Types of variable normanization formation							
	data matrix $[x_{ij}]$						

1	Selection of objects and variables	data matrix $[x_{ij}]$		
	Variable scale level	ratio	ratio	interval
		n6 – quotient transformation (x/sd)	n1 – standardization	n1 – standardization
		n7 – quotient transformation (x/range)	n2 – Weber standardization	n2 – Weber standardization
2	Selection of vari-	n8 – quotient transformation (x/max)	n3 – unitization	n3 – unitization
	able normalization	n9 – quotient transformation (x/mean)	n4 – unitization with zero	n4 – unitization with zero
	formula	n10 – quotient transformation (x/sum)	minimum	minimum
		n11 – quotient transformation	n5 – normalization in range	n5 – normalization in range
		x/sqrt(SSQ)	[-1, 1]	[-1,1]
	Transformed variable scale level	ratio	interval	interval

Types of variable normalization formulas

(n1)
$$z_{ij} = s_{j}^{-1} x_{ij} - \overline{x}_{j} s_{j}^{-1},$$
(n2)
$$z_{ij} = (x_{ij} - Me_{j})/1,4826 \cdot MAD_{j},$$
(n3)
$$z_{ij} = r_{j}^{-1} x_{ij} - \overline{x}_{j} r_{j}^{-1},$$
(n4)
$$z_{ij} = \left[x_{ij} - \min_{i} \{ x_{ij} \} \right] / r_{j}$$
(n5)
$$z_{ij} = (x_{ij} - \overline{x}_{j}) / \max_{i} \left| x_{ij} - \overline{x}_{j} \right|$$
(n6)
$$x_{ij} / s_{j}$$
(n7)
$$x_{ij} / r_{j}$$
n(8)
$$x_{ij} / max \{ x_{ij} \}$$
(n9)
$$x_{ij} / \overline{x}_{j}$$
(n10)
$$x_{ij} / \sum_{i=1}^{n} x_{ij}$$
(n11)

where: $x_{ii}(z_{ii}) - i$ -th observation on j-th variable (i-th normalized observation on j-th variable), \bar{x}_i, s_i – mean and standard deviation for j-th variable,

 Me_i , MAD_i – median and median absolute deviation for j-th variable,

$$r_j = \max_i \{x_{ij}\} - \min_i \{x_{ij}\}.$$

References

(n11)

Gatnar, E., Walesiak, M. (Eds.) (2004), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych [Multivariate statistical analysis methods in marketing research], Wydawnictwo AE, Wroclaw, 35-38.

Jajuga, K., Walesiak, M. (2000), Standardisation of data set under different measurement scales, In: R. Decker, W. Gaul (Eds.), Classification and information processing at the turn of the millennium, Springer-Verlag, Berlin, Heidelberg, 105-112.

Milligan, G.W., Cooper, M.C. (1988), A study of standardization of variables in cluster analysis, "Journal of Classification", vol. 5, 181-204.