LECTURE 6 - PRINCIPAL COMPONENTS ANALYSIS

1. Lagrangian Optimization - Equality Constraints

- Lets consider constrained optimization with equality constraints
- Lagrange multipliers are auxiliary variables that help to characterize optimal solutions. They can be viewed in two ways:
 - Penalty Viewpoint: In this method, we disregard the constraints but add a
 very high penalty for violating them. Then, we can work with the "penalized"
 unconstrained problem
 - Feasible Direction Viewpoint: This method relies on the fact that at a local minimum, there can be no cost improvement when traveling a small distance angle a direction that leads to feasible solutions
- Consider problems with equality constraints of the following form:

(1)
$$\min_{x} f(x) \text{ such that } h_i(x) = 0, \quad i = 1, \dots, m$$

We assume that f and h_i are continuously differentiable functions.

• The basic Lagrange multiplier theorem states that for a given local minimum, x^* , there exist scalars $\lambda_1, \ldots, \lambda_m$ called *Lagrange Multipliers* such that,

(2)
$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x^*) = 0$$

There are two ways to interpret this equation:

- The cost gradient $\nabla f(x^*)$ belongs to the subspace spanned by the constraint gradients at x^*
- The cost gradient $\nabla f(x^*)$ is orthogonal to the subspace of the first order feasible variations

(3)
$$V(x^*) = \{ \Delta x | \nabla h_i(x^*)' \Delta x = 0, i = 1, \dots, m \}$$

- For a geometric perspective, note that at any point on the constraint surface the gradient $\nabla g(\mathbf{x})$ of the constraint function will be orthogonal to the surface. Consider a point \mathbf{x} that is on the constraint surface and consider a nearby point $\mathbf{x} + \epsilon$ also on the surface. Then the Taylor series expansion around \mathbf{x} is: $g(\mathbf{x} + \epsilon) \approx g(\mathbf{x}) + \epsilon^T \nabla g(\mathbf{x})$. Since both \mathbf{x} and $\mathbf{x} + \epsilon$ are on the constraint surface, then $g(\mathbf{x} + \epsilon) = g(\mathbf{x})$ and $\epsilon^T \nabla g(\mathbf{x}) \approx 0$. As $\|\epsilon\| \to 0$, then $\epsilon^T \nabla g(\mathbf{x}) = 0$ because ϵ is parallel to the constraint surface and $\nabla g(\mathbf{x})$ is orthogonal to the surface.
- Also, for any point in which $f(\mathbf{x})$ is maximized along the constraint surface, then $\nabla f(\mathbf{x})$ is orthogonal to the constraint surface. Otherwise, then there would be a step along the constraint surface in which $f(\mathbf{x})$ could be further increased.

- Hence, $\nabla f(x^*) + \lambda \nabla g(x^*) = 0$
- For additional reading on Lagrangian optimization, see: Appendix E in the Bishop textbook and/or Constrained Optimization and Lagrange Multiplier Methods by Bertsekas, http://www.mit.edu/~dimitrib/Constrained-Opt.pdf

1.1. Principal Components Analysis - Maximal Variance Formulation.

- PCA is a linear transformation
- PCA minimizes the redundancy of the resulting transformed data (by ending up data that is uncorrelated), minimizes the mean squared error between original and transformed/reduced data, and maximizes the retained variance of the data.
- Consider a data set of observations $\{\mathbf{x}_n\}_{n=1}^N$ and $\mathbf{x}_n \in \mathbb{R}^D$. We want to maximize the variance of the projected data.
- Let us first consider reducing dimensionality to M = 1. Let us define the projection as a vector \mathbf{u}_1 where $\mathbf{u}_1^T \mathbf{u}_1 = 1$. Then, each projected data point into 1-D would be $y_n = \mathbf{u}_1^T \mathbf{x}_n$
- The mean of the sample data is $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$ and the mean of the projected data is $\mathbf{u}_1^T \bar{\mathbf{x}}$
- The variance of projected data is:

$$(4)\frac{1}{N}\sum_{n=1}^{N} \left\{ \mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\bar{\mathbf{x}} \right\}^{2} = \frac{1}{N}\sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\bar{\mathbf{x}} \right) \left(\mathbf{u}_{1}^{T}\mathbf{x}_{n} - \mathbf{u}_{1}^{T}\bar{\mathbf{x}} \right)^{T}$$

