Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Tuesday, 2018-03-13
- Submit questions and first solutions by Sunday, 2018-03-18, 12:00 by email to dominik.scheder@gmail.com and the TAs.
- You will receive feedback by Wednesday, 2018-03-21
- Revise your solution and submit your final solution by Sunday, 2018-03-25 by email to dominik.scheder@gmail.com and the TAs.

3 Basic Counting

A function $[m] \to [n]$ is monotone if $f(1) \le f(2) \le \cdots \le f(m)$. It is strictly monotone if $f(1) < f(2) < \cdots < f(m)$.

Exercise 3.1. Find and justify a closed formula for the number of strictly monotone functions from [m] to [n].

Solution.
$$\binom{n}{m}$$
.

Exercise 3.2. Find and justify a closed formula for the number of monotone functions from [m] to [n].

Solution.
$$n^m$$
.

Remark. By "closed" I mean something using expressions like \times , +, $\binom{n}{k}$, n!, but not \sum or \prod . For example, $\binom{n}{k^2}$ is a closed formula but $\sum_{k=0}^{n} \binom{n}{k}$ is not

Exercise 3.3. Prove that $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$ for every $n \ge 0$ by finding a combinatorial interpretation.

Proof. We divide the set of 2n elements into 2 sets of n elements. For each $0 \le k \le n$, we pick out k elements from one set, exclude k elements in the other set and combine them, we will get n elements, which is equivalent to selecting n elements from 2n elements.

Therefore,
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$
 for every $n \ge 0$.

Exercise 3.4. [From the textbook] Find a closed formula for $\sum_{k=m}^{n} {k \choose m} {n \choose k}$ and prove it combinatorially, i.e., by giving an interpretation.

Solution.
$$\sum_{k=m}^{n} {k \choose m} {n \choose k} = {n \choose m} \cdot 2^{n-m}$$
.

Proof. The formula means for each $m \le k \le n$, we select k elements from n elements, then select m elements from these k elements, which is equivalent to first choose n elements from m elements, then decide whether to pick out the remaining elements that is $\binom{n}{m} \cdot 2^{n-m}$.

Exercise 3.5. Let B_n be the number of partitions of the set [n] (this is the same as the number of equivalence relations on [n]). This is called the Bell number, thus we denote it B_n . Prove that the following recursive formula for B_n is correct:

$$B_0 = 1$$

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k .$$

Proof. $B_0 = 1$ is correct, undoubtedly.

Denote the elements in the set $\{x_1, x_2, \ldots, x_n, \ldots\}$.

Assume that for B_0, B_1, \ldots, B_n , the formula is right. Then we add a element x_{n+1} to the set. How many options do we have?

For each $0 \le k \le n$, we select n-k elements from the former n elements and combine them with the element n_{k+1} which contains $\binom{n}{n-k} = \binom{n}{k}$ ways, then partition the remaining k elements. Therefore we have $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$.

Exercise 3.6. Let P_n be the number of ways to write the natural number nas a sum $a_1 + a_2 + \cdots + a_k$ such that $1 \le a_1 \le a_2 \le \cdots \le a_k$. For example, 3 can be written as 3, 2+1, and 1+1+1, so $P_3=3$. Find a recursive formula for P_n .

Remark. The formula might not be as simple as the above for B_n . Be creative! Start by writing a simple recursive program that computes P_n .

Solution. Let $G_i(n)$ be the number of ways to wirte the natural number n as a sum of i numbers following the rules $1 \le a_1 \le a_2 \le \cdots \le a_i$. Speacially we define $G_i(k) = 0$ where i > k.

Then we have $P_n = G_1(n) + G_2(n) + \cdots + G_n(n)$.

Consider wirting n as a sum of i numbers $a_1, a_2, \dots a_i$ with $1 \le a_1 \le a_2 \le$ $\cdots \leq a_i$, and $a_1, a_2 \dots a_k$ are 1s, $a_{k+1} \dots a_i$ are larger than 1:

Substract these numbers by 1, then we get $0, 0 \dots 0, a_{k+1}^*, \dots a_i^*$.

For any k with $1 \le k \le i$, the sum of $a_{k+1}^*, \dots a_i^*$ is (n-i). Then the number

of ways to wirte i numbers which includes k 1s is equal to $G_{i-k}(n-i)$. In this way, $G_i(n) = \sum_{k=0}^{i-1} G_{i-k}(n-i)$ and $P_n = \sum_{i=1}^{n-1} \sum_{k=0}^{i-1} G_{i-k}(n-i) + G_n(n) = \sum_{i=1}^{n-1} \sum_{k=0}^{i-1} G_{i-k}(n-i) + 1$ Therefore $P_n - P_{n-1} = \sum_{k=1}^{n-1} G_k(n-k) = [n/2]$, so $P_n = P_{n-1} + [n/2]$.