Taxing Wealth and Capital Income when Returns are Heterogeneous

Guvenen, Kambourov, Kuruscu, Ocampo

September, 2023

How to optimally tax wealth (stock) and capital income (flow) when returns are heterogeneous?

How to optimally tax wealth (stock) and capital income (flow) when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the taxes are equivalent with $\tau_a = r \cdot \tau_k$

How to optimally tax wealth (stock) and capital income (flow) when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

▶ Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

How to optimally tax wealth (stock) and capital income (flow) when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

▶ Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

This paper: Theoretical analysis of optimal combination of taxes

- ► Analytical model with workers, heterogeneous entrepreneurs, and innovation
- ▶ Result: characterize (i) productivity (ii) welfare (iii) optimal taxes (iv) innovation

1. **Empirical:** A growing literature documents <u>persistent</u> return heterogeneity.

Bach, Calvet, Sodini 2020; Fagereng, Guiso, Malacrino, Pistaferri 2020; Smith, Yagan, Zidar, Zwick 2023

1. **Empirical:** A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini 2020; Fagereng, Guiso, Malacrino, Pistaferri 2020; Smith, Yagan, Zidar, Zwick 2023

- 2. **Technical:** Capital taxes paid by the very wealthy.
 - Models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

■ Return heterogeneity—>concentration at the very top+Pareto tail+fast wealth growth Benhabib, Bisin, et al 2011–2018; Gabaix, Lasry, Lions, Moll et al 2016; Jones, Kim 2018;

Guvenen, Kambourov, Kuruscu, Ocampo, Chen 2023

1. **Empirical:** A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini 2020; Fagereng, Guiso, Malacrino, Pistaferri 2020; Smith, Yagan, Zidar, Zwick 2023

- 2. **Technical:** Capital taxes paid by the very wealthy.
 - Models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

- Return heterogeneity—>concentration at the very top+Pareto tail+fast wealth growth

 Benhabib, Bisin, et al 2011–2018; Gabaix, Lasry, Lions, Moll et al 2016; Jones, Kim 2018;

 Guvenen, Kambourov, Kuruscu, Ocampo, Chen 2023
- 3. **Practical:** Wealth taxation has been used by governments—Need better guidance

1. **Empirical:** A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini 2020; Fagereng, Guiso, Malacrino, Pistaferri 2020; Smith, Yagan, Zidar, Zwick 2023

- 2. **Technical:** Capital taxes paid by the very wealthy.
 - Models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

- Return heterogeneity—>concentration at the very top+Pareto tail+fast wealth growth

 Benhabib, Bisin, et al 2011–2018; Gabaix, Lasry, Lions, Moll et al 2016; Jones, Kim 2018;

 Guvenen, Kambourov, Kuruscu, Ocampo, Chen 2023
- 3. **Practical:** Wealth taxation has been used by governments—→Need better guidance
- 4. Theoretical: Interesting new economic mechanisms → Example next.

 Allais 1977, Piketty 2014, Guvenen, Kambourov, Kuruscu, Ocampo, Chen 2023

Return Heterogeneity: A Simple Example

- ► One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers, Fredo and Mike, each with \$1M of wealth.

Return Heterogeneity: A Simple Example

- ► One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers, Fredo and Mike, each with \$1M of wealth.
- ► Key heterogeneity: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.

Return Heterogeneity: A Simple Example

- ► One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers, Fredo and Mike, each with \$1M of wealth.
- ► Key heterogeneity: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.
- **Objective:** illustrate main tradeoff by taxing *either* capital income (τ_k) or wealth (τ_a)

	Capital income tax		Wealth tax
	$a_{i,\text{after-tax}} = a_i + \frac{(1 - \tau_k)r_i a_i}{n_i}$		
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	
Before-tax Income	\$0	\$200K	
Tax liability			
After-tax return			
After-tax wealth ratio			

	Capital i	ncome tax	Wealth tax
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		
	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	
Before-tax Income	\$0	\$200K	
	$ au_k =$	= 25%	
Tax liability	0	\$50K (= $200\tau_k$)	
After-tax return			
After-tax wealth ratio			

	Capital income tax		Wealth tax
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	
Before-tax Income	\$0	\$200K	
	$ au_k =$	= 25%	
Tax liability	0	\$50K (= $200\tau_k$)	
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $^{1150/1000}$	

	Capital i	ncome tax	Wealth tax (on book value)	
	$a_{i, \text{after-tax}} = a_i + (1 - \tau_k) r_i a_i$		$a_{i,after-tax} = (1 - au_{a})a_i + r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$		
Wealth	\$1M	\$1M		
Before-tax Income	\$0	\$200K		
	$ au_k =$	= 25%		
Tax liability	0	\$50K (= $200\tau_k$)		
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $^{1150/_{1000}}$		

	Capital income tax		Wealth tax (on book value)	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, \text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k = 25\%$			
Tax liability	0	\$50K (= $200\tau_k$)		
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $1150/1000)$		

	Capital i	ncome tax	Wealth tax (on book value)	
	$a_{i, \text{after-tax}} = a_i + (1 - \tau_k) r_i a_i$		$a_{i, after-tax} = (1 - \tau_{a}) a_i + r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	Fredo (<i>r_f</i> = 0%)	Mike $(r_m = 20\%)$
Wealth Before-tax Income	\$1M \$0	\$1M \$200K	\$1M 0	\$1M \$200K
	$ au_k = 25\%$		$ au_{a} = 2.5\%$	
Tax liability	0	\$50K (= $200\tau_k$)	\$25K (= $1000\tau_a$)	$25K = 1000\tau_a$
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $1150/1000)$		

