CENTRAAL EXAMEN NATUURKUNDE: WVO

	UZ4	202		2UZ3				2022			202		2019		JI8	2(2	16	20
	tijdvak 2	/ak 1	Snalhai	tijdvak 2	tijdvak 1	dvak 3	ti	tijdvak 2	tijdvak 1	tijdvak 3	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1
1.	Elektrische scooter	a op de liets E	t =	Fietshelm	Langiauien in Klassieke stijl	van LED`s	Schakelin	Massa meten in de ruimte	$v_{y} = \left(\frac{\Delta y}{\Delta t}\right)$	Kayak-jumping $\frac{1}{2}mv^2 = mg\Delta h$	Looping $mgh = \frac{1}{2}mv^2$	Planck	Pariser Kanone	Dafne Schippers tegen Ireen Wüst $v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	Mechanische doping $E = Pt \qquad \rho = \frac{m}{V}$	Uitrijden van een auto $s = v_{\text{gem}}t$	Rookmelder $^{238}_{92}U+^{1}_{0}n \rightarrow ^{239}_{92}U$	Zonvolgsysteem $U_{\rm AB} = U_{\rm AC}$	Onderzoek naar geluid in een fles $f = \frac{1}{T}$	ekieurde LED's $R = \frac{U_{\rm R}}{I}$
2.	E = IUt	$oc_{\rm w}Av^2$	$F_{\rm v}$	$\Delta E_{\rm z} = \Delta E_{\rm k} \cdot mgh = \frac{1}{2}mv^2$	$u = \frac{F_{\rm v}}{C}$	$=UI$ $\eta = \frac{P_{\text{licht}}}{P_{\text{elek}}}$	$Eu_0 \mid E = \frac{hc}{\lambda} I$	$F_{\rm res} = F_{\rm R} - F_{\rm L} = Cu_0 - Cu$	$W = Fs$ $E_{\rm k} = \frac{1}{2}mv^2$ $F_{\rm res} = ma$	$F_{\text{z }} = mg \sin \alpha$ $F_{\text{res}} = F_{\text{z }} - F_{\text{w}}$ $a = \frac{\Delta v}{\Delta t}$	$F_z = mg$ en $F_{mpz} = \frac{mv^2}{r}$		$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$	$\lambda_{\max} T = k_{\mathrm{W}}$	$[k] = \frac{[F]}{[v^2]} F_{w,l} = \frac{1}{2} \rho C_w A v^2$	$A = \frac{\ln 2}{t_{\frac{1}{2}}}N \qquad m = N \cdot 241 \cdot \mathbf{u}$	U = IR	$v = f\lambda$	
3.	$\eta = \frac{E_{\text{nuttig}}}{E_{\text{in}}}$		P	$W = \Delta E_{\rm k} \qquad F_{\rm res} s = \frac{1}{2} m v^2$		$R = \frac{U}{I}$		$T = 2\pi \sqrt{\frac{m}{C}}$	K Z	$F_z = mg$			$\eta = \frac{E_{\rm k}}{E_{\rm ch}} E_{\rm ch} = r_{\rm m} m E_{\rm k} = \frac{1}{2} m v^2$		$R = \rho \frac{\ell}{A} A = \frac{1}{4}\pi d^2 I = \frac{U}{R} t = \frac{C}{I}$		•	$U_{\mathrm{BC}} + U_{\mathrm{LDR}_1} + U_{\mathrm{LDR}_2} = 0$		
