This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAJ

- TI LIQUID CRYSTAL DISPLAY DEVICE
- AB PURPOSE: To obtain a colored display having a high luminance by allowing a luminous phosphor to emit a light beam by ultraviolet rays which are emitted from an ultraviolet ray emitting source.
 - CONSTITUTION: The titled device is provided with a liquid crystal cell, an ultraviolet ray emitting source 39 which is placed in the back side of this liquid crystal cell, and a luminous phosphor 36 which has been placed on an optical path of ultraviolet rays emitted from this ultraviolet ray emitting source 39. By driving a desired TFT 22 by driving a driving circuit board, and setting a picture element in this position, to an applied state, a liquid crystal 33 in this position is set to a light transmissive state. On the other hand, in the ultraviolet emitting source 39, ultraviolet rays are emitted, and this ultraviolet rays are made incident on the luminous phosphor 36 through an ultraviolet ray transmission visible light reflecting filter glass substrate 34. When the ultraviolet rays from the ultra violet ray emitting source 39 are made incident, the ultraviolet rays themselves are colored by the luminous phosphor 36 for emitting the light beams of the respective colors, therefore, the colored light beam of almost the same quantity as the light quantity of the ultraviolet rays emitted from the ultraviolet ray emitting source 39 can be obtained in the surface side. In such a way, a color display having a high luminance is obtained.
- PN JP63015221 A 19880122
- PD 1988-01-22 ABD - 19880623
- ABV 012220
- AP JP19860159943 19860708
- GR P720
- PA TOSHIBA CORP
- IN INOUE MASAO
- I G02F1/133 ;G09F9/00

⑲ 日本国特許庁(JP)

① 特許出願公開

⑫公開特許公報(A)

昭63-15221

@Int_Cl_4

識別記号

庁内整理番号

匈公開 昭和63年(1988)1月22日

G 02 F 1/133 G 09 F 9/00 3 1 1 3 3 6

8205-2H A-6866-5C

審査請求 未請求 発明の数 1 (全7頁)

🛛 発明の名称

液晶表示装置

②特 頭 昭61-159943

②出 願 昭61(1986)7月8日

⑫発 明 者 井 上

MA PERIOT(1000): // 0 E

正 夫 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝横浜

金属工場内

⑪出 願 人 株 式 会 社 東 芝

神奈川県川崎市幸区堀川町72番地

⑩代 理 人 弁理士 須山 佐一

明知当

1. 発明の名称 液晶表示装置

2. 特許請求の範囲

(1) 液晶セルと、この液晶セルの背面側に配置された紫外線発光源と、この紫外線発光源から発光される紫外線の光路上に配置された発光蛍光体とを具備していることを特徴とする液晶表示装置。 (2) 発光蛍光体が、赤色発光蛍光体、緑色発光蛍光体および青色発光蛍光体を順次液晶セルの画素毎に配置させたものである特許請求の範囲第1項記載の液晶表示装置。

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は、カラー化された液晶表示装置に関する。

(従来の技術)

一般にカラー化された液晶表示装置は第18 図に示す構造とされている。

すなわち同図に示すように、第1のガラス基板 1の一方の面上には、TFT(図示せず)に接続 される多数の画素電極2…が形成されている。-方、第2のガラス基板3上には、赤色フィルタR、 緑色フィルタGおよび青色フィルタBが順次画素 毎に形成され(以下、単に「カラーフィルタ4」 と呼ぶ。)、この上に保護膜5が形成され、さら にこの上に透明導電膜からなる共通電極6が形成 されている。そして画素電極2と共通電極6とが 対向し所定の間隙を有するように、第1のガラス 基板1と第2のガラス基板3とをスペーサ7を介 して配置させ、上記間隙に液晶8が封入されてい る。また、これらの両面に偏光板9、10を配置 させ、さらに背面側に光源11…を配置させ、駆 動回路基板12…とTFTおよび共通電極6とを 電気的に接続させてなる。

そして駆動回路基板12側の駆動により所望と する画素電極2を駆動させ、この位置の画素を印 加状態にすることにより、この位置の液晶8を光 透過可能状態とさせる。すなわちこの位置におい て、光源11から発光された光が偏光板10、第 2のガラス基板3、カラーフィルタ4、保護級5、 共通電極6、被品8、画素電極2、第1のガラス 基板1および偏光板9を介して装面側に透過する ことにより、カラー化された画素表示が得られる ことになる。

(発明が解決しようとする問題点)

ところで上記したカラーフィルタ4は、各色 毎に例えば第19図に示すような分光特性を有し ている。一方、光源11は一般に上記分光特性に 合わせ第20図に示すような分光特性を有するも のとされている。

しかしながら上記したように光源11の分光特性をカラーフィルタ4の分光特性に合わせた場合においても、カラーフィルタ4を透過した光源11からの光は、光源11の発光時の光量と比べ約1/4~1/5となる。このため表示画素の輝度が低下するという問題がある。

