Ahmed Safwat

Predictive Maintenance for Vehicle Health

final project Digital Egypt Builders Initiative (DEBI)

supervised by Corelia

01

Introduction

02

Dashboard

03

Data description

04

Data cleaning & prepocessing

05

Models comparison

06

References

01 Introduction

This project aims to develop a smart system that predicts potential vehicle failures before they occur, using real-time sensor data and machine learning algorithms.

Instead of relying on traditional maintenance schedules, the system detects early signs of malfunction and alerts users for timely repairs.

By applying predictive analytics, the solution helps reduce unexpected breakdowns, lower maintenance costs, and improve overall vehicle safety and efficienc.

02 Dashboard

Dash Board

Model	Accuracy	F1 Score	Precision	Recall	Run time(m)
Random Forest	1.00	1.00	1.00	1.00	10.00
XGBoost	1.00	1.00	1.00	1.00	2.00

Size of data set 92.00K

Anomalies_Detected	~
□ 0	
□ 1	
Failure_History	~
□ 0	
□ 1	

Brake_Condition

Fair

Good

Poor

03 Data description

- Removed constant column: 'Engine_Temperature

 Engine_Temperature' = 120.
- Processed 'Last_Maintenance_Date' into day, month, year.
- Applied encoding to categorical features.
- Used non-linear models: Random Forest, XGBoost.
- Handled class imbalance with SMOTE / class weighting.
- Ongoing tuning & feature engineering to boost accuracy.

04 Data cleaning & prepocessing

#	Column	Non-Null Count	Dtype
0	Make_and_Model	92 000 non-null	float64
1	Year_of_Manufacture	92 000 non-null	float64
2	Vehicle_Type	92 000 non-null	float64
3	Usage_H o urs	92 000 non-null	float64
4	Route_Info	92 000 non-null	float64
5	Load_Capacity	92 000 non-null	float64
6	Actual_Load	92 000 non-null	float64
7	Maintenance_Type	92 000 non-null	float64
8	Maintenance_Cost	92 000 non-null	float64
9	Tire_Pressure	92 000 non-null	float64
10	Fuel_Consumption	92 000 non-null	float64
11	Battery_Status	92 000 non-null	float64
12	Vibration_Levels	92 000 non-null	float64
13	Oil_Quality	92 000 non-null	float64
14	Brake_C o nditi o n	92 000 non-null	float64
15	Failure_History	92 000 non-null	float64
16	An om alies_Detected	92 000 non-null	float64
17	Predictive_Score	92 000 non-null	float64
18	Maintenance_Required	92 000 non-null	float64
19	Weather_Conditions	92 000 non-null	float64
20	Road_Conditions	92 000 non-null	float64
21	Delivery_Times	92 000 non-null	float64
22	Downtime_Maintenance	92 000 non-null	float64
23	<pre>Impact_on_Efficiency</pre>	92 000 non-null	float64
24	Maintenance_Year	92 000 non-null	float64
25	Maintenance_Month	92 000 non-null	float64
26	Maintenance_Day	92 000 non-null	float64

- Dropped unnecessary columns and those with constant values.
- Renamed columns for clarity and removed duplicate labels.
- Handled missing values and ensured data types were appropriate.
- Extracted day, month, and year from 'Last_Maintenance_Date'.
- Encoded categorical variables using Label Encoding.
- Checked for class imbalance in the target variable.
- Saved the cleaned data to a new CSV file.

Models comparison

Maintenance_Required	count
1.0	56566
0.0	56566

The XGBoost model is the most efficient because it takes short time

Model	Accuracy	F1 Score	Precision	Recall	Run time(m)
Random Forest	1.00	1.00	1.00	1.00	10.00
XGBoost	1.00	1.00	1.00	1.00	2.00

06

References

<u>Project</u>

<u>Data</u>

Model build

THANK YOU