ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет математики

Беребердина Наталья Александровна

Обратимые элементы в кольцах вычетов

Курсовая работа студента 1 курса образовательной программы бакалавриата «Математика»

Научный руководитель: Левин Андрей Михайлович Профессор: Факультет математики Доктор физико-математических наук

Содержание

1	Вве	едение	
2	$\mathbf P$ азложение группы $(\mathbb Z/p^n\mathbb Z)^*$		
	2.1	Справки	3
	2.2	Отображение из $(\mathbb{Z}/p^n\mathbb{Z})^*$ в $(\mathbb{Z}/p\mathbb{Z})^*$	٠
	2.3	Отображение групп корней	•
	2.4	Разложение группы $(\mathbb{Z}/p^n\mathbb{Z})^*$	4
3	p- a,	дические числа	Ę
	3.1	Целые р-адические числа	٦
		Обратимые элементы в кольце р-адических чисел	
	3.3	\mathbb{Z}_{n}^{*}	Ę

1 Введение

Целью данной работы является изучение групп обратимых элементов в кольце вычетов по модулю степени простого $p\left((\mathbb{Z}/p^n\mathbb{Z})^*\right)$ и обратимых элементов в р-адических числах (\mathbb{Z}_p^*) .

2 Разложение группы $(\mathbb{Z}/p^n\mathbb{Z})^*$

2.1 Справки

Здесь и далее мы будем считать число р простым.

Для начала рассмотрим группу ($\mathbb{Z}/p\mathbb{Z}$). Обратимыми в ней будут все ненулевые элементы, таким образом (($\mathbb{Z}/p\mathbb{Z}^*$), ·) \simeq (($\mathbb{Z}/(p-1)\mathbb{Z}$), +). Рассмотрим теперь группу ($\mathbb{Z}/p^n\mathbb{Z}$). В ней обратимыми элементами будут все элементы взаимопростые с p^n , то есть

$$\{x \in (\mathbb{Z}/p^n\mathbb{Z}) : p \nmid x\} = (\mathbb{Z}/p^n\mathbb{Z})^*$$

Для начала заметим, что это действительно группа по умножению. Теперь мы хотим определить ее структуру, найдя более простую гомеоморфную ей.

2.2 Отображение из $(\mathbb{Z}/p^n\mathbb{Z})^*$ в $(\mathbb{Z}/p\mathbb{Z})^*$

Давайте заметим, что существует естественное отображение μ из $\mathbb{Z}/p^n\mathbb{Z}$ в поле $\mathbb{Z}/p\mathbb{Z}$. Рассмотрим его ограничение на множестве $(\mathbb{Z}/p^n\mathbb{Z})^*$ - оно перейдет в $(\mathbb{Z}/p\mathbb{Z})^*$. Кроме того, это отображение согласовано с операцией умножения в $\mathbb{Z}/p^n\mathbb{Z}$, то есть является гомоморфизмом. Давайте теперь посмотрим на его ядро. В единицу перейдут все элементы с остатком 1 при делении на p^{n-1} , а именно группа:

$$U_p[n] = \{x \in \mathbb{Z}_p^* : x \equiv 1 \pmod{p^n}\}$$

2.3 Отображение групп корней

Заведем теперь множество корней из единицы p-1 степени $\gamma_n \subset \mathbb{Z}/p^n\mathbb{Z}^*$, а именно:

$$\gamma_n = \{x \in \mathbb{Z}/p^n\mathbb{Z}^* : x^{p-1} \equiv 1 \pmod{p^n}\}$$

Нетрудно заметить, что они образуют группу.

Теперь построим отображение $\tau[i]$ из γ_{i-1} в γ_i . Будем строить его так, чтобы оно сохраняло результат малой теоремы Ферма, а именно

$$(\tau[i](\varepsilon))^{p-1} \equiv 1 \pmod{p^i}$$

Рассмотрим такое α , что

$$\alpha^{p-1} \equiv 1 \pmod{p^i} \Rightarrow \alpha^{p-1} \equiv 1 + lp^i \pmod{p^{i+1}}$$

Найдем $\alpha + kp^i$, такое что

$$(\alpha + kp^i)^{p-1} \equiv 1 \pmod{p^{i+1}}$$

Раскроем скобки

$$(\alpha+kp^i)^{p-1} \equiv \alpha^{p-1} + (p-1)\alpha^{p-2}kp^i \pmod{p^{i+1}} \Longrightarrow$$

