ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

VINICIUS BUENO DE MORAES

TOMOGRAFIA COMPUTADORIZADA

Exercício Programa – I

VINICIUS BUENO DE MORAES

TOMOGRAFIA COMPUTADORIZADA

Exercício Programa – I

Relatório apresentado ao Instituto de Matemática e Estatística da Universidade de São Paulo como parte do processo avaliativo para a disciplina MAP3122 – Métodos Numéricos e Aplicações, oferecida a Escola Politécnica da Universidade de São Paulo.

SUMÁRIO

1.	Introdução	3
	Desenvolvi en o	
	Dis uss es e esul ados	
	Conclusão	
	Referências bibliográficas	ı

1. Introdução

Neste Relatório se apresentará de forma condensada e pragmática os resultados alcançados no desenrolar do Exercício Programa 1 de MAP3122 – Métodos Numéricos e Aplicações, acerca de Tomografias Computadorizadas.

2. Desenvolvimento

Em primeiro passo calculou-se o valor de determinantes para diferentes n e deltas, fornecidos no enunciado. Os mesmos foram calculados e disponibilizados em formato de tabela para os exercícios 1 e 2 a seguir bem como suas imagens com resultados de execução.

Determinantes $(A^TA + \delta I_{n^2})$ ref.ao Exercício 1								
n	δ	0	0,001	0,01	0,1			
5		-2,443e-251	3,912e-42	3,973e-26	4,622e-10			
10		0,000	2,004e-224	2,037e-143	2,404e-62			
30	-	0,000	0,000	0,000	0,000			

```
PROGRAMA SENDO EXECUTADO/ARMAZENADO EM:

/Users/viniciusmoraes

Escola Politécnica da USP - MAP-3122 - Métodos Numéricos e Aplicações
Nome: Vinicius Bueno de Moraes | NUSP: 10256432

Exercício 1 - Cálculo dos 12 Determinantes

Para n = 5, se tem:

0 determinante para n = 5 e Delta = 0 é: -2.4434283404107234e-251
0 determinante para n = 5 e Delta = 0.001 é: 3.912895627172571e-42
0 determinante para n = 5 e Delta = 0.01 é: 3.973158443635808e-26
0 determinante para n = 5 e Delta = 0.1 é: 4.6225624016105e-10

Para n = 10, se tem:

0 determinante para n = 10 e Delta = 0 é: 0.0
0 determinante para n = 10 e Delta = 0.001 é: 2.0037032417710246e-224
0 determinante para n = 10 e Delta = 0.01 é: 2.0373257919526838e-143
0 determinante para n = 10 e Delta = 0.1 é: 2.4042564261305853e-62

Para n = 30, se tem:

0 determinante para n = 30 e Delta = 0 é: 0.0
0 determinante para n = 30 e Delta = 0.001 é: 0.0
0 determinante para n = 30 e Delta = 0.001 é: 0.0
0 determinante para n = 30 e Delta = 0.001 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 programa foi executado com sucesso e os 12 Determinantes pertinentes ao exercício 1 calculados
```

	Determinantes $(A^TA + \delta I_{n^2})$ ref.ao Exercício 2								
n	δ	0	0,001	0,01	0,1				
5		-1,855e-52	0,873	9364,345	184072192,995				
10		0,000	1,257e-107	1,402e-58	4,044e-09				
30		0,000	0,000	0,000	0,000				

```
PROGRAMA SENDO EXECUTADO/ARMAZENADO EM:

/Users/viniciusmoraes

Escola Politécnica da USP - MAP-3122 - Métodos Numéricos e Aplicações
Nome: Vinicius Bueno de Moraes | NUSP: 10256432

Exercício 2 - Cálculo dos 12 Determinantes

Para n = 5, se tem:

0 determinante para n = 5 e Delta = 0 é: -1.8548916170971307e-52
0 determinante para n = 5 e Delta = 0.001 é: 0.8733266215332137
0 determinante para n = 5 e Delta = 0.01 é: 9364.345078324053
0 determinante para n = 5 e Delta = 0.1 é: 184072192.99514613

Para n = 10, se tem:
0 determinante para n = 10 e Delta = 0 é: -0.0
0 determinante para n = 10 e Delta = 0.01 é: 1.2573406037972168e-107
0 determinante para n = 10 e Delta = 0.01 é: 1.4015508634696343e-58
0 determinante para n = 10 e Delta = 0.1 é: 4.0440174074923715e-09

Para n = 30, se tem:
0 determinante para n = 30 e Delta = 0 é: -0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
0 determinante para n = 30 e Delta = 0.01 é: 0.0
```

Notou-se que a regularização do problema apresentada e explicitada pelo cálculo dos determinantes associa o valor de delta com a precisão obtida nas imagens. Quanto maior o delta maior o erro. O comportamento para os determinantes do exercício 2 se mantem, mas o valor de precisão é muito aumentado pela introdução de projeções em diferentes sentidos, além dos horizontais e verticais.

