IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of Kyoung-Ju LEE

Serial No.:

NEW

Filed:

November 18, 2003

For:

IMAGE CONVERTING APPARATUS AND METHOD THEREOF

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT(S)

U.S. Patent and Trademark Office 2011 South Clark Place **Customer Window** Crystal Plaza Two, Lobby, Room 1B03 Arlington, Virginia 22202

Sir:

At the time the above application was filed, priority was claimed based on the following application(s):

10-2002-0078468 filed December 10, 2002 in Korea

A copy of each priority application listed above is enclosed.

Respectfully submitted, FLESHNER-&KIM, LLP

Daniel Y.J. Kim

Registration No. 36,186

Samuel W. Ntiros

Registration No. 39,318

P.O. Box 221200 Chantilly, Virginia 20153-1200 703 502-9440 DYK:SWN/kdb

Date:

November 19, 2003

Please direct all correspondence to Customer Number 34610

별첨 시본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

10-2002-0078468

Application Number

2002년 12월 10일

Date of Application

DEC 10, 2002

엘지전자 주식회사 LG Electronics Inc.

Applicant(s)

2003 06 11 일

COMMISSIONER

【심사청구료》

【합계》

【첨부서류》

출력 일자: 2003/6/12

【서지사항】

【서류명》 특허출원서 【권리구분》 특허 【수신처】 특허청장 【참조번호》 0002 【제출일자》 2002.12.10 [국제특허분류] H04N 9/64 【발명의 명칭》 이미지 변환 방법 및 장치 【발명의 영문명칭》 METHOD AND APPARATUS FOR CONVERTING IMAGE [출원인] 【명칭》 엘지전자 주식회사 【출원인코드】 1-2002-012840-3 【대리인】 【성명》 박장원 【대리인코드】 9-1998-000202-3 【포괄위임등록번호】 2002-027075-8 [발명자] 【성명의 국문표기】 이경주 【성명의 영문표기】 LEE, Kyoung Ju 【주민등록번호》 750106-1558824 [우편번호] 156-090 [주소] 서울특별시 동작구 사당동 64-195 [국적] KR [심사청구] 청구 【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정 에 의한 출원심사 를 청구합니다. 대리인 박장원 (인) 【수수료】 【기본출원료》 면 15 29,000 원 【가산출원료》 0 면 0 원 [[우선권주장료]] 건 0 원 0

1. 요약서·명세서(도면)_1통

원

301,000 원

6

330,000

항

1020020078468

출력 일자: 2003/6/12

【요약서】

[요약]

본 발명은 이미지 변환 방법 및 장치에 관한 것으로 특히, 24비트 RGB 이미지 데이터를 이동통신 단말기에 디스플레이하기 위한 16비트 이미지 데이터로 변환함에 있어서, RGB 중 가장 비중인 큰 컬러를 판별하여 해당 컬러에 1비트를 더 할당함으로써 색상 정보의 손실을 최소화하여 실제 이미지와 가깝게 표시하도록 함에 목적이 있다. 이러한 목적의 본 발명은 24비트 이미지를 16비트 이미지로 변환하는 방법에 있어서, 각각의 R,G,B를 분리하는 제1 단계와, 각각의 R,G,B 요소의 컬러값을 계산하는 제2 단계와, 상기에서 계산된 각각의 컬러값을 비교하여 비중이 큰 컬러를 판별하는 제3 단계와, 상기에서 판별된 비중이 큰 컬러에 대해 다른 컬러보다 비트를 더 할당하는 제4 단계와, 상기에서 비트 할당된 각각의 R,G,B를 조합하는 제5 단계를 수행함을 특징으로 한다.

【대표도】

도 7

【명세서】

【발명의 명칭】

이미지 변환 방법 및 장치{METHOD AND APPARATUS FOR CONVERTING IMAGE}

[도면의 간단한 설명]

도1은 종래의 5:5:5 방식의 이미지 변환 과정을 보인 예시도.