	Capital i	ncome tax	Wealth tax (on book value)	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, ext{after-tax}} = (1 - au_{a})a_{i} + r_{i}a_{i}$	
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	Fredo (<i>r_f</i> = 0%)	Mike $(r_m = 20\%)$
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k=25\%$		$ au_{a} = 2.5\%$	
Tax liability	0	\$50K (= $200\tau_k$)	\$25K (= $1000\tau_a$)	$25 \text{K} (= 1000 \tau_a)$
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $1150/1000)$	1 2000 /	17.5% (= $\frac{200-25}{1000}$) $\frac{1175}{975}$

	Capital i	ncome tax	Wealth tax (on book value)	
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, \text{after-tax}} = (1 - \tau_{a})a_i + r_i a_i$	
	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$ au_k=25\%$		$ au_a = 2.5\%$	
Tax liability	0	\$50K (= $200\tau_k$)	\$25K (= $1000\tau_a$)	$25K = 1000\tau_a$
After-tax return After-tax wealth ratio	0% 1.15 (=	$15\% \left(= \frac{200 - 50}{1000} \right)$ $1150/1000)$	$-2.5\% \left(=\frac{0-25}{1000}\right)$ $1.20 \left(\approx\right)$	17.5% (= $\frac{200-25}{1000}$) $\frac{1175}{975}$

▶ Replacing τ_k with τ_a → reallocates assets to high-return agents (use it or lose it) + increases dispersion in after-tax returns & wealth.

1. Analytical Model: Dynamic production economy with heterogeneous returns

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP
- 3. Welfare Effects: With a shift from capital income to wealth tax

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP
- 3. Welfare Effects: With a shift from capital income to wealth tax

- 4. Optimal Taxes: Depend on pass-through of TFP to wages & capital (in model given by α)
 - If pass-through is sufficiently high $(\alpha > \overline{\alpha}) \longrightarrow \tau_a^{\star} > 0 \& \tau_k^{\star} < 0$

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP
- 3. Welfare Effects: With a shift from capital income to wealth tax

- 4. Optimal Taxes: Depend on pass-through of TFP to wages & capital (in model given by α)
 - If pass-through is sufficiently high $(\alpha > \overline{\alpha})$ $\longrightarrow \tau_a^{\star} > 0$ & $\tau_k^{\star} < 0$
 - lacktriangledow If pass-through is sufficiently low $(\alpha < \underline{\alpha}) \longrightarrow au_a^\star < 0 \ \& \ au_k^\star > 0$

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP
- 3. Welfare Effects: With a shift from capital income to wealth tax

- 4. Optimal Taxes: Depend on pass-through of TFP to wages & capital (in model given by α)
 - If pass-through is sufficiently high $(\alpha > \overline{\alpha}) \longrightarrow \tau_a^{\star} > 0 \& \tau_k^{\star} < 0$
 - If pass-through is sufficiently low $(\alpha < \underline{\alpha}) \longrightarrow \tau_a^{\star} < 0 \& \tau_k^{\star} > 0$
 - If pass-through is in between $\longrightarrow \tau_a^\star > 0 \ \& \ \tau_k^\star > 0.$

- 1. Analytical Model: Dynamic production economy with heterogeneous returns
- 2. Productivity Gains: An increase in wealth tax increases TFP
- 3. Welfare Effects: With a shift from capital income to wealth tax

- 4. Optimal Taxes: Depend on pass-through of TFP to wages & capital (in model given by α)
 - If pass-through is sufficiently high $(\alpha > \overline{\alpha}) \longrightarrow \tau_a^{\star} > 0 \& \tau_k^{\star} < 0$
 - If pass-through is sufficiently low $(\alpha < \underline{\alpha}) \longrightarrow \tau_a^{\star} < 0 \& \tau_k^{\star} > 0$
 - If pass-through is in between $\longrightarrow \tau_a^\star > 0 \ \& \ \tau_k^\star > 0.$
- 5. Endogenous innovation: increase effect of τ_a on TFP, leading to higher opt. wealth taxes

Baseline Model with **Exogenous** Entrepreneurial Productivity

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income (hand-to-mouth)

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor $(y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha}) + \text{consume/save}$
 - Heterogeneity in wealth (a) and productivity (z)
 - Productivity $(z_i \in \{z_\ell, z_h\})$ determined at birth: μ (1μ) fraction w/ permanent z_h (z_ℓ)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously)

- 1. Homogenous workers (size L)
 - Supply labor inelastically + consume wage income (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor $(y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha})$ + consume/save
 - Heterogeneity in wealth (a) and productivity (z)
 - Productivity $(z_i \in \{z_\ell, z_h\})$ determined at birth: μ (1μ) fraction w/ permanent z_h (z_ℓ)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously)

Preferences (of workers and entrepreneurs): $E_0 \sum_{t=0}^{\infty} (\beta \delta)^t \log(c_t)$

Government: Finances exogenous expenditure G with τ_k and τ_a

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ► Collateral constraint: $k \leq \lambda a$, where a is entrepreneur's wealth and $\lambda \geq 1$
- ightharpoonup Bonds are in zero net supply \longrightarrow rate r determined endogenously

