ML Project Report

September 2022

1 Introduction

GDM (gestational diabetes mellitus) is a diabetes that occurs during pregnancy. About 17-63% of pregnant women with GDM develop type 2 diabetes 5-16 years after delivery; The recurrence rate of GDM in another pregnancy is as high as 52-69%. Approximately 3 to 8 percent of all pregnant women in the United States are diagnosed with gestational diabetes[1]. Diagnosing GDM (gestational diabetes mellitus) is a complex undertaking. The symptoms of diabetes are reflected in multiple indicators, which increases the difficulty of diagnosis and reduces accuracy. In this project, an efficient and interpretable algorithm was designed to diagnose diabetes based on multiple clinical data and physical examination indicators of patients.

The structure of this report is as follows: section 1 of this report is an introduction to the topic, section 2 shows the idea to formalize the above-mentioned task a machine learning problem, as well as the information on the data points, features and labels of this ML problem. In section 3, the method of the experiment is explicitly discussed. section 4 then presents the ML methods used along with their results, and section 5 is the conclusions.

2 Problem Formulation

Our model implements a binary classification supervised learning task to predict whether the person has diabetes through multiple features. The prediction result is whether each person has gestational diabetes, the category is expressed as an integer, and the value is 0 for false or 1 for true.

The first line of the dataset csv file is the field name, each subsequent line represents an individual, and some field names have been desensitized. The dataset contains a total of 84 feature fields, including float and int types. The first column is the individual ID number. The last column as the label column, which is the class label that needs to be predicted whether it is diseased or not. The rest columns are the clinical data and physical examination indicators of patients, which are used as features.

Except for id, SNP1, SNP2, all the features are missing in some populations. Therefore, the preprocessing is an important task before training the model.

The dataset is downloaded from Tianchi Precision Medicine Competition dataset - Artificial intelligence-assisted diabetes genetic risk prediction [2].

3 Methods

Here is the main methods of the experiment and the technical points.

3.1 Data Processing

The dataset contains 1000 samples, each sample has 84 features. Most of the features have missing values, which need to be completed with median through the method data[col] = data[col].fillna(data[col].median()) If a feature is missing too much, consider removing it or completing it with a special value. Here we completed the 'RBP4' and 'childbirth time' with 0.

3.2 Feature engineering

The project removes useless features, whose variance is less than 0.5 or low correlation with label, and only keep the first 20 features that are positively correlated and the last 15 that are negatively correlated. Taking VAR00007 as an example (Fig. 1), it can be seen that the larger the value, the higher the possibility of diabetes. The correlation is shown in the Fig. 2.

Figure 1: The relation between feature VAR00007 and the label

Here is the ablation experiment for correlation filtering. The $_{c}orr_matrix$ contain the correlation values of feature in descending order. $_{p}os_corr$ contains top 20 features with the highest positive correlation and $_{n}eg_corr$ contains top 15 features with the most negative correlation. Other features with correlation around 0 is abandoned. The each feature number is adjusted from 0 to 20. The score is shown in the Table 1.

number of features	0	10	15	20
test score	0.781	0.897	0.95	0.937

Table 1: Test score with different number of features

```
corr_matrix = data.corr()
corr_matrix = corr_matrix['label'].sort_values(ascending=False)
pos_corr = list(corr_matrix[1:20].index)
neg_corr = list(corr_matrix[-15:].index)
cols = data.columns.values
for col in cols:
    if((col not in pos_corr)
        and(col not in neg_corr)
        and (col!='label')):
    data = data.drop(col, axis=1)
```

label	1.000000←	RBP4	0.066595←
VAR00007	0.384228↩	SNP13	0.065927←
SNP34	0.216900←	SNP46	0.063351←
SNP	0.201372↩	SNP17	0.056993←
Pregnant history	0.188413↩	DM family history	0.054599←
age	0.187000←	parity	0.054041←
BMI before pregnancy	0.170371←	SNP20	0.053680←
Body condition	0.167354←	Delivery time	-0.032667←
TG	0.164522←	SNP37	-0.039182←
fat	0.164144←	SNP39	-0.042941←
weight before preg	0.140798←	SNP48	-0.047821←
hsCRP	0.130591←	height	-0.050497←
wbc	0.123160←	SNP41	-0.052168←
BMI class	0.118194←	SNP10	-0.058320←
systolic pressure	0.113044←	SNP28	-0.058641←
Blood presure	0.109015←	SNP43	-0.077833쓱
gravidity	0.086557←	SNP22	-0.098833←
ALT	0.077218↩	Name: label, dtype: flo	at64 [←]

Figure 2: correlation

According to common medical knowledge, many important features are highly correlated, so we added some combined features to highlight their practical significance, such as pregnancy history, obesity, blood pressure, physical condition, and single nucleotide polymorphism SNPs. The data type of each feature is shown in the Fig. 3.