도2는 종래의 5:6:5 방식의 이미지 변환 과정을 보인 예시도.

도3 내지 도5는 본 발명의 실시예에서 이미지 변환 과정을 보인 예시도.

도6는 본 발명의 실시예를 위한 이미지 변환 장치의 블록도.

도7은 본 발명의 실시예에서 이미지 변환 과정을 보인 동작 순서도.

* 도면의 주요부분에 대한 부호 설명 *

610 : RGB 분리부 621~623 : 시프터

631~633 : 컬러값 계산부 640 : 비교부

650 : 비디오 메모리

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<10> 본 발명은 이미지 변환 기술에 관한 것으로 특히, 이동통신 단말기에 있어서 이미지 변환 방법 및 장치에 관한 것이다.

- 컬러 이미지에 대해 한점이 갖는 색상 값을 계산함에 있어서, 8비트에서는 팔레트
 가 있어 인덱스 값만을 알면 쉽게 RGB 값을 팔레트로부터 읽어 올 수 있었으나,16비트에
 서는 계산에 의해 알아내야 한다.
- <12> 색상 계산 방법은 이미지 변환 방식에 따라 차이가 있다.
- <13> 16비트 이미지의 경우 2바이트로 표현되므로 8비트와 달리 점 자체가 색상 정보를 갖게 되어 팔레트 개념이 없다.
- <14> 그런데, RGB 요소를 2바이트 이미지에 공평하게 포함시키기 위해서 '3'으로 나누면 각각 5바이트씩 할당할 수 있고 1바이트가 남는다.
- <15> 종래의 16비트 컬러 표현 방식은 5:5:5 방식 또는 5:6:5 방식이 있다.
- <16> 먼저, 5:5:5 방식을 도1의 예시도를 참조하여 설명하기로 한다.
- <17> 각각의 8비트 RGB를 입력으로 16비트 RGB로 변환함에 있어서, 남은 1비트를 사용하지 않고 R,G,B를 각각 5비트씩 할당한다.
- <18> 즉, 시프터(111~113)에 각기 저장된 8비트 R,G,B를 5비트씩 메모리(114)에 저장하고 남은 1비트는 사용하지 않는다.
- <19> 이러한 5:5:5 방식의 컬러 계산 과정을 설명하면 다음과 같다.
- 원하는 색상의 3가지 요소가 RGB라 할 때 5:5:5 방식으로 표현할 수 있는 R,G,B의 요소가 각각 5비트이므로 3비트의 손실이 따른다.
- <21> 이를 수식으로 표현하면, R16 = R/8, G16 = G/8, B/16 = B/8이다.
- 즉, 16비트의 색 요소가 계산되고 나면 16비트의 RGB로 조합함에 있어서, R은 3비트 우측으로 시프트한 후 좌측으로 10비트 시프트하고, G는 3비트 우측으로 시프트한 후

좌측으로 5비트 시프트하며, B는 우측으로 3비트 시프트함으로써 16비트 RGB로 조합한다.

- <23> 그리고, 5:6:5 방식을 도2의 예시도를 참조하여 설명하기로 한다.
- 작가의 8비트 RGB를 입력으로 16비트 RGB로 변환함에 있어서 각각의 RGB를 5비트씩할당하고 남은 1비트에 G를 할당한다. 이는 사람의 눈이 녹색을 잘 구분한다는 사실을 적용하여 G에 6비트를 할당하는 것이다.
- <25> 이러한 5:6:5 방식의 컬러 계산 과정을 설명하면 다음과 같다.
- 5:5:5 방식과 다른 점은 R,B는 3비트 손실되고 G는 2바이트 손실되며 R,B는 시작비트가 다르다.
- <27> 즉, 원하는 색상의 3가지 요소가 RGB라 할 때 5:6:5 방식으로 표현할 수 있는 R,B 의 요소가 각각 5비트이고 G의 요소가 6비트이다.
- <28> 이를 수식으로 표현하면, R16 = R/8, G16 = G/4, B16 = B/8이다.
- 즉, 16비트의 색 요소가 계산되고 나면 16비트의 RGB로 조합함에 있어서, R은 우측으로 3비트 시프트 후 좌측으로 10비트 시프트하고, G는 우측으로 2비트 시프트한 후 좌측으로 5비트 시프트하며, B는 우측으로 3비트 시프트함으로써 16비트 RGB로 조합한다.
 【발명이 이루고자 하는 기술적 과제】
- 그러나, 종래 기술은 5:5:5 방식의 경우 1비트를 낭비하게 되어 전체적으로 실제이 이미지의 색상 정보를 많이 손실하게 되며, 5:6:5 방식의 경우 G색에 1비트가 더 할당되므로 색상 정보에서 실제 색보다 G색이 강조되어 전체적으로 G색에 가까운 이미지로 변환된다는 단점이 있다.

