

다양한 카토그램 (Cartogram) 만들어 보기

2022.11.04

이동훈 (geodata357@gmail.com)

카토그램이란?

Cartography + Diagram

카토그램

文 20개 언어 ~

문서 토론 읽기 **편집** 역사 보기

위키백과, 우리 모두의 백과사전.

카토그램(영어: cartogram)은 의석수나 선거인단수, 인구 등의 특정한 데이터 값의 변화에 따라 지도의 면적이 왜곡되는 그림을 말한다. 변량비례도(變量比例圖), **왜상 통계 지도**(歪像統計地圖)라고도 한다.

외부 링크 [편집]

- 💩 위키미디어 공용에 카토그램 관련 미디어 분류가 있습니다.
- 카토그램 🗗 두산세계대백과사전

선거인단 카르토그램(변량비례도)에 따른 미국대선지형도. 각 주가 선거인단규모에 따라 크거나 작게 표시되므로 전체판 세와 승패를 바로 알아보기 쉽다.

Density-Equalizing Cartogram

Dorling Cartogram

참조 https://gisgeography.com/cartogram-maps/ https://en.wikipedia.org/wiki/Cartogram https://gistbok.ucgis.org/bok-topics/cartograms

Non-Contiguous Cartogram

Mosaic Cartogram

우리 좀 더 자세히 알아 볼까요?

1. DENSITY-EQUALIZING CARTOGRAM (SHAPE-WARPING) CONTIGUOUS CARTOGRAM

- 정량 속성값에 따라 구역 형상을 왜곡
- 구역 경계가 붙어 있음

QGIS - Cartogram3 플러그인 활용

- 시도 행정구역 등의 폴리곤 데이터와 Cartogram3 플러그인을 활용하여 Density-Equalizing Cartogram을 만들 수 있습니다.
- 폴리곤의 속성 항목에 "인구" 등 정량 데이터가 포함되어 있어야 합니다.

https://github.com/austromorph/cartogram3

Cartogram3 기반 Density-Equalizing Cartogram 생성 결과

- 레이어, 속성 항목 지정하면 생성됩니다.
- 행정구역의 경우, 섬을 최소화하고, 선형을 단순화(Simplify/ Generalization)해주면 좋습니다.

2. NON-CONTIGUOUS (ISOMORPHIC) CARTOGRAM

- 정량 속성값에 따라 구역 크기(Scale)를 조정
- 구역 경계가 분리됨

Python - Geoplot

https://residentmario.github.io/geoplot/gallery/plot_obesity.html

```
import pandas as pd
import geopandas as gpd
import geoplot as gplt
import geoplot.crs as gcrs
import matplotlib.pyplot as plt
import mapclassify as mc
gdf = gpd.read_file('/content/gdrive/My_Drive/Colab_Notebooks/data/sido.shp')
gdf4326 = gdf.to_crs(4326)
scheme = mc.Quantiles(gdf4326['pop2021'], k=5)
ax = gplt.cartogram(
    gdf4326,
    scale='pop2021', limits=(0.2, 1),
    projection=gcrs.WebMercator(),
    hue='pop2021', cmap='Reds', scheme=scheme,
    linewidth=0.5,
    #legend=True, legend_kwargs={'loc': 'lower right'}, legend_var='hue',
    figsize=(20, 20)
gplt.polyplot(gdf4326, ax=ax, facecolor='lightgray', edgecolor='None')
```


경기	13925862
서울	9736027
부산	3396109
경남	3377331
인천	3014739
경북	2677709
대구	2412642
충남	2181835
전남	1865459
전북	1817186
충북	1633472
강원	1555876
대전	1469543
광주	1462545
울산	1138419
제주	697476
세종	376779

QGIS에서는?

1. 단계구분도

2. 각 시도를 SVG로 저장

• "선택한 객체만" 체크

3. 시도별 중심점 생성

4. 중심점 심볼을 SVG로 스타일링

- 심볼 분류값
- 각 포인트 심볼에 SVG 마커를 적용하고 각 시도별 SVG 파일을 적용
- SVG 마커의 크기를 조정
- Maximum 시도의 심볼 크기를 기준으로 조정
- 색상도 적용할 경우 SVG 마커의 그리기 효과 를 켠 후에 색상화 적용

QGIS에서의 Non-Contiguous Cartogram 예시

• SVG 심볼 크기

• 심볼 색상

* 필요시 중심점의 위치 조정

3. DORLING CARTOGRAM (CIRCULAR ALGORITHM) GRAPHICAL/ DIAGRAMMATIC CARTOGRAM

- •정량 속성값을 원/사각형 도형의 크기로 표현
- 일반적인 버블 차트와 달리 구역의 원래 위치를 반영하여 지도 형상을 보여주려고 함 (버블끼리 떨어지지 않고 붙어있음)

GeoDa를 이용한 Dorling Cartogram (1)

• GeoDa를 실행하고, 행정구역 폴리곤 또는 중심점 포인트를 열기

• Map > Cartogram 또는 📫 를 클릭

GeoDa를 이용한 Dorling Cartogram (2)

• 원 데이터 (폴리곤/ 포인트) 또는 Dorling Cartogram을 선택하면 원 데이터가 무엇인지 알 수 있음

^{*} Power Point, Photoshop 등에서 명칭 및 수치값 Labeling

참조: https://mbostock.github.io/protovis/ex/cartogram.html

QGIS에서의 Graduated Symbol Map 만들기 (1)

1. 중심점 생성

- 인구 등 정량 수치 속성이 포함된 행정구역 등의 폴리곤 레 이어를 추가
- 표면 상에 있는 포인트/ 중심점 기능을 이용하여 폴리곤의 중심점을 생성

