Лекция: Методи на хордите, секущите и допирателните

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

- Метод на хордите
- Метод на секущите
- Метод на допирателните (метод на Нютон)
- Комбиниран метод (Нютон-хорди)

Условия за прилагане на метода на хордите

Нека [a,b] е даден интервал и f(x) е два пъти диференцируема в него функция, която удовлетворява условията:

- a) f(a) f(b) < 0;
- б) $f'(x) f''(x) \neq 0$ за всяко x от [a, b].

Не е трудно да се види, че тези условия осигуряват съществуването на единствен корен ξ на уравнението f(x) = 0 в [a, b]. Наистина, първото условие гарантира съществуването на точка $\xi \in (a,b)$ такава, че $f(\xi)=0$. От второто условие следва, че f'(x) и f''(x) не се анулират в [a,b]. Следователно f'(x) и f''(x) имат постоянен знак в [a,b]. Това показва, че f(x) е строго монотонна функция, при това изпъкнала (ако f''(x) > 0) или вдлъбната (ако f''(x) < 0). Тъй като една монотонна функция може да пресече абсцисната ос само в една точка, единствеността на ξ е доказана.

Метод на хордите

Методът на хордите е итерационен процес, в който се построява редица от последователни приближения x_0, x_1, \ldots на корена ξ на уравнението f(x) = 0 по следния начин:

Прекарва се права линия ℓ_0 , която минава през точките (a, f(a)) и (b, f(b)) (т.е. хордата към "дъгата" от графиката на функцията f в [a, b], виж Фигура 1). Тя пресича оста x в някаква точка χ_0 . Това е началното приближение. Естествено, x_0 лежи отляво на корена ξ , ако f е изпъкнала и отдясно на ξ , ако f е вдлъбната. На нашия пример $x_0 < \xi$. След това намираме следващото приближение X₁ като пресечна точка на оста x с хордата ℓ_1 , свързваща $(x_0, f(x_0))$ и (b, f(b)) (съответно $(x_0, f(x_0))$ и (a, f(a)), ако f''(x) < 0) и т.н. Изобщо X_{n+1} се получава като пресечна точка на оста Xс хордата ℓ_{n+1} , свързваща точките $(x_n, f(x_n))$ и (b, f(b))(съответно (a, f(a))). Методът е илюстриран геометрично на чертежа по-долу.

0000000

Фигура: 1. Геометрична илюстрация на метода на хордите.

Метод на хордите

Да намерим аналитичен израз за x_{n+1} чрез предишното приближение x_n . За определеност да смятаме, че f''(x) > 0 (както е на Фигура 2). Правата $y = \ell_{n+1}(x)$ има уравнение

$$\ell_{n+1}(x) = f(x_n) \frac{x-b}{x_n-b} + f(b) \frac{x-x_n}{b-x_n} = f(x_n) + f[x_n,b](x-x_n).$$

Приближението X_{n+1} е корен на уравнението $\ell_{n+1}(x) = 0$. Следователно

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_n, b]},$$

или записано по-подробно,

$$x_{n+1} = x_n - \frac{f(x_n)}{f(b) - f(x_n)} (b - x_n). \tag{1}$$

Това е формулата за пресмятане на последователните приближения на корена ξ по метода на хордите.

Сходимост на метода на хордите

Сега ще покажем, че X_n наистина клони към ξ при $n \to \infty$. Използвайки изпъкналостта на f, може да се види, че X_0, X_1, \ldots е монотонна и ограничена отгоре редица, следователно тя е сходяща. Нека α е нейна граница. Тогава, като извършим граничен преход в (1), получаваме

$$\alpha = \alpha - \frac{f(\alpha)}{f(b) - f(\alpha)}(b - \alpha)$$
, r.e. $f(\alpha) = 0$.

Следователно $\alpha = \xi$ и сходимостта на \mathbf{X}_n към ξ е доказана. Ние ще използваме Следствие 1 от общата теория на метода на свиващите изображения, защото то ще ни даде и оценка за скоростта на сходимост. И така, от (1) е ясно, че методът на хордите е итерационен процес, породен от функцията

$$\varphi(x) = x - \frac{f(x)}{f(b) - f(x)}(b - x).$$

Вижда се, че при $x \in (a, b)$ уравнението $x = \varphi(x)$ е еквивалентно с f(x) = 0. За да приложим Следствие 1 към φ , ще ни е нужно $\varphi'(\xi)$. Имаме

$$\varphi'(\xi) = 1 - f'(\xi) \left[\frac{b - \xi}{f(b) - f(\xi)} \right] - f(\xi) \left\{ \frac{b - x}{f(b) - f(x)} \right\}' \bigg|_{x = \xi}.$$

Тъй като $f(\xi) = 0$, то

Метол на хорлите

00000000

$$\varphi'(\xi) = 1 - f'(\xi) \frac{b - \xi}{f(b)} = \frac{f(b) - f'(\xi)(b - \xi)}{f(b)}$$
.

