Sommersemester 2016

Grundlagen der Funktionalanalysis

Im Zweifel immer das Richtige nehmen. Prof. Dr. B. Jacob

Inhaltsverzeichnis

Vo	prwort	5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	23
3	Dualräume und ihre Darstellungen	33
4	Kompakte Operatoren	39
5	Der Satz von Hahn-Banach	47
6	Schwache Konvergenz und Reflexivität	59
7	Hauptsätze für Operatoren auf Banachräumen	63
8	Projektionen auf Banachräumen	75
9	Hilberträume	77
10	Operatoren auf Hilberträumen	91
11	Das Spektrum eines beschränkten Operators	99

Vorwort

Übungszettel:

- Immer Mittwochs, Abgabe: In der Vorlesung
- Keine Abgabepflicht, aber Bonussystem: 50% der Punkte⇒ 0.3 Bonus, 75% der Punkte⇒ 2 Notenschritte Bonus
- Mündliche Prüfung

Literatur: Werner - Funktionalanalysis, Springer Verlag, ISBN 3-540-43586-7

Motivation: Die Funktionalanalysis beschäftigt sich mit unendlichdimensionalen Vektorräumen (über \mathbb{R} oder \mathbb{C}), in denen der Konvergenzbegriff gegeben ist (Topologie), sowie den stetigen linearen Abbildungen (Operatoren) zwischen ihnen.

- Funktionen werden als Punkte bzw. als Elemente in Funktionenräumen betrachtet ($C([0,1]), \mathcal{L}_1(\mathbb{R})$).
- Es gibt vielfältige Anwendungen innerhalb der Analysis (Integralgleichungen, partielle Differentialgleichungen), sowie der Optimierung, Numerik, Quantenmechanik.
- Die historischen Wurzeln liegen in der Fouriertransformation sowie ähnlichen Transformationen.

Funktionale $\hat{=}$ stetige lineare Abbildungen von Funktionenräumen nach \mathbb{R} oder \mathbb{C} , d.h. Funktion von Funktion (\leadsto Variationsrechnung).

In unendlichdimensionalen Vektorräumen gibt es viele im Vergleich zur Analysis im \mathbb{R}^n ungewohnte Effekte, z.B.:

i) Surjektive lineare Selbstabbildungen sind im Allgemein nicht injektiv. Sei $V = \{(x_n)_n \mid x_n \in \mathbb{R}\}$ und $A: V \to V$ sei gegeben durch

$$A(x_n)_n = A(x_1, x_2, x_3, ...) := (x_2, x_3, x_4, ...)$$

AV = V (A ist surjektiv), aber $A(x_1, 0, 0, ...) = 0$ (A ist nicht injektiv.

ii) Injektive lineare Selbstabbildungen sind im Allgemeinen nicht surjektiv. V wie oben.

$$A(x_n)_n = (0, x_1, x_2, x_3, ...)$$

iii) Lineare Selbstabbildungen müssen keine Eigenwerte haben.

 $C([a,b]) = \{f : [a,b] \to \mathbb{C} \mid f \text{ stetig}\}, A : C([a,b]) \to C([a,b]) \text{ sei gegeben durch } (f \in C([a,b]), x \in [a,b]):$

$$(Af)(x) = (\sin x)f(x)$$

A ist der Multiplikationsoperator mit $\sin x$. A hat keine Eigenwerte. Andernfalls gäbe es $f \in C([a,b]), f \neq 0$ und $\lambda \in \mathbb{C}$ mit

$$(\sin x)f(x) = \lambda f(x) \forall x \in [a, b]$$

Da $f \neq 0$ existiert ein $x_0 \in [a,b]$ und ein $\varepsilon > 0$, so dass:

$$f(x) \neq 0 \forall]x_0 - \varepsilon, x_0 + \varepsilon[$$

Also:

$$\forall x \in]x_0 - \varepsilon, x_0 + \varepsilon[: \sin x = \lambda = \text{konstant}$$

In der Funktionalanalysis untersucht man verschiedene Abschwächungen des Begriffs 'Eigenwert'.

iv) Lineare Abbildungen sind im Allgemeinen nicht stetig.

 $V = \{p : [-2,2] \to \mathbb{C} \mid p \text{ Polynom}\}, \text{ versehen mit der gleichmässigen Konvergenz, d.h.}$

$$(p_j)_j \to p \text{ in } V \Leftrightarrow \|p_j - p\|_{\infty} \to 0 \text{ für } j \to \infty$$

Sei $A: V \to V$ definiert durch $Ax^n = 3^n x^n$ und sei $p_j(x) = \frac{1}{(2.5)^j} x^j$. Dann $\|p_j\|_{\infty} \to 0$ für $j \to \infty$, d.h. $p_j \to 0$ in V für $j \to \infty$, aber

$$||Ap_{j}||_{\infty} = \sup_{x \in [-2,2]} \left| \frac{3^{j}}{2.5^{j}} x^{j} \right| = \frac{3^{j} 2^{j}}{2.5^{j}} = \left(\frac{6}{2.5} \right)^{j} \to \infty$$

für $j \to \infty$, d.h. $Ap_j \neq 0 = A0$, d.h. A ist insbesondere nicht stetig.

1

Beispiele normierter Räume

Vektorräume über $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Den trivialen Vektorraum $\{0\}$ schließen wir aus.

{def1.1}

Definition 1.1

Sei X ein \mathbb{K} -Vektorraum. Eine Abbildung $p: X \to [0, \infty[$ heißt Halbnorm, falls

- a) $p(\lambda x) = |\lambda| p(x) \forall \lambda \in \mathbb{K} \forall x \in X$
- b) $p(x + y) \le p(x) + p(y) \forall x, y \in X$ (Dreiecksungleichung)

Gilt zusätzlich c) $p(x) = 0 \Rightarrow x = 0$, so heißt p eine Norm. Das Paar (X, p) heißt (halb-)normierter Raum.

Ist p bekannt, so heißt X (halb-)normierter Raum. Normen werden mit $\|\cdot\|$ (statt p) bezeichnet.

Bemerkung

- i) Aus a) folgt p(0) = 0 (wähle $\lambda = 0$).
- ii) Sei $(X, \|\cdot\|)$ ein normierter Raum. Dann ist $d(x, y) := \|x y\| \ \forall x, y \in X$ eine Metrik auf X.

{def1.2}

Definition 1.2

Sei X ein normierter Raum.

a) $(x_n)_{n\in\mathbb{N}}$) $\subseteq X$ ist eine Cauchyfolge, falls:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, m \ge N : \|x_n - x_m\| < \varepsilon$$

b) $(x_n)_{n\in\mathbb{N}}$ konvergiert gegen $x\in X$, falls:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \ge N \colon \|x_n - x\| < \varepsilon$$

c) X ist ein Banachraum, wenn jede Cauchyfolge in X konvergiert.

Bemerkung

In normierten Räumen ist jede konvergente Folge eine Cauchyfolge.

Beispiel

 \mathbb{K}^n ist ein Banachraum mit jeder der folgenden Normen ($x = (x_1, ..., x_n)$):

$$||x||_1 = \sum_{j=1}^n |x_j|$$

$$\|x\|_2 = \sqrt{\sum_{j=1}^n |x_j|^2}$$

$$||x||_{\infty} = \max_{j=1,\dots,n} |x_j|$$

//

{prop1.3}

Proposition 1.3

In einem endlichdimensionalen Vektorraum X sind alle Normen äquivalent, d.h. zu je zwei Normen $\|\cdot\|$, $\|\cdot\|$ auf X gibt es eine Konstante c > 0, so dass

$$\frac{1}{c} \|x\| \le \|x\| \le c \|x\| \,\forall x \in X$$

Beweis: O.B.d.A. $X = \mathbb{K}^n$.

$$\|(x_1,...,x_n)\|_1 = \sum_{j=1}^n |x_j|$$

ist eine Norm auf X. Sei $\|\cdot\|$ eine weitere Norm auf X und $e_j := (0,...,0,1_j,0,...,0), 1 \le j \le n$.

$$\|x\| = \left\| \sum_{j=1}^{n} x_{j} e_{j} \right\| \leq \sum_{j=1}^{n} |x_{j}| \left\| e_{j} \right\| \leq \underbrace{\left(\max_{j=1,\dots,n} \left\| e_{j} \right\| \right)}_{=:c} \sum_{j=1}^{n} |x_{j}| = c \|x\|_{1}$$

Also: $\|x\| \le c \|x\|_1$ für ein c > 0 und alle $x \in X$ und $\|\cdot\| : (X, \|\cdot\|_1) \to [0, \infty]$ ist stetig. $S = \{x \in X \mid \|x\|_1 = 1\}$ kompakt (\Leftrightarrow beschränkt und abgeschlossen). Dann folgt: $\min_{x \in S} \|x\| = \delta > 0$ mit $\delta = \|\tilde{x}\|$ mit $\|\tilde{x}\|_1 = 1$.

$$\|x\|_1 = \frac{1}{\delta} \min_{\tilde{x} \in S} \|\tilde{x}\| \|x\|_1 \le \frac{1}{\delta} \left\| \frac{x}{\|x\|_1} \right\| \|x\|_1 = \frac{1}{\delta} \|x\|_1$$

{satz1.4}

Satz 1.4 Minkowskische Ungleichung, Version für Folgen

Für $x, y \in \ell^p$, $1 \le p < \infty$, gilt $||x + y|| \le ||x||_p + ||y||_p$.

Beweis: $p = 1.\sqrt{\text{Sei also } p > 1}$. Wir zeigen die äquivalente Ungleichung

$$||x + y||_p^p \le (||x||_p + ||y||_p) ||x + y||_p^{p-1}$$

Sei $x=(x_n)_n$ und $y=(y_n)_n$. Dann mit $\frac{1}{p}+\frac{1}{q}=1$ nach der Hölderschen Ungleichung:

$$\begin{aligned} \|x+y\|_{p}^{p} &= \sum_{n \in \mathbb{N}} |x_{n} + y_{n}|^{p} \\ &= \sum_{n \in \mathbb{N}} |x_{n} + y_{n}| |x_{n} + y_{n}|^{p-1} \\ &\leq \sum_{n \in \mathbb{N}} |x_{n}| |x_{n} + y_{n}|^{p-1} + \sum_{n \in \mathbb{N}} |y_{n}| |x_{n} + y_{n}|^{p-1} \\ &\leq \left(\sum_{n \in \mathbb{N}} |x_{n}|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} (|x_{n} + y_{n}|^{p-1})^{q}\right)^{\frac{1}{q}} + \left(\sum_{n \in \mathbb{N}} |y_{n}|^{p}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} (|x_{n} + y_{n}|^{p-1})^{q}\right)^{\frac{1}{q}} \\ &= \|x\|_{p} \|x + y\|_{p}^{p/q} + \|y\|_{p} \|x + y\|_{p}^{p/q} \\ &= (\|x\|_{p} + \|y\|_{p}) \|x + y\|_{p}^{p-1} \end{aligned}$$

Da außerdem gilt: $\|\lambda x\|_p = |\lambda| \|x\|_p$ für $\lambda \in \mathbb{K}$ und $x \in \ell^p$ und $\|x\|_p = 0 \Leftrightarrow x = 0$, ist $(\ell^p, \|\cdot\|_p)$ ein normierter Raum.

Behauptung: $(\ell^p, \|\cdot\|_p)$ für $1 \le p < \infty$ ist vollständig, d.h. ein Banachraum.

Beweis: Sei (x_n) eine Cauchyfolge in ℓ^p . Wir schreiben $(x_n) = (x_m^{(n)})_{m \in \mathbb{N}}$, $x_m^{(n)} \in \mathbb{K}$. Für alle $y = (y_m)_{m \in \mathbb{N}}$ und alle $m \in \mathbb{N}$ gilt: $|y_m| \le ||y||_p$.

$$(x_n)_n$$
 Cauchyfolge $\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n, k \geq N : ||x_n - x_k||_p < \varepsilon$

Aus

$$|x_m^{(n)} - x_m^{(k)}| \le ||x_n - x_k||_p$$

folgt: Für beliebige $m \in \mathbb{N}$ ist $(x_m^{(n)})_{n \in \mathbb{N}}$ eine Cauchyfolge in \mathbb{K} (\mathbb{K} ist vollständig). Sei $x_m := \lim_{n \to \infty} x_m^{(n)}$ und $x = (x_m)_{m \in \mathbb{N}}$. Es bleibt zu zeigen: $x \in \ell^p$ und $\|x_n - x\|_p \xrightarrow{n \to \infty} 0$. Sei $\varepsilon > 0$ beliebig. Dann existiert $N \in \mathbb{N}$: $\|x_n - x_k\|_p < \varepsilon \forall n, k \ge N$. Insbesondere gilt für $M \in \mathbb{N}$:

$$\left(\sum_{m=1}^{M} |x_m^{(n)} - x_m^{(k)}|^p\right)^{\frac{1}{p}} \le \|x_n - x_k\|_p < \varepsilon \,\forall n, k \ge N$$

Mit $k \to \infty$ gilt $\forall M \in \mathbb{N} \forall n \geq N$:

$$\left(\sum_{m=1}^{M} |x_m^{(n)} - x_m|^p\right)^{\frac{1}{p}} \le \varepsilon$$

M war beliebig und somit folgt:

$$\left(\sum_{m=1}^{\infty} |x_m^{(n)} - x_m|^p\right)^{\frac{1}{p}} \le \varepsilon \,\forall \, n \ge N$$

Somit ist $x_N - x \in \ell^p$ und $x = x - x_N + x_N \in \ell^p$ und $||x_n - x||_p \xrightarrow{n \to \infty} 0$.

{satz1.5}

Satz 1.5

Sei $(X, \|\cdot\|^*)$ ein halbnormierter Raum.

- a) $N := \{x \in X \mid ||x||^* = 0\}$ ist ein Untervektorraum von X.
- b) $||[x]|| := ||x||^*$ definiert eine Norm auf X/N.
- c) Ist X vollständig, d.h. in X konvergiert jede Cauchyfolge, so ist X/N ein Banachraum.

Beweis:

a) √

b) $\|\cdot\|$ ist wohldefiniert, d.h. unabhängig vom Repräsentanten der Äquivalenzklasse: Seien $x, y \in X$ mit [x] = [y]. Zu zeigen: $\|x\|^* = \|y\|^*$.

$$[x] = [y] \Leftrightarrow x \sim y \Leftrightarrow x - y \in N \Leftrightarrow ||x - y||^* = 0$$

Die umgekehrte Dreiecksungleichung

$$|\|x\|^* - \|y\|^*| \le \|x - y\|^*$$

zeigt $||x||^* = ||y||^*$. Homogenität und Dreiecksungleichung folgen nun direkt aus den entsprechenden Eigenschaften von $||\cdot||^*$.

$$||[x]|| = 0 \Leftrightarrow ||x||^* = 0 \Leftrightarrow x \in N \Leftrightarrow x \sim 0 \Leftrightarrow [x] = [0]$$

c) Folgt aus:

 $([x_n])_{n\in\mathbb{N}}$ Cauchyfolge in $X/N\Leftrightarrow ([x_n])_{n\in\mathbb{N}}$ Cauchyfolge in X

Beispiel Die L^p -Räume

Sei I ein Intervall, dann ist $(I,B(I),\lambda_1)$ ein Maßraum (gleiche Überlegungen für einen Maßraum (X,\mathcal{A},μ)). Sei $\mathcal{L}^{\infty}(I) \coloneqq \{f:I \to \mathbb{K} \mid f \text{ messbar}, \exists N \in B(I) \text{ mit } \lambda_1(N) = 0, f|_{I \setminus N} \text{ ist beschränkt}\}.$

$$\|f\|_{L^{\infty}}^* \coloneqq \inf_{\substack{N \in B(I) \\ \lambda_1(N) = 0}} \sup_{t \in I \setminus N} |f(t)| = \inf_{\substack{N \in B(I) \\ \lambda_1(N) = 0}} \|f|_{I \setminus N}\|_{\infty}$$

Es gilt:

- i) $f \in \mathcal{L}^{\infty}(I) \Rightarrow ||f||_{I_{\infty}}^* < \infty$
- ii) Zu $f \in \mathcal{L}^{\infty}(I)$ gibt es eine messbare Nullmenge N mit $\|f\|_{L^{\infty}}^* \coloneqq \|f|_{I \setminus N}\|_{\infty}$.

Beweis: Zu $r \in \mathbb{N}$ wählen wir eine messbare Nullmenge N_r mit $||f|_{I \setminus N_r}||_{\infty} \le ||f||_{L^{\infty}}^* + \frac{1}{r}$. Dann ist $N := \bigcup_{r \in \mathbb{N}} N_r$ auch eine messbare Nullmenge und es gilt:

$$\|f\|_{L^{\infty}}^* \leq \|f|_{I \setminus N}\|_{\infty} \leq \|f|_{I \setminus N_r}\|_{\infty} \leq \|f\|_{L^{\infty}}^* + \frac{1}{r} \forall r \in \mathbb{N}$$

Da r beliebig ist, folgt die Behauptung.

iii) $(\mathscr{L}^{\infty}(I), \|\cdot\|_{L^{\infty}}^*)$ ist ein halbnormierter Vektorraum.

Beweis: Wir zeigen nur die Dreiecksungleichung, alle weiteren Eigenschaften folgen direkt. Seien $f_1, f_2 \in \mathcal{L}^{\infty}(I)$ und N_1, N_2 messbare Nullmengen gemäß ii).

$$||f_1 + f_2||_{L^{\infty}}^* = \inf_{\substack{N \in B(I) \\ \lambda_1(N) = 0}} ||(f_1 + f_2)_{I \setminus N}||_{\infty}$$

$$\leq \|(f1+f_2)|_{I\setminus (N_1\cup N_2)}\|_{\infty}$$

$$\leq \|f_1|_{I\setminus (N_1\cup N_2)}\|_{\infty} + \|f_2|_{I\setminus (N_1\cup N_2)}\|_{\infty}$$

$$\leq \|f_1|_{I\setminus N_1}\|_{\infty} + \|f_2|_{I\setminus N_2}\|_{\infty}$$

$$= \|f_1\|_{L^{\infty}}^* + \|f_2\|_{L^{\infty}}^*$$

 \Box

iv) $(\mathscr{L}^{\infty}(I), \|\cdot\|_{L^{\infty}}^*)$ ist vollständig, d.h. jede Cauchyfolge ist konvergent.

Beweis: Sei $(f_n)_n$ eine Cauchyfolge in $\mathscr{L}^{\infty}(I)$. Nach ii) existieren messbare Nullmengen $N_{n,m}$ mit

$$\|f_n - f_m\|_{L^{\infty}}^* = \|(f_n - f_m)|_{I \setminus N_{n,m}}\|_{\infty}$$

Sei $N = \bigcup_{n,m \in \mathbb{N}} N_{n,m}$ (abzählbare Vereinigung). Dies ist auch eine messbare Nullmenge und es gilt:

$$||f_n - f_m||_{L^{\infty}}^* = ||(f_n - f_m)|_{I \setminus N}||_{\infty}$$

Also ist $(f_n|_{I\setminus N})_{n\in\mathbb{N}}$ eine Cauchyfolge im Banachraum $(\ell^\infty(I\setminus N),\|\cdot\|_\infty)$. Daher existiert $g\in\ell^\infty(I\setminus N)$ und $f_n|_{I\setminus N}\xrightarrow{n\to\infty}g$ in $\ell^\infty(I\setminus N)$. Setze $f(t)=\begin{cases}g(t)&t\in I\setminus N\\0&t\in N\end{cases}$. Dann ist

f beschränkt und als punktweiser Limes der messbaren Funktionenfolge $(f_n\chi_{I\setminus N})_{n\in\mathbb{N}}$ wieder messbar. Daraus folgt:

$$||f_n - f||_{L^{\infty}}^* \le ||(f_n - f)_{I \setminus N}||_{\infty} \xrightarrow{n \to \infty} 0$$

//

Sei $N_p \coloneqq \{f \in \mathcal{L}^p(I) \mid \|f\|_p^a \, st = 0\} = \{f : I \to \mathbb{K} \mid f \text{ messbar und } f = 0 \text{ fast überall}\}, L^p(I) = \mathcal{L}^p(I)/N_p, \|f\|_p = \|f\|_p^*.$ Dann ist $(L^p(I), \|\cdot\|_p)$ ein Banachraum.

Bemerkung

Ein nicht vollständiger Raum X kann stets in einen Banachraum 'eingebettet' werden. Sei $CF(X) := \{(x_n)_n \subset X \mid (x_n)_n \text{ ist eine Cauchyfolge}\}$. Auf CF(X) definieren wir die Äquivalenzrelation

$$(x_n)_n \sim (y_n)_n \Leftrightarrow \lim_{n \to \infty} ||x_n - y_n|| = 0$$

Sei $\hat{X} := \{[(x_n)] \mid (x_n)_n \subseteq CF(X)\}$ mit $\|[(x_n)_n]\| = \lim_{n \to \infty} \|x_n\|$. Dann gilt: $(\hat{X}, \|\cdot\|)$ ist ein Banachraum und indem man X mit den konstanten Folgen in \hat{X} identifiziert, wird X in natürlicher Weise in \hat{X} dicht eingebettet (d.h. $X \subset \hat{X}$ und $\bar{X} = \hat{X}$).

 \hat{X} nennt man auch die Vervollständigung von X.

{satz1.6}

Satz 1.6

Sei X ein normierter Raum.

- i) Aus $x_n \to x$ in X und $y_n \to y$ in X folgt $x_n + y_n \to x + y$.
- ii) Aus $\lambda_n \to \lambda$ in \mathbb{K} und $x_n \to x$ in X folgt $\lambda_n x_n \to \lambda x$.
- iii) Aus $x_n \to x$ folgt $||x_n|| \to ||x||$.

Bemerkung

Aus iii) folgt: Konvergente Folgen in *X* sind beschränkt.

Beweis:

i) folgt aus

$$\|x_n + y_n - (x+y)\| \le \|x_n - x\| + \|y_n - y\| \to 0$$

ii)

$$\|\lambda_n x_n - \lambda x\| = \|\lambda_n (x_n - x) + (\lambda_n - \lambda)x\| \le |\lambda_n| \|x_n - x\| + |\lambda_n - \lambda| \|x\|$$

iii) folgt aus

$$0 \le |\|x_n\| - \|x\|| \le \|x_n - x\| \to 0$$

{satz1.7}

Satz 1.7

Ist U ein Untervektorraum des normierten Raumes X, so ist sein Abschluss \bar{U} ebenfalls ein Untervektorraum.

Beweis: Seien $x, y \in \overline{U}$. Dann existieren Folgen $(x_n)_n$, (y_n) in U mit $x_n \to x$ und $y_n \to y$. Also:

$$x_n + y_n \to x + y \Rightarrow x + y \in \bar{U}$$

Sei $\lambda \in \mathbb{K}$ und $x \in \overline{U}$. Dann existiert eine Folge $(x_n)_n$ in U mit $x_n \to x$. Es folgt:

$$\lambda x_n \to \lambda x \Rightarrow \lambda x \in \bar{U}$$

Bemerkung

Ist $\dim U < \infty$, dann ist U abgeschlossen. Im Allgemeinen ist ein Untervektorraum nicht abgeschlossen.

{satz1.8}

Satz 1.8

Seien $\|\cdot\|$ und $\|\cdot\|$ zwei Normen auf X. Dann sind äquivalent:

- i) $\|\cdot\|$ und $\|\cdot\|$ sind äquivalent, d.h. $\exists c_1, c_2 > 0 : c_1 \|x\| \le \|x\| \le c_2 \|x\| \ \forall x \in X$.
- ii) Eine Folge ist bezüglich $\|\cdot\|$ konvergent genau dann, wenn sie bezüglich $\|\cdot\|$ konvergent ist.
- iii) Eine Folge ist eine ||-|| -Nullfolge genau dann, wenn sie eine |||-|||-Nullfolge ist.

Beweis: i)⇒ii)⇒iii) klar. Es bleibt zu zeigen: iii)⇒i).

Angenommen es gibt kein $c_2 > 0$, so dass die Ungleichung $||x|| \le c_2 ||x|| \forall x \in X$. Dann gilt für alle $n \in \mathbb{N}$: $\exists x_n \in X : ||x_n|| > n ||x_n||$. Setze $y_n := \frac{1}{n} \frac{x_n}{||x_n||}$. Dann folgt:

$$||y_n|| = \left\| \frac{1}{n} \frac{x_n}{||x_n||} \right\| = \frac{1}{n} \to 0$$

Also ist $(y_n)_n$ eine $\|\cdot\|$ –Nullfolge und mit iii) somit auch eine $\|\cdot\|$ –Nullfolge. Aber

$$|||y_n||| = \left| \left| \left| \frac{1}{n} \frac{x_n}{||x_n||} \right| \right| = \frac{1}{n ||x_n||} |||x_n||| > \frac{n ||x_n||}{n ||x_n||} = 1 / 2$$

Die Existenz von $c_1 > 0$: $c_1 ||x|| \le ||x|| \forall x \in X$ lässt sich analog zeigen.

