VECTOR CALCULUS, Week 13

11.6 Directional Derivatives and the Gradient Vector; 11.7 Maximum and Minimum Values

11.6 Directional Derivatives and the Gradient Vector

Def: Suppose f = f(x, y) is differentiable at (a, b) with $\nabla f(a, b) \neq \vec{0}$, and suppose k = f(a, b).

• We say the **tangent line at** (a,b) of the level curve of f at k is the line through (a,b) in the direction of $\langle -f_y(a,b), f_x(a,b) \rangle$, given by the point-direction parameterization

$$\ell(t) = \langle a, b \rangle + t \langle -f_y(a, b), f_x(a, b) \rangle$$
 for $t \in \mathbf{R}$.

• We say the **normal line at** (a,b) **of the level curve** f **at** k is the line through (a,b) in the direction of $\nabla f(a,b)$, given by the point-direction parameterization

$$n(t) = \langle a, b \rangle + t \nabla f(a, b)$$
 for $t \in \mathbf{R}$.

Ex: Compute the tangent and normal line at (a, b) = (2, 0) of the level curve of $f(x, y) = xe^{xy}$ at k = 2.

Def: Suppose f = f(x, y, z) is differentiable at (a, b, c) with $\nabla f(a, b, c) \neq \vec{0}$, and suppose k = f(a, b, c).

• We say the **tangent plane at** (a, b, c) of the level surface of f at k is the plane through (a, b, c) with normal in the direction of $\nabla f(a, b, c)$, given by the scalar equation

$$f_x(a,b,c)(x-a) + f_y(a,b,c)(y-b) + f_z(a,b,c)(z-c) = 0.$$

• We say the **normal line at** (a, b, c) **of the level surface of** f **at** k is the line through (a, b, c) in the direction of $\nabla f(a, b, c)$, given by the point-direction parameterization

$$n(t) = \langle a, b, c \rangle + t \nabla f(a, b, c)$$
 for $t \in \mathbf{R}$.

Ex: Compute the tangent plane and normal line at (a, b, c) = (-1, 1, 3) of the level surface of $f(x, y, z) = z - x^2 - y^2$ at k = 1.

11.7 Maximum and Minimum Values

Def: Suppose f = f(x, y) is a real-valued function defined near (a, b).

- If f(a,b) ≥ f(x,y) for all (x,y) near (a,b), then we say
 (a,b) is a local maximum point of f and f(a,b) is a local maximum value of f.
- If $f(a,b) \le f(x,y)$ for all (x,y) near (a,b), then we say (a,b) is a local minimum point of f and f(a,b) is a local minimum value of f.
- If (a, b) is either a local maximum or a local minimum point of f, then we say
 (a, b) is a local extremum point of f and
 f(a, b) is a local extremum value of f.
- If $\begin{cases} f_x(a,b) \text{ DNE, or} \\ f_y(a,b) \text{ DNE, or} \\ \nabla f(a,b) = <0,0> \end{cases}$, then we say (a,b) is a **criticial point** of f.

Suppose $\Omega \subseteq \mathbf{R}^2$, and suppose f is defined for all $(x, y) \in \Omega$.

- If $(a,b) \in \Omega$ and $f(a,b) \ge f(x,y)$ for each $(x,y) \in \Omega$, then we say (a,b) is an absolute maximum point of f over Ω and f(a,b) is the absolute maximum value of f over Ω .
- If (a,b) ∈ Ω and f(x,y) ≤ f(a,b) for each (x,y) ∈ Ω, then we say
 (a,b) is an absolute minimum point of f over Ω and f(a,b) is the absolute minimum value of f over Ω.
- If $(a,b) \in \Omega$ is either an absolute maximum or an absolute minimum point of f over Ω , then we say
 - (a,b) is an absolute extremum point of f over Ω and f(a,b) is an absolute extremum value of f over Ω .

We make similar definitions for real-valued functions f = f(x, y, z).

Def: Basic definitions in point-set topology. Suppose $\Omega \subseteq \mathbf{R}^2$.

• If for each $(a, b) \in \Omega$, there is a disk of radius r

$$D_{(a,b)} = \{(x,y) : (x-a)^2 + (y-b)^2 < r\}$$

centered at (a, b) so that $D_{(a,b)} \subseteq \Omega$, then we say Ω is an **open set**.

