

FLAME- AND SMOKE-RETARDANT POLYMER SYSTEMS

Second Quarterly Report

Issued: 26 April 1977

Period Covered: August - October 1976

Prepared Under Contract: N00024-76-C-5336

For

Department of the Navy Naval Sea Systems Command Washington, DC 20362

Leo Parts and Catherine A. Thompson

MONSANTO RESEARCH CORPORATION

A SUBSIDIARY OF MONSANTO COMPANY

The state of the s

D A Y T O N L A B O R A T O R Y

DAYTON, OHIO 45407

Approved for public release:

Distribution Unlimited

AD NO. --

Second Quarterly Report

Issued: 26 April 1977

Period Covered: August - October 1976

For

Department of the Navy Naval Sea Systems Command Washington, DC 20362

Leo Parts and Catherine A. Thompson

MONSANTO RESEARCH CORPORATION DAYTON LABORATORY DAYTON, OHIO 45407

ABSTRACT

Experimental smoke-retardant PVC compositions and a reference base polymer were coated with alkyd- and epoxy-based intumescent paints. Specimens were tested in an NBS smoke density chamber under flame and nonflame exposure conditions. The smoke optical density, and the concentrations of CO, $\rm CO_2$, $\rm NO_X$, hydrocarbons, hydrogen chloride and oxygen were monitored during these tests.

Although the coatings reduced smoke formation from the base polymer, they had an adverse effect on the performance of the smoke-retardant compositions. The commercial coatings used in this work were found to generate significant quantities of smoke. Other, recently developed coatings will be used in projected work.

The intumescent coatings reduced the rates of carbon monoxide and hydrogen chloride formation, especially under nonflame exposure to a radiant energy source.

The coatings contributed small amounts of nitrogen oxides (NO_X) to the combustion products.

The state of the s

TABLE OF CONTENTS

			Page
1.	INTRO	DUCTION	1
2.	EXPER	RIMENTAL	1
	2.1	Materials	1
	2.2	Test Methods for the Formation of Smoke and Gaseous Combustion Products	2
3.	RESUL	TS AND DISCUSSION	2
	3.1	Formation of Smoke	2
	3.2	Formation of Gaseous Combustion Products	9
4.	ACKNO	WLEDGMENT	15
5.	REFER	RENCES	15
A D DE	NDTV		16
APPE	NDTX		16
DIST	RIBUTI	ON LIST	53
DD F	ORM 14	73	54

ETTO POG WIAMMOUNCED JUSTIFICATION	
BRIBISALI	MAYADABILITY CODES AVAIL and/or SPECIAL

LIST OF TABLES

<u>Table</u>		Page
I	Smoke Optical Density Results Summary for PVC Compositions	4
II	Summary of CO Concentration Data for Selected Times for PVC Compositions	10
III	Summary of ${\rm CO}_2$ Concentration Data for Selected Times for PVC Compositions	11
IV	Summary of $\mathrm{NO}_{\mathbf{X}}$ Concentration Data for Selected Times for PVC Compositions	12
V	Summary of Hydrocarbons Concentration Data for Selected Times for PVC Compositions	13
VI	Summary of HCl Concentration Data for Selected Times for PVC Compositions	14
VII	Sample Mass Data	36
VIII	Combustion Products Formed from BP-IC-1 Under Flame Exposure Conditions	37
IX	Combustion Products Formed from BP-IC-1 Under Nonflame Exposure Conditions	38
X	Combustion Products Formed from BP-IC-2 Under Flame Exposure Conditions	39
XI	Combustion Products Formed from BP-IC-2 Under Nonflame Exposure Conditions	40
XII	Combustion Products Formed from FSP-1-IC-1 Under Flame Exposure Conditions	41
XIII	Combustion Products Formed from FSP-1-IC-1 Under Nonflame Exposure Conditions	42
XIV	Combustion Products Formed from FSP-1-IC-2 Under Flame Exposure Conditions	43
XV	Combustion Products Formed from FSP-1-IC-2 Under Nonflame Exposure Conditions	44

iv

LIST OF TABLES (cont'd)

Table		Page
XVI	Combustion Products Formed from FSP-2-IC-1 Under Flame Exposure Conditions	45
XVII	Combustion Products Formed from FSP-2-IC-1 Under Nonflame Exposure Conditions	46
XVIII	Combustion Products Formed from FSP-2-IC-2 Under Flame Exposure Conditions	47
XIX	Combustion Products Formed from FSP-2-IC-2 Under Nonflame Exposure Conditions	48
XX	Combustion Products Formed from Al-IC-1 Under Flame Exposure Conditions	49
XXI	Combustion Products Formed from Al-IC-1 Under Nonflame Exposure Conditions	50
XXII	Combustion Products Formed from Al-IC-2 Under Flame Exposure Conditions	51
XXIII	Combustion Products Formed from Al-IC-2 Under Nonflame Exposure Conditions	52

and the boundaries and the second second

LIST OF ILLUSTRATIONS

Figure		Page
1	Smoke Optical Densities During the Burning of BP-IC Compositions	3
2	Smoke Optical Densities During the Burning of FSP-1-IC Composition	5
3	Smoke Optical Densities During the Burning of FSP-2-IC Compositions	6
4	Smoke Optical Densities During the Exposure of Al-IC Compositions	7
5	Maximum Specific Smoke Optical Densities Under Flame Exposure Conditions	8
6	Maximum Specific Smoke Optical Densities Under Nonflame Exposure Conditions	8
7	Carbon Monoxide Concentrations During the Burning of BP-IC Compositions	17
8	Carbon Monoxide Concentrations During the Burning of FSP-1-IC Compositions	18
9	Carbon Monoxide Concentrations During the Burning of FSP-2-IC Compositions	19
10	Carbon Monoxide Concentrations During the Exposure of Al-IC Compositions	20
11	Carbon Dioxide Concentrations During the Burning of BP-IC Compositions	21
12	Carbon Dioxide Concentrations During the Burning of FSP-1-IC Compositions	22
13	Carbon Dioxide Concentrations During the Burning of FSP-2-IC Compositions	23
14	Carbon Dioxide Concentrations During the Exposure of Al-IC Compositions	24
15	NO _X Concentrations During the Burning of BP-IC	25

A STATE OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF T

LIST OF ILLUSTRATIONS (cont'd)

Figure		Page
16	$\ensuremath{\text{NO}_{\mathbf{X}}}$ Concentrations During the Burning of FSP-1-IC Compositions	26
17	$\ensuremath{\text{NO}_{\mathbf{X}}}$ Concentrations During the Burning of FSP-2-IC Compositions	27
18	$\ensuremath{\text{NO}_{X}}$ Concentrations during the Exposure of Al-IC Compositions	28
19	Hydrocarbons Concentrations During the Burning of BP Compositions	29
20	Hydrocarbons Concentrations During the Burning of FSF-1-IC Compositions	30
21	Hydrocarbons Concentrations During the Burning of FSP-2-IC Compositions	31
22	Hydrocarbons Concentrations During the Exposure of Al-IC Compositions	32
23	HCl Concentrations During the Burning of BP Compositions	33
24	HCl Concentrations During the Burning of FSP-1-IC Compositions	34
25	HCl Concentrations During the Burning of FSP-2-IC	35

1. INTRODUCTION

Means for enhancing the fire safety of two polymeric materials, plasticized polyvinyl chloride (PVC) and Neoprene, are investigated in this program. As reported in our first quarterly report (Ref. 1) ferric and cupric acetylacetonates were found to reduce smoke formation from PVC, in terms of optical density, by approximately 55%. In an attempt to further enhance the fire performance of these compositions, they were coated with intumescent compositions. Data for the formation smoke and gaseous combustion products from these compositions, under controlled test conditions, are presented in this report. Flame propagation data will be presented in a subsequent report.

2. EXPERIMENTAL

2.1 MATERIALS

The base polymer (BP) formulation contained 30 phr of Santicizer 148 plasticizer, 7 phr of dibasic lead phthalate, 0.4 phr of dibasic lead stearate and 0.4 phr of stearic acid.

