Do this at beginning of class

EDUC 263. Lecture 2

■ Download lecture 2 Stata "do-file" ■ link

- Save to a folder you can easily find
- Download lecture 2 datasets
 - Save to folder you can easily find; do not change file names
 - California school dataset link
 - Tennessee STAR Experiment dataset link

- Try doing this in Stata:
 - Open Stata
 - Open "do-file" editor
 - 3 Open lecture 2 do-file
 - "change directories" in do-file so that file-path in "cd" command points to where you saved the data
 - You will change file-paths in two places in do-file: once for CA school data: once for Tennesee STAR data

EDUC 263, Lecture 2

Ozan Jaquette

Stata

Goal of statistics

Experiments

Observation

Regression Estimation Assumption I

Omitted Variable Bias Multiple

EDUC 263: Introduction to Econometrics, Lecture 2

Experimental and observational designs

Ozan Jaquette ozanj@ucla.edu

University of California, Los Angeles

Higher Education & Organizational Change

What we will do today

EDUC 263. Lecture 2

- Introduction to Stata
- Goal of statistics
 - Bias & Efficiency
- **Experiments**
- Observational design
 - Components of the Population Regression Model
 - Estimating Regression Parameters
 - Ordinary least squares (OLS) Assumption I
 - Omitted Variable Bias
 - Introduction to Multiple Regression

EDUC 263, Lecture 2

zan Jaquette

Stata

statistics

Evperiment

Experiment

design

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Introduction to Stata

Understanding syntax of Stata commands

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics
Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Let's open a dataset in Stata. The "auto" dataset is a sample dataset saved on your computer when you install Stata.

Type the following text in the Stata commandline and then press "Enter" on your keyboard:

sysuse auto, clear

Type the following text in the Stata commandline and then press "Enter" on your keyboard:

describe

Understanding syntax of Stata commands

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Stata commands often follow the following format:

commandname [varlist] [if] [in] [, options]

- only need to type underlined part of command name
- anything in brackets doesn't need to be included for command to run
- text after the comma are options

For example, the summarize command:

```
summarize [varlist] [if] [in] [weight] [,
options]
```

Try typing these commands in Stata command line:

```
summarize
sum price
sum price, detail
```

Executing Stata commands

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Three ways to execute Stata commands:

- Point-and-click (Ugh!)
- Stata command line
 - Will use this to run individual commands
- Stata do-file
 - Best way to run Stata commands; required for all homework assignments
 - Will review working with do-files later in this lecture

Stata help files

EDUC 263, Lecture 2

Ozan Jaquett

Stata

statistics
Bias & Efficiency

Experiments

01 ...

design
Regression
Estimation
Assumption

Omitted
Variable Bias
Multiple
Regression

In Stata, type following syntax:

help commandname

help generate

help gen

help reg

Reading Stata help files

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics
Bias & Efficiency

Experiments

Observational design Regression

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Help files may feel too technical at first, but you'll become more comfortable with practice

Help files follow a standard outline (e.g., help reg):

- Syntax (command syntax and list of options)
- Menu (how to execute command using point-and-click)
- Description (text overview of what command does)
- Options (detailed description of command options)
- Examples (examples of how to use command)
- Video example (some commands have this)
- Stored results (stored results created by command)

Top right corner of help file:

- "Dialog" (run command using point and click)
- "Also see" (link to PDF documentation; related Stata commands)

Working with Stata "do-files"

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design

Regression Estimation Assumption I Omitted Variable Bias Multiple Regression A Stata do-file is just a text-file that contains Stata commands

Opening a do-file:

- Open do-files from within Stata rather than from Windows Explorer (or Mac equivalent)
- In Stata, click on the "New do-file editor" button; this opens a new do-file
- In the do-file, click on "file" then "open" and the find the do-file you want to open

Executing Stata commands within a do-file

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design
Regression
Estimation
Assumption I
Omitted
Variable Bias

Within a do-file you can run commands several different ways (try doing this within the do-file):

- One command at a time by highlighting only that command and clicking Execute(do) button in do-file
- 2 Several commands at a time by highlighting several commands and clicking Execute(do) button in the do-file
- 3 can run the entire do-file by not highlighting any commands and clicking Execute(do) button in do-file

Comments: text that Stata will ignore when executing do-file

- Different ways to start a comment:
 - * COMMENT
 - // COMMENT
 - /* COMMENT */

Changing directories within a Stata do-file

EDUC 263. Lecture 2

Stata

"Working directory" is the directory (i.e., filepath) where Stata looks to find files (e.g., datasets)

The cd command changes the filepath of the working directory. Syntax:

cd "filepath"

Note: PC uses backslash "\" to separate folders in filepath Note: Mac uses forward-slash "/" to separate folders in filepath

Essential that you become comfortable changing directories within do-files

Let's practice in the do-file

EDUC 263. Lecture 2

Goal of statistics

Goal of statistics

13 / 61

Goal of statistics

EDUC 263. Lecture 2

Goal of statistics

Goal of statistics (including econometrics):

use sample data to make statement about population

Population parameter: some measure of the population

- e.g., mean income across all U.S. households
- Usually don't know this; need data on entire population

Estimator

- A formula or procedure used to calculate an educated guess of the value of the population parameter
- e.g., calculating difference between treated and untreated mean in experiments; ordinary least squares (OLS) estimator

Point estimate (or estimate):

■ Numeric value calculated when you apply an estimator to a specific sample of data.

