Advanced Measurement Theory Course Notebook

William M. Murrah

2021-08-04

Contents

Int	troduction to the Course	5						
1	Classic Test Theory 1.1 Classical True Score Model	7 9 9						
2	Factor Analysis	11						
3	Path Analysis and Structural Equation Modeling	13						
4	Item Response Theory4.1 Example one4.2 Example two	15 15 15						
5	Principal Components Analysis	17						
6	Correspondence Analysis	19						
7	Gifi Methods	21						
8	Multidimensional Scaling							
9	Graphing Multidimensional Data	25						
10	Networks	27						
11	Modeling Trajectories and Time Series	29						

4 CONTENTS

Introduction to the Course

Welcome to Advanced Measurement Theory!

6 CONTENTS

Classic Test Theory

In the notes for this chapter, I demonstrate aspects of classical test theory, reliability and generalizability theory using data from a study exploring the motivation of R package authors (Mair et al., 2015). This tutorial is based on Chapter 1 of Mair (2018), which can be consulted for a more indepth exposition of the underlying theory. Here I focus on demonstrating some of those concepts in R, as well as describing how to get certain results in R.

First, I load the packages used in this tutorial:

```
# Packages used:
library(psych)
library(MPsychoR)
```

Next, I load the full data set from the MPsychoR package (Mair, 2020), then as in the chapter, I subset the data to only include hybrid motivation items, followed by removing rows with missing values.

This leads to a data set with 777 authors and 19 items.

```
# How many authors(rows) and items(columns)?
dim(HybMot)
```

[1] 777 19

```
# Note they are all dichotomous items.
head(HybMot)
  hyb1 hyb2 hyb3 hyb4 hyb5 hyb6 hyb7 hyb8 hyb9 hyb10 hyb11
               1
                          1
                               1
                                    0
3
     0
               1
                    0
                          1
                               0
                                              0
                                                     1
                                                           0
          0
                                    0
                                         0
4
     1
          1
                    1
                         1
                               0
                                         0
                                              0
                                                     1
                                                           0
               1
                                    1
                    1
                                                           1
8
                                                           0
     1
               1
                    1
                          1
                               1
                                               1
                                                     1
          1
                                    1
                                         1
     1
               0
                    1
                         1
                               0
                                    0
                                         0
                                                           0
 hyb12 hyb13 hyb14 hyb15 hyb16 hyb17 hyb18 hyb19
            1
                  0
                         1
                               1
3
                               0
                                     0
      1
            1
                  0
                         1
                                           1
4
      1
            1
                  0
                         0
                               1
                                     1
                                           1
                                                  1
5
      1
                               0
                                     1
                                                  1
            1
                  0
                         1
8
      1
            1
                  1
                         1
                               1
                                     1
                                           1
                                                  1
9
      0
            1
                  0
                         0
                               1
                                     1
                                           1
                                                  1
vcmat <- cov(HybMot)</pre>
scroll_box(kable(vcmat, digits = 2), width = "100%")
```

	hyb1	hyb2	hyb3	hyb4	hyb5	hyb6	hyb7	hyb8	hyb9	hyb10	hyb11	hyb12
hyb1	0.18	0.06	0.04	0.03	0.03	0.05	0.01	0.05	0.04	0.04	0.03	0.03
hyb2	0.06	0.25	0.06	0.05	0.03	0.05	-0.01	0.04	0.05	0.02	0.04	0.04
hyb3	0.04	0.06	0.23	0.13	0.03	0.05	0.00	0.03	0.05	0.04	0.05	0.06
hyb4	0.03	0.05	0.13	0.21	0.03	0.04	0.01	0.03	0.04	0.03	0.05	0.05
hyb5	0.03	0.03	0.03	0.03	0.11	0.02	0.00	0.01	0.01	0.03	0.03	0.03
hyb6	0.05	0.05	0.05	0.04	0.02	0.24	0.01	0.11	0.15	0.05	0.06	0.06
hyb7	0.01	-0.01	0.00	0.01	0.00	0.01	0.22	0.04	0.01	0.03	0.00	0.02
hyb8	0.05	0.04	0.03	0.03	0.01	0.11	0.04	0.25	0.10	0.06	0.05	0.06
hyb9	0.04	0.05	0.05	0.04	0.01	0.15	0.01	0.10	0.20	0.04	0.04	0.05
hyb10	0.04	0.02	0.04	0.03	0.03	0.05	0.03	0.06	0.04	0.15	0.03	0.06
hyb11	0.03	0.04	0.05	0.05	0.03	0.06	0.00	0.05	0.04	0.03	0.23	0.10
hyb12	0.03	0.04	0.06	0.05	0.03	0.06	0.02	0.06	0.05	0.06	0.10	0.23
hyb13	0.03	0.03	0.02	0.02	0.03	0.02	0.00	0.02	0.01	0.03	0.03	0.04
hyb14	0.03	0.03	0.02	0.02	0.02	0.07	0.00	0.04	0.05	0.02	0.04	0.03
hyb15	0.04	0.03	0.06	0.04	0.04	0.06	0.01	0.06	0.04	0.04	0.10	0.11
hyb16	0.05	0.03	0.02	0.02	0.02	0.05	0.02	0.05	0.04	0.04	0.03	0.04
hyb17	0.04	0.01	0.03	0.03	0.02	0.05	0.02	0.05	0.03	0.04	0.03	0.03
hyb18	0.03	0.00	0.02	0.02	0.01	0.02	0.01	0.03	0.01	0.03	0.01	0.02
hyb19	0.06	0.03	0.04	0.04	0.03	0.07	0.02	0.06	0.05	0.05	0.02	0.04

```
k <- ncol(HybMot)
sigma2_Xi <- tr(vcmat) # trace of matrix or sum(diag(vmat))
sigma2_X <- sum(vcmat)</pre>
```

1.1 Classical True Score Model

The true score model is:

$$X = T + E$$

where X is the **observed score**, T is the **true score**, which is unknown, and E is the **error**

1.2 Reliability

reliability =
$$\frac{\sigma_T^2}{\sigma_X^2} = \frac{\sigma_T^2}{\sigma_T^2 + \sigma_E^2} = \rho_{XT}^2$$

- 1.2.1 Cronbach's α
- 1.2.2 Other Reliability Coefficients
- 1.3 Generalizability Theory
- 1.3.1 Reliability and Generalizability
- 1.3.2 Multiple Sources of Error

Factor Analysis

Path Analysis and Structural Equation Modeling

We describe our methods in this chapter.

14 CHAPTER~3.~~PATH~ANALYSIS~AND~STRUCTURAL~EQUATION~MODELING

Item Response Theory

Some significant applications are demonstrated in this chapter.

- 4.1 Example one
- 4.2 Example two

Principal Components Analysis

We have finished a nice book.

Correspondence Analysis

Gifi Methods

Multidimensional Scaling

Graphing Multidimensional Data

Networks

Modeling Trajectories and Time Series

Bibliography

Mair, P. (2018). Modern psychometrics with R. Springer.

Mair, P. (2020). MPsychoR: Modern Psychometrics with R. R package version 0.10-8.

Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A., and Hornik, K. (2015). Motivation, values, and work design as drivers of participation in the r open source project for statistical computing. *Proceedings of the National Academy of Sciences*, 112(48):14788–14792.