Outline

Apprentissage Statistique II

Introduction

CART

3agging

Random Forests

Conclusion

Python

Références

Arbres et Forêts Aléatoires

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Ce cours

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Correitas

_

Références

Arbres de classification et de régression

méthode ancienne, classique et populaire

A la base de la méthode des forêts aléatoires

- basée sur le bagging : aggrégation par bootstrap
- très performante sur de nombreux problèmes
- facile à paramétrer

Ce cours : des arbres aux forêts aléatoires

- arbres : motivation, formalisation, algorithmes et limites
- aggrégation d'arbres et bagging
- du bagging aux forêts aléatoires

Outline

Apprentissage Statistique II

Introduction

CART

Baggin

Random Forest

Conclusion

Pythor

Références

Introduction

Principe

Principe 1:

- 1. découper l'espace d'entrée en régions
- 2. estimer & prédire une valeur par région

 X_1

- ⇒ Régression : valeur moyenne dans la région
- ⇒ Classification : classe majoritaire dans la région
 - 1. Illustrations tirées de Hastie et al. (2001) (chapitre 9)

Outline

Apprentissage Statistique II

Introduction

CAR'

Bagging

Random Forests

Conclusio

Python

Principe

1ère question : comment construire ces régions?

Approche par partitionnement binaire récursif

binary recursive splitting

\Rightarrow Chaque étape : 1 région divisée selon 1 seuil sur 1 variable

moins général mais plus facile à construire

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fore

Python

Principe

Illustration: régression

Outline

Apprentissage Statistique II

Introduction

⇒ fonction non linéaire et non continue

Des arbres?

Le processus récursif peut se traduire comme un arbre :

► racine de l'arbre : tout l'espace

► feuille de l'arbre : 1 région

régions imbriquées les unes dans les autres

▶ noeud (interne) : 1 seuil qui coupe une région en deux

► test logique basé sur la valeur d'une variable

Outline

Apprentissage Statistique II

Introduction

CART

Ragging

Random For

Correido

Python

References

Arbres de décision

Avantages :

- interprétabilité du modèle
- mécanisme de prédiction proche du processus humain
 - ► e.g., domaine médical
- ▶ interprétation en tant qu'arbre valables pour d >> 2
 - ▶ fonction de prédiction très difficile à se représenter

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Arbres de décision

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fore

Conclusi

. y

Références

Avantages:

- interprétabilité du modèle
- mécanisme de prédiction proche du processus humain
 - ▶ e.g., domaine médical
- ▶ interprétation en tant qu'arbre valables pour d >> 2
 - ▶ fonction de prédiction très difficile à se représenter

Questions:

- quel(s) critère(s) pour couper une région en deux?
- quand arrêter le découpage?
- \Rightarrow algorithme CART

Outline

Apprentissage Statistique II

Introduction

CART

3agging

Random Forests

Conclusion

Python

Références

CART : Classification And Regression Trees

Construction de l'arbre

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Conclusio

Références

Algorithme récursif

Initialisation: noeud racine

contient l'ensemble du jeu de données / tout l'espace

On introduit un noeud:

- en <u>séparant en deux groupes</u> les observations affectées à un noeud de l'arbre
- selon un critère objectif
- tant qu'un <u>critère d'arrêt</u> n'est pas atteint

Construction de l'arbre

Apprentissage Statistique II

Outline

Comment séparer en 2 les observations affectées à un noeud?

Introduction

CART

Bagging

Random Forests

Lonclusion

Python

Construction de l'arbre

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fore

Conclusi

Python

Références

Comment séparer en 2 les observations affectées à un noeud?

 \Rightarrow en considérant <u>1 seuil défini sur 1 variable</u>

⇒ principe décliné pour la classification et la régression

Arbres de classification - formalisation

Comment séparer au mieux les instances affectées au noeud?

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Conclusion

Python

étérences

Arbres de classification - formalisation

Comment séparer au mieux les instances affectées au noeud?

⇒ en cherchant deux ensembles les plus purs possibles.

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

ython

Arbres de classification - formalisation

Comment séparer au mieux les instances affectées au noeud?

 \Rightarrow en cherchant deux ensembles les plus purs possibles.

