Interrogation écrite n°01

NOM: Prénom: Note:

1. Justifier la convergence de la série $\sum_{n\in\mathbb{N}^*} (-1)^n (\ln(n+1) - \ln(n))$.

Remarquons que $\ln(n+1) - \ln(n) = \ln\left(1 + \frac{1}{n}\right)$. Ainsi la suite $(\ln(n+1) - \ln(n))_{n \in \mathbb{N}^*}$ est décroissante et de limite nulle. La série $\sum_{n \in \mathbb{N}^*} (-1)^n (\ln(n+1) - \ln(n))$ converge d'après le critère spécial des séries alternées.

2. Déterminer un équivalent du reste de la série $\sum \frac{1}{n^2}$.

On sait que $\frac{1}{n^2} \underset{n \to +\infty}{\sim} \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Comme la série $\sum \frac{1}{n^2}$ est un série à termes positifs convergente,

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim \sum_{n \to +\infty}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k} - \frac{1}{k+1} = \frac{1}{n+1} \sim \frac{1}{n}$$

3. Justifier la convergence de la série $\sum 2^{n+2} \cdot 3^{1-n}$ et calculer $\sum_{n=2}^{+\infty} 2^{n+2} \cdot 3^{1-n}$.

Remarquons que $2^{n+2} \cdot 3^{1-n} = 12 \cdot \left(\frac{2}{3}\right)^n$. La série $\sum 2^{n+2} \cdot 3^{1-n}$ est donc une série géométrique de raison $\frac{2}{3} \in [0,1[$ donc une série convergente. De plus,

$$\sum_{n=2}^{+\infty} 2^{n+2} \cdot 3^{1-n} = 12 \sum_{n=2}^{+\infty} \left(\frac{2}{3}\right)^n = 12 \left(\frac{2}{3}\right)^2 \sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n = 12 \cdot \frac{4}{9} \cdot \frac{1}{1 - \frac{2}{3}} = 16$$

4. Justifier la convergence et calculer la valeur de $I = \int_0^{+\infty} te^{-t} dt$.

Remarquons que $t\mapsto te^{-t}$ est continue sur \mathbb{R}_+ . De plus, $te^{-t}=0$ $\left(\frac{1}{t}^2\right)$ par croissances comparées. Or $t\mapsto\frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ donc $t\mapsto te^{-t}$ est intégrable sur \mathbb{R}_+ i.e. I converge. Les fonctions $t\mapsto t$ et $t\mapsto -e^{-t}$ sont de classe \mathbb{C}^1 sur \mathbb{R}_+ et $\lim_{t\to +\infty} -te^{-t}$ donc, par intégration par parties,

$$I = -\left[te^{-t}\right]_0^{+\infty} + \int_0^{+\infty} e^{-t} dt = \int_0^{+\infty} e^{-t} dt = \left[-e^{-t}\right]_0^{+\infty} = 1$$

5. Justifier la convergence et calculer la valeur de $I = \int_0^{+\infty} \frac{e^t dt}{1 + e^{2t}}$ par un changement de variable.

On effectue le changement de variable $u=e^t$ i.e. $t=\ln(u)$. Comme \ln est une bijection strictement croissante de $[1,+\infty[$ sur $[0,+\infty[$, I est de même nature que $J=\int_1^{+\infty}\frac{\mathrm{d}t}{1+t^2}$ et I=J en cas de convergence. Comme une primitive de $t\mapsto \frac{1}{1+t^2}$ est arctan qui admet une limite finie en $+\infty$, J converge et

$$I = J = [\arctan(t)]_1^{+\infty} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

6. Déterminer un équivalent de $x \mapsto \int_{x}^{1} \frac{\ln(1+t)}{t^2+t^3} dt$ en 0⁺.

Remarquons que $\frac{\ln(1+t)}{t^2} \underset{t\to 0^+}{\sim} \frac{1}{t}$. Or $t\mapsto \frac{1}{t}$ est positive sur]0,1] et $\int_0^1 \frac{1}{t}$ dt diverge. Ainsi

$$\int_{x}^{1} \frac{\ln(1+t)}{t^{2}} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} dt = -\ln(x)$$