Existence of solutions to linear IVPs

Resolvent matrix

Autonomous linear systems

Definition (Linear ODE)

A linear ODE is a differential equation taking the form

$$\frac{d}{dt}x = A(t)x + B(t), \tag{LNH}$$

where $A(t) \in \mathcal{M}_n(\mathbb{R})$ with continuous entries, $B(t) \in \mathbb{R}^n$ with real valued, continuous coefficients, and $x \in \mathbb{R}^n$. The associated IVP takes the form

$$\frac{d}{dt}x = A(t)x + B(t)$$

$$x(t_0) = x_0.$$
(1)

Linear ODEs p. 3

Types of systems

- x' = A(t)x + B(t) is linear nonautonomous (A(t)) depends on t nonhomogeneous (also called *affine* system).
- $\rightarrow x' = A(t)x$ is linear nonautonomous homogeneous.
- ▶ x' = Ax + B, that is, $A(t) \equiv A$ and $B(t) \equiv B$, is linear autonomous nonhomogeneous (or affine autonomous).
- \rightarrow x' = Ax is linear autonomous homogeneous.

▶ If A(t + T) = A(t) for some T > 0 and all t, then linear periodic.

Linear ODEs p. 4

Existence of solutions to linear IVPs

Resolvent matrix

Autonomous linear systems

Existence and uniqueness of solutions

Theorem (Existence and Uniqueness)

Solutions to (1) exist and are unique on the whole interval over which A and B are continuous.

In particular, if A, B are constant, then solutions exist on \mathbb{R} .

The vector space of solutions

Theorem

Consider the homogeneous system

$$\frac{d}{dt}x = A(t)x,\tag{LH}$$

with A(t) defined and continuous on an interval J. The set of solutions of (LH) forms an n-dimensional vector space.

Fundamental matrix

Definition

A set of n linearly independent solutions of (LH) on J, $\{\phi_1,\ldots,\phi_n\}$, is called a fundamental set of solutions of (LH) and the matrix

$$\Phi = [\phi_1 \ \phi_2 \ \dots \ \phi_n]$$

is called a fundamental matrix of (LH).

Fundamental matrix solution

Let $X \in \mathcal{M}_n(\mathbb{R})$ with entries $[x_{ij}]$. Define the derivative of X, X' (or $\frac{d}{dt}X$) as

$$\frac{d}{dt}X(t) = \left[\frac{d}{dt}x_{ij}(t)\right].$$

The system of n^2 equations

$$\frac{d}{dt}X = A(t)X$$

is called a matrix differential equation.

Theorem

A fundamental matrix Φ of (LH) satisfies the matrix equation X' = A(t)X on the interval J.-

Abel's formula

Theorem

If Φ is a solution of the matrix equation X' = A(t)X on an interval J and $\tau \in J$, then

$$\det \Phi(t) = \det \Phi(au) \exp \left(\int_{ au}^t \mathrm{tr} A(s) ds \right)$$

for all $t \in J$.

Existence of solutions to linear IVPs

Resolvent matrix

Autonomous linear systems

The resolvent matrix

Definition (Resolvent matrix)

Let $t_0 \in J$ and $\Phi(t)$ be a fundamental matrix solution of (LH) on J. Since the columns of Φ are linearly independent, it follows that $\Phi(t_0)$ is invertible. The *resolvent* (or *state transition matrix*, or *principal fundamental matrix*) of (LH) is then defined as

$$\mathcal{R}(t,t_0)=\Phi(t)\Phi(t_0)^{-1}.$$

Proposition

The resolvent matrix satisfies the Chapman-Kolmogorov identities

- 1. $\mathcal{R}(t,t) = I$,
- 2. $\mathcal{R}(t,s)\mathcal{R}(s,u) = \mathcal{R}(t,u)$,

as well as the identities

- 3. $\mathcal{R}(t,s)^{-1} = \mathcal{R}(s,t)$,
- 4. $\frac{\partial}{\partial s}\mathcal{R}(t,s) = -\mathcal{R}(t,s)A(s)$,
- 5. $\frac{\partial}{\partial t}\mathcal{R}(t,s) = A(t)\mathcal{R}(t,s)$.

Proposition

 $\mathcal{R}(t,t_0)$ is the only solution in $\mathcal{M}_n(\mathbb{K})$ of the initial value problem

$$\frac{d}{dt}M(t) = A(t)M(t)$$
$$M(t_0) = \mathbb{I},$$

with $M(t) \in \mathcal{M}_n(\mathbb{K})$.

