1 Random samples

Random sample A random sample of size n is a set of random variables X_1, \ldots, X_n that are iid.

2 Summary statistics

Sample mean and variance The *sample mean* and the *sample variance* are the random variables defined by

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

3 Maximum likelihood estimation

Likelihood Let X_1, \ldots, X_n have joint pmf/pdf $f(x; \theta)$, which depends on some parameters θ . Given observed values x_1, \ldots, x_n , the *likelihood* of θ is the function

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \boldsymbol{x}) = f(\boldsymbol{x}; \boldsymbol{\theta}).$$

The log-likelihood is $\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta})$.

Likelihood (iid) Let X_1, \ldots, X_n be a random sample of size n with pmfs/pdfs $f_{X_i}(x_i; \theta)$. Then,

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{X_i}(x_i; \boldsymbol{\theta}).$$

Maximum likelihood estimator (MLE) The maximum likelihood estimate $\hat{\theta}(x)$ is the θ that maximizes $L(\theta)$ for given x; $\hat{\theta}(X)$ is the maximum likelihood estimator.

Computing MLEs Either by solving $\nabla_{\theta} L(\theta) = 0$, or by looking at the graph of $L : \theta \mapsto L(\theta)$.

4 Parameter estimation

Statistic A statistic is any function T(X) that does not depend on θ .

Estimator An *estimator* of θ is any statistic T(X) that we might use to estimate θ . T(x) is the *estimate* of θ obtained via T(X) from observed values x.

Mean squared error (MSE) The mean squared error of an estimator T is defined by

$$MSE(T) = E([T - \theta]^2).$$

Bias The bias of an estimator T is defined by

$$b(T) = E(T) - \theta.$$

The estimator is *unbiased* if b(T) = 0 for all θ . MLEs are often asymptotically unbiased, and have MSEs $\sim 1/n$. For any estimator T, the following relation holds,

$$MSE(T) = var(T) + b(T)^{2}.$$

5 Confidence intervals

Confidence interval (CI) Given two statistics a(X) and b(X), and $0 < \alpha < 1$, the interval (a(X), b(X)) is called a *confidence interval* for θ with confidence level $1 - \alpha$ if, for all θ ,

$$P(a(\boldsymbol{X}) < \theta < b(\boldsymbol{X})) = 1 - \alpha.$$

It is also called a $100(1-\alpha)\%$ confidence interval.

CI for normal Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathrm{N}(\mu, \sigma_0^2)$, where μ is unknown and σ_0^2 is known. Then,

$$\frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1).$$

Therefore,

$$\mathbf{P}\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} < z_{\alpha/2}\right) = 2\Phi(z_{\alpha/2}) - 1 = 1 - \alpha,$$

where $\Phi(z_{\alpha/2}) = 1 - \alpha/2$. (Note that $\Phi(-x) = 1 - \Phi(x)$.) In other words,

$$\left(\overline{X}-z_{\alpha/2}\frac{\sigma_0}{\sqrt{n}},\overline{X}+z_{\alpha/2}\frac{\sigma_0}{\sqrt{n}}\right)$$

is a $100(1-\alpha)\%$ CI for μ . $(z_{\alpha/2}=1.96$ for $\alpha/2=0.05/2$.) Similarly, one-sided $100(1-\alpha)\%$ CIs are

$$\left(-\infty, \overline{X} + z_{\alpha} \frac{\sigma_0}{\sqrt{n}}\right)$$
 and $\left(\overline{X} - z_{\alpha} \frac{\sigma_0}{\sqrt{n}}, +\infty\right)$.

Central limit theorem (CLT) Let X_1, \ldots, X_n be a random sample of size n of any distribution with mean μ and variance $\sigma^2 < \infty$. Then, for all x,

$$P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le x\right) \to \Phi(x) \text{ as } n \to \infty.$$

Cl using the CLT Let X_1, \ldots, X_n be a random sample of size n of any distribution with mean $\mu(\theta)$ and variance $\sigma^2(\theta) < \infty$. Then,

$$\frac{\overline{X} - \mu(\theta)}{\sigma(\theta)/\sqrt{n}} \stackrel{d}{\approx} N(0, 1),$$

which yields

$$P\left(-z_{\alpha/2} < \frac{\overline{X} - \mu(\theta)}{\sigma(\theta)/\sqrt{n}} < z_{\alpha/2}\right) \approx 1 - \alpha.$$

At this point, one can either solve the inequality for θ , or estimate $\mu(\theta)$ and/or $\sigma(\theta)$ using the MLE $\hat{\theta}$.

Standard error Let T be an estimator of θ based on X. The *standard error* is defined by

$$SE(T) = \sqrt{var(T)}.$$

Note that SE(T) might depend on θ ; in that case, the MLE $\hat{\theta}$ might be used to estimate the standard error.

