MAT 201 Larson/Edwards – Section 3.1 Extrema on an Interval

Consider the following graph:

What do we call the points (-4, 5) and (2, -3)?

Definition of Extrema:

Let f be defined on an interval I containing c.

- 1. f(c) is the **minimum of f on I** if $f(c) \le f(x)$ for all x in I.
- 2. f(c) is the **maximum of f on I** if $f(c) \ge f(x)$ for all x in I.

The minimum and maximum of a function on an interval are the *extreme values*, or *extrema* of the function on the interval. The minimum and maximum of a function on an interval are also called the *absolute minimum* and *absolute maximum*, or the *global minimum* and *global maximum*, on the interval.

Consider the following graph:

What do we call the points (-4, 5) and (2, -3)?

Extreme Value Theorem:

If f is continuous on a closed interval [a, b], then f has both a minimum and a maximum on the interval.

Why does the extreme value theorem require that a function *f* be continuous on a closed interval [a, b] in order for *f* to have both a minimum and maximum?

The "Official" Definition of Relative Extrema:

- 1. If there is an open interval containing c on which f(c) is a maximum, then f(c) is called a *relative* maximum of f, or you can say that f has a *relative* maximum at (c, f(c)).
- 2. If there is an open interval containing c on which f(c) is a minimum, then f(c) is called a *relative minimum* of f, or you can say that f has a **relative** *minimum* at (c, f(c)).

Relative Extremum (As I See It):

- 1. The point at which a function changes from an increasing status to decreasing (or constant) status is a relative maximum.
- 2. The point at which a function changes from a decreasing (or constant) status to an increasing status is a relative minimum.

What is the relationship between relative extrema, and the derivative?

Extreme Value Theorem:

If f is <u>continuous</u> on a closed interval [a, b], then f has both a minimum and a maximum on the interval.

Why does the extreme value theorem require that a function f be continuous on a closed interval [a, b] in order for f to have both a minimum and maximum?

What is the relationship between relative extrema, and the derivative?

At extreme values (in most cases)
the slope of the tangent line is
defined to be zero.

Critical Numbers:

Let f be defined at c. If f'(c) = 0 or if f'(c) is not differentiable at c, then c is a critical number of f.

Give an example (graphically) of each type of function f, yielding critical numbers c.

Relative Extrema Occur Only At Critical Numbers: If f has a relative minimum or relative maximum at x = c, then c is a critical number of f.

Give an example (graphically) of each type of function f, yielding critical numbers c.

f'(c) is not differentiable at c

Ex: Approximate the critical numbers of the function shown in the graph. Determine whether the function has a relative maximum, relative minimum, an absolute maximum, absolute minimum or none of these at each critical number on the interval shown.

Ex: Approximate the critical numbers of the function shown in the graph. Determine whether the function has a relative maximum, relative minimum, an absolute maximum, absolute minimum or none of these at each critical number on the interval shown.

Crit. #'s:

Ex: Locate the absolute extrema of the function on the closed interval.

a)
$$f(x) = 5x^2 - 3x + 1$$
, $[-1, 1]$

b)
$$h(s) = \frac{1}{s-2}$$
, [0, 1]

Ex: Locate the absolute extrema of the function on the closed interval.

a)
$$f(x) = 5x^2 - 3x + 1, [-1, 1]$$

$$t\left(\frac{10}{3}\right) = 2\left(\frac{10}{3}\right)_{3} - 3\left(\frac{10}{3}\right) + 1 = \frac{50}{11}\left(\frac{50}{3}\right)_{11}$$

Compare Endpoints W/all points at our critical #'s. The highest point is the absolute max & the lowest point is the absolute min.

$$f(-1) = 5(-1)^{2} - 3(-1) + 1 = 9 \quad (-1,9)$$

 $f(1) = 5(1)^{2} - 3(1) + 1 = 3 \quad (1,3)$

$$(-1, 9)$$
 is the absolute max. $(\frac{3}{10}, \frac{11}{20})$ is the absolute min.

b)
$$h(s) = \frac{1}{s-2}$$
, [0,1] $h(s) = (s-a)^{-1}$
 $s \neq a$

Critical value: $s' = a \neq [0,1]$
 $h'(s) = -(s-a)^{-a} = -\frac{1}{(s-a)^2}$
 $0 = -\frac{1}{(s-a)^2}$
 $h'(s) = -\frac{1}{(s-a)^2}$

Tools for finding Absolute Extrema on a Closed Interval: To find the extrema of a continuous function f on a closed interval [a, b],

- 1. Evaluate f at each of its critical numbers in (a, b).
- 2. Evaluate f at each endpoint, a and b.
- 3. The least of these values is the absolute minimum, and the greatest is the absolute maximum.