Zero Divisor Graphs of Direct Systems of Abelian Groups

Jamie Haddock

Thomas McKenzie

Cynthia Wu

Gonzaga University, Spokane, WA 99258

Abstract. Let S be a commutative semigroup with zero $(0x = 0 \text{ for all } x \in S)$. In [2] the authors associated a graph to S. The vertices are the nonzero elements of S, with two vertices a, b joined by an edge in case ab = 0. We associate a commutative semigroup with zero to any direct system of abelian groups over a lower semilattice with least element. We use the associated graph to construct a number of classical graphs.

Definition 1. A commutative semigroup with zero is a set S with an associative binary operation such that

```
I. x \cdot y \in S \ \forall x, y \in S

II. x \cdot y = y \cdot x \ \forall x, y \in S

III. \exists 0 \in S \text{ such that } x \cdot 0 = 0 \ \forall x \in S.
```

Lemma 1. If S is a commutative semigroup with zero, the zero is unique.

Proof. Let S be a commutative semigroup with zero. Suppose there are two such zeros $a,b \in S$. Then ax = a = xa and bx = b = xb, $\forall x \in S$ by definition of zero and by multiplicative commutativity in S. Since

$$a = ax \ \forall x \in S, a = ab.$$

Furthermore,

$$xb=b \ \forall x \in S, ab=b.$$

Thus, a = ab = b. Hence, the zero is unique.

Definition 2. A zero-divisor graph, $\Gamma(S)$, of a commutative semigroup, S, is a graph where the vertices of the graph are the nonzero zero-divisors of S, and

two vertices x, y are connected by an edge in case $x \cdot y = 0$ in S. These graphs were explored in [2].

Definition 3. A poset with a least element is a nonempty set S together with a relation, \leq , on $S \times S$ which is reflexive, antisymmetric, transitive, and that also contains an element $\lambda \in S$, such that $\forall x \in S, \lambda \leq x$.

Example 1. An example of a poset with a least element is the set

$$P = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{a\}, \{b\}, \{a, b\}\}\$$

where given $P_1, P_2 \in P$, $P_1 \leq P_2$ if $P_1 \subseteq P_2$.

Definition 4. A lower semilattice with least element is a poset with a unique least element such that any finite nonempty subset has a greatest lower bound.

Lemma 2. Let I be a lower semilattice with least element. If i, j, k are elements of I, then glb(i, glb(j, k)) = glb(j, glb(i, k)) = glb(k, glb(i, j)).

Proof. By definition of greatest lower bound, $\operatorname{glb}(i,\operatorname{glb}(j,k)) \leq \operatorname{glb}(j,k) \leq j$. Similarly, $\operatorname{glb}(i,\operatorname{glb}(j,k)) \leq i$ and $\operatorname{glb}(i,\operatorname{glb}(j,k)) \leq \operatorname{glb}(j,k) \leq k$, thus $\operatorname{glb}(i,\operatorname{glb}(j,k)) \leq \operatorname{glb}(i,k)$. Hence, $\operatorname{glb}(i,\operatorname{glb}(j,k)) \leq \operatorname{glb}(i,\operatorname{glb}(i,k))$.

Of course, it can be similarly shown that $glb(j, glb(i, k)) \leq glb(k, glb(i, j))$, $glb(k, glb(i, j)) \leq glb(j, glb(i, k))$, and $glb(j, glb(i, k)) \leq glb(i, glb(j, k))$.

Thus, $\operatorname{glb}(i, \operatorname{glb}(j, k)) \leq \operatorname{glb}(j, \operatorname{glb}(i, k)) \leq \operatorname{glb}(k, \operatorname{glb}(i, j))$ and $\operatorname{glb}(k, \operatorname{glb}(i, j)) \leq \operatorname{glb}(j, \operatorname{glb}(i, k)) \leq \operatorname{glb}(j, \operatorname{glb}(j, k))$. Therefore, $\operatorname{glb}(i, \operatorname{glb}(j, k)) = \operatorname{glb}(j, \operatorname{glb}(i, k)) = \operatorname{glb}(k, \operatorname{glb}(i, j))$.

Definition 5. A morphism, $f: S \to T$, of lower semilattices, S and T, with least elements, λ_S and λ_T , respectively, satisfies the following property:

$$\forall s_1, s_2 \in S, s_1 \leq s_2 \Leftrightarrow f(s_1) \leq f(s_2)$$

Theorem 1. If $f: S \to T$, is a morphism of lower semilattices, S, T, with least elements, λ_S and λ_T , respectively, f(S) is also a lower semilattice with least element $f(\lambda_S)$. More specifically, if $s_1, s_2 \in S$, then $f(glb(s_1, s_2)) = glb(f(s_1, s_2))$.