Theorem

The solution to the IVP consisting of the linear homogeneous nonautonomous system (LH) with initial condition $x(t_0) = x_0$ is given by

$$\phi(t) = \mathcal{R}(t, t_0) x_0.$$

A variation of constants formula

Theorem (Variation of constants formula)

Consider the IVP

$$x' = A(t)x + g(t, x)$$
 (2a)

$$x(t_0) = x_0, (2b)$$

where $g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ a smooth function, and let $\mathcal{R}(t, t_0)$ be the resolvent associated to the homogeneous system x' = A(t)x, with \mathcal{R} defined on some interval $J \ni t_0$. Then the solution ϕ of (2) is given by

$$\phi(t) = \mathcal{R}(t, t_0)x_0 + \int_{t_0}^t \mathcal{R}(t, s)g(\phi(s), s)ds, \tag{3}$$

on some subinterval of J.

Existence of solutions to linear IVPs

Resolvent matrix

Autonomous linear systems

Autonomous linear systems

Consider the autonomous affine system

$$\frac{d}{dt}x = Ax + B, (A)$$

and the associated homogeneous autonomous system

$$\frac{d}{dt}x = Ax. \tag{L}$$

Exponential of a matrix

Definition (Matrix exponential)

Let $A \in \mathcal{M}_n(\mathbb{K})$ with $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The *exponential* of A, denoted e^{At} , is a matrix in $\mathcal{M}_n(\mathbb{K})$, defined by

$$e^{At} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} A^k,$$

where \mathbb{I} is the identity matrix in $\mathcal{M}_n(\mathbb{K})$.

Properties of the matrix exponential

- $lackbox{\Phi}(t) = e^{At}$ is a fundamental matrix for (L) for $t \in \mathbb{R}$.
- ▶ The resolvent for (L) is given for $t \in J$ by

$$\mathcal{R}(t,t_0) = e^{A(t-t_0)} = \Phi(t-t_0).$$

- $e^{At_1}e^{At_2} = e^{A(t_1+t_2)}$ for all $t_1, t_2 \in \mathbb{R}$. 1
- $ightharpoonup Ae^{At}=e^{At}A$ for all $t\in\mathbb{R}$.
- $(e^{At})^{-1} = e^{-At}$ for all $t \in \mathbb{R}$.
- ▶ The unique solution ϕ of (L) with $\phi(t_0) = x_0$ is given by

$$\phi(t)=e^{A(t-t_0)}x_0.$$

Autonomous linear systems

Computing the matrix exponential

Let P be a nonsingular matrix in $\mathcal{M}_n(\mathbb{R})$. We transform the IVP

$$rac{d}{dt}x = Ax \ x(t_0) = x_0$$
 (L_IVP)

using the transformation x = Py or $y = P^{-1}x$.

The dynamics of y is

$$y' = (P^{-1}x)'$$

$$= P^{-1}x'$$

$$= P^{-1}Ax$$

$$= P^{-1}APy$$

The initial condition is $y_0 = P^{-1}x_0$.

We have thus transformed IVP (L_IVP) into

$$\frac{d}{dt}y = P^{-1}APy$$

$$y(t_0) = P^{-1}x_0$$
(L_IVP_y)

From the earlier result, we then know that the solution of (L_IVP_y) is given by

$$\psi(t) = e^{P^{-1}AP(t-t_0)}P^{-1}x_0,$$

and since x = Py, the solution to (L_IVP) is given by

$$\phi(t) = Pe^{P^{-1}AP(t-t_0)}P^{-1}x_0.$$

So everything depends on $P^{-1}AP$.

Diagonalizable case

Assume P nonsingular in $\mathcal{M}_n(\mathbb{R})$ such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

with all eigenvalues $\lambda_1, \ldots, \lambda_n$ different.

We have

$$e^{P^{-1}AP} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}^k$$

For a (block) diagonal matrix M of the form

$$M = \begin{pmatrix} m_{11} & 0 \\ & \ddots & \\ 0 & m_{nn} \end{pmatrix}$$

there holds

$$M^k = \begin{pmatrix} m_{11}^k & 0 \\ & \ddots & \\ 0 & & m_{nn}^k \end{pmatrix}$$

Therefore,

$$e^{P^{-1}AP} = \mathbb{I} + \sum_{k=1}^{\infty} \frac{t^k}{k!} \begin{pmatrix} \lambda_1^k & 0 \\ & \ddots & \\ 0 & \lambda_n^k \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{k=0}^{\infty} \frac{t^k}{k!} \lambda_1^k & 0 \\ & \ddots & \\ 0 & & \sum_{k=0}^{\infty} \frac{t^k}{k!} \lambda_n^k \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{pmatrix}$$

And so the solution to (L_IVP) is given by

$$\phi(t) = P \begin{pmatrix} e^{\lambda_1 t} & 0 \\ & \ddots & \\ 0 & e^{\lambda_n t} \end{pmatrix} P^{-1} x_0.$$

