Experiment 4: Regression Analysis

Name: Aryan Dali

UID: 2019120016

Class: TE EXTC

The given data set is a climate change dataset with the amount of various gases and substances in air and the temperature of the air in every year. We have to find out the correlation of all the variables and build linear regression models with the data

```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
```

#importing the data and understanding it
data = pd.read_csv("/content/climate_change (1).csv")

data.head(10)

	Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosols	Т
0	1983	5	2.556	345.96	1638.59	303.677	191.324	350.113	1366.1024	0.0863	0.
1	1983	6	2.167	345.52	1633.71	303.746	192.057	351.848	1366.1208	0.0794	0.
2	1983	7	1.741	344.15	1633.22	303.795	192.818	353.725	1366.2850	0.0731	0.
3	1983	8	1.130	342.25	1631.35	303.839	193.602	355.633	1366.4202	0.0673	0.
4	1983	9	0.428	340.17	1648.40	303.901	194.392	357.465	1366.2335	0.0619	0.
5	1983	10	0.002	340.30	1663.79	303.970	195.171	359.174	1366.0589	0.0569	0.
6	1983	11	-0.176	341.53	1658.23	304.032	195.921	360.758	1366.1072	0.0524	0.
7	1983	12	-0.176	343.07	1654.31	304.082	196.609	362.174	1366.0607	0.0486	0.
8	1984	1	-0.339	344.05	1658.98	304.130	197.219	363.359	1365.4261	0.0451	0.
9	1984	2	-0.565	344.77	1656.48	304.194	197.759	364.296	1365.6618	0.0416	0.
4											- N

▼ Data Cleaning

```
#finding inter quartile range (IQR) to remove outliers
Q1 = data.quantile(0.25)
Q3 = data.quantile(0.75)
IQR = Q3 - Q1
#print(IQR)
data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis=1)]
```

Correlation heaat map of all he variables in the dataset

```
c = data.corr()
sns.heatmap(c, cmap = 'BrBG', annot = True)
       <matplotlib.axes. subplots.AxesSubplot at 0x7f028d063650>
            Year - 1 0.0110.17 0.98 0.9 0.99 0.21 0.87 0.04 0.62 0.72
          Month -0.013 1 0.0032.084.0350.0290.030.007-30.0420.03-20.054
                                                                       0.8
            MEI -0.10.003; 1 -0.16-0.19-0.180.0870.17-0.180.26 0.18
                                                                      -0.6
            CO2 -0.980.0840.16 1 0.86 0.98 0.16 0.820.04-0.61 0.71
                                                                      0.4
            CH4 - 0.9 0.035-0.19 0.86 1 0.89 0.5 0.940.097-0.61 0.68
           N2O -0.990.029-0.18 0.98 0.89 1 0.15 0.83 0.01 -0.64 0.71
                                                                      -0.2
         CFC-11 -0.21-0.030.0870.16 0.5 0.15 1 0.67 0.31-0.19 0.26
                                                                      -0.0
         CFC-12 -0.87).00730.17 0.82 0.94 0.83 0.67 1 0.14-0.59 0.69
                                                                      -0.2
             TSI -0.040.0480.180.045.0970.0160.31 0.14 1 -0.4 0.15
        Aerosols -0.620.0370.26-0.61-0.61-0.64-0.19-0.59-0.4 1 -0.6
                                                                      -0.4
           Temp -0.720.0540.18 0.71 0.68 0.71 0.26 0.69 0.15 -0.6 1
                                                    S
```

From the above correlation map we can see that CO2, CH4,N20 and CFC-12 are highly corellated with the Temperature.

