University of Virginia Forest Model Enhanced Version 3 - October 2018

How to Run UVAFME

$July\ 7,\ 2020$

Contents

1	\mathbf{Mo}	del Inp	outs	3
	1.1	Files N	Needed for UVAFME	3
		1.1.1	File list file	3
		1.1.2	Input files needed	5
	1.2	Descri	ption of Input Files	5
		1.2.1	Runtime File	5
		1.2.2	Sitelist File	7
		1.2.3	Specieslist File	7
		1.2.4	Site File	11
		1.2.5	Rangelist File	12
		1.2.6	Climate Files	13
		1.2.7	Litter Parameters File	13
	1.3	Option	nal Input Files	15
		1.3.1	Climate GCM File	15
2	Rui	nning t	the Model	15
3	Mo	del Ou	atputs	16
	3.1	Standa	ard Outputs	16
		3.1.1	Species and Genus Output	16
		3.1.2	Across-Species/Genus Output	18
		3.1.3	Site and Climate Output	20
		3.1.4	Soil Output	20
		3.1.5	Other Output Files	21

	3.2	Option	nal Outputs	22
		3.2.1	Plot-level Output	22
		3.2.2	Tree-level Output	24
4	Mo	difying	g UVAFME Code	25
5	Tip	s and '	Tricks	25
		5.0.1	Column Names and Order	25
		5.0.2	NAs in Sitelist File	25
		5.0.3	Rangelist File	26
		5.0.4	End of Line Issues	26
		5.0.5	Adding Object Attributes	26
		5.0.6	Everything Else	
$\mathbf{R}_{\mathbf{c}}$	efere	nces		27

UVAFME is written in Fortran(90), and can be run on a Linux platform and easily compiled on a Linux system with the ifort compiler. Each site simulated in UVAFME is independent from other sites. Thus, when simulating multiple sites, UVAFME runs them in succession. This setup means that UVAFME simulations may be run 'interactively' (i.e. from an active command line session), or distributed across several linux nodes via a job manager such as SLURM.

1 Model Inputs

1.1 Files Needed for UVAFME

In order to successfully run UVAFME, all the necessary files must be present in the correct directories and with the correct naming system. These files/folders must be present (though they need not be named as below):

- 1. *UVAFME_vx*: the UVAFME executable file for the model, the vx denoting version
- 2. file_list.txt: the text file that tells the model where the input/output directories are located
- 3. **input_data**: the input directory
- 4. **output_data**: the output directory

1.1.1 File list file

The file list text file is a Fortran namelist file, which produces format-free inputs of groups of variables, or a selection of a group of variables. This file specifies the path and directories for the input and output folders (Fig. 1). As a namelist file, the parameters **must** match those inside the model. The values on the right side (i.e. those in quotes in Fig. 1) can be changed to match the path/name of the input and output directories. If these files cannot be found, an I/O error will be thrown and the model will not run. If there is a problem with the file list file (e.g. the model cannot find it or read it), default folder names ('input_data' and 'output_data') will be used, and a message will be printed to the screen as such.

The directories within the file list should contain the input/output files as follows (see below for description of each file):

input_directory

```
1 &filenames
2 input_directory='input_data'
3 output_directory='output_data'
4 climate_directory='input_data'
5 site_directory='input_data'
6 sitelist_directory='input_data'
7 GCM_directory='input_data'
8 /
9
```

Figure 1: Example of a *file_list.txt* file. As with all Fortran namelist files, the filelist file **must** start with "&filenames" (the name of the namelist in the model) and end with "/". The parameters for the input/output directories (left side) should **not** be in quotes, whereas the path/name of the folder (right side) should be in quotes.

- UVAFME2018_runtime.txt
- UVAFME2018_rangelist.csv
- UVAFME2018_specieslist.csv
- UVAFME2018_litterpars.csv

output_directory

- All output files

• climate_directory

- UVAFME2018_climate.csv
- $-\ UVAFME2018_climate_stddev.csv$
- UVAFME2018_climate_ex.csv
- $UVAFME2018_climate_ex_stddev.csv$

• site_directory

- UVAFME2018_site.csv
- sitelist_directory
 - UVAFME2018_sitelist.csv
- GCM_directory (optional)
 - UVAFME2018_climate_GCM.csv

As in Fig. 1, all input files may be in the same input directory, and thus all input directory parameters would be set to the same path/folder. However, these input files need not be in the same directory. The ability to break the input files up into separate directories allows for easier batch runs of multiple sites (see Section 2).

1.1.2 Input files needed

For a basic run, these ten files must be present in the appropriate input directory:

- 1. UVAFME2018_runtime.txt
- 2. UVAFME2018_sitelist.csv
- $3.~UVAFME2018_site.csv$
- 4. UVAFME2018_rangelist.csv
- 5. UVAFME2018_specieslist.csv
- 6. UVAFME2018_climate.csv
- $7.~~UVAFME2018_climate_stddev.csv$
- 8. UVAFME2018_climate_ex.csv
- $9.\ UVAFME2018_climate_ex_stddev.csv$
- 10. UVAFME2018_litterpars.csv

An optional *UVAFME2018_climate_GCM.csv* file can be used for a non-linear climate change application (i.e. from a GCM file) (Section 1.3). These files **must** have this exact naming convention or UVAFME will not recognize them and an I/O runtime error will occur.

1.2 Description of Input Files

1.2.1 Runtime File

The *UVAFME2018_runtime.txt* file sets up runtime parameters which are the same across all sites run. Such parameters include how many plots to simulate per site and their size, the number of years to run the simulations, as well as parameters for implementing climate change. The runtime file is a Fortran namelist file (Fig. 2; see above description of filelist file). Thus,

```
1 &uvafme
2 ! variables that can be changed
3 !incr/decr variables are total change, and both should be positive
4 !incr_tmin_by=3
6 !incr_precip_by=0
7 !decr_tmax_by
9 !decr_tmax_by
10 !incr_or_decr_prcp=incr
11 !incr_or_decr_prcp=incr
12 year_print_interval=5
14 fixed_seed=.true.
15 debug=.false.
16
17 numyears=100
18 numplots=200
19 plotsize=500
20 growth_thresh=0.03
21 maxtrees=1000
22 maxcells=30
23 with_clim_change=.false.
24 use_gcm=.true.
25 linear_cc=.false.
27 gcm_duration=96
28 start_gcm=0
29 end_gcm=96
20 tree_level_data=.false.
31 plot_level_data=.false.
32 daily_soil_data = .false.
33 /
34
35
36
```

Figure 2: Example of a *UVAFME2018_runtime.txt* file. Lines that are commented out with a "!" will not be read and those variables will take on the default parameters. As with all Fortran namelist files, the runtime file **must** start with "&uvafme" and end with "/".

the parameter names in the input runtime file **must** match the parameter names set up inside the model or an I/O error will occur, and the default values for all subsequent parameters will be used.

