SET THEORY LAWS

Set Identities

Identity	Name
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{\overline{A}} = A$	Double Complement laws

Set Identities

Identity	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{A \cup B} = A \overline{\bigcirc} B$ $\overline{A \cap B} = A \overline{\bigcirc} B$	De Morgan's laws

Set Identities

Identity

Name

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Absorption laws

$$A-B = A \cap \overline{B}$$

Alternate Representation for set difference

In above image, bar sign means complemt

• If
$$A=\{1, 3, 5\}$$
, $B=\{3, 5, 6\}$ and $C=\{1, 3, 7\}$

(i) Verify that
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(ii) Verify
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(distributive law)

(i)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution

L.H.S. =
$$A \cup (B \cap C)$$

$$B \cap C = \{3\}$$

$$A \cup (B \cap C) = \{1, 3, 5\} \cup \{3\} = \{1, 3, 5\} \dots (1)$$

R.H.S. =
$$(A \cup B) \cap (A \cup C)$$

• Let
$$A = \{a, b, d, e\}, B = \{b, c, e, f\} \text{ and } C = \{d, e, f, g\}$$

(i) Verify
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(ii) Verify
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution:

(i)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

From (1) and (2), we conclude that;

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ [verified]

L.H.S. =
$$A \cap (B \cup C)$$

 If universal set U = {1,2,3,4,5,6}, A={1,3} and B={4,5,6} then prove De morgan's law of intersection.

Solution:

De morgan's law of intersection states that,

 $A \cup (B \cap C) = A \cup B \cap (A \cup C)$ [verified]

$$(A \cap B)' = A' \cup B'$$

 $(A \cap B)' = (\{1,3\} \cap \{4,5,6\})' = (NULL)' = \{1,2,3,4,5,6\}$ (As complement of empty set is the universal set)

A '
$$\cup$$
B'
= ({1,3})' \cup ({4,5,6})'
= {2,4,5,6} \cup {1,2,3} = {1,2,3,4,5,6}

Hence, it is proved that $(A \cap B)' = \{1,2,3,4,5,6\} = A' \cup B'$