

Courbes en polaires

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1

Construire les courbes suivantes :

- 1. $r = \sqrt{\cos(2\theta)}$,
- 2. $r = \sin\left(\frac{2\theta}{3}\right)$,
- 3. $r = ae^{b\theta}, (a,b) \in]0, +\infty[^2,$
- 4. $r = 2\cos(2\theta) + 1$,
- 5. $r = \tan\left(\frac{2\theta}{3}\right)$.

Correction ▼ [005530]

Exercice 2

Etude complète de la courbe d'équation polaire $r = \frac{2\cos\theta + 1}{2\sin\theta + 1}$.

Correction ▼ [005531]

Exercice 3 La cardioïde

Soit la courbe d'équation polaire $r = a(1 + \cos \theta)$, a > 0.

- 1. Construire la courbe.
- 2. Longueur et développée.

Correction ▼ [005532]

Exercice 4

Construire la courbe d'équation cartésienne $x^2(x^2+y^2)-(y-x)^2=0$ après être passé en polaires.

Correction ▼ [005533]

Exercice 5

Développée de la spirale logarithmique d'équation polaire $r = ae^{\theta}$ (a > 0).

Correction ▼ [005534]

1. (**Lemniscate de** BERNOULLI.) Soit $\mathscr C$ la courbe d'équation polaire $r=\sqrt{\cos(2\theta)}$. **Domaine d'étude.** Notons D le domaine de définition de la fonction $r:\theta\mapsto\sqrt{\cos(2\theta)}$. \bullet $\theta\in D\Leftrightarrow\theta+2\pi\in D$ et pour $\theta\in D$,

$$M(\theta + 2\pi) = [r(\theta + 2\pi), \theta + 2\pi] = [r(\theta), \theta + 2\pi] = [r(\theta), \theta] = M(\theta).$$

On obtient donc la courbe complète quand θ décrit un intervalle de longueur 2π comme $[-\pi,\pi]$. • $\theta \in D \Leftrightarrow -\theta \in D$ et pour $\theta \in D$,

$$M(-\theta) = [r(-\theta), -\theta] = [r(\theta), -\theta] = s_{(Ox)}(M(\theta)).$$

On étudie et on construit la portion de courbe correspondant à $\theta \in [0, \pi]$ puis on obtient la courbe complète par réflexion d'axe (Ox). \bullet $\theta \in D \Leftrightarrow \pi - \theta \in D$ et pour $\theta \in D$,

$$M(\pi - \theta) = [r(\pi - \theta), \pi - \theta] = [r(\theta), \pi - \theta] = s_{(O_V)}(M(\theta)).$$

On étudie et on construit la portion de courbe correspondant à $\theta \in \left[0, \frac{\pi}{2}\right]$ puis on obtient la courbe complète par réflexion d'axe (Oy) puis d'axe (Ox). Pour $\theta \in \left[0, \frac{\pi}{2}\right]$, $\theta \in D \Leftrightarrow \cos\left(2\theta\right) \geqslant 0 \Leftrightarrow \theta \in \left[0, \frac{\pi}{4}\right]$. On étudie donc la courbe sur $\left[0, \frac{\pi}{4}\right]$. Variations et signe de r. La fonction r est strictement décroissante sur $\left[0, \frac{\pi}{4}\right]$, strictement positive sur $\left[0, \frac{\pi}{4}\right]$ et s'annule en $\frac{\pi}{4}$. Etude en $\frac{\pi}{4}$. M $\left(\frac{\pi}{4}\right) = O$ et donc la tangente en $M\left(\frac{\pi}{4}\right)$ est la droite passant par O et d'angle polaire $\frac{\pi}{4}$ ou encore la droite d'équation y = x.

