一、选择题

1. 在下面哪个区间内,函数 $f(x) = x^3 + 3x - 5$ 一定有零点(C)

A. (-1,0) B. (0,1) C.(1,2) D. (2,3)

解析:函数 $f(x) = x^3 + 3x - 5$ 在区间[1,2]上满足零点定理条件。

2. 已知函数 f(x)的图形是连续不断的,且有如下函数值对应表:

х	1	2	3	4	5	6
f(x)	23	9	-7	11	-5	-12

那么函数 f(x)在区间[1,6]上的零点至少有(C) 个

A. 1 B. 2 C. 3 D. 4

解析: 函数 f(x)分别在区间[2,3]、[3,4]和[4,5]上满足零点定理条件。

二、证明题(写出过程)

1. 证明方程 $x = a \sin x + b$,其中 a > 0, b > 0,至少有一个正根,并且它不超过 a + b。

证 即证函数 $f(x) = x - a \sin x - b$ 在 (0, a + b] 上至少有一零点,亦即证在区间 (0, a + b] 内至少有一点 ξ ,使得 $f(\xi) = 0$ 。

因为 $f(x) = x - a \sin x - b$ 在 [0, a + b] 上连续, 且 f(0) = -b < 0, $f(a + b) = a(1 - \sin(a + b)) \ge 0$,

若f(a+b)=0,则取 $\xi=a+b$,有 $f(\xi)=0$,结论成立;

若 $f(a+b) \neq 0$,则 f(0) = -b < 0, f(a+b) > 0,由零点定理,在开区间 (0,a+b) 内至少有一点 ξ ,使得 $f(\xi) = 0$; 综上,结论成立。

2. 设 f(x) 在 [a,b] 上连续,且 f(a) < a, f(b) > b,试证,在 (a,b) 内至少有一点 C,使得 f(C) = C。

证 设 F(x) = f(x) - x。因为 f(x) 和函数 y = x 均在 [a,b] 上连续,则 F(x) = f(x) - x 在 [a,b] 上连续,且 F(a) = f(a) - a < 0, F(b) = f(b) - b > 0,由零点定理,在开区间 (a,b) 内至少有一点 C,使得 F(C) = 0,结论成立。