

Componente de medición de la calidad de las imágenes de huellas dactilares.

Autores:

Alexei Alayo Rondón Miriela Velázquez Arias

Tutores:

Ing. Yaicel Díaz Córdova Ing. Ramón Santana Fernández

Sistemas de Reconocimiento Biométrico

Sistema Automático de **Birdifficétría** Dactilar

Sistema Automático de Identificación Dactilar

Problema de investigación

¿Cómo determinar la calidad de las imágenes de huellas dactilares para decidir su ingreso en el módulo de extracción?

Objeto de estudio

Procesos de medición de calidad de imágenes de huellas dactilares.

Objetivo general

Desarrollar un componente que permita determinar la calidad de la imagen de una huella dactilar y que posibilite descartar imágenes de baja calidad del proceso de extracción de minucias, para ser utilizado por el componente de extracción de minucias que se desarrolla en el Departamento de Componentes del CISED.

Objetivos específicos

Determinar las tendencias mundiales de los algoritmos de medición de calidad de imágenes de huellas dactilares.

Definir los algoritmos de medición de calidad de imágenes de huellas dactilares a utilizar.

Analizar las tecnologías, metodologías y herramientas existentes que contribuyan al desarrollo del componente.

Objetivos específicos

Implementar el proceso de medición de calidad de imágenes de huellas dactilares.

Realizar pruebas al componente para validar su correcto funcionamiento.

Idea a defender

La determinación de la calidad de la imagen de una huella dactilar, antes de realizar el proceso de extracción de características, permite seleccionar imágenes con mejores condiciones para obtener buenos resultados en la comparación de características.

Sistemas Similares

Marco internacional

- >NBIS.
- >AccuScan.
- ➤ QualityCheck.

Marco nacional

- ➤ Biomesys AFIS.
- Componente para la medición de la calidad de imágenes de huellas dactilares (UCI).

Sistemas Similares

Marco internacional

- **►NBIS.**
- >AccuScan.
- ➤ QualityCheck.

Marco nacional

- ➤ Biomesys AFIS.
- Componente para la medición de la calidad de imágenes de huellas dactilares (UCI).

Algoritmos

Técnicas estudiadas

Combinación de características locales.

Nivel de certeza de la orientación y estructura cresta-valle.

Método basado en características locales y globales.

Algoritmo basado en el espectro de Fourier.

Coherencia local del campo de orientación.

Características de la simetría.

Ambiente de desarrollo

Metodología de desarrollo de software

Herramienta de modelado

Lenguajes de modelado

Lenguaje de programación

Entorno de desarrollo integrado (IDE)

Framework.Net 4.0

Framework de desarrollo

Propuesta de Solución

Atoprites des tadiadós

Combinación de características locales.

Nivel de certeza de la orientación y estructura cresta-valle

Análisis local

Análisis Global

- No homogeneidad en caracter ísticas locales y globales. en el espectro de Fourier.
- Contraste direccional.

Algoritmo basado en el espectro de Fourier.

Coherencia local del campo de orientación.

Calidad de la Características de la masen de la Huella

Propuesta de solución

Método basado en características locales y globales.

Análisis local

- No homogeneidad.
- Coheraestei di idecciannado di reccional.

Análisis Global

• Concentración de la energía en el espectro de Fourier.

Calidad de la Imagen de la Huella Dactilar

Arquitectura

Funcionalidades

- 1. Determinar la calidad de una imagen de huella dactilar.
 - a) Procesar una imagen de huella dactilar.
 - b) Medir la calidad de una imagen de huella dactilar según la combinación de características locales y globales.
- 2. Generar el mapa de calidad de una imagen de huella dactilar.
- 3. Determinar la calidad de un conjunto de imágenes de huellas dactilares.
- Generar los mapas de calidad de un conjunto de imágenes de huellas dactilares.

Procesamiento:

- Convoluciones.
- Matriz de la imagen.

Análisis local

Imagen en Bloques

- Coherencia.
- No homogeneidad.

Análisis global

Espectro de Fourier

Concentración de energía

Niveles de calidad

- Buena
- Normal
- Húmeda
- Seca
- Corrupta

Aplicación de las pruebas

Estrategia de Pruebas

Pruebas de Aceptación

Casos de Prueba

Pruebas de Fiabilidad

Experimentación 2

NBIS

MINDTCT

Bases de datos (FVC)

Fuente de datos	Tipo de Sensor
DB1	Sensor Óptico Bajo-Costo
DB2	Sensor Capacitivo Bajo-Costo
DB3	Sensor Óptico
DB4	Generador Sintético

	Nivel 1	Nivel 2	Nivel 3	Nivel 4	Nivel 5
NBIS	222	233	133	38	24
Componente desarrollado	122	314	20	37	113
Correlación media	0,49				

Fingerprint Recognition (FR)

Bases de datos

Fuente de datos	Tipo de Sensor	
DB1_B (FVC2000)	Sensor Óptico Bajo-Costo	
DB1_A (FVC2004)	Sensor Óptico	

DB1_B

Fuente de Datos	Cantidad de imágenes	EER (%)
DB_B_C1	37	16.412
DB_B_C2	37	26.874

DB1_A

Fuente de Datos	Cantidad de imágenes	EER (%)
DB_A_C1	135	19.823
DB_A_C2	135	33.053

DB1_B

DB1_A

Resultados de las pruebas

El NBIS y el componente desarrollado coincidieron en la medición de la calidad de una imagen de huella dactilar en aproximadamente el 50% de los casos.

Ambos sistemas están mejor correlacionados cuando intervienen dataset de imágenes de huellas tomadas con el sensor capacitivo y el generador sintético.

