인공지능 실습 Chapter 7. Bayesian Network

포항공과대학교 컴퓨터공학과

- 7.1. 기본 확률 이론
- 7.2. Naive Bayesian Model
- 7.3. Bayesian Network
- 7.4. Car Tracking

7.1. 기본 확률 이론

Probability Space (Ω, \mathcal{F}, P)

- Experiment^{실험} (or trial^{시행}): outcome을 갖는 실험
 - 예. 동전 두 번 던지기
- Outcome^{결과}: experiment의 결과
 - 예. (Head, Tail)

- 예. {(H, H), (H, T), (T, H), (T, T)}
- Event^{사건} \mathcal{F} : experiment의 일부 outcome의 집합
 - 예. {(H, T), (T, H)} (head가 한 번 나온 outcome의 집합)
- Probability measure P: event에 대한 확률
 - 예. P({(H, T), (T, H)}) = 0.5

- Experiment의 outcome을 우리가 관심 있는 형태로 변환하는 **함수**
 - "Contrary to its name, this procedure itself is neither random nor variable" by Wikipedia
- A random variable $X: \Omega \to E$
 - E: measureable space (Usually $E = \mathbb{R}$)

동전을 두 번 던지는 experiment

Sample space Ω Random variable $X: \Omega \to \mathbb{N}$ head의 개수

$$P(\{(H, T), (T, H)\}) = 0.5$$

$$P(X = 1) = 0.5$$

$$P(\{(H, T), (T, H), (H, H)\}) = 0.75$$

$$P(X \ge 1) = 0.75$$

• Random variable은 대문자, value는 소문자로 표시 r.v. Weight: 체중 • 간략하게 value만 표시하기도 함 46.02kg Sample space: 사람들 65.42kg r.v. Sex: 성별 p_1 p_2 78.23kg male p_3 female r.v. Children: 자녀 r.v. Height: 신장 P(Sex = male) = ?0 46.02kg P(female) = ?65.42kg P(Children = 1) = ? $P(Children \ge 2) = ?$ 78.23kg $P(50 \le Weight < 60) = ?$

- **Discrete** random variable 이산확률변수
 - 예. 성별 (finite or categorical)
 - 예. 자녀 수 (infinite)

Probability mass function 확률 질량 함수

- **Continuous** random variable 연속확률변수
 - 예. 체중, 신장

• Single value v.s. range

Probability density function 확률 밀도 함수

• Discrete random variable에 대한 probability distribution (pmf)은 value에 대한 확률의 리스트로서 표현 가능

• 예. **P**(Coin)=<0.5, 0.5>

Coin	P (Coin)
head	0.5
tail	0.5

• 예. **P**(Weather)=<0.6, 0.1, 0.29, 0.01>

Weather	P (Weather)
sunny	0.6
rain	0.1
cloudy	0.29
snow	0.01

확률 및 통계 관련 표기법

https://en.wikipedia.org/wiki/Notation in probability and statistics

- Binomial distribution: B(n, p)
 - *n*: number of trials
 - p: success probability in each trial
 - 예. 동전 던지기, 압정 던지기

- Normal (or Gaussian) distribution ${}^{\eth \Pi^{\mbox{\scriptsize E}} \Xi}: N(\mu, \sigma)$
 - Standard normal distribution $^{\Xi \bar{C} \bar{Q} \bar{H} \bar{E} \bar{E}}$: N(0,1)
 - 예. 사람의 키, 체중

표준정규분포표

Z	0.00	0.02	•••
0.0	0.500000	0.503989	
0.1	0.539828	0.543795	
0.2	0.579260	0.583166	
0.3	0.617911	0.621720	
0.4	0.655422	0.659097	
0.5	0.691462	0.694974	
•••			

Joint Prob., Conditional Prob.

- Conditional probability $^{\Sigma ZZ}$ P(A|B)
 - "Probability of A conditioned on B"
 - "Probability of A given B"

• Joint probability^{결합확률}: **P**(A, B)

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

$$P(B = true)$$

$$P(A = true, B = true)$$

$$P(A = true)$$

$$P(A = true)$$

$$P(A = false, B = false)$$

Full Joint Distribution

Full joint distribution for Toothache (치통), Cavity (충치), Catch world

Toothache	Cavity	Catch	P (Toothache, Cavity, Catch)
toothache	cavity	catch	0.108
		¬ catch	0.012
	¬ cavity	catch	0.016
		¬ catch	0.064
¬ toothache	cavity	catch	0.072
		¬ catch	0.008
	¬ cavity	catch	0.144
		¬ catch	0.576