Notation: parameters vs. estimates

EDUC 263, Lecture 2

Ozan Jaquette

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Population parameters

- Described using lowercase Greek letters (e.g., μ, σ, β)
 - e.g., μ ("mu") refers to population mean; σ ("sigma") refers to population standard deviation

Subscripts usually denote variables (e.g., μ_Y, σ_X, β_X)

lacksquare σ_X refers to population standard deviation of variable X

Estimates of population parameters

- Described using Greek letters with "hat"
 - \blacksquare e.g., $\hat{\mu}_Y$ is the estimate of μ_Y
 - $\hat{\sigma}_X$ is estimate of σ_X based on sample data
- Also described using Arabic letters
 - lacksquare e.g., $ar{Y}$ is estimate of μ_Y based on sample data
 - s_X is estimate of σ_X based on sample data

Desirable properties of estimators: Efficiency and unbiasedness

EDUC 263. Lecture 2

Bias & Efficiency

- Desirable properties of your point estimates (e.g., $\hat{\beta}$ or \overline{Y})
 - Desire point estimates to be "unbiased"
 - Desire point estimates to be "efficient"
- Efficiency
 - Definition:
 - Efficiency refers to how close your point estimate is to the population parameter
 - Standard error:
 - On average, how far away is a point estimate from one random sample from the value of the population parameter
 - Therefore, an efficient point estimate is one with low standard error

EDUC 263, Lecture 2

Ozan Jaquett

Stat

statistics
Bias & Efficiency

Experiments

Observational design Regression Estimation

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

An "unbiased" point estimate

- A point estimate is "unbiased" if value of point estimate gets closer to value of true population parameter as sample size increases
- Bias
 - Bias occurs when point estimate does not get closer to population parameter as sample size increases
 - A biased estimate consistently overestimates or underestimates population parameter in repeated random samples
 - There are many different types of bias
- Sampling bias:
 - The estimate of population parameter is biased because you fail to take a random sample
 - Example: goal is to estimate high school graduation rate
 - You take random sample of 10th grades and see if they graduate within three years
- Omitted variable bias:
 - lacksquare Bias in estimate of eta due to omitting necessary "control" variables from your regression model

Unbiased estimates of causal relationships more difficult than descriptive relationships

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiment

Observational design
Regression

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- Unbiased estimate of a population mean
 - e.g., what is mean hours worked per week in U.S.
 - Primary threat is sampling bias; is your sample representative of the population
- Unbiased estimate of a correlational relationship
 - e.g., how much longer (shorter) do married men live compared to unmarried men?
 - Primary threat is sampling bias
- Unbiased estimate of a causal relationship
 - Effect of marriage (X) on life expectency (Y) for men?
 - Threats to unbiased estimate
 - Sample unrepresentative of population
 - Mistaking a correlational relationship for a causal one; even if you had data on entire population, your estimate could be biased

EDUC 263. Lecture 2

Experiments

Experiments

Potential outcomes

EDUC 263, Lecture 2

Ozan Jaquette

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation

Regression Estimation Assumption I Omitted Variable Bias Multiple Regression Example: what is effect of having an internship in college (X) on earning after college (Y)?

- let i = 1...N be units (e.g., people) in sample
- \bullet d_i indicates receipt of treatment (e.g., internship)
 - $d_i = 1$ for treated units; $d_i = 0$ for untreated units
- "Potential outcomes", $Y_i(1)$ and $Y_i(0)$
 - $Y_i(1)$: outcome if i if i receives treatment $d_i = 1$
 - $Y_i(0)$: outcome if i if i doesn't receives treatment $d_i = 0$
- "Observed outcome," Y_i
 - For each person, we observe $Y_i(1)$ or $Y_i(0)$ but never both
 - $Y_i = Y_i(1)d_i + Y_i(0)(1-d_i)$
 - if $d_i = 1$ (treated):

$$Y_i = Y_i(1) * 1 + Y_i(0)(1-1) = Y_i(1)$$

- if $d_i = 0$ (untreated):
 - $Y_i = Y_i(1) * 0 + Y_i(0)(1-0) = Y_i(0)$

Table of potential outcomes

EDUC 263, Lecture 2

Ozan Jaquette

Stata

Goal of statistics Bias & Efficiency

Experiments

design
Regression
Estimation
Assumption I

on annual income after college (\$000s) (Y)?

