Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de março de 2020

Plano de Aula

- ① O que é Teoria da Computação?
 - Máquina de Turing

Máquina de Turing

Sumário

- 1 O que é Teoria da Computação?
 - Máquina de Turing

2 Máquina de Turing

Pode ser dividida em três grandes áreas:

Pode ser dividida em três grandes áreas: '

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

Pode ser dividida em três grandes áreas: '

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Pode ser dividida em três grandes áreas: '

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Quais são as capacidades e limitações fundamentais dos computadores?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria da Complexidade

O que faz alguns problemas serem computacionalmente difíceis e outros fáceis?

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)*;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n n \ge 0 \text{ e } n \in \mathbb{N}\}.;$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como (10 ∪ 1)*;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n n \ge 0 \text{ e } n \in \mathbb{N}\}.;$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n n \ge 0 \in n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - existem certos problemas que uma MT não pode resolver.

- Salaminh salah-mês... tranforme as figuras em inglês!

Sumário

O que é Teoria da Computação?Máquina de Turing

2 Máquina de Turing

Diferenças entre MT e AFDs

 Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}.$

Descrição de M₁

 M_1 = "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
    1000#011000 ...
 1 1 0 0 0 # x 1 1 0 0 0 \( \dots \)...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
х × 1 0 0 0 # х 1 1 0 0 0 ц . . .
x x x x x x # x x x x x
                         accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- ② Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- **③** Γ é o alfabeto da fita, em que \sqcup ∈ Γ e Σ ⊆ Γ ,
- **4** $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $g_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita} \neq q_{aceita}$.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

uqv em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

- Salaminh salah-mês... tranforme as figuras para português!

FIGURA 3.4

Uma máquina de Turing com configuração 1011q₇01111

Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

09 de março de 2020

