

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 12, 2005, 03:48:54 ; Search time 2617 Seconds
(without alignments)
14283.192 Million cell updates/sec

Title: US-10-727-010-1

Perfect score: 982

Sequence: 1 cggccccatcaccatctccg.....tcggcgctctggatggtaac 982

Scoring table: IDENTITY_NUC
GapOp 10.0 , GapExt 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : EST:*

1: gb_elt1:*

2: gb_elt2:*

3: gb_hic:*

4: gb_elt3:*

5: gb_elt4:*

6: gb_elt5:*

7: gb_elt6:*

8: gb_gbs1:*

9: gb_gbs2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	129.2	13.2	1910	9 AG382199
2	127.6	13.0	1297	9 CG744520
3	127	12.9	1277	9 CG753585
4	126.6	12.9	1501	9 CG752479
5	126	12.8	1565	9 AG340866
6	126	12.8	1567	9 CG746709
7	125.6	12.8	1595	9 CC290974
8	125.4	12.8	1874	9 AG448338
9	125	12.7	2041	9 AG363808
10	124.4	12.7	1107	9 CK16205
11	124.4	12.7	1193	9 AG349330
12	124	12.6	1471	9 CG748176
13	124	12.6	1616	9 CG753270
14	123.5	12.5	1970	9 CG748837
15	123	12.5	1087	6 CB908860
16	123	12.5	1087	6 CB905422
17	122.8	12.5	1836	9 AG382181
18	122	12.4	1738	9 CG750956
19	121.6	12.4	1448	9 CC220110
20	121.2	12.3	1082	8 CC300639
21	121.2	12.3	1106	6 CB905422
22	121.2	12.3	1106	6 CB905422
23	121.2	12.3	1223	9 AG441637
24	121.2	12.3	1258	9 AG441605

DEFINITION AG382199

LOCUS 1910 bp DNA, clone:MSMg01-192123.R7, genomic survey sequence.

ACCESSION AG382199

VERSION 1

KEYWORDS GSS

SOURCE Mus musculus molossinus

ORGANISM Mus musculus molossinus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

REFERENCE 1. Hattori, M., Toyoda, A., Noguchi, H., Kojima, T. and Sakaki, Y. BAC and Sequences of Library MSMg01

REFERENCE 2. (bases 1 to 1910)
Hattori, M., Toyoda, A., Noguchi, H., Kojima, T. and Sakaki, Y. Direct Submission

REFERENCE 3. (bases 1 to 1910)
Submitted (17-NOV-2003) Masahira Hattori, The Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center (GSC), Japan 1-7-22 Suehiro-chou, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail:hattori@gcc.riken.jp, url: http://hgp.gcc.riken.go.jp/), Tel: 81-45-503-9111, Fax: 81-45-503-9170

COMMENT Clones are derived from the mouse BAC library MSMg01. For BAC library availability, please contact Kuniya Abe (abe@rtc.riken.jp).

Tsukuba Institute, Bio Resource Center, The Institute of Physical and Chemical Research (RIKEN) 3-1-1 Koyadai, Tsukuba, 305-0074 Japan
phone: 81-298-369189, fax: 81-298-369199
e-mail: abe@rtc.riken.jp

PRIMERS CK16205

SEQUENCING : T7

LIBRARY AG349330 Mus muscu

VECTOR CG748176 P042-1-A0

R.SITE 1 : Ecoli

R.SITE 2 : Ecoli

FEATURES 1. 1910

SOURCE /organism="Mus musculus molossinus"
/mol_type="genomic DNA"
/sub_species="molossinus"
/db_xref="taxon:57486"
/clone="MSMg01-192123.R7"
/sex="male"
/tissue_type="mixture of kidney and spleen"
/clone_lib="MSMg01 Mouse Male BAC Library"

ALIGNMENTS

Query Match		13.2%	Score 129.2;	DB 9;	Length 1910;		LOCUS CG744520	DEFINITION CG744520-1-B10.ya Ppa EcoRI BAC Library <i>Pristionchus pacificus</i> genomic, genomic survey sequence.
Best Local Similarity		44.2%	Pred. No. 5.1e-13;				ACCESSION CG744520	genseq CG744520
Matches 416; Conservative		0;	Mismatches 523;	Indels 2;	Gaps 1;		VERSION CG744520.1	GI:37965388
Query	Subject						KEYWORD GSS	
Qy	33	CCCTAACACAGGACATCTGGGCTCTGGGGCTGGGG	92				SOURCE <i>Pristionchus pacificus</i>	
Db	1910	CC					ORGANISM <i>Pristionchus pacificus</i>	
Qy	93	TCTTGGCTCCGAGGCGCTGGAGAGGGCGTGGAG	1851				Buksyota; Metazoa; Chromadorea; diplogasterida;	
Db	1850	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					Neodiplogasteridae; <i>Pristionchus</i> .	
Qy	153	CCCCGGTGGCACCATCTGGAGGTTGGACATGGCG	212				REFERENCE 1 (bases 1 to 1297)	
Db	1792	GCGCGCCGGGGGGGGGGGGGGGGGGGGGGGGGG	152				SRINivasan, J., SINZ, W., JESSE, T., WIGGERS-PEREBOLENTE, L., JANEEN, K.,	
Qy	213	TCTCGGGAGGTTGGGGGGGGGGGGGGGGGG	1793				BUNTRIER, J., VAN DER MEULEN, M. and SOMMER, R.J.	
Db	1732	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					TITLE An integrated physical and genetic map of the nematode <i>Pristionchus</i>	
Qy	273	TGGACCCACGCTCTCTGGGGGGGGGGGGGG	332				pacificus	
Db	1672	CGCCCGCCCCCCCCCCCCCCCCCCCCCCCC					Max-Planck-Institute for Developmental Biology	
Qy	333	GGGAGATGGCTGGCATGGAGAACGGCATCGGG	392				Spemannstr. 37-39, Tuebingen D-72076, Germany	
Db	1612	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					TELEPHONE 049701601371	
Qy	393	CCACGGGAGGGCACCGGTTGGGGGGGGGG	452				FAX 04970160198	
Db	1552	CNNCCCCCCCCCCCCCCCCCCCCCCCCCCCC					EMAIL ralf.sommer@uebingen.mpg.de	
Qy	453	TCCCCACGGGTGGGGGGGGGGGGGGGG	512				CLASS BAC ends.	
Db	1492	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					FEATURES Location/Qualifiers	
Qy	513	AGCGGCCATCTGGAGGGGCTTCCGGGCG	572				1..1297	
Db	1432	CCCCCCCCCCCCCCCCCCCCCCCCCCCC					/organism="Pristionchus pacificus"	
Qy	573	ACGACACGGAGACCTCTCTACTCTACGGCT	632				/mol_type="genomic DNA"	
Db	1372	CCCCCCCCCCCCCCCCCCCCCCCCCCCC					/strain="California"	
Qy	633	TGACACACATCCGGGCACTCGGCCATGGAC	692				/db_xref="taxon:54126"	
Db	1312	CCCCCCCCCCCCCCCCCCCCCCCCCCCC					/note="The library was generated by a partial digest of	
Qy	693	TGGCATCGGCTCTGGAGACCGGCGCC	752				the genomic DNA with EcoRI and cloning into the BAC	
Db	1252	CCNNCCCCCCCCCCCCCCCCCCCCCCCC					vector."	
Qy	753	ACATGAAAGGAGATCTCTGTGCGAACGAG	812				ORIGIN	
Db	1192	CCCCCCCCNNNNNNNNNNNNNNNNNNNN					Query Match	
Qy	813	ACATCATGGAGCTGGTGAACCGGAGCATG	872				Best Local Similarity	
Db	1132	CCCCCCCCNNNNNNNNNNNNNNNNNNNN					42.1%	
Qy	873	TGATCCGGTCCCGGGAGAGGGCGCCGAG	932				Matches 412; Conservative	
Db	1072	CCCCCCCCCCCCCCCCCCCCCCCCCCCC					0;	
Qy	933	CCACCCCCCCCCCTCTCTCTGGGGCT	973				Mismatches 567;	
Db	1012	CNCCCCCCCCCCCCCCCCCCCCCCCC					Indels 0;	
Qy	826	CGTGGAGGAGCTACCGAGTCTCTCGG	1067				Gaps 0;	
Db	886	CCCCCCCCCCCCCCCCCCCCCCCCCCCC						
Qy	364	CATCGCGCCGCGATCATCAAGATGG	1073					
Db	946	CACCCCCCCCCCCCCCCCCCCCCCCCC						
Qy	304	CGTGGAGGAGCTACCGAGTCTCTCGG	1073					
Db	886	CCCCCCCCCCCCCCCCCCCCCCCCCCCC						
Qy	364	CATCGCGCCGCGATCATCAAGATGG	1073					
Db	826	CACCCCCCCCCCCCCCCCCCCCCCCCC						
Qy	424	CGTGTGGAGGAGCTACCGAGTCTCTCGG	1073					
Db	766	CCCCCCCCCCCCCCCCCCCCCCCCCCCC						

QY 605 CTCGCGCCCCGGCTTACCTCATCGCCCTGACCATCCGGCACTCCGGCATCGCTC 664
 QY 926 CCCCNCGCC---cccccccccNSCCCCCNCCCCNCCCCGCCCCCCCCCCCC 981
 Db 665 GAGGAAACCTCTCGCTTCGGCTTCCTGGCATCGCTCTGCGAGCGCGCCCTC 724
 Db 982 CCCGGCCCCCGCCGGCCGGCCCCCCCCCCCCCCCCGGCCCCCGCCCC 1041
 QY 725 CTCACTAACGGCTCATGACAGAGGGCTACTGAGAAGAGTCTCTGTCGTC 784
 Db 1042 CCCCCNC 1101
 QY 785 CTCTTGGCTTCCTCTAGTGAACATCATGAGCTGATGGACCGGTGACCTGG 844
 Db 1102 CCCCGCCCCCCCCCCCCNCCGNCGGCCCCCCCCCCCCCCCCCCCCCCCC 1161
 QY 845 GACGCGATGCGCTCATCCGGCTGGCGATCCGGTCCCGAGAGGGCTGG 904
 Db 1162 CCCCCCNCCCCGNCGGCGCCGGCGCCGGCNGGGCGGCCCCCNCCCC 1221
 QY 905 CAGGAGACCTGGCGCATACCGTGACCAACCGGGCCCTCTCTCCGACCTC 964
 Db 1222 CGCCGCCCCCCCCCCCCCGNGCCCCGGCCCCCCCCCCCCNCCCCCCCC 1281
 QY 965 CGCGCTCC 973
 Db 1282 GCCCCCCC 1290

RESULT 8

AG448338/C AG448338 1874 bp DNA linear GSS 03-JUN-2004
 LOCUS Mus musculus molossinus DNA, clone:MSMg01-332E03.TU, genomic survey
 DEFINITION Mus musculus molossinus DNA, clone:MSMg01-332E03.TU, genomic survey
 ACCESSION AG448338
 VERSION AG448338.1 GI:46091401
 KEYWORDS GSS.
 SOURCE Mus musculus molossinus
 ORGANISM Eukaryota; Metazoa; Rodentia; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Mus.
 REFERENCE 1
 AUTHORS Hattori, M., Toyoda, A., Noguchi, H., Kojima, T. and Sakaki, Y.
 TITLE BAC end Sequences of Library MSMg01
 JOURNAL Unpublished
 REFERENCE 2 (bases 1 to 1874)
 AUTHORS Hattori, M., Toyoda, A., Noguchi, H., Kojima, T. and Sakaki, Y.
 TITLE Direct Submission
 JOURNAL Submitted (17-NOV-2003) Masahira Hattori, The Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center (GSC); 1-7-22 Suehiro-chou, Tsukuba-ku, Yokohama, Kanagawa 230-0045, Japan (E-mail: hattori@gc.riken.jp, URL: http://knp.gsc.riken.go.jp/; Tel: 81-45-503-9111, Fax: 81-45-503-9170)
 COMMENT Clones are derived from the mouse BAC library MSMg01. For BAC library availability, Please contact Kuniya Abe (abe@tc.riken.jp). Tsukuba Institute, Bio Resource Center, The Institute of Physical and Chemical Research (RIKEN) 3-1-1 Kiyodai, Tsukuba, 305-0074 Japan phone: 81-298-36-9189, fax: 81-298-36-9199 e-mail: abe@tc.riken.jp
 PRIMERS Sequencing : T7
 LIBRARY Vector 1 : PBACE3.6
 R.Site 1 : ECO RI
 R.Site 2 : ECO RI
 FEATURES Source
 LOCATIONS Qualifiers
 1. 1874
 /organism="Mus musculus molossinus"
 /mol_type="genomic DNA"
 /db_xref="taxon:57486"

ORIGIN

Query Match 12.8%; Score 125.4; DB 9; Length 1874;
 Best Local Similarity 41.3%; Pred. No. 2.4e-12; Matches 402; Conservative 0; Mismatches 571; Indels 0; Gaps 0;
 Matches 402; Conservative 0; Mismatches 571; Indels 0; Gaps 0;

QY 1 CGGGCGATCACCATCTCGAGSGCGGCTCACCTCACCCACAGACATCTGGCTC 60
 Db 1822 CCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCN 1763
 QY 61 CTCCCGCGATCTCCCTCCAGGCTGACCGTGTGACGCGGTGACCC 120
 Db 1762 CCCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCNCCCCN 1703
 QY 121 GAAGGCCGTCGGCGCCCTCCACCGACCCACCCGGCCACATCGTGACAGT 180
 Db 1702 CCCCGCGATCTCCCTCCAGGCTGACCGTGTGACGCGGTGACCC 1643
 QY 181 GTCCACCTTGACATOGGGCGAGCTGAGTGTGACCTCTGGCGAGGGT 240
 Db 1642 CCCCGCGATCTCCCTCCAGGCTGACCGTGTGACGCGGTGACCC 1583
 QY 241 CGTGCACATGTTGACCGGACCGACCGTCTCCATGACCTTCG 300
 Db 1582 CCCNCCNCCCCCCCCNCCCCNCCCCNCCCCCCCCCCCCCCCCCCCC 1523
 QY 301 CTCCGTGAGGAGCTTACCGAGTTCTCCGGAGATCGTACGAGATCGAGGAC 360
 Db 1522 CCCCNCCCCCCCCNCCCCCCCCNCCCCCCCCNCCCCCCCCNCCCCN 1463
 QY 361 CGGCGATCGGGCGCGATCATCAAGGGCGAACCGGGAAAGCCACCGGT 420
 Db 1462 CGCCCGACCCACCCACCCACCCACCCACCCACCCACCCACCCAC 1403
 QY 421 GCTCGCTGAAAGCGCGCCACCCCGACCTCGCTCGACCGACGGCGT 480
 Db 1402 CCNCCNCC 1343
 QY 481 CACCCCGCTCCAGGCGACGGCGAGCGAGCGACATCTGGCTGGGGCT 540
 Db 1342 CCCCGCGATCTCCCTCCAGGCTGACCGTGTGACGCGGTGACCC 1283
 QY 541 CTCCCGCTCCGGTGTGACATCGGGCACTCGGAGGACACGGAGGACTCT 600
 Db 1282 NCCCCNCC 1223
 QY 601 CGCCCTGGCGCCACCGGCTTACCTCATCGCTCGACACATCCGGCATCG 660
 Db 1222 CCCCNCC 1163
 QY 661 CCTCTGGAGACGACGCTCCAGGCTCGCTCGACATCGCTCGACGAGGGCG 720
 Db 1162 CCCCNCC 1103
 QY 721 CCTCTGGAGACGACGCTCCAGGCTCGCTCGACATCGCTCGACGAGGGCG 780
 Db 1102 CCCCCNCC 1043
 QY 781 CTGGCTCTCGCTCTCTCTAGTGAACATCATGAGCTGAGGAGATCTCGTCAA 840
 Db 1042 CCC 983
 QY 841 CGCGAGGAGCTCGCGCATGACGAGGAGCTCTCGACGAGGGCG 900
 Db 982 CCC 923
 QY 901 CGCGAGGAGCTCGCGCATGACGAGGAGCTCTCGACGAGGGCG 960
 Db 922 CCC 863

Search completed: February 12, 2005, 05:33:33
Job time : 2624 secs

THIS PAGE BLANK (USPTO)

Copyright (c) 1993 - 2005. Compugen Ltd.

