GEBZE TECHNICAL UNIVERSITY DEPARTMENT OF COMPUTER ENGINEERING CSE222/505 – Spring 2021 Homework 2 Report

Yakup Talha Yolcu 1801042609

Part 1

I wrote new code for these algorithms. I did not want to use my previous homework codes.

1. Searching a product

Time complexity is just $\Theta(n)$ because for loop will be executed n times because of the branch products's length. In println and get methods, we have constant time. Time complexity= $\Theta(n)$

```
public void search(String model_name,String color_name) {
    for(int i=0;i<br/>branch_products.length;i++) {
        System.out.println(branch_products.get(i));
    }
}
```

- 2. Add/remove product.
 - i) Add product

Time complexity for the worst case is Θ (n) (amortized) for reallocation + Θ (1) for get_size method.

Time complexity for the best case is Θ (1) because of get_size method. So, at the end our time complexity is O(n).

```
public void add_product(Product a1) {
    if(get_size()==branch_products.length) {
        reallocate();
    }
    branch_products[get_size()+1]=a1;
    size++;
}
```

ii) Remove product

To remove a product, we need to find this product by giving color and model names. After finding it, we need to decrement the stock.

We have 2 for loops and 2 if's for each. For the worst case we will have $\Theta(n^*m)$ complexity n for-> model name, m for -> color name.

For the best case we have $\Theta(1)$ complexity. So our complexity is O(n*m) Getters are considered as constant time.

3. Querying the products that need to be supplied.

Admin can query by giving a branch to the system and learn whether product need to be supplied.

Time comlexity is constant time because we have getter function and we have comparison.

 $T(n)=\Theta(1)$

```
public boolean query(Branch b1){
    return !(b1.get_stock()==false);
}
```

Part 2

- a) It's meaningless to say: "The running time of an algorithm A is at least O(n²) because when we are using Big Oh notation we are indicating that our algorithm's running time is less than or equal to n²
- b) We know $\Theta(f(n)+g(n))=O(f(n)+g(n))=\Omega(f(n)+g(n))$

```
\begin{split} & \max(f(n),g(n)) >= g(n) \text{ if } \max(f(n),g(n)) = f(n) \\ & \max(f(n),g(n)) >= f(n) \text{ if } \max(f(n),g(n)) = g(n) \\ & \text{Let's say that } \max(f(n),g(n)) = f(n) \text{ and let } T(f(n)) = \Theta(n) \\ & \text{So, there must be } \Theta(n) >= g(n) \\ & g(n) \text{ could be } \Theta(n) \text{ or } \Theta(1) \\ & \text{Let's say that } g(n) = \Theta(n) -> \text{ then } O(f(n) + g(n)) = O(n + n) \\ & \text{N+n 's time complexity is } \Theta(n). \text{ } \max(f(n),g(n)) \text{ was } f(n) \text{ and it was } \Theta(n). \\ & \text{It is appropriate.} \\ & \text{Let's say that } g(n) = \Theta(1). \text{ Then } O(f(n) + g(n)) = O(n + 1). \\ & O(n + 1)? = \max(f(n),g(n)) => O(n + 1) = \Theta(n). \text{ yes it is proved.} \end{split}
```

If we had chose the g(n) as maximum, we would get the same result.

• c)

```
1) 2^{n+1}=\Theta(2^n)
 2^{n+1}=2^n*2, so we have lower order term as 2. We can remove it.
 2^n=\Theta(2^n) we can say this because \Theta checks order of magnitude.
 It is true
```

```
2) 2^{2n} = \Theta(2^n)

2^{2n} = (2^2)n = 4^n so we can't say that. It is wrong
```

3) Let $f(n)=O(n^2)$ and $g(n)=O(n^2)$. Prove or disprove that: $f(n)*g(n)=O(n^4)$.

 $O(n^2)$ means that f(n)'s complexity is greater than or equal to n^2 .

 $\Theta(n^2)$ means that g(n)'s complexity is exactly n^2 .

Let's check $O(n^2)^* \Theta(n^2)$?= $\Theta(n^4)$

We can say $O(n^2)=O(n^3)$. So $O(n^3)^* \Theta(n^2)=O(n^5)$.

 $O(n^5) = \Theta(n^4)$ for just some cases, not always. So we can't say this statement is absolutely correct.

Part 3

$$n^{1.01}$$
 , $nlog^2n$, 2^n $n^{1/2}$, log^3n , $n2^n$, 3^n , 2^{n+1} , 5 logn , $logn$

We know exponential fuctions are the largest ones.

