

CSC 384 Introduction to Artificial Intelligence

Knowledge Representation 3

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

- Construct a resolution proof using forward chaining
- Construct a resolution proof as a refutation proof.

Outline

- 1. Resolution Proof Procedure
- 2. Resolution Proof Example

RESOLUTION PROOF PROCEDURE

Clausal Form

 To construct a resolution proof, we must convert each formula to clausal form.

- A literal is an atomic formula or the negation of an atomic formula.
 - e.g. p(X) or $\neg p(X)$
- A clause is a disjunction (OR) of literals.
 - e.g. $p(X) \lor q(Y) \lor \neg r(Y,Z)$
 - We rewrite it: $(p(X), q(Y), \neg r(Y, Z))$

Resolution Rule

Resolution proof has one rule:

From the two clauses

$$(P, Q_1, \dots, Q_k)$$

 $(\neg P, R_1, \dots, R_n)$

We infer the new clause

$$(Q_1, \ldots, Q_k, R_1, \ldots, R_n)$$

Two Proof Approaches

Suppose we want to prove f from KB.

- Forward Chaining (or Direct Proof)
 - Start with the clauses from the KB.
 - Generate a new clause using the resolution rule.
 - Stop when we generate *f* .
- Refutation Proof (or Proof by Contradiction)
 - Start with the clauses from KB and a new clause $\neg f$.
 - Generate a new clause using the resolution rule.
 - Stop when we generate the empty clause.

Forward Chaining Example

Want to prove likes(C,peanuts) from:

- (elephant(C), giraffe(C))
- 2. $(\neg elephant(C), likes(C, peanuts))$
- 3. $(\neg giraffe(C), likes(C, leaves))$
- 4. ¬likes(C, leaves)

Forward Chaining Proof:

Step	Clauses to combine	Resulting clause
5		
6		
7		

Forward Chaining Example

Want to prove likes(C,peanuts) from:

- (elephant(C), giraffe(C))
- 2. $(\neg elephant(C), likes(C, peanuts))$
- 3. $(\neg giraffe(C), likes(C, leaves))$
- 4. \neg likes(C, leaves)

Forward Chaining Proof:

Step	Clauses to combine	Resulting clause
5	3 and 4	-giraffe(C)
6	1 and 5	elephant(C)
7	2 and 6	likes(C,peanuts)

Refutation Proof Example

Want to prove likes(C,peanuts) from:

- (elephant(C), giraffe(C))
- (¬elephant(C), likes(C, peanuts))
- (¬giraffe(C), likes(C, leaves))
- 4. \neg likes(C, leaves)

Refutation Proof:

Step	Clauses to combine	Resulting clause
5	Refutation clause	¬likes(C,peanuts)
6	2 and 5	¬elephant(C)
7	1 and 6	giraffe(C)
8	3 and 7	likes(C,leaves)
9	4 and 8	Empty clause

RESOLUTION PROOF EXAMPLE

Resolution Proof Example

The assertions:

- Some patients like every doctor.
- No patient likes any quack.

Prove that no doctor is a quack.

Step 1: Define symbols.

Step 1: Define predicates.

The assertions:

- Some patients like every doctor.
- No patient likes any quack.
- Prove that no doctor is a quack.

Step 1: Define symbols.

Step 1: Define predicates.

- p(X): X is a patient.
- d(X): X is a doctor.
- q(X): X is a quack.
- likes(X,Y): X likes Y.

The assertions:

- Some patients like every doctor.
- No patient likes any quack.
- Prove that no doctor is a quack.

Some patients like every doctor.

Some patients like every doctor.

$$\exists X \left(p(X) \land \left(\forall Y \big(d(Y) \rightarrow likes(X,Y) \big) \right) \right)$$

No patient likes any quack.

No patient likes any quack.

$$\neg \left(\exists X \left(p(X) \land \left(\exists Y \left(q(Y) \land likes(X,Y)\right)\right)\right)\right)$$

No doctor is a quack.

No doctor is a quack.

$$\neg \left(\exists X \left(d(X) \land q(X)\right)\right)$$

$$\exists X \left(p(X) \land \left(\forall Y \big(d(Y) \rightarrow likes(X,Y) \big) \right) \right)$$

$$\exists X \left(p(X) \land \left(\forall Y \big(d(Y) \rightarrow likes(X,Y) \big) \right) \right)$$

1.
$$\exists X \left(p(X) \land \left(\forall Y \left(\neg d(Y) \lor likes(X,Y) \right) \right) \right)$$

- 2. $p(a) \land (\forall Y (\neg d(Y) \lor likes(a, Y)))$
- 3. $\forall Y \ p(a) \land (\neg d(Y) \lor likes(a, Y))$
- 4. Clause 1: p(a) Clause 2: $(\neg d(Y), likes(a, Y))$

$$\neg \left(\exists X \left(p(X) \land \left(\exists Y \left(q(Y) \land likes(X,Y)\right)\right)\right)\right)$$

$$\neg \left(\exists X \left(p(X) \land \left(\exists Y \left(q(Y) \land likes(X,Y)\right)\right)\right)\right)$$

1.
$$\forall X \left(\neg p(X) \lor \left(\forall Y \left(\neg q(Y) \lor \neg likes(X,Y) \right) \right) \right)$$

2.
$$\forall X \forall Y \left(\neg p(X) \lor \left(\neg q(Y) \lor \neg likes(X,Y) \right) \right)$$

3.
$$\forall X \forall Y (\neg p(X) \lor \neg q(Y) \lor \neg likes(X,Y))$$

4. Clause:
$$(\neg p(X), \neg q(Y), \neg likes(X, Y))$$

Step 3: Negate the query and convert to clausal form.

$$\neg\neg\left(\exists X\left(d(X)\land q(X)\right)\right)$$

Step 3: Negate the query and convert to clausal form.

$$\neg\neg\left(\exists X\left(d(X)\land q(X)\right)\right)$$

- 1. $\exists X (d(X) \land q(X))$
- 2. $d(b) \wedge q(b)$
- 3. Clause 1: d(b) Clause 2: q(b)

Step 4: Construct resolution proof from clauses

- 1. p(a)
- 2. $(\neg d(Y), likes(a, Y))$
- 3. $(\neg p(X), \neg q(Y), \neg likes(X, Y))$

Step	Clauses to combine	Resulting clause
4	Refutation clause	d(b)
5	Refutation clause	q(b)
6		
7		
8		
9		

Step 4: Construct resolution proof from clauses

1.
$$p(a)$$

2.
$$(\neg d(Y), likes(a, Y))$$

Rename Y to Z to make the variable names unique.

3.
$$(\neg p(X), \neg q(Z), \neg likes(X, Z))$$

Step	Clauses to combine	Resulting clause
4	Refutation clause	d(b)
5	Refutation clause	q(b)
6		
7		
8		
9		

Step 4: Construct resolution proof from clauses

- 1. p(a)
- 2. $(\neg d(Y), likes(a, Y))$
- 3. $(\neg p(X), \neg q(Z), \neg likes(X, Z))$

Step	Clauses to combine	Resulting clause
4	Refutation clause	d(b)
5	Refutation clause	q(b)
6	3 and 5, Z = b	$(\neg p(X), \neg likes(X, b))$
7	1 and 6, X = a	$\neg likes(a,b)$
8	2 and 7, Y = b	$\neg d(b)$
9	4 and 8	Empty clause

THANK YOU FOR TAKING THIS COURSE WITH US!