第五册

大青花鱼

目录

第一章	圆	5
1.1	圆的基本性质	5
1.2	圆和旋转	8
1.3	圆心角和圆周角	10
1.4	圆内接四边形	12
1.5	圆内接多边形	16
第二章	圆和三角形	19
2.1	圆势	19
2.2	切线和割线	19
2.3	垂心和外接圆	19
2.4	内切圆和旁切圆	19
2.5	九点圆	19
第三章	三角函数	21

4		目录
3.1	锐角的三角函数	21
3.2	三角函数的图像和性质	21
3.3	三角函数和三角形	21
第四章	从或许到确定	23
4.1	事件和试验	23
4.2	计数和概率	23
4.3	组合和排列	23
第五章	三段论(上)	25
5.1	大前提、小前提和结论	25
5.2	直言三段论	25

学习反比例函数和二次函数时,我们发现,就算是简单代数式定义的函数,它的图像也是我们无法手动画出的曲线。曲线是比直线更复杂的形状。为了给我们今后研究各种曲线打下基础,以下我们研究一种简单的曲线:圆。

1.1 圆的基本性质

我们已经学过圆的概念。公理体系中,我们这样定义圆:平面上到定点 O 距离为定长的点的集合,是一个圆。给定线段 XY,到 O 的距离和 AB 等长的点构成一个圆。O 叫做**圆心**,XY 叫做圆的**半径**,长度一般记为 r,不至于混淆的时候,半径的长也简称为半径。

圆心为 O、半径为 r 的圆,一般记为圆 (O,r) 或 $\odot_{(O,r)}$ 。圆心 O 和另一点 P 确定的圆,一般记为圆 (O,P) 或 $\odot_{(O,P)}$ 。如果不在意半径,不至于混淆的情况下,也可以简记为圆 O。

平面上的点到 O 的距离小于 r, 就说它在圆内; 如果等于 r, 就说它在圆上; 如果大于 r, 就说它在圆外。

关于圆,我们有以下公理:

• 直线和圆有两个交点, 当且仅当直线有部分在圆内。

• 给定点 $A \ AB$ 和线段 $EF \ GH$,如果 |EF| + |GH| > |AB| > ||EF| - |GH||,那么总存在两点 $P \ Q$,使得 $|AP| = |EF| \ |PB| = |GH|$,|AQ| = |EF|、|QB| = |GH|。 $P \ Q$ 分别在直线 AB 两侧。

第一个公理说明直线与圆相交的条件,第二个公理则说明圆与圆相交的条件。

考虑直线 l 和圆 $\odot_{(O,r)}$ 。过 O 作直线 $m \perp l$,记垂足为 P,|OP| = d。

- 1. 如果 d > r,那么 P 在圆外。对 l 上任意其他点 Q,根据勾股定理, $|OQ|^2 = |OP|^2 + |PQ|^2 > |OP|^2$,因此 |OQ| > |OP| > r。这说明 l 上的点都在圆外。我们说直线 l 与圆 O 相离。反之,如果直线与圆相离,那么 P 在圆外,因此 d > r。
- 2. 如果 d = r,那么 P 在圆上。对 l 上任意其他点 Q,根据勾股定理, $|OQ|^2 = |OP|^2 + |PQ|^2 > |OP|^2$,因此 |OQ| > |OP| = r。这说明 l 上 其他点都在圆外。直线和圆恰有一个公共点。我们说直线 l 与圆 O 相 切,称 P 为切点。反之,如果直线与圆相切于点 Q,那么 |OQ| = r。 反设 Q 不是 P,那么根据勾股定理, $|OP|^2 = |OQ|^2 |PQ|^2 < |OQ|^2$,这说明 P 在圆内。根据第一个公理,圆 O 和 l 有两个交点,矛盾! 因此 Q 就是 P,d = r。
- 3. 如果 d < r,那么 P 在圆内。根据第一个公理,直线和圆有两个交点 A、B。我们说直线与圆**相交**,或直线**割圆**于 A、B。反之,如果直线 和圆有两个交点,那么根据第一个公理,直线有部分在圆内。设 Q 在 圆内,那么根据勾股定理, $|OP|^2 = |OQ|^2 |PQ|^2 < |OQ|^2$,这说明 P 在圆内,即 d < r。

