Non-Linear Optimization

Francisco Blanco-Silva

CHAPTER 1

Background

Our starting point is, for any positive integer $d \in \mathbb{N}$, the Cartesian products:

$$\mathbb{R}^d = \mathbb{R} \times \stackrel{(d)}{\dots} \times \mathbb{R} = \{ \boldsymbol{x} = (x_1, \dots, x_d) : x_k \in \mathbb{R} \text{ for } 1 \leq k \leq d \}.$$

We consider in this set the following two (closed) operations:

- (a) Addition: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d, \mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_d + y_d) \in \mathbb{R}^d$.
- (b) Scalar multiplication: For $\boldsymbol{x} \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$, $\lambda \cdot \boldsymbol{x} = \lambda \boldsymbol{x} = (\lambda x_1, \dots, \lambda x_d) \in \mathbb{R}^d$.

With these two operations, $(\mathbb{R}^d, +, \cdot)$ turns into a vector space: Given $x, y, z \in \mathbb{R}^d$, $\lambda, \mu \in \mathbb{R}$,

- (a) The addition is commutative: x + y = y + x.
- (b) Existence of identity elements for addition: Let $\mathbf{0} = (0, \dots, 0)$. $\mathbf{x} + \mathbf{0} = \mathbf{x}$.
- (c) The addition is associative: x + (y + z) = (x + y) + z.
- (d) Existence of inverse elements for addition: If $\mathbf{x} = (x_1, \dots, x_d)$, the element $-\mathbf{x} = (-x_1, \dots, -x_d)$ satisfies $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$. We write $\mathbf{x} \mathbf{y}$ instead of $\mathbf{x} + (-\mathbf{y})$.
- (e) Scalar multiplication is compatible with field multiplication: $\lambda(\mu x) = (\lambda \mu)x$.
- (f) Existence of identity for scalar multiplication: $1 \cdot x = x$.
- (g) Scalar multiplication is distributive with respect to addition: $\lambda(x + y) = \lambda x + \lambda y$.
- (h) Scalar multiplication is distributive with respect to field addition: $(\lambda + \mu)x = \lambda x + \mu x$.

A basis of \mathbb{R}^d is a finite set $\mathcal{B} = \{ \boldsymbol{b}_k : 1 \leq k \leq d \}$ satisfying two properties:

- (a) Spanning property: For all $\boldsymbol{x} \in \mathbb{R}^d$ there exist d scalars $\{\lambda_1, \ldots, \lambda_d\}$ so that $\boldsymbol{x} = \sum_{k=1}^d \lambda_k \boldsymbol{b}_k$.
- (b) Linear independence: If $\{\lambda_1, \ldots, \lambda_d\}$ satisfy $\sum_{k=1}^d \lambda_k \boldsymbol{b}_k = \boldsymbol{0}$, then it must be $\lambda_k = 0$ for all $1 \leq k \leq d$.

PROBLEM 1.1. Define in \mathbb{R}^d , for each $1 \leq k \leq d$ the element e_k to be the ordered d-tuple with k-th entry equal to one, and zeros on all other entries.

(a) Prove that $\{e_k : 1 \le k \le d\}$ is a basis for \mathbb{R}^d .

(b) Set $\boldsymbol{b}_k = \boldsymbol{e}_k - \boldsymbol{e}_{k+1}$ for $1 \le k < d$, $\boldsymbol{b}_d = \boldsymbol{e}_d$. Is $\{\boldsymbol{b}_k : 1 \le k \le d\}$ a basis for \mathbb{R}^d ?

1. Functions

Given sets X, Y, we define a function $f: X \to Y$ to be a subset of $X \times Y$ subject to the following condition: for every $x \in X$ there is exactly one element $y \in Y$ such that the ordered pair (x, y) is contained in the subset defining f. The sets X and Y are called respectively the domain and codomain of f.

If A is any subset of the domain X, then f(A) is the subset of the codomain Y consisting of all images of elements of A. We say that f(A) is the *image* of A under f. The image of f is given by f(X). The *inverse image* of a subset B of the codomain Y under a function f is the subset of the domain X defined by $f^{-1}(B) = \{x \in X : f(x) \in B\}$.

For sets X, Y, Z, the function composition of $f: X \to Y$ with $g: Y \to Z$ is the function $g \circ f: X \to Z$ defined by $(g \circ f)(\mathbf{x}) = g(f(\mathbf{x}))$.

If $Y \subset \mathbb{R}$, we say that the function f is real-valued. For a real-valued function $f: \mathbb{R}^d \to \mathbb{R}$, we may regard the corresponding ordered pairs $(x, y) \in \mathbb{R}^d \times \mathbb{R}$ as points in a (d+1)-dimensional space. We call this set the *graph* of f.

