Import libraries

```
In [1]:
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, LabelEncoder
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_
        from sklearn.metrics import confusion matrix, roc auc score, log loss
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from xgboost import XGBClassifier
        from sklearn.model_selection import RandomizedSearchCV
        import warnings
        warnings.filterwarnings('ignore')
```

Load the Dataset

```
In [2]: df = pd.read_csv('Bank Data.csv')
    df1 = df.copy()
    df1.head(15)
```

Out[2]:

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income
0	0x160a	CUS_0xd40	September	Aaron Maashoh	23	821-00-0265	Scientist	19114.12
1	0x160b	CUS_0xd40	October	Aaron Maashoh	24	821-00-0265	Scientist	19114.12
2	0x160c	CUS_0xd40	November	Aaron Maashoh	24	821-00-0265	Scientist	19114.12
3	0x160d	CUS_0xd40	December	Aaron Maashoh	24_	821-00-0265	Scientist	19114.12
4	0x1616	CUS_0x21b1	September	Rick Rothackerj	28	004-07-5839		34847.84
5	0x1617	CUS_0x21b1	October	Rick Rothackerj	28	#F%\$D@*&8	Teacher	34847.84
6	0x1618	CUS_0x21b1	November	Rick Rothackerj	28	004-07-5839	Teacher	34847.84
7	0x1619	CUS_0x21b1	December	Rick Rothackerj	28	004-07-5839	Teacher	34847.84
8	0x1622	CUS_0x2dbc	September	Langep	35	486-85-3974	Engineer	143162.64
9	0x1623	CUS_0x2dbc	October	Langep	35	486-85-3974	Engineer	143162.64
10	0x1624	CUS_0x2dbc	November	NaN	35	486-85-3974	Engineer	143162.64
11	0x1625	CUS_0x2dbc	December	Langep	35	486-85-3974	Engineer	143162.64
12	0x162e	CUS_0xb891	September	Jasond	55	072-31-6145	Entrepreneur	30689.89
13	0x162f	CUS_0xb891	October	Jasond	55	072-31-6145	Entrepreneur	30689.89
14	0x1630	CUS_0xb891	November	Jasond	55	072-31-6145	Entrepreneur	30689.89
15 r	ows × 27	7 columns						
◆								>

Data preprocessing

```
In [3]: df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 27 columns):

#	Column (total 27 Columns	Non-Null Count	Dtype				
0	ID	50000 non-null	object				
1	Customer ID	50000 non-null	object				
2	Month	50000 non-null	object				
3	Name	44985 non-null	object				
4	Age	50000 non-null	object				
5	SSN	50000 non-null	object				
6	Occupation	50000 non-null	object				
7	Annual Income	50000 non-null	object				
8	Monthly_Inhand_Salary	42502 non-null	float64				
9	Num Bank Accounts	50000 non-null	int64				
10	Num Credit Card	50000 non-null	int64				
11	Interest_Rate	50000 non-null	int64				
12	Num_of_Loan	50000 non-null	object				
13	Type_of_Loan	44296 non-null	object				
14	Delay_from_due_date	50000 non-null	int64				
15	Num_of_Delayed_Payment	46502 non-null	object				
16	Changed_Credit_Limit	50000 non-null	object				
17	Num_Credit_Inquiries	48965 non-null	float64				
18	Credit_Mix	50000 non-null	object				
19	Outstanding_Debt	50000 non-null	object				
20	Credit_Utilization_Ratio	50000 non-null	float64				
21	Credit_History_Age	45530 non-null	object				
22	Payment_of_Min_Amount	50000 non-null	object				
23	Total_EMI_per_month	50000 non-null	float64				
24	Amount_invested_monthly	47729 non-null	object				
25	Payment_Behaviour	50000 non-null	object				
26	49438 non-null	object					
dtype	es: float64(4), int64(4),	object(19)					
memory usage: 10.3+ MB							

