Name:		 	 	
Studen	t Number:	 	 	

FINAL EXAM DECEMBER 2001

CIV 420F - Construction Engineering

Department of Civil Engineering
Faculty of Applied Science and Engineering
University of Toronto

Examiner: B. McCabe

Exam Type C: Approved Aid Sheet Only

If you do not understand a question, state reasonable assumptions and continue with the problem.

Examiner's Repo	ort
1.	17
2.	/30
3.	/18
4.	/25
5.	/20
Total	/100

a) Dental concrete

b) AN/FO

c) Air Track

d) Fly rock

•

e) Cascade generation system

Į.

f) Stiff leg derrick

_

g) Echelon paving

•

•

Question 2 Describe the differences [30 marks]

a) [5] Cable strands vs. solid bars for tie-backs

Cable strands	Solid bars
!	
i	
· ·	}

b) [5] Fixed costs vs. Variable costs

Fixed costs	Variable costs
į	
	İ
1	!

c) [5] Cofferdam vs. Caisson wall

Cofferdam	Caisson wall
İ	

d) [5] Critical path method vs. Line of balance

Critical path method (CPM)	Line of balance (LOB)
}	
į l	
!	
<u> </u>	
<u> </u>	
ļ	
1	:

e) [5] Type 1 vs. Type 3 Asbestos Removal

Type 1	Type 3
Ì	
i	

f) [5] RAP vs. Riprap

RAP	Riprap
1	
j	
İ	
1	

Question 3 Short Answers [18 marks]

a) [3] Why were articulated rock trucks used instead of fixed body trucks at the High Falls project?

b) [3] Why are caisson walls not used as the building foundation in Toronto?

c) [3] Describe 3 methods for bracing excavation walls.

d) [3] Briefly describe 3 methods for dewatering an excavation.

e) [6] Discuss three major considerations when planning a construction project in Northwest Territories.

Formwork Analysis [25 marks] Question 4

You have to build an underground tank in a vacant block of land, as shown below. The soil is undisturbed, dry packed earth.

- a) [5]
- What is the volume you must excavate to build the tank safely? Using the 315B Excavator and its largest bucket, how long will it take to excavate? ii)

- [10] You noticed that some gang forms are stacked in the materials yard. You are hoping that you can use them for the walls of the tank to reduce costs. The forms are:

 - plywood: 20.5 mm, 7 ply studs: 38mm x 140mm at 350mm centres

Can you use them? Show why or why not.

c) [5] How will you construct the top of the tank?

d) [5] Why are different equations used to calculate Pmax? Why don't we just use the fluid pressure?

Question 5 Tunnelling [20 marks]

The City currently maintains a ferry for people, vehicles, supplies, fuel etc to access the Toronto City Centre Airport on Toronto's Ward Island. It is expensive to run, especially during the winter, when they have to call the icebreakers in to keep the path clear. They have decided to build a tunnel across the gap so that the ferry could be decommissioned, vehicles could go through the tunnel, and pleasure boats in Toronto Harbour will be able to pass into the take unencumbered. The gap between the 2 pieces of land is 100 metres. Aside from airport buildings, there is an old 7 story masonry structure about 100 metres from the proposed path.

a) [5] What are the most important five factors in this specific case?

b) [5] What method of tunnelling would you use? Why?

c) [5] A tunneling operation produces muck at a rate of 51m³ per hour. The conveyor system can carry a cross-sectional area of muck of 0.1 m². What speed must the conveyor move in *metres per minute*? If the conveyor is not capable of moving this fast, what practical options do you have?

d) [5] One year after completion of the tunnel, the owner of the masonry building wants to tear the building down and build a new condominium complex. If you are the demolition contractor, describe in point form the process you will use to demolish the building. What are your concerns?

