Chapter 5B.

Database Normalization

CSIS0278 / COMP3278

Database Management Systems

Department of Computer Science, The University of Hong Kong

In this chapter...

- Outcome 1. Information Modeling
 - Able to understand the modeling of real life information in a database system.
- Outcome 2. Query Languages
 - Able to understand and use the languages designed for data access.
- Outcome 3. System Design
 - Able to understand the design of an efficient and reliable database system.
- Outcome 4. Application Development
 - Able to implement a practical application on a real database.

Content

- Decomposition
 - Lossless-join decomposition
 - Dependency preserving decomposition
- Normal form
 - Boyce-Codd Normal Form (BCNF)

Motivating example

- Let's consider the following specifications
 - Employees have eid (key), name, parkingLot.
 - Departments have did (key), dname, budget.
 - An employee works in exactly one department, since some date.
 - Employees who work in the same department must park at the same parkingLot.

Motivating example

- Reduce to relational tables
 - Employees(<u>eid</u>, name, parkingLot, did, since)
 Foreign key: did references Departments(did)
 - Departments(did, dname, budget)

Observation: In **Employees** table, whenever *did* is **1**, **parkingLot** must be "A"! **Implication:** The constraint "*Employees who work in the same department must park at the same parkingLot" is NOT utilized in the design!!! There are some redundancy in the Employees table.*

eid	name	parkingLot	did	since
1	Kit	А	1	1/9/2014
2	Ben	В	2	2/4/2010
3	Ernest	В	2	30/5/2011
4	Betty	Α	1	22/3/2013
5	David	Α	1	4/11/2004
6	Joe	В	2	12/3/2008
7	Mary	В	2	14/7/2009
8	Wandy	Α	1	9/8/2008

did	dname	budget
1	Human Resource	4M
2	Accounting	3.5M

Yes! As parkingLot is

"functionally depend" on did, we should not put parkingLot in the Employee table.

We are going to learn

- Database normalization
 - The process of organizing the columns and tables of a relational database to minimize redundancy and dependency.
- igoplus To make sure that every relation R is in a "good" form.
 - If R is not "good", decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$.

Are the dec

Question: How can we do the decomposition?
Are there any guidelines / theories developed to decompose a relation?

Yes! The theories can be explained through functional dependencies ©.

Normalization goal

- We would like to meet the following goals when we decompose a relation schema R with a set of functional dependencies F into $R_1, R_2, ..., R_n$
 - 1. Lossless-join Avoid the decomposition result in information loss.
 - **2. Reduce redundancy** The decomposed relations R_i should be in **Boyce-Codd Normal Form** (**BCNF**). (There are also other normal forms like **3NF**.)
 - 3. Dependency preserving Avoid the need to join the decomposed relations to check the functional dependencies when new tuples are inserted into the database.

Section 1

Lossless-join Decomposition

Illustration 1

R

Α	В	С
1	1	3
1	2	2
2	1	3 2
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Decompose

$$R_1 = \pi_{A, B}(R)$$

Α	В
1	1
1	2
2	1
2 3 3	2
3	1
4	2
4	1

A	C
1	3
1	2
2	3
3	2
3	3

 $R_2 = \pi_{A, C}(R)$

The functional dependency $B \rightarrow C$ tells us that for all tuples with the same value in B, there should be at most one corresponding value in C (E.g., If B=1, C=3; if B=2, C=2) Question: Will decomposing R(A,B,C) into $R_1(A,B)$ and $R_2(A,C)$ cause information lost?

Think in this way:

Is this decomposition "lossless join decomposition"?

I.e., Is there any information lost if we decompose **R** in this way?

Illustration 1

R

Functional dependencies $R_1 \bowtie R_2 = \pi_{A, B}(R) \bowtie \pi_{A, C}(R)$

Α	В	С
1	1	3
1	2	2
2	1	3
2	2	3 2
3	1	3
3 4	2	2
4	1	3

 $F = \{B \rightarrow C\}$

Decompose

$$R_1 = \pi_{A, B}(R)$$

Α	В
1	1
1	2
2	1
2 3	2
3	1
4	2
4	1

Α	С
1	3
1	2
2	3
3	2
3	3
2 3 3 4	3 2 3 2 3 2
4	3

 $R_2 = \pi_{A, C}(R)$

1	3
1	3 2 3 2 3
2	3
2	2
1	3
2	2
2	3
1	2
1	3
2	2
2	3
1	3 2 3 2 3 2 3
1	3
	1 1 2 2 1 2 1 1 2 2 1 1

To check if the decomposition will cause information lost, let's try to join $\mathbf{R_1}$ and $\mathbf{R_2}$ and see if we can recover \mathbf{R} .

