

THE UNIVERSOF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

January 11, 2000

09/80667

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/153,858 FILING DATE: September 14, 1999

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

w. MONTGOMERY

Certifying Officer

Please type a plus sign (+) inside this box -> +

PTC/SB/16 (2-98)

Approved for use through 01/31/2001. OMB 0651-0037

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL his is a request for film		ENTOR(S)	_				-4	
			(City an	Res delther Sta	sidence ate or Fo	reign Country)		
ven Name (first and middle [if a		Family Name or Surname ATSMON			(City and either State or Foreign Country) Yehud, Israel			
Alon	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ANTEBI			ezion	ı, israel	1	
Amit	LEV				Tel-Aviv, Israel			
Zvi	1							
Additional inventors are					4100 110		-1	
	TITLE OF THE INV	ENTION (280	characters	max)			-	
CAF	D FOR INTERA	ACTION \	WITH CO	MPU	IEK		1	
							=	
	CORRESPO	ONDENCE AL	DRESS				1 1	
irect all correspondence to	·				Place Customer Numi Bar Code Label here			
Customer Number	Type Customer Numb	or hom]	
DR	Type Costoner Name		d Dinne	t Eso				
Film or Individual Name William H. Dippert, Esq. Cowan, Liebowitz & Latman, P.C.								
ddress	Cow	an, Liebo	witz & L	<u>atman</u>	<u>, P.C</u>	·		
ddress		ue of the Americas				9		
City	New York State		(212) 790-9200		ZIP			
Country	USA					(212) 070 0		
ENCLOSED APPLICATION PARTS (check all that apply)								
Specification Number of Pages 46 Small Entity Statement								
	of Sheets 7	íП	Other (spec	ify)			- 1	
Trawing(s) Number of Greeks								
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one) FILING FEE								
A check or money order is enclosed to cover the filling fees AMOUNT (\$)								
The Commissioner is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number: 03-3415								
\								
The invention was made by an agency of the United States Government or under a contract with an agency of the								
United States Government. X No. Yes, the name of the U.S. Government agency and the Government contract number are:								
		a de Commu	ent contract No	mher are:				

9/14/99 Date Respectfully submitted, William 26,723 SIGNATURE TYPED or PRINTED NAME William H. Dippert REGISTRATION NO. (if appropriate) Docket Number: 100/01300 (212) 790-9200

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C., 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant Commissioner for Patents, Washington, D.C., 20231.

80 J Paj 48

PROVISIONAL APPLICATION COVER SHEET Additional Page

+

PTO/SB/16 (2-98)
Approved for use through 01/31/2001. OMB 0651-0037
Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

		Docket Nun	nber	100/01300	Type a plus sign (+) inside this box →	+	
	INVENT	OR(SYAPPL	CANT	(S)			
Given Name (first and middle [il anyl)	Family or	nilly or Surname (City ar			Residence and either State or Foreign Country)		
Moshe	СОН	EN	Tel-Aviv, Israel				
Nathan	ALTN	/AN	Tel-Aviv, Israel				
					•		
				•			

Number 2 of 2

COLLEGE COLLEGE

RD FOR INTERACTION WITH A COM

FIELD OF INVENTION.

The present invention relates generally to smart-cards for interaction with a computer and especially to cards that use acoustic signals for such communications.

BACKGROUND OF THE INVENTION

Computer network components that communicate using RF radiation, wires or IR radiation are well known. In addition, some home appliances are controlled using an ultrasonic remote control. Also known are smart cards that use an ultrasonic acoustic link.

However, such dedicated communication mechanisms require that the computer network components have installed thereon specialized communication hardware. Installing such hardware on an existing computer may be expensive and/or problematic. Further, some electronic and/or computer embedded devices, for example cellular telephones may be "sealed" products, to which it is impossible to add internal components.

PCT publications WO96/10880, WO94/17498, WO93/21720 and WO93/11619, the disclosures of which are incorporated herein by reference describe an electronic device which transmits coded information to a microphone of a telephone using a DTMF-like encoding scheme. A WWW page addressed "http://www.encotone.com/html/tech_def.html", suggests using such a device to transmit audible DTMF-like tones to a personal computer using the computer's sound card.

Two way communications using audible DTMF-like tones, between a smart card and a telephone communication system is described in US patent 5,583,933, the disclosure of which s incorporated herein by reference.

SUMMARY OF THE INVENTION

One object of some preferred embodiments of the invention is to simplify interaction tween electronic devices by removing a common requirement of installing dedicated mmunication hardware on the devices. Some suitable electronic devices include: computers, receivisions, watches, PDAs, organizers, electronic toys, electronic games, voice-responsive appliances, wireless communication devices, answering machines and desktop telephones. As used herein the term "electronic device" is used to encompass a broad range of electronics-including devices. In some of the embodiments described below, a particular type of electronic device is singled out, for example a computer or a toy, as some of the below-described embodiments are more useful for some types of electronic devices, than for other types of electronic devices.

An object of some preferred embodiments of the invention is allowing electronic devices to communicate using an input and/or output channel, preferably an acoustic channel, but possibly a visual channel, which was designed for communication with human users and

EDISTRUCT DEILE

5

10

15

25

30

10

15

20

25

30

35

not for communication with electronic devices. In other cases, the communication channel is not originally intended for communication with outside components at all, for example, a diskette drive.

An object of some preferred embodiments of the invention is to allow a smart card to be read by and written to using standard computer hardware without requiring an installation of specialized hardware. This is especially useful for electronic wallets and Internet commerce, where the cost of installing dedicated hardware may prevent wide acceptance of these commercial methods. Additionally, using a smart card can provide methods of solving the security and accountability issues entailed in electronic commerce.

An aspect of some preferred embodiments of the invention relates to communicating with a computer using a sound card installed on the computer. In a preferred embodiment of the invention, a device, preferably a smart card, transmits information to the sound card's microphone and receives information form the computer using the sound card's loudspeaker. Preferably, the transmission uses non-audible acoustic frequencies, for example ultrasonic or infrasonic frequencies. It should be noted that standard music cards are designed for music generation, however, they have a limited reception and transmission ability in the near-ultrasonic frequency ranges.

Ultrasonic communication has several advantages over audio communication:

- (a) smaller transducers can be used;
- (b) transmission is more efficient;
- (c) lower noise levels are typical;
- (d) resonant frequencies have wavelengths on the order of a size of a credit card can be used; and
 - (e) higher data rates can be achieved.

In a preferred embodiment of the invention, the ultrasonic frequencies used are low ultrasonic frequencies, for example between 18 kHz and 24 kHz, more preferably between 20 kHz and 24kHz, and in some preferred embodiments about 22kHz. Often, these frequencies can be transmitted and/or received using standard audio components. For this reason, lower frequencies may be preferred over higher frequencies, even though the lower frequencies typically afford a lower data rate and are more easily disrupted. These particular frequencies are suggested because they match industry standards for sampling in audio cards (e.g., "SoundBlaster"). If other sampling frequencies are available, the preferred frequency may adjusted accordingly. Preferably, a minimum frequency used is selected so that it is inaudible to a human. In some cases, the frequency selection may depend on the age of the human.

A benefit of ultrasound over RF transmission is that the range of the ultrasonic transmission can easily be controlled by varying its amplitude. Typically, ultrasonic

15

20

25

30

35

transmissions do bass through walls, potentially providing increase security by limiting eavesdropping and inference from outside the room. In addition, ultrasonic transmission usually do not interfere with the operation of electronic equipment, even when used at a high power setting. Thus, ultrasonic communication is better suited for people with pacemakers and for hospital settings. Another advantage of acoustic transmission is a reduced perceived and actual health danger to the user.

An aspect of some preferred embodiments of the invention relates to communication between electronic devices using acoustics. Alternatively or additionally to electronic devices communicating using RF; varying magnetic fields; IR; and visible light, electronic devices may communicate using acoustics, in accordance with preferred embodiments of the invention. In some cases, one communication direction is acoustic and the other is non-acoustic, for example RF or IR, for example when communicating with a set-top box in accordance with a preferred embodiment of the invention (one way acoustic from the TV and the other way IR, the same as an IR remote control). In a preferred embodiment of the invention, the acoustic waves used for communications are incorporated in sounds used for regular operation of the device, for example by modulating beeps. Alternatively or additionally, the sounds are inaudible, for example being ultrasonic, infrasonic, of a low amplitude and/or causing only small changes in amplitude and/or frequency.

It is noted that many electronic devices include a microphone and/or a speaker. In a preferred embodiment of the invention, the microphone and/or speaker are used to communicate with the device. In one example, an acoustic smart card (or an "electronic wallet" card) communicates with such a device using sound and/or ultrasound. Such a smart card may transmit information stored thereon. Possibly, the information is encrypted, for example, using RSA encryption.

In a preferred embodiment of the invention, a smart card may be "swiped" at many existing computers and electronic devices, possibly requiring a simple software installation, but no hardware installation (assuming some acoustic hardware exists). Such simple swiping should ease acceptance of the card by Internet browsing home shoppers. In some cases, the swiping software may be downloaded as a Java Applet or as a script in a different network programming language.

Alternatively or additionally, two electronic devices can communicate. For example, a cellular telephone and a PDA, each of which includes a microphone and a speaker can communicate. Another example is programming a cellular telephone with names and numbers stored in a PDA or for the cellular telephone to interrogate the PDA regarding a particular telephone number. Alternatively or additionally, a network may be formed of a plurality of such devices, possibly, with one device forwarding messages from a first device to a second

10

15

25

30

device. Alternative additionally, peripherals may be connected to computer using an acoustic connection, without requiring wiring or special hardware. In some embodiments, a single acoustic transducer (microphone or speaker) may be controllable to act as both a receiver and a transmitter, by suitably programming the electronic device.

Many computers are sold with a Sound-Blaster Compatible sound subsystem, stereo speakers and a microphone. Some computers are provided with other types of sound systems, which types also support the application of preferred embodiments of the invention, possibly with a variation in frequencies to account for different circuit or sampling characteristics. Typically, this sound system is designed for generating music and other audible sounds. In addition, many computers include an internal speaker and a modem speaker. Some computers use USB speakers which are connected directly to the USB.

It should be appreciated that in some embodiments of the invention the sound communication is directed at the device for its use, control and/or processing and is not meant for mere passing through the device. For example, a telephone may interpret computer-information encoding signals, rather than transmitting them on through the telephone network, as in the art. In a preferred embodiment of the invention, a wireless telephone is realized using ultrasonic communication between a base station and the hand set. In a preferred embodiment of the invention, the base station is embodied in a computer, which communicates with the telephone. Possibly, the wireless communication uses the same loudspeaker and/or microphone as used for communication with a person using the telephone and the computer. Additionally or alternatively, the handset is used for Internet telephony, via the computer.

An aspect of some preferred embodiments of the invention relates to interfacing a toy and/or other devices with a computer system without installing hardware on the computer. In one example, the loudspeakers, already installed on a computer, are used to interrogate an identification device, using ultrasound. In another example, such interrogation is used to determine distance from- and/or location of- a toy. Preferably, the computer's microphone is used to detect a response from the interrogated device. In some embodiments, especially for toys, the interrogation may comprise audible sounds. Thus, in a preferred embodiment of the invention, cheap and/or simple communication between a toy and another toy or a computer is feasible, since no special computer hardware is required. In addition, it becomes simpler to connect a play implement to a computer game that responds to that play implement. Additionally or alternatively, ultrasonic communications may be used to download a program and or music file to a toy. Possibly, the program and/or music file are directly downloaded from an Internet as sound files, possibly obviating the need for a dedicated toy (or device) programming software interface. Possibly, the toy and/or device generate sounds in response which sounds are transmitted back through the Internet.

COLUMBE OFFICE

10

15

20

25

30

35

In a process of embodiment of the invention, the adjust to waves and communication or possibly, dedicated acoustic waves, may be used to determine the relative position and/or orientation of electronic devices. In a preferred embodiment of the invention, a touch screen is emulated by interrogating a transponder on a pointing implement, using built-in speakers of an electronic device, to detect to position, orientation and/or motion of the implement. In a preferred embodiment of the invention, the transponder is embodied using a speaker and a microphone of the pointing implement, for example if the implement is a cellular telephone.

For example, one or more of the following sound generators may be available in a personal computer: built-in speaker, modem speaker and sounds generated by mechanical devices, such as a hard disk drive or a diskette drive. These sound generators may also be used for transmitting information.

An aspect of some preferred embodiments of the invention relates to visual communication between devices, using built in hardware. In one example a video camera, which is provided with many computers can be used to accept visual signaling from a second device. Such visual signaling may be achieved, for example by flashing a screen or a LED. Possibly, the frequency of flashes is higher than perceived by a human observer, in order to reduce distraction. It is noted that communication between a screen and a video camera enables a wide bandwidth and/or enhanced error correction, due to the large number of transmission and reception pixels available. Alternatively or additionally, an existing IR port is used as a source, which source is detected by many CCD cameras.

