

Decoupled Neural Interfaces using Synthetic Gradients

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, Koray Kavukcuoglu

DeepMind

Summary by Justin Chen

1 Introduction

- Locking when a computation in the graph must wait for prerequisite computations
- **Forward Locking** Parameters in current layer must wait for signals from previous layer/module before producing output
- Update Locking Parameters cannot be updated until forward pass completed and cost function computed
- Backwards Locking Parameters in current layer/module cannot be updated until entire forward pass and backwards pass for dependent layers are completed
- Locking delays parameter updates and is bottlenecked by slowest update
 - O Disadvantageous if want to update models in multi-agent settings, or if agents are operating at different timescales, or if distributed training
- Goal: Remove all locking and remove update locking for RNN by approximating backpropagation
- Decomposing backprop:

$$\frac{\partial L}{\partial \theta_i} = f_{BProp}((h_i, x_i, y_i, \theta_i), (h_{i+1}, x_{i+1}, y_{i+1}, \theta_{i+1}), \dots) \frac{\partial h_i}{\partial \theta_i} \simeq \hat{f}_{BProp}(h_i) \frac{\partial h_i}{\partial \theta_i}$$

- h = activations, x = input, y = supervision, L = loss function
- Module logical component (e.g. layer or some subdivision) of computation graph
- Neural Interface (NI) connection between two modules in computation graph
- Decoupled Neural Interface (DNI) a neural network that mediates communication asynchronously between modules
 - o Frames interaction between layers as a local communication problem
 - Removes dependence of global knowledge of system
 - Synthetic Gradient Model immediately responds to previous layer's input with an approximate error gradient
 - Removes backwards locking
 - Final regression layer initialized with zero weight and biases
 - o Synthetic Input Model immediately responds to next layer with synthetic inputs
 - Removes forwards locking
- Synthetic Gradient approximate error gradient w.r.t. input from previous layer
 - O Acts as a regularizer and can cause underfitting, refer to cDNI

2 Decoupled Neural Interfaces

Decoupled Neural Interface using Synthetic Gradient

$$\hat{\delta}_A = M_B(h_A, s_B, c)$$

 $\hat{\delta}_A \\ M_B$

Synthetic gradient for previous module $f_{\!A}$

Synthetic Gradient Model for subnetwork B that predicts synthetic gradient

from previous module $f\!A$

Subnetwork - section of neural network that uses DNI to communicate with other portions of the network

 h_A

Activation of previous module $f\!A$

 s_B

Activation of next module f_B

C

Context - Additional/privileged information that could help subnetwork learn e.g. label information

 δ_A

True utility - actual error gradient that backpropagation would have produced

- Overtime, M_B can learn to minimize difference between $\hat{\delta}_A$ and δ_A
- ullet Removes update locking because $f\!A$ can update without waiting for it's true utility from $f\!B$
 - o Additionally, pressures f_A to learn to produce useful signals for f_B
 - o $\,M_B$ is model agnostic. Can also be used in target propagation, or reward in reinforcement learning, etc. Can be used with any optimization algorithm.

2.1 Synthetic Gradient for Feed-Forward Networks

How to decouple neural interfaces in a feedforward network

$$\theta_i \leftarrow \theta_i - \alpha \delta_i \frac{\partial h_i}{\partial \theta_i}; \delta_i = \frac{\partial L}{\partial h_i}$$

Synthetic Gradient Model update rule

$$\delta_i = \frac{\partial L}{\partial h_i} \mbox{computed with backpropagation} \label{eq:delta_i}$$

Decouple every layer

$$\theta_n \leftarrow \theta_n - \alpha \hat{\delta}_i \frac{\partial h_i}{\partial \theta_n}, n \in \{1, ..., i\}$$

Synthetic Gradient Model Update Rule for multiple DNI

- ullet Train modules M_i
 - o Update locked
 - o Trained to minimize $L_{\delta_i} = d(\hat{\delta_i}, \delta_i)$, where the loss is L_2

2.2 Synthetic Gradient for Recurrent Networks

Decoupled Neural Interface for RNN

- DNI at unrolled RNN time boundary to predict synthetic gradients
 - O Normal gradients cannot cross time boundary via backpropagation through time (BPTT)
 - o Estimates infinite time horizon
 - o Synthetic gradient produced at each timestep

Auxiliary task: predict synthetic gradients for future synthetic gradients

• Future Synthetic Gradient δ_{t+T} - a prediction of a synthetic gradient for a synthetic gradient at a future timestep

