Занятие 02. Интегралы, аналитические и гармонические функции

22.02.22

Старые задачи

Функции

- 1. Пусть $f:[0,1] \to \mathbb{C}$ непрерывно дифференцируема. Положим $\lambda = f(1) f(0)$. Верно ли что
 - 1) Найдется $t \in [0,1]$ такое, что $f'(t) = \lambda$?
 - 2) λ принадлежит выпуклой оболочке множества $\{f'(t); t \in [0,1]\}$?
- 2. Запишите условия Коши-Римана в полярных координатах
- 3. В каких точках комплексной плоскости обращаются в ноль функции $\sin z$ и $\cos z$?
- 4. В каких областях голоморфны следующие функции: $e^z:=e^{x+iy},\ \tan z,\ \log z:=\log|z|+i\arg z,$
- 5. Пусть функция f(z) голоморфна и или $\operatorname{Re} f(z) = \operatorname{const}$ или $|f(z)| = \operatorname{const}$. Тогда $f(z) = \operatorname{const}$. А что если $\operatorname{Re}(e^{i\pi/4}f(z)) = \operatorname{const}$?

Новые задачи

1. При каких значениях α сходятся интегралы

$$\int_1^\infty \frac{e^{it}}{t^\alpha} dt, \quad \int_1^\infty \frac{e^{i\log t}}{t^\alpha} dt.$$

2. Пусть γ - спрямляемая кривая, f,g непрерывны на γ . Доказать неравенство Шварца:

$$\left| \int_{\gamma} f(z)g(z)dz \right|^{2} \leq \int_{\gamma} |f(z)|^{2}|dz| \int_{\gamma} |g(z)|^{2}|dz|$$

А как насчет неравенств Гельдера и Минковского ?

3. Проверить, что класс аналитических функций замкнут относительно алгебраических операций (знаменатель не должен обращаться в ноль, ясное дело) и композиции.

4. Найти сопряженные к следующим гармоническим функциям:

$$u(x,y)=xy,\;u(x,y)=x^2-y^2,\;u(x,y)=y\cos y \,\mathrm{sh}\,x+x\sin y \,\mathrm{ch}\,x,\;u=r\phi\cos\phi+r\log r\sin\phi$$

5. Выразить оператор Лапласа $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ в терминах производных по z и \bar{z} , а также в полярных координатах.