

1. Principios básicos

1.1. Ejercicio 1

Figura 1: γ -rangos

$$R_n = sen(\eta_n)r_n$$

$$\Delta R_n = R_n - R_{n-1}$$

$$\Delta R_n = sen(\eta_n)r_n - sen(\eta_{n-1})r_{n-1}$$

$$r_k = \frac{kcT_s}{2}$$

$$\gamma - rango_k = r_k = \frac{h}{cos(\eta_k)}$$

$$\eta_k = cos^{-1}\left(\frac{h}{r_k}\right)$$

Para poder graficar η_k y ΔR_k , necesitamos primero calular r_o . Sabiendo que:

$$Fs = 50 \, 10^6$$

$$Ts = \frac{1}{Fs} = 50 \, 10^{-6}$$

$$\begin{array}{rcl} h & = & 5375m \\ \eta_0 & = & \eta_{near} = 18,24 \\ c & = & 299,792,458\frac{m}{s} \end{array}$$

Podemos calcular r_0 como $\frac{h}{\cos(\eta_0)}$ que resulta en

$$r_0 \approx 5659$$

Figura 2: η en función del rango r_k

Figura 3: ΔR en función del rango r_k

2. Parte analógica

2.1. Ejercicio 2

La señal chirp se define como

$$chirp(t) = e^{j\theta(t)}$$

donde $\theta(t)$ es una función cuadrática del tiempo con forma

$$\theta(t) = k_1 t^2 + k_2 t$$

La frecuencia instantánea de la chirp es entonces:

$$f$$
 $inst(t) = 2k_1t + k_2$

Como la chirp barre frecuencias que van desde -20Mhz hasta 20Mhz en $10\mu s$:

$$f_{inst}(0) = 2k_10 + k_2 = k2 = -20Mhz$$

Y al final

$$f_inst(10\mu s) = 2k_1 10\mu s + k_2 = 20Mhz$$

 $2k_1 10\mu s - 20Mhz = 20Mhz$
 $k_1 = \frac{40Mhz}{210\mu s}$
 $k_1 = 2 \cdot 10^{12}$

Por lo tanto, la fase instantánea es

$$f_{inst}(t) = 4 \times 10^{12} t^2 - 20 \times 10^6 t$$

En la figura 4 se puede ver el resultado de graficar las partes real e imaginarias de la chirp junto con la fase instantánea en función del tiempo.

La chirp tiene una frecuencia máxima de 20Mhz y por Nyquist la mínima frecuencia de muestreo que podemos usar es 40Mhz, si no se satisface el criterio de Nyquist se producen resultados como el de la figura 5.

Figura 4: Chirp emitida por el SARAT (no modulada)

Figura 5: Chirp emitida por el SARAT (no modulada) submuestreada

Figura 6: Espectro de la Chirp emitida por el SARAT (no modulada)

2.2. Ejercicio 3

Figura 7: Espectrograma de la Chirp emitida por el SARAT (no modulada)

Figura 8: Espectrograma de la Chirp emitida por el SARAT (no modulada) submuestreada

Para realizar los espectrogramas se utilizó una ventana de hann de largo 50 y un solapamiento de 40 muestras. Como la frecuencia de muestreo es de 50Mhz, el aliasing se puede observar cuando la frecuencia de la chirp sobrepasa los 25Mhz, es en este momento cuando la frecuencia de la chirp parece estar disminuyendo y cae hasta cero para luego volver a crecer hasta los 25Mhz.

El uso de diferentes tipos de ventana altera los contenidos de frecuencia de la señal original. En las figura 9 se muestra una comparación de aplicar diferentes tipos de ventanas a las primeras 100 muestras de la chirp generada en puntos anteriores y en la figura 10 se muestran los resultados de utilizar cada una de estas ventanas al espectrograma.

Por último en la figura 11 se muestra el efecto de utilizar diferentes solapamientos. Cuanto mas se solapan las ventanas, mayor resolución se obtiene para un instante dado. Notar que en los casos de bajo solapamiento para toda una franja de tiempo se tiene los mismos componentes de frecuencia, mientras que en los de alto solapamiento esta franja de tiempo se hace muy pequeña.

