Intuition. For linear map T, T is injective iff $\ker T = \{0\}$

Theorem

If $\phi: G \to H$ homomorphism, then ϕ is injective $\Leftrightarrow \ker \phi = \{e_G\}$

Proof

Let's prove the contrapositives:

(\Leftarrow):If ker $\phi \neq \{e_G\}$, then there exists $x \in G \setminus \{e_G\}$ such that $\phi(x) = e_H$. Since $e_G \neq x$ and $\phi(x) = \phi(e_G) = e_H$, this implies ϕ is not injective.

 (\Rightarrow) : We want to use the same idea from linear algebra. If ϕ is not injective, then there exist $x \neq y$ with $\phi(x) = \phi(y)$. Then

$$\phi(x^{-1}y) = \phi(x^{-1})\phi(y)$$
$$= \phi(x)^{-1}\phi(y)$$
$$= e_H$$

However, $x^{-1}y \neq e_G$ since $x \neq y$. Hence, e_G and $x^{-1}y$ are distinct elements of $\ker \phi \Rightarrow \ker \neq \{e_G\}$.

Example. Read differentiation example in textbook.

Example. $\phi: \mathbb{C}^* \to \mathbb{R}^*, \ \phi(z) = |z|$. We claim this is a homomorphism.

$$\phi(z *_{\mathbb{C}} w) = |zw| = |z||w| = \phi(z) *_{\mathbb{R}} \phi(w).$$

 $\operatorname{im} \phi = \mathbb{R}^+$. This is a subgroup because it is the image of a known homomorphism!

 $\ker \phi = U$, the unit circle $\{z \in \mathbb{C}^* : |z| = 1\}$. Hence U is a normal subgroup of \mathbb{C}^* . It follows from that the subgroup of an abelian group is normal. Or it's the kernel of a known homomorphism.

Note. T/F: If $H \leq G$ and H is abelian, is H a normal subgroup? NO, think $\{e, (1\ 2)\} \leq S_3$.

Notation. π stands for surjective/projection. ι stands for injective.

Example. $\pi_1: G_1 \times G_2 \to G_1, \ \pi((g_1, g_2)) = g_1.$ "Projection to first compo-

nent".

$$\pi_1((x_1, x_2) * (y_1, y_2)) = \pi_1((x_1 * y_1, x_2 * y_2))$$

$$= (x_1 * y_1)$$

$$= \phi((x_1, x_2))\phi((y_1, y_2))$$

 $\operatorname{im} \pi_1 = G_1.$

$$\ker \pi_1 = \{(g_1, g_2) : g_1 = e_1\}. \ K \leq G_1 \times G_2.$$

1 Factor/Quotient Groups

Note. Quotient groups are NOT a special kind of subgroup. We try to find a group of cosets. See screenshot for the motivation. For some cases, if you call the inputs by different names, we obtain the same result.

Well-defined: the operation is not confused by picking different representations for the inputs.

Goal: $H \leq G$, try to make the left cosets of H in G into a group. That is, (xH)*(yH)=xyH. Here we should think of each coset as a single object.

Problem: the result seems to depend on the representatives x, y that were chosen. If x, x' in the same left coset, $xH = x'H \Leftrightarrow h = x^{-1}x' \in H, x' = xh$. So xH = xhH. Then

$$(xhH) * (yh'H) = xhyh'H.$$

We need xhyh'H and xyH to be the representations of the same things for all x, y, h, h'. Again this means

$$xyH = xhyh'H \Leftrightarrow (xy)^{-1}xhyh'H \in H$$
$$\Leftrightarrow y^{-1}x^{-1}xhyh'H \in H$$
$$\Leftrightarrow y^{-1}hyh' = h_0 \in H$$
$$\Leftrightarrow y^{-1}hy = h_0(h')^{-1} \in H$$

Summary: this would work iff $y^{-1}hy \in H$ for all $h \in H, y \in G$.