-CON-Online Assignment - 8 iyosh Kulkarn PXK 161130 Q. 10.2 Howes = B, + B, wage + B3 EDU + Bu Age +B5 Kids L6 + B6 Kids 618 + BINWIFETNICK wage -> +ve more wage more supply EDU -> could be trook - ve . Howmuch education women have it dosen't mean they mo work more. They can work part time too it they are more qualified. Age - Age cotcould be negative. More the age, less the number of hours Kids L6 > negative & presence of young children will reduce the tendency to work KidsG18 > +ve As children grow up, women can start working NWITEINC > - Ve more the househol income, less the tendercy of women working. The term wage could be endogenous. wages may be taking the effect of underlying or omitted variable - Ability. Ability could be corelated with education as well. can be correlated with the executer.

wage & correlated with over education > correlated with everor -> This will cause endogenity problem 4 OLS will fail. wage depends on exposience also wage & Expr & wage & Expr 2 could be correlated as exprage increases, wage increases & after a certain point, it will start declining this shows wage & expr2 is also correlated at the same point Exprt expr2 will be not correlated with .. they can be used as instrument voveiables. d) yes the equation is identified. 1 -> en dogenous voriable -> wage 2 , instrument variables , expressor2 instrument vox y endogenous voriables First estimate wage as wage = r, t rz Edut rz Age + rz Kids L 6 + rs Kids 618+ r6 N WIFEINC + O, Exper + O2 Exper + extor

|         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         | scarcond replace endogenous wage variables with regressed wage in first step.  That is use two step least square.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|         | with regressed wage in first step.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|         | that is use two step least square.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|         | The same of the sa |  |  |  |  |  |  |
| P.10.6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| a       | y = BI+ P2x+e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 3.3     | 0 = 3 + x t e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Y       | $\frac{7}{5\chi^{2}} = \frac{2}{5e^{2}}$ $\frac{2}{5\chi^{2}} = \frac{2}{5e^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|         | COV(X,C) = 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|         | correlation bet 21e=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Arras   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         | Vvor(x) Nor(e) Vzx1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|         | = 0.6364<br>= 0.6364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| b>      | Using R correlation = 0.65136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| THE WAR | E TO SE AND MORE OF THE PARTY O |  |  |  |  |  |  |
| 9       | Plotted using R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| A 1     | Observations B, exert, B2 exerts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| d)      | 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|         | 10   2.775   0.3608   1.3722   0.1727<br>20   3.0169   0.2036   1.3876   0.1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|         | 100 3.007 0.07872 1.4016 0.05336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|         | 500 3.01825 0.030410 1.4535 0.02367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

| 0   | De |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE RESIDENCE TO                      | 100000000000000000000000000000000000000 |            |             |  |  |
|-----|----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------|-------------|--|--|
|     | 10 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
|     | 10 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
| 2   | 9  | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
| Ice | 3  |         | for B, as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the sample                            | size inch                               | lases, th  | <u></u>     |  |  |
| 3   | 3  | and a   | value is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | moving cla                            | ser +03(                                | true valu  | ie) but     |  |  |
|     | 8  |         | after 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | after 100 it goes a moves away from 3 |                                         |            |             |  |  |
|     | 3  | 9.50    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for Bz, as sample size is increasing, |                                         |            |             |  |  |
| 6   | 3  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ic is mo                              |                                         |            |             |  |  |
| 6   | 3  |         | value-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                         | 0.5        |             |  |  |
|     | 2  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uld be be                             |                                         | correla    | tion        |  |  |
| 6   |    |         | between ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                         |            |             |  |  |
|     |    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
| 6   |    | 0)      | Z, f x har                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ic high co                            | relation                                | (0.62)     |             |  |  |
| 6   |    |         | 2, \$ x hau \$ 2, \$ e h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave prac                              | tically 2e                              | re cori    | elation     |  |  |
| 6   |    |         | (-0.003) m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | akes it                               | a good                                  | ins troum  | ert         |  |  |
| 6   |    |         | vooiable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                         |            |             |  |  |
| C   |    |         | Za also c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | can be inc                            | d (0.28                                 | 4 0.0278   | correlation |  |  |
| e 4 |    |         | hut 7. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | but 2, is better choice than Zz       |                                         |            |             |  |  |
| 6   | 9  |         | an it have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as it have higher correlation with x  |                                         |            |             |  |  |
| 6   | •  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the.                                  | A sand                                  | me add     | (8)         |  |  |
|     | •  |         | 4 100 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 2.714.2                                 | 013        |             |  |  |
|     | •  | 4>      | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | β,                                    | covers,                                 | B2         | error Bz    |  |  |
|     | •  | 7/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7144                                | 0.4277                                  | 1 0640     | 0.2526      |  |  |
|     |    | No. 1   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0810                                | 0.2500                                  | 1.0263     | 0.1366      |  |  |
|     |    | 2 6 6 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9771                                | 0.1051                                  | 0.9363     | 0.1132      |  |  |
|     |    |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.03150                               | 0.04512                                 | 0.99613    |             |  |  |
|     |    | 7-1     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 0 3 , 3 0                           | 23013                                   | 0 3 3 6 13 | 17          |  |  |
|     |    | 0       | A CONTRACT OF THE PARTY OF THE |                                       | 10000                                   |            |             |  |  |
| 13  |    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
| E   |    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |
| 13  |    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                     |                                         |            |             |  |  |
|     |    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                         |            |             |  |  |

