Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №3 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Мишутин Дмитрий Валерьевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2024 г.

Содержание

1	По	становка задачи	2
2	Теория		2
	2.1	Классификация измерений	2
	2.2	Взаимные отношения интервалов наблюдения и прогноз-	
		ного интервала модели	2
3	Pea	еализация	
4	Pea	зультаты	3
5	Вы	Выводы	
c	П		0
6	ЛИ	тература	9
7	Пр	иложения	10
С	пи	сок иллюстраций	
	1	Первая выборка, Y_1	3
	2	Точечная линейная регрессия и коридор совместных зна-	
		чений для Y_1	4
	3	Точечная линейная регрессия и коридор совместных зна-	
		чений для \mathcal{E}_1	5
	4	Диаграмма статусов измерений выборки \mathcal{E}_1	5
	5	Диаграмма статусов измерений выборки \mathcal{E}_1 (Приближеие) .	6
	6	Вторая выборка, Y_2	7
	7	Точечная линейная регрессия и коридор совместных зна-	
		чений для Y_2	7
	8	Точечная линейная регрессия и коридор совместных зна-	
		чений для \mathcal{E}_2	8
	9	Диаграмма статусов измерений выборки \mathcal{E}_2	8
	10	Диаграмма статусов измерений выборки \mathcal{E}_2 (Приближение)	9

1 Постановка задачи

Провести анализ остатков интервальных измерений.

2 Теория

2.1 Классификация измерений

Измерения можно классифицировать следующим образом. Измерения, добавление которых к выборке не приводит к модификации модели, называются внутренними. Те, которые изменяют модель, называются внешними. Измерения, которые определяют какую-либо границу информационного множества, называются граничными. Выбросами называются те измерения, которые делают информационное множество пустым. Граничные измерения - подмножество внутренних, выбросы - внешних.

Для удобства анализа взаимоотношения информационных множеств работу с ними заменяют на анализ взаимоотношения интересующего интервального измерения и интервального прогнозируемого значения модели (коридора совместных значений).

2.2 Взаимные отношения интервалов наблюдения и прогнозного интервала модели

Существует несколько характеристик, определяющих это взаимоотношение.

Размахом (плечом) называется следующее отношение 1.

$$l(x, \mathbf{y}) = \frac{\Upsilon(x)}{rad(\mathbf{y})} \tag{1}$$

Относительным остатком называется отношение 2.

$$r(x, \mathbf{y}) = \frac{mid(\mathbf{y}) - mid(\Upsilon(x))}{rad(\mathbf{y})}$$
(2)

здесь x - точечное значение, \mathbf{y} - интервальное значение интересующей величины (отклик x), $\Upsilon(x)$ - интервальная оценка интересующей величины (значение коридора совместных значений).

Для внутренних наблюдений выполняется неравенство 3.

$$|r(x, \mathbf{y})| \le 1 - l(x, (y)) \tag{3}$$

В случае равенства 3 измерение будет граничным.

Выбросы определяются неравенством 4

$$|r(x,\mathbf{y})| > 1 + l(x,\mathbf{y}) \tag{4}$$

3 Реализация

Из языка Python 3.12.2 были использованы следующие модули:

- "numpy" генерация множества чисел;
- "matplotlib.pyplot" построение и отображение графиков;
- "scipy" для выполнения научных и инженерных расчётов;
- "glob" расширение шаблонов пути в стиле Unix.

4 Результаты

Данные S_X были взяты из файлов $data/dataset2/XV_spN.txt$, где $X \in P = \{-0.45, -0.35, -0.25, -0.15, -0.05, 0.05, 0.15, 0.25, 0.35, 0.45\}$. Набор δ_i получен из файла $data/dataset2/0.0V_sp443.txt$.

Рассмотрим первую выборку Y_1 . Y_1 получена следующим образом. $\mathbf{y}_i = [\min S_i, \max S_i], i \in P, \mathbf{y}_i \in Y_1$.

Рис. 1: Первая выборка, Y_1

Построим точечную линейную регрессию и коридор совместных значений.

Рис. 2: Точечная линейная регрессия и коридор совместных значений для Y_1

Построим выборку остатков \mathcal{E}_1 , $\varepsilon_i = \mathbf{y}_i - (\beta_0 + \beta_1 x_i)$, $\varepsilon_i \in \mathcal{E}_1$. Выборка \mathcal{E}_1 и коридор совместных значений для \mathcal{E}_1 имеют вид.

Рис. 3: Точечная линейная регрессия и коридор совместных значений для \mathcal{E}_1

Теперь построим диаграмму статусов для выборки \mathcal{E}_1 . По оси x лежит значение размаха (см. 1), по оси y значение относительного остатка (см. 2).

Рис. 4: Диаграмма статусов измерений выборки \mathcal{E}_1

Для данной выборки \mathcal{E}_1 и простейшей линейной модели граничными являются измерения, соответствующие следующим значениям переменной x: [-0.45, -0.35, -0.25, -0.05, 0.35]. Измерение, соответствующее переменной x = 0.45, возможно, является внешним или также граничным, а все остальные измерения внутренние (рис. 5).

Рис. 5: Диаграмма статусов измерений выборки \mathcal{E}_1 (Приближеие)

Для наглядности проведём аналогичные измерения для другой выборки Y_2 . Y_2 получена следующим образом. $\mathbf{y}_i = [median(S_i) - \varepsilon, median(S_i) + \varepsilon], \ \varepsilon = 25.0, \ i \in P, \ \mathbf{y}_i \in Y_2.$

 Y_2 имеет вид.

Рис. 6: Вторая выборка, Y_2

Построим точечную линейную регрессию и коридор совместных значений для Y_2 .

Рис. 7: Точечная линейная регрессия и коридор совместных значений для Y_2

Выборка остатков \mathcal{E}_2 и коридор совместных значений для \mathcal{E}_2 имеют

Рис. 8: Точечная линейная регрессия и коридор совместных значений для \mathcal{E}_2

Построим диаграмму статусов для \mathcal{E}_2 .

Рис. 9: Диаграмма статусов измерений выборки \mathcal{E}_2

Для выборки \mathcal{E}_2 граничными являются измерения, соответствующие значениям переменной $x \in [-0.45, -0.15, -0.05, 0.35, 0.45]$. Остальные являются внутренними.

Рис. 10: Диаграмма статусов измерений выборки \mathcal{E}_2 (Приближение)

5 Выводы

Из полученных результатов можно заметить следующее. Для первой выборки на диаграмме статутов измерений статусы находятся вблизи точки (1,0) (рис. 4), в то время как для второй выборки статусы расположились дальше от точки (1,0), имеют меньшие значения для плеча (см. 1) и большие по модулю для относительного остатка (см. 2). Это вполне сочетается с тем, как выглядят коридоры совместных значений для каждой выборки (рис. 3, 8). Также стоит отметить, что ни для одной выборки не было обнаружено выборсов или явных внешних измерений.

6 Литература

- Баженов А.Н. «Интервальный анализ. Основы теории и учебные примеры: учебное пособие»;
- Баженов А.Н. «Естественнонаучные и технические применения интервального анализа: учебное пособие»;

• Баженов А.Н. Репозиторий "Students" на GitHub;

7 Приложения

Исходники лабораторной работы выложены на GitHub.