

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE ENSINO SUPERIOR DO SERIDÓ DEPARTAMENTO DE COMPUTAÇÃO E TECNOLOGIA BACHARELADO EM SISTEMAS DE INFORMAÇÃO MICROCONTROLADORES

RELATÓRIO DA SEGUNDA UNIDADE: BRAÇO MECÂNICO

ALCINDO LOPES DE FARIAS JUNIOR
BRUNO DANTAS DE ARAÚJO
JACKSON SILVA PEREIRA SOBRINHO
JORGE JÚNIO DA SILVA
ROBERTO DE SOUSA ROCHA
ROBSON AGRIPINO DA SILVA

SUMÁRIO

	Lista de Figuras	ii
1	INTRODUÇÃO	1
1.1	Objetivos Gerais	1
1.2	Objetivos Específicos	1
2	TECNOLOGIAS UTILIZADAS	2
2.1	Arduino	2
2.2	Módulo I2C PCA9685 16-Channel 12-bit PWM	3
2.3	Braço Mecânico de Acrílico	4
3	PROCEDIMENTOS	6
3.1	Instalando bibliotecas necessárias	6
3.1.1	meArm Adafruit	6
3.1.2	Adafruit PWM servo Driver Library	6
3.2	Montagem	6
3.3	Código Fonte	7
4	RESULTADOS OBTIDOS	8
4.1	Funcionamento	8
4.2	Dificuldades	9
	DEEEDÊNCIAS	11

Lista de Figuras

Figura 2.1 – Anatomia do Arduino	2
Figura 2.2 – Módulo I2C PCA9685	4
Figura 2.3 – Módulo I2C PCA9685 visto de cima	4
Figura 2.4 – Braço robótico em acrílico	5
Figura 3.1 – Montagem do projeto	7
Figura 4.1 – Funcionamento 1	8
Figura 4.2 – Funcionamento 2	9
Figura 4.3 – Funcionamento 3	9

1 Introdução

Com o avanço tecnológico dos últimos tempos, tornou-se notório a introdução progressiva da robótica em nosso cotidiano. Vários casos são vistos no dia a dia como por exemplo: sistemas, casas, robôs, esteiras, todos automatizados, entre outros. Em diversos casos são utilizados plataformas de prototipagem como por exemplo os Arduínos.

A partir disso, os usuários estão se motivando a aprenderem mais sobre essas plataformas, fazendo com que contribua demasiadamente para o aumento dos usuários de microcontroladores, componentes analógicos e digitais, principalmente pelo fato de que sua arquitetura é de fácil compreensão e manuseio, auxiliando na transmissão dos conhecimentos teóricos do tema com a realização de experiências práticas.

Este relatório apresentará um dos projetos realizados na segunda unidade da disciplina de Microcontroladores, que consiste em montar um braço mecânico de acrílico, calibrá-lo e fazer o mesmo funcionar de maneira satisfatória usando um Arduíno.

1.1 Objetivos Gerais

Fazer o braço mecânico de acrílico funcionar de maneira satisfatória de forma que o mesmo se mova como o usuário desejar dentro dos seus limites.

1.2 Objetivos Específicos

- Estudar manuais de montagem do braço mecânico de acrílico;
- Realizar a montagem do braço mecânico de acrílico com base no manual;
- Pesquisar e estudar bibliotecas úteis para o projeto;
- Realizar a montagem de hardware necessária;
- Enviar comandos para o braço mecânico de acrílico via Serial;
- Tratar a chegada de interrupção.

2 Tecnologias utilizadas

2.1 Arduino

O arduino é um dispositivo cujo objetivo é ser barato, funcional e de fácil programação, facilitanto a vida de estudantes e projetistas amadores. Seu conceito de *hardware* livre favorece à criatividade dos "*makers*", permitindo a combinação entre diversos componentes para viabilizar a construção de projetos de diferentes níveis de utilidade. (ARDUINO.CC, 2018).

Ainda é permitido escolher entre diversos modelos de placa, desde o Arduino Nano até o Mega. A placa usada para os conhecimentos iniciais do projeto foi a Arduino Duemilanove. Segue abaixo alguns detalhes específicos sobre ela.

