微机原理第一次实验报告

通信 2002 班 涂增基 U202013990

一、实验任务

编写求正数序列 1~N 的和的子程序 SUM (N),已知正数 N 保存在\$a0 中,和保存在\$v0 中。并编写主程序验证子程序功能。

二、实验目的

- 1.熟悉常见的 MIPS 汇编指令
- 2.掌握 MIPS 汇编程序设计
- 3.了解 MIPS 汇编语言与机器语言之间的对应关系
- 4.了解 C 语言语句与汇编指令之间的关系
- 5.掌握 MARS 的调试技术
- 6.掌握程序的内存映像

三、实验环境

MIPS 汇编和运行模拟器 Mars。

采用 Java 编写,需要 J2SE Java 运行时环境。

四、设计方案

从 1 到 N 的求和公式为 SUM=(N*(N+1))/2。

因此我们先用寄存器存储 N 、N+1、然后用另一个寄存器存储

N*(N+1)的结果。

此时 N*(N+1)必定为一个偶数,因此可以被 2 除尽。这样商的结果就保存在 lo 寄存器中,没有余数。

将 lo 结果移入寄存器后输出,并存入\$v0 寄存器即可完成实验任务。

五、实验源代码

算法思路见"四、设计方案"。

Li \$v0,5

syscall #从键盘读入 N

addi \$a0,\$v0,0 # 将 N 赋值到\$a0 寄存器

li \$t1,2

addi \$t0,\$a0,1 #get n+1

mult \$a0,\$t0 #multiply n and (n+1)

mflo t2 #get $n^*(n+1)$

div \$t2,\$t1 #div 2

mflo \$t3 #get the result

li \$v0,1

addi \$a0,\$t3,0

syscall #输出求和结果

```
Edit Execute
task1 (N(N+1)2).asm*
li $v0,5
syscall
addi $a0,$v0,0 # N
li $t1,2
addi $t0,$a0,1 #get n+1
mult $a0,$t0
                 #multiply n and (n+1)
mflo $t2
                 #get n*(n+1)
div $t2,$t1
                 #div 2
mflo $t3
                 #get the result
li $v0,1
addi $a0,$t3,0
syscall
                 #get the output
addi $v0.$t3.0 #save the result
```

六、实验结果

1、程序代码段映像

Bkpt	Address	Code	Basic		
	0x00400000	0x24020005	addiu \$2,\$0,0x00000005	1: li \$v0,5	
	0x00400004	0x0000000c	syscall	2: syscall	
	0x00400008	0x20440000	addi \$4,\$2,0x00000000	4: addi \$a0,\$v0,0	# N
	0x0040000c	0x24090002	addiu \$9,\$0,0x00000002	5: li \$t1,2	
	0x00400010	0x20880001	addi \$8,\$4,0x00000001	6: addi \$t0,\$a0,1	#get n+1
	0x00400014	0x00880018	mult \$4,\$8	7: mult \$a0,\$t0	#multiply n and (n+1)
	0x00400018	0x00005012	mflo \$10	8: mflo \$t2	#get n*(n+1)
	0x0040001c	0x0149001a	div \$10,\$9	9: div \$t2,\$t1	#div 2
	0x00400020	0x00005812	mflo \$11	10: mflo \$t3	#get the result
	0x00400024	0x24020001	addiu \$2,\$0,0x00000001	12: li \$v0,1	
	0x00400028	0x21640000	addi \$4,\$11,0x00000000	13: addi \$a0,\$t3,0	
	0x0040002c	0x0000000c	syscall	14: syscall	#get the output
	0x00400030	0x21620000	addi \$2,\$11,0x00000000	16: addi \$v0,\$t3,0	#save the result

2、输入输出端口测试:

输入N后将会输出求和的结果。

3、程序数据段映像

Name	Number	Value	
\$zero	0	0x00000000	
\$at	1	0x00000000	
\$v0	2	0x00001ec3	
\$v1	3	0x00000000	
\$a0	4	0x00001ec3	
\$a1	5	0x00000000	
\$a2	6	0x00000000	
\$a3	7	0x00000000	
\$t0	8	0x0000007e	
\$t1	9	0x00000002	
\$t2	10	0x00003d86	
t3	11	0x00001ec3	
\$t4	12	0x00000000	
\$t5	13	0x00000000	
\$t6	14	0x00000000	
\$t7	15	0x00000000	
\$s0	16	0x00000000	
\$s1	17	0x00000000	
s2	18	0x00000000	
\$s3	19	0x00000000	
\$s4	20	0x00000000	
\$s5	21	0x00000000	
\$s6	22	0x00000000	
\$s7	23	0x00000000	
\$t8	24	0x00000000	
\$t9	25	0x0000000	
\$k0	26	0x00000000	
\$k1	27	0x00000000	
gp	28	0x10008000	
Ssp	29	0x7fffeffc	
\$fp	30	0x00000000	
\$ra	31	0x00000000	
pc		0x00400034	
hi		0x00000000	
10		0x00001ec3	

七、心得体会

本次实验我使用了 Mars 软件进行汇编语言的学习和练习,学会了使用 syscall 来进行数据的输入和输出,第一次直观地感受了汇编语言的撰写、与人进行交互的过程,收获很大!