Proof. Take any two elements of f(S), say $f(s_1)$ and $f(s_2)$. Since

$$glb(s_1, s_2) \le s_1,$$

$$f(glb(s_1, s_2)) \le f(s_1)$$

by the definition of the morphism of lower semilattices. Similarly, it can be argued that

$$glb(s_1, s_2) \leq s_2,$$

implies that

$$f(glb(s_1, s_2)) \le f(s_2).$$

So $f(glb(s_1, s_2))$ is a lower bound of $f(s_1)$ and $f(s_2)$. We will now show that it is the *greatest* lower bound. Suppose that L_2 is another lower bound of $f(s_1)$ and $f(s_2)$. Since $S \to f(S)$ is onto, there exists an element in S, say L_1 such that $f(L_1) = L_2$. Since L_2 is a lower bound of $f(s_1)$ and $f(s_2)$ and $f(L_1) = L_2$, it follows that $f(L_1) \le f(s_1)$ and $f(L_1) \le f(s_2)$. Thus, by the definition of morphisms on lower semilattices, $L_1 \le s_1$ and $L_1 \le s_2$. Thus, L_1 is a lower bound of s_1 and s_2 . By the definition of greatest lower bound, $L_1 \le glb(s_1, s_2)$. By applying the definition of morphisms of lower semilattices, we know that $f(L_1) \le f(glb(s_1, s_2))$. Since $L_2 = f(L_1)$, it follows that $L_2 \le f(glb(s_1, s_2))$. This implies that $f(glb(s_1, s_2))$ is the greatest lower bound of $f(s_1)$ and $f(s_2)$. Thus, given any two elements of f(S), there will always exist a greatest lower bound.

We will now show that f(S) has least element $f(\lambda_S)$. Let $L_4 \in f(S)$. Since $S \to f(S)$ is onto, there exists an element in S, say L_3 such that $f(L_3) = L_4$. By definition of least element, $\lambda_S \leq L_3$. By definition of morphisms of lower semilattices, $f(\lambda_S) \leq f(L_3) = L_4$. Since L_4 was chosen arbitrarily from f(S), $f(\lambda_S)$ is the least element in f(S).

Therefore, f(S) is a lower semilattice with least element $f(\lambda_S)$.

Definition 6. Let I be a lower semilattice with least element. Let $\{G_i\}_{i\in I}$ be a family of abelian groups, and suppose we have a family of group homomorphisms f_{ji} : $G_j \to G_i$ for all $i \le j$ with the following properties:

I. f_{ii} is the identity in G_i II. $f_{ki} = f_{ji} \circ f_{kj}$ for all $i \leq j \leq k$ Then the triple

$$(I, \{G_i\}_{i \in I}, \{f_{ji}\}_{\substack{i,j \in I \\ i \le j}})$$

is called an direct system of abelian groups over a lower semilattice with least element.

Definition 7. The class of all direct systems of abelian groups over a lower semilattice with least element is a \mathcal{DSAG} . Given $\mathcal{F},\mathcal{G} \in \mathcal{DSAG}$, define $hom(\mathcal{F},\mathcal{G})$ to be the set whose elements are the pairs $(\theta, \{\gamma_{i,\theta(i)}\}_{i\in I})$ where:

I. $\theta: I \to J$ preserves order and greatest lower bound. Thus,

$$i_1 \le i_2 \iff \theta(i_1) \le \theta(i_2)$$

II. For each $i \in I$, $\gamma_{i,\theta(i)}: F_i \to G_{\theta(i)}$ is a group homomorphism such that whenever $i_1, i_2 \in I$ with $i_1 \geq i_2$ the following diagram commutes:

$$\begin{split} F_{i_1} & \xrightarrow{\gamma_{i_1,\theta(i_1)}} G_{\theta(i_1)} \\ f_{i_1,i_2} & & & \downarrow g_{\theta(i_1),\theta(i_2)} \\ F_{i_2} & \xrightarrow{\gamma_{i_2,\theta(i_2)}} G_{\theta(i_2)} \end{split}$$

Diagram 1

Theorem 2. \mathcal{DSAG} is a category.

