CSc 320: Foundations of Computer Science (Summer 2022) Alex Holland Bonus Assignment

Question 1

We want to construct the string-matching automaton for the pattern P = aabab and illustrate its operation on the text string T = aaababaabaabaabaaba.

First we can compute the transition function δ table. The states are $\{0, 1, 2, 3, 4, 5\}$ The only accepting state is 5.

State	a	b
0	1	0
1	2	0
2	2	3
3	4	0
4	2	5
5	1	0

For the transition table we can construct a state-transition diagram by creating 6 states for the *aabab* transitions, where state 0 is the start state and state 5 is the only accepting state.

With the state-transition diagram for pattern P created, we now have the ability to apply transition rules to strings that are a subset of the alphabet of the pattern P. Note that only the letters a and b are valid in the string-matching automaton.

We can now determine the states of at each index i in the string T.

```
At i = 0 and T[0] = \emptyset we get: \delta initially in state 0
At i = 1 and T[1] = a we get: state = \delta(0, a) = 1
At i = 2 and T[2] = a we get: state = \delta(1, a) = 2
At i = 3 and T[3] = a we get: state = \delta(2, a) = 2
At i = 4 and T[4] = b we get: state = \delta(2, b) = 3
At i = 5 and T[5] = a we get: state = \delta(3, a) = 4
At i = 6 and T[6] = b we get: state = \delta(4, b) = 5
At i = 7 and T[7] = a we get: state = \delta(5, a) = 1
At i = 8 and T[8] = a we get: state = \delta(1, a) = 2
At i = 9 and T[9] = b we get: state = \delta(2, b) = 3
At i = 10 and T[10] = a we get: state = \delta(3, a) = 4
At i = 11 and T[11] = a we get: state = \delta(4, a) = 2
At i = 12 and T[12] = b we get: state = \delta(2, b) = 3
At i = 13 and T[13] = a we get: state = \delta(3, a) = 4
At i = 14 and T[14] = b we get: state = \delta(4, b) = 5
At i = 15 and T[15] = a we get: state = \delta(5, a) = 1
At i = 16 and T[16] = a we get: state = \delta(1, a) = 2
At i = 17 and T[17] = b we get: state = \delta(2, b) = 3
```

Every time we reach state 5 we know we have a match. When matching string P to string T we reached state 5 twice. The shift is the number of positions before the pattern occurrences in the string. We calculate the shift as shift = i - 5 at i = 6 and 14:

$$6 - 5 = 1$$

 $14 - 5 = 9$

We can summarize our results in the following table, the strings highlighted in blue represent strings that match P:

i	T[i]	δ
0	Ø	0
1 2 3	a	1
2	\boldsymbol{a}	2
3	a	1 2 2 3
4	b	
5	a	4
6 7	b	5
	a	1 2
8	a	
9	b	3
10	a	4
11	a	2
12	b	3
13	a	4
14	b	5
15	a	1 2
16	a	2
17	b	3

Question 2

We want to compute the prefix function π for the pattern ababbabbabbabbabb that we will denote as P. The prefix function can be defined as $\pi[q] = \max\{k : k < q \text{ and } P_k P_q\}$, where $\pi[q]$ is the length of the longest prefix of P that is suffix of P_q .

The prefix is the left-most end of the pattern. The suffix is the right-most end of the pattern. We can determine a list of prefixes and suffixes for the pattern ababbabbabbabbabbabbabbabb:

We want to find the the longest possible suffix of P which is also a the longest possible prefix of P_q . This is a subpattern of the string that appears in both the prefix and suffix.

```
For substring of length 1 which is a: \pi[1] = 0
For substring of length 2 which is ab: \pi[2] = 0
For substring of length 3 which is aba: \pi[3] = 1, because it starts and ends with a
For substring of length 4 which is abab: \pi[4] = 2, because it starts and ends with ab
For substring of length 5 which is ababb: \pi[5] = 0, because it starts with a and ends with b
For substring of length 6 which is ababba: \pi[6] = 1, because it starts and ends with a
For substring of length 7 which is ababbab: \pi[7] = 2, because it starts and ends with ab
For substring of length 7 which is ababbabb: \pi[8] = 0, because it starts with a and ends with b
For substring of length 7 which is ababbabba: \pi[9] = 1, because it starts and ends with a
For substring of length 7 which is ababbabbab: \pi[10] = 2, because it starts and ends with ab
For substring of length 7 which is ababbabbabbabb: \pi[11] = 0, because it starts with a and ends with b
For substring of length 7 which is ababbabbabba: \pi[12] = 1, because it starts and ends with a
For substring of length 7 which is ababbabbabbabbab: \pi[13] = 2, because it starts and ends with ab
For substring of length 7 which is ababbabbabbaba: \pi[14] = 3, because it starts and ends with aba
For substring of length 7 which is ababbabbabbabbabbabbabab: \pi[15] = 4, because it starts and ends with abab
For substring of length 7 which is ababbabbabbabbabbabb: \pi[16] = 5, because it starts and ends with ababb
For substring of length 7 which is ababbabbabbabbabbabbabbabababa \pi[17] = 6, because it starts and ends with ababba
For substring of length 7 which is ababbabbabbabbabbabbabbabbabbabbab \pi[18] = 7, because it starts and ends with ababbab
```

Here we can see that that the longest possible suffix is ababbabb as it appears in both the left-most and right-most part of the pattern P.

The results of the above calculations can be shown in the table of values π for the pattern P:

i	P[i]	$\pi[i]$
1	a	0
2 3 4	b	0
3	a	1
	b	2
5	b	0
6 7	a	1
	b	2
8	b	0
9	a	1
10	b	2
11	b	0
12	a	1
13	b	2
14	a	3
15	b	4
16	b	5
17	a	6
18	b	7
19	b	8

The prefix function π can be determined by scanning substrings of P of size q from left-to-right starting from an index i=1 and determining if the prefix is the same as the suffix. For example, a substring of P of length 4 which would be abab, ab appears at both the start and end of the substring so by the prefix function $\pi[q] = max\{k : k < q \text{ and } P_k P_q\}$ we can determine that $\pi[4] = 2$. We continue this process for all indexes of P (from i=1 to i=19).