Example 1

- Grocery Store Checkout

Interarrival time distribution - uniform

Time betwe	een	Cumulative	Random Digit
Arrivals	Probability	Probability	Assignment
1	0.125	0.125	001-125
2	0.125	0.250	126-250
3	0.125	0.375	251-375
4	0.125	0.500	376-500
5	0.125	0.675	501-625
6	0.125	0.750	626-750
7	0.125	0.875	751-875
8	0.125	1.000	876-000

Grocery Store Checkout

Service time distribution

Service Time		Cumulative	Random Digit
	Probability	Probability	Assignment
1	0.10	0.10	01-10
2	0.20	0.30	11-30
3	0.30	0.60	31-60
4	0.25	0.85	61-85
5	0.10	0.95	86-95
6	0.05	1.000	96-00

Input and Output

- Input: Arrival Time
 Service Begin Time
 Service End Time
- Output: Delay time (waiting in the queue)
 Time in System
 Idle Time for Server

Simulation Table

Iteration			Output		
	X _{i1}	X _{i2}	X _{ip}	Yi	
1				•	
2					
3					
n					

Generate Inputs

Cust	Random	Interarrival	Random	Service
	Number	Time	Number	Time
1	-	-	84	4
2	913	8	10	1
3	727		24	
4	015		53	
5	948		17	
6	309		79	
7	922		91	
8	753		67	
9	235		89	
10	302		38	

Simulate for 10 customers

Cust	Random	Interarrival	Random	Service
	Number	Time	Number	Time
1	-	-	84	4
2	913	8	10	1
3	727	6	24	4
4	015	1	53	3
5	948	8	17	2
6	309	3	79	4
7	922	8	91	5
8	753	7	67	4
9	235	2	89	5
10	302	3	38	3 6

Simulation Table

Customer	Interarriv- al Time	Arrival Time	Service Time	Service Begins	Delay Time	Service Ends	Time in System	Idle time of Server
1	0	0	4	0	0	4	4	0
2	8	8	1	8	0	9	1	4
3	6	14	4	14	0	18	4	5
4	1	15	3	18	3	21	6	0
5								

Output Statistics

- The purpose of simulation is insight gained by looking at statistics
- The importance of various statistics varies on perspective:
 - Job perspective: wait time is most important
 - Manager perspective: utilization is critical
- Statistics are broken down into two categories
 - Job-averaged statistics
 - Time-averaged statistics

Job-averaged statistics

• Average delay time = $\frac{\text{Total Delay Time}}{\text{Number of Customers}}$

• Average service time = $\frac{\text{Total Service Time}}{\text{Number of Customers}}$

Average waiting time = Total Time in System (response time, time in system)
 Average waiting time = Total Time in System Number of Customers

Job-averaged statistics

Average delay time for those who delayed

Probability of delay =
$$\frac{\text{Number of Customers Who Delayed}}{\text{Total Number of Customers}}$$

Average time between arrivals

Time-averaged statistics

- Average number of customers in the system
- Average number of customers waiting in the queue
- Average number of customers at the server

Server utilization

• Probability of Idle = $\frac{\text{Total Idle Time}}{\text{Length of Simulation}}$

• Utilization of server = $\frac{\text{Total Busy Time}}{\text{Length of Simulation}}$