(5)
$$= \frac{1}{N} \sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}} \right) \left(\mathbf{x}_{n}^{T} \mathbf{u}_{1} - \bar{\mathbf{x}}^{T} \mathbf{u}_{1} \right)$$

(6)
$$= \frac{1}{N} \sum_{r=1}^{N} \mathbf{u}_{1}^{T} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{u}_{1} - \mathbf{u}_{1}^{T} \mathbf{x}_{n} \bar{\mathbf{x}}^{T} \mathbf{u}_{1} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}} \mathbf{x}_{n}^{T} \mathbf{u}_{1} + \mathbf{u}_{1}^{T} \bar{\mathbf{x}} \bar{\mathbf{x}}^{T} \mathbf{u}_{1}$$

(7)
$$= \mathbf{u}_1^T \left(\frac{1}{N} \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^T - \mathbf{x}_n \bar{\mathbf{x}}^T - \bar{\mathbf{x}} \mathbf{x}_n^T + \bar{\mathbf{x}} \bar{\mathbf{x}}^T \right) \mathbf{u}_1$$

(8)
$$= \mathbf{u}_1^T \left(\frac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T \right) \mathbf{u}_1$$

$$= \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$

• Now, we can maximize the projected variance with respect to \mathbf{u}_1 while constraining $\mathbf{u}_1^T \mathbf{u}_1 = 1$. We will do this using a Lagrange multiplier:

(10)
$$L = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda_1 \left(1 - \mathbf{u}_1^T \mathbf{u} \right)$$

• By taking the derivative of the Lagrangian and setting it equal to zero, we get:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

• We can left multiply by \mathbf{u}_1^T and get:

$$\mathbf{u_1}^T \mathbf{S} \mathbf{u_1} = \lambda_1$$

- So the variance of the projected data is equal to the eigenvalue of the covariance matrix of the sample data along the direction of the eigenvector used for dimensionality reduction.
- We can incrementally add new eigenvector directions (ordered by maximal eigenvalue/variance) to project into an M dimensional space where $1 \le M \le D$

1.2. PCA for Minimization of Mean Squared Error.

- We can also look at PCA as a minimization of mean squared error.
- Consider $\mathbf{x} \in \mathbb{R}^n$ and an orthogonal basis \mathbf{a} :

(13)
$$\hat{\mathbf{x}} = \sum_{i=1}^{m} y_i \mathbf{a}_i$$

where m < n.

$$(14) y_j = \mathbf{x}^T \mathbf{a}_j$$

where $\mathbf{A}^T \mathbf{A} = \mathbf{I}$

We want to minimize the residual error:

(15)
$$\epsilon = \mathbf{x} - \hat{\mathbf{x}} = \sum_{j=m+1}^{n} y_j \mathbf{a}_j$$

The objective we will used is the mean square residual:

(16)
$$J = E\{\|\epsilon\|_2^2\}$$

(17)
$$= E\left\{ \left(\sum_{i=m+1}^{n} y_i \mathbf{a}_i^T \right) \left(\sum_{i=m+1}^{n} y_i \mathbf{a}_i \right) \right\}$$

(18)
$$= \sum_{j=m+1}^{n} E\{y_j^2\}$$

(19)
$$= \sum_{j=m+1}^{n} E\{(\mathbf{a}_{j}^{T}\mathbf{x})(\mathbf{x}^{T}\mathbf{a}_{j})\}$$

(20)
$$= \sum_{j=m+1}^{n} \mathbf{a}_{j}^{T} E\{\mathbf{x}\mathbf{x}^{T}\}\mathbf{a}_{j}$$

$$= \sum_{j=m+1}^{n} \mathbf{a}_{j}^{T} R_{x} \mathbf{a}_{j}$$

Minimize the error and incorporate Lagrange parameters for $\mathbf{A}^T\mathbf{A}=\mathbf{I}$:

(22)
$$\frac{\partial J}{\partial \mathbf{a}_j} = 2(R_x \mathbf{a}_j - \lambda_j \mathbf{a}_j) = 0 \text{ for } j = m+1 \dots n$$

$$(23) R_x \mathbf{a}_j = \lambda_j \mathbf{a}_j$$

So, the sum of the error is the sum of the eigenvalues of the unused eigenvectors. So, we want to select the eigenvectors with the m largest values.