

Advanced Manual Smart Contract Audit

November 27, 2022

- CoinsultAudits
- ▼ info@coinsult.net
- coinsult.net

Audit requested by

0xe4e10A016fBa6a5184ceDc61E439245508f6c41E

Table of Contents

1. Audit Summary

- 1.1 Audit scope
- 1.2 Tokenomics
- 1.3 Source Code

2. Disclaimer

3. Global Overview

- 3.1 Informational issues
- 3.2 Low-risk issues
- 3.3 Medium-risk issues
- 3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges

- 5.1 Maximum Fee Limit Check
- 5.2 Contract Pausability Check
- 5.3 Max Transaction Amount Check
- 5.4 Exclude From Fees Check
- 5.5 Ability to Mint Check
- 5.6 Ability to Blacklist Check
- 5.7 Owner Privileges Check

6. Notes

- 6.1 Notes by Coinsult
- 6.2 Notes by Florin Token

7. Contract Snapshot

- 8. Website Review
- 9. Certificate of Proof

Audit Summary

Project Name	Florin Token
Website	https://www.euroshibainu.es/tokens/
Blockchain	Binance Smart Chain
Smart Contract Language	Solidity
Contract Address	0xe4e10A016fBa6a5184ceDc61E439245508f6c41E
Audit Method	Static Analysis, Manual Review
Date of Audit	27 November 2022

This audit report has been prepared by Coinsult's experts at the request of the client. In this audit, the results of the static analysis and the manual code review will be presented. The purpose of the audit is to see if the functions work as intended, and to identify potential security issues within the smart contract.

The information in this report should be used to understand the risks associated with the smart contract. This report can be used as a guide for the development team on how the contract could possibly be improved by remediating the issues that were identified.

Audit Scope

Coinsult was comissioned by Florin Token to perform an audit based on the following code:

https://bscscan.com/address/0xe4e10A016fBa6a5184ceDc61E439245508f6c41E#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL is not from any block explorer (main net), it may be subject to change. Always check the contract address on this audit report and compare it to the token you are doing research for.

Audit Method

Coinsult's manual smart contract audit is an extensive methodical examination and analysis of the smart contract's code that is used to interact with the blockchain. This process is conducted to discover errors, issues and security vulnerabilities in the code in order to suggest improvements and ways to fix them.

Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We use automated tools that scan the contract for security vulnerabilities such as integer-overflow, integer-underflow, out-of-gas-situations, unchecked transfers, etc.

Manual Code Review

Coinsult's manual code review involves a human looking at source code, line by line, to find vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated tools are faster but they cannot take the developer's intentions and general business logic into consideration.

Used tools

- Slither: Solidity static analysis framework

- Remix: IDE Developer Tool

- CWE: Common Weakness Enumeration

- SWC: Smart Contract Weakness Classification and Test Cases

- DEX: Testnet Blockchains

Risk Classification

Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level	Description
Informational	Does not compromise the functionality of the contract in any way
Low-Risk	Won't cause any problems, but can be adjusted for improvement
Medium-Risk	Will likely cause problems and it is recommended to adjust
High-Risk	Will definitely cause problems, this needs to be adjusted

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status	Description
Total	Total amount of issues within this category
Pending	Risks that have yet to be addressed by the team
Acknowledged	The team is aware of the risks but does not resolve them
Resolved	The team has resolved and remedied the risk

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies and structure used in the Common Weakness Enumeration (CWE) while overlaying a wide range of weakness variants that are specific to smart contracts.

