Math 2250, Spring 2017, Practice Sheet Exam 3

- 1. Find the absolute minimum and maximum values of the function $f(x) = 2x^2 3x + 1$ on the interval [-2, 3].
- 2. Find the absolute minimum and maximum values of the function $f(x) = 2x^2 3x + 1$ on the interval $[-2, \infty)$.
- 3. Suppose you are constructing a box with a square base and no top (that is, it has a square bottom and 4 rectangular sides) which will have a volume of 200 in³. What dimensions should you construct the box in order to minimize the total surface area?
- 4. Compute the following limits

(a)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{x}$$

(b)
$$\lim_{x \to \infty} \frac{3x^2 - 3x + 2}{(4 - x)(2x - 8)}$$

(c)
$$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x - \sin x}.$$

5. Calculate the following definite integrals

(a)
$$\int_{3}^{7} 5dx$$

(b)
$$\int_0^3 x dx$$

(c)
$$\int_{0}^{\pi/2} (2x\sin x + 3)dx$$

(d)
$$\int_{0}^{\pi/2} (2x\sin x + 3)dx$$

(e)
$$\int_{0}^{3} (xe^{x^2} + 3)dx$$

6. Calculate the following indefinite integrals

(a)
$$\int 4\sqrt{x}dx$$

(b)
$$\int 4\sqrt{x-4} \ dx$$

(c)
$$\int 4\sin(x)\sqrt{3+\cos(x)} \ dx$$

(d)
$$\int \frac{\ln(\sqrt{x})}{x} dx$$

(e)
$$\int 4\frac{e^{\sqrt{x}}}{\sqrt{x}}dx$$

(f)
$$\int \arcsin x dx$$
 (hint: set $u = \arcsin x$)

- 7. Approximate the integral $\int_{2}^{4} (2x+3)dx$ using 4 rectangles and left endpoints
- 8. Compute the area bounded by the graph of $y = \sin x$ and the x-axis, for $0 \le x \le \pi/4$.

9. Suppose that
$$F(x) = \int_0^x \sqrt{4+3t^2} dt$$
. Compute $F'(4)$.

10. Suppose that
$$G(x) = \int_0^{x^2} \sqrt{4+3t^2} dt$$
. Compute $G'(2)$.