Etude en 0. M(0) est le point de coordonnées cartésiennes (1,0). Pour $\theta \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$,

$$\overrightarrow{\frac{dM}{d\theta}}(\theta) = - \frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}} \overrightarrow{u}_{\theta} + \sqrt{\cos(2\theta)} \overrightarrow{v}_{\theta} \text{ et donc } \overrightarrow{\frac{dM}{d\theta}}(0) = \overrightarrow{v}_{0} = \overrightarrow{j}.$$

M(0) est le point de coordonnées cartésiennes (1,0) et la tangente en M(0) est dirigée par \overrightarrow{j}

2. Soit \mathscr{C} la courbe d'équation polaire $r = \sin\left(\frac{2\theta}{3}\right)$. Domaine d'étude. • Pour $\theta \in \mathbb{R}$,

$$M(\theta + 6\pi) = [r(\theta + 6\pi), \theta + 6\pi] = [r(\theta), \theta + 6\pi] = [r(\theta), \theta] = M(\theta).$$

On obtient donc la courbe complète quand θ décrit un intervalle de longueur 6π comme $[-3\pi, 3\pi]$. • Pour $\theta \in [-3\pi, 3\pi]$,

$$M(-\theta) = [r(-\theta), -\theta] = [-r(\theta), -\theta] = [r(\theta), \pi - \theta] = s_{(O_{\mathbb{V}})}(M(\theta)).$$

On étudie et on construit la portion de courbe correspondant à $\theta \in [0,3\pi]$ puis on obtient la courbe complète par réflexion d'axe (Oy). • Pour $\theta \in [0,3\pi]$, $M(3\pi-\theta)=[r(3\pi-\theta),3\pi-\theta]=[-r(\theta),3\pi-\theta]=[r(\theta),-\theta]=s_{(Ox)}(M(\theta))$. On étudie et on construit la portion de courbe correspondant à $\theta \in \left[0,\frac{3\pi}{2}\right]$ puis on obtient la courbe complète par réflexion d'axe (Ox) puis d'axe (Oy).

- Pour $\theta \in \left[0, \frac{3\pi}{2}\right]$, $M\left(\frac{3\pi}{2} \theta\right) = \left[r\left(\frac{3\pi}{2} \theta\right), \frac{3\pi}{2} \theta\right] = \left[r(\theta), \frac{3\pi}{2} \theta\right] = s_{y=-x}(M(\theta))$. On étudie et on construit la portion de courbe correspondant à $\theta \in \left[0, \frac{3\pi}{4}\right]$ puis on obtient la courbe complète par réflexions successives d'axes la droite d'équation y = -x, puis d'axe (Ox) et enfin d'axe (Oy).
- **Remarque.** La fonction r admet 3π pour plus petite période strictement positive. Pourtant, on n'obtient pas la courbe complète quand θ décrit $[0,3\pi]$ car 3π ne fournit pas un nombre entier de tours. Plus précisément,

$$M(\theta + 3\pi) = [r(\theta + 3\pi), \theta + 3\pi] = [r(\theta), \theta + \pi] = s_O(M(\theta)).$$

Variations et signe de r. La fonction r est strictement positive sur $\left[0, \frac{3\pi}{4}\right]$ et s'annule en 0. La fonction r est strictement croissante sur $\left[0, \frac{3\pi}{4}\right]$. \bullet M(0) est le point O. La tangente en M(0) est la droite passant par O d'angle polaire 0 c'est-à-dire l'axe (Ox).

3. Soit $\mathscr C$ la courbe d'équation polaire $r=ae^{b\theta}$. L'étude est très brève. La fonction $r:\theta\mapsto ae^{b\theta}$ est strictement positive et strictement croissante sur $\mathbb R$. Tout en tournant, on ne cesse de s'écarter de l'origine : la courbe est une spirale.

4. Soit \mathscr{C} la courbe d'équation polaire $r = 2\cos(\theta) + 1$.

Domaine d'étude. • Pour $\theta \in \mathbb{R}$, $M(\theta + 2\pi) = M(\theta)$. On obtient donc la courbe complète quand θ décrit un intervalle de longueur 2π comme $[-\pi,\pi]$. • Pour $\theta \in [-\pi,\pi]$, $M(-\theta) = s_{(Ox)}(M(\theta))$. On étudie et on construit la portion de courbe correspondant à $\theta \in [0,\pi]$ puis on obtient la courbe complète par réflexion d'axe (Ox). **Variations et signe de** r. La fonction r est strictement décroissante sur $[0,\pi]$. La fonction r est strictement positive sur $[0,\frac{2\pi}{3}[$, strictement négative sur $[0,\frac{2\pi}{3},0]$ et s'annule en $[0,\pi]$. Donc la fonction $\theta \mapsto OM(\theta) = |r(\theta)|$ est strictement décroissante sur $[0,\frac{2\pi}{3}]$ et strictement croissante sur $[\frac{2\pi}{3},\pi]$. • $M(\frac{2\pi}{3})$ est le point O. La tangente en $M(\frac{2\pi}{3})$ est la droite passant par O d'angle polaire $\frac{2\pi}{3}$ c'est-à-dire la droite d'équation $y = -\sqrt{3}x$. • Par symétrie par rapport à (Ox), les tangentes en M(0) et $M(\pi)$ sont parrallèles à (Oy).

