TEMA 2: PRE-PROCESAMIENTO DE DATOS ANÁLISIS DE CORRELACIONES TRANSFORMACIÓN DEL TIPO DE VARIABLES GENERACIÓN DE VARIABLES

Motivación

- La elección (generación) de las variables utilizadas en el aprendizaje del modelo es un paso fundamental para su éxito
 - □ Selección de variables: eligen algunas de las variables del data set inicial
 - Lo veremos más adelante, en esta lección vamos a ver el análisis de correlaciones
 - Transformación de variables:
 - Tipo de variable
 - Datos almacenados de la variable
 - □ Generación de variables: construyen nuevas variables a partir de las originales
 - PCA

Análisis de correlaciones

Análisis de correlaciones para variables numéricas: su objetivo es cuantificar la fuerza con la que una variable se obtiene a partir de otra

$$r_{A,B} = \frac{\sum_{i=1}^{n} (A_i - \pi_A) * (B_i - \pi_B)}{n * \sigma_A * \sigma_B}$$

- $\blacksquare A_i, B_i$: son los valores *i*-ésimos de las variables A y B
- \blacksquare π_A , π_B : son la media de los valores de las variables A y B
- $lue{}$ σ_A , σ_B : son las desviaciones estándar de los valores de las variables A y B
- $r_{A,B} > 0 \rightarrow A$ y B están correlacionadas positivamente (ambas tienen comportamiento similar)
- $\Box r_{A,B} = 0 \rightarrow A y B son independientes$
- $r_{A,B} < 0 \rightarrow$ A y B están correlacionadas negativamente (si una variable crece, la otra decrece)

Matriz de correlaciones

1

0.98

-0.9

1

-0.81

1

X

1/x

Análisis de correlaciones

Análisis de correlaciones para variables categóricas: test de correlación χ^2

$$\chi^{2}_{A,B} = \sum_{\{i=1\}}^{C} \sum_{\{j=1\}}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

- $\ \square \ C$ y r son el número de valores diferentes de A y B
- \square Consular nivel de significancia de la tabla χ^2 con (r-1)*(C-1) grados de libertad
 - □ Si el valor de la tabla es menor que el calculado, las variables A y B están correlacionadas

Análisis de correlaciones

- \square Para mejorar la interpretación del test de correlación χ^2
- □ Coeficiente de contingencia de Cramer (V de Cramer)

$$V = \sqrt{\frac{\chi^2}{n * (q-1)}}$$

- $\square n$ es el número de ejemplos (observaciones)
- $q = \min(r, C)$
- □ V está en el rango [0, 1]
 - 0: independencia
- Ejemplo: http://asignatura.us.es/dadpsico/apuntes/ChiCuadrado.pdf

- Discretización: Transforma los valores de las variables numéricas en un número finito de intervalos
 - A cada intervalo se le asocia una etiqueta (categoría)
 - Los intervalos producen una partición sin solapamiento de los ejemplos
 - Se transforma un atributo numérico en uno categórico
 - Puede ser visto como un método de reducción de datos
 - De muchos valores a unas pocas categorías

 Algunos métodos de aprendizaje no funcionan con atributos numéricos por lo que es imprescindible realizar esta transformación

- Definición del proceso de discretización para aprendizaje supervisado (clasificación)
 - $lue{}$ Dado un dataset con N ejemplos y C clases
 - $lue{}$ Un algoritmo de discretización transformará un atributo numérico A en m intervalos

$$D = \{[d_0, d_1], (d_1, d_2], \dots, (d_{m-1}, d_m]\}$$

- lacktriangle donde d_0 y d_m son los valores mínimo y máximo, respectivamente
- $d_i < d_{i+1} \text{ para } i = \{0, ..., m-1\}$
- $lue{}$ Al resultado discreto D se le llama esquema de discretización del atributo A
- \blacksquare Al conjunto de valores $P=\{d_1,\dots d_{m-1}\}$ se le llama conjunto de puntos de corte del atributo A

Técnicas de binning

- □ Discretización de anchura igual
 - $lue{}$ Se elige el número de intervalos: m
 - $lue{}$ Se divide el rango del atributo en m intervalos de anchura fija
 - $anchura = (valor_{m\acute{a}ximo} valor_{m\acute{i}nimo})/m$
 - $d_{i+1} d_i = anchura con i = \{0, ..., m-1\}$
 - También se puede especificar la anchura
 - lacksquare Se obtiene m a partir de ella
 - ■Un intervalo puede ser de anchura diferente
 - □ Ejemplo: variable con rango [0, 10] a discretizar en 4 categorías

 $= anchura = \frac{10-0}{4} = 2.5$

0.2	1	1.2	1.5	2.2	4	4.2	5.1	7	7.3	9.8
-----	---	-----	-----	-----	---	-----	-----	---	-----	-----

