# GORENSTEIN FANO THREEFOLDS WITH BASE POINTS IN THE ANTICANONICAL SYSTEM

#### PRISKA JAHNKE AND IVO RADLOFF

#### 1. Introduction

In the classification of Fano varieties, those which are not "Gino Fano", i.e., for which  $-K_X$  is ample but not very ample, are usually annoying. In the beginning of his classification of Fano threefolds Iskovskikh listed those for which  $|-K_X|$  is not free. The purpose of this article is to see how his result extends to the canonical Gorenstein case.

If X is a Gorenstein Fano threefold with at worst canonical singularities, and  $\operatorname{Bs} |-K_X| \neq \emptyset$ , then the rational map defined by  $|-K_X|$  goes to a surface W, which is a rational ruled surface  $\Sigma_e$  with  $e \geq 0$  or  $\widehat{C}_d$ , the cone over a rational normal curve of degree d. The following Theorem lists the possible pairs (X, W):

- **1.1. Theorem.** Let X be a Gorenstein Fano threefold with at worst canonical singularities and Bs  $|-K_X| \neq \emptyset$ . Then we are in one of the following cases.
  - i) dim Bs  $|-K_X| = 0$ . In this case X is a complete intersection in  $\mathbb{P}(1^4, 2, 3)$  of a quadric Q, defined in the first four linear variables, and a sextic  $F_6$ ;  $(-K_X)^3 = 2$  and W is the quadric Q in  $\mathbb{P}_3$ .
  - ii) dim Bs  $|-K_X| = 1$ . Then Bs  $|-K_X| \simeq \mathbb{P}_1$  and either
    - (a) X is the blowup of a sextic in  $\mathbb{P}(1^3, 2, 3)$  along a complete intersection curve of arithmetic genus 1;  $(-K_X)^3 = 4$  and  $W \simeq \Sigma_1$  or
    - (b)  $X \simeq S_1 \times \mathbb{P}_1$ , where  $S_1$  is a del Pezzo surface of degree 1 with at worst Du Val singularities;  $(-K_X)^3 = 6$  and  $W \simeq \mathbb{P}_1 \times \mathbb{P}_1$  or
    - (c)  $X = X_{2m-2}$  is an anticanonical model of the blowup of the variety  $U_m$  (see below) along a smooth, rational complete intersection curve  $\Gamma_0 \subset U_{m,\text{reg}}$  for  $3 \leq m \leq 12$ ;  $(-K_X)^3 = 2m 2$  and  $W \simeq \widehat{C}_m$ .

Here  $U_m$  denotes a double cover of  $\mathbb{P}(\mathcal{O}_{\mathbb{P}_1}(m) \oplus \mathcal{O}_{\mathbb{P}_1}(m-4) \oplus \mathcal{O}_{\mathbb{P}_1})$  with at worst canonical singularities, such that  $-K_{U_m}$  is the pullback of the tautological line bundle  $\mathcal{O}(1)$ . For  $m \geq 4$ , this is a hyperelliptic Gorenstein almost Fano threefold of degree 4m-8. The curve  $\Gamma_0$  lies over the complete intersection of some general element in  $|\mathcal{O}(1)|$  and the "minimal surface"  $B \in |\mathcal{O}(1) - mF|$ , where |F| denotes the pencil (note that  $\Gamma_0$  is always contained in the ramification locus). If m=3, then  $\Gamma_0$  is the only curve, on which  $-K_{U_3}$  is not nef. For details of the construction see section 5.

The cases (a) and (b) are as in Iskovskikh's list. In a different context case i) appears in [Me99] and [IT01], and apparently also in [M88].

**Acknowledgements.** The authors gratefully acknowledge support by the Schwerpunkt program *Globale Methoden in der komplexen Geometrie* of the Deutsche

Date: 1st February 2008.

Forschungsgemeinschaft. They also want to thank the referee for many valuable remarks and comments.

#### 2. Preliminaries

We recall the following fundamental results:

2.1. Theorem [Shokurov, [Sho80]/Reid, [R83]]. Let X be a Gorenstein Fano threefold with at worst canonical singularities. Then  $|-K_X|$  contains an irreducible surface S with at worst Du Val singularities, called general elephant.

The birational contraction  $h: Y \to X$  in the following theorem is called a partial crepant resolution or terminal modification of X:

2.2. Theorem [Reid, [R79]/Kawamata, [K88]]. Let X be a threefold with only canonical singularities. Then there exists a  $\mathbb{Q}$ -factorial threefold Y with only terminal singularities and a birational contraction  $h: Y \to X$  such that  $K_Y =$  $h^*K_X$ .

If X is Gorenstein, then Y is in fact factorial (for example [K88], Lemma 5.1.).

A Gorenstein threefold X for which  $-K_X$  is big and nef is called almost Fano. It is called hyperelliptic, if  $|-K_X|$  is free, but the associated map  $\varphi$  fails to be injective at the generic point. In that case

$$\varphi \colon X \longrightarrow W \subset \mathbb{P}_N$$

is generically 2-to-1 and W is a so-called variety of minimal degree, i.e.,

$$\deg W = \operatorname{codim} W + 1.$$

Varieties of minimal degree have been classified by del Pezzo ([dP85]) in dimension 2 and by Bertini in arbitrary dimension n ([Ber07]). The list (with some repetitions) is as follows:

- i)  $\mathbb{P}_n$ ;
- ii) the *n*-dimensional quadric  $Q_n \subset \mathbb{P}_{n+1}$ ;
- iii) (a cone over) the Veronese surface;
- iv) (a cone over) a rational scroll.

The cone over a (rational) scroll, denoted  $\overline{\mathbb{F}(d_1,\ldots,d_n)}$ , is the image of

$$\mathbb{F}(d_1,\ldots,d_n) = \mathbb{P}(\mathcal{O}_{\mathbb{P}_1}(d_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}_1}(d_n)), \quad d_1 \geq \cdots \geq d_n \geq 0$$

in  $\mathbb{P}_{d_1+\cdots+d_n+n-1}$  under the map associated to the tautological line bundle which will be denoted  $\mathcal{O}(1)$ . Note that for  $d_n \geq 1$ ,  $\overline{\mathbb{F}(d_1,\ldots,d_n)}$  and  $\mathbb{F}(d_1,\ldots,d_n)$  are isomorphic. The pencil on  $\mathbb{F}(d_1,\ldots,d_n)$  will be denoted by |F|.

Any effective divisor D on  $\mathbb{F}(d_1,\ldots,d_n)$  is in a system

$$D \in |\mathcal{O}(k) - lF|, \quad k > 0 \text{ and } l \in \mathbb{Z}.$$

Fiberwise,  $D \cap F$  is a hypersurface of degree k in  $\mathbb{P}_{n-1}$ . If  $x_1, \ldots, x_n$  denote homogeneous coordinates of  $\mathbb{P}_{n-1}$  corresponding to the summands of our vector bundle, then the monomial  $x_1^{e_1} \cdots x_n^{e_n}$  with  $e_1 + \cdots + e_n = k$  has as coefficient a function taken from

$$H^0(\mathbb{P}_1, \mathcal{O}_{\mathbb{P}_1}(e_1d_1+\cdots+e_nd_n-l)).$$

We will use this in the following form. Consider  $\mathbb{F}(m, m-4) \simeq \Sigma_4$ . Denote by  $\xi_4$  the minimal section. Any divisor

$$D \in |\mathcal{O}(k) - lF|, \quad k > 0 \text{ and } l > k(m-4)$$

contains  $\xi_4$  as a component. Indeed, using the above notation,  $\xi_4$  corresponds fiberwise to  $x_1 = 0$ . It therefore suffices to prove that the coefficient function of  $x_2^k$  vanishes. This is a section of  $\mathcal{O}_{\mathbb{P}_1}(k(m-4)-l)$ , so the claim follows.

3. The General Elephant in the Case Bs  $|-K_X| \neq \emptyset$ 

Let X be a canonical Gorenstein Fano threefold with Bs $|-K_X| \neq \emptyset$ . Choose a general elephant  $\bar{S} \in |-K_X|$ . By the Kawamata–Viehweg vanishing theorem  $H^0(X, -K_X) \longrightarrow H^0(\bar{S}, -K_X|_{\bar{S}})$  is surjective, implying

$$\operatorname{Bs} |-K_X| = \operatorname{Bs} |-K_X|_{\bar{S}}| \neq \emptyset.$$

Let  $\nu: S \to \bar{S}$  be a minimal desingularisation of  $\bar{S}$ . By Saint–Donat's results on linear systems on smooth K3 surfaces ([SD74] or [Shi89]),

$$\nu^*|-K_X|_{\bar{S}}| = |\Gamma + mf|,$$

where  $m \geq 2$  and

- i) |f| is an elliptic pencil and
- ii)  $\Gamma = \operatorname{Bs} |\Gamma + mf| \simeq \mathbb{P}_1$  is a section.

Let  $\Gamma' \subset S$  be an irreducible curve contracted by  $\nu$ . Then  $(\Gamma + mf) \cdot \Gamma' = 0$ , implying  $\Gamma \cap \Gamma' = \emptyset$  or  $\Gamma = \Gamma'$ . In the first case S and  $\bar{S}$  are isomorphic near  $\Gamma$  and Bs  $|-K_X| \simeq \mathbb{P}_1 \subset \bar{S}_{reg}$ . In the second case,  $\Gamma$  is contracted to a point, Bs  $|-K_X| = \{p\}$  and  $p \in X_{sing}$ . This is part of a result of Shin:

- **3.1. Theorem [Shin,** [Shi89]]. Let X be a Gorenstein almost Fano threefold with at worst canonical singularities and assume  $\operatorname{Bs} |-K_X| \neq \emptyset$ . With  $\bar{S} \in |-K_X|$  a general member we have
  - i) if dim Bs  $|-K_X| = 1$ , then scheme-theoretically Bs  $|-K_X| \simeq \mathbb{P}_1$  is contained in  $X_{\text{reg}}$  and Bs  $|-K_X| \cap \text{Sing}(\bar{S}) = \emptyset$ ;
  - ii) if dim Bs  $|-K_X| = 0$  then Bs  $|-K_X|$  consists of exactly one point and  $\bar{S}$  has an ordinary double point at Bs  $|-K_X|$ . In this case Bs  $|-K_X| \subset \text{Sing}(X)$ .

Note that in the case Bs  $|-K_X| = \{p\}$  we have  $(\Gamma + mf).\Gamma = 0$  on S, implying m = 2 and hence  $(-K_X)^3 = 2$ .

4. The Case dim Bs 
$$|-K_X| = 0$$

Let X be the complete intersection of a quadric Q in the linear variables and a sextic  $F_6$  in  $\mathbb{P}(1^4, 2, 3)$ . If we choose  $F_6$  general enough, then (see [Me99])

$$X \cap \{x_0 = x_1 = x_2 = x_3 = 0\} = [0:0:0:0:0:-1:1] = p$$

and X does not meet the singular locus of  $\mathbb{P}(1^4,2,3)$ . Then Q and  $F_6$  are Cartier near X and by adjunction,  $-K_X \simeq \mathcal{O}_{\mathbb{P}}(1)|_X$  and therefore Bs $|-K_X| = \{p\}$ . The rational map defined by  $|-K_X|$  sends X to the quadric in  $\mathbb{P}_3$  defined by Q.

**4.1. Proposition.** If dim Bs  $|-K_X| = 0$ , then X is as above a complete intersection in  $\mathbb{P}(1^4, 2, 3)$  of a quadric Q, defined in the first four linear variables, and a sextic  $F_6$ .

*Proof.* (See [M82], [Me99], [IT01]). We know  $(-K_X)^3 = 2$  (see the last section). By the Riemann–Roch theorem we get  $h^0(-K_X) = 4$ . Let

$$x_0,\ldots,x_3\in H^0(-K_X)$$

be generating sections. We have  $h^0(-2K_X) = 10 = \dim S^2H^0(-K_X)$ . But  $|-2K_X|$  is base point free, so there exists some

$$y \in H^0(-2K_X), \quad y \notin S^2H^0(-K_X).$$

Then we must have a nontrivial relation Q in  $S^2H^0(-K_X)$ . The  $x_i$  and y then define a 20-dimensional subspace of  $H^0(-3K_X)$ . By the theorem of Riemann-Roch  $h^0(-3K_X) = 21$ . Denote the missing function by  $z \in H^0(-3K_X)$ . Continuing in this way, we see that there must be a nontrivial relation  $F_6$  in  $H^0(-6K_X)$ . In the end X is the complete intersection of Q and  $F_6$  in  $\mathbb{P}(1^4, 2, 3)$ .

**4.2. Remark.** Since Q is singular at p, any  $S \in |-K_X|$  is singular at p. If we choose Q and  $F_6$  general, p will be a terminal point of X. If we take for Q the quadric cone, X will have canonical singularities along a curve.

# 5. The Examples for the Case dim Bs $|-K_X|=1$

Let U be a canonical Gorenstein threefold. Assume that  $|-K_U|$  contains a smooth K3 surface S such that

$$-K_U|_S = 2\Gamma_0 + mf$$

for some  $m \geq 3$ . Here  $\mathbb{P}_1 \simeq \Gamma_0 \subset U_{\text{reg}}$  and |f| is an elliptic pencil as in section 3. Note that U is a hyperelliptic almost Fano threefold for  $m \geq 4$ .

Let  $Y = Bl_{\Gamma_0}(U)$  be the blowup of U in  $\Gamma_0$ . The strict transform of S is a smooth K3 surface in  $|-K_Y|$  which we denote by S as well. We have

$$-K_Y|_S = \Gamma_0 + mf$$
,

implying Bs  $|-K_Y| = \Gamma_0 \simeq \mathbb{P}_1$ . An anticanonical model X of Y is a canonical Gorenstein Fano threefold for which Bs  $|-K_X| \simeq \mathbb{P}_1$ .

Examples for U as above are constructed as follows. For  $m \geq 4$ , U is almost Fano and the anticanonical map associated to  $-K_U$  sends U to a variety of minimal degree

$$U \longrightarrow W \subset \mathbb{P}_{2m-2}$$
.

Here S is sent to  $\Sigma_4$ , the fourth Hirzebruch surface. The idea is therefore to construct U as a ramified twosheeted covering of some variety of minimal degree, for which a general hyperplane section is isomorphic to  $\Sigma_4$ .

We now come to the examples in ii) in reverse order.

**Examples ii), (c).** The projective bundle

$$W = \mathbb{F}(m, m-4, 0), \quad m \ge 3$$

is a resolution of a cone over  $\Sigma_4$ . The projection of the underlying bundle onto the first two summands gives a split exact sequence and a smooth surface in  $|\mathcal{O}_W(1)|$  isomorphic to  $\Sigma_4$ . For simplicity, we denote it by

$$\Sigma_4 \in |\mathcal{O}_W(1)|.$$

There exists a unique section  $B \in |\mathcal{O}_W(1) - mF|$  meeting  $\Sigma_4$  in its minimal section  $\xi_4$ . Below we prove that for  $m \leq 12$  we may choose

$$D \in |\mathcal{O}_W(4) - (4m - 12)F|,$$

such that the square root of D yields a threefold  $U_m$  with at worst canonical singularities. We have

$$\mu \colon U_m \xrightarrow{2:1} \mathbb{F}(m, m-4, 0)$$
 and  $-K_{U_m} = \mu^* \mathcal{O}_W(1)$ .

The section  $\xi_4 = B \cap \Sigma_4 \subset D_{\text{reg}}$ . Its reduced inverse image in  $U_m$  will be denoted by  $\Gamma_0$ . As in ii) (c) of Theorem 1.1, we denote by  $X_{2m-2}$  an anticanonical model of  $Bl_{\Gamma_0}(U_m)$  for  $3 \leq m \leq 12$ . We claim that  $X_{2m-2}$  are canonical Gorenstein Fano threefolds with base locus Bs  $|-K_{X_{2m-2}}| \simeq \mathbb{P}_1$ .

In order to prove this it suffices to show that for D general enough each  $U_m$  is a canonical Gorenstein threefold as in the beginning of this section. Since  $\Sigma_4$  comes from a splitting sequence,  $D \cap \Sigma_4$  is a general member of

$$|4\xi_4 + 12\mathfrak{f}|,$$

with  $\mathfrak{f} \simeq \mathbb{P}_1$  a fiber of  $\Sigma_4$ . A general member of  $|4\xi_4 + 12\mathfrak{f}|$  splits as  $\xi_4 + C$  with  $C \in |3\xi_4 + 12\mathfrak{f}|$  smooth and disjoint from  $\xi_4$  (cf. section 2). The double covering of  $\Sigma_4$  yields a smooth K3 surface  $S \in |-K_{U_m}| = |\mu^* \mathcal{O}_W(1)|$  with

$$\mu_S \colon S \longrightarrow \Sigma_4$$

ramified along  $\xi_4$  and C. The pullback of  $\mathfrak{f}$  gives an elliptic pencil |f| on S with the section  $\Gamma_0$  lying over  $\xi_4$  and  $-K_{U_m}|_S = \mu_S^* \mathcal{O}(1) = 2\Gamma_0 + mf$ . It remains to show that  $U_m$  has at worst canonical singularities for  $3 \leq m \leq 12$  and  $\Gamma_0 \subset U_{m,reg}$ .

For m=3 we can choose D and hence  $U_m$  smooth and there is nothing to prove. For  $m \geq 4$ , we always have

$$D = B + R$$

with  $R \in |\mathcal{O}_W(3) - (3m - 12)F|$ . Fiberwise  $D \cap F$  consists of a line together with some cubic.

For  $4 \leq m \leq 12$  we can take R to be irreducible, i.e.,  $D \cap F$  consists of a line and an irreducible cubic. For m=4, the cubic is smooth, meeting the line transversally in three points. For  $m\geq 5$ , the line and the cubic intersect in one point, i.e., in a flex if the cubic is smooth. This gives an A–D–E singularity in the fiber, implying that  $U_m$  indeed has at worst canonical singularities for  $3\leq m\leq 12$ . Since  $R.\xi_4=0$  we can choose R disjoint from  $\xi_4$ . Hence  $\Gamma_0\subset U_{m,\mathrm{reg}}$ .

For  $m \geq 13$  on the other hand,  $R = R_1 + R_2 + R_3$  with  $R_i \in |\mathcal{O}_W(1) - (m-4)F|$ , so  $D \cap F$  consists of four lines through a point. This means that over F we will not have Du Val singularities, implying that  $U_m$  is not canonical for  $m \geq 13$ .

**5.1. Remark.** The construction works for m = 2 as well. Here Bs  $|-K_{X_2}| = \{p\}$  and we get a special case of the threefold X in section 4 with Q the quadric cone (see Remark 4.2).

**Example ii), (b).** The product of  $S_1$ , a del Pezzo surface with canonical singularities of degree 1, and  $\mathbb{P}_1$  is a classical example ([I80]). Choose 8 points on  $\mathbb{P}_2$  general enough, such that the blowup  $\hat{\mathbb{P}}_2$  of  $\mathbb{P}_2$  in these points still has a nef anticanonical system, and denote by  $S_1$  an anticanonical model of  $\hat{\mathbb{P}}_2$ . Then  $|-K_{S_1}|$  is one dimensional by the Riemann–Roch theorem, its members corresponding to

elliptic curves passing through the eight points. These curves will meet in a ninth point, implying

Bs 
$$|-K_{S_1}| = \{p\}.$$

Then the product  $X = S_1 \times \mathbb{P}_1$  is a canonical Gorenstein Fano threefold with  $\operatorname{Bs} |-K_X| \simeq \mathbb{P}_1$ .

**Example ii), (a).** The blowup X in the intersection of two members of  $\left|-\frac{1}{2}K_U\right|$  of the double cover U of the Veronese cone W, ramified along a cubic, is a classical example ([I80]). We give some details to show the connection to the above description.

The blowup of the Veronese cone in its vertex O yields

$$\mathbb{P}(\mathcal{O}_{\mathbb{P}_2} \oplus \mathcal{O}_{\mathbb{P}_2}(2)) \longrightarrow W.$$

The strict transform of a special hyperplane section through O gives a  $\mathbb{P}_1$ -bundle over a conic. It either decomposes into two copies of  $\Sigma_2$  or gives one irreducible surface  $\Sigma_4$ .

The image of  $\Sigma_4$  in W gives  $\widehat{C}_4$ , the cone over the rational normal curve of degree 4. In U, lying over  $\widehat{C}_4$  we find a singular K3 surface  $\overline{S} \in |-K_U|$  with a double point over O. In the reducible case, the two copies of  $\Sigma_2$  induce  $H_i \in |-\frac{1}{2}K_U|$  for i = 1, 2, and their intersection with  $\overline{S}$  is the singular point.

In the blowup X of U along  $H_1 \cap H_2$  the singularity of  $\bar{S}$  is resolved, i.e., we get a smooth K3 surface  $S \in |-K_X|$ . The same formulas as above show

$$-K_X|_S = \Gamma + 2f$$

with  $\Gamma$  the -2-curve over the singularity and |f| the induced elliptic pencil. If we choose  $H_1, H_2$  general enough, then X will be a canonical Gorenstein Fano threefold with Bs  $|-K_X| \simeq \Gamma \simeq \mathbb{P}_1$ .

6. The General Setting in the Case dim Bs  $|-K_X|=1$ 

(cf. [I80], [IP99]) By Shin's Theorem,  $\Gamma = \operatorname{Bs} | -K_X | \simeq \mathbb{P}_1 \subset X_{\text{reg}}$ . We can write

$$(6.0.1) N_{\Gamma/X} = \mathcal{O}_{\mathbb{P}_1}(a) \oplus \mathcal{O}_{\mathbb{P}_1}(b), \quad a \ge b,$$

for some  $a,b \in \mathbb{Z}$ . A general elephant  $\bar{S} \in |-K_X|$  may have double points, but  $\Gamma \subset \bar{S}_{reg}$ . If  $\nu \colon S \to \bar{S}$  denotes a resolution of the singular locus, then  $\nu^*(-K_X) = \Gamma + mf$ ,  $m \ge 3$ , with |f| an elliptic pencil and  $\Gamma$  a section (section 3). The numbers are related as follows:

$$-K_X \cdot \Gamma = m - 2 = a + b + 2.$$

Let  $\sigma: X_{\Gamma} \to X$  be the blowup of X along  $\Gamma$  with exceptional divisor  $E_{\Gamma} = \mathbb{P}(N_{\Gamma/X}^*) = \Sigma_{a-b}$ . Then  $|-K_{X_{\Gamma}}| = |\sigma^*(-K_X) - E_{\Gamma}|$  is free, defining a map onto some surface W ([R83]):

$$(6.0.2) X_{\Gamma} \xrightarrow{\varphi} W \subset \mathbb{P}_{m+1}$$

The surface W is of minimal degree, i.e.,

$$m = \deg(W) = \operatorname{codim}(W) + 1.$$

Again by del Pezzo's theorem, in our situation W is one of the following:

- i)  $\widehat{C}_m$ , the cone over a rational normal curve of degree  $m=a+b+4\geq 2$ ,
- ii)  $\Sigma_{a-b}$ ,  $a \geq b$ .

The map  $E_{\Gamma} \to W$  is either an isomorphism or the contraction of the minimal section. The map  $X_{\Gamma} \to W$  is (generically) an elliptic fibration, and since  $-K_X$  is ample, any fiber over a point in  $W_{\text{reg}}$  is an irreducible, generically reduced curve of arithmetic genus one. We distinguish two cases.

The case W a smooth ruled surface. Here we denote by  $F_{\Gamma}$  the pullback to  $X_{\Gamma}$  of a fiber of W, and by  $Z_{\Gamma,X}$  the pullback of the minimal section (or the second ruling in the case  $W = \mathbb{P}_1 \times \mathbb{P}_1$ ). Note that  $|F_{\Gamma}|$  descends to a pencil |F| on X. Adjunction on  $E_{\Gamma}$  shows

$$-K_{X_{\Gamma}} = Z_{\Gamma,X} + (a+2)F_{\Gamma}.$$

Since  $\Gamma \subset X_{\text{reg}}$  and  $Z_{\Gamma,X}$  meets  $E_{\Gamma}$  transversally near the minimal section  $\xi_{a-b}$  of  $E_{\Gamma}$ ,  $Z_{\Gamma,X}$  is smooth near  $Z_{\Gamma,X} \cap E_{\Gamma}$ , and  $\sigma(Z_{\Gamma,X}) \simeq Z_{\Gamma,X}$  is smooth near  $\Gamma$ .

The case W a cone. Here we denote by  $F_{\Gamma}$  the strict transform in  $X_{\Gamma}$  of a line in W through the vertex O. Notice that this is just a Weil divisor. Let

$$(6.0.3) h': X'_{\Gamma} \longrightarrow X_{\Gamma}$$

be a  $\mathbb{Q}$ -factorialization of  $X_{\Gamma}$  with respect to  $F_{\Gamma}$  ([K88]). The map h' is small,  $X'_{\Gamma}$  is again Gorenstein with at worst canonical singularities, and the strict transform  $F'_{\Gamma}$  of  $F_{\Gamma}$  is  $\mathbb{Q}$ -Cartier. We can choose  $X'_{\Gamma}$  such that  $F'_{\Gamma}$  is h'-ample ([K88]). Since  $\Gamma \subset X_{\text{reg}}$ , both  $X'_{\Gamma}$  and  $X_{\Gamma}$  are isomorphic near  $E_{\Gamma}$ . We denote the pullback of  $E_{\Gamma}$  to  $X'_{\Gamma}$  by  $E'_{\Gamma}$ . We claim (cf. [Ch99])

**6.1. Lemma.** On  $X'_{\Gamma}$ , two general members of  $|F'_{\Gamma}|$  do not intersect.

*Proof.* Assume  $F'_{\Gamma,1} \cap F'_{\Gamma,2} \neq \emptyset$ . The intersection clearly is in the fiber over the vertex O of W. Choose an irreducible curve  $C \subset F'_{\Gamma,1} \cap F'_{\Gamma,2}$ . On the one hand, the restriction of some multiple of  $F'_{\Gamma,2}$ , which is Cartier, gives an effective Cartier divisor on  $F'_{\Gamma,1}$  supported in the fiber over O, implying

$$F'_{\Gamma,2} \cdot C \leq 0.$$

On the other hand, since  $F'_{\Gamma,1}$  and  $F'_{\Gamma,2}$  do not meet on  $E'_{\Gamma}$ , we have  $C \cap E'_{\Gamma} = \emptyset$ . Since  $-K_{X'_{\Gamma}} \cdot C = 0$  and  $E'_{\Gamma} \cdot C = 0$  imply  $h'^* \sigma^*(-K_X) \cdot C = 0$ , the curve C must be h'-exceptional. Then, by our choice of  $X'_{\Gamma}$ ,

$$F'_{\Gamma,2} \cdot C > 0.$$

Hence 
$$F'_{\Gamma,1} \cap F'_{\Gamma,2} = \emptyset$$
.

Denote by  $Y_{\Gamma}$  a terminal modification of  $X'_{\Gamma}$ . The pullback of  $F'_{\Gamma}$  to  $Y_{\Gamma}$  defines a pencil on  $Y_{\Gamma}$ , showing that the map to W factors over the blowup  $\Sigma_{a-b}$  of W in O. Near  $E'_{\Gamma}$ ,  $Y_{\Gamma}$  and  $X'_{\Gamma}$  are isomorphic, and we can blow the divisor down to obtain Y, a terminal modification  $h: Y \to X$  of X. We call the map  $Y_{\Gamma} \to Y$  again  $\sigma$  and

end up with the following diagram:



Below, we will study Y instead of X and think of X as an anticanonical model. Note that we have chosen Y as a terminal modification of a particular  $\mathbb{Q}$ -factorialization of X.

For simplicity, denote divisors on  $Y_{\Gamma}$  and  $X_{\Gamma}$  by the same letters: the exceptional divisor of  $Y_{\Gamma} \to Y$  is again  $E_{\Gamma}$ , the curve Bs  $|-K_Y| = \Gamma$ . The pullback of a general fiber of  $\Sigma_{a-b}$  to  $Y_{\Gamma}$  is  $F_{\Gamma}$ . By  $Z_{\Gamma} + B_{\Gamma}$  we denote the pullback of the minimal section of  $\Sigma_{a-b}$  to  $Y_{\Gamma}$ , where  $Z_{\Gamma}$  denotes here the unique irreducible component that meets  $E_{\Gamma}$  in its minimal section, and  $B_{\Gamma}$  consists of the remaining components, disjoint from  $E_{\Gamma}$ . As above we get

(6.1.2) 
$$-K_{Y_{\Gamma}} = Z_{\Gamma} + B_{\Gamma} + (a+2)F_{\Gamma}.$$

The pencil  $|F_{\Gamma}|$  again descends to the pencil |F| on Y. The surface  $Z_{\Gamma}$  is smooth near  $E_{\Gamma} \cap Z_{\Gamma}$ ; we will denote the isomorphic images of  $Z_{\Gamma}$  and  $B_{\Gamma}$  in Y by Z and

**6.2. Remark.** The general member of the pencil  $|F_{\Gamma}|$  is a smooth surface with a relatively minimal elliptic pencil. The intersection  $F_{\Gamma} \cap (Z_{\Gamma} + B_{\Gamma})$  is hence either smooth or one of Kodaira's exceptional fibers.

7. The Case 
$$W$$
 a Cone

**7.1. Proposition.** If W is a cone, then  $3 \le m \le 12$  and  $X = X_{2m-2}$  is one of the threefolds constructed in section 5, Examples ii), (c). Here  $W = \widehat{C}_m$ .

*Proof.* We use the notation from the last section. Since  $-K_{X_{\Gamma}}$  is not ample on  $E_{\Gamma}$ , b=-2 and  $a\geq 1$  in (6.0.1). We can hence use a+b=m-4 to eliminate a and b and write everything in terms of m:

$$N_{\Gamma/X} = \mathcal{O}_{\mathbb{P}_1}(m-2) \oplus \mathcal{O}_{\mathbb{P}_1}(-2), \quad m \ge 3,$$

and  $W = \widehat{C}_m$ . In diagram (6.1.1), the map from  $Y_{\Gamma}$  to  $\widehat{C}_m$  now factors over  $\Sigma_m$ .

We first assume that Z is h-nef and show that in this case Y is obtained by blowing up some Gorenstein threefold V along some smooth curve  $\Gamma_0 \simeq \mathbb{P}_1 \subset V_{\text{res}}$ , such that Z is the exceptional divisor. We compute

$$Z \cdot \Gamma = -2$$
 and  $-K_Y \cdot \Gamma = m - 2 > 0$ .

Hence  $[\Gamma]$  is contained in the  $K_Y$ -negative part of  $\overline{NE}(Y)$ . This part is polyhedral, spanned by  $K_Y$ -negative extremal rays. The divisor Z is negative on  $[\Gamma]$  and nonnegative on any  $K_Y$ -trivial curve by assumption. We conclude that Z must be negative on at least one extremal ray. Let

$$\phi \colon Y \longrightarrow V$$
8

be the contraction of this ray. By [Ben85], the contraction is divisorial, contracting Z either to a curve or to a point. We claim

**7.2. Lemma.** The map  $\phi: Y \to V$  in (7.1.1) is the blowup of a smooth rational curve  $\Gamma_0 \subset V_{\text{reg}}$  with normal bundle

$$N_{\Gamma_0/V} = \mathcal{O}_{\mathbb{P}_1}(-2) \oplus \mathcal{O}_{\mathbb{P}_1}(m-4).$$

The contraction is in direction of |F|. There exists a smooth K3 surface  $S \in |-K_V|$ , such that

$$-K_V|_S = 2\Gamma_0 + mf$$

with |f| an elliptic pencil induced by |F|, and  $\Gamma_0 \simeq \mathbb{P}_1$  a smooth section.

**7.3. Remark.** The threefold V is a hyperelliptic Gorenstein almost Fano threefold of degree  $(-K_V)^3 = 4m - 8$  for  $m \ge 4$ . For m = 3, the anticanonical system is nef on any curve  $\ne \Gamma_0$ , while

$$-K_V \cdot \Gamma_0 = m - 4 = -1.$$

For the case m = 3 (as well as m = 2) see also [DPS93].

Proof of Lemma 7.2 and Remark 7.3. Since  $Z_{\Gamma}$  meets  $E_{\Gamma}$  transversally in the minimal section, we have  $\Gamma \subset Z_{\text{reg}}$ . We compute

(7.3.1) 
$$\deg N_{\Gamma/Z} = Z_{\Gamma} \cdot Y_{\Gamma} E_{\Gamma}^2 = m - 2 > 0.$$

Let us first show  $Z \not\simeq \mathbb{P}_1 \times \mathbb{P}_1$ . If  $Z \simeq \mathbb{P}_1 \times \mathbb{P}_1$ , then  $B \neq 0$ , implying that B meets Z in some curve. By (7.3.1)  $\Gamma$  is ample on Z. Then  $\Gamma \cap B \neq \emptyset$ , which is impossible since B maps to  $X_{\text{sing}}$ , while  $\Gamma \subset X_{\text{reg}}$ .

If Z is mapped to a point, then by  $[\operatorname{Cu88}]$ ,  $Z \simeq \mathbb{P}_2$ ,  $\mathbb{P}_1 \times \mathbb{P}_1$  or the quadric cone. Since Z comes with a pencil and  $Z \not\simeq \mathbb{P}_1 \times \mathbb{P}_1$ , all these cases are impossible. By  $[\operatorname{Cu88}]$ ,  $Y = Bl_{\Gamma_0}(V)$  the blowup of V in some curve  $\Gamma_0 \subset V_{\text{reg}}$ , which is locally a complete intersection. From deg  $N_{\Gamma/Z} = m - 2 > 0$  we conclude that  $\Gamma$  maps surjectively onto  $\Gamma_0$ , and from  $\Gamma \subset Z_{\text{reg}}$  we infer that  $\Gamma_0$  must be smooth. Then

$$Z = \mathbb{P}(N_{\Gamma_0/V}^*) \simeq \Sigma_e$$
 for some  $e > 0$ ,

where e>0 follows from  $Z\not\simeq \mathbb{P}_1\times \mathbb{P}_1$ . It is now clear that  $\phi$  is in direction of |F|, i.e., fiberwise  $\phi$  contracts a -1-curve in F. Denote the induced pencil on V by  $|F_V|$ . Notice that  $Z\simeq \Sigma_e$  implies  $B\neq 0$ .

1.) Any curve in  $Z_{\Gamma} \cap B_{\Gamma}$  is contracted by  $Y_{\Gamma} \to X_{\Gamma}$ , and therefore B intersects Z set theoretically in the minimal section  $\xi_e$  of  $Z = \Sigma_e$ . Since  $\Gamma$  does not meet  $\xi_e$ , we conclude  $\Gamma = \xi_e + (m-2)\mathfrak{f}_e$ , where  $\mathfrak{f}_e$  is a fiber of  $\Sigma_e$ . From  $\Gamma \cdot_Z \Gamma = m-2$  (7.3.1) we infer e = m-2. Moreover,  $-K_Y \cdot \xi_e = 0$  implies

$$N_{\Gamma_0/V} = \mathcal{O}_{\mathbb{P}_1}(-2) \oplus \mathcal{O}_{\mathbb{P}_1}(m-4).$$

By the adjunction formula,  $-K_V \cdot \Gamma_0 = m - 4$ , hence  $(-K_V)^3 = 4m - 8$ .

2.) Let  $S \in |-K_Y|$  be general. Since S meets Z transversally in  $\Gamma$ , its image in V is a special member of  $|-K_V|$ . Identifying S with its image in V we find

$$-K_V|_S = 2\Gamma_0 + mf$$

where |f| is an elliptic pencil and  $\Gamma_0$  is a section (see section 5). If  $C \subset V$  is an irreducible curve such that  $-K_V \cdot C < 0$ , then  $S \cdot C < 0$  and  $C \subset S$ . Then  $-K_V \cdot C = (2\Gamma_0 + mf) \cdot C < 0$  so that  $\Gamma_0 \cdot C < 0$  and hence  $C = \Gamma_0$ , m = 3.

The argument before Lemma 7.2 showing the contractibility of Z in Y requires Z being h-nef. In order to achieve this we might have to change the terminal modification by running the relative  $(K_Y + \epsilon Z)$ -program,  $\epsilon \in \mathbb{Q}^+$ ,  $\epsilon \ll 1$ , with respect to  $h: Y \to X$ .

The contraction of any  $(K_Y + \epsilon Z)$ -negative extremal ray in  $\overline{NE}(Y/X)$  is small; the curves contracted are  $K_Y$ -trivial and contained in Z. After finitely many flops, we end up with the following picture:

$$(7.3.2) Y - - - \stackrel{\chi}{\xrightarrow{}} - \stackrel{>}{>} Y^+$$

([KM98], Theorem 6.14 and Corollary 6.19). Here  $Y^+$  is again a terminal Gorenstein threefold with  $-K_{Y^+}$  big and nef, having X as an anticanonical model. The map  $\chi$  is rational and an isomorphism in codimension one. We superscribe any strict transform under  $\chi$  with a "+"-sign. Since  $K_{Y^+} + \epsilon Z^+$  is  $h^+$ -nef,  $Z^+$  is  $h^+$ -nef. As above we conclude that  $Z^+$  is contractible in  $Y^+$ .

Lemma 7.2 holds for  $Y^+$  instead of Y as long as  $|F^+|$  is still spanned on  $Y^+$ . This need not be the case. Recall that we have chosen Y as a terminal modification of some  $\mathbb{Q}$ -factorialization X' of X; in the above program we might flop some horizontal curves in Z, thereby producing a base locus.

**7.4. Lemma.**  $|F^+|$  is spanned unless m=3 and  $(Z^+, \mathcal{O}_{Z^+}(Z^+))=(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(-2))$ .

Here  $|F^+|$  restricted to  $Z^+$  corresponds to lines through a given point.

*Proof.* Assume that  $|F^+|$  is not spanned. Let

$$\phi^+: Y^+ \longrightarrow V^+$$

be the divisorial contraction as in (7.1.1), contracting  $Z^+$ . In order to decide what  $Z^+$  is, we again use the classification from [Cu88]. If  $Z^+$  maps to a curve and  $\mathfrak{f}$  denotes the general fiber, then  $Z^+ \cdot \mathfrak{f} = -1$  and  $-K_{Y^+} \cdot \mathfrak{f} = 1$ . On  $Y^+$  we have

$$(7.4.1) -K_{Y^+} = Z^+ + B^+ + mF^+.$$

Since Bs  $|F^+| \cap Z^+ \neq \emptyset$  we must have  $F^+ \cdot \mathfrak{f} > 0$ . From  $B^+ \cdot \mathfrak{f} \geq 0$  we conclude  $0 < m\mathfrak{f} \cdot F^+ \leq 2$  which is impossible since m > 2.

If  $Z^+$  goes to a point, then  $(Z^+, \mathcal{O}_{Z^+}(Z^+))$  is either  $(\mathbb{P}_2, \mathcal{O}(-1))$  or  $(\mathbb{P}_2, \mathcal{O}(-2))$  or  $(Q_2 \subset \mathbb{P}_3, \mathcal{O}(-1))$ . Near  $\Gamma$  the two surfaces Z and  $Z^+$  are isomorphic. With the original pencil on Z we conclude that  $Z^+$  contains a smooth rational curve that meets another irreducible curve in a single point. From  $Z^+ \cdot \Gamma = -2$  we infer  $(Z^+, \mathcal{O}_{Z^+}(Z^+)) = (\mathbb{P}_2, \mathcal{O}(-2))$ . Then  $|F^+|$  restricted to  $Z^+$  is a family of lines. Using  $-K_{Y^+} \cdot \Gamma = m-2$  and the adjunction formula, we find m=3. The proof of the Lemma is complete.

Lemma 7.2 also holds in the exceptional case  $(Z^+, \mathcal{O}_{Z^+}(Z^+)) = (\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(-2))$  for some terminal modification of X', we only cannot argue as above. Instead, we proceed as follows.

We first run the relative  $(K_Y + \epsilon Z)$ -program with respect to  $Y \to X'$ , where X' is the above  $\mathbb{Q}$ -factorialization of X. In the end we may assume that Z is at least nef on every  $K_Y$ -trivial curve contained in a fiber of the pencil  $Z \to \mathbb{P}_1$ . Omitting

some details, we conclude that a single flop of a  $K_Y$ -trivial section of Z transforms Y into  $Y^+$  in (7.3.2) and Z into  $Z^+ = \mathbb{P}_2$  as above. Then

$$Z \simeq \Sigma_1$$

and  $Z \cdot \mathfrak{f} = -1$  for the general fiber  $\mathfrak{f} \simeq \mathbb{P}_1$ . We conclude that Z must be negative on at least one extremal ray in  $\overline{NE}(Y/\mathbb{P}_1)$  and conclude Lemma 7.2 as above.

For the proof of Proposition 7.1 it remains to show that V in Lemma 7.2 is a terminal modification of  $U_m$  in section 5. In order to prove this, we consider the system

$$|-K_V + \lambda F_V|, \quad \lambda \ge 0,$$

and choose  $\lambda$  such that  $m + \lambda \geq 4$ . Restricted to S we get  $2\Gamma_0 + (m + \lambda)f$ , which is now big and nef. Then  $-K_V + \lambda F_V$  is big and nef and by the Kawamata–Viehweg vanishing theorem  $H^1(\mathcal{O}_V(\lambda F_V)) = H^1(\mathcal{O}_V(K_V + (-K_V + \lambda F_V))) = 0$  implying surjectivity of

$$H^0(V, \mathcal{O}_V(-K_V + \lambda F_V)) \longrightarrow H^0(S, \mathcal{O}_S(2\Gamma_0 + (m+\lambda)f)).$$

Then, since  $|F_V|$  is free and  $|2\Gamma_0 + (m+\lambda)f|$  is free,  $|-K_V + \lambda F_V|$  is free. For  $\lambda \geq 1$  and  $m+\lambda \geq 5$ , any irreducible curve having zero intersection with  $-K_V + \lambda F_V$  must lie in a member of  $|F_V|$ . This follows immediately from  $-K_V + \lambda F_V = (-K_V + (\lambda - 1)F_V) + F_V = \text{nef} + \text{nef}$ . The system is free, for example, if we choose  $\lambda = 1$ , for  $m \geq 4$ , and  $\lambda = 2$ , for m = 3.

Fix this choice from now on. The map associated to  $|-K_V + \lambda F_V|$  is generically 2-to-1 sending V to a variety of minimal degree

$$\nu \colon V \longrightarrow W \subset \mathbb{P}_{2m+3\lambda-2}.$$

Since W comes with a pencil  $|F_W|$ , it must be a scroll. We may rescale the entries such that  $-K_V \simeq \nu^* \mathcal{O}_W(1)$ . Then  $W \simeq \mathbb{F}(d_1, d_2, d_3)$ ,  $d_1 \geq d_2 \geq d_3 \geq -1$ , where  $d_3 = -1$  in the case m = 3, while  $d_3 \geq 0$  for  $m \geq 4$ . Stein factorization of  $V \to W$  leads to a canonical Gorenstein threefold U and a double cover

$$\mu: U \longrightarrow W \simeq \mathbb{F}(d_1, d_2, d_3),$$

such that  $-K_U = \mu^* \mathcal{O}_W(1)$ . Hence  $\mu$  is ramified along a reduced divisor

$$D \in |\mathcal{O}_W(4) - 2(d_1 + d_2 + d_3 - 2)F_W|.$$

From  $(\mathcal{O}_W(1))^3 = \frac{1}{2}(-K_V)^3 = 2m - 4$  we infer

$$d_1 + d_2 + d_3 = 2m - 4.$$

The only section of  $H^0(V, -K_V - mF_V)$  is the one corresponding to the image of B in V (cf. (6.1.2)). Since  $\mu$  is fiberwise ramified along a quartic, we also have  $h^0(W, \mathcal{O}_W(1) - mF_W) = 1$ , implying

$$d_1 = m, \quad d_2 < m.$$

In the special case m=3 we have  $d_3=-1$  and  $W\simeq \mathbb{F}(3,0,-1)$ . It remains to consider the case  $m\geq 4$ .

Denote the image of B in W by  $B_W$ . If  $d_3 > 0$ , then  $2B_W$  is a component of D. But D is reduced, hence we must have  $d_3 = 0$ . Then  $d_1 = m$ ,  $d_2 = m - 4$ , i.e.,

$$V \longrightarrow U \longrightarrow W \simeq \mathbb{F}(m, m-4, 0).$$

We have seen in section 5, that  $U = U_m$  can never have canonical singularities for  $m \ge 13$ , hence  $m \le 12$ .

Back on the surface  $S \in |-K_V|$  in Lemma 7.2, we see that S is generically a double cover of some member  $H \in |\mathcal{O}_W(1)|$ . The map  $\nu$  sends S to  $\mathbb{F}(m, m-4)$ and  $\Gamma_0$  lies over the minimal section, which is the restriction of the above divisor  $B_W$ . In particular,  $\Gamma_0$  is not contracted by  $V \to U_m$  and does not meet any curve contracted, i.e.,  $\Gamma_0 \subset U_{m,\text{reg}}$  and V is isomorphic to  $U_m$  near  $\Gamma_0$ . This completes the proof of Proposition 7.1.

## 8. The Case W a Ruled Surface

This case is as in [I80]. Instead of Y and  $Y_{\Gamma}$  we focus on X and  $X_{\Gamma}$ , and diagram (6.0.2). We use the notation introduced in section 6.

**8.1. Proposition.** In the case  $W \simeq \Sigma_{a-b}$ , a > b, X is the blowup of a sextic in  $\mathbb{P}(1^3,2,3)$  along an irreducible curve of arithmetic genus one (and  $a=0,\,b=-1,$ m = 3).

*Proof.* Since  $-K_{X_{\Gamma}}$  is ample on  $E_{\Gamma}$ , we have  $b \geq -1$  and  $a \geq 0$ . Hence

$$Z_{\Gamma,X} \cdot \xi_{a-b} = b - a < 0$$
 and  $-K_{X_{\Gamma}} \cdot \xi_{a-b} = b + 2 > 0$ ,

where  $\xi_{a-b} = E_{\Gamma} \cap Z_{\Gamma,X}$  is the minimal section of  $E_{\Gamma}$ . Since  $Z_{\Gamma,X}$  is trivial on any  $K_{X_{\Gamma}}$ -trivial curve, we conclude that  $Z_{\Gamma,X}$  must be negative on at least one extremal ray in  $\{K_{X_{\Gamma}} < 0\}$ . Denote by

$$\phi_X \colon X_{\Gamma} \longrightarrow V_X$$

the contraction of this ray. It is a birational map with exceptional set  $Z_{\Gamma,X}$  by [Ben85]. Since  $Z_{\Gamma,X}$  contains  $K_{X_{\Gamma}}$ -trivial curves, it is contracted to a curve.

If  $Z_{\Gamma,X}$  is singular along a curve, then its normalization is a smooth ruled surface. The second map implies that it is  $\mathbb{P}_1 \times \mathbb{P}_1$ . Since  $\xi_{a-b} \subset Z_{\Gamma,X,\text{reg}}$  does not meet the singular locus, we must have

$$\deg N_{\xi_{a-b}/Z_{\Gamma,X}} = a = 0,$$

implying b = -1. If  $Z_{\Gamma,X}$  is smooth in codimension one, then  $h^1(Z_{\Gamma,X}, \mathcal{O}_{Z_{\Gamma,X}}) \leq 1$ by [R83] and Iskovskikh's original argument applies: using the ideal sequence of  $Z_{\Gamma,X}$  and the identity  $-K_{X_{\Gamma}}=Z_{\Gamma,X}+(a+2)F_{\Gamma}$  (cf. section 6), we see

$$h^1(Z_{\Gamma,X},\mathcal{O}_{Z_{\Gamma,X}}) = h^2(X_{\Gamma},\mathcal{O}_{X_{\Gamma}}(-Z_{\Gamma,X})) = h^1(X_{\Gamma},\mathcal{O}_{X_{\Gamma}}(-(a+2)F_{\Gamma})).$$

Then the ideal sequence of (a+2) general members of  $|F_{\Gamma}|$ 

$$0 \longrightarrow \mathcal{O}_{X_{\Gamma}}(-(a+2)F_{\Gamma}) \longrightarrow \mathcal{O}_{X_{\Gamma}} \longrightarrow \mathcal{O}_{(a+2)F_{\Gamma}} \longrightarrow 0$$

yields  $h^0(\mathcal{O}_{(a+2)F_{\Gamma}}) - 1 \le 1$ , hence  $a \le 0$ .

Since  $E_{\Gamma} \cdot \xi_{a-b} = a = 0$ , the image  $Z_X$  of  $Z_{\Gamma,X}$  is still contractible. We can even explicitly give the supporting divisor: denote the image of  $F_{\Gamma}$  in X by F. They are Cartier, since  $\Gamma \subset X_{\text{reg}}$ . The supporting divisor is

$$H = Z_X + F \in \operatorname{Pic}(X),$$

which is big and nef. Indeed,  $\sigma^*H = Z_{\Gamma,X} + F_{\Gamma} + E_{\Gamma}$ . Since  $Z_{\Gamma,X} + F_{\Gamma} = \varphi^*(\xi_1 + \mathfrak{f})$ is nef, and  $\sigma^*H$  restricted to  $E_{\Gamma}$  is trivial, H is nef. A direct computation shows  $H^3 = 1$ . By the Base Point Free Theorem, |kH| is free for  $k \gg 0$ , defining a birational contraction

$$\phi \colon X \longrightarrow V,$$

contracting  $Z_X$  to a curve. The base locus  $\Gamma \subset Z_X$  is contracted to a point, the general fiber of the elliptic pencil on  $Z_X$  is a section. The variety V is again a Gorenstein Fano threefold with canonical singularities and

$$K_X = \phi^* K_V + Z_X.$$

From  $\phi^*K_V = K_X - Z_X = -2H$  we conclude that  $-K_V$  is divisible by 2 in Pic(V). From  $H^0(X, kH) = 1 + \frac{k}{6}(8 + 3k + k^2)$  we see that V is a sextic in  $\mathbb{P}(1^3, 2, 3)$ .  $\square$ 

**8.2. Proposition.** If  $W \simeq \mathbb{P}_1 \times \mathbb{P}_1$ , then  $X \simeq \mathbb{P}_1 \times S_1$ , where  $S_1$  denotes a normal del Pezzo surface of degree 1 (and a = b = 0, m = 4).

*Proof.* In this case,  $Z_{\Gamma,X}$  is the pullback of one ruling of  $W = \mathbb{P}_1 \times \mathbb{P}_1$ . The general fiber of  $Z_{\Gamma,X}$  is a smooth elliptic curve, and  $Z_{\Gamma,X}$  meets the singular locus of  $X_{\Gamma}$  at most in points. Going from  $X_{\Gamma}$  to  $Y_{\Gamma}$ , we see

$$a \leq 0$$

Since  $E_{\Gamma} \simeq W$ , we have a = b, and X Fano implies a = b = 0. Since  $\varphi$  followed by the natural projection  $W \to \mathbb{P}_1$  contracts all the fibers of  $\sigma \colon X_{\Gamma} \to X$  to points, we obtain an induced map

$$X \longrightarrow \mathbb{P}_1$$

with general fiber  $F = \sigma(F_{\Gamma})$  and section  $\Gamma$ , where F is a normal del Pezzo surface of degree one. We have  $-K_{X_{\Gamma}} = Z_{\Gamma,X} + 2F_{\Gamma}$ . As above,

$$-K_X = Z_X + 2F,$$

and we see that  $Z_X$  is nef, so  $|kZ_X|$  is free for  $k \gg 0$ . The map defined by  $|kZ_X|$  is a  $\mathbb{P}_1$ -bundle with section F and fiber  $\Gamma$ . As in [I80] we conclude that  $X \simeq F \times \mathbb{P}_1$  is a product.

## References

- [Ben85] X. Benveniste, Sur le cone des 1-cycles effectifs en dimension 3, Math. Ann. 272, 257-265 (1985).
- [Ber07] E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, Enrico Spoerri, Pisa, 1907.
- [Ch99] I.A. Chel'tsov, Three-Dimensional Fano Varieties of Integer Index, Math. Notes 66, 360–365 (1999).
- [Cu88] S. Cutkosky, Elementary Contractions of Gorenstein Threefolds, Math. Ann. 280, 521–525 (1988).
- [dP85] P. del Pezzo, Sulle superficie di ordine n immerse nello spazio di n+1 dimensioni, Nap. rend. XXIV, 212–216 (1885).
- [DPS93] J.-P. Demailly, T. Peternell, M. Schneider, Kähler manifolds with numerically effective Ricci class, Comp. Math. 89, 217–240 (1993).
- [IT01] S. Ishii, M. Tomari, Hypersurface non-rational singularities which look canonical from their Newton boundaries, Math. Z. 237, 125–147 (2001).
- [I80] V.A. Iskovskikh, Anticanonical models of three-dimensional algebraic varieties, J. Soviet Math. 13, 745–814 (1980).
- [IP99] V.A. Iskovskikh, Yu.G. Prokhorov, Algebraic Geometry V: Fano varieties, Springer 1999.
- [K88] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. 127, 93–163 (1988).
- [KM98] J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Univ. Press 1998.
- [Me99] M. Mella, Existence of good divisors on Mukai varieties, J. Alg. Geom. 8, 197–206 (1999).

- [M82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math. 116, 133–176 (1982).
- [M88] S. Mori, Lectures on 3-dimensional algebraic varieties, Utah University, Fall 1988.
- [R79] M. Reid, Canonical 3-folds, Algebraic Geometry Angers, 273–310 (1979).
- [R83] M. Reid, Projective morphisms according to Kawamata, Preprint (1983).
- [SD74] B. Saint-Donat, Projective models of K3 surfaces, Am. J. Math. 96, 602–639 (1974).
- [Shi89] K.-H. Shin, 3-dimensional Fano Varieties with Canonical Singularities, Tokyo J. Math. 12, 375–385 (1989).
- [Sho80] V.V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Math. USSR, Izv. 14, 395–405 (1980).

Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth/Germany

 $E\text{-}mail\ address: \ \texttt{priska.jahnke@uni-bayreuth.de}$   $E\text{-}mail\ address: \ \texttt{ivo.radloff@uni-bayreuth.de}$