An aspect of some preferred embodiments of the invention relates to inactivating a stolen electronic device. In a preferred embodiment of the invention, the electronic device interrogates an acoustic transponder using the device's built-in speaker and/or microphone. If the transponder does not respond (e.g., the device was stolen and separated from the transponder), the device does not work. If possible, the device transmits a message to an enforcement authority or to the owner, for example by computer network (e.g., for a laptop computer) or by wireless communication (e.g., for a cellular telephone). A particular type of stolen property is copyrighted software, which can be programmed to interrogate a transponder which is nearby, e.g., attached to a case of the software and/or the computer. An illegal copy of the software will have no available transponder to respond to an interrogation, thereby identifying itself as stolen. Optionally, the program them communicates with the copyright owner.

An aspect of some embodiments of the present invention relates to a method of deactivating a stolen or misused smart card. In a preferred embodiment of the invention, when a card transmits an incorrect authentication code and/or if the card is reported stolen, a

computer with white e card is in communication preferably gives the ard a command to erase portions of its memory itself and/or deactivate itself. Alternatively additionally, a card may be deactivated when it expires, for example after a time or after a certain number of transactions. Further details of card expiration and of other details useful in some preferred embodiments of the invention are found in a US provisional application filed by same applicants as the instant application, on July 9, 1999, titled, "computer Interaction" and having attorney docket number 100/01200, the disclosure of which is incorporated herein by reference. In a preferred embodiment of the invention, a deactivate command is authenticated, encrypted and/or signed, to identify the originator. Alternatively or additionally, a copy of the command is stored on the card, for later analysis.

An aspect of some preferred embodiments of the invention relates to authorization and authentication over an Internet or another type of communication network, using sound. Preferably, the normal communication pathway is not changed, except that the two ends of the pathway may require hardware or software for manipulating sound signals. In one example, a smart-card transmits an encoded acoustic signal to a computer. That signal is transmitted over the Internet to a remote server computer, to serve as authorization for debiting an account. In another example, in which information is transmitted in the opposite direction, a coded signal may be provided from a toy program depository, to be downloaded using acoustic waves to a toy that is near the computer. Such a coded signal may also be used to download information to a smart card.

An aspect of some preferred embodiments of the invention relates to transmission of power to a smart card. Preferably, the received power is stored to be used for transmission and/or processing. In a preferred embodiment of the invention, the power is stored for short periods of time, for example several seconds. Alternatively, at least some of the power is stored for longer periods of time, for example minutes or hours. In a preferred embodiment of the invention, the power is transmitted using an acoustic wave, preferably an ultrasonic wave, possibly the same wave as used for communication. Generally however, the power wave is transmitted for a considerably longer duration than an information wave. Additionally or alternatively, power is transmitted using optical energy which is received by photoelectric cells on the smart card. In one example, a smart card is placed near a display to receive energy from the display. Possibly, the energy is modulated, spatially or temporally, to transmit information to the smart card, in addition to transmitting power. Alternatively or additionally, the card may receive (and store) power radiated by the screen control circuitry as electromagnetic signals.

An aspect of some preferred embodiments of the invention relates to smart card construction. In a preferred embodiment of the invention, the entire card is formed of a

10

15

20

25

piezoelectric mate and the frequencies transmitted and/or receive the smart card are a function of the acoustic characteristics of the card. Additionally or alternatively, only a portion of the card is electrified for transmission and/or reception, for example, only a magnetic strip or an image pasted thereon. Additionally or alternatively, only a portion of the card is polarized during manufacture, to possess a required piezoelectric effect.

An aspect of some preferred embodiments of the invention relates to using a computer microphone to acquire ambient sounds, then analyzing these sounds using a computer, and then using the analysis to determine events occurring in its neighborhood. In a preferred embodiment of the invention, electronic devices are designed and/or programmed to generate sounds (possibly in the ultrasonic range), which sounds represent their current state or particular events. Thus, by eavesdropping on these sounds it is possible to determine the status of electronic devices. In one example, a malfunctioning fax machine will generate one hum and/or an arriving fax on an operating fax machine will generate a different hum or sound pattern. A computer near the fax machine can determine the status and events and transmit this information, possibly using a computer network, to a user of the information. In some cases, the existing sounds generated by a fax (beeping, printing noises etc.) can be identified by the computer, without need for special programming of the fax machine to generate novel sounds.

An aspect of some preferred embodiments of the invention relates to interrogating an electronic device using an acoustic channel. Such interrogation should not adversely affect the operation of the devices. In one example, the device is a network component, such as a hub. In another example, the device is a computer. In a preferred embodiment of the invention, the acoustic channel is controlled by the computer (analysis of incoming information, generation of outgoing transmissions, and possibly execution of certain software) without interfering with the work of a person using that computer, for example word processing work.

An aspect of some preferred embodiments of the invention relates to using a smart card to conduct business transactions, especially at restaurants. In a preferred embodiment of the invention, an acoustic smart card is used to perform one or more of receiving a menu, ordering, getting the attention of a waiter, adding up a bill, allowing a user to add a tip and settling a bill. Such a smart card may communication directly with a central computer at the restaurant. Alternatively, the smart card communicates using strategically placed loudspeakers and microphones in the restaurant, for example placed at each table. Possibly the smart card communicates with a computer or a PDA used by the waiter. In a preferred embodiment of the invention, the smart card negotiates bandwidth requirements with other smart cards in the restaurant, so that they do not interfere with each other.

BRIEF DESCRIPTION OF THE DRAWINGS

35

10

15

20

. 25

30

35

The inventional lill be more clearly understood with reference to following detailed descriptions of non-limiting preferred embodiments of the invention in which:

Fig. 1 is a schematic illustration of a computer and an electronic device which are operative to communicate using sound waves, in accordance with a preferred embodiment of the invention;

Fig. 2 is a schematic illustration of two communicating electronic devices, in accordance with a preferred embodiment of the invention;

Fig. 3A is a schematic illustration of a smart card communicating with a computer, in accordance with a preferred embodiment of the invention;

Figs. 3B-3D are schematic illustrations of smart card construction in accordance with preferred embodiments of the invention;

Fig. 3E is a schematic illustration of a smart-card reader in accordance with a preferred embodiment of the invention;

Fig. 4A is a schematic illustration of an Internet transmission pathway for sounds, in accordance with a preferred embodiment of the invention;

Fig. 4B is a schematic illustration of usage of a smart card in a restaurant setting, in accordance with a preferred embodiment of the invention;

Fig. 5 is a schematic illustration of a method of tapping into a computer, without requiring complicated installation of hardware, in accordance with a preferred embodiment of the invention;

Fig. 6 is a schematic illustration of an unobtrusive computer checkup in accordance with a preferred embodiment of the invention;

Fig. 7 is a schematic illustration of a computer communication setup using acoustics, in accordance with a preferred embodiment of the invention; and

Figs. 8A and 8B comprise an electronic schematic of an ultrasonic circuit in accordance with a preferred embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 1 is a schematic illustration of a computer 20 and an electronic device 30, which are operative to communicate using sound waves, in accordance with a preferred embodiment of the invention. Most computers currently on sale include a sound system 24, usually a sound card, connected to at least one microphone 26 and at least one speaker 28. Many electronic devices include a microphone 34 and a speaker 36. In a preferred embodiment of the invention, computer 20 and electronic device 30 communicate using these standard components, which are usually not designed for computer communication but for human communication. In some cases, the electronic device (or the computer) may include a jack to which one or more speakers and one or more microphones may be connected. Preferably, such

10

15

20

25

30

35

connected acoust elements are positioned on a hard to cost preferably at positions where they have a wide field of view.

In one preferred embodiment of the invention, a standard card, such as the popular "Sound-Blaster" is used to generate sonic and/or ultrasonic signals to (and receive from) an electronic device, a toy and/or another object. The acoustic signal may be audible or inaudible, for example being ultrasonic or infrasonic. Preferably, frequencies of about 20kHz, 22kHz and 24kHz are used, since a standard sound card provides these sampling rates (and/or their multiples, e.g., 48kHz).

In some preferred embodiments of the invention, a sound card is adapted to work in the near ultrasonic range, for example by increasing its sampling frequency. Generally, the microphone and loudspeaker used for a computer system can support low frequency ultrasound with a sufficient fidelity. In some cases however, a special ultrasound-sensitive microphone or ultrasound-effective speaker may be used. In other cases, the sensitivity of a particular microphone and/or loudspeaker maybe determined by the user prior to or during communication with an electronic device. In one example, if a device having known characteristics transmits an equally powerful signal at several frequencies, the frequency sensitivity (and/or directional sensitively) of a microphone may be determined. In a similar manner, a computer may generate these sounds and the signals detected by the device analyzed to determine output characteristics of the particular loudspeaker used. In addition, a self-calibration procedure may be performed by listening to the computer's output using the computer's microphone. In some cases, both the device and the computer sound systems can be calibrated by combining self testing and cross-testing.

In some cases, the microphone and/or the sound card are sensitive enough to receive, from the object, an RF signal associated with generating the acoustic signals, even if an acoustic signal is not sent (e.g., no loudspeaker is present).

In a preferred embodiment of the invention, such an acoustic communication may be used to program a toy and/or retrieve information from a toy, for example replacing an RF link for this purpose as described in US patent number 5,752,880, the disclosure of which is incorporated herein by reference. In a particular embodiment, music may be downloaded from the Internet, directly to the toy, for example by modulating an ultrasonic signal to carry MP3 sound files. Alternatively or additionally, such a link may be used for real-time communication with the toy.

Some embodiments of the invention do not require that the electronic device communicate with a computer. Fig. 2 is a schematic illustration of two communicating electronic devices 30 and 30'. In one example, a PDA communicates with a printer. In another, an organizer communicates with a satellite telephone. Possibly, such communication is used to

10

15

20

25

30

35

exchange data file the lor to share capabilities, such as modem configures. In some cases a port adapter may be required to be plugged into a port, for example a some-to-parallel adapter, which converts between acoustic signals and parallel port signals.

A computer network in accordance with a preferred embodiment of the invention utilizes sound waves transmitted between computers for communication, using existing hardware, such as an audio card, loudspeakers and a microphone. Preferably, the sound waves are ultrasound waves. In a preferred embodiment of the invention, such a computer network is used to connect a PDA or a portable computer to a different computer, for example for data transfer or for sharing peripherals, such as a modem, a printer or a storage device. Thus, an existing PDA (which includes a loudspeaker and a microphone) can use a modem of a desktop computer, without requiring additional hardware in the PDA, possibly requiring only a small software change. In another example an acoustic-enabled smart-card (such as that described below), can print, or backup information using a standard desktop computer. Alternatively or additionally, such a network may be used in a small office, for example for file or printer sharing.

In a preferred embodiment of the invention, a standard communication protocol/language is defined, so that many types of devices can communicate and/or share resources using the standard language.

In a preferred embodiment of the invention, sonic and/or ultrasonic communication is used for paying a toll or a fee (human, package or vehicle), utilizing a reactive component, possibly a passive transponder, on the tolled item. In another example, such communication is used to pay a transportation fee, for example on a subway or a bus. Alternatively or additionally, an acoustic mechanism as described herein is used to open vehicle barriers, for example at entrances to apartment complexes or to open garage doors. Alternatively or additionally, the acoustic mechanism is used for automatic refueling/billing systems, possibly transmitting billing and/or mileage information to a pump receiver, controlling the fuel flow and/or verifying the fuel type. Possibly, a car dashboard speaker, a car horn, an alarm speaker, a car radio speaker or a dedicated speaker, is used to sound the required sonic and/or ultrasonic signals. In a preferred embodiment of the invention, a car radio speaker is made to generate the required sounds by transmitting an electromagnetic wave to the radio or to its loudspeaker, from a specialized electronic device.

Alternatively or additionally, to using a computer, in a preferred embodiment of the invention, a set-top box is used to transmit and/or receive acoustic signals. Preferably, a microphone is connected to the set-top box. Alternatively or additionally, the transmission back to the set-top box uses an IR signal, which is detectable by the set-top box. In one example, the set-top box includes software that analyzes signals. Such signals may comprise

あるすーある。 ないあんいーちゅう

10

15

20

25

30

35

top box. Alternatively or additionally, the set-top box adds sounds (or ultrasonic waves) to a video and/or audio stream decompressed by the set-top box. Alternatively or additionally, the set-top box adds temporal and/or spatial optical modulations to a video stream, for an optically-sensitive electronic device to detect.

In a preferred embodiment of the invention, the detection of a signal by an electronic device (or a computer) comprises a binary detection of the signal, e.g., an on/off state. Additionally or alternatively, more complex signal detection and analysis techniques may be implemented, for example, detection of signal amplitude, frequency, frequency spectrum, Doppler shift, change in amplitude and/or duration, detection of a number of repetitions, voice and/or other pattern recognition in the sound. Various information encoding protocols may be used, including AM, FM, PSK, QPSK and pulse length encoding. The transmitted signal may include one or more of information about the sending device's activities, location, environment, nearby devices, locally sensed information, logic state, readiness, requests for information and/or answers to such requests.

