DRAFT

Dashboard for Microgrids: Formulas

Student project of TU Berlin ISE and Inno2Grid WS23

December 7, 2023

General remarks

All formulas are defined for one fixed timestamp. For most use cases aggregation will be necessary.

Scopes

Scope 1-3 are defined by the Greenhouse Gas Protocol.

Scope 1

Description: Direct emissions from sources that are controlled by the company/ grid (energy production, vehicles ...).

Visualization: Stacked area chart.

Variables:

- LocalEnergySource: Local energy production types. (solar and biogas)
- GeneratedEnergy: Energy produced on-site (Production_of_CHP_kW + Production_of_PV_kW)
- EmissionFactor: Emission factors are values that quantify the amount of carbon emissions produced per electricity unit like kW. (tbd)

Formula:

$$S_1 = \sum_{\text{LocalEnergySource } i} (\text{GeneratedEnergy}_i * \text{EmissionFactor}_i)$$
 (1)

Scope 2

Description: Indirect emissions resulting from the generation of purchased energy (electricity, heat ...). Visualization: Stacked area chart.

Variables:

- 50H.EnergySource: All types of energy sources of the electricity mix. (column names of SMARD_50Hz.csv)
- PurchasedElectricity: Amount of electricity that was bought from the grid. (Grid_Reference_SMARD_kW)
- ShareInMix: Share of all power generation types in the electricity mix (calculated with SMARD_50Hz.csv)
- EmissionFactor: Emission factors are values that quantify the amount of carbon emissions produced per electricity unit like kW. (tbd)

Formula:

$$S_2 = \sum_{\text{50H_EnergySource } i} (\text{PurchasedElectricity} * \text{ShareInMix}_i * \text{EmissionFactor}_i)$$
 (2)

KPI's

KPI 1: Self consumption

Description: KPI that measures the proportion of electricity that is on-side generated and consumed. Visualization: Donut chart that represents percentages (values: 0-100%). Variables:

- Consumption: Energy consumed on-site (Total_Load_kW).
- $\bullet \ \ Generated Energy: \ Energy \ produced \ on-site \ (Production_of_CHP_kW + Production_of_PV_kW) \\$

Formula:

$$K_1 = \min(\frac{\text{Consumption}}{\text{GeneratedEnergy}}, 1)$$
 (3)

KPI 2: Autarky

Description: A concept closely related to self-consumption. It measures the percentage to which a grid system is self-sufficient in terms of energy production.

Visualization: Donut chart that represents percentages (values: 0-100%).

Variables: See KPI 1

Formula:

$$K_2 = \min(\frac{\text{GeneratedEnergy}}{\text{Consumption}}, 1)$$
 (4)

KPI 3: CO₂ Savings

Description:

Visualization: Donut chart that shows CO₂ in kg (tbd)

Variables:

- 50H_EnergySource: All types of energy sources of the electricity mix. (column names of SMARD_50Hz.csv)
- Consumption: Energy consumed on-site (Total_Load_kW).
- ShareInMix: Share of all power generation types in the electricity mix (calculated with SMARD_50Hz.csv)
- EmissionFactor: Emission factors are values that quantify the amount of carbon emissions produced per electricity unit like kW. (tbd)
- GeneratedEnergy: Energy produced on-site (Production_of_CHP_kW + Production_of_PV_kW)
- S_1, S_2 : see scope 1 and 2

Formula: (tbd)

$$K_3 = \sum_{\text{50H_EnergySource } i} (\text{Consumption} * \text{ShareInMix}_i * \text{EmissionFactor}_i) - S_1 - S_2$$
 (5)

$$K_3 = \sum_{\text{50H-EnergySource } i} (\text{GeneratedEnergy} * \text{ShareInMix}_i * \text{EmissionFactor}_i) - S_1$$
 (6)

KPI 4: Cost Savings

Description: Comparing costs with and without the local energy production.

Visualization: Donut chart that shows Euros (tbd)

Variables:

- Consumption: Energy consumed on-site (Total_Load_kW).
- ElectricityPrice: Market price of electricity (ENTSOE api).
- SolarOpCosts: Operational costs of the solar panels. (tbd)
- BiogasOpCosts: Operational costs of the CHP powered by biogas. (tbd)
- PurchasedElectricity: Amount of electricity that was bought from the grid. (Grid_Reference_SMARD_kW)

Formula:

$$\begin{aligned} & \text{CostsWithoutLocalGrid} = \text{Consumption} * \text{ElectricityPrice} \\ & \text{CostsWithLocalGrid} = \text{PurchasedElectricity} * \text{ElectricityPrice} + \text{SolarOpCosts} + \text{BiogasOpCosts} \\ & K_4 = \text{CostsWithoutLocalGrid} - \text{CostsWithLocalGrid} \end{aligned} \tag{9}$$