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ► Collateral constraint: $k \leq \lambda a$, where a is entrepreneur's wealth and $\lambda \geq 1$
- \blacktriangleright Bonds are in zero net supply \longrightarrow rate r determined endogenously

Entrepreneurs' Production Decision:

$$\Pi^{*}(z, a) = \max_{\mathbf{k} \leq \lambda \mathbf{a}, n} (z\mathbf{k})^{\alpha} n^{1-\alpha} - r\mathbf{k} - wn$$
Solution:
$$\Pi^{*}(z, a) = \underbrace{\pi^{*}(z)}_{\text{Excess return above } r} \times a$$

Entrepreneur's Dynamic Problem

$$V(a, z) = \max_{c, a'} \log(c) + \beta \delta V(a', z)$$

s.t.
$$c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{\text{After-tax wealth}}$$

Entrepreneur's Dynamic Problem

$$V(a, z) = \max_{c, a'} \log(c) + \beta \delta V(a', z)$$

s.t.
$$c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{\text{After-tax wealth}}$$
.

► Define gross (after-tax) returns as:

$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^* (z_i))$$
 for $i \in \{\ell, h\}$

► The savings decision (CRS + Log Utility):

$$a' = \beta \delta R_i a \longrightarrow \text{linearity allows aggregation}$$

Financial Market Equilibrium with Heterogenous Returns

If
$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell$$
:

- ▶ Low-productivity entrepreneurs bid down interest rate, $r = \mathsf{MPK}\left(z_{\ell}\right)$
- ► Unique steady state with:

return heterogeneity, capital misallocation, wealth tax \neq capital inc tax

▶ Empirically relevant: $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.5$ when $\lambda = \overline{\lambda}$

Financial Market Equilibrium with Heterogenous Returns

If
$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell$$
:

- ▶ Low-productivity entrepreneurs bid down interest rate, $r = MPK(z_{\ell})$
- ► Unique steady state with:

return heterogeneity, capital misallocation, wealth tax \neq capital inc tax

▶ Empirically relevant: $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.5$ when $\lambda = \overline{\lambda}$

$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \tau_a < \overline{\tau}_a = 1 - \frac{1}{\beta \delta} \left(1 - \frac{1 - \delta}{\delta} \frac{1 - \lambda \mu}{(\lambda - 1) \left(1 - \frac{z_\ell}{z_h} \right)} \right)$$

Upper Bound on au_a

Equilibrium Values: Aggregation

Lemma: Aggregate output is

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

where

$$K \equiv \mu A_h + (1 - \mu) A_\ell$$

$$Z \equiv s_h z_\lambda + (1 - s_h) z_\ell$$

K = Aggregate capital

Z = Wealth-weighted productivity

Equilibrium Values: Aggregation

Lemma: Aggregate output is

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

where

$$K \equiv \mu \, A_h + (1 - \mu) \, A_\ell$$
 $K =$ Aggregate capital $Z \equiv s_h \, z_\lambda \, + \, (1 - s_h) \, z_\ell$ $Z =$ Wealth-weighted productivity

Key variables:

- $ightharpoonup s_h = \frac{\mu A_h}{K}$: wealth share of high-productivity entrepreneurs.
- ightharpoonup $z_{\lambda} \equiv z_h + (\lambda 1)(z_h z_{\ell})$: effective productivity of high-productivity entrepreneurs.

Use it or lose it effect increases efficiency if $s_h \uparrow (\longrightarrow Z \uparrow)$

Steady State: Capital, Returns, and Taxes

Steady State K: Same as in NGM... but with endogenous Z (MoII, 2014)

$$(1- au_a)+(1- au_k)\overbrace{\alpha Z^{lpha}\left({}^{\kappa}\!/{}_{L}
ight)^{lpha-1}}^{\mathsf{MPK}}=rac{1}{eta\delta}$$

Steady State: Capital, Returns, and Taxes

Steady State K: Same as in NGM... but with endogenous Z (MoII, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (\kappa/\iota)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

 $ightharpoonup au_k$ does not affect steady state after-tax MPK; au_a does.

Steady State: Capital, Returns, and Taxes

Steady State K: Same as in NGM... but with endogenous Z (MoII, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (\kappa/\iota)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

ightharpoonup does not affect steady state after-tax MPK; τ_a does.

Steady State Z: Returns and asset evolution imply quadratic equation (depends on τ_a):

$$\left(1 - \delta^{2}\beta\left(1 - \tau_{a}\right)\right) Z^{2} - \left[\left(1 - \delta\right)\left(\mu z_{\lambda} + \left(1 - \mu\right)z_{\ell}\right) + \delta\left(1 - \delta\beta\left(1 - \tau_{a}\right)\right)\left(z_{\lambda} + z_{\ell}\right)\right] Z^{2} + \delta\left(1 - \delta\beta\left(1 - \tau_{a}\right)\right)z_{\ell}z_{\lambda} = 0.$$

▶ Wealth tax affects returns, wealth shares, and productivity. Capital income tax does not.

