

THE FINITE ELEMENT METHOD (1)

L. Amerio

DATA:

- Mass per unit length m = 9.75 kg/m
- Flexural rigidity $EJ = 1.34 \cdot 10^4 \text{ Nm}^2$
- Axial stiffness $EA = 2.57 \cdot 10^7 N$
- Length L = 2 m
- Structural Damping Matrix $[C_s] = \alpha[M] + \beta[K] (\alpha = 0.2 \text{ s}^{-1}; \beta = 1 \cdot 10^{-4} \text{ s})$

We want to calculate:

- Natural frequencies;
- Mode shapes.

The length of the beam finite element influences the maximum frequency of the structure analysis.

The beam finite element must have a quasi-static behaviour (the considered shape functions are the static ones) during vibration of the structure.

$$\omega_{fe,i} = \left(\frac{\pi}{l_{fe,i}}\right)^2 \sqrt{\frac{EJ}{m}} > \Omega_{max} \implies l_{fe,i,max} < \sqrt{\frac{\pi^2}{\Omega_{max}}} \cdot \sqrt{\frac{EJ}{m}}$$

m. EJ. EA. L

For the considered structure:

f _{max} [Hz]	Ω_{max} [rad/s]	l _{fe,i,max} [m]
5	31.4	3.41
10	62.8	2.41
20	125.7	1.71
50	314.2	1.08
100	628.3	0.76
200	1256.6	0.54
300	1885.0	0.44


```
! FEM(1)
                                                             ! = symbol for comment
 1st Exercise
 list of nodes :
                                                   *NODES = start definition of nodes
*NODES
 n. of node - constraint code (x,y,theta) - x coordinate- y coordinate.
                  1 1 0
                                    0.0
                                             0.0
                                             0.0
                  0 0 0
                                    0.4
                                    0.8
                                             0.0
                                    1.2
                                             0.0
                                    1.6
                                             0.0
                                    2.0
                                             0.0
                  1 1 0
        rd *NODES
                                             *ENDNODES = end definition of nodes
*ENDNODES
      of elements :
                                     *BEAMS = start definition of beam finite element
BEAM
             - n. of input node - n. of output node - m, EA, EJ
                   9.75
                                    1.34e4
                           2.57e7
                   9.75
                           2.57e7
                                    1.34e4
                   9.75
                           2.57e7
                                    1.34e4
                                    1.34e4
                   9.75
                           2.57e7
                   9.75
                           2.57eff
                                    1.34e4
                                  ENDBEAMS = end definition of beam finite element
*ENDBEAMS
                                           Ш
                                                          IV
                                   m, EJ, EA, L
```


If we divide the structure in 5 beam finite elements (6 nodes - 3 d.o.f. for each node = 18 d.o.f.):

$$[M]_{18\times18} = \begin{bmatrix} [M_{FF}]_{14\times14} & [M_{FC}]_{14\times4} \\ [M_{CF}]_{4\times14} & [M_{CC}]_{4\times4} \end{bmatrix}$$

$$[K]_{18\times18} = \begin{bmatrix} [K_{FF}]_{14\times14} & [K_{FC}]_{14\times4} \\ [K_{CF}]_{4\times14} & [K_{CC}]_{4\times4} \end{bmatrix}$$

	$l_{fe} = 1m$	$l_{fe} = 0.5m$	$l_{fe} = 0.4 m$	$l_{fe} = 0.1 m$
f _{real} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]
14.56	14.62	14.56	14.56	14.56
58.23	64.63	58.46	58.33	58.23
131.02	162.46	133.42	132.06	131.03
232.93	296.19	258.54	238.3	232.96

$$f_{\text{real,k}} = \frac{1}{2\pi} \left(\frac{k\pi}{L}\right)^2 \sqrt{\frac{EJ}{m}}$$

A harmonic force $F=F_0e^{i\Omega t}$ is applied in A: we want to calculate the FRF of the system ($I_{fe}=0.1m$).

Now it's your turn...

A harmonic force $F=F_0e^{i\Omega t}$ is applied in B: we want to calculate the FRF of the system for the displacement in B ($I_{fe}=0.1$ m).

100

Freq [Hz]

150

200

250

50

A harmonic force $F=F_0e^{i\Omega t}$ is applied in B: we want to calculate the FRF of the system for the displacement in A (i.e. $I_{fe}=0.1$ m).

A harmonic force $F=F_0e^{i\Omega t}$ is applied in A: we want to calculate the modal shapes and the FRF of the system for the displacement in A (i.e. $I_{fe}=0.1$ m).