- If the complement $\mathbb{R}^2 \setminus \Omega$ of Ω is an open set, then we say Ω is a closed set.
- Suppose $(a, b) \in \Omega$. If for each disk $D_{(a,b)}$ centered at (a, b), there are $(x_1, y_1) \in D_{(a,b)}$ with $(x_1, y_1) \in \Omega$ and there $(x_2, y_2) \in D_{(a,b)}$ with $(x_2, y_2) \in \mathbf{R}^2 \setminus \Omega$, then we say $(a, b) \in \Omega$ is in the boundary of Ω .

We say the set $\partial\Omega = \{(x,y) \in \Omega : (x,y) \text{ is in the boundary of } \Omega\}$ is the **boundary of** Ω .

We define the **interior** of Ω to be $\Omega \setminus \partial \Omega$, the set of points in Ω which are not in the boundary of Ω .

• If there is an r > 0 so that $\Omega \subset \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < r\}$, then we say Ω is a **bounded set**.

For the same definitions over \mathbb{R}^3 , use the interior of spheres

$$\{(x,y,z) \in \mathbf{R}^3 : (x-a)^2 + (y-b)^2 + (z-c)^2 < r\}.$$

Thm: Suppose $\Omega \subset \mathbf{R}^2$ is a closed and bounded set, and suppose f = f(x, y) is a real-valued function continuous over Ω .

- There is an absolute minimum point $(a_{min}, b_{min}) \in \Omega$ of f over Ω , and an absolute maximum point $(a_{max}, b_{max}) \in \Omega$ of f over Ω .
- If $(a,b) \in \Omega$ is an absolute extremum point of f over Ω , then either

$$(a,b) \in \partial \Omega$$
 or

(a,b) is a critical point of f in the interior of Ω .

The same is true for real-valued continuous functions f = f(x, y, z) over closed bounded sets $\Omega \subset \mathbf{R}^3$.

Ex: Find the absolute extremum points and values of the given function f over the given region Ω .

1.
$$f(x,y) = x^2 + y^2$$
 over $\Omega = \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 \le 1\}.$

2.
$$f(x,y) = x^2 - 2xy + 2y$$
 over the rectangle

$$\Omega = \{(x, y) \in \mathbf{R}^2 : 0 \le x \le 3, \ 0 \le y \le 2\}.$$

Ex: Find the absolute extremum values of the given function f over the given solid region E.

1.
$$f(x, y, z) = x^2 + y^2 + z^2 - z$$
 over

$$E = \{(x, y, z) \in \mathbf{R}^3 : 0 \le z \le \sqrt{1 - x^2 - y^2}\}$$

2.
$$f(x, y, z) = xy + z^2$$
 over $E = \{(x, y, z) \in \mathbf{R}^3 : x^2 + y^2 + z^2 \le 1\}$

Def: Suppose f = f(x, y) is a real-valued function defined near (a, b), and suppose the second partial derivatives of f exist at (a, b).

• We define the **discriminant of** f **at** (a,b) to be

$$\Delta = \Delta(a, b) = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2.$$

• If (a, b) is a critical point of f but not a local extremum point of f, then we say (a, b) is a saddle point of f.

Thm (Second Derivative Test): Suppose f = f(x, y) is a real-valued function defined near (a, b), suppose the second partial derivatives of f exist near (a, b) and are continuous at (a, b), and suppose (a, b) is a critical point of f.

- If $\Delta > 0$ and $f_{xx}(a,b) > 0$, then (a,b) is a local minimum point of f.
- If $\Delta > 0$ and $f_{xx}(a,b) < 0$, then (a,b) is a local maximum point of f.
- If $\Delta < 0$, then (a, b) is a saddle point of f.
- If $\Delta > 0$ and $f_{xx}(a, b) = 0$ or if $\Delta = 0$, then no conclusion can be made about (a, b).

Proof: Use CalcPlot3D.

Ex: Find the critical points of the given function f, and determine whether the critical points are local minimum, local maximum, or saddle points.

1.
$$f(x,y) = x^4 + y^4 - 4xy + 1$$

2.
$$f(x,y) = x^4 - 2x^2 + y^3 - 3y$$