

SELECCIÓN DE INSTANCIAS EN BIG DATA

Victor Martinez Santiago, Dr. Alejandro Rosales Pérez , Dr. Edgar Jiménez Peña Centro de Investigación en Matemáticas, Unidad Monterrey

Introducción

"El objetivo de un método de selección de instancias es obtener un subconjunto $S \in T$ tal que S no contenga instancias superfluas y $Acc(S) \cong Acc(T)$ donde Acc(X) es la exactitud de clasificación obtenida usando X como conjunto de entrenamiento" [1]"

Datos más fáciles de manipular

- 1. Mejorar tiempos de ejecución en clasificadores
- 2. Eliminar instancias ruidosas
- 3. Optimización en el almacenamiento de la información

FCNN

Algoritmo de Selección de instancias propuesto por Angulli [2]

Es probable que seleccione puntos cercanos al límite de decisión

El algoritmo finaliza cuando el conjunto T es clasificado correctamente por S.

Algoritmo 1 FCNN (Fast Condensed Nearest Neighbour)

Entrada: Conjunto de entrenamiento $T = \{(x_1, y_1), ..., (x_n, y_n)\}$

Salida: Conjunto consistente S de T

1: $S = \emptyset$

2: S = centroides(T)

3: Mientras $\Delta S \neq \emptyset$ hacer:

4: $S = S \cup \Delta S$

5: $\Delta S = \emptyset$

6: Para cada $x \in S$ hacer:

7: $\Delta S = \Delta S \cup \{rep(x, Voren(p, S, T))\}$

Fin Para cada

9: Fin Mientras

Distancias

Una métrica debe cumplir con los siguientes criterios, donde d(x,y) se refiere a la distancia entre dos objetos x e y

- $d(x,y) \ge 0$ No negativa
- d(x,y) = d(y,x) Simetrica
- $d(x,z) \ge d(x,y) + d(y,z)$ Desigualdad del triangulo

Distancia euclidiana

$$d(x,y) = ||x - y|| \tag{1}$$

Distancia en el espacio kernel

$$d^{2}(\phi(x), \phi(y)) = \|\phi(x) - \phi(y)\|^{2}$$

$$= K(x, x) - 2K(x, y) + K(y, y)$$
(2)

SI-MapReduce

Actualizar conjunto S Actualizar conjunto S

FCNN MR

<etiqueta, [instancias]>

FCNN MR, Imagen Adaptada [4]

ALEATORIZAR

Reduce

<etiqueta, [instancias]>

Velocidad de Ejecución

Desempeño del conjunto S

MRPR, Imagen Adaptada [3]

Tabla 1 : Evaluación de la Métrica F1-Macro para 3 conjuntos de datos utilizando 4 clasificadores

Datos	Metodología	$\begin{array}{c} \mathrm{KNN} \\ (K=3) \end{array}$	MLP	$\begin{array}{l} {\rm SVM} \\ (Kernel = RBF) \end{array}$	RF
Airlines	FCNN MR	0.88638	0.92891	0.93011	0.88130
	FCNN _	0.88993	0.93087	0.93171	0.88390
	KFCNN	0.90571	0.93886	0.93410	0.89009
	KPCAFCNN	0.89291	0.92940	0.92012	0.88556
	${f T}$	0.90737	0.93906	0.93478	0.89060
BGN Australian	FCNN MR	0.79384	0.85210	0.85558	0.86048
	FCNN -	0.78106	0.85676	0.85871	0.86257
	KFCNN	0.83234	0.86448	0.85909	0.86819
	KPCAFCNN	0.82489	0.86412	0.85881	0.86243
	${f T}$	0.83203	0.86480	0.85981	0.85796
$\operatorname{CovType}$	FCNN MR	0.91101	0.85590	0.87814	0.76216
	FCNN —	0.93067	0.88871	0.91909	0.76672
	KFCNN	0.94382	0.90009	0.92374	0.76814
	KPCAFCNN	0.93771	0.89333	0.92097	0.76970
	${f T}$	$\boldsymbol{0.94792}$	0.89891	0.92573	0.76175
FraudChallengue*	FCNN MR	0.71496	0.78282	0.62630	0.75245
	FCNN _	0.68190	0.78277	0.64840	0.75634
	KFCNN	0.68199	0.78277	0.649703	0.75789
	KPCAFCNN	0.6856	0.78347	0.68615	0.76578
	${ m T}$	0.72698	0.76954	0.55169	0.65220

*Datos desequilibrados

Compresión de los datos

Conclusiones

- La mayor compresión y aceleración se obtiene utilizando el algoritmo $FCNN_MR$, y la perdida de rendimiento no supera las 5 centésimas de la línea base en nuestra métrica de interés.
- La metodología FCNN muestra resultados ligeramente mejores a $FCNN_MR$ en la métrica de interés, no obtiene la mayor compresión y en contraparte el tiempo de ejecución es menor al empleado por $FCNN_MR$.
- KFCNN muestra el mejor rendimiento, la velocidad de ejecución supera a $FCNN_MR$ pero no logra una gran aceleración y la compresión mínima es de alrededor 10%.

Referencias

- J. Olvera-López, J. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler, "A review of instance selection methods," *Artif. Intell. Rev.*, vol. 34, pp. 133–143, Aug. 2010. Doi: 10.1007/s10462-010-9165-y.
- [2] F. Angiulli, "Fast condensed nearest neighbor rule," in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 25–32.
- [3] I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera, "Mrpr: A mapreduce solution for prototype reduction in big data classification," *Neurocomputing*, vol. 150, pp. 331–345, 2015, ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2014.04.078.
- [4] L. Si, J. Yu, S. Li, et al., "Fcnn-mr: A parallel instance selection method based on fast condensed nearest neighbor rule," Journal of information and communication convergence engineering, vol. 11, pp. 855–861, 2017.