Commercial aircraft control using Deep reinforcement learning

AU332 project presentation

Group member:

Xudong Liu Lingjia Meng Buqing Nie

Introduction to Flight Gear

Introduction to Flight Gear

How to get data?

Fig: socket communication figure

Problem formulation

What do we need to control

Altitude latitude, longitude

Goal — flight route and safe flight

Altitude range trajectory

Flight envelop altitude range speed

How to represent a state given current information of plane and target, required range of altitude

Absolute position?

State (Altitude, dist_to_tar, head_offset, angles, vels, accela_vels)

Reward

Different Stages:

Take-off

Flying stably

From dangerous states

.

R_{alti} = $\omega_1 * |curr alti - alti range|$ - $\omega_2 * up_v_exceed$

$$R_{dist} = \omega_3 * dist$$

 $R_{heading} = \omega_4 * |head_offset|$
 $R_{stable} = \omega_5 * |\Delta angle| + \omega_6 |\Delta vel|$

$$R_{danger} = -\omega_7 * e^{|exceed_speed|}$$

Combine them, will there be a problem?

$$R = \cdots + (if \ not \ in \ danger) * (R_{stable} + R_{dist} + R_{heading}) + \cdots$$

State -> action

The model we tried

03

DQN & PPO2

DQN algorithm

Q learning

- Replace the Q-table with the neural network
- experience replay for repeated learning
- Q-target mechanism to disrupt correlation

DQN

Advantage of DQN:

- > Suitable for high dimensional continuous state space situation
 - The state of the plane composite high dimensional continuous state space
- High data utilization for our project
 - The experience replay is used for repeated learning
 - Difficulty for data acquisition

DQN algorithm

Q learning

- Replace the Q-table with the neural network
- experience replay for repeated learning
- Q-target mechanism to disrupt correlation

DQN

Disadvantage of DQN:

- > The action space must be low dimensional and discrete
 - The output action is discrete, i.e. we must discretize the action space
- Convergence is slow in our project
 - Discretization makes the action space too big, the convergence is too slow in our project.

PPO2(Proximal Policy Optimization) algorithm

Policy Gradient Restriction on the update step size

TRPO/PPO2

Advantage of PPO2:

- > Policy-based algorithm, suitable for high dimensional continuous state space & action space
 - The states and actions of the plane are continuous, and discretization is harmful to converge

What we are doing

PPO2 + pid controller

What we are doing

What we are doing

Fig: a two level controller architecture

> HLC: Flight path control

➤ LLC: Flight posture control

Supporting text here.

When you copy & paste, choose "keep text only" option.

Data collection

Quality Diversity (perform randomly)

Imitation?

 $S \rightarrow a \rightarrow s \rightarrow a \rightarrow \dots$ sampling frequency

Trajectory planning

Given a long journey, how to do local planning?

Not only algorithms

Redefine the state and reward

self restriction

Interaction with the software

Insight needs efforts

When training: Reset takes long time

