

Biopolymers for Paperboard Extrusion Coating and Converting

Presented by:

C. Carey Yang, PhD WestRock Company Richmond, Virginia, USA

Introduction

- Sustainable Packaging
- Paper & Bioplastics
- Extrusion Coating & Packaging
- Challenges & Opportunities
- Applications

Linear Economy

Cradle to Grave

Circular Economy

Cradle to Cradle

Fossil vs. Bio

- Reuse renewable resources
- Reduce carbon footprint
- Enhance sustainability profile

Global Bioplastics Production Capacity

Source: European Bioplastics, Institute for Bioplastics and Biocomposites, nova-Institute, Germany, 2015.

Pulp & Paper

- Natural
- Renewable
- Biodegradable
- Compostable
- Recyclable

The Best of Both Worlds

Paper + Bioplastics

Happy Marriage that Makes Good Environmental Sense

Conventional Polymers vs. Biopolymers

Biodegradable \Biobased	Non-Biobased	Partially Biobased	Biobased
Biodegradable	PBS, PBSA, PCL, PGA, PVOH	Starch Blends, PLA Blends, PBS, PBAT	PLA, PBS, PHA, PHB, TPS, CA, Starch
Non-Biodegradable	PE, PP, PET, PBT, PA6, PA66	PBT, PET, PTT, PA6.10	PE, PA11, PA12, PA1010, PEF, PET, PTT

Biodegradable/Compostable Polymers

- ASTM D6400, EN 14995/13432, ISO 17088
- Chemical: heavy metal limits
- Disintegration: <10% larger than 2mm</p>
- Biodegradation: >90% CO2 conversion, 6 months
- Ecotoxicity: no harmful effect on plant growth
- Compostable polymers are biodegradable, but not vice versa.
- Industrial composting

Biobased Polymers

- Derived from plants or other renewable sources
- ASTM D6868, ASTM D7026
- Biobased content determined by carbon-14 dating
- Biobasesd polymers may or may not be compostable.

Paperboard Extrusion Coating

Challenges

- High process temperature (>290°C/550°F)
- Polymer-to-paper fiber adhesion
- Good melt strength, low neck-in
- Good coat weight profile control
- Low/no smoke, defects, die lip buildups
- Easy to purge, clean up & change over

Materials

Features \ Polymer	Fossil LDPE	Bio-LDPE	PLA	(Bio) PBS
Biobased	N	Y	Y	Y*
Commercially Available	Y	Y	Y	Y*
Flexible	Y	Y	N	Y
Heat Sealability	Excellent	Excellent	Fair	Good
FDA Food Contact	Y	Y	Y	Y
Liquid Barrier	Y	Y	Y	Y
Oil Grease Barrier	Y	Y	Y	Y
Industrial Composting	N	N	Y	Y
Home Composting	N	N	N	Y**
Marine Degradable	N	N	N	?

^{*}Bio version in scale-up to commercial supply

^{**} Limited grade

Process & Equipment

- All extrusion coating challenges apply.
- PLA poor melt strength, curtain stability, neck-in; narrow process window
- Molecular modification
- Alternate biopolymers
- Proper screw configuration and die design for shear sensitive polymers

Food Contact Regulatory Compliance

- Food packaging and foodservice products require proper food contact compliance and suitable Conditions of Use.
- US FDA 21 CFR176.170
 - A. High temperature heat-sterilized (e.g., over 212°F or 100°C)
 - B. Boiling water sterilized.
 - C. Hot filled or pasteurized above 150°F (65.5°C)
 - D. Hot filled or pasteurized below 150°F (65.5°C)
 - E. Room temperature filled and stored (no thermal treatment in the container).
 - F. Refrigerated storage (no thermal treatment in the container).
 - G. Frozen storage (no thermal treatment in the container).
 - H. Frozen or refrigerated storage: Ready-prepared foods intended to be reheated in container at time of use:
 - 1. Aqueous or oil-in-water emulsion of high- or low-fat.
 - 2. Aqueous, high- or low-free oil or fat.

Functional & Packaging Performance

- Poly adhesion to paper fiber
- Heat sealability
- Moisture & liquid barrier
- Oil-grease resistance
- Printability
- Mechanical & physical properties

Applications

The Shift

Trends

- Urbanization
- Healthy lifestyle, environmental awareness
- Demographic change

Desires

- Convenience, on-the-go
- Fresh
- Ready meals

Needs

- Smaller package size in bulk
- Shelf-life extension
- Freeze-thaw-microwave-oven

Opportunities

- Fast, small-batch, customized converting
- High heat-resistance biopolymers for microwave and oven cooking
- Compostable biopolymers for liquid packaging
- Moisture & oxygen barrier for shelf-life extension
- Soil, fresh water, marine biodegradable

Eco Economy & Packaging Value Chain

Conclusions

- Eco-based circular economy
- Biopolymer innovation and technology
- High-performance biopolymer+paperboard hybrid packaging materials
- Challenges = Opportunities
- Emerging trends and needs

Acknowledgements

- Coauthors:
 - Rahul Bhardwaj
 - Chester Alkiewicz
- WestRock Company

Thank you!

PRESENTED BY

C. Carey Yang, PhD

WestRock Company Carey.Yang@WestRock.com