Estadística 1 (Química)

Práctica 4 - Estadística Descriptiva

1. Una muestra estándar de suero sanguíneo contiene 42,0 g de albúmina por litro. Cuatro laboratorios (A – D) realizan seis determinaciones cada uno (en el mismo día) de la concentración de albúmina, con los siguientes resultados (en g/l):

A	42.5	41.6	42.1	41.9	41.1	42.2
В	39.8	43.6	42.1	40.1	43.9	41.9
C	43.5	42.8	43.8	43.1	42.7	43.3
D	39.4	41.9	40.7	40.3	42.6	39.0

(para resolver este ejercicio, mire las instrucciones en el archivo instruccionesej1. R cuyo link figura cerquita de dónde bajó este archivo).

- a) Grafique en cada caso los datos en un Diagrama de Punto, todos en la misma escala.
- b) Comente la exactitud y la precisión de los resultados de las mediciones de cada uno de los laboratorios. ¿Qué variables aleatorias puede utilizar para aproximar el grado de dispersión y la exactitud de las muestras?
- 2. En un experimento se midió la temperatura de fusión del indio y del azufre. Los datos figuran más adelante. La siguiente instrucción puede ser útil para leer el archivo en R (ya que las longitudes de los dos conjuntos de datos son diferentes).

read.table(file.choose(),head=TRUE,fill=TRUE)

- a) Compare los dos conjuntos de datos mediante histogramas y boxplots. Realice un gráfico de boxplots paralelos.
- b) Halle las medias, las medianas y las medias podadas al 10 % y 20 %. Compare.
- c) Halle el desvío estándar, la distancia intercuartil y la MAD como medidas de dispersión.
- d) Halle los percentiles muestrales 0.90, 0.75, 0.50, 0.25 y 0.10.
- e) Las temperaturas se toman en orden cronológico y se considera que se ha llegado al punto de fusión cuando la temperatura se estabiliza ¿Es razonable el modelo de errores independientes e idénticamente distribuidos? ¿Sería correcto analizar todo el conjunto de datos? ¿A partir de cuál observación considera que el proceso se ha estabilizado?
- f) Sobre el conjunto de datos correspondiente al proceso estabilizado, resuelva nuevamente los ítems 2a) al 2d).

				INDIO				
136.6	145.2	151.5	162.7	159.1	159.8	160.8	173.9	160.1
160.4	161.1	160.6	160.2	159.5	160.3	159.2	159.3	159.6
160.0	160.2	160.1	160.0	159.7	159.5	159.5	159.6	159.5

AZUFRE									
126.4	135.7	132.9	131.5	131.1	131.1	131.9	132.7		
133.3	132.5	133.0	133.0	132.4	131.6	132.6	132.2		
131.3	131.2	132.1	131.1	131.4	131.2	131.1	131.1		

- 3. En un estudio nutricional se consideran las calorías y el contenido de sodio de tres tipos de salchichas y se obtuvieron los datos que se muestran en la tabla final.
 - a) Realice un histograma para las calorías de cada tipo de salchichas. ¿Observa grupos en algún gráfico? ¿Cuántos grupos observa? ¿Observa algún candidato a outlier?
 - b) Repita el ítem anterior para la cantidad de sodio.
 - c) Realice un gráfico de boxplots paralelos de las calorías versus tipo de salchichas. ¿Observa alguna relación entre cada uno de de los boxplots y los histogramas realizados en el item 3a)? A qué conclusión llega? De acuerdo con los boxplots hallados, ¿cómo caracterizaría la diferencia entre los tres tipos de salchichas desde el punto de vista de las calorías?

A	A			С		
Calorías	Sodio	Calorías	Sodio	Calorías	Sodio	
186	495	173	458	129	430	
181	477	191	506	132	375	
176	425	182	473	102	396	
149	322	190	545	106	383	
184	482	172	496	94	387	
190	587	147	360	102	442	
158	370	146	387	87	359	
139	322	139	386	99	357	
175	479	175	507	170	528	
148	375	136	393	113	513	
152	330	179	405	135	426	
111	300	153	372	142	513	
141	386	107	144	86	358	
153	401	195	511	143	581	
190	645	135	405	152	588	
157	440	140	428	146	522	
131	317	138	339	144	545	
149	319					
135	298					
132	253					

4. Los siguientes datos corresponden a 100 determinaciones repetidas de la concentración de ion nitrato (en μ mol/L). 50 de estas determinaciónes corresponden a un grupo de estudiantes (Grupo A) y las

restantes 50 a otro grupo (Grupo B):