Значит для любого α найдет нужный k и при том единственный. Тогда построим $\tau[i]: \mathbb{Z}/p^{i-1}\mathbb{Z}^* \to \mathbb{Z}/p^i\mathbb{Z}^*$:

$$\tau[i](\alpha) = \alpha(1 + lp^i)$$

Не трудно заметить, что τ - гомоморфизм. Действительно, пусть есть два элемента α и β в $\mathbb{Z}/p^i\mathbb{Z}^*$:

$$\tau[i](\alpha) = \alpha(1 + lp^{i}), \ \tau[i](\beta) = \beta(1 + kp^{i}) \Longrightarrow$$

$$\Longrightarrow \tau[i](\alpha) \cdot \tau[i](\beta) = \alpha(1 + kp^{i}) \cdot \beta(1 + kp^{i}) =$$

$$= \alpha\beta(1 + kp^{i} + lp^{i}) = \alpha\beta(1 + kp^{i} + lp^{i} + lkp^{2i}) = \tau[i](\alpha\beta)$$

Тогда образ τ образует группу:

$$im \ \tau[i] \simeq \gamma_{i-1}$$

2.4 Разложение группы $(\mathbb{Z}/p^n\mathbb{Z})^*$

Теперь давайте посмотрим на композицию отображений $\tau[i]$:

$$T[n] = \tau[n] \circ \tau[n-1] \circ ... \tau[2]$$

Заметим, что $T[n]: \gamma_1 \to \gamma_n$ является композицией гомоморфизмов, а значит и сам является гомоморфизмом.

Докажем теперь по индукции, что образ $T[n] = \gamma_1$.

База:

$$im T[2] = im \tau[2] = \gamma_1$$

Переход:

$$im\ T[n] = \tau[n](im\ T[n-1])$$

Т.к. $im\ T[n-1] = \gamma_1$ и $\tau[n]$ гомоморфизм, то $\tau[n](im\ T[n-1]) = \gamma_1$, что, в свою очередь изоморфно $\mathbb{Z}/p\mathbb{Z}^*$.

Таким образом:

$$im \ T[n] = \mathbb{Z}/p\mathbb{Z}$$

Теперь, когда мы построили два гомоморфизма $\mu: (\mathbb{Z}/p^n\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^*$ и $T: (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p^n\mathbb{Z})^*$, мы можем задать структуру $(\mathbb{Z}/p^n\mathbb{Z})^*$:

$$(\mathbb{Z}/p^n\mathbb{Z})^* \simeq \ker \mu \times \operatorname{im} [n] \simeq U_p \times \mathbb{Z}/p\mathbb{Z}^*$$

Забегая вперед, скажем, что $U_p \simeq \mathbb{Z}/p^{n-1}Z$ (к доказательству этого факта мы вернемся в 3 пункте) и тогда последнее равенство завершается красивым результатом:

$$(\mathbb{Z}/p^n\mathbb{Z})^* \simeq \mathbb{Z}/p^{n-1}Z \times \mathbb{Z}/p\mathbb{Z}^*$$

3 р-адические числа

3.1 Целые р-адические числа

Целым р-адическим числом для простого р называется бесконечная последовательность x_n , где x_i - остаток по модулю p^n и выполняется условие:

$$x_n \equiv x_{n+1} \pmod{p^n}$$

Тогда если определить сложение и умножение целых р-адических чисел, как почленное сложение и умножение, на целых р-адических числах выполняются аксиомы кольца. Это кольцо обозначается \mathbb{Z}_p . Не трудно заметить, что целые числа естественно вкладываются в кольцо целых р-адических и являются в нем подкольцом. Таким образом, можно рассматривать \mathbb{Z}_p как расширение \mathbb{Z} .

3.2 Обратимые элементы в кольце р-адических чисел

Заметим, что элемент x заданный последовательностью x_n - не обратим при $x_1 = 0$ (единица в \mathbb{Z}_p задается последовательностью $x_n = 1$ для $\forall n$). Покажем, что для $\forall x$ заданного x_n с $x_1 \neq 0$ - элемент x обратим.

