

Figure 6.1. Junction Tree Example

EE 381V: Sparsity, Structures and Algorithms Spring 2010 Lecture 6 — February 10 Lecturer: Sujay Sanghavi Scribe: Vishwas Vasuki, Nikita Sudan

6.1 Topics covered

• Junction Tree Algorithm

6.2 Junction Tree Property

A clique tree is said to have the junction tree property if for every pair of cliques c_1 and c_2 , the nodes in c_1 and c_2 appear in **all** cliques and seperators on the **unique** path between c_1 and c_2 on the clique tree. This is equivalent to saying for every node i of original graph, the cliques and seperators containing i should form a connected sub-tree of clique tree. See Figure 6.1 for an example of a tree that satisfies the junction tree property since the index "2" appears in each of the three connected nodes. Figure 6.2 on the other hand is not a junction tree.

- Clique trees with Junction property are called Junction tree.
- Note every graph has a junction tree.
- Not every graph has a junction tree (i/e/ a clique tree with the junction tree property. For e.g. the graph in Figure 6.3

Lemma 6.1. Let C be a leaf-clique in clique tree. Let S be the unique separator connected to it. Let R be the union of all cliques that are not C. Then the Junction property implies that $A \wedge R = \emptyset$.

Figure 6.2. Not a Junction Tree

Figure 6.3. No Junction Tree possible for this graph

Proof: Suppose $v \in A \land v \in R$. $\Rightarrow v \in C_{i \setminus s}$ for some $C_i \neq C \land v \in C$ $\Rightarrow v \in S$ by Junction Tree property. \Rightarrow contradiction

Proof: By Induction:

Initially: True if the Junction Tree for f contains only one clique.

Inductive Hypothesis: Suppose for all f with junction having $\langle = n-1$ cliques we have that, $b_c(x_c) = \sum_{x_j \setminus_c} \tilde{f}(x) \ \forall \ C$. Now consider a Junction Tree with n cliques and let C_1 be a leaf clique and S its (unique) separator. Let $A = C_1 \setminus S \land R = \bigcup_{i \neq 1} (c_i \setminus S)$ represent all other cliques. By lemma, $A \land R$ are disjoint. Also, the Junction tree parameter is $f(x) = f_{A,S}(x_A, x_S)$ $f_{R,S}(x_R, x_S)$. Assume $m_{s \to c_1} = \prod_{c_i \neq c_1} m_{c_i \to s}(x_s)$ is constant for now i.e. for the tree $f_{R,S}$ without C_1 .

Let \tilde{b} be the beliefs when Junction Tree algorithm is run on this tree. Then, by the inductive assumption, $\tilde{b}_{(x_s)} = \sum_{x_R} f_{R,S}(x_R, x_S)$. Let C_2 be some clique in R that is joined to (and hence contains) S. Then $\tilde{b}(x_s) = \sum_{x_{C_2 \setminus S}} \tilde{b}(x_{C_2})$

$$= \left[\sum_{x_{C_2} \setminus S} f_{C_2}(x_{C_2}) \prod_{s' \neq s} \tilde{m}_{s' \to C_2}(x_{s'}) \right] \, \tilde{m}_{S \to C_2}(x_S)$$

 $=\tilde{m}_{C_2\to S}(x_S) \; \tilde{m}_{S\to C_2}(x_S)$

Now, $\tilde{m}_{C_2\to S}(x_S)=m_{C_2\to S}(x_S)$ i.e. the message in bigger i.e. the full Junction Tree and $\tilde{m}_{S\to C_2}(x_S)=\prod_{i\neq 1,2}m_{C_i\to S}(x_S)$

Thus,
$$\tilde{b}(x_S) = \prod_{i \neq 1} m_{C_i \to S}(x_S)$$

Combining equations 1, 2 and 3, we get:

$$m_{s \to C_i(x_S)} = \sum_{x_R} f_{R,S}(x_R, x_S).$$

Therefore $b_{C_1}(x_{C_1}) = f_{A,S}(x_A, x_S) \sum_{x_R} f_{R,S}(x_R, x_S)$ i.e. $b_{C_1}(x_{C_1}) = \sum_{x_{v \setminus C_1}} f(x)$

Q: Can we always make a Junction Tree? If not, when?

A: No, as can be seen in Figure 6.3.

6.3 Triangulated Graphs

Every cycle in a triangulated graph has a chord. Such graphs are also called chordal graphs.

Theorem 6.2. G has a Junction Tree \Leftrightarrow G is a triangulated graph.

Proof: Using constructive procedure by building junction tree:

- a) Choose clique nodes such that each is a maximal clique in original graph. Now, between every pair of cliques C_1 and C_2 there is a potentially empty separator $S = C_1 \wedge C_2$. Let "weight" of this "separator edge" between C_1 and C_2 be $w_{12} = |S| = |C_1 \wedge C_2|$.
- b) Run max weight spanning tree algorithm (on clique-tree, with edge weights as above) to obtain a clique tree. This tree is a Junction tree of graph is triangulated. Consider any node k in the original graph with m clique nodes, then the number of separators is given by

$$\begin{split} &\sum_{j=1}^{m-1} 1_{X_k \in S_j} <= \left[\sum_{i=1}^M 1_{X_k \in C_i}\right] - 1 \\ &\text{weight of tree w}(\mathbf{T}) = \sum_{k=1}^N (number of seperators kappears in) \\ &\sum_{k=1}^N (\sum_{j=1}^{m-1} 1_{k \in S_j}) \\ &<= \sum_{k=1}^N \left[(\sum_{i=1}^M 1_{k i n C_i}) - 1 \right] \\ &= \sum_{i=1}^M (\sum_{k=1}^N 1_{k \in C_i}) - M \\ &= \sum_{i=1}^M |C_i| - M \\ &\Leftrightarrow \text{ cliques containing node k form a connected subtree in T, for every k} \\ &\Leftrightarrow \text{ depth of Junction Tree} \end{split}$$