Accepted Manuscript

Prevalence and antimicrobial resistance patterns of *Campylobacter* spp. isolated from retail meat in Lahore, Pakistan

Muhammad Nisar, Mansur ud Din Ahmad, Muhammad Hassan Mushtaq, Wasim Shehzad, Abid Hussain, Javed Muhammad, Kakambi V. Nagaraja, Sagar M. Goyal

PII: S0956-7135(17)30181-0

DOI: 10.1016/j.foodcont.2017.03.048

Reference: JFCO 5549

To appear in: Food Control

Received Date: 13 January 2017

Revised Date: 28 March 2017

Accepted Date: 29 March 2017

Please cite this article as: Muhammad Nisar, Mansur ud Din Ahmad, Muhammad Hassan Mushtaq, Wasim Shehzad, Abid Hussain, Javed Muhammad, Kakambi V. Nagaraja, Sagar M. Goyal, Prevalence and antimicrobial resistance patterns of *Campylobacter* spp. isolated from retail meat in Lahore, Pakistan, *Food Control* (2017), doi: 10.1016/j.foodcont.2017.03.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- *Campylobacter* species are circulating in various type of meat i.e., Beef, mutton and chicken.
- High resistance was seen in our isolates.
- High resistance is a serious health issue and may pose a risk in human medicine and food safety

1	Prevalence and antimicrobial resistance patterns of Campylobacter spp.
	isolated from retail meat in Lahore, Pakistan
	Muhammad Nisar ^{a,d,*} , Mansur ud Din Ahmad ^a , Muhammad Hassan Mushtag ^a ,
	Wasim Shehzad ^b , Abid Hussain ^a , Javed Muhammad ^c ,
	Kakambi V Nagaraja ^d and Sagar M Goyal ^e
	Tamamer + 1 (mguruju unu sugur 111 sejur
	^a Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan,
	and the first transfer and the first transfer and the first transfer and transfer a
	^b Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences,
	Lahore 54000, Pakistan,
	^c Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000,
	Pakistan,
	dD 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1
	d Department of Veterinary and Biomedical Sciences and Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
	MN 55108, USA.
	Running Title: Campylobacter in meat
	Running Title. Campylobacter in meat
	Corresponding author: Muhammad Nisar (mnisarshah@yahoo.com)
	v

ABSTRACT

Campylobacter spp. is a leading cause of gastroenteritis in humans. Contaminated food of
animal origin is considered to be the common source. Some of these bacteria are multi-drug
resistant, which results in treatment complications. Indiscriminate use of antimicrobial drugs
has been suggested to be largely responsible for resistance in zoonotic pathogens including
Campylobacter. This study was conducted to determine the prevalence and antimicrobial
resistance pattern of Campylobacter isolated from meat of three different food animal species
sold at retail shops in Lahore, Pakistan. A total of 125 Campylobacter were isolated and
tested for antimicrobial resistance against nine commonly used antibiotics in veterinary and
human medicine. The highest resistance was observed against enrofloxacin (79.2%) followed
by tylosin (77.6%), ciprofloxacin and amoxicillin (71.2% each), colistin (69.6%), neomycin
(32.8%), nalidixic acid (31.2%), gentamicin (25.6%) and doxycycline (8.8%). Most of the
isolates (90.4%) were resistant to more than two antibiotics and were considered as multi-
drug resistant bacteria. The results indicate that antibiotic resistant bacteria are prevalent in
animal meat in Pakistan probably due to uncontrolled use of antibiotics in food animals, thus
posing a threat to public health.
Keywords: Campylobacter, resistance, antibiotics, Lahore, Pakistan, beef, mutton, chicken,
meat.

1. Introduction

56	Most cases of Campylobacter infection in humans are self-limiting and do not require
57	antibiotic therapy. However, severe cases such as those in immune-compromised patients do
58	need to be treated with antibiotics (Engberg, Aarestrup, Taylor, Gerner-Smidt, & Nachamkin,
59	2001; Gibreel, et al., 2004) such as fluoroquinolones and macrolides. For bacteremia caused
60	by Campylobacter, aminoglycosides are often used (Alfredson & Korolik, 2007; Corcoran,
61	Quinn, Cotter, Whyte, & Fanning, 2006; Lin, et al., 2007; Moore, et al., 2006; Payot, et al.,
62	2006). Unfortunately, the presence of antibiotic resistance in bacterial pathogens is a serious
63	public health concern throughout the world (Han, Jang, Choo, Heu, & Ryu, 2007; Hawkey &
64	Jones, 2009; Isenbarger, et al., 2002). People infected with antibiotic resistant strains of
65	Campylobacter are ill for a longer period of time and are more likely to be hospitalized
66	(Gupta, et al., 2004). The success rate of treatment against Campylobacter infection is
67	decreasing due to an increase in antibiotic resistance (Lehtopolku, et al., 2010).
68	Unfortunately, information on antibiotic resistance in Campylobacter of animal origin in
69	developing countries is not available (Osano & Arimi, 1999).
70	Irrational use of antibiotics for the treatment and control of infectious diseases in
71	veterinary medicine is considered a key cause of development of antibiotic resistance in
72	foodborne pathogens (Hoszowski & Wasyl, 2005). Most of the antibiotics used in human and
73	animal medicine are similar and hence the use of antibiotics in animals poses a potentially
74	serious risk to public health (Alfredson & Korolik, 2007; Hariharan, Sharma, Chikweto,
75	Matthew, & DeAllie, 2009; Luangtongkum, et al., 2009). Recently, the prevalence of
76	antibiotic resistance in foodborne pathogens has increased and has become a complex issue
77	(Možina, Kurinčič, Klančnik, & Mavri, 2011).
78	Antibiotics are often used as growth promoters in food animals. In developing
79	countries, large amounts of various antibiotics are used in domestic poultry for the control of

