Group 1 (Student last number: 0,1,2,3) (G2 and G3 problems are in the next pages)

EHB 262E Final Exam

Group 1-Problem 4

18 June 2021

In the circuit below, the operational amplifier is ideal with the output voltage limitations $V^{+}=10V$ and $V^{-}=-10V$. Neglect the Early effect $(V_A=\infty)$.

- a) Derive an expression for v_K in terms of v_i . $v_K = f(v_i)$?
- **b)** Derive an expression for v_O in terms of v_i ($v_O = f(v_i)$), and calculate it.
- c) For the v_i input voltage varying in the range [-2V +2V], draw the voltage transfer characteristic v_o versus v_i specifying the important voltage values on the plot. Every numerical value on the plot should be explained in detail on your answer sheet.

 $R_A = 7 \text{ k}\Omega$, $R_B = 1 \text{ k}\Omega$, $R_C = 7 \text{ k}\Omega$, saturation current of the transistor $I_S = 1 \times 10^{-16} \text{A}$, and $V_T = 25 \text{mV}$.

Total time for Problem 4 and 5: 35 Minutes. UPLOAD the answer 4 and 5 till 20.10!

Group 1-Problem 5

In the circuit below, the operational amplifier is ideal with the output voltage limitations $V^+=12V$ and $V^-=-12V$. If \mathbf{v}_A and \mathbf{v}_O voltage waveforms are as shown in Figures (a) and (b), find the resistor values and the \mathbf{v}_B signal. You can choose the resistor values in the range $[1\mathbf{k}\Omega \ 50\mathbf{k}\Omega]$.

Group 2 (Student last number: 4,5,6) (G3 problems are in the next page)

EHB 262E Final Exam

Group 2-Problem 4

18 June 2021

In the circuit below, the operational amplifier is ideal with the output voltage limitations $V^+=5V$ and $V^-=-5V$. Neglect the Early effect $(V_A=\infty)$.

- a) Derive an expression for v_K in terms of v_i . $v_K = f(v_i)$?
- **b)** Derive an expression for v_O in terms of v_i ($v_O = f(v_i)$), and calculate it.
- c) For the v_i input voltage varying in the range [-2V +2V], draw the voltage transfer characteristic v_o versus v_i specifying the important voltage values on the plot. Every numerical value on the plot should be explained in detail on your answer sheet.

 R_1 = 10 k Ω , R_2 = 2 k Ω , R_3 = 10 k Ω , saturation current of the transistor I_S = 1×10⁻¹⁶A, and V_T = 25mV.

Total time for Problem 4 and 5: 35 Minutes. UPLOAD the answer 4 and 5 till 20.10!

Group 2-Problem 5

In the circuit below, the operational amplifier is ideal with the output voltage limitations V^+ =**15V** and V^- =**-15V**. If \mathbf{v}_A and \mathbf{v}_O voltage waveforms are as shown in Figures (a) and (b), find the resistor values and the \mathbf{v}_B signal. You can choose the resistor values in the range [1k Ω 50k Ω].

Group 3 (Student last number: 7,8,9)

EHB 262E Final Exam

Group 3 -Problem 4

18 June 2021

In the circuit below, the operational amplifier is ideal with the output voltage limitations $V^+=12V$ and $V^-=-12V$. Neglect the Early effect $(V_A=\infty)$.

- a) Derive an expression for v_K in terms of v_i . $v_K = f(v_i)$?
- **b)** Derive an expression for v_O in terms of v_i ($v_O = f(v_i)$), and calculate it.
- c) For the v_i input voltage varying in the range [-2V +2V], draw the voltage transfer characteristic v_o versus v_i specifying the important voltage values on the plot. Every numerical value on the plot should be explained in detail on your answer sheet.

 $R_1 = 8 \text{ k}\Omega$, $R_2 = 8 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, saturation current of the diode $I_S = 1 \times 10^{-15} \text{ A}$, and $V_T = 25 \text{ mV}$.

Total time for Problem 4 and 5: 35 Minutes. UPLOAD the answer 4 and 5 till 20.10!

Group 3-Problem 5

In the circuit below, the operational amplifier is ideal with the output voltage limitations $V^+=10V$ and $V^-=-10V$. If \mathbf{v}_A and \mathbf{v}_O voltage waveforms are as shown in Figures (a) and (b), find the resistor values and the \mathbf{v}_B signal. You can choose the resistor values in the range $[1\mathbf{k}\Omega \quad 50\mathbf{k}\Omega]$.

