```
1) How many states could has a process in Linux?
Created, ready, running, waiting, terminated
Выполнение (отрабатывает или ожидает передачи процессору с целью выполнения)
Ожидание (ож. ввода, сигнала от другого процессора, выделения ресурсов)
Завершен
Зомби
2) Examine the pstree command. Make output (highlight) the chain (ancestors) of the current
process. student@CsnKhai:~$ sleep 10000 &
[1] 2725
student@CsnKhai:~$ pstree 2725
sleep
student@CsnKhai:~$ pstree -s 2725
init---sshd---sshd---sshd---sleep
3) What is a proc file system?
/proc pseudo-filesystem which provides an interface to kernel data structures.
4) Print information about the processor (its type, supported technologies, etc.).
cat /proc/cpuinfo
           : 0
processor
vendor id
               : AuthenticAMD
cpu family
               : 23
               : 113
model
model name
              : AMD Ryzen 5 3600 6-Core Processor
              : 0
stepping
microcode
              : 0xffffffff
cpu MHz
              : 3333.038
              : 512 KB
cache size
physical id
              : 0
               : 4
siblings
               : 0
core id
               : 4
cpu cores
               : 0
apicid
initial apicid : 0
fdiv_bug
               : no
f00f_bug
              : no
coma_bug
              : no
               : yes
fpu exception : yes
cpuid level
               : 13
wp
               : yes
flags
               : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ht syscall nx fxsr_opt rdtscp constant_tsc nonstop_tsc extd_apicid pni
ssse3 cx16 sse4 1 sse4 2 lahf lm cmp legacy cr8 legacy arat vmmcall fsgsbase
bogomips
               : 6666.07
clflush size
               : 64
cache_alignment : 64
address sizes : 48 bits physical, 48 bits virtual
power management:
5) Use the ps command to get information about the process. The information should be as
follows: the owner of the process, the arguments with which the process was launched for
execution, the group owner of this process, etc.
root@CsnKhai:~# ps -o pid,user,group,args 27417
```

PID USER

27417 root

GROUP

root

COMMAND

sleep 10000

6) How to define kernel processes and user processes?

При выводе через рѕ роцессы ядра имеют [] в названии

Процессы ядра linux запускаются самим ядром, при этом родительским процессом якобы их породившим, назначается процесс kthread, с PID=2. Таким образом процессами ядра надо считать сам процесс с PID=2, а так же процессы у которых PPID (т.е. ріd родителя) равен 2. pstree без параметров показывает только дерево процессов порожденных init, т.е. пользовательских процессов. Процессы ядра покажет sudo pstree 2.

Процессы ядра:

sudo ps --ppid=2 -pid=2
pstree 2

Пользовательские:

sudo ps -N --ppid=2 -pid=2
pstree

7) Print the list of processes to the terminal. Briefly describe the statuses of the processes. What condition are they in, or can they be arriving in?

R : процесс выполняется в данный момент;

S : процесс ожидает (т.е. спит менее 20 секунд);

I : процесс бездействует (т.е. спит больше 20 секунд);

D : процесс ожидает ввода-вывода (или другого недолгого события), непрерываемый;

Z : zombie или defunct процесс, то есть завершившийся процесс, код возврата которого пока не считан родителем;

Т : процесс остановлен;

W : процесс в свопе;

< : процесс в приоритетном режиме;

N : процесс в режиме низкого приоритета;

L : real-time процесс, имеются страницы, заблокированные в памяти;

8616 1552 ?

824 ?

532 pts/5

2464

4228

s : лидер сессии.

ps uU student

8) Display only the processes of a specific user.

```
STAT START
USER
         PID %CPU %MEM
                        VSZ
                              RSS TTY
                                                     TIME COMMAND
student
        1305 0.0 0.1
                       6668 2796 tty1
                                         S+
                                              13:45
                                                     0:00 -bash
        2177 0.0 0.1
                       8956 2212 ?
                                              19:29
student
                                         S
                                                     0:00 sshd: student@pts/2
                       6668 3044 pts/2
                                         Ss+ 19:29
student
        2178 0.0 0.1
                                                     0:00 -bash
                                             19:29
student
       2210 0.0 0.0
                       8648 1688 ?
                                         S
                                                     0:00 sshd: student@notty
student 2211 0.0 0.0
                       2464
                            824 ?
                                         Ss 19:29
                                                     0:00 /usr/lib/openssh/sftp-server
       2578 0.0 0.1 8920 2300 ?
                                         S
                                             19:52
                                                     0:00 sshd: student@pts/5
student
        2579 0.0 0.1
                       6668 3028 pts/5
                                       Ss+ 19:52
                                                     0:00 -bash
student
```

9) What utilities can be used to analyze existing running tasks (by analyzing the help for the ps command)?