80	infectious agents and for growth promotion. This may help select resistant strains and their
81	subsequent transmission to humans via contaminated food (Hoszowski & Wasyl, 2005). In
82	Pakistan, no data are available on the presence and antimicrobial properties of
83	Campylobacter in humans and food animals. The aim of this study was to determine the
84	prevalence and antimicrobial resistance patterns of Campylobacter in various meat sources
85	(beef, mutton, and chicken) in Lahore, Pakistan.
86	2. Materials and Methods
87	2.1 Sampling
88	A total of 600 meat samples (200 each of beef, mutton, and chicken) were collected from
89	retail meat shops from ten administrative divisions of Lahore district in Pakistan from
90	September 2014 to February 2015. Most of the meat consumption in Pakistan is in Fall and
91	Winter. From each division, 20 samples each of beef, mutton and chicken were collected. The
92	samples were placed in an ice box, transported to the laboratory, and subjected to microbial
93	analysis within 24 hrs. of collection.
94	2.2 Isolation and identification of Campylobacter
95	Isolation of Campylobacter was carried out according to the international organization for
96	standardization ISO 10272-1:2006 (Moran, et al., 2009). Meat samples were placed in
97	separate bags and homogenized in a stomacher for 2 minutes with buffered peptone water at
98	1/10 ratio of w/v. An aliquot (1 mL) of this homogenate was transferred to a tube containing
99	9 mL of Bolton broth for enrichment. The inoculated Bolton broth was incubated at 42°C for
100	48 hrs under microaerophilic conditions using Campy Gas sachet (Gaspak EZ Campy
101	Container BBL 260680) in an anaerobic jar. An aliquot from the enriched broth was streaked
102	on plates of mCCDA agar (CM 0739 Oxoid, England) containing cefoperazone and
103	amphotericin B (SR0155 Oxoid, England) followed by incubation at 42°C for 48 hrs under
104	microaerophilic conditions. Suspected colonies were lifted from plates and identified as

105	Campylobacter using Gram staining, motility, oxidase test, and latex agglutination (F46
106	Microgen, UK). These colonies were further streaked on fresh mCCDA plates for purification
107	and DNA extraction. The purified isolates were also placed in 20% glycerol and stored at-
108	80°C for future use.
109	2.3 Speciation of Campylobacter
110	DNA was extracted from purified isolates using "QIAamp DNA Mini Kit" (Qiagen, cat#
111	51306, USA) according to manufacturer's instructions. The extracted DNA was stored at
112	-20°C until used. Multiplex PCR was carried out for confirmation and speciation of
113	Campylobacter. Three sets of primers were used to identify Campylobacter spp: C. jejuni,
114	and C. coli by targeting 16SrRNA, mapA and cueE gene, respectively (Denis, et al., 1999;
115	Gonzalez, Grant, Richardson, Park, & Collins, 1997; Linton, Lawson, Owen, & Stanley,
116	1997; Stucki, Frey, Nicolet, & Burnens, 1995). PCR amplification reaction was performed in
117	$25\mu L$ mixture in a thermal cycler "T100" (BioRad USA). The PCR conditions for 35 cycles
118	were: denaturation at 94°C for 1 min, annealing at 48°C for 1 min and extension at 72°C for 1
119	min. The PCR products were visualized under UV light following by gel electrophoresis in
120	1.2 % agarose gel.
121	2.4 Antimicrobial susceptibility testing
122	Antimicrobial susceptibility tests on 125 isolates were performed by the disc diffusion
123	method (Bauer et al., 1966). Briefly, three to five well-isolated colonies were selected from
124	the culture plate. The colonies were suspended in normal saline solution followed by
125	adjustment of turbidity to 0.5 McFarland standard. A sterile cotton swab was dipped into the
126	suspension and streaked on the entire surface of a Mueller-Hinton agar plate (Oxoid,
127	England) containing 5% sheep blood. The inoculum was allowed to dry for 5 min followed
128	by application of antibiotic discs and incubation at 42°C for 48 hours under microaerophilic
129	conditions. Stock cultures of <i>C. jejuni</i> (ATCC 33560) and <i>C. coli</i> (ATCC 33559) were used

