PM Ir Dr Tee Kian Sek

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

Date: May 2024

Getting Start with STM32 using STM32CubeIDE and HAL

Instructors

PM Ir Dr Tee Kian Sek https://community.uthm.edu.my/staff/people/tee

Dr Chew Chang Choon https://community.uthm.edu.my/chewcc

Outlines

Cognition – Good to know!

- Objectives of this short course
- Arduino and STM32 Learning scope
- Brief on ARM and STM32
- What is MCU?

This Short Course (Hands-on)

- The training kit
- The preparation
- First Project very important
- Practices

Arduino and STM32 – Learning scopes

Arduino UNO

- ATmega328P
- Which company? Who cares?
- Datasheet anyone read?
- IDE and libraries? Many from third parties.
- Libraries who read them?

STM32

- STM32 MCU families
- ST
- Datasheet we do care
- IDE and HAL.
- Copy customized .c and .h

All hardware engineers care about spec/datasheets on all MCUs and ICs.

Arduino and STM32 – Learning scopes

Arduino UNO

- Exploring registers?
- Is anyone trying to understand them?
- I2C/SPI electronic parts?
- Interrupts / Timer / PWM / UART / ADC ?
- Live debugging?

STM32

- We do care the registers
- We do care –
 Specification/datasheet of I2C/SPI electronic parts
- Registers for Interrupts / Timer / PWM / USART / DMA /USB / ADC / RTC
- Live debugging

Arduino and STM32 – Learning scopes

Arduino UNO

- Anyone care?
- Production?
- Flashing? duplicates, erase, password protected?

STM32

- Part of the exercises
- Tools for flashing

^{*} ATmega328P could be flashed in production.

Brief on ARM and STM32

ARM Licensing model (simplified)

Partners

- 1. Broadcom
- 2. Apple
- 3. ST
- 4. Microchip
- 5. Etc.
- ARM licenses IP to over 1,000 global partners (including Samsung, Apple, Microsoft).
- See modules

See the website for Licensing Model Options

* MCU, MP, GPU, , AI, IoT, etc.

Popular

- 1. Low energy consumption, low cost, high performance
- 2. Support 16/32 instruction sets
- 3. Many partnerss
- 4. Rich ecosystem
- 5. Many more reasons...

Market

ARM and STM32

STM32 MCUs 32-bit Arm® Cortex®-M

STM32**F7**

1082 CoreMark 216 MHz Cortex-M7

STM32**H7**

Up to 3224 CoreMark Up to 600 MHz Cortex-M7 240 MHz Cortex-M4

STM32**F2**

398 CoreMark 120 MHz Cortex-M3 180 MHz Cortex-M4

STM32F4 608 CoreMark STM32**H5**Up to 1023 CoreMark 250 MHz Cortex-M33

Mainstream

STM32**G0**

142 CoreMark 64 MHz Cortex-M0+

STM32**F0**

114 CoreMark 48 MHz Cortex-M0+ 48 MHz Cortex-M0 STM32F1

177 CoreMark 72 MHz Cortex-M3

STM32L4+

409 CoreMark

120 MHz Cortex-M4

170 MHz Cortex-M4
STM32**F3**

STM32**G4**

569 CoreMark

245 CoreMark 72 MHz Cortex-M4

> STM32U**5** 651 CoreMark

Optimized for mixed-signal applications

STM32L0

STM32C0

75 CoreMark 32 MHz Cortex-M0+ STM32**U0**

140 CoreMark 56 MHz Cortex-M0+ STM32**L4**

273 CoreMark 80 MHz Cortex-M4 STM32L5

160 MHz Cortex-M33

443 CoreMark 110 MHz Cortex-M33

STM32WL

162 CoreMark 48 MHz Cortex-M4 48 MHz Cortex-M0+ STM32WB0

64 MHz Cortex-M0+

STM32WB

216 CoreMark 64 MHz Cortex-M4 32 MHz Cortex-M0+ STM32WBA

407 CoreMark 100 MHz Cortex-M33

Cortex-M0+ Radio co-processor

STM32 MCU

Example

STM32 F103C8T6

 $6 = -40^{\circ}$ C to 85° C

What is MCU?

Quote from Wiki –

"A microcontroller (MC, UC, or μ C) or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable input/output peripherals."

What is MCU?

Embedded System

- Used in many applications
- home appliances, automotive systems, medical devices, and industrial control systems.
- consumer electronics products, such as gaming systems, digital cameras, and audio players.

