Math H110 Theorems.

- 1. **Lemma.** Let F be a field, $\lambda \in F$, V a vector space over F (denoted by V/F), $v \in V$. Then, if $\lambda v = 0$, then $\lambda = 0$ or v = 0.
- 2. **Lemma.** A vector space over a field is a module over a field.
- 3. **Theorem.** The intersection of a family of subspaces of a vector space V is a subspace of V.
- 4. **Lemma.** Let $S = \{v_1, \ldots, v_t\}$. Then the subspace of all linear combinations of the elements of S is the span S.
- 5. **Theorem.** Let $L = v_1, \ldots, v_n$ be a list of vectors in a vector space V over a field F and let $T: F^n : \to V$ be linear transformation with $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_1 v_1 + \cdots + \lambda_n v_n$. Then, we have the following:
 - (a) L spans V iff T is onto.
 - (b) L is linearly independent iff T is 1-1 iff $\operatorname{nul} T = \{0\}$.
 - (c) L is a basis iff T is 1-1 and onto.
- 6. **Prop.** Consider $T: F^n \to V$ with $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_1 v_1 + \cdots + \lambda_n v_n$, so $T(e_i) = v_i$ for all i. Then, T is the unique linear map $F_n \to V$ that sends $e_i \mapsto v_i$ for all i.
- 7. **Theorem.** Every subspace X of V has complement.
- 8. **Lemma.** If v_1, \ldots, v_t is linearly dependent list, then there is an index k such that $v_k \in \text{span}(v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_t)$. Furthermore, the span of the list of length t-1 gotten by removing v_k from the list is the same as the span of the original list.
- 9. **Prop.** In a finite-dimensional vector space, the length is of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.
- 10. Cor. Two bases of V have the same number of elements.
- 11. **Prop.** X + Y is direct iff the null space of the sum map is $\{0\}$.
- 12. **Theorem.** Every subspace of a finite-dimensional vector space is finite-dimensional.
- 13. **Prop.** Every spanning list for a vector space can be pruned down to a basis of the space.
- 14. Cor. Every finite-dimensional vector space has a basis.
- 15. **Prop.** In a finite-dimensional vector space, every linearly independent list can be extended to a basis of the space.

- 16. **Major Theorem.** Every subspace of a finite-dimensional vector space has a complement.
- 17. **Prop.** Let X, Y be subspaces of a finite-dimensional vector space V. Then:
 - (a) $\dim X + \dim Y = \dim V$.
 - (b) $X \cap Y = \{0\}.$

Then, $V = X \oplus Y$.

- 18. **Prop.** $\dim(X \oplus Y) = \dim X + \dim Y$.
- 19. **Prop.** If V is a finite-dimensional vector space (with dim V = n), then every subspace has dimension at most n.
- 20. **Prop.** Let dim V = n. Then, a linearly independent list of vectors of V with length n is a basis for V.
- 21. **Prop.** Let dim V = n. Then, every spanning list for V of length n is a basis for V.
- 22. **Lemma.** The list $(x_1, 0), \ldots, (x_t, 0); (0, y_1), \ldots, (0, y_k)$ of length t + k is a basis of $X \times Y$.
- 23. Cor. $\dim(X \times Y) = \dim X + \dim Y$.
- 24. Cor. Let $T: V \to W$ be a linear map with dim V = d. Then, rank $T \leq d$.
- 25. Rank-Nullity Theorem. $\dim V = \operatorname{rank} V + \operatorname{nullity} V$.
- 26. **Prop.** If $T: V \to W$ is 1-1, then nullity T = 0.
- 27. Cor. If $T: V \to W$ is 1-1 and onto, then dim $V = \dim W$.
- 28. **Theorem.** The set of linear maps $V \to W$ is a vector space $L \cdot (F^n, W) \to T \longrightarrow (Te_1, \dots, Te_n) \in W^n$.
- 29. **Theorem.** $\dim(X+Y) = \dim X + \dim Y \dim(X \cap Y)$.
- 30. Cor. $\dim(V/X) = \dim V \dim X$.
- 31. **Theorem.** If A is a rectangular matrix with elements in a field F, then row rank A = column rank A.
- 32. **Prop.** Let $T: V \to W$ be 1-1. Then, $\dim W \ge \dim V$.
- 33. **Prop.** Let $T: V \to W$ be onto. Then, $\dim V > \dim W$.
- 34. **Prop.** Let $T: V \to W$ and dim $V = \dim W$. Then, T 1-1 iff T onto iff T bijective iff T invertible.

