

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Лабораторная работа №1 по дисциплине "Разработка программных комплексов" на тему "Проекционные методы"

Студент	ФН2-72Б		Токарев А.И.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Принял			Азметов Х. Х.
1		(Подпись, дата)	(И.О. Фамилия)

Содержание

1.	Задача	3
2.	Метод коллокации в точке	4
3.	Метод коллокаций в подобластях	5
4.	Метод Бубнова-Галеркина	6
5.	Метод Галеркина	7
6.	Метод наименьших квадратов	8
7.	Метод Ритца	9
8.	Выводы	.0

1. Задача 3

1. Задача

Создать программу решения дифференциального уравнения проекционными методами. Задано урванение на области [0,1]:

$$\frac{d^2u}{dx^2} + u + x = 0, \quad u(0) = u(1) = 0.$$

Необходимо реализовать методы решения:

- 1. Метод коллокаций в точках
- 2. Метод коллокаций в подобластях
- 3. Метод Бубнова-Галеркина
- 4. Метод Галеркина
- 5. Метод наименьших квадратов
- 6. Метод Ритца

Для каждого из методов нужно получить решение с порядком аппроксимации от 1 до 3.

2. Метод коллокации в точке

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.12	$a_1 = 0.286$
2	0.0117	$a_1 = 0.195, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.19, a_2 = 0.196, a_3 = -0.02$
4	$5 \cdot 10^{-5}$	$a_1 = 0.1883, a_2 = 0.1887, a_3 = -0.105, a_4 = -0.008$
5	$3 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

Рис. 1. График полученных решений при различных N

Рис. 2. График ошибок

3. Метод коллокаций в подобластях

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.27$
2	0.02	$a_1 = 0.1876, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.1882, a_2 = 0.193, a_3 = -0.023$
4	$4 \cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01, a_4 = -0.0086$
5	$1.5 \cdot 10^{-6}$	$a_1 = 0.1883, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

Рис. 3. График полученных решений при различных N

4. Метод Бубнова-Галеркина

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 5. График полученных решений при различных N

Рис. 6. График ошибок

5. Метод Галеркина

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.0037	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 7. График полученных решений при различных N

Рис. 8. График ошибок

6. Метод наименьших квадратов

Nº	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.2723$
2	0.021	$a_1 = 0.1875, a_2 = 0.1695$
3	$13\cdot 10^{-3}$	$a_1 = 0.1884, a_2 = 0.1928, a_3 = -0.02332$
4	$2\cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1885, a_3 = -0.01046, a_4 = -0.008571$
5	$1.23 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 9. График полученных решений при различных N

Рис. 10. График ошибок

7. Метод Ритца

No॒	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

Рис. 11. График полученных решений при различных N

Рис. 12. График ошибок

8. Выводы 10

8. Выводы

Рассмотренные проекционные методы дают достаточно высокую точность. Наилучшую точность дает метод Бубнова-Галеркина. В среднем, для получения относительной ошибки $10^{-4}-10^{-3}$ требуется взять 3 слагаемых в разложении по базисным функциям.