt = \lambda t,$$

a result which could have been anticipated since this is a Poisson process.

The expected value of N(t) is known as the **renewal function** for the process.

PROBLEMS 167

8.8 Problems

8.1. The lifetime of a component has a uniform density function given by

$$f(t) = \begin{cases} 1/(t_1 - t_0) & 0 < t_0 < t < t_1 \\ 0 & \text{otherwise.} \end{cases}$$

For all t > 0, obtain the reliability function R(t) and the failure rate function r(t) for the component. Obtain the expected life of the component.

8.2. Find the reliability function R(t) and the failure rate function r(t) for the gamma density

$$f(t) = \lambda^2 t e^{-\lambda t}, \qquad t > 0.$$

How does r(t) behave for large t? Find the mean and variance of the time to failure.

8.3. A failure rate function is given by

$$r(t) = \frac{t}{1+t^2}, \qquad t \ge 0.$$

The rate of failures peaks at t=1 and then declines towards zero as $t\to\infty$: failure becomes less likely with time (see Figure 8.4). Find the reliability function, and the corresponding

Figure 8.4 Failure rate distribution r(t).

probability density.

8.4. A piece of office equipment has a piecewise failure rate function given by

$$r(t) = \begin{cases} 2\lambda_1 t, & 0 < t \le t_0, \\ 2(\lambda_1 - \lambda_2)t_0 + 2\lambda_2 t, & t > t_0 \end{cases}$$
 $\lambda_1, \lambda_2 > 0.$

Find its reliability function.

8.5. A laser printer is observed to have a failure rate function $r(t) = 2\lambda t$ per hour (t > 0) whilst in use, where $\lambda = 0.00021 (\text{hours})^{-2}$: r(t) is a measure of the probability of the printer failing in any hour given that it was operational at the beginning of the hour. What is the probability that the printer is working after 40 hours of use? Find the probability density function for the time to failure. What is the expected time before the printer will need maintenance?

8.6. The time to failure is assumed to be gamma with parameters α and n, that is,

$$f(t) = \frac{\alpha(\alpha t)^{n-1} e^{-\alpha t}}{(n-1)!}, \qquad t > 0.$$

Show that the reliability function is given by

$$R(t) = e^{-\alpha t} \sum_{r=0}^{n-1} \frac{\alpha^r t^r}{r!}.$$

Find the failure rate function and show that $\lim_{t\to\infty} r(t) = \alpha$. What is the expected time to failure?

- 8.7. An electrical generator has an exponentially distributed failure time with parameter λ_f and the subsequent repair time is exponentially distributed with parameter λ_r . The generator is started up at time t=0. What is the mean time for generator to fail and the mean time from t=0 for it to be operational again?
- 8.8. A hospital takes a grid supply of electricity which has a constant failure rate λ . This supply is backed up by a stand-by generator which has a gamma distributed failure time with parameters $(2, \mu)$. Find the reliability function R(t) for the whole electricity supply. Assuming that time is measured in hours, what should the relation between the parameters λ and μ be in order that R(1000) = 0.999?
- 8.9. The components in a renewal process with instant renewal are identical with constant failure rate $\lambda = (1/50)(\text{hours})^{-1}$. If the system has one spare component which can take over when the first fails, find the probability that the system is operational for at least 24 hours. How many spares should be carried to ensure that continuous operation for 24 hours occurs with probability 0.98?
- 8.10. A device contains two components c_1 and c_2 with independent failure times T_1 and T_2 from time t=0. If the densities of the times to failure are f_1 and f_2 with probability distributions F_1 and F_2 , show that the probability that c_1 fails before c_2 is given by

$$\begin{split} P\{T_1 < T_2\} &= \int_{y=0}^{\infty} \int_{x=0}^{y} f_1(x) f_2(y) dx dy, \\ &= \int_{y=0}^{\infty} F_1(y) f_2(y) dy. \end{split}$$

Find the probability $P\{T_1 < T_2\}$ in the cases:

- (a) both failure times are exponentially distributed with parameters λ_1 and λ_2 ;
- (b) both failure times have gamma distributions with parameters $(2, \lambda_1)$ and $(2, \lambda_2)$.
- 8.11. Let T be a random variable for the failure time of a component. Suppose that the distribution function of T is

$$F(t) = \mathbf{P}(T < t), \quad t > 0,$$

with density

$$f(t) = \alpha_1 e^{-\lambda_1 t} + \alpha_2 e^{-\lambda_2 t}, \qquad \alpha_1, \alpha_2 > 0, \qquad \lambda_1, \lambda_2 > 0,$$

where the parameters satisfy

$$\frac{\alpha_1}{\lambda_1} + \frac{\alpha_2}{\lambda_2} = 1.$$

PROBLEMS 169

Find the reliability function R(t) and the failure rate function r(t) for this 'double' exponential distribution. How does r(t) behave as $t \to \infty$?

- 8.12. The lifetimes of components in a renewal process with instant renewal are identically distributed with constant failure rate λ . Find the probability that at least three components have been replaced by time t.
- 8.13. The lifetimes of components in a renewal process with instant renewal are identically distributed with a failure rate which has a uniform distribution with density

$$f(t) = \begin{cases} 1/k & 0 < t < k \\ 0 & \text{elsewhere.} \end{cases}$$

Find the probability that at least two components have been replaced at time t.

8.14. The lifetimes of components in a renewal process with instant renewal are identically distributed each with reliability function

$$R(t) = \frac{1}{2}(e^{-\lambda t} + e^{-2\lambda t}), \qquad t \ge 0, \qquad \lambda > 0.$$

Find the probability that at least two components have been replaced by time t.

8.15. The random variable T is the time to failure from t=0 of a system. The distribution function for T is F(t), (t>0). Suppose that the system is still functioning at time $t=t_0$. Let T_{t_0} be the conditional time to failure from this time, and let $F_{t_0}(t)$ be its distribution function. Show that

$$F_{t_0}(t) = \frac{F(t+t_0) - F(t_0)}{1 - F(t_0)},$$

and that the mean of T_{t_0} is

$$\mathbf{E}(T_{t_0}) = \frac{1}{1 - F(t_0)} \int_{t_0}^{\infty} [1 - F(u)] du.$$

8.16. Suppose that the random variable T of the time to failure of a system has a uniform distribution for t>0 given by

$$F(t) = \left\{ \begin{array}{ll} t/t_1, & 0 \leq t \leq t_1 \\ 1 & t > t_1 \end{array} \right. .$$

Using the result from Problem 8.15, find the conditional probability function assuming that the system is still working at time $t=t_0$.

CHAPTER 9

Branching and Other Random Processes

9.1 Introduction

Branching processes are concerned with the generational growth and decay of populations. The populations could be mutant genes, neutrons in a nuclear chain reaction, or birds or animals which have annual cycles of births. As the name implies a branching process creates a **tree** with branches which can split into other branches at each step or at each generation in a chain. In this chapter we shall look at a simplified problem in which the process starts from a single individual which generates the tree. Such a process models a discrete application such as cellular growth rather than an animal population in which both births and deaths are taking place continuously in time.

9.2 Generational growth

Consider a model in which a single individual (cell, organism) has known probabilities of producing a given number of descendants at a given time, and produces no further descendants. In turn these descendants each produce further descendants at the next subsequent time with the same probabilities. The process carries on in the same way creating successive **generations** as indicated in Figure 9.1. At each step there is a probability p_j that any individual creates j descendants, and it is assumed that this probability distribution $\{p_j\}$ is the same for every individual at every gener-

Figure 9.1 Generational growth in a branching process.

ation. We are interested in the population size in generation n: the earlier generations have either died out or are not counted in the process.

Let X_n be a random variable representing the population size of generation n. Since the process starts with one individual, then $X_0 = 1$. In the representation of a particular process in Figure 9.1,

$$X_1 = 3, \qquad X_2 = 7, \qquad X_3 = 12, \dots$$

As described the generations evolve in step, and occur at the same time steps. Note that populations do not necessarily increase with the generations.

Suppose that the probability distribution of descendant numbers $\{p_j\}$ has the probability generating function

$$G(s) = \sum_{j=0}^{\infty} p_j s^j. \tag{9.1}$$

(G(s)) is really $G_1(s)$ but the suffix is usually suppressed.) Since $X_0=1$, G(s) is the generating function for the random variable X_1 . For the second generation it is assumed that each descendant has the same probability p_j of independently creating j descendants. Let $G_2(s)$ be the generating function of the random variable X_2 , which is the sum of X_1 random variables (the descendants of X_0), which, in turn, are denoted by the independent random variables $Y_1, Y_2, \ldots, Y_{X_1}$ (assumed to be identically distributed), so that

$$X_2 = Y_1 + Y_2 + \dots + Y_{X_1}.$$

Thus

$$P(Y_k = j) = p_j, \qquad P(X_1 = m) = p_m.$$

Let

$$P(X_2 = n) = h_n.$$

Then, using the partition law (the law of total probability) (see Section 1.3),

$$h_n = P(X_2 = n) = \sum_{r=0}^{\infty} P(X_2 = n | X_1 = r) P(X_1 = r)$$
$$= \sum_{r=0}^{\infty} p_r P(X_2 = n | X_1 = r).$$

Now multiply h_n by s^n and sum over n to create the generating function $G_2(s)$:

$$G_2(s) = \sum_{n=0}^{\infty} h_n s^n = \sum_{r=0}^{\infty} p_r \sum_{n=0}^{\infty} P(X_2 = n | X_1 = r) s^n.$$
 (9.2)

Consider the latter summation in which r is a fixed integer. Then, by Section 1.9 where the probability generating function is defined,

$$\sum_{n=0}^{\infty} P(X_2 = n | X_1 = r) s^n = \mathbf{E}(s^{X_2}) = \mathbf{E}(s^{Y_1 + Y_2 + \dots + Y_r})$$

$$= \mathbf{E}(s^{Y_1}) \mathbf{E}(s^{Y_2}) \dots \mathbf{E}(s^{Y_r}) \quad \text{(by independence)}$$

$$= G(s)G(s)\dots G(s) \quad \text{(multiplied r times)}$$
$$= [G(s)]^r.$$

This result also follows from the observation that the distribution of X_2 is the **convolution** of the distribution $\{p_i\}$ with itself r times. Finally Eqn (9.2) becomes

$$G_2(s) = \sum_{r=0}^{\infty} p_r [G(s)]^r = G(G(s)). \tag{9.3}$$

This result holds between any two successive generations. Thus if $G_m(s)$ is the probability generating function of X_m , then

$$G_m(s) = G_{m-1}(G(s)) = G(G(\dots(G(s))\dots)),$$
 (9.4)

which has G(s) nested m times on the right-hand side. This general result will not be proved here. In this type of branching process, G(s) is the probability generating function of the probability distribution of the numbers of descendants from any individual in any generation to the next generation.

Example 9.1. Suppose in a branching process that any individual has a probability $p_j = 1/2^{j+1}$ (j = 0, 1, 2, ...) of producing j descendants in the next generation. Find the generating function for X_n , the random variable representing the number of descendants in the n-th generation given that $X_0 = 1$.

From (9.1), the probability generating function for X_1 is

$$G(s) = \sum_{i=0}^{\infty} p_j s^j = \sum_{i=0}^{\infty} \frac{1}{2^{j+1}} s^j = \frac{1}{2-s},$$

after summing the geometric series. From (9.3)

$$G_2(s) = \frac{1}{2 - G(s)} = \frac{1}{2 - \frac{1}{2 - s}} = \frac{1}{2 - \frac{1}{2 - s}} = \frac{2 - s}{3 - 2s},$$

$$G_3(s) = \frac{2 - G(s)}{3 - 2G(s)} = \frac{3 - 2s}{4 - 3s}, \qquad G_4(s) = \frac{4 - 3s}{5 - 4s}.$$

Generally

$$G_n(s) = G(G_{n-1}(s)) = \frac{1}{2 - G_{n-1}(s)} = \frac{1}{2 - \frac{1}{2 - G_{n-2}(s)}} = \cdots,$$

which is an example of a continued fraction.

Looking at the expressions for $G_2(s)$, $G_3(s)$, and $G_4(s)$, we might speculate that

$$G_n(s) = \frac{n - (n-1)s}{n + 1 - ns}.$$

This result can be established by an induction argument outlined as follows. Assume that the formula holds for n. Then

$$G(G_n(s)) = \frac{1}{2 - [n - (n-1)s]/[n+1-ns]}$$

$$= \frac{n+1-ns}{2[n+1-ns] - [n-(n-1)s]}$$

$$= \frac{n+1-ns}{n+2-(n+1)s},$$

which is the formula for $G_{n+1}(s)$, that is n is replaced by n+1 in the expression for $G_n(s)$. Hence by induction on the integers the result is true since we have confirmed it directly for n=2 and n=3.

The power series expansion for $G_n(s)$ can be found by using the binomial theorem. Thus

$$G_n(s) = \frac{n - (n-1)s}{n+1 - ns} = \frac{n - (n-1)s}{n+1} \left[1 - \frac{ns}{n+1} \right]^{-1}$$

$$= \frac{1}{n+1} [n - (n-1)s] \sum_{r=0}^{\infty} \left(\frac{ns}{n+1} \right)^r$$

$$= \sum_{r=0}^{\infty} \left(\frac{n}{n+1} \right) s^r - \sum_{r=0}^{\infty} \left(\frac{n-1}{n+1} \right) \left(\frac{n}{n+1} \right)^r s^{r+1}$$

$$= \frac{n}{n+1} + \sum_{r=1}^{\infty} \frac{n^{r-1}}{(n+1)^{r+1}} s^r.$$

The probability that the population of generation n has size r is the coefficient of s^r , in this series, which is

$$\frac{n^{r-1}}{(n+1)^{r+1}} \quad \text{for} \quad r \ge 1.$$

The probability of extinction for generation n is $G_n(0) = n/(n+1)$, and this approaches 1 as $n \to \infty$, which means that the probability of ultimate extinction is certain for this branching process.

9.3 Mean and variance

The mean and variance of the population size of the n-th generation can be obtained as fairly simple general formulae as functions of the mean and variance of X_1 , the random variable of the population size of the first generation. These are μ and σ^2 , say, which in terms of the probability generating function G(s) are (see Section 1.9)

$$\boldsymbol{\mu} = \boldsymbol{\mu}_1 = \mathbf{E}(X_1) = G'(1), \tag{9.5}$$

$$\sigma^{2} = \sigma_{1}^{2} = \mathbf{V}(X_{1}) = G''(1) + G'(1) - [G'(1)]^{2} = G''(1) + \mu - \mu^{2}.$$
 (9.6)

From the previous section the probability generating function of X_2 is G(G(s)). Hence, if μ_n is the mean of X_n , then

$$\mu_2 = \mathbf{E}(X_2) = \frac{dG_2(s)}{ds} \bigg|_{s=1} = \frac{d[G(G(s))]}{ds} \bigg|_{s=1} = G'(1)G'(1) = [G'(1)]^2 = \mu^2,$$

using the chain rule in calculus, and noting that G(1) = 1. The method can be repeated for $\mathbf{E}(X_3)$, $\mathbf{E}(X_4)$,.... Thus, $\boldsymbol{\mu}_n$, the mean population size of the n-th generation, is given by

$$\mu_{n} = \mathbf{E}(X_{n}) = \frac{dG_{n}(s)}{ds} \bigg|_{s=1} = \frac{d[G(G_{n-1}(s))]}{ds} \bigg|_{s=1}$$

$$= G'(1)G'_{n-1}(1)$$

$$= \mu \mu_{n-1} = \mu^{2} \mu_{n-2} = \dots = \mu^{n}$$
(9.7)

since $G_{n-1}(1) = 1$.

