Übungsblatt 12

Abgabetermin: 13.07.2017, 9:20 Uhr.

Aufgabe 1 (1+2+2= 5 Punkte)

Sei $A \in M(13 \times 13, \mathbb{Q})$ mit Invariantenteilern $c_1(A) = \cdots = c_{10}(A) = 1, c_{11}(A) = t, c_{12}(A) = t^5 + 2t^3 + t$ und $c_{13}(A) = t^7 + 3t^5 + 3t^3 + t$. Bestimmen Sie

- a) Die Frobenius-Normalform von A;
- b) Die Weierstrass-Normalform von A;
- c) Die Jordan-Normalform von A (aufgefasst als Element von $M(13 \times 13, \mathbb{C})$).

Aufgabe 2 (2 Punkte)

Geben Sie ein Beispiel eines Körpers K, einer Körpererweiterung $L \supseteq K$, einer Zahl $n \in \mathbb{N}$ und einer Matrix $A \in M(n \times n, K)$, so dass folgendes gilt: Die Weierstrass-Normalform von A (aufgefasst als Element von $A \in M(n \times n, K)$) stimmt nicht mit der Weierstrass-Normalform von A (aufgefasst als Element von $A \in M(n \times n, L)$) überein.

Aufgabe 3 (2+2=4 Punkte)

a) Bestimmen Sie die Jordan-Normalform der Matrix

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ -1 & 1 & 2 & 1 \\ -1 & 1 & 0 & 3 \end{pmatrix} \in M(4 \times 4, \mathbb{Q}).$$

b) Zeigen Sie, dass zu jeder Matrix $A \in M(2 \times 2, \mathbb{C})$ mit A = 0 oder $A^2 \neq 0$ eine Matrix $B \in M(2 \times 2, \mathbb{C})$ existiert mit $B^2 = A$.

Aufgabe 4 (2+2+2= 6 Punkte)

Sei R ein kommutativer Ring.

a) Sei $(M_i)_{i\in I}$ eine Familie von Untermoduln eines R-Moduls M mit $M=\sum_{i\in I}M_i$. Wir betrachten den R-Modul-Homomorphismus

$$\psi: \bigoplus_{i\in I} M_i \to M \qquad (m_i)_{i\in I} \mapsto \sum_{i\in I} m_i.$$

Zeigen Sie: ψ ist ein Isomorphismus genau dann wenn $M_j \cap \left(\sum_{i \in I, i \neq j} M_i\right) = 0$ gilt für alle $j \in I$.

- b) Sei M ein R-Modul. Zeigen Sie: M ist frei genau dann wenn eine Menge $T\subseteq M$ existiert so dass folgende Eigenschaft gilt: Zu jedem R-Modul N und jeder Abbildung $f:T\to N$ existiert genau ein R-Modul-Homomorphismus $\varphi:M\to N$ mit $\varphi|T=f$.
- c) Zeigen Sie, dass jedes Erzeugendensystem von \mathbb{Q} (aufgefasst als \mathbb{Z} -Modul) unendlich viele Elemente enthält. (Überlegen Sie sich zunächst, dass für ein Erzeugendensystem I und ein Element $i \in I$ die Menge $I \setminus \{i\}$ wieder ein Erzeugendensystem liefert.)