Proof. Let \mathcal{F} , \mathcal{G} , \mathcal{H} , $\mathcal{M} \in \mathcal{DSAG}$ and

$$(\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}): \mathcal{F} \to \mathcal{G} \in hom(\mathcal{F}, \mathcal{G})$$

$$(\mu, \{\delta_{i,\mu(i)}\}_{i \in J}) : \mathcal{G} \to \mathcal{H} \in hom(\mathcal{G}, \mathcal{H})$$

$$(\nu, \{\epsilon_{k,\nu(k)}\}_{k\in K}): \mathcal{H} \to \mathcal{M} \in hom(\mathcal{H}, \mathcal{M})$$

I. Associativity

1. Associativity
$$(\nu, \{\epsilon_{k,\nu(k)}\}_{k\in K}) \circ ((\mu, \{\delta_{j,\mu(j)}\}_{j\in J} \circ (\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}))$$

$$= (\nu, \{\epsilon_{k,\nu(k)}\}_{k\in K}) \circ (\mu \circ \theta, \{\delta_{\theta(i),\mu(\theta(i))} \circ \gamma_{i,\theta(i)}\}_{i\in I})$$

$$= (\nu \circ (\mu \circ \theta), \{\epsilon_{\mu(\theta(i)),\nu(\mu(\theta(i)))} \circ (\delta_{\theta(i),\mu(\theta(i))} \circ \gamma_{i,\theta(i)})\}_{i\in I})$$

$$= ((\nu \circ \mu) \circ \theta, \{(\epsilon_{\mu(\theta(i)),\nu(\mu(\theta(i)))} \circ \delta_{\theta(i),\mu(\theta(i))}) \circ \gamma_{i,\theta(i)}\}_{i\in I})$$

$$= (\nu \circ \mu, \{\epsilon_{\mu(j),\nu(\mu(j))} \circ \delta_{j,\mu(j)}\}_{j\in J}) \circ (\theta, \{\gamma_{i,\theta(i)}\}_{i\in I})$$

$$= ((\nu, \{\epsilon_{k,\nu(k)}\}_{k\in K}) \circ (\mu, \{\delta_{j,\mu(j)}\}_{j\in J})) \circ (\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}).$$

II. Identity

For each object $\mathcal{G} \in \mathcal{DSAG}$ let $1_{\mathcal{G}} = (\iota, \{\tau_{j,\iota(j)}\}_{j \in J}) : \mathcal{G} \to \mathcal{G}$ where

$$\iota: J \to J, \iota(j) = j, \forall j \in J$$

and

$$\tau_{j,\iota(j)}: G_j \to G_j, \tau_{j,\iota(j)}(a) = a, \forall a \in G_j.$$

Thus,
$$(\iota, \{\tau_{j,\iota(j)}\}_{j\in J}) \circ (\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}) = (\iota \circ \theta, \{\tau_{\theta(i),\iota(\theta(i))} \circ \gamma_{i,\theta(i)}\}_{i\in I})$$

= $(\theta, \{\gamma_{i,\theta(i)}\}_{i\in I})$.

Likewise,
$$(\mu, \{\delta_{j,\mu(j)}\}_{j \in J}) \circ (\iota, \{\tau_{j,\iota(j)}\}_{j \in J}) = (\mu \circ \iota, \{\delta_{\iota(j),\mu(\iota(j))} \circ \tau_{j,\iota(j)}\}_{j \in J}) = (\mu, \{\delta_{j,\mu(j)}\}_{j \in J}).$$

Thus, \mathcal{DSAG} is a category.

Lemma 3. Let $\mathcal{F},\mathcal{G} \in \mathcal{DSAG}$ and

$$(\theta, \gamma_{i,\theta(i)_{i\in I}}) \in hom(\mathcal{F}, \mathcal{G})$$

The image of \mathcal{F} under $(\theta, \gamma_{i,\theta(i)_{i\in I}})$ is in \mathcal{DSAG} .

Proof. The image of \mathcal{F} under $(\theta, \gamma_{i,\theta(i)_{i\in I}})$ is

$$(\theta(I), \{\gamma_{i,\theta(i)}(F_i)\}_{i \in I}, \{g_{\theta(i_1),\theta(i_2)}\}_{\substack{i,j \in I \\ i \leq j}})$$

where

$$g_{\theta(i_1),\theta(i_2)}: \gamma_{i_1,\theta(i_1)}(F_{i_1}) \to \gamma_{i_2,\theta(i_2)}(F_{i_2})$$

If $a \in \gamma_{i_1,\theta(i_1)}(F_{i_1})$ then $\exists b \in F_{i_1}$ such that $a = \gamma_{i_2,\theta(i_2)}(b)$. By Diagram 1,

$$g_{\theta(i_1),\theta(i_2)}(a) = \gamma_{i_2,\theta(i_2)} \circ f_{i_1,i_2}(b)$$

Thus, $g_{\theta(i_1),\theta(i_2)}$ is a group homomorphism because it is the composition of group homomorphisms. By Theorem 1, $\theta(I)$ is a lower semilattice with least element. Further, $\{\gamma_{i,\theta(i)}(F_i)\}_{i\in I}$ is a family of groups indexed by $\theta(I)$ and

$$\{g_{\theta(i_1),\theta(i_2)}\}_{\substack{i,j\in I\\i\leq j}}$$

is a family of group homomorphisms mapping this family of groups. Thus, the image of \mathcal{F} under $(\theta, \gamma_{i,\theta(i)_{i\in I}})$ is in \mathcal{DSAG} .