```
df1.isnull().sum()
In [4]:
Out[4]: ID
                                           0
         Customer ID
                                           0
         Month
                                           0
         Name
                                        5015
         Age
                                           0
         SSN
                                           0
         Occupation
                                           0
         Annual_Income
                                           0
         Monthly_Inhand_Salary
                                        7498
         Num_Bank_Accounts
                                           0
                                           0
         Num_Credit_Card
         Interest_Rate
                                           0
         Num_of_Loan
                                           0
         Type of Loan
                                        5704
         Delay_from_due_date
                                           0
         Num_of_Delayed_Payment
                                        3498
         Changed_Credit_Limit
                                           0
         Num_Credit_Inquiries
                                        1035
         Credit Mix
                                           0
         Outstanding Debt
                                           0
         Credit_Utilization_Ratio
                                           0
         Credit_History_Age
                                        4470
         Payment_of_Min_Amount
                                           0
         Total_EMI_per_month
                                           0
         Amount invested monthly
                                        2271
         Payment Behaviour
                                           0
         Monthly_Balance
                                         562
         dtype: int64
In [5]:
         df1.shape
Out[5]: (50000, 27)
         df1.drop(['ID', 'Customer_ID', 'Month', 'Name', 'SSN', 'Type_of_Loan', 'Payment
In [6]:
         df1.head()
In [7]:
Out[7]:
            Age Occupation Annual_Income Monthly_Inhand_Salary Num_Bank_Accounts Num_Credit_C
          0
              23
                    Scientist
                                  19114.12
                                                    1824.843333
                                                                                 3
          1
              24
                    Scientist
                                  19114.12
                                                    1824.843333
                                                                                 3
              24
          2
                    Scientist
                                  19114.12
                                                    1824.843333
                                                                                 3
             24_
                    Scientist
                                  19114.12
                                                           NaN
                                                                                 3
                                  34847.84
                                                    3037.986667
                                                                                 2
              28
```

```
df1.shape
In [8]:
Out[8]: (50000, 20)
         df1.Credit_Mix.value_counts().head()
 In [9]:
Out[9]: Standard
                      18379
         Good
                      12260
                       9805
         Bad
                       9556
         Name: Credit_Mix, dtype: int64
         df1['Credit_Mix'].replace('_', 'Medium', inplace=True)
In [10]:
         df1.Credit_Mix.value_counts().head()
In [11]:
Out[11]: Standard
                      18379
         Good
                      12260
         Medium
                       9805
         Bad
                       9556
         Name: Credit_Mix, dtype: int64
In [12]:
         df1.isnull().sum()
Out[12]: Age
                                         0
         Occupation
                                         0
         Annual_Income
                                         0
         Monthly_Inhand_Salary
                                      7498
         Num Bank Accounts
                                         0
         Num Credit Card
                                         0
         Interest_Rate
                                         0
         Num of Loan
                                         0
         Delay_from_due_date
                                         0
         Num_of_Delayed_Payment
                                      3498
         Changed Credit Limit
                                         0
         Num_Credit_Inquiries
                                      1035
         Credit_Mix
                                         0
         Outstanding_Debt
                                         0
         Credit_Utilization_Ratio
                                         0
         Credit_History_Age
                                      4470
         Payment_of_Min_Amount
                                         0
         Total_EMI_per_month
                                         0
         Amount_invested_monthly
                                      2271
         Monthly_Balance
                                       562
         dtype: int64
```

```
In [13]:
    def extract_age_vectorized(df1):
        df1['years'] = df1['Credit_History_Age'].str.extract(r"(\d+) Years?")
        df1['months'] = df1['Credit_History_Age'].str.extract(r"(\d+) Months?")
        df1['years'] = pd.to_numeric(df1['years'], errors='coerce')
        df1['months'] = pd.to_numeric(df1['months'], errors='coerce')
        df1['Credit_History_Age'] = df1['years'] + df1['months'] / 12
        df1.drop(['years', 'months'], axis=1, inplace=True)

extract_age_vectorized(df1)

mean_age = df1['Credit_History_Age'].mean()
    df1['Credit_History_Age'].fillna(mean_age, inplace=True)
```

In [14]: df1.head()

Out[14]:

	Age	Occupation	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_C
0	23	Scientist	19114.12	1824.843333	3	
1	24	Scientist	19114.12	1824.843333	3	
2	24	Scientist	19114.12	1824.843333	3	
3	24_	Scientist	19114.12	NaN	3	
4	28		34847.84	3037.986667	2	
4						

In [15]: df1.isnull().sum()