S

Ss

S

19:52

19:52

20:50

0:00 sshd: student@notty

0:00 sleep 10000

0:00 /usr/lib/openssh/sftp-server

SEE ALSO

student

student

student

pgrep(1), pstree(1), top(1), proc(5).
+htop

2587 0.0 0.0

2588 0.0 0.0

2725 0.0 0.0

10) What information does top command display?

```
top - 20:50:40 up 6:17, 3 users, load average: 0.00, 0.01, 0.05
Tasks: 97 total, 1 running, 96 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 2064092 total, 276596 used, 1787496 free, 14896 buffers
KiB Swap: 0 total, 0 used, 0 free. 215664 cached Mem
```

11) Display the processes of the specific user using the top command

user filter - [u] key top - 20:52:41 up 6:19, 3 users, load average: 0.00, 0.01, 0.05 Tasks: 97 total, 1 running, 96 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st 278648 used, 1785444 free, 2064092 total, KiB Mem: 14996 buffers KiB Swap: 0 total, 0 used, 0 free. 216960 cached Mem RES %CPU %MEM PID USER PR NI VIRT SHR S TIME+ COMMAND 2216 899 student 20 0 8956 1256 S 0.0 0.1 0:00.56 sshd 900 student 20 0 6668 3024 1668 S 0.0 0.1 0:00.05 bash 20 0 940 S 931 student 8648 1688 0.0 0.1 0:00.00 sshd 934 student 20 0 2464 624 532 S 0.0 0.0 0:00.00 sftp-server 0.0 0.1 956 student 20 0 8956 2228 1288 S 0:00.64 sshd 20 0 1664 S 0.0 0.1 0:00.02 bash 957 student 6668 3012 990 student 20 0 8648 1684 936 S 0.0 0.1 0:00.00 sshd 991 student 20 0 2464 628 532 S 0.0 0.0 0:00.00 sftp-server 0.0 0.1 993 student 20 0 6848 2440 1984 S 0:00.33 ssh 20 0 6668 2792 1512 S 0.0 0.1 0:00.03 bash 1028 student

12) What interactive commands can be used to control the top command? Give a couple of examples. Global-defaults

```
'A' - Alt display
                                     Off (full-screen)
            * 'd' - Delay time
                                     3.0 seconds
            * 'H' - Threads mode
                                     Off (summarize as tasks)
              'I' - Irix mode
                                     On (no, 'solaris' smp)
                                     Off (show all processes)
            * 'p' - PID monitoring
            * 's' - Secure mode
                                      Off (unsecured)
              'B' - Bold enable
                                      On (yes, bold globally)
           Summary-Area-defaults
              'l' - Load Avg/Uptime On (thus program name)
              't' - Task/Cpu states
                                     On (1+1 lines, see '1')
              'm' - Mem/Swap usage
                                      On (2 lines worth)
              '1' - Single Cpu
                                      On (thus 1 line if smp)
           Task-Area-defaults
              'b' - Bold hilite
                                     On (not 'reverse')
            * 'c' - Command line
                                     Off (name, not cmdline)
            * 'i' - Idle tasks
              'i' - Idle tasks On (show all tasks)
'J' - Num align right On (not left justify)
              'j' - Str align right Off (not right justify)
              'R' - Reverse sort
                                      On (pids high-to-low)
            * 'S' - Cumulative time
                                     Off (no, dead children)
            * 'u' - User filter
                                      Off (show euid only)
            * 'U' - User filter
                                      Off (show any uid)
              'x' - Column hilite
                                      Off (no, sort field)
              'v' - Row hilite
                                      On (yes, running tasks)
              'z' - color/mono
                                     Off (no, colors)
<Shift>+<N> - sort by PID;
<Shift>+<P> - sort by CPU usage;
<Shift>+<M> - sort by Memory usage;
<Shift>+<T> - sort by Time usage;
<Shift>+<Z> - change colors;
```

13) Sort the contents of the processes window using various parameters (for example, the amount of processor time taken up, etc.)