Y:(1) Y:(0)

	$Y_i(1)$	$Y_i(0)$	$ au_{i}$
i	Treated	Untreated	Treatment effect
1	65	60	5
2	30	35	-5
3	55	60	-5
4	25	30	-5
5	50	50	0
6	80	70	10
7	45	45	0
Average	50	50	0

Example: what is effect of having an internship in college (X)

How to think about relationship between potential outcomes and observed outcome

EDUC 263, Lecture 2

Ozan Jaquetto

Stata

statistics
Bias & Efficienc

 ${\sf Experiments}$

design
Regression
Estimation
Assumption
Omitted

i	$Y_i(1)$ Treated	$Y_i(0)$ Untreated	$ au_i$ Treatment effect
1	65	60	5
2	30	35	-5
3	55	60	-5
4	25	30	-5
5	50	50	0
6	80	70	10
7	45	45	0
Average	50	50	0

How to think about potential vs. observed outcomes:

- for each person i, the treated potential outcome $Y_i(1)$ and the untreated potential outcome $Y_i(0)$ already exist
- Treatment d_i just determines which of the two potential outcomes we get to observe
- for each paerson, the only difference between $Y_i(1)$ and $Y_i(0)$ is the treatment
- Value of potential outcomes is driven by the treatment and by characteristics that affect Y_i (e.g., parental income)

Average treatment effect (ATE)

EDUC 263. Lecture 2

Experiments

	$Y_i(1)$	$Y_i(0)$	$ au_i$
i	Treated	Untreated	Treatment effect
1	65	60	5
2	30	35	-5
3	55	60	-5
4	25	30	-5
5	50	50	0
6	80	70	10
7	45	45	0
Average	50	50	0

$$ATE \equiv \frac{1}{N} \sum_{i=1}^{N} \tau_i \tag{1}$$

$$\frac{1}{N}\sum_{i=1}^{N}Y_{i}(1) - \frac{1}{N}\sum_{i=1}^{N}Y_{i}(0) = \frac{1}{N}\sum_{i=1}^{N}(Y_{i}(1) - Y_{i}(0)) = \frac{1}{N}\sum_{i=1}^{N}\tau_{i} \quad (2)$$

Repeated random sampling and expected values

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficience

Experiments

Observational design
Regression
Estimation
Assumption I

Repeated random sampling

Imagine we take an infinite number of samples of size N from the population

Expected value

- Expected value of a variable is the average value of a random variable based on an infinite number of samples
- expected value of discrete random variable X: $E[X] = \sum x Pr[X = x]$
 - Pr[X = x] is probability that X takes on the value x, where summation is taken over all possible values of X
- Example of expected value of dice role, X:

$$E[X] = (1)(\frac{1}{6}) + (2)(\frac{1}{6}) + (3)(\frac{1}{6}) + (4)(\frac{1}{6}) + (5)(\frac{1}{6}) + (6)(\frac{1}{6}) = 3.5$$

Conditional expectations

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias Conditional expectations refer to subgroup averages

Example: Y_i =income; d_i =internship (0,1); Z_i =GPA

- $E[Y_i|d_i=1]$
 - Expected value of (observed) income, given that student got internship
- $E[Y_i|Z_i > 3.5]$
 - Expected value of (observed) income, given that college GPA was greater than 3.5
- $E[Y_i(1)|d_i=1]$
 - Expected value of of treated potential outcome, given that treatment student received treatment
- $E[Y_i(0)|d_i=1]$
 - Expected value of untreated potential outcome, given that student did receive internship

Conditional expectations, potential outcomes, and random assignment

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I

Random variable D_i

- D_i is a variable whose value is randomly assigned (e.g., coin flip, or some random number generator)
- \blacksquare Value of D_i determines whether person i receives treatment

Potential outcomes

- $E[Y_i(1)|D_i=1]$
 - Treated potential outcome, given *i* assigned to treatment
 - Observed?: Yes
- $E[Y_i(1)|D_i=0]$
 - lacktriangleright Treated potential outcome, given i not assigned to treatment
 - Observed?: No
- $E[Y_i(0)|D_i=1]$
 - Untreated potential outcome, given i assigned to treatment
 - Observed?: No
- $E[Y_i(0)|D_i=0]$
 - Untreated potential outcome, given i not assigned to treatment
 - Observed?: Yes

Random assignment and unbiased inference: why random assignment works

EDUC 263. Lecture 2

Experiments

Imagine 3 people [in our sample of 7] randomly assigned to internship

	$Y_i(1)$	$Y_i(0)$	$ au_{i}$
i	Treated	Untreated	Treatment effect
1	65	60	?
2	30	35	?
3	55	60	?
4	25	30	?
5	50	50	?
6	80	70	?
7	45	45	?
Avg. (observed)	45	53.75	-8.75
Avg. (potential)	50	50	0

Random assignment and unbiased inference: why random assignment works

EDUC 263, Lecture 2

Ozan Jaquette

tata

Goal of statistics Bias & Efficiency

 ${\sf Experiments}$

Observational design
Regression

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Now imagine that start over	(re-sample):	randomly	assign 3 people	e to
receive internship				

