Determining pH and Titrations

SECTION 2 REVIEW

- **17.** What is meant by the transition interval of an indicator?
- **18.** Explain how changes in pH affect the color of an indicator.
- **19.** a. Without using an indicator, how can you determine the equivalence point of a titration experiment or the pH of a solution?
 - b. What can be observed about the rate of change of the pH of a solution near the end point of a titration?
- **20.** a. What is meant by the end point of a titration?
 - b. What is the role of an indicator in the titration process?
 - c. On what basis is an indicator selected for a particular titration experiment?
- **21.** For each of the four possible types of acid-base titration combinations (strong-strong, strongweak, etc.), indicate the approximate pH at the end point. Also name a suitable indicator for detecting that end point.
- **22.** Use **Figures 9(a)** and **9(b)** to sketch the pH curve of a strong acid being titrated by a weak base.
- **23.** An unknown solution is colorless when tested with phenolphthalein but causes the indicator phenol red to turn red. Use this information to find the approximate pH of this solution.

PRACTICE PROBLEMS

- **24.** For each of the following acid-base titration combinations, determine the number of moles of the first substance listed that would be the chemically equivalent amount of the second substance.
 - a. NaOH with 1.0 mol HCl
 - b. HNO₃ with 0.75 mol KOH
 - c. Ba(OH)₂ with 0.20 mol HF
 - d. H₂SO₄ with 0.90 mol Mg(OH)₂
- **25.** Suppose that 15.0 mL of $2.50 \times 10^{-2} \text{ M}$ aqueous H_2SO_4 is required to neutralize 10.0 mL of an aqueous solution of KOH. What is the molarity of the KOH solution? (Hint: See Sample Problem F.)

26. In a titration experiment, a 12.5 mL sample of 1.75×10^{-2} M Ba(OH)₂ just neutralized 14.5 mL of HNO₃ solution. Calculate the molarity of the HNO₃ solution.

MIXED REVIEW

- **27.** a. What is the $[OH^-]$ of a 4.0×10^{-4} M solution of $Ca(OH)_2$?
 - b. What is the $[H_3O^+]$ of the solution?
- **28.** Given the following [H₃O⁺] values, determine the pH of each solution.
 - a. $1.0 \times 10^{-7} \text{ M}$
- c. $1.0 \times 10^{-12} \text{ M}$
- b. $1.0 \times 10^{-3} \text{ M}$
- d. $1.0 \times 10^{-5} \text{ M}$
- **29.** What is the $[H_3O^+]$ for a solution that has a pH of 6.0?
- **30.** Suppose that a 5.0×10^{-5} M solution of Ba(OH)₂ is prepared. What is the pH of the solution?
- **31.** a. Calculate the pH of a solution that has an $[H_3O^+]$ of 8.4×10^{-11} M.
 - b. Calculate the $[H_3O^+]$ of a solution that has a pH of 2.50.
- **32.** a. What is the concentration of OH⁻ in a 5.4×10^{-5} M solution of magnesium hydroxide, Mg(OH)₂?
 - b. Calculate the concentration of H₃O⁺ for this solution.
- **33.** a. Calculate the molarity of H₃O⁺ in a solution that has a pH of 8.90.
 - b. Calculate the concentration of OH⁻ for this solution.
- **34.** What is the pH of a solution in which $[OH^-]$ equals 6.9×10^{-10} M?
- **35.** In a titration, 25.9 mL of 3.4×10^{-3} M Ba(OH)₂ neutralized 16.6 mL of HCl solution. What is the molarity of the HCl solution?
- **36.** Find the molarity of a $Ca(OH)_2$ solution given that 428 mL of the solution is neutralized in a titration by 115 mL of 6.7×10^{-3} M HNO₃.
- **37.** Suppose that 10.1 mL of HNO_3 is neutralized by 71.4 mL of a $4.2 \times 10^{-3} \text{ M}$ solution of KOH in a titration. Calculate the concentration of the HNO_3 solution.