Comparative Analysis of Neural Networks and General NLP Methods on An Academic Journal Article Database

Self-collected database; NLP methods used; FNN tuned; DNN constructed and compared, thourough analysis

(Freda) Xiaoyun Yu

Feb 2023

Template I Use

- CM3015-Machine Learning and Neural Network.
- I have combined the two templates (1. Deep Learning on a public dataset; 2. Gather your own dataset) in this course provided, to do my own project.
- I have done a deep learning classification project, on a topic academic journal articles, use the whole article body text as the data.

Features of My Project

- Collect dataset on my own (using an API)
- Outstanding text-cleansing work
- Tune hyperparameters in FNN using controlled experiments
- Try to find the best FNN using GridSearchCV
- Have constructed DNN based on pre-trained existing models, including CNN, RNN with LSTM layer, etc.
- Use different combinations of 3 vectorizers (TF-IDF, Count Vectorizer, Bigram) and 4 classifiers (SVC, MNB, Random Forest, KNN) in NLP and compare their performance
- Have attempted to use the methods in literature review (AWD-LSTM, ULMFiT FastAI, Wikipedia2Vec, BERT-for-Task, ...)

Literature Review – Text Classification

Previous Methods	01	02	03
Paper	Large Scale Subject Category Classification of Scholarly Papers with Deep Attentive Neural Networks	Regularizing and optimizing LSTM language models	Universal Language Model Fine-Tuning for Text Classification
Author	Kandimalla et al.	Merity, Keskar, and Socher	Howard and Ruder
Data Source	Web of Science (WoS), year 2015	2 datasets: Penn Treebank; WikiText-2	6 datasets: TREC-6; IMDb; Yelp-bi; Yelp-full; AG; DBpedia
Main Idea	Propose a deep attentive neural network (DANN) that classifies scholarly papers using only their abstracts	Weight-dropped LSTM; introduce various regularization techniques in LSTM	Propose a new model - universal LSTM model fine-tuning for classification (ULMFiT)
Methods	The proposed network consists of two bidirectional recurrent neural networks followed by an attention layer. Compare their models and others.	Uses a method called 'DropConnect' to subtitute the Dropout neurons in regularization, since Dropouts will weaken the long-distance ability. Other than dropouts, they do not use SGD here, but investigate ASGD (averaged SGD)	Phase 1: General-domain LM pretraining; Phase 2: Target task LM fine-tuning — skills: (1) Discrivinative fine-tuning, (2) Slanted triangular learning rate; Phase 3: Target task classifier fine-tuning — skills: (1) Concat pooling, (2) Gradual unfreezing, (3) BPT3C, (4) Bidirectional language model;
Results	(1) The combination of word vectors with TFIDF outperforms character and sentence level embedding models; (2) FastText + BiGRU + Attn and FastText+BiLSTM + Attn (micro-F1 =0.76); (3) Retraining FastText and GloVe improves the performance; (4) Character-level embedding models often perform worse than word-level embedding models; (5) The best machine learning model (LR) is outperformed by the best DANN model by roughly 10%.	ASGD has a better effect. 'DropConnect' is effective.	ULMFiT significantly outperformed existing transfer learning techniques and the stateof-the-art on six representative text classification tasks.

Justified Based on Domain and Users

- (1) real journal platforms in academia (e.g. Nature, Science, etc.) to classify newly received articles and therefore simplify the procedure before posting new articles, and will make the news being published more timely without manual work; may stimulate an interdisciplinary collaboration between these platforms and data science platforms to add comprehensive metadata for information retrieval;
- (2) librarianship field, by boosting the development of computer-based technologies to do part of the librarian jobs, and to stimulate the debate of human work vs. computer work;
- (3) real journal platforms if I can find any obstacles or difficulties when developing my project, and will contribute furthermore if I could possibly propose methods to solve them;
- (4) philosophical field, by exploring potential difficulties and proposing possible solutions, since classification
 is a very basic concept in philosophy;
- (5) students studying in academia (e.g. postgraduate applicants, doctoral students) who have a strong
 pressure or focus on publishing papers, by receiving stimulation and inspirations found from my project. For
 instance, the top list of keywords shown in each academic subject can be a hint to expand the students'
 academic vocabulary set;
- (6) teachers working in academia who need a timely update for the recent research trend, to stimulate their own research and to give their students a prospective working direction;
- (7) data scientists and computer scientists who are also interested in text classification methods. If my
 models are well-tuned, they may be applied more widely as a transfer learning example, not only in my own
 dataset, but also in other label-classifications in NLP field, such as sentiment classification, or even image
 classification. Data scientists may find new inspirations on labelling articles.

Collect Data – from EventRegistry.org

- Their API: https://www.newsapi.ai/documentation/sandbox?tab=searchArticles
- I copied their codes from the sandbox to my own Jupyter Notebook file, and output the retrieved data into JSON files.

```
[4]: import json
      er = EventRegistry(apiKey = '5d9ca3e2-04a6-4cf5-b47c-4346d55c385a')
          "$query": {
              "$and": [
                      "categoryUri": "dmoz/Science/Earth Sciences"
                      "sourceGroupUri": "science/top15"
                      "lang": "eng"
          "$filter": {
              "forceMaxDataTimeWindow": "31",
              "dataType": [
                  "news"
      q = QueryArticlesIter.initWithComplexQuery(qStr)
      # change maxItems to get the number of results that you want
     for article in q.execQuery(er, maxItems=100):
          with open('D:/University-of-London-2020/CM3070-Computer-Science-Final-Project/datasets/Event_registry_search_results/API/output.js
              f. write(json. dumps(article, ensure_ascii=True))
```

Collect Data – from EventRegistry.org

• Then I convert those JSON files into EXCEL format, and combine them. The following is the snapshot for the combined file.

