

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

BIOLOGY 0970/32

Paper 3 Theory (Core)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

State the name of the out				Some substances move into cells by the process of diffusion.						
diffusion.	er part of an anima	al cell that substa	inces move through d	urin						
				[1						
Substances can also move	by osmosis and acti	ve transport.								
Table 1.1 shows some of the	e features of diffusion	on, osmosis and a	ctive transport.							
		each row to sho	w the features of diffu	ısior						
One has been done for you.										
	Table 1.1									
feature	diffusion	osmosis	active transport							
		1								
ross a partially permeable										
lute concentration to a										
0				_ [4						
Oxygen moves from the air	that we breathe into	the blood.								
State three structures of the on their way to the blood.	e gas exchange syst	em that oxygen m	olecules must pass thr	oug						
1										
2										
3										
				[3						
	Substances can also move Table 1.1 shows some of the Complete Table 1.1 by place osmosis and active transport One has been done for your feature volves movement of water ally ways involves movement cross a partially permeable embrane ovement is from a higher lute concentration to a wer solute concentration quires energy from spiration volves the movement of oth gases and solutes Oxygen moves from the air State three structures of the on their way to the blood. 1	Substances can also move by osmosis and active Table 1.1 shows some of the features of diffusion Complete Table 1.1 by placing one tick (/) in osmosis and active transport. One has been done for you. Table 1.1 feature diffusion volves movement of water lay ways involves movement ross a partially permeable embrane ovement is from a higher late concentration to a wer solute concentration to a wer solute concentration quires energy from spiration volves the movement of the gase and solutes Oxygen moves from the air that we breathe into State three structures of the gas exchange syst on their way to the blood. 1	Substances can also move by osmosis and active transport. Table 1.1 shows some of the features of diffusion, osmosis and a Complete Table 1.1 by placing one tick (/) in each row to sho osmosis and active transport. One has been done for you. Table 1.1 feature diffusion osmosis volves movement of water lly ways involves movement ross a partially permeable embrane ovement is from a higher lute concentration to a wer solute concentration quires energy from spiration volves the movement of th gases and solutes Oxygen moves from the air that we breathe into the blood. State three structures of the gas exchange system that oxygen mon their way to the blood. 1	Substances can also move by osmosis and active transport. Table 1.1 shows some of the features of diffusion, osmosis and active transport. Complete Table 1.1 by placing one tick () in each row to show the features of diffusions osmosis and active transport. One has been done for you. Table 1.1 feature diffusion osmosis active transport volves movement of water lay ways involves movement ross a partially permeable embrane overment is from a higher laute concentration to a wer solute concentration quires energy from spiration volves the movement of th gases and solutes Oxygen moves from the air that we breathe into the blood. State three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exchange system that oxygen molecules must pass three structures of the gas exch						

BLANK PAGE

2 (a) Fig. 2.1 is a diagram of the human female reproductive system.

Fig. 2.1

Identify the letter from Fig. 2.1 which represents:

•	the vagina	
•	the uterus	
•	where ovulation occurs	
•	where the fetus grows	

Each letter may be used once, more than once or not at all.

(b) Egg cells are the female gametes and have special adaptive features.

Complete the sentences using words from the list.

where fertilisation occurs.

birth

Each word may be used once, more than once or not at all.

cellulose

	fertilisation	jelly	labour		
Egg cells hav	e	stores so tha	t they can survive for several		
days in the fe	days in the female reproductive system after ovulation.				
They also hav	ve a	coating wh	nich changes after		
	to prevent	more sperm from	entering the egg.		

cytoplasm

© UCLES 2020 0970/32/M/J/20

[5]

energy

 $\textbf{(c)} \quad \text{Table 2.1 shows the average diameters of egg cells from different mammals}.$

Table 2.1

mammal	average diameter of egg cell/μm
goat	122
horse	168
human	165
mouse	90
rabbit	165
sheep	125

	(i)	State the name of the mammal with the egg cell that has the smallest average diameter in Table 2.1.
		[1]
	(ii)	Calculate the difference in average diameter between the egg cells of humans and goats.
		μm [1]
(d)	Lar	ger mammals usually have egg cells with a greater diameter.
	Sug	gest which is the largest mammal using the information in Table 2.1.
		[1]
		[Total: 11]

3 (a) A student investigated respiration in yeast. An equal mass of yeast was added to different types of sugar solution.

The student measured the volume of carbon dioxide released by the yeast using four different sugar solutions with the same concentrations.

The four different sugar solutions used were:

- dextrose
- lactose
- maltose
- sucrose.

Fig. 3.1 is a graph of the results.

Fig. 3.1

(i)	State the name of the sugar solution that produced the most carbon dioxide.			
	[1]			
(ii)	State the volume of carbon dioxide produced by yeast with the dextrose solution at 80 minutes.			
	ama ³ [4]			

(b)	The temperature during the investigation was maintained at 20 °C.
	Predict the effect on the volume of carbon dioxide produced if the investigation was repeated at 30 °C.
	[1]
(c)	State two ways humans use anaerobic respiration in yeast to make useful products.
	1
	2
	[2]
(d)	Describe the similarities and differences between anaerobic respiration in yeast and aerobic respiration in humans.
	similarities
	differences
	[4]
(e)	State the word equation for anaerobic respiration in humans.
	[2]
	[Total: 11]

4 Fig. 4.1 shows some of the processes involved in the treatment of sewage.

Fig. 4.1

(a) Complete Table 4.1 by placing ticks (✓) in the correct boxes to show what is involved in each process during the treatment of sewage.

