RA3 - TABELAS HASH Análise de Desempenho

Gabriel Felipe Jess Meira

¹Engenharia de Software - Pontíficia Universidade Católica do Paraná (PUCPR)

meira.gabriel@tecpuc.com.br

Abstract. This report aims to provide data relating to the performance of hash tables that use remainder methods of division, multiplication and folding to be generated together with the rehashing technique. With this report, it will be possible to identify which of the three methods is most efficient for generating tables and searching for elements in a hash table.

Resumo. Este relatório visa disponibilizar dados referentes ao desempenho de tabelas hash que utilizam métodos de resto de divisão, multiplicação e dobramento para serem geradas junto com a técnica de encadeamento. Com este relatório, será possível identificar qual dos três métodos é mais eficiente para gerar tabelas e buscar elementos em uma tabela hash.

1. Tabelas Hash

Tabelas hash são estruturas de dados que utilizam funções de hash para mapear chaves a valores. Elas são usadas para implementar arrays associativos, ou seja, estruturas que mapeiam chaves a valores. Uma função de hash é uma função que converte inputs (como strings) em valores numéricos. A tabela hash usa essa função para calcular um índice no qual o valor associado a uma determinada chave será armazenado ou recuperado.

As tabelas hash oferecem tempos de acesso médio muito eficientes, frequentemente próximos a O(1) (tempo constante) para operações de inserção, remoção e busca, tornando-as uma escolha popular em uma ampla variedade de aplicações que requerem eficiência no acesso a dados.

Tabela hash de exemplo

2. Código

O látex desformatou o código, por isso será possível acessar o código pelo seguinte link no github: https://github.com/gabrielfjmeira/AvaliacaoRA3.

3. Geração de Tabela Hash Utilizando o Método de Resto de Divisão

O método de resto de divisão é utilizado para se gerar tabelas hash de uma forma muito simples. Para descobrirmos a posição de um registro na tabela hash, basta descobrir o valor do resto da divisão do código do registro com o tamanho da tabela hash. Com este valor descoberto, basta inserirmos o registro que deve ser inserido na posição calculada.

Caso algum registro já esteja na posição referenciada, então ocorre uma reordenação na lista encadeada de registros que já estejam inseridos na posição, de forma a ordenar os sucessores do registro que está alocado na tabela hash de forma crescente.

4. Geração de Tabela Hash Utilizando o Método de Multiplição

O método de multiplicação também é muito utilizado para se gerar tabelas hash. É um método que utiliza uma constante matemática (hashing de fibonacci = 0,618) para calcular o index do registro no array da tabela hash. Para descobrirmos a posição de um registro na tabela hash, basta multiplicar o valor do do código do registro pelo hashing de fibonacci, em seguida, com o resultado da multiplicação, se deve realizar uma operação do resto da divisão do resultado obtido com o número 1. Assim, basta inserirmos o registro na posição calculada.

Caso algum registro já esteja na posição referenciada, então ocorre uma reordenação na lista encadeada de registros que já estejam inseridos na posição, de forma a ordenar os sucessores do registro que está alocado na tabela hash de forma crescente.

5. Geração de Tabela Hash Utilizando o Método de Dobramento

O método de dobramento, como o próprio nome sugere, é uma técnica que soma os algarismos do código do registro e realiza um cálculo matemático com este valor para se descobrir a posição do registro na tabela hash.

O cálculo é simples, o algoritmo soma os dois último algarismos do código do número do registro por rodada do loop, enquanto este código for maior que 0, a cada soma realizada, o valor é armazenado e utilizado para somar a soma dos próximos elementos em uma soma total. Depois de somar todos os números do código do registro basta realizarmos a operação de resto da divisão da soma total com o tamanho da tabela hash. Assim, basta inserirmos o registro na posição calculada.

Caso algum registro já esteja na posição referenciada, então ocorre uma reordenação na lista encadeada de registros que já estejam inseridos na posição, de forma a ordenar os sucessores do registro que está alocado na tabela hash de forma crescente.

6. Desempenho Durante a Criação das Tabelas Hash

O desempenho foi medido executando a geração de cada tabela em cada um dos 5 seeds diferentes, em seguida foi elaborado gráficos para visualizar o desempenho de criação de cada tabela hash usando os 5 seeds diferentes tanto em tempo(µs) e em número de colisões.