本発明は上記した事情に対処してなされたもので、高輝度のカラー化された表示を得ることがで

形成されている。これらの各画素電極21には、第2図に示すように、TFT22が近接して配置されている。このTFT22は、第1のガラス基板20上に駆動回路と接続されるCrからなるゲート絶縁膜24、αーSiからなる半導体層25、駆動回路と接続されるALからなるドレイン電極27、駅動回路とで「ポリイミド)保護膜28を順次積層し、保護膜28内に下層部を覆うようにALからなる光遮蔽マスク29を介掃してなる。

-方、第2のガラス基板30は厚さが70~500 μmからなり、この一方の面上には、透明導電膜 からなる共通電極31が付着しており、シリコー ン系接着剤により貼着されている。

そして上記画素電極21と上記共通電極31と が対向し所定の間隙を有するように、第1のガラス基板20と第2のガラス基板30とをスペーサ 32を介して配置させ、上記間隙に液晶33が封 入されている。 きる液晶表示装置を提供することを目的としている。

[発明の構成]

(問題点を解決するための手段)

すなわち本発明の液晶表示装置は、液晶セルと、この液晶セルの背面側に配置された紫外線発 光源と、この紫外線発光源から発光される紫外線 の光路上に配置された発光蛍光体とを備えている。

(作用)

本発明の液晶表示装置において、紫外線発光 額から発光された紫外線により発光蛍光体を発光 させることにより、高輝度のカラー化された表示 を得ることができる。

(実施例)

以下、本発明の実施例の詳細を図面に基づいて説明する。

第1図に本発明の一実施例の液晶表示装置の構造を示す。

すなわち同図に示すように、第1のガラス基板 20の一方の面上には、多数の画素電極21…が

また第2のガラス基板30の他方の面側には紫 外線透過可視光反射フィルタガラス基板34が配 置されている。この紫外線透過可視光反射フィル タガラス基板34は石英ガラス板上にZnSとS iOzとを交互に 0.05 μmの厚さで20層に真空 着膜してなり、第3図に示す分光特性とされてい る。またこの上には、3MO・ 1.2MC2z ・ 0.9P, Os . 0.08 B, O1/Eu+ (M=S r、Ca、Ba)からなり第4図に示す分光特性 を有する商色発光蛍光体B「、Y2SiOs/C e、Tbからなり第5図に示す分光特性を有する 緑色発光蛍光体G「およびY2O1/Euからな り第6図に示す分光特性を有する赤色発光蛍光体 R ^ がプラックマトリクスパターン35を介して 区分され順次画景毎に形成され(以下、これらを 単に「発光蛍光体36」と呼ぶ。)、さらにこの 上に偏光板37がシリコーン系接着剤により貼着 されている。

そしてこの偏光板37と第2のガラス基板30 とをシリコーン系接着剤により固着し、第1のガ ラス基板20の表面上に偏光板38をシリコーン 系接替剤により貼替し、さらに背面側に第7図に 示す分光特性を有する紫外線発光源39を所定の 問隔をおいて複数配置してなる。

このように構成された液晶表示装置において、 図示しない駆動回路基板の駆動により所望とする TFT22を駆動させ、この位置の画素を印加状 態にすることにより、この位置の液晶33を光透 過可能状態とさせる。一方、紫外線発光源39に おいては、紫外線が発光されており、この紫外線 が紫外線透過可視光反射フィルタガラス基板34 を介して発光蛍光体36に入光されている。この 発光蛍光体36はそれ自体が上記紫外線を入光す ることにより、それぞれの色に応じた光を発光し ている。すなわち上記波温33の光透過可能状態 とされた位置において、発光蛍光体36からのカ ラー化された光が偏光板37、第2のガラス基板 30、共通電極31、液晶33、画素電極21、 第1のガラス基板20および偏光板38を介して 表面側に透光することにより、カラー化された光

ℓ2・0.9 P2 Os・0.08 B2 O3 / Eu² (M=S r、Ca、Ba)を感光性牛乳カゼインに分散させ、B'の蛍光膜を形成し所望とするパターンと同一のマスクを用いて露光、乾燥し現像により非露光部を除去してB'発光蛍光膜を得る。この工程を類次緑色発光蛍光体G1においてはY2 SiOs / Ce、Tb、赤色発光蛍光体R1においてはY2 O3 / Euに繰返し所望の発光蛍光膜を得る。

なお、上記紫外線透過可視光反射フィルタガラス基板34とし、パイレックス、あるいはZnSとMgFzとの多層膜のものでもよく、すなわち紫外線を透過する範囲が、波長350~370nmで50%以上の透過率を有し、可視光においては波長400nmで30%以上、430~650nmで60%以上、700nmで20%以上の反射率を有するものである。

