FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Ag-Cu based catalysts for the selective ammonia oxidation into nitrogen and water vapour

Magdalena Jabłońska^{a,b,*}, Andrew M. Beale^{c,d}, Marek Nocuń^e, Regina Palkovits^{a,b,*}

- ^a Institut für Technische und Makromolekulare Chemie, Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074, Aachen. Germany
- ^b Center for Automotive Catalytic Systems Aachen-ACA, RWTH Aachen University, Schinkelstr. 8, 52062, Aachen, Germany
- ^c Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- d Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell Science and Innovation Campus, Harwell, Didcot, Oxon, OX11 0FA, UK
- e Faculty of Material Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Kraków, Poland

ARTICLE INFO

Keywords: Alumina Silver oxide species Copper oxide species Selective ammonia oxidation Reaction mechanism

ABSTRACT

XRD, BET, H₂-TPR, UV-vis-DRS, XPS and XAFS were used to characterize a series of Ag and/or Cu – Ag (1–5%), Cu (10–15%) or Ag-Cu (1–1, 1–10, 1.5–10, 5–5% of metal) – supported on γ -Al₂O₃. Correlation between physicochemical properties, catalytic activity and selectivity in NH₃-SCO were thoroughly investigated. Silver species mainly in the form of Ag₂O on the Ag/Al₂O₃ catalysts led to enhanced activity together with drop in N₂ selectivity with increasing silver loading up to 5%. A mixture of CuO and CuAl₂O₄ formed on the Cu/Al₂O₃ catalysts. Easily reducible highly dispersed CuO_x promoted the activity of the catalysts, while bulk CuO_x and CuAl₂O₄ decreased N₂ selectivity up to 500 °C. The activity of all Cu-containing materials was inferior to Agcontaining ones. Thus, the gap between the high conversion temperature over Cu/Al₂O₃ and low N₂ selectivity over Ag/Al₂O₃ was bridged by applying the Ag-Cu/Al₂O₃ catalysts, with the optimum loading of 1.5 and 10 wt.% for silver and copper, respectively. NH₃-TPD, NH₃-TPSR and *in situ* FTIR were used to determine the *in situ* selective catalytic reduction (i-SCR) mechanism over 1.5% Ag/Al₂O₃, 10% Cu/Al₂O₃ and 1.5% Ag-10% Cu/Al₂O₃ respectively. The i-SCR mechanism involved the partial oxidation of NH₃ into NO_x species, along with adsorbed NO_x species interacting with adsorbed ammonia (NH_x species) and being reduced to reaction products.

1. Introduction

Ag-based catalysts, including silver supported on γ -Al $_2$ O $_3$, serve as one of the most active and N $_2$ selective materials for the selective catalytic ammonia oxidation into nitrogen and water vapour (NH $_3$ -SCO) below 300 °C [e.g. [1–3]. Qu et al. [1] studied silver supported on γ -Al $_2$ O $_3$, TiO $_2$, SiO $_2$ or NaY, and found that catalytic activity and selectivity depended strongly on the size and distribution of silver species. Highly dispersed Ag 0 particles with a size of 5 nm were obtained on H $_2$ -pretreated 10% Ag/Al $_2$ O $_3$ and reported as the most active and N $_2$ selective in NH $_3$ -SCO below 140 °C (full conversion and 89% of N $_2$ selectivity at 180 °C). Ag $^+$ was the main active species responsible for the high catalytic performance above 140 °C. A significantly lower selectivity to N $_2$ (around 60–80% at 180 °C) over a similar catalyst – 10% Ag/Al $_2$ O $_3$, was reported by Zhang et al. [2] or Gang et al. [4]. These discrepancies appeared possibly due to different preparation procedures of the catalysts. Nevertheless, above 300 °C, selectivity to N $_2$

decreased significantly over Ag/Al₂O₃ due to formation of NO over Ag₂O [5]. On the other hand, copper-based catalysts possess high intrinsic activity in the oxidation of ammonia with an excellent selectivity to N2 at high temperatures. The copper-based materials containing about 10% of Cu were recognized as one of the most efficient catalysts in NH₃-SCO [6]. Thus, the proper mixing of silver with copper leads to highly active and selective bifunctional catalytic system, in which silver species catalyse ammonia oxidation to NO_x, while copper oxide species perform the reduction of NO_x to nitrogen [5,7]. Yang et al. [5] studied Ag-Cu/Al₂O₃ with 5-5 or 10-10% of metal and indicated the material with the first composition as highly efficient catalysts with complete conversion temperature at 325 °C and 95% N2 selectivity. Unfortunately, the authors did not present results of catalytic tests above 350 °C. Gang et al. [8] investigated 7.5% Ag-2.5% Cu/Al₂O₃ and found full conversion of ammonia at 200–300 $^{\circ}$ C with 95% N_2 selectivity. Both activity and selectivity to N2 significantly increased compared to Ag/ Al₂O₃. Nevertheless, above 300 °C significant amounts of NO and N₂O

E-mail addresses: Jablonska@itmc.rwth-aachen.de (M. Jabłońska), Palkovits@itmc.rwth-aachen.de (R. Palkovits).

^{*} Corresponding authors at: Institut für Technische und Makromolekulare Chemie, Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.

appeared over Ag-Cu/Al₂O₃. Interestingly, a mechanical mixture of 10% Ag/Al₂O₃ and 10% Cu/Al₂O₃ showed similar catalytic performance to a silver-based catalyst alone. Thus, the intimate contact between the silver species and copper species - active species dedicated for ammonia oxidation to NOx and reduction of NOx to nitrogen, respectively - led to shorter diffusion length and consequently improved catalytic activity and N2 selectivity. The authors applied XPS measurements over 5-5, 7.5-2.5% Ag-Cu/Al₂O₃, which revealed the same oxidation state as for single 10% Ag/Al₂O₃ or 10% Cu/Al₂O₃. Additionally, LEIS analysis over 10-2.5, 2.5-7.5, 5-5, 9-1% Ag-Cu/Al₂O₃ excluded formation of any Ag-Cu phases. Besides studies of Gang et al. [8], up to now and to the best of our knowledge no other studies devoted to the correlations between the state of silver and/or copper oxide species in Ag-Cu/Al₂O₃ on the catalytic activity and N₂ selectivity in the ammonia oxidation have been reported. The structure-activity relationship of the bimetallic Ag-Cu/Al₂O₃ catalysts with lower silver loading (1-5%) remains ambiguous. Thus, we focused on characterization of bimetallic Ag-Cu/Al₂O₃ in comparison to monometallic Ag/ Al₂O₃ and Cu/Al₂O₃, and determination of the influence of metal loading on the physicochemical properties obtained and their catalytic activity and selectivity in the selective ammonia oxidation into nitrogen and water vapour. Preliminary results revealed that silver increased activity of the Ag-Cu catalysts in the low-temperature range but also significantly decreased selectivity to nitrogen. Accordingly, we focused on the determination of the optimal content of silver and copper, guaranteeing optimum activity together with N2 selectivity. We investigated different amounts of Ag (1.0-5.0%), Cu (10-15%) or Ag-Cu (1-1, 1-10, 1.5-10, 5-5% of metal) on the γ -Al₂O₃ support. Secondly, we concentrated our attention on the interaction between silver and copper oxide species deposited on the surface of the Al₂O₃ support, thus, this approach enabled the comparison of the role of active components in NH3-SCO between 50 and 350 °C.

2. Experimental part

2.1. Catalyst preparation

 $\gamma\text{-}Al_2O_3$ (Merck) was doped with Ag and/or Cu by the incipient wetness impregnation using aqueous solutions of Cu(NO₃)₂·3H₂O (Sigma-Aldrich) and AgNO₃ (Sigma-Aldrich). In the bimetallic systems, after impregnation with aqueous solution of copper salt, the sample was first dried at 80 °C overnight followed by impregnation with aqueous solution of silver salt. All prepared samples were dried and subsequently calcined in static air at 600 °C for 12 h. For catalytic experiments, a sieve fraction of particles with size of 0.250–0.500 mm was used. The weight ratio of metals was measured with respect to the mass of $\gamma\text{-}Al_2O_3$.

2.2. Catalyst characterization

The X-ray diffraction (XRD) patterns of the samples were recorded in flat plate mode in Bragg-Brentano geometry using a D5000 Siemens diffractometer and a Cu K α source ($\lambda=1.54056$ Å, 45 kV, 40 mA).

