DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

Pojem funkce

- Reálná funkce
- V oboru M, kde $M \in \mathbb{R}$, je definována reálná funkce, jestliže je dán předpis, podle kterého každému $x \in M$ je přiřazeno právě jedno číslo y. Oboru M potom říkáme definiční obor funkce.
 - \times x je argument funkce (nezávislá proměnná).
 - × y je funkční hodnota (závislá proměnná).
 - \times Definičním oborem funkce je většinou interval $\langle a, b \rangle$.
 - × Funkce je většinou dána předpisem (analyticky) nebo grafem.

Druhy funkcí

Elementární funkce

$$y = f(x) \rightarrow y = kx + q$$

Algebraické funkce

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_n x^n + a_{n-1} x^{n-1} + \dots + b_0}$$

- Transcendentní funkce
 - × Goniometrické, hyperbolické, mocninné, exponenciální, logaritmické
 - × Cyklometrické funkce

$$y = \arcsin(x)$$

× Integrální rovnice

$$g(x) = \int_{a} b f(x) dx$$

Spojitost funkce

- Cauchyova definice
- f(x) je spojitá v bodě a, pokud k libovolnému číslu $\epsilon>0$ existuje takové $\delta>0$, že pro všechna x z okolí bodu δ platí definice

$$|f(x) - f(a)| < \varepsilon$$
 a $|x - a| < \delta$

Spojitost funkce

- Heineova definice
- O funkci f(x) řekneme že je v $\langle a,b\rangle$ spojitá, jestliže pro každou posloupnost (x_n) v $\langle a,b\rangle$ platí implikace:

$$x_n \to c \Rightarrow f(x_n) \to f(c)$$

Spojitost funkce

- Weierstrassova věta: Je-li funkce f spojitá na intervalu $\langle a,b\rangle$, potom existuje na intervalu minimum, $f=\min(f(\langle a,b\rangle))$ a maximum funkce $f=\max f(\langle a,b\rangle))$.
- **Bolzanova věta**: Je-li funkce f spojitá na intervalu $\langle a,b\rangle$, a f(a)>0, f(b)<0 nebo obráceně f(a)<0, f(b)>0, potom existuje alespoň jeden bod $\xi\in(a,b)$, pro který platí $f(\xi)=0$.

- Heineova definice
- Bod $c\in\mathbb{R}$ je hromadným bodem definičního oboru funkce f . Potom číslo $\lambda\in\mathbb{R}$ bude limitou funkce f v bodě c

$$\lim_{x \to c} f(x) = \lambda$$

ullet pokud platí pro každou posloupnost x_n :

$$x_n \to c \Rightarrow f(x_n) \to \lambda$$

$$\lambda = \begin{cases} \mathbb{R} & \text{vlastní limita} \\ \pm \infty & \text{nevlastní limita} \end{cases}$$

- ullet Funkce má v hromadném bodě svého definičního oboru c nejvýše jednu limitu.
- ullet Funkce f je v bodě c spojitá, právě tehdy, když
 - $f(c) = \lim_{x \to c} f(x)$
 - $\times \lim_{x \to c} |f(x)| = \left| \lim_{x \to c} f(x) \right|$

Bod $c \in \mathbb{R}$ je hromadným bodem definičního oboru funkce f. Funkce má v bodě c limitu zprava i zleva rovnu číslu λ .

$$\lim_{x \to c^{-}} f(x) = \lambda, \qquad \lim_{x \to c^{+}} f(x) = \lambda$$

$$\lim_{x \to c^{+}} f(x) = -\infty$$

$$\lim_{x \to c^{-}} f(x) = +\infty$$

Derivace – historie

- 🗅 Euklidés (300 př.n.l, Řecko)
- Archimédes (287 212 př.n.l, Řecko) počítání s nekonečně malými proměnnými pro zjištění objemu a plochy (Ostomachion)
- Aryabhata (500 n.l., Indie) nekonečně malé veličiny pro studium pohybu Měsíce.
- Bhaskar II (1114 1185 n.l., Indie) Rolleova věta
- Newton, Leibniz (Anglie, Německo) moderní pojetí diferenciálního počtu, vztah mezi derivací a integrací
- Cauchy, Riemann, Weierstrass teoretické základy diferenciálního počtu

Derivace v příkladech

- Vědecké a technické aplikace
 - × Klasická mechanika tělesa:

$$F(r) = m \frac{\mathrm{d}^2 r}{\mathrm{d}t^2}$$

× Ohřev vody ve slunečním kolektoru:

$$\frac{\mathrm{d}T_i}{\mathrm{d}t} = a - (b+c)T_i + bT_{i-1}$$

- Bezpečnostní aplikace
- Šíření požáru:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}$$

