

Planificación

Planificación de procesos

Eloy Anguiano

Rosa M. Carro

Ana González

Escuela Politécnica Superior Universidad Autónoma de Madrid

Introducción

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Parte I

Planificación Monoprocesador

Introducció

Objetivos de la planificación

Tipos de planificación

Políticas de planificación

Algoritmos d planificación

Otras política

Planificación en UNIX

Evaluación de algoritmos

IntroducciónObjetivos de la planificación

Entre los objetivos básicos de la multiprogramación destacan:

- Mejora del tiempo de respuesta.
- Aumento de la productividad.
- Aumento de la eficiencia del procesador.

Tipos de planificación

Planificación de procesos

Introducció

Tipos de planificación

Planificación en el diagrama de estados Niveles de planificación Criterios de planificación

Planificación a largo plazo Planificación a medio

Planificación a corto plazo
Criterios de planificación a corto

plazo Prioridades

Políticas de planificación

Algoritmos de

 Planificación a largo plazo: decisión de añadir procesos al conjunto de procesos a ejecutar.

- Planificación a medio plazo: decisión de añadir procesos al conjunto de procesos que se encuentran parcial o completamente en memoria.
- Planificación a corto plazo: decisión sobre qué proceso disponible será ejecutado en el procesador.
- Planificación de E/S: decisión sobre qué solicitud de E/S pendiente será tratada por un dispositivo de E/S disponible.

Otras políticas

Tipos de planificación Planificación en el diagrama de estados

Planificación de procesos

Estados

Planificación en el diagrama de estados

Niveles de

Criterios de

Planificación a medio

Planificación a corto

Criterios de planificación a corto

Tipos de planificaciónPlanificación en el diagrama de estados

Planificación de procesos

Internalization

Tipos de

Planificación en el diagrama de estados

diagrama de estado Niveles de planificación

Criterios de planificación Planificación a largo

Planificación a medio

plazo
Planificación a corto

Criterios de planificación a corto

Prioridades

Políticas de planificación

Algoritmos de planificación

Tipos de planificación

Niveles de planificación

Planificación de procesos

Laborator at 2

Tipos de

Planificación en el diagrama de estados

Niveles de planificación

Criterios de planificación Planificación a largo

plazo Planificación a medio

plazo Planificación a corto

Criterios de planificación a corto

planificación a cor plazo

Prioridades

Políticas de planificació

Algoritmos o planificación

Introducción

Tipos de planificació

Planificación en el diagrama de estados Niveles de

Criterios de planificación

Planificación a largo plazo

Planificación a medio plazo Planificación a corto

Criterios de planificación a corto

Prioridades

planificación

Algoritmos de planificación

Tipos de planificación Criterios de planificación

Los criterios de planificación se deciden en función de las siguientes cantidades (relacionadas con el ejemplo):

- Uso de CPU(%): $U_{CPU} = 100 \frac{T_t (t_2 t_1)}{T_t}$
- Rendimiento (pr/ut): $R = 2/T_t$
- Tiempo de retorno medio: $T_{rm} = \frac{t_{11} + (T_t t_3)}{2}$
- Tiempo de espera medio:

$$\frac{(t_6-t_5)+(t_9-t_8)+(t_4-t_3)+(t_7-t_6)+(t_{11}-t_{10})}{2}$$

Listo Espera E/S

Sin cargar-Terminado

Introducció

Tipos de planificació

Planificación en el diagrama de estados Niveles de planificación Criterios de

Planificación a largo plazo

Planificación a medio plazo Planificación a corto plazo Criterios de planificación a corto plazo

Políticas de planificación

planificación

Tipos de planificación Planificación a largo plazo

- Controla el grado de multiprogramación
 - Limitar el número para dar buen servicio
 - Nuevo: cada vez que termina un proceso o si el porcentaje de utilización del procesador es bajo
- Determina cuáles son los programas admitidos en el sistema
 - Algoritmos de planificación
 - Simples (ej., FIFO-FCFS)
 - \bullet Por rendimiento del sistema: prioridades, carga procesador, carga E/S, recurso E/S a solicitar, ...
- Cuantos más procesos se crean, menor es el porcentaje de tiempo en el que cada proceso se puede ejecutar

Tipos de planificación Planificación a medio plazo

Planificación de procesos

Introducció

Tipos de planificació

Planificación en el diagrama de estados Niveles de planificación Criterios de planificación