130	as reference strains. The diameters of the zones of inhibition were measured with a calliper
131	and interpreted as recommended by Clinical and Laboratory Standards Institute Guidelines
132	(CLSI, 2006). A total of nine antibiotics commonly used in veterinary and human practices
133	were tested e.g., amoxicillin (10μg), ciprofloxacin (5μg), colistin (10μg), doxycycline
134	$(30\mu g)$, enrofloxacin $(5\mu g)$, gentamicin $(10\mu g)$, nalidixic acid $(30\mu g)$, neomycin $(30\mu g)$ and
135	tylosin (30µg).
136	2.5 Statistical Analysis
137	Data were entered into a Microsoft Excel sheet for analysis and were analysed to obtain the
138	numbers and percent of resistant and susceptible microorganisms using SPSS 20.0 statistical
139	software.
140	3. Results
141	A total of 125 Campylobacter were isolated from the three meat sources of which 82
142	were C. jejuni and 43 were C. coli. Of the 200 beef samples, 31 (15.5%) were positive for
143	Campylobacter while this number was 36 (18%) and 58 (29%) for mutton and chicken,
144	respectively (Table 1). When tested for antimicrobial susceptibility, the highest resistance in
145	all 125 isolates of Campylobacter spp. was against enrofloxacin (79.2%) followed by tylosin
146	(77.6%), amoxicillin (71.2%), ciprofloxacin (71.2%), and colistin (69.6%). Most of the
147	isolates (113 of 125 or 90.4%) were resistant to multiple antibiotics. The <i>C. jejuni</i> isolates
148	(n=82) were highly resistant to enrofloxacin and tylosin (78%) followed by amoxicillin
149	(72%), ciprofloxacin (68.3%), and colistin (67%). The rate of resistance against these five
150	antibiotics was similar in C. coli isolates (n=43) too. The least resistance was against
151	doxycycline (8.8% in Campylobacter spp.).
152	The overall resistance in <i>Campylobacter</i> isolates (n=31) from beef origin was the
153	highest against ciprofloxacin 83.9% (26/31) followed by enrofloxacin 77.4% (24/31) and
154	colistin 74.2% (23/31). Resistance against doxycycline, nalidixic acid and neomycin was low.

155	None of the <i>C. jejuni</i> (n=19) isolates from beef showed any resistance to doxycycline while 2
156	of 12 (16.7%) of <i>C. coli</i> isolates were resistant to this antibiotic (Table 2). The resistance of
157	C. coli (n=12) to enrofloxacin, ciprofloxacin, and colistin was similar to that in C. jejuni.
158	None of the <i>C. coli</i> isolates from beef was resistant to nalidixic acid.
159	Of the 36 isolates from mutton, 31 (86%) were resistant to tylosin followed by
160	enrofloxcin (72.2%) and ciprofloxacin and colistin (66.7% each). Low resistance was
161	observed against doxycycline 11% (4/36) and gentamicin 22% (8/36). Of the 36 mutton
162	isolates, 25 and 11 were confirmed as C. jejuni and C. coli, respectively. In C. jejuni, the
163	highest resistance was against tylosine (21/25 or 84%) followed by enrofloxacin (76%) and
164	amoxicillin (72%). Only 8% (2/25) and 20% (5/25) of <i>C. jejuni</i> isolates were resistant to
165	doxycycline and neomycin, respectively. For C. coli, the highest resistance was against
166	tylosin (10/11 or 91%) and ciprofloxacin (72.7%) and the lowest resistance was against
167	doxycycline and gentamicin 18% (2/11 each).
168	Of the 58 isolates from chicken meat, the highest resistance was against enrofloxacin
169	(84%), tylosin (82%), and amoxicillin (82%). Five (8.6%) and 11 (19%) isolates were
170	resistant to doxycycline and gentamicin, respectively. Most of the <i>C. jejuni</i> isolates from
171	chicken were resistant to tylosin (81.6%), enrofloxacin (79%), and amoxicillin (79%). Only
172	four (10.5%) and 10 (26.3%) isolates were resistant to doxycycline and gentamicin,
173	respectively. Among C. coli, the highest resistance was observed in enrofloxacin (95%)
174	followed by amoxicillin (90%), and tylosin (85%). Sixteen of 20 (80%) isolates were
175	resistant to both ciprofloxacin and colistin and only one isolate each (5%) was resistant to
176	gentamicin and doxycycline.
177	4. Discussion

