TUGAS KELOMPOK MINGGU 2 KALKULUS II

Kelompok 3:

•	Rafi Akbar Wibawa	(G1401211095)
•	Aida Darajati	(G1401211016)
•	Muhamad Fawaz Zidan	(G1401211051)
•	Ravi Mahesa Pramudya	(G1401211052)
•	Dhiya Khalishah Tsany Suwarso	(G1401211038)
•	Radhitya Harma	(G1401211021)
•	Muhamad Farras Surya Dio Putra	(G1401211018)
•	Azizah Amalia Azra	(G1401211046)
•	Eka Novita Sri Handayani	(G1401211030)

Nomor 1a.

Nomor 1b.

$$| \frac{1}{16} | \frac{1}{16$$

Nomor 2a.

2) a.
$$\int_{2}^{\infty} \frac{\ln \pi}{x} = \lim_{n \to \infty} \int_{2}^{\infty} \frac{\ln \pi}{x}$$

$$= \lim_{n \to \infty} \int_{2}^{\infty} \frac{\ln x}{x}$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_{2}^{\infty} \frac{\ln x}{x}$$

$$\frac{\ln \pi}{2} \int_{2}^{\infty} \frac{\ln x}{x}$$

$$\frac{\ln \pi}{2} \int_{2}^{\infty} \frac{\ln x}{x}$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_{m_{2}}^{\infty} \frac{1}{2} \int_{m_{2}}^{\infty} \frac{\ln x}{x}$$

$$= \lim_{n \to \infty} \frac{1}{2} \int_{m_{2}}^{\infty} \frac{1}$$

Nomor 2b.

3 (6)	$\int_{-\infty}^{\infty} \frac{x}{(x^2+4)} dx = \int_{-\infty}^{0} \frac{x}{(x^2+4)} dx + \int_{0}^{\infty} \frac{x}{(x^2+4)} dx$
	= $\lim_{A\to-\infty} \int_a^o \frac{x}{(x^2+4)} dx + \lim_{b\to\infty} \int_b^b \frac{x}{(x^2+4)} dx$
	Misalkan $u = x^2 + 4 \Leftrightarrow du = 2x dx$
	= $\lim_{a \to -\infty} \int_{a}^{0} \frac{x}{u} \cdot \frac{du}{2x} + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{u} \cdot \frac{du}{2x}$
	= A00 \frac{1}{2} \int_{a}^{0} \frac{1}{u} du + \lim_{b \tag{0}} \frac{1}{2} \int_{0}^{b} \frac{1}{u} du
	= lim = 1 (lin (lul) + lim = 1 (ln (lul) 6
	= lim 1 (ln (x2+4)) + lim 1 (ln (x2+4)) 6
	$= \lim_{A \to -\infty} \left(\frac{1}{2} \ln (0^2 + 4) - \frac{1}{2} \ln (a^2 + 4) \right) + \lim_{b \to \infty} \left(\frac{1}{2} \ln (b^2 + 4) - \frac{1}{2} \ln (0^2 + 4) \right)$
	= $\frac{\lim}{90-00} \left(\ln (2) - \frac{1}{2} \ln (4^2+4) \right) + \frac{\lim}{b\to 00} \left(\frac{1}{2} \ln (b^2+4) - \ln (21) \right)$
	= -00 +00
	= divergen

Nomor 3a.

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x \ln x} dx,$$

$$misal \quad u = \ln x$$

$$du = \frac{1}{x} dx$$

$$= \lim_{b \to \infty} \int_{\ln 2}^{\ln b} \frac{1}{u} dx$$

$$= \lim_{b \to \infty} \int_{\ln 2}^{\ln b} \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to \infty} \ln u \ln u \ln u$$

$$= \lim_{b \to$$

Nomor 3b.

3b)	ړ∞	1												
	-0 X	1 14x +9	,											
l,		1 X ² +4x-	19	∫ _o ∞	x ² 4	1 4×+9								
l,	lim a-¤	-co (.	s a ×	1 ² +4×+	<u> </u>	lìr b-	M (∫ ₀ ×	1 1 144×	d×)			
4	lim a-b-	. a (\int_a	(X+2) ² +5	d×) -	liM b-∘α) { } ₀	a 1 (×11))*+S	dx)				
L _b	lìM Q-0-&	(Ja	(x+1:)24(%)	idx)	+ lin b-	1 () 200 ()	ъ 6 (х-	10,40	ری و	*)			
45	lim 1-0-0	(1)	tan-	\(\frac{\times +1}{\tilde{\times}}\)) 0) +	lìm boo	(1)	ta	<u>)</u> (x11 \ (5)) b)	
40 lii	m (5	arcta	n (2)	-) - VS	arcto	7U (12	a tals)4 lim 6-00	Bar	elan(S	M2(f) 5 S	-Vsar	dan (24	<u>(</u> 1)
L ₀ 2	Vs are	tan (2)	(<u>5</u>)+(s	π	4	<u>ςπ-</u> :	2 1501 00	tan(25	E)					
) 				100								

Nomor 4a.

	Date
4) a. $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx$	
$= \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}}$	lx .
$=\lim_{b\to\infty}\int_{-\frac{1}{2}}^{\frac{1}{2}}dt$	L misal $t = ln \times \frac{dt}{dx} = \frac{L}{x}$
$=\lim_{b\to\infty}\left[-\frac{1}{t}\right]^{b}$	$dt = \frac{1}{x} dx$
$= \lim_{b \to \infty} \left[-\frac{1}{\ln x} \right]_{2}^{b}$ $= \lim_{b \to \infty} \left[-\frac{1}{\ln b} \right]_{2}^{b}$	$\left(-\frac{1}{\ln 2}\right]$
$= -\frac{1}{\ln \infty} + \frac{1}{\ln 2}$	
$= 0 + \frac{1}{\ln 2}$ $\approx 1.4427 //$	Konvergen

Nomor 4b.

2		
	TUGAS KELOMPOK	
	8. So u du = lim so u du + lim so u du e tul a -> - la e tul b-> o e ful	
	us lim Jou du (gunation integral parsial)	
	= \int \frac{u}{a} \text{du} = \int \text{u.e}^u \text{du} \text{-> uv = \int u \text{du \text{(integral parsial)}}	
	e-u	
	• u= 21 => du=du	
	dv = e ^u du => v = e ^u	
	$= u \cdot e^{u} - \int e^{u} du$	
	= 4.64 - 64	
7	lim (u.e u - e u a = lim (-1) - (aea - ea) = lim - (-aea + ea = -1 a->-00 a->-00	
	b-so o en (gunalian integral parsial)	
	= Sue du => uv - Sv du	
	u= u => du = dre	
	dv= e ^{-u} du => v = -e ^{-u}	
	$= u - e^{-u} - \int_{-e^{-u}} du$	
	$=-ue^{-u}+\int_{e}^{-u}du$	
	$= -ue^{-u} - e^{-u}$	
	$\lim_{b\to\infty} (-ue^{-u} - e^{-u})^b = \lim_{b\to\infty} -be^{-b} - e^{-b} - (-1) = \lim_{b\to\infty} -be^{-b} - e^{-b} + 1 = 1$	
	$\frac{1}{a - 3 - 00} \int_{a}^{0} \frac{u}{e^{ u }} du + \lim_{b \to 00} \int_{0}^{b} \frac{u}{e^{ u }} du = -1 + 1 = 0$	