```
!gdown https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/original/bike_sharing.csv?16420890
```

Downloading...

From: https://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/001/428/original/bike sharing.csv?16420890

To: /content/bike_sharing.csv?16420890 100% 648k/648k [00:00<00:00, 23.6MB/s]

import numpy as np, pandas as pd
import matplotlib.pyplot as plt

import matplotlib.pyplot as pimport seaborn as sns

import seaborn as sns

from scipy.stats import spearmanr

from scipy.stats import norm

from statsmodels.stats.weightstats import ztest

from scipy.stats import ttest_1samp, ttest_ind

from scipy.stats import f_oneway

from scipy.stats import chi2_contingency

df=pd.read_csv('bike_sharing.csv?16420890')

df

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	win
	2011-01-								
0	01	1	0	0	1	9.84	14.395	81	
	00:00:00								
	2011-01-								
1	01	1	0	0	1	9.02	13.635	80	
	01:00:00								
	2011-01-								
2	01	1	0	0	1	9.02	13.635	80	
	02:00:00								
	2011-01-								
3	01	1	0	0	1	9.84	14.395	75	
	03:00:00								
	2011-01-								
4	01	1	0	0	1	9.84	14.395	75	
	04:00:00								
									+

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885

Data columns (total 12 columns): # Column Non-Null Count Dtype --------10886 non-null object 0 datetime 10886 non-null int64 1 season 10886 non-null int64 holiday workingday 10886 non-null int64 3 weather 10886 non-null int64 5 10886 non-null float64 temp 6 atemp 10886 non-null float64 humidity 10886 non-null int64 10886 non-null float64 windspeed 10886 non-null int64 casual 10 registered 10886 non-null int64 10886 non-null int64 11 count

dtypes: float64(3), int64(8), object(1)

memory usage: 1020.7+ KB

df.nunique()

datetime	10886
season	4
holiday	2
workingday	2
weather	4
temp	49
atemp	60
humidity	89
windspeed	28

```
5/13/23, 10:45 PM
        casual
                        309
                        731
        registered
                        822
        count
        dtype: int64
   df.isnull().sum()
        datetime
        season
                      0
        holiday
                      0
        workingday
        weather
        temp
        atemp
        humidity
                      0
        windspeed
                      0
        casual
        registered
                      0
        count
        dtype: int64
   #object => typically categorical/IDs
   #Numeric => Int64, Float64
   df['datetime']=pd.to_datetime(df['datetime'])
   df['season']=df['season'].astype('object')
   df['holiday']=df['holiday'].astype('object')
   df['workingday']=df['workingday'].astype('object')
   df['weather']=df['weather'].astype('object')
   df.dtypes
```

datetime	<pre>datetime64[ns]</pre>
season	object
holiday	object
workingday	object
weather	object
temp	float64
atemp	float64
humidity	int64
windspeed	float64
casual	int64
registered	int64
count	int64
dtype: object	

df.describe()

only numeric features

	temp	atemp	humidity	windspeed	casual	regist
count	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.00
mean	20.23086	23.655084	61.886460	12.799395	36.021955	155.55
std	7.79159	8.474601	19.245033	8.164537	49.960477	151.03
min	0.82000	0.760000	0.000000	0.000000	0.000000	0.00
25%	13.94000	16.665000	47.000000	7.001500	4.000000	36.00
50%	20.50000	24.240000	62.000000	12.998000	17.000000	118.00
75%	26.24000	31.060000	77.000000	16.997900	49.000000	222.00
max	41.00000	45.455000	100.000000	56.996900	367.000000	886.00
4						>

```
df.describe(include = ['object'])
```

[#] string/ obj features

season holiday workingday weather 🂢

df.head()

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspee
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.
4	2011_01_								>