Planificación a largo plazo Planificación a medio

Planificación a medio plazo

Planificación a corto plazo
Criterios de planificación a corto plazo

Prioridades

Políticas de planificación

planificación

- Forma parte de la función de intercambio
 - Gestión de memoria, Memoria Virtual, Estados Suspendidos
- Se basa en la necesidad de controlar el grado de multiprogramación

Tipos de planificación Planificación a corto plazo

procesos

Introducción

Tipos de

Planificación en el diagrama de estados Niveles de planificación

planificación
Planificación a largo
plazo

Planificación a medio plazo

Planificación a corto plazo

Criterios de planificación a corto plazo

Políticas de

Algoritmos de planificación

También conocido como distribuidor o "dispatcher":

- Es el de ejecución más frecuente.
- Se ejecuta cuando ocurre un suceso de entre los siguientes:
 - Interrupciones del reloj.
 - Interrupciones de E/S.
 - Llamadas al sistema operativo.
 - Señales.

Tipos de planificaciónCriterios de planificación a corto plazo

Planificación de procesos

Introducció

Tipos de planificació

Criterios de

Planificación en el diagrama de estados Niveles de planificación

planificación Planificación a largo plazo

Planificación a medio plazo
Planificación a corto

Criterios de planificación a corto plazo

Prioridad

Políticas de planificación

Algoritmos de planificación

Orientados al usuario

Cuantitativos

- Tiempo de retorno
 - Desde el lanzamiento hasta la finalización de un proceso.
 - Apropiado para trabajos por lotes
- Tiempo de respuesta
 - Desde que se emite solicitud hasta que la respuesta aparece en la salida.
 - Apropiada para procesos interactivos
- Plazos
 - Si hay plazos, maximizar porcentaje de plazos cumplidos
 - Caminos críticos: a seguir si se quieren cumplir los requisitos

Cualitativos

- Previsibilidad
 - Tiempo y coste independiente de la carga del sistema

Tipos de planificación Criterios de planificación a corto plazo

Planificación de procesos

Tipos de

Planificación en el diagrama de estados Niveles de

Criterios de Planificación a largo

Planificación a medio Planificación a corto

Criterios de planificación a corto nlazo

• Equilibrio de ocupación de recursos

Mantener ocupados los recursos

Orientados al sistema

Cuantitativos

- Productividad
 - Maximizar nº procesos / unidad de tiempo
- Utilización del procesador
 - Importante en sistemas compartidos caros
 - Menos importante en monousuario y en tiempo real

Cualitativos

- Equidad
- No inanición
- Prioridades: si hay, favorecer a procesos con mayor
- - Favorecer procesos que no usen recursos sobrecargados

Tipos de planificación **Prioridades**

Planificación de procesos

diagrama de estados Niveles de planificación Criterios de Planificación a largo Planificación a medio Planificación a corto

planificación a corto

Planificación en el

Criterios de Prioridades

- El planificador seleccionará siempre a un proceso de mayor prioridad antes que a los de menor prioridad.
 - Tiene múltiples colas de Listos para representar cada nivel de prioridad.
- Los procesos de prioridad más baja pueden sufrir inanición.
- Solución: permitir que un proceso cambie su prioridad en función de su edad o su historial de ejecución.

Introducción

Tipos de planificació

Políticas de

Función de selección

Algoritmos de planificación

Otras políticas

Planificación e UNIX

Evaluación d

Políticas de planificación Función de selección

Cómo se selecciona el siguiente proceso a ejecutar

Es necesario tener en cuenta múltiples características. Por ejemplo:

- Prioridades
- Necesidades de recursos
- Características de ejecución:
 - Tiempo en el sistema
 - Tiempo ejecutado
 - Tiempo total estimado

Introducció

Tipos de planificación

Políticas de planificación

Función de selección Modo de selección

Algoritmos de planificación

Otras política

Planificación UNIX

Evaluación d

Políticas de planificación Modo de selección

Momento en que se aplica la función de selección

- No preferente, no expulsiva, (apropiativa):
 - Una vez que el proceso pasa al estado de Ejecución, continúa ejecutando hasta que termina, se bloquea en espera de una E/S o solicita el servicio del SO.
- Preferente, expulsiva, (no apropiativa):
 - El proceso que se está ejecutando actualmente puede ser interrumpido y pasado al estado de Listos por el sistema operativo.
 - Nuevo proceso
 - Proceso de mayor prioridad sale de bloqueado
 - Interrupción de reloj
 - Permiten dar un mejor servicio ya que evitan que un proceso pueda monopolizar el procesador durante mucho tiempo.
 - Mayor coste: más cambios de contexto

