HAlg Note

Basic Knowledge

```
Def of Matrix: A mapping from \{1, ..., n\} \times \{1, ..., m\} to a field F is called a n \times m matrix over F.
```

- · The set of all $n \times m$ matrices over F is denoted by $Mat(n \times m; F) := Maps(\{1, ..., n\} \times \{1, ..., m\}, F)$.
- · If n = m, we sill speak of a **Square Matrix** and shorten the notation to Mat(n; F).

Solution Sets of Inhomogeneous Systems of Linear Equations: Solution = 特解 (Particular Solution) + 通解 (Homogeneous solution)

Def of Group (G, *): A set G with a operator * is a group if: **Closure**: $\forall g, h \in G, g*h \in G$; **Associativity**: $\forall g, h, k \in G, (g*h)*k = g*(h*k)$;

Identity: $\exists e \in G, \forall g \in G, e * g = g * e = g$; **Inverse**: $\forall g \in G, \exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e$.

Field (F): A set F is a field with two operators: (addition)+ : $F \times F \to F$; (λ, μ) $\to \lambda + \mu$ (multiplication)· : $F \times F \to F$; (λ, μ) $\to \lambda \mu$ if: (F,+) and $(F \setminus \{0_F\}, \cdot)$ are abelian groups with identity $0_F, 1_F$. and $\lambda(\mu + \nu) = \lambda\mu + \lambda\nu$

F-Vector Space (V): A set *V* over a field *F* is a vector space if: *V* is an abelian group $V = (V, \dot{+})$ and $\forall \vec{v}, \vec{w} \in V$ $\lambda, \mu \in F$

a map $F \times V \rightarrow V : (\lambda, \vec{v}) \rightarrow \lambda \vec{v}$ satisfies: **I**: $\lambda(\vec{v} \dotplus \vec{w}) = (\lambda \vec{v}) \dotplus (\lambda \vec{w})$ **II**: $(\lambda + \mu)\vec{v} = (\lambda \vec{v}) \dotplus (\mu \vec{v})$

III: $\lambda(\mu\vec{v}) = (\lambda\mu)\vec{v}$ IV: $1_F\vec{v} = \vec{v}$ ps:I,II are Distributive Laws; III is Associative Law.

• **Properties of** *F*-**Vector Space (V)**: **a.** $0_F \vec{v} = \vec{0}$ **b.** $(-1_F)\vec{v} = -\vec{v}$ **c.** $\lambda \vec{0} = \vec{0}$ **d.** If $\lambda \vec{v} = \vec{0}$, then $\lambda = 0$ or $\vec{v} = \vec{0}$ or both.