5. Soit \mathscr{C} la courbe d'équation polaire $r = \tan\left(\frac{2\theta}{3}\right)$. **Domaine d'étude.** Notons D le domaine de définition de la fonction $r: \theta \mapsto \tan\left(\frac{2\theta}{3}\right)$. $\bullet \theta \in D \Leftrightarrow \theta + 6\pi \in D$ et $M(\theta + 6\pi) = M(\theta)$. On obtient donc la courbe complète quand θ décrit un intervalle de longueur 6π comme $[-3\pi, 3\pi]$. $\bullet \theta \in D \Leftrightarrow -\theta \in D$ et

 $M(-\theta) = s_{(Oy)}(M(\theta))$. On étudie et on construit la portion de courbe correspondant à $\theta \in [0, 3\pi]$ puis on obtient la courbe complète par réflexion d'axe (Oy). \bullet $\theta \in D \Leftrightarrow 3\pi - \theta \in D$ et $M(3\pi - \theta) = s_{(Ox)}(M(\theta))$. On étudie et on construit la portion de courbe correspondant à $\theta \in [0, \frac{3\pi}{2}]$ puis on obtient la courbe complète par réflexion d'axe (Ox) puis par réflexion d'axe (Oy). \bullet $\theta \in D \Leftrightarrow \frac{3\pi}{2} - \theta \in D$ et

$$M\left(\frac{3\pi}{2}-\theta\right)=\left[-r(\theta),\frac{3\pi}{2}-\theta\right]=\left[r(\theta),\frac{\pi}{2}-\theta\right]=s_{y=x}(M(\theta)).$$

On étudie et on construit la portion de courbe correspondant à $\theta \in \left[0, \frac{3\pi}{4}\right]$ puis on obtient la courbe complète par réflexions successives d'axe la droite d'équation y = x, puis d'axe (Ox) et enfin d'axe (Oy).

• Pour $\theta \in \left[0, \frac{3\pi}{4}\right]$, $r(\theta)$ existe si et seulement si $\theta \neq \frac{3\pi}{4}$. On étudie donc sur $\theta \in \left[0, \frac{3\pi}{4}\right]$.

Variations et signe de r. La fonction r est strictement croissante sur $\left[0, \frac{3\pi}{4}\right]$, strictement positive sur $\left[0, \frac{3\pi}{4}\right]$ et s'annule en 0.

• La tangente en M(0) = O est la droite passant par O et d'angle polaire 0 c'est-à-dire l'axe (Ox). • **Etude** quand θ tend vers $\frac{3\pi}{4}$. Quand θ tend vers $\frac{3\pi}{4}$ par valeurs inférieures, $r(\theta)$ tend vers $+\infty$. la courbe admet donc une direction asymptotique d'angle polaire $\frac{3\pi}{4}$ ou encore d'équation y = -x. Recherchons

une éventuelle droite asymptote. Pour cela, étudions $\lim_{\begin{subarray}{c} \theta > \frac{3\pi}{4} \\ \theta < \frac{3\pi}{4} \end{subarray}} r(\theta) \sin\left(\theta - \frac{3\pi}{4}\right)$. Posons $h = \frac{3\pi}{4} - \theta$ ou

encore $\theta = \frac{3\pi}{4} - h$.

$$r(\theta)\sin\left(\theta-\frac{3\pi}{4}\right)=\tan\left(\frac{\pi}{2}-\frac{2h}{3}\right)\sin(-h)=-\cot h\sin h=-\cos h\to -1.$$