Resultados de las pruebas

El componente desarrollado es más riguroso en la medición de la calidad de imágenes de huellas dactilares que el NBIS.

Las curvas ROC evidencian la mejora en el rendimiento a partir de la disminución de la tasa de error EER como parte del procesamiento de imágenes de mayor calidad.

Conclusiones

El análisis de los elementos teóricos asociados al negocio y el estudio del estado del arte acerca de los procedimientos utilizados en el proceso de medición de calidad de imágenes de huellas dactilares, facilitó la definición de una propuesta de solución acorde a las necesidades existentes.

La implementación de un método basado en características locales y globales de las imágenes de las huellas dactilares, así como la definición de métricas, permitió conformar un criterio bien fundamentado y abarcador de medición de calidad.

1

Conclusiones

El componente permite decantar imágenes de huellas dactilares de baja calidad del proceso de extracción de características, garantizando en consecuencia que se disminuya la tasa error FTP.

Se demostró que procesar imágenes de mayor calidad disminuye las tasas de errores asociadas al procesamiento de huellas dactilares (FMR, FNMR, EER), lo cual reafirma la utilidad del componente desarrollado.

Recomendaciones

1

• Perfeccionar las métricas de medición de calidad de imágenes de huellas dactilares del componente.

2

 Implementar otros algoritmos de medición de calidad de imágenes de huellas.

3

• Utilizar la programación en paralelo para mejorar los tiempos de respuesta del componente.

Componente de medición de la calidad de las imágenes de huellas dactilares.

Autores:

Alexei Alayo Rondón Miriela Velazquez Arias

Tutores:

Ing. Yaicel Díaz Córdova Ing. Ramón Santana Fernández

Preguntas del Oponente

Pregunta #1

¿Qué beneficios les brinda el lenguaje de programación seleccionado para el desarrollo del componente de medición de la calidad de las imágenes de huellas dactilares?

Principales características de C#:

- Tipo básico decimal.
- Inclusión de la instrucción foreach.
- Tipo básico string.
- Distinción de un tipo bool.

- Espacios de nombres.
- Clases.
- Enumeraciones.
- Sobrecarga.
- Control estructurado de excepciones.

- Interoperabilidad del lenguaje.
- Seguridad ampliada.
- Compatibilidad de versiones mejorada.

Beneficios:

- Su uso permitió agilizar el proceso de implementación.
- La existencia de soluciones asociadas a la biometría de huellas dactilares implementadas en C# en el centro facilitó la reutilización de código.
- Un porcentaje significativo de aplicaciones implementadas en el centro son desarrolladas utilizando este lenguaje, por lo que se garantiza la continuidad de la línea del CISED.

 El sistema de enrolamiento del SICA y el Sistema Multibiométrico están implementados en C#.

Pregunta #2

En la investigación plantean: "Los resultados arrojados por el componente desarrollado en la UCI al procesar imágenes de bajo contraste no son fiables".

- a) Demuestre esta afirmación.
- b) Realice una comparación, en cuanto a fiabilidad, entre el componente de la UCI existente antes de la investigación y el resultante de la investigación.

Inciso a)

Fuente de datos: DB1_B		Total de imágenes: 80				
	Calidad 1	Calidad 2	Calidad 3	Calidad 4	Calidad 5	
Examen visual	24	36	0	11	9	
Componente UCI (antes)	0	0	0	36	44	
Coincidencia (%)	0	0	0	30.55	20.45	

Inciso a)

Exámen visual: 2

Componente previo: 4

Inciso a)

Exámen visual: 2

Componente previo: 5

Inciso a)

Exámen visual: 5

Componente previo: 5

Inciso b)

Principales diferencias

Inciso b)

Principales diferencias

 El componente previo a la investigación analiza la imagen únicamente de manera local.

La inclusión del análisis del espectro de la imagen por medio del cálculo de la transformada de Fourier en el componente resultante de la investigación posibilitó estudiar el patrón cresta-valle global de la imagen.

Inciso b)

Principales diferencias

 El análisis de la coherencia del campo de orientación en el componente resultante de la investigación garantiza que las imágenes de bajo contraste pero con buen patrón cresta-valle no sean calificadas erróneamente.

El análisis del patrón cresta-valle tanto local como global ofrece superioridad al componente resultante de la investigación sobre el existente previamente.

Inciso b)

Componente	Comportamiento	Aciertos según	Estabilidad ante	Procesamiento de
	ante imágenes	examen visual	distintos tipos de	imágenes de
	inválidas (rgb)	para una	tecnología de	diferentes
		muestra de 30	captura	resoluciones
		huellas (%)		
Previo	Las admite	50 (15/30)	No	si
Resultante	Son rechazadas	83.3 (25/30)	si	si

Cantidad de imágenes:	Fuente de Datos:	Tecnología de captura:	
30	DB1_A	Sensor Óptico	

Pregunta #3

Para la clasificación de los bloques de la imagen de la huella dactilar se definieron varios umbrales. ¿Qué técnicas de la Inteligencia Artificial se utilizaron para obtener estos valores?

a) En caso de no haber utilizado ninguna, proponga alguna técnica y explique por qué la propone.

Red neuronal:

- Velocidad de procesamiento.
- Capacidad de generalización.
- Arquitectura paralela de las redes neuronales.

Propuestas de redes neuronales:

- El perceptrón multicapas.
- Los mapas auto-organizado de Kohonen.
- Las redes Backpropagation.

Componente de medición de la calidad de las imágenes de huellas dactilares.

Autores:

Alexei Alayo Rondón Miriela Velazquez Arias

Tutores:

Ing. Yaicel Díaz Córdova Ing. Ramón Santana Fernández