杭州电子科技大学学生期中试卷参考答案

考试课程	大学物理 2		考试日期 2016.11.20		1. 20	成绩	
课程号	A0715012	教师号		任课教师	姓名		
考生姓名		学号(8位)		年级		专业	

【请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。】

- 一、单项选择题(本大题共30分,每小题3分)
- 1. 图(a)、(b)、(c)为三个不同的简谐振动系统. 组成各系统的各 弹簧的原长、各弹簧的劲度系数及重物质量均相同. (a)、(b)、(c) 三个振动系统的 ω^2 (ω 为固有角频率)值之比为

- (C) 2:2:1.
- (D) 1:1:2.

- 2. 一弹簧振子作简谐振动, 当位移为振幅的一半时, 其动能为总能量的
 - (A) 1/4.
- (B) 1/2.
- (C) $1/\sqrt{2}$.

- (D) 3/4.
- (E) $\sqrt{3}/2$.

 $\begin{bmatrix} \mathbf{D} \end{bmatrix}$

 $\begin{bmatrix} \mathbf{D} \end{bmatrix}$

- 3. 横波以波速 u 沿 x 轴负方向传播. t 时刻波形曲线如图. 则该时刻
 - (A) A点振动速度大于零. (B) B点静止不动.
- - (C) C点向下运动.
- (D) D点振动速度小于零.

- 4. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中
 - (A) 它的势能转换成动能,
 - (B) 它的动能转换成势能.
 - (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.
 - (D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.

 Γ C Γ

5. 某时刻驻波波形曲线如图所示,则 a、b 两点振动的相位 差是

- (B) $\frac{1}{2}\pi$ (C) π .

6. 如图, S_1 、 S_2 是两个相干光源,它们到 P点的距离分别为 r_1 和 r_2 . 路径 S_1P 垂直穿过 一块厚度为 t_1 , 折射率为 n_1 的介质板, 路径 S_2P 垂直穿过 厚度为 6, 折射率为 n2 的另一介质板, 其余部分可看作真 空,这两条路径的光程差等于

(B)
$$[r_2 + (n_2 - 1)t_2] - [r_1 + (n_1 - 1)t_1]$$

- (C) $(r_2 n_2 t_2) (r_1 n_1 t_1)$
- **(D)** $n_2 t_2 n_1 t_1$

Гв]

- 7. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是
 - (A) 使屏靠近双缝.
 - (B) 使两缝的间距变小.
 - (C) 把两个缝的宽度稍微调窄.
 - (D) 改用波长较小的单色光源.

- Γв٦
- 8. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的 滤光片遮盖另一条缝,则
 - (A) 干涉条纹的宽度将发生改变.
 - (B) 产生红光和蓝光的两套彩色干涉条纹.
 - (C) 干涉条纹的亮度将发生改变.
 - (D) 不产生干涉条纹.

- Г **р**]
- 9. 如图,用单色光垂直照射在观察牛顿环的装置上. 当平凸透 镜垂直向上缓慢平移而远离平面玻璃时, 可以观察到这些环状 干涉条纹
 - (A) 向右平移.
- (B) 向中心收缩.
- (C) 向外扩张. (E) 向左平移.
- (D) 静止不动.
 - Гв 7
- 10. 在迈克耳孙干涉仪的一条光路中,放入一折射率为 n,厚度为 d 的透明薄片,放入 后,这条光路的光程改变了
 - (A) 2(n-1)d.
- (B) 2nd.
- (C) 2 (n-1) $d+\lambda/2$.

- (D) nd.
- (E) (n-1) d.

ГΑΊ

二、填空题(本大题共11分)

11. (本题 3分) 一物体同时参与同一直线上的两个简谐振动:

$$x_1 = 0.05\cos(4\pi t + \frac{1}{3}\pi)$$
 (SI), $x_2 = 0.03\cos(4\pi t - \frac{2}{3}\pi)$ (SI)

合成振动的振幅为 0.02 m.

- 12. (本题 4 分) 惠更斯引进<u>子波(或次波)</u>的概念提出了惠更斯原理,菲涅尔再用 <u>子波相干叠加(或子波干涉)</u>的思想补充了惠更斯原理。发展成了惠更斯一菲涅耳原理.
- 13. (本题 4分) 在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为 6 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是<u>明</u>纹(填"明"或"暗").

三、计算题(必做)(本大题共43分)

- 14. (本题 12 分) 一物体作简谐振动, 其速度最大值 $v_m = 3 \times 10^{-2}$ m/s, 其振幅 $A = 2 \times 10^{-2}$ m. 若 t = 0 时, 物体位于平衡位置且向 x 轴的负方向运动. 求:
 - (1) 振动周期 T:
 - (2) 加速度的最大值 a_m ;
 - (3) 振动方程的数值式.