Excavators

Range Dimensions

- 315B 315B L
- France Sourced

One-Piece Boom Digging Envelope

Standard shoes and undercarriage

KEY:

- A Maximum loading height of bucket with teeth
- B Maximum reach at ground level
- C Maximum digging depth
- D Maximum vertical wall
- E Maximum depth of cut for 2.44 m (8'0") level bottom (straight clean up)
- F Maximum bucket hinge pin height
- G Maximum height, to bucket teeth at highest arc

France Sourced

315B L

Stick	1.85 m	6'1"	2.25 m	7'5"	2.6 m	8'6"	3.1 m	10'2"
	m	ft	m	ft	Tt.	ft	m	ft
A	6.05	19'11"	6.07	19'11"	6.43	21'1"	6.27	20'7"
В	7.92	25'11"	8.21	26'11"	8.62	28'3"	8.90	29'2*
С	5.18	17'0"	5.58	183"	5.93	19'5"	6.43	21'1"
D	3.69	12'9"	4.03	13'3"	4.86	15'11"	4.68	15'4"
E	4.87	16'0"	5.27	17'3"	5.69	18'8"	6.13	20'1"
F	7.28	23'11"	7.30	23'11"	7,66	25'1"	7.50	24'7"
G	8.49	27'10"	8.51	27'11"	6.89	29'2"	8.69	28'6"

Cycle Time Estimating Chart

Model		307B	311B	312B, 312B L	315B, 315B L	317B L, 317B LN	318B LN	3208	322B	3258	330B	345B•	350	375
Bucket Size L (yd¹) Soil Type		280 0.37	450 0.59	520 0.68	520 0.68 acked Ear	520 0.68	800 1.05	800 1.05	1000 1.31	1100 1,44	1400 1.83 ard Cla		1900 2.5	2800 3.66
Digging Depth	(m) (ft)	1.5 5	1.5 5	1.8 6	3.0 10	3.0 10	3.0 10	2.3 B	3.2 10	3.2 10	3.4	ĺ	4.2 14	5.2 17
Load Bucket	(mln)	0.08	0.07	0.07	0.10	0.10	0.09	0.09	0.09	0.09	0.09		0.10	0.11
Swing Loaded	(min)	0.05	0.06	0.06	0.04	0.04	0.06	0.06	0.06	0.06	0.07		0.09	0.10
Dump Bucket	(mlm)	0.03	0.03	0.03	0.02	0.02	0.04	0.03	0.04	0.04	0.04		0.04	0.04
Swing Empty	(min)	0.06	0.05	0.05	0.05	0.05	0.06	0.05	0.06	0.06	0.07		0.07	0.09
Total Cycle Time	(min)	0.22	0.21	0.21	0.21	0.21	0.25	0.23	0.25	0.25	0.27	<u> </u>	0.30	0.34

Cate move r. bucket longer tion jol

MAXII

Excavators

Bucket Specifications

Model	Bucket Type		Bucket Bite Width		Bucket Heaped Tip Radius Capacity			Bucket Weight With Teeth	
A.==		mm	in	mm	١n	Ĺ	yd,	kg	16
315B/3158 L	General Purpose	610	24.0	1340	53.0	380	0.50	419	924
		760	30.0	1340	53.0	500	0.65	471	1038
		914	36.0	1340	53.0	610	0.80	517	1140
		1067	42.0	1340	53.0	690	0.90	566	1248
	1	1 1219	48.0	1340	53.0	840	1.10	609	1343

