数学分析 II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年1月5日

目录

1	第 1 次习题课: 定积分基本概念,可积性	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 定积分的计算, 中值定理	5
	2.1 问题	5
	2.2 解答	5
3	第 3 次习题课: 定积分的应用	5
	3.1 问题	5
	3.2 解答	5
4	第 4 次习题课: 广义积分	5
	4.1 问题	5
	4.2 解答	5
5	第 5 次习题课: 正项级数	5
	5.1 问题	5
	5.2 解答	5
6	第 6 次习题课: 任意项级数, 数项级数的性质	5
	6.1 问题	5
	6.2 解答	5
7	第7次习题课:函数项级数的一致收敛性(1)	5
	7.1 问题	5
	7.2 解答	5
8	第 8 次习题课: 函数项级数的一致收敛性 (2)	5
	8.1 问题	5
	8.2 解答	5
9	第 9 次习题课:幂级数的基本性质	5
	9.1 问题	5
	9.2 解答	5

10	第 10 次习题课:泰勒展开与多项式逼近	5
	10.1 问题	
	10.2 解答	5
11	第 11 次习题课: 傅里叶级数的基本性质	5
	11.1 问题	5
	11.2 解答	5
12	第 12 次习题课: 傅里叶级数的收敛性	5
	12.1 问题	5
	12.2 解答	5
13	· 致谢	5

1 第 1 次习题课: 定积分基本概念, 可积性

1.1 问题

- 1. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x) dx = 0$.
- 2. $f(x) \in R[a,b], \int_a^b f(x)dx > 0$. 证明 $\exists [\alpha,\beta] \subset [a,b], \text{s.t.} \forall x \in [\alpha,\beta], f(x) > 0$.
- 3. $f(x) \in R[a, b]$, 问 |f(x)| 是否一定 $\in R[a, b]$?

1.2 解答

- 1. 显然 f(x) 有界, 否则由聚点原理矛盾. 其次 $\forall \epsilon > 0, \forall x \in [a,b], \exists \delta_x > 0, \text{s.t.} \omega_{(x-\delta_x,x+\delta_x)} < \epsilon$. 由于 $\cup_{x \in [a,b]} (x-\delta_x,x+\delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i-\delta_i,x_i+\delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 可取分割点 $y_i \in (x_i-\delta_i,x_i+\delta_i) \cap (x_{i+1}-\delta_{i+1},x_i+\delta_{i+1})$, 对于这个分割, $\sum_{i=1}^n \omega_i \Delta x_i < \epsilon(b-a)$, 因此有可积性. 由于 $|\int_a^b f(x) dx| \leq \int_a^b |f(x)| dx \leq \sum_{i=1}^n \int_{y_{i-1}}^{y_i} |f(x)| dx \leq \epsilon(b-a)$, ϵ 的任意性知 $\int_a^b f(x) dx = 0$.
- 2. 反证法. 如果每个区间都存在值小于等于 0, 那么任意分割我都取区间内那个小于等于 0 的点, 达布和始终小于等于 0, 其极限, 即积分值不可能大于 0.
- 3. $f(x) = -\operatorname{Riemann}(x) \in R[0,1], \lfloor f(x) \rfloor = -\operatorname{Dirichlet}(x) \notin R[0,1].$

		2 第 2 次习题课: 定积分的计算, 中值定理
2.1	问题	
2.2	解答	
		3 第 3 次习题课: 定积分的应用
3.1	问题	
3.2	解答	
		4 第 4 次习题课: 广义积分
4.1	问题	
4.2	解答	
		5 第 5 次习题课: 正项级数
5.1	问题	
5.2	解答	
		6 第 6 次习题课:任意项级数,数项级数的性质
6.1	问题	
6.2	解答	
		7 第7次习题课:函数项级数的一致收敛性(1)
7.1	问题	
7.2	解答	
		8 第 8 次习题课: 函数项级数的一致收敛性 (2)
8.1	问题	
8.2	解答	
		9 第 9 次习题课: 幂级数的基本性质
9.1	问题	
9.2	解答	
		10 第 10 次习题课: 泰勒展开与多项式逼近
10.1	问题	
10.2	解答	
		11 第 11 次习题课: 傅里叶级数的基本性质