Algebre Lineaire Avancee, MATH-110

Série 5

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Exercice 1 (Formule du binome). Soit (A, +, .) un anneau, $x, y \in A$ et $n \ge 1$ un entier.

1. Montrer que si x et y COMMUTENT pour la multiplication de A (si x.y = y.x) on a la formule du binome de Newton :

$$(x+y)^n = (x+y).....(x+y)_{n \text{ fois}} = \sum_{k=0}^n C_n^k.x^k.y^{n-k}$$

ou pour $0 \le k \le n$, $C_n^k \ge 1$ est le nombre de sous-ensembles de cardinal k dans un ensemble de cardinal n.

Remarque 0.1. On rappelle la formule des coefficients du binome obtenue par denombrement

$$C_n^k = \frac{n!}{k!(n-k)!}$$

avec

$$n! = n \cdot (n-1) \cdot \cdots \cdot 1, \ n \ge 1, \ 0! = 1.$$

Exercice 2. Soit A un anneau et (M, +) un A-module dont la multiplication par les scalaire de A est notee \star . Pour $n \in \mathbb{Z}$, on rappelle que l'on pose

$$n_A = 1_A + \dots + 1_A \ (n \text{ fois si } n \ge 0), n_A = (-1_A) + \dots + (-1_A) \ (-n \text{ fois si } n < 0)$$

l'image de $n \in \mathbb{Z}$ par le morphisme canonique $\operatorname{Can}_A : \mathbb{Z} \mapsto A$, et pour $m \in M$, on pose

$$n.m = m + \cdots + m \ (n \text{ fois si } n \geqslant 0), = (-m) + \cdots + (-m) \ (-n \text{ fois si } n < 0)$$

(la multiplication qui fait de M un \mathbb{Z} -module car c'est un groupe commutatif note additivement)

1. Montrer que pour tout $n \in \mathbb{Z}$ et $m \in M$ on a

$$n_A \star m = n.m.$$

Autrement dit les structures de \mathbb{Z} -module et de A-module sur M sont compatible avec le morphisme canonique.

Exercice 3. Soient $(A, +_A, \cdot_A)$ et $(B, +_B, \cdot_B)$ deux anneaux commutatifs. On considere l'anneau produit

$$A \times B = \{(a, b), a \in A, b \in B\}$$

muni de l'addition et de la multiplication

$$(a,b) + (a',b') = (a +_B a', b +_B b'), (a,b).(a',b') = (a._A a', b._B b')$$

avec comme neutre et unite $0_{A\times B}=(0_A,0_B),\ 1_{A\times B}=(1_A,1_B).$

1. Montrer que si A et B ne sont pas des anneaux nuls alors $A \times B$ n'est pas un anneau integre (meme si A et B sont integres).

Exercice 4. (\star) Dans cet exercice on va demontrer le resultat suivant :

Lemme. Soit A un anneau non-nul commutatif, integre et FINI alors A est un corps (tout element non-nul de A est inversible).

Soit donc $a \in A - \{0_A\}$ non-nul, on veut montrer que a admet un inverse dans A.

Pour cela on considere la suite d'element de A, donnee pour tout entier $n \ge 0$ par

$$a_n := a^n = a.a. \cdots .a \ (n \text{ fois})$$

(avec $a^0 = 1_A$).

- 1. Montrer qu'il existe deux entiers $0 \le m < n$ tels que $a^n = a^m$.
- 2. En deduire qu'il existe un entier $k \ge 1$ tel que $a^k 1_A = 0_A$.
- 3. Conclure.

Exercice 5. Soit K un corps et $I \subset K$ un sous K-espace vectoriel de K (vu que K-EV); autrement dit un sous K-module de K, cad un sous-groupe additif de K stable par multiplication par K (aka encore un ideal de l'anneau K).

- 1. Montrer que $I = \{0_K\}$ ou bien I = K.
- 2. En deduire qu'un morphisme d'anneau $\varphi: K \mapsto A$ est soit nul, soit injectif et que si V est un K-ev un morphisme $\varphi: K \mapsto V$ est soit nul, soit injectif.
- 3. Montrer qu'un morphisme de K-EVs $\ell: V \mapsto K$ est soit nul soit surjectif.

