Aula 1 – Introdução

Curso de simulações em linguagem R

Danilo G Muniz

Uma pequena prática para aquecer os miolos...

???????

O que é um modelo?

O que é um modelo?

Reprodução simplificada e/ou em menor escala de um objeto real

Diferentes tipos de modelos na biologia...

Modelo verbal:

Conjunto de proposições sobre as características de um sistema biológico

Modelo matemático:

Conjunto de expressões matemáticas que reproduz características de um sistema biológico

Modelo computacional:

Programa de computador que reproduz características de um sistema biológico

Sistema biológico?

Molécula

Célula

Tecidos e órgãos

Indivíduo

População

Comunidade

Pra que serve um modelo?

Pra que serve um modelo?

Previsões

Previsões científicas

Previsões (testáveis) associadas a uma teoria científica

Previsões

Previsões práticas

Informação para tomada de decisão

Previsões?

Método hipotético-dedutivo

Trabalho científico empírico

Trabalho científico de modelagem

Quais tipos de perguntas que podemos responder?

Perguntas do tipo "E se?"

Perguntas do tipo "Será mesmo?"

Um exemplo de um grande "E se?"

Modelo "predador presa" de Lotka-Volterra

Alfred J. Lotka

Vito Volterra

A observação original

Populações variam "sem razão aparente"

https://www.pfeg.noaa.gov/research/climatemarine/cmffish/cmffishery8.html

E se tivermos predadores e presas?

- Premissas básicas
 - Predadores e presas se reproduzem
 - Predadores morrem (de morte morrida)
 - Predas são mortas pelo predador

Modelo predador-presa

$$\frac{dV}{dt} = r V - \alpha V P$$

r – taxa de crescimento intrínseco da presa (vítima)

 α – eficiência de captura

$$\frac{dP}{dt} = \beta \ \alpha \ V \ P - \mu \ P$$

 β – predadores produzidos por presa capturada

 μ – mortalidade intrínseca do predador

Vamos ver "o que acontece"

$$\frac{dV}{dt} = r V - \alpha V P$$

$$\frac{dP}{dt} = \beta \ \alpha \ V \ P - \mu \ P$$

Valores de parâmetros

Condições iniciais

Predador presa – solução numérica

Um exemplo de "Será mesmo?"

Teoria neutra da biodiversidade

Stephen Hubbel

Distribuições de abundância de espécies

Distribuições de abundância de espécies

Borboletas frugívoras do equador

Devaurs, D., & Gras, R. (2010). Species abundance patterns in an ecosystem simulation studied through Fisher's logseries. *Simulation Modelling Practice and Theory*, 18(1), 100-123.

Por que sempre essa forma?

"Repartição de nicho"

Eis que chega Hubbel

Será mesmo?

E se todas as espécies forem funcionalmente iguais?

O modelo do Hubbel

(ou pelo menos uma versão dele...)

- Suponha um ambiente onde "cabem" J indivíduos
- A cada passo de tempo um indivíduo morre aleatoriamente
- A "vaga" é preenchida pela prole de um indivíduo qualquer (escolhido aleatoriamente)
- A cada nascimento existe uma chance v de chegar um migrante vindo de um lugar externo

Resultado!

Resultado!

Agora que já sabemos que modelos são demais!

Modelo baseado em indivíduos

Modelo computacional em que indivíduos são modelados explicitamente

Indivíduo População Comunidade

Modelo baseado em indivíduos

Propriedades da população e/ou comunidade emergem do comportamento dos indivíduos

Modelos computacionais

Videogame sem o jogador

Vantagens dos MBIs/IBMs

Permitem incluir facilmente:

Variação entre indivíduos

Estrutura espacial e movimento

Aleatoriedade

Comportamentos complexos

Modelos computacionais

Modelo computacional:

Programa de computador que reproduz características de um sistema biológico

Fluxograma modelo-previsão

Fluxograma modelo-previsão

Planejamento!

Checklist

Qual a pergunta que você quer responder?

Quais processos você precisa simular?

Checklist

- O quê precisa existir no seu modelo?
 - Indivíduos? Mundo? Recursos?

- Quais são as características das coisas que existem no seu modelo?
 - Traços fenotípicos? Material genético?

Checklist completa

Qual a pergunta que você quer responder?

Quais processos você precisa simular?

O quê precisa existir no seu modelo?

 Quais são as características das coisas que existem no seu modelo?

Como decidir o que é preciso?

SIMPLICITY IS THE ULTIMATE FORM OF SOPHISTICATION

— LEONARDO DA VINCI —

Uma nota sobre processos e mecanismos...

Modelagem fenomenológica x mecanística

- Fenomenológica
 - Simular um efeito ou padrão diretamente
 (ao invés de um mecanismo)

- Mecanística
 - Simular um mecanismo

Tem um exemplo?

"Dependência de densidade"

Padrão – quanto mais (ou menos) indivíduos, menor a taxa reprodutiva ou a sobrevivência

Possíveis mecanismos:

(1) Competição por recursos

(2) Dificuldade em encontrar parceiros sexuais

Modelo clássicão de crescimento logístico

$$\frac{dN}{dt} = rN \left(1 - \frac{N}{K}\right)$$

$$r = 0,275; K = 500$$

Um exemplo de dependência de densidade mais mecanística

Mais uma coisa

Fluxograma modelo-previsão

Como obter respostas do modelo?

Explorando o espaço paramétrico!

Os parâmetros do modelo

 Parâmetros são valores que descrevem como o mundo/cenário do modelo funciona

 Variar parâmetros é análogo a estabelecer tratamentos em um experimento.

Voltando ao modelo predador-presa

$$\frac{dV}{dt} = r V - \alpha V P$$

$$= r V - \alpha V P$$

$$eta$$
 – predadores produzidos por

 α – eficiência de captura

$$\frac{dP}{dt} = \beta \alpha V P - \mu P$$

da presa (vítima)

r – taxa de crescimento intrínseco

presa capturada

 μ – mortalidade intrínseca do predador

Explorando o parâmetro r

Variação das condições iniciais

Parâmetros + Condições iniciais

WWW.MATHWAREHOUSE.COM

Mensagens finais

Modelos são ferramentas para gerar previsões

 Ao planejar um modelo, pense em primeiro lugar nos processos

 Lembre-se do triângulo precisão-realismogeneralidade

Hora do exercício!

Preencher a checklist

Qual a pergunta que você quer responder?
 (modelo ou hipótese clássica da literatura)

Quais processos você precisa simular?

O quê precisa existir no seu modelo?

 Quais são as características das coisas que existem no seu modelo?