Main Result 1: Efficiency Gains from Wealth Taxation

Proposition:

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Main Result 1: Efficiency Gains from Wealth Taxation

Proposition:

Proof

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases

▶ Wealth concentration: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

Main Result 1: Efficiency Gains from Wealth Taxation

Proposition:

Proof

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases

▶ Wealth concentration: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

Distribution

▶ Dispersion of after-tax returns rises and average return decreases:

$$\frac{dR_{\ell}}{d\tau_{2}} < \mathbf{0} \qquad \& \qquad \frac{dR_{h}}{d\tau_{2}} > \mathbf{0} \qquad \& \qquad \mu \frac{d\log R_{h}}{d\tau_{2}} + (1-\mu) \frac{d\log R_{\ell}}{d\tau_{2}} < \mathbf{0}$$

Government Budget and Aggregate Variables

$$G = \tau_k \alpha Y + \tau_a K$$
.

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$

Government Budget and Aggregate Variables

$$G = \tau_k \alpha Y + \tau_a K$$
.

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effect on aggregates:

▶ Increases capital (K), output (Y), wage (w), & h-type wealth (A_h)

Government Budget and Aggregate Variables

$$G = \tau_k \alpha Y + \tau_a K$$
.

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effect on aggregates:

- ▶ Increases capital (K), output (Y), wage (W), & h-type wealth (A_h)
- **Key:** Higher $\alpha \longrightarrow \text{Larger pass-through of productivity to } K, Y, w$

$$\xi_K = \xi_Y = \xi_w = \alpha/1-\alpha$$
 $\xi_X = \frac{d \log X}{d \log Z}$

Main Result 2: Welfare Gains by Type

Proposition:

For all $\tau_a < \overline{\tau}_a$, a higher τ_a changes welfare as follows:

- ▶ Workers: Higher welfare: $\frac{dV_{workers}}{d\tau_a} > 0$
- ► High-z entrepreneurs: Higher welfare: $\frac{dV_h(\bar{a})}{d\tau_a} > 0$ (since $\xi_K + \frac{1}{1-\beta\delta}\xi_{R_h} > 0$)
- ▶ Low-z entrepreneurs: Lower welfare $\left(\frac{dV_{\ell}(\bar{a})}{d\tau_a} < 0\right)$ iff $\xi_K + \frac{1}{1-\beta\delta}\xi_{R_{\ell}} < 0$
- ► Entrepreneurs: Lower average welfare iff $\xi_K + \frac{1}{1-\beta\delta} \left(\mu \xi_{R_h} + (1-\mu) \xi_{R_\ell}\right) < 0$

Main Result 2: Welfare Gains by Type

Proposition:

For all $\tau_a < \overline{\tau}_a$, a higher τ_a changes welfare as follows:

- ► Workers: Higher welfare: $\frac{dV_{workers}}{d\tau} > 0$
- ► High-z entrepreneurs: Higher welfare: $\frac{dV_h(\bar{a})}{d\tau_a} > 0$ (since $\xi_K + \frac{1}{1-R\lambda}\xi_{Rh} > 0$)
- ► Low-z entrepreneurs: Lower welfare $\left(\frac{dV_{\ell}(\bar{a})}{dr} < 0\right)$ iff $\xi_K + \frac{1}{1-8\lambda}\xi_{R_{\ell}} < 0$
- ► Entrepreneurs: Lower average welfare iff $\xi_K + \frac{1}{1-R^2} (\mu \xi_{R_b} + (1-\mu) \xi_{R_e}) < 0$

Note: These conditions imply threshold on α for welfare gains that are high in practice, so average entrepreneur welfare is typically lowered when τ_a increases.

Optimal Taxation

Objective: Choose taxes (τ_a, τ_k) to maximize newborn welfare

$$\mathcal{W} \equiv n_{w}V_{w}(w) + (1 - n_{w})\left(\mu V_{h}(\overline{a}) + (1 - \mu)V_{\ell}(\overline{a})\right)$$

where $n_w = \frac{L}{(1+L)}$ is the share of workers in population.

▶ An interior solution satisfies $dW/d\tau_a = 0$.

Optimal Taxation

Objective: Choose taxes (τ_a, τ_k) to maximize newborn welfare

$$\mathcal{W} = \frac{1}{1 - \beta \delta} \left[n_w \log w + (1 - n_w) \log \overline{a} \right] + \frac{1 - n_w}{\left(1 - \beta \delta\right)^2} \left[\mu \log R_h + (1 - \mu) \log R_\ell \right] + \text{Constant}$$
 where $n_w = \frac{L}{(1 + L)}$ is the share of workers in population.

► An interior solution satisfies $dW/d\tau_a = 0$.

Key trade-off:

- 1. Higher wages (w) and wealth (\overline{a}) (depends on α)
- 2. Lower log average return (higher return dispersion + negative GE effect)

Main Result 3: Optimal Taxes

Proposition: There exists a unique optimal tax combination (τ_a^*, τ_k^*) that maximizes \mathcal{W} . An interior optimum $(\tau_a^* < \bar{\tau}_a)$ is the solution to:

$$0 = \left(\underbrace{-n_w \xi_w^Z + (1 - n_w) \xi_K^Z}_{\text{Level Effect (+)}} + \underbrace{-\frac{1 - n_w}{1 - \beta \delta} \left(\mu \xi_{R_h}^Z + (1 - \mu) \xi_{R_\ell}^Z\right)}_{\text{Return Productivity Effect (-)}}\right) \frac{d \log Z}{d \tau_a}$$

where $\xi_x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of variable x with respect to Z. Furthermore,

$$au_a^\star < 0 \text{ and } au_k^\star > 0 \qquad \qquad \text{if } alpha < \underline{lpha} \\ au_a^\star > 0 \text{ and } au_k^\star > 0 \qquad \qquad \text{if } \underline{lpha} \le \underline{lpha} \le \overline{lpha} \\ au_a^\star > 0 \text{ and } au_k^\star < 0 \qquad \qquad \text{if } alpha > \overline{lpha}$$

