MANDATORY ASSIGNMENT - MAT4500

JOHAN ÅMDAL ELIASSEN

1. Problem 1

 $D^n:=\{x\in\mathbb{R}^n:||x||\leq 1\} \text{ unit ball in } \mathbb{R}^n,\ S^n:=\{x\in\mathbb{R}^{n+1}:||x||=1\}$ unit sphere in $\mathbb{R}^{n+1}.$ Upper and lower hemispheres are respectively denoted $S^n_U:=\{x\in S^n:x_{n+1}\geq 0\},\ S^n_L:=\{x\in S^n:x_{n+1}\leq 0\}.$

a. Define $f_U: S_D^n \to S_U^n$ and $f_L: D^n \to S_U^n$ by

(1.1)
$$f_U(x) = (x, \sqrt{1 - ||x||^2}),$$

(1.2)
$$f_L(x) = (x, -\sqrt{1 - ||x||^2}).$$

Since the procedure for f_L in general is so similar, I omit it from the following procedure.

To show that f_U is a homeomorphism, I need to verify four things: injectivity, continuity, surjectivity and open mapping.

Injectivity: let π project S_U^n surjectively onto D^n . Then for $x \in D^n$, $\pi(f_U(x)) = x$, hence the composition $\pi \circ f_u$ is injective, which implies that f_U is injective.

To check for surjectivity, let $y \in S_U^n$. Then as $||y||^2 = 1$, we may always write, with $y = (x, x_{n+1})$,

$$(1.3) \sum_{i=1}^{n} x_i^2 + x_{n+1}^2 = 1 \iff x_{n+1}^2 = 1 - ||x||^2 \iff x_{n+1} = \sqrt{1 - ||x||^2},$$

with $x=(x_1,x_2,\cdots,x_n)\in D^n$ (because then $||x||\leq 1$). This shows surjectivity.

For continuity, let $O \subset S_U^n$ be open. For $y \in O$, we write $y = (x, \sqrt{1 - ||x||^2})$, which implies that $f^{-1}(O) = \pi(O)$, which is open (because π is an open map).

It only remains to show that f_U and f_L are open maps. Let $O \subset D^n$ be an open set. Then

(1.4)
$$f_U(O) = \{(x, \sqrt{1-||x||^2}) : x \in O\} = S_U^n \cap (O \times (-\epsilon, 1+\epsilon))$$

for some $\epsilon > 0$; hence f_U is open.

This shows that f_U and f_L are indeed homeomorphisms.

b. For $x \in D^n \sqcup D^n$, write x = (z, j), with $z \in D^n$ and $j \in \{U, L\}$. We now form an equivalence relation \sim on $D^n \sqcup D^n$ given by $x^1 \sim x^2$ iff either $x^1 = x^2$ or $||z^1|| = ||z^2|| = 1$ and $z^1 = z^2$.

Let $f: D^n \sqcup D^n \to S^n$ be given by $f(x) = f_j(z)$. To see that f is continuous, let $O \subset S^n$, and write $O = O_U \cup O_L$ with $O_U \subset S^n_U$ and $O_L \subset S^n_L$. Then

$$f^{-1}(O) = f^{-1}(O_U) \cup f^{-1}(O_L) = (f_U^{-1}(O), \{U\}) \cup (f_L^{-1}(O_L), \{L\})$$
$$= \phi_U(f^{-1}(O)) \cup \phi_L(f^{-1}(O)),$$

where ϕ_U, ϕ_L are the canonical injections 1 . Hence, f is indeed continuous. Moreover, we have seen that for $y \in S^n$, either $y \in S^n_U$, or $y \in S^n_L$, or y is in both. In all cases there is an $x \in D^n \sqcup D^n$ such that f(x) = y.

Finally, let $f(x^1) = f(x^2)$. If $||x^1|| < 1$, we have that $f(x^1)$ is either in S_U^n or in S_L^n , but not in both. But then $f(x^1) = f_j(z^1) = f_j(z^2)$ where $j = j_1 = j_2$, and these maps have already been shown to be injective—thus $z^1 = z^2$ and so $x^1 = x^2$.

