

Software Architecture for Industrial Robots

Kai Friedrich, Dariusz Krolikowski, Jens Meinicke

- 1. Introduction
- 2. Components
- Preprocessing
- 4. Movement
 - 4.1 Point-To-Point
 - 4.2 Linear
- 5. Summary

Task:

 Development of a software architecture for a 6-axis industrial robot with a 3axis translation stage attached

Challenges:

- Standardized coordinate systems
- Layouts of robot
- Positioning of the wrist
- Orientation of the wrist
- Computation of trajectories
- Computation of velocity profiles
- Selection of solution
- Handling of singularities

Component Overview

Commands:

- Catesian & Joint-space
- LIN & PTP Movements
- Synchronuous & asynchronuous movements

Component Overview

Robot Interface

 VelocityParametrable getMinimalTCPVelocity() int m getMinimalTCPAcceleration() int getMaximalVelocity(int) int getMaximalAcceleration(int) double RobotParameters m getFrequence() int m getMinimalAngle(int) double m getMaximalAngle(int) double double m getLengthA(int) m getLengthD(int) double

Powered by yFiles

Preprocessing 1

© DHParameter

(m) getAngleChange(int) double
(m) getDhForJoint(int) double[]

Powered by yFiles

	а	d	θ	α
0	0	0	$\pi/2$	π
1	0	0	Θ ₁	-π
2	0.350000	-0.815000	Θ ₂	$-\pi/2$
2	1 200000		ο π/	2

Preprocessing 2

- Different aproaches for PTP and LIN
- Motion planning components return a trajectory
- Sequence of joint angles
- Clocked by robot's frequency

Velocity Profiles

- Constant acceleration
- Constant maximal velocity
- Total time

Point-To-Point Motion Planning

Motion planning in joint spcae

Point-To-Point Motion Planning

Motion planning in joint spcae

Calculate LIN velocity profile Calculate reference values **Extract singularities** Calculate inverse kinematics for the next reference value is reachable? Notify user [yes] Abort all IK calculated? [no] [yes] Interpolate singularities riedrich

Linear Motion Planning

Motion planning in Cartesian space

http://forum.robotsinarchitecture.org/index.php/topic,24.0.html

Calculate LIN velocity profile Calculate reference values Extract singularities Calculate inverse kinematics for the next reference value is reachable? Notify user [yes] Abort all IK calculated? [no] [yes] Interpolate singularities

Linear Motion Planning

Software Architecture for Industrial Robots

riedrich

Thanks for your attention!