Chap 9 - Primitives et Intégrales

Terminales Spé Maths

1 Primitive

Définition 1.1.

Soit f une fonction définie sur un intervalle I. On appelle primitive de f sur I, une fonction F telle pour tout $x \in I$; F'(x) = f(x).

Exemple:

Soit la fonction f(x) = 2x alors $F(x) = x^2$ est une primitive de f car F est dérivable sur \mathbb{R} et F'(x) = 2x.

Théorème 1.1.

Soit une fonction f admettant une primitive F sur I alors toute primitive G de f sur I est de la forme G = F + k avec k réel.

Démonstration. • Soit G une fonction définie sur I par G = F + k avec k réel G dérivable sur I par somme de fonctions dérivables et G' = F' = fDonc G est une primitive de f.

• Réciproquement, soit G une primitive de f sur I; G est dérivable sur I et (G - F)' = G' - F' = f(x) - f(x) = 0 Donc G - F est une constante donc il existe un réel k tel que $G - F = k \Leftrightarrow G = F + k$ CQFD

Exemple:

Si $F(x) = x^2$ primitive de f(x) = 2x alors $G(x) = x^2 + 3$ est également une primitive de f.

Théorème 1.2.

Toute fonction continue sur I admet des primitives sur I

1.1 Primitive et condition initiale

Théorème 1.3.

Soit f une fonction admettant une primitive sur I. Soit $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive F de f sur I tel que $F(x_0) = y_0$

Démonstration. Soit F et G deux primitives de f sur I. On a donc F = G + k. Si F vérifie $F(x_0) = y_0$, alors il existe un unique k réel tel que $k = y_0 - G(x_0)$.

Exemple:

Déterminer la primitive de f(x) = 2x vérifiant F(2) = 3

 $F(x) = x^2 + k$ et F(2) = 4 + k = 3 donc k = 3 - 4 = -1 donc $F(x) = x^2 - 1$ est l'unique primitive vérifiant la condition initiale.

1.2 Primitives des fonctions de référence

Fonction f définie par :	Primitive F définie par $F(x) =$	sur l'intervalle
f(x) = a, a constante réelle	ax + k	\mathbb{R}
$f(x) = x^n, n \in \mathbb{Z}, n \neq -1$	$\frac{x^{n+1}}{n+1} + k$	$\mathbb{R} \text{ si } n \ge 0$ $] -\infty; 0[\text{ ou }]0; +\infty[\text{ si } n < -1$
$f(x) = \frac{1}{x}$	$\ln(x) + k$	$]0;+\infty[$
$f(x) = \frac{1}{\sqrt{x}}$	$2\sqrt{x} + k$	$]0;+\infty[$
$f(x) = e^x$	$e^x + k$	\mathbb{R}

1.3 Régles d'intégrations

u est une fonction dérivable sur un intervalle I.

Fonction f du type	$\begin{array}{c} \textbf{Une primitive } F \textbf{ du} \\ \textbf{type} \end{array}$	Conditions
$[u(x)]^n \times u'(x), n \in \mathbb{Z}, n \neq -1$	$\frac{[u(x)]^{n+1}}{n+1}$	u ne s'annule pas sur I lorsque $n < 0$
$e^{u(x)} \times u'(x)$	$e^{u(x)}$	
$\frac{u'(x)}{u(x)}$	$\ln(u(x))$	sur tout intervalle où $u(x) > 0$
$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u(x)}$	sur tout intervalle où $u(x) > 0$
$u' \times v \circ u$	$V \circ u$	V primitive de v sur I

2 Intégrale d'une fonction continue et de signe constant

Le plan est muni d'un repère orthogonal (O; \vec{i} , \vec{j}).

textbfUnité d'aire

L'unité d'aire (en abrégé u.a.) est l'aire du rectangle de côtés $\|\vec{i}\|$ et $\|\vec{j}\|$

2.1 Intégrale d'une fonction continue et positive sur un intervalle

Définition 2.1.

Si f est une fonction **continue** et **positive** sur un intervalle [a;b] et \mathcal{C} est la courbe représentative de f alors on appelle **intégrale** de a à b de la fonction f, l'aire du domaine \mathcal{D} délimité par la courbe \mathcal{C} , les droites d'équation x = a, x = b et l'axe des abscisses, exprimée en unités d'aire.

Ce nombre est noté : $\int_a^b f(x)dx$

2.2 Valeur moyenne d'une fonction continue

Soit f une fonction continue et positive sur un intervalle [a;b] (a < b) La **valeur moyenne** de f sur [a;b] est le nombre m défini par :

$$m = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

3

2.3 Propriétés algébriques de l'intégrale

Soit f et g deux fonctions continues et positives sur un intervalle I, a,b et c trois réels de I et α et β deux réels positifs.

1. Linéarité :
$$\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$

2. Relation de Chasles :
$$\int_a^c f(x)dx + \int_b^b f(x)dx = \int_a^b f(x)dx$$

2.4 Intégration et ordre

Soit f et g deux fonctions continues et positives sur un intervalle I, a et b deux nombres réels de I tels que $a \le b$.

