Project Design Phase-II Technology Stack (Architecture & Stack)

Date	26 June 2025
Team ID	LTVIP2025TMID48502
Project Name	Measuring The Pulse Of Prosperity: An Index Of Economic Freedom Analysis
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Measuring the Pulse of Prosperity – An Index of Economic Freedom Analysis

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

Comprehensive Analysis and Dietary Strategies with Tableau: Measuring the Pulse of Prosperity: Andex of Economic Freedom Analysis

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application Dashboard,	Tableau Dashboards, React.js, HTML/CSS
2.	Data Collection	Data collection logic (surveys, manual entries)	Python scripts, Tableau Web Data Connectors
3.	Storage	Personalized diet recommendation algorithm	MySQL, MongoDB, AWS S3, Google Drive
4.	Database	Storage of raw & processed dietary data	MySQL, NoSQL (MongoDB)
5.	ML/Analytics	Cloud-based access to dietary datasets	scikit-learn, KNN, Decision Trees

6.	External API-1	Nutrition data from external sources	USDA Food Data Central API
7.	External API-2	Student info or campus data access	College ERP API, Google Forms API
8	Infrastructure (Server / Cloud)	Hosting Tableau server or cloud dashboards	Tableau Server, AWS EC2, Google Cloud.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Python (Pandas, NumPy, scikit- learn), MySQL
2.	Security Implementations	.Access control for student health data, APIs, and dashboards	OAuth 2.0, Encryption (SHA- 256), IAM Roles
3.	Scalable Architecture	Modular layers: UI – Processing – Storage – ML – Visualization	Microservices, Docker, Tableau Extensions
4.	Availability	Hosted on cloud with dashboard backup, load-balanced APIs	Tableau Online, Load Balancer (AWS/GCP)
5.	Performance	Fast dashboard loading, efficient ML model execution, data caching	Tableau Extracts, CDN, Redis (optional)

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

 $\frac{https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-\\ \underline{2d20c9fda90d}$