Действительно, если $x_1 \neq 0$, то для $\forall i \ p \nmid x_i$. Тогда мы знаем, что каждый элемент последовательности обратим. Более того, мы умеем строить обратное р-адическое число. Рассмотрим α такой, что $x_1\alpha_1 \equiv 1 \pmod{p}$. Тогда построим $\alpha_2 = \tau[2](\alpha_1)$. Заметим, что по построению

$$\alpha_1 \equiv \alpha_2 \pmod{p^2} \alpha_2 x_2 = 1$$

Теперь построим аналогично все число α . Для этого зададим его последовательностью $\alpha_i = \tau[i](\alpha_i - 1)$. Тогда мы поняли вид всех обратимых элементов в \mathbb{Z}_p .

3.3 Разложение группы \mathbb{Z}_p^*

Из прошлого пункта мы поняли, что

$$\mathbb{Z}_p^* = \{ x \in \mathbb{Z}_p : x_1 \neq 0 \pmod{p} \}$$

Тогда

$$\mathbb{Z}_p^* \simeq \mathbb{Z}_p \backslash p\mathbb{Z}_p \simeq \mathbb{F}_p^* \times p\mathbb{Z}_p$$

Заметим, что \mathbb{Z}_p^* - группа по умножению. Теперь опишем ее структуру. Зададим такую группу

$$U_p = \{ x \in \mathbb{Z}_p^* : x \equiv 1 \pmod{p^t} \}$$

где t = 2, при p = 2, t = 1 иначе.

Построим отображение, определяемое рядом

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Заметим, что подставляя туда элементы из $p^t\mathbb{Z}_p$ мы будем получать элементы U_p . Для этого введем обозначение степени вхождения простого числа p в число $x:deg_p(x)$. Докажем, что

$$deg_p(px)^n \ge n \ge deg_p(n!)$$

Для подсчета степени вхождения p в n! посчитаем количество множителей делящихся на каждую степень p и воспользуемся суммой геометрической прогрессии:

$$deg_p(n!) \le \frac{n}{p} + \frac{n}{p^2} + \frac{n}{p^3} + \dots = \frac{n}{p(1-\frac{1}{p})} = \frac{n}{p-1} \le n$$

Заметим, что последнее неравенство может обернуться в равенство только при p=2. Отсюда берется необходимость t=2 при p=2. Действительно, $deg_p^2(px)^n=2n>\frac{n}{p-1}$ при $\forall p$.

Таким образом, все слагаемые, начиная со второго, буду иметь вид $x' \cdot p^i/j$, причем $i > 0, j \in \mathbb{Z}_p^*$, значит деление на j определено и тогда

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1 + p \cdot j \in U_p$$

Более того, это отображение задает гомоморфизм из $(p^t\mathbb{Z}_p,+)$ в (U_p,\cdot) . Действительно, заметим, что

$$\exp x \cdot \exp y = \sum_{n=0}^{\infty} \frac{x^n}{n!} \cdot \sum_{m=0}^{\infty} \frac{y^m}{m!} =$$
$$= \sum_{n=0, m=0}^{\infty} \frac{x^n y^m}{n! m!} = \exp xy$$

На самом деле, это и изоморфизм, так как мы можем построить и обратное отображение (которое тоже будет гомоморфизмом), задаваемое рядом:

$$\log(x) = \sum_{i=0}^{\infty} (-1)^{n+1} \frac{(x-1)^{n+1}}{n}$$

Таким образом, $p^t \mathbb{Z}_p \simeq U_p$. Тогда, вернувшись к пункту 2.4, получим, что

$$U_p[n] \simeq U_p/p^n \mathbb{Z}_p \simeq p \mathbb{Z}_p/p^n \mathbb{Z}/p \simeq \mathbb{Z}/p^{n-t} Z$$

Тогда мы действительно получили разложение $\mathbb{Z}/p^n\mathbb{Z}^*$. Теперь вспомним рекурсивное разложение написанное выше:

$$\mathbb{Z}_p^* \simeq Z/p^t Z^* \times p^t \mathbb{Z}_p$$

Зная теперь разложение $p^t\mathbb{Z}_p$, наконец получим

$$\mathbb{Z}_p^* \simeq Z/p^t Z^* \times U_p$$

где t = 2, при p = 2, t = 1 иначе.

Список литературы

[1] Виноградов И.М. "Основы теории чисел"., Объединенное научно-техническое издательство НКТП СССР, (1936)