

FASHION AND APPAREL CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

Alexander Schindler

alexander.schindler@ait.ac.at

Thomas Lidy

lidy@ifs.tuwien.ac.at

Stephan Karner

stephan.karner@monstyle.io

Matthias Hecker

matthias.hecker@monstyle.io

FASHION IMAGE CLASSIFICATION

- Online e-commerce access to product images
 - Asos-EU, Farfetch, Zalando
 - Images & metadat

Problem

- Metadata differs in
 - Quality, granularity, taxonomy
 - Taxonomy varies in depth of categorical hirarchy

Task

- use CNNs to
 - Consolidate Metadta
 - Enrich Metadata

BRIEF OVERVIEW

- Empirical study
- Applying deep Convolutional Neural Networks to fashion classification
- Evaluated five CNN architectures
- Custom and pre-trained models
- Evaluated on three tasks
 - Person detection
 - Product classification
 - Gender prediction

DATASETS

- Person
 - 7.833 images
 - 5.669 labeled as persons
 - 2.164 labeled as products
- Products
 - 234.884 images
 - 39.474 products
 - ~5,95 images per product
 - Ground-truth labels assignements
 - Product category
 - Label hirarchy
 - Gender
 - Age

DATA QUALITY / ISSUES

White background

Worn by persons

Text, Overlays

Close-up texture

Close-up fit

Multiple objects

Brand logo

Misc

PERSON DETECTION

- Products also presented by persons
 - How they look when worn?
- Problem
 - Person wears multiple products
 - Single-label classification
 - Decission problem
- Approach
 - Train model to identify persons
 - Use model to filter images with persons
 - VGG-like custom model
- Results
 - 91.07% accuracy on persons dataset

PRODUCT CLASSIFICATION

Deep Neural Network Architectures

- Vgg16 and Vgg19
- InceptionV3
- Custom CNN and Vgg-like

Experiments

- From-Scratch
- Pre-Trained

Evaluation

- 4-Fold Crossvalidation
- Grouped Stratification

Metrics

- Raw Accuracy
- Max of Sum per product

David Fossard, https://www.cs.toronto.edu/~frossard/post/vgg16/

John Shlens, https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html

EXPERIMENTAL SET-UP

- Small scale
 - Subset of 23.305 images
- Large scale
 - 234.408 images
- All Models
 - Data Augmentation
 - 25% vertically and horizontally shifting
 - 25% zoom range
 - Horizontal flipping

RESULTS – SMALL SCALE (24K)

- Best results: Pre-trained + fine-tune entire model
 - Freezing network + training only top layers not as good
- Person filter did not improve performance
- Small custom models have advantage of speed, but not as accurate

Description	best fold	best fold cum max	Mean cum max
InceptionV3, pretrained, fine-tuned	0.706	0.794	0.791
InceptionV3, pretrained, fine-tuned	0.658	0.729	0.716
VGG16, pretrained, fine-tuned	0.646	0.711	0.691
InceptionV3, pretrained, fine-tuned, person filter model as layer	0.569	0.685	0.658
VGG19, pretrained, fine-tuned	0.579	0.673	0.634
InceptionV3, pretrained, fine-tuned, no augmentation	0.564	0.673	0.647
VGG19, pretrained, train only top-layers	0.578	0.669	0.343
VGG16, pretrained, train only top-layers	0.603	0.652	0.368
InceptionV3, pretrained, train only top-layers	0.585	0.650	0.643
InceptionV3, pretrained, fine-tuned - person filtered metadata	0.640	0.636	0.614
InceptionV3, clean	0.492	0.594	0.580
Custom CNN, augmentation	0.506	0.568	0.538
Custom CNN	0.463	0.556	0.523
Custom VGG-like	0.438	0.549	0.519
VGG16, clean	0.439	0.455	0.443
VGG19, clean	0.437	0.447	0.430
VGG19, pretrained, train only top-layers	0.819	0.887	0.880
InceptionV3, pretrained, fine-tuned	0.798	0.863	0.836
VGG19, pretrained, fine-tuned	0.762	0.846	0.830

CONFUSIONS - SMALL SCALE (24K)

PER CLASS ACCURACIES – LARGE SCALE (234K)

- Problem of different granularity of provided ground truth
- Parent/Child nodes used interchangeably
 - Misclassification of child as parent is not wrong
 - Model does not consider hirarchy

CONCLUSIONS

- Despite large dataset and reduced number of classes
 - Pretrained models outperform from-scratch training
 - Product classification 79.1%
 - Gender prediction 88.0%
- Custom small model enough to learn binary task
 - person/product classification 91.07%
- Preprocessing of ground-truth required
 - Flatten hierarchy, remove ambiguities and overlaps
 - Use hierarchical CNNs
 - Use attention (person images)

THANK YOU!

