TAKSONOMI MODEL-MODEL SISTEM TEMU KEMBALI INFORMASI

MATERI PERKULIAHAN: INFORMATION RETRIEVAL SYSTEM KE-4

Disusun Oleh:

Nama: Nuning Kurniasih, S.Sos., M.Hum.

NIP. 197606252000122001

Departemen Ilmu Informasi dan Perpustakaan Fakultas Ilmu Komunikasi Universitas Padjadjaran Ditulis Pertama Tahun 2005, Revisi Januari 2014

JENIS SISTEM TEMU KEMBALI INFORMASI

1. Lokal

2. Global

Baca kembali materi perkuliahan ke-2

World Wide Web

http://blog.law.cornell.edu

THE INFORMATION RETRIEVAL TRIANGLE

Mc Cune, Brian P. 1985.

MODEL IR

Classic Models

Boolean Vector Probabilistic

Strutured Models
Non-Overlapping
Lists
Proximal Nodes

Browsing

Flat Structured Guided Hypertext Set Theoretic

Fuzzy Extended Boolean

Algebraic Generalized Vector Laten Semantic Indext Neural Newaorks

Probabilistic

Interface Network
Belief Network

Browsing

Retrieval:

Adhoc

Filtering

U

E R

A S

Baeza-Yates & Ribeiro Neto

LOGICAL VIEW OF DOC AND RETRIEVAL TASK

LOGICAL VIEW OF DOCUMENTS

	Index Term	Full Text	Full Text + Structure
Retrieval	Classic Set Theoretic Algebraic Probabilistic	Classic Set Theoretic Algebraic Probabilistic	Structured
Browsing	Flat	Flat Hypertext	Structured Guide Hypertext

Baeza-Yates & Ribeiro Neto

KONSEP DASAR MODEL-MODEL IR KLASIK

- Dokumen direpresentasikan dengan seperangkat keyword atau index term yang representative.
- Sebuah item indeks adalah kata-kata dalam dokumen yang mudah diingat untuk tema umum sebuah dokumen.
- Index term biasanya kata benda.
- Search engines mengasumsikan semua kata adalah index term (merepresentasikan full text)
- ▶ Tidak semua term dapat merepserentasikan isi dokumen, sebagian term dapat mengidentifikasi dokumen dengan sempit.

KONSEP DASAR MODEL-MODEL IR KLASIK

- Kj adalah index term
- dj adalah sebuah dokumen
- ▶ t adalah total dari jumlah dokumen
- \blacktriangleright K = (k1, k2, ..., kt) adalah seluruh index term
- wij>=0 is penimbang yang berasosiasi dengan (ki, dj)
- wij=0 mengindikasikan bahwa term tidak berhubungan dengan dokumen
- vec (dj)=(w1j, w2j,..., wtj) adalah penimbang vector yang berasosiaasi dengan dokumen dj.
- gi(vec(dj))=wij adalah sebuah fungsi dengan pengembalian pertimbangan yang berasisiasi dengan pasangannya associated with pair (kj, dj)

MODEL TEMU KEMBALI INFORMASI KLASIK

- Boolean Query
 - Operator Bolean Logic : AND, OR, NOT
- Vector Query
 - · Seberapa mirip dokumen dengan?
 - [(java 3) (compiler 2) (unix 1) (linus 1)]
- Probabilistic Query
 - Probalistik Relevan Pr(rel)
 - Probabilistik Non Relevan Pr(non rel)

MODEL PENELUSURAN BOOLEAN

Temu kembali berbasis pada kriteria pengambilan keutusan dua kondisi (binary) tanpa ide atau pencocok yang pasrial.

Tidak ada dalam dokumen yang disediakan.

Informasi perlu diterjemahkan kedalam sebuah Boolean expression.

Operator Boolean Logic diekspresikan dengan

Logical AND

Logical OR

Logical NOT

BOOLEAN STANDAR

	IStandard Boolean		
Goal	Capture conceptual structure and contextual information		
Methods	• Coordination: AND, OR, NOT		
	· · · · · · · · · · · · · · · · · · ·		
	Proximity		
	• Fields		
	Stemming / Truncation		
(+)	• Easy to implement		
	Computationally efficient		
	=> all the major on-line databases use it		
	I I		
	Expressiveness and Clarity		
	Synonym specifications (OR-clauses) and phrases (AND-clauses).		
(-)	Difficult to construct Boolean queries.		
	• All or nothing		
	I -		
	AND too severe, and OR does not differentiate enough.		
	Difficult to control output: Null output <-> Overload.		
	• No ranking		
	No weighting of index or query terms		
	No uncertainty measure		

Ringkasan dari Karakteristik Standar Pendekatan Boolean disertai Kelebihan dan Kelemahannya http://comminfo.rutgers.edu

LOGICAL AND

- Memperbolehkan penelusur untuk menggunakan pernyataan query ke dalam sua tau lebih konsep sehingga hasil penelusuran menjadi lebih terbatas.
- Formula penyataaan sederhana A AND B
- Contoh untuk menelusur marketing and library, kita memformulasikan penyataan penelusuran dengan : marketing AND library
- Dengan query tersebut maka kita akan menemukan dokumen yang mengandung unsur marketing dan perpustakaan saja, dan tidak untuk mendapatkan dokumen yang hanya mengandung unsur marketing atau perpustakaan saja.