- 35. **Lemma.** Let V be a finite-dimensional vector space and U a subspace of V. Then, dim $U_0 = \dim V \dim U$.
- 36. **Theorem.** Every linear functional on a subspace of V can be extended to V.
- 37. **Note.** Annihilator is the dual of the quotient subspace.
- 38. **Theorem.** Let $T: V \to W$ and $T': W' \to V'$. Then $\mathcal{M}(T)$ and $\mathcal{M}(T')$ are transposes of each other.
- 39. **Lemma.** U^0 has dimension dim $V \dim U$.
- 40. **Cor.** The annihilator of U is $\{0\}$ iff U = V. The annihilator of U is V iff $U = \{0\}$.
- 41. **Prop.** If $T: V \to W$ is a linear map, then the null space of T' is the annihilator of the range of T. We have $\operatorname{ann}(\operatorname{range} T) = \{\psi : W \to F \mid \phi(Tv) = 0 \text{ for all } v \in V, T'(\psi)(v) = 0, T'\psi = 0, \phi \in \operatorname{nul}(T')\}.$
- 42. Cor. If $T: V \to W$ is a linear map between finite-dimensional F-vector spaces, then $\dim \operatorname{nul}(T') = \dim \operatorname{nul}(T) + \dim W \dim V$.
- 43. Cor. The linear map T is onto iff T' is 1-1.
- 44. **Cor.** If $T: V \to W$ is a linear map between finite-dimensional vector spaces, then T' and T have equal ranks.
- 45. Cor. We have range $T = (\text{nul } T)^0$.
- 46. **Theorem.** Let F be a finite field with q = |F|. Then, $a^q = a$ for all $a \in F$.
- 47. **Theorem.** If F is a finite field, then $|F| = p^n$ for some prime p and integer $n \ge 1$.
- 48. **Theorem.** Take an ideal I in \mathbb{Z} . Then, I is equal to either $\{0\}$ or $m\mathbb{Z}$ (where $m \in \mathbb{Z}_{>0}$).
- 49. **Theorem.** F[x] is a principal ideal domain; that is, it is an integral domain in which every ideal in F[x] is principal.
- 50. **Theorem.** Let $T: V \to V$, V finite-dimensional, and let $\alpha: F[x] \to \mathcal{L}(V)$, with $f \mapsto f(T)$. Also, we have $\ker \alpha$ to be the principal ideal (m(x)). Then, m(x) is the minimal polynomial of T and has degree $\leq n^2$.
- 51. Cayley-Hamilton Theorem. Let $T: V \to V$, V finite-dimensional, and let $\alpha: F[x] \to \mathcal{L}(V)$, with $f \mapsto f(T)$. Also, we have $\ker \alpha$ to be the principal ideal (m(x)), where m(x) is the minimal polynomial of T. Then, the characteristic polynomial is in $\ker \alpha$; that is, we can plug in the matrix for T into its characteristic polynomial and we get that it is equal to the 0-matrix.
- 52. **Prop.** For $f(x) \in F[x]$ and $\lambda \in F$, $f(\lambda) = 0$ iff f is divisible by $x \lambda$, where $x \lambda$ is an irreducible polynomial.

