Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №4

Выполнил: Конаныхина Антонина

Группа: P3115 Вариант: 1530

Преподаватель: Перцев Тимофей

Сергеевич

Цель работы:

Задание: По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

Вариант:

563: D6CC 571: YYYY 6D6: 6E05 564: 0800 572: XXXX 6D7: CE01 565: 0740 573: 0F81 6D8: AE02	561: 074 562: 000	EE13 AE0F 0740 0C00	56D: 6E05 56E: EE04 56F: 0100 570: ZZZZ	
		D6CC i	571: YYYY 572: XXXX	ζį
ECE. 0740 E73. 0E01 CD0. AE03		D6CC i		ζį

Адрес	Код команды	Мнемоника	Комментарий					
558	0200	CLA	Очистка аккумулятора, старт программы					
559	EE19	ST (IP + 19)	Сохранение (обнуление) ячейки 573					
55A	AE16	LD (IP + 16)	Загрузить в аккумулятор значения ячейки 571 (Ү)					
55B	0C00	PUSH	Записать в стек (Декремент SP и запись в него значения					
			из АС)					
55C	D6CC	CALL 6CC	Вызов подпрограммы в ячейке 6СС					
55D	0800	POP	Взять значение из стека в аккумулятор					
55E	6E14	SUB (IP + 14)	Вычесть из аккумулятора значение ячейки 573					
55F	EE13	ST (IP + 13)	Сохранить результат в ячейку 573					
560	AE0F	LD (IP + F)	Загрузить значение из ячейки 570 (Z)					
561	0740	DEC	Декремент аккумулятора					
562	0C00	PUSH	Положить в стек значение аккумулятора					
563	D6CC	CALL 6CC	Вызов подпрограммы в ячейке 6СС					
564	0800	POP	Взять значение из стека в аккумулятор					
565	0740	DEC	Декремент аккумулятора					
566	4E0C	ADD (IP + C)	Прибавить к аккумулятору значение ячейки 573					
567	EE0B	ST (IP + B)	Сохранить результат в ячейку 573					
568	AE09	LD (IP + 9)	Загрузить значение ячейки 572 (Х)					
569	0C00	PUSH	Положить в стек значение аккумулятора					
56A	D6CC	CALL 6CC	Вызов подпрограммы в ячейке 6СС					
56B	0800	POP	Взять значение из стека в аккумулятор					
56C	0700	INC	Инкремент аккумулятора					
56D	6E05	SUB (IP + 5)	Вычесть из аккумулятора значение ячейки 573					
56E	EE04	ST (IP + 4)	Сохранить результат в ячейку 573					

56F	0100	HLT	Остановка, конец программы
570	ZZZZ	Z	Значение Z
571	YYYY	Y	Значение Ү
572	XXXX	X	Значение Х
573	0F81	R	Результат

Подпрограмма:

Адрес	Код команды	Мнемоника	Комментарий
6CC	AC01	LD(SP+1)	Взять аргумент из стека
6CD	F001	BEQ 1	Проверка на ноль: если 0, то переход в ячейку 6СГ
6CE	F304	BPL 4	Проверка знака: если число положительное, то переход в
			ячейку 6D3
6CF	6E0B	SUB (IP + B)	Вычитание из АС значение ячейки 6DB
6D0	F201	BMI 1	Переход в 6D2, если N==1
6D1	CE06	JUMP (IP + 6)	Переход в ячейку 6D8
6D2	4E08	ADD (IP + 8)	Добавить аргумент из стека в АС
6D3	4C01	ADD(SP+1)	Добавить аргумент из стека в АС
6D4	4C01	ADD(SP+1)	Добавить аргумент из стека в АС
6D5	4C01	ADD(SP+1)	Добавить аргумент из стека в АС (последние 4 ячейки
			равносильны умножению АС на 4)
6D6	6E05	SUB (IP + 5)	Вычитание из АС значения ячейки 6DC
6D7	CE01	JUMP(IP+1)	Переход в ячейку 6D9
6D8	AE02	LD (IP + 2)	Взятие значения из 6DB
6D9	EC01	ST(SP+1)	Сохранить значение в стек
6DA	0A00	RET	Закончить подпрограмму
6DB	F081	A	Константа
6DC	009B	В	Константа

Назначение программы:

Программа работает по следующему алгоритму:

Обозначим за f(x) вызов подпрограммы для какого-то числа x.

