London House Price Prediction

Table of Contents

DATA PREPERATION

Step 1: Loading the libraries

Step 2: Loading the dataset

Step 3: Cleaning the dataset

Step 3.1 : Converting price to millions

Step 3.2 : Dropping two columns

Step 3.3: Comparing Price to other metrics

Step 3.4 : Handling Null values

DATA DERIVATION

Step 4 : Feature Engineering

Step 4.1: Removing houses with high counts of bedroom

Step 4.2: Calculation the price per SQFT

Step 4.3: Stripping the Location name using Lambda fucntion

Step 4.4: Change name of scacre location to 'Others'

Step 4.5: Remvoing houses which dont have bedroom for atleast 250 sq ft

Step 4.6: Removing the outliers one standard deviation from the mean

Step 4.7: Removing houses with irregular area.

Step 4.8: Removing various other columns for model building

CONSTRUCTION OF MODELS

Step 5: Creating Dummies for the location

Step 6: Model Building

Step 6.1: Splitting Training set and test set

Step 6.2: Linear Regression

Step 6.3: Decision tree Regressor

Step 6.4: Lasso Regression

Validation of Results

Step 7: K fold cross Validation

Step 8: Hyperparameter Tuning - GridSearch

Step 9: Comparing Original and Predicted data

Deployment

Step 10: Model Deployment using the best model.

•

Step 1 : Loading the libraries

```
In [1]: import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Step 2: Loading the dataset

```
import os
working_directory = os.getcwd()
path = working_directory + '/London_housingdata_copy.csv'
df = pd.read_csv(path)
```

In [3]: df.head()

Out[3]:

	Unnamed: 0	Property Name	Price	House Type	AreainSQFT	Bedroom	Bathroom	Location
0	0	Queens Road	1675000	House	2716	5.0	5.0	Wimbledon
1	1	Seward Street	650000	Flat / Apartment	814	2.0	2.0	Clerkenwell
2	2	Hotham Road	735000	Flat / Apartment	761	2.0	2.0	Putney
3	3	Festing Road	1765000	House	1986	4.0	4.0	Putney
4	4	Spencer Walk	675000	Flat / Apartment	700	2.0	2.0	Putney

```
In [4]: df.shape
```

Out[4]: (3480, 10)

Heatmap

Out[5]: <AxesSubplot:>

In []:

Step 3: Cleaning the dataset

```
In [6]: df.groupby("Property Name")["Property Name"].agg("count")
Out[6]: Property Name
        1 Eastfields Avenue
                                1
        10 Park Drive
                                 3
        17 Lillie Square
                                7
        23 Maud Street
                                 1
        28 Narrow Street
                                1
        Youngs Court
                                 1
        Yukon Road
        Yvon House
                                 2
        Ziggurat Building
                                1
        Zulu Mews
                                1
        Name: Property Name, Length: 2380, dtype: int64
```

```
In [7]: df.groupby("Location")["Location"].agg("count")
Out[7]: Location
         161 Millbank
                                  1
         35 Salusbury Road
                                  1
         352 Queenstown Road
                                  1
         372 Oueenstown Road
                                  1
         50 Shad Thames
        Winchester Road
                                  1
        Windsor Street
                                  1
        Woodberry Grove
                                  1
        Woodford Green
                                 12
        Woodstock Road
        Name: Location, Length: 679, dtype: int64
```

Step 3.1: Converting price to millions

For easy intrepretation we convert the price to millions.

Out[8]:

	Unnamed: 0	Property Name	Price	House Type	AreainSQFT	Bedroom	Bathroom	Location
0	0	Queens Road	1675000	House	2716	5.0	5.0	Wimbledon
1	1	Seward Street	650000	Flat / Apartment	814	2.0	2.0	Clerkenwell
2	2	Hotham Road	735000	Flat / Apartment	761	2.0	2.0	Putney
3	3	Festing Road	1765000	House	1986	4.0	4.0	Putney
4	4	Spencer Walk	675000	Flat / Apartment	700	2.0	2.0	Putney

```
In [9]: df["House Type"].unique()
```

In [10]: Housetype_stats=df.groupby("House Type")["House Type"].agg("count") print(Housetype_stats)

House Type Flat / Apartment 1565 House 1430 New development 357 Penthouse 100 Studio 10 Bungalow 9 Duplex 7 Mews

Name: House Type, dtype: int64

Step 3.2: Dropping two columns

Since in this project we are taking a overlaying approach of predictig the average house prices we drop the House Type and we will take care of the outliers in the later stage.

