UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5645

TOPICS IN ANALYTIC NUMBER THEORY

6. GAUSS SUMS:

1 If
$$g_a = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \zeta^{at}$$
 and $g = g_1$, prove (directly) that

a.
$$g_a = \left(\frac{a}{p}\right)g$$

b.
$$g^2 = (-1)^{\frac{p-1}{2}} p$$
.

2 If
$$g_a = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \zeta^{at}$$
, find $\sum_{a=1}^{p-1} g_a$.

- *3 By evaluating $\sum_{t} (1 + \left(\frac{t}{p}\right)) \zeta^{t}$ in two ways prove that $g = \sum_{t} \zeta^{t^{2}}$.
- 4 Verify the result $g^2(\chi) = (-1)^{\frac{p-1}{2}}p$, (for χ not principal) in the case p=3.
- **5** For p prime, if (n, p-1) = d then $x^n \equiv a \mod p$ has exactly d solutions in \mathbb{Z}_p iff $a^{\frac{p-1}{d}} \equiv 1 \mod p$.
- *6 a. Prove that the group of characters in \mathbb{Z}_p is a cyclic group of order p-1.
 - **b.** If $a \in \mathbf{Z}_p$ and $a \neq 1$, then there exists a character χ such that $\chi(a) \neq 1$.

(Hint for (b): If g is a primitive root mod p, define $\lambda(g^k)$ by $e^{2\pi i k/(p-1)}$.)

7 If $a \in \mathbf{Z}_p$ and n|p-1 and $x^n \equiv a \mod p$ is not soluble, prove that there exists a character χ such that $\chi^n = \chi_1$ and $\chi(a) \neq 1$.

(Hint: Put $\chi = \lambda^{\frac{p-1}{n}}$, with λ as in previous question.)

- 8 Prove that $\overline{g(\chi)} = \chi(-1)g(\overline{\chi})$.
- **9** Prove that if $p \equiv 1 \mod n$, and χ is a character of order n, then

$$(g(\chi))^n = \chi(-1)pJ(\chi,\chi)J(\chi,\chi^2)\dots J(\chi,\chi^{n-2}).$$

- 10 Find the number of solutions to $x^n + y^n \equiv 1 \mod 19$ for n = 2 and n = 3.
- *11 Let χ be a non-trivial character modulo p and ρ be the quadratic character mod p, (i.e. ρ is the Legendre symbol.)
 - **a.** Use the fact that $N(x^2 = a) = 1 + \rho(a)$ to show that $J(\chi, \rho) = \sum_t \chi(1 t^2)$.
 - **b.** If $p \not| k$, show that $\sum_{t} \chi(t(k-t)) = \chi\left(\frac{k^2}{2^2}\right) J(\chi, \rho)$.

(Hint: Put $u = \frac{k}{2}(t+1)$.)

- *12 Suppose $p \equiv 1 \mod 4$, ψ is a character of order 2 (i.e. the Legendre symbol) and χ is a character of order 4. Also let $z = -J(\chi, \psi)$.
 - **a.** Prove that z is a Gaussian integer a + ib and

$$J(\psi, \chi) + J(\psi, \chi^3) = -2a,$$

with $p = a^2 + b^2$.

b. Prove that if $a+ib\equiv 1 \mod 2+2i$ then a is odd and b is even. Further show that $4|b\Rightarrow a\equiv 1 \mod 4$ and $4/b\Rightarrow a\equiv -1 \mod 4$.

- **c.** Show that $N(x^2 + y^4 \equiv 1 \mod p) = p 1 2a$, where $a + ib \equiv 1 \mod 2 + 2i$ and $p = a^2 + b^2$.
- **d.** Using the transformation $(x,y) \rightarrow ((1+x^2)y,x)$ show that $N(x^2+y^2+x^2y^2\equiv 1)=p-3-2a$.
- **e.** Illustrate the result in (b) for p = 5.

(The result in (c) was conjectured by Gauss and appears as the last entry in his mathematical diary.)

