

EXERCISE 1.1

1. If $a, b \in \mathbf{R}$ and $a + b = 0$, prove that $a = -b$.
2. Prove that $(-a)(-b) = ab$ for all $a, b \in \mathbf{R}$.
3. Prove that $| |a| - |b| | \leq |a - b|$ for every $a, b \in \mathbf{R}$.
4. Express $3 < x < 7$ in modulus notation.
5. Let $\delta > 0$ and $a \in \mathbf{R}$. Show that $a - \delta < x < a + \delta$ if and only if $|x - a| < \delta$.
6. Give an example of a set of rational numbers which is bounded above but does not have a rational Sup.

Solve each of the following (Problems 7 - 15):

7. $\checkmark |2x + 5| > |2 - 5x|$

8. $\left| \frac{x+8}{12} \right| < \frac{x-1}{10}$

9. $\checkmark |x| + |x - 1| > 1$

10. $12x^2 - 25x + 12 > 0$

11. $\checkmark \frac{x-1}{2} - \frac{1}{x} > \frac{4}{x} + 5$

12. $|x^2 - x + 1| > 1$

13. $\checkmark x^{-2} - 4x^{-1} + 4 > 0$

14. $\frac{2x}{x+2} \geq \frac{x}{x-2}$

15. $\checkmark x^4 - 5x^3 - 4x^2 + 20x \leq 0$

16. The cost function $C(x)$ and the revenue function $R(x)$ for producing x units of a certain product are given by

$$C(x) = 5x + 350, R(x) = 50 - x^2.$$

Find the values of x that yield a profit.

Function from \mathbf{R} to \mathbf{R} is defined by the given formula. Determine the domain of the function (Problems 17 - 22)

17. $f(x) = \sqrt{1 - x^2}$

18. $f(x) = \frac{a+x}{a-x}$

19. $f(x) = \frac{1}{\sqrt{(1-x)(2-x)}}$

20. $f(x) = \sqrt{3+x} + \sqrt{7-x}$

21. $f(x) = \begin{cases} x^2 - 1 & \text{if } x \leq 2 \\ \sqrt{x-1} & \text{if } x > 2 \end{cases}$

22. $f(x) = \sqrt{\frac{x-4}{x+1}}$

and find $f(2)$.

Draw the graphs of the following functions (Problems 23 – 30):

23. $f(x) = [x] + [x-1]$, for all $x \in \mathbb{R}$

24. $f(x) = [x] + [x+1]$, for all $x \in \mathbb{R}$

25. $f(x) = x - [x]$, for $x \in [-3, 3]$ [Saw Tooth Function]

26. $f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0 \\ -\frac{1}{x} & \text{if } x > 0 \end{cases}$

27. $f(x) = x^2 + 2x - 1$, for all $x \in \mathbb{R}$.

28. $f(x) = \frac{1}{x^2}$, $x \neq 0$

29. $f(x) = \frac{1}{x}$, $x \neq 0$

30. $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0. \end{cases}$

This is known as **signum (sgn)** function.

Find the Sup and Inf (if they exist) of the given set (Problems 31 – 34):

31. $\left\{ (-1)^n \left(1 - \frac{1}{n} \right), n = 1, 2, 3 \dots \right\}$

32. The set of all nonnegative integers.

33. The set $A = \{x \in \mathbb{R} : 0 < x \leq 3\}$

34. The set $B = \{x \in \mathbb{R} : x^2 - 2x - 3 < 0\}$

Sketch the graph of the given equation. Also determine which is the graph of a function (Problems 35 – 38):

35. $y^2 = x$ 36. $|x| = |y|$

37. $x^2 + y^2 = 9$ 38. $y = |x| + x$

39. Find formulas for the functions $f+g$, fg and $\frac{f}{g}$, where

$$f(x) = \sqrt{x^2 - 1}, \quad g(x) = \frac{1}{\sqrt{4 - x^2}}$$

Also write the domain of each of these functions.

40. Find formulas for $f \circ g$ and $g \circ f$, where

$$f(x) = \sqrt{x^3 - 3}, \quad g(x) = x^2 + 3.$$

Exercise 1.1

1:- If $a, b \in R$ and $a+b=0$, Prove that $a=-b$

Sol: Since $b \in R$ (given)

So there exist $-b \in R$

$$\text{s.t. } b+(-b) = 0 \rightarrow (1)$$

$$\therefore a+b = 0 \text{ (given)}$$

Adding $(-b)$ both Sides

$$a+b+(-b) = 0+(-b)$$

$$a+(b+(-b)) = -b \text{ (by Associative Law)}$$

$$a+0 = -b \quad (\text{by Additive Inverse Law})$$

$$a = -b \quad (\text{by Additivity Law})$$

2:- Prove that $(-a)(-b) = ab \quad \forall a, b \in R$

Sol:-

$$\begin{aligned} (-a)(-b) - ab &= (-a)(-b) + (-ab) \quad (\text{Def. of Subt.}) \\ &= (-a)(-b) + (-a)b \\ &= (-a)(-b+b) \quad \because (-a)b = -ab \\ &= (-a)(0) \quad (\text{by Distributive Law}) \\ &= 0 \quad (\text{by Inverse Law}) \end{aligned}$$