Nondiagonalizable case

The Jordan canonical form is

$$P^{-1}AP = \begin{pmatrix} J_0 & 0 \\ & \ddots & \\ 0 & J_s \end{pmatrix}$$

so we use the same property as before (but with block matrices now), and

$$e^{P^{-1}APt} = \begin{pmatrix} e^{J_0t} & 0 \\ & \ddots & \\ 0 & & e^{J_st} \end{pmatrix}$$

The first block in the Jordan canonical form takes the form

$$J_0 = \begin{pmatrix} \lambda_0 & & 0 \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}$$

and thus, as before,

$$e^{J_0t}=egin{pmatrix} e^{\lambda_0t} & 0 \ & \ddots \ 0 & e^{\lambda_kt} \end{pmatrix}$$

Other blocks J_i are written as

$$J_i = \lambda_{k+i} \mathbb{I} + N_i$$

with \mathbb{I} the $n_i \times n_i$ identity and N_i the $n_i \times n_i$ nilpotent matrix

$$N_i = egin{pmatrix} 0 & 1 & 0 & & 0 \ & & \ddots & & \ & & & 1 \ 0 & & & 0 \end{pmatrix}$$

 $\lambda_{k+i}\mathbb{I}$ and N_i commute, and thus

$$e^{J_it}=e^{\lambda_{k+i}t}e^{N_it}$$

Since N_i is nilpotent, $N_i^k = 0$ for all $k \ge n_i$, and the series $e^{N_i t}$ terminates, and

$$e^{J_i t} = e^{\lambda_{k+i} t} egin{pmatrix} 1 & t & \cdots & rac{t^{n_i-1}}{(n_i-1)!} \ 0 & 1 & \cdots & rac{t^{n_i-2}}{(n_i-2)!} \ 0 & & 1 \end{pmatrix}$$

Theorem

For all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$, there is a unique solution x(t) to (L_IVP) defined for all $t \in \mathbb{R}$. Each coordinate function of x(t) is a linear combination of functions of the form

$$t^k e^{\alpha t} \cos(\beta t)$$
 and $t^k e^{\alpha t} \sin(\beta t)$

where $\alpha + i\beta$ is an eigenvalue of A and k is less than the algebraic multiplicity of the eigenvalue.

Fixed points (equilibria)

Definition

A fixed point (or equilibrium point, or critical point) of an autonomous differential equation

$$x' = f(x)$$

is a point p such that f(p) = 0. For a nonautonomous differential equation

$$x'=f(t,x),$$

a fixed point satisfies f(t, p) = 0 for all t.

A fixed point is a solution.

Orbits, limit sets

Orbits and limit sets are defined as for maps.

For the equation x' = f(x), the subset $\{x(t), t \in I\}$, where I is the maximal interval of existence of the solution, is an *orbit*.

If the maximal solution $x(t,x_0)$ of x'=f(x) is defined for all $t\geq 0$, where f is Lipschitz on an open subset V of \mathbb{R}^n , then the omega limit set of x_0 is the subset of V defined by

$$\omega(x_0) = \bigcap_{\tau=0}^{\infty} \left(\overline{\{x(t,x_0) : t \geq \tau\}} \cap V \} \right).$$

Proposition

A point q is in $\omega(x_0)$ iff there exists a sequence $\{t_k\}$ such that $\lim_{k\to\infty} t_k = \infty$ and $\lim_{k\to\infty} x(t_k,x_0) = q \in V$.

Definition (Liapunov stable orbit)

The orbit of a point p is Liapunov stable for a flow ϕ_t if, given $\varepsilon>0$, there exists $\delta>0$ such that $d(x,p)<\delta$ implies that $d(\phi_t(x),\phi_t(p))<\varepsilon$ for all $t\geq 0$. If p is a fixed point, then this is written $d(\phi_t(x),p)<\varepsilon$.

Definition (Asymptotically stable orbit)

The orbit of a point p is asymptotically stable (or attracting) for a flow ϕ_t if it is Liapunov stable, and there exists $\delta_1>0$ such that $d(x,p)<\delta_1$ implies that $\lim_{t\to\infty}d(\phi_t(x),\phi_t(p))=0$. If p is a fixed point, then it is asymptotically stable if it is Liapunov stable and there exists $\delta_1>0$ such that $d(x,p)<\delta_1$ implies that $\omega(x)=\{p\}$.

Contracting linear equation

Theorem

Let $A \in \mathcal{M}_n(\mathbb{R})$, and consider the equation (L). Then the following conditions are equivalent.

