Design Phase Report

TITLE: MAIL SERVICE DATABASE

Team Leader:

Team No: 4

Batch: E1&E2

List of team members:

Name	Usn	Roll No
Nirmala R Kanti	01FE21BCS180	534
Prajwal Mutnal	01FE21BCS159	529
Rohan B Jadhav	01FE21BCS272	557
Kavya Handigund	01FE21BCS131	526

Responsibilities: What is the role of each project member in this phase of project?

Name	Responsibilities
Nirmala R Kanti	Report ,PLSQL ,frontend
Prajwal Mutnal	Report ,PLSQL ,frontend
Rohan Jadhav	Report ,PLSQL ,frontend
Kavya Handigund	Report ,PLSQL ,frontend

Problem Description:

The mail service database is a database that is used to store and manage information related to a mail delivery service. It could include information such as the sender and recipient of the mail, and delivery details. The database could be used to perform various functions such as tracking the delivery status of a particular piece of a mail, generating invoices and receipt for customers and analyzing sdata to improve the efficiency of the mail delivery service. Overall, the mail service database is an essential tool for any organization involved in mail delivery and can help streamline processes, reduce errors and improve customers satisfaction.

Requirements:

- ➤ Customer Information Management: The database should allow for the management of customer information, including Name, address, contact information, and delivery preferences.
- ➤ Payment And Billing Management: The database should support the management of payment and billing for mail delivery services, including the generation of invoices and receipts, as well as the management of payment methods.
- ➤ Employee Management: The database should support the management of employee information, including name, contact information, and employee history. it should also enable the scheduling of employees for delivery services.

Design Questions to be answered:

Question 1: From the problem description, identify the entities that need to be represented in the database, the attributes of each entity, the relationships between the entities, and the cardinality ratios of each relationship.

Entities and Attributes:

User	U_Name	U_id	Gender	Address	Ph_no	
Mail boxes	M_id	Rentalcost	MB_type	Size	loc	
Mail	Mail_id	S_name	R_name	M_type	D_status	Date
Employee	E_id	E_name	Cont_no	J_name		
Branch	De_id	De_name	M_name	E_cnt	Budget	

Relationship between Entities and Cardinality Ratio:

Entity 1	Relation name	Entity 2	Cardinality ratio
User	Send	Mail	1:N
User	Place mail at	Mail boxes	1:N
Mail boxes	Collect	Mail	1:N
Mail boxes	Collect mail from	Employee	N:1
Mail boxes	Belongs to	Branch	N:1
Employee	Works at	Branch	1:N

Question 2: Draw an Entity-Relationship Diagram illustrating the information you have identified in Question 1.

Question 3: Draw alternate Entity-Relationship Diagram illustrating the information you have identified in Question 1 that you think are most likely to occur.

Question 4: Choose the optimal Entity-Relationship Diagram from the designs provided above and justify why you think this is an optimal solution for your identified problem specification.

- a) We have identified some more entities which are important related to the system.
- b) We have added some more attributes to the previous entities.
- c) This is the optimal one because it has almost all the information which the system needs for any information
- d) We have mostly covered all the information which will be needed.

Entities and Attributes:

User	U_Name	U_id	Gender	Address	Ph_no	
Mail boxes	M_id	Rentalcost	MB_type	Size	loc	
Delivery routes	D_id	S_address	E_address	Driver		
Delivary vehicles	V_id	Model	Licence_no	year		
Goods services	G_id	Dimension	Cost	Weight		
Mail	Mail_id	S_name	R_name	M_type	D_status	Date
Employee	E_id	E_name	Cont_no	J_name		
Branch	De_id	De_name	M_name	E_cnt	Budget	
Service charge	Sc_id	Sc_type	Sc_cost	Sc_loc		
Billing information	B_date	B_id	B_address	method	Amount	

Relationship between Entities and Cardinality Ratio:

Entity 1	Relation name	Entity 2	Cardinality ratio
User	Send	Mail	1:N
User	Place mail at	Mail boxes	1:N
Mail boxes	Collect	Mail	1:N
Mail boxes	Collect mail from	Employee	N:1
Mail boxes	Belongs to	Branch	N:1
Employee	Works at	Branch	1:N
Mail	Transport through	Delivery routes	N:1
Employee	Drives	Delivery vehicle	1:1
Delivery routes	Assigned by	Delivery vehicle	1:1
Delivery vehicle	Delivers	Goods services	1:N
Branch	Stores	Billing information	1:1
Branch	Collect	Service charge	1:N

Question 5: Draw an Object Model illustrating the information you have identified in Question 4.