·	$Y_i(1)$	$Y_i(0)$	$ au_{i}$
i	Treated	Untreated	Treatment effect
1	65	60	5
2	30	35	-5
3	55	60	-5
4	25	30	-5
5	50	50	0
6	80	70	10
7	45	45	0
Avg. (observed)	56.67	47.5	9.17
Avg. (potential)	50	50	0

If we re-sampled an infinite number of times, and calculated the average of the "average observed treatment effect" it would equal the "average potential treatment effect"

Why random assignment works

EDUC 263, Lecture 2

Ozan Jaqueti

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias Multiple Every person has same probability of getting treatment $(D_i = 1)$; therefore, expected treated potential outcome among treated people is same as expected outcome for all people in sample

$$E[Y_i(1)|D_i=1]=E[Y_i(1)]$$

- Every person has same probability of getting control $(D_i = 0)$; therefore, expected untreated potential outcome among untreated people is same as expected outcome for all people in sample
 - $E[Y_i(0)|D_i=0]=E[Y_i(0)]$
- Because assignment to treatment is random:
 - Assignment to treatment has no effect on value of the potential outcomes; it just affects which potential outcome is observed for each person
 - Assignment to treatment has no relationship to characteristics (e.g., parental income) that affect value of potential outcomes
- $ATE = E[Y_i(1) Y_i(0)] = E[Y_i(1)] E[Y_i(0)] = E[Y_i(1)|D_i = 1] E[Y_i(0)|D_i = 0]$
 - recall: for each person, only difference between $Y_i(1)$ and $Y_i(0)$ is the treatment

Observed outcomes, self-select into internship

EDUC 263, Lecture 2

Ozan Jaquette

Stat

Goal of statistics
Bias & Efficience

Experiments

design Regression Estimation Assumption I

Estimation Assumption I Omitted Variable Bias Multiple Regression Imagine if people self-selected into the internship; do you think assignment to treatment would be unrelated to value of potential outcomes $Y_i(1)$ and $Y_i(0)$

	$Y_i(1)$	$Y_i(0)$	$ au_{i}$
i	Treated	Untreated	Treatment effect
1	65	60	?
2	30	35	?
3	55	60	?
4	25	30	?
5	50	50	?
6	80	70	?
7	45	45	?
Average	59.75	36.67	23.08

The same characteristics (e.g., parental income, GPA) that determine the value of the dependent variable (income) also drive selection into the treatment (internship)

EDUC 263, Lecture 2

zan Jaquette

Stata

statistics

Experiment

Observational design

Regression Estimation Assumption I Omitted Variable Bias Multiple Regression

Observational design

Population linear regression model

EDUC 263, Lecture 2

Ozan Jaquett

Stat

statistics
Bias & Efficiency

Experiments

Observationa design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Population Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Where:
 - $Y_i = \text{income for person i}$
 - $X_i = \text{hours worked for person i}$
 - β_0 (called "population intercept") = average income for someone with X=0 (i.e., works zero hours)
 - β_1 (called "population regression coefficient") = average effect of a one-unit increase in X on value of Y
 - u_i (called "error terms") = all other variables not included in your model that affect value of Y
- Draw scatterplot and population regression line
 - label components (e.g., residual=actual-predicted)

Population regression coefficient, β_1

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observation

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

RQ: What is the effect of hours worked per week (X) on income (Y)?

- Answer: population regression coefficient, β_1
- \blacksquare Estimating β_1 is the fundamental goal of program evaluation research

What is the population regression coefficient, β_1 ?

- lacksquare eta_1 measures the average change in Y for a one-unit increase in X
- Think of β_1 as measuring the slope of a line

■ Example =
$$\frac{\$5,000\Delta \text{in income}}{1 \text{ hour}\Delta \text{in hours worked per week}} = \$5,000 = \beta_1$$

Interpretation

- General interpretation:
 - On average, a one-unit increase in X is associated with a β_1 increase in the value of Y
- Interpretation for our research question:
 - On average, a one-hour increase in hours worked per week (X) is associated with a $\$\beta_1$ increase in annual income
- Imagine that β_1 =2,000; How do we interpret this? β_1 =4,000?

Population Intercept, β_0

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics
Bias & Efficiency

Experiments

Observationa design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

 RQ: What is the effect of hours worked per week (X) on annual income (Y)

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- β_0 (called "population intercept")
 - lacksquare β_0 represents average value of Y when X=0
 - In our example, β_0 is average income for someone who works zero hours per week (X=0)
 - Draw in scatterplot
- Note:
 - Usually we are substantively interested in β_0
 - Also, do not believe β_0 if there are few observations where X=0 (e.g., effect of height on income)

Thinking about u_i as the "error term"

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics
Bias & Efficiency

Experiments

design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Population linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Y = income; $X_i = \text{hours worked}$
- Thinking about u_i as the "error term"
 - In econometrics:
 - Error term, u_i, consists of all other variables not included in your model that affect the dependent variable
 - This interpretation of u_i is very important for program evaluation research
 - What variables besides hours worked (X) affect income (Y)?
 - In "conventional" statistics textbooks:
 - Overall error in prediction of Y (due to random variation)

