# COMP3711: Design and Analysis of Algorithms

Tutorial 7

HKUST

#### Question 1

Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be  $h(k) = k \mod 9$ .

#### Solution 1



#### Solution 1



#### Question 2

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m=11 using open addressing with the auxiliary hash function  $h'(k)=k \mod m$ . Illustrate the result of inserting these keys using linear probing, using quadratic probing with  $c_1=1$  and  $c_2=3$ , and using double hashing with  $h_1(k)=k$  and  $h_2(k)=1+(k \mod (m-1))$ .

#### Solution 2

### Linear probing

| 0 | 22 |
|---|----|
| 1 | 88 |
| 2 |    |
| 3 |    |
| 4 | 4  |
| 5 | 15 |
| 6 | 28 |
| 7 | 17 |
| 8 | 59 |

31

10

9

10

# Quadratic probing

| 0  | 22 |
|----|----|
| 1  |    |
| 2  | 88 |
| 3  | 17 |
| 4  | 4  |
| 5  |    |
| 6  | 28 |
| 7  | 59 |
| 8  | 15 |
| 9  | 31 |
| 10 | 10 |

## Double hashing

| 0  | 22 |
|----|----|
| 1  |    |
| 2  | 59 |
| 3  | 17 |
| 4  | 4  |
| 5  | 15 |
| 6  | 28 |
| 7  | 88 |
| 8  |    |
| 9  | 31 |
| 10 | 10 |