Pricing of Bermudan options under the assumption that the optimal stopping time depends only on the values of the still-alive European component options [Andersen]

> Sönke Blunck January 20, 2006

Premia 8

The following is based on [A]. Suppose that, for i = 0, ..., n-1, we have a martingale $(\widetilde{v}_t^i)_{t \in [0,T_i]}$ representing the discounted value at t of the European option with maturity T_i and discounted payoff $\widetilde{v}_{T_i}^i$. Suppose that we have the following Markov functional forms

(1)
$$\widetilde{v}_{T_i}^i = f_{i,j}(x_{T_i}), \quad j = 0, \dots, i.$$

Here (x_t) is a Markov process with values in \mathbb{R}^D . I.e., we have a closed formula (or at least a closed form approximation) for the values of the n European options. Now consider the Bermudan option given by the payoffs $\tilde{v}_{T_i}^i$ at the exercise times T_i for $i = 0, \ldots, n-1$. Let \tilde{V}_t denote its discounted value at t. Then

$$(2) \widetilde{V}_0 = E(\widetilde{V}_{T_0})$$

(3)
$$\widetilde{V}_{T_i} = \sup_{\tau \in \mathcal{T}_{\{i,\dots,n-1\}}} \widetilde{V}_{T_i}(\tau) , \text{ where } \widetilde{V}_{T_i}(\tau) := E(\widetilde{v}_{T_{\tau}}^{\tau} \mid \mathcal{F}_{T_i})$$

and $\mathcal{T}_{\{i...,n-1\}}$ denotes the set of stopping times with values in $\{i,\ldots,n-1\}$. We introduce the indicator function $I(T_i)$ which is one if exercising at T_i is optimal and zero otherwise; hence

(4)
$$\tau_i^* = \inf\{j = i, \dots, n-1; I(T_j) = 1\}.$$

Here τ_i^* denotes the optimal stopping time in (3), i.e. $\widetilde{V}_{T_i} = \widetilde{V}_{T_i}(\tau_i^*)$. Now suppose that $I(T_i)$ has the following Markov functional form:

(5)
$$I(T_i) = \widetilde{b}_i(\widetilde{v}_{T_i}^i, \dots, \widetilde{v}_{T_i}^{n-1}) = b_i(x_{T_i})$$

for some deterministic boolean functions b_i , b_i . That is, we assume that the exercise decision at T_i depends only on the values at T_i of the still-alive European component options, and this dependance is expressed by b_i . Of course, once that b_i is chosen, one obtains b_i directly from (1).

Observe that, denoting $\vec{b}_i = (b_i, \dots, b_{n-1})$, the following definition motivated by (4) and (5) yields an element of $\mathcal{T}_{\{i,\dots,n-1\}}$:

$$\tau_{\vec{b}_i} := \inf\{j = i, \dots, n-1; b_j(x_{T_i}) = 1\} \in \mathcal{T}_{\{i,\dots,n-1\}}.$$

Obviously, we find functional forms

$$\tau_{\vec{b}_i} = g_{\vec{b}_i}(x_{T_i}, \dots, x_{T_{n-1}})$$
.

Hence, in view of (1), we obtain functional forms

$$\widetilde{v}_{T_{\tau_{\vec{b}_i}}}^{\tau_{\vec{b}_i}} = f_{\tau_{\vec{b}_i}, \tau_{\vec{b}_i}}(x_{T_{\tau_{\vec{b}_i}}}) = F_{\vec{b}_i}(x_{T_i}, \dots, x_{T_{n-1}}).$$

This yields the following representation of $E(\widetilde{V}_{T_i}(\tau_{\vec{b}_i}))$:

(6)
$$E(\widetilde{V}_{T_i}(\tau_{\vec{b}_i})) = E(\widetilde{v}_{T_{\vec{b}_i}}^{\tau_{\vec{b}_i}}) = E(F_{\vec{b}_i}(x_{T_i}, \dots, x_{T_{n-1}})).$$

Here we use definition (3) in the first step.

