CLAIMS

1	1.	A method to pattern a workpiece with improved CD uniformity using a
2		partially coherent electromagnetic radiation source, including the
3		actions of:
4		- determining, for a plurality of layers in said workpiece, CD
5		uniformity as a function of a number of exposure flashes,
6		- determining, for a plurality of layers in said workpiece, the
7		cost of patterning as a function of the number of exposure
8		flashes,
9		- selecting the number of exposure flashes on a layer by layer
10		basis, which gives a predetermined CD uniformity
11		corresponding to a preferred cost.
1	2.	The method according to claim 1, further comprising the action of:
2		- selecting a combination of values of the following
3		parameters:
4		radiation bandwidth
5		• pulse length
6		 radiation flash frequency
7		so that a calculated illumination non-uniformity (3 sigma) from
8		speckle amounts to less than 0.5%.
1	3.	The method according to claim 1 or 2, further comprising the action of:
2		- determining a value of a slit width so that a calculated
3		illumination non-uniformity (3 sigma) from speckle amounts
4		to less than 0.5%.

WO 2005/050720 PCT/SE2004/001701

1	4.	A computer assisted apparatus for printing a workpiece with improved
2		CD uniformity by using a partially coherent radiation source,
3		comprising:
4		- logic and resources that determine, for a plurality of layers in
5		said workpiece, CD uniformity as a function of the number of
6		exposure flashes,
7		- logic and resources that determine, for the plurality of layers
8		in said workpiece, a cost of patterning as a function of the
9		number of exposure flashes,
10		- logic and resources that select the number of exposure flashes
11		on a layer by layer basis, which gives a predetermined CD
12		uniformity at a minimum of patterning cost.
1	5.	A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3		- changing a number of exposure flashes per surface element
4		on a layer by layer basis.
1	6.	A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3		- changing a pulse length of exposure flashes per surface
4		element on a layer by layer basis.
1	7	. A method for printing a workpiece with improved CD-uniformity,
2		including the action of:
3		- changing a radiation bandwidth of exposure flashes per
4		surface element on a layer by layer basis.

1	8. A method for printing a workpiece with improved CD-uniformity,
2	including the action of:
3	- changing a slit width of exposure flashes per surface element
4	on a layer by layer basis.
1	9. The method according to any one of claims 5-8, wherein said changing
2	is performed for critical layers in the microelectronic device only.
1	10. A procedure to improve CD uniformity of a layer exposed in a scanner
2	or stepper using partially coherent light, including the actions of:
3	- providing a scanner system with an optical field larger than 10 mm,
4	- increasing one or more of the following parameters
5	a. slit width,
6	b. laser bandwidth,
7	c. pulse length,
8	d. laser flash frequency,
9	e. number of flashes,
10	f. number of flashes per field,
11	g. number of scan cycles per field
12	until the calculated illumination non-uniformity (3 sigma) from speckle
13	amounts to less than 0.5%.
1	11. The procedure as in claim 10 but with calculated speckle less than 1%.
1	12. The procedure as in claim 10 but with calculated speckle less than 2%.
1	13. The procedure as claimed in claim 10 but with calculated speckle less than
2	3%. .

WO 2005/050720 PCT/SE2004/001701

1	14. The procedure according to claim 10, wherein non-polarised light is used.
1	15. The procedure according to claim 10, wherein refractive optics is used.
1	16. The procedure according to claim 15, wherein at least one diffractive
2	element is used.
1	17. The procedure according to claim 15, wherein catadioptric optics with at
2	least one diffractive element is used.
1	18. A procedure to improve CD uniformity of a layer exposed in a maskless
2	scanner using partially coherent light comprising the steps of:
3	- providing a maskless scanner systems with an optical field larger than
<i>3</i>	0.5mm,
	the following parameters:
5	- increasing one or more of the following parameters:
6	a. laser bandwidth,
7	b. pulse length,
8	c. number of overlayed flashes,
9	until the calculated illumination non-uniformity (3 sigma) from speckle
10	amounts to less than 0.5%.
1	19. The procedure according to claim 18, wherein said calculated speckle is less
2	than 1%.
1	20. The procedure according to claim 18, wherein said calculated speckle is less
2	than 2%.
	21. The procedure according to claim 18, wherein said calculated speckle is less
1 2	than 3%.
~	
1	22. The procedure according to claim 18, wherein non polarized light is used.
1	23. An apparatus for printing a workpiece with improved CD uniformity
2	including:

WO 2005/050720 PCT/SE2004/001701

3	- logic and resources to calculate the speckle,
4	- logic and resources that change the number of pulses per surface element on
5	a layer to layer basis.
1	24. A procedure for optimizing the speckle during microlithographic printing
2	including the actions of:
3	- providing a model for the value of improved CD uniformity,
4	- calculating the CD uniformity as a function of the number of flashes,
5	- providing a model for the cost of printing with a particular number of
6	pulses,
7	- providing logic and resources that select a number of flashes that
8	corresponds to a preferred result,
9	- providing a control adapted to change the number of flashes, and
10	- setting said approximately optimized number of flashes.
1	25. An electronic device with improved CD uniformity printed with speckle less
2	than 1% (3 sigma).
1	26. The method according to claim 23, further including the actions of:
2	- determining, for a plurality of layers in said workpiece, CD uniformity as a
3	function of a number of exposure flashes,
4	- determining, for the plurality of layers in said workpiece, the cost of
5	patterning as a function of the number of exposure flashes,
6	- selecting the number of exposure flashes on a layer by layer basis, which
7	gives a predetermined CD uniformity corresponding to a preferred cost.