1. Combine Two Tables

Table: Person

İ	Column	Name	İ	Туре	+-
 	Personl FirstNa LastNan	Id ame	 	int varchar varchar	•

PersonId is the primary key column for this table.

Table: Address

+	+		+	-
Column	Name	Ту	pe	
+	+		+	-
Address	sId	in	t	
PersonI	id	in	t	
City		va	rchar	
State		va	rchar	
+	+		+	-

AddressId is the primary key column for this table.

Write a SQL query for a report that provides the following information for each person in the Person table, regardless if there is an address for each of those people:

FirstName, LastName, City, State

2. Second Highest Salary

Write a SQL query to get the second highest salary from the Employee table.

```
+---+---+
| Id | Salary |
+---+----+
| 1 | 100 |
| 2 | 200 |
| 3 | 300 |
```

For example, given the above Employee table, the query should return 200 as the second highest salary. If there is no second highest salary, then the query should return null.

İ	SecondHighestSalary	İ
•	200	
+-		+

3. Employees Earning More Than Their Managers

The Employee table holds all employees including their managers. Every employee has an Id, and there is also a column for the manager Id.

+-		+-		-+-		-+-	+
	Id		Name		Salary		ManagerId
+-		+-		-+-		-+-	+
-	1		Joe		70000	1	3
	2		Henry		80000		4
	3		Sam		60000		NULL
	4		Max		90000		NULL
+-		+-		-+-		-+-	+

Given the Employee table, write a SQL query that finds out employees who earn more than their managers. For the above table, Joe is the only employee who earns more than his manager.

```
+----+
| Employee |
+-----+
| Joe |
```

4. Duplicate Emails

Write a SQL query to find all duplicate emails in a table named Person.

```
+---+
| Id | Email |
+---+
| 1 | a@b.com |
| 2 | c@d.com |
| 3 | a@b.com |
```

For example, your query should return the following for the above table:

```
+----+
| Email |
+----+
| a@b.com |
```

Note: All emails are in lowercase.

5. Customers Who Never Order

Suppose that a website contains two tables, the Customers table and the Orders table. Write a SQL query to find all customers who never order anything.

Table: Customers.

+-		+-		+
	Id		Name	
+-		+-		+
	1		Joe	
	2		Henry	
	3		Sam	
	4		Max	
+-		+-		+

Table: Orders.

+-		-+-		+
	Id		CustomerId	
+-		-+-		+
	1		3	
	2		1	
+-		-+-		+

Using the above tables as example, return the following:

```
+----+
| Customers |
+----+
| Henry |
| Max |
+----+
```