Homework 3 (Due: May 14th)

(1) Determine the Fourier transform of the following functions.

(a)
$$g(x) = \exp(-\pi x^2/2)(x^3+x)$$

(b)
$$g(x) = \sin(\pi x/6)$$
 for $0 < x < 6$, $g(x) = 0$ otherwise

(c)
$$g(x) = -x$$
 for $-1 < x < 1$, $g(x) = x-2$ for $1 < x < 2$, $g(x) = 2+x$ for $-2 < x < -1$, $g(x) = 0$ otherwise.

(d)
$$g(x) = \delta(\sin(x))$$
 (40 scores)

(2) Determine the 2D Fourier transform of

$$g(x,y)=1$$
 for $(x-1)^2 + \frac{y^2}{4} < 1$, $g(x,y)=0$ otherwise.

(3) Determine the 30-point DFT of g[n] where

$$g[n]=1$$
 when n is a multiple of 3 or 5, $g[n]=0$ otherwise.

(10 scores)

(10 scores)

- (4) Determine the following convolutions.
 - (a) $\sin(5\pi x)\cos(3\pi x) * \sin(5x) * \sin(10x)$

(b)
$$\delta'(x) * \delta(2x) * \delta(x-3) * \exp(-x^2)$$
 (20 scores)

- (5) Using a Matlab or Python code to determine the continuous Fourier transform of the following functions by the DFT.
 - (a) $g(x) = \exp(-|x|^{0.5}) \exp(-2)$, for -4 < x < 4, g(x) = 0 otherwise, $\Delta_x = 0.05$.
 - (b) $g(x) = \sin(\pi x^2/9)$ for 0 < x < 3, g(x) = 0 otherwise, $\Delta_x = 0.1$.

The results should be plotted. The codes should be handed out by NTUCool. (20 scores)