Figura 9: Comparación de diferentes tipos de ventanas

Figura 10: Comparación de diferentes tipos de ventanas (espectrogramas)

Figura 11: Comparación de diferentes solapamientos para una ventana de Hann 50 muestras (espectrogramas)

2.3. Ejercicio 4

La chirp está definida como:

$$chirp(t) = e^{j\phi(t)}$$

Donde $\phi(t)$ es la fase en función del tiempo. Como ya se mostró en el punto 2, la frecuencia instantánea $\left(\frac{\partial\phi}{\partial t}\right)$ de la chirp (figura 12) es

$$f_inst(t) = 2k_1t + k_2$$

Donde k_2 es la frecuencia inicial y $2k_1$ es el incremento de frecuencia por unidad de tiempo. Se ve entonces que $f_inst(t)$ es una función lineal del tiempo con $2k_1$ como la pendiente.

Figura 12: Frecuencia instantánea de la chirp

2.4. Ejercicio 5

Figura 13: Espectro de las señales en las diferentes fases del modulador

2.5. Ejercicio 6

Figura 14: Espectro de las señales en las diferentes fases del demodulador

2.6. Ejercicio 7

El modulador lo que hace es desplazar el espectro de la chirp hasta los 1300Mhz (la modula) y luego la emite. Esta señal es reflejada por el suelo y vuelve al radar. Como estamos considerando que la señal al viajar hasta el suelo, rebotar y volver está pasando por un sistema LTI que solo introduce un retardo y un cambio de fase, la señal que recibe el radar es la misma que emitió, solo que con algún cambio de fase. Luego se pasa la señal a una banda intermedia de 200Mhz y por último es multiplicada por un coseno de 200Mhz en el caso de I(t) o por un seno de la misma frecuencia para el caso de Q(t). Entonces, las señales I(t) y Q(t), no son mas que las pertes real e imaginaria de la chirp emitida por el SARAT retrazada y con un cambio de fase.

2.7. Ejercicio 8

Tanto el modulador como el demodulador son sistemas LTI. Como consideramos el mundo fuera del SARAT como un sistema LTI, entonces todo el sistema en su totalidad es LTI.

3. Parte digital

3.1. Ejercicio 9

Figura 15: Datos crudos del SARAT (subset)

Podemos ver en la figura 15, que la ventana de recepción (ancho total de la imagen) dura 3000 muestras y que en cada línea (exceptuando las primeras 200) hay una región muy oscura al inicio de aproximadamente 395 muestras. Las primeras 200 lineas contienen solamente un muestreo de la chirp emitida por el SARAT. La duración de esta chirp es de 500 muestras o $10\mu s$. Entonces conociendo esta equivalencia entre cantidad de muestras y tiempo, podemos calcular que la ventana de adquisición dura $60\mu s$. También sabemos que las 395 muestras al inicio de cada fila equivalen a $7.9\mu s$ que es el tiempo desde que se abre la ventana de recepción hasta que comienzan a llegar los datos. Si hacemos el cálculo teórico vemos que estamos tomando muestras a 50Mhz y que la cantidad de muestras horizontales es de 3000, entonces $\frac{3000}{50\times10^6}=60\times10^{-6}=60\mu s$.

3.2. Ejercicio 10

En el punto anterior, las chirp aparecían de un color uniforme debido a que su modulo, en decibeles, es parecido a un pulso rectangular (mas bien trapezoidal). Es decir que sube rápidamente, se mantiene un tiempo y luego baja (figura 16).

