665.33827 Un 3 m 1971/72

MINERAL INDUSTRY SURVEYS

U. S. DEPARTMENT OF THE INTERIOR BUREAU OF MINES

AMENT OF MINISTER OF MINISTER

Rogers C. B. Morton, Secretary

Elburt F. Osborn, Director

JUNE 1972

PETROLEUM PRODUCTS SURVEY NO. 75

THE LIBRARY OF THE

SEP 7 1972

UNIVERSITY OF ILLINOIS
OF THE

MOTOR GASOLINES, WINTER 1971-1972

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

MOTOR GASOLINES, WINTER 1971-72

by

Ella Mae Shelton

Bartlesville Energy Research Center, Bureau of Mines U.S. Department of the Interior, Bartlesville, Okla.

panle) is	CONTENTS	CEATIF
		Page
,		1 1 2
	motor-gasoline survey reports, 1962-72	5
	ILLUSTRATIONS	
		Follows
Fig.	and the percent of the rotal	page
representant	Trends of certain characteristics of regular-price gasolines	5
2.	Trends of certain characteristics of premium-price	3
	gasolines	5
3. 4.	Distribution of research-method octane numbers	5 5
5.	Distribution of motor-method octane numbers	5
٥.	national motor gasoline survey, winter 1971-72	53
	Distillation 3,540 59	
	TABLES	Dame
		Page
1.	Summary of values, motor gasoline survey, winter 1971-72	7
2.	Summary of values, motor gasoline survey, winter 1970-71	7
3.	Average data for different brands, winter 1971-72	8
4. 5.	Average data for brands in each district	42
6.	Data for some additional grades	44
	research octane numbers by districts	51
7.	Cumulative percents of samples of all grades by	
7 mul 2	motor octane numbers by districts	52
8.	Locations and numbers of samples	53

INTRODUCTION

The properties of motor fuels sold through service stations in the United States are reported in accordance with a cooperative agreement between the American Petroleum Institute and the Bureau of Mines of the United States Department of the Interior. By agreement with the American Petroleum Institute, identification of the data by item number is confidential.

Analytical data for 5,226 samples that represent the products of 65 companies are included. Company representatives collected the samples during December 1971 and January and February 1972. As in previous surveys, the gasolines covered by this survey include those from both large and small suppliers. Laboratories of various refiners, motor manufacturers, and chemical companies obtained and submitted the data to the Bureau of Mines for compilation. Motorgasoline survey reports published during the past 10 years are listed on page 5.

Research octane numbers were reported for all samples (5,226) used to prepare this report. Motor octane numbers were not reported for six samples. However, other analytical tests required for a complete gasoline analysis were not available for many of the samples. Tests in this category, the number of test results available and used in this report, and the percent of the total samples represented for that test include the following:

Test	Number of samples used	Percent of total samples
Gravity	4,003	77
Sulfur content	1,212	23
Lead content	3,956	76
Distillation	3,046	58
Vapor pressure	3,000	57

SUMMARY

The characteristics of motor gasolines for winter 1971-72 are summarized in table 1, and for comparison, those for winter 1970-71 are shown in table 2. Trends of some of the more important characteristics for several years are shown in figures 1 and 2. The following data show trends of national average octane numbers during recent years:

	Regular- Octane n	•	Premium- Octane r	
	Research	Motor	Research	Motor
Summer 1970	93.8	86.3	99.8	92.2
Winter 1970-71	93.9	86.4	99.8	92.2
Summer 1971	94.0	86.3	99.8	92.3
Winter 1971-72	94.0	86.5	99.8	92.3

Tables 3 and 4 show regional average octane numbers of regular- and premiumprice fuels.

Data for third grade, intermediate grade, and super-premium gasolines are included in table 5.

DISCUSSION OF DATA

Terms used in the surveys have the following meanings:

District: The designation of a marketing area for collecting samples and data. The present arrangement of 17 districts, developed by the CFR Committee, 1/ was selected with reference to the specifications on motor gasolines, refinery locations, population centers, and arteries of commerce such as navigable rivers. The States or parts of States in each district are indicated in the headings of table 3 and are shown in figure 5.

Brand: The gasoline sold within a given price group and by a given trade name.

Item: The index number assigned to a given brand in a given district. The data for each item represent the average of those submitted for that brand in that district. The number of samples represented follows the item number.

^{1/} Coordinating Fuel and Equipment Research Committee (formerly the Coordinating Fuel Research Committee) of the Coordinating Research Council, Inc. From 1935 to 1948 the motor-gasoline surveys were conducted under a cooperative agreement between the Coordinating Research Council and the Bureau of Mines.

Sample: The supply of gasoline obtained at the service station and analyzed in the laboratory.

Table 3 presents by districts data for gravity in degrees API, sulfur, gum, lead, research- and motor-method octane numbers, Reid vapor pressure, and distillation characteristics of the motor fuels collected. The tests were made according to American Society for Testing and Materials standards. 2/

Corrosion test results are not included in the district tables as all the reported numbers are "1," according to the corrosion scale given in table 1 of ASTM D130. 2/

Gum test data are reported to the nearest whole number. The distillation temperatures, corrected to barometric pressure at 760 mm Hg, are those for percent evaporated.

Average values follow the tabulated data in table 3 for the respective grades of fuel shown in each district. The averages of the various properties were computed without reference to the total number of samples represented by each item.

The district averages from table 3 are shown in table 4 with the number of brands and number of samples for regular- and premium-price gasoline in each district. The national averages for each of the properties of fuels sold in each of the 17 districts are given at the end of the table.

Table 5 shows data for third grade, intermediate grade, and super-premium motor gasolines.

Figures 1 and 2 illustrate trends in the national averages of certain properties of regular- and premium-price gasolines, respectively, since the summer of 1946. Averages for the winter surveys are plotted on the lines that represent the years and for the summer surveys between the lines. Octane-number points are connected for successive surveys, but those for Reid vapor pressure and distillation temperatures are plotted separately for summer and winter surveys. Charts that show plots of these properties from 1935 (except winter 1941-42 and summer 1942) are presented in the survey report on motor gasolines for winter 1964-65 and preceding reports. 3/

3/ Blade, O.C., Motor Gasolines, Winter 1964-65. Bureau of Mines Petroleum Products Survey No. 40, 38 pp. (in cooperation with the American Petroleum Institute).

American Society for Testing and Materials, 1971 Annual Book of ASTM Standards, Part 17, Petroleum Products -- Fuels; Solvents; Burner Fuel Oils; Lubricating Oils, Cutting Oils; Lubricating Greases; Hydraulic Fluids, Philadelphia, Pa., 1,224 pp.

Figures 3 and 4 illustrate distribution (frequency) of octane values by numbers of samples for all grades of fuel represented. Each bar represents one-half octane number.

Tables 6 and 7 show the percentages of all samples for each district at each whole octane number level, cumulated according to increasing octane number.

The districts, locations, and number of samples of gasoline represented are listed in table 8 and shown on the map in figure 5. The locations are named for the principal cities in the respective vicinities, and include suburbs and adjacent communities. The area of the circle at each location is proportional to the number of samples obtained. The summary at the end of table 8 lists by district, the number of locations, samples, and the percentages of the latter based on the total reported.

This report does not discuss the significance of the data presented. Reference may be made to the ASTM specification 4/ for motor gasoline and its appendixes, "Significance of ASTM Specifications for Motor Gasoline," at a technical library.

^{4/} American Society for Testing and Materials, Standard Specifications for Gasoline (D439): 1971 Annual Book of ASTM Standards, Part 17 (see footnote 2), pp. 168-177.

LIST OF MOTOR-GASOLINE SURVEY REPORTS, 1962-72

			PPS			No. of
Author	Season	and Year	Report No.	Publis	hed	Pages
In cooperation with the	American	Petroleum	Institute			
Blade, O. C.	Winter	1962-63	30	June	1963	32
Do.	Summer	1963	33	Jan.	1964	35
Do.	Winter	1963-64	35	June	1964	40
Do.	Summer	1964	37	Dec.	1964	40
Do.	Winter	1964-65	40	July	1965	38
Do.	Summer	1965	43	Jan.	1966	39
Do.	Winter	1965-66	45	June	1966	38
Do.	Summer	1966	48	Dec.	1966	38
Do.	Winter	1966-67	50	June	1967	38
Do.	Summer	1967	53	Dec.	1967	38
Do.	Winter	1967-68	55	June	1968	39
Do.	Summer	1968	58	Jan.	1969	38
Do. Blade, O.C. and	Winter	1968-69	60	July	1969	38
Ella Mae Shelton Shelton, Ella Mae	Summer	1969	63	Jan.	1970	38
and C.M. McKinney	Winter	1969-70	66	Aug.	1970	47
Do.	Summer	1970	68	Jan.	1971	49
Do.	Winter	1970-71	70	June	1971	54
Shelton, Ella Mae	Summer	1971	73	Jan.	1972	59
Do	Winter	1971-72	This report			

Digitized by the Internet Archive in 2013

FIGURE 1.-Trends of Certain Characteristics of Regular-Price Gasolines.

FIGURE 2.—Trends of Certain Characteristics of Premium-Price Gasolines.

FIGURE 3. - Distribution of Research - Method Octane Numbers.

FIGURE 4.— Distribution of Motor — Method Octane Numbers.

TABLE 1. - Summary of values, motor gasoline survey, winter 1971-72

	ASTM	Regular-price gasoline	Premium-price gasolin
Test	method	Average	Average
Gravity, °API	D287	62.7	62.9
Corrosion, No.	D130	1	1
Sulfur content, wt %	D1266	0.044	0.026
Gum, mg/100 ml	D381	1	1
Lead, g/gal	D526	1.88	2.43
Octane number, Research	D2699	94.0	99.8
Octane number, Motor	D2700	86.5	92.3
Reid vapor pressure, Ib	D323	12.1	12.1
Distillation	D86		
Temp, °F			
IBP		84	83
5% evaporated		96	95
10% Do.		108	109
20% Do.		128	132
30% Do.		150	158
50% Do.		199	209
70% Do.		255	253
90% Do.		336	321
95% Do.		369	353
End point		408	398
Residue, vol %		1.0	0.9
Loss, vol %		2.1	2.4

TABLE 2. - Summary of values, motor gasoline survey, winter 1970-71

	ASTM	Regular-price gasoline	Premium-price gasoline
Test	method	Average	Average
Gravity, °API	D287	63.1	62.6
Corrosion, No.	D130	1	1
Sulfur content, wt %	D1266	0.039	0.023
Gum, mg/100 ml	D381	1	1
Lead, g/gal	D526	2.02	2.60
Octane number, Research	D2699	93.9	99.8
Octane number, Motor	D2700	86.4	92.2
Reid vapor pressure, lb	D323	12.1	12.1
Distillation	D86		
Temp, °F			
IBP		84	83
5% evaporated		95	95
10% Do.		108	109
20% Do.		127	132
30% Do.		149	158
50% Do.		197	210
70% Do.		253	253
90% Do.		335	321
95% Do.		368	353
End point		406	396
Residue, vol %		1.0	1.0
Loss, vol %		2.1	2.3

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72

DIST. 1 NORTHEAST M.H.» VI.» AND NORTHERN N.Y.

				2	בפטראו	LHL	REGULAR-PRICE GASULINE
SULFA	GUM	GUM, LEAD, OCTANE NUMBER RVP.	OCTA	NE NUM	BER	RVP,	DISTILLA
ASTM	ASTR	ASTM	RES	MOTA	X+X	ASTM	ASTM ASTM RES, MOT, R+M ASTM TEMPERATURE, F (CORR
01266	0381	0526	ASTM	ASTE		0323	PERCENT E
× 13	C X	C / C A	00400	00700	0	<u>a</u>	05 05 01 R 001

		9.9		3110		PLATIO	A PONTIN DA	0.7	BVB.			6	OTSTILL ATTON.	ATT		ASTM	DAA				
	SAM	AS		ASTE	AS	RES	10	7 + H	ASTM	TEMP	EMPERATUR	in a	00)	CORRECTED		10	MM	HG)			
ITEM	PLES		0	0381		ASTE	ASTH	*	D323			PE	PERCENT	1	EVAPORAT	TED			RES	LOS	S
		API	*	S X		02699	02700	CN.	E B	186	50	0 20	30	20	70	06	95	FP	3-6	24	
1	10	60.1	0.030	-	1.29	94.5	86.5	90.5	12.7	8.1	87 1	04 1	27 15	4 22	1 289	360	389	422	1.1	3,3	
~	٥	63.6	.032		1.08	94.8	86.6	7.06	14.2	77	9.4	95 1	11 13	5 19	7 268	341	369	399	1.2	2.8	
6	9	d	,026	-	1.85	6.46	87.1	91.0	12.8	81	92 1	04 1	30 15	8 20	5 261	345	377		0.	3.0	
4	4	9	.047	-	1.85	7.46	87.2	91.0	12.0	80	97 1	09 1	31 15	(1)	3 247	344	376	413	0.	5.9	
S	~	5	060.	~	2.19	95.4	85.5	90.5	12,3	78	95 1	05 13	23 14	2 18	0 235	319	350	386	60	2.5	
•	4	4	.036	0	۳.	94.5	87.9	91.2	12.9	80	94 1	03 13	22 14	2 18	3 236	315	352	399	1.0	3.1	
7	-	0	.020	2	-	95.4	87.6	91.5	10.8	82	98 1	08 13	26 14	19	9 258	32	350	382	1.0	2.0	
80	10	2	.027	-	2.02	94.5	87.0	90.8	12.2	81	92 1	06 1	25 14	18	8 256	326	356	396	1.0	2.4	
•	3	62,3	.033	O.	1.53	7.46	87.0	6.06	13.9	74	88	98 1	17 13	19 19	8 270	e	395	414	1.0	2.5	
10	m		.065	A	1.91	95.3	86.3	90.8	12.9	7.8	91 1	06 1	29 15	12 20	4 264	343	374	410	o.	1.6	
11	10	63.2	050	-	2.22	94.2	86.8	90.5	11.2	84	1001	10 1	29 14	61 61	9 256	330	363	401	1.2	1.8	
12	•	4	,026		2.32	7.46	87.0	6.06	11.8	83	95 1	-	25 14	17 19		8 342	372	404	6.	2.1	
13	6	66,3				7.06	90.2	92.5	13.2	06	96 1	04 1	19 13	17 18	0 256	6 328	349	383	1.1	2.8	
14		e.	.024	~	2.32	7.46	87.8	91.3	12.4	80	95 1	03 1	21 14	11 18	9 246	332	366	412	1.0	3.0	
15	1	8	•		•	100.8	92.0	96.4	13.2	16	98	99 1	20 14	17 20	7 263	3 338	363	380	1.5	2.3	
AVERAGE		63.1	660.	-	1.89	95.2	87.5	91.4	12.6	80	93 1	0.4	124 14	61 91	6 257	336	367	401	1.0	5.5	
SAMPLES	75																				

TABLE 3. - MOTOR GASOLINE SURVEY. WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

		GASOLINE
	NORTHERN N.Y.	PREMIUM-PRICE
	AND	
1 NORTHEAST CONTINUED	MAINE, MASS., N.H., VT.,	
DIST.		

		. 23	2000	CHOS		TAK TOO	L NUMBER	U 10	- A L A L			3		- 22	CADILATICA O		DOO HIDE				
	SAMP	ASTM	ASTM	ASTM	ASTM	RESA	MOT	X+ X	ST	TEMPE	EMPERATUR	JRE, F		CORRECTED	CTED	TO 7	760 M	M HG			
ITEM	PLES	0287	01266	0381		ASTM	ASTM	*	0323			PEF	ERCENT		EVAPORA	TED			RES	S LOS5	5.5
		API	g-	D I	9/9	02699	02700	2	LB	186	5	10 20	0 3	0 50	0 10	0	96 0	E P	*	×	
16	10	62.0	0.008	1	1.97	100.0	•	0.96	12.7		88	gant		3	2	ബ		5 39	7 1 .	0	9
17	0		.013	-	1.61	100.2		96.4	13.9	75	84	٠- ٣	00 1	8 ±	1 2	0		6	9 1.		
18	9	64.2	.019	0		100.0	92.4	96.2	12.9	7.9	92	105 12	28 1	53 2	4 2	49 32	29 35	4	13.1.	0 3.	
19	4	-	.019	-		100.0	2	96.3	•	77	91	2 1	21 1	2 2	1 2	ന		1 39		•	
20	4	9	.011	N	00.	100.8	•	95.4	12.5	76	89	~	32 1	4 2	17 24	48 29		3			
21	-	62,3	.017	-	2.39	100.2	•	96.2	11.1	81	91	3 1	28 1	6 2	3	8		9		0 3.	0
22	(1)	-	8			8.66	2	96.2	13.2	96		-	21 1	6	96 28	80 32		3	9		0
23	_	6	.019	C4		100.2		96.3	12.7	82	95	4 1	21 1	3 2	5 2			5 39		0 2.	
24	10	60.8	.008		2.58	1001	2	96.5	12.1	19	91	4 1	27 1	2 2	4	6 3		3	8 0	.1 2.	N
25	m	2	.047			100,2	92.1	96.2	12.8	90	06			9	8 2	60		4		8 2	
56	50	-	.022	-		100.3	2		•	73		5		1 2	3	S.		04 9	8 1.	0	_
27	10	4	.022			10001	92.3	96.2	11.9	81	92	-	33 1	1 2	11 24	48 30		3		0 2	
28	9	61.4	.054			100.6	2	96.3		4	89	-	22 1	2	6 2	58 33		14 38	1 9	-	N
58	-	56,3	.016		2.57	101.3	•	96.3	11.2	76	85	7	18 1	4 2	0	ص ص	5	3		0 3.	0
30	2		.019	-		100.4	92.0	96.2	13.4	87	92	112 1	35 1	58 2	06 2	52 33	23 35	14 38	6 1	.0 4.	-
AVERAGE		61.5	.021		2.46	100.3	92.1	96.2	12.7	80	06	104 1	24 1	49 2	06 2	57 3	19 34	8	90 1	.0 2.	0

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

STERN PA. DIST.

EAS
AND
N • Y • 5
CENTRAL AND SOUTHERN N.Y. AND EAS
AND
CENTRAL
VA.
MD.
Nodes DELes MDes VASS
N. J. N
MID-ATLANTIC COAST
R.I.
E &

		å		2		OCTAN	NE NUMB	BER	>			0	DISTI	ISTILLATION	ION,	AST	M 08	9			
	Y	ASTM	ASTE	ASTM	AST	ESP	MOT	Œ	-	TEMPE	RATU	REP	4	ORRE	CORRECTED	10	160	MM HG	2		
ITEM	PLES	28	12	38	٥	ASTM	ASTM		(4)			PE	RCE	IT EV	APOR	ATED			RE	S	L055
		۵.	M	G	3	05698	02700	03	67	186	5 1	10 2	0 3	0 5	2 0	6 0	6 0	5 EP	34		*
31		4	N)	-	2.09	95,3	86.1	90.7	12.4	82	93 1				9	50 3	3 3	0 3	8 1.	0	4.
32	18	3	,03	-	1.91		87.1	91.0	2	81	92 1	105 1	126 1	48 1		47 3	9	65 39		-	80.
33		8	3	0			86.7	40.7	12.8				C	4	26	55 3	0	4 4		©	٥.
34	0	63.1	050		2.10	4		90.06	13.0	7.8		6	4	9 4	96	55 3	C.	5 4	8 1.		.1
35		3	C	0	1.15	5	86.4				84		9	39	0	53 3	5	66 39	80	0	.7
36	26	0	3			94.5	9	9006	12.1	81	L)	107	131 1	5	18	84 3	J.			1 2	
37		4	2		1.94	4		91.2			98	107	N	4	87	55 3	6 3	7 4	0 1.	0	
38		-	C			95.1		-	12.3			102 1			26	71 3	40	4	~	60	80
39		3	CV	-		4	9	6.06	11.7		97	108 1	_	4	FU.	51 3	30	1 3			٥.
04		2	TU.	0	1.90	4		90.4	12.5		92 1	104			0.4	67 3	44 3	3 4	47	0	
4.1		-	4	-	2	5		91.0	13,3	81	91	1001	2	46	6	53 3	25	57 40	3	0	
42		-	3	a	4	95.1		91.2	13,3		88	98	0	62	0.1	68 3	20	4		N	4.
43		8	-	-	0	4	7.	6.06	12.0		97	111 1	'n	29	0.4	50 3	~	7 3			9.
44		3				4 .		8.06			96	1001	0		9 4	52 3	46 3	80 41			.2
45	2	8	2	-	C	95.4			11.3	83		601	2	159 2	10	73 3	4	940			
94	-	è	S	-	80	4	-	91.0	13.5			1 26		N.	26	53 3	4	- 41		4	.1
47	-	3	~	-		4		0	13.7	83				00	00	63 3	52	- 41		1 5	
8 7	11	-	.030	0	0	95.0	-	91.4	12.3	85		105 1	128 1	S	07	76 3	44	4		0	۳,
64	4	o,	4	-	0	4		6.06	13,3	75	88	1001		'n	95 2	53 3	4	76 41			4.
20	16	~	S	-		4	.0	6.06	13.4	40	06			145 1	9	60 3	4 4	2 4		0	•
51	-		3	-		95.8	88.5	92.2	11.0	81	•	110 1	34 1	57 2	15 2	70 3	42	00	12 1.	0	0
AVERAGE		62,3	,039			6.06	87.1	91.0	12.6	81	92	104 1	125 1	48 1	99 2	60 3	40 3	70 40	1 8	0 2	

TABLE 3. - MOTOR GASOLINE SURVEY. MINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

DIST. 2 MID-ATLANTIC COAST--CONTINUED
R.I., CONN., N.J., DEL., MD., VA., CENTRAL AND SOUTHERN N.Y., AND EASTERN PA.