Thinking about u_i as the "residual"

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Population linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- $ilde{Y}$ =income; X_i = hours worked
- Draw scatterplot
 - Population regression line represents the predicted value of Y (income) for each value of X (hours worked)
- Thinking about u_i in terms of each observation, i
 - $Y_i = \text{actual value of income for person i}$
 - $(\beta_0 + \beta_1 X_i)$ = population regression line
 - Equals the predicted value of income for person i with hours worked = X_i
 - Residual, u_i
 - Residual, u_i, is the difference between actual value, Y_i, and predicted value from the population regression model for observation i
 - $u_i = Y_i (\beta_0 + \beta_1 X_i)$

General things we do in regression analysis

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

1 Estimation

- Choose estimates of β_0 and β_1 based on sample data
- $\hat{\beta}_0$ is an estimate of $\hat{\beta}_0$; $\hat{\beta}_1$ is an estimate of $\hat{\beta}_1$
- 2 Prediction
 - What is the predicted value of Y for someone with a particular value of X
 - e.g., what is the predicted income for someone w/ an undergraduate degree in chemistry?
- 3 Hypothesis testing [focus of causal inference]
 - Causal interpretation of β_1 :
 - lacktriangle the effect of a one-unit increase in X is a eta_1 increase in Y
 - Hypothesis testing and confidence intervals about β_1
 - Use $\hat{\beta}_1$ to test hypotheses about β_1
 - If we knew β_1 , we would not need hypothesis testing

Estimation (regression) [SKIP]

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

design Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

■ Problem in regression:

- Need to develop a method for choosing values of $\hat{\beta}_0$ and $\hat{\beta}_1$
- Solution: similar to what we did for population mean
- First, some terminology (draw scatterplot):
 - \blacksquare Y_i is the actual value of Y for individual i
 - \hat{Y}_i is the predicted value Y_i , based on sample data

$$\hat{\mathbf{Y}}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

■ Residual, \hat{u}_i = difference between actual, Y_i , and predicted, \hat{Y}_i

$$Y_i - \hat{Y}_i = \hat{u}_i$$

$$Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i) = \hat{u}_i$$

■ Note: residuals, \hat{u}_i , are often referred to as "errors"

Estimation (regression) [SKIP]

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics
Bias & Efficiency

Experiments

01 ...

design Regression

Estimation

Assumption I Omitted Variable Bias Multiple Regression

- lacksquare Criteria for choosing \hat{eta}_0 and \hat{eta}_1
 - Choose values for that minimize "sum of squared residuals"
- Residuals, û_i

$$\hat{u}_i = Y_i - \hat{Y}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

- Sum of squared residuals [or "sum of squared errors"]:

 - $\sum_{i=1}^n (\hat{u}_i)^2$
- Draw on scatterplot with two different regression lines

Ordinary least squares estimates

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics
Bias & Efficiency

Experiments

Observational design Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

■ The OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are the values that minimize the sum of squared residuals:

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i))^2 = \sum_{i=1}^{n} (\hat{u}_i)^2$$

- This minimization problem is solved using calculus
 - Stata does this for you
- Important point:
 - Any other choice of $\hat{\beta}_0$ and $\hat{\beta}_1$ will result in higher sum of squared errors
 - \blacksquare Same idea as when we found estimate of population mean, μ_Y
 - Draw two scatterplots: one with OLS estimates; one with non-OLS estimates (e.g., mean)

OLS prediction line

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design
Regression
Estimation
Assumption I
Omitted
Variable Bias

Population linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Where Y = income (\$000); X= hours worked
- OLS prediction line (based on OLS estimates)

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

- Note: OLS prediction line also called "OLS regression line"
- Imagine OLS estimates are $\hat{\beta}_0$ =5 and $\hat{\beta}_1$ =2
 - What is the predicted income for someone who works 0 hours per week?
 - What is the predicted income for someone who works 10 hours per week?

OLS Assumption 1 (mathematically)

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

design
Regression
Estimation

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

Role of assumptions in statistics and causal inference

■ Population linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- Y= HS test score; X=0/1 MAS; u_i = all other variables that affect Y but were not included in regression model
- Assumption 1 mathematically
 - $E(u_i|X_i) = 0$
 - "expected value of u_i , given any value of X, equals 0"
- OLS Assumption 1 in words
 - the independent variable X_i is unrelated to the "other variables", u_i , not included in model
 - Pretend that u_i consists of only one variable (e.g., "grit")
 - OLS assumption 1 states that the mean value of omitted variable is equal to zero no matter what the value of variable X is

