AULA EXPRESSÕES REGULARES:

1a)
$$L((a|b)c) = \{ac,bc\}$$

1b) $L((a|b)^*) = \{\epsilon,a,aa,ab,b,bb,aab,...\}$

- 2a) Não, à esquerda e à direita de b podem haver quaisquer quantidades de a ou c (inclusive nenhum).
- 2b) bc, abc, ab, cba, aabcc, ...
- 2c) $(a|c)*(b|\epsilon)(a|c)*$

AULA AUTÔMATOS:

1)
$$M = (K, \Sigma, \delta, s, F)$$

em que:

$$\begin{split} K &= \{ini,ind_id\} \\ \Sigma &= \{letra, digito\} \\ \delta &= \{(ini,\{letra\},in_id),\\ &\quad (in_id,\{letra,digito\},in_id)\} \\ s &= ini \\ F &= \{in_id\} \end{split}$$

2)

Estado/Símbolo	letra	dígito
→ ini	in_id	
* in_id	in_id	in_id

- 3a) → ini → (i) in id acabou a cadeia e está em estado de aceitação, então aceita
- 3b) \rightarrow ini \rightarrow (x) in_id \rightarrow (_) para e não acabou a cadeia, então não aceita
- $3c) \rightarrow ini \rightarrow (i)$ in $id \rightarrow (1)$ in id acavou a cadeia e está em estado de aceitação, então aceita

4)

AULA ER-AFND:

1)

2)

(a) 0(0|1)*0 | 1(0|1)*1

AULA AL-TINY:

T[estado,ch]

	espaço	{	}	dígito	letra	:	·· <u></u> "	+-*/<();	outro
INÍCIO	INÍCIO	INCOM		INNUM	INID	INATRI	FIM	FIM	
INCOM			INÍCIO						INCOM
INNUM				INNUM					FIM
INID					INID				FIM
INATRI							FIM		
FIM									

Avance[estado,ch]

	espaço	{	}	dígito	letra	:	·· <u>=</u> "	+-*/<();	outro
INÍCIO	V	V		V	V	V	V	V	
INCOM			V						V
INNUM				V					F
INID					V				F
INATRI							V		
FIM									

Aceita[estado]

INÍCIO	F
INCOM	F
INNUM	F
INID	F
INATRIB	F
FIM	V

AULA AFND-AFD:

Estado inicial: $\{1\} = \{1\}$

Há transição de 1 para 2 por letra: $\{2\} = \{2, 3, 4, 5, 7, 10\}$ (novo estado)

A partir desse novo estado, há transição de 5 para 6 por letra e

outra de 7 para 8 por dígito: $\{6\} = \{4, 5, 6, 7, 9, 10\}$ e $\{8\} = \{4, 5, 7, 8, 9, 10\}$

Cada um desses estados tem também transições em letra e dígito, para si mesmo ou para o outro

AULA MINIMIZAÇÃO AFD:

Todos os estados de aceitação têm transições para outros estados de aceitação em letra e dígito e mais nenhuma outra transição

Assim, esses estados de aceitação não podem ser distinguidos por qualquer caractere e são redundantes