0.1 Monte Carlo approximation of \widetilde{V}_0 , provided the b_i are chosen

Suppose that, for our Markov process (x_t) , we are given M Monte Carlo samples $(x_{T_0}^m, \ldots, x_{T_{n-1}}^m)$, where $m = 0, \ldots, M-1$. Then, based on (2), (3) and (6), we have the following Monte Carlo approximation of the discounted present value \widetilde{V}_0 of our Bermudan option:

$$\widetilde{V}_0 \approx \frac{1}{M} \sum_{m=0}^{M-1} F_{\vec{b}_0}(x_{T_0}^m, \dots, x_{T_{n-1}}^m) .$$

0.2 Choice of the b_i

Concerning the choice of the b_0, \ldots, b_{n-1} , we note first that one reasonably takes

$$\widetilde{b}_{n-1}(v_{n-1}) := 1_{v_{n-1}>0}$$

?? pages

which states that the Bermudan option is exercised at the last exercise date T_{n-1} if and only if the lastEuropean component option (which is the only one being still alive) is in-the-money.

Now the b_i for i < n-1 can be chosen (backward) iteratively via Monte Carlo maximization over given parametric classes \mathcal{B}_i of the expected discounted value $E(\tilde{V}_{T_i})$ of the Bermudan option at time T_i :

$$b_{i} = \underset{b \in \mathcal{B}_{i}}{\operatorname{arg max}} E(\widetilde{V}_{T_{i}}(\tau_{(b,b_{i+1},\dots,b_{n-1})})) = \underset{b \in \mathcal{B}_{i}}{\operatorname{arg max}} \sum_{l=0}^{L-1} F_{(b,b_{i+1},\dots,b_{n-1})}(x_{T_{i}}^{l},\dots,x_{T_{n-1}}^{l}).$$

Here we use (6) in the second step and we consider L Monte Carlo paths independent of those we use for the approximation of \widetilde{V}_0 ; one should take M >> L. An example for the choice of the classes \mathcal{B}_i of boolean functions

$$\mathcal{B}_i = \{\widetilde{b}_i^H; H \geq 0\}, \text{ where } \widetilde{b}_i^H(v_i, \dots, v_{n-1}) := 1_{v_i > H}.$$

Hence exercise takes place at T_i if the payoff of the European option maturing at T_i exceeds some barrier H. A second example is

$$\mathcal{B}_i = \{ \widetilde{b}_i^H; H \ge 0 \}, \text{ where } \widetilde{b}_i^H(v_i, \dots, v_{n-1}) := 1_{v_i > \max(H, v_{i+1}, \dots, v_{n-1})}.$$

This second strategy is a refinement that also checks if at least one of the remaining European options has a value exceeding the value of the present European option. If this is the case, the strategy decides that exercise cannot be optimal – a reflection of the fact that the Bermudan option can always be sold at the value of its most expensive European component option.

Examples of well-known one-dimensional optimization algorithms include Golden Section Search and Brent's method.

0.3 Remarks

- (1) One might call the general approach chosen here: Monte Carlo pricing of Markov functional Bermudan options under the assumption that the optimal stopping time is also Markov-functional.
- (2) We give the precise definition of some of the functional forms used above:

$$b_i(x) := \widetilde{b}_i(f_{i,i}(x), \dots, f_{n-1,i}(x))$$

$$g_{\vec{b}_i}(x_i, \dots, x_{n-1}) := \inf\{j = i, \dots, n-1; b_j(x_j) = 1\}$$

$$F_{\vec{b}_i}(x_i, \dots, x_{n-1}) := f_{\tau,\tau}(x_\tau), \text{ where } \tau := g_{\vec{b}_i}(x_i, \dots, x_{n-1}).$$
 Here $x, x_i, \dots, x_{n-1} \in \mathbb{R}^D$.

1 Numerical results: Bermudan swaption pricing in the one-factor LIBOR Market Model

We fix a discrete tenor structure

$$0 = \mathcal{T}_0 < \mathcal{T}_1 < \ldots < \mathcal{T}_e \text{ with } \mathcal{T}_{i+1} - \mathcal{T}_i \equiv \delta$$

and define the rightcontinuous function $\eta(t)$ by

$$\mathcal{T}_{\eta(t)-1} \leq t < \mathcal{T}_{\eta(t)}$$
 , in particular $\eta(\mathcal{T}_i) = i+1$.