So

$$(-a)(-b) - ab = 0$$

$$\Rightarrow (-a)(-b) = ab \quad \because x-y=0 \Rightarrow x=y$$

3:- Prove $|a| - |b| \leq |a-b| \quad \forall a, b \in R$

Sol: Here

$$\begin{aligned} |a| &= |a-b+b| \quad \text{+P-3} \\ &\leq |a-b| + |b| \end{aligned}$$

$$|a| \leq |a-b| + |b|$$

$$|a| - |b| \leq |a-b| \rightarrow (1)$$

$$\begin{aligned} \text{Again } |b| &= |b-a+a| \quad \text{+P-3 by a} \\ &\leq |b-a| + |a| \end{aligned}$$

$$|b| - |a| \leq |b-a|$$

$$\begin{cases} |b| - |a| \leq |a-b| \\ \text{+ by -1 on both sides} \\ |a| - |b| \geq -|a-b| \rightarrow (2) \end{cases}$$

from (1) + (2)

$$\begin{aligned} -|a-b| &\leq |a| - |b| \leq |a-b| \\ \Rightarrow |a| - |b| &\leq |a-b| \text{ Prove} \end{aligned}$$

$$\begin{aligned} \therefore |x| &\leq a \\ \Rightarrow -a &\leq x \leq a \end{aligned}$$

4

Express $3 < x < 7$ in modulus notation

Sol:

We know

$$|x-a| < b$$

$$\Rightarrow -b < x-a < b$$

$$\Rightarrow a-b < x < a+b \quad \text{Add} \ 'a,$$

$$\text{Also given } 3 < x < 7 \rightarrow \textcircled{5}$$

Comparing $\textcircled{1}$ & $\textcircled{2}$

$$a-b = 3 \quad \& \quad a+b = 7$$

$$\begin{array}{r} \text{Add} \ 'a \\ \cancel{a-b=3} \\ \cancel{a+b=7} \\ \hline 2a = 10 \\ \boxed{a=5} \end{array}$$

$$\begin{array}{r} \text{Sub} \\ \cancel{a-b=3} \\ \cancel{a+b=7} \\ \hline -2b = -4 \\ b = \frac{-4}{-2} \\ \boxed{b=2} \end{array}$$

So Required Mod. Notation is

$$|x-5| < 2 \Rightarrow |x-5| < 2$$

5

Let $\delta > 0$ and $a \in \mathbb{R}$ Show that $a-\delta < x < a+\delta$

$$\text{iff } |x-a| < \delta$$

Sol:

$$\text{Let } a-\delta < x < a+\delta$$

$$a-\delta-a < x-a < a+\delta-a \quad \text{Sub } 'a,$$

$$-\delta < x-a < \delta$$

$$\Rightarrow |x-a| < \delta \quad \text{By def: of Mod.}$$

Conversely Let $|x-a| < \delta$

$$\Rightarrow -\delta < x-a < \delta \quad \text{By def: of mod.}$$

$$\Rightarrow -\delta+a < x-a+a < \delta+a \quad \text{Add} \ 'a,$$

$$\Rightarrow -\delta+a < x < \delta+a$$

$$\Rightarrow a-\delta < x < a+\delta$$

Proved.

So $a-\delta < x < a+\delta$ iff $|x-a| < \delta$.

x

(17)

6) Give an example of a set of rational numbers which is bounded above but does not have a rational supremum

Sol: Consider a set A of rational number defined by

$$A = \left\{ x \in \mathbb{Q} : x^2 < 2 \right\}$$

It is obvious that set A is bounded above but it does not have rational sup.

Because its sup is $\sqrt{2}$ which is irrational.

Q7 Solve $|2x+5| > |2-5x| \rightarrow ①$

Sol: Associate eq.

$$2x+5 = \pm (2-5x)$$

$$2x+5 = 2-5x$$

$$2x+5x = 2-5$$

$$7x = -3$$

$$x = -\frac{3}{7}$$

$$2x+5 = -(2-5x)$$

$$2x+5 = -2+5x$$

$$7 = 3x$$

$$x = \frac{7}{3}$$

For Region A Put $x = -1$ in ① $|2+5| > |2+5|$ False

For Region B Put $x = 1$ in ① $|2+5| > |2-5|$ True

For Region C Put $x = 3$ in ① $|6+5| > |2-15|$ False

Hence. Solution Set is $\left\{ x : -\frac{3}{7} < x < \frac{7}{3} \right\} = \left[-\frac{3}{7}, \frac{7}{3} \right]$

Q8 $\left| \frac{x+8}{12} \right| < \frac{x-1}{10} \rightarrow ①$

Associate eq $\frac{x+8}{12} = \pm \left(\frac{x-1}{10} \right)$

(18)

$$\frac{x+8}{12} = \frac{x-1}{10}$$

$$10x+80 = 12x-12$$

$$\Rightarrow 92 = 2x$$

$$\Rightarrow \boxed{x=46}$$

$$\frac{x+8}{12} = -\frac{(x-1)}{10}$$

$$10x+80 = -12x+12$$

$$22x = -68$$

$$x = \frac{-68}{22} = -\frac{34}{11} = -3.09$$

Region A, Put $x = -4$ in ① $|\frac{-4+8}{12}| < -\frac{5}{10}$

$$\frac{1}{3} < -\frac{1}{2} \quad (\text{False})$$

Region B Put $x=0$ in ① $|\frac{8}{12}| < -\frac{1}{10}$

$$\frac{2}{3} < -\frac{1}{10} \quad (\text{False})$$

Region C Put $x=50$ in ① $|\frac{58}{12}| < \frac{49}{10}$

$$4.83 < 4.9 \quad \text{True.}$$

Hence S.S = $[46, \infty] = \{x \mid x > 46\}$

$$⑨ |x| + |x-1| > 1$$

Associate Eq. $|x| + |x-1| = 1$

$$\pm x \pm (x-1) = 1$$

(+, -)

