

Construção do modelo tridimensional da oficina de salga 2 localizada nas Ruínas Romanas de Tróia

Madalena Rodrigues n°55853, Pedro Almeida n°56897, Rómulo Nogueira n°56935

2º ano da Licenciatura em Tecnologias de Informação

Fundamentos e Técnicas de Visualização 2021/2022

Índice

Introdução	3
Desenho 2D	4
Desenho 3D	6
Telhado	
Ânforas	12
Texturas	
Resultados	15
Conclusão	16
Anexo	17
Cálculo da ânfora a fazer	17
Medidas dos tanques	17

Introdução

O objetivo principal do trabalho realizador passa por construir através da ferramenta AutoCAD, um modelo tridimensional realista da oficina de salga 2, localizada nas Ruínas Romanas de Tróia.

Iniciou-se o trabalho criando um novo Projeto denominado: "modelo2D_RuinasTroia.dwg", onde foram definidas as unidades de trabalho com os seguintes valores:

Figura 1 – Unidades de trabalho

Seguidamente foi definida uma grelha, com o espaçamento de 0.50m, assim como várias camadas de trabalho, representadas na figura seguinte:

Figura 2 - Definição inicial das diferentes layers

NOTA: As camadas criadas neste passo foram alteradas e incrementadas ao longo do desenvolvimento do trabalho. Foram ainda adicionadas outras que constam do ficheiro final.

Desenho 2D

Finalmente iniciou-se o desenho da planta 2D através da criação um quadrado de dimensões: 25x25m, com o intuito de definir o limite do chão no exterior do edifício e ainda delimitar a área de trabalho, como é possível verificar na Figura 3:

Figura 3 - Limite do chão no exterior do edifício

Após ter um limite bem definido para onde o edifício iria ficar, desenharam-se as paredes, tanto as exteriores como as interiores, utilizando para isso a ferramenta: "mline" ou "multiline", como é possível verificar na Figura 4.

Figura 4 - Paredes da oficina de salga2

Repetiu-se o passo anterior para criar os muros exteriores dos tanques (Figura 5), tanques estes que foram adicionados posteriormente, um a um, com as dimensões definidas no enunciado.

Estes foram numerados, tal como na planta presente no enunciado, utilizando a ferramenta: "text" (Figura 5).

Foram ainda criadas aberturas para as portas nas paredes, utilizando a ferramenta: "trim".

Figura 5 - Muros exteriores dos tanques

Figura 6 - Tanques e algumas portas

Para finalizar a planta 2D, foram divididos alguns dos retângulos definidos para os tanques de forma a criar os tanques menores inseridos nessas áreas. Estes foram legendados utilizando novamente a ferramenta "texto".

Para além disso, foram adicionados os muros do pátio com as dimensões adequadas para corresponderem ao desenho 3D anexo ao enunciado (Figura 7).

NOTA: As medidas utilizadas podem ser consultadas no anexo no final deste documento.

Figura 7 - Planta 2D final

Desenho 3D

Findo o desenho da planta 2D foi iniciada a adaptação da planta para 3D.

No menu "Visualize" foi selecionada a opção: "Viewport Configuration" e seguidamente "Two: Vertical", para que fosse possível ter duas visualizações do projeto em simultâneo: a planta 2D e o desenho 3D (Figura 8).

Figura 8 - Planta 2D e desenho 3D

Começou-se por erguer as paredes exteriores e interiores da oficina utilizando a ferramenta: "extrude", definindo a sua altura como: 3.5m.

Figura 9 - Paredes em 3D

NOTA: Percebeu-se que estas não ficavam totalmente preenchidas, ou seja, eram ocas e de forma a contornar esse problema, mais tarde foi criada uma "tampa". Este problema será abordado mais tarde no relatório. (pág.7)

Procedeu-se ao levantamento dos muros dos tanques (0.30m), utilizando novamente a ferramenta "extrude" (Figura 10).

Figura 10 - Muros dos tanques em 3D

Utilizando a mesma ferramenta foi ainda definida a profundidade dos tanques (1.45m) e levantado o muro do pátio (0.30m) (Figura 11).

Figura 11 - Profundidade dos tanques

Em seguida foi necessário fechar, o chão da oficina e o chão no exterior. Para o fazer, foram desenhadas as formas correspondentes com a ferramenta "polyline", e em seguida, foi-lhe aplicado um "extrude" de: 0.001m para que pudessem ser uma espécie de "tampa" (Figura x, Figura y).