Formalisation (pour la classification):

- ▶ problème de classification à *K* catégories
- ▶ le noeud *i* contient *n_i* instances
- ▶ on définit le vecteur $P_i \in \mathbb{R}^K$:

$$P_{i}[k] = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{1}(y_{C_{i}(j)} = k)$$

où Ci est l'ensemble des instances du noeud i

⇒ les proportions des différentes classes au sein du noeud

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Concido

Python

Arbres de classification - critères d'impureté

Critères d'impureté du noeud i :

1. indice de Gini:

$$G(i) = 1 - \sum_{k=1}^{K} Pi[k]^2$$

2. entropie:

$$H(i) = -\sum_{k=1}^{K} Pi[k] \log_2(Pi[k])$$

(avec par convention $0 \log(0) = 0$)

- ⇒ distribution uniforme : valeurs élevées
- \Rightarrow classe(s) majoritaire(s) : valeurs faibles

Outline

Apprentissage Statistique II

Introduction

CART

agging

Random Forests

Concids

Dáfáranca

Arbres de classification - critères d'impureté

Illustration: classification binaire

$$ightharpoonup P_i = [P_i[1] \ P_i[2]] = [P_i[1] \ 1 - P_i[1]] = [p_1 \ 1 - p_1]$$

à gauche : entropie et Gini en fonction de p₁

à droite : idem avec entropie divisée par 2

⇒ critères très similaires

▶ entropie = mesure du désordre, théorie de l'information

Outline

Apprentissage Statistique II

Introduction

CART

.

Random Fo

Python

Comment séparer au mieux les instances affectées au noeud?

 \Rightarrow en cherchant deux ensembles les plus purs possibles.

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Comment séparer au mieux les instances affectées au noeud?

 \Rightarrow en cherchant deux ensembles les plus purs possibles.

Critère objectif : moyenne pondérée des impuretés

$$\frac{n_G}{n_i}I_G + \frac{n_D}{n_i}I_D$$

- $ightharpoonup n_i = \#$ d'instances affectées au noeud i (à couper)
- $ightharpoonup n_G, n_D = \#$ d'instances affectées aux noeuds fils
 - ► Gauche et Droit
- I_G , I_D = mesure d'impureté des noeud fils
 - ▶ i.e., entropie ou Gini

Outline

Apprentissage Statistique II

Introduction

CART

agging

. .

Conclusion

Python

Comment séparer au mieux les instances affectées au noeud?

 \Rightarrow en cherchant deux ensembles les plus purs possibles.

Critère objectif : moyenne pondérée des impuretés

$$\frac{n_G}{n_i}I_G + \frac{n_D}{n_i}I_D$$

- $ightharpoonup n_i = \#$ d'instances affectées au noeud i (à couper)
- $ightharpoonup n_G, n_D = \#$ d'instances affectées aux noeuds fils
 - ► Gauche et Droit
- I_G , I_D = mesure d'impureté des noeud fils
 - ▶ i.e., entropie ou Gini

⇒ problème : minimiser ce critère

Apprentissage Statistique II

Introduction

CART

agging

Random Forest

Conclusio

Python

Comment séparer au mieux les instances affectées au noeud?

 \Rightarrow en cherchant deux ensembles les plus purs possibles.

Critère objectif : moyenne pondérée des impuretés

$$\frac{n_G}{n_i}I_G + \frac{n_D}{n_i}I_D$$

- ⇒ minimiser ce critère = algorithme glouton (greedy) :
 - ▶ on considère tous les couples (variable,seuil)
 - on évalue le critère
 - ▶ on sélectionne le meilleur couple (variable, seuil)

Rappel : (1 variable / 1 seuil) = principe de l'algorithme

Outline

Apprentissage Statistique II

Introduction

CART

agging

Random Forests

Conclusion

Python

Quand arrêter le découpage des noeuds?

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Quand arrêter le découpage des noeuds?

Critère d'arrêt automatique : plus de gain en pureté

- le noeud est déjà parfaitement pur
- on ne peut pas le purifier davantage

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Lonciusio

Python

Quand arrêter le découpage des noeuds?

Critère d'arrêt automatique : plus de gain en pureté

- le noeud est déjà parfaitement pur
- on ne peut pas le purifier davantage

\Rightarrow Exemple : XOR

- ▶ impureté maximum
 - $p_1 = p_2 = 0.5$
- constante si on découpe

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

_ .