GenCore version 5.1.6

Om nucleic - nucleic search, using sw model

Run on: February 12, 2005, 04:49:55 ; Search time 462 Seconds

(without alignments) 12541.670 Million cell updates/sec

Title: US-10-727-010-1

Perfect score: 982

Sequence: 1 cggccccatcacccatctccg.....tcggcgctccgtggatcaa 982

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 5378673 seqs, 2950229984 residues

Total number of hits satisfying chosen parameters: 10757346

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA:*

1: /cgn2_6/prodata/1/pubpna/us07_PUBCOMB.seq:*

2: /cgn2_6/prodata/1/pubpna/us06_NEW_PUB.seq:*

3: /cgn2_6/prodata/1/pubpna/us05_PUBCOMB.seq:*

4: /cgn2_6/prodata/1/pubpna/us07_NEW_PUB.seq:*

5: /cgn2_6/prodata/1/pubpna/PCUTS_PUBCOMB.seq:*

6: /cgn2_6/prodata/1/pubpna/PCUTS_PUBCOMB.seq:*

7: /cgn2_6/prodata/1/pubpna/us08_PUBCOMB.seq:*

8: /cgn2_6/prodata/1/pubpna/us09_PUBCOMB.seq:*

9: /cgn2_6/prodata/1/pubpna/us09A_PUBCOMB.seq:*

10: /cgn2_6/prodata/1/pubpna/us09B_PUBCOMB.seq:*

11: /cgn2_6/prodata/1/pubpna/us09C_PUBCOMB.seq:*

12: /cgn2_6/prodata/1/pubpna/us09_NEW_PUB.seq:*

13: /cgn2_6/prodata/1/pubpna/us10A_PUBCOMB.seq:*

14: /cgn2_6/prodata/1/pubpna/us10B_PUBCOMB.seq:*

15: /cgn2_6/prodata/1/pubpna/us10C_PUBCOMB.seq:*

16: /cgn2_6/prodata/1/pubpna/us10D_PUBCOMB.seq:*

17: /cgn2_6/prodata/1/pubpna/us10F_PUBCOMB.seq:*

18: /cgn2_6/prodata/1/pubpna/us10G_PUBCOMB.seq:*

19: /cgn2_6/prodata/1/pubpna/us10H_NEW_PUB.seq:*

20: /cgn2_6/prodata/1/pubpna/us10I_NEW_PUB.seq:*

21: /cgn2_6/prodata/1/pubpna/us60_PUBCOMB.seq:*

22: /cgn2_6/prodata/1/pubpna/us60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Score	Query	Match Length	DB ID	Description
1	982	100.0	982	18	US-10-727-010-1
2	982	100.0	1082	9	US-09-881-165-4
3	628	64.0	3713	17	US-10-272-351-29
4	624.6	63.6	1029	11	US-09-791-18A-3
5	566.8	57.7	1071	18	US-10-477-469-6
6	566.8	57.7	1155	18	US-10-477-469-5
7	565.2	57.6	1155	18	US-10-477-468-8
8	562	57.2	1155	18	US-10-477-467-7
9	167.4	97.9	17	US-10-282-122A-25658	
10	166.4	16.9	981	17	US-10-282-122A-28172
11	148.8	15.2	918	17	US-10-282-122A-26226

ALIGNMENTS

RESULT 1

US-10-727-010-1

; Sequence 1, Application US/10727010

; Publication No. US20040250298A1

; GENERAL INFORMATION:

; APPLICANT: Pinkerton, T. Scott

; APPLICANT: Howard, John A.

; APPLICANT: Wild, Jim R.

; TITLE OF INVENTION: Methods for Selecting and Screening for Transformants

; FILE REFERENCE: P055740S1

; CURRENT APPLICATION NUMBER: US/10/727, 010

; CURRENT FILING DATE: 2003-12-03

; PRIORITY APPLICATION NUMBER: US 60/430, 626

; PRIORITY FILING DATE: 2002-12-03

; SOFTWARE: PatentIn version 3.2

; SEQ ID NO 1

; LENGTH: 982

; TYPE: DNA

; ORGANISM: Artificial Sequence

; FEATURE:

; OTHER INFORMATION: Sequence originally obtained from *Flavobacterium sp.*, Genbank accession number M29533. Sequence translated and back-translated with BACKTRANSLATE (Wisc. GCG, ver. 9). Deleterious sequences removed with FINDPATTERN (Wisc. GCG, ver. 9).

US-10-727-010-1

Query Match 100.0%; Score 982; DB 18; Length 982; Best Local Similarity 100.0%; Pred. No. 1e-210; Mismatches 0; Indels 0; Gaps 0;