$$-x - (x-1) = 1$$

(+, -)

$$x - (x-1) = 1$$

(-, +)

$$-x + x - 1 = 1$$

(+, +)

$$+x + (x-1) = 1$$

$$1 = 1$$

$$2x - 1 = 1$$

$$-1 = 1$$

$$2x = 2$$

Impossible.

$$\boxed{x=1}$$

$$\boxed{x=0}$$

Region A Put $x = -1$ in ① $1+2 > 1$ (True)

Region B Put $x = \frac{1}{2}$ in ① $|\frac{1}{2}| + |\frac{1}{2}-1| > 1$
 $1 > 1$ (False)

Region C Put $x = 2$ in ① $|\frac{2}{2}| + |\frac{2}{2}-1| > 1$ (True)

$$S.S =]-\infty, 0[\cup [1, \infty[$$

$$(10) \quad 12x^2 - 25x + 12 > 0 \rightarrow \textcircled{1}$$

Associate Eq. of \textcircled{1} is

$$12x^2 - 25x + 12 = 0$$

$$x = \frac{25 \pm \sqrt{625 - 576}}{24} = \frac{25 \pm 7}{24} = \frac{4}{3} > \frac{3}{4} \text{ are boundary Number for } \textcircled{1}$$

The number line will be divided into the region as show. in fig

Region A test $x=0$ in \textcircled{1} $12 > 0$ (True)

Region B test $x=1$ in \textcircled{1} $-1 > 0$ (False)

Region C test $x=2$ in \textcircled{1} $48 - 50 + 12 > 0$ (True)

So the Solution Set is

$$\left\{ x : x < \frac{3}{4} \right\} \cup \left\{ x : x > \frac{4}{3} \right\} =]-\infty, \frac{3}{4}[\cup [\frac{4}{3}, \infty[$$

$$(11) \quad \frac{x-1}{2} - \frac{1}{x} > \frac{4}{x} + 5$$

Associate Eq. of \textcircled{11} is

$$\frac{x-1}{2} - \frac{1}{x} = \frac{4}{x} + 5$$

$$\text{or } \frac{x^2 - x - 2}{2x} = \frac{4+5x}{x}$$

by x multiply.

$$x(x^2 - x - 2) = 2x(4 + 5x)$$

$$x^3 - x^2 - 2x = 8x + 10x^2$$

$$\Rightarrow x^3 - 11x^2 - 10x = 0$$

$$\Rightarrow x(x^2 - 11x - 10) = 0$$

$$\Rightarrow x=0 \text{ and } x^2 - 11x - 10 = 0$$

$$x = \frac{11 \pm \sqrt{121 + 40}}{2}$$

Note

0 is free boundary number because at

$x=0$ the denominator

of ① Vanishes

$$\text{i.e. } \frac{x^2 - x - 2}{0} = \frac{4 + 5x}{0}$$

So '0' can not be Sol: Set

$$= \frac{11 \pm \sqrt{161}}{2} = \frac{11 \pm 12.68}{2}$$

$$= \frac{23.68}{2}, \quad -\frac{1.68}{2}$$

$$= 11.84, \quad -0.84 \quad (\text{are only Bound.})$$

$$\approx 12, \quad -1 \quad \text{Number}$$

So the number line is divided into distinct regions

Region A test $x = -2$ in ① $\frac{-2-1}{2} + \frac{1}{2} > -\frac{4}{2} + 5$
 $\text{or } \frac{-3}{2} + \frac{1}{2} > 3 \quad (\text{False})$

Region B test $x = -\frac{1}{2}$ in ① $\frac{-\frac{1}{2}-1}{2} - \frac{1}{12} > \frac{4}{-12} + 5$
 $-\frac{3}{4} + 2 > -8 + 5$
 $\frac{5}{4} > -3 \quad (\text{True})$

Region C test $x = 10$ in ① $\frac{10-1}{2} - \frac{1}{10} > \frac{4}{10} + 5$
 $\frac{9}{2} - \frac{1}{10} > \frac{54}{10}$
 $\frac{44}{10} > \frac{54}{10} \quad (\text{False})$

Region D test $x = 15$ in ① $\frac{15-1}{2} - \frac{1}{15} > \frac{4}{15} + 5$
 $7 - \frac{1}{15} > \frac{4}{15} + 5$
 $\frac{104}{15} > \frac{79}{15} \quad (\text{True})$

we see that region B & D are Solution Sets

So Solution Set is $\left] \frac{11 - \sqrt{161}}{2}, 0 \right[\cup \left] 1, \frac{11 + \sqrt{161}}{2} \right[$

(12) $|x^2 - x + 1| > 1 \rightarrow \textcircled{1}$

Associated Eq of $\textcircled{1}$ is

$$|x^2 - x + 1| = 0$$

$$x^2 - x + 1 = \pm 1$$

$$x^2 - x + 1 = 1$$

$$x^2 - x = 1 - 1$$

$$x^2 - x = 0$$

$$x(x-1) = 0$$

$$x = 0, 1$$

$$x^2 - x + 1 = -1$$

$$x^2 - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{1-8}}{2}$$

$$= \frac{1 \pm \sqrt{7}i}{2}$$

Since both $\frac{1+2\sqrt{7}i}{2}$ & $\frac{1-2\sqrt{7}i}{2}$ are complex numbers

and can not be represented by a number line.

