بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي الأول للعام الدراسي ٣٩ ٤ ١ / ٠٤ ١ هـ الاختبار الفصلي الأول

	الرقم الجامعي:		اسم الطالب:
كشف الحضور:	الرقم التسلسلي في م		أستاذ المقرر:
	من 30	الدرجة:	

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
В	A	D	C	A	D	C	В	D	В	C	A	В	A	C

السوال الأول:

 ${f B}$ إحدى شركات تصنيع السيارات قررت إنتاج ثلاثة أنواع من السيارات للسنة القادمة، سيارة ${f A}$ (صغيرة الحجم) وسيارة ${f C}$ (كبيرة الحجم). إنتاج كل نوع من هذه السيارات الثلاث يتطلب كميات مختلفة من الحديد وساعات الإنتاج وتعطي ربح مختلف، كما يبين الجدول التالي:

الربح من بيع السيارة	ساعات الإنتاج	كمية الحديد	نوع السيارة
(ريال/سيارة)	(ساعة/سيارة)	(طن/سيارة)	
10000	100	1	${f A}$ سيارة
15000	125	2	${f B}$ سيارة
20000	150	3	سيارة C

يتوفر لدى الشركة للسنة الإنتاجية القادمة 90000 طن حديد و 100000 ساعة إنتاج.

الشركة تريد أن يكون مجموع إنتاجها من جميع أنواع السيارات الثلاث على الأقل 50000 سيارة، بحيث أن يكون إنتاجها من السوع \mathbf{B} على الأقل ضعف إنتاجها من كلا النوعين \mathbf{B} و \mathbf{C} ، وأن لا يزيد إنتاجها من السيارات من النوع \mathbf{B} عن إنتاجها من النوع \mathbf{C} بأكثر من \mathbf{C} سيارة.

عند صياغة المسألة بنموذج رياضي خطي، أجب عن ما يلي:

1. متغيرات القرار:

 ${f A}$ النوع ${f A}$ النوع ${f B}$ المستخدمة لصنع سيارات النوع ${f B}$ المستخدمة لصنع سيارات النوع ${f C}$ النوع ${f C}$

 $egin{aligned} \mathbf{A} &= & \text{Il.} &= \chi_1 \\ \mathbf{A} &= & \text{Il.} &= \chi_2 \\ \mathbf{B} &= & \text{Il.} &= \chi_2 \\ \mathbf{C} &= & \text{Il.} &= \chi_3 \end{aligned}$

 ${f A}$ كمية الحديد السنوية المستخدمة لصنع سيارات النوع ${f B}$ B كمية الحديد السنوية المستخدمة لصنع سيارات النوع ${f C}$ كمية الحديد السنوية المستخدمة لصنع سيارات النوع ${f C}$ كمية الحديد السنوية المستخدمة لصنع سيارات النوع

 $egin{aligned} \mathbf{A} & = \mathbf{x}_1 \\ \mathbf{C} & = \mathbf{x}_2 \\ \mathbf{C} & = \mathbf{x}_2 \end{aligned}$ A consider minimizer \mathbf{x}_1 and the \mathbf{x}_2 and the \mathbf{x}_2 and the \mathbf{x}_3 and the \mathbf{x}_3 and the \mathbf{x}_4 and \mathbf{x}_4

2. دالة الهدف:

B min $z = x_1 + 2x_2 + 3x_3$ **A** max $z = 10000x_1 + 15000x_2 + 20000x_3$

 $\mathbf{D} \text{ max } z = 100x_1 + 125x_2 + 150x_3 \quad \mathbf{C} \text{ min } z = 10000x_1 + 15000x_2 + 20000x_3$

