4 EQUACIONAMENTO

4.1.1 Adimensionalização das equações

Seja a definição de cada variável como um adimensional:

$$N = N_A * N_S \tag{5}$$

Onde N é a representação de cada variável, N_A é a variável adimensional e N_S é a constante de adimensionalização. Seguindo esse padrão, podemos fazer a substituição de cada uma das variáveis de interesse nas respectivas equações (X, P, S, V e t).

4.1.1.1 Reações

Células

$$r_X = \frac{dX}{dt} = \frac{\mu_{max}S}{K_S + S} X \left(1 - \frac{X}{X_M}\right)^f \left(1 - \frac{P}{P_M}\right)^h \tag{6}$$

$$\frac{X_{S}}{t_{S}}r_{X_{A}} = \frac{X_{S}}{t_{S}}\frac{dX_{A}}{dt_{A}} = \frac{\mu_{max}S_{A}S_{S}}{K_{S}+S_{A}S_{S}}X\left(1 - \frac{X_{A}X_{S}}{X_{M}}\right)^{f}\left(1 - \frac{P_{A}P_{S}}{P_{M}}\right)^{h}$$
(7)

Produto

$$r_P = \frac{dP}{dt} = \alpha \, \frac{dX}{dt} + \beta X \tag{8}$$

$$\frac{P_S}{t_S} r_{P_A} = \frac{P_S}{t_S} \frac{dP_A}{dt_A} = \alpha \frac{X_S}{t_S} \frac{dX_A}{dt_A} + \beta X_A X_S$$
(9)

Substrato

$$r_{S} = \frac{dS}{dt} = \frac{-1}{Y_{PS}} \frac{dP}{dt} - m_{s}X \tag{10}$$

$$\frac{S_{S}}{t_{S}}r_{S_{A}} = \frac{S_{S}}{t_{S}}\frac{dS_{A}}{dt_{A}} = \frac{-1}{Y_{PS}}\frac{P_{S}}{t_{S}}\frac{dP_{A}}{dt_{A}} - m_{S}X_{A}X_{S}$$
(11)

4.1.1.2 Balanço de massa e de volume

Para a concentração de cada substância ou célula N, podemos realizar o balanço de entrada e de saída:

$$\frac{dN_A}{dt_A} = r_{N_A} + f_{in} N_{in} - f_{out} N_A N_S$$
(12)

Onde f_{in} é a vazão volumétrica de entrada, N_{in} é a concentração de N na corrente de entrada do reator, f_{out} é a vazão volumétrica na saída do reator e N_A e N_S são respectivamente a concentração adimensional no interior do reator e a constante de adimensionalidade.

O balanço de volume é dado por:

$$\frac{dV}{dt} = f_{\rm in} - f_{\rm out} \tag{13}$$

E pode ser adimensionalizado seguindo o mesmo padrão anterior:

$$\frac{V_S}{t_S} \frac{dV_A}{dt_A} = f_{\text{in}} - f_{\text{out}}$$
 (14)

4.1.2 Definição das constantes

As constantes foram definidas conforme a tabela:

Tabela 1 - Valores de referência para constantes de adimensionalidade

Constante	Valor Referência
X _A	X_{m}
P_A	P_{m}
S_A	S_{o}
V_A	V_{reator}
t _A	Tempo do experimento

Fonte: Autor (2023)

а