

Матан2 Определения

Интегралы

Определение: Функция F называется **первообразной** для функции f или **интегралом** от выражения f(x)dx на каком-либо промежутке, если F'=f на этом промежутке или dF=fdx

Определение: **Интегрированием** функции f(x) называется процесс нахождения всех первообразных функции f(x)

Обозначение:
$$F = \int f(x)d(x)$$

<u>Определение:</u> Совокупность всех первообразных называется **неопределенным интегралом**

<u>Теорема:</u> Пусть F(x) - первообразная для f(x). Тогда F(x) + C также является первообразной для f(x). Любая первообразная $\varphi(x) = F(x) + C$

Основные понятия

Определенный интеграл Римана

Определение: Пусть f(x) интегрируема на отрезке $[a;A],\ \forall A>a,$ то есть $\exists \int\limits_a^A f(x)dx$

$$\forall A>a.$$
 Тогда **несобственный интеграл** $\int\limits_a^\infty f(x)dx=\lim\limits_{A\to\infty}\int\limits_a^A f(x)dx$

Если предел существует, и он конечен, то $\int\limits_a$ называется **сходящимся**. В противном случае говорим, что он **расходится**.

Несобственные интегралы

<u>Теорема сравнения</u>: Рассмотрим интегралы $\int\limits_a^\infty f(x)dx$ и $\int\limits_a^\infty g(x)dx,\ f\geq 0,\ g\geq 0$ Если при некотором $A,\ \forall x\geq A\geq a$ выполнено $f(x)\leq g(x)$:

Если
$$\int g(x)dx$$
 сходится $\Rightarrow \int f(x)dx$ сходится;
Если $\int f(x)dx$ расходится $\Rightarrow \int g(x)dx$ расходится.

Теорема сравнения

<u>Предельная теорема сравнения:</u> Рассмотрим $\int\limits_a^\infty f(x)dx$ и $\int\limits_a^\infty g(x)dx, f\geq 0,\ g\geq 0.$ Тогда, если существует $\lim\limits_{x\to\infty}\frac{f}{g}=k$:

Из сходимости
$$\int\limits_a^\infty g(x)dx$$
 при $k<\infty \ \Rightarrow \$ сходимость $\int\limits_a^\infty f(x)dx;$ Из расходимости $\int\limits_a^\infty g(x)dx$ при $k>0 \ \Rightarrow \ \int\limits_a^\infty f(x)dx$ расходится.

Предельная теорема сравнения

$$\forall \varepsilon > 0 \; \exists A : \left| \int_{A'}^{A''} f(x) dx \right| < \varepsilon \;, \; \forall A'' \ge A' \ge A$$

Критерий Коши

Вторая теорема о среднем для собственного интеграла. Если в промежутке [a,b] (a < b) функция f(x) монотонна, а g(x) интегрируема, то

$$\int_a^b f(x)g(x)dx = f(a)\int_a^{\eta} g(x)dx + f(b)\int_{\eta}^b g(x)dx,$$

где $\eta \in [a, b]$.

Вторая теорема о среднем для собственного интеграла

Признак Абеля. Пусть f и g определены в промежутке $[a, +\infty)$, причем

- 1) f интегрируема в этом промежутке, так что интеграл $\int_{a}^{+\infty} f(x) dx$ сходится (хотя бы и не абсолютно),
- 2) g монотонна и ограничена:

$$|g(x)| \le L$$
, $L = const$, $a \le x < \infty$.

Тогда интеграл

$$\int_{a}^{+\infty} f(x)g(x)dx \tag{30.2}$$

сходится.

Признак сходимости несобственного интеграла Абеля

Признак Дирихле. Пусть f и g определены в промежутке $[a, +\infty)$, причем 1) f интегрируема в любом конечном промежутке [a, A], так что интеграл

$$\left| \int_{a}^{A} f(x) dx \right| \le K, \quad K = const,$$

оказывается ограниченным для любого $a \leq A < \infty$,

2) g монотонно стремится к нулю при $x \to \infty$:

$$\lim_{x \to \infty} g(x) = 0.$$

Тогда интеграл (30.2) сходится.