6 Linear regression with intercept

Model For each $1 \le i \le n$,

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

where σ^2 and x_1,\dots,x_n are known, and α,β are unknown. This yields pdfs

$$f_{Y_i}(y_i; \alpha, \beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \alpha - \beta x_i)^2\right).$$

Log-likelihood

$$\ell(\alpha, \beta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \alpha - \beta x_i)^2.$$

When the noise is $\stackrel{\text{iid}}{\sim}$ N(0, σ^2), the MLE is equivalent to the least squares estimator (LSE) obtained by minimizing

$$S(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2.$$

(For the LSE, only additive ϵ_i with $E(\epsilon_i) = 0$ is needed.)

MLE

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x}, \quad \hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})Y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\text{cov}(x, y)}{\sigma_x^2} = \frac{\rho_{x,y}\sigma_y}{\sigma_x},$$

with correlation coefficient $\rho_{x,y} = \text{cov}(x,y)/(\sigma_x \sigma_y)$.

Mean and variance of MLE For the computation, it is convenient to define $w_i = x_i - \overline{x}$, so that $\sum_{i=1}^n w_i = 0$.

$$\mathbf{E}(\hat{\alpha}) = \alpha, \quad \mathbf{E}(\hat{\beta}) = \beta, \quad \mathrm{var}(\hat{\beta}) = \sigma^2 \bigg/ \sum_{i=1}^n w_i^2.$$

Confidence interval Since

$$\hat{\beta} \sim N\left(\beta, \sigma^2 / \sum_{i=1}^n w_i^2\right),$$

a $100(1-\alpha)\%$ CI for β is

$$\left(\hat{\beta} \pm z_{\alpha/2}\sigma \middle/ \sqrt{\sum_{i=1}^{n} w_i^2}\right).$$

7 Linear regression without intercept

Model For each $1 \le i \le n$,

$$Y_i = \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2),$$

where σ^2 and x_1, \ldots, x_n are known, and β is unknown. This yields pdfs

$$f_{Y_i}(y_i; \beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \beta x_i)^2\right).$$

Log-likelihood

$$\ell(\beta) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_i - \beta x_i)^2.$$

MLE

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}, \quad E(\hat{\beta}) = \beta, \quad \text{var}(\hat{\beta}) = \sigma^2 / \sum_{i=1}^{n} x_i^2.$$

Confidence interval Since

$$\hat{\beta} \sim \mathcal{N}\left(\beta, \sigma^2 \bigg/ \sum_{i=1}^n x_i^2\right)$$

a $100(1-\alpha)\%$ CI for β is

$$\left(\beta \pm z_{\alpha/2}\sigma \middle/ \sqrt{\sum_{i=1}^n x_i^2}\right).$$

8 Assessing the fit of a model

Fitted value and residual

$$\hat{y}_i = \hat{\alpha} + \hat{\beta}x_i$$
 and $e_i = y_i - \hat{y}_i$.

Leverage

$$h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2},$$
 high when $h_i > 4/n$.

Mean and variance of residual

$$E(e_i) = 0$$
, $var(e_i) = \sigma^2(1 - h_i)$.

RSS and RSE and ${\sf R}^2$

$$RSS = \sum_{i=1}^{n} e_i^2, \quad RSE = \sqrt{\frac{1}{n-2}RSS}.$$

MSE and ${\sf R}^2$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} e_i^2$$
, $R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{RSS}$.

Studentized residual

$$r_i = \frac{e_i}{\sqrt{\operatorname{var}(e_i)}} = \frac{e_i}{\sigma\sqrt{1-h_i}}, \text{ outliers } |r_i| > 3.$$

Potential problems

2

- non-linearity (pattern in residual plot);
- varying variance (funnel-type shape in residual plot);
- errors are not independent;
- explanatory variables are measured with error;
- explanatory variables are not linearly independent.

9 Statistics in dimension $d \ge 1$

Covariance and correlation Let $X \in \mathbb{R}^d$ be a random vector. The *covariance matrix* $\Sigma \in \mathbb{R}^{d \times d}$ of X has entries

$$\Sigma_{i,j} = \operatorname{cov}(X_i, X_j), \quad 1 \le i, j \le d,$$

while the *correlation matrix* $\boldsymbol{\rho} \in \mathbb{R}^{d \times d}$ has elements

$$\rho_{i,j} = \frac{\operatorname{cov}(X_i, X_j)}{\sqrt{\operatorname{var}(X_i)\operatorname{var}(X_j)}}, \quad 1 \le i, j \le d.$$

Random sample A random sample of size n in dimension $d \geq 1$ is a set of iid random vectors $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^d$.