- Sociální aplikace
- Ekonomické aplikace
- Ostatní aplikace

Geometrický význam derivace

- Chceme zjistit **změnu** funkce f(x) v bodě x, pokud se posuneme o krok h na ose x.
- Změnu vyjádříme pomocí směrnice přímky

$$x \quad s_1: y = kx \to k = \frac{y}{x}$$

$$k_{s1} = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

lacktriangle Cílem je získat směrnici odpovídající tečně t v bodě [x,f(x)]

Geometrický význam derivace

Bod x + h přiblížím k bodu x a získám směrnici sečny s_2 .

$$k_{S2} = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

Limitním přibližováním bodu x + h k bodu x získám směrnici tečny t

$$k_t = \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definice derivace

- Derivace funkce v bodě
- ullet Funkce f je definována na okolí bodu c. Pokud má funkce vlastní limitu

$$\lim_{h\to 0} \frac{f(c+h) - f(c)}{h}$$

pak je funkce v bodě c diferencovatelná a hodnotu limity označujeme jako f' a nazýváme ji jako derivaci funkce f v bodě c.

- Existují pravidla pro derivování elementárních funkcí a složených funkcí.
- lacktriangle Je-li funkce f na intervalu J diferencovatelná, pak je i na tomto intervalu spojitá.
- Funkce f je třídy \mathcal{C}^k na intervalu J, pokud existují na intervalu J všechny derivace funkce až do řádu k

Metody výpočtů derivací funkcí

Necht' funkce f a g isou diferencovatelné v nějakém bodě x_0 společného definičního oboru D. Potom v tomto bodě isou diferencovatelné i funkce

cf,
$$f \pm g$$
, $f.g$, $\frac{f}{g}$ $(g \neq 0)$

a platí

$$(cf)' = cf$$

$$(f \pm g)' = f' + g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

$$g \neq 0$$

Diferenciální počet

Funkce f definovaná v okolí bodu c má v bodě lokální maximum, resp. minimum, pokud platí pro každý bod x z okolí bodu c, že $f(x) \le f(c)$, resp. $f(x) \ge f(c)$.

Je-li funkce f v bodě c diferencovatelná a má v bodě lokální maximum, resp. minimum, potom platí, že f'(c)=0.

Nástroje diferenciálního počtu

- Rolleova věta (Bhaskar II Indie)
- Lagrangeova věta o střední hodnotě
- L'Hostpitalovo pravidlo
- Taylorova věta

Lagrangeova věta o střední hodnotě

Funkce f je spojitá na uzavřeném intervalu $\langle a,b \rangle$, diferencovatelná na otevřeném intervalu (a,b). Potom existuje alespoň jeden bod $\xi \in (a,b)$, pro který platí:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Taylorova věta

- Aproximace složitých funkcí pomocí jednodušších (polynom).
- Funkční hodnota polynomu je výsledkem elementárních operací.

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Derivace polynomu je opět polynom.
- Odhad chyby aproximace.

- Motivace
- ullet Hledáme funkci g, která nejlépe aproximuje funkci f, tak aby platilo:
- $f(c) = g(c), f'(c) = g'(c), \dots, f^{(n)}(c) = g^{(n)}(c)$

Taylorova věta

- Mějme polynom
- $g(x) = a_0 + a_1(x c) + a_2(x c)^2 + \dots + a_n(x c)^n$
- a podmínku

$$f(c) = g(c), f'(c) = g'(c), \dots, f^{(n)}(c) = g^{(n)}(c)$$

Stupeň Polynom Podmínka koeficienty
$$0 \qquad g(x) = a_0 \qquad g(c) = f(c) \qquad a_0 = f(c)$$

$$1 \qquad g(x) = a_0 + a_1 x \quad g(c) = f(c), g'(c) = f'(c) \quad a_0 = f(c), a_1 = f'(c)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f(x) = f(c) + \frac{f'(c)}{1!}(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c) + O_{n+1}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x - c) + O_{n+1}(x)$$

$$f(x) = f(0) + \frac{f'(0)}{1!}(x) + \dots + \frac{f^{(n)}(0)}{n!}(x) + O_{n+1}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!}(x) + O_{n+1}(x)$$

$$f(x) = x^3 - 3x$$

- Definiční obor a intervaly monotonie
 - imes Definiční obor: $Df = \mathbb{R}$
 - × Intervaly monotonie: rostoucí na $(-\infty, -1)$ a $(1, \infty)$, klesající na (-1, 1)
- Lokální extrémy
- Jestliže funkce f'(c)=0 a funkce f(c) je v bodě c rostoucí, resp. klesající, potom má funkce f(c) v bodě c ostré lokální maximum, resp. minimum.

