

8041/8741 UNIVERSAL PERIPHERAL INTERFACE 8-BIT MICROCOMPUTER

- Fully Compatible with MCS-80TM and MCS-48TM Microprocessor Families
- Single Level Interrupt
- 8-Bit CPU plus ROM, RAM, I/O, Timer and Clock in a Single Package
- Single 5V Supply
- Alternative to Custom LSI

- Pin Compatible ROM and EPROM Versions
- 1K × 8 ROM/EPROM, 64 × 8 RAM, 18 Programmable I/O Pins
- Asynchronous Data Register for Interface to Master Processor
- **■** Expandable I/O

The Intel® 8041/8741 is a general purpose, programmable interface device designed for use with a variety of 8-bit microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to function as a peripheral controller in MCS-80™, MCS-85™, MCS-48™, and other 8-bit systems.

The UPI-41™ has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the program memory is available as ROM in the 8041 version or as UV-erasable EPROM in the 8741 version. The 8741 and the 8041 are fully pin compatible for easy transition from prototype to production level designs.

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either inputs or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041), single-step mode for debug (in the 8741), single level interrupt, and dual working register banks.

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI interface devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include keyboard scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral devices to microprocessor systems.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin With
Respect to Ground 0.5V to +7V
Power Dissipation 1.5 Watt

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS

 T_A = 0°C to 70°C, V_{CC} = V_{DD} = +5V ±5%, V_{SS} = 0V

	Parameter		Limits		Unit	Test Conditions	
Symbol		Min.	Тур.	Max.			
VIL	Input Low Voltage (All Except X ₁ , X ₂)	-0.5		8.0	V	7)	
VIH	Input High Voltage (All Except X ₁ , X ₂ RESET)	2.0		Vcc	٧		
VIH2	Input High Voltage (X ₁ , RESET)	3.0		Vcc	٧		
Vol	Output Low Voltage (Do-D7, Sync)			0.45	٧	IOL = 2.0 mA	
VOL2	Output Low Voltage (All Other Outputs Except Prog)			0.45	V	I _{OL} = 1.6 mA	
Vон	Output High Voltage (Do-D7)	2.4			٧	I _{OH} = -400 μA	
Vон1	Output High Voltage (All Other Outputs)	2.4			٧	I _{OH} = -50 μA	
liL	Input Leakage Current (To, T1, RD, WR, CS, A0, EA)			±10	μА	Vss ≤ Vin ≤ Vcc	
loL	Output Leakage Current (Do-D7, High Z State)			±10	μА	Vss + 0.45 ≤ V _{IN} ≤ V _{CC}	
loo	V _{DD} Supply Current		10	25	mA		
Icc + IDD	Total Supply Current		65	135	mA		
Vol3	Output Low Voltage (Prog)			0.45	V	I _{OL} = 1.0 mA	
Lin	Low Input Source Current P ₁₀ -P ₁₇ P ₂₀ -P ₂₇			0.4	mA	V _{IL} = 0.8V	
I _{LI2}	Low Input Source Current RESET, SS			0.2	mA	V ₁ L = 0.8V	

A.C. CHARACTERISTICS

 $T_A = 0$ °C to 70 °C, $V_{CC} = V_{DD} = +5V \pm 5\%$, $V_{SS} = 0V$ DBB Read:

Symbol		8	741	8041		11-14-	Total Condition
	Parameter	Min.	Max.	Min.	Max.	Units	Test Conditions
t _{AR}	CS, A ₀ Setup to RD ↓	60		0		ns	
t _{RA}	CS, A ₀ Hold After RD †	30		0		ns	
t _{RR}	RD Pulse Width	300	2 × t _{CY}	250		ns	t _{CY} = 2.5 μs
t _{AD}	CS, A ₀ to Data Out Delay		370		150	ns	
t _{RD}	RD ↓ to Data Out Delay		200		150	ns	
	DD 4 to Date Floor Balon	10		10		ns	
tor	RD f to Data Float Delay		140		100	ns	
t _{RV}	Recovery Time Between Reads And/Or Write	1		1		μΒ	
tcy	Cycle Time	2.5		2.5		μS	6 MHz Crystal