Matches 982; Conservative 0; Sequence 1, Appli

Sequence 2, Appli

Sequence 3, Appli

Sequence 4, Appli

Sequence 5, Appli

Sequence 6, Appli

Sequence 7, Appli

Sequence 8, Appli

Sequence 9, Appli

Sequence 10, Appli

Sequence 11, Appli

Sequence 12, Appli

Sequence 13, Appli

Sequence 14, Appli

Sequence 15, Appli

Sequence 16, Appli

Sequence 17, Appli

Sequence 18, Appli

Sequence 19, Appli

Sequence 20, Appli

Sequence 21, Appli

Sequence 22, Appli

Sequence 23, Appli

Sequence 24, Appli

Sequence 25, Appli

Sequence 26, Appli

Sequence 27, Appli

Sequence 28, Appli

Sequence 29, Appli

Sequence 30, Appli

Sequence 31, Appli

Sequence 32, Appli

Sequence 33, Appli

Sequence 34, Appli

Sequence 35, Appli

Sequence 36, Appli

Sequence 37, Appli

Sequence 38, Appli

Sequence 39, Appli

Sequence 40, Appli

Sequence 41, Appli

Sequence 42, Appli

Sequence 43, Appli

Sequence 44, Appli

Sequence 45, Appli

Sequence 46, Appli

Sequence 47, Appli

Sequence 48, Appli

Sequence 49, Appli

Sequence 50, Appli

Sequence 51, Appli

Sequence 52, Appli

Sequence 53, Appli

Sequence 54, Appli

Sequence 55, Appli

Sequence 56, Appli

Sequence 57, Appli

Sequence 58, Appli

Sequence 59, Appli

Sequence 60, Appli

Sequence 61, Appli

Sequence 62, Appli

Sequence 63, Appli

Sequence 64, Appli

Sequence 65, Appli

Sequence 66, Appli

Sequence 67, Appli

Sequence 68, Appli

Sequence 69, Appli

Sequence 70, Appli

Sequence 71, Appli

Sequence 72, Appli

Sequence 73, Appli

Sequence 74, Appli

Sequence 75, Appli

Sequence 76, Appli

Sequence 77, Appli

Sequence 78, Appli

Sequence 79, Appli

Sequence 80, Appli

Sequence 81, Appli

Sequence 82, Appli

Sequence 83, Appli

Sequence 84, Appli

Sequence 85, Appli

Sequence 86, Appli

Sequence 87, Appli

Sequence 88, Appli

Sequence 89, Appli

Sequence 90, Appli

Sequence 91, Appli

Sequence 92, Appli

Sequence 93, Appli

Sequence 94, Appli

Sequence 95, Appli

Sequence 96, Appli

Sequence 97, Appli

Sequence 98, Appli

Sequence 99, Appli

Sequence 100, Appli

Sequence 101, Appli

Sequence 102, Appli

Sequence 103, Appli

Sequence 104, Appli

Sequence 105, Appli

Sequence 106, Appli

Sequence 107, Appli

Sequence 108, Appli

Sequence 109, Appli

Sequence 110, Appli

Sequence 111, Appli

Sequence 112, Appli

Sequence 113, Appli

Sequence 114, Appli

Sequence 115, Appli

Sequence 116, Appli

Sequence 117, Appli

Sequence 118, Appli

Sequence 119, Appli

Sequence 120, Appli

Sequence 121, Appli

Sequence 122, Appli

Sequence 123, Appli

Sequence 124, Appli

Sequence 125, Appli

Sequence 126, Appli

Sequence 127, Appli

Sequence 128, Appli

Sequence 129, Appli

Sequence 130, Appli

Sequence 131, Appli

Sequence 132, Appli

Sequence 133, Appli

Sequence 134, Appli

Sequence 135, Appli

Sequence 136, Appli

Sequence 137, Appli

Sequence 138, Appli

Sequence 139, Appli

Sequence 140, Appli

Sequence 141, Appli

Sequence 142, Appli

Sequence 143, Appli

Sequence 144, Appli

Sequence 145, Appli

Sequence 146, Appli

Sequence 147, Appli

Sequence 148, Appli

Sequence 149, Appli

Sequence 150, Appli

Sequence 151, Appli

Sequence 152, Appli

Sequence 153, Appli

Sequence 154, Appli

Sequence 155, Appli

Sequence 156, Appli

Sequence 157, Appli

Sequence 158, Appli

Sequence 159, Appli

Sequence 160, Appli

Sequence 161, Appli

Sequence 162, Appli

Sequence 163, Appli

Sequence 164, Appli

Sequence 165, Appli

Sequence 166, Appli

Sequence 167, Appli

Sequence 168, Appli

Sequence 169, Appli

Sequence 170, Appli

Sequence 171, Appli

Sequence 172, Appli

Sequence 173, Appli

Sequence 174, Appli

Sequence 175, Appli

Sequence 176, Appli

Sequence 177, Appli

Sequence 178, Appli

Sequence 179, Appli

Sequence 180, Appli

Sequence 181, Appli

Sequence 182, Appli

Sequence 183, Appli

Sequence 184, Appli

Sequence 185, Appli

Sequence 186, Appli

Sequence 187, Appli

Sequence 188, Appli

Sequence 189, Appli

Sequence 190, Appli

Sequence 191, Appli

Sequence 192, Appli

Sequence 193, Appli

Sequence 194, Appli

Sequence 195, Appli

Sequence 196, Appli

Sequence 197, Appli

Sequence 198, Appli

Sequence 199, Appli

Sequence 200, Appli

Sequence 201, Appli

Sequence 202, Appli

Sequence 203, Appli

Sequence 204, Appli

Sequence 205, Appli

Sequence 206, Appli

Sequence 207, Appli

Sequence 208, Appli

Sequence 209, Appli

Sequence 210, Appli

Sequence 211, Appli

Sequence 212, Appli

Sequence 213, Appli

Sequence 214, Appli

Sequence 215, Appli

Sequence 216, Appli

Sequence 217, Appli

Sequence 218, Appli

Sequence 219, Appli

Sequence 220, Appli

Sequence 221, Appli

Sequence 222, Appli

Sequence 223, Appli

Sequence 224, Appli

Sequence 225, Appli

Sequence 226, Appli

Sequence 227, Appli

Sequence 228, Appli

Sequence 229, Appli

Sequence 230, Appli

Sequence 231, Appli

Sequence 232, Appli

Sequence 233, Appli

Sequence 234, Appli

Sequence 235, Appli

Sequence 236, Appli

Sequence 237, Appli

Sequence 238, Appli

Sequence 239, Appli

Sequence 240, Appli

Sequence 241, Appli

Sequence 242, Appli

Sequence 243, Appli

Sequence 244, Appli

Sequence 245, Appli

Sequence 246, Appli

Sequence 247, Appli

Sequence 248, Appli

Sequence 249, Appli

Sequence 250, Appli

Sequence 251, Appli

Sequence 252, Appli

Sequence 253, Appli

Sequence 254, Appli

Sequence 255, Appli

Sequence 256, Appli

Sequence 257, Appli

Sequence 258, Appli

Sequence 259, Appli

Sequence 260, Appli

Sequence 261, Appli

Sequence 262, Appli

Sequence 263, Appli

Sequence 264, Appli

Sequence 265, Appli

Sequence 266, Appli

Sequence 267, Appli

Sequence 268, Appli

Sequence 269, Appli

Sequence 270, Appli

Sequence 271, Appli

Sequence 272, Appli

Sequence 273, Appli

Sequence 274, Appli

Sequence 275, Appli

Sequence 276, Appli

Sequence 277, Appli

Sequence 278, Appli

Sequence 279, Appli

Sequence 280, Appli

Sequence 281, Appli

Sequence 282, Appli

Sequence 283, Appli

Sequence 284, Appli

Sequence 285, Appli

Sequence 286, Appli

Sequence 287, Appli

Sequence 288, Appli

Sequence 289, Appli

Sequence 290, Appli

Sequence 291, Appli

Sequence 292, Appli

Sequence 293, Appli

Sequence 294, Appli

Sequence 295, Appli

Sequence 296, Appli

Sequence 297, Appli

Sequence 298, Appli

Sequence 299, Appli

Sequence 300, Appli

Sequence 301, Appli

Sequence 302, Appli

Sequence 303, Appli

Sequence 304, Appli

Sequence 305, Appli

Sequence 306, Appli

Sequence 307, Appli

Sequence 308, Appli

Sequence 309, Appli

Sequence 310, Appli

Sequence 311, Appli

Sequence 312, Appli

Sequence 313, Appli

Sequence 314, Appli

Sequence 315, Appli

Sequence 316, Appli

Sequence 317, Appli

Sequence 318, Appli

Sequence 319, Appli

Sequence 320, Appli

Sequence 321, Appli

Sequence 322, Appli

Sequence 323, Appli

Sequence 324, Appli

Sequence 325, Appli

Sequence 326, Appli

Sequence 327, Appli

Sequence 328, Appli

Sequence 329, Appli

Sequence 330, Appli

Sequence 331, Appli

Sequence 332, Appli

Sequence 333, Appli

Sequence 334, Appli

Sequence 335, Appli

Sequence 336, Appli

Sequence 337, Appli

Sequence 338, Appli

Sequence 339, Appli

Sequence 340, Appli

Sequence 341, Appli

Sequence 342, Appli

Sequence 343, Appli

Sequence 344, Appli

Sequence 345, Appli

Sequence 346, Appli

Sequence 347, Appli

Sequence 348, Appli

Sequence 349, Appli

Sequence 350, Appli

Sequence 351, Appli

Sequence 352, Appli

Sequence 353, Appli

Sequence 354, Appli

Sequence 355, Appli

Sequence 356, Appli

Sequence 357, Appli

Sequence 358, Appli

Sequence 359, Appli

Sequence 360, Appli

Sequence 361, Appli

Sequence 362, Appli

Sequence 363, Appli

Sequence 364, Appli

Sequence 365, Appli

Sequence 366, Appli

Sequence 367, Appli

Sequence 368, Appli

Sequence 369, Appli

Sequence 370, Appli

Sequence 371, Appli

Sequence 372, Appli

Sequence 373, Appli

Sequence 374, Appli

Sequence 375, Appli

Sequence 376, Appli

Sequence 377, Appli

Sequence 378, Appli

Sequence 379, Appli

Sequence 380, Appli

Sequence 381, Appli

Sequence 382, Appli

Sequence 383, Appli

Sequence 384, Appli

Sequence 385, Appli

Sequence 386, Appli

Sequence 387, Appli

Sequence 388, Appli

Sequence 389, Appli

Sequence 390, Appli

Sequence 391, Appli

Sequence 392, Appli

Sequence 393, Appli

Sequence 394, Appli

Sequence 395, Appli

Sequence 396, Appli

Sequence 397, Appli

Sequence 398, Appli

Sequence 399, Appli

Sequence 400, Appli

Sequence 401, Appli

Sequence 402, Appli

Sequence 403, Appli

Sequence 404, Appli

Sequence 405, Appli

Sequence 406, Appli

Sequence 407, Appli

Sequence 408, Appli

Sequence 409, Appli

Sequence 410, Appli

Sequence 411, Appli

Sequence 412, Appli

Sequence 413, Appli

Sequence 414, Appli

Sequence 415, Appli

Sequence 416, Appli

Sequence 417, Appli

Sequence 418, Appli

Sequence 419, Appli

Sequence 420, Appli

Sequence 421, Appli

Sequence 422, Appli

Sequence 423, Appli

Sequence 424, Appli

Sequence 425, Appli

Sequence 426, Appli

Sequence 427, Appli

Sequence 428, Appli

Sequence 429, Appli

Sequence 430, Appli

Sequence 431, Appli

Sequence 432, Appli

Sequence 433, Appli

Sequence 434, Appli

Sequence 435, Appli

Sequence 436, Appli

Sequence 437, Appli

Sequence 438, Appli

Sequence 439, Appli

Sequence 440, Appli

Sequence 441, Appli

Sequence 442, Appli

Sequence 443, Appli

Sequence 444, Appli

Sequence 445, Appli

Sequence 446, Appli

Sequence 447, Appli

Sequence 448, Appli

Sequence 449, Appli

Sequence 450, Appli

Sequence 451, Appli

Sequence 452, Appli

Sequence 453, Appli

Sequence 454, Appli

Sequence 455, Appli

Sequence 456, Appli

Sequence 457, Appli

Sequence 458, Appli

Sequence 459, Appli

Sequence 460, Appli

Sequence 461, Appli

Sequence 462, Appli

Sequence 463, Appli

Sequence 464, Appli

Sequence 465, Appli

Sequence 466, Appli

Sequence 467, Appli

Sequence 468, Appli

Sequence 469, Appli

Sequence 470, Appli

Sequence 471, Appli

Sequence 472, Appli

Sequence 473, Appli

Sequence 474, Appli

Sequence 475, Appli

Sequence 476, Appli

Sequence 477, Appli

Sequence 478, Appli

Sequence 479, Appli

Sequence 480, Appli

Sequence 481, Appli

Sequence 482, Appli

Sequence 483, Appli

Sequence 484, Appli

Sequence 485, Appli

Sequence 486, Appli

Sequence 487, Appli

Sequence 488, Appli

Sequence 489, Appli

Sequence 490, Appli

Sequence 491, Appli

Sequence 492, Appli

Sequence 493, Appli

Sequence 494, Appli

Sequence 495, Appli

Sequence 496, Appli

Sequence 497, Appli

Sequence 498, Appli

Sequence 499, Appli

Sequence 500, Appli

Sequence 501, Appli

Sequence 502, Appli

Sequence 503, Appli

Sequence 504, Appli

Sequence 505, Appli

Sequence 506, Appli

Sequence 507, Appli

Sequence 508, Appli

Sequence 509, Appli

Sequence 510, Appli

Sequence 511, Appli

Sequence 512, Appli

Sequence 513, Appli

Sequence 514, Appli

Sequence 515, Appli

Sequence 516, Appli

Sequence 517, Appli

Sequence 518, Appli

Sequence 519, Appli

Sequence 520, Appli

Sequence 521, Appli

Sequence 522, Appli

Sequence 523, Appli

Sequence 524, Appli

Sequence 525, Appli

Sequence 526, Appli

Sequence 527, Appli

Sequence 528, Appli

Sequence 529, Appli

Sequence 530, Appli

Sequence 531, Appli

Sequence 532, Appli

Sequence 533, Appli

Sequence 534, Appli

Sequence 535, Appli

Sequence 536, Appli

Sequence 537, Appli

Sequence 538, Appli

Sequence 539, Appli

Sequence 540, Appli

Sequence 541, Appli

Sequence 542, Appli

Sequence 543, Appli

Sequence 544, Appli

Sequence 545, Appli

Sequence 546, Appli

Sequence 547, Appli

Sequence 548, Appli

Sequence 549, Appli

Sequence 550, Appli

Sequence 551, Appli

Sequence 552, Appli

Sequence 553, Appli

Sequence 554, Appli

Sequence 555, Appli

Sequence 556, Appli

Sequence 557, Appli

Sequence 558, Appli

Sequence 559, Appli

Sequence 560, Appli

Sequence 561, Appli

Sequence 562, Appli

Sequence 563, Appli

Sequence 564, Appli

Sequence 565, Appli

Sequence 566, Appli

Sequence 567, Appli

Sequence 568, Appli

Sequence 569, Appli

Sequence 570, Appli

Sequence 571, Appli

Sequence 572, Appli

Sequence 573, Appli

Sequence 574, Appli

Sequence 575, Appli

Sequence 576, Appli

Sequence 577, Appli

Sequence 578, Appli

Sequence 579, Appli

Sequence 580, Appli

Sequence 581, Appli

Sequence 582, Appli

Sequence 583, Appli

Sequence 584, Appli

Sequence 585, Appli

Sequence 586, Appli

Sequence 587, Appli

Sequence 588, Appli

Sequence 589, Appli

Sequence 590, Appli

Sequence 591, Appli

Sequence 592, Appli

Sequence 593, Appli

Sequence 594, Appli

Sequence 595, Appli

Sequence 596, Appli

Sequence 597, Appli

Sequence 598, Appli

Sequence 599, Appli

Sequence 600, Appli

Sequence 601, Appli

Sequence 602, Appli

Sequence 603, Appli

Sequence 604, Appli

Sequence 605, Appli

Sequence 606, Appli

Sequence 607, Appli

Sequence 608, Appli

Sequence 609, Appli

Sequence 610, Appli

Sequence 611, Appli

Sequence 612, Appli

Sequence 613, Appli

Sequence 614, Appli

Sequence 615, Appli

Sequence 616, Appli

Sequence 617, Appli

Sequence 618, Appli

Sequence 619, Appli

Sequence 620, Appli

Sequence 621, Appli

Sequence 622, Appli

Sequence 623, Appli

Sequence 624, Appli

Sequence 625, Appli

Sequence 626, Appli

Sequence 627, Appli

Sequence 628, Appli

Sequence 629, Appli

Sequence 630, Appli

Sequence 631, Appli

Sequence 632, Appli

Sequence 633, Appli

Sequence 634, Appli

Sequence 635, Appli

Sequence 636, Appli

Sequence 637, Appli

Sequence 638, Appli

Sequence 639, Appli

Sequence 640, Appli

Sequence 641, Appli

Sequence 642, Appli

Sequence 643, Appli

Sequence 644, Appli

Sequence 645, Appli

Sequence 646, Appli

Sequence 647, Appli

Sequence 648, Appli

Sequence 649, Appli

Sequence 650, Appli

Sequence 651, Appli

Sequence 652, Appli

Sequence 653, Appli

Sequence 654, Appli

Sequence 655, Appli

Sequence 656, Appli

Sequence 657, Appli

Sequence 658, Appli

Sequence 659, Appli

Sequence 660, Appli

Sequence 661, Appli

Sequence 662, Appli

Sequence 663, Appli

Sequence 664, Appli

Sequence 665, Appli

Sequence 666, Appli

Sequence 667, Appli

Sequence 668, Appli

Sequence 669, Appli

Sequence 670, Appli

Sequence 671, Appli

Sequence 672, Appli

Sequence 673, Appli

Sequence 674, Appli

Sequence 675, Appli

Sequence 676, Appli

Sequence 677, Appli

Sequence 678, Appli

Sequence 679, Appli

Sequence 680, Appli

Sequence 681, Appli

Sequence 682, Appli

Sequence 683, Appli

Sequence 684, Appli

Sequence 685, Appli

Sequence 686, Appli

Sequence 687, Appli

Sequence 688, Appli

Sequence 689, Appli

Sequence 690, Appli

Sequence 691, Appli

Sequence 692, Appli

Sequence 693, Appli

Sequence 694, Appli

Sequence 695, Appli</p

APPLICANT: BAILEY, MICHELE
 APPLICANT: GASTEL, FRANS VAN
 APPLICANT: WANG, HUAMING
 APPLICANT: WARD, MICHAEL
 APPLICANT: WOODARD, SUSAN

TITLE OF INVENTION: METHOD OF INCREASING RECOVERY OF HETEROLOCOUS ACTIVE ENZYMES PRODUCED IN PLANTS

FILE REFERENCE: 10032R

CURRENT APPLICATION NUMBER: US/09/881,165

CURRENT FILING DATE: 2001-06-14

PRIOR APPLICATION NUMBER: 60/211,732

PRIOR FILING DATE: 2000-06-15

NUMBER OF SEQ ID NOS: 5

SEQUENCE: PatentIn Ver. 2.1

SEQ ID NO: 4

LENGTH: 1082

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE: OTHER INFORMATION: Description of Artificial sequence: Synthetic DNA encoding OTHER INFORMATION: Organophosphate Hydrolase

US-09-881-165-4

Query Match 100.0% Score 982; DB 9; Length 1082; Best Local Similarity 100.0%; Pred. No. 1e-210; Matches 982; Conservatism 0; Mismatches 0; Indels 0; Gaps 0; Software: PatentIn Ver. 2.1

Query 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 480

Db 101 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 480

Query 481 CACCGCCGCGCTCCGAGCGAGCGAGCGAGCGAGCGAGCGAGCGAGCGCT 540

Db 61 CTCCCGATCCGGCGTGTCAAGGGCGCCACGGCGCCACGGCGCTGGACACCA 480

Query 541 CACCGCCGCGCTCCGAGCGAGCGAGCGAGCGAGCGAGCGAGCGAGCGCT 540

Db 161 CTCCCGATCCGGCGCTGGACATCTGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 600

Query 541 CTCCCGATCCGGCGTGTCAAGGGCGCCACGGCGAGCGAGCGAGCGAGCGCT 600

Db 601 CGCCCGTGGCGCGCGCGTACTCATCGCCGACTCGGAGCGAGCGAGCGAGCGCT 660

Query 601 CGCCCGTGGCGCGCGCGTACTCATCGCCGACTCGGAGCGAGCGAGCGAGCGCT 660

Db 660 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 660

Query 660 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 660

Db 720 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 720

Query 720 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 720

Db 780 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 780

Query 780 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 780

Db 840 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 840

Query 840 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 840

Db 900 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 900

Query 900 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 900

Db 960 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 960

Query 960 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 960

Db 982 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 982

Query 982 1 CGGCCGATCCATTCGGGGCGCTTACCCCTCACCCAGGACATCTGGCGCTC 982

RESULT 2

US-09-881-165-4

Sequence 4, Application US/09881165

Publication No. US2002003972A1

GENERAL INFORMATION:

APPLICANT: HOOD, ELIZABETH

APPLICANT: HOWARD, JOHN

Db 761 CCTCGAGGACAAGCCCTCGGGGTCGGCTCTGGATCCGGCTCTGGACAGCCGGC 820
 Qy 721 CCTCTCATCAAGGCCCTCATCGACCGGGTACATGAGACATTCCTCGTGTGCAACGA 780
 Db 821 CCTCTCATCAAGGCCCTCATCGACCGGGTACATGAGACATTCCTCGTGTGCAACGA 880
 Qy 781 CTCGGCTCTCGGTTCTCTCTTACGTGACCAACATCGGAGTGTGACCGCTGA 840
 Db 881 CTCGGCTCTCGGTTCTCTCTTACGTGACCAACATCGGAGTGTGACCGCTGA 940
 Qy 841 CCGGACGCGATGCCCTCATCCGGCTCGCGTGTGAGCCGGTGTGACCGCTGA 900
 Db 941 CCGGACGCGATGCCCTCATCCGGCTCGCGTGTGAGCCGGTGTGACCGCTGA 1000
 Qy 961 CCTCGGCGCTCTGAGTTAC 982
 Db 1061 CCTCGGCGCTCTGAGTTAC 1082

RESULT 3
 US-10-272-351-29
 ; Sequence 29, Application US/10272351
 ; Publication No. US20040005673A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Jarrell, Kevin
 ; TITLE OF INVENTION: System for Manipulating Nucleic Acids
 ; FILE REFERENCE: 2003320-0013
 ; CURRENT FILING DATE: 2002-10-15
 ; NUMBER OF SEQ ID NOS: 43
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO 29
 ; LENGTH: 3713
 ; TYPE: DNA
 ; FEATURE:
 ; OTHER INFORMATION: Description of Artificial Sequence: Presents the
 ; ORGANISM: Artificial Sequence
 ; OTHER INFORMATION: nucleotide sequence.
 ; US-10-272-351-29