Such signal detection and/or analysis may also be performed on a computer that is in communication with the electronic device. The physical detection circuit is preferably located on the toy. Additionally or alternatively, the detection circuit is also located on the computer.

In a preferred embodiment of the invention, microphone 34 (or microphone 26) comprises a directional microphone, for example a stereophonic microphone or a microphone in which the frequency response is spatially non-uniform.

PCT application PCT/IL98/00450, titled "The Control of Toys and Devices by Sounds", filed September 16, 1998, in the Israeli receiving office, the disclosure of which is incorporated herein by reference, describes sound actuated toys. In particular, the application describes various sound makers that generate sounds inadvertently as a result of motion, for example beads in a box or noise form a crinkle material. Such a sound maker is connected to and/or mounted on a toy, so that when the toy moves a signal will be generated for another toy or device to acquire. This PCT application also describes detecting the direction and/or position of a sound, using directional microphones and/or a stereophonic microphone including two or more microphone elements. Additionally or alternatively, a relative distance is determined based on amplitude of the sound.

Israel application 127,569, filed December 14, 1998, titled "Interactive Toys", the disclosure of which is incorporated herein by reference, describes various toys and electronic devices which interact using sound waves. These applications contain information useful in the design and use of acoustically controlled devices, and which may be applied towards some preferred embodiments of the invention.

10

15

20

25

30

35

Fig. 3A is shematic illustration of a smart card 40 that animunicates with a computer. Although smart card is a special case of an electronic carde, it is noted that typical smart cards do not include an acoustic input/output channel, especially not an ultrasonic one.

In a preferred embodiment of the invention, smart card 40 comprises an acoustic element 42, a processor 44 that controls the acoustic element and a memory 46 for storing information. Such a smart card may use a single piezoelectric transducer (possibly a film layer) for both transmission and reception.

In a preferred embodiment of the invention, the received signals from element 42 are amplified to TTL levels and connected directly into one or more data lines of the microcontroller. This "data" may be treated as binary sampled input and analyzed to determine characteristics of the received signals, for example using Fourier analysis. Thus, a high acoustic frequency can be detected and/or analyzed, without requiring a separate A/D. Preferably, the signal is amplified by various amounts, such as by several multiples of two and amplified amount is connected in parallel to a different one of the data legs, so that multi-level signal detection is facilitated. Alternatively or additionally, one or more data lines may be directly (i.e., no D/A, put possibly an amplifier or an isolator) coupled to a loudspeaker, to generate an output acoustic signal.

As many electronic devices include a speaker and/or a microphone, such a card may communicate with any such device that has suitable software. Due to the decreasing size of electronics, in some cases, a smart card may be emulated using a PDA or other electronic means (or vice-versa), with regard to both size and functionality. Additionally or alternatively, such smart card functionality may be exhibited by a cellular telephone or a lap top computer. A benefit of a lap top computer and of a PDA is their convenient user-interface. A benefit of a cellular telephone is the possibility of real-time and/or off-line communication with a central location.

In a preferred embodiment of the invention, the smart-card includes a battery, for example a lithium ion battery for providing power to transmit, receive and/or process acoustic signals. Possibly, the battery is rechargeable. Additionally or alternatively, the smart-card is light-powered, for example solar powered or possibly powered using room lighting. Additionally or alternatively, the smart-card includes a battery which is charged by optical wavelength energy, for example using a photoelectric cell on the smart-card. In a preferred embodiment of the invention, the card is recharged by placing it against a computer screen or a TV screen that is lit up. Possibly, the illumination of the screen is modified, spatially and/or temporally, to transmit information to the card. The modification of the illumination may be

15

20

25

30

35

by a computer or set-top box. Transmission back to the computed/or set-top box may be achieved using other methods described in this application.

Additionally or alternatively, power to activate the smart card and/or to recharge its power cell may be provided from via speaker. Preferably, the power is provided as an ultrasonic wave, possibly, but not necessarily, the same wave used to transmit information to the card. In this and other embodiments of a smart card, a single circuit is optionally used to receive both power and transmissions. Possibly, at least part of the same circuit is also used to transmit signals. Although the power levels are generally low, the duration of transmission of power can be made relatively longer (minutes, hours) than the duration of the power usage (micro seconds, milliseconds).

Additionally or alternatively, the card may be recharged by plugging it into a PC-card slot, a USB plug or a different suitably-sized communication port. Preferably, once the card is plugged-in it also transmits information using the communications port. The card preferably includes a plurality of electrical contacts at one of its ends and/or a connector-sized end.

Additionally or alternatively, the card may be inserted into a CD-ROM drive or a diskette drive and obtain power from the motion of a head and/or a spinner motor. Possibly, the power is generated by friction. Additionally or alternatively, the power is obtained from the read/write energies (laser, magnetic) used by the drive. Additionally or alternatively, the card interacts with the head, for example a diskette index read head to communication with a host computer of the drive. Possibly, the card may interact (for communication purposes) with magnetic read and/or write heads even if the card is not inserted in the slot. Preferably, the card includes magnetic-field sensitive sensors, such as GMR sensors. Alternatively or additionally, the card includes an RF or magnetic filed generating unit capable of affecting the read/write heads.

Additionally or alternatively, the card may be powered by inertial power, for example form movements of a person carrying the card. Additionally or alternatively, the card may include a piezoelectric power converter, possibly utilizing a same piezoelectric element as used for communication, to convert flexing of the card or varying pressure on the card (typically inadvertently) into electrical energy. Possibly, the card can be energized from ambient vibrations, such as those caused by a computer, when the card is placed on the computer.

Figs. 3B-3D are schematic illustrations of variations of smart-card structures, in accordance with preferred embodiments of the invention. In Fig. 3B., substantially all of one side of the card forms an acoustic transducer. The processor and the memory (44 and 46) are preferably embedded in the card. The battery may be a thin battery which is embedded in the card or glued on it. In one example, the card itself is manufactured of a piezoelectric material

10

15

25

30

35

and area 42 indicates the region which is electrified using electrodes. In one embodiment, only two electrodes are the last one of the brodes comprises a plurality of electrodes, so that various acoustic modes may be excited and/or sensed in the card. Possibly, the two electrodes have a piezoelectric material sandwiched between them. Possibly the piezoelectric material is the card itself. In a preferred embodiment of the invention, the card is formed of a polarized plastic with piezoelectric properties. Possibly, only the portion of the card adjacent the electrodes is polarized. In some embodiments of the invention a same region 42 is used both for transmission and for reception, in others, separate regions are provided, which regions may overlap.

In a preferred embodiment of the invention, the card is electrified with an array of electrodes and these arrays may be used to detect pressure on the card, for example pressure caused by moving a stylus over the card. Depending on the processing power of the card, this may be used as a handwriting input. Alternatively or additionally, the piezoelectric regions may be used for power supply, as indicated above. Alternatively or additionally, the piezoelectric regions my be used to generate sounds, for example recording or synthesized speech or indicator (e.g., beeps) sounds. Alternatively or additionally, the piezoelectric regions may be used as a sonic microphone, for speech input. Analysis of speech input may be performed on the card, on a nearby computer or on a remote computer to which recorded speech sounds are transmitted. It is noted that the card can include user-specific speech-recognition libraries, to assist in the speech recognition. Alternatively or additionally, the piezoelectric regions may be used to detect data input of a simpler kind, for example tapping, flexing, and/or bending of the card, or selective pressure on certain areas of the card.

In an exemplary embodiment of the invention, at least part of the card is covered with a SAW device, which generates output signals indicative of an X,Y position of a pen tip on the SAW and/or the pressure against it. Alternatively or additionally, handwriting input may be provided by incorporating the card functionality into a device such as a pen, whose position can be determined, for example by TOF (time of flight) measurements relative to the computer speaker. The determination of distance, or possibly position may be sufficient for biometric identification of the pen user, for identification of correctness of the signature and/or possibly for rudimentary or complete handwriting recognition.

In a preferred embodiment of the invention, the size and shape of the region and/or the mechanical characteristics of the card material (or at least of area 42) are selected to acoustically match the desired transmission and/or reception characteristics of the smart card. As can be appreciated, in some cases it is the card size and mechanical characteristics which determine the ultrasonic frequency to be used. Preferably, the size and thickness of the card are similar to that of a credit card. Possibly, card 40 is somewhat thicker than a credit card.

10

15

20

25

30

35

ission capability of the embodiment of the invention, the acoustic tra In a pref card is utilized for speech output. In one exemplary embodiment, the output is used to provide details of a transaction being performed. In another exemplary embodiment, the output is sued to provide feedback to a user on the card functionality, for example to explain why a transaction is problematic. In another exemplary embodiment the card is used as a text input and/or output converter for an existing device, such a as PDA. Thus, the card can receive voice commands from a user, convert them to PDA commands which the card transmits to the PDA, preferably suing sounds. Responses from the PDA is preferably received by the card and then outputted to the user using a voice output. Thus, a user can be assured a single interface to many complex electronic devices. Alternatively or additionally, such a voice output may be of a VCR via an audio channel of a TV. Alternatively or additionally, such a card may be used as a help card for various electronic appliances which have the ability to communicate with such a card. The help may be context-sensitive help, for example based on an estimation of the device state by the card.

In Fig. 3C a magnetic strip doubles as a resonator 42 for piezoelectric transaction.

In Fig. 3D a holograph glued onto the card (for example as in a VISA card) serves as the ultrasonic transducer and/or to cover or contain the electronics of processor 44 and/or memory 46. In the photoelectric embodiments, above, an area 43 of the card may be embedded with photo-electric cells. Possibly, a same area is used both for photoelectric activity and for piezoelectric activity. In a preferred embodiment of the invention, card 40 includes an infra-red generating area, for example a LED 41 or a surface patch. Optionally, card 40 includes a thin-screen type display (not shown), for example an LCD display, for displaying information stored, transmitted and/or received and/or feedback.

Fig. 3E is a schematic illustration of a smart-card docking station 110 in accordance with a preferred embodiment of the invention. A smart card 112 is inserted into the reader 110. A portion 114 of the reader is configured to communicate with the smart card, for example using RF, magnetic fields, ultrasound, IR and/or any other communication protocols. Possibly, a plurality of such areas 114 are provided, each for a different physical protocol. These communications with the card are preferably transformed, using an acoustic transducer 116, into acoustic communications to be transmitted to- and/or received by- a remote computer or other electronic device, using the methods as described herein. Thus, an owner of a smart card can easily interact with a standard computer without installing a dedicated reader on the computer. Rather, the smart card owner will carry around a miniature adapter 110 which can communicate with a computer in a wireless manner.

Alternatively or additionally, docking station 110 is designed specifically for magnetic cards, such as the common credit cards. Station 110 preferably includes a sensitive magnetic

15

20

25

30

35

field detector in a 14, so that when the cards is inserted into locking station, the magnetic strip is read. Consequently, it becomes possible to swipe a standard magnetic card at many existing electronic devices, without requiring special hardware to be connected. A dedicated station may be made very thin, for example less than 10 mm or even less than 5 mm. Preferably the docking station has a closed configuration, but an open docking station, comprising a sensor and a contra to hold the card against the sensor is also envisioned. Although card swiping is a one-way communication process, in some cases two way communication may be desirable, for example for a user to collect information regarding purchase for example amounts, times, type and authentication confirmation.

The power supply of the card is preferably located on the card, for example as described above. However, in some preferred embodiments of the invention, the power source and/or other circuitry of the card is located on a tag holder to which the card is coupled for wearing, rather than on the card. In one example, only the battery or a main battery is on the badge holder. A secondary battery on the card itself may be provided for limited use when the card is removed from the holder. Possibly, the badge holder includes circuitry for transforming transmitted power, such as RF, light, Ultrasound or LF magnetic fields, into power for recharging the card. Alternatively or additionally, a microphone, loudspeaker and/or amplification circuitry, may also be provided n the badge holder. Possibly, the card has a limited range and/or other functionality, which are enhanced when the card is placed in the badge holder. The communication between the card and the badge holder may consist of only power connections, digital data connections and/or analog data connections. This communication is preferably wired. Alternatively or additionally, contact-less communication may be used, for example inductive communication.

It should be noted that although acoustic communication is preferred for at least one communication direction (computer to smart-card or smart-card computer) one or both of the communication directions may utilize other technologies, temporarily or on a permanent basis. For example, the card may use the IRDA IR communications standard or the Bluetooth RF communications standard.