(31) 따라서, 본 발명은 종래 기술의 단점을 개선하기 위하여 24비트 RGB 이미지 데이터를 이동통신 단말기에 디스플레이하기 위한 16비트 이미지 데이터로 변환함에 있어서, RGB 중 가장 비중인 큰 컬러를 판별하여 해당 컬러에 1비트를 더 할당함으로써 색상 정보의 손실을 최소화하여 실제 이미지와 가깝게 표시하도록 창안한 이미지 변환 방법 및 장치를 제공함에 목적이 있다.

【발명의 구성 및 작용】

- 본 발명은 상기의 목적을 달성하기 위하여 24비트 이미지를 16비트 이미지로 변환하는 방법에 있어서, 각각의 R,G,B를 분리하는 제1 단계와, 각각의 R,G,B 요소의 컬러값을 계산하는 제2 단계와, 상기에서 계산된 각각의 컬러값을 비교하여 비중이 큰 컬러를 판별하는 제3 단계와, 상기에서 판별된 비중이 큰 컬러에 대해 다른 컬러보다 비트를 더할당하는 제4 단계와, 상기에서 비트 할당된 각각의 R,G,B를 조합하는 제5 단계를 수행함을 특징으로 한다.
- <33> 상기 제4 단계는 비중이 큰 컬러에 대해 다른 컬러보다 1비트 더 할당하는 것을 특징으로 한다.
- 또한, 본 발명은 상기의 목적을 달성하기 위하여 각각의 R,G,B를 분리하는 RGB 분리부와, 상기에서 분리된 각각의 R,G,B 요소의 컬러값을 계산하는 컬러값 계산부와, 상기에서 계산된 R,G,B 요소에 대한 각각의 컬러값을 계산하여 비중이 큰 컬러를 판별하고 그 비중이 큰 컬러에 1비트를 더 할당하는 비교부를 구비하여 구성함을 특징으로 한다.

- <35> 즉, 본 발명은 5:6:5 방식을 개선하여 컬러 값을 계산할 때 실제 이미지 값의 RGB 값을 비교하여 가장 비중이 큰 컬러에 6비트를 할당하는 방식이다.
- 이러한 본 발명은 각각의 컬러값의 RGB 값을 비교하여 가장 큰 값에 따라 각각의 변환되는 방식을 다르게 하거나 전체 이미지의 RGB 값을 모두 계산하여 가장 큰 값에 따라 모든 컬러 데이터를 변환하는 방식을 사용할 수 있다.
- <37> 이하, 본 발명을 도면에 의거 상세히 설명하면 다음과 같다.
- <38> 우선, 본 발명의 실시예에서는 이미지 변환을 위한 도7의 동작 순서도와 동일한 과정을 수행한다.
- 즉, 본 발명의 실시예에서는 컬러 이미지로부터 각각의 R,G,B를 분리하고 그 분리된 R,G,B의 컬러값을 계산하는 제1 단계와, 상기에서 계산된 각 컬러값을 비교하여 가장비중이 큰 컬러를 판별하는 제2 단계와, 8비트 R,G,B 컬러를 할당함에 있어서 상기에서판별된 비중이 큰 컬러에 대해 1비트를 더 할당하는 제3 단계와, 상기에서 각기 할당된 R,G,B를 조합하여 16비트 RGB를 디스플레이하는 제4 단계를 수행하게 된다.
- <40> 따라서, 상기 제2 단계와, 제3 단계를 도3 내지 도5를 참조하여 설명하면 다음과 같다.
- 1. R 값의 비중이 큰 경우에 대해 도3의 예시도를 참조하여 설명하면, 각각의 8비 트 RGB를 입력으로 16비트 RGB로 변환할 때 남은 1비트에 R을 할당한다.
- <42> 이를 수식으로 표현하면, R16 = R/4, G16 = G/8, B16 = B/8이다.
- 즉, 16비트의 색 요소가 계산되고 나면 16비트의 RGB로 조합함에 있어서, R은 우측으로 2비트 시프트 후 좌측으로 10비트 시프트하고, G는 우측으로 3비트 시프트한 후 좌