	LOC	SE	BA	LOAD		
WEIGHT' OF MATERIALS	kg/m²	1b/yd²	kg/m³	lp/Aq ₃	FACTORS	
Basalt	1960	3300	2970	5000	67	
Bauxite, Kaolin	1420	2400	1900	3200	75	
Caliche	1250	2100	2260	3800	.55	
Carnotite, uranium ore	1630	2750	2200	3700	74	
inders	560	950	860	1450	66	
Clay — Natural bed	1660	2800	2020	3400	.82	
Dry	1480	2500	1840	3100	81	
Wet	1660	2800	2080	3500	.80	
Clay & gravel — Dry	1420	2400	1660	2800	.85	
Wel	1540	2600	1840	3100	.85	
Coal Anthracite, Raw			,			
	1190	2000	1600	2700	.74	
Washed	1100	1850	}		.74	
Ash, Bliuminous Coal	530-650	900-1100	590-890	1000-1500	.93	
Bituminous, Raw	950	1600	1280	2150	.74	
Washed	830	1400	ļ		.74	
Decomposed rock —]		J	
75% Rock, 25% Earth	1960	3300	2790	4700	.70	
50% Rock, 50% Earth	1720	2900	2280	3850	.75	
25% Rock, 75% Earth	1570	2650	1960	3300	.60	
Earth — Dry packed	1510	2550	1900	3200	.80	
Wet excavated	1600	2700	2020	3400	.79	
Loam	1250	2100	1540	2600	.81	
Grantte Broken	1660	2800	1 2730	4600	.61	
Gravel — Pitrun	1930	3250	2170	3650	.89	
Dry	1510	2550	1690	2850	.89	
Dry 6-50 mm (1/4*-2*)	1690	2850	1900	3200	89	
Wet 6-50 mm (1/4*-2*)	2020	3400	2260	3800	89	
Gypsum - Broken	1810	3050	3170	5350	57	
Crushed	1600	2700	2790	4700	.57	
Hematite, Iron ore, high grade	1810-2450	4000-5400	2130-2900	4700-6400	.85	
Limestone — Broken	1540	2600	2610	4400	.59	
Crushed	1540	2600	2010	4400	.59	
	2790		2000		1	
Magnetite, Iron ore	2580	4700 4350	3260	5500	.85	
Pyrile, iron ore	-		3030	5100	.85	
Sand — Dry, loose	1420	2400	1600	2700	.89	
Damp	1690	2850	1900	3200	.89	
Wet	1840	3100	2080	3500	.89	
Sand & clay — Loose	1600	2700	2020	3400	.79	
Compacted	2400	4050	1			
Sand & gravel — Dry	1720	2900	1930	3250	.89	
Wet	2020	3400	2230	3750	91	
Sandstone	1510	2550	2520	4250	.60	
Shale	1250	2100	1660	2800	.75	
Slag Broken	1750	2950	2940	4950	.60	
Snow — Dry	130	220	1		1	
Wet	520	860	}		1	
Stone — Crushed	1600	2700	2670	4500	.60	
Taconite	1630-1900	3600-4200	2360-2700	6200-6100	.58	
Top Soll	950	1600	1370	2300	.70	
Taprock — Broken	1750	2950	2610	4400	.67	

^{*}Varies with moisture content, grain size, degree of compaction, etc. Tests must be made to determine exact material characteristics.

**Weights of commercially important wood species can be found in the last pages of the Logging & Forest Products section. To obtain wood weights use the following equations: Ibiyd* in (Ib/It*) × .4 × .27

kg/m* = (kg/m*) × .4

SWELL - VOIDS - LOAD FACTORS

SWELL (%)	VOIDS (%)	LOAD FACTOR
5	4.8	952
10	9 1	.909
15	13.0	.870
20	16.7	.833
25	20.0	.800
30	23 1	769
35	25 9	741
40	28.6	714
45	31.0	.690
50	33.3	.667
55	35.5	.645
60	37.5	625
65	39 4	.606
70	41.2	.588
75	42 9	.571
80	44 4	556
85	45.9	541
90	47.4	526
95	48.7	.513
100	50 0	500

BUCKET FILL EACTORS

BUCKET FILL FACTOR	35
Loose Material	Fill Factor
Mixed Moist Aggregates	95 100%
Uniform Aggregates up to 3 mm (1/8")	95-100
3 mm-9 mm (1/8*-3/8*)	90.95
12 mm-20 mm (1/2"-3/4")	85-90
24 mm (1°) and over	85-90
Blasted Rock	i
Well Blasted	80-95%
Average Blasted	75-90
Poorly Blasted	60.75
Other	
Rock Dirl Mixtures	100-120%
Moist Loam	100-110
Soil, Boulders, Floots	80-100
Cemented Materials	85.95

NOTE: Loader bucket lilt factors are attected by bucket penetration, breakd force, rackback angle, bucket profile and ground engaging tools such bucket teeth or both on replaceable cutting edges.

NOTE: For bucker Clifactors for hydrautic excavators, see Quoket payloads in t

Table 7.3.A.

