

Sequential Monte Carlo methods

Lecture 8 - Path space view of the particle filter

Thomas Schön, Uppsala University 2017-08-25

Outline - Lecture 8

Aim: Introduce the path space view of the particle filter, explain the path degeneracy problem and briefly mention the low-variance resampling methods.

Outline:

- 1. Path space view of the particle filter
- 2. Path degeneracy
- 3. Mitigating the path degeneracy problem
 - a. Effective samples size (ESS)
 - b. Low variance resampling
- 4. Parameter inference in SSMs

1/22

Reminder – the bootstrap particle filter

Algorithm 1 Bootstrap particle filter (for i = 1, ..., N)

- 1. Initialization (t = 0):
- (a) Sample $x_0^i \sim p(x_0)$.
- (b) Set initial weights: $w_0^i = 1/N$.
- 2. for t = 1 to T do
- (a) **Resample:** sample ancestor indices $a_t^i \sim \mathcal{C}(\{w_{t-1}^j\}_{j=1}^N)$.
- (b) **Propagate:** sample $x_t^i \sim p(x_t \mid x_{t-1}^{a_t^i})$. $x_{0:t}^i = \{x_{0:t-1}^{a_t^i}, x_t^i\}$.
- (c) Weight: compute $\widetilde{w}_t^i = p(y_t \mid x_t^i)$ and normalize $w_t^i = \widetilde{w}_t^i / \sum_{j=1}^N \widetilde{w}_t^j$.

The ancestor indices $\{a_t^i\}_{i=1}^N$ allow us to keep track of exactly what happens in each resampling step.

Note the bookkeeping added to the propagation step 2b.

Bookkeeping – ancestral path

Example evolution of three particles for t = 0, 1, 2.

The ancestral path of x_2^1 , i.e. $x_{0:2}^1$, is shown as the thick line.

Bookkeeping – ancestor indices

At time t=1, particle x_0^2 is resampled twice and particle x_0^3 is resampled once (whereas particle x_0^1 is not resampled). Hence, at time t=1, the ancestor indices are

$$a_1^1 = 2$$
, $a_1^2 = 2$ and $a_1^3 = 3$.

Similarly, at time t = 2, the **ancestor indices** are given by

$$a_2^1 = 2$$
, $a_2^2 = 3$ and $a_2^3 = 3$.

The ancestral path of x_2^1 , i.e. $x_{0:2}^1$, is shown as a thick line. It is defined recursively from the ancestor indices

$$x_{0:2}^1 = (x_0^{a_1^{\frac{1}{2}}}, x_1^{a_2^{\frac{1}{2}}}, x_2^{1}) = (x_0^{a_1^{2}}, x_1^{2}, x_2^{1}) = (x_0^{2}, x_1^{2}, x_2^{1}).$$

4/22

Bootstrap PF targeting the joint filtering PDF

Algorithm 2 joint filtering bootstrap PF (for i = 1, ..., N)

- 1. Initialization (t = 0):
- (a) Sample $x_0^i \sim p(x_0)$
- (b) Set initial weights: $w_0^i = 1/N$.
- 2. for t = 1 to T do
- (a) **Resample:** sample ancestor indices $a_t^i \sim \mathcal{C}(\{w_{t-1}^j\}_{j=1}^N)$.
- (b) **Propagate:** sample $x_t^i \sim p(x_t \mid x_{t-1}^{a_t^i})$. $x_{0:t}^i = \{x_{0:t-1}^{a_t^i}, x_t^i\}$.
- (c) Weight: compute $\widetilde{w}_t^i = p(y_t \mid x_t^i)$ and normalize $w_t^i = \widetilde{w}_t^i / \sum_{j=1}^N \widetilde{w}_t^j$.

5/22

Bootstrap PF targeting the joint filtering PDF

It can be shown that Algorithm 2 targets the joint filtering pdf

$$p(x_{0:t} \mid y_{1:t}) = p(x_{0:t-1} \mid y_{1:t-1}) \frac{p(x_t \mid x_{t-1})p(y_t \mid x_t)}{p(y_t) \mid y_{1:t-1}}.$$

It resamples entire trajectories $x_{0:t}^i$, not just individual states x_t^i .

Resulting approximation of the joint filtering PDF

$$\widehat{p}^{N}(x_{0:t} | y_{1:t}) = \sum_{i=1}^{N} w_{t}^{i} \delta_{x_{0:t}^{i}}(x_{0:t}).$$

Problem: While it can actually be shown that the estimate $\widehat{p}^N(x_{0:t} | y_{1:t})$ produced by Algorithm 2 converge asymptotically as $N \to \infty$ it is still **not** a good approximation of $p(x_{0:t} | y_{1:t})!$

Why?