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

FCFS
Round-Robin, turno
rotatorio
Primero el proceso
más corto (SPN)
Menor tiempo
restante (SRT)
HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Existen múltiples algoritmos de planificación. En esta sección vamos a ver:

- FCFS (First-come, First-served)
- Turno rotatorio (Round-Robin)
- SPN (Shortest Process Next)
- SRT (Shortest Remaining Time)
- HRRN (Highest Response Ratio Next)
- Realimentación
- Reparto equitativo
- Planificación garantizada

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT)

Otras política

Planificación e UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su BCP se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo apropiativo.

Proceso	Llegada	CPU	E/S	CPU
Α	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Continúa ejecutándose Llega nuevo

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación e UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Se bloquea Se ejecuta

■ Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos di planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT)

Otras política

Planificación e UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
Ē	8	2	2	2

Llega nuevo

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos o planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación e UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

Proceso	Llegada	CPU	E/S	CPU
А	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Se desbloquea

■ Ejecución ■ Listo ■ Espera E/S □ Sin cargar ■ Terminado

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

	Proceso	Llegada	CPU	E/S	CPU
	Α	0	3	2	2
ı	В	2	6		
	С	4	4	4	4
ĺ	D	6	5	5	1
	E	8	2	2	2

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación el UNIX

Evaluación de

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

Proceso	Llegada	CPU	E/S	CPU
Α	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Termina Se ejecuta

■ Ejecución ■ Listo ■ Espera E/S □ Sin cargar ■ Terminado

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación er UNIX

Evaluación de algoritmos

Criterio de llegada inicial

Servicio por orden de llegada (First Come First Served) FCFS. Cuando un proceso solicita uso de CPU (pasa a estar listo para ejecución) su PCB se pone el último en una cola (FIFO) de los procesos en espera de tiempo de CPU. Es un algoritmo **apropiativo.**

	Proceso	Llegada	CPU	E/S	CPU
	Α	0	3	2	2
ı	В	2	6		
	С	4	4	4	4
ĺ	D	6	5	5	1
	E	8	2	2	2

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Criterio de llegada a la cola de listos

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

■ Ejecución ■ Listo ■ Espera E/S □ Sin cargar ■ Terminado

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos d planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación UNIX

Evaluación de algoritmos

Es teóricamente justo, pero poco eficiente en tiempo de espera medio.

Tiempo de espera medio = $\frac{28+33+38}{3}$ = 33 Un resultado meior sería de la forma:

Tiempo de espera medio = $\frac{5+10+38}{3}$ = 17,66

■ Ejecución Listo Espera E/S Sin cargar Terminado

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

FCFS

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación UNIX

Evaluación de algoritmos Efecto convoy, predominio de los procesos que usan CPU frente a los que usan E/S.

Un reparto más equitativo sería de la forma:

Se penaliza a los procesos más cortos. Ejecución Listo Espera E/S 🗌 Sin cargar Terminado

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio

más corto (SPN)
Menor tiempo
restante (SRT)
HRRN

Otras políticas

Planificación en UNIX

Evaluación de

- Periódicamente, se genera una interrupción de reloj.
- Cuando se genera la interrupción, el proceso que está en ejecución se sitúa en la cola de Listos y se selecciona el siguiente trabajo (no apropiativo)
- Se conoce también como fracciones de tiempo.
- Está diseñado específicamente para sistemas de tiempo compartido. Se asigna un cuanto de tiempo (10-100 ms.) de igual duración a todos los procesos listos para ser ejecutados. Entre ellos, la selección se realiza mediante una cola FIFO.
- Parámetro crítico: tamaño del cuanto. La efectividad depende del tamaño del el cuanto pero hay que tener en cuenta el tiempo dedicado al cambio de proceso
- Dos criterios posibles:
 - En el orden de entrada
 - En el orden de llegada a la cola (FIFO) que utilizaremos como *default* del Round Robin

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Proceso	Llegada	CPU	E/S	CPU
Α	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Se ejecuta

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN)
Menor tiempo
restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
Ď	6	5	5	1
E	8	2	2	2

A listo Se ejecuta

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Proceso	Llegada	CPU	E/S	CPU
Α	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Se ejecuta A listo

