

RuATD challenge

How this game works

Fine-Tuned RuBERT and logreg over tf-idf baseline

Accuracy

000 Exploratory Data Analysis

Distribution of sentence lengths

Q

Length distribution (in tokens) by class:

Train:

H mean = 30.07

M mean = 31.85

Val:

H mean = 30.08

M mean = 31.86

Readability Metrics

dale_chall_readability_score	H 20.13	M 20.43
flesch_reading_ease	90.49	88.83
gunning_fog	11.78	12.35
text_standard	0	0

Feature-based

$\times \square -$

1. Features

a.LEX: readability + diversity + lexical richness

b.LEX + TF-IDF N-grams (2-3)

2. Models

a.LogisticRegression

b.KNN

c.RandomForest

Model	Acc	LEX + N-grams
LogReg	0.55	0.62
KNN	0.59	
RandomForest	0.63	0.64
BERT-baseline		0.79622
TF-IDF baseline		0.63562

NN-based

•		
	l h	
X		_
	-	

- 1. Transfer learning
 - a. RuRoberta
 - b. Cointegrated RuBERT-tiny
- 2. Fine-tuning
 - a. RuGPT3small
 - b. Cointegrated RuBERT-tiny
- 3. Custom arhitechure
 - a. CNN + LSTM
 - b.CNN + LSTM + attention

Acc
0.56
0.62
0.50
0.79
0.67
0.67
0.68
0.79622
0.63562

000 Solutions 2.0 Going Deeper...

ruTS Readability

Q

- Тест Флеша-Кинкайда
- Индекс удобочитаемости Флеша
- Индекс Колман-Лиау
- Индекс SMOG
- Автоматический индекс удобочитаемости
- Индекс удобочитаемости LIX

ruTS Lexical Diversity

Q

- Root Type-Token Ratio
- Corrected Type-Token Ratio
- Herdan Type-Token Ratio
- Summer Type-Token Ratio
- Mass Type-Token Ratio
- Dugast Type-Token Ratio
- Moving Average Type-Token Ratio
- ...

Most important featues

```
Q
```

```
'flesch_kincaid_grade',
'flesch_reading_easy',
'coleman_liau_index',
'automated_readability_index',
'lix', 'dttr', 'mtld', 'mamtld',
'simpson_index', 'hapax_index'
```

Selected based on the difference between H and M

Data processing tricks

What else??

Q

Backtranslation

Train dataset [H] (ru)

Helsinki_NLP ru-en

Train dataset [H] (en)

Helsinki_NLP en-ru

Train dataset [M] (ru)

What else??

Q

Sentence Clip

If len(text) == 1 sent:
 use it
else:
 use text[1] + text[-1]

Architectures

NN-based

X		_
	ليا	-

- 1. Transfer learning
 - a. RuRoberta
 - b. Cointegrated RuBERT-tiny
- 2. Fine-tuning
 - a. RuGPT3small
 - b. Cointegrated RuBERT-tiny
- 3. Custom arhitechure
 - a.CNN + LSTM
- 4. Features/Clips/BackTranslation

Model	Acc
RuRoBERTa TL	0.56
RuBERT TL	0.62
RuBERT FT	0.50
RuGPT3 FT	0.79
CNN+LSTM1	0.67
CNN+LSTM+Attention	0.68
CNN FEATS	0.66
GPT3 FEATS 10000	0.72
GPT3 FEATS	0.74
GPT3+Attention FEATS	0.59
GPT3-clip	0.73
GPT3-clip FEATS	0.74
MBERT-clip FEATS	0.77
MBERT-clip-192 FEATS	0.77
MBERT CLS FEATS	0.78
GPT3 BT	0.59
BERT-baseline	0.79622
TF-IDF baseline	0.63562

Conclusions

Feature-Engineering is all you need

Who?

Q

Roles

Katya: feature-based models

Anya: NN architectures

P.S. But in the end everything got mixed up...

https://github.com/aaaksenova/RuATD_katana

References

- 1. Automatic Detection of Machine Generated Text: A Critical Survey (Jawahar 2020)
 - a. An overview of NN-based methods for ATD
 - b. RoBERTa (TweepFake) mistakes analysis
- 2. Computer-Generated Text Detection Using Machine Learning: A Systematic Review (Beresneva 2016)
 - a. Use of lexicographical and statistical features for ATD
- 3. Defending Against Neural Fake News (Zellers et al. 2019)
 - a. GROVER model for text generation and ATD
 - b. GPT2 model as discriminator used for text classification
- 4. Giant Language model Test Room (Gehrmann 2019)
 - a. Use GPT to detect text generated by GPT
 - b. Frequency analysis is important