측으로 5비트 시프트하며, B는 우측으로 3비트 시프트함으로써 R에 1비트를 더 할당하여 16비트 RGB로 조합한다.

- 2. G 값의 비중이 큰 경우에 대해 도4의 예시도를 참조하여 설명하면, 각각의 8비트 RGB를 입력으로 16비트 RGB로 변환할 때 남은 1비트에 G를 할당한다.
- <45> 이를 수식으로 표현하면, R16 = R/8, G16 = G/4, B16 = B/8이다.
- 즉, 16비트의 색 요소가 계산되고 나면 16비트의 RGB로 조합함에 있어서, R은 우측으로 3비트 시프트 후 좌측으로 11비트 시프트하고, G는 우측으로 2비트 시프트한 후 좌측으로 5비트 시프트하며, B는 우측으로 3비트 시프트함으로써 G에 1비트를 더 할당하여 16비트 RGB로 조합한다.
- <47> 3. B 값의 비중이 큰 경우에 대해 도5의 예시도를 참조하여 설명하면, 각각의 8비 .
 트 RGB를 입력으로 16비트 RGB로 변환할 때 남은 1비트에 B를 할당한다.
- <48> 이를 수식으로 표현하면, R16 = R/8, G16 = G/8, B16 = B/4이다.
- 즉, 16비트의 색 요소가 계산되고 나면 16비트의 RGB로 조합함에 있어서, R은 우측으로 3비트 시프트 후 좌측으로 11비트 시프트하고, G는 우측으로 2비트 시프트한 후 좌측으로 6비트 시프트하며, B는 우측으로 3비트 시프트함으로써 B에 1비트를 더 할당함으로써 16비트 RGB를 조합한다.
- 또한, 상기와 같은 과정을 수행하기 위해 본 발명의 실시예에서의 이미지 변환 장치는 도6의 블록도에 도시한 바와 같이, RGB 분리부(610), 시프터(621~623), 컬러값 계산부(631~633), 비교부(640) 및 비디오 메모리(650)를 구비하여 구성한다.

1020020078468

출력 일자: 2003/6/12

<51> 상기 RGB 분리부(610)는 컬러 이미지로부터 각각의 R,G,B를 분리하여 시프터 (621~623)에 저장한다.

<52> 상기 컬러값 계산부(631~633)는 시프터(621~623)에 저장되어 있는 각각의 R,G,B 요소의 컬러값을 계산하여 비교부(640)에 제공한다.

 상기 비교부(640)는 컬러값 계산부(631~633)에서 계산된 R,G,B 요소에 대한 각각의 컬러값을 계산하여 비중이 가장 큰 컬러를 판별하고 그 판별 결과에 따라 상기 시프터 (621~623)의 시프팅 동작을 제어하여 비중이 큰 컬러에 1비트를 더 할당한 후 그 할당된 각각의 R,G,B를 비디오 메모리(650)에 저장하게 된다.