Path degeneracy

ex) Path degeneracy

1D Gaussian random walk, measured in Gaussian noise, T=25.

Target the joint filtering density using a bootstrap PF (Alg. 2) with N=30 particles.

$$\widehat{p}(x_{0:25} \mid y_{1:25}) = \sum_{i=1}^{30} w_{25}^i \delta_{x_{0:25}^i}(x_{0:25}).$$

ex) Path degeneracy

8/22

ex) Path degeneracy

At each point in time all particles are plotted using a black dot and each particle is connected with its ancestor using a black line.

The grey dots represents $\widehat{p}(x_t | y_{1:t})$ at each point in time.

The black lines represents $\widehat{p}(x_{0:25} | y_{1:t})$.

ex) Path degeneracy

7/22

9/22

Note that all ancestral paths $\{x_{0:25}^i\}_{i=1}^N$ share a common ancestor at time t=6 (and consequently for all times t<6 as well).

Let us use the resulting particle system $\{w_{25}^i, x_{0:25}^i\}_{i=1}^N$ to compute a Monte Carlo estimate of $\mathbb{E}[x_3 \mid y_{1:25}]$,

$$\mathbb{E}[x_3 \mid y_{1:25}] \approx \sum_{i=1}^{30} w_{25}^i x_3^i$$

Boils down to an estimate using a **single** sample, since x_3^i is **identical** for all i = 1, ..., 30.

Path degeneracy

Path degeneracy follows as a direct consequence of resampling.

The resampling step will by construction result in that for any time s there exists a time t>s such that the PF approximation $\widehat{\rho}^N(x_{0:t} \mid y_{1:t})$ consists of a single particle at time s.

In the above example this happened for s = 6 and t = 25.

Mitigating path degeneracy

11/22

Mitigating the path degeneracy problem

The impact of the path degeneracy problem can be reduced:

- 1. Do not resample at each iteration, when?
- 2. Better resampling algorithms
- 3. ...

Effective sample size (ESS)

The effective sample size (ESS) $N_{\rm eff}$ is a diagnostics tool that tells us when our weights are problematic in the sense that they are close to being degenerate.

$$N_{\mathsf{eff}} = rac{N}{\mathbb{E}_q[\omega^2(x^i)]} \leq N.$$

We cannot evaluate $N_{\rm eff}$ exactly, but we can compute an estimate

$$\widehat{N}_{\mathsf{eff}} = \frac{1}{\sum_{i=1}^{N} (w^i)^2}.$$

"ESS-adaptive resampling": When $\widehat{N}_{\rm eff}$ falls below some threshold $N_{\rm thres}$ we resample the particles, otherwise we continue without resampling.

12/22

Ex) Effective sample size (ESS)

Ex. 1) Let $w^i = 1/N$ for all i = 1, ..., N (independent samples),

$$\widehat{N}_{\mathsf{eff}} = rac{1}{\sum_{i=1}^{N} (w^i)^2} = rac{1}{N imes 1/N^2} = N.$$

Ex. 2) Let $w^i = 0$ for i = 1, ..., N-1 and $w^N = 1$ (completely degenerate),

$$\widehat{N}_{\text{eff}} = \frac{1}{\sum_{i=1}^{N} (w^i)^2} = 1.$$

14/22

Bootstrap PF with ESS-adaptive resampling

Algorithm 3 joint filtering bootstrap PF (for i = 1, ..., N)

- 1. Initialization (t = 0):
- (a) Sample $x_0^i \sim p(x_0)$
- (b) Set initial weights: $w_0^i = 1/N$.
- 2. for t = 1 to T do
- (a) Compute $\widehat{N}_{\mathsf{eff}} = \frac{1}{\sum_{i=1}^{N} (w_{t-1}^i)^2}$.
- (b) **ESS-adapted resample:** If $\widehat{N}_{\text{eff}} < N_{\text{thres}}$ sample ancestor indices $a_t^i \sim \mathcal{C}(\{w_{t-1}^j\}_{j=1}^N)$ and set $w_{t-1}^i = 1/N$. If $\widehat{N}_{\text{eff}} \geq N_{\text{thres}}$ set $a_t^i = i$.
- (c) **Propagate:** sample $x_t^i \sim p(x_t | x_{t-1}^{a_t^i})$. $x_{0:t}^i = \{x_{0:t-1}^{a_t^i}, x_t^i\}$.
- (d) Weight: compute $\widetilde{w}_t^i = p(y_t | x_t^i) w_{t-1}$ and normalize $w_t^i = \widetilde{w}_t^i / \sum_{i=1}^N \widetilde{w}_t^j$.