Conclusio

ython

Outline

Apprentissage Statistique II

Introduction

CART

Random Fo

Conclusi

Dáfáranca

⇒ risque de sur-apprentissage si on laisse trop croître l'arbre

Eviter le sur-apprentissage = limiter la complexité de l'arbre

⇒ compromis biais/variance

▶ simple : biais élevé; complexe : variance forte

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

onclusion

ython

Eviter le sur-apprentissage = limiter la complexité de l'arbre ⇒ compromis biais/variance

▶ simple : biais élevé ; complexe : variance forte

Critères d'arrêt classiques pour l'empêcher de trop croître :

- 1. s'arrêter quand le gain en pureté est marginal
- 2. critères sur la structure de l'arbre
 - ▶ profondeur maximale
 - nombre de feuilles maximal
 - ▶ nombre minimum d'instances par feuille
 - nombre minimum d'instances pour couper un noeud
 - ...

Outline

Apprentissage Statistique II

Introduction

CART

agging

Random Forest

conclusion

Python

Eviter le sur-apprentissage = limiter la complexité de l'arbre

- ⇒ compromis biais/variance
 - simple : biais élevé; complexe : variance forte

Critères d'arrêt classiques pour l'empêcher de trop croître :

- 1. s'arrêter quand le gain en pureté est marginal
- 2. critères sur la structure de l'arbre
 - profondeur maximale
 - ▶ nombre de feuilles maximal
 - ▶ nombre minimum d'instances par feuille
 - ▶ nombre minimum d'instances pour couper un noeud

⇒ des hyperparamètres à définir et à optimiser

e.g., par validation croisée

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

onclusion

ython

Arbres de régression

Pour la régression : même méchanisme

Critères d'impureté du noeud i :

1. erreur quadratique moyenne (MSE) :

$$MSE(i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (y_{C_i(j)} - \bar{y}_i)^2$$

où $n_i = \#$ instances affectées au noeud i, $\bar{y_i}$ la moyenne de leurs réponses et $\{C_i(j)\}_{j=1:n_i}$ leurs indices.

2. erreur absolue médiane (MAE) :

$$\mathsf{MAE}(i) = \mathsf{median}\Big\{ \big| y_{C_i(j)} - \tilde{y}_i \big| \Big\}$$

où \tilde{y}_i = la médiane des réponses des instances du noeud i.

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

onclusion

Pvthon

Règles de prédiction

Outline

Apprentissage Statistique II

CART

Mécanisme "top down" pour la prédiction :

- 1. on part de la racine
- 2. on progresse dans l'arbre en évaluant les tests définis aux noeuds internes
- 3. jusqu'à atteindre une feuille

⇒ règles de prédiction :

- classification : classe majoritaire dans la feuille/région
 - prédiction probabiliste grâce à sa proportion
- régression : valeur moyenne dans la feuille/région

Arbres de décision - remarques

Avantages:

- interprétabilité
- simple : pas de préparation des données ; multiclasse

Limites:

- instabilité
- fonction non-continue pour la régression

Attention aux prédicteurs catégoriels

▶ relation d'ordre implicite si encodés comme 1, ..., K

Approche "non paramétrique"

▶ le # de paramètres augmente avec le jeu de données

Algorithme CART le plus répandu (alternatives = C4.5, ID3)

Outline

Apprentissage Statistique II

CART

Arbres de décision - instabilité

Outline

Apprentissage Statistique II

Introduction

CART

agging

Random Forest

.......

Références

Plus généralement : procédure sensible à de petites variations des données d'apprentissage

⇒ le bagging permet de limiter cette instabilité

2. Example tiré de Géron (2017).

23/53

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Pythor

Références

Bagging

CART

Bagging

Random Forest

Conclusion

. ,

▶ jeu de données Iris, 3 échantillons bootstrap

Instabilité des arbres de décisions

Instabilité des arbres de décision : illustration (2/2)

- ▶ données simulées, 5 descripteurs (Hastie et al., 2001)
- ▶ 5 échantillons bootstrap

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random For

CONCIUSIO

Python

Instabilité des arbres de décisions

Instabilité = limitation sévère des arbres de décision

- compromet la généralisation
- remet en partie en cause leur interprétabilité

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

CONCIUSIO

ython

Instabilité des arbres de décisions

Instabilité = limitation sévère des arbres de décision

- compromet la généralisation
- remet en partie en cause leur interprétabilité

Stratégie de bagging :

- générer plusieurs échantillons bootstrap du jeu d'apprentissage
- 2. construire les arbres correspondants
- 3. aggréger les prédictions de tous les arbres
- ⇒ bagging = bootstrap aggregating

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Conclus

Python

Bagging

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forest

Concidsi

Python

Références

Bagging : principe générique

- pas spécifique aux arbres...
- ...mais souvent utilisé avec les arbres

Règles de prédiction (typiques) :

- régression : moyenne des prédictions
- classification : classe majoritaire

Prédiction probabiliste pour la classification?

