The role of analysis team in fMRI results: The problem and a potential solution

Kendra Oudyk

Final project for NEUR608 Neuroimaging Data Science Dr. Boris Bernhardt and Dr. Bratislav Misic, Instructors McGill University

2019-11-29

Analytic flexibility in fMRI

Analytic flexibility in fMRI

	Des	piking		
Despiking	using AFNI	No despiking		Normalize
	Slice-timin	g correction	1	
Slice-timing o	orrection	No slice-timing correction		High-p
	Spatial no	malization		using a
Normalization of functional images to the SPM EPI template	Normalization anatomical in the SPM T1	images to	Normalization with segmentation using unified normalization	AR(
	Spatial s	moothing		
Smoothing with kernel of 4 mm FWHM	Smoothing of 8 mm FW		Smoothing with kernel of 12 mm FWHM	Runs o before

Table 1 | Pre-processing parameters.

iable 2 model est	lable 5 Otatistical timesii				
	Normalizatio	n-modeling	order		
Normalize bef	ore modeling	Model before normalization		nalization	
	High-p	ass filtering			
High-pass filtering		No high-pass filtering			Monte Carlo @ p < 0.01
using a cut	off of 128 s				
Temporal autocorrelation correction					Monte Carlo @ p < 0.001
AR(1) modeling		No correction for temporal			
		autocorrelation			Monte Carlo @ p < 0.0001
Run concatenation					False discovery rate
Runs concatenated		No run co	ncatenat	ion	Gaussian random field
before model estimation				theory	
	Mode	el basis set			
Hemodynamic	Finite impulse	response1,	Finite in	npulse response ¹ ,	
response function	time points 3-	-4	time by	condition	
	versus baselin	ne	interact	ion	
	Head mo	tion regressi	ion		
Six regressors ² 1	Twelve	Twenty-fo	ur	No motion	

regressors4

regression

Table 2 | Model estimation parameters.

regressors3

*Raw, time-shifted, squared, and time-shifted squared motion parameters.

Eight basis functions. 2 Raw motion parameters. 2 Raw and time-shifted motion parameters.

[Carp, 2012]

Table 3 | Statistical thresholding parameters.

Uncorrected Corrected

threshold

p < 0.05n/a

p < 0.05

n/a

threshold

p < 0.01

p < 0.001

D < 0.0001n/a

n/a

Cluster

threshold

simulation

Determined by

Determined by simulation

Determined by simulation

Analytic flexibility in fMRI

Results can differ over

- Analysis pipelines [Carp, 2012]
- Software versions [Gronenschild et al., 2012]
- Operating systems [Glatard et al., 2015]

Realistic analytic flexibility?

Neuroimaging Analysis Replication and Prediction Study (NARPS)

Realistic analytic flexibility?

Neuroimaging Analysis Replication and Prediction Study (NARPS)

- ▶ 1 dataset task fMRI
- ▶ 70 analysis teams
- Return whole-brain group-level statistical maps

Realistic analytic flexibility?

Neuroimaging Analysis Replication and Prediction Study (NARPS)

- ▶ 1 dataset task fMRI
- ▶ 70 analysis teams
- Return whole-brain group-level statistical maps

The preprint is out (I have not read it; no spoilers, please!)

The present study

Describing the problem How do analyses impact results?

The present study

Describing the problem

How do analyses impact results?

Exploring a solution

Is the consensus result better?

Methods: Original dataset

Neuroimaging Analysis Replication and Prediction Study (NARPS)

- ▶ 1 dataset task fMRI
- ▶ **54** analysis teams (some disqualified)
- Whole-brain group-level statistical maps (z-maps)

Methods: Original dataset

NARPS Paradigm

[Botvinik-Nezer et al., 2019]

Describing the problem How do analyses impact results?

Describing the problem

How do analyses impact results?

- Describe pipeline choices (descriptive)
- Visualize analytic range for different methods (descriptive)
- Associate methods & results (PLS, permutation test, bootstrapping)

Describing the problem

How do analyses impact results?

- Describe pipeline choices (descriptive)
- ▶ Visualize analytic range for different methods (descriptive)
- Associate methods & results (PLS, permutation test, bootstrapping)

Exploring a solution

Is the consensus result better?

Describing the problem

How do analyses impact results?

- Describe pipeline choices (descriptive)
- ▶ Visualize analytic range for different methods (descriptive)
- Associate methods & results (PLS, permutation test, bootstrapping)

Exploring a solution

Is the consensus result better?

- Obtain the consensus result (meta-analysis)
- Compare consensus & online meta-analysis
 (Spearman's correlation, online meta-analyses, spin test)

Used provided fmriprep-preprocessed data?

Describing the problem: Analytic range

FSL analytic range of z-stats

SPM12 analytic range of z-stats

Bootstrap ratios

Exploring solutions

Is the consensus result better?

Exploring solutions: Consensus result

Image-based meta-analysis (FFX GLM)

Exploring solutions: Consensus result

Image-based meta-analysis (FFX GLM)

Level-3 t-map

Standard-error map

Level-3 t-map

NeuroQuery z-map: "Loss aversion in decision-making under risk"

Spearman's correlation in surface space.

Spearman's correlation in surface space.

Spearman's correlation in surface space.

Describing the problem

How do analyses impact results?

- Somewhat consistent with past results [Carp, 2012]
- Important methodological choices: preprocessing, smoothing kernel, software
- Next step: compare maps across choices (e.g., yes/no used fmriprep data)

Describing the problem

How do analyses impact results?

- Somewhat consistent with past results [Carp, 2012]
- Important methodological choices: preprocessing, smoothing kernel, software
- Next step: compare maps across choices (e.g., yes/no used fmriprep data)

Exploring a solution

Is the consensus result better?

▶ Not according to how we defined 'better'

Limitations

- Questions about data
- ► PLS on dummy variables
- Online meta-analysis as 'ground truth'

Acknowledgments

- ► Alex Perez: meta-analysis
- ► Peer Herholz: Docker
- ► Ross Markello: PLS, spin test
- BrainSpace: spin test code
- ▶ The rest of my lab: feedback on methods & presentation

References I

Botvinik-Nezer, R., Iwanir, R., Holzmeister, F., Huber, J., Johannesson, M., Kirchler, M., Dreber, A., Camerer, C. F., Poldrack, R. A., and Schonberg, T. (2019).

fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study. Scientific Data, 6(1):1–9.

Carp, J. (2012).

On the plurality of (methodological) worlds: estimating the analytic flexibility of fmri experiments. Frontiers in neuroscience, 6:149.

Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., Rioux, P., Rousseau, M.-E., Sherif, T., Deelman, E., et al. (2015).

Reproducibility of neuroimaging analyses across operating systems. *Frontiers in neuroinformatics*. 9:12.

Gronenschild, E. H., Habets, P., Jacobs, H. I., Mengelers, R., Rozendaal, N., Van Os, J., and Marcelis, M.

The effects of freesurfer version, workstation type, and macintosh operating system version on anatomical volume and cortical thickness measurements.

PloS one, 7(6):e38234.

[Carp, 2012]

Mean activation

Analytic range

FSL mean activation

SPM12 mean activation

FSL analytic range

SPM12 analytic range