Definition 8. If G is a group, let e_G denote the identity of G.

Example 2. In this example, G_i , G_j , and G_k make up the family of abelian groups where $i \leq j$ and k is not comparable to i and j. Although $f_{j\lambda}$ is not shown, $f_{j\lambda}$ is the composition of $f_{i\lambda}$ and f_{ji} .

A direct system of abelian groups over a lower semilattice with least element Now, let I be a lower semilattice with least element λ . Let

$$(I, \{G_i\}_{i \in I}, \{f_{ji}\}_{\substack{i,j \in I \\ i \le j}})$$

be a direct system of abelian groups over I.

Let $\mathcal{G} = \{(g, i) : i \in I, g \in G_i\}.$

Define a binary operation, *, on \mathcal{G} as follows:

$$(h,j)*(g,i) = \begin{cases} (f_{ji}(h) \cdot g, i) & \text{if } j \ge i, \\ (f_{ij}(g) \cdot h, j) & \text{if } j < i, \\ (f_{jk}(h) \cdot f_{ik}(g), k) & \text{otherwise} \end{cases}$$

where the greatest lower bound of j and i is k if j is not comparable to i.

Note that if j = i, $(f_{ji}(h) \cdot g, i) = (f_{ij}(g) \cdot h, j)$. Thus, we can also define

$$(h,j)*(g,i) = \begin{cases} (f_{ji}(h) \cdot g, i) & \text{if } j > i, \\ (f_{ij}(g) \cdot h, j) & \text{if } j \leq i, \\ (f_{jk}(h) \cdot f_{ik}(g), k) & \text{otherwise} \end{cases}$$

where the greatest lower bound of j and i is k if j is not comparable to i.

Theorem 3. \mathcal{G} with * is a commutative semigroup with $0 = (e_{G_{\lambda}}, \lambda)$.

Proof. Let $\mathcal{G} = \{(g, i) : i \in I, g \in G_i\}$ with binary operation,*, as defined above.

I. Associativity

Let $i, j, k \in I$.

Suppose that the greatest lower bound of i and j is l, the greatest lower bound of i and k is m, the greatest lower bound of l and k is α , and the greatest lower bound of j and m is β .

Then
$$((h, j) * (g, i)) * (a, k)$$

$$=(f_{il}(h) \cdot f_{il}(g), l) * (a, k)$$
 by definition of *

$$=(f_{l\alpha}(f_{jl}(h) \cdot f_{il}(g)) \cdot f_{k\alpha}(a), \alpha) \qquad \text{by definition of } *$$

$$=((f_{l\alpha}(f_{jl}(h)) \cdot f_{l\alpha}(f_{il}(g))) \cdot f_{k\alpha}(a), \alpha) \qquad \text{by definition of homomorphism}$$

$$=((f_{j\alpha}(h) \cdot f_{i\alpha}(g)) \cdot f_{k\alpha}(a), \alpha) \qquad \text{by composition of homomorphism}$$

$$=(f_{j\alpha}(h) \cdot f_{i\alpha}(g) \cdot f_{k\alpha}(a), \alpha) \qquad \text{the operation within } G_{\alpha} \text{ is associative}$$

$$=(f_{j\beta}(h) \cdot (f_{i\beta}(g) \cdot f_{k\beta}(a)), \beta) \qquad \text{by Lemma 2, } \alpha = \beta$$

$$=(f_{j\beta}(h) \cdot (f_{m\beta}(f_{im}(g)) \cdot f_{m\beta}(f_{km}(a))), \beta) \qquad \text{by composition of homomorphism}$$

$$=(f_{j\beta}(h) \cdot (f_{m\beta}(f_{im}(g) \cdot f_{km}(a))), \beta) \qquad \text{by definition of homomorphism}$$

$$=(h, j) * (f_{im}(g) \cdot f_{km}(a), m) \qquad \text{by definition of } *$$

$$=(h, j) * ((g, i) * (a, k)) \qquad \text{by definition of } *$$

II. Commutativity Let $(h, j), (g, i) \in \mathcal{G}$.

Case One:
$$j = i$$

Then $(h, j) * (g, i) = (f_{ji}(h) \cdot g, i)$ by definition of *
$$= (f_{ii}(h) \cdot g, i)$$
 by equality of i and j

$$= (h \cdot g, j)$$
 by equality of i and j

$$= (g \cdot h, j)$$
 by commutative property
$$= (f_{ii}(g) \cdot h, j)$$
 by definition of inverse system
$$= (f_{ij}(g) \cdot h, j)$$
 by equality of i and j

$$= (g, i) * (h, j)$$
 by definition of *

Case Two: j > iThen $(h, j) * (g, i) = (f_{ji}(h) \cdot g, i) = (g, i) * (h, j)$.