The specific surface area (S_{BET}) of the samples was determined by low-temperature ($-196\,^{\circ}\text{C}$) N_2 sorption using Quantachrome Quadrasorb SI. Prior to nitrogen adsorption the samples were outgassed at 250 °C for 12 h using a Quantachrome Flovac degasser. The specific surface area (S_{BET}) was calculated using the Brunauer-Emmett-Teller (BET) multiple point method at partial pressures from p/p₀ range from 0.05 to 0.3. The total pore volume was determined at p/p₀ = 0.99.

The temperature-programmed reduction (H_2 -TPR) experiments of samples (30 mg) were performed using a Quantachrome ChemBET Pulsar TPR/TPD instrument. H_2 -TPR runs were carried out starting from room temperature to 1000 °C, with a linear heating rate of 10 °C min $^{-1}$ and in a flow (25 ml min $^{-1}$) of 5 vol.% H_2 diluted in Ar. Water vapour was removed from effluent gas by the means of a cold

trap placed in an ice-water bath. The $\rm H_2$ consumption was detected and recorded by TCD detector.

The diffuse reflectance UV-vis (UV-vis-DR) spectra of the samples were recorded using a Perkin-Elmer Lambda 7 UV-vis spectrophotometer. The measurements were performed in the range of 200–900 nm with the resolution of 1 nm. The spectra were recorded under ambient conditions and the data transformed according to the Kubelka-Munk equation.

The X-ray photoelectron spectra (XPS) of selected samples were measured on a VSW spectrometer equipped with a hemispherical analyser. The photoelectron spectra were measured using a magnesium MgK α source (1253.6 eV). The base pressure in the analysis chamber during the measurements was $3\times 10^{-6}\,\mathrm{Pa}$ and the spectra were calibrated on a main carbon C 1s peak at 284.6 eV. The composition and chemical surrounding of the sample surface were investigated based on the areas and binding energies of Ag 3d, Cu 2p, Al 2p, C 1s and O 1s photoelectron peaks. Mathematical analyses of the XPS spectra were carried out using the XPSpeak 4.1 computer software (RWM. Kwok, The Chinese University of Hong Kong).

The X-ray absorption spectra (XAS) of selected samples were performed at room temperature on station B18 at the ESRF at the Diamond Light Source national synchrotron facility. The station is equipped with a Si(111)/Si(311) double crystal monochromator, and ion chambers for measuring incident and transmitted beam intensities for recording Xray absorption spectra. The measurements were carried out using a Si (111) monochromator at the Ag K-edge or Cu K-edge with the respective Ag or Cu monometallic foil (10 $\mu m)$ used as an energy calibrant for the monochromator. Measurements were performed in quick scanning mode; the time taken for each scan was ca. 5 min (a step size of $0.5\,\mathrm{eV}$ and counting time of $1/6\,\mathrm{s/point}$ was used for collection of data around the edge). To improve the signal-to-noise ratio, multiple scans were taken. Samples were pressed into 13 mm pellets using an appropriate amount of cellulose as binder and submitted to ex-situ XAFS experiments. All data were subjected to background correction using Athena (i.e. IFFEFFIT software package for pre and post edge background subtraction and data normalization [9,10]). XAFS spectra were normalized from 30 to 150 eV above the edge energy, while the EXAFS were normalized from 150 eV to the last data point using the Autobk algorithm. Normalization was performed between $\mu(E)$ and $\mu O(E)$ via a line regression through the data in the region below the edge and subtracted from the data. A quadratic polynomial is then regressed to the data above the edge and extrapolated back to E0. The extrapolated value of the post edge polynomial at E0 is used as the normalisation constant. This threshold energy (E0) was determined using the maximum in the 1st derivative. A calibration curve derived from the references was used to determine oxidation states from the edge position obtained from the maximum in the first derivative of the measured XANES spectra of the selected samples. The normalized isolated EXAFS data were k^3 -weighed and a least squares fitting analysis was performed over a *k*-range of $0.3-0.8 \text{ nm}^{-1}$ (Ag) otherwise $0.3-1.1 \text{ nm}^{-1}$ (Cu). The FT of the k^3 -weighed data were phase corrected and fit (using single scattering paths) to the proposed theoretical model using the DL-EX-CURV program. An amplitude reduction factor (S_0^2) value of 0.95 was used for all data sets. Errors in the determination of the parameters derived from the fitting of the EXAFS data were estimated to be 10% of the coordination number and Debye-Waller factor and ~0.002 nm for bond distance.

2.3. Catalytic tests

The catalytic experiments of selective ammonia oxidation (NH_3 -SCO) were performed under atmospheric pressure in a fixed-bed flow microreactor (i.d., 6 mm; l., 320 mm). The reactant concentrations were continuously monitored using a QMS MKS Cirrus 2 detector directly connected to the reactor outlet using a heated capillary. Prior to the test the sample of catalyst (100 mg) was outgassed at 500 °C for 1 h in a flow

of pure argon ($20\,\mathrm{ml\,min}^{-1}$). The composition of the gas mixture at the reactor inlet consisted of $0.5\,\mathrm{vol.\%}\,\mathrm{NH_3}$, $2.5\,\mathrm{vol.\%}\,\mathrm{O_2}$ diluted in Ar. The individual flow rates were controlled by Bronkhorst mass flow controllers. The total flow rate of the reaction mixture was $40\,\mathrm{ml\,min}^{-1}$, while the weight hourly space velocity (WHSV) was about $24,000\,\mathrm{ml\,h}^{-1}\,\mathrm{g}^{-1}$. The studies were performed in the temperature range of $100{-}500\,^{\circ}\mathrm{C}$ with the linear heating rate of $5\,^{\circ}\mathrm{C\,min}^{-1}$. For selected sample additional catalytic tests: (i) polythermal in the presence of water vapour and (ii) isothermal NH₃-SCO were carried out with the following composition of the gas mixture of $0.5\,\mathrm{vol.\%}\,\mathrm{NH_3}$, $2.5\,\mathrm{vol.\%}\,\mathrm{O_2}$, ([H₂O] = $3.2\,\mathrm{vol.\%}$) diluted in Ar. The signal of the argon line served as the internal standard to compensate small fluctuations of the operating pressure. The sensitivity factors of the analysed lines were calibrated using commercial mixtures of the gases.

2.4. Temperature-programmed desorption (NH_3 -TPD) and temperature-programmed surface reaction (NH_3 -TPSR)

The NH₃-TPD and NH₃-TPSR were performed in a fixed-bed flow microreactor (i.d., 6 mm; l., 320 mm) equipped with a QMS MKS Cirrus 2 detector. Prior to the ammonia sorption the sample (100 mg) was outgassed in a flow of pure argon (20 ml min $^{-1}$) at 500 °C for 1 h. Subsequently, the microreactor was cooled down to 70 °C and the sample was saturated with 1 vol.% of NH₃ diluted in Ar (2 h, 20 ml min $^{-1}$). Afterwards, the sample was purged in a flow of Ar until a constant baseline level was reached (2 h, 20 ml min $^{-1}$). For desorption step the temperature of the microreactor was raised form 70 up to 500 °C with a linear heating rate of 5 °C min $^{-1}$ in a flow of pure argon (NH₃-TPD) or in a flow of 5 vol.% of O₂ diluted in Ar (NH₃-TPSR). The total flow rate in both measurements was 20 ml min $^{-1}$.

2.5. Fourier transform infrared spectroscopy

The *in situ* DRIFT spectra were recorded with a Vertex 70-FTIR Bruker spectrometer equipped with a MCT detector. Prior to the FTIR study the sample was pretreated *in situ* at 400 °C in a flow of pure $\rm N_2$ for 1 h and then cooled to 50 °C. The sample was saturated in a flow (5 ml min $^{-1}$) of gas mixture containing 1.0 vol.% of NH $_3$ diluted in Ar for about 0.5 h. Subsequently, the physisorbed molecules were removed in 15 min evacuation. Next, the sample contacted with NH $_3$ was heated in a flow of: (i) pure N $_2$ or (ii) 5.0 vol.% O $_2$ diluted in Ar up to 100–350 °C, kept at particular temperature for 10 min and cooled down to 50 °C, while the spectrum was collected. All spectra were recorded at a resolution of 4 cm $^{-1}$ with 128 accumulated scans. The background spectrum was subtracted from the sample spectrum.

