Cosmological phase transitions: From perturbative particle physics to gravitational waves

Andrew Fowlie 30 May 2024

School of Maths & Physics

Check it out https://doi.org/10.1016/j.ppnp.2023.104094

Invitation-only review article. 79 cites. ESI hot paper.

I took a speed reading course and read War and Peace

in twenty minutes.

I took a speed reading course and read War and Peace in twenty minutes.

It involves Russia.

I took a speed reading course and read War and Peace in twenty minutes.

It involves Russia.

My paper involves gravitational waves.

From perturbative particle physics...

- The framework is special relativity + quantum mechanics = quantum field theory description of fundamental particles
- We consider finite temperature T ≠ 0; so we need thermodynamics as well
- We occasionally need cosmology and gravity as well; so general relativity
- We consider perturbative methods in our review (cf. lattice)

0. Perturbative particle physics...

Tree-level + one-loop + \cdots

Tree-level potential

- The object we compute perturbatively is the scalar potential
- This is a function of the scalar fields e.g., Higgs field. No derivatives
- · E.g., Higgs potential at tree-level

$$V(H) = \mu^2 |H|^2 + \lambda |H|^4$$

1. First-Order Phase Transition

2. Bubbles of new phase

Bubbles of new phase

- In a first-order phase transition, transition occurs through bubble nucleation — think of water boiling
- · Does not happen everywhere, all at once
- Stochastic process of bubbles popping into existence

3. Observable gravitational waves

Snippet 1. Shell theorem

Do you know Gauss' law?

$$\oint \vec{E} \cdot d\vec{S} = +4\pi k \, Q_{\rm enc}$$
 Electromagnetism $\oint \vec{g} \cdot d\vec{S} = -4\pi G \, M_{\rm enc}$ Gravity

- Consider a spherical bubble. Choose a spherical Gaussian surface
- A growing or shrinking spherically symmetric bubble won't change the gravitational field. Outside the bubble, it looks like a point mass

$$g 4\pi r^2 = -4\pi G M \quad \Rightarrow \quad g = -\frac{GM}{r^2}$$

Need more than one bubble

Interactions between bubbles, and between bubbles and the plasma avoid this

- Collisions
- · Sound waves in the plasma
- Turbulence in the plasma

... to gravitational waves

Sensitivity of current and future GW detectors

Snippet 2. — imaginary energy and instability

The field could tunnel through the barrier

Snippet 2. — imaginary energy and instability

The field could fluctuate over the barrier

How do we compute the decay rate?

Time-dependence of the wave function

$$\psi \sim e^{iEt}$$

What if energy eigenvalues are complex?

$$\psi \sim e^{iE_0t-\frac{\Gamma}{2}t}$$

The wave function amplitude decays as

$$|\psi|^2 \propto e^{-\Gamma t}$$

Imaginary part corresponds to instability. Lifetime $1/\Gamma$

Imaginary component implies instability

- Imaginary energy in NRQM implies decay
- Imaginary mass in QFT implies particle decay, $\Gamma = 2\Im M$
- Imaginary part of vacuum energy implies vacuum decay $\Gamma = 2\Im E$
- Tachyonic $m^2 < 0$ implies symmetry breaking, e.g., Higgs mechanism

Extracting ground state energy

- We know we need the imaginary part of the ground state energy.
- Wick rotation $\tau = it$,

$$\langle q|e^{-i\hat{H}t}|q
angle
ightarrow \langle q|e^{-\hat{H} au}|q
angle = \sum e^{-E_n au}|\langle q|n
angle|^2$$

• Taking $\tau \to \infty$ picks out E_0

Other consequences of Wick rotation

- No classical solution for tunnelling trapped by conservation of energy
- Wick rotation $\tau = it$ changes equation of motion

$$\ddot{x} = -V'(x) \quad \rightarrow \quad \ddot{x} = +V'(x)$$

- Upturns the potential; no longer trapped by energy conservation
- · We may now find semi-classical description of tunnelling

Bounce equation

• The equation of motion after Wick rotation:

$$\ddot{q}_i + \frac{3\dot{q}_i}{t} = \frac{\partial V(q)}{\partial q_i}$$

- Coupled second-order differential equations for fields q
- Unusual friction term that decays as 1/t
- Upturned potential; field starts at rest and rolls asymptotically to top of a hill
- Fine-tuned; nasty when dimension of q more than a few

Snippet 3. — power of dimensional analysis

Snippet 3. – power of dimensional analysis

It doesn't matter where the equation came from - a fit to experimental data or a deep string theoretic construction - or who made the equation - Albert Einstein or your next-door neighbour - if the dimensions don't agree on the left- and right-hand sides, it's nonsense.

Consider e.g. my new theory that the mass of an electron equals the speed of light. It's just meaningless nonsense from the get-go.

There is a subtle distinction between unit and dimension. A dimension represents a fundamental quantity - such as mass, length or time - whereas a unit is a man-made measure of a fundamental quantity or a product of them - such as kg, meters and seconds. Arguably, one can write meaningful equations such as 60 seconds = 1 minute, with matching dimensions but mismatching units (as first noted by Mehrdad).

Energy in gravitational waves

Following arguments similar to those in Kosowsky, Turner, and Watkins 1992. Assume that energy of GWs

- must be proportional to Newton's constant, G
- depend on only the *available* vacuum energy density, $\kappa \rho$, where κ denotes the fraction of vacuum energy available for GWs
- only other relevant dimensionful scale is the characteristic timescale au

On dimensional grounds, we must have that

$$E_{\rm GW} \sim G\kappa^2 \rho^2 \tau^5$$

Snippet 2 — power of dimensional analysis

The total liberated vacuum energy, on the other hand, is not proportional to G and on similar dimensional grounds, we must have that

$$E_V \sim \rho \tau^3$$

Thus, the fraction of vacuum energy that is in GWs must go like

$$r \equiv \frac{E_{\rm GW}}{E_V} \sim \frac{G\kappa^2 \rho^2 \tau^5}{\rho \tau^3} = G\kappa^2 \rho \tau^2$$

Shouldn't r < 1? Is lifetime τ bounded? Yes!

Summary

- Long review paper that involves gravitational waves
- A few snippets of interesting physics for physicists and terrible maths for mathematicians
- Rich topics for collaboration, including percolation theory of bubbles, solving bounce equation, understanding Wick rotation tricks

References i

References

Kosowsky, Arthur, Michael S. Turner, and Richard Watkins (1992). "Gravitational radiation from colliding vacuum **bubbles."** In: *Phys. Rev. D* 45, pp. 4514–4535. DOI:

10.1103/PhysRevD.45.4514.