PREMIUM-PRICE GASOLINE

		GR.	SULFA	GUM,	LEA	OCTA	ANE NUMBER	BER				0	ISTI	DISTILLATION		ASTR	086			
	SAM	AST	ASTA	ASTH	ASTH	RESA	-	R+M	ASTM	TEMPE	RATUR	ũ	2)	CORRECTED		10 76	BO NH	CDH		
ITEM	PLES	02	01266	0361	052	ASTE	ASTR		2			PE	ERCEN	T EV	APORA	TED			S	L055
			H	S I	0/0	02699	02700	2		186	5 1	0 2	0	0 5(0 10	06	95	EP	ae	M
52	17	S.	0.010	1	0	101.0		95.7	12.5			1 90	-	8 2	2 2	1	33	376	0.8	2.8
53	18	61.1	.011	-	2.54	1001	93.4	96.8	12.5	82		-	3 1	48 20	05 26	5 326	355	39	1.0	
5.4	16	3	.022	0	.2		92.5	96.4	13.3	80	-		5 1	3 2	9 2	-	S.	406		
52	80	3			4	100.2	93.0	9.96		77		1001	30 1	9	2	~	36	4	٠.	2.1
26	22	7	.012	-	۲.		95.6	7.96	14.4	77	ĸ	5 1	2 1	1	9	-	33	372	1.0	
57	24	2	.020		2	10001	92.2	96.2	12.3			50		8	4	N	342	m		
20	11	4	010	-	4	6.66	93.1	96.5	12,3	86		941	3 1	5	3	N	3	403		
80	28	8	.010	-	~	100.1		96.3				wed	9 1	5	7 2	~	35	6	1.0	2.2
09	20	0	.017	0	0		92.5	96.3	12.6	82	cv	94	7	2	1 2	1 32	m	m		•
61	12	0	.028	-		100.4		96.1	13.1		94 1	103 1	24 1	8	N	6 31	9 347	390	1.1	3.0
62	21	-	,029	-	~	100.5	è	96.3			80	-	9	4 2	9	9 33	6	0 4	٥.	3,3
63	24	2	.016	-	~	100.4		96.4	12.4	82	91 1	-	1	8	8	0 30		38	1.0	2.7
64	13	0	.042		1	100.8	-	96.3			9	~	3	0	3	9 33	m		•	3,5
6.5	~	0			4	100.2		96.8	12.3	80	94 1	-	-0	9	7 2	6 32		4 398	1.0	1.5
99		2	.046	-	0	100.4		9.96	14.0	80		***	~	5	3 26	0 34		418		2.2
67	-	-	.029	-	9		•	96.4	13.6	8.5		-	-	4 2	4 26	2 33		389	1.0	2.0
6.8	0-		.018	0	5	101.2	91.8	96.5	12.2	01	4	-	~	61 23	N	4 31	33	36	0.	2.7
69	4	9	090.	-	۲.		93.2	8.96		7.5	82	-	-	3	7	9 33	4 366		1.1	3.2
7.0	15	0	.023	-	2.86	100.4	92.0	96.2	14.0	81		1 1	24 1	51 2	8	8 32		1 403	6.	4.8
AVERAGE		61.5	.024	-	.3	100.4	95.4	96.4	13.0	80	91 1	03 1	25 1	51 20	09 25	7 32	3 351	394	0.	2.9
SAMPLES	267																			

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED 3 SOUTHEAST N.C., S.C., GA., FLA., ALA,, AND EASTERN TENN.

DIST.

- 1			S	1					`															
			L055	34	1.7	2.0	2.2	•	1.6	•	2.3	1.7		2.4	2.3	1.7	•	1.5	2.0	1.4	•	1.7	•	1.9
			RES	₩	1.2		1.3	1.2	1.1	1.1	1.0	1.2	1.0	1.1	1.0	1.1	1.0	1.5	1.0	1.4	1.0	1.0	1.4	1.1
		HG)		EP	389			414			399	404	414	409	411		407	407	410	399	413	0	413	405
	086	MM		95		367	373	379	9	9	359	376	378	368	371	361	367		367	370	361	377		369
	STM	760	O	06	N	335	m	4	337	336	333	346	337	333	339	334	330	341	336	335	340	347	347	337
	- 42	line.	E		4	254	5		9	9			242		9		252	257	264	263			254	255
	NOIL	CTE	/APO	20	981	0 1		00		03	061		202	4		209	0	200	194	N)		761	661	661
	DISTILLATION	CORRECTED	IT EV	30	48	9	0	2	62	4	147	_	155	-	_	6 0		~	44	157	8		150	151
	151)) <u> </u>	M-I	0		35		29	22	31	28	56	31	30	129	34	31	24	27	33	25	32	28	50
ш	O	E.	PE	0 2	111	15 1		60	0		111		0.8	110 1	0.0	12 1	112 1	03 1	110 1	0.8	050	13	02 1	109
ASOL INE		ERATUR		5 1	00	02 1	96	99 1	95 1	98 1	01 1	97 1	97 1	97 1	00 1	98 1	02 1		00	96 1	94 1	01 1	-	98
9		EMP		86	85 1							83	83		83 1		86 1	80	84 1	64	81		79	83
RICE	•	X	6	-	0	0	CV.	~	~	0	0	4		~	9	-		7	ın	m	0	0	60	4
-	>	AST	E	-B	11.	10.	12.	11.	11.	10.	11.	11.	11.	11.	10.	11.	11.	12.	6	11.	12.	11.	12.	1.
REGULAR	<u>اسا</u>	R+M		8	7.06		8.06	90.5	7.06	7.06	91.2		6.06	7.06	93.3	90.06	5.06	8.06	90.3	90.3	90.4	7.06	8.06	8.06
R	NOMB		Ξ	001	0	8	_	'n	_	0.	0.	4	_	6.3	0	0	6.		4	6.	80	00	6.3	0
	III Z	NO.	AS	027			87				87		87	~					•				87	86
	OCTA	ES	STE	2699		4.8			5	4	4	4	4	4.1	7.	4	4	•		5.3		9.4		94.6
		2	_	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0	0	0	0	0	0	0
	EADA	ASTM	10	G/GAL				. 81	.13	80	.27		2	. 14	-	.54	6.	.95		2	0	2	.95	
	-	I	_		1.0	N	-	_	_	2	-	_	~	~	~	~	_	_		LO	5.0			2
	วิธ	AST	038	M	m	-	-	0	-	~	-	-	A	-	-	-	-	-4	-	-		CH	-	-
	4	_	99	м	2	~	3	30	6	8	-	-		21	25	24	56	49	48	00		35	10	43
	SUL	AST	012	3	0.0	•	•	•	3	•	0	0	•		•	•	•		•			•		0.
	OC.	ASTM	28	API	4	0	3	2	1.		3	2	62.6	C	0	2	0	0	-	0	2	1.	-	62.1
		A				_	_	_	4	~		80	50	_	3									
		S	<u>a</u>																					
			ITEM		7.1	72	73	74	75	76	77	7.8	4	80	81	82	63	64	85	98	18	6.8	69	AVERAGE

203

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 3 SOUTHEAST -- CONTINUED ALA. AND EASTERN TENN.

PREMIUM-PRICE GASOLINE

M ASTM ASTM ASTW RES, MUT, R+M ASTM TEMPERATURE, F (CORRECTED TO 760			~	7	3	EA	OCTA	3	BER	4			0	ST	-	A 'NE	X	0			
PLES D287 D1266 D381 D526 ASTM ASTM ASTM === D123		¥	ST	ST	ST	ST	ES	DI	+	ST	H	RATU		2)	RREC	0	0 76	H	HGV		
## MP ## ## ## GGAL D2699 D2700 2 LB IBP 5 10 20 30 50 70 90	-	la.	2	126	3.0	52	ST	ST	8	32			W	CEN	EVA	ORA	La.	I		RES	L055
21 53.8 0.002 1 0.01 101.3 90.9 96.1 11.1 84 98 113 141 175 229 259 317 55.2 7 0.012 1 2.71 100.0 92.6 96.7 10.6 63 99 110 133 160 221 270 334 13 65.3 0.012 1 2.71 100.0 92.6 96.4 11.7 84 97 110 123 160 221 270 334 12 65.8 0.010 1 2.71 100.0 92.6 96.4 11.7 84 97 110 125 152 209 263 341 11 62.3 0.012 1 2.47 99.8 92.7 96.3 11.3 85 99 103 120 140 186 235 290 251 331 11 62.3 0.012 1 2.09 100.2 92.6 96.5 11.3 85 96 103 120 140 186 235 290 251 331 20 25.3 0.012 1 2.09 100.2 92.6 96.5 11.3 85 96 103 120 140 186 235 290 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 251 331 20 20 20 20 20 20 20 20 20 20 20 20 20			0.	36	J	5	269	270	~	CC	186		0	3	N)	70		95	L	**	34
\$ 56.0 .012 1 2.71 100.0 92.6 96.7 10.6 63 99 10 133 160 221 270 334 13 55.0 0.017 1 2.71 100.0 92.6 96.3 12.3 80 91 102 125 152 209 263 341 13 55.0 0.010 1 2.71 100.0 92.6 96.3 11.7 84 97 109 129 153 202 251 341 13 55.0 0.011 1 2.77 100.0 92.5 96.3 11.3 85 96 109 129 129 152 209 263 341 13 55.0 0.011 1 2.75 100.0 92.7 96.3 11.3 85 96 109 129 130 129 130	00	23	100	00	-	10	010	0	0	-	84	8	3	1	5 22	25	10	m	0		
5 62.7 .017 1 2.71 100.0 92.6 96.3 12.3 80 91 102 125 152 209 263 341 1 62.3 .010 1 1.69 100.1 92.6 96.3 11.3 80 91 102 129 153 202 251 331 1 62.3 .011 1 2.47 99.8 92.6 96.3 11.3 85 96 109 120 140 186 293 290 255 335 202 251 331 1 62.3 .011 1 2.47 99.8 92.7 96.3 11.3 85 96 109 120 140 186 293 290 255 335 200 255 335	0	4	60	.01		-	00	2	9	0	83	7 6	0	3 1	0 22	27	m	m	404		
6 63.6 .030 1 3.65.8 .010 1 1.69 100.3 92.6 96.8 11.7 84 97 109 129 153 202 251 331 26 63.7 .027 1 1 2.47 99.8 92.5 96.3 11.3 85 96 109 126 152 203 249 308 38 59.9 .002 1 2.47 99.8 92.7 96.3 11.3 85 96 109 126 152 203 249 308 20 60.3 .010 2 2.69 99.6 92.6 96.0 11.1 85 96 109 151 202 255 315 20 60.3 .010 2 2.69 99.6 92.0 96.0 11.3 85 96 109 131 155 202 251 326 3 59.7 .019 2 2.69 99.7 92.2 96.0 11.3 85 96 109 131 155 202 251 326 3 61.8 .011 1 2.69 100.3 92.2 96.0 11.3 85 99 113 137 164 210 247 302 2 62.9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0	100	2	0	-		00	2	9	2	80	1	2 2	5	2 20	26	6		414	1.2	2.7
13 65.8 .010 1 1.69 100.3 92.6 96.5 11.9 81 92 103 120 140 186 235 290 26 63.7 .027 1 2.47 99.8 92.7 96.3 11.3 85 96 109 128 152 203 249 308 362.4 .002 1 2.69 100.2 92.6 96.0 11.1 82 96 109 111 129 157 219 267 328 20 60.3 .010 1 1 2.76 100.0 92.3 96.0 11.1 82 96 108 130 152 203 255 315 2 2 2 2 2 2 2 2 9 9 92.0 96.0 11.1 82 96 108 130 155 200 254 326 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 67	10	2	03	0		00	2	. 9	-	84	7 1	9 1	6	3 20	25	m	m	0		•
26 63.7 .027 1 2.47 100.0 92.5 96.3 11.3 85 98 109 128 152 203 249 308 11 62.3 .011 1 2.07 100.0 92.7 96.3 11.2 88 100 111 129 151 202 255 315 35 62.4 2.69 99.6 92.7 96.3 11.2 88 100 111 129 151 202 255 315 20 60.3 .010 1 2.76 100.0 92.8 96.0 11.1 82 96 108 130 152 200 243 330 20 60.3 .010 1 2.76 100.0 92.2 96.0 11.3 85 98 109 131 155 202 251 326 35 8 100.9 2 2.69 99.7 92.2 96.0 11.3 85 99 113 137 164 210 247 302 251 326 100.0 92.2 96.0 11.3 85 99 113 137 164 210 247 302 251 326 100.0 92.2 96.3 11.3 84 97 108 123 153 209 255 336 100.0 92.2 96.3 11.3 87 97 108 123 153 209 255 336 100.0 92.5 96.3 11.3 87 97 107 129 154 205 255 336 100.0 92.5 96.3 11.3 87 97 107 129 155 217 269 235 340 1 60.0	0.0	13	2	0	-		00	2	. 9	-	81	2	ص ص	7 0	0 18	23	N	3	364		
11 62.3 .011	150	26	3	02	-	-	00	2	. 9	-	85		00 1	8	2 20	2	62	3	~		•
36 59.9 .002 1 2.09 100.2 92.6 96.4 11.7 84 95 107 129 157 219 267 328 20 60.3 .010 1 2.76 100.0 92.4 96.0 11.1 82 96 108 130 152 200 243 330 28 63.8 .010 1 2.76 100.0 92.4 96.2 11.6 85 98 109 131 155 202 251 326 28 63.8 .010 2 2.09 100.8 92.0 96.4 11.3 81 97 108 130 154 202 251 326 161.8 .011 1 2.69 99.7 92.2 96.0 11.3 85 99 113 137 164 210 247 302 161.9 .010 1 2.69 100.3 92.3 96.3 11.3 84 97 108 127 164 210 247 302 161.9 .011 1 2.69 100.3 92.2 96.3 12.8 79 - 94 123 153 209 255 332 161.9 .011 1 2.69 100.0 92.2 96.3 12.9 82 95 107 129 154 205 255 337 160 160.8 .009 1 2.75 100.0 92.5 96.3 11.3 87 97 107 129 154 205 256 337 160.8 .026 1 2.85 100.0 92.5 96.3 13.0 85 - 102 125 150 209 256 337 160.8 .026 1 2.80 100.0 92.5 96.3 13.0 85 - 102 125 150 209 256 331 160.8 .026 1 2.80 100.0 92.5 96.3 13.0 85 - 102 125 150 209 256 331 160.8 .026 1 2.80 100.0 92.5 96.3 13.0 95 - 102 125 150 209 256 331 160.8 .026 1 2.80 100.0 92.5 96.3 13.0 95 - 102 125 150 209 256 331 160.8 .026 1 2.80 100.0 92.5 96.3 13.0 97 107 129 155 217 269 256 331 160.8 .026 1 2.00 256 231 100.0 92.0 92.0 96.3 13.0 95 - 102 125 150 209 256 331 100.0 92.0 92.0 96.3 13.0 95 - 102 125 150 209 256 331 100.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0	96	11	2	0	_	9	66	2	. 9	-	88	-0	111	9 1	1 20	25	۳	9	0		•
20 60.3 .010 1 2.76 100.0 92.4 96.2 11.6 85 96 108 130 152 200 243 330 28 61.8 .010 1 2.76 100.0 92.4 96.2 11.6 85 96 109 131 155 202 251 326 28 63.8 .010 1 2.69 100.8 92.0 96.4 11.3 81 97 108 130 154 202 251 326 100.8 92.0 96.4 11.3 85 99 113 137 164 210 247 302 251 326 100.4 .011 1 2.69 100.3 92.3 96.3 11.3 84 97 108 127 149 205 261 327 160.4 .011 1 2.69 100.1 92.2 96.3 11.3 84 97 108 127 149 205 261 327 265 26.9 94 123 153 209 255 336 26.9 94 123 153 209 255 336 26.9 96.3 11.4 82 101 115 142 170 208 255 336 26.0 96.3 11.3 87 97 107 129 155 217 269 337 160.4 100.6 92.5 96.3 11.3 87 97 107 129 155 217 269 337 160.4 100.6 92.5 96.3 13.0 85	20	38	6	00	-	0	00	2	. 9	-	84	5	07 1	6	7 21	26	•	3	0		•
20 60.3 .010 1 2.76 100.0 92.4 96.2 11.6 85 98 109 131 155 202 251 326 28 61.8 .019 2 2.69 100.8 92.0 96.4 11.3 81 97 108 130 154 208 254 325 28 63.8 .009 2 2.69 99.7 92.2 96.0 11.3 85 99 113 137 164 210 247 302 1 61.9 .011 1 2.69 100.3 92.3 96.3 11.3 85 99 113 137 164 210 247 302 1 61.9 .030 1 2.69 100.1 92.2 96.3 11.8 87 97 108 123 153 209 255 336 1 60.8 .011 1 2.75 100.0 92.5 96.3 11.9 82 95 107 129 154 205 256 337 1 60.8 .026 1 2.85 99.7 92.5 96.3 11.3 87 97 107 129 154 205 256 337 1 60.8 .026 1 2.85 96.3 13.0 85 = 102 125 157 269 335 1 60.8 .026 1 2.80 1 100.0 92.5 96.3 13.0 85 = 102 125 151 205 256 331 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 2.80 1 60.8 .026 1 60.8 .026 1 2.80 1 60.8 .026 1 60.8 .026 1 60.8 .026 1 60.8 .026 1 60.8 .026 1 60.8 .0	80	10	2				66	2	. 9	-	82	9	08 1	0	2 20	24	e	3	0		•
28 63.8	66	20	0	0	-	-	00	2	. 9	-	85	8	09 1		5 20	25	m	m	401		•
28 63.6 .009 2 2.69 99.7 92.2 96.0 11.3 85 99 113 137 164 210 247 302 1 61.8 .011 1 2.69 100.3 92.3 96.3 11.3 84 97 108 127 149 205 261 327 1 60.4 .011 1 2.69 100.1 92.4 96.3 12.8 79 - 94 123 153 209 255 332 1 60.4 .011 1 2.81 100.0 92.2 96.1 9.6 81 99 111 134 156 200 255 336 2 2 62.9 - 2.65 96.3 11.4 82 101 1134 156 200 255 336 2 2 60.8 .009 1 2.75 100.0 92.5 96.3 11.3 87 97 107 129 155 217 269 337 1 60.4 .026 1 2.80 100.0 92.5 96.3 13.0 85 - 102 125 151 205 256 337 1 60.4 .0026 1 2.80 100.0 92.5 96.3 13.0 85 - 102 125 151 205 256 331 1 60.4 .0026 1 2.80 100.0 92.8 96.7 13.1 77 - 96 125 151 205 256 331	00	6	6	0	N	5	00	2	6.	-	81	7	0.8	0	4 20	25	ന	m	0		•
8 61.6 .011 1 2.69 100.3 92.3 96.3 11.3 84 97 108 127 149 205 261 327 161.9 .030 1 2.69 100.1 92.4 96.3 12.8 79 - 94 123 153 209 255 332 2 62.9 - 3.18 100.0 92.2 96.1 9.6 81 99 111 134 156 200 255 336 3 63.1 - 2.65 99.7 92.6 96.3 11.4 82 101 115 142 170 208 235 309 2 60.8 .009 1 2.75 100.0 92.5 96.3 11.3 87 97 107 129 154 205 256 337 2 62.4 .026 1 2.61 100.1 92.5 96.3 11.3 87 97 107 129 155 217 269 335 1 60.1 .026 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 331 2 60.8 .009 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 331 2 60.8 .009 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 331 2 60.8 .009 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 331 2 60.8 .009 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 150 209 256 331 2 60.8 .009 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 150 209 256 331 2 60.8 .000 1 60.0 60.0 60.0 60.0 60.0 60.0 60	101	28	3	_	· Cu	9	66	2	. 9	-	8	0 1	13 1	7 1	4 21	24	6	(L)	371		•
1 61.9 .030 1 2.69 100.1 92.4 96.3 12.8 79 - 94 123 153 209 255 332 1 60.4 .011 1 2.81 100.0 92.2 96.1 9.6 81 99 111 134 156 200 255 336 2 62.9 - 2.65 99.7 92.6 96.3 11.4 82 101 115 142 170 208 235 309 2 60.8 .009 1 2.75 100.0 92.5 96.3 11.3 87 97 107 129 154 205 256 337 2 62.4 .026 1 2.67 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 331 1 60.1 .026 1 2.81 100.4 92.5 96.3 13.0 85 - 102 125 151 205 256 331 1 60.1 .026 1 2.81 100.4 92.5 96.3 11.4 83 97 107 130 155 207 256 331	0.5	60	-		-	8	00	2	. 9	-	84	7 1	1 80	7 1	9 20	26	60	ന	0		•
1 60.4 .011 1 2.81 100.0 92.2 96.1 9.6 81 99 111 134 156 200 255 336 2 62.9 2.65 99.7 92.6 96.3 11.4 82 101 115 142 170 208 235 309 3 63.1 2.65 99.7 92.6 96.3 11.3 87 97 107 129 154 205 256 337 2 62.4 .026 1 2.67 100.0 92.5 96.3 11.3 87 97 107 129 155 217 269 335 1 60.1 .026 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 340 1 60.1 .026 1 2.61 100.0 92.6 96.7 13.0 85 - 102 125 151 205 256 331 1 60.1 .026 1 2.80 100.6 92.6 96.7 13.6 77 - 96 122 150 209 256 331	03	~	-	60	-	9	000	è	. 9	2	4		4	3	3 20	25	60		410		•
2 62.9 - 2.65 99.7 92.6 96.3 11.4 62 101 115 142 170 206 235 309 3 63.1 - 2.65 99.7 92.6 96.3 12.9 62 95 107 129 154 205 256 337 2 60.8 .009 1 2.75 100.0 92.5 96.3 11.3 67 97 107 129 155 217 269 335 2 62.4 .026 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 340 1 60.1 .026 1 2.80 100.6 92.6 96.7 13.1 77 - 96 122 150 209 256 331 2 60.1 0.26 1 2.80 100.6 92.6 96.7 11.6 83 97 107 130 155 207 256 331	0.0	-	0		-		00	0	9		81	6	111	4 1	6 20	25	62	m	410		•
3 63.1 - 2.65 99.7 92.6 96.3 12.9 62 95 107 129 154 205 256 337 2 60.8 .009 1 2.75 100.0 92.5 96.3 11.3 67 97 107 129 155 217 269 335 2 62.4 .026 1 2.61 100.1 92.5 96.3 13.0 85 - 102 125 151 205 256 340 1 60.1 .026 1 2.80 100.6 92.6 96.7 13.1 77 - 96 122 150 209 258 331 2 60.1 0.26 1 2.80 100.6 92.6 96.7 13.1 77 - 96 122 150 209 258 331	50	N	2	,		i.	00	2	. 9	-	82		15 1	2 1	0 20	23	623	35		1.0	•
2 62.4 .026 1 2.61 100.1 92.5 96.3 11.3 87 97 107 129 155 217 269 335 1 60.1 .026 1 2.61 100.6 92.6 96.7 13.1 77 = 96 122 150 209 258 331 2.61 4 00.5 15.6 96.7 13.1 77 = 96 122 150 209 258 331	90	m	6			9	66	2	. 9	S	82	5	1 20	9	4 20	25	177	36	416	1.5	0:1
2 62.4 .026 1 2.61 100.1 92.5 96.3 13.0 65 - 102 125 151 205 256 340 1 60.1 .026 1 2.80 100.6 92.6 96.7 13.1 77 - 96 122 150 209 258 331 4.4 0.04 0.04 1.00 0.00 0.00 0.00 0.00	107	10	0	00	-	-	00	2	9	-	87	7 1	07 1	6	5 21	26	67	S		1.0	
1 60.1 .026 1 2.80 100.6 92.8 96.7 13.1 77 = 96 122 150 209 258 331	108	N	2	02	-		00	2	. 9	3.	85		02 1	2	1 20	25	67	8		1.3	
A1 4 1014 1 10 1 10 0 4 10 1 1 1 1 1 1 1	60	-		S	-		00	2			77		6 1	2 1	0 20	25	803			1,2	
מונים ביים ביים ביים ביים ביים ביים ביים ב	RAGE		-	-	-		100.2	95.4	96.3	11.6	83	97 1	1 20	0 1	\$ 20	25	32	353	397	-	2.2

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

& APPALACHIAN DOLIO, W. VA., WESTERN PA., EASTERN KY., AND PART OF MD. DIST.

