• Elle a pour rôle :

- offrir une interface de service bien définie à la couche réseau
- générer des trames prêtes à être transférées par la couche physique
- traiter les erreurs de transmission
- assurer le contrôle de flux

• Services offerts:

- service sans connexion et sans accusé de réception
- service sans connexion avec accusé de réception
- service avec connexion avec accusé de réception

- <u>Service sans connexion ni accusé de réception convient :</u>
 - Les trames ne sont pas acquittées
 - lorsque le taux d'erreurs est faible
 - lorsque la correction des erreurs se fait dans les couches supérieures
 - pour certaines applications qui peuvent s'accommoder d'une petite quantité de bruit dans les données (voix numériques,...etc)

- Service sans connexion avec accusé de réception :
 - chaque trame doit être acquittée
 - au bout d'un certain temps, on réexpédie la trame si pas acquittement
 - très intéressant pour les canaux peu fiables tels que les liaisons sans fil

- Service avec connexion et accusé de réception :
 - établir d'abord une connexion avant transmission des données
 - chaque trame est numérotée et sa réception est garantie dans l'ordre
 - une trame est reçue une seule fois
 - à la fin, libérer la connexion

• La trame :

- c'est l'unité de transfert de la couche liaison.
- On doit pouvoir:
 - délimiter une trame
 - détecter et corriger les erreurs d'une trame
 - contrôler le flux

- Délimitation de la trame :
 - comptage de caractères :
 - Chaque trame commence par le nombre de caractères qu'elle contient :
 - le nombre de caractères peut être affecté par la transmission
 - la synchronisation est perdue si erreur dans le nombre de caractères.

- Délimitation de la trame :
 - utilisation d'un fanion au début et à la fin :
 - fanion=octets spéciaux
 - le fanion peut apparaître dans les données : le précéder d'un caractère spécial ESC
 - ESC peut apparaître dans les données : Le précéder d'un ESC supplémentaire
 - NB : Problème si les caractères ne sont pas codés en ascii.

- Délimitation des trames :
 - Exemple de fanion: 01111110
 - chaque trame commence et se termine par ce fanion.
 - Si une séquence de cinq 1 est détectée, on ajoute à sa suite un 0 avant sa transmission.
 - A la réception, on enlève un 0 après chaque séquence de cinq 1.

Acquittement des trames :

- les trames sont numérotées pour identifier les trames à retransmettre.
- l'émetteur arme un temporisateur avant d'envoyer une trame=temps transmission+temps traitement+ temps acquittement.
- si le temporisateur arrive à échéance, la trame est retransmise.
- si l'acquittement est négatif, alors la trame est retransmise

• Acquittement négatif :

- il est fait quand le récepteur se rend compte que la trame reçue est différente de la trame émise.
- à l'émission, l'émetteur calcule une somme de contrôle (checksum) ou total de contrôle qui est envoyé avec la trame.
- le destinataire recalcule le total de contrôle et le compare avec celui reçu. Si pas égalité, alors erreur.

• Contrôle d'erreur :

- il se fait en ajoutant dans la trame à transmettre des redondances :
 - quelques redondances seulement permettent de détecter les erreurs et de demander la retransmission de la trame
 - un grand nombre de redondances peuvent permettre de détecter les erreurs et aussi de les corriger. On a pas besoin de demander une retransmission de la trame.

- Pour faire communiquer des machines identifiées par leurs adresses, il faut définir un grand nombre de règles concernant :
 - la structuration du dialogue,
 - le format des messages transmis,
 - l'enchaînement logique des messages,
 - le codage de l'information,
 - le rythme de transmission
 - ... etc.

- Un protocole est un ensemble de règles régissant la communication entre deux entités.
- un logiciel de communication, installé sur chaque entité communicante exécute le protocole pour permettre la communication.
- NB : Au niveau liaison de données on a des protocoles tels que PPP ou Ethernet.

- Exemple de protocole simple : arrêt et attente
- NB: on suppose que le canal n'a pas de bruit
- Au niveau de l'émetteur :
 - recevoir un paquet de la couche réseau et préparer une trame
 - expédier la trame à la couche physique
 - attendre l'acquittement de la trame émise
 - après réception de l'acquittement reprendre le processus.

