§ 2 边缘分布

• 边缘分布函数

• 边缘分布律

• 边缘概率密度

边缘分布的定义

如果(X, Y)是一个二维随机变量,则它的分量X(或者Y)是一维随机变量,因此,分量X(或者Y)也有分布. 我们称X(或者Y)的分布为X(或者Y)的关于二维随机变量(X, Y)的边缘分布.

边缘分布也称为边沿分布或边际分布.

已知联合分布函数求边缘分布函数

设二维随机变量(X, Y)的分布函数为F(x, y),则分量X的分布函数为

$$F_X(x) = P\{X \le x\} = P\{X \le x, -\infty < Y < +\infty\}$$

$$= \lim_{x \to \infty} F(x, y) = F(x, +\infty) \quad \text{we have}$$

同理,分量Y的分布函数为

$$F_{Y}(y) = P\{Y \le y\} = P\{-\infty < X < +\infty, \quad Y \le y\}$$
$$= \lim_{x \to +\infty} F(x, \quad y) = F(+\infty, \quad y)$$

例1

$$F(x, y) = A\left(B + \arctan\frac{x}{2}\right)\left(C + \arctan\frac{y}{3}\right)$$

$$\left(-\infty < x < +\infty, -\infty < y < +\infty\right)$$

试求: (1). 常数 A、 B、 C;

(2). X及Y的边缘分布函数.

解: (1). 由分布函数的性质,得 $1 = F(+\infty, +\infty) = A\left(B + \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right)$ \\ \text{\text{\text{\text{\sigma}}}} \text{\text{\text{\text{\text{\text{\sigma}}}}}

例 1 (续)

$$0 = F(x, -\infty) = A\left(B + \arctan\frac{x}{2}\right)\left(C - \frac{\pi}{2}\right)$$

$$0 = F(-\infty, y) = A\left(B - \frac{\pi}{2}\right)\left(C + \arctan\frac{y}{3}\right)$$

由以上三式可得,
$$A = \frac{1}{\pi^2}$$
, $B = \frac{\pi}{2}$, $C = \frac{\pi}{2}$.

(2). X的边缘分布函数为

$$F_{X}(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \lim_{y \to +\infty} \frac{1}{\pi^{2}} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right).$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right). \quad (x \in (-\infty, +\infty))$$

例 1 (续)

同理, Y的边缘分布函数为

$$F_{Y}(y) = \lim_{x \to +\infty} F(x, y)$$

$$= \lim_{x \to +\infty} \frac{1}{\pi^{2}} \left(\frac{\pi}{2} + \arctan \frac{x}{2} \right) \left(\frac{\pi}{2} + \arctan \frac{y}{3} \right).$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{y}{2} \right).$$

$$(y \in (-\infty, +\infty))$$

已知联合分布律求边缘分布律

对于二维离散型随机变量(X, Y),已知其联合分布律为

$$P_{ij} = P\{X = x_i, Y = y_j\} (i, j = 1, 2, \dots)$$

现求随机变量X的分布律:

$$P_{i.} = P\{X = x_i\}$$
 $(i = 1, 2, \cdots)$
 $P_{i.} = P\{X = x_i\} = \sum_{j} P\{X = x_i, Y = y_j\} = \sum_{j} p_{ij}$

同理,随机变量Y的分布律为:

$$P_{.j} = P\{Y = y_j\} = \sum_i P\{X = x_i, Y = y_j\} = \sum_i p_{ij}$$

已知联合分布律求边缘分布律

X以及Y的边缘分布律也可以由下表表示

Y						
X	\mathcal{Y}_1	\mathcal{Y}_2	• • •	${\cal Y}_j$	•••	$p_{i\cdot}$
x_1	p_{11}	p_{12}	• • •	p_{1j}	•••	$p_{1.}$
x_2	$p_{21}^{}$	p_{22}	• • •	p_{2j}	• • •	$p_{2\cdot}$
•	:	:		÷		
\mathcal{X}_{i}	p_{i1}	p_{i2}	• • •	p_{ij}	• • •	$p_{i\cdot}$
: :	÷	: :		:		÷
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$	•••	$p_{\cdot j}$	• • •	

例 2

从1,2,3,4这4个数中随机取出一个,记所取的数为 X,再从1到X中随机地取出一个数,记所取的数为 Y,试求(X, Y)的联合分布律与X及Y各自的边缘 分布律.