Unless specifically stated, all functions in these notes are real-valued functions $f: \mathbb{R}^d \to \mathbb{R}$.

EXAMPLE 1.1 (Linear Functions). We say that a real-valued function is *linear* if it preserves the operations in \mathbb{R}^d :

$$f(\boldsymbol{x} + \lambda \boldsymbol{y}) = f(\boldsymbol{x}) + \lambda f(\boldsymbol{y}) \text{ for } \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d, \lambda \in \mathbb{R}.$$

With this definition, the function f(x) = 3x is indeed a linear function, but g(x) = 3x + 5 is not!

EXAMPLE 1.2 (Inner products). We say that a function $\langle \cdot, \cdot \rangle \colon \mathbb{R}^d \to \mathbb{R}$ is an *inner product* if it satisfies the following five properties for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$.

- (a) $\langle \boldsymbol{x} + \boldsymbol{y}, \boldsymbol{z} \rangle = \langle \boldsymbol{x}, \boldsymbol{z} \rangle + \langle \boldsymbol{y}, \boldsymbol{z} \rangle$.
- (b) $\langle \lambda \boldsymbol{x}, \boldsymbol{y} \rangle = \lambda \langle \boldsymbol{x}, \boldsymbol{y} \rangle$.
- (c) $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \langle \boldsymbol{y}, \boldsymbol{x} \rangle$.
- (d) $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$.
- (e) $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = 0$.

PROBLEM 1.2. Consider the real-valued function $\langle \cdot, \cdot \rangle \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as follows: Given $\boldsymbol{x} = (x_1, \dots, x_d), \boldsymbol{y} = (y_1, \dots, y_d) \in \mathbb{R}^d$,

$$\langle x, y \rangle = \sum_{k=1}^{d} x_k y_k.$$

Prove this is a well-defined function:

(a) The domain of $\langle \cdot, \cdot \rangle$ is $\mathbb{R}^d \times \mathbb{R}^d$.

- (b) For all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$, $\langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathbb{R}$.
- (c) If $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \lambda_1$ and $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \lambda_2$, then $\lambda_1 = \lambda_2$.

Prove that this function is an inner product.

PROBLEM 1.3. Prove that, if f is a linear function in the sense of Example 1.1, then there exist a unique $\mathbf{a}_0 \in \mathbb{R}^d$ so that $f(\mathbf{x}) = \langle \mathbf{a}_0, \mathbf{x} \rangle$ for all $\mathbf{x} \in \mathbb{R}^d$.

PROBLEM 1.4. We say that $\tau \colon \mathbb{R}^d \to \mathbb{R}^d$ is a translation if there exist a fixed $\mathbf{x}_0 \in \mathbb{R}^d$ so that $\tau(\mathbf{x}) = \mathbf{x} + \mathbf{x}_0$ for all $\mathbf{x} \in \mathbb{R}^d$.

An affine function $h: \mathbb{R}^d \to \mathbb{R}$ is a composition of a linear function $f: \mathbb{R}^d \to \mathbb{R}$ with a translation $\tau: \mathbb{R} \to \mathbb{R}$.

Prove that for each affine function h there exist a unique $\mathbf{a}_0 \in \mathbb{R}^d$ and a unique $\lambda_0 \in \mathbb{R}$ so that $h(\mathbf{x}) = \lambda_0 + \langle \mathbf{a}_0, \mathbf{x} \rangle$ for all $\mathbf{x} \in \mathbb{R}^d$. Use this result to prove that the graph of an affine function is a hyperplane in \mathbb{R}^{d+1} .

EXAMPLE 1.3 (Norms). A *norm* in \mathbb{R}^d is a function $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ that satisfies the following properties: For all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$, and for all $\lambda \in \mathbb{R}$,

- (a) $\|x\| \ge 0$.
- (b) $\|\boldsymbol{x}\| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$
- (c) $\|\lambda \boldsymbol{x}\| = |\lambda| \|\boldsymbol{x}\|$.
- (d) Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

PROBLEM 1.5. Consider the function $\|\cdot\|: \mathbb{R}^d \to \mathbb{R}$ defined by

$$\|\boldsymbol{x}\| = \langle \boldsymbol{x}, \boldsymbol{x} \rangle^{1/2}.$$

- (a) Prove that $\|\cdot\|$ is a norm
- (b) Prove the Cauchy-Schwartz inequality: For all $x, y \in \mathbb{R}^d$,

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \le \|\boldsymbol{x}\| \|\boldsymbol{y}\|.$$

2. Topology

The norm introduced in Example 1.3 induces a metric d: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ on the space \mathbb{R}^d :

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\| \text{ for any } \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d.$$

Given $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^d$,

- (a) Separation property: $d(x, y) \ge 0$.
- (b) Identity of indiscernibles: d(x, y) = 0 if and only if x = y.
- (c) Symmetry: d(x, y) = d(y, x).
- (d) Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$.

