

1 laboratorinis

Skaitiniai metodai

Darbą atliko:

Dovydas Martinkus

Duomenų Mokslas 4 kursas 1 gr.

Vilnius, 2022

Turinys

1	Užd	duoties ataskaita	3
	1.1	Pusiaukirtos metodas	3
		Niutono metodas	
		Waterio inclouds.	
ГΙ	ieuas.		c

1 Užduoties ataskaita

Reikalinga išspręsti lygtį:

$$x^5 = -x + 3$$

Kitaip tariant, reikia rasti šaknį funkcijos:

$$f(x) = x^5 + x - 3$$

Šiam tikslui buvo naudojami pusiaukirtos ir Niutono metodai.

1.1 Pusiaukirtos metodas

1 pav. Funkcijos $f(x)=x^5+x-3$ grafikas

Naudotas grafinis šaknų atskyrimas. Naudodamiesi aukščiau esančiu grafiku galime nesunkiai sudaryti intervalą, kurio galuose funkcija įgyja priešingų ženklų reikšmes, taip pat matome, kad šaknis yra vienintelė. Pradinis intervalas [a₀, b₀] pasirinktas lygus [-1,2]. Leidžiama paklaida ε pasirinkta lygi 0,0001.

Žemiau grafiškai ir lentelėje pateikti pusiaukirtos metodu gauti rezultatai:

2 pav. Pusiaukirtos metodo iteracijų lygčiai x5+x-3=0 spręsti rezultatai

1 lentelė Iteracijų rezultatai naudojant pusiaukirtos metodą

n	a _n	b _n	Cn	f(c _n)	$ a_n - b_n /2$
0	-1	2	0.5	-2.46875	1.5
1	0.5	2	1.25	1.3017578	0.75
2	0.5	1.25	0.875	-1.6120911	0.375
3	0.875	1.25	1.0625	-0.5834188	0.1875
4	1.0625	1.25	1.15625	0.222861	0.09375
5	1.0625	1.15625	1.109375	-0.2103055	0.046875
6	1.109375	1.15625	1.1328125	-0.0017094	0.0234375
7	1.1328125	1.15625	1.1445312	0.1085167	0.0117188
8	1.1328125	1.1445312	1.1386719	0.0528968	0.0058594
9	1.1328125	1.1386719	1.1357422	0.025468	0.0029297
10	1.1328125	1.1357422	1.1342773	0.011848	0.0014648
11	1.1328125	1.1342773	1.1335449	0.0050615	7.324e-4
12	1.1328125	1.1335449	1.1331787	0.0016741	3.662e-4
13	1.1328125	1.1331787	1.1329956	-1.81e-5	1.831e-4
14	1.1329956	1.1331787	1.1330872	8.279e-4	9.16e-5

Konvergavimas pasiektas po 14 iteracijų. Patikrinimui gautą sprendinį įstatome į funkciją ir gauname f(1,1329956) = 0,0008278796.

Naudojant pusiaukirtos metodą turime, kad $|c_n-c| \leq \frac{|a_n-b_n|}{2} \leq \epsilon$. Kitaip tariant kiekvienos iteracijos metu paklaida mažinama per pusę, todėl metodo konvergavimo greitis yra tiesinis. Naudojant pusiaukirtos metodą konvergavimas yra garantuotas.

1.2 Niutono metodas

Pradinis artinys x₀ pasirinktas lygus 0. Leidžiama paklaida ε vėl pasirinkta lygi 0,0001.

Žemiau grafiškai ir lentelėje pateikti Niutono metodu gauti rezultatai:

3 pav. Niutono metodo iteracijų lygčiai x⁵+x-3=0 spręsti rezultatai

Lentelė 2 Iteracijų rezultatai naudojant Niutono metodą

		£/\	1 1
n	X _n	f(x _n)	X _n -X _{n+1}
0	0	-3	0
1	3	243	3
2	2.4014778	79.2731746	-0.5985222
3	1.9276308	25.5421894	-0.473847
4	1.5629215	7.8887151	-0.3647093
5	1.3070809	2.1222369	-0.2558406
6	1.1709893	0.3727224	-0.1360916
7	1.1351546	0.0199975	-0.0358347
8	1.1330049	6.75e-5	-0.0021498
9	1.1329976	0	-7.3e-6

Kaip matoma, konvergavimas pasiektas po 9 iteracijų. Vėl patikriname gautus rezultatus: f(1,1329976) = 0,0000003151953.

4 pav. Funkcijos $f(x)=x^5+x-3$ išvestinės $f'(x)=5x^4+1$ grafikas

Kadangi funkcijos f(x) šaknis c nėra kartotinė (iš funkcijos išvestinės grafiko matome, kad f'(c) ≠ 0), šiuo atveju naudojant Niutono metodą turime kvadratinį konvergavimo greitį.