Optimal Tax and $\underline{\alpha}$ and $\overline{\alpha}$ Thresholds

Endogenizing Productivity through Innovation

Innovation Effort and Productivity

- \blacktriangleright We interpret productivity z_i as the outcome of a risky innovation process
- ▶ Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \ \mu\left(e\right) V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right) \ V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}} \Lambda\left(e\right); \quad \Lambda\left(e\right) \ \text{convex} + C^{2}; \ \mu\left(e\right) = e$$

Innovation Effort and Productivity

- \blacktriangleright We interpret productivity z_i as the outcome of a risky innovation process
- ▶ Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \frac{\mu\left(e\right)V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right)V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}}\Lambda\left(e\right); \quad \Lambda\left(e\right) \text{ convex} + C^{2}; \ \mu\left(e\right) = e$$

We show:

► Unique equilibrium with innovation.

$$\uparrow \tau_a \longrightarrow \uparrow$$
 Productivity (Z) $\longrightarrow \uparrow$ Innovation effort (e) $\longrightarrow \uparrow$ High prod (μ) $\longrightarrow \uparrow \uparrow Z$

Innovation Effort and Productivity

- \blacktriangleright We interpret productivity z_i as the outcome of a risky innovation process
- Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \frac{\mu\left(e\right)V_{h}\left(\overline{a}\right) + \left(1 - \mu\left(e\right)\right)V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}}\Lambda\left(e\right); \quad \Lambda\left(e\right) \text{ convex} + C^{2}; \ \mu\left(e\right) = e$$

We show:

► Unique equilibrium with innovation.

$$\uparrow \tau_a \longrightarrow \uparrow$$
 Productivity (Z) $\longrightarrow \uparrow$ Innovation effort (e) $\longrightarrow \uparrow$ High prod (μ) $\longrightarrow \uparrow \uparrow Z$

Endogenizing innovation implies Higher optimal wealth taxes.

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

$$\mu^{\star} = e(Z(\mu^{\star}))$$
, where

- i. $Z(\mu)$ gives the steady state productivity given μ .
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

$$\mu^{\star} = e(Z(\mu^{\star}))$$
, where

- i. $Z(\mu)$ gives the steady state productivity given μ .
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Prop. (existence and uniqueness): There exists a unique innovation equilibrium.

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^{\star} of high-productivity entrepreneurs is the solution to

$$\mu^{\star} = e(Z(\mu^{\star}))$$
, where

- i. $Z(\mu)$ gives the steady state productivity given μ .
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.
- **Prop.** (existence and uniqueness): There exists a unique innovation equilibrium.
- **Prop.** (innovation gains from wealth taxation): Equilibrium μ^* is increasing in τ_a .

Steady State: For $\tau_a \leq \overline{\tau}_a$, the share μ^* of high-productivity entrepreneurs is the solution to

$$\mu^{\star} = e(Z(\mu^{\star}))$$
, where

- i. $Z(\mu)$ gives the steady state productivity given μ .
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.
- Prop. (existence and uniqueness): There exists a unique innovation equilibrium.
- **Prop.** (innovation gains from wealth taxation): Equilibrium μ^* is increasing in τ_a .

Corollary (productivity gains from wealth taxation):

The equilibrium Z^* is increasing in τ_a (+ Both μ^* and Z^* are independent of τ_k).

Optimal taxes with innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$\mathcal{W} \equiv n_w V_w \left(w\right) + \left(1 - n_w\right) \left(\mu V_h \left(\overline{a}\right) + \left(1 - \mu\right) V_\ell \left(\overline{a}\right) - \frac{\Lambda \left(\mu\right)}{\left(1 - \beta \delta\right)^2}\right)$$

Optimal taxes with innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$\mathcal{W} \equiv n_{w}V_{w}(w) + (1 - n_{w})\left(\mu V_{h}(\overline{a}) + (1 - \mu) V_{\ell}(\overline{a}) - \frac{\Lambda(\mu)}{(1 - \beta\delta)^{2}}\right)$$

Proposition: The optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} is the solution to:

$$\underbrace{ \left(\underbrace{ n_w \xi_w^Z + (1 - n_w) \, \xi_K^Z}_{\text{Level Effect (+)}} + \underbrace{ \frac{1 - n_w}{1 - \beta \delta} \left(\mu \xi_{R_h}^Z + (1 - \mu) \, \xi_{R_\ell}^Z \right)}_{\text{Return Productivity Effect (-)}} \right) \frac{d \log Z}{d \tau_a} } \\ + \underbrace{ \frac{1 - n_w}{1 - \beta \delta} \left(\mu \xi_{R_h}^\mu + (1 - \mu) \, \xi_{R_\ell}^\mu \right) \frac{d \mu}{d \tau_a}}_{\text{New! Return Innovation Effect (+)}} = 0$$

Extensions with Variable Productivity

Infinite-Horizon Model with Variable Productivity

- ightharpoonup Productivity follows Markov process with persistence ρ (first-order autocorrelation)
- \blacktriangleright All results hold as long as entrepreneurial productivity is persistent: $\rho > 0$

Further extensions:

► Corporate sector that faces no borrowing constraint

Details

- If $z_{\ell} < z_{C} < z_{h}$, then low-productivity agents invest in the corporate sector.
- ightharpoonup Rents: Return \neq marginal productivity.