3.3 The construction of training and validation sets

This project uses 5-fold cross-validation to obtain average score. Because the dataset in this experiment is small for only 1000 samples, and k-fold cross validation is quite suitable for this situation. Each sample is given the opportunity to be used in the hold out set 1 time and used to train the model k-1 times, which can significantly increase the training times and make the model more likely to converge. It generally results in

Data #	columns (total 37 columns Column	s): Non-Null Count	Dtype
0	CND10	1000 non-null	float64
1	SNP10 SNP13	1000 non-null	float64
2	SNP17	1000 non-null	float64
3	SNP17 SNP18	1000 non-null	float64
4	SNP19	1000 non-null	float64
5	SNP22	1000 non-null	float64
6	RBP4	1000 non-null	float64
7	age	1000 non-null	float64
8	gravidity	1000 non-null	float64
9	parity	1000 non-null	float64
10	height	1000 non-null	float64
11	weight before pregnancy		float64
12	BMI class	1000 non-null	float64
13	BMI before pregnancy	1000 non-null	float64
14	systolic pressure	1000 non-null	float64
15	diastolic pressure	1000 non-null	float64
16	deliver time	1000 non-null	float64
17	VAROUUT	1000 non-null	float64
18	wbc	1000 non-null	float64
19	ALT	1000 non-null	float64
	TG	1000 non-null	float64
	hsCRP	1000 non-null	float64
	SNP28	1000 non-null	float64
23	SNP29	1000 non-null	float64
24	SNP34	1000 non-null	float64
25	SNP37	1000 non-null	float64
26	DM family history	1000 non-null	float64
27	SNP39	1000 non-null	float64
28	SNP41	1000 non-null	float64
29	SNP43	1000 non-null	float64
	SNP46	1000 non-null	float64
31	SNP48	1000 non-null	float64
32	SNP52	1000 non-null	float64
33	SNP53	1000 non-null	float64
34	label	1000 non-null	int64
35	fat	1000 non-null	
36	blood pressure	1000 non-null	
dtype	es: float64(36), int64(1)		

Figure 3: data type of features

a less biased or less optimistic estimate of the model skill than other methods, such as a simple train/test split.

Specifically, the original data is split into 5 sets, each of which accounts for 20%. Each set will be taken as the testing set for once, while the remaining sets will be used to train the model.

3.4 Model selection

The experiment uses random forest model. It can handle very high dimensional (many features) data and indicate which features are more important after training is complete, which is suitable for the dataset, which have totally 84 features. A large part of the features are missing in the dataset, but random forest can still maintain the accuracy. Besides, logistic regression is easy to implement and time-efficient, which is widely applied on real-world binary classification tasks; SVM and decision tree classifier are both suitable for problems with a small dataset and high-dimensional data; Naive Bayes classifier usually shows good performance when dataset is small. Hence, the experiment do comparison among these models.

Before parameter tuning, the f1_scores of logistic regression, SVM, Naive Bayes, decision tree and random forest classifer are separately 0.667, 0.524, 0.633, 0.601, 0.674. Random forest achieves the best performance among these models. So we choose that as the final model.

3.5 Loss function

In classification tasks, we want to maximize both precision and recall. They reflect the predictive performance of a model in different ways:

Precision: Of all positive predictions, how many are really positive?

$$Precision = \frac{TP}{TP + FP} \tag{1}$$

Recall: Of all positive samples, how many are correctly predicted to be positive?

$$Recall = \frac{TP}{TP + FN} \tag{2}$$

Specifically, in our project, it would be most desirable that no healthy person get wrongly diagnosed while no patients are left out. In practice, however, it is not possible to maximize both of them at the same time because of the trade-off between precision and recall. Besides, there could be some problems if we choose only one of them to be the loss function: on the one hand, when precision is chosen, the model will get a perfect score by diagnosing everyone to get diabetes; on the other hand, the model tends to give negative predictions instead if recall is selected. Hence, in this project, F1 Score is chosen as the loss function, which takes both precision and recall into account.

