PSALTer results panel

 $S = \iiint (\frac{1}{8}(4a_{0}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\beta\chi}^{\alpha} + \mathcal{A}_{\beta\chi}^{\alpha}(-4a_{0}\mathcal{A}_{\beta\chi\alpha}^{\beta} + 2a_{0}\mathcal{A}_{\chi}^{\alpha}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta} - 2a_{0}\mathcal{A}_{\chi}^{\alpha}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta} - 2a_{0}\mathcal{A}_{\chi}^{\alpha}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta} - 2a_{0}\mathcal{A}_{\chi}^{\alpha}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta} - 2a_{0}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha}^{\beta} - 2a_{0}\mathcal{A}_{\alpha}^{\beta}\partial_{\beta}\mathcal{A}_{\alpha$

Wave operator

	0.+ h ⁺	0.+h	${}^{0,^{+}}\mathcal{R}_{a}{}^{\parallel}$	${}^{0^+}\mathcal{A}_{s}{}^{\perp t}$	^{0,+} 𝚜 _S ∥	^{0,+} $\mathcal{A}_{s}^{\perp h}$	0⁻ <i>Я</i> (a	1																
0.+ h-+ +	0	0	0	0	$\frac{i a. k}{0}$	$-\frac{i a.k}{4 \sqrt{2}}$	0																	
^{0,+} h †	0	0	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{ia.k}{0}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0																	
^{0,+} ℋa [∥] †	0	$-\frac{ia.k}{0}$	$-\frac{a}{0}$	0	0	0	0																	
${}^{0,^{+}}\mathcal{A}_{S}{}^{\scriptscriptstyle{\perp}t}\dagger$	0	0	0	0	$\frac{a}{2}$	$-\frac{a_{0}}{2\sqrt{2}}$	0																	
⁰⁺ ∕R _s †	$-\frac{1}{4} i a_{0}$	$k \frac{\stackrel{ia.k}{\circ}}{4\sqrt{3}}$	0	$\frac{a}{0}$ 2	$-\frac{2c.k^2}{3}$	$\frac{-3 a. +4 c. k^2}{6 \sqrt{2}}$	0																	
${}^{0^+}\mathcal{A}_{S}{}^{{\scriptscriptstyle \perp}h}\dagger$		$-\frac{i a \cdot k}{4 \sqrt{6}}$		$-\frac{a_0}{2\sqrt{2}}$	$\frac{-3 a. +4 c. k^2}{6 \sqrt{2}}$	$\frac{1}{6} (3a_0 - 2c_3 k^2)$	0																	
⁰⁻ ℋ _a ∥†		0	0	0	0	0	$-\frac{a}{2}$	$^{1^+}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{1^+}\mathcal{F}_{a^\perp \alpha\beta}$	$^{1^{+}}\mathcal{A}_{S^{^{\perp}}lphaeta}$	1. h ¹ α	$^{1}\mathcal{A}_{a}{}^{\parallel}{}_{lpha}$	$^{1}\mathcal{A}_{a^{^{\perp}}\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\mathtt{L}t}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\parallelt}{}_{\alpha}$	${}^{1}\mathcal{A}_{S}{}^{\mathtt{h}}{}_{lpha}$	${}^{1}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$	_						
							$^{1.}\mathcal{A}_{a}^{\parallel}\dagger^{\alpha\beta}$	$-\frac{a}{0}$	$-\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0	0	0	0							
							$^{1^+}\mathcal{F}_{a^\perp}\dagger^{lphaeta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0							
							${}^{1.}^{+}\mathcal{A}_{S}{}^{\scriptscriptstyle \perp}\dagger^{lphaeta}$	0	0	$\frac{1}{4} (a_0 - c_1 k^2)$	0	0	0	0	0	0	0							
							$\frac{1}{2}h^{\perp} + \alpha$	0	0	0	0	$\frac{i a. k}{4 \sqrt{2}}$	0	$-\frac{i \stackrel{a.k}{0}}{4} \frac{\sqrt{6}}{\sqrt{6}}$	$\frac{1}{4}i\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a. k}{4 \sqrt{3}}$	$-\frac{ia.k}{4\sqrt{6}}$							
							${}^{1}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha}$	0	0	0	$-\frac{i a.k}{4 \sqrt{2}}$	$-\frac{a}{4}$	$\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0							
							${}^{1}\mathcal{A}_{a}{}^{\scriptscriptstyle \perp}\dagger^{\scriptscriptstyle lpha}$	0	0	0	0	$\frac{a_{0}}{2\sqrt{2}}$	0	0	0	0	0							
							${}^{1}\mathcal{A}_{S}^{Lt}t^{\alpha}$	0	0	0	$\frac{i a. k}{4 \sqrt{6}}$	0	0	$\frac{1}{6}$ (-2 a_0 - $c_1 k^2$)	$\frac{\sqrt{5} \ a}{6}$	$-\frac{a_0+2c_3k^2}{6\sqrt{2}}$	$-\frac{a}{6}$							
							$^{1}\mathcal{A}_{s}{}^{lt}\dagger^{\alpha}$	0	0	0	$-\frac{1}{4}i\sqrt{\frac{5}{6}}a_{\dot{0}}$	k 0	0	$\frac{\sqrt{5} a}{6}$	$\frac{1}{6} (2 a_0 - 5 c_1 k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_{.0}$	$-\frac{1}{6} \sqrt{5} (a_0 - c_1 k^2)$							
							$^{1}\mathcal{A}_{S}^{\perph}\dagger^{\alpha}$	0	0	0	$\frac{i a.k}{4 \sqrt{3}}$	0	0	$-\frac{a_1+2c_1k^2}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} a_0$									
							${}^{1}\mathcal{A}_{S}{}^{\parallel h}\dagger^{\alpha}$	0	0	0	$\frac{i a.k}{4 \sqrt{6}}$	0	0				$\frac{1}{12}$ (5 a 2 c. k^2)	$2^+_{\cdot h} \parallel_{\alpha\beta} 2^+_{\cdot \cdot} \mathcal{G}$	$\left\{a^{\parallel}_{\alpha\beta}\right\}$	$^{2^{+}}\mathcal{A}_{S}^{\parallel}{}_{lphaeta}$	$^{2^{+}}\mathcal{F}_{S^{\perp}\alpha\beta}$	$^{2}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	$^{2}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	
											, , , ,						$^{2^{+}}h^{\parallel}$ † $^{\alpha\beta}$			$-\frac{i a. k}{0.0}$	$\frac{i a. k}{4 \sqrt{6}}$	0	0	
																	$2^+\mathcal{A}_a^{\parallel} \dagger^{\alpha\beta}$			4 γ3 0	0	0	0	
																	$^{2^{+}}\mathcal{A}_{s}^{\parallel}\dagger^{\alpha\beta}$			$(-3ac.k^2)$		0	0	
																	$2^+_{\cdot}\mathcal{A}_{S^{\perp}} \dagger^{\alpha\beta}$				$\frac{1}{12} (3 a_0 - c_1 k^2)$		0	
																	$^{2}\mathcal{A}_{a}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{a}{0}$	0	