$$f'(x) = 3x^2 - 3 = 0 \rightarrow x^2 = 1, \quad x \in \{-1,1\}$$

Jestliže funkce f'(c)=0 a $f''(c)\neq 0$ pak má funkce f(c) v bodě c lokální extrém, a to pro f''(c)>0, resp. f''(c)<0 ostré lokální minimum, resp. maximum.

ullet Zjistíme hodnoty druhé derivace f''(x) ve stacionárních bodech.

$$f''(x) = 6x \rightarrow f''(-1) = -6 < 0, \quad f''(1) = 6 > 0$$

- Funkce f(x) má v bodech $x \in \{-1,1\}$ ostré lokální maximum, resp. minimum.
- Pokud f'(c) = f''(c) = 0 může a nemusí mít funkce v bodě c lokální extrém. Jestliže n je sudé číslo, má funkce f(c) v bodě c ostrý lokální extrém pokud platí, že $f^{(n)}(c) > 0$, resp. $f^{(n)}(c) < 0$.
- Intervaly ryzí konvexity (konkavity), body inflexe
- Pokud je funkce f spojitá na intervalu J a pokud pro každý bod z tohoto intervalu platí, že f''(c) > 0, resp. f''(c) < 0. Potom je funkce na intervalu ryze konvexní, resp. konkávní.
 - Jestliže f''(c) = 0 a $f''' \neq 0$ potom má funkce v bodě c inflexi

Asymptota grafu funkce

Přímka y = kx + q se nazývá šikmá asymptota grafu funkce, pokud platí:

$$\lim_{x \to +\infty} [f(x) - kx - q] = 0 \text{ resp. } \lim_{x \to -\infty} [f(x) - kx - q] = 0$$

a svislá asymptota, pokud má funkce f(x) v bodě x alespoň jednu jednostrannou nevlastní limitu

Příklady k procvičení

- Úprava výrazů pomocí symbolické matematiky
- \Box Řešení rovnice $ax^2 + bx + c = 0$ pomocí symbolické matematiky
- Řešení soustavy rovnic pomocí symbolické matematiky. Porovnání s metodami numerické matematiky a vestavěnými funkcemi.
- Výpočet limit pomocí symbolické matematiky.
- Výpočet derivace pomocí symbolické a numerické matematiky

Úprava výrazů - cvičení

Pomocí symbolických manipulací upravte následující výraz

$$\frac{1 - \frac{x}{y}}{\frac{x - y^2}{x}}$$

DOPLNIT VÝRAZY

Řešení rovnice - cvičení

Pomocí symbolických manipulací vyřešte kvadratickou rovnic

$$ax^2 + bx + c = 0$$

Uvažujte takové sady koeficientů (a, b, c), aby byly zohledněny všechny možnosti řešení rovnice.

Řešení soustavy rovnic – cvičení

- $lue{}$ Nagenerujte náhodně soustavu N rovnic a vyřešte ji pomocí:
- lterační metody
- Cramerova pravidla
- Symbolické matematiky.
- Jednotlivá řešení porovnejte z hlediska rychlosti a stability
- $x_i = \frac{d_{Ai}}{d_A}$
- $x^{i+1} = D^{-1}[b (L+U)x^i]$

Limita funkce jedné proměnné – cvičení

Pomocí symbolické matematiky vypočítejte následující limity.

$$\lim_{x \to 3} \frac{2x^3 - 1}{x^2 - 2x + 10}$$

$$\lim_{x \to 2^{-}} \frac{x^2 + x - 2}{x - 2}$$

$$\lim_{x\to 0}e^{\frac{1}{\sin x}}$$

$$\lim_{x \to e} \frac{\ln x - 1}{x - e}$$

Derivace funkce jedné proměnné

Analytický výpočet derivace

$$f' = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Přibližný výpočet derivace - numerická derivace

$$f' = \frac{f(c+h) - f(c)}{h} + O(h^2)$$

Numerická derivace

- Odhad derivace funkce provádíme když
 - nemáme k dispozici analytický tvar funkce,
 - y funkce je zadána tabulkou nebo polem hodnot
 - × funkce je zadána body v grafu.
- Vzorce pro numerický odhad derivace lze získat pomocí
 - × Taylorova rozvoje,
 - × derivací interpolačního polynomu.
- Každý vzorec pro numerickou derivaci obsahuje chybový člen vyjádřený ve tvaru mocniny kroku h
 - × Čím bude mocnina vyšší, tím bude odhad přesnější a naopak. (chyba metody)
 - \times Čím bude h vyšší, tím bude odhad méně přesný. (chyba zaokrouhlovací)
 - \times Zahrnutím více bodů z okolí x lze odhad zpřesnit.