The flame- and smoke-retardant (FSR) formulations contained 30 phr ${\rm MgCO}_3$ (Magcarb L, from Merck Chemical Division). Additionally, the formulations FSP-1 and FSP-2 contained also 5 phr ferric acetylacetonate and cupric acetylacetonate, respectively. The procedure for the preparation of the 0.16 cm thick sheets of the three polymer compositions was reported previously (Ref. 1).

Two types of intumescent coatings, an alkyd- and an epoxy-based material, were used. These were applied onto one side of the molded PVC sheet specimens and of a 0.019 in. thick aluminum sheet according to the manufacturers' specifications. The alkyd-based intumescent coating (No. 110 by C. M. Athey Paint Company) is designated as IC-1 in the present data tabulations. The epoxy-based coating (No. 477 by Ocean Chemicals, Inc.) is identified by the suffic IC-2. The alkyd-based coating is recommended by its manufacturer for interior surfaces (e.g., galleys, and engine room bulkheads and overheads) of marine vessels (Ref. 2). The epoxy-based intumescent coating is recommended for interior, exterior, and marine applications (Ref. 3)

The intumescent coatings were applied with a brush in approximate thicknesses specified in the manufacturers' technical literature. The alkyd coating is applied at a coverage of 200 square feet per gallon in a single application. The epoxy coating is recommended at a thickness of 9 to 10 mils, which is attained in two applications, at a total coverage rate of approximately 130 square feet per gallon. The solids content of the epoxy coating is in excess of 80%.

the state of the s

The alkyd coating was allowed to dry at room temperature for one week and the epoxy coating for at least two weeks before specimens were cut for testing. The thickness of the dried alkyd coating was approximately 15 mils; the corresponding value for the epoxy coating was 9 mils.

2.2 TEST METHODS FOR THE FORMATION OF SMOKE AND GASEOUS COMBUSTION PRODUCTS

An analysis system capable of continuous measurement of CO, $\rm CO_2$, $\rm NO_X$, total hydrocarbons and oxygen (Ref. 4) during the burning of polymers was used in conjunction with smoke measurements. This system, designed and constructed at Monsanto Research Corporation (MRC), is connected to the NBS-Aminco smoke density chamber, that is utilized for the burning of samples under controlled conditions. The apparatus and the test methods were described in some detail in the preceding quarterly report (Ref. 1). The sample sizes and the test conditions were identical with those specified in that report.

3. RESULTS AND DISCUSSION

3.1 FORMATION OF SMOKE

The primary objective of the present program is to lower smoke formation from burning PVC and Neoprene polymer compositions. Concomitantly, enhancement of other fire performance characteristics (e.g., reduction of the rate of flame propagation) will be sought.

Previous work at MRC (Ref. 5 and 6) and elsewhere (Ref. 7) has demonstrated the effectiveness of intumescent coatings for enhancing the fire performance of some polymers. Upon exposure to heat, the intumescent coatings expand to 100-300 fold of their original thicknesses, forming insulating cellular structures that afford protection to the substrate. Reduction of smoke formation and of flame propagation has been attained with intumescent coatings. In the present work, it was sought to investigate the effectiveness of that approach with the FSR PVC compositions.

Both types of intumescent coatings used in the present work, were found to reduce smoke formation from the base polymer, in terms of its maximum optical density, by approximately 20% (see Figure 1). However, when these coatings were applied onto the fire- and smoke-retardant compositions FSP-1 ans FSP-2, they had an adverse effect on smoke formation (see Table I and Figures 2-6). It appeared that with these materials, of lower smoke formation propensity than the base polymer, the coatings contributed smoke upon exposure to the radiant energy source and to the flame.

the state of the same of the s

Figure 1. Smoke Optical Densities During the Burning of BP-IC Compositions

A CONTRACTOR OF THE PROPERTY O

		Smoke	Optical	Time to Maximum					
	Flan	ne E	xposure	Nonflame Exposure			SOD (min)		
	10	20	M	10	20		Flame	Nonflame	
Material	min	min	Maximum	min	min	Maximum	Exposure	Exposure	
BP	410	270	510	320	270	320	4	10	
FSP-1	185	135	200	180	155	185	6	12	
FSP-2	140	105	165	150	115	155	5	8	
BP-IC-1	380	280	420	270	230	270	7	8	
BP-IC-2	360	320	390	230	220	230	12	13	
FSP-1-IC-1	200	180	200	195	190	200	11	15	
FSP-1-IC-2	340	260	380	270	270	270	7	16	
FSP-2-IC-1	200	135	250	180	150	180	6	12	
FSP-2-IC-2	410	320	420	270	240	270	9	10	
IC-1 ^b	59	87	100	48	68	76	30	30	
IC-2 <u>b</u>		130	188	86	99	97	7	17	
	,								

 $[\]underline{a}$ Measurements conducted with 7.6 cm x 7.6 cm x 0.16 cm specimens in vertical orientation. Imposed energy flux in the center of the samples 2.5 watts/cm².

 $[\]underline{b}$ Intumescent coating on an aluminum substrate, whose dimensions were 7.6 cm x 7.6 cm x 0.042 cm.

Figure 2. Smoke Optical Densities During the Burning of FSP-1-IC Compositions

A STATE OF THE PARTY OF THE PAR

Figure 3. Smoke Optical Densities During the Burning of FSP-2-IC Compositions

of being and the first of the second of the

Figure 4. Smoke Optical Densities During the Exposure of Al-IC Compositions

the best of the state of the st

Figure 5. Maximum Specific Smoke Optical Densities Under Flame Exposure Conditions

Figure 6. Maximum Specific Smoke Optical Densities Under Nonflame Exposure Conditions

Tests were subsequently conducted with thin aluminum sheet specimens that had been coated with intumescent paints. These tests demonstrated (see Figures 5 and 6) that the adverse effect, which was found to be especially pronounced with the epoxy-based material, indeed arose from smoke generated by the coating itself upon sustained exposure to the radiant energy source and to the flame.

The above results indicate need for intumescent coatings of very low propensity for smoke formation, to utilize fully the effectiveness of smoke-retardant additives incorporated into polymers. Some new candidate materials have recently been developed (Ref. 8). These merit experimental evaluation with the FSR PVC compositions developed in the present program.

With regard to the rates of smoke formation, it was generally found that they were reduced by the intumescent coatings.

3.2 FORMATION OF GASEOUS COMBUSTION PRODUCTS

The intumescent coatings reduced significantly the <u>formation of carbon monoxide</u> under nonflame exposure conditions (see Table II and Figures 7-9). This effect was especially noticeable with the FSP-1 composition.

The maximum concentrations of carbon monoxide formed under flame exposure conditions were not greatly affected by the coatings. However, it should be noted that significant carbon monoxide concentrations were generated under flame exposure conditions from the two intumescent coatings used in this work (see Figure 10). The formation of carbon monoxide from these coatings is attributed to the oxidation of the initially formed carbonaceous chars in the flame.

The <u>formation of carbon dioxide</u> from the FSP compositions was retarded by the intumescent coatings under the nonflame exposure conditions (see Table III).

The intumescent coatings enhanced slightly the formation of NO_{X} under both types of exposure conditions; however, they delayed the time when the maximum concentrations were reached. The epoxy coating enhanced NO_{X} formation more than the alkyd coating used in this work (see Table IV and Figures 15-18 in the Appendix).

The insulating coatings reduced the rate of <u>hydrogen chloride</u> formation, especially under nonflame exposure to the radiant energy source.

The feasibility of retaining the smoke-retardant characteristics of the FSP compositions, and enhancing other fire safety properties with recently developed instumescent compositions will be investigated in projected work.

