Table des matières

1	Factorisation d'un trinôme Définition - Discriminant	2 2		3.2 Résoudre une équation du second degré	4
	risée	2 2 2		Méthode - Résoudre une équation du second degré	4
2	Signe du trinôme et discriminant	3		3.3 Résoudre une inéquation du second degré 5 Méthode - Résoudre une inéquation du	5
	Propriété - Tableau de signes et discriminant	3		second degré	5
	Méthode - Établir le tableau de signes d'une fonction $f: x \mapsto ax^2 + bx + c \dots$	3		du second degré	5
3	Equations et inéquations du second degré	4		du second degré	5
	3.1 Définitions	4	4	4 Correction des exercices	6

Compétences travaillées	C	<u> </u>	©	*
• Calculer le discriminant associé à un polynôme de degré 2				
• Connaître le lien entre discriminant et signe d'un polynôme de degré 2				
• Dresser le tableau de signes d'une fonction polynôme de degré 2				
• Résoudre des équations et des inéquations du second degré				

Vocabulaire utilisé

• discriminant (p. 2)
• équation du second degré (p. 4)
• inéquation du second degré (p. 4)

1. Factorisation d'un trinôme

Définition

Discriminant

On considère un trinôme du second degré $ax^2 + bx + c$.

On appelle **discriminant** du polynôme, le nombre $(\Delta = b^2 - 4ac)$.

Propriété

Discriminant et forme factorisée

On considère un trinôme du second degré $ax^2 + bx + c$; et Δ son **discriminant**

1. Si $\Delta < 0$, on sait que le trinôme n'a pas de racine réelle. Il n'est pas factorisable dans \mathbb{R} .

2. Si $\Delta = 0$, on sait que le trinôme a **une racine double** : $x_0 = -\frac{b}{2a}$. Pour tout réel x, $ax^2 + bx + c = a(x - x_0)^2$.

3. Si $\Delta > 0$, on sait que le trinôme a **deux racines** : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. Pour tout réel x, $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

Démonstration

Forme factorisée

On sait que $ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$ (Forme canonique du trinôme).

On raisonne par disjonction des cas :

1. Dans le cas ou $\Delta = 0$:

$$ax^{2} + bx + c$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{0}{4a^{2}} \right]$$

$$= a \left(x + \frac{b}{2a} \right)^{2}$$

$$= a(x - x_{0})^{2}$$

2. Dans le cas ou $\Delta > 0$:

$$ax^{2} + bx + c$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \sqrt{\frac{\Delta}{4a^{2}}}\right]$$

$$= a\left[\left(x + \frac{b}{2a} - \sqrt{\frac{\Delta}{4a^{2}}}\right)\left(x + \frac{b}{2a} + \sqrt{\frac{\Delta}{4a^{2}}}\right)\right]$$

$$= a\left[\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\right]$$

$$= a\left[\left(x + \frac{b - \sqrt{\Delta}}{2a}\right)\left(x + \frac{b + \sqrt{\Delta}}{2a}\right)\right]$$

$$= a(x - x_{1})(x - x_{2})$$

■ Exercice 1 – Racines et forme factorisée

☆☆☆

/ 0

Soit f la fonction trinôme définie sur \mathbb{R} par $f(x) = 2x^2 + x - 3$. Ici, a = 2, $\Delta = 25$, $x_1 = -\frac{3}{2}$ et $x_2 = 1$ donc pour tout réel x, on a :

 $f(x) = 2\left(x + \frac{3}{2}\right)(x - 1)$

Vérifier les informations fournies par l'énoncé, en **calculant** Δ et en déterminant les racines de f.

2. Signe du trinôme et discriminant

Propriété

Tableau de signes et discriminant

Soit f une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$ et Δ son discriminant associé.

1. Si $\Delta < 0$, pas de racine réelle.

x	$-\infty$		+∞
f(x)		signe de <i>a</i>	

2. Si $\Delta = 0$, une racine double x_0 .

x	$-\infty$		x_0		+∞
f(x)		signe de <i>a</i>	0	signe de <i>a</i>	

3. Si $(\Delta > 0)$, deux racines distinctes $x_1 < x_2$.

x	$-\infty$		x_1		x_2		+∞
f(x)		signe de <i>a</i>	0	signe de -a	0	signe de <i>a</i>	

Méthode

Établir le tableau de signes d'une fonction $f: x \mapsto ax^2 + bx + c$

Construisons le tableau de signes de la fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 6x + 45$

1. Identifier les coefficients *a*, *b* et *c*. Attention aux signes de ces quantités!

$$a = -3$$
 , $b = 6$ et $c = 45$

2. Déterminer les racines éventuelles de f.

$$\Delta = b^2 - 4ac = 6^2 - 4 \times (-3) \times 45 = 576$$

 Δ est positif, donc l'équation f(x) = 0 à exactement 2 solutions.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-6 - \sqrt{576}}{2 \times (-3)} = 5$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-6 + \sqrt{576}}{2 \times (-3)} = -3$$

3. Déterminer le signe de a et la plus grande des deux valeurs x_1 et x_2 .

a.
$$a = -3 < 0 \rightarrow \text{signe } « - ».$$

b.
$$x_1 = 5$$
 et $x_2 = -3$ **donc** $x_2 < x_1$.