Registers – Nontechnical concepts of "configurable switches"

RCC, BUS, GPIO, USART, TIMER, etc....

Many more....

Imagine we have a house with a wall of switches.
We know which switch to turn on a light!

switches

What is MCU? – Register?

Example:

We want to blink an LED at PC13.

HAL is writing to a register Namely BSRR,

Set ON/OFF at GPIOC, pin 13

9.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	W	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

Bits 31:16 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x Set bit y (y = 0 ... 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Set the corresponding ODRx bit

HAL_GPIO_WritePin(GPIOC,
GPIO_PIN_13, GPIO_PIN_RESET);

No worry! We are going to try this soon!

What is HAL?

- The HAL driver layer provides a simple, generic multi-instance set of APIs (application programming interfaces) to interact with the upper layer (application, libraries and stacks).
- The HAL driver APIs are split into two categories: generic APIs, which provide common and generic functions for all the STM32 series and extension APIs, which include specific and customized functions for a given line or part number. The HAL drivers include a complete set of ready-to-use APIs that simplify the user application implementation

Refer to: UM1850 User manual - Description of STM32F1 HAL and low-layer drivers

The training kit – the outlook

- Pinouts
- Schematic

MCU - STM32F103C8T6

- Quick glimpse
- System Architecture
- Clock Tree
- GPIO

Many more on the datasheet and Manual as we explore further.

STM32F103C8T6 – datasheet

Table 9. Boot modes

Boot mode s	election pins	140.200.00				
BOOT1	воото	Boot mode	Aliasing			
X	0	Main Flash memory	Main Flash memory is selected as boot space			
0	1	System memory	System memory is selected as boot space			
1 1		Embedded SRAM	Embedded SRAM is selected as boot space			

STM32F103C8T6 – pins

STM32F103C8T6 - pin definition LQFP 48 pins

STM32F103C8T6 - pin definition LQFP 48 pins

					Alternate functions				
Pin No	Pin Name	Туре	IO Level	Main Function	Default	Remap			
1	VBAT	S		VBAT					
2	PC13-TAMPER-RTC	I/O		PC13	TAMPER-RTC				
3	PC14-OSC32_IN	I/O		PC14	OSC32_IN				
4	PC15-OSC32_OUT	I/O		PC15	OSC32_OUT				
5	OSC_IN			OSC_IN					
6	OSC_OUT	0		OSC_OUT					
7	NRST	I/O		NRST					
8	VSSA	S		VSSA					
9	VDDA	S		VDDA					
10	PA0-WKUP	I/O		PA0	WKUP/USART2_CTS/ADC12_IN0/TIM2_CH1_ETR				
11	PA1	I/O		PA1	USART2_RTS/ADC12_IN1/TIM2_CH2				
12	PA2	I/O		PA2	USART2_TX/ADC12_IN2/TIM2_CH3				
13	PA3	I/O		PA3	USART2_RX/ADC12_IN3/TIM2_CH4				
14	PA4	I/O		PA4	SPI1_NSS/USART2_CK/ADC12_IN4				

Refer to the datasheet [Medium-density STM32F103xx pin definitions]

STM32F103C8T6 – Features and Peripherals

Term	Description	Term	Description				
NVIC	Nested Vectored Interrupt Controller	CAN	CAN Comm.				
SysTick	the Cortex® System Timer	USB	USB Comm.				
RCC	Reset and Clock Control	RTC	Real-time clock				
GPIO	General-purpose I/O	CRC	Cyclic Redundancy Check				
AFIO	Alternate-function I/O	PWR	Power Control				
EXTI	External interrupt/event controller	ВКР	Backup registers				
TIM	Timer	IWDG	Independent watchdog				
ADC	Analog-to-Digital Converter	WWDG	Window watchdog				
DMA	Direct memory access	DAC	Digital-to-analog converter				
USART	USART Comm.	SDIO	SD Interface				
I2C	I2C Comm.	FSMC	Flexible static memory controller				
SPI	SPI Comm.	USB OTG	USB				

STM32F103C8T6 – Important References

Documents

- Datasheets
- RM0008 Reference manual

Websites

Official site - ST

https://www.st.com/en/microcontrollersmicroprocessors/stm32-32-bitarm-cortex-mcus.html

Many learning sites...

System architecture

Figure 1. System architecture (low-, medium-, XL-density devices)

Advanced High-performance Bus (AHB)
Advanced Peripheral Bus (APB)

Administrators Council, town hall, bank, etc.