As we see that $R_1 \bowtie R_2 \neq R$, the decomposition has information lost.

This is <u>NOT a lossless-join</u> decomposition.

This is a bad decomposition

Illustration 2

R

А	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

$R_1 \bowtie$	$R_2 =$	$\pi_{A_{r}}(R)$	\bowtie	$\pi_{B_{i}}$	$_{\rm C}(R)$
---------------	---------	------------------	-----------	---------------	---------------

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

How about decomposing the relation R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$?

Decompose

$$R_1 = \pi_{A, B}(R)$$

Α	В
1	1
1	2
2	1
2 3 3 4 4	2
3	1
4	2
4	1

$$R_2 = \pi_{B, C}(R)$$

В	С
1	3
2	2

 $R_1 \bowtie R_2 = R$, breaking down R to R_1 and R_2 in this way has no information lost. This decomposition is lossless-join decomposition.

R

Α	В	С
1	1	3
1	2	2 3 2
2	1	3
3	2	2
3	1	
3 3 4 4	2	3 2 3
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

What is/are the condition(s) for a decomposition to be lossless-join?

NOT Lossless-join decomposition

$$R_1 = \pi_{A,B}(R)$$

A	В
1	1
1	2
2	1
3	2
3	1
4	2

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

A	С
1	3
1	2
2	3
3	2
3	3
4	2

Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

A	В
1	1
1	2
2	1
3	2
3	1

- 1	_
	_
	•

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

NOT Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

Α	В	
1	1	
1	2	
2	1	
3	2	
3	1	
4	2	
4	1	

- 1	_
	_
	•

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4 4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

A	В
1	1

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

A	C
1	3
1	2

Since $A \rightarrow AC$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_2 (e.g., (1,3), (1,2)).

NOT Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

_	Α	В	
	1	1	
	1	2	•
	2	1	
	3	2	
	3	1	
	4	2	
	4	1	

R

А	В	С
1	1	3
1	2	3 2
2	1	3
3	2	2
3	1	3
4 4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Α	В
1	1

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

Α	C
1	3
1	2

Since $A \rightarrow AC$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_2 (e.g., (1,3), (1,2)).

Therefore when we join R_1 and R_2 , more than one tuples will be generated (i.e., (1,1) in R_1 combine with (1,3) and (1,2) in R_2)

NOT	Lossless-joir
ded	composition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

Α	В	Α	С
1	1	1	3
1	2	1	2
2	1	2	3
3	2	3	2
3	1	3	3
4	2	4	2
4	1	4	3

Observation:

The decomposition of R(A,B,C) into $R_1(\mathbf{A},B)$ and $R_2(\mathbf{A},C)$ is NOT lossless-join because

$$A \rightarrow AC$$

is NOT in F⁺, and ... (to be explained in the next slide)

R

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

NOT Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

A	В
1	1
1	2
2	1
3	2
3	1
4	2

4 1

Α	C
1	3
1	2
2	3
3	2
3	3
4	2
4	3

- 1	_
	u
	_

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
3 4	2	3 2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

Α	В
1	1
1	2

Since A → AB is NOT a functional dependency in F⁺, there can be more than one tuples with A=1 in R₁ (i.e., (1,1), (1,2)).

NOT Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

Α	В
1	1
1	2
2	1
3	2
3	1

Α	C
1	3
1	2
2	3
3	2
3	3
4	2
4	3

R

А	В	С
1	1	3
1	2	3 2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R.

Note that there is only **ONE** tuple in **R**₂ with **A=1**, **C=3**.

A	В
1	1
1	2

Since $A \rightarrow AB$ is **NOT** a functional dependency in F^+ , there can be **more than one tuples** with A=1 in R_1 (i.e., (1,1), (1,2)).

Therefore when we join R_1 and R_2 , more than one tuples will be generated (i.e., (1,3) in R_2 combine with (1,1) and (1,2) in R_1)

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{A, C}(R)$

Α	В	Α	С
1	1	1	3
1	2	1	2
2	1	2	3
3	2	3	2
3	1	3	3
4	2	4	2
4	1	4	3

Observation:

The decomposition of R(A,B,C) into $R_1(\mathbf{A},B)$ and $R_2(\mathbf{A},C)$ is NOT lossless-join because

A > AC (explained in previous slide), and

are **NOT** in F⁺.

_
\mathbf{n}
ĸ

Α	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

A B

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R₁ with **A=1**, **B=1**.

Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

Α	В
1	1
1	2
2	1
3	2

В	C
1	3
2	2

R

Α	В	С
1	1	3
1	2	3 2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in **R**₁ with **A=1**, **B=1**.

В	С
1	3

Since $\mathbf{B} \rightarrow \mathbf{BC}$ is a functional dependency in F+, there is only one tuple with B=1 in R₂.

Lossless-join decomposition

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

Α	В
1	1
1	2
_	

R

А	В	С
1	1	3
1	2	2
2	1	3
3	2	2
3	1	3
4	2	2
4	1	3

Functional dependencies

$$F = \{B \rightarrow C\}$$

Let's consider the first tuple (1,1,3) in R. Note that there is only **ONE** tuple in R₁ with **A=1**, **B=1**.

Since $\mathbf{B} \rightarrow \mathbf{BC}$ is a functional dependency in \mathbf{F}^+ , there is only **one tuple** with $\mathbf{B}=\mathbf{1}$ in $\mathbf{R_2}$.

Therefore when we join R₁ and R₂, there will be ONLY ONE tuple generated, and that must be the corresponding tuple (1,1,3) in R.

$$R_1 = \pi_{A, B}(R)$$
 $R_2 = \pi_{B, C}(R)$

Observation:

The decomposition of R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$ is lossless-join because

is in F⁺.

Testing for lossless-join decomposition

- \bigcirc Consider a decomposition of R into R₁ and R₂.
 - \bigcirc Schema of R = schema of R₁ \cup schema of R₂.
- \bigcirc Let schema of $R_1 \cap$ schema of R_2 be R_1 and R_2 's common attributes.
 - \bigcirc A decomposition of R into R₁ and R₂ is lossless-join if and only if at least one of the following dependencies is in F⁺.

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

OR

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_2

Example

- Question: Given R(A,B,C), F={B→C}, is the following a lossless join decomposition of R?
- Answer: To see if (R_1, R_2) is a lossless join decomposition of R, we do the following:
 - Find common attributes of R₁ and R₂: B
 - Verify if any of the FD below holds in F⁺, if one of the FD holds, then the decomposition is lossless join.

$$B \rightarrow R_1 \text{ (i.e., B} \rightarrow AB?)$$

$$B \rightarrow R_2 \text{ (i.e., B} \rightarrow BC?)$$

○ Since B → BC (by Augmentation rule on B → C), R_1 and R_2 are lossless join decomposition of R.

Section 2

Dependency preserving

Decomposition

- When decomposing a relation, we also want to keep the functional dependencies.
 - A FD X → Y is preserved in a relation R if R contains all the attributes of X and Y.
- If a dependency is lost when R is decomposed into R₁ and R₂:
 - When we insert a new record in R_1 and R_2 , we have to obtain $R_1 \bowtie R_2$ and check if the new record violates the lost dependency before insertion.
 - It could be very inefficient because joining is required in every insertion!

- Onsider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$
 - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs}

17			
Α	В	С	D
1	1	3	4
2	1	3	4
3	2	2	3
4	1	3	4

- If R is decomposed to R₁(A,B), R₂(B,C,D):
 - \bigcirc $F_1 = \{A \rightarrow B, trivials\}, the projection of <math>F^+$ on R_1
 - \bigcirc F₂ = {B \rightarrow CD, trivials}, the projection of F⁺ on R₂

$R_1 = \pi_{A, B}(R) R$	$_{2}=\pi_{B. C. D}(R)$
-------------------------	-------------------------

Decompose

1	В	В	C
L	1	1	3
2	1	2	2
3	2		

This is a dependency preserving decomposition as:

$$(\mathsf{F}_1 \cup \mathsf{F}_2)^+ = \mathsf{F}^+$$

Let us illustrate the implication of dependency preserving in the next slide.

- Onsider R(A,B,C,D), $F = \{A \rightarrow B, B \rightarrow CD\}$
 - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs}
- Is this a lossless join decomposition?
 - Yes! As B→R₂ (i.e., B→BCD) holds in F⁺.
 That mean we can recover R by R₁⋈ R₂.
- Why it is dependency preserving?

Think about it...

5	1	4	4	into R_1 and R_2 :
	R	В	С	D

If we insert	a new	record
--------------	-------	--------

R₁ A B 5 1

We need to check if the new record will make the database violate any FDs in F⁺.

Is such decomposition allow us to do the validation on R_1 and R_2 ONLY? (But no need to join R_1 and R_2 to validate it?)

- $F^+ = \{ A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivials \}$
 - Inserting tuple (5,1,4,4) violates B \rightarrow CD.
- The decomposition is dependency preserving as we only need to check:
 - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ? This involves checking $F_1 = \{A \rightarrow B\}$.
 - ¹ ⁴ ⁴ violate any F₂ in R₂? Inserting This involves checking $F_2 = \{B \rightarrow CD\}$.

