IoT-alapú okosotthon rendszer fejlesztése

X

Konzulens: Y

2024. november 1.

Budapesti Műszaki és Gazdaságtudományi Egyetem - Villamosmérnöki és Informatikai Kar Automatizálási és Alkalmazott Informatikai Tanszék Önálló laboratórium 2.

Tartalomjegyzék

1.	Az Önálló laboratórium célja és háttere
	Az Önálló laboratórium célja és háttere1.1. Felhasznált eszközök
	1.2. Célkitűzés
2.	Elméleti háttér
	2.1. Thread protokoll
	2.2. Matter protokoll
3.	Megvalósított alkalmazások
	3.1. Környezet konfigurálása
	3.2. Matter alapú lámpa (<i>LED</i>) vezérlés
	3.1. Környezet konfigurálása
4.	Irodalomjegyzék és köszönetnyilvánítás

1. Az Önálló laboratórium célja és háttere

Ebben a fejezetben ismertetem a projekt célkitűzéseit, a megvalósításához szükséges eszközöket és technológiákat.

1.1. Felhasznált eszközök

- 1. 2 db ESP32-C6 wroom Wi-Fi-BT-Zigbee mikrokontroller Jelentősebb paraméterei, részletesen az alábbi linken érhető el:
 - (a) 32 bites RISC-V architektúra
 - (b) 160 MHz-es órajel
 - (c) 802.11 b/g/n (Wi-Fi 4) támogatás
 - (d) Zigbee 3.0, Thread 1.3, Bluetooth 5.3 BR/EDR és BLE támogatás

1. ábra. ESP32-C6 mikrokontroller

- 2. 1 db Raspberry Pi 3 model A+ (Plus)

 Jelentősebb paraméterei, részletesen az alábbi linken érhető el:
 - (a) Processzor: Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4 GHz
 - (b) Wifi: 2.4GHz és 5GHz IEE 802.11.b/g/n/ac WLAN támogatás

2. ábra. Raspberry Pi 3 model A+ (Plus)

1.2. Célkitűzés

A projekt célja egy demonstrációs IoT (*Internet of Things*)-alapú okosotthon rendszer fejlesztése a *Matter* protokollra alapozva. A központi kiszolgáló egy *Raspberry Pi*-alapú szerver, amelyhez a szenzorok vezeték nélküli kapcsolattal, *Matter* protokoll segítségével csatlakoznak. A dokumentáció során részletezésre kerül a *Matter*, *Thread* protokoll, amely a feladat középpontjában helyezkedik el, illetve a megfelelő beállítások a demonstrációs kódok futtatásához és eszközre való töltéséhez. A főfeladat mellett kisebb demonstrációs alkalmazások is elkészültek, amelyek egyrészt a főprojekt alapjainként szolgál továbbá igyekszik bemutatni a protokoll használatát lépésenként, ezzel egyszerűsítve a terület önálló felfedezését.

2. Elméleti háttér

Ebben a fejezetben a feladat során felmerülő és alklalmazott protokollok alapvető felépítését és jelentőségét igyekszem ismertetni.

2.1. Thread protokoll

A Thread egy alacsony energiaigényű, *IPv6*-alapú *mesh* hálózati protokoll, amelyet az *IoT*-eszközök közötti stabil és biztonságos kommunikációra terveztek. Az *IEEE 802.15.4* vezeték nélküli szabványra és a *6LoWPAN* technológiára épül, ami lehetővé teszi az *IP*-alapú kommunikációt a 2.4 GHz-es tartományban, akárcsak Zigbee esetében. A Thread hálózatban minden eszköz *IP*-címezhető, így könnyen integrálható például felhőalapú rendszerekhez, és *AES (Advanced Encryption Standard)* titkosítással védi az adatokat. A Matter szabvány kiegészítéseként a Thread lehetőséget nyújt az okosotthon eszközök közötti zökkenőmentes együttműködést és megbízható kapcsolódást kínál (hasonlóan a Wi-Fi-hez), mivel a Matter az *IP*-kompatibilis hálózatokat támogatja, így a Thread hálózatokba kapcsolt eszközök is közvetlenül csatlakoztathatók és felügyelhetők.

