基本知识和背景 指数非一致界(主要结果) Stein 方法在统计物理中的应用 创新和不足

Stein 方法及其在统计物理中的应用 毕业论文答辩

巩舒阳

2017 级统计班

2021年5月21日

目录

- ① 基本知识和背景
 - 正态分布的刻画
 - Stein 方程
 - 一致界
- 2 指数非一致界(主要结果)
 - Zero bias 分布
 - Exchangeable pairs
 - Size bias
- ③ Stein 方法在统计物理中的应用
 - Combinatorial CLT on Conjugacy Classes
 - Anti-voter Model
 - Quadratic Forms
 - Lightbulb Process
 - Patterns in Graphs and Permutations

正态分布的刻间 Stein 方程 一致界

Section 1

基本知识和背景

正态分布的刻画

关于正态分布, 我们有如下重要定理:

正态分布的刻画(引理 1.1)

W 服从标准正态分布,当且仅当对于任意满足 $\mathbb{E}[|f'(W)|] < \infty$ 的绝对连续函数 f,我们有

$$\mathbb{E}f'(W) = \mathbb{E}(Wf(W))$$

Remark

我们将用 $|\mathbb{E}(f'(W) - Wf(W))|$ 的大小来衡量近似程度,给出上界。

Stein 方程

下面介绍证明非一致界的重要工具:

Stein 方程的解 (引理 1.2)

Stein 方程

$$f'(x) - xf(x) = \mathbf{1}\{x \le z\} - \mathbb{P}(Z \le z)$$

的解可以写作如下形式

$$f_z(x) = \begin{cases} \sqrt{2\pi} e^{x^2/2} \Phi(x) (1 - \Phi(z)), & x < z \\ \sqrt{2\pi} e^{x^2/2} \Phi(z) (1 - \Phi(x)), & x \ge z \end{cases}$$

Remark

Stein 方程解具有很好的衰减性和光滑性。

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・夕久の

学院

一致界

Berry-Esseen 界 (Berry(1941)、Esseen(1942))

我们假设 $\xi_1, \xi_2, \dots, \xi_n$ 是一列 0 均值相互独立的随机变量,满足 $\sum_{i=1}^n \mathsf{Var}(\xi_i) = 1$,令 $W = \sum_{i=1}^n \xi_i$,F 为 W 的分布, Φ 为标准正态分布,有

$$\sup_{x \in \mathbb{R}} |F(x) - \Phi(x)| \le C \sum_{i=1}^{n} E|\xi_i|^3$$

Remark

一般地,利用 Stein 方法我们能够获得 $O(\frac{1}{\sqrt{n}})$ 的上界,而且一致 界与这里的 x 是无关的。本文中,我们常用技巧有: exchangeable pairs, zero bias, size bias,分别给出三个有关非一致界的定理。

目录

- 1 基本知识和背景
 - 正态分布的刻画
 - Stein 方程
 - 一致界
- 2 指数非一致界(主要结果)
 - Zero bias 分布
 - Exchangeable pairs
 - Size bias
- ③ Stein 方法在统计物理中的应用
 - Combinatorial CLT on Conjugacy Classes
 - Anti-voter Model
 - Quadratic Forms
 - Lightbulb Process
 - Patterns in Graphs and Permutations

Zero bias 分布 Exchangeable pair Size bias

Section 2

指数非一致界(主要结果)

非一致界的提出

Chen and Shao(2001)

 X_i 是一列独立但不一定同分布的随机变量,令 $W = \sum_{i=1}^n X_i$,存在一个绝对常数 C,使得

$$|F(x) - \Phi(x)| \le C \sum_{i=1}^{n} \left\{ \frac{\mathbb{E}X_i^2 I(|X_i| > 1 + |x|)}{(1 + |x|)^2} + \frac{\mathbb{E}|X_i|^3 I(|X_i| \le 1 + |x|)}{(1 + |x|)^3} \right\}$$