We can check F₁ on R₁ and F₂ on R₂ only because $(F_1 \cup F_2)^+ = F^+$

$R_1 = \pi_{A, B}(R) R_2 = \pi_{B, C, D}(R)$	$\mathbf{X}_1 = \mathbf{\pi}$	_{A, B} (R)	$R_2 = \pi_{B_2}$	_{, C, D} (R
--	-------------------------------	---------------------	-------------------	----------------------

Α	В	В	С	
1	1	1	3	4
2	1	2	2	3
3	2	1	4	4
4	1			
5	1			

Although among the two validations we haven't checked $A \rightarrow CD$, but since $A \rightarrow B$ is checked in F_1 , and $B \rightarrow CD$ is checked in F₂, if we pass both F₁ and F_2 , it implies A \rightarrow CD.

- What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$?
- R is decomposed to $R_1(A,B)$, $R_2(A,C,D)$
 - \rightarrow F⁺ = {A \rightarrow B, B \rightarrow CD, A \rightarrow CD, trivial FDs}
 - ightharpoonup F₁ = {A ightharpoonup B, trivials}, the projection of F⁺ on R₁
 - $F_2 = \{A$

$\Lambda \rightarrow CD$ trivials) the prejection of Γ^+ on Γ) [1	1
A \rightarrow CD , trivials}, the projection of F ⁺ on R ₂		2	1
	3	3	2
s NOT a dependency preserving		4	1

This is decomposition as:

$$(F_1 \cup F_2)^+ \neq F^+$$

Let us illustrate the implication of NOT dependency preserving in the next slide.

Decompose

1	В	
L	1	
2	1	
3	2	
1	1	

Α	С	D
1	3	4
2	3	4
3	2	3
4	3	4

- What about decompose R to $R_1(A,B)$, $R_2(A,C,D)$?
- Is this a lossless join decomposition?
 - Yes! As $A \rightarrow R_1$ (i.e., $A \rightarrow AB$) holds in F^+ . That mean we can recover R by $R_1 \bowtie R_2$.
- Is it dependency preserving?

Think about it...

If we insert a new record

D	С	В	Α
4	4	1	5

<u> </u>	В	C	D	: D
5	1	4	4	into R ₁ and R

We need to check if the new record will make the database violate any FDs in F⁺. Is such decomposition allow us to do the validation on R_1 and R_2 only (but no need to join R_1 and R_2)?

- \bigcirc F⁺ = { A \rightarrow B, B \rightarrow CD, A \rightarrow CD }
 - \bigcirc Inserting tuple (5,1,4,4) violates B \rightarrow CD.
- The decomposition is NOT dependency preserving as if we only check:
 - Inserting $\frac{A}{5}$ violate any F_1 in R_1 ?

 This involves checking $F_1 = \{A \rightarrow B\}$.
 - Inserting $\begin{bmatrix} A & C & D \\ 5 & 4 & 4 \end{bmatrix}$ violate any F_2 in R_2 ?

This involves checking $F_2 = \{A \rightarrow CD\}.$

We CANNOT check F ₁ on R ₁	and F ₂ on R ₂ only because
$(F_1 \cup F_2)$)+ ≠ F+

Decomposition in this way requires joining tables to validate B → CD for **EVERY INSERTION**!

$R_1 = \pi_{A, B}(R)$	$R_2 = \pi_{A, C, D}(R)$
-----------------------	--------------------------

A	В	A	С	
1	1	1	3	
2	1	2	3	
3	2	3	2	
4	1	4	3	
5	1	5	4	

Although we passed F_1 and F_2 , it doesn't mean that we passed all FDs in F!

It is because we lost the FD

B → CD in the decomposition.

What is the condition(s) for a decomposition to be **dependency preserving**?

- Let F be a set of functional dependencies on R.
 - \bigcirc R₁, R₂, ..., R_n be a decomposition of R.
 - \bigcirc F_i be the set of FDs in F⁺ that include only attributes in R_i.
- A decomposition is dependency preserving if and only if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$

Where F_i is the set of FDs in F⁺ that include only attributes in R_i.

Example 1

- \bigcirc Given R(A, B, C), F = {A \rightarrow B, B \rightarrow C}
 - \bigcirc Is $R_1(A, B)$, $R_2(B, C)$ a dependency preserving decomposition?
- First we need to find F⁺, F₁ and F₂.
 - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}

Note that A→C is in F⁺ because of the **Transitivity axiom**.