=

	toothache		¬ toot	hache
	catch	¬ catch	catch	¬ catch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

Inference ^{추론}

- "Moving from premises to conclusions" from Wikipedia 전제 (알려진 사실) 결론
- 예. 3단 논법
 - 대전제: "모든 사람은 죽는다"
 - 소전제: "소크라테스는 사람이다"
 - 결론: "따라서 소크라테스는 죽는다"

- 현실의 많은 문제들은 규칙(논리)만으로는 표현 할 수 없음
 - $Toothache \Rightarrow Cavity$ (?)
 - "소크라테스는 치통이 있다"
 - "따라서 소크라테스는 충치가 있다" (?)

Probabilistic Inference

- Uncertainty를 다루기 위한 **probabilistic inference**
 - 예. P(cavity|toothache)
 - "Computation of posterior probabilities for query propositions given observed evidence." from AIMA

• Full joint distribution을 질문에 대한 정답을 찾는 knowledge base로서 사용 할 수 있음

	toothache		toothache ¬ toothache		hache
	catch	¬ catch	catch	¬ catch	
cavity	0.108	0.012	0.072	0.008	
¬ cavity	0.016	0.064	0.144	0.576	

Inference using Full Joint Distribution

Marginalization (or summing out)

$$\mathbf{P}(Y) = \sum_{Z \in Z} \mathbf{P}(Y, Z)$$

(Z is marginalized out)

	toothache		¬ toot	hache
	catch	¬ catch	catch	¬ catch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

Marginal probability

$$P(cavity) = \sum_{z \in \{Catch, Toothache\}} P(cavity, z)$$
$$= 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$

Marginal probability distribution

Cavity	P (Cavity)
cavity	0.2
¬ cavity	0.8

Inference using Full Joint Distribution

Conditioning

$$P(Y|Z=z) = \frac{P(Y,Z=z)}{P(Z=z)}$$

	toothache		¬ toot	hache
	catch	¬ catch	catch	¬ catch
cavity	0.108	0.012	0.072	0.008
¬ cavity	0.016	0.064	0.144	0.576

Conditional probability

$P(cavity|toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$ $= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$

Conditional probability distribution

Cavity	P (Cavity toothache)
cavity	0.6
¬ cavity	0.4

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

※ P(toothache)는 상수이므로 normalization 가능

Inference using Full Joint Distribution

Conditioning with normalization

$$P(Y|Z=z) = \frac{P(Y,Z=z)}{P(Z=z)}$$

	toothache		¬ toot	hache
	catch	¬ catch	catch	¬ catch
cavity	0.108	0.012	0.072	0.008
\neg cavity	0.016	0.064	0.144	0.576

Conditional probability

Contactional probability

$$P(cavity|toothache) = \alpha P(cavity \land toothache)$$
$$= 0.108 + 0.012 = 0.012$$

$$P(\neg cavity | toothache) = \alpha P(\neg cavity \land toothache)$$
$$= 0.016 + 0.064 = 0.08$$

Conditional probability distribution

Cavity	P (Cavity toothache)
cavity	0.6
)	0.4

$$\alpha \ P(cavity \land toothache) + \alpha \ P(\neg cavity \land toothache) = 1$$

$$\alpha \ 0.012 + \alpha \ 0.08 = 1$$

$$\alpha = 5$$

P(toothache)를 몰라도 *P*(Cavity|toothache) 계산 가능

Full Joint Distribution의 한계

- Toothache, Cavity, Catch world
 - 3개의 Boolean random variable
 - 총 8(2³)개의 probability 저장 및 처리

- 현실의 문제
 - n7 \parallel 9 \mid Boolean random variable (n > 100)
 - 총 O(2ⁿ) 크기의 테이블 및 처리 시간

• Full joint distribution은 현실의 reasoning 문제를 풀기에 부적합

Independence

Toothache, Cavity, Catch + Weather world

Independence between variables X and Y can be written as

$$P(X|Y) = P(X)$$
 or $P(Y|X) = P(Y)$ or $P(X \land Y) = P(X)P(Y)$

Bayes' Theorem (or Bayes' Rule)

Variables: hypothesis H and evidence E

 $P(Cavity | toothache \land catch) = \alpha P(Cavity) P(toothache \land catch | Cavity)$

역시 joint distribution 계산이 필요

Conditional Independence

 Conditional independence of two variables X and Y, given a third variable Z, is

$$P(X,Y|Z) = P(X|Z) P(Y|Z)$$

 $P(Cavity|toothache \land catch) = \alpha P(Cavity) P(toothache \land catch|Cavity)$

