Mini-Control 3

CC5213 – Recuperación de Información Multimedia Profesor: Juan Manuel Barrios Fecha entrega: 30 de noviembre de 2023

Debe resolver los siguientes ejercicios en un documento o en papel. No es necesario programar ni debe entregar código fuente.

Pregunta 1 (TF-IDF, semana 09)

Se tiene un dataset con **10.000** documentos de texto. A continuación, se muestran dos documentos de ese dataset:

D₁ = Compré una casa nueva en Constitución

D₂ = En mi casa no quieren una nueva constitución

La siguiente tabla muestra un resumen de las palabras en el dataset:

ld	Palabra	Documentos en los
		que aparece
1	casa	1.000
2	compré	1.000
3	constitución	100
4	en	1.000
5	mi	100
6	no	100
7	nueva	10
8	quieren	100
9	una	10

Suponga que un usuario escribe la siguiente consulta de texto:

Q = Una nueva constitución

Utilizando el modelo Bag-of-Words y TF-IDF deberá calcular la similitud de la consulta ${f Q}$ con ambos documentos ${f D}_1$ y ${f D}_2$ y señalar el documento más similar. Específicamente realice los siguientes pasos:

- a. Calcule el IDF para el vocabulario relevante.
- b. Calcule el vector TF-IDF normalizado de D_1 , D_2 y Q.
- c. Calcule la similitud coseno entre \mathbf{Q} , $\mathbf{D_1}$ y $\mathbf{D_2}$ y señale el documento más similar a \mathbf{Q} .

Utilice las fórmulas vistas en el curso ("Slides 09.1-Descriptores de texto-TF-IDF.pdf") usando **logaritmos en base 10**.

Pregunta 2 (R-Tree, semana 12)

Se tiene un conjunto de 21 vectores de dos dimensiones. Los vectores fueron indexados por un R-Tree según el siguiente diagrama:

Para el objeto **q** de la figura anterior se desea buscar los **dos vecinos más cercanos** (2-NN) según distancia Euclidiana. Como ayuda visual, se muestran varios círculos concéntricos a **q**.

Explique cómo funcionará el algoritmo de <u>búsqueda k-nn por prioridad</u> para la búsqueda **2-NN** de **q**. Específicamente señale:

- a. Las regiones espaciales visitadas, el orden en que se visitan y la evolución de los candidatos durante la búsqueda de los 2-nn.
- b. Señale el número de veces que se evaluó alguna función de distancia para poder resolver la búsqueda 2-NN de q.
- c. Señale el número de veces que se evaluará una función de distancia si se resuelve la misma búsqueda anterior pero utilizando el algoritmo linear scan.

Pregunta 3 (k-d tree, semana 12)

En la siguiente figura se muestran 14 vectores de dos dimensiones. Los vectores fueron indexados por un k-d tree cuyos nodos hoja corresponden a las regiones que se muestran en la figura.

Se desea realizar una **búsqueda aproximada** del vecino más cercano a **q** según distancia Euclidiana. El parámetro **c** corresponde al número máximo de nodos hoja a visitar durante la búsqueda aproximada.

Señale el nombre del vector que se encontrará como vecino más cercano si:

- a. La búsqueda del NN se restringe a c = 1
- b. La búsqueda del NN se restringe a **c** = 2
- c. La búsqueda del NN se restringe a c = 3
- d. La búsqueda del NN se restringe a c = 4
- e. La búsqueda del NN se restringe a **c** = 5

Como ayuda visual, se muestran varios círculos concéntricos a q.

Pregunta 4 (PCA, semana 13)

Se tiene el conjunto **R** de 9 imágenes donde a cada imagen se le calculó un descriptor de contenido de 4 dimensiones. El promedio de los descriptores de contenido de **R** es:

$$\bar{x} = \begin{pmatrix} 5 \\ 2 \\ 3 \\ 9 \end{pmatrix}$$

Llamaremos ${\bf S}$ al conjunto de descriptores que se obtiene de restar $\bar x$ de los descriptores de ${\bf R}$, es decir:

$$S = \{ y \mid \forall x \in R, \ y = x - \bar{x} \}$$

Notar que S es un conjunto de descriptores centrados (promedio cero).