- Au niveau du récepteur :
 - recevoir une trame de la couche physique
 - remettre la trame reçue à la couche réseau
 - préparer une trame d'acquittement et la transmettre à la couche physique

• Inconvénients:

- Manque de réalisme : une trame transmise peut se perdre, subir des transformations suite à du bruit
- La bande passante est mauvaise.

- <u>Protocole avec canal bruité</u>: une trame ou son acquittement peuvent se perdre
- Au niveau de l'émetteur :
 - 1) recevoir une trame de la couche réseau
 - 2) numéroter la trame
 - 3) transmettre la trame à la couche physique
 - 4) armer un temporisateur et attendre l'acquittement
 - 5) si l'acquittement arrive (acquittement positif), alors aller à 1)
 - 6) si pas d'acquittement et le temporisateur expire, ou acquittement négatif alors aller à 3) pour retransmettre la trame.

- <u>Protocole avec canal bruité</u>: une trame ou son acquittement peuvent se perdre
- Au niveau du récepteur :
 - 1) recevoir une trame de la couche physique
 - 2) si nouvelle trame et pas d'erreur, alors la transmettre à la couche réseau
 - 3) si nouvelle trame et erreur, alors ne pas transmettre à la couche réseau.
 - 3) si ancienne trame, alors ne pas la transmettre à la couche réseau
 - 4) préparer et transmettre un acquittement négatif ou positif à la couche physique
 - 5) aller à 1)

- Avantage :
 - On tient compte de l'existence du bruit dans la liaison
- Inconvénient :
 - Mauvaise utilisation de la bande passante
- <u>NB</u>: On peut imaginer une version où le récepteur n'émet pas un acquittement négatif

- Protocole à fenêtre d'anticipation (Sliding window):
 - On suppose que chacune des entités communicantes est à la fois émettrice et réceptrice
 - On peut utiliser un champ d'en-tête d'une trame allant dans un sens pour acquitter une trame reçue du sens opposé.
 (Superposition=piggybacking)
 - si une nouvelle trame n'est pas prête dans un certain délai, on peut émettre une trame d'acquittement.
 - si n est la taille de la fenêtre, alors on peut émettre n trames sans recevoir d'acquittement.

- Protocole à anticipation :
 - la fenêtre de l'émetteur est une liste circulaire gérée par tableau :
 - un pointeur de tête qui pointe sur le numéro de la prochaine donnée à acquitter
 - un pointeur de queue qui pointe sur le numéro de la prochaine donnée à envoyer.
- la fenêtre du récepteur peut avoir pour taille 1 (rejet global) ou avoir la même taille que la fenêtre d'émission (rejet sélectif)

• Protocole à fenêtre :

- l'émetteur arme un temporisateur associé à chaque trame.
- en cas de rejet global, une trame non reçue est retransmise ainsi que toutes les trames suivantes
- en cas de rejet sélectif, c'est la trame erronée qui est retransmise. Toutes les autres sont dans le tampon.
- toutes les trames correctes sont envoyées à la couche réseau dans l'ordre d'émission.

La couche liaison de données : Exemple de protocoles

- Le protocole HDLC: High-Level Data Link Control
- Dans un paquet, il y a quatre champs délimités par le fanion 01111110 :
 - un champ adresse
 - un champ contrôle
 - un champ données
 - un champ total de contrôle (FCS:Frame Check Control)
 - NB : Si des trames se suivent, le fanuon de fin de la précédente peut servir de fanion de début de la suivante.

• Protocole HDLC:

- le champ adresse permet d'identifier le destinataire
- le champ contrôle contient les numéros de séquence ou les acquittements
- le champ données peut contenir n'importe quelle information (>=0)
- le champ total de contrôle contient un code permettant de faire la détection et/ou la correction d'erreur. (16bits)
- NB: Tous les autres champs tiennent sur huit bits.

- Le protocole HDLC :
- Il existe trois types de trames :
 - les trames d'information
 - les trames de supervision
 - les trames non numérotées
- NB : le champ contrôle permet de différencier ces divers types de trames

- les trames d'information (I) portent les données venant de la couche supérieure
- les trames (S) de supervision transportent des commandes de supervision et donc l'acquittement.
- les trames (U) sont pour le transfert des données non numérotées et pour effectuer les fonctions de commandes de la liaison

- le champ contrôle des trames d'information a quatre sous champs :
 - le premier est à 0
 - les trois bits suivants sont le numéro de séquence à l'émission. On peut attendre l'acquittement de sept trames au plus.
 - le troisième noté P/F (Poll/Final) est utilisé quand un ordinateur interroge un groupe de terminaux. La valeur $P=1 \rightarrow commande$ et $F=1 \rightarrow réponse$.
 - le quatrième champ indique le numéro de la trame non encore reçue. Permet d'acquitter l'émission dans le sens inverse. On acquitte des groupes de sept trames.

