Implementation of Asynchronous Scheme on Parallel Frameworks using MPI

Kumar Saurabh ¹ Prof. S. Sundar¹ Prof. Dr. Martin Frank ²

¹ Department of Mathematics IIT Madras

> ²Math CCES RWTH Aachen

August 11, 2016

Acknowledgement: DAAD, RWTH IT Center

Outline

- Introduction
- Finite Difference Schemes
 - Synchronous Case
 - Asynchronous Case
- Asynchrony Tolerant Scheme
- Implementation of the Asynchronous Scheme
 - Stochastic Asynchronous Scheme
 - Impact of Computer Architecture
- Conclusion

Motivation

- Many natural and engineering systems can be described with PDEs
 - Fluid mechanics, Electromagnetism, Quantum Mechanics
- Analytical Solution not known. Need to solve these problems numerically.

¹Maitham Alhubail, Qiqi Wan. The swept rule for breaking the latency barrier in time advancing PDEs

Motivation

- Many natural and engineering systems can be described with PDEs
 - Fluid mechanics, Electromagnetism, Quantum Mechanics
- Analytical Solution not known. Need to solve these problems numerically.
- Large number of numerical methods: Finite Difference, Finite Volume, Spectral Method, etc.
 - The complexity of systems at realistic conditions typically requires massive computational resources.
 - The problem is decomposed into a large number of Processing Element (PEs).
 - Extreme-scale computer clusters can solve PDEs using over 1,000,000 cores.
 - The communication is required between the PEs to solve the PDEs to compute spatial derivatives.
- Computation rates are much faster than communication
 - Exascale: Communication likely to be bottleneck.

Issues in Current Method

- Direct Numerical Simulation (DNS)
 - Resolve all scales in space and time.
 - Computationally very expensive.
 - Communication or synchronization takes upto 50 - 70 % of the total computation time.²

² Jagannathan & Donzis (XSEDE 2012), Sankaran et al. (SC 2012), Lee et al. (SC 2013) ▶ ∢ 📱 ▶ 📱 🛫 🗢 🤈 ०००

Issues in Current Method

Direct Numerical Simulation (DNS)

- Resolve all scales in space and time.
- Computationally very expensive.
- Communication or synchronization takes upto 50 - 70 % of the total computation time.²

² Jagannathan & Donzis (XSEDE 2012), Sankaran et al. (SC 2012), Lee et al. (SC 2013) ▶ ∢ 📱 ▶ 📱 🛫 🗢 🤈 ०००

Issues in Current Method

Direct Numerical Simulation (DNS)

- Resolve all scales in space and time.
- Computationally very expensive.
- Communication or synchronization takes upto 50 - 70 % of the total computation time.²

Machine Failure

- Petascale computation spreads over various nodes.
- What if one of the node fails?

Simulations at exascale

Issues with the current Method:

- Communications.
- Synchronization at various time level.

New approach:

- Can we relax Synchronization?
- Asynchronous numerical Schemes.
- Objective: trade-off accuracy and performance quantitatively and predictably.

Simulations at exascale

Issues with the current Method:

- Communications.
- Synchronization at various time level.

New approach:

- Can we relax Synchronization?
- Asynchronous numerical Schemes.
- Objective: trade-off accuracy and performance quantitatively and predictably.

Simulations at exascale

Issues with the current Method:

- Communications.
- Synchronization at various time level.

New approach:

- Can we relax Synchronization?
- Asynchronous numerical Schemes.
- Objective: trade-off accuracy and performance quantitatively and predictably.

Performance Improvement

- Computation time
 - Hardware: Faster hardware, Larger Memory Size.
 - Numerical schemes: Fewer operations.
- Communication time
 - Hardware: Network topology, switches, etc.
 - Numerical Scheme:
 - Fewer communications, Larger messages
 - Asynchronous Scheme: Stable and Consistent.

FD Schemes

FD method can be used to discretize and solve PDEs. Consider 1D advection - diffusion equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2} \tag{1}$$

which can be discretized according to FTCS:

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^n - u_{i-1}^n) = \frac{\alpha}{\triangle x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n) + \mathcal{O}(\triangle x^2, \triangle t)$$
(2)

FD Schemes

FD method can be used to discretize and solve PDEs. Consider 1D advection - diffusion equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2} \tag{1}$$

which can be discretized according to FTCS:

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^n - u_{i-1}^n) = \frac{\alpha}{\triangle x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n) + \mathcal{O}(\triangle x^2, \triangle t)$$
(2)

Stencil needs information not on the PE for boundary nodes.