Univariate Analysis

```
sns.countplot(data=df,x='workingday')
plt.xticks([0, 1], ['holiday', 'workingday'])
plt.title('Purchases in Holiday & Workig Day')
plt.show()
```


sns.countplot(data=df,x='weather')
plt.title('No of purchases in diff Weather')
plt.show()

₽

Distribution of "count" variable is right skewed distribution:

```
sns.histplot(df['count'])
plt.show()
```


Bivariate Analysis

sns.boxplot(data=df,x='season',y='count')
plt.title('Oultliers for Purchase in diff Season')
plt.show()

sns.boxplot(data=df,x='workingday',y='count')
plt.xticks([0, 1], ['holiday', 'work_day'])
plt.title('Oultliers for Workingday vs Holiday')
plt.show()

sns.boxplot(data=df,x='weather',y='count')
plt.title('Oultliers of purchases for diff Weather')
plt.show()

df.head()

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspee
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.
4	2011_01_								•

2- Sample T-Test

```
if p_value < 0.05:
    print("Reject H0")
else:
    print("failed to reject H0")
    0.22644804226361348
    failed to reject H0</pre>
```

- ANNOVA

```
weather 1 = df[df["weather"]==1]["count"]
weather_2 = df[df["weather"]==2]["count"]
weather_3 = df[df["weather"]==3]["count"]
weather_4 = df[df["weather"]==4]["count"]
# HO : mean of cycles rented is similar in diff weather
# Ha : mean of cycles rented varries in diff weather
f, p_value = f_oneway(weather_1, weather_2, weather_3, weather_4)
p_value
    5.482069475935669e-42
                                                                     ChatGPT
alpha = 0.05
print(p_value)
if p_value < 0.05:
   print("Reject H0")
else:
   print("failed to reject H0")
    5.482069475935669e-42
    Reject H0
```

Chi-square test

```
# H0 : Weather is not dependent on the season
# HA : Weather is dependent on the season
weather_season = pd.crosstab(index = df['weather'],
                            columns=df['season'])
weather_season
       season
                  1
                        2
                              3
      weather
               1759
                     1801
                           1930
                                 1702
         2
                715
                      708
                            604
                                  807
         3
                211
                      224
                            199
                                  225
         4
                  1
                        0
                              0
                                    0
chi_stat, p_value, dof, exp_freq = chi2_contingency(weather_season)
print(p_value)
print(exp_freq)
     1.5499250736864862e-07
     [[1.77454639e+03 1.80559765e+03 1.80559765e+03 1.80625831e+03]
      [6.99258130e+02 7.11493845e+02 7.11493845e+02 7.11754180e+02]
      [2.11948742e+02 2.15657450e+02 2.15657450e+02 2.15736359e+02]
      [2.46738931e-01 2.51056403e-01 2.51056403e-01 2.51148264e-01]]
alpha = 0.05
print(p_value)
if p_value < 0.05:
```

```
print("Reject H0")
else:
    print("failed to reject H0")
    1.5499250736864862e-07
    Reject H0
```

INSIGHTS:

- 1. The count column (i.e) no of purchases has a right skewed distribution
- 2. The most no of purchases are done during the working days and it has the high no of outliers
- 3. during the '4' weather(Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog) no purchases have been made
- 4. The median of "count" of season 2 & 3 is almost the same
- 5. In 2 sample t-test: the p-value is 22% and the confidence intervel is 5% so we faield to reject the null hypothesis
- 6. In the Annova test: since the p-value is very close to 0 we reject reject the null hypothesis so atleast one population mean differs from the rest of the group
- 7. In the chi-square test: the p-value is very low, we reject reject the null hypothesis. And the weather is dependent on the season

RECOMENDATIONS:

- 1. We could implement an option for working people to lessen the price to get more no of working customers
- 2. We should also increase the number of bikes to be rented during the rush hours
- 3. we could give offers to tourist and first time users in order to get new customers
- 4. we could also make the purchase price vary for diff seasons so it could attract prople to use when the price is less

√ 0s completed at 10:45 PM