BASIC ASSEMBLY

Introduction to Boolean Algebra

Assembly language programming By xorpd

xorpd.net

OBJECTIVES

- We will use bits to represent the truthfulness of statements.
- We will learn about truthfulness of basic and complicated statements.
- We will study the representation of complicated statements using operators like NOT, AND, OR, XOR.
- We will learn how to calculate the truthfulness of statements in a mechanical way.

BASIC STATEMENTS

- We consider statements and their truthfulness:
 - Those statements could be for example: "3 > 2" or "There is a triangle with 4 vertices".
 - Those statements could be either True or False.
- Intuitively, we can combine different statements into new statements.
 - "3 > 2" is True.
 - "There is a triangle with 4 vertices" is False.
 - {"3 > 2" OR "There is a triangle with 4 vertices"} is True.
 - {"3 > 2" AND "There is a triangle with 4 vertices"} is False.
 - {NOT "3 > 2"} is False.
- It seems like every basic statement is either True or False.
- We can calculate the truthfulness of combined statements using the values of the basic statements.

SIMPLIFIED NOTATION

- Instead of writing the whole statement every time, we can mark it with some English letter.
- Some other shortcut representations:
 - True 1
 - False
 - AND
 - **OR** V
 - NOT -
- \blacksquare If we have two statements a and b, we could represent:
 - "a OR b" as $a \lor b$.
 - "a AND b" as $a \wedge b$.
 - "NOT a" as $\neg a$

CALCULATION RULES

- NOT (¬)
 - Operates on one bit. (Unary operation).
 - "Flips" the truthfulness of a statement.
 - Only True if the original statement is NOT True.
 - $\neg 0 = 1$, $\neg 1 = 0$.
- **AND** (∧)
 - Operates on two bits (Binary operation)
 - Results in True (1) if the first argument is True **AND** the second argument is True.
- OR (V)
 - Operates on two bits (Binary operation)
 - Results in True (1) if the first argument is True OR the second argument is True.

TRUTH TABLES

Truth tables:

NOT				
0	1			
1	0			

AND	0	1
0	0	0
1	0	1

OR	0	1
0	0	1
1	1	1

Venn Diagrams:

EXAMPLES

- Calculation examples:
 - $-1 \wedge 0 = 0$
 - $\neg (1 \land 0) = 1$
 - $(1 \land 0) \lor 0 = 0$
 - $\neg ((1 \land 0) \lor 0) = 1$
- Creation of new operators:
 - $f(a,b) = a \wedge (\neg b)$
 - $g(a,b,c) = (a \wedge b) \vee (a \wedge c)$

а	b	f(a,b)
0	0	0
0	1	0
1	0	1
1	1	0

BASIC PROPERTIES

Double Negation:

- $\neg (\neg a) = a$
- "Two wrongs make a right".

Commutative laws:

- $a \lor b = b \lor a$
- $a \wedge b = b \wedge a$.
- Like $5 \cdot 7 = 7 \cdot 5$

Associative laws:

- $a \lor (b \lor c) = (a \lor b) \lor c$
- $a \wedge (b \wedge c) = (a \wedge b) \wedge c$
- Like 2 + (4 + 3) = (2 + 4) + 3

BASIC PROPERTIES (CONT.)

Distributive laws:

- $\bullet a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
- Like $3 \cdot (2+5) = (3 \cdot 2) + (3 \cdot 5)$

Truth table style proof:

а	b	С	$a \lor (b \land c)$	$(a \lor b) \land (a \lor c)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

BASIC PROPERTIES (CONT.)

- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- Demonstration with Venn Diagrams:

BREAK

■ Take a break.

Come back when you are ready to learn about De Morgan Laws:)

DE MORGAN'S LAWS

- Laws about the duality of AND and OR.
- Allows to represent some operator using other operators:
- Representing ∧ using ¬ and ∨:

$$\bullet \ a \land b = \neg((\neg a) \lor (\neg b))$$

■ Representing ∨ using ¬ and ∧:

$$\bullet a \lor b = \neg ((\neg a) \land (\neg b))$$

а	b	$a \wedge b$	$\neg((\neg a) \lor (\neg b))$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

- AND and OR are dual.
 - $a \wedge b = \neg((\neg a) \vee (\neg b))$

Regular world

a, b

- AND and OR are dual.
 - $a \wedge b = \neg((\neg a) \vee (\neg b))$

Regular world

AND and OR are dual.

$$\bullet a \wedge b = \neg((\neg a) \vee (\neg b))$$

Regular world

AND and OR are dual.

$$\bullet a \wedge b = \neg((\neg a) \vee (\neg b))$$

Regular world

AND and OR are dual.

$$\bullet a \wedge b = \neg((\neg a) \vee (\neg b))$$

Regular world

SIMPLIFYING STATEMENTS

- Could we write the following in a simpler form?
- \blacksquare $(a \land b) \lor b = ?$
 - If b = 0, the result is 0.
 - If b = 1, the result is 1.
 - \bullet $(a \land b) \lor b = b$
- $(a \wedge b) \vee (a \wedge (\neg b)) = ?$
 - $(a \wedge b) \vee (a \wedge (\neg b)) = ^{dist} a \wedge (b \vee (\neg b)) = a \wedge 1 = a$

XOR OPERATOR

- XOR Exclusive OR.
 - {a XOR b}=1 if a=1 **OR** b=1 but **not both**.
- Truth tables:

XOR	0	1
0	0	1
1	1	0

OR	0	1
0	0	1
1	1	1

- \blacksquare Marked by $a \oplus b$.
- $\blacksquare a \oplus b = (a \lor b) \land (\neg(a \land b))$
 - Equals 1 only if $a \lor b$ and not $a \land b$.

XOR PROPERTIES

- Equivalent to addition modulo 2.
 - [(Even + Odd = Odd; Odd + Odd = Even, etc.)
- Bit Flipping:
 - $a \oplus 0 = a$
 - $a \oplus 1 = \neg a$
- Self Xoring:
 - $a \oplus a = 0$
- Commutative:
 - $a \oplus b = b \oplus a$
- Associative:
 - $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

XOR	0	1
0	0	1
1	1	0

XOR PROPERTIES (CONT.)

D	ist	ri	hi	ut	ive	wi	th	Δ	ND:	
	1 3 4			и с		WW I				

	а	Λ	(b	\oplus	c)	=	(a	Λ	<i>b</i>)	\oplus	(a	Λ	C))
--	---	---	----	----------	----	---	----	---	------------	----------	----	---	----	---

AND	0	1
0	0	0
1	0	1

AND behaves like	ke multiplication,	and XOR like	addition, modulo 2.
------------------	--------------------	--------------	---------------------

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

ONLY AN INTRODUCTION

- This is only a very short introduction.
- There is so much more to learn about Boolean Algebra and about bits.
- Further subjects to research:
 - Mathematical Logic.
 - Circuit complexity.
 - Coding Theory.

SUMMARY

- Basic statements are either True or False.
- NOT(\neg), AND(\wedge), OR(\vee) and XOR (\oplus) are Boolean operators.
 - Could be used to combine basic statements into complex statements.
 - Different representations: Truth tables, Venn Diagrams.
- We have seen some properties of NOT, AND, OR and XOR.
 - AND and OR distribute over each other.
 - AND and OR are dual (With respect to the NOT transformation).
 - XOR and AND behave like addition and multiplication.
- We can sometimes use the properties of the Boolean operators to simplify complex statements.

EXERCISES

- Calculating expressions.
- Building truth tables and Venn diagrams.
- Proving basic properties of AND, OR, NOT, XOR.
- Simplifying expressions.