REALIZAR OPERACIONES PARA MAXIMIZAR LA PUNTUACIÓN

NAOMI LAHERA CHAMPAGNE C411

1. Problema

Sean a, b arrays de enteros y k un entero positivo se define la siguiente operación:

• Selecciona un índice i $(1 \le i \le n)$ tal que $b_i = 1$. Establece $a_i = a_i + 1$ (es decir, incrementa a_i en 1).

Definición 1. Sea c_i el array resultante de eliminar el elemento de la posición i del array a, Se define mediana (c_i) como el $\left\lfloor \frac{|c_i|+1}{2} \right\rfloor$ -ésimo elemento más pequeño de c_i ¹.

Definición 2. Sea c_i el array de longitud n-1 que se obtiene al eliminar a_i de a. ² Se define el score como

$$\max_{i=1}^{n} (a_i + mediana(c_i)).$$

Se quiere maximizar el score luego de realizar a lo sumo k operaciones.

2. Solución

Lema 1. El orden de los elementos no altera el valor del score.

Proof. Sean a array de enteros y d array de enteros que contiene una permutación de los elementos de a.

Se cumple que i-ésimo menor de un array no se afecta al cambiar su posición en el array, luego se cumple que el $\left\lfloor \frac{|a|+1}{2} \right\rfloor$ -ésimo menor de ambos arrays es el mismo, luego la mediana es la misma.

Sea a_i el elemento que maximiza el score de a se cumple que $a_i \in d$, luego al eliminar a_i de a y de d se obtienen también dos arrays c_i y $\overline{c_i}$ con los mismo elementos pero en posiciones distintas y se cumple

¹Por ejemplo, mediana([3, 2, 1, 3]) = 2 y mediana([6, 2, 4, 5, 1]) = 4.

²En otras palabras, el score es el valor máximo de a_i + mediana (c_i) para todo i de 1 a n.

que la mediana de c_i y $\overline{c_i}$ es la misma luego se cumple que a_i también maximiza el score de d.

Podemos afirmar que el score se matiene invariabte ante los cambios de las posiciones de los elementos en el array \Box

De ahora en adelante asumiremos que el array a de enteros esta ordenado ascendentemente.

Lema 2. La mediana de los c_i resultantes de eliminar a_i de a es $a_{\lfloor \frac{n}{2} \rfloor}$ o $a_{\lfloor \frac{n}{2} \rfloor + 1}$.

Proof. Sea $a_{\lfloor \frac{n}{2} \rfloor}$ el $\lfloor \frac{n}{2} \rfloor$ -ésimo menor elemento de a, veamos como varía la mediana del c_i resultante de eliminar un elemento menor o igual que $a_{\frac{n}{2}}$ y al eliminar un elemento mayor que $a_{\frac{n}{2}}$ del array a.

Sea a_j que pertenece a a al eliminar a_j de a, el array c_j resultante contiene n-1 elementos y su mediana es el $\left\lfloor \frac{(|c_j|+1)}{2} \right\rfloor$ -ésimo menor del array que sería $\left\lfloor \frac{n}{2} \right\rfloor$ -ésimo menor elemento de c_j .

Caso 1: Sea a_j tal que $(\lfloor \frac{n}{2} \rfloor + 1) \leq j \leq n$ se cumple que $a_{\lfloor \frac{n}{2} \rfloor} = c_{\lfloor \frac{n}{2} \rfloor}$ es el $\lfloor \frac{n}{2} \rfloor$ -ésimo menor elemento de a y de c_j y por tanto la mediana de c_j .

Sea a_j tal que $1 \leq j \leq \left\lfloor \frac{n}{2} \right\rfloor$ tenemos que al eliminar a_j de a, los a_k con $\left\lfloor \frac{n}{2} \right\rfloor + 1 \leq k \leq n$ ocupan la posición k-1 en el array c_j resultante, luego $a_{\left\lfloor \frac{n}{2} \right\rfloor + 1} = c_{\left\lfloor \frac{n}{2} \right\rfloor}$ es el $\left\lfloor \frac{n}{2} \right\rfloor$ -ésimo menor elemento del array y por tanto la mediana de c_j .

Lema 3. El score del array final (después de ordenarlo ascendentemente) es $a_n + med(c_n)$.

Proof. Como el valor del score depende de la mediana y la media tiene 2 posibles valores tenemos que considerar dos casos.

Caso 1:
$$\operatorname{med}(c_i) = a_{\lfloor \frac{n}{2} \rfloor}$$

El array a está ordenado ascendentemente por tanto valor óptimo de i es n, ya que queremos maximizar a_i . Luego, el puntaje en este caso es $a_n + a_{\lfloor \frac{n}{2} \rfloor}$.

Caso 2:
$$med(c_i) = a_{\lfloor \frac{n}{2} \rfloor + 1}$$

Como aclaramos en el caso anterior el array a está ordenado ascendentemente entonces el valor óptimo de i es $\lfloor \frac{n}{2} \rfloor$, ya que este es el valor más grande de i que cambiará la mediana. Esto obtiene un score de $a_{\lfloor \frac{n}{2} \rfloor} + a_{\lfloor \frac{n}{2} \rfloor + 1}$.

El score en el Caso 1 es claramente mayor que en el Caso 2, por lo tanto, es óptimo.