		OK.	7	3	EA	OCTA	NON BA	BER	9				DISTI	ILLAT	ION	ASTM	086			
	X	ASTM	ASTM	ASTH	ASTM	ES	10	¥ + &	ASTH	TEMP	ERAT		F	2	<u>u</u>	0	M 09	M HG		
ITEM	PLES	28	12	38	52	S	ST		32			PE	ERCEN	TEV	APOR	ATED			RES	LOS
		9	341	O			02700	~	LB	18P	5	10	20 3	0 5	0 7	06 0	95	EP	24	м
476	9		0	0	45	4		0	-	90.55	102	-	4	51 1	89 2	e.	2 36	41	0	-
444	60	6	0	~	2	4	-	•	2	83	9.5	90	56	46 1	91 2	1 3	2 37	42	-	3,
-	4	2	.051	0	1.83	4	9	0		7.8	89	CV	N)	48 1	96 2	2 3	9 37	-		3,
-		2	0	a	6.	4		0	cy.	80	92	90	56	52 2	04 2	0	0 36	39		2
-		0	0	•	3	30	5	0	N	49		0.1	24	47 2	14 2	4	60	80		3,
-		2	0	0	1.63	. 0	9	0	3	8 1	91	0.5	23	43 1	94 2	8	4	4.1	-	2
400		0	0	-	9	4	-	0	2	81	9 6	40	26	51 2	04 2	80	7 3	42	_	2
-		2	0	~	4	4	9	0	6	77	89	6	21	45 2	02 2	5	9	41	-	8
4944		6	0	-	N)	4	1	-	2	06	66	20	24	44 1	93 2	0 3	2 3	-	444	N
-	9	C	.035	-	0	4	7	-	2	80	9 4	4	4	45 1	96 2	8	1 3	41	-	2
C		3	0	-	.2	4	9	0	3	82	R	S	20	39 1	83 2	0 3	7	0	444	₀
N		2	0	N	2	4	9	0	2	79	94	90	25	49 2	012	2 3	6 3	41		2
CA			0	-	0	5	9	-	3	82	92	01	21	41 1	88 2	9	2	38		ص د
CV		0-1	0	-	. 3	4	. 9	0	è	80	92	02	24	48 2	03 2	0	യ	4 2		9
CV	19	~	0	~	4	4	7	0	-	83	95	~	28	50 1	97 2	S W	en en	-	-	2
CV		0	0	~	~		9	0	c,	84	94	0.4	21	42 1	87 2	7	1 3	41	~	2
CV	N	a	- 8	A	0	4	9	0	رم •	76	87	02	56	50 1	96 2	e 0	4	4 1		3
C	-	94	0	•	0	4	9	0	س	88	В	02	19	40 1	93 2	9	2	0	_	3
N		4	0	***	0	4	6	2	è	83		0.5	23	41 1	84 2	0	2	-	~	2
129			0000		1.45	95.8		91.4	14.0	78	8	9 8	122 1	49 2	11 2	74 3	58 =	421	7 1.1	2.3
(4)	2	2	0	•	2	5		•		87		43	W)	44 1	96 2	4	- 91		-	6)
3	~	3	0		-	4		0			8	8						8		
3	-	2	0		80	3	7					RJ.	120 1	43 1	9	57 34	43 -	-	4 1.3	٤,
3	1	4	.039	-				1.	12.4	81	8		124	42 1	82 2	3 3	7		-	2
VERAGE		62.6	A 6 0 .		0	94.8		01.0	12.9	82	0.3	6	124 1	46 1	96 2	56 3	37 37	0 41	11.0	CV

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED A APPALACHIAN -- CONTINUED DHID, WESTERN PA., EASTERN KY., AND PART OF MD.

DIST.

تعة
z
_
-
_
0
SOL
4
5
_
lal.
O
-
œ
0.
i i
-
_
-
王
لها
Or

		œ	3	3	F	OCTA	NE NE	BER	7			0	SII	LLATI	NO	ASTE	980			
	×	ST	51	ST	ST	ES	OT	R+M	ST	TEMPE	RATU	REP	S	ORREC	TED	7	80 MM	(DH)	_	
ITEM	PLES	C	12	0381	52	ST	ST	8	0323			PEF		ΕV	PORA	TED			RES	105
		API	M	M	G/GAL	02699	02	2	18	IBP	5 1	0 2	0 3(0 50	10	06	95	EP	×	M
(4)	7		-	~	0	00	0	5.	2	82	3	07 1	2 1	1 2	0	9 31	5 33	37	0	2
(7		.01	~	60	0	2		2	87 1	00	1 60	1	0	5 2	1 33	6 36	4.1	•	3.
136	14	62.7	.016	•	2.44	1001	93.2	7.96	13.0	4	91 1	05 1	28 1	54 20	7 25	5 31	5 34	4 388	8.	~
സ			C		2	0	3	. 9	2	82	S	12 1	8 1	6 2	4 2	4 30	6 33	39	•	E
m	2		2	~	2	00	-	5	2	7.80	-	1 40	9	3 2	7 2	0 32	9 36	40	-	9
3			2	N		00	2	9	2	80	0	03 1	2	5	6 2	9 30	8 34	38	-	è
4			-	-	2	00	2	. 9	2	80	ED.	04 1	9 1	5	6 2	5 31	1 34	38	-	2
4			-	-	0	00	2	9	62	80		9 1	6 1	9	0	5 32	4 35	39	•	4
4			0	-	0	00	2	9	2	06	8	1 70	6 1	9	7 2	8 32	4 35	0 4	-	2
4	20		C	-		0	2		60	84		03 1	6 1	3 2	1 2	9 32	8 35	0 4	-	60
48			3	-	2	66	3	9	٦,	82		8 1	8 1	3 1	0	5 30	6 0	0	-	2
4			-		2	0	2	. 9	2	80	92 1	07 1	0 1	9	6 2	1 31	7 35	39	_	2
4	15		0	~	.86	66	2	. 9	4	4	87	5	8 1	4	3 2	8 32	1 34	2 387	•	'n
4			01	-	2	00	2	. 9	6	80	0	01 1	5	2	1 2	8 32	3 35	39	•	4
4			-	2	0	00	2	. 9	2	80	4	08 1	0 1	1 2	0	4 32	0 35	39	-	o.
4			4	-4	-	00	2	9	2	81	2	1 10	3	2	2	1 33	1 36	0 4	•	6
in	2				60	00	3	-	(1)	76	90 1	1 40	3	9	52	2 32	6 35	39	•	-
in	4-6		CV	-		0	4	97.4	2	91		0.8 1	3	2 2	2	3 30		~	•	6
5	-		3	-	0	00	2	. 9	4	82		9	6 1	0 2	IS SA	5 32	9	0	-	m
5			.036	-		00	3	. 9	2	81		8 1	9 1	1 2	1 2	0 32	m	9	1	4
1			2		.2	1001	2	96.5	12.9	82	93 1	04 1	26 1	54 20	1 25	2 31	9 35		5	9 3.2

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

DIST. 5 MICHIGAN

		٠ د	2	I S	ì										-						
	M	S	ST	ASTE	-5	ES	0	X+X	-	TEMP	ERAT	URE	<u></u>	CORRE	ECTED		760	I	CSH		
ITEM	PLES	28	12	D381	1	51	ASTE	8	(4)	Г		٥	CE	NT E	APO	ATE	0			S	LOSS
		API	H H	S X	G/GAL	D2699	02700	2	LB	186	5	10	20	30	0	5 02	06	9.5	EP	×	24
5	1 1			~			85.7	•	12.4		6 9	106	10	4	9		13	36	~		
50	9	63.6	10	***	C		. 9	8.06			91	66	17	39	06	48	_	18	420	1.0	
S	6				- 8	50	9	0			92	104	24	48	00	99	41	16	0		
in	4	9~1	-	-4	48	4	9	0			6 9	106	-1	que!	~	99	41	4	CV		
S	40	0	02	-	40	4	7	0			87	100	22	9 4	03	57	35	09	0	0.	
5	4	2	-	-	· ·	4	9	0	6		91	103	24	8 4	96	49	24	9	0	00	
9	~		3		2	10	9	0			88	66	N	60	07	7.1	54	84	~		
161	***	0	•	~	6	10	9	•	-		9 5	101	28	48	40	80	09	26	3	1.0	
162	12	63.0	040	-	1.53	94.8	87.2	91.0	12.8	82	06	102	20	142	194 2	58	340		413	6.	
163		04	3	0	1.	Q.	9	0	₀		87	96	0	9	-	24	33	70	-	9.	
164	11		N	0	.3	m		0		80	87	100	21		80	9 4	35	10	\rightarrow	٥.	
165		4	-	-		4		0	6		86	96	~		9	36	18	53	0	۲.	
166	80	3.	-	2	4	4	7	-	4		85	96	100	4	0	67	51	75	0	٥.	
167	27	~	CV	-	2	4	9	0			06	104	123	145	9	54	0		9	€.	3.0
168		2	9	~		5	. 9	1.	N		96	105	9		90	54	39	374	400	0.	
169	-	3	CV	-	6.	4	87.1	0			06	100	123	4	-		9 6	-	426	1.0	
170	-	2	4	2	9.	4	86.4	9.06	12.6	78	89	16	115	138	_	53		360	414	1.0	3.0
AVERAGE		62.8	.033	-	1.72	94.8	86.7	8.06	13.0	8	06	101	122	146	199 2	257	337	370	410	6.	5.9

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72 AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

PREMIUM-PRICE GASOLINE

ED
TINUED
CON
I GAN-
ICHIG
MIC
N)
IST.
0

		ř.	5	2	LEA	OC 1 A	- [1	1))			1	101	UISTICATIONS	200	0 0	000			
	AH	2	51	21	AST	ES	0	X + X	-	LEMP	ERATU	RE,	~	w	2	7 0 1	E	COH		
TTEM	PLES	2	12	0381	05	ST	S	8 8				PE	ERCEN	T EV	APORA	TED			RES	L055
		API	N L	Đ	9/9	02699	02700	N	6	186	10	10 2	0 3	0 5	0 40	06 (62	a a	34	×
171	12	5.	0.020	1	2	i •		96.3	12.4		9.0		27 1	9	9	7 30	33	37	0.8	2.7
172	9	63.6	0	-	2.65		6	96.4			94		29 1	8 2	4 2	3 31	w	39	•	3.0
173	m						S	0.96			6 6			7 2	6 2	4 31	34	39		2.8
174	'n	-	6000	0	5	99.1	91.6	95.4	12,3	82	95	108 1	31 1		17 26	3 34	00		-	2.5
175	0	7	.017	-			3,	6.96	13.2	4	86	101	26 1	4 2	6 2	7 31	34	39	•	
176	2	4	.007	-	7		2	96.4	13.1		92	106 1	2	8 2	8	9 31	34	38	•	
177	9	9	.031	-	00		2	96.3	14.1		88		19 1	7 2	3 2	3 33	37	4.1	•	3.0
178	-	3	.023	-	40		1.	0.96	•		66		35 1	6 2	0	6 33	37	41	-	•
179	12	-	.017	C4	2		6			82	89	104 1		3 2	9	6 32	m	3	•	3.9
180	-	80	.020	0	0	•	3	96.4			06	103 1	27 1	8 2	0 2	1 31	36	40	•	
181	12	-	2000		2		~	0.96			92	106 1	0	4 2	3 2	8 31	4	39	•	
182	ı	رص رص	1000		1.		è	96.3	14.1		98	101	~	5 2	2 2	0 32	36	0 7	•	3.9
163	40	2	.008		2.16	100.2	2	96.4			82	96	19 1	6 2	9	4 32	0 339	39	٥.	
184	17	0	.010	-	4			0.96	12.6		89		36 1	6 2	2	9	സ	36	•	
	2	9	.053	-	2		0	0.96			92		29 1	9	8 2	e e	9 370	4 1	•	2.9
186	-	0	.011	-	00		-	95.5	11.9	7.8	06	102 1	25 1	51 20	8	6 3	36	സ	-	4.0
	-	65.2	025	-	-			96.3	12.4		94		28 1	7 2	8 2	6 3	9 35	40	-	•
AVERAGE		63.8	.017	-	2.27	8.66	95.6	96.2	12.8	8	91	104 1	28 1	56 21	10 25	50 32	0 355	400	6.	3.1

- MOTOR GASOLINE SURVEY, WINTER 1971-72 AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED TABLE 3.

DIST. 6 NORTHERN IND., NORTHERN ILL., EASTERN IDMA, AND MIS.

1				1													1	}	
		1055		1	4	ι.	~		N	ιÜ.	0	۲.	9.	0		80	6	1	
			*	2	6	2	N	•	2	2	-	~	N	2	•	N	2.	2	
		RES	34	6.0	1.0	1.0	•	8	•	in.	1.0	0.	0.	1.0				6.	
	HGO		EP.	380	418	410	419	394	410	408	410	412	412	382	404	398	420	406	
98	I		95	343	371	374	378		360	368	390	369	375	351		361	358	367	
ASTM D86	160	Q	06	315	341	339	346	336	328	337	352	337	341	323	335	331	332	335	
	0 TO	VAPORATE	0.2	247	256	261	262		250	248	267	259	262	249	8	254	256	256	
DISTILLATION,	CORRECTED	EVAP	50	195	195	205	213	182	192	188	208	197	195	193	181	194	202	196	
TILL	CCORF	-N-	30	153	139	147	151		144	140	156	138	142	142		144	140	145	
DIS	La G	PERCI	20	125	117	124	126	121	124	122	136	118	122	120	121		117	123	
	RATURE		10	105	96	104	104	105	103	102	116	101	104	102	107	103	97	104	
	PERA		ī.	91	8 5	93	91		06	06	102	89	91	91		91	85	91	
	TEMPE		186	85	81	80	81	88	80	7.8	86	80	9.4	84	89	84	76	83	
RVP,	S	0323	L 8	12.5	13.7	13.6	13.2	12.6	13.9	13.6	11.1	13.5	12.5	13.1	12.6	12.7	14.1	13,1	
S. S.	X+X		2	8.06	8.06	8.06	6.06	89.5	8.06	91.1	91.2	90.5	6.06	8.06	89.7	7.06	8.06	7.06	
NUMBER	DI	ASTM	2700	6.5		0.7	6.9	9.9	6.5			4.9	7 . 1	7.6	9.9	8.9		6.9	
ANE	I	⋖		•	60	60	8	60	•0	60	40	60	00	40	60	60	60	0	
DCTANE	RESP	ASTM	02699	95.1	94.7	94.5	94.8	92.3	95.0	6.46	95.0	94.5	94.7	93.9	92.7	94.6	94.9	94.4	
EADA	STR	526	/GAL	.46	.16	90.		.85	.68	.86	60.	.55	99.	.86	.88		.63	.83	
			5	2	~	~	_	-	-	-	~	-	-	-	944	~	***	-	
3	AST	38	D M		8	C4	8					8			8		•	~	
SULFA	ASTM	D1266	HI K	0.099	.080	.057	.023							.019				•056	
	NLSI	D287	I d				61.3											63,3	
-	A	10					4		_	-	_		m	_				-	
	SAM	PLE		-									-						60
		ITEM		188	189	190	191	192	193	194	195	196	197	198	199	200	201	AVERAGE	SAMPLES

TABLE 3. - MOTUR GASOLINE SURVEY. WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

6 NORTHERN IND. NORTHERN ILL. EASTERN IDMA, AND WIS. DIST.

PREMIUM-PRICE GASOLINE

		GR.	SULF	3	~	OCTAP	ANE NUMBE	BER	RVP			_	IST	DISTILLATION	ION		M D8	96			
	4	ST		ASTE	ASTM	ESP		Z+X	-	TEMP	ERATUR	ш	7	CCORREC	-	10	760	M	(5H		
ITEM	PLES	C	-	38	0	-	S	:	0323		ł	PE	ERCENT	VT EV	APOR	ATED				RES	L055
		API	 	9 M	5/	26	02700	~	8	186	10 1	10		30 5	0		6 06	2	d d	×	94
202	10		0.026		2.40	100.1		0.96	12.5			107	128	149 2	2	42		330	73	6.0	2.6
203		5	.028		7		3		14.1	81	86			S	0	47	19	352	0	00	
204	10		040		-	6.66	3		13.2			2	126	147 2	00	9 6	9	944	405	0.	
205	4		.022		4	99.4		0.96	13.1		92	105 1	125	~	213 2	63	4 1	0	423	6.	5.9
206	-	N.		•	2		2			06	1	115	141		-		m		-		
207	6	4			-		2	0.96		7.8		106 1	140	0	14	48	©	2	410	40	3.2
208	(1)				0		S	9	12.1		'n	0	128	5	12	58	31	2	0	0.	1.6
209	(1)				80	- 4	6	9	1		107	122	145	4	18	54	19	0	0	0	1.7
210	90		•		۳,		2		6		0	102 1	123	148 2	0	53	0	368	604	1.0	3.2
211		-			-		2	96.2	12.6			105	130	6	15	55	20	0	0	6.	3.2
212	10	9	.015		5		4	.0	12.9	82	88	102 1	128 1	~	60	45	21	2	0	*0	3 . 7
213		4			2		2		12.3			111	135		- married	8	332		0	8	
214	0	-			5		2	96.1	12.7	83	87	105 1	134	163 2	60	44	0		372		4.2
215	m	65.6					92.5		13.6		88	102	124	0	02 2	40	14	350	000	. 7	1.8
AVERAGE		4	.026	-	2	9.66	95.8	96.2	12.7	82	16	107	130	155 2	210 2	20	323 3	354	000		5.0

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

7 CENTRAL MISSISSIPPI WESTERN KY., SOUTHERN IND., SOUTHERN ILL., AND EASTERN MO. DIST.

ш
Z
(med)
9
0
S
~
9
لما
9
1-0
Œ
0
82
«
_
ب
9
2
-

		ž	SUL	3	ш	DCTAP	エコス 山ス	BEK	>			-	DISTI	TILLAT	ION	AST	M 086			
	A	ASTH	ASTM	ASTM	ASTH	ES	DI	¥+	ASTE	TEMP	ERAT	URE	1	ORRE	CTED	10	760 M	M HG		
ITEM	PLES	28	012	38	52	S		1	32			PE	ERCEN	IT EV	APOR	ATED			RES	٥
			34 	G	9/	02699		~	2	186	2	10 2		30 5	0	0	0 95	<u></u>	34	34
	10	8	0.036	a	.3	4	9	0	12.	90		90	26	45	93	45 3	5 3	7 39	0	•
-		3	B	A	~	4		0	13.	_		02	22	4 1	87	52 3	2 3	2 43	•	2
444	12	8	.031	۵		4		-	12.	0	92	_		9 6	9 8	59 3	5	1 41	•	2
-	-	2			0	4	9	0	13.	90		02	24	45	01	67 3	3	6 41	-	3,
C	3	3.	4			4	. ~	0	12.	•		90	28	50	96	48 3	0 3	2 41	•	-
0	9	2	.014		3	5.	9	0	12.	40		08	33	63	18	69 3	9	9 41		E)
C	6	•			3	4	. 9	0	12.	8 0		08	28	51	0.5	67 3	3	5 41	-	2
CV	•	4	47		9	4.	9	0	13.	~		~		9	6 3	58 3	6 3	6 40	•	C.
N	0	8	90		63	4	87.2	0	12.	1		90	2	40	00	61 3	5	8 41	•	-
225	m	62.4	.047	8		9. 56		9008	12.6	80	06	104 1	128 1	152 2	00 2	55 3	52 38	6 41	2 .7	2
CV	0	2	02		9	4	87.3	0	12.	40	06	02		4	16	58 3	4 3	7 41	•	2
2	•	9				5	9	0	13.	40		C		2	02	61 3	2 3	9 42	-	~
C	3	9	4			3		0	11.	**		-		80	06	46 3	0 3	6 41	•	-
O	16	0	.044		7.	4		7	12.	0		0		~	26	57 3	0	3 40	-	-
3	4	9			6	4	86.5	0	12.	•	94	quel		0	6 3	44 3	ص س	5 41	-	-
3	m	4			.5	4		0	12.	•		0		2	88	50 3	8	4 43	•	2
3	~	3		4	8	3,	-	0	12.	_		0		_	95	39 3	6 3	2 41	•	2
3	40	2			0.	4	9	0	12.	•		0		55	10	58 3	0	1 41	4 1 . 1	-
3	15	8	CV		4	3	87.2	0	12.	•		0	60	4	08	74 3	7	2 40	•	2
3		•	.023	٠	1.40		7.	•	12.	80		0		9	12	70 3	4 3	8 41	•	1.2
VERAGE		62.9	.036			94.4	86.9	90.7	12.6	82	92	106 1	126 1	147 1	99 2	57 3	43 37	6 41	0.	2

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

» D M
EASTERN
AND
N ILL.
ED SOUTHERN IL
IND
ISSISSIPPI-C
MISSI KY.
CENTRAL WESTERN
~
DIST.