Model Building with all variables

```
X2 = sm.add_constant(x)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
```

OLS Regression Results

Dep. Variab	le:		Temp R-s	 quared:		0.703
Model:			OLS Adj	. R-squared:		0.692
Method:		Least Squ	_	tatistic:		69.11
Date:	V	Ned, 18 May	2022 Pro	b (F-statist	ic):	2.36e-57
Time:		05:2	8:25 Log	-Likelihood:		251.36
No. Observat	tions:		243 AIC	:		-484.7
Df Residuals	5:		234 BIC	•		-453.3
Df Model:			8			
Covariance ⁻	Гуре:	nonro	bust			
=========			=======	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-60.8378	23.736	-2.563	0.011	-107.600	-14.075
MEI	0.0665	0.007	9.650	0.000	0.053	0.080
C02	0.0033	0.002	1.389	0.166	-0.001	0.008
CH4	-0.0005	0.001	-0.895	0.372	-0.002	0.001
N20	-0.0033	0.010	-0.319	0.750	-0.023	0.017
CFC-11	-0.0032	0.002	-1.319	0.188	-0.008	0.002
CFC-12	0.0027	0.001	2.173	0.031	0.000	0.005
TSI	0.0449	0.018	2.532	0.012	0.010	0.080
Aerosols	-8.2339	2.042	-4.032	0.000	-12.257	-4.211
Omnibus:		3	.269 Dur	======= bin-Watson:		1.015
Prob(Omnibus	5):	0	.195 Jar	que-Bera (JB	;):	2.996
Skew:		0	.194 Pro	b(JB):		0.224
Kurtosis:		3	.381 Con	d. No.		9.94e+06
========	=======		=======	=======	========	========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specif
- [2] The condition number is large, 9.94e+06. This might indicate that there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning: x = pd.concat(x[::order], 1)

The variables that have a P-Value less than 0.05 are CFC-12, TSI, Aerosols and MEI

```
df1 = data[data.iloc[:,0]<=2006]
df1.head()</pre>
```

	Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosols	
2	9 1985	10	-0.140	343.08	1681.56	305.395	215.327	390.676	1365.5269	0.0101	-
3	0 1985	11	-0.050	344.40	1680.68	305.530	216.282	392.714	1365.6289	0.0097	_

df1.shape

(219, 11)

```
df2 = data[data.iloc[:,0]>2006]
df2.head()
```

	Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosols
284	2007	1	0.974	382.93	1799.66	320.561	248.372	539.206	1365.7173	0.0054
285	2007	2	0.510	383.81	1803.08	320.571	248.264	538.973	1365.7145	0.0051
286	2007	3	0.074	384.56	1803.10	320.548	247.997	538.811	1365.7544	0.0045
287	2007	4	-0.049	386.40	1802.11	320.518	247.574	538.586	1365.7228	0.0045
288	2007	5	0.183	386.58	1795.65	320.445	247.224	538.130	1365.6932	0.0041
4										•

df2.shape

(24, 11)

```
x = data[['MEI', 'CO2', 'CH4', 'N20', 'CFC-11', 'CFC-12', 'TSI', 'Aerosols']]
y = data['Temp']

x_train = df1[['MEI','CO2', 'CH4', 'N20', 'CFC-11', 'CFC-12', 'TSI', 'Aerosols']]
y_train = df1['Temp']
x_test = df2[['MEI', 'CO2', 'CH4', 'N20', 'CFC-11', 'CFC-12', 'TSI', 'Aerosols']]
y_test = df2['Temp']
# 'CO2', 'CH4', 'N20', 'CFC-11',

X2_train = sm.add_constant(x_train)
est_train = sm.OLS(y_train, X2_train)
est2 = est_train.fit()
print(est2.summary())
```