- 53. Cor. A polynomial of degree n can have at most n roots.
- 54. **Cor.** A polynomial with infinitely many roots is identically the zero polynomial.
- 55. **Lemma.** Let $f \in \mathbb{R}[x]$ be a real polynomial. If λ is a complex root of f, so is $\overline{\lambda}$, which is the complex conjugate of λ .
- 56. **Prop.** A scalar λ is an eigenvalue of $T: V \to V$ iff $T \lambda I$ is not 1-1.
- 57. Cor. The map $T: V \to V$ is invertible iff 0 is not an eigenvalue of T.
- 58. **Key lemma.** Every list of eigenvectors of T that corresponds to distinct eigenvalues of T is a linearly independent list.
- 59. Cor. Let $\lambda_1, \ldots, \lambda_t$ be distinct eigenvalues and take $E_i = E(\lambda_i, T) = \{v \in V \mid Tv = \lambda_i v\} \subseteq V$. Now, take $E_1 \times \cdots \times E_t$. Then there exists a summation map $E_1 \times \cdots \times E_t \xrightarrow{\text{sum}} V$ with $(v_1, \ldots, v_t) \mapsto v_1 + \cdots + v_t$. Then, the sum map is 1-1.
- 60. Cor. Suppose V is finite-dimensional. Then each operator on V has at most $\dim V$ distinct eigenvalues.
- 61. **Prop.** Suppose T is an operator on an F-vector space V. If $f \in F[x]$ is a polynomial satisfied by T (meaning f(T) = 0), then every eigenvalue of T on V is a root of f.
- 62. Cor. Suppose λ is an eigenvalue of operator T on a finite-dimensional F-vector space. Then λ is a root of the minimal polynomial of T.
- 63. **Prop.** Let T be an operator on a finite-dimensinoal vector space. Suppose λ is a root of the minimal polynomial. Then λ is an eigenvalue of T.
- 64. **Theorem.** All operators on a nonzero finite-dimensional vector space over an algebraically closed field have at least one eigenvalue.
- 65. **Prop.** Assume that $F = \mathbb{R}$ and that $f(x) := x^2 + bx + c$ is an irreducible polynomial. If $T \in \mathcal{L}(V)$ and V is finite-dimensional, then the null space of f(T) is even-dimensional.
- 66. **Prop** (honors version). Let T be an operator on a finite-dimensional vector space over F. If p is an irreducible polynomial over F, then the dimension of the null space of p(T) is a multiple of the degree of p.
- 67. **Prop.** F[x]/(p) (where p is irreducible) is a field.
- 68. Formula. $\dim_F V = [K : F] \cdot \dim_K V = \dim_F K \cdot \dim_K V$.
- 69. Cor. Every operator on an odd-dimensional \mathbb{R} -vector space has an eigenvalue.
- 70. **Prop.** If T is an operator on a finite-dimensional F-vector space, then the minimal polynomial of T has degree at most dim V.

- 71. **Prop.** If T is upper-triangular with respect to some basis of V, and if the diagonal entries of an upper-triangular matrix representation of T are $\lambda_1, \ldots, \lambda_n$, then $(T \lambda_1 I) \cdot \cdots \cdot (T \lambda_n I) = 0$.
- 72. **Prop.** Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$ and let $\lambda_1, \ldots, \lambda_m$ be the eigenvalues of T. Then, $V = \bigoplus E(\lambda_i, T)$ iff T is diagonalizable.
- 73. **Prop.** TFAE.
 - (a) T is diagonalizable.
 - (b) V has a basis consisting of eigenvectors.
 - (c) The direct sum $\bigoplus V_{\lambda_i}$ is all of V.
 - (d) $\dim \left(\bigoplus_{i} V_{\lambda_i} \right) = \dim V$.
- 74. **Prop.** If $T: V \to V$ has dim V different eigenvalues, then T is diagonalizable.
- 75. **Prop.** The operator $T: V \to V$ is diagonalizable iff its minimal polynomial splits completely as a product of distinct linear factors of the form x r.
- 76. **Jordan Canonical Form.** X can be written as a direct sum of Jordan blocks, where $\sum \dim(\text{block}) = \dim X$.
- 77. **Lemma.** Let $X = \bigoplus \operatorname{span}(U_i v)$ for $i \in \{0, \dots, k_1\}$. If Z is a subspace of X' that is U'-invariant, then $\operatorname{ann}(Z) =: Y$ is U-invariant.
- 78. **Lemma.** Suppose S and T are commuting operators on V. If λ is an eigenvalue for T on V, then the eigenspace $E(\lambda, T)$ is S-invariant.
- 79. **Theorem.** The diagonalize operators on the same finite-dimensional vector space are simulateneously diagonalizable iff they commute with each other.
- 80. **Theorem.** Every pair of commuting operators on a finite-dimensional nonzero complex vector speae has a common eigenvector.
- 81. **Prop.** Two commuting operators on a finite-dimensional nonzero complex vector space can be simultaneously upper-triangularized.
- 82. **Prop.** We have:
 - (a) Every eigenvalue of S+T is the sum of an eigenvalue of S and an eigenvalue of T.
 - (b) Every eigenvalue of ST is the product of an eigenvalue of S and an eigenvalue of T.
- 83. Formula. $\langle v+w, v+w \rangle = \langle v, v \rangle + \langle w, w \rangle + 2\langle v, w \rangle$.
- 84. **Lemma.** If u, v are orthogonal, then $||u + v||^2 = ||u||^2 + ||v||^2$.