ID	Description	Status
SWC-100	Function Default Visibility	Passed
SWC-101	Integer Overflow and Underflow	Passed
SWC-102	Outdated Compiler Version	Passed
SWC-103	Floating Pragma	Failed
SWC-104	Unchecked Call Return Value	Failed
SWC-105	Unprotected Ether Withdrawal	Passed
SWC-106	Unprotected SELFDESTRUCT Instruction	Passed
SWC-107	Reentrancy	Passed
SWC-108	State Variable Default Visibility	Passed
SWC-109	Uninitialized Storage Pointer	Passed
SWC-110	Assert Violation	Passed
SWC-111	Use of Deprecated Solidity Functions	Passed
SWC-112	Delegatecall to Untrusted Callee	Passed
SWC-113	DoS with Failed Call	Passed
SWC-114	Transaction Order Dependence	Passed
SWC-115	Authorization through tx.origin	Failed

SWC-117Signature MalleabilityPassedSWC-118Incorrect Constructor NamePassedSWC-119Shadowing State VariablesPassedSWC-120Weak Sources of Randomness from Chain AttributesPassedSWC-121Missing Protection against Signature Replay AttacksPassedSWC-122Lack of Proper Signature VerificationPassedSWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassedSWC-136Unencrypted Private Data On-ChainPassed	SWC-116	Block values as a proxy for time	Passed
SWC-119Shadowing State VariablesPassedSWC-120Weak Sources of Randomness from Chain AttributesPassedSWC-121Missing Protection against Signature Replay AttacksPassedSWC-122Lack of Proper Signature VerificationPassedSWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-117	Signature Malleability	Passed
SWC-120Weak Sources of Randomness from Chain AttributesPassedSWC-121Missing Protection against Signature Replay AttacksPassedSWC-122Lack of Proper Signature VerificationPassedSWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-118	Incorrect Constructor Name	Passed
SWC-121Missing Protection against Signature Replay AttacksPassedSWC-122Lack of Proper Signature VerificationPassedSWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-119	Shadowing State Variables	Passed
SWC-122Lack of Proper Signature VerificationPassedSWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128Dos With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-120	Weak Sources of Randomness from Chain Attributes	Passed
SWC-123Requirement ViolationPassedSWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-121	Missing Protection against Signature Replay Attacks	Passed
SWC-124Write to Arbitrary Storage LocationPassedSWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-122	Lack of Proper Signature Verification	Passed
SWC-125Incorrect Inheritance OrderPassedSWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-123	Requirement Violation	Passed
SWC-126Insufficient Gas GriefingPassedSWC-127Arbitrary Jump with Function Type VariablePassedSWC-128DoS With Block Gas LimitPassedSWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-124	Write to Arbitrary Storage Location	Passed
SWC-127 Arbitrary Jump with Function Type Variable Passed SWC-128 DoS With Block Gas Limit Passed SWC-129 Typographical Error Passed SWC-130 Right-To-Left-Override control character (U+202E) Passed SWC-131 Presence of unused variables Passed SWC-132 Unexpected Ether balance Passed SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-125	Incorrect Inheritance Order	Passed
SWC-128 DoS With Block Gas Limit Passed SWC-129 Typographical Error Passed SWC-130 Right-To-Left-Override control character (U+202E) Passed SWC-131 Presence of unused variables Passed SWC-132 Unexpected Ether balance Passed SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-126	Insufficient Gas Griefing	Passed
SWC-129Typographical ErrorPassedSWC-130Right-To-Left-Override control character (U+202E)PassedSWC-131Presence of unused variablesPassedSWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-127	Arbitrary Jump with Function Type Variable	Passed
SWC-130 Right-To-Left-Override control character (U+202E) Passed SWC-131 Presence of unused variables Passed SWC-132 Unexpected Ether balance Passed SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-128	DoS With Block Gas Limit	Passed
SWC-131 Presence of unused variables Passed SWC-132 Unexpected Ether balance Passed SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-129	Typographical Error	Passed
SWC-132Unexpected Ether balancePassedSWC-133Hash Collisions With Multiple Variable Length ArgumentsPassedSWC-134Message call with hardcoded gas amountPassedSWC-135Code With No EffectsPassed	SWC-130	Right-To-Left-Override control character (U+202E)	Passed
SWC-133 Hash Collisions With Multiple Variable Length Arguments Passed SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-131	Presence of unused variables	Passed
SWC-134 Message call with hardcoded gas amount Passed SWC-135 Code With No Effects Passed	SWC-132	Unexpected Ether balance	Passed
SWC-135 Code With No Effects Passed	SWC-133	Hash Collisions With Multiple Variable Length Arguments	Passed
	SWC-134	Message call with hardcoded gas amount	Passed
SWC-136 Unencrypted Private Data On-Chain Passed	SWC-135	Code With No Effects	Passed
	SWC-136	Unencrypted Private Data On-Chain	Passed