DBB Write:

Symbol	Parameter	81	8741		8041		Test Conditions	
		Min.	Max.	Min.	Max.	Units	rest conditions	
t _{AW}	CS, A ₀ Setup to WR ↓	60		0		ns		
twa	CS, A ₀ Hold After WR f	30		0		ns		
tww	WR Pulse Width	300	2 x tcy	250		ns	t _{CY} = 2.5 μs	
tow	Data Setup to WR f	250		150		ns		
twp	Data Hold After WR †	30		0		ns		

A.C. TEST CONDITIONS

 D_7 - D_0 Outputs R_L = 2.2k to Vss + 4.3k to Vcc + + 100 pF

WAVEFORMS

Read Operation — Data Bus Buffer Register

Write Operation - Data Bus Buffer Register

8041/8741

PIN DESC		UPI INSTRU	Durton	Cycle	
Signal	Description	Mnemonic		bytes	Cycli
D ₀ -D ₇	Three-state, bi-directional, DATA BUS	ACCUMULATOR			
	BUFFER lines used to interface the UPI-41	ADD A,Rr	Add register to A	1	
	to an 8-bit master system data bus.	ADD A.@Rr	Add data memory to A	1	
		ADD A,#data	Add immediate to A	2	
P10-P17	8-bit, PORT 1, quasi-bi-directional I/O	ADDC A.Rr	Add immed. to A with carry	1	
	lines.	ADDC A,@Rr	Add immed. to A with carry	1	
P20-P27	8-bit, PORT 2, quasi-bi-directional I/O	ADDC A,#data	Add immed. to A with carry	2	
. 20 . 21	lines	ANL A.Rr	AND register to A	1	
		ANL A,@Rr	AND data memory to A	1	
	The lower 4-bits (P20-P23) interface directly	ANL A,#data	AND immediate to A	2	-
	to the 8243 I/O expander device and con-	ORL A,Rr	OR register to A	1	
	tain address and data information during	ORL A,@Rr	OR data memory to A	1	
	PORT 4-7 access.	ORL A,#data	OR immediate to A	2	
WR	I/O write input which enables the master	XRL A,Rr	Exclusive OR register to A	1	
VVIS	CPU to write data and command words to	XRL A.@Rr	Exclusive OR data memory to A	1	
		XRL A,#data	Exclusive OR immediate to A	2	
	the UPI-41 DATA BUS BUFFER.	INC A	Increment A	1	
RD	I/O read input which enables the master	DEC A	Decrement A	1	
	CPU to read data and status words from the	CLR A	Clear A	1	
	DATA BUS BUFFER or status register.	CPL A	Complement A	1	
		DA A	Decimal Adjust A	1	
CS	Chip select input used to select one UPI-41	SWAP A	Swap digits of A	1	
	out of several connected to a common data	RL A	Rotate A left	1	
	bus.	RLC A	Rotate A left through carry.	1	1
A -	Address input used by the master proces-	RR A	Rotate A right	1	-
Ao	sor to indicate whether byte transfer is data	RRC A	Rotate A right through carry	1	1
1	or command.		-		
To, T1	Input pins which can be directly tested	INPUT/OUTPU	T .		
	using conditional branch instructions.	IN A.Pp	Input port to A	1	1
		OUTL Pp.A	Output A to port	1	1
	T ₁ also functions as the event timer input	ANL Pp,#data	AND immediate to port	2	2
	(under software control).	ORL Pp,#data	OR immediate to port	2	2
	To is used during PROM programming and	IN A.DBB	Input DBB to A, clear IBF	1	1
	verification in the 8741.	OUT DBB,A	Output A to DBB, set OBF	1	1
		MOVD A, Pp	Input Expander port to A	1	1
X ₁ , X ₂	Inputs for a crystal, LC or an external tim-	MOVD Pp.A	Output A to Expander port	1	1
	ing signal to determine the internal oscil-	ANLD Pp.A	AND A to Expander port	1	1
	lator frequency.	ORLD Pp.A	OR A to Expander port	1	1
SYNC	Output signal which occurs once per UPI-				
01140	41 instruction cycle. SYNC can be used as a				
		DATA MOVES			
	strobe for external circuitry; it is also used	MOV A,Rr	Move register to A		1
	to synchronize single step operation.	MOV A,@Rr	Move data memory to A		1
EA	External access input which allows emula-	MOV A.#data	Move immediate to A		2
	tion, testing and PROM/ROM verification.	MOV Rr.A	Move A to register		1
		MOV @Rr.A	Move A to data memory		1
PROG	Multifunction pin used as the program	MOV Rr.#data	Move immediate to register		2
	pulse input during PROM programming.		a Move immediate to data memo		2
	During I/O expander access the PROG pin	MOV A.PSW	Move PSW to A		1
	acts as an address/data strobe to the 8243.	MOV PSW.A	Move A to PSW		1
		XCH A.Rr	Exchange A and register		1
RESET	Input used to reset status flip-flops and to	XCH A,@Rr	Exchange A and data memory		1
	set the program counter to zero.	XCHD A,@Rr	Exchange digit of A and regist		1
	RESET is also used during PROM program-	MOVP A.@A	Move to A from current page		1
		MOVP3, A.@A			1
0	ming and verification.				
SS	Single step input used in the 8741 in				
	conjunction with the SYNC output to step	TIMER/COUNT	ER		
	the program through each instruction.				
		MOV A,T	Read Timer/Counter		
Vcc	+5V power supply pin.	MOV T,A	Load Timer/Counter		1
VDD	+5V during normal operation. Programming	STRT T	Start Timer		1
	supply pin during PROM programming. Low	STRT CNT	Start Counter		1
		STOP TONT	Stop Timer/Counter		
	power standby pin in ROM version.	EN TONTI	Enable Timer/Counter Interrup		1
Vss	Circuit ground potential.	DIS TCNTI	Disable Timer/Counter Interrug	11	4

