Бройни системи

Бройна система се нарича система от символи и правила за тяхната употреба посредством, които може да се изрази едно число. Символите на бройната система се наричат цифри, а самото разположение вътре на цифрите в числото се нарича позиция или разряд. Бройните системи са позиционни (десетичната бройна система – 11,12,13...20) и непозиционни

Непозиционните бройни системи са тези, при които стойността на цифрата най-общо не зависи от нейното място (позиция) в записа на числото. Като например римската бройна система използваните цифри са М (1000), D (500), C (100), L (50), X (10), V (5), I (1).

$$VI = 5 + 1 = 6$$
, $IV = 5 - 1 = 4$.).

Позиционните бройни системи са тези, при които стойността на цифрата зависи от нейното място (позиция) в записа на числото, като тя се умножава с т.нар. тегловен коефициент. Той представлява основата на бройната система (например 2 при двоичната, 10 при десетичната или 16 при шестнайсетичната), повдигната на различна степен: нула — за най-младшия разряд, единица за следващия и т.н. — степента нараства с единица за всеки следващ по-старши разряд ("наляво"). Някои от основните позиционни бройни системи са двоичната (binary), десетичната (decimal) и шестнайсетичната (hexadecimal) бройна система.

Десетичната бройна система има основа(теглови коефициент) 10 е перфектна за същества с десет пръста и съответно е най разпространената. Тя използва съвкупност от 10 уникални символа (0-9), които при определена подредба образуват числа.

$$576 = 6*10^{0} + 7*10^{1} + 5*10^{2} = 6*1 + 7*10 + 5*100 = 6 + 70 + 500 = 576$$

Двоичната бройна система е от фундаментално значение за съвременната изчислителна техника, защото нейните две цифри 1 и 0 технически лесно могат да бъдат различени - по това дали в даден възел от електрическата/електронната верига протича или не протича ток, или е налице или не напрежение. Преобразуване от двоична в десетична бройна система

$$101011 = 1^{20} + 1^{21} + 0^{22} + 1^{23} + 0^{24} + 1^{25} = 1^{1} + 1^{2} + 0^{4} + 1^{8} + 0^{16} + 1^{32} = 1 + 2 + 8 + 32 = 43$$

Шестнайсетичната заедно с десетичната и двоичната, е една от най — често срещаните бройни системи в света на електрониката и програмирането. Важно е да се разбера как работи, защото в много от случаите е по - удобно едно число да се представи в шестнайсетичен вид отколкото в десетичен или двоичен вид. Символите на шестнайсетичната бройна система са 0-9 и A-F. Първите 10 символа 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 са еднакви по стойност като при десетичните, но следващите шест са представени от буквите A, B, C, D, E, F и съответно са 10, 11, 12, 13, 14, 15.

Десетични (dec): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Шестнайсетични (hex): 0 1 2 3 4 5 6 7 8 9 A B C D E F

Десетичните и шестнайсетичните числа имат 10 общи символа помежду си и често могат да ни заблудят като например числото 10 (dec) е различно от 10 (hex):

10 (dec) =
$$0*10^{0}+1*10^{1} = 10$$
 (dec)
10 (hex) = $0*16^{0}+1*16^{1} = 16$ (dec)

В програмирането, ако не е уточнено в какъв формат е записано дадено число бройната система по подразбиране е десетична. Например да заявим променлива от типа integer (int x = 15) стойността на x = 15 десетично, но ако заявим променливата по друг начин в шестнайсетична форма (int x = 0x15), стойността на x = 21 десетично или в двоична форма (int x = 0b1110), стойността на x = 14. От това разбираме, че има основни символи в програмирането с които представяме бройната система на числото, което въвеждаме:

0хF – за шестнайсетичен формат

0b1111 – за двоичен формат

15 – за десетичен формат, т.е. без уточнение по подразбиране формата е десетичен

Нека преобразуваме число от десетична бройна система в шестнайсетична и после в двоична бройна система. Да вземем числото 61453

И съответно полученото число 61453 в шестнайсетичен формат е 0xF00D. Нека преобразуваме числото във двоична форма. За целта ще използваме *таблица 1*

Н	ex	F	0	0	D
В	in	1111	0000	0000	1101

Вижда се, че записването в шестнайсетичен формат е много по- кратко от двоичния формат:

$$0xF00D = 0b1111 0000 0000 1101 = 61453$$

Горните примери представят най- голямото преимущество на шестнайсетичната бройна система при програмирането на микроконтролери: *лесното представяне на стойностите на даден byte* (а един байт има осем бита или комбинация от осем нули и единици). Нех форматът е по лесен за работа, тъй като записът е много по- кратък и по- запомнящ се в сравнение с нулите и единиците в един byte (байт)

$$111\ 111 = 0xFF$$

Десетична (DEC)	Шестнайсетична (HEX)	Двоична (ВІN)
00	0x0	0b0000
01	0x1	0b0001
02	0x2	0b0010
03	0x3	0b0011
04	0x4	0b0100
05	0x5	0b0101
06	0x6	0b0110
07	0x7	0b0111
08	0x8	0b1000
09	0x9	0b1001
10	0xA	0b1010
11	0xB	0b1011
12	0xC	0b1100
13	0xD	0b1101
14	0xE	0b1110
15	0xF	0b1111

Таблица 1

Източници : learn.sparkfun.com, wikipedia.com, Arduino Reference