Algorithms and Datastructures

Lecture 2

Manfred Jaeger

Recap

T(n) = worst-case runtime for instances of size n

Runtime is measured in terms of computation steps under the **RAM (random-access machine)** model:

- Sequential computation, no parallelism
- ► The following operations take one time unit (step):
 - reading/writing the value of a variable from/to memory
 - performing a simple arithmetic operation (addition, multiplication, exponentiation,...)
 - testing a simple Boolean condition

INSERTIONSORT(
$$I$$
)

/* $n = I.length$ */

1 **for** $j = 2..n$ **do**

2 $key=I[j]$

3 $i = j - 1$

4 **while** $i > 0$ and $I[i] > key$ **do**

5 $I[i+1] = I[i]$

6 $i = i - 1$

7 $I[i+1] = key$

			Number of times executed		
	Line No.	Best	Worst	Average	
,	1	n – 1	<i>n</i> − 1	<i>n</i> − 1	
	2	<i>n</i> − 1	<i>n</i> − 1	<i>n</i> − 1	
	3	<i>n</i> − 1	<i>n</i> − 1	<i>n</i> − 1	
	4	<i>n</i> − 1	$2+3+\ldots+(n+1)$	$\frac{2+3++(n+1)}{2}$	
	5	0	$1+2+\ldots+n$	$\frac{1+2++n}{2}$	
	6	0	$1+2+\ldots+n$	$\frac{1+2++n}{2}$	
	7	<i>n</i> − 1	<i>n</i> − 1	n – 1	
	total	$\sim n$	$\sim n^2$	$\sim n^2$	

Also important:

S(n) = worst-case memory consumption for instances of size n

- ▶ for some applications critical: can run out of space faster than out of time!
- ▶ not the main concern for most of the "classical" problems we consider
- often a tradeoff: fast algorithm that uses much space vs. slower algorithm that uses less space

Growth of Functions

For insertion sort we found: $T(n) \sim n^2$.

What does that mean exactly? (Hypothetical) plot of precise values:

- ightharpoonup T(n) approximately follows n^2 , but
 - \triangleright sometimes above, sometimes below n^2 .

Upper/Lower Bound

Divide characterization of T(n)'s growth into two parts:

- Lower bound
- ▶ Upper bound (Most attention on this in line with worst-case perspective!)

Constants Don't Matter ...

T(n) characterizes the actual runtime (CPU-cycles, seconds, ...) only up to a constant factor.

Instead of comparing T(n) to n^2 , we may as well compare

- $ightharpoonup c \cdot T(n)$ to n^2 , or
- ightharpoonup T(n) to $c \cdot n^2$

(c any positive constant).

Comparing T(n) to $2 \cdot n^2$:

- ▶ $2 \cdot n^2$ is an upper bound for T(n) except for n = 0 and n = 1
- $c \cdot n^2 = 0$ for all c > 0, so the "problem" at n = 0 can not be fixed by any larger multiplicative factor c.
- We are interested in time complexity as size of input instances becomes really large (asymptotic behavior). Just ignore violation of upper bound by a few n values at the beginning!

- ► *T*(*n*): any function (but usually the worst-case running time of an algorithm)
- \vdash f(n): any function

$$T(n) = O(f(n)) \Leftrightarrow$$
 there exist constants $c > 0$ and $n_0 > 0$, so that for all $n \ge n_0$: $T(n) < c \cdot f(n)$

- \rightarrow T(n): any function (but usually the worst-case running time of an algorithm)
- $\vdash f(n)$: any function

$$T(n) = O(f(n)) \Leftrightarrow$$
 there exist constants $c > 0$ and $n_0 > 0$, so that for all $n \ge n_0$: $T(n) \le c \cdot f(n)$

Also: O(f(n)) is the *set* of all functions T(n) with T(n) = O(f(n)).

(and therefore: T(n) = O(f(n)) can also be written as $T(n) \in O(f(n))$)

Im the following all functions T(n), f(n), g(n), ... are assumed to be *non-negative*.

If $T(n) \in O(f(n))$, then for every positive constant $d: d \cdot T(n) \in O(f(n))$.

Robustness w.r.t. time measure

big-O characterizations of time complexity remain the same, independent of whether one measures the actual time of a computation as

- number of execution steps of RAM
- number of clock cycles on (single processor) computer
- number of seconds on (single processor) computer
- **...**

Robustness w.r.t. accuracy of counting RAM execution steps

When counting the number of RAM execution steps, it does not matter whether we count one execution of

4 while i > 0 and I[i] > key do

as requiring 1,2,3, or any constant number of steps.

$$T(n) = \Omega(f(n))$$
 \Leftrightarrow there exist constants $c > 0$ and $n_0 > 0$, so that for all $n \ge n_0$: $T(n) \ge c \cdot f(n)$

$$T(n) = \Theta(f(n)) \Leftrightarrow T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

