## Math 650, Foundations of Optimization, Spring 2010

Sandipan Dey, Homework Assignment - 4

January 16, 2009

## **Problem 3 Solution**

The problem  $max\{x^2 + (y+1)^2 : -x^2 + y \ge 0, x+y \le 2\}$  can be converted to the following minimization problem P:

$$min - \frac{1}{2}x^2 - \frac{1}{2}(y+1)^2$$
s.t.  $x^2 - y \le 0$ 

$$x + y - 2 \le 0$$

(a) We have the objective function  $f(x,y) = -\frac{1}{2}x^2 - \frac{1}{2}(y+1)^2$  (maximize radius of the circle at centered at (0,-1) satisfying the following constraints)  $g_1(x,y) = x^2 - y \le 0$ ,  $g_2(x,y) = x + y - 2$  and h(x,y) = 0.

By the FJ condition, if a point  $(x^*, y^*)$  is a local minimizer of P, then there exist multipliers  $(\lambda_0, \lambda_1, \lambda_2)$ , not all zero,  $(\lambda_0, \lambda_1, \lambda_2) \geq 0$ , s.t.,

$$\lambda_0 \nabla f(x^*, y^*) + \lambda_1 \nabla g_1(x^*, y^*) + \lambda_2 \nabla g_2(x^*, y^*) = 0, \ \lambda_1, \lambda_2 \ge 0$$
  
$$g_1(x^*, y^*) \le 0, \ g_2(x^*, y^*) \le 0, \ \lambda_1 g_1(x^*, y^*) = 0, \ \lambda_2 g_2(x^*, y^*) = 0$$

Now, 
$$\nabla f(x,y) = \begin{bmatrix} -x \\ -y-1 \end{bmatrix}$$
,  $\nabla g_1(x,y) = \begin{bmatrix} 2x \\ -1 \end{bmatrix}$ ,  $\nabla g_2(x,y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ .

Equivalently we could also form the weak Lagrangian

 $L(x, y, \lambda) = \lambda_0 \cdot \left(-\frac{1}{2}x^2 - \frac{1}{2}(y+1)^2\right) + \lambda_1(x^2 - y) + \lambda_2(x+y-2)$  and have the above FJ conditions  $\Rightarrow$ 

$$\frac{\partial L}{\partial x} = (-\lambda_0 + 2\lambda_1)x^* + \lambda_2 = 0 \tag{1}$$

$$\frac{\partial L}{\partial y} = -\lambda_0 y^* - \lambda_0 - \lambda_1 + \lambda_2 = 0 \tag{2}$$

$$\lambda_1 \ge 0, \ x^{*2} - y^* \le 0, \ \lambda_1(x^{*2} - y^*) = 0$$
 (3)

$$\lambda_2 \ge 0, \ x^* + y^* - 2 \le 0, \ \lambda_2(x^* + y^* - 2) = 0$$
 (4)

$$(\lambda_0, \lambda_1, \lambda_2) \neq 0 \tag{5}$$

Let's assume to the contrary  $\lambda_0 = 0$ 

Now  $\lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2$  (from (2))  $\Rightarrow \lambda_1(2x^* + 1) = 0$ . But  $\lambda_1$  can't be zero, since it implies  $(\lambda_0, \lambda_1, \lambda_2) = 0$ , which can't be, by (5). Hence,  $x^* = \frac{1}{2} \Rightarrow y^* = \frac{1}{4}$ , from (3), since  $\lambda_1 \neq 0$ . Also,  $x^* = \frac{1}{2} \Rightarrow y^* = 2 - x^* = \frac{3}{2}$ , from (4), since  $\lambda_2 \neq 0$ , a contradiction.

Since,  $\lambda_0 \neq 0$ , the KKT condition holds.

(b) As seen from the graph, the optimal solution point is (-2,4). The opti-



mal value of the objective function is shown.

(c) Since KKT condition holds, scaling  $\lambda_0$  to 1, we have the following from (1) and (2),

$$x^* = \frac{\lambda_2}{1 - 2\lambda_1} \tag{6}$$

$$y^* = \lambda_2 - \lambda_1 \tag{7}$$

Considering the sign of the multipliers  $\lambda_1, \lambda_2$  (combinatorial game!),

- 1.  $\lambda_1 > 0$ ,  $\lambda_2 > 0$ , then from (3) and (4) we have,  $x^{*2} = y^*$  and  $x^* + y^* = 2 \Rightarrow x^* + x 2 = 0 \Rightarrow x^* = -2, 1$ . Hence the two points are  $(x^*, y^*) = (-2, 4)$  and  $(x^*, y^*) = (1, 1)$ . The point (-2, 4) is a valid KKT point since the multipliers  $(\lambda_1, \lambda_2) = (2, 6)$  at this point (both positive). But for the point (1, 1), we have  $\lambda_1 = 0$ , which is impossible.
- 2.  $\lambda_1 = 0$ ,  $\lambda_2 > 0$ , then from (1), (2) and (4) we have,  $x^* = \lambda_2$  and  $y^* = \lambda_2 1$  and  $x^* + y^* = 2$  respectively  $\Rightarrow \lambda_2 = \frac{3}{2} \Rightarrow (x^*, y^*) = (\frac{3}{2}, \frac{1}{2})$ , which is feasible as well, hence another KKT point.

- 3.  $\lambda_1 > 0$ ,  $\lambda_2 = 0$ , then from (1), (2) and (3) we have,  $x^*(-1+2\lambda_1) = 0$  and  $y^* = -\lambda_1 1$  and  $y^* = x^{*2}$  respectively. Now,  $x^* = 0 \Rightarrow y^* = 0 \Rightarrow \lambda_1 = -1$  hence impossible and  $\lambda_1 = \frac{1}{2} \Rightarrow y^* = -\frac{3}{2} = x^2$  again impossible, hence none of the points are KKT points in this case.
- 4.  $\lambda_1=0,\ \lambda_2=0$ , then from (1) and (2) we have,  $x^*=0$  and  $y^*=-1$  is a possible KKT point, but this point is not feasible, hence not a KKT point.

To summerize, we have 2 KKT points, (-4,2) and  $(\frac{3}{2},\frac{1}{2})$ . Hence, the global maximizer is the point (-2,4).