```
In [11]: df1=df.drop(["Unnamed: 0","House Type" ],axis="columns")
df1.head()
```

Out[11]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY	
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA	
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL	
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP	
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL	

In [12]: df1.shape

Out[12]: (3480, 9)

In [13]: df1.describe()

Out[13]:

	Price	AreainSQFT	Bedroom	Bathroom	price_in_million
count	3.480000e+03	3480.000000	3407.000000	3471.000000	3480.000000
mean	1.864173e+06	1712.973563	3.104784	3.101988	1.864173
std	2.267283e+06	1364.259351	1.520036	1.518559	2.267283
min	1.800000e+05	274.000000	0.000000	0.000000	0.180000
25%	7.500000e+05	834.000000	2.000000	2.000000	0.750000
50%	1.220000e+06	1310.000000	3.000000	3.000000	1.220000
75%	2.150000e+06	2157.250000	4.000000	4.000000	2.150000
max	3.975000e+07	15405.000000	10.000000	10.000000	39.750000

Step 3.3: Comparing Price to other metrics

Confusion Matrix

In [14]: corrMatrix = df1.corr()
sns.heatmap(corrMatrix, annot=True)
plt.show()

Comparing the Prices to Area

In [15]: df1.plot(x='price_in_million', y='AreainSQFT', style='o', color =

Out[15]: <AxesSubplot:xlabel='price_in_million'>

Comparing the Prices to Area

In [16]: df1.plot(x='price_in_million', y='Bedroom', style='o' , color = "g
Out[16]: <AxesSubplot:xlabel='price_in_million'>

In [17]: Locationtype_stats=df1.groupby("Location")["Location"].agg("count")
 print(Locationtype_stats)

Location		
Putney	97	
Wandsworth	77	
Barnes	71	
Wimbledon	69	
Esher	64	
35 Pembroke Road	1	
35 Kensington Court	1	
348 Queenstown Road	1	
34-37 Beaumont Street	1	
Woodstock Road	1	
Name: Location Length:	670	d±v

Name: Location, Length: 679, dtype: int64

Comparing the Location density

In [18]: Locationtype_stats.plot(kind='pie', figsize=(10,50))

Out[18]: <AxesSubplot:ylabel='Location'>

Step 3.4: Handling Null values

```
In [19]: df1.isnull().sum()
Out[19]: Property Name
                                 0
          Price
                                 0
          AreainSQFT
                                 0
          Bedroom
                                73
          Bathroom
                                 9
                               902
          Location
          City/County
                                 0
          Postal Code
                                 0
          price_in_million
                                 0
          dtype: int64
```

In [20]:

import missingno as msno

values as a bar chart
msno.bar(df1)

Out[20]: <AxesSubplot:>

In [21]: df1.dtypes[df1.dtypes!= "object"]

Out[21]: Price int64
AreainSQFT int64
Bedroom float64
Bathroom float64
price_in_million float64

dtype: object

In [22]: df1.hist(figsize=(10,10), xrot=-25)
plt.ticklabel_format(style='plain')

In [23]: sns.violinplot(data=df1, x="price_in_million" , fmt = "g",plit=True

Out[23]: <AxesSubplot:xlabel='price_in_million'>

Since the null values are scarce we drop the same

In [24]: df2 = df1.dropna()

df2.shape

Out[24]: (2532, 9)

In [25]: df2.head()

Out[25]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY	
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA	
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL	
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP	
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL	

In [26]:	df2.isnull().sum()	
Out[26]:	Property Name	0
	Price	0
	AreainSQFT	0
	Bedroom	0
	Bathroom	0
	Location	0
	City/County	0
	Postal Code	0
	<pre>price_in_million</pre>	0
	dtype: int64	

In [27]: df2.head()

Out [27]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY	
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA	
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL	
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP	
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL	

Step 4 : Feature Engineering