Si pour tout
$$x$$
 de $[a;b]$, $f(x) \leq g(x)$ alors $\int_a^b f(x)dx \leq \int_a^b g(x)dx$

2.5 Intégrale d'une fonction négative

Propriété 2.1.

Si f est continue et négative sur I alors l'aire du domaine $\mathcal D$ en u.a. est

$$aire = \int_{a}^{b} -f(x)dx$$

3 Fonction définie par une intégrale

Théorème 3.1.

f est une fonction **continue et positive** sur un intervalle I = [a; b].

Alors la fonction F définie par : $F(x) = \int_a^x f(t)dt$ est **dérivable sur** I **et** F' = f.

Plus précisément, F est la primitive de f sur I qui s'annule en a.

 $D\'{e}monstration$. cas où f est croissante sur I

 \mathcal{C} est la courbe représentative de f

Soit x et h deux nombres avec $x \in I, h \neq 0$ et $x + h \in I$.

▶ Si h > 0, comme f est croissante, $f(x) \le f(x+h)$

F(x+h) - F(x) exprime l'aire sous \mathcal{C} sur [x; x+h].

On encadre cette aire par celle de deux rectangles de même largeur h et de hauteurs : f(x) et f(x+h) :

D'où:
$$f(x) \le \frac{F(x+h) - F(x)}{h} \le f(x+h)$$

Comme f est continue en x, $\lim_{\substack{h\to 0\\h>0}} f(x+h) = f(x)$.

Par le théorème des gendarmes , on en déduit $\lim_{\substack{h\to 0\\h>0}} \frac{F(x+h)-F(x)}{h} = f(x)$

▶ Si h < 0, -(F(x+h) - F(x)) exprime l'aire sous C sur [x+h;x].

On encadre cette aire par celle de deux rectangles de même largeur -h et de hauteurs :f(x) et f(x+h): $-h \times f(x+h) \le -(F(x+h)-F(x)) \le -h \times f(x)$; en divisant par -h on obtient :

$$f(x+h) \le \frac{F(x+h) - F(x)}{h} \le f(x).$$

Avec le même raisonnement que pour h > 0 on obtient : $\lim_{\substack{h \to 0 \\ h < 0}} \frac{F(x+h) - F(x)}{h} = f(x)$

<u>Conclusion</u> la fonction F est dérivable en tout x de [a;b] et F'(x) = f(x)

CQFD

Propriété 3.1.

Soit f une fonction continue et positive sur un intervalle [a;b].

Alors, pour toute primitive de f sur [a; b], on a:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Démonstration. D'après le théorème ci-dessus, la fonction $G(x) = \int_a^x f(t)dt$ est une primitive de f sur [a;b].

Donc il existe un réel k tel que G(x) = F(x) + k. Or, G(a) = 0 donc k = -F(a) puis :

$$\int_{a}^{b} f(t)dt = G(b) = F(b) + k = F(b) - F(a)$$

CQFD

Théorème 3.2.

Théorème Fondamental : Existence de primitives

Toute fonction continue sur un intervalle I admet des primitives sur I.

Démonstration. Soit I de la forme [a; b]. On admet que sur [a; b], toute fonction continue admet un minimum m.

Soit f continue sur [a; b] et m son minimum.

La fonction $g: x \mapsto f(x) - m$ est positive et continue sur [a;b]. D'après le théorème, elle admet une primitive G sur [a;b] et pour tout x de [a;b] G'(x) = f(x) - m. Alors la fonction $F: x \mapsto G(x) + mx$ est dérivable sur [a;b] et F'(x) = f(x); F est donc une primitive de f sur I.

CQFD

4 Intégrale d'une fonction continue de signe quelconque

Définition 4.1.

Soit f une fonction continue et de signe quelconque sur un intervalle I; a et b deux réel de I. **L'intégrale de** a à b de f est le nombre F(b) - F(a) où F est une primitive de f sur [a;b]. En pratique, on écrit :

$$\left| \int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a) \right|$$

4.1 Généralisation des propriétés algébriques

Les propriétés de linéarité, relation de Chasles, valeur moyenne, déjà vues pour les fonctions continues et positives se généralisent aux fonctions continues de signe quelconque.

Théorème 4.1.

f est une fonction **continue** sur un intervalle I = [a; b] et un réel a de I.

Alors la fonction F définie sur I, par : $F(x) = \int_a^x f(t)dt$ est est la **primitive de** f **sur I qui s'annule** en a.

Propriété 4.1. 1.
$$\int_a^a f(x)dx = 0$$

2.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

4.2 Intégrale et Aire

 C_f et C_g sont les courbes représentatives de deux fonctions f et g continues sur un intervalle [a;b] (a < b). Si C_f est au-dessus de C_g sur [a;b] alors l'aire du domaine $\mathcal D$ entre les deux courbes sur [a;b] en u.a. est :

$$\operatorname{aire}(\mathcal{D}) = \int_{a}^{b} (f(x) - g(x)) dx$$

5 Intégration par parties

Propriété 5.1.

On considère deux fonctions u et v dérivables sur I telles que u' et v' soient continues sur I. Soient a et b deux réels de I tels que a < b. Alors :

$$\int_{a}^{b} (u'v)(x)dx = [(uv)(x)]_{a}^{b} - \int_{a}^{b} (uv')(x)dx$$