Bemerkung

Zusätzliche Äquivalenz:

iv) $(X, \|\cdot\|)$ und $(X, \|\cdot\|)$ besitzen die selben Cauchyfolgen. Somit: $(X, \|\cdot\|)$ ist vollständig $(X, \|\cdot\|)$ ist vollständig.

Beispiel

Aufgabe 3 zeigt, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|$ auf $C^1[a,b]$ nicht äquivalent sind. $/\!\!/$

{lemma1.9}

Lemma 1.9 Rieszsches Lemma

Sei U ein abgeschlossener Unterraum des normierten Raums X mit $U \neq X$. Ferner sei $0 < \delta < 1$. Dann existiert ein $x_{\delta} \in X$ mit $||x_{\delta}|| = 1$ und

$$\forall u \in U : ||x_{\delta} - u|| \ge 1 - \delta$$

Beweis: Sei $x \in X \setminus U$.

$$d := \inf\{\|x - u\| \mid u \in U\} > 0$$

Denn andernfalls gäbe es eine Folge $(u_n)_n \in U$ mit $u_n \to x$ und x läge dann in $\bar{U} = U$ (da U abgeschlossen). Es gilt: $d < \frac{d}{1-\delta}$. Dann existiert ein $u_\delta \in U$, für das gilt: $\|x - u_\delta\| < \frac{d}{1-\delta}$. Setze $x_\delta \coloneqq \frac{x - u_\delta}{\|x - u_\delta\|}$. Dann ist $\|x_\delta\| = 1$ und es gilt für $u \in U$ beliebig:

$$\|x_{\delta} - u\| = \left\| \frac{x - u_{\delta}}{\|x - u_{\delta}\|} - u \right\| = \frac{1}{\|x - u_{\delta}\|} \|x - (u_{\delta} + \|x - u_{\delta}\| u)\| \ge \frac{1}{\|x - u_{\delta}\|} d > 1 - \delta$$

Bemerkung

Das Rieszsche Lemma gilt nicht für $\delta = 0$.

Beispiel

Sei $X = \{x \in C[0,1] \mid x(1) = 0\}$. $(X, \|\cdot\|_{\infty})$ ist ein normierter Raum. $U = \{x \in X \mid \int_0^1 x(t) dt = 0\}$ ist ein abgeschlossener Untervektorraum.

Angenommen es gibt ein Element $x \in X$ mit $\|x - u\|_{\infty} \ge 1 = \|x\|_{\infty} \, \forall u \in U$. Setze $x_n(t) = 1 - t^n$. Dann sind $x_n \in X$, $\|x_n\|_{\infty} = 1$ und $\int_0^1 x_n(t) dt = 1 - \frac{1}{n+1}$. Setze

$$\lambda_n = \frac{\int_0^1 x(t)dt}{1 - \frac{1}{n+1}}, \qquad u_n = x - \lambda_n x_n \in U$$

Daraus folgt: $\|x-u_n\|_{\infty} \ge 1$ und $\|x-u_n\|_{\infty} = \|\lambda_n x_n\|_{\infty} = |\lambda_n| \ge 1$.

$$\left| \int_0^1 x(t) dt \right| = |\lambda_n| \left| 1 - \frac{1}{n+1} \right| \ge \left| 1 - \frac{1}{n+1} \right| \ge 1n \, \forall \in \mathbb{N}$$

Aber $x: [0,1] \to \mathbb{K}$ stetig, $||x||_{\infty} \le 1$ und x(1) = 0. //

Beweis: [a,b] = [0,1]. Sei $f \in C[0,1]$.

$$P_n(s) = B_n(s, f) := \sum_{i=0}^n \binom{n}{i} s^i (1-s)^{n-i} f\left(\frac{i}{n}\right)$$

Zu zeigen: $||P_n - f||_{\infty} \to 0$. Da f gleichmässig stetig ist, existiert zu $\varepsilon > 0$ ein $\delta > 0$ mit $|s - t| \le \sqrt{\delta}$ und es folgt $|f(s) - f(t)| \le \varepsilon$.

Es gilt für $|s-t| > \delta$ mit $\alpha = \frac{2\|f\|_{\infty}}{\delta}$:

$$|f(s) - f(t)| \le |f(s)| + |f(t)| \le 2 ||f||_{\infty} = \alpha \delta \le \alpha (s - t)^2$$

Somit gilt für beliebige $s, t \in [0, 1]$:

$$|f(s) - f(t)| \le \alpha (s - t)^2 + \varepsilon$$

Setze $y_t(s) := (t - s)^2$. Dann folgt:

$$-\varepsilon - \alpha y_t(s) < f(s) - f(t) < \alpha y_t(s) + \varepsilon \forall s, t \in [0, 1]$$

Wir bestimmen nun die Bernstein-Polynome zu $f_j(s) = s^j$ für j = 0, 1, 2:

$$B_{n}(s, f_{0}) = \sum_{i=0}^{n} {n \choose i} s^{i} (1-s)^{n-i} = (s+(1-s))^{n} = 1$$

$$B_{n}(s, f_{1}) = \sum_{i=1}^{n} {n \choose i} s^{i} (1-s)^{n-i} \frac{i}{n} = 1 \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} = s(s-(1-s))^{n-1} = s$$

$$B_{n}(s, f_{2}) = \sum_{i=0}^{n} {n \choose i} s^{i} (1-s)^{n-1} \left(\frac{i}{n}\right)^{2}$$

$$= \sum_{i=1}^{n} {n-1 \choose i-1} s^{i} (1-s)^{n-i} \frac{i}{n}$$

$$= \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} \frac{i+1}{n}$$

$$= \frac{s}{n} + \sum_{i=0}^{n-1} {n-1 \choose i} s^{i+1} (1-s)^{n-(i+1)} \frac{i}{n}$$

$$= \frac{s}{n} + s \frac{n-1}{n} \sum_{i=0}^{n-1} {n-1 \choose s} s^{i} (1-s)^{(n-1)-i} \frac{i}{n-1}$$

$$= \frac{s}{n} + s^{2} \frac{n-1}{n}$$

$$1 \binom{n}{i} \frac{i}{n} = \binom{n-1}{i-1}$$

$$= s^{2} + \frac{s}{n} - \frac{s^{2}}{n}$$
$$= s^{2} + \frac{s(1-s)}{n}$$

Es folgt:

$$-B_n(s,\varepsilon+\alpha y_t) = B_n(s,-\varepsilon-\alpha y_t) \le B_n(s,f-f(t)) \le B_n(s,\alpha y_t+\varepsilon)$$

Für alle $s, t \in [0, 1]$ gilt dann:

$$\begin{split} |P_n(s) - f(t)| &= |B_n(s, f) - f(t)B_n(s, f_0)| \\ &= |B_n(s, f) - B_n(s, f(t))| \\ &= |B_n(s, f - f(t))| \le B_n(s, \alpha y - t + \varepsilon) \\ &= B_n(s, \varepsilon + \alpha(t^2 - 2st + t^2)) = B_n(s, \varepsilon) + \alpha B_n(s, t^2) - 2\alpha B_n(s, st) + \alpha B_n(s, s^2) \\ &= \varepsilon + \alpha t^2 - 2\alpha t s + \alpha \left(s^2 + \frac{s(1-s)}{n} \right) \end{split}$$

Mit s = t folgt dann:

$$|P_n(t) - f(t)| \le \varepsilon + \alpha t^2 - 2\alpha t^2 + \alpha \left(t^2 + \frac{t(i-1)}{n} \right) \le \varepsilon \frac{\alpha}{n}$$

Also:

$$\|P_n - f\|_{\infty} \le \varepsilon + \frac{\alpha}{n}$$

Hieraus folgt die gleichmässige Konvergenz.

{kor1.10}

Korollar 1.10

C[a,b] ist separabel.

Beweis: Aus dem Approximationssatz folgt: $C[a,b] = \overline{\lim\{x_n \mid n \in \mathbb{N}_0\}}$ mit $x_n(t) = t^n$.

{satz

Satz 1.11

Sei $1 \le p < \infty$. C[a, b] ist dicht in $L^p[a, b]$.

Beweis: Zu zeigen: $\overline{C[a,b]} = L^p[a,b]$ (Abschluss bezüglich $\|\cdot\|_p$)

Sei B([a,b]) die σ -Algebra der Borelmengen auf [a,b]. Aus der Definition des Lebesgueintegrals folgt: $\lim \{\chi_A \mid A \in B([a,b])\}$, der Raum der Stufenfunktionen, liegt dicht in $L^p[a,b]$. Das Lebesgzemaß ist regulär, d.h.:

$$\lambda(A) = \inf{\{\lambda(O) \mid A \subseteq O, O \text{ offen}\}}$$

Daraus folgt für alle $A \in B([a,b])$, dass für alle $\varepsilon > 0$ eine offene Menge O mit $A \subseteq O$ existiert so dass:

$$\|\chi_A - \chi_O\|_p = \|\chi_{O \setminus A}\|_p = \lambda(O \setminus A)^{\frac{1}{p}} < \varepsilon$$

Somit:

$$\{\chi_A \mid A \in B([a,b])\} \subseteq \overline{\{\chi_O \mid O \text{ offen}\}}$$

$$L^p[a,b] = \overline{\lim\{\chi_A \mid A \in B([a,b])\}} = \overline{\lim\{\chi_O \mid O \text{ offen}\}}$$

Jede offene Menge O ist eine abzählbare Vereinigung von paarweise disjunkten Intervallen I_j . Aus $\lambda(O) = \sum_{j=1}^{\infty} \lambda(I_j)$ folgt: $\chi_O \in \overline{\ln\{\chi_I \mid I \text{ offenes Intervall}\}}$. Hieraus folgt nun:

$$L^p[a,b] = \overline{\lim \{\chi_I \mid I \text{ offenes Intervall}\}}$$

Es genügt zu zeigen: Zu jedem offenen Intervall $I \subset [a,b]$ und jedem $\varepsilon > 0$ existiert eine stetige Funktioen f mit $\|f - \chi_I\|_p < \varepsilon$. Sei $\varepsilon > 0$ und $a \le a' < b' \le b$. Wähle f(x) geeignet. Dann folgt, dass C[a,b] dicht in $L^p[a,b]$ liegt.

{kor1.12}

Korollar 1.12

 $1 \le p < \infty$. L^p ist separabel.

Beweis: Es genügt zu zeigen, dass die Polynome dicht in $L^p[a,b]$ liegen. Sei $f \in L^p[a,b]$. Nach ?? existiert eine Folge $(f_n)_n$ stetiger Funktionen mit $\|f_n - f\|_p \to 0$. Nach dem Weierstraßschen Approximationssatz existieren Polynome P_n mit $\|f_n - P_n\|_{\infty} \le \frac{1}{n}$. Wegen

$$\|g\|_{p} = \left(\int_{a}^{b} |g|^{p} d\lambda\right)^{\frac{1}{p}} \le (b-a)^{\frac{1}{p}} \|g\|_{\infty}$$

für $g \in C[a,b]$ folgt $\|f_n - P_n\|_p \to 0$ für $n \to \infty$. Also folgt:

$$\|P_n - f\|_p \le \|P_n - f_n\|_p + \|f_n - f\|_p \to 0$$

Bemerkung

Ohne Beweis sei noch erwähnt:

- i) $T \text{ kompakter Raum} \Rightarrow (C(T), \|\cdot\|_{\infty}) \text{ ist separabel.}$
- ii) Ω offene Menge (z.B. \mathbb{R}). $L^p(\Omega)$ ist separabel, $1 \le p < \infty$.

{def1.13}

Definition 1.13

Sei X ein normierter Raum und $A \subseteq X$. Der Abstand von $x \in X$ zu A ist gegeben durch:

$$d(x,A) := \inf\{||x - a|| \mid a \in A\}$$

Bemerkung

Es gilt:

$$d(x,A) = 0 \Leftrightarrow x \in \bar{A}$$

{satz

Satz 1.14

Sei X ein normierter Raum und $U \subseteq X$ ein Untervektorraum. X/U bezeichnet die Menge der Äquivalenzklassen bezüglich der Äquivalenzrelation $x \sim y \Leftrightarrow x - y \in U$. Für $x \in X$ sei $[x] = x + U \in X/U$ die zugehörige Äquivalenzklasse. Es gilt:

- i) ||x|| = d(x, U) definiert eine Halbnorm auf X/U.
- ii) Ist *U* abgeschlossen, so ist $\|\cdot\|$ eine Norm auf X/U.
- iii) Ist X vollständig und U abgeschlossen, so ist X/U ein Banachraum.

Beweis:

i) $\|\cdot\|$ ist wohldefiniert, denn: $[x_1] = [x_2]$ impliziert $x_1 = x_2 + u$ für ein $u \in U$, also $d(x_1, U) = d(x_2, U)$.

$$\|\lambda[x]\| = \|[\lambda x]\|$$

$$= d(\lambda x, U)$$

$$= \inf\{\|\lambda x - u\| \mid u \in U\}$$

$$= \inf\{\|\lambda x - \lambda u\| \mid u \in U\}$$

$$= \inf\{|\lambda| \|x - u\| \mid u \in U\}$$

$$= |\lambda| d(x, U)$$

$$= |\lambda| \|x\|$$

Seien $x_1, x_2 \in X$, sei $\varepsilon > 0$. Es existieren $u_1, u_2 \in U$ mit

$$||x_i - u_i|| \le ||[x_i]|| + \varepsilon, i = 1, 2$$

 $\|[x_1] + [x_2]\| = \inf\{\|x_1 + x_2 - u\| \mid u \in U\} \le \|x_1 + x_2 - (u_1 + u_2)\| \le \|x_i - u_i\| + \|x_2 - u_2\| \le \|[x_1]\| + \|[x_2]\|$ Da $\varepsilon > 0$ beliebig, gilt:

$$||[x_1] + [x_2]|| \le ||[x_1]|| + ||[x_2]||$$

||[0]|| = d(0, U) = 0, da $0 \in U$.

ii)
$$\|\lceil 0\rceil\| = 0 \Leftrightarrow d(x, U) = 0 \Leftrightarrow x \in \bar{U} = U \Leftrightarrow \lceil x \rceil = \lceil 0\rceil$$

iii) Wir benutzen ??. Sei also $(x_k)_k$ eine Folge in X mit $\sum_{k=1}^{\infty} ||[x_k]|| < \infty$. Zu zeigen: $\sum_{k=1}^{\infty} [x_k]$ konvergiert in X/U.

O.B.d.A.: $||x_k|| \le ||[x_k]|| + 2^{-k}$.

$$\sum_{k=1}^{\infty} \|x_k\| \le \sum_{k=1}^{\infty} \|[x_k]\| + \sum_{k=1}^{\infty} 2^{-k} < \infty$$

Nun folgt, da X vollständig ist, mit ??:

$$\exists x = \sum_{k=1}^{\infty} x_k \in X$$

$$\left\| [x] - \sum_{k=1}^{n} [x_k] \right\| = \left\| \left[x - \sum_{k=1}^{n} x_k \right] \right\| \le \left\| x - \sum_{k=1}^{n} x_k \right\| \xrightarrow{n \to \infty} 0$$

Also: $[x] = \sum_{k=1}^{\infty} [x_k]$

Beispiel

Sei $D\subseteq [0,1]$ abgeschlossen. Wir betrachten den Quotienten C[0,1]/U mit $U:=\{x\in C[0,1]\mid x\mid_D=0\}$. Die Quotientenabbildung $(x\in C[0,1]\mapsto [x]\in C[0,1]/U)$ identifiziert Funktionenm die auf D übereinstimmen. Die Elemente von C[0,1]/U können als Funktionen auf D angesehen werden. //U

2

Funktionale und Operatoren

{def2.1}

Definition 2.1

Eine stetige lineare Abbildung zwischen normierten Räumen heißt stetiger Operator. Ist der Bildraum der Skalarenkörper K, so sagen wir Funktional statt Operator

Im Folgenden schreiben wir Tx statt T(X), wenn $T: X \to Y$ ein stetiger Operator und $x \in X$.

{satz2.2}

Satz 2.2

Seien X und Y normierte Räume und sei $T: X \to Y$ linear. Dann sind äquivalent:

- i) T ist stetig.
- ii) T ist stetig in 0.
- iii) $\exists M \ge 0 : ||Tx|| \le M ||x|| \forall x \in X$.
- iv) T ist gleichmäßig stetig.

Beweis:

iii)⇒iv) Ist klar, da aus iii) Lipschitz-Stetigkeit folgt.

 $iv) \Rightarrow i) \Rightarrow \text{Klar.}$

 $ii)\Rightarrow iii)$ Angenommen, iii) ist falsch, d.h. $\forall n\in\mathbb{N}\exists x_n\in X:\|Tx_n\|>n\,\|x_n\|$. Setze $y_n\coloneqq\frac{x_n}{n\|x_n\|}$. Hieraus folgt: $\|y_n\|=\frac{1}{n}$, aber

$$||Ty_n|| = \left\| \frac{1}{n ||x_n|| Tx_n} \right\| = \frac{1}{n ||x_n||} ||Tx_n|| > 1$$

Somit ist $(y_n)_n$ eine Nullfolge, aber Ty_n konvergiert nicht gegen 0, was ii) widerspricht.

{def2.3}

Definition 2.3

Die kleinste in iii) vorkommende Zahl M wird mit ||T|| bezeichhnet, d.h.

$$||T|| = \inf\{M \ge 0 \mid ||Tx|| \le M \, ||x|| \, \forall x \in X\}$$

{satz2.4}

Satz 2.4

Sei $T: X \to Y$ ein stetiger Operator. Dann gilt:

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x|| = 1} ||Tx|| = \sup_{||x|| \le 1} ||Tx||$$

sowie

$$||Tx|| \le ||T|| \, ||x|| \, \forall x \in X$$

Beweis: Klar:

$$\sup_{\|x\| \leq 1} \|Tx\| \geq \sup_{\|x\| = 1} \|Tx\| = \sup_{x \neq 0} \left\| T\frac{x}{\|x\|} \right\| = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$$

und

$$\sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1 \atop \alpha \in]0,1]} \|T(\alpha x)\| = \sup_{\|x\| = 1 \atop \alpha \in]0,1]} |\alpha| \|Tx\| = \sup_{\|x\| = 1} \|Tx\|$$

Setze $M_0 = \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|}$. Zeige: $\|T\| = M_0$.

Aus $||Tx|| \le M_0 ||x|| \forall x \in X$ folgt schon $||T|| \le M_0$.

Zu $\varepsilon > 0$ wählen wir $x_{\varepsilon} \neq 0$, $x_{\varepsilon} \in X$ mit

$$\frac{\|Tx_{\varepsilon}\|}{\|x_{\varepsilon}\|} \ge M_0(1-\varepsilon) \Leftrightarrow \|Tx_{\varepsilon}\| \ge M_0(1-\varepsilon) \|x_{\varepsilon}\|$$

. Daraus folgt: $||T|| \ge M_0(1-\varepsilon)$, also insgesamt $||T|| = M_0$. Aus dieser Gleichheit folgt dann auch $||Tx|| \le ||T|| \, ||x|| \, \forall x \in X$.

Bemerkung

Da stetige Operatoren die Einheitskugel $\{x \in X \mid ||x|| \le 1\}$ auf eine beschränkte Menge abbildet, spricht man auch von beschränkten Operatoren.

Sei $L(X,Y) := \{T : X \to Y \mid T \text{ ist linear unabhängig und stetig}\}$. L(X,Y) ist bezüglich der algebraischen Operationen (S+T)x = Sx + Tx und $S(\alpha x) = \alpha Sx$ ein Vektorraum. Weiter ist $L(X,Y) \neq \emptyset$, da der Nulloperator $x \mapsto 0$ in L(X,Y) liegt. Sei L(X) := L(X,X).

{satz2.5}

Satz 2.5

- i) $||T|| = \sup_{||x|| \le 1} ||Tx||$ definiert eine Norm aus L(X,Y), die Operatornorm.
- ii) Ist Y vollständig, so ist auch L(X,Y) vollständig.

Beispiel

 $T: \ell^2 \to \mathbb{R}, \ T(x_n)_n = x_1$, ist sicherlich linear. T ist stetig, da:

Zu zeigen: $\exists M \ge 0 : |T(x_n)_n| \le M \|(x_n)\|_{\ell^2} \, \forall (x_n) \in \ell^2$. Sei $(x_n)_n \in \ell^2$ beliebig.

$$|T(x_n)_n| = |x_1| \le \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}} = \|(x_n)_n\|_{\ell^2}$$

Also ist T stetig und $||T|| \le 1$.

 $x = e_1 \in \ell^2$. $|Te_1| = 1 = ||e_1||_{\ell^2}$. Hieraus folgt ||T|| = 1. //

Beweis:

i) $\|\lambda T\| = |\lambda| \|T\|$ klar. $\|T\| = 0 \Leftrightarrow T = 0$ klar. Zur Dreiecksungleichung: Sei $\|x\| \le 1$.

$$||(S+T)(x)|| = ||Sx+Tx|| \le ||Sx|| + ||Tx|| \le ||S|| + ||T||$$

$$||S+T|| - \sup_{x \in \mathbb{R}} ||(S+T)(x)|| \le ||S|| + ||T||$$

$$||S+T|| = \sup_{\|x\| \le 1} ||(S+T)(x)|| \le ||S|| + ||T||$$

ii) Sei (T_n) eine Cauchy-Folge in L(X,Y). Sei $x \in X$ fest. $(T_n x) \subseteq Y$ ist eine Cauchyfolge in Y^1 . Da Y vollständig ist, existiert $Tx := \lim_{n \to \infty} T_n x \forall x \in X$. Die so definierte Abbildung $T: X \to Y$ ist linear:

$$T(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} \lambda T_n(x_1) + \mu T_n(x_2) = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda T x_1 + \mu T x_2$$

Es bleibt zu zeigen: $T \in L(X,Y)$ (d.h. $||T|| < \infty$) und $||T_n - T|| \to 0$ für $n \to \infty$.

Zu $\varepsilon > 0$ beliebig wähle $n_0 \in \mathbb{N}$ mit $||T_n - T_m|| \le \varepsilon \forall n, m \ge n_0$. Sei $x \in X$ mit $||x|| \le 1$. Wähle $m_0 = m_0(\varepsilon, x) \le n_0$ mit $||T_{m_0}x - Tx|| \le \varepsilon$.

$$\forall n \geq n_0: \left\|T_n x - T x\right\| \leq \left\|T_n x - T_{m_0} x\right\| + \left\|T_{m_0} x - T x\right\| \leq \left\|T_n - T_{m_0}\right\| \left\|x\right\| + \varepsilon \leq 2\varepsilon$$

Also:

$$||T_n - T|| = \sup_{||x|| \le 1} ||T_n x - Tx|| \le 2\varepsilon$$

Also ist $T_n - T \in L(X, Y)$ und $||T_n - T|| \to 0$ für $n \to \infty$ sowie $T = T - T_n + T_n \in L(X, Y)$. \square

 $^{1 \|}T_n x - T_m x\|_{Y} = \|(T_n - T_m)x\|_{Y} \le \|T_n - T_m\|_{L(X,Y)} \|x\|_{X}$

Bemerkung

- i) $B_x := \{x \in X \mid ||x|| \le 1\}$ Einheitskugel, $S_x = \{x \in X \mid ||x|| = 1\}$ Einheitssphäre. Somit: $T_n \to T$ bezüglich der Operatornorm $\Leftrightarrow T_n x \to Tx$ gleichmässig auf B_x .
- ii) Konvergenz in der Operatornorm ist stärker als punktweise Konvergenz. Seien $X=C_0$ und $Y=\mathbb{R}$. $T_nx=T_n(x_k)_{k\in\mathbb{N}}=x_n$ für $x=(x_k)_k\in C_0,\ x=(x_1,x_2,x_3,...)$. $T_nx=x_n\xrightarrow{n\to\infty}0$. T_n konvergiert punktweise gegen den 0-Operator, aber $\|T_n-0\|=\|T_n\|=1$, da $\|T_nx\|=\|x_n\|\leq \|x\|_\infty$ und $\|T_ne_n\|=1$ und somit keine Konvergenz in der Operatornorm.

{satz2.6}

Satz 2.6

Ist D ein dichter Unterraum des normierten Raumes X, Y sei ein Banachraum und $T \in L(D,Y)$, so existiert genau eine stetige Fortsetzung $\hat{T} \in L(X,Y)$, d.h. $\hat{T}|_{D} = T$. Zusätzlich: $||T|| = ||\hat{T}||$.