- Interior point
- Physical boundary point
- PE boundary point
- Buffer point

6/22

Problem: To compute u_i^{n+1} we need values of u that are possibly not on the PE. Solution:

For the left boundary

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^n - u_{i-1}^{\tilde{n}}) = \frac{\alpha}{\triangle x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^{\tilde{n}})$$
(3)

For the right boundary nodes:

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^{\tilde{n}} - u_{i-1}^n) = \frac{\alpha}{\triangle x^2}(u_{i+1}^{\tilde{n}} - 2u_i^n + u_{i-1}^n)$$
(4)

where \tilde{n} is the last available value for a particular node.

Problem: To compute u_i^{n+1} we need values of u that are possibly not on the PE. Solution:

For the left boundary

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^n - u_{i-1}^{\tilde{n}}) = \frac{\alpha}{\triangle x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^{\tilde{n}})$$
(3)

For the right boundary nodes:

$$\frac{1}{\triangle t}(u_i^{n+1} - u_i^n) + \frac{c}{2\triangle x}(u_{i+1}^{\tilde{n}} - u_{i-1}^n) = \frac{\alpha}{\triangle x^2}(u_{i+1}^{\tilde{n}} - 2u_i^n + u_{i-1}^n)$$
(4)

where \tilde{n} is the last available value for a particular node.

- Regarding ñ
 - Synchronous when $\tilde{n} = n$
 - \tilde{n} can be n, n-1, n-2, ...
 - Concrete value of ñ depends on hardware, network, traffic, (possible) unpredictable factors,...
 - \tilde{n} is in fact a principle random variable.

Asynchronous Scheme - Stable and Accurate?

³Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp. 370-392.

⁴At constant Courant Number: r_{α}

- Asynchronous Scheme Stable and Accurate?
- Stability
 - Stable if the Synchronous Scheme is stable, irrespective of delay statistics. 3

³Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp. 370-392.

⁴At constant Courant Number: r_{α}

- Asynchronous Scheme Stable and Accurate?
- Stability
 - Stable if the Synchronous Scheme is stable, irrespective of delay statistics. ³
- Truncation Error
 - Not homogeneous in space and random.
 - Need for statistical description of the truncation error.
 - $\langle E \rangle$: Spatial average taken over the entire domain.
 - \overline{E} : Ensemble average taking into account the stochastic nature of delay.
- It can be shown that 4:

$$\langle E \rangle \approx \underbrace{\frac{\langle K_S \rangle \Delta x^2}{\text{Synchronous part}}}_{\text{Synchronous part}} + \underbrace{\frac{N_B}{N} \left(-\frac{r_\alpha \langle \dot{u} \rangle_B}{r_\alpha \langle \dot{u} \rangle_B} + r_\alpha \langle \dot{u}' \rangle_B \Delta x - \frac{r_\alpha \langle \dot{u}'' \rangle_B}{2} \Delta x^2 \right) \overline{\tilde{k}}}_{\text{Asynchronous Part}}$$
(5)

$$\langle \overline{E} \rangle \approx -\tilde{k} \frac{P}{N} \propto \tilde{k} P \Delta x$$
 (6)

³Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp. 370-392.

⁴At constant Courant Number: r_{α}

- Dependence on Scaling:
 - Strong Scaling: $\langle \overline{E} \rangle \sim O(\Delta x)$
 - Weak Scaling: $\langle \overline{E} \rangle \sim O(1)$
 - Verified by numerical experiments.

18th AeSI Annual CFD Symposium

Dependence on Scaling:

- Strong Scaling: $\langle \overline{E} \rangle \sim O(\Delta x)$

- Weak Scaling: $\langle \overline{E} \rangle \sim O(1)$

Verified by numerical experiments.

Delay	Strong Scaling	Weak Scaling
0(sync)	-2.0195	-2.0034
1	-1.0764	-0.0845
2	-1.0371	-0.0749
4	-1.0117	-0.0490
6	-1.0033	-0.0214
8	-0.9995	-0.0685

Figure: Strong Scaling

Figure: Weak Scaling

- Need for higher order schemes that are capable to maintain accuracy.
- Truncation Error Analysis.
- Previous work by Mudigree et al. ⁵, Donzis and Aditya⁶ proposed such schemes.

⁵Mudigree, D., Sherleker,S., Ansumali, S., 2014 "Delayed Difference scheme for large scale scientific simulations". Physical Review Letters. 113(21), 218701.

