Seminar 11

- 1. Find the second-order Taylor polynomial for the following functions at the given points:
- (a) $f(x,y) = \sin(x+2y)$ at (0,0). (b) $f(x,y) = e^{x+y}$ at (0,0) and (1,-1). (c) $f(x,y) = \sin(x)\sin(y)$ at $(\pi/2,\pi/2)$. (d) $f(x,y) = e^{-(x^2+y^2)}$ at (0,0).
- 2. Compute the Hessian matrix and its eigenvalues for the following:
 - (a) $f(x,y) = (y-1)e^x + (x-1)e^y$ at (0,0). (b) $f(x,y) = \sin(x)\cos(y)$ at $(\pi/2,0)$.
- 3. Find and classify the critical points for each of the following functions:
 - (a) $f(x,y) = x^3 3x + y^2$.

(c) $f(x,y) = x^4 + y^4 - 4(x-y)^2$.

(b) $f(x,y) = x^3 + y^3 - 6xy$.

- (d) $f(x, y, z) = x^2 + y^2 + z^2 xy + x 2z$.
- 4. Let A be a symmetric $n \times n$ matrix and the quadratic function $f: \mathbb{R}^n \to R$, $f(x) = \frac{1}{2}x^T A x$. Prove that $\nabla f(x) = Ax$ and H(x) = A. Hint: use the Taylor expansion.
- 5. Let A be an $m \times n$ matrix, b a vector in \mathbb{R}^m and the least squares minimization problem

$$\min_{x \in \mathbb{R}^n} ||Ax - b||^2.$$

Prove that the solution x^* of this problem satisfies (the so-called normal equations)

$$A^T A x^* = A^T b$$
.

- 6. \bigstar [Python] Let A be a 2×2 matrix and let the quadratic function $f: \mathbb{R}^2 \to R$, $f(x) = \frac{1}{2}x^T Ax$.
 - (a) Give a matrix A such that f has a unique minimum.
 - (b) Give a matrix A such that f has a unique maximum.
 - (c) Give a matrix A such that f has a unique saddle point.

In each case plot the 3d surface, three contour lines and the gradient at three different points.