경영경제데이터분석 보충자료3

최 현 홍 (hongchoi@khu.ac.kr)

Contents

보충자료3

■ PSM vs PSM+DID with lalonde 데이터

PSM vs PSM+DID with lalonde Data

Recall) lalonde 데이터 설명

■ NSW 직업훈련 프로그램 이수가 미래 소득에 영향을 미치는가?

DID를 배우고 해당 데이터를 다시 보니 어떤 생각이 드는가?

- 데이터셋 내 변수 목록
 - Treat: NSW 참여자와 비참여자를 구분하는 더미 변수 (1: 참여)
 - Age: 참여자의 나이
 - Educ: 참여자의 교육 수준 (교육 년수)
 - Race: 참여자의 인종 (흑인, 백인, 히스패닉)
 - Married: 결혼 여부 (1: 결혼)
 - Nodegree: 고등학교 졸업 여부 (1: 학위 없음)
 - Re74: 프로그램 참여 전인 1974년 연 소득 (USD)
 - Re75: 프로그램 참여 전인 1975년 연 소득 (USD)
 - Re78: 프로그램 참여 후인 1978년 연 소득 (USD

lalonde 데이터를 활용한 PSM

- 우리는 과거 lalonde 데이터를 활용, PSM을 이용하여 인과성 추론 분석을 수행하였음
 - 당시의 주요 분석 내용은 **처치군과 대조군의 78년 소득을 비교했** 더니 둘 사이의 차이가 유의미했다는 것이었음 (p-value 0.084)
 - ✓ 처치군과 대조군의 매칭은 나이, 교육, 결혼여부, 그리고 74년 소득을 이용하여 이루어졌음 (다른 방식도 가능)
 - 즉, NSW 참가 여부와 미래 높은 소득 사이에 인과성이 존재한다 고 주장할 수 있는 근거를 얻었음
- DID를 배우고 해당 데이터를 다시 보니 드는 생각:
 - 대상 지역이 74년~78년 사이에 다양한 이유로 일자리가 늘었을 수도 있지 않나?

PSM의 분석 흐름

- 혼동변수를 적절히 고려하여 성향 점수 추정 및 매칭
 - 예) Age, Educ, Married, Re74 → Treat
 - 다양한 성향점수 추정모형 및 매칭 방식 활용 가능
- 매칭 결과 검증
 - 처치군과 대조군의 차이 (SMD, t-검정, 카이제곱검정 등)
 - 매칭된 처치군과 대조군의 성향점수 분포
- 분석 대상 인과관계(Treat → Re78) 검정
 - 결과변수(Re78)가 연속변수이므로 t-검정 활용

PSM + DID로 분석을 한다면?

- PSM을 통해 매칭된 데이터를 활용해보자
 - 병행추세 가정의 경우, **처치군과 대조군이 비슷한 특성을 가진 두** 그룹(PSM으로 매칭됨)이고 해당 시차 동안 비슷한 외부 영향을 받았을 것이니 성립한다고 가정하자
- 그런데, PSM을 통해 얻은 데이터를 **그대로 활용한 분석은 불가**
 - 처치 여부 Treat은 있지만, 시차에 따른 After 변수가 없음
 - After 변수를 포함하려면 **하나의 응답자에 대해 2개의 행**을 만들 어주어야 함 (처치 전/후)
 - 또한, 이제 각 행이 특정 시점의 응답자를 나타낸다면, 수입 변수 역시 새롭게 정의될 필요가 있음
 - 예를 들어 **74년(처치 전) vs 78년(처치 후)**으로 데이터를 만든다면, After == 0인 경우 74년의 소득을, After == 1인 경우 78년의소득을 활용하여 새로운 변수(revenue)정의

데이터 예시 (matched_data_lalonde_revised.csv)