Beweis:

Eindeutigkeit: Seien T_j , j=1,2, zwei stetige lineare Fortsetzungen von T und $x \in X \setminus D$. Es existiert eine Folge $(x_n)_n \subseteq D$ mit $x_n \to x$. Also ist

$$T_1 x = T_1 (\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T_1 (x_n) = \lim_{n \to \infty} T x = \lim_{n \to \infty} T_2 x = T_2 (\lim_{n \to \infty} x_n) = T_2 x$$

Existenz: Sei $x \in X \setminus D$. Es existiert wieder eine Folge $(x_n)_n \subseteq D$ mit $x_n \to x$. $(x_n)_n$ ist eine Cauchyfolge in D. Da $T: D \to Y$ stetig ist, folgt: $(Tx_n)_n$ ist eine Cauchyfolge in Y. Da Y vollständig ist, existiert ein $y \in Y$ so dass $Tx_n \xrightarrow{n \to \infty} y$. Setze Tx := y. Es gilt:

- i) \hat{T} ist wohldefiniert. Sei $x \in X$ mit $x_n \to x$, $y_n \to y$, $x_n, y_n \in D$. Für $z_n \coloneqq \begin{cases} x_k & n = 2k \\ y_k & n = 2k+1 \end{cases}$ $(z_n = (x_0, y_0, x_1, y_1, x_2, y_2, \ldots))$ gilt $z_n \to x$ und $z_n \in D$. Also existiert $\lim Tz_n$ und somit $\lim Tx_n = \lim Ty_n$.
- ii) $\hat{T}|_D = T\sqrt{.}$ Sei $x \in D$, wähle $x_n = x \forall n \in \mathbb{N}$.
- iii) \hat{T} ist linear. Seien $x, y \in X$ und $\alpha \in \mathbb{K}$ mit $x_n \to x$, $y_n \to y$ mit $x_n, y_n \in D$. Dann gilt $\alpha x_n + y_n \in D \to \alpha x + y$.

$$\hat{T}(\alpha x + y) = \lim_{n \to \infty} T(\alpha x_n + y_n) = \alpha \lim_{n \to \infty} Tx_n + \lim_{n \to \infty} Ty_n = \alpha \hat{T}x + \hat{T}y$$

iv) \hat{T} ist stetig. Sei $x \in X$. Es existiert eine Folge $(x_n) \subseteq D$ mit $x_n \to x$.

$$\|\hat{T}x\| = \left\| \lim_{n \to \infty} Tx_n \right\| = \lim_{n \to \infty} \|Tx_n\| \le \lim_{n \to \infty} \|T\| \|x_n\| = \|T\| (\lim_{n \to \infty} \|x_n\|) = \|T\| \|x\|$$

Also: $\|\hat{T}\| \le \|T\|$. $\|\hat{T}\| \ge \|T\| \sqrt{\text{da }\hat{T}}$ Fortsetzung. Somit insgesamt: $\|\hat{T}\| = \|T\|$

{lemma2.7}

Lemma 2.7

Für $S \in L(X,Y)$ und $T \in L(Y,Z)$ gilt $TS \in L(X,Z)$ mit $||TS|| \le ||T|| \, ||S||$.

Beweis: Die Linearität von TS ist klar und die Stetigkeit folgt aus

$$||(TS)x|| = ||T(Sx)|| \le ||T|| \, ||Sx|| \le ||T|| \, ||S|| \, ||x|| \, \forall x \in X$$

Beispiel

- i) Ist X = Y und T = I der identische operator, d.h. Ix = x, so gilt ||T|| = 1.
- ii) Ist X endlichdimensional und Y ein beliebiger normierter Raum, so ist jede lineare Abbildung $T: X \to Y$ stetig.

Beweis: Die Stetigkeit bleibt erhalten, wenn man zu einer äquivalenten Norm auf X und Y übergeht (die Größe der Zahl ||T|| hängt aber von der kokreten Wahl der Norm ab). Auf X sind alle Normen äquivalent, da dim $X < \infty$. Wir nehmen an, dass X mit der Norm

$$\left\| \sum_{i=1}^{n} \alpha_i e_i \right\| = \sum_{i=1}^{n} |\alpha_i|$$

versehen ist.

$$\left\| T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) \right\| = \left\| \sum_{i=1}^{n} \alpha_{i} T e_{i} \right\| \leq \sum_{i=1}^{n} |\alpha_{i}| \left\| T e_{i} \right\| = \left(\max_{i=1}^{n} \left\| T e_{i} \right\|\right) \sum_{i=1}^{n} |\alpha_{i}| = \left(\max_{i=1}^{n} \left\| T e_{i} \right\|\right)$$

iii) Setze $T: C[0,1] \to \mathbb{K}$, Tx = x(0). Wir versehen C[0,1] mit der Supremumsnorm. $T \in L(C[0,1],\mathbb{K})$ mit ||T|| = 1. Denn:

$$|Tx| = |x(0)| \le \sup_{t \in [0,1]} |x(t)| = ||x||_{\infty} \, \forall x \in C[0,1]$$

Also: $||x|| \le 1$. Andererseits gilt für die konstante Funktion 1, d.h. $x(t) = 1 \forall t \in [0,1]$: $||x||_{\infty} = 1 = |Tx|$, also ||T|| = 1.

iv) $T_g\colon C[0,1]\to \mathbb{K},\ T_g(x)=\int_0^1 x(t)d(t)\mathrm{d}t.$ Hierbei ist $g\in C[0,1]$ eine gegebene Funktion. Dann gilt:

$$||T_g|| = \int_0^1 |g(t)| \mathrm{d}t$$

Denn:

$$|T_g(x)| = \left| \int_0^1 x(t)g(t)dt \right| \le \int_0^1 |x(t)||g(t)|dt \le \int_0^1 |g(t)|dt \, ||x||_{\infty}$$

Sei $\varepsilon > 0$, $x_{\varepsilon} := \frac{\overline{g(t)}}{|g(t)| + \varepsilon}$. Es folgt direkt: $x_{\varepsilon} \in C[0, 1]$, $||x_{\varepsilon}|| \le 1$.

$$|T_g x_{\varepsilon}| = \int_0^1 \frac{|g(t)|^2}{|g(t)| + \varepsilon} dt \ge \int_0^1 \frac{|g(t)|^2 - \varepsilon^2}{|g(t)| + \varepsilon} dt = \int_0^1 |g(t)| - \varepsilon dt = \int_0^1 |g(t)| dt - \varepsilon dt$$

$$||T_g|| = \sup_{||x|| \le 1} |T_g x| \ge \sup_{\varepsilon > 0} |T_g x_{\varepsilon}| \ge \int_0^1 |g(t)| dt$$

//

{def2.8}

Definition 2.8

Sei X, Y normierte Räume. Eine lineare Abbildung $T: X \to Y$ heißt Quotientenabbildung, wenn T die offene Kugel $\{x \in X \mid \|x\| < 1\}$ auf die offene Kugel $\{y \in Y \mid \|y\| < 1\}$ abbildet, d.h.

$$T(\{x \in X \mid ||x|| < 1\}) = \{y \in Y \mid ||y|| < 1\} \tag{*}$$

Bemerkung

Eine Quotientenabbildung ist surjektiv und stetig mit ||T|| = 1.

Beweis: (*) und T linear $\Rightarrow T$ surjektiv.

$$||Tx|| = (1+\varepsilon)||x|| \left||T\left(\frac{x}{(1+\varepsilon)||x||}\right)|| < (1+\varepsilon)||x||$$

Dann folgt: T ist stetig und $||T|| \le 1$. Aus

$$\|T\| = \sup_{\|x\| \le 1} \|Tx\| \ge \sup_{\|x\| = 1} \|Tx\| = 1$$

Hieraus folgt ||T|| = 1.

z2.9}

Satz 2.9

Sei U ein abgeschlossener Unterraum des normierten Raumes X. Dann ist die Abbildung $\omega: X \to X/U, x \mapsto [x]$, eine Quotientenabbildung.

Beweis: ω ist sicherlich linear. Es ist zu zeigen:

$$\omega(\{x \in X \mid \|x\| < 1\}) = \{x \in X/U \mid \|y\| < 1\}$$

'⊆': Folgt aus:

$$\|\omega(x)\| = \|[x]\| = d(x, U) \le \|x\| < 1$$

falls ||x|| < 1.

 \supseteq ': Sei $[x] \in X/U$ mit ||[x]|| < 1. Dann existiert ein $u \in U$ so dass ||x - u|| < 1.

$$\omega(x-u) = [x-u] = [x]$$

Bemerkung

Seien X und Y normierte Räume und $T: X \to Y$ eine lineare, stetige und bijektive Abbildung. Dann existiert $T^{-1}: Y \to X$ linear. T^{-1} muss aber nicht stetig sein.

Beispiel

Identität $I: (C[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_1)$ mit $\|x\|_1 = \int_0^1 |x(t)| dt$. Die Identität ist bijektiv, linear und stetig, da:

$$||Ix||_1 = \int_0^1 |x(t)| dt \le \sup_{t \in [0,1]} |x(t)| = ||x||_{\infty}$$

Aber: I^{-1} ist nicht stetig, da für $x_n(t) = t^n$ gilt:

$$||x_n||_{\infty} = 1, \quad ||x_n||_1 = \frac{1}{n+1} \xrightarrow{n \to \infty} 0$$

//

Bemerkung

Die Stetigkeit von T^{-1} ist wünschenswert. Ist etwa x_1 Lösung von $Tx_1 = y_1$ und x_2 Lösung von $Tx_2 = y_2$, so wird in Anwendung häufig benötigt:

$$y_1 \approx y_2 \Rightarrow x_1 \approx x_2$$

(stetige Abhängigkeit der Lösung von den Daten) Dies ist gerade die Stetigkeit von T^{-1} .

{def2.10}

Definition 2.10

Ein stetiger linearer Operator $T: X \to Y$ heißt Isomorphismus, falls T bijektiv und T^{-1} stetig ist.

Ein linearer Operator heißt isometrisch, falls $||Tx|| = ||x|| \forall x \in X$.

Normierte Räume zwischen denen ein (isometrischer) Isomorphismus existiert, heißen (isometrisch) isomorph. In Zeichen $X \simeq Y$ (bzw. $X \cong Y$).

Bemerkung i) Isomorphismen sind lineare Surjektionen, die der Bedingung $\exists m, M > 0 : m ||x|| \le ||T||$ genügen.

ii) Isometrien sind stetig mit Norm 1 und injektiv.

{satz2.11}

Satz 2.11

 $c \simeq c_0$.

Beweis: Wir definieren $\ell: x \to \mathbb{K}$ durch

$$\ell x = \ell(x_n)_n := \lim_{n \to \infty} x_n$$

 ℓ linear $\sqrt{.}$

$$|\ell x| = |\lim_{n \to \infty} x_n| \le \sup_{n \in \mathbb{N}} |x_n| = ||x||_{\infty}, x \in c$$

und für konstante Folgen x gilt $|\ell x| = ||x||_{\infty} \Rightarrow ||\ell|| = 1$.

Wir definieren $T: c \rightarrow c_0$ durch

$$(Tx)_n := \begin{cases} \ell(x) & n = 1 \\ x_{n-1} - \ell(x) & n \ge 2 \end{cases}, x = (x_n)_n \in c, n \in \mathbb{N}$$

Es gilt:

$$\|Tx\|_{\infty} = \max\left\{|\ell(x)|, \sup_{n \geq 2}|x_{n-1} - \ell(x)|\right\} \leq |\ell(x)| + \sup_{n \geq 1}|x_n| \leq 2 \|x\|_{\infty}$$

D.h. T stetig und linear.

Umgekehrt definieren wir $S: c_0 \rightarrow c$ durch

$$(Sx)_n := x_{n+1} + x_1, n \in \mathbb{N}$$

$$||Sx||_{\infty} = \sup_{n \in \mathbb{N}} |x_{n+1} + x_1| \le 2 ||x||_{\infty}$$

Also sind *S* und *T* linear und stetig. Weiter gilt:

$$ST = I_c, \qquad TS = I_{c_0}$$

D.h. $S = T^{-1}$ und T ist ein Isomorphismus.

Bemerkung

Für eine Quotientenabbildung $T: X \to Y$ ist $X/\ker(T) \cong Y$.

{satz2.12}

Satz 2.12

Sei X ein normierter Raum und $T \in L(X)$. Konvergiert $\sum_{n=0}^{\infty} T^n$ in L(X), so ist I - T invertierbar mit

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n$$

(Neumannsche Reihe). Speziell ist die Voraussetzung $\sum T^n$ konvergent erfüllt, wenn X ein Banachraum ist und ||T|| < 1. in diesem Fall ist

$$||(I-T)^{-1}|| \le (1-||T||)^{-1}$$

Beweis: Setze $S_m := \sum_{n=0}^m T^n$.

$$(I-T)S_m = S_m(I-T) = I - T^{n+1}$$

In jedem normierten Raum bilden die Glieder einer konvergenten Reihe eine Nullfolge (Beweis wie in \mathbb{K}). Also gilt $T^n \to 0$ bezüglich der Operatornorm, d.h. $\lim_{n \to \infty} ||T^n|| = 0$. Die Abbildungen $S \mapsto RS$ und $S \mapsto SR$, $R \in L(X)$ fest, sind stetig auf L(X), denn: $\mathcal{L}: L(X) \to L(X)$, $S \mapsto RS$.

$$\|\mathscr{L}S\| = \|RS\| \le \|R\| \, \|S\|$$

Daraus folgt:

$$I = \lim_{m \to \infty} (I - T^{m+1}) = \lim_{m \to \infty} (I - T) S_m = (I - T) \lim_{m \to \infty} S_m$$

Analog:

$$I = \left(\lim_{m \to \infty} S_m\right) (I - T)$$

Also:

$$(i-T)^{-1} = \sum_{n=0}^{\infty} T^n$$

Für ||T|| < 1 gilt:

$$\sum_{n=0}^{\infty} \|T^n\| \le \sum_{n=0}^{\infty} \|T\|^n < \infty$$

 $\sum T^n$ ist also absolut konvergent. Da X vollständig ist und mit $\ref{eq:convergent}$ konvergiert dann $\sum T^n$ und

$$\left\| \sum_{n=0}^{\infty} T^n \right\| \le \sum_{n=0}^{\infty} \|T^n\| \le \sum_{n=0}^{\infty} \|T\|^n = (1 - \|T\|)^{-1}$$

Dualräume und ihre Darstellungen

{def3.1}

Definition 3.1

Der Raum $L(X,\mathbb{K})$ der stetigen linearen Funktionale auf einem normierten Raum X heißt der Dualraum von X und wird mit X' bezeichnet.

Bemerkung

Der Dualraum eines normierten Raumes versehen mit der Operatornorm $||x'|| = \sup_{||x|| \le 1} |x'(x)|$, $x' \in X'$, ist stets ein Banachraum.

{satz3.2}

Satz 3.2

i) Sei $1 \le p < \infty$ und $\frac{1}{p} + \frac{1}{q} = 1$. Dann ist die Abbildung $T : \ell^q \to (\ell^p)'$ mit

$$(Tx)(y) = \sum_{n=1}^{\infty} x_n y y_n, \quad x = (x_n) \in \ell^q, y = (y_n) \in \ell^p$$

ein isometrischer Isomorphismus.

ii) Dieselbe Abbildungsvorschrift liefert einen isometrischen Isomorphismus zwischen ℓ^1 und $(c_0)'$.

Beweis: Sei $1 \le p < \infty$ und $\frac{1}{p} + \frac{1}{q} = 1$. Sei $x = (x_n) \in \ell^q$ und $y = (y_n) \in \ell^p$. Nach der Hölderschen Ungleichung ist dann $\sum_{n=1}^{\infty} x_n y_n$ absolut konvergent mit

$$|(Tx)(y)| = \left|\sum_{n=1}^{\infty} x_n y_n\right| \le ||xy||_1 \le ||x||_q ||y||_p$$

Da T auch linear ist, folgt die Wohldefiniertheit und die Stetigkeit von T mit $||Tx|| \le ||x||_q$.

T ist injektiv: Aus Tx = 0 folgt $(Tx)(e_n) = x_n$ und somit x = 0.

T ist surjektiv und eine Isometrie: Sei $1 . Sei <math>y' \in (\ell^p)'$. Es ist zu zeigen: $\exists x \in \ell^q$, Tx = y' und $\|x\|_q \le \|y'\|$. Zu $n \in \mathbb{N}$ setzen wir $x_n := y'(e_n)$ und $x = (x_n)_n$. Setze

$$y_n = \begin{cases} \frac{|x_n|^q}{x_n} & x_n \neq 0\\ 0 & x_n = 0 \end{cases}$$

Für $N \in \mathbb{N}$ gilt nun

$$\sum_{n=1}^{N} |y_n|^p = \sum_{n=1}^{N} |x_n|^{qp-p} = \sum_{n=1}^{N} |x_n|^q$$

und

$$\sum_{n=1}^{N} |x_n|^q = \sum_{n=1}^{N} x_n y_n$$

$$= \sum_{n=1}^{N} y_n y'(e_n)$$

$$= y' \left(\sum_{n=1}^{N} y_n e_n \right)$$

$$\leq ||y'|| \left| \left| \sum_{n=1}^{N} y_n e_n \right| \right|_p$$

$$= ||y'|| \left(\sum_{n=1}^{N} |y_n|^p \right)^{\frac{1}{p}}$$

$$= ||y'|| \left(\sum_{n=1}^{N} |x_n|^q \right)^{\frac{1}{p}}$$

Also:

$$\left(\sum_{n=1}^{N} |x_n|^q\right)^{\frac{1}{q}} \le \|y'\| \,\forall N \in \mathbb{N}$$

Und somit: $x \in \ell^q$ und $||x||_q \le ||y'||$. Es gilt auch Tx = y', da

$$(Tx)(e_n) = x_n := y'(e_n) \forall n \in \mathbb{N}$$

Da Tx und y linear sind folgt: Tx und y' stimmen auf $d = lin\{e_n \mid n \in \mathbb{N}\}$ überein. Da Tx und y' stetig auf ℓ^p , d.h. $\in (\ell^p)'$, stimmen Tx und y' auch auf $\bar{d} = \ell^p$ überein.

p=1: Zu $n\in \mathbb{N}$ setze $x_n=y'(e_n)$ und $x=(x_n)_n$ für $y'\in (\ell^1)'.$ Es gilt

$$|x_n| = |y'(e_n)| \le \left\|y'\right\| \left\|e_n\right\|_1 = \left\|y'\right\|$$

Also ist $x \in \ell^{\infty}$ und $||x||_{\infty} \le ||y'||$. Tx = y' folgt analog zum Fall 1 .

zu ii): Sei $y' \in c_0'$. Zu $n \in \mathbb{N}$ setzen wir $x_n = y'(e_n)$ und $x = (x_n)_n$. Es ist zu zeigen: $x \in \ell^1$, Tx = y' und $||x||_1 \le ||y'||$. Setze

$$y_n = \begin{cases} \frac{|x_n|}{x_n} & x_n \neq 0\\ 0 & x_n = 0 \end{cases}$$

Dann gilt für $N \in \mathbb{N}$

$$\sum_{n=1}^{N} |x_n| = \sum_{n=1}^{N} x_n y_n = \sum_{n=1}^{N} y_n y'(e_n) = y' \left(\sum_{n=1}^{N} y_n e_n \right) \le \|y'\| \sup_{n \in \mathbb{N}} |y_n| = \|y'\|$$

Also: $x \in \ell^1$ und $||x||_1 \le ||y'||$. Tx = y' in c_0' analog zum Fall $1 , da <math>\bar{d} = c_0$ bezüglich $||\cdot||_{\infty}$.

Bemerkung

Es gilt: $(\ell^p)' \cong \ell^q$ und $(c_0)' \cong \ell^1$.

Als nächstes betrachten wir die Räume $L^p[a,b]$. Dazu benötigen wir den folgenden Satz.

{satz3.3}

Satz 3.3 Satz von Radon-Nikodym

 Σ sei die σ -Algebra der Borelmengen aus [a,b], λ sei das Lebesgue-Maß auf [a,b] und μ : $\Sigma \to \mathbb{K}$ sei σ -additiv. Dann sind die folgenden Aussagen äquivalent:

- i) Ist $E \in \Sigma$ mit $\lambda(E) = 0$, so ist auch $\mu(E) = 0$.
- ii) es existiert eine integrierbare Funktion $g:[a,b] \to \mathbb{K}$ $(g \in L^1[a,b])$:

$$\mu(E) = \int_{E} g d\lambda \, \forall E \in \Sigma$$

{satz3.4}

Satz 3.4

Sei $1 \le p < \infty$ und $\frac{1}{p} + \frac{1}{q} = 1$. Dann definiert $T: L^q[a,b] \to (L^p[a,b])'$ mit

$$(Tg)(f) = \int_{a}^{b} f g d\lambda$$

einen isometrischen Isomorphismus.

Beweis: Die Höldersche Ungleichung zeigt, dass für $g \in L^q[a,b]$ Tg ein stetiges Funktional auf $L^p[a,b]$ mit $||Tg|| \le ||g||_{L^q}$ ist. Es gilt sogar: $||Tg|| = ||g||_{L^q}$, denn:

$$p > 1$$
: Für

$$f = \frac{\bar{g}}{|g|} \left(\frac{|g|}{\|g\|_{L^q}} \right)^{\frac{q}{p}}$$

gilt:

$$||f||_{L^p}^p = \int_a^b \frac{|g|^q}{||g||_{L^q}^q} d\lambda = 1$$

und

$$\int f g \mathrm{d}\lambda = \left(\int |g|^{1+q/p} \mathrm{d}\lambda\right) \frac{1}{\|g\|_{L^q}^{q/p}} = \frac{\int |g|^q \mathrm{d}\lambda}{\left(\int |g|^q\right)^{1/p}} = \|g\|_{L^q}$$

Für p=1 analog. Es bleibt zu zeigen: T ist surjektiv. Sei dazu $y' \in (L^p[a,b])'$ beliebig. Wir definieren $\mu \colon \Sigma \to \mathbb{K}$ durch $\mu(E) \coloneqq y'(\chi_E)$. μ ist wohldefiniert, da $\chi_E \in LL^p[a,b]$. μ ist auch σ -additiv: Seien $(E_n)_n \subseteq \Sigma$ paarweise disjunkt. Dann gilt:

$$\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) = y'\left(\chi_{\bigcup_{i=1}^{\infty} E_{i}}\right)$$

$$= y'\left(\lim_{n \to \infty} \chi_{\bigcup_{i=1}^{n} E_{i}}\right)$$

$$= \lim_{n \to \infty} y'\left(\chi_{\bigcup_{i=1}^{n} E_{i}}\right)$$

$$= \lim_{n \to \infty} y'\left(\sum_{i=1}^{n} \chi_{E_{i}}\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} y'(\chi_{E_{i}})$$

$$= \sum_{i=1}^{\infty} \mu(E_{i})$$

Aus $\lambda(E)=0$ folgt $\chi_E=0$ fast überall und sonst $\mu(E)=y'(\chi_E)=0$. Mit dem Satz von Radon-Nikodym existiert nun ein $g\in L^1[a,b]$ mit

$$y'(\chi_E) = \mu(E) = \int_E g d\lambda = \int_a^b \chi_E g d\lambda \forall E \in \Sigma$$

Zeige: $y'(f) = \int_a^b f g d\lambda$ für $f \in L^{\infty}[a,b]$. Dies gilt mindestens für charakteristische Funktionen und somit für Stufenfunktionen. Aus $\|\cdot\|_{L^p} \leq (b-a)^{1/p} \|\cdot\|_{\infty}$ folgt $y' \in (L^{\infty}[a,b])'$ und $f \mapsto \int_a^b f g d\lambda$ ist in $(L^{\infty}[a,b])'$, da $g \in L^1[a,b]$. Also gilt die Behauptung auch auf dem $\|\cdot\|_{L^{\infty}}$ –Abschluss der Stufenfunktionen, d.h. auf $L^{\infty}[a,b]$ (Maßtheorie).