Question 6: Draw an ER to Relation Mapping illustrating the information you have identified in Question 4

Question 7: Draw a Data Dictionary illustrating the information you have identified in Question 6.

Objective	Name	Туре	Description	Primar	Foreign
(Entity)	(Attribute)	(Datatype)		y key	key
	U_id	integer	Unique identification number for the user	Yes	No
User	U_Name	Character	Name of the user	No	No
	Gender	Character	Gender of the user	No	No
	Address	Varchar	Address of the user	No	No
	Ph_no	integer	Phone number of the user	No	No
	M_id	Varchar	Unique identification id for the mail boxes	Yes	No
	Туре	Character	Type of the mail boxes	No	No
Mailboxes	Size	Character	Type of the mail	No	No
	Rentalcost	integer		No	No
	Location	Character	Location of mail boxes	No	No
	U_id	integer	Unique identification id for the user	No	Yes
	E_id	integer	Unique identification id for the employee	No	Yes
	D_id	Varchar	Unique identification of branch	No	Yes

	Mail_id	Varchar	Unique identification id of mail	Yes	No
	S_name	Character	Name of the sender	No	No
	R_name	Character	Name of the Recipient	No	No
Mial	Date	Date	Delivary time of mail	No	No
	M_type	Character	Type of the mail	No	No
	M_status	Character	Status of the mail	No	No
	U_id	integer	Unique identification id for the user	No	Yes
	M_id	Varchar	Unique identification id for the mail boxes	No	Yes
	R_id	Varchar	Unique identification id for the Delivery routes	No	Yes
	R_id	Varchar	Unique identification id for the	Yes	No
			Delivery routes		
	D_address	Character	End address of the delivery	No	No
	Driver	Character	Name of the driver	No	No
Delivery	V_id	Varchar	Unique identification id for the	No	Yes
routes			Delivery vehicle		
	S_address	Character	Starting address of the delivery	No	No

	E_id	integer	Unique identification id for the employee	Yes	No
	Ename	Character	Name of the employee	No	No
Employee	Contactno	integer	Phone number of the employee	No	No
	Job name	Character	Job of the employee	No	No
	salary	integer	Salary of the employee	No	No
	D_id	Varchar	Unique identification of branch	No	Yes
Delivery vehicle	V_id	Varchar	Unique identification id for the Delivery vehicle	Yes	No
	Licence no	Varchar	Licence number of the vehicle	No	No
	Year	integer	Purchased year of the vehicle	No	No
	E_id	integer	Unique identification of employee	No	Yes
	Model	Varchar	Model of the vehicle	No	No
	D_id	Integer	Unique identification of branch	Yes	No
	Dname	Character	Name of the branch	No	No
Branch	E_count	Integer	Number of the employees	No	No
	Manager	Character	Name of the branch manager	No	No
	Expenditure	Integer	Total expenditure of the branch	No	No

	S_type	Character	Type of the service charge	No	No
Service charge	S_id	Varchar	Unique identification of service charge	Yes	No
	Cost	Integer	Total cost of service charge	No	No
	Location	Character	Locaton of service charge	No	No
	D_id	Integer	Unique identification of branch	No	Yes
	Cost	Integer	Cost of the Goods and Services	No	No
	Dimension	Integer	Dimensions of Goods Services	No	No
Goods Services	S_id	Varchar	Unique identification of Goods Services	Yes	No
	Weight	Integer	Total weight of Goods Services	No	No
	D_id	Integer	Unique identification of branch	No	Yes
	B_mathod	Character	Method of billing	No	No
Billing infor mation	B_id	Varchar	Unique identification of Billing information	Yes	No
	B_date	Date	Date of billing	No	No
	Amount	Integer	Total billing amount	No	No
	B_address	Character	Billing address	No	No
	D_id	Integer	Unique identification of branch	No	Yes

Question 8:

Normalization:Are all the relations in your chosen schema in 3NF? Are they in BCNF? Explain your answers. If any of your relations are not in BCNF, normalize them to BCNF. If you choose to normalize your relations only till 2NF or 3NF, explain your reasons (e.g., the amount of redundancy introduced is limited or some other valid reason).

