§ 8—1

1. 模 2,方向余弦是
$$-\frac{1}{2}$$
, $-\frac{\sqrt{2}}{2}$, $\frac{1}{2}$,方向角是 $\frac{2\pi}{3}$, $\frac{3\pi}{4}$, $\frac{\pi}{3}$

2. Fr
$$j_a b = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \frac{3}{\sqrt{14}}$$
,

$$\cos(\stackrel{\wedge}{a},\stackrel{\rightarrow}{b}) = \frac{\stackrel{\rightarrow}{a}\cdot\stackrel{\rightarrow}{b}}{|\stackrel{\rightarrow}{a}||\stackrel{\rightarrow}{b}|} = \frac{3}{2\sqrt{21}} .$$

§ 8-2

- 1. (1) 2 (2) 24
- 2. 对 错 错 错 对 错

3. 解:
$$S = \left| \overrightarrow{MA} \times \overrightarrow{MB} \right| = \left| \{1, -1, 1\} \right| = \sqrt{3}$$
, $\overrightarrow{n_0} = \pm \frac{\sqrt{3}}{3} \{1, -1, 1\}$ 。

§ 8-3

1. 填空:

(1)
$$2x + 9y - 6z - 121 = 0$$

(2)
$$x-3y-2z=0$$

(3)
$$x + 3y = 0$$

(4)
$$9y - z - 2 = 0$$

$$(5) y = 2$$

(6)
$$3x - 6y + 2z - 49 = 0$$

(7)
$$M: x + y + z = 2$$

- (8) $\sqrt{2}$
- (9) 2

2. 解: 法向量
$$\vec{n} = \{2,-2,1\}$$
, xoy, yoz, xoz 的法向量分别为(0,0,1), (1,0,0), (0,1,0) 故与 xoy, yoz, xoz 面夹角的余弦分别为 $\cos \alpha = \frac{1}{3}$, $\cos \beta = \frac{2}{3}$, $\cos \gamma = \frac{2}{3}$.

3. 解: 设平面方程为
$$By + Cz = 0$$
, 又 $\cos \frac{\pi}{3} = \frac{|B|}{\sqrt{2}\sqrt{B^2 + C^2}} = \frac{1}{2}$,

即 $B = \pm C$, 故平面方程为 $y \pm z = 0$ 。

§ 8-4

1. 填空

(1)
$$\frac{x-4}{2} = \frac{y+1}{1} = \frac{z-3}{5}$$

(2)
$$\frac{x}{-2} = \frac{y-2}{3} = \frac{z-4}{1}$$

(3)
$$\frac{x-2}{2} = \frac{y+3}{3} = \frac{z-1}{1}$$

(4)
$$\frac{x-3}{1} = \frac{y-4}{\sqrt{2}} = \frac{z+4}{-1}$$

(5)
$$3x + 2y + z - 10 = 0$$

2. $K = 1 + 2t, y = -t, z = 5 + 2t \, \text{(A)} \, x + y + 4z - 3 = 0 \, \text{(a)} \, t = -2 \, \text{.}$

故交点是 (-3,2,1),
$$\theta = \frac{\pi}{4}$$
.

3. 解: 过点 (0,1,2) 且与直线 $\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$ 垂直的平面方程为 x - y + 2z - 3 = 0,

直线
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$$
 与平面 $x - y + 2z - 3 = 0$ 交点是 $(\frac{3}{2}, \frac{1}{2}, 1)$,

直线方程是
$$\frac{x}{3} = \frac{y-1}{-1} = \frac{z-2}{-2}$$
。

4. 解: 平面的法向量是 $\vec{n} = \begin{vmatrix} i & j & k \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{vmatrix} = \{1,-5,-3\}$,

故平面方程是
$$x-5y-3z+2=0$$

5. 解: 过直线 L 的平面束方程为 $(2+\lambda)x + (2-\lambda)y + (-2+\lambda)z + 3 + 5\lambda = 0$,

由此求得过直线 L 与平面 x+y+z-1=0 垂直的平面方程为 4y-4z-7=0 , 故投影直线方程为

$$\begin{cases} 4y - 4z - 7 = 0 \\ x + y + z - 1 = 0 \end{cases}$$

8 8-5

- 1. (1) 椭圆柱面
- (2) 球心在(0,0,a) 半径为a 的球面
- (3) 顶点在(0,0,1)的下半锥面
- (4) 对称中心轴在 $\begin{cases} x = R \\ y = 0 \end{cases}$ 的半径为 R 的圆柱面

- (5) 单叶旋转双曲面
- (6) 顶点在原点的圆锥面
- (7) 顶点在(0,0,1)的开口向上的旋转抛物面
- 2. 解: 绕 y 轴 $2|y| = 2a \sqrt{x^2 + z^2}$; 绕 z 轴 $2\sqrt{x^2 + y^2} + |z| = 2a$ § 8—6
- 1. (1); 解 (图略): $\begin{cases} x^2 + y^2 = a^2 \\ z = a \end{cases}$ 平面 z = a 上的圆周线
 - (2). 解(图略): 平面截柱面所得的椭圆线
- 2.解: 在 xOy 面的投影为 $\begin{cases} (x-5)^2 + y^2 = 9 \\ z = 0 \end{cases}$