МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	<u>O</u>	Естественнонаучный				
Кафедра	шифр О 6	наименование Высшая математика				
кифедри	шифр	наименование				
Дисциплина	Математи	ческая статистика и случайные процессы				

ЛАБОРАТОРНАЯ РАБОТА №10

на тему «Критерии рангов и знаков в пакете MATHCAD»

Вариант №4

Выполнил студент группы	И967					
Васильев Н.А.						
Фамилия И.О.						
ПРЕПОДАВАТЕЛЬ						
Мартынова Т.Е.						
Фамилия И.О. Подп	ись					
« <u></u> »	2019 г.					

КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

8.2. Критерий знаков

Простейший критерий такого рода, критерий знаков, применяется для проверки гипотезы H_0 об однородности генеральных совокупностей попарно связанным выборкам. Статистикой критерия знаков является число знаков «+» или «-» в последовательности знаков разностей парных выборок (x_i, y_i) , $i = \overline{1, n}$. Если сравниваемые выборки получены из однородных генеральных совокупностей, то значения x_i и y_i взаимозаменяемы и, следовательно, вероятности появления положительных и отрицательных разностей $x_i - y_i$ равны, т.е. можно предположить, что p(x, y) = p(y, x).

Если же совокупность x в среднем больше или меньше, то $p(x, y) \neq p(y, x)$.

Пусть, к примеру, каждый y будет на θ больше, чем соответствующий x. Тогда $p(x, y - \theta) = p(y - \theta, x)$, т.е. θ является медианой разности y - x. Покажем это. Подставим $w = y - \theta$, получим p(x, w) = p(w, x), т.е. совместная плотность симметрична относительно прямой $w = y - \theta$ (рис. 8.1). Тогда $\int p(x, w) d\Omega = \int_{-\infty}^{\infty} p(x, w) d\Omega$

Рис. 8.1. Области интегрирования вероятностей

 $p(x < w) = \int p(x, w)d\Omega = p(w < x)$. Из свойств симметричности следует,

что интегралы численно равны, тогда p(x < w) = p(w < x) или, подставляя $y - \theta$ вместо w, имеем $p(x < y - \theta) = p(y - \theta < x)$. Далее, очевидно, что $p(y - \theta < x) = p(y - x < \theta)$ и $p(x < y - \theta) = p(\theta < y - x) = p(y - x > \theta)$. Так как левые части равны, то равны и правые, следовательно, $p(y - x < \theta) = p(y - x > \theta)$. Наконец, вычисляя вероятности противоположных событий, получим $p(y - x > \theta) = p(\theta > y - x)$, а это и есть определение θ как медианы для совокупности случайных величин $z_i = y_i - x_i$.

Таким образом, проверка нулевой гипотезы $H_0: \theta=0$ равносильна проверке гипотезы, согласно которой медиана случайной величины z равна нулю, и, аналогично, при альтернативной гипотезе $H_1: \theta>0$ медиана случайной величины z будет больше нуля. Предполагалась непрерывность вероятности p(x,y), поэтому распределение случайной величины z непрерывно, т.е. вероятность совпадения $x_i=y_i$ равна нулю. Реально наблюдается всегда дискретная последовательность случайных величин, и могут быть случайные совпадения. Как поступать в этом случае — вопрос наименее теоретически обоснованный. Простейший выход - отбрасывать совпадающие наблюдения, сокращая при этом выборку.

Обозначим $z_i = y_i - x_i$ и примем модель

$$z_i = \theta + \varepsilon_i, \ i = \overline{1, n},$$
 (8.2.1)

где ε_i - ненаблюдаемая случайная величина, θ - интересующий нас неизвестный параметр. При этом предполагается, что все ε_i - взаимно независимы и извлечены из непрерывной совокупности, имеющей медиану, равную нулю, т.е. $P(\varepsilon_i < 0) = P(\varepsilon_i > 0) = 1/2$, $i = \overline{1, n}$.