[shift]+[m] sort by ram used

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMA
935 root	20	0	8648	3856	3088 S	0.0	0.2	0:00.06	sshd
877 root	20	0	8648	3848	3088 S	0.0	0.2	0:00.10	sshd
880 root	20	0	8648	3632	2884 S	0.0	0.2	0:00.04	sshd
937 root	20	0	8648	3632	2884 S	0.0	0.2	0:00.07	sshd
1044 root	20	0	6600	3068	1776 S	0.0	0.1	0:00.22	bash
900 student	20	0	6668	3024	1668 S	0.0	0.1	0:00.05	bash
957 student	20	0	6668	3012	1664 S	0.0	0.1	0:00.02	bash
1028 student	20	0	6668	2792	1512 S	0.0	0.1	0:00.03	bash
799 root	20	0	7812	2528	2040 S	0.0	0.1	0:00.02	sshd
993 student	20	0	6848	2440	1984 S	0.0	0.1	0:00.33	ssh

[shift]+[p] sort by cpu usage

	3 21 3								
Ī	PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
	1468 student	20	0	6668	3028	1668 S	4.0	0.1	0:00.27 bash
ı	18 root	20	0	0	0	0 S	1.3	0.0	0:00.18 ksoftirqd/2
ı	60 root	20	0	0	0	0 S	1.0	0.0	0:00.62 kworker/2:1
ı	1467 student	20	0	8956	2116	1228 S	0.7	0.1	0:00.07 sshd
ı	7 root	20	0	0	0	0 S	0.3	0.0	0:00.09 rcu sched
ı	1445 root	20	0	5432	1464	1080 R	0.3	0.1	0:00.16 top
ı	1 root	20	0	4180	2228	1420 S	0.0	0.1	0:01.60 init
ı	2 root	20	0	0	0	0 S	0.0	0.0	0:00.00 kthreadd
			_						0 00 04 1 5.1 1/0

14) Concept of priority, what commands are used to set priority?

Команды nice и renice

The default niceness of a process is set to 0 (which results in the priority value of 20). By applying a negative niceness, you increase the priority. Use a positive niceness to decrease the priority.

15) Can I change the priority of a process using the top command? If so, how?

[r] , ввести pid, ввести величину, которая добавится или отнимится от приоритета

Renice	PID 1468	to	value	5					
PID	USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
1468	student	20	0	6748	3108	1668 S	1.7	0.2	0:01.69 bash
899	student	20	0	8956	2216	1256 S	0.0	0.1	0:01.14 sshd
900	student	20	0	6668	3024	1668 S	0.0	0.1	0:00.05 bash

PID USER	PR	NI	VIRT	RES	SHR S	%CPU %MEM	TIME+ COMMAND
1468 student	25	5	6952	3312	1668 S	2.0 0.2	0:03.61 bash
000	20	0	OOFC	2246	42FC C	0 0 0 1	0.04 44

16) Examine the kill command. How to send with the kill command process control signal? Give an example of commonly used signals.

kill [options] <pid>

kill -s SIGNAL pid (SIGNAL = номер либо название сигнала)