Case Three:
$$j < i$$

Then
$$(h, j) * (g, i) = (f_{ij}(g) \cdot h, j) = (g, i) * (h, j).$$

Case Four: Not comparable

Suppose the greatest lower bound of j and i is k.

Then
$$(h, j) * (g, i) = (f_{jk}(h) \cdot f_{ik}(g), (k))$$

$$= (f_{ik}(g) \cdot f_{jk}(h), (k))$$
 by commutative property
$$= (q, i) * (h, j).$$

III. Existence of $0 = (e_{G_{\lambda}}, \lambda)$

Let (h, i) be any arbitrary element from \mathcal{G} .

Since λ is the least element of the lower semilattice, $\lambda \leq i$.

Thus,
$$(h, i) * (e_{G_{\lambda}}, \lambda) = (f_{i\lambda}(h) \cdot e_{G_{\lambda}}, \lambda)$$

$$=(e_{G_{\lambda}}\cdot e_{G_{\lambda}},\lambda)$$
 because $G_{\lambda}=\{e_{G_{\lambda}}\}$
$$=(e_{G_{\lambda}},\lambda)$$

Lemma 4. Suppose \mathcal{G} with * is a commutative semigroup with zero derived from an direct system of abelian groups over a lower semilattice with least element as described in Theorem 1. If $s \in \mathcal{G}$ such that s * s = 0, then s = 0.

Proof. Let $s \in \mathcal{G}$ such that s*s = 0. By Theorem 1, $\mathcal{G} = \{(g,i) : i \in I, g \in G_i\}$. Since $s \in \mathcal{G}$, s = (h, j) for some $h \in G_j$ where $G_j \in \{G_i\}_{i \in I}$ and $j \in I$.

Then
$$(e_{G_{\lambda}}, \lambda) = 0$$
 by Theorem 1
 $= s * s$ by assumption
 $= (h, j) * (h, j)$
 $= (f_{jj}(h) \cdot h, j)$ by definition of *
 $= (h \cdot h, j)$ by definition of direct system

This implies that $j = \lambda$.

(†) So $(h, j) = (h, \lambda)$.

Now
$$(e_{G_{\lambda}}, \lambda) = 0$$
 by Theorem 1
= $s * 0$ by definition of zero

$$= (h, j) * (e_{G_{\lambda}}, \lambda) \quad \text{by Theorem 1}$$

$$= (h, \lambda) * (e_{G_{\lambda}}, \lambda) \quad \text{by (†)}$$

$$= (f_{\lambda\lambda}(h) \cdot e_{G_{\lambda}}, \lambda) \quad \text{by definition of *}$$

$$= (h \cdot e_{G_{\lambda}}, \lambda) \quad \text{by definition of direct system}$$

(††) This implies that $e_{G_{\lambda}} = h \cdot e_{G_{\lambda}}$.

Thus,
$$s=(h,j)$$

$$=(h,\lambda) \qquad \text{by } (\dagger)$$

$$=(h\cdot e_{G_{\lambda}},\lambda) \text{ by definition of multiplicative identity}$$

$$=(e_{G_{\lambda}},\lambda) \qquad \text{by } (\dagger\dagger)$$

$$=0 \qquad \qquad \text{by Theorem 1}$$

Theorem 4. The collection of commutative semigroups with 0 with commutative semigroup morphisms is a category.

Proof. See [2].
$$\Box$$

Definition 9. Let \mathcal{C} and \mathcal{D} be categories. A covariant functor T from \mathcal{C} to \mathcal{D} is a pair of functions (T_1, T_2) where T_1 is an object function that assigns to each object C inside \mathcal{C} another object D inside \mathcal{D} where $D = T_1(C)$, and T_2 is a morphism function that assigns to each morphism $f: C \to C'$ of \mathcal{C} another morphism $T_2(f): T_1(C) \to T_1(C')$ of \mathcal{D} such that the following is satisfied:

- 1. For every identity morphism 1_C of C, $T_2(1_C) = 1_{T_1(C)}$
- 2. Let f and g be any two morphisms of $\mathcal C$ where $g \circ f$ is defined. Then $T_2(g \circ f) = T_2(g) \circ T_2(f)$.

Theorem 5. Consider the two categories: \mathcal{DSAG} and the collection of commutative semigroups with 0. Let T be a pair of functions (T_1, T_2) with the following properties:

1. If $\mathcal{H} \in \mathcal{DSAG}$, then T_1 takes \mathcal{H} and maps it to a commutative semigroup as follows:

$$T_1(\mathcal{H}) = T_1((I, \{H_i\}_{i \in I}, \{h_{ji}\}_{\substack{i,j \in I \\ i \le j}})) = \{(h, i) : i \in I, h \in H_i\}$$

with the operation * as defined in Theorem 3.

