Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота № 2.1

з дисципліни «Алгоритми і структури даних»

Виконав: Перевірила:

студент групи IM-34 Сюсюков Володимир Володимирович

номер у списку групи: 23

Молчанова А. А.

Завдання

1. Написати програму розв'язання задачі пошуку (за варіантом) у двовимірному масиві (матриці) методом двійкового пошуку.

Алгоритм двійкового пошуку задається варіантом завдання.

- 2. Розміри матриці та п взяти самостійно у межах від 7 до 10.
- 3. При тестуванні програми необхідно підбирати такі вхідні набори початкових значеннь матриці, щоб можна було легко відстежити коректність виконання пошуку і ця коректність була б протестована для всіх можливих випадків. З метою тестування дозволяється використовувати матриці меншого розміру.

Варіант 23:

Задано матрицю дійсних чисел A[m,n]. Окремо у останньому рядку і першому стовпчику визначити присутність будь-якого з чисел діапазону [0,5] і його місцезнаходження (координати) методом двійкового пошуку (Алгоритм №1), якщо елементи цього рядка і стовпчика впорядковані за незбільшенням.

Текст програми

#include <stdio.h>

```
int BinarySearch(double arr[8]) {
  int mid = 3, high = 0, low = 7;
  while (high < low) {
    if (arr[mid] <= 5 && arr[mid] >= 0) {
       return mid;
    }
    if (arr[mid] <= 0) {
       low = mid;
    } else {
       high = mid + 1;
    }
    mid = (low + high) / 2;
    if (high >= low) {
       printf("Item Missing!\n");
       return -1;
    }
  return 0;
}
int main(void) {
  double arr[8][8] ={{43, 12, 93, 28, 8, 4, 1, 13},
              {34, 28, 19, 17, 12, 7, 5, 2},
              \{32, 24, 3, 0, 2, 7, 8, 12\},\
              {63, 19, 14, 3, 11, 89, 100, 12},
              {49, 9, 4, 4, 24, 38, 46, 52},
              {17, 1, 10, 48, 62, 84, 98, 12},
              {4, 3, 17, 42, 68, 73, 90, 73},
```

```
{1, 0, 6, 10, 25, 39, 45, 10}
};
for (int i = 0; i < 8; i++){
  for (int j = 0; j < 8; j++){
    printf("%.2f ", arr[i][j]);
  }
  printf("\n\n");
}
printf("Index in the last row: %d\n", BinarySearch(arr[7]));
double fc[8];
for (int i = 0; i < 8; i++){
  fc[i] = arr[i][0];
}
printf("Index in first column: %d", BinarySearch(fc));
return 0;
```

}

Результати тестування програми

"D:\Навчання\АСД\1 курс\Lab 2.1\cmake-build-debug\Lab_2_1.exe"							
43.00			28.00			1.00	13.00
34.00	28.00	19.00	17.00	12.00	7.00	5.00	2.00
32.00	24.00	3.00	0.00	2.00	7.00	8.00	12.00
63.00	19.00	14.00	3.00	11.00	89.00	100.00	12.00
49.00	9.00	4.00	4.00	24.00	38.00	46.00	52.00
17.00	1.00	10.00	48.00	62.00	84.00	98.00	12.00
4.00	3.00	17.00	42.00	68.00	73.00	90.00	73.00
1.00	0.00	6.00	10.00	25.00	39.00	45.00	10.00
Item Missing!							
Index in the last row: -1							
Index in first column: 6							
Process finished with exit code 0							