从以上的讨论可以看出,圆心到直线的垂足P,以及OP,是判断直线和圆

7

关系的重要依据。

设直线割圆于两点 A、B,根据第一个公理,线段 AB (除端点)在圆内。我们把线段 AB 称为圆的一条**弦**。连接圆上一点 A 和圆心 O,延长 AO,根据第一个公理,它和圆有另一个交点 B,称为点 A 的**对径点**。AB 称为圆的**直径**。直径是过圆心的弦。它的长度是半径的两倍。不至于混淆的时候,直径的长也简称为直径。

给定圆上两点 A、B,考虑弦 AB 的垂直平分线 l,圆心 O 显然在 l 上。 也就是说,**恰有一条直径垂直平分每条弦**。

考虑两个圆: $\bigcirc_{(O_1,r_1)}$ 和 $\bigcirc_{(O_2,r_2)}$,设两个圆心的距离是: $|O_1O_2|=s$,那么,两个圆的关系可能有以下几种:

- 1. $s > r_1 + r_2$. 用反证法可以证明,两个圆没有公共点。我们说两圆相离。
- 2. $s = r_1 + r_2$. 考虑线段 O_1O_2 , 上面有一点 P 使得 $|O_1P| = r_1$, 于是 $|PO_2| = |O_1O_2| |O_1P| = r_2$ 。这说明两个圆有一个公共点。如果点 Q 不在线段 O_1O_2 上,则 $|O_1Q| + |QO_2| > |O_1O_2|$ 。于是 Q 不可能是 公共点。也就是说,两个圆恰有一个共同点,在圆心连线上。我们说 两圆**外切**。
- 3. $|r_1 r_2| < s < r_1 + r_2$. 根据第二个公理, $\odot_{(O_1, r_1)}$ 和 $\odot_{(O_2, r_2)}$ 恰有两个公共点,分别在圆心连线两侧。我们说两圆**相交**。
- 4. $s = |r_1 r_2|$. $r_1 > r_2$ 时, $s = r_1 r_2$ 。考虑直线 O_1O_2 ,上面有一点 P,使得 $|O_1P| = r_1$,且和 O_2 在 O_1 同一边。于是 $|O_2P| = |O_1P| |O_1O_2| = r_2$ 。这说明两个圆有一个公共点。如果点 Q 不在线段 O_1O_2 上,则 $|O_1O_2| + |QO_2| < |O_1Q|$ 。于是 Q 不可能是公共点。也就是说,两个圆恰有一个共同点,在圆心连线上。 $r_1 > r_2$ 时,通过类似推理可以得到同样的结论。我们说两圆**内切**。

5. $s < |r_1 - r_2|$. 用反证法可以证明,两个圆没有公共点。如果 $r_1 > r_2$,我们说 $\bigcirc_{(O_1,r_1)}$ 内含 $\bigcirc_{(O_2,r_2)}$, $\bigcirc_{(O_2,r_2)}$ 内含于 $\bigcirc_{(O_1,r_1)}$;反之亦然。

要注意的是,如果仅知道两圆恰有一个公共点,我们无法判断到底是第二还是第四种情形;如果仅知道两圆没有公共点,我们无法判断到底是第一还是第五种情形。第二和第四种情形可以统称为两圆相切,第一和第五种情形可以统称为两圆相离。

习题 1.1.1. 补充:

- 1. 设直线割圆于两点 $A \times B$, 证明线段 AB (除端点) 在圆内。
- 2. 完成两圆关系的第一和第五种情形中的证明。
- 3. 阐明两圆关系的第四种情形中, $r_1 > r_2$ 情况下的推理过程。

1.2 圆和旋转

怎么画一个圆?我们用圆规画圆。如果已知圆心和圆上一点,我们将圆规尖定在要画的圆心处,将笔头接触圆上的点,然后轻轻旋转,笔头就画出一个圆。如果已知圆心和半径线段,我们首先张开圆规,圆规尖和笔头分别对齐半径两端,然后保持圆规形状不变,将圆规尖定在要画的圆心处,让笔头接触纸面,轻轻旋转,笔头就画出一个圆。