Признак сходимости несобственного интеграла Дирихле

Определение: Пусть задана функция f(x), ограниченная на $[a;b-\varepsilon]\forall \varepsilon>0$, которая неограничена на $(b-\varepsilon;b)$. Пусть f интегрируема на $[a;b-\varepsilon]$ $\forall \varepsilon>0$, то есть $\exists \int\limits_{a}^{\infty}f(x)dx$.

Тогда, если $\exists \lim_{\varepsilon \to 0} \int\limits_a^{b-\varepsilon} f(x) dx$, тогда говорим, что существует **несобственный интеграл** на промежутке [a;b], который мы обозначаем через $\int\limits_a^b f(x) dx$.

Несобственные интегралы от неограниченных функций на конечном промежутке

Функциональные ряды

Функциональные последовательности и ряды. Предположим, что дана последовательность функций

$$f_1(x), f_2(x), \dots, f_n(x), \dots,$$
 (31.1)

определенных на одном и том же промежутке X. Пусть для каждого $x \in X$ эта, уже числовая последовательность, имеет предел; получив такие пределы для всех $x \in X$, мы определим функцию от x

$$f(x) = \lim_{n \to \infty} f_n(x),$$

которую мы будем называть предельной функцией для последовательности (31.1).

Функциональный ряд

Равномерная сходимость

Определение. 1) Если последовательность (31.1) имеет в X предельную функцию f(x) и 2) для любого $\varepsilon > 0$ существует $N = N(\varepsilon)$, что при n > N неравенство $|f(x) - f_n(x)| < \varepsilon$ выполняется сразу для всех $x \in X$, то говорят, что (31.1) сходится к предельной функции равномерно относительно x на промежутке X.

Равномерная сходимость функционального ряда

Критерий Коши. Для того, чтобы (31.1) 1) имела предельную функцию в X; 2) сходилась к этой функции равномерно относительно x в X, необходимо и достаточно, чтобы для любого ε существовал $N=N(\varepsilon)$ такой, что при n>N и любом $m\in\mathbb{N}$ неравенство

$$|f_{n+m}(x) - f_n(x)| < \varepsilon$$

3

имело место для всех $x \in X$ одновременно.

Для рядов это выглядит следующим образом:

Для того, чтобы (31.2) сходился равномерно на промежутке X, необходимо и достаточно, чтобы для любого ε существовал $N=N(\varepsilon)$ такой, что при n>N и любом $m\in\mathbb{N}$ неравенство

$$\left| \sum_{k=n+1}^{n+m} u_k(x) \right| < \varepsilon \tag{31.3}$$

имело место для всех $x \in X$ одновременно.

Критерий Коши для рядов

Признак Вейерштрасса. Если все члены функционального ряда (31.2) удовлетворяют на X неравенствам

$$|u_n(x)| \le c_n, \quad n = 1, 2, \dots,$$
 (31.4)

где c_n суть члены некоторого сходящегося числового ряда, то ряд (31.2) сходится на X равномерно. Говорят, что ряд $\sum_{k=1}^{\infty} c_k$ мажорирует ряд (31.2).

Признак равномерной сходимости Вейерштрасса

Признак Абеля. Пусть ряд

$$\sum_{n=1}^{\infty} b_n(x)$$

сходится равномерно на X, а функции $a_n(x)$ (при каждом x) образуют монотонную последовательность и в совокупности – при любых n и x – ограничены $|a_n(x)| \leq M$, тогда ряд (31.6) сходится.

Признак равномерной сходимости Абеля

Признак Дирихле. Пусть частичные суммы B_n ряда

$$\sum_{n=1}^{\infty} b_n(x)$$

в совокупности – при любых n и x – ограничены $|B_n(x)| \leq M$, а функции $a_n(x)$ (при каждом x) образуют монотонную последовательность, которая сходится к нулю равномерно на X, тогда ряд (31.6) сходится.