Training RNN with DNI

- 1. Save final RNN core from current unroll (first row, white circle)
- 2. Unroll T fresh RNN cores (first row, orange circles)
- 3. Compute $L_{t+3} = L_2(\delta_{t+3}, \hat{\delta}_{t+3}) = \|\delta_{t+3} \hat{\delta}_{t+3}\|$
- 4. Update DNI and backprop to RNN core at time t (white)
- 5. Delete T RNN cores in memory except last RNN core (last orange) and repeat
 - a. Use synthetic gradient $\delta t+T$, here $\hat{\delta}t+3$, for next set of fresh RNN cores (second row, purple circles)

Arbitrary Network Graphs

• DNI can be used for any architecture and even communication between ensembles

3 Experiments

3.1 Feed-Forward networks

		MNIST (% Error)				CIFAR-10 (% Error)			
Layers		No Bprop	Bprop	DNI	cDNI	No Bprop	Bprop	DNI	cDNI
FCN	3	9.3	2.0	1.9	2.2	54.9	43.5	42.5	48.5
	4	12.6	1.8	2.2	1.9	57.2	43.0	45.0	45.1
	5	16.2	1.8	3.4	1.7	59.6	41.7	46.9	43.5
	6	21.4	1.8	4.3	1.6	61.9	42.0	49.7	46.8
$\overline{\mathbf{z}}$	3	0.9	0.8	0.9	1.0	28.7	17.9	19.5	19.0
CNN	4	2.8	0.6	0.7	0.8	38.1	15.7	19.5	16.4

Every layer DNI

- DNI do not perform as well as training with BP on either MNIST or CIFAR-10, but difference in accuracy is small
- **cDNI** DNI that condition on label information
 - O Concatenate one-hot vector label to input to synthetic gradient model
 - For CNN, use one-hot encoded channel masks
 - o Improves generalization over DNI without label information and address underfitting
- Stale gradients gradients computed w.r.t. to a the model E epochs ago
 - o Exponential average of stale gradients and experimented with various decay rates
 - o Generalization: DNI < Stale Gradients < cDNI
 - Only used gradients that were stale by at most one epoch
- Tried CNN as the synthetic gradient model for predicting gradients for CNN layers
 - O CNN synthetic gradient model did not use pooling and did not use zero-padding

Sparse Updates

- Experimented with a 4 layer FCN
- ullet Updates and backwards pass occurred randomly with probability pupdate
- Ran 100 experiments with different randomly chosen probabilities
- Could still train to competitive accuracies

Complete Unlock

- **Synthetic Input Model** given actual input vector, approximates the activations from the previous layer for the next layer
 - Removes forward locking making the network fully asynchronous
 - o Each layer can be trained in parallel but together co-learn a single function
 - o Achieves about 98% accuracy on MNIST
 - o Slower convergence

3.2 Recurrent Neural Networks

- Tasks: Copy, Repeat Copy, character-level language modelling
- Synthetic Gradient Models are shared across timesteps

Copy and Repeat Copy

• Copy task: Train to read N characters and to output that exact sequence

$$_{\circ}$$
 $T_{task} = N + 3$

• Repeat Copy task: Train to read N character and an int R, and output the exact sequence R times

$$T_{task} = NR + 3$$

- Each instance of the task is an episode e.g. reading and copying entire sequence
- Test length of time RNN learns to model with and without DNI
- DNI allows modeling longer sequences beyond the BPTT boundary using a smaller than typical
 T and using less data allowing it to also learn faster
- Training on auxiliary task of predicting future synthetic gradients allows even better generalization
 - o Repeat Copy Results: T = 3
 - With DNI: increases generalization from 33 timesteps (DNI) to 59 timesteps (future synthetic gradients)
 - Without DNI: only 5 timesteps

Language Modelling

- Penn Treebank dataset
- LSTM with 1024 units
- LSTM unrolled for 5 timesteps using DNI reaches same performance as vanilla RNN unrolled for 20 timesteps
 - O DNI LSTM only uses 58% of data and 2x faster (wall clock time)

3.3 Multi-Network System

Collective training of RNN using DNI

- DNI allow communication between networks
- Both networks are treated as a single network
- Task: 2 RNNs A and B
 - o A counts odd MNIST digits
 - O B counts number of 3s
 - Events occur less frequently and thus learns at a slower rate than A
 - B must communicate with A to complete its task
 - o $\;$ Trained with full BP, which locks A as B updates requiring T^2 updates
 - o Trained with DNI to unlocks A requiring on T updates