Figura 12 - Forma do chão no interior da oficina

Figura 13 - Chão interior e chão exterior da oficina

O mesmo procedimento foi aplicado ao fundo dos tanques como é possível observar na Figura 14 (modo de visualização "Hidden") e na Figura 15 (modo de visualização "Realistic")

Figura 14 - Fundo dos tanques (modo "Hidden")

Figura 15 - Fundo dos tanques (modo "Realistic")

No passo que se segue foi utilizada a solução referida anteriormente para tapar o topo dos muros. Fizeram-se vários retângulos recorrendo à ferramenta "polyline", ao qual foi aplicado um "extrude" de: 0.001m. Desta forma é possível tapar os muros e as paredes impedindo assim que se veja o seu interior e que se veja através destes.

Figura 16 - Muros cobertos

Para concluir a definição das portas foram adicionados paralelepípedos, feitos com a ferramenta "extrude", com 1.40m de altura a 2.10m do chão (Figura x).

Figura 17 - Finalização das portas

Telhado

Depois de completar o 3D dos muros e tanques, seguiu-se a construção do telhado e respetiva estrutura de suporte.

Foi feito um "extrude" de 3.5 metros às colunas com 0.5 m de lado, e adicionadas as vigas que por estas são suportadas.

De forma a ter uma referência para juntar os pilares que se encontram acima das vigas e os seus suportes, foi feito o telhado através de um triângulo isósceles 2D com 17.30 m de base e 23.04 m nos restantes lados. De seguida utilizou-se um "extrude" de 21 m para o comprimento e de 0.32m para a grossura).

Figura 18 - Inserção do telhado

NOTA: As medidas das colunas e vigas foram adaptadas de forma a ficarem mais fiéis ao desenho fornecido no enunciado.

Depois disto foi colocada uma viga com 21~m de comprimento, e laterais de 0.23~m e 0.32~m para suportar o telhado.

Depois de ter esta referência, foram feitos os pilares de cima das vigas (representados a verde na Figura 19) com as medidas da seguinte tabela.

Pilares	Altura	Largura	Profundidade
1	1.67	0.30	0.30
2	1.67	0.60	0.30
3	1.67	0.30	0.30
4	3.13	0.30	0.30
5	3.26	0.60	0.30
6	3.26	0.30	0.30
7	1.67	0.30	0.30
8	1.67	0.60	0.30
9	1.67	0.30	0.30

Tabela 1 - Informações dos pilares

Acima destes pilares, foram adicionados os suportes para o telhado, primeiramente feito através de um triângulo em 2D, seguido de um "extrude" da largura do pilar que se encontra abaixo.

Pilares (m)	Altura (m)	Largura (m)
1	0.13	0.30
2	0.13	0.30
3	0.13	0.30
4	0.13	0.60
5	0.13	0.60
6	0.13	0.60
7	0.12	0.30
8	0.12	0.30
9	0.12	0.30

Tabela 2 - Medidas dos suportes do telhado

No passo seguinte, deu-se a colocação das vigas diagonais (representadas a laranja na Figura 20) que ajudam a suportar a estrutura do telhado, e dos respetivos apoios (representadas a preto também na Figura 20) que interligam estas às vigas horizontais (representadas a amarelo).

Vigas (m)	Comprimento (m)	Largura (m)	Profundidade(m)	Apoios (m)
1	2.53	0.30	0.15	0.15x0.15x0.30
2	2.53	0.60	0.15	0.15x0.15x0.60
3	2.53	0.30	0.15	0.15x0.15x0.30
4	3.57	0.30	0.15	Não tem
5	3.83	0.30	0.15	Não tem
6	3.83	0.60	0.15	Não tem
7	5.36	0.30	0.15	Não tem
8	5.07	0.60	0.15	Não tem
9	5.07	0.30	0.15	Não tem
10	2.53	0.30	0.15	0.15x0.15x0.30
11	2.53	0.60	0.15	0.15x0.15x0.60
12	2.53	0.30	0.15	0.15x0.15x0.30

Tabela 3 - Medidas das vigas diagonais

Figura 20 - Representação das vigas

Figura 19 - Vigas diagonais

Ânforas

A criação da ânfora definida para o nosso grupo (consultar Anexo no final do documento) foi feita num ficheiro à parte: "anfora.dwg".

Assim como no ficheiro anteriormente referido, também neste foram definidas as unidades de trabalho com os seguintes valores da Figura 21.