If, on the other hand $||x^1|| = ||x^2|| = 1$, then writing $y = f(x^1) = (z, z_{n+1})$, we have $z_{n+1} = 0$ (because ||y|| = ||z|| = 1) and $z^1 = z^2 = z$; by definition, then $z^1 \sim z^2$.

c. Define $\hat{f}: (D^n \sqcup D^n)/\sim$ by f([x]) = f(x), for some representative $x \in [x]$. I then claim that \hat{f} is a homeomorphism onto S^n —this will follow readily from Corollary 22.3, pp. 140.

First, note that we do have \sim defined in such a way that

$$(1.5) (D^n \sqcup D^n)/\sim = \{f^{-1}(\{x\}) : x \in (D^n \sqcup D^n)\}.$$

Hence, \hat{f} is a homeomorphism if and only if f is a quotient map. But from (a) we have that f_U and f_L are open maps. We have, for an $O \subset D^n \sqcup D^n$, writing $O = (O_U, \{U\}) \cup (O_L, \{L\})$, so that

$$f(O) = f((O_U, \{U\}) \cup (O_L, \{L\})) = f((O_U, \{U\})) \cup f((O_L, \{L\}))$$

= $f_U(O_U) \cup f_L(O_L)$.

Hence f is an open map, and \hat{f} is a homeomorphism.

 $^{^{1}}$ At this point it bears noting that as I was unsure of a formal definition of a topology on a disjoint union, though an intuitive notion seemed clear enough. To see how I defined it, I (perhaps unwisely) direct the reader to the Wikipedia article on disjoint union topology. f is obviously continuous by this definition.

2. Problem 2

(a). Let (X, d) be a metric space. Let $C \subset X$ be compact. First assume C is not closed—then there exists a series $\{x_n\}_{n=1}^{\infty}$ s.t. $x_n \to x \notin C$. Hence, for each $y \in C$, there is some neighbourhood $B(y; r_y)$ that

 $x \notin C$. Hence, for each $y \in C$, there is some neighbourhood $B(y; r_y)$ that fails to intersect with some neighbourhood of x intersecting with C. This family of neighbourhoods forms an open cover of C, from which we may take a finite subcover $\{B(y_i; r_i)_{i=1}^N \text{ of } C$ -but since each of these open balls fail to intersect with some neighbourhood of x in C, this cannot be a finite subcover after all, and so C is not compact—a contradiction.

Now to show that C is compact: fix $x \in C$ and let $\mathcal{O} := B(x, n)$ for $n \in \mathbb{N}$. Then clearly this is an open cover of C, and so there exists a finite subcover $\{B(x, r_i)\}_{i=1}^N$. Choose j such that $r_j \geq r_i$ for all $i \leq N$; then $C \subset B(x, r_j)$, and so $d(x, y) \leq r_j$ for all $x, y \in C$.

This shows that C is closed and bounded.

(b). For an example of a metric space where closed and bounded sets are not closed, we may take (\mathbb{R}^n, ρ) , with ρ being the bounded metric on \mathbb{R}^n induced by $||\cdot||$. Then any subset of \mathbb{R}^n is bounded, yet clearly not necessarily compact.

3. Problem 3

- (a). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a polynomial. Then f is clearly continuous, and so the preimage of a closed set is closed under f. Specifically, we have $\text{Ker}(f) = f^{-1}(\{0\})$ closed because $\{0\}$ is closed.
- (b). Let $SL(2,\mathbb{R})$ denote the set of real-valued (2×2) matrices with determinant 1, with the subspace topology of \mathbb{R}^4 . That is,

(3.1)
$$\mathbf{SL}(2,\mathbb{R}) = \{(a,b,c,d) \in \mathbb{R}^4 : ad - bc = 1\}.$$

Consider the function $f: \mathbb{R}^4 \to \mathbb{R}$ given by

$$(3.2) f(a,b,c,d) = ad - bc,$$

Then f is again clearly continuous. Hence, we have as in (a),

(3.3)
$$f^{-1}(\{1\}) = \{(a, b, c, d) \in \mathbb{R}^4 : ad - bc = 1\} = \mathbf{SL}(2, \mathbb{R}),$$

which shows that $\mathbf{SL}(2,\mathbb{R})$ is indeed closed.

