Global Exercise - 15

Tuan Vo

02nd February 2022

A small note about monotonicity: *Upwind* scheme 1

Example 1. Examine monotonicity of $\mathcal{H}_{\Delta t}$ for conservation law $u_t + au_x = 0$.

- 1.1 $\mathcal{H}_{\Delta t}$ Monotonically increasing? $A_1 \ge 0 \Leftrightarrow f'(u_{i-1}^n) \ge 0 \quad \checkmark$ $B_1 \ge 0 \Leftrightarrow f'(u_i^n) \le \Delta x/\Delta t \ (?) \stackrel{\mathrm{CFL}}{\to} \checkmark$
- 1.2 $\mathcal{H}_{\Delta t}$ Monotonically decreasing? $A_1 \leq 0 \Leftrightarrow f'(u_{i-1}^n) \leq 0 \quad \notin$

- 2.1 $\mathcal{H}_{\Delta t}$ Monotonically increasing? $B_1 \ge 0 \Leftrightarrow f'(u_i^n) \le \Delta x/\Delta t \quad \checkmark$
- 2.2 $\mathcal{H}_{\Delta t}$ Monotonically decreasing? $A_1 \le 0 \Leftrightarrow f'(u_{i-1}^n) \le 0 \quad \checkmark$ $B_1 \leq 0 \Leftrightarrow f'(u_i^n) \geq \Delta x/\Delta t$ 4

$$(a > 0)$$

$$\mathcal{H}_{\Delta t} = u_j^n + \frac{\Delta t}{\Delta x} \Big(f(u_j^n) - f(u_{j+1}^n) + \frac{\Delta t}{\Delta x} \Big) \Big(f(u_j^n) - f(u_{j+1}^n) \Big)$$

$$A_2 = \partial_{u_{j-1}^n} \mathcal{H}_{\Delta t} = 0$$

$$B_2 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 + \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_2 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = -\frac{\Delta t}{\Delta x} f'(u_{j+1}^n)$$

$$f'(u)$$

$$a \mapsto u$$

$$Q = u_j^n + u_j^n$$

- 3.1 $\mathcal{H}_{\Delta t}$ Monotonically increasing? $B_2 \ge 0 \Leftrightarrow f'(u_j^n) \ge -\Delta x/\Delta t \quad \checkmark$ $C_2 \ge 0 \Leftrightarrow f'(u_{i+1}^n) \le 0 \quad \notin$
- 3.2 $\mathcal{H}_{\Delta t}$ Monotonically decreasing? $B_2 \le 0 \Leftrightarrow f'(u_i^n) \le -\Delta x/\Delta t$ 4 $C_2 \leq 0 \Leftrightarrow f'(u_{i+1}^n) \geq 0 \quad \checkmark$

- **4.1** $\mathcal{H}_{\Delta t}$ Monotonically increasing? $B_2 \ge 0 \Leftrightarrow f'(u_j^n) \ge -\Delta x/\Delta t \ (?) \stackrel{\text{CFL}}{\to} \checkmark$ $C_2 \ge 0 \Leftrightarrow f'(u_{i+1}^n) \le 0 \quad \checkmark$
- **4.2** $\mathcal{H}_{\Delta t}$ Monotonically decreasing? $B_2 \le 0 \Leftrightarrow f'(u_j^n) \le -\Delta x/\Delta t \ (?) \stackrel{\text{CFL}}{\to} \ \sharp$ $C_2 \le 0 \Leftrightarrow f'(u_{i+1}^n) \ge 0 \quad \notin$

Figure 1: Monotonicity of *Upwind* scheme: 8 different cases.