The variance of the population size of the n-th generation is σ_n^2 , say, where

$$\sigma_n^2 = \mathbf{V}(X_n) = G_n''(1) + G_n'(1) - [G_n'(1)]^2 = G_n''(1) + \mu^n - \mu^{2n}.$$
 (9.8)

We can obtain a formula for σ_n^2 as follows. Differentiate

$$G'_n(s) = G'(G_{n-1}(s))G'_{n-1}(s)$$

again with respect to s:

$$G_n''(s) = G''(G_{n-1}(s)[G_{n-1}'(s)]^2 + G'(G_{n-1}(s))G_{n-1}''(s),$$

so that, with s = 1,

$$G''_{n} = G''(G'_{n-1}(s)[G'_{n-1}(1)]^{2} + G'(G_{n-1}(s))G''_{n-1}(1)$$

$$= G''(1)[G'_{n-1}(1)]^{2} + G'(1)G''_{n}(1)$$

$$= (\sigma^{2} - \mu - \mu^{2})\mu^{2n-2} + \mu G''_{n-1}(1). \tag{9.9}$$

Equation (9.9) is a first-order linear difference equation for $G''_n(1)$.

Write the equation as

$$G_n''(1) - \mu G_{n-1}''(1) = k\mu^{2n-2}, \quad k = \sigma^2 - \mu + \mu^2$$
 (9.10)

There are two cases to consider separately: $\mu = 1$ and $\mu \neq 1$.

(i) $\mu \neq 1$. The corresponding homogeneous equation to (9.10) has the solution $G''_n(1) = B\mu^n$, where B is a constant. For the particular solution find the constant C such that $G''_n(1) = C\mu^{2n}$ satisfies the equation. It is easy to show that

$$C = \frac{k}{\mu(\mu - 1)}.$$

Hence

$$G_n''(1) = B\mu^n + \frac{(\sigma^2 - \mu + \mu^2)\mu^{2n}}{\mu(\mu - 1)}.$$

Since $G''(1) = \sigma^2 - \mu + \mu^2$, it follows that

$$B = -\frac{\sigma^2 - \mu + \mu^2}{\mu(\mu - 1)},$$

so that

$$G_n''(1) = \frac{\mu^n(\sigma^2 - \mu + \mu^2)(\mu^n - 1)}{\mu(\mu - 1)},$$
(9.11)

where it is now obvious why μ cannot be 1 in this formula. Finally from Eqns (9.8) and (9.11),

$$\sigma_n^2 = G_n''(1) + \mu^n - \mu^{2n} = \frac{\sigma^2 \mu^{n-1} (\mu^n - 1)}{\mu - 1}.$$

(ii) $\mu = 1$. The equation becomes

$$G''_n(1) - G''_{n-1}(1) = \sigma^2$$
.

The general solution of this difference equation is now

$$G_n''(1) = A + \sigma^2 n.$$

Since $G''(1) = \sigma^2$, it follows that A = 0. Hence, from Eqn (9.8),

$$\sigma_n^2 = G_n''(1) = n\sigma^2. \tag{9.12}$$

Example 9.2. For the branching process with probability $p_j = 1/2^{j+1}$, j = 0, 1, 2, ... that any individual has j descendants in the next generation (see Example 9.1), find the mean and variance of the population size of the n-th generation.

From Example 9.1, the probability generating function of X_1 is G(s)=1/(2-s). Its mean is $\mu=G'(1)=1$. Hence by (9.7), the mean value of the size of the population of the n-th generation is $\mu_n=\mu^n=1$.

The variance of X_1 is given by (see Eqn (9.6))

$$\sigma^2 = G''(1) + \mu - \mu^2 = 2.$$

Hence, by (9.12), $\sigma_n^2 = 2n$.

Note that, although the probability of ultimate extinction is certain for this branching process, the mean remains 1 for all n, although the variance shows increasing spread of values as n increases.

9.4 Probability of extinction

In Example 9.1, the probability of ultimate extinction for a branching process with the probabilities $p_j = 1/2^{j+1}$ was shown to be certain for this particular process. A general result concerning possible extinction of a population can be found if the probability generating function G(s) for X_1 , the random variable of the population size of the first generation, is known.

The probability of extinction by generation n is $G_n(0)$ where $G_n(s)$ is the probability generating function of this generation. $G_n(0)$ must be a nondecreasing function of n since this probability includes the probability that extinction has occurred at an earlier generation. The sequence $\{G_n(0)\}$ is bounded and monotonic increasing with n, and, by a result in mathematical analysis (not proved here, but fairly to understand intuitively), must tend to a limit g, say, as $n \to \infty$.

By (9.4), $G_n(0) = G(G_{n-1}(0))$. If $n \to \infty$ on both sides of this equation so that $G_n(0) \to g$, say, as $n \to \infty$, then g satisfies

$$g = G(g). (9.13)$$

This equation always has the solution g=1, since G(1)=1, but it may have other solutions for $0 \le g < 1$. If it does which solution should be chosen? Let g_0 be any nonnegative solution of (9.13). Now every probability generating function $G(s) = \sum_{j=1}^{\infty} p_j s^j$ is an increasing function of s for $0 \le s \le 1$, since every coefficient satisfies the inequality $0 \le p_j \le 1$. This follows because, if $s_1 > s_2$, then

$$G(s_2) - G(s_1) = \sum_{j=0}^{\infty} p_j [s_2^j - s_1^j] > 0,$$

since $s_2^j > s_1^j$ for s > 0. Thus

$$G(0) < G(g_0) = g_0,$$

$$G_2(0) = G(G(0)) < G(g_0) = g_0,$$

$$\dots$$

$$G_n(0) = G(G_{n-1}(0)) < G(g_0) = g_0,$$

$$\dots$$

In the limit as $n \to \infty$, we must have $g \le g_0$ for every solution g_0 . We conclude that g must be the *smallest* solution of g = G(g).

Graphically, the smallest positive value can be found by drawing the line y=x and the curve y=G(x) and finding the intersection point which has the smallest positive x.

Example 9.3. For a certain branching process with $X_0 = 1$, the probability generating function for X_1 is given by

$$G(s) = \frac{1}{(2-s)^2}.$$

Find the probability that the population ultimately becomes extinct. Find also the mean and variance of the populations in the n-th generation. Interpret the results.

From the previous work the probability of ultimate extinction is the smallest positive root of

$$g = G(g) = \frac{1}{(2-g)^2}.$$

Graphs of y = x and $y = 1/(2-x)^2$ are shown in Figure 9.2, which has one point of intersection for 0 < x < 1, and the expected intersection at (1, 1). The solution for q satisfies

Figure 9.2

$$g(2-g)^2 = 1$$
, or $(g-1)(g^2 - 3g + 1) = 0$.

The required solution is

$$g = \frac{1}{2}(3 - \sqrt{5}) \approx 0.382,$$

which is the probability of ultimate extinction

Since

$$G'(s) = \frac{2}{2-s)^3}, \qquad G''(s) = \frac{6}{(2-s)^4},$$

then

$$\mu = G'(1) = 2,$$
 $\sigma^2 = G''(1) + \mu - \mu^2 = 6 + 2 - 4 = 4.$

Hence by (9.7) and (9.12), the mean and variance of the n-th generation are given by

$$\mu_n = \mu^n = 2^n, \qquad \sigma_n^2 = \sigma^2 n = 4n.$$

The mean, which behaves as 2^n , tends to infinity much faster than the variance which behaves as n. The spread is not increasing as fast as the mean. This means that, as n increases, the population either becomes extinct with probability of approximately 0.382 or becomes very large with probability approximately 1-0.382=0.618: the probability of modest population sizes is consequently very small.

Some general observations about the probability of ultimate extinction can be deduced from the probability generating function G(s). Since

$$G(s) = \sum_{j=0}^{\infty} p_j s^j,$$

and $p_j \ge 0$ for all j, it follows that $G(s) \ge 0$ for $s \ge 0$. Term-by-term differentiation of the series also implies that

$$G'(s) \ge 0$$
 and $G''(s) \ge 0$

for $s\geq 0$. The inequality $G'(s)\geq 0$ means that the slope of the curve y=G(s) is never negative, and the inequality $G''(s)\geq 0$ implies that the slope is a monotonic increasing function of s, both for $s\geq 0$. A curve y=G(s) (or simply the function G(s)) with the property $G''(s)\geq 0$ over any interval of s is said to be **convex** in s over the interval. Graphically this means that the curve is always above its tangent for all values of s in the interval. The curve $y=G(s)=1/(2-s)^2$ arising in Example 9.3 and shown in Figure 9.2 shows the convexity of the probability generating function.

Since G(1)=1, the curve y=G(s) always passes through the point (1,1). What is the condition that there is a further point of intersection between the curve and the line y=s for 0< s<1? The slope of the curve at s=1 is G'(1). Since the slope is monotonic increasing there can be no such point of intersection if $G'(1)\leq 1$. If G'(1)>1 and G(0)>0 then there will be an intermediate point of intersection. (If G(0)=0, then the possibility of extinction does not arise.) Now G'(1) is the mean μ of the probability distribution $\{p_j\}$. We conclude that the probability of extinction is certain if the mean $\mu\leq 1$, whilst if $\mu>1$ then the population may become extinct at some future generation with probability whose value is the smallest positive root of s=G(s).

9.5 Branching processes and martingales

Consider again the branching process starting with one individual so that $X_0 = 1$, and with G(s) as the probability generating function of X_1 . As before X_n is the random variable representing the population size of the n-th generation. Suppose we look at the expected value of the random variable X_{n+1} given the random variables $X_0, X_1, X_2, \ldots, X_n$. Now by Section 1.10, such a conditional expectation is not a number but itself a *random variable*. Each set of descendants created by X_n will have mean $\mu = G'(1)$. Since there are X_n such means, then

$$\mathbf{E}(X_{n+1}|X_0, X_1, X_2, \dots, X_n) = X_n \boldsymbol{\mu}. \tag{9.14}$$

Let

$$Z_n = \frac{X_n}{\mathbf{E}(X_n)} = \frac{X_n}{\boldsymbol{\mu}^n}$$

using (9.7). The random variable Z_n is the random variable X_n normalized by its own mean. Hence

$$\mathbf{E}(Z_n) = \mathbf{E}\left(\frac{X_n}{\boldsymbol{\mu}^n}\right) = \frac{\mathbf{E}(X_n)}{\boldsymbol{\mu}^n} = 1 = \mathbf{E}(X_0),$$

since the process starts with one individual in this case. Hence (9.14) becomes

$$\mathbf{E}(Z_{n+1}\boldsymbol{\mu}^{n+1}|X_0,X_1,X_2,\ldots,X_n)=Z_n\boldsymbol{\mu}^{n+1},$$

or

$$\mathbf{E}(Z_{n+1}|X_0,X_1,X_2,\ldots,X_n)=Z_n,$$

since $\mathbf{E}(aX) = a\mathbf{E}(X)$ (see Section 1.6), where a is a constant and X is any random variable. Such a random variable sequence $\{Z_n\}$ in which the expected value of Z_{n+1} conditional on another random variable sequence $\{X_n\}$ is Z_n is known as a **martingale**.

The most famous martingale arises in the following gambling problem. A gambler makes an even money bet with a casino starting with a pound bet. If she or he wins the gambler has her or his £1 stake returned plus £1 from the casino. If the gambler loses the pound to the casino, she or he then bets £2, £4, £8,..., until she or he wins. Suppose the gambler first wins at the n-th bet. Then the gambler will have won £2 n for an outlay of

$$\pounds(1+2+2^2+2^3+\cdots+2^{n-1})=\pounds(2^n-1),$$

summing the geometric series. Hence the gambler always wins £1 at some stage. It is a guaranteed method of winning but does require a large financial backing, and for obvious reasons casinos do not permit this form of gambling. The martingale betting scheme will always beat what is a fair game in terms of the odds at each play.

We shall now explain why this gamble is a martingale. Suppose that the gambler starts with £1 and bets against the casino according to the rules outlined above. The doubling bets continue irrespective of the outcome at each bet. Let Z_n be the gambler's total asset or debt at the n-th bet: $Z_0 = 1$ and Z_n can be a negative number indicating that the gambler owes money to the casino. Since $Z_0 = 1$, then Z_1 is a random variable which can take the values 0 or 2. Given Z_0 and Z_1 , Z_2 can take any one

of the values $-2, 0, 2, 4, Z_3$ can take any one of the values -6, -4, -2, 0, 2, 4, 6, 8, and so on as shown by the **tree** in Figure 9.3. The random variable Z_n can take any

Figure 9.3 Possible outcomes of the first three bets in the gambling martingale.

one of the values

$$\{-2^n + 2, -2^n + 4, \dots, 2^n - 2, 2^n\}, \qquad (n = 1, 2, \dots),$$

or, equivalently,

$$Z_n = \{-2^n + 2m + 2\}$$
 $(m = 0, 1, 2, \dots, 2^n - 1)$

for $n=1,2,3,\ldots$. The probability of any one of these values occurring at the n-th bet is $1/2^n$. It follows that the expected value of Z_n (the gambler's mean asset) is

$$\mathbf{E}(Z_n) = \sum_{m=0}^{2^n - 1} \frac{1}{2^n} (-2^n + 2m + 2) = \frac{1}{2^n} (-2^n + 2) \sum_{m=0}^{2^n - 1} 1 + \frac{2}{2^n} \sum_{m=1}^{2^n - 1} m = 1,$$

using the arithmetic sum

$$\sum_{m=1}^{2^{n}-1} m = \frac{1}{2} 2^{n} (2^{n} - 1).$$

The expected winnings in a game of doubling bets would be £1 irrespective of the duration of the wager. Tactically it would be best to play until the first win, and then start a new game with £1.

The conditional expectation of Z_3 given Z_0 , Z_1 , and Z_2 (remember these conditional expectations are random variables) is

$$\mathbf{E}(Z_3|Z_0,Z_1,Z_2) = \{-2,0,2,4\} = Z_2,$$

as shown in Figure 9.3. The mean values of the pairs in the bottom row give the corresponding numbers in the previous row. Generally

$$\mathbf{E}(Z_{n+1}|Z_0,Z_1,Z_2,\ldots,Z_n)=Z_n,$$

which is a martingale with respect to its own random variable sequence.

Example 9.4 Let the random variable X_n be the position of a walker in a symmetric random walk after n steps. Suppose that the walk starts at the origin so that $X_0 = 0$. Show that $\{X_n\}$ is a martingale with respect to its own sequence of random variables. (See Section 3.2 for discussion of the properties of the symmetric random walk.)

In terms of the modified Bernoulli random variable

$$X_{n+1} = X_0 + \sum_{i=1}^{n+1} W_i = X_n + W_{n+1},$$

since $X_0 = 0$. By the Markov property of the random walk

$$\mathbf{E}(X_{n+1}|X_0, X_1, \dots, X_n) = \mathbf{E}(X_{n+1}|X_n).$$

Suppose that $X_n=k$ where k must satisfy $-n \le k \le n$. The random variable W_{n+1} can take either of the values -1 or +1 each with probability of $\frac{1}{2}$, so that $X_{n+1}=k-1$ if $W_{n+1}=-1$ or $X_{n+1}=k+1$ if $W_{n+1}=+1$. Since these outcomes are equally likely, it follows that

$$\mathbf{E}(X_{n+1}|X_n) = \frac{1}{2}(k-1) + \frac{1}{2}(k+1) = k = X_n,$$

which defines a martingale with respect to itself.

Example 9.5. Let $X_1, X_2, ...$ be independent identically distributed random variables each of which can take the values -1 and +1 with probabilities of $\frac{1}{2}$. Show that the partial sums

$$Z_n = \sum_{j=1}^n \frac{1}{j} X_j, \quad (n = 1, 2, \ldots),$$

form a martingale with respect to $\{X_n\}$.