Query Match Best Local Similarity 64.0%; Score 628; DB 17; Length 3713; Matches 757; Conservative 0; Mismatches 215; Indels 0; Gaps 0; Qy 1 CGGCCCGACCATCTCGAGCGCGGCTCACCTCACCCACAGACATCGGGCTC 60
 Db 139 CGGGCTCATCACACATCTCGAGCGGGTTCACACTGACTCACGACATCGGGCTC 198
 Qy 61 CTCCGGCGCTCTCCCGCCCTCGCCGGAGTCTCGGCTCCCGAAGGCCCTCGCCGA 120
 Db 199 CTCGGAGATTCTCGGCGCTCGCCAGAGTCTTCGTTAGCGCAAGCTAGCGGA 258
 Qy 121 GAAGGCCGCGCGCGCCCTCGCCGGAGTCTCGGCTCCCGAAGGCCCTCGCCGA 180
 Db 259 AAGGCTGTGAGGAGTGTGGCGCGCCAGAGCGCGCTGTGGTGGAAAGTGTGAGT 318
 Qy 181 GTCCACCTCGACATCGGCGCCACCGGGCTCGTGTGACCGCGCGCTCTCGACCTCG 300
 Db 319 GTCGACTTTCGATATCGGCGACGTCAGTTATGGCGGAGTTTCGGGCTGCGGA 378
 Qy 241 CGTCGACATGTGGCGCCACCGGGCTCGTGTGACCGCGCGCTCTCGACCTCG 300
 Db 379 CGTCGACATGTGGCGCCACCGGGCTCGTGTGACCGCGCGCTCTCGACCTCG 438
 Qy 301 CTCCGGGAGGAGCTACCGAGTCTTCGCGAGATCAGTGTGAGGTTTCGGGCTGCGGA 360
 Qy 439 GAGTGTAGGAACTCACAGTTCTCGGTRAGATCAATGGATCATCGGAGAC 498

RESULT 4
 US-09-791-138A-3/c
 ; Sequence 3, Application US/09791138A
 ; Publication No. US20040108178A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Ackerman, Eric
 ; TITLE OF INVENTION: Proteins in a porous support
 ; FILE REFERENCE: E-1741
 ; CURRENT APPLICATION NUMBER: US/09/791.138A
 ; CURRENT FILING DATE: 2001-09-20
 ; NUMBER OF SEQ ID NOS: 4
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO 3
 ; LENGTH: 1029
 ; TYPE: DNA
 ; FEATURE:
 ; ORGANISM: Unknown
 ; OTHER INFORMATION: The organism is unknown per ATCC (#67778)

Query Match Best Local Similarity 77.5%; Score 624.6; DB 11; Length 1029; Matches 756; Conservative 0; Mismatches 219; Indels 0; Gaps 0; Qy 2 GCGCGATCACATCTCGAGCGGGGCTCACCTCACCAAGACATCGGGCTC 61
 Db 977 GTGATCTACACATCTCGAGCGGGTTCACACTGACTCACGACATCTCGGAGC 918

RESULT 6

US-10-477-469-5

; Sequence 5, Application US/10477469

; Publication No. US20040161818A1

; GENERAL INFORMATION:

; APPLICANT: Horne, Irene

; APPLICANT: Sutherland, Tara

; APPLICANT: Harcourt, Rebecca

; APPLICANT: Russell, Robyn

; APPLICANT: Oakeshot, John

; TITLE OF INVENTION: Phosphotriesterase from Agrobacterium radiobacter P230

; FILE REFERENCE: 131-03

; CURRENT APPLICATION NUMBER: US/10/477,469

; CURRENT FILING DATE: 2003-11-12

; PRIOR APPLICATION NUMBER: PCT/AU02/000594

; PRIOR FILING DATE: 2002-05-15

; PRIOR APPLICATION NUMBER: AU PR 5023

; PRIOR FILING DATE: 2001-05-15

; NUMBER OF SEQ ID NOS: 17

; SOFTWARE: Patentin version 3.1

; SEQ ID NO 5

; LENGTH: 1155

; TYPE: DNA

; ORGANISM: Agrobacterium radiobacter

US-10-477-469-5

Query Match 57.7%; Score 566.8; DB 18; Length 1155;

Best Local Similarity 74.0%; Pred. No. 8.8e-118;

Matches 718; Conservative 0; Mismatches 252; Indels 0; Gaps 0;

Qy 1 CGGGCGGATCCATCTCCGGGGCGCTTACCCCTCACCAAGGACATCTGGGCTC 60

Db 120 GGGCCCATTCAGTTTCGAGCGCGCTTACACTGACCCATGATCTGGGAG 179

Qy 61 CTCCGCGGGCTCTCCCGCGCTGGCGGAGGCTCTGGCGCCCGAGGGCA 120

Db 180 TTGGGGGATTCCTAAGTGGTGGCGGAGTTTGGTAGCCGAAAGCTAGGGA 239

Qy 121 GAAGGCGGTGGCGGCCCTCCCGGCCGCGCCACGCTGGAGCT 180

Db 240 AAAGGTGTGAGGATTAACCATGCCAGTACGGCTGGCGAACCTCTGGATG 299

Qy 181 GTCCACCTGCACATGGCGGACGTGCTCTGGCGGAGGTTCCCGGCGCGA 240

Db 300 GTGCACTTCATATGGTCTGACGCTCGTATGGCGAAGTTTCGGGCGCGA 359

Qy 241 GTGCACTTCGCGGCCACGGCTCTGAGCTTCATGGCGCTCG 300

Db 360 GGTGCACTTCGCGGCCACGGCTATGGTCACTTCATGGGAATGG 419

Qy 301 CTCCGTTGAGGAGTCACCCAGTCTCTCGGAGATCCAGTAGGGATGAGAC 360

Db 420 GAGCGTGAAGGAGACTGACCGCTCTCTCGGAAATCCACATGGATGAGAC 479

Qy 361 CGGCATCCGGCGGCGATCATGGGCGACCCGCAAGCCACCCGTCAGG 420

Db 480 CGTATGGCGGCGCATPATCAAGTCGGCGACCGAAGGGCGCCCTTCAGA 539

Qy 421 GCTCGTCAAGGGCGCCCGCCCTCGCCACGGCGTGGCGTACACCA 480

Db 540 GTGGTGTAAAGGAGCGGGCGACGCGCTGGCGACGGCTTCGGTAACACTGA 599

Qy 481 CACCCGCGCTCCAGCGGAGCGAGCGCCCATCTTCGAGTCAGGGCT 540

Db 600 CAGTCGAGTCAGCGCATGGCGAGCGAGCGCATATGAAATCGGAGGTT 659

Qy 541 CTCCCGTCCGGCTGATGGCGACCCGAGACCTCTCCAC 600

Db 60 GAGCCCTCAAGGGTTGATCGGTCAGCGATGATGAGCTTGGACTAAC 719

Qy 601 CGCCCTCGGCCCGCCAGCTACCTCATCGCCCTGACCCACATCCGCACACTCGCAGATGG 660

Db 720 CGCTCTGCTGGCGCGATACTCTGTCGTTTAAATGATCGATGCGTACGTGGATGG 779

Qy 61 CCTCGAGGAACCGCTTCCGGCGACCCCTTCGGCGACCGCTCGCGC 720

Db 780 TCTAGAGGAAATGGAGTCATTAGCGCTCTTGGTACTCGGTGGCAACAGGSC 839

Qy 721 CCTCTCATGAGCGCTCTGGCGACGGCTACATGAGCGAGTCCTCGTGTGCAACGA 780

Db 840 TCTCTGATGAGGCGCTCATGACCGAGCTACAGGATGAAATCTCTGTCTCCGATGA 899

Qy 781 CTGGCTTCGGCTCTCCCTAGTGGACCAACATCATGAGCGTGTGAGACGGTGA 840

Db 900 CTGGTGTGGGTTGGCTGAGCTATGAGACGTCAGTCAGGAGCTATGATCCATAAA 959

Qy 841 CCGGAGGCGCATGCGCTTACCCCTCCCGTGTGATCTCCGCGAGAGGGCT 900

Db 960 CCCAGTGGATGGCTTCCTCTGAGAGTGAATCTTACAGGAGAAGGGCT 1019

Qy 901 GCGGAGGAGACCGTGGCGCATCACCTGACCAACCCGGCGACTCTCCGAC 960

Db 1020 CCCCGGAAACGCTAGCGGTACCGTGGCAATCCGGCGATCTGTCACCGAC 1079

Qy 961 CCTCGGGCC 970

Db 1080 CCTGGAGGC 1089

US-10-477-469-8

RESULT 7

US-10-477-469-8

; Sequence 8, Application US/10477469

; Publication No. US20040161818A1

; GENERAL INFORMATION:

; APPLICANT: Horne, Irene

; APPLICANT: Sutherland, Tara

; APPLICANT: Harcourt, Rebecca

; APPLICANT: Russell, Robyn

; APPLICANT: Oakeshot, John

; TITLE OF INVENTION: Phosphotriesterase from Agrobacterium radiobacter P230

; FILE REFERENCE: 131-03

; CURRENT APPLICATION NUMBER: US/10/477,469

; CURRENT FILING DATE: 2003-11-12

; PRIOR APPLICATION NUMBER: PCT/AU02/000594

; PRIOR FILING DATE: 2002-05-15

; PRIOR APPLICATION NUMBER: AU PR 5023

; PRIOR FILING DATE: 2001-05-15

; NUMBER OF SEQ ID NOS: 17

; SOFTWARE: Patentin version 3.1

; SEQ ID NO 8

; LENGTH: 1155

; TYPE: DNA

; ORGANISM: Artificial Sequence

; FEATURE:

; OTHER INFORMATION: Mutant of Opda

US-10-477-469-8

Query Match		57.6% ; Score 565.2; DB 18; Length 1155;	RESULT 8
Best Local Similarity	73.9% ; Pred. No. 2e-117;	;	Seq-10-477-469-7
Matches	717; Conservative	0; Mismatches 253; Indels 0; Gaps 0;	Sequence 7, Application US/10477469
1	CGGCGGATCACATTCGGAGCGCGTTACCCACCCCGAGCACATGGCGCTC	;	Publication No. US2004011818A1
b		;	GENERAL INFORMATION
120	CGGCCCCATTCAGTTCGGAGCGCGCTCACATGGCGCTCAGCGATATCGCGCAG	;	APPLICANT: Horne, Irene
b		;	APPLICANT: Sutherland, Tara
61	CTCCGGGCTTCCTCGCGCTGGCGAGTCTGGCTCCGGCGCTCGCGCTCGCGCAG	;	APPLICANT: Harcourt, Rebecca
b		;	APPLICANT: Russell, Robyn
180	TTCGCGGATTCAGTTCAGTGGCGAGTTGGGAGCGCGCTCGCGCGCTCGCGA	;	APPLICANT: Okeeshot, John
b		;	TITLE OF INVENTION: Phosphotriesterase from Agrobacterium radiobacter P230
121	GAAGGCGTGGCGCTCCCGCGCCGGCGCCATCGTGGCGT	;	FILE REFERENCE: 131-03
b		;	CURRENT APPLICATION NUMBER: US/10/477,469
240	AAAGGCTGTGAGAGGATACGCCATGCCAGATCGCTGGCGTCAACCATGTCGATG	;	CURRENT FILING DATE: 2003-11-12
b		;	PRIOR APPLICATION NUMBER: PCT/AU02/000594
181	GTCCACCTTCGACATGGCGCGACGCGTGGCGAGTTGGGAGCGCGCTCGCGA	;	PRIOR FILING DATE: 2002-05-15
b		;	PRIOR APPLICATION NUMBER: AU PR 5023
300	GTCGACTTCGATATCGTCGAGCGTCCGGTTATGGCGCGAGTTCGCGAGCG	;	PRIOR FILING DATE: 2001-05-15
b		;	NUMBER OF SEQ ID NOS: 17
241	CCTGCGATCTGGCGCCACCGGCTCTGGTCGACGCCCGCGCTCCATCGCGCTCG	;	SOFTWARE: PatentIn version 3.1
b		;	SEQ ID NO 7
360	CGTGCGATCTGGCGCCACCGGCTCTGGTCGACGCCCGCGCTCAATCGCGCTCG	;	LENGTH: 1155
b		;	TYPE: DNA
301	CTCCGGGAGGAGTCACCCAGTCTCTCGCGAGATCCAGTACGGCATGGAGAC	;	ORGANISM: Artificial Sequence
b		;	FEATURE:
420	CAGCGTGGAGACTGACGCCAGTCTCTCGCGACGACTTCGTCGTAATCGAGAC	;	OTHER INFORMATION: Mutant of Opda
b		;	US-10-477-469-7
Query Match		57.2% ; Score 552; DB 18; Length 1155;	;
Best Local Similarity	73.7% ; Pred. No. 1e-116;	;	;
Matches	715; Conservative	0; Mismatches 255; Indels 0; Gaps 0;	;
Qy	1 CGGCGGATCACATTCGGAGCGCGCTTACCCACCCCGAGCACATCGCGCTC	;	;
b		;	;
481	CACCGCCGCTCCAGGGAGCGGGAGCGAGGGCGCCATCTCGAGTCGAGGGCT	;	;
b		;	;
600	CACGTCAGCACTGAGCGCTAGCGCTGGCGATGCGAGCGAGCGCTCGCGATTTGGCGT	;	;
b		;	;
541	CTCCCGGCTCCGGCGTGGCATCGGCGCTCTCGACGACCCGAGACCTCTCGTACACCTCA	;	;
b		;	;
540	GTGGGTTTAAGGGAGCGAGCGACGCTTGGCGACCCGCTGGTACCGACCTCA	;	;
b		;	;
480	CACCGCCGCTCCAGGGAGCGGGAGCGAGGGCGCCATCTCGAGTCGAGGGCT	;	;
b		;	;
421	GTCGCGTCAAGGCGCTTACCCAGGCGTCTCCCGAGGATTCGCGATCGCGCT	;	;
b		;	;
659	CTCCCGGCTCCGGCGTGGCATCGGCGCTCTCGACGACCCGAGACCTCTCGTACACCTCA	;	;
b		;	;
599	GTGGGTTTAAGGGAGCGAGCGACGCTTGGCGACCCGCTGGTACCGACCTCA	;	;
b		;	;
61	CACCGCCGCTCCAGGGAGCGGGAGCGAGGGCGCCATCTCGAGTCGAGGGCT	;	;
b		;	;
660	GAGCCCTCAAGGGTGTATCGTCGTCAGCGATGATCTGAGCTTGAGCTAAC	;	;
b		;	;
679	CGGGCTGGCGCCACCGCTCTCTCGACGACCCGAGACCTCTCGGCGACGG	;	;
b		;	;
720	CGGGCTGGCGCCACCGCTCTCTCGACGACCCGAGACCTCTCGGCGACGG	;	;
b		;	;
720	CCTCGAGAACGCGCTCCAGGGAGCGAGGGCTCTCGACGACCCGAGACCTCTCGGCGACGG	;	;
b		;	;
720	CCTCGAGAACGCGCTCCAGGGAGCGAGGGCTCTCGACGACCCGAGACCTCTCGGCGACGG	;	;
b		;	;
780	TCTAGAGGCGATCGCGATCGCTGAGCGCTCTGGTACTCGGTGCGAGAACAGGGC	;	;
b		;	;
839	CTCCCGGCTCCGGCGTGGCATCGGCGCTCTCGACGACCCGAGACCTCTCGTACACCTCA	;	;
b		;	;
721	CCTCCCTCATCGAGGCCATCGACCGAGGGCTACATCGAGCGATCTCGTACACCTCA	;	;
b		;	;
780	CTCCCGGCTCCGGCGTGGCATCGGCGCTCTCGACGACCCGAGACCTCTCGTACACCTCA	;	;
b		;	;
840	TCTCTGATCGAGGCCATCGACCGAGGGCTACAGGATCGATCGTACACCTCA	;	;
b		;	;
899	CTGGCGTCTCGCTCTCTACCGACCGACATCGAGCGTGTGGACCGCGAGA	;	;
b		;	;
781	CTGGCGTCTCGCTCTCTACCGACCGACATCGAGCGTGTGGACCGCGAGA	;	;
b		;	;
840	CTGGCGTCTCGCTCTCTACCGACCGACATCGAGCGTGTGGACCGCGAGA	;	;
b		;	;
900	CTGGCGTCTCGCTCTCTACCGACCGACATCGAGCGTGTGGACCGCGAGA	;	;
b		;	;
841	CCCGCGAGGCATGGCTCATCCCGCCCGCGCTGATCCGTRCTCGCGAGAGGGCT	;	;
b		;	;
900	CTGGCGTCTCGCTCTCTACCGACCGACATCGAGCGTGTGGACCGCGAGA	;	;
b		;	;
1019	CCCGAGATGGATGGCTCTCGAGACTGATCGCTTACCTACAGAGAAGGGCT	;	;
b		;	;
901	GCCGCGAGGACCTCGCGGATCACCGTACCGACCGCGCGCTCTCGTACCGAC	;	;
b		;	;
960	CCCGCGAGGACCTCGCGGATCACCGACCGCGCGCTCTCGTACCGAC	;	;
b		;	;
1020	CCCGCGAGGACCTCGCGGATCACCGACCGCGCGCTCTCGTACCGAC	;	;
b		;	;
960	CCTCGGGGCC 970	;	;
b		;	;
1080	CTCGCGGCC 1089	;	;