Example 2. Examine monotonicity of $\mathcal{H}_{\Delta t}$ for conservation law $u_t + f(u)_x = 0$.

$$(a > 0) \text{ CFL: } 0 \le f'(u) \frac{\Delta t}{\Delta x} \le 1$$

$$\mathcal{H}_{\Delta t} = u_j^n + \frac{\Delta t}{\Delta x} \left(f(u_{j-1}^n) - f(u_j^n) \right)$$

$$A_1 = \partial_{u_{j-1}^n} \mathcal{H}_{\Delta t} = \frac{\Delta t}{\Delta x} f'(u_{j-1}^n)$$

$$B_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_{j+1}^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$C_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 0$$

$$f'(u)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 1 - \frac{\Delta t}{\Delta x} f'(u_j^n)$$

$$A_1 = \partial_{u_j^n} \mathcal{H}_{\Delta t} = 0$$

$$A_1 \geq 0 \Leftrightarrow f'(u_j^n) \geq \Delta x / \Delta t \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq \Delta x / \Delta t \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'(u_j^n) \geq 0 \text{ } v$$

$$A_1 \leq 0 \Leftrightarrow f'$$

Figure 2: Monotonicity of *Upwind* scheme: 8 different cases.

 $C_2 \leq 0 \Leftrightarrow f'(u_{i+1}^n) \geq 0 \quad \checkmark$

2 Structure of FVM

Example 3. Monotone $\rightarrow L_1$ -Contracting $\rightarrow TVD \rightarrow Monotonicity-Preserving.$

Figure 3: Structure of Finite Volume Method [Lecture note page 115].

3 Limiter

Example 4. Examine the 1^{st} -order-converged LF and the 2^{nd} -order-converged LW.

Figure 4: Oscillatory phenomena around discontinuity: (left) none oscillation founded in *Lax-Friedrichs*; (right) oscillation observed in *Lax-Wendroff*.

Example 5. Assume the linear advection problem given by

$$u_t + au_x = 0$$
 with $a > 0$,

and the numerical scheme as follows

$$u_j^{n+1} = u_j^n + \nu \left(u_{j-1}^n - u_j^n \right) + \frac{\nu (1-\nu)}{2} \Delta x \left(\sigma_{j-1}^n - \sigma_j^n \right),$$

with limited slopes

$$\sigma_j^n = \frac{u_{j+1}^n - u_j^n}{\Delta x} \phi(\theta_j).$$

Prove that numerical scheme is TVD with limiters $\phi(\theta)$ given as follows

- 1. $\phi(\theta) = \max(0, \min(\theta, 2)),$
- 2. $\phi(\theta) = \max(0, \min(2\theta, 2)),$

3.
$$\phi(\theta) = \frac{\theta + |\theta|}{\alpha + |\theta|}$$
 for any fixed $\alpha \ge 1$

4.
$$\phi(\theta) = \max(0, \min(2\theta, 1), \min(\theta, 2)).$$

Denote which of them are second order schemes.

According to the theorem on TVD region of *Upwind* numerical scheme with limiter presented in the lecture, we know that limiter gives us TVD scheme if the following relations

$$0 \le \phi(\theta) \le 2\theta,$$
$$|\phi(\theta)| \le 2,$$

holds. Besides, the scheme is of 2nd-order if and only if $\phi(1) = 1$ holds. Therefore, we can simply check lower and upper bounds of limiters, as follows

- 1. $\phi(\theta) = \max(0, \min(\theta, 2))$ satisfies bounds and goes through $\phi(1) = 1$. Hence, it corresponds to 2nd-order TVD method.
- 2. $\phi(\theta) = \max(0, \min(2\theta, 2))$ satisfies bounds but $\phi(1) = 2$. Hence, it is of 1st-order TVD scheme.
- 3. $\phi(\theta) = \frac{\theta + |\theta|}{\alpha + |\theta|}$ satisfies bounds for any fixed $\alpha \ge 1$, but $\phi(1) = 1$ holds only for $\alpha = 1$.

Hence, it is of 2nd-order only if $\alpha = 1$ and of 1st-order otherwise.

4. $\phi(\theta) = \max(0, \min(2\theta, 1), \min(\theta, 2))$ satisfies bounds and $\phi(1) = 1$ holds. Hence, it is TVD scheme of 2nd-order.

