

CLUSTERING

CSE 634 Data Mining Prof. Anita Wasilewska

TEAM 16

REFERENCES

1. K-medoids:

https://www.coursera.org/learn/cluster-analysis/lecture/nJ0Sb/3-4-the-k-medoids-clustering-method https://anuradhasrinivas.files.wordpress.com/2013/04/lesson8-clustering.pdf

2. K-means:

https://www.datascience.com/blog/k-means-clustering

https://en.wikipedia.org/wiki/Elbow_method_(clustering)

3. CLARA:

http://www.sthda.com/english/articles/27-partitioning-clustering-essentials/89-clara-clustering-large-applications/

4. Book:

Data Mining Concepts and Techniques, Jiawei Han, Micheline Kamber ,Morgan Kaufman ,2011 Chapter : 10, Page: 445-454

PART 1

OVERVIEW

- What is clustering?
- Similarity Measures
- Requirements of good clustering algorithm
- K-mean clustering
- K-medoids clustering PAM
- K-medoids clustering CLARA
- ❖ Applications of K-means and K-medoids

WHAT IS CLUSTERING?

- ❖ A way of grouping together data samples that are *similar* in some
 - way according to some criteria that you pick.
- ❖ A form of unsupervised learning
- It can also be called a method of data exploration.

SIMILARITY MEASURES

- ❖ A **good clustering** method will produce high quality clusters with
- 1.high intra-class similarity
- 2.low inter-class similarity
 - ❖ The *quality* of a clustering result depends on:
- 1. similarity measure used by the method and its implementation.
- 2. its ability to discover some or all of the hidden patterns.

REQUIREMENTS OF GOOD CLUSTERING ALGORITHM

- Scalability
- Discovery of clusters with arbitrary shape
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints

CLUSTERING ALGORITHMS

- 1.K-Means
- 2.K-medoids
 - 2.1 Basic K-medoids
 - 2.2 PAM
 - 2.3 CLARA

K-MEANS CLUSTERING

- First used by James Mcqueen in 1967
- Unsupervised Learning
- Goal : Find the groups in the given data where no of groups is denoted by K
- Groups made on Feature similarity
- Results expected:
 - Centroids used to label data
 - Labels for training data
- Uses: Behavioral segmentation, Inventory categorization, Sorting sensor measurements

K-MEANS PROCESS

!nput

- > Data set
- > K i.e no of clusters

❖ Data Assignment Step

- Each centroid represents one cluster
- Each data point is assigned to its nearest cluster based on squared Euclidean distance

Centroid Update Step

- Recompute the centroids by taking the mean of the data points assigned to that particular centroid
- The algorithms repeats the two steps until end condition is met:
 - No change in clusters

K-MEANS PROCESS

K-MEANS ALGORITHM

Input: K (No of Clusters to form) and Input Data Set

Repeat{

for i = 1 to m

 $c^{(i)}$:=index(1 to K) of cluster centroid closest to $x^{(i)}$ (datapoint)

for k = 1 to K

 μ_{K} :=average mean of points assigned to cluster K

} Stop when convergence criteria is meet.

CHOOSING NUMBER OF CLUSTERS K

Elbow- Join method

Metric used is mean distance between data points and their cluster centroid.

K-MEANS EXAMPLE

_		Individual	Mean Vector (centroid)
$\neg /$	Group 1	1	(1.0, 1.0)
•	Group 2	4	(5.0, 7.0)

	Cluster 1		Clus	ter 2
		Mean		Mean
Step	Individual	Vector	Individual	Vector
		(centroid)		(centroid)
1	1	(1.0, 1.0)	4	(5.0, 7.0)
2	1, 2	(1.2, 1.5)	4	(5.0, 7.0)
3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
4	1, 2, 3	(1.8, 2.3)	4, 5	(4.2, 6.0)
5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

