

Biochem 3BP3

Molecular Epidemiology

Week of Nov 1, 2021

- In the broadest sense examines potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of disease
- In human disease cohort studies, longitudinal studies, clinical metadata, exome sequencing, genome-wide association studies (GWAS)
- In animal health maintain animal productivity & quality of life, determine pathogen & environmental impacts on health, food chain safety, environmental safety
- In infectious disease our focus this week
 - track the movement, prevalence, and origin of pathogens
 - guide treatment, public health response
 - screen for virulence or drug resistance determinants

Molecular Epidemiology of Pathogens

- Who which organisms are present?
 - How do we tell them apart?
- What what are they doing?
 - Antibiotic resistance?
 - Virulence?
 - What's happening in their genomes?
- Where where were they sampled?
 - Phylo/biogeography?
 - Route of transmission?
- When when were they sampled?
- How based on the patterns, can we explain how they got there?

Origin of Epidemiology – Cholera in London

John Snow

Broad Street Pump

https://ralucanicola.github.io/cholera-map-3D

Motivation

Clinical (i.e. patient level)

When an infection is suspected, it can take up to 72 hours to culture from a swab – precious time during which:

- Inappropriate antibiotics are administered
- Condition can worsen
- Unnecessary exposure
- Expensive hospital isolation
- It's now possible (and cheap enough) to directly sequence clinical samples

Public Health (i.e. community level)

- Historical migration patterns, humans and animals
- Identify source of pathogen or contamination of the food chain
- Is there a point source or are cases unrelated?
- Existing tools lack resolution that DNA sequencing can provide

Cholera in Haiti after the 2010 Earthquake

- Cholera is caused by the waterborne bacterium Vibrio cholerae
- Prior to 2010, Haiti had not had a cholera outbreak in recorded history
- Post-earthquake, 100,000+ infections & ~7,000 deaths

Cholera in Haiti after the 2010 Earthquake

- Cholera is caused by the waterborne bacterium Vibrio cholerae
- Prior to 2010, Haiti had not had a cholera outbreak in recorded history
- Post-earthquake, 100,000+ infections & ~7,000 deaths
- Sequencing of genomes to determine relationships among *V. cholerae* strains
- Nucleotide difference among strains used in a RAxML analysis
- Haiti strains had their origins in South Asia, likely via Bangladeshi relief workers

Mutreja et al. 2011. Nature 477: 462-5

Cholera in Haiti after the 2010 Earthquake

- Cholera is caused by the waterborne bacterium *Vibrio cholerae*
- Prior to 2010, Haiti had not had a cholera outbreak in recorded history
- Post-earthquake, 100,000+ infections & ~7,000 deaths
- DNA sequencing can provide a global perspective on disease

COVID-19

https://nextstrain.org

Are these samples the same strain?

- The first widely used molecular tool was Pulse Field Typing
 - DNA isolated and digested with a rare cutting restriction enzyme
 - Fragments separated in an acrylamide gel
 - Similar pattern assumed to equal related strains

C. difficile in Costa Rica

López-Urena et al. 2016. Emerg. Microbes Infect. 5:e42

Are these samples the same strain?

- The first widely used molecular tool was Pulse Field Typing
 - DNA isolated and digested with a rare cutting restriction enzyme
 - Fragments separated in an acrylamide gel
 - Similar pattern assumed to equal related strains
- Very low resolution an entire genome of information reduced to a few restriction fragments
- All isolates in an outbreak look the same no resolution at all
- Fast & cheap & still a useful indicator, e.g. NAP1 in C. difficile is a dangerous hyper-virulent

C. difficile in Costa Rica

López-Urena et al. 2016. Emerg. Microbes Infect. 5:e42

Are these samples the same strain?