- 85. **Lemma.** If $v \in V$ and $v \neq 0$, then every $u \in V$ is the sum of a multiple of v and a vector orthogonal to v.
- 86. Prop (Cauchy-Schwarz). For $u, v \in V$, we have $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
- 87. Prop (Triangle inequality). For $u, v \in V$, $||u + v|| \le ||u|| + ||v||$.
- 88. **Prop.** The triangle inequality is equality iff one of u, v is a nonnegative (real) multiple of the other.
- 89. **Prop.** Let $\alpha: V \to V'$ with $v \mapsto \phi_v$, where $\phi_v: V \to F$ such that $\phi_v(x) = \langle x, v \rangle$. Then, $\alpha(\lambda v) = \overline{\lambda}(\alpha(v))$ for $\lambda \in F$.
- 90. **Prop.** If V is finite-dim then $\alpha: V \to V'$ is an invertible linear map of \mathbb{R} -vector spaces. It is an isomorphism of F-vector spaces if $F = \mathbb{R}$ and a congugate-linear bijection if $F = \mathbb{C}$.
- 91. Riesz Representation Theorem. Let V be a finite-dim inner product space over F (which is \mathbb{R} or \mathbb{C}). If ϕ is a linear functional on V, there is a unique $v \in V$ such that $\phi(x) = \langle x, v \rangle$ for all $x \in V$.
- 92. **Prop.** An orthogonal list that consists of nonzero vectors is linearly independent.
- 93. Cor. An orthonormal list is linearly independent.
- 94. **Prop.** If v_1, \ldots, v_m is orthonormal and a_1, \ldots, a_m are elements of F, then $||a_1v_1 + \cdots + a_mv_m||^2 = |a_1|^2 + \ldots + |a_m|^2$.
- 95. **Prop.** If $v = a_1v_1 + \cdots + a_mv_m$ and v_1, \dots, v_m orthogonal, then $a_k = \langle v, v_k \rangle$, $k = 1, \dots, m$. If v_1, \dots, v_m is orthonormal basis of V then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_m \rangle v_m$.
- 96. **Prop.** If V is a finite-dim inner product space, then V has an orthonormal basis.
- 97. **Prop.** Suppose V is finite-dim. Then every orthonormal list of vectors in V can be extended to an orthonormal basis of V.
- 98. Schur's Theorem. Let T be an operator on a finite-dim inner product space V. If T is upper-triangular with respect to some basis, then it is upper-triangular with respect to some orthonormal basis of V.
- 99. **Prop.** If $U \subseteq W$, then $W^{\perp} \subseteq U^{\perp}$.
- 100. **Prop.** If U is a subset of V, then $U \cap U^{\perp} \subseteq \{0\}$.
- 101. **Lemma.** If U is a finite-dim subspace of V, then $V = U \oplus U^{\perp}$.
- 102. **Formula.** Assume V is finite-dim and U is a subspace of V. Then dim $U^{\perp} = \dim V \dim U$.
- 103. **Theorem.** If U is a finite-dim subspace of V, then $(U^{\perp})^{\perp} = U$.

