Sea  $U=\mathbb{Z}$  el universo de las variables x e y. Consideramos las proposiciones:

p; 
$$orall x\,\exists y$$
 tal que  $x+y>0$ 

.

q; 
$$\exists x\, \forall y\, \mathrm{tal}\, \mathrm{que}\, x+y>0$$

.

r; 
$$\forall x \, \forall y \, \text{se tiene}$$
  $x+y>0.$ 

s; 
$$\exists x \, \forall y \, \mathsf{tal} \, \mathsf{que} \, y^2 > x$$
.

Se tiene:

Δ

Ninguna de las otras respuestas.

В

q es falsa y s es verdadera.

C

py r son falsas.

# Pregunta 2

Sean A, B y C subconjuntos arbitrarios no vacíos de un conjunto X, que tiene al menos dos elementos. Si  $C \cup B = B \cap A$  entonces, necesariamente se tiene que:

A

Ninguna de las otras respuestas.



Consideramos las relaciones definidas en  $\mathbb{N}^*$  por:

p ;  $n \mathcal{R}_1 m$  si y sólo si n divide a m

a

 $n \mathcal{R}_2 m$  si y sólo si  $n^2 + m^2 = 2mn + 2n$ 

.

r ;  $n \mathcal{R}_3 m$  si y sólo si  $n^2 + m^2 = 2mn$ 

-

;  $n \mathcal{R}_4 m$  si y sólo si  $n^2 = m^2$ 

.

Única y exclusivamente son relaciones de equivalencia en  $\mathbb{N}^*$ :

Α

La de ry la de s.

В

La de py la de q.

C

Ninguna de las otras respuestas.

#### Pregunta 4

Consideramos las relaciones definidas en  $\mathbb N$  por:

 $\begin{array}{l} \mathsf{p} \\ ; \ n \, \mathscr{R}_1 \, m \ \mathrm{si} \ \mathsf{y} \ \mathsf{s\'olo} \ \mathrm{si} \ n - m \geq 1 \end{array}$ 

q ;  $n\,\mathscr{R}_2\,m$  si y sólo si  $n-m\leq 1$ 

r $;\; n\,\mathscr{R}_3\,m \text{ si y s\'olo si } \exists k\in\mathbb{N} \;\; m^2=k-n^2$ 

;  $n\,\mathscr{R}_4\,m$  si y sólo si  $\exists k\in\mathbb{N}\ m^2=k+n^2$ 

Única y exclusivamente son relaciones de orden en  $\mathbb{N}$ :

A La de ry la de s.

B La de py la de q.

Se considera el anillo  $(\mathbb{Z}^2,+,\cdot)$  con las operaciones

$$(a,b) + (a',b') = (a+a',b+b') y (a,b) \cdot (a',b')$$

para todo  $(a,b),(a',b')\in\mathbb{Z}^2$ . Sean  $I=\mathbb{Z}\times\{0\}$  y  $J=\{0\} imes\mathbb{Z}$ . Se tiene:

### A

Ninguna de las otras respuestas.

B

 $\overline{J}$  es ideal de  $(\mathbb{Z}^2,+,\cdot)$ .

C

I es ideal de  $(\mathbb{Z}^2,+,\cdot)$ .

#### Pregunta 6

Sean  $a,b\in\mathbb{N}^*$  tales que el cociente y resto de la división entera de a entre b son 18 y 48, respectivamente.

Consideramos las afirmaciones:

p; El resto de la división entera de  $a\,$  entre  $18\,$  es  $12\,$ 

q; El resto de la división entera de a entre 2b es 96.

r; a es múltiplo de 6.

s; El cociente de la división entera de 2a entre 2b es 96.

Las únicas afirmaciones verdaderas son:



Py

В

qys.



Sean a y b dos números reales cualesquiera. Consideremos las afirmaciones:

p; Si 
$$0 < a < b$$
 entonces  $0 < 1/a < 1/b$ .

$$\mbox{q; Si $a < b$ entonces} \\ a^2 < b^2.$$

$$\label{eq:continuous} \begin{array}{l} {\rm r;} \;\; {\rm Si} \; a < b \;\; {\rm entonces} \\ a^2 < ab. \end{array}$$

s; Si 
$$a < b$$
 entonces  $1 - a > 1 - b$ .

Las siguientes afirmaciones son siempre verdaderas:

A qyr.

В

Ninguna de las otras respuestas.

С руs.

# Pregunta 8

Para

$$z=-\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}}$$
 , se tiene:



$$z=2e^{irac{15\pi}{8}}.$$

Sea E un conjunto tal que  $\operatorname{card}(E)=n$  siendo n impar. La suma de los  $\operatorname{cardinales}$  de todos los subconjuntos de E es:

A

Ninguna de las otras respuestas.

 $\begin{bmatrix} \mathsf{B} \\ n2^{n-1} \end{bmatrix}$ 

 $\binom{\mathsf{C}}{(n-1)2^n}$ 

## Pregunta 10

Sea  $f \colon \mathscr{P}(\mathbb{N}) o \mathscr{P}(\mathbb{N})$  la aplicación definida por

$$f(A) = \Big\{rac{n-1}{2} \mid n \in A \wedge n ext{ es imp}\Big\}$$

para todo  $A\in\mathscr{P}(\mathbb{N})$ . Se tiene:

Α

f es una aplicación inyectiva.

В

f es una aplicación sobreyectiva.

C