4	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC
1		record	uri	lang	isDuplicate	date	time	dateTime	ateTimePu	dataType	sim	url	title	body	source	uri.1	dataType.1	title.1	image	eventUri	sentiment	wgt	relevance	authors	uri.2	name	type	isAgency	category
2	0		7.22E+09	eng	FALSE	2022-10-0	17:31:00	2022-10-0	2022-10-0	news					dying physic			Nature	https://me	dia.springe	0.011765	25	25						biology
3	1		7.23E+09	eng	FALSE	2022-10-1	16:35:00	2022-10-1	2022-10-1	news	0	https://wv	Efficient ar	Human plu	iripotent ste	nature.com	news	Nature	https://me	dia.springe	0.223529	24	24						biology
4	2		7.21E+09	eng	FALSE	2022-10-0	15:56:00	2022-10-0	2022-10-0	news	0.729412	https://wv	c-Myb red	When wor	n out, most	nature.com	news	Nature	https://me	eng-80682	-0.02745	24	24						biology
5	3		7.22E+09	eng	FALSE	2022-10-1	14:17:00	2022-10-1	2022-10-1	news	0.619608	https://wv	Co-express	Here, to e	camine the	nature.com	news	Nature	https://me	eng-80994	0.137255	23	23						biology
6	4		7.21E+09	eng	FALSE	2022-09-2	10:31:00	2022-09-2	2022-09-2	news	0.54902	https://wv	Changes in	In our wor	k, we have	nature.com	news	Nature	https://me	eng-80570	-0.05098	23	23						biology
7	5		7.23E+09	eng	FALSE	2022-10-1	15:14:00	2022-10-1	2022-10-1	news	0.533333	https://wv	scRNA-seq	Here, in o	ır study, we	nature.com	news	Nature	https://me	eng-81077	-0.27059	22	22						biology
8	6		7.22E+09	eng	FALSE	2022-10-1	04:22:00	2022-10-1	2022-10-1	news	0	https://wv	Epigenetic	Epigenetic	modification	nature.com	news	Nature	https://me	dia.springe	0.160784	22	22						biology
9	7		7.21E+09	eng	FALSE	2022-09-2	15:55:00	2022-09-2	2022-09-2	news	0	https://wv	Rigid tumo	The ability	for cancer o	nature.com	news	Nature	https://me	dia.springe	-0.09804	22	22						biology
10	8		7.23E+09	eng	FALSE	2022-10-1	16:12:00	2022-10-1	2022-10-1	news	0.580392	https://wv	Establishm	During ear	ly mammal	nature.com	news	Nature	https://me	eng-80994	0.207843	21	21						biology
11	9		7.22E+09	eng	FALSE	2022-10-1	10:04:00	2022-10-1	2022-10-1	news	0.678431	https://wv	Naive pluri	Cells posit	ive for SSEA	nature.com	news	Nature	https://me	eng-80994	0.145098	21	21						biology
12	10		7.21E+09	eng	FALSE	2022-09-2	20:28:00	2022-09-2	2022-09-2	news	0	https://wv	Autosis an	Historical R	erspective	nature.com	news	Nature	https://me	dia.springe	-0.30196	21	21						biology
13	11		7.23E+09	eng	FALSE	2022-10-2	15:37:00	2022-10-2	2022-10-2	news	0	https://wv	Multiplexe	In this stud	dy, we used	nature.com	news	Nature	https://me	dia.springe	-0.2549	20	20						biology
14	12		7.23E+09	eng	FALSE	2022-10-2	15:35:00	2022-10-2	2022-10-2	news	0	https://wv	Unapprecia	CD40 has	ong been ki	nature.com	news	Nature	https://me	dia.springe	-0.05882	20	20						biology
15	13		7.23E+09	eng	FALSE	2022-10-1	17:01:00	2022-10-1	2022-10-1	news	0	https://wv	Characteriz	Induced p	uripotent st	nature.com	news	Nature	https://me	dia.springe	0.176471	20	20						biology
16	14		7.23E+09	eng	FALSE	2022-10-1	08:22:00	2022-10-1	2022-10-1	news	0	https://wv	Online sing	SCALEX in	plements a	nature.com	news	Nature	https://me	dia.springe	0.035294	20	20						biology
17	15		7.23E+09	eng	FALSE	2022-10-1	17:18:00	2022-10-1	2022-10-1	news	0.592157	https://wv	VASA prot	Our studie	s aimed to a	nature.com	news	Nature	https://me	eng-80994	0.113725	20	20						biology
18	16		7.22E+09	eng	FALSE	2022-10-1	08:19:00	2022-10-1	2022-10-1	news	0	https://wv	Drug toxici	Different r	esponse of s	nature.com	news	Nature	https://me	dia.springe	0.2	20	20						biology
19	17		7.22E+09	eng	FALSE	2022-10-1	16:27:00	2022-10-1	2022-10-1	news	0	https://wv	Deep learn	Constructi	ng single-ce	nature.com	news	Nature	https://me	dia.springe	rnature.cor	20	20						biology
20	18		7.22E+09	eng	FALSE	2022-10-1	10:19:00	2022-10-1	2022-10-1	news	0	https://wv	Corynoxine	In this stud	ly, we aime	nature.cor	news	Nature	https://me	dia.springe	-0.05882	20	20						biology
21	19		7.22E+09	eng	FALSE	2022-10-1	17:22:00	2022-10-1	2022-10-1	news	0	https://wv	Clinical imp	More defi	nitive conclu	nature.cor	news	Nature	https://me	dia.springe	-0.07451	20	20						biology
22	20		7.21E+09	eng	FALSE	2022-10-0	16:45:00	2022-10-0	2022-10-0	news	0.72549	https://wv	Mouse em	For more t	han 100 yea	nature.cor	news	Nature	https://me	eng-80719	0.160784	20	20						biology
23	21		7.21E+09	eng	FALSE	2022-10-0	14:06:00	2022-10-0	2022-10-0	news	0.619608	https://wv	Local immu	Overwhel	ming systen	nature.cor	news	Nature	https://me	eng-80682	-0.08235	20	20						biology
24	22		7.21E+09	eng	FALSE	2022-09-2	13:10:00	2022-09-2	2022-09-2	news	0.490196	https://wv	In vivo lab	Cell neight	ourhoods a	nature.com	news	Nature		eng-80570	-0.19216	20	20						biology
25	23		7.2E+09	eng	FALSE	2022-09-2	21:00:00	2022-09-2	2022-09-2	news	0	https://wv	Decipherin	Evolutiona	ary theory h	nature.cor	news	Nature	https://me	dia.springe	-0.22353	20	20						biology
26	24		7.2E+09	eng	FALSE	2022-09-2	15:36:00	2022-09-2	2022-09-2	news	0	https://wv	Advancing	The works	hop focused	nature.cor	news	Nature	https://me	dia.springe	0.207843	20	20						biology
27	25		7.23E+09	eng	FALSE	2022-10-2	00:05:00	2022-10-2	2022-10-2	news	0	https://wv	New insigh	HESC cultu	res have be	nature.cor	news	Nature		dia.springe		19	19						biology
28	26		7.23E+09	_	FALSE	2022-10-2	20:09:00	2022-10-2	2022-10-2	news			_		ated human			Nature		dia.springe		19	19						biology
				_										•				A					-						