OLS Regression Results

```
______
Dep. Variable:
                            R-squared:
                       Temp
                                                    0.722
Model:
                        OLS
                            Adj. R-squared:
                                                    0.711
                 Least Squares
Method:
                            F-statistic:
                                                    68.15
Date:
               Wed, 18 May 2022
                            Prob (F-statistic):
                                                  3.37e-54
```

```
05:28:25
                                    Log-Likelihood:
                                                                229,49
Time:
No. Observations:
                              219
                                   AIC:
                                                                -441.0
Df Residuals:
                              210
                                   BIC:
                                                                -410.5
Df Model:
                                8
Covariance Type:
                         nonrobust
______
                                                      [0.025
               coef
                      std err
                                     t
                                            P>|t|
           -51.0320
                       24,469
                                 -2.086
                                            0.038
                                                    -99.268
                                                                -2.796
MEI
             0.0622
                       0.007
                                 8.508
                                            0.000
                                                      0.048
                                                                 0.077
C02
             0.0050
                       0.002
                                 1.995
                                           0.047
                                                    5.82e-05
                                                                 0.010
CH4
                       0.001
                                 -0.689
                                           0.491
                                                     -0.001
                                                                 0.001
            -0.0004
N20
             0.0018
                       0.012
                                 0.156
                                           0.876
                                                     -0.021
                                                                 0.025
CFC-11
                       0.003
                                 -0.406
                                                     -0.007
                                                                 0.004
            -0.0011
                                           0.685
CFC-12
             0.0014
                       0.001
                                 0.940
                                           0.348
                                                     -0.002
                                                                 0.004
             0.0360
                        0.019
                                            0.055
                                                     -0.001
TSI
                                 1.931
                                                                 0.073
Aerosols
            -8.4359
                        2.024
                                 -4.167
                                            0.000
                                                    -12.427
                                                                -4.445
Omnibus:
                            6.330
                                   Durbin-Watson:
                                                                 0.994
Prob(Omnibus):
                            0.042
                                   Jarque-Bera (JB):
                                                                 6.027
Skew:
                            0.363
                                   Prob(JB):
                                                                0.0491
Kurtosis:
                            3.366
                                   Cond. No.
                                                              9.82e+06
______
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specif
[2] The condition number is large, 9.82e+06. This might indicate that there are
strong multicollinearity or other numerical problems.
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning:
 x = pd.concat(x[::order], 1)
```

from sklearn.linear_model import LinearRegression

```
mlr = LinearRegression()
mlr.fit(x train, y train)
     LinearRegression()
print("Intercept: ", mlr.intercept_)
print("Coefficients:")
list(zip(x, mlr.coef ))
     Intercept: -51.031969159858036
     Coefficients:
     [('MEI', 0.06223569777302381),
      ('CO2', 0.0049606987940408465),
      ('CH4', -0.00038810727802363575),
      ('N20', 0.0018262419311547184),
      ('CFC-11', -0.0011344993284555694),
      ('CFC-12', 0.0014013277032073551),
      ('TSI', 0.03604734063953119),
      ('Aerosols', -8.435947559286046)]
```

```
#Prediction of test set
y_pred_mlr= mlr.predict(x_test)
#Predicted values
print("Prediction for test set: {}".format(y_pred_mlr))

Prediction for test set: [0.47395865 0.4503635 0.43347525 0.43430288 0.45407379 0.4255 0.4256269 0.40086034 0.34299562 0.34452906 0.34506256 0.3546125 0.37297068 0.35481019 0.34472978 0.3962589 0.43969896 0.46681556 0.45350739 0.42400764 0.38408517 0.36584435 0.38171572 0.3874683 ]
```

#Actual value and the predicted value
mlr_diff = pd.DataFrame({'Actual value': y_test, 'Predicted value': y_pred_mlr})
mlr diff.head()

	Actual value	Predicted value	•
284	0.601	0.473959	
285	0.498	0.450364	
286	0.435	0.433475	
287	0.466	0.434303	
288	0.372	0.454074	

```
from sklearn import metrics
meanAbErr = metrics.mean_absolute_error(y_test, y_pred_mlr)
meanSqErr = metrics.mean_squared_error(y_test, y_pred_mlr)
rootMeanSqErr = np.sqrt(metrics.mean_squared_error(y_test, y_pred_mlr))
print('R squared: {:.2f}'.format(mlr.score(x,y)*100))
print('Mean Absolute Error:', meanAbErr)
print('Mean Square Error:', meanSqErr)
print('Root Mean Square Error:', rootMeanSqErr)

R squared: 69.69
   Mean Absolute Error: 0.07881358260266709
   Mean Square Error: 0.01062595645613692
```