Alexander Schindler, 08.06.2018

Machine Learning Showcase

Mon Style GmbH

https://monstyle.io https://asksophie.io

Presentation Agenda

- 1. Use Case / Problem Description (what are we talking about)
- 1. Prediction Pipeline (product data to curated catalog)
- 1. Datasets with Mechanical Turk

(example dataset created with mturk)

1. Affiliate Overview

1. Recommendation

1. Website

1. Chatbot

recommendation + search engine

Customer-facing Platforms

facebook messenger chatbot

10:05PM

I'm looking for a red floral dress

1. Example Shop Data

data feeds provided as XML/CSV files:

normalize, asos.com <name>sleeve shirt - white deduplicate, <price>12.50</price> classify <category>t-shirt</category> monstyle  title: sleeve t-shirt color: white variants farfetch.com monstyle monstyle <title>sleeve shirt</title> shop: farfetch shop: asos <buy_at>25.50</buy_at> price: 25.50 price: 12.50 <category>shirts</category> <color>white</color> <thumbnail>http://...</thumbnail>

1. Example Problem: Brand Names

some brand names include category descriptions, for instance:

Product Title:

Versace Jeans Foil Logo Tank Dress with Cutout Back

- -> generate list of brand names
- -> use list to remove brands from product title

Product Title: Foil Logo Tank Dress with Cutout Back

Product Brand: Versace Jeans

-> free text search engine: ranking by field, rank title matches higher than brand

1. Example Problem: Brand Names

1. Tags/Keyword Vocabulary

different terminology used around shops, needs normalization:

- -> extensive list of synonyms/aliases in order to normalize data
- -> keep synonyms for user search

For Example: Lingerie and Nightwear » Sleepwear » Robe

kimono robe, robe, night kimono, nightgown, dressing gown, night robe, peignoir, sleeping gown, bath robe, bathing robe For Example: Floral Print

floral, leaf, floral print, leaf print

1. Product Catalog

for example:

id there exists no universal standard, ASIN, EAN, UPC, etc.

title normalized version can be generated from brand, categories and

other attributes

brand brands are an important indicator for style, size/fit -differences, etc.

price including currency

availability to not show unavailable products

category hierarchical, fashion-domain specific

color normalized color labels

pattern floral print, ...

material leather, fur, cotton, vegan?

attributes some attributes are category-specific, such as collar type or skirt length

1. Product Catalog Example

id 2791782 -7049 -4784 -be6b-a2eb1865994e

title leaf-print flared midi dress

brand OSCAR DE LA RENTA

price 2.621 €

availability available

category clothing » dress » fit and flare dress

color white, blue » navy

pattern leaf print cotton

attributes sleeveless, square angular neckline, kneelength, ...

2. Prediction Pipeline

2. Prediction Models

2. Example Input

For Example

<name>leaf-print flared midi dress <buy price>2621</buy price> <gender>female <description>Navy blue and white cotton-blend leaf-print flared midi dress from Oscar de la Renta.</description>

handmade rules

named entity recognition

Image-based Recognition

object detection and classification

2. Rule Model

Rule-based Recognition

```
<name>leaf-print flared midi dress</name>
<buy_price>2621</buy_price>
<gender>female</gender>
<description>Navy blue and white cotton-blend
leaf-print flared midi dress from Oscar de la
Renta.</description>
```


2. Rule Model

Rule-based Recognition

```
<name>leaf-print flared midi dress</name>
<buy_price>2621</buy_price>
<gender>female</gender>
<description>Navy blue and white cotton-blend
leaf-print flared midi dress from Oscar de la
Renta.</description>
```


2. NLP Model

Named Entity Recognition

<name>leaf-print flared midi dress <buy price>2621</buy price> <gender>female</gender> <description>Navy blue and white cotton-blend leaf-print flared midi dress from Oscar de la

Renta.</description>

leaf-print flared midi dress

Navy blue and white cotton-blend leaf-print

flared midi dress from Oscar de la Renta.

Category: clothing » dress » fit and flare dress \rightarrow 2.0

Print: floral print \rightarrow 2.0

Color: white $\rightarrow 1.0$

Color: blue » navy blue $\rightarrow 1.0$

Material: natural » cotton $\rightarrow 1.0$

2. Vision Model

Image Classification

<name>leaf-print flared midi dress</name>
<buy_price>2621</buy_price>
<gender>female</gender>
<description>Navy blue and white cotton-blend
leaf-print flared midi dress from Oscar de la
Renta.</description>

Gender: female \rightarrow 0.9289139

Category: clothing » dress → 0.9762532

2. Feature Assembling

Assemble Final Predicted Features

title wrong

Wrong Data

<name>leaf-print skirt <buy price>2621</buy price> <gender>female</gender> <description>Navy blue and white cotton-blend leaf-print flared midi dress from Oscar de la

Renta.</description>

Rule-based

handmade rules

Text-based Classification named entity recognition

Image-based Recognition

object detection and classification

Named Entity Recognition

Resolve Conflicts

Assemble Final Predicted Features

Gender: female
→ 100.0Material: natural » cotton
→ 1.0Price: 2,621.00
→ 100.0Category: clothing » dress
» fit and flare dress →
1.97Print: floral print → 2.0Color: blue » navy blue
→ 1.0

3. Data Labelling

Text and Image Annotation for Machine Learning Datasets

Tools and Services:

- Web Service: LabelBox (https://www.labelbox.io/)
- W eb Service: Supervisely (https://supervise.ly/)
- W eb Service: Sequence.work (https://sequence.work/)
- Mac Application: RectLabel (https://rectlabel.com/)
- Mechanical Turk

Excellent Resource:

https://en.wikipedia.org/wiki/List of manual image annotation tools

3. Mechanical Turk (MTurk) - Overview

Assignments and Human Intelligence Tasks (HITs) - Consensus

3. COCO Dataset

Example: COCO (Common Objects in Context)

A large-scale object detection, segmentation and captioning dataset with:

- 123,287 images
- 886,284 instances
- 91 object types
- created using mechanical turk

3. COCO Dataset

Example: COCO (Common Objects in Context)

Supported By