		CRIAÇ	ÃO TABELA HASH	- 10 slots				
		SEED						
	1	2	3	4	5			
۾.	1.004.263	9.456.635	37.588.097	86.627.798	273.712.460			
Divisão	653.884	6.157.626	37.248.895	86.490.379	274.659.161			
	650.592	6.145.017	36.926.876	86.661.545	273.871.340			
o De	648.787	6.036.703	37.623.681	86.542.123	274.871.249			
Resto	674.459	6.130.031	37.237.984	85.924.890	274.145.421			
	3.585.839	8.225.971	35.460.802	81.800.756	274.241.459			
Multiplicação	3.005.605	5.958.941	34.651.492	85.270.841	267.509.363			
oji C	2.809.476	6.202.504	34.118.201	84.330.040	269.345.789			
兽	2.875.415	6.140.509	34.520.005	83.124.091	270.824.512			
Ž	2.641.365	6.285.049	34.988.276	84.562.451	273.902.141			
	1.133.359	7.907.259	32.392.636	86.477.742	263.530.278			
alt C	1.477.435	6.124.317	32.515.601	84.475.780	266.123.561			
l Ĕ	1.263.931	6.234.086	33.089.559	88.464.337	264.567.891			
Dobramento	1.327.519	5.890.153	36.951.728	85.412.424	267.515.152			
	1.248.947	5.946.032	32.527.705	87.167.757	265.124.568			
			TEMPO (μs)					

		CRIAÇ	ÃO TABELA HASH	- 10 slots	
			SEED		
	1	2	3	4	5
Divisão	62.406.281	251.400.341	1.563.245.517	1.955.251.663	25.005.198.637
Ξ	62.406.281	251.400.341	1.563.245.517	1.955.251.663	25.005.198.637
De	62.406.281	251.400.341	1.563.245.517	1.955.251.663	25.005.198.637
Resto	62.406.281	251.400.341	1.563.245.517	1.955.251.663	25.005.198.637
Re	62.406.281	251.400.341	1.563.245.517	1.955.251.663	25.005.198.637
	62.403.677	251.403.926	1.563.168.136	1.955.601.278	25.006.863.436
ğ	62.403.677	251.403.926	1.563.168.136	1.955.601.278	25.006.863.436
l ic	62.403.677	251.403.926	1.563.168.136	1.955.601.278	25.006.863.436
Multiplicação	62.403.677	251.403.926	1.563.168.136	1.955.601.278	25.006.863.436
ž	62.403.677	251.403.926	1.563.168.136	1.955.601.278	25.006.863.436
_	62.397.025	251.402.431	1.563.195.755	1.955.266.281	25.005.076.870
entc	62.397.025	251.402.431	1.563.195.755	1.955.266.281	25.005.076.870
ЭЩ	62.397.025	251.402.431	1.563.195.755	1.955.266.281	25.005.076.870
Dobramento	62.397.025	251.402.431	1.563.195.755	1.955.266.281	25.005.076.870
۵	62.397.025	251.402.431	1.563.195.755	1.955.266.281	25.005.076.870
			COLISÕES		

		CRIAÇÃO TABELA HASH - 100 slots						
		SEED						
	1	2	3	4	5			
.0	164.991	733.386	4.233.343	9.154.218	28.481.087			
Divisão	173.106	742.875	3.899.287	8.820.767	27.913.482			
	160.729	931.712	3.835.619	8.822.980	27.489.878			
o De	169.159	891.122	3.849.640	8.762.969	27.712.055			
Resto	205.475	948.248	3.867.417	8.704.147	27.615.683			
	346.155	752.400	3.543.047	8.903.561	29.178.245			
Multiplicação	322.930	675.805	3.483.861	9.186.053	28.276.162			
l ic	357.705	855.864	3.558.596	8.731.647	27.726.891			
薑	397.909	828.155	3.502.631	8.885.862	27.506.095			
Σ	413.427	868.680	3.512.295	8.051.748	28.177.030			
	213.295	643.672	3.301.940	8.754.638	25.005.940			
l ă	181.788	645.822	3.648.552	9.147.864	25.036.734			
) H	182.432	822.300	3.516.520	9.771.001	25.583.544			
Dobramento	172.056	802.635	3.501.061	8.461.391	26.509.213			
	243.740	820.066	3.394.385	7.864.271	26.436.386			
		TEMPO (μs)						

