Capitlu 5 lahiri 4-10>=0 PM $\phi(x_1)\phi(x_2) = \phi_t(x_1)\phi_t(x_2) + \phi_t(x_1)\phi_t(x_2)$ +4+(X) +4-(X)++(X) = \$\psi_{(\chi_1)} \phi_{\chi_1}(\chi_1) \phi_{\chi_2}(\chi_1) \ph + \$ + (x2) \$ - (x2) \$ + (x2) TO SERVER $= : \phi(x_1)\phi(x_2): + [\phi_+(x_1), \phi_-(x_2)]$ === (x1) & (x1): + [d, (x1), 6-(x2)] <0/0> [=: ((x_L) ((x_L)): + <0 [((x_L)), φ_((x_L))] (0) =: (((x_L)) (((x_L)): + φ_L ((x_L)) φ_(((x_L))) (0) EKHANION OF A MARKET STATES & CXXXXXXX Carlow War to Sa <0| ((x) \(\psi \) = <0| \$1 (XL) \$-(XZ) 10> &(x,)φ(x)=: d(x) φ(x); + <01φ(x) φ(x) lo>

T[d(x) d(x)]= O(b1-b2)d(x) d(x2)+(0(b2-b1)d(x2))d(x2)

 $20(t_1-t_7):\phi(x_1)\phi(x_7):t0(t_7-t_1):\phi(x_2)\phi(x_1).$ $t0(t_1-t_7):\phi(x_1)\phi(x_1)\phi(x_2)i07+0(t_7-t_7):c0(\phi(x_7)\phi(x_1))o>$ $t0(x_1)\phi(x_1):\chi(\phi_1(x_2)\phi_1(x_3))+\chi(x_1)\chi(x_2)+\chi(x_1)\psi(x_1)$ $t0(x_1)\phi(x_1):\chi(\phi_1(x_2)\phi_1(x_3))+\chi(x_1)\psi(x_2)+\chi(x_1)\psi(x_2)$ $t0(x_1)\phi(x_1):\chi(\phi_1(x_2)\phi_1(x_3))+\chi(x_1)\psi(x_2)+\chi(x_1)\psi(x_2)$ $t0(x_1)\phi(x_1):\chi(\phi_1(x_1))+\chi(x_1)\psi(x_2)+\chi(x_1)\psi(x_2)$ $t0(x_1)\phi(x_2):\chi(\phi_1(x_2))+\chi(\phi$

 $= \phi_1(x_1)\phi_1(x_2) + \phi_1(x_2)\phi_2(x_1) + \phi_1(x_1)\phi_1(x_2)\phi_1(x_2)\phi_1(x_1)\phi_1(x_1)\phi_1($

EARTHUR CANOS=

 $T[\psi(x_1)\phi(x_2)] = [0(t_1-t_2)+0(t_2-t_1)] : \phi(x_1)\phi(x_2):$ $+ (0) \theta(t_1-t_2)\phi(x_1) + \theta(t_2-t_1)\phi(x_2) + \phi(x_2) + \phi(x_2$