2. If $\mathcal{G} \in \mathcal{DSAG}$ and $(\theta, \{\gamma_{i,\theta(i)}\}_{i \in I})$ is a morphism from \mathcal{H} to \mathcal{G} , then

$$T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i \in I})) : T_1((I, \{H_i\}_{i \in I}, \{h_{ji}\}_{i,j \in I})) \to T_1((\theta(I), \{G_{\theta(i)}\}_{i \in I}, \{g_{\theta(j),\theta(i)}\}_{\substack{i,j \in I \\ i \le j}}))$$

More specifically,

$$T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}))(h, i) = (\gamma_{i,\theta(i)}(h), \theta(i))$$

Then $T = (T_1, T_2)$ is a functor. Consider the following diagram:

Proof. Let \mathcal{H} be any element in \mathcal{DSAG} and (h,i) be any element in $T_1(\mathcal{H})$. Suppose that $(\theta, \{\gamma_{i,\theta(i)}\}_{i\in I})$ is an identity morphism on \mathcal{H} . Then

$$T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i \in I}))(h, i) = (\gamma_{i,\theta(i)}(h), \theta(i)) = (h, i)$$

Now suppose that \mathcal{F} , \mathcal{G} , and \mathcal{H} are any elements in \mathcal{DSAG} , and let $(\theta, \{\gamma_{i,\theta(i)}\}_{i\in I})$ be any morphism from \mathcal{F} to \mathcal{G} and $(\mu, \{\delta_{j,\mu(j)}\}_{j\in J})$ be any morphism from \mathcal{G} to \mathcal{H} . Also, let (a,i) be an arbitrary element in $T_1(\mathcal{F})$.

Now note that
$$T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}) \circ (\mu, \{\delta_{j,\mu(j)}\}_{j\in J}))(a, i)$$

$$= T_2(((\theta \circ \mu), (\{\gamma_{\mu(j),(\theta \circ \mu)(j)} \circ \delta_{j,\mu(j)}\}_{j\in J})))(a, i)$$

$$= ((\gamma_{\mu(j),(\theta \circ \mu)(j)} \circ \delta_{j,\mu(j)})(a), (\theta \circ \mu)(i))$$

$$= (\gamma_{i,\theta(i)}(a), \theta(i)) \circ (\delta_{j,\mu(j)}(a), \mu(i))$$

$$= T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}))(a, i) \circ T_2((\mu, \{\delta_{j,\mu(j)}\}_{j\in J}))(a, i)$$

Next, we show that $T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i\in I}))$ is a commutative semigroup homomorphism.

Let $i_1, i_2 \in I$ with greatest lower bound α . Let $h_1 \in H_{i_1}$ and $h_2 \in H_{i_2}$. Then $T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i \in I}))((h_1, i_1) * (h_2, i_2))$

$$=T_2((\theta,\{\gamma_{i,\theta(i)}\}_{i\in I}))(f_{i_1\alpha}(h_1)\cdot f_{i_2\alpha}(h_2),\alpha) \quad \text{by definition of } *$$

$$= (\gamma_{i,\theta(i)}(f_{i_1\alpha}(h_1) \cdot f_{i_2\alpha}(h_2)), \theta(\alpha))$$
 by definition of T_2

=
$$(\gamma_{i,\theta(i)}(f_{i_1\alpha}(h_1)) \cdot \gamma_{i,\theta(i)}(f_{i_2\alpha}(h_2)), \theta(\alpha))$$
 $\gamma_{i,\theta(i)}$ is a group homomorphism

=
$$(f_{\theta(i_1)\theta(\alpha)}(\gamma_{i,\theta(i)}(h_1)) \cdot f_{\theta(i_2)\theta(\alpha)}(\gamma_{i,\theta(i)}(h_2)), \theta(\alpha))$$
 by Theorem 1

$$= (\gamma_{i,\theta(i)}(h_1),\theta(i_1)) * (\gamma_{i,\theta(i)}(h_2),\theta(i_2))$$
 by definition of *

By [2], a covariant functor, $Q = (Q_1, Q_2)$, exists from the category of commutative semigroups with 0 to the category of graphs and is defined as follows:

Let $\mathcal{G} = \{(g, i) : i \in I, g \in G_i\}$ be a commutative semigroup with 0.