Em um segundo momento, realizou-se de fato as Tomografias, para os dois níveis de precisão e todos parâmetros delta. Os resultados se apresentam ordenadamente abaixo.

Análise ref. ao Exercício 1 - tomo1.py - im1 | n = 5 e Delta = 0.001

Análise ref. ao Exercício 1 - tomo1.py - $im1 \mid n = 5$ e Delta = 0.01

Análise ref. ao Exercício 1 - tomo1.py - im1 | n = 5 e Delta = 0.1

Análise ref. ao Exercício 1 - tomo1.py - $im2 \mid n = 10$ e Delta = 0.001

Análise ref. ao Exercício 1 - tomo1.py - im2 | n = 10 e Delta = 0.01

Análise ref. ao Exercício 1 - tomo1.py - im2 | n = 10 e Delta = 0.1

Análise ref. ao Exercício 1 - tomo1.py - im3 | n = 30 e Delta = 0.001

Análise ref. ao Exercício 1 - tomo1.py - im3 | n = 30 e Delta = 0.01

Análise ref. ao Exercício 1 - tomo1.py - im3 | n = 30 e Delta = 0.1

Análise ref. ao Exercício 2 - tomo2.py - im1 | n = 5 e Delta = 0.001

Análise ref. ao Exercício 2 - tomo2.py - im1 | n = 5 e Delta = 0.01

Análise ref. ao Exercício 2 - tomo2.py - $im1 \mid n = 5$ e Delta = 0.1

Análise ref. ao Exercício 2 - tomo2.py - im2 | n = 10 e Delta = 0.001

Análise ref. ao Exercício 2 - tomo2.py - im2 | n = 10 e Delta = 0.01

Análise ref. ao Exercício 2 - tomo2.py - im2 | n = 10 e Delta = 0.1

Análise ref. ao Exercício 2 - tomo2.py - im3 | n = 30 e Delta = 0.001

Análise ref. ao Exercício 2 - tomo2.py - im3 | n = 30 e Delta = 0.01

Análise ref. ao Exercício 2 - tomo2.py - im3 | n = 30 e Delta = 0.1

3. Resultados e Discussões

Notou-se que com o implemento de novas projeções (exercício 2) o aumento de resolução nas imagens traz uma diminuição do erro, mesmo que neste trabalho não se tenha obtido um algoritmo eficaz para a resolução do sistema, nem feito uma correta implementação do cálculo do erro.

4. Conclusão

Poder simular uma tomografia, sendo está uma ferramenta muito útil para as mais diversas áreas da ciência, medicina, engenharia, etc., a partir de modelos matemáticos e algoritmos de programação se mostrou uma ótima oportunidade para realização de estudos preliminares de projetos que a envolvam. Por exemplo, através destas simulações, pode se entender o quão preciso o equipamento a ser utilizado para realização da tomografia precisa ser, usando apenas um modelo do objeto que se precisa avaliar, tornando o processo bem mais rápido e menos custoso. Também pode-se notar que ao aumentar o número de projeções sobre o corpo a ser estudado, sua reprodução melhora muito, assim, ao se simular um modelo, consegue-se avaliar a quantidade de sensores e o poder de processamento necessário que o aparelho real de tomografia precisa ter para alcançar resultados satisfatórios.

5. Referências Bibliográficas

https://matplotlib.org/3.1.0/gallery/pyplots/text_commands.html < acesso as 16:31 do dia 10/02/2021 >;

https://cmdlinetips.com/2018/01/12-basic-commands-with-numpy-array/ < acesso as 17:34 do dia 10/02/2021 >;

https://docs.scipy.org/doc/scipy/reference/tutorial/basic.html < acesso as 17:50 do dia 10/02/2021 >;

https://cs231n.github.io/python-numpy-tutorial/ < acesso as 14:42 do dia 11/02/2021 >;

https://numpy.org/devdocs/user/quickstart.html < acesso as 18:41 do dia 11/02/2021 >;

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Ch eat_Sheet.pdf < acesso as 11:34 do dia 13/02/2021 >.