Can animals do MCMC? Linking resource selection and step selection models

Théo Michelot* (tmichelot1@sheffield.ac.uk), Paul Blackwell*, Jason Matthiopoulos** *University of Sheffield, UK, **University of Glasgow, UK

UNIVERSITY

The problem: SSFs are not RSFs

What is the effect of the covariates on the animal's movements?

How to estimate β_1, β_2, \ldots , in $w(\boldsymbol{x}) = \exp(\beta_1 c_1(\boldsymbol{x}) + \beta_2 c_2(\boldsymbol{x}) + \ldots)$, where w(x) measures preference for a location x?

Resource selection function (RSF) Model the distribution of locations

in terms of the covariates:

Step selection function (SSF)

Model the distribution of steps in terms of the covariates:

$$p(m{x} o m{y}) \propto \phi(m{x} o m{y}) w(m{y})$$
 movement in the absence of from x to y covariates

But step selection models do not make it possible to estimate the utilisation distribution (Barnett & Moorcroft, 2008).

Can we design a step selection (movement) model with a known utilisation distribution (UD) $\pi(x) \propto w(x)$?

MCMC as a movement model?

A Markov chain Monte Carlo (MCMC) algorithm is a general method to sample points from a given probability distribution, called the target distribution.

It describes a way to generate steps in a parameter space, such that the long-term distribution of sampled points coincides with the target distribution.

Similarly, an animal takes steps in geographical space, such that the long-term distribution of locations is the utilisation distribution.

the Metropolis

algorithm is a

widely used

We consider a MCMC algorithm with target distribution $\pi(x) \propto w(x)$. It defines a step selection model with known utilisation distribution.

We propose the local Gibbs sampler, a rejection-free MCMC algorithm, to model animal movement.

For any point \mathbf{x} , let $D_r(\mathbf{x})$ be the disc of centre \mathbf{x} and radius r > 0.

Local Gibbs algorithm

Start from x_1 . Then, for $t = 1, 2, \ldots$, 1. Generate a point **z** uniformly from $D_r(\boldsymbol{x}_t)$.

2. Define

$$ilde{\pi}(oldsymbol{x}) \propto egin{cases} \pi(oldsymbol{x}) & ext{in } D_r(oldsymbol{z}), \ 0 & ext{elsewhere}, \end{cases}$$

the utilisation distribution truncated and scaled on $D_r(z)$. 3. The next location x_{t+1} is drawn from $\tilde{\pi}$.

(penguin for illustrative purposes only)

Simulations and results

We sampled 500,000 locations for a known utilisation distribution, using

- a standard step selection model (SSF);
- (the uniform sampling model • the local Gibbs sampler (LG). of Forester et al., 2009)

We compare the distribution of simulated locations to the true UD:

Areas where $\pi(x)$ is high are used disproportionately by the SSF model.

Unlike standard step selection models, the local Gibbs algorithm produces samples from a known utilisation distribution, proportional to the RSF w(x).

Estimating space use from data

This framework allows us to estimate the resource selection coefficients $(\beta_1, \beta_2, \dots)$ from observed telemetry data, as well as parameters of the movement (the parameters of the MCMC sampler).

Using a MCMC algorithm with transition kernel $p({m x}_t o {m x}_{t+1})$, the likelihood of observations x_1, \ldots, x_T can be obtained as:

$$\mathcal{L} = \prod_{t=1}^{T-1} p(\boldsymbol{x}_t \to \boldsymbol{x}_{t+1})$$

We are currently working on likelihood-based methods to estimate all parameters of $p(\boldsymbol{x}_t \to \boldsymbol{x}_{t+1})$ in the local Gibbs model.

References

- Michelot, T., Blackwell, P.G., & Matthiopoulos, J. (preprint). Linking resource selection and step selection models for habitat preferences in animals. arXiv:1708.08426.
- Barnett, A. H., & Moorcroft, P. R. (2008). Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis. Journal of mathematical biology.
- Forester, J. D., Im, H. K., & Rathouz, P. J. (2009). Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. Ecology.