```
In [28]: df2["Bedroom"].unique()
Out[28]: array([ 5., 2., 4., 1., 3., 6., 0., 10., 7., 8., 9.])
```

Step 4.1: Removing houses with high counts of bedroom

As 7 Bedooms is high number for an ideal home we shall remove the houses with more than 7 bedrooms to create a perfect model. In [29]: df2[df2.Bedroom>7]

Out[29]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	P
43	Old Battersea House	9975000	10100	10.0	10.0	Battersea	London	•
224	Harper Lane	1650000	4016	8.0	8.0	Radlett	Hertfordshire	
800	Upper Park Road	5250000	3782	8.0	8.0	Belsize Park	London	
1818	Parkside Avenue	8000000	6713	8.0	8.0	Wimbledon	London	;
2619	Courtenay Avenue	16999999	11733	9.0	9.0	Highgate	London	
2687	Christchurch Road	7000000	6388	8.0	8.0	East Sheen	London	;
3063	Macaulay Road	5950000	6776	8.0	8.0	Clapham	London	
3282	Manor Road	2800000	4378	8.0	8.0	Chigwell	Essex	
3336	Bryanston Mews West	5250000	3108	8.0	8.0	Marylebone	London	
3394	Upper Wimpole Street	14750000	9053	9.0	9.0	Marylebone	London	
3426	Norfolk Road	9500000	3974	8.0	8.0	St John's Wood	London	

In [30]: df2[df2.Bedroom>7].head(10)

Out [30]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	F
43	Old Battersea House	9975000	10100	10.0	10.0	Battersea	London	•
224	Harper Lane	1650000	4016	8.0	8.0	Radlett	Hertfordshire	
800	Upper Park Road	5250000	3782	8.0	8.0	Belsize Park	London	
1818	Parkside Avenue	8000000	6713	8.0	8.0	Wimbledon	London	(
2619	Courtenay Avenue	16999999	11733	9.0	9.0	Highgate	London	
2687	Christchurch Road	7000000	6388	8.0	8.0	East Sheen	London	(
3063	Macaulay Road	5950000	6776	8.0	8.0	Clapham	London	
3282	Manor Road	2800000	4378	8.0	8.0	Chigwell	Essex	
3336	Bryanston Mews West	5250000	3108	8.0	8.0	Marylebone	London	
3394	Upper Wimpole Street	14750000	9053	9.0	9.0	Marylebone	London	

Negating the same

```
In [31]: df2 = df2[~(df2.Bedroom>7)]
df2.shape
```

Out[31]: (2521, 9)

Step 4.2 : Calculation the price per SQFT

For easy interpretation we calculate the Price in Sqft

```
In [32]: df2.AreainSQFT.unique()
Out[32]: array([2716, 814, 761, ..., 3698, 4435, 1506])
In [33]: df3 = df2.copy()
```

In [34]: df3.head()

Out[34]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY	
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA	
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL	
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP	
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL	

Out[35]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY	
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA	
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL	
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP	
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL	

Step 4.3: Stripping the Location name using Lamda fucntion

Since some location names are merged together we use the lambda function to strip into identifiable names

In [36]: len(df3.Location.unique())

Out[36]: 667

```
In [37]: | df3.Location.apply(lambda x:x.strip())
Out[37]: 0
                                 Wimbledon
          1
                               Clerkenwell
          2
                                    Putney
          3
                                    Putney
          4
                                    Putney
          3474
                              Queen's gate
          3475
                                    Fulham
          3476
                                St James's
          3477
                  Hampstead Garden Suburb
          3478
                                   Mayfair
         Name: Location, Length: 2521, dtype: object
```

Step 4.4: Change name of scare location to 'Others'

```
Location_stats=df3.groupby("Location")["Location"].agg("count").sor
In [38]:
         print(Location_stats)
         Location
                                 96
         Putney
         Wandsworth
                                 77
         Barnes
                                 71
         Wimbledon
                                 68
         Esher
                                 62
         350 The Highway
                                   1
         35 Pembroke Road
                                   1
         35 Kensington Court
                                   1
         348 Queenstown Road
                                   1
         Woodstock Road
                                   1
         Name: Location, Length: 667, dtype: int64
```

To prevent outliers, we shall consider the locations where there are instances less than or equal to 5 as 'Others'