The Rsquared value for the model is is 69.69

▼ Correlation of N2O and CFC-11 with all other variables

Root Mean Square Error: 0.10308228002977486

```
r = np.corrcoef(df1['N20'], df1['MEI'])
print("The correlation coefficient is: " + str(r[1][0]))
```

```
exp4_main.ipynb - Colaboratory
     The correlation coefficient is: -0.06177124908370091
r = np.corrcoef(df1['N20'], df1['C02'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 0.9749926361365618
r = np.corrcoef(df1['N20'], df1['CH4'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 0.8903124993701752
r = np.corrcoef(df1['N20'], df1['N20'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 1.0
r = np.corrcoef(df1['N20'], df1['CFC-11'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 0.3273891567210462
r = np.corrcoef(df1['N20'], df1['CFC-12'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 0.8645200386566597
r = np.corrcoef(df1['N20'], df1['TSI'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: 0.15958759016062263
r = np.corrcoef(df1['N20'], df1['Aerosols'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: -0.6609381809526801
N20 is correlated with C02, CH4, CFC-12 since their correlation coefficient is greater than 0.7
r = np.corrcoef(df1['CFC-11'], df1['MEI'])
print("The correlation coefficient is: " + str(r[1][0]))
     The correlation coefficient is: -0.16610201966431865
r = np.corrcoef(df1['CFC-11'], df1['CO2'])
```

print("The correlation coefficient is: " + str(r[1][0]))

The correlation coefficient is: 0.34154482148525867 r = np.corrcoef(df1['CFC-11'], df1['CH4']) print("The correlation coefficient is: " + str(r[1][0])) The correlation coefficient is: 0.627913787898016 r = np.corrcoef(df1['CFC-11'], df1['N20']) print("The correlation coefficient is: " + str(r[1][0])) The correlation coefficient is: 0.3273891567210462 r = np.corrcoef(df1['CFC-11'], df1['CFC-12']) print("The correlation coefficient is: " + str(r[1][0])) The correlation coefficient is: 0.7493680735584559 r = np.corrcoef(df1['CFC-11'], df1['TSI']) print("The correlation coefficient is: " + str(r[1][0])) The correlation coefficient is: 0.2571940874708528 r = np.corrcoef(df1['CFC-11'], df1['Aerosols']) print("The correlation coefficient is: " + str(r[1][0])) The correlation coefficient is: -0.23054354377641395

CFC-11 is corelated with CFC-12 since their correlation coefficient is greater than 0.7

Question.

Current scientific opinion is that nitrous oxide and CFC-11 are greenhouse gases: gases that are able to trap heat from the sun and contribute to the heating of the Earth. However, the regression coefficients of both the N2O and CFC-11 variables are negative, indicating that increasing atmospheric concentrations of either of these two compounds is associated with lower global temperatures.

Which of the following is the simplest correct explanation for this contradiction?

Answer

III. All of the gas concentration variables reflect human development - N2O and CFC.11 are correlated with other variables in the data set.

