1.4 МАКСВЕЛЛОВСКОЕ РАСПРЕДЕЛЕНИЕ МОЛЕКУЛ ПО СКОРОСТЯМ

В результате столкновений молекулы обмениваются скоростями, а в случае тройных и более сложных столкновений молекула может иметь временно очень большие и очень малые скорости. Хаотичное движение приводит к хаотичному распределению молекул скоростям. Это распределение можно получить, обобщив закон Больцмана. Пусть в элементе объема $\Delta x \Delta y \Delta z$ находится число молекул $\Delta N = n\Delta x \Delta y \Delta z$, где n — концентрация молекул. Подставляя n из формулы (1.15), получим $\Delta N = n_0 \exp[-E_{\rm i}/(kT)]\Delta x \Delta y \Delta z$. Как доказывается в статистической физике, распределение Больцмана обычному пространству обобщить, подобно построив ОНЖОМ дополнительное пространство скоростей молекул и рассмотрев его элемент $\Delta \upsilon_x \Delta \upsilon_v \Delta \upsilon_z$. Получим

$$\Delta N = A \exp\left[-E/(kT)\right] \Delta x \Delta y \Delta z \Delta v_x \Delta v_y \Delta v_z, \qquad (1.16)$$

где $E = m\upsilon^2/2 + mgh$ есть полная энергия молекулы, A — постоянная величина, ΔN — число молекул, находящихся в объеме $\Delta x \Delta y \Delta z$, скорости которых попадают в интервал $\Delta \upsilon_x \Delta \upsilon_y \Delta \upsilon_z$. Считая, что в малом объеме $\Delta x \Delta y \Delta z$ энергия mgh постоянна и вводя $\Delta n = \Delta N/(\Delta x \Delta y \Delta z)$, запишем (1.16) в следующем виде

$$\Delta n = B \exp\left[-m\upsilon^2/(2kT)\right] \Delta \upsilon_x \Delta \upsilon_y \Delta \upsilon_z, \qquad (1.17)$$

где B — постоянная величина, Δn — число молекул в единице объема, скорости которых попадают в интервал скоростей $\Delta \upsilon_x \Delta \upsilon_v \Delta \upsilon_z$. Для скоростей воображаемое интервала построим нахождения скоростей $(v_x v_y v_z)$ и отложим пространство там значения компонентов скоростей υ_x , υ_y и υ_z отдельных молекул. Тогда будет соответствовать точка В ЭТОМ молекуле пространстве (рисунок 1.4). Расположение точек относительно начала координат вследствие равноправности всех направлений движения сферически симметричным. Выберем элемент объема скоростей лежащим между двумя сферическими поверхностями с радиусами о и $(\upsilon + \Delta\upsilon)$, получим его равным $4\pi\upsilon^2\Delta\upsilon$. Тогда, подставляя $4\pi\upsilon^2\Delta\upsilon$ вместо $\Delta \upsilon_x \Delta \upsilon_v \Delta \upsilon_z$, запишем (1.17) в виде

Рисунок 1.4

 $\Delta n = B \exp \left[-m\upsilon^2/(2kT) \right] 4\pi\upsilon^2\Delta\upsilon$. (1.18) Максвелл ввел специальную функцию распределения молекул по скоростям $f(\upsilon) = \Delta n/(n\Delta\upsilon)$, которая показывает, какое относительное число молекул имеет скорости в интервале от υ до $\upsilon + \Delta\upsilon$. Легко видеть, что $\sum f(\upsilon)\Delta\upsilon_i \approx \sum \Delta n_i/n = 1$. Переходя к пределу, получим

$$\int_{0}^{\infty} f(v)dv = 1. \tag{1.19}$$

Данное выражение называют условием нормировки функции распределения. С учетом (1.18) функцию распределения можно записать в виде $f(\upsilon) = C \exp\left[-m\upsilon^2/(2kT)\right]m\upsilon^2/(2kT)$, где C – постоянная величина. Введем величину

$$u^2 = mv^2/(2kT) (1.20)$$

и запишем функцию распределения в виде

$$f(v) = C \exp(-u^2)u^2. \tag{1.21}$$

Приравняв производную от выражения (1.21) по u нулю, получим экстремальные значения u, равные u = 0, u = 1, $u = \infty$. Зависимость f(v) для различных температур T_1 и T_2 показана на рисунке 1.5. Кривая имеет максимум, соответствующий величине u = 1. Скорость, соответствующая максимуму кривой, наиболее называется вероятной и обозначается символом $\upsilon_{\text{вер}}$. По определению $f(\upsilon)$ показывает, какая часть молекул имеет скорости в единичном интервале скоростей ($\Delta \upsilon = 1$). Если взять скорость молекулы в какойлибо момент времени, то наиболее вероятным значением скорости будет $\upsilon_{\text{вер}}$, так как функция $f(\upsilon)$ для этого значения скорости имеет максимальное значение. Приравняв выражение (1.20) единице, получим $mv_{\text{BeD}}^2/(2kT)=1$ или

$$v_{\text{Bep}} = \sqrt{\frac{2kT}{m}}.$$
 (1.22)

Отсюда видим, что с повышением температуры наиболее вероятная скорость возрастает. Кривая 2 на соответствующая рисунке 1.5, более высокой температуре, смещена вправо по сравнению с кривой 1. Это означает, что с повышением температуры скорости всех молекул возрастают, распределения НО характер остается. Площадь, ограниченная

Рисунок 1.5

каждой из кривых, в соответствии с условием (1.19) равна единице. Из анализа кривых на рисунке 1.5 видно, что относительное число молекул, скорости которых малы, невелико. Относительное число молекул, скорости которых намного больше $\upsilon_{\text{вер}}$, мало. Однако всегда существует небольшое число молекул с очень большими скоростями движения. Исходя из этого, легко понять сущность процесса испарения, при котором наиболее быстрые ("горячие") молекулы покидают жидкость, и из-за этого в целом температура ее при испарении понижается.

Постоянную C в выражении (1.21) определяют, используя условие нормировки (1.19). Подставляя формулу (1.21) в выражение (1.19), получим $C = 4/(\sqrt{\pi}v_{\text{Bep}})$.

С помощью Максвелловского распределения по скоростям среднюю можно рассчитать скорость молекул формуле ПО $\upsilon_{\rm cp} = \int\limits_{0}^{\infty} \upsilon f(\upsilon) d\upsilon$. Подставляя сюда (1.21), получим $\upsilon_{\rm cp} = \sqrt{4/\pi} \cdot \upsilon_{\rm вер}$ или с учетом (1.22)

$$v_{\rm cp} = \sqrt{\frac{8kT}{m\pi}} \,. \tag{1.23}$$

Аналогично рассчитывается средняя квадратичная скорость

$$v_{KB}^2 = \int_0^\infty v^2 f(v) dv = 3kT/m.$$

Видим, что наибольшее значение имеет средняя квадратичная скорость молекул. Примерно на 10% меньше, чем $\upsilon_{_{\rm KR}}$, средняя скорость и на 20% меньше, чем $\upsilon_{_{\rm KB}}$, наиболее вероятная скорость.