Признак равномерной сходимости Дирихле

Теорема о непрерывности суммы ряда. Пусть функции $u_n(x)$, $n = 1, 2 \dots$, определены в промежутке [a, b] и все непрерывны в точке x_0 этого промежутка. Если ряд

$$\sum_{n=1}^{\infty} u_n(x) \tag{32.1}$$

в промежутке [a,b] сходится равномерно, то сумма ряда f(x) будет также непрерывна в этой точке.

Теорема о непрерывности суммы ряда

Теорема Дини. Пусть функции $u_n(x)$, $n = 1, 2 \dots$, непрерывны и положительны в промежутке [a, b]. Если ряд

$$\sum_{n=1}^{\infty} u_n(x) \tag{32.2}$$

имеет сумму f(x), также непрерывную во всем промежутке, то он сходится равномерно.

Теорема Дини

Степенные ряды

Степенной ряд и его область сходимости. Рассмотрим специальный вид функциональных рядов, который называется степенным

$$\sum_{n=1}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (32.4)

Степенной ряд

Формула Коши-Адамара.

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}.$$

Формула Даламбера.

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Формулы Коши-Адамара и Даламбера радиуса сходимости степенного ряда

6. **Теорема Абеля.** Если степенной ряд (32.4) сходится при x = R, то его сумма f(x) сохраняет непрерывность слева и при этом значении аргумента, т.е.

$$\lim_{x \to R^-} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n R^n.$$

Теорема Абеля для степенных рядов

Метрические пространства и функции нескольких переменных

Неравенство Коши-Буняковского: Для любого набора чисел $a_1, \ldots, a_n, b_1, \ldots, b_n$ верно

неравенство:
$$\left|\sum_{i=1}^n a_i b_i\right| \le \sqrt{\sum_{i=1}^n a_i^2} \cdot \sqrt{\sum_{i=1}^n b_i^2}$$

Неравенство Коши-Буняковского

$$egin{aligned} \left|\int\limits_a^b f(x)\cdot g(x)dx
ight|\leqslant \sqrt{\int\limits_a^b (f(x))^2dx}\cdot \sqrt{\int\limits_a^b (g(x))^2dx} \iff \ \left(\int\limits_a^b f(x)\cdot g(x)dx
ight)^2\leqslant \int\limits_a^b (f(x))^2dx\cdot \int\limits_a^b (g(x))^2dx \end{aligned}$$

Интегральное неравенство Коши-Буняковского

Неравенство Минковского: Для любого набора чисел $a_1, \ldots, a_n, b_1, \ldots, b_n$ верно нера-

венство:
$$\sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}$$

Неравенство Минковского

Определение: Пусть задано некоторое множество X. Говорим, что множество X является метрическим пространством, если $\forall x,y\in X$ определена функция $\rho(x,y)$, которая удовлетворяет следующим аксиомам:

- 1) $\rho(x,y) = 0 \Leftrightarrow x = y$ (аксиома тождества)
- 2) $\rho(x,y) = \rho(y,x)$ (аксиома симметрии)
- 3) $\rho(x,y) \leq \rho(x,z) + \rho(z,y), \forall x,y,x \in X$ (неравенство треугольника)

Метрическое пространство

Определение: Пусть f(x) определена на некотором множестве $M \subset \mathbb{R}^n$ и $a = (a_1, \dots, a_n)$ точка сгущения множества M.

Число $A \in \mathbb{R}$ называется **пределом функции f** при $x \to a$, если $\forall \varepsilon > 0 \exists \delta(\varepsilon, a)$ такое, что $0 < \rho(x, a) < \delta \Rightarrow |f(x) - A| < \varepsilon$, $\rho(x, a) = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2} < \delta$

Предел функции нескольких переменных 1

Определение: Из того, что $x \to a$, т.е. $\rho(x,a) \to 0 \Rightarrow x_i \to a_i \forall i$ можно говорить, что A является **пределом** f при $x_i \to a_i \forall i = 1, \ldots, n$, если $\forall \varepsilon > 0 \exists \delta(\varepsilon, a)$ такое, что $|x_i - a_i| < \delta \ i = 1, \ldots, n \Rightarrow |f(x) - A| < \varepsilon$ $\lim_{x \to a} f(x) = A$, $\lim_{x_1 \to a_1} f(x_1, \ldots, x_n) = A$ - n-кратный предел $\lim_{x \to a} f(x) = A$, $\lim_{x_1 \to a_1} f(x_1, \ldots, x_n) = A$ - $f(x_1, \ldots, x_n) = A$

