CPSC 302 - Assignment 4

Tristan Rice, q7w9a, 25886145

1. Stationary Method

1.a

$$A = M - N$$

$$Mx_{k+1} = Nx_k + b$$

$$x_{k+1} = x_k + \alpha(b - Ax_k)$$

$$x_{k+1} = x_k + \alpha b - \alpha Ax_k$$

$$x_{k+1} = (I - \alpha A)x_k + \alpha b$$

$$\frac{I}{\alpha}x_{k+1} = (\frac{I}{\alpha} - A)x_k + b$$

$$M = \frac{I}{\alpha}$$

$$T = (I - \alpha A)$$

1.b

Converges only if $\rho(T) < 1$

Thus, only converges if $\rho(I-\alpha A)<1$.

This converges if $|1-\alpha\lambda|<1$ where λ is the eigenvalue that maximizes the left hand statement. That happens to be λ_n since the eigenvalues are all positive and λ_n is the smallest eigenvalue.

$$-1<1-\alpha\lambda_n<1-2<-\alpha\lambda_n<0.2>\alpha\lambda_n>0$$

We know that λ_n won't ever be 0 since it's defined as such.

Thus, the condition for convergence is just $\alpha \lambda_n < 2$

1.c

Using the above convergence conditions, we get $\lambda_n < 2$. Thus, the smallest eigenvalue must always be smaller than 2 for the statement to hold.

A diagonal matrix is by definition strictly diagonally dominant and the eigenvalues are just the values on the diagonal.

Thus we can construct a matrix with diagonal and eigenvalues $\lambda = \{5,4,3\}$. Thus, the smallest eigenvalue is 3 and this statement is contradicted since our convergence condition fails.

2. Consider the two-dimensional partial differential equation
2.a
2.b
3. Suppose we wish to solve Ax = b
3.a
Increasing diagonalIncrement causes gsMorph to converge faster.
Increasing the diagonal entries of A increases the spectral radius of A. This increase causes the spectral radius of the convergence matrix to go down since the iteration matrix is $I-M^{-1}A$.
3.b
N/A
4. The smoothing factor
4.a
4.b
4.c