⁶Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp: 370-392.

- Need for higher order schemes that are capable to maintain accuracy.
- Truncation Error Analysis.
- Previous work by Mudigree et al. ⁵, Donzis and Aditya⁶ proposed such schemes.
- $\langle \overline{E} \rangle \propto \overline{\tilde{k}}$: Higher the delay, higher will be the error.

⁵Mudigree, D., Sherleker,S., Ansumali, S., 2014 "Delayed Difference scheme for large scale scientific simulations". Physical Review Letters. 113(21), 218701.

⁶Diego, A. Donzis and Konduri, Aditya, 2004 "Asynchronous Finite Difference Scheme for Partial Difference Equations", Journal of Computational Physics. 274(0), pp: 370-392.

Asynchronous Algorithm

- Deterministic Asynchronous Scheme
 - Error: Deterministic Independent of runs
 - Exchange the information after a certain amount of steps. (SYNC_STEP)
 - Naive way of Implementation

Asynchronous Algorithm

- Deterministic Asynchronous Scheme
 - Error: Deterministic Independent of runs
 - Exchange the information after a certain amount of steps. (SYNC_STEP)
 - Naive way of Implementation
- Stochastic Asynchronous Scheme
 - Error: Different for different runs.
 - Do not wait for the communication to complete.
 - Use the latest time values.
 - Dependent on delay statistics.

Asynchronous Algorithm

- Deterministic Asynchronous Scheme
 - Error: Deterministic Independent of runs
 - Exchange the information after a certain amount of steps. (SYNC_STEP)
 - Naive way of Implementation
- Stochastic Asynchronous Scheme
 - Error: Different for different runs.
 - Do not wait for the communication to complete.
 - Use the latest time values.
 - Dependent on delay statistics.
- Can in practice, be accomplished using MPI.
- Performance Matrix: Speedup

$$Speedup = \frac{\text{Time taken by Synchronous Scheme}}{\text{Time taken by scheme under relaxed synchronization}}$$
(7)

Speedup for Deterministic Case

- Computation Cost: X
- Synchronization cost/ Synchronization : Y
- Number of Time Steps: N_T
- Total Number of Synchronization: $\frac{N_T}{SYNC_STEP}$
- Speedup = $\frac{X + N_T Y}{X + \frac{N_T}{SYNC\ STEP}Y}$

Speedup for Deterministic Case

- Computation Cost: X
- Synchronization cost/ Synchronization : Y
- Number of Time Steps: N_T
- Total Number of Synchronization: $\frac{N_T}{SYNC\ STEP}$

• Speedup =
$$\frac{X + N_T Y}{X + \frac{N_T}{SYNC_STEP} Y}$$

Speedup for Deterministic Case

- Computation Cost: X
- Synchronization cost/ Synchronization : Y
- Number of Time Steps: N_T
- Total Number of Synchronization: $\frac{N_T}{SYNC\ STEP}$

• Speedup =
$$\frac{X + N_T Y}{X + \frac{N_T}{SYNC_STEP} Y}$$

- Higher Value of SYNC STEP ⇒ More Speedup
- ullet More load on the processor \Rightarrow Less Speedup

Communication calls

- Two Sided Non blocking Communication
 - Achieved using MPI_Isend / MPI_Irecv / MPI_Test
 - Data to be transferred is stored in the buffer.
 - Buffering of data takes place.
 - Handshaking occurs Matching tags and rank.

Communication calls

- Two Sided Non blocking Communication
 - Achieved using MPI_Isend / MPI_Irecv / MPI_Test
 - Data to be transferred is stored in the buffer.
 - Buffering of data takes place.
 - Handshaking occurs Matching tags and rank.
- One Sided RMA
 - Achieved using MPI Put / MPI Lock / MPI Unlock
 - Target processor exposes its location to memory.
 - No buffering Source processor writes into the target location before returning.
 - Redundancy of data is prevented by MPI_Lock.
 - No handshaking Consent of target processor is not required.

Communication calls

- Two Sided Non blocking Communication
 - Achieved using MPI_Isend / MPI_Irecv / MPI_Test
 - Data to be transferred is stored in the buffer.
 - Buffering of data takes place.
 - Handshaking occurs Matching tags and rank.
- One Sided RMA
 - Achieved using MPI Put / MPI Lock / MPI Unlock
 - Target processor exposes its location to memory.
 - No buffering Source processor writes into the target location before returning.
 - Redundancy of data is prevented by MPI Lock.
 - No handshaking Consent of target processor is not required.