Часто используемые для убийства процесса - 9 и 15

Список возможных сигналов- kill -1

1)	SIGHUP	2)	SIGINT	3)	SIGQUIT	4)	SIGILL	5)	SIGTRAP
6)	SIGABRT	7)	SIGBUS	8)	SIGFPE	9)	SIGKILL	10)	SIGUSR1
11)	SIGSEGV	12)	SIGUSR2	13)	SIGPIPE	14)	SIGALRM	15)	SIGTERM
16)	SIGSTKFLT	17)	SIGCHLD	18)	SIGCONT	19)	SIGSTOP	20)	SIGTSTP
21)	SIGTTIN	22)	SIGTTOU	23)	SIGURG	24)	SIGXCPU	25)	SIGXFSZ
26)	SIGVTALRM	27)	SIGPROF	28)	SIGWINCH	29)	SIGIO	30)	SIGPWR
31)	SIGSYS	34)	SIGRTMIN	35)	SIGRTMIN+1	36)	SIGRTMIN+2	37)	SIGRTMIN+3
38)	SIGRTMIN+4	39)	SIGRTMIN+5	40)	SIGRTMIN+6	41)	SIGRTMIN+7	42)	SIGRTMIN+8
43)	SIGRTMIN+9	44)	SIGRTMIN+10	45)	SIGRTMIN+11	46)	SIGRTMIN+12	47)	SIGRTMIN+13
48)	SIGRTMIN+14	49)	SIGRTMIN+15	50)	SIGRTMAX-14	51)	SIGRTMAX-13	52)	SIGRTMAX-12

```
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX
17) Commands jobs, fg, bg, nohup. What are they for? Use the sleep, yes command to demonstrate
the process control mechanism with fg, bg
jobs - список текущих фоновых задач
nohup - дает возможность, чтобы при выходе из системы процесс продолжал работу в фоновом режиме.
      nohup command Arg(s) &
bg - перевод в фон после ctrl+Z, (сигнал TSTR)
fg - возврат задачи в терминал
root@CsnKhai:~# sleep 23456
^7
[1]+ Stopped
                             sleep 23456
root@CsnKhai:~# bg
[1]+ sleep 23456 &
root@CsnKhai:~# sleep 75453
^7
[2]+ Stopped
                             sleep 75453
root@CsnKhai:~# bg
[2]+ sleep 75453 &
root@CsnKhai:~# jobs
[1]- Running
                             sleep 23456 &
[2]+ Running
                             sleep 75453 &
root@CsnKhai:~# fg 1
sleep 23456
^C
Part 2
1) Check the implementability of the most frequently used OPENSSH commands in the MS Windows
operating system. (Description of the expected result of the commands + screenshots: command -
result should be presented)
usage: ssh [-46AaCfGgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec]
[-D [bind_address:]port] [-E log_file] [-e escape_char]
[-F configfile] [-I pkcs11] [-i identity_file]
[-J [user@]host[:port]] [-L address] [-l login_name] [-m mac_spec]
[-O ctl_cmd] [-o option] [-p port] [-Q query_option] [-R address]
[-S ctl_path] [-W host:port] [-w local_tun[:remote_tun]]
destination [command]
ssh student@192.168.56.1 -p 222
C:\Users\bohdan>ssh student@192.168.56.1 -p 222
The authenticity of host '[192.168.56.1]:222 ([192.168.56.1]:222)' can't be established.
ECDSA key fingerprint is SHA256:yp8INOs6pk/gVv7G84N/cRT3KsgxLPiH81jZ/cRpz0o.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[192.168.56.1]:222' (ECDSA) to the list of known hosts.
student@192.168.56.1's password:
Welcome to Ubuntu 14.04.6 LTS (GNU/Linux 3.13.0-63-generic i686)
 * Documentation: https://help.ubuntu.com/
New release '16.04.7 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
```

scp -P 222 student@192.168.56.1:/home/student/hello.txt Games C:\Users\bohdan>scp -P 222 student@192.168.56.1:/home/student/hello.txt "e:\Dev_ops" student@192.168.56.1's password: hello.txt 100% 0 0.0KB/s 00:00

Last login: Fri Dec 24 21:07:22 2021 from 10.0.2.2

2) Implement basic SSH settings to increase the security of the client-server connection (at least

- С помощью ssh-keygen сгенерировать пару приватный-публичный ключ
- Передать публичный ключ на удаленный сервер

ssh-copy-id -i ~/.ssh/id_rsa.pub student@192.168.56.102

- Выполнить настройки на клиенте

✓ Use private key C:\Users\bohdan\AppData\Roamin

3) List the options for choosing keys for encryption in SSH. Implement 3 of them mcedit /etc/ssh/sshd config

Изменить порт ссш

What ports, IPs and protocols we listen for Port 22

Разрешить подключаться руту

PermitRootLogin yes

Разрешить подключение по паролю

Change to no to disable tunnelled clear text passwords #PasswordAuthentication yes

4) Implement port forwarding for the SSH client from the host machine to the guest Linux virtual machine behind NAT

V_mach1 - Settings

Name	Protocol	Host IP	Host Port	Guest IP	Guest Port
Rule 1	TCP	192.168.56.1	222	10.0.2.15	22