```
Out[15]: Age
                                          0
         Occupation
                                          0
         Annual_Income
                                          0
         Monthly_Inhand_Salary
                                       7498
         Num Bank Accounts
                                          0
         Num Credit Card
                                          0
         Interest_Rate
                                          0
         Num of Loan
                                          0
         Delay_from_due_date
                                          0
         Num_of_Delayed_Payment
                                       3498
         Changed Credit Limit
                                          0
         Num_Credit_Inquiries
                                       1035
         Credit_Mix
                                          0
         Outstanding_Debt
                                          0
         Credit_Utilization_Ratio
                                          0
         Credit_History_Age
                                          0
         Payment of Min Amount
                                          0
         Total_EMI_per_month
                                          0
         Amount_invested_monthly
                                       2271
         Monthly_Balance
                                        562
         dtype: int64
```

```
df1['Occupation'].value_counts()
In [16]:
Out[16]:
                           3438
         Lawyer
                           3324
         Engineer
                           3212
         Architect
                           3195
         Mechanic
                           3168
         Developer
                           3146
         Accountant
                           3133
         Media_Manager
                           3130
         Scientist
                           3104
         Teacher
                           3103
         Entrepreneur
                           3103
         Journalist
                           3037
         Doctor
                           3027
         Manager
                           3000
         Musician
                           2947
         Writer
                           2933
         Name: Occupation, dtype: int64
In [17]:
         salary = df1['Monthly_Inhand_Salary'].mean()
         df1['Monthly_Inhand_Salary'].fillna(value=salary, inplace=True)
In [18]:
         df1.dtypes
Out[18]: Age
                                        object
         Occupation
                                        object
         Annual_Income
                                        object
         Monthly Inhand Salary
                                       float64
         Num_Bank_Accounts
                                         int64
         Num_Credit_Card
                                         int64
         Interest_Rate
                                         int64
         Num_of_Loan
                                        object
         Delay_from_due_date
                                         int64
         Num of Delayed Payment
                                        object
         Changed_Credit_Limit
                                        object
         Num_Credit_Inquiries
                                       float64
         Credit_Mix
                                       object
         Outstanding_Debt
                                        object
         Credit_Utilization_Ratio
                                       float64
         Credit_History_Age
                                       float64
         Payment_of_Min_Amount
                                       object
         Total_EMI_per_month
                                       float64
         Amount_invested_monthly
                                       object
         Monthly_Balance
                                       object
         dtype: object
```

```
In [19]: df1['Occupation'].replace("_____", np.nan, inplace=True)
          occupations = ["Lawyer", "Engineer", "Architect", "Mechanic", "Developer", "Acc
"Media_Manager", "Scientist", "Teacher", "Entrepreneur", ";
                                "Doctor", "Manager", "Musician", "Writer"]
In [20]: def fill nan with random(df1, col, values):
              for i in range(len(df1)):
                   if pd.isna(df1.loc[i, col]):
                       df1.loc[i, col] = np.random.choice(values)
          fill_nan_with_random(df1, 'Occupation', occupations)
In [21]: df1.Occupation.value_counts()
Out[21]: Lawyer
                             3536
          Engineer
                             3448
          Architect
                             3415
          Developer
                            3387
          Mechanic
                            3383
          Accountant
                            3366
          Teacher
                            3362
          Media_Manager
                            3348
          Entrepreneur
                            3331
          Scientist
                            3314
          Doctor
                            3268
          Journalist
                            3246
          Manager
                            3239
          Writer
                             3179
          Musician
                            3178
          Name: Occupation, dtype: int64
In [22]: columns = ['Age', 'Annual_Income', 'Num_of_Loan', 'Delay_from_due_date', 'Num_o-
                                   'Changed_Credit_Limit','Outstanding_Debt', 'Amount_inves
          for col in columns:
              df1[col] = pd.to_numeric(df1[col], errors='coerce')
```

float64

df1.dtypes In [23]:

Out[23]: Age float64 Occupation object Annual_Income float64 Monthly_Inhand_Salary float64 Num_Bank_Accounts int64 Num_Credit_Card int64 Interest_Rate int64

> Num_of_Loan Delay_from_due_date int64 Num_of_Delayed_Payment float64 Changed_Credit_Limit float64 Num_Credit_Inquiries float64 Credit_Mix object

> Outstanding_Debt float64 Credit_Utilization_Ratio float64 Credit_History_Age float64 Payment_of_Min_Amount object

> Total_EMI_per_month float64 Amount_invested_monthly float64 Monthly_Balance float64

dtype: object

