REPORT

Malware U3 W2 L5

Con riferimento al file Malware_U3_W2_L5 presente all'interno della cartella «Esercizio_Pratico_U3_W2_L5» sul desktop della macchina virtuale dedicata per l'analisi dei malware, rispondere ai seguenti quesiti:

- Quali librerie vengono importate dal file eseguibile? Fare anche una descrizione
- Quali sono le sezioni di cui si compone il file eseguibile del malware? Fare anche una descrizione

Con riferimento alla figura in slide 3, risponde ai sequenti quesiti:

- 3. Identificare i costrutti noti (creazione dello stack, eventuali cicli, altri costrutti)
- 4. Ipotizzare il comportamento della funzionalità implementata
- 5. Come ultimo punto, dopo il bonus, spiegare quale istruzione assembly complessa

Schermata di CFF Explorer appena selezionato il file da analizzare:

Schermata del programma all'avvio:

Inizio con l'analisi statica per valutare il codice sorgente del file Malware_U3_W2_L5.exe senza doverlo eseguire; Effettuando quest'analisi è possibile ottenere informazioni dettagliate sul malware, come caratteristiche strutturali, le risorse utilizzate (librerie) e le funzioni chiamate, queste informazioni le ricavo con l'aiuto del programma CFF Explorer, che è un software per l'analisi avanzata dei file eseguibili.

Tutti questi dettagli ci possono aiutare per avere una maggiore visione sulle funzionalità di un certo malware.

Parte di traccia: Le librerie presenti nel file exe

- 1. Quali librerie vengono importate dal file eseguibile? Fare anche una descrizione
- Quali sono le sezioni di cui si compone il file eseguibile del malware? Fare anche una descrizione

Malware_U3_Y	¥2_L5.exe					
Module Name	Imports	OFTs	TimeDateStamp	ForwarderChain	Name RVA	FTs (IAT)
szAnsi	(nFunctions)	Dword	Dword	Dword	Dword	Dword
KERNEL32.dll	44	00006518	00000000	00000000	000065EC	00006000
WININET.dll	5	000065CC	00000000	00000000	00006664	000060B4

Module Name	Imports
szAnsi	(nFunctions)
KERNEL32.dll	44
WININET.dll	5

Da come vediamo sono presenti molteplici funzioni presenti nelle librerie Kernel32.dll e Wininet.dll che possono essere utilizzate durante l'avvio del file .exe, però solamente quelle richiamate nel codice vengono utilizzate;

.dll (dynamic link libraries): sono file di codice precompilato che contengono funzioni, dati e risorse che possono essere utilizzate da più programmi; Esamino la sezione Import Directory
Ritrovo che nel file Malware_U3_W2_L5.exe
sono presenti librerie: KERNEL32.dll e
WININET.dll:

KERNEL32.dll è una libreria di collegamento dinamico di sistemi Windows, fornisce funzionalità di base per la gestione dei processi, delle memorie, dei file, l'accesso alle risorse del sistema e molto altro;

WININET.dll invece è sempre una libreria di collegamento dinamico che però fornisce funzionalità per la comunicazione di rete in ambienti Windows, spesso utilizzata per download/upload di file tramite protocolli come: HTTP, FTP; Supporta anche funzionalità per la gestione dei cookie, la gestione delle cache e altre operazioni di rete.

Parte di traccia: Kernel32.dll ed alcune funzionalità principali

- 1. Quali librerie vengono importate dal file eseguibile? Fare anche una descrizione
- Quali sono le sezioni di cui si compone il file eseguibile del malware? Fare anche una descrizione

KERNEL32.dll

44

Tra le funzionalità importate dalla libreria Kernel32.dll, troviamo precisamente 44 funzioni, esamino precisamente codeste funzioni:

Funzione	Breve descrizione	Possibile utilizzo malevolo
Sleep	Sospende l'esecuzione di un thread per un periodo specificato	Potrebbe essere utilizzato per rallentare l'esecuzione del sistema o evitare la rilevazione
WriteFile	Scrive i dati su un file o su un dispositivo di I/O	Potrebbe essere utilizzato per sovrascrivere file o modificare le impostazioni di sistema
GetCommandLineA	Recupera la stringa di comando passata al programma	Potrebbe essere utilizzato per eseguire comandi dannosi o passare parametri malevoli
LoadLibrary	Carica una libreria dinamicamente in memoria	Potrebbe essere utilizzato per caricare librerie dannose o eseguire codice malevolo
GetProcAddress	Recupera l'indirizzo di una funzione all'interno di una libreria dinamica	Potrebbe essere utilizzato per ottenere accesso a funzioni sensibili o per l'iniezione di codice dannoso
VirtualAlloc	Alloca una regione di memoria virtuale	Potrebbe essere utilizzato per creare uno spazio di esecuzione di codice dannoso
TerminateProcess	Termina un processo specificato	Potrebbe essere utilizzato per terminare processi critic o necessari al sistema
VirtualFree	Dealloca una regione di memoria virtuale	Potrebbe essere utilizzato per nascondere o distruggere tracce di codice malevolo
GetCurrentProcess	Recupera l'handle del processo corrente	Potrebbe essere utilizzato per ottenere accesso privilegiato o per nascondere attività
HeapCreate	Crea un heap di memoria	Potrebbe essere utilizzato per allocare memoria per l'esecuzione di codice malevolo

