1

JEE Main 2020 Paper - 4th September 2020 — Shift 1 (Maths)

EE24BTECH11009 - Mokshith Kumar Reddy*

1) Let y = y(x) be the solution of the differential equation, $xy' - y = x^2(x\cos x + \sin x), x > 0$. If $y(\pi) = \pi$, then $y''(\frac{\pi}{2}) + y(\frac{\pi}{2})$ is equal to

a)
$$2 + \frac{\pi}{2} + \frac{\pi^2}{4}$$

b) $2 + \frac{\pi}{2}$

b)
$$2 + \frac{\pi}{2}$$

c)
$$1 + \frac{\pi}{2}$$

c)
$$1 + \frac{\pi}{2}$$

d) $1 + \frac{\pi}{2} + \frac{\pi^2}{4}$

2) The value of $\sum_{r=0}^{20} {}^{50-r}C_6$ is equal to:

a)
$${}^{51}C_7 - {}^{30}C_7$$

b)
$${}^{51}C_7 + {}^{30}C_7$$

c)
$${}^{50}C_7 - {}^{30}C_7$$

d) ${}^{50}C_6 - {}^{30}C_6$

3) Let $\lfloor t \rfloor$ denote the greatest integer $\leq t$. Then the equation in $x, \lfloor x \rfloor^2 + 2 \lfloor x + 2 \rfloor - 7 = 0$ has:

- a) exactly four integral solutions
- b) infinitely many solutions
- c) no integral solution
- d) exactly two solutions

4) Let P(3,3) be a point on the hyperbola, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If the normal to it at **P** intersects the x-axis at (9,0) and e is its eccentricity, then the ordered pair (a^2,e^2) is equal to:

- b) $\left(\frac{9}{2},2\right)$

5) Let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) be a given ellipse, the length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, $\phi(t) = \frac{5}{12} + t - t^2$, then $a^2 + b^2$ is equal to

- a) 135
- b) 116
- c) 126
- d) 145

6) Let $f(x) = \int \frac{\sqrt{x}}{(1+x)^2} dx$. Then f(3) - f(1) is equal to:

a)
$$-\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{4}$$

b)
$$\frac{\pi}{6} + \frac{1}{2} - \frac{\sqrt{3}}{4}$$

c)
$$-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$$

a)
$$-\frac{\pi}{6} + \frac{1}{2} + \frac{\sqrt{3}}{4}$$

b) $\frac{\pi}{6} + \frac{1}{2} - \frac{\sqrt{3}}{4}$
c) $-\frac{\pi}{12} + \frac{1}{2} + \frac{\sqrt{3}}{4}$
d) $\frac{\pi}{12} + \frac{1}{2} - \frac{\sqrt{3}}{4}$

7) If $1 + (1 - 2^2 \cdot 1) + (1 - 4^2 \cdot 3) + (1 - 6^2 \cdot 5) + \dots + (1 - 20^2 \cdot 19) = \alpha - 220\beta$, then an ordered pair (α, β) is equal to:

- a) (10,97)
- b) (11, 103)
- c) (11,97)
- d) (10, 103)

8) The integral $\int_{x \sin x + \cos x}^{x \sin x + \cos x}^{x \cos x} dx$ is equal to (where C is a constant of integration):

a) $\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$ b) $\sec x + \frac{x \tan x}{x \sin x + \cos x} + C$ c) $\sec x - \frac{x \tan x}{x \sin x + \cos x} + C$ d) $\tan x + \frac{x \sec x}{x \sin x + \cos x} + C$

a)
$$\tan x - \frac{x \sec x}{x \sin x + \cos x} + C$$

b)
$$\sec x + \frac{x \sin x + \cos x}{x \sin x + \cos x} + C$$

c)
$$\sec x - \frac{x \sin x + \cos x}{x \sin x + \cos x} + C$$

d)
$$\tan x + \frac{x \sin x + \cos x}{x \sin x + \cos x} + C$$

- 9) Let f(x) = |x 2| and $g(x) = f(f(x)), x \in [0, 4]$. Then $\int_0^3 (g(x) f(x)) dx$ is equal to:

 - b) 0
 - c) 1
 - d) $\frac{3}{2}$
- 10) Let x_0 be the point of local maxima of $f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$, where $\vec{a} = x\hat{i} + 2\hat{j} + 3\hat{k}, \vec{b} = -2\hat{i} + x\hat{j} \hat{k}$, and $\vec{c} = 7\hat{i} - 2\hat{j} + x\hat{k}$. Then the value of $\vec{d} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{d}$ at $x = x_0$ is:
 - a) -22
 - b) -4
 - c) -30
 - d) 14
- 11) A triangle ABC lying in the first quadrant has two vertices as A(1,2) and B(3,1). If $\angle BAC = 90^{\circ}$, and ar($\triangle ABC$) is $5\sqrt{5}$ s units, then the abscissa of the vertex C is:
 - a) $1 + \sqrt{5}$
 - b) $1 + 2\sqrt{5}$
 - c) $2\sqrt{5} 1$
 - d) $2 + \sqrt{5}$
- 12) Let f be a twice differentiable function on (1,6). If f(2) = 8, f'(2) = 5, $f'(x) \ge 1$ and $f''(x) \ge 4$, for all $x \in [1, 6]$, then:
 - a) $f(5) + f'(5) \ge 28$
 - b) $f'(5) + f''(5) \le 20$
 - c) $f(5) \le 10$
 - d) $f(5) + f'(5) \le 26$
- 13) Let α and β be the roots of $x^2 3x + p = 0$ and γ and δ be the roots of $x^2 6x + q = 0$. If $\alpha, \beta, \gamma, \delta$ form a geometric progression. Then ratio (2q + p): (2q - p) is:
 - a) 33:31
 - b) 9:7
 - c) 3:1
 - d) 5:3
- 14) Let $u = \frac{2z+i}{z-ki}$, z = x+iy and k > 0. If the curve represented by Re(u) + Im(u) = 1 intersects the y-axis at the points **P** and **Q** where PQ=5, then the value of k is:
 - a) 4
 - b) $\frac{1}{2}$ c) 2

 - d) $\frac{3}{2}$
- 15) If $A = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix}$, $\left(\theta = \frac{\pi}{24}\right)$ and $A^5 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $i = \sqrt{-1}$, then which one of the following is not true?
 - a) $a^2 d^2 = 0$
 - b) $a^2 c^2 = 1$
 - c) $0 \le a^2 + b^2 \le 1$
 - d) $a^2 b^2 = \frac{1}{2}$