Example: $T(n) = \Theta(n^2)$:

An equation of the form

$$T(n) = h(n) + O(f(n))$$
 (h(n), f(n) some functions)

means: there exists $g(n) \in O(f(n))$, so that

$$T(n) = h(n) + g(n).$$

(the same for
$$T(n) = h(n) + \Omega(f(n))$$
 and $T(n) = h(n) + \Theta(f(n))$)

Rules and Calculations

If $f(n) \le g(n)$ stands for $f(n) \in O(g(n))$, then the following is true:

A
$$n < n^2 < lg n < n^3 < 2^n$$

B
$$n \le \lg n \le n^2 \le 2^n \le n^3$$

$$C \ n \le 2^n \le n^2 \le \lg n \le n^3$$

D Ig
$$n \le n \le n^2 \le n^3 \le 2^n$$

$$E \ \textit{Ig } n \leq n \leq n^2 \leq 2^n \leq n^3$$

- $c \cdot f(n) = O(f(n))$ (robustness: ignore constants)
- $P n^k = O(n^l) \text{ if } l \geq k$
- ▶ log(n) = O(n) and $n \neq O(log(n))$
- ▶ $n^k = O(2^n)$ and $2^n \neq O(n^k)$

- $c \cdot f(n) = O(f(n))$ (robustness: ignore constants)
- $ho n^k = O(n^l)$ if $l \ge k$
- $ightharpoonup n^k \neq O(n^l) \text{ if } l < k$
- ▶ log(n) = O(n) and $n \neq O(log(n))$
- ▶ $n^k = O(2^n)$ and $2^n \neq O(n^k)$

Actual computation time assuming 1G steps/second

			Input size		
Complexity	10	50	100	200	500
log(n)	$3 \cdot 10^{-6} ms$	$5 \cdot 10^{-6}$ ms	$6 \cdot 10^{-6} ms$	$7 \cdot 10^{-6}$ ms	$9 \cdot 10^{-6}$ ms
n	$10^{-5} ms$	$5 \cdot 10^{-5}$ ms	$10^{-4} ms$	$2 \cdot 10^{-4} ms$	$5 \cdot 10^{-4}$ ms
n ²	$10^{-4} ms$	$2.5 \cdot 10^{-3}$ ms	$10^{-2} ms$	$4 \cdot 10^{-2}$ ms	0.25 <i>ms</i>
n ³	$10^{-3} ms$	0.12 <i>ms</i>	1 <i>ms</i>	8 <i>ms</i>	0.12 <i>s</i>
2 ⁿ	$10^{-3} ms$	312h : 44m	10 ¹³ y	10 ⁴³ y	10 ¹³³ <i>y</i>

Considering the Ratio

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, then $f(n) = O(g(n))$ (stronger: $f(n) = o(g(n))$), and $g(n) \neq O(f(n))$.

Polynomials vs. Exponentials

For all a > 1 and b > 0:

$$n^b = O(a^n)$$
 and $a^n \neq O(n^b)$

Polylogarithms vs. Polynomials

For all a, b > 0:

$$\log^b n = O(n^a)$$
 and $n^a \neq O(\log^b n)$

lf

$$g_1(n) = O(f_1(n)), \ldots, g_k(n) = O(f_k(n)),$$

then

$$g_1(n) + \ldots + g_k(n) = O(\max_{i=1}^k f_i(n)).$$

where *max* is taken with respect to the (partial) order $f_i \leq f_j \Leftrightarrow f_i(n) \in O(f_j(n))$.

For products:

$$g_1(n)\cdots g_k(n) = O(f_1(n)\cdots f_k(n))$$

lf

$$g_1(n) = O(f_1(n)), \ldots, g_k(n) = O(f_k(n)),$$

then

$$g_1(n) + \ldots + g_k(n) = O(\max_{i=1}^k f_i(n)).$$

where *max* is taken with respect to the (partial) order $f_i \leq f_i \Leftrightarrow f_i(n) \in O(f_i(n))$.

For products:

$$g_1(n)\cdots g_k(n) = O(f_1(n)\cdots f_k(n))$$

Careful!

- \triangleright *k* must be a fixed constant that does not grow with *n*. Example: $g_i(n)$ the number of times the *i*th line of the algorithm is executed.
- ▶ The rule for sums only applies if the *max* actually exist (see next slide!).

lf

$$g_1(n) = O(f_1(n)), \ldots, g_k(n) = O(f_k(n)),$$

then

$$g_1(n) + \ldots + g_k(n) = O(\max_{i=1}^k f_i(n)).$$

where *max* is taken with respect to the (partial) order $f_i \leq f_i \Leftrightarrow f_i(n) \in O(f_i(n))$.

For products:

$$g_1(n)\cdots g_k(n) = O(f_1(n)\cdots f_k(n))$$

Careful!

