CSE331: Automata & Computability Assignment 1 Total Marks - 20

- 1. [5x2 = 10 points] Write regular expressions of the following languages
 - a. The set of strings that start and end with the same symbols 01. $\Sigma = \{0,1,2\}$
 - b. The set of strings that contain both substrings '101' and '000'. $\Sigma = \{0,1\}$
 - c. The set of strings having 0 at every 3rd position from the beginning. $\Sigma = \{0,1\}$. For example- 000, 010, 0100100, 110110, etc.
 - d. The set of strings that do not contain substring '10'. $\Sigma = \{0,1\}$
 - e. The set of strings that do not end with '01'. $\Sigma = \{0,1\}$
- **2.** [**10 Points**] Following is an example of different ways one can declare variables in some programming language.

Write down the regular expression that can generate such variable declarations. Assume that-

- a. All variable names are **at most five** (previously written as **exactly five**; both will be considered correct) characters long.
- b. Variable names can contain only small letters [a-z], digits [0-9], and two special characters \$ (dollar) and _ (underscore).
- c. \$ sign can only be used at the beginning.
- d. No names can start with digits.
- e. The variable types are **integer**, **real**, **char**, and **Boolean** only.
- f. The word 'var' which denotes variable is optional.
- g. Ignore any whitespace (space, tab, newline, etc.)
- h. Infer the rest of the rules from the code snippets below-

```
var int1 : integer;
var foo_1 : boolean;
var f2 : real;
_ind: char;
x, y, z: integer;
```

CSE331: Automata & Computability Assignment 2 Total Marks - 20

- 1. [4x5 = 20 points] Construct DFAs for the following languages. Give both the state diagrams and the state-transition tables.
 - a. The set of binary strings that start with "11" and end with "01". $\Sigma = \{0,1,2\}$
 - b. The set of binary strings which, when converted into an integer number, are divisible by **6**. **The string must not have leading zeros** (for example, 110, 0, and 11110 will be accepted, 0110, 1111, and 101 will be rejected). Empty string (ϵ) will be rejected. ($\Sigma = \{0,1\}$
 - c. The set of binary strings whose length is odd and has 1 in every even position. (The strings $\bf 0$ and $\bf 1$ will also be accepted by the DFA). Σ ={0,1}. For example: 010, 01111, 11010, 1111010, etc.
 - d. The set of binary strings that do not contain exactly two $\mathbf{0}$'s. (it may have more than 2 0's, or less). Empty string (ϵ) will be accepted. $\Sigma = \{0,1\}$
 - e. The set of binary strings with even numbers of **0**'s and with **1**'s in pairs. $\Sigma = \{0,1\}$. For example: ϵ , **11**, 00, **1111**, 0**110**, **110110**, 0**1100110**.

CSE331: Automata & Computability Summer 2021 Assignment 3 Total Marks - 25

1.	every ste	Draw the NFA from the transition table below and convert it to its equivalent DFA. Show every step clearly. (Here, → represents Start state and * represents Final state)										
	State/Σ	0		1	2							
	→ q0	{q2}	{q´	1,q3}	{}							
	q1	{}	{	q0}	{q0	}						
	q2	{q0}		{}	{q0	}						
	q3	{q4}		{}	{q4]	}						
	q4*	{}		{}	{}							
2.	every ste $State/\Sigma$ $\rightarrow p$ q	0 {p, q {r}	arly. (1)	1 p} r}	ransi	tion table below and convert it to its equivalent DFA. Show	5					
	r s*	{s} {s}		} s}								
3.	3. Draw the ε-NFA from the transition table below and convert it to its equivalent Show every step clearly.											
	State/Σ	3	а	b	С							
	→ p	{}	{p}	{q}	{r}							
	q	{p}	{q}	{r}	{}							
	r*	{q}	{r}	{}	{p}							
4.	Draw the DFA from the transition table below and minimize it using Hopcroft's algorithm. 5											

Show every step clearly.

State/Σ	а	b	
→ 1*	3	2	
2	4	1	
3	5	4	
4	4	4	
5*	3	2	
Draw the	DF	A fr	rom the transition table below and minimize it using Hopcroft's algori

5. Show every step clearly.

State/Σ	а	b	
→ q1*	q3	{}	
q2	q5	q6	
q3	q5	q6	
q4*	q2	q6	
q5	{}	q1	
q6*	q4	{}	

CSE331: Automata & Computability Assignment 4 Total Marks - 20

Construct Context-Free Grammar for the Following.

- 1. aⁿb^mc^kd^ke^mfⁿ; where n, m, k ≥0. [3 marks]
- 2. aⁿb^mc^md^ke^kfⁿ; n≥0, m≥1, k≥2. [3 marks]
- 3. The number of 0s is greater than the number of 1's. [3 marks]
- 4. a^mbⁿ; m>2n and m,n≥1 [3 marks]
- 5. aⁿ b a^m b a^{n+m}; m,n ≥1 [3 mark]

<u>Left Most Derivation, Right Most Derivation, Ambiguity.</u>

6. $S \rightarrow aSc \mid X$ $X \rightarrow bXc \mid \epsilon$ [Here, start variable is S]

Given the CFG of question 6, answer the following:

- a. show Left Most Parse Tree for the String "aaabbccccc" [1 mark]
- b. show Right Most Parse Tree for the String "aaabbccccc" [1 mark]
- 7. $S \rightarrow XY \mid MN$ $X \rightarrow 0X1 \mid 01$ $Y \rightarrow 2Y \mid 2$ $M \rightarrow 0M \mid 0$ $N \rightarrow 1N2 \mid 12$ [Here, the start variable is S]

Given The CFG of Question 7, answer the following:

- a. Left Most Derivation of the string "0001112" [0.5 marks]
- b. Right Most Derivation of the string "0001112" [0.5 marks]
- c. Show that the grammar is ambiguous [2 marks]

CSE331: Automata & Computability Assignment 5: CNF and CYK Total Marks - 30

1. [3*5 = 15 Points] Consider the given grammars below. Convert each of them to its equivalent Chomsky Normal Form (CNF). State each step clearly.

a.
$$S \rightarrow AACD$$

$$A \rightarrow aAb \mid ac \mid \epsilon$$

$$C \rightarrow aC \mid a$$

$$D \to aDa \mid bDb \mid d \mid \epsilon$$

b.
$$S \rightarrow XSB \mid \varepsilon$$

$$X \to pXS \mid p$$

$$B \rightarrow SbS \mid X \mid bb$$

c.
$$S \rightarrow aAa \mid bBb \mid \epsilon$$

$$A \rightarrow C \mid a$$

$$B \rightarrow C \mid b$$

$$C \rightarrow CD \mid \epsilon$$

$$D \rightarrow A \mid B \mid ab$$

2. [3*5 = 15 Points] Consider the given grammars below. For each below, find out if the given CFG accepts the given string w using CYK Algorithm. You must show the triangular table.

a.
$$S \rightarrow XY | YY$$

$$X \to ZZ | XY | x$$

$$Z \to YX \mid \!\! XX \mid \!\! y$$

String, w: xxyy

b.
$$S \rightarrow XY | YZ$$

$$X \to YX \mid x$$

$$Y \rightarrow ZZ|y$$

$$Z \rightarrow XY | x$$

String, w: xxyxy

c.
$$S \rightarrow XY \mid SS \mid a$$

 $X \rightarrow YS \mid ZT \mid b$
 $Y \rightarrow TT \mid b$
 $Z \rightarrow TR \mid a \mid b$
 $T \rightarrow a$
 $R \rightarrow SS$

String, w: abaab