# Estimating Effect of Tax Incentives on Charitable Giving Considering Self-Selection of Tax Relief in South Korea

Hiroki Kato  $^1$  Tsuyoshi Goto  $^2$  Yong-Rok Kim  $^3$   $^1$ Osaka University  $^2$ Chiba University

2021/12/17

<sup>3</sup>Kansai University

#### Introduction

- In many countries, tax relief for charitable giving are implemented.
- The elasticity of giving tax relief is known as a key parameter to evaluate the welfare implication (Saez, 2004).
  - Intuitively, if the elasticity is more than 1 in absolute value, \$1 of tax relief make more than \$1 of charitable giving.
- Many papers investigate the elasticity based on tax return data (Almunia et al., 2020; Auten et al., 2002).

#### Introduction

- However, the tax return data record only the declared charitable giving.
  - First issue: **Actual donations is different from declared donations.** (Fack and Landais, 2016; Gillitzer and Skov, 2018)
  - We use panel survey data in South Korea to deal with this issue.
- Tax payers decide the amount of donation and whether to declare tax relief based on the size of tax incentive and declaration cost.
  - Second issue: Neglect of this declaration cost may bias the estimations of elasticity.
  - We use instrumental variable (IV) and control function approach for this issue.
- Based on DID as an identification strategy, we investigate the giving price elasticity of South Korea.

#### Introduction

#### Result

- 1. Baseline results show that the giving price elasticity is less than -1.4 in terms of intensive margins and less than -1.7 in terms of extensive margins in Korea.
- 2. The estimated giving price elasticity for those who declare charitable giving is around -1.2 -1.6.
  - These estimates are more elastic than the estimates in the extant research, many of which show around -1.
- 3. By reducing application cost, we can increase charitable giving.
- 4. Given our estimates, increasing the subsidy on charitable giving will be desirable in Korea.

# Conceptual Framework

#### Optimization Problem

Following Almunia et al. (2020), consider allocation problem between private consumption  $(x_{it})$  and charitable giving  $(g_{it})$ 

$$\max_{x_{it}, g_{it}, R_{it}} U(x_{it}, g_{it}, G_t) = u_i(x_{it}, g_{it}, G_t) - R_{it} K(Z_{it}), \tag{1}$$

$$G_t = g_{it} + G_{-it}, (3)$$

where  $y_{it}$  is pre-tax total income,  $R_{it}$  is a dummy of declaration of tax relief and  $T_{it}(y_{it})$  and  $T_{it}(y_{it},g_{it})$  are respectively the amount of tax when i does not declare tax relief and when i declares tax relief in year t.  $G_{-it}$  is public goods supplied by others.  $K(Z_{it})$  is application cost which is a function of instrument  $Z_{it}$ .

#### Remarks on Optimization Problem

#### We assume

- No saving
- $G_{-it}$  is large enough to  $\frac{\partial u_i}{\partial G}(x,g,G) \approx 0$

Given  $R_{it}$ , optimal level of donations sloves

$$\max_{g_{it}} u_i(y_{it} - R_{it}T_{it}(y_{it}, g_{it}) - (1 - R_{it})T_{it}(y_{it}) - g_{it}, g_{it}, g_{it} + G_{-it}). \tag{4}$$

• We can ignore application cost  $K(Z_{it})$  when solving optimal giving level because the application cost does not depend on  $g_{it}$ 

#### First-Order Condition

$$-\frac{\partial u_i}{\partial x_{it}} \left( R_{it} \frac{\partial T_{it}}{\partial g_{it}} (y_{it}, g_{it}) + 1 \right) + \frac{\partial u_i}{\partial g_{it}} = 0$$
 (5)

- $\partial T_{it}/\partial g_{it} < 0$  is tax incentive of charitable giving.
  - Let  $s_{it} \equiv |\partial T_{it}/\partial g_{it}|$  be size of tax incentive.
  - Relative giving price is  $1 s_{it}$
  - As we explain later, there is within variation of  $s_{it}$  due to tax reform.

