

作者丨小马

编辑丨极市平台

极市导读

本文介绍的是今年CVPR的最佳学生论文提名的工作: ClipBert。这篇论文解决了以前工作中对于视频-语言任务训练消耗大、性能不 高、多模态特征提取时没有交互等问题。 >>加入极市CV技术交流群, 走在计算机视觉的最前沿

【写在前面】

本文介绍的是今年CVPR的最佳学生论文提名的工作: ClipBert。这篇论文解决了以前工作中对于视频-语言任务训练消耗大、性能 不高、多模态特征提取时没有交互等问题。另外,这是一篇用Image-Text 预训练的模型去解决Video-Text的任务。以前的Video -Text任务大多是对视频进行Dense采样,而本文通过预训练的Image-Text模型,对视频进行稀疏采样,只需要很少的帧数,就能 超过密集采样的效果、进而提出了本文标题中的 "Less is More"。

1. 论文和代码地址

Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling

论文地址: https://arxiv.org/abs/2102.06183

代码地址: https://github.com/jayleicn/ClipBERT

2. Motivation

在这篇文章之前,大多数解决Video-Language任务的工作的框架图都是如上图所示的这样,对视频和语言分别提取特征,然后通 过多模态信息的融合结构,将两个模态的信息embedding到一个共同的空间。

这样的结构具有两个方面的问题:

- 1) Disconnection in tasks/domains: 缺少了任务之间的联系, 比如在动作识别任务中提取的特征, 并不一定使用于下游任务 (比如: Video Captioning) ,由于存在任务之间的gap,这样的特征提取方式会有导致sub-optimal的问题。
- 2) Disconnection in multimodal features:缺少了特征之间的联系,两个特征提取分支在提取特征过程中没有进行交互,导致 视觉和语言信息并没有得到充分联系。

除此之外,在提取视频特征的时候,由于相比于图片特征,视频会多一个时间维度,因此提取视频特征是非常耗时、并且计算量是 非常大的。

基于以上的问题,本文提出了CLIPBERT,一个端到端的视频-语言学习框架(结构如上图)。相比于以前的框架,本文主要有下 面几个方面的不同:

- 1)以前的方法是对原始视频以dense的方式提取特征,非常耗时、耗计算量。但是众所周知,视频中大多数的帧其实都是非常相 似的,对这些相似的帧进行特征提取确实比较浪费(而且就算提取了信息,模型也不一定能够学习到,如果模型的学习能力不够, 过多的冗余信息反而会起到反作用)。因此,本文对视频采用稀疏采样,只采用很少的几张图片。
- 2) 如果对这些采样的clip拼接后同时计算,这就相当于又多了一个维度,就会增加计算的负担。因此本文是对每一个clip分别计算 后,然后再将计算结果融合,来减少计算量和显存使用,从而来实现端到端的视频-语言任务。

另外,本文还有一个创新点就是用图片-语言数据集进行预训练,然后在视频-语言数据上微调,因此本文将图片-语言数据集上学 习到的信息转换到了视频-语言这个下游任务中,并且效果非常好。

3. 方法

3.1. Previous work

以往的方法对于视频-文本任务,往往都是直接对密集的视频V和文本S提取特征,每个视频V可以被分成N个clip,因此,以前视 频-文本任务的模型可以被建模成下面的公式:

$$p = \mathcal{H}([\mathcal{F}_{v}^{SG}(c_1), \mathcal{F}_{v}^{SG}(c_2), ..., \mathcal{F}_{v}^{SG}(c_N)], \mathcal{F}_{l}^{SG}(S)),$$

模型的损失函数为基于预测值p和Ground Truth q的特定任务损失函数:

3.2. 随机稀疏采样

为了减少计算量,作者对视频进行了稀疏采样,只采样了很少的视频帧数,来表示视频的信息,因此本文的模型可以用下面的公式 表示(第i个clip的信息可以被表示成 c_{τ_i}):

$$p_{\tau_i} = \mathcal{H}(\mathcal{F}_v(c_{\tau_i}), \mathcal{F}_l(S)),$$

作者对每一个clip的特征分别进行预测,然后在将每个clip的预测信息进行融合,本文模型的损失函数如下(G是聚合不同clip信息 的函数):

$$l^{task} = \mathcal{L}^{task}(\mathcal{G}(p_{\tau_1}, p_{\tau_2}, ..., p_{\tau_{N_{train}}}), q),$$

