# Статистика

Лекция 4. Корреляционный и регрессионный анализ





# Алексей Кузьмин

Директор разработки в ДомКлик.ру

#### О спикере:

- Руковожу направлением работы с данными и Data Science
- Преподаю в Нетологии

- Работаю в IT с 2010 года (АВВҮҮ, ДомКлик)
- Окончил МехМат МГУ в 2012 году

#### Я в Слаке:





#### Сегодня на лекции

- 1. Узнаем как искать и анализировать взаимосвязи в данных
- 2. Познакомимся с понятием корреляции
- 3. Научимся предсказывать значение одной переменной по другой

# Зависимости в данных

И их виды



#### Вопросы

- 1. Существует ли зависимость между доходом семьи и ее расходами на питание?
- 2. Связан ли уровень безработицы в стране с ВВП?
- 3. Влияет ли количество часов, которые студент тратит на подготовку к экзамену на его итоговую оценку?
- 4. ..

#### Изучение связи между переменными

Корреляционный и регрессионный анализ предназначены для изучения статистических связей между переменными.

## Изучение связи между переменными

#### Корреляционный анализ

- 1. Существует ли связь между явлениями?
- 2. Насколько сильная связь между явлениями?

#### Регрессионный анализ

- 1. Каков характер связи между явлениями?
- 2. Построение и исследование регрессионной модели.

# **Корреляционный** анализ



#### Корреляция

Изменения значений одной из величин сопутствуют систематическому изменению значений другой или других величин.

Коэффициент корреляции (линейный коэффициент корреляции Пирсона) показывает:

- 1. силу линейной взаимосвязи между двумя переменными,
- 2. направление взаимосвязи (прямая или обратная)

## Формула

$$r_{X,Y} = \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{(n\sum_{i=1}^{n} (x_{i})^{2} - (\sum_{i=1}^{n} x_{i})^{2}) \cdot (n\sum_{i=1}^{n} (y_{i})^{2} - (\sum_{i=1}^{n} y_{i})^{2})}};$$

Величина коэффициента корреляции заключена в пределах -1 <= r <= 1

#### Свойства

- Если 0 <= r <= 1, то при увеличении значений одной из величин значения другой имеют тенденцию к увеличению (прямая связь)
- 2. Если -1 <= r <= 0, то при увеличении значений одной из величин значения другой имеют тенденцию к уменьшению (обратная связь)



#### Свойства

- Чем ближе Irl к единице, тем сильнее линейная связь между случайными величинами, т.е. тем меньше точки рассеяны вокруг прямой.
- Irl = 1 тогда и только тогда, когда когда случайные величины X и Y линейно связаны, т.е. точки лежат на одной прямой.



#### Свойства

- 1. Если |r| = 0, то
  - а. связь между случайными величинами либо отсутствует
  - b. либо не носит линейного характера





## Примеры



#### Корреляция - просто число



#### Квартет Энскомба

#### Одинаковые:

- среднее **х**,
- среднее **у**,
- дисперсия **х**,
- дисперсия **у**,
- уравнение прямой *y=ax+b*,
- коэффициент корреляции р



**Пример**: Уровень определенного типа холестерина обратно пропорционален риску развития сердечно сосудистых заболеваний. Т.е. чем больше «хорошего» холестерина, тем лучше. Однако, если давать пациентам препараты с таким веществом – это никак не повлияет на болезни сердца.

#### Ошибка вывода

Корреляция не подразумевает причинно-следственных связей!



#### Ошибка вывода

Корреляция не подразумевает причинно-следственных связей!

За и против брекзита (2016)



Коровье бешенство (1992)

#### Ошибка вывода

Корреляция не подразумевает причинно-следственных связей!



## Выбросы

Коэффициент корреляции очень чувствителен к выбросам!



## Проблемы коэффициента Пирсона

- 1. Выбросы
- 2. Работает только с непрерывными данными (а как же порядковые?)
- 3. Может испытывать проблемы при не нормальном распределении данных

## Ранговый коэффициент корреляции Спирмена

$$\rho = 1 - \frac{6}{n(n^2 - 1)} \cdot \sum_{k=1}^{n} (A_k - B_k)^2$$

Ak - ранг k-го наблюдения в первой выборке

Bk - ранг k-го наблюдения во второй выборке

n - число пар наблюдений

## Ранговый коэффициент корреляции Кенделла

$$\tau = \frac{2S}{n(n-1)}$$

S – сумма баллов

Баллом +1 оценивается пара рангов, имеющих по обоим показателям одинаковый порядок

Баллом -1 – пара с разным порядком.

## Пример

| X  | Y  | Nx | Ny | D=Nx-Ny | d2 | +  | - |
|----|----|----|----|---------|----|----|---|
| 46 | 45 | 1  | 1  | 0       | 0  | 7  | 0 |
| 60 | 69 | 2  | 6  | -4      | 16 | 2  | 4 |
| 66 | 59 | 3  | 5  | -2      | 4  | 2  | 3 |
| 68 | 49 | 4  | 2  | 2       | 4  | 4  | 0 |
| 71 | 54 | 5  | 3  | 2       | 4  | 3  | 0 |
| 78 | 70 | 6  | 7  | -1      | 1  | 1  | 1 |
| 82 | 58 | 7  | 4  | 3       | 9  | 1  | 0 |
| 90 | 75 | 8  | 8  | 0       | 0  | -  | - |
|    |    |    |    |         | 38 | 20 | 8 |

Расчеты

Спирмен:

$$\rho = 1 - \frac{6*38}{8(64-1)} = 1 - 0.453 = 0.547$$

Кенделл:

$$\tau = \frac{2(20-8)}{8(8-1)} = \frac{24}{56} = 0.429$$

#### Другие меры взаимосвязи

- Коэффициент ассоциации
- Коэффициент контингенции
- Коэффициенты сопряженности Пирсона
- Коэффициент сопряженности Чупрова
- Коэффициент корреляции знаков Фехнера
- ...