《54》 예를 들어, R의 비중이 가장 큰 경우를 참조하여 설명하면, R은 시프터(621)에서 우측으로 2비트 시프트 후 그 시프트된 R을 비디오 메모리(650)에 저장하여 좌측으로 10 비트 시프트하고, G는 시프터(622)에서 우측으로 3비트 시프트한 후 그 시프트된 G를 비디오 메모리(650)에 저장하여 좌측으로 5비트 시프트하며, B는 시프터(623)에서 우측으로 3비트 시프트 후 비디오 메모리(650)에 저장함으로써 R에 1비트를 더 할당하여 16비트 RGB로 조합한다.

<55> 따라서, 비디오 메모리(650)에 저장된 16비트 RGB가 엘씨디(LDC) 등의 디스플레이 장치에 전송되어 실제 이미지에 가까운 영상이 표시된다.

【발명의 효과】

<56> 상기에서 상세히 설명한 바와 같이 본 발명은 24비트의 이미지를 16비트의 이미지로 변환하는데 있어 5:6:5 방식을 적용함에 있어서 비중이 큰 컬러에 해당 컬러 비트를

1020020078468

출력 일자: 2003/6/12

더 할당으로써 종래 기술의 단점을 개선하여 실제 이미지에 좀 더 가까운 16비트 이미지로 변환할 수 있다.

<57> 따라서, 본 발명은 16비트 컬러를 디스플레이하는 이동통신 단말기 등에 적용하는 경우 사용자에게 좀 더 선명한 영상을 제공할 수 있는 효과가 있다.

【특허청구범위】

【청구항 1】

이미지 변환 방법에 있어서,

컬러 이미지로부터 각각의 R,G,B 요소를 분리하는 제1 단계와,

각각의 R,G,B 요소의 컬러값을 계산하는 제2 단계와,

상기에서 계산된 각각의 컬러값을 비교하여 비중이 큰 컬러를 판별하는 제3 단계와,

상기에서 판별된 비중이 큰 컬러에 대해 다른 컬러보다 비트를 더 할당하는 제4 단계와.

상기에서 비트 할당된 각각의 R,G,B를 조합하는 제5 단계를 수행함을 특징으로 하는 이미지 변환 방법.

【청구항 2】

제1항에 있어서, 제2 단계는

화소 별로 R,G,B 컬러 값을 계산하거나 또는 전체 이미지에 대해 R,G,B 컬러값을 계산하는 것을 특징으로 하는 이미지 변환 방법.

【청구항 3】

제1항에 있어서, 제4 단계는

24비트 RGB를 16비트 RGB로 변환하는 5:6:5 방식의 경우 비중이 큰 컬러에 대해 다른 컬러보다 1비트 더 할당하여 6비트를 할당하고 다른 컬러에 대해 5비트를 할당하는 것을 특징으로 하는 이미지 변환 방법.

【청구항 4】

컬러 이미지로부터 각각의 R,G,B를 분리하는 RGB 분리수단과,

상기에서 분리된 각각의 R,G,B 요소의 컬러값을 계산하는 컬러값 계산 수단과,

상기에서 계산된 R,G,B 요소에 대한 각각의 컬러값을 계산하여 비중이 큰 컬러를 판별하고 그 비중이 큰 컬러에 해당 컬러 비트를 더 할당하여 컬러 이미지를 변환하는 비교 수단을 구비하여 구성함을 특징으로 하는 이미지 변환 장치.

【청구항 5】

제4항에 있어서, 비교 수단은

24 비트 RGB를 16비트 RGB로 변환하는 5:6:5 방식을 적용하는 경우 비중이 큰 컬러에 대해 1비트 더 할당하여 16비트 RGB를 조합하도록 구성함을 특징으로 하는 이미지 변환 장치.

【청구항 6】

제4항의 장치는 16비트 이미지를 디스플레이하는 이동통신 단말기에 적용하여 구성하는 것임을 특징으로 하는 이미지 변환 장치.

【도면】

[도 2]

[도 3]

【도 4】

[도 5]

[도 6]