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$
(3)

4 Results

Before fine tuning, the f1 score of logistic regression, SVM, Naive Bayes, decision tree, and random forest classifier are shown in Table 2.

model	Logistic regression	SVM	Naive Bayes	Decision Tree	Random forest
F1 score	0.667	0.524	0.633	0.601	0.674

Table 2: F1 score of different model before fine tuning

As mentioned, this project uses 5-fold cross validation to train and validate model. For each round, Grid-SearchCV is adopted to find best parameters from the set of the grid of parameters: {'n_estimators':[10,50,100, 150],'max_depth':[3,6,9,12],'criterion':['gini','entropy']}. The best parameters and F1 score of models for each round is shown in Table 3.

		$\operatorname{model}(\operatorname{round})$				
$model(1) \mid model(2) \mid model(3) \mid model(4) $				model(5)		
parameters	criterion	gini	entropy	entropy	gini	gini
	max_depth	3	3	3	3	9
	n_estimators	150	100	50	10	50
F1	score	0.705	0.675	0.715	0.665	0.645

Table 3: Parameters and F1 score of models for each round

Model(3), which shows the best F1 score, is selected to be the final model. Besides, average F1 score of all 5 rounds is computed to reflect the average performance of random forest classifier in this project, which is generally less biased than evaluation with simple train/test split. The average F1 score after fine tunning is 0.681.

5 Conclusion

We summarize here the experimental method and the experience gained from the project.

In terms of data preprocessing, some features with too many missing data should be removed or completed with special values. In feature engineering, according to the ablation experiment, removing features with zero variance and abnormality, filtering features according to feature correlation and adding combined features can significantly improve the testing accuracy. In terms of data set division, two ways can be applied to divide the data set: use function train_test_split and use K-fold cross-validation. When the dataset is small, using K-fold cross-validation can obtain more accurate local scores.

However, the training accuracy of the model still has the space to improve. If the dataset is large enough and the amount of features is large, a relatively good subset of features may be quickly obtained in a few iterations by a method similar to genetic algorithm (GA)[3]. This type of automatic feature screening method is less difficult to implement, and usually has a better effect than manual screening, and has always been favored by the industry. This method requires sufficient computing resources, we can try to add that method to feature engineering pro in the future on servers with more powerful hardware in the future.

6 Reference

- [1] John Hopkins Medicine, Gestational Diabetes Mellitus (GDM), https://www.hopkinsmedicine.org/health/conditions-and-diseases/diabetes/gestational-diabetes
- [2] Tianchi Precision Medicine Competition Artificial Intelligence-Assisted Diabetes Genetic Risk Prediction, https://tianchi.aliyun.com/competition/entrance/231638/information
- $[3] \ Mathworks, Genetic \ Algorithm \ Terminology, https://se.mathworks.com/help/gads/some-genetic-algorithm-terminology.html$

Appendix

October 9, 2022

appendix:

Code and obtained result

```
[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

