RelaySchnorr: Anonymous, Timed and Revocable Proxy Signatures

Ghada Almashaqbeh¹, Anca Nitulescu²

¹University of Connecticut, ²Input Output (IOG)

ISC 2024

Signature Delegation (Proxy Signatures)

Signature Delegation (Proxy Signatures)

Share the workload of handling emails

Signature Delegation (Proxy Signatures)

Share the workload of handling emails

Produce signed messages on Alice's behalf

Motivating Applications

Can DeFi (decentralized finance) replace traditional banking services?

Motivating Applications

Can DeFi (decentralized finance) replace traditional banking services?

Mitigating Targeted Attacks

Desired Delegation Properties

- Anonymity of delegation.
- Timed delegation.
- Revocability.
- Policy enforcement.
- Decentralization.
- Non-interactivity.

Limitations of Prior Work

- No existing scheme achieved all these properties:
 - Many violate anonymity,
 - supported anonymity and policy enforcement without any revocation capability or timed notion,
 - or achieved revocability/timed notion at the expense of being interactive and/or involving a trusted third party.
- No formal security notion of proxy signatures encompassing all these properties.

Can we do Better? ... RelaySchnorr

- We define a security notion for anonymous, timed and revocable proxy signatures.
- We show a construction called RelaySchnorr
 - Combines Schnorr signatures, timelock encryption, and a public bulletin board.
 - Achieves all the desired properties listed before.
- We formally prove security of our scheme based on our notion.

Building Blocks - Schnorr Signatures

For a security parameter λ , let \mathbb{G} be a cyclic group of a prime order q and a generator G, and $H:\{0,1\}^* \times \mathbb{G}^2 \to \mathbb{Z}_q$ be a hash function. The Schnorr signature scheme is a tuple of three algorithms $\Sigma_{\mathsf{Schnorr}} = (\mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify})$ defined as follows:

- Schnorr.KeyGen(1 $^{\lambda}$): On input the security parameter λ , choose uniform $x \in \mathbb{Z}_q$ and compute $X = G^{\times}$. Set the secret signing key sk = x and the public verification key vk = X.
- Schnorr.Sign(sk, m): On input the secret key sk = x and the message m, choose uniform $k \in \mathbb{Z}_q$. Compute $K = G^k$, $X = G^x$, c = H(m, X, K), and $s = k + cx \mod q$. Output the signature $\sigma = (c, s)$.
- Schnorr. Verify(vk, m, σ): On input the public key vk = X, the message m, and signature $\sigma = (c, s)$ over m, compute $K = G^s \cdot X^{-c}$ and c' = H(m, X, K), then output 1 if c = c'.

Building Blocks - TLE

- A Timelock encryption scheme \mathcal{E} is a tuple of five PPT algorithms defined as follows:
- TLE.Setup(1^{λ}) \rightarrow (pp, s): Takes as input the security parameter λ , and outputs public parameters pp and a private key s.
- TLE.RoundBroadcast $(s, \rho) \to \pi_{\rho}$: Takes as input the round number ρ and a private key s, and outputs the round-related decryption information π_{ρ} .
- TLE.Enc(ρ , m) \rightarrow (ct $_{\rho}$, τ): Takes as input the round number ρ and a message m, and outputs a round-encrypted ciphertext ct $_{\rho}$, and trapdoor τ for pre-opening.
- TLE.Dec $(\pi_{\rho}, \operatorname{ct}_{\rho}) \to m'$: Takes as input the round-related decryption information π_{ρ} and a ciphertext ct_{ρ} , and outputs a message m'.
- TLE.PreOpen(ct $_{\rho}, \tau$) \rightarrow m': Takes as input a ciphertext ct $_{\rho}$ and a trapdoor τ , and outputs a message m'.

Delegation period [Ta, Tb]

- (1) Generate u random elements
- *k1, ..., ku*
- (2) Generate *u* tokens: *t1*, ..., *tu* (each token is a Schnorr signature over *ki*)
- (3) Encrypt the tokens to time

Ta, and the k values to time Tb

Bulletin board

Delegation period [Ta, Tb]

- (1) Generate u random elements
- k1, ..., ku
- (2) Generate *u* tokens: *t1*, ..., *tu* (each token is a Schnorr signature over *ki*)
- (3) Encrypt the tokens to time

Ta, and the k values to time Tb

Bulletin board

At time *Ta*:

- (1) Decrypt the tokens.
- (2) Use a token to sign message *m* (produce another Schnorr signature using the token).