- ▶ la proportion de votes peut être optimiste
 - e.g., si ils prédisent tous la bonne classe avec p = 0.6
- ► considérer la moyenne des probabilités de chaque arbre

Bagging

Illustration : Iris dataset

▶ gauche : 1 arbre ; droite : bagging de 2000 arbres

⇒ capture des caractéristiques plus locales

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fore

001101001

Bagging et erreur "Out Of Bag"

Echantillon bootstrap : ne contient pas tout le jeu de donnée

Instances hors de l'échantillon = échantillon indépendant

- ▶ on peut les classifier par l'arbre correspondant
- ⇒ on peut estimer la généralisation lors de l'apprentissage

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fores

Conclusion

Pytnon

Bagging et erreur "Out Of Bag"

Apprentissage Statistique II

Outline

Introduction

CART

Bagging

Random Forest

Conclus

Références

Echantillon bootstrap : ne contient pas tout le jeu de donnée

Instances hors de l'échantillon = échantillon indépendant

- on peut les classifier par l'arbre correspondant
- \Rightarrow on peut estimer la généralisation lors de l'apprentissage

Erreur Out Of Bag (OOB) - pour chaque instance :

- 1. extraire les arbres qui ne l'ont pas utilisée
- 2. obtenir les prédictions correspondantes
- 3. les aggréger et comparer à la vraie réponse
- ⇒ une caractéristique unique du bagging

Bagging et erreur "Out Of Bag"

Erreur Out Of Bag (OOB):

- permet d'estimer la généralisation lors de l'apprentissage
- en général proche de l'estimation par validation croisée
- peut aider à savoir quand arrêter la procédure

Illustration (tirée de Hastie et al. (2001)) :

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fores

ython

Bagging - remarques

Apprentissage Statistique II

Outline

Introduction

CART

Bagging

Random Forest

Conclus

, -----

Références

Avantages:

- ▶ stabilité → meilleure performance de prédiction
- ▶ simple à mettre en oeuvre

Bagging = bootstrap aggregating

► accès à l'erreur Out Of Bag

Inconvénients :

- coût calculatoire
- ▶ avec les arbres : perte de l'interpretabilité

Outline

Apprentissage Statistique II

Introduction

CAICI

Bagging

Random Forests

Conclusion

Python

Références

Random Forests / Forêts Aléatoires

Random Forest = algorithme de bagging basé sur les abres

► forêt aléatoire

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Random Forest = algorithme de bagging basé sur les abres

► forêt aléatoire

Différence par rapport au bagging "classique" :

quand on ajoute un noeud à un arbre on considère $m \le p$ variables candidates choisies aléatoirement

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

ı yınon

Références

Random Forest = algorithme de bagging basé sur les abres

▶ forêt aléatoire

Différence par rapport au bagging "classique" :

quand on ajoute un noeud à un arbre on considère $m \le p$ variables candidates choisies aléatoirement

- ⇒ chaque arbre a individuellement un pouvoir prédictif limité
 - ▶ i.e., encore plus qu'un arbre classique
- ⇒ l'étape aléatoire a pour effet de les dé-corréler davantage
 - ▶ i.e., encore plus qu'avec uniquement le bootstrap
- \Rightarrow les combiner par bagging = un classifieur très performant

Illustration: SPAMS dataset (Hastie et al., 2001):

(Gradient boosting : autre algorithme non couvert ici)

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

CONCIUSIO

Python

References

Random Forests - mise en oeuvre

Outline

Apprentissage Statistique II

Random Forests

Même procédure pour classification et régression

prédiction par bagging - moyenne ou vote majoritaire

Hyper-paramètres:

- 1. contrôle de la complexité des arbres
 - ▶ idem CART
- 2. nombre d'arbres à combiner
 - idem bagging
- 3. $m \le p$: nombre de variables candidates à considérer

