Задание №2

Цель задания: расчет весовых функций системы для синтеза робастного управления.

Основные сведения: синтез робастного управления осуществляется с помощью метода H_{inf} , реализованного в Matlab в виде готовой функции. Функция принимает в качестве аргумента систему с входами — воздействиями, и выходами — наблюдаемыми сигналами с весовыми функциями, описывающими необходимую динамику каждого сигнала. Также указывается пара вход-выход для регулятора. Схема объекта, подаваемого на вход функции H_{inf} представлена на рисунке 1. В рассматриваемой системе входами являются задающее воздействие и несколько возмущающих сигналов, а выходами — выходная переменная и ошибка управления.

Рисунок 1 – структурная схема объекта

Так как в системе присутствует два выходных сигнала, то необходимо для каждого из них рассчитать весовую функцию. Обозначим весовую функцию для сигнала ошибки через W_1 , а весовую функция для выходной переменной через W_2 . Примем что $W_1(p) = S^{-1}(p)$, а $W_2(p) = T^{-1}(p)$, где S(p) — функция чувствительности для ошибки, а T(p) — функция чувствительности по выходному значению (дополнительная чувствительность).

Так как мы принимаем, что S(p) описывает реакцию сигнала ошибки от воздействия, то становится понятно, что $S(p)=\frac{1}{1+L(p)}$ и аналогично для выхода системы $T(p)=\frac{L(p)}{1+L(p)}$, где L(p) — желаемая передаточная функция разомкнутой системы или $L(p)=W_c(p)\cdot W_p(p)$, где $W_c(p)$ — передаточная функция регулятора, а $W_p(p)$ — передаточная функция объекта управления. Так как передаточная функция нам не известна, то определение функции чувствительностей позволяет найти передаточную функцию регулятора,

однако полученные регуляторы могут отличаться для выбранных T(p) и S(p). По сути дела, мы указываем наихудшую динамику для двух сигналов, а метод синтеза должен найти наилучшее решение, которое будет удовлетворять всем наложенным требованиям.

Функции чувствительности могут принимать бесконечное множество значений, до тех пор, пока они обеспечивают заданные требования к динамике рассматриваемого сигнала. Так как S(p) описывает ошибку, то ее передаточная функция выбирается на основании требований к установившемуся значению ошибки по задающему воздействию (а значит и требовании к порядку астатизма замкнутой системы), и допустимой реакции на возмущающие воздействия, описываемые гармоническими сигналами низкой частоты и постоянными сигналами (ступенькой). T(p), в свою очередь, описывает выход системы, а значит выбирается исходя из требований к переходному процессу и высокочастотным возмущениям. Так же T(p) должна удовлетворять требованию к работе в условии наличия неопределенностей, но в данном задании неопределенности не рассматриваются.

Задание на расчет: полный вид структурной схемы замкнутой системы представлен на рисунке 2.

Рисунок 2 – структурная схема замкнутой системы

Необходимо определить весовые функции согласно сигналам, подаваемым на входы и требованиям к работе системы. Подробное описание алгоритма поиска весовых функций можно найти в лекции №12, пример расчета представлен в практическом занятии №12.

Варианты:

№	t _p , c	σ, %*	r(t)	$ e_r^{\infty} $	$f_a(t) = A \cdot \sin(\omega \cdot t)$	$ e_a^{\infty} $	$f_p(t) = A$	$ e_p^{\infty} $	$f_s(t) = A \cdot \sin(\omega \cdot t)$	$ e_s^{\infty} $
1	<1	0	0.5	0	$A < 0.1, \omega < 0.5$	< 0.02	A < 0.5	<0.1	Отсутствует	-
2	<2	8	2t	< 0.1	$A < 0.5, \omega < 0.1$	< 0.1	A < 1	0	Отсутствует	-
3	< 0.3	0	$3t^2$	< 0.15	$A < 0.3, \omega < 1$	< 0.01	A < 2	0	Отсутствует	-
4	< 0.5	8	0.5t	0	Отсутствует	-	A < 0.1	< 0.15	$A < 0.35, \omega > 100$	< 0.01
5	<4	0	1	0	Отсутствует	-	A < 0.4	< 0.02	$A < 0.25, \omega > 150$	< 0.02
6	<10	8	t	< 0.2	Отсутствует	-	A < 0.6	< 0.08	$A < 0.15, \omega > 120$	< 0.015
7	<1	0	$0.5t^2$	< 0.18	Отсутствует	-	A < 0.7	<0.1	$A < 0.55, \omega > 200$	< 0.03
8	<2	8	4	0	$A < 0.2, \omega < 0.01$	< 0.01	Отсутствует	-	$A < 0.9, \omega > 130$	< 0.15
9	< 0.3	0	3t	0	$A < 0.1, \omega < 0.5$	< 0.05	Отсутствует	-	$A < 0.8, \omega > 150$	< 0.02
10	< 0.5	8	0.3t	0	$A < 0.5, \omega < 0.1$	< 0.08	Отсутствует	-	$A < 0.7, \omega > 1000$	< 0.06
11	<4	0	12t	< 0.12	$A < 0.3, \omega < 1$	< 0.02	Отсутствует	_	$A < 0.05, \omega > 100$	< 0.001
12	<10	8	0.5	0	$A < 0.1, \omega < 1$	< 0.1	Отсутствует	_	$A < 0.6, \omega > 90$	< 0.12
13	<1	0	2t	0	$A < 0.1, \omega < 1$	< 0.01	A < 0.2	< 0.12	$A < 0.5, \omega > 120$	< 0.02
14	<2	8	$3t^2$	0	Отсутствует	-	A < 0.3	< 0.03	$A < 0.4, \omega > 125$	< 0.08
15	< 0.3	0	0.5t	0	Отсутствует	_	A < 0.4	< 0.07	$A < 0.3, \omega > 250$	< 0.7
16	< 0.5	8	1	0	Отсутствует	-	A < 0.8	< 0.01	$A < 0.2, \omega > 300$	< 0.08
17	<4	0	t	< 0.2	Отсутствует	_	A < 0.4	< 0.03	$A < 0.01, \omega > 400$	< 0.002
18	<10	8	$0.5t^2$	0	$A < 0.1, \omega < 0.5$	< 0.01	A < 0.7	< 0.15	Отсутствует	-
19	<5	0	4	0	$A < 0.5, \omega < 0.1$	< 0.05	A < 0.9	< 0.02	Отсутствует	-
20	<1.5	8	3t	< 0.01	$A < 0.3, \omega < 1$	< 0.08	A < 1	< 0.08	Отсутствует	-
21	<3	0	0.3t	< 0.1	$A < 0.1, \omega < 0.5$	< 0.02	A < 1.5	0	Отсутствует	_

^{*} Для простого получения передаточной функции системы с определенным перерегулированием можно воспользоваться стандартными полиномами