Define  $g_i(1-s_{it},y_{it})$  and  $g_i(1,y_{it})$  to be the optimal levels of donations (potential outcomes) for choices  $R_{it}=1,0$  respectively.

#### Self-Selection of Tax Relief

We can write indirect utility as

$$\begin{aligned} v_i(1-s_{it},y_{it},G_{-it}) - K(Z_{it}), & (6) \\ v_i(1,y_{it},G_{-it}). & (7) \end{aligned}$$

Thus, individual i applies for tax relief in year t, that is,  $R_{it} = 1$  iff

$$\Delta v_{it} \equiv v_i (1 - s_{it}, y_{it}, G_{-it}) - v_i (1, y_{it}, G_{-it}) \ge K(Z_{it}). \tag{8} \label{eq:delta_vi}$$

# **Identification Strategy**

#### Outcome Equation

We assume the demand function  $g_i(1-s_{it},y_{it})$  and  $g_i(1,y_{it})$  can be written as the following log-log demand function with two-way FEs:

$$\ln g_i(1 - s_{it}, y_{it}) = \theta_i + \gamma \ln(1 - s_{it}) + \beta X'_{it} + \iota_t + u_{it},$$

$$\ln g_i(1, y_{it}) = \theta_i + \beta X'_{it} + \iota_t + u_{it}.$$
(9)

Thus, observed outcome equation is

$$\ln g_{it} = \theta_i + \gamma R_{it} \times \ln(1 - s_{it}) + \beta X'_{it} + \iota_t + u_{it}.$$
 (11)

- ullet  $heta_i$  and  $\iota_t$  are individual and time FE, respectively.
- $X_{it}$  includes pre-tax income  $(y_{it})$  and others.
- If  $R_{it} = 0$ , the relative price is one (its logged value is  $\ln 1 = 0$ ).
- Our parameter of interest is  $\gamma$ , which represents the price elasticity of charitable giving.

#### Source of Price Variation

- 1. Within variation of tax incentive  $(s_{it})$ 
  - Major variation comes from the 2014 tax reform
  - Before 2014, tax deduction (所得控除) was used for tax relief on charitable giving.
  - After 2014, tax credit (税額控除) started to be used for tax relief on charitable giving.
- 2. Within variation of application for tax relief  $(R_{it})$ 
  - · This variation is endogenous.
  - We use wage earner dummy and number of tax accountant as instrumental variables (IV).

#### Background: 2014 Tax Reform in South Korea

Tax deduction system (until 2013)

$$T_{it}(y_{it}, g_{it}) = T_{it}(y_{it} - g_{it})$$
 (12)

- In 2012 and 2013, the marginal tax rate was the same, though it was different from ones before 2011.
- Tax incentive is  $s_{it} = T'(y_{it} g_{it})$
- The giving price depended on income level and giving level

#### Tax credit system (from 2014)

$$T_{it}(y_{it}, g_{it}) = T_{it}(y_{it}) - mg_{it}$$
(13)

- m is tax credit rate and is m=0.15
- Tax incentive is  $s_{it} = m$

Background: Application System for Wage Earners

Background: Application System for Non Wage Earners

#### Data

#### Data

We use the Korean annual financial panel survey, called the National Survey of Tax and Benefit (hereafter, NaSTaB).

- The subjects of this survey are general households and household members living in 15 cities and provinces nationwide.
- This survey is based on a face-to-face interview.
- Data is constructed as the subjects represent the population of Korean society.
- We exclude the subject of the sample, whose age is under 23, since they are not likely to have income or assets.
- We use data from 2013 to 2017.