Douglas Fir Plywood

Specified Strength Capacities for Standard Constructions
of Regular Grades of Unsanded Douglas Fir Plywood

		B	Bendias	Ţ	Tension	Coard	Comprisation	Shear-through-		Planar obear	hear	
								thickness	\$	bending	Ap-ole	In-plane force
		Ľ	E		.	Δ,	6	å	a	t a	2	Upf
					Orient	ation of app	led force rel	Orientation of applied force relative to face grain				
Nomina												\\
ply=ood	Number	%	°03	°	°G.	ీం	8	06 77 00	ò	ŝ	ò	8
thickness	5											
Ę	₽Üœ	E . V	E E .	N/mas	N/mm	N/mm	N/mm	N/mm	N/mm	u /N	MPa	MA P
7.5	9	981	æ	97	23	000	ş	2	3.7	2	t.	0.72
9.8		280	88	70	28	<u>5</u>	S	24	3.0	.	0.55	0.72
12.5	•	& *	8	10	88	000	8	8	5.3	1.8	0.55	0.73
12.5	•	860	300	000	=	170	ę	8	t.	3.7	0.7	0.73
15.5	•	740	230	3	t	300	001	39	6.5	3.6	0.55	0.73
15 5	s,	57	280	33	=	170	ę	8	P.0	6 7	0.72	0.73
18.5	~	1300		\$02	013	§	8	\$	0.11	5.7	0.73	0.73
18.5	\$	00	\$	8	I.	210	2	‡	6.1	5.4	0.55	0.55
16.5	~	100	\$	91	110	210	8	43	5.0	7.1	c. 0	0.73
20.5	-	1200	140	180	130	ន្ត	92.	44	10.0	9.6	0.55	0.55
7/g 20.5	•	1100	850	110	12	220	٤	41	10.0	6.5	0.55	0.55
20.5		1200	\$	8	5	210	8	÷	0.11	8.5	17.0	t.

Notes:

(1) Specified strength in bearing (normal to plane of piles) $q_p = 3.9 \text{ MPa}$

(2) Dry service conditions

(3) Standard term duration of load

Table 7.3.B.

		•
		i
	Pre l	į
	tand	•
	or S	1
bo	<u>s</u>	•
Douglas Fir Plywood	Specified Stiffnesses and Rigidities for Standard	
드	32 25 25	
[8]	14 8X	
Soug	ness	
-	Stiff	
	Fed	
	peci	
	S	

		Bending at fines	Bending at Show	Asial eliform	lifiness	Shear-through
		•		In tension or	ion or	thdnose
				compr usion	cesion	ngidity
		$B_{f k}$	$B_b = EI$	$B_{\bullet} = EA$	EA	B,
			Orientation o	Orientation of applied force relative to face grain	to face grain	
lominal			•	0	• 5	00 6.000
ly wood	Number	ိုင	06	o	3	
hickness	ঠ	(N.m.m. ²)	(N.mm ³)		- N	1 / N
Ę	p. jes	BE	en en	TV/FILM	N/Man	
		000 011	17 000	70 000	24 000	3 800
	c	840 000	33 000	20 000	20 000	009 •
	+	1 700 000	190 000	70 000 000	11 000	s 800
	w	1 700 000	350 000	94 000	47 000	\$ 800
	-	3 700 000	430 000	110 000	75 000	4 600
	•	3 000 000	630 000	000 \$6	41 000	7 000
8.5	•	\$ 000 000	1 300 000	140 000	13 000	9 600
	•	4 600 000	1 300 000	170 000	41 000	9 200
8.5		4 800 000	1 300 000	120 000	71 000	6 200
20.5	\$	6 300 000	2 600 000	130 000	69 000	001 6
10.5	•	\$ 900 000	1 900 000	130 000	44 000	000 0
•	•	4 200 000	2 000 000	170 000	11 000	000 đ

Notes:

(1) Dry service conditions

(2) Standard term duration of load

Table 5.3.1.A.
Specified Strengths and Modulus of Elasticity (MPa)
for Structural Joists and Planks, Structural Light Framing
and Stud Grade Categories of Lumber.

