Dynamic Programming: Placing Parentheses

Alexander S. Kulikov

St. Petersburg Department of Steklov Institute of Mathematics
Russian Academy of Sciences

Data Structures and Algorithms Algorithmic Toolbox

Outline

- 1 Problem Overview
- 2 Subproblems
- 3 Algorithm
- 4 Reconstructing a Solution

How to place parentheses in an expression

$$1 + 2 - 3 \times 4 - 5$$

to maximize its value?

How to place parentheses in an expression

$$1 + 2 - 3 \times 4 - 5$$

to maximize its value?

Example

$$((((1+2)-3)\times 4)-5)=-5$$

How to place parentheses in an expression

$$1 + 2 - 3 \times 4 - 5$$

to maximize its value?

Example

- $((((1+2)-3)\times 4)-5)=-5$
 - $((1+2)-((3\times 4)-5))=-4$

Answer

 $((1+2)-(3\times(4-5)))=6$

Another example

What about

$$5 - 8 + 7 \times 4 - 8 + 9$$
?

Soon

We'll design an efficient dynamic programming algorithm to find the answer.

Outline

- 1 Problem Overview
- 2 Subproblems
- 3 Algorithm
- 4 Reconstructing a Solution

Placing parentheses

Input: A sequence of digits d_1, \ldots, d_n and a sequence of operations $op_1, \ldots, op_{n-1} \in \{+, -, \times\}.$

Output: An order of applying these operations that maximizes the value of the expression

$$d_1 op_1 d_2 op_2 \cdots op_{n-1} d_n$$
.

Intuition

Assume that the last operation in an optimal parenthesizing of $5-8+7\times4-8+9$ is \times :

$$(5-8+7)\times(4-8+9)$$
.

It would help to know optimal values for subexpressions 5 - 8 + 7 and 4 - 8 + 9.

However

We need to keep track for both the minimal and the maximal values of subexpressions!

Example: $(5-8+7) \times (4-8+9)$

$$\min(5 - 8 + 7) = (5 - (8 + 7)) = -10$$

$$\max(5 - 8 + 7) = ((5 - 8) + 7) = 4$$

$$\min(4 - 8 + 9) = (4 - (8 + 9)) = -13$$

$$\max(4 - 8 + 9) = ((4 - 8) + 9) = 5$$

 $\max((5-8+7)\times(4-8+9))=130$

Subproblems

■ Let $E_{i,j}$ be the subexpression

$$d_i op_i \cdots op_{i-1} d_i$$

Subproblems:

$$M(i,j) = \text{maximum value of } E_{i,j}$$

 $m(i,j) = \text{minimum value of } E_{i,j}$

Recurrence Relation

$$M(i,j) = \max_{i \leq k \leq j-1} \begin{cases} M(i,k) & op_k & M(k+1,j) \\ M(i,k) & op_k & m(k+1,j) \\ m(i,k) & op_k & M(k+1,j) \\ m(i,k) & op_k & m(k+1,j) \end{cases}$$

$$m(i,j) = \min_{i \leq k \leq j-1} \begin{cases} M(i,k) & op_k & M(k+1,j) \\ M(i,k) & op_k & m(k+1,j) \\ m(i,k) & op_k & M(k+1,j) \\ m(i,k) & op_k & m(k+1,j) \end{cases}$$

Outline

- 1 Problem Overview
- 2 Subproblems
- 3 Algorithm
- 4 Reconstructing a Solution

MinAndMax(i,j)

$$min \leftarrow +\infty$$
 $max \leftarrow -\infty$
for k from i to $j-1$:
 $a \leftarrow M(i,k)$ op_k M

$$a \leftarrow M(i, k)$$
 op_k $M(k+1, j)$
 $b \leftarrow M(i, k)$ op_k $m(k+1, j)$
 $c \leftarrow m(i, k)$ op_k $M(k+1, j)$

 $d \leftarrow m(i, k)$ op_k m(k+1, j) $min \leftarrow min(min, a, b, c, d)$

return (min, max)

 $max \leftarrow max(max, a, b, c, d)$

$$p_k$$
 i

Order of Subproblems

- When computing M(i, j), the values of M(i, k) and M(k + 1, j) should be already computed.
- Solve all subproblems in order of increasing (j i).

Possible Order

Parentheses $(d_1 op_1 d_2 op_2 \dots d_n)$

for
$$i$$
 from 1 to n : $m(i,i) \leftarrow d_i$, $M(i,i) \leftarrow d_i$

$$m(i,i) \leftarrow d_i$$
, $M(i,i) \leftarrow d_i$ for s from 1 to $n-1$:

 $m(i,j), M(i,j) \leftarrow \text{MinAndMax}(i,j)$

for i from 1 to n-s:

 $i \leftarrow i + s$

return M(1, n)

Example: $5 - 8 + 7 \times 4 - 8 + 9$

5	-3	-10	-55	-63	-94
	8	15	36	-60	-195
		7	28	-28	-91
			4	-4	-13
				8	17
					9

5	-3	4	25	65	200
	8	15	60	52	75
		7	28	20	35
			4	-4	5
				8	17
					9

m

Μ

Outline

- 1 Problem Overview
- 2 Subproblems
- 3 Algorithm
- 4 Reconstructing a Solution

Example: $5 - 8 + 7 \times 4 - 8 + 9$

5	-3	-10	-55	-63	-94
	8	15	36	-60	-195
		7	28	-28	-91
			4	-4	-13
				8	17
					9

5	-3	4	25	65	200
	8	15	60	52	75
		7	28	20	35
			4	-4	5
				8	17
					9

m

Μ