Indian Institute of Technology Patna Mathematics - I (MA101) B. Tech 1st Year (Autumn) 2017 - 18 End Sem Exam (Subjective Type)

Max Time 2 Hour

Maximum Marks 30

21st Nov 2017

Note: This part consists of a total 8 questions, printed on both sides. All are compulsory. Notations have their usual meanings.

1. Let f be a bounded function defined on [a, b].

(a) Define
$$U(f, P)$$
 and $L(f, P)$. [1M]

(b) Define
$$U(f)$$
 and $L(f)$. [1M]

(c) Discuss existence of
$$\int_0^1 f(x)dx$$
 where [1.5M]

$$f(x) = \left\{ \begin{array}{ll} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right..$$

2. Let f be an integrable function on [a,b]. For $x \in [a,b]$ let $F(x) = \int_a^x f(t)dt$. Then prove that

(a)
$$F(x)$$
 is continuous on $[a, b]$. [1.5M]

(b) If f is continuous at x_0 on (a, b), then F(x) is differential at x_0 and [2M]

$$F'(x_0) = f(x_0).$$

3. Answer the following:

(a) Given

$$\int_{(1,2,1)}^{(2,1,1)} (2x \ln y - yz) \, dx + \left(\frac{x^2}{y} - xz\right) dy - (xz) \, dz$$

(b) Find the flux of the Field
$$\vec{F_1} = -y\hat{i} + x\hat{j}$$
 across the curve $r(\vec{t}) = \cos t \hat{i} + 4\sin t \hat{j}$, $0 \le t \le 2\pi$. [1.5M]

- 4. Answer the following:
 - (a) Given field $\vec{G} = M \hat{i} + N \hat{j}$ and a simple closed curve C state the following:
 - i. Flux-Divergence form of Green's Theorem. [1M]
 - ii. Circulation-Curl form of Green's Theorem. [1M]
 - (b) State and use Divergence Theorem to Calculate outward flux of the Field $\vec{G}_1 = x^2 \hat{i} + xz \hat{j} + 3z \hat{k}$ across the boundary of the solid sphere $x^2 + y^2 + z^2 \le 4$. [2.5M]
- 5. (a) Let $f(x,y) = \begin{cases} x \sin(\frac{1}{y}) + \frac{x^2 y^2}{x^2 + y^2}, & y \neq 0 \\ 0, & y = 0 \end{cases}$ test the existence of $\lim_{(x,y)\to(0,0)} f(x,y)$. [1.5]
 - (b) Show that if f(x, y) is differentiable at (a, b), then partial derivatives $f_x(a, b)$ and $f_y(a, b)$ exist. [2].
- 6. (a) Examine whether f(x) = 1 |x| is minimum or maximum at x = 0?.
 - (b) Derive the equation of the tangent plane to the ellipsoid

$$x^{2} + \frac{y^{2}}{4} + \frac{r^{2}}{10} = 3$$
 at $(1, 2, \sqrt{10})$. [2]

- 7. Use Lagrangian method to find the extrema of f(x, y) = xy + 14 subject to $x^2 + y^2 = 18$ and also extreme points. [3.5]
- 8. (a) Use triple integration to find the volume of Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

[2]

(b) Solve

$$\int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} \, dx \, dy$$

by transforming it to the u-v plane.

[2]