A ST LOW THE REAL PROPERTY OF THE REAL PROPERTY OF

Table II

SUMMARY OF CO CONCENTRATION DATA FOR SELECTED TIMES
FOR PVC COMPOSITIONS

		Concent		Time to Maximum CO Concentration (min)			
	Flame	Exposure	<u>e</u>				
Material		20 Max.		20 <u>min</u>	Max.	Flam Exposi	
BP	810 1	450 1900	120	310	570	30	30
FSP-1	1190 18	850 2200	170	960	1350	30	30
FSP-2	1030 1	700 2100	220	700	850	30	30
BP-IC-1	910 1	400 1850	50	153	230	30	30
BP-IC-2	700 1	400 2000	23	92	180	30	30
FSP-1-IC-1	780 1	700 2350	21	76	135	30	30
FSP-1-IC-2	880 1	450 2050	35	125	210	30	30
FSP-2-IC-1	750 1	300 1600	36	141	235	30	30
FSP-2-IC-2	590 1	300 1950	32	115	200	30	30
IC-1	185	550 1400	3	12	25	30	30
IC-2	185	350 520	6	13	20	30	30

A CONTRACTOR OF THE RESIDENCE OF THE RES

Table III

SUMMARY OF CO2 CONCENTRATION DATA FOR SELECTED TIMES
FOR PVC COMPOSITIONS

		CO2	Concent	Time to Maximum CO ₂ Concentration					
	Flar	ne Exp	osure	Nonfla	me Ex	posure	(min)		
Material	10 min	20 min	Max.	10 min	20 min	Max. Conc.	Flame Exposure	Nonflame Exposure	
BP	0.68	1.24	1.78	0.02	0.06	0.12	30	30	
FSP-1	0.79	1.40	1.89	0.18	0.45	0.60	30	29	
FSP-2	0.98	1.61	2.16	0.17	0.40	0.50	30	29	
BP-IC-1	0.80	1.46	2.16	0.00	0.00	0.03	30	30	
BP-IC-2	0.54	1.12	1.68	0.01	0.03	0.04	30	30	
FSP-1-IC-1	0.79	1.11	1.40	0.07	0.13	0.16	30	30	
FSP-1-IC-2	0.94	1.34	1.77	0.10	0.18	0.22	30	30	
FSP-2-IC-1	1.00	1.67	2.32	0.11	0.16	0.20	30	30	
FSP-2-IC-2	0.78	1.31	1.78	0.09	0.18	0.22	30	30	
IC-1	0.44	0.75	1.05	0.02	0.02	0.03	30	30	
IC-2	0.40	0.86	1.24	0.02	0.03	0.04	30	30	

CHE CANAL DE

The state of the s

Table IV

SUMMARY OF NO_X CONCENTRATION DATA FOR SELECTED TIMES
FOR PVC COMPOSITIONS

		NO _x	Concent		Time to Maximum NO _x Concentration					
	Flam	e Exp	osure	Nonfla	ame E	xposure		(min)		
Material	10 min	20 min	Max. Conc.	10 min	20 min	Max.	Flame Exposure	Nonflame Exposure		
BP	13	9.4	19	2.9	2.2	4.6	5	4		
FSP-1	2.5	2.8	3.3	1.5	1.4	1.8	30	5		
FSP-2	5.9	5.3	7.7	1.5	1.4	1.6	5	4		
BP-IC-1	27	35	40	3.6	7.9	12	30	30		
BP-IC-2	21	36	46	11	12	16	30	30		
FSP-1-IC-1	33	35	37	3.6	8.4	13	30	30		
FSP-1-IC-2	42	49	54	5.0	11	16	30	30		
FSP-2-IC-1	22	28	31	2.9	6.2	9.1	30	30		
FSP-2-IC-2	33	50	60	5.0	11	16	30	30		
IC-1	16	19	21	2.2	4.0	6.0	30	30		
IC-2	24	38	46	6.1	7.9	9.5	30	30		

Table V

SUMMARY OF HYDROCARBONS CONCENTRATION DATA FOR SELECTED TIMES
FOR PVC COMPOSITIONS

	Hydrod	carb	ons Cor	Hydro	Maximum carbons tration				
	Flame	Exp	osure	Nonfla	ame Ex	posure	(min)		
Material	-	20 min	Max.	10 min	20 min	Max.	Flame Exposure	Nonflame Exposure	
BP	4300 4	600	5200	2800	2900	3000	30	17	
FSP-1	2300 3	3000	3500	3400	3400	3500	30	13	
FSP-2	2400 2	600	2800	2900	2700	2900	30	14	
BP-IC-1	4300 4	400	4500	2600	3000	3000	. 24	19	
BP-IC-2	5200 6	200	6700	2200	3100	3100	30	20	
FSP-1-IC-1	3700 5	600	7100	1600	2500	2500	30	22	
FSP-1-IC-2	3400 5	500	7600	2500	3200	3200	30	18	
FSP-2-IC-1	4200 4	500	5000	3200	3300	3300	30	19	
FSP-2-IC-2	3700 4	500	5000	2100	3300	3400	29	21	
IC-1	540 1	750	2600	39	55	62	30	29	
IC-2	660	800	830	310	360	360	25	20	

 $[\]underline{\underline{\mathbf{a}}}_{\text{Determined}}$ by flame ionization measurement. Expressed in terms of methane equivalents.

Table VI

SUMMARY OF HC1 CONCENTRATION DATA FOR SELECTED TIME
FOR PVC COMPOSITIONS

	HCl Concentration (ppm)									
	Flame	Expos	ure		sure					
Material	5 min	15 min	30 min		5 min	15 min	30 min			
BP	1950	2400	1050		1900	2600	2200			
FSP-1	1900	2200	1500		1650	2400	2100			
FSP-2	1350	900	490		1500	2300	1900			
BP-IC-1	2100	1250	620		1650	1850	1900			
BP-IC-2	1200	2200	1150		520	1750	1850			
FSP-1-IC-1	1250	1950	1400		(160)	950	1300			
FSP-1-IC-2	900	1100	910		(250)	(330)	(<63)			
FSP-2-IC-1	1250	780	940		(78)	1200	1600			
FSP-2-IC-2	(120)	(190)	(140)		220	1000	1000			
IC-1										
IC-2	<63	<63	<63		<63	<63	<63			

4. ACKNOWLEDGMENT

The authors are indebted to Mr. R. D. Myers for the compounding and molding of the PVC compositions. They also wish to express appreciation to Miss K. A. Flayler, Mr. J. T. Miller and Mr. N. F. May for computerized data processing.

5. REFERENCES

- 1. L. Parts and C. A. Thompson, "Flame- and Smoke-Retardant Polymer Systems," First Quarterly Report on Contract NOO024-76-C-5336, 15 September 1976.
- 2. Sales Merchandising Bulletin No. 1403, "Intumescent Fire Retardant Paint," C. M. Athey Paint Company.
- 3. Product Information Bulletin "Ocean Intumescent Fire Retardant Catalytic Epoxy Paint No. 477," Ocean Chemicals, Inc.
- 4. L. Parts, R. G. Olt and G. W. Wooten, "Products Resulting From Polymer Combustion," Polymer Conference Series, Flammability of Materials, University of Utah, Salt Lake City, Utah, July 11, 1974.
- 5. J. A. Ellard, "Performance of Intumescent Fire Barriers," presented at the 165th National Meeting of the American Chemical Society, Dallas, Texas, April 1973.
- 6. J. T. Miller and L. Parts, "Enhancement of Fire Performance of Fiberglass-Reinforced Plastic Panels by Fire-Retardant Coatings," MRC Report MRC-DA-456, November 1974.
- 7. R. Slysh, "Flame-Retardant Coatings for Plastics," J. Paint Technol. 47, 31 (1975).
- 8. Personal communication from E. Goldsmith, Ocean Chemicals, Inc., 20 April 1977.

the best of the second of the

APPENDIX

Figure 7. Carbon Monoxide Concentrations During the Burning of BP-IC Compositions

Figure 8. Carbon Monoxide Concentrations During the Burning of FSP-1-IC Compositions

Figure 9. Carbon Monoxide Concentrations During the Burning of FSP-2-IC Compositions

of the manufacture of the first of the second of the secon

Figure 10. Carbon Monoxide Concentrations During the Exposure of A1-IC Compositions

the second control of the second control of

Figure 11. Carbon Dioxide Concentrations During the Burning of BP-IC Compositions

ORE CALIFORNIA .