Collect Data – from EventRegistry.org

- 6 classes:
 - Biology
 - Chemistry
 - Earth Sciences
 - Math
 - Physics
 - Social Sciences

- biology.json.xlsx
- chemistry.json.xlsx
- combined.xlsx
- arth_sciences.json.xlsx
- math.json.xlsx
- physics.json.xlsx
- social_sciences.json.xlsx

• Commonsense baseline = 1/6 = 0.167

 Preprocessing: Remove unwanted characters; Lowercase and expand contractions; Remove stopwords & lemmatisation.

```
In [33]: def stopword_lemmatizing(word_list):
                Remove Stopwords, Punctuations, and also Lemmatize the Original Input
                I will do two steps of lemmatization - the verb version, and the noun version.
                A list which contains many word strings.
             Returns:
                 The stopwords-removed and lemmatized version of this list, also containing word strings.
             result = []
             # Below order is important! We should always firstly remove starwards
             # Otherwise, stopwords would change their form!
                                                                  Algorithm 4.2-2: Expand Contractions & Lowercase
                                                                   Input: a text string text
             for word in word list: # for each string in the list
                word = word.lower() # to get the lower form of each w
                                                                   1: contractions \leftarrow set rules for contractions; new\_text \leftarrow an empty list to store future list of word strings
                if not word in stop words: # to remove stop words.
                    if not word in string punctuation: # Notice: her 2: for each character charin text
                        word_n = wnl.lemmatize(word, pos='n') # to Ie
                                                                        if char is not space:
                        word_v = wnl.lemmatize(word_n, pos='v') # to
                                                                          read the char; and append it into a temporary variable
                        result.append(word_v)
                                                                        else if char is space:
                                                                         join each character to form the word, and lowercase the word
             return result
                                                                          if that word is in the contractions:
                                                                            append the full version to new_text
                                                                          else:
                                                                             just append this word to new_text
                                                                   11: text \leftarrow use space to join these words, then delete spaces at beginning and the end
                                                                  Output: the new version of that string of text
```

I have also output my cleansed text data into files, for later to use.

Control randomness

- Transform and feed data to Keras
- In [43]: # Set the random seeds, Text data → numerical data
 - # of the variables.
 import random
 random. seed(15)
 np. random. set_seed(15)

 tf. random. set_seed(15)

 # Below codes are from https://github.com/codehax41/BBC-Text-Classification/blob/master/BBC%20usis.
 np. random. set_seed(15)

 # Notice that Keras does not input all of the texts. It only uses important words.
 tok = keras.preprocessing.text.Tokenizer(num_words=num_words_input,
 lower=True, # convert to lowercase
 char_level=False)

 # The above process will filter default punctuations.
 - tok.fit_on_texts(X_train_pre) # fit tokenizer to our training text data
 - X_train = tok.texts_to_matrix(X_train_pre)
 X_test = tok.texts_to_matrix(X_test_pre)
 - In [53]: # This cell of codes is from: https://github.com/codehax41/BBC-:
 #Use sklearn utility to convert label strings to numbered index
 encoder = LabelEncoder()
 encoder.fit(Y_train_pre)
 Y_train = encoder.transform(Y_train_pre)
 Y_test = encoder.transform(Y_test_pre)
 # Converts the labels to a one-hot representation
 num_classes = np.max(Y_train) + 1
 Y_train = keras.utils.to_categorical(Y_train, num_classes)
 Y_test = keras.utils.to_categorical(Y_test, num_classes)
 - In [54]: Y_train[300] # check. It should be a one-hot encoding array
 Out[54]: array([0., 0., 0., 1., 0., 0.], dtype=float32)