```
[2]: data = pd.read_csv(r'f_train.csv',encoding = 'gb2312')
```

[3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 85 columns):

#	Column	Non-Null Count	Dtype
0	id	1000 non-null	int64
1	SNP1	1000 non-null	int64
2	SNP2	1000 non-null	int64
3	SNP3	948 non-null	float64
4	SNP4	989 non-null	float64
5	SNP5	935 non-null	float64
6	SNP6	987 non-null	float64
7	SNP7	997 non-null	float64
8	SNP8	995 non-null	float64
9	SNP9	995 non-null	float64
10	SNP10	995 non-null	float64
11	SNP11	983 non-null	float64
12	SNP12	985 non-null	float64
13	SNP13	978 non-null	float64
14	SNP14	953 non-null	float64
15	SNP15	970 non-null	float64
16	SNP16	977 non-null	float64
17	SNP17	974 non-null	float64
18	SNP18	970 non-null	float64
19	SNP19	959 non-null	float64
20	SNP20	910 non-null	float64
21	SNP21	461 non-null	float64

22	SNP22	460 non-null	float64
23	SNP23	462 non-null	float64
24	RBP4	89 non-null	float64
25	age	975 non-null	float64
26	gravidity	802 non-null	float64
27	parity	802 non-null	float64
28	height	797 non-null	float64
29	weight before pregnancy	797 non-null	float64
30	BMI class	796 non-null	float64
31	BMI before pregnancy	796 non-null	float64
32	systolic pressure	753 non-null	float64
33	diastolic pressure	754 non-null	float64
34	deliver time	185 non-null	float64
35	Sugar screening week of pregnancy	795 non-null	float64
36	VAR00007	990 non-null	float64
37	wbc	887 non-null	float64
38	ALT	854 non-null	float64
39	AST	746 non-null	float64
40	Cr	845 non-null	float64
41	BUN	844 non-null	float64
42	CHO	959 non-null	float64
43	TG	959 non-null	float64
44	HDLC	955 non-null	float64
45	LDLC	956 non-null	float64
46	ApoA1	934 non-null	float64
47	АроВ	934 non-null	float64
48	-	934 non-null	float64
49	Lpa hsCRP	925 non-null	float64
4 <i>9</i>	SNP24	933 non-null	float64
		992 non-null	float64
51	SNP25		
52	SNP26	983 non-null	float64
53 E4	SNP27	987 non-null	float64
54	SNP28	985 non-null	float64
55	SNP29	985 non-null	float64
56	SNP30	948 non-null	float64
57	SNP31	952 non-null	float64
58	SNP32	950 non-null	float64
59	SNP33	977 non-null	float64
60	SNP34	949 non-null	float64
61	SNP35	969 non-null	float64
62	SNP36	970 non-null	float64
63	SNP37	955 non-null	float64
64	SNP38	968 non-null	float64
65	DM family history	700 non-null	float64
66	SNP39	954 non-null	float64
67	SNP40	955 non-null	float64
68	SNP41	956 non-null	float64
69	SNP42	962 non-null	float64

```
70 SNP43
                                            969 non-null
                                                            float64
     71 SNP44
                                            957 non-null
                                                            float64
     72 SNP45
                                                            float64
                                            968 non-null
     73 SNP46
                                            929 non-null
                                                            float64
     74 SNP47
                                            953 non-null
                                                            float64
                                            978 non-null
     75 SNP48
                                                            float64
                                                            float64
     76 SNP49
                                            983 non-null
     77 SNP50
                                            981 non-null
                                                            float64
     78 SNP51
                                            981 non-null
                                                            float64
     79 SNP52
                                            987 non-null
                                                            float64
     80 SNP53
                                            956 non-null
                                                            float64
                                                            float64
     81 SNP54
                                            483 non-null
     82 SNP55
                                            483 non-null
                                                            float64
     83 ACEID
                                            483 non-null
                                                            float64
     84 label
                                            1000 non-null
                                                            int64
    dtypes: float64(81), int64(4)
    memory usage: 664.2 KB
[4]: ### data preprocessing
     # for most features: fill the missing value with median
     cols = data.columns.values
     for col in cols:
         if((col!='RBP4')
           and(col!='deliver time')):
             data[col] = data[col].fillna(data[col].median())
     # for features missing too much: fill missing value with zero
     data['RBP4'] = data['RBP4'].fillna(0)
     data['deliver time'] = data['deliver time'].fillna(0)
[5]: #### feature engineering
     data = data.drop(['id'], axis=1)
     # remove features with zero std
     remove = []
     for column in data.columns:
         if data[column].std()==0:
            remove.append(column)
     data = data.drop(remove, axis=1)
     # remove abnormal features
     unique = []
     for column in data.columns:
         num = len(data[column].unique())
         if data[column].isnull().sum()!=0:
            num -= 1
         if num == 1:
            unique.append(column)
     data = data.drop(unique, axis=1)
     data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 84 columns):

