Automi e Linguaggi Formali

a.a. 2017/2018

LT in Informatica 21 Marzo 2018

Primo compitino

Giovedì 12 Aprile – ore 14:30 Aule LuM250 e LuF1

- La lista su uniweb è aperta
- Si chiude Martedì 10 aprile
- Mercoledì 11 verrà pubblicata sul moodle la ripartizione tra le due aule degli iscritti

Proprietà dei linguaggi regolari

- Pumping Lemma. Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l'uso del pumping lemma mostrerà una contraddizione.
- Proprietà di chiusura. Come costruire automi da componenti usando delle operazioni, ad esempio dati $L \in M$ possiamo costruire un automa per $L \cap M$.
- Proprietà di decisione. Analisi computazionale di automi, cioè quanto costa controllare varie proprietà, come l'equivalenza di due automi.

Proprietà di chiusura

Siano L e M due linguaggi regolari. Allora i seguenti linguaggi sono regolari:

■ Unione: $L \cup M$

■ Intersezione: $L \cap M$

■ Complemento: N

■ Differenza: *L* \ *M*

■ Inversione: $L^R = \{w^R : w \in L\}$

■ Chiusura di Kleene: *L**

■ Concatenazione: *L.M*

Unione, concatenazione e chiusura di Kleene Direction

Unione, concatenazione e chiusura di Kleene DIANDENTI DI PADONA

Unione, concatenazione e chiusura di Kleene

Theorem

Se L e M sono regolari, allora anche $L \cap M$ è un linguaggio regolare.

Theorem

Se L e M sono regolari, allora anche $L \cap M$ è un linguaggio regolare.

Dimostrazione. Sia L il linguaggio di

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

e M il linguaggio di

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Possiamo assumere che entrambi gli automi siano deterministici Costruiremo un automa che simula A_L e A_M in parallelo, e accetta se e solo se sia A_L che A_M accettano.

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

Formalmente

$$A_{L\cap M}=(Q_L\times Q_M,\Sigma,\delta_{L\cap M},(q_L,q_M),F_L\times F_M),$$

dove

$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

Dimostrazione (continua).

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.

Formalmente

$$A_{L\cap M}=(Q_L\times Q_M,\Sigma,\delta_{L\cap M},(q_L,q_M),F_L\times F_M),$$

dove

$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

Si può mostrare per induzione su |w| che

$$\hat{\delta}_{L\cap M}((q_L, q_M), w) = \hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w)$$

Costruiamo l'automa che rappresenta l'intersezione di (a) e (b)

Theorem

Sia L un linguaggio regolare sull'alfabeto Σ , allora il linguaggio $\overline{L}=\Sigma^*\setminus L$ è regolare.

Theorem

Sia L un linguaggio regolare sull'alfabeto Σ , allora il linguaggio $\overline{L} = \Sigma^* \setminus L$ è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dal DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

Theorem

Sia L un linguaggio regolare sull'alfabeto Σ , allora il linguaggio $\overline{L} = \Sigma^* \setminus L$ è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dal DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

Scambiamo gli stati finali e non finali di A, ottenendo l'automa

$$B = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

Theorem

Sia L un linguaggio regolare sull'alfabeto Σ , allora il linguaggio $\overline{L} = \Sigma^* \setminus L$ è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dal DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

Scambiamo gli stati finali e non finali di A, ottenendo l'automa

$$B = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

Allora
$$L(B) = \overline{L}$$

■ Costruiamo il complementare dell'NFA:

■ Costruiamo il complementare dell'NFA:

■ Per prima cosa determinizziamo l'automa

■ Costruiamo il complementare dell'NFA:

- Per prima cosa determinizziamo l'automa
- e poi scambiamo stati finali e non finali

Chiusura per differenza

Theorem

Se L e M sono linguaggi regolari, allora il linguaggio L \setminus M è regolare.

Chiusura per differenza

Theorem

Se L e M sono linguaggi regolari, allora il linguaggio L \setminus M è regolare.

Dimostrazione. Osserviamo che $L \setminus M = L \cap \overline{M}$. Sappiamo già che i linguaggio regolari sono chiusi per intersezione e complementazione. Quindi $L \cap \overline{M}$ è un linguaggio regolare.

Theorem

Se L è un linguaggio regolare, allora il linguaggio L^R è regolare.