	Individual	Mean Vector (centroid)
Cluster 1	1, 2	(1.3, 1.5)
Cluster 2	3, 4, 5, 6, 7	(3.9, 5.1)

	Distance to	Distance to
Individual	mean	mean
marviduai	(centroid) of	
	Cluster 1	Cluster 2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	0.6
7	2.8	1.1

	Individual	Mean Vector	
	muividuai		
		(centroid)	
Cluster 1	1, 2, 3	(1.8, 2.3)	
Cluster 2	4, 5, 6, 7	(4.1, 5.4)	
	4		

K-MEANS EXAMPLE

K Means Clustering

ADVANTAGES AND DISADVANTAGES

Advantages

- 1. Easyto implement.
- 2. With a large number of variables, K-Means may be computationally faster than hierarchical clustering (if K is small)

Disadvantages

- 1. Difficult to predict the number of clusters (K-Value).
- 2. Can converge on local minima
- 3. Sensitive to outliers

K-MEDOIDS CLUSTERING

The mean in k-means clustering is sensitive to outliers. Since an object with an extremely high value may substantially distort the distribution of data.

Hence we move to k-medoids.

Instead of taking mean of cluster we take the most centrally located point in cluster as it's center.

These are called medoids.

K-MEANS & K-MEDOIDS Clustering- Outliers Comparison

Fig.6 Outliers in K-Means

Fig.7 Outliers in K-Medoids

K-MEDOIDS - BASIC ALGORITHM

Input: Number of K (the clusters to form)

Initialize:

Select K points as the initial representative objects i.e initial K-medoids of our K clusters.

Repeat:

Assign each point to the cluster with the closest medoid m. Randomly select a non-representative object o_i Compute the total cost of **swapping** S, the medoid m with o_i If S < 0:

Swap m with o_i to form new set of medoids.

Stop when convergence criteria is meet.

K-MEDOIDS - BASIC FIOWCHART

K-MEDOIDS - PAM ALGORITHM

PAM stands for **Partitioning Around Medoids**.

GOAL: To find Clusters that have minimum average dissimilarity between objects that belong to same cluster.

ALGORITHM:

- 1. Start with initial set of medoids.
- 2. Iteratively replace one of the medoids with a non-medoid if it reduces total sum of SSE of resulting cluster.

SSE is calculated as below:

$$SSE(X) = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

Where k is number of clusters and x is a data point in cluster C_i and M_i is medoid of C_i

TYPICAL PAM EXAMPLE

Data Objects

	A_1	A
O ₁	2	6
O ₂	3	4
O_3	3	8
O_4	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O ₉	8	5
O ₁₀	7	6

For
$$K = 2$$

Randomly Select m1 = (3,4) and m2 = (7,4)

Using Manhattan as similarity metric we get,

$$C1 = (01, 02, 03, 04)$$

$$C2 = (05, 06, 07, 08, 09, 010)$$

Data Objects

Compute absolute error as follows,

$$E = (o1-o2) + (o3-o2) + (o4-o2)$$

$$+$$

$$(o5-o8) + (o6-o8) + (o7-o8) + (o9-o8) + (o10-o8)$$

$$E = (3+4+4) + (3+1+1+2+2)$$
Therefore,

E = 20

Data Objects

Swapping o8 with o7

Compute absolute error as follows,

$$E = (01-02) + (03-02) + (04-02)$$

+

$$(05-07) + (06-07) + (08-07) + (09-07) + (010-07)$$

$$E = (3+4+4) + (2+2+1+3+3)$$

Therefore,

$$E = 22$$

Data Objects

	\mathbf{A}_{1}	A_2	Let's now calculate cost function S for this swap,
O ₁	2	6	•
O ₂	3	4	S = E for (02,07) - E for (02,08)
O_3	3	8	
O_4	4	7	S = 22- 20
O ₅	6	2	Therefore C > 0
O_6	6	4	Therefore S > 0,
O ₇	7	3	This swap is undesirable.
O ₈	7	4	This swap is undesirable.
O ₉	8	5	
O ₁₀	7	6	

ADVANTAGES and DISADVANTAGES of PAM

Advantages:

PAM is more flexible as it can use any similarity measure.