```
In [39]: len(Location_stats[Location_stats<=5])
Out[39]: 579</pre>
```

```
In [40]: Location_stats_less_than_5=Location_stats[Location_stats<=5]</pre>
         Location stats less than 5
Out[40]: Location
                                        5
         St. James's
                                        5
         Brook Green
                                        5
         Albert Bridge Road
                                        5
         Acton
                                        5
         Clapham Common North Side
         350 The Highway
                                        1
         35 Pembroke Road
                                        1
         35 Kensington Court
                                        1
         348 Queenstown Road
                                        1
         Woodstock Road
         Name: Location, Length: 579, dtype: int64
In [41]: len(df3.Location.unique())
Out[41]: 667
In [42]: df3.Location=df3.Location.apply(lambda x:"other" if x in Location_s
         len(df3.Location.unique())
Out[42]: 89
```

In [43]: df3.head(15)

Out [43]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code
0	Queens Road	1675000	2716	5.0	5.0	Wimbledon	London	SW19 8NY
1	Seward Street	650000	814	2.0	2.0	Clerkenwell	London	EC1V 3PA
2	Hotham Road	735000	761	2.0	2.0	Putney	London	SW15 1QL
3	Festing Road	1765000	1986	4.0	4.0	Putney	London	SW15 1LP
4	Spencer Walk	675000	700	2.0	2.0	Putney	London	SW15 1PL
5	Craven Hill Gardens	420000	403	1.0	1.0	other	London	W2 3EA
6	Alfriston Road	1475000	1548	4.0	4.0	Battersea	London	SW11 6NW
7	Bishops Gate	650000	560	1.0	1.0	Fulham	London	SW6 3LF
8	Adam & Eve Mews	2500000	1308	3.0	3.0	other	London	W8 6UG
9	Hornton Street	925000	646	2.0	2.0	other	London	W8 4NT
11	Cromwell Avenue	2500000	2974	6.0	6.0	Highgate	London	N6 5HQ
12	Ashley Park Avenue	2795000	5294	5.0	5.0	other	Surrey	KT12 1ER
13	Grove End House	725000	778	2.0	2.0	St. John's Wood	London	NW8 9HP
14	Abercorn Mansions	750000	647	2.0	2.0	other	London	NW8 9DY
15	Chester Terrace	12500000	4596	6.0	6.0	other	London	NW1 4ND

In [44]: len(df3.Location.unique())

Out [44]: 89

In [45]: Location_stats=df3.groupby("Location")["Location"].agg("count").sor
 print(Location_stats)

Location other 810 Putney 96 Wandsworth 77 Barnes 71 Wimbledon 68 Kensington 6 Ealing 6 **Islington** 6 6 East Molesey Coulsdon

Name: Location, Length: 89, dtype: int64

In [46]: Location_stats.plot(kind='pie',figsize=(10,50))

Out[46]: <AxesSubplot:ylabel='Location'>

Step 4.5 : Remvoing houses which dont have bedroom for atleast 250 sq ft

In [47]: df4 = df3.copy()

As an ideal house of 250 squarefeet should have one bedroom at least. If houses having at least a bedroom for every 250 sqft we accept otherwise we shall reject the same and remove from the data

In [48]: df4[df4.AreainSQFT/df4.Bedroom<250].head()</pre>

Out [48]:

	Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Pc C
463	Disraeli Road	1295000	876	4.0	4.0	Putney	London	S'
1909	Samford House	525000	779	4.0	4.0	other	London	
2362	Landmark Court	550000	469	2.0	2.0	Marylebone	London	1
2656	St. George's Drive	650000	458	2.0	2.0	Pimlico	London	SI
3041	Broomwood Road	600000	736	3.0	3.0	Wandsworth	London	S'

In [49]: df4.shape

Out[49]: (2521, 10)

We shall negate the same

In [50]: $df5 = df4[\sim(df4.AreainSQFT/df4.Bathroom<250)]$

df5.shape

Out[50]: (2514, 10)

