

Kanokkorn Pimcharoen

Decision Tree Structure

Risk for heart attack

Features:

- Age
- Weight
- Smoker

Labels/classes:

- Low risk
- High risk

Decision Tree Structure

Dataset

Class 0: 100 data Class 1: 100 data

Gini Impurity
$$gini = \sum_{i} p_i (1 - p_i)$$

where p_i is the proportion of class i in a node, such that $\sum_i p_i = 1$.

For binary classification (2 classes: $p_0 + p_1 = 1$),

gini is minimum at $p_i = 0$ or $p_i = 1 \rightarrow Perfect split$

$$p_0 = 0, p_1 = 6/6 = 1$$

$$gini = 0 \times (1 - 0) + 1 \times (1 - 1) = 0$$

gini is maximum at $p_i = 0.5$

$$ightharpoonup$$
 Equally split $p_0 = p_1 = 3/6 = 0.5$ $gini = 0.5 \times (1 - 0.5) + 0.5 \times (1 - 0.5) = 0.5$

Dataset

Class 0: 100 data Class 1: 100 data

Split on Feature 1

Split on Feature 2

weighted gini =
$$\left(\frac{102}{200}\right) \times 0.075 + \left(\frac{98}{200}\right) \times 0.04 = 0.058$$

Splitting Criteria

Gini Impurity
$$gini = \sum_i p_i (1-p_i)$$
 where p_i is the proportion of class i in a node, such that $\sum_i p_i = 1$.

Feature 1 <= -0.895 gini = 0.5samples = 200value = [100, 100]Feature 2 <= -0.701 gini = 0.0gini = 0.091samples = 95samples = 105value = [0, 95]value = [100, 5](Class 1) gini = 0.0gini = 0.0samples = 100samples = 5value = [100, 0]value = [0, 5]Stopping Criteria (Class 0) (Class 1)

Dataset

Class 0: 100 data Class 1: 100 data

Gini Impurity $gini = \sum_i p_i (1-p_i)$ where p_i is the proportion of class i in a node, such that $\sum_i p_i = 1$.

ปสร้างคน ข้ามพรมแดน

Dataset Class 0: 100 data Class 1: 100 data

Feature 1 <= -0.895 gini = 0.5samples = 200value = [100, 100]Feature 2 <= -0.701 gini = 0.0gini = 0.091samples = 95samples = 105value = [0, 95]value = [100, 5](Class 1) gini = 0.0gini = 0.0samples = 100samples = 5value = [100, 0]value = [0, 5](Class 0) (Class 1)

Gini Impurity
$$gini = \sum_i p_i (1-p_i)$$
 where p_i is the proportion of class i in a node, such that $\sum_i p_i = 1$.

Dataset

Class 0: 100 data Class 1: 100 data

Feature 1 <= -0.895 gini = 0.5samples = 200value = [100, 100]Feature 2 <= -0.701 gini = 0.0gini = 0.091samples = 95samples = 105value = [0, 95]value = [100, 5](Class 1) gini = 0.0gini = 0.0samples = 100samples = 5value = [100, 0]value = [0, 5](Class 0) (Class 1)

New data: Feature 1 = 1, Feature 2 = 0, Class?

Gini Impurity
$$gini = \sum_i p_i (1 - p_i)$$
 where p_i is the proportion of class i in a node, such that $\sum_i p_i = 1$.

สร้างคน ข้ามพรมแดน

Simulated Data for Binary Classification

Dataset

Class 0: 100 data Class 1: 100 data

Feature 1 <= -0.895 gini = 0.5samples = 200value = [100, 100]Feature 2 <= -0.701 gini = 0.0gini = 0.091samples = 95samples = 105value = [0, 95]value = [100, 5](Class 1) gini = 0.0gini = 0.0samples = 100samples = 5value = [100, 0]value = [0, 5](Class 0) (Class 1)

New data: Feature 1 = -2, Feature 2 = 0, Class?

Gini Impurity
$$gini = \sum_{i} p_i (1 - p_i)$$
 where p_i is the proportion of class i in a node, such that $\sum_{i} p_i = 1$.

Feature 2

-2

Decision Tree

Feature 1

Dataset Class 0: 100 data Class 1: 100 data

Pros:

- Can solve both linear and non-linear problems.
- Can ignore redundant features.
- Easy to visualize and explain.

Cons:

- Easy to overfit.
- Does not generalize well.
- Large trees are hard to interpret.

Kanokkorn Pimcharoen

Overfitting

How to avoid overfitting in decision tree?

Early Stopping: stop growing before a tree becomes too complex.

- Limit tree depth.
- Do not split nodes which contain too few data points.
- Do not split nodes which do not significantly decrease impurity.

Post Pruning: grow full tree (overfitting), then later simplify the tree.

Ensemble Methods: Use multiple trees to obtain better predictive performance. Wisdom of the crowds. (see random forest video)

Early Stopping

Dataset Class 0: 100 data Class 1: 100 data

Early Stopping

Early Stopping

Dataset Class 0: 100 data Class 1: 100 data

Post pruning

The objective of pruning is to balance model performance and model complexity.

$$\mathcal{R}(T) + \alpha \left| \tilde{T} \right|$$
 Given decision tree T ,
$$\mathcal{R}(T) \text{ is the weighted gini impurity } \rightarrow \textit{Model Performance,}$$

$$\left| \tilde{T} \right| \text{ is the number of terminal nodes } \rightarrow \textit{Model Complexity,}$$
 α is the complexity parameter ($\alpha \geq 0$).