LOGICAL OR

- Memperbolehkan penelusur untuk secara spesifik menggunakan alternatif term (atau konsep) yang mengindikasikan dua konsep sesuai dengan tujuan penelusuran. Hal ini menjadikan hasil penelusuran menjadi lebih luas, karena adanya alternatif dalam penyataan query.
- Formulasi pernyataan sederhana: A OR B.
- Contoh: marketing OR library

Dengan query tersebut maka kita akan mendapatkan dokumen yang mengandung unsur marketing saja, perpustakaan saja, atau yang mengandung unsur marketing dan perpustakaan.

LOGICAL NOT

- Dapat mengecualikan item-item dari seperangkat term penelusuran.
- Pernyataan formulasi sederhana :

A NOT B

- Contoh:

marketing NOT library

Ini artinya kita hanya mengininkan dokumen yang mengandung unsur marketing yang di dalamnya tidak ada unsur perpustakaannya..

KOMBINASI LOGICAL AND, OR, NOT

- Dapat mengkombinasikan satu pernyataan ke dalam penelusuran yang kompleks.
- Contoh:
 marketing AND library OR information centre NOT profit organization
- Artinya kita ingin mendapatkan dokumen yang mengandung untur marketing dan perpustakaan tanpa unsur pusat informasi dan bukan untuk organisasi non profit.

DIAGRAM VEN UNTUK MODEL BOOLEAN

Baeza-Yates & Ribeiro Neto

TEKNIK MEMPERLUAS DAN MEMPERSEMPIT

Teknik Memperluas dan Mempersempit Hasil Penenlusuran Menggunakan Boolean Logic http://comminfo.rutgers.edu

SMART BOOLEAN

	Smart Boolean		
Goal	• Structure search (re-)formulation process.		
	 Use structural and contextual knowledge-bases and clarity of Boolean expressions. 		
Methods	 Natural language statement is automatically translated into Boolean Topic Representation 		
	Boolean Topic Representation:		
	ANDs of ORs of concepts Keyword/stem, all fields •Conceptual info> Coordination and Add/Drop Factor •Contextual info> Proximity •Structural info> Field levels •Synonym or word relationships -> Stemming/Truncation overlap		
	=> all this information can be used to rank documents		
	• Techniques to Broaden and Narrow query		
(+)	No need for Boolean operators		
	=> Convert operator-free statement into ANDs of ORs		
	Assist user in query (re)formulation:		
	by asking users targeted questions to automatically modify the query.		
	 "Why irrelevant?" -> activates narrowing methods. 		
	• "Broaden by Dropping Factors" to estimate recall.		
(-)	How to visualize ?		
	 Conceptual query representation (BTR) Query modification techniques and their effects Structured relevance feedback 		

http://comminfo.rutgers.edu

MODEL EXTENDED BOOLEAN

	Extended Boolean Models		
Goal	• Less strict Boolean operators		
	•Ranked output		
Methods			
	• Fuzzy logic		
	[OR -> max], [AND -> min] and [NOT -> 1 - max]		
	(-) Lack of sensitivity of min and max: min(0.2, 0.8) = min(0.2, 0.3).		

Model Perluasan Boolean digunakan untuk:

- 1. Apabila operator Boolean terlalu ketat dan perlu diperhalus.
- 2. Pendekatan standar Boolean tidak menyediakan fitur ranking sehinggan pendekatan dan metode pendeskripsian dapat membantu perankingan dokumen yang relevan [Fox and Koll 1988, Marcus 1991].
- 3. Model Boolean tidak mendukung tugas pertimbangan query atau term dari sebuah dokumen.

http://comminfo.rutgers.edu

VECTOR DAN PROBABILISTIK

Statistical	Vector Space	Probabilistic		
Motivation	Simplify query formulation	Address uncertainty in query		
	Ability to control output	representations		
Goal	Rank the output based on			
	Similarity	Probability of Relevance		
Methods	Cosine measure	Use of different models		
Source	Query Term Statistics			
	Vector-Space:			
	• similarity(Q,D) = Σ ($w_{iq} \times w_{ij}$) / "normalizer"			
	where $w_{iq} = (0.5 + 0.5 \text{ freq}_{iq} / \text{maxfreq}_q) \times idf(i)$ $w_{ij} = \text{freq}_{ij} \times idf(i)$			
	• inverse term freq. in collection $idf(i) = log_2 (N-n(i)) / n(i)$.			
	Probabilistic:			
	• term weight = log [($r_t/R-r_t$) / ((n_t-r_t)/(($N-n_t$) - ($R-r_t$)))]			
	="(hits / misses) / (false alarms/correct misses)"			
	• similarity $_{jk} = \Sigma (C + idf(i)) \times tf(i,j)$			
	where $\mathbf{tf}(i,j) = K + (1-K)$ (freq(i,j) / maxfreq(j)).			
Issues	How to express NOT ?	• Estimation of needed proba-		
	Proximity searches ?	bilities		
		 Prior knowledge needed. 		
	• Limited expressive power	• Independence assumption		
	Computationally intensive	Boolean relations lost.		
	Assumes that terms are in- dependent.	• Which model is best ?		
	• Lack of structure to represent important linguistic features			
	How to better visualize the retrieved set?			

http://comminfo.rutgers.edu

VECTOR QUERY

 Koleksi dokumen n dengan perbedaan term t dapat direpresentasikan dengan sebuah matrix.

 Sebuah query juga dapat direpresentasikan sebagai sebuah vector seperti sebuag dokumen.

LATIHAN

 Temu kembali informasi dalam sebuah database dengan menggunakan operator boolean logic operators.

Contoh, kunjungin http://online.sagepub.com dan telusur beberapa tema tugas perkuliahan.

Terima Kasih

Contact Me @nuningkurniasih