Saturated propagator

	${}^{0^+}\!\mathcal{T}^{\scriptscriptstyle \perp}$	$^{0,^{+}}\mathcal{T}^{\parallel}$	${}^{0^+}\mathcal{W}_a{}^{\parallel}$	${}^{0^+}\mathcal{W}_{s}{}^{\scriptscriptstyle \perp t}$	${}^{0^+}\mathcal{W}_{S}{}^{\parallel}$	${}^{0^+}\mathcal{W}_{S}{}^{\perph}$	${}^{0}\mathcal{W}_{a}^{\parallel}$
$\overset{0^+}{\cdot}\mathcal{T}^{\scriptscriptstyle \perp}$ †	$\frac{{\overset{-36 a. k^2 + 96 c. k^4}{_{3}}}}{{\overset{a.^2}{_{0}}(16 + 3 k^2)^2}}$	$\frac{4 \sqrt{3}}{16 a_0 + 3 a_0 k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^{2}}$	$\frac{24 i k (-3 a. +8 c. k^2)}{a0^2 (16+3 k^2)^2}$	$\frac{8ik(19a.+(3a8c.)k^2)}{a0^2(16+3k^2)^2}$	$-\frac{4i\sqrt{2}k(10a.+(3a.+16c.)k^2)}{a0^2(16+3k^2)^2}$	0
^{0,+} ∕⁄″ †	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	$\frac{4}{a \cdot k^2}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8i \sqrt{3}}{16 a. k+3 a. k^3}$	$-\frac{8i}{\sqrt{3}(16a.k+3a.k^3)}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	0
^{0,+} W _a †	$-\frac{2 i \sqrt{6} k}{16 a_0 + 3 a_0 k^2}$	$-\frac{2i\sqrt{2}}{a\cdot k\atop 0}$	0	$\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a. +3 a. k^2)}$	0
0.+Ws1t+	$\frac{24 i k (3 a8 c. k^2)}{a0^2 (16 + 3 k^2)^2}$	$-\frac{8 i \sqrt{3}}{16 a_0 k + 3 a_0 k^3}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$\frac{48 (-3 a. +8 c. k^2)}{a0^2 (16+3 k^2)^2}$	$\frac{16(19a.+(3a8c.)k^2)}{a.^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10a.+(3a.+16c.)k^2)}{a^2(16+3k^2)^2}$	0
0.+W _s †	$-\frac{8ik(19a.+(3a8c.)k^2)}{a.^2(16+3k^2)^2}$	$\frac{8i}{\sqrt{3}(16a.k+3a.k^3)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a.+3a.k^{2}}$	$\frac{16(19a.+(3a8c.)k^2)}{a.^2(16+3k^2)^2}$	$-\frac{16(-8c.k^2+a.(35+6k^2))}{3a.(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a.+(3a16c.)k^2)}{3a.^2(16+3k^2)^2}$	0
^{0,+} W _s ^{±h} †	$\frac{4i\sqrt{2}k(10a.+(3a.+16c.)k^2)}{a^2(16+3k^2)^2}$	$\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^{3}}$	$-\frac{8}{\sqrt{3}(16a_{.}+3a_{.}k^{2})}$	$-\frac{8\sqrt{2}(10a.+(3a.+16c.)k^2)}{a^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a.+(3a16c.)k^2)}{3a.^2(16+3k^2)^2}$	$\frac{32 (13 a. + (3 a. + 8 c.) k^{2})}{3 a.^{2} (16 + 3 k^{2})^{2}}$	0
^{0:} Wa †	0	0	0	0	0	0	$-\frac{2}{a}$

