Matematika Diskrit 1 Himpunan

Dr. Ahmad Sabri

Universitas Gunadarma

Apakah Matematika Diskrit itu?

Matematika diskrit adalah kajian terhadap objek/struktur matematis, di mana objek-objek tersebut diasosiasikan sebagai nilai-nilai diskrit.

Himpunan

Definisi

Himpunan adalah kumpulan objek dengan karakteristik yang telah didefinisikan sebelumnya.

Contoh

- Himpunan mahasiswa UG.
- Himpunan bilangan genap.
- Himpunan untai biner panjang 5 yang memiliki 3 simbol '1'.
- dsb.

Himpunan

Definisi

Himpunan adalah kumpulan objek dengan karakteristik yang telah didefinisikan sebelumnya.

Contoh

- Himpunan mahasiswa UG.
- Himpunan bilangan genap.
- Himpunan untai biner panjang 5 yang memiliki 3 simbol '1'.
- dsb.

Notasi pada himpunan

- Simbol himpunan dinyatakan dalam huruf besar miring, anggota-anggotanya ditulis di antara kurung kurawal $\{\}$, dan setiap anggotanya dipisahkan oleh koma. Urutan simbol tidak berpengaruh. Contoh $A=\{a,i,u,e,o\}=\{i,o,a,e,u\}$
- Relasi: \in , \ni , \subset , \subseteq , \supset , \supseteq .
- Negasi dari relasi: \notin , $\not\supseteq$, $\not\subset$, $\not\subseteq$, $\not\supseteq$.
- Operasi: ∩, ∪

Contoh

- $A = \{1, 3, 5, 7, \ldots\}$ dapat dinyatakan sebagai $A = \{x | x \text{ bilangan ganjil}\}$
- $B = \{x | x^2 + 3x 10 = 0\}$, $C = \{-5, 2\}$, $D = \{-5, 2, 2, -5\}$. Maka, B = C = D.

Subhimpunan

Definisi

- Diberikan dua himpunan A dan B. Jika untuk sebarang $x \in A$ berlaku $x \in B$, maka dikatakan A adalah subhimpunan dari B. Secara matematis, $A \subseteq B$, atau $B \supseteq A$.
- lacksquare A=B jika dan hanya jika $A\subseteq B$ dan $B\subseteq A$.
- Jika $A \subseteq B$ dan $A \neq B$, maka A dikatakan sebagai subhimpunan sejati (proper subset) dari B, dan dinotasikan sebagai $A \subset B$.

Untuk seterusnya, istilah "subhimpunan" mengacu pada simbol \subset .

Beberapa himpunan yang sering digunakan

- **N**: himpunan bilangan natural (asli) $1, 2, 3, \ldots$
- **Z**: himpunan bilangan integer (bulat) ..., -2, -1, 0, 1, 2, ...
- **Q**: himpunan bilangan rasional.
- R: himpunan bilangan riil.
- C: himpunan bilangan kompleks.

Perhatikan bahwa $N \subseteq Z \subseteq Q \subseteq R \subseteq C$.

- U: himpunan semesta
- Ø atau {}: himpunan kosong

Himpunan disjoin

Definisi

Himpunan A dan B dikatakan $\emph{disjoin}$ jika tidak terdapat elemen anggota A yang juga menjadi anggota B.

Contoh

Diberikan $A=\{2,4,6,8,10\}$, $B=\{2,4,8,16\}$, $C=\{1,3,5,7,9\}$. A dan B tidak disjoin. Namun, A dan C disjoin, demikian pula halnya denga B dan C.

Diagram Venn

Diagram Venn adalah representasi himpunan secara visual, di mana reprsentasi himpunan tersebut berada dalam suatu daerah persegi panjang sebagai representasi himpunan semesta **U**.

Operasi pada himpunan

- \cup : operasi gabung. $A \cup B = \{x | x \in A \text{ atau } x \in B\}$
- \blacksquare \cap : operasi *iris*. $A \cap B = \{x | x \in A \text{ dan } x \in B\}$

(a) $A \cup B$ is shaded

(b) $A \cap B$ is shaded

- Jika A dan B disjoin, maka $A \cap B = \emptyset$.
- \blacksquare Jika $S=A\cup B$ dan $A\cap B=\emptyset$, maka S dikatakan sebagai gabungan disjoin dari A dan B.

Teorema

Diberikan sebarang dua himpunan A dan B. Maka berlaku:

- $lacksquare A\cap B\subseteq A\subseteq A\cup B$, dan
- $\blacksquare \ A\cap B\subseteq B\subseteq A\cup B.$

Teorema

Ketiga pernyataan berikut ekivalen:

- $A \subseteq B$
- $A \cap B = A$,
- A = B.

