Raidsysteme

Eine Übersicht der gängigen Konfigurationen

Was ist RAID?

- Redundant Array of Independent Disks
- Technologie zur Organisation mehrerer Festplatten
- Hauptziele: Datensicherheit, Leistungssteigerung oder beides
- Verschiedene RAID-Level für unterschiedliche Anforderungen

RAID 0 (Striping)

- Funktionsweise: Daten werden auf mehrere Festplatten verteilt
- Vorteile:
 - Hohe Lese- und Schreibgeschwindigkeit
 - Volle Nutzung der Speicherkapazität
- Nachteile:
 - Keine Redundanz Ausfall einer Festplatte führt zu Datenverlust
- Anwendungsfall: Temporäre Daten,
 hohe Performance-Anforderungen

RAID 1 (Mirroring)

• Funktionsweise: Identische Daten auf zwei oder mehr Festplatten

Vorteile:

- Hohe Datensicherheit
- Schnelle Lesegeschwindigkeit
- Nachteile:
 - Nur 50% der Speicherkapazität nutzbar
 - Langsamere Schreibgeschwindigkeit(vergleich zu RAID0)
- Anwendungsfall: Wichtige Daten, die hohe Verfügbarkeit erfordern

RAID 5 (Striping mit Parität)

- Funktionsweise: Daten und Paritätsinformationen verteilt auf mindestens 3 Festplatten (66% Speicher)
- Vorteile:
 - Gute Balance zwischen Leistung und Sicherheit
 - Überlebt den Ausfall einer Festplatte
- Nachteile:
 - Schreibvorgänge langsamer durch Paritätsberechnung
 - Kapazitätsverlust einer Festplatte für Paritätsdaten
- Anwendungsfall: Standard-Unternehmensserver,
 Datenbanken

RAID 6 (Striping mit doppelter Parität)

- Funktionsweise: Wie RAID 5, aber mit zwei unabhängigen Paritätsblöcken(50% Speicher)
- Vorteile:
 - Überlebt den Ausfall von zwei Festplatten gleichzeitig
 - Höhere Ausfallsicherheit als RAID 5
- Nachteile:
 - Mehr Kapazitätsverlust (zwei Festplatten)
 - Noch langsamere Schreibvorgänge als RAID 5
- Anwendungsfall: Kritische Unternehmensdaten , große Speicherarrays

RAID 01 (RAID 0+1)

- Funktionsweise: RAID 0-Array wird als RAID 1 gespiegelt
- Vorteile:
 - Kombination aus Leistung und Redundanz
 - Schneller als reines RAID 1
 - Überlebt den Ausfall einer Festplatte je Block
- Nachteile:
 - Geringe Speichereffizienz (50% nutzbar)
 - Komplexeres Setup
- Anwendungsfall: Hochleistungs-Server mit Redundanzanforderungen

RAID 0+1

RAID 10 (RAID 1+0)

Funktionsweise: Gespiegelte Sets (RAID 1) werden als Stripe (RAID 0) verbunden
 RAID 1+0

- Vorteile:
 - Hohe Performance und Redundanz
 - Bessere Ausfallsicherheit als RAID 01
- Nachteile:
 - Geringe Speichereffizienz (50% nutzbar)
 - Mindestens 4 Festplatten erforderlich
- Anwendungsfall: Datenbanken,
 Virtualisierung, kritische Anwendungen

JBOD ("Just a Bunch Of Disks")

 Funktionsweise: Mehrere Festplatten werden zu einem logischen Laufwerk zusammengefasst
 IROD

- Vorteile:
 - Einfaches Setup
 - Volle Nutzung aller Festplattenkapazitäten
- Nachteile:
 - Keine Performance-Vorteile
 - Keine Redundanz
- Anwendungsfall: Einfache Speichererweiterung, Heimanwender

Vergleichsübersicht

RAID-Level	Min. Platten	Kapazität	Performance	Redundanz
RAID 0	2	100%	Sehr hoch	Keine
RAID 1	2	50%	Mittel	Hoch
RAID 5	3	N-1	Gut	Gut
RAID 6	4	N-2	Mittel	Sehr hoch
RAID 01	4	50%	Hoch	Gut
RAID 10	4	50%	Hoch	Hoch
JBOD	2	100%	Normal	Keine

Zusammenfassung

- RAID 0: Geschwindigkeit ohne Sicherheit
- RAID 1: Sicherheit mit Kapazitätsverlust
- RAID 5/6: Balance zwischen Performance und Sicherheit
- RAID 10/01: Hochleistung mit Redundanz für kritische Systeme
- JBOD: Einfache Kapazitätserweiterung ohne Zusatzfunktionen