- Le champ contrôle des trames de supervision a quatre sous-champ :
 - le premier est la chaîne 10
 - le deuxième est le type : Il en existe 4 :
 - - RR (Receive Ready:00) : prêt à recevoir
 - - REJ (Reject:10) : rejet
 - - RNR (Receive Not Ready : 01) : Pas prêt à recevoir
 - - SREJ (Selective reject : 11) : rejet sélectif, retransmettre la trame spécifiée
 - le troisième champ (P/F) joue le même rôle
 - le quatrième champ est le numéro de la trame (ou de la première trame) à retransmettre.

- Le champ contrôle d'une trame de type U a quatre sous champs :
 - le premier est 11
 - le second est le type codé sur 2bits et représente les premiers bits d'une commande.
 - le troisième est P/F
 - le quatrième est codé sur 3 bits. Ils forment avec les deux bits du deuxième champ les cinq bits d'une commande. On peut donc avoir 32 commandes.

- Exemple de commandes :
 - DISC (disconnect: 1111P010)
 - SNRM (Set Normal Response Mode). Mode non équilibré dans lequel une seule machine prend l'initiative des transferts
 - SABM (Set Asynchronous Balanced Mode :
 1 1 1 1 P 1 0 0) demande de connexion (mode équilibré)

- UA (Unnumbered Acknowledgement) pour acquitter des commandes comme SABM ou DISC: 1100 F110
- FRMR (FRaMe Reject) pour rejeter une commande invalide : 1 1 1 1 F 0 1 1
- DM (Disconnect Mode) pour indiquer l'état de déconnexion d'une station. Elle s'utilise, en particulier, pour répondre négativement à une demande d'initialisation par SABM :1 1 1 1 F 0 0 0

- Ce protocole a deux modes de fonctionnement :
 - Le mode non équilibré : (unbalanced)
 - Un équipement maître communique avec des équipements esclaves
 - Le mode équilibré : (balanced)
 - Des équipements pairs communiquent
- NB: Le protocole HDLC est la couche liaison utilisée pour de nombreux protocoles: H.323, V.120, TCN ou X.25.

- Une extension de HDLC utilisée dans les liaisons point à point :
 - les liaisons entre routeurs
 - liaisons entre utilisateur et son FAI
- Une trame PPP a cinq champs entourés par deux champs fanion au début et à la fin.
- NB : Il est massivement utilisé pour les connexions internet

- fanion (8 bits): 01111110
- adresse (8 bits): 11111111
- contrôle (8 bits): 11000000
- protocole (8 ou 16 bits) : protocole encapsulé
- données (taille variable)
- total de contrôle (16 ou 32 bits)
- fanion (8 bits): 01111110

- le champ adresse est mis à 11111111 pour que toutes les stations accepte la trame.
- le champ contrôle a pour valeur par défaut : 11000000,--> les trames ne sont pas numérotées
- le champ protocole permet d'indiquer quel type de paquet contient la trame

La couche liaison de données : Protocole PPP

• Le champ protocole peut prendre l'une des valeurs suivantes :

• <u>Valeur</u>	Protocole encapsulé
• 0x0021	IP
• 0xC021	LCP (Link Control Protocol)
• 0x8021	NCP (Network Control Protocol)
• 0xC023	PAP (Password Authentication Protocol)
• 0xC025	LQR (Link Quality Report)
• 0xC223 Protocol)	CHAP (Challenge Handshake Authentication

La couche liaison de données : Protocole PPP

- LCP (Link Control Protocol), permet de négocier les paramètres de l'échange (MTU, ...etc)
- PAP (Password Authentication Protocol), permet d'authentifier les extrémités de la connexion
- CHAP (Challenge Authentication Protocol), permet de chiffrer les échanges après avoir négocier des clés symétriques ou asymétriques
- NCP (Network Control Protocol),sert à négocier les paramètres de la connexion

La couche liaison de données

• Contrôle d'erreur :

