Práctica 01. Árbol de decisión.

Sistemas de Aprendizaje Automático. Álvaro Martínez Lineros.

Introducción.

Se desea construir un modelo de clasificación basado en Árboles de Decisión que ayude a predecir si un cliente es propenso a comprar un producto específico después de recibir una campaña de marketing.

El modelo a utilizar es el Árbol de decisión, se valorarán varios hiperparámetros para encontrar la configuración más precisa.

Resultados.

Curva ROC:

Matriz de confusión:

Verdaderos negativos	87	Falsos positivos	31
Falsos negativos	52	Verdaderos positivos	30

Reporte de clasificación:

	precision	recall	f1-score	support
No compra	0.63	0.74	0.68	118
Compra	0.49	0.37	0.42	82
accuracy			0.58	200
macro avg	0.56	0.55	0.55	200
weighted avg	0.57	0.58	0.57	200

Importancia de las características:

Característica	Importancia
Edad	0.317133
Ingreso_Anual	0.254751
Frecuencia_Visitas	0.074039
Numero_Compras	0.091661
Tiempo_En_Web	0.262416

Factores clave.

Tras entrenar el modelo y ejecutar un test se puede sacar la conclusión de que la edad y el ingreso anual son los factores más determinantes a la hora de decidir si una persona comprará o no.

Limitaciones del modelo.

La muestra de datos para el entrenamiento y la prueba del modelo es bastante escasa. Mil muestras no son suficientes para entrenar un modelo robusto y con una alta predicción. El modelo actual cuenta con una precisión total del 58%, siendo del 49% para las compras. Es como aplicar un modelo random de dos opciones.

Además, el modelo se ha hecho muy profundo (15 de profundidad máxima) lo que puede limitar su interpretabilidad y generalización.

Aplicabilidad.

En una empresa este modelo no sería aplicable por su baja precisión y su poca generalización. Haría falta incrementar el f1-score de ambas situaciones a al menos 0.8 para poder considerar su aplicación.

Conclusión.

Este modelo no es aplicable en una situación real. Posibles soluciones serían aumentar la muestra para poder entrenar mejor el modelo o cambiar a otro como la regresión logística o el Random Forest.