Neural Networks

Introduction (1)

Neural Network

Introduction (2)

- Artificial Neural Network
 - Al tools based on biological brains
 - It can learn anything!!
- Types of Artificial Neural Network
 - Multilayer perceptron
 - Kohonen's Self-Organizing Neural Networks
 - ..
- Other names of Multilayer Perceptron
 - Feed-forward Neural Network
 - Multilayer Feed-forward Neural Network

Introduction (3)

- Brain
 - There are about 10¹¹ neurons (brain cells)

Introduction (4)

Neurons

- Shape: Cell body, Dendrite, Axon
- Every neuron connects to 10³ to 10⁴ other neurons
- A brain is a network of neurons

Introduction (5)

- Connection between neuron
 - Synapse : Connection spot
 - Axon terminal: release neurotransmitter
 - Dendrite: receive neurotransmitter

Introduction (6)

- Connection between neuron
 - Every connection does not has the same effect
 - Each connection has different strength
 - The more receptor a dendrite has (mushroom shape), the better it receives neurotransmitter

Simple Mathematical Model (1)

Simple representation of neurons

- x : dendrites (input)
- w: amount of receptors in each dendrite (connection strength)
- F: cell body
- y:axon (output)

Simple Mathematical Model (2)

- Simple mathematical model of neurons-con'd
 - First function: Weighted summation of inputs

$$S = X_1W_1 + X_2W_2 + ... + X_nW_n$$

Second function: Non-linear threshold

$$y = f(s)$$

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

Simple Mathematical Model (3)

- Simple mathematical model of brains
 - Brain is a network of neurons
 - So, let's simply connects artificial neurons and call it artificial neural network

J.H. Lee, Dept. of Software, Sungkyunkwan Univ.

Simple Mathematical Model (4)

Simple mathematical model of brains-con'd

What a stupid it is!!

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

- What can it do?
 - Everything a Pentium can do!!

What a perceptron does

$$y = \begin{cases} 1 & \sum_{i=1}^{n} x_i w_i > 0 \\ 0 & otherwise \end{cases}$$

If an input is above the line output 1 else output 0

What a Perceptron Can Do? (2)

- What a perceptron can do
 - And operation

w1=1.0, w2=1.0, w3=-1.5

		And the second second	
X ₁	X ₂	Σ	У
0	0	-1.5	0
0	1.	-0.5	0
1	0	-0.5	0
1	1	0.5	1

13/19

What a Perceptron Can Do? (3)

- What a perceptron can do con'd
 - OR operation

X ₁	X ₂	Σ	У
0	0	-0.5	0
0	1	0.5	1 1
1	0	0.5	1
1	1	1.5	1

What a Perceptron Can Do? (4)

- What a perceptron can do con'd
 - NOT operation

$$w1=-1.0$$
, $w2=0.5$

X ₁	Σ	у
0	0.5	1
1	-0.5	0

What a Neural Network Can Do? (1)

- What a neural network can do
 - A neural network can solve non-linearly separable problems
 - Example: XOR operation

What a Neural Network Can Do? (2)

- What a neural network can do— con'd
 - XOR operation

What a Neural Network Can Do? (3)

- What a neural network can do— con'd
 - XOR operation

$$w_{11}=1.0, w_{12}=1.0, w_{13}=-1.5$$

X ₁	X ₂	Σ	y ₁
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

$$w_{11}=1.0, w_{12}=1.0, w_{13}=-1.5$$
 $w_{19}=1.0, w_{22}=1.0, w_{23}=-0.5$

X ₁	X ₂	Σ	y ₂
0	0	-0.5	0
0	1	0.5	1
1	0	0.5	1
1	1	1.5	1

	$w_{31} = -1.0$,	$W_{32}=1.0$,	$W_{33} = -0.5$
--	-------------------	----------------	-----------------

У1	y ₂	Σ	У
0	0	-0.5	0
0	1*	0.5	1
0	1	0.5	1
1	1	-0.5	0

18/19

Multilayer Perceptron (1)

- Structure of Multilayer Perceptron
 - Here, we focus on a special type of neural networks
 - Layered structures