Figure 12. Carbon Dioxide Concentrations During the Burning of FSP-1-IC Compositions

The beautiful and the second of the second o

(RE ... 60.27 ... 24

Figure 13. Carbon Dioxide Concentrations During the Burning of FSP-2-IC Compositions

The second of th

Figure 14. Carbon Dioxide Concentrations During the Exposure of Al-IC Compositions

The state of the s

Figure 15. $\mathrm{NO}_{\mathbf{X}}$ Concentrations During the Burning of BP-IC Compositions

as the first the second of the second of

Figure 16. $\mathrm{NO}_{\mathbf{X}}$ Concentrations During the Burning of FSP-1-IC Compositions

ORE STREET

Figure 17. $\mathrm{NO}_{\mathbf{X}}$ Concentrations During the Burning of FSP-2-IC Compositions

of being activities and the second of the se

Figure 18. ${\rm NO_{X}}$ Concentrations during the Exposure of Al-IC Compositions

The second secon

Figure 19. Hydrocarbons Concentrations During the Burning of BP Compositions

The same production of the same of the sam

Figure 20. Hydrocarbons Concentrations During the Burning of FSP-1-IC Compositions

of the manufacture of the second of the seco

Figure 21. Hydrocarbons Concentrations During the Burning of FSP-2-IC Compositions

The second secon

Figure 22. Hydrocarbons Concentrations During the Exposure of Al-IC Compositions

Figure 23. HCl Concentrations During the Burning of BP Compositions

TO AND ALL DESCRIPTIONS OF THE SECTION OF THE SECTI

Figure 24. HCl Concentrations During the Burning of FSP-1-IC Compositions

of the company of the control of the

Figure 25. HCl Concentrations During the Burning of FSP-2-IC Compositions

ORE LABORET SA

TO STATE OF THE CONTROL OF THE SECOND

Table VII
SAMPLE MASS DATA

	Sample Ma	ass (g)a	Consumed M	lass (g)b
Material	Flame Exposure	Nonflame Exposure	Flame No Exposure	nflame Exposure
BP-IC-1	11.58	12.82		7.26
BP-IC-2	12.55	12.82		
FSP-1-IC-1	17.56	16.98		5.95
FSP-1-IC-2	15.68	17.57		7.13
FSP-2-IC-1	13.24	15.43	6.63	6.00
FSP-2-IC-2	16.96	16.07	7.55	7.42
Al-IC-1	9.10	9.19		
A1-IC-2	8.50	8.44	1.51	0.86

The second of th

 $[\]frac{a}{2}$ The dimensions of plastic specimens were 7.6 cm x 7.6 cm x 0.16 cm. The dimensions of the coated aluminum specimens were 7.6 cm x 7.6 cm x 0.066 cm.

The chars formed from some specimens could not be recovered completely. Therefore, the data in the consumed mass column are incomplete.

Table VIII

COMBUSTION PRODUCTS FORMED FROM BP-IC-1 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL PVC-BP-IC-1
SAMPLE MASS AVG 11.5759
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x.16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	66.	11.	0.04	149.	2.3	21.00
2.	204.	97.	0.13	968.	7.2	20.92
3.	277.	189.	0.23	1768.	12.3	20.71
4.	343.	266.	0.33	2668.	16.8	20.67
5.	399.	514.	0.43	3258.	19.7	20.44
6.	418.	646.	0.52	3631.	21.6	20.36
7.	424.	727.	0.60	3916.	23.7	20,22
8.	417.	786.	0.67	4105.	25.0	19.99
9.	399.	849.	0.74	4210.	25.8	19.94
10.	383.	907.	0.80	4263.	26.8	19.86
11.	363.	967.	0.87	4278.	27.7	19,75
12.	346.	1021.	0.94	4256.	28,6	19,64
13.	332.	1075.	1.00	4241.	29.5	19,52
14.	320.	1130.	1.06	4218.	30.1	19,35
15.	307.	1180.	1.12	4233.	31.0	19,31
16.	301.	1227.	1,19	4271.	31.7	19,26
17.	295.	1274.	1.26	4301.	32.5	19,14
18.	291.	1320.	1.32	4346.	33.3	19.00
19.	287.	1365.	1.39	4369.	33.9	18.88
20.	283.	1411.	1.46	4407.	34.6	18.72
21.	279.	1458.	1.54	4422.	35.2	18.62
22.	273.	1499.	1.60	4459.	35.7	18.52
23.	269.	1542.	1.67	4459.	36.3	18.40
24.	265.	1586.	1.74	4497.	36.8	18.29
25.	258.	1640.	1.82	4459.	37.6	18.20
26.	251.	1676.	1.88	4475.	38.0	18.05
27.	246.	1717.	1.95	4452.	38.7	17.93
28.	239.	1753.	2.02	4422.	39.1	17.78
29.	232.	1789.	2.09	4392.	39.5	17.71
30.	226.	1837.	2.16	4324.	39.8	17.59

Table IX

COMBUSTION PRODUCTS FORMED FROM BP-IC-1 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-BP-IC-1
SAMPLE MASS AVG 12.8166
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	C02(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	1.	4.	0.00	12.	0.1	20.87
2.	98.	4.	0.00	411.	0.3	20.70
3.	189.	4.	0.00	1181.	0.7	20.80
4.	225.	6.	0.00	1509.	1.0	20.66
5.	248.	13.	0.00	1794.	1.4	20.79
6.	260.	19.	0.00	2006.	1.8	20.68
7.	268.	27.	0.00	2245.	2,3	20.66
8.	272.	36.	0.00	2393.	2.8	20.62
9.	271.	45.	0.00	2511.	3,2	20.60
10.	271.	53.	0.00	2562.	3.6	20.55
11.	270.	65.	0.00	2679.	4.1	20.55
12.	268.	72.	0.00	2724.	4.5	20.44
13.	264.	87.	0.00	2801.	5.0	20.39
14.	259.	96.	0.00	2825.	5.4	20.32
15.	254.	102.	0.00	2864.	5.8	20.21
16.	249.	119.	0.00	2885.	6.3	20.29
17.	243.	128.	0.00	2940.	6.7	20.11
18.	238.	137.	0.00	2934.	7.2	20.17
19.	234.	144.	0.00	2965.	7.5	20.20
20.	229.	156.	0.00	2961.	7.9	20.20
21.	224.	161.	0.01	2947.	8.4	20.20
22.	220.	174.	0.01	2944.	8.9	20.19
23.	216.	182.	0.01	2911.	9.5	20.17
24.	211.	191.	0.01	2894.	10.0	20.16
25.	207.	199.	0.02	2872.	10.5	20.15
26.	202.	208.	0.02	2858.	10.9	20.14
27.	198.	215.	0.02	2816.	11.3	20.14
28.	194.	222.	0.03	2801.	11.6	20.13
29.	189.	224.	0.03	2768.	11.9	20.13
30.	185.	232.	0.03	2715.	12,1	20.13