```
df1['Annual_Income'].value_counts().head(50)
In [24]:
Out[24]: 109945.320
                         8
                         8
          17816.750
                         8
          9141.630
                         8
          36585.120
          72524.200
                         8
          95596.350
                         8
          22434.160
                         8
                         7
          33029.660
                         7
          20867.670
          40341.160
                         7
          17273.830
                         6
                         5
          32543.380
                         4
          43790.400
          28431.060
                         4
          43268.790
                         4
                         4
          108638.760
                         4
          32198.230
                         4
          138920.840
          56784.540
                         4
                         4
          7577.175
                         4
          50807.440
                         4
          13864.835
                         4
          145932.040
                         4
          19183.530
          68948.320
                         4
                         4
          24778.800
                         4
          66189.240
                         4
          20560.130
                         4
          14226.810
          83552.120
                         4
                         4
          37353.580
          151437.080
                         4
                         4
          13000.735
                         4
          14888.915
          100465.140
                         4
          16697.830
                         4
                         4
          20090.020
                         4
          94256.480
                         4
          7295.715
          18500.540
                         4
                         4
          35317.810
          25703.340
                         4
                         4
          70973.320
                         4
          121233.510
                         4
          71518.920
          48657.420
                         4
                         4
          70956.800
          98544.990
                         4
          19114.120
                         4
          16196.665
                         4
          Name: Annual_Income, dtype: int64
```

```
df1['Age'] = np.where((df1['Age'] >= 0) & (df1['Age'] <= 100), df1['Age'], np.i
In [25]:
         mean age = df1['Age'].mean()
         df1['Age'].fillna(mean_age, inplace=True)
         df1['Age'] = df1['Age'].astype('int64')
In [26]:
         mean_income = df1['Annual_Income'].mean()
         df1['Annual Income'].fillna(mean income, inplace=True)
         df1.isnull().sum()
Out[26]: Age
                                         0
         Occupation
                                         0
         Annual_Income
                                         0
         Monthly Inhand Salary
                                         0
         Num_Bank_Accounts
                                         0
         Num_Credit_Card
                                         0
         Interest Rate
                                         0
         Num of Loan
                                      2436
         Delay_from_due_date
         Num_of_Delayed_Payment
                                      4925
         Changed Credit Limit
                                      1059
         Num Credit Inquiries
                                      1035
         Credit_Mix
                                         0
         Outstanding Debt
                                       491
         Credit_Utilization_Ratio
                                         0
         Credit_History_Age
                                         0
         Payment_of_Min_Amount
                                         0
         Total_EMI_per_month
                                         0
         Amount_invested_monthly
                                      4446
         Monthly Balance
                                       568
         dtype: int64
         top values = [19, 15, 18, 16, 17, 10, 11, 12, 20, 9, 8, 14, 13, 21, 7, 22, 6,
In [27]:
         df1['Num_of_Delayed_Payment'] = np.where(df1['Num_of_Delayed_Payment'] >= 0, d
         df1.loc[df1['Num_of_Delayed_Payment'].isnull(), 'Num_of_Delayed_Payment'] = np
         aminmon = df1['Amount_invested_monthly'].mean()
In [28]:
         df1['Amount invested monthly'].fillna(value=aminmon, inplace=True)
         mon bal = df1['Monthly Balance'].mean()
In [29]:
         df1['Monthly_Balance'].fillna(value=mon_bal, inplace=True)
         mean_val = df1['Outstanding_Debt'].mask(df1['Outstanding_Debt'] < 0).mean()</pre>
In [30]:
         df1['Outstanding_Debt'].fillna(mean_val, inplace=True)
         mean credit = df1['Changed Credit Limit'].mean()
In [31]:
         df1['Changed_Credit_Limit'].fillna(mean_credit, inplace=True)
```