Thus they are not boundary numbers.

There are only two boundary numbers "0", 1

So the number line is divided into Regions

Region A test $x = -1$ in $\textcircled{1}$ $|1+1+1| > 1$ (True.)

Region B test $x = \frac{1}{2}$ in $\textcircled{1}$ $|\frac{1}{4} - \frac{1}{2} + 1| > 1$

Region C test $x = 2$ in $\textcircled{1}$ $|4-2+1| > 1$ (False)

S.S is $\left] -\infty, 0 \right[\cup \left] 1, \infty \right[$

$$(13) \quad \tilde{x}^2 - 4\tilde{x} + 4 > 0 \rightarrow (1) \text{ or } \frac{1}{x^2} - \frac{4}{x} + 4 > 0 \rightarrow (1)$$

Associated eq of (1) is

$$\frac{1}{x^2} - \frac{4}{x} + 4 = 0 \Rightarrow \frac{1-4x+4x^2}{x^2} = 0$$

$$\therefore (1) \frac{1}{x^2} - \frac{4}{x} + 4 > 0 \Rightarrow 1-4x+4x^2 > 0$$

$$\Rightarrow \left(\frac{1-2x}{x}\right)^2 > 0 \Rightarrow 4x^2 - 4x + 1 = 0$$

$$\Rightarrow (2x-1)^2 = 0$$

$$\Rightarrow x = \frac{1}{2} \text{ is B. Number.}$$

for Inequality given in (1)

Now denominator of $\frac{1-4x+4x^2}{x^2}$ is zero at $x=0$

So $x=0$ free boundary number

$$\text{Region A} \quad \text{test } x = -1 \quad \left(\frac{1+2x}{-1}\right)^2 > 0 \quad \text{True}$$

$$\text{Region B} \quad \text{test } x = \frac{1}{4} \quad \left[\frac{1-\frac{1}{4}}{1/4}\right]^2 > 0 \quad \text{True.}$$

$$\text{Region C} \quad \text{test } x = 1 \quad \left(\frac{1-2}{1}\right)^2 > 0 \quad \text{True.}$$

The Solution Set is

$$\{x: x < 0\} \cup \{x: 0 < x < \frac{1}{2}\} \cup \{x: x > \frac{1}{2}\}$$

$$=]-\infty, 0[\cup]0, \frac{1}{2}[\cup]\frac{1}{2}, \infty[$$

$$(14) \quad \frac{2x}{x+2} \geq \frac{x}{x-2} \rightarrow (1)$$

Sol: $x = -2, 2$ are free boundary number

The Associated eq of (1) will be,

$$\frac{2x}{x+2} = \frac{x}{x-2}$$

$$\Rightarrow 2x(x-2) = x(x+2)$$

$$\Rightarrow 2x^2 - 4x = x^2 + 2x$$

$$\Rightarrow x^2 - 6x = 0$$

$$\Rightarrow x(x-6) = 0$$

→ $x = 0, 6$ are the boundary numbers for ①
 The boundary numbers divide the number line into regions as shown.

$$\text{Region A, test } x = -3 \quad \frac{-6}{-3+2} \geq \frac{-3}{-3-2}$$

Region B test $x = -1$ in (1) $\frac{6}{-1+2} > \frac{3}{5}$ (True)

Regn C test $x=1$ in (1) $\rightarrow 2 \geq \frac{1}{3}$ (False)

$$\text{Region D} \quad \text{test } x-3 \stackrel{>}{\underset{<}{\sim}} 1 \geq \frac{1}{1-2} \quad (\text{True})$$

Region E $\frac{6}{5} > \frac{3}{1}$ False)

$$\tan x = 7 \text{ m} \quad \frac{14}{9} \geq \frac{7}{5} \\ 1.55 \geq 1.4 \quad (\text{True})$$

Solution Set is Union.

$$]-\infty, -2[\cup [0, 2[\cup [6, \infty[$$

$$\text{S.R.} = \{x : x < -2\} \cup \{x : 0 \leq x < 2\} \cup \{x : x \geq 6\}$$

Q15

$$x^4 - 5x^3 - 4x^2 + 20x \leq 0$$

Sol: Associated eq. of (1) is

$$x^4 - 5x^3 - 4x^2 + 20x = 0$$

$$x(x^3 - 5x^2 - 4x + 20) = 0$$

$$x(x^2(x-5) - 4(x-5)) = 0$$

$$x(x^2-4)(x-5) = 0$$

$$x(x-2)(x+2)(x-5) = 0$$

$$x = 0, 2, -2, 5$$

are the Boundary numbers
for ①

Locate the boundary numbers on a numbers line and check each region whether it belongs to the solution set or not.