Global Overview

Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level	Total	Pending	Acknowledged	Resolved
Informational	0	0	0	0
Low-Risk	7	7	0	0
Medium-Risk	1	1	0	0
High-Risk	0	0	0	0

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege	Description
Owner can mint?	Owner cannot mint new tokens
Owner can blacklist?	Owner can blacklist addresses
Owner can set fees > 25%?	Owner can set the sell fee to 25% or higher
Owner can exclude from fees?	Owner can exclude from fees
Owner can pause trading?	Owner can pause the smart contract
Owner can set Max TX amount?	Owner cannot set max transaction amount

More owner priviliges are listed later in the report.

Error Code	Description
CWE-841	Improper Enforcement of Behavioral Workflow

Contract does not use a ReEntrancyGuard

One of the major dangers of calling external contracts is that they can take over the control flow. In the reentrancy attack (a.k.a. recursive call attack), a malicious contract calls back into the calling contract before the first invocation of the function is finished. This may cause the different invocations of the function to interact in undesirable ways.

```
function _transfer(
   address sender,
   address recipient,
   uint256 amount
) internal override virtual {
   require(!paused(), "CoinToken: token transfer while paused");
   require(!isBlacklisted(msg.sender), "CoinToken: sender blacklisted");
   require(!isBlacklisted(recipient), "CoinToken: recipient blacklisted");
   require(!isBlacklisted(tx.origin), "CoinToken: sender blacklisted");

   if(taxStatus) {
      amount = handleTax(sender, recipient, amount);
   }

   super._transfer(sender, recipient, amount);
}
```

Recommendation

The best practices to avoid Reentrancy weaknesses are: Make sure all internal state changes are performed before the call is executed. This is known as the Checks-Effects-Interactions pattern, or use a reentrancy lock (ie. OpenZeppelin's ReentrancyGuard.

Error Code	Description
SLT: 078	Conformance to numeric notation best practices

Too many digits

Literals with many digits are difficult to read and review.

```
uint256 private swapThreshold = 0.00000005 ether; // The contract will only swap to ETH, once the fee to
```

Recommendation

Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

```
contract MyContract{
    uint 1_ether = 10000000000000000000;
}
```

While 1_ether looks like 1 ether, it is 10 ether. As a result, it's likely to be used incorrectly.

Error Code	Description
SLT: 056	Missing Zero Address Validation

No zero address validation for some functions

Detect missing zero address validation.

```
function setTaxWallets(address dev, address marketing, address charity) public onlyOwner {
   taxWallets["dev"] = dev;
   taxWallets["marketing"] = marketing;
   taxWallets["charity"] = charity;
}
```

Recommendation

Check that the new address is not zero.

Exploit scenario

```
contract C {

modifier onlyAdmin {
   if (msg.sender != owner) throw;
   _;
}

function updateOwner(address newOwner) onlyAdmin external {
   owner = newOwner;
}
```

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

Error Code	Description
SWC: 103	Floating Pragma

Floating Pragma

Contracts should be deployed with the same compiler version and flags that they have been tested with thoroughly. Locking the pragma helps to ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version that might introduce bugs that affect the contract system negatively.

pragma solidity ^0.8.9;

Recommendation

Lock the pragma version and also consider known bugs (https://github.com/ethereum/solidity/releases) for the compiler version that is chosen.

Pragma statements can be allowed to float when a contract is intended for consumption by other developers, as in the case with contracts in a library or EthPM package. Otherwise, the developer would need to manually update the pragma in order to compile locally.

