

Geometry of Morse Theory

Kate Mekechuk¹ Mentor: Konstantin Aleshkin²

¹Barnard College Department of Mathematics ²Columbia University Department of Mathematics

Motivation

One goal of mathematical physics is to study topological invariants of manifolds like Betti numbers which count the number of holes in each dimension and the Euler characteristic.

Definition (Homology groups). For a given manifold M, the n-th Homology group is defined:

$$H_n(M) = rac{ ext{n-dim submanifolds without boundary}}{ ext{n-dim boundaries to (n+1)-dim submanifolds}}$$

Torus:
$$H_0(T)$$

$$H_0(T) = \mathbb{Z}$$

$$H_0(T) = \mathbb{Z} \qquad H_1(T) = \mathbb{Z}^2$$

$$H_2(T) = \mathbb{Z}$$

DIM	SUBMANIFOLD	BOUNDARY
0	•	Ø
1		{•,•}
1	O	Ø
2,		O
2		{0,0}
2		Ø

Definition (Betti numbers). For a given manifold M, the n-th Betti number, denoted b_n , is the rank of the n-th Homology group.

Definition (Euler characteristic). The Euler characteristic for a manifold M is

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} b_{i}$$

Torus:

$$b_0 = 1$$
 $b_1 = 2$ $b_2 = 1$

$$b_2 = 1$$

$$\chi(T) = 1 - 2 + 1 = 0$$

Morse Theory

Morse theory studies the **critical points** on a manifold and how to reconstruct the manifold given the critical points.

Definition (Morse function). Let $f: M \to \mathbb{R}$. We call f a Morse function if each critical point has a non-zero second derivative:

determinant of Hessian matrix =
$$\det(H_f) = \det\left[\frac{\partial^2 f}{\partial x_i \ \partial x_j}\right] \neq 0$$

Definition (index). The (Morse) index of a Morse function f is the number of negative eigenvalues of the function's Hessian matrix.

Suppose that M is a compact manifold and $f: M \to \mathbb{R}$ is a Morse function. Define compact submanifolds of M:

$$M^a = \{ x \in M \mid f(x) \le a \}$$

When f passes through a critical point, the homology of the compact submanifolds change. In fact, when M^a passes through a critical point p and "becomes" M^b one adds a λ -cell to M^a where λ is the index of p (ie. $M^b \simeq M^a \cup e^{\lambda}$).

$$\lambda(p) = 0$$
 $\lambda(q) = \lambda(r) = 1$
 $\lambda(s) = 2$

Theorem (Morse Inequalities). Let c_{λ} denote the number of critical points of index λ in M. Then,

$$\sum_{\lambda=0}^{n} (-1)^{\lambda} c_{\lambda} = \chi(M)$$

Torus:

$$c_0 = 1$$

$$c_0 = 1$$
 $c_1 = 2$ $c_2 = 1$

$$\chi(T) = 1 - 2 + 1 = 0$$

Hodge Theory

Hodge theory counts the number of holes in a manifold by studying differential forms and cohomology classes, the dual to Homology groups.

Definition (differential form). Given an ndimensional manifold, a (differential) p-form $\omega \in \Omega^p(M)$ is a family of (n-p)-dimensional surfaces.

Definition (exterior derivative). The exterior derivative is a map that turns a p-form into a (p+1)-form. (generalized gradient)

$$d: \Omega^p(M) \to \Omega^{p+1}(M)$$

Definition (codifferential). The codifferential is a map that turns a p-form into a (p-1)form. (generalized divergence)

$$\delta: \Omega^p(M) \to \Omega^{p-1}(M)$$

Definition (Laplacian). The Laplacian is a map from p-form to themselves.

$$\Delta = d\delta + \delta d$$

$$\Delta: \Omega^p(M) \to \Omega^p(M)$$

There are three types of differential forms:

- 1. closed forms
- $(d\omega = 0)$
- 2. exact forms $(\omega = d\alpha)$
- 3. harmonic forms $(\Delta \omega = 0)$

Definition (de Rham cohomology classes). For a given manifold M, the n-th cohomology class is defined:

$$H^{n}(M) = \frac{\text{closed } n\text{-forms}}{\text{exact } n\text{-forms}} = [\text{harmonic forms}]$$

Witten's Insights

Witten used supersymmetry and Hodge theory in order to connect Morse theory to cohomology classes.

Let $h: M \to \mathbb{R}$ and $t \in \mathbb{R}$.

$$d_t = e^{-ht} d e^{ht}$$

$$\delta_t = e^{ht} \delta e^{-ht}$$

$$\Omega^0, \ \Omega^2, \dots, \ \Omega^n$$

$$\Omega^1, \ \Omega^3, \dots, \ \Omega^{n-1}$$

Definition (Witten symmetry operators). A supersymmetry theory is one with (Hermitian) symmetry operators.

$$O_{14} = d_4 + \delta_5$$

$$Q_{2t} = i(d_t - \delta_t)$$

$$Q_{1t} = d_t + \delta_t \qquad Q_{2t} = i(d_t - \delta_t) \qquad H_t = d_t \delta_t + \delta_t d_t$$

fermionic states

dy n dz

Proof (of First Morse Inequality).

bosonic states

- 1. e^{ht} is invertible \Longrightarrow statements hold for all $t \in \mathbb{R}$
- 2. number of zero eigenvalues of H_t acting on $\Omega^p = b_p(t) = b_p$
- 3. $(t \to \infty)$ eigenvalues of H_t can be calculated in terms of the local data at critical points
- 4. around A (critical point of index p), H_t has **one** zero eigenvalue which is a p-form, denoted $|a\rangle$
- \implies at most the number of zero energy p-forms equals the number of critical points with index $p \implies b_p \le c_p \square$

Proof (of Second Morse Inequality). (goal: define a coboundary operator using critical points)

- 1. potential energy has minimum at each critical point \implies tunneling from one critical point A to another B
- 2. tunneling paths $\Lambda: A \to B$ and $\Gamma: B \to A$ are of steepest descent $\Longrightarrow A$ and B have index difference of 1
- 3. paths induce orientation \Longrightarrow if Γ and Λ agree then $n_{\Gamma} = +1$, and if not then $n_{\Gamma} = -1 \Longrightarrow \text{define } n(a,b) = \sum_{\Gamma} n_{\Gamma}$
- → define a coboundary operator such that:

$$\partial |a\rangle = \sum_{b} n(a,b) |b\rangle$$

 \implies Betti numbers of ∂ are the same Betti numbers of M

Acknowledgements

greatly appreciate Professor Konstantin Aleshkin as well as Barnard College and the Office of the Provost for the support throughout this project.