Lecture 6 Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/09/19

Slides Updated: 2023-09-26

Agenda

- 1. Finishing up Marginal and Conditional Probability Distributions
- 2. Independent Random Variables
- 3. The EV of a function of RVs
- 4. Covariance of two RVs

Joint Probability Distribution

- P(House) = .73, P(Sen) = .18
- An example of two independent events

	$Y_1 = 0$	$Y_1 = 1$	Totals
$Y_2 = 0$	0.22	0.60	0.82
$Y_2=1$	0.05	0.13	0.18
Totals	0.27	0.73	1

• An example of two dependent events

	$Y_1 = 0$	$Y_1 = 1$	Totals
$Y_2 = 0$	0.25	0.57	0.82
$Y_2=1$	0.02	0.16	0.18
Totals	0.27	0.73	1

Joint Probability Distribution

- Just as we did with univariate probability distributions, **joint probability distributions** are the probabilities associated with all possible values of Y_1 and Y_2
 - $\circ \:$ Denote as $P(Y_1=y_1,Y_2=y_2)$ or just $P(y_1,y_2)$
 - We can imagine these as functions, although in the preceding example, it is easier to just show as a table
- Note that the axioms from the univariate world apply here
 - \circ Axiom 1: $p(y_1,y_2) \geq 0 \; orall \; y_1,y_2$
 - \circ Axiom 2: $\sum_{y1,y2} p(y_1,y_2) = 1$
- Joint probability distributions can have distribution functions
 - $0 \circ F(y_1,y_2) = P(Y_1 \leq y_1,Y_2 \leq y_2), \;\; -\infty < y_1 < \infty, -\infty < y_2 < \infty, -\infty < y_2 < \infty$
 - Often referred to as the joint cumulative distribution function or joint CDF

Joint CDFs

- ullet For two discrete RVs like in our example, this is $F(y_1,y_2)=\sum_{t_1\leq y_1}\sum_{t_2\leq y_2}p(t_1,t_2)$
- For two continuous RVs, we say they are **jointly continuous** if their *joint distribution function is continuous in both arguments*
 - \circ That is, if there exists a nonnegative function $f(y_1,y_2)$ such that:

$$egin{array}{l} \circ \ F(y_1,y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1,t_2) dt_2 dt_1 ext{ for } -\infty < y_1 < \infty, \ -\infty < y_2 < \infty. \end{array}$$

 \circ then Y_1 and Y_2 are jointly continuous and the function $f(y_1,y_2)$ is the **joint probability density** function or **joint PDF**

Example

- Let's say we want to calculate the probability that two jointly continuous random variables fall into particular intervals
- $ullet \ P(a < Y_1 \leq b, \ c < Y_2 \leq d) = \int_c^d \int_a^b f(y_1,y_2) dy_1 dy_2$
- ullet Show that this is equivalent to F(b,d)-F(b,c)-F(a,d)+F(a,c)

Marginal Probability Distributions

- ullet NB: all **bivariate** events ($Y_1=y_1,Y_2=y_2$) are **mutually exclusive**
- ullet Thus, the **univariate** event $Y_1=y_1$ can be thought of as the **union** of bivariate events
 - \circ The union is taken *over all possible values for* y_2
- Example: let's roll two 6-sided dice

$$\circ \ P(Y_1=1)=p(1,1)+p(1,2)+\cdots+p(1,6)$$

$$P(Y_1 = 1) = 6 * \frac{1}{36} = \frac{1}{6}$$

- ullet Generically: $P(Y_1=y_1)=\sum_{orall y_2} p(y_1,y_2)$
- ullet Test: What is the marginal probability for $Y_2=y_2$?

$$\circ~P(Y_2=y_2)=\sum_{orall y_1}p(y_1,y_2)$$

• Denote $p_1(y_1)$ as the **marginal probability function** of the *discrete* random variable Y_1