BRIEF SOLUTIONS

- **a.** $g_a\left(\frac{a}{p}\right) = \sum_{t=1}^{p-1} \left(\frac{at}{p}\right) \zeta^{at} = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \zeta^t = g$. **b.** Let $T = \sum_{a=0}^{p-1} g_a g_{-a}$, $a \not\equiv 0 \mod p$. Now $g_a g_{-a} = \left(\frac{a}{p}\right) \left(\frac{-a}{p}\right) g^2 = \left(\frac{-1}{p}\right) g^2$, so $T = \left(\frac{-1}{p}\right) g^2(p-1)$. Also $g_a g_{-a} = \sum_x \sum_y \left(\frac{x}{p}\right) \left(\frac{y}{p}\right) \zeta^{a(x-y)}$, hence $\sum_a g_a g_{-a} = \sum_x \sum_y \left(\frac{x}{p}\right) \left(\frac{y}{p}\right) \sum_a \zeta^{a(x-y)} = \sum_x \sum_y \left(\frac{x}{p}\right) \left(\frac{y}{p}\right) p$. The sum of the terms from $x \neq y$ is zero, so this sum is p(p-1), i.e. $g_a g_{-a} = p(p-1)$. Equating the two values of T the result follows.
- **2** Use $g_a = \left(\frac{a}{p}\right)g$ and the sum has the value 0.
- $3 \quad \sum_t (1 + \left(\frac{t}{p}\right)\zeta^t = \left(\frac{t}{p}\right)\zeta^t = g. \text{ Also, since } x^2 \equiv a \mod p \text{ has solutions iff } \left(\frac{t}{p}\right) = 1 \text{ and the number of solutions of this equation is } (1 + \left(\frac{a}{p}\right)), \sum_t \zeta^{t^2} = \sum_a (1 + \left(\frac{a}{p}\right))\zeta^a = \sum_t (1 + \left(\frac{t}{p}\right))\zeta^t. \text{ Hence } g = \sum_t \zeta^{t^2}.$
- 4 For p=3, $\zeta^3=1$ and there is only one non-principal character, χ with $\chi(0)=0, \chi(1)=1, \chi(2)=-1$, hence $g^2(\chi)=\left(\sum_{t=0}^2\chi(t)\zeta^t\right)^2=(\zeta-\zeta^2)^2=-3$.
- 5 Let g be a primitive root mod p, then $x^n \equiv a \mod p \Leftrightarrow n \ ind_g x \equiv ind_g a \mod p 1$, we have (n, p 1) = d solutions iff $d|ind_g a$. Let $b = ind_g a$ then $a = g^b$. If d|b then $1 \equiv g^{\frac{b(p-1)}{d}} \mod p = a^{\frac{p-1}{d}}$ and conversely if $a^{\frac{p-1}{d}} \equiv 1 \mod p$ then $g^{\frac{b(p-1)}{d}} \equiv 1$ and this implies d|b.
- 6 **a.** \mathbf{Z}_p is cyclic, so let g be a generator (p.r.). Hence $a \in \mathbf{Z}_p \Rightarrow a = g^t$ for some t and $\chi(a) = \chi(g^t) = (\chi(g))^t$. So $\chi(a)$ is completely determined by $\chi(g)$ which is a p-1st root of unity $(\neq 1)$. The group of characters is thus generated by $\chi(g)$ which has order p-1. **b.** Set $\lambda(g^k) = e^{2\pi i k/(p-1)}$, then λ is a well-defined character. If $\lambda^n = \lambda_1$ then $\lambda^n(g) = \lambda_1(g) = 1$. But $\lambda^n(g) = (\lambda(g))^n = e^{\frac{2\pi i n}{p-1}} \Rightarrow p-1|n$. Also $\lambda^{p-1}(a) = (\lambda(a))^{p-1} = \lambda(a^{p-1}) = \lambda(1) = 1$ so $\lambda^{p-1} = \lambda_1$. Hence $\lambda_1, \lambda, \lambda^2, \dots, \lambda^{p-2}$ are distinct so λ is a generator of the group of characters. If $a \neq 1$, is an element of \mathbf{Z}_p then $a = g^\ell$ and p-1 $\not|\ell$. Thus $\lambda(a) = \lambda(g^\ell) = e^{\frac{2\pi i \ell}{p-1}} \neq 1$.
- 7 Let $\chi = \lambda^{\frac{p-1}{n}}$, with λ as in previous question, and g a primitive root mod p. Then $\chi(g) = \lambda^{\frac{p-1}{n}}(g) = \lambda(g^{\frac{p-1}{n}}) = e^{\frac{2\pi i}{n}}$. Now $a = g^{\ell}$ for some ℓ and so $x \equiv a$ not soluble implies $n \not|\ell$. Hence $\chi(a) = \chi(g)^{\ell} = e^{\frac{2\pi i \ell}{n}} \neq 1$. Finally, $\chi^n = \lambda^{p-1} = \chi_1$.
- 8 $\overline{g(\chi)} = \sum_{t} \overline{\chi(t)} \zeta^{-t} = \chi(-1) \sum_{t} \overline{\chi(-t)} \zeta^{-t} = \chi(-1) g(\overline{\chi}).$
- 9 Using $g(\chi)g(\lambda) = g(\chi\lambda)J(\chi,\lambda)$, we have $(g(\chi))^2 = J(\chi,\chi)g(\chi^2) \Rightarrow (g(\chi))^3 = J(\chi,\chi)g(\chi^2)g(\chi) = J(\chi,\chi)J(\chi,\chi^2)g(\chi^3)$. Continuing thus, $g(\chi)^{n-1} = J(\chi,\chi)J(\chi,\chi^2)J(\chi,\chi^3)\dots J(\chi,\chi^{n-2})g(\chi^{n-1})$ (*). Now $g(\chi^{n-1}) = g(\chi^{-1}) = g(\overline{\chi})$ and $g(\chi)g(\overline{\chi}) = \chi(-1)p$. Multiply (*) by $g(\chi)$ and the result follows.
- **10** 20 and 24.
- 11 **a.** $J(\chi, \rho) = \sum_{u} \chi(1-u)\rho(u) = \sum_{t} \chi(1-u)(1+\rho(u))$. Now $1+\rho(u)=0$ is u is not a square, so $J(\chi, \rho) = \sum_{t} \chi(1-t^2)$. **b.** Put $u = \frac{k}{2}(t+1)$, then $\chi(\frac{k^2}{2^2})J(\chi, \rho) = \sum_{t} \chi(\frac{k^2}{2^2})\chi(1-t^2) = \sum_{u} \chi\left((\frac{k^2}{2^2})(\frac{2u}{k})(2-\frac{2u}{k})\right) = \sum_{u} \chi(u(k-u))$ and the result follows.