4. Discussion

178	The aim of this study was to estimate the burden of Campylobacter spp. in three
179	different types of meat sold at retail shops in Lahore district of Pakistan. Another objective
180	was to determine the antibiotic resistance of these isolates against commonly used antibiotics.
181	The percentage of Campylobacter species isolated from various sources of meat was;
182	chicken (29%), mutton (18%) and beef (15.5%). In general, these results are similar to those
183	reported previously e.g., the prevalence is greater in chickens than in other animals. For
184	example, the overall prevalence of Campylobacter in Pakistan in 2007 was reported to be
185	48%, 11%, and 5% in poultry, beef, and mutton, respectively (Hussain, Shahid Mahmood,
186	Akhtar, & Khan, 2007). In Turkey, these numbers were 50%, 22% and 11% in chicken,
187	mutton and beef, respectively (Bostan, Aydin, & Ang, 2009). The results from Iran were
188	different; the prevalence of Campylobacter was higher in mutton (12%) as compared to beef
189	(2.4%) and camel meat (0.9%) (Rahimi, Ameri, & Kazemeini, 2010). The high number of
190	Campylobacter in chicken in this study is accepted as normal, since chicken meat is
191	considered a primary reservoir for this bacterium. Additionally, the traditional way of
192	slaughtering of birds at retail shop and lack of hygienic measures during slaughtering is
193	considered to be the potential risk factor in cross contamination. On the other hand,
194	slaughtering of beef and mutton is carried out in established slaughterhouses with less
195	chances for cross contamination.
196	The highest resistance in our study was found against enrofloxacin followed by
197	tylosin, amoxicillin and ciprofloxacin. A study from Estonia showed similar results for
198	enrofloxacin (73.3%) in Campylobacter isolates from poultry (Roasto, et al., 2007). The
199	highest resistance in Campylobacter isolates from Spain, Poland and Latvia was also against
200	macrolides (Kovaļenko, Roasto, Šantare, Bērziņš, & Hörman, 2014; Maćkiw, Korsak,
201	Rzewuska, Tomczuk, & Rożynek, 2012). These results are comparable to a study on resistant

Campylobacter isolates from layer chickens in two different farming systems in the United

203	States. Resistance against tylosin in conventional farming system was higher (34%) than
204	organic farming system (25%). Additionally 66% and 46.3% of the isolates were resistant
205	from CF-1 (Conventional Farm-1) and OF-1 (Organic Farm-1), respectively (Kassem, et al.,
206	2017). This is not surprising because tylosin has not been used as a growth promotor in
207	poultry from January 1999 onwards in these countries (European Food Safety, 2010). Still
208	this antibiotic is frequently used in broiler industry in Pakistan. In another study 38.7% of
209	Campylobacter isolates from pigs, dairy and beef cattle were resistant to tylosin in Tanzania
210	(Kashoma, et al., 2015). During 2007 to 2009 in northern Greece, Campylobacter spp. was
211	found resistant to tetracycline, streptomycin, ciprofloxacin, and nalidixic acid and but they
212	were susceptible to gentamicin and erythromycin (Lazou, Houf, Soultos, Dovas, &
213	Iossifidou, 2014).
214	In our study, 71.2% of the isolates were resistant to ciprofloxacin. These results are
215	similar to studies in Algiers and Poland where the resistance to this antibiotic was 83.7 and
216	66.3% isolates from broiler and chicken meat, respectively (Andrzejewska, Szczepańska,
217	Śpica, & Klawe, 2015; Messad, Hamdi, Bouhamed, Ramdani-Bouguessa, & Tazir, 2014).
218	The rise in prevalence of ciprofloxacin resistant Campylobacter in retail poultry meat has
219	also been reported from Denmark (Andersen, et al., 2006), Spain, Germany, Italy, Holland
220	and Austria (Maćkiw, et al., 2012). In Latvia and Estonia, 60% of Campylobacters isolated
221	from slaughterhouses were resistant to ciprofloxacin (Kovaļenko, et al., 2014; Roasto, et al.,
222	2007). The resistance to fluoroquinolones in <i>Campylobacter</i> is believed to be due to the use
223	of this antibiotic for treatment purposes in food animals (Talsma, Goettsch, Nieste,
224	Schrijnemakers, & Sprenger, 1999).
225	The resistance to nalidixic acid was not high perhaps because this antibiotic is not
226	used extensively in veterinary practice in Pakistan. These results are different from those in
227	Latvia and Estonia where 75.6% and 60% of the isolates from slaughterhouses were resistant

