

Vorige les: membraanlipiden

Amphipatische moleculen: hebben hydrofoob en hydrofiel deel

https://www.youtube.com/watch?v=lm-dAvbl330

Fosfolipide bilaag

In waterige oplossing vormen fosfolipiden spontaan een lipide bilaag

Hydrofoob effect + van der Waals interacties tussen vetzuurstaarten

Electrostatische interacties en Hbruggen tussen kopgroepen en water

Liposomen

Small lipid vesciles

Figure 12.2

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Liposoom - micel - sheet

LadyofHats, Public domain, via Wikimedia Commons

Permeabiliteit

 $Na(OH_2)_6^+$

Vloeibaarheid

De transitietemperatuur (Tm) is afhankelijk van de lengte en de verzadiging van de vetzuurketens

Regulatie vloeibaarheid

Bacteriën: aanpassen lengte en verzadiging van de vetzuurketens

Dieren: cholesterol

- → -OH groep vormt H-brug met lipide kopgroep, hydrocarbon staart in het binnenste van de membraan
- → verstoort de packing van de vetzuurstaarten

Lipid rafts: complex van chloresterol met specifieke lipiden en eiwtten

Inner and outer leaflet

Binnenste en buitenste laag: verschillende lipide samenstelling

- Phosphoacylglycerolen (binnen)
- Sphingolipiden (buiten)
 Sphingomyelin
 Cerebroside
 Ganglioside
- Cholesterol

Beweging van lipiden in het membraan

Lateral diffusion

Tranverse diffusion (flip-flopping)

Membraaneiwitten

Functies o.a.: transport, receptoren, locatie enzym catalyse

Percentage en samenstelling membraaneiwitten verschilt per membraan.

Membraaneiwitten

Perifeer:

- Gebonden aan lipide kopgroepen of eiwitten via electrostatische interacties of H-bruggen
- Kunnen los worden gemaakt door te wassen met een oplossing die veel ionen bevat.

Integraal:

- Ingebed in het membraan

 Kunnen alleen worden verwijderd met detergentia

Structuur integrale membraaneiwitten

Meest voorkomende motief: membraanspannende α -helices

B.v. bacteriorhodopsine

http://www.macmill anhighered.com/Br ainHoney/Resource /6718/SitebuilderU ploads/tymoczko3e/ student/living_figur es/viewer.html?id=1 2170

Structuur integrale membraaneiwitten

Membraanspannende delen kunnen ook bestaan uit β-strands

B.v. porines

http://www.macm illanhighered.com/ BrainHoney/Resou rce/6718/Sitebuild erUploads/tymocz ko3e/student/livin g_figures/viewer.h tml?id=12190

Structuur integrale membraaneiwitten

Soms is alleen een gedeelte in het membraan verankerd B.v. prostaglandin H₂ synthetase-1

Fluid mosaic model

Passief transport over membranen

Gedreven door de concentratiegradient

Kost geen energie

simple diffusion: molecuul beweegt door het membraan

facilitated diffusion: molecuul gaat via een kanaaleiwit of carrier eiwit door het membraan

Actief transport over membranen

Transport tegen de concentratiegradient in

Kost energie in de vorm van:

- ATP (primair actief transport)
 - b.v. Na⁺/K⁺ pomp
- H+ of Na+ gradient (secundair actief transport)

Voorbeeld primaire transporter

Voorbeeld secundaire transporter

Secundaire transporters

Membranen

- 1. Membraanlipiden: kleine amfipatische moleculen die *spontaan* een gesloten bimoleculaire laag vormen. Bilagen zijn barrières voor polaire moleculen.
- 2. Sheetlike structures: 2 moleculen dik (60 en 100 Å). Vormen gesloten barrières tussen compartimenten.
- 3. Niet-covalente assemblages
- 4. Assymetrisch: binnen- en buitenkant van de bilaag zijn verschillend.
- 5. Vloeibare structuren: lipide moleculen diffunderen in het vlak van het membraan, net als eiwitten. Maar kunnen niet snel door het membraan heen.
- 6. Bestaan uit lipiden en eiwitten. Hieraan kunnen koolhydraten gebonden zijn.
- 7. Specifieke eiwitten hebben verschillende functies in membranen, pompen, kanalen of receptoren etc.
- 8. Membranen zijn gepolariseerd, de binnenkant is negatief geladen

Tentamen: Welke formules moet je kennen?

Formules voor ΔG en ΔG⁰′

Berekenen pH en pOH

Henderson Hasselbalch

Michaelis Menten

Geen formuleblad toegestaan

Tips Biochemie 1 tentamen

Begin op tijd

Lees het boek én de extra literatuur op BB

Maak de oefeningen (boek en BB)

Maak de oefententamens (BB)

Stel vragen!

Vragenuur: maandag 9 november (zie digirooster)