기존 데이터 대비 행 2배 (각 행은 응답자 X 시점을 나타냄) after 및 revenue 변수 추가

	treat	after	revenue	age	educ	race	married	nodegree	re74	re75	re78	distance	weights	subclass
NSW1	1	0	0	37	11	black	1	1	0	0	9930.046	0.23098	1	1
NSW2	1	0	0	22	9	hispan	0	1	0	0	3595.894	0.447041	1	98
NSW3	1	0	0	30	12	black	0	0	0	0	24909.45	0.488269	1	109
NSW4	1	0	0	27	11	black	0	1	0	0	7506.146	0.473447	1	120
NSW5	1	0	0	33	8	black	0	1	0	0	289.7899	0.475522	1	131
NSW6	1	0	0	22	9	black	0	1	0	0	4056.494	0.447041	1	142
NSW7	1	0	0	23	12	black	0	0	0	0	0	0.466564	1	153
NSW8	1	0	0	32	11	black	0	1	0	0	8472.158	0.488962	1	164
NSW9	1	0	0	22	16	black	0	0	0	0	2164.022	0.485498	1	175
NSW10	1	0	0	33	12	white	1	0	0	0	12418.07	0.226109	1	2
NSW11	1	0	0	19	9	black	0	1	0	0	8173.908	0.437842	1	13
NSW12	1	0	0	21	13	black	0	0	0	0	17094.64	0.465874	1	24
NSW13	1	0	0	18	8	black	0	1	0	0	0	0.429366	1	35
NSW14	1	0	0	27	10	black	1	1	0	0	18739.93	0.206006	1	46
NSW15	1	0	0	17	7	black	0	1	0	0	3023.879	0.42093	1	57
NSW16	1	0	0	19	10	black	0	1	0	0	3228.503	0.443286	1	68
NSW17	1	0	0	27	13	black	0	0	0	0	14581.86	0.484471	1	79
NSW18	1	0	0	23	10	black	0	1	0	0	7693.4	0.455588	1	90
NSW19	1	0	0	40	12	black	0	0	0	0	10804.32	0.519332	1	97

```
PSM + DID 분석 결과
```

```
newdata <- read.csv("matched_data_lalonde_revised.csv")
mynewmodel <- lm(revenue ~ treat + after + treat:after, data = newdata)
summary(mynewmodel)</pre>
```

Conducting DID Analysis

PSM + DID 분석 결과 – 모수 추정치

• 모수 추정 결과 $Y = \beta_0 + \beta_1 Treat + \beta_2 After + \beta_3 Treat \times After$

Variables	Coefficient	Std.Error	P-value	
Intercept (β_0)	1916.6	423.9	0.000	
Treat (β_1)	179.0	599.4	0.765	
After (β_2)	3201.7	599.4	0.000	
Treat:After (β ₃)	1051.8	847.7	0.215	

유의하지 않음 1% 유의수준에서 유의 유의하지 않음

- DID Estimator($oldsymbol{eta}_3$)의 추정치가 유의하지 않음
 - ✓ 즉, 순수한 처리 효과가 통계적으로 유의하지 않음
 - ✓ 단 양수로 나타나긴 했음
 - ✔ (사실 PSM 분석 당시에도 p-value가 0.085였음)
- <u>물론 이러한 결과는 다른 매칭 결과를 활용했을 경우에 또 달라질</u> 수 있음

Conducting DID Analysis

PSM + DID 분석 결과 – 결과 시각화

PSM과 DID 결과의 비교

PSM 당시 t-검정 결과

```
Welch Two Sample t-test

data: re78 by treat

t = -1.7292, df = 333.67, p-value = 0.08471

alternative hypothesis: true difference in

95 percent confidence interval:

-2630.9570 169.3691

sample estimates:

mean in group 0 mean in group 1

5118.350 6349.144
```

- PSM을 활용한 연구에서는 매칭된 처치군과 대조군의 1978년 소득을 비교했음. 즉, ②에서 ④를 뺀 값이 유의한 값인지를 살핀 것
 - **대조군**과의 비교
- PSM+DID를 활용한 연구에서는 병행추세가정을 바탕으로 시간의 변화에 따른 효과를 제거했으므로, ②에서 ⑤를 뺀 값이 유의한 값인지를 살핀 것
 - 대조군의 추세를 통해 구해진 반사실과의 비교

어떤 결과가 맞는 걸까?