Details

- Introduce zero-sum return wedges so that $R_h <> R_\ell$.
- Efficiency gains from $\tau_a \uparrow$ if $R_h > R_\ell$.
- ▶ Per-period entrepreneurial effort in production (still exogenous *z*):

Details

■ With GHH preferences, aggregate entrepreneurial effort increases with wealth tax.

Conclusions

Increasing τ_a (& reducing τ_k):

- ightharpoonup Reallocates capital: less productive ightharpoonup more productive agents.
 - Higher TFP, output, and wages;
 - Higher dispersion in returns and wealth and lower average returns
- ► Equilibrium innovation increases (when innovation is endogenous)

Optimal taxes:

- ► Combination of taxes depends on pass-through of TFP to wages and wealth
- ▶ Optimal wealth tax is higher with endogenous innovation.

Extra

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions
- 7. Quantitative Analysis

Entrepreneur's Problem

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} \leq \lambda \mathbf{a},n} (zk)^{\alpha} n^{1-\alpha} - rk - wn.$$

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

Solution:
$$\Pi^*(z, a) = \underbrace{\pi^*(z)}_{\text{Excess return above } r} \times a$$

$$\pi^{\star}(z) = \begin{cases} (MPK(z) - r) \lambda & \text{if } MPK(z) > r \\ 0 & \text{otherwise.} \end{cases}$$

$$k^{\star}(z) \begin{cases} = \lambda a & \text{if } MPK(z) > r \\ \in [0, \lambda a] & \text{if } MPK(z) = r \\ = 0 & \text{if } MPK(z) < r \end{cases}$$

 \blacktriangleright $(\lambda - 1)$ a: amount of external funds used by type-z if MPK(z) > r.

FIGURES

Condition for Steady State with Heterogeneous Returns

Note: The figure reports the upper bound on wealth taxes for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$. λ is such that the debt-to-output ratio in our baseline calibration is 1.5.

Return Dispersion in Steady State of the Benchmark Economy

Note: The figure reports the value return dispersion in steady state for combinations of the discount factor (β) and productivity dispersion ($\tau_{\ell/2_h}$). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $\tau_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

What happens to Z if $\tau_a \uparrow$?

Stationary wealth distribution and wealth taxes

Welfare Gains

Conditions for Entrepreneurial Welfare Gain

Note: The figures report the threshold value of α above which entrepreneurial welfare increases after an increase in wealth taxes for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_{h}). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_{h} = 1$, $\tau_{k} = 25\%$, and $\alpha = 0.4$.

Optimal Taxes

α -thresholds for Optimal Wealth Taxes

Note: The figures report the threshold value of α for the optimal wealth taxes to be positive (left) and capital income taxes to be positive (right) for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

How the Optimal Wealth Tax Varies with β and productivity dispersion

Note: The figure reports the value of the optimal wealth tax for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Extensions

Extension: Corporate sector

- ► Technology: $Y_c = (z_c K_c)^{\alpha} L_c^{1-\alpha}$
 - No financial constraints!
- ► Corporate sector imposes lower bound on *r*.

$$r \geq \alpha z_c \left(\frac{1-\alpha}{w}\right)^{\frac{1-\alpha}{\alpha}}.$$

Interesting case: $z_{\ell} < z_c < z_h$

- ► Corporate sector and high-productivity entrepreneurs produce
- ► Low-productivity entrepreneurs lend all of their funds.
- ▶ No real changes in the aggregates of the economy! z_c takes the place of z_ℓ

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$

but now $Z = s_h z_\lambda + s_l \mathbf{z_c}$, where $z_\lambda = z_h + (\lambda - 1)(z_h - \mathbf{z_c})$.

► Introduce wedge for returns above/below productivity:

$$R_i = (1 - \tau_a) + (1 - \tau_k) \underbrace{(1 + \omega_i)}_{\text{Return Wedge}} \alpha (Z^K/L)^{\alpha - 1} z_i$$

- ► Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- lacktriangle Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

Extension: Rents

► Introduce wedge for returns above/below productivity:

$$R_i = (1 - \tau_a) + (1 - \tau_k) \underbrace{(1 + \omega_i)}_{\text{Return Wedge}} \alpha (Z^{K/L})^{\alpha - 1} z_i$$

- ► Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- lacktriangle Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

Proposition:

For all $\tau_a < \overline{\tau}_a$, a marginal increase in wealth taxes (τ_a) increases Z, $\frac{dZ}{d\tau_a} > 0$, iff

- 1. $\rho > 0$ and $R_h > R_\ell \longrightarrow \mathsf{Same}$ mechanism as before
- 2. $\rho < 0$ and $R_h < R \longrightarrow \text{Reallocates}$ wealth to the true high types next period

Extension: Entrepreneurial Effort

► Entrepreneurial production:

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

- lacktriangle Production functions is CRS \longrightarrow Aggregation
- ► Entrepreneurial preferences:

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

- GHH preferences with no income effects Aggregation
- lacktriangledown ψ plays an important role: Cost of effort in consumption units

Extension: Entrepreneurial Effort

Problem is isomorphic to having preferences

$$u(\hat{c}) = \log \hat{c}$$
 where $\hat{c} = c - \psi e$

and modifying entrepreneurial problem to:

$$\hat{\pi}(z, k) = \max_{n, e} y - wn - rk - \underbrace{\frac{\psi}{1 - \tau_k}}_{\text{Effective cost of effort}} e^{-\frac{1}{2}}$$

