Eigenvalues of Unitary Operators

Theorem

Let E be a normed space and let A be a unitary operator on E:

$$\lambda$$
 is an eigenvalue of $A \implies |\lambda| = 1$

Proof

Assume λ is an eigenvalue of A. Assume \vec{x} is an eigenvector of λ , and thus $\vec{x} \neq \vec{0}$. A unitary $\implies A$ preserves the norm: $||A\vec{x}|| = ||\vec{x}||$.

$$A\vec{x} = \lambda \vec{x}$$

$$\|A\vec{x}\| = \|\lambda \vec{x}\|$$

$$\|\vec{x}\| = |\lambda| \|\vec{x}\|$$

$$\therefore |\lambda| = 1$$

Lemma

Let E be a normed space and let A be a unitary operator on E. For all eigenvalues λ, μ of A:

$$\lambda \neq \mu \implies \lambda \overline{\mu} \neq 1$$

Proof

Assume λ and μ are eigenvalues of A such that $\lambda \neq \mu$.

Since A is unitary, $|\lambda| = |\mu| = 1$.

So $\exists \alpha, \beta \in \mathbb{R}$ such that $\lambda = e^{i\alpha}$ and $\mu = e^{i\beta}$.

$$\mathop{\mathsf{ABC}}\nolimits : \lambda \overline{\mu} = 1$$

$$\frac{\lambda}{-}=1$$

$$\lambda = \mu$$

CONTRADICTION!

$$\therefore \lambda \overline{\mu} \neq 1$$

Theorem

Let H be a Hilbert space and let A be a unitary or self-adjoint operator on H. For all eigenvalues λ, μ of A:

$$\lambda \neq \mu \implies E_{\lambda} \perp E_{\mu}$$

Proof

Assume $\vec{x} \in E_{\lambda}$ and $\vec{y} \in E_{\mu}$.

Thus $\vec{x}, \vec{y} \neq 0$.

Case 1: $A = A^*$

$$\begin{split} \lambda \left\langle \vec{x}, \vec{y} \right\rangle &= \left\langle \lambda \vec{x}, \vec{y} \right\rangle = \left\langle A \vec{x}, \vec{y} \right\rangle = \left\langle \vec{x}, A \vec{y} \right\rangle = \left\langle \vec{x}, \mu \vec{y} \right\rangle = \overline{\mu} \left\langle \vec{x}, \vec{y} \right\rangle \\ \left(\lambda - \mu\right) \left\langle \vec{x}, \vec{y} \right\rangle &= 0 \end{split}$$

But $\lambda \neq \mu$ and so $\langle \vec{x}, \vec{y} \rangle = 0$ and thus $\vec{x} \perp \vec{y}$.

$$\therefore E_{\lambda} \perp E_{\mu}$$

Case 2:
$$AA^* = A^*A = I$$

$$\lambda\overline{\mu}\,\langle\vec{x},\vec{y}\rangle = \langle\lambda\vec{x},\mu\vec{y}\rangle = \langle A\vec{x},A\vec{y}\rangle = \langle\vec{x},\vec{y}\rangle$$

$$(\lambda \overline{\mu} - 1) \langle \vec{x}, \vec{y} \rangle = 0$$

But $\lambda \overline{\mu} \neq 1$ and so $\langle \vec{x}, \vec{y} \rangle = 0$ and thus $\vec{x} \perp \vec{y}$.

$$\therefore E_{\lambda} \perp E_{\mu}$$