4. Utiliser la propriété ci-dessus pour construire le tableau de signes, en remplaçant a, x_1 et x_2 par leurs valeurs :

х	$-\infty$		-3		5		+∞
f(x)		_	0	+	0	_	

3. Equations et inéquations du second degré

Définitions

Définition

Équation et inéquation du second degré

Une équation du second degré est une équation qui peut s'écrire sous la forme :

$$ax^2 + bx + c = 0$$

où a, b et c sont des réels et $a \neq 0$.

Une inéquation du second degré est une inéquation qui peut s'écrire sous l'une des formes:

$$ax^2 + bx + c > 0$$
 ou $ax^2 + bx + c < 0$

$$ax^2 + bx + c \ge 0$$
 ou $ax^2 + bx + c \le 0$

où a, b et c sont des réels et $a \neq 0$.

Résoudre une équation du second degré 3.2

Méthode

Résoudre une équation du second degré

Pour résoudre une équation du second degré, on procède en plusieurs étapes :

- **1.** Réécrire l'équation sous forme développée $ax^2 + bx + c = 0$ avec $a \ne 0$.
- **2.** Identifier les coefficients a, b et c. Attention aux signes!
- **3.** Calculer le discriminant $\Delta = b^2 4ac$.
- **4. Déterminer les racines** selon le signe de Δ :

Si $\Delta < 0$: pas de solution réelle, donc $S = \emptyset$

Si $\Delta = 0$: une solution double $x_0 = -\frac{b}{2a}$ $\operatorname{donc}\left(S=\left\{x_{0}\right\}\right)$

Si $\Delta > 0$: deux solutions $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$, donc $S = \{x_1; x_2\}$

■ Exercice 2 — Résoudre une équation du second degré

/ 5

Résoudre l'équation : $2x^2 - 7x + 3 = 0$

1. Identification des coefficients :

$$a = 2$$
, $b = -7$ et $c = 3$

2. Calcul du discriminant :

$$\Delta = b^2 - 4ac = -7^2 - 4 \times 2 \times 3 = 49 - 24 = 25$$

3. Détermination des racines : $\Delta = 25 > 0$ donc l'équation admet deux solutions réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{7 - \sqrt{25}}{2 \times 2} = \frac{7 - 5}{4} = \frac{2}{4} = 0.5$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{7 + \sqrt{25}}{2 \times 2} = \frac{7 + 5}{4} = \frac{12}{4} = 3$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{7 + \sqrt{25}}{2 \times 2} = \frac{7 + 5}{4} = \frac{12}{4} = 3$$

4. Ensemble des solutions : $S = \{0,5,3\}$

Résoudre une inéquation du second degré

Méthode

Résoudre une inéquation du second degré

Pour résoudre une inéquation du second degré, on procède en plusieurs étapes :

- **1.** Réécrire l'inéquation sous la forme $ax^2 + bx + c > 0$ (ou $< 0, \ge 0, \le 0$) avec $a \ne 0$.
- **2.** Identifier les coefficients a, b et c. Attention aux signes!
- **3.** Calculer le discriminant $\Delta = b^2 4ac$.
- **4. Déterminer les racines** selon le signe de Δ (voir propriété précédente).
- **5.** Construire le tableau de signes du trinôme $ax^2 + bx + c$ en utilisant :

Le signe de *a* (hors des racines)

Les racines (si elles existent)

La règle : entre les racines, le signe est celui de -a

6. Lire la solution dans le tableau de signes selon l'inéquation demandée.

■ Exercice 3 – Résoudre une inéquation du second degré

/ 6

Résoudre l'inéquation : $-x^2 + 4x - 3 \ge 0$

1. Identification des coefficients :

a = -1, b = 4 et c = -3

2. Calcul du discriminant :

$$\Delta = b^2 - 4ac = 4^2 - 4 \times (-1) \times (-3) = 16 - 12 = 4$$

3. Détermination des racines :

$$\Delta = 4 > 0$$
 donc le trinôme admet deux racines réelles distinctes :
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{4}}{2 \times (-1)} = \frac{-4 - 2}{-2} = \frac{-6}{-2} = 3$$
 $x_2 = \frac{-b + 4}{2}$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{4}}{2 \times (-1)} = \frac{-4 + 2}{-2} = \frac{-2}{-2} = 1$$

