Géométrie et Espaces de Formes - Exercice 3

Tong ZHAO (tong.zhao@eleves.enpc.fr)

Exo 3.1

- (a) Toutes les fonctions f_n prennent leurs valeurs à partir d'un sous-espace séparable de I, alors f prend ses valeurs à partir d'un espace engendré par la combinaision linéaire fermée des sous-espaces, qui est séparable. De plus on a pour chaque $t \in I$, f(t) est une limite des fonctions mesurables $f_n(t)$. Par le théorème de Pettis, on déduit que la fonction f est Bochner mesurable.
- (c) Sachant que $g: B_1 \to B_2$ est une application continue, $g \circ f$ est mésurable. Par le théorème de Pettis, il nous reste à montrer que B_2 est séparable.

La fonction g prend ses valeurs à partir d'un sous-espace fermé séparable X_1 dans B_1 . On suppose que $g(X_1)$ est non-séparable. Alors il existe une famille d'ensembles ouverts disjoints $(O_i)i \in I$ dans B_2 telle que chacun entre eux intersecte $g(X_1)$. Pour chaque sous-ensemble $I' \subseteq I$, on a un ensemble ouvert $O_{I'} := \bigcup_{i \in I'} O_i$ dans B_2 . Si $I' \neq I''$, $O_{I'} \neq O_{I''}$, ce qui nous montre qu'il y a au moins $2^{|I|}$ tribus boréliennes dans X_1 . Par contre un espace séparable a au plus $2^{|\mathbb{N}|}$ tribus boréliennes. Donc on en déduit que $g(X_1)$ est séparable et alors $g \circ f$ est Bochner mesurable.

Exo 3.2

On montre tout d'abord que la limite existe:

$$\| \int_{I} f_{n}(t)dt - \int_{I} f_{m}(t)dt \| \leq \int_{I} \|f_{n}(t) - f_{m}(t)\|dt$$

$$\leq \int_{I} \|f_{n}(t) - f(t)\|dt + \int_{I} \|f(t) - f_{m}(t)\|dt$$

$$\to 0 \quad (si \ n, m \to \infty)$$

Donc $\int_I f_n$ définit bien une suite de Cauchy qui converge dans I, ce qui nous indique que la limite existe. Si on prend une autre suite de fonction s_n et on calcule de même facon sa limite, on obtient à la fin la même limite, donc on en déduit que $\int_I f(t)dt$ ne dépend pas du choix de la suite.

Exo 3.3

(1) On vérifie tout d'abord que \star est une loi interne sur $L^1([0,1],V)$.

$$||v \star w||_1 = \int_0^1 |v \star w(t)| dt$$

$$= \int_0^{0.5} |v(2t)| dt + \int_{0.5}^1 |v(2t-1)| dt$$

$$= \int_0^1 |v(x)| dx + \int_0^1 |w(x)| dx$$

$$= ||v||_1 + ||w||_1$$

Après on calcule $\Phi_1^{v\star w}$.

$$\Phi_1^{v \star w}(x) = x + \int_0^1 (v \star w)_s \circ \Phi_s^{v \star w}(x) ds$$

$$= x + \int_0^{\frac{1}{2}} 2w_{2s} \circ \Phi_s^{2w}(x) ds + \int_{\frac{1}{2}}^1 2v_{2s-1} \circ \Phi_{s-\frac{1}{2}}^{2v} \circ \Phi_{\frac{1}{2}}^{2w}(x) ds$$

Par l'unicité de solution de l'équation $\Phi_1^w(x)=x+\int_0^1 w_s\circ\Phi_s^w(x)ds,$ on a:

$$\Phi_{\frac{1}{2}}^{2w}(x) = x + \int_0^{\frac{1}{2}} 2w_s \circ \Phi_s^{2w}(x) ds$$

$$= x + \int_0^1 w_{\frac{t}{2}} \circ \Phi_{\frac{t}{2}}^{2w}(x) dt$$

$$= x + \int_0^1 w_{\frac{t}{2}} \circ \Phi_t^w(x) dt$$

$$= \Phi_1^w(x)$$

$$\int_{\frac{1}{2}}^{1} 2v_{2s-1} \circ \Phi_{s-\frac{1}{2}}^{2v} \circ \Phi_{\frac{1}{2}}^{2w}(x) ds = \int_{0}^{1} v_{t} \circ \Phi_{t}^{v} \circ \Phi_{1}^{w}(x) dt$$

Donc on a:

$$\Phi_1^{v \star w}(x) = \Phi_1^w(x) + \int_0^1 v_t \circ \Phi_t^v \circ \Phi_1^w(x) dt$$
$$= \Phi_1^v \circ \Phi_1^w(x)$$

ce qui nous montre que G_v est stable par composition et donc $v \to \Phi_1^V$ est un morphisme de $(L^1([0,1],V),\star)$ dans (G_V,\circ) .

(2) On fixe t = 1, pour tout $v \in L^1([0,1], V)$, Φ_1^v est un homéomorphisme d'un sous-espace de \mathbb{R}^d par la proposition III.3. On en déduit que G_v est un groupe d'héomorphismes sur \mathbb{R}^d .

Exo 3.4

Par la définition, on a $d_G(\varphi, \varphi') = \inf\{\|v\|_1 | v \in L_1([0, 1], V), \varphi' \circ \varphi^{-1} = \Phi_1^v\}$. On pose φ , φ' et $\varphi'' \in G_V$ et $\epsilon > 0$. Il existe $v, v' \in L_1([0, 1], V)$ tels que: .

$$\phi_1^v \circ \varphi = \varphi'$$

$$\phi_1^{v'} \circ \varphi' = \varphi''$$

$$\|v\|_1 \le d_G(\varphi, \varphi') + \epsilon$$

$$\|v'\|_1 \le d_G(\varphi', \varphi'') + \epsilon$$

On a alors $\phi_1^{v\star v'}\circ\varphi=\varphi''$ et:

$$d_G(\varphi, \varphi'') \le ||v \star v'||_1$$

$$= ||v||_1 + ||w||_1$$

$$\le d_G(\varphi, \varphi') + d_G(\varphi', \varphi'') + 2\epsilon$$

On obtient donc l'innégalité triangulaire.

Si $d_G(Id, \phi) = 0$, selon la définition il existe $v \in L^1([0, 1], V)$ tel que $\Phi_1^v(x) = x + \int_0^1 v_s \circ \Phi_s^v(x) ds = x$, ce qui nous montre que $\phi = \Phi_1^v = Id$.

Exo 3.5

Etant donné un champ de vecteurs $v \in L^1([0,1],V)$, on s'intéresse à trouver une courbe $\gamma \in \mathcal{C}([0,1],\mathbb{R}^d)$ qui résoud le problème:

$$\begin{cases} \gamma(0) = p \\ \dot{\gamma}(t) = v(t) \cdot \gamma(t) \end{cases}$$

Chaque application $A:L^1([0,1],V)\to \mathscr{C}([0,1],\mathbb{R}^d)$ définit bien une action sur M et l'action infinitésimale correspondante est le champ de vector $X_p=\frac{d}{dt}|_{t=0}A(t,p)$.

Selon la proposition III.2, si $v \in L^2([0,1],V)$ et $q \in \mathbb{R}^d$, il existe une unique solution $\gamma \in \mathscr{C}([0,1],\mathbb{R}^d)$ qui résoud l'EDO $\dot{\gamma}(t) = v(t) \cdot \gamma(t)$, et on a:

$$\Phi_t^v \cdot \gamma_0 = \gamma_0 + \int_0^t v_s \circ \Phi_s^v(\gamma_0) ds = \gamma_t$$