Sample mean The *sample mean* is the random vector

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Sample covariance and correlation The *sample covariance* and *sample correlation* are the random matrices

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{X}_i - \overline{\boldsymbol{X}}) (\boldsymbol{X}_i - \overline{\boldsymbol{X}})^T, \quad R_{ij} = \frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}}.$$

Note that $\mathbf{R} = \mathbf{W}^{-1/2} \mathbf{S} \mathbf{W}^{-1/2}$ with $\mathbf{W} = \text{diag}(\mathbf{S})$.

Mean-centred The mean-centred version of

$$m{X} = egin{bmatrix} m{X}_1^T \ dots \ m{X}_n^T \end{bmatrix} \in \mathbb{R}^{n imes d} \quad ext{is} \quad egin{bmatrix} m{X}_1^T - \overline{m{X}}^T \ dots \ m{X}_n^T - \overline{m{X}}^T \end{bmatrix} \in \mathbb{R}^{n imes d}.$$

If X is mean-centred, then

$$S = \frac{1}{n-1} X^T X.$$

Properties of covariance Let $X \in \mathbb{R}^d$ be a random vector with covariance matrix Σ . Then, for any $\alpha, \beta \in \mathbb{R}^d$,

$$var(\boldsymbol{\alpha}^T \boldsymbol{X}) = \boldsymbol{\alpha}^T \boldsymbol{\Sigma} \boldsymbol{\alpha},$$
$$cov(\boldsymbol{\alpha}^T \boldsymbol{X}, \boldsymbol{\beta}^T \boldsymbol{X}) = \boldsymbol{\alpha}^T \boldsymbol{\Sigma} \boldsymbol{\beta}.$$

Linear transformation (MVN) Let $X \in \mathbb{R}^d \sim \mathrm{N}_d(\mu, \Sigma)$ and $B \in \mathbb{R}^{m \times d}$. Then, $BX \sim \mathrm{N}_m(B\mu, B\Sigma B^T)$.

10 MLE in dimension $d \ge 1$

Likelihood (iid) Let $X_1, \ldots, X_n \in \mathbb{R}^d$ be a random sample of size n with pmfs/pdfs $f_{X_i}(x_i; \theta)$, which depends on some parameters θ . Then,

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{X_i}(\boldsymbol{x}_i; \boldsymbol{\theta}).$$

MLE (MVN) Let $X_1, \ldots, X_n \in \mathbb{R}^d$ be a random sample of size n with pdfs

$$f_{\boldsymbol{X}_i}(\boldsymbol{x}_i; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} \sqrt{\det \boldsymbol{\Sigma}}} \exp\left(-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})\right).$$

Then

$$\widehat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i, \quad \widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}} \right) \left(\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}} \right)^T.$$

11 Linear regression for $d \ge 1$

Model For each $1 \le i \le n$,

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_d x_{i,d} + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \text{N}(0, \sigma^2),$$

where σ^2 and $x_{i,1}, \ldots, x_{i,d}$ are known, and β_0, \ldots, β_d are unknown. This yields, adding a column of ones in X,

$$Y = X\beta + \epsilon, \quad \epsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n),$$

with $Y, \epsilon \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times (d+1)}$, $\beta \in \mathbb{R}^{d+1}$, and pdf

$$f_{\mathbf{Y}}(\mathbf{y}; \boldsymbol{\beta}) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right).$$

For $N_d(\mathbf{0}, \sigma^2 \mathbf{I}_d)$ noise, MLE is equivalent to LSE,

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

Log-likelihood

$$\ell(\boldsymbol{\beta}) = -\frac{n}{2}\log(2\pi) - n\log\sigma - \frac{1}{2\sigma^2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

MLE

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}.$$

Significance test The t-statistic is used to test the significance of each parameter,

$$t_{\widehat{\beta}_i} = \frac{\widehat{\beta}_i - \beta_{i,0}}{\sqrt{\operatorname{var}(\widehat{\beta}_i)}} \sim t_{n-d}.$$

12 Logistic regression for $d \ge 1$

Model For each $1 \le i \le n$,

$$P(Y_i = 1) = \frac{1}{1 + e^{-\beta^T X_i}}, \quad P(Y_i = 0) = 1 - P(Y_i = 1).$$

This yields pdfs

$$f_{Y_i}(y_i; \boldsymbol{\beta}) = P(Y_i = 1)^{-y_i} (1 - P(Y_i = 1))^{1-y_i}.$$

Log-likelihood

3

$$\ell(\boldsymbol{\beta}) = -\sum_{i=1}^{n} \log(1 + e^{\boldsymbol{\beta}^T \boldsymbol{X}_i}) + \sum_{i=1}^{n} y_i \boldsymbol{\beta}^T \boldsymbol{X}_i.$$

H. Montanelli

13 Principal component analysis

PCA Let $X_1, \ldots, X_n \in \mathbb{R}^d$ be a random sample with sample covariance matrix $S \in \mathbb{R}^{d \times d}$. The principal component analysis is the eigenvalue decomposition

$$S = VDV^T$$
.

where $D \in \mathbb{R}^{d \times d}$ is the matrix of decreasing eigenvalues, and $V \in \mathbb{R}^{d \times d}$ is the orthogonal matrix of eigenvectors.