Runtime parameters that can be changed via the runtime file can be seen in Table 1. The climate change-related parameters have checks intended to prevent unintended errors:

- 1. If using a climate change application (i.e. **with_clim_change** = TRUE) an error is thrown if the duration (i.e. **gcm_duration**) is 0.0.
- 2. If a linear climate change application is being used, an error is thrown if all of the incr_ or decr_tmin/tmax/precip_by values are 0.0.
- 3. Errors are thrown if **incr_tmin_by** or **incr_tmax_by** are negative when **incr_or_decr_temp** is 'incr'.
- 4. Errors are thrown if **decr_tmin_by** or **decr_tmax_by** are 0.0 when **incr_or_decr_temp** is 'decr'.
- 5. Errors are thrown if **incr_precip_by** is negative when **incr_or_decr_precip** is 'incr'.

- 6. Errors are thrown if **decr_precip_by** is 0.0 when **incr_or_decr_precip** is 'decr'.
- 7. The decrease-by values are intended to be input as positive values so if any decr_tmin/tmax/precip_by values are negative when a decrease is intended, then the value is changed to positive.

Otherwise, for linear climate change applications, the annual temperature and precipitation change is calculated as:

$$t' = \begin{cases} \frac{incr_t_by}{gcm_duration+1}, & incr_or_decr_temp = \text{`incr'} \\ \frac{-decr_t_by}{gcm_duration+1}, & incr_or_decr_temp = \text{`decr'} \end{cases}$$
(1)

and

$$p' = \begin{cases} \frac{incr_precip_by}{gcm_duration+1}, & incr_or_decr_prcp = \text{`incr'} \\ \frac{-decr_precip_by}{gcm_duration+1}, & incr_or_decr_prcp = \text{`decr'} \end{cases}$$
(2)

where t' is the annual minimum or maximum temperature change (°C), p' is the annual precipitation change (proportional), and $incr_t_by$ and $decr_t_by$ are the overall linear $incr_tmin/tmax_by$ or $decr_tmin/tmax_by$ values.

1.2.2 Sitelist File

The UVAFME2018_sitelist.csv file sets up the sites to be run in a simulation, as well as site-specific parameters such as fire probability and intensity, windthrow probability, and elevation of a site. While each of these parameters is generally also present in the site file (UVAFME2018_site.csv) or is a default parameter in the model, the setup here allows for sites to be parameterized with "base" conditions in the Site file, and run with different parameters using the Sitelist file. This setup also allows the same site to be run multiple times with different parameters values (e.g. the same site run a multiple elevations). The Sitelist file must have the site IDs of each site to be run present in the siteID column, but all other columns may be left blank. Any other parameter left blank in the Sitelist file will take the values present in the Site file or default values in the model.

1.2.3 Specieslist File

The *UVAFME2018_specieslist.csv* file contains the species-level parameters for each species to be simulated. These parameters include average maximum age, DBH, and height, tolerance levels to shade, drought and nutrients, and seedling/seedbank parameters (Table 3). Unless otherwise noted, most

Table 1: Parameters set up in runtime file.

Parameter Name	Description	Default Value
incr_tmin_by	amount to increase \bar{t}_{min}	0.0 °C
IIIOI _UIIIII_SJ	under linear climate change application	0.0 0
incr_tmax_by	amount to increase \bar{t}_{max}	0.0 °C
mer_emax_sy	under linear climate change application	0.0 0
incr_precip_by	proportion to increase \bar{p}	0.0
mer_preerp_sy	under linear climate change application	0.0
decr_tmin_by	amount to decrease \bar{t}_{min}	0.0 °C
	under linear climate change application	
decr_tmax_by	amount to decrease \bar{t}_{max}	0.0 °C
	under linear climate change application	
decr_precip_by	proportion to decrease \bar{p}	0.0
1 1 0	under linear climate change application	
incr_or_decr_prcp	whether or increase or decrease \bar{p}	'decr'
	under linear climate change application	
incr_or_decr_temp	whether or increase or decrease \bar{t}	'incr'
	under linear climate change application	1.0
year_print_interval	interval at which to print output data	10 years
fixed_seed	whether random seed is default (.true.)	.false.
	or generated (.false.)	
debug	whether climate random seeds are default (.true.) or generated (.false.)	.false.
		1000
numyears	number of years to run model	1000
numplots	number of plots to run per site	$\frac{200}{500 \text{ m}^2}$
plotsize	size of plot	0.03
growth_thresh maxtrees	minimum growth threshold (δDBH_{min})	900
maxtrees	maximum possible trees per plot maximum possible rows/columns for plot grid	30
maxcens	_ ,	30
with_clim_change	whether or not to run	.false.
	with climate change application	
	whether or not to use an	.false.
use_gcm	input GCM file for climate	.iaise.
	change application whether or not to use a	
linear_cc	linear climate change application	.false.
gcm_duration	the length of the climate change application	0 years
start_gcm	the start year of the input GCM file	0 years
end_gcm	the end year of the input GCM file	100
tree_level_data	<u> </u>	.false.
	whether to print out tree-level output data	.false.
plot_level_data	whether to print out plot-level output data	.iaise.

Table 2: Sitelist file parameters.

Column Number Column Name		Description	Units
1	siteID	site ID for site - must include for runs	integer
2	runID	run ID for site	integer
3 altitude		altitude for site	meters
4 fire_level		fires in 1000 years	1000/FRI
5 wind_level		windthrow events in 1000 years	1000/WRI

parameters are derived from a scientific literature review (e.g. Burns and Honkala (1990)).