Naudojant Niutono metodą konvergavimas nėra garantuotas. Iteracinė seka gali diverguoti kai:

- Perlinkio taškas (f" = 0) yra arti lygties šaknies
- Šaknis yra kartotinė
- Liestinė horizontali

Galiausiai lentelėje pateiktas pusiaukirtos, Niutono metodais ir naudojant R funkciją *uniroot()* gautų lygties sprendinių palyginimas. Kaip matome visais metodais gauti beveik identiški rezultatai:

3 lentelė Skirtingais būdais gautų lygties sprendinių palyginimas

Pusiaukirtos metodas	Niutono metodas	uniroot()
1.133087	1.132998	1.133026

Priedas

Žemiau pateiktas naudotas programinis kodas:

```
# Dovydas Martinkus
# Duomenų Mokslas 4k. 1gr.
func <- function(x) {</pre>
x^5 + x - 3
derivative <- function(x) {</pre>
  5*x^4 + 1
####
intervalas <- function(an, bn, cn, func) {</pre>
  if (func(an) * func(cn) < 0) {
    return(c(an, cn))
  } else {
    return(c(cn, bn))
  }
}
pusiaukirtos <- function(a0, b0, func, eps) {</pre>
  n <- 0
  c0 <- mean(c(a0, b0))</pre>
  a <- a0
  b <- b0
  c <- c0
  repeat {
    if ((abs(a[n+1] - b[n+1]) / 2 > eps)) {
      if (func(c[n+1]) == 0) {
         return(data.frame(a,b,c))
      naujas_intervalas <- intervalas(a[n+1], b[n+1], c[n+1], func)</pre>
      a <- c(a,naujas_intervalas[1])</pre>
      b <- c(b,naujas_intervalas[2])</pre>
      c_n \leftarrow mean(c(a[n+2],b[n+2]))
      c <- c(c, c_n)
      n \leftarrow n + 1
    } else {
      return(data.frame(a,b,c))
```

```
}
pusiaukirtos_lentele <- function(x) {</pre>
  cbind(n=seq(0,lengths(x)[1]-1),
        y=func(x$c),
        abs(x$a-x$b)/2)
}
####
niutono <- function(x0, func, deriv, eps) {</pre>
  x <- x0
  n <- 0
  repeat {
    x_n \leftarrow x[n+1] - func(x[n+1]) / deriv(x[n+1])
    x \leftarrow c(x, x_n)
    if ((abs(x[n+2] - x[n+1]) > eps)) {
      n \leftarrow n + 1
    } else {
      return(x)
  }
}
niutono_lentele <- function(x) {</pre>
  data.frame(n=seq(0,length(x)-1),
             x_n = x
             y = func(x),
              abs(x_n-x_n+1)=c(0,diff(x)),
              check.names = FALSE)
}
library(ggplot2)
library(ggrepel)
library(latex2exp)
#####
eps <- 0.0001
# pradinis funkcijos grafikas
ggplot(data.frame(x = seq(-3, 3, 0.1)), aes(x)) +
  geom_function(fun = func, colour = "black") +
  geom_hline(yintercept = 0, color = "red") +
```

```
theme_minimal(base_size = 16) +
  labs(title=TeX("x^5+x-3"),subtitle = "Pradinis funkcijos grafikas")
# išvestinės grafikas
ggplot(data.frame(x = seq(-3, 3, 0.1)), aes(x)) +
  geom_function(fun = derivative, colour = "black") +
  geom_hline(yintercept = 0, color = "red") +
  theme_minimal(base_size = 16) +
  labs(title=TeX("5x^4+1"), subtitle = "Išvestinės grafikas")
####
res <- pusiaukirtos(-1,2,func)
func(res$c[length(res$c)])
ggplot(data.frame(x = seq(-2, 2, 0.1)), aes(x)) +
  geom_function(fun = func, colour = "black") +
  geom_hline(yintercept = 0, color = "red") +
  theme_minimal(base_size = 16) +
  geom_point(data=pusiaukirtos_lentele(res)[1:8,],
             aes(x=c,y=y)) +
    geom_text_repel(data=pusiaukirtos_lentele(res)[1:8,],aes(x=c,y=y,label=paste0("x",n))) +
  labs(title=TeX("x^5+x-3"),subtitle = "Pusiaukirtos metodas")
pusiaukirtos_lentele(res)
####
xn <- niutono(0,func,derivative,eps)</pre>
func(xn[length(xn)])
ggplot(data.frame(x = seq(-3, 3, 0.1)), aes(x)) +
  geom_function(fun = func, colour = "black") +
  geom_hline(yintercept = 0, color = "red") +
  theme_minimal(base_size = 16) +
  geom_point(data=niutono_lentele(xn)[1:8,],
             aes(x=x_n,y=y)) +
  geom_text_repel(data=niutono_lentele(xn)[1:8,],aes(x=x_n,y=y,label=paste0("x",n))) +
  labs(title=TeX("x^5+x-3"),subtitle = "Niutono metodas")
niutono_lentele(xn)
####
palyginimas <- c(tail(res$c,1),tail(xn,1),uniroot(func,c(-3,3))$root)</pre>
names(palyginimas) <- c("Pusiaukirtos","Niutono","Uniroot()")</pre>
palyginimas
```