CLASSIFICATION OF GROUPS OF SMALL(ISH) ORDER

Groups of order 12. There are 5 non-isomorphic groups of order 12. By the fundamental theorem of finitely generated abelian groups, we have that there are two abelian groups of order 12, namely

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$$
 and $\mathbb{Z}/12\mathbb{Z}$.

Let G be a non-abelian group of order 12. Let n_3 denote the number of Sylow-3 subgroups of G. Then n_3 is either 1 or 4.

Suppose $n_3=4$. Let G act on the set of Sylow-3 subgroups by conjugation. This induces a homomorphism $\phi:G\to S_4$. Suppose $x\in\ker\phi$. Then $x\in N(P)$ for all Sylow-3 subgroups P where N(P) is the normalizer in P. Now, by the orbit-stabilizer theorem, it follows that N(P)=P for all Sylow-3 subgroups P. So x is an element of P for every Sylow-3 subgroup P. Since |P|=3 is prime, it follows that x=1. Hence ϕ is an injection. It's easy to see that ϕG contains all 3 cycles of S_4 . So it follows that $\phi G=A_4$, the alternating group on 4 letters.

Now, suppose $\mathfrak{n}_3=1$. Then there is a single Sylow-3 subgroup of G, say P. Let Q be a Sylow-4 subgroup of G. Since P is normal, the set $PQ=\{pq:p\in P\ q\in Q\}$ is a subgroup of G, in fact, PQ=G. Now, let Q act on P by conjugation. This induces a homomorphism $\varphi:Q\to \operatorname{Aut}(P)$. Then $G\simeq P\ltimes_{\varphi}Q$ where

$$(p_1, q_1) \cdot (p_2, q_2) = (p_1 \varphi(q_1)(p_2), q_1 q_2).$$

Let V_4 be the Klein-4 group and C_4 the cyclic group of order 4. Then the 5 non-isomorphic groups of order 12 are

$$\mathbb{Z}_2 \times \mathbb{Z}_6$$
, \mathbb{Z}_{12} , A_4 , $P \ltimes_{\phi} V_4$, $P \ltimes_{\phi} C_4$.

Groups of order 28. There are 4 non-isomorphic groups of order 28. By the Fundamental theorem for finite abelian groups, there are two abelian groups of order 28:

$$\mathbb{Z}_2 \times \mathbb{Z}_{14}$$
 and \mathbb{Z}_{28} .

Now, let G be a non-abelian group of order 28, let P be the Sylow-7 subgroup, and let Q be a Sylow-2 subgroup. Then $PQ = \{pq : p \in P, q \in Q\}$ is a subgroup of G since P is normal (by Sylow):

$$p_1q_1p_2q_2 = p_1(q_1p_2q_1^{-1})q_1q_2 \in PQ.$$

In fact, PQ = G. Let Aut(P) denote the group of automorphisms of P. Note that Aut(P) is cyclic of order 6 generated by $\sigma: 1 \mapsto 3$. Conjugation induces a map from $\phi: Q \to Aut(P)$. By order considerations, $\ker \phi$ is either equal to Q or of order 2. $\ker \phi = Q$ if and only if G is abelian.

1

So $\ker \varphi \neq Q$. Then im φ is a subgroup of $\operatorname{Aut}(P)$ of order 2. It follows that the non-trivial elements of im φ act on P by inversion. Now, Q could be isomorphic to either V_4 , the Klein-4 group, or C_4 , the cyclic group of order 4. This gives us two possible groups:

$$P \rtimes_{\phi} V_4 \qquad P \rtimes_{\phi} C_4$$
,

where the group operation in $P \rtimes_{\varphi} Q$ is

$$(p_1, q_1) \cdot (p_2, q_2) = (p_1 \varphi(q_1)(p_2), q_1 q_2).$$

These two groups are non-isomorphic since they have different Sylow-2 subgroups. It's easy to verify that the choice of φ is irrelevant.