Algoritmos de planificación Round-Robin, turno rotatorio

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de Igoritmos

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

E/S se bloquea Se ejecuta A listo

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN)
Menor tiempo
restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de

Proceso	Llegada	CPU	E/S	CPU
Α	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

A listo Se ejecuta

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

A listo Se ejecuta A listo A listo

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

A listo

Se ejecuta

Planificación de	Proceso	Llegada	CPU
procesos	A	0	3
	В	2	6
	С	4	4
	D	6	5

E/S

CPU

ABCBDACBEDACBEDCBDEDEC

ACBEDACBEDCBDE

CBEDACBEDCB

DACBED

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - 1 Uso de CPU = 100% (29/29)
 - 2 Rendimiento = 5/29 (proc/q)
 - Tiempo de retorno (medio) = (14 + 18 + 24 + 23 + 16)/5 = 19q
 - **1** Tiempo de espera/respuesta (medio) = (7 + 13 + 13 + 14 + 10)/5 = 11,4q

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Algoritmos de planificación Round-Robin, turno rotatorio

Planificación de procesos

q=3

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación FCFS

Round-Robin, turno rotatorio Primero el proceso

más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

ADDDBBEEECCCDD BBBEECCCDDD

ECC

☐ Ejecución ☐ Listo ☐ Espera E/S ☐ Sin cargar ☐ Terminado

Algoritmos de planificación Round-Robin, turno rotatorio

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación UNIX

Evaluación de algoritmos

Parámetro crítico de diseño: longitud del cuanto

- Si es muy pequeño los procesos cortos pasan rápidamente, pero hay sobrecarga del procesador (gestión interrupciones de reloj, planificación, expedición)
- Si es muy grande degenera en FCFS
- Referencia: debe ser algo mayor que el tiempo necesario para una interacción normal
- Efectivo en sistemas de carácter general, de tiempo compartido o procesos de transacciones
- \bullet Favorece procesos con carga de procesador frente a procesos con carga de E/S (éstos no aprovechan el cuanto)

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

- Suele tener una política apropiativa (no expulsiva).
- Se selecciona el proceso con menor tiempo esperado de ejecución. ¿?
 (previsión de tiempo esperado)
- Un proceso corto saltará a la cabeza de la cola, sobrepasando a trabajos largos.
- Se reduce la previsibilidad de los procesos largos.
- Si la estimación de tiempo del proceso no es correcta, el sistema puede abandonar el trabajo.
- Posibilidad de inanición para los procesos largos.

Planificación de procesos

Introduccio

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras política

Planificación en UNIX

Evaluación de algoritmos

Estimaciones

Trabajos por lotes o repetitivos

Estimación del programador o estadísticas en función de los tiempos de ejecución pasados.

Procesos interactivos

En lugar de tiempo de trabajo, tiempo de cada ráfaga (se supone que siguen una distribución uniforme). La estimación se calcula en función de ráfagas pasadas (media o con alfa). $S_{n+1}=\alpha t_n+(1-\alpha)S_n$ con $0<\alpha<1$

- S_1 : valor pronosticado (no calculado). Puede eliminarse en sucesivos cálculos o sustituirse por T_1
- Si $\alpha \to 1$ se reflejan rápidamente los cambios, pero si son efectos aislados desestabilizan la media más tiempo.
- Conviene dar más peso a los valores más recientes

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación UNIX

Evaluación de

Proceso por lotes

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Suma 5

Planificación de procesos

Introducción

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación UNIX

Evaluación de

	CPU	E/S	CPU	Llegada	Proceso
Suma 5	2	2	3	0	A
			6	2	В
Suma 8	4	4	4	4	С
Suma 6	1	5	5	6	D
Suma 4	2	2	2	8	E

Planificación de procesos

Introducción

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación UNIX

Evaluación de algoritmos

	Proceso	Llegada	CPU	E/S	CPU	
Ī	A	0	3	2	2	Suma 5
I	В	2	6			
I	С	4	4	4	4	Suma 8
I	D	6	5	5	1	Suma 6
ĺ	É	8	2	2	2	Suma 4

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

- **Ejecución** Listo Espera E/S ☐ Sin cargar Terminado
 - **1** Uso de CPU = 29/32
 - 2 Rendimiento = 5/32 (proc/q)
 - 3 Tiempo de retorno (medio) = (13 + 7 + 28 + 20 + 7)/5 = 15q
 - **1** Tiempo de espera/respuesta (medio) = (6+1+16+9+1)/5 = 6,6q