Example 6. Examine and sketch the following Limiter function.

$$\phi(\theta) = \min\left(\delta\theta, \frac{1+\theta}{2}, \gamma\right), \text{ for } \delta, \gamma \ge 1.$$

Figure 5: Limiter function $\phi(\theta) = \min\left(\delta\theta, \frac{1+\theta}{2}, \gamma\right)$, for $\delta, \gamma \geq 1$.

4 A bit insight into Godunov's solver

Example 7. Examine the Godunov numerical flux function

$$g(u_L, u_R) = \begin{cases} \min_{u_L \le u \le u_R} f(u) & \text{if } u_L \le u_R, \\ \max_{u_R \le u \le u_L} f(u) & \text{if } u_L > u_R. \end{cases}$$

by considering all possible cases.

Example 8. Examine $u_L > u_R$.

Case 1: $u_L > u_R > 0$

Case 3: $0 > u_L > u_R$

 $(C_L): t = \frac{1}{u_L}x - \frac{x_0}{u_L}$ $(C_R): t = \frac{1}{u_R}x - \frac{x_0}{u_R}$

$$(C_R): t = \frac{1}{u_R}x - \frac{x_0}{u_R}$$

Figure 6: Riemann problem with $u_L > u_R$: IC, Characteristics, Solution.

Schock solution

Example 9. Examine $u_L > u_R$.

 $\text{Case 2.1: } (u_L>0>u_R) \wedge |u_L|>|u_R| \qquad \text{Case 2.2: } (u_L>0>u_R) \wedge |u_L|<|u_R|$

Figure 7: Riemann problem with $u_L > u_R$: IC, Characteristics, Solution.

Schock solution

Example 10. Examine $u_L < u_R$.

Figure 8: Riemann problem with $u_L < u_R$: IC, Characteristics, Solution.

Rarefaction solution

Example 11. Consider the Godunov's solver for the conservation law $u_t + f(u)_x = 0$ with convex and nonlinear flux function f, e.g. the flux function in Burgers' equation, where

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{\Delta x} \left(g(u_{j-1}^n, u_j^n) - g(u_j^n, u_{j+1}^n) \right),$$

and the numerical flux function

$$g(u_L, u_R) = \begin{cases} \min_{u_L \le u \le u_R} f(u) & \text{if } u_L \le u_R, \\ \max_{u_R \le u \le u_L} f(u) & \text{if } u_L > u_R. \end{cases}$$

- 1. Show that the numerical flux function is monotone.
- 2. Rewrite the scheme in the incremental form.
- 3. Show that the scheme has the total-variation-diminishing (TVD) property.

 Approach:
- 1. *Proof.* In order to show the monotonicity of the numerical flux function, it is sufficient to show the following relations

$$\begin{cases}
\partial_u g(u, v) \ge 0, \\
\partial_v g(u, v) \le 0.
\end{cases}$$
(1)

Hence, in case of Burgers' equation, where f'(u) = u, we proceed as follows

$$g(u_L, u_R) = \begin{cases} f(u_L), & \text{if } \left[f'(u_L) \ge 0 \text{ and } f'(u_R) \ge 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] > 0, \end{cases}$$

$$g(u_L, u_R) = \begin{cases} f(u_R), & \text{if } \left[f'(u_L) \le 0 \text{ and } f'(u_R) \le 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] < 0, \end{cases}$$

$$f(u_S), & \text{if } f'(u_L) < 0 < f'(u_R),$$

where u_s denotes the sonic point where $f'(u_s) = 0$. Then, by taking the partial derivative of $g(u_L, u_R)$ w.r.t. u_L and u_R we arrive at the following expressions

$$\partial_{u_L} g(u_L, u_R) = \begin{cases} f'(u_L), & \text{if } \left[f'(u_L) \ge 0 \text{ and } f'(u_R) \ge 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] > 0, \\ 0, & \text{otherwise,} \end{cases}$$

which leads to

$$\partial_{u_L} g(u_L, u_R) \ge 0.$$
 (2)

Likewise, the partial derivative of $g(u_L, u_R)$ w.r.t. u_R goes as follows

$$\partial_{u_R} g(u_L, u_R) = \begin{cases} f'(u_R), & \text{if } \left[f'(u_L) \le 0 \text{ and } f'(u_R) \le 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] < 0, \\ 0, & \text{otherwise,} \end{cases}$$

which leads to

$$\partial_{u_R} g(u_L, u_R) \le 0. \tag{3}$$

Therefore, by combining (2) and (3), and comparing them with the condition given at (1), we arrive at q.e.d.