$-\frac{2}{a}$	1^+ W_a $^{\parallel}$ $_{\alpha}$	$_{\beta}$ 1. $\mathcal{W}_{a^{\perp}\alpha\beta}$	$1^+W_{S^{\perp}\alpha\beta}$	$\overset{1}{\cdot}\mathcal{T}^{_{1}}{_{lpha}}$	$\mathbb{E}_{\mathbf{W_a}^{\parallel}_{\alpha}}$	$^{1}W_{a^{\perp}\alpha}$	¹.Ws¹ta	1 ⁻ W _s ^t _a	1 ⁻ W ₅ μh α	$1^{-}W_{s}^{\parallel h}_{\alpha}$
$^{1^+}W_a^{\parallel}\dagger^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
1 · W_{a} $^{\perp}$ \dagger	$-\frac{2\sqrt{2}}{a_{0}}$	$\frac{2}{a}$	0	0	0	0	0	0	0	0
$1.^{+}W_{S}^{\perp}\dagger^{lphaeta}$	0	0	$\frac{4}{a \cdot c \cdot k^2}$	0	0	0	0	0	0	0
$1^{-}\mathcal{T}^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{2 k^2 (a.+c.k^2)}{a.0^2 (2+k^2)^2}$	$\frac{2i\sqrt{2}k}{a\cdot(2+k^2)}$	$\frac{i k (-c. k^4 + a. (4+k^2))}{a. 2(2+k^2)^2}$	$\frac{i\sqrt{\frac{2}{3}}k(-2a.(1+k^2)+c.k^2(4+k^2))}{a.\binom{2}{0}(2+k^2)^2}$	$\frac{i\sqrt{\frac{10}{3}}k}{a_0(2+k^2)}$	$-\frac{i k (4+k^2) (a.+c. k^2)}{\sqrt{3} a.^2 (2+k^2)^2}$	$\frac{2i\sqrt{\frac{2}{3}}k}{a\cdot(2+k^2)}$
${}^{1}\mathcal{W}_{a}{}^{\parallel}t^{\alpha}$	0	0	0	$-\frac{2 i \sqrt{2} k}{2 a + a k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0^1 + a_0^1 k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	0
${}^{1}\mathcal{W}_{a}{}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{i k (c \cdot k^4 - a \cdot (4 + k^2))}{a \cdot (2 + k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_0(2+k^2)}$	$\frac{c_{3}k^{6}+a_{0}(4+k^{2})^{2}}{2a_{0}^{2}(2+k^{2})^{2}}$	$-\frac{k^2 (2 a. + c. k^2 (4 + k^2))}{\sqrt{6} a.^2 (2 + k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{a_0(2+k^2)}$	$\frac{k^2 (c_1 k^2 (4+k^2) + a_1 (8+3 k^2))}{2 \sqrt{3} a_0^2 (2+k^2)^2}$	$-\frac{\sqrt{\frac{2}{3}} k^2}{a_0(2+k^2)}$
$\frac{1}{2}W_{s}^{t}$	0	0	0	$-\frac{i\sqrt{\frac{2}{3}}k(-2a_0(1+k^2)+c_1k^2(4+k^2))}{a_0^2(2+k^2)^2}$	$-\frac{2 k^2}{\sqrt{3} (2 a_0 + a_0 k^2)}$	$-\frac{k^2 (2 a. + c. k^2 (4 + k^2))}{\sqrt{6} a.