Applied Machine Learning

Linear Regression

Salahadin Seid

School of Data Science Emerland University

August 10, 2024

Outline

- What is Linear Regression?
- How does it work?
- Estimating the coefficients
- Assessing the accuracy of the coefficient estimates
- Assessing the accuracy of the model

•

What is Linear Regression?

- **Linear regression** is a simple supervised statistical learning technique used for predicting quantitative a response target.
- It is one of the **simplest** and **oldest** statistical learning techniques
- It is still very useful and widely used to this day for many reasons.
 - A good starting point for the newer and more sophisticated machine-learning techniques, many of which may be seen as generalizations of linear regresssion,
 - Having a good understanding of linear regression proves invaluable in studying these **newer** and more **sophisticated** methods.

What is Regression?

	X:	Independer	nt variable Y: D	Y: Dependent vari		
Ì	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	COZEMISSIONS		
	2.0	4	8.5	196		
	2.4	4	9.6	221		
	1.5	4	5.9	136		
3	3.5	6	11.1	255		
1	3.5	6	10.6	244		
	3.5	6	10.0	230		
	3.5	6	10.1	232		
,	3.7	6	11.1	255		
3	3.7	6	11.6	267		
	2.4	4	9.2	?		

Regression is the process of predicting a continuous value

What is Regression?

E	NGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
ı	3.5	6	10.6	244
5	3.5	6	10.0	230
3	3.5	6	10.1	232
7	3.7	6	11.1	255
3	3.7	6	11.6	267
9	2.4	4	9.2	?

• Is that possible to predict the co2 emission of vehicle 9 before production given engine size and cylinder size?

What is Regression?

Application of Regression

- Sales forecasting
- Satisfaction analysis
- Price estimation
- **Employment Income**

Linear Regression with one variable Model Representation

We want to tell the price of the house given the size of the house?

How do we represent h?

$$h_{\mathbf{e}}(x) = \Theta_0 + \Theta_1 \times Shorthard: h(x)$$

Linear regression with one variable. (x)
Univariate linear regression.

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)		
Training Sec	2104	460 7		
	1416	232 m= 47		
	1534	315		
	852	178		
)		

Hypothesis:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 θ_{i} 's: Parameters

How to choose θ_{i} 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}}{x}$$

$$\theta_{1}$$

$$h(x)$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\min_{\theta_{1}} \text{minimize } J(\theta_{1})$$

Gradient descent

Gradient Descent in Linear Regression?

- Any ML project our main aim relies on how good our project accuracy is or how much our model prediction differs from the actual data point.
- Based on the difference between model prediction and actual data points we try to find the parameters of the model which give better accuracy on our dataset
- In order to find these parameters we apply gradient descent on the cost function of the machine learning model.

Gradient Descent in Linear Regression?

Gradient Descent in Linear Regression?

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

Correct: Simultaneous update

```
\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}
```

Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

Cost Function

Gradient descent

$$J\left(\Theta_{0},\Theta_{1}\right) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\Theta}(x_{i}) - y_{i}\right]^{2}$$
Predicted Value

Gradient Descent

$$\Theta_{j} = \Theta_{j} - \alpha \frac{\partial}{\partial \Theta_{j}} J\left(\Theta_{0}, \Theta_{1}\right)$$

$$\text{Learning Rate}$$

Now,

$$\begin{split} \frac{\partial}{\partial \Theta} J_{\Theta} &= \frac{\partial}{\partial \Theta} \frac{1}{2m} \sum_{i=1}^{m} [h_{\Theta}(x_i) - y]^2 \\ &= \frac{1}{m} \sum_{i=1}^{m} (h_{\Theta}(x_i) - y) \frac{\partial}{\partial \Theta_j} (\Theta x_i - y) \\ &= \frac{1}{m} (h_{\Theta}(x_i) - y) x_i \end{split}$$

Therefore,

$$\Theta_j := \Theta_j - \frac{\alpha}{m} \sum_{i=1}^m [(h_{\Theta}(x_i) - y)x_i]$$

Gradient descent - learning rate

If we choose α to be very large, Gradient Descent can overshoot the minimum. It may fail to converge or even diverge.

