Knowledge Distillation : transfert de connaissances entre deux réseaux à l'entraînement

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- Pruning,
- 4 Factorization,
- Fact. pt.2 : Operators and Architectures,
- 6 Distillation,
- **7** Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Quantification,
- Pruning,
- 4 Factorization,
- Fact. pt.2 : Operators and Architectures,
- 6 Distillation,
- 7 Embedded Software and Hardware for DL.
- 8 Presentations for challenge.

- Les valeurs des classes fausses renseignent sur la généralisation du réseau
- Ces labels doux peuvent servir de labels plus pertinents pour entraîner un autre réseau

- Les valeurs des classes fausses renseignent sur la généralisation du réseau
- Ces labels doux peuvent servir de labels plus pertinents pour entraîner un autre réseau

- Les valeurs des classes fausses renseignent sur la généralisation du réseau
- Ces labels doux peuvent servir de labels plus pertinents pour entraîner un autre réseau

- Les valeurs des classes fausses renseignent sur la généralisation du réseau
- Ces labels doux peuvent servir de labels plus pertinents pour entraîner un autre réseau

Distillation de Hinton

$$\mathcal{L}_{KD} = \underbrace{H(y_{true}, P_s)}_{\text{terme supervis\'e}} + \underbrace{\lambda D_{KL}(P_T, P_S)}_{\text{terme de distillation}}$$

Considérons les sorties *softmax* :
$$q_i = \frac{e^{z_i/T}}{\sum_i e^{z_j/T}}$$

- T est choisi égal à 1 pour l'inférence mais supérieur à 1 pour le terme de distillation (les sorties sont alors plus douces)
- Comme les sorties sont alors d'amplitude $1/\mathcal{T}^2$, il faut multiplier le résultat par \mathcal{T}^2

Distillation de Hinton

$$\mathcal{L}_{KD} = \underbrace{H(y_{true}, P_s)}_{\text{terme supervis\'e}} + \underbrace{\lambda D_{KL}(P_T, P_S)}_{\text{terme de distillation}}$$

Considérons les sorties *softmax* :
$$q_i = \frac{e^{z_i/T}}{\sum_i e^{z_j/T}}$$

- T est choisi égal à 1 pour l'inférence mais supérieur à 1 pour le terme de distillation (les sorties sont alors plus douces)
- Comme les sorties sont alors d'amplitude $1/T^2$, il faut multiplier le résultat par T^2

Distillation de Hinton

$$\mathcal{L}_{\mathit{KD}} = \underbrace{H(y_{\mathit{true}}, P_{\mathit{S}})}_{\mathsf{terme \; supervis\acute{e}}} + \underbrace{\lambda D_{\mathit{KL}}(P_{\mathit{T}}, P_{\mathit{S}})}_{\mathsf{terme \; de \; distillation}}$$

Considérons les sorties
$$softmax$$
 : $q_i = \frac{e^{z_i/T}}{\sum_i e^{z_j/T}}$

- T est choisi égal à 1 pour l'inférence mais supérieur à 1 pour le terme de distillation (les sorties sont alors plus douces)
- Comme les sorties sont alors d'amplitude $1/\mathcal{T}^2$, il faut multiplier le résultat par \mathcal{T}^2

Distillation de Hinton

$$\mathcal{L}_{KD} = \underbrace{H(y_{true}, P_s)}_{\text{terme supervis\'e}} + \underbrace{\lambda D_{KL}(P_T, P_S)}_{\text{terme de distillation}}$$

Considérons les sorties *softmax* :
$$q_i = \frac{e^{z_i/T}}{\sum_i e^{z_j/T}}$$

- T est choisi égal à 1 pour l'inférence mais supérieur à 1 pour le terme de distillation (les sorties sont alors plus douces)
- Comme les sorties sont alors d'amplitude $1/\mathcal{T}^2$, il faut multiplier le résultat par \mathcal{T}^2

Utilisations

- Compression de réseaux de neurones (LIT: Block-wise intermediate representation training for model compression, Koratana & al., 2018)
- Self-distillation (Born-Again Neural Networks, Furlanello & al., 2018)
- Transfert de connaissances sur des données absentes (Distilling the Knowledge in a Neural Network, Hinton & al. 2015)