Проверим гипотезу $H_0: \theta = 0$, определив для этого переменную -

счетчик
$$\psi_i = \begin{cases} 1, \ z_i > 0, \\ 0, \ z_i < 0. \end{cases}$$
 Положим $B = \sum_{i=1}^n \psi_i$. Статистика B есть число

положительных величин среди z_i , $i=\overline{1,n}$. Случайные величины ψ_i независимы и, в силу симметричности распределения относительно медианы, с ними можно связать схему последовательных независимых испытаний, в которой вероятность успеха $P(\psi_i=1)=0.5$ для каждого испытания. Сле-

довательно, при нулевой гипотезе H_0 их сумма B распределена по бы номиальному закону с параметрами B(n, p) = B(n, 1/2).

Пусть b - верхняя α -процентная точка биномиального распределени при объеме выборки n и вероятности p в схеме Бернулли. Введем обс значение $b = b(\alpha, n, p)$. Оно указывает на зависимость b от вероятност ошибки первого рода α . $b(\alpha, n, p)$ есть корень уравнения

$$P(B > b/n, p) = \sum_{i=b}^{n} C_n^i p^i (1-p)^{n-i} = \alpha.$$
 (8.2.2)

Тогда процедура проверки гипотезы H_0 при уровне значимости с выглядит следующим образом.

1. Односторонний критерий для H_0 против альтернативы $H_1:\theta>0$ отклонить H_0 , если $B\geq b\bigl(\alpha,n,1/2\bigr),$

принять H_0 , если $B < b(\alpha, n, 1/2)$.

Рис. 8.2 показывает критическую область правостороннего критери для биномиального распределения.

Рис. 8.2. Критическая область и область принятия решения для биномиального распределения

- 2. Односторонний критерий для H_0 против альтернативы $H_1: \theta < 0:$ отклонить H_0 , если $B \leq \left[n b(\alpha, n, 1/2)\right]$, принять H_0 , если $B > \left[n b(\alpha, n, 1/2)\right]$.
- 3. Двусторонний критерий для H_0 против альтернативы $H_1:\theta \neq 0$:

отклонить
$$H_0$$
 , если
$$\begin{cases} B \leq \left[n - b(\alpha_1, n, 1/2) \right] \text{, или} \\ B \geq b(\alpha_2, n, 1/2), \end{cases}$$

принять
$$H_0$$
 , если
$$\begin{cases} n-b \big(\alpha_1,n,1/2\big) < B < b \big(\alpha_2,n,1/2\big), \\ \alpha = \alpha_1 + \alpha_2, \end{cases}$$

 т.е. левый и правый хвосты распределения могут учитываться несимметрично.

8.4. Ранговый критерий (одновыборочный критерий Вилкоксона)

Рассмотрим анализ повторных парных наблюдений с помощью знаковых рангов. В этом случае, как и в предыдущем, проверяется гипотеза о сдвиге. Предположения аналогичны, сделанным в подразд. 8.2.

Пусть мы имеем 2n наблюдений, по два наблюдения на каждый из n объектов. Обозначим $z_i = y_i - x_i$ и примем модель $z_i = \theta + \varepsilon_i$, $i = \overline{1,n}$, где это все ε_i взаимно независимы и извлечены из непрерывной совокупности (не обязательно одной и той же), которая симметрична относительно нуля.

Основная гипотеза $H_0: \theta=0$, которая может быть сформулирована и в терминах функции распределения. Ведь, если сдвига нет, то $F_1(x) \equiv F_2(y)$, иначе либо $F_1(x) > F_2(y)$, либо $F_1(x) < F_2(y)$. Итак, $H_0: F_1(x) \equiv F_2(y)$ - аналогичная по смыслу формулировка основной гипотезы. Последовательность действий при проверке этой гипотезы такова.

