

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination April/May 2018 "Solution"

Class: FYMCA

Course Code: MCA 25

Subject: Probability and Statistics

Semester: II Date: 07/05/2018

Q. No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max
1.	Theory	Mari
(a)	Define events as follows E_i = "Job is from MIDC _i , i=1 for Thane, =2 for Taloja and =3 for Andheri" and A= "Job requires set up" Then total probability P(A) is given by $P(A) = P(A/E_1).P(E_1) + P(A/E_2).P(E_2) + P(A/E_3).P(E_3) = 0.029$ Now the second event of interest is $[E_2 A]$ and from Bayes rule $P(E_2 A) = \frac{P(A/E_2).P(E_2)}{P(A)} = \frac{0.05 \times 0.35}{0.029} = 0.6034$ OR	
	Very Person 2 C CC : Mean - Mode 27.25 26.67	3
	Karl Peareon's Coefficient of skewness= $\frac{Mean - Mode}{S \tan dard \ Deviation} = \frac{37.25 - 36.67}{8.2878}$	
(1-)		
(b)	Consider an example of 2 dices. Let $A=1^{st}$ dice show 1,2,3. $B=1^{st}$ dice show 3,4,5. $C=$ sum of 2 numbers is 9. $P(A) = \frac{18}{36} = \frac{1}{2}, \qquad P(B) = \frac{18}{36} = \frac{1}{2}, \qquad P(C) = \frac{4}{36} = \frac{1}{9}.$ $A \cap B = \{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}$	
	$\therefore P(A \cap B) = \frac{6}{36} = \frac{1}{6} \text{ and } P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \implies P(A \cap B) \neq P(A) \times P(B)$	
	Now $A \cap C = \{(3,6)\}$ $\therefore P(A \cap C) = \frac{1}{36}$ and $P(A) \times P(C) = \frac{1}{2} \times \frac{1}{9} = \frac{1}{18}$ $\Rightarrow P(A \cap C) \neq P(A) \times P(C)$	
	Similarly $B \cap C = \{(3,6), (4,5), (5,4)\}$	
	∴ $P(B \cap C) = \frac{3}{36} = \frac{1}{12}$ and $P(B) \times P(C) = \frac{1}{2} \times \frac{1}{9} = \frac{1}{18}$ $\Rightarrow P(B \cap C) \neq P(B) \times P(C)$	K
- 4	And $A \cap B \cap C = \{(3,6)\}$	
	∴ $P(A \cap B \cap C) = \frac{1}{36}$ and $P(A) \times P(B) \times P(C) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{9} = \frac{1}{36}$	

SARDAR PATEL INSTITUTE OF TECHNOLOGY MUNSHI NAGAR ANDHERLOWEST AND A STATE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

	$\Rightarrow P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$
	TILL TODAY STREET
Q.2 (a)	The null hypothesis H_0 is: average length of nail produced = 5 cm Alternate hypothesis H_a is: average length of nail produced $\neq 5$ cm The test statistic $t = \frac{x - \mu}{s / (n - 1)} = \frac{5.012 - 5}{0.05134 / (10 - 1)} = 0.7012$ Level of significance $\alpha = 0.05$ Critical value at 5% level of significance for 9 degrees of freedom is 1.833. Since the calculated value of $ t_{\alpha} = 0.7012$ is less than the critical value, the null hypothesis is accepted. \therefore The average height of the population is 5 cm. OR
	Since the calculated value≤The critical value, the hypothesis that numbers are uniformly distributed can be accepted.
b)	(i) Given total number of families=100
	∴ $56+f_1+f_2=100$ ∴ $f_1+f_2=44$ Also given Median = 50 ∴ Median class $((l_1-l_2)=(40-60)$ Frequency of median class(f) = 27 Cumulative Frequency of pre-median class(F) = $14+f_1$
	$Median = l_1 + \frac{(l_2 - l_1)}{f} \left(\frac{N}{2} - F \right)$
	\therefore f ₁ =22.5 Substitute this value in (1), we get f ₂ = 21.5 Hence missing frequencies are 22.5 and 21.5 (ii)
	Given $E(X)=10$, and $V(X)=25$ But $Var(X)=E(X^2)-[E(X)]^2$ Now $Y=aX-b$ and $E(Y)=0$ E(aX-b)=0 $aE(X)-b=0$
	$a \times 10-b=0$ $\therefore b=10a$ and $V(Y)=1$ $\therefore V(aX-b)=1$
	$\therefore a^2 V(X) = 1$ $\therefore a^2 \times 25 = 1$ $\therefore a = \pm \frac{1}{5}$ From (1) and (2), b=\pm 2

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

(b)	X and V	Vare	not	uncorrelated.
(0)	21 and 1	ale		

Also
$$P(X=1,Y=1) = \frac{2}{16} \neq P_X(1)P_Y(1) = \frac{5}{16} \times \frac{7}{16}$$
.

Therefore X and Y are not independent.

(a)

(i)
$$Z = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{2500 - 2700}{\sqrt{\frac{200^2}{1000} + \frac{250^2}{1000}}} = \frac{-200}{32.0156} = -19.75$$

Since $|Z| \le |Z_{critical}$, the null hypothesis is rejected at 1% level of significance. Hence there is a significant increase in the mean yield.

$$P(X=x) = {}^{n}C_{x}p^{x}q^{n-x} = {}^{10}C_{x}(0.65)^{x}(0.35)^{10-x}$$

:. P(at least 7 will live up to 70)=
$$\sum_{x=7}^{10} {}^{10}C_x (0.65)^x (0.35)^{10-x} = 0.5138$$

(b)
$$(i)E(X)=1\times1/2+2\times1/4+3\times1/8+...$$

∴
$$E(X)=2$$

(ii) Sample space
$$S = n$$
 jobs are send to n processor for execution.
 $\therefore n(S) = n^n$

Event A = One processor processes 2 jobs and (n-1) processors processes remaining (n-2) jobs. $n(A) = \binom{n}{2} + \binom{$

$$\therefore n(A) = \binom{n}{C_2} + \binom{n}{C_2} + \cdots + \binom{n}{C_2}$$
 $(n \text{ times}) \times [(n-1)(n-2)\cdots 3\times 2]$
$$= \binom{n}{C_2} \times n \times (n-1)! = \binom{n}{C_2} \times n!$$

$$\therefore P(A) = \frac{{}^{n}C_{2} \times n}{n^{n}}$$