It follows that

$$\mathbf{E}(Z_{n+1}|X_1, X_2, \dots, X_n) = \mathbf{E}(Z_n + \frac{1}{n+1}X_{n+1}|X_1, \dots, X_n)$$

$$= \mathbf{E}(Z_n|X_1, \dots, X_n) + \frac{1}{n+1}\mathbf{E}(X_{n+1}|X_1, \dots, X_n)$$

$$= Z_n + \frac{1}{n+1}\mathbf{E}(X_{n+1}) = Z_n,$$

since $\mathbf{E}(X_{n+1}) = 0$.

The random variable Z_n is the partial sum of a harmonic series with terms 1/j with randomly selected signs, known as a random harmonic series. It is known that the harmonic series

$$\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

diverges and that the alternating harmonic series

$$\sum_{j=1}^{\infty} (-1)^{j+1} \frac{1}{j} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges. It can be shown that the random harmonic series converges with probability 1. This requires considerable extra theory: a full account can be found in Lawler (1995).

9.6 Stopping rules

Suppose we have a random process, say a Markov chain or a branching process, with random variables $\{X_r\}$, $(r=0,1,2,\ldots)$ in which we decide to stop the process when a specified condition is met. Hence $\{X_r\}$ may go through a sequence of values (x_0,x_1,\ldots,x_n) and then stop at x_n when a predetermined stopping condition is met. The random variable T for the **stopping time** or number of steps can take any of the integer values $(0,1,2,\ldots)$. A simple example of a stopping rule is that n=m where m is a given positive integer: in other words the process stops after m steps. In the case just given T, of course, is known but X_m is not, in which case the expected value $\mathbf{E}(X_m)$ might be of interest. Alternatively, we might wish to find the expected value $\mathbf{E}(T)$ for a problem in which the stopping rule is that the process stops when $X_n \geq x$ where x is a given number.

Example 9.6. A random walk starts at the origin, with probability p that the walk advances one step and probability q = 1 - p that the walk retreats one step at every position. The walk stops after T = 10 steps. What is the expected position of the walk at the stopping time?

In terms of the modified Bernoulli random variable $\{W_i\}$ (see Section 3.2), the random variable of the position of the walk after n steps is

$$X_n = X_0 + \sum_{i=1}^n W_i = \sum_{i=1}^n W_i$$

since $X_0 = 0$. It was shown in Section 3.2 that

$$\mathbf{E}(X_n) = n(p-q) = n(2p-1).$$

Hence for T = 10, the expected position is

$$\mathbf{E}(X_{10}) = 10(p-q).$$

Another stopping rule could be that the process stops when the random variable X_n first takes a particular value or several values. This could be a particular strategy in a gambling game where the gambler abandons the game when certain winnings are achieved or cuts his or her losses when a certain deficit is reached.

The following random walk is a version of the gambler's ruin problem of Section 2.2.

Example 9.7. A symmetric random walk starts at position k and ends when the walk first reaches either the origin or position a, where k and a are positive integers such that (0 < k < a). Let T be the stopping time, that is, the number of steps to achieve this. If X_n is the position of the walk after n steps, show that $\mathbf{E}(X_T) = k$.

Formally we can write the stopping time T as

$$T = \min\{n : X_n = 0 \text{ or } X_n = a\},\$$

which means that T is the minimum value of n at which the walk first visits either the origin

STOPPING RULES 183

or a: the boundaries 0 and a are absorbing states. This problem is also recognizable as a symmetric gambler's ruin: the gambler is ruined when the walk reaches the origin. In Section 2.2 we showed that the probability that the origin is reached first is (a-k)/a (see eqn (2.5)). The probability that a is reached first is its complement k/a. Hence the expected value of X_T is given by

$$\mathbf{E}(X_T) = 0.\left(\frac{a-k}{a}\right) + a.\left(\frac{k}{a}\right) = k,$$

as required.

We showed in Example 9.4 that $\{X_n\}$ is a martingale with respect to the modified Bernoulli random variable $\{W_n\}$ for the symmetric random walk. It has just been shown that

$$\mathbf{E}(X_T) = k = X_0 = \mathbf{E}(X_0),$$

since X_0 is specified in this problem. For this martingale and for certain other martingales generally this result is not accidental. In fact the **stopping theorem** states:

If $\{Z_n\}$ is a martingale with respect to $\{X_n\}$ (n = 0, 1, 2, ...), T is a defined stopping time, and

- (i) $P(T < \infty) = 1$,
- (ii) $\mathbf{E}(|Z_T|) < \infty$,
- (iii) $\mathbf{E}(Z_n|T>n)\mathbf{P}(T>n)\to 0$ as $n\to\infty$,

then $\mathbf{E}(Z_T) = \mathbf{E}(Z_0)$.

This useful result, which we shall not prove here (see, Grimmett and Stirzaker (1982), p.209, or, Lawler (1995), p.93), interpreted for the example above, asserts that the expected position of the symmetric walk which finishes at either 0 or a is simply its initial position k.

The following example shows the link between another martingale associated with the symmetric random walk and the gambler's ruin problem and the expected duration of the game and the stopping time T. We shall simply verify the result without establishing the conditions in the stopping theorem.

Example 9.8. Consider again the symmetric random walk described in Example 9.7, with stopping time T defined in the same manner. Show that the random variable $\{Y_n\}$, $\{n=0,1,2,\ldots\}$, where $Y_n=X_n^2-n$ is also a martingale with respect to $\{X_n\}$. Show that

$$\mathbf{E}(Y_T) = \mathbf{E}(Y_0) = k^2.$$

To establish that $\{Y_n\}$ is a martingale we must show that

$$\mathbf{E}(Y_{n+1}|X_0,X_1,X_2,\ldots,X_n)=Y_n.$$

Since the walk is a Markov process,

$$\mathbf{E}(Y_{n+1}|X_0,X_1,X_2,\ldots,X_n) = \mathbf{E}(Y_{n+1}|X_n) = \mathbf{E}(X_{n+1}^2 - (n+1)|X_n)$$
$$= X_n^2 + 1 - (n+1) = Y_n.$$

The latter random variable follows because

$$\mathbf{E}(X_{n+1}^2|X_n) = \frac{1}{2}(X_n^2 + 1)^2 - n^2 + \frac{1}{2}(X_n - 1)^2 = X_n^2 + 1,$$

and

$$\mathbf{E}(n+1|X_n) = n+1.$$

Hence $\{Y_n\}$ is a martingale with respect to $\{X_n\}$.

If n = T, the stopping time, then

$$\mathbf{E}(Y_T) = \mathbf{E}(X_T^2) - \mathbf{E}(T)$$

$$= 0.\mathbf{P}(X_T = 0) + a^2.\mathbf{P}(X_T = a) - \mathbf{E}(T)$$

$$= a^2.\frac{k}{a} - \mathbf{E}(T) = ak - \mathbf{E}(T).$$

Now $\mathbf{E}(T)$ is the expected duration of the symmetric gambler's ruin problem, and it was shown in Section 2.4, equation (2.10), that

$$\mathbf{E}(T) = d_k = k(a - k).$$

Hence

$$\mathbf{E}(Y_T) = ak - k(a - k) = k^2 = \mathbf{E}(Y_0).$$

Usually the procedure is used in reverse assuming that the theorem has been proved and is available. In that case the theorem then implies that $\mathbf{E}(Y_T) = \mathbf{E}(Y_0) = k^2$, and the expected stopping time or duration $\mathbf{E}(T)$ can be deduced.

9.7 The simple epidemic

The subject of epidemiology from a theoretical viewpoint is concerned with the construction of stochastic models which can represent the spread of a specific disease through a population. It is a topic of particular current interest with the apparent advent of new virulent diseases which in some cases have no curative treatment. Some diseases are cyclical such as measles and influenza, some diseases are currently spreading such as HIV infections, which have long periods in which infected persons can transmit the disease to others, some diseases have disappeared such as smallpox, and some which have declined through treatment such as tuberculosis are recurring through drug-resistant strains. The main aim of probability models is to be able to predict the likely extent of a disease—how many are infected through the period of the epidemic and how might inoculation affect the spread of the disease. There is also interest in the geographical spread, demographic, and time behavior of diseases.

Modeling of epidemics is important in informing the animal as well as the public health policy, for example in outbreaks of foot and mouth disease, and the studies of the possible transmission of tuberculosis from badgers to cattle. These require more complicated models than we are able to discuss in this book. An indication of the complexity of such models may be found in Ferguson *et al.* (2001) and Cox *et al.* (2005).

In this section we shall develop a model for the **simple epidemic**. In epidemiology there are assumed to be three groups of individuals in a population. These are the **susceptibles**, those who might succumb to the disease, the **infectives**, those who have the disease and can spread it among the susceptibles, and what we might lump together as the **immunes**, which includes, in addition to those who are immune, the isolated, the dead (as a result of the disease), and the recovered and now immune.

In practice the spread of diseases is more complicated than simple stochastic models display. They can be affected by many factors. Here is a fairly general description of the progress of a typical disease. If someone becomes infected there is usually a **latent period** during which the disease develops. At the end of this period the patient might display symptoms and become an **infective** although the two events might not occur at the same time. The individual remains an infective during the **infectious period** after which death or recovery occurs, and perhaps the individual becomes immune to further bouts of the illness.

In the simple epidemic the assumptions are very restrictive. It is assumed that the population contains only susceptibles and infectives—individuals do not die or recover but remain infective. This model is not very realistic but it might cover the early stages of a disease which has a long infectious period. Suppose that the population remains fixed at n_0+1 with no births or deaths during the epidemic and that one infective is introduced at time t=0. Initially there are t=00 susceptibles. Let the random variable t=01 represent the number of susceptibles which are *not* infected at time t=02. At this time there will be t=03 to infectives. It is assumed that individuals in the population mix homogeneously which is rarely the case except possibly with animals under controlled laboratory conditions. In the simple epidemic the main assumption is that the likelihood of an infection occurring in a time interval t=02 to

$$\beta X(t)[n_0 + 1 - X(t)]\delta t,$$

that is, it is proportional to the product of the numbers of susceptibles and infectives at time t. In this joint dependence the likelihood of infection will be high if both populations are relatively large, and small if they are both small. The constant β is known as the **contact rate**. The probability of more than one infection taking place in time δt is assumed to be negligible. Let $p_n(t)$, $0 \le n \le n_0$ be the probability that there are n susceptibles at time t. Then by the partition law,

$$p_n(t+\delta t) = \beta(n+1)(n_0-n)\delta t p_{n+1}(t) + [1-\beta n(n_0+1-n)\delta t] p_n(t) + o(\delta t),$$
 for $0 \le n \le n_0-1$, and

$$p_{n_0}(t) = (1 - \beta n_0 \delta t) p_{n_0}(t) + o(\delta t).$$

In the first equation either one susceptible became an infective in time δt with probability $\beta(n+1)(n_0-n)\delta t$ when the population was n+1 at time t or no infection occurred with probability $1-\beta n(n_0+1-n)\delta t$ when the population was n. Following the usual method of dividing through by δt and then letting $\delta t \to 0$, we arrive at the differential-difference equations for the simple epidemic:

$$\frac{dp_n(t)}{dt} = \beta(n+1)(n_0 - n)p_{n+1}(t) - \beta n(n_0 + 1 - n)p_n(t), \tag{9.15}$$

for $n = 0, 1, 2, \dots n_0 - 1$ and

$$\frac{dp_{n_0}(t)}{dt} = -\beta n_0 p_{n_0}(t). \tag{9.16}$$

Since there are n_0 susceptibles at time t=0, the initial condition must be $p_{n_0}(0)=1$ with $p_n(0)=0$ for $n=0,1,2,\ldots,n_0-1$.

9.8 An iterative solution scheme for the simple epidemic

A partial differential equation for the probability generating function for Eqns (9.15) and (9.16) can be obtained (see Bailey (1964)), but the equation has no simple solution for the epidemic problem. Here we show how solutions for $p_n(t)$ can be constructed by an iterative procedure for any number of probabilities, although they do become increasingly complicated and they do not suggest an obvious general formula. It is possible to obtain explicit formulae for epidemics in very small populations.

We first eliminate the parameter β by letting $\tau = \beta t$, by putting

$$p_n(\tau/\beta) = q_n(\tau) \tag{9.17}$$

so that Eqns (9.15) and (9.16) become the diffferential-difference equations

$$\frac{dq_n(\tau)}{d\tau} = (n+1)(n_0 - n)q_{n+1}(\tau) - n(n_0 + 1 - n)q_n(\tau), \quad (0 \le n \le n_0 - 1),$$
(9.18)

$$\frac{dq_{n_0}(\tau)}{d\tau} = -n_0 q_{n_0}(\tau). \tag{9.19}$$

Multiply both sides of Eqn (9.19) by $e^{n_0}\tau$ and use the product rule in differentiation. The result is that (9.19) can be expressed as

$$\frac{d}{d\tau} \left[e^{n_0 \tau} q_{n_0}(\tau) \right] = 0.$$

Similarly multiply both sides of (9.18) by $e^{n(n_0+1-n)}$ and use the product rule again. Then Eqn (9.18) becomes

$$\frac{d}{d\tau} \left[e^{n(n_0 + 1 - n)\tau} q_n(\tau) \right] = (n+1)(n_0 - n)e^{n(n_0 + 1 - n)\tau} q_{n+1}(\tau).$$

In these equations, let

$$u_n(\tau) = e^{n(n_0 + 1 - n)\tau} q_n(\tau). \tag{9.20}$$

Then $u_n(\tau)$, $(n = 0, 1, 2, \dots, n_0)$ satisfy the more convenient differential equations

$$\frac{du_{n_0}(\tau)}{d\tau} = 0, \tag{9.21}$$

$$\frac{du_n(\tau)}{d\tau} = (n+1)(n_0 - n)e^{(2n-n_0)\tau}u_{n+1}(\tau). \tag{9.22}$$

In the simple epidemic only one infective is introduced so that the initial conditions $p_{n_0}(0) = 1$ and $p_n(0) = 0$ for $n = 0, 1, 2, \dots, n_0 - 1$ translate, by (9.17) and (9.20), into

$$u_{n_0}(0) = 1 \text{ and } u_n(0) = 0 \text{ for } n = 0, 1, 2, \dots, n_0 - 1.$$
 (9.23)

The solution of the differential equation (9.21) is simply

$$u_{n_0}(\tau) = \text{constant} = 1$$

using the intial condition in (9.23). From Eqn (9.22) the next equation in the iteration for $u_{n_0-1}(\tau)$ is

$$\frac{du_{n_0-1}(\tau)}{d\tau} = n_0 e^{(n_0-2)\tau} u_{n_0}(\tau) = n_0 e^{(n_0-2)\tau}.$$

This **separable differential equation** has the solution (obtained by direct integration)

$$u_{n_0}(\tau) = \int n_0 e^{(n_0 - 2)\tau} d\tau + C = \frac{n_0}{n_0 - 2} e^{n_0 - 2)\tau} + C,$$

where C is a constant. Since $u_{n_0-1}(0)=1$, then $C=-n_0/(n_0-2)$, so that

$$u_{n_0-1}(\tau) = \frac{n_0}{n_0 - 2} \left[e^{(n_0 - 2)\tau} - 1 \right]. \tag{9.24}$$

Using this solution for $u_{n_0-1}(\tau)$, the equation for $u_{n_0-2}(\tau)$ from (9.22) is

$$\frac{du_{n_0-2}(\tau)}{d\tau} = 2(n_0 - 1)e^{(n_0 - 4)\tau}u_{n_0-1}(\tau)$$

$$= 2(n_0 - 1)e^{(n_0 - 4)\tau}\frac{n_0}{n_0 - 2}\left[e^{(n_0 - 2)\tau} - 1\right]$$

$$= \frac{2n_0(n_0 - 1)}{n_0 - 2}\left[e^{2(n_0 - 3)\tau} - e^{(n_0 - 4)\tau}\right] \tag{9.25}$$

This is also a separable differential equation, and routine integration together with the initial condition gives (for $n_0 > 4$)

$$u_{n_0-2}(\tau) = \frac{n_0(n_0-1)[(n_0-4)\{e^{2(n_0-3)\tau}-1\}-2(n_0-3)\{e^{(n_0-4)\tau}-1\}]}{(n_0-2)(n_0-3)(n_0-4)}.$$

This procedure can be continued but the number of terms increases at each step. The probabilities can be recovered from Eqns (9.17) and (9.19).