Ainsi, \mathscr{C} admet une droite asymptote (D) quand θ tend vers $\frac{3\pi}{4}$. De plus,

$$M(x,y) \in (D) \Leftrightarrow \overrightarrow{OM}. \overrightarrow{y}_{\frac{3\pi}{4}} = -1 \Leftrightarrow -\frac{1}{\sqrt{2}}x - \frac{1}{\sqrt{2}}y = -1 \Leftrightarrow y = -x + \sqrt{2}.$$

Correction de l'exercice 2 A

Domaine d'étude. Notons D le domaine de définition de la fonction $r:\theta\mapsto \frac{2\cos\theta+1}{2\sin\theta+1}$. $\forall\theta\in\mathbb{R},\ \theta\in D\Leftrightarrow\theta+2\pi\in D$ et $M(\theta+2\pi)=M(\theta)$. On obtient donc la courbe complète quand θ décrit un intervalle de longueur 2π comme $[-\pi,\pi]$. Pour $\theta\in[-\pi,\pi]$, $2\sin\theta+1=0\Leftrightarrow\theta\in\left\{-\frac{5\pi}{6},-\frac{\pi}{6}\right\}$. On étudie donc la courbe sur $[-\pi,\pi]\setminus\left\{-\frac{5\pi}{6},-\frac{\pi}{6}\right\}$. Signe de r.

θ	$-\pi$		$-\frac{5\pi}{6}$		$-\frac{2\pi}{3}$		$-\frac{\pi}{6}$		$\frac{2\pi}{3}$		π
$2\cos\theta + 1$		_		_	0	+		+	0	_	
$2\sin\theta + 1$		+	0	_		_	0	+		+	
signe de r		_		+	0	-		+	0	_	

Variations de r**.** La fonction r est dérivable sur $[-\pi,\pi]\setminus\left\{-\frac{5\pi}{6},-\frac{\pi}{6}\right\}$ et pour $\theta\in[-\pi,\pi]\setminus\left\{-\frac{5\pi}{6},-\frac{\pi}{6}\right\}$

$$r'(\theta) = \frac{-2\sin\theta(2\sin\theta+1) - 2\cos\theta(2\cos\theta+1)}{(2\sin\theta+1)^2} = \frac{-4 - 2\cos\theta - 2\sin\theta}{(2\sin\theta+1)^2} = \frac{-4 - 2\sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right)}{(2\sin\theta+1)^2} < 0.$$

La fonction r est strictement décroissante sur $\left[-\pi, -\frac{5\pi}{6}\right[$, sur $\left]-\frac{5\pi}{6}, -\frac{\pi}{6}\right[$ et sur $\left]-\frac{\pi}{6}, \pi\right]$. **Etude quand** θ **tend vers** $-\frac{5\pi}{6}$. $\lim_{\substack{\theta \to -\frac{5\pi}{6} \\ x < -\frac{5\pi}{6}}} r(\theta) = -\infty$ et $\lim_{\substack{\theta \to -\frac{5\pi}{6} \\ x > -\frac{5\pi}{6}}} r(\theta) = +\infty$. Donc la courbe $\mathscr C$ admet une direction asymptotique d'angle $\frac{5\pi}{6}$.

polaire $-\frac{5\pi}{6}$ ou encore d'équation $y=\frac{1}{\sqrt{3}}x$. Etudions maintenant l'existence d'une éventuelle droite asymptote et pour cela étudions $\lim_{\theta \to -\frac{5\pi}{6}} r(\theta) \sin\left(\theta + \frac{5\pi}{6}\right)$. On pose $h=\theta + \frac{5\pi}{6}$ ou encore $\theta = -\frac{5\pi}{6} + h$ de sorte que θ tend vers $-\frac{5\pi}{6}$ si et seulement si h tend vers 0. Quand h tend vers 0

$$r(\theta) \sin\left(\theta + \frac{5\pi}{6}\right) = \frac{2\cos\left(-\frac{5\pi}{6} + h\right) + 1}{2\sin\left(-\frac{5\pi}{6} + h\right) + 1} \sin h = \frac{(1 - \sqrt{3}\cos h) + \sin h}{-\sqrt{3}\sin h + (1 - \cos h)} \sin h \sim \frac{1 - \sqrt{3}}{-\sqrt{3}h} \times h = 1 - \frac{1}{\sqrt{3}}.$$