Teorema

Diberikan sebarang dua himpunan A dan B. Maka berlaku:

- $lacksquare A\cap B\subseteq A\subseteq A\cup B$, dan
- $\blacksquare \ A\cap B\subseteq B\subseteq A\cup B.$

Teorema

Ketiga pernyataan berikut ekivalen:

- $A \subseteq B$,
- $\blacksquare A \cap B = A$,
- $\blacksquare A = B.$

Generalisasi operasi himpunan

Diberikan sejumlah hingga himpunan A_1,A_2,\ldots,A_m . Operasi gabung dan iris untuk semua himpunan tersebut didefinisikan sebagai berikut:

- $A_1 \cup A_2 \cup ... \cup A_m = \bigcup_{i=1}^m A_i = \{x | x \in A_i \text{ untuk beberapa } i\}$
- $A_1 \cup A_2 \cap \ldots \cup A_m = \bigcap_{i=1}^m A_i = \{x | x \in A_i \text{ untuk semua } i\}$

Komplemen mutlak

Definisi

Komplemen mutlak (selanjutnya disebut komplemen) dari himpunan A, dinotasikan sebagai A^C atau A', adalah himpunan elemen semesta yang bukan merupakan elemen himpunan A. Secara matematis, $A' = \{x | x \in \mathbf{U}, x \notin A\}$.

Komplemen relatif

Definisi

Komplemen relatif dari himpunan B terhadap himpunan A, dinotasikan sebagai $A \setminus B$ (dibaca A kurang B), adalah himpunan elemen anggota A yang bukan merupakan elemen anggota B. Secara matematis, $A' = \{x | x \in A, x \notin B\}$.

Perbedaan simetris

Definisi

Perbedaan simetris (symmetric difference) dari himpunan A dan B, dinotasikan sebagai $A \oplus B$, terdiri dari elemen-elemen anggota A atau anggota B, namun tidak keduanya. Secara matematis:

$$A \oplus B = (A \cup B) \setminus (A \cap B),$$

atau

$$A \oplus B = (A \setminus B) \cup (B \setminus A).$$

Aljabar himpunan

Table 1-1 Laws of the algebra of sets

Table 1-1 Laws of the algebra of sets		
Idempotent laws:	$(1a) A \cup A = A$	$(1b) A \cap A = A$
Associative laws:	$(2a) (A \cup B) \cup C = A \cup (B \cup C)$	$(2b) (A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws:	$(3a) A \cup B = B \cup A$	$(3b) A \cap B = B \cap A$
Distributive laws:	$(4a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$(4b) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws:	$(5a) A \cup \emptyset = A$	$(5b) A \cap \mathbf{U} = A$
	$(6a) A \cup \mathbf{U} = \mathbf{U}$	$(6b) A \cap \emptyset = \emptyset$
Involution laws:	$(7) (A^{\mathbf{C}})^{\mathbf{C}} = A$	
Complement laws:	$(8a) A \cup A^{\mathbf{C}} = \mathbf{U}$	$(8b) A \cap A^{C} = \emptyset$
	$(9a) \mathbf{U}^{\mathbf{C}} = \emptyset$	$(9b) \varnothing^{\mathbf{C}} = \mathbf{U}$
DeMorgan's laws:	$(10a) (A \cup B)^{\mathcal{C}} = A^{\mathcal{C}} \cap B^{\mathcal{C}}$	$(10b) (A \cap B)^{\mathbf{C}} = A^{\mathbf{C}} \cup B^{\mathbf{C}}$

Himpunan hingga

- Himpunan A dikatakan hingga jika A adalah \emptyset atau |A|=c>0, c integer (A memuat tepat sejumlah hingga elemen). Dalam kasus lain, A dikatakan tak-hingga.
- Himpunan A dikatakan terhitung (countable) jika A hingga, atau jika elemen-elemen pada A dapat disusun dalam pola barisan. Dalam kasus yang terakhir ini A dikatakan terhitung tak-hingga (countably infinite). Dalam hal yang lainnya, A dikatakan tak terhitung (uncountable).

Prinsip pencacahan

Kardinalitas (banyak elemen) dari himpunan A dinotasikan sebagai n(A), |A|, #(A), atau card(A).

Jika A dan B himpunan hingga dan disjoin, maka:

$$n(A \cup B) = n(A) + n(B).$$

$$n(A \setminus B) = n(A) - n(A \cap B).$$

$$n(A') = n(\mathbf{U}) - n(A).$$

Prinsip pencacahan

Jika A dan B himpunan hingga dan tidak disjoin, maka:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

Prinsip di atas di sebut sebagai Prinsip inklusi-eksklusi.

Prinsip pencacahan

Jika A dan B himpunan hingga dan tidak disjoin, maka:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

Prinsip di atas di sebut sebagai Prinsip inklusi-eksklusi.

Kelas himpunan

- Himpunan-himpunan yang memiliki beberapa kesamaan karakteristik objek membentuk sebuah *kelas himpunan*.
- Kelas himpunan pada dasarnya adalah himpunan yang beranggotakan himpunan.

Himpunan pangkat

Definisi

Diberikan sebuah himpunan hingga A. Himpunan pangkat dari A, dinotasikan sebagai P(A), adalah sebuah himpunan yang beranggotakan semua subhimpunan dari A.

Kardinalitas P(A) dinotasikan sebagai 2^A , dan diberikan oleh $2^{n(A)}$.

Himpunan pangkat

Definisi

Diberikan sebuah himpunan hingga A. Himpunan pangkat dari A, dinotasikan sebagai P(A), adalah sebuah himpunan yang beranggotakan semua subhimpunan dari A.

Kardinalitas P(A) dinotasikan sebagai 2^A , dan diberikan oleh $2^{n(A)}$.

Himpunan partisi

Sebuah k-partisi dari himpunan S adalah himpunan $\{A_1,A_2,\ldots,A_k\}$ di mana:

- $A_i \cap A_j = \emptyset$, untuk $i \neq j$ (A_i dan A_j disjoin).