Category \mathcal{O} , symplectic duality, and the Hikita conjecture: Lecture 2 Nicholas Proudfoot

Recall the context from the previous lecture. We have a conical symplectic resolution $\widetilde{X} \to X$ with a $S = \mathbb{C}^{\times}$ action:

- \bullet \widetilde{X} is smooth, symplectic and its symplectic form has weight 2
- X is a normal, affine variety
- S induces a grading on $\mathbb{C}[X] = \bigoplus_{n>0} \mathbb{C}[X]^n$ such that $\mathbb{C}[X]^0 = \mathbb{C}$ and $\mathbb{C}[X]^1 = 0$.

The condition that $\mathbb{C}[X]^1=0$ rules out \mathbb{C}^2 with the scalar action (where x and y have weight 1, $dx \wedge dy$ has weight 2) as a trivial factor. Choose a maximal torus $T \subset Aut(X)$, where Aut(X) is the conical symplectic automorphisms of \widetilde{X} . We will assume $|\widetilde{X}^T| < \infty$. Choose a generic cocharacter $\mathbb{C}^\times \hookrightarrow T$ as the "extra action". We will denote the grading of $\mathbb{C}[X]$ by S in the top right corner, $\mathbb{C}[X]^n$, and the grading by the "extra action" in the lower right corner, $\mathbb{C}[X]_m$.

Example 1. Consider $\mathbb{Z}/3\mathbb{Z}$ acting on $\mathbb{C}[x,y]$ in the following way. Our generator of $\mathbb{Z}/3\mathbb{Z}$ is a root of unity ξ . It acts by $\xi \cdot x = \xi x$, $\xi \cdot y = \xi^{-1}y$. Thus

$$X = \mathbb{C}^2 / (\mathbb{Z}/3\mathbb{Z})$$

$$= \operatorname{Spec}\mathbb{C}[x, y]^{\mathbb{Z}/3\mathbb{Z}}$$

$$= \operatorname{Spec}\mathbb{C}[xy, x^3, y^3]$$

$$= \operatorname{Spec}\mathbb{C}[a, b, c] / \langle a^3 - bc \rangle$$

Our S action scales \mathbb{C}^2 with weight -1. This implies that deg(a) = 2 and deg(b) = deg(c) = 3.

Here $T = \operatorname{Aut}(X) = \mathbb{C}^{\times}$ and $t \in T$ acts by $t \cdot a = a$, $t \cdot b = tb$, $t \cdot c = t^{-1}c$. The three marked points make up \widetilde{X}^T .

Example 2. Consider $X^! = \{3 \times 3 \text{ nilpotent matrices of rank } \leq 1\}$ and $\widetilde{X}^! = \{(M,\ell) \mid M \in X^!, \ \ell \text{ a line containing } im(M)\}$. We have two maps $\pi_1 : \widetilde{X}^! \to X^!$ and $\pi_2 : \widetilde{X}^! \to \mathbb{P}^2$, noting that $\widetilde{X}^! \simeq T^*\mathbb{P}^2$. Note also that π_1 is usually one-to-one, and only over the zero matrix do we see \mathbb{P}^2 . The action S scales fibers with weight -2. Here $T^! = (\mathbb{C}^\times)^3/(\mathbb{C}_\Delta^\times)$ in $Aut(X^!) = PGL_3(\mathbb{C})$ is two dimensional. In this case $(\widetilde{X}^!)^{T^!}$ is the set of coordinate points on \mathbb{P}^2 .

The spaces X and $X^!$ are dual to each other in the sense that \mathcal{O}_X is Koszul dual to $\mathcal{O}_{X^!}$. Other examples of dual pairs include:

- (1) $T^*(G/B)$ is dual to $T^*(G^L/B^L)$, where L denotes the Langland dual. (Beilinson-Ginzburg-Soergel)
- (2) Hilb $^n\mathbb{C}^2/\mathbb{C}^2_\Delta$ is self dual. (Rouquier-Shan-Varagnolo-Vasserot)
- (3) Quiver varieties are dual to slices in Gr_G . (Webster)
- (4) Hypertoric varieties are dual to other hypertoric varieties. (Braden-Licata-Proudfoot-Webster)

The dual pair X and X! from the examples are a special case of both (3) and (4). **Question:** What is the coordinate ring of X^T ?

In example 1, X^T is a single point (the three points of \widetilde{X}^T map to the single point of X^T). We will see that it has a natural non-reduced scheme structure, and hence its coordinate ring is a finite dimensional algebra.

Suppose group G acts on $X = \operatorname{Spec} R$. So

$$p \in X^G \iff f(p) = f(\sigma p) \qquad \forall f \in R, \sigma \in G$$
$$\iff f(p) = (\sigma^{-1} \cdot f)(p) \quad \forall f \in R, \sigma \in G$$

Thus we will take

$$X^G = \operatorname{Spec} R / \langle \sigma f - f \mid \sigma \in G, f \in R \rangle$$

as a definition of the fixed point scheme. If $G = \mathbb{C}^{\times}$, the $\langle \sigma f - f \mid \sigma \in G, f \in R \rangle = \langle \text{homogeneous functions of wieght } \neq 0 \rangle$. So $X^{\mathbb{C}^{\times}} = \operatorname{Spec}\mathbb{C}[X]_0/\langle fg \mid wt(f) = -wt(g) \neq 0 \rangle$

Example 1. $\mathbb{C}[X] = \mathbb{C}[a,b,c]/\langle a^3 - bc \rangle$, where wt(a) = 0, wt(b) = 1, and wt(c) = -1. Recall from before that $T = \mathbb{C}^{\times}$. So $\mathbb{C}[X^T] = \mathbb{C}[a]/\langle bc \rangle = \mathbb{C}[a]/\langle a^3 \rangle \simeq H^*(\widetilde{X}^!)$.