- ► Solution is just as before (linear policy functions a['], n, and e)
- **Key:** Effective cost of effort depends on capital income tax τ_k !
 - Effort affects entrepreneurial income
 - Income subject to capital income taxes but not to book value wealth taxes

Extension: Entrepreneurial Effort

► Aggregate effort:

$$E = \left(\frac{\left(1 - \tau_{k}\right)\gamma}{\psi}\right)^{\frac{1}{1-\gamma}} (ZK)^{\frac{\alpha}{1-\gamma}} L^{\frac{1-\alpha-\gamma}{1-\gamma}}$$

- Comparative statics: $K \uparrow$, $Z \uparrow$, and $\tau_k \downarrow$
- ▶ New wedge from capital income taxes on aggregate output and wages!
- lacktriangle Effort affects marginal product of capital \longrightarrow Affects K_{ss}

A neutrality result:

- ► No changes to steady state productivity!
- ► Steady state capital adjusts in background to satisfy:

$$(1- au_{\it k})\,{\sf MPK}- au_{\it a}=rac{1}{eta}-1$$

Results:

- 1. Efficiency gains from wealth taxation remain
- 2. Effect on aggregates is stronger if capital income taxes go down
 - Effort increases with wealth taxes (if $\rho > 0$)!
- Characterization of optimal taxes is similar but higher wealth taxes and lower capital incomes taxes are optimal

Quantitative Framework with New Results

Model: Households

- ► **OLG** demographic structure.
- ▶ Uncertain lifetimes: individuals face mortality risk every period.
- ▶ Bequest motive, inheritance goes to (newborn) offspring.

Model: Households

- ► **OLG** demographic structure.
- ▶ Uncertain lifetimes: individuals face mortality risk every period.
- ▶ Bequest motive, inheritance goes to (newborn) offspring.

Individuals:

- ► Have preferences over consumption, **leisure** and bequests
- ► Make three decisions:
 - consumption-savings | labor supply | portfolio choice
- ► Two exogenous characteristics:
 - y_{ih} (labor market productivity) | z_{ih} (entrepreneurial productivity)

Model: Households

- ► **OLG** demographic structure.
- ▶ Uncertain lifetimes: individuals face mortality risk every period.
- ▶ Bequest motive, inheritance goes to (newborn) offspring.

Individuals:

- ► Have preferences over consumption, leisure and bequests
- ► Make three decisions:
 - consumption-savings \parallel labor supply \parallel portfolio choice
- ► Two exogenous characteristics:
 - y_{ih} (labor market productivity) $||z_{ih}|$ (entrepreneurial productivity)

Entrepreneurs: monopolistic competition \rightarrow **decreasing returns to scale**

Entrepreneurial Productivity z_{ih} : Key Source of Heterogeneity

- ► Idiosyncratic wage risk :
 - Modeled in a rich way, but does not turn out to be critical. Details

Entrepreneurial Productivity z_{ih} : Key Source of Heterogeneity

- ► Idiosyncratic wage risk :
 - Modeled in a rich way, but does not turn out to be critical. Details
- ightharpoonup Entrepreneurial productivity, z_{ih} , varies
 - 1. permanently across individuals
 - imperfectly correlated across generations
 - 2. stochastically over the life cycle

Government

Government budget balances:

- ▶ Outlays: Expenditure () + Social Security pensions
- **Revenues:** tax on consumption (τ_c) , labor income (τ_ℓ) , bequests (τ_b) plus:
- 1. tax on capital income (τ_k) , or
- 2. tax on wealth (τ_a) .

Calibration summary

Choose parameters of

- ightharpoonup Bequest motive ightharpoonup
 - level and concentration of bequests

Calibration summary

Choose parameters of

- ightharpoonup Bequest motive ightarrow
 - level and concentration of bequests
- ► Entrepreneurial productivity →
 - top wealth concentration (overall and in the hands of entrepreneurs)
 - shares of entrepreneurs and self-made billionaires

Calibration summary

Choose parameters of

- ► Bequest motive →
 - level and concentration of bequests
- ► Entrepreneurial productivity →
 - top wealth concentration (overall and in the hands of entrepreneurs)
 - shares of entrepreneurs and self-made billionaires
- ightharpoonup Entrepreneurs' collateral constraint ightharpoonup
 - Business debt plus external funds/GDP

Pareto Tail of Wealth Distribution: Model vs. Data

Performance of the benchmark model: return heterogeneity

	Annual Returns			Persistent Component of Returns					
	Std dev	P90-P10	Kurtosis	Std dev	P90-P10	Kurtosis	P90	P99	P99.9
Data (Norway)	8.6	14.2	47.8	6.0	7.7	78.4	4.3	11.6*	23.4*
Data (Norway, bus. own.)	_	_	_	4.8	10.9	14.2	10.1	_	_
Data (US, private firms)	17.7	33.8	8.3	_	_	_	_	_	_
Benchmark Model	8.4	17.1	7.6	4.1	9.2	6.1	5.8	13.9	19.7
L-INEQ Calibration	6.7	13.1	9.2	3.8	9.2	4.3	5.6	11.2	15.8

