AOCHUAN CHEN Ph.D. Student in Computer Science

Personal Information

I am a first-year Ph.D. student in computer science at Michigan State University, where I am advised by **Dr. Sijia Liu**. I am interested in building **scalable and trustworthy** neural networks.

EDUCATION

Doctor of Computer Science 08 2022 — Present

Michigan State University, East Lansing, USA

Advisor: Dr. Sijia Liu

OPTML Lab

Bachelor of Engineering 08 2018 — 06 2022

Tsinghua University, Beijing, China

AWARDS

Scholarly Awards

• Top 3% Paper Recognition of ICASSP 2023 2023

Undergraduate Award

Entrepreneurship Excellence Award by Qingshan Capital
 2021

Social Practice Excellence Scholarship by Tsinghua University

Academic Excellence Scholarship by Tsinghua University

2019

PUBLICATIONS

(* represents equal contributions)

Conference Papers

- [1] A. Chen*, P. Lorenz*, Y. Yao, P. Chen, S. Liu "Visual Prompting for Adversarial Robustness", 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'23) [PDF]
- [2] A. Chen, Y. Yao, P. Chen, Y. Zhang, S. Liu "Understanding and Improving Visual Prompting: A Label-Mapping Perspective", The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023 (CVPR'23) [PDF]

Papers under Submission

- [3] Y. Zhang*, Y. Zhang*, A. Chen*, J. Jia, J. Liu, G. Liu, M. Hong, S. Chang, S. Liu "Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning", submitted to NeurIPS 2023.
- [4] A. Chen*, Y. Zhang*, J. Jia, J. Diffenderfer, J. Liu, K. Parasyris, Y. Zhang, Z. Zhang, B. Kailkhura, S. Liu "DeepZero: Scaling Up Zeroth-Order Optimization for Deep Model Training", submitted to NeurIPS 2023.

RESEARCH OF INTEREST

Efficient Machine Learning: Efficient Model and Efficient Data

Despite the remarkable success deep machine learning models have achieved, the training & inferencing costs remain high. My research interest in this topic is summarized as follows:

- Design parameter-efficient [2] & data-efficient [3] transfer learning algorithms.
- Design scalable zeroth-order optimization algorithms for deep neural network training [4].

Trustworthy Machine Learning: Robust AI and Calibration

The deep learning models' robustness has become a research hotspot. My research interest in this topic is summarized as follows:

- Design efficient test-time defense algorithms [1].
- · Leverage model-based Bayesian learning to improve calibration.
- Leverage augmentation-based methods to improve calibration.

PROFESSIONAL ACTIVITIES

• Reviewer: ICML'22, ICML'23, KDD'22, ICASSP'22, ICASSP'23.

Last updated: June 14, 2023.