Delegation period [Ta, Tb]

- (1) Generate u random elements
- *k1, ..., ku*
- (2) Generate *u* tokens: *t1*, ..., *tu* (each token is a Schnorr signature over *ki*)
- (3) Encrypt the tokens to time Ta, and the k values to time Tb

Bulletin board

At time *Ta*:

- (1) Decrypt the tokens.
- (2) Use a token to sign message *m* (produce another Schnorr signature using the token).

Verify a signature

One-time tokenizable Schnorr

Delegation period [Ta, Tb]

- (1) Generate u random elements
- *k1, ..., ku*
- (2) Generate *u* tokens: *t1*, ..., *tu* (each token is a Schnorr signature over *ki*)
- (3) Encrypt the tokens to time Ta, and the k values to time Tb

Bulletin board

At time *Ta*:

- (1) Decrypt the tokens.
- (2) Use a token to sign message*m* (produce another Schnorr signature using the token).

Verify a signature

Delegation period [Ta, Tb]

Board validators

At time $\it Tb$: Decrypt $\it cb$

Publish all unused \emph{ki}

Bulletin board

Delegation period [Ta, Tb]

Board validators

At time $\it Tb$: Decrypt $\it cb$

Publish all unused ki

Bulletin board

Before time Tb

Delegation period [Ta, Tb]

Board validators

At time *Tb*: Decrypt *cb*

Publish all unused ki

Bulletin board

Before time Th

Timed delegation

Automatic and on-demand revocation

Anonymity and Policy Enforcement

Anonymity is achieved by:

- Proxy signer identity is not included.
- Delegation info is sent privately to the proxy signer.
- The signature structure is the same for both the original or proxy signer, and verified using the same Verify algorithm.
- Original signer mimics the behavior of having a delegation for her signatures.

Policy enforcement over messages:

 Conventional methods from the literature: public warrants and private ones (using NIZKs).

Issues in Practice

- Denial of service attacks against the signer.
- Bulletin board synchronization.
- Off-chain processing issues.
- Information lookup cost.
- Mass production of k values and delegation anonymity.

Security

Theorem 1. Assuming EUF-CMA security of Schnorr signatures, the schnorr-koe assumption, a secure bulletin board, a CCA-secure TLE scheme, an EUF-CMA secure signature scheme, and a secure NIZK proof system, RelaySchnorr is an anonymous, timed and revocable proxy signature scheme (cf. Definition 2).

- Unforgeability relies on the unforgeability of Schnorr signatures in the random oracle model, and the Schnorr knowledge of exponent assumption.
- Anonymity is achieved by having identical signature structure and behavior.
- Revocability relies on the security of timelock encryption and the bulletin board.
- Policy enforcement relies on the security of digital signatures (for public warrants) or NIZKs (for private policies), as well as security of timelock encryption and the bulletin board.

Conclusion and Future Work

- This work.
 - Delegation of signatures that achieve desired properties for Web 3.0 applications.
- Future work.
 - Explore controlled delegation for other cryptographic primitives.
 - Such as zero-knowledge proofs (i.e., private wallets).

Thank you!

Questions?

ghada@uconn.edu
https://ghadaalmashaqbeh.github.io/

Setup phase

Let λ be a security parameter, S be the original signer, P be the proxy signer, and TLE be a timelock encryption scheme. Construct an anonymous, timed and revocable proxy signature scheme $\Sigma = (\text{Setup}, \text{KeyGen}, \text{Sign}, \text{Delegate}, \text{DegSign}, \text{Revoke}, \text{Verify})$ as follows:

Setup(1^{λ}): On input the security parameter λ , set \mathbb{G} to be a cyclic group of a prime order q with a generator $G \in \mathbb{G}$ and $H : \{0,1\}^* \times \mathbb{G}^2 \to \mathbb{Z}_q$ to be a hash function, initialize state $= \{\}$, and invoke TLE.Setup(1^{λ}). Output $pp = (TLE.pp, H, \mathbb{G}, G, q, state)$.

KeyGen(1 $^{\lambda}$): On input the security parameter λ , choose uniform $x \in \mathbb{Z}_q$, then compute $X = G^{\times}$. Output the signing key sk = x and the verification key vk = X.

Sign—used by original signer S

Sign(sk, m): On input the signing key sk = x and some message m, do:

- Choose uniform $k, r, e \in \mathbb{Z}_q$, compute $R = G^r$, $E = G^e$
- Compute w = H(k, X, R), $z = (r + wx) \mod q$, and $Z = G^z$
- Compute c = H(m, Z, E) and $s = (e + cz) \mod q$ (if z = 0 or s = 0 start again with fresh r and e)
- Output the signature $\sigma = (w, c, s, k, Z)$

Every now and then, S either (1) populates a set klist from the stored k values and fresh ones, encrypts it as $(\mathsf{ct}_b, \tau_b) = \mathsf{TLE}.\mathsf{Enc}(\mathsf{klist}, \rho_b)$, where ρ_b is some future round number, and posts (ρ_b, ct_b) on the board (resulting in state'[vk] = state[vk] || (ρ_b, ct_b)), or (2) posts a fresh klist on the board (resulting in state'[vk] = state[vk] || klist).

