Contents

0.1 random notes
0.1 random notes
• As long as every pair of literal is variable disjoint, the quantifier ordering is arbitrary (proof idea: establish that some ordering works, then pull quantifier inwards and back outwards in arbitrary order).
 lifted terms which contain variables are disjoint for different clauses but ground lifted terms can be the same (which does not appear to be necessarily so!)
 the resolved/factorised literal should be the same (else this kind of proof doesn't go through)
• $\forall x \exists y \varphi \Leftrightarrow \exists y \forall x \text{ does not hold for formula coding } f(0) = 1, \ f(1) = 0$ $(Z(y) \supset O(x)) \land (O(y) \supset Z(x), \ \mathcal{U} = \{0,1\}, \ Z/1 \text{ and } O/1 \text{ encode being } 0$ or 1 respectively.
Lemma 1. $\Gamma \models \mathrm{LI}^{\Delta}(C) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}(C)$.
Lemma 2. $\Gamma \models \forall \overline{x} \exists \overline{y} (LI(C) \lor LI_{cl}(C)).$
Proof. By 1, $\Gamma \vDash \operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C)$. Hence $\Gamma \vDash \forall \overline{x} \left(\operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C) \right)$. and also $\Gamma \vDash \forall \overline{x} \exists \overline{y} \ell_{\Gamma} \left[\operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C) \right]$. by some lemma then $\Gamma \vDash \forall \overline{x} \exists \overline{y} \left(\operatorname{LI}(C) \vee \operatorname{LI}_{\operatorname{cl}}(C) \right)$.
but can't invert this idea: Let $\hat{\Delta} = \Gamma$ and $\hat{\Gamma} = \Delta$. Then with $\hat{\pi}$ and 2: $\hat{\Gamma} \models \forall \bar{x} \exists \bar{y} \ (\text{LI}(\bar{\pi}))$ Hence (some lemma) $\Delta \models \forall \bar{y} \exists \bar{x} \ (\neg \text{LI}(\pi))$. Hence $\Delta \models \neg \exists \bar{y} \ \forall \bar{x} \ (\text{LI}(\pi))$. need some consistent ordering, so possibly just prove that all work, because we need to shuffle a lot anyway

Contents

0.1. random notes 2

example with same lifting var in two children of a connective:

 $601-lifting\ vars\ interleaved\ so\ quantifier\ pull\ in/out\ trick\ doesn't\ work$

$$\frac{P(f(x)) \stackrel{\Sigma}{\vee} S(f(x)) \qquad \neg P(z) \vee Q(g(y)) \vee R(g(y))}{P(f(x)) \mid S(f(x)) \vee Q(g(y)) \vee R(g(y))} \qquad \stackrel{\Sigma}{\neg Q(z)} \\ -Q(g(y)) \wedge P(f(x)) \mid S(f(x)) \vee R(g(y))$$

$$\begin{split} \Sigma &\vDash \forall u \exists v \big((\neg Q(u_{g(y)}) \land P(v_{f(x)})) \lor S(v_{f(x)}) \lor R(u_{g(y)}) \big) \\ \Rightarrow \text{not interesting as } R \text{ is not mentioned, so it collapses.} \end{split}$$

$$\Pi \vDash \exists u \forall v \big((Q(u_{g(y)}) \lor \neg P(v_{f(x)})) \lor S(v_{f(x)}) \lor R(u_{g(y)}) \big)$$

$$\frac{\neg Q(g(y)) \land P(f(x)) \mid S(f(x)) \lor R(g(y)) \qquad \neg S(x_7)}{S(f(x)) \lor (\neg Q(g(y)) \land P(f(x))) \mid R(g(y))}$$

$$\begin{split} \Sigma &\vDash \forall u \exists v \Big(S(v) \vee (\neg Q(u) \vee P(v)) \vee R(u) \Big) \\ \Pi &\vDash \exists u \forall v \Big((\neg S(v_{f(x)}) \wedge (Q(u_{g(y)}) \vee \neg P(v_{f(x)}))) \ \vee \ R(u_{g(y)}) \Big) \end{split}$$

Can't see much of interest, but can not apply quantifier pulling in and out trick

same again with direct overbinding:

$$\frac{\exists v (P(v) \lor S(v)) \qquad \forall u (\neg P(z) \lor Q(u) \lor R(u))}{\exists v \ \forall u \ (P(v) \mid S(v) \lor Q(u) \lor R(u))}$$

only Δ : $\forall u(P(f(x)) \mid S(f(x)) \lor Q(u) \lor R(u))$

no subterm relation anyway

0.1. random notes 3

602 - counterexample with alternating function

$$\frac{F(x) \vee \neg Z(f(x)) \vee O(\alpha) \qquad G(y) \vee \neg O(g(y))}{O(g(y)) \mid F(x) \vee \neg Z(f(x)) \vee G(y)} \qquad \prod_{\substack{I \\ Z(\alpha) \vee M\beta}} \frac{O(g(y)) \mid F(x) \vee \neg Z(f(x)) \mid F(x) \vee G(y) \vee M(\beta)}{O(g(y)) \vee \neg Z(f(x)) \mid F(x) \vee G(y) \vee M(\beta)}$$

$$\frac{F(x') \vee Z(\alpha) \vee \neg O(f(x')) \qquad G(y') \vee \neg Z(g(y'))}{Z(g(y')) \mid F(x') \vee \neg O(f(x')) \vee G(y') \qquad O(\alpha) \vee \neg M(\beta)}{Z(g(y')) \vee \neg O(f(x')) \mid F(x') \vee G(y') \vee M(\beta)}$$

conbining:

$$\frac{(Z(g(y')) \vee \neg O(f(x'))) \quad \wedge \quad (O(g(y)) \vee \neg Z(f(x))) \quad | \quad F(x) \vee G(y) \vee F(x') \vee G(y')}{(Z(g(y)) \vee \neg O(f(x))) \quad \wedge \quad (O(g(y)) \vee \neg Z(f(x))) \quad | \quad F(x) \vee G(y)}$$

interpolant is lifted version:
$$\forall y_g \exists y_f \Big((Z(y_g) \vee \neg O(y_f)) \quad \wedge \quad (O(y_g) \vee \neg Z(y_f)) \quad | \quad F(x) \vee G(y) \Big)$$

602a: with constants

$$\frac{-Z(a) \vee O(\alpha) \qquad \prod_{\substack{O(b) \mid \neg Z(a)}} \prod_{\substack{Z(\alpha) \vee M\beta}} \prod_{\substack{Z(\alpha) \vee M\beta}} \bigcap_{\substack{D(b) \mid \neg Z(a) \mid M(\beta)}} \prod_{\substack{D(b) \mid A \mid$$

In such cases, we always have $O(\alpha)$, i.e. something universally quantified