Предел функции нескольких переменных 2

Определение: Функция f(x) называется **непрерывной в точке a**, если $\lim_{x\to a} f(x) = f(a)$, т.е. $\forall \varepsilon > 0 \exists \delta(\varepsilon, a)$ такое, что $\rho_1(x, a) < \delta \Rightarrow \rho_2(f(x), f(a)) < \varepsilon$, где $\rho_1(x, a) = \sqrt{(x_1 - a_1)^2 + \dots + (x_n - a_n)^2}$, $x = (x_1, \dots, x_n)$, $a = (a_1, \dots, a_n)$, $\rho_2(f(x), f(a)) = |f(x) - f(a)|$.

Непрерывность функции в точке

Теоремы Больцано-Коши. Пусть функция f(x,y) определена и непрерывна в некоторой связной области D. Если в двух точках $M_0(x_0,y_0)$, $M_1(x_1,y_1)$ функция принимает значения разных знаков

$$f(M_0) < 0, \quad f(M_1) > 0,$$

то в этой области найдется и точка $M_2(x_2, y_2)$, в которой $f(M_2) = 0$.

Если теперь $f(M_0) = A$, а $f(M_1) = B$, то для любой A < C < B существует M_2 такая, что $f(M_2) = C$.

Теоремы Больцано-Коши

Теоремы Больцано-Вейерштрасса (двухмерный случай). Из любой ограниченной последовательности точек

$$M_1(x_1, y_1), M_2(x_2, y_2), \ldots, M_n(x_n, y_n), \ldots$$

всегда можно выделить сходящуюся подпоследовательность

$$M_{n_1}(x_{n_1}, y_{n_1}), M_{n_2}(x_{n_2}, y_{n_2}), \dots, M_{n_k}(x_{n_k}, y_{n_k}), \dots$$

Теорема Больцано-Вейерштрасса

Первая теорема Вейерштрасса: Пусть f(x,y) непрерывна в замкнутой области Ω . Тогда $\overline{f(x,y)}$ ограничена Ω , т.е. $\exists M |f(x,y)| \leq M, \ \forall (x,y) \in \Omega$

Первая теорема Вейерштрасса

Вторая теорема Вейерштрасса: Пусть f(x,y) непрерывна в замкнутой области Ω . Тогда $\exists (x_0,y_0) \in \Omega$ и $(x_1,y_1) \in \Omega$ такие, что $f(x_0,y_0) = min_{\Omega}f, \ f(x_1,y_1) = max_{\Omega}f$

Вторая теорема Вейерштрасса

Напомним определение равномерной непрерывности функции. Пусть f(x,y) непрерывна на множестве Ω . Тогда говорим, что f(x,y) равномерно непрерывна на множестве Ω , если по заданному $\varepsilon > 0$ существует $\delta > 0$ такое, что как только $\rho(M', M'') < \delta$ для любых точек $M', M'' \in \Omega$, следует, что

$$|f(M') - f(M'')| < \varepsilon.$$

Теорема Кантора. Если функция f(x, y) непрерывна в ограниченной замкнутой области Ω , то она равномерно непрерывна.

Теорема Кантора

Определение: Пусть функция f(x,y,z) определена в окрестности точки (x_0,y_0,z_0) и в самой этой точке. Тогда, если $\exists \lim_{x\to x_0} \frac{\Delta_x f}{\Delta x} = \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x,y_0,z_0)-f(x_0,y_0,z_0)}{\Delta x}$, то говорим, что существует **частная производная** функции f по x в точке (x_0,y_0,z_0) и обозначаем её $f'_x(x_0,y_0,z_0)$ и иногда $\frac{\partial f(x_0,y_0,z_0)}{\partial x}$

