Traitement du signal – Notes de cours

1. Série de Fourier

Fourier a montré que tout signal périodique peut être décomposable en une somme infinie de termes cosinus et sinus multipliés par des coefficients appelés les coefficients de Fourier.

Ainsi, si s(t) = s(t + kT), k étant un entier et T la période fondamentale du signal (correspondant à la fréquence f), alors :

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

avec $\omega = 2.\pi f$, f étant la fréquence fondamentale (et T = 1/f) la période fondamentale.

Les coefficients a_k et b_k sont appelés coefficients de Fourier.

L'équation ci-dessus peut se réécrire de manière équivalente :

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t) + \sum_{k=1}^{\infty} b_k \sin(2\pi k f t)$$
 (1)

Ainsi, le signal se décompose en une somme de termes résumés dans le tableau ciaprès. Le terme constant $a_0/2$ correspond à la valeur moyenne du signal s.

Le terme en k=1 correspond à la fréquence fondamentale f (la plus petite) : $a_1\cos(2\pi ft)+b_1\sin(2\pi ft)$

avec les coefficients multiplicateurs de Fourier $a_1, b_1, ...$

Les fréquences *k.f* sont les harmoniques (multiples de la fréquence fondamentale). *t* est le vecteur temporel échantillonné

Termes		fréquence	coefficients
Terme constant	a ₀ /2		a_0
Premier terme	$a_1\cos(2\pi ft) + b_1\sin(2\pi ft)$	f	a_1, b_1
	$a_2\cos(2\pi 2ft) + b_2\sin(2\pi 2ft)$	2. <i>f</i>	a_2, b_2
kème terme	$a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t)$	k.f	a_k, b_k
pème terme	$a_p \cos(2\pi p f t) + b_p \sin(2\pi p f t)$	p.f	$a_{\rm p},b_{\rm p}$

En additionnant les p termes (p grand), on approxime ainsi le signal s.

Théorème

Un signal est décomposable en série de Fourier s'il respecte les conditions de Dirichlet, à savoir :

- il doit être périodique
- Pour chaque période, il doit être
 - o continu par morceaux
 - o monotone par morceaux
 - partout intégrable

Important

Pour résumé, tout signal périodique s peut se décomposer en série de Fourier.

L'analyse de Fourier permet de trouver les coefficients a_k et b_k .

La synthèse de Fourier permet, à partir de la connaissance des coefficients a_k et b_k , de re-synthétiser le signal s.

3. Transformée de Fourier discrète

3.1. Analyse de Fourier : coefficients de Fourier a_k et b_k

La transformée de Fourier discrète (TFD) est une transformation d'un signal apériodique discret en un spectre discret périodique. Ce spectre donne une représentation fréquentielle du signal s sur une fenêtre temporelle donnée.

Un peu de théorie : à rapprocher de la théorie sur les séries de Fourier !

Comme pour les séries de Fourier, la TFD, appliquée à un signal s discret sur une fenêtre de N échantillons, est définie par les coefficients de Fourier suivants : $c_k = a_k + j$. b_k (forme complexe qui permet de regrouper les deux coefficients a_k et b_k dans une même formule) :

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} s[n] e^{-\frac{j2\pi kn}{N}}$$

En rappelant que $e^x = \cos(x) + j \cdot \sin(x)$, on retrouve les coefficients a_k et b_k des séries de Fourier de la section 2 précédente (coefficients réels du spectre à partir desquels on a l'amplitude et la phase du spectre).

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} s[n] \cos{(\frac{2\pi kn}{N})} + j \cdot \frac{1}{N} \sum_{n=0}^{N-1} s[n] \sin{(\frac{2\pi kn}{N})}$$

Le spectre de Fourier est périodique, de période N.

Les échantillons de ce spectre sont espacés en fréquence de la valeur suivante :

$$f_k = \frac{kf_s}{N}$$

3.2. Synthèse de Fourier

Il est possible à partir du spectre de Fourier de synthétiser le signal (comme pour les séries de Fourier) :

$$s[n] = \frac{1}{N} \sum_{n=0}^{N-1} c_k e^{\frac{j2\pi kn}{N}}$$

Ainsi, tout signal sur une fenêtre de N échantillons peut se décomposer en une suite de fonctions sinus et cosinus pondérés par les coefficients a_k et b_k .

3.3.Transformée de Fourier en pratique

La transformée de Fourier est souvent calculée grâce à l'algorithme fft (fast fourier Transform). Cet algorithme permet de calculer le spectre du signal non périodique s sur une fenêtre temporelle de N échantillons (N multiple de 2 : 256, 512, 1024,...) un spectre de N échantillons.

Le spectre est donc une représentation fréquentielle du signal $s[t_n]$ (n = 0...N-1). On obtient ainsi N valeurs $S[f_k]$ du spectre échantillonnées sur $f_k = \frac{kf_S}{N}$.

Attention, le spectre est une grandeur complexe, qui possède une partie réelle et une partie imaginaire : S(f) = Real(S(f)) + j. Imag(S(f))

Généralement, on représente le spectre par son amplitude et sa phase :

$$S(f) = |S(f)|e^{j\phi(f)}$$

avec |S(f)| : amplitude du spectre et $\Phi(f)$: phase du spectre

En python:

S = ff(s) # s étant un vecteur échantillonné du signal s de N échantillons

S un vecteur échantillonné du spectre de s

A = abs(S) # A : amplitude du spectre P = angle(S) # P : phase du spectre

Liens avec les coefficients a_k et b_k du spectre :

Le spectre en amplitude est caractérisé par N raies spectrales aux fréquences f_k, dont

l'amplitude est : $\sqrt{a_k^2 + b_k^2}$ et la phase est : $arctg\left(\frac{b_k}{a_k}\right)$

L'algorithme fft est un algorithme de type « diviser pour régner ». Il est par conséquent important qu'il travaille sur des vecteurs de 2ⁿ échantillons.