■ Neural network setting 「NET.txt」

CrossEntropy

BATCH_SIZE 50

EPOCH 10

LAMBDA **0.000000**

EPS 0.001000

OPTIMIZER Adam

VALIDATION NUM 100

ERROR_PLOT_STEP 10

TEST_SAMPLE 10

ACCURACY_RATE_PLOT 1

Square or CrossEntropy

Mini batch size

Epoch number

Load decay (weight decay)

Learning rate

Optimizer

Number of Validation data

Graph data output interval(gnuplot format)

Number of test data samples

Accuracy plotting

Xoptimizer solver is listed on the final page

^{*} Leave the setting of LAMBDA to 0 (there is a problem)

ERROR_PLOT_STEP

The loss value is output to 'error_loss.dat' at the interval specified at the time of learning. gnuplot can display graphs in real time.

set border lc rgb "white"

set grid lc rgb "white" It 2

set key opaque box

set object 1 rect behind from screen 0,0 to screen 1,1 fc rgb "#B8B2C3" fillstyle solid

smooth [unique, csplines, acsplines, bezier, sbezier]

plot 'error_loss.dat' using 1:2 t "varidation" with lines linewidth 2 linecolor rgbcolor "red" replot 'error_loss.dat' using 1:3 t "test sample" with lines linewidth 2 linecolor rgbcolor "blue"

#replot 'error_loss.dat' using 1:2 t "varidation" with lines linewidth 1 linecolor rgbcolor "red" #replot 'error_loss.dat' using 1:3 t "test sample" with lines linewidth 1 linecolor rgbcolor "blue"

pause 10

reread

ACCURACY_RATE_PLOT

Accuracy is output to 'accuracy_rate.dat' at the interval specified at the time of learning. gnuplot can display graphs in real time.

set border lc rgb "white"

set grid lc rgb "white" It 2

set key opaque box

set object 1 rect behind from screen 0,0 to screen 1,1 fc rgb "#B8B2C3" fillstyle solid set key right bottom

smooth [unique, csplines, acsplines, bezier, sbezier]

plot 'accuracy_rate.dat' using 1:2 t "varidation accuracy" with lines linewidth 2 linecolor rgbcolor "red"

replot 'accuracy_rate.dat' using 1:3 t "test sample accuracy" with lines linewidth 2 linecolor rgbcolor "blue"

pause 10

reread

■ Layer setting 「LAYER.txt」

,	_
LAYER 4	Number of layers
1 [28, 28]	Input feature map from left, input unit width, input unit height
Each layer setting	
See layer description	Width and height are numbers when input units are regarded as a matrix
END	

■ Describing layers Fully Connected layer

LAYER_TYPE_FullyConnected/layerName 1 [1, 10] Softmax	From the left, input of feature map, output unit width, output unit height, start function
	X The width and height are the numbers when looking at the input device as a matrixX Activation function described on final page

Convolutional layer

LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,
20 (5, 5) st 1 ReLU	convolution height, stride, activation function
Convolutional layer	
LAYER_TYPE_Convolutional/layerName	From the left, input feature map, convolution width,
20 (5, 5) st 1 pd 2 ReLU	convolution height, stride, padding activation function

LAYER_TYPE_DeConvolutional/layerName	From the left, input feature map, convolution width
20 (5, 5) st 1 ReLU	convolution height, stride, activation function
DeConvolutional laver	
DeConvolutional layer LAYER TYPE DeConvolutional/layerName	From the left, input feature map, convolution width

maxPooling layer

LAYER_TYPE_maxPooling/layerName 20 (4, 4) st 4 Identity	From the left, input feature map, convolution width, convolution height, stride, activation function
maxPooling layer	
LAYER_TYPE_maxPooling/layerName	From the left, input feature map, convolution width,
20 (4, 4) st 4 pd 0 Identity	convolution height, stride, padding, activation function

AveragePooling layer LAYER_TYPE_AveragePooling /layerName	From the left, input feature map, convolution width
20 (4, 4) st 4 Identity	convolution height, stride, activation function
AveragePooling layer	
AveragePooling layer LAYER_TYPE_AveragePooling /layerName 20 (4, 4) st 4 pd 0 Identity	From the left, input feature map, convolution width

Dropout layer

LAYER_TYPE_Dropout/layerName	From	the	left,0.5	is	the	dropout	rate,	activation
0.5 Identity	function	on						

BatchNormalize layer	
LAYER_TYPE_ BatchNormalize/layerName	From the left,0.999 is the dropout decay, activatio
0.999 Identity	function

ReLU

 $\frac{\tanh(x/2)+1}{2}$ Sigmoid

Output UNIT

Activation fun	ction	Loss function	Differentiation of loss function
Identity	h(x) = x	Square	$\frac{\partial E}{\partial w} = y - t$
Softmax h(x	$x(x) = \frac{\exp(x)}{\sum_{j=1}^{n} \exp(x_j)}$	CrossEntropy	$\frac{\partial E}{\partial w} = y - t$

■Optimizer solver

Adam

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla E(\mathbf{w}^t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) \nabla E(\mathbf{w}^t)^2$$

$$\hat{m} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

 $\alpha = 0.001, \beta \ 1 = 0.9, \beta \ 2 = 0.999, \epsilon = 10E - 8$

AdaGrad

$$egin{aligned} h_0 &= \epsilon \ h_t &= h_{t-1} +
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t}} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 ϵ =10E-8 ,η 0 =0.001

RMSprop

$$egin{aligned} h_t &= lpha h_{t-1} + (1-lpha)
abla E(\mathbf{w}^t)^2 \ \eta_t &= rac{\eta_0}{\sqrt{h_t} + \epsilon} \ \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta_t
abla E(\mathbf{w}^t) \end{aligned}$$

 α =0.99, ϵ =10E-8, η 0=0.01

AdaDelta

$$egin{aligned} h_t &=
ho h_{t-1} + (1-
ho)
abla E(\mathbf{w}^t)^2 \ v_t &= rac{\sqrt{s_t + \epsilon}}{\sqrt{h_t + \epsilon}}
abla E(\mathbf{w}^t) \ s_{t+1} &=
ho s_t + (1-
ho) v_t^2 \ \mathbf{w}^{t+1} &= \mathbf{w}^t - v_t \end{aligned}$$

 ρ =0.95, ϵ =10E-6

SGD

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \eta \frac{\partial E(\mathbf{w}^t)}{\partial \mathbf{w}^t}$$
 η =0.01