

Course Introduction

CS 6501, Data Privacy, Spring 2022 Tianhao Wang

Instructors

Tianhao Wang

CS@UVA, SDS@UVA

1st year Assistant Professor, Prior PhD from Purdue and Postdoc from CMU

tianhao@virginia.edu

https://tianhao.wang/s22-dataprivacy/

Machine Learning Privacy and Differential Privacy

TA

Dung Nguyen ("Dzung When") CS@UVA

dungn@virginia.edu

Differential Privacy on Graphs

Course Hours

Location: Zoom and Rice 032

Time: Monday and Wednesday 2:00PM - 3:15PM

Office Hour: Friday 2PM - 3PM and by appointment

Thursday 11AM-1PM and by appointment

Discussion: https://piazza.com/virginia/spring2022/cs6501

Due to covid, no attendance. But there is no recordings. Please read slides online and come to the class if you are not sick.

Course Expectation

This is a graduate-level **seminar** course

You are about to read and share a lot

We have weak (pre-)assumptions

Math (Probability)

Programming (Python)

Discuss fundamental problems and state-of-the-art solutions in sub-areas

Get hands-on experience by solving practical problems

Prepare for doing cutting-edge projects data privacy and related fields

Grading

No exams

Paper presentations (20%)

Student-led lectures

35-minutes lecture-style presentations

Topics should be chosen from the instructor's suggested list

Paper review (20%)

Each student selects 4 papers to review

Participation (10%)

Two assignments (10%) for theory (proofs) and practice (programming)

Course project (40%) on research topics or review and evaluation

Last week of semester

Performed in individually or in groups of 2

Papers: Different areas of data privacy

Privacy attacks against machine learning

Membership inference attacks

Property inference attacks

Differential privacy with

machine learning (NLP, Hyperparameter Tuning, GAN, federated learning, etc)

theory (better utility/privacy bounds, positive/negative results, etc)

cryptography (1. accelerate crypto with DP, 2. improve DP with crypto)

systems (build efficient DP systems)

software engineering/programming languages (verify/check DP implementation, type systems, etc)

Presentations

35min +- 5 mins

Think about how you deliver the material to a large audience

60% engineers

30% researchers

10% domain experts

Put more emphasis to motivation and background (unless those covered), and focus on intuition and give pointers and take-away messages

It is okay to borrow ideas/materials from online resources

Please ack what you used and how you changed them

Send your slides to me or (better) come to my office hour one week before

Reviews

Before the presentation, submit a review (each student present a paper and submit 4 reviews, so each paper receives 4 reviews). Read others' reviews and discuss. Also raise the issue in class (to show your participation!).

Think critically but write professionally (guidelines at https://tianhao.wang/s22-dataprivacy/review.html).

Turn:

This is not interesting.

The paper did not compare with x and y.

Writing is poorly.

Into:

The paper can add discussions on a and b to address the wider audience.

X and y are closely related and applicable to the problem of this paper, if changing the methods.

Section a.b is confusing me. Notations are misused. Typos ...

Projects: Two flavors

Research-oriented (for students who want to do/experience research)

Could be on data privacy, or the interaction of your research and privacy

Goal: a top-tier conference paper: proposal, related work, theory/empirical study

Review-oriented (for demonstrations in industry)

A survey/review of existing tools/methods in some area
Implementation and empirical evaluation and comparison

Can work individually or form a group of 2 Encouraged to discuss with me or send me your draft/proposal for feedbacks It cannot be the project you've already done

Schedule

Machine learning privacy attacks

Differential privacy and other privacy-enhancing technologies

Student presentations Project presentations

Week	Dates	Monday	Wednesday
1	Jan 17 - Jan 21	No Class	Introduction, Machine Learning Privacy Zoom
2	Jan 24 - Jan 28	Guest Lecture: Machine Learning meets Security and Privacy: Opportunities and Challenges (by Jinyuan Jia) Zoom	Differential Privacy, Laplace mechanism Zoom
3	Jan 31 - Feb 4	Exponential mechanism, Report-noisy-max, Sparse vector technique (SVT) Zoom	Local Differential Privacy Zoom
4	Feb 7 - Feb 11	Multi-party Differential Privacy	Guest Lecture: Bargav Jayaraman
5	Feb 14 - Feb 18	Graphs with Differential Privacy	