표면 상에 있는 포인트 × 표면 상에 있는 포인트 파라미터 로그 입력 레이어 도형의 표면 상에 있다고 보장된 포인트를 🗯 sido [EPSG:5179] ▼ 반환합니다. □ 선택한 객체만 그 부분의 표면에 포인트 생성 Point ... [임시 레이어 생성] ▼ 알고리즘 실행 후 산출 파일 열기 0% 취소 배치 프로세스로 실행 실행 닫기 도움말

2. 색상 단계구분도 스타일링

• 인구 등 수치 속성을 이용하여 단계구분도 심볼 설정

QGIS에서의 Graduated Symbol Map 만들기 (2)

3. 심볼 크기 설정

- 레이어 속성 〉 심볼 〉 단계구분도의 심볼 GUI 클릭
- 크기 오른쪽의 (目 (데이터 정의 무시 설정) 〉 도우미
- 원본에 인구 등 해당 항목이 적용된 상태에서 🔁 를 클릭하여 최소/최대값을 자동으로 가져오고, 상응하는 심볼 시작/끝 크기를 지정

QGIS에서의 Graduated Symbol Map 만들기 (2)

4. 색상 및 크기 단계구분도 심볼맵

- Label 설정
- to_string(round(pop2021 / 10000)) + '만'
- 필요시 위치가 겹쳐지는 심볼의 위치를 조정 (서울-경기)
- 심볼 투명도 조정

4. MOSAIC CARTOGRAM GRIDDED CARTOGRAM

- •지리적 모양을 무시하고, 가상의 구역을 동일한 크기의 사각/육각형으로 표현
- ❖ 선거구 지도

관련 사례

"파이썬으로 데이터 주무르기", 민형기 저

21대 국회의원 선거 분석

Python-Pandas 기반 Gridded Cartogram

• 형상 시트 및 값 시트로 구성된 엑셀로 카토그램 생성

5. TESSELLATION MAP HEXAGON/ GRID MAP

•구역의 경계를 사각/ 육각형으로 표현하는 기법

QGIS에서 Hexagon Map 만들기 (1)

1. 그리드 생성

• Create Grid 등을 이용하여 원하는 모양과 크기의 격자 생성

2. 공간 조인

• 원 행정구역 폴리곤과 공간 조인하여 행정구역코드/명칭을 받아 오기 (벡터 〉데이터 관리 도구 〉 위치에 따라 속성 결합)

QGIS에서 Hexagon Map 만들기 (2)

3. Dissolve

• Create Grid 등을 이용하여 원하는 모양과 크기의 격자 생성

- 전라남도가 커 보이는 이유는 섬 때문으로 미리 불필요한 섬들을 삭제하고 작업 필요
- Dissolve시 불필요한 내부 선형이 남아 있을 경우, 미세하게 버퍼를 만들고 나서, 필요한 객체들끼리 병합시키면 됨

참조: https://beyondthemaps.wordpress.com/2018/07/22/hexagonalization/

QGIS를 활용한 서울시 구별 Hexagon Map

•2km × 2km Hexagon

Uber H3 및 Geopandas를 이용한 서울시 구별 Hexagon Map

• H3 Resolution (축척 레벨)은 9

https://h3geo.org/docs/core-library/restable https://www.uber.com/en-KR/blog/h3/

비교/ 정리

유형별 카토그램 비교

	Density-Equalizing Cartogram	Non-Contiguous Cartogram	Dorling Cartogram	Mosaic Cartogram	Tessellation Map
개요	양적 속성의 크기에 따라 구역 형상 크기를 왜곡구역 경계가 붙어 있음	• 정량 속성값에 따라 구역 크 기(Scale)를 조정 • 구역 경계가 분리됨	• 정량 속성값을 원/사각형 도형의 크기로 표현	• 구역을 동일한 크기의 사 각/육각으로 표현	• 구역 형상을 사각형 또는 육각형 등의 격자로 표현
장점	• 지리적 위치와 인접성을 유 지하면서 양적 크기를 표현	• 원래 모양이 유지됨	• 시각적 이해가 쉬움 (명칭/ 수치 Label)	• 면적이 작은 구역의 시각 적 표현 문제 해소	격자지도 - 동일 면적별 통계병합 격자 - 시각화
딘점	• 모양이 크게 왜곡되면 해석 이 어려움	• 최소~최대 등급별 비율에 따른 정보 왜곡 가능성	• 지리적 형상 소실	• 지리적 형상 이해 어려움	
도구	• QGIS-Cartogram3 • R (https://github.com/sjewo/cartogram)	• Python(Geoplot)/ R • D3 (• GeoDA • Protovis	• Python/ R coding • Tilegrams (한국 미지원)	• 다수

용도별 묶어 보기

정량적 속성의 크기를 시각화

• 3가지 모두 색상 단계구분 기법도 적용된 상태

지리적 형상/위치 변형 최소화

소규모 구역 시각적 표현에 용이

• 선거구/ 행정구역(집계구/ 행정동/ 시군구)

양적 차이를 색상 단계구분도로 표현

좋은 활용 사례 - 가급적 지도와 카토그램을 같이 보여주자!

관련 코드 공유

https://github.com/thlee33/cartogram2022

- cartogram_gridded.ipynb : 엑셀의 셀 모양과 값, 그리고 HeatMap을 이용한 선거구 Mosaic Cartogram 선거구.xlsx : 선거구용 엑셀
- cartogram_hexagon.ipynb: Uber H3 기반 Hexagon Map (코드 수정시 Geohash, 국토통계격자지도 등도 가능)
- cartogram_non_contiguous.ipynb: Geoplot 기반 Non-Contiguous Cartogram
- ❖ 본 발표자료도 있음

고맙습니다!