Calculations

Problem 1

Based on the land average temperature column, calculate the yearly averages for each year between 1760 and 2015 (the average of the twelve months of each year). One average per year. Ignore the years 1750-1759.

Code Execution: (screenshot of the code output)

Question 1				
Year 	Avg Temp(C*)			
1760	7.185167			
1761	8.772500			
1762	8.606500			
1763	7.496750			
1764	8.400333			
1765	8.251917			
1766	8.405667			
1767	8.221500			
1768	6.781333			
1769	7.694583			
1770	7.691917			
1771	7.853167			
1772	8.193500			
1773	8.221500			
1774 1775	8.772167 9.183083			
1776	8.304000			
1777	8.256250			
1778	8.542250			
1779	8.983250			
1780	9.432917			
1781	8.102583			
1782	7.901250			
1783	7.680833			
1784	7.862000			
1785	7.363000			
1786	8.258167			
1787	8.031833			
1788	8.447167			
1789	8.334167			
1790	7.982333			
1791	8.234250			
1792	8.089000			
1793	8.229167			
1794	8.526000			
1795	8.350333			
1796	8.271000			
1797	8.510583			
1798	8.670250			
1799 1800	8.505750			
1800	8.484250 8.589667			
TOUL	0.309007			

1970	8.700917	
1971	8.599250	
1972	8.499583	
1973	8.948250	
1974	8.467500	
1975	8.744833	
1976	8.347250	
1977	8.850250	
1978	8.692750	
1979	8.733417	
1980	8.980333	
1981	9.165833	
1982 1983	8.639167	
1983	9.028167 8.691833	
1985	8.658000	
1986	8.833583	
1987	8.994417	
1988	9.201583	
1989	8.922000	
1990	9.234167	
1991	9.179417	
1992	8.836583	
1993	8.866583	
1994	9.038750	
1995	9.347083	
1996	9.038917	
1997	9.202583	
1998	9.522667	
1999	9.285083	
2000	9.201167	
2001	9.414583	
2002	9.570417	
2003	9.525583 9.324583	
2004 2005	9.700917	
2005	9.532500	
2007	9.732167	
2008	9.431750	
2009	9.505250	
2010	9.703083	
2011	9.516000	
2012	9.507333	
2013	9.606500	
2014	9.570667	
2015	9.831000	

Output:

Average temperature for 1760 is 7.185 Average temperature for 1761 is 8.772 Average temperature for 1762 is 8.607 Average temperature for 1763 is 7.497 Average temperature for 1764 is 8.400 Average temperature for 1765 is 8.252 Average temperature for 1766 is 8.406 Average temperature for 1767 is 8.222 Average temperature for 1768 is 6.781 Average temperature for 1769 is 7.695 Average temperature for 2006 is 9.532 Average temperature for 2007 is 9.732 Average temperature for 2008 is 9.432 Average temperature for 2009 is 9.505 Average temperature for 2010 is 9.703 Average temperature for 2011 is 9.516 Average temperature for 2012 is 9.507 Average temperature for 2013 is 9.607 Average temperature for 2014 is 9.571 Average temperature for 2015 is 9.831

Purpose:

To demonstrate statistics that provide a deeper understanding of how the average temperature, in Celsius, has varied across each year between 1760 and 2015. This encompasses the impact on a level, during historical periods.

Conflicts:

When it comes to difficulty, per question question 1 was the one that received the attention. The main challenge with this question revolved around reading data. This was a bit tricky because there were methods to read files and it took some time to figure out the best approach. Another issue that arose was with arrays. Transferring the data,

Outputs/Analysis:

The output reveals the details, about how the average temperature in Celsius fluctuated between 1750 and 2015 starting at 7.18 and reaching 9.83. Upon analyzing the provided information it becomes evident that the yearly averages from 1760 to 2015 exhibit a pattern of alternating increases and decreases than remaining constant.

How we would approach next time:

A straightforward method of coding for this issue next time would be advantageous, along, with developing functions to enhance the program. In particular, utilizing array pointers to allocate the percentage values would be helpful.

		However, there is a rise of 2.64 degrees, between the final years.	
--	--	--	--

C operations we used to answer question #1 (Explanation of code)

Variable Declarations, at the Beginning:

- Initializing variables such as count i and n. The count keeps track of the processed months for the current year while I acts as an index for storing yearly averages.
- Defining a character array temp[MAX LENGTH] to hold each line read from the file.
- Using pointer variables token, monthlyavg and year for string manipulation purposes after splitting the line.
- Utilizing floating point variables like currentyearlyavg and yearaverage[255] to calculate the average store an array of yearly averages, dmonthlyavg for monthly average as a double centuryavg[MAX_LENGTH] century, along with other unused variables within this excerpt.

Reading and Initializing the file:

1. File Access and Line Reading;

Assuming that the file has already been opened (omitted we employ fgets to read each line into the temp buffer.

2. Parsing Individual Lines;

Anticipating data in a format, like "year month temperature" we employ strtok to separate out the year and monthly average temperature. The year and month are separated by a dash. Only the year is relevant here.

3. Filtering and Data Conversion;

The year extracted from the line is changed from a string to an integer using atoi. The process continues only if the year falls within the specified range (from 1760).

The average monthly temperature string is converted to a double precision floating point number using atof.

4. Calculating Averages;

For each entry the monthly average temperature is added to currentyearlyavg and count is increased. When count reaches 12 (indicating processing of data for a year) the code calculates the average temperature by dividing currentyearlyavg by 12.

The annual average is then saved in the year average array. Counters are reset, for the year.

Finalizing and Outputting Results;

The loop runs until reaching the end of file (feof(file) returns true).

Once all data has been processed the file is closed with fclose(file).

Finally a header is printed out followed by displaying each year (starting from 1760) alongside its corresponding calculated temperature stored in the yearaverage array