```
In [51]: df5.describe()
```

Out [51]:

	Price	AreainSQFT	Bedroom	Bathroom	price_in_million	price_per_sq
count	2.514000e+03	2514.000000	2514.000000	2514.000000	2514.000000	2514.00000
mean	1.865896e+06	1743.635243	3.091488	3.091488	1.865896	1057.44141
std	2.289145e+06	1411.670875	1.505654	1.505654	2.289145	582.02692
min	1.800000e+05	274.000000	0.000000	0.000000	0.180000	241.61073
25%	7.250000e+05	834.000000	2.000000	2.000000	0.725000	717.34776
50%	1.200000e+06	1308.000000	3.000000	3.000000	1.200000	907.42908
75%	2.250000e+06	2206.500000	4.000000	4.000000	2.250000	1196.04223
max	3.975000e+07	15405.000000	7.000000	7.000000	39.750000	7069.18015

```
In [52]: df5.price_per_sqft.describe()
Out[52]: count
                   2514,000000
                   1057.441411
         mean
                    582.026929
         std
                    241.610738
         min
                    717.347765
         25%
         50%
                    907.429083
         75%
                   1196.042230
                   7069.180153
         max
         Name: price_per_sqft, dtype: float64
```

Step 4.6: Removing the outliers one standard deviation from the mean

Removing the outliers which are one startdard deviation away from the mean to create a normal distrubution

```
In [53]: def remove_pps_outliers(df):
    df_out=pd.DataFrame()
    for key,subdf in df.groupby("Location"):
        m=np.mean(subdf.price_per_sqft)
        st=np.std(subdf.price_per_sqft)
        reduced_df=subdf[(subdf.price_per_sqft>(m-st))&(subdf.price_df_out=pd.concat([df_out,reduced_df],ignore_index=True)
    return df_out
```

```
In [54]: df6 = remove_pps_outliers(df5)
df6.shape
Out[54]: (1866, 10)
```

Step 4.7: Removing houses with irregular area.

For example some 2 bedroom house has more area than some 3 bedroom places. We are removing such outliers to create the ideal home for modelling.

```
In [55]: def plot_scatter_chart(df,Location):
    Bedroom2=df[(df.Location==Location)&(df.Bedroom==2)]
    Bedroom3=df[(df.Location==Location)&(df.Bedroom==3)]

#matplotlib.reParams["figure.figsize"]=(15,10)
    plt.scatter(Bedroom2.AreainSQFT,Bedroom2.Price,color="red",labe    plt.scatter(Bedroom3.AreainSQFT,Bedroom3.Price,marker="+",color=plt.xlabel("AreainSQFT")
    plt.ylabel("PRICE")
    plt.title("LOCATION")
```

```
In [56]: plot_scatter_chart(df6,"Putney")
```



```
In [57]: def remove_bhk_outliers(df):
    exclude_indices=np.array([])
    for Location,Location_df in df.groupby("Location"):
        Bedroom_stats={}
    for Bedroom,Bedroom_df in Location_df.groupby("Bedroom"):
        Bedroom_stats[Bedroom]={
        "mean":np.mean(Bedroom_df.price_per_sqft),
        "std":np.std(Bedroom_df.price_per_sqft),
        "count":Bedroom_df.shape[0]
    }
    for Bedroom,Bedroom_df in Location_df.groupby("Bedroom"):
        stats=Bedroom_stats.get(Bedroom-1)

    if stats and stats["count"]>5:
        exclude_indices=np.append(exclude_indices,Bedroom_dreform)