RESULT 10
 US-10-282-122A-28172
 ; Sequence 28172, Application US/10282122A
 ; Publication No. US20040029129A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Wang, Liangsu
 ; APPLICANT: Zamudio, Carlos
 ; APPLICANT: Malone, Cheryl
 ; APPLICANT: Haselbeck, Robert
 ; APPLICANT: Zyskind, Judith
 ; APPLICANT: Wall, Daniel
 ; APPLICANT: Trawick, John
 ; APPLICANT: Carr, Grant
 ; APPLICANT: Yamamoto, Robert
 ; APPLICANT: Forbyth, R.
 ; APPLICANT: Xu, H.
 ; TITLE OF INVENTION: Identification of Essential Genes in Microorganisms
 ; FILE REFERENCE: ELITRA_034A
 ; CURRENT APPLICATION NUMBER: US/10/282,122A
 ; CURRENT FILING DATE: 2003-02-20
 ; PRIOR APPLICATION NUMBER: 60/191,078
 ; PRIOR FILING DATE: 2000-03-21
 ; PRIOR APPLICATION NUMBER: 60/206,848
 ; PRIOR FILING DATE: 2000-05-23
 ; PRIOR APPLICATION NUMBER: 60/207,727
 ; PRIOR FILING DATE: 2000-05-26
 ; PRIOR APPLICATION NUMBER: 60/230,335
 ; PRIOR FILING DATE: 2000-09-06
 ; PRIOR APPLICATION NUMBER: 60/230,347
 ; PRIOR FILING DATE: 2000-10-23
 ; PRIOR APPLICATION NUMBER: 60/253,625
 ; PRIOR FILING DATE: 2000-11-27
 ; PRIOR APPLICATION NUMBER: 60/257,931
 ; PRIOR FILING DATE: 2000-12-22
 ; PRIOR APPLICATION NUMBER: 60/267,636
 ; PRIOR FILING DATE: 2001-03-09
 ; PRIOR APPLICATION NUMBER: 60/269,308
 ; PRIOR FILING DATE: 2001-02-16
 ; Remaining Prior Application data removed - See File Wrapper or PALM.
 ; SOFTWARE: PatentIn version 3.1
 ; SEQ ID NO: 28172
 ; LENGTH: 981
 ; TYPE: DNA
 ; ORGANISM: Mycobacterium tuberculosis
 ; US-10-282-122A-28172

Query Match 16.9%; Score 166.4; DB 17; Length 981;
 Best Local Similarity 55.5%; Bred. No. 3.8e-28;
 Matches 382; Conservative 0; Mismatches 276; Indels 30; Gaps 2;

QY 1 CGGCCGATCACCATCCGAGGCGCTTACCCCTACCCAGCAGCTCTGGGCTC 60
 Db 24 CGGACCATGACACCGCTGATCTGGCTACCGCTGATGACGAGCACCTCTCAT 83
 QY 61 CTCCCGCGGCTCCRCGCGCTGCGGAACTCTGGCTCCCGAAGGCCCTGGCGA 120
 Db 84 GACCAACGAGATGCCAGAACTACCGGGAACTGGGGAGCAGGAGCAGGGTGGC 143
 QY 121 GAAGCGCTGGGGCTCCCGCGGCGGCTGGGACCTCTGGGACT 180
 Db 144 CGGCCGATGCCGCTGGGCGGCTAGGCGAACTCAAGGCCGAGGCGACCTGGGACT 203
 QY 181 GTCCACCTGGACATCGGCCGACCTCTGGGAGGAGTCCGGCGGCCGA 240
 Db 204 CACGGTGTGGCTGGCGATACCTCCCGCATGGCGGGTGGCGGGCACCGA 263
 QY 241 CGTGCACATGGGCGGCCGAGGCGCTGGCTGACCCCGCGCTGGCG 300

Db 264 GCTGAACTATGTCGTCGCCACGGCTTGTACACCTAACGACGCCGTCGTCGTC 323
 QY 301 CTCCGT-----GGAGGACTCACCCAGTCTCTCCG 333
 Db 324 CTACCTGGGGGGGAGCACAGCTGGACGCCCGGAGATCATGACGACATGGTGGCCG 383
 QY 334 CGAGATCAGTACGSGCATCAGGACACCGCATCGGGGCTCATGAGGGCGCAC 393
 Db 384 CGACATGGACGGGATCGGCCGACCCGGCATCAAGGGGGAACTCTCAAGTGGCCAC 443
 QY 394 CACCGCAAGGC--CACCGTTCAAGGAGCTGTGCTCAAGGCCGCCCGCCTC 450
 Db 444 CGACGAAACGGCTCACCCCTGGTGTGAGGCTGGCCGGTGGCCCAAAGCACA 503
 QY 451 CCTCGCCACCGGGTGGACCCAAQACCCCGGCTCCAGGCAACGGGAGCA 510
 Db 504 CAAGGACCGGGGGCGCATCTCCACCCACACCCAGGGGGGGGGCGCTG 563
 QY 511 GCACGCCGCTCTGGAGTCGGGGCCCTTCCCGTCCGGCTGCTGACCACTC 570
 Db 564 CCAGCAAGGATCTCGCCAGGGGGTGGACCTGAGCGGGTGGTTATCGGACATG 623
 QY 571 CGACGACACGAGCTCTACCTACCGCCCTGGCGCGGGTACCTCATCG 630
 Db 624 CGGGAAGACCGACGAGCTGGCTGAGCTGGAGAGAGCTCATGCCCGCGCTCG 683
 QY 631 CCTCGACACATCCGGACTCCGCCAT 658
 Db 684 GATGGACCGGTTGGCGACGAGTAC 711

RESULT 11
 US-10-282-122A-26226
 ; Sequence 26226, Application US/10282122A
 ; Publication No. US20040029129A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Wang, Liangsu
 ; APPLICANT: Zamudio, Carlos
 ; APPLICANT: Malone, Cheryl
 ; APPLICANT: Haselbeck, Robert
 ; APPLICANT: Zyskind, Judith
 ; APPLICANT: Wall, Daniel
 ; APPLICANT: Trawick, John
 ; APPLICANT: Carr, Grant
 ; APPLICANT: Yamamoto, Robert
 ; APPLICANT: Forbyth, R.
 ; APPLICANT: Xu, H.
 ; TITLE OF INVENTION: Identification of Essential Genes in Microorganisms
 ; FILE REFERENCE: ELITRA_034A
 ; CURRENT APPLICATION NUMBER: US/10/282,122A
 ; CURRENT FILING DATE: 2003-02-20
 ; PRIOR APPLICATION NUMBER: 60/191,078
 ; PRIOR FILING DATE: 2000-03-21
 ; PRIOR APPLICATION NUMBER: 60/206,848
 ; PRIOR FILING DATE: 2000-05-23
 ; PRIOR APPLICATION NUMBER: 60/207,727
 ; PRIOR FILING DATE: 2000-05-26
 ; PRIOR APPLICATION NUMBER: 60/230,335
 ; PRIOR FILING DATE: 2000-09-06
 ; PRIOR APPLICATION NUMBER: 60/230,347
 ; PRIOR FILING DATE: 2000-09-09
 ; PRIOR APPLICATION NUMBER: 60/242,578
 ; PRIOR FILING DATE: 2000-10-23
 ; PRIOR APPLICATION NUMBER: 60/253,625
 ; PRIOR FILING DATE: 2000-11-27
 ; PRIOR APPLICATION NUMBER: 60/257,931
 ; PRIOR FILING DATE: 2000-12-22
 ; PRIOR APPLICATION NUMBER: 60/267,636
 ; PRIOR FILING DATE: 2001-02-09
 ; PRIOR APPLICATION NUMBER: 60/269,308
 ; PRIOR FILING DATE: 2001-02-16
 ; Remaining Prior Application data removed - See File Wrapper or PALM.

Qy 484 CCGCCGCTCCAGCGACCGAGCAGGCCCATCTCGAGTCGGGCTCTC 543
 Db 666 CGCATCGCATCCGATCGCTCGTCGATCGCATCGATCGATCGAT 607
 Qy 544 CCGGTCGGCTGATCGCCACTCGAGAACCGACCTCTCTACTAACCGC 603
 Db 606 CGGCGTCAGCTCAGATCGGATCGGTAGCATCGCTCGGATCGGAT 547
 Qy 604 CCTCGCGCGGGTACTCTATCGCTTGACCATCCGACTCCGACATCGGCT 663
 Db 546 CTGATCGGCTCAGGTAGCATCGGTAGCATCGATCGGATCTCGATCGGAT 487
 Qy 664 CGAGGACAACCGCTCGCATCGGATCGGCTCTCGGATCGGATCGGCT 723
 Db 486 CGCATCGCATCTGATCGGATCGGTAGCATCGGCTCGGATCGGATCGGAT 427
 Qy 724 CCTCATCAAGCCCTCATCGACCGGCTAGTGAAGCAGATCTGTGTCAGACTG 783
 Db 426 CGGGTCAGCATCGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 367
 Qy 784 GCTCTGGCTCTCTCTCTGACCAACATCATCGACCTGTGACCGCGTGAACC 843
 Db 366 CGCATCGCATCGGTAGCATCGGTAGCATCGGATCGGATCGGATCGGAT 307
 Qy 844 GGACCGCATCGCTCATCGCTCGGT---GATCCGTCCTCGGAGAAGGGT 900
 Db 306 CGCGTCGGCATCCGATCGGATCGGTAGCATCGGATCGGATCGGATCGGAT 247
 Qy 901 GCGCAGGAGCCCTCGGATCACGTCACCAACCCGGCCGCTCTCTCCGAC 960
 Db 246 CGGGTCAGCATCCGATCCGATCGGATCGGATCCGATCCGATCGGAT 187
 Qy 961 C 961
 Db 186 C 186

RESULT 15
 US-10-398-221-613
 ; Sequence 613: Application US/10398221
 ; Publication No. US20040018514A1
 ; GENERAL INFORMATION:
 ; APPLICANT: KUNST, Frederik
 ; APPLICANT: GLASER, Philippe
 ; TITLE OF INVENTION: Listeria innocua, genome and applications
 ; FILE REFERENCE: 344 702 - US
 ; CURRENT APPLICATION NUMBER: US/10/398,221
 ; CURRENT FILING DATE: 2003-03-27
 ; PRIOR APPLICATION NUMBER: PCT/FR 01/03 061
 ; PRIOR FILING DATE: 2001-10-04
 ; PRIOR APPLICATION NUMBER: FR 00/12 697
 ; PRIOR FILING DATE: 2000-10-04
 ; NUMBER OF SEQ ID NOS: 4025
 ; SOFTWARE: PatentIn version 3.0
 ; SEQ ID NO: 613
 ; LENGTH: 1311
 ; TYPE: DNA
 ; ORGANISM: Listeria innocua
 ; US-10-398-221-613

Query Match 12.5%; Score 122.6; DB 17; Length 1311;
 Best Local Similarity 46.2%; Pct. No. 2.4e-18; Job No. 444;保守性 0; Mismatches 514; Indels 3; Gaps 1;
 Matches 444; Conservative 0; Mismatches 514; Indels 3; Gaps 1;

Qy 4 CCGGTCGGCTCTCGGACCGGAGGATCGGATCGGCTCTCGGCTCTC 63
 Db 190 CGCATCGCATCGATCGGATCGGTAGCATCGGATCGGATCGGATCGGAT 249
 Qy 64 CGCGGCTCTCGGACCTGGGAGGTTCTCGCTCCGCAAGGGCTCGGAGAA 123
 Db 250 CGCATCGCATCGGATCGGATCGGTAGCATCGGATCGGATCGGATCGGAT 309
 Qy 124 GCGGTCGGCCGCTCGGCGCCGGCGCCGGCGACATCGGATCGGATCGGAT 183