由于在训练中,同一视频每次采样的图片并不一样,所以本文使用的稀疏采样方法也可以被看作是一种数据增强。因为在以往的方 法中,是用整个视频进行训练的,全部的视频信息都暴露在模型中;而随机稀疏采样每次都暴露几个clip的信息,并且每次暴露的 clip还是不同的,因此就起到了数据增强的效果(就像CV中的Random Crop,不采用数据增强的话,就将整张图片暴露给模型; 如果使用Random Crop,每次都会对图片进行随机裁剪,只暴露图片的一部分信息,并且由于裁剪是随机的,所以每次暴露的信 息也是不一样的)。

3.3. 模型结构

本文的模型结果如上图所示:

对于视觉编码器,本文采用的是2D CNN结构ResNet-50,因为相比于3D的CNN结构,2D的结构使用的显存更少、速度更快。

图中的Spatial Downsampling模块,作者采用的是2x2的max-pooling。

图中的Temporl Fusion模块,本文采用的mean-pooling,来聚合每个clip中T个帧的信息,得到clip级别的特征表示。

然后采用row-wise和column-wise的position embedding来实现2D的Position Embedding。

对于语言编码器,作者采用了一个work embedding层进行本文信息的映射,然后采用position embedding进行特征位置的编 码。

接着,作者又加入了一个type embedding层,对输入特征的类型(视觉或语言)进行编码。

最后,只需要让这些视觉和语言特征进入一个12层的Transformer中进行训练即可。

4. 实验

4.1. Image Size

为了确定最合适的输入图片的大小,作者首先在Image Size上做了实验:

L]	MSRVTT-			
	R1	R5	R10	MdR	QA Acc.
224	6.8	24.4	35.8	20.0	35.78
448	10.2	28.6	40.5	17.0	35.73
768	11.0	27.8	40.9	16.0	35.73
1000	10.0	28.4	39.4	18.0	35.19

Table 1: Impact of **input image size** L.

从图中可以看出,图片大小从224→448的过程中,性能提高显著;但将448的图片继续放大,性能提升就不太显著了,甚至部分 指标已经开始下降了。

4.2. 帧信息的聚合

实验中,每个clip采样了T帧,为了探究如何对这些帧的信息进行聚合,获得clip级别的特征表示,作者尝试了以下方法:

\mathcal{M}	\mid_T		MSRVT1	MSRVTT-		
JV1	1	R1	R5	R10	MdR	QA Acc.
-	1	10.2	28.6	40.5	17.0	35.73
	2	11.3	31.7	44.9	14.0	36.02
Mean Pooling	4	10.8	30.0	43.6	14.0	35.83
wiean roomig	8	10.6	32.5	45.0	13.0	35.69
	16	11.6	33.9	45.8	13.0	36.05
Conv3D	2	8.7	27.3	40.2	17.0	34.85
Convad	16	10.1	28.9	41.7	16.0	35.03
Conv(2+1)D	2	7.3	24.1	35.6	22.0	34.13
Conv(2+1)D	16	9.9	27.3	39.6	17.0	33.92

Table 2: Impact of #frames (T) and temporal fusion function (\mathcal{M}) . We use a 1-second clip for all experiments.

可以看出, Conv3D和Conv(2+1)D的方法明显没有Mean Pooling好。

4.3. 测试时的clip数量

为了探究测试时采用多少clip的信息合适,作者进行了下面的实验:

Figure 4: Impact of #inference clips (N_{test}) .

