Import Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

importing the data set

```
HouseDF = pd.read_csv('USA_Housing.csv')
HouseDF.head()
 \Box
                                     Avg.
                                                Avg.
                           Avg.
                                     Area
                                                Area
            Avg. Area
                                                              Area
                           Area
                                   Number
                                              Number
                                                                            Price
                                                                                                Ad
               Income
                          House
                                                        Population
                                       of
                                                  of
                            Age
                                    Rooms
                                           Bedrooms
                                                                                    208 Michael Fer
        79545.458574 5.682861
                                 7.009188
                                                4.09
                                                      23086.800503 1.059034e+06
                                                                                      674\nLaurabu
                                                                                       188 Johnson
        79248.642455 6.002900 6.730821
                                                3.09 40173.072174 1.505891e+06
                                                                                         Suite 079\
                                                                                          Kathleen
                                                                                          9127 Eliz
      2 61287.067179 5.865890 8.512727
                                                5.13 36882.159400 1.058988e+06
                                                                                   Stravenue\nDanie
                                                                                             WI 06
                                                                                    USS Barnett\nFI
        63345.240046 7.188236
                                 5.586729
                                                3.26
                                                      34310.242831
                                                                    1.260617e+06
                                                                                   USNS Raymond'
                                                      26354.109472 6.309435e+05
         59982.197226 5.040555
                                7.839388
                                                4.23
                                                                                               ΑE
```

HouseDF.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64

Avg. Area Number of Bedrooms 5000 non-null float64
Area Population 5000 non-null float64
Price 5000 non-null float64
Address 5000 non-null object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

HouseDF.describe()

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Pı
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000€
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073€
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866€
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771€
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669€
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210€
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.4690666

HouseDF.columns

sns.pairplot(HouseDF)

Sils.ulscploc(houseble Filee])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)


```
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
```

```
# Step2 - Fitting Simple Linear Regression to the Traning Set
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
```

LinearRegression()

print(lm.intercept_)

-2640159.7968526958

coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
coeff_df

	Coefficient
Avg. Area Income	21.528276
Avg. Area House Age	164883.282027
Avg. Area Number of Rooms	122368.678027
Avg. Area Number of Bedrooms	2233.801864
Area Population	15.150420

```
predictions = lm.predict(X_test)
plt.scatter(y_test,predictions)
```

<matplotlib.collections.PathCollection at 0x7f725a274e90>


```
sns.distplot((y_test-predictions),bins=50);
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)


```
from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
```

MAE: 82288.22251914942 MSE: 10460958907.20898 RMSE: 102278.82922290899