return df.drop(exclude_indices,axis="index")
```

```
In [58]: df7=remove_bhk_outliers(df6)
df7.shape
```

Out[58]: (1340, 10)

After removed some of the said outliers a standard deviation is formed

In [60]: import matplotlib
plt.hist(df7.price_per_sqft,rwidth=0.8)
plt.xlabel("PRICE_PER_SQFT")
plt.ylabel("COUNT")

Out[60]: Text(0, 0.5, 'COUNT')

In [61]: df7.head()

Out[61]:

Property Name	Price	AreainSQFT	Bedroom	Bathroom	Location	City/County	Postal Code	р
O Castelnau Court	575000	793	3.0	3.0	Barnes	London	SW13 9DH	
Carmichael Court	685000	783	3.0	3.0	Barnes	London	SW13 0HA	
Richard 2 Burbidge Mansions	1700000	1796	3.0	3.0	Barnes	London	SW13 8RB	
The Old Sorting Office	700000	736	1.0	1.0	Barnes	London	SW13 0LF	
William 4 Hunt Mansions	1150000	1349	2.0	2.0	Barnes	London	SW13 8HS	

Step 4.8 : Removing various other columns for model building

In [62]: df7=df6.drop(["price_per_sqft", "Postal Code" ,"Property Name" ,"Cidef7.head()

Out[62]:

	Price	AreainSQFT	Bedroom	Bathroom	Location
0	575000	793	3.0	3.0	Barnes
1	685000	783	3.0	3.0	Barnes
2	1700000	1796	3.0	3.0	Barnes
3	700000	736	1.0	1.0	Barnes
4	1150000	1349	2.0	2.0	Barnes

In [63]: df7.shape

Out[63]: (1866, 5)

In [64]: df8 = df7.copy()

In [65]: df8.describe()

Out[65]:

	Price	AreainSQFT	Bedroom	Bathroom
count	1.866000e+03	1866.000000	1866.000000	1866.000000
mean	1.605539e+06	1625.708467	3.013398	3.013398
std	1.597997e+06	1309.871592	1.495062	1.495062
min	2.100000e+05	274.000000	0.000000	0.000000
25%	6.999500e+05	798.250000	2.000000	2.000000
50%	1.125000e+06	1213.500000	3.000000	3.000000
75%	2.000000e+06	2046.250000	4.000000	4.000000
max	2.395000e+07	15405.000000	7.000000	7.000000

```
In [66]: sns.violinplot(data=df8, x="Price", fmt = "g")
```

Out[66]: <AxesSubplot:xlabel='Price'>


```
In [67]: df8.plot(x='Price', y='AreainSQFT', style='o' ,c='DarkBlue' )
```

Out[67]: <AxesSubplot:xlabel='Price'>

Step 5 : Creating Dummies for the location¶

In [68]: dummies=pd.get_dummies(df8.Location)
dummies.head()

Out [68]:

	Barnes	Battersea	Canary Wharf	Chelsea	Chiswick	Clerkenwell	Coulsdon	Ealing	Earls Court	M
0	1	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	0	0	
4	1	0	0	0	0	0	0	0	0	

5 rows × 89 columns

In [69]: df9=pd.concat([df8,dummies.drop("other",axis="columns")],axis="columns")],axis="columns")]

Out [69]:

	Price	AreainSQFT	Bedroom	Bathroom	Location	Barnes	Battersea	Canary Wharf	Chelse
0	575000	793	3.0	3.0	Barnes	1	0	0	
1	685000	783	3.0	3.0	Barnes	1	0	0	
2	1700000	1796	3.0	3.0	Barnes	1	0	0	
3	700000	736	1.0	1.0	Barnes	1	0	0	
4	1150000	1349	2.0	2.0	Barnes	1	0	0	

5 rows × 93 columns

In [70]: df9.shape

Out[70]: (1866, 93)

After creating dummies we drop the location column

In [71]: df10=df9.drop("Location", axis="columns")
df10.head()

Out[71]:

	Price	AreainSQFT	Bedroom	Bathroom	Barnes	Battersea	Canary Wharf	Chelsea	Chiswi
0	575000	793	3.0	3.0	1	0	0	0	
1	685000	783	3.0	3.0	1	0	0	0	
2	1700000	1796	3.0	3.0	1	0	0	0	
3	700000	736	1.0	1.0	1	0	0	0	
4	1150000	1349	2.0	2.0	1	0	0	0	

5 rows × 92 columns

In [72]: df10.shape

Out[72]: (1866, 92)

Step 6: Model Building

Step 6.1: Splitting Training set and test set