|                                         |                                        |         |           |          | -        |  |  |
|-----------------------------------------|----------------------------------------|---------|-----------|----------|----------|--|--|
|                                         | As sample size increases, B, & B, both |         |           |          |          |  |  |
| ALC:                                    | are converging towards true parameter. |         |           |          |          |  |  |
| No. of London                           | A PROPERTY AND                         | 0 0     | 130000000 | DE TOTAL |          |  |  |
| 9)                                      | Observation                            | B,      | evers,    |          | crear B2 |  |  |
| U                                       | 16                                     | 2.7144  | 0.4277    |          | 0.2526   |  |  |
|                                         | 20                                     | 30810   | 0-2500    |          | 0.1966   |  |  |
| 182 (3                                  | 100                                    | 2.9771  | 0.1051    | 0.9363   | 0-1132   |  |  |
|                                         | 500                                    | 3-03150 | 0.04512   | 0.99613  | 0.05044  |  |  |
|                                         |                                        |         |           |          |          |  |  |
|                                         | for small sample size, estimates are   |         |           |          |          |  |  |
| elahim                                  | for away from true parameters.         |         |           |          |          |  |  |
| 111111111111111111111111111111111111111 | As sample size is increasing, estim    |         |           |          |          |  |  |
|                                         | ats are moving closer to true value.   |         |           |          |          |  |  |
| Charman                                 | Zi gives better estimates compared     |         |           |          |          |  |  |
|                                         | with zz                                |         |           |          |          |  |  |
| 14 115                                  | and of the last of the control of the  |         |           |          |          |  |  |
| n                                       | Observations                           | β,      | corors,   | BZ       | error B2 |  |  |
|                                         | 10                                     | 2-7144  | 0.4277    | 1-0640   | 0.2526   |  |  |
| A sours                                 | 201                                    | 3.0810  | 0.25 60   | 1.0263   | 0.1966   |  |  |
|                                         | 100                                    | 209771  | 0.1051    | 0.9363   | 0.1132   |  |  |
|                                         | 500                                    | 3-03150 | 0-99613   | 5.99613  | 0.05044  |  |  |
| 1                                       | Both Carlo                             | 1001    | 0.04152   | 00       |          |  |  |
| A 50 6 6 1                              | As sample s                            | size is | increasin | 9 esti   | matee    |  |  |
|                                         |                                        |         |           |          |          |  |  |
|                                         | are converging towards true parameter  |         |           |          |          |  |  |
|                                         |                                        |         |           |          |          |  |  |