- 1. The vertices of the graph $Q_1(\{(g,i):i\in I,g\in G_i\})$ are the elements of \mathcal{G} .
- 2. If (g, α) , (h, β) are distinct elements in \mathcal{G} , then there exists an edge between (g, α) and (h, β) precisely when α and β are both in the same lower semilattice and are comparable.
- 3. Let $\mathcal{H} = \{(h, j) : j \in J, h \in H_j\}$ be another commutative semigroup with 0 element and let σ be a morphism from \mathcal{G} to \mathcal{H} . Let (g, i) be any element in \mathcal{G} . Define $Q_2(\sigma)((g, i)) = \sigma((g, i))$.

Since the composition of functors is a functor, the composition of Q and T as described in Theorem 5 is a functor from \mathcal{DSAG} to the category of graphs. More specifically, $(Q \circ T) = ((Q \circ T)_1, (Q \circ T)_2)$ is defined as follows:

Let \mathcal{H}, \mathcal{M} be any elements in \mathcal{DSAG} , $(\theta, \{\gamma_{i,\theta(i)}\}_{i \in I})$ be any morphism from \mathcal{H} to \mathcal{M} , and (h, i) be any element in $T_1(\mathcal{H})$. Then

$$(Q \circ T)_1(\mathcal{H}) = Q_1(T_1(\mathcal{H}))$$

$$= Q_1(T_1((I, \{H_i\}_{i \in I}, \{h_{ji}\}_{i,j \in I})))$$

$$= Q_1(\{(h, i) : i \in I, h \in H_i\})$$

which is a graph whose vertices and edges can be found by using the rules as outlined above. Also,

$$\begin{split} (Q \circ T)_2((\theta, \{\gamma_{i,\theta(i)}\}_{i \in I}))(h, i) &= Q_2(T_2((\theta, \{\gamma_{i,\theta(i)}\}_{i \in I})(h, i)) \\ &= Q_2((\gamma_{i,\theta(i)}(h), \theta(i))) \\ &= (\gamma_{i,\theta(i)}(h), \theta(i)) \end{split}$$

Example 3. Consider the following direct system of abelian groups.

Note that ac = bc = dc = 0, but $ab, ad, bd \neq 0$.

The corresponding zero divisor graph is

This is known as the Star Graph, S_3 .

Example 4. Consider the following direct system of abelian groups.

Note that ab = ad = ac = bc = dc = 0, but $bd \neq 0$.

The corresponding zero divisor graph is

This is known as the Diamond Graph.

Example 5. Consider the following direct system of abelian groups.

Note that ad=ae=bd=be=cd=ce=0, but $ab,ac,bc,de\neq 0.$

The corresponding zero divisor graph is

This is known as the Complete Bitartite Graph, $K_{2,3}$.

Example 6. Consider the following direct system of abelian groups.

Note that ab = ac = ad = bc = bd = dc = 0.

The corresponding zero divisor graph is

This is known as the Wheel Graph.

Example 7. Consider the following Butterfly Graph.

According to this graph, ab = ac = bc = dc = de = ec = 0, but ad, ae, bd, $be \neq 0$.

It is not possible to construct an direct system of abelian groups over a lower semilattice with a least element from the Butterfly Graph.

To see this, let S be a commutative semigroup with zero derived from an direct system of abelian groups over a lower semilattice with least element. Suppose that it is possible to construct a zero divisor graph from this direct system and that the zero divisor graph is the Butterfly Graph above.

Then
$$(bd)c = b(dc)$$
 by associativity
$$= b(0)$$
 by definition of zero divisor graph
$$= 0$$
 by definition of zero

$$(\dagger \dagger \dagger)$$
 So $(bd)c = 0$.

But $c, bd \neq 0$ by the definition of zero divisor graph, $c \in S$, and $bd \in S$ by multiplicative closure, so bd is, by definition, a zero divisor of S. So bd must be one of the vertices of the Butterfly Graph above.

Case One:
$$bd = a$$

Then $0 = b(0)$ by definition of zero
 $= b(de)$ by definition of zero divisor graph
 $= (bd)e$ by associativity

$$= ae$$
 by assumption $\neq 0$ by definition of zero divisor graph

Case Two: bd = b

Then
$$0 = b(0) = b(de) = (bd)e = be \neq 0$$
.

Case Three: bd = d

Then
$$0 = (0)d = (ab)d = a(bd) = ad \neq 0$$
.

Case Four: bd = e

Then
$$0 = (0)d = (ab)d = a(bd) = ae \neq 0$$
.

So
$$bd=c$$
 since c is the last possible vertex.
Then $0=(bd)c$ by $(\dagger\dagger\dagger)$

= cc

Since cc=0 and S is a commutative semigroup with zero derived from an direct system of abelian groups over a lower semilattice with least element, c=0 by Lemma 2. But $c\neq 0$ by definition of zero divisor graph. This is a contradiction. Thus, there is no corresponding direct system of abelian groups over a lower semilattice with a least element for the Butterfly Graph.

