TRIODE for use as H.F. amplifier and oscillator TRIODE pour utilisation comme amplificatrice H.F. et oscillatrice TRIODE zur Verwendung als H.F. Verstärker und Oszillator

TAL 12/20

TAW 12/20

Cooling : forced air Refroidissement: à air forcée Kühlung : erzwungene Luftkühlung Wasser

water eau

Filament : tungsten Filament : tungstène Heizfaden: Wolfram

Heating : direct Chauffage: direct Heizung : direkt Vf = 21,5 V 2) If = 78 A

Starting current must never exceed 160 A Le courant de démarrage ne doit jamais excéder 160 A Der Anlaufstrom darf unter keinen Umständen höher sein als 160 A

Typical characteristics $\mu = 38$ Caracteristiques typiques S (Ia = 1 A)= 10 mA/V Kenndaten

= 38Isat = 11 A

λ	Freq.	C te	legr.	B teleph.		Can.mod.		B mod. 1)	
m	Mc/s	Va (kV)	Wo (kW)	Va (kV)	Wo (kW)	Va (kV)	Wo (kW)	Va (kV)	₩o (kW)
>11	<28	12 10	22 18	12	5	10	9,5	12 10	42 16

¹⁾ Two valves; deux tubes; zwei Röhren

11 A erhalt

²⁾ Each tube is marked with the value of the filament voltage at which the saturation current has a value of 11 A A chaque tube est indiqué la valeur de tension du filament correspondante à un courant de saturation de 11 A Auf jede Röhre ist der Wert der Heizspannung angegeben wobei der Sättigungsstrom einen Wert von

PHILIPS

Caf = 1,9 pF Cgf = 23,5 pF Cag = 25 pF Capacitances Capacités Kapazitäten Limiting values Caractéristiques limites Grenzdaten $(ti=20 {}^{\circ}C) = min. 21,2 {}^{m3}/min$ Va = max. 12 kV Wa = max. 18 kW = max. 180 °C Wg = max. 500 Wtanode Rg = max. 10 kQ temperature of bulb and seals) température de l'ampoule et des) points de scellement) = max. 150 °C Temperatur des Kolbens und der) Verschlüsse) Perte de pression pi $\{q = 21, 2 \text{ m}^3/\text{min}\} = 130 \text{ mm H}_20$ Druckverlust Druckverlust It is necessary to direct a low velocity air flow on the grid seals at frequencies higher than 20 Mc/s Il faut diriger un courant d'air à vélocité peu élevee sur les points de scellement de la grille aux fréquences dépassant 20 Mc/s Bei Frequenzen höher als 20 MHz ist ein schwacher Luftstrom auf die Gitterverschlüsse notwendig Mounting position: exactly vertical with anode down : exactement vertical avec l'anode Montage en bas : genau senkrecht mit der Anode un-Aufstellung ten Grid bracket 40614 Etrier de la grille Gitterbügel Protective cap for grid seals Chapeau de protection pour les 40632 sorties de la grille

Schutzkappe für Gitterverschlüsse

TAW 12/20

```
Capacitances
                                         Caf = 1.4 pF
                                         Cgf = 23,5 pF
Cag = 25 pF
Capacités
Kapazitäten
Limiting values
Caractéristiques limites
Grenzdaten
                                      = max. 60 °C
  Va = max. 12 kV
                         to
                                      = max. 14 °C
  Wa = max. 18 kW
                         to-ti
  ₩g = max. 500 ₩
                         q (Wa=18 kW) = min. 20 l/min
 Rg = max. 20 k\Omega
  temperature of bulb and seals)
  température de l'ampoule et des)
             points de scellement) = max. 150 °C
  Temperatur des Kolbens und der)
                      Verschlüsse)
Pressure loss
Perte de pression pi (q=20 l/min)= 0,5 atm
Druckverlust
  It is necessary to direct a low velocity air flow
on the grid seals at frequencies higher than 20 Mc/s Il faut diriger un courant d'air à vélocité peu
élevée sur les points de scellement de la grille aux
fréquences dépassant 20 Mc/s
  Bei Frequenzen höher als 20 MHz ist ein schwacher
Luftstrom auf die Gitterverschlüsse notwendig
Mounting position: exactly vertical with anode down
                 : exactement vertical avec l'anode
Montage
                   en bas
                 : genau senkrecht mit der Anode un-
Aufstellung
                    ten
Grid bracket
                                       40614
Etrier de la grille
Gitterbügel
Protective cap for grid seals
Chapeau de protection pour les
                                       40632
          sorties de la grille
Schutzkappe für Gitterverschlüsse
```