4.		klijn	v =		$F_{\rm w} = f_{\rm d} F_{\rm n}$.			$v_{\text{max}} = \frac{2\pi A}{T}$			$\left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}} \qquad v = \sqrt{v_x^2 + v_y^2} :$	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F = m a v = \frac{2\pi r}{T}$	$A = \pi r^2$:					Cessna $F_{\rm z} = mg P = F_{\rm m} v$	$\left[V^{-rac{1}{2}} ight]$:	$E_{\rm f} = \frac{hc}{\lambda} P_{\rm el} = UI$
5.	em	$E_k = \frac{1}{2}mv^2 v_{\text{gem}}$	$\Sigma W =$		Cappuccino	de ruimte $\frac{v^2}{r} \text{ en } v = \frac{2\pi r}{T}$	Parkeren i									$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$ $P = Fv$	U = IR	$\frac{\left [F_{\text{lift}} \right]}{\left [\rho \right] \cdot \left [A_{\text{vleugel}} \right] \cdot \left [v \right]^2}$		imtelift $v^{2} = G \frac{mM}{r^{2}}, \qquad v = \frac{2\pi r}{T}$
6.	$F_w = \frac{W}{s} = \frac{\Delta E_{\rm k}}{s} .$	$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$	Goud	$F_{\rm res} = F_{\rm z} - F_{\rm p}$		$\frac{-\operatorname{en} v =}{T}$ $= \frac{4\pi^2 mr}{T^2}$			Qled-tv		$W_{ m w} = E_{ m k,in} - E_{ m k,uit}$ $W_{ m w} = F_{ m w} s - $			$\Sigma W = \Delta E_{\mathbf{k}}$		Water uit de ruimte $E = \frac{1}{2} m N^2$ $E = \frac{C}{2} m M$	X-stream	$F_{\text{lift}} = \frac{1}{2} \rho A_{\text{vleugel}} C_{\text{lift}} v^2$		$r = R_A + h$
7.		ik van $A = \pi R^2$	$A \propto R^2$		$ \eta = \frac{P_{\text{nuttig}}}{P_{\text{in}}} $	$\frac{-\overline{T^2}}{T^2}$ $= G \frac{mM}{2}.$		$P = F_{\mathrm{w}} v$			Beker van Lycurgus	$T = \frac{k_{\mathrm{W}}}{\lambda_{\mathrm{max}}}$		PET samen met CLI ${}^{18}_{9}\text{F} \rightarrow {}^{18}_{8}\text{O} + {}^{0}_{+1}\text{e} (+\text{v}_e) (+\gamma)$	Gravitron	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	P = Fv		Thalliumscintigrafie $^{201}_{82}\text{Pb} \rightarrow ^{201}_{81}\text{Tl} + ^{0}_{1}\text{e} (+\nu_{e}).$	
8.	$F_{\text{w,lucht}} = \frac{1}{2} \rho c_{\text{w}} A v^2$, met $A = \pi R^2$	$I = \frac{P_{\text{brow}}}{A}$	Deuterium ${}_{1}^{2}H + {}_{1}^{1}p \rightarrow {}_{2}^{3}He$	$\rho = \frac{RA}{\ell}$	$=\frac{k_{\mathrm{W}}}{1}$		ECG in MRI $f = \frac{1}{T}$	$\lambda_{\rm B} = \frac{h}{n} \cdot E_{\rm k} = \frac{p^2}{2m}$	AA-Batterijen		Cirkelgolf	Elektrische gitaar	91 7 80 + 10 (+ v _e) (+ 1)	$F_{\rm z} = mg$		$Fw = k \cdot m \cdot g \cdot cos(hoek)$		8210 - 8111 + 10 (+0 _e).	