USER

(U_id, Name, Address, Gender, Ph_no)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute.

MAIL BOXES

```
(M_id ,Type ,Size ,Rental_cost , loction ,U_id , E_id , D_id)
```

➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.

- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute.

MAIL

(Mail_id ,S_name , R_name ,Date ,M_type ,M_status ,U_id , M id ,R id)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another non key attribute.

DELIVERY ROUTE

(R_id ,D_address ,Driver ,S_address ,V_id)

The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.

- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute.

EMPLOYEE

(E_id ,Ename,Contactno ,jobname,Salary ,D_id)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute.

DELIVERY VEHICLE

(V_id ,licenceno, year ,Model ,E_id)

➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.

- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ The relation is in 3NF to ensure that the table is in 3NF we need to eliminate any transitive dependencies .in this table the Model attribute is dependent only on V_id attribute , which is part of primary key hence there are no transitive dependencies.
- ➤ This relation is already in BCNF we need to ensure that all functional dependencies are determined by candidate key, in this table we have only one candidate key(V_id) and all attributes are fully dependent.
- > since the table is already in 3NF and BCNF we need not split the table.

BRANCH

(D_id ,Dname,E_count ,Manager ,Expenditure)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key (D_id) contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.
- ➤ Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute.

SERVICE CHARGE

(S id, S type, Cost, D id, location)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- The relation is in 3NF to ensure that the table is in 3NF we need to eliminate any transitive dependencies .in this table the all attributes are dependent only on S_id attribute, which is primary key hence there are no transitive dependencies.
- ➤ This relation is already in BCNF we need to ensure that all functional dependencies are determined by candidate key, in this table we have only one candidate key(S_id) and all attributes are fully dependent.
- > since the table is already in 3NF and BCNF we need not split the table.

GOODS SERVICE

(G_id , Dimention ,Cost,Weight,D_id)

➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.

- ➤ The Relation is in 2NF as the primary key (G_id) contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- ➤ We observe that there is no transitivity in functional dependencies for the given relation. Hence the relation is in 3NF.

Similarly, it is in BCNF as there exists no non-key attribute that determines another nonkey attribute

BILLING INFORMATION

(B id,B method,B date,Amount,B address,D id)

- ➤ The Relation is in 1NF as it has no attributes that can hold only multiple values. The attributes in the relation can hold only atomic values.
- ➤ The Relation is in 2NF as the primary key contains only one attribute. Hence, every attribute is fully functionally dependent on the key.
- The relation is in 3NF to ensure that the table is in 3NF we need to eliminate any transitive dependencies .in this table the all attributes are dependent only on B_id attribute, which is primary key hence there are no transitive dependencies.
- This relation is already in BCNF we need to ensure that all functional dependencies are determined by candidate key, in this table we have only one candidate key(B_id) and all attributes are fully dependent.
- > since the table is already in 3NF and BCNF we need not split the table.

Question 10: Choose the optimal normalized schema from Question 9 and justify why you think this is an optimal solution.

User	U_Name	U_id	Gender	Address	Ph_no	
Mail boxes	M_id	Rentalcost	MB_type	Size	loc	
Delivery routes	D_id	S_address	E_address	Driver		
Delivary vehicles	V_id	Model	Licence_no	year		
Goods services	G_id	Dimension	Cost	Weight		
Mail	Mail_id	S_name	R_name	M_type	D_status	Date
Employee	E_id	E_name	Cont_no	J_name		
Branch	De_id	De_name	M_name	E_cnt	Budget	
Service charge	Sc_id	Sc_type	Sc_cost	Sc_loc		
Billing information	B_date	B_id	B_address	method	Amount	

Implementation Phase Report

Creation of Tables:

1)Table Name:Userr

```
create table userr (
u_id varchar(10),
u_name varchar(20),
gender varchar(10),
address varchar(20),
ph_no varchar(10),
primary key (u_id)
);
```

2)Table Name:branch

```
create table branch
(
d_id int,
dname varchar(20),
e_count int,
b_manager varchar(20),
expenditure int,
primary key(d_id)
);
```