Example 9.9. One infective is living with a group of four individuals who are susceptible to the disease. Treating this situation as a simple epidemic in an isolated group, find the probability that all members of the group have contracted the disease at time t.

In the notation above we require $p_4(t)$. In the iteration scheme $n_0=4$ so that from Eqns (9.23) and (9.24)

$$u_4(\tau) = 1,$$
 $u_3(\tau) = 2(e^{2\tau} - 1).$

However, there is a change in (9.25) if $n_0 = 4$. The differential equation becomes

$$\frac{d}{d\tau}u_2(\tau) = 12(e^{2\tau} - 1),$$

which, subject to $u_2(0) = 0$, has the solution

$$u_2(\tau) = -6(1+2\tau) + 6e^{2\tau}.$$

The equation for $u_1(\tau)$ is

$$\frac{d}{d\tau}u_1(\tau) = 36 - 36(1+2\tau)e^{-2\tau},$$

which has the solution

$$u_1(\tau) = 36(\tau - 1) + 36(1 + \tau)e^{-2\tau}$$
.

A similar process gives the last function:

$$u_0(\tau) = 1 + (27 - 36\tau)e^{-4\tau} - (28 + 24\tau)e^{-6\tau}.$$

From Eqns (9.17) and (9.20) the probabilities can be now be found:

$$p_4(t) = e^{-4\beta t}, \quad p_3(t) = 2e^{-4\beta t} - e^{-6\beta t}, \quad p_2(t) = 6e^{-4\beta t} - (6 + 12\beta t)e^{-6\beta t},$$

$$p_1(t) = 36(\beta t - 1)e^{-4\beta t} + 36(1 + \beta t)e^{-6\beta t}, \quad p_0(t) = 1 + 9(3 - 4\beta t)e^{-4\beta t} - 4(7 + 6\beta t)e^{-6\beta t}.$$

A useful check on these probabilities is that they must satisfy

$$\sum_{n=0}^{4} p_n(t) = 1.$$

The formula for $p_0(t)$ gives the probability that all individuals have contracted the disease by time t. Note that $p_0(t) \to 1$ as $t \to \infty$, which means that all susceptibles ultimately catch the disease, a characteristic of the simple epidemic.

9.9 Problems

9.1. In a branching process the probability that any individual has j descendants is given by

$$p_0 = 0,$$
 $p_j = \frac{1}{2i},$ $(j \ge 1).$

Show that the probability generating function of the first generation is

$$G(s) = \frac{s}{2-s}.$$

Find the further generating functions $G_2(s)$, $G_3(s)$, and $G_4(s)$. Show by induction that

$$G_n(s) = \frac{s}{2^n - (2^n - 1)s}.$$

Find $p_{n,j}$, the probability that the population size of the n-th generation is j given that the process starts with one individual. What is the mean population size of the n-th generation?

9.2. Suppose in a branching process that any individual has a probability given by the modified geometric distribution

$$p_i = (1-p)p^j, \qquad (j=0,1,2,\ldots),$$

of producing j descendants in the next generation, where p (0) is a constant. Find the probability generating function of the second and third generations. What is the mean size of any generation?

9.3. A branching process has the probability generating function

$$G(s) = a + bs + (1 - a - b)s^{2}$$

for the descendants of any individual, where a and b satisfy the inequalities

$$0 < a < 1$$
, $b > 0$, $a + b < 1$.

Given that the process starts with one individual, discuss the nature of the descendant generations. What is the maximum possible population of the n-th generation? Show that extinction in the population is certain if 2a + b > 1.

PROBLEMS 189

9.4. A branching process starts with one individual. Subsequently any individual has a probability (Poisson)

$$p_j = \frac{\lambda^j e^{-\lambda}}{j!}, \qquad (j = 0, 1, 2, \ldots)$$

of producing j descendants. Find the probability generating function of this distribution. Obtain the mean and variance of the size of the n-th generation. Show that the probability of ultimate extinction is certain if $\lambda \leq 1$.

9.5. A branching process starts with one individual. Any individual has a probability

$$p_j = \frac{\lambda^{2j} \operatorname{sech} \lambda}{(2j)!}, \qquad (j = 0, 1, 2, \ldots)$$

of producing j descendants. Find the probability generating function of this distribution. Obtain the mean size of the n-th generation. Show that ultimate extinction is certain if λ is less than the computed value 2.065.

9.6. A branching process starts with two individuals. Either individual and any of their descendants has probability p_j , (j = 0, 1, 2, ...) of producing j descendants independently of any other. Explain why the probabilities of 0, 1, 2, ... descendants in the first generation are

$$p_0^2$$
, $p_0p_1 + p_1p_0$, $p_0p_2 + p_1p_1 + p_2p_0$, ... $\sum_{i=0}^n p_ip_{n-i}$, ...

respectively. Hence show that the probability generating function of the first generation is $G(s)^2$, where

$$G(s) = \sum_{j=0}^{\infty} p_j s^j.$$

The second generation from each original individual has generating function $G_2(s) = G(G(s))$ (see Section 9.2). Explain why the probability generating function of the second generation is $G_2(s)^2$, and of the *n*-th generation is $G_n(s)^2$.

If the branching process starts with *r* individuals, what would you think is the formula for the probability generating function of the *n*-th generation?

9.7. A branching process starts with two individuals as in the previous problem. The probabilities are

$$p_j = \frac{1}{2^{j+1}}, \quad (j = 0, 1, 2, \ldots).$$

Using the results from Example 9.1, find $H_n(s)$, the probability generating function of the n-th generation. Find also

- (a) the probability that the size of the population of the n-th generation is $m \geq 2$;
- (b) the probability of extinction by the n-th generation;
- (c) the probability of ultimate extinction.
- 9.8. A branching process starts with r individuals, and each individual produces descendants with probability distribution $\{p_j\}$, $(j=0,1,2,\ldots)$, which has the probability generating function G(s). Given that the probability of the n-th generation is $[G_n(s)]^r$, where $G_n(s) = G(G(\ldots(G(s))\ldots))$, find the mean population size of the n-th generation in terms of $\mu = G'(1)$.

9.9. Let X_n be the random variable of the population size of a branching process starting with one individual. Suppose that all individuals survive, and that

$$Z_n = 1 + X_1 + X_2 + \dots + X_n$$

is the random variable representing the accumulated population size.

(a) If H_n is the probability generating function of the total accumulated population, Z_n , up to and including the n-th generation, show that

$$H_1(s) = sG(s), \qquad H_2(s) = sG(H_1(s)) = sG(sG(s))$$

(which perhaps gives a clue to the probability generating function of $H_n(s)$).

- (b) What is the mean accumulated population size $\mathbf{E}(Z_n)$ (you do not require $H_n(s)$ for this formula)?
- (c) If $\mu < 1$, what is $\lim_{n \to \infty} \mathbf{E}(Z_n)$, the ultimate expected population?
- (d) What is the variance of Z_n ?
- 9.10. A branching process starts with one individual and each individual has probability p_j of producing j descendants independently of every other individual. Find the mean and variance of $\{p_j\}$ in each of the following cases, and hence find the mean and variance of the population of the n-th generation:

(a)
$$p_j = \frac{e^{-\mu}\mu^j}{j!}, \qquad (j = 0, 1, 2, ...)$$
 (Poisson);

(b)
$$p_j = (1-p)^{j-1}p$$
 $(j = 1, 2, ...; 0 (geometric);$

(c)
$$p_j = \binom{r+j-1}{r-1} p^j (1-p)^r$$
, $(j=0,1,2,\ldots;0 (negative binomial)$

where r is a positive integer.

9.11. A branching process has a probability generating function

$$G(s) = \left(\frac{1-p}{1-ps}\right)^r$$
, $(0 ,$

where r is a positive integer, the process being started with one individual (a negative binomial distribution). Show that extinction is not certain if p>1/(1+r). Find the probability of extinction if r=2 and $p>\frac{1}{3}$.

9.12. Let $G_n(s)$ be the probability generating function of the population size of the n-th generation of a branching process. The probability that the population size is zero at the n-th generation is $G_n(0)$. What is the probability that the population actually becomes extinct at the n-th generation?

In Example 9.1, where $p_j = 1/2^{j+1}$ (j = 0, 1, 2, ...), it was shown that

$$G_n(s) = \frac{n}{n+1} + \sum_{r=1}^{\infty} \frac{n^{r-1}}{(n+1)^{r+1}} s^r.$$

Find the probability of extinction,

- (a) at the n-th generation,
- (b) at the n-th generation or later.

PROBLEMS 191

What is the mean number of generations until extinction occurs?

9.13. An annual plant produces N seeds in a season which are assumed to have a Poisson distribution with parameter λ . Each seed has a probability p of germinating to create a new plant which propagates in the following year. Let M be the random variable of the number of new plants. Show that p_m , the probability that there are m growing plants in the first year, is given by

$$p_m = (p\lambda)^m e^{-p\lambda}/m!, \quad (m = 0, 1, 2, ...)$$

that is Poisson with parameter $p\lambda$. Show that its probability generating function is

$$G(s) = e^{p\lambda(s-1)}.$$

Assuming that all the germinated plants survive and that each propagates in the same manner in succeeding years, find the mean number of plants in year k. Show that extinction is certain if $p\lambda \leq 1$.

9.14. The version of Example 9.1 with a general geometric distribution is the branching process with $p_j = (1 - p)p^j$, (0 . Show that

$$G(s) = \frac{1 - p}{1 - ps}.$$

Using an induction method, prove that

$$G_n(s) = \frac{(1-p)[p^n - (1-p)^n - ps\{p^{n-1} - (1-p)^{n-1}\}]}{[p^{n+1} - (1-p)^{n+1} - ps\{p^n - (1-p)^n\}]}, \qquad (p \neq \frac{1}{2}).$$

Find the mean and variance of the population size of the n-th generation.

What is the probability of extinction by the *n*-th generation? Show that ultimate extinction is certain if $p < \frac{1}{2}$, but has probability (1-p)/p if $p > \frac{1}{2}$.

9.15. A branching process starts with one individual, and the probability of producing j descendants has the distribution $\{p_j\}$, $(j=0,1,2,\ldots)$. The same probability distribution applies independently to all descendants and their descendants. If X_n is the random variable of the size of the n-th generation, show that

$$\mathbf{E}(X_n) \ge 1 - \mathbf{P}(X_n = 0).$$

In Section 9.3 it was shown that $\mathbf{E}(X_n) = \boldsymbol{\mu}^n$, where $\boldsymbol{\mu} = \mathbf{E}(X_1)$. Deduce that the probability of extinction eventually is certain if $\boldsymbol{\mu} < 1$.

9.16. In a branching process starting with one individual, the probability that any individual has j descendants is $p_j = \alpha/2^j$, $(j=0,1,2,\ldots,r)$, where α is a constant and r is fixed. This means that any individual can have a maximum of r descendants. Find α and the probability generating function G(s) of the first generation. Show that the mean size of the n-th generation is

$$\mu_n = \left[\frac{2^{r+1} - 2 - r}{2^{r+1} - 1}\right]^n.$$

What is the probability of ultimate extinction?

9.17. Extend the tree in Figure 9.3 for the gambling martingale in Section 9.5 to \mathbb{Z}_4 , and confirm that

$$\mathbf{E}(Z_4|Z_0,Z_1,Z_2,Z_3)=Z_3.$$

Confirm also that $\mathbf{E}(Z_4) = 1$.

- 9.18. A gambling game similar to the gambling martingale of Section 9.5 is played according to the following rules:
- (a) the gambler starts with £1, but has unlimited resources;
- (b) against the casino, which also has unlimited resources, the gambler plays a series of games in which the probability that the gambler wins is 1/p and loses is (p-1)/p, where p>1;
- (c) at the *n*-th game, the gambler either wins $f(p^n p^{n-1})$ or loses $f(p^n p^{n-1})$.

If Z_n is the random variable of the gambler's asset/debt at the n-th game, draw a tree diagram similar to that of Figure 9.3 as far as Z_3 . Show that

$$Z_3 = \{-p-p^2, -p^2, -p, 0, p^3-p^2-p, p^3-p^2, p^3-p, p^3\}$$

and confirm that

$$\mathbf{E}(Z_2|Z_0,Z_1)=Z_1, \qquad \mathbf{E}(Z_3|Z_0,Z_1,Z_2)=Z_2,$$

which indicates that this game is a martingale. Show also that

$$\mathbf{E}(Z_1) = \mathbf{E}(Z_2) = \mathbf{E}(Z_3) = 1.$$

Assuming that it is a martingale, show that, if the gambler first wins at the n-th game, then the gambler will have an asset gain or debt of $\pounds(p^{n+1}-2p^n+1)/(p-1)$. Explain why a win for the gambler can only be guaranteed for all n if $p \ge 2$.

9.19. Let X_1, X_2, \ldots be independent random variables with means μ_1, μ_2, \ldots respectively. Let

$$Z_n = X_1 + X_2 + \dots + X_n,$$

and let $Z_0 = X_0 = 0$. Show that the random variable

$$Y_n = Z_n - \sum_{i=1}^n \mu_i, \quad (n = 1, 2, ...)$$

is a martingale with respect to $\{X_n\}$. [Note that $\mathbf{E}(Z_n|X_1,X_2,\ldots,X_n)=Z_n$.]

9.20. Consider an unsymmetric random walk which starts at the origin. The walk advances one position with probability p and retreats one position with probability 1-p. Let X_n be the random variable giving the position of the walk at step n. Let Z_n be the random variable given by

$$Z_n = X_n + (1 - 2p)n.$$

Show that

$$\mathbf{E}(Z_2|X_0,X_1) = \{-2p, 2-2p\} = Z_1.$$

Generally show that $\{Z_n\}$ is a martingale with respect to $\{X_n\}$.

9.21. In the gambling martingale of Section 9.5, the random variable Z_n , the gambler's asset, in a game against a casino in which the gambler starts with £1 and doubles the bid at each play is given by

$$Z_n = \{-2^n + 2m + 2\}, \qquad (m = 0, 1, 2, \dots, 2^n - 1).$$

Find the variance of Z_n . What is the variance of

$$\mathbf{E}(Z_n|Z_0,Z_1,\ldots,Z_{n-1})?$$

PROBLEMS 193

9.22. A random walk starts at the origin, and, with probability p_1 , advances one position and with probability $q_1 = 1 - p_1$ retreats one position at every step. After 10 steps the probabilities change to p_2 and $q_2 = 1 - p_2$ respectively. What is the expected position of the walk after a total of 20 steps?

9.23. A symmetric random walk starts at the origin x = 0. The stopping rule that the walk ends when the position x = 1 is first reached is applied, that is the stopping time T is given by

$$T = \min\{n : X_n = 1\},\$$

where X_n is the position of the walk at step n. What is the expected value of T? If this walk was interpreted as a gambling problem in which the gambler starts with nothing with equal odds of winning or losing £1 at each play, what is the flaw in this stopping rule as a strategy of guaranteeing a win for the gambler in every game? Hint: the generating function for the probability of the first passage is

$$G(s) = [1 - (1 - s^2)^{\frac{1}{2}}]/s$$
:

see Problem 3.11.