| : 0   |                                            |         |          |          |          |  |
|-------|--------------------------------------------|---------|----------|----------|----------|--|
| 9>    | colinates                                  |         |          |          |          |  |
| • 0'  | estimates Observation                      | 0 1     |          | 2        | B        |  |
| 3     | Observations 10                            | B       | crear B, | Bz en    | ror B2   |  |
| 3     |                                            | 1-892   | 11.061   | -2.950 5 | 1.703    |  |
| 3     | 5 20                                       |         | 0.6975   | 0.1110 2 | 11507    |  |
| 3     | 100                                        | 2.99020 | 0.08865  | 1.13489  | 1.14637  |  |
|       | 506                                        | 3.0294  | 0.04236  | 106665 0 | - 10136  |  |
| 3     | for less and in the said                   |         |          |          |          |  |
| 9     | for less no of observations, estimates are |         |          |          |          |  |
|       | way too fair from true parameter           |         |          |          |          |  |
|       | Z, is better than Zz                       |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
| h h   | Observations                               | β,      | error B  | 1 B2     | error P2 |  |
|       | 10                                         | 2.7114  | 0.4337   | 1.0491   | 0.2549   |  |
|       | 20                                         | 3.0852  | 0.2555   | 1.0026   | 0-1989   |  |
|       | 1000                                       | 2-98076 | 009974   | 0.9920   | 0.09316  |  |
|       | 500                                        | 3.03113 | 0.04458  | 1-00893  | 1004496  |  |
|       |                                            |         |          |          |          |  |
|       | 7                                          |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
| ) / 1 |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |
|       |                                            |         |          |          |          |  |



```
>#-----calculating error
>
> e <- ivreg2$y- 3 - ivreg2$x
>
> # --- Correlation in x and e
>
> cor(ivreg2$x, e)
[1] 0.65136
>
> line <- abline(3,1)
Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...):
  plot.new has not been called yet
>
> # --- Scatterplot ---
>
```

```
> library(ggplot2)
> ggplot(data = ivreg2, aes(x = ivreg2$x, y = ivreg2$y)) +
        geom_point(color = 'blue') +
          geom_abline(intercept = 3, slope = 1, color = "red") + ggtitle('y = 3 + x')
> # ----- OLS Regression with different observations ------
> data_10 <- ivreg2[1:10,]
> model_10 <- lm(y ~ x, data = data_10)
> summary(model_10)
Call:
Im(formula = y \sim x, data = data_10)
Residuals:
  Min 1Q Median 3Q Max
-1.6450 -0.6888 -0.2390 0.4484 1.9556
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7775  0.3608  7.698  5.76e-05 ***
        Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.136 on 8 degrees of freedom
Multiple R-squared: 0.8875, Adjusted R-squared: 0.8735
F-statistic: 63.12 on 1 and 8 DF, p-value: 4.589e-05
> data 20 <- ivreg2[1:20,]
> model_20 <- lm(y \sim x, data = data_20)
> summary(model 20)
```

```
Call:
Im(formula = y \sim x, data = data_20)
Residuals:
  Min
         1Q Median
                        3Q
                            Max
-1.83171 -0.52577 0.08304 0.45379 1.75205
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0169 0.2036 14.81 1.59e-11 ***
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9056 on 18 degrees of freedom
Multiple R-squared: 0.8795, Adjusted R-squared: 0.8728
F-statistic: 131.4 on 1 and 18 DF, p-value: 1.053e-09
> data_100 <- ivreg2[1:100,]
> model_100 <- lm(y ~ x, data = data_100)
> summary(model_100)
Call:
Im(formula = y \sim x, data = data_100)
Residuals:
  Min 1Q Median 3Q Max
-2.1199 -0.5289 0.0271 0.5255 1.7940
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.00783  0.07872  38.21  <2e-16 ***
```

```
1.40164  0.05330  26.30  <2e-16 ***
Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7864 on 98 degrees of freedom
Multiple R-squared: 0.8759, Adjusted R-squared: 0.8746
F-statistic: 691.5 on 1 and 98 DF, p-value: < 2.2e-16
> model_500 <- lm(y \sim x , data = ivreg2)
> summary(model_500)
Call:
Im(formula = y \sim x, data = ivreg2)
Residuals:
  Min
         1Q Median 3Q Max
-2.20345 -0.51588 -0.01086 0.52412 2.26606
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7624 on 498 degrees of freedom
Multiple R-squared: 0.8833, Adjusted R-squared: 0.8831
F-statistic: 3770 on 1 and 498 DF, p-value: < 2.2e-16
> # -----correlation between x, z1, z2 ,e-----
> dat <- cbind(ivreg2, e)
> cor(dat)
```

```
Χ
x 1.0000000 0.9398447 0.620821104 0.28948601 0.651359982
y 0.9398447 1.0000000 0.399870154 0.19965601 0.871374239
z1 0.6208211 0.3998702 1.000000000 -0.01530765 -0.003447192
z2 0.2894860 0.1996560 -0.015307651 1.00000000 0.027708992
e 0.6513600 0.8713742 -0.003447192 0.02770899 1.000000000
> # ----- IV reg Z1-----
> library(AER)
> ivreg_10 <- ivreg( y ~ x | z1 , data =data_10)
> summary(ivreg_10)
Call:
ivreg(formula = y \sim x \mid z1, data = data_10)
Residuals:
  Min
         1Q Median
                      3Q
                              Max
-2.63964 -0.67660 -0.09229 1.06554 1.56448
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7144  0.4277  6.346  0.000222 ***
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.343 on 8 degrees of freedom
Multiple R-Squared: 0.8427, Adjusted R-squared: 0.8231
Wald test: 17.73 on 1 and 8 DF, p-value: 0.002951
> ivreg_20 <- ivreg( y ~ x | z1 , data =data_20)
> summary(ivreg_20)
```