To derive the parameters s and g, equation A4 from Botkin et al. (1972) is used. The parameter g is calculated using input parameters of H_{max} , DBH_{max} , and AGE_{max} :

$$g = \frac{4H_{max}}{AGE_{max}} \left[\ln \left(2(2DBH_{max} - 1) \right) + \frac{\alpha}{2\ln(e_1)} - f \ln \left(\frac{a \times c}{b \times d} \right) \right]$$
(3)

where:

$$\alpha = 1 - 1.37/H_{max} \tag{4}$$

$$e_1 = \frac{\frac{9}{4} + 0.5\alpha}{(4DBH_{max}^2 + 2\alpha DBH_{max} - \alpha)}$$
 (5)

$$a = 3 + \alpha - \sqrt{\alpha^2 + 4\alpha} \tag{6}$$

$$b = 3 + \alpha + \sqrt{\alpha^2 + 4\alpha} \tag{7}$$

$$c = 4DBH_{max} + \alpha + \sqrt{\alpha^2 + 4\alpha} \tag{8}$$

$$d = 4DBH_{max} + \alpha - \sqrt{\alpha^2 + 4\alpha} \tag{9}$$

and

$$f = \frac{\alpha + 0.5\alpha^2}{\sqrt{\alpha^2 + 4\alpha}} \tag{10}$$

The parameter g is further modified within the model depending on shade tolerance, such that $g = g \times l$, where l ranges from 1.1 to 1.25 depending on

Table 3: Specieslist file parameters.

		able 5. Specieshst i		
Column Number	Column Name	Description	Units	Data Source
1	Group	genus group number	integer	
2	Genus	genus of tree	character	
3	Individual	individual species number	integer	
4	Scientific_Name	latin name of species	character	
5	English_Name	common name of species	character	
6		average maximum age	years	
7	AGE_{max}			
	DBH_{max}	average maximum DBH	cm	
8	H_{max}	average maximum height	m	
9	s	initial height-diameter relationship	${\rm m~cm^{-1}}$	Equation A4 from Botkin, Janak, and Wallis (1972) (Fig. 3 below)
10	g	growth parameter		Equation A4 from Botkin et al. (1972) (Eq. 3 below)
11	bulk	bulk density of wood	tonnes m^{-3}	Miles and Smith 2008
10	D	Scalar parameter for		1.6.14 0.158
12	D_L	$LA D_{cbb}^{2}$ relationship		default = 0.15§
13	LMA	leaf mass per area	tonnes C ha ⁻¹	default 0.5 for evergreen; 0.316 for deciduous
14	GDD_{min}	minimum degree day threshold (5°C base)	degree-days	
15	GDD_{opt}	optimum degree day threshold (5°C base)	degree-days	
16	GDD_{max}	maximum degree day threshold (5°C base)	degree-days	
17	shade	relative shade tolerance	1-5; $5 = least tolerant$	
18	drought	relative drought tolerance	1-6; 6 = least tolerant	
19	flood	relative flood tolerance	1-6; $6 = least tolerant$	
20	permf	relative permafrost tolerance	1-3; 3 = least tolerant	
21	nutrient	relative low nutrient tolerance	1-3; 3 = least tolerant	
22	bark_thick	bark thickness per cm DBH	cm bark cm DBH ⁻¹	Keane, Loehman, and Holsinger (2011)
23	fire_regen	relative ability of plant to resprout, regrow, or produce seed after fire	1-6; 1 = high reproduction after fire; 6 = low reproduction after fire	
24	stress	relative ability to withstand low growth from stress	1-5; 5 = least tolerant	
25	death	relative ability to live to AGE_{max}	1-3; 3 = least likely	
26	Evergreen	evergreen or deciduous	evergreen = 1; deciduous = 0	
27	litter_class	integer for litter class	deciduous = 0	
21	iittei Liass	Ö		
28	invader	probability of inseeding		wind dispersed seeds $= 1$
29	seed	from outside plot seed numbers from within plot	seeds m^{-2}	e.g. cones ≈ 1 ; samaras ≈ 10 ; wind dispersed ≈ 100
30	sprout	average sprouts produced per individual		•
31	layering	ability of species to reproduce by layering	0 or 1	
32	org_resp	relative ability of species to reproduce on deep organic layers	1-3; 3 = least tolerant	
33	recr_age	age at which species can reproduce	years	
34	NDE	proportion seedbank lost annually	0 to 1	
35	NDS	proportion seedling bank lost annually	0 to 1	
36	species_id	unique eight character code consisting of first four letters of genus and first four letters of species		
§:	D_L is further modif	ied based on the species-specific shade where adj ranges from 1.5 to 1.7 depe); $D_L = adj \times tol_{shade}$,

 $H_{max} = 30 \text{ m}$, $DBH_{max} = 76 \text{ cm}$, $AGE_{max} = 170 \text{ yrs}$, s = 0.795, g = 1.5y = 1.0003x, R-squared: 1

Figure 3: Example derivation of parameter s for a species with $H_{max}=30$ m, $DBH_{max}=76$ cm, and $AGE_{max}=170$ years.

shade tolerance. The parameter s is derived by regressing the initial height-diameter (DBH = 2.5 to 5.5 cm) relationship calculated using Mitscherlich's equation (Botkin et al. (1972); Eq. 11) with different s values and that using a polynomial equation (Eq. 12) until the slope of a line with y-intercept 0 is closest to 1.0 and the R^2 is closest to 1.0 (Fig. 3).

$$H_m = 1.3 + (H_{max} - 1.3)(1 - e^{\frac{-sDBH}{H_{max} - 1.3}})$$
(11)

$$H_p = (137 + b_2 DBH - b_3 DBH^2)/100$$
 where $b_2 = 2 \frac{H_{max_{cm}} - 137}{DBH_{max}}$ and $b_3 = \frac{H_{max_{cm}} - 137}{DBH_{max}^2}$. (12)

1.2.4 Site File

The *UVAFME2018_site.csv* file contains site-specific parameters for each site, including latitude, longitude, topography, soil characteristics, disturbance

Table 4: Site file parameters.