		CRIAÇÂ	O TABELA HASH	l - 100 slots	
			SEED		
	1	2	3	4	5
Divisão	6.172.675	25.002.846	155.960.445	624.313.696	2.499.089.695
ĕ	6.172.675	25.002.846	155.960.445	624.313.696	2.499.089.695
B	6.172.675	25.002.846	155.960.445	624.313.696	2.499.089.695
Resto	6.172.675	25.002.846	155.960.445	624.313.696	2.499.089.695
Re	6.172.675	25.002.846	155.960.445	624.313.696	2.499.089.695
	6.206.498	25.151.378	156.808.146	627.719.712	2.512.696.202
50	6.206.498	25.151.378	156.808.146	627.719.712	2.512.696.202
l iii	6.206.498	25.151.378	156.808.146	627.719.712	2.512.696.202
Multiplicação	6.206.498	25.151.378	156.808.146	627.719.712	2.512.696.202
Ž	6.206.498	25.151.378	156.808.146	627.719.712	2.512.696.202
	6.175.513	25.008.467	155.978.711	624.362.523	2.499.161.782
alt i	6.175.513	25.008.467	155.978.711	624.362.523	2.499.161.782
Ĕ	6.175.513	25.008.467	155.978.711	624.362.523	2.499.161.782
Dobramento	6.175.513	25.008.467	155.978.711	624.362.523	2.499.161.782
۵	6.175.513	25.008.467	155.978.711	624.362.523	2.499.161.782
			COLISÕES		

		CRIAÇÃO	TABELA HASH	- 1.000 slots	
			SEED		
	1	2	3	4	5
,0	129.280	259.512	667.603	1.391.439	4.059.112
Divisão	118.551	243.224	639.085	1.278.698	4.040.732
	116.518	240.363	661.351	1.415.894	3.925.094
o De	113.430	252.398	635.430	1.281.824	3.832.539
Resto	98.922	237.949	670.124	1.338.484	5.360.560
	128.228	232.811	648.712	1.605.967	5.622.349
Multiplicação	124.087	219.484	655.596	1.581.244	4.830.461
1 18	126.919	224.152	640.863	1.470.182	4.975.319
薑	113.302	217.479	656.437	1.498.512	5.213.782
Ž	103.001	239.623	610.697	1.608.885	6.185.624
	155.385	471.152	1.767.133	4.071.047	17.871.802
aut C	140.945	433.343	1.562.041	5.418.277	14.146.107
ä	136.479	397.009	1.574.461	5.378.130	12.988.292
Dobramento	110.338	429.752	1.627.039	4.744.426	17.832.140
	121.422	425.621	1.723.313	5.623.321	17.879.253
			TEMPO (μs))	

		CRIAÇÃO TABELA HASH - 1.000 slots					
		SEED					
	1	2	3	4	5		
Divisão	555.005	2.373.371	15.267.131	61.738.124	248.571.026		
i i i	555.005	2.373.371	15.267.131	61.738.124	248.571.026		
De	555.005	2.373.371	15.267.131	61.738.124	248.571.026		
Resto	555.005	2.373.371	15.267.131	61.738.124	248.571.026		
Re	555.005	2.373.371	15.267.131	61.738.124	248.571.026		
	767.551	3.229.934	20.620.597	83.181.773	335.084.347		
Se.	767.551	3.229.934	20.620.597	83.181.773	335.084.347		
l ie	767.551	3.229.934	20.620.597	83.181.773	335.084.347		
Multiplicação	767.551	3.229.934	20.620.597	83.181.773	335.084.347		
Σ	767.551	3.229.934	20.620.597	83.181.773	335.084.347		
_	2.934.743	11.896.605	74.508.229	298.648.015	1.196.330.369		
ent C	2.934.743	11.896.605	74.508.229	298.648.015	1.196.330.369		
Ē	2.934.743	11.896.605	74.508.229	298.648.015	1.196.330.369		
Dobramento	2.934.743	11.896.605	74.508.229	298.648.015	1.196.330.369		
	2.934.743	11.896.605	74.508.229	298.648.015	1.196.330.369		
			COLISÕES				

		CRIAÇÃ	O TABELA HASH -	10.000 slots	
			SEED		
	1	2	3	4	5
Divisão	114.421	160.542	292.454	499.735	1.385.299
ă	103.394	215.117	287.477	490.442	1.400.810
B	91.531	232.274	293.597	485.919	1.477.399
Resto	88.906	207.944	300.607	488.658	1.339.420
Re	88.762	239.824	303.301	498.146	1.297.897
	109.804	248.564	659.006	1.630.018	6.755.552
aça Baran	103.674	203.174	666.721	1.607.464	6.052.279
l ie	113.119	198.536	648.929	1.609.174	5.838.587
Multiplicação	110.479	207.483	651.415	1.601.054	6.145.874
Σ	102.057	217.042	656.715	1.562.398	5.984.771
	129.828	470.286	1.627.479	5.701.674	22.780.678
entc	113.919	344.235	1.545.513	5.795.841	19.789.557
Ē	128.983	357.402	1.606.885	5.491.727	18.172.770
Dobramento	127.213	352.417	1.615.871	5.645.806	18.840.536
	129.415	363.145	1.689.832	5.331.102	25.331.901
			TEMPO (μs)		