In another example of the use of smart cards, a smart card is used to operate arcade games. Such a card may utilize the speaker and/or microphone of the game. Alternatively or additionally, the card may include information about the user, for example for billing. Alternatively or additionally, the information may include gaming information, for example how far in the game the player is or the player's level, so the arcade game can be suitably configured.

It should be noted that such an acoustic smart card may also be used as a customer card, as well as for an "electronic wallet", since information about the card holder can easily

be retrieved from and ard. Also, it is simple to transmit information

In a preferred embodiment of the invention, spatial angles between a sound source and a plurality of microphones are determined by analyzing phase differences at the microphones. Alternatively or additionally, other methods known in the art may be used. In a preferred embodiment of the invention, a relative location of a pulsing sound source and a plurality of microphones is determined by solving time of flight equations. Thus, the relative location of a smart card, an ID card (described below), an electronic device and/or a computer, relative to another electronic device, may be determined and used to control the operation and/or cooperation of one of the above electronic devices.

In a preferred embodiment of the invention, four microphones are used to determine a three-dimensional position. For a source at r=(x₀,y₀,z₀) and a plurality "i" of microphones at $M_i=(x_i,y_i,z_i)$, the distances between the source and the microphones are $D_i=||r-M_i||$. The acoustic velocity, "c", may be known, for example based on a known velocity in air. Alternatively, it may be determined by measuring the time of flight between a sound source and a microphone having fixed and known relative locations. A difference between distances is preferably defined as dD(i,j)=Di-Dj=c*dt(i,j), where dt(i,j) is defined as a difference between time of arrival at microphone i and time of arrival at microphone j. For N microphones there are N-1 independent differences dD. In an optimal configuration, the four microphones located at vertexes of a tetrahedron may be used to determine the location of a source. From practical considerations, such an arrangement may not be possible. Preferably, more than four microphones are used, so that a higher resistance to noise and/or a higher localization precision may be achieved. In a preferred embodiment of the invention, the three dimensional position is determined by numerically or analytically solving three equations of the form:

 $dD=c*dt(i,j)=||r-M_i||-||r-M_j||$, where (i,j) is preferably selected to be (1,2), (2,3) and (3,4). However any other independent three pairs of microphones may be used. In some cases it is useful if one of the electronic devices operates as a transponder, which receives signals and sends back a signal indicative of the received signal and/or its time of flight.

A touch screen in accordance with a preferred embodiment of the invention utilizes acoustic transmission to detect the location of a touch implement, such as a pen. In a preferred embodiment of the invention, the position of the pen is determined using one or more microphones and/or speakers mounted on the pen, which transmit and/or receive signals from a computer and/or other speaker and/or microphone controller. Possibly, a three-dimensional position of the touch implement is determined using four acoustic elements, such as two microphones and two speakers. It is noted that a computer typically includes a modem speaker, an internal speaker and/or a keyboard speaker, as well as sound-card speakers. In

BOTHBO BEEFFOR

10

15

20

25

30

10

15

20

25

30

35

addition, some correspondence or include an ultrasonic pointing device or other ltrasonic ports. In a preferred embodiment of the invention, the smart card can communicate using this ultrasonic communication port.

In a preferred embodiment of the invention, location methods utilize a calibration process, in which the located implement is placed at one or more known location, so that it is possible to correct for the location of the speaker(s) and the microphone(s)/ Alternatively or additionally, the calibration procedure is used to correct for propagation times (of the acoustic waves and/or of electronic signals which generate sounds) and/or for reflections, wavelength dependent attenuation and/or broadband attenuation.

A different type of touch screen in accordance with a preferred embodiment of the invention detects the location of a touch implement based on the detection and position determination (2D or 3D) of sounds generated when the touch implement touches the "touch sensitive" surface.

A software protection method in accordance with a preferred embodiment of the invention comprises a passive ID tag which responds to an interrogation. In one example, such a tag is attached to the case of a software CD, such that the software will operate only if the computer on which it runs can interrogate the CD for a particular code, using ultrasonic or sonic signals. Alternatively or additionally, the ID tag may be attached to the CD itself and/or attached to (or integrated with) an implement used for interacting with the software, for example a toy implement. Alternatively or additionally, the tag may be permanently attached (such that removal will damage it) to the case and/or monitor and/or other internal or external element of the computer. Alternatively or additionally, the ID tag is plugged in as a pass-through hasp, which possibly does not interact with the data lines which pass through it at all, but may use power from the power lines. Rather, the authentication of the software uses acoustic communication between the hasp and the microphone and/or speaker. Alternatively to protecting software, such a method may be used to protect an easily stolen device, such as a PDA or a laptop computer, which can use their internal speakers and/or microphones to detect the proximity of a required ID tag.

An authentication system in accordance with a preferred embodiment of the invention preferably uses a computer for authentication. In a preferred embodiment of the invention, a user may be authenticated by the computer dialing a user's personal communicator (for example a beeper, a cellular telephone, wireless telephone or a satellite telephone) and then listening for a ring of the personal communicator. Preferably, the personal communicator is programmed for a distinctive ring, at least for calls originating from the computer. Alternatively or additionally, a cellular network may instruct a cellular telephone to generate a certain sound, responsive to a request (possibly by computer network) from the computer.

10

15

20

25

30

35

Alternative by additionally, a user calls up the computer calls decomputer uses the personal communicator and listening for that sound using its room microphone. Preferably, the sounds are sonic. Alternatively or additionally, the sounds are ultrasonic, for example 20kHz or above. In a preferred embodiment of the invention, the computer uses the detected sound to determine attributes of the personal communicator, for example its distance from the computer.

Alternatively or additionally to providing a telephone connection, a personal communicator may respond to an ambient room sound (for example an ultrasonic wave or a DTMF tone from a computer) with an ID code. Alternatively or additionally, a user may enter a code into a computer by dialing the code on his personal communicator and allowing the computer to receive the DTMF tones using the computer's microphone.

In a preferred embodiment of the invention, an authentication method uses interrogation of an ID-tag instead of a personal communicator. Possibly, the ID-tag is a smart-card. In some embodiments of the invention, such a tag is interrogated directly using RF, in others, using sound and/or ultrasound (depending on the tag construction).

Preferably, the tag responds with acoustic signals, possibly ultrasonic signals. Optionally, the tag uses the energy of the interrogation signal to generate the response signal. Alternatively or additionally, the tag is interrogated using a tag-specific code. In a preferred embodiment of the invention, such a tag is used for computer log-on authentication, for example, when a wearer approaches a computer, the computer automatically logs on to that user. Alternatively or additionally, the computer may require the proximity of the ID card in addition to standard log-on procedures. Alternatively or additionally, the computer may periodically interrogate the ID card, to insure that the card wearer is still nearby. Alternatively or additionally, the computer may interrogate the card for user specific information, for example a voice ID or personal information. The computer can thus query the user for a voice response and compare the response (voice print and/or contents) to confirm the card wearer is a designated card wearer.

In some preferred embodiments of the invention, the card uses speech input. In others, the card detects a response to a query by the absence, quality, number and/or other features of sounds, so no real speech recognition or matching is required.

A user may wear two cards, one for general authorization and one including personal information. Thus, a computer may interrogate both cards.

In a preferred embodiment of the invention, an interrogated object receives the ultrasound signal and sends it back to a microphone of the computer. In a preferred embodiment of the invention, the computer analyses the time of flight and/or other attributes

10

15

20

25

30

35

of the transmission determines a distance from, position to, vel of motion and/or other spatial attributes of the object.

In a preferred embodiment of the invention, the object responds immediately to the interrogation signal. Alternatively, the object delays its response to an interrogation signal, for example for a few milliseconds. Alternatively or additionally, the object transmits at a different frequency from the received frequency, for example 24kHz in response to a 20kHz query. Alternatively or additionally, the signal transmitted by the object is received by a transducer which then transmits the signal to the computer, for example acoustically or using electromagnetic coupling. Alternatively or additionally, the object may respond with an identification code. Alternatively or additionally, the object modulates its transmission with an envelope, which envelope preferable serves as an identification code and/or for transmission of information regarding a status of the object, for example a position of an arm of a toy. In some cases, the object relays information from a more remote object. In the case of identification, the object may send an ID code even without prompting from the computer, for example periodically or by a user pressing a button on the object (or by flexing the object).

In a preferred embodiment of the invention, the object amplifies the signal it receives using a discharge of a coil through a transistor, where the transistor serves as a variable resistor and/or as a wave-form controller.

In a preferred embodiment of the invention, the smart-card or the ID tag are used as a pager. In one embodiment, computers in an office can locate an ID-tag by local interrogation and then a message may be broadcast to a nearby telephone or intercom or using a nearby computer's loudspeaker. Alternatively or additionally, a visual message may be displayed on a computer screen (which is known to be at a location at which the ID tag is located) to notify a user of the computer that the user (or somebody in the room) is being paged. In another embodiment, the computers may be used to transmit information to the smart card which will itself generate an alert to the user, for example by shaking (electrifying the piezoelectric film) or by making a sound. In another embodiment, a digital telephone network is used to generate and/or receive ultrasonic signals which can be used to communicate with a smart card. An narrow bandwidth system, for example an analog system may be used if audible sounds are used.

In a preferred embodiment of the invention, a wireless telephone system uses handsets which communicate with base stations, for example computers or telephones, using ultrasonic communication, as described herein. In a preferred embodiment of the invention, an office telephone or computer network can serve as a local cellular network for communication, by keeping track which base-stations are in communication with which handsets and by providing the ability for a base station to locate handsets and for a handset to change base stations.

15

20

25

30

35

hematic illustration of an Internet transmission thway for sounds, in accordance with a preferred embodiment of the invention. When a smart card 40 (or interrogated badge) transmits information-carrying sounds to a computer, these sounds may be analyzed on the computer. Alternatively or additionally, the sounds may be transmitted from the computer to a remote computer, where they are analyzed. In a preferred embodiment of the invention, a local client computer 62 receives sounds and transmits them over an Internet 60 to a server computer 50. Alternatively to using an Internet, an Intranet, a LAN, a Wan or another type of computer data network is used. It is noted that there exist standard protocols for transmitting sounds over networks. Thus, there is little or no need for changes in the hardware and/or software configurations of the communication pathway, especially not of client 62. The pathway can also work in the other direction, for example, when a toy downloads programming from a remote server and the programming is stored as a toy-understandable sound file, or when the server interrogates the smart card. It is noted that playing of sound is also supported by standard Internet protocols. Alternatively or additionally, a smart card may serve as an interrogated ID tag that is used to control access to and/or billing of usage of an Internet site. In one example, whenever a user requests a service from the Internet, the existence of a local smart card is ascertained. Billing information is preferably transmitted to the card. Periodically, the card is interrogated (possibly by a third party), preferably over the Internet or a telephone connection, for the existence of charges.

In an example of a financial or business interaction over an Internet, one or more of the following three levels of security may be achieved. First, the presence of the card, which can be required by local and/or by remote software. Second, confirmation of the card wearer identification using personal information. Third, an identification of the calling computer (which should preferably match the wearer profile and/or information stored on the card). Additionally, it is noted that there exist standard mechanisms for transmitting sound over an Internet, LAN, WAN or a telephone line. Thus, sonic or ultrasonic communication, for example from a smart card or an ID card may be practiced over a telephone connection or over an Internet connection. These communications may include encrypted communications, for example using RSA, DES, triple DES or TEF encoding or other public-key algorithms. Alternatively or additionally, the communication may use DTMF or DTMF-like tones. Alternatively or additionally, such communication may be used for telephone calling cards. Alternatively or additionally, such communication may be used for transmitting credit card information. In a preferred embodiment of the invention, a credit card includes a sound output (optionally encrypted). Thus, a user can "swipe" his card at any electronic device which includes a microphone (optionally a speaker, for two way communication) and suitable software/hardware, for example a home computer. Possibly, swiping software may be

10

15

20

25

30

35

downloaded as a Jamplet.

Generally, any type of smart card interaction, for commercial and or for personal uses may be implemented using the acoustic transmission methods described herein.

In a preferred embodiment of the invention, a smart card is used for purchasing services and/or goods in a store. In one example, shown in Fig. 4B, a person enters into a restaurant, carrying a smart card 120. This smart card may be used for several activities in the restaurant, for example, contacting a waiter's communicator 122, selecting a free table (based on a list of tables transmitted by a central computer 124) and/or reviewing a menu and "today's specials" also transmitted by central computer 124. Possibly, some of this information and other information, such as average waiting time, current line length, average meal costs, specific dish costs, delay until a particular dish is ready, dishes which are out of stock and in general any question that a customer might ask a waiter, may even be answered when the client is outside the restaurant. The client may query for this information or it may be continuously presented. It is noted that some types of query responses require a control of details and numerical information which are beyond the ability of most waiters (but not of a central computer).