Zeige: $g \in L^q[a,b]$. Sei $q < \infty$. Setze $f(x) = \frac{|g(x)|^q}{g(x)}$ mit $\frac{0}{0} = 0$. f ist messbar und es gilt

$$|g|^q = fg = |f|^p$$

Zu $n \in \mathbb{N}$ sei

$$E_n\{x\in [a,b]\mid |g(x)|\leq n\}$$

Dann ist $\chi_{E_n} f$ in $L^{\infty}[a,b]$ und es gilt

$$\int_{E_n} |g|^q d\lambda = \int_a^b \chi_{E_n} f g d\lambda = y'(\chi_{E_n} f) \le ||y'|| ||\chi_{E_n} f||_{L^p} = ||y'|| \left(\int_{E_n} |f|^p d\lambda\right)^{\frac{1}{p}} = ||y'|| \left(\int_{E_n} |g|^q\right)^{\frac{1}{p}}$$

Da $1 - \frac{1}{p} = \frac{1}{q}$ folgt hieraus:

$$\left(\int_{E_{-r}} |g|^{q}\right)^{\frac{1}{q}} \leq \|y'\| \,\forall n \in \mathbb{N}$$

Mit dem Satz von Beppo-Levi folgt nun $\|g\|_{L^q} \le \|y'\|$. Also $g \in L^q$. Sei nun $q = \infty$. Setze

$$E \coloneqq \{x \mid |g(x)| > ||y'||\}$$

Angenommen $\lambda(E) > 0$, $f = \chi_E \frac{|g|}{g} \in L^{\infty}[a, b]$. Es folgt:

$$\lambda(E) \|y'\| = \int_E \|y'\| \,\mathrm{d}\lambda < \int_E |g| \,\mathrm{d}\lambda = \int_E f g \,\mathrm{d}\lambda = y'(f) \le \|y'\| \,\|f\|_{L^1}$$

Also: $\lambda(E) < ||f||_{L^1}$ \nleq . Somit ist $g \in L^{\infty}$.

y' und Tg sind Elemente aus $(L^p[a,b])'$, welche auf den Stufenfunktionen ļbereinstimmen. Also stimmen y' und Tg auf $L^p[a,b]$ überein, da die Stufenfunktionen dicht in L^p liegen. \Box

4

Kompakte Operatoren

{def4.1}

Definition 4.1

Eine lineare Abbildung T zwischen normierten Räumen X und Y heißt kompakt, wenn $T(B_x)$ relativ kompakt ist (d.h. $\overline{T(B_x)}$ ist kompakt).

Die Gesamtheit der kompakten Operatoren wird mit K(X,Y) bezeichnet (K(X) = K(X,X)).

Bemerkung

i) Sei $T: X \to Y$ linear. Dann gilt:

T kompakt

- $\Leftrightarrow T$ bildet beschränkte Mengen auf relativ kompakte Mengen an
- \Leftrightarrow Für jede beschränkt Folge $(x_n)_{n\in\mathbb{N}}\subseteq X$ enthält die Folge $(Tx_n)_n\subseteq Y$ eine konvergente Teilfolge
- ii) Da kompakte Mengen beschränkt sind, sind kompakte Abbildungen stetig, d.h. $K(X,Y) \subseteq L(X,Y)$.

{satz

Satz 4.2

Seien X, Y, Z Banachräume.

- i) Dann ist K(X,Y) ein abgeschlossener Untervektorraum von L(X,Y), d.h. K(X,Y) ist ein Banachraum.
- ii) Sind $T \in L(X,Y)$ und $S \in L(Y,Z)$ und ist S oder T kompakt, so ist auch ST kompakt.

Beweis:

i) Es ist sicherlich klar, dass mit T auch λT kompakt ist $(\lambda \in \mathbb{K})$. Seien nun $S, T \in K(X, Y)$. Zeige: $S + T \in K(X, Y)$. Sei dazu $(x_n)_{n \in \mathbb{N}}$ eine beschränkt Folge in X. Wähle eine Teilfolge $(x_{n_k})_k$, so dass $(Sx_{n_k})_k$ in Y konvergiert. (x_{n_k}) ist eine Folge in X und wir wählen eine Teilfolge $(x_{n_{k_l}})_{l \in \mathbb{N}}$ von $(x_{n_k})_k$, die wir kurz mit $(y_n)_n$ bezeichnen, so dass $(Ty_n)_n$ in Y konvergiert. Dann konvergiert auch $(Sy_n + Ty_n)_n$ in Y, also gilt $S + T \in K(X, Y)$. Somit ist K(X, Y) ein Untervektorraum von L(X, Y).

Zeige: K(X,Y) ist abgeschlossen. Seien $T_n \in K(X,Y)$ und $T \in L(X,Y)$ mit $||T_n - T|| \to 0$ für $n \to \infty$.

Zu zeigen: $T \in K(X,Y)$. Sei weiter $(x_n)_n$ eine beschränkte Folge in X.

Zu zeigen: $\exists \text{Teilfolge } (x_{n_k})_k \text{ mit } Tx_{n_k} \text{ konvergiert. Da } T_1 \text{ kompakt ist, existiert eine konvergente Teilfolge } (T_1x_{n_k})_k. \text{ Wir schreiben } x_k^{(1)} = x_{n_k}. \text{ Da auch } T_2 \text{ kompakt ist, existiert eine Teilfolge von } (x_i^{(1)})_i, \text{ welche wir mit } (x_i^{(2)})_i \text{ bezeichnen; } (T_2x_i^{(2)})_i \text{ konvergiert. Dies führen wir nun induktiv weiter: } (x_i^{(j)})_i \text{ ist eine Teilfolge von } (x_i^{(j-1)})_i \text{ und } (T_jx_i^{(j)}) \text{ konvergiert. Wir betrachten nun die Diagonalfolge } y = (y_n)_n = (x_n^{(n)})_n. (T_jy_n)_n \text{ konvergiert dann für alle } j \in \mathbb{N}. \text{ Zu zeigen: } (Ty_n)_n \text{ konvergiert. Dazu genügt es zu zeigen:} (Ty_n)_n \text{ ist eine Cauchyfolge } (\text{da } Y \text{ vollständig}). \text{ Sei } \varepsilon > 0 \text{ beliebig. O.B.d.A. } \|x_n\| \leq 1 \forall n \in \mathbb{N}. \text{ Dann auch } \|y_n\| \leq 1 \forall n \in \mathbb{N}. \text{ Wähle } n_0 \in \mathbb{N} \text{ mit } \|T_{n_0} - T\| \leq \varepsilon \text{ und } i_0 \in \mathbb{N} \text{ mit}$

$$||T_{n_0}y_i - T_{n_0}y_j|| \le \varepsilon, \quad i, j \ge i_0$$

Dann gilt für $i, j \ge i_0$:

$$\left\|Ty_{i}-Ty_{j}\right\|\leq\left\|Ty_{i}-T_{n_{0}}y_{i}\right\|+\left\|T_{n_{0}}y_{i}-Ty_{j}\right\|\leq2\left\|T-T_{n_{0}}\right\|+\varepsilon\leq3\varepsilon$$

Hieraus folgt i).

ii) Ist $(x_n)_n \subseteq X$ eine beschränkte Folge und S kompakt, so ist $T(x_n)_n$ beschränkt und $(STx_n)_n$ besitzt eine konvergente Teilfolge. Ist T kompakt, und $(Tx_{n_k})_k$ konvergent, so ist auch $(STx_{n_k})_k$ konvergent.

Beispiel

- i) Ist X endlichdimensional, so ist jede lineare Abbildung $T: X \to Y$ kompakt. T ist nämlich stetig und bildet deshalb die kompakte Menge B_x auf eine kompakte Menge ab.
- ii) Ist dim $X = \infty$, so ist $I: X \to X$, Ix = x, nicht kompakt ($I \in L(x)$, aber $I \notin K(X)$). Angenommen, I ist kompakt. Dann:

$$\overline{I(B_x)} = \overline{B_x} = B_x$$

 B_x ist kompakt. Dies ist ein Widerspruch zu dim $X = \infty$.

iii) Ist $T \in L(X,Y)$ und ist der Bildraum T(X) endlichdimensional, so ist T kompakt.

Beweis: $T(B_x)$ ist beschränkt (da T stetig) und somit ist $\overline{T(B_x)}$ beschränkt und abgeschlossen. Da dim $T(X) < \infty$ und $T(X) = \overline{T(X)}$ folgt, dass $\overline{T(B_x)}$ kompakt ist.

//

Bemerkung

In Satz 4.2 wird nicht benötigt, dass X und Z Banachräume sind.

{kor4.3}

Korollar 4.3

Seien X und Y Banachräume und sei $T \in L(X,Y)$. Falls eine Folge (T_n) linear stetiger Operatoren mit endlichdimensionalem Bild existiert und $||T_n - T|| \to 0$ für $n \to \infty$, so ist T kompakt.

Beweis: $T_n \in L(X,Y) \Rightarrow T_n$ kompakt, $n \in \mathbb{N} \Rightarrow T$ ist kompakt.

{satz4.4}

Satz 4.4 Arzela-Ascoli

Sei (X,d) ein kompakter metrischer Raum. $C(X) = \{f : X \to \mathbb{K} \mid f \text{ stetig}\}$ versehen mit $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$. Sei $M \subseteq C(X)$. M ist genau dann relativ kompakt (d.h. \bar{M} ist kompakt), wenn

i)

$$\sup_{f \in M} \sup_{x \in X} |f(x)| < \infty$$

(*M* ist beschränkt).

ii) $\forall x \in X \forall \varepsilon > 0 \exists \text{Umgebung } U \text{ von } x : \forall y \in U \forall f \in M : |f(x) - f(y)| < \varepsilon. \text{ (f ist gleichgradig stetig in jedem $x \in X$)}.$

Beweis:

'⇒ ': O.B.d.A. M ist kompakt. Da $\|\cdot\|_{\infty}$: $C(X) \to \mathbb{R}$ stetig ist, folgt, dass $\{\|f\|_{\infty} \mid f \in M\}$ kompakt, also beschränkt ist. Hieraus folgt i).

zu ii): Sei $x \in X$ und $\varepsilon > 0$ beliebig. In einer Umgebung U von x setze

$$M(U,\varepsilon) := \{ f \in M \mid |f(x) - f(y)| < \varepsilon \forall y \in U \}$$

Es folgt:

$$M\left(U, \frac{\varepsilon}{2}\right) \subseteq M(\mathring{U}, \varepsilon) \subseteq M(U, \varepsilon)$$

und da die Elemente von *M* stetig sind:

$$M \subseteq \bigcup_{U \text{ Umgebung von } x} M\left(U, \frac{\varepsilon}{2}\right) \subset \bigcup_{U \text{ Umgebung von } x} M(\mathring{U}, \varepsilon)$$

M ist auch kompakt, also:

$$M \subseteq \bigcup_{j=1}^{n} M(\mathring{U}_{j}, \varepsilon) \subseteq \bigcup_{j=1}^{n} M(U_{j}, \varepsilon)$$

Mit $U := \bigcap_{i=1}^n U_i$ folgt: U ist Umgebung von x und $M \subseteq M(U, \varepsilon)$. Damit folgt ii).

 $' \Leftarrow '$: Wegen ii) gilt: $\forall x \in X \forall n \in \mathbb{N}$ ist

$$W_x^n := \left\{ y \in X \middle| |f(x) - f(y)| < \frac{1}{n} \forall f \in M \right\}$$

eine Umgebung von x. Da X kompakt ist, existiert eine endliche Menge $X_n \subseteq X$ mit $X = \bigcup_{x \in X_n} W_x^n$. $X_\infty = \bigcup_{n \in \mathbb{N}} X_n$ ist abzählbar.

Sei $X_{\infty} := \{\xi_1, \xi_2,\}$ und $(f_n)_n$ sei eine Folge in M. Wir zeigen: (f_n) besitzt eine Cauchy-Teilfolge. Da C(X) vollständig ist folgt dann die Behauptung.

Wegen i) gibt es eine Teilfolge $(f_{1,m})_m$ von (f_n) , so dass $(f_{1,m}(\xi_1))_m$ konvergiert. Dann eine Teilfolge $(f_{2,m})_m$ von $(f_{1,m})_m$, so dass $(f_{2,m}(\xi_2))_m$ konvergiert, usw. Dann ist $(g_m) := (f_{m,m})_m$ eine Teilfolge von $(f_m)_m$ mit der Eigenschaft $(*) \forall \xi \in X_\infty$: $(g_m(\xi))_m$ konvergiert. Zeige nun: (g_m) ist eine Cauchy-Folge.

Sei dazu $x \in X$, $n \in \mathbb{N}$ beliebig (aber zunächst fest). $\exists \xi_x \in X_n \subseteq X_\infty$ mit $x \in W_{\xi_n}^n$. Es folgt:

$$|g_m(x) - g_l(x)| \le |g_m(x) - g_m(\xi_x)| + |g_m(\xi_x) - g_l(\xi_x)| + |g_l(\xi_x) - g_l(x)| \le \frac{2}{n} + \sup_{\xi \in X_n} |g_m(\xi) - g_l(\xi)|$$

Da *x* beliebig, folgt:

$$\|g_m - g_l\|_{\infty} \le \frac{2}{n} + \sup_{\xi \in X_n} |g_m(\xi) - g_l(\xi)|$$

Da $X_n \subseteq X_\infty$ endlich und wegen (*) gilt: $(g_m)_m$ ist eine Cauchy-Folge.

Beispiel

Wir betrachten den Fredholmschen Integraloperator $T_k: C[0,1] \rightarrow C[0,1]$

$$(T_k f)(s) = \int_0^1 k(s, t) f(t) dt$$

mit $k \in C([0,1]^2)$. Aus der gleichmässigen Stetigkeit von k folgt $T_k f \in C[0,1]$. $/\!/$

Bemerkung

Sei

$$F(X,Y) := \{T \in L(X,Y) \mid T \text{ hat endlichdimensionales Bild}\}$$

Sind *X* und *Y* Banachräume. so gilt

$$\overline{F(X,Y)} \subseteq K(X,Y)$$

{satz4.5}

Satz 4.5

Seien X und Y Banachräume und es gelte: Es existiert eine beschränkte Folge $(S_n)_n$ in F(Y) mit

$$\lim_{n\to\infty} S_n y = y \,\forall \, y \in Y$$

Dann gilt:

$$\overline{F(X,Y)} = K(X,Y)$$

Beweis: Sei $T \in K(X,Y)$ beliebig. Dann ist $S_n T \in F(X,Y)$. Wir zeigen:

$$||S_nT-T|| \xrightarrow{n\to\infty} 0$$

Sei dazu $\varepsilon > 0$ beliebig. Setze

$$K := \sup_{n} ||S_n|| < \infty$$

Da T kompakt ist, existieren endlich viele $y_1,...,y_r \in Y$ und es gilt:

$$\overline{T(B_x)} \subseteq \bigcup_{i=1}^r \{ y \in Y \mid ||y - y_i|| < \varepsilon \}$$

Wegen der Voraussetzung in Satz 4.5 gibt es ein $N \in \mathbb{N} \forall n \geq N$:

$$||S_n y_i - y_i|| < \varepsilon, \quad i = 1, ..., r$$

Sei nun $x \in B_x$. Es existiert ein $j \in \{1, ..., r\}$ so dass gilt:

$$||Tx - y_i|| < \varepsilon$$

Dann gilt für $n \ge N$:

$$||S_n Tx - Tx|| \le ||S_n (Tx - y_j)|| + ||S_n y_j - y_j|| + ||y_j - Tx||$$

$$\le ||S_n|| ||Tx - y_j|| + ||S_n y_j - y_j|| + ||y_j - Tx||$$

$$\le K\varepsilon + \varepsilon + \varepsilon$$

$$= (K + 2)\varepsilon$$

Mit

$$\|S_nT-T\|=\sup_{\substack{x\in X\\ \|x\|\leq 1}}\|S_nTx-Tx\|\leq (K+2)\varepsilon\forall n\geq N$$

folgt nun die Behauptung.

Bemerkung

i) Ein Banachraum Y, der die Eigenschaft aus Satz 4.5 besitzt ist separabel.

Beweis: $S_n Y$ ist endlichdimensional, also separabel, d.h. $S_n Y = \bar{A_n}$ mit A_n abzählbar. Setze $A = \bigcup_{n \in \mathbb{N}} A_n$ abzählbar und es gilt $\bar{A} = Y$.

ii) Die Eigenschaft aus Satz 4.5 ist schwächer also $||S_n - I|| \to 0$ für $n \to \infty$. Aus $||S_n - I|| \to 0$ folgt sogar dim $Y < \infty$.

Beweis: K(Y) ist ein Banachraum und somit ist I kompakt.

$$B_{\nu} = \{ y \in Y \mid ||y|| \le 1$$

ist kompakt, und somit dim $Y < \infty$.

{kor4.6}

Korollar 4.6

Sei X ein beliebiger Banachraum und Y einer der separablen Banachräume c_0 , ℓ^p , C[0,1] $(1 \le p < \infty)$. Dann gilt:

$$\overline{F(X,Y)} = K(X,Y)$$

Beweis: Wir müssen jeweils zeigen, dass die Eigenschaft aus Satz 4.5 erfüllt ist.

 $Y = c_0$ oder ℓ^p : Setze

$$S_n x = S_n(x_1, x_2, x_3, ...) = (x_1, x_2, ..., x_n, 0, 0, ...)$$

Y = C[0, 1]:

$$(S_n y)(t) = \sum_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i} y\left(\frac{i}{n}\right)$$

 S_n ordnet y also das n-te Bernsteinpolynom zu (siehe Beweis des Weierstraßschen Approximationssatzes). Dort wurde auch $S_n y \to y$ gezeigt.

Der Satz von Hahn-Banach

Wir werden insbesondere zeigen, dass auf jedem normierten Raum ein stetiges lineares Funktional $\neq 0$ existiert.

{def5.1}

Definition 5.1

Sei X ein Vektorraum. Eine Abbildung $p: X \to \mathbb{R}$ heißtsublinear, falls

i)
$$p(\lambda x) = \lambda p(x) \forall \lambda \ge 0, x \in X$$

ii)
$$p(x + y) = p(x) + p(y) \forall x, y \in X$$

Beispiel

- i) Jede Halbnorm ist sublinear.
- ii) Jede lineare Abbildung $T: X \to \mathbb{R}$ auf einem reellen Vektorraum ist sublinear.
- iii) $(x_n)_n \mapsto \limsup_{n \to \infty} x_n$ ist sublinear auf dem reellen ℓ^{∞} und $(x_n)_n \mapsto \limsup_{n \to \infty} \operatorname{Re} x_n$ ist sublinear auf dem komplexen Raum ℓ^{∞} .

{satz

Satz 5.2 Satz von Hahn-Banach, Version der linearen Algebra

Sei X ein reeller Vektorraum und sei U ein Untervektorraum von X. Ferner seien $p: X \to \mathbb{R}$ sublinear und $l: U \to \mathbb{R}$ linear mit

$$l(x) \le p(x) \forall x \in U$$

Dann existiert eine lineare Fortsetzung $L: X \to \mathbb{R}, L|_U = l \text{ mit } L(x) \le p(x) \forall x \in X.$

Beweis:

i) Es gelte zusätzlich $\dim X/U=1$. Sei $x_0\in X/U$ beliebig. Dann lässt sich jedes $x\in X$ eindeutig schreiben als

$$x = i + \lambda x_0, \quad u \in U, \lambda \in \mathbb{R}$$

Sei r ein freier Parameter. Wir wählen den Ansatz

$$L_r(x) = l(u) + \lambda r$$

 L_r ist eine lineare Abbildung, welches l fortsetzt. Zu zeigen: $\exists r \in \mathbb{R}: L_r \leq p$. Es gilt

$$L_r \le p$$

$$\Leftrightarrow L_r(x) \le p(x) \forall x \in X$$

$$\Leftrightarrow l(u) + \lambda r \le p(u + \lambda x_0) \forall u \in U \forall \lambda \in \mathbb{R}$$
(*)

Nach Voraussetzung gilt (*) für $\lambda = 0$ und alle $u \in U$. Sei $\lambda > 0$. Dann gilt:

$$(*) \Leftrightarrow \lambda r \le p(u + \lambda x_0) - l(u) \forall u$$

$$\Leftrightarrow r \le p\left(\frac{u}{\lambda} + x_0\right) - l\left(\frac{u}{\lambda}\right) \forall u$$

$$\Leftrightarrow r \le \inf_{v \in U} (p(v + x_0) - l(v))$$

Analog für λ < 0:

$$(*) \Leftrightarrow -r \leq p \left(\frac{u}{-\lambda} - x_0\right) - l \left(\frac{u}{-\lambda}\right) \forall u$$
$$\Leftrightarrow r \geq l \left(\frac{u}{-\lambda}\right) - p \left(\frac{u}{-\lambda} - x_0\right) \forall u$$
$$\Leftrightarrow r \geq \sup_{w \in U} (l(w) - p(w - x_0))$$

Somit: $\exists r \in \mathbb{R}$:

$$L_r \le p \Leftrightarrow l(w) - p(w - x_0) \le p(v + x_0) - l(v) \forall v, w \in U \qquad (**)$$

(**) folgt aus: $\forall v, w \in U$:

$$l(w) + l(v) = l(w + v) \le p(w + v) = p(w - x_0 + x_0 + v) \le p(w - x_0) + p(v + x_0)$$

ii) Um die allgemeine Aussage zu beweisen, benötigen wir das Zornsche Lemma: Sei (A, \leq) eine halbgeordnete nichtleere Menge (d.h. \leq ist transitiv, reflexiv und antisymmetrisch) in der jede Kette (dies ist eine total geordnete Menge, also eine Teilmenge, für deren Elemente stets $x \leq y$ oder $y \leq x$ gilt) eine obere Schranke besitzt. Dann liegt jedes Element von A unter einem maximalen Element von A, also einem Element m mit $m \leq a \Rightarrow a = m$ (Das Zornsche Lemma ist äquivalent zum Auswahlaxiom und zum Wohlordnungssatz). Wir wählen

 $A = \{(V, L_V) \mid V \text{ ist ein Unterraum von } X \text{ mit } U \subseteq V \text{ und } L_V \colon V \to \mathbb{R} \text{ linear mit } L_V \leq p|_V \text{ und } L_V|_U = l\}$ Es gilt $A \neq \emptyset$, da $(U, l) \in A$. Wir wählen die Ordnung

$$(V_1, L_{V_1}) \le (V_2, L_{V_2}) \Leftrightarrow V_1 \subseteq V_2 \text{ und } L_{V_2}|_{V_1} = L_{V_1}$$

Ist $((V_i, L_{V_i})_{i \in I})$ total geordnet, so ist (V, L_V) mit

$$V = \bigcup V_i$$
 $L_V(x) = L_{V_i}(x)$ $x \in V_i$

als obere Schranke. Nach dem Zornschen Lemma gibt es also ein maximales Element. Sei nun $m=(X_0,L_{X_0})$ ein maximales Element. Wäre $X_0 \neq X$, so gäbe es nach i) eine echte Majorante von m, und m wäre nicht maximal. Also ist $X_0=X$ und $L=L_{X_0}$ löst unser Fortsetzungsproblem.

Bemerkung

L ist im Allgemeinen nicht eindeutig bestimmt.

{lemma5.3}

Lemma 5.3

Sei X ein \mathbb{C} -Vektorraum.

i) Ist $l: X \to \mathbb{R}$ ein \mathbb{R} -lineares Funktional, d.h.

$$l(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 l(x_1) + \lambda_2 (x_2) \forall \lambda_1, \lambda_2 \in \mathbb{R} \forall x_1, x_2 \in X$$

und setze $\tilde{l}(x) = l(x) - il(ix)$, so ist $\tilde{l}: X \to \mathbb{C}$ ein \mathbb{C} -lineares Funktional und $l = \operatorname{Re} \tilde{l}$.

- ii) Ist $h: X \to \mathbb{C}$ ein \mathbb{C} -lineares Funktional, $l = \operatorname{Re} h$ und \tilde{l} wie in i), so ist l ein \mathbb{R} -lineares Funktional und $h = \tilde{l}$.
- iii) Ist $p: X \to \mathbb{R}$ eine Halbnorm und $l: X \to \mathbb{C}$ C-linear, so gilt die Äquivalenz

$$|l(x)| \le p(x) \forall x \in X \Leftrightarrow |\operatorname{Re} l(x)| \le p(x) \forall x \in X$$

iv) Ist X ein normierter Raum und $l: X \to \mathbb{C}$ \mathbb{C} -linear und stetig, so ist ||l|| = ||Re l||.

Bemerkung

Lemma 5.3 besagt: $l\mapsto \mathrm{Re}\,l$ ist eine bijektive \mathbb{R} -lineare Abbildung zwischen dem Raum der \mathbb{C} -linearen Funktionale und dem Raum der \mathbb{R} -linearen Funktionale. Im normierten Fall ist sie isometrisch.

Beweis:

i) Aus der Konstruktion folgt: \tilde{l} \mathbb{R} -linear und $\operatorname{Re} \tilde{l} = l$. Es bleibt zu zeigen: $\tilde{l}(ix) = i\tilde{l}(x)$. Dies folgt aus:

$$\tilde{l}(ix) = l(ix) = -il(iix) = l(ix) = il(-x) = l(ix) + il(x) = i(l(x) - il(ix)) = i\tilde{l}(x)$$

ii) $l = \operatorname{Re} h$ ist \mathbb{R} -linear $\sqrt{$ Für $x \in X$ gilt:

$$h(x) = \operatorname{Re} h(x) + i \operatorname{Im} h(x) = l(x) + i \operatorname{Im} h(x) = l(x) - i \operatorname{Re} i h(x) = l(x) - i \operatorname{Re} h(ix) = l(x) - i l(ix) = \tilde{l}(x)$$

iii) Wegen $|\operatorname{Re} z| \le |z| \forall z \in \mathbb{C}$ gilt ' \Rightarrow '. Für ' \Leftarrow ' sei $x \in X$. Es existiert ein $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ und $l(x) = \lambda |l(x)|$.

$$|l(x)| = \lambda^{-1}l(x) = l(\lambda^{-1}x) = |\operatorname{Re} l(\lambda^{-1}x)| \le p(\lambda^{-1}x) = |\lambda^{-1}|p(x) = p(x)$$

iv) folgt aus iii).

