## METODI DI PUNTO FISSO

Sia  $\varphi:[a,b]\subset\mathbb{R}\to[a,b]$  continua.

Def.  $\alpha$  è punto fisso per  $\varphi$  se  $\varphi(\alpha) = \alpha$ Il metodo di punto fisso è:

$$\begin{cases} x^{(0)} \text{ dato} \\ x^{(k+1)} = \varphi(x^{(k)}), & \text{per } k \ge 0 \end{cases}$$

Scrivere una function per l'approssimazione di un punto fisso  $\alpha$  di  $\varphi$ .

INPUT: phi, x0, tol, nmax

OUTPUT: alpha, niter, errori

alpha: approssimazione del punto fisso

niter: numero iterazioni per soddisfare il test d'arresto errori: vettore degli errori  $\operatorname{err}_k = ||x^{(k)} - x^{(k-1)}||$ . per

k=1,...,niter



## Esercizio (era un tema d'esame)

Si consideri il problema di approssimare numericamente il valore  $\sqrt{2}$ , che equivale a calcolare la radice positiva di  $f(x) = x^2 - 2$ .

A tale proposito si considerino le seguenti funzioni di punto fisso:

$$\varphi_{1}(x) = -\frac{1}{4}x^{2} + x + \frac{1}{2} 
\varphi_{2}(x) = -x^{2} + x + 2 
\varphi_{3}(x) = \frac{x}{2} + \frac{1}{x}.$$
(1)

- a) Dire se le funzioni di punto fisso proposte sono adeguate per il calcolo della radice positiva di f, giustificando le risposte date.
- b) Verificare numericamente quanto affermato al punto a), scrivendo una function matlab che, dati in input phi (l'espressione della funzione  $\varphi$ ), x0 (il punto iniziale  $x_0$ ), tol (la tolleranza per il test d'arresto) e nmax (il numero massimo di iterazioni), costruisca la successione  $x^{(k+1)} = \varphi(x^{(k)})$  ( $\varphi$  è una qualsiasi delle tre funzioni di punto fisso date in (1)). In particolare fissare tol=10<sup>-12</sup> e nmax=100 e, a parità di x0, dire se i metodi (convergenti) sono equivalenti o meno, quale è preferibile e perchè. Si può dedurre qualche informazione sull'ordine di convergenza delle successioni  $x^{(k+1)} = \varphi(x^{(k)})$  al valore  $\sqrt{2}$ ?

## Svolgimento

a) Anzitutto bisogna verificare che le funzioni di punto fisso assegnate ammettano  $\sqrt{2}$  come punto fisso.

$$arphi_1(\sqrt{2}) = -\frac{1}{4}2 + \sqrt{2} + \frac{1}{2} = \sqrt{2} \rightarrow OK$$

$$arphi_2(\sqrt{2}) = -2 + \sqrt{2} + 2 = \sqrt{2} \rightarrow OK$$

$$arphi_3(\sqrt{2}) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \rightarrow OK$$

Tutte e tre le funzioni ammettono come punto fisso il valore  $\sqrt{2}$ . A questo punto rappresentiamo graficamente le funzioni di punto fisso e vediamo SE  $|\varphi'(\alpha)| < 1$ , oppure SE esiste un intorno  $I(\alpha)$  t.c.  $|\varphi'(x)| < 1 \quad \forall x \in I(\alpha)$ .

Se questa condizione è soddisfatta, sappiamo dal teorema di OSTROWSKI, che se  $x^{(0)}$  è suff. vicino ad  $\alpha$ , allora la successione generata con punto fisso converge ad  $\alpha$ .



Per le funzioni  $\varphi_1(x)$  e  $\varphi_3(x)$  la condizione che garantisce la convergenza è soddisfatta, per cui la successione  $x^{(k+1)} = \varphi(x^{(k)})$  converge ad  $\alpha$ , preso  $x^{(0)}$  vicino.

Per la funzione  $\varphi_2(x)$ , ad occhio non si vede molto bene se la condizione è soddisfatta. Possiamo valutare  $\varphi_2'(\alpha)$ . Si ha  $\varphi_2'(\alpha) = -2\sqrt{2} + 1 < -1$ . QUINDI  $\varphi_2$  non produrrà una successione convergente ad  $\alpha$ .

Definiamo i dati, richiamiamo la function di punto fisso e rappresentiamo in scala semilogaritmica gli errori:

```
phi1=@(x)-x.^2/4+x+0.5;
x0=1.5; tol=1.e-12; nmax=100;
[alpha1,niter1,err1]=pfisso(phi1,x0,tol,nmax);
figure(1); clf
semilogy(err1,'r','Linewidth',2);
grid on
```

Fare lo stesso lavoro con le altre funzioni  $\varphi(x)$ .

## Il grafico delle storie di convergenza è:



e si vede che la successione generata con  $\varphi_2$  non converge, le altre due convergono.



Dalla teoria sappiamo che se  $\varphi'(\alpha) \neq 0$  allora il metodo converge linearmente. Se  $\varphi'(\alpha) = 0$  allora il

Se  $\varphi'(\alpha) = 0$  allora il metodo converge quadraticamente.

Facendo i conti per  $\varphi_1$  si ha  $\varphi_1'(\alpha)=1/2$ , ovvero ci si attende una convergenza lineare. Effettivamente il grafico degli errori generati da  $\varphi_1$  decresce linearmente e richiede 23 iterazioni per soddisfare il test d'arresto.

Facendo i conti per  $\varphi_2$  si ha  $\varphi_2'(\alpha) = 0$ , ovvero ci si attende una convergenza quadratica. Effettivamente il grafico degli errori generati da  $\varphi_2$  decresce più che linearmente (sembra una parabola) e richiede 5 iterazioni per soddisfare il test d'arresto.

Per concludere: scrivere il metodo di Newton per risolvere l'equazione  $f(x) = x^2 - 2 = 0$ . Con quale metodo di punto fisso coincide tra i tre proposti nel tema?