b. In the circuit shown, find the voltage V_Y and verify reciprocity theorem.

24. a. A series RC circuit has a constant voltage of E, applied at time, t=0 as shown in the figure. The capacitor has no initial charge. Find the equations for i, V_R and V_C .

E=100V, R=5kΩ, C=20μF.

(OR)

b. Consider the single tuned circuit shown in the figure. It has L_1 =12.5 μ H, L_2 =50 μ H and coefficient of coupling as 0.6. Assume Rs>>ω_rL₁. Determine (1) angular resonance frequency (2) output voltage at resonance.

25. a. Two wattmeters are connected to measure the power in a 3-phase 3-wire balanced load. Determine the total power and power factor, if the two wattmeters read 100W each both positive.

b. Determine the 'y' parameters for the circuit shown in the figure.

 $PART - C (1 \times 15 = 15 Marks)$

Answer ANY ONE Question

Marks BL CO PO

2 5 2

2

3 2

26. Using mesh analysis, compute the power consumed by the resistors and the powers applied by the sources.

27. Using Thevenin's theorem, find the current through the capacitor in the circuit.

200∠0° (∿)

Reg. No.

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, MAY 2023

Second Semester

21EEC101J - ELECTRIC CIRCUITS

(For the candidates admitted from the academic year 2021 - 2022 & 2022 - 2023)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be (i) handed over to hall invigilator at the end of 40th minute.

Part - R and Part - C should be answered in answer booklet (ii)

(II) Tait - B and Tait - C should be answered in answer bookes.					
Time: 3 Hours	Max. Marks: 75				
$PART - A (20 \times 1 = 20 Marks)$	Marks	BL	CO F		
Answer ALL Questions 1. An electric kettle is rated for 250V and 500W its conductance is	1	2	1		
(A) $2 \cup{T}$ (B) $0.5 \cup{T}$ (C) $0.5 \cup{T}$ (D) $8 \cup{T}$					
2. In the circuit shown, the ratio of $\frac{V_2}{V_1}$ is	1	2	1		
$-\frac{10\Omega_{+}}{4}$					

(B) 0.5 2

(D)

3. A bulb having resistance of 360Ω is connected to 120V supply. How much current is drawn by the bulb? (B) 0.333A (A) 33.3 A

(D) 13.3A (C) 133mA 4. Determine the current through 12Ω resistor in the given circuit.

2 1 1

2 1 1

(A) 3A (C) 2.5 A (B) 1.5 A (D) 1.67 A

5. In the circuit shown, calculate the power.

2 2 1

(A) 320 W 320 W (C)

(B) 3.2 W (D) 32 W

6. As the angular frequency increases from a low value to high value, the inductive 1 1 2 1 reactance

Remains the same Decreases

(B) Increases (D) Becomes zero

7. The angular frequency does not depend on the value of

1 1 2 1

(A) Inductor

(C)

(B) Capacitor

(C) Resistor (D) Frequency

8.	In an RLC series circuit, $R = 1$	$10\Omega, L = 10n$	μH and $C = 1 \mu F$. At resonance	, the	ı	2	2	1
	inductive reactance is	· · · · · · · · · · · · · · · · · ·						
	(A) 10μΩ	(B)	100Ω					
	(C) $100\text{m}\Omega$	(D)	$10 \mathrm{m}\Omega$					
9.	Thevenin's equivalent circuit con	sists of	· ·		1	1	3	1
	(A) Voltage source in series		Voltage source in parallel wit	h an				
	impedance		impedance					
	(C) Current source in series	with an (D)	Current source in parallel wit	h an				
	impedance		impedance					
10.	The maximum real power that of	could be trans	smitted to the complex variable	load	1	2	3	1
	impedance Z _L in the circuit is			1000				
			-m-					
	+1	3Ω -	j4Ω _					
	60∠0°V (_	.)	$ Z_{\rm L}$					
	-T		T					
	(A) 150 W	(B)	100 W					
	(C) 300 W	(D)	50 W					
	` '	. ,				_	_	
11.	Superposition theorem can be app	-			L	1	3	1
	(A) Linear bilateral elements	, ,	Resistive elements					
	(C) Passive elements	(D)	Non-linear elements					
12.	For maximum transfer of pow	er, internal	resistance of the source should	d be	1	1	3	1
	***************************************	4						
- 64	(A) Less than source resistance	(B)	Equal to load resistance					
	(C) Less than load resistance	(D)	Greater than source resistance					
13.	Determine the value of capacito	r. in an RC	circuit having $R = 12.5\Omega$ and i	(t) =	1	2	4	1
	0.16e ^{-200t} A is the charging currer		in the same is	(•)				
	(A) 2F	. (B)	400μF					
	(C) 2.5mF	(D)	2mF					
1.4		` '		1		•		1
14.	The time constant of a RL circuit		· · · · · · · · · · · · · · · · · · ·	1	1	2	4	1
	(A) 5 ms	(B)	8 ms					
	(C) 0.125sec	(D)	200 sec					
15.	A capacitor of 0.2F has zero initia	al charge. Its t	ransform impedance is	_, 1	Į	2	4	1
	(A) 5/s	(B)	5s					
	(C) 0.2s	(D)	0.2/s					,
16	Determine the coefficient of cou	ınling when t	wo inductors of 0.3H and 0.8H	[are]	l	2	4	1
10.	mutually connected with mutual i			aic		_		-
	(A) 0.7		0.12					
	(C) 0.5	(D)	0.9					
17		` ´				2	_	
1 /;*;	For the two port network shown is	n the figure, Z	11 18	1		2	5	1
		12Ω						
			-					
		4Ω≸						
	(A) 40	(D)						
	(A) 4Ω	(B)	5Ω					
	(C) 6Ω	(D)	7Ω					
18.	The transmission parameter A is			1		1	5	1
	(A) Impedance	(B)	Admittance					
	(C) Voltage ratio	(D)	Current ratio					
19	Which of the following is the corr	ect relation?		1		1	5	1
17.	(A) $Y_{11} = 1/h_{11}$		V = h / h				•	-
			$Y_{11} = h_{11} / h_{12}$					
	(C) $Y_{11} = h_{11}$	(D)	$Y_{11} = h_{12} / h_{11}$					

20. For the two - port network shown in figure, the transmission parameter C is 1 1 5 1

(A) Z_a

(C) Z_b (D) $1/Z_b$

 $PART - B (5 \times 8 = 40 Marks)$

Answer ALL Questions

Answer ALL Questions

Marks
BL
CO
PO

21. a. Determine V₁ and V₂ using node voltage equation in the given circuit.

8
2
1
2

b. Using source transformation, determine the value of V_0 in the circuit shown in the $\begin{pmatrix} 8 & 2 & 1 \\ & & 1 \end{pmatrix}$ figure.

22. a. Calculate the impedance of the circuit, the power factor of the circuit, the current following and the voltage across each of the three parameters.

(OR)

b. Find Vx in the given circuit by mesh analysis.

23. a. Determine the current through 4Ω resistor by using Millman's theorem.