▼ Training the Model with N20, Mei, TSI and Aerosols only

```
x_train_1 = df1[['MEI', 'N20', 'TSI', 'Aerosols']]
y_train_1 = df1['Temp']
x_test_1 = df2[['MEI', 'N20', 'TSI', 'Aerosols']]
y_test_1 = df2['Temp']
x_1 = data[['MEI', 'N20', 'TSI', 'Aerosols']]
y_1 = data[['Temp']]

X2_train_1 = sm.add_constant(x_train_1)
est_train_1 = sm.OLS(y_train_1, X2_train_1)
est2_1 = est_train_1.fit()
print(est2_1.summary())
```

OLS Regression Results

=========			=====	=====		=======	========
Dep. Variab]	le:		Temp	R-squ	uared:		0.706
Model:			OLS	Adj.	R-squared:		0.701
Method:		Least Squ	ares	F-sta	atistic:		128.7
Date:		Wed, 18 May	2022	Prob	(F-statistic):	8.92e-56
Time:		05:5	2:21	Log-l	ikelihood:		223.51
No. Observat	cions:		219	AIC:			-437.0
Df Residuals	5:		214	BIC:			-420.1
Df Model:			4				
Covariance 1	Гуре:	nonro	bust				
========	=======	========	=====	=====		=======	
	coef	std err		t	P> t	[0.025	0.975]
const	-53.1366	23.146	-2	2.296	0.023	-98.759	-7.514
MEI	0.0606	0.007	8	3.212	0.000	0.046	0.075
N20	0.0217	0.002		2.113	0.000	0.018	0.025
TSI	0.0342	0.017	2	2.028	0.044	0.001	0.067
Aerosols	-8.3714	1.995	-4	1.197	0.000	-12.303	-4.439
========		========	=====	=====	========	=======	
Omnibus:		9	.543	Durb	in-Watson:		0.940
Prob(Omnibus	5):	0	.008	Jarqı	ue-Bera (JB):		10.250
Skew:		0	.407	Prob	(JB):		0.00595
Kurtosis:		3	.678	Cond	No.		5.45e+06
=========			=====	=====		========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specif

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning: x = pd.concat(x[::order], 1)

```
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
```

^[2] The condition number is large, 5.45e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
mlr.fit(x_train_1, y_train_1)
    LinearRegression()

print("Intercept: ", mlr.intercept_)
print("Coefficients:")
list(zip(x_1, mlr.coef_))

Intercept: -53.13657186298024
    Coefficients:
    [('MEI', 0.06057100564913947),
         ('N2O', 0.0217419646685703),
         ('TSI', 0.03415981688806212),
         ('Aerosols', -8.37144911641541)]
```

The coeffcient of N20 in this model is = 0.0217

In the previous model the coefficient of N2O was = 0.001826

So the coefficient has increased in this model suggesting that N2O has a greater influence on this model than the previous one.

#Actual value and the predicted value
mlr_diff_1 = pd.DataFrame({'Actual value': y_test_1, 'Predicted value': y_pred_mlr_1})
mlr_diff_1.head()

	Actual value	Predicted value	2
284	0.601	0.499497	
285	0.498	0.474026	
286	0.435	0.453502	
287	0.466	0.444320	
288	0.372	0.459123	

The R-sqaured value of the new model is 67.00 which has been decreased from the previous model which was 69.69

Conclusion

- 1. The variables that have a P-Value less than 0.05 are CFC-12, TSI, Aerosols and MEI
- 2. The R-squared value for the model with all the variables is 69.69
- 3. N20 and CFC-11 were correlated with all the variables and we found out that:
 - a. N2O is correlated with CO2, CH4, CFC-12 since their correlation coefficient is greater than0.7
 - b. CFC-11 is corelated with CFC-12 since their correlation coefficient is greater than 0.7

Therefore the statement [III. All of the gas concentration variables reflect human development - N2O and CFC.11 are correlated with other variables in the data set.]

Is true

- 4. Now a model with only N20, Mei, TSI and Aerosols is trained.
 - a. The coeffcient of N20 in this model is = 0.0217

In the previous model the coefficient of N2O was = 0.001826

So the coefficient has increased in this model suggesting that N2O has a greater influence on this model than the previous one.

b. The R-sqaured value of the new model is 67.00 which has been decreased from the previous model which was 69.69. So the first model is a better model for our varibles than our previous models.

✓ 0s completed at 11:23 AM

×