可以看出, clip≤4, 随着clip的增加, 性能显著提升; clip>4, 随着clip的增加, 性能提升不显著。此外, 每个clip采样两帧明显 比采样一帧的效果好。

4.4. 训练时的clip数量

为了探究训练时采用多少clip的信息合适,作者进行了下面的实验:

$\mathcal G$	N.	N	1SRVT7	MSRVTT-		
9	N_{train}	R1	R5	R10	MdR	QA Acc.
-	1	12.7	34.5	48.8	11.0	36.24
	2	13.3	37.1	50.6	10.0	35.94
Mean Pooling	4	14.0	38.6	51.6	10.0	35.40
	8	13.4	36.4	49.7	11.0	35.76
	16	15.2	39.4	53.1	9.0	35.33
Max Pooling	2	8.5	28.7	42.2	14.0	36.41
Max Fooling	16	12.5	33.1	46.8	12.0	36.25
LogSumExp	2	15.5	38.4	52.6	9.0	36.59
Logouillexp	16	17.4	41.5	55.5	8.0	36.16

Table 3: Impact of #training clips (N_{train}) and score aggregation function (\mathcal{G}). All models use N_{test} =16 clips for inference.

总体上来说,训练时clip数量从1→2时,效益最显著。比如在LogSumExp函数下,clip从1增加到2,R1高了2.8%;clip从2增加到1 6、R1高了1.9%。

4.5. 稀疏随机采样 vs.密集均匀采样.

Sampling Method	N_{train}	M	SRVTT	MSRVTT-		
Sampling Method		R1	R5	R10	MdR	QA Acc.
Dense Uniform	16	15.5	39.6	55.0	9.0	35.88
	1	12.7	34.5	48.8	11.0	36.24
Sparse Random	2	15.5	38.4	52.6	9.0	36.59
	4	15.7	41.9	55.3	8.0	36.67

Table 4: Sparse random sampling vs. dense uniform sampling. All models use N_{test} =16 clips for inference.

可以看出采用4帧的随机采样,就比16帧的均匀采样要好。(因为随机采样有了随机性,就有数据增强的效果)

4.6. 相比于SOTA

Method	R1	R5	R10	MdR	Method	R1	R5	R10	MdR	Method	R1	R5	R10	MdR
HERO [37] ASR, PT	20.5	47.6	60.9	-	CE [41]	16.1	41.1	-	8.3	CE [41]	18.2	47.7	-	6.0
JSFusion [77]	10.2	31.2	43.2	13.0	S2VT [65]	11.9	33.6	-	13.0	MMT [15]	22.7	54.2	93.2	5.0
HT [46] PT	14.9	40.2	52.8	9.0	FSE [80]	13.9	36.0	-	11.0	MMT [15] PT	28.7	61.4	94.5	3.3
ActBERT [83] PT	16.3	42.8	56.9	10.0	CLIPBERT 4×1	19.9	44.5	56.7	7.0	Dense [28]	14.0	32.0	-	34.0
HERO [37] PT	16.8	43.4	57.7	-	CLIPBERT 8×2	20.4	48.0	60.8	6.0	FSE [80]	18.2	44.8	-	7.0
CLIPBERT 4×1	19.8	45.1	57.5	7.0						HSE [80]	20.5	49.3	-	-
CLIPBERT 8×2	22.0	46.8	59.9	6.0						CLIPBERT 4×2*	20.9	48.6	62.8	6.0
										CLIPBERT $4\times2^*$ (N_{test} =20)	21.3	49.0	63.5	6.0
(-) 1 (CD) //F	T 117				(L) P'D					(A) A -: : N - C - ::				

(a) MSRVTT 1K test set.

(b) DiDeMo test set.

(c) ActivityNet Captions val1 set.

Table 7: Comparison with state-of-the-art methods on text-to-video retrieval. CLIPBERT models with different training input sampling methods are denoted by $N_{train} \times T$. We use $N_{test} = 16$ if not otherwise stated. We gray out models that used features other than appearance and motion for a fair comparison, e.g., CE used appearance, scene, motion, face, audio, OCR, ASR features from 11 different models. PT indicates the model is pre-trained on HowTo100M. * denotes models use 2-second clips instead of the default 1-second clips.