 A small underfitting ML model (Chollet Step 5)

```
In [82]: # This cell of codes is from our lecture material, the lab REUTERS.
        from tensorflow.keras import models
        from tensorflow. keras import layers
        model_small = models. Sequential()
        model_small.add(layers.Dense(16, activation = 'relu', input_shape = (num_words_input, ))) # input_600
        model_small.add(layers.Dense(16, activation = 'relu'))
        model small.add(layers.Dense(6, activation = 'softmax'))
        # Notice that for multi-class classification task, the last layer should choose 'softmax' as the
        # activation function.
        model_small.compile(optimizer = 'rmsprop',
                    loss = 'categorical_crossentropy',
                     # Notice that the Chollet book emphasizes that 'categorical crossentropy' is always used
                     # because 'It minimizes the distance between the probability distributions output by
                     # the model and the true distribution of the targets'.
                    metrics = ['accuracy'])
In [83]: # train-validation splitting
        X train partial2, X val2, Y train partial2, Y val2 = train test split(
            X_train2, Y_train2, test_size=0.20, random_state=15)
         # we set a random state in order to repeat the experiment later
        history_small = model_small.fit(X_train_partial2,
                          Y_train_partia12,
                          batch_size=64,
                          epochs=8, # we set a small epoch
                          validation data=(X val2, Y val2))
         Epoch 1/8
         6/6 [============= ] - 1s 68ms/step - loss: 1.7867 - accuracy: 0.1875 - val loss: 1.70
         98 - val_accuracy: 0.2708
         Epoch 2/8
         19 - val accuracy: 0.3333
         Epoch 3/8
         02 - val accuracy: 0.4167
         Epoch 4/8
```


An overfitting ML model (Chollet Step 6)

```
In [67]: # This cell of codes is from our lecture material, the lab REUTERS.
          from tensorflow. keras import models
          from tensorflow. keras import layers
          model_overfit = models.Sequential()
          model_overfit.add(layers.Dense(16, activation = 'relu', input_shape = (num_words_input, ))) # input 600
          model_overfit.add(layers.Dense(128, activation = 'relu'))
          model overfit.add(layers.Dense(256, activation = 'relu'))
          model_overfit.add(layers.Dense(256, activation = 'relu'))
          model_overfit.add(layers.Dense(16, activation = 'relu'))
          model_overfit.add(layers.Dense(6, activation = 'softmax'))
          # Notice that for multi-class classification task, the last laver should choose 'softmax' as the
          # activation function.
          model_overfit.compile(optimizer = 'rmsprop',
                        loss = 'categorical_crossentropy',
                        # Notice that the Chollet book emphasizes that 'categorical crossentropy' is always used
                        # because 'It minimizes the distance between the probability distributions output by
                        # the model and the true distribution of the targets'.
                        metrics = ['accuracy'])
```


	precision	recal1	f1-score	support
biology chemistry earth_sciences math physics social_sciences	0. 86 0. 45 0. 88 0. 48 0. 56 0. 57	0.80 0.59 0.79 0.42 0.45 0.70	0. 83 0. 51 0. 83 0. 45 0. 50 0. 63	15 17 19 26 20 23
accuracy macro avg weighted avg	0. 63 0. 62	0. 62 0. 61	0. 61 0. 63 0. 61	120 120 120

Controlled experiments results – batch size

		Setting	gs						-	Tuning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batch size	# hidd en layer s	Neuron nums	Activation functions	optimi zer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Dec 09	Clean sed	15	15	15	600	20	1024	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.5667	1.1342
Dec 09	Clean sed	15	15	15	600	20	512	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.5750	1.1667
Dec 09	Clean sed	15	15	15	600	20	256	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.6250	1.0836
Dec 09	Clean sed	15	15	15	600	20	128	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.6333	1.0605
Dec 09	Clean sed	15	15	15	600	20	<mark>64</mark>	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.6750	1.1273
Dec 09	Clean sed	15	15	15	600	20	32	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.6250	1.2453
Dec 09	Clean sed	15	15	15	600	20	16	1	64-64-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.5500	1.3784

Based on my controlled settings, the best performing **batch size is 64** when operated on Feb 09, with accuracy=0.675. I have found an increasing-then-decreasing pattern of the accuracies when the batch size goes down.

Controlled experiments results – number of layers

		Setting	gs						1	uning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batch size	# hidd en layer s	Neuron nums	Activation functions	opti mizer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Jan 31	Clean sed	15	15	15	600	20	64	1	256-256-6	relu-relu- softmax	rmspro	categorical_cr ossentropy	-	0.6916666 626930237	1.1270121 335983276
Jan 31	Clean	15	15	15	600	20	256	3	128-128- 128-128-6	relu-relu- relu- relu-softmax	rmspro p	categorical_cr ossentropy	-	0.6999999 88079071	1.0144932 270050049
Jan 31	Clean sed	15	15	15	600	20	128	0	128-6	relu-softmax	rmsp rop	categorical_cr ossentropy	-	0.6999999 88079071	0.9842715 859413147
Jan 31	Clean sed	15	15	15	600	20	128	1	128-128-6	relu-relu-softmax	rmsp rop	categorical_cr ossentropy	-	0.65833336 11488342	1.0232696 533203125
Jan 31	Clean sed	15	15	15	600	20	128	2	128-128- 128-6	relu- relu-relu- softmax	rmsp rop	categorical_cr ossentropy	-	0.6999999 88079071	0.9746896 624565125
			1							·	1	L	1		

I have run 7 records * (3 settings * 2 repetitions) = 42 experiments, using different settings. The best numbers of layers are quite unpredictable.

The best layer number covers all from 0 to 4 in my 6 groups of experiments.