3. Results and discussion

The XRD analysis allowed the identifications of the crystalline phases present in the Ag-Cu-based materials. The characteristic XRD diffraction peaks corresponding to the reflections of γ -Al₂O₃ were located at about 20, 33, 38, 40, 46, 61 and 67° 20 [11]. As shown in Fig. 1A, no changes in the structure of the oxide support appeared after impregnation with Ag below 5%. However, for the sample with 5% of silver, Ag₂O was emphasised by reflexes at 34 and 39° 20 [12], besides the peaks assigned to the support. Fig. 1B presents the XRD diffraction pattern of Cu/Al₂O₃ with different copper loadings. Diffractions for CuO (20 angle of 35, 38, 48, 53, 58, 62, 66 and 68° [13]) arose when the copper in the samples increased to 10-15%. Besides the reflections ascribed to CuO, a XRD reflex attributable to CuAl2O4 at 37° 20 could not be excluded [14]. The reflections characteristic of Ag₂O, CuO and CuAl₂O₄ appeared also in Ag-Cu bimetallic systems, as depicted in Fig. 1C. The formation of bulk CuO and/or Ag₂O was related to agglomeration of transition metal oxide species, presumably due to saturation of the Al₂O₃ support.

BET analyses provided the evolution of specific surface areas (SBET)

Fig. 1. XRD patterns of Ag/Al $_2$ O $_3$ (A), Cu/Al $_2$ O $_3$ (B), Ag-Cu/Al $_2$ O $_3$ (C); G – γ -Al $_2$ O $_3$, A – Ag $_2$ O, T – CuO, S – CuAl $_2$ O $_4$.

and total pore volumes (V_p) of the Ag-Cu-based materials. As presented in Table 1, Al_2O_3 revealed a S_{BET} and total pore volume of about $135\,\mathrm{m}^2\,\mathrm{g}^{-1}$ and $0.2393\,\mathrm{ml}\,\mathrm{g}^{-1}$, respectively. The deposition of transition metal oxides within the pore system of the γ -Al $_2O_3$ support resulted in a decrease of S_{BET} and V_p , especially for metal loading higher than 5%. The total pore volume dropped with increasing amount of transition metals until $0.2097\,\mathrm{ml}\,\mathrm{g}^{-1}$ and $0.1981\,\mathrm{ml}\,\mathrm{g}^{-1}$ for 5% of Ag and 15% of Cu, respectively. Also, the Ag-Cu bimetallic systems showed S_{BET} and V_p lower compared to the Al_2O_3 support. As a result of differences between silver and copper oxides, the specific surface area and total pore volume varied appreciably in the bimetallic Ag-Cu materials.

The $\rm H_2$ -TPR analysis provided insight into redox properties of silver and/or copper species in the Ag-Cu-based materials. Fig. 2A and C shows the $\rm H_2$ -TPR profiles of Ag-based catalysts. A low-temperature peak appeared in the $\rm H_2$ -TPR profiles of Ag-modified samples, indicating reduction of highly dispersed Ag₂O [15,16]. The maximum of the reduction shifted to higher temperatures (from 113 to 125 °C for 1

 $\label{eq:total_potential} \textbf{Table 1} \\ \textbf{Specific surface areas (S}_{BET}) \text{ and total pore volumes (V_p) of the Ag/Al_2O_3, Cu/Al_2O_3, $Ag-Cu/Al_2O_3$.}$

Sample codes	$S_{BET} \ [m^2 g^{-1}]$	$V_p [ml g^{-1}]$
Al_2O_3	135	0.239
1% Ag/Al ₂ O ₃	127	0.223
1.5% Ag/Al ₂ O ₃	125	0.218
2% Ag/Al ₂ O ₃	124	0.218
5% Ag/Al ₂ O ₃	118	0.210
1% Cu/Al ₂ O ₃	126	0.247
5% Cu/Al ₂ O ₃	117	0.210
10% Cu/Al ₂ O ₃	114	0.199
15% Cu/Al ₂ O ₃	111	0.198
1% Ag-1% Cu/Al ₂ O ₃	128	0.230
1% Ag-10% Cu/Al ₂ O ₃	112	0.200
1.5% Ag-10% Cu/Al ₂ O ₃	105	0.180
5% Ag-5% Cu/Al ₂ O ₃	101	0.206

to 5% of Ag, respectively) with the increasing loading of silver, indicating partial aggregation of silver oxide species. Jabłońska et al. [17] showed two peaks (at 110 and 385 °C) in the $\rm H_2$ -TPR of analogues Ag/ $\rm Al_2O_3$ samples with 1% of silver loading. Thus, the sample contained highly dispersed, as well as $\rm Ag_2O$ clusters. These discrepancies appeared possibly due to different set-up arrangement as well as conditions of $\rm H_2$ -TPR measurements (total flow of 25 *versus* 6 ml min $^{-1}$). For the sample with 5% of Ag, an additional peak appeared at about 565 °C due to reduction of $\rm Ag_2O$ clusters [16]. As shown in Fig. 2B and C, $\rm H_2$ -TPR profiles changed also with different copper loading, suggesting formation of different copper oxide species. The reduction of $\rm Cu/Al_2O_3$ with 1% of copper, consisted of three reduction peaks appearing at about 350, 615 and 775 °C, which is consistent with earlier results of Jabłońska et al. [18]. The first peak appeared due to the reduction of highly dispersed $\rm CuO_x$. The peaks located at higher temperatures were

related to the reduction of bulk CuO_{x} and defective spinel-type surface CuAl₂O₄, respectively. CuAl₂O₄ – with most Cu²⁺ ions in a distorted octahedral geometry - was formed between CuO and Al₂O₃ as a result of their interaction at 600 °C [19,20]. For higher copper loading (5%), the peak appeared due to the reduction of highly dispersed CuO_x on the Al₂O₃ surface. This peak spread into two peaks with increasing amount of copper. The H₂-TPR profiles for the samples with 10 and 15% of Cu showed low and high temperatures reduction peaks at about 261-273 °C and 303-315 °C, respectively. The peaks centered at 303-315 °C appeared due to reduction of bulk CuO_x and CuAl₂O₄ on the catalysts surface [20]. The peaks at 615 and 775 °C were not recorded for the samples with higher copper loading (5–15%) due to increasing particle size of copper oxide species exhibiting higher reducibility. As confirmed from XRD analysis, the intensity of CuO increased in line with the copper loading on the Al₂O₃ support. The reducing temperatures of the highly dispersed CuOx for Cu/Al2O3 with 10% of copper appeared at lower temperatures than for materials with other copper loadings, indicating that a redox cycle would occur easier. H2 uptake (calculated by equation: Y = 1E - 08X + 1E - 07, $R^2 = 0.9996$, and X, Y referred to the area of each reduction peak and the H2 consumption, respectively) increased from 0.59, 1.02 up to 1.95 mmol g⁻¹ for the samples with 5, 10 and 15% of copper loading, respectively. Quantification of H2 consumption suffered from fluctuations of the baseline in H2-TPR profiles of material with small amount of copper (1%) as well as Ag-(Cu)-containing materials.

The coexistence of silver and copper oxide species in the Ag-Cu bimetallic systems resulted in a shift of the H_2 -TPR maximum peaks to lower temperatures. As shown in Fig. 2C, the H_2 -TPR profile for a sample with 1% of both Ag and Cu consisted of a main broad peak centered at about 227 °C. An even more significant shift to lower temperatures appeared for sample with 5% of both metals, as presented in Fig. 2D. The materials with 1–1.5% of Ag and 10% of Cu showed similar H_2 -TPR profiles; however, the sample with higher silver loading (1.5%)

Fig. 2. H_2 -TPR profiles of Ag/Al₂O₃ (A,C), Cu/Al₂O₃ (B,C), Ag-Cu/Al₂O₃ (C,D); experimental conditions: mass of the catalysts = 30 mg; [H₂] = 5.0 vol.%, Ar balance, flow rate = 25 ml min⁻¹, linear heating rate of 10 °C min⁻¹.

Fig. 3. UV-VIS-DR spectra of Ag/Al $_2\mathrm{O}_3$ (A), Cu/Al $_2\mathrm{O}_3$ (B), Ag-Cu/Al $_2\mathrm{O}_3$ (C).

Ag-10% Cu/Al $_2$ O $_3$) revealed a lower reduction temperature of the easily reducible CuO $_x$ at about 213 °C. The peak caused by bulk copper oxides species (CuO and CuAl $_2$ O $_4$) shifted to 292–295 °C for both samples, so temperatures lower by about 8–11 °C compared to Cu/Al $_2$ O $_3$ (303 °C). Moreover, in the H $_2$ -TPR profiles of such Ag-Cu bimetallic systems small peaks centered at around 247–248 °C appeared, which represented a partial reduction of bulk copper oxide species.