# Descriptive Statistics

Table 1: Descriptive Statistics

|                                               | N     | Mean    | Std.Dev. | Min   | Median | Max      |
|-----------------------------------------------|-------|---------|----------|-------|--------|----------|
| Charitable Donations                          |       |         |          |       |        |          |
| Annual chariatable giving (unit: 10,000KRW)   | 40064 | 36.64   | 153.72   | 0.00  | 0.00   | 10000.00 |
| Dummary of donation $> 0$                     | 40064 | 0.24    | 0.43     | 0.00  | 0.00   | 1.00     |
| Income, giving price, and tax report          |       |         |          |       |        |          |
| Annual taxable labor income (unit: 10,000KRW) | 40054 | 1674.04 | 2733.18  | 0.00  | 0.00   | 91772.00 |
| First giving relative price                   | 40063 | 0.86    | 0.04     | 0.62  | 0.85   | 0.94     |
| Dummy of declaration of a tax relief          | 40064 | 0.11    | 0.31     | 0.00  | 0.00   | 1.00     |
| Individual Characteristics                    |       |         |          |       |        |          |
| Age                                           | 40064 | 54.20   | 16.31    | 24.00 | 52.00  | 104.00   |
| Female dummy                                  | 40064 | 0.43    | 0.50     | 0.00  | 0.00   | 1.00     |
| University graduate                           | 40063 | 0.41    | 0.49     | 0.00  | 0.00   | 1.00     |
| High school graduate dummy                    | 40063 | 0.31    | 0.46     | 0.00  | 0.00   | 1.00     |
| Junior high school graduate dummy             | 40063 | 0.28    | 0.45     | 0.00  | 0.00   | 1.00     |
| Wage earner dummy                             | 29753 | 0.54    | 0.50     | 0.00  | 1.00   | 1.00     |
| #.Tax accountant / population                 | 36259 | 1.04    | 0.51     | 0.32  | 0.92   | 2.24     |

#### Time Series of Charitable Giving



Figure 1: Proportion of Donors and Average Donations among Donors. Notes: The left and right axises measure proportion of donors and the average amount of donations among donors, respectively. Authors made this graph based on NaSTaB data.

## Distribution of Charitable Giving



Figure 2: Distribution of Charitable Giving among Those Who Donated

## Proportion of Donors By Having Applied for Tax Relief



Figure 3: Proportion of Donors By Having Applied for Tax Relief

#### Income Distribution and Giving Price



Figure 4: Income Distribution and Relative Giving Price in 2013. Notes: The left and right axis measure the relative frequency of respondents and the relative giving price, respectively. A blue step line and a red dashed horizontal line represents the giving price in 2013 and 2014, respectively. The grey bar shows income distribution in 2013.

#### Charitable Giving by Income Group (Overall)

(square) between 2013 and 2014.



Figure 5: Average Logged Giving in Three Income Groups. Notes: We created three income groups, with the relative price of giving rising (circle), unchanged (triangle), and falling

## Charitable Giving by Income Group (Intensive Margin)



Figure 6: Average Logged Giving in Three Income Groups. Notes: We created three income groups, with the relative price of giving rising (circle), unchanged (triangle), and falling (square) between 2013 and 2014.

## Charitable Giving by Income Group (Extensive Margin)



Figure 7: Proportion of Donors in Three Income Groups. Notes: We created three income groups, with the relative price of giving rising (circle), unchanged (triangle), and falling (square) between 2013 and 2014.

## Share of Tax Relief Grouped by Wage Earner or not



Figure 8: Share of Tax Relief. Notes: A solid line is the share of applying for tax relief among wage eaners. A dashed line is the share of applying for tax relief other than wage earners.

# Share of Tax Relief Grouped By Three Income Group



Figure 9: Proportion of Having Applied for Tax Relief in Three Income Groups. Notes: We created three income groups, with the relative price of giving rising (circle), unchanged

First-Stage Result: Who Applied for Tax Relief?