Random Forests - mise en oeuvre

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusio

Python

Référence

Hyper-paramètres : à optimiser

▶ par validation croisée...ou grâce à l'erreur OOB

Mais:

- 1. Heuristiques pour le choix de *m* :
 - classification : $m = \sqrt{p}$
 - régression : m = p/3
- 2. nombre d'arbres : en ajouter ne peut pas faire de mal
 - vrai pour le bagging en général
- 3. pas nécessaire de contrôler la complexité des arbres (?)
 - e.g., noeuds de taille min. 1 / 5 pour classif / régression
- ⇒ simple à paramétrer
- ⇒ point de départ pour une optimisation plus fine

Critère d'importance des variables

Gain en pureté obtenu au noeud i d'un arbre :

$$\Delta(i) = n_i I_i - \left(n_G I_G + n_D I_D\right)$$
$$= n_i \left[I_i - \left(\frac{n_G}{n_i} I_G + \frac{n_D}{n_i} I_D\right)\right]$$

où:

- ▶ le noeud *i* est coupé en (*G*, *D*) (Gauche, Droit)
- ▶ n_i = nombre d'instances affectées au noeud i
- ► I_i = critère d'impureté (e.g., Gini, MSE)
- ⇒ ~ (impureté initiale moyenne pondérée des impuretés)
- \Rightarrow le facteur n_i reflète l'importance du noeud
 - ▶ n_i elevé $\rightarrow i$ haut dans l'arbre \rightarrow variable importante

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclus

Python

Critère d'importance des variables

Critère d'importance d'une variable : somme du gain en pureté qu'elle apporte dans l'ensemble des arbres

Implémentation:

- 1. On le calcule pour chaque variable :
 - on parcourt tous les abres de la forêt
 - on parcourt tous les noeuds de l'arbre
 - si le noeud i est basé sur cette variable on ajoute $\Delta(i)$
- 2. On le normalise par la somme des valeurs obtenues
- ⇒ valeur élevée du critère = variable importante
- ⇒ somme à 1 sur l'ensemble des variables

(d'autres critères existent, celui-ci est implémenté dans Sk-Learn)

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusio

Python

Illustration

iiuStration

Illustration : Iris dataset

gauche: 1 arbre; **milieu**: bagging; **droite**: random forest

- ⇒ Out Of Bag accuracy :
 - ▶ bagging = 74.7%
 - ightharpoonup random forest = 76%

Outline

Apprentissage Statistique II

Introduction

LAKI

Bagging

Random Forests

Références

40/53

Random Forests - remarques

Random Forests : bagging basé sur les arbres de décision

sélection aléatoire des variables pour décorréler les arbres

Avantages:

- performant sur de nombreux problèmes
- simple à paramétrer (heuristiques)
- accès à l'erreur Out Of Bag (approche bagging)
- critère d'importance des variables

Inconvénients

- coût calculatoire
- ▶ modèle "boîte noire"
 - ► +/- car critère d'importance des variables...

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusio

Python

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Références

Conclusion

Conclusion / bilan (1/2)

Ce cours : des arbres aux forêts aléatoires

Arbres de régression et classification

- ▶ algorithme CART
- critères d'impureté (Gini, entropie; MSE, MAE)
- ▶ interprétabilité du modèle
- sur-apprentissage / instabilité
- critères de contrôle de complexité

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Conclusion / bilan (2/2)

Bagging

- bootstrap aggregating
- principe général, décliné ici aux arbres
- stratégie ensembliste : vote majoritaire / moyenne
- erreur "Out Of Bag" accessible lors de l'apprentissage

Random Forests

- bagging d'arbres
- dimension stochastique pour décorréler les arbres
 - ► arguments théoriques
- critère d'importance des variables
- performant et simple à paramétrer (heuristiques)

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Références

Mise en oeuvre dans Scikit-Learn

Arbres de classification et régression (1/3)

Deux classes du module tree :

- ▶ DecisionTreeClassifier → classification
- ightharpoonup DecisionTreeRegressor ightarrow régression

Paramètres principaux (constructeur) :

- criterion : critère d'impureté
 - gini (défaut) ou entropy
 - ▶ mse (défaut) ou mae
- ► critères de contrôles de complexité :
 - max_depth, min_samples_split, min_samples_leaf, max_leaf_nodes, ...
 - min_impurity_decrease
- ► (+ max_features : pour réduire le nombre de variables candidates pour les random forests)