Remark

Louis H.Y. Chen 和 Q.M. Shao 主要利用了 Stein 方法和集中不等式方法,获得了一个 $O(|x|^{-2})$ 的非一致界。与之相比,本文主要证明了指数型的非一致界。

/ HI水入子双子子院

Zero bias 分布的非一致界

定理 3.1

令 W 为 0 均值方差为 1 的随机变量,|W| 具有有限的矩母函数 且 $\mathbb{E}e^{W^2}<\infty$,假设 W' 具有 W 的 zero bias 分布,且有 $|W'-W|\leq\delta$,那么对于任意的常数 M>0,存在常数 $C_i,i=1,2,3$,使得

$$|\mathbb{P}(W \le z) - \mathbb{P}(Z \le z)| \le \begin{cases} C_1 \delta e^{-\frac{(z+2\delta)^2}{2}}, & z \le -M - 2\delta \\ C_2 \delta e^{-\frac{z^2}{2}}, & |z| \le M + 2\delta \\ C_3 \delta e^{-\frac{(z-2\delta)^2}{2}}, & z \ge M + 2\delta \end{cases}$$

Remark

上式可以以指数下降,这里的常数 C_i 依赖于 W,不依赖于 z。

定理 3.1 的证明思路

证明思路

首先通过 zero bias 分布的定义 $(\sigma^2 \mathbb{E} f'(W') = \mathbb{E}(Wf(W)))$, 我们很容易将该问题转换为求 $|\mathbb{E}(Wf(W) - W'f(W'))|$ 的上界,显然根据 Stein 方程解的性质 xf(x) 在 \mathbb{R} 上是分段可导的,所以分别考虑 事件 $\{z \leq W\}$ 和 $\{z > W\}$ 上的积分,在其中一个上使用 Lagrange 中值定理,另一个使用 Chebyshev 不等式,分 6 种情况考虑。

exchangeable pairs 的非一致界

定理 3.2

若(W,W')为0均值方差为1的可交换对,且满足

$$\mathbb{E}(W - W'|W) = \lambda(W - R), \quad \mathbf{\sharp} \mathbf{h} \lambda \in (0, 1)$$

|W| 具有有限的矩母函数且 $\mathbb{E}e^{W^2}<\infty$,且有 $|W'-W|\leq\delta$ 。那么对于任意常数 M>0,存在仅依赖于 δ,W,M 但不依赖于 z 的常数 C,使得下式成立

$$|\mathbb{P}(W \leq z) - \mathbb{P}(Z \leq z)| \leq \begin{cases} C(B' + \frac{\delta^3}{2\lambda} + \frac{\delta^2}{2\lambda} + \|R\|_2)e^{-\frac{z^2}{2}}, & |z| \geq M \\ C(B' + 1.5\delta + \frac{0.41\delta^3}{\lambda} + \frac{\sqrt{2\pi}}{4}\|R\|_2)e^{-\frac{z^2}{2}}, & |z| < M \end{cases}$$

其中
$$B' = \|\mathbb{E}\left(1 - \frac{(W - W')^2}{2\lambda}|W\right)\|_2$$
。

定理 3.2 的证明思路

证明思路

分为以下三个部分分别进行估计:

$$\left| \mathbb{E} \Big(f'(W) (1 - \frac{\Delta^2}{2\lambda}) \Big) \right|$$

$$\left| \mathbb{E} \Big(\frac{f'\left(W\right) \left(W'-W\right)^2 - \left(f\left(W'\right) - f\left(W\right)\right) \left(W'-W\right)}{2\lambda} \right) \right|$$

$$\mathbb{E}(Rf(W))$$

与定理 3.1 相似,根据 Lagrange 中值定理和 Taylor 展开在两个事件上分类讨论。

size bias 的非一致界

定理 3.3

若 Y^s 具有 Y-size bias 分布,且满足 $|Y^s-Y| \le A$,|W| 具有有限 矩母函数且 $\mathbb{E}e^{W^2} < \infty$,那么对于任意的常数 M > 0,不依赖于 z 的常数 C,使得下式成立