## Probit Estimation of Selection of Applying for Tax Relief

|                     |                  | Separated Probit Model |           |           |           |           |           |
|---------------------|------------------|------------------------|-----------|-----------|-----------|-----------|-----------|
|                     | Pooled           | 2012                   | 2013      | 2014      | 2015      | 2016      | 2017      |
| Wage earner         | 0.478***         | 0.457***               | 0.228**   | 0.611***  | 0.538***  | 0.440***  | 0.809***  |
|                     | (0.069)          | (0.097)                | (0.095)   | (0.133)   | (0.122)   | (0.107)   | (0.130)   |
| # Tax accountant    | 0.852**          | 0.110                  | -0.464    | -0.204    | -0.178    | -0.293    | -0.130    |
|                     | (0.363)          | (0.584)                | (0.442)   | (0.373)   | (0.241)   | (0.221)   | (0.244)   |
| log(first price)    | -0.150           | -1.132                 | -1.979**  |           |           |           |           |
|                     | (0.271)          | (0.884)                | (0.873)   |           |           |           |           |
| log(income)         | 18.959***        | 15.896***              | 16.033*** | 18.768*** | 19.124*** | 17.022*** | 21.084*** |
|                     | (1.025)          | (3.049)                | (2.993)   | (1.514)   | (1.399)   | (1.334)   | (1.354)   |
| Age                 | 0.041***         | 0.057***               | 0.036*    | 0.044     | 0.023     | 0.027     | 0.058***  |
|                     | (0.006)          | (0.021)                | (0.020)   | (0.027)   | (0.024)   | (0.022)   | (0.022)   |
| Square of age       | -0.044***        | -0.062***              | -0.036*   | -0.049    | -0.031    | -0.027    | -0.060**  |
|                     | (0.006)          | (0.024)                | (0.022)   | (0.031)   | (0.027)   | (0.025)   | (0.024)   |
| female              | 0.111***         | 0.012                  | 0.216***  | 0.153*    | 0.068     | 0.029     | 0.181***  |
|                     | (0.037)          | (0.068)                | (0.066)   | (0.080)   | (0.075)   | (0.072)   | (0.069)   |
| University graduate | 0.183***         | 0.294**                | 0.262*    | 0.150     | 0.194     | 0.268     | -0.098    |
|                     | (0.056)          | (0.149)                | (0.139)   | (0.192)   | (0.191)   | (0.180)   | (0.166)   |
| Highschool graduate | 0.138***         | 0.265*                 | 0.224*    | 0.044     | 0.171     | 0.172     | -0.092    |
|                     | (0.051)          | (0.144)                | (0.133)   | (0.188)   | (0.187)   | (0.176)   | (0.162)   |
| Num.Obs.            | 26922            | 4261                   | 4391      | 4383      | 4550      | 4611      | 4726      |
| Log.Lik.            | -7489.763        | -1383.811              | -1432.453 | -977.129  | -1116.751 | -1181.082 | -1267.813 |
| Std. Errors         | Clustered (year) | Standard               | Standard  | Standard  | Standard  | Standard  | Standard  |
| FE: year            | X                |                        |           |           |           |           |           |

#### **Estimating Conventional Price Elasticities**

#### Intensive-Margin Price Elasticity

|                                                     |           | FE        | FE        | -2SLS   |           |
|-----------------------------------------------------|-----------|-----------|-----------|---------|-----------|
|                                                     | (1)       | (2)       | (3)       | (4)     | (5)       |
| Application × log(first price)                      | -0.851*** |           |           | -0.813  | -1.716*   |
|                                                     | (0.219)   |           |           | (0.854) | (0.907)   |
| PS of application $\times \log(\text{first price})$ |           | -1.527*** | -1.561*** |         |           |
|                                                     |           | (0.371)   | (0.354)   |         |           |
| Num.Obs.                                            | 7109      | 7080      | 7080      | 7080    | 7080      |
| R2                                                  | 0.820     | 0.820     | 0.820     | 0.820   | 0.820     |
| First-stage: Instrument                             |           |           |           | -0.360  | -0.250    |
|                                                     |           |           |           | [162.5] | [181.0]   |
| R2 Adj.                                             | 0.693     | 0.693     | 0.694     | 0.694   | 0.692     |
| FE: area                                            | X         | X         | X         | X       | X         |
| FE: industry                                        | X         | X         | X         | X       | X         |
| FE: panelid                                         | X         | X         | X         | Χ       | X         |
| FE: year                                            | X         | X         | X         | Χ       | Χ         |
| Square of age                                       | X         | X         | X         | X       | Χ         |
| Method of Propensity Score                          |           | Pooled    | Separated | Pooled  | Separated |

Notes:  $^*$  p < 0.1,  $^{**}$  p < 0.05,  $^{***}$  p < 0.01. Standard errors are clustered at individual level. A square bracket is wald statistics of instrument.