- \triangleright *k* must be a fixed constant that does not grow with *n*. Example: $g_i(n)$ the number of times the *i*th line of the algorithm is executed.
- ▶ The rule for sums only applies if the *max* actually exist (see next slide!).

Examples:

For polynomials, only the highest exponent counts:

$$23 \cdot n^3 + 54 \cdot n^2 + 32 \cdot n + 3421 = O(n^3).$$

A more messy function:

$$15 \cdot \log(n) - 23 \cdot n^2 + 12 \cdot n^3 + 43 \cdot n^2 \cdot \log(n) = O(n^3).$$

Transitivity

If g(n) = O(f(n)) and f(n) = O(h(n)), then g(n) = O(h(n)).

Careful!

It is **not** the case that one of g(n) = O(f(n)) and f(n) = O(g(n)) must be true.

Example: g(n) = n; $f(n) = n^{n \mod 3}$; then neither g(n) = O(f(n)) nor f(n) = O(g(n)).

Also: $max\{f(n), g(n)\}$ is not defined.

Max-Subarray Example

The Problem

Given an array with integers, find the subarray with maximal sum of entries.

Example: an array

$$[13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7]$$

The Problem

Given an array with integers, find the subarray with maximal sum of entries.

Example: an array

$$[13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7]$$

Maximal subarray

The Problem

Given an array with integers, find the subarray with maximal sum of entries.

Example: an array

$$[13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7]$$

Maximal subarray

Application:

Find optimal buy and sell date for a stock.

input : An array A with integer values output: The maximal subarray of A given by its start and end indices, and the sum s of the subarray

STUPIDMAXSUBARR(A)

```
1 MaxSum=-\infty

2 MaxLeft=MaxRight=0

3 for j = 1..A.length do

4 for k = j..A.length do

5 sum=0

6 for i = j..k do

7 sum=sum+A[i]

8 if sum>MaxSum then

9 MaxSum=sum

10 MaxLeft=j

11 MaxRight=k
```

12 return [MaxLeft, MaxRight, MaxSum]

Line	# executed (worst case)
1	1
2	1
3	п
4	$n + (n-1) + \ldots + 1$
5	$n+(n-1)+\ldots+1$
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$
8	$n + (n-1) + \ldots + 1$
9	$n + (n-1) + \ldots + 1$
10	$n + (n-1) + \ldots + 1$
11	$n + (n-1) + \ldots + 1$
12	ĺ

$$1+2+\ldots+(n-1)+n=(n+1)\frac{n}{2}$$

$$a + (a + 1) + ... + (a + n) = (n + 2a) \frac{n+1}{2}$$

Line	# executed	summed	O-ed
1	1		
2	1		
3	n		
4	$n+(n-1)+\ldots+1$		
5	$n+(n-1)+\ldots+1$		
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$		
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$		
8	$n+(n-1)+\ldots+1$		
9	$n+(n-1)+\ldots+1$		
10	$n+(n-1)+\ldots+1$		
11	$n + (n-1) + \ldots + 1$		
12	1		

$$1+2+\ldots+(n-1)+n=(n+1)\frac{n}{2}$$

$$a + (a + 1) + ... + (a + n) = (n + 2a) \frac{n+1}{2}$$

Line	# executed	summed	O-ed
1	1	1	
2	1	1	
3	n	n	
4	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
5	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$		
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$		
8	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
9	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
10	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
11	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
12	1	1	

$$1+2+\ldots+(n-1)+n=(n+1)\frac{n}{2}$$

$$a + (a + 1) + ... + (a + n) = (n + 2a) \frac{n+1}{2}$$

Line	# executed	summed	O-ed
1	1	1	
2	1	1	
3	n	n	
4	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
5	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	
8	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
9	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
10	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
11	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	
12	1	1	

$$1+2+\ldots+(n-1)+n=(n+1)\frac{n}{2}$$

$$a + (a + 1) + ... + (a + n) = (n + 2a) \frac{n+1}{2}$$

Line	# executed	summed	O-ed
1	1	1	O(1)
2	1	1	O(1)
3	n	n	O(n)
4	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
5	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	
8	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
9	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
10	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
11	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
12	1	1	O(1)

$$1+2+\ldots+(n-1)+n=(n+1)\frac{n}{2}$$

$$a + (a + 1) + ... + (a + n) = (n + 2a) \frac{n+1}{2}$$

Line	# executed	summed	O-ed
1	1	1	<i>O</i> (1)
2	1	1	O(1)
3	n	n	O(n)
4	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
5	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
6	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	$O(n^3)$
7	$n \cdot 1 + (n-1) \cdot 2 + (n-2) \cdot 3 + \ldots + 1 \cdot n$?	$O(n^3)$
8	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
9	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
10	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
11	$n+(n-1)+\ldots+1$	$(n+1)\frac{n}{2}$	$O(n^2)$
12	1	1	O(1)

Each level of for-looping adds +1 to the polynomial (if number of loop iterations is input-dependent)