OLS Assumption 1

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics
Bias & Efficiency

 $\mathsf{Experiments}$

Observation design Regression Estimation

Assumption I
Omitted
Variable Bias
Multiple
Regression

■ Population linear regression model

- $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - Y= HS test score; X=0/1 MAS; u_i = all other variables that affect Y but were not included in regression model
- Assumption 1: $E(u_i|X_i) = 0$
 - In words: the independent variable X_i is unrelated to the "other variables", u_i, not included in model
- Assumption is *always* satisfied in random assignment experiment
 - Example: effect of MAS participation (X) on graduation (Y)
 - X=0 (non participant); X=1 (MAS participant)
 - We randomly assign students to MAS participation (X)
 - Other factors, u_i (includes "grit", parental involvement, "aptitude", etc.) are *by construction* unrelated to values of X because we randomly assigned students to values of X
- In observational studies, this assumption is usually violated
 - E.g., MAS participation (X) is likely correlated with omitted variables u_i , (e.g. motivation) that affect Y

OLS Assumption 1 in practice

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

design Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- Assumption 1: $E(u_i|X_i) = 0$
 - In words: the independent variable X_i is unrelated to the "other factors", u_i , not included in model
- How to think about it in practice:
 - $Y_i = \beta_0 + \beta_1 X_i + u_i$
 - Are there any variables that are not in your model that affect Y and have a relationship (positive or negative) with X? If so, Assumption 1 is violated
- Any omitted variables that violate assumption 1?
 - Effect of participating in fraternity (X) on GPA (Y)?
 - Effect of years of education (X) on income (Y)?
 - Effect of participating in "summer bridge program" (X) on first-year retention (Y)?
 - Effect of participating in Think Tank (X) on first-year retention?

Omitted Variable Bias

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias

- $Y_i = \beta_0 + \beta_1 X_i + u_i$; Y=test score; X=class size
 - We want to know the *causal effect* of X on Y
- Omitted Variable Bias
 - Bias in estimate $\hat{\beta}_1$ due to variables being omitted from the model (part of u_i rather than included in model)
 - lacksquare Omitted variable bias is really about OLS assumption #1
- For omitted variable bias to occur, the omitted variable "Z" must satisfy two conditions:
 - 1 Z affects value of Y (i.e. Z is part of u); *and*
 - **2** Z has a relationship with X (e.g., correlation; $corr(Z,X) \neq 0$)

OLS Assumption 1 & Omitted Variable Bias

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias

- OLS Assumption 1: $E(u_i|X_i) = 0$
 - the independent variable X_i is unrelated to the "other factors," u_i , that affect Y and are not included in model
 - assumption violated if there are omitted variables that affect Y that also have relationship with X
- Omitted Variable Bias
 - omitted variable bias: bias in estimate $\hat{\beta}_1$ due to variables being omitted from the model
 - For omitted variable bias to occur, the omitted variable
 "Z" must satisfy two conditions:
 - 1 Z affects value of Y (i.e. Z is part of u); *and*
 - 2 Z has a relationship with X (e.g., correlation; $corr(Z, X) \neq 0$)

Omitted variable bias in practice

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- $Y_i = \beta_0 + \beta_1 X_i + u_i;$
 - Y=test score; X=class size
 - Z = % of students in district with English as a second language (ESL) [omitted from model]
- For omitted variable bias to occur, the omitted variable "Z" must satisfy two conditions:
 - 1 Z affects value of Y (i.e. Z is part of u); *and*
 - Would ESL affect standardized test scores? Why?
 - Z has a relationship with X (e.g., correlation; $corr(Z, X) \neq 0$)
 - Is ESL likely to be correlated with student-teacher ratio? Why?
- If *both* conditions satisfied, then omission from ESL from model results in $\hat{\beta}_1$ having omitted variable bias

Omitted variable bias in practice

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias

- $Y_i = \beta_0 + \beta_1 X_i + u_i;$
 - Y=test score; X=class size; Z= variable omitted from model
- For omitted variable bias to occur, the omitted variable "Z" must satisfy two conditions:
 - 1 Z affects [causal] value of Y (i.e. Z is part of u); *and*
 - 2 Z has a relationship with X (e.g., correlation; $corr(Z, X) \neq 0$)
- Would omitting Z = "time of day test administered" result in omitted variable bias?
 - Does test-time affect Y? Is test-time correlated with student-teacher ratio?
- Would omitting Z = "number of desks in class" result in omitted variable bias?
 - Does parking space per pupil affect Y? Is parking space per pupil correlated with student-teacher ratio?

How to check for omitted variable bias

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- Ask yourself:
 - Could omitted variable Z affect Y?
 - Could omitted variable Z have some relationship with X?
- How researchers think about omitted variable bias in practice
 - Rely on logical argument
 - Rely on theory
 - Rely on prior research
 - e.g., past studies show that Z affects Y
 - past studies of "effect of X on Y" control for Z
- descriptive statistics (e.g., correlations)
 - only works if you have a good measure of Z

When is omitted variable bias big/small

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

design Regression Estimation

Assumption I
Omitted
Variable Bias
Multiple
Regression

- $Y_i = \beta_0 + \beta_1 X_i + u_i$
- Imagine there is only one omitted variable, Z
- Omitted variable bias is likely big when:
 - The omitted variable, Z, has a big causal effect on Y
 - The correlation between X and the omitted variable, Z, is strong
- Example:
 - Y= earnings; X= participation in internship; Z= parental income