9.24. In a finite-state branching process, the descendant probabilities are, for every individual,

$$p_j = \frac{2^{m-j}}{2^{m+1}-1}, \qquad (j=0,1,2,\ldots,m),$$

and the process starts with one individual. Find the mean size of the first generation. If X_n is a random variable of the size of the n-th generation, explain why

$$Z_n = \left[\frac{2^{m+1} - 1}{2^{m+1} - m - 2}\right]^n X_n$$

defines a martingale over $\{X_n\}$.

9.25. A random walk starts at the origin, and at each step the walk advances one position with probability p or retreats with probability 1-p. Show that the random variable

$$Y_n = X_n^2 + 2(1 - 2p)nX_n + [(2p - 1)^2 - 1]n + (2p - 1)^2n^2,$$

where X_n is the random variable of the position of the walk at time n, defines a martingale with respect to $\{X_n\}$.

9.26. A simple epidemic has n_0 susceptibles and one infective at time t=0. If $p_n(t)$ is the probability that there are n susceptibles at time t, it was shown in Section 9.7 that $p_n(t)$ satisfies the differential-difference equations (see Eqns (9.15 and (9.16))

$$\frac{dp_n(t)}{dt} = \beta(n+1)(n_0 - n)p_{n+1}(t) - \beta n(n_0 + 1 - n)p_n(t),$$

for $n = 0, 1, 2, \dots n_0$. Show that the probability generating function

$$G(s,t) = \sum_{n=0}^{n_0} p_n(t)s^n$$

satisfies the partial differential equation

$$\frac{\partial G}{\partial t} = \beta (1 - s) \left[n_0 \frac{\partial G}{\partial s} - s \frac{\partial^2 G}{\partial s^2} \right].$$

Nondimensionalize the equation by putting $\tau = \beta t$. For small τ let

$$H(s,\tau) = G(s,\tau/\beta) = H_0(s) + H_1(s)\tau + H_2(s)\tau^2 + \cdots$$

Show that

$$nH_n(s) = n_0(1-s)\frac{\partial H_{n-1}(s)}{\partial s} - s(1-s)\frac{\partial^2 H_{n-1}(s)}{\partial s^2},$$

for $n = 1, 2, 3, \dots n_0$. What is $H_0(s)$? Find the coefficients $H_1(s)$ and $H_2(s)$. Hence show that the mean number of infectives for small τ is given by

$$n_0 - n_0 \tau - \frac{1}{2} n_0 (n_0 - 2) \tau^2 + O(\tau^3).$$

CHAPTER 10

Computer Simulations and Projects

The software *Mathematica* has been used extensively in this book to confirm answers in worked examples and in the problems at the end of chapters, and in generating graphs. Symbolic computation systems such as *Mathematica*, *Maple*, *MATLAB*, etc., are used in many courses in Mathematics, Statistics, Engineering, and the Physical Sciences. It is seen as a necessary training in the use of computers in these subjects. Readers of this book are encouraged to sample some of the projects listed below in conjunction with the text.

The statistical software R may also be used to solve numerical exercises. It has a suite of simulation routines that allow the generation of results for the probabilistic questions and procedures for the manipulation of matrices to be used in Markov chains as well as graphical routines. The reader is directed to the text by Ugarte et al. (2008) which contains the basic programs that will enable some of the projects below to be carried out. It also gives the necessary background in probability and random variables illustrated by R programs. The statistical computing and graphics package R can be downloaded from:

http://www.r-project.org

The following projects follow the chapters in the main text. They are specifically designed so that they do not require elaborate programming in *Mathematica*, and use mainly built-in *Mathematica* commands. It should be emphasized that these computer programs generally generate answers without explaining just how any results were obtained. Symbolic computing is not yet a substitute for understanding the theory behind stochastic processes. *Mathematica* notebooks for the projects are available at the Keele University, School of Computing and Mathematics Web site:

http://www.scm.keele.ac.uk/books/stochastic_processes/

The programs are intended to be flexible in that inputs, parameters, data, etc. can be varied. They give ideas for programs. Not all areas of the book are covered, but many programs can be adapted to other applications. Computations and graphs are often interesting in that they give some idea of scale and inportance in problems: a result can look interesting as a formula but be of negligible consequence numerically. The problems should only be attempted in conjunction with the programs: pen and paper analysis is not recommended. For the programs *Mathematica*, Version 7 has been assumed.

Chapter 1: Some Background on Probability

10-1.1. Two distinguishable dice are rolled. Design a program to simulate the sum of the two face values shown for 1000, say, random throws. Compare the average of these values with the theoretical expected sum of 7 as in Problem 1.11. Compare also theoretical variance of the sum with the simulated value.

- 10-1.2. Write a computer program to simulate the case of three dice which are rolled and their face values noted. By running the program, say, 2000 times compare by calculating the ratio of the number of the cases in which two dice show the same face value and the third is different with the theoretical probability of 5/12. Estimate the probability that the three dice all show different values with the theoretical probability.
- 10-1.3. A fair coin is spun n times, and the sequence of faces shown recorded. Write a program to simulate this Bernoulli experiment (see Section 1.7). Count the frequencies of the occurrences of heads and tails over, say, n = 1000 trials.

Continue the program by counting in a simulation the number of times, say, a head appears in say 20 spins, and perform the simulation m=2000 times. Compare the data obtained with the exact binomial distribution which the theory predicts for this problem.

10-1.4. The gamma distribution has the density function

$$f(x) = \frac{\alpha^n}{\Gamma(n)} x^{n-1} e^{-\alpha x}.$$

Devise a program to show graphically by surfaces the distribution and density functions for n=2, say, in terms of x and the parameter $\lambda=1/\alpha$ (Mathematica uses the parameter λ).

Chapter 2: Some Gambling Problems

10-2.1. Write a program to simulate the gambler's ruin problem in which a gambler with k units bets against an opponent with (a-k) with a probability p of the gambler winning at each play. Show a graph of the gambler's current stake against the number of the play, and such that the graph terminates when either of the absorbing states at k=0 or k=a is reached. See Figure 2.1 in Section 2.3.

10-2.2. In a single trial the possible score outcomes 1 and 2 can occur with probabilities α and $1-\alpha$ where $0<\alpha<1$ (see Problem 2.2). A succession of such trials take place and each time the scores are accumulated from zero. Design a program to simulate this process, and count the number of times the total scores 1,2,3,..., m occur. Possible numbers are $\alpha=\frac{1}{4}$, m=20 scores run 1000 times. The theory gives the probability that score n occurs as

$$p_n = \frac{1 - (\alpha - 1)^{n+1}}{2 - \alpha}.$$

Compare the results graphically.

10-2.3. The probability of ruin in the standard gambler's ruin problem is given by

$$u_k = \frac{s^k - s^a}{1 - s^a}, \quad (s \neq 1), \quad u_k = 1 - \frac{k}{a}, \quad (s = 1),$$

where s = (1-p)/p, a is the total stake, k is the gambler's initial stake, and p is the probability that the gambler wins at each play. Design a program to reproduce Figure 2.2 which shows the

probability u_k versus k for a given value of a (a=20 in the figure) for a selection of values of p.

10-2.4. The expected duration of the gambler's ruin is given by

$$d_k = \frac{1}{1 - 2p} \left[k - \frac{a(1 - s^k)}{1 - s^a} \right], \quad (s \neq 1), \quad d_k = k(a - k), \quad (s = 1),$$

where s = (1-p)/p, a is the total stake, k is the gambler's initial stake, and p is the probability that the gambler wins at each play. Display the expected duration d_k against k for a given value of a (a = 20 is used in the program) for a selection of values of p.

Find the maximum expected duration for different values of p and plot the results.

Chapter 3: Random Walks

10-3.1. Design a program to simulate a symmetric random walk which starts at position k=0. Display the walk in a graph with joined successive steps in the k (position of walk) versus n (number of steps) plane as illustrated in Figure 3.3. You could try, for example, 1000 steps.

10-3.2. From the answer to Problem 3.4, the probability that the first return of a symmetic random walk to the origin can be expressed in the form

$$f_n = \frac{1}{2}(-1)^{\frac{1}{2}n+1}[1+(-1)^n]\binom{\frac{1}{2}}{\frac{1}{2}n}.$$

It has been shown that the mean associated with f_n is infinite. If n is an odd integer, then all f_n are zero. It has been shown that the mean associated with f_n is infinite. Compute

$$s(r) = \sum_{n=1}^{r} n f_n$$

for $r = 2, 4, 6, \dots, 100$. Show how s(r) increases with r.

10-3.3. In Section 3.3 it is shown that the probability that a random walk with parameter p is in state x after n steps from the origin is given by

$$v_{n,x} = \binom{n}{\frac{1}{2}(n+x)} p^{\frac{1}{2}(n+x)} (1-p)^{\frac{1}{2}(n-x)},$$

where n and x are either both odd or both even. Define a function of n, x, and p to represent $v_{n,x}$. For specific values of n confirm that the expected value of the final position of the walk is n(2p-1). Again for specific values of n (say 16) and p (say $\frac{2}{3}$) show graphically the probability distribution $v_{n,x}$ in terms of x.

10-3.4. Design a program to simulate a two-dimensional symmetric random walk which starts at the origin. Make sure that odd and even values of the numbers of steps are included (see Problems 3.21 and 3.22). Collect the data of the final positions of n trial walks over m steps. Possible numbers are n=2000 and m=40. The data can be displayed in a three-dimensional surface plot.

Let the final positions of the walk be the list (i_k, j_k) for k = 1, 2, 3, ..., n. Calculate the squares $D_k^2 = i_k^2 + j_k^2$, and find the mean of D_k^2 . Try this for different m. What would you guess is the mean value of D_k^2 in terms of m?

Chapter 4: Markov Chains

10-4.1. Design a program to find the eigenvalues and eigenvectors of the transition matrix T given by

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{8} & \frac{3}{8} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & 0 & 0 & \frac{2}{3} \end{bmatrix}$$

(see also Problem 4.6(c)). If C is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues check by a program that $T=CDC^{-1}$. Find a general formula for T^n . For how many decimal places is $\lim_{t\to\infty} T^n$ correct for T^{10} ?

10-4.2. Find the eigenvalues and eigenvectors of the stochastic matrix

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}.$$

Construct a formula for T^n , and find $\lim_{n\to\infty} T^n$.

10-4.3. Devise a program to simulate a two-state Markov chain with transition matrix

$$T = \left[\begin{array}{cc} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{array} \right].$$

Possible values for the parameters are $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{3}$ for, say, 1,000 steps. Then count the number of times that states E_1 and E_2 occur in the random process. Compare this output with the theoretical stationary distribution

$$\mathbf{p} = \left[\begin{array}{cc} \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \end{array} \right].$$

10-4.4. Devise a program to simulate a three-state (or higher state) Markov chain with transition matrix

$$T = \left[\begin{array}{ccc} 1 - \alpha_2 - \alpha_3 & \alpha_2 & \alpha_3 \\ \beta_1 & 1 - \beta_1 - \beta_3 & \beta_3 \\ \gamma_1 & \gamma_2 & 1 - \gamma_1 - \gamma_2 \end{array} \right].$$

Test the program with the data from Example 4.3 in which

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}.$$

Count the number of times that states E_1 , E_2 , and E_3 occur in the random process. Compare this output with the theoretical stationary distribution.

10-4.5. A four-state Markov chain with two absorbing states has the transition matrix

$$S = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ 0 & 0 & 0 & 1 \end{array} \right]$$

(see Problem4.8b). Simulate the chain which starts in state E_2 , and determine the proportion

of chains which finish in either E_1 or E_2 over say 1,000 runs. Check this answer to Problem 4.8(b) by finding $\lim_{t\to\infty}T^n$.

10-4.6. As in Problem 4.8(a) a Markov chain has the transition matrix

$$T = \left[\begin{array}{ccc} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{array} \right].$$

Confirm the eigenvalues of T and show that T has just two distinct nontrivial eigenvalues. Find the Jordan decomposition matrix J and a matrix C such that $T = CJC^{-1}$. Input a formula for J^n , find T^n and its limit as $n \to \infty$.

10-4.7. Represent a Markov chain as a **signal flow** of the states E_1, E_2, \ldots against the steps $n = 1, 2, 3, \ldots$ Display the chain for the three-state process with transition matrix

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

(see Problem 4.8a).

Apply the signal flow display to the six-state chain

$$T = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

which appears also in Problem 4.11. The flow diagram should reveal the closed subset.

10-4.8. Form an $n \times n$ matrix whose rows are randomly and independently chosen from the uniform discrete distribution of the numbers $1,2,3,\ldots,n$. Transform this into a stochastic matrix T by dividing the elements of each row by the sum of the elements in that row. This is a method of generating a class of *positive* stochastic matrices (see Section 4.7a). Find the eigenvalues and eigenvectors of T, T^n , and $\lim_{n\to\infty}T^n$.

Chapter 5: Poisson Processes

10-5.1. In the Poisson process with parameter λ , the probability that the population is of size n at time t is given by $p_n(t) = (\lambda t)^n e^{-\lambda t}/n!$ (see Section 5.2). Show the first few probabilities in dimensionless form against λt as in Fig. 5.1.

Show also that the maximum value of the probability on the graph of $p_n(t)$ lies on the graph of $p_{n-1}(t)$.

10-5.2. Simulate the Geiger counter which is modelled by a Poisson process with parameter λ . The probability of a recording of a hit in any time interval of duration δt is assumed to be $\lambda \delta t$ with multiple recordings negligible (see Section 5.2). Assuming that the readings start from zero show the growth of the readings against time.

Run the program a number of times over the same time interval, and find the mean value of the data. Compare this value with the theoretical value for the mean of a Poisson process.

Chapter 6: Birth and Death Processes

10-6.1. Design a program to simulate a simple birth and death process with birth rate λ and death rate μ . Time interval (0,T) should be divided into increments δt , so that the probability that a birth takes place in any interval of duration δt is $\lambda \delta t$, and similarly for a death (see Section 6.5). Show graphically how the population changes with time.

10-6.2. The probability generating function G(s,t) for a simple birth and death process with birth and death rates λ and μ respectively is given by

$$G(s,t) = \left\lceil \frac{\mu(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}}{\lambda(1-s) - (\mu - \lambda s)e^{-(\lambda - \mu)t}} \right\rceil^{n_0},$$

(see Eqn (6.23). Define the function G(s,t) in *Mathematica*, and find the mean and variance of the population size as functions of t.

10-6.3. In a death process the death rate is μ and the initial population is n_0 . The probability that the population is extinct by time t is given by

$$p_0(t) = (1 - e^{-\mu t})^{n_0}$$

(see Eqn (6.17)). Show that the mean time τ_{n_0} to extinction is given by

$$\tau_{n_0} = \frac{n_0}{\mu} \sum_{k=0}^{n_0-1} \frac{(-1)^k}{(k+1)^2} \binom{n_0-1}{k},$$

(see Problem 6.29). Write a program to calculate the dimensionless $\mu \tau_{n_0}$ from the series. Plot a graph of τ_{n_0} versus n_0 , say for $n_0 = 1, 2, 3, \dots, 50$.

Now construct a program to simulate a death process with parameter μ . Calculate a series of extinction times (say, 50?) and compare the mean of these times with the theoretical value from the series.

