

Department of Computer Science COMSATS University Islamabad, Lahore Campus

M. A. Jinnah Campus, Lahore

Mid-Term Examination-FALL 2023

Course Title:	Differential Equations Farrukh Shehzad				Course Code:	MTH242	Credit Hours:	3 (3,0)
Course Instructor/s:					Programme Name: BS Computer Science			
Semester:	7th	Batch:	FA20	Section:		Date:	04-11-20)23
Time Allowed:	1 hour 30 minutes				Maximum Marks:		25	
Student's Name:					Reg. No.			/LHR
Creativity a Attempt all	nd thi	inking are						- 15

(9+8+8=25)

Question #1

A culture initially has P_0 number of bacteria. At t=1 the number of bacteria is measured to be $\frac{3}{2}P_0$. If the rate of growth is proportional to the number of bacteria P(t) present at time t, determine the time necessary for the number of bacteria to triple.

Question #2

- a) Differentiate between autonomous and non-autonomous DEs.
- b) Find the general solution of the higher-order differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} 2y = 2x^2 3x + 6$. Using the undetermined coefficients.

Question #3

- a) What is the Wronskian function?
- b) Solve the higher order differential equation $\frac{d^2y}{dx^2} y = \frac{1}{x}$. by variation of parameters.