- 두 결과 중 어떤 결과가 맞는 걸까?
 - 그래서 인과관계가 있는 건데 없는 건데?
- 둘 중 무엇이 맞는 결과라고 혹은 인과관계가 있거나 없다고 단정지 어 말 할 수 없음
 - 자료의 수집, 변수 측정, 모형의 적합성 등에서 다양한 오류와 불 확실성이 존재함
 - 우리가 판단의 기준으로 삼는 p-value 역시 확률적인 지표
 - **단정지어 말하는 사람을 조심**하자

그럼 어떻게 설득할 수 있을까?

- 취할 수 있는 접근법 중 하나: **다양한 분석에서 주장하고 싶은 결과가 안정적**으로 나타난다는 것을 보임
 - 예) 기본모형 + 다양한 변수 포함/제외 모형 비교

선행연구 예) 런던 혼잡구역 진입 제한 → 교통사고 감소

기본 모형

Table 3					
Basic DID	models	for	car	casua	ltie

Basic DID models	Model 4 car all ca	asualties	Model 5 car KSI		Model 6 car slight injured		
	Coef. (std. err.)		Coef. (std. err.)		Coef. (std. err.)		
CCZoon	-3.81E-01	(4.92E-10)*	7.20E-01	(2.49E-09)°	-4.65E-01	(4.87E-10)°	
CCYear	-2.22E-01	(2.18E-11)*	-2.01E-01	(2.18E-14)*	-2.23E-01	(2.92E-11)*	
CCYear × CCZone	-3.17E-02	(5.43E-11)°	-1.10E-01	(4.34E-10)°	-1.19E-02	(1.12E-10)°	
Constant	3.94E+00	(4.92E-10)*	6.93E-01	(3.47E-14)*	3.90E+00	(4.87E-10)	
Obs		244		244	244	ı	
BIC		489.39		463.03	487.79		
Likelihood-ratio test of alpha = 0:		chibar2(01) = 2245.44		chibar2(01)=95.46	chibar2(01) = 2052.78		
		Prob ≥ chibar2 = 0.000		Prob > chibar2 = 0.000	$Prob \ge chibar2 = 0.000$		

Figures are significant at: 99%.

결과가 3개인 이유: 종속변수(사고)를 다르게 설정 -모든 사고, 사망 및 중상, 경상

변수 포함 모형 (변수 조합을 다르게 할 수도 있음)