We say then that $(\mathbb{R}^d, d(\cdot, \cdot))$ is a *metric space*. Metric spaces inherit a *topology* in a natural manner, as explained below.

We define the *open ball* of radius r > 0 about \boldsymbol{x} as the set $B_d(\boldsymbol{x}, r) = \{\boldsymbol{y} \in \mathbb{R}^d : \|\boldsymbol{x} - \boldsymbol{y}\| < r\}$. We say \boldsymbol{x} is an interior point of $D \subset \mathbb{R}^d$ if $\boldsymbol{x} \in D$ and there exists r > 0 so that $B_d(\boldsymbol{x}, r) \subset D$. A subset $G \subset \mathbb{R}^d$ is said to be open if all its points are interior.

A neighborhood of the point x is any subset of \mathbb{R}^d that contains an open ball about x as subset.

A sequence $(\boldsymbol{x}_n)_{n\in\mathbb{N}}$ in \mathbb{R}^d is an enumerated collection of elements of \mathbb{R}^d in which repetitions are allowed. A sequence is said to converge to the limit $\boldsymbol{x} \in \mathbb{R}^d$ if and only if for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ so that $\|\boldsymbol{x}_n - \boldsymbol{x}\| < \varepsilon$ for all $n \geq N$. We write then

$$x = \lim_{n} x_n$$
, or $\lim_{n} ||x_n - x|| = 0$.

We say that a sequence $(\boldsymbol{x}_n)_{n\in\mathbb{N}}$ is a Cauchy sequence if for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ so that for any $m, n \geq N$, $\|\boldsymbol{x}_n - \boldsymbol{x}_m\| < \varepsilon$. In \mathbb{R}^d , all Cauchy sequences converge (this is direct consequence of the completeness of \mathbb{R}).

The complement of an open set is called *closed*. In \mathbb{R}^d , all subsets F are closed if and only if they are *sequentially closed*: If $\mathbf{x}_n \in F$ for all $n \in \mathbb{N}$ and $\lim_n ||\mathbf{x}_n - \mathbf{x}|| = 0$, then $\mathbf{x} \in F$.

We say D is bounded if there exists M > 0 so that $D \subset B_d(\mathbf{0}, M)$. A bounded and closed subset of \mathbb{R}^d is called *compact*.

THEOREM 2.1 (Bolzano-Weierstrass). Every sequence in a compact subset $K \subset \mathbb{R}^d$ contains a convergent subsequence.

3. Analysis

A real-valued function $f: \mathbb{R}^d \to \mathbb{R}$ is continuous at \mathbf{x}_0 if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ so that $|f(\mathbf{x}) - f(\mathbf{x}_0)| < \varepsilon$ for all $x \in B_d(\mathbf{x}_0, \delta)$.

Equivalently, $f: \mathbb{R}^d \to \mathbb{R}$ is continuous at \boldsymbol{x}_0 if $\lim_n f(\boldsymbol{x}_n) = f(\boldsymbol{x}_0)$ for any sequence $(\boldsymbol{x}_n)_{n \in \mathbb{N}}$ satisfying $\lim_n \boldsymbol{x}_n = \boldsymbol{x}_0$.

We say that f is continuous in $D \subset \mathbb{R}^d$ if f is continuous at all points $x \in D$.

A real-valued function $f: \mathbb{R}^d \to \mathbb{R}$

Given a set $D \subset \mathbb{R}^d$, and a real-valued function $f: D \to \mathbb{R}$, we say that a point $x^* \in D$ is:

- (a) A global minimum for f on D if $f(x^*) \leq f(x)$ for all $x \in D$.
- (b) A strict global minimum for f on D if $f(x^*) < f(x)$ for all $x \in D \setminus \{x^*\}$.
- (c) A local minimum for f on D if there exists $\delta > 0$ so that $f(x^*) \le f(x)$ for all $x \in B_{\delta}(x^*) \cap D$.
- (d) A local minimum for f on D if there exists $\delta > 0$ so that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in B_{\delta}(\mathbf{x}^*) \cap D$, $\mathbf{x} \neq \mathbf{x}^*$.

A real-valued function $f: \mathbb{R}^d \to \mathbb{R}$ is continuous at a point x

$CHAPTER \ 2$

Unconstrained Optimization via Calculus