

Big Data in Cloud Platforms

Case analysis: 100k MovieLens Dataset

André Águas António Correia João Januário Valter Bento M20170973@novaims.unl.pt M20170975@novaims.unl.pt M20170985@novaims.unl.pt M20170999@novaims.unl.pt

WHO is rating movies in our data?

Number of users by occupation

(top 10 occupations, 81% of users)

Number of users by age interval

WHO is rating movies in our data?

WHAT movies are being rated?

Noir

Movies by year of release

(latest 20 years, 87% of movies)

Movies by genre

HOW do users rate movies?

Number of ratings per category

- Average rating = 3,5
- Equal average across male/female users
- 83% of ratings are between 3 and 5
- Very few 2s and 1s

Do movies age well? Do people like a bit of drama?

Documentary

3,0

3,2

Count of rating

Rating by movie genre Drama Comedy Action Thriller Romance Adventure Sci-Fi War Crime Children's Horror Mystery Musical Animation Western Film-Noir Fantasy

3,4

3,6

3,8

Average of rating

4,0

Are older users and lawyers being more generous?

Rating by user age

Rating by user occupation

What are the gender preferences on movie types?

We have counted the number of reviews by movie by genre in order to find men's and women's preferences

Can we predict a rating for a pair user-movie?

Confusion matrix for model predictions

- Random forest model
- The features with most predictive value were:
 - Year of movie release
 - Manhattan and Baltimore zip code dummies
 - Drama, war and romance dummies
 - User age
- The model is only slightly better than random (average accuracy of 29%)

Average accuracy = 29%

Limitations and the way forward for the analysis

Limitations

- Performance with 100.000 record database turned out to be low using the VM that we have been working with in class
- Exporting data from queries to visualization and modelling tools was done in a manual way
- Rating model is a first step, but could be improved

Way forward

- Given the goal of the project, aim at obtaining deeper insight with smaller dataset
- We decided to export data from queries manually, but we could connect data automatically to obtain better scaling
- Improve our rating model and even attempt to produce a recommendation system based on users' previous ratings

Annexes

Hive Tables Structure

• Table 'u_user'

Attribute	Data Type
userId	int
userAge	tinyint
userGender	string
userOccupation	string
userZIPCODE	string

• Table 'u_genre'

Attribute	Data Type
genre	string
genreld	tinyint

• Table 'u_movie'

Attribute	Data Type
movield	int
movieTitle	string
movieDate	string
ignore	string
movieURL	string
genre_1	tinyint
genre_2	tinyint
genre_3	tinyint
genre_4	tinyint
genre_5	tinyint
genre_6	tinyint
genre_7	tinyint
genre_8	tinyint
genre_9	tinyint
genre_10	tinyint
genre_11	tinyint
genre_12	tinyint

Exploratory Analysis Querys: USERSc

Occupation per Gender

SELECT userOccupation, count(CASE WHEN userGender='M' THEN 1 END) AS male_cnt, count(CASE WHEN userGender='F' THEN 1 END) AS female_cnt

FROM u_user

GROUP BY userOccupation

Age per Gender

SELECT FLOOR(userAge/5.00)*5 AS bucket_floor, count(*) AS COUNT

FROM u_user WHERE userGender ="M"

GROUP BY 1

ORDER BY 1;

Users per ZIPCODE

SELECT userZIPCODE,count(*)

FROM u_user a

INNER JOIN ratings b on a.userId=b.userId

GROUP BY userZIPCODE

ORDER BY userZIPCODE

Exploratory Analysis Querys: MOVIES

Unpivot Genre

CREATE VIEW IF NOT EXISTS movie genre AS

SELECT movield, genre FROM

(SELECT movield, MAP("unknown",genre_1, "Action",genre_2, "Adventure",genre_3, "Animation",genre_4, "Children's",genre_5, "Comedy",genre_6, "Crime",genre_7, "Documentary",genre_8, "Drama",genre_9, "Fantasy",genre_10, "Film-Noir",genre_11, "Horror",genre_12, "Musical",genre_13, "Mystery",genre_14, "Romance",genre_15, "Sci-Fi",genre_16, "Thriller",genre_17, "War",genre_18, "Western",genre_19) as map1 FROM u_movie) as t1

LATERAL VIEW EXPLODE(map1) xyz as genre, m_val WHERE m_val=1

Gender Count

SELECT DISTINCT genre, count(genre) FROM movie_genre GROUP BY genre

Exploratory Analysis Querys: Preferences

Movie Preference by Gender

SELECT C.userGENDER, SUM(CAST(A.ACTION AS INT)), SUM(CAST(A.Adventure AS INT)), SUM(CAST(A.Animation AS INT)), SUM(CAST(A.CHILDREN AS INT)), SUM(CAST(A.Comedy AS INT)), SUM(CAST(A.Crime AS INT)), SUM(CAST(A.Drama AS INT)), SUM(CAST(A.Drama AS INT)), SUM(CAST(A.Fantasy AS INT)), SUM(CAST(A.Film-Noir AS INT)), SUM(CAST(A.Horror AS INT)), SUM(CAST(A.Musical AS INT)), SUM(CAST(A.Mystery AS INT)), SUM(CAST(A.Romance AS INT)), SUM(CAST(A.Sci-Fi AS INT)), SUM(CAST(A.Thriller AS INT)), SUM(CAST(A.War AS INT)), SUM(CAST(A.Western AS INT)) FROM U_ITEM AS A

JOIN U_DATA AS B ON B.ITEMID=A.MOVIEID

JOIN U_USER AS C ON C.USERID=B.USERID

GROUP BY C.userGENDER

Average Rating by Gender

ORDER BY C.userGENDER ASC

SELECT B.userGENDER, AVG(A.RATING)
FROM U_DATA AS A
JOIN U_USER AS B ON B.USERID=A.USERID
GROUP BY B.userGENDER
ORDER BY AVG(A.RATING) DESC

Exploratory Analysis Querys: Ratings by Occupation

Average and Count Rating by Occupation

Select B.userOccupation, Avg(A.Rating), COUNT(A.Rating)

from ratings as A

JOIN u_user as B

on A.UserID=B.UserID

Group By B.userOccupation

Exploratory Analysis Querys: Ratings by Age

Average and Count Rating by Age

Select B.userAge, Avg(A.Rating), COUNT(A.Rating)

from ratings as A

JOIN u_user as B

on A.UserID=B.UserID

Group By B.userAge

Exploratory Analysis Querys: Ratings count

Ratings count

Select A.Rating, COUNT(A.Rating) from ratings as A Group By A.Rating Order by A.Rating

Exploratory Analysis Querys: Rating by movie year of release

Average and Count Rating by MovieDate

Select right(B.movieDate,4), Avg(A.Rating), COUNT(A.Rating) from ratings as A
JOIN u_movie as B
on A.movieID=B.movieID
Group By right(B.movieDate,4)

Exploratory Analysis Querys: Rating by movie genre

Average and Count Rating by Movie Genre

Select B.genre, Avg(A.Rating), COUNT(A.Rating) from ratings as A
JOIN movie_genre as B
on A.movieID=B.movieID
Group By B.genre

Random forest model description

Confusion matrix for model predictions

- Random forest model with 100 decision trees and maximum tree depth of 8
- We use Synthetic Minority Over-sampling (SMOTE) to address the problem of imbalance of ratings categories, given that 83% of ratings fall between 3 and 5
- Model accuracy is somewhat low, partly due to not having many features to extract predictive power from

Average accuracy = 29%