- $\alpha = 0 \rightarrow \text{No pruning}$.
- Increase $\alpha \rightarrow$ activate post-pruning.
- Too high $\alpha \rightarrow$ Too much pruning. \rightarrow Over-simplified model \rightarrow Underfitting

Module: Machine Learning

Post pruning

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.**DecisionTreeClassifier**(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0)

[source]

Parameters:

criterion: {"gini", "entropy", "log_loss"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see Mathematical formulation.

max_depth: int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

min_impurity_decrease : float, default=0.0

A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

ccp_alpha: non-negative float, default=0.0

Complexity parameter used for Minimal Cost-Complexity Pruning.

Early Stopping

Post-Pruning

Module: Machine Learning

Speaker: Kanokkorn Pimcharoen

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0)

[source]

Attributes:

classes_: ndarray of shape (n_classes,) or list of ndarray

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

feature_importances_: ndarray of shape (n_features,)
Return the feature importances.

tree_: Tree instance

The underlying Tree object.

Impurity-based Feature Importance (Gini Importances - mean decrease in Gini impurity)

Tree structure

Decision Tree Classifier

Dataset $(x_{1,1},x_{1,2},y_1),(x_{2,1},x_{2,2},y_2),(x_{3,1},x_{3,2},y_3),...,(x_{n,1},x_{n,2},y_n)$


```
# Import a necessary modules
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt
# Create the model
clf = DecisionTreeClassifier()
# Train the model
clf.fit(X,y)
# Make prediction
y pred = clf.predict(X_test)
# Visualize tree
tree.plot tree(clf, feature names=['Feature 1', 'Feature 2'])
plt.tight layout()
plt.show()
# Obtain feature importance
importances = clf.feature importances
```


Random Forest

Kanokkorn Pimcharoen

Overfitting (recall)

How to avoid overfitting in decision tree?

Early Stopping: stop growing before a tree becomes too complex.

- Limit tree depth.
- Do not split nodes which contain too few data points.
- Do not split nodes which do not significantly decrease impurity.

Post Pruning: grow full tree (overfitting), then later simplify the tree.

Ensemble Methods: Use multiple trees to obtain better predictive performance. Wisdom of the crowds.

Random Forest

Bootstrap aggregating / bagging

Wikipedia: https://en.wikipedia.org/wiki/Bootstrap_aggregating

Random Forest

1 Tree

100 Trees

Random Forest + Early Stopping

Random Forest + Post Pruning

Random Forest

Impurity-based Feature Importances (Gini Importances)

Relative Feature Importances:

Feature 1: 0.20 Feature 2: 0.80

RFC: n_estimators=100, max_depth=3

Relative Feature Importances:

Feature 1: 0.68 Feature 2: 0.32

This is for the purpose of demonstrate the correlation between decision boundary and feature importance.

Speaker: Kanokkorn Pimcharoen

Module: Machine Learning

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

[source]

Parameters:

n_estimators : int, default=100

The number of trees in the forest.

criterion: {"gini", "entropy", "log_loss"}, default="gini"

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "log_loss" and "entropy" both for the Shannon information gain, see Mathematical formulation.

bootstrap: bool, default=True

Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree.

max_samples : int or float, default=None

If bootstrap is True, the number of samples to draw from X to train each base estimator.

- If None (default), then draw X.shape[0] samples.
- If int, then draw max_samples samples.
- If float, then draw max(round(n_samples * max_samples), 1) samples. Thus, max_samples should be in the interval (0.0, 1.0].

Bootstrap sampling

Speaker: Kanokkorn Pimcharoen

Module: Machine Learning

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

[source]

Parameters:

max_features: {"sqrt", "log2", None}, int or float, default="sqrt"

The number of features to consider when looking for the best split:

- If int, then consider max_features features at each split.
- If float, then max_features is a fraction and max(1, int(max_features * n_features_in_)) features are considered at each split.
- If "sqrt", then max_features=sqrt(n_features).
- If "log2", then max_features=log2(n_features).
- If None, then max_features=n_features.

Randomly select subset of features for trees to look for the best split.

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

Parameters:

max_depth : int, default=None

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split : int or float, default=2

The minimum number of samples required to split an internal node:

min_impurity_decrease : float, default=0.0

A node will be split if this split induces a decrease of the impurity greater than or equal to this value.

ccp_alpha: non-negative float, default=0.0

Complexity parameter used for Minimal Cost-Complexity Pruning.

Early Stopping

Post-Pruning

Module: Machine Learning

Speaker: Kanokkorn Pimcharoen

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

Attributes:

estimator_: DecisionTreeClassifier

The child estimator template used to create the collection of fitted sub-estimators.

estimators_: list of DecisionTreeClassifier

The collection of fitted sub-estimators.

feature_importances_: ndarray of shape (n_features,)

The impurity-based feature importances.

Impurity-based Feature Importance Gini Importance)

Module: Machine Learning

[source]

Speaker: Kanokkorn Pimcharoen

Random Forest Classifier


```
# Import a necessary modules
from sklearn.tree import RandomForestClassifier
from sklearn import tree
import matplotlib.pyplot as plt
# Create the model
clf = RandomForestClassifier()
# Train the model
clf.fit(X,y)
# Make prediction
y pred = clf.predict(x test)
# Visualize tree
i = 0 # Tree index
tree.plot tree(clf.estimators [i],
               feature names=['Feature 1', 'Feature 2'])
plt.tight layout()
plt.show()
# Obtain feature importance
importances = clf.feature importances
```