Column Number Column Name		Description	Units	Data Source
1	site	unique site ID	integer	user generated
2	latitude	latitude of site	decimal degrees	
3	longitude	longitude of site	decimal degrees	
4	name	site name	character	
5	region	region of site	character	
6	elevation	elevation of site	meters	DEM
7	slope	slope of site	degrees	DEM
8	aspect	aspect of site	degrees	DEM
9	a_sat	saturation capacity of mineral layer	volumetric	site description; soil maps
10 a_fc		saturation capacity of mineral layer	volumetric	site description; soil maps
11	fire_prob	fires in 1000 years	1000/FRI	fire history maps;
11	me_prob	iiies iii 1000 years	· '	literature; site descriptions
12	wind_prob	windthrow events in 1000 years	1000/WRI	literature; site descriptions
13	gcm_year	estimated stand age of site used to determine when to start climate change application	years	site description; literature; fire history

Table 5: Rangelist file parameters.

Column Number	Column Name	Description	Units
1	${f site}$	unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4 n	n _{species} unique species ID	presence or absence	0: absent;
4 Ilspecies		of species at site	1: present

probabilities, and values for modifying temperature and precipitation if the elevation of the site is changed (i.e. climatic lapse rates) (Table 4). As with all other site-related files, the **siteID** column must match the site ids in all other files.

1.2.5 Rangelist File

The UVAFME2018_rangelist.csv file determines which species are eligible for colonization and growth at each site (Table 5). The column names are the species ids (8-character IDs set up in the UVAFME2018_specieslist.csv file), and the rows are each site. If a species is present at a site then the column/row will have a 1, and if the species is absent the column/row will have a 0. This is the only csv file where the column names are explicitly read by UVAFME and must match the species ids as set up in the Specieslist file. The order must also match the order of the Specieslist file. The presence/absence of each species is generally derived from species range maps (e.g. Little 1971) or site descriptions.

Table 6: UVAFME2018_climate.csv file parameters.

Column Number	Column Name	Description	Units
1 site		unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4 - 15 tmin_month		mean monthly minimum temperature	°C
16 - 27 tmax_month		mean monthly maximum temperature	°C
28 - 39 prcp_month		monthly precipitation	mm

Table 7: UVAFME2018_climate_stddev.csv file parameters.

Column Number	Column Name	Description	Units
1	site	unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4 - 15	tmin_std_month	standard deviation of	°C
4 - 10	tilliii_Std_illolitii	monthly minimum temperature	
16 - 27	tmax_std_month	standard deviation of	°C
10 - 21	tillax_std_illolitil	monthly maximum temperature	
28 - 39	prcp_std_month	standard deviation of	mm
20 - 39	prep_sta_month	monthly precipitation	mm

1.2.6 Climate Files

The UVAFME2018_climate.csv, UVAFME2018_climate_stddev.csv, UVAFME2018_climate_ex.csv, and UVAFME2018_climate_ex_stddev.csv files contain the average and standard deviations of monthly minimum and maximum temperatures, precipitation, and cloud cover for each site (Tables 6 - 9). These data are generally derived from at least 30 years of historical climate data and are used to generate monthly and daily weather conditions within UVAFME.

1.2.7 Litter Parameters File

The $UVAFME2018_litterpars.csv$ file contains the litter parameters used in the decomposition routine.

Table 8: UVAFME2018_ex_climate.csv file parameters.

Column Numb	oer Column Name	Description	\mathbf{Units}
1	site	unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4 - 15	$\operatorname{cld}_{\operatorname{-}\!\operatorname{month}}$	mean monthly cloudiness	%

Table 9: $UVAFME2018_climate_ex_stddev.csv$ file parameters.

Column Number	Column Name	Description	Units
1	site	unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4 - 15	cld_std_month	standard deviation	07
4 - 10	cia_sta_month	of mean monthly cloudiness	/0

Table 10: $UVAFME2018_litterpars.csv$ file parameters. All parameter values are taken from Bonan (1990) and Pastor and Post (1985).

Column Number	Column Name	Description	Units
1	name	cohort name	character
2	InitialN	initial N percent	0 to 1
3	gImmob_gwtloss	g N immobilized	$\mathrm{g}\;\mathrm{g}^{-1}$
3	giiiiiiob_gwtioss	per g weight loss	8 8
		percent N at which	
4	critN	a decaying litter cohort is	0 to 1
4		transferred to well-decayed	0 to 1
		wood or humus	
5	$litter_type$	litter type ID	integer
6	destination	if cohort is transferred to	1 = humus;
0	destination	well-decayed wood or humus	2 = well-decayed wood
7	initialLignin	initial percent lignin of cohort	0 to 1
8	ligParA	lignin parameter A	_
9	ligParB	lignin parameter B	
10	Ash	ash correction factor	0 to 1

Table 11: UVAFME2018_climate_GCM.csv file parameters.

		±	
Column Number	Column Name	Description	\mathbf{Units}
1	site	unique site ID	integer
2	latitude	latitude of site	decimal degrees
3	longitude	longitude of site	decimal degrees
4	year	year of climate change application	integer
5-16	$\operatorname{tmin_month}$	mean monthly minimum temperature	$^{\circ}\mathrm{C}$
17-28	${ m tmax_month}$	mean monthly maximum temperature	°C
29-40	prcp_month	mean monthly precipitation	mm

1.3 Optional Input Files

1.3.1 Climate GCM File

UVAFME has the option of applying climate change in the form of changing monthly minimum and maximum temperatures and precipitation. The input file required for this application is the

UVAFME2018_climate_GCM.csv file and contains the site ID, year,, and monthly climate variables for each year of the climate change application (Table 11). Data for this file can be taken from output from earth system models or created by the user.

2 Running the Model

To run UVAFME interactively from the command line simply enter:

./UVAFME_vx file_list.txt

This will run the model at each site specified in the Sitelist file, in order. Once the model has finished running, the output files will be in the **output_data** directory. These output files will be rewritten every time the model is run, so be sure to save them elsewhere or with a different name (if desired) before re-running.

As mentioned above, the independence of the UVAFME sites allows for batches of sites to be distributed across several nodes of a computing cluster. This can be done iteratively, using different *file_list.txt* files which point the model to different input/output directories. It can also be accomplished using a job manager such as SLURM.