9.			$4\pi r$	$\lambda = \frac{hc}{E_{\rm f}} \qquad E_n = -\frac{13,609}{n^2}$	Poollicht $v = \sqrt{2 \frac{GM}{}}$	λ_{\max}		$\sum_{i} \hat{U_{i}} = 0$	$E_n = \frac{n^2 h^2}{8mL^2}$		$[k] = \frac{[f_{\text{res}}]}{\left[\sqrt{\frac{ne^2f}{\pi m}}\right]}$	$v = f \lambda$				$\lambda = \frac{h}{\sqrt{2\pi m k_{\rm B} T}}$			$A = \frac{\ln 2}{t_{\perp}} N$	$a = \frac{\Delta v}{\Delta t}$ $F_{\text{res}} = ma$
10	Lise Meitner		Batterijt	$v = \frac{\Delta \lambda}{\lambda} \cdot c$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	le kelder	Radon ir		$E_{\rm f} = \frac{hc}{\lambda}$	$R = \rho \frac{l}{A} \qquad A = \frac{1}{4}\pi d^2$	$n = \frac{\rho}{m_{at}} \qquad m_{at} = A \cdot u$		$m = \rho V V = \frac{1}{4}\pi d^2 \ell \begin{cases} \ell = \frac{1}{2}\lambda \\ v = \lambda f \end{cases}$		$v = \frac{2\pi r}{T} \qquad F_{\text{mpz}} = \frac{mv^2}{r}$	ΛΒ_	$Fw = (Fw +) k2 \cdot v^2 \text{ eindals}$		2	$h = v_{\text{gem}} t$
11		-		1	△↓			2	Practicum warmtestraling $\ell = U^2$	$P = UI I = \frac{U}{V} P = \frac{U^2}{V}$	$c = f \lambda$		$f = \frac{1}{T}$		Kleurstoflaser			Sirius B als Quantumsysteem $\lambda_{\max} T = k_{\mathrm{W}}$	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_1}} \qquad I = \frac{P_{\text{bron}}}{4\pi r^2}$	egen $\begin{bmatrix} \frac{d}{r} \end{bmatrix}$
	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_{1/2}}}$]		$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}},$				$A = \frac{1}{4}\pi d_{\text{aorta}}^2$	$A = \frac{1}{4}\pi d^2 R = \rho \frac{\ell}{A} P = \frac{U^2}{R}$	K	SPECT-scan bij parkinson		$U_{ m ind} \propto rac{{ m d} arPhi}{1}$		$\Delta E = \frac{hc}{\lambda}$.		het viriaal-theorema $E_{\rm g} = -G \frac{mM}{m} \text{ en } E_{\rm k} = \frac{1}{2} m v^2.$	max ¹ - n _W	Jupiter fly-by	$x = \frac{v}{f}$
1:	°(2)	•		Treinwielen			V	Adelaarsnevel	$1 + \alpha (T - T_0)$ $P = \sigma A T^4$	GPS $I = \frac{P_{\text{bron}}}{4\pi r^2}$	${}^{123}_{52}\text{Te} + {}^{1}_{1}\text{p} \rightarrow {}^{123}_{53}\text{I} + {}^{1}_{0}\text{n}$ $N = N \left(\frac{1}{2}\right)^{\frac{t}{t_{1}}}$		dt		$\Delta E = \frac{hc}{\lambda} \qquad E_n = \frac{n^2 h^2}{8mL^2}$	Elektrische tandenborstel $E = m\alpha$	r = R + h	$V = N_e d^3$	$F_{\rm g} = G \frac{mM}{r^2}$ $F_{\rm mpz} = \frac{mv^2}{r}$	$v = \frac{x}{}$:
1 2	$F_{\text{mpz}} = \frac{m v^2}{v}$	F	P = I	$\gamma = \frac{[d][r_0]}{[2^2]}$	$E = \frac{hc}{a}$.			$E_{\rm f} = \frac{hc}{\lambda} E_n = -\frac{13,6 \text{eV}}{n^2}$	$\lambda_{\max} T = k_{\mathrm{W}}.$	$P_{\text{stral}} = IA \eta = \frac{P_{\text{el}}}{P_{\text{el}}}$	$N = N_0 \left(\frac{1}{2}\right)^{l_1/2}$ $E_f = \frac{hc}{2}$	Alfanuclidetherapie $[E]$		In de zon I_1 :	A OML	$F_z = mg$	$G\frac{mM}{r^2} = \frac{mv^2}{r}$	$L = n\frac{1}{2}\lambda$	s r ² mp2 r	T
