

Filip Zieliński

2025

Spis Treści

- 1. Porządki jednomianowe
- 2. Redukcje wielomianowe
- 3. Bazy Gröbnera
- 4. Eliminacja Zmiennych

Relacje porządkujące Porządki jednomianowe

Definicja

Porządkiem **częściowym** nazywamy relacje <u>≺</u> określoną na zbiorze *A* spełniającą warunki

- zwrotność $\forall a \in A \quad a \leq a$,
- antysymetryczność $\forall a, b \in A \quad (a \leq b \land b \leq a) \Rightarrow a = b$,
- przechodniość $\forall a, b, c \in A \quad (a \leq b \land b \leq c) \Rightarrow a \leq b$,

Relacje porządkujące Porządki jednomianowe

Definicja

Porządkiem **totalnym** nazywamy relacje ≤ określoną na zbiorze *A* spełniającą warunki

- zwrotność $\forall a \in A \quad a \prec a$.
- antysymetryczność $\forall a, b \in A \quad (a \leq b \land b \leq a) \Rightarrow a = b$,
- przechodniość $\forall a, b, c \in A \quad (a \leq b \land b \leq c) \Rightarrow a \leq b$,
- spójność $\forall a, b \in A$ $a \leq b \lor b \leq a$.

Oznaczenia i Definicja Porządki jednomianowe

Notacja

- $K[X] = K[x_1, \ldots, x_n],$
- $\alpha = (\alpha_1, \ldots, \alpha_n),$
- $c_{\alpha}X^{\alpha} = c_{\alpha}X_1^{\alpha_1}X_2^{\alpha_2}\cdots X_n^{\alpha_n}$,
- $\mathbb{M}^n = \{ \mathbb{X}^\alpha \mid \alpha \in \mathbb{N}_0^n \}.$

Oznaczenia i Definicja Porządki jednomianowe

Notacja

- $K[X] = K[x_1, \ldots, x_n],$
- $\alpha = (\alpha_1, \ldots, \alpha_n),$
- $c_{\alpha}X^{\alpha} = c_{\alpha}X_1^{\alpha_1}X_2^{\alpha_2}\cdots X_n^{\alpha_n}$,
- $\mathbb{M}^n = \{ \mathbb{X}^\alpha \mid \alpha \in \mathbb{N}_0^n \}.$

Definicja

Porządek totalny \leq określony na zbiorze \mathbb{M}^n nazywamy **jednomianowym**, jeżeli spełnione są następujące warunki

- 1 $\leq \mathbb{X}^{\alpha}$ dla każdego $\alpha \in \mathbb{N}_0^n$.
- każdy niepusty zbiór $S \subset \mathbb{M}^n$ posiada element najmniejszy.
- $\mathbb{X}^{\alpha} \preceq \mathbb{X}^{\beta} \Rightarrow \mathbb{X}^{\alpha} \mathbb{X}^{\gamma} \preceq \mathbb{X}^{\beta} \mathbb{X}^{\gamma}$. dla każdego $\gamma \in \mathbb{N}_{0}^{n}$.

Porządki jednomianowe

Przykład porządku jednomianowego

Porządek leksykograficzny (lex)

$$\mathbb{X}^{\alpha} \leq \mathbb{X}^{\beta} \Leftrightarrow \alpha_1 = \beta_1, \dots \alpha_s = \beta_s, \alpha_{s+1} < \beta_{s+1}$$

Porządki jednomianowe

Przykład porządku jednomianowego

Porządek leksykograficzny (lex)

$$\mathbb{X}^{\alpha} \leq \mathbb{X}^{\beta} \Leftrightarrow \alpha_1 = \beta_1, \dots \alpha_s = \beta_s, \alpha_{s+1} < \beta_{s+1}$$

Inne znane i wykorzystywane porządki to np.

- porządek stopniowo leksykograficzny,
- porządek odwrotny do leksykograficznego,
- stopniowy porządek odwrotny do leksykograficznego.

Redukcje wielomianowe

Definicja

Niech będzie dany porządek jednomianowy \preceq oraz wielomian wielu zmiennych

$$f = \mathbf{c}_{\alpha_1} \mathbb{X}^{\alpha_1} + \ldots + \mathbf{c}_{\alpha_m} \mathbb{X}^{\alpha_m},$$

gdzie $\mathbb{X}^{\alpha_1} \succeq \ldots \succeq \mathbb{X}^{\alpha_m}$. Wtedy

Nośnikiem wielomianu f nazywamy zbiór wszystkich jego jednomianów

supp
$$f := \{ \mathbb{X}^{\alpha_1}, \dots, \mathbb{X}^{\alpha_m} \}$$

- Jednomianem wiodącym f nazywamy $\text{lm}_{\prec}(f) = \mathbb{X}^{\alpha_1}$.
- Współczynnikiem wiodącym f nazywamy $\operatorname{lc}_{\preceq}(f) = c_{\alpha_1}$.
- Wyrazem wiodącym f nazywamy $\operatorname{lt}_{\preceq}(f) = \operatorname{lc}_{\preceq}(f) \cdot \operatorname{lm}_{\preceq}(f)$.