- A more recent advance is Multiple Locus Sequencing Typing (MLST)
- PCR & sequencing of 7 housekeeping genes:
 - The seven sequences form a typing 'fingerprint'
 - PubMLST is a repository of MLST fingerprints
 - PCR is being replaced with genome sequencing to determine MLST

adk atpA dxr glyA recA sodA tpi C. difficile in Ontario (McArthur lab, St. Joseph's Healthcare, Public Health Ontario)

MLST	Hamilton	Peterborough	
Type 1	79 isolates	38 isolates	
Type 2	15 isolates	9 isolates	
Type 54	5 isolates	12 isolates	
Type 8	15 isolates	1 isolate	
Type 10	8 isolates	6 isolates	
Type 58	9 isolates		
Type 42	5 isolates	2 isolates	
other	37 isolates / 22 MLSTs	20 isolates / 10 MLSTs	

Are these samples the same strain?

- A more recent advance is Multiple Locus Sequencing Typing (MLST)
- PCR & sequencing of 7 housekeeping genes:
 - The seven sequences form a typing 'fingerprint'
 - PubMLST is a repository of MLST fingerprints
 - PCR is being replaced with genome sequencing to determine MLST
- MLST provides a higher epidemiological resolution than North American pulsed-field (NAP) typing
- MLST sequences can be used for phylogenetic analysis but not a lot of information in the data
- Can be scaled up to all core genes, e.g cgMLST of Salmonella uses 330 genes

C. difficile in Ontario (McArthur lab, St. Joseph's Healthcare, Public Health Ontario)

difficile in Official (MCAlthur lab, Ot. 003eph 3 Fleathcare, Fublic Fleath Official)					
MLST	Hamilton	F	Peterborough		
Type 1	79 isolates N	AP1	38 isolates		
Type 2	15 isolates N	AP4	9 isolates		
Type 54	5 isolates		12 isolates		
Type 8	15 isolates		1 isolate		
Type 10	8 isolates		6 isolates		
Type 58	9 isolates	NAP4,			
Type 42	O ISOIALCS	NAP7, IAP 10	2 isolates		
other	37 isolates / 22 MLSTs		0 isolates / 10 MLSTs		

Are these samples the same strain?

- Whole Genome Single Nucleotide Variant Analysis
- Use DNA sequence variation throughout the entire draft genome sequence of all isolates to determine high resolution strain relationships
- Use the PARSNP algorithm to:
 - Align draft genomes to a reference genome sequence
 - Extract genome locations with sequence variation among isolates
 - Detect and exclude genome regions involved in horizontal gene transfer or recombination using the PhiPack algorithm
- Reconstruct the phylogenetic history of the isolates using the RAxML algorithm

Whole Genome Single Nucleotide Variant Analysis

mlst1_SJHH_2015_210 mlst1_SJHH_2015_218 mlst1_noloc_noyear_4 mlst1_noloc_noyear_38 mlst1_SJHH_2010_255 mlst1_noloc_noyear_24 mlst1_SJHH_2010_267 mlst1_SJHH_2013_200 mlst1_noloc_noyear_6 mlst1_SJHH_2011_269

TATTGATAGTGGTATAACTCGCACTTGGACCAAATTTATCGCTAACAGAATAAAATATTGTAGTTGTCGTATTTTCGGTAATTACCCTAGACGTAGAA
TATTGATAGTGGTATAACTTGCTCTTGGACCAACTTTACCGCTAACAGAATAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCACTTGGACCAAATTTATCGTTAACAAAATAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCTCTTGGATCAACTTTATCGCTAACAGAATAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCTCTTGGATCAACTTTATCGCTAACAGAATAAAATATTGTATTCACTACTTTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCTCTTGGATCAACTTTATCGCTAACAGAATAAAATATTGTATTCACTACTTTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCTCTTGGATCAACTTTATCGCTAACAGAATAAAATATTGTATTCACTACTTTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCTCTTGGACCAACTTTATCGCTAACAGAATAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGCCCGCATAACTCGCCCTCTTGGACCAAATTTATCCCTAACAGAGTAAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCCACTTGGACCAAATTTATCCCTAACAGAGTAAAAATATTGTATTCGTCGTATTTTCGGTAATTATCCTAGACGAAGAA
TATTGATAGTGGTATAACTCGCCCACTTTGGACCAAATTTATCCCTAACAGAATAAAATATTGTATTCCTACTTTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCCCTCTTGGATCAACAGAATAAAAATATTGTATTCACTACTTTTTCGGTAATTATCCTAGACGTAGAA
TATTGATAGTGGTATAACTCGCCCTCTTGGATCAACAGAATAAAAATATTGTATTCACTACTTTTTCGGTAATTATCCTAGACGTAGAA