UV–vis-DRS analysis allowed insight regarding the type of transition metal species and their aggregation in the Ag-Cu-based materials. In Fig. 3A, a band centered at 204–205 nm for Ag-containing samples ($\leq 2\%$) is attributed to highly dispersed Ag₂O [21,22]. This band grew in intensity and shifted to higher wavelength (218 nm) for samples with 5% of Ag, indicating a decrease in the dispersion of Ag₂O particles. A shoulder at about 334–336 nm appeared due to oxidized silver clusters

 ${\rm Ag_n}^{8+}$ [23,24]. Again, for the catalyst containing 5% of silver, the maximum of this peak shifted to higher wavelength. Nevertheless, for all Ag-modified samples, ${\rm Ag}^+$ stayed the major Ag species on the ${\rm Al_2O_3}$ surface. Fig. 3B shows the UV–vis DR spectra for Cu-containing samples, with two main forms of copper oxide species on the support surface. The peak centered at 227–247 nm can be related to isolated ${\rm Cu}^{2+}$, while the absorption at 400–650 nm and above 650 nm arose due to the presence of bulk ${\rm CuO_x}$ and ${\rm CuAl_2O_4}$, respectively [14,18]. Again, a higher concentration of copper led to a stronger band corresponding to bulk copper oxide species, well in line with the results of XRD and H₂-TPR analyses. Furthermore, spectra recorded for Ag-Cu bimetallic systems, due to the low loading of Ag, revealed mainly bands related to copper oxide species, as shown in Fig. 3C.

XPS measurements were carried out to further examine the oxidation state of transition metal species in the Ag-Cu-based materials. Fig. 4A-K presents the Ag and Cu XPS spectra, while Table 2 gathers the position of binding energies, full width at half-maxima (FWHM), and molar ratios of the selected Ag-Cu-based materials. The Ag 3d_{5/2} binding energies for metallic Ag, Ag₂O and AgO are approximately 368.0–368.3, 367.6–367.8 and 367.3–367.4 eV, respectively [e.g. [25–27]. The Ag $3d_{5/2}$ binding energy values of the Ag/Al₂O₃ materials ranged from 368.8 to 367.8 eV for 1 and 5% of Ag, respectively. However, sample characterization by XRD, UV-vis-DRS and H2-TPR analyses revealed that silver species deposited on the Al2O3 surface existed mainly in the form of Ag+. Furthermore, the binding energy of the highly dispersed silver oxide species was higher than of the Ag_2O clusters (368.8 and 367.8 eV for 1 and 5% of Ag, respectively). Also, in those spectra additional shoulders possibly related to the oxidized silver clusters Ag_n⁸⁺ appeared at 365.1 and 364.7 eV for 1.5 and 5% of silver, respectively. The degrees of support coverage, which are proportional to metal dispersion were calculated using the relative areas of the XPS peaks and normalized by the metal loadings. The results in Table 2 indicated that with the silver loading from 1 to 1.5%, the metal dispersion increased from 0.25 to 0.33, and then subsequently decreased to 0.20 for 5% Ag/Al₂O₃. Fig. 4D-G contains XPS spectra for the Ag 3d states in the selected Ag-Cu bimetallic systems. The binding energy changed with the Ag/Cu ratios in the bimetallic materials, indicating an interaction between silver and copper oxide species. For the bimetallic system with 1% of silver and copper, the binding energy for Ag 3d_{5/2} shifted to a lower value (368.8 \rightarrow 368.1 eV), and became slightly broader with a full width at half maximum (FWHM) from 3.4 to 3.5 eV. Additionally, the Cu 2p peak appeared at 932.5 eV, as reported for Cu⁺. Thus, the presence of Cu⁺ species on the surface of 1% Cu/Al₂O₃ indicated the reduction of highly dispersed copper oxide species under vacuum. The copper oxide species (CuOx and CuAl2O4) were characterized by the appearance of characteristic satellite peaks [26,27]. The other tested bimetallic catalysts with higher copper loading showed Cu²⁺, as indicated by the shift of peaks to higher binding energies and the appearance of characteristic satellite peaks at 963-962 and 943–942 eV. The comparison of 1% Ag-10% Cu/Al $_2$ O $_3$ and 1.5% Ag-10% Cu/Al₂O₃ revealed that the addition of silver improved the metal dispersion from 0.37 to 0.40, respectively.

XAFS analyses were carried out to further examine the oxidation state of transition metal species and the near-neighbor atomic environment of the silver and copper atoms in those selected Ag-Cu-based materials. Fig. 5A presents XANES around Ag K-edge of selected Ag-Cu-based materials together with those of Ag foil and Ag₂O. XANES spectra of 1% Ag-1% Cu/Al₂O₃ and 1.5% Ag-10% Cu/Al₂O₃ exhibited similar edge position (at 50% of the height of the rising absorption edge) to that of Ag₂O, which suggested that Ag $^+$ was the main silver species in bimetallic materials. Furthermore, Fig. 5C–F show raw $k^3\chi(k)$ EXAFS data and Fourier transform of k^3 -weighted EXAFS spectra of both Ag-Cu/Al₂O₃, while Table 3 presents the results of the curve-fitting analysis for the first coordination shell. Although the spectra were noisy, a reasonable first shell fit to the data were derived. Both bimetallic materials were similar to each other with regard to the Ag-O and Ag-Ag

Fig. 4. XP spectra of Ag/Al₂O₃ (A-C) and Ag-Cu/Al₂O₃ (D-K): Ag 3d XPS spectra (A-G) and Cu 2p XPS spectra (H-K).

bond length of 0.226 and 0.276 nm, respectively, consistent with the presence of small silver clusters thought to be up to ~4 silver atoms [28,29]. The slightly larger Ag-O and Ag-Ag coordination numbers seen in 1.5% Ag-10% Cu/Al₂O₃ than those seen in 1% Ag-1% Cu/Al₂O₃ suggested slightly larger silver clusters in the former sample. Furthermore, Fig. 5B shows XANES around Cu K-edge of the selected Ag-Cubased materials and CuO as reference. The comparison between the edge position of CuO and for both Ag-Cu/Al₂O₃ samples revealed that the investigated materials contained essentially Cu2+. The differences in the rising adsorption edge and XANES region (~50 eV above E0) suggested slight differences in the Cu environment. Based on previous XANES studies of Cu2+ the first coordination sphere of the Cu2+ environment in 1% Ag-1% Cu/Al₂O₃ and CuO were broadly similar but the second coordination number/sphere was greater in CuO. The XANES spectrum for 1.5% Ag-10% Cu/Al₂O₃ in contrast indicated a very different Cu^{2+} environment. A plot of the Fourier transformed k^3 weighted EXAFS spectra (Fig. 5G) and accompanying EXAFS analysis (results shown in Table 3) confirmed the presence of comparatively

isolated Cu $^{2+}$ species in 1% Ag-1% Cu/Al $_2O_3$ [30]. Analysis of the XANES derivative plots in Fig. 5H suggested the major Cu containing phase in 1.5% Ag-10% Cu/Al $_2O_3$ to be CuAl $_2O_4$ [31]. However, XRD, H $_2$ -TPR, UV–vis-DRS and XPS analyses revealed a mixture of CuO and CuAl $_2O_4$ formed in Cu-containing catalysts.

The catalytic results of the selective ammonia oxidation into nitrogen and water vapour (NH₃-SCO) provided insight into activity and selectivity of silver and/or copper species in the Ag-Cu-based materials. The γ -Al₂O₃ support was almost inactive in the investigated temperature range [18]. Fig. 6 shows the results of NH₃-SCO of Ag-Cu-based catalysts, while Table 4 gathers temperatures for which 50% (T₅₀) and full conversions (T₁₀₀) were achieved for tested catalysts together with selectivity to particular products at these temperatures. The catalytic activity increased gradually with increasing silver loading (Fig. 6A–D). Ag/Al₂O₃ doped with 1% of silver reached full conversion at a temperature as high as 500 °C. Significantly higher activity and selectivity were obtained over the 1.5–2% Ag/Al₂O₃ catalysts with full ammonia conversion at 300–325 °C and 84% N₂ selectivity. Even higher activity

Table 2
Position of binding energies, full width at half-maxima (FWHM) and molar ratios of Ag/Al₂O₃ and Ag-Cu/Al₂O₃.