Redukcja Wielomianowa Redukcje wielomianowe

Definicja

• Mówimy, że wielomian f redukuję się jednym kroku do wielomianu h, modulo wielomian g, co oznaczamy $f \xrightarrow{g} h$, jeżeli istnieje $\mathbb{X}^{\alpha} \in \operatorname{supp} f$, taki, że

$$\lim(g)\mid \mathbb{X}^{lpha} ext{ oraz } h=f-rac{c_{lpha}\mathbb{X}^{lpha}}{\operatorname{lt}(g)}g.$$

• Wielomian f redukuje się do wielomianu h modulo $G = \{g_1, \dots, g_s\}$, co oznaczamy $f \stackrel{G}{\longrightarrow} h$, jeżeli

$$f = f_0 \xrightarrow{g_{i1}} f_1 \xrightarrow{g_{i2}} \dots \xrightarrow{g_{im}} f_m = h.$$

 Jeżeli wielomianu h nie można bardziej zredukować modulo G, to mówimy, że h jest resztą wielomianu f modulo G.

Jednoznaczność redszty modulo Redukcje wielomianowe

Uwaga

Reszta wielomianu f modulo $G = \{g_1, \dots, g_s\}$ dla wielomianów wielu zmiennych **nie** jest wyznaczona jednoznacznie.

Algorytm Wyznaczania reszt modulo Redukcje wielomianowe

Obserwacja

W tym wypadku najprostsze podejście polega na brutalnym sprawdzaniu, czy da się wykonać krok redukcji, jeżeli tak to go wykonujemy, jeżeli nie, to znaleźliśmy już resztę.

Ideały jednomianowe Bazy Gröbnera

Twierdzenie

Niech $I \triangleleft K[\mathbb{X}]$ będzie ideałem oraz zbiór G jego skończonym zbiorem generatorów. Wszystko rozważamy w ustalonym porządkun jednomianowym \preceq . Następujące warunki są równoważne

- **1.** $\langle \operatorname{lt}(g) \mid g \in g \rangle = \langle \operatorname{lt}(f) \mid f \in I \rangle =: \operatorname{lt}(I).$
- **2.** $f \in I, f \neq 0 \Rightarrow \operatorname{lt}(g) \mid \operatorname{lt}(f)$ dla pewnego $g \in G$.
- **3.** Reszty modulo *G* są jednoznaczne.
- **4.** $f \in I \Leftrightarrow f \xrightarrow{G} 0$.

Bazy Gröbnera

Bazy Gröbnera

Definicja

Zbiór G spełniający warunki poprzedniego twierdzenia nazywamy bazą Gröbnera ideału I.

Bazy Gröbnera

Bazy Gröbnera

Definicja

Zbiór G spełniający warunki poprzedniego twierdzenia nazywamy bazą Gröbnera ideału I.

Uwaga

Każdy ideał $I \triangleleft K[X]$ posiada bazę Gröbnera.

Definicja

Niech $f,g \in K[\mathbb{X}]$ będą wielomianami. S-wielomianem f,g nazywamy wielomian zadany wzorem

$$S(f,g) = rac{\operatorname{lcm}(\operatorname{lm}(f),\operatorname{lm}(g))}{\operatorname{lt}(f)}f - rac{\operatorname{lcm}(\operatorname{lm}(f),\operatorname{lm}(g))}{\operatorname{lt}(g)}g$$

Kryterium Buchbergera Bazy Gröbner

Twierdzenie (Buchberger)

Niech $I \triangleleft K[X]$ będzie ideałem w pierścieniu wielomianów wielu zmiennych oraz niech $G = \{g_1, \ldots, g_n\}$ będzie skończonymz zbiorem generatorów I.

Następujące warunki są równoważne:

- 1. G jest bazą Gröbnera.
- **2.** $S(g_i, g_j) \xrightarrow{G} 0$, dla każdego $1 \le i < j \le n$.

Algorytm is_Gröbner_basis Bazy Gröbnera

Wejście:

- Skończony zbiór $G \subset K[X]$,
- porządek jednomianowy ≤.

Wyjście:

- Wartość logiczna prawda G jest bazą Gröbnera ideału (G),
- wartość logiczna fałsz wpp. wraz z niezerową resztą
 S-wielomianu dwóch wielomianów z G.

Kroki:

- 1. Dla każdej pary wielomianów $f,g \in G, f \neq g$:
 - Utwórz ich S-wielomian,
 - wyznacz resz†ę r wielomianu S(f,g) modulo G,
 - jeżeli jest niezerowa zwróć (fałsz,r).
- 2. Zwróć prawda.

Algorytm Buchbergera Bazy Gröbnera

Wejście:

Skończony zbiór generatorów F ideału I.

Wyjście:

Baza Gröbnera G ideału I.