The second secon

Table X

COMBUSTION PRODUCTS FORMED FROM BP-IC-2 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL PVC-BP-IC-2
SAMPLE MASS AVG 12.5466
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x.16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	29.	24.	0.00	136.	4.6	21,00
2.	167.	97.	0.10	567.	9.4	20.84
3.	236.	187.	0.18	1399.	12.6	20.70
4.	268.	266.	0.23	2283.	14.1	20.59
5.	284.	337.	0.27	2954.	15.2	20.51
6.	300.	411.	0.32	3589.	16.2	20.51
7	316.	481.	0.38	4187.	17.4	20.45
8.	331.	548.	0.43	4611.	18.5	20.24
9.	346.	624.	0.48	4966.	19.6	20.21
10.	363.	699.	0.54	5245.	21.0	20.04
11.	379.	772.	0.60	5502.	22.7	20.00
12.	386.	845.	0.66	5690.	24.5	19.96
13.	383.	916.	0.71	5811.	25.7	19.79
14.	375.	988.	0.78	5902.	27.2	19.79
15.	367.	1054.	0.84	5962.	28.7	19.69
16.	356	1126.	0.90	6038.	30.2	19.57
17.	350.	1198.	0.96	6098.	31.7	19.43
18.	340.	1261.	1.01	6136.	32.9	19.47
19.	333.	1332.	1.07	6181.	34.3	19.42
20.	325.	1390.	1.12	6219.	35.6	19.34
21.	318.	1453.	1.18	6226.	36.8	19.29
22.	311.	1515.	1.23	6241.	38.0	19.27
23.	304.	1575.	1.29	6279.	39.2	19.21
24.	298.	1634.	1.34	6355.	40.4	19.12
25.	291.	1689.	1.40	6407.	41.3	19.01
26.	285.	1770.	1.45	6453.	42.4	18.87
27.	279.	1819.	1.51	6528.	43.5	18.75
28.	274.	1887.	1.57	6581.	44.5	18.63
29.	268.	1942.	1.62	6641.	45.4	18.53
30.	263.	1993.	1.68	6694.	46.2	18.38

The second control of the second control of

Table XI

COMBUSTION PRODUCTS FORMED FROM BP-IC-2 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-BP-IC-2
SAMPLE MASS AVG 12.8162
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	os	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	6.	2.	0.00	10.	0.2	20.82
2.	32.	2.	0.00	90.	2.1	20.79
3,	58.	5.	0.00	220.	3.4	20.81
4.	150.	7.	0.00	472.	3,3	20.79
5.	193.	9.	0.00	858.	3.2	20.70
6.	209.	10.	0.00	1129.	3.8	20.68
7.	216.	14.	0.01	1392.	6.6	20.70
8.	222.	15.	0.01	1680.	9.8	20.77
9.	224.	19.	0.01	1942.	10.7	20.75
10.	227.	23.	0.01	2180.	10.9	20.79
11.	227,	35.	0.01	2495.	11.1	20.70
12.	227.	38.	0.02	2662.	11.1	20.85
13.	228.	45.	0.02	2782.	11.2	20.81
14.	227.	52.	0.02	2888.	11.2	20.89
15.	225.	60.	0.02	2971.	11.3	20.75
16.	226.	66.	0.02	3024.	11.4	20.74
17.	223.	72.	0.02	3046.	11.6	20.74
18.	220.	82.	0.03	3077.	11.8	20.68
19.	219.	87.	0.03	3092.	11.9	20.71
20.	216.	92.	0.03	3129.	12.3	20.73
21.	214.	100.	0.03	3129.	12.6	20.70
22.	212.	110.	0.03	3122.	12.9	20.65
23.	211.	121.	0.03	3122.	13.2	20.58
24.	209.	131.	0.03	3107.	13.5	20.50
25.	208.	142.	0.03	3099.	13.8	20.44
26.	207.	151.	0.04	3062.	14.1	20.40
27.	206.	159.	0.04	3046.	14.5	20.37
28.	204.	166.	0.04	3009.	14.9	20.36
29.	202.	173.	0.04	2971.	15.3	20.36
30.	201.	180.	0.04	2926.	15.7	20.36

The same production of the same of the sam

Table XII

COMBUSTION PRODUCTS FORMED FROM FSP-1-IC-1 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL FSP-1-IC-1
SAMPLE MASS AVG 17.5614
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	5.	6.	0.00	79.	1.1	20.80
2.	127.	42.	0.02	592.	3.4	20.64
3.	165.	162.	0.23	1147.	16.0	20.54
4.	185.	265.	0.39	1556.	22.6	20.33
5.	194.	362.	0.50	1969.	26.9	20.18
6.	199.	441.	0.57	2515.	28.8	20.03
7.	197.	538.	0.64	2775.	30.8	19,92
8.	195.	627.	0.71	3045.	32.7	19.80
9.	196.	705.	0.75	3406.	33.0	19.75
10.	198.	778.	0.79	3679.	33.4	19.60
11.	198.	860.	0.82	3919.	33.4	19.56
12.	197.	946.	0.86	4150.	33.7	19.49
13.	197.	1035.	0.90	4369.	33.9	19.47
14.	195.	1128.	0.93	4551.	34.1	19.43
15.	193.	1223.	0.96	4748.	34.3	19.27
16.	190.	1319.	0.99	4944.	34.4	19.29
17.	187.	1409.	1.02	5095.	34.6	19.19
18.	185.	1505.	1.05	5276.	34.9	19.14
19.	183.	1597.	1.08	5502.	35.0	19.08
20.	181.	1688.	1.11	5646.	35.2	19.13
21.	178.	1778.	1.14	5812.	35.4	19.06
22.	176.	1857.	1.17	5970.	35.4	18,97
23.	175.	1941.	1.20	6114.	35.7	18.88
24.	173.	2014.	1.23	6295.	35.7	18.96
25.	171.	2091.	1.26	6431.	36.0	18.86
26.	169.	2162.	1.29	6589.	36.1	18.84
27.	167.	2236.	1.32	6718.	36.3	18.84
28.	165.	2206.	1.35	6838.	36.5	18.69
		2286.	1.38	7012.	36.6	18.66
29.	163.	2373.	1.40	7133.	36.6	18.62
30.	160.	2010	1.40	1133.	30.0	.0.02

the first section of the section of

Table XIII

COMBUSTION PRODUCTS FORMED FROM FSP-1-IC-1 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-1-IC-1
SAMPLE MASS AVG 16,9847
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x 16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO5(#)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	1.	0.	0.00	10.	0.0	20.85
2.	20.	0.	0.01	111.	0.0	20.85
3.	68.	0.	0.01	354.	1.2	20.81
4.	125.	0.	0.02	589,	1.4	20.82
5.	159.	2.	0.03	794.	1.5	20.78
6.	172.	6.	0.04	937.	1.8	20.78
7.	180.	10.	0.05	1140.	2.2	20.89
8.	188.	13.	0.05	1308.	2.6	20.89
9.	193.	17.	0.06	1464.	3,1	20.84
10.	196.	21.	0.07	1616.	3.6	20.81
11.	198.	25.	0.08	1767.	4.3	20.81
12.	201.	30.	0.09	1896.	4.9	20.84
13.	202.	35.	0.09	2105.	5.4	20.85
14.	202.	40.	0.10	2201.	5.9	20.76
15.	203.	46.	0.11	2271.	6.3	20.85
16.	201.	55.	0.11	2345.	6.7	20.71
17.	199.	59.	0.12	2364.	7.1	20.81
18.	197.	66.	0.12	2389.	7.6	20.63
19.	194.	70.	0.13	2446.	8.0	20.61
20.	191.	76.	0.13	2485.	8.4	20.67
21.	189.	83.	0.13	2482.	8.8	20.73
22.	185.	89.	0.14	2499.	9.2	20.65
23.	183.	96.	0.14	2494.	9.7	20.70
24.	181.	105.	0.15	2499.	10.1	20.69
25.	178.	109.	0.15	2482.	10.5	20.66
26.	175.	115.	0.15	2435.	11.0	20.67
27.	173.	122.	0.16	2392.	11.4	20.70
28.	171.	120.	0.16	2367.	11.7	20.69
29.	168.	128.	0.16	2325.	12.2	20.73
30.	167.	134.	0.16	2286.	12.6	20.70