3)Table Name:service_charge

```
create table service_charge
(
s_type char(10),
s_id varchar(20),
s_cost int,
s location varchar(20),
```

```
d id int,
primary key(s_id),
foreign key(d_id) references branch
);
4)Table Name:goods_service
create table goods_service
g cost int,
dimensions int,
g_id varchar(20),
weight int,
d id int,
primary key(g_id),
foreign key(d_id) references branch
);
5)Table Name:billing_info
create table billing_info
b method varchar(20),
b_id varchar(20),
b_date date,
amount int,
b_address varchar(50),
d_id int,
primary key(b_id),
foreign key(d_id) references branch
);
6)Table Name:employee
create table employee
e_id int,
ename varchar(20),
```

```
contactno int,
job_name varchar(20),
salary int,
d_id int,
primary key(e_id),
foreign key(d id) references branch
);
7)Table Name:d_vehicle
create table d_vehicle
v id varchar(20),
licence no varchar(20),
p_year int,
e_id int,
v model varchar(20),
primary key(v_id),
foreign key(e_id) references employee
);
8)Table Name:d_routes
create table d_routes
r_id varchar(15),
d_address varchar(10),
driver char(5),
v_id varchar(20),
s_address varchar(20),
primary key(r_id),
foreign key(v_id) references d_vehicle
);
9)Table Name:mailbox
create table mailbox
```

```
m_id varchar(10),
u_id varchar(10),
e_id int,
d_id int,
mail_type varchar(15),
mail_size varchar(15),
rentalcost int,
m_location varchar(20),
primary key(m_id),
foreign key (u_id) references userr,
foreign key (e_id) references employee,
foreign key (d_id) references branch
);
```

10)Table Name:mail

```
create table mail
(
mail_id varchar(10),
s_name varchar(15),
r_name varchar(15),
d_date date,
m_type char(5),
m_status char(5),
u_id varchar(10),
m_id varchar(10),
r_id varchar(15),
primary key(mail_id),
foreign key (u_id) references userr,
foreign key (m_id) references mailbox,
foreign key (r_id) references d_routes
);
```

Inserting Values in the Tables:

1)Table Name:Userr

```
insert into userr values ('U1','rajesh','male','BANGALORE',9875643092); insert into userr values ('U2','priya','female','dharwad',9970646092); insert into userr values ('U3','suresh','male','davangere',9545663071); insert into userr values ('U4','abhay','male','tumkur',8875443583); insert into userr values ('U5','pooja','female','bagalkot',8075663457);
```

2)Table Name:branch

```
insert into branch values ('1','branch A','50','ankit',100000); insert into branch values ('2','branch B','75','vishal',150000); insert into branch values ('3','branch C','60','prajwal',125000); insert into branch values ('4','branch D','40','prasanna rao',200000); insert into branch values ('5','branch E','70','preetham',175000);
```

3)Table Name:service charge

```
insert into service_charge values ('post','KA01','50','karnataka',1); insert into service_charge values ('mail','KA04','40','karnataka',2); insert into service_charge values ('pop3','KA17','60','karnataka',3); insert into service_charge values ('speedpost','KA25','100','karnataka',4); insert into service_charge values ('post','KA54','50','karnataka',5);
```

4)Table Name:goods service

```
insert into goods_service values ('100','10','G001','50',1); insert into goods_service values ('200','20','G002','100',2); insert into goods_service values ('150','15','G003','75',1); insert into goods_service values ('300','25','G004','150',3); insert into goods_service values ('175','18','G005','90',2); insert into goods_service values ('250','22','G006','120',3);
```

5)Table Name:billing info

```
('creditcard','CC789012','18-01-
insert
           into
                     billing_info
                                      values
2023',25,'hubli',5);
                                                 ('debitcard','DB2346212','15-01-
insert
           into
                    billing info
                                     values
2023',30,'bangalore',5);
                                                  ('googlepay','GP345678','02-01-
insert
           into
                     billing info
                                      values
2023',20,'davanagere',3);
insert into billing info values ('cash','CS901234','27-12-2022',10,'tumkur',1);
insert into billing info values ('check', 'Ck569090', '31-12-2022', 5, 'bellary', 2);
```