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Arbres de classification et régression (2/3)

Méthodes principales :

- ▶ fit et predict
- DecisionTreeClassifier : predict_proba et predict_log_proba
 - ▶ proba = proportion de la classe majoritaire
- decision_path : chemin suivi par une/des instance(s)

Exemple:

```
# import model
from sklearn.tree import DecisionTreeClassifier
# instantiace model
tree = DecisionTreeClassifier(max_depth=3)
# fit model
tree.fit(X_train,y_train)
# make predictions
preds = tree.predict(X_test)
probs = tree.predict_proba(X_test)
```

Outline

Apprentissage Statistique II

Introduction

CART

Sagging

Random Forest

Conclusion

Python

Arbres de classification et régression (3/3)

Outils de visualisation :

```
from sklearn.tree import export_graphviz
import graphviz
dot_data = tree.export_graphviz(tree, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("figure.pdf")
```

```
petal width (cm) \leq 0.8
              aini = 0.6667
              samples = 150
           value = [50, 50, 50]
              class = setosa
                            False
         True
                       petal width (cm) ≤ 1.75
   qini = 0.0
                             qini = 0.5
 samples = 50
                           samples = 100
value = [50, 0, 0]
                         value = [0, 50, 50]
 class = setosa
                         class = versicolor
                 aini = 0.168
                                       aini = 0.0425
                samples = 54
                                       samples = 46
              value = [0, 49, 5]
                                     value = [0, 1, 45]
              class = versicolo
                                      class = virginica
```

Outline

Apprentissage Statistique II

Introduction

CART

Sagging

Random Forest

Conclusion

Python

Référence

(NB : à customiser avec le nom des classes et des variables)

18/53

Bagging (1/2)

Deux classes du module ensemble :

- ightharpoonup BaggingClassifier ightarrow classification
- ightharpoonup BaggingRegressor ightharpoonup régression

Paramètres principaux (constructeur):

- ▶ base_estimator : prédicteur de base
 - ▶ par défaut, un arbre de décision
- n_estimators : nombre de prédicteurs à aggréger
- bootstrap : booléen (vrai par défaut)
 - ▶ si faux, on tire sans remise : on parle de pasting
- oob_score : booléen indiquant si on veut le calculer
 - ▶ on le trouve alors dans le champ **oob_score**_

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fores

onclusion

Python

Bagging (2/2)

Méthodes principales :

- ▶ fit et predict
- BaggingClassifier: predict_proba et predict_log_proba

Exemple:

```
from sklearn.ensemble import BaggingClassifier
# define model
bag = BaggingClassifier()
    DecisionTreeClassifier(), n_estimators = 200,
    oob_score = True, random_state = 22)
# fit
bag.fit(X, y)
```

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Fores

Conclusion

Python

Random Forest (1/2)

Deux classes du module ensemble :

- ▶ RandomForestClassifier → classification
- ightharpoonup RandomForestRegressor ightarrow régression

Paramètres principaux (constructeur) :

- n_estimators : nombre d'arbres dans la forêt
- criterion : critère d'impureté
- ▶ max_features : paramètre m
 - défaut : \sqrt{p} pour classification, p pour régression
- critères de contrôle de la complexité des arbres
 - max_depth, min_samples_split, min_samples_leaf, max_leaf_nodes, ...
 - min_impurity_decrease
- ▶ oob_score : booléen indiquant si on veut le calculer

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Random Forest (2/2)

Méthodes principales :

- ▶ fit et predict
- RandomForestClassifier : predict_proba et predict_log_proba

Attribut particulier : feature_importances_

▶ le critère d'importance des variables (après appel à fit)

Exemple:

```
# fit random model
from sklearn.ensemble import RandomForestClassifier
# instantiate model
rf = RandomForestClassifier(n_estimators = 500, oob_score = True, random_state= 20)
# learn model
rf.fit(X, y)
```

Outline

Apprentissage Statistique II

Introduction

CARI

Bagging

Random Ford

Conclusion

Python

Références

Outline

Apprentissage Statistique II

Introduction

CART

Bagging

Random Forests

Conclusion

Python

Références

A. Géron. Hands-On Machine Learning with Scikit-Learn & TensorFlow. O'Reilly, 2017.

T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer, 2001.