TAW 12/20

Valve mounted in water-jacket type K 707 Tube monté dans le réfrigérant type K 707 Röhre in Kühltopf Typ K 707 montiert Dimensions in mm Dimensions en mm Abmessungen in mm max 104 М8 240 10ø श्ल 110-115 Valve: net weight shipping weight Tube : poids net Röhre: Nettogewicht 3,6 kg poids brut 10.3 kg Bruttogewicht net weight poids net 4,3 kg Water-jacket Nettogewicht Réfrigérant Kühltopf shipping weight poids brut 5.8 kg Bruttogewicht

TAL 12/20 TAW 12/20

PHILIPS

Operating conditions H.F. class C Caractéristiques d'utilisation H.F. classe C Betriebsdaten H.F. Klasse C

télé	egraphy Egraphie egraphie					modu	lat	odula ion d odula	and	od e
À	-	>11		>11				>11		m
٧a	=	12		10	1			10		kV
٧g	=	-600	-	-500	1			- 900		v
Ia	9	2,7		2,7				1,4		A
Iε	3	0,4	C	.42				0,5		A
Vgp	=	1800	1	600				2100		V
Wig	=	720		670				1050		W
Wia	a	32,4		27				14		kW
Wa	=	10,4		9	1			4,5		kW
Wo	=	22		18	1			9,5		kW
3	a	68		67				68		6
						m	=	100		%
						Wmod	=	7		кW

Operating conditions H.F. class B telephony Caractéristiques d'utilisation H.F. classe B téléphonie Betfiebsdaten H.F. Klasse B Telephonie

> ı 3 >11 m· Vа 12 kV == Vα = -200 ٧ Ia = 1.54 A Vgp 435 v ⇉ Wia = 18,5kW Wa = 13,5 kW Wo 5 kW = % 27 = 100 % m =: Ιg = 0,24 A Wig = 210 ¥7

TAL 12/20 TAW 12/20

Operating conditions as L.F. class B amplifier and modulator, two valves Caractéristiques d'utilisation en amplificatrice et modulatrice B.F., classe B, deux tubes Betriebsdaten als N.F. Verstärker und Modulator Klasse B, zwei Röhren

v_a	=		12		10	k٧
٧g	=		- 250		-200	V
Raa~	=		5,6		10,5	$k\Omega$
vggp	=	0	1900	0	1100	v
Ia	==	2x0,32	2 x 2,45	2x0,25	2 x 1 ,1	Α
Ig	=	0	2 x 0,33	0	2x0,17	A
Wig	==	0	2 x 280	0	2 x 85	W
w_{ia}	=	2 x 3,8	2 x 29	2x2,5	2 x 11	kW
Wa	=	2 x3, 8	2 x 8	2 x 2,5	2 x 3	kW
Wo	=	0	42	0	16	kW
η	=	-	72,5	-	73	%
dtot	=	_	3,1	_	1,7	95

TAL 12/20 TAW 12/20

TAL 12/20 TAW 12/20

TAL 12/20

page	sheet	date
1	1	1951.06.06
2	2	1951.06.06
3	3	1949.08.08
4	4	1949.08.08
5	5	1950.04.04
6	6	1950.04.04
7	7	1959.03.03
8	Α	1951.06.06
9	В	1951.06.06
10	С	1950.04.04
11	D	1950.04.04
12	E	1949.08.08
13	F	1949.08.08
14	G	1951.06.06
15	Н	1951.06.06
16	1	1951.06.06
17	FP	1999.11.17