Contrastes sobre una población

2 Contrastes entre das poblaciones

1. media con vorionzos conocidas (cuendo las vorionzas de las dos poblaciones son conocidas y queremos comporar sus medias pa y.p.)

Ho:
$$y_1 = y_2$$

Ha: $y_1 \neq y_2$, $y_1 > y_2$, $y_1 \neq y_2$

$$Z = \frac{X_1 - X_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} Z \sim N(0, 1) \propto 12$$

2 media con vorianzas desconocidas e iguales (asumimas que son =)

Ho:
$$y_1 = y_2$$

Ha $y_1 \neq y_2$, $y_1 > y_2$, $y_1 < y_2$ $f = \frac{\overline{x}_1 - \overline{x}_2}{S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$
* si ni siquiea dan $S - c$ saco S

Radia $f_{n_1 + n_2 + 2}$, σ

media con vorionzas desconocidas y diferentes

$$\frac{X_1 - X_2}{S_1^2 + S_2^2} + \frac{1}{2} \operatorname{grades} \operatorname{aprex} = 9 = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}$$

proporciones (para comparor las proporciones de exito pry p2 entre das poblaciones

ciones

Ho:
$$P_1 = P_2$$
 $Z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{P(1-p)[\frac{1}{n_1} + \frac{1}{n_2}]}}$
 $P = \frac{x_1 + x_2}{n_1 + n_2}$
 $Z = \frac{P_1 - \hat{P}_2}{\sqrt{P(1-p)[\frac{1}{n_1} + \frac{1}{n_2}]}}$
 $P = \frac{x_1 + x_2}{n_1 + n_2}$
 $Z = \frac{P_1 - \hat{P}_2}{\sqrt{P(1-p)[\frac{1}{n_1} + \frac{1}{n_2}]}}$
 $P = \frac{x_1 + x_2}{n_1 + n_2}$
 $Z = \frac{P_1 - \hat{P}_2}{\sqrt{P(1-p)[\frac{1}{n_1} + \frac{1}{n_2}]}}$
 $Z = \frac{P_1 - \hat{P}_2}{\sqrt{P(1-p)[\frac{1}{n_1} + \frac{1}{n_2}]}}$

5 cociente de vori anzas (cuando quaemos comporor las vorionzas of of de des poblaciones)

Ha:
$$O_1^2 = O_2^2$$

Ha: $O_1^2 \neq O_2^2$, $O_1^2 > O_2^2$, $O_1^2 < O_2^2$ $F = \frac{S_1^2}{S_2^2}$ F Snedecon $n_1 - 1$, $n_2 - 1$

Ho: $y_1 = y_2 = y_3$ Ho: all manos of es dights grupos dates absorbed media $\left[\frac{\sum (X_1 - \bar{X})^2}{4 + \sum_{i=1}^{N} x_i} \right] = \frac{1}{33}$, 45,4 del grupo $(33 - \bar{X})^{\frac{1}{4}}$.