Discriptive Statistics

Dr. Siddiqua Mazhar

Mid Michigan College

Sep 16, 2021

Standard Deviation for a Grouped Data

Sample Standard Deviation for a Frequency Distribution

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

where

x is the midpoint of a class.

Standard Deviation for a Grouped Data

Question

The following table shows the grouped data, in classes, for the heights of 50 people.

height in cm	f	Х	fx	$x-\overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2$). f
120-129.	2					
130-139	5					
140-149	25					
150-159	10					
160-169	8					

Calculate the standard deviation of the height of 50 people.

Solution

Variance

- Sample Variance: S^2
- Population Variance: σ^2

Note:

- Closely grouped data will have a small standard deviation.
- Spread-out data will have a large standard deviation.

Class Exercise

 Given the following frequency distribution, find the following things.

Class	frequency	
0-4	2	
5-9	3	
10-14	6	
15-19	9	
20-24	7	
25-29	2	
30-24	1	

- Mean
- Median
- Mode
- Standard Deviation
- Variance

Chebyshev's Theorem

For any set of data (either population or sample) and for any constant k greater than 1, the proportion of the data that must lie within k standard deviations on either side of the mean is at least $1 - \frac{1}{k^2}$.

Explanation

Results of Chebyshev's Theorem

For any set of data:

- at least 75% of the data fall in the interval from $\mu-2\sigma$ to $\mu+2\sigma$.
- at least 88.9% of the data fall in the interval from $\mu-3\sigma$ to $\mu+3\sigma$.
- at least 93.8% of the data fall in the interval from $\mu-4\sigma$ to $\mu+4\sigma$.

Applications

Idea behind Within k standard deviations of the mean Example: $\mu=10$ and $\sigma=3$

- Within one standrd deviation means between 7 and 13
- Within two standrd deviation means between 4 and 16
- Within three standrd deviation means between 1 and 19

Chebyshev's Theorem: Example 1

 Average score on a test is 80 points with standard deviation of 5 points. What percentage of people must have scores between 70 and 90?

Chebyshev's Theorem: Example 2

 Average score on a test is 80 points with standard deviation of 5 points. What percentage of people must have scores between 55 and 105?

Empirical Rule

Empirical Rule: If the distribution is normal (bell shaped), then

- Approx 68% of data falls within one standard deviation.
- Approx 95% of data falls within 2 standard deviation.
- Approx 99.7 of data falls within 3 standard deviation.

- Assume we have a Normal Distribution. Average score on a test is 80 points with standard deviation of 5 points.
- What percentage of people must have scores between 70 and 90?

- Assume we have a Normal Distribution. Average score on a test is 80 points with standard deviation of 5 points.
- What percentage of people must have scores between 75 and 85?

- Assume we have a Normal Distribution. Average score on a test is 80 points with standard deviation of 5 points.
- What percentage of people must have scores between 80 and 95?

- Assume we have a Normal Distribution. Average score on a test is 80 points with standard deviation of 5 points.
- What percentage of people must have scores below 70?

Measures of Relative Standing

Comparing measures between or within data sets.

Z-Score is the number of standard deviation a data value (x) is away from the mean.

Z-Score for a Sample: $\frac{X-\overline{X}}{s}$

Z-Score for Population: $\frac{X-\mu}{\sigma}$

Note: Allows comparison of the variation in two different samples/populations.

Example

Lyndon B. Johnson Height = 76" Mean for Pres. height of USA= 71.5" Std.Deviation =2.1"

z-score=
$$\frac{76-71.5}{2.1} = \frac{4.5}{2.1} = 2.14$$

Example

Shaq's Height = 86" Mean for HEAT= 80.0" Std.Deviation = 3.3"

z-score =
$$\frac{86-80.0}{3.3} = \frac{6}{3.3} = 1.818$$

Who is relatively taller? (Use Z- score for populations)

Usual and Unsual Z-Score

- A Z-Score between -2 aqnd 2 is considered to be 'Usual'.
- A Z-Score less than -2 and greater than 2 is considered as 'Unusual'.

Note: The larger the Z- Score in terms of absolute value, the rarer the data value is.

Percentile

For whole numbers P (where $1 \le P \le 99$), the Pth **percentile** of a distribution is a value such that P % of the data fall at or below it and (100 - P)% of the data fall at or above it.

Note: It breaks the data into 100 parts. In short,

Percentile of
$$X = \frac{\textit{No. of Values less than X}}{\textit{Total No. of Values}} \times 100$$

Example

You scored 87 out of 100 in a Test exam. 39 people score lower than you. There are total 54 people in the class. What will be your percentile score?

Percentile of $87 = \frac{39}{54} \times 100 = 72$.

Quartiles

- Key percentiles: 25%, 50 %, 75 %.
- First Quartile: (Q_1) Bottom 25% of sorted data.
- 2nd Quartile: (Q_2) Bottom 50 % of sorted data i.e. Median.
- Third Quartile: (Q_3) Bottom 75% of sorted data.

Note: We don't need Q_4 because it is everything in the data.

Inter Quartile range

The inter quartile range (IQR) is the middle half of the data. It is teh difference between the third and first quartiles.

$$IQR = Q_3 - Q_1$$

Outlier

Any data value less than $Q_1 - 1.5(IQR)$ and greater than $Q_3 + 1.5(IQR)$ is the outlier.

Quartiles for Even number of sample space

Find the quartiles for the following data: 1,6,3,15,10,28,36,21.

Step 1: Write in order. 1,3,6,10,15,21,28,36.

Step 2: Find Median:
$$Q_2 = \frac{10+15}{2} = \frac{25}{2} = 12.5$$

Step 3:
$$Q_1 = \frac{3+6}{2} = 4.5$$

Step4:
$$Q_3 = \frac{21+28}{2} = 24.5$$

Quartiles for Odd number of sample space

Find the quartiles for the following data: 1,6,3,15,10,28,36,21,39.

Box Plot

Five - Number Summary

Lowest value, Q_1 , median Q_2 , Q_3 , highest value.

Graphical sketch of *five-number summary* of the data is called a box plot.

Box Plot: Explanation