1 5	IIIpz r	r	kernfus	$v = \lambda f \qquad f = \frac{1}{T}$	1		Parasailir		$\frac{I_1}{I_2} = \left(\frac{x_2}{x_1}\right)^2.$	$F_{\text{mpz}} = F_{\text{G}} \Rightarrow \frac{mv^2}{r} = G\frac{mM}{r^2}$	· 1	[x]	Elektronendiffractie		Ontspannen lopen	$v = \lambda f$ $v = \sqrt{\frac{F}{G}}$		$E_n = n^2 \frac{h^2}{8mL^2}$	$\Delta E_k = \frac{1}{2}M(v_{j,na}^2 - v_{j,voor}^2).$	
16	Dualiteit		² ₁ H →	1	Boomwhackers $\lambda = \frac{v}{f}$:	$\left(\frac{v}{\Delta t}\right)_{\text{raaklijn}}$	a =	$\lambda_{\max} T = k_{\mathrm{W}}$	Om het hoekje	$c = \lambda f$	$D = \frac{E}{-}$		$\lambda = \frac{h}{p} = \frac{h}{mv} \qquad \frac{1}{2}mv^2 = eU$ $\lambda = \frac{h}{\sqrt{mv}}$	E = Pt	P = Fv	$\sqrt{ ho_\ell}$		Protonenweegschaal $\ell = \frac{1}{2}\lambda \qquad v = \lambda f$	n Z j,na j,voor	ngen binnen een molecuul
1				$I - 2\pi \sqrt{C}$	f	dt f_{raaklijn} dt dt dt dt dt dt dt dt		$P = \sigma A T^4$	$^{90}_{38}\text{Sr} \rightarrow ^{90}_{39}\text{Y} + ^{0}_{-1}\beta$		m		$\lambda = \frac{n}{\sqrt{2emU}}$ $\Delta s = 2d \sin \alpha.$			MRI	Speeldoosje	2 7 7		$f = \frac{1}{2\pi} \sqrt{\frac{C}{m}} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$
15	$E_{c} = \frac{hc}{c}$	$E_{\rm f} = \frac{hc}{a}$				h	Compton	$A = 4\pi R^2$		SIRT	Joystick met Hall-sensor	$E_{k} = \frac{1}{2}mv^{2} p = m\sqrt{\frac{2E_{k}}{m}} = \sqrt{2E_{k}m}$ $n = mv$		$E = \frac{hc}{}$	$S = \frac{v}{c}$		$v = \lambda f$			$E_{t} = \frac{1}{2}CA^{2}$ $\Delta E = hf_{A}$
1 ($^{-1}$ $^{-1}$ $^{-1}$ $^{-1}$	$E_{\rm f} = \frac{1}{\lambda}$	$E_n = \frac{H_{\delta}}{H_{\delta}}$			$p = \frac{h}{\lambda}$ $\lambda = \frac{h}{1 - \cos \varphi}$		<i>I</i> – <i>P</i>	$_{-}$ mv^2 Bqr	$^{90}_{39}Y \rightarrow ^{90}_{40}Zr + ^{0}_{-1}\beta + \gamma + (\overline{\nu}_{e})$	$\rho = \frac{RA}{\ell}. \ A = \frac{1}{4}\pi d^2$	$p = mv$ $A = \frac{\ln 2}{N}$	2α Sin α – ππ.	λ Ruiken	Wijnfraude opsporen	$hf = \gamma h B_{\text{MRI}}.$ $\Delta E = hf$			$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	AL TO A
7(Echoo	Geleidende klei	$v = \lambda f$	mc \ $[h]$		$I = \frac{1}{4\pi r^2}$ LEO-satelliet	$r_{\text{mpz}} = \frac{1}{r} r = m$ $v = \frac{Bqr}{r}$	$(1)^{\frac{t}{t_1}}$		$t_{\frac{1}{2}}$					Elektronen uit metaal 'stoken'			
2 (2) 1		$en [v] = ms^{-1}$	[ho]=	$\rho = \frac{RA}{a} \qquad A = \frac{1}{4}\pi d^2$		$\begin{bmatrix} c \end{bmatrix}$ h	<u>2</u>	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F_{\text{g}} = G\frac{mN}{r^2}$		$A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{t_1}}$		Zonnepanelen	Gamma-chirurgie		$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\text{e} + ^{0}_{0}\gamma(+\nu_{e})$			Inwendige bestraling	Buiging bij een enkelspleet	erzoek van bot met
