Machine learning and the Iterated Prisoner's Dilemma

Dr. Vincent KNIGHT

Dr. Jonathan GILLARD

✓ Coursera Machine Learning.✓ MA3604 Game Theory.✓ NATCOR Stochastic Modeling.

Evolutionary Game Theory

,

MA3604 Game Theory

$$u(\sigma,\chi)=su(S,\chi)+(1-s)u(ar{S},\chi),$$

$$u(\sigma,\chi) = su(S,\chi) + (1-s)u(\bar{S},\chi), \tag{1}$$

$$z(0,\chi) = z(0,\chi) + (1-z)z(0,\chi),$$

$$u(\sigma,\chi) = su(S,\chi) + (1-s)u(\bar{S},\chi),\tag{1}$$

 $u(\bar{S},\chi) = \theta(r,0)H\theta(r,x)^{-\alpha} - \phi(r,0)(1-r)^{-\beta} - \psi(r,0)F\psi(r,x)^{-\gamma}$

 $\sigma_S = (1, 0)$

 $\sigma_N=(0,\ 1)$

 $\sigma_{M} = (s^*, 1 - s^*)$

Neural Networks

Coursera Machine Learning

 □ Summer School on Network Theory □ NATCOR Simulation. □ NATCOR Combinatorial Optimisation.

@NikoletaGlyn https://github.com/Nikoleta-v3