Whole Genome Single Nucleotide Variant Analysis

mlst1_SJHH_2015_210 mlst1_SJHH_2015_218 mlst1_noloc_noyear_4 mlst1_noloc_noyear_38 mlst1_SJHH_2010_255

mlst1_noloc_nd mlst1_SJHH_201 mlst1_SJHH_201 mlst1_noloc_nd mlst1_SJHH_201 McArthur C. difficile study 121 diverse isolates 90,040 variable sites MLST₁₀ MLST 2 (NAP 4 MLST 1 (NAP 1) MLST 54 MLST 58 MLST 8

- Whole genome SNP analysis provides very high resolution among strains – lots of data!
- Superior to Pulse Field, MLST, or cgMLST
- Relies on well established phylogenetic methods you have been learning

Horizontal Gene Transfer

Detect and exclude genome regions involved in horizontal gene transfer or recombination using the PhiPack algorithm

Horizontal Gene Transfer

Detect and exclude genome regions involved in horizontal gene transfer or recombination using the PhiPack algorithm

HOMOLOGOUS

A homologous trait is shared between two species because they inherited it from a common ancestor.

Information from homologous traits can be used to infer evolutionary relationships.

Non-homologous traits do not reflect evolutionary history but instead convergence. They can mislead inference of evolutionary relationships. Example: octopus eye versus human eye.

Horizontal Gene Transfer

Detect and exclude genome regions involved in horizontal gene transfer or recombination using the PhiPack algorithm

HOMOLOGOUS

A homologous trait is shared between two species because they inherited it from a common ancestor.

Information from homologous traits can be used to infer evolutionary relationships.

Non-homologous traits do not reflect evolutionary history but instead convergence. They can mislead inference of evolutionary relationships. Example: octopus eye versus human eye.

- Like any other phylogenetic analysis, we need our sampled nucleotide variation to be homologous, otherwise we will get the wrong results
- Transposable elements, plasmids, genomic islands all represent horizontal gene transfer
- Two general ways to exclude these from analyses:
 - Only use identified core genes that are essential and uninvolved in horizontal gene transfer, e.g. core genes identified using the chewBACCA algorithms
 - Exclude regions with SNP density, which is a signature of HGT, using the PhiPack or related algorithms

C. difficle Example...

Fecal samples

culture

Isolates

DNA extraction & Illumina sequencing

raw DNA sequencing results

FASTQC assessment of sequencing quality
TRIMMOMATIC trimming of poor data
UNICYCLER genome assembly to create a draft genome sequence

whole genome shotgun assemblies

KRAKEN taxonomic assessment of draft genome sequences*

workable draft genome sequences

PHYLIP file

Phylogenetic Tree

Skipping Genome Assembly...

Fecal samples

culture

Isolates

DNA extraction & Illumina sequencing

raw DNA sequencing results

FASTQC assessment of sequencing quality
TRIMMOMATIC trimming of poor data
BURROWS-WHEELER TRANSFORM against reference genome

alignment of sequencing reads to reference genome

SNP CALLING

Phylogenetic Tree

Short Read Alignment / Mapping

- Short reads (supposedly) have low error rates, especially after trimming and filtering
- The goal is to accurately align the short sequencing reads to the reference genomes
- Earlier techniques used a tweaked version of seed + extend (like BLAST) but they did not scale to NGS – too slow and too much memory!
- The two heavyweight short read aligners are BWA and Bowtie2 but both use a technique called <u>Burrows-Wheeler Transform</u> (BWT) to generate data structures that are:
 - Space/memory efficient
 - Suffix sorted, indexed, fast
 - Capable of gapped, inexact search mapping (can be slow a tradeoff)

Short Read Alignment / Mapping

- Due to the very large amount sequencing reads that need to be aligned to the reference genome, BWT uses some advanced computer science:
 - Data compression & indexing
 - "Suffixes" like BLAST words or K-mers but with an additional emphasis upon the last letter of the sequencing read
 - "Suffix Trees" and reversible, cyclic permutation
- Take home message: BWT is not like BLAST it emphasizes mapping due to high similarity only! The result is high resolution mapping of reads to reference (default is only tolerant up to ~4% nucleotide divergence)

Short Read Alignment / Mapping

Variants!