$$|\mathbb{P}(W \leq z) - \mathbb{P}(Z \leq z)| \leq \begin{cases} C\left(D' + \frac{\mu A}{\sigma^2} + \frac{\mu A^2}{\sigma^3}\right)e^{-\frac{z^2}{2}}, & |z| \geq M \\ C\left(2D + \frac{6\mu A^2}{\sigma^3}\right)e^{-\frac{z^2}{2}}, & |z| < M \end{cases}$$

这里 $D' = \|\mathbb{E}(1 - \frac{\mu}{\sigma}(W^s - W)|W)\|_2$

定理 3.3 的证明思路

证明思路

,

分为以下两部分证明

$$E\left|f'(W)\left(1-\frac{\mu}{\sigma}\left(W^s-W\right)\right)\right|$$

$$\frac{\mu}{\sigma} E \left| \left(f(W^s) - f(W) - f'(W) (W^s - W) \right) \right|$$

与之前类似,根据根据 Lagrange 中值定理和 Taylor 展开在两个事件上分类讨论。

目录

- ① 基本知识和背景
 - 正态分布的刻画
 - Stein 方程
 - 一致界
- 2 指数非一致界(主要结果)
 - Zero bias 分布
 - Exchangeable pairs
 - Size bias
- ③ Stein 方法在统计物理中的应用
 - Combinatorial CLT on Conjugacy Classes
 - Anti-voter Model
 - Quadratic Forms
 - Lightbulb Process
 - Patterns in Graphs and Permutations

Compinatorial CLT on Conjugacy Classe Anti-voter Model Quadratic Forms Lightbulb Process Patterns in Graphs and Permutations

Section 3

Stein 方法在统计物理中的应用

Combinatorial CLT on Conjugacy Classes

定理 4.2

设 $n \ge 5$ 且 $\{a_{ij}\}_{i,j=1}^n$ 为一对称矩阵, π 为一随机置换并在各 cycle type 上保持均匀分布,而且没有固定点(即 $\pi(k) \ne k$),我们令 $W = \frac{Y - \mathbb{E} Y}{\sigma_\rho}$,对任意常数 M > 0,我们有,

$$\begin{split} &|\mathbb{P}(W \leq z) - \mathbb{P}(Z_{\rho} \leq z)| \\ &\leq \begin{cases} C_{1}40 \max_{i \neq j} |a_{ij} - 2a_{io} + a_{oo}| e^{-\frac{(z+2\delta)^{2}}{2}} \sum_{c \in \mathcal{N}_{n}} \frac{\rho_{c}}{\sigma_{c}}, & z \leq -M - 2\delta \\ C_{2}40 \max_{i \neq j} |a_{ij} - 2a_{io} + a_{oo}| e^{-\frac{z^{2}}{2}} \sum_{c \in \mathcal{N}_{n}} \frac{\rho_{c}}{\sigma_{c}}, & |z| < M + 2\delta \\ C_{3}40 \max_{i \neq j} |a_{ij} - 2a_{io} + a_{oo}| e^{-\frac{(z-2\delta)^{2}}{2}} \sum_{c \in \mathcal{N}_{n}} \frac{\rho_{c}}{\sigma_{c}}, & z \geq M + 2\delta \end{cases} \end{split}$$

Anti-voter Model

定理 4.4

令 $\{X^{(t)}: t=0,1,\cdots\}$ 为一个图 $\mathcal{G}=(V,\mathcal{E})$ 上的具有平稳分布的马氏链。这个图满足如下性质: (1) 具有 n 个顶点; (2) 是 r-regular的; (3) 既不是 n-cycle 也不是二分(bipartite)的。我们令 U表示 X 上的符号和,即 $U=\sum_{v\in V}X_v$ 。

