Proposição

Sejam $P, Q \in \mathbb{R}^n$ e $W \leq \mathbb{R}^n$. São equivalentes as condições

- (a) P + W = Q + W
- (b) $P \in Q + W$
- (c) $\exists A \in \mathbb{R}^n P, Q \in A + W$
- (d) $Q P = \overrightarrow{PQ} \in W$

Corolário

Se
$$A, B \in \mathbb{R}^n$$
 e $W \leq \mathbb{R}^n$ então $A + W = B + W$ ou $A + W \cap B + W = \emptyset$

Observação

Fixado um subespaço vetorial W de \mathbb{R}^n , a relação binária definida em \mathbb{R}^n por

 $A \sim B$ se e só se A + W = B + W, para quaisquer $A, B \in \mathbb{R}^n$, é uma relação de equivalência.

Corolário

Se $A, B \in \mathbb{R}^n$ e $W, Z \leq \mathbb{R}^n$ são tais que $A + W \subseteq B + Z$. Então $W \subseteq Z$.

Além disso, se A + W = B + Z então W = Z.

Definição

Sejam $A \in \mathbb{R}^n$ e $F \leq \mathbb{R}^n$. Seja \mathcal{F} um subespaço afim de \mathbb{R}^n contendo A.

- (a) Diz-se que F é o subespaço vetorial associado a \mathcal{F} se $\mathcal{F} = A + F$.
- (b) Chama-se dimensão de \mathcal{F} à dimensão do subespaço vetorial associado a \mathcal{F} .

Observação

Se \mathcal{F} tem dimensão k, uma base afim de \mathcal{F} tem k + 1 pontos.

Observação

- ▶ Se $P \in \mathbb{R}^n$, $\{P\}$ é um subespaço afim de dimensão 0.
- Se $A, B \in \mathbb{R}^n$ são pontos distintos

$$r = \{ A + \alpha \overrightarrow{AB} : \alpha \in \mathbb{R} \}$$

é um subespaço afim de dimensão 1

▶ Se $n \ge 2$, $A \in \mathbb{R}^n$ e u, v são vetores l.i. de \mathbb{R}^n ,

$$\pi = \{ \mathbf{A} + \alpha \mathbf{u} + \beta \mathbf{v} : \alpha, \beta \in \mathbb{R} \}$$

é um subespaço afim de dimensão 2.

▶ Se $n \ge 2$, $A \in \mathbb{R}^n$ e u_1, u_2, \dots, u_{n-1} são vetores l.i. de \mathbb{R}^n ,

$$\mathcal{H} = A + \langle u_1, u_2, \dots, u_{n-1} \rangle$$

é um subespaço afim de dimensão n - 1.

Terminologia

• Se $A, B \in \mathbb{R}^n$ são pontos distintos,

$$r = \{ A + \alpha \overrightarrow{AB} : \alpha \in \mathbb{R} \}$$

designa-se por reta definida pelos pontos A, B.

Se n ≥ 2, A ∈ Rⁿ e u, v são vetores l.i. de Rⁿ, o subespaço afim

$$\pi = \{ \mathbf{A} + \alpha \mathbf{U} + \beta \mathbf{V} : \alpha, \beta \in \mathbb{R} \}$$

designa-se por plano de \mathbb{R}^n .

▶ Se $n \ge 2$, $A \in \mathbb{R}^n$ e $u_1, u_2, ..., u_{n-1}$ são vetores l.i. de \mathbb{R}^n , o subespaço afim

$$\mathcal{H} = \mathbf{A} + \langle u_1, u_2, \dots, u_{n-1} \rangle$$

designa-se por hiperplano de \mathbb{R}^n .

Observação

- Os hiperplanos de \mathbb{R}^3 são os planos
- Os hiperplanos de \mathbb{R}^2 são as retas, e há apenas um plano.