# 	Columns (total 84 columns):	Non-Null Count	Dtype
0	SNP1	1000 non-null	int64
1	SNP2	1000 non-null	int64
2	SNP3	1000 non-null	float64
3	SNP4	1000 non-null	float64
4	SNP5	1000 non-null	float64
5	SNP6	1000 non-null	float64
6	SNP7	1000 non-null	float64
7	SNP8	1000 non-null	float64
8	SNP9	1000 non-null	float64
9	SNP10	1000 non-null	float64
10	SNP11	1000 non-null	float64
11	SNP12	1000 non-null	float64
12	SNP13	1000 non-null	float64
13	SNP14	1000 non-null	float64
14	SNP15	1000 non-null	
15	SNP16	1000 non-null	float64
16	SNP17	1000 non-null	
17	SNP18	1000 non-null	
18	SNP19	1000 non-null	
19	SNP20	1000 non-null	
20	SNP21	1000 non-null	float64
21	SNP22	1000 non-null	
22	SNP23	1000 non-null	
23	RBP4	1000 non-null	float64
24	age	1000 non-null	float64
25	gravidity	1000 non-null	
26	parity	1000 non-null	
27	height	1000 non-null	
28	weight before pregnancy	1000 non-null	
29	BMI class	1000 non-null	
30	BMI before pregnancy	1000 non-null	
31	systolic pressure	1000 non-null 1000 non-null	float64 float64
32 33	diastolic pressure deliver time	1000 non-null	float64
34		1000 non-null	
35	Sugar screening week of pregnancy VAR00007	1000 non-null	
36	wbc	1000 non-null	float64
37	ALT	1000 non-null	float64
38	AST	1000 non-null	
39	Cr	1000 non-null	float64
40	BUN	1000 non-null	float64
41	СНО	1000 non-null	float64
42	TG	1000 non-null	float64
_		-	

```
43 HDLC
                                               1000 non-null
                                                               float64
                                                               float64
        LDLC
                                               1000 non-null
     44
     45
         ApoA1
                                               1000 non-null
                                                               float64
         АроВ
                                               1000 non-null
                                                               float64
     46
                                               1000 non-null
                                                               float64
     47
         Lpa
         hsCRP
                                               1000 non-null
                                                               float64
     48
     49
         SNP24
                                               1000 non-null
                                                               float64
     50
         SNP25
                                               1000 non-null
                                                               float64
     51
         SNP26
                                               1000 non-null
                                                               float64
                                               1000 non-null
                                                               float64
     52
         SNP27
     53
         SNP28
                                               1000 non-null
                                                               float64
     54
         SNP29
                                               1000 non-null
                                                               float64
         SNP30
                                               1000 non-null
                                                               float64
     55
                                               1000 non-null
                                                               float64
     56
         SNP31
                                               1000 non-null
     57
         SNP32
                                                               float64
     58
         SNP33
                                               1000 non-null
                                                               float64
     59
         SNP34
                                               1000 non-null
                                                               float64
     60
         SNP35
                                               1000 non-null
                                                               float64
     61
         SNP36
                                               1000 non-null
                                                               float64
     62
         SNP37
                                               1000 non-null
                                                               float64
                                               1000 non-null
     63
         SNP38
                                                               float64
         DM family history
                                               1000 non-null
                                                               float64
         SNP39
                                               1000 non-null
                                                               float64
     66
         SNP40
                                               1000 non-null
                                                               float64
     67
         SNP41
                                               1000 non-null
                                                               float64
         SNP42
                                               1000 non-null
                                                               float64
     68
                                               1000 non-null
         SNP43
                                                               float64
     69
                                               1000 non-null
                                                               float64
     70
         SNP44
                                               1000 non-null
     71
         SNP45
                                                               float64
     72
         SNP46
                                               1000 non-null
                                                               float64
     73
         SNP47
                                               1000 non-null
                                                               float64
                                               1000 non-null
     74
         SNP48
                                                               float64
     75
         SNP49
                                               1000 non-null
                                                               float64
     76
         SNP50
                                               1000 non-null
                                                               float64
     77
         SNP51
                                               1000 non-null
                                                               float64
                                               1000 non-null
     78
         SNP52
                                                               float64
                                               1000 non-null
                                                               float64
     79
         SNP53
     80
         SNP54
                                               1000 non-null
                                                               float64
     81
         SNP55
                                               1000 non-null
                                                               float64
     82
         ACETD
                                               1000 non-null
                                                               float64
     83 label
                                               1000 non-null
                                                               int64
    dtypes: float64(81), int64(3)
    memory usage: 656.4 KB
[6]: # filter high correlation
     pd.set_option('display.max_rows', None)
     corr_matrix = data.corr()
```

```
corr_matrix = corr_matrix['label'].sort_values(ascending=False)
```

```
[7]: pos_corr = list(corr_matrix[1:20].index)
neg_corr = list(corr_matrix[-15:].index)
cols = data.columns.values
for col in cols:
    if((col not in pos_corr) and(col not in neg_corr) and (col!='label')):
        data = data.drop(col, axis=1)
```

```
[8]: # examples about the relation between features and label pd.crosstab(data.VAR00007,data.label).plot.bar(stacked = True)
```

