Agenda

PROBLEM DOMAIN: NUMBER THEORY

-APPLICATION DOMAIN: CRYPTOGRAPHY

- PUBLIC KEY ENCRYPTION: RSA
DESIGN AND CORRECTNESS

Design of an Encryption Algorithm

- Requirement: A -----> B
- Protocol outline:
 - Let $E(M) = M^k \pmod{n}$ for some +ve integers n and k
 - A sends M' = E(M) to B
 - B receives M'
 - B computes $E^{-1}(M') = (M')^{k'} \pmod{n}$ for some +ve integer k'

Design of an Encryption Algorithm

- Requirement: A -----> B
- Protocol outline:
 - Let E(M) = M^k (mod n) for some +ve integers n and k
 - A sends M' = E(M) to B
 - B receives M'
 - B computes E⁻¹(M') = (M')^{k'} (mod n) for some +ve integer k'
- This requires that
 - $M^{k*k'} = M \pmod{n}$

Decryption Key - Requirements

- For ensuring $M^{k*k'} = M \pmod{n}$:
 - we can leverage <u>Euler's Theorem</u>: i.e.
 - if $k*k' = 1 + j*\phi(n)$ for some +ve integer j
 - then $\mathbf{M}^{k*k'} = \mathbf{M}^{1+j*\phi(n)} = \mathbf{M} \pmod{n}$
- Suppose we can ensure that
 - $M^{k*k'} = M^{1+j*\phi(n)}$
- There is still a catch!

This is true only for M in Z_n^* !!

Ensuring Decryption Works – for M in Z_n^*

- For ensuring $M^{k*k'} = M \pmod{n}$:
 - if $k*k' = 1 + j*\phi(n)$ for some +ve integer j
 - then $M^{k*k'} = M^{1+j*\phi(n)} = M \pmod{n}$

by <u>Euler's Theorem</u>: i.e.

- For ensuring $k*k' = 1 + j*\phi(n)$ for some +ve integer j:
- choose **k** in $\mathbf{Z}^*_{\phi(n)}$ and let **k'** be inverse of **k** in $(\mathbf{Z}^*_{\phi(n)}, *_{\phi(n)})$
 - □ Then $k*k' = 1 \pmod{\phi(n)}$
 - i.e. $k*k' = 1 + j*\phi(n)$
 - Note that
 - Inverse of k in (Z_n*, *n) can be computed in polynomial time given n and k (by <u>Aryabhatiya's algorithm</u>)

Design of a Public Key Encryption Algorithm

RECAP:

- We have: for **M** in **Z***_n
 - $\square M^{1+j*} \phi(n) = M \pmod{n}$
- and by choosing k in $Z^*_{\phi(n)}$ and k' as the inverse of k in $(Z^*_{\phi(n)}, *_{\phi(n)})$, we have
 - $\square M^{k*k'} = M^{1+j*\phi(n)} = M \pmod{n}$

Generalization

- By choosing $\mathbf{n} = \mathbf{p} * \mathbf{q}$ for primes \mathbf{p} and \mathbf{q} , for any \mathbf{M} in $\mathbf{Z}_{\mathbf{n}}$
 - we claim $\mathbf{M}^{1+j} * \phi(n) = \mathbf{M}(\mathbf{mod} n)$ (see Lemma next slide)
 - and thus $M^{k*k'} = M^{1+j*\phi(n)} = M \pmod{n}$.

Ensuring Decryption Works for any message

Lemma:

Assuming n = p * q for primes p and q, M^{1+j} * ϕ (n) = M (mod n) for M in Z_n

Proof:

- If n= p*q, then gcd(M,n) must be 1 or p or q.
 - if gcd(M,n) = 1 then $M^{1+j*\phi(n)} = M \pmod{n}$ [by E.T]
 - if gcd(M,n) = p then
 - $M^{1+j*} \phi(n) = M = o \pmod{p}$ [by assumption]
 - $M^{1+j*} \phi(n) = M^{1+j*} \phi(p)^* \phi(q) = M \pmod{q}$ [by E.T.]
 - and therefore $M^{1+j*\phi(n)} = M \pmod{pq}$ [since $\gcd(p,q)=1$]
 - if gcd(M,n) = q then $M^{1+j*\phi(n)} = M$ (mod pq) similarly.

Encryption Algorithm - RSA

- RSA-Protocol Outline:
 - □ Let $E(M) = M^k \pmod{n}$ for some n = p*q where p and q are primes and some k in $Z^*_{\phi(n)}$
 - A sends M' = E(M) to B
 - B receives M'
 - □ B computes $E^{-1}(M') = (M')^{k'}$ (mod n) where k' is the inverse of k in $(Z^*_{\phi(n)}, *\phi(n))$
- Communication Correctness:
 - (see previous slides) E⁻¹(E(M)) = M
- Communication Efficiency:
 - <u>Exponentiation modulo n</u> can be computed in <u>polynomial time</u>