Así, el score se puede definir como "máximo + mediana del resto", o sea $a_n + \text{med}(c_n)$

Entonces tenemos que el valor del score depende solamente de el mayor elemento del array y de la mediana del resto, por lo que es conveniente usar las operaciones solo para maximizar el mayor elemento del array o maximizar la mediana.

Lema 4. Usaremos todas las k operaciones en el elemento que eventualmente se convierte en el elemento máximo en nuestro array, o usaremos todas las operaciones tratando de mejorar $med(c_n)$ y mantener constante el elemento máximo.

Proof. Existen 2 posibles casos:

Caso 1 Aplicamos operaciones que no contribuyen al aumento de la mediana ni alaumento del elementos mámimo del array que cumple $b_i = 1$.

Supongamos que realizamos x $(1 \le x \le k)$ operaciones en el mayor elemento que eventualmente se convirtió en el máximo.

Entonces, podríamos haber realizado las k-x operaciones restantes en este elemento también, ya que este ya es el elemento máximo y hacer operaciones sobre él mejora nuestro score en 1 cada vez.

Caso 2 Supongamos que incrementamos la mediana del array y quedaron operaciones que maximizan el valor del máximo elemento del array.

Supongamos que para aumentar el valor de la mediana se consumieron $m \leq k-1$ operaciones y se quieren emplear las k-m operaciones restantes para aumentar el valor del máximo elemento del array que cumple bi = 1, denotemos a ese elemento como a_i .

Si al menos 2 de los elementos del array tuvieron que ser modificados para aumentar el $\lfloor \frac{n}{2} \rfloor$ -ésimo menor elemento entonces la mediana aumentó a lo sumo m-1 unidades pues fue necesario como mínimo realizar 1 operación a cada uno de los elementos. Siendo así el score aumentó en $a_i + m - 1 - a_n + k - m \le a_i + k - a_n$, siendo este último el aumento del score si se hibiesen aplicado todas las operaciones a a_i . Luego podemos concluir que el máximo no se alcanza consumiendo operaciones para aumentar la meidiana y consuminedo operaciones para aumentar el máximo del array de forma silutánea.

Solo es necesario analizar 2 casos, o bien aumentamos el máximo, o bien aumentamos la mediana de los demás. Resolveremos el problema considerando ambos casos por separado.

Caso 1: Realizamos operaciones en el elemento que eventualmente se convierte en el máximo.

Solución: Solo deberíamos realizar operaciones en el índice más grande i tal que $b_i = 1$, pues es el elemento mas grande que puede convertirse en máximo del array luego de realizar las k operaciones.

Proof. \Box

Caso 2: Realizamos operaciones para aumentar la mediana de los demás.

Solución: a_n está fijo como el elemento máximo en este caso, y queremos encontrar la mediana más grande posible usando las k operaciones en los otros n-1 elementos.

Para umentar la mediana del array c_n asociado a a_n debemos asegurarno de que mas de la mitad de los elementos del array c_n son mayores o iguales que la nueva mediana.

Búsqueda binaria:

Supongamos que queremos verificar si podemos hacer que $\operatorname{med}(c_n) \geq x$ o no. Algunos elementos ya son $\geq x$, y no los modificaremos. Algunos de los otros elementos pueden incrementarse para que se conviertan en $\geq x$ también. Intuitivamente deberíamos elegir los índices más grandes i tales que $a_i < x$ y $b_i = 1$, e incrementarlos de manera voraz tanto como sea posible.

Sea z el número máximo de elementos que se convierten en $\geq x$ al final. La verificación es verdadera si $z \geq \lfloor \frac{n+1}{2} \rfloor$.

Proof.

Luego tenemos demostrado que deben ser destinadas todas las operaciones indistintamente a aumentar el valor del máximo elemento del array o a aumentar el valor de la mediana.

3. Algoritmo

3.1. **Complejidad.** Por lo tanto, el problema se resuelve en $O(N \cdot \log(\text{MAX}))$.

4. Anexos

4.1. Problema original. C. Perform Operations to Maximize Score

You are given an array a of length n and an integer k. You are also given a binary array b of length n.

You can perform the following operation at most k times:

• Select an index i $(1 \le i \le n)$ such that $b_i = 1$. Set $a_i = a_i + 1$ (i.e., increase a_i by 1).

Your score is defined to be $\max_{i=1}^{n} (a_i + \text{median}(c_i))$, where c_i denotes the array of length n-1 that you get by deleting a_i from a. In other words, your score is the maximum value of $a_i + \text{median}(c_i)$ over all i from 1 to n.

Find the maximum score that you can achieve if you perform the operations optimally.

For an arbitrary array p, median(p) is defined as the $\left\lfloor \frac{|p|+1}{2} \right\rfloor$ -th smallest element of p. For example, median([3,2,1,3])=2 and median([6,2,4,5,1])=4.

Input

The first line contains an integer t $(1 \le t \le 10^4)$ — the number of test cases.

Each test case begins with two integers n and k ($2 \le n \le 2 \times 10^5$, $0 \le k \le 10^9$) — the length of the array a and the number of operations you can perform.

The following line contains n space-separated integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — denoting the array a.

The following line contains n space-separated integers b_1, b_2, \ldots, b_n $(b_i \text{ is } 0 \text{ or } 1)$ — denoting the array b.

It is guaranteed that the sum of n over all test cases does not exceed 2×10^5 .

Output

For each test case, output the maximum value of score you can get on a new line.