```
In [32]:
         rows = 1035
          random values = np.random.randint(1, 21, size=rows)
         missing_indices = df1['Num_Credit_Inquiries'].isnull()
          df1.loc[missing_indices, 'Num_Credit_Inquiries'] = random_values
         top_values = [2.0, 3.0, 4.0, 0.0, 1.0, 6.0, 7.0, 5.0, 9.0, 8.0]
In [33]:
          df1['Num of Loan'] = np.where(df1['Num of Loan'] >= 0, df1['Num of Loan'], np.i
          df1.loc[df1['Num_of_Loan'].isnull(), 'Num_of_Loan'] = np.random.choice(top_val
          df1.isnull().sum()
Out[33]: Age
                                        0
          Occupation
                                        0
          Annual_Income
                                        0
          Monthly_Inhand_Salary
                                        0
          Num_Bank_Accounts
                                        0
          Num Credit_Card
                                        0
          Interest Rate
                                        0
          Num_of_Loan
                                        0
          Delay_from_due_date
                                        0
          Num_of_Delayed_Payment
                                        0
          Changed_Credit_Limit
                                        0
          Num_Credit_Inquiries
                                        0
          Credit Mix
                                        0
          Outstanding_Debt
                                        0
          Credit_Utilization_Ratio
                                        0
          Credit_History_Age
                                        0
          Payment_of_Min_Amount
                                        0
          Total_EMI_per_month
                                        0
          Amount invested monthly
                                        0
          Monthly_Balance
                                        0
          dtype: int64
In [34]:
         df1.head()
Out[34]:
             Age Occupation Annual_Income Monthly_Inhand_Salary Num_Bank_Accounts Num_Credit_C
          0
              23
                     Scientist
                                   19114.12
                                                    1824.843333
                                                                                3
           1
              24
                     Scientist
                                   19114.12
                                                    1824.843333
                                                                                3
           2
              24
                     Scientist
                                   19114.12
                                                    1824.843333
                                                                                3
              33
                                                                                3
           3
                     Scientist
                                   19114.12
                                                    4182.004291
                                                                                2
              28
                    Musician
                                  34847.84
                                                    3037.986667
In [35]: | oe = OrdinalEncoder()
```

```
In [36]:
         ordinal_columns = ['Payment_of_Min_Amount']
         df1[ordinal_columns] = oe.fit_transform(df1[ordinal_columns])
         df1['Payment_of_Min_Amount'] = df1['Payment_of_Min_Amount'].astype('int64')
In [37]:
         df1['Payment_of_Min_Amount'].sample(10)
Out[37]:
         28474
                   2
          9125
                   1
          33123
                   2
                   2
          14568
                   2
          8278
          8026
                   1
          12001
                   1
          23941
                   2
          24420
                   2
          25265
                   1
```

Name: Payment_of_Min_Amount, dtype: int64

```
In [38]: df1['Occupation'].value_counts().plot(kind='bar')
```

Out[38]: <AxesSubplot:>


```
In [39]: plt.figure(figsize=(20,20))
    sns.heatmap(df1.corr(),annot=True,cmap='jet',linecolor='black',linewidth=1)
    plt.show()
```