3 Model Outputs

3.1 Standard Outputs

3.1.1 Species and Genus Output

UVAFME outputs two standard files related to species- and genus-level forest characteristics, the $Species_Data.csv$ file and the $Genus_Data.csv$ file. For both files, at the specified year print interval (Section 1), the average (i.e. across plot) conditions for each species or genus are printed. If a species is specified as absent at a site in the input Rangelist file, the row is still printed but -999's (i.e. the NA signifier) are printed in the data columns.

UVAFME also outputs species- and genus-level files on the characteristics of trees that died each year, the $Dead_Species_Data.csv$ file and the $Dead_Genus_Data.csv$ file. For both files, at the specified year print interval (Section 1), the average (i.e. across plot) conditions for trees that died from each species or genus are printed. If a species is specified as absent at a site in the input Rangelist file, the row is still printed but -999's are printed in the data columns.

Table 12: Species_Data.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	genus	the genus of the species	character
5	species	the species ID	character
6-16	[xx] to [xx]	stem density in DBH bins	trees ha ⁻¹
17-27	[xx] to [xx] biom	biomass in DBH bins	${ m tC~ha^{-1}}$
28	$\operatorname{degday_resp}$	growth response to temperature	0 to 1
29	${ m drought_resp}$	growth response to drought	0 to 1
30	$shade_resp$	growth response to shade	0 to 1
31	perm_resp	growth response to permafrost	0 to 1
32	$nutrient_resp$	growth response to nutrients	0 to 1
33	max_diam	maximum DBH	cm
34	mean_diam	average DBH	cm
35	mean_age	average tree age	years
36	\max_{-} hgt	maximum height	m
37	leaf_area_ind	leaf area	$\mathrm{m^2~m^{-2}}$
38	basal_area	basal area	$\mathrm{m^2~ha^{-1}}$
39	basal_sd	standard deviation of basal area	$\mathrm{m^2~ha^{-1}}$
40	$total_biomC$	biomass	${ m tC~ha^{-1}}$
41	$\mathrm{biomC_sd}$	standard deviation of biomass	tC ha ⁻¹

Table 13: $Genus_Data.csv$ file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	genus	genus name	character
5-15	[xx] to [xx]	stem density in DBH bins	trees ha ⁻¹
16-26	[xx] to [xx] biom	biomass in DBH bins	tC ha ⁻¹
27	$\operatorname{degday_resp}$	growth response to temperature	0 to 1
28	${ m drought_resp}$	growth response to drought	0 to 1
29	$shade_resp$	growth response to shade	0 to 1
30	perm_resp	growth response to permafrost	0 to 1
31	$nutrient_resp$	growth response to nutrients	0 to 1
32	max_diam	maximum DBH	cm
33	$mean_diam$	average DBH	cm
34	$mean_age$	average tree age	years
35	$\max_{ m hgt}$	maximum height	m
36	leaf_area_ind	leaf area index	$\mathrm{m^2~m^{-2}}$
37	basal_area	basal area	$\mathrm{m^2~ha^{-1}}$
38	basal_sd	standard deviation of basal area	$\mathrm{m^2~ha^{-1}}$
39	$total_biomC$	biomass	tC ha ⁻¹
40	$\mathrm{biomC_sd}$	standard deviation of biomass	tC ha ⁻¹

Table 14: $Dead_Species_Data.csv$ file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	genus	the genus of the species	character
5	species	the species ID	character
6	degday_death	biomass of trees that died from temperature stress	tC ha ⁻¹
7	drought_death	biomass of trees that died from drought stress	tC ha ⁻¹
8	shade_death	biomass of trees that died from shade stress	tC ha ⁻¹
9	perm_death	biomass of trees that died from permafrost	tC ha ⁻¹
10	nutrient_death	biomass of trees that died from nutrient stress	tC ha ⁻¹
11	fire_death	biomass of trees that died from wildfire	tC ha ⁻¹
12	wind_death	biomass of trees that died from windthrow	tC ha ⁻¹
13	mean_diam	average DBH	cm
14	total_biomC	average biomass	tC ha ⁻¹
15	biomC_sd	standard deviation of biomass	tC ha ⁻¹

Table 15: Dead_Genus_Data.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	genus	genus anme	character
5	degday_death	biomass of trees that died from temperature stress	tC ha ⁻¹
6	drought_death	biomass of trees that died from drought stress	tC ha ⁻¹
7	$shade_death$	biomass of trees that died from shade stress	tC ha ⁻¹
8	perm_death	biomass of trees that died from permafrost	tC ha ⁻¹
9	$nutrient_death$	biomass of trees that died from nutrient stress	$tC ha^{-1}$
10	fire_death	biomass of trees that died from wildfire	tC ha ⁻¹
11	wind_death	biomass of trees that died from windthrow	tC ha ⁻¹
12	mean_diam	average DBH	cm
13	total_biomC	average biomass	tC ha ⁻¹
14	$\mathrm{biomC_sd}$	standard deviation of biomass	tC ha ⁻¹

3.1.2 Across-Species/Genus Output

UVAFME outputs a file related to across-species/genus forest characteristics, the *Total_Plot_Values.csv* file. For this file, at the specified year print interval (Section 1), the average (i.e. across plot) conditions for all genera are printed.