Utilisations

- Compression de réseaux de neurones (LIT: Block-wise intermediate representation training for model compression, Koratana & al., 2018)
- Self-distillation (Born-Again Neural Networks, Furlanello & al., 2018)
- Transfert de connaissances sur des données absentes (Distilling the Knowledge in a Neural Network, Hinton & al. 2015)

Utilisations

- Compression de réseaux de neurones (LIT: Block-wise intermediate representation training for model compression, Koratana & al., 2018)
- Self-distillation (Born-Again Neural Networks, Furlanello & al., 2018)
- Transfert de connaissances sur des données absentes (Distilling the Knowledge in a Neural Network, Hinton & al. 2015)

- Une ou plusieurs représentations intermédiaires de l'élève doivent imiter celles du professeur
- \blacksquare La distance entre ces deux représentations intermédiaires est, le plus souvent, la norme ℓ_2
- \blacksquare Ce nouveau terme, $\mathcal{L}_{IR} = \|IR_T IR_S\|_2$, s'ajoute à \mathcal{L}_{KD}

- Une ou plusieurs représentations intermédiaires de l'élève doivent imiter celles du professeur
- \blacksquare La distance entre ces deux représentations intermédiaires est, le plus souvent, la norme ℓ_2
- lacksquare Ce nouveau terme, $\mathcal{L}_{IR}=\|IR_T-IR_S\|_2$, s'ajoute à \mathcal{L}_{KD}

- Une ou plusieurs représentations intermédiaires de l'élève doivent imiter celles du professeur
- \blacksquare La distance entre ces deux représentations intermédiaires est, le plus souvent, la norme ℓ_2
 - Ce nouveau terme, $\mathcal{L}_{IR} = \|IR_T IR_S\|_2$, s'ajoute à \mathcal{L}_{ED}

- Une ou plusieurs représentations intermédiaires de l'élève doivent imiter celles du professeur
- \blacksquare La distance entre ces deux représentations intermédiaires est, le plus souvent, la norme ℓ_2
- Ce nouveau terme, $\mathcal{L}_{IR} = \|IR_T IR_S\|_2$, s'ajoute à \mathcal{L}_{KD}

- Une ou plusieurs représentations intermédiaires de l'élève doivent imiter celles du professeur
- \blacksquare La distance entre ces deux représentations intermédiaires est, le plus souvent, la norme ℓ_2
- Ce nouveau terme, $\mathcal{L}_{\mathit{IR}} = \|\mathit{IR}_{\mathit{T}} \mathit{IR}_{\mathit{S}}\|_2$, s'ajoute à $\mathcal{L}_{\mathit{KD}}$

- Représentations intermédiaires en sortie de chaque bloc
- Entraînement avec en entrée les sorties intermédiaires du professeur (spécificité de LIT)
- Les représentations intermédiaires comparées doivent être de même dimension
- Un réseau régresseur (une couche dense ou une convolution 1 x 1) est inséré pour faire correspondre les dimensions

- Représentations intermédiaires en sortie de chaque bloc
- Entraînement avec en entrée les sorties intermédiaires du professeur (spécificité de LIT)
- Les représentations intermédiaires comparées doivent être de même dimension
- Un réseau régresseur (une couche dense ou une convolution 1×1) est inséré pour faire correspondre les dimensions

- Représentations intermédiaires en sortie de chaque bloc
- Entraînement avec en entrée les sorties intermédiaires du professeur (spécificité de LIT)
- Les représentations intermédiaires comparées doivent être de même dimension
- Un réseau régresseur (une couche dense ou une convolution 1×1) est inséré pour faire correspondre les dimensions

- Représentations intermédiaires en sortie de chaque bloc
- Entraînement avec en entrée les sorties intermédiaires du professeur (spécificité de LIT)
- Les représentations intermédiaires comparées doivent être de même dimension
- Un réseau régresseur (une couche dense ou une convolution 1×1) est inséré pour faire correspondre les dimensions