Controlled experiments results – activation functions

Experiments Records – activation functions

Experiments Records – activation functions

		Settin	gs							Tuning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batch size	# hidd en layer s	Neuron nums	Activation functions	optimi zer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-relu- softmax	rmspro p	categorical_cr ossentropy	-	0.65	1.0465116 818745932
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-softmax- softmax	rmspro p	categorical_cr ossentropy	-	0.49166667	1.6607657 194137573
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-sigmoid- softmax	rmspro p	categorical_cr ossentropy	-	0.675	0.9671117 067337036
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-tanh- softmax	rmspro p	categorical_cr ossentropy	-	0.6333333	1.1139755 964279174
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-selu- softmax	rmspro p	categorical_cr ossentropy	-	0.6666667	1.0172423 601150513
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu-softsign- softmax	rmspro p	categorical_cr ossentropy	-	0.68333334	0.9269145 607948304
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu- hard_sigmoid- softmax	rmspro p	categorical_cr ossentropy	-	0.6916666 6	0.9540115 276972453
Feb 03	Clean sed	15	15	15	600	20	128	1	64-128-6	relu- exponential- softmax	rmspro p	categorical_cr ossentropy	-	0.6666667	1.4939833 08474223

		Setting	gs							Tuning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batch size	# hidd en layer s	Neuron nums	Activation functions	opti mizer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-relu- softmax	rmsp rop	categorical_cr ossentropy	-	0.625	1.0755352 258682251
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-softmax- softmax-softmax	rmsp rop	categorical_cr ossentropy	-	0.29166666	1.7877373 139063517
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-sigmoid- sigmoid-softmax	rmsp rop	categorical_cr ossentropy	-	0.6166667	1.1048650 50315857
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu- <mark>tanh-tanh</mark> - softmax	rmsp rop	categorical_cr ossentropy	-	0.6666667	1.0579676 866531371
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-selu- softmax	rmsp rop	categorical_cr ossentropy	-	0.64166665	1.2318978 706995647
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-softsign- softsign-softmax	rmsp rop	categorical_cr ossentropy	-	0.625	1.1883386 691411337
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu—hard_sigmoid- hard_sigmoid- softmax	rmsp rop	categorical_cr ossentropy	-	0.6333333	1.1228162 209192911
Feb 03	Clean sed	15	15	15	600	20	128	2	64-128- 128-6	relu-exponential- exponential-softmax	rmsp rop	categorical_cr ossentropy	-	0.55833334	1.9818871 49810791
													1	I .	I I

From the two groups of experiment, I find that putting **hard_sigmoid** inside the inner layer achieves the best accuracy, and softsign and sigmoid perform the second and third best; If using two same activation functions inside the inner layers, then use **tanh**. Never try to put softmax inside inner layers, since it has got 0.49 and 0.29 when using once and twice. Others are just viable as well.

		Softin.	7.							Tuning presentation				Euglustian-	
		Settin	Rz							Tuning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batc h size	# hidd en layer s	Neuron nums	Activation functions	opti mizer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	15	512	2	32-32-32- 6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.575	1.2816820 46254476
Feb 03	Clean sed	15	15	15	600	15	512	2	32-64-64- 6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.5416667	1.2656379 699707032
Feb 03	Clean sed	15	15	15	600	15	512	2	64-64-64- 6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.625	1.1398384 332656861
Feb 03	Clean sed	15	15	15	600	15	512	2	64-64-32- 6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.55	1.1970116 376876831
Feb 03	Clean sed	15	15	15	600	15	512	2	64-128- 128-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.55	1.1849392 811457315
Feb 03	Clean sed	15	15	15	600	15	512	2	64-128- 64-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.55833334	1.1169984 579086303
Feb 03	Clean sed	15	15	15	600	15	512	2	128-128- 256-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.6833333 4	0.9293365 836143493
Feb 03	Clean sed	15	15	15	600	15	512	2	128-128- 128-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.53333336	1.3201159 00039673
Feb 03	Clean sed	15	15	15	600	15	512	2	128-128- 64-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.6	1.1395802 736282348
Feb 03	Clean sed	15	15	15	600	15	512	2	128-256- 128-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.6166667	1.1106221 596399943
Feb 03	Clean sed	15	15	15	600	15	512	2	128-256- 64-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.56666666	1.1338408 788045247
Feb 03	Clean sed	15	15	15	600	15	512	2	512-256- 128-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.6833333 4	0.9334465 821584066
Feb 03	Clean sed	15	15	15	600	15	512	2	512-512- 256-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.65833336	0.9807055 513064067
Feb 03	Clean sed	15	15	15	600	15	512	2	512-1024- 512-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.53333336	1.1604699 532190959
Feb 03	Clean sed	15	15	15	600	15	512	2	1024- 1024-512- 6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.65833336	0.9688995 122909546
Feb 03	Clean sed	15	15	15	600	15	512	2	1024-512- 256-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.55	1.2143640 756607055
Feb 03	Clean sed	15	15	15	600	15	512	2	1024-512- 128-6	relu-tanh-tanh- softmax	rmsp rop	categorical_cr ossentropy	-	0.55833334	1.0940533 717473349

Controlled experiments results – neuron numbers

It seems that, with the same settings,
128-128-256-6 neurons, and
512-256-128-6 neurons
perfoms the best, with accuracy=0.68333334.
The second best are
512-512-256-6 and
1024-1024-512-6.

Less neurons or bottleneck effects (128-128-128-6) indeed cannot get a high score.

Controlled experiments results – optimizer

Experiments Records – optimizers

	,	Settin	gs						1	Tuning parameters				Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batch size	# hidd en layer s	Neuron nums	Activation functions	optimi zer	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	rmspro p	categorical_cr ossentropy	-	0.65833336	1.1372781 59459432
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	adam	categorical_cr ossentropy	-	0.7083333	1.2403667 132059732
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	sgd	categorical_cr ossentropy	-	0.425	1.4351878 404617309
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	adagra d	categorical_cr ossentropy	-	0.35833332	1.6639603 21744283
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	adama x	categorical_cr ossentropy	-	0.69166666	1.0454886 635144551
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	adadel ta	categorical_cr ossentropy	-	0.175	1.8860424 121220907

Adam performs really well, with accuracy of nearly 0.708. Adamax and RMSprop are both good to use. Never try to use AdaDelta or AdaGrad. SGD performs with a rather low score as well.