 $P(toothache \land catch|Cavity) = P(toothache|Cavity) P(catch|Cavity)$

 $P(Cavity|toothache \land catch) = \alpha P(Cavity) P(toothache|Cavity) P(catch|Cavity)$

Conditional Independence

 Conditional independence assertions can allow probabilistic systems to scale up

7.2. Naive Bayes Model

Naive Bayes Model

- Naive Bayes model
 - Single cause directly influences a number of effects

$$P(Cause, Effect_1, \dots, Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$$

Naive Bayes Classifier

Posterior

$$P(Cause|Effect_1, \cdots, Effect_n) \propto P(Cause)P(Effect_1, \cdots, Effect_n|Cause)$$

 $\propto P(Cause) \prod_i P(Effect_i|Cause)$

• Classifier
$$\hat{y} = f_{NB}(x) = \underset{y}{\operatorname{argmax}} p(y) \prod_{i} p(x_i|y)$$

• 예. Text Classification

Classifier Comparison

Naive Bayes classifier is one of them!

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC

•••

from sklearn.naive_bayes import GaussianNB

충치 진단 시스템 구현

- 다음 확률 계산
 - Cavity에 대한 사전 확률 (prior)
 - Toothache의 Cavity에 대한 조건부 확률
 - Catch의 Cavity에 대한 조건부 확률

 $P(Cavity|Toothache, Catch) \propto P(Cavity) P(Toothache|Cavity) P(Catch|Cavity)$

- cavity_diagnosis.py의 compute_cavity_prob 함수 구현
 - 주어진 evidence를 바탕으로 cavity 확률 계산
 - 특정 evidence가 없는 경우에 대해서도 처리

7.3. Bayesian Network

Bayesian Network

Bayesian Network

A simple Bayesian network with conditional probability tables (from Wikipedia)

Bayesian Network

- Let $X = (X_1, \dots, X_n)$ be random variables
- A Bayesian network is a directed acyclic graph (DAG) that specifies a joint distribution over X as product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) \stackrel{\text{def}}{=} \prod_{i=1}^n p(x_i | parents(X_i))$$

Judea Pearl
Turing Award Winner

Q. Bayesian Network 그리기

- In your local nuclear power station, there is an alarm that senses when a temperature gauge exceeds a given threshold. The gauge measures the temperature of the core. Consider the Boolean variables A (alarm sounds), F_A (alarm is faulty), and F_G (gauge is faulty) and the multivalued nodes G (gauge reading) and T (actual core temperature).
- Draw a Bayesian network for this domain, given that the gauge is more likely to fail when the core temperature gets too high.

Hidden Markov model (HMM)

For each time step t = 1, ..., TGenerate object location $H_t \sim p(H_t|H_{t-1})$ Generate sensor location $H_t \sim p(E_t|H_t)$

Hidden Markov model (HMM)

• 예. Part-of-speech (품사) tagging

• HMM + Viterbi algorithm

7.4. Car Tracking

Drive Your Car!

- 출발지점에서 목표지점까지 이동
- 수동으로 플레이
 - 화살표키로 이동 (후진 불가능)
 - python drive.py -i none -d
 - python drive.py -i none
- 무인 자동차
 - python drive.py -i none -d -a
 - 다른 자동차는 없다고 가정하고 목표를 향해 감

- 2차원의 grid 공간에서 K개의 다른 차가 이동
- 각 time step t마다 센서(예. microphone)로 Agent와 다른 각각의 차의 거리를 측정
- 센서 정보에는 noise를 포함
- 목표: 센서 정보를 바탕으로 다른 자동차의 위치를 tracking
- 위치 정보를 바탕으로 운전하는 AI는 제공

- python drive.py
 - -a: Enable autonomous driving (as opposed to manual)
 - -i <inference method>: Use none, exactInference, particleFilter to compute the belief distributions
 - -I <map>: Use this map (e.g. small or lombard)
 - -d: Debug by showing all the cars on the map
 - -p: All other cars remain parked (so that they don't move)
 - -k <number>: Number of other cars

- $C_t \in \mathbb{R}^2$: t 시간 다른 자동차의 실제 위치 (unobserved)
- $p(c_t|c_{t-1})$: 다른 자동차의 움직임에 대한 distribution
- $a_t \in \mathbb{R}^2$: t 시간 본인 자동차의 실제 위치
- D_t : Gaussian random variable $D_t \sim N(||a_t C_t||, \sigma^2)$
 - σ : Const.SONAR_STD

예.
$$a_t = (1,3)$$
 $C_t = (4,7)$ $||a_t - C_t|| = 5$ $D_t = 4.6$ or 5.2, etc.

