Travelling Salesman Problem (TSP) Προηγμένα Θέματα Αλγορίθμων

Θεοδώρα Παναγέα 1115201400135

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Μάιος 2021

Εισαγωγή

Βασικά σημεία της σημερινής παρουσίασης:

- Ορισμός TSP
- Αρχικές ιδέες επίλυσης του Προβλήματος
- NP-complete και Αναγωγή
- Προσεγγιστικός Αλγόριθμος

Ένα γρήγορο σκονάκι...

- Κύκλος Euler: Κύκλος που επισκέπτεται όλες τις ακμές ακριβώς 1 φορά.
- Κύκλος Hamilton: Κύκλος που επισκέπτεται όλες τις κορυφές ακριβώς 1 φορά.
- Κορυφή περιττού βαθμού: Κορυφή με περιττό πλήθος ακμών
- Κορυφή άρτιου βαθμού: Κορυφή με άρτιο πλήθος ακμών
- MST: Ένωση όλων των κορυφών με το ελάχιστο κόστος
- Τέλειο ταίριασμα: Κάθε κορυφή έχει ακριβώς 1 ακμή
- Τριγωνική Ανισότητα: Συντομότερη διαδρομή μεταξύ 2 κορυφών είναι η ακμή που τις ενώνει.

Το πρόβλημα

Ένας πωλητής πρέπει να επισκεφθεί όλες τις πόλεις σε ένα δίκτυο πόλεων ακριβώς 1 φορά, κάνοντας το μικρότερο ταξίδι.

Το πρόβλημα

Ένας πωλητής πρέπει να επισκεφθεί όλες τις πόλεις σε ένα δίκτυο πόλεων ακριβώς 1 φορά, κάνοντας το μικρότερο ταξίδι.

Στόχος

Εύρεση μονοπατιού/περιοδείας που περιλαμβάνει όλες τις πόλεις από 1 φορά κι έχει ελάχιστο μήκος.

Το πρόβλημα

Ένας πωλητής πρέπει να επισκεφθεί όλες τις πόλεις σε ένα δίκτυο πόλεων ακριβώς 1 φορά, κάνοντας το μικρότερο ταξίδι.

Στόχος

Εύρεση μονοπατιού/περιοδείας που περιλαμβάνει όλες τις πόλεις από 1 φορά κι έχει ελάχιστο μήκος.

Τα δεδομένα μας

- Πόλεις 1, 2, ..., η και αποστάσεις (πόσες;)
- Πωλητής ξεκινάει από την 1
- Προϋπολογισμός b

Ιδέες Επίλυσης

Bruteforce

Βρίσκουμε όλες τις δυνατές περιοδείες και παίρνουμε την καλύτερη.

- Πλήθος δυνατών επιλογών: (n-1)!
- Πολυπλοκότητα: O(n!)

Ιδέες Επίλυσης

Δυναμικός Προγραμματισμός ΠΟΛΥ ταχύτερη λύση αλλά... ακόμα δεν είναι πολυωνυμική!

Ιδέες Επίλυσης

Δυναμικός Προγραμματισμός

ΠΟΛΥ ταχύτερη λύση αλλά... ακόμα δεν είναι πολυωνυμική!

Το υποπρόβλημα

Για ένα υποσύνολο πόλεων $S\subseteq 1,2,...,n$ το οποίο περιλαμβάνει την 1, και $j\in S$, έστω C(S,j) το μήκος της συντομότερης διαδρομής η οποία επισκέπτεται κάθε κόμβο του S μόνο μία φορά, ξεκινώντας από την 1 και καταλήγοντας στη j.

NP-complete και Αναγωγή

Τι γνωρίζουμε μέχρι στιγμής:

- Ν κορυφές, $\frac{n(n-1)}{2}$ αποστάσεις
- Ψάχνουμε περιοδεία, περνάει από κάθε πόλη 1 φορά, με κόστος $C \leq b \Rightarrow$
- Θέλουμε μετάθεση των κορυφών ώστε:

$$d_{1,2} + d_{2,3} + \ldots + d_{n,1} \le b$$

NP-complete και Αναγωγή

Πιστοποιητικό

Εξετάζει αν η περιοδεία περιλαμβάνει όλες τις πόλεις ακριβώς 1 φορά, προσθέτει τα κόστη κι αποφασίζει αν είναι μεγαλύτερο ή ίσο του b.

NP-complete και Αναγωγή

Απόδειξη:

- Γράφημα G, κατασκευάζω στιγμιότυπο TSP. Κόστος 1 αν (u,v) υπάρχει, $1+\alpha$ διαφορετικά, με $\alpha>1$
- Προϋπολογισμός: |V|
- Αν έχει κύκλο Hamilton, τότε θα ειναι και η λύση του TSP.
- Αν δεν έχει, τότε δεν υπάρχει και λύση. Φθηνότερη δυνατή θα έχει κόστος $n+\alpha$
- 1η περ: $\alpha = 1$, Metric TSP γιατί ισχύει η τριγωνική ανισότητα.
- 2η περ: Το α αυθαίρετα μεγάλο. Τότε υπάρχει λύση με κόστος $\leq n$ ή όλες οι λύσεις είναι τουλ. $n+\alpha$.

Metric TSP 2-Προσεγγιστικός

Γνωρίζουμε κάποια εύκολη δομή που σχετίζεται με την καλύτερη περιήγηση του πωλητή; Ναι! Το MST :)

Ισχύει ότι:

κόστος $\mathit{MST} \leq$ κόστος αυτής της διαδρομής \leq κόστος TSP

Metric TSP 2-Προσεγγιστικός

Πώς θα χρησιμοποιήσουμε το MST;

Μήκος το πολύ διπλάσιο από το κόστος του *MST* ΑΛΛΑ επισκέπτεται κάποιες πόλεις πολλές φορές. Πώς το φτιάχνουμε;

Metric TSP 2-Προσεγγιστικός

Διαδικασία:

- 🚺 Πλήρες γράφημα
- Δημιουργία MST
- OFS στο MST
- Διαγραφή duplicates από το output της DFS

Metric TSP 3/2-Προσεγγιστικός

Βελτίωση λόγου προσέγγισης:

Γενικό TSP και Προσεγγισιμότητα

Έστω αλγόριθμος A για το TSP και α_A ο λόγος προσέγγισης. Από το πρόβλημα του κύκλου Hamilton, φτιάχνω στιγμιότυπο για το TSP.

1η περ: Επιτυχία, περιήγηση το πολύ $n\alpha_A$

2η περ: Αποτυχία, περιήγηση τουλάχιστον $n\alpha_A$

Άρα, σε πολυωνυμικό χρόνο μπορώ να προσδιορίσω αν το G έχει κύκλο Hamilton και αν τρέξουμε τη διαδικασία πολλές φορές (πολυωνυμικό πλήθος) θα βρούμε και τη διαδρομή.

Άρα: πολυωνυμικός αλγόριθμος για το NP-πλήρες πρόβλημα του κύκλου Hamilton.

MONO AN P = NP

Αναφορές

- Στοιχεία Θεωρίας Υπολογισμού Harry R. Lewis, Χρίστος Παπαδημητρίου, Εκδόσεις Κριτική
- ② Approximation Algorithms Vazirani, Εκδόσεις Springer
- Αλγόριθμοι Dasgupta, Παπαδημητρίου, Vazirani, Εκδόσεις Κλειδάριθμος
- Σχεδιασμός Αλγορίθμων Kleinberg, Tardos, Εκδόσεις Κλειδάριθμος
- Christofides' Algorithm