and the second contract to the second contrac

Table XIV

COMBUSTION PRODUCTS FORMED FROM FSP-1-IC-2 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-1-IC-2
SAMPLE MASS AVG 15.6842
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	C02(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	23.	13.	0.05	105.	3.0	21.00
2.	234.	85.	0.14	783.	9.2	21.00
3.	319.	173.	0.25	1537.	14.8	20.96
4.	359.	239.	0.36	2149.	20.6	20.75
5.	377.	324.	0.47	2551.	25.2	20.63
6.	377.	437.	0.57	2732.	29.1	20.39
7.	378.	565.	0.67	2915.	32.8	20.27
8.	369.	691.	0.76	3069.	35.8	20.13
9.	355.	788.	0.84	3271.	38.5	19.98
10.	342.	884.	0.94	3372.	41.6	19.80
11.	334.	979.	1.00	3594.	43.4	19.67
12.	322.	1048.	1.05	3840.	44.3	19.58
13.	312.	1109.	1.09	4072.	45.0	19.51
14.	301.	1160.	1.12	4284.	45.8	19.44
15.	291.	1209.	1.16	4533.	46.3	19.46
16.	283.	1256.	1.20	4759.	47.2	19.33
17.	275.	1305.	1.23	4978.	48.0	19.20
18.	270.	1355.	1.27	5159.	48.4	19.13
19.	266.	1406.	1.31	5363.	49.0	19.16
20.	263.	1456.	1.34	5514.	49.4	19.07
21.	263.	1511.	1.38	5673.	49.8	19.02
22.	262.	1567.	1.42	5831.	50.3	18.88
23.	262.	1629.	1.47	6027.	50.9	18.87
24.	260.	1688.	1.50	6231.	51.1	18.77
25.	260.	1750.	1.55	6435.	51.8	18.78
26.	258.	1809.	1.59	6661.	52.3	18.47
27.	257.	1869.	1.63	6910.	52.4	18.37
28.	254.	1928.	1.68	7129.	53,1	18.21
29.	253.	1983.	1.72	7378.	53.2	18.25
30.	249.	2040.	1.77	7612.	53.6	18.12

The state of the s

Table XV

COMBUSTION PRODUCTS FORMED FROM FSP-1-IC-2 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-1-IC-2
SAMPLE MASS AVG 17.5677
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO5(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	1.	0.	0.00	11.	0.1	20.69
2.	20.	0.	0.00	131.	0.4	20.74
3.	89.	0.	0.02	544.	2.3	20.70
4.	177.	0.	0.03	932.	2.5	20.77
5.	230.	2.	0.04	1143.	2.6	20.65
6.	256.	7.	0.05	1393.	2.9	20.55
7.	266.	13.	0.06	1658.	3.3	20.66
8.	268.	21.	0.07	1951.	3.7	20.76
9.	269.	28.	0.09	2283.	4.3	20.72
10.	268.	35.	0.10	2519.	5.0	20.67
11.	268.	43.	0.11	2702.	5.9	20.62
12.	267.	50.	0.13	2865.	6.5	20.58
13.	269.	57.	0.14	2974.	7.1	20.55
14.	274.	66.	0.15	3120.	7.7	20.44
15.	273.	75.	0.15	3153.	8.2	20.39
16.	274.	86.	0.16	3202.	8.7	20.42
17.	272.	96.	0.16	3179.	9,2	20.42
18.	271.	106.	0.17	3233.	9.8	20.47
19.	269.	116.	0.17	3227.	10.3	20.50
20.	265.	126.	0.18	3224.	10.9	20.50
21.	264.	135.	0.18	3208.	11.4	20.47
22.	263.	144.	0.19	3220.	11.9	20.46
23.	261.	153.	0.19	3178.	12.4	20.43
24.	257.	161.	0.20	3114.	12.9	20.53
25.	256.	170.	0.20	3105.	13.4	20.54
26.	253.	179.	0.20	3003.	13.9	20.53
27.	250.	187.	0.21	2980.	14.5	20.46
28.	249.	195.	0.21	2929.	14.9	20.53
29.	247.	203.	0.22	2913.	15.4	20.53
30.	245.	210.	0.22	2898.	15.9	20.58

The second secon

Table XVI

COMBUSTION PRODUCTS FORMED FROM FSP-2-IC-1 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-2-IC-1
SAMPLE MASS AVG 13.2391
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	53.	36.	0.05	244.	3.7	20.99
2.	130.	126.	0.19	1377.	8.6	20.81
3.	187.	249.	0.36	2539.	14.8	20.67
4.	221.	328.	0.49	3206.	17.1	20.52
5.	239.	379.	0.58	3518.	18.4	20.40
6.	247.	438.	0.68	3755.	19.2	20.26
7.	242.	522.	0.77	3921.	20.1	20.08
8.	230.	601.	0.84	4069.	20.8	20.00
9.	217.	678.	0.93	4149.	21.4	19.85
10.	204.	754.	1.00	4198.	22.2	19.70
11.	192.	825.	1.07	4266.	23.3	19.59
12.	184.	893.	1.14	4333.	24.1	19.41
13.	176.	955.	1.20	4386.	24.7	19.41
14.	168.	1019.	1.28	4416.	25.2	19.25
15.	161.	1081.	1.35	4439.	25.8	19.11
16.	154.	1141.	1.43	4416.	26,5	19,00
17.	149.	1190.	1.49	4447.	26,9	19.03
18.	145.	1228.	1.55	4462.	27.2	18.82
19.	141.	1264.	1.61	4484.	27.7	18.67
20.	137.	1297.	1.67	4537.	27.9	18.63
21.	135.	1331.	1.73	4605.	28.3	18.60
22.	132.	1363.	1.78	4658.	28.7	18.47
23.	128.	1395.	1.84	4718.	29.1	18.41
24.	125.	1425.	1.90	4779.	29.2	18.34
25.	122.	1455.	1.97	4764.	29.7	18.16
26.	119.	1483.	2.03	4804.	30.0	18.08
27.	116.	1513.	2.10	4845.	30.3	17.97
28.	113.	1544.	2.17	4886.	30.7	17.87
29.	111.	1575.	2.24	4928.	31.0	17.76
30.	108.	1608.	2.32	4970.	31.4	17.65

The state of the s

Table XVII

COMBUSTION PRODUCTS FORMED FROM FSP-2-IC-1 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-2-IC-1
SAMPLE MASS AVG 15.4281
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	1.	0.	0.01	0.	0.0	20.84
2.	44.	0.	0.01	210.	0.1	20.82
3.	84.	0.	0.02	662.	0.4	20.84
4.	109.	0.	0.04	1077.	0.6	20.73
5.	131.	2.	0.05	1528.	1.1	20.63
6.	147.	7.	0.06	2059.	1.5	20.67
7.	160.	13.	0.08	2633.	1.9	20.70
8.	168.	20.	0.09	2888.	2.3	20.71
9.	174.	28.	0.10	3053.	2.6	20.63
10.	179.	36.	0.11	3155.	2.9	20.51
11.	181.	45.	0.12	3204.	3.2	20.35
12.	182.	55.	0.12	3237.	3.5	20.37
13.	179.	64.	0.12	3279.	3.9	20.52
14.	176.	76.	0.13	3290.	4.2	20.58
15.	174.	87.	0.13	3315.	4.5	20.52
16.	170.	98.	0.14	3335.	4.9	20.54
17.	165.	109.	0.14	3342.	5.2	20.51
18.	161.	120.	0.15	3339.	5.6	20.47
19.	157.	131.	0.15	3344.	5.9	20.52
20.	153.	141.	0.16	3320.	6.2	20.52
21.	148.	152.	0.16	3305.	6.5	20.55
22.	145.	162.	0.16	3285.	6.8	20.51
23.	141.	172.	0.17	3282.	7.1	20.52
24.	138.	182.	0.17	3249.	7.4	20.50
25.	136.	192.	0.18	3226.	7.7	20.40
26.	133.	202.	0.18	3172.	8.0	20.43
27.	130.	212.	0.19	3072.	8.3	20.29
28.	128.	214.	0.19	3038.	8.6	20.33
29.	125.	225.	0.20	2997.	8.8	20.25
30.	123.	236.	0.20	2982.	9.1	20.29