- Représentations intermédiaires en sortie de chaque bloc
- Entraînement avec en entrée les sorties intermédiaires du professeur (spécificité de LIT)
- Les représentations intermédiaires comparées doivent être de même dimension
- Un réseau régresseur (une couche dense ou une convolution 1 x 1) est inséré pour faire correspondre les dimensions

Quelques résultats

LIT: Block-wise intermediate representation training for model compression, Koratana & al., 2018

Quelques résultats

LIT: Block-wise intermediate representation training for model compression, Koratana & al., 2018

Relational Knowledge Distillation, Park & al., 2019

Relational Knowledge Distillation, Park & al., 2019

Relational Knowledge Distillation

 $\mathcal{L}_{RKD} = \sum_{i,j \in \mathcal{X}^N} \ell(\phi(t_i,t_j),\phi(s_i,s_j))$ avec $\phi(t_i,t_j) = \frac{1}{\mu} \|t_i - t_j\|_2$, ℓ la norme de Huber, alias "norme ℓ_1 douce", μ un terme de normalisation et \mathcal{X}^N le batch d'entraînement

- Pour chaque batch, on calcule la norme ℓ_2 entre paires de représentations intermédiaires chez le professeur et chez l'élève séparément
- On compare ces distances chez l'élève et chez le professeur
- On ajoute \mathcal{L}_{RKD} à la loss

Relational Knowledge Distillation

 $\mathcal{L}_{RKD} = \sum_{i,j \in \mathcal{X}^N} \ell(\phi(t_i,t_j),\phi(s_i,s_j))$ avec $\phi(t_i,t_j) = \frac{1}{\mu} \|t_i - t_j\|_2$, ℓ la norme de Huber, alias "norme ℓ_1 douce", μ un terme de normalisation et \mathcal{X}^N le batch d'entraînement

- Pour chaque batch, on calcule la norme ℓ_2 entre paires de représentations intermédiaires chez le professeur et chez l'élève séparément
- On compare ces distances chez l'élève et chez le professeur
- On ajoute \mathcal{L}_{RKD} à la loss

Relational Knowledge Distillation

 $\mathcal{L}_{RKD} = \sum_{i,j \in \mathcal{X}^N} \ell(\phi(t_i,t_j),\phi(s_i,s_j))$ avec $\phi(t_i,t_j) = \frac{1}{\mu} \|t_i - t_j\|_2$, ℓ la norme de Huber, alias "norme ℓ_1 douce", μ un terme de normalisation et \mathcal{X}^N le batch d'entraînement

- Pour chaque batch, on calcule la norme ℓ_2 entre paires de représentations intermédiaires chez le professeur et chez l'élève séparément
- On compare ces distances chez l'élève et chez le professeur
- On ajoute \mathcal{L}_{RKD} à la loss

Relational Knowledge Distillation

 $\mathcal{L}_{RKD} = \sum_{i,j \in \mathcal{X}^N} \ell(\phi(t_i,t_j),\phi(s_i,s_j))$ avec $\phi(t_i,t_j) = \frac{1}{\mu} \|t_i - t_j\|_2$, ℓ la norme de Huber, alias "norme ℓ_1 douce", μ un terme de normalisation et \mathcal{X}^N le batch d'entraînement

- Pour chaque batch, on calcule la norme ℓ_2 entre paires de représentations intermédiaires chez le professeur et chez l'élève séparément
- On compare ces distances chez l'élève et chez le professeur
- On ajoute \mathcal{L}_{RKD} à la loss

Relational Knowledge Distillation

 $\mathcal{L}_{RKD} = \sum_{i,j \in \mathcal{X}^N} \ell(\phi(t_i,t_j),\phi(s_i,s_j))$ avec $\phi(t_i,t_j) = \frac{1}{\mu} \|t_i - t_j\|_2$, ℓ la norme de Huber, alias "norme ℓ_1 douce", μ un terme de normalisation et \mathcal{X}^N le batch d'entraînement

- Pour chaque batch, on calcule la norme ℓ_2 entre paires de représentations intermédiaires chez le professeur et chez l'élève séparément
- On compare ces distances chez l'élève et chez le professeur
- On ajoute \mathcal{L}_{RKD} à la loss