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

8 LOWER MISSISSIPPI MISS., LA., EASTERN AND SOUTHERN ARK., AND WESTERN TENN. DIST.

		œ	SUL	3	Bai	CTA	NE NOM	BER	Q.				ST	LLAT	ION	4		9		
	SAM	ST	ASTM	ST	S	ES	0	R+M	S	TEMP	ERAT	URE	F (C	CORRE	CTED	10	760	III	HG)	
ITEM	PLES	0287	01266	D381	0526	-	ASTM	0 8	0323			P	ERCEN	T EV	APOR	ATED			æ	EST
		API	M	5	-	2	N	2	18	186	2	10 2	20 3	2 01	2 0	0	6 0	5 E	0.	34 PE
1	10	9	~		10		9	0				110		4	0	35 3	56	29	0	0.0
258	2	62.0	.037	٨	2.39	94.46	86.9	7.06	11.8	87	100	112 1	32	52 1	95 2	49 3	55 3	91 4	27	0
50	-	4			.2	3	9	0	3			'n		43 1	88	40 3	43	88	50	
9	2	4		A	0.	3	0	0	1.			0	24	44 1	83	37 3	0.5	33	62	
40	6	C	8	a	6		5	0	11.5			'n		56 2	60	67 3	39	75	-	.0 1
9	7	2	0000	0	7	4	9	0	2			80	59	51 2	00	55 3	43	73	10	
•	6			A	- 8	5	7	-4	2			0	31	54 2	00	47 3	30	63	03 1	0
- 0		-	.02	•	2	5	9	0				~		45 1	96	60 3	34	26	93 1	-
9	12			-	1.85	4	7.	0	-			0	30	52 2	02	59 3	50	68	10 1	
40		4	.04	-	-	4	-	0				0	28	46 1	06	39 3	56	57	10 1	
9	3	3	•			4	10	6	e			9	24	46 2	02	71 3	52	87	28 1	
9		6	.02		0	4	9	0				~		49 1	800	53 3	9 6	8 1	00 1	-
9	12	C	.05		۳,	4	9	0	-			-	31	52 1	66	56 3	37	69	08 1	***
~		4	•		4	4	7.	0	S			60	2	42 1	83	36 3	56	7.4	18 1	0
-	1	4			60	3		0	è			0	0	-	80	6	4		141	0
-	9	8	.06	A		4	5	0	Ĉ			2	ED.	46 2	01	64 3	94	11	18	
~	15	S	•		3	4	9	0	0		102	'n	3	59 2	0	49 3	-	48	89	-
~	3	-	.02		•	5	9	8.06	2				0	5 2	08	80 3	43	9	01	
~	9	3			C	4		9006	11.4			S	3	9	85	31 3	39	98	32	0
×		63.0	.039	-	2.13	94.3	86.7	5.06	12.1	84	9 8	109	127 1	1 60	95 2	52 3	36 3	69 4	10 1	1 1

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CUNTINUED

1 TENN.
WESTERN
AND
1
ARK.
LHERN
AND SOUTHERN
AND
N N
1
FASTERN !
LA.
•
1155°
F S

		æ	3	Z C	EA	DCTA	NE NUM	BER	d. >				DISTI	LLAT	ION	AST	M 08	9		
	A	ASTM	ASTM	ASTM	ASTM	ES	0	R+M	ASTM	TEMP	ERAT		L	OR	CT		760	MM IIG	_	
ITEM	PLES	28	12	38	52	ASTM	ASTM		32			٩	RCEI	T F	APO	AT			RE	S LOS
		٥	-	9	9/	26	27	2	LB	IBP	2	10	20 3	30 5	0 7	0	0	5 EP	-	34
~	10	6	0	٠		1.	***	9				111	CV	6.8	59	56	14 3	9	4 1	2
~		0	.008		8	6	2	9	•		0	-	6	20	02	09	19 3	9	2	-
278	-	67.4			2,54	6.66	93.1	96.5	12.6	86	86	110	132 1	159 2	0.6 2	245 3	33 3	84 42	5 1	0 5.0
\sim	5	•			0.	6		9	-			$\overline{}$	00	47	9.4	6 7	04 3	6 3	<u></u>	-
8	m	3	٨		4	0	2	9			(2)	~	4	71	19	55	35 3	5 4	3	5
9	7	5	.028	0	8	0		5	°.		90	12	35	63	10	20	47 3	5 4	2 1	2
8	20	0		8	.2	0	8	9	2		60	0	31	57	10	6 7	11 3	5 3	4	-
90		4			-	00	2		12.4		~	0 8	_	57	60	44	07 3	4 3	0	
30	11	***	.091		.5	•	2	. 9	-		80	10	31	53	08	54	18 3	4	5 1	-
8	10	4	5	-	8	6	2	5.	2		9	60	30	26	60	6 7	35 3	3 4	2	-
30	173	4		8	_	00	3,	9	2		æ	0	30	59	17	26	38 3	3 4	8 1	2
30			N		0	00	2	9	2		~	90	58	27	15	27	20 3	3		
30	11	3	0044		8	0	2	9	2		~	11	34	29	13	26	19 3	5	2	-
00		4	C	A	0	6	2	9	-		00	60	28	48	76	0 7	15 3	9 6	6	-
0	-	2		A	~	00	2	9	2			0			0		30	4	2	e.
0	0	4	4		0.	0	2	9	2			CV.	38	เก	16	51	37	8 4	2	-
0	14	-	.012	-	80	6	0	5				m	n	00	12	51	03	9	2	2
0		2	.001		5	0	2		۵,		9.4	9	0	148 2	0.4	63	-	23 36	~	-
0	m	0			0.	6	5	9				9	3	æ	11	62	39	4 0	0	-
0	-	4	.029	-	3,02	0	3,	9	•			111	131	6	00	56	00	3	80	2.
AVFRAGE		62. A	.020	-	4	100.1	02.3	0.00	12.0		60	110	132	150 2	90		22 3	55 40	00 11.	1 1.9

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

	DAK.
	•
	AND
INS	DAK
PLAINS	ż
NORTH P	MINN
0-	
DIST.	

		GR	SULF	GUM,	LEADA	OCTA	OCTANE NUMBE	BER	RVP			0	DISTILLATION,	LLAT	ION	ASTH	M 086	~		
	SAM	ASTH		ASTE	ASTM	RESA	MOT	X+X	ASTM	TEMP	MPERATURE	JRES	F (C	ORRE	CORRECTED	10	1 092	MM HG	2	
ITEM	PLES	0287	01266	38	0526	9-	ANTE		32			PE	PERCENT		EVAPORATE	ATED			RES	5 L055
		API	M	S	G/GAL	02699		N	-	186	N)	10 2	0	30 5	0	6 02	6 0	2	24	**
296	9		0.023	a	1.57	92.5	83.7	88.1	12.1	87	66	114 1	37 1	61 2	12 2	72 3	1	8 406	-	0 2.
297	6	62.2	.063		1.51	-	84.9	8	13.0	7.4	98	98 1	**	37 1	88 2	53 3	40 36	60	•	
298	~		.071		•29			0		80	96	110 1	4	4	12 2	52 3		94 400	•	9 1.
299	~						81.5		12.3	68	66	115 1	9	6	18 2	82 3		- 41	-	1 2.
300	~	62.2	.093		2.33	3	84.5	00	11.2	90	93	108 1	2 2	58 2	08 2	72 3	45 37	2 40	•	-
301	~	63.4	.085	٠	2.09		85.4	68.9	12.0	7.8	94	106 1	-	N)	90 2	46 3		6 42	0	8 1.
302	•	64.6	.047					88.6	12.5	7.8	96	106 1	6 1	4	86 2	40 3		0 41	•	3 1 .
303	4	62.1	.046	•	1.97	92.1	85.5	88.8		80	96	108 1	9 1	0	92 2	50 3	40 37	8 42	***	0 1.
304	~	64.4				-	84.6	88.2	12.1	80	98	111 1	•	48 1		48 3		6 420	-	0 1.
305	*	61.7	.073		1.41		85.0		11.6	84	66	112 1		56 2	0.8	76 3		0 41	•	9 1.
306	6	63.5	990°		2.44	95.6	85.4	89.0	12.0	80	96	106 1	-	4	9 8	S.	20 35	4 41	•	-
307	9	62.3	*60*		.89	N	83.2		12.7	98	96		32 1	80	14	279 37	72 36	58 418	-	1 2.
308	6	61,3	.044		1.30		4	68.9	N	75	91	104 1	9	54 2	12	60		4	•	
AVERAGE		63.3	990.		1.49	92.4	84.5	88.5	12.2	8.1	95	108 1	29 1	52 2	201 2	260 34	45 36	14 75	4	9 1.
AMPLES	45												1							

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 9 NORTH PLAINS CONTINUED	MINNOS NO DAKOS AND SO DAKO

															-						
		œ	7	3	لما	OCTAP	ANE NUM	BER	7			0	ISTI	DISTILLATION	ION	ASTM	08	9			
	N.	ASTM	ASTM	ASTM	ASTM	143	0	₩+ ₩+	ASTM	TEMPE	ERATU	ATURES	FCC	ORRE	CORRECTED	10	760	I	HG)		
ITEM	PLES	28	12	38	· M	S	ASTM		32			PE	RCENT	w	VAPORATE	ATED			<u>~</u>	S	1055
		6	24	D M		02699	02700	8	LB	186	5 1	2 01	0		0 7	0	6 0	2 2	a	246	×
309	9		0,021	4	~	80	0		12.5		98	114 1	38 1	3	08 2	9	35 3	0 3	94	0.0	
310	6	6	2400	8	2.06	6	2	5	12.6		1001		32 1	7	98 2	8	64 3	0 3	09		
311	e	8.69	.040			8.66	94.1	0.76	2	80	99 1	112 1	33 1	56 2	00 2	38 3	00 3	30 3	80	2	5
312	m	5	.040			6	2	5	2		9	0	32 1	0	08 2	9	16 3	6 4	00		
313	2	8				8	8	3.	-				46 1	2	15 2	2 3	41	6	92 1		
314	m	7	4		.2	0	2	5	2		00	0	24 1		95 2	3 2	06	0 3	80		
315	m	5	.020		0	0,	5.		10.9		~		59 1	1 2	28 2	9	3	68 4	18	.7 1	
316	3	5	3		٠.	00	2	5.	2		_	0	29 1	5	06 2	~	60	8 3	76		
317	7	7	₫	•	00	6	3	9	0		0	\sim	55 1	6 2	24 2	8	30	4 0	18		
318	2	7.			~	80	2	5	-		102		38 1	2	06 2	4 3	16	8 4	10		
319	4	-	.057		0	0		5			16		42 1	0	09 2	8 3	41	0 4	02		
320	63	9	. 40		2	8	2	5			93		36 1	0 2	08 2	4 3	-	0 4	80		• 3
321	3	3	-		0	6	5	~	10.0		102		54 1	6 2	20 2	8		6 3	76		
322	9	70.0	.036		4	6	-	5	12.3	88	66		42 1	68 2	11 2	7 3	3	8 3	86 1	.1 2	-
323	m	0	.073	•		8	93.1	0.96	13.0		92 1	107 1	32 1	58 2	00 2	8 2	98 3	40 3	06	.5	-
VERAGE		67.7	.041	a	2.38	99.1	92.7	6.56	12.0	82	97 1	113 1	39 1	66 2	09 2	43 3	18 3	44 3	96	.7 2	0

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 10 CENTRAL PLAINS
NEBR., CENTRAL AND WESTERN ICHA, NW MO., AND NORTHERN KANS.

OLINE
GAS
E C
C
9.
AR
LA
9
8

		×	3	Σ	تعة	UCTA	NE NUM	BER	٧P			0	ISI	ILLAT	ION	ASTA	M D84	9		
	A	ASTM	ASTM	ASTM	S	ES	OT	+	ASTH	TEMP	ERAT	URES	١	ш	CTE		760 h	MM HG	_	
E	_	28	12	38	52	ST	S		32			w	RCE	ΕV	APOR/	ATED			RES	105
		2	_	M.G.	G/GAL	02699	027	~	1.8	IRP	N.	10 2	30	0 5		0	6 0	S EP	946	34
N		9	9	2	~	9	10	0,	-		00	-	2	58 2	4 2	0 3	80	9 3	0	2
C	12	4			80	3	9	0	-		80	-	~	47 1	2 2	8 3	7 3	3 4	•	-
C	-	2	02	-	4	0	9	0	ص •		m	0	۳	46 2	0 2	9 3	0	0 4	-	بى •
327	m	61,1	04		2.42	94.2	87.5	6.06	10.9	86	106	118 1	40 1	62 2	10 20	2 3	8 3	74 41		-
N	m	, _	8	•	0	c	9	3.	2		2	0	~	33 1	0 2	7 3	2 3	5 3	•	-
W	3	8			8	w	9	0	2		8	-	80	49 1	5	0 3	1 3	8 4	-	-
3	5	5	3	-	1.91	2	50	6	c		9	-	N	57 2	9 2	8 3	4 3	9 6	•	2
3	m	-	3		1.37	4 .	9	0	0		4	0	0	52 2	8 2	8 3	6 3	0 3	•	-
3	7	3,	9	8	9	4	7	0	-		26	6	28	48 1	9 2	5 3	1 3	3 4		-
3	***	61,1	.119		2.60	2	4	0	6		100		34	58 2	0 2	8 3	2 3	4 4	-	2.
3	21	4	3		1.56	è	5	0,	8		96	9	22	40 1	6 2	4	7 3	2 4	-	1.
3	7	4	9		0	3	9	0	-		100	N	31	49 1	8 2	6 3	4 3	1 4	•	-
3	9	5.	3		5	3,	5.	6	2		66	0.	27	46 1	2 2	4 B	7 3	1 4	-	-
3	12	7			1.61	2	9	0.			92	9	24	46 2	2 2	7 3	3	6 4	-	2.
3	9	0	3		~	4 .	80		0		105		0	60 1	8 2	4 3	2 3	4 3	•	
3	12	2	3	a	1.39	3	5	6	0		100		m	52 2	0 2	2 3	7 3	2 4	-	-
4		3		-	0	S	5.	å	-		26		_	47 1	0 2	5 3	7 3	6 4	•	-
4	e	0	C		1.80	4	9	0	0		0		00	58 2	4 2	0 3	4 3	2 4	_	1.
4	m	-	C		1.99	4		0	0		100		2	51 2	0 2	0 3	4 3	8 3	_	1.
3	3	-	S		1.71	4.	9	0	0		0		0	64 2	2 2	8	0 3	2 4	•	-
4	9				2.66	4 .	7.		10.5		104	118 1			2 2		6 3	6 3	6 .5	1.5
AVERAGE		63,1	,045	1	1,93	93.4	86.4	66.68	11.5	84	66	1111	31 1	2 1	99 2	4 3	2 3	66 40	5. 9	1.

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 10 CENTRAL PLAINS--CONTINUED
NEBR., CENTRAL AND WESTERN IDMA, NW MO., AND NORTHERN KANS.

Lul
Z
1
_
0
S
4
9
لها
C
-
œ
9
I
\vdash
五
نعة
PRE
0

		å	7	3	L	OCTA	NOW EX	BER	4			7	DISTILLA	-	ION	AST	M 08	9			
	A	ASTM	ASTM	ASTE	ASTM	ES	DI	R+M	ASTH	TEMPE	ERATL	URES	F (C	CORRE	CTE	10	160	MM	()		
ITEM	PLES	28	12	38	10	ST	ST		32			PE	ERCEN	IT EV	APOR	ATED			~	ES LI	055
		0	-	9	G/GAL	02699	02700	2	æ	IBP	5	10 2	20 3	00 5	2 0	6 0	6 0	5 E	a		*
-3		2	0.028	-		0	•				16		35 1	2	08 2	41 2	99 3	8	•	9 1	6
4	12	4		8	4	0	2				66	113 1	135 1	N	09 2	48 3	26 3		10 1	-	4
4		4	.026	0	.7	0	2	5			95		29 1	1	05 2	43 3	10 3	9 4	0	0 3	0
4	6	2	034			0	2	9	-		103		0	62	11 2	52 3	12 3	0 4	00	7 1	۳,
4	2	4	8	A	0.	8	3	9	(C)		96		80	4	81 2	24 3	03 3	3 4	2	.1 1	4.
5	12	. 9	.034	å		00	-	5			96	112 1	7	-	08 2	46 3	34 3	7 4	05 1	.1 1	5
5		9	3	-		8	2	5	2		96		36	Ŋ	08 2	43 3	31 3	1 4	4	.0 2	0
5	m	e	W			0	2	9			96		30	0	06 2	44 2	94 3	8 3	74	7 1	6
5	80	4	.042			66	2		-		56	110 1	35	6	11 2	52 3	23	4	13 1	.0 1	1.
5	-	. 9	0	(A)	•	7	8	è	8,5		104			0	34 2	80 3	48	4 4	56	C	- 1
5	21	7	3	-	•	6	2	5	N		76			9	96 2	38 3	ال ا	4 4	60	-	8.
5		0	N			0	9	9			96			54	06 2	56 3	28 3	2 4	05	6	4.
5	S	9	4			6	***	5	-		98		٣	6	06 2	40 3	m	3 4	~	-	
S	12	5				8	9	9	س		96		4	64	15 2	52 3	1	53 3	91 1	~	
3		0	-			0	2				102		148 1	9	32 2	68 3	20 3	46 3	88	.6 1	4.
9		5	C	A		0	2	5	1.		96	0	3	0	08 2	45 3	56	68 4	20 1	-	
0	15	4	3	-		6	2		-		16			-	09 2	48 3	33	70 4	ر	6	-
9		6	-		•	00	2	9	0		96			cv.	04 2	52 3	16	46 3	94	_	4
9	~	7	-			-	3	7	0		66			80	22 2	70 3	22	44 3	86	.7 1	۳,
364	6	63.6	.015		1.77	100.6	91.9	96.3	10.5	81	63	112 1		162 2	10 2	48 3	0	40 4	0.0	.7 1	۳,
9	m	0	3			0	8				96		136	2	26 2	70 3	16	8 3		.7	۳,
V		0.49	.032			90.66	92.3	0.96	11.4	83	16	112	135	160 2	10	50 3	20 3	4	03	. 9	-

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 11 SOUTH PLAINS SM MO., WESTERN AKK., OKLA., AND NORTHERN TEX.

REGULAR-PRICE GASOLINE

							x	REGULAR PRICE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		GASULINE	a.J								
		~ ~	SUL	E	LEA	OCTA	NE NUME	BER	۸ ک			OI	STILL	ATIO	N. AS	Ξ	086			
	X	ASTM	ASTM	ASTM	AS	ES	DI		ASTE	TEMPI	ERATU	REP	000	LLI.	ED TO	760	I	HG)		
ITEM	_	D28	012	38	052		ASTR		32			PER	CENT	0	ORATE	0		D.	ESL	0.55
		0	- 1	O	9/9	02699		2	00	IBP	5 1	0 20		50	20	06	95	o.	24	34
0	9	64.	0.08		3.09	2		6			9 1	0 1	7 14	18	24	4	378	m		2
9	9	65.9		-		2	9	6			=	4 1	3 14	20	26	4	87	CV		
9	9	62.	.04		9.	2	9	6			9 1	3 1	7 16	22	27	4	7.1	14	4.	
9	10	63.	.03		0	3		0		4	02 1	3	1 14	19	24	4	0	0	0.	
1	2	62.	.04		1.93	2	5	6		0	6 1	5	9 14	18	23	CV	65	20	0.	
~	62	09	.05		0	3	9	0		9	00 1	4 1	6 15	21	26	4	80	26	٠ در	
~	m	•	A			3.	7.	0			1 1	5 1	4 14	20	27	5	06	20	0	
373	7	64.	.03		2.14	92.3	86.1	89.2	13.0	81		07 12	9 15	3 203	250	323	63	96	9 2	80.
1	3	62.	.04		4.	3	9	6			0	3	6 15	21	28	S	82	20	ະຕຸ	
~	7	65.	.03	0		2	9				₩	7 1	4 14	19	25	3	81		2.	
-	m	63.	.04		.2	4	9	0	CV		3	0 1	8 14	19	26	4	10	26	0.	
~	9	9	0.		2.32	3.	9	0	2		8	0 1	0 15	20	27	4	77	-	e.	
~	1.6	65.	.03	-	.6	3.	9	0			5 1	7 1	6 14	19	24	3	2	S	6.	
~	m	.99	.02			. 17	8	-	2		9 1	7	5 15	20	24	N	63	03	0.	
40	2	63.	.02			4	7	-			5 2	8	5 15	19	25	4	-	405 1	0.	
0	7	. 79	.04			3.		0	CV		6	~	6 14	17	23		0	17	0	
30	11	63.	, 0 4	8	1.91	3	9	6	2		5 1	7	6 14	20	26	d.	00	15	. 1	
0	100	63.	.02			2	9	6	3		2 1	4	4 14	19	26	4		9	0.	
0	1.08	61.	*0			3.	9	0			3	9	0 16	20	25		351	9		9.
38	3	64.	*0°		2.88	2	. 9	6			8 1	0	8 15	19	25			0		0.
VERAG		63.6	.041	1	2.17				11.9	85	8	0	9 15	20	25	338	4	413 1	. 1	9.
SAMPLES	134																			

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED DIST. 11 SOUTH PLAINS--CONTINUED
SOUTHERN KANS., SW MO., WESTERN AKK., OKLA., AND NORTHERN TEX.

