```
import pandas as pd
ds1=pd.read_excel('general_data.xlsx',sheet_name=0)
import numpy as np
import matplotlib.pyplot as plt
ds1.head()
Out[5]:
 Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager
0 51
         No ...
                           0
                                       0
1 31
        Yes ...
                           1
                                       4
2 32
         No ...
                           0
                                       3
3 38
         No ...
                          7
                                       5
4 32
         No ...
                           0
                                       4
[5 rows x 24 columns]
ds1.columns
Out[6]:
Index(['Age', 'Attrition', 'BusinessTravel', 'Department', 'DistanceFromHome',
   'Education', 'EducationField', 'EmployeeCount', 'EmployeeID', 'Gender',
   'JobLevel', 'JobRole', 'MaritalStatus', 'MonthlyIncome',
   'NumCompaniesWorked', 'Over18', 'PercentSalaryHike', 'StandardHours',
   'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear',
   'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager'],
   dtype='object')
ds1.isnull()
Out[7]:
    Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager
  False False ...
                              False
                                            False
   False
          False ...
                              False
                                            False
```

| 2 False False                                              | False | False |  |  |  |  |  |
|------------------------------------------------------------|-------|-------|--|--|--|--|--|
| 3 False False                                              | False | False |  |  |  |  |  |
| 4 False False                                              |       | False |  |  |  |  |  |
|                                                            | •••   |       |  |  |  |  |  |
| 4405 False False                                           | False | False |  |  |  |  |  |
| 4406 False False                                           | False | False |  |  |  |  |  |
| 4407 False False                                           | False | False |  |  |  |  |  |
| 4408 False False                                           | False | False |  |  |  |  |  |
| 4409 False False                                           | False | False |  |  |  |  |  |
|                                                            |       |       |  |  |  |  |  |
| [4410 rows x 24 columns]                                   |       |       |  |  |  |  |  |
|                                                            |       |       |  |  |  |  |  |
| ds1.duplicated()                                           |       |       |  |  |  |  |  |
| Out[8]:                                                    |       |       |  |  |  |  |  |
| 0 False                                                    |       |       |  |  |  |  |  |
| 1 False                                                    |       |       |  |  |  |  |  |
| 2 False                                                    |       |       |  |  |  |  |  |
| 3 False                                                    |       |       |  |  |  |  |  |
| 4 False                                                    |       |       |  |  |  |  |  |
|                                                            |       |       |  |  |  |  |  |
| 4405 False                                                 |       |       |  |  |  |  |  |
| 4406 False                                                 |       |       |  |  |  |  |  |
| 4407 False                                                 |       |       |  |  |  |  |  |
| 4408 False                                                 |       |       |  |  |  |  |  |
| 4409 False                                                 |       |       |  |  |  |  |  |
| Length: 4410, dtype: bool                                  |       |       |  |  |  |  |  |
| ds1.drop_duplicates()                                      |       |       |  |  |  |  |  |
| Out[10]:                                                   |       |       |  |  |  |  |  |
| Age Attrition YearsSinceLastPromotion YearsWithCurrManager |       |       |  |  |  |  |  |
| 0 51 No                                                    | 0     | 0     |  |  |  |  |  |
| 1 31 Yes                                                   |       | 4     |  |  |  |  |  |
| 2 32 No                                                    |       | 3     |  |  |  |  |  |
| 3 38 No                                                    | 7     | 5     |  |  |  |  |  |

0 4

4 32

No ...

| •••  |    |    | <br>••• |   |
|------|----|----|---------|---|
| 4405 | 42 | No | 0       | 2 |
| 4406 | 29 | No | 0       | 2 |
| 4407 | 25 | No | 1       | 2 |
| 4408 | 42 | No | 7       | 8 |
| 4409 | 40 | No | 3       | 9 |

[4410 rows x 24 columns]

ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()



ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].median()



ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()



ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked',
'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion',
'YearsWithCurrManager']].var()



ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()



ds3 = ds1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany', 'YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()



## Inference from analysis:

- All the above variables show positive skewness; while Age & Mean distance from home are leptokurtic and all other variables are platykurtic.
- The Mean Monthly Income IQR is at 54K suggesting company wide attrition income bands
- Mean age forms a near normal distribution with 13 years of IQR

## Outliers:

There's no regression found while plotting Age, Monthly Income, Total Working Years, Years At Company, etc., on a scatter plot

box\_plot = ds1.Age

plt.boxplot(box\_plot)

Out[20]:



There are no outliers the age is normally distributed

box\_plot = ds1.MonthlyIncome

plt.boxplot(box\_plot)

Out[22]:



Monthly Income is right skewed with several outliers

## box\_plot = ds1.YearsAtCompany

plt.boxplot(box\_plot)

Out[25]:

