學號:r05229014 系級: 大氣碩二 姓名:鄒適文

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: r05229014 羅章碩)

答:我先使用gensim的Word2vector訓練了我自己的詞向量,並以其當作RNN MODEL的embedding_layer,其中我把word在所有助教提供的data裡面,出現次數20次以下的字都濾掉,並且將其維度設為128維,最後把句train_label data裡面的字補到36 作為我的training data,接著以下是RNN的模型架構。

架構:

Layer (type)	Output	Shape	Param #
embedding_8 (Embedding)	(None,	36, 128)	2800512
lstm_12 (LSTM)	(None,	36, 300)	514800
lstm_13 (LSTM)	(None,	300)	721200
dense_19 (Dense)	(None,	128)	38528
dropout_3 (Dropout)	(None,	128)	0
dense_20 (Dense)	(None,	64)	8256
dropout_4 (Dropout)	(None,	64)	0
dense_21 (Dense)	(None,	1)	65
Total params: 4,083,361 Trainable params: 1,282,849 Non-trainable params: 2,800,	512		

訓練過程:

準確率:

在validataion_set的準確率有到達0.81740,在train_set之準確率有到達0.8428,而在kaggle上的分數為: private_set: 0.81738 public_set: 0.81903

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators: r05229014 羅章碩)

答:我的bow model,字典數量3000(記憶體不太夠QQ),並在keras的 tokenizer.texts_to_matrix 使用 count模式,而bow model後面連著如下圖之 dnn(batch_size=128)

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	200)	600200
dropout_1 (Dropout)	(None,	200)	0
batch_normalization_1 (Batch	None,	200)	800
dense_2 (Dense)	(None,	400)	80400
dropout_2 (Dropout)	(None,	400)	0
batch_normalization_2 (Batch	(None,	400)	1600
dense_3 (Dense)	(None,	800)	320800
dropout_3 (Dropout)	(None,	800)	0
batch_normalization_3 (Batch	None,	800)	3200
dense_4 (Dense)	(None,	1600)	1281600
dropout_4 (Dropout)	(None,	1600)	0
batch_normalization_4 (Batch	None,	1600)	6400
dense_5 (Dense)	(None,	3200)	5123200
dropout_5 (Dropout)	(None,	3200)	0
dense_6 (Dense)	(None,	1)	3201

Total params: 7,421,401 Trainable params: 7,415,401 Non-trainable params: 6,000

接著我將資料以9:1切成training set, validataion set, 並使用earlystopping(val_acc, patience=3), 而下兩圖是訓練的過程。在kaggle上public_set得到了0.76353的分數。

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators: r05229014 羅章碩)

答:

"today is a good day, but it is hot"

模式	RNN	bag of word
分數	0.41354498	0.90514797

"today is hot, but it is a good day"

模式	RNN	bag of word
分數	0.93478239	0.90514797

首先,以我的認知,第二句話"today is hot, but it is a good day"的分數會要比第一句 "today is a good day, but it is hot",還要高,而RNN model因為有考慮順序、時間性的 關係,在預測這兩句話的差別比較符合我24年以來的直覺,而bag of word因為他是不 考慮順序、時間性的文字處理方法,所以這兩句話對他來說都是一樣的,所以或許可 以說RNN在文字的情感分析上是比較適合的model。

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

(Collaborators: r05229014 羅章碩)

答:

Layer (type)	Output Shape	Param #
embedding_3 (Embedding)	(None, 36, 128)	23040000
dropout_7 (Dropout)	(None, 36, 128)	0
lstm_5 (LSTM)	(None, 128)	131584
dense_5 (Dense)	(None, 1)	129

Total params: 23,171,713 Trainable params: 23,171,713 Non-trainable params: 0

我以上面的模型架構去做測試,只有一層LSTM,在有無標點符號的句子長度都補到 36,字典用了全部的DATA取出最常出現的20000字,接著把同樣參數量的模型都 TRAIN到earlystop。

沒有標點符號在kaggle上的分數: private 0.80424 public 0.80448

有標點符號在kaggle上的分數: private 0.80364 public 0.80256

可以稍微看出把<mark>所有</mark>標點符號都濾掉,可以使正確率些微上升,顯然對於rnn而言,大部分的標點符號是沒有語意的情緒是沒有甚麼幫助的,因此使得把<mark>所有標點符號</mark>去掉會使得分數些微上升,但我認為這並不代表所有的標點符號都是沒有意義的(利如驚嘆號)。(但還沒有做測試)

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無 semi-surpervised training對準確率的影響。 (Collaborators: r05229014 羅章碩)

我以原本TRAIN好的模型在沒有label的data上做預測,並且把將其分數大於0.5的標記為1,小於等於0.5的標記為0,接著把全部120萬+18萬的data(validataion_set為同一組)以同一參數量去做新的一次training,卻發現其在validataion_set上的分數略微下降,而在kaggle上public的分數都是0.80xx(因為計算資源不足沒辦法再做多的測試,平台又一直排隊...)

下面第一張圖是沒有做semi-surpervised training的val_acc,第二章是有做semi-surpervised training的val_acc,發現有做semi-surpervised反而在validation_set上的表現有略微下降,或許還需要一些參數的改動或是thrshold的調整才能達到比較好的效果,又或許可以用多一點的模式做ensamble做可能會有更好的效果。