Name	Name	Name		
szAnsi	szAnsi	szAnsi		
Sleep	FreeEnvironmentStringsW	RtlUnwind		
SetStdHandle	WideCharToMultiByte	WriteFile		
GetStringTypeW	GetEnvironmentStrings	HeapAlloc		
GetStringTypeA	GetEnvironmentStringsW	GetCPInfo		
LCMapStringW	SetHandleCount	GetACP		
LCMapStringA	GetStdHandle	GetOEMCP		
MultiByteToWideChar	GetFileType	VirtualAlloc		
GetCommandLineA	GetStartupInfoA			
GetVersion	GetModuleHandleA	HeapReAlloc		
ExitProcess	GetEnvironmentVariableA	GetProcAddress		
TerminateProcess	GetVersionExA	LoadLibraryA		
GetCurrentProcess	HeapDestroy	GetLastError		
UnhandledExceptionFilter	HeapCreate	FlushFileBuffers		
GetModuleFileNameA	VirtualFree	SetFilePointer		
FreeEnvironmentStringsA	HeapFree	CloseHandle		

Parte di traccia: Wininet.dll e le sue funzioni

- 1. Quali librerie vengono importate dal file eseguibile? Fare anche una descrizione
- Quali sono le sezioni di cui si compone il file eseguibile del malware? Fare anche una descrizione

WININET.dll

5

Le funzioni importate con la libreria Wininet.dll sono 5, una breve descrizione di esse, ed il loro possibile utilizzo malevolo è il seguente:

Name	
szAnsi	
InternetOpenUrlA	
InternetCloseHandle	
InternetReadFile	
InternetGetConnectedState	
InternetOpenA	

Funzione	Breve descrizione	Possibile utilizzo malevolo		
InternetOpenUrIA	Apre una connessione HTTP, HTTPS o FTP per scaricare un file da un URL	Potrebbe essere utilizzata per scaricare e eseguire file dannosi o per l'accesso a risorse malevole		
InternetCloseHandle	Chiude un handle di connessione Internet	Potrebbe essere utilizzata per nascondere o interrompere una connessione malevola		
InternetReadFile	Legge dati da una connessione Internet	Potrebbe essere utilizzata per scaricare e analizzare dati malevoli o per lo spionaggio di informazioni sensibili		
InternetGetConnectedState	Verifica lo stato della connessione di rete	Potrebbe essere utilizzata per monitorare o manipolare la connettività di rete		
InternetOpenA	Inizializza una sessione di connessione Internet	Potrebbe essere utilizzata per stabilire una connessione malevola o per comunicazioni dannose		

Parte di traccia: Le sezioni del file Malware_U3_W2_L5

- Quali **librerie** vengono importate dal file eseguibile? Fare anche una descrizione Quali sono le **sezioni** di cui si compone il file eseguibile del malware? Fare anche una descrizione

Malware_U3_W2_L5.exe

Name	Virtual Size	Virtual Address	Raw Size	Raw Address	Reloc Address	Linenumbers	Relocations	Linenumber	Characteristics
Byte[8]	Dword	Dword	Dword	Dword	Dword	Dword	Word	Word	Dword
.text	00004A78	00001000	00005000	00001000	00000000	00000000	0000	0000	60000020
.rdata	0000095E	00006000	00001000	00006000	00000000	00000000	0000	0000	40000040
.data	00003F08	00007000	00003000	00007000	00000000	00000000	0000	0000	C0000040

Sezione	Descrizione		
.text	Contiene il codice eseguibile del programma, compresi gli algoritmi, le istruzioni e le funzioni. È la sezione principale che contiene le istruzioni da eseguire.		
.rdata	Contiene i dati di sola lettura (read-only data) utilizzati dal programma. Questi dati sono generalmente costanti, come stringhe o tabelle di lookup.		
.data	Contiene i dati modificabili durante l'esecuzione del programma. Questa sezione include variabili globali, stati di programma e altri dati che possono essere modificati durante l'esecuzione.		

Parte di traccia: Identificare i costrutti noti

- Identificare i costrutti noti (creazione dello stack, eventuali cicli, altri costrutti)
- 4. Ipotizzare il comportamento della funzionalità implementata

Parte di traccia: Identificare i costrutti noti e ipotizzo il comportamento della funzionalità implementata

- 3. Identificare i costrutti noti (creazione dello stack, eventuali cicli, altri costrutti)
- Ipotizzare il comportamento della funzionalità implementata

Il codice verifica lo stato della connessione Internet e mostra un messaggio di successo se la connessione è attiva, altrimenti mostra un messaggio di errore.