Specie	Grade	Bending	Long:	Comp	Compression	Tension	Modulus	ulus
Identiff.		At	tudinal	Parallel	Perpen-	Parallel	<u>.</u>	6 ~
Celion		Extreme	Shear	9	dicular	9	Elasticity	icity
		Fibre		Grain	ţ.	Grain	MPA	ĸ
		, J	ï	Je	6	ĭ	EQ.	Eos
D.E.	35	16.5		19.0		9.01	12500	8200
	CON/1 ON			14.0	7.8	5.8	11000	2000
	No.3/Stud	4.6	:	4.6		2.1	10000	2200
Hom. Fir	55	16.0		17.6		9.7	12000	8500
	No 1/No 2	011	6.0	14.8	4.6	6.2	11000	1560
	No.3/Stud	7.0	}	7.0		3.2	10000	0009
ن د د	s	5 5 5		14.5		8.6	10500	7500
	No 1 (No 2	15.8	0.1	11.5	5.3	5.5	9500	.0039
	No.3/Stud	7.0	1	7.0		3.2	9000	5500
Northern	SS	10.6		13.0		6.2	7500	5500
	No.1/No.2	9.2	0.0	10.4	4.0	4.0	2000	2000
	No.3/Stud	4.5		4.5		.2.0	.6500	4000

Note: Tabulated values are based on the following standard conditions:

111 15 286 inin larger dimension

Dry service conditions

Standard term duration of load

F

(

Table 5.4.2. Service Condition Factors, K_S

			Wel ser	rvice conditions	
			pilir	wn lumber ig and poles ist dimension	_
Ks	For specified strength in	Dry service conditions	89 mm or less	Over 89 mm	- !
$\overline{}$	Bending at extreme fibre	1.00	0.84	1.00	
K _B	Longitudinal shear	1.00	0.96	1.00	
As.	Compression parallel to grain	1.00	0.69	0.91	
N.e.	Compression perpendicular to grain	1.00	0.67	0.67	
Kery	Tension parallel to grain	1.00	0.84	1.00	i
Kss.	Modulus of elasticity	1.00	0.94	1.00	_

Table 5.4.3. Treatment Factor, K_T

	Dry	Wet
Product	Service	Service
	Conditions	Conditions
Untreated lumber	1.00	1.00
Preservative treated, unincised lumber	1.00	1.00
Preservative treated,	·	
incised lumber of		;
tlückness 89 mm or less, for:		٠
(a) Modulus of clasticity	0.90	0.95
(b) Other properties	0.70	0.85
Fire-retardant		
treated innber	0.90	0.90

Table 5.4.4. System Factor, K_H

	Case 1°	Case	2	
		Visually Graded	MSR	Built-up Beams
For specified strength in		1		
Bending	1.10	1.40	1.20	1.10
Longitudinal shear	1.10	1.40	1.20	1.10
Compression parallel to grain	1.10	1.10	1.10	1.00
Tension parallel to grain	1.10	1.00	1.00	1.00
All other properties	1.00	1.00	1.00	1.00

Notes:

- * See Clause 5.4.4.1 for conditions applying to Case 1
- ** See Chuse 5 4.4.2 for conditions applying to Case 2

Table 5.4.5. Size Factor, K_2 , for Visually Stress-Graded Lumber

		Bend and Shee Kzs, F	l ar	Tension parallel to grain, Kti Smaller dime	Compression parallel to grain, K _Z , insion (mm)	All other properties
Larger dimension	38	89	114	All	All	All
(mm)	to 64	to 100	or _larger		_	
J8	1.7	•	-	1.5		1.0
64	1.7	•	•	1.5	Value	1.0
89	1.7	1.7	•	1.5	calculated	1.0
114	1.5	1.6	1.3	1.4	using	1.0
140	1.4	1.5	1.3	1.3	formula	1.0
184 to 190	1.2	1.3	1.3	1.2	in	1.0
235 to 241	1.1	1.2	1.2	1.1	Clause	1.0
286 to 292	1.0	1.1	1.1	1.0	5.5.6	1.0
337 to 343	6.9	1.0	1.0	0.9		1.0
387 or larger	0.8	0.9	0.9	0.8		1.0

Table 5.5.7.2.
Bearing Factor, KB

Bearing length diameter (mm)	Modification factor
12.5 and less	1.75
25.0	1.38
38.0	1.25
50.0	1.19
75.0	1.13
100.0	1.10
150.0 or more	1.00