Omitted Variable Bias Formula [SKIP]

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observationa design Regression Estimation Assumption I Omitted Variable Bias Multiple

- $Y_i = \beta_0 + \beta_1 X_i + u_i$
- Omitted variable bias formula [assume u is one variable]

$$\bullet \hat{\beta}_1 \xrightarrow{p} \beta_1 + corr(X_i, u_i) * \frac{\sigma_u}{\sigma_x}$$

- What do different components of formula mean?
 - p = "approaches this value as sample size increases"
 - σ_u = standard deviation of omitted variable(s), u?
 - $\sigma_X = \text{standard deviation of X}$
- Formula in words
 - As sample size increases, the OLS estimate, $\hat{\beta}_1$, approaches the population regression coefficient β_1 + the correlation between X and u times the standard deviation of u divided by the standard deviation of X
- What value do we want $\hat{\beta}_1$ to approach as sample size increases?
- Omitted variable bias is this part of formula: $corr(X_i, u_i) * \frac{\sigma_u}{\sigma_x}$
 - Omitted variable bias is high when:
 - strong correlation between X and u [can see from formula]
 - the omitted variable, u, has a big effect on Y

Omitted Variable Bias Formula [SKIP]

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observation design
Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- $\bullet \hat{\beta}_1 \xrightarrow{p} \beta_1 + corr(X_i, u_i) * \frac{\sigma_u}{\sigma_x}$
- Consistency
 - The point estimate approaches the population parameter as sample size increases (e.g. imagine if your sample is the entire population)
 - $\hat{\beta}_1$ is inconsistent when there is omitted variable bias; $\hat{\beta}_1$ does not approach β_1 as sample size increases
- $corr(X_i, u_i)$
 - If $corr(X_i,u_i)=0$ then there is no bias; $\hat{eta}_1 \overset{p}{\longrightarrow} eta_1$
 - The size of the omitted variable bias depends on the strength of the correlation between X and u

Upwards/Downwards Bias [SKIP]

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

design
Regression
Estimation

Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- $Y_i = \beta_0 + \beta_1 * MAS_i + u_i$
 - Y= graduation; X=0/1 in MAS; X2= motivation; X3= household income
 - ullet $\beta_1 = \text{true causal effect of participation in MAS on graduation}$
- Upwards bias: $\hat{\beta}_1 > \beta_1$
 - \blacksquare Estimate of the causal effect $\hat{\beta}_1,$ is greater than true causal effect, β_1
 - Example: Omit Z1, student motivation
 - motivation positively affects graduation; positive correlation w/ participation in MAS
 - If we omit student motivation from model, our estimate $\hat{\beta}_1$ is partially picking up positive effect of motivation on graduation
- Downwards bias: $\hat{\beta}_1 < \beta_1$
 - lacksquare Estimate of the causal effect \hat{eta}_1 , is less than true causal effect, eta_1
 - Example: Omit Z2, household income
 - household income positively affects graduation; negative correlation w/ participation in MAS
 - If we omit household income from model, our estimate $\hat{\beta}_1$ is partially picking up negative effect of being low-income on graduation (because low income students are more likely to participate in MAS)

How to deal with Omitted Variable Bias

EDUC 263. Lecture 2

Omitted Variable Bias

- Random assignment experiments
 - The "gold standard"
- Attempt to "recreate" experimental conditions
 - Multiple regression, matching
 - Include omitted variables in your model, so they are no longer omitted
 - This is the purpose of regression; otherwise you can use ANOVA
 - "quasi-experimental" techniques
 - More advanced methods for recreating experimental conditions
 - e.g., regression discontinuity; instrumental variables

How to deal with Omitted Variable Bias

EDUC 263, Lecture 2

Ozan Jaquett

Stata

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted Variable Bias Multiple Research question: What is the effect of student teacher ration (X) on district average test scores (Y)?

- $Y_i = \beta_0 + \beta_1 X_i + u_i$
- Imagine that we have two omitted variables
 - Z1= pct English as a Second Language (ESL)
 - Z2= average income in the district
- Multiple regression:
 - Attempt to recreate experimental conditions by including "omitted variables" in your model, so they are no longer omitted
 - Once you include Z1 and Z2 in your model, they are called "control" variables because they control for omitted variable bias; also called "covariates"
- Do in Stata

Why no control variables in experiments

EDUC 263, Lecture 2

Ozan Jaquette

Stata

Goal of statistics Bias & Efficiency

Experiments

Observationa design Regression

Estimation
Assumption I
Omitted
Variable Bias
Multiple

- $Y_i = \beta_0 + \beta_1 X_i + u_i$; Y=graduation; X: 0=no MAS, 1=MAS
 - Omitted vars: Z1= student motivation; Z2= household income
- Omitted variable bias conditions:
 - Z affects value of Y (i.e. Z is part of u); *and*
 - **2** Z has a relationship with X (e.g., correlation)
- Imagine students randomly assigned to MAS
 - Z1 = student motivation
 - (1) does student motivation affect HS graduation(Y)?
 - (2) could student motivation be related (e.g., correlation) with value of X (MAS)?
 - Z2 = household income
 - (1) does household income affect HS graduation(Y)?
 - (2) could household income be related to value of X (MAS)?
- Randomization in treatment vs. control group
 - Any differences between treatment and control group on factors that affect Y have no relationship w/ value of X (treatment)

