Nome: _

Duração: 1h30

Álgebra Linear e Geometria Analítica

0	а	ъ	1	A 1. ~	ъ л	4 =	101	10011
3.		Prova	ae	Avaliação	Mista	- 17	/UI	/2011

N.º mecanográfico: _____

Declaro que desisto ________ N.º de folhas suplementares: ____

Questão	1	2	3	4	Total
Cotação	40	60	65	35	200
Classificação					

Classificação final
valores

Justifique convenientemente todas as suas respostas e indique os cálculos que efectuar.

- 1. Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear tal que T(1,1,0)=(2,1), T(0,1,0)=(1,2) e cujo núcleo é gerado pelo vector (0,0,1).
 - (a) Indique, justificando, T(0,0,1).
 - (b) Estude T quanto à injectividade e sobrejectividade.
 - (c) Determine a matriz representativa de T relativamente às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 .

2. Seja $L:\mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear representada pela matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{array} \right]$$

em relação à base canónica B_c de \mathbb{R}^3 .

- (a) Determine o núcleo de L e indique uma sua base.
- (b) Determine L(x, y, z) para $(x, y, z) \in \mathbb{R}^3$.
- (c) Seja M a matriz de L em relação à base canónica B_c e à base B = ((1,0,-1),(0,1,0),(1,0,0)) de \mathbb{R}^3 . Apresente uma relação entre A e M, utilizando matrizes de mudança de base e indique-as.

3. Considere a matriz

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- (a) Determine os valores próprios de A.
- (b) Determine uma base ortonormada de \mathbb{R}^3 formada por vectores próprios de A.
- (c) Apresente uma equação reduzida e classifique a quádrica definida por $2x^2 + y^2 + z^2 + 2yz 4x = 0$.

4. Considere a matriz

$$A = \left[\begin{array}{ccc} k+1 & 0 & 0 \\ -1 & k & 0 \\ 0 & k & 1 \end{array} \right], \qquad k \in \mathbb{R}.$$

Determine os valores de k para os quais 2 é valor próprio de A e A é uma matriz diagonalizável.