

Farmer John's N ($1 \le N \le 5 \cdot 10^5$) cows are lined up in a circle. The *i*th cow has a bucket with integer capacity a_i ($1 \le a_i \le 10^9$) liters. All buckets are initially full.

Every minute, $cow\ i$ will pass all the milk in their bucket to $cow\ i+1$ for $1 \le i < N$, with $cow\ N$ passing its milk to $cow\ 1$. All exchanges happen simultaneously (i.e., if a cow has a full bucket but gives away x liters of milk and also receives x liters, her milk is preserved). If a cow's total milk ever ends up exceeding a_i , then the excess milk will be lost.

After each of 1, 2, ..., N minutes, how much total milk is left among all cows?

INPUT FORMAT (input arrives from the terminal / stdin):

The first line contains N.

The next line contains integers a_1, a_2, \ldots, a_N .

OUTPUT FORMAT (print output to the terminal / stdout):

Output N lines, where the i-th line is the total milk left among all cows after i minutes.

SAMPLE INPUT:

6 2 2 2 1 2 1

SAMPLE OUTPUT:

6

Initially, the amount of milk in each bucket is [2, 2, 2, 1, 2, 1].

- After 1 minute, the amount of milk in each bucket is [1, 2, 2, 1, 1, 1] so the total amount of milk is 8.
- After 2 minutes, the amount of milk in each bucket is [1, 1, 2, 1, 1, 1] so the total amount of milk is 7.
- After 3 minutes, the amount of milk in each bucket is [1, 1, 1, 1, 1, 1] so the total amount of milk is 6.
- After 4 minutes, the amount of milk in each bucket is [1, 1, 1, 1, 1, 1] so the total amount of milk is 6.
- After 5 minutes, the amount of milk in each bucket is [1, 1, 1, 1, 1, 1] so the total amount of milk is 6.
 After 6 minutes, the amount of milk in each bucket is [1, 1, 1, 1, 1, 1] so the total amount of milk is 6.
- **SAMPLE INPUT:**

8 3 8 6 4 8 3 8 1

SAMPLE OUTPUT:

10 8 8

```
After 1 minute, the amount of milk in each bucket is [1, 3, 6, 4, 4, 3, 3, 1] so the total amount of milk is 25.
SAMPLE INPUT:
SAMPLE OUTPUT:
2000000053
```

24

20 20

SCORING:

- Inputs 4-5: $N \le 2000$
- Inputs 6-8: $a_i \le 2$
- Inputs 9-13: All a_i are generated uniformly at random in the range [1, 10⁹].
 Inputs 14-23: No additional constraints.