可以看出,圆和旋转有天然的关系。旋转是由角定义的操作,把平面中的点映射到另一点。给定角 *AOB*,可以这样定义**旋转**:

定义 1.2.1. 给定角 AOB, 平面中一点 P 关于 $\angle AOB$ 旋转的结果, 是唯一使得 $\angle POQ = \angle AOB$ 且 |OP| = |OQ| 的点 Q。

O 称为旋转的中心。任何点 P 绕中心旋转,结果都在圆 (O,P) 上。

可以看到,给定一个圆 (O,P),从点 P 出发,旋转不同的角度,就得到圆上其它的点。用圆规画圆时,从零角出发,随着角度不断增大,直到周

1.2 圆和旋转 9

角,我们沿逆时针经历了圆上所有的点(注意:这里约定角度的范围是 0°到 369°)。也就是说,我们认为零角到周角的角按角度和圆上的点之间有一一映射。换句话说,数轴上 0 和 360 之间的数,和圆上的点之间有一一映射。我们把它称作**圆映射**,记为 $\gamma_{(O,P)}$ 。

通过 $\gamma_{(O,P)}$,我们可以把对圆的研究,改为对数轴上线段的研究。这样就把曲线上的问题转为了直线上的问题。比如,既然 [0,360) 对应整个圆,那么 [0,180] 就对应半个圆,[0,60] 就对应六分之一个圆,等等。我们把闭区间对应的圆的部分称为**圆弧**。

同一圆上两个圆弧分别对应 [a₁,a₁+x] 和 [a₂,a₂+x],这两个圆弧有什么不同吗? 观察圆的图像可知,并没有不同。也就是说,圆弧的形状只和它对应数轴上区间的长度有关,和它所在的位置无关。只要对应的区间一样长,那么圆弧就全等,可以相互覆盖。换句话说,圆弧只要等长,就是全等的。于是,线段所满足的公理,对同一个圆上的圆弧也成立。

和线段一样,圆弧也有起点和终点。比如 [0,60] 对应的圆弧,起点就是 P,终点是 60 度角 POQ 的终边和圆的交点 Q。如果圆弧对应的区间长度超过 180,就说它是**优弧**;如果圆弧对应的区间长度小于 180,就说它是**劣弧**;如果等于 180,就说它是**半圆**。优弧比半圆长,劣弧比半圆短。

从直线和圆相交的角度来看,圆上两点表示这两点确定的直线将圆分为两个圆弧。这两个圆弧并起来就是圆,所以要么一个是优弧、一个是劣弧,要么两者都是半圆(这时直线过圆心)。

同一个圆上,明确了起点 A 和终点 B,就唯一确定了圆弧 \widehat{AB} 。如果只说了两点 $A \setminus B$,那么 \widehat{AB} 一般指劣弧或起点为 A 终点为 B 的圆弧。如果要指优弧,一般会特别强调。

习题 1.2.1. 证明:

- 1. 同一个圆中, 直径是最长的弦。
- 2. 任意线段经过旋转得到等长的线段。任意三角形经过旋转得到同角 全等的三角形。

1.3 圆心角和圆周角

根据圆映射的定义,每个圆弧都对应一个顶点在圆心,大小介于零角和周角之间的角,称为它的**圆心角**。圆弧还可以对应另一类角。给定起点为A,终点为B的圆弧 \widehat{AB} 和圆上一点P,则角 \widehat{APB} 称为一个**圆周角**。每个圆弧只对应一个圆心角,但可以对应很多个圆周角。

同一段圆弧的圆心角和圆周角之间,有什么关系呢? 如右图,连接 PO,延长交圆于对径点 Q。由于 $\triangle AOP$ 是等腰三角形, $\angle OAP + \angle OPA = 0$,同理, $\angle OBP + \angle OPB = 0$ 。于是

$$\angle AOB = \angle AOQ + \angle QOB$$

= $\angle OAP + \angle APO + \angle PBO + \angle OPB$
= $2\angle APO + 2\angle OPB = 2\angle APB$

也就是说,圆心角是圆周角的两倍大小,圆周角是圆心角的一半大小。由于每段圆弧只对应一个圆心角,无论 P 取圆上哪个点,只要不在弧上,圆周角 APB 都是圆心角的一半大小。