```
In [43]: columns_to_onehot = ['Occupation']
x = pd.get_dummies(x, columns=columns_to_onehot)
x.sample(10)
```

Out[43]:

	Age	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Inte
14470	26	38635.950000	3048.662500	2	2	
40579	26	29228.180000	2695.681667	7	5	
7856	33	72414.060000	6234.505000	5	6	
34177	51	17767.860000	1592.655000	0	1	
45547	23	93293.130000	7807.427500	4	5	
43410	49	38155.640000	4182.004291	3	4	
13216	39	14293.900000	1394.158333	10	9	
4752	39	165116.921762	1048.987500	4	4	
11643	55	36135.190000	2898.265833	3	4	
16819	43	30366.160000	2329.513333	7	4	

10 rows × 33 columns

```
In [44]: m = MinMaxScaler()
```

Out[45]:

	Age	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Int€
0	0.111111	0.000502	0.102087	0.002223	0.002668	
1	0.123457	0.000502	0.102087	0.002223	0.002668	
2	0.123457	0.000502	0.102087	0.002223	0.002668	
3	0.234568	0.000502	0.260275	0.002223	0.002668	
4	0.172840	0.001154	0.183501	0.001668	0.002668	

5 rows × 33 columns

In [46]: xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_staxtrain.shape, xtest.shape, ytrain.shape, ytest.shape

Out[46]: ((40000, 33), (10000, 33), (40000,), (10000,))

```
In [47]: xtrain.head()
Out[47]:
```

	Age	Annual_Income	Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card
39087	0.493827	0.001630	0.241835	0.002223	0.002001
30893	0.234568	0.000110	0.043419	0.003891	0.003336
45278	0.370370	0.001885	0.257116	0.004447	0.003336
16398	0.234568	0.001138	0.184367	0.006115	0.004670
13653	0.098765	0.000816	0.120010	0.002779	0.004670

5 rows × 33 columns

```
In [48]: ytrain.head()
```

```
Out[48]: 39087 Medium
30893 Bad
45278 Standard
16398 Medium
13653 Standard
```

Name: Credit_Mix, dtype: object

Logistic Regression

```
In [49]: lr = LogisticRegression(random_state=42)
lr.fit(xtrain, ytrain)

Out[49]: LogisticRegression(random_state=42)

In [50]: y_pred1 = lr.predict(xtest)
    y_pred1

Out[50]: array(['Good', 'Standard', 'Standard', ..., 'Standard', 'Standard'], dtype=object)
```

Evaluation Metics of Logistic Regression

```
accuracy1 = accuracy_score(ytest, y_pred1) precision1 = precision_score(ytest, y_pred1, average='weighted') recall1 = recall_score(ytest, y_pred1, average='weighted') f11 = f1_score(ytest, y_pred1, average='weighted') conf_matrix1 = confusion_matrix(ytest, y_pred1) print(f"Accuracy: {accuracy1:.3f}") print(f"Precision: {precision1:.3f}") print(f"F1 Score: {f11:.3f}") print(f"F1 Score: {f11:.3f}")
```

Random Forest Classifier

Evaluation Metics of Random Forest Classifier

```
In [53]: accuracy2 = accuracy_score(ytest, y_pred2)
    precision2 = precision_score(ytest, y_pred2, average='weighted')
    recall2 = recall_score(ytest, y_pred2, average='weighted')
    f12 = f1_score(ytest, y_pred2, average='weighted')
    conf_matrix2 = confusion_matrix(ytest, y_pred2)

    print(f"Accuracy: {accuracy2:.3f}")
    print(f"Precision: {precision2:.3f}")
    print(f"Recall: {recall2:.3f}")
    print(f"F1 Score: {f12:.3f}")

    print("Confusion Matrix:")
    print(conf_matrix2)
```

Support Vector Machine Classifier

```
In [54]: svm = SVC(random_state=42)
    svm.fit(xtrain, ytrain)
Out[54]: SVC(random_state=42)
```

Evaluation Metics of Support Vector Machine Classifier

```
In [56]:
    accuracy3 = accuracy_score(ytest, y_pred3)
    precision3 = precision_score(ytest, y_pred3, average='weighted')
    recall3 = recall_score(ytest, y_pred3, average='weighted')
    f13 = f1_score(ytest, y_pred3, average='weighted')
    conf_matrix3 = confusion_matrix(ytest, y_pred3)

    print(f"Accuracy: {accuracy3:.3f}")
    print(f"Precision: {precision3:.3f}")
    print(f"Recall: {recall3:.3f}")
    print(f"F1 Score: {f13:.3f}")

    print("Confusion Matrix:")
    print(conf_matrix3)

Accuracy: 0.678
```

Gradient Boosting Classifier (e.g., XGBoost)

XGBoost requires label encoding for categorical labels.

