Graph Theory winter term 2013

Problem sheet 11

Due date: **January 22**, **12:00** am.

Discussion of solutions: January 24.

(Please prepare solutions for at most three problems.)

Problem 41. 5 points

Show that an ϵ -regular partition of a graph G is also an ϵ' -regular partition of its complement \overline{G} for some ϵ' .

Problem 42. 5 points

Let G be any graph of chromatic number t. Show that $ex(n, G) \ge ex(n, K_t)$ and that equality holds only if there is an edge e such that $\chi(G - e) < t$.

Problem 43. 5 points

Show that for any graph G = (V, E), |V| = n, there exists a set S, $|S| \le \lfloor n^2/4 \rfloor$, and for each vertex $v \in V$ a subset $S_v \subseteq S$ such that $S_v \cap S_w \ne \emptyset$ if and only if $vw \in E$.

Hint: Try to cover the edges of G with cliques.

Problem 44. 5 points

Determine the smallest number n such that the following holds. Whenever one colors the edges of K_n with two colors, red and blue, one creates a red triangle or a blue K_4 .

Open Problem.

Prove or disprove that if G is a triangle-free graph on n vertices, then there is a set of at most $n^2/25$ edges in G whose deletion destroys all odd cycles in G.