Error Code	Description
SLT: 054	Missing Events Arithmetic

Missing events arithmetic

Detect missing events for critical arithmetic parameters.

```
function setBuyTax(uint256 dev, uint256 marketing, uint256 liquidity, uint256 charity) public onlyOwner
    buyTaxes["dev"] = dev;
    buyTaxes["marketing"] = marketing;
    buyTaxes["liquidity"] = liquidity;
    buyTaxes["charity"] = charity;
}

function setSellTax(uint256 dev, uint256 marketing, uint256 liquidity, uint256 charity) public onlyOwner

    sellTaxes["dev"] = dev;
    sellTaxes["marketing"] = marketing;
    sellTaxes["liquidity"] = liquidity;
    sellTaxes["charity"] = charity;
}
```

Recommendation

Emit an event for critical parameter changes.

Exploit scenario

```
contract C {

modifier onlyAdmin {
   if (msg.sender != owner) throw;
   _;
}

function updateOwner(address newOwner) onlyAdmin external {
   owner = newOwner;
}
```

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

Error Code	Description
CS: 016	Initial Supply

Initial Supply

When the contract is deployed, the contract deployer receives all of the initially created assets. Since the deployer and/or contract owner can distribute tokens without consulting the community, this could be a problem.

Recommendation

Private keys belonging to the employer and/or contract owner should be stored properly. The initial asset allocation procedure should involve consultation with the community.

Error Code	Description
CS: 017	Reliance on third-parties

Reliance on third-parties

Interaction between smart contracts with third-party protocols like Uniswap and Pancakeswap. The audit's scope presupposes that third party entities will perform as intended and treats them as if they were black boxes. In the real world, third parties can be hacked and used against you. Additionally, improvements made by third parties may have negative effects, such as higher transaction costs or the deprecation of older routers.

Recommendation

Regularly check third-party dependencies, and when required, reduce severe effects.

Error Code	Description
CSM-01	Unchecked return value from low-level external call.

Medium-Risk: Should be fixed, could bring problems.

Unchecked return value from low-level external call.

```
taxWallets["marketing"].call{value: marketingETH}("");
taxWallets["dev"].call{value: devETH}("");
taxWallets["charity"].call{value: charityETH}("");

if(ethGained - (marketingETH + devETH + liquidityETH + charityETH) > 0) {
    taxWallets["marketing"].call{value: ethGained - (marketingETH + devETH + liquidityETH + charityETH)}
}
```

Recommendation

Low-level external calls return a boolean value. If the callee halts with an exception, 'false' is returned and execution continues in the caller. The caller should check whether an exception happened and react accordingly to avoid unexpected behavior. For example it is often desirable to wrap low-level external calls in require() so the transaction is reverted if the call fails.

Simulated transaction

Maximum Fee Limit Check

Error Code	Description
CEN-01	Centralization: Operator Fee Manipulation

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even stop trading when the fees are set too high.

Type of fee	Description
Transfer fee	Owner can set the transfer fee to 25% or higher
Buy fee	Owner can set the buy fee to 25% or higher
Sell fee	Owner can set the sell fee to 25% or higher

Type of fee	Description
Max transfer fee	100%
Max buy fee	100%
Max sell fee	100%

Function

```
function setSellTax(uint256 dev, uint256 marketing, uint256 liquidity, uint256 charity) public onlyOwner

sellTaxes["dev"] = dev;
sellTaxes["marketing"] = marketing;
sellTaxes["liquidity"] = liquidity;
sellTaxes["charity"] = charity;
}
```


Contract Pausability Check

Error Code	Description
CEN-02	Centralization: Operator Pausability

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case, users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check	Description
Can owner pause the contract?	Owner can pause the smart contract

Function

```
function pause() public onlyOwner {
    require(!paused(), "CoinToken: Contract is already paused");
    _pause();
}
```


Max Transaction Amount Check

Error Code	Description
CEN-03	Centralization: Operator Transaction Manipulation

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to take place if they abuse this function.