Continuous Case

• Marginal density function for continuous RV Y_1 is:

$$egin{array}{l} \circ \ f_1(y_1) = \int_{-\infty}^{\infty} f(y_1,y_2) dy_2 \end{array}$$

ullet Test: what is the marginal density function for Y_2 ?

$$egin{array}{l} \circ \ f_2(y_2) = \int_{-\infty}^{\infty} f(y_1,y_2) dy_1 \end{array}$$

Conditional Probability Distributions: Discrete

- ullet Recall: $P(A\cap B)=P(A)P(B|A)$ due to the **multiplicative law**
- ullet The bivariate event (y_1,y_2) can be re-written as the **intersection** of two events: $Y_1=y_1$ and $Y_2=y_2$
 - \circ Thus: $p(y_1,y_2)=p_1(y_1)p(y_2|y_1)$
 - \circ or $p(y_1,y_2)=p_2(y_2)p(y_1|y_2)$
- NB: $p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2)$
 - \circ or $p(y_1|y_2)=rac{P(Y_1=y_1,Y_2=y_2)}{P(Y_2=y_2)}$
 - \circ or $p(y_1|y_2)=rac{p(y_1,y_2)}{p_2(y_2)}$ for $p_2(y_2)>0$ (why?)
- The conditional distribution function of Y_1 given $Y_2=y_2$ is $P(Y_1\leq y_1|Y_2=y_2)=F(y_1|y_2)$
- ullet The associated CDF is $f(y_1|y_2)=rac{f(Y_1,y_2)}{f_2(y_2)}$

Independent Random Variables

- Previous content was hurried in order to bring us here...how to make inferences from samples
- ullet Recall that independent events A and B imply $P(A\cap B)=P(A)P(B)$
- Also remember our example of an event involving two random variables: $(a < Y_1 \leq b) \cap (c < Y_2 \leq d)$
 - $\circ~$ This event can be **decomposed** to two events: $a < Y_1 \le b$ and $c < Y_2 \le d$
- If Y_1 and Y_2 are independent, then:

$$\circ \ P(a < Y_1 \leq b, \ c < Y_2 \leq d) = P(a < Y_1 \leq b) P(c < Y_2 \leq d)$$

 The joint probability of two independent RVs can be written as the product of their marginal probabilities

Independent Random Variables

- ullet Generalizing to $F(y_1,y_2)=F_1(y_1)F_2(y_2)\ orall\ (y_1,y_2)$
 - \circ where $F(y_1,y_2)$ is the joint CDF for Y_1 and Y_2
 - \circ and $F_1(y_1)$ is the CDF for Y_1 , and $F_2(y_2)$ is the CDF for Y_2
- Thus, if Y_1 and Y_2 are independent:
 - $\circ \:$ Discrete RVs: $p(y_1,y_2)=p_1(y_1)p_2(y_2)$
 - \circ Continuous RVs: $f(y_1,y_2)=f_1(y_1)f_2(y_2)$
- ullet Thus, further, $f(y_1,y_2)=g(y_1)h(y_2)$
 - \circ where $g(\cdot)$ and $h(\cdot)$ are non-negative functions
 - In English, if we want to prove two RVs are independent, we can do so by finding two functions that satisfy these properties

Expectations of functions of RVs

- ullet Recall from the univariate world that we can show the expected value of a function of a random variable g(Y) was
 - $\circ\;$ Discrete RVs: $E[g(Y)] = \sum_y g(y) p(y)$
 - \circ Continuous RVs: $E[g(Y)] = \int_{-\infty}^{\infty} g(y) f(y) dy$
- We can do the same in the multivariate world with a function of several random variables
 - \circ Discrete: $E[g(Y_1,Y_2,\ldots,Y_k)]=\sum_{y_k}\ldots\sum_{y_2}\sum_{y_1}g(y_1,y_2,\ldots,y_k)p(y_1,y_2,\ldots,y_k)$
 - Continuous:

$$E[g(Y_1,Y_2,\ldots,Y_k)] = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1,y_2,\ldots,y_k) f(y_1,y_2,\ldots,y_k) dy_1 dy_2 \ldots dy_k$$