Lai
ME
_
SOL
0
40
4
43
W
Ü
-
œ
D.
X
X
RE
or
-

11.6		2	GR.	SUL	3	EA	OCTA	NO.	or .	2	3	107	5	DISTI	LAT		ASTR	90	2			
AFI NT N N N N N N N N	2.6	E L	000	D126	- 6C	2 5	STO	0 5		- C	1	E N N I	N C	RCE		APOR	AT		E -	~	2	
6 63.7 0.053 3.03 99.6 92.5 96.1 11.6 65 100 114 139 169 222 267 349 363 434 1.1 1.0 6 65.0 .022 2.03 99.6 93.3 96.0 12.5 81 93 107 135 164 213 249 316 357 401 .9 3.0 65.0 .022 2.03 99.1 92.0 95.6 12.3 85 98 112 135 163 242 267 337 365 417 1.0 1.0 62.5 .027 1 .2 2.36 100.3 92.9 96.6 12.3 85 98 112 131 151 204 256 332 366 417 1.0 1.0 1.0 62.9 .003	1		API	M I	E	5	269	270		-	80		0	0	0	1 0	6 0		W			
7 64.9 .019 1 2.19 98.6 93.3 96.0 12.5 81 93 107 135 164 213 249 316 357 401 .9 3. 10 65.5 0.022	386	9	63.	.05		0	0	N	9	-		0	1.4	(2)	0	22 2	67 3	49 3	83 4	34 1	gred	2
10 62.5 0.022	387	7	64.	01		91	8	6	. 9	è		(C)	10	35	64	13 2	49 3	18 3	57 4	•	6	
10 62.5 .027 1 2.50 99.4 99.9 95.7 11.3 84 102 112 131 151 204 256 332 366 414 1.0 1.0 3 60.8 .083 3.24 99.6 99.6 95.7 10.6 84 106 124 156 186 227 267 337 367 422 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	988	9	65.	02		0.	0	2	5	2		8	12	35	63	12 2	52 3	19 3	56 4	7	0	10
3 60.8 .003 2.36 100.3 92.9 96.6 12.3 85 97 110 136 166 227 267 337 367 422 1.0 1.0 136 62.9 .0040 2.36 100.3 92.9 96.6 12.3 85 97 110 136 166 213 252 323 360 406 1.5 1.0 2.0 67.4 .033 1 2.17 99.3 93.7 96.5 12.9 84 101 110 136 166 213 252 323 360 406 1.5 1.0 2.0 67.4 .033 1 2.17 99.3 93.7 96.5 12.9 84 101 110 136 167 221 273 348 382 422 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	889		62.	02		5	6	-	5	-		2	12	31	51	04 2	56 3	32 3	4 99	4	0 1	
3 63.6 .013 2.36 100.3 92.9 96.6 12.3 85 97 110 138 166 213 252 323 360 406 1.5 1.9 62.9 .040 2.55 99.2 92.3 95.8 12.4 82 94 107 137 168 221 266 347 383 419 1.1 2 2 1 67.4 .033 1 2 2.53 99.2 99.3 99.9 95.6 12.4 84 101 116 144 175 213 242 331 379 399 1.0 2 2 63.5 .027 0 2.70 99.3 92.6 96.5 12.4 86 97 110 136 166 223 265 348 382 422 1.0 2 2 1 6 6 2 1 2.67 100.2 93.2 96.5 112.4 86 97 110 134 162 215 255 324 354 422 1.0 2 2 1 6 6 2	990		60.	08		2	6	-	5	0		9	24	26	98	27 2	67 3	37 3	67 4	2	0	0
9 62.9 .040 - 2.56 99.2 92.3 95.8 12.4 82 94 107 137 166 221 266 347 383 419 1.1 2.0	391	m	63.	0		60	0	2	. 9	2		~	10	38	99	13 2	52 3	23 3	60 4	9	5 1	0
7 67.4 .033 1 2.17 99.3 93.7 96.5 12.9 84 101 116 144 175 213 242 331 379 399 1.0 2. 3 62.0 .019	192	0	62.	0.4		5	0	~	5	e		4	20	37	68	212	66 3	47 3	83 4	6	1 2	
3 62.0 .019 2.53 99.2 91.9 95.6 12.4 86 97 110 136 167 221 273 348 382 422 1.0 2 2.7 63.5 100.5 92.6 96.1 12.4 86 97 110 136 166 223 265 348 381 428 1.2 2 2 2 2 2 2 2 3 2 2 2 3 2 3 2 3 2 3 2	193	1	67.	03		•	0.	3	9	2		-	16	44	75	13 2	42 3	31 3	79 3	6	0 2	. 7
7 63.5 .027 0 2.70 99.3 92.6 96.1 12.4 86 97 110 136 166 223 265 348 381 428 1.2 2 3 64.1 .010 1.29 100.5 92.6 96.5 11.1 86 95 103 118 135 188 242 289 315 376 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	194	6	62.	01		5	6	-	5	2		9	10	36	67	21 2	73 3	48 3	82 4	2	0 2	'n
3 64.1 .010 - 1.29 100.5 92.6 96.5 11.1 86 95 103 118 135 188 242 289 315 376 1.0 1.0 18 62.7 .026 1 2.67 100.2 93.2 96.7 12.3 82 104 109 134 162 215 255 324 354 395 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	195	7	63.	02	0	~	0	2	. 9	2		~	10	36	99	23 2	65 3	48 3	81 4	8	2 2	'n
8 62.7 .026 1 2.67 100.2 93.2 96.7 12.3 82 104 109 134 162 215 255 324 354 395 1.2 1.0 2.0 10 2.0 18 67.0 .025 0 2.18 99.5 94.8 96.1 12.2 84 94 107 129 155 204 242 322 357 405 1.0 2.0 1.0 2.70 99.5 94.8 97.2 12.4 86 97 110 131 156 207 238 311 353 406 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	961	~	64.	01		5	0	2	. 9	-		5	03	18	35	88 2	42 2	89 3	15 3	9	0	0
18 67.0 .025 0 2.18 99.3 92.9 96.1 12.2 84 94 107 129 155 204 242 322 357 405 1.0 2.2 70.1 .012 - 2.61 99.5 94.6 97.2 12.4 86 97 110 131 156 207 238 311 353 406 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	161	0	62.	02	-	9.	0	3	. 9	2		4	60	34	62	15 2	55 3	24 3	54 3	5	2 1	80
2 70.1 .012 - 2.61 99.5 94.6 97.2 12.4 86 97 110 131 156 207 238 311 353 406 1.0 1. 3 57.7 .014 - 2.98 100.1 93.1 96.6 10.5 84 97 109 128 150 214 271 330 350 388 1.0 1. 7 65.3 .029 0 2.72 99.3 93.4 96.4 11.8 88 100 114 137 166 256 250 339 376 414 .8 2. 11 62.8 .022 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 168 218 259 338 376 413 1.0 2. 16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1. 3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 85 99 112 136 163 213 255 328 363 408 1.0 1.	861		67.	02	0	-	6	2	9	2		4	20	50	55	04 2	42 3	22 3	57 4	2	0 2	.5
3 57.7 .014 - 2.98 100.1 93.1 96.6 10.5 84 97 109 128 150 214 271 330 350 388 1.0 1. 7 65.3 .029 0 2.72 99.3 93.4 96.4 11.8 88 101 114 137 166 216 256 322 355 403 1.1 2. 8 62.2 .016 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 168 218 259 338 376 413 1.0 2. 16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1. 3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1. 6 63.9 .028 1 2.58 99.6 99.6 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.	661	C	70.	-		9.	6	4	-	2		16	0	3	9	07 2	36 3	11 3	53 4	9	0 1	
7 65.3 .029 0 2.72 99.3 93.4 96.4 11.6 88 98 112 133 157 205 250 339 376 414 .8 2. 11 62.8 .022 - 2.31 99.1 93.0 96.1 11.8 88 100 114 137 166 216 256 322 355 403 1.1 2. 8 6 62.2 .016 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 168 218 259 338 376 413 1.0 2. 16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1. 3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1. 63.9 .028 1 2.58 99.6 92.9 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.	00	6	57.	-		0.	0	3	9	0		26	0	C	0	14 2	71 3	30 3	50 3	8	0 1	
11 62.8 .022 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 166 216 256 322 355 403 1.1 2.8 6 62.2 .016 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 168 218 259 338 376 413 1.0 2.8 16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1.3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1.8 63.9 .028 1 2.58 99.6 92.9 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.0 1.8	101	1	65.	N	0	.7	6	3	9	-		98	2	3	~	05 2	50 3	39 3	76 4	4	8	
6 62.2 .016 - 2.67 99.5 93.2 96.4 12.3 85 95 111 137 168 218 259 338 376 413 1.0 2. 16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1. 3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1. 63.9 .028 1 2.58 99.6 92.9 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.	201		62.	CV		.3	6	3	9	-		0	-	137	9	16 2	56 3	22 3	55 4	3	-2	
16 62.4 .021 1 2.85 99.7 92.6 96.2 10.8 86 103 121 146 174 219 253 310 341 379 .9 1. 3 68.3 .048 - 4.06 100.4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1. 63.9 .028 1 2.58 99.6 92.9 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.	03	9	62.	0		9.	6	3	6	è		S	-	137	80	18 2	59 3	8	76 4	3	0	
3 68,3 .048 - 4.06 100,4 94.8 97.6 11.4 84 103 118 143 171 210 248 328 364 416 1.0 1.	104		62.	02	-	0	0	2	. 9	0		(m)	CV	146	4	19 2	53 3	e 0	1 3	62		
63.9 .028 1 2.58 99.6 92.9 96.3 11.9 85 99 112 136 163 213 255 328 363 408 1.0 1.	501		68	0 4		0	0	4	7.	-		6	-	143	-	10 2	48 3	8	4	9	0	0
	AGE		63.	02		5	6	2	. 9	-			C	3	3	13 2	55 3	8	3 4	8	0	

TABLE 3. - MOTOR GASOLINE SURVEY. WINTER 1971-72.
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

DIST. 12 SOUTH TEXAS

			L055			'n	S	80	0	47	9	0		5	m	6	'n	0	9		5
-				34	•	-	-	-	1.		-	-	1.	-	2	1.	-	-	1.		-
			RES	×		1.1	1.5		2.0	9.	1.0	1.0	1.0	1.5	1.0	1.7	1.3	1.0	1.1		1.2
		C DH		FP		405	365	407		406	0	414	405	405		408	408	351	391		398
	980	I		95			355		355	356		373	361		369			323	353		356
		760	0	06		332	350	324	318	320	325	339	332	312	337	324	336	302	324		325
	ASTH	D TO	RATE	0.2		241	239	241	239	244	261	260	251	252	549	236	257	243	253		248
	DISTILLATION,	CORRECTED	EVAPORATED	50			189			96		02	88					199	LA		195
	ILLA	ORRI	1	30	8		145			6	9	2	m	ın	0.			161	'n		150
	IST	F	ERCENT	0	,	35	27		N	2	56	31	25		C	C		44			30
ELI.	0	REP	PE	0 5			10 1		4	0		-	0	6			111		14 1		11 1
OL IN		RATUR		5 1		05 1	98 1	96 1	95 1	97 1	98 1	99 1	99 1	99 1	97 1		97 1	13 1			1 66
REGULAR-PRICE GASOLINE		EMPE		80			80	3	~	~		9	EC)	4	~	85	85	98 1	87 1		87
ICE		I	<u>m</u>	-	0	0	0	4	(2)	40	m	-	4	9	m	0	CV	4	~		#
A-PR	>	AST	32	LB				_	è	2	11.	•	10.		10.	12.	110		10.		11.1
ULA	2	X+	:	2	0.5	0.7	9.0				1.0			1.0	1.4	0.5		9.8	1.0	6.06	7.06
REG	NUMBER	2	-	0	0	-	0		-	-				_	0		0	0		0	0
		HOT	ASTI	05100	86.6	. 9	86.	9	. 9	7	. 9	7	-	-		. 9	86.5	. 9	9	86.	87.
	DCTANE	S	-	669			9.											۲.		0	4
	0	RE	AS	02	9.6	94						94		9 4					94	95	94
	EAD	STH	526	/GAL	60.	.39	.86		.77	.84	10	.65	.52	.71	.59	.62	.33	.80	.38	. 95	04.
		×	٥	9	~	~	-	_	-	~	-	~	-	N	2	C	~	3	N	~	2
	3	ASTI	36	MG	-4	2		4			**	œ	A		~			8	~		2
		_	9			_	7		9	60	-	10	0	m	٥	10	9	9	~		
	7	ASTM	126	-	٠	0.02	.017		-	-	3	5	-	3	C	4	3	0	.02		.027
		X	80	-	•		0	8											0.		9.
	GR	AS	02	AP	9	9			9	9	9	9	9	9	9	9	9	9	62	63	63
		Σ	PLES		1	40	m	6	m	***	11	10	7	9	4	9	0	E	11	-	
			_				_	_	_	_			_					_	_		35
			ITEM		0	0	0	0	-	-	-	-	-	-	-4	-	-	419	~	421	AVERAG

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 12 SOUTH TEXAS -- CONTINUED

		OE.	SULF	GUM,	LEA	UCTA	ANE NUMBE	BER	4			0.1	STIL	DISTILLATION		Σ	980			
ITEM	SAH	ASTH D287 API	ASTH D1266	ASTA D381	ASTM 0526 6/6AL	RES. ASTM D2699	A S	X 1 2	ASTM D323	TEMPER!	110	State		CORRECTED ENT EVAPOR 30 50 7		0 76 ED 90	95	HG) EP	RES	2025
422	-		•	1	-		-	0	10.1				•	•	•		•			
423	40	60.1	0.01	-	2.71	99.2	0	95.8	10.3	88 1	-	•	31 150	20	1 258	33		406	1.1	1.4
424	6			A	0.		95.6	96.3	12.3	81		5	30 160	20	8 252	32	353	402	1.0	3.0
425	6		.01		0.		2	0.96				2	_	21	iU CA	m		403	1.1	2.1
426	CV		.01		1		2	96.1	12.9	82 1		7	•	21	60	33		402	1.0	2.5
427	-		.02					95.8	12.4			**	~	21	2	6	36	408		1.8
428	6		.01		2		8	94.4	9.6			5	_	16	6	31	m	370	1.0	1.0
429	11		00.				8	9.96	11.3			6	~	19	0	28	31	357	•	1.5
430	10		.01	-	.1.	100.0		96.3	11.3			-	•	20	2	m	33	380	1.0	1.0
431	7		.01		-		3	9	11.0			6	•	19	60	m	m	394	1.0	1.4
A 32	9		00.		~		4	97.1	11.6			8 1	89	20	80	33	37	417	1.0	1.5
433	đ	•	000	-		100.1	93,3	7.96	11.5			3.1	0	20	9	m	m	377	1.0	2.5
434	m	•	.02	8	-	100.0	-	95.6	12.6			4	2 2	19		28	32	385	.7	1.0
435	٥		.01		2.44	100.0	93.4	7.96	11.7			110 13	-	21	0	ന	350	400	1:0	-
436	11		.01	C4		6.66		96.2	11.0	87 1	101	2	13 17	0 21	4 25	0 301	325	371	1.0	2.0
437	-	-				100.8	91.6	96.2	8						•	•	•	•	•	•
AVFRAGE			.015	•	2.58	100.0	02.3	96.2	11.4	9	98 1	109 13	31 15	3 20	3 250	316	345	391	1.0	6.

TABLE 3. - MOTUR GASOLINE SURVEY, MINTER 1971-72

	C
	ه له
	AND
-	NEV.
NTINUE	W. TEX., N. MEX., COLO., UTAH, ARIZ., NEV., AND E.
NDS CO	UTAH,
NT BRA	corp.,
DIFFERE	MEX.
R	z
ATA F	TEX.
2	
AVERAGE DATA FOR DIFFERENT BRANDS CONTINUED	STATES OKLA, AND TEX, PANHANDLES, W.
	TEX.
	AND
	STATE OKLA.
	SW KANS.
	•
	DIST
	DIST. 13 SOUTH MT SW KANS.

FIGURE LEAD. BOTTANE NUMBER RVP. TEMPERATURE. F (CORRECTED TO 760 MM HG) RES LOSS FINALS. MIT. R+M ASTM ASTM ASTM ASTM ASTM ASTM ASTM AST							8	EGULAR	-PRIC	E GA	SOLINE	Lu								
Mar	æ		ULF	2	- W	CTA	FNUM	- 844	٧ ک			0	ISTIL	LATI		STM	30			
MIT & MG G/GAL D2699 D2700 2 LB IBP 5 10 20 30 50 70 90 95 EP X X X X X X X X X	AST	I	2	ST	ST	ES	OT	+	57	EMP	OC.	RE.	00)	RREC		~	X O	(9H		
Wilson WG G/GAL D2699 D2700 2 LB IRP 5 10 20 30 50 70 90 95 EP 8 8 8 9 10 9 9 9 10 113 133 155 204 265 338 357 404 1.0 2 1.0 9 2 1.0 9 9 10 10 13 13 155 204 265 338 357 404 1.0 2 1.0 9 9 1 9 130 150 197 251 334 374 413 1.0 2 9 9 9 14 135 156 200 255 338 357 404 1.0 2 9 9 10 9 9 114 135 156 200 254 357 393 419 1.1 1 9 1	02	0	126	38	52	ST	ST		32			L	0	VA	ORA	iu i			S	1088
10.033 2 10.75 91.3 85.2 88.3 11.6 87 99 116 140 163 206 255 338 357 404 10 2 2 10.75 91.3 85.2 88.3 11.6 87 99 116 140 163 206 255 338 357 404 10 2 2 10.49 2 10.86 92.8 85.9 89.4 11.4 84 94 109 130 150 197 251 334 373 413 1.0 2 2 10.86 92.8 85.9 89.3 11.2 89.3 10.7 89 114 135 156 200 254 357 393 419 1.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	×	-	P4	S E	5/	269	270	~	000	00		0	60	N					948	346
3.1 0.033 2 1.75 91.3 85.2 88.3 11.6 87 99 116 140 163 206 255 338 357 404 1.0 2.2 1.86 92.8 85.9 89.4 11.4 84 94 109 130 150 197 251 334 373 413 1.0 2.2 1.86 92.8 85.6 86.9 12.3 84 109 130 150 197 251 334 373 413 1.0 2.3 1.0 2.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0	-		8	80	1.	4	00	-			3 1	3	5	26	35	38	2		
2.1 .049 2 1.86 92.8 85.9 89.4 111.4 84 94 109 130 150 197 251 334 373 413 1.00 2.03 89.6 87.9 87.9 87.9 87.0 87.0 88.9 12.3 89 99 114 135 156 200 254 357 393 419 1.1 2.020 11.0 86.2 89.9 10.7 89 10.3 114 135 156 200 254 357 394 19 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 10.0 11.0		3	.03	~	~	•	5	8	-		0	16 1	0 1	3 2	25	33	35	0		
-7 .039		2	0.4	2		N	50	0	-		4	1 60	0	0	25	33	37	\rightarrow		
3.4 .036 3 1.20 92.1 85.6 88.9 12.3 89 99 114 135 156 200 254 357 393 419 1.1 12.0 12.2 1 2.2 1 86.4 89.3 10.7 89 103 114 132 151 192 243 331 374 414 1.1 11.0 11.0 11.0 11.0 11.0 11.0		5	03		.2		4	7								8	8			
4.3 .020 1 2.20 92.1 86.4 89.3 10.7 89 103 114 132 151 192 243 331 374 414 1.1 11.6 .090 4 2.29 93.6 86.2 89.9 10.9 90 104 116 137 160 209 267 344 378 411 .9 1.0 1.1 1.72 92.1 83.8 88.0 10.6 86 103 117 140 164 215 274 351 381 426 9 1.0 5.0 91.7 85.3 88.5 11.2 91 103 113 126 144 182 232 327 372 413 1.0 1.0 1.0 92.7 92.0 104 11.0 11 131 152 195 241 327 372 413 1.0 1.0 1.0 1.0 91.7 85.5 88.6 11.0 83 94 105 125 197 252 333 367 404 1.0 1.0 1.0 1.0 1.0 92.2 2.0 93.0 85.8 89.4 11.1 87 97 111 132 147 198 257 378 421 1.0 2.0 1.0 92.3 1.0 92.0 85.8 89.4 11.1 87 97 113 134 155 200 250 340 377 415 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		3	03	6	5	2	5	00	2			4	5	6 2	25	35	39	+-1	•	
1.6 .090 4 2.29 93.6 86.2 89.9 10.9 90 104 116 137 160 209 267 344 378 411 .9 1. 1.1		4	02	-	.2	2	9	0	0		03	141	2 1	***	24	33	37	444		
6.3		-	60	4	2.	3	9	0	0		0.4	16 1	7 1	0	26	34	37	•		
6.5 = 2.60 91.7 85.3 86.5 11.2 91 103 113 128 144 182 232 327 372 413 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		1.			.7	2	•	8	0		03	17 1	0 1	4 2	27	35	38	CV		
6.5 2.60 91.5 86.1 88.8 11.7 86 100 111 131 152 195 241 327 371 408 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		9			5	-	5	8	-		0	3	8 1	4 1	23	32	37	-		
1.5 .030 1 2.03 93.0 86.9 90.0 10.2 90 104 116 134 153 197 252 333 367 404 1.0 1. 2.7 1.04 91.7 85.5 86.6 11.8 83 94 105 125 147 198 257 328 363 416 .8 1. 2.8 .043 2 2.10 92.2 85.9 89.1 11.6 84 97 111 132 154 200 249 335 378 421 1.0 2. 1.4 .037 3 1.68 93.0 85.8 89.4 11.1 87 97 113 134 155 200 250 340 377 415 1.0 2. 2.0 .036 1 2.18 93.0 85.6 89.9 11.3 84 94 110 135 161 211 265 340 379 424 .9 3. 3.0 .043 2 1.87 94.0 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.		9	A	8	9.	•	9	8.	-		0	11 1	1	2	24	32	37	0	•	
2.6 .043 2 2.10 92.2 85.9 89.1 11.6 84 97 111 132 154 200 249 335 376 421 1.0 2.1.0 3.0 3.0 3.0 85.8 89.4 11.1 87 97 113 134 155 200 250 340 377 415 1.0 2.2.0 0.036 11 2.18 93.0 85.8 89.9 11.3 84 94 110 135 161 210 260 333 363 398 1.1 1.1 1.2 .060 0 1.87 94.0 85.8 89.9 11.3 84 94 110 135 161 211 265 340 379 424 .9 3.3 3.0 .043 2 1.87 92.3 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		•	(4)	-	0	۵,	. 9	0	0		104 1	6 1	4	E)	25	33	36	0		
2.8 .043 2 2.10 92.2 85.9 89.1 11.6 84 97 111 132 154 200 249 335 378 421 1.0 2.1 1.4 .037 3 11.68 93.0 85.8 89.4 11.1 87 97 113 134 155 200 250 340 377 415 1.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1		~			0.		5	8	-		94 1	5	5 1	7	25	32	36	-		
1.04 .037 3 1.68 93.0 65.8 89.4 11.1 87 97 113 134 155 200 250 340 377 415 1.0 2. 2. 2.0 .036 1 2.18 93.0 85.5 89.3 10.1 89 103 118 141 164 210 260 333 363 398 1.1 1. 3. 2. 060 0 1.87 94.0 85.6 89.9 11.3 84 94 110 135 161 211 265 340 379 424 .9 3. 3.0 .043 2 1.87 92.3 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.		2	4	~	•	2	9	6	-		97 1	**	2 1	4	24	33	37	N		
2.0 .036 1 2.18 93.0 85.5 89.3 10.1 89 103 118 141 164 210 260 333 363 398 1.1 1.1 1.2 .060 0 1.87 94.0 85.6 89.9 11.3 84 94 110 135 161 211 265 340 379 424 .9 3.3 3.0 .043 2 1.82 92.3 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.0		•	3	6	90	3	5	6	-		97 1	3 1	4 1	5 2	25	34	37			
1.2 .060 0 1.87 94.0 85.6 89.9 11.3 84 94 110 135 161 211 265 340 379 424 .9 3. 3.0 .043 2 1.82 92.3 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.	_	2	3	-	•	3	5.	6	0		103 1	8 1		4 2	56	33	36	0	•	
3.0 0.043 2 1.82 92.3 85.6 89.0 11.2 87 100 113 134 155 201 254 338 374 414 1.0 1.		-	9	0		4	5	6	-		94 1	0 1	5 1	1 2	26	34	37	C	6.	
		3,	4	2	.8	2.	5	6	1.		0	3 1	4 1	5 2	25	33	37	-	•	•

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

DIST. 13 SOUTH MT. STATES--CONTINUED
SM KANS., OKLA, AND TEX. PANHANDLES, W. TEX., N. MEX., COLO., UTAH, ARIZ., NEV., AND E. CALIF.

