Universidade Federal de Alfenas - UNIFAL-MG - campus Varginha Bacharelado Interdisciplinar em Ciência e Economia Disciplina: Análise multivariada - Profa. Patrícia de Siqueira Ramos Lista 2 - Amostras aleatórias

Essa lista está dividida em duas partes.

- Manual: deverá ser resolvida e entregue escrita à mão de forma individual ou em dupla mostrando os cálculos utilizados
- Python: quando aparecer (Python), tal questão será resolvida usando o programa Python. Todas as resoluções deverão estar em um *notebook* salvo com o nome "lista2_nome". O arquivo deve estar organizado e comentado (com #). O *notebook* deverá ser enviado ao meu e-mail (siqueirapaty@gmail.com) até às 23:59h da data combinada no site.
- 1 Quatro recibos de uma livraria foram selecionados para avaliar a natureza das vendas de livros. Há informações sobre o número de livros vendidos e o valor total, dentre outras. Os valores das vendas (US\$) foram 42, 52, 48, 58, enquanto o número de livros vendidos em cada foi 4, 5, 4, 3.
- a) Escreva a matriz de dados \boldsymbol{X} correspondente.
- b) Obtenha \bar{X} , S, $R \in W$.
- c) Obtenha a matriz de covariâncias amostral por meio de $S = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i\bullet} \bar{X})(X_{i\bullet} \bar{X})^{T}$.

Apresente os vetores e matrizes envolvidos nos cálculos.

- d) (Python!) Resolva o item b no Python usando as funções mean, cov e corrcoef da forma vista na aula prática. Resolva o item c de forma matricial no Python.
- 2 (Python!) Obtenha as matrizes de covariâncias amostrais e de correlações amostrais do seguinte conjunto de dados:

indivíduo	sexo	idade	QI	depressão	indivíduo	sexo	idade	QI	depressão
1	F	19	119	N	13	F	15	122	S
2	\mathbf{M}	34	82	\mathbf{S}	14	\mathbf{M}	51	99	\mathbf{S}
3	\mathbf{F}	32	106	N	15	\mathbf{M}	55	85	N
4	\mathbf{F}	37	134	N	16	\mathbf{M}	32	106	\mathbf{S}
5	\mathbf{M}	39	100	\mathbf{S}	17	\mathbf{F}	27	93	N
6	\mathbf{F}	30	87	\mathbf{S}	18	\mathbf{M}	59	109	N
7	\mathbf{F}	14	97	N	19	\mathbf{M}	13	97	N
8	\mathbf{M}	54	84	N	20	\mathbf{F}	39	89	N
9	\mathbf{M}	22	95	\mathbf{S}	21	\mathbf{F}	35	80	N
10	\mathbf{M}	37	96	N	22	\mathbf{F}	38	127	\mathbf{S}
11	\mathbf{M}	42	101	\mathbf{S}	23	\mathbf{F}	42	107	N
12	\mathbf{M}	16	110	\mathbf{S}	24	\mathbf{F}	21	85	N

Dica: no Python, para carregar o conjunto de dados acima (que já está salvo num .csv) use:

import pandas as pd

o arquivo '.csv' deve estar na mesma pasta em que este notebook esteja salvo # se não estiver, o caminho deve ser colocado

dados = pd.read_csv('depressao.csv') # pode ser necessário corrigir as aspas no Python
dados = dados.iloc[:,1:5] # desconsiderar a coluna 0
dados.head()

3 Considere a matriz de covariâncias abaixo:

$$\boldsymbol{S} = \begin{bmatrix} 3,8778 & 2,8110 & 3,1480 & 3,5062 \\ 2,8110 & 2,1210 & 2,2669 & 2,5690 \\ 3,1480 & 2,2669 & 2,6550 & 2,8341 \\ 3,5062 & 2,5690 & 2,8341 & 3,2352 \end{bmatrix}.$$

- a) (Python!) Obtenha a matriz R a partir de S utilizando o fato: $R = D^{-1/2}SD^{-1/2}$.
- b) Como você avalia as correlações entre os pares de variáveis?
- 4 Considerando os vetores $X_{1\bullet}$, $X_{2\bullet}$, $X_{3\bullet}$, $X_{4\bullet}$ e $X_{5\bullet}$:

$$\boldsymbol{X}_{1\bullet} = \begin{bmatrix} 9 \\ 12 \\ 3 \end{bmatrix}, \boldsymbol{X}_{2\bullet} = \begin{bmatrix} 2 \\ 8 \\ 4 \end{bmatrix}, \boldsymbol{X}_{3\bullet} = \begin{bmatrix} 6 \\ 6 \\ 0 \end{bmatrix}, \boldsymbol{X}_{4\bullet} = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}, \boldsymbol{X}_{5\bullet} = \begin{bmatrix} 8 \\ 10 \\ 1 \end{bmatrix}.$$

Dica: para criar uma matriz no Python a partir de vetores prontos, por exemplo, uma matriz de dimensão 3×2 a partir de 3 vetores 2×1 $(a, b \in c)$, pode-se usar np.vstack((a, b, c)).reshape(3, 2).

Obtenha:

- a) \bar{X} , $S \in R$ (no Python e manualmente).
- b) Como você avalia as correlações entre as variáveis?
- 5 Considere a matriz de dados \boldsymbol{X} abaixo

$$\begin{pmatrix} 3 & 6 & 4 & 0 & 7 \\ 4 & 2 & 7 & 4 & 6 \\ 4 & 0 & 3 & 1 & 5 \\ 6 & 2 & 6 & 1 & 1 \\ 1 & 6 & 2 & 1 & 4 \\ 5 & 1 & 2 & 0 & 2 \\ 1 & 1 & 2 & 6 & 1 \\ 1 & 1 & 5 & 4 & 4 \\ 7 & 0 & 1 & 3 & 3 \\ 3 & 3 & 0 & 5 & 1 \end{pmatrix}.$$

- a) (Python!) Obtenha as matrizes distância euclidiana, euclidiana padronizada e Mahalanobis entre as observações.
- b) Se apenas houvesse as quatro primeiras observações e as três primeiras variáveis, calcule manualmente todas as matrizes distância (use o Python para obter a matriz inversa da matriz de covariâncias, S^{-1} , com a função apropriada).