Regression

Week 3

What is Regression?

Can we predict the price of a home based on input features?

Other Examples of Regression

Label (Y)	Features (X)
Salary	Occupation, Education, Work Experience, etc.
Pollution	Engine Size, Year, Make, Model, etc.
Sales	Age, Education, Work Experience, etc.
Weather	Hour, Month, Location, etc.

Practice: Identify the regression problem,

1- Predicting Normal vs Abnormal 3- Grouping similar cars

2- Predicting if stock will rise or fall 4- Predicting stock price for tomorrow

Regression Algorithms

- Bayesian linear regression
- Neural network regression
- k-nearest neighbors
- Ordinal regression
- Linear, polynomial,...

- Learning algorithm outputs a function called hypothesis.
- Hypothesis function gets X_new and transforms them to y_hat.

Linear Regression

$$h_{\theta}(X) = \theta_{\mathbf{0}} + \theta_{\mathbf{1}} x_{1}$$

Problem:

Find θ_0 and θ_1 such that mean square error gets minimum for all training samples

Minimize:
$$\frac{1}{\theta} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

also call cost function $J(\theta_0, \theta_1)$

Recap

Hypothesis:

$$h_{\theta}(X) = \theta_{\mathbf{0}} + \theta_{\mathbf{1}} x_{1}$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

Minimize:
$$\theta_0, \theta_1$$
 $J(\theta_0, \theta_1)$

For better visualization of $J(\theta_0, \theta_1)$, lets assume $\theta_0 = 0$

Visualizing $h_{\theta}(X)$ and $J(\theta)$

Hypothesis:

$$h_{\theta}(X) = \theta_{\mathbf{0}} + \theta_{\mathbf{1}} x_{\mathbf{1}}$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(0,1) = \frac{1}{6}((1-1)^2 + (2-2)^2 + (3-3)^2) = 0$$

Visualizing $h_{\theta}(X)$ and $J(\theta)$

Hypothesis:

$$h_{\theta}(X) = \theta_{\mathbf{0}} + \theta_{\mathbf{1}} x_{1}$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(0,0) = \frac{1}{6}((0-1)^2 + (0-2)^2 + (0-3)^2) = 2.33$$

Visualizing $h_{\theta}(X)$ and $J(\theta)$

Hypothesis:

$$h_{\theta}(X) = \theta_{\mathbf{0}} + \theta_{\mathbf{1}} x_{1}$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(0,2) = \frac{1}{6}((2-1)^2 + (4-2)^2 + (6-3)^2) = 2.33$$

Finding Optimal θ_0 , θ_1

Gradient Descent:

Regression Algorithms

 $J(\theta_0, \theta_1)$

Gradient Descent

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0$$
:=Temp1

Temp2 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1$$
:=Temp2

Temp2 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0$$
:=Temp1

$$\theta_1$$
:=Temp2

Linear Regression

Training vs Testing

Why we should split the data to, <u>Train set</u> and <u>Test set</u>?

- 1- To make sure model will perform well on future data (not just historical data)
- 2- To make sure we are not **over-fitting** or **under-fitting** data