6)Table Name:employee

```
insert into employee values(101, 'jagdish', 9084655830, 'Mail Sorting', 10000, 1);
insert into employee values(102, 'suresh', 9663357289, 'Package Delivery',
12500,5);
insert
                    employee
                                    values(103, 'abhishek', 9556427728, 'Express
           into
Mail',15000,5);
insert into employee values(104, 'ramesh', 8908775464, 'Bulk Mailing', 16000, 3);
                    employee
                                   values(105, 'mangesh', 8876578900, 'Certified
insert
          into
Mail',8900,2);
                    employee
                                    values(106, 'dhanush', 8764357884, 'Postage
insert
           into
Stamps',11000,1);
```

7)Table Name: d vehicle

```
INSERT INTO d_vehicle VALUES ('V001', 'ABC123', 2020, 101, 'Sedan');
INSERT INTO d_vehicle VALUES ('V002', 'DEF456', 2018, 102, 'SUV');
INSERT INTO d_vehicle VALUES ('V003', 'GHI789', 2021, 103, 'Truck');
INSERT INTO d_vehicle VALUES ('V004', 'JKL012', 2019, 104, 'Coupe');
INSERT INTO d_vehicle VALUES ('V005', 'MNO345', 2022, 105, 'Hatchback');
INSERT INTO d_vehicle VALUES ('V006', 'PQR678', 2017, 102, 'Van');
```

INSERT INTO d vehicle VALUES ('V007', 'YHO455', 2012, 105, 'mahindra');

8) Table Name: d routes

```
INSERT INTO d_routes VALUES ('R01', 'HOSPETE', 'D1234', 'V001', 'TUMKURU');
INSERT INTO d_routes VALUES ('R02', 'BELLARY', 'D1234', 'V001', 'ARSIKERE');
INSERT INTO d_routes VALUES ('R03', 'GADAG', 'D6734', 'V003', 'DAVANGERE');
INSERT INTO d_routes VALUES ('R04', 'HUBBALLI', 'D6734', 'V003', 'SHIVAMOGGA');
INSERT INTO d_routes VALUES ('R05', 'BAGALKOT', 'D3077', 'V004', 'BIDAR');
INSERT INTO d_routes VALUES ('R06', 'RAICHUR', 'D6654', 'V002', 'KOLAR');
INSERT INTO d_routes VALUES ('R07', 'KARWAR', 'D5454', 'V006', 'MANGLORE');
INSERT INTO d_routes VALUES ('R08', 'BANGALORE', 'D5467', 'V007', 'HUBBALLI');
```

9)Table Name:MAILBOX.

```
INSERT INTO MAILBOX VALUES('M001', 'U1', 101, 1, 'Package',
                                                                  'Large',
                                                                           20,
'VIDYANAGAR, HUBLI');
INSERT INTO
              MAILBOX VALUES('M002', 'U2', 102, 2, 'Letter',
                                                                  'Small',
                                                                           50,
'KAIPETE, DAVANAGERE');
INSERT INTO MAILBOX VALUES('M003', 'U3', 103, 2, 'Package', 'Medium',
                                                                           15,
'VIJAYNAGAR, BELLARY');
INSERT INTO MAILBOX VALUES('M004', 'U4', 104, 3, 'Letter',
                                                                          100,
'KESHAPUR, BANGALORE');
INSERT INTO MAILBOX VALUES('M005', 'U5', 105, 5, 'Package', 'Small',30,
                                                                          'MG
ROAD, BANGALORE');
INSERT
                              VALUES('M006',
                                               'U5',
          INTO
                  MAILBOX
                                                        101,
                                                               4,
                                                                     'Package',
'LARGE',150,'VIVEKNAGAR,BAGALKOT');
```

10)Table Name: MAIL

```
INSERT
            INTO
                      MAIL
                                 VALUES('M101', 'MAHESH', 'PRANAV', '12-01-2023', 'SPEED
POST','R','U1','M001','R01');
INSERT
                 INTO
                                MAIL
                                               VALUES('M102','MANJU','CHETAN','01-01-
2023','POSTCARD','NR','U2','M002','R02');
INSERT
             INTO
                        MAIL
                                   VALUES('M103','NIDHI','ANJANA','25-01-2023','INLAND
LETTER','R','U2','M002','R03');
INSERT
           INTO
                      MAIL
                                VALUES('M104','RAKSHITHA','ADITYA','14-02-2023','SPEED
POST','R','U5','M0014','R03');
INSERT
           INTO
                    MAIL
                              VALUES('M105','RUTUJ','NISHCHAY','13-02-2023','ORDINARY
POST','NR','U3','M002','R04');
```

INSERT INTO MAIL VALUES('M106','POOJA','POORNIMA','18-02-2023','SPEED POST','R','U4','M003','R01');
INSERT INTO MAIL VALUES('M107','AKASH','YASHANK','03-03-2023','PACKETS','R','U2','M005','R02');

PL_SQL QUERIES

1)Retrieve the list of branches along with the count of employees working in each branch.