PAM is more robust than k-means as it handles noise better.

Disadvantages:

PAM algorithm for K-medoid clustering works well for dataset but cannot scale well for large data set due to high computational overhead.

PAM COMPLEXITY: $O(k(n-k)^2)$ this is because we compute distance of n-k points with each k point, to decide in which cluster it will fall and after this we try to replace each of the medoid with a non medoid and find it's distance with n-k points.

To overcome this we make use of CLARA.

CLARA - CLUSTERING LARGE APPLICATIONS

- Improvement over PAM
- Finds medoids in a sample from the dataset

[Idea]: If the samples are sufficiently random, the medoids of the sample approximate the medoids of the dataset

[Heuristics]: 5 samples of size 40+2k gives satisfactory results

Works well for large datasets (n=1000, k=10)

CLARA ALGORITHM

- 1. Split randomly the data sets in multiple subsets with fixed size (sampsize)
- Compute PAM algorithm on each subset and choose the corresponding k
 representative objects (medoids). Assign each observation of the entire data set to
 the closest medoid.
- 3. Calculate the mean (or the sum) of the dissimilarities of the observations to their closest medoid. This is used as a measure of the goodness of the clustering.
- 4. Retain the sub-dataset for which the mean (or sum) is minimal. A further analysis is carried out on the final partition.

COMPARISON CLARA vs PAM

Strength:

- deals with larger data sets than PAM
- CLARA Outperforms PAM in terms of running time and quality of clustering

Weakness:

- Efficiency depends on the sample size
- A good clustering based on samples will not necessarily represent a good clustering of the whole

APPLICATIONS

Social Network

Document Clustering

GENERAL APPLICATIONS OF CLUSTERING

- 1. Recognition
- 2. Spatial Data Analysis
 - a. create thematic maps in GIS by clustering feature spaces
 - b. detect spatial clusters and explain them in spatial data mining
- 1. Image Processing
- 2. Economic Science (especially market research)
- 3. WWW
 - a. Document classification
 - b. Cluster Weblog data to discover groups of similar access patterns

PART 2

TRAFFIC ANOMALY DETECTION USING K-MEANS CLUSTERING

Authors:

Gerhard Munz, Sa Li, Georg Carle,
Computer Networks and Internet,
Wilhelm Schickard Institute for Computer Science,
University of Tuebingen, Germany

Published in GI/ITG Workshop MMBnet, 2007.

NETWORK DATA MINING

- Knowledge about monitoring data. Helps in determining dominant characteristics and outliers.
- ❖ Deployed to define rules or patterns that are typical for specific kinds of traffic helps to analyze new sets of monitoring data(labeling).

NOVEL NDM APPROACH

K-means clustering of monitoring data

Aggregate and transform flow records into datasets for equally spaced time intervals

- Raw Data and Extracted Features
 - > Total number of packets sent
 - > Total number of bytes sent
 - > Number of different source-destination pairs

K-means Clustering

Distance metric used is

$$d(x,y) = \sqrt{\sum_{i=1}^{m} \left(\frac{x_i - y_i}{s_i}\right)^2}$$

 s_i is an empirical normalization

$$s_{packets} = s_{bytes} = 5$$

$$s_{src-dst} = 1.$$

CLASSIFICATION AND OUTLIER DETECTION

Classification

Outlier detection

CLASSIFICATION AND OUTLIER DETECTION

Combined approach

RESULTS: PING FLOOD DETECTION

CONCLUSIONS

- The resulting cluster centroids can be used to detect anomalies in new on-line monitoring data with a small number of distance calculations.
- ❖ Applying the clustering algorithm separately for different services improves the detection quality.
- The algorithm is scalable.
- Optimum number of clusters K is difficult to decide.