如果点 P 在弧上, $\angle APB$ 和 $\angle AOB$ 是什么关系呢? 如果点在弧上,它对应的就是构成圆的另一段弧,于是它是另一段弧对应的圆心角的一半大小。另一段弧对应的圆心角是周角减去 $\angle AOB$,所以

$$\angle APB = 180^{\circ} - \frac{1}{2} \angle AOB.$$

定理 1.3.1. 圆周角定理 给定圆 O 上的弧 \widehat{AB} 及圆上的点 P,如果 $P \notin \widehat{AB}$,那么:

$$\angle APB = \frac{1}{2} \angle AOB,$$

如果 $P \in \widehat{AB}$, 那么:

$$\angle APB = 180^{\circ} - \frac{1}{2} \angle AOB.$$

对径点和圆心形成平角,因此,根据圆周角定理,对径点对应的圆周角是直角。或者说,半圆对应的圆周角是直角。

要注意的是,讨论圆心角时,我们约定角的范围是零角到周角。讨论圆周角和其他角时,为了方便,我们会切换到负平角到正平角的范围。

同一个圆里,圆上的点 A、B 对应的圆心角 $\angle AOB$ 和点 C、D 对应的圆心角 $\angle COD$ 相等,那么根据"边角边",圆心 O 和它们构成的三角形满足: $\triangle AOB \simeq \triangle COD$ 。弦 AB 和 CD 也等长。不仅如此,根据圆映射,圆弧 \widehat{AB} 和 \widehat{CD} 也等长。事实上, \widehat{CD} 就是 \widehat{AB} 关于某个角旋转的结果。我们把这个结论称为"等角对等弦"、"等角对等弧"。

反之,如果两个圆弧 \widehat{AB} 和 \widehat{CD} 等长,那么它们对应的区间也一样长。这说明它们对应的圆心角一样大。圆心角既然相等,那么弦 AB 和 CD 也等长。更进一步,设 P 是圆上不属于两弧的点,那么圆周角 $\angle APB$ 和 $\angle CPD$ 一样大。我们把这个结论称为"等弧对等弦"、"等弧对等角"。

反过来,如果圆 O 上两条弦 AB 和 CD 等长,那么根据"边边边", $\triangle AOB \simeq \triangle COD$ 。于是圆心角相等,所以劣弧 \widehat{AB} 和 \widehat{CD} 等长。我们把 这个结论称为"等弦对等角"、"等弦对等弧"。

总的来说,在同一个圆里,两点对应的弦长相等当且仅当对应的(劣弧)弧长相等,当且仅当对应的圆心角相等,当且仅当对应的圆周角相等。弦、弧、圆心角、圆周角,都是用来描述圆的部分和整体关系的方法。

给定圆上两点 A、B,它们对应的垂直平分线 l 平分 $\angle AOB$,即把 $\angle AOB$ 分成两个相同大小的圆心角。因此,设 l 和圆交于 P、Q,则它们 也分别平分所在的圆弧(称为弧的中点)。我们把这一系列结论总称为垂径 定理:

定理 1.3.2. 垂径定理 给定圆上两点,则恰有圆的一条直径垂直平分两点对应的弦,同时平分对应的圆心角和两个圆弧。

垂径定理也可以说成: 过圆 O 的弦 AB 中点的直径与弦 AB 垂直, 同

时平分 $\angle AOB$ 和弧 \widehat{AB} 。

习题 1.3.1. 给定圆 O,弦 AB 中点记为 M,|MO| 称为弦 AB 的弦心距。

- 1. 证明: 圆心角相等, 当且仅当对应的弦心距相等。
- 2. 设直线 MO 与圆 O 交于 P、Q 两点,证明: $|MP|\cdot |MQ| = |MA|\cdot |MB|$.