Sample code	Peak Position/	TWHM [eV]	Molar ratio ^a Ag 3d/Al 2p* (Ag 3d + Cu 2p)/Al 2p**	
	Ag 3d O 1s			
1% Ag/Al ₂ O ₃	368.8/3.4	532.5/2.1		0.25*
0		531.1/2.1		
		529.8/2.3		
1.5% Ag/Al ₂ O ₃	368.1/2.8	532.5/2.4		0.33*
	365.1/2.1	530.9/2.5		
		528.9/2.6		
5% Ag/Al ₂ O ₃	367.8/2.8	532.7/2.0		0.20*
	364.7/1.6	530.9/2.4		
		529.3/2.4		
1% Ag-1% Cu/Al ₂ O ₃	368.1/3.5	532.1/2.5	932.5/5.0	0.61**
		530.7/2.2		
		529.3/2.4		
1% Ag-10% Cu/Al ₂ O ₃	368.4/2.8	532.5/2.3	962.9/5.3	0.37**
		530.9/2.5	956.8/5.1	
		529.3/2.4	941.9/8.2	
			932.9/3.5	
1.5% Ag-10% Cu/Al ₂ O ₃	368.1/2.6	532.4/2.6	962.2/4.0	0.40**
		530.9/2.6	958.2/6.5	
		529.3/2.5	942.2/5.7	
			932.7/3.6	
5% Ag-5% Cu/Al ₂ O ₃	368.1/2.6	532.5/2.1	962.3/2.5	0.43**
	365.5/2.2	530.9/2.5	958.4/3.9	
		529.4/2.4	942.9/4.6	
			932.8/3.9	

a Estimated from the integrated areas of the respective XPS peaks and normalized by metal loading.

was achieved over catalysts containing 5% of silver. However, the selectivity to N₂ decreased to an unsatisfying level of 57% at 400 °C, and then started increasing again possibly due to an increasing contribution of Ag₂O clusters with lower reducibility (Fig. 2A). The significant amounts of by-products produced in the presence of 5% Ag/Al₂O₃ excluded such catalysts from the application in NH3-SCO. The results above clearly showed that silver-containing catalysts were active for ammonia oxidation, and superior to Cu-modified Al₂O₃. In particular, for a material containing 1% of copper, full conversion of ammonia from the reaction mixture was not reached up to 500 °C. Similarly to the Ag/Al₂O₃ catalysts, the activity of Cu-doped materials significantly increased with increasing amount of transition metal. Though further variation of the copper loading from 5 to 15% did not result in a significantly different activity. For catalysts with 10-15% of copper, full ammonia conversion was reached at 425 °C. While the selectivity to N2 decreased with increasing amount of copper, possibly due to an increasing amount of bulk CuOx and CuAl2O4 on the catalyst surfaces (Fig. 2B). Similarly, Jabłońska et al. [32] reported gradual decrease in N₂ selectivity up to 500 °C over Cu-Mg-Al mixed oxides containing bulk CuOx and CuAl2O4.

For further catalyst optimization, Al_2O_3 was modified simultaneously with silver and copper, as shown on Fig. 6I–L. Among all tested combinations – 1–1, 1–10, 1.5–10, 5–5% of silver and copper, respectively – 1.5% Ag-10% Cu/Al $_2O_3$ reached an optimum ammonia conversion at 375 °C and 94% N_2 selectivity at this temperature. Noteworthy, the activity of this catalyst did not change significantly in NH $_3$ -SCO under wet conditions (3.2% of water vapour). The activity of this sample under wet conditions shifted by 50 °C to higher temperature, while the selectivities to all products remained nearly constant. A stability test for 1.5% Ag-10% Cu/Al $_2O_3$ (Fig. 6P) was carried out at 325 °C over a feed containing besides NH $_3$ and O $_2$, also water vapour. The catalyst allowed a conversion of 76% with a N_2 selectivity of 97%, after 500 min time on stream. Ag-Cu-modified Al $_2O_3$ (Ag-Cu: 7.5–2.5, 5–5, 10–10%) were studied before but only in the temperature range of

350–400 °C by Gang et al. [8] and Yang et al. [5]. Among the tested catalysts, 7.5% Ag-2.5% Cu/Al $_2$ O $_3$ facilitated complete ammonia conversion at 300 °C with 95% N $_2$ selectivity. Above 300 °C more by-products appeared. An increase in silver loading resulted in activation of the catalyst, but caused also an increasing NO $_x$ and N $_2$ O formation [8]. Thus, the activity and selectivity of NH $_3$ -SCO over Ag-Cu/Al $_2$ O $_3$ catalysts strongly depends on the transition metal loadings. Our results emphasize that the activity and selectivity to N $_2$ can be steered into the desired direction by a co-impregnation of proper amounts of silver and copper on the Al $_2$ O $_3$ support. Accordingly, the selectivity to by-products were clearly suppressed.

Temperature programmed desorption (NH3-TPD) and temperature programmed surface reaction (NH3-TPSR) were carried out to investigate the ammonia adsorption and the surface reaction between adsorbed ammonia and oxygen. Fig. 7A presents NH3 temperature programmed desorption profiles for 1.5% Ag/Al₂O₃. NH₃ desorbed from this catalyst over a broad range of temperatures covering 70-450 °C. Apart from ammonia, reaction products - N2, NO and N2O were detected at temperatures from 70 to 500 °C. N₂O as the first reaction product appeared at around 250 °C. N2 appeared at higher temperatures (> 400 °C), while NO was not detected during this experiment. Thus, NH₃ could be oxidized over lattice oxygen of Ag_vO to a limited extent, and N₂O was the main product at 250-450 °C. Furthermore, Fig. 7B shows NH₃ temperature programmed surface reaction profiles over Ag/Al₂O₃. NH₃ desorbed mainly at low temperatures (< 250 °C), indicating a high NH₃ oxidation efficiency of Ag/Al₂O₃. N₂ was the main reaction product in the range of 70-250 °C, while N2O appeared in two broad stages: 70-250 and 250-500 °C. A minor amount of NO was detected over Ag/Al₂O₃ above 350 °C during NH₃-TPSR. Thus, the adsorbed NH₃ reacted mainly with the gas-phase O₂ over Ag/ Al₂O₃ yielding the reaction products: N₂, N₂O and NO. Fig. 7C presents the NH_3 -TPD profile of Cu/Al_2O_3 . NH_3 was desorbed over such catalyst up to 350 °C, with N₂ as the main reaction product in the range of 200-400 °C. Besides N2, by-products were also detected: N2O above

Fig. 5. Ag K-edge (A) and Cu K-edge (B) XANES spectra, raw $k^3\chi(k)$ EXAFS data (C,D), fourier transform of k^3 -weighted EXAFS spectra (E–G), and derivative of the normalized X-ray absorption (H) of 1% Ag-1% Cu/Al₂O₃ and 1.5% Ag-10% Cu/Al₂O₃ (and references (Ag, Ag₂O, CuO).

Table 3 Coordination numbers (CN), bond distances between adsorbed and backscatter atoms (R), inner potential correction to account for the difference in the inner potential between the sample and the reference compound (E), Debye-Waller factors $(2\sigma^2)$, and residual factors (R) of 1% Ag-1% Cu/Al₂O₃ and 1.5%Ag-10%Cu/Al₂O₃.

Sample code	Shell	CN	R [nm]	E [eV]	$2\sigma^2$	R [%]
1% Ag-1% Cu/Al ₂ O ₃	Ag-O Ag-Ag	1.9 2.7	0.226 0.276	-0.47	0.027 0.062	32
	Cu-O Cu-Cu	4 2.7	0.195 0.305	-0.55	0.018 0.04	31
$1.5\%~\mathrm{Ag\text{-}}10\%~\mathrm{Cu/Al_2O_3}$	Ag-O Ag-Ag	2 2.9	0.226 0.276	-2.3	0.027 0.062	30.3

150 °C and NO above 375 °C, respectively. Thus, NH $_3$ was partially oxidized by lattice oxygen of copper oxide species under these conditions. During the NH $_3$ -TPSR performed for ammonia desorption in the presence of O $_2$, N $_2$ appeared in the range of 200–350 °C. While significant amounts of N $_2$ O and NO were detected above 150 and 350 °C, respectively, as presented in Fig. 7D. Again, NH $_3$ reacted mainly with lattice oxygen of the catalyst, which was supplied under O $_2$ atmosphere.

