BME 630 Control Systems and Bio-Robotics Lab Instructions and Guidelines

Department of Electrical, Computer and Biomedical Engineering Faculty of Engineering and Architectural Science Toronto Metropolitan University

Course Information

Instructor

Dr. Owais Khan, PhD.

Assistant Professor, Department of Electrical, Computer & Biomedical Engineering

Office: ENG 328

Email: owaiskhan@ryerson.ca Phone: 416-979-5000, Ext. 556096

Teaching Assistants

Dylan Young (<u>dylan.young@torontomu.ca</u>) Shayan Sepahvand (<u>shayan.sp@torontomu.ca</u>)

Table of Contents

Course Information	2
Instructor	2
Teaching Assistants	2
Laboratories Schedule and Topics	4
General Information and Instructions	5
Laboratory Instructions:	5

Laboratories Schedule and Topics

Week	Topic	Lab Description
2 – 3 Lab 1	I oh 1 1	Lab # 1.1: Introduction to Simulink, Open-Loop Control vs. Closed-
	Lau 1.1	Loop Control
4-5 Lab 1.	I oh 1 2	Lab # 1.2: Transient Response Analysis and Stability of 2nd and 3rd
	Lao 1.2	Order Systems.
6 – 7 Lab 2.1	I ob 2 1	Lab # 2.1: Transfer Function Modeling of Physical Systems and
	Control.	
8 – 9 Lab 2.2	Lab # 2.2: Introduction to Lead and Lag Compensators	
	Lao // 2.2. Introduction to Lead and Lag Compensators	
10 – 11	Lab 3.1	Lab # 3.1: Introduction to PI PD and PID Controllers
10 11 Lao 3.1	Edo // 3.1. Introduction to 111 B and 11B controllers	
12 – 13	Lab 3.2	Lab # 3.2: State Space Modeling of Physical Systems and Control.
	2.2. State Space Moderning of Physical Systems and Control.	

General Information and Instructions

Laboratory Instructions:

- Labs will be completed in groups of two, and students should find a group partner. If a student is not able to find a partner, the TA will assign one to the student.
- There will be three labs, each lab will have two parts, each of which will take two weeks to complete.
- Each lab is worth 7% of the overall grades. Lab reports must be submitted with both parts included and in pairs (i.e., one report per group).

Lab Report Submission and Deadlines

The lab reports must be submitted within 24 hours after the completion of the lab module (i.e., on the 4th week of the lab). For example, if the final lab session is on January 24th at 3 p.m, students must submit their lab report on D2L by January 25th at 3 p.m.

The lab reports must be submitted on D2L in the drop box of Assignments. Two submissions are required:

- A pdf of the lab report.
- Zip file containing all codes, including singular Matlab scripts, and Simulink files. Not submitting MatLab scripts or Simulink files will results in a 10% deduction.

Late Submissions and Penalties.

The following penalties will be applied for lab submissions:

- 10% deduction if submitted within 24 hours after the due date.
- 20% deduction for every day after that.

Late Reports

The lab reports should include the following:

- Cover page.
- All requested figures, graphs and tables for each section, neatly separated.
- Summary at the end of the report.
- Appendix that must include screenshots of your entire Matlab script.

Lab Marking Scheme:

Formatting: /10

- Inclusion of proper cover page
- Page numbers included.
- Sections properly outlined (i.e. A.1, A.2, etc.)
- Figures all have proper and consistent labeling
- Graphs all have titles and legends

Lab work: /75

• Based on the correctness and completeness of all lab sections

<u>In-class demos and attendance: /12 (6% + 6%)</u>

- Demos are worth 6% of your lab grade
 - o However, if It is found that your demo answers are inconsistent with your report (or cheating/code copying is suspected) you will lose 50% of your lab grade.
 - o Demos are done in groups, but will be evaluated individually.
 - The demos will test your understanding of both the theory and the code. Therefore BOTH students should have a full understanding of what their code does and how it does it to receive full marks.
- Attendance is also worth 6% of total lab grade
 - o If lab session is missed, you will lose 6% of total lab grade.
 - o If you miss 2 or more lab sessions, you will receive a zero on the lab
 - Caveat: if students demonstrate that they have fully completed the lab part that the lab session is geared towards, they may be allowed to leave early (UNLESS they need to complete a lab demo that day)

Summaries: /3

- Summaries are individual, and should be MAXIMUM 1 page per student (including summaries for both parts of lab)
- Should discuss the following:
 - What was the purpose of each lab part
 - o Primary conclusions made
 - o Any problems or ways the experiment could be improved/reasons for error