

		Printed Page: 1 of 2											
							Subject Code: KCE402						
Roll No:													

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10 X2=20)	CO	
Q1(a) Define stress and strain					
Q1(b) State Hook's law					
Q1(c) Define point of contraflexure or point of inflexion.					
Q1(d)	Explain Shear force and bending Moment				
Q1(e)	What is section modulus (Z)? What is the value of Bending moment in terms of				
	section modulus?				
Q1(f)	Define To	orsional Rigidity		3	
Q1(g)	What are the different methods of finding slope and deflection of cantilever			4	
Q1(h)	What do you understand by the term "Buckling" of columns			4	
Q1(i)				5	
Q1(j)) What is the difference between thin and thick cylinder			5 (
•	•			. 0	

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	CO		
Q2(a)	Q2(a) Explain the stress-strain diagram for a ductile material under tension. A load of 5KN					
is to be raised with the help of a steel wire. Find the diameter of steel wire, if the						
maximum stress is not to exceed 100 MN/m ²						
Q2(b)	Derive the	e relation between shear force, bending moment and le	oading	2		
Q2(c)	(2(c) A simply supported rectangular beam with symmetrical section 200mm in depth has					
	moment of inertia of 2.26 x 10 ⁻⁵ m ⁴ about its neutral axis. Determine the longest					
span over which the beam would carry a uniformly distributed load of 4KN/m run						
	such that the stress due to bending does not exceed 125 MN/m ²					
Q2(d)	A hollow	cylindrical column, with both ends hinged, is 6 m lon	g, and has an outer	4		
	diameter of 120 mm and an inner diameter of 80 mm. Calculate the crippling load					
	by Euler's and Rankine's formulae. $E = 80,000 \text{ N/mm}^2$ and $\sigma_c = 550 \text{ N/mm}^2$. The					
	Rankine constant = 1/1600					
Q2(e) Derive the expression for hoop stress and longitudinal stress in case of thin cylinder				5		
	_					

SECT	ION-C	Attempt A	NY ON	E following	Question		Marks (1X10=10)	CO
Q3(a)	The state of stress at a point in a loaded component principal stress is found to be as					1		
	given bel	ow: $\sigma_x = 3$	50 GN/r	m^2 ; $\sigma_y = 15$	0 GN/m^2 ; 1	$z_{xy} = 100$	GN/m ² ; Determine the	
	principal	stresses an	d maxin	num shearin	g stress. Fin	d the orie	ntations of the principal	
	planes.			,6				
Q3(b)	A steel ba	ar is subjec	ted to le	oads as sho	wn in fig. D	etermine	the change in length of	1
	the bar ABCD of 18 cm diameter. $E = 180 \text{ kN/mm}^2$							
		A	B		C	$\frac{D}{\Box}$		
					40.434			
	5	0 <i>kN</i>	30 <i>kN</i>		40 kN ←	_		
					60 kN			
		3	00	310	310	\dashv		
			m +	mm	mm	\dashv		

Printed Page: 2 of 2
Subject Code: KCE402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

SECT	TION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q4(a)	Draw the SF and BM diagrams for the loaded beam	80 kN m	2		
Q4(b)	Draw the SF and BM diagrams for the loaded beam 20kN 40kN 20KN A B 2m - 3m	I/m	2		
	0/		0		
	TION-C Attempt ANY ONE following Question	Marks (1 X10=10)	CO		
Q5(a)	Derive the Torsional equation $T/J = \pi/R = G\theta/L$. Write the assumption made in deriving the torsional formulas?				
Q5(b)	The cross section of a beam is a T section of overa	all depth 140 mm, width of flange	3		
	200mm, thickness of flange 40mm and thickness of web 20mm. Draw the shear stress				
	distribution diagram if it carries a shear force of 60	kN.			

	•			
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q6(a)	(a) Derive the differential equation for the elastic curve. A cantilever bean			4
	to a concentrated load W at the free end, it is required to determine the maximum			
	deflection	of the beam	X	
Q6(b)	Derive Eu	ler critical buckling load for columns with both the e	ends hinged. A steel rod	4
	5 m long a	and of 40 mm diameter is used as a column, with on	end fixed and the other	
	free. Dete	rmine the crippling load by Euler's formula. Take E	as 200 GPa	

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q7(a) Write down the assumption in Lame's theory and also derive Lame's equation for					
	circumferential stress and radial stress for thick cylinder				
Q7(b)	A composite spring has two close coiled helical springs connected in series, each			5	
	spring has 12 coils at a mean diameter of 25 mm. Find the diameter of the wire in one				
	of the springs if the diameter of the wire in the other spring is 2.5 mm and stiffness of				
	the composite spring is 700 N/m. Estimate the greatest load that can be carried by the				
	composite	spring for a maximum shearing stress of 180MPa.	Take G= 80 GPa		