- code de détection d'erreur (code de parité)
- codes correcteurs d'erreur (code de Hamming)
- <u>NB</u>: Très souvent la correction d'erreurs va consister à retransmettre la trame

Exemples de codes:

- Code de parité (paire ou impaire)
- Code VRC (Vertical Redondancy Check)
- LRC (Longitudinal Redondancy Check)
- CRC (Cyclic Redundancy Check):
 - Code poynomiaux
- Code de Hamming (TD)

La couche liaison dans les réseaux à diffusion

- Les protocoles vus jusqu'à présent sont valides pour des canaux point à point (ou multipoints)
- Avec des canaux à accès multiples (réseaux à diffusion), la couche liaison est divisée en deux souscouches :
 - LLC (Logical Link Control)
 - MAC (Medium Acces Control)
- Les LAN sont en général des réseaux à accès multiple (Réseaux à diffusion)

La sous couche Mac

- Le rôle de la sous-couche MAC est principalement de :
 - Réguler les émissions sur les supports
 - Reconnaître le début et la fin des trames dans le flux binaire reçu de la couche physique ;
 - Filtrer les trames reçues en ne gardant que celles qui lui sont destinées, en vérifiant leur adresse MAC de destination ;
 - Contrôler l'accès au média physique lorsque celui-ci est partagé.

La sous couche LLC

- Cacher les disparités de la couche physique à la couche réseau
- Contrôler les flux
- Générer les accusés de réception
- Contrôle d'erreur
- Adresse de destination et adresse source des trames

PARTAGE D'UN CANAL

- Le multiplexage en fréquence : Frequency Division Multiple Access (FDMA)
 - Le spectre est divisé en N portions
 - Si moins de N utilisateurs alors gaspillage
 - Si plus de N utilisateurs, certains ne pourront pas émettre
 - <u>Une variante est le multiplexage en longueur d'onde :</u> Wave length Division Multiple Access (WDMA) utilisée avec la fibre optique
- <u>Le multiplexage en temps</u>: Time Division Multiple Access (TDMA)
 - Chaque utilisateur reçoit la totalité du canal
 - Un utilisateur n'émet que dans un très petit intervalle de temps

PARTAGE D'UN CANAL

- Code Division Multiple Access
 - Un code attribué à chaque communication permet de la distinguer des autres
- Carrier Sense Multiple Access : CSMA (Accès multiple par écoute de porteuse). Ecouter le canal de transmission pour savoir s'il est occupé.
 - CSMA/CD
 - CSMA/CA
- <u>NB</u>: On appelle système à contention, un système de partage d'un canal à plusieurs utilisateurs où des situations de conflits sont possibles.

Le protocole Ethernet

- Ethernet est le plus célèbre des réseaux locaux, né en 1970 à Hawaï aux Etats Unis
- Le comité 802 de l'IEEE travaille sur la normalisation des LAN.
- Le groupe 802.3 de ce comité travaille sur le réseau Ethernet.
- Le groupe 802.11 travaille sur la normalisation des LAN sans fil

Ethernet

Nom	Туре	Distance maximale	Nombre de nœuds par segment	Remarques
10Base5	Câble coaxial épais (Ethernet épais)	500 m	100	Devenu obsolète
10Base2	Câble coaxial fin (Ethernet fin)	185 m	30	Pas de hub nécessaire
10Base-T	Paire torsadée	100 m	1024	Système le moins cher
10Base-F	Fibre optique	2 km	1024	Mieux adapté pour relier des immeubles.

Ethernet : Câblage

Trois types de câblage Ethernet : (Auteur : Tanenbaum)
(a) 10Base5, (b) 10Base2, (c) 10Base-T.

Ethernet: Format d'une trame

(a) DIX Ethernet par Xerox(b) IEEE 802.3.

(Tanenbaum)

Ethernet: Format d'une trame

- Le champ préambule contient 8 octets contenant chacun 10101010, sauf le dernier dont les deux derniers bits sont 11 :
 - Il est d'abord émis pour synchroniser les horloges de l'émetteur et du récepteur.
- Les deux champs suivants tiennent chacun sur 6 octets. Ils représentent respectivement l'adresse Mac de l'émetteur et du récepteur.