Mnemonic	Description	Bytes	Cycles				
CONTROL				CLR F1	Clear F1 Flag	1.	1
EN I	Enable IBF Interrupt	1	1	CPL F1	Complement F1 Flag	1	1
DIS I	Disable IBF Interrupt	1	1				
SEL RB0	Select register bank 0	1	1	BRANCH			
SEL RB1	Select register bank 1	1	1	JMP addr	Jump unconditional	2	2
NOP	No Operation	1	1	JMPP @A	Jump indirect	1	2
REGISTERS				DJNZ R.addr	Decrement register and skip	2	2
INC Rr	Increment register	1	1	JC addr	Jump on Carry = 1	2	2
INC @Rr	Increment data memory	1	1	JNC addr	Jump on Carry = 0	2	2
DEC Rr	Decrement register	1	1	JZ addr	Jump on A Zero	2	2
SUBROUTINE	boordinant register	•		JNZ addr	Jump on A not Zero	2	2
				JT0 addr	Jump on TO = 1	2	2
CALL addr	Jump to subroutine	2	2 .	JNTO addr	Jump on $T0 = 0$	2	2
RET	Return	1	2	JT1 addr	Jump on T1 = 1	2	2
RETR	Return and restore status	1	2	JNT1 addr	Jump on T1 = 0	2	2
C1 400				JF0 addr	Jump on F0 Flag = 1	2	2
FLAGS				JF1 addr	Jump on F1 Flag = 1	2	2
CLR C	Clear Carry	1	1	JTF addr	Jump on Timer Flag = 1, Clear Flag	2	2 2 2 2 2
CPL C	Complement Carry	1	1	JNIBF addr	Jump on IBF Flag = 0	2	2
CLR FO	Clear Flag 0	1	1	JOBF addr	Jump on OBF Flag = 1	2	2
CPL FO	Complement Flag 0	1	1	JBb addr	Jump on Accumulator Bit	2	2

APPLICATIONS

Figure 1. Recommended 8741 Interface to an 8085 System

Figure 2. 8041-8243 Keyboard Scanner

Figure 3. 8041 Matrix Printer Interface

PROGRAMMING, VERIFYING, AND ERASING THE 8748 EPROM

Programming/Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function					
XTAL 1	Clock input (1 to 6 MHz)					
RESET	Initialization and address latching					
TEST 0	Selection of program or verify mode					
EA	Activation of program/verify modes					
BUS	Address and data input data output during verify					
P20-1	Address input					
V _{DD}	Programming power supply					
PROG	Program pulse input					