Criou-se um quadrado de dimensões: 1.12x1.12m, para definir um quadrado que serviu de base para a criação da ânfora, como é possível verificar na Figura 22:

Figura 21 - Definição de unidades - ânforas

Figura 22 - Quadrado base para a ânfora

Deu-se então início à criação da ânfora.

Dividiu-se o quadrado criado ao meio para usufruir da simetria de que esta dispõe. De seguida, usaramse linhas e circunferências auxiliares para usar a ferramenta "spline", que cria linhas curvas.

Figura 23 - Definição de pontos/retas auxiliares

Figura 24 – Figura 2D após uso de **spline**

De forma a confirmar se a ânfora estava realmente similar, prosseguiu-se o desenho em 2D utilizando a ferramenta "mirror". Deste modo pudemos visualizar e comparar com melhor precisão a nossa ânfora à do enunciado.

Figura 25 - Ânfora 2D

De seguida deu-se início ao desenho 3D.

Através da ferramenta "Move Gizmo", erguemos a jarra e utilizámos a ferramenta "revolve" para fazer o preenchimento 360° da jarra obtendo:

Figura 26 – Ânfora 2D erguida

Figura 27 – Ânfora 3D sem pegas

Para criar as pegas foi utilizada a ferramenta "loft" recorrendo a uma linha auxiliar com a forma desejada e a diversos círculos.

Após ser criada a pega, arrastou-se a mesma para o local desejado e aplicou-se a textura:

TexturesCom_Terracotta_Plain_header.jpg.

Por fim foi criado um "block" para a ânfora de forma a que esta pudesse ser reutilizada diversas vezes e facilmente manipulada.

Este bloco foi utilizado no ficheiro:

"modelo3D_RuinasTroia.dwg", como é possível observar na secção: "Resultados" deste ficheiro.

Figura 28 -Ânfora 3D com pegas e textura

Texturas

Numa tentativa de obter um resultado fiel na representação da oficina de salga, foram adicionadas texturas ao desenho 3D finalizado anteriormente.

As texturas utilizadas foram importadas da internet e constam nos ficheiros:

- **Ânfora**: TexturesCom_Terracotta_Plain_header
- Paredes exteriores: TexturesCom_BrickJapanese0018_2_seamless_S
- Tanques e pilares: TexturesCom_Concrete_Base9_2x2_1K_albedocin
- **Telhado**: TexturesCom_Roofing_SpanishOld_1K_albedo
- Areia: TexturesCom_SandPebbles0060_1_seamless_S
- Madeira: TexturesCom_Wood_PlanksOld3_3.5x3.5_1K_albedoa

Anexos à entrega deste relatório.

Resultados

Conclusão

Este trabalho salientou a importância do uso de aplicações como o AutoCad na área da computação gráfica para a representação e visualização de diferentes tipos e estruturas de dados, neste caso, para a reconstituição das ruínas de Tróia, um sítio arqueológico classificado como Monumento Nacional.

Este tipo de reconstituição é de extrema importância para a ciência e para a humanidade, uma vez que permite compreender e investigar as sociedades passadas.

Aprendemos a utilizar diversas ferramentas disponibilizadas pelo AutoCad, assim como a trabalhar com diversos tipos de dados, intercalando-os todos para obter um modelo 3D realista da oficina de salga.

Anexo

Cálculo da ânfora a fazer

Nºs de aluno: 55853, 56935, 56897

Conta:

 $(55853 + 56935 + 56897) \mod 10 = 169685 \mod 10$

169685 = 16900 * 10 + 60 * 10 + 8 * 10 + 5

5 +1 = **6**

Medidas dos tanques

Tanques (m)	Medida da aresta na direção norte-sul (em metro)	Medida da aresta na direção este-oeste (em metro)
12	3.25	1.50
13	3.25	4.00
14	1.60	3.60
15	1.60	3.60
16	1.70	3.60
17	1.25	3.60
18	3.60	3.60
19	2.92	2.00

Tabela 4 - Medidas dos tanques

Subtanques	Medida da aresta na direção norte-sul (em metro)	Medida da aresta na direção este-oeste (em metro)
6 a, b, c	1.00	0.67
6 d	1.50	2.60
7 a, d	0.65	1.15
7 b	1.60	1.15
7 c	1.00	2.60
10 a	3.00	1.35
10 a, b, c	0.80	1.35
11 a, b, c, d	1.35	1.40
16 a, b	1.70	1.65

Tabela 5- Medidas dos subtanques