Al calcular las covarianzas entre las coordenadas de los vectores de **S** se obtiene la siguiente matriz de covarianza **C**:

$$C = \begin{pmatrix} 14.3 & 3.6 & 6.7 & -2.0 \\ 3.6 & 18.8 & 1.5 & 0.6 \\ 6.7 & 1.5 & 17.1 & -2.2 \\ -2.0 & 0.6 & -2.2 & 30.3 \end{pmatrix}$$

Los 4 valores propios de **C** son los siguientes:

$$\lambda_1 = 8.5$$
 $\lambda_2 = 31.4$ $\lambda_3 = 23.9$ $\lambda_4 = 16.8$

Los 4 vectores propios asociados a cada valor propio de C son:

$$v_1 = \begin{pmatrix} -0.8 \\ 0.2 \\ -0.5 \\ -0.2 \end{pmatrix} \quad v_2 = \begin{pmatrix} 0.2 \\ 0 \\ -0.6 \\ 0.8 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0.6 \\ 0.3 \\ -0.6 \\ -0.5 \end{pmatrix} \quad v_4 = \begin{pmatrix} 0 \\ -0.9 \\ -0.3 \\ -0.2 \end{pmatrix}$$

Se desea utilizar el método PCA para proyectar los descriptores de **S** desde 4 dimensiones a **una única dimensión** creando el conjunto **T**.

- a. Señale la matriz de transformación \boldsymbol{W} que se debe aplicar sobre \boldsymbol{S} para crear el conjunto \boldsymbol{T} .
- b. Señale la "cantidad de información" que se mantiene (según PCA) al proyectar los descriptores de **S** en **T**. Justifique.

Se tiene una imagen de consulta a la que se le calculó su descriptor de contenido q:

$$q = \begin{pmatrix} 9\\12\\5\\17 \end{pmatrix}$$

El conjunto **T** se compone de los siguientes 9 descriptores de una dimensión, obtenidos luego de proyectar con PCA los descriptores de contenido de las imágenes de **R**:

$$a = (-13.6)$$
 $d = (0.7)$ $g = (7.4)$
 $b = (-7.8)$ $e = (2.5)$ $h = (11.9)$
 $c = (-2.1)$ $f = (5.9)$ $i = (13.8)$

c. Señale el vector de T que será el vecino más cercano a q, cuando q es proyectado a una dimensión con la transformación PCA descrita anteriormente.

Pregunta 5 (Índices Métricos, semana 14)

El conjunto R contiene ocho vectores de dos dimensiones $R=\{a, ..., h\}$. El conjunto Q contiene dos vectores que forman el conjunto de consulta $Q=\{q_1, q_2\}$.

R	х	у
а	5	1
b	9	7
С	3	2
d	5	7
е	8	9
f	2	4
g	8	1
h	1	8

Q	х	у
q ₁	1	1
q ₂	8	8

Se desea localizar para cada objeto de Q su vecino más cercano en R de acuerdo a la distancia **Manhattan** o L_1 . Se utilizará el enfoque métrico para acelerar las búsquedas. Suponga que se seleccionó el conjunto de pivotes: $P = \{a\}$.

- a. Calcule la Tabla de Pivotes para P.
- b. Resuelva la búsqueda exacta del vecino más cercano para \mathbf{q}_1 y para \mathbf{q}_2 usando cotas inferiores según \mathbf{P} .
- c. Calcule la complejidad interna y externa del índice al resolver ambas búsquedas.¿Se realizaron más o menos cálculos que en un linear scan? Justifique.

Entrega:

- Puede desarrollarlo en papel y enviar una foto, o puede desarrollarlo en formato digital (planilla, documento u otro) y exportarlo a .pdf.
- El plazo máximo de entrega es el **jueves 30 de noviembre de 2023** hasta las 23:59 por U-Cursos.
- Será posible volver a enviarlo una vez más durante el semestre (en fecha por definir).

El mini-control es *individual* y debe ser de su autoría. En caso de detectar copia o plagio se asignará nota 1.0 a los involucrados.