Feedback — Quiz 2

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on Wed 16 Dec 2015 10:08 AM EST. You got a score of 10.00 out of 10.00.

Consider the following data with x as the predictor and y as as the outcome.

```
x <- c(0.61, 0.93, 0.83, 0.35, 0.54, 0.16, 0.91, 0.62, 0.62)
y <- c(0.67, 0.84, 0.6, 0.18, 0.85, 0.47, 1.1, 0.65, 0.36)
```

Give a P-value for the two sided hypothesis test of whether β_1 from a linear regression model is 0 or not.

Your Answer		Score	Explanation
2.325			
0.025			
0.391			
⊚ 0.05296	~	1.00	
Total		1.00 / 1.00	

summary(lm(y ~ x))\$coef ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.1885 0.2061 0.9143 0.39098

Question 2

X

Question Explanation

Consider the previous problem, give the estimate of the residual standard deviation.

0.7224 0.3107 2.3255 0.05296

Your Answer		Score	Explanation
⊚ 0.223	~	1.00	

0.4358		
0.05296		
0.3552		
Total	1.00 / 1.00	
Question Explanation		
summary(lm(y ~ x))\$si	gma	
## [1] 0.223		

In the mtcars data set, fit a linear regression model of weight (predictor) on mpg (outcome). Get a 95% confidence interval for the expected mpg at the average weight. What is the lower endpoint?

Your Answer		Score	Explanation
-4.00			
-6.486			
21.190			
• 18.991	~	1.00	
Total		1.00 / 1.00	

```
Question Explanation

data(mtcars)
fit <- lm(mpg ~ I(wt - mean(wt)), data = mtcars)
confint(fit)

## 2.5 % 97.5 %</pre>
```

```
## (Intercept) 18.991 21.190
## I(wt - mean(wt)) -6.486 -4.203
```

Refer to the previous question. Read the help file for mtcars. What is the weight coefficient interpreted as?

Your Answer		Score	Explanation
 The estimated expected change in mpg per 1 lb increase in weight. 			
	~	1.00	
The estimated expected change in mpg per 1,000 lb increase in weight.			
The estimated 1,000 lb change in weight per 1 mpg increase.			
 It can't be interpreted without further information 			
Total		1.00 /	
		1.00	

Question Explanation

This is the standard interpretation of a regression coefficient. The expected change in the response per unit change in the predictor.

Question 5

Consider again the mtcars data set and a linear regression model with mpg as predicted by weight (1,000 lbs). A new car is coming weighing 3000 pounds. Construct a 95% prediction interval for its mpg. What is the upper endpoint?

Your Answer	Score	Explanation
IUUI AIISW e i	3001 0	LADIAHALIOH

```
-5.77

14.93

27.57 ✓ 1.00

21.25

Total 1.00 / 1.00

Question Explanation

fit <- lm(mpg ~ wt, data = mtcars)
predict(fit, newdata = data.frame(wt = 3), interval = "prediction")

## fit lwr upr
## 1 21.25 14.93 27.57
```

Consider again the mtcars data set and a linear regression model with mpg as predicted by weight (in 1,000 lbs). A "short" ton is defined as 2,000 lbs. Construct a 95% confidence interval for the expected change in mpg per 1 short ton increase in weight. Give the lower endpoint.

Your Answer		Score	Explanation
4.2026			
·12.973	~	1.00	
-6.486			
-9.000			
Total		1.00 / 1.00	

fit <- lm(mpg ~ wt, data = mtcars)</pre>

```
confint(fit)[2, ] * 2

## 2.5 % 97.5 %
## -12.973 -8.405

## Or equivalently change the units
fit <- lm(mpg ~ I(wt * 0.5), data = mtcars)
confint(fit)[2, ]

## 2.5 % 97.5 %
## -12.973 -8.405</pre>
```

If my X from a linear regression is measured in centimeters and I convert it to meters what would happen to the slope coefficient?

Your Answer		Score	Explanation
 It would get divided by 10 			
 It would get multiplied by 10 			
It would get multiplied by 100.	~	1.00	
 It would get divided by 100 			
Total		1.00 / 1.00	
Question Explanation			
It would get multiplied by 100.			

Question 8

I have an outcome, Y, and a predictor, X and fit a linear regression model with $Y=eta_0+eta_1X+\epsilon$ to obtain \hat{eta}_0 and \hat{eta}_1 . What would be the consequence to the subsequent

slope and intercept if I were to refit the model with a new regressor, X+c for some constant, c?

Your Answer		Score	Explanation
$^{\circ}$ The new slope would be $c\hat{eta}_1$			
$^{f \circ}$ The new slope would be \hat{eta}_1+c			
$^{\circ}$ The new intercept would be $\hat{eta}_0 + c\hat{eta}_1$			
$^{ ext{@}}$ The new intercept would be $\hat{eta}_0 - c\hat{eta}_1$	~	1.00	
Total		1.00 / 1.00	

Question Explanation

This is exactly covered in the notes. But note that if $Y=\beta_0+\beta_1X+\epsilon$ then $Y=\beta_0-c\beta_1+\beta_1(X+c)+\epsilon$ so that the answer is that the intercept gets subtracted by $c\beta_1$

Question 9

Refer back to the mtcars data set with mpg as an outcome and weight (wt) as the predictor. About what is the ratio of the sum of the squared errors, $\sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ when comparing a model with just an intercept (denominator) to the model with the intercept and slope (numerator)?

Your Answer		Score	Explanation
⊚ 0.25	~	1.00	
0.75			
0.50			
4.00			
Total		1.00 / 1.00	

Question Explanation

This is simply one minus the R^2 values

```
fit1 <- lm(mpg ~ wt, data = mtcars)
fit2 <- lm(mpg ~ 1, data = mtcars)
1 - summary(fit1)$r.squared

## [1] 0.2472

sse1 <- sum((predict(fit1) - mtcars$mpg)^2)
sse2 <- sum((predict(fit2) - mtcars$mpg)^2)
sse1/sse2

## [1] 0.2472</pre>
```

Do the residuals always have to sum to 0 in linear regression?

Your Answer		Score	Explanation
The residuals never sum to zero.			
 If an intercept is included, the residuals most likely won't sum to zero. 	1		
The residuals must always sum to zero.			
If an intercept is included, then they will sum to 0.	~	1.00	
Total		1.00 / 1.00	

Question Explanation

They do provided an intercept is included. If not they most likely won't.