		œ	7	7	A	CTA	NE NUM	00	9				ST	ILLAT	NOI	AS	O X	98			
	-	ST	S	ASTM	S	ESP	MOT	œ	ASTH	TEMP	ERAT		1	CORR	CTE		760	I	HG)		
ITEM	PLES	28	12	38	52	ST	ST		32			0_	CE	Lal	VAPOR	ATE	0			RES	1055
1	b	API	MT X	E	0	02699	02700	~	18	IBP	2	10	0		0	0	06	95	EP	94	34
454	40	0			6 0	00	0	4	und und	60		get	4		3	-	4	-	415		•
S	11	2	0.028	2	0	-	0	8	1110		26	111	135	160	210	256	331	344	393		5.5
456	25	61.5	.020	C4	2.47	98.9	91.7	95.3		00	95	0	131	156	quel	5	2	9	409	1.0	
LIN	1	5	.024		. 8	~	0	3			8		R			8			R	8	8
IN	16	5	0052	~	4	~	-	4	12.	87	96	-	135	M	0	5	(2)	80	0		
5	24	4	.030	4	4	0	2	9	10.	80	102	-	135	10	0	4	-	5	0	1.0	
0	16	3	.050	~	9	0	-	50	10.	67	103	-	139	0	-	9	3	8	0		
9	2	7		8	6.	-	8	0	94	8	101	C	5	©	(7)	~	10	60	N		
40	22	9	.002		80	40	1.	4	-	06	101	quet	0	4	0	4	-	9	0		
10	12	0				00	6	9	11.	88	100	qmi	2	10	0	4	(7)	~	-		
9	18	0	.030	~	9	0	2	9	10.	06	104	-	4	v	qmi	4	0	47	8		
9	m	3.	8		6	9	6	3	12.	82	95	0	3	5	0	5	m	9	CV		
9	23	3	.038	CVE	3	0	2	5	11.	84	26	-	3	1	0	5	N	~	0		•
9	28	2	.029	~	4	0	è	5	11.	87	26	115	4	9	special series	5	3	360	0		
40	40	2	.023	2	5	8	-	5	10.2	89	104	118	141	164	209	253	317	349	385	1.0	1.6
9	15	0	.028	-	5	0	-	5	11.	84	96	111	3	9	-	9	332	0	-		•
4		3	.027	2	4			4	11.3	86	66	113	137		-	3	329	364	405	0.	1.7

TABLE 3. " MOTOR GASOLINE SURVEY, WINTER 1971-72 AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

DIST. 14 NORTH MT. STATES WASH., AND EASTERN OREG.

REGULAR-PRICE GASOLINE

		GR.	SULFA	GUM,	LEADS	OCTAI	ANE NUM	UMBER	RVP			0	ISI	DISTILLATION	ION	ASTH	086				
	¥	AST	AST	ASTM			MOT.	X+X	S	TEMP	ERATU	URE	F CC	CORRE	RRECTED	TO 7	09	MM HG	^		
ITEM	PLES	02	0	0381	D526	ASTM	ASTE	8	0323			PE	RCEN	T EV	APOR/	ATED			RE	2 .	0.85
		API	-	MG	G/GAL	02699	02700	~	20	186	5	10 2	0	0 5	2 0	06 0	96	ᇤ	34	86	
470	14	9	0.000	•	0.63	5	86.2	7.06	14.0	81	89	1001	22 1	50 20	06 2	71 34	16 38	604 0	0	9 3	0
471	2						87.2	89.7	8					8		1		•			
472	9	9	.055	2	1.76	93.1	9	89.7	12.6	83	93 1	105 1	26 1	47 19	94 2		36 38	6 4	9	9 3.	
473	13	62	.060	2	1.90	4			12.0	87	99 1	112 1	3 1	57 20	06 2	1 3	50 38	6 41	8 1 .	2 1.	~
474	0	600	.08	-	69.		83.5	88.6	13.7	86	93 1	1 501	-	2	2	76 36	61 37	5 4	6 1 .	1 3.	
475	50	9	.04		1.41	3		66.69	12.5	85	97 1	108 1	29 1		01 2	0 3	26 36	3 41		1 .	
476	50	63.	.04	•	1.56	93.1		89.8	13.0		96	106 1	7	1 0	8 2	3	8	4 8	•	9 1.	φ.
477		62.		-	1.54	3			12.6		96	1 601	29 1	2 2	N	9	7 3	4 9	3 1 .	1 2.	
478	13	61.	.07	~	.84		87.1	91.2	13.5		91 1	101	8 1	5	0	6 3	5	0 3	2	9 4 .	0
479		62.	.06	-	1.89	4		-	12.5		96	104 1		47 19		2 3	4 3	7 4	2	9 2.	
480	10	65.		-4	1.20	3	85.6	89.3	12.4	98		112 1	32 1	4	97 2	5	4	-	7	9 2	
481	16	60.	.08	~	.93	94.3		89.7			93 1	1 201		54 2(CV	0 3	8 3	1 4	2 3 .	1 2.	
482	89	63.	.05			3.			12.5					0		8 3	33 37	4 9	٠ ٣		S
483	~	65.			1.96				13,3	82	98	105 1	21 1	37 17	70 2	9 2	81 31	9 36	•		_
AVERAGE		62.7	.062	2	1.38	93.8	86.2	0.06	12.9	84	95	106 1	26 1	50 1	99 2	254 33	33 37	1 40	4 1 .	0 2.	
SAMPLES	137																				

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 14 NORTH MT. STATES--CONTINUED WASH., AND EASTERN OREG.

PREMIUM-PRICE GASOLINE

		SE.	SUL	2	A	UCTA	ANE NUM	BFR					DISTILLATION	LLA	ION	ASTM	M 086	9			
	M	ASTM	ASTM	ASTM	ASTM	S		X+X		TEMP	ERAT	URE		RR	CORRECTED	10	160	I	HG)		
ITEM	PLES	28	012	38	52	S	ASTE	8 8	0323			P	ERCENT	u	VAPURATED	ATEC				RES	Luss
		PI	N I	MG	9/	02699	02200	N	L'B	IBP	2	10	20	30 5	20 2	6 02	6 00	1 0	صــــــــــــــــــــــــــــــــــــ	» c	24
484	8	65.7	0	a	2.10	100.0	91.0	95.5	13.5	80	9.1	103	129	157	206 2	42	310 3	52	389 0	8.	0.4
485	2					0.66	92.3	95.7	8	8				1		a.					
466	2	9	.03	-	2.07			90.96	12.3	84	76	108		158 2	209 2	39	_	355 4	904	6.	3.2
467	4	5	03	-		6.86	-	95.0			96	110	135	163 2	213 2	54	339 3	172 4	0.	1.1	0.0
0.88		2	0.0	-		100.0	6		13.6	85	96	110	132	159 2	209 2	9 7	325 3	144	383	1.0	2.7
000	10	7	.05		40	9.66	92.3	0.96		8		108	134	4	209 2	35		362 1	607	80	5.8
060	10	7	.03		1.73	99.3	2	95.7	13.6	83	26	108	134 1	163		25	24	~	404	6.	•
160	15	3	0.04	-	5		-	95.1	12.7		66	112	141		218 2	53	0	_	415	1.0	3 3
692		9	.05	2	9		-	96.1	13.4	82	06	104	130	157 2	_	42	295 3	341	385	0.	7. 4
200	9	5	.05	~	0		-	95.8	12.0			110	133 1	162 2	209 2	39	315 3	0	407	6.	9.0
400		0	0	2	0		2	9	12.3	85	96	113	136	_	202 2	33	7	4	373	6.	9.6
405	2	5	0.06	2	15	4.66	0		12.9	86		109	134	091		244 3	4		389	1.0	3.2
900		9	.05	-		99.4	2	2		81	95	103	132	4	12	7	316 3	358 4	404	6.	4 . 4
497	~	66.5	0.057		6	100.2	2	96.3	13,3	84		110	139	167	m	242 3	2	362	396	. 7	4.3
VERAGE		9	000	-	2.20	7.66	7.16	95.7	12.9	84	95	108	134	162	210 2	244 3	318	356	398	o.	3 , 3

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED

REGULAR-PRICE GASOLINE

• •	ORF G.
	MESTERN
NORTHWEST	CAN HEAN
PACIFIC !	- NATIONS
1ST. 15	
0	

		œ	SULFA	CUM,	لما	OCTANE	NE NUMBEI	BER	RVP.			0	ISTIL	LATI	NO	DISTILLATION, ASTM D86	086			
	SAM	ASTM	ASTM	ASTH	ASTM	لبنا	MOT	X+X	-	TEMP	ERATUR	٤,	F (CD	CORRECTED		10 760	MM O	HG >		
ITEM	1	28	2	D381	52	ASTE	ASTM	8 8	(4)			PE	RCENT		EVAPORA	TED			RES	LOS
		0		S E	-	2	02700	24	80	186	5 1	0 2	0 30	20	70	06	9.2	4	34	×
498	1		0.040	-	1.83	m		90.1	11.5	7.8	1 96	-	25 14	7 19	3 24	34	33	423	1.0	1.0
664	90	2	.025	-	1,38	3	9	89.9			96 1	7 1	-	80	5	34	38	414	1.2	2,3
200	4	50	.023		• 6	3	7				93 1	03 1	18 14	0 18	6 2	32	m	421		
501	6	65,2	.012		2	4	89.4	92.0	12.4		80	12 1	-	0 19	52	30	33	372	00	2.2
502	5	0	.028			3	9		-			06 1	-	6 20	4 25	33	36	399	0.	2.4
503	80	9	.023		9.	3	•	90.1	12.7			03 1	-	1 18	4 22	32	37	-	1.0	2,1
504	90	61.9	.019			3	-					07 1		0 2	6 26	34	m	396		2.3
505	40	63,6	.024		2.04	93.2	87.2	90.2	12.6	83	92 1	04 12	22 14	m	1 24	ല		412		2.4
206	89	è	.020	-	5.09	3	86.6	0.06				6 1	•	9 21	4 2	34	6	403	1.1	
507	80	64.4	.026	-		93.5	87.5	90.5	12.4		1 96	06 12	25 14	7 19	2 2	33	3	421		2.2
AVERAGE		63.9	.024	-	2.03	93.4	87.1	90.3	12.3	82	95 1	06 12	25 14	8 19	6 24	7 334	373	408	1.0	2.2
SAMPLES	61																			"

TABLE 3. - MOTOR GASOLINE SURVEY, MINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED DIST. 15 PACIFIC NORTHWEST -- CONTINUED MESTERN WASH. AND WESTERN DREG.

,	
ŀ	N
	_
•	GASUL
	S
•	4
•	_
ŀ	Ť
-	DAMES IN THE STATE OF THE STATE
4	2
1	a.
-	
	=
-	Ξ
Ľ	~
1	4
-	4

		GR.,	SULFA	GUM,	LEA	OCTANE	IE NUMBER	BER	RVP,			0	STIL	LATIC	DISTILLATION, ASTM D&6	STM C	986			
	SAM	_	FOR	ASTM	AST	RESP	MOT	X+X	ASTM	TEMPERA	-	URE, F	000	CORRECTED	red ro	094 0	I	HG)		
TTEN	PLES		01266	0361		ASTM	ASTM	8 8	0323			PE	PERCENT	EVA	EVAPORATED	E 0			RES	L055
		API	N L	S	9/9	05980	02200	8	LB	186	5 1	10 20	30	50	20	06	95	EP	M	*
808	-	65.4	0.0.0	-	05.0	100.4	91.6	0.99	11.6	96	96	106 12	27 15	1 200	239	301	332	398	1.0	0.4
000	* 00	42.7	020		2 - 10	100		0.90	11.5	87	98 1	•	-		9 254	321	360	398	1.0	2.3
	9	6.50	070			9	9110		1.5	4	L/C	-			240		325	378	0	1.7
	-	209	800		3.26	100.0	03.7		12.9	60	90		-	3 20	2 265	317	338	384	8	2.
	. "	62	0 1 1	-	2.2	100	01.2	• •	11.7	40	97 1			3 207	7 253	314	337	374	0.	2.4
1 1 1	· «c	9 9	013		1.64	7 66	• •	95.7	12.4	60	94 1	106 12	27 154		5 244	305	343	383	1.1	2.4
4.1	000	9.99	007	-		9.66	(P)	96.3	11.5	06	101	-	30 15	~	1 229	296	328	369	1.0	2.3
4	0 00	65.6	000			7.66	0		11.7	85					7 241		335	377	1.0	2.2
516	- 40	63.9	011	-	2.14	100.0	-	95.7	12.6	85	94 1	-	-		4 255	317	343	380	1.0	5.4
517	60	63.2	.017	-	1.88	7.66	91.6	95.7	12.5	83	93 1	104 12	26 15	53 201	4 244	304	338	385	.8	2.4
AVERAGE		4	.012		2.14	6.66	92.0	0.96	12.0	85	1 96	108 12	28 15	2 20	2 246	308	338	383	000	2.3
SAMPLES	61																			

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 16 NORTH CALIFORNIA

1		ı		,											1	
		0	1000	×	9.2	1.0	1.8	1.2	2.7	1.2	3.2	2 . 3	2.5	2.7	2.8	2.2
			n	×	0.	'n	6.	9.	0.	80	0.	0.	0.	0.1	0	6.
		HG)	_	a .	404	389	010	87	92	00	151	404	407	98	10	401
	90	I	7	2	m	341 3	51 4	54 3	58 3	4	381 4		8	61 3	355 4	358 4
	086	760		95	13 36	SU.	-	4	7 3	60	0	0	5	32 36	24 3	327 3
	ASTM	707	10	06	7 33	7 31	ا ا		'n	3 32			6	m	3	9
	NO	TED	EVAPURAILD	20	3 25	4 24	9 25	ın	6 25	_	2 271	4	4	4 257	5 266	4 25
	DISTILLATION	CORRECTED	EV A	20	5 20	1 20	19	1 20	200	9 20	3 21	3 20	0 19	6 20	4 21	204
	TILL	(C0 F	ENT	30	15	164	150	154	-	15	15	-	150	15	16	157
	DIS	9 6	PERCENT	20	133	141	130	131	136	137	126	142	131	134	140	135
INE		EMPERATURE, F	- 1	10	113	118	111	109	113	115	103	117	112	113	117	113
SOL		ERAI		2	100	104	9 8	66	96	103	91	66	66	66	101	66
E GA		TEMP		IBP	88	85	86	88	88	85	84	89	60	80	06	87
REGULAR-PRICE GASOLINE	RVP.	pe- 1	اما	ر 8	6.0	1.0	1.0	0.0	1.5	1.8	2.5	0.5	1.3	1.1	1.0	11.1
LAR					.2 1	.8	8	5.	.3 1	.6	.2 1	.5	.3	.0	. 4	0
REGU	NUMBER	*		OI O	06	87	90	91	06	87	06	06	90	06	06	06
		 - 1	ASIM	02700	85.9	84.1	86.7	88.5	86.3	83.4	85.9	87.0	86.4	85.9	85.4	86.0
	OCTANE	RESP	Σ F	02699	20	4	00	5	.2	60	50	0	.2	0.	6.3	6.
		RE	ν -	0	96	91	9 4	9	96	91	94	96	94	94	95	93
	EADA	ASTM	52	3/GAL	06.1	2.03	9	2.88	07.	-		2	<u>س</u>	2.36	.53	1.77
		STH					_	_	_		_	_			_	
	าย	× (0	X		•	(7)	<u>س</u>	_	•	_	**	_		-	
	JLFA	STH	566	24	0.000		030	010	040		020	020	010	040	050	031
	S	~ (_	x	,—	0				0	80	0	0		0	.2
	GR.	ASTH	028	API	61,	60.	3	60	N	-	-	61.	62.	2	5	-
		SAM	4		80	2	5	4	80	3	0	80	00	89	00	
		:	I TEM		518	519	520	521	522	523	524	525	526	527	528	RAGE
			-					-			-					AVERAGE

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS -- CONTINUED DIST. 16 NORTH CALIFORNIA -- CONTINUED

			SULF	GUM.	LEADA	DCTANE	VE NUMBER	BER	RVP.				ITST	DISTILLATION	ION	ASTM	M 086	9			
117.0	SAMP	ASTM	ASTM	ASTM	A C	RES,		X :	ASTM	TEMP	EMPERATUR	tal	PFRCENT	OC	APO	EVAPORATED	760	I	HG)	RES	LOSS
	j L	-	M	MG	9/9	02699	00	~	L.B	IBP	2	10	20	1	50	20 0	6 06	5 E	۵		24
529	80	61.9	0.027	***	4	100.0	92.1	96.1	11.3	87	93	110	133	6	210	254	60	42	387 1	0	3.0
530	-	9.09			2.59	100.0		96.3	12.2	82	96	110 1	136 1	4	211		318 3	45	390	9.	1.9
531	5	63.5	.019		2.08			0.96	11.7	87	96	109		149 1	9	238		32	383	0.	1.9
532	4	54.6	.010	~		8.66	92.3	1.96	9.6	63	105	120 1	148 1	80	58	ın	328 3	47	397	6.	1.0
533	90	0.09	.019		2.64	100.3		96.2	11.8	84	92	107	133 1		13	258			391 1	0	3,5
534	~	57.7			2.44	6.66	92.0	0.96	10.8	85		117	146 1	177	30	SC)		349 4	00	00	1.2
535	0	59.3	6000	-	2.10	100.2	91.3	95.8	12.3	98	92	108 1		4		58			401 1	0	3.8
536	8	59.8	.028			100.0	91.5	95.8	11.7	86	95	110 1	131 1	154	00	249		54 3	101	0	2.8
537	99	59.8	.010	-	2.95	6.66	91.8	95.9	11.8	88		112 1	133 1	4	198	49	24	61	9	0	2.6
538	20	62.0	.017	-	.3	100.0	91.9	0.96	11.1	87	9.2	111	135 1	162 2	10	60	9	2	394 1	0.	2.5
539	40	57.0	9000	-	2.78	99,3	92.4	95.9	11.4	8.7	93	110	133	158	213	268	334 3	361 4	20 1	0	3.1
AVFRAGE		50.4	016	-	2.52	0 00	0.00	0.40	11.4	87	96	1 1 1	136	1 62	211	257	322 3	600	961	6	2.6

TABLE 3. - MOTOR GASOLINE SURVEY, WINTER 1971-72

AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

•
Z
OC.
ORN
1
grows.
AL
-
C
-
-
}
\supset
DUTH
8
63
~
-
-
-
S
-
0

060.0		Z T T Z M M M M M M M M M M M M M M M M	S C C S	PESS DOTANE	Z F F N O O U	X + 1 N 0 0 0	2 - N 00	TENPI BBP BB3	F	110 PE	F (CO F (CO 20 30 140 16	1 C C - 4	Z W O	AO V - A	760 M	6 EP EP EP 225 399	œ - ·	
4	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000000000000000000000000000000000	യെയെയെയെയെയെയെ സംഗരസസസസസ രാഭ്യയത്ത്യ		111 000001 110 000001	4 M M T F G G T F	99 011 000 000 000 000 000 000 000 000 0	12 12 12 12 12 12 12 12 12 12 12 12 12 1	20100 k 20 k 20 k		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ოოოოოოოო	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 5 6 4 7 8 9 9	0000

TABLE 3. - MOTUR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR DIFFERENT BRANDS--CONTINUED

DIST. 17 SOUTH CALIFORNIA -- CONTINUED

	1		L055		9,	۳,	.1	80	4.	٠.	. 1	9.		4.	0	1.	
					0 2	7 1	9 2	9 2	2 1	7 1	0	0 2	0 2	0	1 3	.0 2	
			RES	×	-	-	•	•		-				-	1.		
		HG		EP	393	398	404	415	392	423	396	415	395	396	423	405	
	986	I		56	347	340	352	367	350	370	354	359	344	351	381	356	
	J M L	760	0	06	325	314	322	337	317	345	318	329	312	321	341	325	
	A A S	0 10	RATE	20	271	262	266	267	262	281	255	262	245	255	270	263	
	DISTILLATION, ASTM D86	EMPERATURE, F (CORRECTED TO 760	PERCENT EVAPORATED	50	616	224				040	212	60	198		222	218	
	LLAI	ORRE	T E	30	53	181	58 2	71 2	164 2	95	167	99	151	69	62	167	
	ISTI	2)	RCEN		27 1	156 1	31 1	43 1	41 1	64 1	40 1	39 1	32 1	42 1	134 1	141 1	
	۵	E	Be	20	-	_	8 1	118 1	***	2 1	7 1	5	-	_	109 1	3	
LINE		ATUR		10	4 106	0 127		_	_	2 13	2 11	7 11	8 113			2 117	
ASO		PER	L	2	0	11	1 95	100	107	11	102	16 1	86 8	108	96 9	102	
CE		-		IBP	80	10	8	98	6	6	80	8	80	6	85	88	
PREMIUM-PRICE GASOLINE	RVP,	ASTH	0323	LB	11.9	10.0	12.5	11.0	9.1	9.2	10.5	1101	11.0	9.5	11.6	10.7	
IUM		_	9 8	2	1.0	2 . 1	0.	0.0	6.0	4.0	8.0	2 . 7	9.9	5.7	5.5	6.	
PRE	NUMBER	œ		_	96	96	95	96	95	8	95	95	95	6	95	95	
	IE NU	MOTA	ASTE	02700	92.2	92.2		92.1	91.7	92.1	91.5	91.3	91.5	91.5	91.5	91.6	
	OCTANE	S	I	02699	0.	0	60	00	0	9.	-:	-:	0	80	.5	0.	
	0	RESP	ASTM	05	66	100	66	66	100	100	100	100	100	66	66	100.0	
	AD	¥ -	526	GAL	90	72	5.8	80	7	55			.85		66.	.75	
		MAS			m	2	2	~	2	6	~	-	~	~	N	~	
	300	AST	D38	N.G	-	8			٥		-	-	8	-	-	-	
	1	Ξ	992	HT 8	740		029		030		39	38	071	940	.028	.041	
	SU		_		0.047		•									_	
	GR.	ASTH	0287	API	59.1	55.8									57.2	58.4	
			PLES		-	6			_		_	_	_	-	11		0.0
		3)			-		_	_	10		_	_	_	_		3.5	5
			ITEM		55	552	55	554	555	556	557	558	559	560	561	AVERAGE	SAMPIFS
																F	5