Delegate—invoked by original signer S

Delegate(sk, vk, degspec): On input the keypair (sk = x, vk = X) and delegation specifications degspec = $(u, [\rho_a, \rho_b])$, where $u \in \mathbb{N}$ and $[\rho_a, \rho_b]$ is the delegation period, do the following:

- Set klist = {}
- Do the following for $i \in \{1, ..., u\}$:
 - Choose uniform $k_i, r_i \in \mathbb{Z}_q$
 - Compute $R_i = G^{r_i}$ and $w_i = H(k_i, X, R_i)$
 - Compute $z_i = (r_i + w_i x) \mod q$ (if $z_i = 0$ start again with fresh r_i)
 - Set $t_i = (z_i, w_i, k_i)$ and klist = klist $\cup \{k_i\}$
- Compute two ciphertexts: $(\mathsf{ct}_a, \tau_a) = \mathsf{TLE}.\mathsf{Enc}(t_1 \parallel \cdots \parallel t_u, \rho_a)$ and $(\mathsf{ct}_b, \tau_b) = \mathsf{TLE}.\mathsf{Enc}(\mathsf{klist}, \rho_b)$ (where τ_b is the revocation key rk).
- Set degInfo = $(\rho_a, \rho_b, \operatorname{ct}_a)$
- Output (degInfo, $\operatorname{ct}_b \parallel \tau_b$)

S stores ciphertext ct_b and trapdoor τ_b to be used for revocation if needed (τ_a is dropped as it is not needed), posts (ρ_b , ct_b) on the board (resulting in state'[vk] = state[vk] || (ρ_b , ct_b)), and sends degInfo to P.

Delegate Sign—used by proxy signer P

DegSign(m, degInfo): On input a message m and delegation information degInfo, P does the following (let ρ_{now} = state.round be the current round number):

- If $\rho_{now} < \rho_a$ or $\rho_{now} > \rho_b$, then do nothing
- If $\rho_a \leq \rho_{now} \leq \rho_b$, then:
 - If degInfo = $(\rho_a, \rho_b, \operatorname{ct}_a)$, then retrieve π_{ρ_a} from the board $(\pi_{\rho_a} = \operatorname{state.roundInfo}(\rho_a))$ and set degInfo = $(\rho_a, \rho_b, \operatorname{TLE.Dec}(\pi_{\rho_a}, \operatorname{ct}_a))$
 - Pick an unused signing token t = (z, w, k) from degInfo
 - Compute $Z = G^z$
 - Choose uniform $e \in \mathbb{Z}_q$ and compute $E = G^e$
 - Compute c = H(m, Z, E), and $s = e + cz \mod q$ (if s = 0 start again with a fresh e)
 - Output the signature $\sigma = (w, c, s, k, Z)$

Automatic/On demand revoke—invoked by validators or original signer S

Verify—Invoked by a verifier for any signature

Revoke(degInfo, rk, state[vk]): On input degInfo = (ρ_b, ct_b) , revocation key rk, and revocation state state[vk], do (let ρ_{now} = state.round be the current round number):

- If $ho_{now} \geq
 ho_b$, then retrieve $\pi_{
 ho_b}$ from the board $(\pi_{
 ho_b} = \text{state.roundInfo}(
 ho_b))$ and compute klist = TLE.Dec $(\pi_{
 ho_b}, \text{ct}_b)$
- If $\rho_{now} < \rho_b$, then use $rk = \tau_b$ to compute klist = TLE.PreOpen(ct_b, τ_b)
- Add all k values such that $k \in \text{klist } \land k \notin \text{state[vk]}$ to the board state state[vk] associated with vk resulting in an updated state state[vk]'.

Verify(vk, $m, \sigma = (w, c, s, k, Z)$, revState = state[vk]): On input the verification key vk = X, the message m, signature $\sigma = (w, c, s, k, Z)$ over m, and the revocation state state[vk], if $k \in \text{state}[vk]$, then output 0. Else, add k to state[vk] (resulting in state'[vk] = state[vk] || k) and do the following:

- Compute $R = Z \cdot X^{-w}$ and $E = G^s \cdot Z^{-c}$
- Output 1 if and only if $w = H(k, X, R) \land c = H(m, Z, E)$.