1.4 圆内接四边形

我们对圆上一点、两点引出的形状都有了初步了解,现在来看圆上多个点对应的形状。首先来看三个点的情形。

设 A、B、C 是圆 (O,r) 上(相异的)三点,则线段 AB、BC、AC 的 垂直平分线都过圆心 O。因此,O 是 $\triangle ABC$ 的外心(这里附带说明了圆上相异三点必然不共线),|OA| = |OB| = |OC| = r。反之,设有(非退化的) $\triangle ABC$,以它的外心 O 为圆心,以 |OA| 为半径,就可以画出一个圆,过顶点 A、B、C。这说明,**不共线的三点恰好对应一个圆**。或者说,**不共线的三点确定一个圆**。我们把这个圆称为三角形的**外接圆**("外心"即"外接圆圆心"简称),把三角形称为圆的**内接三角形**。

在三个点的基础上再加一个点 D,四个点 A、B、C、D 能否恰好对应一个圆呢?显然, $\triangle ABC$ 和 $\triangle BCD$ 的外接圆未必是同一个圆。所以,四个点不总是在同一个圆上。换句话说,要让四个点共圆,这四个点必须满足一定的条件。

如右图上情形,设 A、B、C、D 圆 (O,r) 上 (相异的) 四点,考察它们对应的圆弧。我们发现, \widehat{ABC} 和 \widehat{CDA} 是整个圆的两部分,因此,它们对应的圆心角之和是周角。根据圆周角定理, $\angle ABC + \angle CDA = 180^\circ$ 。同理, $\angle BCD + \angle DAB = 180^\circ$ 。

我们还可以发现,圆周角 $\angle BAC$ 和 $\angle BDC$ 都对应 \widehat{BC} ,因此根据"等弧

对等角", $\angle BAC = \angle BDC$ 。同理可得: $\angle ACB = \angle ADB$, $\angle CAD = \angle CBD$, $\angle DBA = \angle DCA$ 。从这些等角关系出发,如果对角线 AC 和 BD 交于点 P, 那么 $\triangle APB \hookrightarrow \triangle CPD$ 、 $\triangle BPC \hookrightarrow \triangle DPA$ 。

如果 A、B、C、D 顺序改变,如右图下情形,那么 \overrightarrow{ABC} 和 \overrightarrow{CDA} 对应同一段圆弧 \overrightarrow{AC} 。这时 $\angle ABC + \angle CDA = 0^\circ$,或者说 $\angle ABC = \angle ADC$ 。同理, $\angle BAD = \angle BCD$ 。我们把这样的四边形 ABCD 称为**凹四边形**,把前一种情况中的四边形 ABCD 称为**凸四边形**。凸四边形包含我们学过的平行四边形、梯形和筝形,它的内角都是正的。凹四边形的内角总有负的。无论是凸四边形还是凹四边形,内角和总是零角。

综合两种情况,**圆内接凸四边形对角之和是平角**,**圆内接凹四边形对 角相等**。

四边形 ABCD 有一对边相交,像一只蝴蝶。我们把这样的四边形叫做 蝶形。可以看到,如果把相交的对边 AB、CD 看作对角线,把对角线 AC、BD 看作对边,我们就得到一个凸四边形 ACBD。因此,观察相同的圆弧 对应的圆周角可以发现,我们仍然有 $\angle BAC = \angle BDC$ 、 $\angle ACB = \angle ADB$, $\angle CAD = \angle CBD$, $\angle DBA = \angle DCA$ 。如果对角线 AC 和 BD 交于点 P,仍然有 $\triangle APB \hookrightarrow \triangle CPD$ 、 $\triangle BPC \hookrightarrow \triangle DPA$ 。换句话说,即便圆内接四边形不是凸四边形,用它的顶点也能画出圆内接凸四边形,并且不妨碍我们讨论相关的性质。所以,我们也可以把圆内接四边形相关的问题简称为四点共圆的问题。

以上是圆内接四边形边和角的性质,反过来,满足什么性质的四边形是圆内接四边形呢?或者说,满足什么条件的四个点共圆呢?