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Proceso interactivo

Hay múltiples formas para estimar tiempo inicial de un proceso nuevo, por ejemplo:

- No sabemos nada sobre las ráfagas: $S_1=0$ (los procesos nuevos son preferentes)
- Tomando $S_1 = T_1$ (problema: hay que saber el T_1)
- Tomando $S_1 = cte$ (ej: media de las ráfagas de procesos interactivos anteriores en el sistema)

Planificación de procesos

Introducción

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificació UNIX

Evaluación de

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Previsto 2 Previsto 6

Planificación de procesos

Tipos de

Políticas de

Algoritmos de

Round-Robin, turno Primero el proceso

más corto (SPN) Menor tiempo

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU	
Α	0	3	2	2	Previsto 2
В	2	6			
С	4	4	4	4	Previsto 4
D	6	5	5	1	Previsto 5
E	8	2	2	2	Previsto 2

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificació UNIX

Evaluación de

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Previsto 4
Previsto 5
Previsto 2

Planificación de procesos

Introducción

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso

más corto (SPN)
Menor tiempo
restante (SRT)

Otras políticas

Planificació UNIX

Evaluación de

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Previsto 4
Previsto 5
Previsto 2

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificació UNIX

Evaluación de

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Previsto 4
Previsto 5

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso

más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de

Proceso interactivo

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - **1** Uso de CPU = 28/29
 - 2 Rendimiento = 5/29 (proc/q)
 - 3 Tiempo de retorno (medio) = (11 + 7 + 24 + 24 + 11)/5 = 15,4q
 - **1** Tiempo de espera/respuesta (medio) = (4 + 1 + 12 + 13 + 5)/5 = 7q

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN) Menor tiempo restante (SRT)

Otras políticas

Planificación en UNIX

Evaluación de

Características

- Mejora el rendimiento global: tiempo de retorno y tiempo de espera/respuesta
- Es posible la inanición para los procesos largos
- No es conveniente para tiempo compartido o procesamiento de transacciones (por ser apropiativa)
- Se reduce la previsibilidad de los procesos largos (pueden variar mucho con pequeños cambios en las condiciones)

procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio Primero el proceso más corto (SPN)

Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

- Es una versión preferente de la política de primero el proceso más corto.
- Debe estimar el tiempo de proceso.

Función de selección

Mínimo tiempo restante de ejecución (t. total – t. consumido)

Modo de decisión

Preferente (no apropiativa)

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

FCFS
Round-Robin, turno
rotatorio
Primero el proceso

más corto (SPN)
Menor tiempo
restante (SRT)

restante (SRT)

Otras politicas

Planificación en UNIX

Evaluación de algoritmos

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - **1** Uso de CPU = 29/32
 - 2 Rendimiento = 5/32 (proc/q)
 - **3** Tiempo de retorno (medio) = (7 + 9 + 28 + 20 + 9)/5 = 14,6q
 - **1** Tiempo de espera/respuesta (medio) = (0+3+16+9+3)/5 = 6.2q

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

FCFS
Round-Robin, turno
rotatorio
Primero el proceso

más corto (SPN) Menor tiempo restante (SRT)

Otras nolíticas

Planificación en UNIX

Evaluación de

Proceso interactivo para $S_1 = 3$

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - **1** Uso de CPU = 29/29
 - 2 Rendimiento = 5/29 (proc/q)
 - **3** Tiempo de retorno (medio) = (7 + 9 + 28 + 20 + 9)/5 = 14,6q
 - **1** Tiempo de espera/respuesta (medio) = (0+3+16+9+3)/5 = 6.2q

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio

Primero el proceso más corto (SPN)

Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos SRT favorece a los procesos cortos

Ventaja

No genera interrupciones adicionales (vs. Round Robin)

Desventaja

Debe contabilizar los tiempos de servicio transcurridos ⇒ sobrecarga

Algoritmos de planificación HRRN

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

Round-Robin, turno rotatorio Primero el proceso más corto (SPN) Menor tiempo restante (SRT) HRRN

Otras políticas

Planificación en UNIX

Evaluación de algoritmos

Elige el proceso con la tasa más alta. Donde la tasa es

```
tasa = rac{	ext{tiempo consumido esperando al procesador} + 	ext{tiempo de servicio esperado}}{	ext{tiempo de servicio esperado}}
```