4. Tableau de signe de $f: x \mapsto ax^2 + bx + c$:

On a a = -1 < 0 et $x_1 = 3$ et $x_2 = 1$ donc 1 < 3

On a u -	$311 \text{ d. } u = 1 \text{ d. } \text{ d. } x_1 = 3 \text{ c. } x_2 = 1 \text{ dolic } 1 \text{ d. } 3$										
x	$-\infty$		1		3		$+\infty$				
f(x)		_	0	+	0	_					

5. Solution de l'inéquation : On cherche où le trinôme est ≥ 0 , donc les

signes + et 0 :
$$S = \lceil 1; 3 \rceil$$

■ Exercice 4 - Résoudre une inéquation du second degré

/ 6

Résoudre l'inéquation : $-\frac{1}{2}x^2 + 2x + 1 < 0$

4. Correction des exercices

Solution de l'Exercice 1

1. Calcul du discriminant :

$$\Delta = b^2 - 4ac = 1^2 - 4 \times 2 \times (-3) = 1 + 24 = 25$$

2. Calcul des racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{25}}{2 \times 2} = \frac{-1 - 5}{4} = \frac{-6}{4} = -\frac{3}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 2} = \frac{-1 + 5}{4} = \frac{4}{4} = 1$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 2} = \frac{-1 + 5}{4} = \frac{4}{4} = 1$$

3. Forme factorisée :
$$f(x) = 2\left(x - \left(-\frac{3}{2}\right)\right)(x-1)$$
, soit :

$$f(x) = 2\left(x + \frac{3}{2}\right)(x-1)$$

Solution de l'Exercice 2

1. Identification des coefficients :

$$a = 2$$
, $b = -7$ et $c = 3$

2. Calcul du discriminant :
$$\Delta = b^2 - 4ac = -7^2 - 4 \times 2 \times 3 = 49 - 24 = 25$$

3. Détermination des racines :
$$\Delta = 25 > 0$$
 donc l'équation admet deux solutions réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{7 - \sqrt{25}}{2 \times 2} = \frac{7 - 5}{4} = \frac{2}{4} = 0.5$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{7 - \sqrt{25}}{2 \times 2} = \frac{7 - 5}{4} = \frac{2}{4} = 0.5$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{7 + \sqrt{25}}{2 \times 2} = \frac{7 + 5}{4} = \frac{12}{4} = 3$$

4. Ensemble des solutions :
$$S = \{0,5;3\}$$

Solution de l'Exercice 3

1. Identification des coefficients :

$$\overline{a} = -1$$
, $b = 4$ et $c = -3$

2. Calcul du discriminant :

$$\Delta = b^2 - 4ac = 4^2 - 4 \times (-1) \times (-3) = 16 - 12 = 4$$

3. Détermination des racines :

$$\Delta = 4 > 0$$
 donc le trinôme admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{4}}{2 \times (-1)} = \frac{-4 - 2}{-2} = \frac{-6}{-2} = 3$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{4}}{2 \times (-1)} = \frac{-4 + 2}{-2} = \frac{-2}{-2} = 1$$

4. Tableau de signe de $f: x \mapsto ax^2 + bx + c$: On a a = -1 < 0 et $x_1 = 3$ et $x_2 = 1$ donc 1 < 3

On a
$$a = -1 < 0$$
 et $x_1 = 3$ et $x_2 = 1$ donc $1 < 3$

O_{II} a α -	- 1 \	0 Ct 2	$\iota_1 - \iota_2$	Ct 12 -	– 1 u	OIIC I	
x	$-\infty$		1		3		$+\infty$
f(x)		_	0	+	0	_	

5. Solution de l'inéquation :

On cherche où le trinôme est ≥ 0 , donc les signes + et 0:

$$S = [1;3]$$

Solution de l'Exercice 4

1. Identification des coefficients :

 $\overline{a} = -0.5$, b = 2 et c = 1

2. Calcul du discriminant :

 $\Delta = b^2 - 4ac = 2^2 - 4 \times (-0.5) \times 1 = 4 + 2 = 6$

3. Détermination des racines :

 $\overline{\Delta} = 6 > 0$ donc le trinôme admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{6}}{2 \times (-0.5)} = 2 + \sqrt{6}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{6}}{2 \times (-0.5)} = 2 - \sqrt{6}$$

4. Tableau de signe de $f: x \mapsto ax^2 + bx + c$:

On a a = -0.5 < 0 et $x_1 = 2 + \sqrt{6}$ et $x_2 = 2 - \sqrt{6}$ donc $2 - \sqrt{6} < 2 + \sqrt{6}$

x	$-\infty$		$2-\sqrt{6}$		$2 + \sqrt{6}$		+∞
f(x)		_	0	+	0	_	

5. Solution de l'inéquation :

On cherche où le trinôme est < 0, donc les signes – (strictement) :

$$S =]-\infty; 2-\sqrt{6}[\cup]2+\sqrt{6}; +\infty[$$