respectively. In Denmark, the resistance against nalidixic acid was high among the isolates
from duck and turkey meat (12%) as compared to chicken meat (7.4%) (Andersen et al.,
2006; Kovaļenko et al., 2014; Roasto et al., 2007). In Iran, 54% of the isolates from various
meat types were resistant to nalidixic acid (Rahimi & Ameri, 2011). The authors suggested
that this was due to the widespread use of antibiotics in prophylaxis and growth promotion
(Rahimi & Ameri, 2011). All 19 (100%) C. coli isolates from ducks in Malaysia were
resistant to nalidixic acid and norfloxacin while 79 (84%) and 75 (80%) of <i>C. jejuni</i> isolates
were resistant to nalidixic acid and enrofloxacin, respectively (Adzitey, Rusul, Huda, Cogan,
& Corry, 2012).
Overall resistance to gentamicin was low (25.6%) in our study, which could be related
to the infrequent use of this antibiotic in poultry production because of its high cost. In
Grenada, no resistance was seen against gentamicin in Campylobacter isolates from poultry
(Hariharan, et al., 2009). Similarly, there was no resistance against gentamicin in isolates
from small ruminants in Greece (Lazou, et al., 2014). The resistance to gentamicin in chicken
isolates was low in Northern Ireland and Poland (6.3% and 5%, respectively). The low
resistance may be attributed to the fact that gentamicin is rarely used in poultry as growth
promotant. Gentamicin is used by subcutaneous or intramuscular administration which is
labor intensive (Rodrigo, Adesiyun, Asgarali, & Swanston, 2007; Wilson, 2003).
The resistance against doxycycline was also low in this study; only 11 of 125 isolates
were resistant. These results are in contrast to those from Poland, Spain, Latvia, Denmark and
France where 79%-90% Campylobacters showed resistance to tetracycline. The difference in
occurrence of antimicrobial resistance reflects different national practices (Andersen, et al.,
2006; Kovaļenko, et al., 2014; Maćkiw, et al., 2012). Similarly, high resistance (70.6%) to
tetracycline was observed in <i>Campylobacter</i> isolates from various meat types in Iran

252	(Talsma, et al., 1999), In Greece 48% of Campylobacter isolates from small ruminant
253	slaughterhouses were resistant to tetracycline (Lazou, et al., 2014).
254	In the present study, resistance against enrofloxacin, amoxicillin and tylosin was high
255	in isolates from chicken. Similarly, the highest level of resistance was in Campylobacter
256	isolates from retail poultry meat in Denmark during 1996-2003 and it was against
257	tetracycline, nalidixic acid and ciprofloxacin (Andersen, et al., 2006). In Latvia, during 2010,
258	high resistance was against ciprofloxacin and nalidixic acid (Kovalenko K, 2014). The high
259	resistance against antibiotics in this study is probably due to irrational use of antibiotic in
260	poultry practice in Pakistan.
261	Our study indicated highest resistance against ciprofloxacin, enrofloxacin and colistin
262	in isolates from beef origin. Other studies concluded that Campylobacter spp. isolated from
263	cattle slaughterhouses were frequently resistant to nalidixic acid and ciprofloxacin (38.3%),
264	followed by streptomycin (24.3%) and tetracycline (20.9%) in Poland (Wieczorek, Denis,
265	Lynch, & Osek, 2013).
266	A total of 90.4% of the isolates were MDR (multi-drug resistant) from different
267	sources of meat. All Campylobacter isolates (100%) from broiler farms and slaughterhouses
268	were identified as MDR in Algiers (Messad, et al., 2014). In China, 86% of the isolates from
269	poultry were MDR (Chen, et al., 2010), while in Latvia it was 67.2% (Kovaļenko, et al.,
270	2014), in Trinidad 64% (Rodrigo, et al., 2007), in Korea 56.5% (Han, et al., 2007) and in Iran
271	44.9% (Ebrahim Rahimi & Ameri, 2011).
272	5. Conclusions
273	It is concluded that <i>Campylobacter</i> spp. are circulating in various meat sources in Pakistan.
274	The high resistance seen in our isolates is a serious health issue and may pose a risk in human
275	medicine and food safety. The irrational use of antibiotics in animal and human practices

276	seems to be the major cause of increasing resistance against pathogenic bacteria like
277	Campylobacter.
278	Acknowledgments
279	This study was supported by Higher Education Commission of Pakistan (HEC).
280	

281	References
282	Adzitey, F., Rusul, G., Huda, N., Cogan, T., & Corry, J. (2012). Prevalence, antibiotic
283	resistance and RAPD typing of Campylobacter species isolated from ducks, their
284	rearing and processing environments in Penang, Malaysia. Int J Food Microbiol,
285	<i>154</i> (3), 197-205.
286	Alfredson, D. A., & Korolik, V. (2007). Antibiotic resistance and resistance mechanisms in
287	Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett, 277(2), 123-
288	132.
289	Andersen, S. R., Saadbye, P., Shukri, N. M., Rosenquist, H., Nielsen, N. L., & Boel, J.
290	(2006). Antimicrobial resistance among Campylobacter jejuni isolated from raw
291	poultry meat at retail level in Denmark. Int J Food Microbiol, 107(3), 250-255.
292	Andrzejewska, M., Szczepańska, B., Śpica, D., & Klawe, J. J. (2015). Trends in the
293	occurrence and characteristics of Campylobacter jejuni and Campylobacter coli
294	isolates from poultry meat in Northern Poland. Food Control, 51, 190-194.
295	Bostan, K., Aydin, A., & Ang, M. K. (2009). Prevalence and antibiotic susceptibility of
296	thermophilic Campylobacter species on beef, mutton, and chicken carcasses in
297	Istanbul, Turkey. Microb Drug Resist, 15(2), 143-149.
298	Chen, X., Naren, G. W., Wu, C. M., Wang, Y., Dai, L., Xia, L. N., Luo, P. J., Zhang, Q., &
299	Shen, J. Z. (2010). Prevalence and antimicrobial resistance of <i>Campylobacter</i> isolates
300	in broilers from China. Vet Microbiol, 144(1-2), 133-139.
301	Clinical and Laboratory Standards Institute (CLSI). (2006). Performance standards for
302	antimicrobial disk susceptibility tests. Approved standard-Ninth Edition (M2-A9).
303	Wayne, PA: Clinical and laboratory Standards Institute.