Ethernet :Format d'une trame

- Le quatrième champ indique le type d'une trame : protocole à qui remettre la trame (ou longueur de la trame. Le protocole passe au début du champ données)
- Le cinquième champ contient les données. Sa valeur est fixée à 1500 octets.
- Le champ suivant est le champ de remplissage. Si la trame est petite, elle permet de la compléter de sorte que la taille à partir des champs adresse soit au moins égale à 64 octets.
- Total de contrôle de 4 octets

Ethernet: Adresse Mac

- Elle tient sur 6 octets, soit 48 bits :
 - 24 bits de poids forts identifient le constructeur
 - 24 bits de poids faibles identifient la carte
- Bit de poids fort adresse destination :
 - 0, alors adresse ordinaire (unicast)
 - 1, alors adresse de diffusion restreinte (multicast)
- Deuxième bit de poids fort
 - 0, adresse universelle attribuée par l'IEEE
 - 1, adresse locale
- Si tous les bits de destination sont à 1, alors adresse de diffusion globale

Ethernet: Temps

d'attente

- Le temps est divisé en slots (intervalles). Chaque station essaie de transmettre dans un slot.
- Le temps d'attente (nombre de slots d'attente) est choisi entre 0 et 2ⁱ-1, si on est à la ième tentative de transmission d'une trame.
- Le canal est partagé suivant le mode CSMA/CD.

Ethernet : La sous couche

LLC

- La sous couche Mac offre un service de transport de trames au mieux. Cette trame peut transporter des paquets IP.
- Pour avoir un service fiable avec acquittement assurant un contrôle de flux et d'erreurs on place au dessus de la sous couche Mac une sous couche LLC (Logical Link Control

Ethernet: La sous couche

LLC

- Elle permet aussi de :
 - Dissimuler à la couche réseau, les différences d'implémentation de la sous couche Mac
 - Présenter à la couche réseau un format de trame et une interface unique et homogène
 - Offrir un service :
 - Sans connexion non fiable
 - Sans connexion avec acquittement
 - Avec connexion et acquittement

Ethernet : La sous couche

LLC

- Fonctionnement de la sous couche LLC:
 - Un entête est ajouté à tout paquet provenant de la couche réseau comportant :
 - Un point de destination : processus à qui on remet la trame
 - Un point source : processus à l'origine de la trame
 - Un champ de contrôle contient le numéro de séquence et d'acquittement
 - Le nouveau paquet obtenu est inséré dans une trame de la sous couche Mac et transmise.

Ethernet : Couche liaison de données

(a) Position of LLC. (b) Protocol formats. (A. Tanenbaum)

Ethernet commuté

- Un commutateur Ethernet a un ensemble de ports permettant de connecter des stations (Ordinateurs).
- Chaque ordinateur est équipé d'une interface réseau (Carte réseau)
- La liaison entre l'ordinateur et le commutateur est en paire torsadée (10Base-T). Un ordinateur ne doit donc pas se situer à plus de 100 mètres du commutateur.

Ethernet: Evolution

- Elle a pour objectifs :
 - Augmentation du débit
 - Assurer la compatibilité entre les LAN existants
 - Garder le format de trame
 - Garder les règles d'accès

Ethernet: Evolution

- L'Ethernet classique offre un débit de 10M/s, avec un câblage de type 10Base5, 10Base2, 10BaseT et 10BaseF
- Fast Ethernet n'utilise pas le câble coaxial et offre des débits de 100M/s. Le câble utilisé est de type 100Base-T4, 100Base-TX (paire torsadée:catégorie 3 et 5 respectivement) et 100Base-FX (fibre optique)

Ethernet: Evolution

- Gigabit Ethernet :
 - Il offre des débits de 1G/s
 - Offre un mode datagramme sans acquittement
 - Possibilité de diffusion restreinte et générale
 - Les stations sont connectés par l'intermédiaire d'un hub ou d'un commutateur, ou de plusieurs commutateurs ou plusieurs hubs.
 - Les liaisons sont faites à partir d'un câblage de type 1000Base-SX (fibre optique:550m), 1000Base-LX (fibre optique:5000m), 1000Base-CX (STP:paire torsadée blindées: 25m), 1000Base-T (UTP: paire torsadée non blindée:100m)

Ethernet: Equipements

- Répéteurs
- Hubs
- Ponts
- Commutateurs
- Routeurs
- Passerelles

Ethernet: Equipements

- (a) Equipements et couches
- (b) Trames, paquets et entêtes