Db 310 CGCATCGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 369
 Qy 184 CACCTTGACATCGGCGACGCTCTCCCTCTCGGAGGTCGGGGCGGAAGT 243
 Db 370 CGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 429
 Qy 244 GCGATCGTGGCCACCGGCTCTGTTGACCCGGGCTCTCATGGGCTTCGTC 303
 Db 430 CGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 489
 Qy 304 CGTGGAGGAGTCACCGAGTCTCTCCCGGAGATCCGATCCGATCCGATCCG 363
 Db 490 CGCATCGGCTCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 549
 Qy 364 CATCGGGGGGATCATCGAGGGGACACCGGAGGCGACCCGTTCCAGGAGT 423
 Db 550 CGCGTGGGCTCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 609
 Qy 424 GGTGTCAGGGCGCGGCGGGGCTCTGGACCCGGGTTGGGGTGGGGTGGACCC 483
 Db 610 CGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 669
 Qy 484 CGCGGCTCCAGCGGACGAGGCGACCCGACATCTCGGATCGGATCGGATCGGAT 543
 Db 670 CGCATCGGATCCGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 729
 Qy 544 CGCGTCGGCTGTCGATCGGACATCGGAGACCCGAGACCTCTCTACCTCACCG 603
 Db 730 CGCGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 789
 Qy 604 CCTCGGCCCCGGCTACCTCATCGGCTGACCACTCCGACTCCGATCGGCT 663
 Db 790 CTGATCGGCTACGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 849
 Qy 664 CGAGGACACCGCTCGGTCGCGCTCTCGGATCGGATCGGATCGGATCGGAT 723
 Db 850 CGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 909
 Qy 724 CCTCATCAAGCCCTCATCGGACCGGATCATCGAGAGATCTCGGATCGGATCGGAT 783
 Db 910 CGCGTGGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 969
 Qy 784 GCTCTGGCTCTCTCTGACCAACATCATCGGATCGGATCGGATCGGATCGGAT 843
 Db 970 CGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 1029
 Qy 844 GGACCGCATCGCTCATCGGCTCGGT---GATCCGTCCTCGGAGAAGGGT 900
 Db 1030 CGCGTCGGCATCCGATCCGATCGGATCGGATCGGATCGGATCGGATCGGAT 1089
 Qy 901 GCGCAGGAGCCCTCGGCGCATCACGTCACCGAGACCCGGCCCTCTCTCCGCGAC 960
 Db 1090 CGCGTCAGCATCGGATCGGATCGGATCGGATCGGATCGGATCGGATCGGAT 1149
 Qy 961 C 961
 Db 1150 C 1150

Search completed: February 12, 2005, 06:40:04
 Job time : 478 secs

THIS PAGE BLANK (USPTO)

OM nucleic - nucleic search, using sw model

Run on: February 12, 2005, 03:49:14 ; Search time 153 Seconds (without alignments)

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 1202784 seqs, 818138359 residues

Total number of hits satisfying chosen parameters: 2405568

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Issued Patients NA:*

1: /cgnd_6/prodata1/ina/5A, COMB seq: *
2: /cgnd_6/prodata1/ina/5B, COMB seq: *
3: /cgnd_6/prodata1/ina/6A, COMB seq: *
4: /cgnd_6/prodata1/ina/6B, COMB seq: *
5: /cgnd_6/prodata1/ina/PCUS, COMB seq: *
6: /cgnd_6/prodata1/ina/backfile1.seq: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	982	100.0	1082	4	US-09-881-165-4
2	628.8	64.0	7560	3	US-08-844-214-20
3	628.8	64.0	7560	4	US-09-598-421-20
4	627.2	63.9	1341	6	5484728
5	627.2	63.9	1341	6	5484728
6	627.2	63.9	1693	3	US-09-03-450-3
7	627.2	63.9	6723	3	US-08-844-214-14
8	627.2	63.9	6723	4	US-09-598-421-14
9	624	63.5	6723	3	US-08-844-214-13
10	624	63.5	6723	4	US-09-598-421-13
11	166.4	16.9	4403765	3	US-09-103-340A-2
12	166.4	16.9	441529	3	US-09-103-340A-1
13	137	14.0	1926	3	US-09-249-565A-4
14	137	14.0	1931	2	US-09-130-114-2
15	110.8	11.3	1208	2	US-08-043-82D-4
16	110.8	11.3	1208	3	US-08-510-66B-4
17	110.8	11.3	1208	3	US-09-231-818-4
18	110.8	11.3	1208	4	US-09-635-319B-4
19	110.8	11.3	53392	2	US-08-403-82D-1
20	110.8	11.3	53392	3	US-08-510-646B-1
21	110.8	11.3	53392	3	US-09-231-818-1
22	110.8	11.3	53392	4	US-09-635-319B-1
23	109.6	11.2	4466	4	US-09-410-551B-20
24	109.6	11.2	4466	4	US-09-940-316B-20
25	109.6	11.2	4478	4	US-09-410-551B-16
26	109.6	11.2	4478	4	US-09-940-316B-16
27	109.6	11.2	4547	4	US-09-410-551B-22

RESULT 1

US-09-881-165-4

Sequence 4, Application US/09881165

Patent No. 6632930

GENERAL INFORMATION:

APPLICANT: HOOD, ELIZABETH

APPLICANT: HOWARD, JOHN

APPLICANT: BAILEY, MICHELE

APPLICANT: GASTEL, FRANS VAN

APPLICANT: WANG, HUAMING

APPLICANT: WARD, MICHAEL

APPLICANT: WOODARD, SUSAN

TITLE OF INVENTION: METHOD OF INCREASING RECOVERY OF HETEROLOGOUS ACTIVE ENZYMES PRODUCED IN PLANTS

FILE REFERENCE: 10032R

CURRENT APPLICATION NUMBER: US/09/881,165

CURRENT FILING DATE: 2001-06-14

PRIOR APPLICATION NUMBER: 6/211,732

PRIOR FILING DATE: 2000-06-15

NUMBER OF SEQ ID NOS: 5

SOFTWARE: PatentIn Ver. 2.1

SEQ ID NO 4

LENGTH: 1082

TYPE: DNA

ORGANISM: Artificial Sequence

FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic DNA encoding OTHER INFORMATION: Organophosphate Hydrolase

US-09-881-165-4

Query Match 100.0%; Score 982; DB 4; Length 1082; Best Local Similarity 100.0%; Pred. No. 1.8e-160; Matches 982; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 1 CGGGCGGATCACCCTCCGGCTACCCCTAACCGAGCACATCTGGGTC

QY 1 CGGGCGGATCACCCTCCGGCTACCCCTAACCGAGCACATCTGGGTC

Db 101 CGGGCGGATCACCCTCCGGCTACCCCTAACCGAGCACATCTGGGTC

Db 120 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

Db 160 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

QY 61 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

QY 161 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

QY 160 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

QY 121 GAAGGGGTGGCGGCTCCCGGCGCCGGCGCCGGCGCCGGCGCC

QY 180 CTCCGGGGCTCTCCGGGCTGGGGAGTCTGGCTCCGCAAGCCCTCGGA

Db 221 GAAGGGGTGGCGGCTCCCGGCGCCGGCGCCGGCGCC

Db 280 181 GTCGACCTTCGACATGGCGCGACGCTGTCCTCTCGCCAGGCTCCGCGGAGTCTGGCTCCGCAAGCCCTCGGA

Db 220 GTCGACCTTCGACATGGCGCGACGCTGTCCTCTCGCCAGGCTCCGCGGAGTCTGGCTCCGCAAGCCCTCGGA

Db 240 281 GTCGACCTTCGACATGGCGCGACGCTGTCCTCTCGCCAGGCTCCGCGGAGTCTGGCTCCGCAAGCCCTCGGA

Db 340 340

ALIGNMENTS

TYPE: DNA
 ORGANISM: Artificial Sequence
 FEATURE: OTHER INFORMATION: Description of Artificial Sequence:p3E1.2hb/opd
 US-08-844-274-20

Query Match 64 0%: Score 628 8; DB 3; Length 7560;
 Best Local Similarity 77.8%; Pred. No. 1e-99; Mismatches 217; Indels 0; Gaps 0;
 Matches 759; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

QY 341 CGTGCACTCTGCGCCACCGCCACCCGCGCCCTCTCATGGCCCTCG 300
 301 CTCCGTGAGGACTCTACCAAGTCTTCCTCGGAGATCCAGTACGGATCGAGAC 360
 401 CTCCGTGAGGACTCTACCAAGTCTTCCTCGGAGATCCAGTACGGATCGAGAC 460

QY 361 CGGCATCCGGCCCGCATCATCAAGTGTGGCACCCGGCAAGGCCACCGGTCAGGA 420
 461 CGGCATCCGGCCCGCATCATCAAGTGTGGCACCCGGCAAGGCCACCGGTCAGGA 520

QY 421 GCTCGTGTCAAGGCCCGCCGGCCGGCTCCCTCGCCACCGGCTGGCGTGGAC 480
 521 GCTCGTGTCAAGGCCCGCCGGCCGGCTCCCTCGCCACCGGCTGGCGTGGAC 580

QY 481 CACCGCCGCTCCAGCCGACGGAGGAGGAGGAGGAGGAGGAGGAC 540
 581 CACCGCCGCTCCAGCCGACGGAGGAGGAGGAGGAGGAGGAC 640

QY 541 CTCGGCCGCTCCAGCCGACGGAGGAGGAGGAGGAGGAGGAC 600
 641 CTCGGCCGCTCCAGCCGACGGAGGAGGAGGAGGAGGAC 700

QY 601 CGCCCTCCGGCCGGCGCTACTCTATGGGCTCGGACATCCGACTCCGAC 660
 701 CGCCCTCCGGCCGGCGCTACTCTATGGGCTCGGACATCCGACTCCGAC 760

QY 661 CCTCGAGGACAGCCCTCGCGTGTGGCCCTCTCGGATCGCTCTGGAGAC 720
 761 CCTCGAGGACAGCCCTCGCGTGTGGCCCTCTCGGATCGCTCTGGAGAC 820

QY 721 CCTCGTCTCATCAAGGCCCTCATCGACCGAGGCTCATGAGGAGGATCGCTCTGGAGAC 780
 821 CCTCGTCTCATCAAGGCCCTCATCGACCGAGGCTCATGAGGAGGATCGCTCTGGAGAC 880

QY 781 CTGGCTCTCGCTTCTCTCTGAGGACACATCGTGGAGGATGAGGAC 840
 881 CTGGCTCTCGCTTCTCTCTGAGGACACATCGTGGAGGATGAGGAC 940

QY 841 CGGGACGGCATGGCTCATCCGGCTCGCGGTGATCCGGTCTCCGGAGAGGGCT 900
 941 CGGGACGGCATGGCTCATCCGGCTCGCGGTGATCCGGTCTCCGGAGAGGGCT 1000

QY 901 CGCGCGAGACCTCTCGGGCATACCGTGACCAACCGGGCCGCTTCCTCCCGAC 960
 1001 CGCGAGGACCTCGCGGCAACCGGGCCGCTTCCTCCCGAC 1060

QY 961 CGTCGGCCCTCTGAGTAC 982
 Db 1061 CCTCGGGCCTCTGAGTAC 1082

RESULT 2
 US-08-844-274-20
 Sequence 20, Application US/08844274B
 ; General Information:
 ; Patent No. 6218185
 ; Applicant: Fraber Jr., Malcom J.
 ; Applicant: Shirk, Paul D.
 ; Applicant: Elick, Teri A.
 ; Applicant: Perera, Omatiethage
 ; Title of Invention: PiGgyBac Transposon-Based Genetic Transformation System
 ; Title of Invention: For Insects
 ; File Reference: 0148.96
 ; Current Application Number: US/08/844,274B
 ; Current Filing Date: 1997-04-18
 ; Earlier Filing Date: 1996-04-19
 ; Number of SEQ ID NOS: 22
 ; Software: PatentIn Ver. 2.0 - beta
 ; SEQ ID NO: 20
 LENGTH: 7560

QY 961 CCTCCCGCCGCTCTG 976
Db 2113 CTTGGGGGCGTCATGA 2128

RESULT 3
US-03-598-421-20
; Sequence 20, Application US/09598421
; Patent No. 6551825
; GENERAL INFORMATION:
; APPLICANT: Fraser Jr., Malcom J.
; APPLICANT: Shirk, Paul D.
; APPLICANT: Blick, Terri A.
; TITLE OF INVENTION: PiggyBac Transposon-Based Genetic transformation System
; TITLE OF INVENTION: For Insects
; CURRENT APPLICATION NUMBER: US/09/598,421
; CURRENT FILING DATE: 2000-06-19
; PRIOR APPLICATION NUMBER: 60/016,234
; PRIOR FILING DATE: 1996-04-19
; NUMBER OF SEQ ID NOS: 22
; SOFTWARE: PatentIn Ver. 2.0 - beta
; SEQ ID NO: 20
; LENGTH: 7560
; TYPE: DNA
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Description of Artificial Sequence:pjB1.2hb/opd
; US-09-598-421-20

Query Match 64.0%; Score 628.8; DB 4; Length 7560;
Best Local Similarity 77.8%; Pred. No. 1e-99;
Matches 759; Conservative 0; Mismatches 217; Indels 0; Gaps 0;
QY 1 CGGGCGGATCACCATCTCGGGGCGACTAACCTCACCAAGCACACTCTGGCGTC 60
Db 1153 CGGTCTCATCACATCTGAAAGCGGTTTACACTGACTCACGACACTCTGGCGAC 1212
QY 61 CTCCCGCGCGCTCTCCGGCTGGCGGAGGTCTGGCTCCGCGAGGCCCTCGCGA 120
Db 1213 CTGGGAGGATCTCTGGCTGGCGAGGTTCTGGGAGGAGGCTCTGGGA 1272
QY 1211 GAGGGCGTGCCTCCCGCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG 180
Db 1273 AAAGGTGTGAGGAGGATGCGCGCGCGAGAAGGGCTGGCGAGATGTGATGT 1332
QY 181 GTGCCACCTTCAATGCCGCGACGCTCCCTCTGGCGAGGTCGCCCGCGCG 240
Db 1333 GPGACGTTCTATATCGTCCGCGACGTTGGCGAGGTTGGCGCTCGGA 1392
QY 241 GTGCCACATCTGGCGCGCGCGCTCTGGGTCTCATGGCGCTCG 300
Db 1393 CGTTCATCTGGCGCGCGCGCGCTCTGGGTCTGACCGCGACTTGGATGAG 1452
QY 301 CTCGGTGGAGGAGGCTACCCAGCTCTCTCTCGCGAGATCCAGTACGCGATGAGCAC 360
Db 1453 GAGTGTAGGAGGAACTCACAGCTCTCTGGTGAATATCGATGAGAGAC 1512
QY 361 CGGCATCGCCGCGCGCGTCATCAAGGAGGCGACCGGACCGCGCTGG 420
Db 1513 CGGAATTAGGCGGGCATATTCAGGTGCGACCGAGGACCGCTTCAGGA 1572
QY 421 GCTCGCTCAAGGCCCGCGCGCGCTCCCTCGCACCGCGCTGGTGAACCGCA 480
Db 1573 GTTGTGTTAAAGGCGCCGCGCGCGCGCTGGCGACCGGTTGGTGGACACTCA 1632
QY 481 CACCGCGCCTCCAGCGCGAGCGAGCGAGCGAGCGAGCTCGAGCTGGAGGCT 540
Db 1633 GAGGCGAGCAAGTCAGCGCGATGTTGAGGAGGCGCCATTGGTGAAGGCTT 1692
QY 541 CTCGGCGTCCGGTGTGCACTGGCACTCCGACGACCCAGGACGCTCTACCTCAC 600