定理 1.4.1. 如果凸四边形 ABCD 中的一对内角 $\angle ABC$ 与 $\angle CDA$ 的和是 平角,那么 ABCD 是圆内接四边形。

证明. $\angle ABC + \angle CDA = 180^{\circ}$,所以要么两个角都是直角,要么一个是钝角,一个是锐角。

如果两个角都是直角,作对角线 AC,取它的中点 O。 $\triangle ABC$ 是直角三角

形,AC 是斜边,根据直角三角形的中线定理,|AO| = |BO| = |CO|。同理, $\triangle CDA$ 是直角三角形,AC 是斜边,于是 |AO| = |DO| = |CO|。因此 A, B, C, D 四点都在 $\bigcirc_{(O,A)}$ 上。

如果两个角一个是钝角,一个是锐角。不妨设 $\angle ABC > 90^{\circ} > \angle CDA$ 。作对角线 AC,则 B、D 在 AC 两侧。作对角线 AC 的垂直平分线 l。显然, $\triangle ABC$ 和 $\triangle CDA$ 的外心都在 l 上,只需证明两者是同一点。

设 $\triangle ABC$ 的外接圆为 $\bigcirc_{(O_1,B)}$ 。 $\angle ABC$ 是钝角,因此它的圆心角对应优弧。于是, O_1 和 B 在直线 AC 两侧。 $\angle CO_1A=360^\circ-2\angle ABC$ 。

另一方面,设 $\triangle CDA$ 的外接圆为 $\bigcirc_{(O_2,D)}$ 。 $\angle CDA$ 是锐角,因此它的圆心角对应劣弧。于是, O_2 和 D 在直线 AC 同一侧。 $\angle CO_2A = 2\angle CDA$ 。以上两个结论说明, O_1 和 O_2 都和 D 在直线 AC 同一侧,且 $\angle CO_1A = \angle CO_2A$ 。而 $\triangle CO_1A$ 和 $\triangle CO_2A$ 都是等腰三角形,所以两者同角全等。这说明 O_1 和 O_2 是同一点。A,B,C,D 四点都在 \bigcirc_{O_1A} 上。

从这个定理可以推出、矩形、等腰梯形和正方形都是圆内接四边形。

定理 1.4.2. 如果凸四边形 ABCD 中, $\angle ACB = \angle ADB$,那么 ABCD 是 圆内接四边形。

证明. ABCD 是凸四边形,所以 C 和 D 在直线 AB 同侧。作边 AB 的垂直平分线 l,显然, $\triangle ABC$ 和 $\triangle ABD$ 的外心都在 l 上,只需证明它们是同一点。

设 $\triangle ABC$ 的外接圆为 $\bigcirc_{(O_1,C)}$, $\triangle ABD$ 的外接圆为 $\bigcirc_{(O_2,D)}$ 。如果 $\angle ACB$ 是钝角,那么它的圆心角对应优弧。于是, O_1 和 C 在直线 AB 两侧,且 $\angle BO_1A=360^\circ-2\angle ACB$ 。这时, $\angle ADB=\angle ACB$ 也是钝角,所以同样有 O_2 和 D 在直线 AB 两侧,且 $\angle BO_2A=360^\circ-2\angle ADB$ 。如果 $\angle ACB$ 是锐角,那么它的圆心角对应劣弧。于是, O_1 和 C 在直线 AB 同侧,且 $\angle BO_1A=2\angle ACB$ 。这时, $\angle ADB=\angle ACB$ 也是锐角,所以同样有 O_2 和 D 在直线 AB 同侧,且 $\angle BO_2A=2\angle ADB$ 。

因此, O_1 和 O_2 总在直线 AB 同侧, 且 $\angle BO_1A = \angle BO_2A$ 。而 $\triangle BO_1A$

1.4 圆内接四边形

15

和 $\triangle BO_2A$ 都是等腰三角形,所以两者同角全等。这说明 O_1 和 O_2 是同一点。A, B, C, D 四点都在 $\bigcirc_{O_1, A}$ 上。

定理 1.4.3. 过一点 P 的两条直线 m, n 上各有两点: $A, C \in m$ 和 $B, D \in n$, 分别各在 P 两侧。如果

$$|PA| \cdot |PC| = |PB| \cdot |PD|,$$

那么四边形 ABCD 是圆内接四边形。

证明. 考虑 $\triangle APB$ 和 $\triangle DPC$ 。对顶角 $\angle APB = \angle DPC$ 。而 $|PA| \cdot |PC| = |PB| \cdot |PD|$ 等于说

$$\frac{|PA|}{|PB|} = \frac{|PD|}{|PC|}.$$

因此根据"边角边", $\triangle APB \sim \triangle DPC$ 。于是有 $\angle ABP = \angle DCP$, $\angle BAP = \angle CDP$ 。因此,根据定理 1.4.2,四边形 ABCD 是圆内接四边形。

