1 Let \mathcal{F} be a collection of non-degenerate (not a point) closed balled in \mathbb{R}^n . A family $\mathcal{G} \subseteq \mathcal{F}$ of disjoint balls in \mathcal{F} is called maximal if \mathcal{G} consists of disjoint balls in \mathcal{F} such that, for any ball $B \in \mathcal{F}$, there exists another ball $B' \in \mathcal{G}$ such that $B \cap B' \neq \emptyset$.

Prove that any such collection \mathcal{F} contains a maximal family \mathcal{G} of disjoint balls, if

(i) There exists two positive constants d, D > 0 such that any ball $B \in \mathcal{F}$ satisfies the lower and upper bounds

$$d \le \operatorname{diam}(B) \le D$$
.

(ii) \mathcal{F} is any collection of closed non-degenerate balls in \mathbb{R}^n .

Proof. Let \mathcal{F} be any collection of closed non-degenerate balls in \mathbb{R}^n . Denote the collection of families of disjoint balls in \mathcal{F} by

$$P = \{ \mathcal{G} \subseteq \mathcal{F} : B \cap B' = \emptyset \text{ for all } B, B' \in \mathcal{G} \}.$$

We take P with inclusion " \subseteq " to be a partially ordered set, and we will apply Zorn's lemma to find a maximal family. Suppose $C \subseteq P$ is a chain, i.e., a totally ordered subset. Define the family

$$\mathcal{U} = \bigcup_{\mathcal{G} \in C} \mathcal{G}.$$

By construction, we have $\mathcal{G} \subseteq \mathcal{U}$ for all $\mathcal{G} \in \mathcal{U}$, i.e., \mathcal{U} is an upper bound for C with respect to inclusion; we must check that $\mathcal{U} \in P$. Since $\mathcal{G} \subseteq \mathcal{F}$ for all $\mathcal{G} \in C$, then we have $\mathcal{U} \subseteq \mathcal{F}$. And for any balls $B, B' \in \mathcal{U}$, we must have $B \in \mathcal{G}$ and $B' \in \mathcal{G}'$ for some $\mathcal{G}, \mathcal{G}' \in C$. Since C is totally ordered, we can assume $\mathcal{G} \subseteq \mathcal{G}'$, so then $B \in \mathcal{G}'$. With $\mathcal{G}' \in P$ and $B, B' \in \mathcal{G}'$, we must have $B \cap B' = \emptyset$. Hence, \mathcal{U} is a family of disjoint balls in \mathcal{F} , so indeed $\mathcal{U} \in P$.

As P is a partially ordered set such that every chain has an upper bound in P, Zorn's lemma tells us that there exists some $\mathcal{G} \in P$ which is maximal with respect to inclusion. It remains to prove that \mathcal{G} is maximal in sense of the problem. Suppose \mathcal{G} is not maximal in this sense, i.e., that there is some ball $B \in \mathcal{F}$ which is disjoint from all balls in \mathcal{G} . However, we could then take $\mathcal{G}' = \mathcal{G} \cup \{B\}$ to be another family of disjoint balls in \mathcal{F} which strictly contains \mathcal{G} . That is, $\mathcal{G}' \in P$ but $\mathcal{G} \subsetneq \mathcal{G}'$, which contradicts the maximality of \mathcal{G} in P with respect to inclusion. Hence, \mathcal{G} is the desired family.

Is the family \mathcal{G} unique in general?

No.

Consider the collection of closed balls

$$\mathcal{F} = \{\overline{B}_{1/2}(n) \subseteq \mathbb{R} : n \in \mathbb{Z}\}.$$

Then we have maximal families

$$\mathcal{G} = \{\overline{B}_{1/2}(2n) \subset \mathbb{R} : n \in \mathbb{Z}\} \text{ and } \mathcal{G}' = \{\overline{B}_{1/2}(2n+1) \subset \mathbb{R} : n \in \mathbb{Z}\}.$$

It can be seen that these are maximal since each ball centered at an odd integer touches the two adjacent balls centered at even integers—and vice versa.

2 Let λ be Lebesgue measure on \mathbb{R} .

(a) Construct a Lebesgue-integrable function $f: \mathbb{R} \to [-\infty, \infty]$ for which there exists a Lebesgue-measurable set $A \subseteq \mathbb{R}$ such that $\lambda(A) > 0$ and for any $x \in A$ the limit

$$\lim_{r \to 0} \frac{1}{\lambda(B_r(x))} \int_{B_r(x)} f(y) \, \mathrm{d}y$$

exists but is different from f(x).

(b) Prove that in fact for any $\varepsilon > 0$ one can reach $\lambda(\mathbb{R} \setminus A) < \varepsilon$ in the first part.

Let $\varepsilon > 0$ be given.

Let $\{q_k\}_{k=1}^{\infty}$ be an enumeration of the rationals. Consider the set

$$U = \bigcup_{k=1}^{\infty} B_{\varepsilon/2^{k+1}}(q_k),$$

which is an open neighborhood of \mathbb{Q} with measure

$$\lambda(U) \le \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

Define the function

$$f = \infty \cdot \chi_U$$
.