TABLE 4. " MOTOR GASOLINE SURVEY, WINTER 1971-72
AVERAGE DATA FOR BRANDS IN EACH DISTRICT

TABLE 4. - MUTUR GASOLINE SURVEY, MINTER 1971-72
AVERAGE DATA FOR BRANDS IN EACH DISTRICT -- CONTINUED

0,401	021			1	.032 1 2.30 99.6 .028 1 2.58 99.6	1 2 5 3 2	1 2.24	1 2.14	1 2.52	1 2.75 1	.026 1 2.43 99.8
0,401	1000	202		-	000	100	66	66	5.66	000	97.
0,401				1 8	1 1 2 2 2	-00	1 2	1 2		-	1 12,43
BRANDS PLES D287 BRANDS PLES D287 15 82 61.5	63.1	6.4.0 6.4.0	130 62.1 .024	67.7	155 64.0 .032	89 62.0 .015	66.3	0.49	59.6	4	165.91
BRANDS PLES BRANDS PLES 15 82 82		_	CENTRAL MISSISSIPPI 21		SOUTH PLAINS 21	SOUTH TEXAS	STATES	PACIFIC NORTHWEST 10		CALTFORNIA 11	AVERAGE

TARLE 5. - MOTOR GASOLINE SURVEY, WINTER 1971-72

			S																									
			LUS	34	1.6	3.0	3.5	3.0	1.7	4.0	4.0	3.0	1.8	1.9	4.3	2.4	1.9	5.6	3.9	2.6	2.1	2.5	2.0	1.3	1.7	2.0	1.7	7.0
			RES	26			•	1.0										1.0	•			•	•			•	1.0	
		HG)		E P	-	~	~	\rightarrow	8	3	S	8	30	0	~	$\overline{}$	~	-	-	0	0	~	9	0	-	unt.	396	20
	9 8	M		95	58	32	06	61	15	42	84	32	20	54	39	11	22	58	78	44	55	23	55	8 4	62	85	345	55
	O M	9		0	33	12	09	56	76	17	21	13	25	30	60	6 7	95	31	51	18	28	08	54	11	17	53	17	31
	AST		ATED	0	78	2 7	89	9 7	30	29	7.0	25	62	11	47	7.8	42	73	99	64	62	44	55	43	34	73	66 3	7.8
	ION	CTED	PO	0	9		2	ന	7	N	00	0	~	00	٣	ın	~	Œ	~	4	-	0		0	9	4	25 2	9
	LAT	RRE	E <	TU.	9	0 1	1 2		0	6 2	3.1	8 2	3 2	8 2	3.1	9	6 2	7 2	ر 1	3	0 2	6 1	3	0 2	2 1	0 2	0 2	9
	STIL	~	CEN	30	4 1	6 1	2 2	9 1	0 1	3 1	2 1	9	2 1	4	7	1 1	6 1	2 4	4	5	4 1	1	9 1	e-1	2 1	8	3 18	3
	DI		PER	20	-	-	***	***	***	-	-	-	und	-		-	-	-	49-40	-	-	-		~	-	-	5 14	-
		TUR		10	11	0	10	10	11	10	Ο,		11	**	0	0.1	11	11	0	7 7	11	10	10	1.1	12	77	11	2
ш		PERA		2									101				0			0			0	0	9~0		0	8
OL IN		TEMI		186	83	76	80	76	84	84	79	88	86	86	82	80	92	91	80	86	86	86	85	88	92	84	84	109
GASC	۵	S	32	00	•				•																		1.0	
DE	œ	_ A							0	0	0	0	M	9	5	60	0	0	0	~	3	•	~	0	9	9	0	0
-GRA	BFF	R+M	8	~					8	-		0			-	~	8	0	8	0		-	~	30	~		89.	
HIKD	N	-	-	2700	5.0					•											•						9.5	•
F	ANE	Ĭ																									80	
	OCT	ES	ST	0269		. 9	•	5	0	4	8	4.	c	•	9	•	-	4	2	. 4	2	-	-	2	-	4	94.1	2
		L														_	_			-	_	_					_	
	A P	ASTM	52	9/	00.	4	4		0	3		4	0	0	4	4	0	0	0		0		40	0			.58	
	3	STM	80	9		-	-		_	0	2	0	_	-	_	-			~		~	۳		0		-	0	~
	9	≪	0																									
	7	STE	12	36	• 02	.01	03	03	0 1	4	03	0 1	90	-	01	02	00	04	03	-	01	01	ø	00	02	3	.008	4
	•	M M	_		0	~	~	2.	9.	6.	۳,	۳.	۳,	6.3	0.	4.	2	0.	4 -1	۲.	2		9.	4.	٠,	2.	۳,	0
	120	AS	02	A D	56	63	58	62	64	50	63	59	61	27	79	09	79	57	62	58	200	09	62	63	6 2	09	9	50
		AM	PLES		4	2	9	1	9	4	-	N		11						10				22		1	9	CN
	IC	TEM	RS		2	6	4	2	9	7	80	0	0		2	3	4	2	9	_	60	0	0	_	2	6	4	5
	STR	-	MBE		56	56	56	56	56	56	56	56	57	57	57	57	57	57	57	57	57	57	56	50	58	50	3 56	58
	0	A	ž										- 44	-4	-4	-4		-4	-4	-4	,	7	,-1		3	,		4

TABLE S. - MOTOR GASOLINE SURVEY, WINTER 1971-72
DATA FOR SOME ADDITIONAL GRADES -- CONTINUED

			S														_			_	-						-	
			LOS	×	2	9	3	2	-	2	-	2	9	2	c.	5	2	2	-	9	1.	10	4	ď	-		-	<u>е</u>
			RES	×		1.0			•	6.	0	٥.		1.0	6.	1:0	٥.	8.		6.		°:	1.0	٥.	æ.	°:	9.	. 8
		(9H		EP	0	408	8	-	~	387	9	8	474	8	30	-	3	8	0	8	0	8	-	9	CA	408	4	00
	98	I		9.5	42	1	4	~	~	et i	3	GT.	~	a.	3	9	~	10	8	4	43	9	~	5	80	370	3	9
		760	a	06	CV	325	-	4	4	-	0	2	4	~	-	3	4	2	4	$\overline{}$	-	2	4	2	4	336	306	-
	P AS	-	RATE	0.2	-	5	5	~	9	2	5	9	-	3	5	9	9	5	9	4	5	-	9	4	~	262	4	4
	ION	CI	APOR	0	23	07	66	14	20	07	60	1.4	10	18	90	13	90	11	16	90	10	21	91	04	30	222	90	16
	ILLAT	ORRE	T EV	0 5	-	N	0	_	0	55	69	99	45	20	29	25	54	61	64	58	29	73	36	51	18	74	9 4	12
6.0	151	F	RCEN	0 3	100	20 1	•	3	4	33	8 4	42	23	44	34	27	27	35	39	34	45	21	14	36	51	48 1	37	39
TINC	0	5	PE	0 2	9		ال	_	~	N	1	80		0	-4	E	N	_	9	3		9	m	_	0	22 1	4	9
SOLINE CONTINUED		RATUR		5 1	3		_	0 1	2 1	3 1	5 1	5 1	3 1	5 1	0		9 1	6 1	3 1	3	9 1	4	_	9 1	0	05 1		9
E E		MPE		۵	-	2	m	2 1	6 1	6 1	1	9 1	0 1	9 1	4 1	9	~	m	7	8 1	7 1	4	9	0	2 1	4 1	00	90
S01.		I I		1.8		_	_			9	2		10	0	CV		CV	~	9	_	_	S	س	~	0	80	_	0
Q A	>	AST	3			13.				0		0		0	-	CV	13.	-	0	0	6		S	0	10.	0	11.	m
THIRD-GRADE	ER	+		2	~	-	-	7	80	8	0		8	0.	•	0	7.	7	8	8	0	7	ò	9		1.18	8	-
KD-	CMB	-	I	00						_	_	_		_		_	_		_	_	_		_			٣.		
E	W Z	I	S	02	m	9															-					83		
	OCTA	S	\vdash	2699	C	5	7.	-	2	å	4	1.	8	3	0	4	0		2	2	4 .	2	3	-	÷.	N	•	6
	_	œ	A	٥	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0.	0	0	0	0	0	0	0	0	0
	A	ASTM	52	9/																						.03		
	×	X	81	9											-	_			_					_				
	3	AS	23	_		-	_	_	(0)	_	_					_	_		(*)	r.vi	_	_	-	•			_	_
	150	STE	266	24	N	015	-	C	C	-	0	-	C	0	4	0	CV	0	3	0	0	0	quest	50				
	S	AS	0	3		•		•	•			•	10		2	•	9	•	-	ď	• •		•	7	_	~	ø	60
	æ	AST	28	I d	7	2	6		0	0	0	6	-	6	-	. 0	2		5	0	.0	7 .	3,	-	80	59.	•	•
		A	PLES		90			18		11		1.4		4	2	-	'n	5	5	3	2	4	സ	'n	٣	m	7	N
	C	M	S					_			-												-					
	STR	D IT	MBE		58	58	58	58	59	59	50	59	50	59	59	59	59	59	9	9	60	9	9	9	9	607	60	9
	0 1	Z	2		4	4	4	4	4	4	4	4	4	4	2	50	5	5	5	5	5	5	2	9	0	9	9	9

TABLE 5. - MOTOR GASOLINE SURVEY, WINTER 1971-72 DATA FOR SOME ADDITIONAL GRADES -- CONTINUED

- 1			S	- 1					_				_				_	_	_	_			_	_		_	_	_
			L 0 S	×				1.5					1.5	•			3.0			•						1,3		•
			RES	340	9.	•0		1:1		80										9.		80			•	1.0		
		HG >		EP	-	0	-	392	0	40		-	418	0	0		-	0	0	~	-	Ö	0	00	0	403	-	-
	91	X		3	9	47	11	358	25	43		26	00	53	29	8		946		~	9	9	3	3	40	363	S	0
	M D8	160		0	46	91	35	28	23	23	8	30	42	56	22	8	0	gri	2	0.4	56	34	08	14	04	23	31	96
	AST	10	-	6 0	90	50	C	58 3	9	gred)		~	67 3	0	9			9	2	~	4	CV.	~	***	4	47 3	m	9
	Z	TED	POR	7	9	7 2	0	4	7 2	5		50	7	6 2	9		~	3 2	6 2	0	9	4	2	2	8 2	2	8	0
	LATI	RREC	EVA	20	C	~	CV	4 20	e	N	8	2	8 20	N	N	•	18									4 19		
	TIL	0	W	30	P4	15	15	15	17	52	8	16	15	55	15	8		17	5.	16	13	18	17	16	17	14	15	17
NUED	0.15	ia.	PERC	50	4	3	m	133	4	3		3	134	3	3		3	4	3	4	94	5	4	3	4	124	3	4
CONTINUE		URE		10	-	-		113	(V	-		CV	112		-	8	CV	-	0	N	0	N	-	-	CV	103	-	N
00		ERAT		2		0	0	101	0				66	0				109						0		95		qref .
OL INE		TEMP		186	80	89	98	84	85	86		88	40	82	98											83		
GASO	Ω.	E	O	80				7 -0					i,			8										.3		
DE	æ	AS	0	-		-	***	11	-	-	_	•	1 12	-	~				~	-	~		-	-		1 12	~	
GRA	BER	X+X		~	0	9	•	7.		8	9	7.	0	8	0.	.0	9	6		S	8	8	-	, 9		89.	9	8
HIRD=	3	-	STE	~																						.5		
F	ANE	M	¥	0 6																						85		
	OCT	ES	-	269	6		6	-	2	-	0	è		1.	è	è	-	4	1.	*	1	-	0	1.	-	95.6		5
		3																								9		
	141 6—	AS	05	9	643		2.2			0.	0		2.1		0.			~		•	 	•	0	•	•	1.6	•	•
	3	ASTR	38	6		B		8				8	A	wel	a	A	8		-4					-4			~	•
		I	99			2			0			0		~												4		
	3	AST	12	_		.05		.05	.00	.00	8	.02	8	.01	.0		8	.01	0	.05	000	0	0	00	0.	.03	0	8
	OK.	ASTH	28	-	57.8	2	à	-	0	0	1	8	~	0	2	9	2	8	. 9	5	4	8	4	0.	7.	5	3	-1
		A M -	LES		C			_	9		4=0		9		-									_	_		_	
	 	N	0										_															
	RIC	178	ERS		10	-	-	-	-	-	-	-	-	-	C	C	CV	CV	S	2	S	3	CM	C	3	3	3	CT .
	DIST	AND	NUNB																				0	0	0	10 6	0	0
			-																						-	-		

TARLE 5. - MOTOR GASOLINE SURVEY, WINTER 1971-72 DATA FOR SOME ADDITIONAL GRADES--CONTINUED

1			0.55			2		0	ac (m	2	~				S.	m		m	aD 4	0	0 ,	Ç.	7	ا لما	E 1		,	
			103	≫		2			7 .			-		8	-	-	-	3	-	-	-	~	-	•		-	•		-
			RES	×		1.0	8	1.0	1.2	•	1.0	1:1	*		1.0	1.0	1.3	*	1.0	1.0	1.0	1.0		9 .	•	6	•		1.0
		HG)		الله		381		2	-		425	411			8		392		9	344	0	390	0	9		417	378	B (432
	98	Y		95		337		372			8	355				351	354		357	0	347	3	· C	3	375	9	326		384
	TM 08	160		0		96		41	22	31	48	35			0.4	21	23		22	68	6	14	35	28	31	36	91		348
	AST	Н	ATED	6		36 2		6	~	5		58 3			'n	61 3	_		59 3	9	_	m	00 (S.	7	0	~		60 63
	NO	TED	OR	7		7 2		2 2	9 2	8 2	3 2	9 2			5 2	8	4		9 2	3	1 2	17 2	1 2	4	9	4	9		36 2
	DISTILLATION	ORREC	EVAF	50		5 20		~	5 16		~	-		•	2	5 21	-	-	00	3	1 2	5	80	0 2	1	6 2	9		0
	3116	00)	CENT	30		15	•	2 17		-1	3 15	8 14		*	~	9 16	14	3	***	-	-	0 16	~	-	9 15	-	3 16	•	1 19
NUE	0.13	•	PER(20		127		14	12	12	13			•	14	13	13		13	13	13	14	14	14	12	13	14		16
INU		TURE		10		106		116		103	111	107				120				O	•	115	-	120	107	113	121		132
3		ERA		5		93		101	8		9 6	106			107	105	66		102	109	0.4	66	100	109	9.5	66	107		115
ASOL INE CONTINUED		TEMP		IBP		85		88			85			8		91	86	8				85					92		06
9	9	ASTM	32			12.5		7.6	-		~	•				•	11.9		•	0.6	•	11.1	11.3			11.1			0.8
HIKD-GKADE	æ	X +	:	2	_	4.0	2 . 7			7.6		8.4							8. 7				•			6.8		•	7 • 3
9-0	MBE	æ	2	C	_	0	00	æ	&	80	0	Œ	60	0,	œ	00	0	٥	40	00	0	&	©	ac.	œ	a o	æ	00	00
THIK	NE NC		ASTE	0270		œ	ċ		5.	. 9	9	84.6	4.		5		9			4.	7	'n	-	3.	5	5	4		
	OCTAI	ES.		5698								2.2																	
		~		0		6	0	6	6	6	0	0	6	6	0	0	0	6	0	0.	3	6	œ	0	0	0	0	6	0.
	لمة	ASTM	0526	1			00.	. 3A	1.28	1.40	50°	96.	00.	, 3 A	.30		-	000	.45	00.	.36	ec	0.		5.00		00.	. 4 1	.04
		-		- 1							60						5.00	40.0											
	=	-	381	9					_	_		_	_	_					_										
	\supset	-	38	D E			•		•	-	8	-4			-	N	A	-		.ч		m				N			4
	ULF, GU	STM AST	1266 D38	1 % MG				33	40	24	34	.041			26	19	26		32	14	10	14				.130 2		8	080
	SULF, GU	TH ASTM AST	87 D1266 D38	I MT % MG			•	.6 .033	.2 .040	.8 .024	.5 .034	.3 .041	. 0.	- 9.	.7 .026	0.019	.8 .026	. 4.	.5 .032	.8 .014	.0 .010	.5 .014	- 1			.3 .130	. 2	* 5	.5 .030
	R. SULF. GU	- ASTM ASTM AST	S 0287 01266 D38	API MT % MG		67.	62.1	56.6 .033	0000 2099	61.8 .024	61,5 .034	2.3 .041	63.0	56.6	61.7 .026	58.0 .019	62.8 .026	- 4.09	60.5 .032	66.8 .014	60.0 .010	60.5 .014	- 1009	58.8	63.9	61.3 .130	65.2	56.5	56.5 .030
	R. SULF. GU	AM- ASTM ASTM AST	D287 D1266 D38	API MT X MG		67.	62.1	56.6 .033	0000 2099	61.8 .024	61,5 .034	62,3 .041	63.0	56.6	61.7 .026	58.0 .019	62.8 .026	- 4.09	60.5 .032	66.8 .014	60.0 .010	60.5 .014	- 1009	58.8	63.9	61.3 .130	65.2	56.5	56.5 .030
	TOT GR., SULF. GU	AM- ASTM ASTM AST	RS PLES 0287 01266 D38	API NT % MG		4 3 67.	2 62.1	6 2 56.6 .033	7 1 66.2 .040	8 1 61.8 .024	9 6 61.5 .034	5 62.3 .041	2 63.0	2 56.6	3 6 61.7 .026	5 58.0 .019	5 6 62.8 .026	1 60.4	7 7 60.5 .032	8 4 66.8 .014	3 60.0 .010	0 5 60.5 .014	1 6 60.7	3 58.8	3 10 63.9	4 9 61.3 .130	5 9 65.2	8 2 56.5	7 56.5 .030

TARLE 5. - MOTOR GASOLINE SURVEY, MINTER 1971-72
DATA FOR SOME ADDITIONAL GRADES -- CONTINUED

		n																									
		L U.S		1.04		•		0.	0.	2.1	. 7	0	S.		1.3		6.	1.2			1:1	1.4	1.4	•		•	2.0
	1	M M		6.	00			6.	1.0	6.	0	1.0		•	•	6.	0.	0.			1.0		0.	1.0		•	0.
	HG)	E P		400	5	0	0	0	0		0		4	0	0	0	0	0	9	0	2		2	0	9	-	398
7 0		95	1	359	0	-4	359	4	370	CV	IO.	3	5	S	5	S	4	9	5	4	9	8	8	5	3		353
7	760	06		323	00	3	-	-	4	9	0	0	-	3	2	3	-		3	0	4	8	9	-	-	4	323
U		A C		262	50	58	54	54	62	34	37	32	44	52	29	22	43	4 1	88	20	65	55	73	55	64		257
20	CTE	AP 0		20	00	03	34	13	56	8 9	66	92	00	30	11	14	26	16	31	21	02	0.4	21	90	22	944	209
A 4 4	ORR	0 5		91	46	21	7.8	73	83 2	52	25	55	63	16	69	71	26	61	7.1	62	52	63	7.1	10	81		09
7 5 7 9		0 1		55	30	2	44	54	24	33	36	37	4	22	45	48	39	45	43	41	30	4	44	51	53	4	36 1
6		0 T		-	CV	06 1	N	32 1	32 1	4	9	19 1	0	9	~	2	N	0	6	_	0	24 1	6	4	7	4	14 1
	RATU	5		6 1		4 2	ιυ ••	8 1		3	4 1	0 1	0	4	8 2	***	0	7	4	2	2 1	2 2	2 2	2 1	2	-	02 1
	EMPE	0.00	-	2 2	3	~	0 1	7	1 96	3	7	0 1	-	6 1	1	2	2 2	9 1	0	e-1	5	4	7 1		4 1	2	87 1
		m m	+	N	(T)	in	W)	K	4	D.	9	CI	4	1973	0	ın	9	7	9	9	0	~		-		_	.7
>	AST	m		0		2		_	0	12	10	-	~	•	0	0	0		0		11	0	10	60		11	10
9	4				9	8	7.	7	87.0	6	-		•	. 9	8	7	0	9	0	7	7.	7	0	-	7.	6	88.5
1 2	E .								9.														•				40
1 4	ᆚ포	A C		86					82																		84
	ES.	D269		3.	-	2	-	-	91.3	0	-	ò	0	-	-	2	4	-	5	8	-	-	4	-	-:		95.6
1	ASTH	200			0		0		00.		0			0													.59
2	ASTE	10 E		A	8	8	A	~			A	A	~	~	C4			C4	8	-4	-4	~		a	-		-
1 3	ASTM	~ ~	.			0	3	0	.077	00	0	4	0 1	90	01	-		.010		2	-	.030		0			.029
1 0	AST M	₩ A			9	0	0	è	56.8	9	2	5	0		0	0	0	6	9		0	•	8	0	5	8	
	SAM	W L		7	2	m	00	3	m	m	m	-	4	4	2	9	4	2	3	9	4	10		80	9	-	
4	AND ITEM	MBER		3 658	65	99	99	99	66	99	99	99	99	99	99	67	67	67	67	67	67	67	67	67	67	68	ERA
1	_ ∢ .	Z		-																							

