Introducción a la Lógica y la Computación. Examen final, 19/02/2009.

Apellido y Nombre: Genta

(1) δ (a) Defina formalmente el significado de $q_i \rightarrow q_j$ para los NFA con mov. ϵ . Defina luego L(M), el lenguaje aceptado por el autómata.

 $\mathfrak B$ (b) Para el NFA dado por el siguiente diagrama de transiciones (el único estado final es q_3), determinar cuales de las siguientes palabras son aceptadas: 001,0001,00011,01001

 δ (c) Construir un DFA que acepte exactamente el lenguaje aceptado por el NFA con ϵ -mov. de (1)(b). El ejercicio sólo dará puntos si utiliza el método enseñado en el curso.

(2) Sea $M=(Q,\Sigma,\delta,q_0,F)$ un DFA. Considere $M'=(Q,\Sigma,\delta,q_0,Q-F)$. ¿Qué relación existe entre L(M') y L(M)? Justifique su respuesta.

M (b) Utilice el Pumping Lemma para probar que $\{a^ib^i:i\geq 0\}$ no es regular.

— (c) ¿Es regular el lenguaje $L = \{a^i b^j : i, j \ge 0 \text{ y } i \ne j\}$? (Ayuda: piense en $\Sigma^* - L$).

(3) (a) Defina qué significa en un reticulado que un elemento sea join-irreducible (o irreducible), v qué significa que sea átomo.

B (b) Pruebe que en un álgebra de Boole todo elemento join-irreducible es un átomo.

_ (c) Pruebe que en un reticulado distributivo L se cumple la siguiente propiedad: si $x \nleq y$ entonces existe $j \in Irr(L)$ tal que $j \leq x$ y además $j \nleq y$.

(4) Hallar derivaciones que muestren:

b (a) $\vdash \neg (\varphi \land \neg \varphi)$. $\vdash \varphi$ (b) $\{\neg \varphi\} \vdash (\varphi \lor \psi) \rightarrow \psi$.

(5) \sim (a) Probar, sin usar valuaciones, que $\Gamma \cup \{\varphi \land \psi\}$ es consistente si y sólo si $\Gamma \cup \{\varphi, \psi\}$ es consistente. (Ayuda: contrarrecíproca.)

Ejercicios para alumnos libres: (1) Pruebe la ley de cancelación de los reticulados distributivos:

$$\begin{array}{ccc}
x \lor a = y \lor a \\
x \land a = y \land a
\end{array} \implies x = y$$

¿Vale la ley de cancelación en reticulados?

(2) Dé una gramática regular que derive el lenguaje formado por las palabras que poseen exactemente una cantidad par de 1's.

