Probability and Statistics – Problem Set 6

Question 1.

Suppose X and Y have joint PDF $f_{X,Y}(x,y) = c(x^2 + xy)$ on $[0,1] \times [0,1]$.

- a) Find c ad the joint CDF $F_{X,Y}(x,y)$
- b) Find the marginal CDFs F_X , F_Y and the marginal PDF f_X , f_Y .
- c) Find E[X] and Var(X)
- d) Find the covariance and correlation of X and Y.

Question 2:

Let X be the roll of a fair 3 - sided die. We then flip a fair coin X times independently; Let Y be the number of heads.

- a) What are Ω_X and Ω_Y ? What is $\Omega_{X,Y}$? What is X's marginal distribution?
- b) What is $p_{X,Y}(x,y)$?
- c) What is $p_Y(y)$?
- d) Are X and Y independent?

Question 3:

Suppose (X, Y, Z) are jointly distributed with density function

$$f_{X,Y,Z}(x,y,z) = \begin{cases} ce^{-12x}e^{-13y}, & x,y > 0 \text{ and } 0 < z < 47 \\ 0, & \text{otherwise} \end{cases}$$

- a) Set up an appropriate triple integral with the order dxdydz for the value of c.
- b) Computing the marginal PDF $f_X(x)$. What distribution is the random variable X?
- c) Computing the marginal PDF $f_Z(z)$
- d) Are X, Y, Z mutually independent?
- e) Write an expression for $E\left[\log\left(\frac{1}{Z^{X+Y}}\right)\right]$

Question 4:

Suppose $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$ are independent and let Z = X + Y. What is the conditional $PMF \ P(X = k | Z = z)$?

Question 5:

The covariance matrix of a random vector $Z = (Z_1, Z_2, ..., Z_n)$ is defined to the $n \times n$ matrix Σ such that $\Sigma_{ij} = Cov(X_i, X_j)$.

- a) Let $X_1, X_2, ..., X_4$ be independent and identically distributed random variables with mean μ and variance σ^2 . What is the 4 × 4 covariance matrix of X?
- b) Define $Y = (X_1 + X_2, X_2 + X_3, X_3 + X_4)$. What is the 3×3 covariance matrix of Y.

Question 6:

Suppose we throw 12 balls independently and uniformly into 7 bins. For i = 1, 2, ..., 7, let X_i be the indicator random variable of whether bin i is empty.

Let $X = (X_1, X_2, ..., X_7)$ be the random vector of indicators.

- a) What is the covariance matrix of X?
- b) Let $Y = \sum_{i=1}^{7} X_i$ be the number of empty bins. What is Var(Y)?