DPDA

Deterministic PDA

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a,b \to w} \underbrace{q_2}$$

$$\underbrace{q_1}^{\lambda, b \to w} q_2$$

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

WCWR. WESa.53"

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

Example:

The language $L(M) = \{a^n b^n : n \ge 0\}$

is deterministic context-free

Example of Non-DPDA (PDA)

$$L(M) = \{vv^R : v \in \{a,b\}^*\}$$

Not allowed in DPDAs

PDAS

Have More Power than

DPDAs

It holds that:

Deterministic
Context-Free
Languages
(DPDA)

Context-Free
Languages
PDAs

Since every DPDA is also a PDA

We will actually show:

Deterministic Context-Free Context-Free Languages Languages (DPDA) $L \notin$ We will show that there exists a context-free language Laccepted by any DPDA

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- · L is context-free
- L is not deterministic context-free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \rightarrow S_1 \mid S_2$$

$$\{a^nb^n\} \cup \{a^nb^{2n}\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$\{a^nb^n\}$$

$$S_2 \rightarrow aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^nb^n\} \cup \{a^nb^{2n}\}$$

is not deterministic context-free

(there is no DPDA that accepts $\,L\,$)

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA M with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts $a^n b^n$

accepts a^nb^{2n}

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

Such a path exists due to determinism

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

(we will prove this at a later class using pumping lemma for context-free languages)

Fact 2: The language $L \cup \{a^nb^nc^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a PDA that accepts:

$$L \cup \{a^n b^n c^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

$L(M) = \{a^n b^n\} \cup \{a^n b^{2n}\}$

$$L(M') = \{a^n c^n\} \cup \{a^n c^{2n}\}$$

A PDA that accepts $L \cup \{a^nb^nc^n\}$

Connect the final states of M with the final states of M'

Since $L \cup \{a^nb^nc^n\}$ is accepted by a PDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Is not deterministic context free

There is no DPDA that accepts it

End of Proof

Normal Forms for Context-free Grammars

L= { an bn } U { a }

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

• Example: $S \rightarrow ABa$

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

$$S \to ABT_{a}$$

$$S \to ABa$$

$$A \to aab$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

Final grammar in Chomsky Normal Form:

$$S o AV_1$$
 $V_1 o BT_a$
 $A o T_aV_2$
 $V_2 o T_aT_b$
 $S o ABa$
 $A o aab$
 $B o AC$
 $T_a o a$
 $T_a o a$
 $T_b o b$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A oup C_1 V_1$$
 $V_1 oup C_2 V_2$ $V_{n-2} oup C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Greinbach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \to abSb$$
$$S \to aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

Normal Form

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greinbach Normal Form

Observations

 Greinbach normal forms are very good for parsing

• It is hard to find the Greinbach normal form of any context-free grammar

The CYK Parser

The CYK Membership Algorithm

Input:

 \cdot Grammar G in Chomsky Normal Form

String w

Output:

find if $w \in L(G)$

this claim. The algorithm we will describe here is called the CYK algorithm, after its originators J. Cocke, D. H. Younger, and T. Kasami. The algorithm works only if the grammar is in Chomsky normal form and succeeds by breaking one problem into a sequence of smaller ones in the following way. Assume that we have a grammar G = (V, T, S, P) in Chomsky normal form and a string

$$w=a_1a_2\cdots a_n.$$

We define substrings

$$w_{ij} = a_i \cdots a_j,$$

and subsets of V

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

Clearly, $w \in L(G)$ if and only if $S \in V_{1n}$.

To compute V_{ij} , observe that $A \in V_{ii}$ if and only if G contains a production $A \to a_i$. Therefore, V_{ii} can be computed for all $1 \le i \le n$ by inspection of w and the productions of the grammar. To continue, notice that for j > i, A derives w_{ij} if and only if there is a production $A \to BC$, with $B \stackrel{*}{\Rightarrow} w_{ik}$ and $C \stackrel{*}{\Rightarrow} w_{k+1j}$ for some k with $i \le k, k < j$. In other words,

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}.$$
 (6.8)

An inspection of the indices in (6.8) shows that it can be used to compute all the V_{ij} if we proceed in the sequence

- 1. Compute $V_{11}, V_{22}, ..., V_{nn}$
- **2.** Compute $V_{12}, V_{23}, ..., V_{n-1,n}$
- 3. Compute $V_{13}, V_{24}, ..., V_{n-2,n}$

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB$ $A \rightarrow a$ $B \rightarrow AB$ $B \rightarrow b$

• String w : aabbb

aabbb

a a b b b b
$$V_{11}$$
 V_{12} V_{33} V_{44} V_{5}

aa ab bb bb V_{12} V_{23} V_{34} V_{45}

aab abb V_{13} V_{24} V_{35}

aabb V_{14} V_{25}

aabb V_{15}

$$S \to AB$$

$$A \to BB$$

$$A \to a$$

$$B \to AB$$

$$B \to AB$$

$$A \to a$$

$$A \to a$$

$$A \to a$$

$$A \to B \to B$$

$$A \to B \to$$

$$S \to AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \to AB$$

$$B \rightarrow b$$

a A

aa

aab

aabb

ı

a A

ab

S,B

Ŀ

В

bb

A

B

В

bb

A

abb bbb

abbb

aabbb

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A$$

Therefore: $aabbb \in L(G)$

Time Complexity:
$$|w|^3$$

Observation: The CYK algorithm can be easily converted to a parser (bottom up parser)