GaAlAs-IR-Lumineszenzdiode (880 nm) GaAlAs Infrared Emitter (880 nm) Lead (Pb) Free Product - RoHS Compliant

SFH 486

Wesentliche Merkmale

- GaAlAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- gute spektrale Anpassung an Si-Fotoempfänger
- Gegurtet lieferbar (im Ammo-Pack)
- Gruppiert lieferbar

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Rauchmelder (UL-Freigabe)
- Sensorik
- Diskrete Lichtschranken

Typ	Bestellnummer
Type	Ordering Code
SFH 486	Q62703Q1094

Features

- Very highly efficient GaAlAs-LED
- High reliability
- Spectral match with silicon photodetectors
- Available on tape and reel (in Ammopack)
- Available in bins

Applications

1

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- Remote control for steady and varying intensity
- Smoke detectors (UL-approval)
- Sensor technology
- · Discrete interrupters

2007-04-03

Grenzwerte ($T_A = 25$ °C) **Maximum Ratings**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	2.5	A
Verlustleistung Power dissipation	P _{tot}	200	mW
Wärmewiderstand Thermal resistance	R_{thJA}	375	K/W

Kennwerte ($T_A = 25$ °C) Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA	λ_{peak}	880	nm
Spektrale Bandbreite bei 50% von I_{rel} Spectral bandwidth at 50% of I_{rel} $I_{\rm F}$ = 100 mA	Δλ	80	nm
Abstrahlwinkel Half angle	φ	± 11	Grad deg.
Aktive Chipfläche Active chip area	A	0.09	mm²
Abmessungen der aktiven Chipfläche Dimension of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm²
Abstand Chipoberfläche bis Gehäusevorderseite Distance chip front to case surface	Н	5.1 5.7	mm
Schaltzeiten, $\rm I_e$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	$t_{\rm r},t_{\rm f}$	0.6/0.5	μs

Kennwerte ($T_A = 25$ °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	C_{\circ}	15	pF
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	V_{F}	1.5 (< 1.8) 3.0 (< 3.8)	V
Sperrstrom Reverse current $V_{\rm R} = 5 \text{ V}$	I_{R}	0.01 (≤ 1)	μА
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Фе	25	mW
Temperaturkoeffizient von $\rm I_e$ bzw. Φ_e , $I_{\rm F}$ = 100 mA Temperature coefficient of $\rm I_e$ or Φ_e , $I_{\rm F}$ = 100 mA	TC ₁	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F}$, $I_{\rm F}$ = 100 mA	TC_{V}	- 2	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	0.25	nm/K

Strahlstärke I_e in Achsrichtung

gemessen bei einem Raumwinkel Ω = 0.001 sr

Radiant Intensity I_e in Axial Direction

at a solid angle of $\Omega = 0.001$ sr

Bezeichnung Parameter	Symbol	Werte Values	Einheit Unit
Strahlstärke Radiant intensity $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	$I_{ ext{e min}}$ $I_{ ext{e typ}}$	40 70	mW/sr
Strahlstärke Radiant intensity $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 $\mu{\rm s}$	$ m I_{e~typ}$	600	mW/sr

Relative Spectral Emission $I_{\rm rel} = f(\lambda)$

Forward Current $I_{\rm F} = f(V_{\rm F})$, single pulse, $t_{\rm p} = 20~\mu{\rm s}$

Radiant Intensity $\frac{I_{\rm e}}{I_{\rm e}\,{\rm 100~mA}}$ = f ($I_{\rm F}$)

Permissible Pulse Handling Capability $I_{\rm F}$ = $f(\tau)$, $T_{\rm A}$ = 25 °C, duty cycle D = parameter

Max. Permissible Forward Current $I_{\rm F} = f\left(T_{\rm A}\right)$

Forward Current vs. Lead Length Between the Package Bottom and the PC-Board $I_F = f(I)$, $T_A = 25 \, ^{\circ}\text{C}$

Radiation Characteristics $I_{rel} = f(\varphi)$

Maßzeichnung Package Outlines

Maße in mm (inch) / Dimensions in mm (inch).

Empfohlenes Lötpaddesign) Recommended Solder Pad

Wellenlöten (TTW) TTW Soldering

Maße in mm (inch) / Dimensions in mm (inch).

Lötbedingungen **Soldering Conditions** Wellenlöten (TTW) TTW Soldering

(nach CECC 00802) (acc. to CECC 00802)

Published by **OSRAM Opto Semiconductors GmbH** Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com

© All Rights Reserved.

EU RoHS and China RoHS compliant product

此产品符合欧盟 RoHS 指令的要求:

按照中国的相关法规和标准,不含有毒有害物质或元素。

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

7 2007-04-03