- ullet Procesos cortos \Rightarrow denominador pequeño \Rightarrow tasa de respuesta alta
- Envejecimiento sin servicio \Rightarrow denominador grande \Rightarrow tasa de respuesta alta \Rightarrow los procesos pueden competir con los cortos

Planificación de

procesos

Algoritmos de planificación HRRN

Tipos de

Políticas de

Algoritmos de

FCFS
Round-Robin, turno
rotatorio
Primero el proceso
más corto (SPN)
Menor tiempo

Otras polític

HRRN

Planificación en UNIX

Evaluación de Ilgoritmos

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - **1** Uso de CPU = 29/29
 - 2 Rendimiento = 5/29 (proc/q)
 - 3 Tiempo de retorno (medio) = (11 + 7 + 24 + 23 + 16)/5 = 16,2q
 - **1** Tiempo de espera/respuesta (medio) = (4 + 1 + 12 + 12 + 10)/5 = 7,8q

Otras políticas Realimentación multinivel

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

Otras políticas

Realimentación multinivel

equitativo
Planificación
garantizada

Planificación e

Evaluación de algoritmos

- Penaliza a los trabajos que han estado ejecutándose durante más tiempo.
- No se conoce el tiempo de ejecución restante del proceso.
- Política FIFO no apropiativo (FIFO preferente)

Otras políticas Realimentación multinivel

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos d planificación

Otras política

Realimentación multinivel

Por reparto equitativo Planificació

Planificación en UNIX

Evaluación de algoritmos

Con 5 colas de prioridad

Proceso	Llegada	CPU	E/S	CPU
A	0	3	2	2
В	2	6		
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

- **■** Ejecución **■** Listo **■** Espera E/S **□** Sin cargar **■** Terminado
 - **1** Uso de CPU = 29/29
 - 2 Rendimiento = 5/29 (proc/q)
 - 3 Tiempo de retorno (medio) = (22 + 22 + 24 + 23 + 12)/5 = 20,6q
 - **1** Tiempo de espera/respuesta (medio) = (15 + 16 + 12 + 12 + 6)/5 = 12,5q

Planificación de procesos

Políticas de

Realimentación

multinivel Por reparto

garantizada

Otras políticas Realimentación multinivel

Problema

Los procesos largos: llevados gradualmente hacia abajo. Problema: pueden sufrir inanición en colas de prioridad baja si llegan muchos procesos cortos continuamente

Soluciones

- Cuanta menor es la prioridad se pueden asignar más cuantos de tiempo de ejecución
- Tras cierto tiempo de espera en cola, se le cambia a una cola de prioridad mayor

Otras políticas Por reparto equitativo

Planificación de procesos

Introducció

Tipos de

Políticas de

Algoritmos de planificación

Otras políticas
Realimentación
multinivel

Por reparto equitativo
Planificación

garantizada

Planificación er UNIX

Evaluación de algoritmos

•	$CPU_i = \frac{CPU_{i-1}}{2}$
•	$GCPU_i = \frac{GCPU_{i-1}}{2}$
•	$P_i = Base_i + \frac{CPU_i}{2} + \frac{GCPU_i}{4W_k}$

	Proceso A		Proceso B			Proceso C			
0 —	Prioridad Proceso Grupo		Prioridad Proceso Grupo		Prioridad Proceso Grupo				
0	60	0	0	60	0	0	60	0	0
		1	1						
		2	2						
		1	1						
1 —		60	60						
	90	30	30	60	0	0	60	0	0
					1	1			1
					2	2			2
					- 1	- 1			- 1
2 —					60	60			60
-	74	15	15	90	30	30	75	0	30
		16	16						
		17	17						
		- 1	1						
3 —		75	75						
	96	37	37	74	15	15	67	0	15
						16		1	16
						17		2	17
						- 1		1	1
4 —						75		60	75
-	78	18	18	81	7	37	93	30	37
		19	19						
		20	20						
		1	1						
5 —		78	78						
_	98	39	39	70	3	18	76	15	18
				ı					
	_		_				_		_

Otras políticas Planificación garantizada

Planificación de procesos

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

Otras política:
Realimentación
multinivel
Por reparto
equitativo
Planificación

garantizada

Planificación er UNIX

Evaluación de algoritmos

- A cada proceso se le garantiza un uso equitativo de la CPU (1/n, siendo n el número de procesos en espera de ser ejecutados).
- Cada vez que un proceso va a ser asignado tiempo de CPU se comprueba la relación tiempo real/tiempo prometido de todos los procesos y se adjudica la CPU a aquel proceso que tiene el ratio más pequeño.