令 $W=U/\sigma$, $\sigma^2=Var(U)$, $Q=\sum_{v\in\mathcal{V}}\sum_{w\in N_v}X_vX_w$, 则对任意的常数 M>0, 存在不依赖于 z 的常数 C, 使得下式成立

$$\begin{split} &|\mathbb{P}(W \leq z) - \mathbb{P}(Z \leq z)| \\ &\leq \begin{cases} C\Big(\frac{\sqrt{Var(Q)}}{2r\sigma^2} + \frac{2n}{\sigma^3} + \frac{n}{\sigma^2}\Big)e^{-\frac{z^2}{2}}, & |z| \geq M \\ C\Big(\frac{\sqrt{Var(Q)}}{2r\sigma^2} + \frac{3}{\sigma} + \frac{1.64n}{\sigma^3}\Big)e^{-\frac{z^2}{2}}, & |z| < M \end{cases} \end{split}$$

学院

Quadratic Forms

定理 4.5

令 X_1, \dots, X_n 为一列 0 均值,方差为 1 的随机变量,有界 $(|X_i| \le A, i = 1, 2, \dots, n)$ 的独立同分布随机变量, $A = \{a_{ij}\}_{i,j=1}^n$ 为对 角线为 0 对

称矩阵,令 $W_n=\sum_{1\leq i\neq j\leq n}a_{ij}X_iX_j$, $\sigma_n^2=2\sum_{i,j=1}^na_{ij}^2$,存在 C, C_0 ,使得

$$|P(W \le z) - P(Z \le z)|$$

$$\leq \begin{cases} C\left(\frac{C_0A^4}{\sigma_n^2}\sqrt{\sum_{i=1}^n\left(\sum_{j=1}^na_{ij}^2\right)^2 + \sum_{i=1}^n\sum_{j=1}^n\left(\sum_{k=1}^na_{ik}a_{jk}\right)^2} + \frac{16nA^6}{\sigma_n^3}\left(\max_{1\leq i\leq n}\left(\sum_{j=1}^n|a_{ij}|\right)\right)^3 + \frac{4nA^4}{\sigma_n^2}\left(\max_{1\leq i\leq n}\left(\sum_{j=1}^n|a_{ij}|\right)\right)^2\right)e^{-\frac{z^2}{2}}, & |z| \geq M \\ C\left(\frac{C_0A^4}{\sigma_n^2}\sqrt{\sum_{i=1}^n\left(\sum_{j=1}^na_{ij}^2\right)^2 + \sum_{i=1}^n\sum_{j=1}^n\left(\sum_{k=1}^na_{ik}a_{jk}\right)^2} + \frac{6A^2}{\sigma_n}\max_{1\leq i\leq n}\left(\sum_{j=1}^n|a_{ij}|\right) + \frac{13.12nA^6}{\sigma_n^3}\left(\max_{1\leq i\leq n}\left(\sum_{j=1}^n|a_{ij}|\right)\right)^3\right)e^{-\frac{z^2}{2}}, & |z| < M \end{cases}$$

Lightbulb Process

定理 4.7

令 Y 为时刻终止时刻 n 时亮着的灯泡数目, μ 和 σ^2 为它的期望和方差,令 $W=\frac{Y-\mu}{\sigma}$,对于任意偶数 n,M>0,存在不依赖于 z 常数 C,我们有:

$$|\mathbb{P}(W \le z) - \mathbb{P}(Z \le z)| \le \begin{cases} C\left(\frac{\mu}{\sigma^2}\Psi + \frac{2\mu}{\sigma^2} + \frac{4\mu}{\sigma^3}\right)e^{-\frac{z^2}{2}}, & |z| \ge M \\ C\left(\frac{24\mu}{\sigma^3} + \frac{2\mu}{\sigma^2}\Psi\right)e^{-\frac{z^2}{2}}, & |z| < M \end{cases}$$