RESULT 4
5484728-1
; Patent No. 5494728
; APPLICANT: SEEDEAR, CUNBYT M.; MURDOCK, DOUGLAS
; TITLE OF INVENTION: PARATHION HYDROLASE ANALOGS AND METHODS
; FOR PRODUCTION AND PURIFICATION
; NUMBER OF SEQUENCES: 6
; CURRENT APPLICATION DATA:
; APPLICATION NUMBER: US/08/333, 8892
; FILING DATE: 01-NOV-1994
; PRIOR APPLICATION DATA:
; APPLICATION NUMBER: 898, 973
; FILING DATE: 25-JUN-1992
; APPLICATION NUMBER: 312, 503
; FILING DATE: 17-FEB-1989
; APPLICATION NUMBER: 237, 255
; FILING DATE: 26-AUG-1988
; SEQ ID NO: 1;
; LENGTH: 1341
; 5484728-1

Query Match 63.9%; Score 627.2; DB 6; Length 1341;
Best Local Similarity 77.7%; Pred. No. 1.e-99;
Matches 758; Conservative 0; Mismatches 218; Indels 0; Gaps 0;
QY 1 CGGGCGGATCACCATCTCGGGCGACTAACCTCACCAAGCACACTCTGGCGTC 60
Db 189 CGGTCTCATCACATCTGAAAGCGGTTTACACTGACTCACGACACTCTGGCGAC 248
QY 61 CTCCCGCGCTCTCCGGCGACTGGGAGGTCTGGCTCCCGAAGGCCCTCGCGA 120
Db 249 CTGGGAGGATCTCTGGCTGGCGAGGACTCTGGTGAACGCGCAAGCTCTAGCGA 308
QY 121 GAGGGCGTGCCTCCCGCGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG 180
Db 309 AAAGGTGTGAGGAGGATGCGCCGCGCCAGCGCGGCTGGCGACGATGTCGATGT 368
QY 181 GTGCCACCTTCAATGCCGCGACGCTCTCTGGCGAGGTTGGCGACGAGGCT 240
Db 369 GPGACGTTCTATATCGTCCGCGACGCTGGCGAGGTTGGCGACGCG 428

RESULT 6
 US-03-450-3
 ; Sequence 3, Application US/09603450
 ; Patent No. 6469145
 ; GENERAL INFORMATION:
 ; APPLICANT: Rastogi, Vipin K
 ; APPLICANT: Cheng, Tu-c
 ; APPLICANT: DeFrank, Joseph J
 ; TITLE OF INVENTION: One-Step Purification Process for Organophosphorus
 ; TITLE OF INVENTION: Hydrolase Enzyme
 ; FILE REFERENCE: DAM-508-99
 ; CURRENT APPLICATION NUMBER: US/9/603, 450
 ; CURRENT FILING DATE: 2000-06-26
 ; NUMBER OF SEQ ID NOS: 4
 ; SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 3
 LENGTH: 1633
 TYPE: DNA
 ORGANISM: Flavobacterium sp
 FEATURE:
 NAME/KEY: CDS
 LOCATION: (506)..(1516)
 OTHER INFORMATION: Expresses organophosphorus hydrolase
 NAME/KEY: sig peptide
 LOCATION: (419)..(505)
 OTHER INFORMATION: Removal of signal peptide allows organophosphorus
 OTHER INFORMATION: hydrolase to be expressed in soluble form
 US-03-603-450-3

Query Match 63.9%; Score 627.2; DB 3; Length 1633;
 Best Local Similarity 77.7%; Pred. No. 1.9e-99; Matches 758; Conservative 0; Mismatches 218; Indels 0; Gaps 0;

Qy 1 CGGCCCGATCACCATTCTCGAGGCCGCTTACCCCTCACCAAGGACATCTGGCGCTC 60
 Db 541 CGGTCTTACATCACTCTGAGGGGTTTACACTGACTCTGGAGGACACATCTGGCGAG 600
 Qy 61 CTGGCGCGCTCTCGCGCTGGCGGAGTCCTCGCGCTCCGGAGAGCTGGCGCTCCGG 60
 Db 601 CTGGGAGGATCTCTGGCTGGCGAGAGCTCTGGTACGGCAAGCTCTAGCGGA 660

Qy 121 GRAGGGCGTGGGGGCTCCCGCGCCGGCGGCGGCGGCGGCGGCGGCGGCGGCG 180
 Db 661 AAAGGCTGTGAGGAGTGTGCGCGCGCAAGAGGGCTGGCTGGAGATGTGCGATGT 720

Qy 181 GTTCAACCTTCGACATCGCCGCGACGCTGTCCTCTGGCGAGGGTGCGCGCGCG 240
 Db 721 GGGACTTTGCGATATCGTGGCGACGTTTATGGCGAGGTTGGCGGGCGCGCGCG 780

Qy 241 CGTGACATCGTGGCGCGACGGCTGTGCTGCGACCCCGCTCG 300
 Db 781 CGTCATATCGTGGCGCGACGGCTGTGCTGCGACCCCGCTCG 840

Qy 301 CTCCGTTGAGGAGCTACCGGCTCTCTCGCGAGATCGTACCGACGAGGACAC 360
 Db 841 GAGTGTAGGAGAAGTCAACAGTCTCTCTCGTGTGACATTATGCGATGAGAC 900

Qy 361 CGCATCGCGCGCGCATCAAGGCGAACACCGGCAAGGCCAACCCCTTCAGGA 420
 Db 901 CGGAATTAGGGCGGGGTTTACAGGCGGACAGGAAAGGACCGCCCTTCAGGA 960

Qy 421 GTCGCTCTCAAGGCCCGCCGCGACTCTCTGGCGACCCCGTGGCGACCCCA 480
 Db 961 GTTAGTGTAAAGGGCGCCGGCGACGTTGCGACCCGGTGGCGTACCACTCA 1020

Qy 481 CGCGCGCGCTCCAGGGCGGCGAGGGCGGCGGCGGCGGCGGCGGCGGCG 540
 Db 1021 CACGGCAGCAAGTCAGCGCGATGTGAGCGAGCGCCGCAATTGTGCGAAGCT 1080

Qy 541 CTCGGCGTCCGGTGTGCGACCGCCACTCCGAGACACCGAGGACCTCTCTAC 600
 Db 1081 GAGCCCCCTCACCGGTTGTTAGTGTACACAGCGATGATCTGACGATTTGAG 1140

RESULT 7
 US-08-844-274-14/c
 ; Sequence 14, Application US/08844274B
 ; Patent No. 6218185
 ; GENERAL INFORMATION:
 ; APPLICANT: Fraser Jr., Malcom J.
 ; APPLICANT: Shirk, Paul D.
 ; APPLICANT: Elick, Teri A.
 ; APPLICANT: Perera, Omaththage
 ; TITLE OF INVENTION: PiggyBac Transposon-Based Genetic transformation System
 ; TITLE OF INVENTION: For Insects
 ; FILE REFERENCE: 0148.96
 ; CURRENT APPLICATION NUMBER: US/08/844, 274B
 ; CURRENT FILING DATE: 1997-04-18
 ; EARLIER APPLICATION NUMBER: 60/016, 234
 ; NUMBER OF SEQ ID NOS: 22
 ; SOFTWARE: PatentIn Ver. 2.0 - beta
 SEQ ID NO 14
 LENGTH: 6723
 TYPE: DNA
 ORGANISM: Artificial Sequence
 FEATURE:
 OTHER INFORMATION: Description of Artificial Sequence:piggyBac/opd
 US-08-844-274-14

Query Match 63.9%; Score 627.2; DB 3; Length 6723;
 Best Local Similarity 77.7%; Pred. No. 1.9e-99; Matches 758; Conservative 0; Mismatches 218; Indels 0; Gaps 0;

Qy 1 CGGCCGATCACCATTCTGGAGGACCTCTGGCGCTCCGGCGACATCTGGCGCTC 60
 Db 4194 CGGTCTTACATCACTCTGAGCGGGTTTACACTGACTCTGGAGGACACATCTGGCGAG 4135

Qy 61 CGCCGCGCTCTGGCGCTGGGGAGTCTGGCTCCGGCGAGGGCGCTCGCGA 120
 Db 4134 CGGGGGGATCTGGTGTGCGAGGAGTCTGGCGAAAGGCTCTGGGA 4075

Qy 121 GAGGGCTGTGAGGAGATGTGCGCGCGACAGAGGGCTGGCGAGATGTGCGATGT 180
 Db 4074 AAGGGCTGTGAGGAGATGTGCGCGCGACAGAGGGCTGGCGAGATGTGCGATGT 4015

Qy 181 GTCCACCTTCGACATCGCCGCGACGGCGTGTGCGTCCCTCGGCCAGGGCTGGCGAGATGTGCGATGT 240

RESULT 9
US-08-844-274-13
; Sequence 13, Application US/08844274B
; PATENT NO. 6218185
; GENERAL INFORMATION:
; APPLICANT: Fraser Jr., Malcolm J.
; APPLICANT: Shirk, Paul D.
; APPLICANT: Elick, Teri A.
; APPLICANT: Perera, Omathilage
; TITLE OF INVENTION: PiggyBac Transposon-Based Genetic transformation System
; TITLE OF INVENTION: For Insects
; FILE REFERENCE: 0148_96
; CURRENT APPLICATION NUMBER: US/08/844, 274B
; CURRENT FILING DATE: 1997-04-18
; EARLIER APPLICATION NUMBER: 60/016, 234
; NUMBER OF SEQ ID NOS: 22
; SOFTWARE: PatentIn Ver. 2.0 - beta
; SEQ ID NO: 13
; LENGTH: 6723
; TYPE: DNA
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Description of Artificial Sequence:Clone p3e1.2H/S
; US-08-844-274-13

Query Match
Best Local Similarity 77.5%; Score 624; DB 3; Length 6723;
Matches 756; Conservative 0; Mismatches 220; Indels 0; Gaps 0;

Qy 1 CCTCGCGGATCCATCCGCGCTTCCGGGCGGCTTACCCCTACCCAGGACATCTGGCTC 60
Db 2530 CGGTCTTATCACTCTCTGAGCGGTTCACAGTACGACTACGAGCCTCTGGCAG 2589
Qy 61 CTCCGCGGCTTCCCGCGCTGGCGGAGTCTGGCTCCCGAAGGCCCTCGGA 120
Db 2590 CTGGCGAGGATCTCTGGCTTGGCAGAGTCCTGGTGGCGAAAGCTCTAGGGA 2649
Qy 121 GAGGCGGTGGCGGCTCCCGGCCGCGGCCGCGGCCGCGGCCGCGGCCG 180
Db 2650 AAAGGCTGAGGATGGCCGCCAGAGGGTTCGGCTGGCTGGAGT 2709
Qy 181 GTCGCACTTCCACATGGGCCGACTGTCTCTCCGGGCGGCCG 240
Db 2710 GTCGACTTTCCATATGGCTCGACGTCAGTTATGGCCAGGTTGGCGGCCG 2769
Qy 241 CGTGACATCTGGCCGCCACCGGCTCTGGTGAACCCGGCTCCATGGCCCTCG 300
Db 2770 CGTCATATCTGGCGCGACGGCTGTGGTCAACCGCCACTTTCGAGATGAG 2829
Qy 301 CTCCGCGGAGGAGCTACCCAGCTCTCTCGCGAGATCGAGCATGGAGAC 360
Db 2830 GAGTGTAGAGGAGACTCACAGTCCTCTGGTGGATGATATGGCATGGAGAC 2889
Qy 361 CGGCATCCGCCGCCGCACTCATCAAGGCGACCCGGGAGGACCCGGTCCAGGA 420
Db 2890 GGGAAATTAGGGGGGATTAATGAGTGGCGACCAAGGGACCCCTTGGAGGA 2949
Qy 421 CCTCGCGGCTTCCGGGCGGCCGCTCTGGCACCGGCGGCGGCCGACCC 480
Db 2950 GTTAGTGTAAAGGCGCCGCCGCCGCAAGCTGGCCACCGGTTGGTAAACCTCA 3009
Qy 481 CACCGCGGCCAGGGGAGGGAGGAGGGCGGCTCTGGAGTGGAGGGCT 540

RESULT 10
US-09-598-421-13
; Sequence 13, Application US/09598421
; Patent No. 6551825
; GENERAL INFORMATION:
; APPLICANT: Fraser Jr., Malcolm J.
; APPLICANT: Shirk, Paul D.
; APPLICANT: Elick, Teri A.
; APPLICANT: Perera, Omathilage
; TITLE OF INVENTION: PiggyBac Transposon-Based Genetic transformation System
; TITLE OF INVENTION: For Insects
; FILE REFERENCE: 0148_96
; CURRENT APPLICATION NUMBER: US/09/598, 421
; CURRENT FILING DATE: 2000-06-19
; PRIOR FILING DATE: 1996-04-19
; NUMBER OF SEQ ID NOS: 22
; SOFTWARE: PatentIn Ver. 2.0 - beta
; SEQ ID NO: 13
; LENGTH: 6723
; TYPE: DNA
; ORGANISM: Artificial Sequence
; FEATURE:
; OTHER INFORMATION: Description of Artificial Sequence:Clone p3e1.2H/S
; US-09-598-421-13

Query Match
Best Local Similarity 77.5%; Score 624; DB 4; Length 6723;
Matches 756; Conservative 0; Mismatches 220; Indels 0; Gaps 0;

Qy 1 CGGCATCCGCCGCCGCACTCATCAAGGCGACCCGGGAGGACCCGGTCCAGGA 60
Db 2530 CGGTCTTATCACTCTGGCTTGGGTTACAGTACGACTACGAGCCTCTGGCAG 2589
Qy 61 CTCCGCGGCTTCCGGGCGGCCGCTGGGAGGTTCTGGGCTCCCAAGGCCCTCGGCA 120
Db 2590 CTGGAGGATCTCTGGTGTGGCTGGCCAGGTTCTGGTAGCCGCAAGCTCTGGGA 2649

