Application Layer

The Application Layer is topmost layer in the Open System Interconnection (OSI) model. This layer provides several ways for manipulating the data (information) which actually enables any type of user to access network with ease. This layer also makes a request to its bottom layer, which is presentation layer for receiving various types of information from it. The Application Layer interface directly interacts with application and provides common web application services. This layer is basically highest level of open system, which provides services directly for application process.

- Functions of Application Layer:
 - The Application Layer, as discussed above, being topmost layer in OSI model, performs several kinds of functions which are requirement in any kind of application or communication process.
 - Following are list of functions which are performed by Application Layer of OSI Model -
- Application Layer provides a facility by which users can forward several emails and it also provides a storage facility.
- This layer allows users to access, retrieve and manage files in a remote computer.
- It allows users to log on as a remote host.
- This layer provides access to global information about various services.
- This layer provides services which include: e-mail, transferring files, distributing results to the user, directory services, network resources and so on.
- Application Layer helps us to identify communication partners, and synchronizing communication.
- This layer allows users to interact with other software applications.
- In this layer, data is in visual form, which makes users truly understand data rather than remembering or visualize the data in the binary format (O's or 1's).
- This application layer basically interacts with Operating System (OS) and thus further preserves the data in a suitable manner.
- This application layer, in general, performs host initialization followed by remote login to hosts.

Features provided by Application Layer Protocols:

To ensure smooth communication, application layer protocols are implemented the same on source host and destination host \cdot

The following are some of the features which are provided by Application layer protocols-

- The Application Layer protocol defines process for both parties which are involved in communication.
- These protocols define the type of message being sent or received from any side (either source host or destination host).
- These protocols also define basic syntax of the message being forwarded or retrieved·
- These protocols define the way to send a message and the expected response.
- These protocols also define interaction with the next level.

Transport Layer

The transport Layer is the second layer in the TCP/IP model and the fourth layer in the OSI model. It is an end-to-end layer used to deliver messages to a host. It is termed an end-to-end layer because it provides a point-to-point connection rather than hop-to-hop, between the source host and destination host to deliver the services reliably. The unit of data encapsulation in the Transport Layer is a segment.

Working of Transport Layer

The transport layer takes services from the Application layer and provides services to the Network layer.

At the sender's side: The transport layer receives data (message) from the Application layer and then performs Segmentation, divides the actual message into segments, adds the source and destination's port numbers into the header of the segment, and transfers the message to the Network layer. At the receiver's side: The transport layer receives data from the Network layer, reassembles the segmented data, reads its header, identifies the port number, and forwards the message to the appropriate port in the Application layer.

Responsibilities of a Transport Layer

- The Process to Process Delivery
- End-to-End Connection between Hosts
- Multiplexing and Demultiplexing
- Congestion Control
- Data integrity and Error correction
- Flow control

1. The Process to Process Delivery

While Data Link Layer requires the MAC address of source-destination

hosts to correctly deliver a frame and the Network layer requires the IP address for appropriate routing of packets, in a similar way Transport Layer requires a Port number to correctly deliver the segments of data to the correct process amongst the multiple

processes running on a particular host. A port number is a 16-bit address used to identify any client-server program uniquely.

2. End-to-end Connection between Hosts

The transport layer is also responsible for creating the end-to-end Connection between hosts for which it mainly uses TCP and UDP· TCP is a secure, connection-orientated protocol that uses a handshake protocol to establish a robust connection between two end hosts· TCP ensures the

reliable delivery of messages and is used in various applications. UDP, on the other hand, is a stateless and unreliable protocol that ensures best-effort delivery. It is suitable for applications that have little concern with flow or error control and requires sending the bulk of data like video conferencing. It is often used in multicasting protocols.

3. Multiplexing and Demultiplexing

Multiplexing(many to one) is when data is acquired from several processes

from the sender and merged into one packet along with headers and sent as a single packet. Multiplexing allows the simultaneous use of different processes over a network that is running on a host. The

processes are differentiated by their port numbers. Similarly, Demultiplexing one to many is required at the receiver side when the message is distributed into different processes. Transport receives the

segments of data from the network layer distributes and delivers it to the appropriate process running on the receiver's machine.

4. Congestion Control

Congestion is a situation in which too many sources over a network attempt to send data and the router buffers start overflowing due to which loss of packets occurs. As a result, the retransmission of packets from the sources increases the congestion further. In this situation, the Transport layer

provides Congestion Control in different ways. It uses open-loop congestion control to prevent congestion and closed-loop congestion control to remove the congestion in a network once it occurred. TCP provides AIMD – additive increases multiplicative decrease and leaky bucket technique for congestion control.

5. Data integrity and Error Correction

The transport layer checks for errors in the messages coming from the application layer by using error detection codes, and computing checksums, it checks whether the received data is not corrupted and uses the ACK and NACK services to inform the sender if the data has arrived or not and checks for the integrity of data.

