Course Code: AEED01

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

B TECH I SEMESTER CIE-II EXAMINATIONS, JANUARY - 2024 Regulation: BT23

ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Time: 2 Hours $(COMMON\ TO\ CSE\ (AI\&ML) \mid AE \mid ME \mid CE)$ Max Marks: 20

> Answer any FOUR questions All parts of the question must be answered in one place only

1. (a) Outline the V-I characteristics of PN junction diode for forward bias and reverse bias voltages and represent the static and dynamic resistance of the diode in the characteristic curve.

[BL: Understand | CO: 5 | Marks: 2]

- (b) The reverse saturation current of a silicon PN junction diode at an operating temperature of $27^{0}\mathrm{C}$ is $50\mathrm{nA}$. Compute the forward and reverse dynamic resistances of the diode for applied voltages of 0.8V and -0.4V respectively. [BL: Apply | CO: 4|Marks: 3]
- 2. (a) Determine the h-parameters for the common emitter configuration using NPN transistor.

[BL: Understand | CO: 5 | Marks: 2]

(b) Given an NPN transistor for which $\alpha = 0.98$, $I_{CO} = 2\mu A$, and $I_{CEO} = 16\mu A$. A common-emitter connection is used as shown in Figure 1, with $V_{CC}=12\mathrm{V}$ and $R_C=4\mathrm{K}\Omega$. What is the minimum base current required in order for the transistor to erter into saturation region ?

[BL: Apply | CO: 5|Marks: 3]

Figure 1

- 3. (a) Illustrate the working of transistor in common collector configurations and draw its input and output characteristics. [BL: Understand | CO: 5 | Marks: 2]
 - (b) A silicon transistor with $V_{BE}=0.7\mathrm{V},\,\alpha=0.98$ and collector cut-off current of 10 μ A. Assume R_C =2K Ω , V_{CC} = 12V and I_B = 10 μ A, solve β , I_{CE0} , I_C , I_E and V_{CE} .

[BL: Apply | CO: 5|Marks: 3]

- 4. (a) Summarize CB, CE and CC amplifiers in terms of current gain, voltage gain, input impedance BL: Understand CO: 6 Marks: 2 and output admittance.
 - (b) In a silicon transistor circuit with a fixed bias, V_{CC} =12V, R_C =330 Ω , I_B =0.3mA, β = 100, $V_{BE} = 0.7$ V. Solve the value of bias resistor R_B and stability factor.

[BL: Apply | CO: 6 | Marks: 3]

5. (a) Construct collector to base bias using transistor and derive the expression for stability factor. [BL: Understand] CO: 6 Marks: 2] (b) Determine the input impedance, output impedance, voltage gain, and current-gain for the CE amplifier of Figure 2. The h-parameters of the transistor of $h_{fe}=60,\,h_{ie}=500~\Omega$ at $I_C=3$ mA. [BL: Apply [CO: 6]Marks: 3]

Figure 2

