Matematika I

12. január 2017 11:00

Meno a priezvisko: Podpis:		
Ročník: Študijný program:		
1. (11b) Daná je všeobecná rovnica kužeľosečky $4x^2-y^2-24x+4y+28=0$. Doplňte		
a) (2b) Stredová rovnica kužeľosečky je		
b) (1b) Typ kužeľosečky:		
c) (3b) Popíšte (ak existuje):		
c_1) dĺžka hlavnej poloosi je		
d) (4b) Napíšte súradnice (ak existujú):		
d_1) stredu kužeľosečky		
e) (1h) Znázornite kužeľosečku a v náčrte popíšte jej významné prvky		

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na nasledujúcom obrázku.

a)
$$f(x,y) = \ln(9 - x^2 - y^2) + \ln(x^2 - y^2)$$

b)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 + y^2)$$

c)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 - y^2)$$

d)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \sqrt{x^2 - y^2}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,2],\,B=[2,2],\,C=[2,3]$ a D=[1,3].

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[\sqrt{2}, \frac{\pi}{4}, \sqrt{2}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, 1, \sqrt{2}]$$

c)
$$M = [1, -1, \sqrt{2}]$$

b)
$$M = [-1, 1, \sqrt{2}]$$

d)
$$M = [-1, -1, \sqrt{2}]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna diferenciálna rovnica (LDR) $y'' + 2y' - 3y = -12e^x$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení LDR je
b) (2b) Napíšte tvar vhodného partikulárneho riešenia.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie LDR je
6. (4b) Vypočítajte, ak existuje $\lim_{\substack{x\to 0\\y\to 0}}\frac{x^4}{x^4+y^2}.$
$ m V\acute{y}sledok:$
7. (6b) Napíšte všeobecnú rovnicu dotykovej roviny ku grafu funkcie $f(x,y) = x^2 + 2x - y^2 - 4y$, ak je hľadaná dotyková rovina je rovnobežná so súradnicovou rovinou R_{xy} .
Súradnice dotykového bodu sú
Všeobecná rovnica dotykovej roviny je
8. (6b) Daná je funkcia $f(x,y)=\sqrt{x^2+y^2},$ bod $A=[-1,2]$ a vektor $\vec{l}=(-2,-1)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

Množi $C = [$	Bb) Daná je funkcia $f(x,y) = (x-1)^2 + 2y^2$ a množina M . ina M je trojuholník ABC , ktorého vrcholy majú súradnice $A = [0,-2], B = [3,0]$ a $[0,2]$.
a)	(1b) Načrtnite množinu M a pomocou rovníc popíšte jej hranice.
	Náčrt:
	Rovnice hraníc:
	(a) (2b) <i>AB</i>
	(b) (2b) AC
,	(5b) Nájdite lokálne extrémy funkcie v M . Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
,	(9b) Nájdite viazané lokálne extrémy funkcie na hraniciach oblasti $M.$ Na hranici
	(a) AB má funkcia $f(x,y)$ má v bode viazané lokálne
	(b) AC má funkcia $f(x,y)$ má v bode viazané lokálne
	(c) BC má funkcia $f(x,y)$ má v bode viazané lokálne
d)	(2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti M .
	$\mathbf{Najv\ddot{a}\check{c}\check{s}ia}$ hodnota funkcie $f(x,y)$ na oblasti M je
	Najmenšia hodnota funkcie $f(x, y)$ na oblasti M je