Figura 16: Chirp real del SARAT (modulo en decibeles)

Figura 17: Chirp real del SARAT (espectro)

Figura 18: Chirp real del SARAT (ancho de banda)

Figura 19: Chirp real del SARAT

3.3. Ejercicio 11

Figura 20: Modulo del espectro en rango

Figura 21: Modulo del espectro en azimuth

3.4. Ejercicio 12

Figura 22: Modulo del espectro en azimuth (medio PRF)

4. Compresión del pulso

4.1. Ejercicio 13

La correlación no es una operación conmutativa. La relación entre la correlación de dos funciones con su transformada de Fourier es la siguiente:

$$\mathcal{F}|x[n] \star y[n]|(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \star y[n]e^{-j\Omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]y^*[k-n]e^{-j\Omega n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} y^*[k-n]e^{-j\Omega n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] \sum_{l=-\infty}^{\infty} y^*[l]e^{-j\Omega(k-l)}$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\Omega k} \sum_{l=-\infty}^{\infty} y^*[l]e^{j\Omega l}$$

$$= X(\Omega) \left(\sum_{l=-\infty}^{\infty} y[l]e^{-j\Omega l}\right)^*$$

$$= X(\Omega) (Y(\Omega))^*$$

$$= X(\Omega)Y^*(\Omega)$$

Entonces, por ejemplo si tenemos una $X(\Omega)$ real y una $Y(\Omega)$ imaginaria, no es lo mismo

$$x[n]\star y[n] = X(\Omega)Y^*(\Omega) = X(\Omega)(-1)Y(\Omega)$$

que

$$y[n] \star x[n] = Y(\Omega) X^*(\Omega) = Y(\Omega) X(\Omega)$$

Por lo tanto la correlación no es una operación conmutativa.

4.2. Ejercicio 14

En la figura 23 se puede apreciar la autocorrelación de la chirp. El ancho del lóbulo principal es de unos $0.4\mu s$. Como estamos mandando una señal de $10\mu s$ y resulta en un pulso de $0.4\mu s$ la compresión de pulso se da en un factor de $\frac{10\mu s}{0.25\mu s}=40$ aproximadamente. Si quisieramos obtener la misma resolución con un pulso convencional necesitaríamos en el radar un generador de alta potencia ya que mientras mas angosto el pulso mas difícil es su detección y por lo tanto el pulso debe tener mas potencia.

Figura 23: Autocorrelación de la chirp del SARAT

4.3. Ejercicio 15

Figura 24: Autocorrelación de diferentes chirps

Figura 25: Autocorrelación de diferentes chirps (variación del ancho temporal)

4.4. Ejercicio 16

La correlación se define como:

$$x[n] \star y[n] = \sum_{k=-\infty}^{\infty} x[k]y^*[k-n]$$

y como ya vimos, la transformada de la correlacion es:

$$\mathcal{F}|x[n] \star y[n]|(\Omega) = X(\Omega)Y^*(\Omega)$$

donde $X(\Omega)$ es la transformada de Fourier de x[n], y $Y^*(\Omega)$ es la transformada de Fourier conjugada de y[n].

Si hacemos un remplazo $\widetilde{Y}(\Omega)=Y^*(\Omega)$, nos queda que

$$\mathcal{F}|x[n]\star y[n]|(\Omega)=X(\Omega)\widetilde{Y}(\Omega)$$

Entonces, en tiempo podemos pensarlo como

$$x[n] \star y[n] = x[n] * \tilde{y}[n]$$

Entonces, se puede calcular la convolución utilizando DFT

$$x[n] * \tilde{y}[n] = IDFT(DFT(x, N)DFT(\tilde{y}, N))$$

donde $N = length(x) + length(\tilde{y}) - 1$ y además, por lo visto anteriormente

$$DFT(\tilde{y}, N) = DFT(y, N)^*$$

Por lo tanto

$$x[n] \star y[n] = x[n] * \tilde{y}[n] = IDFT(DFT(x,N)DFT(y,N)^*)$$

5. Compresión en rango

5.1. Ejercicio 17

Figura 26: Compresion en rango

6. Compresión en azimuth

6.1. Opcional 1

Figura 27: Duración de la chirp en función del $\eta_{\rm rango}$

6.2. Ejercicio 18

Figura 28: Frecuencias de corte en azimuth y ancho de banda

6.3. Ejercicio 19

Figura 29: Frecuencias de corte en azimuth y ancho de banda (segunda estimación)

6.4. Ejercicio 22

Figura 30: Imagen comprimida en azimuth

Figura 31: Imagen comprimida en azimuth (con ventaneo en la chirp)

6.5. Opcional 2

Figura 32: Imagen comprimida en azimuth promediado