#### Extensive-Margin Price Elasticity

|                                             |                      | FE                   |                      |                      | 2SLS                 |
|---------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                             | (1)                  | (2)                  | (3)                  | (4)                  | (5)                  |
| Application $\times$ log(first price)       | -2.759***<br>(0.074) |                      |                      | -1.401***<br>(0.208) | -1.847***<br>(0.193) |
| PS of application $\times$ log(first price) |                      | -0.474***<br>(0.103) | -0.563***<br>(0.097) |                      |                      |
| Num.Obs.                                    | 27076                | 26922                | 26922                | 26922                | 26922                |
| R2                                          | 0.717                | 0.663                | 0.663                | 0.704                | 0.712                |
| First-stage: Instrument                     |                      |                      |                      | -0.275               | -0.216               |
|                                             |                      |                      |                      | [347.9]              | [375.7]              |
| Implied price elasticity                    | -10.509***           | -1.804***            | -2.141***            | -5.326***            | -7.024***            |
|                                             | (0.281)              | (0.390)              | (0.369)              | (0.792)              | (0.733)              |
| R2 Adj.                                     | 0.620                | 0.547                | 0.547                | 0.603                | 0.613                |
| FE: area                                    | X                    | X                    | X                    | X                    | X                    |
| FE: industry                                | X                    | X                    | X                    | X                    | X                    |
| FE: panelid                                 | X                    | X                    | X                    | X                    | X                    |
| FE: year                                    | X                    | X                    | X                    | X                    | X                    |
| Square of age                               | Χ                    | Х                    | Х                    | Х                    | X                    |

Notes:  $^*$  p < 0.1,  $^{**}$  p < 0.05,  $^{***}$  p < 0.01. Standard errors are clustered at individual level. A square bracket is wald statistics of instrument.

# Control Function Approach

## Estimation of Outcome Equation for $R_{it}=1$

|                                      | (1)       | (2)       | (3)       |
|--------------------------------------|-----------|-----------|-----------|
| log(first price)                     | -1.325*** | -1.307*** | -1.279*** |
|                                      | (0.386)   | (0.384)   | (0.387)   |
| log(income)                          | 2.030     | 1.455     | 3.957*    |
|                                      | (1.515)   | (1.837)   | (2.229)   |
| Selection correction term (separate) |           | -0.056    |           |
|                                      |           | (0.133)   |           |
| Selection correction term (pool)     |           |           | 0.209     |
|                                      |           |           | (0.193)   |
| Num.Obs.                             | 3646      | 3643      | 3643      |
| R2                                   | 0.839     | 0.839     | 0.839     |
| R2 Adj.                              | 0.726     | 0.725     | 0.726     |
| FE: area                             | X         | X         | X         |
| FE: industry                         | X         | X         | X         |
| FE: panelid                          | X         | X         | X         |
| FE: year                             | X         | X         | X         |
| Square of Age                        | X         | Χ         | X         |

Notes: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

## Estimation of Outcome Equation for $R_{it}=0$

|                                      |         | Intensive |         |         | Extensive |         |  |
|--------------------------------------|---------|-----------|---------|---------|-----------|---------|--|
|                                      | (1)     | (2)       | (3)     | (4)     | (5)       | (6)     |  |
| log(income)                          | 0.696   | 2.765     | 4.660   | 0.535** | 0.513     | 0.524   |  |
| -, ,                                 | (1.613) | (3.186)   | (4.188) | (0.249) | (0.352)   | (0.405) |  |
| Selection correction term (separate) | , ,     | -0.176    | , ,     | , ,     | 0.001     | , ,     |  |
| , , ,                                |         | (0.248)   |         |         | (0.031)   |         |  |
| Selection correction term (pool)     |         | , ,       | -0.340  |         | , ,       | 0.000   |  |
|                                      |         |           | (0.305) |         |           | (0.040) |  |
| Num.Obs.                             | 3463    | 3437      | 3437    | 23430   | 23279     | 23279   |  |
| R2                                   | 0.865   | 0.866     | 0.866   | 0.580   | 0.580     | 0.580   |  |
| R2 Adj.                              | 0.685   | 0.687     | 0.687   | 0.419   | 0.420     | 0.420   |  |
| FE: area                             | X       | Χ         | Χ       | X       | Χ         | X       |  |
| FE: industry                         | X       | X         | Χ       | Χ       | X         | X       |  |
| FE: panelid                          | X       | X         | Χ       | Χ       | X         | X       |  |
| FE: year                             | X       | X         | X       | Χ       | X         | X       |  |
| Square of Age                        | X       | X         | X       | X       | X         | X       |  |