- \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true.
 - Since $F_1 \cup F_2 = F$, this implies $(F_1 \cup F_2)^+ = F^+$.
- This decomposition is dependency preserving.

Example 2

- \bigcirc Given R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$
 - \bigcirc Is $R_1(A, B)$, $R_2(A, C)$ a dependency preserving decomposition?
- First we need to find F⁺, F₁ and F₂.
 - \bigcirc F⁺ = {A \rightarrow B, B \rightarrow C, A \rightarrow C, some trivial FDs}

Note that A→C is in F⁺ because of the **Transitivity axiom**.

- \bigcirc Then we check if $(F_1 \cup F_2)^+ = F^+$ is true.
 - Since B→C disappears in R_1 and R_2 , $(F_1 \cup F_2)^+ \neq F^+$.
- This decomposition is NOT dependency preserving.

Section 3

Boyce-Codd Normal Form

FD and redundancy

- Consider the following relation:
 - Customer(<u>id</u>, name, dptID)
 - \bigcirc F = { $\{id\} \rightarrow \{name, dptID\} \}$

r

id	name	dptID
1	Kit	1
2	David	1
3	Betty	2
4	Helen	2

- {id} is a key in Customer.
 - Because the attribute closure of {id} (i.e., {id}+= {id, name, dptID}), which covers all attributes of Customer.

Observation: All non-trivial FDs in F form a key in the relation Customer.

- This implies that there are no other FD that is just involve a subset of columns in the relation.
- This implies that Customer has no redundancy.

FD and redundancy

- As another example:
 - Customer(<u>id</u>, name, dptID, building)
 - $F = \{ \{id\} \rightarrow \{name, dptID, building\} \}$ $\{dptID\} \rightarrow \{building\} \}$

id	name	dptID	building
1	Kit	1	CYC
2	David	1	CYC
3	Betty	2	HW
4	Helen	2	HW

- \bigcirc {dptID} \rightarrow {building} brings redundancy. Why?
 - Tuples have the same dptID must have the same building (e.g., dptID=1, building="CYC").
 - But those tuples can have different values in *id* and *name*.
 For each different *id* values with the same *dptID*, *building* will be repeated (redundancy)
 For example, for tuples with (*id*=1,

dptID=1) and (id=2, dptID=1), building must equal "CYC" (redundancy).

FD and redundancy

- As another example:
 - Customer(<u>id</u>, name, dptID, building)
 - $F = \{ \{id\} \rightarrow \{name, dptID, building\} \}$ $\{dptID\} \rightarrow \{building\} \}$

_			
นร	το	m	er

id	name	dptID	building
1	Kit	1	CYC
2	David	1	CYC
3	Betty	2	HW
4	Helen	2	HW

- How to check?
 - Check if the attribute set closure of {dptID} covers all attributes in Customer. ({dptID}⁺ = {dptID, building} ≠ Customer)

Redundancy is related to FDs. If there is an FD $\alpha \rightarrow \beta$, where $\{\alpha\}^+$ does not cover all attributes in R, then we will have redundancy in R!

Boyce-Codd Normal Form

- Summarizing the observations, a relation R has no redundancy, or in Boyce-Codd Normal Form (BCNF), if the following is satisfied:
 - \bigcirc For all FDs in **F**⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

$$\alpha \rightarrow \beta$$
 is trivial (i.e., $\beta \subseteq \alpha$)

We won't border with trivial FDs such as A \rightarrow A, AB \rightarrow A ...etc

i.e., The attribute set closure of α , represented as $\{\alpha\}^+$, covers all attributes in **R**.

In another word, in BCNF, every non-trivial FD forms a key.

- Formally, for verifying if R is in BCNF
 - For each non-trivial dependency $\alpha \rightarrow \beta$ in **F**⁺ (the functional dependency closure), check if α ⁺ covers the whole relation (i.e., whether α is a superkey).
 - \bigcirc If any α^+ does not cover the whole relation, **R** is not in BCNF.
- Simplified test:
 - It is suffices to check only the dependencies in the given F for violation of BCNF, rather than check all dependencies in F⁺

For example, given R(A,B,C); $F = \{A \rightarrow B, B \rightarrow C\}$, we only need to check if both $\{A\}^+$ and $\{B\}^+$ cover $\{A,B,C\}$. We do not need to derive $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, ...etc\}$ and check each FD because $A \rightarrow C$ already considered when computing $\{A\}^+$.