Exercice 6. Soit K et L des corps et

$$\varphi:K\mapsto L$$

un morphisme d'anneaux non nul $(\varphi \neq \underline{0}_L)$. Pour $n \in \mathbb{Z}$ on note

$$n_K = \operatorname{Can}_K(n) = n.1_K \text{ (resp. } n_L = \operatorname{Can}_L(n) = n.1_K)$$

l'image de n par les morphismes canoniques respectifs.

- 1. Montrer que pour tout $n \in \mathbb{Z}$, $\varphi(n_K) = n_L$.
- 2. En deduire que necessairement car(K) = car(L).

Exercice 7. Soit K un corps de caracteristique $\operatorname{car}(k) = p$ un nombre premier et $\mathbb{F}_p = \mathbb{Z}.1_K = \{n_K = n.1_K, n \in \mathbb{Z}\}$ le sous-corps premier de K.

Une consequence de la caracteristique p est que l'application d'elevation a la puissance p dans K

$$\bullet^p: \begin{matrix} K & \mapsto & K \\ x & \mapsto & x^p, \end{matrix} x^p = x. \cdots .x \ (p \text{ fois})$$

a des proprietes tres particulieres. On appelle cette application le Frobenius en p et on la note frob_p : $x \mapsto x^p$.

1. Soit

$$C_p^k = \frac{p!}{k!(p-k)!}$$

les coefficients de la formule du binome. Montrer que pour $1 \leqslant k \leqslant p-1$ on a que p divise C_p^k (utiliser le fait que p est premier).

2. En deduire que pour $x, y \in K$, on a

$$(x+y)^p = x^p + y^p$$

puis que frob $_p$ est un morphisme de corps (cad. d'anneau) de K sur lui-meme.

3. Montrer que si K est un corps fini alors frob_p est un automorphisme de corps (cad. d'anneau).

Exercice 8. Soit p un nombre premier et $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ le corps fini de cardinal p.

1. Montrer que pour tout $x \in \mathbb{F}_p$, on a

$$x^p = x$$
.

On pourra ecrire x sous la forme $x = n.1_{\mathbb{F}_p}$ avec $n \ge 0$ et raisonnera par recurrence on utilisant les proprietes du Frobenius sur \mathbb{F}_p .

2. Montrer que pour tout $x \in \mathbb{F}_p^{\times}$ on a

$$x^{p-1} = 1$$
.

3. Montrer que si $p \equiv 3 \pmod{4}$ alors $-1 \pmod{p}$ n'est pas un carre dans \mathbb{F}_p : il n'existe pas de $x \in \mathbb{F}_p$ tel que $x^2 = -1 \pmod{p}$. Pour cela on calculera de deux manieres la puissance

$$(-1)^{\frac{p-1}{2}} \pmod{p}.$$

Exercice 9. Soit K un corps, V un K-EV et $X,Y\subset V$ des SEVs tels que V est somme directe de X et Y :

$$V = X \oplus Y$$
.

On vu que cela implique que pour tout $v \in V$ il existe un unique $x \in X$ et $y \in Y$ tel que

$$v = x + y. ag{0.1}$$

1. Montrer que l'application

$$\bullet + \bullet : \begin{matrix} X \times Y & \mapsto & V \\ (x,y) & \mapsto & x+y \end{matrix}$$

est un isomorphisme d'espaces vectoriels.

2. Montrer que les applications

$$\pi_X : v \in V \mapsto x \in X, \ \pi_Y : v \in V \mapsto y \in Y$$

(ou x et y sont definis par (0.1)) sont lineaires.

1 Exercices a continuer la semaine prochaine (si necessaire)

Les exercices suivants introduisent une methode generale pour construire des corps a partir d'autres corps via des matrices. En particulier on donne une recette pour construire des corps finis \mathbb{F}_{p^2} de cardinal p^2 pour p premier.

Exercice 10 (Construction de corps a partir de matrices). Soit K un corps d'element nul et d'unite notes respectivement 0 et 1 et

$$M_2(K) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in K \right\}$$

l'anneau des matrices 2×2 a coefficients dans K (muni de la somme + et du produit des matrices \times).

On rappelle que la matrice nulle (l'element nul de $M_2(K)$) et la matrice identite (l'identite de $M_2(K)$) sont les matrices

$$0_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \text{ Id}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

et que le groupe des elements inversible de cet anneau est donne par

$$M_2(K)^{\times} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ a, b, c, d \in K, \ \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \in K^{\times} = K - \{0\} \right\}.$$

1. Montrer que l'anneau $M_2(K)$ est egalement un K-espace vectoriel quand on le muni de la multiplication par les scalaires

$$\lambda \in K, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \mapsto \lambda.M := \begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix}$$

et que l'on a la propriete d'associativite entre la multiplication par les scalaire et la multiplication des matrices : pour $\lambda \in K$, $M, N \in M_2(A)$

$$\lambda.(M \times N) = (\lambda.M) \times N$$

(on dit alors que l'anneau $M_2(K)$ est une K-algebre).