Region A, test $x = -3$ in (1) $81 + 135 + 36 - 60 \leq 0$ (False)

Region B, test $x = -1$ in (1) $1 + 5 - 4 - 20 \leq 0$ (True)

Region C, test $x = 1$ in (1) $1 - 5 - 4 + 20 \leq 0$ (False)

Region D, test $x = 3$ in (1) $81 - 135 - 36 + 60 \leq 0$ (True)

Region E, test $x = 6$ in (1) $1296 - 1080 - 144 + 120 \leq 0$ True

$$\begin{aligned} \text{Sol: Set is } & \{x: -2 \leq x \leq 0\} \cup \{x: 2 \leq x \leq 5\} \\ & = [-2, 0] \cup [2, 5] \end{aligned}$$

(16) The Cost function $C(x)$ and the Revenue function $R(x)$ for Producing x units of Certain Product are given

$$C(x) = 5x + 350$$

$$R(x) = 50 - x^2$$

i. Find the values of x that yields a Profit.

Extra ii. Find the values of x that results in a Loss.

Solution A Profit is Produced if Revenue exceeds Cost

For Profit Revenue $>$ Cost

$$R(x) > C(x)$$

$$50x - x^2 > 5x + 350$$

$$0 > x^2 - 50x + 5x + 350$$

$$0 > x^2 - 45x + 350$$

$$\Rightarrow x^2 - 45x + 350 < 0 \longrightarrow (1)$$

$$\text{Associated Eq: } x^2 - 45x + 350 = 0$$

$$x^2 - 35x - 10x + 350 = 0$$

$$(x-10)(x-35) = 0$$

$$x = 10, 35 \text{ (B.N.)}$$

for Region A Put $x=0$ in ① $0 > 350$ (False)

for Region B Put $x=15$ in ①

$$0 > 15^2 - 45(15) + 350$$

$$0 > 225 - 675 + 350$$

$$0 > -100 \text{ (True)}$$

for Region C Put $x=40$ in ①

$$0 > 40^2 - 45(40) + 350$$

$$0 > 1600 - 1800 + 350$$

$$0 > 150 \text{ (False)}$$

Thus the values of x that gives a Profit are

$$\left\{ x : 10 < x < 35 \right\}$$

ii) For Loss

Cost > Revenue

$$C(x) > R(x)$$

$$5x + 350 > 50x - x^2$$

$$\Rightarrow x^2 - 45x + 350 > 0 \rightarrow ①$$

ASB: Eq ①

$$x^2 - 45x + 350 = 0$$

$$(x-10)(x-35) = 0$$

$x = 10, 35$ Boundary No:

Region A Put $x=0$ in ① $350 > 0$ (True)

Region B Put $x=15$ in ①

$$-100 > 0 \text{ (False)}$$

Region C Put $x=40$ in ①

$$150 > 0 \text{ True.}$$

Hence the values of x that results in Loss are

$$\left\{ x : x < 10 \right\} \cup \left\{ x : x > 35 \right\}$$

Where x is the Integer.

17) Function f from R to R is defined by the given formula. Determine the domain of the function.

$$f(x) = \sqrt{1-x^2}$$

$f(x)$ will be real if

$$1-x^2 \geq 0$$

$$-x^2 \geq -1$$

$$x^2 \leq +1$$

$$\Rightarrow x \leq 1$$

$$x \leq 1 \quad \text{and} \quad -x \leq 1$$

$$x \leq 1 \quad x \geq -1$$

$$-1 \leq x \leq 1$$

$$\Rightarrow |x| \leq 1$$

When $|x| > 1$ $f(x)$ will be Complex \Rightarrow for $|x| \leq 1$ has real values
Hence domain of f is $|x| \leq 1$

$$(18) f(x) = \frac{a+x}{a-x}$$

Sol: $f(x)$ will be infinite when $x=a$

Dom of $f = \mathbb{R} - \{a\}$

or set of all real number except $x=a$

$$(19) f(x) = \frac{1}{\sqrt{(1-x)(2-x)}}$$

Sol We see that when we put $x=1, 2$

$f(x)$ will be undefined.

So domain of f is set of real number except $x \in [1, 2]$

$$\text{dom } f = \mathbb{R} - [1, 2]$$

$\because 1 \leq x \leq 2$ $f(x)$ become imaginary

$$(20) f(x) = \sqrt{3+x} + \sqrt{7-x} \rightarrow ①$$

Sol $f(x)$ will be real if

$$\begin{aligned} 7-x &\geq 0 & \left\{ \begin{array}{l} 3+x \geq 0 \\ x \geq -3 \end{array} \right. \\ \Rightarrow 7 &\geq x \\ \Rightarrow x &\leq 7 \end{aligned}$$

\Rightarrow when $x > 7$ ① become Imaginary

also when $x < -3$ ① become Imaginary

So domain of f is set of real number x , such that

$$x \leq 7 \& x \geq -3$$

$$\therefore x \in [-3, 7]$$

$$(21) f(x) = \begin{cases} x^2-1 & \text{if } x \leq 2 \\ \sqrt{x-1} & \text{if } x > 2 \end{cases}$$

Sol We see that the given function is defined for all real values of x

So domain of f is \mathbb{R} .

