Correction de la feuille d'exercices nº 3 Relations binaires

Les questions ou exercices précédés d'une étoile (*) sont plus difficiles.

Vous ne les traiterez qu'avec l'accord de votre enseignant(e) de TD.

Exercice 1: Soit $A = \{a, b, c\}$ et $B = \{1, 2, 3\}$.

On définit la relation \mathcal{R} de A vers B par $\mathcal{R} = \{(a, 1), (b, 1), (b, 3)\}.$

Donner la présentation cartésienne de \mathcal{R} puis sa représentation sagittale.

Correction:

\mathcal{R}	1	2	3
a	X		
b	X		X
c			

Exercice 2: Définition : Soit a et b deux nombres entiers relatifs. On dit que a divise b s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

On considère les relations \mathcal{R} suivantes de A vers B.

Donner pour chacune d'elles une présentation sagittale (ou cartésienne si elle est trop lourde).

- 1. $A = \{1, 2, 3, 4, 8\}$; $B = \{1, 4, 6, 9\}$ et $aRb \Leftrightarrow a$ divise b
- 2. $A = \{1, 2, 3, 4, 8\}; B = \{1, 4, 6, 9\} \text{ et } a\mathcal{R}b \Leftrightarrow b = a^2$

Correction:

1.

\mathcal{R}	1	4	6	9
1	X			
2		X		
3				X
4				
8				

2.

Exercice 3: Soit $A = \{a, b\}$ et $B = \{1, 2\}$.

- 1. Combien existe-t-il de relations binaires de A vers B? (Indication : revenir à la définition mathématique)
- 2. Représenter toutes les relations de A vers B. (On s'attachera à travailler méthodiquement) Pour chacune d'elles préciser s'il s'agit d'une application ou non de A vers B. Pour celles qui ne correspondent pas à une application, le prouver en donnant une raison suffisante.

Définition : Soit \mathcal{R} une relation de A vers B. On dit que le triplet $f = (A, B, \mathcal{R})$ est une application de A dans B si, pour tout x de A, il existe y unique de B tel que x \mathcal{R} y. On note alors y = f(x). L'application f est notée :

$$f: A \to B$$

 $x \mapsto f(x)$

Correction:

- 1. Une relation de A vers B est une partie du produit cartésien $A \times B$. Il y a donc autant de relations de A vers B que d'éléments dans $\mathcal{P}(A \times B)$. $Card(A \times B) = 2 \times 2 = 4 \text{ donc } Card(\mathcal{P}(A \times B)) = 2^4 = 16.$ Il y a 16 relations de A vers B.
- 2. Donnons-les par leurs représentations sagittales.

Les applications de A vers B sont les relations $\{(a,1),(b,2)\},\ \{(a,1),(b,1)\},\ \{(a,2),(b,1)\}$ et $\{(a,2),(b,2)\}.$

Exercice 4: Soit $A = \{a, b, c, d\}$. Combien y a-t-il de relations dans A? Représenter sous forme sagittale trois d'entre elles.

Correction : Il y a autant de relations dans A que d'éléments dans $\mathcal{P}(A \times A)$. $Card(A^2) = 16$ donc $Card(\mathcal{P}(A^2)) = 2^{16} = 65\,536$. Il y a $65\,536$ relations dans A. On en donne 3 exemples au choix... :)

Exercice 5: Soit X un ensemble. On considère la relation d'inclusion dans $\mathcal{P}(X)$ (l'ensemble des parties de X). Rappeler les propriétés de l'inclusion, démontrées dans un cours précédent, qui font de cette relation une relation d'ordre dans $\mathcal{P}(X)$.

Correction : L'inclusion dans $\mathcal{P}(X)$ est réflexive, transitive et antisymétrique :

- 1. $\forall A \in \mathcal{P}(X), A \subset A$.
- 2. $\forall (A, B, C) \in \mathcal{P}(X)^3$, si $A \subset B$ et $B \subset C$ alors $A \subset C$.
- 3. $\forall (A,B) \in \mathcal{P}(X)^2$, si $A \subset B$ et $B \subset A$ alors A = B (c'est le théorème de la double inclusion).

