Computer-Vision-4

Interest Point Detection

Local features: main components

1) Detection: Identify the interest points

2) Description :Extract feature vector descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Where can we use it?

- Automate object tracking
- Point matching for computing disparity
- Stereo calibration
 - Estimation of fundamental matrix
- Motion based segmentation
- Recognition
- 3D object reconstruction
- Robot navigation
- Image retrieval and indexing

Goal: interest operator repeatability

 We want to detect (at least some of) the same points in both images.

No chance to find true matches!

 Yet we have to be able to run the detection procedure independently per image.

Goal: descriptor distinctiveness

 We want to be able to reliably determine which point goes with which.

 Must provide some invariance to geometric and photometric differences between the two views.

Some patches can be localized or matched with higher accuracy than others.

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

What is an interest point

- Expressive texture
 - The point at which the direction of the boundary of object changes abruptly
 - Intersection point between two or more edge segments

Synthetic & Real Interest Points

Corners are indicated in red

- 4
- Detect all (or most) true interest points
- No false interest points
- Well localized.
- Robust with respect to noise.
- Efficient detection

- Based on brightness of images
 - Usually image derivatives
- Based on boundary extraction
 - First step edge detection
 - Curvature analysis of edges

Harris Corner Detector

- Corner point can be recognized in a window
- Shifting a window in any direction should give a large change in intensity

Basic Idea

"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Aperture Problem

Correlation

 \otimes

$$f \otimes h = \sum_{k} \sum_{l} f(k,l) h(i+k,j+l)$$

$$f = Image$$

$$h = Kernel$$

 f_9

 h_2 h_3 h_5 h_6

h

 $f * h = f_1 h_1 + f_2 h_2 + f_3 h_3$ $+ f_4 h_4 + f_5 h_5 + f_6 h_6$ $+ f_7 h_7 + f_8 h_8 + f_0 h_0$

Correlation

$$f \otimes h = \sum_{k} \sum_{l} f(k,l)h(i+k,j+l)$$
 Cross correlation

$$f \otimes f = \sum_{k} \sum_{l} f(k,l) f(i+k,j+l)$$
 Auto correlation

Correlation Vs SSD

$$SSD = \sum_{k} \sum_{l} \left(f(k,l) - h(i+k,j+l) \right)^2 \text{ Sum of Squares Difference}$$

$$SSD = \sum_{k} \sum_{l} \left(f(k,l)^2 - 2h(i+k,j+l) f(k,l) + h(i+k,j+l)^2 \right)$$

$$SSD = \sum_{k} \sum_{l} \left(-2h(i+k,j+l) f(k,l) \right)$$

$$SSD = \sum_{k} \sum_{l} \left(2h(i+k,j+l) f(k,l) \right)$$

$$Correlation = \sum_{k} \sum_{l} \left(h(i+k,j+l) f(k,l) \right)$$

$$maximize$$

$$f \otimes f = \sum_{k} \sum_{l} f(k,l) f(i+k,j+l)$$

Computer-Vision-4

Mathematics of Harris Detector

$$E(u,v) = \sum_{x,y}$$

$$\underbrace{[I(x+u,y+v)-I(x,y)]^2}_{\text{shifted intensity}} - \underbrace{I(x,y)}_{\text{intensity}}]^2$$

Auto-correlation

Window functions →

UNIFORM

GAUSSIAN

Computer-Vision-4

Taylor Series

f(x) Can be represented at point a in terms of its derivatives

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \cdots$$

Mathematics of Harris Detector

$$E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_{\text{window function}} \underbrace{[I(x+u,y+v) - I(x,y)]^2}_{\text{shifted intensity}}$$

$$E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_{\text{window function}} \underbrace{[I(x,y) + uI_x + vI_y - I(x,y)]^2}_{\text{shifted intensity}}$$
Taylor Series