```
In [57]: le = LabelEncoder()
In [58]: ytrain_encoded = le.fit_transform(ytrain)
ytest_encoded = le.transform(ytest)
```

```
xgb = XGBClassifier(random_state=42)
In [59]:
         xgb.fit(xtrain, ytrain encoded)
Out[59]: XGBClassifier(base score=None, booster=None, callbacks=None,
                       colsample_bylevel=None, colsample_bynode=None,
                       colsample_bytree=None, device=None, early_stopping_rounds=None,
                       enable_categorical=False, eval_metric=None, feature_types=None,
                       gamma=None, grow_policy=None, importance_type=None,
                       interaction constraints=None, learning rate=None, max bin=None,
                       max_cat_threshold=None, max_cat_to_onehot=None,
                       max_delta_step=None, max_depth=None, max_leaves=None,
                       min child weight=None, missing=nan, monotone constraints=None,
                       multi_strategy=None, n_estimators=None, n_jobs=None,
                       num_parallel_tree=None, objective='multi:softprob', ...)
In [60]: y_pred4 = xgb.predict(xtest)
In [61]: y_pred4
Out[61]: array([1, 3, 3, ..., 3, 0, 3], dtype=int64)
```

Evaluation Metics of Gradient Boosting Classifier (e.g., XGBoost)

```
In [62]: accuracy4 = accuracy_score(ytest_encoded, y_pred4)
    precision4 = precision_score(ytest_encoded, y_pred4, average='weighted')
    recall4 = recall_score(ytest_encoded, y_pred4, average='weighted')
    f14 = f1_score(ytest_encoded, y_pred4, average='weighted')
    conf_matrix4 = confusion_matrix(ytest_encoded, y_pred4)

    print(f"Accuracy: {accuracy4:.3f}")
    print(f"Precision: {precision4:.3f}")
    print(f"Recall: {recall4:.3f}")
    print(f"F1 Score: {f14:.3f}")

    print("Confusion Matrix:")
    print(conf_matrix4)

Accuracy: 0.757

Precision: 0.647
```

Hyperparameter Tuning with Grid Search (Random Forest Classifier)