7	Latin American Tower	$=\frac{1}{t}$	£	ι 4		$\frac{1}{mc} = \frac{n}{mc}$	h Viool	$v = \sqrt{\frac{GM}{r}}$ $r = R_{\text{aarde}} + h$		$E_{\rm tot} = nE$ Wortel en mango	$F_{\rm L} = Bqv \text{ en } F_{\rm el} = qE E = \frac{C}{\Delta E}$	$P = U \cdot I$	$^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + ^{0}_{-1}\text{e} + 2^{0}_{0}\gamma + (\overline{\nu}_{e})$ hc		$\lambda = \frac{hc}{a}$	Energievoorziening		${}^{124}_{54}Xe + {}^{1}_{0}n \rightarrow {}^{125}_{54}Xe (+ {}^{0}_{0}\gamma)$ $4 - \frac{\ln 2}{N} N$	$ain \alpha - p_x$ $\lambda = \frac{h}{a}$	$4 = \frac{\ln 2}{t_{\perp}} N \qquad m = N m_{\text{atoom}}$
7:	$J = \frac{1}{T}$ $\Delta v \qquad \dots = \left(\Delta x \right)$	tot		$R = \rho \frac{\iota}{A}.$ Hawkingstraling	$_{2}$ $_{-}$ h	$f = \frac{1}{T}$		$P = Fv$ $F_{\rm w} = \frac{1}{2} \rho c_{\rm w} A v^2$ AF	Speciale fluit	$E_{\rm f} = \frac{hc}{\lambda}$			$E = \frac{N}{\lambda}$ $A = \frac{\ln 2}{\lambda} N m = Nm_{\text{at}}$		E_{f}	Energievoorziening voor een weerstation P = UI $nC = ItE = UIt = UC$ $E = Pt$	$\lambda_{ m max}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N_0 \cdot M$	1.	d
2 5	$a_{\text{gem}} = \frac{\Delta v}{\Delta t}, v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$			Hawkingstraling $ \frac{P}{P_{\text{zon}}} = \left(\frac{M}{M_{\text{zon}}}\right)^{3.8} $		$f\lambda$ $n \cdot \frac{1}{2}\lambda$		$\frac{\mathrm{d}E_{\mathrm{t}}}{\mathrm{d}r} = \frac{1}{2}GmMr^{-2}$	$v = f\lambda$	$E_n = n^2 \frac{h^2}{8mL^2}$		- hc	$I_{\frac{1}{2}}$	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = A_0 \left(\frac{1}{2}\right)^{t_{\frac{1}{2}}}$	P = UI			$\Delta x \Delta p \ge \frac{n}{4\pi}$ Draadbreuk	$I = I_0 \left(\frac{1}{2}\right)^{\frac{a}{d_1}}$
2 ⁻	$v = f\lambda$	AMEN		$E_{\rm kin} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$ $2GM$				$v = \frac{2\pi r}{T}$ \overline{GM}		EIND EXAMEN	EIND EXAMEN	$E_{\rm f} = \frac{nc}{\lambda}$	$D = \frac{E}{m} m = \rho V \qquad V = \frac{4}{3}\pi r^3$	Aardlekschakelaar						
25		VIVILI V		$r_{\rm s} = \frac{2GM}{c^2}$	Ont			$v = \sqrt{\frac{GM}{r}}$	$v = \lambda f$			EIND EXAMEN		$R = \rho \frac{\ell}{A} : U = IR A = \frac{1}{4}\pi d^2$	EIND EXAMEN				$R = \frac{\rho \ell}{A} \qquad U = IR$	
2C					EIND EXAMEN	XAMEN	EIND	EIND EXAMEN	EIND EXAMEN				EIND EXAMEN	U = IR			EIND EXAMEN	EIND EXAMEN		EIND EXAMEN
2/				$P = \sigma A T^4, \qquad A = 4\pi r_s^2.$												EIND EXAMEN				
26	EIND EXAMEN													$U_{\rm ind} \propto \frac{d\Phi}{dt}$					EIND EXAMEN	
25				EIND EXAMEN										EIND EXAMEN						