Técnicas de binning

- □ Discretización de frecuencia igual
 - $lue{}$ Se elige el número de intervalos: m
 - $lue{}$ Se distribuyen los n ejemplos en los intervalos de tal forma que cada uno tenga aproximadamente el mismo número de ejemplos
 - $\blacksquare nEj = n/m$
 - $\blacksquare nEj$ es el número de ejemplos que contendrá cada intervalo (categoría)
 - □ Ejemplo: variable con rango [0, 10] a discretizar en 4 categorías

$$\blacksquare nEj = \frac{11}{4} = 2.75$$

0.2	1	1.2	1.5	2.2	4	4.2	5.1	7	7.3	9.8
0.2	1	1.2	1.5	2.2	4	4.2	5.1	7	7.3	9.8

Técnicas de binning

- Discretización de frecuencia fija (FFD)
 - 1. Se elige la frecuencia de cada intervalo: nEj
 - 2. Se asignan los ejemplos (ordenados previamente) a la categoría hasta alcanzar nEj
 - 3. Se crea una nueva categoría y se vuelven a asignar ejemplos
 - Se repiten 2 y 3 hasta que no queden ejemplos
 - El último intervalo puede tener un número diferente de ejemplos
 - □ Ejemplo: variable con rango [0, 10]

0.2	1	1.2	1.5	2.2	4	4.2	5.1	7	7.3	9.8
			I							

Deseamos 4 ejemplos en cada categoría

0.2	1	1.2	1.5	2.2	4	4.2	5.1	7	7.3	9.8
-----	---	-----	-----	-----	---	-----	-----	---	-----	-----

Codificación ordinal

- Algunas técnicas de aprendizaje automático no soportan variables categóricas
- Transformar las variables categóricas a variables numéricas
- La codificación ordinal consiste en transformar cada valor categórico en una valor entero
 - Esta solución presenta dos problemas importantes
 - Se asume un orden de los valores categóricos
 - Los nuevos valores enteros pueden ser utilizados para operaciones posteriores
 - La variable inicial no lo permite

One hot encoding

- Para evitar los problemas anteriores una transformación muy habitual es generar un conjunto de variables binarias por cada variable categórica
 - Sea N el número de valores de la variable categórica
 - Se generan N variables binarias
 - Una por cada valor
 - Cada una contiene 1 como valor de los ejemplos con el valor correspondiente a la nueva variable binaria
 - 0 en el resto de posiciones
- □ Esta transformación también se conoce como transformación 1-N
- □ Problema: la variable original tiene una cardinalidad alta (muchos valores)
 - Implica generar muchas variables que conllevan un conjunto de datos muy disperso
 - Problemas de rendimiento y numéricos

□ Ejemplo de one hot encoding

Color	Rojo	Verde	Azul
Rojo	1	0	0
Verde	0	1	0
Azul	0	0	1
Rojo	1	0	0
Azul	0	0	1
Azul	0	0	1

Codificación binaria (Binary encoding)

- Los valores categóricos se codifican utilizando codificación ordinal
- Los números obtenidos se codifican en binario
- Se generan tantas variables binarias como dígitos de la codificación binaria
 - El número binario se copia dígito a dígito a las nuevas variables

Color	Ordinal	Cod. Binaria	0	1
Rojo	0	00	0	0
Verde	1	01	0	1
Azul	2	10	1	0
Rojo	0	00	0	0
Azul	2	10	1	0
Azul	2	10	1	0

- □ Codificación de conteo
 - Sustituye cada valor por el número de veces que aparece dicho valor en el dataset

Color	Color'
Rojo	2
Verde	3
Verde	3
Rojo	2
Verde	3
Azul	1

Transformación basada en la salida

- Variable categórica (2 clases)
 - Se calcula la probabilidad de una clase para cada valor de la variable categórica
 - Se asigna dicha probabilidad como valor numérico

Trend	Target	Trend_Encoded
Up	1	0.66
Up	1	0.66
Down	0	0.33
Flat	0	0.5
Down	1	0.33
Up	0	0.66
Down	0	0.33
Flat	0	0.5
Flat	1	0.5
Flat	1	0.5

	Tar	get	
Trend	0	1	Probability (1)
Up	1	2	0.66
Down	2	1	0.33
Flat	2	2	0.5

Transformación basada en la salida

- Variable numérica
 - Se calcula la agregación de los valores de salida para cada valor de la variable categórica
 - Se asigna dicho valor agregado como valor numérico

Trend	Target	Trend_Encoded
Up	21	23.7
Up	24	23.7
Down	8	10.3
Flat	15	14.5
Down	11	10.3
Up	26	23.7
Down	12	10.3
Flat	16	14.5
Flat	14	14.5
Flat	13	14.5

Trend	Target - Average
Up	23.7
Down	10.3
Flat	14.5

Transformación de los datos de una variable

- Proceso por el que se cambia el contenido de una variable para que permita mejorar la calidad de los datos
 - □ Transformaciones habituales: raíz cuadrada, logaritmo
- □ Ejemplo: precio (goal) de los proyectos realizados