z1

z2

e

```
Call:
ivreg(formula = y \sim x \mid z1, data = data_20)
Residuals:
  Min
         10 Median
                        3Q
                              Max
-3.13540 -0.43910 0.09362 0.65356 1.77434
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0810 0.2500 12.323 3.29e-10 ***
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 1.107 on 18 degrees of freedom
Multiple R-Squared: 0.8199,
                             Adjusted R-squared: 0.8099
Wald test: 27.24 on 1 and 18 DF, p-value: 5.79e-05
> ivreg_100 <- ivreg( y ~ x | z1 , data =data_100)
> summary(ivreg_100)
Call:
ivreg(formula = y \sim x \mid z1, data = data_100)
Residuals:
  Min
       1Q Median 3Q Max
-3.3405 -0.8786 0.0898 0.7411 2.1542
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9771 0.1051 28.320 < 2e-16 ***
```

```
Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.049 on 98 degrees of freedom
Multiple R-Squared: 0.7793,
                            Adjusted R-squared: 0.7771
Wald test: 68.36 on 1 and 98 DF, p-value: 6.775e-13
> model <- ivreg( y \sim x \mid z1, data =ivreg2)
> summary(model)
Call:
ivreg(formula = y \sim x \mid z1, data = ivreg2)
Residuals:
         1Q Median 3Q
  Min
-3.18955 -0.72094 0.01315 0.62964 3.54344
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.03150  0.04512  67.18  <2e-16 ***
      Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.008 on 498 degrees of freedom
Multiple R-Squared: 0.7958, Adjusted R-squared: 0.7954
Wald test: 390 on 1 and 498 DF, p-value: < 2.2e-16
> # ------IV Reg Z2-----
```

