Linear Regression II

Nipun Batra and the teaching staff January 24, 2024

IIT Gandhinagar

If N < M, then it is an under-determined system

If N < M, then it is an under-determined system Example: N=2; M=3

If N < M, then it is an under-determined system Example: N=2; M=3

$$\begin{bmatrix} 30 \\ 40 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 30 \\ 1 & 5 & 20 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

1

If N < M, then it is an under-determined system Example: N=2; M=3

$$\begin{bmatrix} 30 \\ 40 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 30 \\ 1 & 5 & 20 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

$$30 = \theta_0 + 6\theta_1 + 30\theta_2$$

$$\frac{40 = \theta_0 + 5\theta_1 + 20\theta_2}{-10 = -1\theta_1 - 10\theta_2}$$
(1)

The above equation can have infinitely many solutions. Under-determined system: $\epsilon_i = 0$ for all i

What if N > M

What if N > M

Then it is an over determined system. So, the sum of squared residuals > 0.

Class Exercise

Solve the linear system below using normal equation method

<i>x</i> ₁	<i>X</i> ₂	у
1	2	4
2	4	6
3	6	8

There can be situations where X^TX is not computable.

There can be situations where X^TX is not computable. This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{2}$$

There can be situations where X^TX is not computable. This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{2}$$

The matrix X is not full rank.

4

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

• Regularize

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables
- Use different subsets of data

It arises when one or more predictor varibale/feature in X can be expressed as a linear combinations of others

How to tackle it?

- Regularize
- Drop variables
- Use different subsets of data
- Avoid dummy variable trap

Say Pollution in Delhi = P

Say Pollution in Delhi = P

$$P = \theta_0 \, + \, \theta_1 \text{*\#Vehicles} \, + \, \theta_1 \text{* Wind speed} \, + \, \theta_3 \text{* Wind Direction}$$

6

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ Wind\ speed + \theta_3 *\ Wind\ Direction$$

But, wind direction is a categorical variable.

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 *\# Vehicles + \theta_1 *\ Wind\ speed + \theta_3 *\ Wind\ Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?

Say Pollution in Delhi = P

$$P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$$

But, wind direction is a categorical variable.

It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding? Then this implies that S>W>E>N

N-1 Variable encoding

	Is it N?	Is it E?	Is it W?
N	1	0	0
Ε	0	1	0
W	0	0	1
S	0	0	0

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
N	1	0	0	0
E	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Which is better N variable encoding or N-1 variable encoding?

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Which is better N variable encoding or N-1 variable encoding? The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Is it
$$S = 1$$
 - (Is it $N + Is$ it $W + Is$ it E)

Binary Encoding

N	00
Е	01
W	10
S	11

Binary Encoding

N	00
E	01
W	10
S	11

 $\ensuremath{\mathsf{W}}$ and $\ensuremath{\mathsf{S}}$ are related by one bit.

Binary Encoding

N	00
E	01
W	10
S	11

W and S are related by one bit.

This introduces dependencies between them, and this can confusion in classifiers.

Gender	height
F	
F	
F	
M	
М	

Gender	height
F	
F	
F	
M	
М	

Encoding

Gender	height
F	
F	
F	
М	
М	

Encoding

Is Female	height
1	
1	
1	
0	
0	

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0=5.8$$
 and $\theta_0=6$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get
$$\theta_0 = 5.8$$
 and $\theta_0 = 6$
 $\theta_0 = \text{Avg height of Male} = 5.9$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$\textit{height}_i = \theta_0 + \theta_1 * (\text{Is Female}) + \epsilon_i$$

We get $\theta_0=5.8$ and $\theta_0=6$

 $\theta_0 = \mathsf{Avg}\ \mathsf{height}\ \mathsf{of}\ \mathsf{Male} = 5.9$

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0=5.8$ and $\theta_0=6$

 $\theta_0 = \text{Avg height of Male} = 5.9$

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get $\theta_0=5.8$ and $\theta_0=6$ $\theta_0=$ Avg height of Male =5.9 $\theta_0+\theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records). θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 $\theta_1=$ Avg. female height (5+5.2+5.4)/3 - Avg. male height(5.9)

Alternatively, instead of a $0/1\ \text{coding}$ scheme, we could create a dummy variable

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Now, θ_0 can be interpreted as average person height. θ_1 as the amount that female height is above average and male height is below average.

$$\hat{y}_i = \theta_0 + \theta_1 x_i$$

$$\hat{y}_i = \theta_0 + \theta_1 x_i$$

$$\epsilon_i = y_i - \hat{y}_i$$

$$\hat{y_i} = \theta_0 + \theta_1 x_i$$

$$\epsilon_i = y_i - \hat{y}_i$$

$$\sum \epsilon_i^2 = \sum (y_i - \theta_0 - \theta_1 x_i)^2$$

$$\hat{y_i} = \theta_0 + \theta_1 x_i$$

$$\epsilon_i = y_i - \hat{y}_i$$

$$\sum \epsilon_i^2 = \sum (y_i - \theta_0 - \theta_1 x_i)^2$$

Now, we compute the derivative of it with all the θ_j . Let us solve for x being a scalar.

$$\frac{\partial}{\partial \theta_0} \sum \epsilon_i^2 = 2 \sum (y_i - \theta_0 - \theta_1 x_i)(-1) = 0$$

$$0 = \sum y_i - N\theta_0 - \sum \theta_1 x_i$$

$$\theta_0 = \frac{\sum y_i - \theta_1 \sum x_i}{N}$$
(3)

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$\frac{\partial}{\partial \theta_1} \sum_{i=1}^{N} \epsilon_i^2 = 0$$

$$\implies 2 \sum_{i=1}^{N} (y_i - \theta_0 - \theta_1 x_i)(-x_i) = 0$$

$$\implies \sum_{i=1}^{N} (x_i y_i - \theta_0 x_i - \theta_1 x_i^2) = 0$$

$$\implies \sum_{i=1}^{N} \theta_1 x_i^2 = \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} \theta_0 x_i$$

$$\implies \sum_{i=1}^{N} \theta_1 x_i^2 = \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} (\bar{y} - \theta_1 \bar{x}) x_i$$

$$\implies \sum \theta_1 x_i^2 = \sum x_i y_i - \bar{y} \sum x_i + \theta_1 \bar{x} \sum x_i$$

$$\implies \sum x_i y_i - \sum x_i y = \theta_1 (-\bar{x} \sum x_i + \sum x_i^2)$$

$$\theta_1 = \frac{x_i y_i - \sum x_i y}{\sum x_i^2 - \bar{x} \sum x_i}$$

$$\theta_1 = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{N} (x_i - \bar{x})^2}$$

$$\theta_1 = \frac{Cov(x, y)}{variance(x)}$$