Par suite, \mathscr{C} admet une droite asymptote (D_1) quand θ tend vers $-\frac{5\pi}{6}$. De plus

$$M(x,y) \in (D_1) \Leftrightarrow \overrightarrow{OM}.\overrightarrow{v}_{-\frac{5\pi}{6}} = 1 - \frac{1}{\sqrt{3}} \Leftrightarrow \frac{1}{2}x - \frac{\sqrt{3}}{2}y = 1 - \frac{1}{\sqrt{3}} \Leftrightarrow y = \frac{1}{\sqrt{3}}x + \frac{2}{3} - \frac{2}{\sqrt{3}}$$

Etude quand θ tend vers $-\frac{\pi}{6}$. $\lim_{\substack{\theta \to -\frac{\pi}{6} \\ x < -\frac{\pi}{6}}} r(\theta) = -\infty$ et $\lim_{\substack{\theta \to -\frac{\pi}{6} \\ x > -\frac{\pi}{6}}} r(\theta) = +\infty$. Donc la courbe $\mathscr C$ admet une direction

asymptotique d'angle polaire $-\frac{\pi}{6}$ ou encore d'équation $y=-\frac{1}{\sqrt{3}}x$. On pose ensuite $h=\theta+\frac{\pi}{6}$. Quand h tend vers 0

$$r(\theta)\sin\left(\theta + \frac{\pi}{6}\right) = \frac{2\cos\left(-\frac{\pi}{6} + h\right) + 1}{2\sin\left(-\frac{\pi}{6} + h\right) + 1}\sin h = \frac{(1 + \sqrt{3}\cos h) + \sin h}{\sqrt{3}\sin h + (1 - \cos h)}\sin h \sim \frac{1 + \sqrt{3}}{\sqrt{3}h} \times h = 1 + \frac{1}{\sqrt{3}}.$$

Par suite, \mathscr{C} admet une droite asymptote (D_2) quand θ tend vers $-\frac{\pi}{6}$. De plus

$$M(x,y) \in (D_2) \Leftrightarrow \overrightarrow{OM}.\overrightarrow{v}_{-\frac{\pi}{6}} = 1 + \frac{1}{\sqrt{3}} \Leftrightarrow \frac{1}{2}x + \frac{\sqrt{3}}{2}y = 1 + \frac{1}{\sqrt{3}} \Leftrightarrow y = -\frac{1}{\sqrt{3}}x + \frac{2}{3} + \frac{2}{\sqrt{3}}$$

Tableau de variation de r.

Recherche des points multiples. Soit $(\theta_1, \theta_2) \in \left([-\pi, \pi] \setminus \left\{-\frac{5\pi}{6}, -\frac{\pi}{6}\right\}\right)^2$ tel que $\theta_1 < \theta_2$. On suppose de plus que $\theta_1 \notin \left\{\pm \frac{2\pi}{3}\right\}$ et $\theta_1 \notin \left\{\pm \frac{2\pi}{3}\right\}$ de sorte que $M(\theta_1) \neq O$ et $M(\theta_2) \neq O$.

$$\begin{split} \mathit{M}(\theta_1) = \mathit{M}(\theta_2) &\Leftrightarrow (\exists k \in \mathbb{Z}/\ \theta_2 = \theta_1 + 2k\pi \ \mathrm{et} \ r(\theta_2) = r(\theta_1)) \ \mathrm{ou} \ (\exists k \in \mathbb{Z}/\ \theta_2 = \theta_1 + \pi + 2k\pi \ \mathrm{et} \ r(\theta_2) = -r(\theta_1)) \\ &\Leftrightarrow \theta_1 \in [-\pi, 0], \ \theta_2 = \theta_1 + \pi \ \mathrm{et} \ r(\theta_2) = -r(\theta_1) \\ &\Leftrightarrow \theta_1 \in [-\pi, 0], \ \theta_2 = \theta_1 + \pi \ \mathrm{et} \ \frac{-2\cos(\theta_1) + 1}{-2\sin(\theta_1) + 1} = -\frac{2\cos(\theta_1) + 1}{2\sin(\theta_1) + 1}. \end{split}$$