^2 (2 + k^2)^2}$	$\frac{1}{3} \left(-\frac{1}{c_{3} k^{2}} + \frac{c_{3} k^{2} (4+k^{2})^{2}}{a_{0}^{2} (2+k^{2})^{2}} - \frac{16+12 k^{2}+k^{4}}{a_{0} (2+k^{2})^{2}} \right)$	$\frac{1}{3} \sqrt{5} \left(-\frac{1}{c_3 k^2} + \frac{1}{a_0 - \frac{2a_0}{4 + k^2}} \right)$	$\frac{2a{0}^{2}(2+k^{2})^{2}+c{3}^{2}k^{4}(4+k^{2})^{2}+2a{0}c{3}k^{2}(4+3k^{2}+k^{4})}{3\sqrt{2}a{0}^{2}c{3}k^{2}(2+k^{2})^{2}}$	$\frac{2}{3} \left(-\frac{1}{c_{3}^{2} k^{2}} + \frac{1}{a_{0}^{2} - \frac{2a_{0}}{4+k^{2}}} \right)$
$\mathcal{W}_{S}^{It} t^{\alpha}$	0	0	0	$-\frac{i\sqrt{\frac{10}{3}}k}{a_0(2+k^2)}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{a_0(2+k^2)}$	$\frac{1}{3} \sqrt{5} \left(-\frac{1}{c_3 k^2} + \frac{1}{a_0 - \frac{2a_0}{4 + k^2}} \right)$	$\frac{4}{3a_0} - \frac{5}{3c_3k^2}$	$\frac{1}{3} \sqrt{\frac{5}{2}} \left(-\frac{2}{c_{\cdot} k^{2}} + \frac{1}{-a_{\cdot} + \frac{2a_{\cdot}}{4+k^{2}}} \right)$	$-\frac{2\sqrt{5}(a2c.k^2)}{3a.c.k^2}$
$^{1}\mathcal{W}_{S}^{\perp h}\dagger^{\alpha}$	0	0	0	$\frac{i k (4+k^2) (a.+c. k^2)}{\sqrt{3} a.^2 (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 \left(c_{\stackrel{.}{3}} k^2 \left(4\!+\!k^2\right)\!+\!a_{\stackrel{.}{0}} \left(8\!+\!3k^2\right)\right)}{2 \sqrt{3}a_{\stackrel{.}{0}}^{2} \left(2\!+\!k^2\right)^2}$	$-\frac{2 a_0^2 (2+k^2)^2 + c_3^2 k^4 (4+k^2)^2 + 2 a_0 c_1 k^2 (4+3 k^2 + k^4)}{3 \sqrt{2} a_0^2 c_3 k^2 (2+k^2)^2}$	$\frac{1}{3} \sqrt{\frac{5}{2}} \left(-\frac{2}{c_3 k^2} + \frac{1}{-a_0 + \frac{2a_0}{4 + k^2}} \right)$	$\frac{1}{6} \left(-\frac{4}{c_3 k^2} + \frac{c_3^2 k^2 (4+k^2)^2}{a_0^2 (2+k^2)^2} + \frac{32+24 k^2+5 k^4}{a_0 (2+k^2)^2} \right)$	$\frac{1}{3} \sqrt{2} \left(-\frac{2}{c \cdot k^2} + \frac{1}{-a \cdot + \frac{2a \cdot}{0}} \right)$
$\mathcal{W}_{S}^{lh} t^{\alpha}$	0	0	0	$-\frac{2 i \sqrt{\frac{2}{3}} k}{2 a + a k^2}$	0	$-\frac{\sqrt{\frac{2}{3}} k^2}{a_0(2+k^2)}$	$\frac{2}{3} \left(-\frac{1}{c \cdot k^2} + \frac{1}{a \cdot -\frac{2a \cdot }{0} \cdot \frac{2a \cdot }{4+k^2}} \right)$	$-\frac{2\sqrt{5}(a_0-2c_3k^2)}{3a_0c_3k^2}$	$\frac{1}{3} \sqrt{2} \left(-\frac{2}{c_3 k^2} + \frac{1}{-a_0 + \frac{2a_0}{4 + k^2}} \right)$	$\frac{4}{3} \left(\frac{5}{a_0} - \frac{1}{c_3 k^2} \right)$

