Optimality conditions

Optimization problems in standard form

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0$, $i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0$, $i = 1, \dots, p$

- ▶ $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$: optimization variables
- ▶ $f_0: \mathbb{R}^n \to \mathbb{R}$: objective (or cost) function
- $f_i: \mathbb{R}^n \to \mathbb{R}$: inequality constraint functions
- ▶ $h_i: \mathbb{R}^n \to \mathbb{R}$: equality constraint functions
- ► feasible set:

$$X = \{x \mid f_i(x) \leq 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$

Optimal value:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p \}$$

- $p^* = \infty$ if problem is infeasible
- $p^* = -\infty$ if problem is unbounded below

Optimal and locally optimal points

 x^* is an **optimal point** if x^* is feasible (i.e., satisfying the constraints) and $f_0(x^*) = p^*$.

The **optimal set**, denoted X_{opt} , is the set of all optimal points,

A feasible point x with $f_0(x) \le p^* + \epsilon$ $(\epsilon > 0)$ is called ϵ -suboptimal

Definition (locally optimal)

A feasible point x is **locally optimal** if $\exists R > 0$ such that $f(x) \le f(y)$ for all feasible y that satisfies $||y - x||_2 \le R$. In other words, x solves

minimize
$$f_0(\mathbf{z})$$

subject to $f_i(\mathbf{z}) \leq 0, \quad i = 1, \cdots, m$
 $h_i(\mathbf{z}) = 0, \quad i = 1, \cdots, p$
 $\|z - x\| \leq R$

Optimal and locally optimal points: examples

Examples (unconstrained problems):

- $f_0(x) = 1/x$, dom $f_0 = R_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, dom $f_0 = R_{++}$: $p^* = -\infty$, unbounded below
- $f_0(x) = x \log x$, dom $f_0 = R_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $ightharpoonup f_0(x)=x^3-3x$, dom $f_0=R$: $p^*=-\infty$, x=1 is locally optimal

Local and global optima

Theorem

Any locally optimal point of a convex optimization problem is also (globally) optimal

Local and global optima

Theorem

Any locally optimal point of a convex optimization problem is also (globally) optimal

Proof.

Suppose x is locally optimal and $y \neq x$ is globally optimal with $f_0(y) < f_0(x)$.

x is locally optimal $\implies \exists R > 0$ such that

$$z$$
 is feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

Now consider $z = \theta y + (1 - \theta)x$ with $\theta = \frac{R}{2||y - x||_2}$

- ▶ $||y x||_2 > R \implies \theta \in (0, 1/2)$
- z is feasible since it is a convex combination of two feasible points
- ▶ $||z x||_2 = R/2$ and $f_0(z) \le \theta f_0(x) + (1 \theta) f_0(y) < f_0(x)$, which contradicts the assumption that x is locally optimal

An optimality criterion for differential f_0

Theorem

Suppose that f_0 in a convex optimization problem is differentiable. Let X denote the feasible set. Then x is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^T (y-x) \ge 0 \quad \forall y \in X$$

An optimality criterion for differential f_0 : proof

Proof.

Suppose $x \in X$. We need to prove

$$f_0(x) \le f_0(y) \quad \forall y \in X \Longleftrightarrow \nabla f_0(x)^T (y-x) \ge 0 \quad \forall y \in X$$

▶ To prove \Leftarrow , suppose $\nabla f_0(x)^T (y-x) \ge 0$ for all $y \in X$. Because f_0 is convex, for all $y \in X$,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x) \ge f_0(x)$$

▶ To prove \iff , suppose x is optimal, but there exists a $y \in X$ with $\nabla f_0(x)^T(y-x) < 0$. Consider the point z(t) = ty + (1-t)x with $t \in [0,1]$. Clearly $z(t) \in X$. Because

$$\lim_{t \to 0} \frac{f_0(z(t)) - f_0(x)}{t} = \nabla f_0(x)^T (y - x) < 0$$

For sufficiently small t, f(z) < f(x), which contradicts our assumption that x is optimal.