2 a. χ takes values from $\{1,-1,i,-i\}$ and ψ from $\{1,-1\}$ hence the Jacobi symbol is a gaussian integer, z=a+ib. Also $|J(\chi,\psi)|=\sqrt{p}$. Finally $\chi^3=\overline{\chi}$ so $J(\psi,\chi)+J(\psi,\chi^3)=J(\psi,\chi)+\overline{J(\psi,\chi)}=-z-\overline{z}=-2a$. b. $a+ib\equiv 1 \mod (2+2i)\Rightarrow a$ odd and b even. Also 2+2i|4 so $4|b\Rightarrow a+ib\equiv a\equiv 1 \mod 2+2i$. Taking conjugates and multiplying $(a-1)^2\equiv 1 \mod 8\Rightarrow a\equiv 1 \mod 4$. If $4\not|b$ then b=4k+2 so $a+ib\equiv 2+2i$ mod (2+2i). Now $2i\equiv -2(2+2i)\Rightarrow a\equiv 3\equiv -1 \mod 2+2i$ and as before $8|(a+1)^2\Rightarrow a\equiv -1 \mod 4$. c. $N(x^2+y^4\equiv 1 \mod p)=\sum_{a+b=1}N(x^2=a)N(x^4=b)=\sum_{a+b=1}(1+\psi(a))(1+\chi(b)+\chi^2(b)+\chi^3(b))=p+J(\psi,\chi)+J(\psi,\chi^2)+J(\psi,\chi^3)=p-2a+J(\psi,\chi^2)$. Now $\chi^2=\psi=\overline{\psi}$ so $J(\psi,\chi^2)=-\psi(-1)=-1$ (since $p\equiv 1 \mod 4$.). The result follows. We also have to prove that $a+ib\equiv 1 \mod (2+2i)$. Note that for $a,b\neq 0$ we have $\psi(a)-1\equiv 0 \mod 2$ and $\chi(a)-1\equiv 0 \mod 1+i$, since $2=-i(1+i)^2$ and -1+i=i(1+i). Thus if $a,b\neq 0$, we have $(\psi(a)-1)(\chi(b)-1)\equiv 0 \mod (2+2i)$, and this is still true for the cases (a,b)=(1,0),(0,1) (trivially). Hence $\sum_{a+b=1}(\psi(a)-1)(\chi(b)-1)\equiv 0 \mod 2+2i$. Expanding we have $z\equiv p \mod 2+2i$. Now $y\equiv 1 \mod 4$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ and $y\equiv 1$ but not onto as the inverse is not defined for $y\equiv 1$ and $y\equiv$

N = 6 = 5 - 1 + 2.

P. Brown/5645/2008/problem sheet 6.tex