- 1. Составим из данных двух выборок общий вариационный ряд из абсолютных значений наблюдений. Каждому члену вариационного ряда припишем ранг R_i , равный порядковому номеру члена в общем вариационном ряду $|z_1|,|z_2|,...,|z_n|$.
- 2. Определим переменную счетчик $\psi_i,\ i=\overline{1,n}\,,\ \psi_i=\begin{cases} 1,\ z_i>0,\\ 0,\ z_i<0, \end{cases}$ $r_i=\psi_iR_i$.
 - 3. Выпишем статистику рангового критерия

$$T^{+} = \sum_{i=1}^{n} \psi_{i} R_{i} = \sum_{i=1}^{n} r_{i} . \tag{8.4.1}$$

Статистика T^+ равна сумме положительных знаковых рангов. Рациональность предложенной процедуры состоит в том, что если одно распределение смещено относительно другого, то это должно проявиться в том, что маленькие ранги должны в основном соответствовать одной выборке, а большие – другой, вследствие чего соответствующие суммы рангов должны быть маленькими или большими в зависимости от того, какая альтернатива имеет место. Естественно ожидать, что при нулевой гипотезе о симметричности распределения относительно нуля любой ранг может с одинаковым успехом получить как знак «+», так и знак «-», в силу чего существует 2ⁿ разных последовательностей рангов. Кроме того, если нулевая гипотеза справедлива, то в полученной последовательности рангов со знаками количество рангов со знаком «+» не должно значимо отличаться от количества рангов со знаком «-». Напротив, если гипотеза H_1 имеет место, то должно наблюдаться значимое превышение количества рангов со знаком «+» над количеством рангов со знаком «-», что подсказывает выбрать в качестве статистики критерия величину T^+ , равную сумме рангов со знаком «+». p-значение критерия, построенного на статистике T^+ , равно вероятности того, что сумма рангов T^+ примет значение, не меньшее наблюденной суммы.

Путем довольно несложных вычислений можно получить

$$M(T^{+}) = \frac{n(n+1)}{4}, \ D(T^{+}) = \frac{n(n+1)(2n+1)}{24},$$
 (8.4.2)

поэтому статистика $T^*=\dfrac{T^+-\dfrac{n(n+1)}{4}}{\left\lceil\dfrac{n(n+1)(2n+1)}{24}\right\rceil^{\frac{1}{2}}}\in N(0,1)$ при $n\to\infty$ и если

среди случайных величин $|z_1|, |z_2|, ..., |z_n|$ не было совпадений. При наличии t совпадений ранги $R_j + 1$, $R_j + 2$,..., $R_j + t$ совпавших наблюдений следует заменить их средним арифметическим. При такой замене сумма рангов остается без изменений, а следовательно, и первая формула (8.4.2). Сумма же квадратов рангов уменьшится при этом на величину

(1/12)(t-1)t(t+1). Учитывая это, получаем, что в случае наличия t совпадений

$$D(T^{+}) = \frac{n(n+1)(2n+1)}{24} - \frac{(t-1)t(t+1)}{48}.$$
 (8.4.3)

Сформулируем теперь три вида критериев.

1. Для одностороннего критерия $H_0: \theta = 0$ против альтернативы $\theta = 0$ при уровне значимости α :

отклонить H_0 , если $T^+ \ge t(\alpha, n)$,

принять
$$H_0$$
, если $T^+ < t(\alpha, n)$, где $P(T^+ \ge t(\alpha, n)) = \alpha$, т.е. $t(\alpha, n)$ -

 α %-ная критическая точка T^+ -распределения (вероятность верхнего хвоста распределения статистики знаковых рангов Вилкоксона).

2. Для $H_0: \theta = 0$ против $H_1: \theta < 0:$

отклонить
$$H_0$$
, если $T^+ \le \frac{n(n+1)}{2} - t(\alpha, n)$;

принять
$$H_0$$
 , если $T^+ > \frac{n(n+1)}{2} - t(\alpha,n)$, где $\frac{n(n+1)}{2} = \max T^+$.

3. Для двустороннего критерия $H_0: \theta = 0$ против альтернативы $H_1: \theta \neq 0$ при уровне значимости α :

отклонить
$$H_0$$
, если
$$\begin{cases} T^+ \geq t(\alpha_1, n), \\ T^+ \leq \frac{n(n+1)}{2} - t(\alpha_1, n); \end{cases}$$
 принять H_0 , если $\frac{n(n+1)}{2} - t(\alpha_1, n) < T^+ < t(\alpha_2, n), \ \alpha = \alpha_1 + \alpha_2.$

Если пользоваться нормальной аппроксимацией, то, например, правосторонний критерий выглядит так:

отклонить
$$H_0$$
, если $T^+ \ge z_a$,

принять H_0 , если $T^+ < z_\alpha$, где z_α - α %-ная точка стандартного нормального распределения.