解: (1)
$$v_m = \omega A$$
 ∴ $\omega = v_m / A = 1.5 \text{ s}^{-1}$
∴ $T = 2\pi/\omega = 4.19 \text{ s}$ 4 分
(2) $a_m = \omega^2 A = v_m \omega = 4.5 \times 10^{-2} \text{ m/s}^2$ 4 分
(3) $\phi = \frac{1}{2}\pi$

$$\varphi = \frac{\pi}{2}$$

$$x = 0.02 \cos(1.5t + \frac{1}{2}\pi) \quad \text{(SI)}$$
4 \(\frac{\pi}{2}\)

15. (本题6分) 如图所示, 一简谐波向x轴正向传播, 波速 u = 500m/s, $x_0 = 1m$ 处P点的振动方程为 $y = 0.03\cos(500\pi t - \pi/2)(SI)$. 按图所示坐标系,写出相应的波的表达式。

16. (本题 12 分) 设入射波的表达式为 $y_1 = A\cos 2\pi (\frac{x}{\lambda} + \frac{t}{T})$, 在 x = 0 处发生反射,反射点为一固定端. 设反射时无能量损失,求

- (1) 反射波的表达式;
- (2) 合成的驻波的表达式:
- (3) 波腹和波节的位置.
- 解:(1) 反射点是固定端,所以反射有相位突变 π ,且反射波振幅为A,因此反

射波的表达式为 $y_2 = A\cos[2\pi(t/T - x/\lambda) + \pi]$

3 分

(半波损失,如为"- π "也是对的,后面的答案与之对应即可)

(2) 驻波的表达式是 $y = y_1 + y_2$

$$= 2A\cos(2\pi x / \lambda - \frac{1}{2}\pi)\cos(2\pi t / T + \frac{1}{2}\pi)$$

或
$$= 2A\sin(2\pi \frac{x}{\lambda})\cos(2\pi \frac{t}{T} + \frac{1}{2}\pi)$$
3分

(3) 波腹位置:
$$2\pi \frac{x}{\lambda} = (2k+1)\frac{\pi}{2}$$
, $x = \frac{2k+1}{4}\lambda$, $k = 0, 1, 2, 3, 4, \cdots$ 3分

波节位置:
$$2\pi \frac{x}{\lambda} = k\pi$$

$$x = \frac{k}{2}\lambda \quad , \quad k = 0, 1, 2, 3, 4, \cdots$$
 3 分

17. (本题 8 分)在双缝干涉实验中,双缝与屏间的距离 D=1.2 m,双缝间距 d=0.45 mm, 若测得屏上干涉条纹相邻明条纹间距为 1.5 mm, 求光源发出的单色光的波长 λ .

解: 根据公式
$$x = k\lambda D/d$$
 相邻条纹间距 $\Delta x = D\lambda/d$ 则 $\lambda = d\Delta x/D$ 5分 = 562.5 nm.

18. (本题 15 分) 用波长为 500 nm (1 nm= 10^{-9} m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上. 在观察反射光的干涉现象中,距劈形膜棱边 I=1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.

- (1) 求此空气劈形膜的劈尖角 θ ;
- (2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹, A 处是明条纹还是暗条纹?
 - (3) 在第(2)问的情形从棱边到 A 处的范围内共有几条明纹? 几条暗纹?
- 解: (1) 棱边处是第一条暗纹中心,在膜厚度为 $e_2 = \frac{1}{2} \lambda$ 处是第二条暗纹中心,依此可

知第四条暗纹中心处,即 A 处膜厚度 $e_4 = \frac{3}{2}\lambda$

∴ $\theta = e_{A}/l = 3\lambda/(2l) = 4.8 \times 10^{-5} \text{ rad}$ 6 分

(2) 由上问可知 A 处膜厚为 $e_4=3\times500/2$ nm=750 nm 对于 $\lambda'=600$ nm 的光,连同附加光程差,在 A 处两反射光的光程差为

$$2e_4 + \frac{1}{2}\lambda'$$
, 它与波长 λ' 之比为 $2e_4/\lambda' + \frac{1}{2} = 3.0$. 所以 A 处是明纹 6 分

(3) 棱边处仍是暗纹, A 处是第三条明纹, 所以共有三条明纹, 三条暗纹. 3 分

19. (本题 6 分) 单缝的宽度 a=0.10 mm, 在缝后放一焦距为 50 cm 的会聚透镜,用平行绿光($\lambda=546$ nm)垂直照射到单缝上,试求位于透镜焦平面处的屏幕上中央明条纹宽度. ($1nm=10^{-9}$ m)

解:中央明纹宽度

$$\Delta x \approx 2f\lambda / a = 2 \times 5.46 \times 10^{-4} \times 500 / 0.10$$
mm 5分 = 5.46 mm 1分

四、计算题【选做】

20. (本题 10 分)波长 λ =600nm(1nm=10 $^{-9}$ m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30°,且第三级是缺级.

- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 a 等于多少?
- (3) 在选定了上述(a + b)和 a之后,求在衍射角 $-\frac{1}{2}\pi < \varphi < \frac{1}{2}\pi$ 范围内可能观察到的全部主极大的级次.

解: (1) 由光栅衍射主极大公式得

$$a + b = \frac{k\lambda}{\sin \varphi} = 2.4 \times 10^{-4} \text{ cm}$$
 3 \(\frac{\partial}{2}\)

(2) 若第三级不缺级,则由光栅公式得

$$(a+b)\sin\varphi'=3\lambda$$

由于第三级缺级,则对应于最小可能的 a, ϕ' 方向应是单缝衍射第一级暗纹: 两式比较,得 $a\sin\phi'=\lambda$

$$a = (a + b)/3 = 0.8 \times 10^{-4}$$
 cm 3 \Re

(3)
$$(a+b)\sin\varphi = k\lambda, \ (主极大)$$

$$a\sin \varphi = k'\lambda$$
, (单缝衍射极小) (k'=1, 2, 3,)

又因为
$$k_{\text{max}}$$
= $(a+b)/\lambda$ =4, 所以实际呈现 k =0, ±1, ±2 级明纹. $(k$ =±4 在 $\pi/2$ 处看不到.)