- 두 종류의 uncertainty
 - Non-deterministic action (MDP에서 다룸)
 - Partially observable state: 정확한 state가 아닌 state에 대한 부정확한
 observation^{관측값}만을 가짐

- Observation을 바탕으로 **belief state**^{신뢰상태}를 계산해야 함
 - Posterior probability

$$\mathbb{P}(C_t|D_1=d_1,\cdots,D_t=d_t)$$

예.

$$p(C_t = (2,1)) = 0.0$$

 $p(C_t = (2,2)) = 0.125$
 $p(C_t = (2,3)) = 0.5$

(4,1)	(4,2)	(4,3)	(4,4)
(3,1)	(3,2)	(3,3)	(3,4)
(2,1)	(2,2)	(2,3)	(2,4)
(1,1)	(1,2)	(1,3)	(1,4)

- 문제를 단순화하기 위해 world를 tile 형태로 discretize 이산화
 - (row, col) pairs
 - 0 ≤ row < numRows and 0 ≤ col < numCols
 - 관련 함수: util.rowToY(row) 및 util.colToX(col)

- Tracker class의 멤버변수 self.belief
 - self.belief.getProb(row, col)
 - self.belief.setProb(row, col, p)
 - self.belief.addProb(row, col, p)

- util.pdf(mean, std, value)
 - (mean, std)의 정규분포 PDF를 통해 value의 확률 계산
 - 이 PDF는 sum-to-1의 확률을 return하지 않으나 확률 처럼 사용해 belief state를 계산
 - 모든 계산을 마치고 normalize 수행
 - self.belief.normalize()

- mean: agent와 각 tile간의 거리
- std: Const.SONAR_STD
- value: 다른 자동차와의 거리 (with noise)

Emission Probability

• 다른 자동차가 멈춰 있는 환경 $(C_t = C_{t-1})$

• 오직 observation만을 바탕으로 belief state tracking

• C_t 의 posterior probability를 계산하는 **ExactInference 클래스의 observe** 함수 구현

$$\mathbb{P}(C_t|D_1 = d_1, \dots, D_t = d_t) \propto \mathbb{P}(C_t|D_1 = d_1, \dots, D_{t-1} = d_{t-1})p(d_t|c_t)$$

Emission Probability

Pseudocode

```
def observe(agentX, agentY, observedDist):
   for each tile:
      tile의 row, col을 x, y 좌표로 변환
      dist ← agent와 tile의 euclidean 거리 계산
      belief[tile] ← belief[tile] X p(observedDist|dist, std)
   belief를 normalize
```

• 각 프레임마다 observe 함수 호출

Emission Probability

- 다음 명령어를 통해 결과 확인
 - python drive.py -p -d -k 1 -i exactInference (자동 운전 X)
 - python drive.py -a -p -d -k 1 -i exactInference

Transition Probability

• 다른 자동차들이 transition probability $p(c_t|c_{t-1})$ 에 따라 이동

- Dictionary 형태의 self.transProb 사용
 - key = (srcTile, destTile)
 - value = transition probability

• Observation 및 transition probability를 모두 고려해 belief state tracking

• C_t 의 posterior probability를 계산하는 **ExactInference 클래스의** elapseTime 함수 구현

$$\mathbb{P}(C_{t+1} = c_{t+1} | D_1 = d_1, \cdots, D_t = d_t) \propto \sum_{c_t} \mathbb{P}(C_t = c_t | D_1 = d_1, \cdots, D_t = d_t) p(c_{t+1} | c_t)$$

Transition Probability

• Pseudocode

```
def elapseTime(): belief_{t+1} \  \, \Delta \mbox{/$ $\Rightarrow$ } \mbox{$for$ each $srcTile, destTile:} \\ belief_{t+1}[destTile] \  \, \pm \  \, belief_t[srcTile] \  \, X \  \, p(destTile|srcTile) \\ belief_{t+1} \mbox{$\ominus$ normalize } \\ belief_t \  \, \leftarrow \  \, belief_{t+1}
```

• 각 프레임마다 1. elapseTime 및 2. observe 함수 호출

-k 3

Transition Probability

-k 1

- 다음 명령어를 통해 결과 확인
 - python drive.py -a -d -k 1 -i exactInference
 - Emission probability 문제 대비 -p flag가 제거됨