of the base of the second state of the second secon

Table XVIII

COMBUSTION PRODUCTS FORMED FROM FSP-2-IC-2 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-2-IC-2
SAMPLE MASS AVG 16.9573
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	11.	6.	0.02	189.	1.3	21.00
2.	77.	43.	0.06	543.	4.4	20.95
3.	169.	97.	0.14	1006.	8.7	20.92
4.	335.	139.	0.24	1663.	13.8	20.86
5.	381.	185.	0.34	2393.	17.1	20.77
6.	394.	240.	0.42	2800.	19.8	20.59
7.	398.	302.	0.50	3238.	22.7	20.58
8.	407.	384.	0.59	3472.	25.5	20.40
9.	416.	482.	0.69	3653.	29.6	20.09
10.	410.	586.	0.78	3736.	33.2	20.08
11.	398.	657.	0.86	3781.	36.2	19.86
12.	383.	720.	0.93	3857.	38.7	19.81
13.	373.	780.	0.99	3947.	40.8	19.70
14.	365.	856.	1.03	4091.	42.0	19.51
15.	356.	934.	1.08	4189.	43.6	19.41
16.	347.	1016.	1.12	4287.	44.6	19.44
17.	336.	1096.	1.17	4347.	45.8	19.21
18.	330.	1172.	1.21	4430.	47.1	19.18
19.	323.	1243.	1.26	4498.	48.5	19.17
20.	317.	1315.	1.31	4544.	49.8	19.05
21.	313.	1381.	1.35	4611.	50.7	19.05
22.	309.	1444.	1.40	4657.	51.9	19.02
23.	303.	1510.	1.45	4710.	53.4	18.88
24.	299.	1576.	1.50	4747.	53.9	18.83
25.	294.	1640.	1.55	4808.	55.2	18.86
26.	289.	1704.	1.60	4891.	56.3	18.73
27.	286.	1768.	1.64	4928.	57.3	18.65
28.	282.	1832.	1.68	4921.	57.9	18.57
29.	277.	1893.	1.73	4966.	59.0	18.34
30.	273.	1958.	1.78	4951.	59.7	18.29

The state of the s

Table XIX

COMBUSTION PRODUCTS FORMED FROM FSP-2-IC-2 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL PVC-FSP-2-IC-2
SAMPLE MASS AVG 16.0654
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6 x .16

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	4.	0.	0.00	12.	0.1	20.78
2.	30.	0.	0.01	131.	0.7	20.82
3.	54.	0.	0.02	329.	2.8	20.94
4.	94.	0.	0.02	567.	3.5	20.88
5.	153.	0.	0.04	863.	3.6	20.75
6.	223.	2.	0.05	1108.	3.5	20.81
7.	247.	9.	0.06	1399.	3.7	20.89
8.	260.	17.	0.07	1678.	4.1	20.83
9.	267.	25.	0.08	1887.	4.5	20.85
10.	269.	32.	0.09	2103.	5.0	20.86
11.	267.	38.	0.10	2390.	5.7	20.83
12.	267.	46.	0.11	2569.	6.2	20.92
13.	266.	53.	0.12	2759.	6.8	20.82
14.	263.	62.	0.14	2927.	7.4	20.88
15.	261.	71.	0.15	3049.	8.0	20.70
16.	257.	79.	0.15	3144.	8.5	20.68
17.	252.	88.	0.16	3206.	9.0	20.70
18.	249.	98.	0.16	3271.	9.5	20.72
19.	247.	107.	0.17	3328.	10.1	20.64
20.	244.	115.	0.18	3350.	10.6	20.63
21.	241.	125.	0.18	3378.	11.2	20.63
22.	238.	133.	0.19	3363.	11.7	20.62
23.	235.	142.	0.19	3354.	12.2	20.59
24.	233.	150.	0.20	3315.	12.7	20.57
25.	230.	159.	0.20	3251.	13.3	20.55
26.	228.	167.	0.20	3205.	13.7	20.53
27.	225.	176.	0.21	3179.	14.2	20.52
28.	224.	184.	0.21	3135.	14.7	20.52
29.	221.	191.	0.21	3147.	15.3	20.52
30.	219.	199.	0.22	3097.	15.8	20.52

of the base of the state of the

Table XX

COMBUSTION PRODUCTS FORMED FROM A1-IC-1 UNDER FLAME EXPOSURE CONDITIONS

MATERIAL AL-IC-1
SAMPLE MASS AVG 9.1019
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 × 7.6

AVERAGE

TIME (MIN)	DS	CO(PPMV)	C02(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	2.	5.	0.03	10.	1.2	20.99
2.	12.	34.	0.08	35.	4.1	20,95
3.	20.	55.	0.12	48.	7.1	20.82
4.	27.	73.	0.18	55.	9.4	20.73
5.	33.	91.	0.23	66.	11.3	20.70
6.	39.	111.	0.29	124.	12.7	20.59
7.	45.	126.	0.33	197.	13.8	20.49
8.	50.	145.	0.38	284.	14.7	20.55
9.	55.	162.	0.41	413.	15.1	20.44
10.	59.	183.	0.44	536.	15.6	20.37
11.	63.	208.	0.47	667.	15.9	20.38
12.	67.	233.	0.50	804.	16.3	20,23
13.	71.	262.	0.54	923.	16.7	20.33
14.	74.	292.	0.57	1049.	17.0	20.22
15.	77.	321.	0.60	1181.	17.4	20.08
16.	79.	358.	0.63	1308.	17.5	20.17
17.	81.	393.	0.66	1433.	17.8	20.08
18.	84,	433.	0.69	1565.	18.1	20.06
19.	85.	489.	0.72	1663.	18.3	19.95
20.	87.	554.	0.75	1766.	18,6	19.87
21.	89.	638.	0.78	1849.	18.8	19.88
22.	91.	730.	0.81	1931.	19.2	19.88
23.	92.	819.	0.84	2007.	19.3	19.78
24.	94.	908.	0.87	2079.	19.7	19.70
25.	95.	1004.	0.90	2234.	19.9	19.56
26.	96.	1105.	0.94	2302.	20.1	19.54
27.	97.	1200.	0.96	2368.	20.4	19.51
28.	98.	1278.	0.99	2446.	20.7	19.37
29.	99.	1356.	1.02	2477.	20.9	19.51
30.	100.	1405.	1.05	2634.	21.2	19.44

of the manufacture of the second seco

Table XXI

COMBUSTION PRODUCTS FORMED FROM A1-IC-1 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL AL-IC-1
SAMPLE MASS AVG 9.1910
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6

AVERAGE

TIME (MIN)	ps	CO(PPMV)	C02(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	0.	0.	0.00	0.	0.0	21.00
2.	6.	0.	0.00	0.	0.0	20.87
3.	18.	0.	0.01	9.	0.1	20.92
4.	26.	0.	0.01	18.	0.4	20.94
5.	30.	0.	0,01	22.	0.7	20.82
6.	34.	0.	0.01	26.	1.1	20.80
7.	38.	0.	0.01	30.	1,5	20.85
8.	42.	0.	0.01	34.	1.7	20.85
9.	45.	0.	0.01	36.	2.0	20.86
10.	48.	1.	0.02	39.	2.2	20.92
11.	51.	2.	0.02	40.	2.4	20.94
12.	54.	3.	0.02	42.	2.6	20.93
13.	56.	4.	0.02	43.	2.8	20.92
14.	58.	5.	0.02	41.	3.0	20.98
15.	60.	6.	0.02	46.	3.1	20.93
16.	62.	7.	0.02	49.	3.3	20.80
17.	64.	9.	0.02	51.	3.5	20.86
18.	66.	10.	0.02	53.	3.7	20.94
19.	67.	11.	0.02	54.	3.9	20.87
20.	68.	12.	0.02	55.	4.0	20.98
21.	70.	14.	0.03	56.	4.3	21.00
22.	71.	15.	0.03	56.	4.5	21.00
23.	72.	16.	0.03	57.	4.6	21.00
24.	73.	18.	0.03	59.	4.8	20.93
25.	74.	19.	0.03	60.	5.0	20.86
26.	74.	20.	0.03	60.	5.2	20.81
27.	74.	22.	0.03	61.	5,4	20.80
28.	75.	22.	0.03	62.	5.6	20.80
29.	75.	24.	0.03	62.	5,8	20.82
		25.	0.03	62.	6.0	20.84
30.	76.	23.	0.00	02.	0	

the transfer of the second sec

Table XXII

COMBUSTION PRODUCTS FORMED FROM A1-IC-2. UNDER FLAME EXPOSURE CONDITIONS

MATERIAL AL-IC-2
SAMPLE MASS AVG 8.4956
IMPOSED EXPOSURE CONDITION FLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 x 7.6

