4.2.4 依数性理论的局限

天津大学 李珅

生理盐水的渗透压

例题:计算室温时生理盐水(质量分数 0.9%的 NaCl 水溶液)的渗透压。

$$c = \frac{9 \text{ g} / 58.5 \text{ g} \cdot \text{mol}^{-1}}{991 \text{ g} / 1000 \text{ g} \cdot \text{L}^{-1}}$$

 $= 0.155 \text{ mol} \cdot L^{-1}$

$$\Pi = cRT$$

 $= 0.155 \text{ mol} \cdot \text{L}^{-1} \times 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 298.15 \text{ K}$

= 384 kPa

正常人的血浆渗透压为720~800 Kpa!

依数性理论的局限

依数性规律仅适用于难挥发非电解质的稀溶液,对于电解质溶液计算存在误差。

电解质水溶液的凝固点降低值						
b _B	ΔT _{fp} 理论值	ΔT _{fp} 实测值(^{实测值} / _{理论值})				
		NaCl AB型强电解质	K ₂ SO ₄ A ₂ B型强电解质	CH ₃ COOH 弱电解质		
0.01	0.0186	0.0361 (1.94)	0.0476 (2.56)	0.0204 (1.10)		
0.10	0.1858	0.3480 (1.87)	0.4580 (2.47)	0.1884 (1.01)		
0.50	0.9290	1.692 (<mark>1.82</mark>)	2.371 (<mark>2.55</mark>)	0.9303 (1.00)		

依数性理论的局限

依数性规律仅适用于难挥发非电解质的稀溶液,对于电解质溶液计算存在误差,但是可以作为定性比较的依据。

	0.1 mol·L ^{−1} NaCl aq	0.1 mol·L ⁻¹ CH₃COOH aq	0.1 mol·L ^{−1} C ₆ H ₁₂ O ₆ aq
溶液中微粒 的浓度	0.2 mol·L ⁻¹	0.1+ mol·L ⁻¹	0.1 mol·L ⁻¹
Δρ	下降最多	居中	下降最少
$\Delta T_{ m bp}$	升高最多	居中	升高最少
ΔT_{fp}	降低最多	居中	降低最少
П	最大	居中	最小

$$\Delta p = \mathbf{x}_{\mathsf{B}} \cdot p_{\mathsf{A}}^*$$

$$\Delta T_{\rm bp} = K_{\rm b} \cdot b_{\rm B}$$

$$\Delta T_{\rm fp} = K_{\rm f} \cdot b_{\rm B}$$

$$\Pi = cRT$$

这四种性质只与一定量溶液中溶质的摩尔数(质点数)有关,而与溶质的本性无关,故又称为依数性。

这四个性质在做精确计算时只适用于难挥发非电解质的稀溶液。对于电解质溶液,也存在这四种性质,但由于电解质会发生解离,上述定量关系会产生比较大的偏差,一般只用于定性比较。