Once the customer is seated and has selected from a menu, the client can track the progress of his dish, for example by communication with a kitchen computer 132. In some restaurants, the client is a regular customer (possibly the card is a "member's card") and the card may be used to place the order. Possibly, the client can order his "usual". Alternatively, especially if the smart card includes a display (or is implemented using a PDA) the client can order directly using the card. In some cases a card may not have a sufficient transmission range and a local transducer, such as on the table or on walls or ceilings are provided. This transducer may be replaced by a remote loudspeaker/microphone system for the central computer. In some cases, the smart card (possibly RF rather than acoustic) may be used at a distance, for example, 1, 5 10 or even 15 meters. Alternatively the card may be used at a short distance, for example, 0.5 meters or even at contact or near contact distances.

At the end of the meal, the bill total and/or the bill details are downloaded to the card. Using the card, the user can authorize payment and/or add a tip. The payment authorization is preferably transmitted by central computer 124 to a remote credit card company 126 for verification. Possibly, the smart card instructs the central computer to print out a paper slip to be signed. However, a digital-type signature is preferred. In an electronic wallet situation, no credit card company is used. Instead "cash" is withdrawn from the smart card.

In a store embodiment, or in a display-case type restaurant, the smart card may also be used to interrogate certain displays for further information, for a demonstration or for ordering.

In many situations, there will be more than one active smart card in a restaurant at a

COALLOO CORECTOR

5

10

15

20

25

30

35

d embodiment of the single time. In Figure 3 a second smart card 130 is shown. In a pre invention, smart cards 120 and 130 coordinate so that they do not bour transit at a same time. In one example, the central computer assigns time, frequency or coding (CDMA) slots. In another example, an ALOHA algorithm is used to avoid collisions.

In a preferred embodiment of the invention, two smart cards can directly communicate, for example to exchange business information. A particular situation is at a technology show where several persons from a single company will each view part of the show and interrogate information from displays using their smart cards. At the end of the day, these persons will preferably consolidate their finding by the smart cards exchanging information or by downloading the information from the smart cards to a central computer.

Fig. 5 is a schematic block diagram of a communications tap 102 for a computer 100, in accordance with a preferred embodiment of the invention. One problem with computer communication is setting up the hardware and software for communications. In the configuration of Fig. 5, a tap is preferably placed on communication line to an existing peripheral 104. Thus, a user may not be required to even access a back part of a computer, let alone a computer's inside. A toy 106, an electronic device and/or a smart-card preferably send and/or receive signals from tap 102. Additionally or alternatively, toy 106 may use one tap for receiving and one for sending. Possibly, a toy uses taps only for one direction of communication.

In a preferred embodiment of the invention, the tap is placed on a cable to a printer, a network cable, a camera cable and/or a SCSI connection. Additionally or alternatively, the tap is placed on a serial cable, for example a mouse cable. Additionally or alternatively, the tap is placed on a modem line, for example on a telephone line or by plugging the tap into another telephone socket, to be received by the modem. Additionally or alternatively, the tap is placed on a game controller line. Additionally or alternatively, the tap is placed on a loudspeaker line. This type of tap can detect signals which cannot be reproduced by the loudspeaker, for example very high frequencies. Additionally or alternatively, the tap is placed on a microphone line, possibly using the microphone line and/or the microphone itself as a sonic, ultrasonic or non-acoustic antenna (e.g., RF). Additionally or alternatively, the tap is placed on a display cable line.

In a preferred embodiment of the invention, the tap includes an electro-magnetic coupler, which can induce signals in a cable which passes through or near the tap. Additionally or alternatively, the tap can detect signals in the line and transmit them to toy 106. In a preferred embodiment of the invention, the signals are at a different carrier frequency and/or signal frequency than the usual signals passed along the line. Additionally or alternatively, the signals travel in an opposite direction (input signals on an output line, such as a printer or

10

15

20

25

30

35

output signals on put line, such as a mouse). Additionally or a stream in the encode information which information is detected and removed from the data stream in the computer. Additionally or alternatively, the signals are asynchronic on a synchronic line. Additionally or alternatively, the signals are transmitted only when no signal is expected by the computer and/or the peripheral.

In an alternative embodiment of the invention, a piezoelectric actuator (or other vibrating element) is connected to a mouse (or a microphone). The actuator causes the mouse to shake at an amplitude of one or two screen pixels (or less) and the shaking is detected by software in the computer as signals from the toy. A return signal may be transmitted to a tap associated with the actuator, along the serial cable, with the signal preferably being coded to be recognized by the tap and/or ignored by the mouse.

In an alternative embodiment of the invention, toy 106 communicates with computer 100 using a speaker (internal and/or sound card) and/or a microphone of the computer. Preferably, toy 106 receives transmissions from the computer loudspeaker and/or sends signals to the computer microphone. Additionally or alternatively, signals are transmitted to toy 106 via the microphone and received via the loudspeaker, depending on whether the hardware supports such a reverse connection.

In an alternative embodiment of the invention, toy 106 sends signals to computer 102 using a tap which presses keys on a keyboard attached to computer 100. Preferably the key used is a shift key. Additionally or alternatively, signals from the computer are detected by detecting illumination of LEDs on the keyboard, for example a "Num Lock" LED.

Alternatively or additionally, the tap detects illumination of other LEDs on a computer, for example power, sleep, CD-ROM and/or hard disk LEDs. Alternatively or additionally, the tap detects information transmitted via noise or vibration generated by activation and/or modulation of the activity of mechanical components of the computer, for example diskette drives, disk drives and CD-ROM drives. Alternatively or additionally, the tap detects an electromagnetic signal generated by power surges to the devices, for example a CD-ROM when it is powered.

In a preferred embodiment of the invention, a tap "learns" the electromagnetic and/or acoustic profile of a particular computer and also learns the effects of various commands on this profile. When a computer desires to communicate with a tap, it preferably modifies the profile using those commands which are determined to have the greatest, most noticeable and/or fastest effect on the profile.

Additionally or alternatively, toy 106 utilizes a transducer which plugs into a parallel port, a serial port and/or is optically coupled or placed near an IR port. Preferably, the

transducer is a printer and rough transducer, through which a printer and communicate normally with a computer.

In a preferred embodiment of the invention, the tap and/or transducer can automatically detect which type of cable is tapped/port is connected to. Preferably, such detection is by analyzing amplitude, frequency and/or synchronization of signals passing through the lines. Additionally or alternatively, the computer detects which line is tapped, by detecting particular inferences on that line. Alternatively or additionally, software on the computer sends test signals along the lines, to be detected by the tap. Possibly, the tap can detect the signals even without being programmed with the type of line on which the signals are transmitted. Alternatively, when a tap is used, a configuration program is run so that a user can define to the tap and/or the computer what is being tapped.

In a preferred embodiment of the invention, a smart card directly taps the computer, for example using a coil embedded in the smart card to detect signals being transmitted over data lines.

In a preferred embodiment of the invention, suitable software is installed on computer 100. Preferably, the software is self installing. Preferably, the computer is not used for any other use while toy 106 is communicating with it. Additionally or alternatively, the software can differentiate between "regular" signals and signals related to the tap. In one example, a provided keyboard driver may detected special codes and/or data sequences on the keyboard line and remove them from the received data, passing only the rest of the received data to an operating system of computer 100. Additionally or alternatively, a provided mouse driver may detect spurious and/or small mouse movements, and recognize them as being tap related signals. Additionally or alternatively, a printer driver can recognize data on the cable as not coming from the printer but from a tap. Additionally or alternatively, data sent to the tap is preferably sent as data which will be rejected or ignored by the peripheral, for example having incorrect parity settings or other intentional errors. Alternatively or additionally to using a tap for communication with a toy, such a tap may be used to attach a peripheral to computer 100.

In a preferred embodiment of the invention, the signal received on the computer is used to modify a computer game and/or to generate commands to other toys, preferably using sounds generated by the computer. Thus, a computer game in which a computer display responds to external sounds, is preferably provided.

The acoustic communication may also be used to communicate between a play implement and a computer game, for example between a sword and a play-station. In one example, a light-pen or a light-gun transmits to the play-station a signal responsive to pixel intensities which are detected by a photo-detector thereon. Alternatively or additionally, a synchronization signal is transmitted from a computer and/or a set-top box to the pen, to

COTLOG SESSION

10

15

20

25

30

synchronize the picture detection with the TV raster scan. These additional to- or alternative to- transmission of position and/or orientation. Alternatively or additionally, the play implement transmits the status of controls thereon. Alternatively or additionally, the transmission is used to transmit information to be displayed on the implement, for example to light up lights thereon, display a number of kills thereon and/or drive text and/or graphics displays thereon.

In a preferred embodiment of the invention, a bowling game is provided, in which a computer detects sounds generated by a moving bowling ball and knocks over pins on a display. Preferably, a soft ball is used, preferably, the motion of the ball is determined relative to the computer microphone and/or speakers, as described herein. Alternatively, an independent sound generator and/or receiver may be utilized, which sound element is preferably integrated with a computer using minimally-installed hardware, as described herein.

In another example, a computer displays a thrown ball, for example a baseball and determines a "hit" based on detected motion of a baseball bat. In another example, a computer goalie attempts to stop a real ball kicked by a player. The position and/or other motion attributes of the ball are preferably determined by acoustic distance determination using only the hardware already installed in a standard computer, for example as described herein. In another example, a boxing match a computer tracks motion of a glove, to detect hits on a computer figure and/or to emulate evasive maneuvers. Alternatively or additionally, the computer tracks motion of the player, to aim its own punches and/or to asses a score. Optionally, the computer is used to display motion of a second remote player. Alternatively or additionally to boxing, the computer may track motion of sources (preferably with implanted sound devices or with a wrist band sound device). Alternatively or additionally, the computer may track positions and/or alignments of toy guns and/or of players holding the guns. Possibly a map of a room may be provided so the computer can determine if a gun has a line of site in the particular room.

In a preferred embodiment of the invention, the signals generated by a toy are inadvertently generated, for example, sounds generated by a wheel rotating or an appendage flapping. Additionally or alternatively, the signals are included in a generated action, for example, a quack sounded by a toy, which may be modulated by a signal, a blinking light, whose blinking may be modified by the signal or a waving gesture which may be modified and/or its duration or amplitude changed, to convey a signal. Additionally or alternatively, the signals are determined by analyzing a response, for example differentiating between different sounds produced by a first toy to decide which sound to make in response. Additionally or alternatively, the signal may be additional to generated actions, for example, an extra beep

10

15

20

25

30

35

example by being intrasonic.

In another example, a computer and/or a toy can respond to DTMF tones generated by a telephone handset, a wireless telephone, a cellular telephone or even a play telephone.

Fig. 6 is a schematic illustration of an unobtrusive computer checkup in accordance with a preferred embodiment of the invention. A user 142 is using a computer 140. A user 146 wishes to interrogate computer 140, for example to determine a networking problem. In a preferred embodiment of the invention, a smart card 144 (or other electronic device) can communicate with computer 140 using an acoustical- or a tap- channel as described above, without interfering with the activities of user 142. Alternatively or additionally, smart card 144 may be used to interrogate an interface-less device, such as a hub 148. One advantage of acoustical communication for these uses is that they do not generate a considerable amount of RF interference and do not require major (if any) changes in a (significant) install base of hardware. In a preferred embodiment of the invention, hardware devices, such as hub 148 and computer 140 continuously "hum" their status, so that the status can be discerned by eavesdropping on the hum, without needing to interrogate the hardware.

Fig. 7 is a schematic illustration of a computer communication setup using acoustics, in accordance with a preferred embodiment of the invention. A computer 152 includes a microphone 156 which is used for detecting activity sounds of other electronic and/or mechanical devices. The activity sounds may comprise natural sounds, for example a page sorter being used in a photocopier. Alternatively or additionally, they may comprises indicator sounds, for example a beep generated by a fax machine when a fax comes in. Alternatively or additionally, they may comprise artificial sounds, for example a special information carrying sound generated specifically for the benefit of computer 152.

In a preferred embodiment of the invention, a computer 152 transmits indications of the sensed activities to a remote computer, such as computer 154. Thus, a user at computer 154 can be informed of a fax coming in or of an unanswered telephone call even if he is in a different room and the fax machine is not connected to standard computer network.

Alternatively or additionally, the analysis of sounds detected by microphone 156 can be used to determine other occurrences at computer 152. In one example, microphone 156 can be used to log the habits of a user, including, telephone conversations, numbers dialed (by detecting the DTMF sounds), sounds of papers being shuffled, breathing sounds, snoring of a sleeping user, average number of rings until a call is answered, and typing habits. Alternatively or additionally, microphone 156 can be used to detect an occupancy of a room or glass breakage, possibly serving as a burglar alarm.

10

15

20

25

30

35

Alternatively additionally, the microphone may be used to accept electromagnetic impulses generated by operating devices. Typically, each device has a different electromagnetic signature. Different signatures may be generated when the device is switched on or off and when the device is operated. Thus, a computer-microphone combination can be used to detect the operation of devices, such as photocopies, door chimes and computers. In a preferred embodiment of the invention, a video input card is used to analyses higher frequencies of electromagnetic radiation than those detectable by a microphone-sound card combination. It can thus be appreciated that noise signals which are usually rejected by signal processing algorithms may be analyzed to detect important ambient information.

