CMPUT 365: Temporal Difference Methods for Prediction

Rupam Mahmood

Feb 28, 2022

Admin

Due dates C2M2:

- Practice quiz: Tue Mar 1
- Graded notebook: Sat Mar 5

Midterm:

- Marks and feedback are on eclass and assign2

Review of MC

- MC methods come with a huge advantage: model-free estimation of value functions
- Disadvantage is that they make per-episode updates, not every time step
- They are computationally and memory-wise expensive and cumbersome

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Input: a policy \pi to be evaluated
Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S}
Returns(s) \leftarrow an empty list, for all s \in \mathcal{S}

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
G \leftarrow 0

Loop for each step of episode, t = T-1, T-2, \ldots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:

Append G to Returns(S_t)

V(S_t) \leftarrow average(Returns(S_t))
```

Prediction as estimating value functions

- Predictions are building blocks for many control methods
- The usefulness of predictions goes beyond control
- Forming a predictive question: How many times will you get honked at today?
- (Pseudo-) reward: +1 for each honk
- Termination of episode: end of the day
- Behavior: the way you drive (think of your average speed, frequency of changing lanes, etc.)
- Can be answered by estimating $v_{\pi}(s) \doteq E_{\pi}[G_t | S_t = s]$

Much of prediction is about estimating expected values

Much of prediction is about estimating expected values (cont'd)

From MC to TD(0)

Monte Carlo estimator for on-policy prediction: $V(s) \doteq \frac{\sum_{t \in \mathcal{T}(s)} G_t}{|\mathcal{T}(s)|}$

Incremental Monte Carlo estimator:
$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} \left[G_t - V(S_t) \right]$$

Constant- α MC: $V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$ The note important MC up by the MC error conty upoke when episode and s).

TD(0):
$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{R_{t+1} + \gamma V(S_{t+1})}{V(S_{t+1})} - V(S_t) \right] \Rightarrow 70$$
 update.

Value astimate

this is slightly

in low rest, 1945 V (Syn) 72 thre value

is G can't be unbiased!

Parham Golestaneh Talaei对所有人说 下午1:48

V(S') is the value of the next state that was computed during the last trajectory right? Just like the in place policy iteration that we use the previous state values 2) Years

Unlike Monte Carlo, TD(0) works online

```
First-visit MC prediction, for estimating V \approx v_{\pi}

Input: a policy \pi to be evaluated Initialize:

V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S}
Returns(s) \leftarrow an empty list, for all s \in \mathcal{S}

Loop forever (for each episode):

Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
G \leftarrow 0

Loop for each step of episode, t = T - 1, T - 2, \ldots, 0:

G \leftarrow \gamma G + R_{t+1}

Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:

Append G to Returns(S_t)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0, T)
```

How would you characterize the differences between MC and TD(0) algorithmically?

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0,1]$ Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0 Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow \text{action given by } \pi \text{ for } S$ Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha \big[R + \gamma V(S') - V(S) \big]$ $S \leftarrow S'$ until S is terminal

Unlike Monte Carlo, TD(0) works online (cont'd)

```
Tabular TD(0) for estimating v_{\pi}
                                                                                                                        Aaron Skiba对所有人说
                                                                                                                        So 'offline' just means not learning as it's
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       A \leftarrow \text{action given by } \pi \text{ for } S
       Take action A, observe R, S'
       Take action A, observe 10, V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]

doing learning limits (alculation)
   until S is terminal
```

Say an oracle gives us return G from future at each step. Replace $R + \gamma V(S')$ with G. This is an online but acausal Monte Carlo method. Will it be first-visit or every-visit?

公式 policy → Value

```
MC prediction, for estimating V \approx v_{\pi}
 Input: a policy \pi to be evaluated
 Initialize:
    V(s) \in \mathbb{R}, arbitrarily, for all s \in S
     Returns(s) \leftarrow \text{ an empty list, for all } s \in S
 Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}
Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
        Append G to Returns(S_t)
         V(S_t) \leftarrow \operatorname{average}(Returns(S_t)) where parkets and the v-value.
```