304	Corcoran, D., Quinn, T., Cotter, L., Whyte, P., & Fanning, S. (2006). Antimicrobial
305	resistance profiling and fla-typing of Irish thermophillic Campylobacter spp. of
306	human and poultry origin. Lett Appl Microbiol, 43(5), 560-565.
307	Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G., & Colin, P. (1999).
308	Development of a m-PCR assay for simultaneous identification of Campylobacter
309	jejuni and coliC. coli. Lett Appl Microbiol, 29(6), 406-410.
310	Engberg, J., Aarestrup, F. M., Taylor, D. E., Gerner-Smidt, P., & Nachamkin, I. (2001).
311	Quinolone and macrolide resistance in Campylobacter jejuni and coliC. coli:
312	resistance mechanisms and trends in human isolates. Emerg Infect Dis, 7(1), 24-34.
313	Gibreel, A., Tracz, D. M., Nonaka, L., Ngo, T. M., Connell, S. R., & Taylor, D. E. (2004).
314	Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada
315	from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance.
316	Antimicrob Agents Chemother, 48(9), 3442-3450.
317	Gonzalez, I., Grant, K. A., Richardson, P. T., Park, S. F., & Collins, M. D. (1997). Specific
318	identification of the enteropathogens Campylobacter jejuni and Campylobacter coli
319	by using a PCR test based on the ceuE gene encoding a putative virulence
320	determinant. J Clin Microbiol, 35(3), 759-763.
321	Gupta, A., Nelson, J. M., Barrett, T. J., Tauxe, R. V., Rossiter, S. P., Friedman, C. R., Joyce,
322	K. W., Smith, K. E., Jones, T. F., Hawkins, M. A., Shiferaw, B., Beebe, J. L., Vugia,
323	D. J., Rabatsky-Ehr, T., Benson, J. A., Root, T. P., & Angulo, F. J. (2004).
324	Antimicrobial resistance among Campylobacter strains, United States, 1997-2001.
325	Emerg Infect Dis, 10(6), 1102-1109.
326	Han, K., Jang, S. S., Choo, E., Heu, S., & Ryu, S. (2007). Prevalence, genetic diversity, and
327	antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in
328	Korea Int. J. Food Microbiol. 114(1) 50-59

329	Hariharan, H., Sharma, S., Chikweto, A., Matthew, V., & DeAllie, C. (2009). Antimicrobial
330	drug resistance as determined by the E-test in Campylobacter jejuni, coliC. coli, and
331	C. lari isolates from the ceca of broiler and layer chickens in Grenada. Comp Immunol
332	Microbiol Infect Dis, 32(1), 21-28.
333	Hawkey, P. M., & Jones, A. M. (2009). The changing epidemiology of resistance. J
334	Antimicrob Chemother, 64 Suppl 1, i3-10.
335	Hoszowski, A., & Wasyl, D. (2005). Salmonella prevalence and resistance to antibiotics in
336	Poland. MEDYCYNA WETERYNARYJNA, 61(6), 660-663.
337	Hussain, I., Shahid Mahmood, M., Akhtar, M., & Khan, A. (2007). Prevalence of
338	Campylobacter species in meat, milk and other food commodities in Pakistan. Food
339	Microbiol, 24(3), 219-222.
340	Isenbarger, D. W., Hoge, C. W., Srijan, A., Pitarangsi, C., Vithayasai, N., Bodhidatta, L.,
341	Hickey, K. W., & Cam, P. D. (2002). Comparative antibiotic resistance of diarrheal
342	pathogens from Vietnam and Thailand, 1996-1999. Emerg Infect Dis, 8(2), 175-180.
343	Kashoma, I. P., Kassem, I. I., Kumar, A., Kessy, B. M., Gebreyes, W., Kazwala, R. R., &
344	Rajashekara, G. (2015). Antimicrobial resistance and genotypic diversity of
345	Campylobacter isolated from pigs, dairy, and beef cattle in Tanzania. Front
346	Microbiol, 6.
347	Kassem, II, Kehinde, O., Kumar, A., & Rajashekara, G. (2017). Antimicrobial-Resistant
348	Campylobacter in Organically and Conventionally Raised Layer Chickens.
349	Foodborne Pathog Dis, 14(1), 29-34
350	Kovaļenko, K., Roasto, M., Šantare, S., Bērziņš, A., & Hörman, A. (2014). Campylobacter
351	species and their antimicrobial resistance in Latvian broiler chicken production. Food
352	Control, 46, 86-90.