[8]: <AxesSubplot:xlabel='VAR00007'>


```
[9]: data['SNP34'].value_counts()
```

```
[9]: 1.0 541
2.0 319
3.0 140
Name: SNP34, dtype: int64

[10]: data['SNP37'].value_counts()
```

[10]: 1.0 802 2.0 150 3.0 48

Name: SNP37, dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 37 columns):

#	Column	Non-Null Count	Dtype
0	SNP10	1000 non-null	float64
1	SNP13	1000 non-null	float64
2	SNP17	1000 non-null	float64
3	SNP18	1000 non-null	float64
4	SNP19	1000 non-null	float64
5	SNP22	1000 non-null	float64
6	RBP4	1000 non-null	float64
7	age	1000 non-null	float64
8	gravidity	1000 non-null	float64
9	parity	1000 non-null	float64
10	height	1000 non-null	float64
11	weight before pregnancy	1000 non-null	float64
12	BMI class	1000 non-null	float64
13	BMI before pregnancy	1000 non-null	float64
14	systolic pressure	1000 non-null	float64
15	diastolic pressure	1000 non-null	float64
16	deliver time	1000 non-null	float64
17	VAR00007	1000 non-null	float64
18	wbc	1000 non-null	float64
19	ALT	1000 non-null	float64
20	TG	1000 non-null	float64
21	hsCRP	1000 non-null	float64
22	SNP28	1000 non-null	float64
23	SNP29	1000 non-null	float64
24	SNP34	1000 non-null	float64

```
25 SNP37
                                   1000 non-null
                                                   float64
      26 DM family history
                                   1000 non-null float64
      27 SNP39
                                   1000 non-null
                                                   float64
      28 SNP41
                                   1000 non-null
                                                  float64
      29 SNP43
                                   1000 non-null float64
                                   1000 non-null float64
      30 SNP46
      31 SNP48
                                   1000 non-null float64
      32 SNP52
                                   1000 non-null float64
      33 SNP53
                                   1000 non-null float64
                                   1000 non-null int64
      34 label
      35 fat
                                   1000 non-null float64
      36 blood pressure
                                   1000 non-null float64
     dtypes: float64(36), int64(1)
     memory usage: 289.2 KB
[13]: from sklearn.model_selection import cross_val_score
      from sklearn.model_selection import GridSearchCV
      from sklearn.model selection import KFold
      from sklearn.metrics import f1 score
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.linear_model import LogisticRegression
      from sklearn.svm import SVC
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.naive bayes import GaussianNB
      # as the dataset in this experiment is small, we adapt 5-fold cross validation
      # selected model: random forest
      # model for comparison: logistic regression, sum, decision tree, naive bayes
      # for random forest
      gsrf_score_sum = 0
      gsrf_best_score = 0
      global gsrf, best_gsrf
      # for logistic regression
      lr_score_sum = 0
      lr_best_score = 0
      global gslr, best_gslr
      # for sum
      svm_score_sum = 0
      svm best score = 0
      global svm, best_svm
      # for decision tree
      dt_score_sum = 0
      dt_best_score = 0
      global dt, best_dt
      # for naive bayes
      gnb_score_sum = 0
      gnb_best_score = 0
```

```
global gnb, best_gnb
# compare the performace of random forest classifer, logistic regression, sum, u
⇒decision tree, and naive_bayes without fine-tune
kf =KFold(n splits=5)
for train_index, test_index in kf.split(data):
   train, test = data.iloc[train index], data.iloc[test index]
   x_train = train.drop(['label'], axis=1)
   y_train = train['label']
   x_test = test.drop(['label'], axis=1)
   y_test = test['label']
   # for random forest
   gsrf = RandomForestClassifier(random_state=1)
   gsrf.fit(x_train,y_train)
   y_predict = gsrf.predict(x_test)
   score = f1_score(y_test, y_predict, average='micro')
   if score > gsrf_best_score:
       gsrf_best_score = score
       best_gsrf = gsrf
   gsrf_score_sum = gsrf_score_sum + score
    # for logistic regression
   lr = LogisticRegression(penalty='12', max iter=10000)
   lr.fit(x_train, y_train)
   y_predict = lr.predict(x_test)
   score = f1_score(y_test, y_predict, average='micro')
   if score > lr_best_score:
       lr_best_score = score
       best_lr = lr
   lr_score_sum = lr_score_sum + score
    # for sum
    svm = SVC()
   svm.fit(x_train, y_train)
   y_predict = svm.predict(x_test)
   score = f1_score(y_test, y_predict, average='micro')
   if score > svm best score:
       svm_best_score = score
       best_svm = svm
   svm_score_sum = svm_score_sum + score
    # for decision tree
   dt = DecisionTreeClassifier(random_state=1)
   dt.fit(x_train, y_train)
   y_predict = dt.predict(x_test)
   score = f1_score(y_test, y_predict, average='micro')
   if score > dt_best_score:
       best_dt_score = score
       best dt = dt
   dt_score_sum = dt_score_sum + score
    # for naive bayes
```

```
gnb = GaussianNB()
    gnb.fit(x_train, y_train)
    y_predict = gnb.predict(x_test)
    score = f1_score(y_test, y_predict, average='micro')
    if score > gnb_best_score:
        best_gnb_score = score
        best_gnb = gnb
    gnb_score_sum = gnb_score_sum + score
gsrf score sum/=5
lr_score_sum/=5
svm score sum/=5
dt_score_sum/=5
gnb_score_sum/=5
print('logistic regression f1 score: ', lr_score_sum)
print('svm f1 score:', svm_score_sum)
print('naive bayes classifer f1 score:', gnb_score_sum)
print('decision tree classifer f1 score:', dt_score_sum)
print('random forest classifier f1 score: ', gsrf_score_sum)
```

