Problem B: Area of Polygon

Input file name: polygon.in

For a *n*-sided simple polygon, if we know the coordinates of all its *n* vertices, for example counterclockwise (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) , the area of this polygon can be computed by so-called the Surveyor's Formula:

$$Area = \begin{vmatrix} \frac{1}{2} \begin{pmatrix} |x_1 & x_2| \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} |x_2 & x_3| \\ y_2 & y_3 \end{vmatrix} + \dots + \begin{vmatrix} |x_{n-1} & x_n| \\ y_{n-1} & y_n \end{vmatrix} + \begin{vmatrix} |x_n & x_1| \\ y_n & y_1 \end{vmatrix} \end{vmatrix}$$

But what if we only know the lengths of all n edges of a polygon? In the case of n = 3 (triangle), the area can be determined by the well-known Hero's Formula. However, when $n \ge 4$, things become complicated because the area could be greatly affected by the angles, which is illustrated in the following figure:

Here comes our problem: given n sticks of length 1, 2, 3, ..., n, you are required to construct a n-sided polygon using these n sticks as the polygonal edges. And the objective is to arrange the sticks and choose the angles so that the area of this polygon is maximized.

Input (from polygon.in)

The input for this problem contains several configurations, one per line. For each line, there is only one integer n ($3 \le n \le 100$).

A line with a single -1 indicates the end of the input.

Output

The output should be one real number per line, shows the maximized area, correct to four decimal places.

Sample Input

4

6

-1

Sample Output

4.8990

29.2490