{satz5.4}

Satz 5.4 Satz von Hahn-Banach, Version der linearen Algebra, Komplexe Variante

Sei X ein komplexer Vektorraum und $U \subseteq X$ ein Untervektorraum. $p: X \to \mathbb{R}$ sei sublinear und $l: U \to \mathbb{C}$ linear mit

$$\operatorname{Re} l(x) \le p(x) \forall x \in U$$

Dann existiert eine lineare Fortsetzung $L: X \to \mathbb{C}, L|_U = l$ mit

$$\operatorname{Re} L(X) \le p(x) \forall x \in X$$

Beweis: Satz 5.2 liefert ein \mathbb{R} -lineares Funktional $F: X \to \mathbb{R}$ mit $F|_U = \operatorname{Re} l$ und $F(X) \le p(x) \forall x \in X$. Mit Lemma 5.3 ist $F = \operatorname{Re} L$ für ein gewisses \mathbb{C} -lineares Funktional $L: X \to \mathbb{C}$. Es bleibt zu zeigen: $L|_U = l$. Dies folgt aus $\operatorname{Re} L|_U = \operatorname{Re} l$ und reflemma5.3 ii).

{satz5.5}

Satz 5.5 Satz von Hahn-Banach, Fortsetzungsversion

Sei X ein normierter Raum und $U \subseteq X$ ein Untervektorraum. Zu jedem stetigen (linearen) Funktional $u': U \to \mathbb{K}$ existiert ein stetig (lineares) Funktional $x': X \to \mathbb{K}$ mit $x'|_U = u'$ und ||x'|| = ||u'||. Jedes stetig Funktional kann also normerhaltend fortgesetzt werden.

Beweis:

i) Sei zunächst $\mathbb{K} = \mathbb{R}$. Setze p(x) = ||u'|| ||x|| für $x \in X$. Es gilt:

$$u'(x) = |u'(x)| \le ||u'|| ||x|| = p(x) \forall x \in U$$

Mit Satz 5.2 existiert eine lineare Abbildung $x': X \to \mathbb{R}$ mit $x'|_U = u'$ und $x'(x) \le p(x) \forall x \in X$. Es gilt auch

$$x'(-x) \le p(-x) = p(x) \forall x \in X$$

Also:

$$|x'(x)| \le p(x) = ||u'|| ||x|| \forall x \in X$$

Hieraus folgt die Behauptung.

Es gilt auch die Umkehrung:

$$||u'|| = \sup_{\substack{u \in U \\ ||u|| \le 1}} |u'(u)| = \sup_{\substack{u \in U \\ ||u|| \le 1}} |x'(u)| \le \sup_{\substack{x \in X \\ ||x|| \le 1}} |x'(x)| = ||x'||$$

ii) Sei nun $\mathbb{K} = \mathbb{C}$. Kombination von Teil i) und Satz 5.4 liefert: $\exists x' \colon X \to \mathbb{C}$ linear mit $x'|_U = u'$ und $\|\operatorname{Re} x'\| = \|u'\|$. Nach Lemma 5.3 iv) $\|\operatorname{Re} x'\| = \|x'\|$ und somit $\|u'\| = \|x'\|$.

Bemerkung

- i) Die Fortsetzung x' ist im Allgemeinen nicht eindeutig.
- ii) Eine analoge Aussage für Operatoren ist falsch. So gibt es keinen stetigen Operator $T: \ell_{\infty} \to c_0$ der die Identität $I: c_0 \to c_0$ fortsetzt.

{kor5

Korollar 5.6

In jedem normierten Raum X existiert zu jedem $x \in X$, $x \neq 0$, ein Funktional $x' \in X'$ mit ||x'|| = 1 und |x'(x)| = ||x||. Insbesondere trennt X' die Punkte von X, d.h. zu $x_1, x_2 \in X$, $x_1 \neq x_2$, existiert ein $x' \in X'$ mit $x'(x_1) \neq x'(x_2)$.

Beweis: Setze $u': \ln\{x\} \to \mathbb{K}$, $u'(\lambda x) = \lambda \|x\|$, normerhaltend auf X fort. Sei x' die Fortsetzung

$$|x'(x)| = |u'(x)| = ||x||$$

||x'|| = ||u'|| = 1, da:

$$|u'(\lambda x)| = |\lambda ||x|| ||=||\lambda x|| \Rightarrow ||u'|| = 1$$

Zum Beweis des Zusatzes betrachte $x = x_1 - x_2$

 $\{kor5.7\}$

Korollar 5.7

In jedem normierten Raum gilt

$$||x|| = \sup_{\substack{x' \in X' \\ ||x'|| \le 1}} |x'(x)| = \max_{\substack{x' \in X' \\ ||x'|| \le 1}} |x'(x)| \forall x \in X$$
 (*)

Beweis:

 \geq : folgt aus $|x'(x)| \leq ||x'|| ||x||$.

' \leq ': folgt aus Korollar 5.6 (der Fall x = 0 ist trivial).

Bemerkung

Betrachte die Symmetrie von (*) zur Definition

$$||x'|| = \sup_{\substack{x \in X \\ ||x|| \le 1}} |x'(x)| \forall x' \in X'$$

Korollar 5.8

Sei X ein normierter Raum und U ein abgeschlossener Untervektorraum und $x \in X$, $x \notin U$. Dann existiert $x' \in X'$ mit $x'|_U = 0$ und $x'(x) \neq 0$.

Beweis: Sei $\omega: X \to X/U$ die kanonische Quotientenabbildung. Dann ist $\omega(u) = 0$ für $u \in U$ und $\omega(x) \neq 0$. Wir wählen nach Korollar 5.6 ein Funktional $l \in (X/U)'$ mit $l(\omega(x)) \neq 0$. Setze $x' := l \circ \omega$. x' leistet das Gewünschte.

{kor5.9}

{kor5.8}

Korollar 5.9

Ist X ein normierter Raum und U ein Untervektorraum, so sind äquivalent:

- i) *U* ist dicht in *X*.
- ii) $x' \in X$ mit $x'|_U = 0 \Rightarrow x' = 0$.

Beweis: Übungsaufgabe.

{satz5.10}

Satz 5.10

Die Abbildung $T: \ell^1 \to (\ell^\infty)'$ mit

$$(Tx)(y) = \sum_{i=1}^{\infty} x_n y_n, \quad x = (x_n), y = (y_n)$$

ist isometrisch, aber nicht surjektiv.

Beweis: Der Beweis der Isometrie ist einfach (analog zu $\ell' \cong c'_0$). Es bleibt zu zeigen: T ist nicht surjektiv.

Wir betrachten das Funktional

$$\lim : C = \{(y_n)_n \mid y_n \in \mathbb{K} \land \exists \lim y_n\} \to \mathbb{K}$$
$$\lim (x_n)_n \coloneqq \lim_{n \to \infty} x_n$$
$$|\lim (x_n)_n| \le \|(x_n)_n\|_{\infty} \Rightarrow \|\lim\| = 1$$

Mit Hahn-Banach existiert ein $x' \in (\ell^{\infty})'$, so dass

$$x'|_C = \lim, \qquad ||x'|| = 1$$

Hätte x' eine Darstellung

$$x'(y) = \sum_{n=1}^{\infty} x_n y_n$$

für eine Folge $(x_n)_n \in \ell^1$, so wäre

$$x_n x'(e_n) = \lim e_n = 0 \,\forall n \in \mathbb{N}$$

x' = 0 \nleq . Also ist T nicht surjektiv.

{satz5.11}

Satz 5.11

Ein normierter Raum X ist separabel, falls der Dualraum X' separabel ist.

Bemerkung

 ℓ^1 ist separabel und ℓ^∞ ist nicht separabel. D.h. es kann keinen Isomorphismus zwischen ℓ^1 und $(\ell^\infty)'$ geben.

Beweis: Mit X' ist $S_{X'} = \{x' \in X' \mid ||x'|| = 1\}$ separabel (dies war eine Übungsaufgabe). Sei also die Menge $\{x'_n\}_n$ dicht in $S_{\bar{1}}X'$]. Wähle $x_i \in S_X$ mit $|x'_i(x_i)| \ge \frac{1}{2}$. Wir setzen $U = \lim\{x_i\}_{i \in \mathbb{N}}$ und zeigen $\bar{U} = X$ (dann ist X separabel). Mit Korollar 5.9 genügt es zu zeigen: Aus $x' \in X'$ mit $x'|_U = 0$ folgt stets x' = 0.

Sei also $x' \in X'$ mit $x'|_U = 0$. Angenommen $x' \neq 0$. O.B.d.A. ||x'|| = 1. Dann existiert ein $i_0 \in \mathbb{N}$ mit $||x' - x'_{i_0}|| \leq \frac{1}{4}$. Aber:

$$\frac{1}{2} \leq |x_{i_0}'(x_{i_0})| = |x_{i_0}'(x_{i_0}) - x'(x_{i_0})| = |(x_{i_0}' - x')(x_{i_0})| \leq \left\|x_{i_0}' - x'\right\| \left\|x_{i_0}\right\| = \frac{1}{4} \notin \mathbb{R}$$

Also x' = 0, somit $\overline{\lim \{x_i\}_{i \in \mathbb{N}}} = X$ und X separabel.

Das Trennungsproblem. Existiert zu konvexen Mengen U und $V \subseteq X$ ein Funktional $x' \in X', x' \neq 0$, mit

$$\sup_{x \in U} x'(x) \le \inf_{x \in V} x'(x) \qquad \mathbb{K} = \mathbb{R}$$

bzw.

$$\sup_{x \in U} \operatorname{Re} x'(x) \le \inf_{x \in V} \operatorname{Re} x'(x) \qquad \mathbb{K} = \mathbb{C}$$

{def5.12}

Definition 5.12

Sei X ein Vektorraum und $A \subseteq X$ eine Teilmenge. Das Minkowski-Funktional $P_A: X \to [0,\infty]$ wird durch

$$P_A(x) := \inf \left\{ \lambda > 0 \, \middle| \, \frac{x}{\lambda} \in A \right\}$$

definiert.

A heißt absorbierend, falls $P_A(x) < \infty \forall x \in X$.

Ist *X* ein normierter Raum und $A = \{x \mid ||x|| \le 1\}$, so folgt $P_A(x) = ||x||$.

{lemma5.13}

Lemma 5.13

Sei X ein normierter Raum und $U \subset X$ eine konvexe Teilmne mit $0 \in \mathring{U}$. Dann gilt:

- i) *U* ist absorbierend, genauer: Aus $\{x \mid ||x|| < \varepsilon\} \subset U$ folgt $P_U(x) \le \frac{1}{\varepsilon} ||x||$.
- ii) P_U ist sublinear.
- iii) Ist U offen, so gilt $U = P_U^{-1}([0, 1])$.

Beweis:

- i) Klar.
- ii)

$$P_{U}(\lambda x) = \inf \left\{ \mu > 0 \middle| \frac{\lambda x}{\mu} \in U \right\}$$
$$= \lambda \inf \left\{ \mu > 0 \middle| \frac{x}{\mu} \in U \right\}$$
$$= \lambda P_{U}(x), \qquad \lambda > 0$$

Es bleibt zu zeigen:

$$P_{U}(x+y) = P_{U}(x) + P_{U}(y)$$

Sei dazu $\varepsilon > 0$. Wähle $\lambda, \mu > 0$ mit

$$\lambda \leq P_U(x) + \varepsilon$$
, $\mu \leq P_U(y) + \varepsilon$

so dass $\frac{x}{\lambda} \in U$ und $\frac{y}{\mu} \in U$. Da U konvex ist können wir eine Konvexkombination wählen und es folgt:

$$\frac{\lambda}{\lambda + \mu} \frac{x}{\lambda} + \frac{\mu}{\lambda + \mu} \frac{y}{\mu} = \frac{x + y}{\lambda + \mu} \in U$$

Also folgt:

$$P_U(x+y) \le \lambda + \mu \le P_U(x) + P_U(y) + 2\varepsilon$$

iii) $P_U(x) < 1$, existiert $\lambda < 1$ mit $\frac{x}{\lambda} \in U$. Dann:

$$x = \lambda \frac{x}{\lambda} + (1 - \lambda)0 \in U$$

Also ist $P_U^{-1}([0,1[) \subseteq U$. Ist $P_U(x) \ge 1$, so ist $\frac{x}{\lambda} \notin U \, \forall 0 < \lambda < 1$. Also $\frac{x}{\lambda} \in X \setminus U \, \forall 0 < \lambda < 1$. Da $X \setminus U$ abgeschlossen ist, folgt

$$x = \lim_{\lambda \to 1, \lambda < 1} \frac{x}{\lambda} \in X \setminus U$$

{lemma5.14}

Lemma 5.14

Ist X ein normierter Raum und $V \subseteq X$ konvex und offen mit $0 \notin V$, so existiert $x' \in X'$ mit

$$\operatorname{Re} x'(x) < 0 \, \forall x \in V$$

Im Beweis benutzen wir die Schreibweise

$$A \pm B := \{a \pm b \mid a \in A, b \in B\}, A, B \subseteq X$$

Es gilt: A und B konvex $\Rightarrow A \pm B$ konvex.

Beweis: Sei zunächst $\mathbb{K} = \mathbb{R}$. Sei $x_0 \in V$ beliebig. Setze $y_0 := -x_0$ und $U = V - \{x_0\}$. U ist offen und konvex, $0 \in U$, $y_0 \notin U$. P_U sei das Minkowskifunktional zu U. Nach Lemma 5.13 ist dieses \mathbb{R} -wertig, sublinear und es gilt $P_U(y_0) \ge 1$. Sei $Y := \lim\{y_0\}$. Auf Y definieren wir

$$y'(ty_0) = tP_U(y_0), \quad t \in \mathbb{R}$$

Dann ist $y'(y) \le P_U(y) \forall y \in Y$.

Mit Satz 5.2 wählen wir eine lineare Fortsetzung x' von y' mit $x' \le P_U$. Lemma 5.13 zeigt $x' \in X'$, denn es gilt:

$$|x'(x)| = \max\{x'(x), -x'(x)\} = \max\{x'(x), x'(-x)\} \le \max\{P_U(x), P_U(-x)\} \le \frac{1}{\varepsilon} ||x||$$

Weiter gilt:

$$x'(y_0) = P_U(y_0) \ge 1$$

und für $x \in V$:

$$x'(x) = x'(u - y_0) = x'(u) - x'(y_0) \le y'(u) - 1 < P_U(u) - 1 < 0$$

Somit folgt die Behauptung für $\mathbb{K} = \mathbb{R}$. Der Fall $\mathbb{K} = \mathbb{C}$ folgt aus dem hier gezeigten und Lemma 5.3.

Bemerkung

Die Voraussetzung V offen ist nicht verzichtbar.

Beispiel

Sei $X = (d, \|\cdot\|_{\infty})$ und

$$V = \{(x_n)_n \in d \setminus \{0\} \mid x_N > 0 \text{ für } N := \max\{j \mid x_j \neq 0\}\}$$

Dann gilt: $0 \notin V$, V konvex. Aber es gibt kein $x' \in d'$ mit $x'|_V < 0$.

Angenommen, es existiert ein $x' \in d'$ mit $x'|_V < 0$. Dann besitzt x' eine eindeutige Fortsetzung $y' \in c'_0$. Da $\ell^1 \cong c'_0$ können wir y' mit einer Folge in ℓ^1 identifizieren, d.h. $y' = (y_n)_n \in \ell^1$, $y'((x_n)) = \sum_{n \in \mathbb{N}} x_n y_n$.

Angenommen $y_n \ge 0$. Da $e_n \in V$, ist $x'(e_n) = y'(e_n) = y_n \ge 0$. Also $y_n < 0 \,\forall n \in \mathbb{N}$ und $x = -\frac{y_2}{y_1} e_1 + e_2 \in V$ und

$$y'(x) = y'\left(-\frac{y_2}{y_1}e_1 + e_2\right) = -\frac{y_2}{y_1}y_1 + y_2 = 0$$

//

 $\{thm5.15\}$

Theorem 5.15 Satz von Hahn-Banach, Trennungsversion 1

Sei X ein normierter Raum, $V_1, V_2 \subseteq X$ seien konvex und V_1 sei offen und es gelte $V_1 \cap V_2 = \emptyset$. Dann existiert $x' \in X'$:

$$\operatorname{Re} x'(v_1) < \operatorname{Re} x'(v_2) \forall v_1 \in V_1 \forall v_2 \in V_2$$

Beweis: Sei $V = V_1 - V_2$. Als Differenzmengee konvexer Mengen ist V konvex. Aus $V_1 \cap V_2 = \emptyset$ folgt $0 \notin V$. Aus der Darstellung

$$V = \bigcup_{x \in V_2} (V_1 - \{x\})$$

folgt V offen. Nach Lemma 5.14 existiert $x' \in X'$ mit

$$\operatorname{Re} x'(v_1 - v_2) < 0 \,\forall v_1 \in V_1 \,\forall v_2 \in V_2$$

{thm5.16}

Theorem 5.16 Satz von Hahn-Banach, Trennungsversion 2

Sei X ein normierter Raum, $V \subseteq X$ konvex und abgeschlossen und $x \notin V$. Dann existiert $x' \in X'$:

$$\operatorname{Re} x'(x) < \inf \{ \operatorname{Re} x'(v) \mid v \in V \}$$

Es existiert also ein $\varepsilon > 0$:

$$\operatorname{Re} x'(x) < \operatorname{Re} x'(x) + \varepsilon \le \operatorname{Re} x'(v) \forall v \in V$$

Beweis: Da V abgeschlossen ist, existiert r > 0:

$$U_r(x) \cap V = \emptyset$$

Nach Theorem 5.15 existiert $x' \in X'$ mit

$$\operatorname{Re} x'(x+u) < \operatorname{Re} x'(v) \forall v \in V \forall u \in U_r(x)$$

$$\operatorname{Re} x'(x) + \underbrace{\|\operatorname{Re} x'\| r}_{=:\varepsilon} < \operatorname{Re} x'(v) \forall v \in V$$

Schwache Konvergenz und Reflexivität

Sei X ein normiert Raum, X' der Dualraum und X'' = (X')' dessen Dualraum. Wir nennen X'' den Bidualraum von X.

Sei $x \in X$, so kann auf kanonische Weise eine Abbildung $i(x): X' \to \mathbb{K}$, (i(x))(x') = x'(x), definiert werden. i(x) ist sicher linear, i(x) ist stetig, da:

$$|(i(x))(x')| = |x'(x)| \le ||x'|| ||x|| = ||x|| ||x'|| \forall x' \in X'$$

mit $||i(x)|| \le ||x||$. Es gilt sogar ||i(x)|| = ||x|| (dies folgt aus dem Satz von Hahn-Banach). Also $i(x) \in X''$ und i Isometrie.

{satz6.1}

Satz 6.1

Die Abbildung $i: X \to X''$, (i(x))(x') = x'(x), ist eine lineare Isometrie (im Allgemeinen nicht surjektiv).

i heißt auch kanonische Abbildung von X nach X''. Wir schreiben auch i_X . Auf diese Weise wird X mit einem Unterraum von X'' identifiziert. Da X'' vollständig ist, gilt das folgende Korollar:

{kor6.2}

Korollar 6.2

Jeder normierte Raum ist isometrisch isomorph zu einem dichten Unterraum eines Banachraumes.

Beispiel

i) Sei $X = c_0$. Es 'gilt': $X' \cong \ell^1$ und $X'' \cong \ell^\infty$. Mit dieser Identifizierung gilt $i_{c_0}(x) = x$, denn: Identifizieren wir $(y_n)_n \in \ell^1$ mit dem Funktional $(x_n)_n \mapsto \sum y_n x_n$, so folgt:

$$(i_{c_0}(x))(y) = y(x) = \sum_n y_n x_n = z(y)$$

mit $z \in \ell^{\infty}$ stellt das Funktional $(y_n) \mapsto \sum_n x_n y_n$. Somit $z = x = i_{c_0}(x)$. Insbesondere i_{c_0} ist nicht surjektiv.

- ii) $X = \ell^1$. Es gilt $X' = \ell^{\infty}$ und nach Kapitel 5 ist $X'' = (\ell^{\infty})'$ nicht isometrisch isomorph zu ℓ^1 . Also ist i_{ℓ^1} nicht surjektiv.
- iii) Analoge Überlegungen zu i) zeigen: Für $1 < p1\infty$ stimmt die kanonische Einbettung i_{ℓ^p} mit der Identität $I \colon \ell^p \to \ell^p$ überein. Somit ist i_{ℓ^p} surjektiv. Die gleichen überlegungen gelten für L^p .

{def6.3}

Definition 6.3

Ein Banachraum X heißt reflexiv, wenn i_X surjektiv ist.

Für reflexive Räume gilt $X \cong X''$. Die Umkehrung hiervon gilt nicht (ein Beispiel wurde 1950 von James angegeben).

Beispiel

- i) ℓ^p und L^p sind reflexiv für 1 .
- ii) c_0 , ℓ^1 sind nicht reflexiv.
- iii) Endlich dimensionale Räume X sind reflexiv, da

$$\dim X = \dim X' = \dim X''$$

//

{satz6.4}

Satz 6.4

- i) Abgeschlossene Unterräume reflexiver Räume sind reflexiv.
- ii) Ein Banachraum X ist genau dann reflexiv, wenn X' reflexiv ist.

Beweis:

i) X reflexiv, $U \subseteq X$ abgeschlossen. Sei $u'' \in U''$. $x' \mapsto u''(x'|_U)$ liegt in X'', denn

$$|u''(x'|_U)| \le ||u''|| ||x'|_U|| \le ||u''|| ||x'||$$

7

Hauptsätze für Operatoren auf Banachräumen

{satz7.1}

Satz 7.1 Satz von Baire

Sei (X,d) ein vollständiger metrischer Raum und $(\mathcal{O}_n)_{n\in\mathbb{N}}$ eine Folge offener und dichter Teilmengen von X. Dann ist auch $\bigcap_{n\in\mathbb{N}}\mathcal{O}_n$ dicht in X.

Beweis: Sei $D := \bigcap_{n \in \mathbb{N}} \mathcal{O}_n$. Es ist zu zeigen: Jede ε -Kugel in X enthält ein Element von D. Sei

$$B_{\varepsilon_0}(x_0) := \{ x \in X \mid d(x, x_0) < \varepsilon_0 \}$$

eine dieser Mengen. Da \mathcal{O}_1 offen und dicht ist, existiert ein $x_1 \in \mathcal{O}_1$, $0 < \varepsilon_1 < \frac{1}{2}\varepsilon_0$ so dass

$$b_{\varepsilon_1}(x_1) \subseteq \mathcal{O}_1 \cap B_{\varepsilon_0}(x_0)$$

Weiter induktiv:

$$B_{\varepsilon_{n+1}}(x_{n+1}) \subseteq \mathcal{O}_n \cap B_{\varepsilon_n}(x_n)$$

mit $0 < \varepsilon_{n+1} < \frac{1}{2}\varepsilon_n$.

Sei m > n. Dann folgt:

$$d(x_m, x_n) < \varepsilon_n < 2^{-1} \varepsilon_{n-1} < \dots < 2^{-n} \varepsilon_0$$

 $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchyfolge in X.

Sei $x := \lim_{n \to \infty} x_n$.

$$d(x_n, x) \le d(x_n, x_m) + d(x_m, x) < e_n$$

für m hinreichend groß. Also ist

$$x \in B_{\varepsilon_n}(x_n) \subseteq \mathcal{O}_{n-1} \cap B_{\varepsilon_{n-1}}(x_{n-1}) \subseteq \mathcal{O}_{n-1} \cap \dots \cap \mathcal{O}_1 \cap B_{\varepsilon_0}(x_0) \forall n \in \mathbb{N}$$

Und somit $x \in D \cap B_{\varepsilon_0}(x_0)$.

{kor7.2}

Korollar 7.2 Bairescher Kategoriensatz

Sei (X,d) ein vollständiger metrischer Raum und $X=\bigcup_{n=1}^{\infty}A_n$ mit A_n abgeschlossen. Dann existiert ein $n_0\in\mathbb{N}:\mathring{A}_{n_0}\neq\emptyset$.

Beweis: Übungsaufgabe.

Bemerkung

Der Bairesche Kategoriensatz liefert häufig relativ einfache Beweise für Existenzaussagen, z.B.: Es gibt stetige Funktionen auf [0, 1] die an keiner Stelle differenzierbar sind.