Privilege Check	Description
Can owner set max tx amount?	Owner cannot set max transaction amount

Exclude From Fees Check

Error Code	Description
CEN-04	Centralization: Operator Exclusion

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the owner of the smart contract can exclude from fees, they could set high tax fees and exclude themselves from fees and benefit from 0% trading fees. However, some smart contracts require this function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check	Description
Can owner exclude from fees?	Owner can exclude from fees

Function

```
function exclude(address account) public onlyOwner {
   require(!isExcluded(account), "CoinToken: Account is already excluded");
   excludeList[account] = true;
}
```


Ability To Mint Check

Error Code	Description
CEN-05	Centralization: Operator Increase Supply

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint function, we refer to the token's total supply as non-fixed, allowing the token owner to "mint" more tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart contract. With the help of the smart contract function, an unlimited number of tokens can be created without spending additional energy or money.

Privilege Check	Description
Can owner mint?	Owner cannot mint new tokens

Ability To Blacklist Check

Error Code	Description
CEN-06	Centralization: Operator Dissalows Wallets

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token. However, blacklists might be good for tokens that want to rule out certain addresses from interacting with a smart contract.

Privilege Check	Description
Can owner blacklist?	Owner can blacklist addresses

Function

```
function enableBlacklist(address account) public onlyOwner {
    require(!blacklist[account], "CoinToken: Account is already blacklisted");
    blacklist[account] = true;
}
```


Other Owner Privileges Check

Error Code	Description
CEN-100	Centralization: Operator Priviliges

Coinsult lists all important contract methods which the owner can interact with.

✓ No other important owner privileges to mention.

Notes

Notes by Florin Token

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

Contract Snapshot

This is how the constructor of the contract looked at the time of auditing the smart contract.

```
contract CoinToken is ERC20, Ownable, Pausable {
// CONFIG START
uint256 private initialSupply;
uint256 private denominator = 100;
uint256 private swapThreshold = 0.0000005 ether; // The contract will only swap to ETH, once the fee tol
uint256 private devTaxBuy;
uint256 private marketingTaxBuy;
uint256 private liquidityTaxBuy;
uint256 private charityTaxBuy;
uint256 private devTaxSell;
uint256 private marketingTaxSell;
uint256 private liquidityTaxSell;
uint256 private charityTaxSell;
address private devTaxWallet;
address private marketingTaxWallet;
address private liquidityTaxWallet;
address private charityTaxWallet;
// CONFIG END
mapping (address => bool) private blacklist;
mapping (address => bool) private excludeList;
mapping (string => uint256) private buyTaxes;
mapping (string => uint256) private sellTaxes;
mapping (string => address) private taxWallets;
bool public taxStatus = true;
IUniswapV2Router02 private uniswapV2Router02;
```


Website Review

Coinsult checks the website completely manually and looks for visual, technical and textual errors. We also look at the security, speed and accessibility of the website. In short, a complete check to see if the website meets the current standard of the web development industry.

Type of check	Description
Mobile friendly?	The website is mobile friendly
Contains jQuery errors?	The website does not contain jQuery errors
Is SSL secured?	The website is SSL secured
Contains spelling errors?	The website does not contain spelling errors

Certificate of Proof

Not KYC verified by Coinsult

Florin Token

Audited by Coinsult.net

Date: 27 November 2022

✓ Advanced Manual Smart Contract Audit

Disclaimer

This audit report has been prepared by Coinsult's experts at the request of the client. In this audit, the results of the static analysis and the manual code review will be presented. The purpose of the audit is to see if the functions work as intended, and to identify potential security issues within the smart contract.

The information in this report should be used to understand the risks associated with the smart contract. This report can be used as a guide for the development team on how the contract could possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice, please do your own research.

The information provided in this audit is for informational purposes only and should not be considered investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

End of report Smart Contract Audit

- CoinsultAudits
- ▼ info@coinsult.net
- coinsult.net