- When the However, if we decompose R into R_1 and R_2 , we cannot use only F to check if the "decomposed" relations (i.e., R_1 and R_2) is BCNF, we have to use F⁺ instead.
- Illustration
 - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C}

To test if **R** is in BCNF, it is suffices to check only the dependencies in **F** (but not **F**⁺)

A B C D
1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 1 5

An example R that satisfies F

As illustrated through this instance, since $\{A\}^+ = \{A,B,C\} \neq \{A,B,C,D\}$, this implies that it will cause redundancy when we have tuples with the same value across $\{ABC\}$ but different values in **D**.

To illustrate why we cannot use only F to test decomposed relations for BCNF, let's try to decompose R into $R_1(A, B)$ and $R_2(A, C, D)$

- Illustration
 - \bigcirc R(A, B, C, D), F = {A \rightarrow B, B \rightarrow C}
- \bigcirc Is R₂(A, C, D) in BCNF?

R			
Α	В	С	D
1	1	1	1
1	1	1	2
1	1	1	3
1	1	1	4
1	1	1	5

When we check R_2 , none of FDs in F is contained in R_2 . Does this mean no non-trivial FDs are in R_2 , and R_2 is in BCNF?

R₁(A, B) R₂(A, C, D)

A B A C D

1 1 1 1 1 1 1 1 1 1 1 1 1 1 3

No! We need to use **F**⁺ to verify if **R**₂ is BCNF

- \bigcirc In R₂(A, C, D), A \rightarrow C is in F⁺, because:
 - \bigcirc A \rightarrow C can be obtained by transitivity rule on A \rightarrow B and B \rightarrow C
 - \bigcirc There is a non trivial FD $A \rightarrow C$ in R_2 that we have missed!
- Therefore in R₂ we check {A}⁺ = {A,C} ≠ {A,C,D}
 - Thus, A is not a key in R₂
 - \bigcirc $\mathbf{R_2}$ is NOT in BCNF.

Conclusion: When we test whether a **decomposed relation** is in BCNF, we must project F^+ onto the relation (e.g., R_2), not F!

$R_1(A, B) = R_2(A, C, I)$				D)
A B	Α	С	D	
1 1	1	1	1	
	1	1	2	
	1	1	3	
	1	1	4	

Section 4

Normalization

Normalization goal

- When we decompose a relation R with a set of functional dependencies F into $R_1, R_2, ..., R_n$, we try to meet the following goals:
 - 1. Lossless-join Avoid the decomposition result in information loss.
 - ② 2. No Redundancy The decomposed relations R_i should be in Boyce-Codd Normal Form (BCNF). (There are also other normal forms.)
 - 3. Dependency preserving Avoid the need to join the decomposed relations to check the functional dependencies.

- Onsider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, is R in BCNF? If not, decompose R into relations that are in BCNF.
- Is R in BCNF?
 - Because $\{B\}^+=\{B,C\} \neq \{A,B,C\}$

- A B C
 1 1 2
 2 1 2
 3 1 2
 4 1 2
- Since {B}+ does not cover all attributes in R, R is NOT in BCNF.

Think in this way: How should we decompose R such that the decomposed relations are always lossless join?

Note: A decomposition is lossless join if at least one of the following dependencies is in F⁺

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

OR

Idea: To make the decomposition always lossless join, we can pick the FD $A \rightarrow B$ and make the decomposed relation as:

- \bigcirc R₁(**A**,**B**) the attributes in the L.H.S. and R.H.S. of the FD.
- \bigcirc R₂(**A**,**C**) the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁.
- If we decompose the relation R in this way the following must be true:

Schema of $R_1 \cap$ schema of $R_2 \rightarrow$ schema of R_1

- \bigcirc Schema of $R_1 \cap schema$ of R_2 is **A**.
- \bigcirc A \rightarrow R₁= A \rightarrow AB must be true because R₁ must consists of the L.H.S. and R.H.S. of the FD A \rightarrow B in F.

$$F = \{A \rightarrow B, B \rightarrow C\}$$
 $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, trivial FDs\}$

	R ₁ (A, B)	$R_2(A, C)$
F _x	A → B	A→C

- Since $\{A\}^+ = \{A,B\} = R_1$, $\{A\}$ is a key in R_1 .
- \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF.

R A B C 1 1 2 2 1 2 3 1 2

\bigcirc Is $R_2(A, C)$ in BCNF?

- Since $\{A\}^+ = \{A,C\} = R_2, \{A\}$ is a key in R_2 .
- Since all FDs in F₂ forms a key, R₂ is in BCNF.