If we choose α to be **very small**, Gradient Descent will take small steps to reach local minima and will take a longer time to reach minima.

Linear Regression with multiple variables Multiple features

Single Variable vs multiple variables

Size (feet²)	Price (\$1000)		
· x	y		
2104	460		
1416	232		
1534	315		
852	178		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
2104	5	1	45	460	
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	178	
***	***		***	***	

Modeling

Hypothesis:

previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_4 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_3 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_3 + \theta_3 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_4 + \theta_3 x_4$$

$$\theta_0(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_3 + \theta_3 x_4 + \theta_3 x$$

Modeling

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Feature Scaling

Idea: Make sure features are on a similar scale.

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²) $\Rightarrow x_1 = \frac{\text{size (feet²)}}{2000}$
 x_2 = number of bedrooms (1-5) $\Rightarrow x_2 = \frac{\text{number of }}{\text{number of }}$

Feature Scaling

Get every feature into approximately a
$$-1 \le x_i \le 1$$
 range.

Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Learning rate

Making sure gradient descent is working correctly.

Learning rate

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Linear Regression with Python

Given Boston house prices dataset: Mock Scenario

• Imagine the following scenario: Your team has been contracted by a real-estate company who owns many houses in the Boston metro-area. You are tasked to analyze if the house prices owned by the company are competitive and if they need to be adjusted to optimize the overall profit.

Below are some questions that your team might want to address before making recommendations:

- Is there a relationship between the different **predictors/features** and the house **prices**
- If there is such a relationship, then how strong is it?
- Which features affect the most the house prices?
- How accurately can we estimate the effect of each feature to the house prices?
- How accurately can we predict the house prices based on these features?
- What kind of relationship is there between the features and the house prices? Linear?Non-linear?
- Is there any **interaction** effect among the features?

We will attempt to address all of these questions using linear regression.

Simple linear Regression

Let's go ahead and import some libraries:

```
import numpy as np
import pandas as pd
```

```
import matplotlib.pyplot as plt
import seaborn as sns
```

Description of Boston house prices dataset

boston=pd.read_excel('Boston_Dataset.xlsx',index_col=[0])

```
boston.head()
             CRIM CHAS
                            RM.
                                       RAD TAX PTRATIO LSTAT Price
Unnamed: 0
        0 0.00632
                      No 6.575 4.0900
                                           1 296
                                                      15.3
                                                             4.98
                                                                   24.0
         1 0.02731
                      No 6,421 4,9671
                                          2 242
                                                      17.8
                                                             9.14
                                                                   21.6
                                                       17.8
                                                             4.03
                                                                   34.7
        2 0.02729
                          7.185 4.9671
                                          2 242
        3 0.03237
                      No 6.998 6.0622
                                          3 222
                                                      18.7
                                                             2.94
                                                                   33.4
        4 0.06905
                      No
                          7.147 6.0622
                                             222
                                                      18.7
                                                             5.33
                                                                   36.2
  boston['CHAS'].unique()
  array(['No', 'Yes'], dtype=object)
```

Description of Boston house prices dataset

```
#Enter Answer
df=boston.copy()
df['CHAS']=boston['CHAS'].apply(lambda x: 1 if x=='Yes' else 0)
df.head()
              CRIM CHAS
                            RM
                                        RAD TAX PTRATIO LSTAT Price
Unnamed: 0
                                                             4.98
         0 0.00632
                       0 6.575 4.0900
                                             296
                                                       15.3
                                                                   24.0
         1 0.02731
                       0 6.421 4.9671
                                           2 242
                                                       17.8
                                                             9.14
                                                                   21.6
         2 0.02729
                          7.185
                                 4.9671
                                           2 242
                                                       17.8
                                                             4.03
                                                                   34.7
         3 0.03237
                       0 6.998 6.0622
                                           3 222
                                                       18.7
                                                             2.94
                                                                   33.4
        4 0.06905
                          7.147 6.0622
                                             222
                                                       18.7
                                                             5.33
                                                                   36.2
```