Kroki:

- 1. Zainicjalizuj G := F,
- 2. dopóki *is_Gröbner_basis(G)* to fałsz wykonuj:
 - G := G ∪ {r}, gdzie r jest niezerową resztą zwróconą przez is_Gröbner_basis(G).
- 3. Zwróć G.

Minimalne bazy Gröbnera Bazy Gröbnera

Twierdzenie

Niech G będzie bazą Gröbnera idału $I \triangleleft K[X]$ oraz $f, g \in G, f \neq g$ będą wielomianami z bazy.

Jeżeli $lm(g) \mid lm(f)$, to $G \setminus \{f\}$ też jest bazą Gröbnera ideału I.

Minimalne bazy Gröbnera Bazy Gröbnera

Twierdzenie

Niech G będzie bazą Gröbnera idału $I \triangleleft K[X]$ oraz $f, g \in G, f \neq g$ będą wielomianami z bazy.

Jeżeli $lm(g) \mid lm(f)$, to $G \setminus \{f\}$ też jest bazą Gröbnera ideału I.

Definicja

Bazę Gröbnera ideału I nazywamy minimalną jeżeli zachodzi:

$$\forall f, g \in G, f \neq g \quad \operatorname{lm}(g) \nmid \operatorname{lm}(f)$$

Algorytm

Bazy Gröbnera

Obserwacja d

Brutalny algorytm minimalizujący bazę Gröbnera ${\it G}$ jest oczywisty.

Zredukowana baza Gröbnera Bazy Gröbnera

Definicja

Bazę Gröbnera G nazywamy zredukowaną jeżeli

- $\forall f \in Glc(f) = 1$
- dla wszystkich $f,g\in G$ oraz dla wszystkich $\mathbb{X}^{\alpha}\in\operatorname{supp} f$ zachodzi

$$\operatorname{lm}(g) \mid \mathbb{X}^{\alpha}$$
.

Zredukowana baza Gröbnera Bazy Gröbnera

Definicja

Bazę Gröbnera G nazywamy zredukowaną jeżeli

- $\forall f \in Glc(f) = 1$
- dla wszystkich $f,g\in G$ oraz dla wszystkich $\mathbb{X}^{\alpha}\in\operatorname{supp} f$ zachodzi

$$\operatorname{lm}(g) \mid \mathbb{X}^{\alpha}$$
.

Obserwacja

Redukowanie minimalnych baz Gröbnera sprowadza się do przeprowadzania redukcji modulo *G* wszystkich wielomianów z *G*.

Zredukowana baza Gröbnera Bazy Gröbnera

Definicja

Bazę Gröbnera G nazywamy zredukowaną jeżeli

- $\forall f \in Glc(f) = 1$
- dla wszystkich $f,g\in G$ oraz dla wszystkich $\mathbb{X}^{\alpha}\in\operatorname{supp} f$ zachodzi

$$\operatorname{lm}(g) \mid \mathbb{X}^{\alpha}$$
.

Obserwacja

Redukowanie minimalnych baz Gröbnera sprowadza się do przeprowadzania redukcji modulo G wszystkich wielomianów z G.

Twierdzenie

Każdy ideał $I \triangleleft K[X]$ posiada dokładnie **dokładnie jedną** minimalną zredukowaną bazę Gröbnera.

Twierdzenie o Eliminacji Eliminacja Zmiennych

Twierdzenie

Rozważmy pierścień wielomianów wielu zmiennych

$$K[x_1,\ldots,x_m,y_1,\ldots,y_r]=K[\mathbb{X},\mathbb{Y}].$$

Niech \leq będzie porządkiem jednomianowym na $K[\mathbb{X}, \mathbb{Y}]$ takim, że

$$\forall \alpha \in \mathbb{N}_0^m, \beta \in \mathbb{N}_0^r \quad \mathbb{X}^\alpha \succeq \mathbb{Y}^\beta$$

oraz G będzie bazą Gröbnera (względem porządku \preceq) ideału $I \triangleleft K[\mathbb{X}, \mathbb{Y}]$. Wtedy

$$G \cap K[\mathbb{Y}]$$

jest bazą Gröbnera ideału $I\cap K[\mathbb{Y}] \triangleleft K[\mathbb{Y}]$, względem porządku jednomianowego $\preceq|_{K[\mathbb{Y}]}$.

Eliminacja Zmiennych

Prezentacja jest mocno oparta o wykład autorstwa *Przemysława Koprowskiego*, który można obejrzeć pod tym linkiem

- [1] Marcin Dumnicki and Tadeusz Winiarski. *Bazy Grobnera* efektywne metody w układach równań wielomianowych. Wydawnictwo Naukowe Akademii Pedagogicznej, 2007.
- [2] Joachim Von Zur Gathen and Jurgen Gerhard. *Modern Computer Algebra*. Cambridge University Press, 1999.
- [3] Przemysław Koprowski. Lectures on Computational Mathematics. 2022.
- [4] Martin Kreuzer and Lorenzo Robbiano. *Computational Commutative Algebra 1*. Springer, 2000.

Pytania, wątpliwości, uwagi?