这里, Ψ满足

$$\Psi \le \frac{1}{2\sqrt{n}} + \frac{1}{2n} + e^{-\frac{n}{2}}$$

山东大学数学学院

Patterns in Graphs and Permutations

定义 (Dependency neighborhood)

考虑一类随机变量 $\mathbf{X} = \{X_{\alpha}, \alpha \in \mathscr{A}\}$ 。若 $\mathscr{B}_{\alpha} \subset \mathscr{A}$ 满足: X_{α} 和 $\{X_{\beta}: \beta \notin \mathscr{B}_{\alpha}\}$ 相互独立。那么称 \mathscr{B}_{α} 为 α 的相依邻域。

定理 4.9

令 $\mathbf{X} = X_{\alpha}, \alpha \in \mathcal{A}$ 为一类在 [0, M/2] 取值的随机变量,令 $Y = \sum_{\alpha \in \mathcal{A}} X_{\alpha}, \quad \mu = \sum_{\alpha \in \mathcal{A}} EX_{\alpha}, \quad \sigma^2 = Var(Y), p_{\alpha} = \frac{EX_{\alpha}}{\sum_{\beta \in \mathcal{A}} EX_{\beta}}, \quad \bar{p} = \max_{\alpha \in \mathcal{A}} p_{\alpha}, \quad b = \max_{\alpha \in \mathcal{A}} |\mathcal{B}_{\alpha}| \quad \mathbf{\diamondsuit} \mathbf{X}^{\alpha} \quad \mathbf{A} = \mathbf{A} \mathbf{X} \quad \mathbf{N} \quad \alpha\text{-size biased } \mathbf{N} \quad \mathbf{A} = \mathbf{A} \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} \quad \mathbf{A} = \mathbf{A} \quad \mathbf{A} \quad$

学院

Patterns in Graphs and Permutations

续定理 4.9

任意的 M > 0,我们有不依赖于 z 的 C,它满足

$$|\mathbb{P}(W \leq z) - \mathbb{P}(Z \leq z)| \leq \begin{cases} C\left(\frac{\mu\bar{p}bM\sqrt{|\mathcal{D}|}}{\sigma^2} + \frac{\mu bM}{\sigma^2} + \frac{\mu b^2M^2}{\sigma^3}\right)e^{-\frac{z^2}{2}}, & |z| \geq M \\ C\left(\frac{6\mu b^2M^2}{\sigma^3} + \frac{2\mu\bar{p}bM\sqrt{|\mathcal{D}|}}{\sigma^2}\right)e^{-\frac{z^2}{2}}, & |z| < M \end{cases}$$

目录

- 基本知识和背景
 - 正态分布的刻画
 - Stein 方程
 - 一致界
- ② 指数非一致界(主要结果)
 - Zero bias 分布
 - Exchangeable pairs
 - Size bias
- - Combinatorial CLT on Conjugacy Classes
 - Anti-voter Model
 - Quadratic Forms
 - Lightbulb Process
 - Patterns in Graphs and Permutations

基本知识和背景 指数非一致界(主要结果) Stein 方法在统计物理中的应用 创新和不足

Section 4

创新和不足

创新

• 计算出非一致的 Berry-esseen 界

创新

- 计算出非一致的 Berry-esseen 界
- 将非一致界应用到模型中, 可应用型强

创新

- 计算出非一致的 Berry-esseen 界
- 将非一致界应用到模型中, 可应用型强
- 非一致收敛速度是可调的

创新

- 计算出非一致的 Berry-esseen 界
- 将非一致界应用到模型中,可应用型强
- 非一致收敛速度是可调的
- 克服了特征函数法的缺陷

不足

不足

● 很多情况下, 常数 C 和 n 有关

不足

不足

- 很多情况下, 常数 C 和 n 有关
- 兼顾非一致和一致收敛速度

不足

不足

- 很多情况下, 常数 C 和 n 有关
- 兼顾非一致和一致收敛速度
- 不知是否能构造出 zero bias, size bias, exchangeable pair