```
In [73]: x=df10.drop("Price",axis="columns")
x.head()
```

Out [73]:

	AreainSQFT	Bedroom	Bathroom	Barnes	Battersea	Canary Wharf	Chelsea	Chiswick	Clerke
0	793	3.0	3.0	1	0	0	0	0	
1	783	3.0	3.0	1	0	0	0	0	
2	1796	3.0	3.0	1	0	0	0	0	
3	736	1.0	1.0	1	0	0	0	0	
4	1349	2.0	2.0	1	0	0	0	0	

5 rows × 91 columns

Considering 75% for training and 25 % for testing

```
In [75]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,range)
```

Step 6.2: Linear Regression

```
In [76]: from sklearn.linear_model import LinearRegression
lr_clf=LinearRegression()
lr_clf.fit(x_train,y_train)

Out[76]: LinearRegression()
```

Step 6.3: Decision tree Regressor

R squared test set: 84.7

```
In [78]: from sklearn.tree import DecisionTreeRegressor
dtr = DecisionTreeRegressor()
dtr.fit(x_train, y_train)

Out[78]: DecisionTreeRegressor()

In [79]: print('R squared training set : ', round(dtr.score(x_train, y_train))
```

```
print('R squared training set: ', round(dtr.score(x_test, y_test)*100,
```

R squared training set : 99.94 R squared test set : 78.52

Step 6.4: Lasso Regression

```
In [80]: from sklearn.linear_model import Lasso
    reg = Lasso(alpha=1)
    reg.fit(x_train, y_train)

Out[80]: Lasso(alpha=1)

In [81]: print('R squared training set', round(reg.score(x_train, y_train)*1)
    print('R squared test set', round(reg.score(x_test, y_test)*100, 2))
    R squared training set 82.68
    R squared test set 84.7
```

Step 7: K Fold Cross Validation

We shuffle the data to make a very even and effecient prediction

```
In [82]: from sklearn.model_selection import ShuffleSplit
    from sklearn.model_selection import cross_val_score
    cv=ShuffleSplit(n_splits=5,test_size=0.2,random_state=0)
    cross_val_score(LinearRegression(),x,y,cv=cv)

Out[82]: array([0.76944168, 0.82364859, 0.80857668, 0.79183952, 0.79979947]
)

In [83]: cross_val_score(Lasso(),x,y,cv=cv)

Out[83]: array([0.7694462 , 0.82364736, 0.80858054, 0.79184593, 0.79980399]
)

In [84]: cross_val_score(DecisionTreeRegressor(),x,y,cv=cv)

Out[84]: array([0.70499489, 0.80270472, 0.55621021, 0.71785686, 0.77179405]
)
```

Step 8: Hyperparameter Tuning - GridSearch

After shuffle split to create a very effection prediction we attempt to do Hyperparameter Tuning unsing GridSearchCV to improve the efficiency of the model for deployment.

```
In [85]: from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import Lasso
```

```
def find_best_model_using_gridsearchcv(x,y):
    algos={
        "linear_regressor":{
            "model":LinearRegression(),
            "parms":{
                 "normalize":[True,False]
        },
        "lasso":{
             "model":Lasso(),
            "parms":{
                 "alpha":[1,2],
                 "selection":["random","cyclic"]
       "decision_tree":{
            "model":DecisionTreeRegressor(),
            "parms":{
                 "criterion":["mse","freidman_mse"],
"splitter":["best","random"]
             }
       }
    }
    scores=[]
    cv=ShuffleSplit(n_splits=5,test_size=0.2,random_state=0)
    for algo_name,config in algos.items():
        gs=GridSearchCV(config["model"],config["parms"],cv=cv,retur
        gs.fit(x,y)
        scores.append({
            "model":algo name,
            "best_score":gs.best_score_,
            "best parms":qs.best params
        })
    return pd.DataFrame(scores,columns=["model","best_score","best_
find_best_model_using_gridsearchcv(x,y)
```

Out[85]:

	model	best_score	best_parms
0	linear_regressor	0.798661	{'normalize': True}
1	lasso	0.798668	{'alpha': 2, 'selection': 'cyclic'}
2	decision_tree	0.688520	{'criterion': 'mse', 'splitter': 'best'}

In [86]: |y_pred = dtr.predict(x_test)

Step 9: Comparing Original and Predicted data

mse = mean_squared_error(y_test, y_pred)