Като заместим f(b) по формулата на Тейлър с

$$f(b) = f(\xi) + f'(\xi)(b-\xi) + \frac{f''(\eta_1)}{2}(b-\xi)^2$$
 (в числителя),

$$f(b) = f(\xi) + f'(\eta_2)(b - \xi)$$
 (в знаменателя),

където η_1 и η_2 са някакви точки от (a,b), получаваме

Сходимост на метода на хордите

$$\varphi'(\xi) = \frac{f''(\eta_1)(b-\xi)}{2f'(\eta_2)}.$$

Да означим $M:=\max_{t\in[a,b]}\left|f''(t)\right|, \qquad m:=\min_{t\in[a,b]}\left|f'(t)\right|$. Тъй като по условие f'(t)>0 в [a,b], то m>0. Тогава

$$\left|\varphi'(\xi)\right| \leq \frac{M}{2m}|b-\xi|$$

и $|\varphi'(\xi)|$ може да стане по-малко от произволно, отнапред избрано q<1, стига $b-\xi$ да е достатъчно малко, т.е. стига интервалът [a,b] да е достатъчно малък. И така, ако ξ е в достатъчно малък интервал [a,b], то $|\varphi'(\xi)|< q<1$. Оттук, по Следствие 1, итерационният процес породен от φ (т.е. методът на хордите) е сходящ със скорост на геометрична прогресия,

$$|x_n - \xi| \leq const. \ q^n.$$

Забележка

Разгледаният от нас (и илюстриран на Фигура 1) случай е когато f'(x) > 0 и f''(x) > 0 в [a,b]. В този случай построените хорди имат неподвижен край, който е точката от десния край на графиката на f, т.е. с абсциса b. При други комбинации от знаците на f' и f'' неподвижен за хордите е левия край от графиката на функцията (проверете сами при кои). Тогава във формулата за последователните приближения (1) b се замества с a.

Условия за прилагане на метода на секущите

Ще предполагаме, както и при метода на хордите, че f(x) е два пъти диференцируема функция в интервал [a,b], която удовлетворява условията:

- a) f(a) f(b) < 0;
- б) $f'(x) f''(x) \neq 0$ за всяко x от [a, b];
- в) Означаваме

$$M:=\max_{t\in[a,b]}\left|f''(t)\right|,\qquad m:=\min_{t\in[a,b]}\left|f'(t)\right|.$$

При метода на секущите всяко следващо приближение x_{n+1} на корена ξ на уравнението f(x)=0 се построява въз основа на предходните две приближения x_n и x_{n-1} .

Метод на секущите

Избираме $x_0 = a$ или $x_0 = b$ така, че да бъде изпълнено условието $f(x_0)f''(x_0) > 0$. На Фигура 2 по-долу $x_0 = b$. След това избираме точка x_1 такава, че $\xi < x_1 < x_0$. Ние не знаем ξ (това е коренът ξ , който търсим). Тогава как да разберем, че някаква точка X₁ удовлетворява горното условие? Това става чрез сравняване на знаците на $f(x_0)$ и $f(x_1)$. Ако $f(x_1) = 0$, то всъщност $x_1 = \xi$ и задачата е решена. Ако $f(x_1)f(x_0) > 0$, то x_0 и x_1 са от една и съща страна на ξ и нашето изискване е изпълнено. Ако $f(x_1)f(x_0) < 0$, то x_0 и x_1 са от различни страни на ξ и x_1 не удовлетворява наложеното изискване. В този случай изчисляването на $f(x_1)$ не е отишло напразно, защото сме локализирали корена ξ в интервала $[x_1, x_0]$, който е по-малък от първоначалния [a, b]. По-нататък можем да използваме именно този интервал, вместо [a, b].

Метод на секущите

След избора на x_0 и x_1 , постряваме следващото приближение x_2 като пресечна точка на секущата ℓ_1 , минаваща през точките $(x_0, f(x_0))$ и $(x_1, f(x_1))$ и оста x (т.е. нулата на $\ell_1(x)$). Следващата точка x_3 е нула на секущата ℓ_2 през $(x_1, f(x_1)), (x_2, f(x_2))$ и т.н., x_{n+1} е нула на секущата ℓ_n през $(x_n, f(x_n)), (x_{n-1}, f(x_{n-1}))$. Алгоритъмът за построяване на редицата от точки $\{x_n\}$ е показан на Фигура 2.

Фигура: 2. Геометрична илюстрация на метода на секущите.

Формула за последователните приближения

Да намерим аналитичен израз за x_{n+1} чрез x_n и x_{n-1} . По формулата на Нютон

$$\ell_n(x) = f(x_n) + f[x_{n-1}, x_n](x - x_n)$$

и следователно X_{n+1} се определя от уравнението

$$f(x_n) + f[x_{n-1}, x_n](x_{n+1} - x_n) = 0.$$

Оттук намираме формулата за пресмятане на x_{n+1} чрез x_n :

$$x_{n+1} = x_n - \frac{f(x_n)}{f[x_{n-1}, x_n]} = x_n - \frac{f(x_n)}{f(x_{n-1}) - f(x_n)} (x_{n-1} - x_n)$$
.

Сега ще покажем сходимостта на \mathbf{x}_n към ξ при $n \to \infty$ и ще намерим реда на сходимост.

Теорема за реда на сходимост на метода на секущите

Теорема 1.

Нека $\{x_n\}_0^\infty$ е редицата от последователни приближения по метода на секущите. Да предположим, че началните приближения x_0 и x_1 удовлетворяват условието

$$|x_0 - \xi| \le Cq^{r^0}, \qquad |x_1 - \xi| \le Cq^{r^1},$$

където 0 < q < 1, C е константа такава, че $\frac{M}{2m}C < 1$ и $r = \frac{1+\sqrt{5}}{2}$. Тогава

$$|x_n - \xi| \le C q^{r^n}$$
 за всяко n . (2)

Доказателство. Ще приложим индукция по n. За n=0 и n=1 оценката (2) е вярна по условие. Да допуснем, че (2) е в сила за всяко естествено число $\leq n$. Ще я докажем за n+1.

Доказателство на Теорема 1

За целта да представим f(x) по формулата на Лагранж във вида

$$f(x) = \ell_n(x) + \frac{f''(\eta)}{2!}(x - x_{n-1})(x - x_n), \quad \eta \in [a, b]$$

и по формулата на Тейлър

$$f(x) = f(\xi) + f'(\eta_1)(x - \xi), \qquad \eta_1 \in [a, b]$$
.

Приравнявайки двата израза при $x=x_{n+1}$ и отчитайки, че $f(\xi)=0$ и $\ell_n(x_{n+1})=0$, получаваме

$$|f'(\eta_1)| |x_{n+1} - \xi| = \left| \frac{f''(\eta)}{2} \right| |x_{n+1} - x_{n-1}| |x_{n+1} - x_n|.$$

Доказателство на Теорема 1 (продължение)

Оттук получаваме

$$|x_{n+1} - \xi| \le \frac{M}{2m} |x_{n+1} - x_{n-1}| |x_{n+1} - x_n|$$

$$\le \frac{M}{2m} (x_{n-1} - \xi) (x_n - \xi),$$
(3)

последното неравенство следва от $\xi < x_{n+1} < x_n < x_{n-1}$. Но съгласно индукционното предположение,

$$|x_{n-1}-\xi| \leq C q^{r^{n-1}}, \quad |x_n-\xi| \leq C q^{r^n},$$

следователно

$$|x_{n+1} - \xi| \leq rac{M}{2m} \, Cq^{r^{n-1}} \, Cq^{r^n} = rac{MC}{2m} \, Cq^{r^{n-1} + r^n}$$
 $< Cq^{r^{n-1}(1+r)} \qquad ext{(защото } rac{MC}{2m} < 1 ext{ по условие} ext{)} \, .$

Доказателство на Теорема 1 (продължение)

Тъй като r е положителният корен на уравнението $r^2-r-1=0$, изпълнено е $r+1=r^2$ и тогава $r^{n-1}(1+r)=r^{n+1}$. Неравенството от предходния слайд добива вида

$$|x_{n+1}-\xi|\leq C\,q^{r^{n+1}}\,,$$

което и трябваше да докажем. С това доказателството на Теорема 1 е завършено.

Да обърнем внимание на факта, че $r = (1 + \sqrt{5})/2 \approx 1,618$. Следователно методът на секущите е качествено по-бързо сходящ от метода на хордите. При това формулата за пресмятане на x_{n+1} не е по-сложна от съответната формула при метода на хордите. И двата метода изискват пресмятане на само една нова стойност на f на всяка стъпка.

Апостериорна оценка за грешката

Теорема 1 няма практическо приложение, но в хода на доказателството и намерихме оценка, която е с огромна практическа стойност, когото се прилага методът на секущите. Това е апостериорната оценка в (3)

$$|x_{n+1}-\xi| \leq \frac{M}{2m} (x_{n-1}-x_{n+1})(x_n-x_{n+1}), \qquad n=1,2,\ldots$$

Тази оценка ни позволява да преценим, на базата на получените до този момент членове на редицата $\{x_n\}$, дали сме намерили достатъчно добро приближение за корена ξ , за да преустановим по-нататъшните изчисления, или да продължим с пресмятането на следващия член от редицата.

Метод на Нютон

Методът на Нютон (метод на допирателните) е по-бързо сходящ и от метода на секущите. И тук ще изискваме да са изпълнени условията а), б) и в) от метода на секущите. Избираме начално приближение $x_0 = a$ или $x_0 = b$ така, че да имаме $f(x_0) f''(x_0) > 0$. Следващото приближение x_1 се намира като пресечна точка на оста x с допирателната t_0 към правата y = f(x) в точката x_0 (виж Фигура 3). След това намираме X_2 като нула на допирателната t_1 към f в X_1 и т.н., x_{n+1} е нулата на допирателната t_n към f в точката x_n . От условието $\ell_n(x_{n+1}) = 0$, където

$$\ell_n(x) = f(x_n) + f'(x_n)(x - x_n),$$

намираме формулата за получаване на x_{n+1} от x_n :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Картинка

Фигура: 3. Геометрична илюстрация на метода на допирателните.

Ред на сходимост на метода на Нютон

За доказателство на реда на сходимост на метода на Нютон ще използваме Теорема 2 от предишната лекция. Ясно е, че x_{n+1} се получава по формулата $x_{n+1} = \varphi(x_n)$ с

$$\varphi(x)=x-\frac{f(x)}{f'(x)}.$$

За $\varphi'(\xi)$ получаваме

$$arphi'(\xi) = 1 - rac{f'^2(\xi) - f(\xi)f''(\xi)}{f'^2(\xi)} = 0$$
 (защото $f(\xi) = 0$).

В общия случай $\varphi''(\xi) \neq 0$. Следователно, по Теорема 2, итерационният процес породен от φ (т.е. методът на Нютон) е сходящ и има ред на сходимост 2 при всяко достатъчно добро начално приближение x_0 . С други думи, съществуват константи C и $q \in (0,1)$ такива, че

$$|x_n - \xi| \leq Cq^{2^n}$$
 за всяко n .

Ред на сходимост на метода на Нютон

Това е доста бърза сходимост. За да я илюстрираме по-нагледно, да приемем, че $|\varphi''(t)| \leq 2$ в околност $\mathcal U$ на корена ξ . Нека $e_k := |x_k - \xi|$. Тогава при всяко x_0 от $\mathcal U$ за следващото приближение x_1 по метода на Нютон, ще имаме

$$egin{aligned} e_1 &= |x_1 - \xi| = |arphi(x_0) - arphi(\xi)| \ &= \left|arphi'(\xi)(x_0 - \xi) + rac{arphi''(\eta)}{2}(x_0 - \xi)^2
ight| & ext{ (развиваме } arphi(x_0) ext{ по Тейлър)} \ &= rac{|arphi''(\eta)|}{2} \ e_0^2 & ext{ (защото } arphi'(\xi) = 0) \end{aligned}$$

и следователно $e_1 \leq e_0^2$. Аналогично, $e_2 \leq e_1^2$ и т.н. Ако например, x_0 приближава ξ с точност 0,01, то x_1 ще приближава ξ с точност $e_1 = e_0^2 = 0,0001$, x_2 ще приближава ξ с точност 0,0000001 и т.н. Вижда се, че броят на точните цифри след десетичната запетая ще се удвоява при всяка итерация.

Апостериорна оценка за метода на Нютон

Ще изведем апостериорна оценка за метода на Нютон. От формулата за остатъка за интерполиране по Ермит имаме

$$f(x) = I_n(x) + \frac{f''(\eta)}{2!} (x - x_n)^2, \quad \eta \in [a, b]$$

и по формулата на Тейлър

$$f(x) = f(\xi) + f'(\eta_1)(x - \xi), \qquad \eta_1 \in [a, b]$$
.

Приравнявайки двата израза при $X = X_{n+1}$ и отчитайки, че $f(\xi) = 0$ и $I_n(x_{n+1}) = 0$, получаваме

$$|f'(\eta_1)| |x_{n+1} - \xi| = \frac{|f''(\eta)|}{2} (x_{n+1} - x_n)^2.$$

Оттук, като използваме оценките от в), получаваме апостериорната оценка за метода на Нютон

$$\left|\left|x_{n+1} - \xi\right| \le \frac{M}{2m} \left(x_{n+1} - x_n\right)^2.\right| \tag{4}$$

Предимства и недостатъци на метода на Нютон

Апостериорната оценка (2) се използва като критерий за преустановяване на изчисленията.

Високата скорост на сходимост на метода на Нютон е съществено предимство, което го прави най-често използван метод за решаване на уравнения. Той, разбира се, има и недостатъци. Например методът изисква достатъчно добро начално приближение. Това значи, че е необходима предварителна работа за достатъчно добро локализиране на корена ξ преди да се приложи методът на Нютон за намирането му с голяма точност. Друг недостатък е изчисляването на първата производна на f на всяка стъпка. Ако f е дадена експериментално, т.е. стойността на f може да бъде намерена на всяка стъпка, но след отчитане на резултатите от даден експеримент, то изчисляването на производната на f може да предизвика затруднения.

Метод на Нютон за алгебрични уравнения

Методът на Нютон е особено удобен за решаване на алгебрични уравнения. В този случай пресмятането на $f(x_n)$ и $f'(x_n)$ (необходими за изчисляването на x_{n+1}) може да се организира ефективно по следния начин. Нека

$$f(x) = a_0 x^m + a_1 x^{m-1} + \ldots + a_m$$
.

Стойността на f в дадена точка z ще пресмятаме по известното правило на Хорнер

$$f(z) = (\dots((a_0z + a_1)z + a_2)z + \dots + a_{m-1})z + a_m$$

чрез процедурата:

$$b_0 := a_0$$
 за $k = 1, \dots, m$ извърши: $b_k = b_{k-1}z + a_k$ Тогава $f(z) = b_m$.

Метод на Нютон за алгебрични уравнения (продълж.)

Да забележим сега, че за всяко дадено z, съществува полином g(x) от степен m-1 такъв, че

$$f(x) - f(z) = g(x)(x - z).$$
 (5)

От тази връзка следва, че f'(z) = g(z). Оказва се, че коефициентите на

$$g(x) = b_0 x^{m-1} + b_1 x^{m-2} + \ldots + b_{m-1}$$

са точно равни на величините $\{b_k\}$ от процедурата на Хорнер за полинома f. Наистина, като сравним коефициентите пред x^{m-k} в двете страни на (5), получаваме

$$a_k = b_k - zb_{k-1}$$

или $b_k = b_{k-1}z + a_k$, което е точно връзката, по която се пресмятат величините $\{b_k\}$ в горната процедура на Хорнер. Следователно пресмятането на f(z) и f'(z) = g(z) може да се обедини в следната процедура:

Метод на Нютон за алгебрични уравнения (продълж.)

$$b_0:=a_0,\ c_0:=a_0$$
 за $k=1,\dots,m-1$ извърши: $b_k=b_{k-1}z+a_k$ $c_k=c_{k-1}z+b_k$ $b_m=b_{m-1}z+a_m$. След тези пресмятания, $b_m=f(z)$ и $c_{m-1}=g(z)=f'(z)$.

При $z = x_n$ можем да пресметнем следващото приближение x_{n+1} по формулата

$$x_{n+1}=x_n-\frac{b_m}{c_{m-1}}.$$

Написването и тестването на компютърна програма за решаване на алгебрични уравнения по този прост алгоритъм е едно приятно занимание

Комбиниран метод

Това е една модификация на метода на Нютон, при която пресмятането на приближението x_n се комбинира с пресмятането на друго приближение t_n , по метода на хордите, което се намира от другата страна на корена ξ . За построяване на редиците $\{t_n\}$ и $\{x_n\}$ се прилагат формулите (при предположение, че f''(x) > 0 в [a,b])

1)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, ...,$$

2)
$$t_{n+1} = t_n - \frac{f(t_n)}{f(x_n) - f(t_n)}(x_n - t_n)$$
.

В 1) е използван стандартният метод на Нютон, докато в 2) е приложен методът на хордите за интервала $[t_n, x_n]$. По построение, $t_n < \xi < x_n$ (виж Фигура 4).

Картинка

Фигура: 4. Геометрична илюстрация на комбинирания метод.

Обикновено за n—тото приближение на корена ξ се взима средата на интервала $[t_n, x_n]$. Следователно на всяка стъпка разполагаме с числена оценка на грешката

$$\left|\xi-\frac{t_n+x_n}{2}\right|\leq \frac{|x_n-t_n|}{2}.$$

Това е едно от предимствата на този метод. Може да се покаже, че комбинираният метод има ред на сходимост 2.

Метод на хордите

Край на лекцията!