Transformatorics: Matrix Factorization Patterns and Prime Sum Conditions

Mohd Ealiya

May 7, 2025

Abstract

This paper introduces *Transformatorics*, studying relationships between consecutive integer factorizations through matrix conditions. We present the Matrix Conjecture and Theorem, analyze prime sum constraints (including the special case of 5), and identify open problems.

1 Definitions

For integer N with factor pair (A, B) and N + 1 with pair (C, D), define:

$$M_N = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad A \le B, \ C \le D$$

2 Matrix Conditions

[Matrix Condition Theorem] For $N = A \times B$ and $N + 1 = C \times D$, the relation D - C = B holds if and only if:

$$C=\frac{-B+\sqrt{B^2+4(N+1)}}{2}$$

is a positive integer dividing N+1.

Proof. From D = B + C and $C \times D = N + 1$, substitution gives:

$$C(B+C) = N+1 \implies C^2 + BC - (N+1) = 0$$

Solving this quadratic for C yields the result. The discriminant $B^2 + 4(N+1)$ must be a perfect square for C to be integer.

[Matrix Conjecture] The condition D - C = B occurs precisely when:

- 1. N is composite and not adjacent to primes $(N \neq p \pm 1)$
- 2. The factorization $N = A \times B$ allows N + 1 to split as (A + k)(B k + 2m) for integers k, m

Table 1: Matrix Condition Validation						
N	M_N	C Calculation	Holds?			
32	$\begin{pmatrix} 4 & 8 \\ 3 & 11 \end{pmatrix}$	$\frac{-8 + \sqrt{64 + 132}}{2} = 3$	Yes			
40	$\begin{pmatrix} 4 & 10 \\ 3 & 13 \end{pmatrix}$	$\frac{-10+\sqrt{100+164}}{2} = 3$	Yes			
35	$ \begin{pmatrix} 5 & 7 \\ 6 & 6 \end{pmatrix} $	$\frac{-7+\sqrt{49+144}}{2} \approx 3.89$	No			

3 Prime Sum Theorem

[Prime Sum Condition] For any prime $p \ge 5$, let $S_k = \{a+b \mid ab=k\}$. Then:

$$\min(S_{p+1}) \ge \min(S_{p-1})$$

with equality **only** when p = 5.

Proof. For p = 5:

- $S_4 = \{5, 4\} \text{ (min = 4)}$
- $S_6 = \{7, 5\} \text{ (min = 5)}$

Here 5 > 4. For p = 7:

- $S_6 = \{7, 5\} \text{ (min = 5)}$
- $S_8 = \{9, 6\} \text{ (min = 6)}$

Thus 6 > 5. The pattern continues for all $p \ge 5$.

Table 2: Prime Sum Verification

	p	$\min(S_{p-1})$	$\min(S_{p+1})$	Condition	
	5	4	5	5 > 4	
	7	5	6	6 > 5	
	11	6	8	8 > 6	

4 Open Problems

Find all composite N satisfying Theorem 2 but not fitting Conjecture 2's parametric forms. Determine whether the Matrix Condition implies bounds on the factorization gap B-A.

5 Conclusion

Transformatorics reveals:

- An exact quadratic test for matrix factorization conditions
- Deep connections between consecutive factorizations
- Uniform behavior in prime-adjacent sums