Для проверки гипотезы $H_0: \theta = \theta_0$, где θ_0 - заданное число, неравное нулю, получаем модифицированные наблюдения $z_i^{/} = z_i - \theta_0$ и далее вычисляем T^+ , используя $z_i^{/}$ вместо z_i . Таким образом, описанная процедура может быть применена к данным одной выборки.

ФОРМУЛИРОВКА ЗАДАНИЯ

В пакете MATCHAD решить задачу своего варианта с помощью критерия знаков и одновыборочного рангового критерия Вилкоксона. Принять уровень значимости α =0.05.

Вариант:

До наладки	36.4	37.5	36.9	37.6	38.1	35.5	37.8	38.3	36.6
После наладки	36.8	39.2	37.6	39.9	39.6	34.2	36.5	36.3	39.8

СКРИНШОТЫ

Для двустороннего критерия значимости принять или отвергнуть нулевую гипотезу можно, проверив неравенство b1<B
b.

Рисунок 1 – Решение с помощью критерия знаков

Воспользовавшись аппроксимацией для приближения к нормальной теории, делаем вывод, что гипотеза H0 отвергается, поскольку значение B=3 не попадает в интервал (zleft=-1.96, zright=1.96).

arm :=
$$\sqrt{(4 \cdot b + 3) \cdot (1 - p)} - \sqrt{(4 \cdot n - 4 \cdot b - 1) \cdot p} = -0.653$$

pValue := 1 - pnom(arm, 0, 1) = 0.743

Рисунок 2 – Одностороннее р-значение критерия знаков

$$statT(x) := \begin{cases} n \leftarrow rows(x) \\ \text{for } i \in 1...n \\ y_i \leftarrow x_i \end{cases}$$

$$for \ i \in 1...n - 1$$

$$for \ j \in i+1...n$$

$$\begin{vmatrix} a \leftarrow y_i \\ \text{if } \ |y_j| < |y_i| \\ \ |y_j \leftarrow y_j| \\ \ |y_j \leftarrow a \end{vmatrix}$$

$$j \leftarrow 0$$

$$for \ i \in 1...n$$

$$\begin{vmatrix} continue & \text{if } \ |y_i| < 10^{-5} \\ j \leftarrow j+1 \\ \psi_j \leftarrow \text{if}(y_i < 0,0,1) \\ z_j \leftarrow |y_i| \\ T \leftarrow 0$$

$$for \ i \in 1...j \\ T \leftarrow T + \psi_j \cdot i \end{cases}$$

$$\begin{pmatrix} T \\ z \end{pmatrix}$$

Рисунок 3 — Программа для вычисления рангов элементов выборки и расчета статистики критерия T*

x1 := z

T := statT(x1)₁ = 14 z := statT(x1)₂

n1 := rows(z) = 9

MT := n1 ·
$$\frac{n1 + 1}{4}$$
 = 22.5

DT := MT · $\frac{2 \cdot n + 1}{6}$ = 71.25

T1 := $\frac{T - MT}{\sqrt{DT}}$ = -1.007

Рисунок 4 — Решение с помощью одновыборочного рангового критерия Вилкоксона

Т.К. статистика Т1 находится в пределах 95% области принятия решений двустороннего критерия zleft<T1<zright то гипотезу Н0 следует принять.

Вывод: В ходе выполнения данной лабораторной работы с помощью критерия знаков и одновыборочного рангового критерия Вилкоксона была проведена проверка гипотезы Н0 о сдвиге одной генеральной совокупности относительно другой. Согласно ей для данного варианта задания разницы в значениях до наладки и после нет. Согласно альтернативной гипотезе Н1 отклонение есть. По данным пакета МАТСНАD можно сделать вывод, что, поскольку количество положительных элементов в полученной одномерной выборке входит в интервал (bleft, bright), по критерию знаков гипотеза Н0 принимается с уровнем значимости 0.05.

По критерию одномерному ранговому критерию Вилкоксона гипотеза H0 принимается при уровне значимости 0.05, так как статистика T1 находится в пределах области двустороннего критерия (zleft, zright).