解: X与Y的取值都是 1, 2, 3, 4, 而且 $Y \leq X$, 所以, 当i < j时, $P\{X = i, Y = j\} = 0$ 当i ≥ j时,由乘法公式,得

$$P_{ij} = P\{X = i, Y = j\} = P\{X = i\}P\{Y = j | X = i\} = \frac{1}{4} \times \frac{1}{i} = \frac{1}{4}$$
再由 $p_{i.} = \sum_{i} p_{ij}$ 及 $p_{.j} = \sum_{i} p_{ij}$

返回主目录

例 2 (续)

可得(X, Y)与X及Y的边缘分布律为

X	1	2	3	4	$p_{i\cdot}$
1	1/4	0	0	0	1/4
2	1/8	$\frac{1}{8}$	0	0	$\frac{1}{4}$
3	<u>1</u> 12	<u>1</u> 12	1/12	0	1/4
4	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> 4
$p_{\cdot j}$	<u>25</u> 48	13 48	7 48	3 48	1

鱼 返回主目录

§ 2 边缘分布

例 3

一批产品共50件,其中一等品占30%,二等品占50%,三等品占20%.现从这批产品中每次取出一件,共抽取5次.试在(1).有放回场合,(2).不放回场合这两种情况下,分别计算取出的5件产品中的一等品数与二等品数的联合分布律及它们各自的边缘分布律.

解:

令: X: 取出的5件产品中的一等品数;

Y: 取出的5件产品中的二等品数.

例 3 (续)

X与Y的取值都是 0、1、2、3、4、5、

(1). 在有放回场合下

若
$$i+j>5$$
,有 $P\{X=i, Y=j\}=0$
若 $i+j\leq 5$,有 $P\{X=i, Y=j\}$
= $\frac{5!}{i!j!(5-i-j)!} \times (0.3)^i \times (0.5)^j \times (0.2)^{5-i-j}$

得(X, Y)的联合分布律及X、Y的边缘分布律为

§ 2 边缘分布

例 3 (续)

X	0	1	2	3	4	5	$p_{i\cdot}$
0	0.00032	0.00400	0.02000	0.05000	0.06250	0.03125	0.16807
1	0.00240	0.02400	0.09000	0.15000	0.09375	0	0.36015
2	0.00720	0.05400	0.13500	0.11250	0	0	0.3087
3	0.01080	0.05400	0.06750	0	0	0	0.1323
4	0.00810	0.02025	0	0	0	0	0.02835
5	0.00243	0	0	0	0	0	0.00243
$p_{\cdot j}$	0.03125	0.15625	0.3125	0.3125	0.15625	0.03125	1

例 3 (续)

(2). 在不放回场合下

若
$$i+j>5$$
, 有 $P\{X=i, Y=j\}=0$
若 $i+j\leq 5$,

有
$$P\{X=i, Y=j\} = \frac{C_{15}^i C_{25}^j C_{10}^{5-i-j}}{C_{50}^5}$$

得(X, Y)的联合分布律及X、Y的边缘分布律为

§ 2 边缘分布

例 3 (续)

X	0	1	2	3	4	5	$p_{i\cdot}$
0	0.0001	0.0025	0.0170	0.0488	0.0597	0.0250	0.1531
1	0.0015	0.0212	0.0956	0.1628	0.0896	0	0.3707
2	0.0059	0.0558	0.1487	0.1140	0	0	0.3244
3	0.0097	0.0537	0.0644	0	0	0	0.1278
4	0.0064	0.0161	0	0	0	0	0.0225
5	0.0014	0	0	0	0	0	0.0014
$p_{\cdot j}$	0.025	0.1493	0.3257	0.3256	0.1493	0.025	1

己知联合密度函数求边缘密度函数

对于二维连续型随机变量(X, Y), 已知其联合密度函数为 f(x, y)

现求随机变量X的边缘密度函数: $f_X(x)$

$$\exists F_X(x) = P\{X \le x\} = F(x, +\infty)$$

$$= \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u, y) dy \right] du$$

得
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

已知联合密度函数求边缘密度函数

同理, 由
$$F_{Y}(y) = P\{Y \le y\} = F(+\infty, y)$$

$$= \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, v) dx \right] dv$$

得
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

例 4

设平面区域D是由抛物线 $y = x^2$ 及直线 y = x 所围, 随机变量(X, Y)服从区域 D上的均匀分布. 试求随 机变量(X, Y)的联合密度 函数及X、Y各自的边缘密 度函数.