3. من ضمن القيود الخطية:

$$\mathbf{B} \qquad x_1 + 2x_2 + 3x_3 \le 90000$$

$$\mathbf{A} \qquad x_1 + 2x_2 + 3x_3 \ge 90000$$

$$\mathbf{D} \qquad x_1 + 2x_2 + 3x_3 = 90000$$

$$\mathbf{C} \qquad x_1 + 2x_2 + 3x_3 = 100000$$

4. من ضمن القيود الخطية:

$$\mathbf{B} \mid 100x_1 + 125x_2 + 150x_3 \ge 100000$$

$$\mathbf{D} \quad 100x_1 + 125x_2 + 150x_3 = 100000$$

$$\mathbf{C} = 100x_1 + 125x_2 + 150x_3 = 90000$$

5. من ضمن القيود الخطية:

$$\mathbf{B} \qquad x_1 + x_2 + x_3 = 50000$$

$$\mathbf{A} \qquad x_1 + x_2 + x_3 \le 50000$$

$$\mathbf{D} \qquad 10x_1 + 15x_2 + 20x_3 \ge 50000$$

6. من ضمن القيود الخطية:

$$\mathbf{B} \qquad \qquad x_1 \ge 2(x_2 + x_3)$$

$$\mathbf{A} \qquad \qquad x_1 \le 2(x_2 + x_3)$$

$$\mathbf{D} \qquad x_1 \ge 0.5(x_2 + x_3)$$

$$\mathbf{C} \qquad \qquad x_1 \ge (x_2 + x_3)$$

7. من ضمن القيود الخطية:

B
$$x_3 \ge x_2 + 7500$$

A
$$x_2 \ge x_3 + 7500$$

$$x_2 \le x_3 + 7500$$

C
$$x_3 \le x_2 + 7500$$

2

السؤال الثاني:

ليكن لدينا البرنامج الخطي التالي:

min
$$z = x_1 - 3x_2$$

s.t. $4x_1 + 6x_2 \le 18$
 $4x_1 + 4x_2 \le 16$
 $-2x_1 + 3x_2 \le 6$
 $2x_1 \le 7$
 $x_1 \ge 0$, $x_2 \ge 0$

8. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:

D	ABEGM	C	EFG	В	ABEGKL	A	ABFGKL
---	-------	---	-----	---	--------	---	--------

9. الحل الأمثل للبرنامج الخطى هو عند النقطة:

D	G	C	E	В	F	A	L
---	---	---	---	---	---	---	---

10. القيمة المثلى لدالة الهدف هي:

11. إذا أصبحت دالة الهدف $3x_2 - x_1 - 3x_2$ ، فإن الحل الأمثل للبرنامج الخطي هو عند النقطة:

D	G	C	E	В	F	A	L
_							

12. إذا أصبحت دالة الهدف $x_2=x_1-3x_2$ ، فإن القيمة المثلى لدالة الهدف هي:

السؤال الثالث:

ليكن لدينا البرنامج الخطى التالى:

min
$$z = -4x_1 + 2x_2$$

s.t. $3x_1 + 3x_2 \ge 9$
 $4x_1 + 4x_2 \le 20$
 $2x_1 - 3x_2 \le 6$
 $-2x_1 + 4x_2 \ge 8$
 $x_1 \ge 0$, $x_2 \ge 0$

13. ظلل منطقة الحلول الممكنة في الرسم. منطقة الحلول الممكنة هي المضلع:

D	DFEC	C	ABCK	В	CEGK	A	KGL
---	------	---	------	---	------	---	-----

14. القيمة المثلى لدالة الهدف هي:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A −2
--	-------------

السؤال الرابع:

ليكن لدينا البرنامج الخطي التالي:

max
$$z = 2x_1 + 2x_2$$

s.t. $4x_1 + 2x_2 \ge 8$
 $x_1 + x_2 \le 4$
 $-2x_1 + 2x_2 \le 4$
 $x_1 \ge 0$, $x_2 \ge 0$

15. الحل الأمثل لهذا البرنامج الخطي:

 D
 B
 B
 B
 Legentral parts
 A
 Legentral parts
 A
 Legentral parts