15/22

Multinomial resampling

Multinomial resampling introduced during lecture 4

$$\mathbf{a}^i \sim \mathcal{C}(\{\mathbf{w}^j\}_{j=1}^N), \qquad \mathbb{P}(\mathbf{a}^i = j) = \mathbf{w}^j.$$

Blue circular disc – weights $\{w^i\}_{i=1}^8$.

Solid arrows – selected particles $\{x^i\}_{i=1}^8$.

Alternative implementations of resampling

Multinomial

Stratified

Systematic

Divide the circle into strata (grey dashed lines).

Stratified resampling randomly selects 1 sample from each strata.

Systematic resampling randomly generates 1 offset and then it picks one sample from each strata using this offset.

Removing the path degeneracy problem

The impact of the path degeneracy problem can sometimes be completely removed by **backward simulation** (results in particle **smoothers**).

Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

18/22

Parameter inference in SSMs

Fixed-lag smoother

In estimating the fixed-lag smoothing density $p(x_{t-l+1:t} | y_{1:t})$ for some small l > 1 we can make use of

$$\widehat{p}(x_{t-l+1:t} \mid y_{1:t}) = \sum_{i=1}^{N} w_t^i \delta_{x_{t-l+1:t}^i}(x_{t-l+1:t}),$$

where the particle system comes from a particle filter targeting the joint filtering density.

If *I* is taken too large we activate the path degeneracy problem to such a degree that it will not work.

The particle MCMC (particle MH and particle Gibbs) algorithms provide good solutions to state smoothing problems.

19/22

Nonlinear state space model

$$X_{t} = f(X_{t-1}, \theta) + V_{t}, \qquad X_{t} \mid (X_{t-1} = x_{t-1}, \theta = \theta) \sim p(x_{t} \mid x_{t-1}, \theta),$$

$$Y_{t} = g(X_{t}, \theta) + E_{t}, \qquad Y_{t} \mid (X_{t} = x_{t}, \theta = \theta) \sim p(y_{t} \mid x_{t}, \theta),$$

$$X_{0} \sim p(x_{0} \mid \theta). \qquad X_{0} \sim p(x_{0} \mid \theta).$$

Two different parameter inference formulations differing in the way the unknown parameters θ are modelled:

- Maximum likelihood: θ modelled as deterministic.
- Bayesian: θ modelled as stochastic.

Central object - data distribution/likelihood

The data distribution can be computed by marginalizing

$$p(x_{0:T}, y_{1:T} | \theta) = \prod_{t=1}^{T} p(y_t | x_t, \theta) \prod_{t=1}^{T} p(x_t | x_{t-1}, \theta) p(x_0 | \theta)$$

w.r.t. the state trajectory $x_{0:T}$

$$p(y_{1:T} \mid \boldsymbol{\theta}) = \int p(x_{0:T}, y_{1:T} \mid \boldsymbol{\theta}) dx_{0:T}.$$

Average over all possible values for the state trajectory $x_{0:T}$.

Alternative way of performing the averaging:

$$p(y_{1:T} \mid \boldsymbol{\theta}) = \prod_{t=1}^{T} p(y_t \mid y_{1:t-1}, \boldsymbol{\theta}) = \prod_{t=1}^{T} \int p(y_t \mid x_t, \boldsymbol{\theta}) \underbrace{p(x_t \mid y_{1:t-1}, \boldsymbol{\theta})}_{\text{approx. by PF}} dx_t$$

A few concepts to summarize lecture 8

Ancestral path: By starting from a particle x_t^i at time t and tracing its ancestors backwards in time via the ancestor indices we obtain $x_{0:t}^i$, which is the ancestral path for particle x_t^i .

Path degeneracy: The resampling step will by construction result in that for any time s there exists a time t>s such that the PF approximation $\widehat{p}(\mathbf{x}_{0:t}\,|\,\mathbf{y}_{1:t})$ consists of a single particle at time s.

Effective sample size (ESS): An importance sampling diagnostics tool that tells us when our weights are problematic in the sense that they are close to being degenerate, i.e. it provides a way of gauging the extent of the weight degeneracy.

Backward simulation: Generates samples backwards in time. When backward sampling can be implemented it removes the path degeneracy problem (only possible in off-line situations).

Likelihood function: Deterministic function of θ obtained by inserting the available measurements into the data distribution.