Using the Fourier transform to identify the lag/position between identical signals (Dated: September 21, 2020)

I. BACKGROUND

The Fast Fourier Transform (FFT) can be used to quickly identify the lag between two identical one-dimensional (1D) signals, or to find a smaller image which is contained in a bigger image which is the lag in two dimensions(2D).

The steps to identify the lag between two signals s1 and s2 is:

- 1. Take the FFT of $s_1(t)$ and $s_2(t)$ over time t to create the transformed vectors $\hat{s_1}(\omega)$ and $\hat{s_2}(\omega)$ for frequencies ω .
- 2. Take the negative conjugate of one of the signals, say $\hat{s}_2(\omega) \to -\overline{\hat{s}_2(\omega)}$.
- 3. Point-wise multiply $\hat{s}_1(\omega)$ and $-\overline{\hat{s}_2(\omega)}$: $\hat{s}_1(\omega).\overline{\hat{s}_2(\omega)}$.
- 4. Take the inverse FFT to get the lag.

A. Deriving the lag between two identical 1D signals

I start by deriving the time-shift property of the Fourier Transform (FT), then use to show the steps above work.

1. Time-shift property of the Fourier transform

The FT acts on a signal f(t) via the operator \mathcal{F} such that a function over time f(t) is mapped onto frequency space $\hat{\chi}(\omega)$:

$$\mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
 (1)

$$=\hat{\chi}(\omega). \tag{2}$$

Now introduce a time-shift $t - t_0$ to Eqn. 2 and use a change of variables to obtain the time-shift property:

$$\mathcal{F}\{f(t-t_0)\} = \int_{-\infty}^{\infty} f(t-t_0)e^{-i\omega t} dt$$
 (3)

$$= \int_{-\infty}^{\infty} f(u)e^{-i\omega(u+t_0)} du \tag{4}$$

where u = t - te

$$=e^{-i\omega t_0}\int_{-\infty}^{\infty}f(u)e^{-i\omega u}\,du\qquad(5)$$

$$=e^{-i\omega t_0}\hat{\chi}(\omega). \tag{6}$$

2. Obtaining the lag between two identical 1D signals

Using Eqn. 6 and following the steps outlined above we start with two signals $f_1(t)$ and $f_2(t)$ where $f_2(t) = f_1(t - t_0)$.

Step 1: Transform $f_1(t)$ and $f_2(t)$ into frequency space:

$$\mathcal{F}\{f_1(t)\} = \hat{\chi}_1(\omega),\tag{7}$$

and

$$\mathcal{F}\{f_2(t)\} = \hat{\chi}_2(\omega)$$

$$= e^{-i\omega t_0} \hat{\chi}_1(\omega). \tag{8}$$

Where Eqn. 8 is due to the time-shift property of the Fourier transform.

Step 2: Next take negative complex conjugate of one of the signals (say $\hat{\chi}_1(\omega)$) in Eqn. 7 and multiply by Eqn. 8:

$$\hat{\chi}_2(\omega)\hat{\chi}_1^*(\omega) = e^{-i\omega t_0}\hat{\chi}_1(\omega)\hat{\chi}_1^*(\omega)$$
(9)

(time - shift property)

$$=e^{-i\omega t_0}|\hat{\chi}_1(\omega)|^2\tag{10}$$

(modulus of a complex function)

$$=e^{-i\omega t_0}E_1(\omega) \tag{11}$$

(definition of energy spectral density)

$$= \int_{\infty}^{\infty} e^{-i\omega t_0} |f_1(t)|^2 dt, \qquad (12)$$

(definition of energy spectral density)

where $E_1(\omega)$ is the energy spectral density of $\hat{\chi}(\omega)$ and is equal to $E_1(t)$.

Step 3: Now applying the inverse FT operator \mathcal{F}^{-1} , we have:

$$\mathcal{F}^{-1}\left\{ \int_{-\infty}^{\infty} e^{-i\omega t_0} f_1(t) dt \right\} = \tag{13}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\omega t_0} |f_1(t)|^2 dt \, e^{i\omega t'} d\omega. \tag{14}$$

(15)

Separating out the integrals:

$$\int_{-\infty}^{\infty} |f_1(t)|^2 dt \int_{-\infty}^{\infty} e^{-i\omega(t'-t_0)} d\omega.$$
 (16)

$$= S_f(f) \,\delta(t - t_0) \tag{17}$$

EquationXX means the value of $E_{\chi}\delta(t-t_0)$ except at t_0 which is the lag.

II. APPROACH

III. RESULTS

IV. IMPROVEMENTS