Figura 2.1 – Anatomia do Arduino

- 1. **Pinos digitais:** Usa-se esses pinos com *digitalRead()*, *digitalWrite()* e *analogWrite()*. *analogWrite()* funciona apenas nos pinos com o símbolo PWM.
- 2. **Pino 13 LED:** O único atuador embutido na placa. Além de ser um alvo útil para o o primeiro exemplo de "pisca-pisca", este LED é muito útil para a depuração.
- LED de energia: Indica que a placa está recebendo energia. Também é útil para depuração.
- 4. Microcontrolador ATmega: O coração da placa.
- 5. Entradas analógicas: Usa-se estes pinos com analogRead().
- 6. **Pinos de 5V e GND:** Esses pinos são utilizados para fornecer energia de +5V e aterramento aos seus circuitos respectivamente.
- 7. **Conector de energia:** É assim que se liga o Genuino quando não está conectado a uma porta USB para energia. Pode aceitar tensões entre 7-12V.

- 8. **LEDs TX e RX:** Estes LEDs indicam a comunicação entre o Genuino e o computador. Espera-se que eles pisquem rapidamente durante o *upload* do *sketch*, bem como durante a comunicação serial. Útil para depuração.
- 9. **Porta USB:** Usada para alimentar o Genuino Uno, carregando seus esboços na placa, e para se comunicar-se com ele (via Serial. *Println*() etc.).
- 10. Botão redefinir: Redefine o microcontrolador ATmega.

2.2 Módulo I2C PCA9685 16-Channel 12-bit PWM

O Módulo de comunicação I2C possui 16 canais, e cada canal controla 1 servo motor, sendo possível assim controlar 16 servos motores PWM de 12 bit com resolução que vai de 0 a 4096. Pode interligar até 62 módulos e controlar até 992 saídas PWM utilizando apenas 2 pinos do microcontrolador (SCL e SDA). O módulo é compatível com microcontroladores 3.3 e 5V.

Cada canal pode gerar uma saída de duas formas distintas: a primeira utiliza o canal com sinal em estado alto ou baixo (ligado ou desligado) e a segunda utiliza o canal controlado com valores PWM, ou seja, cada um tem tensão de 5v e corrente de 25mA.

O PCA9685 possui alguns recursos exclusivos que o tornam mais adequado para aplicativos como a luz de fundo do LCD e Ambilight (SEMICONDUCTORS, 2009):

- O PCA9685 permite que os tempos de ativação e desativação dos servos escalonados funcionem em tempos diferentes. O atraso de tempo ligado e desligado é programável de forma independente para cada um dos 16 canais.
- O PCA9685 possui 4096 etapas (PWM de 12 bits) de controle de PWM individual.
- O PCA9685 tem um prescaler programável para ajustar as larguras de pulso PWM de vários dispositivos.
- O PCA9685 possui um pino de entrada de clock externo que aceita o clock fornecido pelo usuário (50 MHz máx.) No lugar do oscilador interno de 25 MHz. Esse recurso permite sincronização de vários dispositivos.
- O PCA9685 possui um oscilador interno para o controle PWM. A frequência usada para o controle PWM é ajustável cerca de 40 Hz a 1000 Hz. Isso permite o uso do PCA9685 com controladores de fonte de alimentação externos. Todos bits são definidos na mesma frequência.
- O estado padrão de Power-On Reset (POR) dos pinos de saída LEDn é LOW no caso de PCA9685.

Figura 2.2 – Módulo I2C PCA9685

Para este projeto o módulo I2C PCA9685 é usado para controlar os servomotores do braço robótico. Ele possui pinos de entrada e saída como vemos na Figura 2.3. Destes pinos apenas os seguintes serão usados:

Figura 2.3 - Módulo I2C PCA9685 visto de cima

- 16 canais com 3 pinos cada(GND preto, VCC vermelho e PWM amarelo)
- SCL entrada de relógio serial. Este pino é a entrada do relógio para a interface serial I2C e é usado para sincronizar dados movimento na interface serial;
- SDA Entrada/Saída de Dados Seriais. Este pino é a entrada / saída de dados para a interface serial I2C;
- VCC pino de alimentação CC para fonte de alimentação primária;
- GND Ground.

2.3 Braço Mecânico de Acrílico

Este kit é composto por 1 braço robótico em acrílico com garra, 4 servos motor 9g e parafusos para montagem.