Note: Returns on wealth in percentage points. All cross-sectional returns are value weighted. *The statistics for Norway are for individual returns on wealth (net worth) taken from Fagereng, Guiso, Malacrino, and Pistaferri (2020). The US statistics are from Smith, Zidar, and Zwick (2021) and are for S-corps' returns on investment; they also report statistics for partnerships, which are very similar (std dev of 17.8% and P90-P10 of 27.9). For each individual, the persistent component of returns is calculated following Fagereng et al as the unweighted average of annual, before-tax, returns between ages 25 and 75, after taking

Tax Reform and Optimal Taxes

	$ au_{k}$	$ au_\ell$	$ au_{a}$	Δ Welfare
Benchmark	25%	22.4%	_	_
RN Tax reform	-	22.4%	1.19%	7.2
Opt. $ au_a$				
Opt. $ au_k$				

Change in aggregate variables

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal $ au_{\it a}$							
Optimal τ_k							

Tax Reform: Who Gains? Who Loses?

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)							
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+			
20	6.7	6.3	6.8	8.5	11.5	13.4			
21-34									
35-49									
50-64									
65+									

Tax Reform: Who Gains? Who Loses?

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)							
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+			
20	6.7	6.3	6.8	8.5	11.5	13.4			
21-34	6.3	5.5	5.5	6.5	8.5	9.7			
35-49	4.9	3.8	3.3	3.3	3.1	2.8			
50-64	2.2	1.5	1.1	0.9	0.4	-0.2			
65+	-0.2	-0.3	-0.4	-0.4	-0.7	-1.0			

Tax Reform: Who Gains? Who Loses?

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)							
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+			
20	6.7	6.3	6.8	8.5	11.5	13.4			
21-34	6.3	5.5	5.5	6.5	8.5	9.7			
35-49	4.9	3.8	3.3	3.3	3.1	2.8			
50-64	2.2	1.5	1.1	0.9	0.4	-0.2			
65+	-0.2	-0.3	-0.4	-0.4	-0.7	-1.0			

BB tax reform turns welfare losses of retirees to gains, ranging from 2.3% to 6.5%.

Tax Reform and Optimal Taxes

	$ au_{k}$	$ au_\ell$	$ au_{a}$	Δ Welfare
Benchmark	25%	22.4%	_	_
RN Tax reform	_	22.4%	1.19%	7.2
Opt. $ au_a$				
Opt. $ au_k$				

Tax Reform and Optimal Taxes

	$ au_{k}$	$ au_\ell$	$ au_{a}$	Δ Welfare
Benchmark	25%	22.4%	_	_
RN Tax reform	-	22.4%	1.19%	7.2
Opt. $ au_a$	-	15.4%	3.03%	8.7
Opt. $ au_k$				

Tax Reform and Optimal Taxes

	$ au_{k}$	$ au_{\ell}$	$ au_{a}$	ΔWelfare
Benchmark	25%	22.4%	_	_
RN Tax reform	_	22.4%	1.19%	7.2
Opt. $ au_a$	_	15.4%	3.03%	8.7
Opt. $ au_k$	-13.6%	31.2%	_	5.1

Change in aggregate variables

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal $ au_{\it a}$	2.6	10.5	3.1	3.3	6.1	2.8	12.0
Optimal τ_k							

Change in aggregate variables

	K	Q	TFP	L	Y	W	W
% change							(net)
Tax reform	16.4	22.6	2.1	1.2	9.2	8.0	8.0
Optimal $ au_{\it a}$	2.6	10.5	3.1	3.3	6.1	2.8	12.0
Optimal τ_k	38.6	46.1	2.2	-1.0	15.7	16.8	3.6

Welfare gain comes from changes in consumption (c) and leisure(ℓ).

Welfare gain comes from changes in consumption (c) and leisure(ℓ).

	Tax Reform	$Opt. au_k$	$Opt. au_{a}$
CE ₂ (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9		
Dist. (c, ℓ)	-1.5		

Welfare gain comes from changes in consumption (c) and leisure(ℓ).

	Tax Reform	$Opt. au_k$	$Opt. au_{a}$
CE_2 (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9	14.7	
Dist. (c, ℓ)	-1.5	-8.3	

Welfare gain comes from changes in consumption (c) and leisure(ℓ).

	Tax Reform	$Opt. au_k$	$Opt. au_{a}$
CE_2 (NB)	7.2	5.1	8.7
Level $(\overline{c}, \overline{\ell})$	8.9	14.7	5.9
Dist. (c, ℓ)	-1.5	-8.3	2.6

Optimal taxes with transition

Optimal Tax Equilibrium with Transition

- ▶ Fix opt. tax level $(\tau_k \text{ or } \tau_a)$ and solve transition to new steady state
- Use labor income tax (τ_{ℓ}) to finance debt from deficits during transition

Optimal Tax Equilibrium with Transition

- ▶ Fix opt. tax level $(\tau_k \text{ or } \tau_a)$ and solve transition to new steady state
- lacktriangle Use labor income tax (τ_ℓ) to finance debt from deficits during transition

	$ au_k$ Transition	$ au_a$ Transition
$ au_{k}$	-13.6^*	0.00
$ au_{a}$	0.00	3.03^{*}
$ au_\ell$	39.90	17.01
$\overline{\textit{CE}}_2$ (newborn)	-8.4 (5.1)	6.0 (8.7)
$\overline{\mathit{CE}}_2$ (all)	-6.1 (4.5)	3.5 (4.3)