Matrix Analysis Homework 6

Tao tao@example.com School of Mathematics

Q1

Proposition 1. $A \in M(n,\mathbb{C})$ is diagonalizable if and only if all generalized eigenvectors of matrix A is eigenvectors of matrix A.

Proof. All generalized eigenvectors of matrix **A** is eigenvectors of matrix **A**.

 \Leftrightarrow For all eigenvalues λ of the matrix **A**,

$$\operatorname{Ker}((\mathbf{A} - \lambda \mathbf{I})^n) = \operatorname{Ker}(\mathbf{A} - \lambda \mathbf{I}).$$

 \Leftrightarrow For all eigenvalues λ of the matrix **A**, algebraic multiplicity of λ equals to the geometric multiplicity of λ .

 \Leftrightarrow **A** is diagonalizable.