Other Confidence Intervals

Stat 250

Click here for PDF version

Your turn

Let $X \sim Gamma(2, \lambda)$. It is a fact that $2\lambda X$ has a chisquare distribution with 4 degrees of freedom. Use this fact to find a 95% confidence interval for λ via the pivotal method.

One-sided confidence intervals

- So far, all of our CIs were two-sided intervals of the form: $P(L \le \theta \le U) = 1 \alpha$
- When we only care about the lower or upper bound, then a one-sided interval is required

Lower confidence bound

Found via $P(L \le \theta) = 1 - \alpha$

Upper confidence bound

Found via $P(\theta \le U) = 1 - \alpha$

Example

- Do college students sleep < 8 hours per night?
- Average hours of sleep on weekdays collected for random sample of students from one college
- Find a 95% lower confidence bound for the average hours of sleep on weekdays for students at this college

min	Q1	median	Q3	max	mean	sd	n
3.00	7.20	7.95	8.60	10.97	7.87	1.17	253

Score intervals for proportions

A Gallup poll surveyed 3,731 randomly sampled US in April 2021, asking how they felt about requiring proof of COVID-19 vaccination for travel by airplane. The poll found that 57% said they would favor it.

Let X = number of respondents in favor of proof of vaccine

Assume that $X \sim Binom(n, p)$

- $\implies \hat{p} = X/n$ is an unbiased estimator of p
- \implies For large n, $\widehat{p} \stackrel{\cdot}{\sim} N\left(p, \frac{p(1-p)}{n}\right)$

Score intervals for proportions

For large n,
$$Z = (\widehat{p} - p) / \sqrt{\frac{p(1-p)}{n}} \sim N(0, 1)$$

Using the pivotal method:

$$P\left(-q \le \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \le q\right) = 1 - \alpha,$$

 $q = 1 - \alpha/2$ quantile from N(0, 1)

Now solve for p (you'll need to remember your quadratic formula!)

Score intervals for proportions

$$L = \frac{\hat{p} + q^2/(2n) - q\sqrt{\hat{p}(1-\hat{p})/n} + q^2/(4n^2)}{1 + q^2/n}$$

$$U = \frac{\hat{p} + q^2/(2n) + q\sqrt{\hat{p}(1-\hat{p})/n} + q^2/(4n^2)}{1 + q^2/n}$$

Example

- A Gallup poll surveyed 3,731 randomly sampled US in April 2021, asking how they felt about requiring proof of COVID-19 vaccination for travel by airplane.
- The poll found that 57% (2,127 respondents) said they would favor it.
- Construct a 90% confidence interval for p

```
prop.test(x = 2127, n = 3731, conf.level = 0.9)$conf
[1] 0.5565766 0.5834977
attr(,"conf.level")
[1] 0.9
```