TABLE 5. - MOTOR GASOLINE SURVEY, MINTER 1971-72
DATA FOR SOME ADDITIONAL GRADES -- CONTINUED

STRIC		×	7	X	EA	OCTA	NE NUM	BER	>			-	DISTILL	LLAT	ATION	ASTM	08	9		
AND ITEM	X	S	2	ASTA	S	ESP	10	X+X	-	TEMP	ERAT	URE	-	OR	CTED	10	760	MM HG	~	
MAERS	PLES	28	12	38	52	57	ST		32			PE	RCE	لعا	APO	ATE			RE	S L05
		API	34	S	G/GAL	D2699	02700	2	69	186	5	10 2	20 3	0 5	0 7	0	6 0	S EP	×	M
6.8	67	4	0			9	7	•	4	74	90	10	12	32	98	57 3	18 3	-	0	-
6.8		0	.03	7	0	9		•	12.1	87	8	0	9	6.1	11	55 3	33	4.1	9 1	~
6.8	-	3	0.5	-		8	6	9	~	72		7	25	52	90	53 3	34	42	7 1.	N
99	15	2	02	-	4	9	9	-	4	76	84	7	16	35	98	51 3	16 3	0	•	C
8		0	l m	-		-	00	3		82		0 4	36	65	19	59 3	27	42	•	4
40	4	6	0	-		9	00	S	2	80	la.	02	25	20	0 1	54 3	40 3	1 41	2 1.	5 1
90	7	80	02	-	4	~	9	-	CV	80	N)	e	24	47	02	53 3	11 3	37	9 1.	2
80	**	2	03	-	0	9	8	2	2	80		0 1	56	49	02	52 3	38	40	7 1.	0
99	~	0	0	8	6	9	9	-	6	7.8	10	60	32	58	60	55 3	25 3	0	1	8
69	-	-	.039	940		-	0	4		73		K	22	51	11	60 3	50	40	7 1.	4 2.
9	2	6			4	~		1	4	72	82	4	14	40	20	58 3	19 3	38		7 2
80	10	6	0.1	-		7	9	-	S	83	6	0 4	23	44	0.1	60 3	19 3	9 38	2 1.	0
8		9	0	•		7	0	6	-	87		~	33	55	6	29 3	10	40	4 10	4
6 9	(4)		10		4	9	9	-	-	98		4	32	52	10	74 3	22 3	4 37	0	9 1
× 0	6		10			9	7	-	2	85	0	0.1	18	37	96	65 3	20 3	5 36	6 1.	0 1
8	7	-		-		9	7	-	-	84	4	90	25	44	40	66 3	19 3	1 37	2 1.	0
3 697	. 67	67.0			2.95	94.3		91.5	0	86	9.5	106 1	125 1	146 1	94 2	42 3	31 3	-	0 1.	0
69	4	6	A	8	10	7	9	-		92	-	24	43	64	20	50 3	14 3	2 39	2	-
6.9	4	0				9	-	-		80.55	9	11	34	20	- 4	69 3	38 3	2 41	4	9 1.
4		-	0.0 A	-	-	4	7	000	12.3	~	03	104	126 1	150 2	0.3	56 3	25 3	50 39	5 11.	0 2

TABLE 5. - MOTOR GASOLINE SURVEY, MINTER 1971-72
DATA FOR SOME ADDITIONAL GRADES -- CONTINUED

CTANE NUMBER RVP. S. MOT. R+H ASTM TEMPERATURE, F (CORRECTED TO 760 MM HG) 6 94.3 96.5 13.7 72 82 94 116 141 203 248 310 346 398 1.0 4.0 9 92.0 95.8 13.1 72 82 94 116 141 203 248 310 346 398 1.0 4.0 9 92.7 96.8 113.1 72 82 94 116 141 203 248 310 346 398 1.0 4.0 9 92.7 96.8 113.1 72 82 94 116 141 203 248 310 346 398 1.0 4.0 9 92.7 96.8 113.1 72 82 94 116 141 203 248 310 346 398 1.0 4.0 9 92.7 96.8 113.1 72 82 94 116 144 208 253 310 300 372 1.0 4.0 9 92.7 96.8 110.7 84 117 150 180 228 261 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1
NE NUMBER RVP. MDT. R+M ASTM TEMPERATURE, F (CORRECTED TO 760 MM HG) ASTM	
NE NUMBER RYP. MDT. R+M ASTM TEMPERATURE. F (CORRECTED TO 760 MM HG) ASTM	-
SUPER-PREMIUM GASOLINE NE NUMBER NETA ASTM ASTM ASTM ASTM D2700 PERCENT EVAPORATED PERCENT EVAPORATED PO2700 94.3 98.5 13.7 72 82 94 116 141 203 246 310 346 90.0 95.8 13.7 72 82 94 116 141 203 248 310 346 91.3 96.5 12.0 85 11.4 85 109 139 186 230 300 100 100 100 100 100 100 100 100 1	386 1
SUPER-PREMIUM GASOLINE NE NUMBER NOTA NETH ASTM ASTM ASTM ASTM PATH D2700 94.3 96.5 13.7 72 62 94 116 141 203 246 310 91.8 96.5 12.0 85 = 109 134 161 217 258 318 91.8 96.5 12.0 85 = 109 134 161 217 258 318 91.8 96.5 12.0 85 = 109 148 187 236 263 319 91.8 96.5 12.0 85 = 109 148 187 236 263 319 91.8 96.6 11.4 85 = 109 148 187 236 263 319 91.8 96.9 12.0 85 = 109 148 187 256 253 319 91.8 96.9 12.0 85 = 109 148 187 256 253 316 91.8 96.9 12.0 85 = 109 148 187 255 316 91.8 96.9 12.0 84 = 117 150 180 228 261 313 92.4 96.9 12.0 86 = 114 145 173 216 247 320 92.7 96.9 12.0 86 = 105 130 156 210 247 320 93.7 97.6 14.0 82 96 100 123 156 209 250 306 92.0 96.5 12.0 84 = 105 137 146 210 249 302 93.0 97.0 12.0 84 = 108 128 153 210 269 316 92.0 96.5 12.0 84 = 108 128 153 210 269 316	I
SUPER-PREMIUM GASOLINE NE NUMBER RVP. MDT. R+H ASTM TEMPERATURE, F (CORRECTED TO TO 90.0 95.0 13.1 7 72 82 94 116 141 203 246 3 91.3 96.3 13.7 72 82 94 116 141 203 246 3 91.5 96.2 12.0 85 = 109 148 167 236 230 3 91.5 96.4 14.1 81 85 = 109 148 167 236 251 391.7 96.4 10.7 84 = 109 148 167 236 261 391.7 96.4 10.7 84 = 109 130 156 230 391.7 96.4 12.9 62 = 109 123 152 211 262 391.5 96.4 12.9 62 = 109 123 152 211 262 391.5 96.4 12.9 62 = 109 123 152 211 262 391.5 96.4 12.9 62 = 109 123 152 211 262 391.5 95.4 96.9 12.0 86 = 114 145 157 216 247 391.7 97.8 12.0 62 90 100 123 157 215 255 391.7 97.8 12.0 62 90 100 123 157 215 255 391.7 97.0 12.0 84 = 103 126 153 210 260 391.7 156 209 255 391.7 96.5 11.9 7.3 = 100 127 155 200 234 2.2 92.0 96.5 11.9 7.3 = 100 127 155 200 234 2.2 94 2.2 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	3 336
SUPER-PREMIUM GASOLINE NE NUMBER RVP. ASTM TEMPERATURE, F (CORRECTED ASTM TEMPERATURE, F (CORRECTED ASTM TEMPERATURE, F (CORRECTED D2700 95.8 13.7 72 82 94 116 141 203 24 90.0 95.8 13.7 72 82 94 116 141 203 24 91.8 96.5 12.0 85 11.4 85 109 134 161 217 25 91.8 96.5 12.0 85 11.4 85 109 134 161 217 25 91.8 96.5 12.0 85 109 148 187 236 26 91.5 96.4 10.7 84 117 150 180 228 25 91.5 96.4 10.7 84 117 150 180 228 25 91.5 96.4 10.7 84 117 150 180 193 23 92.4 96.9 12.0 86 108 130 156 209 25 92.7 97.6 14.0 82 90 100 123 150 209 25 93.7 97.6 14.0 82 90 100 123 157 215 25 93.0 97.0 12.0 84 105 107 146 210 24 93.0 97.0 12.0 84 100 127 155 200 23	313
SUPER-PREMIUM GASOLINE NE NUMBER MDT, R+M ASTM TEMPERATURE, F (CORRECTED EVALUATION OF STAND OF STAN	251
SUPER-PREMIUM GASOLINE NE NUMBER RVP, ASTM TEMPERATURE, F C 03.23 13.7 72 02 94 116 91.3 96.3 13.7 76 98 119 91.6 96.5 12.0 05 = 109 148 94.1 96.4 14.1 81 85 = 109 148 91.7 96.4 14.1 81 85 = 109 148 91.7 96.4 14.1 81 85 = 109 148 91.5 96.4 10.7 84 = 117 150 91.5 96.5 12.0 85 = 109 148 92.7 96.9 12.0 86 = 114 145 93.7 97.6 14.0 82 90 100 123 93.7 97.6 14.0 82 90 100 123 93.7 97.6 14.0 82 90 100 123 93.0 97.0 12.0 84 = 103 128 93.0 97.0 12.0 84 = 108 128	0
SUPER-PREMIUM GASOLINE NE NUMBER RYP, TEMPERATURE, D ASTM ASTM TEMPERATURE, D 90.0 95.0 13.7 72 92 109 1 91.5 96.5 13.7 72 92 1 91.5 96.5 11.4 81 85 = 109 1 91.5 96.4 14.1 81 86 98 1 91.5 96.4 12.9 85 = 109 1 92.4 96.9 12.0 86 = 117 1 92.7 97.9 12.0 86 = 117 1 92.7 97.3 12.8 80 98 108 1 92.7 97.3 12.8 80 98 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 86 99 108 1 92.0 96.5 12.9 89 1 109 1	157
SUPER-PREMIUM GASOLINE NOT NUMBER RAYPA ASTM ASTM TEMPERATURE 90.0 95.0 13.1 7 72 92 109 91.3 96.5 13.7 72 92 109 91.5 96.4 14.1 81 85 = 109 91.5 96.4 12.9 85 = 109 92.7 96.9 12.9 82 = 108 92.0 96.9 12.0 86 = 114 92.0 96.5 12.0 86 = 114 92.0 96.5 12.0 86 = 114 92.0 96.5 12.0 86 = 108 93.7 97.6 14.0 85 = 108 93.7 97.6 14.0 85 = 108 93.7 97.6 14.0 85 = 108 93.0 97.0 12.0 84 = 108	120
NE NUMBER RYP, TEMPERATION GASOLINE ASTH ASTH ASTH ASTH ASTH ASTH ASTH ASTH	103
NE NUMBER SACH SACH	89
N	- C
N	6
	=
	97.0
	5
A A A A A A A A A A A A A A A A A A A	00
00000000000000000000000000000000000000	101.5
COA	K
AIH E000 MANANANANANANANANANANANANANANANANANANAN	
646	
00000000000000000000000000000000000000	029
	Ľ
	60.6
I W TO WE WE WE WE WE WAS A WA	
₩ Z	
1	RAGE
NON MUNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	AVE

TABLE 6. - Cumulative percents of samples of all grades by research octane numbers by districts, motor-gasoline survey, winter 1971-72

Cumulative	samples	3 4 5	744	1,896	2,899 3,018 3,063 3,496 4,892	5, 193 5, 218 5, 226
	17	4.0	3.1	45.9	59.0 59.0 59.0 61.6	100.0
	16		7.6	37.8	57.0 59.3 59.3 62.8 98.8	100.0
	15	0.7	7.4	54.4	55.1 55.1 55.1 59.6	
	41		5.6	51.7	52.1 52.1 56.2 71.2 92.5	99.6
	13	0.3	30.8	50.5	55.6 66.4 67.8 81.7 99.8	100.0
	12		3.3	36.0	55.0 58.3 58.3 61.6 95.7	100.0
	=		9.7	47.5 52.2	52.5 53.8 55.2 76.3 98.3	100.0
	10	1.7	21.8	53.2	55.2 55.8 58.1 81.7 92.7	100.0
District	6	0.9	5.5	53.2	53.2 53.2 55.0 90.8	
	0		8.1	36.0	54.7 57.5 57.8 59.9 92.9	100.0
	7		12.4	33.4	55.9 56.9 57.5 63.5	99.7
	9		2.7	27.6	56.2 56.2 57.3 70.8 96.8	100.0
	5	=	8.7	22.8 53.2	58.2 58.2 58.2 67.7 96.6	98.9 99.2 100.0
	4		2.8	30.3	57.1 58.5 58.8 60.3 91.5	99.4 99.8 100.0
	3		2.7	31.1	55.1 56.7 57.3 59.8 90.9	98.1 99.8 100.0
	2		8.4	22.1	55.9 57.4 57.8 59.1 82.4	98.2 99.6 100.0
	-		8.6	20.9	53.5 55.1 55.1 56.1	99.5 99.5 100.0
Research	number	88 88 86 86	91	95	98 99 99 100	101 102 103

TABLE 7. - Cumulative percents of samples of all grades by motor octane numbers by districts, motor-gasoline survey, winter 1971-72

	i ve						
	Cumulative total samples	- 5	32 94 230	485	2,914	3,321 4,190 4,960 5,171 5,212	5,218
1	17		1.7	16.2	50.2 58.1 59.0 59.0	74.2 97.4 100.0	
	9		5.8	12.2	42.4 55.8 58.7 59.3	68.6 91.3 100.0	
	15		1.5	7.4	18.4 44.1 52.9 53.7	69.1 88.2 97.1	
	4		2.6	12.7	42.7 51.3 55.8 59.2	68.2 89.9 98.9 100.0	
	13		1.0	7.5	43.4 51.2 55.2 60.6	70.0 82.6 91.1 97.9	
	12		0.5	6.2	17.5 47.4 56.9 58.3	61.1 72.0 74.3 99.1	99.5
	=			1.3	23.7 50.8 53.2	55.2 71.2 88.6 96.3	
	0	9.0	3.2	7.8	39.0 48.0 54.1 55.5	60.8 78.8 74.5 99.1	
	0	0.9	5.5	19.3	53.2 53.2 56.9 59.6	62.4 72.5 83.5 93.6 97.2	99.1
	00		3.1	7.1	28.9 51.6 56.5 57.8	62.1 88.5 99.1	
	~		1.0	8.1	22.6 44.3 56.4 56.4	59.8 75.3 94.6	
	0		2.2	7.6	19.5 45.9 54.6 56.2	57.3 67.0 89.2 97.3	100.0
	5		2.3	10.3	24.0 51.0 58.2 58.2	61.6 77.9 93.9 98.5	100.0
	4		0.2	12.8	25.9 50.0 57.7 58.3	62.6 73.1 93.4 99.4	
	m	0.2	2.1	9.9	25.5 49.3 54.7 56.3	62.5 79.3 98.8 100.0	
	2		0.3	9.3	26.4 50.7 56.0 57.9	86.3 8.3 8.0 7.0 0.00	
	-		3.2	8.6	23.5 43.3 52.9 54.0	58.8 82.9 98.9 100.0	
	- F - S - S	6.0	- 0.6	5	9 N B & C		9 2
	Motor	V 80	ထာတ်ထဲ	00 00	0 0 0 0 0	22 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	0.0

State	Location	Samples	State		Location	Sample
District 1 (Northeast)			District 11 (Sout	h Plains)		
	0.11	***				
Maine Massachusetts	Portland Boston area	50 137	Kansas		Coffeyville McPherson	10
	2 locations	187			Wichita	64
District 2 (Mid-Atlantic Coast)			Missour Oktaho		Springfield Bartlesville	20 6
District 2 (Mid-Artaine Cour)			Okrano	mg	Oklahoma City	6
Connecticut	Hartford	3			Tulsa	104
D.C., Md., Va. Maryland	Washington area Baltimore	5 111	Texas		Dallas-Fort Worth 8 locations	83 299
New Jersey and New York	New York City area	215			o rocarrons	2//
New York	Albany	11	District 12 (Sout	hern Texas)		
Pennsylvania	Syracuse Harrisburg	6 18	Texas		Seaumont	8
Pennsylvania and New Jersey Virginia	Philadelphia area	195			Houston	161
	Richmond 9 Tocations	114 678			San Antonio 3 locations	42 211
District 3 (Southeast)			District 13 (Sout	h Mountain States)		
	n:	05			el t	01
Alabama	Birmingham Mobile	95 33	Arizone	1	Phoenix Tucson	86 28
Florida	Jacksonville	42	Californ		Bakersfield	14
	Miami area	59	Colora		Denver	104
	Part Everglades Tampa	3 14	Nevado		Las Vegas Reno	27 24
Georgia	Atlanta	140	New A	lexico	Albuquerque	101
North Carolina	Savannah Charlotte	9	Texas		Amarillo El Paso	84 24
North Carolina	Wilmington	46			Lubbock	24
South Carolina	Charleston	3	Utah		Salt Lake City	58
Tennessee	Chattanooga Knoxville	34 2			11 locations	574
	13 locations	483	District 14 (North Mountain States)			
District 4 (Appalachian)			Idaho		Boise	67
District 4 (Apparaemon)			Montan	a	Billings	52
New York	Buffalo	105			Great Falls	4
Ohio	Cincinnati Cleveland	124 118	Washin	gron	Pasco Spokane	34 110
	Columbus	20			5 locations	267
	Toledo	7 82	District 15 /D	tt - NIAlA		
Pennsylvania West Virginia	Pittsburgh Charleston	12	District 15 (Pacific Northwest)			
	7 Tocations	468	Oregon Washington		Portland	14
District 5 (Michigan)			Washin	gron	Seattle 2 Tocations	122 136
Michigan	Detroit	227	District 16 (Nor	thern California)		
	Northern Peninsula	36	0.111			170
	2 Togations	263	Califor	nia	San Francisco Bay area T location	172
District 6 (North Illinois)			D1 4 1 4 1 7 / 5			
Illinois and Indiana	Chicago area	143	District 1/ (Sou	thern California and I	dawaii)	
lowa	Davenport	2	California		Los Angeles area	175
Wisconsin	Green Bay	12	Manuali.		San Diego	17 37
	Madison Milwaukee	25 3	Hawaii		Honolulu 3 locations	229
	5 locations	185				
District 7 (Central Mississippi)						5.00/
Indiana	Evansville	39		Total	90 locations	5,226
	Indianapolis	96				
Kentucky Missouri and Illinois	Louisville St. Louis area	71 93				
Missouri and Illinois	4 locations	299				
District 8 (Lower Mississippi)			District	Locations	Samples	Percent
District 8 (Lower Mississippi) Arkansas	El Dorado	2	District	Locations	Samples	
Arkansas	Little Rock	86	1	2	187	3.6
	Little Rock Baton Rouge	86 35		2 9 13		3.6 13.0 9.2
Arkansas	Little Rock	86	1 2 3 4	2 9 13 7	187 678 483 468	3.6 13.0 9.2 9.0
Arkansas Louisiana Mississippi	Little Rock Baton Rouge Lake Charles New Orleans Jackson	86 35 2 86 14	1 2 3	2 9 13	187 678 483	3.6 13.0 9.2
Arkansas Louisiana	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis	86 35 2 86 14 95	1 2 3 4 5 6 7	2 9 13 7 2 5	187 678 483 468 263 185 299	3.6 13.0 9.2 9.0 5.0 3.5 5.7
Arkansas Louisiana Mississippi	Little Rock Baton Rouge Lake Charles New Orleans Jackson	86 35 2 86 14	1 2 3 4 5 6 7	2 9 13 7 2 5 4	187 678 483 468 263 185 299 322	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2
Arkansas Louisiana Mississippi Tennessee	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville	86 35 2 86 14 95	1 2 3 4 5 6 7 8 9	2 9 13 7 2 5 4 8 2	187 678 483 448 263 185 299 322 109 344	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6
Arkansas Louisiana Mississippi Tennessee	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville	86 35 2 86 14 95	1 2 3 4 5 6 7 8 9	2 9 13 7 2 5 4 8 2 5 8	187 678 483 468 263 185 299 322 109 344 299	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis—St. Paul	96 35 2 86 14 95 2 322	1 2 3 4 5 6 7 8 9 10 11	2 9 13 7 2 5 4 8 2	187 678 483 448 263 185 299 322 109 344	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains)	Little Rack Barban Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis-St. Paul Williston	96 35 2 86 14 95 2 322	1 2 3 4 5 6 7 8 9 10 11 12 13	2 9 13 7 2 5 4 8 2 5 8 3 11	187 678 483 468 263 185 299 322 109 344 299 211 574 267	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis—St. Paul	96 35 2 86 14 95 2 322	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2 9 13 7 2 5 4 8 2 5 8 3 11 5	187 679 483 488 263 185 299 322 109 344 299 211 574 267	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota North Dakota	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis-St. Paul Williston 2 Tocations	86 35 2 86 14 95 2 322 91 18	1 2 3 4 5 6 7 8 9 10 11 12 13	2 9 13 7 2 5 4 8 2 5 8 3 11	187 678 483 468 263 185 299 322 109 344 299 211 574 267	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota North Dakota District 10 (Central Plains)	Little Rack Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 locations Minneapolis-St. Paul Williston 2 locations	86 35 2 86 14 95 2 322 91 18 109	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2 9 13 7 2 5 4 8 2 5 8 3 11 5 2	187 678 483 488 263 185 299 322 109 344 299 211 574 267 136 172 229	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0 5.1 2.6 3.3
Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota North Dakota District 10 (Central Plains)	Little Rock Baton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis-St. Paul Williston 2 Tocations	91 18 109 152 109 97	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2 9 13 7 2 5 4 8 2 5 8 3 11 5 2	187 678 483 468 263 185 299 322 109 344 299 211 574 267 136	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0 5.1 2.6 3.3
Arkansas Louisiana Mississippi Tennessee District 9 (North Plains) Minnesota North Dakota District 10 (Central Plains) Towa Kansas	Little Rock Boton Rouge Lake Charles New Orleans Jackson Memphis Nashville 8 Tocations Minneapolis-St. Paul Williston 2 Tocations Des Maines Phillipsburg	86 35 2 86 14 95 2 322 91 18 109	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2 9 13 7 2 5 4 8 2 5 8 3 11 5 2	187 678 483 488 263 185 299 322 109 344 299 211 574 267 136 172 229	3.6 13.0 9.2 9.0 5.0 3.5 5.7 6.2 2.1 6.6 5.7 4.0 11.0 5.1 2.6 3.3

FIGURE 5.- Map Showing Location and Number of Samples for the National Motor Gasoline Survey, Winter 1971-72