Solution:

SELECT b.d_id, b.dname, (SELECT COUNT(*) FROM employee e WHERE e.d_id = b.d_id) AS employee_count FROM branch b;

2)Retrieve the list of users who have rented mailboxes and the rental cost of their mailboxes.

Solution:

SELECT u.u_id, u.u_name,
(SELECT SUM(m.rentalcost)

FROM mailbox m

WHERE m.u_id = u.u_id)

AS rental_cost

FROM userr u

INNER JOIN mailbox m ON m.u_id = u.u_id;

3)Retrieve the list of branches along with the total cost of goods services offered by each branch.

Solution:

SELECT b.d_id, b.dname, (SELECT SUM(g.g_cost)

```
FROM goods_service g
WHERE g.d_id = b.d_id)
AS total_cost
FROM branch b;
```

4)Retrieve the list of mailboxes and the total number of mails received by each mailbox.

Solution:

SELECT m.m_id, m.u_id,
(SELECT COUNT(*)
FROM mail ml
WHERE ml.m_id = m.m_id)
AS mail_count
FROM mailbox m;

5)Retrieve the list of branches and the total expenditure of each branch as a percentage of the total expenditure of all branches.

Solution:

SELECT b.d_id, b.dname,
(SELECT SUM(b1.expenditure) FROM branch b1) AS total_expenditure,
((b.expenditure / (SELECT SUM(b2.expenditure) FROM branch b2)) * 100) AS percentage
FROM branch b;

Procedures

1)Create a procedure to insert a new record into the userr table.

Solution:

```
CREATE OR REPLACE PROCEDURE add_user (
    p_id IN VARCHAR2,
    p_name IN VARCHAR2,
    p_gender IN VARCHAR2,
    p_address IN VARCHAR2,
    p_ph_no IN VARCHAR2
)
IS
BEGIN
INSERT INTO userr (u_id, u_name, gender, address, ph_no)
    VALUES (p_id, p_name, p_gender, p_address, p_ph_no);
END;
```

2)Create a procedure to update the b_manager column for a specific branch in the branch table.

```
CREATE OR REPLACE PROCEDURE update_branch_manager (
    p_id IN INTEGER,
    p_manager IN VARCHAR2
)
IS
BEGIN
    UPDATE branch
    SET b_manager = p_manager
    WHERE d_id = p_id;
END;
```

3)Create a procedure to calculate the total cost of all services for a specific branch in the service_charge table.

Solution:

```
CREATE OR REPLACE PROCEDURE total_service_cost (
    p_id IN INTEGER,
    p_total OUT INTEGER
)
IS
BEGIN
SELECT SUM(s_cost)
INTO p_total
FROM service_charge
WHERE d_id = p_id;
END;
```

4)Procedure to calculate the total expenditure for a particular branch in the branch table.

```
CREATE OR REPLACE PROCEDURE calculate_expenditure (
    in_did int,
    out_expenditure out int
)

IS

BEGIN

SELECT expenditure INTO out_expenditure FROM branch WHERE d_id =
in_did;
    dbms_output.put_line('Expenditure for branch ' || in_did || ' is ' ||
out_expenditure);

EXCEPTION

WHEN NO_DATA_FOUND THEN
    dbms_output.put_line('Branch ID ' || in_did || ' not found.');
```

END;