Example 8. Consider the following Friendship Graph, F_3 .

According to this graph, ab=ae=be=cd=ce=de=fg=fe=ge=0, but $ac,ad,af,ag,bc,bd,bf,bg,cf,cg,df,dg\neq 0$.

However, it is not possible to construct an direct system of abelian groups over a lower semilattice with a least element from the Friendship Graph, F_3 . The proof of this is similar to the proof in the last example.

Definition 10. Let S be a commutative semigroup with zero. Let $I \subseteq S$ and $0 \in I$. Then I is an ideal of S if whenever $s \in S$ and $a \in I$, $as \in I$.

Following Rosen in [3], informally define a path to be a sequence of edges that begins at a vertex of a graph and travels along edges of the graph, always connecting pairs of adjacent vertices. The length of a path is the number of edges in the path. A simple cycle is a path with no repeated edges such that the initial and terminal vertex are the same. See page 567-568 of [3] for more formal definitions.

Theorem 6. If $\{0, x\}$ is not an ideal in S for any nonzero $x \in S$ and the cardinality of the set containing 0 and the nonzero zero divisors of S is greater than or equal to 3, then every pair of vertices in the zero divisor graph corresponding to S is contained in a simple cycle of length ≤ 6 .

Note that when the authors in [2] refer to cycle, they mean simple cycle.

Proof. See
$$[2]$$
.

The following semilattice S of abelian groups satisfies Theorem 2, and the vertices a, d are contained in a simple cycle of length 6 but not any simple cycle of shorter length. Without loss of generality, assume that g is the identity of $\{g,y\}$ and h is the identity of $\{h,x\}$.

Semilattice S of abelian groups from [2]

But, if a zero divisor graph were to be constructed from the given example, a,d would be contained in a simple cycle of length 4 $(a \to h \to y \to d \to a)$ which contradicts with the example's claim.

Here is the zero divisor graph corresponding to the semilattice S.

Zero Divisor Graph corresponding to [2]

In the following example, the vertices a,d are contained in a simple cycle of length 6 but not any simple cycle of shorter length. Assume, once again, that g is the identity of $\{g,y\}$ and h is the identity of $\{h,x\}$. Also assume z is the identity of $\{z,b\}$.

Correction of semilattice S

One can check that $\{0,u\}$ is not an ideal for any nonzero $u \in S$ and the cardinality of the set containing 0 and the nonzero zero divisors of S is greater than or equal to 3.

The corresponding zero divisor graph for this direct system is the following:

Zero Divisor Graph corresponding to the correction of semilattice S

In this semilattice, a and d can be contained in a simple cycle of length 6:

$$(a \to x \to y \to d \to g \to h \to a)$$

but cannot be contained in a simple cycle of length less than 6. To see this, suppose a,d are contained in a simple cycle of length less than 6. A simple cycle of length 2 or 1 is impossible since there does not exist an edge between a and d. Thus, the simple cycle must be of length 5, 4, or 3.

If a, d are contained in a simple cycle of length less than 6, then either the path from a to d or the path from d to a must have length 1 or 2.

Simple Cycle of Length 5

Length of Path from a to d	Length of Path from d to a
2	3
1	4

Simple Cycle of Length 4

Length of Path from a to d	Length of Path from d to a
2	2
1	3

Simple Cycle of Length 3

Length of Path from a to d	Length of Path from d to a
1	2

According to [3], the adjacency matrix for the zero divisor graph corresponding to the correction is

Adjacency Matrix for the Zero Divisor Graph

The number of paths of length 1 from a to d is the $a_{1,4}$ entry of A. Since this entry is 0, there exists no path of length 1 from a to d. A^2 gives the number of different paths of length 2 from one vertex to another. See [3] for details.

Square of the Adjacency Matrix

Hence, the number of paths of length 2 from a to d is the $a_{1,4}$ entry of A^2 . Since this entry is 0, there exists no path of length 2 from a to d. Although the adjacency matrix accounts for directed or undirected edges with multiple edges and loops allowed according to [3], if the entry for the a_{ij} entry is 0, there would exist no path from the vertex corresponding to i to the vertex corresponding to i regardless. Since there does not exist a path of length 1 or 2 from a to d and vice versa, a and d must be contained in a simple cycle of length 6 or greater.

References

- [1] T.W. Hungerford, *Algebra*, Springer-Verlag, v.73, Graduate Texts in Mathematics, New York, (1974), 13.
- [2] F.R. DeMeyer, T. McKenzie, K. Schneider, *The zero-divisor graph of a commutative semigroup*, Semigroup Forum, **65** (2002), 206–214.
- [3] K.H. Rosen, Discrete Mathematics and Its Applications Fifth Edition, McGraw-Hill, Boston, (2003), 574.