Ordonnancement sur machines parallèles

SIO - Laboratoire 2

Nicolas Crausaz & Maxime Scharwath

Table des matières

l	Iodélisation mathématique	
	Définition des variables de décision	3
	Définition de la fonction objectif	3
	Définition des contraintes	3

Modélisation mathématique

Le contexte de ce travail est d'effectuer la modélisation d'un problème d'ordonnancement, consistant à trouver un plan d'ordonnancement permettant de répartir n tâches, devant toutes être réalisée, en disposant de m machines différentes (travail en parrallèle), cela en minimisant le retard moyen de l'éxécution des tâches.

Nous connaissons les constantes suivantes:

Pour chaque tâche i = 1, ..., n:

- Sa date de disponibilité (date de début au plus tôt, release date) r_i
- Sa date d'échéance (date de fin au plus tard, due date) d_i
- Son temps d'exécution (durée de réalisation, processing time) p_i

On supposera, sans perte de généralité, que la plus petite date de disponibilité est égale à 0 et que les données sont cohérentes et vérifient, en particulier, $r_i >= 0$ et $p_i >= 0$ pour chaque tâche i=1,..,n.

Définition des variables de décision

Nous définissons les variables de décision suivantes:

 x_i : date de début de l'execution de la tâche i, i = 1, ..., n.

L'exécution de chaque tâche i ne peut commencer avant sa date de disponibilité r_i :

$$x_i >= r_i$$
, pour tout i

On defini le retard (tardiness) Ti de la tâche i par - $T_i = \max_{i=1,\dots,n} (0, x_i + p_i - d_i)$

 $-e_{ij}$: indique si la tache i s'execute sur la machine j, i=1,...,n,j=1,...,m

$$e_{ij} = \left\{ \begin{array}{ll} 1 & \text{si la tâche } i \text{ est execut\'e sur la machine } j \\ 0 & \text{sinon.} \end{array} \right.$$

Définition de la fonction objectif

$$\mathsf{Minimiser}\,z = \frac{1}{n}\sum_{i=1}^n T_i$$

Définition des contraintes

— Une tâche n'est executé qu'une seule fois et sur une unique machine $\sum_{i=1}^{n}$

$$\sum_{i=1}^{n} e_{ij} = 1 \qquad j = 1, ..., m$$

L'exécution de chaque tâche ne peut commencer avant sa date de disponibilité.

LG Rapport 21.12.2022

 La tâche suivante doit être exécuté après la date de fin + le retard de la tâche précédente si les taches i et j sont sur la même machine

pour chaque paire $\{i,j\}$ de tâches différentes SI elle sont sur la même machine , soit la tâche i termine son exécution avant que la tâche j ne débute la sienne soit c'est l'inverse

Non négativité de T_i , X_i