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos d planificación

Otras política

Planificación UNIX

Características

Proceso Prioridad Planificación clásica

Evaluación de algoritmos

Planificación en UNIX Características

- Emplea realimentación multinivel usando turno rotatorio en cada una de las colas de prioridad.
- La prioridad de cada proceso se calcula cada segundo.
- La prioridad base divide los procesos en bandas fijas de prioridad.
- Se utiliza un factor de ajuste para impedir que un proceso salga fuera de la banda que tiene asignada.

Planificación de

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos d planificación

Otras políticas

UNIX

Proceso Prioridad

Prioridad Planificación clásica

Evaluación d algoritmos

Planificación en UNIX

Proceso

- Cada segundo (1s) el planificador recalcula las prioridades de los procesos y los organiza en niveles de prioridad en función de dichos valores.
- Cada décima de segundo (0.1 s) el planificador selecciona el proceso que tenga máxima prioridad y le asigna tiempo de CPU.
- Si el proceso termina su cuanto de ejecución (no hay bloqueo), el proceso pasa a la cola de su nivel de prioridad.
- Si el proceso se bloquea durante su cuanto, el planificador selecciona inmediatamente otro proceso y le asigna tiempo de CPU.
- Si un proceso retorna de una llamada al sistema y hay un proceso listo con mayor prioridad, el proceso de menor prioridad es desalojado de la CPU.
- Cada 4 centésimas de segundo (0.04 s) el planificador recalcula la prioridad del proceso que está usando tiempo de CPU.

Planificación en UNIX

Planificación de procesos

Introducció

Tipos de planificación

Políticas de planificación

Algoritmos de planificación

Otras políticas

UNIX Características

Prioridad
Planificación clásica

Evaluación de algoritmos

• La prioridad de un proceso se calcula con la fórmula siguiente:

$$Pri = \frac{C_1}{\text{Uso reciente de CPU}} + \frac{C_2}{\text{Prioridad estática (nice)}}$$

- Consecuencias:
 - La prioridad de los procesos disminuye si utilizan mucho tiempo de CPU en una ventana de tiempo determinada.
 - Por el contrario, procesos con mucha demanda de E/S tenderán a tener prioridades altas.
 - Los procesos con un valor de prioridad estática (nice) alto, tendrán menor prioridad.
- Prioridad por bandas. En orden decreciente de prioridad:
 - Intercambio.
 - Control de dispositivos de E/S de bloques.
 - Gestión de archivos.
 - Control de dispositivos de E/S de caracteres.
 - Procesos de usuario.

Planificación en UNIX

Planificación clásica

Planificación de procesos

Tipos de

Políticas de

Algoritmos de

Planificación clásica

•
$$CPU_i = \frac{CPU_{i-1}}{2}$$

• $P_i = Base_i + \frac{CPU_i}{2} + nice_i$

•
$$P_i = Base_i + \frac{CPO_i}{2} + nice_i$$

	Proce	eso A	Proce	eso B	Proceso C		
0 —	Prioridad	Proceso	Prioridad	Prioridad Proceso		Prioridad Proceso	
0 —	60	0 1 2	60	0	60	0	
		60					
1 —	75	30	60	0 1 2 :	60	0	
2 —	67	15	75	30	60	0 1 2	
3 —						60	
4 —	63	7 8 9 ! 67	67	15	75	30	
5 —	78	33	63	7 8 9 :	67	15	
J —	68	16	76	33	63	7	

Planificación de

Introducció

Tipos de planificació

Políticas de planificación

Algoritmos de planificación

Otras políticas

Planiticación en UNIX

Evaluación de algoritmos

Evaluación de algoritmos

- Seleccionar criterio de optimización
- Métodos de evaluación:
 - Modelado Determinista:
 - Medida (números exactos) de la carga de CPU proceso.
 - Utilidad académica o en sistemas que ejecutan los mismos programas.
 - Modelo de colas:
 - Estimación (probabilística) de la carga de CPU
 - Requisitos de E/S de los sistemas tiempos de llegada de procesos.
 - Permite comparar los distintos algoritmos.
 - Problema: Arbitrariedad del modelo matemático derivado de cada algoritmo.
 - Simulaciones:
 - Medida de la respuesta de los algoritmos a secuencias generadas aleatoriamente, mediante distribuciones o eventos grabados