Le funzioni di sistema utilizzate, come
"InternetGetConnectedState" e "sub_40117F", sono probabilmente responsabili della gestione dell'accesso alle risorse di rete e della visualizzazione dei messaggi all'utente.

Parte di traccia: Verificare il file IEXPLORE e convincere il dipendente che il file non è maligno

BONUS:

Un giovane dipendente neo assunto segnala al reparto tecnico la presenza di un programma sospetto.

Il suo superiore gli dice di stare tranquillo ma lui non è soddisfatto e chiede supporto al SOC. Il file "sospetto" è IEXPLORE.EXE contenuto nella cartella C:\Program <u>Eiles</u>\Internet Explorer (no, non ridete ragazzi)

Come membro senior del SOC ti è richiesto di convincere il dipendente che il file non è maligno.

Possono essere usati gli strumenti di analisi statica basica e/o analisi dinamica basica visti a lezione. No disassembly no debug o similari

VirusTotal non basta, ovviamente Non basta dire jexplorer è Microsoft è buono, punto.

Da come possiamo vedere il file è di proprietà Microsoft, con apportata in seguito la licenza di Copyright

@ Microsoft Corporation. All rights reserved.

La scansione del file IEXPLORE.exe su VirusTotal ha fornito un ulteriore segnale che il file sia sicuro e privo di malware. Tuttavia, è importante considerare che la scansione su VirusTotal da sola non garantisce la completa sicurezza del file, dunque eseguo anche un analisi dinamica, di seguito.

Property	Value	Value			
File Name	C:\Pro	gram Files\Internet Explorer\IEXPLORE.EXE			
File Type	Portab	Portable Executable 32			
File Info	No ma	No match found.			
File Size	91.00	91.00 KB (93184 bytes)			
PE Size	91.00	91.00 KB (93184 bytes)			
Created	Monda	y 20 March 2017, 23.18.53			
Modified	Monda	y 14 April 2008, 05.42.24			
Accessed	Friday	07 July 2023, 14.03.30			
MD5	55794	97A7FAABD2910873C85274F409			
SHA-1	58E80	C90BF54850B5F3CCBD8EDF0877537E0EA8E			
Property		Value			
CompanyNam	ie	Microsoft Corporation			
FileDescription	13	Internet Explorer			
FileVersion		6.00.2900.5512 (xpsp.080413-2105)			
InternalName		iexplore			
LegalCopyright		© Microsoft Corporation. All rights reserved.			
OriginalFilena	me	IEXPLORE.EXE			
ProductName		Microsoft® Windows® Operating System			

Parte di traccia: Verificare il file IEXPLORE e convincere il dipendente che il file non è maligno

Possiamo esaminare diverse schede e informazioni per valutare se il processo IEXPLORE potrebbe essere potenzialmente malevolo:

- Controllo il percorso del file eseguibile e l'origine del processo. Verifico se il percorso corrisponde alla posizione predefinita e attendibile di Internet Explorer.
- Scheda "Image" (Immagine): Controllo i dettagli sull'immagine del file eseguibile, come la descrizione e il nome del prodotto.
- Scheda "Threads" (Thread): Esamino i thread associati al processo. Se ci sono thread sospetti
 o con comportamenti insoliti, potrebbe essere un segno di malware.

 <u>Sulla base delle informazioni fornite sui thread associati al processo IEXPLORE, non ci sono</u>
 evidenti segni di comportamenti insoliti o malevoli.

Parte di traccia: Spiegare qualche istruzione assembly complessa

- 3. Identificare i costrutti noti (creazione dello stack, eventuali cicli, altri costrutti)
- 4. Ipotizzare il comportamento della funzionalità implementata
- 5. Come ultimo punto, dopo il bonus, spiegare quale istruzione assembly complessa

Salto condizionale (jmp): esegue un salto incondizionato all'etichetta "loc 480103A".

Un salto incondizionato è un'istruzione di controllo di flusso che consente di saltare a un punto specifico nel codice, indipendentemente dalle condizioni. In questo contesto, l'istruzione "jmp short loc_480103A" indica un salto breve (short) all'etichetta "loc_480103A". Ciò significa che il flusso del programma passerà direttamente all'indirizzo corrispondente all'etichetta "loc_480103A", ignorando qualsiasi istruzione successiva nel codice.

```
push offset aSuccessInterne; "Success: Internet Connection\n" call sub_40117F add esp, 4 mov eax, 1 jmp short loc_40103A
```

Operazione di XOR: esegue un'operazione di XOR tra il registro "eax" e se stesso, impostando "eax" a 0.

L'XOR (Exclusive OR) è <u>un'operazione logica binaria che confronta i bit corrispondenti di due operandi.</u>

Se i bit sono diversi, il risultato sarà 1, altrimenti sarà 0.

Quando "xor eax, eax" viene eseguito, si sta effettivamente confrontando il registro "eax" con se stesso, che restituisce sempre 0.

```
loc_40102B: ; "Error 1.1: No Internet\n"

push offset aError1 1NoInte

call sub_40117F

add esp, 4

xor eax, eax
```