5)Create a procedure to delete a record from the d_vehicle table and update the e_count column for the corresponding branch in the branch table.

```
CREATE OR REPLACE PROCEDURE delete vehicle (
 vehicle id IN d vehicle.vehicle id%TYPE
)
IS
  branch id branch.branch id%TYPE;
BEGIN
  -- Get the branch ID for the vehicle
  SELECT branch id INTO branch id FROM d vehicle WHERE vehicle id =
delete_vehicle.vehicle_id;
  -- Delete the vehicle record
  DELETE FROM d vehicle WHERE vehicle id = delete vehicle.vehicle id;
 -- Update the e count column for the corresponding branch
  UPDATE branch SET e count = e count - 1 WHERE branch id = branch id;
  COMMIT;
  dbms output.put line('Vehicle deleted successfully');
EXCEPTION
  WHEN NO DATA FOUND THEN
    dbms_output.put_line('Vehicle not found');
 WHEN OTHERS THEN
    dbms output.put line('Error: ' | | SQLERRM);
    ROLLBACK;
END;
BEGIN
  delete vehicle(1234);
END;
```

Cursors

1)Fetch all the rentals with their corresponding customer names and rental durations in days.

Solution:

```
DECLARE

CURSOR rental_cur IS SELECT r.rental_id, c.cust_name, r.rental_duration

FROM d_rental r JOIN d_customer c ON r.cust_id = c.cust_id;

rental_rec rental_cur%ROWTYPE;

BEGIN

OPEN rental_cur;

LOOP

FETCH rental_cur INTO rental_rec;

EXIT WHEN rental_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(rental_rec.cust_name || ' rented a vehicle for ' || rental_rec.rental_duration || ' days (rental ID ' || rental_rec.rental_id || ')');

END LOOP;

CLOSE rental_cur;

END;
```

2)Fetch all the rentals with their corresponding customer names and vehicle makes.

```
DECLARE

CURSOR rental_cur IS SELECT r.rental_id, c.cust_name, v.vehicle_make

FROM d_rental r JOIN d_customer c ON r.cust_id = c.cust_id

JOIN d_vehicle v ON r.vehicle_id = v.vehicle_id;

rental_rec rental_cur%ROWTYPE;

BEGIN

OPEN rental_cur;

LOOP

FETCH rental_cur INTO rental_rec;

EXIT WHEN rental cur%NOTFOUND;
```

```
DBMS_OUTPUT_LINE(rental_rec.cust_name || ' rented a ' || rental_rec.vehicle_make || ' (rental ID ' || rental_rec.rental_id || ')');

END LOOP;

CLOSE rental_cur;

END;
```

3) Fetch all the vehicles with their corresponding branch names and addresses.

Solution:

```
DECLARE
CURSOR vehicle cur IS SELECT v.vehicle id, v.vehicle make, v.vehicle model,
b.branch_name, b.branch_address
  FROM d vehicle v JOIN branch b ON v.branch id = b.branch id;
vehicle rec vehicle cur%ROWTYPE;
BEGIN
OPEN vehicle cur;
LOOP
 FETCH vehicle cur INTO vehicle rec;
 EXIT WHEN vehicle cur%NOTFOUND;
  DBMS OUTPUT.PUT LINE(vehicle rec.vehicle make
                                                       | ' '
vehicle rec.vehicle model | | 'is located at ' | | vehicle rec.branch name | | ' ('
|| vehicle rec.branch address || ')');
END LOOP;
CLOSE vehicle cur;
END;
```

4)Fetch all the employee names and salaries from the e_employee table.

```
DECLARE

CURSOR emp_cur IS SELECT emp_name, emp_salary FROM e_employee;

emp_rec emp_cur%ROWTYPE;

BEGIN
```

```
OPEN emp_cur;

LOOP

FETCH emp_cur INTO emp_rec;

EXIT WHEN emp_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(emp_rec.emp_name || ' makes ' || emp_rec.emp_salary || ' per year');

END LOOP;

CLOSE emp_cur;

END;
```

5) Fetch all the branch names and their addresses from the branch table.

```
DECLARE

CURSOR branch_cur IS SELECT branch_name, branch_address FROM branch;

branch_rec branch_cur%ROWTYPE;

BEGIN

OPEN branch_cur;

LOOP

FETCH branch_cur INTO branch_rec;

EXIT WHEN branch_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(branch_rec.branch_name || ' is located at ' || branch_rec.branch_address);

END LOOP;

CLOSE branch_cur;

END;
```

FRONTEND IMPLLEMENTATION

fail_id	S_mause	R_name	Date	Mail_type	
1001	Shamu	Vivek	2023-03-01	Letter	
10(13	Suresh	Jugadish	2019-09-18	Letter	