- 104. **Prop.** Suppose U is generated by a single nonzero vector w. Then $P_U(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.
- 105. **Prop.** If e_1, \ldots, e_d is an orthonormal basis of U; then $P_U(v) = \langle v, e_1 \rangle e_1 + \cdots + \langle e_d \rangle e_d$.
- 106. Formula. $\alpha_V T^* = T' \circ \alpha_W$, where $T: V \to W$ and $T^*: W \to V$.
- 107. Formula. Let $T: V \to W$. Then $(T'\alpha_W(w))(v) = \langle Tv, w \rangle$.
- 108. **Prop.** $\langle Tv, w \rangle_W = \langle v, T^*w \rangle_V$.
- 109. **Lemma.** If $T: V \to W$ is a linear map between finite-dim inner product spaces, then $(T^*)^* = T$.
- 110. **Lemma.** If $T: V \to W$ is a linear map betwen finite-dim inner product spaces, then if $a \in F$, then $(aT)^* = \overline{a}T^*$.
- 111. **Prop.** If $M(T) = (a_{ij})$, then $M(T^*) = (\overline{a_{ij}})^t$.
- 112. **Prop.**
 - (a) $I^* = I$.
 - (b) $(S+T)^* = S^* + T^*$.
 - (c) $(ST)^* = T^*S^*$.
 - (d) $(T^{-1})^* = (T^*)^{-1}$.
- 113. **Prop.** The matrix of T^* is the conjugate transpose of the matrix of T if the same orthonormal bases of V and W are used to compute the matrices.
- 114. Formula. $\overline{a_{ij}} = \langle T^*w_i, v_j \rangle_V$ iff $a_{-j} = \langle v_j, T^*w_i \rangle_V$.
- 115. **Prop.** $nul(T^*) = (range T)^{\perp}$.
- 116. Formula.
 - (a) range $(T^*) = (\operatorname{nul} T)^{\perp}$.
 - (b) nul $T = (\text{range}(T^*))^{\perp}$.
 - (c) range $T = (\text{nul}(T^*))^{\perp}$.
- 117. **Theorem.** If T is symmetric, then T is orthonormal diagonalizable.
- 118. **Theorem.** Every eigenvalue of a self-adjoint operator is real.
- 119. **Lemma.** Let T be an operator on a complex inner product space. Suppose $\langle Tv, v \rangle = 0$ for all $v \in V$. Then T = 0.
- 120. Cor. If T is an operator on a complex inner product space, then $\langle Tv, v \rangle \in \mathbb{R}$ for all $v \in V$ iff T is self-adjoint.
- 121. **Prop.** Alternating implies anti-symmetric.

- 122. **Prop.** Let $x^2 + bx + c$ be an irreducible quadratic over \mathbb{R} . Then the operator $T^2 + bT + cI$ is injective on V.
- 123. **Real Spectral Theorem.** Supppose T is a self-adjoint operator on a real inner product space $(T = T^*)$. Then T is diagonal in an orthonormal basis of V.
- 124. Complex Spectral Theorem. Suppose T is a normal operator on a complex product inner product specae $(T^*TT = TT^*)$. Then T is diagonal in an orthonormal basis of V.
- 125. **Theorem.** An operator T is normal iff $||Tv|| = ||T^*v||$ for all $v \in V$.
- 126. **Prop.** If T is normal and $Tv = \lambda v$, then $T^*v = \overline{\lambda}v$.
- 127. **Prop.** Suppose T is normal and v, w eigenvectors for T with different eigenvalues. Then the vectors v, w are orthogonal.
- 128. **Theorem.** If T is normal and $F = \mathbb{C}$, then T is diagonal in an orthonormal basis of V.
- 129. **Prop.** Let $T: V \to V$ be a symmetric (self-adjoint) operator on a nonzero finite-dim inner product space. Then T has an eigenvalue.
- 130. **Prop.** If T is self-adjoint, then it is diagonalizable in the real and complex case.
- 131. **Prop.** Nilpotent 2x2 operators (nonzero) have no square root.
- 132. **Prop.** The identity operator has infinitely many square roots if dim $V \geq 2$.
- 133. **Theorem.** Let T be an operator on a finite-dim inner product space. Then TFAE:
 - (a) T is positive.
 - (b) T is self-adjoint and has only nonnegative eigenvalues.
 - (c) T has a positive square root.
 - (d) T has a self-adjoint square root.
 - (e) $T = R^*R$ for some operator R on V.