Maintenant, pour $\theta \in [-\pi,0] \setminus \left\{-\frac{5\pi}{6}, -\frac{2\pi}{3}, -\frac{\pi}{6}\right\}$

$$\begin{split} \frac{-2\cos(\theta)+1}{-2\sin(\theta)+1} &= -\frac{2\cos(\theta)+1}{2\sin(\theta)+1} \Leftrightarrow -4\cos(\theta)\sin(\theta)+1 = 4\cos(\theta)\sin(\theta)-1 \Leftrightarrow \sin(2\theta) = \frac{1}{2} \\ &\Leftrightarrow 2\theta \in \frac{\pi}{6} + 2\pi\mathbb{Z} \text{ ou } 2\theta \in \frac{5\pi}{6} + 2\pi\mathbb{Z} \Leftrightarrow \theta \in \frac{\pi}{12} + \pi\mathbb{Z} \text{ ou } \theta \in \frac{5\pi}{12} + \pi\mathbb{Z} \\ &\Leftrightarrow \theta \in \left\{-\frac{11\pi}{12}, -\frac{7\pi}{12}\right\}. \end{split}$$

Ainsi, les points doubles distincts de l'origine sont $M\left(-\frac{11\pi}{12}\right) = M\left(\frac{\pi}{12}\right)$ et $M\left(-\frac{7\pi}{12}\right) = M\left(\frac{5\pi}{12}\right)$. Sinon, $M\left(-\frac{2\pi}{3}\right) = M\left(\frac{2\pi}{3}\right) = O$.

Correction de l'exercice 3

1. Domaine d'étude. La fonction r est 2π-périodique et paire. Donc on étudie et on construit la courbe quand θ décrit [0, π] et on obtient la courbe complète par réflexion d'axe (Ox). Variations et signe de r. La fonction r est strictement décroissante sur [0, π], strictement positive sur]0, π] et s'annule en π. Etude pour θ = π. La tangente en M(π) = O est la droite passant par O d'angle polaire π c'est-à-dire l'axe (Ox). Par symétrie par rapport à (Ox), le point M(π) est un point de rebroussement de première espèce.

7

2. Soient $\theta \in [-\pi, \pi]$ puis $M = O + a(1 + \cos \theta) \overrightarrow{u}_{\theta}$ le point de \mathscr{C} de paramètre θ .

$$\begin{split} \frac{\overrightarrow{dM}}{d\theta} &= -a\sin\theta\,\overrightarrow{u}_{\theta} + a(1+\cos\theta)\,\overrightarrow{v}_{\theta} = 2a\cos\left(\frac{\theta}{2}\right)\left(-\sin\left(\frac{\theta}{2}\right)\overrightarrow{u}_{\theta} + \cos\left(\frac{\theta}{2}\right)\overrightarrow{v}_{\theta}\right) \\ &= 2a\cos\left(\frac{\theta}{2}\right)\left(\cos\left(\frac{\theta}{2} + \frac{\pi}{2}\right)\overrightarrow{u}_{\theta} + \sin\left(\frac{\theta}{2} + \frac{\pi}{2}\right)\overrightarrow{v}_{\theta}\right) = 2a\cos\left(\frac{\theta}{2}\right)\overrightarrow{u}_{\frac{3\theta}{2} + \frac{\pi}{2}}. \end{split}$$

Longueur ℓ **de la cardioïde.** On a $\left\| \frac{\overrightarrow{dM}}{d\theta} \right\| = \left| 2a\cos\left(\frac{\theta}{2}\right) \right| = 2a\cos\left(\frac{\theta}{2}\right)$ (pour $\theta \in [-\pi, \pi]$) et donc

$$\ell = \int_{-\pi}^{\pi} \left\| \frac{\overrightarrow{dM}}{d\theta} \right\| d\theta = 2a \int_{-\pi}^{\pi} \cos(\theta/2) d\theta = 4a \left[\sin(\theta/2) \right]_{-\pi}^{\pi} = 8a.$$

La cardioïde d'équation polaire $r = a(1 + \cos \theta)$, a > 0, a pour longueur 8a.

