Stacked AutoEncoder

Remoção de Ruído em Imagens em Escala de Cinza

Guillherme Amaral Victor Emanuel Vinícius Medeiros Dataset usado

Dataset usado

Ruídos criados

Stacked AutoEncoder

Aplicação da SAE: remoção de ruídos

Treino

Visão geral

Parâmetros do SAE

- Camadas: 625, 100, 50, 25, 50, 100, 625
- Função custo: Binary Crossentropy
- Épocas: 50
- Tamanho do Batch: 10
- Otimizador: adadelta
- Proporção de amostras: 80% p/ treino, 20% p/ teste

Parâmetros da MLP classificadora de letras

- Camadas: 625, 10, 9
- Função custo: Sparse Categorical Crossentropy
- Épocas: 40
- Tamanho do Batch: 20
- Otimizador: adadelta
- Proporção de amostras: 80% p/ treino, 20% p/ teste

Resultados: ruído gaussiano

Resultados: ruído gaussiano

Resultados: negativo da imagem

Resultados: negativo da imagem

Resultados: Linha preta

nobardou 012266

Resultados: Linha preta

Resultados: Iluminação

Visualização de Dados: Representação em 2D

Resultados: Dados em 2D

Estatística dos Dados

Index	intercept	p_value	r_value	slope	std_err
a	-1.18907	1.09047e-31	0.94457	1.08592	0.0479349
b	5.40044	6.81772e-07	0.570973	1.51113	0.273743
с	3.00305	9.3619e-13	0.806266	0.527039	0.0552408
d	0.624695	9.6768e-34	0.954455	1.54421	0.0618042
e	5.94576	7.62111e-30	0.94063	0.824614	0.0384159
f	14.8477	7.57897e-16	0.846432	1.3497	0.11775
i	21.1413	0.304892	0.14089	0.215148	0.207665
0	0.0972581	2.53025e-19	0.838395	0.903297	0.071745
u	-4.47209	1.62819e-22	0.902506	1.07916	0.0682106

Utilizando a Estatística dos Dados

- Correlação pequena gera retas anormais.
- Necessidade de pré-processamento dos dados em 2D.
- Geração de novas imagens

Decodificação dos Dados

Decodificação dos Dados

```
In [35]: _2Dimg = np.array([[10, 80],])
    ...: decoded img = decoder2D.predict( 2Dimg)
    ...: decoded_img = decoded_img.reshape(25,25)
    ...: plt.imshow(decoded img)
Out[35]: <matplotlib.image.AxesImage at 0x2366a8f5978>
  5
 10
 15
 20
```


Decodificação dos Dados