1)							
$-\frac{1}{c_3 k^2}$)	$^{2^{+}}\mathcal{T}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}W_{a}^{\parallel}{}_{\alpha\beta}$	$^{2,+}W_{s}^{\parallel}{}_{\alpha\beta}$	$^{2^+}W_{s^{\perp}\alpha\beta}$	$^{2}W_{a}^{\parallel}_{\alpha\beta\chi}$	$2^{-}W_{s}^{\parallel}_{\alpha\beta\chi}$	
		$-\frac{4i\sqrt{2}}{a.k\atop 0}$		$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0	
$^{2^{+}}\mathcal{W}_{a}{}^{\parallel}\dagger^{^{lphaeta}}$	$\frac{4i\sqrt{2}}{a.k\atop 0}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{\cdot 0}}$	$\frac{4}{\sqrt{3} a_0}$	0	0	
$^{2^{+}}W_{s}^{\parallel}\dagger^{\alpha\beta}$	$-\frac{4i}{\sqrt{3}} \underbrace{a.k}_{0} k$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{2(-4a.+c.k^2)}{3a0^2}$	$-\frac{2\sqrt{2}(ac.k^2)}{3a.0^2}$	0	0	
$^{2^+}W_{s^{\perp}}\dagger^{\alpha\beta}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k\atop 0}$	$\frac{4}{\sqrt{3} a_0}$	$\frac{2(-4a.+c.k^2)}{3a0^2}$ $-\frac{2\sqrt{2}(ac.k^2)}{3a0^2}$ $3a0^2$	$\frac{4(2a.+c.k^2)}{3a.^2}$	0	0	
$2^{-}W_{a}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0	
$2^{-}W_{s}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a}$	3.4
						$3^{-}W_{s}^{\parallel} + ^{\alpha\beta\chi}$	

Source constraints

Spin-parity form	Covariant form	Multiplicitie
$k^{0+}W_{s}^{\parallel} + 2k^{0+}W_{s}^{\perp h} - 6i^{0+}\mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{0+}W_{s}^{\perp t} + 2i^{0+}T^{\perp} == 0$	$2\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == \partial_{\chi}\partial_{\beta}\partial_{\alpha}\mathcal{W}^{\alpha\beta\chi}$	1
$k {}^{1}\mathcal{W}_{s}^{\perp h^{\alpha}} - 6 i {}^{1}\mathcal{T}^{\perp \alpha} == k (3 {}^{1}\mathcal{W}_{a}^{\perp \alpha} + {}^{1}\mathcal{W}_{s}^{\perp t^{\alpha}})$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \mathcal{W}^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{W}^{\beta \chi \delta}$	3
Total expected gauge generators:		5

Massive spectrum

Massless spectrum

Unitarity conditions

(Demonstrably impossible)