Построение ансамбля алгоритмов рекомендаций Выпускная квалификационная работа

Выполнил:

студент 417 группы Кудрявцев Георгий Алексеевич

Научный руководитель: д.ф-м.н., профессор Дьяконов Александр Геннадьевич

3 мая 2016 г.

Неформальная постановка задачи

Требуется улучшить качество работы алгоритмов ранжирования при помощи ансамблирования уже существующих методов.

Предметная область

Рассматривается задачи ранжирования по данным с двоичной релевантностью.

На практике данная задача решается при помощи алгоритмов машинного обучения.

В данной работе рассматриваются факторизационные методы и их линейные ансамбли.

Актуальность задачи

Построение рекоммендаций для:

- социальных сетей
- сайтов знакомств
- интернет магазинов

Цель и задачи

Цель: разработать метод ансамблирования, который стабильно улучшает качество ранжирования. Задачи:

- Составить обзор современных факторизационных методов ранжирования.
- Предложить эффективный метод ансамблирования.
- Реализовать методы и провести их сравнительный анализ.

Формальная постановка задачи

Входные данные:

матрица R размера $M \times N$, где M - количество пользователей, N - количество предметов. $R_{ui}=1$, если пользователей u взаимодействовал с предметов i. В противном случае $R_{ui}=0$.

Выходные данные:

Для каждого пользователя u ранжированный список предметов, которые не лежат в тренировочной выборке.

Обзор существующих методов

- **CLiMF**¹ Факторизационный метод, который оптимизирует сглаженную версию метрики MRR.
- MPR_MF² Факторизационный метод, который оптимизирует AUC.
- **TFMAP**³ Факторизационный метод, который оптимизирует сглаженную метрику MAP.
- **iMF**⁴ Факторизационный метод, который оптимизирует взвешенную квадратичную ошибку.

 $^{^1\}mathrm{Yue}$ Shi, Alexandros Karatzoglou, Linas Baltrunas. CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. 2012

²Steffen Rendle, Christoph Freudenthaler, Zeno Gantner. BPR: Bayesian Personalized Ranking from Implicit Feedback. 2009

 $^{^3}$ Yue Shia,Alexandros Karatzogloub, Linas Baltrunas. TFMAP: Optimizing MAP for Top-N Context-aware Recommendation. 2012

⁴Yifan Hu, Yehuda Koren, Chris Volinsky. Collaborative Filtering for Implicit Feedback Datasets. 2008

Линейный ансамбль

Пусть имеется множество базовых алгоритмов $b_i(x)$. Необходимо подобрать такие веса α_i , чтобы линейная комбинация алгоритмов $\hat{b}(x) = \sum_i \alpha_i b_i(x)$ показывала лучший результат по какому-нибудь заданному функционалу.

Оптимальное взвешенное голосование

Рассмотрим линейную комбинацию двух алгоритмов ранжирования в следующем виде:

$$\hat{f}_{ui} = lpha f_{ui}^{m_1} + (1-lpha) f_{ui}^{m_2}$$
 , где $0 \leq lpha \leq 1$

Рис. : Графическая демонстрация идеи метода ⁵

⁵Qiang Wu, Christopher J. C. Burges, Krysta M. Svore. Adapting Boosting for Information Retrieval Measures. 2010.

Экспериментальные оценка

MovieLens 100k											
	ptest	= 10%, ;	ovalid=10	%, maxite	r = 5	ptest = 20%, valid = 10%, maxiter = 5					
	BSM	SV	RV	OVB	OVT	BSM	SV	RV	OVB	OVT	
P@5	0.2965	0.1602	0.2528	0.3069	0.3019	0.4451	0.2531	0.3831	0.4498	0.4464	
1call@5	0.7344	0.4950	0.6712	0.7580	0.7555	0.8706	0.6203	0.8039	0.8784	0.8734	
NDCG@5	0.3201	0.1778	0.2783	0.3307	0.3257	0.4705	0.2738	0.4070	0.4770	0.4752	
MAP@5	0.5035	0.3239	0.4599	0.5185	0.5152	0.6480	0.4261	0.5763	0.6555	0.6562	
Epinion											
	ptest	= 10%, ;	ovalid=10	%, maxite	r = 5	ptest = 20%, valid = 10% , maxiter = 5					
	BSM	SV	RV	OVB	OVT	BSM	SV	RV	OVB	OVT	
P@5	0.0716	0.0295	0.0534	0.0764	0.0760	0.1283	0.0550	0.1000	0.1328	0.1363	
1call@5	0.2710	0.1303	0.2183	0.2921	0.2908	0.4179	0.2242	0.3595	0.4372	0.4438	
NDCG@5	0.0775	0.0334	0.0572	0.0830	0.0822	0.1384	0.0615	0.1062	0.1425	0.1468	
MAP@5	0.1561	0.0759	0.1193	0.1688	0.1672	0.2536	0.1316	0.2035	0.2607	0.2686	

Экспериментальные оценка

Slashdot											
	ptest	= 10%,	pvalid=10	%, maxite	r = 5	ptest = 20%, valid = 10%, maxiter = 5					
	BSM	SV	RV	OVB	OVT	BSM	SV	RV	OVB	OVT	
P@5	0.0431	0.0186	0.0291	0.0438	0.0436	0.0746	0.0362	0.0519	0.0757	0.0758	
1call@5	0.1644	0.0866	0.1272	0.1683	0.1671	0.2570	0.1577	0.2038	0.2631	0.2653	
NDCG@5	0.0473	0.0201	0.0312	0.0481	0.0481	0.0803	0.0397	0.0556	0.0819	0.0822	
MAP@5	0.0959	0.0455	0.0684	0.0976	0.0978	0.1506	0.0877	0.1140	0.1550	0.1562	
Movie Lens 1m											
	ptest	= 10%,	pvalid=10	%, maxite	r = 5	ptest = 20%, valid = 10%, maxiter = 5					
	BSM	SV	RV	OVB	OVT	BSM	SV	RV	OVB	OVT	
P@5	0.2601	0.1065	0.2374	0.2628	0.2639	0.3936	0.1974	0.3616	0.3983	0.3944	
1call@5	0.6541	0.3424	0.6186	0.6566	0.6593	0.7985	0.5255	0.7714	0.8075	0.8066	
NDCG@5	0.2795	0.1104	0.2476	0.2830	0.2836	0.4127	0.2007	0.3710	0.4192	0.4157	
MAP@5	0.4384	0.1936	0.3859	0.4440	0.4438	0.5729	0.3127	0.5166	0.5839	0.5822	

Результаты работы

- Составлен обзор основных факторизационных методов для задачи ранжирования для набора данных с двоичной релевантностью.
- Предложен метод ансамблирования, который стабильной улучшает качество работы ранжирования.
- Реализованы факторизационные методы и эксперименты на языке python и c++.