Exercice 6: On définit une relation dans l'ensemble des mots de la langue française de la façon suivante : un mot **x** est en relation avec un mot **y** s'il est écrit avec les mêmes lettres (on dit que x est un anagramme de y). Montrer qu'il s'agit d'une relation d'équivalence. Déterminer la classe du mot "chien".

Correction: Notons E l'ensemble des mots de la langue française.

- 1. \mathcal{R} est réflexive : soit x un mot de la langue française. x s' écrit avec les mêmes lettres que x. Ainsi $\forall x \in E, \ x \mathcal{R} x$.
- R est symétrique : soient x et y deux mots de la langue française tels que x s'écrit avec les mêmes lettres que y. Alors y s'écrit avec les mêmes lettres que x. Ainsi ∀(x, y) ∈ E², si xRy alors yRx.
- 3. \mathcal{R} est transitive : soient x, y et z des mots de la langue française tels que x s' écrit avec les mêmes lettres que y et y s' écrit avec les mêmes lettres que z. Alors x s' écrit avec les mêmes lettres que z. Ainsi $\forall (x, y, z) \in E^3$, si $x\mathcal{R}y$ et $y\mathcal{R}z$ alors $x\mathcal{R}z$.

 \mathcal{R} est donc une relation d'équivalence. La classe du mot "chien" est l'ensemble des mots de la langue française qui s'écrivent avec les mêmes lettres que le mot "chien". Ainsi $\mathcal{C}\ell(chien) = \{chien, niche, Chine\}$.

Exercice 7: Correction:

On rappelle la définition suivante : un entier $n \in \mathbb{N}$ est un carré parfait s'il existe un entier a tel que $n=a^2$. Par exemple 1,4, 9 et 16 sont des carrés parfaits car $1=1^2,\ 4=2^2,\ 9=3^2$ et $16=4^2$. On considère la relation \mathcal{R} définie dans \mathbb{N}^* par :

$$\forall x, y \in \mathbb{N}^*, \ x\mathcal{R}y \iff xy \text{ est un carr\'e parfait.}$$

Dans la suite de l'exercice on restreint la relation \mathcal{R} à l'ensemble $E = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

1. Donnez la représentation cartésienne de la relation \mathcal{R} , puis sa représentation sagittale à côté.

\mathcal{R}	1	2	3	4	5	6	7	8
1	X			X				
2		X						X
3			X					
4	X			X				
5					X			
6						X		
7							X	
8		X						X

2. En vous appuyant sur la représentation cartésienne de la relation \mathcal{R} , déterminez si celle-ci est réflexive et symétrique.

Toutes les cases de la diagonale principale sont cochées, ce qui signifie que $\forall x \in E, x\mathcal{R}x$. La relation \mathcal{R} est donc réflexive.

La représentation cartésienne de la relation \mathcal{R} est symétrique par rapport à sa diagonale principale donc $\forall (x,y) \in E^2$, si $x\mathcal{R}y$ alors $y\mathcal{R}x$. La relation \mathcal{R} est donc symétrique.

3. On souhaite étudier si la relation \mathcal{R} est transitive. En vous appuyant sur la représentation sagittale, complétez le tableau ci-dessous en 2 parties, en ne reportant dans les trois colonnes à gauche, que les triplets (x,y,z) tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Ecrire alors Vrai ou Faux en-dessous de $x\mathcal{R}z$, puis en-dessous du connecteur \rightarrow .

x	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	$x\mathcal{R}z$	x	y	z	$(x\mathcal{R}y)$	ET	$y\mathcal{R}z)$	\rightarrow	$x\mathcal{R}z$
1	1	1		V		V	V	4	1	4		V		V	V
1	1	4		V		V	V	4	4	1		V		V	V
1	4	1		V		V	V	4	4	4		V		V	\overline{V}
1	4	4		V		V	V	5	5	5		V		V	V
2	2	2		V		V	V	6	6	6		V		V	V
2	2	8		V		V	V	7	7	7		V		V	V
2	8	2		V		V	V	8	2	2		V		V	V
2	8	8		V		V	V	8	2	8		V		V	V
3	3	3		V		V	V	8	8	2		V		V	\overline{V}
4	1	1		V		V	V	8	8	8		V		V	V

Pour tout $(x, y, z) \in E^3$ tel que $x\mathcal{R}y$ et $y\mathcal{R}z$ on a $x\mathcal{R}z$) d'après le tableau ci-dessus. La relation \mathcal{R} est donc transitive.