- La normalización puede no ser suficiente para mejorar el modelo aprendido
- □ Puede ser beneficioso agregar la información de varias variables
 - Transformaciones lineales
 - \blacksquare Sea $B=\{B_1,\dots,B_m\}$ un subconjunto de m variables del conjunto total de variables $A=\{A_1,\dots,A_n\}$ con $m\leq n$

$$Z = r_1 * B_1 + r_2 * B_2 + ... + r_m * B_m$$

- lacksquare donde r_i es el peso de la variable i-ésima de B
- \blacksquare caso simple (media aritmética) $r_i = \frac{1}{m} \; \forall \; i \in \{1, \dots, m\}$
- Transformaciones polinómicas
- Transformaciones no polinómicas
- Interacciones entre variables discretas
 - Unión de los términos de las diferentes variables

- El algoritmo Principal Components Analysis (PCA) es uno de los métodos más antiguos y utilizados para transformar los datos y reducir su dimensionalidad
- \square Técnica multi-variante que transforma las variables originales $(X_1, X_2, ..., X_n)$
 - En otro conjunto de variables $(CP_1, CP_2, ..., CP_n)$
 - $lue{}$ Las nuevas variables CP_i se denominan componentes principales
 - Son perpendiculares entre ellas
 - Forman una nueva base con un nuevo origen de coordenadas
- Para realizar la proyección de un ejemplo X en cada componentes principal hay que realizar una combinación lineal de las variables iniciales
 - $CP_1 = (a_{11}, a_{12}, ..., a_{1n})$
 - $\mathbf{w}_{CP_1} = a_{11} * X_1 + a_{12} * X_2 + \cdots + a_{1n} * X_n$
 - ...
 - $\Box CP_n = (a_{n1}, a_{n2}, ..., a_{nn})$

 - lacksquare a la variable j en el componente i
- □ Sintetizan la mayor parte de la información contenida en los datos originales
 - La mayor parte de la varianza

□ Idea intuitiva

Ejemplo	1	2	3	4	5	6	7	8	9
Var 1	6	0	5	7	11	10	15	18	14
Var 2	2	0	8	6	6	10	8	14	14

- □ Para comprobar la separabilidad de los ejemplos
 - Proyección de los datos a una dimension
 - Por ejemplo utilizando la variable 1
 - Con la variable 2 tenemos una situación similar

Datos poco separables

- Sería bueno transformar los datos de tal forma que se mejorase la separabilidad de los ejemplos
 - □ Idea: generar una variable que maximice la varianza de los ejemplos si son proyectados perpendicualrmente a ella

PC1: Componente principal 1

Datos más separables

- Podemos generar otra variable (componente principal) ya que originalmente teníamos dos variables
 - Restricción: debe ser perpendicular a la primera para que formen una base
 - También maximiza la varianza de los ejemplos si se proyectan hacia ella

- □ Procedimiento para generar las variables (componentes principales)
 - □ Normalizar cada variable para que tenga media 0 y desviación estándar 1
 - De esta forma las variables con rangos más grandes no se verán favorecidas (variarían más)
 - Se obtiene el dataset normalizado DN
 - \square Calcular la matriz de covarianzas, $C = DN^T * DN$
 - Dimensión: número de variables por número de variables
 - Obtener los vectores y valores propios de C
 - Se obtienen tantos como variables
 - Cada vector propio es una componente principal
 - Cada valor propio está asociado a un vector propio
 - Representa la importancia (varianza) del vector propio

- □ Para reducir el número de variables
 - Se ordenan los vectores propios de acuerdo a sus valores propios
 - Se escogen aquellos que representen un determinado porcentaje de la varianza
 - Se normalizan los valores propios
 - Cada valor propio se divide por la suma de todos los valores propios
 - Se escogen tantos como sea necesarios para alcanzar la varianza deseada
 - Se van acumulado los valores propios normalizados asociados a los vectores propios utilizados
 - Finalmente, los ejemplos originales se proyectan sobre las nuevas variables para obtener los nuevos valores
 - Por cada ejemplo se recorren todas las componentes principales
 - Producto matricial entre el ejemplo y el componente principal: un valor (coordenada)
 - Al final, para cada ejemplo, tenemos tantos valores como componentes
- Habitualmente se escogen las componentes principales necesarias para mantener el 95% o más de la varianza del dataset original
- □ El PCA es útil cuando existen muchas variables independientes con una correlación alta

- Análisis de la influencia de las variables originales en un componente principal
 - Realizar la correlación entre
 - Los ejemplos proyectados sobre el componente principal
 - Los ejemplos en cada variable original
 - Los variables originales con mayor correlación (positiva o negativa) serán las más influyentes en el componente principal