SNP Calling

- Positions where variant genotype does not match reference genotype are potential variants
- Variants are prioritized by:
 - Depth of coverage more is better!
 - Sequences mapped to both strands no library bias!
 - High-quality base calls in reads (i.e. PHRED scores)
 - Reads with high mapping quality score (MAPQ) in the Burrows-Wheeler Transform
- A number of software tools and algorithms exist to call SNPs from Burrows-Wheeler Transform mapped reads
 - Allows avoidance of genome assembly step in Molecular Epidemiology studies saves times, allows lower-coverage sequencing
 - Particularly important for human exome sequencing and genome-wide association studies (GWAS)

Metagenomics & Burrows-Wheeler Transform

Fecal samples

culture

Isolates

DNA extraction & Illumina sequencing

raw DNA sequencing results

FASTQC assessment of sequencing quality
TRIMMOMATIC trimming of poor data
BURROWS-WHEELER TRANSFORM against reference genome

alignment of sequencing reads to reference genome

Metagenomics & Burrows-Wheeler Transform

Fecal samples

DNA extraction & Illumina sequencing

raw DNA sequencing results from all organisms in the sample

FASTQC assessment of sequencing quality
TRIMMOMATIC trimming of poor data
BURROWS-WHEELER TRANSFORM against reference genome(s)

alignment of sequencing reads to reference genome(s)

Metagenomics, BWT, & AMR++

FASTQ

host

microbiome

AMR

Metagenomics, BWT, & AMR++

Metagenomics – how much do you sequence?

- Microbiome are large and complex so need to be sequenced very heavily to find all the DNA sequences within
- This requires at least an order of magnitude of DNA sequences above normal isolate whole genome assembly – costly & time consuming!
- If you don't know what is in the microbiome, how do you know how much to sequence? – You don't but you can perform rarefaction analysis.

This week...

WEEK 9 (NOVEMBER 1 and 3) - MOLECULAR EPIDEMIOLOGY

LIVE lecture in class Wednesday 12:30pm,

Recorded Content

- Overview of Laboratory #7 Molecular Epidemiology & Outbreak Analysis
 - o Introduction & Task 1, https://web.microsoftstream.com/video/7a0a797b-e56b-43e5-a3de-fc85ab4bfe4b
 - Task 2, https://web.microsoftstream.com/video/3d3a2199-60a9-4183-8637-016bdcaa5a1b
 - o Task 3, https://web.microsoftstream.com/video/b1d0c1f8-bf71-4726-88c2-828443a313f2
 - Task 4 & Review of Questions & Problems, https://web.microsoftstream.com/video/aaaf50cd-c358-491f-9760-f83e68f22f20
- Research Focus Dr. Robyn Lee of the Dalla Lana School of Public Health, https://web.microsoftstream.com/video/8a04da03-951c-42cb-8059-53be0012d1b4

Tutorial

- LIVE session with Teaching Assistants and Flash Updates
 - o Monday,
 - o Wednesday,

Flash Updates

- SNPs. Define the term Single Nucleotide Polymorphism (SNP) and explain how these data can be used to determine organism/strain relatedness. Use the spread of MRSA as an example, Science 2010 327: 469-74 [PMID 20093474].
- Horizontal Gene Transfer. Define the term Horizontal Gene Transfer (HGT; also known as Lateral Gene Transfer, LGT) and discuss how it could confound determination of organism/strain relatedness using SNP analysis. Use the emergence of MCR-1 as an example, Lancet Infect Dis. 2015 Nov 18. pii: S1473-3099(15)00424-7 [PMID 26603172].
- **Metagenomics**. Introduce metagenomics in the context of molecular epidemiology. See Expert Rev Mol Diagn. 2018 Jul;18(7):605-615. [PMID 29898605].