10-6.4. For a simple birth and death process with equal birth and death rates λ , the probability generating function is

$$G(s,t) = \left[\frac{1 + (\lambda t - 1)(1 - s)}{1 + \lambda t(1 - s)} \right]^{n_0},$$

where n_0 is the initial population size (see eqn (6.24)). Find the vector function for the probabilities $p_n(t)$ for $n=0,1,2,\ldots,n_1$ as a function of the dimensionless time $\tau=\lambda t$. Show graphically how $p_n(t)$ behaves as τ increases from zero. Possible values are $n_0=15$, $n_1=30$, and $\tau=1,2,3,4,5$.

Chapter 7: Queues

10-7.1. Write a program to simulate a single-server queue with arrivals having a Poisson distribution with parameter λ and with service times having a negative exponential distribution with parameter μ ($\lambda < \mu$). Possible values are $\lambda = 1$, $\mu = 1.1$ with an elapse time of t = 2000 in steps of duration $\delta t = 0.1$. By counting the number of times queue lengths $0, 1, 2, \ldots$ occur a distribution for the simulation can be calculated and represented in a bar chart.

The theoretical probability that r persons are in the queue (including the person being served) in the *stationary* process is given by $p_r = (1 - \rho)\rho^r$ where $\rho = \lambda/\mu$. Compare graphically these probabilities with the bar chart.

10-7.2. Consider the solution for the problem of the queue with r servers given in Section 7.4. The probability p_0 that there is no one queueing is given by Eqn (7.11):

$$p_0 = 1 / \left[\sum_{n=0}^{r-1} \frac{\rho^n}{n!} + \frac{\rho^r}{(r-\rho)(r-1)!} \right].$$

Represent this by a function of the traffic density $\rho_1 = \rho/r$ and the number of servers r. Plot the probabilities against ρ_1 for r = 1, 2, 3, 4 servers. The probability p_n that the queue is of length n is given by

$$p_n = \left\{ \begin{array}{ll} \rho^n p_0 / n! & n < r \\ \rho^n p_0 / [r^{n-r} r!] & n \ge r. \end{array} \right.$$

Compose a list of the probabilities when r=6 and $n=0,1,2,\ldots,20$ for the case $\rho_1=0.8$. For what value of n does the probability take its largest value?

Display a surface over the grid $r \times n$ where r = 1, 2, 3, 4, 5, 6 and $n = 0, 1, 2, \dots, 20$ again for the case $\rho_1 = 0.8$. For the same parameter plot the expected queue lengths for $r = 1, 2, \dots, 20$ excluding those being served.

10-7.3. The fixed service time queue has the probability generating function

$$G(s) = \frac{(1-\rho)(1-s)}{1-se^{\rho(1-s)}}, \quad 0 < \rho < 1,$$

where $\rho = \lambda/\tau$ and τ is the service time. Using *Mathematica* check the results in Problem 7.12 for p_0 , p_1 , p_2 and the expected length of the queue.

10-7.4. In the baulked queue (see Example 7.1) not more than $m \ge 2$ persons are permitted to form a queue. The probability generating function for the queue is (see Problem 7.13) given by

$$G(s) = \frac{(1-\rho)[1-(\rho s)^{m+1}]}{(1-\rho^{m+1})(1-\rho s)}, \qquad \rho \neq 1.$$

Define this function in *Mathematica*, and obtain a list which represents the probability distribution over i = 0, 1, 2, ..., m.

Now compare these results with a simulated baulked queue. Some possible parametric values are

$$\lambda = 1.2; \quad \mu = 1; \quad \text{incremental time step, } \delta t = 0.1; m = 10,$$

run over a time of t = 2000.

Chapter 8: Reliability and Renewal

10-8.1. In Section 8.2, the reliability function is defined as

$$R(t) = \mathbf{P}(T > t) = 1 - F(t),$$

and the failure rate function is given by r(t)=f(t)/R(t). Obtain the functions F(t), R(t), and r(t) for the gamma density function $f(t)=\lambda^2 t e^{-\lambda t}$. Plot the functions for $\lambda=1$ over the interval $0\leq t\leq 5$.

10-8.2. In Problem 8.3 the failure rate function is given by

$$r(t)=\frac{ct}{a^2+t^2},\quad t\geq 0,\quad a>0,\quad c>1.$$

Find the formula for the reliability function R(t) and the density function f(t). Plot all three

functions for a=1 and c=2. What general formula does *Mathematica* give for the mean time to failure in terms of a and c? Find the actual means in the cases (a) a=5, c=1.02, (b) a=5, c=2. Plot the mean time to failure as a surface in terms of a and c for, say, 0.2 < a < 10 and 1.1 < c < 2.

10-8.3. Define a reliability function for a process in which n components are in parallel, and each has the same time to failure which are independent, identically exponential distributions with parameter λ (see Example 8.4). Find the expected mean time to failure for the cases $n = 1, 2, 3, \ldots, 10$, say. How do you expect this mean to behave as $n \to \infty$?

Define a reliability function for the case of three components in parallel each having an exponentially distributed failure time, but with different parameters λ_1, λ_2 , and λ_3 .

Chapter 9: Branching and Other Random Processes

10-9.1. A branching process starts with one individual, and the probability that any individual in any generation produces j descendants is given by $p_j = 1/2^{j+1}$ (j = 0, 1, 2, ...). The probability generating function for the n-th generation is given by

$$G_n(s) = \frac{n - (n-1)s}{n + 1 - ns}$$

(see Example 9.1). Find the probability that there are r individuals in the n-th generation. Plot the first few terms in the distributions for the cases n=1,2,3,4,5. Check the mean population size in the n-th generation.

10-9.2. The branching process in Problem 9.3 has the probability generating function

$$G(s) = a + bs + (1 - a - b)s^{2}, \quad a > 0, \quad b > 0, \quad a + b < 1.$$

The process starts with one individual. Using a nesting command find the probabilities that there are $0, 1, 2, \ldots, 31, 32$ individuals in the 5th generation assuming, say, that $a = \frac{1}{4}$ and $b = \frac{1}{3}$. Plot the probabilities against the number of individuals: why do they oscillate? Find also the probability of extinction for general values of a and b.

10-9.3. In Section 9.5, the gambling problem in which a gambler starts with £1 and bets against the house with an even chance of collecting £2 or losing £1 is explained. If the gambler loses then he or she doubles the bet to £2 with the same evens chances. The gambler continues doubling the bet until he or she wins. It was shown that this eventually guarantees that the gambler wins £1. Devise a program which simulates this martingale, and gives, by taking the mean of a large number of games, an estimate of the expected number of plays until the gambler wins.

10-9.4. Design a program which models the doubling gambling martingale in Section 9.5 to simulate the expected value

$$\mathbf{E}(Z_{n+1}|Z_0,Z_1,Z_2,\ldots,Z_n)=Z_n,$$

where $Z_0 = 1$. The final outputs should take values in the sequence

$$Z_n = \{-2^n + 2m + 2\}, \qquad (m = 0, 1, 2, \dots, 2^n - 1).$$

A possible case to try is n=5 over 5000 trials: the results can be expressed graphically in a bar chart.

Answers and Comments on End-of-Chapter Problems

Answers are given for selected problems.

Chapter 1

- 1.2. (c) $(A \cap B) \cap C^c$; (e) $[A \cap (B \cup C)^c] \cup [B \cap (A \cup C)^c] \cup [C \cap (A \cup B)^c]$.
- 1.3. (a) 0.6; (c) 0.4.
- 1.6. The mean value is $\frac{5}{8}$.
- 1.7. The mean is α and the variance is also α .
- 1.9. The probability generating function is ps/(1-qs). The mean is 1/p and the variance is q/p^2 .
- 1.10. (a) 11/36; (b) 5/18; (c) 5/36; (d) 1/18; (e) 7/36.
- 1.11. The expected value of the face values is 7, and the variance is 35/6.
- 1.12. There are 216 possible outcomes, the probability that two dice have the same face values and the third is different is 5/12.
- 1.13. 17/52.
- 1.14. Cumulative distribution function is $F(x) = 1 \frac{1}{2}e^{-(x-a)/a}$.
- 1.15. G(s) = ps/[1 s(1-p)].
- 1.16. The expected value is given by

$$\mathbf{E}(Y) = nm/\alpha$$
.

1.17. The probabilities are

$$p_0 = \frac{1-\alpha}{1+\alpha}, \quad p_n = \frac{2\alpha^n}{(1+\alpha)^{n+1}} \quad (n=1,2,\ldots).$$

1.18. The moment generating function is

$$M_X(t) = \frac{1}{b-a} \sum_{n=1}^{\infty} \left(\frac{b^n - a^n}{n!} \right) t^{n-1},$$

and

$$\mathbf{E}(X^n) = \frac{b^{n+1} - a^{n+1}s}{(n+1)(b-a)}.$$

- 1.20. The means and variances are: (a) μ , p(1-p); (b) $p/[1-(1-p)s]^2$, $(1-p)/p^2$; (c) $r(r+1)(1-p)^rp^2/[(1-ps)^{r+2}]$, $pr/(1-p)^2$.
- 1.21. $(0.95)^5 \approx 0.774$ and $(0.9975)^5 \approx 0.9876$.
- 1.22. The mean of the random variable is

$$\mu = -\frac{\alpha}{(1-\alpha)\ln(1-\alpha)}.$$

Chapter 2

- 2.1. (a) Probability of ruin is $u_k \approx 0.132$, and the expected duration is $d_k \approx 409$; (c) $u_k = 0.2$, $d_k = 400$.
- 2.2. The probability p = 0.498999 to 6 digits: note that the result is very close to $\frac{1}{2}$.
- 2.3. (a) $u_k = A + 3^k B$; (c) $u_k = A + (1 + \sqrt{2})^k B + (1 \sqrt{2})^k C$.
- 2.4. (a) $u_k = (625 5^k)/624$; (c) $u_k = k(10 k)$.
- 2.6. The expected duration is k(a k).
- 2.8. The game would be expected to take four times as long.
- 2.9. The probabilities of the gambler winning in the two cases are 2.23×10^{-4} and 2.06×10^{-6} .
- 2.10. $p_n = \frac{2}{3} + \frac{1}{3}(-\frac{1}{2})^n, n = 1, 2, 3, \dots$ 2.11. $p_n = [1 (q-1)^{n+1}]/(2-q).$
- 2.14. The game extended by

$$\frac{1}{1-2p} \left[k - \frac{a(1-s^k)(s^a - 1 - 2s^k)}{1-s^{2a}} \right].$$

- 2.20. The expected duration of the game is about 99 plays.
- 2.22. (a) $\alpha_k = \frac{1}{2}$; (c) $\alpha_k = \sin[(k \frac{1}{2})\pi a]/[2\cos(\pi/2a)\sin(k\pi/a)]$. 2.24. (c) $[(n-1)/n]^{n-1}$.

Chapter 3

3.2. The probability that the walker is at the origin at step 8 is

$$\mathbf{P}(X_8 = 0) = \frac{1}{2^8} \binom{8}{4} \approx 0.273.$$

The probability that it is not the first visit there is approximately 0.234.

3.4. (a)

$$f_n = \begin{cases} (-1)^{n+1} \begin{pmatrix} \frac{1}{2} \\ n \end{pmatrix} & (n \text{ even}) \\ 0 & (n \text{ odd}) \end{cases}.$$

3.5. Treat the problem as a symmetric random walk with a return to the origin: the probability

$$v_{n,0} = \begin{cases} \frac{1}{2^n} \binom{n}{\frac{1}{2}n} & (n \text{ even}) \\ 0 & (n \text{ odd}) \end{cases}.$$

- 3.7. The mean number of steps to the first return is 4pq/|p-q|.
- 3.10. The probability is $(2n)!/[2^{2n+1}n!(n+1)!]$.
- 3.12. The respective probabilities are $\frac{1}{4}$, $\frac{1}{8}$, and $\frac{1}{64}$.
- 3.14. The probability that the walk ever visits x > 0 is (1 |p q|)/(2q).
- 3.17. (b) The probability that the walk is at O after n steps is

$$p_{j} = \begin{cases} \begin{pmatrix} j \\ \frac{1}{2}j \end{pmatrix} \frac{1}{2^{j}} + \begin{pmatrix} j \\ \frac{1}{2}(j+n) \end{pmatrix} \frac{1}{2^{j}} + \begin{pmatrix} j \\ \frac{1}{2}(j-n) \end{pmatrix} \frac{1}{2^{j}} & (j, n \text{ both even}) \\ 0 & (j \text{ odd, } n \text{ even, or } j \text{ even, } n \text{ odd}) \\ \begin{pmatrix} j \\ \frac{1}{2}(j+n) \end{pmatrix} \frac{1}{2^{j}} + \begin{pmatrix} j \\ \frac{1}{2}(j-n) \end{pmatrix} \frac{1}{2^{j}} & (j, n \text{ both odd}) \end{cases}$$

3.18. (a) 0.217; (b) 0.415.

3.19.
$$p = (1 + \sqrt{5})/4$$
.

3.20. The probability that they are both at the origin at step n is at 0 if n is odd, and

$$\frac{1}{2^{2n}} \binom{n}{\frac{1}{2}n}^2.$$

3.21. $p_{2n} \sim 1/(n\pi)$ for large n.

Chapter 4

4.1.
$$p_{23} = 5/12$$
; $\mathbf{p}^{(1)} = \left[\frac{173}{720}, \frac{1}{3}, \frac{307}{720}\right]$.

4.2.
$$p_{31}^{(2)} = \frac{17}{48}$$

4.2. $p_{31}^{(2)}=\frac{17}{48}$. 4.3. $\mathbf{p}^{(3)}=[943,2513]/3456$; eigenvalues of T are $1,\frac{1}{12}$;

$$T^n o \frac{1}{11} \begin{bmatrix} 3 & 8 \\ 3 & 8 \end{bmatrix}$$
 as $n \to \infty$.

4.5. Eigenvalues are

$$a + b + c$$
, $\frac{1}{2}[2a - b - c \pm i\sqrt{3}|b - c|]$.

(a) The eigenvalues are 1, $\frac{1}{4}$, $\frac{1}{4}$ with corresponding eigenvectors

$$\left[\begin{array}{c}1\\1\\1\end{array}\right], \quad \left[\begin{array}{c}-1\\1\\0\end{array}\right], \quad \left[\begin{array}{c}-1\\0\\1\end{array}\right].$$

4.6.(a)

$$T^n = \frac{1}{11} \left[\begin{array}{cc} 4 + 7(-\frac{3}{8})^n & 7 - 7(-\frac{3}{8})^n \\ 4 - (-\frac{3}{8})^n & 7 + (-\frac{3}{8})^n \end{array} \right].$$

- (b) The eigenvalues are $-\frac{1}{4}, \frac{1}{4}, 1$.
- 4.7. 40% of the days are sunny.
- 4.8. (c) The eigenvectors are $\frac{1}{3}, \frac{1}{3}$, and 1. The invariant distribution is $\left[\frac{1}{4}, 0, \frac{3}{4}\right]$.
- 4.9. (a) Eigenvalues are -1/8, -1/8, 1.
 (b) A matrix C of transposed eigenvectors is given by

$$C = \left[\begin{array}{rrr} 1 & \frac{5}{12} & 1\\ -4 & -\frac{5}{2} & 1\\ 1 & 1 & 1 \end{array} \right].$$

- (c) The invariant distribution is [28, 15, 39]/82.
- (d) The eigenvectors are $-\frac{1}{4}, \frac{1}{12}, 1$.
- (e) The limiting matrix is

$$\lim_{n \to \infty} T^n = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{2}{3} & 0 \end{bmatrix}.$$

- 4.10. $f_1=1; f_2=1; f_3=\frac{1}{12}; f_4=\frac{1}{12}.$ Every row of $\lim_{n\to\infty}T^n$ is $\{\frac{2}{3}-\frac{1}{3}-0-0\}$. 4.11. E_4 and E_5 form a closed subset with a stationary distribution $[\frac{1}{3}-\frac{2}{3}]$
- 4.12. All states except E_7 have period 3.
- 4.15. $\mu_1 = 1 + a + ab + abc$. E_1 is an ergodic state.
- 4.17. Probability of an item being completed is $(1 p q)^2/(1 q)^2$.