Theorem

Se L è un linguaggio regolare, allora il linguaggio L^R è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dall'FA A. Modifichiamo A per fargli riconoscere il linguaggio L^R :

Theorem

Se L è un linguaggio regolare, allora il linguaggio L^R è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dall'FA A. Modifichiamo A per fargli riconoscere il linguaggio L^R :

1 Giriamo tutte le transizioni dell'automa

Theorem

Se L è un linguaggio regolare, allora il linguaggio L^R è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dall'FA A. Modifichiamo A per fargli riconoscere il linguaggio L^R :

- 1 Giriamo tutte le transizioni dell'automa
- 2 Il vecchio stato iniziale diventa l'unico stato finale

Theorem

Se L è un linguaggio regolare, allora il linguaggio L^R è regolare.

Dimostrazione. Sia L il linguaggio riconosciuto dall'FA A. Modifichiamo A per fargli riconoscere il linguaggio L^R :

- 1 Giriamo tutte le transizioni dell'automa
- 2 Il vecchio stato iniziale diventa l'unico stato finale
- 3 Creiamo un nuovo stato iniziale p_0 tale che $\delta(p_0, \varepsilon) = F$ (c'è una ϵ -transizione da p_0 verso i vecchi stati finiali)

Proprietà di decisione

- Convertire tra diverse rappresentazioni dei linguaggio regolari
- Il linguaggio *L* è vuoto?
- La parola w appartiene al linguaggio L?
- Due descrizioni definiscono lo stesso linguaggio?

Controllare se un linguaggio è vuoto

■ $L(A) \neq \emptyset$ se e solo se esiste uno stato finale raggiungibile dallo stato iniziale.

Controllare se un linguaggio è vuoto

- $L(A) \neq \emptyset$ se e solo se esiste uno stato finale raggiungibile dallo stato iniziale.
- Oppure possiamo analizzare l'espressione regolare **E** e vedere se $L(E) = \emptyset$ ragionando per casi:
 - E = F + G. Allora L(E) è vuoto se e solo se sia L(F) e L(G) sono vuoti;
 - E = F.G. Allora L(E) è vuoto se e solo L(F) è vuoto oppure L(G) è vuoto;
 - $\mathbf{E} = \mathbf{F}^*$. Allora $L(\mathbf{E})$ non è vuoto perche $\varepsilon \in L(\mathbf{E})$
 - $\mathbf{E} = \varepsilon$. Allora $L(\mathbf{E})$ non è vuoto perche $\varepsilon \in L(\mathbf{E})$
 - $\mathbf{E} = \mathbf{a}$. Allora $L(\mathbf{E})$ non è vuoto perche $a \in L(\mathbf{E})$
 - $\mathbf{E} = \emptyset$. Allora $L(\mathbf{E})$ è vuoto

Controllare l'appartenenza

- Per controllare se $w \in L(A)$ per un FA A dobbiamo simulare A su w:
 - \blacksquare se |w| = n dobbiamo fare n passi di simulazione
 - se A è un DFA ogni passo costa O(1)
 - se A è un NFA con s stati ogni passo costa $O(s^2)$
 - se A è un ε -NFA con s stati ogni passo costa $O(s^3)$

Controllare l'appartenenza

- Per controllare se $w \in L(A)$ per un FA A dobbiamo simulare A su w:
 - \blacksquare se |w|=n dobbiamo fare n passi di simulazione
 - \blacksquare se A è un DFA ogni passo costa O(1)
 - se A è un NFA con s stati ogni passo costa $O(s^2)$
 - se A è un ε -NFA con s stati ogni passo costa $O(s^3)$
- Se L è rappresentato con un'espressione regolare E, prima convertiamo E in ε -NFA e poi simuliamo w su questo automa.

Controllare l'equivalenza

- \blacksquare L = M se e solo se:
 - $L \cap \overline{M}$ è vuoto e
 - $\overline{L} \cap M$ è vuoto

Controllare l'equivalenza

- \blacksquare L = M se e solo se:
 - $L \cap \overline{M}$ è vuoto e
 - $\overline{L} \cap M$ è vuoto
- I linguaggi regolari sono chiusi per intersezione e complementazione
- Sappiamo come controllare se un linguaggio regolare è vuoto