353	Lazou, T., Houf, K., Soultos, N., Dovas, C., & Iossifidou, E. (2014). Campylobacter in small
354	ruminants at slaughter: prevalence, pulsotypes and antibiotic resistance. Int J Food
355	Microbiol, 173, 54-61.
356	Lehtopolku, M., Nakari, U. M., Kotilainen, P., Huovinen, P., Siitonen, A., & Hakanen, A. J.
357	(2010). Antimicrobial susceptibilities of multidrug-resistant Campylobacter jejuni and
358	coliC. coli strains: in vitro activities of 20 antimicrobial agents. Antimicrob Agents
359	Chemother, 54(3), 1232-1236.
360	Lin, J., Yan, M., Sahin, O., Pereira, S., Chang, Y. J., & Zhang, Q. (2007). Effect of macrolide
361	usage on emergence of erythromycin-resistant Campylobacter isolates in chickens.
362	Antimicrob Agents Chemother, 51(5), 1678-1686.
363	Linton, D., Lawson, A. J., Owen, R. J., & Stanley, J. (1997). PCR detection, identification to
364	species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli
365	direct from diarrheic samples. J Clin Microbiol, 35(10), 2568-2572.
366	Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M., & Zhang, Q. (2009).
367	Antibiotic resistance in Campylobacter: emergence, transmission and persistence.
368	Future Microbiol, 4(2), 189-200.
369	Maćkiw, E., Korsak, D., Rzewuska, K., Tomczuk, K., & Rożynek, E. (2012). Antibiotic
370	resistance in Campylobacter jejuni and Campylobacter coli isolated from food in
371	Poland. Food Control, 23(2), 297-301.
372	Messad, S., Hamdi, TM., Bouhamed, R., Ramdani-Bouguessa, N., & Tazir, M. (2014).
373	Frequency of contamination and antimicrobial resistance of thermotolerant
374	Campylobacter isolated from some broiler farms and slaughterhouses in the region of
375	Algiers. Food Control, 40, 324-328.
376	Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S., Fanning, S., Kempf, I.,
377	Lastovica, A. J., Lowery, C. J., Matsuda, M., McDowell, D. A., McMahon, A., Millar,

378	B. C., Rao, J. R., Rooney, P. J., Seal, B. S., Snelling, W. J., & Tolba, O. (2006). The
379	epidemiology of antibiotic resistance in Campylobacter. Microbes Infect, 8(7), 1955-
380	1966.
381	Moran L., Scates P., & Madden R. H. (2009). Prevalence of Campylobacter spp. in raw retail
382	poultry on sale in northern Ireland. Journal of Food Protection 72(9), 1830-1835.
383	Osano, O., & Arimi, S. M. (1999). Retail poultry and beef as sources of Campylobacter
384	jejuni. East Afr Med J, 76(3), 141-143.
385	Payot, S., Bolla, J. M., Corcoran, D., Fanning, S., Megraud, F., & Zhang, Q. (2006).
386	Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp.
387	Microbes Infect, 8(7), 1967-1971.
388	Rahimi, E., & Ameri, M. (2011). Antimicrobial resistance patterns of <i>Campylobacter</i> spp.
389	isolated from raw chicken, turkey, quail, partridge, and ostrich meat in Iran. Food
390	Control, 22(8), 1165-1170.
391	Rahimi, E., Ameri, M., & Kazemeini, H. R. (2010). Prevalence and antimicrobial resistance
392	of Campylobacter species isolated from raw camel, beef, lamb, and goat meat in Iran.
393	Foodborne Pathog Dis, 7(4), 443-447.
394	Roasto, M., Juhkam, K., Tamme, T., Horman, A., Hakkinen, L., Reinik, M., Karus, A., &
395	Hanninen, M. L. (2007). High level of antimicrobial resistance in Campylobacter
396	jejuni isolated from broiler chickens in Estonia in 2005 and 2006. J Food Prot, 70(8),
397	1940-1944.
398	Rodrigo, S., Adesiyun, A., Asgarali, Z., & Swanston, W. (2007). Antimicrobial resistance of
399	Campylobacter spp. isolated from broilers in small poultry processing operations in
400	Trinidad. Food Control, 18(4), 321-325.

401	Stucki, U., Frey, J., Nicolet, J., & Burnens, A. P. (1995). Identification of Campylobacter
402	jejuni on the basis of a species-specific gene that encodes a membrane protein. J Clin
403	Microbiol, 33(4), 855-859.
404	Talsma, E., Goettsch, W. G., Nieste, H. L., Schrijnemakers, P. M., & Sprenger, M. J. (1999).
405	Resistance in Campylobacter species: increased resistance to fluoroquinolones and
406	seasonal variation. Clin Infect Dis, 29(4), 845-848.
407	Wieczorek, K., Denis, E., Lynch, O., & Osek, J. (2013). Molecular characterization and
408	antibiotic resistance profiling of Campylobacter isolated from cattle in Polish
409	slaughterhouses. Food Microbiol, 34(1), 130-136.
410	Wilson, I. G. (2003). Antibiotic resistance of Campylobacter in raw retail chickens and
411	imported chicken portions. Epidemiol Infect, 131(3), 1181-1186.
412	

Percentage of resistant isolates

Fig. 1. ENI- Enrofloxacin; TY- Tylosine; AML- Amoxicillin; CIP- Ciprofloxacin; CT- Colistin; NA- Nalidixic Acid; N- Neomycin; CN-Gentmycin; DO-Doxycycline.