## Практика

- 1. Возьмем датасет с boston'ом
- 2. Посмотрим на имеющиеся в нем корреляции

# Регрессионный анализ



#### Регрессионный анализ

Если суточное потребление калорий и вес связаны, то можем ли мы предсказать конкретный вес человека?

Регрессионный анализ — инструмент для количественного предсказания значения одной переменной на основании другой.

#### Регрессия vs Корреляция

РЕГРЕССИЯ – предсказание одной переменной на основании другой. Одна переменная – независимая, а другая – зависимая.

**Пример**: чем больше студент занимается перед экзаменом, тем выше его оценка

КОРРЕЛЯЦИЯ показывает, в какой степени две переменные COBMECTHO ИЗМЕНЯЮТСЯ. Нет зависимой и независимой переменных, они эквивалентны.

Пример: рост человека положительно связан с его массой

#### Регрессионный анализ

По количеству независимых переменных:

- простой (регрессия между двумя переменными);
- множественной (регрессия между зависимой переменной Y и несколькими независимыми переменными (X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>)).

#### По типу зависимости:

- линейный
- нелинейный

## Общий подход к решению

- 1. Определение формы зависимости
- 2. Построение модели регрессии
- 3. Оценка неизвестных значений зависимой переменной

## Определение формы зависимости



#### Построение модели регрессии

- 1. Мы выбрали форму регрессии. Предположим, это прямая линия y=ax+b
- 2. У нас есть выборка точек с измеренными значениями у и х
- 3. Нужно подобрать наилучшие параметры a, b, которые максимально точно описывают наши данные.
- 4. Как это сделать?

Предположим, мы в

#### Построение модели регрессии

Рассмотрим одну точку - (у, х).

Предсказание нашей модели для этой точки - **y\_pred** = **ax** + **b** 

Ошибка предсказания - y - y\_pred

Нас интересует именно размер ошибки, а не его знак (+ или -). Возведем ошибку в квадрат:



(y - y\_pred) ^2

#### Построение модели регрессии

Тогда суммарная ошибка предсказания для всей выборки - сумма квадратов ошибок для каждой точки

$$S = (y_pred_1 - y_1)^2 + (y_pred_2 - y_2)^2 + ... + (y_pred_N - y_N)^2$$

Очевидно - модель лучше, если такая суммарная ошибка меньше.

Оптимальные значения a, b для модели регрессии - те, при которых ошибка S достигает своего минимума.

# Линейная регрессия

$$a = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$b = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

# Оценка неизвестных значений











### Оцениваем адекватность модели

- 1. Коэффициент детерминации
- 2. Анализ остатков

# Немного порассуждаем

Какая может быть самая простая модель для регрессии?

# Немного порассуждаем

Какая может быть самая простая модель для регрессии?

#### Оценка через среднее

$$\overline{y} = \frac{y_1 + y_2 + \ldots + y_n}{n}$$

# Сравним нашу модель с такой наивной

Для этого рассчитаем сумму квадратов ошибок нашей модели:

$$SS_{res} = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

И наивной:

$$SS_{tot} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

# Сравним их

Во сколько раз наши остатки "лучше", чем остатки наивной модели?

SSres / SStot

### Сравним их

Во сколько раз наши остатки "лучше", чем остатки наивной модели?

SSres / SStot

Коэффициент Детерминации (R2):

**R2** = **1** - **SSres/SStot** 

# Коэффициент детерминации

доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости, то есть объясняющими переменными

- 1. 0<=R2<=1;
- 2. Чем ближе коэффициент детерминации к 1, тем лучше регрессия «объясняет» зависимость данных;

#### Анализ остатков

Если модель подобрана правильно, то

- остатки будут вести себя достаточно хаотично,
- в остатках не будет систематической составляющей, резких выбросов,
- в чередовании знаков не будет никаких закономерностей.

#### Анализ остатков



# Практика

- 1. Попробуем построить регрессию, предсказывающую цену MEDV на основе среднего количества комнат в доме RM
- 2. В качестве инструментов попробуем использовать:
  - a. LinearRegression из sklearn
  - b. OLS из statsmodels

# Итоги



# Что мы узнали сегодня

- Познакомились с понятием корреляции и рассмотрели несколько способов ее расчета
- Узнали, что корреляция не всегда означает наличие причинноследственной связи в данных
- Научились прогнозировать значение зависимого признака на основе независимых и строить модель линейной регрессии



# **Домашнее** задание



# Домашнее задание

1. Возьмите датасет Mortality and Water Hardness <a href="https://www.kaggle.com/ukveteran/mortality-and-water-hardness">https://www.kaggle.com/ukveteran/mortality-and-water-hardness</a>

Дополнительно будет выложен в ЛК

В этом датасете содержатся данные по средней годовой смертности на 100000 населения и концентрации кальция в питьевой воде для 61 большого города в Англии и Уэльсе. Города дополнительно поделены на северные и южные.

# Домашнее задание

- 1. Задача ответить на вопрос есть ли связь между жёсткостью воды и средней годовой смертностью?
  - а. Построить точечный график
  - b. Рассчитать коэффициенты корреляции Пирсона и Спирмена
  - с. Построить модель линейной регрессии
  - d. Рассчитать коэффициент детерминации
  - е. Вывести график остатков
- 2. Сохраняется ли аналогичная зависимость для северных и южных городов по отдельности?
  - а. Разделить данные на 2 группы
  - b. Повторить аналогичные шаги из пункта 1 для каждой группы по отдельности

# Спасибо за внимание



**А**лексей **Кузьмин** 