Method	Action Transition FrameQA		Method	Accuracy	Method	Accuracy	
ST-VQA [23]	60.8	67.1	49.3	ST-VQA [23] (by [12])	30.9	SNUVL [78] (by [77])	65.4
Co-Memory [17]	68.2	74.3	51.5	Co-Memory [17] (by [12])	32.0	ST-VQA [23] (by [77])	66.1
PSAC [38]	70.4	76.9	55.7	AMU [74]	32.5	CT-SAN [79] (by [77])	66.4
Heterogeneous Memory [12]	73.9	77.8	53.8	Heterogeneous Memory [12]	33.0	MLB [27] (by [77])	76.1
HCRN [31]	75.0	81.4	55.9	HCRN [31]	35.6	JSFusion [77]	83.4
QueST [25]	75.9	81.0	59.7	CLIPBERT 4×1	37.0	ActBERT [83] PT	85.7
CLIPBERT $1 \times 1 (N_{test} = 1)$	82.9	87.5	59.4	CLIPBERT 8×2	37.4	CLIPBERT 4×1	87.9
CLIPBERT 1×1	82.8	87.8	60.3			CLIPBERT 8×2	88.2
(a) TGIF-0	QA test se	t.		(b) MRSVTT-QA test set. (c) MRSVTT multiple-			hoice test.

Table 8: Comparison with state-of-the-art methods on video question answering.

在多个视频-语言任务上,本文提出方法的性能能够大大超过以往的SOTA模型,证明了本文方法的有效性。

5. 总结

本文提出了一个端到端的视频-语言训练框架,只采样了视频中的部分信息,就能超过以前密集采样的方法,证明了"less is mor e"思想的有效性。另外,本文的方法在多个数据集、多个任务上都远远超过以前的SOTA方法。

本文亮点总结

- 1.以前的方法是对原始视频以dense的方式提取特征,非常耗时、耗计算量。但是众所周知,视 频中大多数的帧其实都是非常相似的,对这些相似的帧进行特征提取确实比较浪费(而且就算提 取了信息,模型也不一定能够学习到,如果模型的学习能力不够,过多的冗余信息反而会起到反 作用)。因此,本文对视频采用稀疏采样,只采用很少的几张图片。
- 2.如果对这些采样的clip拼接后同时计算,这就相当于又多了一个维度,就会增加计算的负担。 因此本文是对每一个clip分别计算后,然后再将计算结果融合,来减少计算量和显存使用,从而 来实现端到端的视频-语言任务。

如果觉得有用,就请分享到朋友圈吧!

极市平台

专注计算机视觉前沿资讯和技术干货,官网:www.cvmart.net 624篇原创内容

公众号

△点击卡片关注极市平台, 获取最新CV干货

公众号后台回复"CVPR21检测"获取CVPR2021目标检测论文下载~

极市平货

YOLO教程: 一文读懂YOLO V5 与 YOLO V4 | 大盘点 | YOLO 系目标检测算法总览 | 全面解析YOLO V4网络结构

实操教程: PyTorch vs LibTorch: 网络推理速度谁更快? | 只用两行代码,我让Transformer推理加速了50倍 | PyTorch AutoGrad C++层实现

算法技巧(trick): 深度学习训练tricks总结(有实验支撑) | 深度强化学习调参Tricks合集 | 长尾识别中的Tricks汇总 (AAAI2021)

最新CV竞赛: 2021 高通人工智能应用创新大赛 | CVPR 2021 | Short-video Face Parsing Challenge | 3D人体目标检测与行为分 析竞赛开赛,奖池7万+,数据集达16671张!

极市原创作者激励计划#

极市平台深耕CV开发者领域近5年,拥有一大批优质CV开发者受众,覆盖微信、知乎、B站、微博等多个渠道。 通过极市平台,您的文章的观点和看法能分享至更多CV开发者,既能体现文章的价值,又能让文章在视觉圈内得 到更大程度上的推广。

对于优质内容开发者,极市可推荐至国内优秀出版社合作出书,同时为开发者引荐行业大牛,组织个人分享交流 会,推荐名企就业机会,打造个人品牌 IP。

投稿须知:

- 1.作者保证投稿作品为自己的原创作品。
- 2.极市平台尊重原作者署名权,并支付相应稿费。文章发布后,版权仍属于原作者。
- 3.原作者可以将文章发在其他平台的个人账号,但需要在文章顶部标明首发于极市平台

投稿方式:

添加小编微信Fengcall(微信号: fengcall19),备注: 姓名-投稿

△长按添加极市平台小编

觉得有用麻烦给个在看啦~

阅读原文

喜欢此内容的人还喜欢

15个目标检测开源数据集汇总

极市平台