{thm7.3}

Theorem 7.3 Satz von Banach-Steinhaus, Prinzip der gleichmässigen Beschränktheit

Seien X ein Banachraum und Y ein normierter Raum, I eine Indexmenge und $T_i \in L(X,Y), i \in I$. Falls

$$\sup_{i \in I} \|T_i x\| < \infty \forall x \in X$$

so folgt

$$\sup_{i\in I}\|T_i\|<\infty$$

Beweis: Zu $n \in \mathbb{N}$:

$$E_n := \left\{ x \in X \middle| \sup_{i \in I} ||T_i x|| \le n \right\}$$

Aus der Voraussetzung folgt: $X=\bigcup_{n\in\mathbb{N}}E_n.$ Da die T_i s stetig sind, ist die Menge

$$E_n = \bigcap_{i \in I} \|T_i\|^{-1}([0,n])$$

abgeschlossen. Nach dem Baireschen Kategoriensatz hat dann mindestens eine Menge E_n einen inneren Punkt. Also $\exists N \in \mathbb{N} : \exists y \in E_N \exists \varepsilon > 0$:

$$||x - y|| \le \varepsilon \Rightarrow x \in E_N$$

Da E_N symmetrisch ist, d.h. $z \in E_N \Rightarrow -z \in E_N$, hat -y dieselbe Eigenschaft. Da E_N konvex ist folgt:

$$||u|| \le \varepsilon, u \in X \Rightarrow u = \frac{1}{2}((u+y) + (u-y)) \in \frac{1}{2}(E_n + E_n) = E_n$$

Somit gilt: Aus $||u|| \le \varepsilon$ folgt $||T_i u|| \le N \forall i \in I$.

$$\sup_{i \in I} \|T_i\| = \sup_{i \in I} \sup_{\substack{u \in X \\ \|u\| \leq 1}} \|T_i u\| \leq \frac{N}{\varepsilon} < \infty$$

Bemerkung

- i) Der Satz von Banach-Steinhaus gibt keinen Aufschluss über die Größe von $\sup_{i \in I} ||T_i||$.
- ii) Die Vollständigkeit von X ist wesentlich für den Satz von Banach-Steinhaus.

Beispiel

 $X = (d, \|\cdot\|_{\infty})$ und $T_n : d \to \mathbb{K}$ mit $T_n(x_m)_{m \in \mathbb{N}} = nx_n$. T_n ist linear. Sei $x = (x_m)_{m \in \mathbb{N}} \in d$ beliebig.

$$x = (x_1, x_2, x_3, ..., x_N, 0, ...0)$$

$$\sup_{i\in\mathbb{N}}\|T_ix\|=\sup_{i\in\mathbb{N}}|ix_i|=\sup_{i=1}^N|ix_i|<\infty$$

Aber es gilt:

$$\|T_i\|=\sup_{\substack{x\in d\\ \|x\|_\infty\leq 1}}\|T_ix\|=\sup_{\substack{x\in d\\ \|x\|_\infty\leq 1}}|ix_i|=i$$

Also $T_i \in L(d, \mathbb{K})$ und $\sup ||T_i|| = \infty$. //

{kor7.4}

Korollar 7.4

Für eine Teilmenge M eines normierten Raumes X sind äquivalent:

- i) M ist beschränkt, d.h. $\exists c > 0 : ||x|| \le c \forall x \in M$.
- ii) $\forall x' \in X'$ ist $x'(M) \subseteq \mathbb{K}$ beschränkt.

Beweis:

 $i) \Rightarrow ii$): trivial, da $x' \in X'$.

ii)⇒i): Wir betrachten die Funktionale $i_X(x)$ für $x \in M$, welche auf dem Banachraum X' definiert sind. Nach Voraussetzung gilt:

$$\sup_{x \in M} |x'(x)| = \sup_{x \in M} |i_X(x)(x')| < \infty \forall x' \in X'$$

Mit dem Satz von Banach-Steinhaus (I := M, für X wählen wir X', $Y := \mathbb{K}$, $T_i := i_X(x)$) folgt:

$$\sup_{x\in M}\|x\|=\sup_{x\in M}\|i_X(x)\|<\infty$$

{kor7.5}

Korollar 7.5

Schwach konvergente Folgen sind beschränkt.

Beweis: Konvergiert $(x_n)_n$ schwach, so ist für $x' \in X'$ die Folge $(x'(x_n))_{n \in \mathbb{N}}$ beschränkt, da konvergent. Mit Korollar 7.4 folgt die Behauptung.

{kor7.6}

Korollar 7.6

Sei X ein Banachraum und $M \subseteq X'$. Dann sind äquivalent:

- i) *M* ist beschränkt.
- ii) $\forall x \in X$ ist $\{x'(x) \mid x' \in M\}$ beschränkt.

Beweis:

i)⇒*ii*): √

ii)⇒i): Dies ist ein Spezialfall vom Satz von Banach-Steinhaus.

r7.7}

Korollar 7.7

Sei X ein Banachraum und Y ein normierter Raum, sowie $T_n \in L(X,Y)$, $\forall n \in \mathbb{N}$. Für $x \in X$ existiere $Tx := \lim_{n \to \infty} T_n x$. Dann gilt $T \in L(X,Y)$.

Beweis: Die Linearität von T ist klar, da 'lim' linear ist. Es bleibt zu zeigen: T ist stetig. Da $(T_n x)_{n \in \mathbb{N}}$ für alle $x \in X$ konvergiert, ist stets $\sup_{n \in \mathbb{N}} \|T_n x\| < \infty \forall x \in X$. Mit dem Satz von Banach-Steinhaus folgt:

$$\sup_{n\in\mathbb{N}}\|T_n\|=:M<\infty$$

Also:

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le M ||x|| \forall x \in X$$

{def7.8}

Definition 7.8

Eine Abbildung zwischen metrischen Räumen heißt offen, wenn sie offene Mengen auf offene Mengen abbildet.

Bemerkung

Eine offene Abbildung muss abgeschlossene Mengen nicht auf abgeschlossene Mengen abbilden.

Beispiel

 $p: \mathbb{R}^2 \to \mathbb{R}, \ p(s,t) = s. \ p$ ist offen, aber die abgeschlossene Menge

$$\{(s,t) \mid s \ge 0, st \ge 1\}$$

wird auf $]0,\infty[$ abgebildet. $/\!\!/$

{lemma7.9}

Lemma 7.9

Für eine lineare Abbildung $T: X \to Y$ zwischen normierten Räumen sind äquivalent:

- i) T ist offen.
- ii) T bildet offene Kugeln um 0 auf Nullumgebungen ab, d.h.

$$\forall r > 0 \exists \varepsilon > 0 : B_{\varepsilon}(0) \subseteq T(B_r(0))$$

iii)

$$\exists \varepsilon > 0 : B_{\varepsilon}(0) \subseteq T(B_{-}1(0))$$

Beweis:

ii)⇔iii): Klar, da T linear.

i)⇒*ii*): $B_r(0)$ offen. Da T offen gilt, dass $T(B_r(0))$ offen ist und $0 \in T(B_r(0))$. Daraus folgt, dass ein $\varepsilon > 0$ mit der gewünschten Eigenschaft existiert.

ii)⇒*i*): Sei $O \subseteq X$ offen und $x \in O$. Dann ist $Tx \in T(O)$. Da O offen ist, existiert ein r > 0 mit $x + B_r(0) \subseteq O$. Dann folgt $Tx + T(B_r(0)) \subseteq T(O)$. Mit ii) folgt nun:

$$Tx + B_{\varepsilon}(0) \subseteq Tx + T(B_{r}(0)) \subseteq T(O)$$

Da x beliebig war, ist T(O) offen.

Beispiel

- i) Jede Quotientenabbildung ist offen (T Quotientenabbildung $\Leftrightarrow T(B_1(0)) = B_1(0)$).
- ii) Die Abbildung $T: \ell^{\infty} \to c_0, (x_n)_n \mapsto \left(\frac{1}{n}x_n\right)_n$, ist nicht offen, denn:

$$T(B_1(0)) = \left\{ (y_n)_n \in c_0 \, \middle| \, |y_n| < \frac{1}{n} \right\}$$

ist keine Nullumgebung.

iii) Jede offene lineare Abbildung ist surjektiv. In vollständigen Räumen gilt auch die Umkehrung, wie der folgende Satz zeigt.

 $/\!\!/$

{thm7.10}

Theorem 7.10 Satz von der offenen Abbildung

Sind *X* und *Y* Banachräume und $T \in L(X,Y)$ ist surjektiv, dann ist *T* offen.

Beweis: Wir zeigen, dass Lemma 7.9 iii) gilt.

i) Zeige zunächst:

$$\exists e_0 > 0 : B_{\varepsilon_0}(0) \subseteq \overline{T(B_1(0))}$$

Da T surjektiv ist, gilt

$$Y = \bigcup_{n \in \mathbb{N}} T(B_n(0)) = \bigcup_{n \in \mathbb{N}} \overline{T(B_n(0))}$$

Mit dem Baireschen Kategoriensatz existiert dann ein $N \in \mathbb{N}$ so dass $\overline{T(B_n(0))} \neq \emptyset$, also existiert ein $y_0 \in \overline{T(B_n(0))}$ und $\varepsilon > 0$:

$$||z - y_0|| < \varepsilon \Rightarrow z \in T(B_N(0))$$

Nun ist $\overline{T(B_N(0))}$ symmetrisch, d.h. diese Menge enthält mit z auch -z (denn $T(B_n(0))$ ist symmetrisch und damit auch der Abschluss und das Innere). Dann hat $-y_0$ dieselbe Eigenschaft, d.h.

$$||z + y_0|| < \varepsilon \Rightarrow z \in \overline{T(B_N(0))}$$

Sei nun $||y|| < \varepsilon$. Dann:

$$\|(y_0 + y) - y_0\| < \varepsilon \quad \text{und} \quad \|(-y_0 + y) + y_0\| < \varepsilon$$

Somit gilt $y_0 + y, -y_0 + y \in \overline{T(B_N(0))}$. Da $\overline{T(B_N(0))}$ konvex ist, gilt: T(

$$y = \frac{1}{2}(y_0 + y) + \frac{1}{2}(-y_0 + y) \in \overline{T(B_N(0))}$$

Also: $B_{\varepsilon}(0) \subseteq \overline{T(B_N(0))}$ und $B_{\frac{\varepsilon}{N}}(0) \subseteq \overline{T(B_1(0))}$.

ii) Sei $\varepsilon_0 > 0$ wie in Teil i). Es bleibt zu zeigen:

$$B_{\varepsilon_0}(0) \subseteq T(B_1(0))$$

Sei dazu $y \in Y$ mir $||y|| < \varepsilon_0$ beliebig. Wähle $\varepsilon > 0$ mit $||y|| < \varepsilon < \varepsilon_0$ und setze $\bar{y} := \frac{\varepsilon_0}{\varepsilon} y$. Dann:

$$\|\bar{y}\| = \frac{\varepsilon_0}{\varepsilon} \|y\| < \varepsilon_0$$

und aus Teil i) folgt $\bar{y} \in \overline{T(B_1(0))}$. Dann existiert ein $y_0 = Tx_0 \in T(B_1(0))$ mit $\|\bar{y} - y_0\| < \alpha \varepsilon_0$. Hierbei ist $\alpha \in]0,1[$ so klein gewählt, so dass

$$\frac{\varepsilon}{\varepsilon_0} \frac{1}{1 - \alpha} < 1 \Rightarrow \frac{\bar{y} - y_0}{\alpha} \in B_{\varepsilon_0}(0) \Rightarrow \frac{\bar{y} - y_0}{\alpha} \in \overline{T(B_1(0))}$$

Dann existiert ein $y_1 = Tx_1 \in T(B_1(0))$ mit

$$\left\|\frac{\bar{y}-y_0}{\alpha}-y_1\right\|<\alpha\varepsilon_0\Rightarrow\|\bar{y}-(y_0+\alpha y_1)\|<\alpha^2\varepsilon_0\Rightarrow\frac{\bar{y}-(y_0+\alpha y_1)}{\alpha^2}\in B_{\varepsilon_0}(0)$$

Mit vollständiger Induktion existiert nun eine Folge $(x_n)_n \in B_1(0)$:

$$\left\| \bar{y} - T \left(\sum_{i=0}^{n} \alpha^{i} x_{i} \right) \right\| < \alpha^{n+1} \varepsilon_{0}$$

Wegen $\alpha \in]0,1[$ konvergiert die Reihe

$$\sum_{i=0}^{\infty} \alpha^i x_i$$

absolut. Da X vollständig existiert der Grenzwert

$$\bar{x} \coloneqq \sum_{i=0}^{\infty} \alpha^i x_i \in X$$

Nach Konstruktion ist $T\bar{x} = \bar{y}$. Setze $x \coloneqq \frac{\varepsilon}{\varepsilon_0}\bar{x} \Rightarrow Tx = y$ und

$$||x|| = \frac{\varepsilon}{\varepsilon_0} ||\bar{x}|| = \frac{\varepsilon}{\varepsilon_0} \left\| \sum_{i=0}^{\infty} \alpha^i x_i \right\| \le \frac{\varepsilon}{\varepsilon_0} \frac{1}{1-\alpha} < 1$$

Also ist $y \in T(B_1(0))$ und somit folgt die Behauptung.

{kor7.11}

Korollar 7.11

Sind X und Y Banachräume und ist $T \in L(X,Y)$ bijektiv, so ist die inverse Abbildung T^{-1} stetig.

{def7.12}

Definition 7.12

Seien X und Y normierte Räume, $D \subseteq X$ sei ein Untervektorraum, $T: D \to Y$ sei eine lineare Abbildung. Dann heißt T abgeschlossen, falls: Konvergiert eine Folge $(x_n)_n$, $x_n \in D$, gegen $x \in X$ und konvergiert $(Tx_n)_n$, etwa gegen $y \in Y$, so folgt $x \in D$ und Tx = y. Ist T auf $D \subseteq X$ definiert, so schreibt man dom(T) = D bzw. $T: dom(T) \subseteq X \to Y$.

Bemerkung Wie hängen Abgeschlossenheit und Stetigkeit zusammen? Für den Spezialfall dom(T) = X betrachten wir die Aussagen:

- i) $x_n \to x$ in X.
- ii) (Tx_n) konvergiert, etwa $Tx_n \rightarrow y$ in Y.
- iii) Tx = y.

Dann gilt:

T stetig, falls i) \Rightarrow ii) und iii).

T ist abgeschlossen: i) und ii)⇒iii)

Somit: T stetig $\Rightarrow T$ ist abgeschlossen.

Bemerkung

Abgeschlossene Operatoren bilden im Allgemeinen nicht abgeschlossene Mengen auf abgeschlossene Mengen ab. Abgeschlossenheit heißt hier 'Graphen abgeschlossen'.

Für eine lineare Abbildung $T: D \subseteq X \to Y$ ist der Graph von T definiert als

$$Gr(T) := \{(x, Tx) \mid x \in D\} \subseteq X \times Y$$

Lemma 7.13

Seien X,Y normierte Räume, $D\subseteq X$ ein Untervektorraum und $T\colon D\to Y$ linear. Dann gilt:

- i) Gr(T) ist ein Untervektorraum von $X \times Y$.
- ii) T ist abgeschlosssen genau dann, wenn Gr(T) in $X \times Y$ abgeschlossen is. (Hierbei sei $X \times Y$ versehen mit der Norm $\|(x,y)\|_1 := \|x\| + \|y\|$)

Beweis:

- i) Klar.
- ii) Gr(T) ist abgeschlossen genau dann, wenn

$$(x_n, Tx_n)_{n \in \mathbb{N}} \to (x, y) \Rightarrow (x, y) \in Gr(T)$$

Dies ist äquivalent zu

$$x_n \to x, Tx_n \to y \Rightarrow x \in D, y = Tx$$

d.h. zur Abgeschlossenheit von T.

{lemma7.13}

Beispiel

- i) Sei X = Y = C[0,1] und $D = C^1[0,1]$. Der Operator $T: D \to Y$ sei definiert durch Tx = x'. T ist abgeschlossen, denn: Sei $(x_n)_n \subseteq C^1[0,1]$ eine Funktionenfolge, welche gleichmäßig gegen $x \in C[0,1]$ konvergiert. Zusätzlich konvergiere die Funktionenfolge $(x'_n)_n$ gleichmäßig gegen eine Funktion $y \in C[0,1]$. Nach einem Satz aus Analysis: $x \in C^1[0,1]$ und x' = y.
- ii) Sei $X = Y = \ell^2$, D = d und $T(x_n)_n = (nx_n)_n$. T ist linear. Dann ist T nicht abgeschlossen, denn: Sei

$$x^{k} = \left(1, \frac{1}{2^{2}}, \frac{1}{3^{2}}, \frac{1}{4^{2}}, \dots, \frac{1}{k^{2}}, 0, 0, \dots\right) \in d$$

Dann konvergiert $(x^k)_{k\in\mathbb{N}}$ gegen $x=\left(\frac{1}{n^2}\right)_{n\in\mathbb{N}}$ in ℓ^2 und

$$(Tx^k)_{k \in \mathbb{N}} = \left(\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{k}, 0, 0, \dots \right) \right)_{k \in \mathbb{N}}$$

gegen $y = \left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ in ℓ^2 , jedoch $x \notin D = d$.

{lemma7.14}

//

Lemma 7.14

Seien X und Y Banachräume, $D \subseteq X$ Untervektorraum und $T: D \subseteq X \to Y$ sei abgeschlossen. Dann gelten:

i) D versehen mit der Norm

$$|||x||| := ||x|| + ||Tx||$$

ist ein Banachraum.

ii) T ist als Abbildung von $(D, \|\cdot\|)$ nach Y stetig.

Beweis:

i) **||**|⋅**||** Norm folgt direkt.

Ist $(x_n)_n \subseteq D$ eine $\|\cdot\|$ —Cauchyfolge, so sind $(x_n)_n$ und $(Tx_n)_n$ jeweils $\|\cdot\|$ —Cauchyfolgen und die Limiten $x = \lim x_n$ und $y = \lim Tx_n$ existieren. Da T abgeschlossen, folgt $x \in D$ und y = Tx. Das heißt

$$|||x_n - x||| = ||x_n - x|| + ||Tx_n - y|| \xrightarrow{n \to \infty} 0$$

Also ist $(D, \|\cdot\|)$ vollständig.

ii) Dies folgt aus

$$||Tx|| \le ||x|| + ||Tx|| = |||x|||, \quad x \in D$$

{satz7.15}

Satz 7.15

Seien X und Y Banachräume, $D \subseteq X$ Untervektorraum und $T: D \subseteq X \to Y$ abgeschlossen und surjektiv. Dann ist T offen.

Ist T zusätzlich injektiv, so ist T^{-1} stetig.

Beweis: Lemma 7.14 zeigt: $T:(D,\|\|\cdot\|\|) \to Y$ ist stetig. Der Satz von der offenen Abbildung zeigt: $T:(D,\|\|\cdot\|\|) \to Y$ ist offen. Wegen $\|x\| \le \|\|x\|\|$ für alle $x \in D$ ist jede $\|\cdot\|$ -offene Menge von D auch $\|\|\cdot\|\|$ -offen. Also ist T auch offen bezüglich der Originalnorm $\|\cdot\|$. Der Zusatz ist klar.

{thm7.16}

Theorem 7.16 Satz vom abgeschlossenen Graphen

Seien X und Y Banachräume und $T: X \to Y$ sei linear und abgeschlossen. Dann ist T stetig.

Beweis: Lemma 7.14 zeigt, dass $T: (X, \|\|\cdot\|\|) \to Y$ stetig ist $(D = Y, \|\|x\|\| := \|x\| + \|Tx\|)$. $(X, \|\|\cdot\|\|)$ und $(X, \|\|\cdot\|\|)$ sind Banachräume und wegen $\|\cdot\| \le \|\|\cdot\|\|$ ist die Identität $I: (X, \|\|\cdot\|\|) \to (X, \|\cdot\|\|)$ stetig. Nach Korollar 7.11 ist I^{-1} stetig. Also sind die Normen $\|\cdot\|$ und $\|\|\cdot\|\|$ äquivalent. Also ist T stetig bezüglich der Originalnorm.

8

Projektionen auf Banachräumen

{def8.1}

Definition 8.1

Eine Projektion auf einem Vektorraum ist eine Abbildung p mit $p^2 = p$.

Bemerkung

Aus der linearen Algebra folgt: Sei U ein Untervektorraum eines Vektorraumes X, so existiert ein Komplementärraum V so dass X algebraisch isomorph zur direkten Summe $U \oplus V$ ist $(U + V \text{ mit } U \cap V = \{0\})$. Daraus folgt, dass Projektion von X auf U linear ist. All dies folgt aus dem Basisergänzungssatz.

In normierten Räumen sind wir an stetigen linearen Projektionen interessiert.

Bemerkung Weitere Fragen

Ist X auch topologisch isomorph zu $U \oplus V$, d.h. $U \oplus V \simeq X$ oder äquivalent: $(u_n + v_n)_n \subseteq X$ konvergiert genau dann, wenn $(u_n)_n$ und $(v_n)_n$ konvergieren.

In diesem Fall reden wir auch von einer topologischen direkten zerlegung.

{lemm

Lemma 8.2

Sei p eine stetige lineare Projektion auf dem normierten Raum X. Dann gilt:

- i) Entweder p = 0 oder $||p|| \ge 1$.
- ii) Der Kern ker p und das Bild ran p sind abgeschlossene Untervektorräume.
- iii) Es gilt $X \cong \ker p \oplus \operatorname{ran} p$

Beweis:

- i) Aus $||p|| = ||p^2|| \le ||p||^2$ folgt p = 0 oder $1 \le ||p||$.
- ii) $\ker p$ und $\operatorname{ran} p$ sind Unterräume, da p linear. Der Kern $\ker p = p^{-1}(\{0\})$ ist abgeschlossen, da p stetig ist. Auch I p ist eine stetige lineare Projektion¹ und $\operatorname{ran} p = \ker(I p)$. Somit ist auch $\operatorname{ran} p$ abgeschlossen.
- iii) Es ist klar, dass X algebraisch mit der direkten Summe $\ker p \oplus \ker(I-p)$ identifiziert werden kann, denn es gilt:

$$\forall x \in X : x = (I - p)x + px$$

Das die Summe auch topologisch direkt ist, folgt aus der Stetigkeit von p.

Beispiel

- i) Aus ℓ^p , $1 \le p \le \infty$, definiert $(x_n)_n \mapsto (x_1, ..., x_k, 0, ..., 0)$ eine stetige lineare Projektion mit ||p|| = 1.
- ii) Es gibt keine stetige lineare Projektion von ℓ^∞ auf c_0 .

¹ $(I-p)^2 = I - p - p + p^2 = I - p$ 2 $x \in \ker(I-p) \Rightarrow px = x \Rightarrow x \in \operatorname{ran} p$ $x \in \operatorname{ran} p \Rightarrow \exists y \in X : py = x \Rightarrow x = py = p^2 y = px \Rightarrow x \in \ker(I-p)$

9

Hilberträume

{satz9.1}

Satz 9.1 Parallelogrammgleichung

Ein normierter Raum X ist genau dann ein Prähilbertraum, wenn

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \forall x, y \in X$$

gilt.

Beweis:

'⇒ *'*:

$$||x + y||^{2} + ||x - y||^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

$$= ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} + ||x||^{2} - \langle y, x \rangle - \langle x, y \rangle + ||y||^{2}$$

$$= 2(||x||^{2} + ||y||^{2})$$

 $' \Leftarrow '$: Sei zunächst $\mathbb{K} = \mathbb{R}$. Wir definieren:

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) \Rightarrow \|x\| = \langle x, x \rangle^{\frac{1}{2}}$$

Wir müssen noch die Eigenschaften des Skalarproduktes nachweisen:

i) $\forall x_1, x_2, y \in X$ folgt aus der Parallelogrammgleichung

$$||x_1 + x_2 + y||^2 = 2||x_1 + y||^2 + 2||x_2||^2 - ||x_1 + y - x_2||^2 =: \alpha$$

$$||x_1 + x_2 + y||^2 = 2||x_2 + y||^2 + 2||x_1||^2 - ||-x_1 + x_2 + y||^2 =: \beta$$

Also:

$$\|x_1 + x_2 + y\|^2 = \frac{\alpha + \beta}{2} = \|x_1 + y\|^2 + \|x_2\|^2 + \|x_2 + y\|^2 + \|x_1\|^2 - \frac{1}{2}(\|x_1 + y - x_2\|^2 + \|-x_1 + x_2 + y\|^2)$$

Analog gilt:

$$||x_1 + x_2 - y||^2 = ||x_1 - y||^2 + ||x_2||^2 + ||x_2 - y||^2 + ||x_1||^2 - \frac{1}{2}(||x_1 - y - x_2||^2 + ||-x_1 + x_2 - y||^2)$$

$$\langle x_1 + x_2, y \rangle = \frac{1}{4} (\|x_1 + x_2 + y\|^2 - \|x_1 + x_2 - y\|^2)$$

$$= \frac{1}{4} (\|x_1 + y\|^2 - \|x_1 - y\|^2 + \|x_2 + y\|^2 - \|x_2 - y\|^2)$$

$$= \langle x_1, y \rangle + \langle x_2, y \rangle$$

ii) Nach i) gilt ii) für $\lambda \in \mathbb{N}$ und nach Konstruktion auch für $\lambda = 0$ und $\lambda = -1$. Somit gilt ii) für $\lambda \in \mathbb{Z}$.