Furthermore, Fig. 7E and F illustrate NH $_3$ -TPD and NH $_3$ -TPSR for 1.5% Ag-10% Cu/Al $_2$ O $_3$. As a result of differences between silver and copper oxide species, the profiles of NH $_3$ desorption and reaction products' evolution varied appreciably during both experiments over the bimetallic sample. In particular, during NH $_3$ -TPD of Ag-Cu/Al $_2$ O $_3$, the lattice oxygen of copper oxide species partially oxidised adsorbed ammonia, yielding N $_2$ as the main reaction product in the range of 200–400 °C. N $_2$ O was a minor product above 150 °C with a maximum in

the range of 150–300 °C. While NO was not detected over Ag-Cu/Al $_2$ O $_3$. During NH $_3$ -TPSR, a significant amount of NO appeared in the high temperature range (above 350 °C). Thus, the interaction between silver and copper oxide species played an important role in NH $_3$ activation and its oxidation. The silver oxide species enhanced low temperature activity of NH $_3$ oxidation mainly into N $_2$ (< 250 °C). However, at high temperatures the selectivity to by-products increased. While the copper oxide species facilitated the formation of N $_2$ at higher temperatures up to 350 °C.

In situ DRIFTS studies were carried out to investigate the role of silver and/or copper oxide species for the adsorption of NH₃ on Ag-Cubased catalysts. Table 5 summarizes the assignments of the FTIR bands observed upon adsorption of NH₃. In Fig. 8A, the bands at 1687, 1475 and 1396 cm⁻¹ appeared due to the deformation modes of NH₄⁺ formed by the interaction of NH3 with Brönsted acid sites on γ-Al2O3 [33-37]. The bands at 1622 and $1235 \, \mathrm{cm}^{-1}$ can be assigned to the asymmetric and symmetric deformation modes, respectively, of NH3 molecules coordinated on Lewis acid sites of the γ-Al₂O₃ support [33–37]. The two bands – at $1449 \, \text{cm}^{-1}$ ascribed to the imide (–NH) deformation modes, and at 1350 cm⁻¹ ascribed to the amide (-NH₂) wagging [38,39] - appeared at 50 °C. Both bands together with the bands from NH₃ coordinated on Brönsted and Lewis acid sites decreased gradually with increasing temperature. The band at 1449 cm⁻¹ remained stable until 300 °C, while the band at $1350\,\mathrm{cm}^{-1}$ disappeared above 50 °C. At about 300 °C, the peak related to the amide (-NH2) scissoring gradually increased at 1580 cm⁻¹. Thus, NH₃ adsorbed on Ag/Al₂O₃ was activated to form -NH_x (-NH₂ and -NH) intermediates, which desorbed from the surface of the catalyst. Nevertheless, the band

Fig. 6. Results of catalytic tests for NH₃-SCO performed over Ag/Al₂O₃, Cu/Al₂O₃, Ag-Cu/Al₂O₃; experimental conditions: mass of catalyst = 100 mg, [NH₃] = 0.5 vol.%, [O₂] = 2.5 vol.%, ([H₂O] = 3.2 vol.%), Ar balance, total flow rate = 40 ml min⁻¹, linear heating rate of 5 °C min⁻¹.

Table 4 Comparison of the results of catalytic tests (T_{50} and T_{100} temperature needed for 50 and 100% of NH₃ conversion, respectively).

Sample codes	T ₅₀ , *T ₁₀₀ [°C]	N ₂ selectivity	NO selectivity at T ₅₀ , *T ₁₀₀ [%]	N ₂ O selectivity
1% Ag/Al ₂ O ₃	314	90	0	10
	*500	*74	*13	*13
1.5% Ag/Al ₂ O ₃	238	92	0	8
	*325	*84	*3	*13
2% Ag/Al ₂ O ₃	222	90	0	10
	*300	*84	*2	*14
5% Ag/Al ₂ O ₃	172	83	1	16
	*275	*83	*1	*16
1% Cu/Al ₂ O ₃	379 *-	96 *-	0	*4 -
5% Cu/Al ₂ O ₃	308	96	*1	*3
	*450	*81	7	12
10% Cu/Al ₂ O ₃	299	98	0	2
	*425	*85	*5	*10
15% Cu/Al ₂ O ₃	305	97	0	3
	*425	*83	*7	*10
1% Ag-1% Cu/Al ₂ O ₃	305	99	0	1
	*475	*87	*10	*3
1% Ag-10%Cu/Al ₂ O ₃	290	98	0	2
	*375	*92	*2	*6
1.5% Ag-10% Cu/Al ₂ O ₃ *	281	97	0	3
	*375	*94	*2	*4
*with 3.2% $\rm H_2O$	302	98	0	2
	*375	*95	*2	*3
5% Ag-5% Cu/Al ₂ O ₃	219	78	2	20
	*275	*79	*2	*19

Table 5 Assignments of the FTIR bands.

Wavenumber [cm ⁻¹]	Surface species	Refs.
1691–1684	NH ₄ ⁺	[33–37]
1481–1475		
1403-1396		
1629-1619	NH ₃ L	[33-37]
1261-1235		
1450-1449	-NH	[38,39]
1350	-NH ₂ wagging	
1583-1580	-NH ₂ scissoring	
	bidentate nitrates	[40]
1652-1651	bridging nitrate	[43]
1558-1553	bidentate nitrate	
1540-1539	monodentate nitrate	
1463, 1403	chelating nitro	
1330-1326	free NO ₂ ion	[42]

located at 1580 cm⁻¹ could arise due to bidentate nitrates [40]; however, in the NH₃-TPD profile for Ag/Al₂O₃ (Fig. 7A), we did not observe NO_x produced in the studied temperature range of 70-500 °C. In the N-H stretching region a broad band ranging from 3350 to 3100 cm⁻¹ occurred [38,39,41]. Furthermore, the NH₃-SCO mechanism was studied with respect to the behavior of adsorbed NH3 species interacting with O2 on the surface of Ag/Al2O3. Fig. 8B presents the in situ FTIR spectra of Ag/Al₂O₃ at various temperatures (50-350 °C). The bands of NH₃ coordinated to Brönsted acid sites appeared at 1691, 1475 and 1393 cm⁻¹, while the bands coordinated to Lewis acid sites existed at 1622 and $1243\,\mathrm{cm}^{-1}$. Band of $-\mathrm{NH}$ and $-\mathrm{NH}_2$ appeared at $50\,^\circ\mathrm{C}$ at 1449 and $1350\,\mathrm{cm}^{-1}$, respectively, and their intensity slightly increased with increasing temperature. Above 100 °C, a band corresponding to -NH₂ appeared at 1580 cm⁻¹ and strongly increased up to 350 °C. The band at 1580 cm⁻¹ could be attributed to bidentate nitrate, because NO was formed above 350 °C over Ag/Al₂O₃ in the presence of gaseous O₂ as indicated by the NH₃-TPSR results (Fig. 7B). Additionally, new bands at $1652 \,\mathrm{cm}^{-1}$ (at about $250 \,^{\circ}$ C), at $1463 \,\mathrm{cm}^{-1}$ (at about

Fig. 7. Results of NH₃-TPD (A,C,E) and NH₃-TPSR (B, D and F) for Ag/Al₂O₃ (A and B), Cu/Al₂O₃ (C and D), Ag-Cu/Al₂O₃ (E and F); experimental conditions: mass of catalyst = 100 mg, adsorption: 70 °C, [NH₃] = 1 vol.%, Ar balance, total flow rate = 20 ml min⁻¹; desorption: 70–500 °C, pure argon (NH₃-TPD) or [O₂] = 5 vol.%, Ar balance (NH₃-TPSR), total flow rate = 20 ml min⁻¹, linear heating rate of 5 °C min⁻¹.

Fig. 8. In situ DRIFTS spectra of the adsorbed species arising from contact with NH₃ with Ag/Al₂O₃ (A and B), Cu/Al₂O₃ (C,D), Ag-Cu/Al₂O₃ (E,F) at 50 °C and successive purging with N₂ (A, C and E), or $[O_3] = 5 \text{ vol.}\%$, Ar balance (B,D,F) at 50–350 °C.

150 °C) and at 1330 cm⁻¹ (at about 350 °C), appeared also due to bridging nitrate, chelating nitro and free NO₂⁻ ions [42], respectively. Thus, the adsorbed NH_x was mainly oxidized by gas-phase O₂, and adsorbed as nitrites/nitrates on the Ag/Al₂O₃ catalyst in the presence of O₂. While the reaction between NO and excessive hydrogen abstraction of NH₃, i.e. NH_x species, yielded N₂ and N₂O (Fig. 7B). The FTIR bands observed upon adsorption of NH₃ on Ag/Al₂O₃ after successive purging in N₂ appeared also in the spectra of Cu/Al₂O₃ (NH₃ coordinated on (i) Brönsted acid sites: 1684, 1475 and 1396 cm⁻¹; (ii) Lewis acid sites: 1629 and 1255 cm⁻¹; Fig. 8C) and Ag-Cu/Al₂O₃ (i): 1690, 1481 and 1396 cm⁻¹; (ii): 1622 and 1258 cm⁻¹; Fig. 8E). NH₃ adsorbed mainly on Brönsted and Lewis acid sites, however, these bands showed different intensity on the M-Al₂O₃ (M = Ag, Cu, or Ag-Cu) catalysts. Cu/ Al₂O₃ revealed relatively low intensity of the bands corresponding to NH₃ coordinated to Brönsted acid sites. Additionally, small bands appeared above 150 °C for Cu/Al₂O₃ at 1558 and 1540 cm⁻¹, while for Ag-Cu/Al₂O₃, at 1553 cm⁻¹, which were assigned to the bidentate (1558-1553 cm⁻¹) and monodentate nitrates (1540 cm⁻¹) [43]. Thus, in the absence of O2, adsorbed ammonia was oxidised by lattice oxygen (O₂⁻) of copper oxide species with formation of NO_x ad-species. Such in situ formed NO_x ad-species possibly reacted with adsorbed NH₃ yielding N₂ and N₂O (Fig. 7C and E). In the presence of gaseous O₂ (i) Brönsted acid sites: 1652, 1475 and 1396 cm⁻¹; (ii) Lewis acid sites: 1622 and 1261 cm^{-1} over $\text{Cu/Al}_2\text{O}_3$; Fig. 8D), and (i): 1690 and 1481 cm⁻¹; (ii): 1619 and 1249 cm⁻¹ over Ag-Cu/Al₂O₃; Fig. 8F) were detected. Analogously, other bands attributed to bidentate and monodentate nitrates at 1557 and 1539 cm⁻¹, respectively, appeared in the spectrum of Cu/ Al₂O₃ after successive purging in O₂. While the bands assigned to bridging nitrate (1651 cm⁻¹), chelating nitro (1403 cm⁻¹) and free NO₂⁻ ion (1326 cm⁻¹) appeared in the spectrum of Ag-Cu/Al₂O₃. The formation of these three species over Ag-Cu/Al2O3 was strongly enhanced by the presence of gas-phase O2. Moreover, the spectrum of Ag-Cu/Al₂O₃ contained bands detected also for Ag/Al₂O₃ (-NH at 1450 cm⁻¹, -NH₂ scissoring or bidentate nitrates at 1583 cm⁻¹) and for Cu/Al₂O₃ (bidentate nitrates at 1553 cm⁻¹) species. Thus, the

presence of silver oxide species enhanced dehydrogenation of chemisorbed NH_3 molecules much faster than copper oxide species, and therefore a significant population of NH_{3-x} (x=1,2) species appeared on the Ag/Al_2O_3 and $Ag-Cu/Al_2O_3$ surfaces.

Based on the above in situ FTIR results, adsorbed NH3 was activated through hydrogen abstraction over Ag/Al₂O₃, and further partially oxidized by gas-phase O2 to bridging nitrate, chelating nitro and free NO₂⁻ ions, finally yielding N₂ and N₂O. Moreover, adsorbed NH₃ - as protonated NH₄ + on Brönsted acid sites and coordinated NH₃ on Lewis acid sites - was oxidized to bidentate and monodentate nitrates over lattice oxygen of copper oxide species of Cu/Al₂O₃. In the presence of gas-phase O2, the evolution of NO was observed only in the high temperature range (Fig. 7B, D and F). At these temperatures no chemisorbed ammonia was converting in situ formed NO_x ad-species to N₂ and N2O. Therefore, we concluded that NH3-SCO on the Ag/Al2O3, Cu/ Al₂O₃ and Ag-Cu/Al₂O₃ followed an in situ selective catalytic reduction (i-SCR) mechanism, which involved the partial oxidation of NH3 into NO_x species, along with adsorbed NO_x species interacting with NH_x and being reduced to reaction products. Ag₂O was an active species for the activation of NH₃, followed by its partial oxidation by gaseous O₂ into NO_x species. Otherwise, a significant amount of desorbed NH₃ for Cu/ Al₂O₃ (Fig. 7D), suggested that the majority of chemisorb ammonia was not involved in the low temperature oxidation. Thus, chemisorb ammonia on CuO_x played a role of NO_x reducer below 350 °C. Consequently, the Ag-Cu/Al₂O₃ catalyst-containing both metal oxide species, revealed optimized activity and N2 selectivity in NH3-SCO.

In situ formed NO_x were the main intermediates of this mechanism. We could not exclud that an interaction between the NH_3 and in situ formed NO_x ad-species led to formation of NH_2NO , NH_2NO_2 or NH_2NO_3 intermediate species with low thermal stability, which easily decomposed into N_2 with N_2O as a by-product [41]. Noteworthy, the results of NH_3 -TPD or NH_3 -TPSR did not reveal the evolution of NO_2 , indicating NO as the main reaction intermediate. Nevertheless, the detailed recognition of an i-SCR pathway needs additional studies, e.g. in situ DRIFT studies of interaction of NH_3 with in situ formed NO_x ad-species

[44,45], as well as *in situ* DRIFTS coupled with transient techniques (TAP, SSITKA) in order to provide information on the surface coverage of active and inactive (spectators) species under reaction conditions. Such experiments will be investigated separately.

4. Conclusion

We investigated the influence of different loadings of Ag and/or Cu - Ag (1-5%), Cu (10-15%) or Ag-Cu (1-1, 1-10, 1.5-10, 5-5% of metal) on the physicochemical properties, catalytic activity and selectivity in NH3-SCO. XRD, H2-TPR, UV-vis-DRS, XPS and EXAFS analyses revealed that silver species existed mainly in the form of Ag₂O. while copper oxide species coexisted as CuO and CuAl₂O₄ on Ag/Al₂O₃. Cu/Al₂O₃ and Ag-Cu/Al₂O₃ surfaces, respectively. Silver species significantly decreased the temperature of the ammonia oxidation but also decreased the selectivity to N2 with increasing silver loading up to 5%. Copper oxide species were significantly less active in the ammonia oxidation, but more selective to N2. Easily reducible highly dispersed CuO_x promoted the activity of 5-15% Cu/Al₂O₃, while bulk CuO_x and CuAl₂O₄ decreased N₂ selectivity up to 500 °C. Thus, the activity and selectivity were optimized by tuning the loading of silver and copper in Ag-Cu/Al₂O₃. We selected 1.5% Ag-10% Cu/Al₂O₃ as promising catalyst for NH₃-SCO, which operated at relatively low temperature with high selectivity to N2 (full NH3 conversion at 375 °C with 94% N2 selectivity). NH3-TPD, NH3-TPSR and in situ FTIR measurements confirmed the in situ selective catalytic reduction (i-SCR) mechanism over 1.5% Ag/Al₂O₃, 10% Cu/Al₂O₃ and 1.5% Ag-10% Cu/Al₂O₃. However, copper oxide species were less active in ammonia oxidation than silver oxide species. Thus, the high activity and N2 selectivity of Ag-Cu/Al2O3 catalyst were assigned to the enhanced activity of silver species in ammonia oxidation to NO_x and activity of copper oxide species in NO_x reduction with unreacted ammonia to N2 and N2O.

Acknowledgements

Funded by the Excellence Initiative of the German federal and state governments in the frame of the Center for Automotive Catalytic Systems Aachen (ACA) at RWTH Aachen University and EPSRC (UK). The authors acknowledge the Diamond Light Source (beamtime application SP14834) for provision of beamtime on the beamlines B18, and Diego Gianolio and Miren Agote for assistance in performing the XAFS measurements.