- 4. Que peut-on dire de la relation \mathcal{R} d'après les questions 2. et 3. ? La relation \mathcal{R} est réflexive, symétrique et transitive. C'est donc une relation d'équivalence dans E.
- 5. Donner les classes d'équivalence de R.

La représentation sagittale permet de visualiser facilement les classes d'équivalence :

$$\mathcal{C}\ell(1) = \{1, 4\}$$

$$\mathcal{C}\ell(2) = \{2, 8\}$$

$$\mathcal{C}\ell(3) = \{3\}$$

$$\mathcal{C}\ell(5) = \{5\}$$

$$\mathcal{C}\ell(6) = \{6\}$$

$$\mathcal{C}\ell(7) = \{7\}$$

6. (*) Démontrer la transitivité de la relation \mathbb{R} dans \mathbb{N} (et non plus dans E).

Hypothèse : $a \mid b \text{ et } b \mid c$

Montrons que $a \mid c$.

 $a \mid b \iff$ il existe un entier k_1 tel que $b = k_1 \times a$.

 $b \mid c \iff$ il existe un entier k_2 tel que $c = k_2 \times b$.

Il s'agit de trouver un entier k vérifiant $c = k \times a$.

Or $c = k_2 \times b = k_2 \times (k_1 \times a) = (k_2 \times k_1) \times a$.

Posons alors $k = k_2 \times k_1$.

Conclusion : $a \mid c$

Exercice 8: (*) Soit a et b deux nombres entiers relatifs. On dit que **a divise b** s'il existe un entier relatif k tel que b = ka. On note alors $a \mid b$.

Démontrer que la relation de divisibilité est réflexive et transitive dans \mathbb{Z} . Est-elle antisymétrique dans \mathbb{Z} ? Démontrer que sa restriction à \mathbb{N} est antisymétrique.

Correction : Soit $n \in \mathbb{Z}$. $n = 1 \times n$ donc $n \mid n$. Ainsi $\forall n \in \mathbb{N}, n \mid n$, ce qui signifie que la divisibilité est réflexive dans \mathbb{Z} .

La transitivité dans $\mathbb N$ a été montrée dans l'exercice 7. Elle se démontre de façon analogue dans $\mathbb Z$. Par contre elle n'est pas antisymétrique dans $\mathbb Z$ car $(-1) \mid 1$ et $1 \mid (-1)$ mais $-1 \neq 1$.

Montrons que la divisibilité est antisymétrique dans \mathbb{N} . Soient a et b des entiers naturels.

Hypothèse : $a \mid b$ et $b \mid a$

Montrons qu'alors a = b.

 $a \mid b \iff \exists k_1 \in \mathbb{N} \text{ tel que } b = k_1 a \text{ et } b \mid a \iff \exists k_2 \in \mathbb{N} \text{ tel que } a = k_2 b.$ Ainsi $a = k_1 b = k_1 k_2 a.$

Premier cas : a = 0.

Les hypothèses sont alors $0 \mid b$ et $b \mid 0$, ce qui implique que b = 0. On a alors a = b.

Deuxième cas : $a \neq 0$.

Alors $k_1k_2 = 1 \iff (k_1 = k_2 = 1)$ puisque k_1 et k_2 sont des entiers naturels.

On a alors a = b.

Conclusion : $\forall (a, b) \in \mathbb{N}$, si $a \mid b$ et $b \mid a$ alors a = b. La divisibilité est antisymétrique dans \mathbb{N} .