这个定理也可以理解为:两条线段相交,如果交点把每条线段分成的两部分长度之积相等,那么线段端点共圆。也就是说,这两条线段实际上是圆的两条相交的弦。

反之,圆的两条弦 AC 和 BD 相交于 P,则"等弦对等角"说明 $\angle ACD = \angle ABD$ 、 $\angle BAC = \angle BDC$ 。因此 $\triangle ABP \sim \triangle DCP$, $|PA| \cdot |PC| = |PB| \cdot |PD|$ 。

定理 1.4.4. 相交弦定理 圆的两条弦 AC 和 BD 相交于 P, 则

$$|PA|\cdot |PC| = |PB|\cdot |PD|.$$

习题 1.4.1.

给定圆内接凸四边形 ABCD。E 是对角线 AC 上一点。 $\angle CDE = \angle BDA$ 。

- 1. 证明: $\triangle CDE \sim \triangle BDA$ 。
- 2. 证明: $\triangle CDB \sim \triangle EDA$ 。
- 3. 证明: $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$.

给定凸四边形 ABCD,作射线 CE 使得 $\angle ECD = \angle ABD$,作射线 DE 使得 $\angle CDE = \angle BDA$ 。两射线交于点 E。

- 1. 证明: $\triangle CDE \sim \triangle BDA$ 。
- 2. 证明: $\triangle CDB \sim \triangle EDA$ 。
- 3. 证明: $|AC| \cdot |BD| \geqslant |AB| \cdot |CD| + |BC| \cdot |DA|$.
- 4. 证明,凸四边形 ABCD 是圆内接四边形,当且仅当 $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$.
- 5. 证明: A, B, C, D 四点共圆,当且仅当 $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$.

1.5 圆内接多边形

从四边形的情况来看,顶点的位置顺序对形状很重要。如果顶点 A、B、C、D 按顺时针或逆时针顺序排列,那么四边形 ABCD 是凸四边形,否则,四边形 ABCD 可能是凹四边形。

对一般的圆内接多边形,我们只研究最简单的一类: 顶点按逆时针顺序排列的多边形。具体来说,设圆 O 上有 n 个点: A_1, A_2, \cdots, A_n ,从 A_1 出发构造圆映射 $\gamma_{(O,A_1)}$,把 [0,360) 映射到圆周,那么 0 对应 A_1 。设 t_1, t_2, \cdots, t_n 分别对应 n 个点,那么 $0 = t_1 < t_2 < \cdots < t_n$ 。这样定义的圆内接多边形: $A_1A_2 \cdots A_n$ 就是我们研究的对象。这样定义的多边形,每个内角都在零角和平角之间。这样的多边形叫做**凸多边形**。

对于大于等于 3 的整数 n,凸 n 边形 $A_1A_2\cdots A_n$ 有 $\frac{n(n-3)}{2}$ 条对角线。 具体来说,每个顶点和相邻两个顶点的连线是 n 边形的边,和其余 n-3 个顶点的连线是对角线。因此每个点是 n-3 条对角线的端点。另一方面,每条对角线对应两个顶点,因此一共有 $\frac{n(n-3)}{2}$ 条对角线。

凸多边形的内角和是否有规律呢? 我们知道三角形的内角和是平角, 凸四边形的内角和是两个平角(或者说周角,如果把角度约定在负平角和正

17

平角之间,则减去一个周角变成零角)。边数继续增多时,我们定义凸 n 边 形 $A_1A_2\cdots A_n$ 的内角和为:

$$\angle A_1 A_2 A_3 + \angle A_2 A_3 A_4 + \dots + \angle A_{n-2} A_{n-1} A_n + \angle A_{n-1} A_n A_1 + \angle A_n A_1 A_2$$