	Gruj	ро А		Grupo B					
0.51	0.51	0.50	0.50	0.61	0.67	0.70	0.56		
0.51	0.50	0.48	0.50	0.61	0.67	0.63	0.75		
0.49	0.50	0.47	0.50	0.55	0.49	0.75	0.55		
0.51	0.48	0.52	0.49	0.65	0.77	0.64	0.58		
0.51	0.49	0.52	0.51	0.73	0.51	0.66	0.65		
0.51	0.48	0.52	0.49	0.65	0.57	0.61	0.53		
0.52	0.53	0.49	0.51	0.53	0.64	0.52	0.69		
0.48	0.51	0.50	0.47	0.54	0.57	0.63	0.62		
0.51	0.49	0.50	0.50	0.68	0.56	0.58	0.58		
0.50	0.49	0.53	0.47	0.59	0.62	0.60	0.66		
0.51	0.50	0.49	0.48	0.61	0.54	0.63	0.61		
0.53	0.52	0.51	0.51	0.69	0.63	0.53	0.48		
0.46	0.49			0.65	0.61				

- a) Estudie si la distribución de los conjuntos de datos para ambos grupos es normal, realizando los correspondientes histogramas y superponiendo la curva normal. ¿Llega a la misma conclusión realizando qqplots para cada conjunto de datos?
- b) ¿A partir de los valores observados, le parece razonable asumir que ambos grupos están midiendo el mismo mesurando? Responda comparando medidas de centralidad y de dispersión de los datos. Hacer un gráfico de boxplots paralelos que permita comparar las distribuciones de ambos conjuntos de datos.
- 5. En una clase grande, hay 150 estudiantes hombres y 100 mujeres, los estudiantes promediaban en altura 178cm, con un desvío standard de 25cm y las estudiantes promediaban 162cm, con un desvío standard de 25cm. Tomando conjuntamente los hombres y las mujeres:
 - a) Determine la altura promedio.
 - b) Indique si el desvío estándar de las alturas es mayor que 25cm, exactamente 25cm, ó inferior a 25cm.
- 6. Con la finalidad de determinar el contenido de Arsénico Ar2+ en ríos de la patagonia, se midió potenciométricamente la concentración en ppb del ión Ar2+ de dos ríos a distintas alturas de su desembocadura. Sea x_1, \ldots, x_n las mediciones realizadas para el primer río y y_1, \ldots, y_n las mediciones del segundo río. Se sabe que la altura en que se midió el contenido de arsénico de x_i es el mismo que y_i , para $1 \le i \le 26$.

Las siguientes tablas presentan la cantidad de arsénico en ppb medido en ambos ríos.

CONTENIDO DE AR2+ RIO A										
129.6 31.4 2745.6 489.1 430.0 302.8 119.0 4.1 92.4										
17.5	200.7	274.7	274.7	7.7	1656.0	978.0	198.6	703.4		
1697.8 334.1 1			118.3	255.0	115.3	242.5	32.7	40.6		

	CONTENIDO DE AR2+ RIO B									
26.1	26.1 26.3 87.0 95.0 372.4 0.01 17.3 24.4 11.5									
321.2		68.5	81.5	47.3	28.6	830.1	345.5	1202.6	36.6	
	4.9	4.9	41.1	29.9	163.0	244.3	3 147.8	3 21.7	7	

- a) Realice boxplots para ambos grupos. ¿Le parece que el contenido medio de arsénico de los ríos difiere?
- b) Analice la normalidad realizando qqplots e histogramas (de densidad) para ambos conjuntos de datos y superponiendo la curva normal.
- c) Realice la transformación log a los datos y repita el item anterior para los datos transformados.
- 4. El histograma muestra la distribución de presión sanguínea de 15000 mujeres en estudio. Utilice el histograma para responder las siguientes preguntas:

- a) ¿El porcentaje de mujeres con presión superior a los 130mm es más cercano a 25 %, 50 % o 75 %?
- b) ¿El porcentaje de mujeres con presión entre 90 y 160mm es más cercano al 1%, 50% o 99%?
- c) ¿Cuál intervalo tiene más mujeres: 130-140mm o 140-150mm?
- d) ¿Cuál intervalo tiene más mujeres: 130-135mm o 140-150mm?
- e) En el intervalo 125-130mm la altura del histograma es de alrededor de $2.2\,\%$ por mm. ¿Qué porcentaje de mujeres tuvo presión en ese intervalo?
- 8. Considere x_1, \ldots, x_n una muestra de una población cualquiera. Sean \overline{x} y \widetilde{x} la media y la mediana muestral respectivamente.
 - a) Si se suma una constante a a cada uno de los x_i de la muestra, obteniéndose $y_i = x_i + a$, ¿cómo se relacionan \overline{x} con \overline{y} y \widetilde{x} con \widetilde{y} ?
 - b) Si cada uno de los x_i es multiplicado por una constante b, obteniéndose $y_i = bx_i$, ¿cómo se relacionan \overline{x} con \overline{y} y \widetilde{x} con \widetilde{y} ? ¿Qué sucede si b es positivo o negativo?

- 9. Se
a s_X^2 la varianza muestral correspondiente a los datos
 x_1,\dots,x_n observados. Demuestre que
 - a) $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2 \frac{n}{n-1} \overline{x}^2$.
 - b) Probar que si $y_i = x_i + a$ con a constante, entonces $s_X = s_Y$.
 - c) Probar que si $y_i = bx_i$ con b constante, entonces $s_X = |b| s_Y$.