6. Flow Control

The transport layer provides a flow control mechanism between the adjacent layers of the TCP/IP model· TCP also prevents data loss due to a fast sender and slow receiver by imposing some flow control techniques· It uses the method of sliding window protocol which is accomplished by the receiver by sending a window back to the sender informing the size of data it can receive·

Network Layer

The network Layer is the third layer in the OSI model of computer networks lts main function is to transfer network packets from the source to the destination. It is involved both the source host and the destination host. At the source, it accepts a packet from the transport layer, encapsulates it in a datagram, and then delivers the packet to the data link layer so that it can further be sent to the receiver. At the destination, the datagram is decapsulated, and the packet is extracted and delivered to the corresponding transport layer.

Features of Network Layer

- The main responsibility of the Network layer is to carry the data packets from the source to the destination without changing or using them.
- If the packets are too large for delivery, they are fragmented i.e., broken down into smaller packets.
- It decides the route to be taken by the packets to travel from the source to the destination among the multiple routes available in a network (also called routing).
- The source and destination addresses are added to the data packets inside the network layer.

Services Offered by Network Layer

The services which are offered by the network layer protocol are as follows:

- Packetizing
- Routing
- Forwarding

1. Packetizing

The process of encapsulating the data received from the upper layers of the network (also called payload) in a network layer packet at the source and decapsulating the payload from the network layer packet at the destination is known as packetizing.

The source host adds a header that contains the source and destination address and some other relevant information required by the network

layer protocol to the payload received from the upper layer protocol and delivers the packet to the data link layer.

The destination host receives the network layer packet from its

data link layer, decapsulates the packet, and delivers the payload to the corresponding upper layer protocol. The routers in the path are not allowed to change either the source or the destination address. The routers in the path are not allowed to decapsulate the packets they receive unless they need to be fragmented.

2. Routing

Routing is the process of moving data from one device to another device. These are two other services offered by the network layer. In a

network, there are a number of routes available from the source to the destination. The network layer specifies some strategies which find out the best possible route. This process is referred to as routing. There are a number of routing

protocols that are used in this process and they should be run to help the routers coordinate with each other and help in establishing communication throughout the network.

3. Forwarding

Forwarding is simply defined as the action applied by each router when a packet arrives at one of its interfaces. When a router receives a

packet from one of its attached networks, it needs to forward the packet to another attached network (unicast routing) or to some attached networks (in the case of multicast

routing). Routers are used on the network for forwarding a packet from the local network to the remote network. So, the process of routing involves packet forwarding from an entry interface out to an exit interface.

Difference between Routing and Forwarding

Routing	Forwarding
	rack \
Routing is the process of moving data from one device to another device. Operates on the Network Layer. Work is based on Forwarding Table.	Forwarding is simply defined as the action applied by each router when a packet arrives at one of its interfaces. Operates on the Network Layer. Checks the forwarding table and work according to that.
Works on protocols like Routing Information Protocol (RIP) for Routing.	Works on protocols like UDP Encapsulating Security Payloads

Other Services Expected from Network Layer

- Error Control
- Flow Control
- Congestion Control

1. Error Control

Although it can be implemented in the network layer, it is usually not preferred because the data packet in a network layer may be fragmented at each router, which makes error-checking inefficient in the network layer.

2. Flow Control

It regulates the amount of data a source can send without overloading the receiver. If the source produces data at a very faster rate than the receiver can consume it, the receiver will be overloaded with data. To control the flow of data, the receiver should send feedback to the sender to inform the latter that it is overloaded with data. There is a lack of flow control in the design of the network layer. It does not directly provide any flow control. The datagrams are sent by the sender when they are ready, without any attention to the readiness of the receiver.

3. Congestion Control

Congestion occurs when the number of datagrams sent by the source is beyond the capacity of the network or routers. This is another issue in the network layer protocol. If congestion continues, sometimes a situation may arrive where the system collapses and no datagrams are delivered. Although congestion control is indirectly implemented in the network layer, still there is a lack of congestion control in the network layer.

Advantages of Network Layer Services

- Packetization service in the network layer provides ease of transportation of the data packets.
- Packetization also eliminates single points of failure in data communication systems.
- Routers present in the network layer reduce network traffic by creating collision and broadcast domains.
- With the help of Forwarding, data packets are transferred from one place to another in the network \cdot

Disadvantages of Network Layer Services

- There is a lack of flow control in the design of the network layer.
- Congestion occurs sometimes due to the presence of too many datagrams in a network that is beyond the capacity of the network or the routers. Due to this, some routers may drop some of the datagrams, and some important pieces of information may be lost.
- Although indirect error control is present in the network layer, there is a lack of proper error control mechanisms as due to the presence of fragmented data packets, error control becomes difficult to implement.