		CRIAÇÃ	O TABELA HASH -	10.000 slots	
			SEED		
	1	2	3	4	5
Divisão	21.475	144.718	1.238.811	5.554.753	23.573.492
ž	21.475	144.718	1.238.811	5.554.753	23.573.492
De	21.475	144.718	1.238.811	5.554.753	23.573.492
Resto	21.475	144.718	1.238.811	5.554.753	23.573.492
Re	21.475	144.718	1.238.811	5.554.753	23.573.492
	767.551	3.229.934	20.700.935	83.181.773	335.084.347
Multiplicação	767.551	3.229.934	20.700.935	83.181.773	335.084.347
olic	767.551	3.229.934	20.700.935	83.181.773	335.084.347
薑	767.551	3.229.934	20.700.935	83.181.773	335.084.347
Σ	767.551	3.229.934	20.700.935	83.181.773	335.084.347
	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369
anto	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369
Dobramento	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369
do	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369
	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369
			COLISÕES		

		CRIAÇÃO	TABELA HASH -	100.000 slots	
			SEED		
	1	2	3	4	5
Divisão	94.367	136.448	250.932	390.218	845.967
ĕ	85.742	146.565	243.681	446.446	852.516
De	97.365	146.135	244.181	412.703	847.031
esto	91.353	143.323	254.887	397.134	843.989
Re	87.001	135.329	284.488	391.344	847.272
0	103.227	218.401	658.847	1.612.563	7.213.058
Multiplicação	117.108	207.245	652.324	1.612.969	7.167.932
l iii	110.905	204.827	702.781	1.621.238	7.047.857
품	107.892	229.814	661.058	1.792.666	6.309.699
Σ	119.369	208.822	662.713	1.663.219	7.116.664
	130.815	339.652	1.668.704	4.297.927	22.431.275
ent	119.682	415.792	1.803.956	5.754.213	19.920.176
ᇤ	146.238	386.137	1.558.439	5.864.216	24.454.149
Dobramento	116.913	371.272	1.655.872	5.877.520	20.136.823
	132.387	351.830	1.640.146	5.615.157	21.192.435
			TEMPO (μs)	

		CRIAÇÃO	TABELA HASH -	100.000 slots			
		SEED					
	1	2	3	4	5		
Divisão	65	1.004	25.005	216.201	1.426.506		
ΞĀ	65	1.004	25.005	216.201	1.426.506		
e	65	1.004	25.005	216.201	1.426.506		
Resto	65	1.004	25.005	216.201	1.426.506		
Re	65	1.004	25.005	216.201	1.426.506		
	767.551	3.229.934	20.700.935	83.181.773	335.084.347		
Multiplicação	767.551	3.229.934	20.700.935	83.181.773	335.084.347		
l iii	767.551	3.229.934	20.700.935	83.181.773	335.084.347		
Ħ	767.551	3.229.934	20.700.935	83.181.773	335.084.347		
Σ	767.551	3.229.934	20.700.935	83.181.773	335.084.347		
	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369		
ent	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369		
ä	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369		
Dobramento	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369		
٥	2.934.743	11.896.605	74.486.720	298.648.015	1.196.330.369		
			COLISÕES				

7. Conclusão do Desempenho das Criações nas Tabelas Hash

Para melhor visualização foram elaborados os gráficos abaixo. Refente ao tempo(µs):

Quando se trata de tempo podemos perceber que o método de dobramento possuí destaque quando se trata de menos slots no array. Em compensação o método de resto de divisão é o que gera as tabelas hash de uma forma mais rápida quando se trata de muitos slots. O método de multiplicação não possuiu um destaque, se performou bem nestes dois ambientes.

Refente a Colisões:

Os métodos até certo tamanho de vetor possuem basicamente o mesmo número de colisões totais, porém quando há muitos elementos presentes no vetor, o método de dobramento acaba tendo muito mais colisões que os demais. O que menos possuí colisões é o método de resto de divisão.

A geração da tabela hash varia muito de acordo com o número de slots e o número de elementos a serem inseridos, devido ao surgimento de várias colisões.

8. Desempenho Durante a Busca nas Tabelas Hash

O desempenho foi medido executando a busca de 5 registros diferentes em cada tabela no seed de 250 mil elementos (seed3). Os registros para busca foram inseridos após a geração de cada tabela hash.