$$\underline{\text{Extra}} \quad f(2) = 2^2 - 1 = 4 - 1 = 3$$

$$(22) f(x) = \sqrt{\frac{x-4}{x+1}}$$

Sol We see that f is not defined at $x=-1$

Also if $-1 < x < 4$ then again $f(x)$ becomes imaginary

Hence domain of $f(x)$ is set of all real numbers except when

$$x \in [-1, 4] \quad (= -1 \leq x < 4)$$

$$\therefore \mathbb{R} - [-1, 4]$$

(23)

Draw the graphs of the following fn:-

Note graph is function

When vertical line
cut the graph at
one pt:

$$f(x) = |x| + |x-1| \quad \text{for all } x \in \mathbb{R}$$

$$= \begin{cases} x + x-1 = 2x-1 & \text{when } x \geq 0 \\ -x - x+1 = -2x+1 & \text{when } x < 0 \end{cases}$$

Some Table values of given function are

x	0	-1	-2	-3	1	2	3	-4	4	5
$y = f(x)$	1	3	5	7	1	3	5	9	7	9

(24)

$$f(x) = [x] + [x+1] \quad \text{for all } x \in \mathbb{R}$$

Note (1) Here $[x]$ denotes greatest integer or Bracket function not greater than x . Since x is an integer so values of $f(x)$ are also integers. Now if n is an integer and $n \leq x < n+1$ then $[x] = n$ and so f is constant on $[n, n+1]$

Note (2) The right hand end pts of segments of lines are not part of the graph.

Hence from $f(x) = [x] + [x+1]$

$$\begin{aligned}
 y = f(x) &= 1 & \text{when } 0 \leq x < 1 \\
 &= 3 & 1 \leq x < 2 \\
 &= 5 & 2 \leq x < 3 \\
 &= 9 & 3 \leq x < 4 \\
 &= 9 & 4 \leq x < 5 \\
 &= -1 & -1 \leq x < 0 \\
 &= -3 & -2 \leq x < -1 \\
 &= -5 & -3 \leq x < -2
 \end{aligned}$$

Note $f(x) = [x] + [x+1]$

$$\begin{aligned}
 &= [0] + [0+1] = 1, 0 \leq x < 1 \Rightarrow (0, 1) (1, 1) (2, 1) \dots (9, 1) \\
 &= [1] + [1+1] = 3, 1 \leq x < 2 \Rightarrow (1, 3) (2, 3) (3, 3) \dots (9, 3) \\
 &= [-1] + [-1+1] = -1, -1 \leq x < 0 \Rightarrow (-1, -1), (-2, -1) (-3, -1) \dots (-9, -1)
 \end{aligned}$$

(25) $f(x) = \overline{x - [x]}$ for all $x \in [-3, 3]$

Sol. when x is an integer. (whether true or -ve) (Saw-tooth function)

Then $f(x) = 0$ e.g. $x = \pm 3, \pm 2, \pm 1, 0$

$$\text{when } x = -3 \quad f(x) = -3 - [-3] = -3 + 3 = 0$$

$$\text{when } x = 3 \quad f(x) = 3 - [3] = 3 - 3 = 0$$

$$\text{when } x = 2 \quad f(x) = 2 - [2] = 2 - 2 = 0$$

Similarly for other integral values of $x \in [-3, 3]$ $f(x) = 0$

when x is not integer

$$\text{let } x = 2.5 \quad f(x) = 2.5 - [2.5] = 2.5 - 2 = 0.5$$

$$\text{when } x = -2.5 \quad f(x) = -2.5 - [-2.5] = -2.5 - (-3) = -2.5 + 3$$

$$\text{when } x = 1.5 \quad f(x) = 1.5 - [1.5] = 1.5 - 1 = 0.5$$

$$\text{when } x = -1.5 \quad f(x) = -1.5 - [-1.5] = -1.5 - (-2) = -1.5 + 2 = 0.5$$

x	0	± 1	1.5	-1.5	± 2	± 2.5
$f(x)$	0	0	0.5	0.5	0	0.5

Note $[-n, n, n_2] = -n+1$, $[n, n, n_2] = n$ By definition of Brackets

(26) $f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0 \\ -\frac{1}{x} & \text{if } x > 0 \end{cases}$

Sol: we see that at $x=0$ $f(0)$ is undefined. i.e. as x is $-ve$ $f(x)$ is $-ve$ and when x is $+ve$ $f(x)$ is $+ve$. and value of $f(x)$ increases as x decreases. Value of $f(x)$ decreases as x increases.