In a particular preferred embodiment of the invention, an electronic commerce systems comprises:

- (a) a computer (desktop/laptop/hand-held) with a regular microphone (built in monitor or computer or external) or special sonic/ultrasonic microphone and at least one speaker;
- (b) a card or other device which has an acoustic receiver a processing unit an acoustic transmitter and input and/or output filtration and amplification circuits;
 - (c) a communication protocol used by the card and computer;
 - (d) software on the card side;
 - (e) software on the PC side; and
 - (f) a security scheme, integrated with the other components.

In the smart card, the acoustic receiver can be regular capsule microphone, or an ultrasonic type microphone, possibly specific for a particular frequency or frequency range used. The processing unit can preferably receive signals through an A/D converter and/or digital communication and can detect signal frequencies needed for the communication protocol. Preferably, the processing unit used has sufficient power (a few MIPS), and includes some (on-chip or off-chip) memory, especially for storing and/or generating a cryptographic signature. A Microchips PIC508 processing unit is preferably used and appendix "C" lists microcode for it. In some cases, special ultra-low power circuitry may be desirable. The acoustic transmitted can preferably generate a strong atmosphere wave. It is noted however, that only a small amount of power is required for short range transmissions. Additionally, the transmitter may generate waves in solids, for example to be carried by the case of the computer comprising the microphone

In a preferred embodiment of the invention, the input/output filtration circuits comprise op-amplifiers with filters for specific frequencies for input and output, dependent on the communication protocol used. If non-audible frequencies are used, the filters should decrease power in audible frequencies, to reduce annoyance of a user

15

20

25

30

35

The competication protocol is preferably a digital binary in which the bits are transmitted using Equency Modulation, Pulse Width Modulation, If Keying and/or any combination of the above. Error correction codes, for example parity, Gray or Hamming codes, as known in the art may be used. It should be noted that the range of available frequencies may be limited if ultrasonic frequencies are used, due to degraded capabilities of the computer sound card.

An exemplary software for the smart card is provided as an appendix "C" attached herewith. This software demodulate the signals received and convert them to data bits, either by time domain analysis or by Fourier analysis. Thereafter, error checking is preferably performed. The received information may be decrypted (if necessary). Alternatively or additionally, the received information may be encrypted, verified and/or signed, in order to be stored in local memory. The local memory may comprise ROM, RAM, EPROM, EPROM and/or other types of memory as known in the art. Information to be transmitted may be encrypted before transmission.

An exemplary software for the PC, written in Visual Basic version 6.0 and in Delphi version 4.0 (a DLL) is provided as an appendix "A" and an Appendix "B" respectively, attached herewith. This software receives a detected signal, filters it, and opens the protocol. Preferably, the software checks for errors using IIR Band Pass and/or low pass filters.

The received and filtered signal is then demodulated, into data bits, for example, by time domain analysis or by Fourier analysis. Data transmission errors are preferably corrected. The data may then be locally analyzed and/or transmitted to a remote location, for example a seller's computer. In some embodiments, this software is written in an Internet Language, such as Java or ActiveX.

In a preferred embodiment of the invention, the acoustical detection uses the maximum resolution and/or sensitivity afforded by the microphone, i.e., going below the noise threshold as defined for audio uses. Alternatively or additionally, repeating and/or periodic ambient sounds are detected and removed or disregarded from the input signal. In a preferred embodiment of the invention, ambient sounds are characterized as such during a calibration step which may be performed periodically.

In a preferred embodiment of the invention, the following security scheme is used: the card has stored thereon a private key of owner. A facilitator has public keys of all users and is accessible via an Internet or other means. In some cases the seller is also the facilitator.

In an exemplary embodiment, a user connects to a seller's site, decides on a purchase and when he is done he activates the card which in turn signals a local computer to transmit purchasing data (e.g., a catalog number) and a random number, back to the card. The card in return, signs on the data and the number with its private key and sends the signature back to

10

15

20

30

35

the computer. The super receives the signature and sends it to the er. The seller then verifies the signature, for example using a locally stored public key or with the help of the facilitator. The supplier may save the purchasing data and signature for his proof of purchase. The facilitator can also server to check if the random numbers are really random or to supply such random numbers.

This scheme can use any cryptographic method for electronic signature, for example RSA or methods which are not based on public/private keying.

In some embodiments, the card is used only for transmission of a purchase authorization, possibly without receiving any data from the computer possibly, such information is entered directly into the card, for example using buttons on the card. Alternatively, the card only transmits a "usage" authorization, which is unrelated to the particular purchase. Such an authorization is preferably a one-time, temporally limited authorization, which expires after a short time, for example 30 seconds. In one such exemplary embodiment, the card sends information using frequency modulations and using a start and a stop bit. A synchronization byte is preferably sent in the beginning of transmission. Replies from the seller may be locally stored on the computer for use by the card owner.

In a preferred embodiment of the invention, the seller and/or the facilitator can download advertisements and/or operating instructions to the smart card, possibly as part of a purchase agreement. This is especially useful in toys which are programmed using sounds downloaded from the Internet. Some of the downloaded sounds may comprise an audio (or visual - for suitable toys) user manual.

Figs. 8A and 8B comprise an electronic schematic of a smart card in accordance with a preferred embodiment of the invention. A brief explanation follows:

The reception of a signal is via a miniature wide band microphone, and the transmission is via a low profile miniature diaphragm. The sound frequencies are in the range of 18 kHz to 22 kHz, in order to make the data transfer inaudible. However, lower (audible) frequencies can be used when the computer microphone has a poor performance, or when otherwise desirable.

Fig. 8B describes a receiver circuit including a narrow band amplifier, with an Automatic Gain Control (AGC). U1B provides reference DC voltage for the whole analog subsystem. U1A is a preamplifier for a miniature wideband microphone X1, with a gain of 38db. A coil L1 is part of a resonator with a Q factor of 4. U2A and U2B form an AGC through a JFET transistor Q1. The AGC provides variable gain in the range of 0db to 26db.

The circuit detects an audio signal in the relevant band, and then compensates the gain by the AGC to form a stable output signal with amplitude of approximately 2Vpp. The AGC needs a maximum time of 4 mSec to stabilize the gain. This time constant is controlled by the

which is determined by the value of R12.

The analog signal is then fed into a comparator U3, which produces a square wave with the frequency of the analog signal. This signal can be processed digitally by microcontroller U4. The analog signal can also be digitized by an A/D for more accurate processing in a more sophisticated microprocessor.

Fig. 8A shows a transmitting circuit. A speaker SP1 produces the transmission. It is driven by a FET U5. A capacitor C18 is charged to full voltage after approximately 1mSec, allowing small amplitude of speaker driving signal at ignition, in order to make the signal inaudible.

A part listing follows:

			Item	Part R	eference	Note ·	
		15	1	0.1 u F	C12		
)			2	0.1 u F	C13		
	ij,		3	0.1 u F	C15		
			4	0.1 u F	C16		
	 -1		5	0.1uF	C17		
	JĪ	20	6	0.1 u F	C19		
	ليا		7	1.5K	R20		
	Ü		8	1.5mHy	L1	·	
	IJ		9	1K	R9		
	ıΨ		10	1M	R12		
	# : *** *	25	11	1uF	C8		
	<u> </u>		12	5K	R19		
			13	5K	R17		
	F=		14	10K	R10		
	COTION CONTROL		15	10 n F	C7		
	ā	30	16	10nF	C9		
			17	10nF	C10		
			18	10uF	C11		
			19	10uF	C14		
			20	10uF	C18		
)		35	21	39K	R1		
			22	39K	R2		
			23	39K	R15	•	
			24	47K	R6		
			25	47K	R8		
. •		40	26	47K	R16	'	
			27	47nF	C4		
			28	50pF	C6		
			29	100K	R5	•	
			30	100K	R11		
		45	31	100K	R13		
			32	100K	R14		
			33	100K	R21		
						31	

		34	100pF						
		35	100	18	•				
		36	150K	R7					
		37	150pF	C2					
	5	38	150pF	C5					
		39	750	R3					
		40	750	R4					
		41	7916J-00100		S1 miniature switch				
		42	.22uF	C3					
	10	43	BATTERY	BT1	low profile battery				
		44	BATTERY	BT2	low profile battery				
		45	X1	EK-30	miniature wideband microphone				
		46	FT-12T	LS1	low power high frequency diaphragm				
		47	KN01P3ASA	Q					
	15	48	LED-DUAL		116				
		49	LM6142	UlA	low current wideband amplifier				
		50	LM6142	UlB	low current wideband amplifier				
		51	LM6142	U2A	low current wideband amplifier				
		-52	LM6142	U2B	low current wideband amplifier				
	20	53	MAX986	U3	low current high slew rate comparator				
		54	MBR0530T1	D1	low Vf low leakage current diode.				
		55	MBR0530T1	D2	low Vf low leakage current diode.				
ij,		56	MBR0530T1		low Vf low leakage current diode.				
		57	MBR0530T1		low Vf low leakage current diode.				
=	25	58	PIC12C509	U4	microcontroller				
Ų.		59	SST177	Q1	JFET				
. 		60	Si3454DV	U5	low Rds FET				
اربرا 71									
			Various elab	orations	s of the above will now be described, espe				
		41 £	ollowing applica						
	30								
		(a) Sound Waves Communication between electronic devices: telephone /Laptop /Palmtop /Card.(b) Methods for performing hardware authentication and/o							
Ī									
:D		(0)			ne described communication method.				
			THE TAX STREET AP SIN	TOOIT TO	ie riesti i ingli la milliminamon anomon.				

40

45

Various elaborations of the above will now be described, especially with reference to the following applications and/or features:

(a) Sound Waves Communication between electronic devices: PC / TV/ Telephone /Cellular telephone /Laptop /Palmtop /Card.

(b) Methods for performing hardware authentication and/or access to communication resources with or without the described communication method.

(c) Methods of using only parts of the communication system for specific applications or for minimizing the number of components in and/or the complexity of a card communication

(d) Methods of transmitting the acoustic signals using solid transmission members, such as copper wires.

With regard to reception of signals. Acoustic signals are preferably received using a microphone on the card. In a preferred embodiment of the invention, the card is thin (0.8 mm is a standard plastic card thickness), so also the microphone should be a very thin. In a preferred embodiment of the invention, instead of using a standard microphone, a piezoelectric plate similar, the same or even the same one which is used as a transmitter is used as a microphone. Alternatively or additionally, a fiber optic acoustic sensor is used.

dotroo.core

5

10

15

20

25

30

35

embossment, which portion is allowed to be thicker under the EMV standard. Thus, standard and/or lower cost batteries may be suitable. Alternatively or additionally, the batteries are rechargeable batteries that are recharged when the smartcard is inside a reader, such as an ATM machine. In some cases, the reading period is short. Power received by the card during that short period may be stored in a capacitor, prior to being used to recharge the battery.

A different method of receiving on the card is by an electromagnetic Receiving antenna. The inventors have determined that a PC speaker and other equipment, when transmitting sound also transmit Electro Magnetic Signals that can be received on the card using an antenna. An additional advantage in some cases is that echoes and other noise sources are reduced in amplitude. Thus, a card can communicate with a standard telephone headset (or other devices where the speaker and microphone are displaced), the card communicating acoustically with one of the speaker and microphone and using RF with the other one of the speaker and microphone.

Transmission is preferably achieved using a flat plate having resonant frequencies dependent on its dimensions and preferably matching the desired transmission and/or reception frequencies. Possibly, but not necessarily, voltage applied to the plate is amplified with a nonlinear amplification circuit.

In some cases one or more of the following problems may be encountered, including: echoes, interference, and, at higher frequencies (>10Khz) problems of directionality and week reception. In addition, many microphones and speakers behave badly or in an unstable manner at these frequencies. In a preferred embodiment of the invention, the received sound signals are processed using known signal processing techniques, such as filtration, equalization and echo cancellation. Preferred modulation methods used include pwm, fsk, qpsk, on-off keying. Preferred frequency band types include a single band, a wide band spread-spectrum and frequency hopping bands. Preferred protocols utilize one or more of start-stop synchronization bits, and constant and/or variable length messages. Possibly the card and/or the PC include logic for determining the exact frequency used for transmission, for example to correct for frequency hopping or for frequency shifts caused by inaccurate manufacture of environmental effects. Error detection methods may be used, for example, CRC (preferably 32 bit), Parity, Checksum, Blowfish, Hamming Codes, Retransmit/BCD Codes and Grey codes.

A feature of some embodiments of the invention is that a card can be used for transmission over medium distances, such as 0.3-20 meters, more preferably, 2-10 or about 7 meters.