Частная производная

то f называется **дифференцируемой** в точке (x_0, y_0, z_0) . Если (3) имеет место, тогда, положив $\Delta y = \Delta z = 0$, будем иметь: $\frac{\Delta f(x_0, y_0, z_0) = A\Delta x + \varepsilon \cdot \rho, \ \varepsilon \rho \equiv (\varepsilon |\Delta x|)}{\Delta x} = \frac{f(x_0 + \Delta x, y_0, z_0) - f(x_0, y_0, z_0)}{\Delta x} = A + \frac{\varepsilon \rho}{|\Delta x|} \xrightarrow{\Delta x \to 0} A$ Если f дифференцируема, то (3) реализуется только в виде: $\Delta f = f_x \Delta x + f_y \Delta y + f_z \Delta z + \varepsilon \rho, \ \Delta f - df = \varepsilon \rho$

Функция дифференцируемая в точке

Пусть задана функция f(x,y,z) в некоторой области Ω . Пусть f - непрерывная и \exists частные производные $f_x, f_y, f_z \in \Omega$. Пусть заданы 2 точки: $M_0(x_0, y_0, z_0), \ M(x,y,z)$. Выбираем на прямой l, соединяющей $M_0, \ M$, некоторое направление. M_0M - длина отрезка, соединяющего точки $M_0, \ M$. Будем брать эту длину с положительным знаком, если $\overline{M_0M}$ совпадает с направлением l, и с отрицательным в противоположном

случае. Тогда **производной от** f **по направлению** l в точке (x_0,y_0,z_0) называется $\frac{\partial f}{\partial l}(x_0,y_0,z_0)=\lim_{M\to M_0}\frac{f(M)-f(M_0)}{M_0M},$ где $M\to M_0$ вдоль l (1).

$$l = (\cos \alpha, \cos \beta, \cos \gamma)$$

Производная по направлению

Вектор $(f_x, f_y, f_z) = \nabla f$ называется **градиентом** функции f

Из (2):
$$\frac{\partial f}{\partial l} = \nabla f \cdot \bar{l}, \, \bar{l} = (\cos \alpha, \, \cos \beta, \, \cos \gamma).$$

Градиент

Теорема о смешанных производных: Пусть в области Ω задана f(x,y). Пусть $\exists f_x, f_y$ и пусть $\exists f_{xy}(x,y), f_{y_x}(x,y) \in \Omega$, и они являются непрерывными функциями в точке (x_0,y_0) . Тогда $f_{xy}(x_0,y_0) = f_{yx}(x_0,y_0)$.

Теорема о смешанных производных

Формула Тейлора. Рассмотрим функцию F(t) одной переменной. Мы знаем, что при существовании n+1 производной ее можно разложить по формуле Тейлора следующим образом

$$F(t) = F(t_0) + F'(t_0)(t - t_0) + \frac{1}{2}F''(t_0)(t - t_0)^2 + \dots + \frac{1}{n!}F^{(n)}(t_0)(t - t_0)^n + \frac{1}{(n+1)!}F^{(n+1)}(t_0 + \theta(t - t_0))(t - t_0)^{n+1}.$$
(39.1)

Положив

$$t - t_0 = \Delta t = dt$$
, $F(t) - F(t_0) = \Delta F(t_0)$,

можно переписать в виде

$$\Delta F(t_0) = dF(t_0) + \frac{1}{2!}d^2F(t_0) + \dots + \frac{1}{n!}d^nF(t_0) + \frac{1}{(n+1)!}d^{n+1}F(t_0 + \theta\Delta t).$$
 (39.2)

Формула Тейлора

Критерий Сильвестра:

- 1) Если квадратичная форма положительно определена ($\delta_k > 0$), то x^0 точка минимума;
- 2) Если квадратичная форма отрицательно определена ($\delta_1 < 0, \delta_2 > 0, \dots$), то x^0 точка максимума;
 - 3) Если квадратичная форма не определена, то x^0 не экстремум;
- 4) Если квадратичная форма полуопределена, то необходимы дополнительные исследования. Для полуопределённости необходимо, чтобы угловые и главные миноры были больше или равны 0.

Критерий Сильвестра