Notes: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01.

## Estimating Effect of Tax Incentive

| Outcome   | Include correction term? | ATE   | ATT   | ATU    |
|-----------|--------------------------|-------|-------|--------|
| extensive | No                       | 0.834 | 0.624 | 0.852  |
|           | Pool                     | 0.834 | 0.623 | 0.852  |
|           | Separate                 | 0.834 | 0.622 | 0.852  |
| intensive | No                       | 0.112 | 0.151 | 0.086  |
|           | Pool                     | 0.062 | 0.416 | -0.178 |
|           | Separate                 | 0.206 | 0.283 | 0.153  |

# Welfare Implication

## Partial Effect of Price (Subsets with $R_{it} = 0$ )

|                 | (1)       | (2)        | (3)       |
|-----------------|-----------|------------|-----------|
| First price     | 46.257    | 77.970     | 56.066    |
|                 | (147.244) | (156.865)  | (147.440) |
| log(income)     | -256.907  | -965.220   | -646.690  |
|                 | (425.966) | (1025.181) | (807.601) |
| Correction term |           | 69.254     | 42.673    |
|                 |           | (70.117)   | (56.301)  |
| Num.Obs.        | 3463      | 3437       | 3437      |
| R2 Adj.         | 0.622     | 0.622      | 0.622     |
| FE: area        | X         | X          | X         |
| FE: industry    | X         | X          | X         |
| FE: panelid     | X         | X          | X         |
| FE: year        | X         | X          | X         |
| Square age      | X         | X          | X         |
| Method of IMR   |           | Pooled     | Separate  |

Notes: \* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01. Standard errors are clustered at individual level.

## Improve Welfare by Increasing Tax Incentive

| model | Elasticity (R $= 1$ ) | Partial Effect (R $=$ 0) | Sum of Giving (R $=$ 1) | Partial Effect (R $=$ 0) $/$ Sum of Giving (R $=$ 1) |
|-------|-----------------------|--------------------------|-------------------------|------------------------------------------------------|
| (1)   | 1.325                 | 160187.730               | 639992.100              | 0.250                                                |
| (2)   | 1.307                 | 267982.430               | 639992.100              | 0.419                                                |
| (3)   | 1.279                 | 192700.418               | 639992.100              | 0.301                                                |

Partial effect for  $\mathsf{R}=\mathsf{0}$  is multiplied by observations.

#### Conclusion

#### References

#### References

- Almunia, M., Guceri, I., Lockwood, B., Scharf, K., 2020. More giving or more givers? The effects of tax incentives on charitable donations in the UK. Journal of Public Economics 183. doi:10.1016/j.jpubeco.2019.104114
- Auten, G.E., Sieg, H., Clotfelter, C.T., 2002. Charitable giving, income, and taxes: An analysis of panel data. American Economic Review 92, 371–382.
- Fack, G., Landais, C., 2016. The effect of tax enforcement on tax elasticities: Evidence from charitable contributions in france. Journal of Public Economics 133, 23–40. doi:https://doi.org/10.1016/j.jpubeco.2015.10.004
- Gillitzer, C., Skov, P.E., 2018. The use of third-party information reporting for tax deductions: evidence and implications from charitable deductions in Denmark. Oxford Economic Papers 70, 892–916. doi:10.1093/oep/gpx055
- Saez, E., 2004. The optimal treatment of tax expenditures. Journal of Public Economics 88, 2657–2684. doi:10.1016/j.jpubeco.2003.09.004