O braço robótico tem como objetivo auxiliar na aplicação em projetos que trabalham com automação de robôs, proporcionando maiores possibilidades de movimentos e desenvolvimento de tarefas. Através de plataformas de prototipagem (Arduíno, Raspberry Pi, etc), ele é capaz de cumprir variadas funções. Os 4 servos motores são utilizados em conjunto para que o braço realize suas articulações, movimentos de até 180°, de acordo com os comando indicados, podendo o usuário controlar o seu giro e a posição, além de possuir uma garra com uma abertura de 55mm, como mostra a figura abaixo:

Figura 2.4 – Braço robótico em acrílico

3 Procedimentos

3.1 Instalando bibliotecas necessárias

Para o correto funcionameto do projeto se faz necessário que as seguintes bibliotecas estejam devidadente instaladas.

3.1.1 meArm Adafruit

Para facilitar o uso do braço mecânico com o módulo I2C PCA9685, foi utilizado a biblioteca meArm_Adafruit desenvolvido por RorschachUK. A mesma pode ser baixada no link: https://github.com/RorschachUK/meArm_Adafruit.

Faça o download em formato .Zip, descompacte o arquivo e copie-o para a pasta *libraries* que fica na *home* do seu usuário.

3.1.2 Adafruit PWM servo Driver Library

Visto o uso da biblioteca citada anteriormente, é necessário a utilização da bilbioteca Adafruit PWM servo Driver Library para controlar o Módulo I2C PCA9685. A mesma pode ser baixada pela IDE do Software Arduíno.

3.2 Montagem

Figura 3.1 – Montagem do projeto

3.3 Código Fonte

Devido o código ser extenso e ocupar espaço demasiado no relatório, foi optado por colocar o código fonte em um repositório do GitHub. Segue o link para acesso: https://github.com/jrrf/projeto_2_meArm.

4 Resultados Obtidos

Como resultados foi obtido o controle da garra por coordenadas passadas via Serial da IDE do Arduíno. Leitura por meio da mesma Serial dos valores da coordenada após serem filtrados pela biblioteca "meAmr_Adfruit".

4.1 Funcionamento

O projeto funciona da seguinte maneira. Ao conectar uma fonte de energia para alimentar a placa Arduíno o processador começa a rodar o código e aciona(nos momentos certos) os componentes eletrônicos que estão conectados a placa. Também é necessário uma fonte externa de 5V para alimentar o módulo I2C PCA9685(placa utilizada para controlar os servos motor). Quando ambas as fontes estão conectadas o braço mecânico de acrílico se move.

Primeiramente é setada uma posição inicial de repouso para o braço, daí em frente o mesmo fica aguardando o envio de comandos externos via Serial da IDE do Arduíno para poder se mover novamente. Quando o usuário seta uma coordenada para o braço a biblioteca meArm_-Adfrauit verifica se estas coordenadas são válidas para a área de movimento do braço e logo em seguida adapta esses valores passados pelo usuário para valores que não firam os limites físicos do braço.

Enquanto o circuito estiver ligado é possível ficar monitorando os valores das coordenadas que a biblioteca passou para o braço.

Figura 4.1 – Funcionamento 1

Figura 4.3 – Funcionamento 3

4.2 Dificuldades

Inicialmente a dificuldade encontrada foi a montagem e calibração do braço mecânico, principalmente pelo fato de existir poucos manuais para auxiliar, sendo que os que existem tem didática dificultosa. A partir disso, os obstáculos foram na compreensão do uso das funções da biblioteca meArm_Adafruit.

Não foram grandes dificuldades, mas as mesmas fizeram requerer tempo em demasia, em buscas, estudos, e testes, que fizeram enriquecer o projeto.

Dificuldade em receber interrupções, provavelmente o circuito estava com algum ruido e o pino de interrupção ficava identificando interrupções todo instante... A solução foi colocar o arduino para se comunicar através da serial (TX e RX) para receber as tarefas que precisavam

ser realizadas soluções ainda melhores seriam fazer a comunicação sem fio, via bluetooth, wifi, etc... Pois não teria limitação do tamanho do fio.

Referências

ARDUINO.CC. *Arduino Uno Rev3*. 2018. Disponível em: https://store.arduino.cc/usa/arduino-uno-rev3. Acesso em: 30-05-2018.

SEMICONDUCTORS, N. *PCA9685*. 2009. Disponível em: https://html.alldatasheet.com/html-pdf/293576/NXP/PCA9685/54/1/PCA9685.html. Acesso em: 26-06-2018.