Obtive os seguintes dados:

	BUSCA T	ABELA HASH - 10 s	lots			
		MÉTODOS				
	RESTO DE DIVISÃO	MULTIPLICAÇÃO	DOBRAMENTO			
123456789	291	262	264	μs		
COLISÕES	3044	3015	2963			
421567834	707	700	145	μs		
COLISÕES	10473	10599	10386			
124572893	117	22	52	μs		
COLISÕES	3131	3117	3174			
178361585	82	32	69	μs		
COLISÕES	4429	4573	4369			
156847823	75	36	59	μs		
COLISÕES	3899	3890	3928			

	BUSCA TA	BUSCA TABELA HASH - 100 slots					
		MÉTODOS					
	RESTO DE DIVISÃO	MULTIPLICAÇÃO	DOBRAMENTO				
123456789	82	55		μs			
COLISÕES	306	344	309				
421567834	108	67	77	μs			
COLISÕES	1056	1025	1033				
124572893	87	47	52	μs			
COLISÕES	325	333	310				
178361585	135	63	63	μs			
COLISÕES	440	555	444				
156847823	75	32	44	μs			
COLISÕES	374	339	411				

	BUSCA TABELA HASH - 1.000 slots			
	MÉTODOS			
	RESTO DE DIVISÃO	MULTIPLICAÇÃO	DOBRAMENTO	
123456789	63	25	30	μs
COLISÕES	39	67	160	
421567834	71	30	57	μs
COLISÕES	105	221	695	
124572893	70	21	30	μs
COLISÕES	40	72	191	
178361585	64	31	49	μs
COLISÕES	58	91	276	
156847823	60	18	25	μs
COLISÕES	37	18	190	

	BUSCA TABELA HASH - 10.000 slots			
	MÉTODOS			
	RESTO DE DIVISÃO	MULTIPLICAÇÃO	DOBRAMENTO	
123456789	210	65	56	μs
COLISÕES	7	67	160	
421567834	83	38	70	μs
COLISÕES	9	221	695	
124572893	57	20	26	μs
COLISÕES	7	72	191	
178361585	55	21	35	μs
COLISÕES	5	91	276	
156847823	56	17	41	μs
COLISÕES	6	18	190	

	BUSCA TABELA HASH - 100.000 slots			
	MÉTODOS			
	RESTO DE DIVISÃO	MULTIPLICAÇÃO	DOBRAMENTO	
123456789	60	25	31	μs
COLISÕES	1	67	160	
421567834	54	30	58	μs
COLISÕES	1	221	695	
124572893	76	30	47	μs
COLISÕES	3	72	191	
178361585	57	21	31	μs
COLISÕES	1	91	276	
156847823	63	22	28	μs
COLISÕES	1	18	190	

9. Conclusão do Desempenho das Buscas nas Tabelas Hash

Para uma melhor visualização da performance em buscas, foi gerado o seguinte gráfico de tempo (μs) :

Os métodos que possuíram uma melhor eficiência na busca foram o de multiplicação e de dobramento, enquanto o de resto da divisão chegou a demorar em certos casos, 2x mais tempo que estes métodos.

Isto ocorre devido a rápidez com que os cálculos de cada posição é realizado de acordo com o método(capacidade de agrupamento e aproveitamento da memória) e a quantidade de registros na lista encadeada.

Gráfico referente ao número de colisões:

O número de colisões diminuí de acordo com o tamanho do vetor. Isto ocorre devido o vetor possuir mais slots para distribuir os registros.

10. Conclusão

Foram implementados três métodos de geração de tabela hash neste trabalho, cada um se performou melhor em um cenário em específico.

Portanto, quando se for implementar uma tabela hash, deve se observar o seu tamanho e o número de elementos que a mesma deve suportar, para escolhermos o melhor método tanto para criação tanto para a busca de um registro.

References

SC. CAMILA TAUMATURGO, M. Disciplina: Estruturas de Dados Professora: Camila Taumaturgo e-mail: camila.taumaturgo@ifrn.edu.br. Disponível em: ¡https://docente.ifrn.edu.br/camilataumaturgo/disciplinas/2014.2/estruturas-de-dados/tabela-hash¿. Acesso em: 3 nov. 2023.

BACKES, A. TABELA HASH. Disponível em: ¡https://www.facom.ufu.br/ backes/gsi011/Aula07-TabelaHash.pdf¿. Acesso em: 6 nov. 2023.

Método de dobragem em hash – Acervo Lima. Disponível em: ;https://acervolima.com/metodo-de-dobragem-em-hash/¿. Acesso em: 3 nov. 2023.

Materiais disponibilizados no Canvas da matéria de Resolução de Problemas Estruturados em Computação.