Therefore, decomposing R(A, B, C) with $F = \{A \rightarrow B, B \rightarrow C\}$ to $R_1(A, B)$ and $R_2(A, C)$ result in a lossless join decomposition (no information lost), and BCNF relations (no redundancy)

- Is the decomposition dependency preserving?
 - \bigcirc F = {A \rightarrow B , B \rightarrow C}
 - $(F_1 \cup F_2) = (A \rightarrow B, A \rightarrow C)$
- Obline B \rightarrow C disappears in R₁ and R₂, $(F_1 \cup F_2)^+ \neq F^+$.
- The decomposition is NOT dependency preserving.

Note: Although the decomposition is not dependency preserving, but it is lossless join, so we can join R_1 and R_2 to test $B \rightarrow C$.

BCNF decomposition algorithm

```
result = \{R\};
done = false;
                                                                                                           \alpha is not a key;
compute F<sup>+</sup>;
                                                                                                           \alpha \rightarrow \beta causes R<sub>i</sub>
while (done == false) {
                                                                                                           to violate BCNF
    if (there is a schema R<sub>i</sub> in result and R<sub>i</sub> is not in BCNF)
        let \alpha \rightarrow \beta be a non-trivial FD that holds on R<sub>i</sub> s.t. \{\alpha\}^+ \neq R_i
        result = (result – R<sub>i</sub>) \cup (\alpha \beta) \cup (R<sub>i</sub> – \beta)
    else
                                                                   3. Create a relation containing
        done = true;
                                                                   R_i but with \beta removed.
                                                  2. Create a relation with only \alpha and \beta
                        1. Delete R<sub>i</sub>
```

Each R_i is in BCNF, and the decomposition must be lossless-join

	R ₁ (B, C)	R ₂ (A, B)
F _x	$B \rightarrow C$	A→B

Consider R(A, B, C), $F = \{A \rightarrow B, B \rightarrow C\}$, decompose R into relations that are in BCNF.

Alternative decomposition: To make the decomposition always lossless join, we can pick the FD B→C and make the decomposed relation as:

- \bigcirc R₁(**B**,**C**) the attributes in the L.H.S. and R.H.S. of the FD.
- \mathbb{Q} R₂(**A**,**B**) the attribute(s) in the L.H.S. of the FD, and the remaining attributes that does not appear in R₁.

$$F = \{A \rightarrow B, B \rightarrow C\}$$
 $F^+ = \{A \rightarrow B, B \rightarrow C, A \rightarrow C, trivial FDs\}$

	R ₁ (B, C)	$R_2(A, B)$
F_{x}	$B \rightarrow C$	A→B

- \bigcirc Decomposition: R₁(B, C), R₂(A, B)
- \bigcirc Is R₁(B, C) in BCNF?

 - \bigcirc Since $\{B\}^+ = \{B,C\} = R_1, \{B\}$ is a key in R_1 .
 - \bigcirc Since all FDs in F_1 forms a key, R_1 is in BCNF.
- \bigcirc Is R₂(A, B) in BCNF?

 - Since $\{A\}^+ = \{A,B\} = R_2, \{A\}$ is a key in R_2 .
 - Since all FDs in F₂ forms a key, R₂ is in BCNF.

 R_1

 R_2

	R ₁ (B, C)	R ₂ (A, B)
F_{x}	B → C	A→B

- Is the decomposition lossless join?
 - From the illustration in example 1, the decomposition must be lossless join.

- R
 A B C
 1 1 2
 2 1 2
 3 1 2
 4 1 2
- Is the decomposition dependency preserving?
 - $F = \{A \rightarrow B, B \rightarrow C\}$
 - $(F_1 \cup F_2) = (B \rightarrow C, A \rightarrow B)$

- $_{L}$ R_{2}
- Since $F = (F_1 \cup F_2)$, this implies $(F_1 \cup F_2)^+ = F^+$.
- B C A 1 2 1
- The decomposition is dependency preserving.
 - That means if we insert a new tuple, if the new tuple does not violate F_1 in R_1 , and F_2 in R_2 , it won't violate F^+ in R_2 .

Consider a relation R in a bank:
R (b_name, b_city, assets, c_name, l_num, amount)

F = { {b_name} → {assets, b_city}, {I_num} → {amount, b_name}, {I_num, c_name} → everything } Each specific value in **bname** is corresponds to at most one at most one {**asset**, **b_city**} value

Each *I_num* corresponds to at most one at most one {*amount*, *b_name*} value.

Each { *I_num*, *c_name*} corresponds to at most one {*b_name*, *b_city*, assets, amount} value.

Decomposition

- With {b_name} → {assets, b_city}, {b_name}⁺ ≠ R,
 R is not in BCNF.
- Decompose R into R₁(b_name, assets, b_city) and R₂(b_name, c_name, l_num, amount).