Denoting by P(t,T) the time t price of a zero-coupon bond maturing at T, we define for $i = 0, \ldots, e-1$ the forward LIBOR rates for the period $[\mathcal{T}_i, \mathcal{T}_{i+1}]$:

$$L_t^i := \delta^{-1} \left(\frac{P(t, T_i)}{P(t, T_{i+1})} - 1 \right) , \quad t \in [0, T_i] .$$

The method presented in Section 1 will hence be applied for

$$D = e$$
 and $x_t = (L_{t \wedge \mathcal{T}_i}^i)_{i=0,\dots,e-1} \in \mathbb{R}^e$.

We assume forward measure dynamics of the following simple type:

$$dL_t^i = \lambda L_t^i dW_t^i.$$

This is equivalent to the following spot measure dynamics:

$$dL_t^i = \lambda L_t^i \left(b_i(t, L_t) dt + dW_t \right) , \quad b_i(t, L) := \delta \lambda \sum_{j=\eta(t)}^i \frac{L^j}{1+\delta L^j} .$$

All simulations will be done under these spot measure dynamics. Recall that the corresponding spot numeraire (N_t) satisfies

$$N_{\mathcal{T}_i} = \prod_{j=0}^{i-1} (1 + \delta L_{\mathcal{T}_j}^j) .$$

Let us consider a (payer) interest rate swap where fixed cashflows $K\delta$ paid at $\mathcal{T}_{s+1}, \ldots, \mathcal{T}_e$ are swapped against floating LIBOR on a unit notional. We will price the corresponding Bermudan swaption with n exercise dates $T_i = \mathcal{T}_{s+i}$, where $i = 0, \ldots, n-1$. Hence, the discounted payoff at T_i is

$$\widetilde{v}_{T_i}^i = \frac{1}{N_{T_i}} \left(1 - P(T_i, \mathcal{T}_e) - K \delta \sum_{j=s+i+1}^e P(T_i, \mathcal{T}_j) \right)_+, \quad T_i = \mathcal{T}_{s+i}.$$

?? pages

Closed form approximations [corresponding to the $f_{i,j}$ needed in (1)] for European swaption prices can be found e.g. in [AA, § 5]. We consider the following parameter values:

$$\delta = 0.5 \; , \; L_0^i = 0.06 \; , \; K = 0.06 \; , \; L = 10000 \; , \; M = 50000 \; .$$

The following table of prices corresponds to Table 1 in [A]. The letters E and B correspond to European (n = 1) and Bermudan (n = e - s).

We applied the first strategy presented in Section 1.2 for the choice of the b_i . All Monte Carlo simulations are based on a first-order log-Euler discretization with time step δ . Numbers in parenthesis denote the 95 % confidence interval.

In the European case, we also give the price obtained via the closed form approximation mentioned above.

$T_0 = T_s$	\mathcal{T}_e	λ	E or B	CF	MC
1	4	0.2	Ε	122.0	120.9 (1.7)
2	4	0.2	Е	111.4	109.3 (1.6)
3	4	0.2	Ε	66.1	65.8 (1.0)
1	4	0.2	В		157.1 (1.7)
2	5	0.2	Ε	162.4	159.3 (2.3)
3	5	0.2	Е	128.4	127.8 (1.9)
4	5	0.2	Ε	71.8	71.1 (1.1)
2	5	0.2	В		188.4 (2.3)
5	10	0.15	Ε	253.6	252.0 (3.4)
6	10	0.15	Е	215.3	214.8 (2.9)
7	10	0.15	Ε	169.0	168.3 (2.3)
8	10	0.15	E	116.7	116.7 (1.6)
9	10	0.15	E	60.0	59.8 (0.8)
5	10	0.15	В		283.6 (3.3)

References

- [A] L. Andersen; 'A simple approach to the pricing of Bermudan swaptions in the Multi-Factor LIBOR Market Model', Journal of Computational Finance 3, 5-32 (2000). 1, 5
- [AA] L. Andersen, J. Andreasen; 'Volatility skews and extensions of the LIBOR Market Model', Mathematical Finance 7, 1-32 (2000). 5