The first row has been completed for you.

Table 4.1

	process involves:					
process	aeration	removal of large solids	separating liquid waste from solid waste	the use of microorganisms		
production of methane				√		
screening						
settlement						
sludge treatment						
trickle filters OR activated sludge						

[4]

(b)	Describe two reasons why it is necessary to treat sewage before returning the water to the environment.
	1
	2
	[2
	[Total: 6

5 (a) Fig. 5.1 is a photograph of part of a flower.

Some of the outer structures have been removed to show the internal parts.

Fig. 5.1

- (i) Label these structures on Fig. 5.1 with a label line and the name:
 - anther
 - petal
 - stigma.

(ii)	Describe two features visible in Fig. 5.1 that suggest that this is an insect-pollinated flower.
	1
	2

[3]

[2]

(b) Many living organisms can be classified as plants or animals.

Table 5.1 shows some features of animals and plants.

Place ticks (\checkmark) in the boxes to show the correct features of animals and plants.

Table 5.1

feature	animals	plants
can respire		
can grow		
can make their own food		
contain DNA		
can respond to changes in their environment		

		ulon onvironment			[5]
(c)	State two structures that are present in plant cells but not in animal cells.				
	1				
	2				
					[2]

[Total: 12]

6 (a) A student wrote an incorrect definition of the term *hormone*.

The student's incorrect definition is shown in Fig. 6.1.

A hormone is an electrical substance, produced by a gland and carried by the neurones, which alters the activity of one or more specific target organs.

Fig. 6.1

	Identify the two incorrect words in the student's definition.	
	1	
	2	 [2
(b)	Table 6.1 shows the names of some hormones and the glands where they are secreted.	
	Complete Table 6.1.	

Table 6.1

hormone	gland
	adrenal
insulin	
oestrogen	
	testes

[4]

(c) Fig. 6.2 shows the position of some of the organs and endocrine glands in the body.

Fig. 6.2

Draw an **X on** Fig. 6.2 to identify an adrenal gland.

[1]

(d) The list in Fig. 6.3 shows some of the changes that occur in boys and girls during puberty.

breasts grow	hair grows in armpits	pubic hair grows
hips widen	menstruation	testes grow

Fig. 6.3

(i)	State two changes that occur in girls only from the list in Fig. 6.3.	
	1	
	2	
		[2]
(ii)	State one change that occurs in both boys and girls from the list in Fig. 6.3.	
		[1]
		[Total: 10]

7 Researchers investigated the effects of using a fertiliser on the number of leaves grown by plants.

The fertiliser contained nitrate and magnesium ions.

Plants in group 1 were grown in soil with fertiliser.

Plants in group 2 were grown in soil without fertiliser.

The results are shown in Fig. 7.1.

key:
group 1
group 2

Fig. 7.1

(a)	Describe the results shown in Fig. 7.1.		
	[3]		

(D)	ions increased the number of leaves. Not all of the statements are correct.
	A – Magnesium is required for the synthesis of chlorophyll.
	B – Nitrate ions are a component of carbohydrates.
	C – Chlorophyll is required for photosynthesis.
	D – Proteins are needed for growth.
	E – Plants make their own food by the process of respiration.
	F – Respiration produces glucose.
	State the letters of the correct statements.
	[3]
(c)	State the principal source of energy for plants.
	[1]
	[Total: 7]

BLANK PAGE

8 (a) Table 8.1 shows the mass of different materials recycled in one country in 2012 and 2017.

Table 8.1

voor	material recycled/tonnes				
year	cardboard	paper	metal	al plastic	
2012	193 091	222455	41488	44 262	
2017	245 345	144416	24874	23498	

	(i)	Describe the data in Table 8.1.
		[3]
	(ii)	Calculate the percentage change in mass of plastic recycled between 2012 and 2017.
		% [2]
(b)	Disc	carded rubbish is one source of pollution.
	Add	ling excess fertiliser to soil is another source of pollution.
	(i)	State two other types of substances used in agriculture that can pollute land and water.
		1
		2
		[2]
	(ii)	State the names of two gases that pollute air and are linked to climate change.
		1
		2[2]
		L ^L .

[Total: 9]

9 (a) Fig. 9.1 is a flow chart showing the pathway of a reflex action.

Fig. 9.1

[3]

Complete the missing parts of the reflex action pathway in Fig. 9.1.

(b) The box on the left contains the beginning of a sentence.

Reflex actions

The boxes on the right show some endings of sentences.

Draw lines to make **three** correct sentences about reflex actions.

are automatic.

are slow.

coordinate stimuli with responses.

do not involve synapses.

involve the central nervous system.

[3]

[Total: 6]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.