Sei $\lambda = \frac{m}{n} \in \mathbb{Q}$.

$$n\langle \lambda x, y \rangle = n\langle m\frac{x}{n}, y \rangle = \langle mx, y \rangle = m\langle x, y \rangle = n\lambda\langle x, y \rangle$$

Also gilt ii) für $\lambda \in \mathbb{Q}$.

Die stetigen Funktionen ($\|\cdot\|$ ist stetig) $\lambda \mapsto \langle \lambda x, y \rangle$ und $\lambda \mapsto \lambda \langle x, y \rangle$ stimmen auf \mathbb{Q} überein und sind daher gleich. Dies zeigt ii).

- iii) √
- iv) und v) folgt aus $\langle x, x \rangle = ||x||^2$.

Für $\mathbb{K} = \mathbb{C}$ ist die Argumentation ähnlich.

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i \|x + iy\|^2 - y \|x - iy\|^2)$$

{def9.2}

Definition 9.2

Sei X ein Prähilbertraum. Zwei Vektoren $x, y \in X$ heißen orthogonal, in Zeichen $x \perp y$, falls $\langle x, y \rangle = 0$ gilt.

zwei Teilmengen $A, B \subseteq X$ heißen orthogonal, in Zeichen $A \perp B$, falls $x \perp y$ für alle $x \in A$ und $y \in B$ gilt.

Die Menge $A^{\perp} := \{ y \in X \mid x \perp y \forall x \in A \}$ heißt orthogonales Komplement von A.

Beispiel

$$\mathbb{R}^2$$
, $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. $\langle x, y \rangle = 0 \Rightarrow x \perp y$. //

Bemerkung

- i) $x \perp y \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$ (Satz von Pythagoras).
- ii) A^{\perp} ist stets ein abgeschlossener Untervektorraum von X.
- iii) $A \subseteq (A^{\perp})^{\perp}$.
- iv) $A^{\perp} = (\overline{\ln A})^{\perp}$.

{satz9.3}

Satz 9.3 Projektionssatz

Sei H ein Hilbertraum, $K \subseteq H$ sei abgeschlossen, nichtleer und konvex und es sei $x_0 \in H$. Dann existiert genau ein $x \in K$ mit

$$||x - x_0|| = \inf_{y \in K} ||y - x_0||$$

Beweis: Für $x_0 \in K$ wähle $x = x_0$. Sei also $x_0 \notin K$ und o.B.d.A. $x_0 = 0$.

Existenz: Setze $d := \inf_{y \in K} ||y||$. Es existiert $(y_n)_n \subset K$ mit $||y_n|| \to d$. Wir zeigen zunächst: $(y_n)_n$ ist eine Cauchyfolge. Aus der Parallelogrammgleichung folgt:

$$\underbrace{\left\|\frac{y_n + y_m}{2}\right\|^2}_{>d^2} + \underbrace{\left\|\frac{y_n - y_m}{2}\right\|^2}_{=0} = \underbrace{\frac{1}{2}(\|y_n\|^2 + \|y_m\|^2)}_{>d^2} \to d^2$$

Also ist $(y_n)_n$ eine Cauchyfolge. Da H vollständig, existiert ein $x \in H$ mit $x = \lim y_n$. Da K abgeschlossen, ist $x \in K$. Aus $||y_n|| \to d$ folgt ||x|| = d. Hieraus folgt die Existenz.

Eindeutigkeit: Seien $x, \tilde{x} \in K, x \neq \tilde{x}$ mit

$$\|x\|=\|\tilde{x}\|=\inf_{y\in K}\|y\|=d$$

Dann folgt:

$$\underbrace{\left\|\frac{x+\tilde{x}}{2}\right\|^{2}}_{SK} < \left\|\frac{x+\tilde{x}}{2}\right\|^{2} + \left\|\frac{x-\tilde{x}}{2}\right\|^{2} = \frac{1}{2}(\|x\|^{2} + \|\tilde{x}\|^{2}) = d^{2} 4$$

{lemm

Lemma 9.4

Sei K eine abgeschlossene konvexe Teilmenge des Hilbertraumes H und $x_0 \in H$. Dann sind für ein $x \in K$ äquivalent:

i)

$$||x_0 - x|| = \inf_{y \in K} ||x_0 - y||$$

ii)

$$\operatorname{Re}\langle x_0-x,y-x\rangle\leq 0\,\forall\,y\in K$$

Beweis:

 $ii) \Rightarrow i$: Folgt aus

$$\|x_0 - y\|^2 = \|x_0 - x + x - y\|^2 = \|x_0 - x\|^2 + 2\underbrace{\operatorname{Re}\langle x_0 - x, x - y\rangle}_{\geq 0} + \|x - y\|^2 \leq \|x_0 - x\|^2$$

 $i)\Rightarrow ii)$: Zu $t\in[0,1]$ setze

$$y_t = (1 - t)x + ty \in K$$
 falls $y \in K$

Dann folgt aus i):

$$\|x_0 - x\|^2 \le \|x_0 - y_t\|^2 = \langle x_0 - x + t(x - y), x_0 - x + t(x - y)\rangle = \|x_0 - x\|^2 + 2\operatorname{Re}\langle x_0 - x, t(x - y)\rangle + t^2\|x - y\|^2$$

Also:

$$\operatorname{Re}\langle x_0 - x, y - x \rangle \le \frac{t}{2} \|x - y\|^2 \, \forall t \in [0, 1]$$

{thm9.5}

Theorem 9.5 Satz von der Orthogonalprojektion

Sei $U \neq \{0\}$ ein abgeschlossener Unterraum des Hilbertraumes H. Dann existiert eine lineare stetige Projektion p_U von H auf U mit $||p_U|| = 1$ und ker $p_U = U^{\perp}$.

 $I-p_U$ ist eine Projektion von H auf U^{\perp} mit $||I-p_U||=1$ (es sei denn U=H) und es gilt $H=U\oplus_2 U^{\perp}$.

p_U wird Orthogonalprojektion genannt,

Beweis: Zu $x_0 \in H$ bezeichne $p_U x_0 \in U$ das eindeutig bestimmte Element aus ??. Mit ??:

$$\operatorname{Re}\langle x_0 - p_{IJ}, y - p_{IJ}x_0 \rangle \leq 0 \, \forall y \in U$$

Da mit y auch $y - p_U x_0$ den Unterraum U durchläuft, gilt

$$\operatorname{Re}\langle x_0 - p_U x_0, y \rangle \leq 0 \, \forall y \in U$$

Betrachte -y und gegebenenfalls iy (falls $\mathbb{K} = \mathbb{C}$). Dann folgt

$$\langle x_0 - p_U x_0, y \rangle = 0 \,\forall \, y \in U \qquad (*)$$

(*) ist sogar äquivalent zu ii) aus ??. Somit ist $p_U x_0$ das eindeutig bestimmte Element $x \in U$ mit

$$x_0 - x \in U^{\perp} \qquad (**)$$

Da U^{\perp} ein Unterraum ist, folgt

$$\lambda_1 x_1 - \lambda_1 p_U x_1 + (\lambda_2 x_2 - \lambda_2 p_U x_2) \in U^{\perp} \forall x_1, x_2 \in H \forall \lambda_1, \lambda_2 \in \mathbb{K}$$

und

$$p_U(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 p_U x_1 + \lambda_2 p_U x_2$$

Also is p_U linear.

Nach Konstruktion ist ran $p_U = U$ und es gilt ker $p_U = U^{\perp}$, denn

$$p_U x_0 = 0 \Leftrightarrow x_0 \in U^{\perp}$$

 $I-p_U$ ist eine Projektion mit ran $I-p_U=U^\perp$ und ker $I-p_U=U$. Aus dem Satz von Pythagoras folgt

$$\|x_0\|^2 = \|p_Ux_0 + (x_0 - p_Ux_0)\|^2 = \|p_Ux_0\|^2 + \|(I - p_U)x_0\|^2$$

Also ist $H = U \oplus_2 U^{\perp}$ und $||p_U|| \le 1$ (da $||x_0||^2 \ge ||p_U x_0||^2$), $||I - p_U|| \le 1$. Da für Projektionen $p = ||p|| \ge 1$ gilt, folgt

$$||p_{II}|| = 1 = ||I - p_{II}||$$

(falls $U \neq \{0\}$ und $U \neq H$).

{kor9.6}

Korollar 9.6

Für einen Unterraum U eines Hilbertraumes H gilt

$$\bar{U} = (U^{\perp})^{\perp}$$

Beweis: Aus **??** folgt $I - p_V$ für beliebige abgeschlossene Unterräume V. Sei $V = \bar{U}$. Dann ist $U^{\perp} = V^{\perp}$ sowie $I - p_{V^{\perp}} = p_{(V^{\perp})^{\perp}}$. Also $p_V = p_{(V^{\perp})^{\perp}}$ und somit $\bar{U} = V = (V^{\perp})^{\perp}$.

{thm9

Theorem 9.7 Darstellungssatz von Fréchet-Riesz

Sei H ein Hilbertraum. Dann ist die Abbildung $\Phi: H \to H', y \mapsto \langle \cdot, y \rangle$ bijektiv, isometrisch und konjugiert linear (d.h. $\Phi(\lambda y) = \bar{\lambda}\Phi(y)$). D.h. zu $x' \in H'$ existiert genau ein $y \in H$ mit

$$x'(x) = \langle x, y \rangle \forall x \in H$$

mit ||x'|| = ||y||.

Beweis: Offensichtlich ist Φ konjugiert linear. Aus der Cauchy-Schwarz-Ungleichung folgt

$$\|\Phi y\| = \sup_{\substack{x \in H \\ \|x\| = 1}} |\langle x, y \rangle| \le \|y\|$$

und für $x = \frac{y}{\|y\|}$ (y = 0 ist trivial) ist

$$\Phi(y)(x) = \frac{\langle y, y \rangle}{\|y\|} = \|y\|$$

Φ ist also isometrisch und folglich injektiv.

Es bleibt zu zeigen: Φ ist surjektiv. Sei also $x' \in H'$. O.B.d.A. ||x'|| = 1. Sei $U = \ker x'$. Nach ?? ist dann $H = U \oplus U^{\perp}$, wobei U^{\perp} eindimensional ist. Dann existiert ein $y \in H$ mit $U^{\perp} = \lim\{y\}$ und x'(y) = 1.

Für $x = u + \lambda y \in U \oplus_2 U^{\perp}$ gilt

$$x'(x) = x'(u) + \lambda x'(y) = \lambda$$

sowie

$$\{x, y\} = \lambda \langle y, y \rangle = \lambda \|y\|^{2}$$

$$\Phi\left(\frac{y}{\|y\|^{2}}\right)(x) = \left\langle x, \frac{y}{\|y\|^{2}} \right\rangle = \lambda = x'(x) \forall x \in H$$

Also $\Phi\left(\frac{y}{\|y\|^2}\right) = x'$ und somit ist Φ surjektiv.

{kor9.8}

Korollar 9.8

Sei H ein Hilbertraum.

i) Eine Folge $(x_n)_n$ konvergiert in H schwach gegen x genau dann wenn

$$\langle x_n - x, y \rangle \to 0 \,\forall \, y \in H$$

- ii) *H* ist reflexiv.
- iii) Jede beschränkte Folge in *H* besitzt eine schwach konvergente Teilfolge.

Beweis:

- i) Folgt aus dem Darstellungssatz von Fréchet-Riesz.
- iii) Folgt aus ii), da in reflexiven Räumen jede beschränkte Folge eine schwach konvergente Teilfolge besitzt.
- ii) Sei $\Phi: H \to H'$ die Abbildung aus **??**. Insbesondere ist Φ bijektiv und isometrisch. Es gilt: H' mit dem Skalarprodukt

$$\langle \Phi(x), \Phi(y) \rangle_{H'} := \langle y, x \rangle_H$$

ist ein Hilbertraum. Wir wenden nun Fréchet-Riesz auf H' an und bezeichnen die kanonische Abbildung von H' nach H'' mit ψ . $\psi \circ \Phi \colon H \to H''$ ist dann bijektiv.

$$((\psi \circ \Phi)(x))(x') = \langle x', \Phi(x) \rangle_{H'} = \langle \Phi(y), \Phi(x) \rangle_{H'} = \langle x, y \rangle_{H} = (Pgi(y))(x) = x'(x) = (i_H(x))(x')$$

Also $i_H = \psi \circ \Phi$ und i_H ist surjektiv.

Im Folgenden sei H ein Hilbertraum.

{def9.9}

Definition 9.9

Eine Teilmenge $S \subseteq H$ heißt Orthonormalsystem, falls ||e|| = 1 und $\langle e, f \rangle = 0 \forall e, f \in S$ mit $e \neq f$.

Ein Orthonormalsystem S heißt Orthonormalbasis, falls gilt: $S \subseteq T$ und T Orthonormalsystem $\Rightarrow T = S$.

Beispiel

 $H=\ell^2$ und $S=\{e_n\}_{n\in\mathbb{N}}$ Menge der Einheitsvektoren. S ist eine Orthonomalbasis. $/\!\!/$

{satz9.10}

Satz 9.10 Gram-Schmidt-Verfahren

Sei $\{x_n\}_n$ eine linear unabhängige Teilmenge von H. Dann existiert ein Orthonormalsystem S mit

$$\overline{\lim\{x_n\}_n} = \overline{\lim S}$$

Beweis: Setze $e_1 = \frac{x_1}{\|x_1\|}$. Betrachte

$$f_2 := x_2 - \langle x_2, e_1 \rangle e_1, \quad e_2 := \frac{f_2}{\|f_2\|}$$

Es gilt: $f_2 \neq 0$, da $\{x_1, x_2\}$ linear unabhängig und

$$\langle e_1, e_2 \rangle = \frac{1}{\|x_1\|} \frac{1}{\|f_2\|} \left\langle x_1, x_2 - \left\langle x_2, \frac{x_1}{\|x_1\|} \right\rangle \frac{x_1}{\|x_1\|} \right\rangle = \frac{1}{\|x_1\| \|f_2\|} \left(\langle x_1, x_2 \rangle - \overline{\langle x_2, x_2 \rangle} \frac{\|x_1\|^2}{\|x_1\|^2} \right) = 0$$

d.h. $e_1 \perp e_2$.

Durch die Vorschrift

$$f_{k+1} \coloneqq x_{k+1} - \sum_{i=1}^{k} \langle x_{k+1}, e_i \rangle e_i$$

und $e_{k+1} \coloneqq \frac{f_{k+1}}{\|f_{k+1}\|}$ wird so eine Folge $\{e_k\}_{k \in \mathbb{N}}$ definiert. Nach Konstruktion ist $S = \{e_k\}_{k \in \mathbb{N}}$ ein Orthonormalsystem mit $x_n \in \text{lin } S$ und $e_n \in \text{lin}\{x_k\}_k$ für alle $k \in \mathbb{N}$.

{satz9.11}

Satz 9.11 Besselsche Ungleichung

Ist $\{e_n\}_{n\in\mathbb{N}}$ ein Orthonormalsystem und $x\in H$, so ist

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2$$

Beweis: Sei $N \in \mathbb{N}$ beliebig. Setze

$$x_N = x - \sum_{n=1}^{N} \langle x, e_n \rangle e_n$$

Dann ist $e_N \perp x_k$ für k = 1,...,N, da

$$\langle x_N, e_k \rangle = \langle x, e_k \rangle - \sum_{n=1}^N \langle x, e_n \rangle \underbrace{\langle e_n, e_k \rangle}_{\delta_{nk}} = 0$$

Aus dem Satz von Pythagoras:

$$\|x\|^{2} + \left\| \sum_{n=1}^{N} \langle x, e_{n} \rangle e_{n} \right\|^{2} = \|x_{N}\|^{2} \sum_{n=1}^{N} |\langle x, e_{n} \rangle|^{2} \ge \sum_{n=1}^{N} |\langle x, e_{n} \rangle|^{2}$$

9.12}

Lemma 9.12

Sei $\{e_n\}$ ein Orthonormalsystem, $x, y \in H$. Dann gilt:

$$\sum_{n=1}^{\infty} |\langle x, e_n \rangle \langle e_n, y \rangle| < \infty$$

Beweis: Höldersche Ungleichung für Folgen $\{\langle x, e_n \rangle\}_n$, $\{\langle e_n, y \rangle\}_n$.

{lemma9.13}

Lemma 9.13

Sei $S \subseteq H$ ein Orthonormalsystem und sei $x \in H$. Dann ist

$$S_x \coloneqq \{e \in S \mid \langle x, e \rangle \neq 0\}$$

höchstens abzählbar.

Beweis: Besselsche Ungleichung besagt, dass

$$S_{x,n} := \left\{ e \in S \middle| |\langle x, e \rangle \ge \frac{1}{n} \right\}$$

endlich ist und daher ist

$$S_x = \bigcup_{n \in \mathbb{N}} S_{x,n}$$

abzählbar oder endlich.

{def9.14}

Definition 9.14

Sei X ein normierter Raum, I Indexmenge, $x_i \in X$, $i \in I$. Die Reihe $\sum_{i \in I} x_i$ konvergiert unbedingt gegen $x \in X$, falls

- i) $I_0 = \{i \in I \mid x_i \neq 0\}$ höchstens abzählbar.
- ii) Für jede Aufzählung $I_0 = \{i_1, i_2, ...\}$ gilt die Gleichung

$$\sum_{n=1}^{\infty} x_{i_n} = x$$

(Der Wert der Reihe $\sum x_{i_n}$ hängt also nicht von der Reihenfolge der x_{i_n} s ab). Schreibweise:

$$x = \sum_{i \in I} x_i$$

Bemerkung

- i) In diesem Abschnitt unterscheiden wir zwischen $\sum_{n\in\mathbb{N}}$ und $\sum_{n=1}^{\infty}$.
- ii) Ist $X = \mathbb{K}^n$, so gilt: Absolute und unbedingt Konvergenz sind äquivalent.
- iii) Allgemein gilt der Satz von Dvoretzky-Rogers: In jedem unendlichdimensionalen Banachraum existiert eine unbedingt konvergente Reihe, die nicht absolut konvergiert.

{kor9.15}

Korollar 9.15 Allgemeine Besselsche Ungleichung für Orthonormalsysteme Ist $S \subseteq H$ ein Orthonormalsystem und $x \in H$, so ist

$$\sum_{e \in S} |\langle x, e \rangle|^2 \le ||x||^2$$

{satz9.16}

Satz 9.16

Sei $S \subseteq H$ ein Orthonormalsystem.

- i) Für alle $x \in H$ konvergiert $\sum_{e \in S} \langle x, e \rangle e$ unbedingt.
- ii)

$$p: x \mapsto \sum_{e \in S} \langle x, e \rangle e$$

ist eine Orthonomalprojektion aus $\lim S$.

Beweis:

i) Sei $\{e_1, e_2, ...\}$ eine Aufzählung von $\{e \in S \mid \langle x, e \rangle \neq 0\}$. Wir zeigen, dass $\sum \langle x, e_n \rangle e_n$ eine Cauchyreihe ist. Aus dem Satz von Pythagoras folgt:

$$\left\| \sum_{n=N}^{M} \langle x, e \rangle e_n \right\|^2 = \sum_{n=N}^{M} |\langle x, e_n \rangle|^2 \xrightarrow{N, M \to \infty} 0$$

Dann existiert $y := \sum \langle x, e_n \rangle e_n$ in H und analog konvergiert für eine Permutation $\pi : \mathbb{N} \to \mathbb{N}$ die umgeordnete Reihe $y_{\pi} = \sum \langle x, e_{\pi(n)} \rangle e_{\pi(n)}$. Es bleibt zu zeigen: $y = y_{\pi}$. Sei $z \in H$ beliebig. Aus

$$\langle y,z\rangle = \sum_{n=1}^{\infty} \langle x,e_n\rangle \langle e_n,z\rangle = \sum_{n=1}^{\infty} \langle x,e_{\pi(n)}\rangle \langle e_{\pi(n)},y\rangle = \langle y_\pi,z\rangle$$

folgt $y - y_{\pi} \in H^{\perp} = \{0\}.$

ii) Wegen ?? (insbesondere (**)) genügt es zu zeigen, dass

$$\left\langle x - \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n, e \right\rangle = 0 \,\forall x \in S$$

Für $\langle x,e\rangle=0 \,\forall e\in S$ ist dies klar. Sei also $\langle x,e\rangle\neq 0$ für ein $e\in S$. Dann ist $e=e_{n_0}$ für ein $n_0\in\mathbb{N}$. Hieraus folgt die Behauptung.

{satz9.17}

Satz 9.17

Sei $S \subseteq H$ ein Orthonormalsystem.

- i) Es existiert eine Orthonormalbasis S' mit $S \subseteq S'$.
- ii) Folgende Aussagen sind äquivalent:
 - a) S ist eine Orthonormalbasis.
 - b) Ist $x \in H$ und $x \perp S$, so ist x = 0.
 - c) Es gilt $H = \overline{\lim S}$.

d)

$$x = \sum_{e \in S} \langle x, e \rangle e \, \forall x \in H$$

e)

$$\langle x, y \rangle = \sum_{e \in S} \langle x, e \rangle \langle e, x \rangle \, \forall x, y \in H$$

f) Parsevalsche Gleichung:

$$||x||^2 = \sum_{e \in S} |\langle x, e \rangle|^2 \forall x \in H$$

Beweis:

i) Folgt aus dem Zornschen Lemma.

ii) a) \Rightarrow b): Wäre $x \neq 0$, $x \perp S$, so wäre $S \cup \left\{ \frac{x}{\|x\|} \right\}$ ein Orthonormalsystem. \nleq

b) \Rightarrow c): Folgt aus $\bar{U} = (U^{\perp})^{\perp}$.

 $c) \Rightarrow d$): Dies ist ??.

d)⇒e): Einsetzen unter Beachtung von **??** und **??**.

 $e) \Rightarrow f$: Setze x = y.

 $f)\Rightarrow a$): Angenommen, es gäbe x mit ||x||=1, so dass $S\cup\{x\}$ ein Orthonomalsystem ist.

$$||x||^2 = \sum_{e \in S} |\langle x, e \rangle|^2 = 0$$

{satz9.18}

Satz 9.18

Ist S eine Orthonormalbasis von H, so ist $H \cong \ell^2(S)$. Hierbei ist

$$\ell^{2}(S) := \left\{ f : S \to \mathbb{K} \left| \sum_{i \in S} |f(i)|^{2} < \infty \right. \right\}$$

ein Hilbertraum mit Skalarprodukt

$$\langle f, g \rangle = \sum_{i \in S} f(i) \overline{g(i)}$$

Beweis: Zu $x \in H$ definiere $Tx \in \ell^2(S)$ durch

$$(Tx)(e) = \{x, e\}$$

 $Tx \in \ell^2(S)$ (folgt aus der Besselschen Ungleichung). $T: H \to \ell^2(S)$ ist linear und mit der Parsevalschen Gleichung isometrisch.

Ist umgekehrt $(f_e)_e \in \ell^2(S)$, so definiert $x = \sum_{e \in S} f_e e$ ein Element von H (siehe Beweis von **??**i)). Es gilt: $Tx = (f_e)_{e \in S}$. hieraus folgt die Behauptung.

9.19}

Korollar 9.19

Ist H separabel und $\dim H = \infty$, so ist $H \cong \ell^2$.

Beweis: Sei S eine Orthonormalbasis von H. Aus $||e-f|| = \sqrt{2}$ ($\forall e, f \in S, e \neq f$) folgt: S kann nicht überabzählbar sein (vergleiche Beweis der Inseparabilität von ℓ^2). ?? liefert die Behauptung.

10

Operatoren auf Hilberträumen

Sei stets H (bzw. (H_1, H_2)) ein Hilbertraum.

{def10.1}

Definition 10.1

Sei $T \in L(H_1, H_2)$. Die Abbildung $T^* \in L(H_2, H_1)$ heißt adjungiert zu T, falls

$$\langle Tx, y \rangle_{H_2} = \langle x, T1^*y \rangle_{H_1} \forall x \in H_1, y \in H_2$$

{satz10.2}

Satz 10.2

Zu jedem Operator $T \in L(H_1, H_2)$ existiert ein eindeutig bestimmter adjungierter Operator T^* und es gilt

$$\|T\| = \|T^*\|$$

Beweis:

Eindeutigkeit: Seien S_1 und S_2 adjungiert zu T.

$$\langle x, (S_1 - S_2)y \rangle_{H_1} = \langle Tx, y \rangle_{H_2} - \langle Tx, y \rangle_{H_2} = 0$$

für alle $x \in H_1$, $y \in H_2$. Alsi gilt $S_1 = S_2$

Existenz: Für $y \in H_2$ ist die Abbildung $x \mapsto \langle Tx, y \rangle_{H_2}$ stetig und linear. Nach dem Darstellungssatz von Fréchet-Riesz existiert ein $y^* \in H_1$ so dass

$$\langle Tx, y \rangle_{H_2} = \langle x, y^* \rangle_{H_1} \forall x \in H_1$$

Die Zuordnung $T^* : y \mapsto y^*$ ist linear und wegen

$$\left\| T^* \right\| = \sup_{\substack{y \in H_2 \\ \|y\| \leq 1}} \left\| y^* \right\| = \sup_{\substack{y \in H_2 \\ \|y\| \leq 1}} \sup_{\substack{x \in H_1 \\ \|y\| \leq 1}} |\langle x, y^* \rangle_{H_1}| = \|T\|$$

auch stetig. Hieraus folgt die Behauptung.