4.18. $\mu_3 = 2$.

Chapter 5

- 5.1. (a) 0.602; (b) 0.235.
- 5.6. The mean number of calls received by time t is

$$\mu(t) = at + (b/\omega)\sin \omega t.$$

5.7. The mean reading at time t is $n_0 + \lambda t$.

5.8. (a)
$$\mathbf{P}[N(3) = 6] = 0.00353$$
; (c) $\mathbf{P}[N(3.7) = 4|N(2.1) = 2] = 0.144$; (e) $\mathbf{P}[N(7) - N(3) = 3] = 0.180$.

- 5.9. The bank should employ 17 operators.
- 5.10. The expected value of the switch-off times is n/λ .

Chapter 6

- 6.1. The probability that the original cell has not divided at time t is $e^{-\lambda t}$. The variance at time t is $e^{2\lambda t} e^{\lambda t}$.
- 6.3. The probability that the population has halved at time t is

$$p_{\frac{1}{2}n_0}(t) = \binom{n_0}{\frac{1}{2}n_0} [e^{-\mu t}(1 - e^{-\mu t})]^{\frac{1}{2}n_0}.$$

The required time is $\mu^{-1} \ln 2$.

6.4. (b)
$$p_0(t) = 0$$
, $p_n(t) = e^{-\lambda t} (1 - e^{-\lambda t})^{n-1}$, $(n = 1, 2, 3, ...)$.

6.5.

$$p_n(t) = {r \choose n} \left(\frac{2}{2+t}\right)^r \left(\frac{t}{2}\right)^n.$$

The mean is rt/(2+t).

6.6 (b),(c) The probability of extinction at time t is

$$G(0,t) = \left[\frac{\mu - \mu S e^{-(\lambda - \mu)t}}{\lambda - \mu e^{-(\lambda - \mu)t}} \right]^{n_0} \to \left\{ \begin{array}{ll} (\mu/\lambda)^{n_0} & \text{if } \lambda > \mu \\ 1 & \text{if } \lambda < \mu. \end{array} \right.$$

(d) The variance is

$$n_0(\lambda+\mu)e^{(\lambda-\mu)t}[e^{(\lambda-\mu)t}-1]/(\lambda-\mu).$$

- 6.7. The probability of ultimate extinction is $e^{-\lambda/\mu}$.
- 6.18. The mean is

$$\boldsymbol{\mu} = \frac{(\mu - \lambda)\lambda}{\mu^2} e^{\lambda/\mu}.$$

6.19. The maximum value of $p_n(t)$ is

$$\binom{n-1}{n_0-1} n_0^{n_0} n^{-n} (n-n_0)^{n-n_0}.$$

6.21. The mean population size at time t is

$$n_0 \exp \left[-\int_0^t \mu(s) ds \right],$$

and

$$\mu(t) = \frac{\alpha}{1 + \alpha t}.$$

6.22. Ultimate extinction is certain.

6.23. The probability that the population size is n at time t is given by

$$p_0(t) = \frac{1 - \mu e^{-nt}}{1 + \mu e^{nt}}, \quad p_n(t) = \frac{2\mu^n e^{-nt}}{(1 + \mu e^{-t})^{n+1}} \quad (n = 1, 2, ...)$$

and its mean is $2\mu e^{-t}$.

6.30. The mean population size at time t is $e^{(\lambda-\mu)t}$.

6.31. The probability generating function is

$$G(s,t) = \frac{1 - e^{-\mu t} - (1 - e^{-\lambda t} - e^{-\mu t})s}{1 - (1 - e^{-\lambda t})s}.$$

Chapter 7

7.1. (a) $p_n = 1/2^{n+1}$; (c) 7/8. 7.3.

$$p_0 = 1 / \left[1 + \sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} \right].$$

The expected length of the queue is $1/\mu$.

7.4. If m=3 and $\rho=1$, then the expected length is $\frac{3}{2}$.

7.5. The mean and variance are respectively $\lambda/(\mu-\lambda)$ and $\lambda\mu/(\mu-\lambda)^2$.

7.6. $\rho \approx 0.74$ and the variance is approximately 10.9.

7.8. 109 telephones should be manned.

7.9. If the expected lengths are $\mathbf{E}_M(N)$ and $\mathbf{E}_D(N)$ respectively, then $\mathbf{E}_D(N) < \mathbf{E}_M(N)$ assuming $0 < \rho < 1$, where $\rho = \lambda/\mu$.

7.10. $0 < \rho < \sqrt{5} - 1$.

7.11. The required probability generating function is

$$G(s) = \left(\frac{2-\rho}{2+\rho}\right) \left(\frac{2+\rho s}{2-\rho s}\right).$$

7.12. (b) The expected length of the queue is $\rho(1-\frac{1}{2}\rho)/(1-\rho)$ and its variance is

$$\frac{\rho}{12(1-\rho)^2}(12-18\rho+10\rho^2-\rho^3).$$

(c)
$$\rho = 3 - \sqrt{5}$$
.

7.13. The expected length is $\frac{1}{2}m$.

7.14. The expected length is $\rho^2/(1-\rho)$.

7.15. The mean service time is $\frac{3}{10}$ minutes.

7.17. The service has a uniform density function given by

$$f(t= \begin{cases} 1/(\tau_2 - \tau_1) & \tau_1 \le t \le \tau_2 \\ 0 & \text{elsewhere.} \end{cases}$$

The expected length of the queue is 9/4.

7.19. The expected waiting time is $1/(4\mu)$.

7.20. The length of the waiting list becomes $0.89 + O(\varepsilon)$.

7.21. The expected value of the waiting time is

$$\frac{1}{\mu} \left(1 + \frac{p_0 \rho^r}{(r-1)!(r-\rho)^2} \right),$$

where p_0 is given by Eqn (7.11).

7.22. The probability that no one is waiting except those being served is

$$1 - \frac{p_0 \rho^n}{(r-1)!(r-\rho)},$$

where p_0 is given by Eqn (7.11).

7.23. For all booths the expected number of cars queueing is

$$\frac{(r-1)\lambda}{\mu(r-1)-\lambda},$$

and the number of extra vehicles queueing is

$$\frac{\lambda^2}{[\mu(r-1)-\lambda][\mu r-\lambda]}.$$

7.24. $\mu = 11\lambda/10$.

Chapter 8

8.1. The reliability function is

$$R(t) = \begin{cases} 1 & t \le 0 \\ (t_1 - t)/(t_1 - t_0) & 0 < t < t_1 \\ 0 & t \ge t_1. \end{cases}$$

The expected life of the component is $\frac{1}{2}(t_0 + t_1)$.

- 8.2. The failure rate function is $r(t) = \lambda^2 t/(1+\lambda t)$. The mean and variance of the time to failure are respectively $2/\lambda$ and $2/\lambda^2$.
- 8.3. The probability density function is given by $f(t) = t/(1+t^2)^{3/2}$.
- 8.4. The reliability function is

$$R(t) = \left\{ \begin{array}{ll} e^{-\lambda_1 t^2}, & 0 < t < t_0 \\ e^{-[(\lambda_1 - \lambda_2)t_0(2t - t_0) + \lambda_2 t^2]}, & t > t_0. \end{array} \right.$$

- 8.5. The expected time to maintenance is 61.2 hours.
- 8.6. The expected time to failure is n/λ .
- 8.7. The mean time to failure of the generator is $1/\lambda_f$ and the mean time for the generator to be operational again is $(1/\lambda_f) + (1/\lambda_r)$.
- 8.8. The relation between the parameters is given by

$$\lambda = \frac{1}{1000} \ln \left[\frac{0.999 - (1 + 1000 \mu) e^{-1000 \mu}}{1 - (1 + 1000 \mu) e^{-1000 \mu}} \right].$$

- 8.9. 3 spares should be carried.
- 8.10. (a) $\mathbf{P}(T_1 < T_2) = \lambda_1/(\lambda_1 + \lambda_2)$.

(b)
$$\mathbf{P}(T_1 < T_2) = \lambda_1^2 (\lambda_1 + 3\lambda_2) / (\lambda_1 + \lambda_2)^3$$
.

8.11.
$$r(t) \rightarrow \lambda_1$$
 if $\lambda_2 > \lambda_1$, and $r(t) \rightarrow \lambda_2$ if $\lambda_2 < \lambda_1$.
8.12. $\mathbf{P}(S_3 \leq 3) = 1 - (1 + \lambda t + \frac{1}{2}t^2\lambda^2)e^{-\lambda t}$.

8.12.
$$P(S_3 < 3) = 1 - (1 + \lambda t + \frac{1}{2}t^2\lambda^2)e^{-\lambda t}$$

8.13.
$$\mathbf{P}(S_2 \le 2) = \frac{1}{2}(t/k)^2, (0 < t < k), \mathbf{P}(S_2 \le 2) = t(2k-t)/(2k^2), (t > k).$$

Chapter 9

- 9.1. $p_{n,j} = [(2^n 1)/2^n]^{j-1}$. The mean population size of the *n*-th generation is 2^n .
- 9.2. The probability generating function of the second generation is

$$G_2(s) = \frac{(1-p)(1-ps)}{(1-p+p^2)-ps}.$$

The mean population size of the *n*-th generation is $\mu_n = [p/(1-p)]^n$.

- 9.3. The maximum population of the n-th generation is 2^n . It is helpful to draw a graph in the (a,b) plane to show the region where extinction is certain.
- 9.4. The variance of the *n*-th generation is $\lambda^{n+1}(\lambda^n-1)/(\lambda-1)$.
- 9.5. The expected size of the *n*-th generation is $\mu_n = [\lambda^n \tanh^n \lambda]/2^n$.
- 9.7. (a) The probability that the population size of the n-th generation is m is

$$p_{n,m} = \frac{n^{m-2}}{(n+1)^{m+2}}(m+2n^2-1).$$

- (b) The probability of extinction by the *n*-th generation is $[n/(n+1)]^2$.
- 9.8. $\mu_n = r\mu^n$.
- 9.9. (b)

$$\mathbf{E}(Z_n) = \begin{cases} (1 - \boldsymbol{\mu}^{n+1})/(1 - \boldsymbol{\mu}) & \boldsymbol{\mu} \neq 1 \\ n + 1 & \boldsymbol{\mu} = 1. \end{cases}$$

(d) The variance of Z_n is

$$\mathbf{V}(Z_n) = \frac{\sigma^2(1 - \boldsymbol{\mu}^n)(1 - \boldsymbol{\mu}^{n+1})}{(1 - \boldsymbol{\mu})(1 - \boldsymbol{\mu}^2)},$$

if $\mu \neq 1$, or $\frac{1}{2}\sigma^2 n(n+1)$ if $\mu = 1$.

9.10.(a)
$$\mu_n = \mu^n$$
 and $\sigma_n^2 = \mu^n (\mu^n - 1)/(\mu - 1)$ if $\mu \neq 1$.

(b)
$$\mu_n = [p/(1-p)]^n$$
.

(c)

$$\boldsymbol{\mu}_n = \left\lceil \frac{rp}{1-p} \right\rceil^n, \qquad \boldsymbol{\sigma}_n^2 = \frac{(pr)^n}{(1-p)^{n+1}(rp-1+p)} \left\lceil \left(\frac{rp}{1-p}\right)^n - 1 \right\rceil,$$

if $\mu \neq 1$.

9.12. (a)
$$1/[n(n+1)]$$
; (b) $1/n$.

The mean number of generations to extinction is infinite.

- 9.13. The mean number of plants in generation n is $(p\lambda)^n$.
- 9.14. The probability of extinction by the n-th generation is

$$G_n(0) = \frac{(1-p)[p^n - (1-p)^n]}{p^{n+1} - (1-p)^{n+1}}.$$

9.21. $\mathbf{V}(Z_n) = \frac{1}{3}(2^{2n} - 1)$ and $\mathbf{V}[\mathbf{E}(Z_n|Z_0, Z_1, \dots, Z_{n-1})] = \mathbf{V}(Z_{n-1}) = \frac{1}{3}(2^{2n-2} - 1)$. 9.22. The expected position of the walk after 20 steps is $10(p_1 + p_2 - q_1 - q_2)$.

Appendix

Abbreviations

gcd — greatest common divisor.

iid — independent and identically distributed.

mgf -moment generating function.

pgf — probability generating function.

rv — random variable.

Set notation

A, B — sets or events.

 $A \cup B$ — union of A and B.

 $A \cap B$ — intersection of A and B.

 A^c — complement of A.

 $B \backslash A - B$ but not A.

S — universal set.

∅ —empty set.

Probability notation

N, X, Y — random variables (usually capital letters in the context of probabilities).

P(X = x) — probability that the random variable X = x.

 $\mathbf{E}(X)$ — mean or expected value of the random variable X.

V(X) — variance of the random variable X.

 μ — alternative symbol for mean or expected value.

 σ^2 — alternative symbol for variance.

Factorial function, $n! = 1 \cdot 2 \cdot 3 \cdots n$; 0! = 1.

Gamma function, $\Gamma(n) = (n-1)!$.

Binomial coefficients:

$$\binom{n}{r} = \frac{n!}{(n-r)!r!}, \qquad n, r \text{ positive integers } n \geq r; \quad \binom{n}{0} = 1;$$

$$\binom{a}{r} = \frac{a(a-1)\cdots(a-r+1)}{1\cdot 2\cdot 3\cdots r}, \qquad a \text{ any real number}.$$

212 APPENDIX

Power series

Geometric series:

$$1 + s + s^{2} + \dots + s^{n} = \sum_{j=0}^{n} s^{j} = \frac{1 - s^{n+1}}{1 - s}, \quad (s \neq 1).$$
$$s + 2s^{2} + 3s^{3} + \dots + ns^{n} = \sum_{j=1}^{n} js^{j} = \frac{s[1 - (n+1)s^{n} + ns^{n+1}]}{(1 - s)^{2}}.$$

Exponential function:

$$e^s = \sum_{n=0}^{\infty} \frac{s^n}{n!} = 1 + s + \frac{s^2}{2!} + \frac{s^3}{3!} + \cdots$$
 (for all s);

Binomial expansions:

$$(1+s)^{n} = \sum_{r=0}^{n} \binom{n}{r} s^{r}$$

$$= 1 + ns + \frac{n(n-1)}{2!} s^{2} + \dots + ns^{n-1} + s^{n}, \quad (n \text{ is a positive integer})$$

$$(1+s)^{a} = \sum_{r=0}^{\infty} \binom{a}{r} s^{r}$$

$$= 1 + as + \frac{a(a-1)}{2!} s^{2} + \frac{a(a-1)(a-2)}{3!} s^{3} + \dots$$

$$(|s| < 1, a \text{ any real number}).$$

Probability generating function

$$G(s,t)=\sum_{n=0}^\infty p_n(t)s^n,$$

$$\text{mean }=\pmb{\mu}(t)=G_s(1,t)=\sum_{n=0}^\infty np_n(t),$$

$$\text{variance }=\pmb{\sigma}^2(t)=G_{ss}(1,t)+G_s(1,t)-G_s(1,t)^2.$$

Order notation

'Big O' notation: f(t) = O(g(t)) as $t \to \infty$ means f(t)/g(t) < K for some constants K and t_0 , and all $t > t_0$.