$$E(u,v) = \sum_{x,y} w(x,y) [uI_x + vI_y]^2$$

$$E(u,v) = \sum_{x,y} w(x,y) \left[(u \quad v) \begin{pmatrix} I_x \\ I_y \end{pmatrix} \right]^2$$

$$E(u,v) = \sum_{x,y} w(x,y) (u \quad v) \begin{pmatrix} I_x \\ I_y \end{pmatrix} (I_x \quad I_y) \begin{pmatrix} u \\ v \end{pmatrix}$$

$$E(u,v) = \begin{pmatrix} u & v \end{pmatrix} \left[\sum_{x,y} w(x,y) \begin{pmatrix} I_x \\ I_y \end{pmatrix} (I_x & I_y) \right] \begin{pmatrix} u \\ v \end{pmatrix} \qquad E(u,v) = \begin{pmatrix} u & v \end{pmatrix} M \begin{pmatrix} u \\ v \end{pmatrix}$$

$$E(u,v) = (u \quad v)M \begin{pmatrix} u \\ v \end{pmatrix}$$

Computer-Vision-4

Mathematics of Harris Detector

$$E(u,v) = (u \quad v)M\begin{pmatrix} u \\ v \end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

- E(u,v) is an equation of an ellipse, where M is the covariance
- Let λ_1 and λ_2 be eigenvalues of M

22

Eigen Vectors and Eigen Values

The eigen vector, x, of a matrix A is a special vector, with the following property

$$Ax = \lambda x$$
 Where λ is called eigen value

To find eigen values of a matrix A first find the roots of:

$$\det(A - \lambda I) = 0$$

Then solve the following linear system for each eigen value to find corresponding eigen vector

$$(A-\lambda I)x=0$$

Computer-Vision-4 23

Example

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{bmatrix}$$

Eigen Values

$$\lambda_1 = 7, \ \lambda_2 = 3, \lambda_3 = -1$$

$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \mathbf{x_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{x_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 Eigen Vectors

Eigen Values

$$\det(A - \lambda I) = 0$$

$$\det \begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}) = 0$$

$$\det\begin{bmatrix} -1 - \lambda & 2 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 0 & 7 - \lambda \end{bmatrix} = 0$$

$$(-1 - \lambda)((3 - \lambda)(7 - \lambda) - 0) = 0$$
$$(-1 - \lambda)(3 - \lambda)(7 - \lambda) = 0$$
$$\lambda = -1, \quad \lambda = 3, \quad \lambda = 7$$

Eigen Vectors

$$\lambda = -1$$

$$(A-\lambda I)x=0$$

$$\begin{bmatrix} -1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 4 & 4 \\ 0 & 0 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$0+2x_2+0=0$$

$$0+4x_2+4x_3=0$$

$$0+0+8x_3=0$$

$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 0$

Classification of image points using eigenvalues of *M*:

 λ_1 and λ_2 are small; E is almost constant in all directions

Computer-Vision-4 27

Mathematics of Harris Detector

■ Measure of cornerness in terms of λ_1 , λ_2

$$M = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$R = \det M - k(traceM)^2$$
 $R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$

Mathematics of Harris Detector

 λ_2

- *R* depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Computer-Vision-4

Compute corner response

Computer-Vision-4

Find points with large corner response: R> threshold

Take only the points of local maxima of R

If pixel value is greater than its neighbors then it is a local maxima.

Computer-Vision-4 33

Computer-Vision-4

Other Version of Harris Detectors

$$R = \lambda_1 - \alpha \lambda_2$$

Triggs

$$R = \frac{\det(M)}{trace(M)_{1}} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{1} + \lambda_{2}}$$

Szeliski (Harmonic mean)

$$R=\lambda_{1}$$

Shi-Tomasi

Algorithm

- Compute horizontal and vertical derivatives of image I_x and I_y.
- Compute three images corresponding to three terms in matrix M.
- Convolve these three images with a larger Gaussian (window).
- Compute scalar cornerness value using one of the R measures.
- Find local maxima above some threshold as detected interest points.