Optimization for AI
Fall 2020
Midterm

Name:

ID: _____

This exam contains 2 pages (including this cover page) and 7 questions.

- 1. (10 points) $f(x) = x + x^2 + e^x$ is α -strongly convex and β -smooth on the interval [-2, 2]. What is α ? What is β ?
- 2. (10 points) Let f be a convex function. Explain why the following inequality holds:

$$\frac{1}{T} \sum_{t=1}^{T} f(x_t) - f(x^*) \ge f(\bar{x}) - f(x^*) \quad \text{where} \quad \bar{x} = \frac{\sum_{t=1}^{T} x_t}{T}.$$

3. (15 points) Consider a constrained optimization problem:

min
$$f(x)$$

s.t. $h_i(x) = 0$ for all $1 \le i \le m$
 $g_j(x) \le 0$ for all $1 \le j \le r$.

We would like to solve the constrained optimization problem using Lagrange dual problem. Explain how to define the Lagrange dual problem and how to find the solution.

4. (15 points) Let f be α -strongly convex and β smooth. Show that

$$\frac{1}{2\beta} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{1}{2\alpha} \|\nabla f(x)\|$$

where x^* is the minimum point.

5. (15 points) This is Mirror descent.

Mirror descent:

- 1. x_t is mapped to $\nabla \Phi(x_t)$
- 2. Compute $\nabla \Phi(x_t) \gamma \nabla f(x_t)$
- 3. Find y_{t+1} such that $\nabla \Phi(y_{t+1}) = \nabla \Phi(x_t) \gamma \nabla f(x_t)$
- 4. Projection. $x_{t+1} = \Pi_{\mathcal{X}}^{\Phi}(y_{t+1}) = \arg\min_{x \in \mathcal{X}} D_{\Phi}(x, y_{t+1})$

Find Φ such that mirror descent is exactly equivalent to projected (sub)gradient descent.

6. (15 points) Let f_i be a β -smooth convex function for all i and $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$. In SVRG, for $s = 1, \ldots$, we update

$$x_1^{(s)} = y^{(s)}$$

$$x_{t+1}^{(s)} = x_t^{(s)} - \gamma \left(\nabla f_{i_t^{(s)}}(x_t^{(s)}) - \nabla f_{i_t^{(s)}}(y^{(s)}) + \nabla f(y^{(s)}) \right) \quad t = 1, \dots, k,$$

where $i_t^{(s)}$ is drawn uniformly at random. Then, update $y^{(s+1)} = \frac{1}{k} \sum_{t=1}^k x_t^{(s)}$. Explain why SVRG can reduce the variance.

7. (20 points) Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable, $\mathcal{X} \subset \mathbb{R}^d$ closed and convex, x^* a minimizer of f over \mathcal{X} . Suppose that $||x - x'|| \leq R$ for all $x, x' \in \mathcal{X}$, and stochastic gradient $\tilde{g}(x)$ such that $\mathbb{E}[\tilde{g}(x)] = \nabla f(x)$ satisfies $||\tilde{g}(x)|| \leq B$ for all $x \in \mathcal{X}$. Show that with decreasing step size $\gamma_t = \frac{R}{B\sqrt{t}}$ (i.e. $y_t = x_{t-1} - \gamma_t \tilde{g}(x_{t-1})$), the projected gradient descent has

$$\frac{1}{T}\mathbb{E}\left(\sum_{t=0}^{T-1} f(x_t) - f(x^*)\right) \le \frac{3}{2} \frac{RB}{\sqrt{T}}.$$