	<u> Table 16: <i>Tote</i></u>	al_Plot_Values.csv file variables.	
Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	gdd_death	biomass loss due to low temperature stress	tC ha ⁻¹
5	drought_death	biomass loss due to drought stress	tC ha ⁻¹
6	shade_death	biomass loss due to shade stress	$tC ha^{-1}$
7	perm_death	biomass loss due to permafrost stress	tC ha ⁻¹
8	nutrient_death	biomass loss due to low nutrient stress	tC ha ⁻¹
9	fire_death	biomass loss due to fire	tC ha ⁻¹
10	wind_death	biomass loss due to windthrow	tC ha ⁻¹
11	gddresp_1	growth response to temperature for trees 0-10 m in height	0 to 1
12	droughtresp_1	growth response to drought for trees 0-10 m in height	0 to 1
13	shaderesp_1	growth response to shade for trees 0-10 m in height	0 to 1
14	permresp_1	growth response to permafrost for trees 0-10 m in height	0 to 1
15	nutrientresp_1	growth response to nutrients for trees 0-10 m in height	0 to 1
16	gddresp_2	growth response to temperature for trees 10-20 m in height	0 to 1
17	droughtresp_2	growth response to temperature for trees 10-20 m in height	0 to 1
18	shaderesp_2		0 to 1
	*	growth response to shade for trees 10-20 m in height	
19	permresp_2	growth response to permafrost for trees 10-20 m in height	0 to 1
20	nutrientresp_2	growth response to nutrients for trees 10-20 m in height	0 to 1
21	gddresp_3	growth response to temperature for trees 20+ m in height	0 to 1
22	droughtresp_3	growth response to drought for trees 20+ m in height	0 to 1
23	shaderesp_3	growth response to shade for trees 20+ m in height	0 to 1
24	permresp_3	growth response to permafrost for trees 20+ m in height	0 to 1
25	$nutrientresp_3$	growth response to nutrients for trees 20+ m in height	0 to 1
26	$\operatorname{gddlim}_{-1}$	proportion trees most limited by temperature - 0-10 m	0 to 1
27	$droughtlim_1$	proportion trees most limited by drought - 0-10 m	0 to 1
28	$shadelim_1$	proportion trees most limited by shade - 0-10 m	0 to 1
29	permlim_1	proportion trees most limited by permafrost - 0-10 m	0 to 1
30	nutrientlim_1	proportion trees most limited by nutrients - 0-10 m	0 to 1
31	gddlim_2	proportion trees most limited by temperature - 10-20 m	0 to 1
32	droughtlim_2	proportion trees most limited by drought - 10-20 m	0 to 1
33	shadelim_2	proportion trees most limited by shade - 10-20 m	0 to 1
34	permlim_2	proportion trees most limited by permafrost - 10-20 m	0 to 1
35	nutrientlim_2	proportion trees most limited by nutrients - 10-20 m	0 to 1
36	gddlim_3	proportion trees most limited by temperature - 20+ m	0 to 1
37	droughtlim_3	proportion trees most limited by drought - 20+ m	0 to 1
38	shadelim_3	proportion trees most limited by shade - 20+ m	0 to 1
39	permlim_3	proportion trees most limited by permafrost - 20+ m	0 to 1
40	nutrientlim_3	proportion trees most limited by nutrients - 20+ m	0 to 1
41	Loreys_height	average Loreys height	m
42	Loreys_height_sd	standard deviation of Loreys height	m
43	Max_height	average maximum height	m
44	Max_height_sd	standard deviation of maximum height	m
45	Total_plot_biomc	average biomass	tC ha ⁻¹
46	Total_plot_biomc_sd	standard deviation of biomass	tC ha ⁻¹
	_		
47	Total_basal_area	average basal area	cm ² ha ⁻¹
48	Total_basal_area_sd	standard deviation of basal area	cm ² ha ⁻¹
49	Total_stems	average stem density	trees ha ⁻¹
50	Total_stems_sd	standard deviation of stem density	trees ha ⁻¹
51	Stand_age	average stand age	years
52	Stand_age_sd	standard deviation of stand age	years
53	Weighted_age	average stand age weighted by biomass	years
54	Weight_age_sd	standard deviation of stand age weighted by biomass	years
55	LAI_[1-12]	LAI in 5-m canopy sections (0-555-60)	$\mathrm{m^2~m^{-2}}$

3.1.3 Site and Climate Output

UVAFME outputs a file related to climate and site characteristics, the *Climate.csv* file. For this file, at the specified year print interval (Section 1), the several climate variables are printed out. Note output variables **thaw_depth**, **organic_depth**, **avail_n**, **dryd_upper** and **dryd_lower** are averaged across all plots, all others are equal across all plots.

Table 17: Climate.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	rain	annual precipitation (snow and liquid)	cm
5	$\operatorname{\mathbf{pet}}$	annual potential evapotranspiration	cm
6	$\operatorname{solar_rad}$	surface solar radiation	$cal cm^2$
7	tdd	cumulative thawing degree-days	°C-days
8	${ m thaw_depth}$	active layer depth	m
9	$\operatorname{organic_depth}$	organic layer depth	m
10	avail_n	plant-availble N	${ m tN~ha^{-1}}$
11	aet	actual evapotranspiration	cm
12	grow	growing season length	days
13	degd	growing degree-days	°C-days
14	dryd_upper	drought index (upper)	0-1
15	$\mathrm{dryd}_{-}\mathrm{lower}$	drought index (lower)	0-1
16	flood_d	flooding index	0-1

3.1.4 Soil Output

UVAFME outputs a file related to soil characteristics, the *SoilDecomp.csv* file. For this file, at the specified year print interval (Section 1), the several soil-related variables are printed out, averaged across all plots.

Table 18: SoilDecomp.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	odepth	average organic layer depth	m
5	$odepth_sd$	standard deviation of organic layer depth	m
6	mdepth	live moss depth	m
7	moss_biom	live moss biomass	$\rm t~ha^{-1}$
8	active	active layer depth	m
9	OM	humus organic matter weight	$\rm t~ha^{-1}$
10	OM_N	organic matter N	$\rm t~ha^{-1}$
11	lit_cornus	Cornus leaf litter weight	$\rm t~ha^{-1}$
12	lit_acerfrax	Acer and Frazinus leaf litter weight	$\rm t~ha^{-1}$
13	${ m lit}$ _prunus	Prunus leaf litter weight	$\rm t~ha^{-1}$
14	lit_betula	Betula leaf litter weight	$\rm t~ha^{-1}$
15	lit_queralba	Quercus alba leaf litter weight	$\rm t~ha^{-1}$
16	${ m lit_tsugthuj}$	Tsuga and Thuja leaf litter weight	$\rm t~ha^{-1}$
17	${ m lit}$ _populus	Populus leaf litter weight	$\rm t~ha^{-1}$
18	lit_fagus	Fagus leaf litter weight	t ha ⁻¹
19	${ m lit}$ _querrubr	Quercus rubra leaf litter weight	$\rm t~ha^{-1}$
20	lit_abies	Abies leaf litter weight	t ha ⁻¹
21	lit_picea	Picea leaf litter weight	$\rm t~ha^{-1}$
22	$\operatorname{lit_pinus}$	Pinus leaf litter weight	t ha ⁻¹
23	lit_roots	root litter cohort weight	$\rm t~ha^{-1}$
24	$lit_smboles$	small bole (¡ 10 cm DBH) litter cohort weight	$\rm t~ha^{-1}$
25	lit_lboles	large bole (¿ 10 cm DBH) litter cohort weight	$\rm t~ha^{-1}$
26	${ m lit_twigs}$	twig litter cohort weight	$\rm t~ha^{-1}$
27	$ m lit_{-}WDW$	well-decayed wood litter cohort weight	$\rm t~ha^{-1}$
28	lit_moss	moss litter cohort weight	$\rm t~ha^{-1}$
29	avail_n	plant-available N	tN ha ⁻¹

