

planetmath.org

Math for the people, by the people.

Wulff theorem

Canonical name WulffTheorem

Date of creation 2013-03-22 15:19:50 Last modified on 2013-03-22 15:19:50

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 8

Author paolini (1187) Entry type Theorem Classification msc 52A21

Related topic FinslerGeometry
Defines Wulff shape

Definition 1 (Wulff shape). Let $\phi \colon \mathbb{R}^n \to [0, +\infty)$ be a non-negative, convex, coercive, positively 1-homogeneous function. We define the Wulff shape relative to ϕ as the set

$$W_{\phi} := \{x \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } y \text{ such that } \phi(y) \leq 1\}$$

(where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product in \mathbb{R}^n .)

Theorem 1 (Wulff). Let $\phi \colon \mathbb{R}^n \to [0, +\infty)$ be a non-negative, convex, coercive, 1-homogeneous function. Given a regular open set $D \subset \mathbb{R}^n$ we consider the following anisotropic surface energy:

$$F_{\phi}(D) = \int_{\partial D} \phi(\nu_D(x)) \, d\sigma(x)$$

where $\nu_D(x)$ is the outer unit normal to ∂D , and σ is the surface area on ∂D . Then, given any set D with the same volume as W_{ϕ} , i.e. $|D| = |W_{\phi}|$, one has $F_{\phi}(D) \geq F_{\phi}(W_{\phi})$. Moreover if $|D| = |W_{\phi}|$ and $F_{\phi}(D) = F_{\phi}(W_{\phi})$ then D is a translation of W_{ϕ} i.e. there exists $v \in \mathbb{R}^n$ such that $D = v + W_{\phi}$.