We need to start from 2^n , $n2^n$, 3^n , 2^{n+1} , 5^{logn} .

5 logn will be the least because logn is less than n.

 2^n and 2^{n+1} will be equal because of constant 2.

Let's say $\lim (3^n)/(n2^n)$, n goes infinity, we will get 0. It means that $(n2^n)$ is larger.

Up to now we have
$$3^n > n \cdot 2^n > 2^{n+1} = 2^n > 5^{\log_2 n}$$

Remained: $n^{1.01}$, $nlog^2n$, $\,n^{1/2}$, log^3n and logn

We know $n^{1.01} > nlog^2n > log^3n > logn$

If we have lim(n goes infinity) $(n^{1/2}) / \log^3 n = (By L'opital) (1/(2* <math>n^{1/2}))/ (1/n(\ln 2))*3$ close the infinity. We will get ln2 at the end. So $(n^{1/2})$ is larger.

The growth order is ->

$$3^n > n.2^n > 2^{n+1} = 2^n > 5^{\log_2 n} > n^{1.01} > n.log^2 n > \sqrt{n} > \log^3 n > \log n$$

Part 4

1) Minimum valued item

```
1 ArrayList<int> x;
2 set min=x.get(0);
3 for (i in iterable x) {
4    if i<min do
5         i=min
6    end
7  }
8 return min</pre>
```

Time complexity is -> in for loop we have if statement. In if statement we have comparison and it is contant time. We have $\Theta(1)$. Loop is executed n times. So we have $\Theta(n)^*\Theta(1) = \Theta(n)$. It is complexity is $\Theta(n)$.

- 2) Median item
- For set j=0,j<n,j++
 - Determine minimum and maximum of the ArrayList // Θ(n)
- -While
 - \circ -For set i=0, i<n, i++ // $\Theta(n^2)$
 - If min<ArrayList[i] and there is no such element between these two value // Θ(n)

Min=arraylist[i]

 If max>ArrayList[i] and there is no such element between these two value // Θ(n)

Max=ArrayList[i]

- o if max equals min, break
- o If absolute value of max-min less than or equal to 1, break

//For best case, while will be executed one times, and complexity will be $\Theta(n^2)$

//For the worst case, while will be executed n/2 times, So complexity will be $\Theta(n^2 * n/2)$ which is $\Theta(n^3)$

//Total complexity will be O(n³)

- Return (min+max)/2
- 3) Find two elements whose sum is equal to given value.
- Set boolean flag=false // Θ(1)
- For i=0,i<n,i++ // $\Theta(1)$ for best case, $\Theta(n^2)$ for worst case (in total)
 - For j=0,j<n,j++ // $\Theta(1)$ for best case, $\Theta(n)$ for worst case
 - If (the value that in the ith index) + (the value that in the jth index) equals the given value $// \Theta(1)$
 - Flag=true
 - Break
 - if flag equals true //Θ(1)
 - Break
- We have i and j now
- //At the end, we have O(n²)

- 4) Assume there are two ordered array list of n elements. Merge these two lists to get a single list in increasing order.
 - For i=0,i<n+m,i++ // Θ(n+m)
 - if i<n // Θ(1)
 - Set list's ith index value as the first list's ith index value
 - Else Θ(1)
 - Set list's ith index value as the second list's i-n'th index value
 - Sort the merged list // O(nlogn) considered as merge sort
 - So our time complexity is O(nlogn) at the end

Part 5

```
1)
        int p_1 (int array[]): {
                 return array[0] * array[2]) // Complexity is Θ(1)
        //Total time complexity is \Theta(1)
        //Total space complexity is S(1)
        }
   2)
        int p_2 (int array[], int n): {
                 Int sum = 0 // \Theta(1)
                 for (int i = 0; i < n; i=i+5) // \Theta(n)
                         sum += array[i] * array[i] // \Theta(1)
                 return sum // \Theta(1)
        //Total space complexity is S(1)
        //Total time complexity is \Theta(1) + \Theta(n) + \Theta(1) = \Theta(n)
            }
    3)
        void p_3 (int array[], int n): {
                 for (int i = 0; i < n; i++) // \Theta(n)^* O(\log n) = O(n^* \log n)
                         for (int j = 1; j < i; j=j*2) // O(log n)
                                  printf("%d",array[i]*array[j]) // ⊖(1)
                     }
                //Total space complexity is S(1)
                 //Total time complexity is \Theta(1)*O(n*log n)=O(n*log n)
```

//I thought that space complexity does not depend on the input size, so all space complexities are 1 as constant