When $x \rightarrow 0$, then $f(x) \rightarrow \infty$ both sides of y -axis

When x is very large, then $f(x) \rightarrow 0$

x	0	1	-1	2	-2	3	-3	4	-4
y	$-\infty$	-1	-1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{4}$	$-\frac{1}{4}$

(27) $f(x) = x^2 + 2x - 1 \quad \forall x \in \mathbb{R}$ $\rightarrow ①$

Sol: ① can be written as

$$y = x^2 + 2x - 1 = x^2 + 2x + 1 - 2$$

$$y = (x+1)^2 - 2$$

$$\Rightarrow y+2 = (x+1)^2 \rightarrow ②$$

$$\text{Put } x+1 = x', \quad y+2 = y'$$

So ② will be

$$y' = x'^2 \rightarrow ③$$

Eq. ③ represents a parabola symmetric about y -axis (Eq. ③ remains same when we put $x = -x'$)

Vertex $x=0 \quad y=0$

$$x+1=0 \quad y+2=0$$

$$x=-1 \quad y=-2$$

$$V(-1, -2)$$

x	0	1	-1	2	-2	3	-3	4
$f(x)$	-1	2	-2	7	-1	2	-2	7

$$(28) f(x) = \frac{1}{x^2} \quad x \neq 0$$

Sol \rightarrow Eq (1) Can be written as

$$y = \frac{1}{x^2} \rightarrow (2)$$

Eq (2) gives that y is the for all values of x .

y is always the graph (x decrease y increases)
lies entirely above x -axis (x increase y decreases)

$$\text{at } x=0 \quad f(x) = \infty$$

$$\text{Put } x=-x \text{ in Eq (2) Eq:}$$

does not change. Imply's that graph is symmetric about

y -axis i.e lies on both side of y -axis

x	1	-1	2	-2	3	-3	± 0.5
y	1	1	0.25	0.25	0.11	0.11	4

$$(29) f(x) = \frac{1}{x} \quad x \neq 0$$

we see that function is defined at all values of x except $x=0$

When x is +ve y is also +ve
When x is -ve y is also -ve

It's mean the graph of fn. lies Ist and 3rd quadrants.

Also when x increases $f(x)$ decrease
when x decreases $f(x)$ increase.

x	1	-1	-2	2	-3	3	0.5	-0.5
$f(x)$	1	-1	-0.5	-0.5	-0.33	0.33	2	-2

$$(30) f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

This is known as Signum (sgn) Function

When $x > 0$ $y = 1$ line 1 unit to x -axis 1 unit above x -axis

When $x = 0$ $y = 0$ Origin is also part of graph.

When $x < 0$ $y = -1$ line 1 unit to x -axis 1 unit below x -axis

Note Small Circle at pt $(0, 1)$ $f(0) = 1$

are not part of St. line.

Q31 Find The Sup and Inf (if they exist)

$$\left\{ (-1)^n \left(1 - \frac{1}{n}\right) \mid n = 1, 2, 3, \dots \right\}$$

Sol: put values of $n = 1, 2, 3, 4, \dots$ in given set, we get

When	$n=1$	$(-1)^1 \left(1 - \frac{1}{1}\right) = 0$	$n=5$	$(-1)^5 \left(1 - \frac{1}{5}\right) = -\frac{4}{5}$
	$n=2$	$(-1)^2 \left(1 - \frac{1}{2}\right) = \frac{1}{2}$	$n=6$	$(-1)^6 \left(1 - \frac{1}{6}\right) = \frac{5}{6}$
	$n=3$	$(-1)^3 \left(1 - \frac{1}{3}\right) = -\frac{2}{3}$		- - -
	$n=4$	$(-1)^4 \left(1 - \frac{1}{4}\right) = \frac{3}{4}$		- - -

$$\left\{ 0, \frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \frac{5}{6}, -\frac{6}{7}, \dots \right\}$$

Re-arranging, we get

$$\left\{ \dots, -\frac{6}{7}, -\frac{4}{5}, -\frac{2}{3}, 0, \frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \dots \right\}$$

It is clear that $\dots, -3, -2, -1$ are lower bounds of the set. Since any real number greater than -1 is not a lower bound. -1 is the greatest lower bound.

$$\text{GLb} = \text{Inf} = -1$$

Again $1, 2, 3, \dots$ are upper bounds of the set

But any real number smaller than 1 is not an upper bound. 1 is the lowest of all.

$$\text{So LUB or Sup} = 1$$

Q33 The Set of all non-negative integers.

Sol: $S = \{0, 1, 2, 3, \dots\}$

0 is lowest of all non-negative integers

$$\text{So GLB or Inf}(S) = 0$$

As the set extends to ∞ . So there does not exist LUB or Sup(S)

Q33 The set $A = \{ x \in \mathbb{R} : 0 < x \leq 3 \}$

Sol $\inf A = 0 \because 0 \notin A$ and $\sup A = 3$ But $3 \in A$

(32)

Q34 The set $B = \{ x \in \mathbb{R} : x^2 - 2x - 3 < 0 \}$

Associated Eq: $x^2 - 2x - 3 = 0$

$$(x-3)(x+1) = 0$$

$$x = -1, 3$$

$$\Rightarrow x^2 - 2x - 3 < 0$$

$$x^2 - 3x + x - 3 < 0$$

$$x(x-3) + 1(x-3) < 0$$

$$(x-3)(x+1) < 0 \longrightarrow \text{I}$$

$$\text{at } x = -1.5$$

$$(-1.5-3)(-1.5+1)$$

$(-4.5)(-0.5) = +\text{ve}$ False

at $x = 0$ $(-3)(1) = -\text{ve}$ True

$x = 4$ $(4-3)(4+1) = +\text{ve}$ False

There are two cases

i) $x-3 > 0 \& x+1 < 0$

ii) $x-3 < 0 \& x+1 > 0$

Case-i) $x > 3 \& x < -1$ There is no real number which satisfied i) so this is not possible.