{satz10.3}

Satz 10.3

Seien $S, T \in L(H_1, H_2), R \in L(H_2, H_3), \lambda \in \mathbb{K}$. Dann gilt:

i)
$$(S+T)^* = S^* + T^*$$
.

ii)
$$(\lambda S)^* = \bar{\lambda} S^*$$
.

iii)
$$(RS)^* = S^*R^*$$
.

iv)
$$S^{**} = S$$
.

v)
$$||SS^*|| = ||S^*S|| = ||S||^2$$
.

vi) $\ker S = (\operatorname{ran} S^*)^{\perp}$ und $\ker S^* = (\operatorname{ran} S)^{\perp}$. Insbesondere ist S genau dann injektiv, wenn $\operatorname{ran} S^*$ dicht liegt.

Beweis: i) bis iv) lassen sich einfach nachrechnen. Wir zeigen v). Es gilt

$$||Sx|| = \langle Sx, Sx \rangle_{H_2} = \langle x, S^*Sx \rangle \le ||x|| ||S^*Sx||$$

$$\|S\|^2 = \sup_{\|x\|_{H_1} \le 1} \|Sx\|_{H_2}^2 \le \sup_{\|x\|_{H_1} \le 1} \|x\| \, \big\|S^*Sx\big\| \le \big\|S^*\big\| \, \|S\| = \|S\|^2$$

Also $||S||^2 = ||S^*S||$ und folglich

$$||S^2|| = ||S^*||^2 = ||S^{**}S^*|| = ||SS^*||$$

Zu vi):

$$\begin{aligned} x \in \ker S &\Leftrightarrow Sx = 0 \\ &\Leftrightarrow \langle Sx, y \rangle_{H_2} = 0 \,\forall \, y \in H_2 \\ &\Leftrightarrow \langle x, S^*y \rangle_{H_1} = 0 \,\forall \, y \in H_2 \\ &\Leftrightarrow x \in (\operatorname{ran} S^*)^{\perp} \end{aligned}$$

und somit auch

$$\ker S^* = (\operatorname{ran} S^{**})^{\perp} = (\operatorname{ran} S)^{\perp}$$

{def10.4}

Definition 10.4

Sei $T \in L(H_1, H_2)$.

- i) T heißt unitär, falls T invertierbar ist mit $TT^* = I_{H_2}$ und $T^*T = I_{H_1}$.
- ii) Sei $H_1 = H_2$. T^* heißt selbstadjungiert (oder hermitesch), falls $T = T^*$.
- iii) Sei $H_1 = H_2$. T heißt normal, falls $TT^* = T^*T$.

Bemerkung

i) T unitär $\Leftrightarrow T$ surjektiv und

$$\langle Tx, Ty \rangle_{H_2} = \langle x, y \rangle_{H_1} \forall x, y \in H_1$$

- ii) T ist selbstadjungiert $\Leftrightarrow \langle Tx, y \rangle_{H_1} = \langle x, Ty \rangle_{H_2}$.
- iii) T ist normal $\Leftrightarrow \langle Tx, Ty \rangle_{H_1} = \langle T^*y, T^*y \rangle_{H_1}$.
- iv) T selbstadjungiert $\Rightarrow T$ normal.
- v) $H_1 = H_2$, T unitär $\Rightarrow T$ normal.

Beispiel

- i) Sei $H = \mathbb{K}^n$. Wird $T \in L(H)$ durch die Matrix $(a_{ij})_{ij}$ dargestellt, so wird T^* durch die Matrix $(\bar{a}_{ji})_{ji}$ dargestellt.
- ii) Sei $T \colon \ell^2 \to \ell^2$ der Shiftoperator $(x_1, x_2, ...) \mapsto (x_2, x_3, ...)$. Dann ist $T^*(y_1, y_2, ...) = (0, y_1, y_2, ...)$. T ist nicht normal, da $TT^* = I_{\ell^2}$ und $T^*T = p_U$, $U = \{(x_n)_n \in \ell^2 \mid x_1 = 0\}$.
- iii) T^*T und TT^* sind stets selbstadjungiert. $/\!\!/$

{lemma10.5}

Lemma 10.5

Für $T \in L(H_1, H_2)$ sind äquivalent:

- i) *T* ist eine Isometrie, d.h. $||Tx|| = ||x|| \forall x \in H$.
- ii) $\langle Tx, Ty \rangle_{H_1} = \langle x, y \rangle_{H_1} \forall x, y \in H_1.$

Beweis:

 $ii) \Rightarrow i$): Setze x = y.

 $i)\Rightarrow$ Sei $\mathbb{K}=\mathbb{R}$. Dann folgt aus

$$\langle x,y\rangle_{H_1} = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) = \frac{1}{4}(\|Tx+Ty\|^2 - \|Tx-Ty\|^2) = \langle Tx,Ty\rangle$$

die Behauptung. Analog für $\mathbb{K} = \mathbb{C}$.

{satz10.6}

Satz 10.6 Satz von Hellinger-Toeplitz

Erfüllt eine lineare Abbildung $T: H \rightarrow H$ die Symmetriebedingung

$$\langle Tx, y \rangle = \langle x, Ty \rangle \forall x, y \in H$$

so ist T stetig, folglich selbstadjungiert.

Beweis: Nach dem Satz vom abgeschlossenen Graphen ist zu zeigen:

$$x_n \to Tx_n \to y \Rightarrow Tx = y$$

$$||Tx - y||^2 = \langle Tx - y, Tx - y \rangle$$

$$= \left\langle Tx - \lim_{n \to \infty} Tx_n, Tx - y \right\rangle$$

$$= \lim_{n \to \infty} \langle T(x - x_n), Tx - y \rangle$$

$$= \lim_{n \to \infty} \langle x - x_n, T^*(Tx - y) \rangle$$

$$= 0$$

Also ist Tx = y.

{satz10.7}

Satz 10.7

Sei $\mathbb{K} = \mathbb{C}$. Dann sind für $T \in L(H)$ äquivalent:

- i) T ist selbstadjungiert.
- ii) $\langle Tx, x \rangle \in \mathbb{R} \forall x \in H$

Beweis:

 $i)\Rightarrow ii)$: Folgt aus $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle} \in \mathbb{R}$.

ii)⇒i): Für $\lambda \in \mathbb{C}$ betrachte die reelle Zahl

$$\langle T(x+\lambda y), x+\lambda y\rangle = \langle Tx, x\rangle + \bar{\lambda}\langle Tx, y\rangle + \lambda\langle Ty, x\rangle + |\lambda|^2\langle Ty, y\rangle$$

Wir nehmen alle konjugiert komplex:

$$\langle T(x+\lambda y), x+\lambda y\rangle = \langle Tx, x\rangle + \lambda \langle y, Tx\rangle + \bar{\lambda} \langle x, Ty\rangle + |\lambda|^2 \langle Ty, y\rangle$$

Also gilt:

$$\bar{\lambda}\langle Tx, y\rangle + \lambda\langle Ty, x\rangle = \lambda\langle x, Tx\rangle + \langle x, \bar{T}y\rangle$$

Wir wählen $\lambda = 1$ und $\lambda = -i$:

$$\langle Tx, y \rangle + \langle Ty, x \rangle = \langle y, Tx \rangle + \langle x, Ty \rangle$$

$$\langle Tx, y \rangle - \langle Ty, x \rangle = -\langle y, Tx \rangle + \langle x, Ty \rangle$$

Also folgt $\langle Tx, y \rangle = \langle x, Ty \rangle$.

{satz10.8}

Satz 10.8

Für selbstadjungierte operatoren $T \in L(H)$ gilt

$$\|T\| = \sup_{\|x\| \le 1} |\langle Tx, x \rangle|$$

Beweis: '≥' ist klar.

Setze

$$M \coloneqq \sup_{\|x\| \le 1} |\langle Tx, x \rangle|$$

Aus $T = T^*$ folgt:

$$\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle = 2\langle Tx, y \rangle + 2\langle Ty, x \rangle = 2\langle Tx, y \rangle + 2\overline{\langle Tx, y \rangle} = 4\operatorname{Re}\langle Tx, y \rangle$$

Also:

$$4\operatorname{Re}\langle Tx, y \rangle \le M(\|x + y\|^2 + \|x - y\|^2) = 2M(\|x\|^2 + \|y\|^2)$$

Weiter gilt:

$$\operatorname{Re}\langle Tx, y \rangle \leq M \forall \|x\|, \|y\| \leq 1$$

Multiplikation mit geeigneten λ , $|\lambda| = 1$ liefert:

$$|\langle Tx, y \rangle| \le M \forall ||x||, ||y|| \le 1$$

Also ist $||T|| \leq M$.

{kor10.9}

Korollar 10.9

Ist $T \in L(H)$ selbstadjungiert und es gilt $\langle Tx, y \rangle = 0$, so ist T = 0.

Bemerkung

Die Aussage gilt nur für selbstadjungierte Operatoren: Sei $H=\mathbb{R}^2$ und $T=\left(\begin{smallmatrix}0&1\\-1&0\end{smallmatrix}\right)$. Dann gilt:

$$\langle Tx,x
angle_{\mathbb{R}^2}=\left\langle egin{pmatrix} x_2 \ -x_1 \end{pmatrix}, egin{pmatrix} x_1 \ x_2 \end{pmatrix}
ight
angle_{\mathbb{R}^2}=x_2x_2-x_1x_2=0$$

{lemma10.10}

Lemma 10.10

Ist $T \in L(H)$ ein normaler Operator, so gilt

$$||Tx|| = ||T^*x||$$

Insbesondere $\ker T = \ker T^*$.

Beweis: Es gilt:

$$0 = \langle (TT^* - T^*T)x.x \rangle = \|T^*x\|^2 - \|Tx\|^2 \, \forall x \in H$$

{satz10.11}

Satz 10.11

Sei $p \in L(H)$ eine Projektion (d.h. $p^2 = p$) mit $p \neq 0$. Dann sind äquivalent:

- i) p ist eine Orthogonalprojektion (d.h. ran $p \perp \ker p$).
- ii) ||p|| = 1.
- iii) p ist selbstadjungiert (d.h. $p = p^*$).
- iv) p ist normal (d.h. $pp^* = p^*p$).
- v) $\langle px, x \rangle \ge 0 \forall x \in H$.

Beweis:

 $i) \Rightarrow ii$): Dies ist **??**.

 $ii) \Rightarrow i$): Sei $x \in \ker p$ und $y \in \operatorname{ran} p$ und $\lambda \in \mathbb{K}$.

$$p(x + \lambda y) = \lambda y$$

$$\|\lambda y\|^2 = \|p(x + \lambda y)\|^2 \le \|x + \lambda y\|^2 = \|x^2\| + 2\operatorname{Re}\bar{\lambda}\langle x, y\rangle + \|\lambda y\|^2$$

$$-\lambda \operatorname{Re}\langle x, y\rangle \le \|x\|^2 \, \forall \lambda \in \mathbb{R}$$

Es folgt: $\operatorname{Re}\langle x,y\rangle=0$. Analog für $\lambda\in i\mathbb{R}$: $\operatorname{Im}\langle x,y\rangle=0$, also folgt i).

 $i) \Rightarrow iii$): Es ist

$$\langle Px, y \rangle = \langle px, py + (y - py) \rangle = \langle px, py \rangle$$

und

$$\langle x, py \rangle = \langle px + (x - px), py \rangle = \langle px, py \rangle$$

iii)⇒*iv*): √

 $iv)\Rightarrow i)$: Lemma 10.10: T normal $\Rightarrow ||Tx|| = ||T^*x|| \ \forall x \in H$. Mit Lemma 10.10:

$$\ker p = \ker p^* = (\operatorname{ran} p)^{\perp}$$

iii)⇒*v*):

$$\langle px, x \rangle = \langle p^2x, x \rangle = \langle p(px), y \rangle = \langle px, p^*x \rangle = \langle px, px \rangle = ||px||^2 \ge 0$$

 $v) \Rightarrow i$: Für $y \in \ker p$, $y \in \operatorname{ran} p$, $\lambda \in \mathbb{R}$ gilt:

$$0 \le \langle p(x + \lambda y), x + \lambda y \rangle = \langle \lambda y, x + \lambda y \rangle = \lambda \langle y, x \rangle + \lambda^2 \|y\|^2$$
$$\langle y, x \rangle \ge -\lambda \|y\|^2 \, \forall \lambda > 0$$
$$\langle y, x \rangle \le -\lambda \|y\|^2 \, \forall \lambda < 0$$

Also folgt: $\lambda y, x \rangle = 0$.

11

Das Spektrum eines beschränkten Operators

X sei stets ein Banachraum und $T \in L(X)$.

{def11.1}

Definition 11.1

Die Resolventenmenge von T ist gegeben durch

$$\rho(T) = \langle \lambda \in \mathbb{K} \mid (\lambda I - T)^{-1} \text{ existiert in } L(X) \rangle$$

Die Abbildung $R(\cdot,T)$: $\mathbb{K} \to L(X)$, $R(\lambda,T) = (\lambda I - T)^{-1}$, heißt Resolventenabbildung. Das Spektrum von T ist gegeben durch

$$\sigma(T) := \mathbb{K} \setminus \rho(T)$$

Wir definieren die folgenden Teilmengen des Spektrums:

$$\sigma_{\mathcal{D}}(T) := \{\lambda \in \mathbb{K} \mid \lambda I - T \text{ ist nicht injektiv}\}$$

(Punktspektrum)

 $\sigma_c(T) := \{\lambda \in \mathbb{K} \mid \lambda I - T \text{ ist injektiv, nicht surjektiv aber hat dichtes Bild}\}$

(Stetiges Spektrum)

 $\sigma_r(T) := \{\lambda \in \mathbb{K} \mid \lambda I - T \text{ ist injektiv, ohne dichtes Bild}\}\$

(Restspektrum)

Bemerkung

Es gilt:

$$\sigma(T) = \sigma_p(T) \cup \sigma_s(T) \cup \sigma_r(T)$$

da $(\lambda I - T)^{-1}$ automatisch stetig ist, falls $\lambda I - T$ bijektiv ist (folgt aus satz von der offenen Abbildung).

Die Elemente von $\sigma_p(T)$ heißen Eigenwerte, ein $x \neq 0$ mit $Tx = \lambda x$ heißt Eigenvektor (oder Eigenfunktion, falls X ein Funktionenraum ist).

{satz11.2}

Satz 11.2

Ist *X* ein Hilbertraum, so gilt:

$$\sigma(T^*) = {\bar{\lambda} \mid \lambda \in \sigma(T)}, T \in L(X)$$

Beweis: $\lambda I - T$ Isomorphismus $\Leftrightarrow (\lambda I - T)^* = \bar{\lambda} I - T^*$ Isomorphismus. Hieraus folgt direkt die Aussage.

Beispiel

i) $\dim X < \infty$. Dann gilt

$$\sigma(T) = \sigma_p(T) = \{\text{Menge der Eigenwerte}\}\$$

 $\sigma(T)$ kann im Fall $\mathbb{K} = \mathbb{R}$ leer sein.

ii) $X = C[0,1], T \in L(X)$ und

$$(Tx)(s) = \int_0^s x(t)dt$$

Zeige: $\sigma(T) = \sigma_r(T) = \{0\}.$

Beweis: Sei $\lambda = 0$. Der Hauptsatz der Differential- und Integralrechnung impliziert: T ist injektiv. Aus (Tx)(0) = 0 folgt: T hat kein dichtes Bild. Also ist $0 \in \sigma_r(T)$. Sei nun $\lambda \neq 0$. Es ist zu zeigen: $\forall y \in C[0,1]$ ist die Gleichung

$$\lambda x - Tx = y \qquad (*)$$

eindeutig nach x auflösbar ($x \in C[0,1]$). Sei zunächst $y \in C^1[0,1]$ mit y' =: z. Dann ist (*) äquivalent zu

$$x'(t) - \frac{1}{\lambda}x(t) = \frac{1}{\lambda}z(t), x(0) = \alpha := \frac{1}{\lambda}y(0) \qquad (**)$$

Diese Gleichung hat die eindeutige Lösung

$$x(t) = e^{\frac{t}{\lambda}} \left(\frac{1}{\lambda} \int_0^t e^{-\frac{s}{\lambda}} z(s) ds + \alpha \right) = \frac{1}{\lambda^2} \int_0^t e^{\frac{t-s}{\lambda}} y(s) ds + \frac{1}{\lambda} y(t)$$

Eine einfache Rechnung zeigt, dass x auch für beliebiges $y \in C[0,1]$ Lösung von (*) ist. Für y = 0 hat die Gleichung (*) nur die triviale Lösung. Also ist $\lambda I - T$ bijektiv.

iii) Wir betrachten den Operator aus ii) auf

$$X = \{x \in C[0,1] \mid x(0) = 0\}$$

Zeige: $\sigma(T) = \sigma_c(T) = \{0\}.$

Beweis: Analog zu ii) gilt: $\lambda \in \rho(T)$ für $\lambda \neq 0$ und wieder ist T injektiv. Wegen

$$\operatorname{ran} T = \{ y \in C^1[0,1] \mid y(0) = y'(0) = 0 \}$$

gilt:

$$\operatorname{ran} T \neq \overline{\operatorname{ran} T} = X$$

Also ist $0 \in \sigma_c(T)$.

 $/\!\!/$

{satz11.3}

Satz 11.3

Es gilt

- i) $\rho(T)$ ist offen.
- ii) Die Resolventenabbildung ist analytisch, d.h. sie wird lokal durch eine Potenzreihe mit Koeffizienten in L(X) beschrieben.
- iii) $\sigma(T)$ ist kompakt, genauer: $|\lambda| \leq ||T||$ für $\lambda \in \sigma(T)$.
- iv) Ist $\mathbb{K} = \mathbb{C}$, so ist $\sigma(T) \neq \emptyset$.

Beweis:

i) Sei $\lambda_0 \in \rho(T)$ und

$$|\lambda - \lambda_0| \le \left\| (\lambda_0 I - T)^{-1} \right\|^{-1}$$

Dann folgt

$$\lambda I - T = (\lambda_0 I - T) + (\lambda - \lambda_0)I = (\lambda_0 I - T)(I - (\lambda - \lambda_0)(\lambda_0 I - T)^{-1})$$

Nach Wahl von λ konvergiert die Neumannsche Reihe

$$\sum_{n=0}^{\infty} ((\lambda - \lambda_0)(\lambda_0 I - T)^{-1})^n$$

und es gilt: $(I - (\lambda - \lambda_0)(\lambda_0 I - T)^{-1})$ ist invertierbar. Also ist $\lambda I - T$ invertier(bar und $\lambda \in \rho(T)$. Somit ist $\rho(T)$ offen.

ii) Mit Hilfe der Neumannschen Reihe folgt:

$$\begin{split} R(\lambda, T) &= (\lambda I - T)^{-1} \\ &= (I - (\lambda_0 - \lambda)(\lambda_0 I - T)^{-1})^{-1}(\lambda_0 I - T)^{-1} \\ &= \sum_{n=0}^{\infty} (\lambda_0 - \lambda)^n (\lambda_0 I - T)^{-n}(\lambda_0 I - T)^{-1} \\ &= \sum_{n=0}^{\infty} (\lambda_0 I - T)^{-(n+1)}(\lambda_0 - \lambda)^n \end{split}$$

iii) Nach i) ist $\sigma(T)$ abgeschlossen und für $|\lambda| > ||T||$:

$$(\lambda I - T)^{-1} = \lambda^{-1} \left(I - \frac{T}{\lambda} \right)^{-1} = \lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} T^n$$
 (*)

ist konvergent (Neumannsche Reihe, $\left\| \frac{T}{\lambda} \right\| < 1$). Also folgt:

$$\sigma(T) \subseteq \{\lambda \in \mathbb{K} \mid |\lambda| \le ||T||\}$$

iv) Angenommen, $\sigma(T) = \emptyset$. Dann $\rho(T) = \mathbb{C}$. Dann ist die Resolventenabbildung auf ganz \mathbb{C} analytisch und es gilt lokal:

$$R(\lambda, T) = \sum_{n=0}^{\infty} (-1)^n R(\lambda_0, T)^{n+1} (\lambda - \lambda_0)^n$$

Sei nun $l \in L(X)'$ beliebig.

$$l(R(\lambda, T)) = \sum_{n=0}^{\infty} (-1)^n l(R(\lambda_0, T)^{n+1}) (\lambda - \lambda_0)^n$$

ist analytisch. $l(R(\cdot,T))$ ist auf ganz $\mathbb C$ beschränkt: Für $|\lambda|>2\,\|T\|$ gilt nämlich

$$\begin{aligned} |l(R(\lambda, T))| &= \left| \lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n} l(T^n) \right| \\ &\leq |\lambda|^{-1} \sum_{n=0}^{\infty} |\lambda|^{-n} \|l\| \|T^n\| \\ &\leq |\lambda|^{-1} \|l\| \sum_{n=0}^{\infty} \left(\frac{\|T\|}{|\lambda|} \right)^n \end{aligned}$$

$$\begin{split} &= |\lambda|^{-1} \|l\| \frac{1}{1 - \frac{\|T\|}{|\lambda|}} \\ &= |\lambda|^{-1} \|l\| \frac{|\lambda|}{|\lambda| - \|T\|} \\ &= \frac{\|l\|}{|\lambda| - \|T\|} \\ &\leq \frac{\|l\|}{\|T\|} \end{split}$$

und auf der kompakten Menge $\{\lambda \in \mathbb{C} \mid |\lambda| \le 2 \|T\|\}$ ist sie aus Stetigskeitsgründen beschränkt.

Satz von Lioville (Funktionentheorie) Eine auf ganz $\mathbb C$ definierte beschränkte analytische Funktion ist konstant.

Mit dem Satz folgt: $\lambda \mapsto l(R(\lambda, T))$ ist konstant. Es gilt aber

$$l(R(\lambda, T)) = \sum_{n=0}^{\infty} (-1)^n l(R(0, T)^{n+1}) \lambda^n$$

lokal um 0. Somit gilt:

$$l(R(0,T)^{n+1}) = 0$$

Insbesondere folgt $l(T^{-2})=0$. Die gilt für jedes $l\in L(X)'$. Mit Hahn-Banach gilt dann $T^{-2}=0$. Der Nulloperator ist aber nicht invers zu $T^2 \notin$. Also $\sigma(T) \neq \emptyset$.

Lemma 11.4

Die reelle Zahlenfolge (a_n) erfülle $0 \le a_{m+n} \le a_n a_m$ für alle $n, m \in \mathbb{N}$. Dann konvergiert $(\sqrt[n]{a_n})_n$ gegen $a := \inf \sqrt[n]{a_n}$.

{def11.5}

{lemma11.4}

Definition 11.5

$$r(T) := \inf \|T^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}}$$

wird Spektralradius von $T \in L(X)$ genannt.

Lemma 11.4 garantiert, dass der limes existiert.

{satz11.6}

Satz 11.6

- i) $\lambda \in \sigma(T) \Rightarrow |\lambda| \leq r(T)$
- ii) Falls $\mathbb{K} = \mathbb{C}$, so existiert $\lambda \in \sigma(T)$ mit $|\lambda| = r(T)$, d.h.

$$r(T) = \max\{|\lambda| \mid \lambda \in \sigma(T)\}$$

{satz11.7}

Satz 11.7

Ist H ein Hilbertraum und $T \in L(H)$ normal, so ist r(T) = ||T||.

{satz11.8}

Satz 11.8

Sei $T \in K(X)$.

- i) Ist dim $X = \infty$, so ist $0 \in \sigma(T)$.
- ii) Die (eventuell leere) Menge $\sigma(T) \setminus \{0\}$ ist höchstens abzählbar.
- iii) $\sigma(T)$ besitzt keinen von 0 verschiedenen Häufungspunkt.
- iv) Jedes $\lambda \in \sigma(T) \setminus \{0\}$ ist ein Eigenwert von T mit dim $\ker(\lambda I T) < \infty$.

Beweis:

i) Angenommen $0 \in \rho(T)$. Dann existiert T^{-1} in L(X). Also ist $I = TT^{-1} \in K(X)$. Dann wäre B(0,1) kompakt f.