Simplified idea of "Town Plan"

House, factory, commercial buildings, school, etc.

Figure 2. Clock tree

Clock Tree

High-Speed Internal clock (HSI) RC oscillator High-Speed External clock (HSE) crystal oscillator Phase-locked loop or phase lock loop (PLL) clock Low Speed External (LSE) Low Speed Internal (LSI)

STM32-F103C8T6 (See Schematic) Crystal oscillator – 8MHz and 32.768kHz

STM32CubeIDE

Try to read together *.ioc | Clock Configuration

Clock Tree

Simplified idea of a "tree"

STM32CubeIDE

Try to read together *.ioc | Clock Configuration

Clock Tree

STM32CubeIDE

Try to read together *.ioc | Clock Configuration

Figure 14. Basic structure of a 5-Volt tolerant I/O port bit

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

General Purpose IO (GPIO) Ports, can be individually configured by software in several modes:

- Input floating
- Input pull-up
- Input-pull-down
- Analog
- Output open-drain
- Output push-pull
- Alternate function pushpull
- Alternate function opendrain

Figure 14. Basic structure of a 5-Volt tolerant I/O port bit

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

Input

- Input floating
- Input pull-up
- Input-pull-down
- Analog

1. $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

The Training Kit

The Training Kit

Shared information – https://github.com/rtlab1417/STM 32_intro_shared.git

- 1. STM32CubeIDE free explored in this training.
- 2. Keil MDK paid service
- 3. IAR Embedded Workbench paid service
- 4. Arduino IDE free
- 5. PlatformIO free
- 6. Matlab Hardware support needed.
- 7. Etc.

- 1. Bare metal programming
 - a. Call the registers directly and manually
- 2. Standard peripheral library
 - a. Provided by ST
- 3. Hardware Abstract Layer (HAL)
 - a. ST provides HAL for its MCU family.
 - b. This is implemented in this short course.

Programming Software - Language

C Language

- STM32CubeIDE deploy C-language for HAL and coding.
- Having a basic understanding of the C Language can be very useful.
- Some C elements: Variables, Data type, Operators, Loops, Struct, Pointer, Function, type cast, etc.
- Note: C not equal to C++ however C could be implemented in C++

Installing STM32CubeIDE

- Preparation installed before attending the short course
- See module

- Remember where is your workspace.
- For example:
- D:\STM32CubeIDE\workspace\

The motivation

- To be confirmed that the MCU is communicating with ST-Link
- To be confirmed that STM32CubeIDE is working

First Project

Repeated procedures for all projects

- 1. Create New Project
- 2. Target Selection
- 3. *.ioc
 - Pinout & Configuration
 - Clock Configuration
 - Project Managers
 - Tools

- 4. Save and auto-generate project template
- 5. Edit the code
- 6. RUN or DEBUG

First Project

No external connection
No coding needed
Just configure GPIO
Lit up built-in LED – PC13

Reminder:

- USB type-A
 - Detected and listed in Device Manager
- Keep online
 - Update ST-Link firmware
 - Update app.

List of Practices

- 1. GPIO LED
- 2. GPIO LEDs Blink
- 3. GPIO LED Buttons
- 4. GPIO EXTI
- 5. UART in Polling Mode
- 6. UART With Interrupt
- 7. UART With DMA

More to go...

Practice 1 – GPIO -LED

Practice 1 – GPIO -LED

Pin	Mode	User Label
PA7	GPIO_Output, Low, Output Push Pull, No pull-up and no pull-down	LED_GREEN

Practice 1 – GPIO -LED

Exploring GPIO

See module

- Exploring the IDE and file structure
- main.c
- HAL and code accordingly see module and demonstration

Pin	Mode	User Label
PA6	GPIO_Output, Low, Output Push Pull, No pull-up and no pull-down	LED_BLUE
PA7	GPIO_Output, Low, Output Push Pull, No pull-up and no pull-down	LED_GREEN
PB0	GPIO_Output, Low, Output Push Pull, No pull-up and no pull-down	LED_RED

Requirement:

	State0	State1	State2	State3	State4	State5
LED_BLUE	0	0	1	1	1	1
LED_GREEN	0	1	1	1	0	0
LED_RED	1	1	1	1	0	1

- See module
- Update main.c

- Have fun.
- Change new delay time.

- Challenge
- What if we have a new requirement? Design your own!