如果我们不把角度限定在负平角和正平角之间,可以猜测: 凸 n 边形的内角和是 n-2 个平角。

如果凸多边形是圆内接多边形,我们可以这样证明: n 个顶点把圆分为 n 段圆弧。每个顶点张成的内角,对应了其中 n-2 段圆弧。如果考虑所有 n 个内角对应的圆弧,则每段圆弧计入 n-2 次(圆弧两端是内角顶点的时候不计入,其它情况下都计入)。也就是说,n 个内角和对应 n-2 个整圆。这些内角都是圆周角,因此它们的和是 n-2 个整圆对应的圆周角,即 n-2 个平角。我们的猜想至少对圆内接多边形是正确的。

对一般凸多边形的情况,我们可以通过不断"裁剪"三角形来证明。我们还记得,凸四边形可以裁成两个三角形,因此它的内角和是两个三角形的内角和。从另一个角度来看,我们通过裁掉一个三角形,把凸四边形变成了三角形。对一般的凸 n 边形 $A_1A_2\cdots A_n$ 来说,由于它的每个内角都介于零角和平角之间,我们可以考虑裁掉某个角,把它变成 n-1 边形。比如,沿着线段 A_1A_3 剪一刀,就把 $A_1A_2\cdots A_n$ 分成了三角形 $A_1A_2A_3$ 和 n-1 边形 $A_1A_3\cdots A_n$ 。

定理 1.5.1. 凸 n 边形的内角和是 n-2 个平角。

证明. 用归纳法证明。命题 P(n): 凸 n+2 边形的内角和是 n 个平角。我们要证明 P(n) 对所有正整数 n 成立。

n=1 时,由于三角形内角和是平角,P(1)成立。

假设 P(n) 成立,下面证明 P(n+1) 成立。

设有凸 n+3 边形 $A_1A_2A_3\cdots A_n$, 将它裁成三角形 $A_1A_2A_3$ 和 n-1 边形 $A_1A_3\cdots A_n$ 。前者的内角和是平角。根据 P(n),后者的内角和是 n 个平角,

因此, $A_1A_2A_3\cdots A_n$ 的内角和是 n+1 个平角。于是 P(n+1) 成立。 因此对所有正整数 n,命题 P(n) 成立。

满足什么条件时, 凸多边形是圆内接多边形呢? 最直接的条件, 自然是平面上有一个圆, 使多边形顶点都在圆上。或者说, 能找到一点, 到多边形各个顶点距离相等。

如果难以直接找到这样的点,可以查看多边形各边和各条对角线的垂直平分线。如果多边形是圆内接多边形,它的边和对角线都是圆的弦,垂径定理说明其垂直平分线过圆心。具体来说,可以考察两条边(或对角线)的垂直平分线的交点。这点如果到各个顶点距离相等,那么多边形内接于以它为圆心的圆,否则多边形不是圆内接多边形。

有一种特殊的凸多边形必然是圆内接多边形: **正多边形**。正多边形是各边等长,各内角相等的多边形。正三角形、正方形都是正多边形。正多边形各个的内角角度是 $\frac{180(n-2)}{n}$ °。

习题 1.5.1.

- 1. 平行四边形、矩形、正方形、梯形、筝形,哪些总是圆内接多边形?哪些可以是圆内接多边形?要满足什么条件?
- 2. 设有整数 $1 \le i, j, k, l \le n$, 圆内接 n 边形 $A_1 A_2 \cdots A_n$ 中, $\angle A_i A_k A_j$ 和 $\angle A_i A_l A_j$ 有什么关系?

第二章 圆和三角形

讨论圆内接多边形的时候,我们已经了解了圆和圆内接三角形的关系。除此之外,圆和三角形还有更多的联系。

2.1 圆势

我们知道,点到圆的距离将点和圆的关系分成三类:圆内、圆外、圆上。

- 2.2 切线和割线
- 2.3 垂心和外接圆
- 2.4 内切圆和旁切圆
- 2.5 九点圆

第三章 三角函数

- 3.1 锐角的三角函数
- 3.2 三角函数的图像和性质
- 3.3 三角函数和三角形

第四章 从或许到确定

- 4.1 事件和试验
- 4.2 计数和概率
- 4.3 组合和排列

第五章 三段论(上)

- 5.1 大前提、小前提和结论
- 5.2 直言三段论