3.1.5 Other Output Files

UVAFME also outputs two text files, log.txt and $site_log.txt$, that print messages regarding site and species data that are read in and initialized (for log.txt) and whether each site run was successfully completed (for $site_log.txt$).

For the *log.txt* file, UVAFME will write "Site data initialized. Total read in: [X]", where X is the number of sites read in from the site input file. It will also write "Species data initialized. Total read in: [X]", where X is the number of species read in from the species parameter input file. Following this, it will write "Species data initialized for site [X], where X is the site ID of each site run, each time the species data is initialized for that site.

This file may also contain other messages if no climate data is found for a specific site: (e.g. "No climate data for site number [X]". If any issues come up during runtime, the *log.txt* file is a good first place to check. UVAFME also prints some error messages directly to the screen, especially if these

errors cause the program to exit.

For the *site_log.txt* file, UVAFME will print "Finished site [X]" (where X is the site ID) for each site it finished simulating. This file can be used to check to make sure all sites completed in a larger run.

3.2 Optional Outputs

3.2.1 Plot-level Output

UVAFME can optionally (see Section 1) output files which print plot-level species- and genus-level forest characteristics, the $Plot_Species_Data.csv$ and $Plot_Genus_Data.csv$ files. For these files, at the specified year print interval (Section 1), the plot conditions for trees from each species or genus are printed. If a species is specified as absent at a site in the input Rangelist file, the row is still printed but -999's are printed in the data columns. Note: this will result in a lot of output data and will slow down your runs considerably, thus the plot_level_data flag in the runtime file should be used sparingly and only if necessary.

Table 19: Plot_Species_Data.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	plot	plot number	integer
5	genus	the genus of the species	character
6	species	the species ID	character
7-17	[xx] to [xx]	stem density in DBH bins	trees ha ⁻¹
18-28	[xx] to [xx] biom	biomass in DBH bins	tC ha ⁻¹
29	max_diam	maximum DBH	cm
30	mean_diam	average DBH	cm
31	${ m max_hgt}$	maximum height	m
32	leaf_area_ind	leaf area index	$\mathrm{m^2~m^{-2}}$
33	basal_area	basal area	$\mathrm{m^2~ha^{-1}}$
34	$total_biomC$	biomass	${ m tC~ha^{-1}}$
35	$total_biomC_sd$	standard deviation of biomass	tC ha ⁻¹

Table 20: Plot_Genus_Data.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	plot	plot number	integer
5	genus	genus name	character
6-16	[xx] to [xx]	stem density in DBH bins	trees ha ⁻¹
17-27	[xx] to [xx] biom	biomass in DBH bins	tC ha ⁻¹
28	\max_{diam}	maximum DBH	cm
29	$mean_diam$	average DBH	cm
30	${ m max_hgt}$	maximum height	m
31	leaf_area_ind	leaf area index	$\mathrm{m^2~m^{-2}}$
32	basal_area	basal area	$\mathrm{m^2~ha^{-1}}$
33	$total_biomC$	biomass	tC ha ⁻¹
34	$total_biomC_sd$	standard deviation of biomass	tC ha ⁻¹

If outputting plot-level data, UVAFME will also output plot-level species and genus-level files on the characteristics of trees that died each year, the $Plot_Dead_Species.csv$ file and the $Plot_Dead_Genus.csv$ files. For both files, at the specified year print interval (Section 1), the individual plot conditions for trees that died from each species or genus are printed. If a species is specified as absent at a site in the input Rangelist file, the row is still printed but -999's are printed in the data columns.

Table 21: Plot_Dead_Species.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	plot	plot number	integer
5	genus	genus of species	character
6	species	unique species ID	character
7	degday_death	biomass mortality due to temperature stress	tC ha ⁻¹
8	drought_death	biomass mortality due to drought stress	${ m tC~ha^{-1}}$
9	shade_death	biomass mortality due to shade stress	tC ha ⁻¹
10	perm_death	biomass mortality due to permafrost	tC ha ⁻¹
11	$nutrient_death$	biomass mortality due to nutrient stress	tC ha ⁻¹
12	fire_death	biomass mortality due to fire	tC ha ⁻¹
13	wind_death	biomass mortality due to windthrow	tC ha ⁻¹
14	mean_diam	average DBH	cm
15	$total_biomC$	biomass	$tC ha^{-1}$

Table 22: Plot_Dead_Genus.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	plot	plot number	integer
5	genus	genus name	character
6	$\operatorname{degday_death}$	biomass mortality due to temperature stress	tC ha ⁻¹
7	$drought_death$	biomass mortality due to drought stress	tC ha ⁻¹
8	$shade_death$	biomass mortality due to shade stress	tC ha ⁻¹
9	$perm_death$	biomass mortality due to permafrost	tC ha ⁻¹
10	$nutrient_death$	biomass mortality due to nutrient stress	tC ha ⁻¹
11	fire_death	biomass mortality due to fire	tC ha ⁻¹
12	wind_death	biomass mortality due to windthrow	tC ha ⁻¹
13	mean_diam	average DBH	cm
14	total_biomC	biomass	tC ha ⁻¹

3.2.2 Tree-level Output

UVAFME can also optionally (see Section 1) output files which print tree-level characteristics for each plot, the *Plot_Tree_Data.csv* file. For this file, at the specified year print interval (Section 1), tree characteristics for each plot are printed. Note: this will result in an even larger amount of output data and will slow down your runs considerably, thus the tree_level_data flag in the runtime file should be used extremely sparingly and only if necessary.