Тогда результат выполнения программы:

$$R = (f(x) + 1) - (f(y) + (f(z-1)-1)) = f(x) - f(y) - f(z-1) + 2,$$

$$\Gamma_{\text{Де}} f(x) = \begin{cases} 4x - 155, \text{если } x > 0 \\ -3967, \text{если} - 3967 \le x \le 0 \\ 4x - 155, \text{если } x < -3967 \end{cases}$$

Расположение в памяти исходных данных и результата (назначение ячеек):

Программа расположена в ячейках 558 - 56 Г. Подпрограмма, расположенная в ячейках 6 СС -6 DA, получает на вход один параметр (как число из стека), и результат кладёт также в стек.

Область представления:

Результат R (ячейка 573) – 16 разрядное знаковое число

Число X (ячейка 572) – 16 разрядное знаковое число

Число У (ячейка 571) – 16 разрядное знаковое число

Число Z (ячейка 570) – 16 разрядное знаковое число

Область допустимых значений:

Результат R: $[-2^{15}; 2^{15} - 1]$

Получим из ОДЗ для результата ОДЗ для чисел x, y, z:

1) Вычтем из правой границы ОДЗ для результата 2:

$$f(x) - f(y) - f(z-1)$$
: $[-2^{15}; 2^{15} - 3]$

2) Чтобы сумма трёх функций гарантированно не превышала ОДЗ, поделим их общее ОДЗ на 3 и инвертируем результаты для f(y) и f(z-1):

f(x): [-10922; 10921] f(y): [-10921; 10922] f(z-1): [-10921; 10922]

3) Для больших по модулю значений аргумента f(x) = 4x - 155 получим

4x: [-10767; 11076] 4y: [-10766; 11077] 4(z-1): [-10766; 11077]

Поделим на 4 и для z прибавим единицу:

x: [-2691; 2769] y: [-2691; 2769] z: [-2690; 2770]

С учетом того, что число -2691 входит в промежуток $-3967 \le x \le 0$, а -3967 >

-10921, то можно включить весь промежуток $-3967 \le x \le 0$, тогда

x: [-3967; 2769] y: [-3967; 2769] z: [-3966; 2770]

График:

Вывод:

В ходе лабораторной работы были изучены способы связи между программными модулями, команды обращения к подпрограмме, порядок функционирования БЭВМ при выполнении комплекса взаимосвязанных программ.

X=7777 = 30583 Y=8112 = -32494Z=FEED = -275

Трассировка с выданными числами:

Результат:

R = E915 = -747

Должно быть 130111 = (30583*4-155) + 3967*2

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
558	0200	559	0200	558	0200	000	0558	0000	0100		
559	EE19	55A	EE19	573	0000	000	0019	0000	0100	573	0000
55A	AE16	55B	AE16	571	8112	000	0016	8112	1000		
55B	0C00	55C	0C00	7FF	8112	7FF	055B	8112	1000	7FF	8112
55C	D6CC	6CC	D6CC	7FE	055D	7FE	D6CC	8112	1000	7FE	055D
6CC	AC01	6CD	AC01	7FF	8112	7FE	0001	8112	1000		
6CD	F001	6CE	F001	6CD	F001	7FE	06CD	8112	1000		
6CE	F304	6CF	F304	6CE	F304	7FE	06CE	8112	1000		
6CF	6E0B	6D0	6E0B	6DB	F081	7FE	000B	9091	1000		
6D0	F201	6D2	F201	6D0	F201	7FE	0001	9091	1000		
6D2	4E08	6D3	4E08	6DB	F081	7FE	8000	8112	1001		
6D3	4C01	6D4	4C01	7FF	8112	7FE	0001	0224	0011		
6D4	4C01	6D5	4C01	7FF	8112	7FE	0001	8336	1000		
6D5	4C01	6D6	4C01	7FF	8112	7FE	0001	0448	0011		
6D6	6E05	6D7	6E05	6DC	009B	7FE	0005	03AD	0001		
6D7	CE01	6D9	CE01	6D7	06D9	7FE	0001	03AD	0001		
6D9	EC01	6DA	EC01	7FF	03AD	7FE	0001	03AD	0001	7FF	03AD
6DA	0A00	55D	0A00	7FE	055D	7FF	06DA	03AD	0001		
55D	0800	55E	0800	7FF	03AD	000	055D	03AD	0001		
55E	6E14	55F	6E14	573	0000	000	0014	03AD	0001		
55F	EE13	560	EE13	573	03AD	000	0013	03AD	0001	573	03AD
560	AE0F	561	AE0F	570	FEED	000	000F	FEED	1001		
561	0740	562	0740	561	0740	000	0561	FEEC	1001		
562	0C00	563	0C00	7FF	FEEC	7FF	0562	FEEC	1001	7FF	FEEC
563	D6CC	6CC	D6CC	7FE	0564	7FE	D6CC	FEEC	1001	7FE	0564
6CC	AC01	6CD	AC01	7FF	FEEC	7FE	0001	FEEC	1001		
6CD	F001	6CE	F001	6CD	F001	7FE	06CD	FEEC	1001		
6CE	F304	6CF	F304	6CE	F304	7FE	06CE	FEEC	1001		
6CF	6E0B	6D0	6E0B	6DB	F081	7FE	000B	0E6B	0001		
6D0	F201	6D1	F201	6D0	F201	7FE	06D0	0E6B	0001		
6D1	CE06	6D8	CE06	6D1	06D8	7FE	0006	0E6B	0001		
6D8	AE02	6D9	AE02	6DB	F081	7FE	0002	F081	1001		
6D9	EC01	6DA	EC01	7FF	F081	7FE	0001	F081	1001	7FF	F081
6DA	0A00	564	0A00	7FE	0564	7FF	06DA	F081	1001		
564	0800	565	0800	7FF	F081	000	0564	F081	1001		
565	0740	566	0740	565	0740	000	0565	F080	1001		
566	4E0C	567	4E0C	573	03AD	000	000C	F42D	1000		
567	EEOB	568	EE0B	573	F42D	000	000B	F42D	1000	573	F42D
568	AE09	569	AE09	572	7777	000	0009	7777	0000		
569	0C00	56A	0C00	7FF	7777	7FF	0569	7777	0000	7FF	7777
56A	D6CC	6CC	D6CC	7FE	056B	7FE	D6CC	7777	0000	7FE	056B
6CC	AC01	6CD	AC01	7FF	7777	7FE	0001	7777	0000		
6CD	F001	6CE	F001	6CD	F001	7FE	06CD	7777	0000		
6CE	F304	6D3	F304	6CE	F304	7FE	0004	7777	0000		
6D3	4C01	6D4	4C01	7FF	7777	7FE	0001	EEEE	1010		
6D4	4C01	6D5	4C01	7FF	7777	7FE	0001	6665	0001		
6D5	4C01	6D6	4C01	7FF	7777	7FE	0001	DDDC	1010		<u> </u>
6D6	6E05	6D7	6E05	6DC	009B	7FE	0005	DD41	1001		
6D7	CE01	6D9	CE01	6D7	06D9	7FE	0001	DD41	1001	755	DD44
6D9	EC01	6DA	EC01	7FF	DD41	7FE	0001	DD41	1001	7FF	DD41
6DA	0A00	56B	0A00	7FE	056B	7FF	06DA	DD41	1001		-
56B	0800	56C	0800	7FF	DD41	000	056B	DD41	1001		-
56C	0700	56D	0700	56C	0700	000	056C	DD42	1000		1
56D	6E05	56E	6E05	573	F42D	000	0005	E915	1000	F 7 2	E045
56E	EE04	56F	EE04	573	E915	000	0004	E915	1000	573	E915

56F 0100 570 0100 56F 0100 000 056F E915 1000