Hikita Conjecture. If X and X! are dual, then

$$\mathbb{C}[X^T] \simeq H^*(\widetilde{X}^!).$$

This was proven by Hikita for

- Springer resolution (actually De Concini-Procesi)
- Hilbⁿ $\mathbb{C}^2/\mathbb{C}^2_{\Lambda}$
- Finite type A quiver varieties and Gr_G slices
- Hypertoric varieties

Here is a special case of Hikita's conjecture in degree 2:

$$H^2(\widetilde{X}^!) \simeq \mathbb{C}[X]_0^2 \simeq \text{Lie}(T)$$
 via the moment map.

Our next aim is a fancier version of Hikita's conjecture in which the coordinate ring is replaced by a quantization. Recall that a quantization of \widetilde{X} is:

- filtered algebra A with $[A^i, A^j] \subset A^{i+j-2}$
- graded Poisson isomorphism $grA \simeq \mathbb{C}[X]$
- "sheafy version"

Theorem 1 (Bezrukavnikov-Kaledin, Losev). Quantizations of $\widetilde{X} \xrightarrow{1-1} H^2(\widetilde{X})$.

Example 1. Considering our main example of $\mathbb{C}[X] = \mathbb{C}[a,b,c]/\langle a^3 - bc \rangle$, we have

$$\{a,b\} = -b$$
 $\{a,c\} = c$ $\{b,c\} = 3a^2$.

Rewrite $\mathbb{C}[X] = \mathbb{C}[a_1, a_2, a_3, b, c]/\langle a_1 a_2 a_3 - bc, a_1 - a_2, a_2 - a_3 \rangle$. Define A as $\mathbb{C}\langle a_1, a_2, a_3, b, c \rangle / \langle relations \rangle$ with relations

$$[a_i, a_j] = 0$$
 $bc = (a_1 + 1)(a_2 + 1)(a_3 + 1)$
 $[a_i, b] = -b$ $cb = a_1a_2a_3$
 $[a_i, c] = c$

The center is $Z(A) = \mathbb{C}[a_1 - a_2, a_2 - a_3] \simeq \mathbb{C}[H^2(\widetilde{X})]$. Thus the center is a polynomial ring in two variables $x = a_1 - a_2$ and $y = a_2 - a_3$.

Claim: If we set x and y to complex numbers, then we get a quantization of \widetilde{X} .

Sometimes it is convenient to use the Rees algebra construction to turn filtered algebras into algebras over a polynomial ring.

Definition 1. $A_{\bar{h}} = Rees(A) = \sum \bar{h}^i A^i \subset \mathbb{C}[\bar{h}] \otimes A$ is an algebra over $\mathbb{C}[\bar{h}]$. Taking $\bar{h} = 1$ gets back A, while taking $\bar{h} = 0$ ('homogenization') gets grA.

Example 1. $A_{\bar{h}} = \mathbb{C}[\bar{h}]\langle a_1, a_2, a_3, b, c \rangle / \langle relations \rangle$ where the relations now are

$$[a_i, a_j] = 0$$
 $bc = (a_1 + \bar{h})(a_2 + \bar{h})(a_3 + \bar{h})$
 $[a_i, b] = -\bar{h}b$ $cb = a_1a_2a_3$
 $[a_i, c] = \bar{h}c$

This is an algebra over $\mathbb{C}[H^2(\widetilde{X})] \otimes \mathbb{C}[\bar{h}]$.

Definition 2. $B_{\bar{h}} = (A_{\bar{h}})_0/\langle fg \mid wt(f) = -wt(g) > 0 \rangle$. Since the algebra is noncommutative, the sign now matters. This is an algebra over $\mathbb{C}[H^2(X)] \otimes \mathbb{C}[\bar{h}]$.

Remark 1.

$$(A_{\bar{h}})_- \to (A_{\bar{h}})_0 \twoheadrightarrow B_{\bar{h}}$$

 $(A_{\bar{h}})_- \to (A_{\bar{h}})_0 \twoheadrightarrow B_{\bar{h}}$ If N is a $B_{\bar{h}}$ -module, then the "Verma module" $V = A_{\bar{h}} \otimes_{(A_{\bar{h}})_-} N$ is a $A_{\bar{h}}$ -module. If we set $\bar{h}=1$ and specialize at $h\in H^2(\widetilde{X})$, then recover a Verma module in \mathcal{O}_- . So we use $B_{\bar{h}}$ to study category \mathcal{O} .

Example 1. In our running example,

$$B_{\bar{h}} = \mathbb{C}[\bar{h}, a_1, a_2, a_3] / \langle bc \rangle$$

$$= \mathbb{C}[\bar{h}, a_1, a_2, a_3] / \langle (a_1 + \bar{h})(a_2 + \bar{h})(a_3 + \bar{h}) \rangle$$

$$\simeq H_{T! \times \mathbb{C}^{\times}}^*(T^*\mathbb{P}^2)$$

which is an algebra over $\mathbb{C}[H^2(\widetilde{X})] \otimes \mathbb{C}[\bar{h}] \simeq \mathbb{C}[\text{Lie}(T^!)] \otimes \mathbb{C}[\bar{h}] \simeq H^*_{T^! \times \mathbb{C}^\times}(pt)$

This motivates the equivariant version of the Hikita conjecture which was proposed by Nakajima:

Equivariant Hikita Conjecture. If X and X[!] are dual, then

$$B_{\bar{h}} \simeq H^*_{T! \times \mathbb{C}^\times}(T^*\mathbb{P}^2)$$

as graded algebras over $H_{T!\times\mathbb{C}^{\times}}^*(pt)$.