Table 23: Plot_Tree_Data.csv file output variables.

Column Number	Column Name	Description	Units
1	siteID	unique site ID	integer
2	runID	unique run ID	integer
3	year	simulation year	integer
4	plot	plot number	integer
5	treenum	tree number	integer
6	genus	the genus of the tree	character
7	species	the species ID	character
8	row	the row location of the tree	integer
9	col	the column location of the tree	integer
10	diam	diameter at breast height	cm
11	height	height	m
12	${ m cbb_hieght}$	clear branch bole height	m
13	leaf_biomass	leaf biomass	tC
14	$stem_biomC$	woody biomass	tC

4 Modifying UVAFME Code

UVAFME source code files (.f90/.F90 files) can be modified using any text editing software. Geany, Gedit, and TextWrangler are all good options that have Fortan-specific syntax highlighting. Once you have finished making changes you must recompile and remake the executable file. Recompiling requires the Fortran compiler ifort. Another Fortran compiler may be used, but this will require further modifications to the *Makefile* and the source code.

Use the command "make" within the source directory to make the new executable. Sometimes (especially if you have only made small changes) ifort doesn't work very well and may not see all of the changes you have made. If you are having strange issues, try clearing all compiled files with the command "make clean" before recompiling the whole model anew.

Tip: the UVAFME Makefile (in the source code folder) can be changed as well. It may be especially useful to rename the executable (first line "PROG = UVAFME_v1_NABoreal") for different versions so that you can keep track of all the different UVAFME versions (i.e. "PROG = UVAFME_fire", etc.). Then when you run this new executable you would simply replace the command UVAFME_v1 with your new executable name (i.e. "./UVAFME_fire").

5 Tips and Tricks

Below are some common errors that may occur when running UVAFME and modifying input files and source code.

5.0.1 Column Names and Order

Except for the Rangelist file, UVAFME *does not* read the column headers for the input csv files. This means that if your order is not exactly correct (see above sections) UVAFME will read in variables incorrectly, but show no errors (though an error should occur if UVAFME reads in a variable type it is not expecting, i.e. a character when it is expecting a real). Make sure the column order in your input files exactly matches the above tables. This also means that you can change the column names for all but the Rangelist file as you see fit.

5.0.2 NAs in Sitelist File

Though most of the columns (i.e. all but the **siteID** column) may be left blank in the *UVAFME2018_sitelist.csv* file, make sure they are not written

as NA/NaN's, etc. They must be blank or UVAFME will not be able to read the file and this error will be thrown:

```
./UVAFME_v1_NABoreal
parallels@testing>
forrtl: severe (64): input conversion error,
                                                                                  Formatted Read
                                                      unit -5, file Internal
                                            Routine
                                                                    Line
                                                                                   Source
Image
JVAFME v1 NABorea
                      00000000005955DB
                                                                       Unknown
                                            Unknown
                                                                                   Unknown
JVAFME_v1_NABorea
JVAFME_v1_NABorea
JVAFME_v1_NABorea
JVAFME_v1_NABorea
JVAFME_v1_NABorea
JVAFME_v1_NABorea
                      00000000005BBE9B
                                            Unknown
                                                                       Unknown
                                                                                   Unknown
                      00000000005BA845
                                            Unknown
                                                                        Unknown
                                                                                   Unknown
                                                                                   Input.f90
                      0000000000410999
                                             input_mp_read_sit
                                                                            336
                      0000000000585EE0
                                                                                   UVAFME.f90
                                            MAIN
                                                                             71
                                                                        Unknown
                      0000000000403002
                                            Unknown
                                                                                   Unknown
 ibc-2.27.so
                      00007F818D237B97
                                               libc_start_main
                                                                                   Unknown
                                                                        Unknown
 VAFME_v1_NABorea
                      0000000000402EEA
                                            Unknown
                                                                        Unknown
                                                                                   Unknown
 arallels@testing>
```

5.0.3 Rangelist File

As stated in Section 1, the *UVAFME2018_rangelist.csv* file is the only csv file where the column **names** are specifically read in by UVAFME and used to compare to the species IDs set up in the Specieslist file. This means that these column names **cannot** be in quotes or an error will occur. If using a software such as **R** to create the Rangelist file, be sure to write the file without quotes in the column names. If quotes are present, the model will determine that no species are present at the sites and will skip all sites, diplaying the warning message:

```
No species present in site <siteID>
Skipping site <site name>
```

5.0.4 End of Line Issues

If you have I/O errors and aren't sure what is going on (especially if you have a Mac) you may have an end of line issue. The Mac version of MS Excel does not communicate well with Fortran. If you modify any .csv files on a Mac MS Excel, be sure to save them as "Windows Comma Separated," which should solve end of line issues.

5.0.5 Adding Object Attributes

Currently, sometimes errors arise when a new attribute is added to an object (i.e. a new attribute is added to the **Plot** object; see *Plot.f90*). It seems that **ifort** doesn't always catch these additions and then memory-related issues arise. A simple solution when these errors occur is to "make clean" the entire source code folder and recompile all files.

5.0.6 Everything Else...

Otherwise, if you cannot determine what is wrong, you can add the "-traceback" flag to the DBG line in the UVAFME *Makefile*. This will give you the exact line number and module where the error occurred, and is sometimes very helpful in finding errors. Be sure to take this flag out when you are finished debugging as it adds a lot of time to runs.

References

- Botkin, D., Janak, J. F., & Wallis, J. R. (1972, November). Some Ecological Consequences of a Computer Model of Forest Growth. *The Journal of Ecology*, 60(3), 849. Retrieved 2015-10-19, from http://www.jstor.org/stable/2258570?origin=crossref doi: 10.2307/2258570
- Burns, R., & Honkala, B. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agricultural Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. vol. 2 877 p.
- Keane, R., Loehman, R., & Holsinger, L. (2011). The FireBGCv2 Landscape Fire Succession Model: A research simulation platform for exploring fire and vegetation dynamics. USDA Forest Service General Technical Report, RMRS-GTR-55, 145.