

STATE FUNCTION PATH I

Properties which depend only on initial and final state of system & do not depend on process or path e.g. U, H, S etc.

PATH FUNCTION

Depends on path or process. as well as initial and final state of the system

e.g. work, heat

THERMODYNAMIC PROPERTIES

EXTENSIVE

Properties which are dependent of matter (size & mass)present

in system
e.g. Mass, volume, Internal energy
heat capacity, Entropy, Enthalpy
etc.

INTENSIVE

Properties which are independent of matter(size & mass) present in system

e.g. Pressure, temperature, Melting point, density,Specific heat Surface tension etc

WORK

 $P \rightarrow Pascal$ 1 atm = 1.01 × 10⁵ Pa 1 L atm = 101 J

FIRST LAW OF THERMODYNAMICS

(Based on Law of conservation of energy) $\triangle U = \triangle q + \triangle W$

 $\Delta Q = 0$ Adiabatic process $\rightarrow \Delta U = \Delta W$

Insulated, Rapid process

Isothermal process \rightarrow $\Delta T = 0$, $\Delta U = 0$ $\Delta Q + \Delta W = 0$ $\Delta Q = -\Delta W$

Isobaric process $\rightarrow \frac{\triangle W = P \triangle V}{\triangle U = \triangle Q + \triangle W}$

FREE P_{ext} =0,W=0, \triangle U=0,q=0 ISOTHERMAL

FLOT

Spontaneity

ENTHALPY

 $\triangle H = \triangle U + \triangle n_g RT$

 $\Delta n_a = 0, \Delta H = \Delta U$

 $\Delta n_g > 0, \Delta H > \Delta U$

 $\Delta n_g < 0, \Delta H < \Delta U$

All exothermic process are spontaneous

ENTROPY

S_{gas} > S_{liquid} > S_{solid}

ODYNAMI

ERM

ENTROPY CHANGE

1) Isothermal

 $\Delta s = nR \ln \frac{V_2}{V_1} = nR \ln \frac{P_1}{P_2}$

2) Isochoric (PoT)

 $\Delta s = nC_v \ln \frac{T_2}{T_1} = nC_v \ln \frac{P_2}{P_1}$

3) Isobaric

 $\Delta s = nC_p \ln \frac{T_2}{T_1} = nC_p \ln \frac{V_2}{V_1}$

 $\Delta S_{total} > 0$, Spontaneous

 $\Delta S_{total} = 0$, Equilibrium

 $\Delta \mathsf{S}_{\scriptscriptstyle \mathsf{total}}$ < 0, Non-spontaneous

GIBBS'S FREE ENERGY

 $\Delta G = \Delta H - T \Delta S$

 ΔG < 0 Or (-)ve, Spontaneous

 ΔG > 0 Or (+)ve, Non-spontaneous

Equilibrium Temperature

$$T_e = \frac{\triangle H}{\triangle S}$$

THERMOCHEMISTRY

1) Heat of Reaction ($\triangle H_{rxn}$)

2) Heat of Formation

Heat Change in formation of 1 mole of substance at 298 K and 1 atm Pressure (standard enthalpy of formation)

$$\frac{1}{2} N_2 + \frac{3}{2} H_2 \rightleftharpoons NH_3$$

$$A + B \rightleftharpoons C + I$$

 $\Delta H_{\text{\tiny reaction}}\text{=}$ Heat of formation of products- Heat of formation of reactants

Standard enthalpy of formation (298 K, 1 atm) of element at it's standard state is zero e.g., $O_2(g) = 0$ $Cl_2(g) = 0$ $Br(g) \neq 0$ $Br_2(l) = 0$

3) Enthalpy of Combustion (1 mole, 298 K)

(standard enthalpy of combustion)

$$A + B \rightarrow C + D$$

Enthalpy of a b c d

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$; $\triangle H_{combustin}$

 $\Delta H_{\text{reaction}} =$ Heat of combustion of reactants - Heat of combustion of products = (a + b) - (c + d)

4) Heat of Neutralisation ($\triangle H = (-)ve$)

S.A + S.B > (S.A/ S.B + W.A/W.B)- > W.A+W.B (Order of $\triangle H$ neutralisation)

PHYSICS WALLAH

BOND ENERGY

$$A + B \rightarrow C + D$$

$$\triangle H_{reaction}$$
 = Bond energy of reactants - Bond energy of products = (a + b) - (c + d)

$$NH_3 \Rightarrow B.E = x$$

B.E of N-H = x

$$CH_4 \Rightarrow B.E = x$$

B.E of C-H = $\frac{x}{4}$

$$\bullet \quad A \rightarrow B : \triangle H_1$$

$$B \rightarrow C ; \triangle H_2$$

$$A \rightarrow C$$
; $\triangle H_3 = \triangle H_1 + \triangle H_2$

$$A \rightarrow B ; \triangle H = x$$

$$B \rightarrow A : \triangle H = -x$$

$$nA \rightarrow nB$$
 : $\triangle H = nx$

ΔS $\Delta G = \Delta H - T\Delta S$ Spontaneity. ΔH **(-)** Always Negative (+) Spontaneous at all temp Non-spontaneous at all (+) **(-)** Always Positive temperature. +ve @ low temp. Spontaneous at T> T (+) (+) ve @ high temp. -ve @ low temp. Spontaneous at low (-) **(-)** temperature, T< T_a +ve @ high temp.

HESS' LAW OF CONSTANT HEAT SUMMATION