A felhasználók saját eszközeikről (okostelefon, tablet vagy számítógép) Wi-Fi-n keresztül csatlakoznak a lakásban működő Thread hálózathoz a helyi hálózatukon (*Home Area Network*), vagy egy felhőalapú alkalmazás segítségével érik el azt. Ezt a következő ábárn is láthatjuk, a Thread kommunikációban résztvevő eszközök mellett, melyekről részletesen olvashatunk [3]-ban.

3. ábra. Thread hálózat felépítése [3]

2.2. Matter protokoll

"A Matter egy egységes, nyílt forráskódú alkalmazásrétegbeli kommunikációs szabvány, amelynek célja, hogy a fejlesztők és eszközgyártók számára lehetővé tegye megbízható és biztonságos ökoszisztémák kiépítését, valamint növelje az okosotthon-eszközök közötti kompatibilitást. Az *IP* (*Internet Protocol*) használatával, piac által igazolt technológiákra építve fejlesztették ki, és kompatibilis a Thread és Wi-Fi hálózati átviteli rendszerekkel." [1]

A protokoll felépítését tekintve *IPv6* alapú kommunikációt biztosít az okosotthon eszközöknek, amelyet réteges architektúrával jellemezhető.

4. ábra. Matter architektúrája

A rétegek száma 7, amelyekről részletesebben a *Matter specifikációban (jelen dokumentáció az 1.0-ás verziót [2] használja referenciaként)* olvashatunk.

- 1. Application
- 2. Data Model
- 3. Interaction Model
- 4. Action Framing
- 5. Security
- 6. Message Framing & Routing
- 7. IP Framing & Transport Managment

A kommunikációban résztvevő felek hasonlóak, mint a *Thread* protokollnál, amelyet talán az alábbi ábrával a legegyszerűbb szemléltetni (természetesen a specifikációban részletesebben találunk információkat [2]).

5. ábra. Matter kommunikációban résztvevő eszközök és szerepük

3. Megvalósított alkalmazások

Ebben a fejezetben a fentebb tárgyalt, kisebb gyakorlati példákon keresztül igyekszem demonstrálni a protokoll működését, hogy minél egyszerűbben és érthetőbben lehessen megérteni (az egyébként hiányos leírásokkal elérhető hivatalos példákat is).

3.1. Környezet konfigurálása

A fejlesztés során felhasznált környezet:

1. Host: Ubuntu 22.04 LTS

2. ESP-IDF: v5.3.1 stable

3. ESP-Matter: commit f72d175d43bc7e4a29a3fefea115ecddd80ad747

4. **Git**

Amennyiben jelen dokumentáció alapján szeretnénk haladni, győződjünk meg a megfelelő verzió használatáról

```
git branch
```

1. Kódrészlet. verzió ellenőrzés

Amennyiben eltérés van, akkor a következő paranccsal orvosolhatjuk a problémát.

```
cd $IDF_PATH
git fetch
git checkout vX.Y.Z && git submodule --init --recursive
```

2. Kódrészlet. stabil verzió választása [?]

3.2. Matter alapú lámpa (LED) vezérlés

TODO

3.3. Controller / Board Router megvalósítása

TODO

4. Irodalomjegyzék és köszönetnyilvánítás

Hivatkozások

- [1] Connectivity Standards Alliance. *Matter (Project CHIP) Documentation*. Connectivity Standards Alliance, 2023. Accessed: 2024-10-30.
- [2] Connectivity Standards Alliance. *Matter (Project CHIP) Specification*. Connectivity Standards Alliance, 2023. Accessed: 2024-10-30.
- [3] Silicon Labs. UG103.11: Thread Fundamentals. Silicon Labs, 2023. Accessed: 2024-10-30.