The reception in the PC can be in many ways, including: a) with a regular microphone and soundcard, b) with a regular soundcard but with a special microphone (can tuned to

10

15

20

25

30

35

specific, even ultrather frequency), c) to a speaker that can also microphone (one possibility described in detail below). d) Through a microphone/receiver that connects to a dedicated channel like RS232/parallel port, and can get power from it. e) Through a built in hardware port that/can be implemented on the computer board.

The transmission from the PC can be from one or two Speakers, powered alternatively or possibly powered together, for example to increase the total power, to aid in noise cancellation and/or to aid in detecting echoes. Alternatively or additionally, to a speaker, transmission and/or reception of the computer can be from an acoustic transducer connected to a standard port or possibly tapping the computer, as described above. Thus, there may be no need for a sound card in the computer. Also, as indicated above, at small distances there appears to be an overlap between acoustic and electromagnetic signals both with regard to transmission and with regard to reception. Thus, possibly some of the signals are transmitted and/or detected using RF antenna, or acoustic signal generation is detected using an acoustic antenna that detects the RF signature of the transmission. Alternatively or additionally, the RF is used as a backup for the acoustic channel.

In some cases, for example if the receiver has a reduced computing capacity, the incoming audio stream is sampled at less that the carrier frequency. However, a side effect of such sub-sampling, especially when there are no anti-aliasing filters, is that there may be confusion between audible and ultrasonic sounds. Thus, more complex processing may be required. In one example, synchronous detection or a more robust error detection method is used. Alternatively or additionally, a specialized waveform with unique time/spectrum characteristics is used, for example one that repeats itself at both 1 and 4 kHz after the down sampling. Thus, it can be better differentiated from the background.

In many cases, a speaker is available for a computer but a microphone is not. In a preferred embodiment of the invention, a speaker is used as a microphone.

Preferably, the speaker is connected to the microphone port and/or line in port of a sound card, possibly through an adapting unit. Apparently, many speakers can operate as a microphone if they are not connected to a power source. Preferably, an adapting unit is provided, for example to serve for buffering, switching (between microphone and speaker functions) and/or for amplitude protection. In one embodiment, the speaker is connected in parallel to both microphone and loudspeaker channels, with electronic protection for the microphone so that the power to the speaker does not harm the channel.

One aspect of some preferred embodiments of the invention relate to integrating hardware protection with a PC in the context of internet protection (encryption/authentication) for example against eavesdroppers, viruses, Trojans, hackers.

Currently, a main de-facto standard used in internet commerce is SSL (secure socket

COTION ON OTHER

5

10

15

20

25 ·

30

35

layer). Moreover machines use Microsoft windows and thus (crypto API). The problem with these standards is that they don't usually allow hardware connecting into them.

Another problem is that in order for a new security scheme to work, it is not enough that the user will change it's software, it requires the merchant (or more generally, the other side) to do so as well.

In a preferred embodiment of the invention, better security is enabled for one side of the transaction without changes in the other side. For example, a consumer can install software without the merchant needing to change anything or with a slight change (or vice versa). These methods are general for any kind of security hardware extension and not only for the acoustical communication method. However, an advantage of some embodiments of the acoustical communication method is that new hardware is easy to add.

A new security module may be added to the existing scheme in many places, including:

- A. At the TCP/IP layer (this is the lowest layer and all information passes through it using the winsock.dll.
 - B. At the browser level
 - C. As a Tray Application.
 - D. At the SSL level (by patching the SSL)
 - E. At the CAPI level (when the SSL calls the CAPI, for example to encrypt).
 - F. At the html level: e.g., to put the digital signature in redundant parts of the form.

In one example, bypassing at the SSL level is practiced: in the middle of an SSL session, when the client is asked to give his certificate, (he usually does not give anything or pulls it from a the hard disk) the "bypassed" SSL will ask the specific hardware device (Smartcard/ Token/ Keyfob) to give it the certificate. Alternatively, for a higher level of encryption, the Hardware device will do all the encryption/signing itself. This method is generally more secure because the private key never enters the computer.

Possibly two or even three of the following security elements can be used: "who you are" - i.e., an identification of the requestor, for example by a handwritten signature, a voice print or other biometric information, "what you have" i.e., the card itself which can include a private key, and "what you know, i.e., a password. In one exemplary embodiment, the "card" is implemented using a pen, which, using localization techniques as known in the art, can be used to detect handwriting. Alternatively or additionally, a gesture using the card is accepted instead of a signature.

A PC when turned on or booted can load a protection software from its BIOS which software performs a challenge response to a card (e.g., by means of acoustical transmission.)

15

20

35

Another app on is a method to receive payments in the interest through a cellular telephone and an acoustics-transmitting-card:

The acoustic card transmits the user information to a cellular telephone and from there to the telephone company and the card holder is charged. The card gives a proof of purchase and non-repudiation. The card can store the transaction information for later use.

A card that stores all the different user passwords on it and automatically puts them at the right site. Or A card/ device that gives privileges to it's owner in the form of better internet service (speed of connection, limits). For example, a manager can come to his employee desk, waves his card and the internet connection will be better. Alternatively, various security restrictions may be alleviated. It is noted that this does not require logging on to the computer (although it is possible). Rather, the computer recognizes the manager even while it remains logged on to the other user.

There are many reasons whereby a certain computer system will be considered unsafe for a user. First, the computer can be infected with viruses/Trojans that can record the user typing/ present him with altered information or direct his communication to somewhere else. Second the computer can be public and the user might be afraid that later users could reach his previously entered/downloaded personal information.

In a preferred embodiment of the invention, protection is provided against What-You-See-Is-Not-What-You-Get computer viruses. These viruses will alter the information displayed on the screen such as to deceive the user. In a preferred embodiment of the invention, a device is provided to assure a user that what he sees on the screen is what is intended to be shown (That is, to confirm a digital signature by a trusted party).

The apparatus can read the textual and signature information from the screen directly by optical means (e.g., a CCD, for spatially encoded information of a photocell for temporally encoded information), or, it can connect between screen and PC (and decode the screen display electronic signals) or it can be a special monitor that preserves a special viewing space for authenticated data and/or authentication data.

In addition, the device can read encrypted information by these same means. Thus, a user has a method of testing the validity of a signature provided by a computer even if he does not trust a particular computer. In the cases of a laptop including a video camera, a user can use the laptop to directly acquire and test the displayed image, instead of using a specialized device. Alternatively or additionally, to an optical signature, an audio signature may be used, possibly being transmitted ultrasonically to the device.

When doing an electronic transaction with a smartcard (or keyfob or alarm/immobilizer controller) the user may not know what he is really signing on. For example – is the price really what is being displayed? Is this really the vendor it claims to be?

10

15

20

25

30

35

A solution in accordance with a preferred embodiment of the investical is to have the smart card (any type, not only acoustic) present transaction information directly to a user so the user can authorize it. In one example, the data is presented using a text to speech unit on the card. In another example, the card includes a visual display to display the information. In one example a card will pronounces all critical aspects of the deal for example: amount, vendor name, date, which the card is requested to sign. It is noted that for wireless cards it may be easier to build a text to speech unit than a LCD display because of thickness of the card. Alternatively or additionally, the information may be presented by the card reader device, if one exists. It is also noted that presenting the amount on a reader may not be sufficient, unless also the vendor appropriating the money is properly identified. As suggested above, a user may then voice sign (add an OK and then sign using digital signature techniques) on the transaction and this signed voice agreement stored by the vendor.

Alternatively or additionally, a distrusted computer (i.e., at an internet cafe or personal information at an office) may be used as a conduit of secret information, in accordance with a preferred embodiment of the invention. In a preferred embodiment of the invention, the source information is encrypted by the sender (e.g., a WWW server), using a method which can only be decrypted by the card and not by the connected computer, for example symmetric or asymmetric encryption. The computer receives the information and sends it to the card (for example using methods described herein), that decrypts it and stores or displays it (audibly and/or visually). Alternatively or additionally, the information may then be transferred to a trusted computer for leisurely viewing. Alternatively or additionally, to receiving using a card, data can be received using a PDA or a laptop computer.

In a preferred embodiment of the invention, a one way communication device is used to implement a challenge response mechanism. Such mechanisms are known, for example "secureID" by Security Dynamics. The device can be in the form of a card, and it receives the challenge from the PC by means of acoustic communication optical communication or other means, for example as described herein. After receiving the information, the device calculates the response and shows it on an LCD screen or plays it through a small speaker. The user then enters the response into the PC, e.g., by keying it into the PC as his current password. Thus, in some embodiments only a speaker (or only a display, such as a screen of LEDS) is required on the challenging computer.

Other methods of utilizing the above described techniques for access control will be described now. Many companies and/or institutions have wearable ID card (sometimes with a picture) for restricting access of unauthorized people. Sometimes these cards are used also for computer access and/or for automatic doors and use smartcard and/or magnetic strip technologies. When these cards get lost, these companies are often helpless against a criminal

10

15

20

25

30

35

who wants to use the order the company. In a preferred embodies t of the invention, the card includes a material, such as a liquid crystal which changes its color and/or other optical characteristics, based on a voltage potential, and can stay at this state when the voltage stops. Possibly, the effect wears off and the card needs to be recharged. Possibly, the card is patterned using a special voltage pattern that is difficult to mimic without the recharging device. In a preferred embodiment of the invention, a card erases itself if it is not interrogated for a certain amount of time or if it is notified that it is invalidated e.g., when it enters the company grounds after being lost). Alternatively or additionally, to the color changing, patterns of the colors change, possibly in away which is imperceptible to a human and possibly in a way which is perceptible. Alternatively or additionally, as described above, the card reader can tell the card it is revoked. Thus, a thief will be apprehended with a card that is marked "stolen". In some embodiments of the invention, the card will change color only after a short time, so the thief puts it back into his pocket, unknowingly, after he performs a transaction where the card is revoked. Alternatively or additionally, the color changing material, an activation of a change in the color or a "revoked" stamp may be applied by the card reader. These methods may also be applied to regular magnetic cards and not only to smartcards.

In a preferred embodiment of the invention, when the card is used for logging-on a hysteresis-type logic is used, in which logging on requires a high quality definite signal, while logging-off (possibly automatic log-off) is delayed until there is substantially no contact with the card.

As indicated above, In a preferred embodiment of the invention, the card includes biometric capabilities, for example voice, handwriting, fingerprint and image recognition (retina, face). In some cases, the card will only include the relevant biometric signature while the comparison and/or data acquisition are performed elsewhere. In other cases, the card will do the data acquisition as well.

In a preferred embodiment of the invention, when doing a deal, a user is requested to say his name or another phrase. The Hash of the information is then signed by the card with the date and time and other details of the deal. and the information and the signature are transmitted to the supplier. When a user attempts to repudiate a deal, the supplier sends him the signed voice print and he can verify that it is he. The mechanism can be supplemented with a soft voice verification technique on the card. This mechanism can be considered, to some extent, to be similar to handwritten signatures on credit card purchases.

An alternative method of authentication uses one-way communication between the acrd and a computer. The cad transmits authentication information (for example a one-time code) to an Internet server and that server signs on the transaction.

COLUMBE COLUM

5

10

15

20

25

30

35

biometrics signatures of people and gives verification on signatures by request. The information sent to the authority can be asymmetrically encrypted.

Another aspect of the invention relates to transmitting acoustic signals on solid cables, rather than in the air. Such cables can include computer, communication and telephone cables, as well as electric power cables, for example inside a house. In a preferred embodiment of the invention, the transmission along these cables is conducted to a microphone of the device, to which it is directed, where the transmission is analyzed. Alternatively or additionally, transmission is via the box of the device and into the cable. Alternatively or additionally, a dedicated coupler to the cable is provided for one or both of the transmission and reception.

It is noted that a standard house is filled with this infrastructure in the form of power supply, telephone lines, and cables. The ultrasonic receiver/transmitter device is simple low-cost and can be very small. The method can be used to achieve communication for low cost appliances, or to achieve a higher bandwidth of information. The method permits multiple appliances talking together, broadcast of information and a network of smart appliances. It can be used to communicate also between computers, televisions and/or VCRs. Every device can have its own id-number and a computer can control the operation of these devices. For some devices a dedicated controller is required, which receives the acoustic signal and, responsive to it, controls the device. Exemplary uses include ordering shutting off or lighting lights at certain time (by computer control) or from outside of home (by telephone or network to the computer) and ordering the VCR and/or television to cooperate in recording a specific TV program, again preferably under computer control.

Other applications relating to a computer-card interface include:

- (a) A card that stores all the different user passwords on it and automatically puts them at the right site. Or A card/ device that gives privileges to it's owner in the form of better internet service (speed of connection, limits). For example, a manager can come to his employee desk, waves his card and the internet connection will be better.
- (b) A card that when is present besides the computer or when being used, brings the user to a certain internet page automatically (for example a portal).
- (c) A card that when is present besides the computer or when being used, sends to the PC some user information that can be used for personal banners/ deals/offers. This information can be encrypted and only companies that pay (to user or to card company) can decrypt it.