Groups of order 45. There are only 2 groups of order 45, and they are abelian. Let G be a group of order $45 = 5 \cdot 3^2$. Let \mathfrak{n}_5 denote the number of Sylow-5 subgroups of G. Note that $\mathfrak{n}_5 \equiv 1 \mod 5$ and $\mathfrak{n}_5 \mid 9$. Hence $\mathfrak{n}_5 = 1$, thus G contains a unique, normal Sylow-5 subgroup, say Q. Let P be any Sylow-3 subgroup. Since $P \cap Q = \{id\}$, and since Q is normal, we have that for every $g \in G$ there exists unique $p \in P$ and $q \in Q$ such that g = pq. Since

$$p_1q_1p_2q_2 = p_1p_2(p_2^{-1}q_1p_2)q_2,$$

we have that $G \simeq Q \rtimes_{\phi} P$ where $\phi : P \to \operatorname{Aut}(Q)$ defined by $p \mapsto (q \mapsto p^{-1}qp)$. But $|\operatorname{Aut}(Q)| = 4$ whereas |P| = 9. Hence ϕ is the trivial map, that is, for all $q \in Q$, $p^{-1}qp = q$ for all $p \in P$.

Hence $G \simeq Q \times P$. Since any group of order $\mathfrak p$ or $\mathfrak p^2$ where $\mathfrak p$ is a prime must be abelian, we get that G must be abelian. In fact, we have

$$G \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$$
 or $G \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Groups of order pq where p and q are primes (not necessarily distinct). Suppose p=q. Then G is a p-group, so G has a nontrivial center. So $|Z(G)|\geqslant p$, so G/Z(G) is cyclic. Hence G is abelian. By the fundamental theorem for finitely generated abelian groups, we have that G is isomorphic to one of the following:

$$\mathbb{Z}_{p^2}$$
 or $\mathbb{Z}_p \times \mathbb{Z}_p$.

Now, suppose p and q are distinct, and without loss of generality that p < q. Let $\mathfrak{n}_q = \#\operatorname{Syl}_q(G)$. Then $\mathfrak{n}_q \equiv 1 \mod q$ and $\mathfrak{n}_q \mid p$. Since $p \equiv 1 \mod q$ implies that $q \leqslant p-1$, it must be that $\mathfrak{n}_q = 1$. Let Q be the normal Sylow-q subgroup of G, and let $P \in \operatorname{Syl}_p(G)$. Since Q is normal in G, we have that $PQ \leqslant G$ is a subgroup. Since $P \cap Q = \{id\}$, we have that G = PQ, in fact,

$$G \simeq Q \rtimes_{\varphi} P$$
,

where $\varphi: P \to \operatorname{Aut}(Q)$ is defined by $\varphi: p \mapsto (\sigma_p: q \mapsto pqp^{-1})$.

Suppose $q \not\equiv 1 \mod p$. Then $\phi: P \to \operatorname{Aut}(Q)$ must be trivial, and $G \simeq Q \times P \simeq \mathbb{Z}_{p,q}$.

Suppose $q \equiv 1 \mod p$. Since P and Q are prime power ordered we have that P is cyclic generated by, say, g, and $\operatorname{Aut}(Q)$ is cyclic, generated, say, by σ . Since ϕ is a homomorphism, we must have $\phi = \phi_{\alpha} : g \mapsto \sigma^{(q-1)\alpha/p}$ where $0 < \alpha \leqslant p-1$, since elements of the form $\sigma^{(q-1)\alpha/p}$ are precisely those elements of $\operatorname{Aut}(Q)$ that are order p. We associate $Q \simeq \mathbb{Z}_q$ and $P \simeq \mathbb{Z}_p$. We take g = 1 and $\sigma : 1 \mapsto 2$. So, $\sigma^{(q-1)\alpha/p} : 1 \mapsto 2^{(q-1)\alpha/p}$ and in general

$$\sigma^{(q-1)\alpha/p}: a \mapsto a \cdot 2^{(q-1)\alpha/p}.$$

Then

$$\varphi_{\alpha}: b \mapsto \sigma^{(q-1)\alpha b/p}.$$

Let $0 < \alpha, \beta \leqslant p - 1$. The map

$$\begin{split} \psi : \mathbb{Z}_q \rtimes_{\phi_\alpha} \mathbb{Z}_p & \to & \mathbb{Z}_q \rtimes_{\phi_\beta} \mathbb{Z}_p \\ (a,b) & \mapsto & \left(a,\frac{\alpha}{\beta}b\right) \end{split}$$

defines an isomorphism. Hence there are precisely 4 isomorphism classes of groups of order pq:

$$\mathbb{Z}_{p^2} \qquad \mathbb{Z}_p \times \mathbb{Z}_p \qquad \mathbb{Z}_{p\,q} \qquad \mathbb{Z}_q \rtimes_{\phi_{\,\alpha}} \mathbb{Z}_p,$$

where the first pair are when q = p, and the second pair when q > p.