Controlled experiments results – regularizer

Experiments	Record	ls – regul	arisation
-------------	--------	------------	-----------

		Settin	gs							Tuning paramet	ters			Evaluations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batc h size	# hidden layers	Neuron nums	Activation functions	optimi zer	loss	Regulerisatio n (same for all 4 layers)	Accuracy (test)	Loss (test)
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	None	0.658333 36114883 42	1.291331 76803588 87
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1(0.00001)	0.666666 68653488 16	1.493371 36745452 88
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1(0.0001)	0.683333 33730697 63	2.956308 84170532 23
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1(0.001)	0.658333 36114883 42	7.496500 01525878 9
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1(0.01)	0.166666 67163372 04	20.80710 60180664 06
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1(0.1)	0.208333 32836627 96	186.6714 17236328 12
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	I2(0.00001)	0.691666 66269302 37	1.300762 77256011 96
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	I2(0.0001)	0.683333 33730697 63	1.410880 56564331 05

Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	12(0.001)	0.666666 68653488 16	2.105928 89785766 6
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l2(0.01)	0.691666 66269302 37	3.848038 67340087 9
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	12(0.1)	0.441666 66269302 37	10.25903 51104736 33
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.00 001, l2=0.00001)	0.649999 97615814 21	1.477874 27902221 68
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.00 01, l2=0.0001)	0.658333 36114883 42	2.927745 10383605 96
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.00 1, l2=0.001)	0.691666 66269302 37	7.606308 93707275 4
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.1, l2=0.1)	0.191666 66269302 368	200.3531 95190429 7
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.00 001, l2=0.1)	0.474999 99403953 55	10.30813 78936767 58
Feb 08	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh- tanh-softmax	adam	categorical_c rossentropy	l1_l2(l1=0.1, l2=0.00001)	0.191666 66269302 368	186.4034 11865234 38

I have settled 17 experiments. I find that, there are three sets of regularizers perform the best, with test accuracy of 0.6916666626930237. They are:

```
all layers use 12(0.00001) all layers use 12(0.01)
```

Notice: should never use I1(0.01) or I1(0.1) or I1_I2(I1=0.1, I2=0.1) or I1_I2(I1=0.1, I2=0.00001) in all layers.

L2 can be allowed to be big, but I1 can never be big.

```
Sklearn.model_selection.GridSearch
    model.add(layers.Dense(neuron_num1, activation = act_func, input_shape = (600.)))
                                                                                               CV on FNN
    # append identical inner layers:
    i = 0
    while i < num layers:
        model.add(layers.Dense(neuron_num2, activation =act_func))
                                                                                                         Best hyperparameters are:
        i += 1
                                                                                                         {'act func': 'relu',
    # the output layer:
    model.add(layers.Dense(6, activation = 'softmax')) # must be 6 categories, should use softmax '
                                                                                                          batch size': 256, 'epochs':
    model.compile(optimizer = 'adam', loss = loss f, metrics = ['accuracy'])
                                                                                                         60, 'loss f':
    return model
                                                                                                          mean absolute error',
from sklearn.model_selection import GridSearchCV
# from tensorflow.keras.wrappers.scikit learn import KerasRegressor
                                                                                                          neuron numl': 64,
import scikeras
                                                                                                          neuron num2': 256,
from scikeras.wrappers import KerasClassifier, KerasRegressor
                                                                                                          num layers': 0, 'optimizer':
# SciKeras renamed the constructor argument build in to model
                                                                                                          adam' Best score is: 0.5625
classifier3 = KerasClassifier (mode1 = my mode13, act func='relu', neuron num1=32,
                               neuron_num2=128, num_layers=0, loss_f='categorical_crossentropy',
                              layers num=3)
                                                                      # train-validation splitting:
                                                                      from sklearn.model_selection import train_test_split
                                                                      # this time I use the cleansed dataset
# hyperparameters:
                                                                      X_train_partial2, X_val2, Y_train_partial2, Y_val2 = train_test_split(
hyperparameters3 = {
                                                                         X_train2, Y_train2, test_size=0.20, random_state=15)
    neuron num1': [32, 64],
                                                                       # we set a random state in order to repeat the experiment later
    'neuron_num2': [128, 256, 512],
                                                                      grid_search_trial3 = GridSearchCV(estimator = classifier3, param_grid = hyperparameters3, scoring = 'accu
    'num_layers': [0, 1, 2, 3],
                                                                      # In sklearn, any machine learning model is an estimator, estimator, get params()
    'act_func': ['relu', 'tanh', 'selu'],
    'batch_size': [128, 256, 512],
                                                                      # run on Feb 02
                                                                      grid_search_fit3 = grid_search_trial3.fit(X_train_partial2, Y_train_partial2, verbose=0, validation_data=
    'epochs': [20, 40, 60],
    'loss_f': ['categorical_crossentropy', 'mean_absolute_error'],
                                                                      best_parameters3 = grid_search_fit3.best_params_
                                                                      best_score3 = grid_search_fit3.best_score_
    'optimizer': ['adam', 'rmsprop', 'adamax']
                                                                      print("Best hyperparameters are: " + str(best_parameters3), "Best score is: ", best_score3)
```

def my_model3(act_func, neuron_num1, neuron_num2, num_layers, loss_f, layers_num):

just pick any parameters here to control the other variables:

train the model:

mode1 = mode1s. Sequentia1()

Repetition of The Best FNN Model

Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batc h size	# hidden layers	Neuron nums	Activation functions	optimiz er	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	20	64	0	256-6	relu-softmax	rmsprop	categorical_c rossentropy	-	0.73333334 92279053	0.9777682 423591614

Accuracy=0.708

Lack of replicablility, may caused by randomness of Dropout, randomness of weight, ...

