Chapter 8: Some Special Functions

Exercise 8.6. Suppose f(x)f(y) = f(x+y) for all real x and y. (a) Assuming that f is differentiable and not zero, prove that

$$f(x) = e^{cx}$$

where c is a constant.

- (b) Prove the same thing, assuming only that f is continuous.
- (b) implies (a). We prove (b) directly.

Proof of (b). Since f(x) is not zero, there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. So $f(0)f(x_0) = f(x_0)$, or f(0) = 1 by cancelling $f(x_0) \neq 0$.

Next, $f(\frac{n}{m}) = f(\frac{1}{m})^n$ for $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. Since f is continuous at x = 0, f is positive in the neighborhood of x = 0. That is, there exists $N \in \mathbb{Z}^+$ such that $f(\frac{1}{m}) > 0$ whenever $|m| \geq N$. So, $f(\frac{n}{m}) = f(\frac{1}{m})^n > 0$. (Since $f(\frac{n}{m}) = f(\frac{kn}{km})$ for any $k \in \mathbb{Z}^+$, we can rescale m to km such that $|km| \geq N$.) That is, f is positive on \mathbb{Q} . Since \mathbb{Q} is dense in \mathbb{R} and f is continuous on \mathbb{R} , f is positive on \mathbb{R} .

Now let $c = \log f(1)$ (which is well-defined since f > 0). We write f(1) in the two ways. Firstly, $f(1) = f(\frac{n}{n}) = f(\frac{1}{n})^n$ where $n \in \mathbb{Z}^+$. Secondly, $f(1) = e^c = (e^{\frac{c}{n}})^n$. Since the positive n-th root is unique, $f(\frac{1}{n}) = e^{\frac{c}{n}}$ for $n \in \mathbb{Z}^+$. By f(x)f(-x) = f(0) = 1 or $f(-x) = \frac{1}{f(x)}$, $f(-\frac{1}{n}) = \frac{1}{e^{\frac{c}{n}}} = e^{-\frac{c}{n}}$ for $n \in \mathbb{Z}^+$. Therefore,

$$f\left(\frac{1}{m}\right) = e^{\frac{c}{m}}$$
 where $m \in \mathbb{Z}$.

By using $f(\frac{n}{m}) = f(\frac{1}{m})^n$ for $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$ again, $f(\frac{n}{m}) = e^{c\frac{n}{m}}$ where $m \in \mathbb{Z}$, $n \in \mathbb{Z}^+$, or

$$f(x) = e^{cx}$$
 where $x \in \mathbb{Q}$.

Since $g(x) = f(x) - e^{cx}$ vanishes on a dense set of \mathbb{Q} and g is continuous on \mathbb{R} , g vanishes on \mathbb{R} . Therefore, $f(x) = e^{cx}$ for $x \in \mathbb{R}$. \square

Supplement. Proof of (a).

Proof of (a). Since f(x) is not zero, there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. So $f(0)f(x_0) = f(x_0)$, or f(0) = 1 by cancelling $f(x_0) \neq 0$. Since f is differentiable, for any $x \in \mathbb{R}$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$= f(x) \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= f(x)f'(0).$$

Let c = f'(0) be a constant. Then f'(x) = cf(x). So $f(x) = e^{cx}$ for $x \in \mathbb{R}$. (To see this, let $g(x) = \frac{f(x)}{e^{cx}}$ be well-defined on \mathbb{R} . g(0) = 1. g'(x) = 0 since f'(x) = cf(x). So g(x) is a constant, or g(x) = 1 since g(0) = 1. Therefore, $f(x) = e^{cx}$ on \mathbb{R} .) \square

Supplement. Cauchy's functional equation.

(1) (Cauchy's functional equation.) Suppose f(x) + f(y) = f(x + y) for all real x and y. Assuming that f is continuous, prove that f(x) = cx where c is a constant.

Notice that we cannot let $g(x) = \log f(x)$ and apply Cauchy's functional equation on g(x) to prove Exercise 8.6 since f(x) is not necessary positive and thus $g(x) = \log f(x)$ might be meaningless. However, this wrong approach gives you some useful ideas such as you need to prove that f(x) is positive first, and f(x) should be equal to e^{cx} where $c = g(1) = \log f(1)$.

- (2) Suppose f(xy) = f(x) + f(y) for all positive real x and y. Assuming that f is continuous, prove that $f(x) = c \log x$ where c is a constant.
- (3) Suppose f(xy) = f(x)f(y) for all positive real x and y. Assuming that f is continuous and positive, prove that $f(x) = x^c$ where c is a constant.
- (4) Suppose f(x+y) = f(x) + f(y) + xy for all real x and y. Assuming that f is continuous, prove that $f(x) = \frac{1}{2}x^2 + cx$ where c is a constant.
- (5) (USA 2002.) Suppose $f(x^2 y^2) = xf(x) yf(y)$ for all real x and y. Assuming that f is continuous, prove that f(x) = cx where c is a constant.