Scaling data

 Many of the measurements are in different scale - It is important to scale the data before we fit a linear regression.

```
from sklearn.preprocessing import StandardScaler
X=df.drop("Price",axis=1)
y=df['Price']
X.head()
             CRIM CHAS
                           RM
                                 DIS RAD TAX PTRATIO LSTAT
Unnamed: 0
        0 0.00632
                      0 6.575 4.0900
                                         1 296
                                                    15.3
                                                          4.98
        1 0.02731
                      0 6.421 4.9671
                                        2 242
                                                    17.8
                                                          9.14
        2 0.02729
                      0 7.185 4.9671
                                        2 242
                                                    17.8
                                                          4.03
        3 0.03237
                      0 6.998 6.0622
                                        3 222
                                                    18.7
                                                          2.94
        4 0.06905
                      0 7.147 6.0622
                                         3 222
                                                    18.7
                                                          5.33
```

Scaling data

```
scaler=StandardScaler()
scaled=scaler.fit_transform(X)
```

After scaling the data, create a new dataframe of the scaled data called X_sc and check the head

```
X_sc=pd.DataFrame(scaled,columns=X.columns)
```

```
X_sc.head()
```

	CRIM	CHAS	RM	DIS	RAD	TAX	PTRATIO	LSTAT
0	-0.419782	-0.272599	0.413672	0.140214	-0.982843	-0.666608	-1.459000	-1.075562
1	-0.417339	-0.272599	0.194274	0.557160	-0.867883	-0.987329	-0.303094	-0.492439
2	-0.417342	-0.272599	1.282714	0.557160	-0.867883	-0.987329	-0.303094	-1.208727
3	-0.416750	-0.272599	1.016303	1.077737	-0.752922	-1.106115	0.113032	-1.361517
4	-0.412482	-0.272599	1.228577	1.077737	-0.752922	-1.106115	0.113032	-1.026501

Train-Test Split

Split the scaled data into a training set and a test set with a 70-30 split.

Step 1: Import train_test_split from sklearn.model_selection

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X_sc,y,test_size=0.3,random_state=12)

X_train.head()

	CRIM	CHAS	RM	DIS	RAD	TAX	PTRATIO	LSTAT
251	-0.395603	-0.272599	0.218494	1.712117	-0.293081	-0.464673	0.297977	-1.270404
465	-0.052359	-0.272599	-0.748850	-0.346327	1.661245	1.530926	0.806576	0.207028
137	-0.379516	-0.272599	0.241288	-0.924708	-0.637962	0.170831	1.268938	0.271508
311	-0.328535	-0.272599	-0.231698	-0.548929	-0.637962	-0.619094	-0.025677	-0.935389
406	1.990294	-0.272599	-3.058221	-1.244014	1.661245	1.530926	0.806576	1.498028

Fitting the Model

lg.coef_

First, we need to import Linear Regression model

```
from sklearn.linear_model import LinearRegression
```

Next, we instantiate and fit it to our model

```
lg=LinearRegression()

lg.fit(X_train,y_train)
```

Now that we have fitted our model, we can actually go ahead and extract the estimated coefficients, including the intercept β_0

```
lg.intercept_ 22.605596398342957
```

array([-0.63082368, 0.57150473, 2.24918842, -1.09485652, 1.85711767, -1.88803821, -2.046749 , -4.55974378])

Fitting the Model ...

Create a dataframe named df_coef that contains one column with the coefficients and the rows are the features of the Boston dataset.

```
#Enter Answer Here
df_coef=pd.DataFrame(lg.coef_,index=X.columns,columns=['Coefficients'])

df_coef.loc['Intercept','Coefficients']=lg.intercept_

df_coef
```

How do we interpret these coefficients? What do they mean and what do they tell us?

For example, if the average number of rooms per dwelling, RM , increases by one unit, we will observe an increase in house price by roughly $2.2 \times \$10,000 = \$22,000$

On the other hand, if the pupil-teacher ratio by town, PTRATIO, increases by one unit, then we will observe a decrease in house price of roughly $2.05 \times \$10,000 = \20500 .

Assesing Performance of Model

Now that our model is fit, we need to assess the performance of our model by testing it on the test-set.

```
lg_pred=lg.predict(X_test)
```

g_pred contains the predicted house prices.

Test the performance

from sklearn.metrics import r2_score, mean_squared_error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

lg_r2

mse