2. Montrer que l'ensemble des matrices multiples de l'identite (qu'on appelle matrices scalaires)

$$K.\mathrm{Id}_2 = \{\lambda.\mathrm{Id}_2 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \ \lambda \in K\}$$

forme un sous-anneau de $M_2(K)$ qui est en fait un corps isomorphe a K. C'est le corps des matrices scalaires 2×2 .

3. Soit $d \in K$ et I_d la matrice

$$I_d = \begin{pmatrix} 0 & d \\ 1 & 0 \end{pmatrix} \in M_2(K).$$

On note

$$K[I_d] := \langle \mathrm{Id}_2, I_d \rangle = K.\mathrm{Id}_2 + K.I_d = \{x.\mathrm{Id}_2 + y.I_d, \ x, y \in K\} \subset M_2(K)$$

le sous-K espace vectoriel de $M_2(K)$ engendre par les matrices Id_2 et I_d . Montrer qu'en fait $K[I_d]$ est un sous-anneau non-nul de $M_2(K)$ qui est commutatif (on calculera en particulier $I_d^2 = I_d \times I_d$).

- 4. Donner une valeur de d pour laquelle $K[I_d]$ n'est pas un anneau integre .
- 5. On suppose que d n'est pas un carre dans K (ie. il n'existe pas de $u \in K$ tel que $u^2 = d$; par exemple is $K = \mathbb{R}$, d = -1 marche). Montrer que l'equation

$$x^2 - dy^2 = 0$$

n'a pas de solution $x, y \in K$.

- 6. Montrer que $K[I_d]$ est un corps. Pour cela on calculera le determinant d'un element non-nul de $K[I_d]$ et on verifiera que son inverse est encore dans $K[I_d]$.
- 7. Remarquer que ce corps contient un sous-corps isomorphe a K.
- 8. On suppose que d est un carre dans K (ie. il existe $x \in K$ tel que $x^2 = d$). Montrer que $K[I_d]$ n'est pas integre.

Exercice 11. On reprend l'exercice precedent en supposant que K est un corps fini \mathbb{F}_p pour p premier.

- 1. Quel est la cardinal de $M_2(\mathbb{F}_p)$? Celui de $K[I_d]$?
- 2. Donner un exemple de corps a 9 elements; de corps a 25 elements? On note ces corps \mathbb{F}_9 et \mathbb{F}_{25} et on rappelle qu'il contiennent des sous-corps isomorphes a \mathbb{F}_3 et \mathbb{F}_5 (les corps de matrices scalaires \mathbb{F}_3 .Id₂ et \mathbb{F}_5 .Id₂). Par abus de language et identification on supposera qu'ils contiennent \mathbb{F}_3 et \mathbb{F}_5 .
- 3. Montrer que la classe de congruence $-1 \pmod{3} \in \mathbb{F}_3$ est un carre dans \mathbb{F}_9 bien qu'elle ne soit pas un carre dans \mathbb{F}_3 .
- 4. Montrer que la classe de congruence $2 \pmod{5} \in \mathbb{F}_5$ est un carre dans \mathbb{F}_{25} bien qu'elle ne soit pas un carre dans \mathbb{F}_5 .

Remarque 1.1. Plus generalement on peut montrer que pour tout premier p impair il existe $d \in \mathbb{F}_p$ qui n'est pas un carre (par exemple en montrant que le nombre de non-carres de \mathbb{F}_p vaut $\frac{p-1}{2}$). Cela permet d'exhiber des corps finis a p^2 elements.

Exercice 12. L'exercice 10 ne permet pas de construire un corps fini de cardinal 4 (pourquoi?).

1. Pour $K = \mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ le corps a deux elements, reprendre l'exercice 10 avec la matrice

$$I = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{F}_2)$$

et montrer que $\mathbb{F}_2[I]$ un anneau commutatif.

2. En utilisant le fait que l'equation $u^2 + u = 1$ n'a pas de solution dans \mathbb{F}_2 montrer que $\mathbb{F}_2[I]$ est un corps de cardinal 4.