The program/verify sequence is:

- V_{DD} = 5V, clock applied or internal oscillator operating, RESET = 0V, TEST 0 = 5V, EA = 5V, BUS and PROG floating.
- 2. Insert 8748 in programming socket.
- 3. TEST 0 = 0V (select program mode).
- 4. EA = 25V (activate program mode).
- 5. Address applied to BUS and P20-1.
- 6. RESET = 5V (latch address).
- 7. Data applied to BUS.
- 8. $V_D = 25V$ (programming power).
- 9. PROG = 0V followed by one 50 ms pulse to 25V.
- 10. $V_{DD} = 5V$.
- 11. TEST 0 = 5V (verify mode).
- 12. Read and verify data on BUS.
- 13. TEST 0 = 0V.
- 14. RESET = 0V and repeat from step 5.
- Programmer should be at conditions of step 1 when 8748 is removed from socket.

Program ming Options

The 8748 EPROM can be programmed by either of two Intel products:

- 1. PROMPT-48 Microcomputer Design Aid.
- Universal PROM Programmer (UPP-101 or UPP-102) Peripheral of the Intellec® Development System with a UPP-848 Personality Card.

Figure 5. Programming/Verification Sequence

is the appearance of the ALE clock output. The lack of this clock may be used to disable the progra

8041/8741

8748 Erasure Characteristics

The erasure characteristics of the 8748 are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (A). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000Å range. Data show that constant exposure to room level fluorescent lighting could erase the typical 8748 in approximately 3 years while it would take approximately one week to cause erasure when exposed to direct sunlight. If the 8748 is to be exposed to these types of lighting conditions for extended periods of

time, opaque labels are available from Intel which should be placed over the 8748 window to prevent unintentional erasure.

The recommended erasure procedure for the 8748 is exposure to shortwave ultraviolet light which has a wavelength of 2537Å. The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 μ W/cm² power rating. The 8748 should be placed within one inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

A.C. TIMING SPECIFICATION FOR PROGRAMMING

 $T_A = 25$ °C ± 5 °C, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 25V \pm 1V$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
taw	Address Setup Time to RESET 1	4tcy			
twa	Address Hold Time After RESET 1	4tcy			
tow	Data in Setup Time to PROG 1	4tcy			
two	Data in Hold Time After PROG I	4tcy			
tpH	RESET Hold Time to Verify	4tcy			
tvppw	VDD	4tcy			
tvDDH	Vpp Hold Time After PROG I	0			
tpw	Program Pulse Width	50	60	MS	
trw	Test 0 Setup Time for Program Mode	4tcy			
twr	Test 0 Hold Time After Program Mode	4tcy			
too	Test 0 to Data Out Delay		4tcy		
tww	RESET Pulse Width to Latch Address	4tcy			
tr. tf	Vpp and PROG Rise and Fall Times	0.5	2.0	μS	
tcy	CPU Operation Cycle Time	5.0		μS	1 1
TRE	RESET Setup Time Before EA 1	4tcy			

Note: If TEST 0 is high, too can be triggered by RESET 1.

D.C. SPECIFICATION FOR PROGRAMMING

 $T_A = 25^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 25V \pm 1V$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
VDOH	VDD Program Voltage High Level	24.0	26.0	٧	
VDDL	Vpp Voltage Low Level	4.75	5.25	٧	
VPH	PROG Program Voltage High Level	21.5	24.5	٧	
VPL	PROG Voltage Low Level		0.2	٧	
VEAH	EA Program or Verify Voltage High Level	21.5	24.5	٧	*
VEAL	EA Voltage Low Level		5.25	٧	
loo	Von High Voltage Supply Current		30.0	mA	
IPROG	PROG High Voltage Supply Current		16.0	mA	
IEA	EA High Voltage Supply Current		1.0	mA	

8041/8741

WAVEFORMS

Combination Program/Verify Mode (EPROMs Only)

Verify Mode (ROM/EPROM)