例 4 (续)

解:

(1). 区域D的面积为

$$A = \int_{0}^{1} \int_{x^{2}}^{x} dy dx = \left(\frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right)\Big|_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

所以,二维随机变量(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} 6 & (x, y) \in D \\ 0 & (x, y) \notin D \end{cases}$$

例 4 (续)

(2). 随机变量 X 的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{x^2} f(x) + \int_{-\infty}^{x} f(x) dy = \int_{-\infty}^{+\infty} f(x) dy = \int_{-\infty}^{+\infty}$$

$$= \int_{0}^{x} 6dy = 6\left(x - x^{2}\right)$$

所以,

$$f_X(x) = \begin{cases} 6(x - x^2) & 0 < x < 1 \\ 0 & \sharp : \Xi - 1 \end{cases}$$

 $f(x, y) = \begin{cases} 6 & (x, y) \in \mathbb{R} \\ 0 & (x, y) \notin \mathbb{R} \end{cases}$

例 4 (续)

随机变量Y的边缘密度函数为

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{-\infty}^{y} + \int_{y}^{\sqrt{y}} dx = \int_{-\infty}^{y} + \int_{y}^{\sqrt{y}} dx = \int_{y}^{-\infty} 6 dx = 6(\sqrt{y} - y)$$
所以,
$$\begin{cases} 6(\sqrt{y} - y) & 0 < y < 1 \end{cases}$$

$$f(x, y) = \begin{cases} 6 & (x, y) \in \\ 0 & (x, y) \notin \end{cases}$$

$$+ \int_{-\infty}^{+\infty}$$

例 5

设二维连续型随机变量(X, Y)的联合密度函数为

$$f(x, y) = \begin{cases} cxe^{-y} & 0 < x < y < +\infty \\ 0 & \sharp \dot{\Xi} \end{cases}$$

试求: (1). 常数c; (2). X 及Y的边缘密度函数.

解:

(1). 由密度函数的性质,得

$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{+\infty} dy \int_{0}^{y} cxe^{-y} dx$$

<u>例5</u> (续)

$$= \frac{c}{2} \int_{0}^{+\infty} y^{2} e^{-y} dy = \frac{c}{2} \times 2 = c$$
 所以, $c = 1$

$$f(x, y) = \begin{cases} xe^{-y} & 0 < x < y < +\infty \\ 0 & \sharp \dot{\Xi} \end{cases}$$

(2). 当
$$x > 0$$
时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{+\infty} xe^{-y} dy = xe^{-x}$$

所以,X的边缘密度函数为_y↑

$$f_X(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

例5 (续)

(3). 当y > 0时,

$$f(x, y) = \begin{cases} xe^{-y} & 0 < x < y < +\infty \\ 0 & \sharp \dot{\Xi} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{y} xe^{-y} dx = \frac{1}{2}y^2 e^{-y}$$

所以, Y的边缘密度函数为

$$f_{Y}(y) = \begin{cases} \frac{1}{2} y^{2} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

例 6

设二维随机变量 $(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$ 试求X及Y的边缘密度函数.

解:

(X, Y)的联合密度函数为

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}$$

$$\cdot \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$\pm -\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] + ,$$

对y进行配方,得

$$-\frac{1}{2(1-r^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2r(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]$$

$$= -\frac{1}{2(1-r^2)} \left[\frac{y-\mu_2}{\sigma_2} - r \frac{x-\mu_1}{\sigma_1} \right]^2 - \frac{(x-\mu_1)^2}{2\sigma_1^2}$$

所以,

$$f_X(x) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$\cdot \int_{-\infty}^{+\infty} \exp\left\{-\frac{1}{2(1-r^2)} \left[\frac{y-\mu_2}{\sigma_2} - r\frac{x-\mu_1}{\sigma_1}\right]^2\right\} dy$$

作变换,令:
$$u = \frac{1}{\sqrt{1-r^2}} \left(\frac{y-\mu_2}{\sigma_2} - r \frac{x-\mu_1}{\sigma_1} \right)$$

则,
$$du = \frac{dy}{\sigma_2 \sqrt{1 - r^2}}$$

$$f_X(x) = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du$$

$$= \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \cdot \sqrt{2\pi} = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad (-\infty < x < +\infty)$$

这表明,
$$X \sim N(\mu_1, \sigma_1^2)$$

由(X, Y)的密度函数可知,X与Y的地位是对称的, 因此有

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi\sigma_{2}}} e^{-\frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}}} \qquad (-\infty < y < +\infty)$$

这表明,
$$Y \sim N(\mu_2, \sigma_2^2)$$

通过本题,我们有以下几条结论:

结论 (一)

二元正态分布的边缘分布是一元正态分布.

即若
$$(X, Y)\sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r)$$
则有,

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$

结论 (二)

上述的两个边缘分布中的参数与二元正态分布中的常数 r 无关.

结论 (三)

结论(二)表明:如果

$$(X_1, Y_1) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r_1)$$

$$(X_2, Y_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, r_2)$$

 $(其中<math>r_1 \neq r_2$),

则, (X_1, Y_1) 与 (X_2, Y_2) 的分布不相同,

但是 X_1 与 X_2 的分布相同, Y_1 与 Y_2 的分布相同.

这表明,一般来讲,我们不能由边缘分布求出联合分布.