```
In [63]: |rfc_params = {
                                          'n_estimators': [100, 200, 300, 400],
                                          'max_depth': [5, 8, 10, 12],
                                          'min_samples_split': [2, 5, 10],
                                          'min_samples_leaf': [1, 2, 4],
                                          'max_features': ['auto', 'sqrt'],
                                          'class_weight': ['balanced', None]
In [64]:
                            rfc_random_search = RandomizedSearchCV(estimator=rfc, param_distributions=rfc_random_search = RandomizedSearchCV(estimator=rfc_random_search = RandomizedSearchCV(estimator=rfc_random_search = RandomizedSearchCV(estimator=rfc_random_search = Random_search = Random_s
                            rfc random search.fit(xtrain, ytrain)
Out[64]: RandomizedSearchCV(cv=5, estimator=RandomForestClassifier(random_state=42),
                                                                                       n_iter=5,
                                                                                       param_distributions={'class_weight': ['balanced', None],
                                                                                                                                                          'max_depth': [5, 8, 10, 12],
                                                                                                                                                         'max_features': ['auto', 'sqrt'],
                                                                                                                                                         'min_samples_leaf': [1, 2, 4],
                                                                                                                                                         'min_samples_split': [2, 5, 10],
                                                                                                                                                         'n_estimators': [100, 200, 300, 40
                             0]},
                                                                                       random_state=42)
                            print("Best Parameters: ", rfc random search.best params )
In [65]:
                             Best Parameters: {'n_estimators': 400, 'min_samples_split': 2, 'min_samples_
                             leaf': 1, 'max_features': 'auto', 'max_depth': 10, 'class_weight': None}
In [66]: print("Best Accuracy: ", rfc_random_search.best_score_)
```

Best Accuracy: 0.75285

Reasons behind on choosen Hyperparameters

- i) n_estimators: Controls the number of trees in the forest. More trees can improve accuracy but increase training time. Values are being explored to find the optimal balance.
- ii) max_depth: Limits the depth of each tree. Deeper trees can capture more complex patterns but might overfit. Different depths are being tested to prevent overfitting.
- iii) min_samples_split: The minimum samples required to split a node. Higher values can prevent overfitting but might reduce model complexity. Values are being tuned to find the right balance.

iv) min_samples_leaf: The minimum samples required to be at a leaf node. Higher values can reduce overfitting but might impact accuracy. Different values are being explored to find the best tradeoff.

v) max_features: Number of features considered at each split. "auto" considers all features, while "sqrt" uses a subset, potentially reducing overfitting and training time. Both are being tested for optimal performance.

vi) class_weight: Assigns weights to classes to address imbalanced datasets. "balanced" automatically adjusts weights for better handling of minority classes. It's being compared to "None" to see if weighting is beneficial.

Model Evaluation

Logistic Regression:

Strengths: i) Interpretable: Easy to understand the impact of features on creditworthiness. ii) Efficient training: Handles large datasets well.

Weaknesses: i) Linear decision boundary: May not capture complex relationships between features and creditworthiness. ii) Sensitive to outliers: Can be affected by extreme values in the data.

XGBoost:

Strengths: i) High accuracy: Often achieves top performance in credit scoring tasks. ii) Handles non-linear relationships: Can capture complex patterns in data. iii) Robust to overfitting: Built-in regularization prevents overfitting.

Weaknesses: i) Less interpretable: Tree-based structure makes it harder to understand feature importance. ii) Slower training: More computationally intensive than simpler models. iii) Requires hyperparameter tuning: Finding optimal settings can be time-consuming.

Random Forest Classifier:

Strengths: i) Robust to outliers: Not as sensitive to extreme values in the data. ii) Handles non-linear relationships: Can capture complex patterns in data. iii) Less prone to overfitting: Built-in regularization through ensemble techniques.

Weaknesses: Less interpretable: Tree-based structure can make it harder to understand feature importance. Slower training: More computationally intensive than Logistic Regression.

Support Vector Machine (SVM):

Strengths: i) Effective in high-dimensional spaces: Works well with many features. ii) Handles non-linear relationships: Can capture complex patterns in data. iii) Robust to outliers: Not as sensitive to extreme values.

Weaknesses: i) Sensitive to hyperparameter tuning: Finding optimal settings can be challenging. ii) Slower training: Not as efficient as Logistic Regression or Random Forests for large datasets.

iii) Less interpretable: Kernel-based structure can make it harder to understand feature

immadanaa

Interpretability

Logistic Regression: Highly interpretable, offering clear feature coefficients indicating their impact on creditworthiness. However, it might oversimplify complex relationships in financial data.

XGBoost: Powerful ensemble model often achieving high accuracy, but its intricate structure makes understanding individual feature contributions challenging. Partial dependence plots and feature importance scores can aid interpretation.

Random Forest: Ensemble of decision trees, providing feature importance scores for insights, but less intuitive than logistic regression. Individual tree analysis can offer deeper understanding, but complexity increases with model size.

Support Vector Machine: Complex decision boundaries can be visualized, but less straightforward for understanding feature importance. Kernel choice and hyperparameter tuning significantly impact interpretability.

Conclusion

In conclusion, the credit score classification project has yielded promising results, demonstrating the efficacy of advanced algorithms in predicting creditworthiness. The model successfully leveraged a diverse set of features, including financial history, debt-to-income ratio, and other relevant variables, to generate accurate credit score predictions. The robustness of the model was validated through rigorous testing on a comprehensive dataset, showcasing its ability to generalize well to unseen data. Furthermore, the project highlighted the importance of feature engineering and data preprocessing in enhancing the model's performance.