Redactare și comunicare științifică și profesională Laborator 6

Lect. dr. Adela Sasu

November 18, 2020

Exercițiu 1: Redactați următorul text astfel încât spațiul dintre linii să fie dublu:

Breviar teoretic

Printre cele mai utilizate structuri de date sunt listele, două tipuri speciale de liste : stiva și coada, și nu în ultimul rând o structură de stocare asociativă numită map.

O listă reprezintă o secvență de zero (lista vidă) sau mai multe elemente de un anumit tip:

$$a_1, a_2, ..., a_n$$

unde $n \ge 0$ și este numit lungimea listei (n=0 listă vidă) iar a_i este elementul din listă de de poziția i (1 <= i <= n). Cele mai importante operații cu o listă sunt

- INSERT(x, p, L). Inserarea adaugă în lista L elementul x la poziția p, deplasând la dreapta toate elementele care se aflau pe pozițiile p,...,n.
- LOCATE(x, L). Returnează poziția elementului x în lista L. Dacă x apare de mai multe ori poziția primei apariții este returnată.
- RETRIEVE(p, L). Returnează elementul aflat pe poziția p în lista L.
- DELETE(p, L). Sterge elementul de pe poziția p din lista L iar elementele de pe pozițiile p + 1,..., n sunt mutate cu o poziție la stânga.
- NEXT(p, L) şi PREVIOUS(p, L) returnează poziția următoare respectiv anterioară din lista L.

Exercițiu 2:

Redactați următorul text și includeți figura indicată folosind pachetul wrapfig:

4.2. Legea normală (Gauss-Laplace)

Obținem astfel

Definiția 4.2.1. Variabila aleatoare X urmează legea normală (Gauss-Laplace) (X are repartiție normală) cu parametrii m și σ ($m \in R$, $\sigma > 0$) dacă densitatea sa de probabilitate (repartiție) este funcția

$$f(x;m,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-m)^2}{2\sigma^2}}, \quad \forall x \in \mathbb{R}. \tag{4.2.1}$$

O variabilă aleatoare cu repartiție normală cu parametrii m și σ se notează cu $N(m,\sigma^2)$.

Funcția f de mai sus se numește densitatea de repartiție normală sau gaussiană. Observăm că f este o densitate de probabilitate, deoarece $f(x)>0, \ \forall \ x\in R \$ și $\int_{-\infty}^{\infty} f(x) dx = 1. \$ Într-adevăr, pentru a verifica ultima relație, în integrala de mai sus facem schimbarea de variabilă $\frac{x-m}{\sigma\sqrt{2}} = y$. Rezultă că $dx = \sigma\sqrt{2} \ dy$. Dacă $x \to -\infty$ atunci $y \to -\infty$, iar dacă $x \to \infty$ atunci $y \to \infty$.

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-y^2} dy = 1.$$

Am folosit mai sus integrala lui Euler-Poisson $\int_{0}^{\infty} e^{-y^{2}} dy = \sqrt{\pi}/2$.

Graficul funcției f are formă de clopot (vezi Figura 4.2.1). Dreapta de ecuație x=m este axă de simetrie pentru acest grafic, iar pentru x=m se obține valoarea maximă a funcției f, și anume $\frac{1}{\sigma\sqrt{2\pi}}$. Punctele $x=m-\sigma$ și $x=m+\sigma$ sunt puncte de inflexiune.

Exemplu de folosire a mediului wrapfigure

```
\begin{wrapfigure}{R}{0.3\textwidth}
\centering
\includegraphics[width=0.25\textwidth]{poza.png}
\caption{}
\label{fig: }
\end{wrapfigure}
```

Tabele colorate

Pachetul \usepackage{colortbl} pune la dispoziție comenzile \cellcolor, \columncolor şi \rowcolor.

Dacă doriți să colorați o coloană în roșu folosiți comenzile:

>{\columncolor{red}} sau >{\columncolor[rgb]{1,0,0}}

plasate chiar în preambulul tabelului:

Realizați următorul tabel colorat.

Definiți-vă culorile folosind modelele învățate: rgb, cmyk, gray

Valori	Încredere în sine Autonomie Independență Spirit antreprenorial Diversitate	Onestitate Integritate Diversitate Responsabilitate Munca în echipă
Caracteristici	Confortabil cu schimbările Cinic Pragmatic Flexibil Multifuncțional Creativ Descurcareț Autonom Țeluri specifice	Sociabil Încrezător Optimist Orientat spre realizări Cooperant Educat Tehnologizat Conștiență socială (socially aware) Altruist Multifuncțional Practic Team worker
Preferințe la locul de muncă	Concetrat pe carieră Echilibru viață profesională- viață personală Lipsa siguranței Abordarea informală	Muncă semnificativă Job flexibil Feedback/Mentoring Concentrat pe carieră