Dvoubodová numerická derivace

💶 Z Maclaurinova tvaru Taylorova rozvoje plyne, že

$$f(h) = f(0) + \sum_{i=1}^{\infty} \frac{f^{(i)}(0)}{n!} h^{i} = f(0) + f'(0)h + \frac{f''(0)}{2} h^{2}! + \dots$$

Mějme body x_0 a $x_1=x_0+h$. Poté bude rozvoj pro $f(x_0+h)$ a $f(x_0-h)$ vypadat následovně.

$$f(x_0 + h) = f(x_0) + f'(x_0)h$$
$$f(x_0 - h) = f(x_0) - f'(x_0)h$$

lacksquare a dvoubodová derivace funkce f v bodě x_0 , bude mít tvar

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h}$$

Dvoubodová numerická derivace

Pro zpřesnění odhadu derivace v bodě x_0 lze využít hodnoty funkcí v obou krajních bodech, a to odečtením rovnic $f(x_0+h)$ a $f(x_0-h)$.

$$f(x_0 + h) = f(x_0) + f'(x_0)h$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h$$

Po úpravě dostaneme

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

Vícebodová numerická derivace

Zpřesnění odhadu derivace můžeme také dosáhnout zahrnutím více bodů do odhadu derivace funkce f v bodě x. Pro odvození vzorce pro numerickou derivaci využijeme v tomto případě interpolační polynom $P_n(x)$ řádu n

- Mějme funkci f(x) definovanou ve třech ekvidistantně rozdělených uzlových bodech $\{x_0, x_1, x_2\}$ s krokem h.
- Poté platí, že hodnotu derivace funkce lze nahradit hodnotou derivace interpolačního polynomu řádu n $P_n(x)$ tak, že

$$f'(x) \doteq P'_n(x)$$

V uzlových bodech se hodnoty derivace funkce a interpolačního polynomu můžou lišit.
 Tato situace bude výraznější tím více, čím vyšší řád polynomu budeme pro interpolaci používat

Vícebodová numerická derivace

- Nastíníme odvození odhadu numerické derivace funkce zadané třemi body $x_0=x_1-h$, x_1 a $x_2=x_1+h$ s využitím interpolačního polynomu třetího řádu.
- Interpolačním polynomem rozumíme funkci

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$$

Pro polynom třetího řádu dostaneme soustavu rovnic ve tvaru:

$$f(x_1 - h) = a_0 + a_1(x_1 - h) + a_2(x_1 - h)^2$$

$$f(x_1) = a_0 + a_1(x_1) + a_2(x_1)^2$$

$$f(x_1 + h) = a_0 + a_1(x_1 + h) + a_2(x_1 + h)^2$$

lacktriangle odvodíme vyjádření pro koeficienty a_1 a a_2 a výsledné vyjádření polynomu zderivujeme

Vícebodová numerická derivace

$$a_2 = \frac{f(x_1 + h) - 2f(x_1 + h) + f(x_1 - h)}{2h^2}$$
$$a_1 = a_2h - 2a_2x_1 + \frac{f(x_1) - f(x_1 - h)}{h}$$

- Nyní si můžeme vybrat, v jakém bodě chceme derivaci odhadnout, dosadíme koeficienty a_1 , a_2 a rovnic zderivujeme.
- Výsledkem jsou následující rovnice.

$$f'(x_1 - h) = \frac{-3f(x_1 - h) + 4f(x_1) - f(x_1 + h)}{2h}$$
$$f'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h}$$
$$f'(x_1 + h) = \frac{f(x_1 - h) - 4f(x_1) + 3f(x_1 + h)}{2h}$$

Numerický odhad derivace – cvičení

- Porovnejte dva numerické odhady derivace funkce $f(x) = \sin(x)$ na intervalu $(0, \pi)$. Interval rozdělte na $n = \{4, 8, 12, 16, 20, 30\}$ subintervalů s přesným řešením získaným například pomocí symbolické matematiky.
- Spočítejte celkovou chybu derivace jako

$$globErr = \sum_{i=1}^{n} |f' - f'(x_i)|$$

		$f'(x) = \frac{f(x+h) - f(x)}{h}$	$f'(x) = \frac{f(x+h) - f(x-h)}{h}$
n = 4	h = 0.785	E1 = 0.845	E2 = 0.299
n = 8	h = 0.393	E1 = 0.900	E2 = 0.140
n = 12	h = 0.262	E1 = 0.928	E2 = 0.091
	*** *		
n = 30	h = 0.105	E1 = 0.968	E2 = 0.036
n = 80	h = 0.039	E1 = 0.998	E2 = 0.013

Numerický odhad derivace – cvičení

Pro výše uvedený příklad proveďte také odhad derivace ve třech bodech, například

$$f'(x_1 + h) = \frac{f(x_1 - h) - 4f(x_1) + 3f(x_1 + h)}{2h}$$

a porovnejte přesnost s dvoubodovým odhadem