Loadings and scores matrix The matrix V is called the loadings matrix, while the matrix $Z = XV \in \mathbb{R}^{n \times d}$ is the scores matrix. The rows of Z are called the principal components (PCs).

PCA (mean-centred) If X is mean-centred, then the sample covariance matrix of Z = XV is D.

PCA (correlation matrix) The PCA of R is equivalent to that of S when all the variances S_{ii} are the same.

Biplot A *biplot* is a plot that shows the PC scores together with vectors showing the PC loadings.

Scree plot The *scree plot* is the the visualization of the decreasing sequence of eigenvalues, scaled so that each bar is percentage of the total variance, that is, we plot

$$\frac{100D_i}{\operatorname{tr}(\boldsymbol{D})}, \quad 1 \le i \le d.$$

PCA via SVD The singular value decomposition of X,

$$X = P\Lambda Q^T$$

where $P \in \mathbb{R}^{n \times n}$ and $Q \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Lambda \in \mathbb{R}^{n \times d}$ is a the diagonal matrix, is equivalent to the PCA of $S = VDV^T$ via

$$V = Q$$
, $D = \frac{1}{n-1}\Lambda^T\Lambda$, $Z = XQ = P\Lambda$.

Computational cost Note that to get P and Λ , one can compute the e-value decomposition of XX^T since

$$XX^T = P(\Lambda\Lambda^T)P^T.$$

The computations costs are as follows:

- e-value decomposition of $X^T X$: $\mathcal{O}(d^3)$;
- e-value decomposition of XX^T : $\mathcal{O}(n^3)$;
- SVD of X: $\mathcal{O}(nd^2)$.

Low-rank approximations Let $\lambda_1, \ldots, \lambda_r$ denote the r largest e-values of S with e-vectors w_1, \ldots, w_r . Then,

$$oldsymbol{X} pprox \sum_{i=1}^r oldsymbol{X} oldsymbol{w}_i oldsymbol{w}_i^T,$$

is the best rank r-approximation to X.

14 Clustering

k-means clustering Let $X \in \mathbb{R}^{n \times d}$ be the matrix of n observations $X_1, \ldots, X_n \in \mathbb{R}^d$. The idea is to find, for a given k, the k clusters C_1, \ldots, C_k that minimize

$$\sum_{\ell=1}^{k} \frac{1}{|C_{\ell}|} \sum_{i,i' \in C_{\ell}} \|\boldsymbol{X}_{i} - \boldsymbol{X}_{i'}\|^{2}.$$

k-means algorithm

- Choose k.
- Randomly assign each observation to one of the clusters C_1, \ldots, C_k .
- Iterate the following 2 steps until the cluster assignments stop changing:
 - for each cluster compute the cluster mean,

$$\boldsymbol{\mu}_{\ell} = \frac{1}{|C_{\ell}|} \sum_{i \in C_{\ell}} \boldsymbol{X}_{i},$$

 re-assign all observations to the cluster whose mean is closest (using Euclidean distance).

Agglomerative clustering It is a type of hierarchical clustering that avoids having to specify the number of clusters in advance.

• Begin with n observations and a measure of the pairwise dissimilarities $d_{i,j}$ for $1 \le i \ne j \le n$,

$$D(n) = \begin{bmatrix} d_{2,1} \\ d_{3,1} & d_{3,2} \\ \vdots & \vdots & \ddots \\ d_{n,1} & d_{n,2} & \dots & d_{n,n-1} \end{bmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}.$$

It is common to use Euclidean distance to measure dissimilarity (but other options exist).

• For $i = n, n - 1, \dots, 2$,

4

- find the pair of clusters with the smallest dissimilarity, and fuse these two clusters;
- compute the new dissimilarity matrix between the new fused cluster and all other i-1 remaining clusters, and create an updated matrix of dissimilarities D(n-1).

Linkage methods Computing the dissimilarity matrix requires to compute the distance between two clusters G and H.

- Single Linkage: $d(G, H) = \min_{i \in G, j \in H} d_{i,j}$.
- Complete Linkage: $d(G, H) = \max_{i \in G, i \in H} d_{i,i}$.
- Group average: $d(G, H) = \sum_{i \in G, i \in H} d_{i,j}/(|G||H|)$.

Dendograms The results of an agglomerative clustering of a dataset can be represented as dendrogram, which is a tree-like diagram the allows us to visualize the way in which the observations have been joined into clusters.

H. Montanelli