IMDb watchlist web scraping

Goal to achieve

- Collect every item on my personal Imdb watchlist
- Put every relevant information in a dataframe
 - Title, Rating, Release year, Plot, Summary
- Handle missing items
- With the help of AI do a sentiment analysis based on the short Plot and on the Summary
 - Sentiment_analyzer
 - ChatGPT prompt
- Compare the results of the analysis

Data + difficulties

- Website Watchlist
- The basic list contains 2723 items \rightarrow **2491** items were used for the analysis
 - 221 items were removed during the cleaning process due to missing year
 - 5 items were removed during the cleaning process due to missing plot (2 were removed in the previous step)
 - 12 items were removed during the cleaning process(3 were removed in the previous steps)

- The base of the data is my personal watchlist on IMDb
- The website alters the backend code from time to time that requires code modification on a regular basis
- I started the project in Google colab, however due to usage restrictions it had to be rebuilt in jupyter notebook
- Sentiment analysis Al part of the project provides ambiguous results

Results / 1

Plot-based Sentiment Categories

- Strongly Negative → 1,056 movies
- Negative → 30 movies
- Neutral → (not detected)
- Positive → 39 movies
- Strongly Positive → 1,366 movies

Summary-based Sentiment Categories

- Strongly Negative → 281 movies
- Negative → 126 movies
- Neutral → 308 movies
- Positive → 357 movies
- Strongly Positive → 1,419 movies

Results / 2

Chat GPT results Emotional categories

- Strongly Negative → 448 movies
- Negative → 861 movies
- Neutral → 461 movies
- Positive → 721 movies

Summary

- ChatGPT was working with the Plot only
- According to the sentiment analyzer
 - 43.59% of the movies are Negative
 - o 56.41% of the movies are Positive
- According to ChatGPT the distribution is more even
 - o 52.54% of the movies are Negative
 - o 28.94% of the movies are Positive

(G)	SENTIMENT	ANALYSTS	RESULTS

∠ PERCENTAGE DISTRIBUTION

sentiment_category	plot_percentage	summary_percentage	gpt_percentage
Strongly Negative	42.39%	11.28%	17.98%
Negative	1.2%	5.06%	34.56%
Neutral	0.0%	12.36%	18.51%
Positive	1.57%	14.33%	28.94%
Strongly Positive	54.84%	56.97%	0.0%

RAW COUNT DISTRIBUTION

sentiment_	category	plot_count	summary_count	gpt_count
Strongly	Negative	1056	281	448
	Negative	30	126	861
	Neutral	0	308	461
	Positive	39	357	721
Strongly	Positive	1366	1419	0

IN SUMMARY STATISTICS

Most Common Sentiments: Summary: Strongly Positive Plot: Strongly Positive

GPT: Negative

Lessons learned / next steps

- Reduce duplicates during web scraping
- Handle the missing year items (a series has a start and end date)
- Other alternatives to sentiment analysis → chatGPT / claude
- Re-run the analysis multiple times to compare the results
- Revise the scraping code to make it more efficient
- Use the IMDb API for more efficiency