Case-ii) $x < 3 \& x > -1$ Thus $-1 < x < 3$

$$\Rightarrow \inf B = -1 \text{ and } \sup(B) = 3$$

Q35 Sketch the graph of given function. Also determine which is $y^2 = x$ the graph of function.

Sol $y^2 = x \rightarrow \text{I} \Rightarrow y = \pm \sqrt{x}$

If x is -ve y becomes Imaginary so leave -ve value of x
 If put $y = -y$ No change i) so it is symmetric along x -axis.
 graph of i) lies +ve side of x -axis Also $x=0 \& y=0$
 graph passes through origin.

x	0 1 4 9
$f(x)$	0 ± 1 ± 2 ± 3

$y = \pm \sqrt{x}$ is not a graph

of $f(x)$ because for one value

of x there does not exist Unique value of y

\Rightarrow Vertical line Cut the graph at two points:-

$$(36) |x| = |y| \rightarrow \textcircled{1}$$

$$x = \pm y \text{ or } y = \pm x \rightarrow \textcircled{2}$$

$y = x$ & $y = -x$ Pair of St. line passing through Origin.

x	0	1	2	3	-1	-2	x	0	1	2	3	-1	-2
$y = x$	0	1	2	3	-1	-2	$y = -x$	0	-1	-2	-3	1	2

$y = \pm x$ does not define fn.
for one value of x there does not exist a unique value of y .

$$(37) x^2 + y^2 = 9 \rightarrow \textcircled{1}$$

$$y = \pm \sqrt{9 - x^2}$$

when $-3 \leq x \leq 3$ y will be real.

Put $x = -x$ & $y = -y$ no change $\textcircled{1}$

It is symmetric both x -axis & y -axis.

OR It is sym. at Origin.

$\textcircled{1}$ is eq. of circle with

Centre $(0,0)$ rad = 3

One value of x there does not exist

unique value of y $\textcircled{1}$ is not graph of fn.

x	0	± 1	± 2	± 3	...
y	± 3	$\pm \sqrt{8}$	$\pm \sqrt{5}$	0	

$$(38) y = |x| + x \rightarrow \textcircled{1}$$

Eq. $\textcircled{1}$ can be written as

$$y = \begin{cases} x + x = 2x & \text{for } x \geq 0 \\ -x + x = 0 & \text{for } x < 0 \end{cases}$$

graph consists of two St. line

$$y = 2x \text{ when } x \geq 0$$

x	0	1	2	3
y	0	2	4	6

$$\{ y = 0 \text{ when } x < 0$$

x	0	1	2	3
y	0	0	0	0

graph is fn.

∴ for one value of x there exist
unique value of y .

x

(39) Find formula for functions $f+g$, fg and $\frac{f}{g}$, where $f(x) = \sqrt{x^2-1}$ and $g(x) = \frac{1}{\sqrt{4-x^2}}$

Also write the domain of each of these functions

Sol:-

$$\text{i. } (f+g)(x) = f(x) + g(x) \\ = \sqrt{x^2-1} + \frac{1}{\sqrt{4-x^2}}$$

$$\text{ii. } (fg)(x) = f(x) \cdot g(x) \\ = \sqrt{x^2-1} \cdot \frac{1}{\sqrt{4-x^2}} \\ = \sqrt{\frac{x^2-1}{4-x^2}}$$

$$\text{iii. } \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \\ = \frac{\sqrt{x^2-1}}{\sqrt{4-x^2}} \\ = \sqrt{x^2-1} \cdot \sqrt{\frac{1}{4-x^2}} \\ = \sqrt{(x^2-1)(4-x^2)}$$

$$\therefore f(x) = \sqrt{x^2-1}$$

$f(x)$ will be real

$$\text{when } x^2-1 \geq 0$$

$$x^2 \geq 1$$

$$\pm x \geq 1$$

$$x \geq 1 \text{ & } x \leq -1$$

$$\therefore [-\infty, -1] \cup [1, \infty)$$

is domain of $f(x)$

$$g(x) = \sqrt{4-x^2}$$

$g(x)$ will be real

$$\text{if } 4-x^2 \geq 0$$

$$4 \geq x^2$$

$$\Rightarrow x^2 \leq 4$$

$$\pm x \leq 2$$

$$x \leq 2 \text{ & } x \geq -2$$

[-2, 2] is the domain of $g(x)$.

Now domain of each of the functions $f+g$, fg and $\frac{f}{g}$ is

$$\text{Dom } f \cap \text{Dom } g = [-\infty, -1] \cup [1, \infty) \cap [-2, 2] \\ = [-2, -1] \cup [1, 2]$$

(40) Find formula for fog and gof , where

$$f(x) = \sqrt{x^2-3} \text{ and } g(x) = x^2+3$$

Sol:-

$$\text{i. } fog(x) = f(g(x)) = f(x^2+3) \\ = \sqrt{(x^2+3)^2-3} \\ = \sqrt{x^4+6x^2+9-3} \\ = \sqrt{x^4+6x^2+6}$$

$$\text{ii. } gof(x) = g[f(x)]$$

$$= g(\sqrt{x^2-3}) \\ = [\sqrt{x^2-3}]^2 + 3 \\ = x^2-3+3 \\ = x^2$$

END
 = $\frac{1}{13} \text{ JUN, 2007}$
 $13 - 10 - 2007$
 (5.00 AM)