Delay Statistics

The statistics of delay is measured in terms of k^* which is defined as:

$$k^* = \sum_{i=0}^{i=\infty} i * k_i \tag{8}$$

where k_i is defined as the ratio of the number of Time Steps that faced Delay = i and total number of Time Steps.

Two Sided Non - blocking: PE = 8

Figure: Delay Distribution for 1024³ grid for 1000 time steps

Figure: Delay Distribution for 1024³ grid for 1000 time steps

Stochastic Asynchronous Scheme

Requirements:

- "Ghost" cells: value should be either old or new value
- Buffer to store old Time Stamp Values.
- Need timestamp information to be communicated along with data.
- Need an error control knob.
- $\langle \overline{E} \rangle \propto \tilde{k}$
- Enforce partial/total synchronization when k = L 7

Stochastic Asynchronous Scheme

- Requirements:
 - "Ghost" cells: value should be either old or new value
 - Buffer to store old Time Stamp Values.
 - Need timestamp information to be communicated along with data.
 - Need <u>an</u> error control knob.
 - $\langle \overline{E} \rangle \propto \tilde{k}$
 - Enforce partial/total synchronization when $k = L^7$

- Number of Grid Points = 65536.
- Number of Processors = 32
- Courant Number = 0.1
- Final t = 0.08*len/c

Comparison of Deterministic and Stochastic Asynchronous Algorithm

Deterministic Implementation with 2048 Grid Points per processor		Stochastic Implementation with 2048 Grid Points per processor	
SYNC_STEP	Speedup	Maximum Allowable Delay	Speedup
5	1.3615	5	1.8589
10	1.4474	10	2.6174
20	1.4889	20	3.7192
30	1.5300	30	6.0154

Table : Comparison of Deterministic and Stochastic Asynchronous Implementation

Computer Architecture

- Number of Grid Points = 1024.
- Number of Processors = 8
- Courant Number = 0.1
- Number of Time Steps = 150000
- Communication: RMA
- Study effect of Process Distribution on Various Nodes on Time and Delay Statistics

Computer Architecture

- Number of Grid Points = 1024.
- Number of Processors = 8
- Courant Number = 0.1
- Number of Time Steps = 150000
- Communication: RMA
- Study effect of Process Distribution on Various Nodes on Time and Delay Statistics

Processor	Time	Maximum	Average
per node	(s)	Delay	Delay
8	1.747674	26729	1152.118219
4	1.935257	63719	595.315498
2	2.357168	5074	23.086279
1	2.604869	1912	49.434085
	per node 8 4	per node (s) 8 1.747674 4 1.935257 2 2.357168	per node (s) Delay 8 1.747674 26729 4 1.935257 63719 2 2.357168 5074

- Number of Grid Points = 268435456.
- Courant Number = 0.1
- Number of Time Steps = 500
- Study effect of Process Distribution on Various Nodes on Time and Delay Statistics

Test Case

- Number of Grid Points = 268435456.
- Courant Number = 0.1
- Number of Time Steps = 500
- Study effect of Process Distribution on Various Nodes on Time and Delay Statistics
- RMA operation

Processor	Time	Maximum	Average
per node	(s)	Delay	Delay
8	204.288266	38	0.152375
4	162.511951	42	0.013750
2	122.102558	44	0.075125
1	93.667287	20	0.132000

• Two-sided Non blocking Send and Receive

Processor	Time	Maximum	Average
per node	(s)	Delay	Delay
8	151.922679	65	10.7976
4	112.257639	123	20.1246
2	111.381462	137	17.8507
1	84.915095	110	13.0063

Observations

- Memory latency Vs Communication time.
- Distribution of Processor on different nodes ⇒ Dependent on Memory Requirement.⁸
- Delay Statistics: Random
- Increasing load ⇒ Lower value of Average Delays.
- RMA operation ⇒ more favourable for Asynchronous Operation.

Conclusion

- Original Scheme:
 - Second Order Convergence without delays.
 - First Order Convergence in presence of delays.
- Asynchrony Tolerant Scheme: Higher delay means higher error.
- Fewer Communication calls ⇒ More speedup.
- Higher Load on processor ⇒ Communication cost less significant.
- Stochastic Implementation More Speedup.
- Study of Delay Statistics.
 - MPI_RMA: better for asynchronous case in terms of average delay statistics.
 - \bullet Dependence of load on the processor. More frequent communication \Rightarrow Larger Delays.
 - Impact of Computer Architecture.

Thank You for your attention!!!