

KT AIVLE School

공공데이터 기반 미세먼지 농도 예측

AI 08반 23조

변수 분석

미세먼지, 초미세먼지 변화

✔ 2022년 미세먼지, 초미세먼지 변화

Air 데이터의 분포

Weather 데이터의 분포 (21, 22년 비교)

2021 data : 2020년 전체 데이터 수집

2022 data : 2022년 1~3월(겨울) 데이터 수집

데이터의 분포

2021, 2022 수집한 데이터의 계절이 다름 온도, 기압에서 분포 차이를 보임 But 미세먼지와 초미세먼지 분포는 큰 차이를 보이지 않음 -> 영향?

상관이 높아 보이는 변수 & 낮아 보이는 변수

X: features Y: PM10

상관이 높아 보이는 요소의 분포

강수량

<u>높은 PM10</u> 강수가 없거나 낮은 날에 많이 분포

<u>낮은 PM10</u> 강수량 높은 날에 많이 분포

PM2.5(초미세먼지 농도)

→ 강한 양의 상관관계

상관이 낮아 보이는 요소의 분포

물리화학적 특성으로 인한 원래의 분포와 일치 > 관련이 낮을 것예) 온도 > 평균 기온을 mean으로 해서 정규 분포를 이룰 것이라고 예상 가능

일조, 기압, 운량, 지중온도, 풍속, 풍향, ...

변수 분석 내용 정리

✔변수 1: 강수량

✓ 강수량과 PM10의 상관계수 : -0.064

변수 분석 내용 정리

✔변수 1: 강수량

✓ 강수량과 PM2.5의 상관계수 : -0.049

변수 2: air 데이터

- ✓ SO2
- ✓ CO
- **√** O3
- ✓ NO2

=> 전부 낮은 상관계수

변수 분석 내용 정리

√ 변수 2 : CO, SO2

Feature가 상대적으로 낮은 농도일 때, PM10은 높은 관측값을 보임

변수 분석 내용 정리

√ 변수 2: O3, NO2

Feature가 상대적으로 낮은 농도일 때, PM10은 높은 관측값을 보임

변수 3: weather 데이터

✔ 변수 3

- ✓ 풍속(m/s)
- ✓ 풍향(16방위)
- ✓ 습도(%)
- ✓ 증기압(hPa)
- ✓ 이슬점 온도(°C)
- ✓ 현지기압(hPa)
- ✓ 해면기압(hPa)
- ✓ 시정(10m)

=> 낮은 상관계수

결측치 제거

Air data: 데이터에서 채우기

✔ "에어코리아" 데이터를 사용하여 해당 결측치 보완

데이터에서 채우기

✔ IterativeImputer / KNNImputer 결측치 처리

```
iter_imputer = IterativeImputer(max_iter = 10, random_state = 0)
data_21_iter[num_col] = iter_imputer.fit_transform(train_data[num_col])
knn_imputer = IterativeImputer(max_iter = 10, random_state = 0)
data_21_iter[num_col] = iter_imputer.fit_transform(train_data[num_col])
```

```
month
            0
day
hour
S02
CO
03
NO2
PM10
PM25
            0
강수량(mm)
              0
풍속(m/s)
             0
풍향(16방위)
습도(%)
             0
증기압(hPa)
              0
이슬점온도(°c)
현지기압(hPa)
해면기압(hPa)
시정(10m)
dtype: int64
```

데이터 전처리

<u>강수량</u>

- 1. 0으로 채우기
- 2. knn imputer
- 3. iterative imputer

2021 데이터를 train, 2022 데이터를 test로 사용

- 2021 데이터를 train, val 2022 데이터를 test 로 사용

최종 결측치 처리방법

Air : air data 가져와서 채우기

Weather: weather KNN Imputer

가장 성능이 좋았음

AI 모델링

Linear Regression

- 선형회귀 모델링

```
# 아래에 실습코드를 작성하세요.
model_lr = LinearRegression()
model_lr.fit(x_train, y_train)
```

model	Linear
R2Score	0.954252
RMSE	5.424289
MAE	3.967838
MAPE	0.187151

RandomForest Regressor

- RandomForest 모델링

```
# 아래에 실습코드를 작성하세요.
model_rf = RandomForestRegressor()
model_rf.fit(x_train, y_train)
```

model	Random Forest		
R2Score	0.95721		
RMSE	5.24597		
MAE	3.393903		
MAPE	0.138865		

Gradient Boosting Regressor

- Gradient Boosting 모델링

```
# 아래에 실습코드를 작성하세요.
model_gb = GradientBoostingRegressor()
model_gb.fit(x_train, y_train)
```

model	Gradient Boosting
R2Score	0.962173
RMSE	4.932366
MAE	3.259528
MAPE	0.143858

XGB Regressor

- XGBoosting 모델링

```
# 아래에 실습코드를 작성하세요.
model_xgb = XGBRegressor()
model_xgb.fit(x_train, y_train)
```

model	XGB
R2Score	0.957417
RMSE	5.233269
MAE	3.411547
MAPE	0.141425

Stacking Regressor

- Stacking 모델링
- final_estimator = RF

최종 성능

결론

[결측치 처리가 보여주는 성능]

	model	R2Score	RMSE	MAE	MAPE
0	Linear	0.891064	7.825481	4.745637	0.150392
1	Random Forest	0.899079	7.532105	4.209543	0.131770
2	Gradient Boosting	0.905728	7.279772	4.062354	0.133741
3	XGB	0.879926	8.215802	4.526941	0.139474
4	Stacking	0.879397	8.233877	4.416504	0.130406

[최종 test 성능]

Best R2Score : 0.905728

- R2 score : Gradient Boosting

- RMSE : Gradient Boosting

- MAE : Gradient Boosting

- MAPE : Stacking

결측치 결론

```
[93]: print(xgb_m1.best_params_, xgb_m1.best_score_)
    {'learning_rate': 0.05, 'n_estimators': 200} 0.8836356843625934

[94]: new_XGB1 = XGBRegressor(learning_rate = 0.05, n_estimators=200 )
    new_XGB1.fit(x_train, y_train)
    p_xgb1 = new_XGB1.predict(x_val)
    print('XGB r2score : ' + str(r2_score(y_val, p_xgb1)))
    print('XGB RMSE : '+ str(mean_squared_error(y_val, p_xgb1, squared = False)))

XGB r2score : 0.9621046055904187
    XGB RMSE : 4.936913181647892
```

[최종 test 성능]

AIR 결측치제거 : 직접 채우기 XGB Regressor 모델링을 사용했을 때 성능이 가장 좋음

조별 토론 과정

■ Teams 채팅 이용 & Zoom을 통한 토의