1. There is a norm $\| \|_A$ on \mathbb{R}^n and a constant a > 0 such that for any $x_0 \in \mathbb{R}^n$ and all $t \geq 0$,

$$||e^{At}x_0||_A \le e^{-at}||x_0||_A.$$

2. There is a norm $\| \|_B$ on \mathbb{R}^n and constants a > 0 and $C \ge 1$ such that for any $x_0 \in \mathbb{R}^n$ and all $t \ge 0$,

$$||e^{At}x_0||_B \le Ce^{-at}||x_0||_B.$$

3. All eigenvalues of A have negative real parts.

In that case, the origin is a *sink* or *attracting*, the flow is a *contraction* (antonyms *source*, *repelling* and *expansion*).

Hyperbolic linear equation

Definition

The linear differential equation (L) is *hyperbolic* if A has no eigenvalue with zero real part.

Definition (Stable eigenspace)

The stable eigenspace of $A \in \mathcal{M}_n(\mathbb{R})$ is

$$E^s = \operatorname{\mathsf{span}}\{v : v \text{ generalized eigenvector for eigenvalue } \lambda,$$
 with $\Re(\lambda) < 0\}$

Definition (Center eigenspace)

The *center eigenspace* of $A \in \mathcal{M}_n(\mathbb{R})$ is

$$E^c = \operatorname{\sf span}\{v : v \text{ generalized eigenvector for eigenvalue } \lambda,$$
 with $\Re(\lambda) = 0\}$

Definition (Unstable eigenspace)

The *unstable eigenspace* of $A \in \mathcal{M}_n(\mathbb{R})$ is

$$E^u = \text{span}\{v : v \text{ generalized eigenvector for eigenvalue } \lambda, \text{ with } \Re(\lambda) > 0\}$$

We can write

$$\mathbb{R}^n = E^s \oplus E^u \oplus +E^c$$

and in the case that E^c =, then $\mathbb{R}^n = E^s \oplus E^u$ is called a *hyperbolic splitting*.

The symbol \oplus stands for *direct sum*.

Definition (Direct sum)

Let U, V be two subspaces of a vector space X. Then the span of U and V is defined by u + v for $u \in U$ and $v \in V$. If U and V are disjoint except for 0, then the span of U and V is called the *direct sum* of U and V, and is denoted $U \oplus V$.

Trichotomy

Define

$$\begin{split} V^s &= \big\{ v : \text{there exists } a > 0 \text{ and } C \geq 1 \text{ such that} \\ & \|e^{At}v\| \leq Ce^{-at}\|v\| \text{ for } t \geq 0 \big\}. \\ V^u &= \big\{ v : \text{there exists } a > 0 \text{ and } C \geq 1 \text{ such that} \\ & \|e^{At}v\| \leq Ce^{-a|t|}\|v\| \text{ for } t \leq 0 \big\}. \\ V^c &= \big\{ v : \text{ for all } a > 0, \|e^{At}v\|e^{-a|t|} \to 0 \text{ as } t \to \pm \infty \big\}. \end{split}$$

Theorem

The following are true.

- 1. The subspaces E^s , E^u and E^c are invariant under the flow e^{At} .
- 2. There holds that $E^s = V^s$, $E^u = V^u$ and $E^c = V^c$, and thus $e^{At}|_{E^u}$ is an exponential expansion, $e^{At}|_{E^s}$ is an exponential contraction, and $e^{At}|_{E^c}$ grows subexponentially as $t \to \pm \infty$.

Topologically conjugate linear ODEs

Definition (Topologically conjugate flows)

Let ϕ_t and ψ_t be two flows on a space M. ϕ_t and ψ_t are topologically conjugate if there exists an homeomorphism $h: M \to M$ such that

$$h \circ \phi_t(x) = \psi_t \circ h(x),$$

for all $x \in M$ and all $t \in \mathbb{R}$.

Definition (Topologically equivalent flows)

Let ϕ_t and ψ_t be two flows on a space M. ϕ_t and ψ_t are topologically equivalent if there exists an homeomorphism $h: M \to M$ and a function $\alpha: \mathbb{R} \times M \to \mathbb{R}$ such that

$$h \circ \phi_{\alpha(t+s,x)}(x) = \psi_t \circ h(x),$$

for all $x \in M$ and all $t \in \mathbb{R}$, and where $\alpha(t, x)$ is monotonically increasing in t for each x and onto all of \mathbb{R} .

Theorem

Let $A, B \in \mathcal{M}_n(\mathbb{R})$.

- 1. If all eigenvalues of A and B have negative real parts, then the linear flows e^{At} and e^{Bt} are topologically conjugate.
- 2. Assume that the system is hyperbolic, and that the dimension of the stable eigenspace of A is equal to the dimension of the eigenspace of B. Then the linear flows e^{At} and e^{Bt} are topologically conjugate.

Theorem

Let $A, B \in \mathcal{M}_n(\mathbb{R})$. Assume that e^{At} and e^{Bt} are linearly conjugate, i.e., there exists M with $e^{Bt} = Me^{At}M^{-1}$. Then A and B have the same eigenvalues.