また上記発光蛍光休36としては無機物あるいは有機物のいずれのものでもよく、例えば無機物の発光蛍光体として、背色発光蛍光体においては ZnS/Agからなり第8図に示す分光特性を有 つまりカラー化された表示が得られることになる。 しかしてこの実施例によれば、紫外線充光源3 9からの紫外線を入光するとそれ自体がそれぞれ の色の光を発光する発光蛍光体36によりカラー 化しているので、紫外線発光源39から発光され る紫外線の光量とほぼ同一の光量のカラー化され

次にこの実施例における発光蛍光体36の形成 方法を以下に示す。

た光を表面側で得ることができ、つまり、高輝度

のカラー表示を得ることができるようになる。

まず紫外線透過可視光反射フィルタガラス基板34上に感光性牛乳ガゼインからなるレジスト膜を形成し、所望とするパターンと同一のマスクを用いて露光した後、現像し非露光部分を溶解定する。しかる後所定の材料を含有するアクアダグを塗布して乾燥させ、過酸化水溶液を主体とする処理液で残存するレジスト膜上の不要なアクアダグとともにこのレジスト膜を除去し、所望とするプラックマトリクスパターン35を得る。次に、青色発光蛍光体B・においては3MO・1.2MC

するもの、緑色発光蛍光体においてはZn2SiO・/Mnからなり第9図に示す分光特性、ZnS/Cu、Alからなり第1O図に示す分光特性またはZnCdS/Cu、Alからなり第11図に示す分光特性を有するもの、赤色発光蛍光体においてはY2O2S/Euからなり第12図に示す分光特性を有するものまたはYVO・/Eu、Tb、YVPSiO・/Eu、Tb、YVPSiO・/Eu、Tbであってもよく、また同色内のこれらの混合物であってもよい。

次に本実施例の変形例を第13図に示す。すなわち周図に示すように、光源として第14図に示す分光特性を有する段額灯40を用い、紫外線透過可視光反射フィルタガラス基板34の背面側に紫外線発光蛍光体41を塗布してなるものであり、上述した実施例と同様の効果を得ることができる。この場合、上記した紫外線発光蛍光体41として、(Ca、Zn)』(PO4)2/T2系からなり第15図に示す分光特性を有するものあるいはBaSi2O5/Pbからなり第16図に示す分光

特性を有するもの等がよい。またこの場合、紫外線発光光源40として、波長250~370mmに発光ピークを有し、首色発光蛍光体として波長420~480mmに発光ピークを有し、緑色発光蛍光体として510~560nmに発光ピークを有し、赤色発光蛍光体として600~660nmに発光ピークを有するものが最適である。なお、発光蛍光体上には、例えば青色発光蛍光体には「ロ・AllO」顕料、赤色発光蛍光体には「ロ」の類料等のものが付着されていてもよい。

また上記した実施例によれば発光蛍光体と光源との間には、紫外線透過可視光反射フィルタガラス基板34が配置されるものであったが、本発明はこれに限定されることなく、例えば第17図に示す分光特性を有する紫外線透過可視光カットフィルタガラス基板でもよく、あるいは単なるガラス基板であってもよい。

「発明の効果]

以上説明したように本発明の液晶表示装置によれば、高輝度のカラー化された表示を得ることが

置を示す縦断正面図、第19図はこの液晶表示装置のカラーフィルタの分光特性を示す図、第20図はこの液晶表示装置の光源の分光特性を示す図である。

36……発光蛍光体

39……紫外線発光源

出類人 株式会社 東芝 代理人 弁理士 須 山 佐 一

できるようになる。

4. 図面の簡単な説明

第1図は本発明の一実施例の液晶表示装置を 示す縦断正面図、第2図はその一部拡大図、第3 図はこの実施例のガラス基板の分光特性を示す図、 第4図はこの実施例の青色発光蛍光体の分光特性 を示す図、第5図はこの実施例の緑色発光蛍光体 の分光特性を示す図、第6図はこの実施例の赤色 発光蛍光体の分光特性を示す図、第7図はこの実 施例の紫外線発光源の分光特性を示す図、第8図 は他の青色発光蛍光体の分光特性を示す図、第9 図~第11図は他の緑色発光蛍光体の分光特性を 示す図、第12図は他の赤色発光蛍光体の分光符 性を示す図、第13図は本発明の変形例を示す縦 断正面図、第14図は本発明の変形例における殺 菌灯の分光特性を示す図、第15図および第16 図はこの変形例における紫外線発光蛍光体の分光 特性を示す図、第17図は本発明の他の例におけ る紫外線透過可視光カットフィルタガラス基板の 分光特性を示す図、第18図は従来の液晶表示装

第2図

特開昭 63-15221 (6)

特開昭63-15221(フ)