As U is open, it is Lebesgue measurable, so f is Lebesgue-measurable. Moreover, f is nonnegative, so in fact f is Lebesgue-integrable.

Then the set $A = \mathbb{R} \setminus U$ is Lebesgue-measurable with

$$\lambda(A) = \lambda(\mathbb{R}) - \lambda(U) \ge \infty - \varepsilon = \infty.$$

For all $x \in A$, we have f(x) = 0. However, for every r > 0 there is some rational $q_k \in B_r(x)$. Then $B_r(x) \cap U$ is an open neighborhood of q_k contained in $B_r(x)$. In particular, we know $\lambda(B_r(x) \cap U) > 0$, so

$$\int_{B_r(x)} f(y) \, dy = \int_{B_r(x) \cap U} f(y) \, dy + \int_{B_r(x) \setminus U} f(y) \, dy$$
$$= \int_{B_r(x) \cap U} \infty \, dy + \int_{B_r(x) \setminus U} 0 \, dy$$
$$= \infty \lambda (B_r(x) \cap U)$$
$$= \infty.$$

Hence, for all $x \in A$ we have

$$\lim_{r \to 0} \frac{1}{\lambda(B_r(x))} \int_{B_r(x)} f(y) \, \mathrm{d}y = \infty \neq 0 = f(x).$$

3 Let $\alpha \in (0,1)$ and let λ be the Lebesgue measure on \mathbb{R} . Construct a Borel set $E \subseteq [-1,1]$ such that

$$\lim_{r \to 0} \frac{\lambda(E \cap [-r, r])}{2r} = \alpha.$$

For each $k \in \mathbb{N}$, will construct I_k to be an interval contained in $\left[\frac{1}{k+1}, \frac{1}{k}\right)$, such that

$$\lambda(I_k) = \alpha \lambda\left[\frac{1}{k+1}, \frac{1}{k}\right) = \alpha\left(\frac{1}{k} - \frac{1}{k+1}\right) = \frac{\alpha}{k(k+1)}.$$

Explicitly, we write

$$I_k = \left\lceil \frac{1}{k+1}, \frac{1+\alpha/k}{k+1} \right\rceil \subseteq \left\lceil \frac{1}{k+1}, \frac{1}{k} \right\rceil,$$

which has the desired measure.

Now define

$$E' = \bigcup_{k=1}^{\infty} I_k \subseteq (0,1).$$

For $r \in (0,1)$, consider the intersection

$$E' \cap [0, r] = \bigcup_{k=1}^{\infty} I_k \cap [0, r] = (I_n \cap [\frac{1}{n+1}, r]) \cup \bigcup_{k=n+1}^{\infty} I_k,$$

where $n \in \mathbb{N}$ is such that $r \in \left[\frac{1}{n+1}, \frac{1}{n}\right)$. We compute the measure of this set using the fact that the I_k 's are disjoint and Lebesgue-measurable:

$$\lambda(E' \cap [0, r]) = \lambda(I_n \cap [\frac{1}{n+1}, r]) + \sum_{k=n+1}^{\infty} \frac{\alpha}{k(k+1)} = \lambda(I_n \cap [\frac{1}{n+1}, r]) + \frac{\alpha}{n+1}.$$

We bound the measure

$$0 \le \lambda(I_n \cap \left[\frac{1}{n+1}, r\right]) \le \lambda(I_n) = \frac{\alpha}{n(n+1)}.$$

Then

$$\frac{\alpha}{r(n+1)} \le \frac{\lambda(E' \cap [0,r])}{r} \le \frac{\alpha}{r(n+1)} \left(1 + \frac{1}{n}\right).$$

Since $\frac{1}{n+1} \le r < \frac{1}{n}$, we have

$$\frac{n}{n+1} < \frac{1}{r(n+1)} \le \frac{n+1}{n+1} = 1.$$

Note that $n \to \infty$ as $r \to 0$, so this gives us

$$\lim_{r \to 0} \frac{1}{r(n+1)} = 1,$$

and therefore

$$\lim_{r \to 0} \frac{\lambda(E' \cap [0, r])}{r} = \alpha.$$

Then the desired subset of [-1, 1] is given by

$$E = \pm E' = \{\pm x : x \in E\}.$$

- **4** Let the function $f: \mathbb{R} \to \mathbb{R}$ be increasing and right-continuous. Define the function $\nu: 2^{\mathbb{R}} \to [0, \infty]$ as follows:
 - 1. For any open set $U = \bigcup_{i=1}^{\infty} (a_i, b_i)$ where (a_i, b_i) are disjoint, set

$$\nu(U) = \sum_{i=1}^{\infty} (f(b_i) - f(a_i)).$$

If U is a finite union of disjoint open intervals, then ν is defined as a finite sum accordingly.

2. For any $A \subseteq \mathbb{R}$ define

$$\nu(A) = \inf \{ \nu(U) : A \subseteq U, U \text{ open} \}.$$

Prove that ν is a Borel measure on \mathbb{R} .