Trigonometry Problem Set

for Class

Rex

1. Evaluate the following expression.

$$\tan(\cos^{-1}(\frac{2}{5}))$$

The exact value of the expression is:

$$\frac{\sqrt{21}}{2}$$

- 2. Which of the following is equivalent to $\tan(\theta) \csc(\theta) \sin(\theta)$ for all values of θ for which $\tan(\theta) \csc(\theta) \sin(\theta)$ is defined?
 - $\csc(\theta)$
 - $\sin(\theta)$
 - $tan(\theta)$
 - $\cot(\theta)$

The equivalent expression is:

 $tan(\theta)$

3. Simplify the expression $\sin^{-1}(\tan(\frac{9\pi}{4}))$, where the angle is measured in radians.

The simplified expression is:

$$\frac{\pi}{2}$$

4. On the domain of $[-2\pi, 0)$, for what value(s) of x will $\sin(-x) = \csc(-x)$?

Enter your answer as an equation, x = a. If there is more than one answer, separate each equation with a comma, x = a, x = b.

The values for which the equation holds are:

$$x = -\frac{3\pi}{2}, x = -\frac{\pi}{2}$$

5. Solve the following equation for θ on the interval $[0,2\pi)$:

$$5\sqrt{3}\tan(\theta) - 4 = 1$$

List the angles separated by commas if there are multiple answers, e.g. $\frac{\pi}{3}, \frac{\pi}{2}$. The solutions to the equation are:

$$\theta = \frac{\pi}{6}, \frac{7\pi}{6}$$

6. Simplify the expression $\tan(\sin^{-1}(-\frac{12}{37}))$.

The simplified expression is:

$$-\frac{12}{35}$$

7. Determine a point not in the domain of the function $f(x) = -\frac{\cot(x)}{4}$ within the interval $-2\pi < x < 2\pi$.

Figure 1: Graph of the function $f(x) = -\frac{\cot(x)}{4}$

The function $f(x) = -\frac{\cot(x)}{4}$ is undefined where $\cot(x)$ is undefined. The cotangent function is the reciprocal of the tangent function, which is undefined where the tangent function is zero, i.e., at multiples of π . Therefore, the points where f(x) is undefined are at $x = k\pi$ for any integer k.

In the interval $-2\pi < x < 2\pi$, the values for k that satisfy $x = k\pi$ are k = -1, 0, 1. Thus, the points not in the domain are:

$$x = -\pi, 0, \pi$$

However, since the interval is open (does not include the endpoints), we exclude $x = -2\pi$ and $x = 2\pi$ from our consideration. Hence, the points not in the domain of f(x) within the given interval are $x = -\pi$ and $x = \pi$.

The points not in the domain of f(x) are:

$$x = -\pi, \pi$$

8. Solve for θ if $16\sin(\theta) + 11 = 27$ and $0 \le \theta < 2\pi$.

The solution to the equation is:

$$\theta = \frac{\pi}{2}$$

9. On the graph of $f(x) = \sec(x)$ and the interval $[0, 2\pi)$, for what value(s) of x does $f(x) = -\sqrt{2}$?

Enter your answer as an equation, x = a. If there is more than one answer, separate each equation with a comma, x = a, x = b.

The values for which the equation holds are:

$$x = \frac{3\pi}{4}, x = \frac{5\pi}{4}$$

10. Solve the following equation for θ on the interval $[0,360^{\circ})$:

$$2\sec(\theta) - 4 = -2$$

Enter your answer as an equation, x = a. If there is more than one answer, separate each equation with a comma, x = a, x = b.

The solution to the equation is:

$$\theta = 0^{\circ}$$