Fig. 2. Percentage of isolates from different sources of meat. ENI- Enrofloxacin; TY- Tylosine; AML- Amoxicillin; CIP- Ciprofloxacin; CT- Colistin; NA- Nalidixic Acid; N- Neomycin; CN-Gentmycin; DO-Doxycycline.

Table 1Antimicrobial resistance pattern of *Campylobacter* spp. isolated from various meat sources in Lahore, Pakistan.

				Perc	ent resistanc	e to:			
Organism	Enrofloxacin	Tylosin	Amoxicillin	Ciprofloxacin	Colistin	Nalidixic Acid	Neomycin	Gentamicin	Doxycycline
C. jejuni	64/82	64/82	59/82	56/82	55/82	26/82	25/82	24/82	6/82
(n=82)	(78%)	(78%)	(72%)	(68.3%)	(67.1%)	(31.7%)	(30.5%)	(29.3%)	(7.3%)
C. coli	35/43	33/43	30/43	33/43	32/43	13/43	16/43	8/43	5/43
(n=43)	(81.4%)	(76.7%)	(69.8%)	(76.7%)	(74.4%)	(30.2%)	(37.2%)	(18.6%)	(11.6%)
Total	99/125	97/125	89/125	89/125	87/125	39/125	41/125	32/125	11/125
(n=125)	(79.2%)	(77.6%)	(71.2%)	(71.2%)	(69.6%)	(31.2%)	(32.8%)	(25.6%)	(8.8%)

 Table 2

 Antimicrobial resistance pattern of *Campylobacter* spp. isolated from beef, mutton and poultry meat in Lahore, Pakistan.

Meat origin		Percent resistant to:								
		Enrofloxacin	Tylosin	Ciprofloxacin	Colistin	Amoxicillin	Neomycin	Nalidixic Acid	Gentamicin	Doxycycline
	<i>C. jejuni</i> (n=19)	15/19 (78.9%)	12/19 (63.2%)	17/19 (89.4%)	14/19 (73.7%)	11/19 (57.9%)	5/19 (26.3%)	5/19 (26.3%)	8/19 (42.1%)	0
Beef	C. coli	9/12	6/12	9/12	9/12	5/12	3/12	0	5/12	2/12
(n=31)	(n=12)	(75%)	(50%)	(75%)	(75%)	(41.7%)	(25%)	(%)	(41.7%)	(16.7%)
	Total	24/31	18/31	26/31	23/31	16/31	8/31	5/31	13/31	2/31
	(n=31)	(77.4%)	(58.1%)	(83.9%)	(74.2%)	(51.6%)	(25.8%)	(16.1%)	(41.9%)	(6.5%)
	<i>C. jejuni</i>	19/25	21/25	16/25	17/25	18/25	5/25	8/25	6/25	2/25
	(n=25)	(76%)	(84%)	(64%)	(68%)	(72%)	(20%)	(32%)	(24%)	(8%)
Mutton	<i>C. coli</i>	7/11	10/11	8/11	7/11	7/11	5/11	4/11	2/11	2/11
(n=36)	(n=11)	(63.6%)	(90.9%)	(72.7%)	(63.6%)	(63.6%)	(54.5%)	(36.4%)	(18.2%)	(18.2%)
	Total	26/36	31/36	24/36	24/36	25/36	10/36	12/36	8/36	4/36
	(n=36)	(72.2%)	(86.1%)	(66.7%)	(66.7%)	(69.4%)	(27.8%)	(33.3%)	(22.2%)	(11.1%)
	<i>C. jejuni</i>	30/38	31/38	23/38	24/38	30/38	15/38	13/38	10/38	4/38
	(n=38)	(78.9%)	(81.6%)	(60.5%)	(63.2%)	(78.9%)	(39.5%)	(34.2%)	(26.3%)	(10.5%)
Poultry	<i>C. coli</i>	19/20	17/20	16/20	16/20	18/20	8/20	9/20	1/20	1/20
(n=58)	(n=20)	(95%)	(85%)	(80%)	(80%)	(90%)	(40%)	(45%)	(5%)	(5%)
	Total	49/58	48/58	39/58	40/58	48/58	23/58	22/58	11/58	5/58
	(n=58)	(84.5%)	(82.2%)	(67.2%)	(69%)	(82.2%)	(39.7%)	(37.9%)	(19%)	(8.6%)