[68]: # convert to a numerical vector
from sklearn. feature_extraction. text import TfidfVectorizer
from sklearn. svm import LinearSVC
from sklearn. pipeline import make_pipeline

model_TFIDFSVC = make_pipeline(TfidfVectorizer(), LinearSVC(random_state=0, tol=1e-5))

In [70]: # Apply model to the training data, then predict labels for test data

model_TFIDFSVC.fit(X_train_pre2, Y_train_pre2)
labels_TFIDFSVC = model_TFIDFSVC.predict(X_test_pre2)

Random seeds

Date

Codes Implemented

Classification Using Classical NLP methods

They score really high!

Table 5.1.2-1 Performances of My NLP Models

Date	Manuoni	,000							Precision	Recall	F1
	random. seed	np.random. seed	tf.random. set_seed	classifier random_ state	Vectorizer	Classifier	Make pipeline?	Accuracy	(weighted avg)	(weighted avg)	(weight ed avg)
Dec 09	15	15	15	0	TF-IDF	Support Vector Classifier	Yes	0.86	0.87	0.86	0.85
Dec 09	15	15	15	0	Count Vectorizer	Support Vector Classifier	Yes	0.86	0.87	0.86	0.85
Dec 09	15	15	15	0	Bigram	Support Vector Classifier	Yes	0.68	0.70	0.68	0.68
Jan31	15	15	15	-	TF-IDF	Multinomial Naive Bayes	Yes	0.78	0.80	0.78	0.76
Jan31	15	15	15	-	Count Vectorizer	Multinomial Naive Bayes	Yes	0.78	0.79	0.78	0.78
Jan31	15	15	15	-	Bigram	Multinomial Naive Bayes	Yes	0.74	0.75	0.74	0.72
Feb21	15	15	15	15	TF-IDF	Random Forest	Yes	0.73	0.74	0.72	0.71
Feb21	15	15	15	15	Count Vectorizer	Random Forest	Yes	0.69	0.68	0.69	0.68
Feb21	15	15	15	15	Bigram	Random Forest	Yes	0.54	0.64	0.54	0.56
Feb21	15	15	15	-	TF-IDF	K-Nearest Neighbors	Yes	0.82	0.86	0.82	0.82
Feb21	15	15	15	-	Count Vectorizer	K-Nearest Neighbors	Yes	0.55	0.60	0.55	0.56
Feb21	15	15	15	-	Bigram	K-Nearest Neighbors	Yes	0.26	0.54	0.26	0.18

```
Pre-trained model source: Bilibili video tutorial
https://www.bilibili.com/video/BV1u7411d7zU/?share_source=cop
y_web&vd_source=296c14837e03501f00801a512d7of87e
mode1_1DCNN.add(1ayers.Embedding(input_dim=2000,
                                               # size of the vocabulary
                              output_dim=128,
                              input length=600))
mode1_1DCNN.add(1ayers.Conv1D(256,
                                  # output size
                                  # conv core size
                           padding='same'.
                           activation='relu'))
# The above layer creates a convolution kernel that is convolved with the layer input over
# spatial (or temporal) dimension to produce a tensor of outputs.
model_1DCNN.add(1ayers.MaxPooling1D(3, 3, padding='same'))
model_1DCNN.add(1ayers.Conv1D(32, 3, padding='same', activation='relu'))
model_1DCNN.add(layers.Flatten())
```

mode1_1DCNN.add(1ayers.Dropout(0.3)) model_1DCNN.add(1ayers.BatchNormalization()) # the layer of batch normalization model_1DCNN.add(layers.Dense(256, activation='relu')) $model_1DCNN.add(1ayers.Dropout(0.2))$ model_1DCNN.add(layers.Dense(6, activation='softmax')) model_1DCNN.compile(optimizer='rmsprop', loss='categorical_crossentropy', mode1 1DCNN.summary() # train-validation splitting X_train_partia12, X_va12, Y_train_partia12, Y_va12 = train_test_split(X_train2, Y_train2, test_size=0.20, random_state=15) # we set a random state in order to repeat the experiment later history_1DCNN = mode1_1DCNN.fit(X_train_partia12, Y_train_partia12, batch size=64, # set a fixed batch size epochs=31, # we just set any fixed number for validation_data=(X_val2, Y_val2))

Codes Implemented

convld_16 (ConvlD)	(None, 600, 256)	98560
max_pooling1d_8 (MaxPooling 1D)	(None, 200, 256)	0
convld_17 (ConvlD)	(None, 200, 32)	24608
flatten_8 (Flatten)	(None, 6400)	0
dropout_16 (Dropout)	(None, 6400)	0
batch_normalization_8 (Batc hNormalization)	(None, 6400)	25600
dense_16 (Dense)	(None, 256)	1638656
dropout_17 (Dropout)	(None, 256)	0
dense_17 (Dense)	(None, 6)	1542