An optimality criterion for differential f_0 : some special cases

unconstrained problem: x is optimal iff

$$x \in \text{dom } f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem (Ax = b): x is optimal iff $\exists \nu$ such that

$$x \in \text{dom } f_0, \quad Ax = b, \quad \nabla f_0(x) + A^T \nu = 0$$

▶ minimization over nonnegative orthant (min $f_0(x)$ s.t. $x \succeq 0$): x is optimal iff

$$x \in \text{dom } f_0, \quad x \succeq 0, \quad \nabla f_0(x) \succeq 0, \quad \nabla f_0(x)_i x_i = 0$$

First-order optimality condition

Theorem (Optimality condition)

Suppose f_0 is differentiable and the feasible set X is convex.

▶ If x^* is a local minimum of f_0 over X, then

$$\nabla f_0(x^*)^T(x-x^*) \geq 0, \quad \forall x \in X$$

▶ If f₀ is convex, then the above condition is also sufficient for x* to minimize f₀ over X

Projection on a convex set

Let $z \in R^n$ and $K \subseteq R^n$ closed, convex set **Project problem:**

minimize
$$f(x) = ||z - x||_2^2$$

subject to $x \in K$

denoted: find $x^* = \Pr_K(z)$

Projection theorem:

- exists a unique $x^* \in K$ solution to the problem; denote $[z]^+ = x^*$
- ▶ x^* is the solution iff $(z x^*)(x x^*) \le 0$ for all $x \in K$
- ▶ the map $g: R^n \to K$ with $g(z) = [z]^+$ is continuous, nonexpansive, i.e.,

$$||[z_1]^+ - [z_2]^+||_2 \le ||z_1 - z_2||_2$$

Projection reformulation of optimality condition

First order optimality condition:

$$\nabla f_0(x^*)^T(x-x^*) \ge 0, \quad \forall x \in X$$

is equivalent to

find
$$x^* \in X$$
: $x^* = \Pr_K(x^* - \rho \nabla f(x^*))$ $\rho > 0$

Necessary conditions: Fritz John

Theorem (Fritz John necessary conditions)

Let \bar{x} be a feasible solution of the standard form optimization problem. If \bar{x} is a local minimum, then there exists (u_0, u, v) such that

$$u_0 \nabla f_0(\bar{x}) + \sum_{i=1}^m u_i \nabla f_i(\bar{x}) + \sum_{i=1}^p v_i \nabla h_i(\bar{x}) = 0$$
$$(u_0, u) \succeq 0, \quad (u_0, u, v) \neq 0$$
$$u_i f_i(\bar{x}) = 0, \quad i = 1, \dots, m$$

Necessary conditions: Karush-Kuhn-Tucker (KKT)

Theorem (KKT necessary conditions)

Let \bar{x} be a feasible solution of the standard form optimization problem and let $I=\{i\mid f_i(\bar{x})=0, i=1,\cdots,m\}$. Suppose that $\nabla f_i(\bar{x})$ for $i\in I$ and $\nabla g_i(\bar{x})$ for $i=1,\cdots,p$ are linearly independent. If \bar{x} is a local minimum, then there exists (u,v) such that

$$\nabla f_0(\bar{x}) + \sum_{i=1}^m u_i \nabla f_i(\bar{x}) + \sum_{i=1}^p v_i \nabla h_i(\bar{x}) = 0$$
$$u \succeq 0, \quad u_i f_i(\bar{x}) = 0, \quad i = 1, \dots, m$$

Sufficient conditions for optimality

The differentiable function $f: R^n \to R$ with convex domain X is **psudoconvex** if $\forall x, y \in X$, $\nabla f(x)^T (y-x) \ge 0$ implies $f(y) \ge f(x)$. (All differentiable convex functions are psudoconvex.) Example: $x + x^3$ is pseudoconvex, but not convex

Theorem (KKT sufficient conditions)

Let \bar{x} be a feasible solution of the standard form optimization problem, and suppose it satisfies

$$\nabla f_0(\bar{x}) + \sum_{i=1}^m u_i \nabla f_i(\bar{x}) + \sum_{i=1}^p v_i \nabla h_i(\bar{x}) = 0$$

$$u \succeq 0, \quad u_i f_i(\bar{x}) = 0, \quad i = 1, \dots, m$$

If f_0 is pseudoconvex, $f_i(x)$ is quasiconvex for $i=1,\dots,m$, and $h_i(x)$ is linear, then \bar{x} is a global optimal solution.