Why no control variables in experiments: Tennessee STAR Experiment

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observation design Regression Estimation Assumption Omitted

Variable Bias

Where to get data

- https://dataverse.harvard.edu/dataset.xhtml? persistentId=hdl:1902.1/10766
- Overview of experiment
 - "The Student/Teacher Achievement Ratio (STAR) was a four- year longitudinal class-size study funded by the Tennessee General Assembly and conducted by the State Department of Education. Over 7,000 students in 79 schools were randomly assigned into one of three interventions: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher), and regular-with-aide class (22 to 25 students with a full-time teacher's aide)
- RQ: what is effect of class-size treatment (X) on first-grade math scores (Y)
 - Do in Stata

Conditional Independence Assumption

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design Regression Estimation Assumption I Omitted

Variable Bias

Assume students choose to participate in MAS

- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
 - Y= graduation; X=0/1 in MAS; X2= motivation; X3= income
- Conditional independence assumption
 - Once we include control variables, there are no omitted variables,
 Z, that satisfy *both* of these two conditions
 - (1) Z affects value of Y (i.e. Z is part of u); *and*
 - (2) Z has a relationship with X (e.g., correlation)
- If the conditional independence assumption is true:
 - Once we include relevant control variables, there are no omitted variables that affect Y and have a systemic relationship with X
 - Main point: if we satisfy the conditional independence assumption through control variables, then multiple regression is just as good as random assignment experiment!
 - In random assignment experiments, there are omitted variables that affect Y, but none of these omitted variables have a systemic relationship with X because X is randomly assigned

Population Multiple Regression Model

EDUC 263, Lecture 2

Ozan Jaquett

Stat

statistics
Bias & Efficiency

Experiments

Observational design Regression Estimation

Assumption I
Omitted
Variable Bias
Multiple
Regression

- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$
- Where:
 - $Y_i = \text{observation i of dependent variable}$
 - X_{1i} = observation i for the first regressor, X_1
 - $X_{2i} = \text{observation i for the second regressor, } X_2$
 - X_{ki} = observation i for the kth regressor, X_2
 - $f \beta_1=$ population average effect on Y for a one-unit increase in X_1
 - ullet β_2 = population average effect on Y for a one-unit increase in X_2
 - lacksquare β_k = population average effect on Y for a one-unit increase in X_k
 - β_0 = average value of Y when the value of all independent variables, $X_1, X_2, ... X_k$, are equal to zero
 - u_i = all other variables that *affect* the value of Y_i but are not included in the model (i.e., not X_1 or X_2)
 - lacksquare k= refers to the number of independent variables in your model
 - e.g., model where independent variables are age, education level, and income has k=3

Multivariate Regression & Program Evaluation

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observationa design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$
- Program evaluation research [econometrics]
 - We are only interested in estimating β_1 [causal effect of X1 on Y]
 - The only reason we include other variables in the model beside X1 is to eliminate omitted variable bias
 - Therefore, we include all control variables that satisfy *both* conditions of omitted variable bias:
 - Once we include control variables, there are no omitted variables,
 Z, that satisfy *both* of these two conditions
 - (1) Z affects value of Y (i.e. Z is part of u); *and*
 - (2) Z has a relationship with X (e.g., correlation)
- Traditional social science statistics
 - Purpose of multiple regression is to add new variable to your model (e.g. X₃) to see effect of variable X₃ on Y
 - Can lead to sloppy research! If you don't get an "interesting" result for $\hat{\beta}_1$, then focus on a variable with a more interesting coefficient (e.g. X_3)

What does "holding constant" mean?

EDUC 263, Lecture 2

Ozan Jaquett

Stat

Goal of statistics Bias & Efficiency

Experiments

Observational design

Regression
Estimation
Assumption I
Omitted
Variable Bias
Multiple
Regression

- RQ: What is the relationship between years of education(X1) on income(Y), after controlling for years of work experience (X2)?
- "Holding the value of X2 constant"
 - Means to estimate the relationship between X1 and Y when we don't allow value of X2 to vary [partial derivative]
 - Said different: relationship between education (X1) and income
 (Y) for applicants that have same years of experience (X2)
- General interpretation of β_1 (assuming causal relationship):
 - The average effect of a one-unit increase in X_1 is a β_1 unit increase in Y, holding the value of X_2 constant
- Interpretation of β_1 , applied to example
 - The effect of having one additional year of education (X1) on income (Y), when we don't allow value "years of experience" (X2) to change
 - Said different: the effect of increasing years of education on income for people who have same years of experience