The best CNN

Accuracy=0.633

```
Codes Implemented
# the embedding layer has the shape of (samples, input_length, 8):
model_RNN.add(Embedding(600, 128))
# model_RNN.add(SimpleRNN(64))
model_RNN.add(LSTM(64, activation='tanh',
                                                                                              RNN with LSTM layer
                           recurrent_activation='hard_sigmoid'.
                           use bias=True.
                           kernel_initializer='glorot_uniform',
                           recurrent_initializer='orthogonal',
                                                               final_LSTM = model_RNN.evaluate(X_test2, Y_test2)
                                                               final_LSTM
                           bias_initializer='zeros',
                           unit_forget_bias=True,
                                                               dropout=0.0, recurrent_dropout=0.0,
                                                               [1.7375144958496094, 0.2666666805744171]
                           return_sequences=True))
mode1_RNN. add(Dropout(0.4))
model_RNN.add(LSTM(64, activation='tanh'))
mode1_RNN. add(Dropout(0.4))
                                                                                             Accuracy=0.267
model_RNN.add(Dense(6, activation='softmax'))
model_RNN.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model RNN.summary()
                                                                       Model: "sequential 7"
train-validation splitting
                                                                        Laver (type)
                                                                                                                           Param #
                                                                                                   Output Shape
_train_partia12, X_va12, Y_train_partia12, Y_va12 = train_test_sp1it(
      X_train2, Y_train2, test_size=0.20, random_state=15)
                                                                        embedding 7 (Embedding)
                                                                                                   (None, None, 128)
                                                                                                                           76800
" we set a random state in order to repeat the experiment later
                                                                        1stm 10 (LSTM)
                                                                                                   (None, None, 64)
                                                                                                                           49408
istory_RNN = model_RNN.fit(X_train_partia12,
                         Y train partial2.
                                                                        dropout_6 (Dropout)
                                                                                                   (None, None, 64)
                                                                                                                           0
                         batch_size=128, # set a fixed batch size
                         epochs=15, # we just set any fixed number for con
                                                                        1stm_11 (LSTM)
                                                                                                   (None, 64)
                                                                                                                           33024
                         validation_data=(X_val2, Y_val2))
Pre-trained model source: Chollet's ML book Ch.6
                                                                        dropout 7 (Dropout)
                                                                                                   (None, 64)
                                                                                                                           0
                                                                        dense_3 (Dense)
                                                                                                   (None, 6)
                                                                                                                           390
```

model RNN = Sequential()

Latent Dirchlet Allocation

```
(Oct 25)
 Topic 0
          ['study', 'year', 'research', 'one', 'university', 'say', 'find', 'also', 'social', 'people']
 Topic 1
          ['cell', 'fig', 'expression', 'gene', 'study', 'also', 'show', 'result', 'group', 'level']
 Topic 2
          ['quantum', 'state', 'phase', 'fig', 'show', 'system', 'two', 'time', 'use', 'energy']
 Topic 3
          ['use', 'cell', '10', 'sample', 'min', 'flow', 'perform', 'mm', 'study', 'medium']
 Topic 4
          ['hurricane', 'storm', 'water', 'flood', 'change', 'increase', 'crystal', 'temperature', 'sho
 w', 'plasma']
 Topic 5
          ['data', 'use', 'model', 'method', 'fig', 'structure', 'magnetic', 'result', 'field', 'stud
 y']
                             (Fig 5.1.5-1 LDA Result)
```

Final Comparison

Although I have put great efforts on tuning hyperparameters, the best FNN I can bring to you is with accuracy=0.733

		Settin	gs			Tuning parameters								valuations	
Date	Data	sys _se ed	np_ see d	tf_s eed	wor ds	Epo chs	Batc h size	# hidden layers	Neuron nums	Activation functions	optimiz er	loss	regul erisa tion	Accuracy (test)	Loss (test)
Feb 03	Clean sed	15	15	15	600	20	64	0	256-6	relu-softmax	rmsprop	categorical_c rossentropy	-	0.73333334 92279053	0.9777682 423591614
Feb 03	Clean sed	15	15	15	600	20	128	2	512-256- 128-6	relu-tanh-tanh- softmax	adam	categorical_c rossentropy	-	0.7083333	1.2403667 132059732
Jan 31	Clean sed	15	15	15	600	20	256	3	128-128- 128-128-6	relu-relu- relu- relu-softmax	rmsprop	categorical_c rossentropy	-	0.69999998 8079071	1.0144932 270050049

Settings 4.9-1: 1D CNN

Layer types: (1) Embedding(2000, 128, 600); (2) Conv1D(256, 3); (3) MaxPooling1D(3, 3);

- (4) Conv1D(32, 3, 'relu'); (5) Flatten; (6) Dropout(0.3); (7) BatchNormalization;
- (8) Dense(256, 'relu'); (9) Dropout(0.2); (10) Dense(6, 'softmax').
- np_seed: 15; tf_seed: 15; words: 600; batch size: 64; epoch: 31

The best DNN model is a CNN model for which I get accuracy=0.633, fine-tuned by a pre-trained model mentioned by a video in Bilibili website.

- For other NLP models,
- (1) Classifier: SVC is No.1, MNB is No.2, both are impressive. Random Forest provides just a passing performance; while KNN must combine with TF-IDF vectorizer to be outstanding.
- (2) Vectorizer: TF-IDF is always excellent with all classifiers; Count Vectorizer almost the same but should not combine with KNN; Bigram performs always the worst, and should never combine with KNN.

Final Comparison

- It is interesting why SVC and MNB Classifiers outperform all the Neural Network models.
- TF-IDF and Count Vectorizer apparently help its model to get a high accuracy. Can I
 implement them into a NN as a layer?
- Inspired by LDA result, can I purify my subject-classification scheme by eliminating the classification based on research methods?

 Journal editors may adapt my model(s), but should manually scan for errors. Editors' work is irreplaceable.

Arrangement - Gantt Chart, Milestone Tasks

4

10

12

13

140

15

16

Literature papers and

books collected

Literature Review file

Project Design file

Dec 01

Dec 20

Dec 19 Dec 25 Done before midterm

Done, on Dec 19

Thank You for reviewing my project!