2. The incremental form reads

$$u_j^{n+1} = u_j^n + C_{j+1/2}^n(u_{j+1}^n - u_j^n) - D_{j-1/2}^n(u_j^n - u_{j-1}^n).$$

For any conservative Finite Volume scheme we obtain

$$C_{j+1/2} = -\lambda \frac{g_{j+1/2} - f_j}{u_{j+1} - u_j}$$
$$D_{j-1/2} = \lambda \frac{f_j - g_{j-1/2}}{u_j - u_{j-1}}$$

where $\lambda = \Delta t/\Delta x$. Herein, for the case $C_{j+1/2}$, u_L is u_j and u_R is u_{j+1} , as follows

$$C_{j+1/2} = \begin{cases} 0, & \text{if } \left[f'(u_L) \ge 0 \text{ and } f'(u_R) \ge 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] > 0, \end{cases}$$

$$C_{j+1/2} = \begin{cases} -\lambda \frac{f(u_R) - f(u_L)}{u_R - u_L}, & \text{if } \left[f'(u_L) \le 0 \text{ and } f'(u_R) \le 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] < 0, \end{cases}$$

$$-\lambda \frac{f(u_s) - f(u_L)}{u_R - u_L}, & \text{if } f'(u_L) < 0 < f'(u_R).$$

Likewise, it goes for the case $D_{j+1/2}$ as follows

$$D_{j+1/2} = \begin{cases} \lambda \frac{f(u_R) - f(u_L)}{u_R - u_L}, & \text{if } \left[f'(u_L) \ge 0 \text{ and } f'(u_R) \ge 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] > 0, \end{cases}$$

$$0, & \text{if } \left[f'(u_L) \le 0 \text{ and } f'(u_R) \le 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] < 0, \end{cases}$$

$$\lambda \frac{f(u_R) - f(u_s)}{u_R - u_L}, & \text{if } f'(u_L) < 0 < f'(u_R).$$

3. In order to show the scheme has TVD property, according to Theorem II.23 (*Harten* [1980]) from the lecture note, the following three conditions

$$C_{j+1/2} \ge 0,$$

$$D_{j+1/2} \ge 0,$$

$$C_{j+1/2} + D_{j+1/2} \le 1,$$

must hold. Herein, the first two conditions $C_{j+1/2} \ge 0$, $D_{j+1/2} \ge 0$ can be shown by using convexity of flux function f. Besides, the third condition $C_{j+1/2} + D_{j+1/2} \le 1$ is shown as follows

$$C_{j+1/2} + D_{j+1/2} = \begin{cases} \lambda \frac{f(u_R) - f(u_L)}{u_R - u_L}, & \text{if } \left[f'(u_L) \ge 0 \text{ and } f'(u_R) \ge 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] > 0, \end{cases}$$

$$C_{j+1/2} + D_{j+1/2} = \begin{cases} -\lambda \frac{f(u_R) - f(u_L)}{u_R - u_L}, & \text{if } \left[f'(u_L) \le 0 \text{ and } f'(u_R) \le 0, \\ f'(u_L) \ge 0 \ge f'(u_R) \text{ and } [f]/[u] < 0, \end{cases}$$

$$\lambda \frac{f(u_R) + f(u_L) - 2f(u_s)}{u_R - u_L}, & \text{if } f'(u_L) < 0 < f'(u_R).$$

The $C_{j+1/2}+D_{j+1/2}\leq 1$ leads to the CFL condition for Godunov's scheme. For λ that satisfies $C_{j+1/2}+D_{j+1/2}\leq 1$, the scheme is TVD.