References

- [1] Z. Qu, H. Wang, S. Wang, H. Cheng, Y. Qin, Z. Wang, Role of the support on the behavior of Ag-based catalysts for NH₃ selective catalytic oxidation (NH₃-SCO), Appl. Surf. Sci. 316 (2014) 373–379.
- [2] L. Zhang, C. Zhang, H. He, The role of silver species on Ag/Al₂O₃catalysts for the selective catalytic oxidation of ammonia to nitrogen, J. Catal. 261 (2009) 101–109.
- [3] L. Zhang, F. Liu, Y. Yu, Y. Liu, C. Zhang, H. He, Effects of adding CeO₂ to Ag/Al₂O₃ catalyst for ammonia oxidation at low temperatures, Chin. J. Catal. 32 (2011) 727–735.
- [4] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts, Appl. Catal. B: Environ. 40 (2003) 101–110.
- [5] M. Yang, C. Wu, C. Zhang, H. He, Selective oxidation of ammonia over coppersilver-based catalysts, Catal. Today 90 (2004) 263–267.
- [6] M. Jabłońska, R. Palkovits, Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-recent trends and open challenges, Appl. Catal. B: Environ. 181 (2016) 332–351.
- [7] L. Chmielarz, M. Jabłońska, A. Strumiński, Z. Piwowarska, A. Węgrzyn, S. Witkowski, M. Michalik, Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals, Appl. Catal. B: Environ. 130–131 (2013) 152–162.
- [8] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, W.J.H. van Gennip,

- J.W. Niemantsverdriet, P.J. Kooyman, A. Knoester, H.H. Brongersma, Aluminasupported Cu–Ag catalysts for ammonia oxidation to nitrogen at low temperature, J. Catal. 206 (2002) 60–70.
- [9] M. Newville, IFEFFIT: interactive XAFS analysis and FEFF fitting, J. Synchrotron Radiat. 8 (2001) 322–324.
- [10] B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537–541.
- [11] H. Wan, D. Li, Y. Dai, Y. Hu, B. Liu, L. Dong, Catalytic behaviors of CuO supported on Mn₂O₃ modified γ-Al₂O₃ for NO reduction by CO, J. Mol. Catal. A: Chem. 332 (2010) 32–44.
- [12] G. Wang, X. Ma, B. Huang, H. Cheng, Z. Wang, J. Zhan, X. Qin, X. Zhang, Y. Dai, Controlled synthesis of Ag₂O microcrystals with facet-dependent photocatalytic activities, J. Mater. Chem. 22 (2012) 21189–21194.
- [13] W. Wang, Y. Zhan, G. Wang, One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant, Chem. Commun. (2001) 727–728.
- [14] C. Liang, X. Li, Z. Qu, M. Tade, S. Liu, The role of copper species on Cu/γ - Al_2O_3 catalysts for NH_3 -SCO reaction, Appl. Surf. Sci. 258 (2012) 3738–3743.
- [15] M. Luo, X. Yuan, X. Zheng, Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds, Appl. Catal. A: Gen. 175 (1998) 121–129.
- [16] A. Musi, P. Massiani, D. Brouri, J.-M. Trichard, P. Da Costa, On the characterisation of silver species for SCR of NO_x with ethanol, Catal. Lett. 128 (2009) 25–30.
- [17] M. Jabłońska, M. Nocuń, E. Bidzińska, Silver-alumina catalysts for low-temperature methanol incineration, Catal. Lett. 146 (2016) 937–944.
- [18] M. Jabłońska, Selective catalytic oxidation of ammonia into nitrogen and water vapour over transition metals modified Al₂O₃, TiO₂ and ZrO₂, Chem. Pap. 69 (2015) 1141–1155.
- [19] B.R. Strohmeier, D.E. Levden, R.S. Field, D.M. Hercules, Surface spectroscopic characterization of CuAl₂O₃ catalysts, J. Catal. 94 (1985) 514–530.
- [20] L. Jin, M. He, J. Lu, M. Luo, P. Fang, Y. Xie, Comparative study of CuO species on CuO/Al₂O₃, CuO/CeO₂-Al₂O₃ and CuO/La₂O-Al₂O₃ catalysts for CO oxidation, Chin. J. Chem. Phys. 20 (2007).
- [21] J. Lu, J.J. Bravo-Suárez, M. Haruta, S.T. Oyama, Direct propylene epoxidation over modified Ag/CaCO₃ catalysts, Appl. Catal. A: Gen. 302 (2006) 283–295.
- [22] N. Bogdanchikova, F.C. Meunier, M. Avalos-Borja, J.P. Breen, A. Pestryakov, On the nature of the silver phases of Ag/Al₂O₃ catalysts for reactions involving nitric oxide, Appl. Catal. B: Environ. 36 (2002) 287–297.
- [23] A. Keshavaraja, X. She, M. Flytzani-Stephanopoulos, Selective catalytic reduction of NO with methane over Ag-alumina catalysts, Appl. Catal. B: Environ. 27 (2000) 1.1–1.9.
- [24] X. She, M. Flytzani-Stephanopoulos, The role of AgOAl species in silver-alumina catalysts for the selective catalytic reduction of NO_x with methane, J. Catal. 237 (2006) 79–93.
- [25] Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, Z. Chen, Fabrication of uniform Ag/TiO₂ nanotube array structures with enhanced photoelectrochemical performance, N. J. Chem. 34 (2010) 1335–1340.
- [26] E. Sumesh, M.S. Bootharaju, T. Anshup, Pradeep, A practical silver nanoparticle-based adsorbent for the removal of Hg²⁺ from water, J. Hazard. Mater. 189 (2011) 450–457.
- [27] F. Xiao, H.-G. Liu, Y.-I. Lee, Formation and characterization of two-dimensional arrays of silver oxide nanoparticles under Langmuir monolayers of n-hexadecyl dihydrogen phosphate, Bull. Korean Chem. Soc. 29 (2008) 2368–2372.
- [28] J. Shibata, K. Shimizu, Y. Takada, A. Shichi, H. Yoshida, S. Satokawa, A. Satsuma, T. Hattori, Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen, J. Catal. 227 (2004) 367–374.
- [29] S.T. Korhonen, A.M. Beale, M.A. Newton, B.M. Weckhuysen, New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO, J. Phys. Chem. C 115 (2011) 885–896.
- [30] I. Lezcano-Gonzalez, U. Deka, H.E. van der Bij, P. Paalanen, B. Arstad, B.M. Weckhuysen, A.M. Beale, Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH₃-SCR) systems, Appl. Catal. B: Environ. 154–155 (2014) 339–349.
- [31] J.H. Kwak, R. Tonkyn, D. Tran, D. Mei, S.J. Cho, L. Kovarik, J.H. Lee, C.H.F. Peden, J. Szanyi, Size-dependent catalytic performance of CuO on γ-Al₂O₃: NO reduction versus NH₃ oxidation, ACS Catal. 2 (2012) 1432–1440.
- [32] M. Jabłońska, M. Nocuń, K. Gołąbek, R. Palkovits, Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour, Appl. Surf. Sci. 423 (2017) 498–508.
- [33] M. Amblard, R. Burch, B.W.L. Southward, A study of the mechanism of selective conversion of ammonia to nitrogen on Ni/γ-Al₂O₃ under strongly oxidising conditions, Catal. Today 59 (2000) 365–371.
- [34] M.A. Larrubia, G. Ramis, G. Busca, An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe₂O₃-TiO₂ SCR catalysts, Appl. Catal. B: Environ. 30 (2001) 101–110.
- [35] G. Ramis, M.A. Larrubia, G. Busca, On the chemistry of ammonia over oxide catalysts: Fourier transform infrared study of ammonia, hydrazine and hydroxylamine adsorption over iron—titania catalyst, Top. Catal. 11 (2000) 161–166.
- [36] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH₃over MnO_x/Al₂O₃, J. Catal. 171 (1997) 208–218.

- [37] H. Zou, J. Shen, Microcalorimetric and infrared spectroscopic studies of γ -Al₂O₃ modified by zinc oxide, Thermochim. Acta 351 (2000) 165–170.
- [38] J.G. Amores, V.S. Escribano, G. Ramis, G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides, Appl. Catal. B: Environ. 13 (1997) 45–58.
- [39] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, Adsorption, activation, and oxidation of ammonia over SCR catalysts, J. Catal. 157 (1995) 523–535.
- [40] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: structure of active sites and reaction mechanism, Appl. Catal. B: Environ. 30 (2001) 151–162.
- [41] C. Yu, L. Wang, B. Huang, In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH₃ over MnO_x supported on multi-walled carbon
- nanotubes catalysts, Aerosol Air Qual. Res. 15 (2015) 1017-1027.
- [42] K.I. Hadjiivanov, Identification of neutral and charged N_xO_y surface species by IR spectroscopy, Catal. Rev. 42 (2000) 71–144.
- [43] P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve, B. Wichterlová, Enhancement of decane-SCR-NO_xover Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV–vis study, J. Catal. 232 (2005) 302–317.
- [44] L. Zhang, H. He, Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al₂O₃, J. Catal. 268 (2009) 18–25.
- [45] W. Chen, Y. Ma, Z. Qu, Q. Liu, W. Huang, X. Hu, N. Yan, Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy, Environ. Sci. Technol. 48 (2014) 12199–12205.