>

```
> library(AER)
> ivregz2_10 <- ivreg( y ~ x | z2 , data =data_10)
> summary(ivregz2_10)

Call:
ivreg(formula = y ~ x | z2, data = data_10)

Residuals:
    Min    1Q Median    3Q    Max
-15.593 -5.249 -1.467    4.665    18.598
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.892 11.061 0.171 0.868

x -2.950 51.705 -0.057 0.956

Residual standard error: 10.11 on 8 degrees of freedom

Multiple R-Squared: -7.919, Adjusted R-squared: -9.034

Wald test: 0.003256 on 1 and 8 DF, p-value: 0.9559

> ivregz2 $_2$ 0 <- ivreg( y ~ x | z2 , data =data $_2$ 0) > summary(ivregz2 $_2$ 0)

Call:

ivreg(formula =  $y \sim x \mid z2$ , data = data\_20)

Residuals:

Min 1Q Median 3Q Max -6.4388 -1.3000 0.2736 1.4712 4.5745

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) 3.2433 0.6975 4.650 0.000199 ***
       0.1110 2.4712 0.045 0.964670
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.426 on 18 degrees of freedom
Multiple R-Squared: 0.1351, Adjusted R-squared: 0.08702
Wald test: 0.002017 on 1 and 18 DF, p-value: 0.9647
> ivregz2_100 <- ivreg( y ~ x | z2 , data =data_100)
> summary(ivregz2_100)
Call:
ivreg(formula = y \sim x \mid z2, data = data_100)
Residuals:
           1Q Median
   Min
                           3Q
                                 Max
-2.672103 -0.632638 -0.007235 0.667518 1.778049
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.99020  0.08865  33.729 < 2e-16 ***
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8812 on 98 degrees of freedom
Multiple R-Squared: 0.8441, Adjusted R-squared: 0.8426
Wald test: 59.63 on 1 and 98 DF, p-value: 9.904e-12
> modelz2 <- ivreg( y \sim x | z2 , data =ivreg2)
> summary(modelz2)
```

```
Call:
ivreg(formula = y \sim x \mid z2, data = ivreg2)
Residuals:
   Min
          1Q Median
                         3Q
                               Max
-2.945541 -0.687447 -0.007559 0.586303 3.291229
Coefficients:
     Estimate Std. Error t value Pr(>|t|)
Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.945 on 498 degrees of freedom
Multiple R-Squared: 0.8207, Adjusted R-squared: 0.8204
Wald test: 110.7 on 1 and 498 DF, p-value: < 2.2e-16
> # ------IV Reg z1 + Z2-----
>
> library(AER)
> ivregz1z2_10 <- ivreg( y ~ x | z1 + z2 , data =data_10)
> summary(ivregz1z2_10)
Call:
ivreg(formula = y \sim x \mid z1 + z2, data = data_10)
Residuals:
  Min
        1Q Median
                     3Q Max
-2.6876 -0.6756 -0.0865 1.1177 1.5746
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7114  0.4337  6.252  0.000245 ***
       Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.361 on 8 degrees of freedom
Multiple R-Squared: 0.8383,
                          Adjusted R-squared: 0.8181
Wald test: 16.94 on 1 and 8 DF, p-value: 0.003362
> ivregz1z2_20 <- ivreg( y \sim x | z1 + z2 , data = data_20)
> summary(ivregz1z2_20)
Call:
ivreg(formula = y \sim x \mid z1 + z2, data = data_20)
Residuals:
                        3Q
  Min
         1Q Median
                            Max
-3.22102 -0.41855 0.08397 0.63692 1.78915
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0852 0.2555 12.074 4.57e-10 ***
       Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 1.132 on 18 degrees of freedom
Multiple R-Squared: 0.8118,
                            Adjusted R-squared: 0.8013
```

Wald test: 25.45 on 1 and 18 DF, p-value: 8.42e-05

```
> ivregz1z2_100 <- ivreg( y ~ x | z1 + z2 , data =data_100)
> summary(ivregz1z2_100)
Call:
ivreg(formula = y \sim x \mid z1 + z2, data = data_100)
Residuals:
  Min
         1Q Median 3Q
                              Max
-3.15279 -0.82933 0.05788 0.70203 1.95563
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.98076  0.09974  29.88  <2e-16 ***
       Х
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9955 on 98 degrees of freedom
Multiple R-Squared: 0.8011,
                             Adjusted R-squared: 0.799
Wald test: 113.4 on 1 and 98 DF, p-value: < 2.2e-16
> modelz1z2 <- ivreg( y \sim x | z1 + z2 , data =ivreg2)
> summary(modelz1z2)
Call:
ivreg(formula = y \sim x \mid z1 + z2, data = ivreg2)
Residuals:
   Min
           1Q Median
                           3Q
                                 Max
-3.145058 -0.721230 0.008719 0.622161 3.497457
```

## Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.03113 0.04458 67.99 <2e-16 \*\*\*

x 1.00899 0.04490 22.47 <2e-16 \*\*\*

--
Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 '' 1

Residual standard error: 0.9964 on 498 degrees of freedom

Multiple R-Squared: 0.8007, Adjusted R-squared: 0.8003

Wald test: 505 on 1 and 498 DF, p-value: < 2.2e-16