Développée. Le point $M(\theta)$ est régulier si et seulement si $\theta \neq \pm \pi$. Dans ce cas,

$$\frac{ds}{d\theta} = \left\| \frac{\overrightarrow{dM}}{d\theta} \right\| = 2a\cos\left(\frac{\theta}{2}\right) \text{ et aussi } \overrightarrow{\tau}(\theta) = \overrightarrow{u}_{\frac{3\theta}{2} + \frac{\pi}{2}}$$

En notant $\alpha(\theta)$ une mesure de l'angle $(\overrightarrow{i}, \overrightarrow{\tau}(\theta))$, on peut prendre $\alpha(\theta) = \frac{3\theta}{2} + \frac{\pi}{2}$. En notant $R(\theta)$ le rayon de courbure au point $M(\theta)$,

$$R(\theta) = \frac{ds}{d\alpha} = \frac{ds/d\theta}{d\alpha/d\theta} = \frac{4}{3}a\cos\left(\frac{\theta}{2}\right).$$

Ensuite, $\overrightarrow{n}(\theta) = r_{\pi/2} \left(\overrightarrow{\tau}(\theta) \right) = -\overrightarrow{u}_{3\theta/2}$ et donc, en notant $\Omega(\theta)$ le centre de courbure au point $M(\theta)$,

$$\begin{split} &\Omega(\theta) = M(\theta) + R(\theta) \overrightarrow{n}(\theta) \\ &= O + a(1 + \cos\theta) \overrightarrow{u}_{\theta} - \frac{4}{3}a\cos\left(\frac{\theta}{2}\right) \overrightarrow{u}_{3\theta/2} \\ &= O + a(1 + \cos\theta) \left(\cos(\theta) \overrightarrow{i} + \sin(\theta) \overrightarrow{j}\right) - \frac{4}{3}a \left(\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{3\theta}{2}\right) \overrightarrow{i} + \cos\left(\frac{\theta}{2}\right)\sin\left(\frac{3\theta}{2}\right) \overrightarrow{j}\right) \\ &= O + a \left[\left(\cos(\theta) + \cos^2(\theta) - \frac{2}{3}(\cos(\theta) + \cos(2\theta))\right) \overrightarrow{i} + \left(\sin(\theta) + \sin(\theta)\cos(\theta) - \frac{2}{3}(\sin(\theta) + \sin(2\theta))\right) \overrightarrow{j} \right] \\ &= O + a \left[\left(\frac{2}{3} + \frac{1}{3}\cos(\theta) - \frac{1}{3}\cos^2(\theta)\right) \overrightarrow{i} + \left(\frac{1}{3}\sin(\theta) - \frac{1}{3}\sin(\theta)\cos(\theta)\right) \overrightarrow{j}\right] \\ &= O + \frac{2a}{3} \overrightarrow{i} + \frac{a}{3}(1 - \cos\theta) \overrightarrow{u}_{\theta} \end{split}$$

Notons Γ la développée cherchée. On a $\Gamma = t \circ h(\mathscr{C}_1)$ où t est la translation de vecteur $\frac{2a}{3}\overrightarrow{i}$, h est l'homothétie de centre O et de rapport $\frac{1}{3}$ et \mathscr{C}_1 la courbe d'équation polaire $r = a(1 - \cos \theta)$. Maintenant, en notant r la fonction $\theta \mapsto a(1 + \cos \theta)$ et r_1 la fonction $\theta \mapsto a(1 - \cos \theta)$,

$$[r_1(\theta+\pi), \theta+\pi)] = [a(1+\cos\theta), \theta+\pi] = s_O([r(\theta), \theta)]).$$

La courbe \mathscr{C}_1 est donc la symétrique par rapport à O de la courbe \mathscr{C} . En résumé, la développée de \mathscr{C} est l'image de \mathscr{C} par la transformation $t \circ h \circ s_O$: c'est encore une cardioïde.