logistic regression f1 score: 0.667 svm f1 score: 0.524 naive bayes classifer f1 score: 0.633 decision tree classifer f1 score: 0.601 random forest classifier f1 score: 0.674

```
[14]: # random forest classifer shows the best performance
     # do fine tuning with grid search
     gsrf_score_sum = 0
     gsrf best score = 0
     kf =KFold(n_splits=5)
     for train index, test index in kf.split(data):
         train, test = data.iloc[train_index], data.iloc[test_index]
         x_train = train.drop(['label'], axis=1)
         y_train = train['label']
         x_test = test.drop(['label'], axis=1)
         y_test = test['label']
         # for random forest
         rf = RandomForestClassifier(random_state=1)
         prf = [{'n_estimators':[10,50,100,150],'max_depth':[3,6,9,12],'criterion':
      gsrf = GridSearchCV(estimator = rf, param_grid = prf,scoring = L
       gsrf.fit(x_train,y_train)
         print(gsrf.best_params_)
         y_predict = gsrf.predict(x_test)
         score = f1_score(y_test, y_predict, average='micro')
         print(score)
```

```
if score > gsrf_best_score:
           gsrf_best_score = score
           best_gsrf = gsrf
       gsrf_score_sum = gsrf_score_sum + score
    gsrf_score_sum/=5
    print('random forest classfier f1 score after fine tuning: ', gsrf_score_sum)
   {'criterion': 'gini', 'max_depth': 3, 'n_estimators': 150}
   0.705
   {'criterion': 'entropy', 'max_depth': 3, 'n_estimators': 100}
   0.675
   {'criterion': 'entropy', 'max_depth': 3, 'n_estimators': 50}
   0.715
   {'criterion': 'gini', 'max_depth': 3, 'n_estimators': 10}
   {'criterion': 'gini', 'max_depth': 9, 'n_estimators': 50}
   0.645
   []:
```