'Little o' notation: f(t) = o(g(t)) as $t \to \infty$ means $\lim_{t \to \infty} f(t)/g(t) = 0$. In particular f(t) = o(1) means $\lim_{t \to \infty} f(t) = 0$.

Integrals

$$\int_0^{\tau} e^{-\lambda t} dt = \frac{1}{\lambda} (1 - e^{-\lambda \tau}), \qquad \int_0^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}.$$

APPENDIX 213

$$\begin{split} \int_0^\tau t e^{-\lambda t} dt &= \frac{1}{\lambda^2} [1 - (1 + \lambda t) e^{-\lambda t}], \qquad \int_0^\infty t e^{-\lambda t} dt = \frac{1}{\lambda^2}. \\ &\int_0^\infty t^n e^{\lambda t} dt = \frac{n!}{\lambda^{n+1}} \qquad \int_0^\infty e^{-\lambda t^2} dt = \frac{1}{2} \sqrt{\frac{\pi}{\lambda}}. \end{split}$$

Matrix algebra

Transition (stochastic) matrix $(m \times m)$:

$$T = [p_{ij}] = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1m} \\ p_{21} & p_{22} & \dots & p_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} & p_{m2} & \dots & p_{mm} \end{bmatrix}, \quad (0 \le p_{ij} \le 1 \text{ for all } i, j)$$

where

$$\sum_{i=1}^{m} p_{ij} = 1.$$

Matrix product of $A = [a_{ij}], B = [b_{ij}],$ both $m \times m$:

$$AB = [a_{ij}][b_{ij}] = \left[\sum_{k=1}^{m} a_{ik} b_{kj}\right].$$

Diagonal matrix $(m \times m)$ with diagonal elements $\lambda_1, \lambda_2, \dots, \lambda_m$:

$$D = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{array} \right].$$

 $m \times m$ identity matrix

$$I_m = \left[\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right].$$

For the matrix A, A^T denotes the transpose of A in which the rows and columns are interchanged.

Characteristic equation for the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$ of the $m \times m$ matrix T:

$$\det(T - \lambda I_m)$$
 or $|T - \lambda I_m| = 0$.

The eigenvectors $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$ satisfy:

$$[T - \lambda_i I_m] \mathbf{r}_i = \mathbf{0}, \qquad (i = 1, 2, \dots, m).$$

214 APPENDIX

Probability distributions

Discrete distributions:

Distribution	$\mathbf{P}(N=n)$	Mean	Variance
Bernoulli	$p^n(1-p)^n$ $(n=0,1)$	m	p(1-p)
Bemouni	$p^{-}(1-p)$ $(n=0,1)$	p	p(1-p)
Binomial	$\binom{r}{n} p^n (1-p)^{r-n}$ $(n=0,1,2,\ldots,r)$	rp	rp(1-p)
Geometric	$(1-p)^{n-1}p$ $(n=1,2,\ldots)$	1/p	(1-p)/p
Negative binomial	$\binom{n-1}{r-1} p^n (1-p)^n (n=r, r+1, \ldots)$	r/p	$r(1-p)/p^2$
Poisson	$e^{-\alpha}\alpha^n/n!, (n=0,1,2,)$	α	α
Uniform	$1/k$, $(n = r, r + 1, \dots, r + k - 1)$	$\frac{1}{2}(k+1)$	$\frac{1}{12}(k^2-1)$

Continuous distributions

Distribution	Density, $f(x)$	Mean	Variance
Exponential	$\alpha e^{-\alpha x} (x \ge 0)$	$1/\alpha$	$1/\alpha^2$
Normal, $N(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \\ -\infty < x < \infty$	μ	σ^2
Gamma	$\frac{\alpha^n}{\Gamma(n)}x^{n-1}e^{-\alpha x}, (x \ge 0)$	n/α	n/α^2
Uniform	$ \left\{ \begin{array}{ll} 1/(b-a) & a \leq x \leq b \\ 0 & \text{for all other } x \end{array} \right. $	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$
Weibull	$\alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, (x \ge 0)$	$\alpha^{-1/\beta}\Gamma(\beta^{-1}+1)$	$\alpha^{-2/\beta} [\Gamma(2\beta^{-1} + 1) - \Gamma(\beta^{-1} + 1)^2]$

References and Further Reading

- Bailey, N.T.J. (1964): *The Elements of Stochastic Processes*, John Wiley, New York. Beichelt, F. (2006): *Stochastic Processes in Science, Engineering and Finance*, Chapman & Hall, Boca Raton.
- Cox, D.R., Donnelly, C.A., Bourne, F.J., Gettinby, G., McInerney, J.P., Morrison, W.I., and Woodroffe, R. (2005): Simple model for tuberculosis in cattle and badgers. *Pro. Nat. Acad. Sci.* 102:17588-17593.
- Feller, W. (1968): An Introduction to Probability Theory and Its Applications, 3rd edition, John Wiley, New York.
- Ferguson, N.M., Donnelly, C.A., and Anderson, R.M. (2001) The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. *Science* 292:1155-1160.
- Grimmett, G.R. and Stirzaker, D.R. (1982): *Probability and Random Processes*, Clarendon Press, Oxford.
- Grimmett, G.R. and Welsh, D.J.A. (1986): *Probability: An Introduction*, Clarendon Press, Oxford.
- Jones, P.W. and Smith, P. (1987): *Topics in Applied Probability*, Keele Mathematical Education Publications, Keele University.
- Jordan, D.W. and Smith, P. (2008): *Mathematical Techniques*, 4th ed, Oxford University Press.
- Lawler, G.F. (1995): Introduction to Stochastic Processes, Chapman & Hall, New York.
- Luenberger, D.G. (1979): Introduction to Dynamic Systems, John Wiley, New York.
 Meyer, P.L. (1970): Introductory Probability and Statistical Applications, 2nd edition, Addison-Wesley, Reading, MA.
- Open University (1988): *Applications of Probability*, Course Units for M343, Open University Press, Milton Keynes.
- Ross, S. (1976): A First Course in Probability, Macmillan, New York.
- Ugarte, M. D., Militino, A. F., and Arnholt, A. (2008): *Probability and Statistics with R*, CRC Press, Boca Raton.
- Wolfram, S. (1996): The Mathematica Book, 3rd ed., Cambridge University Press.

absorbing	chain, Markov, see Markov chain
barrier 45	Chapman-Kolmogorov equations 62
state 69, 76	characteristic equation (difference equations)
badgers 184, 215	31
baulked queue 139, 151, 155, 201	complement (of set) 2
Bernoulli distribution 12, 214	complementary function (difference
Bernoulli experiment 12	equations) 36
Bernoulli random variable 12	conditional expectation 21
modified 29, 46	martingale 179
binomial coefficient 49, 111, 211	conditional probability 5
binomial distribution 13, 214	continued fraction 173
probability generating function 20	continuous random variables 9
binomial expansion 212	cumulative distribution function (cdf) 9
birth and death process 107,115	
extinction, mean time to 118	death process 112
extinction, probability of 115	deterministic model 115
extinction, probability of ultimate 115	extinction, probability of 115
immigration 119	extinction, probability of ultimate 115
probability generating function 117, 200	Malthus model 117
time varying rates 121	mean 114
mean 117	defective distribution 50
birth process	difference equations 29
mean 112	boundary conditions 30
probability generating function 110, 111	characteristic equation 31
simple 108	complementary function 36
Yule process 108	complex roots 40
branching process 171, 202	homogeneous 30
extinction probability 176	inhomogeneous 36
finite-state 193	repeated roots 31
generational growth 171	differential-difference equations 95
mean 174	differential equations
probability generating function 171	Cauchys method 126
stopping rule 182	initial conditions 97
stopping time 182	integrating-factor method 97
tree 171	ordinary 96, 129
variance 174	partial 99
busy period (queues) 138, 155	separable 187
	directed graph 45, 69
cattle 184, 215	discrete probability distributions 12
cdf (cumulative distribution function) 9	discrete random variables 7

distribution	expected duration 34, 197
Bernoulli 12, 214	generous gambler 38
binomial 13, 214	infinitely rich opponent 38
exponential 14, 214	Markov chain 73
gamma 13, 214	martingale 183
geometric 15, 216	numerical simulations 33, 196
negative binomial (Pascal) 14, 112, 214	random walk 45, 183
normal 15, 214	stopping time 182
parameter 12	gamma distribution 15, 216
Pascal, see negative binomial	gamma function 22
Poisson 14, 214	gcd (greatest common divisor) 76, 211
table of 214	Geiger counter 93, 94, 107, 199
uniform 10, 214	generational growth 171
uniform, discrete 10, 214	geometric distribution 13, 214
Weibull 16, 214	geometric series 79, 212
duration, expected 34	geometric series 79, 212
duration, expected 34	
	harmonic series 81, 181
eigenvalues 64, 66, 199, 213	hazard function 158
eigenvectors 66, 66, 199, 213	
epidemics 184-188	iid (independent and identically distributed
contact rate 185	16. 18
immunes 186	illness-death model 70
infectives 184	immigration 119
iterative solution 186	independence 5
simple 184	independent events 6
susceptibles 184	independent random variables 22
events 1	indicator 12
exhaustive 1	
independent 6	intersection (of sets) 2
mutually exclusive 1, 3	inverse sampling 13
expectation	
conditional 21, 179	Jordan decomposition matrix 88, 199
see mean	
expected value, see mean	limiting distribution 72
exponential distribution 14, 214	minding distribution 72
extinction	
probability of 115, 176	marginal probability distribution 22
probability of ultimate 115, 176	Markov chain 59-92
producting of unumate fire, 170	absolute probability 61
6	absorbing state 69
factorial function 211	aperiodic state 76
factorial moment 20	classification of chains 83-86
failure time (reliability) 157	classification of states 76-82
mean 160	closed sets 84
first come, first served rule 131	communication 60
first passage, (random walk) 49	equilibrium 66
foot and mouth disease 184, 215	ergodic chains 84
	ergodic state 82
gamblers ruin 1, 7, 29-44	homogeneous 59

inhamaganagus 90	of a sum 18
inhomogeneous 80 initial probability distribution 61	
	mutually exclusive event 1, 3
invariant distribution 69, 86 irreducible 83	
	negative binomial (Pascal) distribution 14,
limiting distribution 66	112, 214
nonnull state 80	no memory property 13, 15, 160
null state 80	normal distribution 15, 214
periodic state 76	normal distribution 13, 214
regular 83	
signal flow 199	partial differential equation 99
state 59	Cauchys method 126
stationary distribution 66	and probability generating function 99,
transient state 81	110, 113, 114
transition 59	partition 3, 7
transition diagram 69	theorem (law of total probability) 6, 7, 95,
transition matrix 62	96
transition probability 60	Pascal distribution, see negative binomial
two-state 64	distribution
Markov process 59, 107	pdf (probability density function) 9
Markov property 30, 46	
martingale 179	pgf (probability generating function) 19
gambling problem 183	Poisson distribution 14, 214
random walks 183	mean 94, 95, 214
stopping time 182	variance 94, 95, 214
matrix 60, 213	Poisson process 7, 46, 93-105, 132, 138
characteristic equation 213	arrival times 14, 101
diagonal 65	partition theorem approach 96
diagonalization 65	population processes 119
doubly-stochastic 87	general 119
eigenvalues 64, 198, 213	immigration 119
eigenvalues, repeated 88, 89	see also birth, death processes
eigenvectors 64, 198, 213	power series
identity 66, 213	binomial expansion 212
Jordan decomposition 88, 199	exponential function 212
positive 83, 199	mgf 17
powers 63, 66	pgf 219
product 61, 213	probability 1
row-stochastic 60	absolute 61
submatrix 70, 72	axioms 3
transition 62, 213	conditional 5
tridiagonal 74	density function (pdf) 9
mean (expected value, expectation) 10	distribution 8
probability generating function 20	marginal distribution 22
table of 214	mass function 8
mean recurrence time 79	n-step transition 61
moments 17	total, law of 6, 7, 95, 96
moment generating function (mgf) 17	transition 60
exponential 136	unconditional (absolute probability) 61
gamma 136	vector 61

probability generating function (pgf) 19, 98, 212	transition probability 46 two-dimensional 57
convolution 51, 173	unrestricted 46
factorial moment 20	variance 46
mean 20, 212	reflecting barrier 46
variance 20, 212	relative frequency 2
process diagram, see transition diagram	reliability
process diagram, see transition diagram	exponential distribution 14, 214
queues 131-155	failure rate function (hazard function) 158
arrivals 131	failure time 157
baulked 139, 151, 155, 201	hazard function (failure rate function) 158
busy period 138	mean time to failure 160
classification 147	parallel system 161
fixed service time 144	reliability function 157
general 147	series system 161
mean length 136	survivor function (reliability function)
multiple servers 140	158
service time 131	Weibull distribution 16, 214
service time, uniform 147	renewal process 163-166
single-server 132	expected number of renewals 165
slack period 138	renewal function 166
-	reservoir problem 42
stationary process 134	roulette wheel 40
traffic density (intensity) 135, 201	
waiting time 136	sample space 1
	countably infinite 8
random process 30	finite 18
stage 30	service time (queues) 131
state 30	sets 2
random variable 7	complement 2
continuous 9	disjoint 3
discrete 7	empty 2
function of 11	intersection 2
independent 14, 16	mutually exclusive 3
two-dimensional 21	notation 211
random walk 45-58	partition 3
absorbing barrier 45	subset 2
computer simulation 197	union 2
cyclic 56	universal 2
first passage 49	Venn diagram 2
first return 50	signal flow 199
mean 446	slack period (queues) 138
n-step distribution 47	standard deviation 11
reflecting barrier 46	states
reflection principle 54	absorbing 69
state 45	accessible 83
step 45	aperiodic 76
symmetric 47, 49, 50, 181, 197	classification 76-82
transition diagram 45	closed 83

```
ergodic 82
  first return 78
  mean recurrence time 79
  nonnull 80
  null 80
  periodic 76
  persistent 78
  transient 81
Stirlings formula 50
stopping rule 182
stopping time 182
total probability, law of 6, 7, 95, 97
traffic density (queues) 135, 201
transition diagram 45, 69
transition probability 46, 60
trial 1
tuberculosis 184
uniform distribution 10, 214
  discrete 14, 216
union (of sets) 2
variance 11
  probability generating function 20, 212
  table of 214
Venn diagram 2
waiting time (queues) 136
walk, random, see random walk
Weibull distribution 16, 214
```

Yule process 108

Statistics

Based on a highly popular, well-established course taught by the authors, **Stochastic Processes: An Introduction, Second Edition** discusses the modeling and analysis of random experiments using the theory of probability. It focuses on the way in which the results or outcomes of experiments vary and evolve over time.

The text begins with a review of relevant fundamental probability. It then covers several basic gambling problems, random walks, and Markov chains. The authors go on to develop random processes continuous in time, including Poisson, birth and death processes, and general population models. While focusing on queues, they present an extended discussion on the analysis of associated stationary processes. The book also explores reliability and other random processes, such as branching processes, martingales, and a simple epidemic. The appendix contains key mathematical results for reference.

This concise, updated book makes the material accessible by avoiding specialized applications and instead highlighting simple applications and examples. The associated Web site contains *Mathematica*® and R programs that offer flexibility in creating graphs and performing computations.

Features

- Illustrates discrete random processes through the classical gambler's ruin problem and its variants
- Covers continuous random processes, such as Poisson and general population models
- Describes applications of probability to modeling problems in engineering, medicine, and biology
- Uses Mathematica and R to solve both theoretical and numerical examples and produce many graphs
- Provides Mathematica and R programs on the book's Web site

6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 270 Madison Avenue New York, NY 10016 2 Park Square, Milton Park Abingdon, Oxon OX14 4RN, UK K10004

