

UNIVERSIDADE FEDERAL DE ITAJUBÁ ENGENHARIA DE COMPUTAÇÃO

Eduardo Alves Carvalho - 2021017550 José Eduardo Izidoro Júnior - 2021024170 Bruna Custódio Alves - 2021032144 Vivian Leite Fragoso - 2021032743

> Projeto de Eletrônica Digital I - ELTD01A

Questão 01. Projete um contador binário síncrono.

Lógica para realizar a contagem cíclica:

ESTADO ATUAL			PRÓXIMO ESTADO		SAÍDA DAS TRANSIÇÕES DOS FLIP FLOPS				
Α	В	С	Α	В	С	Т	D	J	K
0	1	0	0	0	1	0	0	1	Х
0	0	1	1	0	1	1	0	Х	0
1	0	1	1	1	1	0	1	Х	1
1	1	1	1	0	0	0	0	Х	1
1	0	0	0	1	1	1	1	1	Х
0	1	1	0	1	0	0	1	Х	1

Os outputs para cada caso foram gerados a partir da tabela de transição de cada flip-flop.

Expressão booleana das saídas:

$$T = A\overline{C} + \overline{AB}$$

$$D = AB + \overline{ABC}$$

$$J = 1$$

$$K = B$$

Abaixo segue o raciocínio para a **condição de parada da contagem** quando F for 1 e o contador estiver em 111.

Mapa de Karnaugh:

F /A1	A2/A3						
// /	00	01	11	10			
00	0	0	0	0			
01	0	0	0	0			
11	0	0	1	0			
10	0	0	0	0			

Entende-se que é 1 para 1111, que representa ABCD, ou seja, F1. A1. A2. A3 = 1, em seguida invertemos esse sinal na saída, para quando for 0 habilitar a contagem e quando a entrada for 1 ele interromper a contagem na condição especificada.

Questão 02. Projete a memória RAM-s.

Memória B

A memória B é a primeira a ser ativada após o seletor receber (sA[6..5] = 0 0 e Sce 1) no qual o mapa deve ser lido a partir dos zeros para que nós tenhamos apenas portas **or** e **not**, como segue abaixo no mapa:

Mapa de Karnaugh para a seleção da memória B:

sCe	sA[6]/sA[5]				
	00	01	11	10	
0	0	0	0	0	
1	1	0	0	0	

Após ler os 0 no mapa e aplicar D'Morgan chegamos na seguinte expressão:

$$Mem - B = \overline{sCe} + sA[6] + sA[5]$$

Memória C

Após receber 1 do seletor(sCe) sendo a segunda memória a ser ativada (sA[6..5]=0 1) o sub-circuito crw que toma a decisão de ler ou escrever e certificar que cnr e cnw não serão 0 simultaneamente, evitando a danificação da memória.

Mapa do Sub-Circuito Crw

Entra	Saída			
mem_C SRnW		cnr	cnw	
1	0	1	0	Condição de Escrita
1	1	0	1	Condição de Leitura
0	0	1	1	Habilitado todos em 1

0 1 1	1	para garantir que não danifique a memória
-----------	---	--

Expressão booleana obtida após ler 0 nas saída é:

Mapa de Karnaugh para a seleção da memória C:

sCe	sA[6]/sA[5]				
	00	01	11	10	
0	0	0	0	0	
1	0	1	0	0	

Após ler os 0 no mapa e aplicar D'Morgan chegamos na seguinte expressão:

Memória A

Já a memória A é a última a ser ativada (sA[6..5]=1 0 e Sce 1), aqui também vamos ler o circuito a partir dos 0 para que possamos utilizar apenas **not** e **or**, apenas a condição sCe, sA[6], sA[5] = 110 recebe 0, pois a **memória A** é habilitada com 0 e não com 1 diferentemente das outras.

Mapa de Karnaugh para a seleção da memória A :

sCe	sA[6]/sA[5]					
	00	01	11	10		
0	1	1	1	1		
1	1	1	1	0		

Após ler os 0 no mapa e aplicar D'Morgan chegamos na seguinte expressão:

$$Mem - A = \overline{sCe} + \overline{sA[6]} + sA[5]$$

Devido a memória - A ler apenas 4 bits foi desenvolvido a seguinte lógica para que ela leia e escreva no endereço de memória corretamente.

Mapa de Karnaugh para o funcionamento da memória A para 4 bits:

Mem_a	sA[5]/sA[4]					
/sA[6]	00	01	11	10		
00	1	1	1	1		
01	0	1	1	1		
11	1	1	1	1		
10	1	1	1	1		

Após ler os 0 no mapa e aplicar D'Morgan chegamos na seguinte expressão:

Ance = Mem - a +
$$sA[5] + sA[4] + \overline{sA[6]}$$