Expectations of functions of RVs

- Rules of expectations also work here
 - \circ Pull out constants: $E[cg(Y_1,Y_2)]=cE[g(Y_1,Y_2)]$
 - \circ Distribute expectations: $E[g_1(Y_1,Y_2)+\cdots+g_k(Y_1,Y_2)]=E[g_1(Y_1,Y_2)]+\cdots+E[g_k(Y_1,Y_2)]$
- These allow a powerful result in which
 - \circ If Y_1 and Y_2 are independent
 - \circ And if $g(Y_1)$ and $h(Y_2)$ are functions of only Y_1 and Y_2
 - \circ Then $E[g(Y_1)h(Y_2)]=E[g(Y_1)]E[h(Y_2)]$

Covariance of Two RVs

- If we say that Y_1 and Y_2 are **independent**, we are saying
 - **Discrete**: joint probability is equal to the product of their individual probability functions
 - **Continuous**: joint PDF is equal to *the product of their individual PDFs*
- But what if Y_1 and Y_2 are related?
 - \circ That is, given what we know about the value of Y_1 , we can make better than a random guess about Y_2
- We can describe how much the two processes are related with the property of covariance
 - $\circ \ \ COV(Y_1,Y_2) \equiv E[(Y_1-\mu_1)(Y_2-\mu_2)]$

Examples

ullet Let's think about two quantities: $(y_1-\mu_1)$ and $(y_2-\mu_2)$

- Think through what these lines represent
 - How much a randomly chosen point **deviates** from its mean
- Note two patterns from the points chosen in each panel
 - \circ In panel A: bigger deviations in y_1 are sometimes associated with bigger deviations in y_2 , but not always
 - \circ In panel A: in some cases the y_1 deviation is positive and the y_2 deviation is negative, but not always
 - \circ In panels B and C: bigger deviations in y_1 are consistently associated with bigger deviations in y_2
 - \circ In panel B: positive deviations in y_1 are associated with positive deviations in y_2 , and negative deviations in y_1 are associated with negative deviations in y_2
 - \circ In panel C: positive deviations in y_1 are associated with negative deviations in y_2 , and vice versa

ullet How can we summarize these conclusions more efficiently? Take the product of the y_1 and y_2 deviations

$$(y_1 - \mu_1)(y_2 - \mu_2)$$

- In panel A, this product is sometimes positive and sometimes negative
- In panel B, this product is always positive
- In panel C, this product is always negative
- And how can we **further** summarize these conclusions?
 - Take the **expectation**!
 - $\circ \ \ COV(Y_1,Y_2) = E[(Y_1-\mu_1)(Y_2-\mu_2)]$

• Let's calculate!

```
toplot %>%
  group_by(facet) %>%
  summarize(cov = mean((y1-mean(y1))*(y2-mean(y2))))
```

• But what if we change the scale?


```
res <- toplot2 %>%
  group_by(facet) %>%
  summarize(cov = mean((y1-mean(y1))*(y2-mean(y2))))
```

```
## # A tibble: 2 × 2
## facet cov
## <chr> <dbl>
## 1 Panel A.1 0.0865
## 2 Panel A.2 1.30
```

Correlation

- We need to make this scale invariant
- Standardize by the product of the two RVs' standard deviations

$$\circ~
ho(Y_1,Y_2)=rac{ extit{COV}(Y_1,Y_2)}{\sigma_1\sigma_2}$$

- Can you prove that $-1 \le \rho \le 1$?
- Summing up:
 - \circ Independence of Y_1 and Y_2 implies that $\mathit{COV}(Y_1,Y_2)pprox 0$
 - \circ Or more accurately, $ho(Y_1,Y_2)pprox 0$
- NB: these are useful tools for measuring the strength of a *linear* relationship
 - Not so good for other types of relationships, like curvelinear