```
print("MSE: ", mse)
         print("RMSE: ", mse*(1/2.0))
               572726019390.4103
         MSE:
         RMSE:
                286363009695.20514
In [87]: x_ax = range(len(y_test))
         plt.rcParams["figure.figsize"] = (10,5)
         plt.plot(x_ax, y_test, linewidth=1, label="original")
         plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted")
         plt.title("Original Vs Predicted data")
         plt.xlabel('X-axis')
         plt.ylabel('Y-axis')
         plt.legend(loc='best',fancybox=True, shadow=True)
         plt.grid(True)
         plt.show()
```


Step 10: Model Deployment using the best model.

```
In [88]: x.columns
Out[88]: Index(['AreainSQFT', 'Bedroom', 'Bathroom', 'Bathroo
                                        'Canary Wharf', 'Chelsea', 'Chiswick', 'Clerkenwell', '
                       Coulsdon',
                                         'Ealing', 'Earls Court', 'East Molesey', 'Esher', 'Fit
                       zrovia',
' Fulham', ' Greenwich', ' Hampstead', ' Holloway', ' Islin
                       gton',
                                        ' London', ' Loughton', ' Maida Vale', ' Marylebone', ' Nor
                       thwood',
                                         Putney', ' Richmond', ' Shoreditch', ' St John's Wood',
                                        'St. John's Wood', 'Wandsworth', 'Westminster', 'Wimble
                       don',
                                        '101 Wood Lane', '63 Mortlake High Street', '82-88 Fulham H
                       igh Street',
                                        'Barnes', 'Barnsbury', 'Battersea', 'Belgravia', 'Belsize P
                       ark',
                                        'Camden', 'Canary Wharf', 'Canonbury', 'Chelsea', 'Chiswick
                       ', 'Clapham',
                                         'Clerkenwell', 'De Beauvoir', 'Ealing', 'East Molesey', 'Ea
                       st Sheen',
                                        'Esher', 'Fitzrovia', 'Fulham', 'Hackney', 'Hampstead', 'Hi
                       ghbury',
                                         'Highgate', 'Islington', 'Kensington', 'Kentish Town',
                                        'Kingston upon Thames', 'Knightsbridge', 'Little Venice', '
                       Loughton',
                                        'Maida Vale', 'Marylebone', 'Mayfair', 'Northwood', 'Nottin
                       q Hill',
                                         'Oxshott', 'Pimlico', 'Primrose Hill', 'Prince of Wales Dri
                       ve',
                                        'Putney', 'Regent's Park', 'Richmond', 'Shannon Place', 'Sh
                       oreditch',
                                         'South Hackney', 'St James's', 'St John's Wood', 'St. John'
                       s Wood'
                                         'Surbiton', 'Thames Ditton', 'Wandsworth', 'Water Lane', 'W
                       estminster'
                                        'Wimbledon', 'Woodford Green'],
                                     dtvpe='object')
In [89]: np.where(x.columns =="Putney")[0][0]
```

Linear regressiion is the best model hence we deploy it

Out[89]: 75

```
In [90]: #WE SEE LINEAR REGRESSION IS THE BEST WITH NORMALIZE=TRUE
         def predict_price(Location, AreainSQFT, Bathroom, Bedroom):
             loc_index=np.where(x.columns==Location)[0][0]
             z=np.zeros(len(x.columns))
             z[0]=AreainSQFT
             z[1]=Bathroom
             z[2]=Bedroom
             if loc_index>=0:
                 z[loc_index]=1
             return lr_clf.predict([z])[0]
In [91]: Price = predict_price("Putney",2000,4,4)
         Price
Out [91]: 1634319.6862044318
In [92]: Price = predict_price("Putney",2500,5,5)
         Price
Out [92]: 2118513.6862044316
In [93]: Price_in_millions = "The cost of house is: " + str(round(Price/1000)
         Price_in_millions
Out[93]: 'The cost of house is: 2.12 million'
 In [ ]:
```