AVERAGE

TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
0.	0.	0.	0.00	0.	0.0	21.00
1.	21.	6.	0.03	31.	1.8	20.80
2.	91.	46.	0.08	154.	7.6	20.77
3.	132.	69.	0.12	261.	10.7	20.62
4.	162.	86.	0.18	355.	13,1	20.47
5.	177.	103.	0.22	429.	15.0	20.51
6.	185.	121.	0.27	496.	17.1	20.55
7.	188.	138.	0.31	551.	18.8	20.40
8.	187.	155.	0.36	595.	20.5	20.31
9.	185.	172.	0.40	631.	22.3	20.38
10.	181.	187.	0.45	661.	24.1	20.23
11.	177.	203.	0.49	681.	25.4	20.31
12.	172.	212.	0.53	705.	27.6	20.27
13.	167.	229.	0.58	723.	28.9	20.09
14.	163.	247.	0.62	740.	30.4	20.04
15.	158.	263.	0.66	761.	31.7	20.00
16.	154.	280.	0.70	768.	33.2	19.90
17.	150.	297.	0.74	779.	34.3	19.81
18.	146.	315.	0.78	786.	35.5	19.65
19.	143.	333.	0.82	795.	36.9	19.54
20.	140.	351.	0.86	805.	38.0	19.62
21.	138.	370.	0.90	814.	38.8	19.71
22.	135.	389.	0.95	819.	40.1	19,65
23.	133.	407.	0.98	825.	41.1	19.71
24.	130.	425.	1.02	827.	41.9	19.67
25.	129.	441.	1.06	828.	42.8	19.56
26.	126.	458.	1.09	827.	43.6	19.40
27.	125.	473.	1.13	826.	44.2	19,35
28.	123.	488.	1.16	822.	45.1	19,25
29.	121.	503.	1.20	820.	45.7	19.18
30.	119.	518.	1.24	817.	46.4	19.11

The state of the s

Table XXIII

COMBUSTION PRODUCTS FORMED FROM A1-IC-2 UNDER NONFLAME EXPOSURE CONDITIONS

MATERIAL AL-IC-2
SAMPLE MASS AVG 8.4462
IMPOSED EXPOSURE CONDITION NONFLAMING
FLUX 2.5 W/CM2. VERTICAL
DIMENSIONS 7.6 X 7.6

AVERAGE

1	TIME (MIN)	DS	CO(PPMV)	CO2(%)	HC (PPMV)	NOX (PPMV)	02(%)
	0.	0.	0.	0.00	0.	0.0	21.00
	1.	0.	0.	0.00	0.	0.0	20.78
	2.	10.	0.	0.00	16.	0.4	20.69
	3.	30.	0.	0.01	113.	2.6	20.75
	4,	41.	1.	0.01	176.	3.8	20.73
	5.	51.	3.	0.01	218.	4.4	20.60
	6.	60.	3.	0.01	251.	4.9	20.62
	7.	68.	4.	0.01	272.	5.3	20.69
	8.	75.	5.	0.02	288.	5.6	20,65
	9.	80.	5.	0.02	302.	5.9	20.67
	10.	84.	6.	0.02	313.	6.1	20.56
	11.	88.	7.	0.02	325.	6.3	20.33
	12.	90.	8.	0.02	330.	6.5	20.45
	13.	93.	9.	0.03	339.	6.7	20.40
	14.	94.	10.	0.03	346.	6.9	20.43
	15.	96.	10.	0.03	351.	7.1	20.40
	16.	96.	10.	0,03	355.	7.3	20.45
	17.	97.	11,	0.03	359.	7.4	20.47
	18.	97.	11.	0.03	360.	7.6	20.33
	19.	97.	12.	0.03	361.	7.8	20.37
	20.	97.	13.	0.03	363.	7.9	20.32
	21.	97.	14.	0.03	363.	8.1	20.32
	22.	96.	15.	0.03	362.	8.3	20.17
	23.	96.	15.	0.03	361.	8.5	20.02
	24.	95.	15,	0.03	364.	8.6	20.16
	25.	94.	16.	0.03	359.	8.8	20.20
	26.	93.	17.	0.03	360.	8.9	20.16
	27.	93.	18.	0.03	357.	9.1	20.03
	28.	92.	16.	0.03	355.	9.2	20.24
	29.	92.	19.	0.03	351.	9.4	20.29
	30.	90.	20.	0.04	348.	9.5	20.29

The state of the s

DISTRIBUTION LIST

	No. of Copies
Naval Ship Engineering Center, Code N65197 National Center, Building No. 2 Room 5E52	2
Washington, D. C. 20362	
Naval Sea Systems Command, Code NOOO24 Department of the Navy Washington, DC 20360 Attn: NAVSEA 03511	1
Naval Surface Weapons Center, Code N60921 Silver Spring, Maryland 20910 Attn: Dr. Angel	1
Naval Research Laboratory, Code NOO173 Washington, DC 20390 Attn: Chemistry Div. Code 6100	1
Naval Research Laboratory, Code NOO173 Washington, DC 20390 Attn: Non-metallics Div.	1
Naval Ship Research and Development Center, Code NCO162 Bethesda, Maryland Attn: Non-metallics Code 284	1
Office of Naval Research, Code NOOO14 Ballston Tower #1, Code 472 Arlington, Virginia 22217	1
Naval Sea Systems Command, Code NOOO24 Department of the Navy Washington, DC 20360 Attn: NAVSEA 024	1
Defense Documentation Center, Code SL4200 Cameron Station Alexandria, Virginia 22314	12

of the second control of the second control

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2, GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
Flame- and Smoke-Retardant Polymer	Systems,	Second Quarterly Report August October 1976
Leo Parts and Catherine A./Thompso	on\	8. CONTRACT OR GRANT NUMBER(*) NØ0024-76-C-5336
	weare.	A
PERFORMING ORGANIZATION NAME AND ADDRESS Monsanto Research Corporation Dayton Laboratory, 1515 Nicholas R Dayton, Ohio 45407		10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS Department of the Navy, Code NO002 Naval Sea Systems Command SEA 0253		26 April 1977
Washington, D. C. 20362		53
DCASD, Dayton Building 5, Code S3605A	Los Controlling Office	Unclassified
Dayton, Ohio	Zle	15a. DECLASSIFICATION/DOWNGRADIN
6. DISTRIBUTION STATEMENT (of this Report)		
		*
18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary of	and identify by block num	nber)
Flame retardant Neoprene Smoke retardant Ignition tem Fire safety Smoke Polymers Combustion p	peratures Ni Hy roducts II	trogen oxides drogen chloride ntumescent coatings
Experimental smoke-retardant PVC coccated with alkyd- and epoxy-based in an NBS smoke density chamber unon the smoke optical density, and the hydrogen chloride and oxygen were not the smoke optical and oxygen were not the	intumescent pa der flame and n concentrations monitored durin	ints. Specimens were tested onflame exposure conditions. of ${\rm CO}_2$, ${\rm NO}_{\rm X}$, hydrocarbon g these tests.
Although the coatings reduced smoke an adverse effect on the performance commercial coatings used in this wo DD 15AN 73 1473 EDITION OF 1 NOV 65 IS OBSC	ce of the smoke	-retardant compositions. The

the set with the second second

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item 20 Abstract (cont'd)

tities of smoke. Other, recently developed coatings will be used in projected work.

The intumescent coatings reduced the rates of carbon monoxide and hydrogen chloride formation, especially under nonflame exposure to a radiant energy source.

The coatings contributed small amounts of nitrogen oxides (NO_{X}) to the combustion products.

UNCLASSIFIED

The best of the second of the

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)