- Is R₁(b_name, assets, b_city) in BCNF?
 - \bullet $F_1 = \{ \{b_name\} \rightarrow \{assets, b_city\}, trivial FDs \} \leftarrow {}^{Projection of F^+}_{on F_1}.$
 - $igoplus \{b_name\}^+ = \{b_name, assets, b_city\} = R_1,$ so $\{b_name\}$ is a key in R_1 .
 - \bigcirc Since all FD in F_1 forms a key in R_1 , R_1 is in BCNF.
- Is R₂(b_name, c_name, l_num, amount) in BCNF?

 - $\{I_num\}^+ = \{I_num, amount, b_name\} \neq R_2,$ so $\{b_name\}$ is NOT a key in R_2 .
 - \bigcirc Since NOT all FD in F₂ forms a key in R₂, R₂ is NOT in BCNF.

- Picking {I_num} → {amount, b_name}, R₂ is further decomposed into:
 - R₃(I_num, amount, b_name)
 - R₄(c_name, I_num)
- Is R₃(I_num, amount, b_name) in BCNF?

 - $\{I_num\}^+ = \{I_num, amount, b_name\} = R_3$, so $\{I_num\}$ is a key in R_3 .
 - \bigcirc Since all FD in F₃ forms a key in R₃, R₃ is in BCNF.

- Is R₄(c_name, l_num) in BCNF?
 - $F_4 = \{trivial FDs\}$
 - \bigcirc Since all FD in F₄ forms a key in R₄, R₄ is in BCNF.
- \bigcirc Now, R₁, R₃ and R₄ are in BCNF;
- The decomposition is also lossless-join.

Augmentation

- The decomposition is also dependency preserving.

```
{I_num} → {b_name} ... (i)
by Decomposition of {I_num} → {amount, b_name}

{I_num} → {assets, b_city} ... (ii)
by Transitivity of (i) and {b_name} → {assets, b_city}

{I_num} → {b_name ,assets, b_city, amount} by Union of F<sub>3</sub> and (ii)

{I_num, c_name} → {I_num ,c_name ,b_name ,assets, b_city, amount} by
```

- Therefore $F_1 \cup F_3 \cup F_4 = F$, which implies $(F_1 \cup F_3 \cup F_4)^+ = F^+$.
- The decomposition is dependency preserving.

BCNF doesn't imply dependency preserving

- It is not always possible to get a BCNF decomposition that is dependency preserving.
- R
 A B C
 1 1 2
 2 1 2
 1 2 3

- Onsider R(A, B, C); $F = \{AB \rightarrow C, C \rightarrow B\}$
- There are two candidate keys: {AB}, and {AC}.
 - AB⁺ = {A,B,C} = R
 - AC⁺ = {A,B,C} = R
- R is not in BCNF, since C is not a key.
- Decomposition of R must fail to preserve AB > C.

	2	R	-	R_1
	С	Α	В	Α
Not lossless	2	1	1	1
decomposition	2	2	1	2
	3	1	1	1

Motivating example

- Back to our motivating example, we have:
 - Employees(eid, name, parkingLot, did, since)
 - Departments(did, dname, budget)
- "Employees who work in the same department must park at the same parkingLot." implies the following FD:

FD: did → parkingLot

- Is Employees in BCNF?
 - \bigcirc {did}⁺ = {parkingLot} \neq {eid, name, parkingLot, did, since}
 - Since did is not a key, Employees is NOT in BCNF.

Normalization

- Employees(<u>eid</u>, name, parkingLot, did, since) is decomposed to
 - Employees2(eid, name, did, since)
 - Dept_Lots(did, parkingLot)
- With Departments (<u>did</u>, dname, budget), the above two decomposed relations are further refined to
 - Employees2(<u>eid</u>, name, did, since)
 - Departments(did, dname, parkingLot, budget)

Summary

- Relational database design goals
 - Lossless-join
 - No redundancy (BCNF)
 - Dependency preservation
- It is not always possible to satisfy the three goals.
 - A lossless join, dependency preserving decomposition into BCNF may not always be possible.
- SQL does not provide a direct way of specifying FDs other than superkeys.
 - Can use assertions to check FD, but it is quite expensive.

Chapter 5B.

END

CSIS0278 / COMP3278 Introduction to Database Management Systems

Department of Computer Science, The University of Hong Kong

Slides prepared by - **Dr. Chui Chun Kit**, http://www.cs.hku.hk/~ckchui/ for students in CSIS0278 / COMP3278 For other uses, please email : ckchui@cs.hku.hk