Correction de l'exercice 4 ▲

Soient $(R, \theta) \in \mathbb{R}^2$ puis M le point du plan dont un couple de coordonnées polaires est $[r, \theta]$.

$$\begin{split} M &\in \mathscr{C} \Leftrightarrow x^2(x^2+y^2) - (y-x)^2 = 0 \Leftrightarrow r^2\cos^2\theta \times r^2 - (r\sin\theta - r\cos\theta)^2 = 0 \\ &\Leftrightarrow r^2[r^2\cos^2\theta - (\sin\theta - \cos\theta)^2] = 0 \Leftrightarrow r = 0 \text{ ou } r^2 = \left(\frac{\sin\theta - \cos\theta}{\cos\theta}\right)^2 \text{ ($\cos\theta$ = 0 ne fournit pas de solution)} \\ &\Leftrightarrow r = 0 \text{ ou } r = \tan\theta - 1 \text{ ou } r = 1 - \tan\theta. \end{split}$$

 \mathscr{C} est donc la réunion de la courbe (\mathscr{C}_1) d'équation polaire $r = \tan \theta - 1$, (\mathscr{C}_2) d'équation polaire $r = 1 - \tan \theta$ et $\{O\}$. On note que le point O appartient à (\mathscr{C}_1) car $\theta = \frac{\pi}{4}$ fournit r = 0. Donc $\mathscr{C} = \mathscr{C}_1 \cup \mathscr{C}_2 \cup \{O\} = \mathscr{C}_1 \cup \mathscr{C}_2$. Ensuite, on notant r_1 et r_2 respectivement la fonction $\theta \mapsto \tan \theta - 1$ et $r_2 = -r_1$,

$$M[\theta + \pi, r_2(\theta + \pi)] = M[\theta + \pi, r_2(\theta)] = M[\theta + \pi, -r_1(\theta)] = M[\theta, r_1(\theta)],$$

et comme $\theta + \pi$ décrit \mathbb{R} si et seulement si θ décrit \mathbb{R} , les courbes \mathscr{C}_1 et \mathscr{C}_2 sont une seule et même courbe.

 \mathscr{C} est la courbe d'équation polaire $r = \tan \theta - 1$.

Construction de \mathscr{C} .

Correction de l'exercice 5 ▲

Développée. $M(\theta) = O + ae^{\theta} \overrightarrow{u}_{\theta}$ puis

$$\frac{\overrightarrow{dM}}{d\theta} = ae^{\theta}(\overrightarrow{u}_{\theta} + \overrightarrow{v}_{\theta}) = a\sqrt{2}e^{\theta}\left(\cos\left(\frac{\pi}{4}\right)\overrightarrow{u}_{\theta} + \sin\left(\frac{\pi}{4}\right)\overrightarrow{v}_{\theta}\right) = a\sqrt{2}e^{\theta}\overrightarrow{u}_{\theta + \frac{\pi}{4}}.$$

On en déduit $\frac{ds}{d\theta} = a\sqrt{2}e^{\theta}$ et $\overrightarrow{\tau}(\theta) = \overrightarrow{u}_{\theta + \frac{\pi}{4}}$. On peut alors prendre $\alpha(\theta) = \theta + \frac{\pi}{4}$ et donc $\frac{d\alpha}{d\theta} = 1$. Par suite

$$R(\theta) = \frac{ds/d\theta}{d\alpha/d\theta} = \frac{a\sqrt{2}e^{\theta}}{1} = a\sqrt{2}e^{\theta}.$$

D'autre part, $\overrightarrow{n}(\theta) = \overrightarrow{\tau}(\theta + \frac{\pi}{2}) = \overrightarrow{u}_{\theta + \frac{3\pi}{4}} = \frac{1}{\sqrt{2}}(-\overrightarrow{u}_{\theta} + \overrightarrow{v}_{\theta})$ et donc

$$\Omega(\theta) = M(\theta) + R(\theta)\overrightarrow{n}(\theta) = O + ae^{\theta}\overrightarrow{u}_{\theta} + a\sqrt{2}e^{\theta} \cdot \frac{1}{\sqrt{2}}(-\overrightarrow{u}_{\theta} + \overrightarrow{v}_{\theta}) = O + ae^{\theta}\overrightarrow{v}_{\theta} = r_{O,\frac{\pi}{2}}(M(\theta)).$$

La développée de la spirale logarithmique d'équation polaire $r = ae^{\theta}$ est l'image de cette spirale par le quart de tour direct de centre O.