(c). For $t \neq 0$, setting b = c = 0 and letting a = t, d = 1/t gives ad - bc = 1. Letting $t \to 0$ or $t \to \infty$ then forces ||(a, b, c, d)|| to grow out of any bounds; hence $\mathbf{SL}(2, \mathbb{R})$ is not bounded and so cannot be compact.

4. Problem 4

Let X be a topological space.

(a). To show that path-equivalence is an equivalence relation on X, I need to establish the three usual criteria.

For reflexivity, we have for $x \in X$, $\alpha(t) = x$ for $t \in [0,1]$. Thus x is pathequivalent to itself.

For symmetry, assume that x is path-equivalent to y, and let $\alpha(t)$ be the continuous map satisfying $\alpha(0) = x$, $\alpha(1) = y$.

Define $\beta:[0,1]\to X$ by $\beta(t)=\alpha(1-t)$. Hence y is path-equivalent to x.

For transivity, assume that x is path-equivalent to y with path-map α and that y is path-equivalent to z with path-map β . Define $\gamma:[0,1]\to X$ by

(4.1)
$$\gamma(t) = \begin{cases} \alpha(2t), & 0 \le t \le 1/2, \\ \beta(2t-1), & 1/2 < t \le 1. \end{cases}$$

Then γ is a continuous map connecting x to z, as was to be shown.

Henceforth, let $\pi_0(X)$ denote the set of equivalence classes of points in X under path-equivalence.

- (b). Let $X = \mathbb{R}^n$. Then X is convex, and so for $x, y \in X$, the map $\alpha(t) = x + (y x)t$ satisfies the criteria. Hence x and y are path-equivalent for all $x, y \in X$, that is, $\pi_0(\mathbb{R}^n)$ consists of one element.
- (c). Let $X = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$. Then if x and y are both either positive or negative, the same map as in (b) will provide a path between x and y, and so they are path-equivalent.

Assume x < 0 and y > 0. Assume that there exists a path $\alpha : [0,1] \to X$ connecting x to y. Let $t^* = \sup\{t : \alpha(t) < 0\}$. Then either $\alpha(t^*) < 0$ or $\alpha(t^*) > 0$. In the first case, we have $\alpha^{-1}((x,0)) = (0,t^*]$ which is not open, and in the second case, we have $\alpha^{-1}((0,y)) = [t^*,1)$, which is again not open. Hence α cannot be continuous, a contradiction. In conclusion, x and y cannot be path equivalent, and there exist exactly two partitions of $\mathbb{R} \setminus \{0\}$.

(d). Let $X = \mathbb{R}^n \setminus \{z\}$ for $n \geq 2$ and some $z \in \mathbb{R}^n$. Let $x, y \in X$. Then if z does not lie on the line between x and y, they are clearly path-equivalent. If z does lie between x and y, there exists some u, say $u = z + (1, 0, 0, \dots, 0)$ (replace if necessary), such that z does not lie between x and u or between u and y. Then x is path-equivalent to u, and u is path-equivalent to y-by transitivity, x is path-equivalent to y.

Hence $\pi_0(\mathbb{R}^n)$ consists of only one element.

(e). Note first that $\mathbb{R} \setminus \{0\}$ is not merely not path-connected, it is not connected, as $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$.

Assume that there exists a homeomorphism $f: \mathbb{R}^n \to \mathbb{R}$ with f(z) = 0 for some $z \in \mathbb{R}^n$. Since then $f(\mathbb{R}^n \setminus \{z\}) = \mathbb{R} \setminus \{0\}$, we have that f does not

preserve connectedness; hence f is not a homeomorphism, which is contradictory.

In conclusion, there cannot exist a homeomorphism between \mathbb{R} and \mathbb{R}^n .