 Personalization and Special Services:

The card can store user information on it. Some of the information can be mandatory and some optional, like: Credit Card Details, Credit Limit, Biometrics Info, Age, Sex, Occupation, Hobbies, Buying Patterns, purchasing habits, and characteristics. Possibly, some

15

20

25

30

35

of the information be modified by the user. Alternatively or adminally, some of the information cannot be modified once written. Some of this information can be sold or otherwise disseminated, preferably under privacy considerations, for example to merchants that fear frauds, and/or buyers in auctions. Possibly, such information is provided encrypted such that only a special provider can decrypt it, for example if fraud is attempted (e.g., during purchase or during the warranty period) or to facilitate recalls of damaged merchandise.

In one embodiment of the invention, a consumer information authority exists, that provides certain consumer information (like age, credit limit, money spent, on which product categories) and guarantees its validity. This information resides on the card, and can be encrypted and signed, and can be sold to companies for discount to the user and/or for payment for the authority. The authority can also have companies save specific information saved on the card on a separate storage space, and can give different layers of service. The discount for the user can be in the form of micropayments or other kinds of digital money, stored on the card, and being accumulated and being cashed possibly at the authority web site.

In some embodiments, dissemination of information (stored on the card or off of it) requires an authorization by the card holder, for example in response to an e-mail from the authority or at the authority web site. In some cases, the user will initiate the transaction, for converting information into purchasing power. Thus, in contrast to standard smart wallets which store money or money equivalents, a user of a card of some preferred embodiments of the invention stores saleable information on the card. In some cases, the stored information is other than that related to personal purchasing habits. For example, a card may include information retrieved from various WWW sites or exchanged with other card holders, for example identities and other personal information of persons at business meetings or parties.

Alternatively or additionally, the card can be used to track the browsing of a user at a competitor's (or the one who purchases the browsing information) site. The card can be used to track the browsing, for example by tracking purchases. Alternatively or additionally, the card may be used to authorize the authority to sell the information to the competitor.

Alternatively or additionally, in an on-line auction, the authority can provide or sell the card-holder's information, such as his IP address, e-mail address or his dependability (in previous actions). Thus, an auction house or an individual can rank the offers it receives based on the placers behavior at other auctions and/or purchase situations. Alternatively or additionally, the card-holder can auction out his information regarding purchases or WWW browsing behavior, to the various competitors.

Alternatively or additionally, a smart card as described herein can be used to exchange information with other cards, possibly using a mediating computer. In one example, two persons can exchange "business cards" using their smart cards. This information may later be

15

20

25

30

35

downloaded to a subset repository, such as a computer and/or n subset on the card for further use.

The information can be used to personalize the navigation of a user on the internet and add specially made banners. Special personalized discounts/coupons can be offered according to this information specific to the user holding the card.

In a preferred embodiment of the invention, when a user interacts with a banner, reads commercials, reads advertising or Spam mail from certain vendor(s) or participate sin other types of e-exposure, the user receives a certain amount of points (or money) which are stored directly on the card. The user can then use these "points" to gain access to certain Web-pages/information that is not accessed without these points. One type of transmitting the points is via a coupon attached to a Spam mail message. This "coupon" may be a coded text string. Alternatively, a sound file or an image pattern (spatial and/or temporal) may be used, which pattern or file can be read directly by the card from the computer, as it is displayed.

Another aspect of some preferred embodiments of the invention relates to immediate personalized web access for wireless devices or for reader-free devices, for example cards as described herein.

In a preferred embodiment of the invention, the card provides immediate access to certain web pages: When pointed to the computer, possibly with a click of a button, the card gives immediate access to a desired portal or trading site thus brings easy access, and customer loyalty. Possibly, the desired portal can be selected by manipulating the card itself, for example pressing a button thereon. Alternatively, the card causes the display of a Mail page or a personalized Bank Account, Billing and/or Shopping Page. The identifying, password and/or personal information stored on the card may be used to select the page (or non-browser program), configure it and/or display it.

In a preferred embodiment of the invention, a smartcard having direct access to the internet, for example as described herein, but also possibly using an RF transducer system, is used to facilitate the transfer of money and/or other valuables (such as movie tickets, baseball tickets and discount coupons) over the Internet or other electronic communication means. These valuables can be transmitted, for example, as sound or text files using various available means, such as email, browsing, messaging services such as ICQ and "instant messenger". When the smart card is then used to redeem the valuable, the redeeming computer does not need an Internet connection. Further, in some embodiments described herein the point-of-sale redeeming device does not need a reader. Rather, a microphone is enough. In some devices, the RF from a computer speaker can be used to transmit information to a RF smart card. A microphone may be used to detect modulations of RF amplitude from the card.

In some embodiments of the invention, the card displays information visually and/or

10

15

20

25

30

35

acoustically to a man user. This information may be for example a commercial or instructions of use. Almough direct generation by the card is desirable, an some embodiments, the card instructs a computer it is communicating with to do part or all the displaying.

In some cases, the card is constantly receiving probes from various nearby sources, for example ultrasonic or RF probes. Responsive to such a probe, the card can indicate to a user that a nearby shop is offering a discount. In one example, a mall-wide (or super-market wide) transmission network transmits targeted offers to card holders. Possibly, the transmission is not targeted and the card itself selects which offers to display. In some embodiments, the card is embodied using a user provided smartcard having mainly information and a mall-provided reader that receives the transmissions and/or displays the offers. Possibly, a user can use his card to interact with the mall network, for example to analyze offers or to play award-giving games. The mall-wide network is preferably embodied using existing wiring, for example using acoustic encoding over the announcement system. Additionally, by tracking the location of a particular user, a mall-wide system can make an offer to a customer when he is deemed to be near a certain store.

In another situation, a trade show, a card can be used to exchange information between people, for example registering and exchanging business cards or catalog information, to display personalized commercials on the card or on a nearby screen or speaker and/or to inform the card holder about nearby booths. The information on the card and/or the advertising information can then be downloaded with a PC and stored thereon.

Alternatively or additionally, such a smart card may be used as a local pager at such a store or exhibition, especially if cellular communication is blanked out at the location. Alternatively or additionally, the card may be used to provide an indication that a user has incoming mail. Alternatively or additionally, the smart card may perform calendar functions, such as reminding about meetings. The preprogrammed calendar information can be received from a PC using a scheduler program such as Outlook.

A variation on the above described smart card can include an input for reading external static (as opposed to sound waves and temporal patterns) information, which information can be used by the smart card for controlling an associated computer or for other uses. A simplest example is a wireless bar-code reader that reads bar codes and transmits them acoustically to a computer, preferably using methods as described herein. Preferably, the bar-code reading capability is embodied in a smart card, so that a multifunction device is provided. Alternatively, a miniature device, such a ring, is manufactured, for convenience or a user. Such a device may be useful during purchasing, to allow a user to review large and/or personalized information regarding a product. Another example is a magnetic strip reader which transmits read magnetic strips to the computer. In the case of a magnetic strip reader, a

single magnetic for (or line sensor) may be sufficient, with the inputer processing the detected signals to correct for non-constant motion of the sensor over the magnetic material.

In one exemplary use, when the smart card reads a tag, such a make of a device, an associated computer switches to a WWW page which displays details associated with the read information. The computer may be a handheld computer or PDA. Alternatively, the computer is a standing or store provided computer. Alternatively, the computer is on another side of a telephone line, which acoustic signals are transmitted over the telephone line to the computer, to cause certain speech to be transmitted back. Alternatively or additionally, such tags may be used for technical support (e.g., each home device or component has such a code and there is a help file or scripts associated with the code). Alternatively or additionally, such tags may be used for customer relations, for example to provide information to an interested user. In some types of products, the computer and/or the tag reader can control the product using information read for the tag. An exemplary situation is a computer device, on which a tag reader or a same or second computer can execute a diagnostic program responsive to the read tag.

An exemplary device consists of an acoustical transmitter, a tag-reading element, and some control logic. The type of tag reading element used depends on the type of tag, for example, if it is optical or magnetic. The tag itself may include bar codes, other optical coding or even text. In a magnetic example, the tag may comprise magnetic ink. Preferably, but not essentially, the tags are of a type that can be printed using standard printers and/or inks. Thus, tags can be printed all over a book, magazine or other printed products. Alternatively or additionally, RF transponder tags as known in the art may be used. In some embodiments, the read information is deciphered by the reader. In other embodiments, partially or completely unanalyzed information is transmitted to the computer for analysis.

Although an acoustic transmission of the tag information is preferred, RF transmission may also be practiced.

The following applications and business methods are directed towards the use of a smart card. In a preferred embodiment of the invention, the smart cart is constructed using the technologies described in Israel patent applications (i) serial number 126,444, filed on October 2, 1998, by Applicant Toy Control Ltd., (ii) serial number 127,072, filed on November 16, 1998, by applicant Toy Control Ltd, (iii), serial number 127,569 filed on December 14, 1998, by applicant Toy Control Ltd, and/or in US provisional applications (i) serial number 60/115,231, filed January 8, 1999 or Attorney Docket number 100/00798 (ii) serial number 60/122,687, filed March 3, Attorney Docket number 100/00809, both of which have ones of the present inventors listed as inventors therein, the disclosures of all of the above applications are incorporated herein by reference. In particular, the card can preferably communicate with a computer without requiring special hardware to be connected to the

10

15

20

25

30

35

computer. However ious of the applications and business method accribed herein may also be used for other types of smart cards, for example contact or wireless types. Preferably, the card is similar, in appearance, to a regular plastic card (like credit cards), but has the capabilities of receiving, sending, processing and/or storing information.

In a preferred embodiment of the invention, the card is used in conjunction with a computer linked to the Internet (or any information network), for the purpose of buying and/or selling goods, or as a mean of authenticating and/or digitally signing information.

The card is preferably personal and is very easy to carry (fits in a wallet) and enables portability for the roaming user that can use it with any computer, wherever he goes, unlike software certificates. In some cases, the card may be worn as a tag or its functionality may be incorporated into another device, such as a pen or a watch.

This patent application describes different applications and usage ideas, beneficial to the user, portal and/or vendor, and which preferably utilize novel business models as described herein. Although mainly methods are described, the present invention is also directed towards software for performing these methods and computers programmed with such software. In addition, a plurality of features are described. Different embodiments of the invention may utilize different selections of these features and the following description is not meant to limit the groupings of features but, rather, to illustrate certain preferred groupings.

Methods of Distribution:

- In one embodiment of the invention, the cards are given out for free (or for a symbolic charge), with the purchase of another item and/or as a promotion. Preferably, the real cost of the card and/or its use are covered as described below.
- In a particular example, a card can be distributed by financial service providers (i.e., credit card companies). Possibly, the distribution is first to selected customers, for example those which are likely to use e-commerce methods, in a limited geographical location and/or based on others election methods known in the art of promoting new consumer technologies. Alternatively or additionally, the distributed card has the functionality of a credit card or a smart card, for example a magnetic stripe, smart-card contacts and/or electronic wallet functionality.

Methods of Charging Money:

• Charging based on the number of transactions, made with the card.

10

15

20

25

- Charge merchants for customer information, and for card storage capability (or merchant or customer information).
- Charging a flat fee for the card itself. The card can be consumable or it can have a consumable battery, code store or can be artificially limited to a number of uses, time, cash flow and/or combinations thereof. Thus, a user is forced to replace the card and/or recharge it. Preferably the card can transfer its information to a "blank card", for example using an intermediate computer. Preferably, when a card is "transferred" the original is erased and/or the copy may be suitably marked. It is also possible to transfer only part of the card.
- Charge vendor, etc. for giving out the card to the customer.
- Charging can be in real time (for example each transaction going through a provider's computer or being reported to it, for example using user or vendor software).

 Alternatively, charging can be based on monthly statements. Card encryption ability can be used to make sure that all the transactions are reported. Card may require periodic (time based, transaction number based and/or cash flow based) recharge.

The present invention has been described in terms of preferred, non-limiting embodiments thereof. It should be understood that features described with respect to one embodiment may be used with other embodiments and that not all embodiments of the invention have all of the features shown in a particular figure. In particular, the scope of the claimed invention is not limited by the preferred embodiments but by the following claims. Section titles, where they appear, are not to be construed in limiting subject matter described therein, rather section titles are meant only as an aid in browsing this specification. When used in the following claims, the terms "comprises", "comprising", "includes", "including" or the like means "including but not limited to".

CLAIMS

A method of communicating with an electronic device, comprising:
 providing a computer having a sound receiving and generating sub-system including a microphone;

transmitting from a source at least one ultrasonic acoustic signal, encoded with information to the computer; and

receiving said at least one signal by said microphone, to be detected by said computer.

FIG.7

gd biz