Qy 121 GAAGGCCGTCGGCGCCCTCGCGAGCGCCGACCTCGTGACGT 180
 Db 2650 AAAGCTGTGAGGATGTCGCCGCCAGGCCTGGCAGATGTTGATGT 2709
 Qy 181 GTTCCACCTTCGACATGGCCGAGCTGTCCCTCTCGCGAGGTCCCGGA 240
 Db 2710 GTGCACTTTCGATATCGGTGGCGAGTCAGTTATGGCGAGGTTCCGGGA 2769
 Qy 241 CGTGCACATCGTGGCCACCGGCCTCGTGGAGGTCCCGGCGCGGA 300
 Db 2770 CGTCAATCGGCGCGACCGTTGCGTGCACCCGCACTTTCGAG 2829
 Qy 301 CTCCCTGAGGAGACTCACCGTTCCTCGCGAGTCAGTGGCATGGAC 360
 Db 2830 GAGTGTAGAGAACCTCACAGTGTCTTCCTCGTGTGATGATATGGCATGGAGAC 2889
 Qy 361 CGGCATCCGGCGCATCATCAAGTGGCACCCACGGAGGACCCGTTCCAGGA 420
 Db 2890 CGGAATTAGGGCGGSCATTATCAAGTCGCGACACAGGAAAGGGACCCCTTCAGGA 2949
 Qy 421 GCTCGTCTAAGGGCGCCGGCGCCGGCGCTCTCCCGACACAGGAAAGGGACCCCA 480
 Db 2950 GTTACGTTAAAGGGCGCCGGCGACGGTGTCCGTTAACCTCA 3009
 Qy 481 CACCCCGCCCTCCAGGGCGAGGAGGAGGAGGAGGAGGAGGAGGCT 540
 Db 3010 CACGGAGCAGTCAGCGCGTGTGGAGCAGCAGGGCCATTGAGTCGAGGCT 3069
 Qy 541 CTCCCGTCCGGCGTGCATGGCACTCGGACACGGACGACTCTTACAC 600
 Db 3070 GAGCCGCTCAGGGTTGTGTTGACAGCAGTGTACAGCAGTTGAGTATCTAC 3129
 Qy 601 GCGCCCTCGGCCGGGGTACCTCATCGGCTGACCATCCCGCATCGG 660
 Db 3130 CGCCCTCGGCCGGCGCGGATACCTCATCGTGTAGACCACTCCGACAGTGG 3189
 Qy 661 CTCGAGGACAGCGCTCCGGCGCCCTCGCATCGCTCTGGAGACCGCGC 720
 Db 3190 TCTAGAGATATGGCATCGCCCTCTGGCATCGCTGTGGACACCGGGC 3249
 Qy 721 CTCTCTCATCAGGCGCTCATCGACCGAGGCTACATGAGCGAGTCCTCGTCCAAACGA 780
 Db 3250 TCTCTGATCATAGGCGCTCATCGACAGGTTACAGTGAACAAATCTCTGATGA 3309
 Qy 781 CTGGCTCTGGCTCTCTCTACTGACCCACATCATGGACGTCATGGCGCGGTGA 840
 Db 3310 CTGGCTCTGGGTTTCGACTATGACCATCACACGCGTGTGATCTCGTGA 3369
 Qy 841 CGCGAGGAGGAGGCTCCCGTGTGACCCGCTCCCGGCGGAGGGGT 900
 Db 3370 CCCCGAGGAGGCTCATCGACCGACATCACCGGACCCCGCCGCTCTCCCGAC 3429
 Qy 901 GCGCAGGAGGACCTCGGCCGCGACATCACCGGACCCCGCCGCTCTCCCGAC 960
 Db 3430 CCCACAGGAAAGCTGCACTGACATCTGCACTAACCGCGGCGGTTCTGACCGAC 3489
 Qy 961 CCTCGCGCTCTCTGA 976
 Db 3490 CTTGGGGCGCTCATGA 3505

RESULT 11
 US-09-103-840A-2/C
 ; Sequence 2, Application US/09103840A
 ; Patent No. 629428
 ; GENERAL INFORMATION:
 ; APPLICANT: FLEISCHMAN, Robert D.
 ; APPLICANT: WHITE, Owen R.
 ; APPLICANT: FRAZER, Claire M.
 ; APPLICANT: VENIER, John C.
 ; TITLE OF INVENTION: DNA SEQUENCES FOR STRAIN ANALYSIS IN MYCOBACTERIUM
 ; FILE REFERENCE: 24366-20007.00

Qy 121 GAAGGCCGTCGGCGCCCTCGCGAGCGCCGACCTCGTGACGT 180
 ; CURRENT APPLICATION NUMBER: US-09/103, 840A
 ; CURRENT FILING DATE: 1998-06-24
 ; NUMBER OF SEQ ID NOS: 2
 ; SOFTWARE: PatentIn Ver. 2.1
 ; SEQ ID NO: 2
 ; LENGTH: 4403765
 ; TYPE: DNA
 ; ORGANISM: Mycobacterium tuberculosis
 ; FEATURE:
 ; OTHER INFORMATION: CDC 1551
 ; OTHER INFORMATION: "n" bases at various positions throughout the sequence
 ; OTHER INFORMATION: represent a, t, c or g
 ; US-09-103-840A-2
 ; Query Match 16.9%; Score 166.4; DB 3; Length 4403765;
 ; Best Local Similarity 55.5%; Pred. No. 4e-20;
 ; Matches 382; Conservative 0; Mismatches 276; Indels 30; Gaps 2;
 ; Mi.Matches 276
 ; Db 276050 CGGACCCATCGACCGCTGATCTGGGTCACGTGACGAGCTCTCAT 275991
 ; Qy 61 CTCCCGGCTCTCCGGCTGGGGAGTCTCGGCTCCGGCAAGCCCTGGCGA 120
 ; Db 275990 GACCAAGGAGATTCGGAGACTACCGAAAGCTGGGGAGCAGGAAAGCGGTGCG 275931
 ; Qy 121 GAAGGCCGTCGGCGCCCTCGGAGGGGCTACCCCTACCCACAGCACATCCTGGCT 60
 ; Db 275930 CGGGCCATGCCCGCTAGGGAACACTAAGCCGGCGTGGACACCCATCGTGACCT 275871
 ; Qy 181 GTCCACCTTCGACATCGGCGCGAGCTGGCTCTCCGGAGGAGCGCGCA 240
 ; Db 275870 CACGGTGTGGCTGGCGATACATCCCGCGATCGCCCGGGTGGCGGACCGA 275811
 ; Qy 241 CGTCACATCGTGGCGCCGACCGCCTCTGTGACGACCCGGCTCTCATGGCCTCG 300
 ; Db 275810 GCTGACATCGTGTGGCCACCGSSTTGTACACTACAAAGCAGCTCCCTCTACTTCA 275751
 ; Qy 301 CTCCGT-----GGAGGAGCTACCCAGTCTCTCCCG 333
 ; Db 275750 CTACCTGGCCGGCGACAGCTGGCTGAAGGGCGAGATCAAGCGAGTGTGTCGG 275691
 ; Qy 334 CGAGTCAGTACGGACATGGAGGACCGCATCGCCGGCGCATCAAGGGCGC 393
 ; Db 275690 CGACATCGACCGCATCGGAGACCGCATCGGGGATCTCTAGTGGCCAC 275631
 ; Qy 394 CACCGGAGGC---CACCGGTTCCAGAAGCTGTGTGTCGAAGGGCGGCCGCTC 450
 ; Db 275630 CGACGACCGGGCTCACCCCTGGTGTGAGGGGTGCGCGCGGGTGGCCCAAGCA 275571
 ; Qy 451 CCTCGCCACCGGGTGGCGGTGACCCACACGGCCCTCCAGGGGACCGAGGCA 510
 ; Db 275570 CAACGACCGGGGCCATCTCACCCACACCCACCGGGCTGGCGGGCTTGA 275511
 ; Qy 511 GCAAGCGGCACTTGGAGCTGGCGGGCTCTCCGGCGTGTGACCGACCTCG 570
 ; Db 275510 CCAGGAAAGCATCTGGCGAGGGGGTGGACCTGACGGGGGGTATCGGACATCG 275451
 ; Qy 571 CGACCAACGACGACCTCTCTACCTCACCGCCCTCGCCGCGCTACCTCATCG 630
 ; Db 275450 CGGCGACAGACGACGAGCTGGCGCTACCTGGAGAGCTCATCGGCCAC 275391
 ; Qy 631 CCTCGACACATCCGGCACTCCGGCAT 658
 ; Db 275390 GATGGACGCTTCGGCGTGTGATC 275363

RESULT 12
 US-09-103-840A-1/C
 ; Sequence 1, Application US/09103840A
 ; Patent No. 629428
 ; GENERAL INFORMATION:
 ; APPLICANT: FLEISCHMAN, Robert D.

REGISTRATION NUMBER: 25,146
 REFERENCE/DOCKET NUMBER: 03806..0054-00000
 TELECOMMUNICATION INFORMATION:
 TELEPHONE: (202) 408-4000
 TELEFAX: (202) 408-4400
 INFORMATION FOR SEQ ID NO: 4:
 SEQUENCE CHARACTERISTICS:
 LENGTH: 1208 base pairs
 TYPE: nucleic acid
 STRANDBNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA
 HYPOTHETICAL: NO
 ANTI-SENSE: NO
 ORIGINAL SOURCE:
 ORGANISM: *S. pristinaespiralis*
 FEATURE:
 NAME/KEY: CDS
 LOCATION: 1..1208

;US-08-403-852D-4

Query Match 11.3%; Score 110.8; DB 2; Length 1208;
 Best Local Similarity 47.1%; Pred. No. 1.1e-0; Matches 469; Mismatches 497; Indels 30; Gaps 3;

Qy 709 GCAGACCCGCCCTCTCATCAAGGCCCTCATGACCAAGGGCTCATGAGGAGATCT 768
 Db 738 CGGTTTGGAGATCGGGCCCGATGGGAGCGCCGCGCTCTACCGCCAGATCAT 797
 Qy 769 CGTGTCAACAGACTGGCTCTGGCTCTCTCTTACAGTGACCAACATGAGGAGTA- 827
 Db 798 CGACAGGTACGGGGCATGGCCGCAAGGGTGGCTCGGCTCTCGGGAGGACGCGTC 857
 Qy 828 ----TGCACCGCGTGAACCGGACGGCATGGCTTCATGCCGCTGATCCCGTT 882
 Db 858 CAAGGTGACCGTTCGGCGGTACGGATCGCTGGTGGCTGGCAAGAACGTCGTGCG 917
 Qy 883 CCTCCGGAGAGGGGTGGCCAGAGACCTCCGGATCACGGTACCAACCCGGC 942
 Db 918 GGGCTTCGCTCCCGTGGAGGTCAAGGTCAGGTCGCTAACGCCATCGSSCAAGGCCGAGCGGT 977
 Qy 943 CGGCTTCCTCTCCGACCCCTCGGCTCACGGCTGAGCTGACCTGACCTTGAA 978
 Db 978 CGGCTTCCTCTGGACGGTGGCAACGGGCTCTGTGAGT 1013

Search completed: February 12, 2005, 05:36:32
 Job time : 172 secs

Qy 13 CATCTCGAGGCGGGCTTCAACCTACCCACAGACATCTGGGCTCTCGCCGCTT 72
 Db 18 CACCTCGAGCTGGTACCGAGGGCCACCCGAGACAGATCCGGACAGATCAGTGACAC 77
 Qy 73 CCTCCCGCCCTGGCCGAGATGTTCTGCGCTCTCCGGCAAGGGCTTGCG 132
 Db 78 CGTCTCTGACGCCCTGTGCGAGGACCCGCTCACGGCTGCGCTGCGCTGAGACCTGAT 137
 Qy 133 CGGCCCTCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGACGTGACATCTGT 192
 Db 138 CACCAACGGCCAGGTACATGCGCACGAGCTCACCAAGGCTACGGCCATCGC 197
 Qy 193 CATCGGGCGGAAAGTGTCTCTCGCGAGAGTGTCCCGGGCGGACGTGACATCTGT 252
 Db 198 CCAACTGTGTCGGACAGCATCTGCGCATGACTGTGCGTACGACTGTGCGCAAGGGCTTCGA 257
 Qy 253 CGCCGCCACCCACCTCTCTGTTGACCGCCGCTCTCCATGAGCTCTCGCTCGTGGAGA 312
 Db 258 CGCGCCCTCTCGGCTCTCGTCTCATCGGCCAGTCCCAGACATGCCAGGG 317
 Qy 313 GCTCACCCAGTCT-----TCCTCGGAGATCGTAGGCAATGAGCAC 360
 Db 318 CTCGACAGGCCCTACAGAGACCCGGCTGAGAGGAGGACGCTGAGCACGG 377
 Qy 361 CGGCATCGGCCGGCATCATCAAGGTGGCCACACGGGAAGGCCACCCGGTCCAGGA 420
 Db 378 CGCGCCGACAGGGCTGATTCGCTGCTAAGGCGACAGACCCCTGCTGATGCC 437
 Qy 421 ATCTGTTCTCAAGGCCGCCGGCGGCCCTCTCGGACCCAGGCGCTGGTGGACACCA 480
 Db 438 GTGCCCATCGAGCTCCACCGCGGCGGAGGAGGAGGAGGAGGAGGAGGAGG 497
 Qy 481 CACCGCGCCCTCCACGGCGGCGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 540
 Db 498 CACCGACCGCTTACCTGGCCGCGACGACAAACCCAGTGACCATGAGGAGG 557
 Qy 541 CTCGGCTCCCGGTGTCACCG-----GCCACTCGGACACCGACGACT 588
 Db 558 CGGCTCCCTGCGCTGCGATCACCGTCGTCGTCGCTCCAGACGGCGCCGACATCGACT 617
 Qy 589 CTCTCTACCTACGGCCCTCGGCCCTCGGCCCTGGCTACCTGATCCGCGAC 648
 Db 618 CGGCTCCCTGCTCACCCGAGATCCGGCGACGCTGGCTGAGGAGCTCCGGCACT 677
 Qy 649 CTGGCCATCGGCCCTCGAGGAGACGACTGCGCTGGCTGAGGAGCTGGCTG 708
 Db 678 CGCGGAGGAGGAGGAGTCAAGCTCGAGGAGGAGGAGCTGGCTGAGGAGG 737

THIS PAGE BLANK (USPTO)