Exercice 1.

Vérifier si les ensembles suivant sont des sous espaces vectoriels des espaces vectoriels correspondants :

- 1. $D = \{(x, y, z) \in \mathbb{R}^3, x + 3y + z = 0\}, le \ \mathbb{R}ev \ étant \ \mathbb{R}^3.$
- 2. $E = \{(x, y, z) \in \mathbb{R}^3, x + 3y + z = 1\}, le \ \mathbb{R}ev \ étant \ \mathbb{R}^3.$
- 3. $F = \{(x, y, z) \in \mathbb{R}^3, x + 2y = 0 \text{ et } x + y + z = 0\}, \text{ le } \mathbb{R}ev \text{ \'etant } \mathbb{R}^3. \text{ (supp.)}$
- 4. $G = \{(x, y) \in \mathbb{R}^2, \ x^2 y = 0\}, \ le \ \mathbb{R}ev \ étant \ \mathbb{R}^2.$
- 5. $H = \{P \in \mathbb{R}[X], P(1) + 2P'(1) = 0, P'(2) + P''(2) = 0\}, le \mathbb{R}ev \ étant \mathbb{R}[X]. \ (supp.)$

Exercice 2.

Vérifier si les familles de vecteurs suivantes sont libres ou liées :

- 1. $\{(2,3),(-1,1)\}$
- $2. \{(2,6,-1),(0,-3,1),(4,9,-1)\}$
- 3. $\{(2,6,-1),(0,-3,1),(4,9,-1),(1,0,0)\}$
- 4. $\{X+1, -2X^2 X + 1, X^2 + X\}$

Exercice 3.

- 1. Montrer que la famille de vecteurs $\mathcal{F} = \{(1,0),(0,1),(0,2)\}$ est génératrice de \mathbb{R}^2 .
- 2. Déterminer le sev engendré par la famille de vecteurs suivante : $\mathcal{G} = \{(-1,0,2),(0,2,3)\}$
- 3. Vérifier si le vecteur s = (1, 0, -1, 5) appartient au sev engendré par les vecteurs u = (1, 4, 5, 2), v = (1, 2, 3, 2), w = (1, 1, 0, -1).
- 4. (supp.) Soit les vecteurs de \mathbb{R}^3 suivants : $v_1 = (1, -1, 5), v_2 = (1, 1, -1), v_3 = (1, 0, 2), v_4 = (0, -1, 3).$
 - (a) Verifier que $v_3, v_4 \in Vect\{v_1, v_2\}$.
 - (b) Vrérifier que $v_1, v_2 \in Vect\{v_3, v_4\}$.
 - (c) Que peut-on dire des sev $Vect\{v_1, v_2\}$ et $Vect\{v_3, v_4\}$?

Exercice 4.

- 1. Verifier que la famille $\mathcal{B}_1 = \{(-2,1),(1,2)\}$ est une base de \mathbb{R}^2 .
- 2. Verifier que la famille $\mathcal{B}_2 = \{1, X, 1 X^2\}$ est une base de $\mathbb{K}_2[X]$. (supp.)
- 3. Soit $\mathcal{F} = Vect\{(3,2), (-1,1), (2,3)\}$. Déterminer une base \mathcal{B}_3 de \mathcal{F} ainsi que sa dimension.

Exercice 5.

Soit les sev de \mathbb{R}^3 : $C = \{(x, y, z) \in \mathbb{R}^3, y = 0 \text{ et } z = 0\}$ et $D = \{(x, y, z) \in \mathbb{R}^3, x = 0 \text{ et } z = 0\}$. Montrer que C et D sont en somme directe.

Exercice 6.

Soit les sev de \mathbb{R}^3 : $F = \{(x, y, z) \in \mathbb{R}^3, x - y - z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3, y = 0 \text{ et } z = 0\}$. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .