

Nombre: HUALLPAR DORADO, Jhoel

Curso: Estructura de Datos

Docente: Luciano Arnaldo Romero Calla

Tema: Fibonacci Heap

Correo: jhuallpard@ulasalle.edu.pe

FIBONACCI HEAP

CONTENIDO

- Introducción
- Insert
- 3 Extract Minimal or Delete Minimun
- Find Minimun
- Conclusión
- Referencias
- Demo

INTRODUCCIÓN

Procedure	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Make-Heap	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\lg n)$	$O(\lg n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$O(\lg n)$	$\Theta(1)$
Extract-Min	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$
Delete	$\Theta(\lg n)$	$\Theta(\lg n)$	$O(\lg n)$

Se utiliza para mejorar el tiempo de ejecución asintótico del algoritmo de Dijkstra "calcula el camino más corto en un grafo" y el algoritmo de Prim "calcula el árbol mínimo de un grafo".

INSERT

Buscar el elemento de valor mínimo: El nodo de clave minima es precisamente el apuntado por M.min El costo de esta operación es de O(1)

Extract Minimal or Delete Minimal

Buscar el elemento de valor mínimo:

- * El nodo con la clave mínima es precisamente el apuntado por M.min
- * El costo de esta operación es de O(1)

Find Minimun

La operación **Encontrar Mínimo** es trivial porque guardamos el puntero al nodo que lo contiene.

Conclusión

- * Fibonacci Heap es una estructura de datos que consiste en una colección de árboles.
- * Dispone de una mejor relación entre el coste y su amortización que el Binomial Heap.
- * Se denomina Fibonacci Heap principalmente porque los números de Fibonacci se utilizan en el análisis del tiempo de ejecución.
- * Aunque Fibonacci Heap parece ser de una complejidad de tiempo prometedora, en la práctica se ha encontrado lenta, ya que las constantes ocultas son altas.

Referencias

- 1 https://www.cs.usfca.edu/ galles/JavascriptVisual/FibonacciHeap.html
- https://www.geeksforgeeks.org/fibonacci-heap-set-1-introduction/
- https://www.slideshare.net/smarthur/expo-fibonacci
- Press Introduction to Algorithms 2nd Edition
- https://www.youtube.com/watch?v=mnIBSMvNSBk
- https://www.youtube.com/watch?v=tpmiDdMllg8

Demo

.

