Hidden Markov and Other Models for Discrete-valued Time Series

Iain L. MacDonald

University of Cape Town South Africa

and

Walter Zucchini

University of Göttingen Germany

Contents

Preface				
PA	RT	ONE	Survey of models	1
1	$\mathbf{A} \mathbf{s}$	urvey	of models for discrete-valued time series	3
	1.1	Introd	luction: the need for discrete-valued time	
		series	models	3
	1.2	Marko	ov chains	6
		1.2.1	Saturated Markov chains	6
		1.2.2	A nonhomogeneous Markov chain model for	
			binary time series	11
	1.3	Highe	r-order Markov chains	12
	1.4	The Γ	DARMA models of Jacobs and Lewis	17
	1.5	Model	ls based on thinning	21
		1.5.1	Models with geometric marginal	21
		1.5.2	Models with negative binomial marginal	23
		1.5.3	Models with Poisson marginal	25
		1.5.4	Models with binomial marginal	29
		1.5.5	Results not based on any explicit distribu-	
			tional assumption	30
	1.6	, 9		
		and Stoffer		32
		1.6.1	Moving average models with bivariate geo-	
			metric distribution	32
		1.6.2	Autoregressive and autoregressive moving	
			average models with bivariate geometric	
			distribution	34
	1.7		ov regression models	$\begin{array}{c} 37 \\ 42 \end{array}$
	1.8	Parameter-driven models		
	1.9	State-	space models	45

x CONTENTS

	1.10	Miscellaneous models				
	1.11	Discus	ssion	49		
PA	ART	TWO	Hidden Markov models	53		
2	The	basic	models	55		
	2.1	Introd	luction	55		
	2.2	Some theoretical aspects of hidden Markov models				
	0.2	in speech processing Hidden Markov time series models: definition and				
	2.3					
	0.4	notation Correlation properties				
	2.4	2.4.1		69		
		2.4.1	The autocorrelation function of a Poisson- hidden Markov model	70		
		2.4.2	The autocorrelation function of a binomial-			
			hidden Markov model	74		
		2.4.3	The partial autocorrelation function	77		
	2.5	Evalu	ation of the likelihood function	77		
	2.6	Distri	butional properties	80		
		2.6.1	Marginal, joint and conditional distributions of the observations	80		
		2.6.2	The Markov chain conditioned on the observations	84		
		2.6.3	Runlength distributions for binary hidden	0.		
		2.0.0	Markov models	86		
	2.7	Paran	neter estimation	90		
		2.7.1	Computing maximum likelihood estimates	90		
		2.7.2	Asymptotic properties of maximum likeli-			
			hood estimators	95		
			Use of the parametric bootstrap	96		
	2.8		fication of outliers	$97 \\ 101$		
	2.9	5				
	2.10	Discu	ssion	105		
3	Ext	xtensions and modifications				
	3.1	Introd	luction	109		
			ls based on a second-order Markov chain	$\frac{110}{115}$		
	3.3	Multinomial-hidden Markov models				
			The likelihood	116		
			Marginal properties and cross-correlations	117		
			A model for categorical time series	119		
	3.4	Multi	variate models	121		

CONTENTS xi

		models	iction for multivariate	122	
			of models assuming con-	122	
	_{4.}		ditional independence	122	
		-	of models not assuming	122	
			conditional independence	124	
		3.4.4 Multivariate mode		125	
			ls in which some variables	120	
		are discrete and ot		126	
	3.5	****	lent probabilities depend-	120	
	0.0	ing on covariates	ioni probabilities depond	128	
	3.6	•	kov chain is homogeneous		
	0.0	but not assumed stationa	•	129	
	3.7	Models in which the Mar			
	0	neous	,	130	
	3.8	Joint models for the nur	nbers of trials and the		
		numbers of successes in t		133	
	3.9	Discussion		135	
		•			
4	\mathbf{App}	Applications			
	4.1	Introduction		137	
	4.2	The durations of success	ive eruptions of the Old		
		Faithful geyser		138	
		4.2.1 Markov chain mod	lels	138	
		4.2.2 Hidden Markov me	odels	140	
		4.2.3 Comparison of mo	dels	144	
		4.2.4 Forecast distributi	ons	146	
	4.3	Epileptic seizure counts		146	
	4.4	Births at Edendale hospir		152	
,		4.4.1 Models for the pro		152	
			al number of deliveries	159	
		4.4.3 Conclusion		161	
	4.5	Locomotory behaviour of		162	
		4.5.1 Multivariate mode	ls ·	163	
		4.5.2 Univariate models		166	
		4.5.3 Conclusion		167	
	4.6	Wind direction at Koebe	-	168	
		4.6.1 Three hidden Mai	kov models for hourly		
		averages of wind d		168	
		_	s and other possible models		
		4.6.3 Conclusion		176	
	4.7	Evapotranspiration		177	

xii CONTENTS

4.8	Thinly traded shares on the Johannesburg Stock		
	Exchange	178	
	4.8.1 Univariate models	179	
	4.8.2 Multivariate models	180	
	4.8.3 Discussion	182	
4.9	Daily rainfall at Durban	184	
4.10	Homicides and suicides, Cape Town, 1986–1991	191	
	4.10.1 Models for firearm homicides as a propor-		
	tion of all homicides, suicides and legal		
	intervention homicides	191	
	4.10.2 Models for the number of firearm homicides	194	
	4.10.3 Firearm homicides as a proportion of all		
	homicides, and firearm suicides as a propor-		
	tion of all suicides	195	
	4.10.4 Models for the proportions in each of the five		
	categories of death	200	
4.11	Conclusion	201	
Appen	Appendices		
Α	Proofs of results used in the derivation of the		
	Baum-Welch algorithm	203	
В	Data	207	
References			
Author	Author index		
Subject index			