Full DID models	Model 7 bicycle (Poisson)	all casualties	Model 8 bicycle (Poisson)	· KSI	Model 9 bicycle slight injured (Poisson) Coef. (std. err.)		
	Coef. (std. err.)		Coef. (std. err.)				
CCZoon	1.45E+00	(3.71E-01)*	5.06E-01	(6.38E-02)*	1.63E+00	(4.33E-01)	
CCYear	-1.14E-01	(4.77E-04)*	-1.73E-01	(1.71E-02)*	-1.01E-01	(7.11E-03)	
CCYear × CCZone	1.25E-01	(4.76E-03)*	2.67E-02	(2.41E-02)	1.27E-01	(1.20E-03)	
Resident population	1.14E-03	(7.83E-04)	1.29E-04	(5.42E-04)	1.34E-03	(8.51E-04)	
Resident population aged 0-15	-1.93E-04	(1.71E-03)	-1.53E-03	(8.09E-04)***	2.91E-06	(1.92E-03)	
Resident population aged 16-59	2.39E-04	(4.26E-04)	-5.02E-04	(1.39E-03)	3.77E-04	(3.46E-04)	
Percentage of resident population aged 0-15	6.77E+00	(2.27E+00)*	4.27E+00	(1.36E+00)*	7.27E+00	(2.31E+00)	
Percentage of resident population aged 16-59	5.52E+00	(2.53E+00)**	4.95E+00	(1.59E+00)*	5.71E+00	(2.64E+00)	
Employee population	5.70E-06	(1.72E-06)*	2.55E-06	(1.78E-06)	6.24E-06	(1.63E-06)	
Land area	3.02E-02		9.50E-04	(2.18E-02)	3.85E-02	(6.16E-03)	
Employee population density	-3.41E-07	(8.63E-07)	-3.84E-06	(3.60E-07)"	8.11E-08	(1.08E-06)	
Resident population density	-5.79E-05	(1.30E-05)°	-7.08E-05	(3.28E-05)	-5.42E-05	(1.91E-05)	
Length of minor road	-3.34E-05	(1.63E-05)**	-3.21E-06	(2.01E-05)	-4.08E-05	(1.40E-05)	
Length of motor road	-5.16E-05	(3.92E-05)	-4.63E-06	(5.31E-06)	-6.21E-05	(4.20E-05)	
Length of A-road	1.15E-06	(3.78E-05)	5.36E-05	(3.76E-05)	-9.09E-06	(3.56E-05)	
Length of B-road	-1.15E-04	(2.26E-05)*	-2.37E-04	(8.69E-05)*	-8.94E-05	(7.91E-06)	
Density of minor road	3.39E-05	(3.55E-06)°	-1.86E-05	(6.72E-05)	4.30E-05	(1.26E-05)	
Density of motor road	4.28E-04	(1.68E-03)	1.36E-03	(1.29E-04)	-7.81E-05	(1.85E-03)	
Density of A-road	-1.21E-03	(1.50E-02)	-2.72E-02	(9.21E-03)*	3.04E-03	(1.41E-02)	
Density of B-road	2.52E+00	(1.03E+00)**	7.65E+00	(1.43E+00)*	1.53E+00	(1.42E+00)	
Count of junctions	3.65E-03	(1.04E-03)*	2.42E-03	(1.36E-04)*	4.06E-03	(9.77E-04)	
Count of roundabout	2.11E-02	(9.76E-02)	-1.51E-01	(1.02E-01)	5.65E-02	(9.55E-02)	
IMDscore	1.78E-02	(1.58E-03)**	2.17E-02	(1.69E-02)	1.69E-02	(1.58E-03)	
PPE	1.12E-03	(6.03E-05)*	1.62E-03	(5.84E-04)*	1.02E-03	(2.50E-05)	
Constant	-6.22E+00	(2.88E+00)°	-6.26E+00	(2.43E+00)"	-6.78E+00	(2.98E+00)	
Obs	244		244		244		
BIC	307.52		339.29		305.37		
Likelihood-ratio test of alpha = 0:	chibar2(01)	= 0.0E+00	chibar2(01)=0.0E+00	chibar2(01) = 0.0E+00 Prob ≥ chibar2 = 0.500		
	Prob ≥ chiba	ar2 = 0.500	Prob ≥ cl	hibar2 = 0.500			

^{*} Figures are significant at: 99%

[&]quot;" Figures are significant at: 95

Li, H., Graham, D. J., & Majumdar, A. (2012). The effects of congestion charging on road traffic casualties: A causal analysis using difference-in-difference estimation. *Accident Analysis & Prevention*, *49*, 366-377.

어떤 결과가 맞는 걸까?

- 사회과학 분야의 많은 문제에서 "참"은 존재하지만 알기 어려움
 - Only possible to argue
- All Models are Wrong, but Some are Useful
 - All models are approximations
 - The practical question is: how wrong do they have to be not to be useful

George E. P. Box

https://scholar.google.com/

Google 학술검색

Q

● 모든 언어 ○ 한국어 웹

거인의 어깨에 올라서서 더 넓은 세상을 바라보라 - 아이작 뉴턴

