Calculus 1 Integration by Substitution

The Guess-and-Check Method

Integration by substitution reverses the chain rule. Recall:

$$\frac{d}{dx}\left(f(g(x))=f'(g(x))\cdot g'(x)\right).$$

Thus, any function which is the result of differentiating with the chain rule is the product of two factors, the "derivative of the outside" and the "derivative of the inside." If a function has this form, its antiderivative is f(g(x)).

For Example

Find

$$\int \left(3x^2\cos(x^3)\right)dx$$

Solution: The function $3x^2\cos(x^3)$ looks like the result of applying the chain rule: there is an "inside" function x^3 and its derivative $3x^2$ appears as a factor. Since the outside function is a cosine which has a sine as an antiderivative, we guess $\sin(x^3)$ for the antiderivative. Differentiating to check gives

$$\frac{d}{dx}(\sin(x^3)) = \cos(x^3) \cdot (3x^2).$$

Since this is what we began with, we know that

$$\int \left(3x^2\cos(x^3)\right)dx = \sin(x^3) + C$$

The Method of Substitution

To Make a Substitution in an Integral

Let w be the "inside function" and $dq = w'(x)dx = \frac{dw}{dx}dx$. Then express the integrand in terms of w.

Find

$$\int \left(3x^2\cos(x^3)\right)\,dx$$

Solution:

We look for an inside function whose derivative appears. In this case x^3 . We let $w=x^3$. Then $dw=w'(x)dx=3x^2dx$. The original integrand can now be completely rewritten in terms of the new variable w:

$$\int 3x^2 \cos(x^3) dx = \int \cos \underbrace{(x^3)}_{w} \cdot \underbrace{3x^2 dx}_{dw}$$
$$= \int \cos w dw$$
$$= \sin w + C = \sin(x^3) + C$$

Another Example

Find

$$\int xe^{x^2} dx$$

$$\int xe^{x^2} dx = \int \frac{2}{2} xe^{x^2} dx = \frac{1}{2} \int 2xe^{x^2} dx$$

$$= \frac{1}{2} \int e^w dw$$

$$= \frac{1}{2} e^w + C$$

But we didn't start with w so we need to switch back to a function in terms of x. Therefore, the answer is $\frac{1}{2}e^{x^2} + C$ because $w = x^2$.

Another Example

Find

$$\int x^3 \sqrt{x^4 + 5} dx$$

The inside function is $x^4 + 5$, with derivative $4x^3$. The integrand has a factor of x^3 , and since the only thing missing is a constant factor we try $w = x^4 + 5$. Then $dw = w'(x)dx = 4x^3dx$, giving $\frac{1}{4}dw = x^3dx$. Thus,

$$\int x^{3} \sqrt{x^{4} + 5} dx = \int \sqrt{w} \frac{1}{4} dw$$

$$= \frac{1}{4} \int \sqrt{w} dw$$

$$= \frac{1}{4} \frac{w^{3/2}}{\frac{3}{2}} + C$$

$$= \frac{1}{6} (x^{4} + 5)^{3/2} + C$$

Warning!!!

We saw in the preceding example that we can apply the substitution method when a constant factor is missing from the derivative of the inside function. However, we may not be able to use substitution if anything other than a constant factor is missing. For example, setting $w = x^4 + 5$ to find

$$\int x^2 \sqrt{x^4 + 5} dx$$

does us no good because $x^2 dx$ is not a constant multiple of $dw = 4x^3 dx$. Substitution works if the integrand contains the derivative of the inside function, to within a constant factor.

Note:

Integrals are, in some sense, harder than derivatives. With derivative in general, if you can write it down you can find a derivative, this is not true for integrals. Writing down something that appears to be simple may in fact be unsolvable!

- a) $\int x \sin(x^2) dx$
- b) $\int \frac{1}{x \ln x} dx$
- c) $\int \frac{1}{\tan(x)} dx$
- d) $\int x^2(x^3+3)^6 dx$

- a) $\int x \sin(x^2) dx$
- b) $\int \frac{1}{x \ln x} dx$
- c) $\int \frac{1}{\tan(x)} dx$
- d) $\int x^2(x^3+3)^6 dx$
- (a) While $w=x^2$ is a useful substitution for (a), the result is not of the form $\int w^n dw$.

a)
$$\int \frac{4x^3+3}{\sqrt{x^4+3x}} dx$$

b)
$$\int \frac{e^{x}-x^{-x}}{(e^{x}+e^{-x})^{3}} dx$$

c)
$$\int \frac{2x}{x^2+1} dx$$

d)
$$\int \frac{\sin(x)}{x} dx$$

Which of the integrals can not be converted to one of the form $\int w^n dw$ by a simple substitution where n is a constant?

a)
$$\int \frac{4x^3+3}{\sqrt{x^4+3x}} dx$$

b)
$$\int \frac{e^{x}-x^{-x}}{(e^{x}+e^{-x})^{3}} dx$$

c)
$$\int \frac{2x}{x^2+1} dx$$

d)
$$\int \frac{\sin(x)}{x} dx$$

(d) Actually, there is no substitution that converts (d) into a function which has an elementary derivative.

Discussion

- a) $\int x^{16}(x^{17}+16)^{16}dx$
- b) $\int x^{16}(x^{17}+16x)^{16}dx$
- c) $\int \frac{18x}{1+6x^3} dx$
- d) $\int \frac{e^x}{e^x+6} dx$

Discussion

Which of the integrals can not be converted to one of the form $\int w^n dw$ by a simple substitution where n is a constant?

a)
$$\int x^{16}(x^{17}+16)^{16}dx$$

b)
$$\int x^{16}(x^{17}+16x)^{16}dx$$

c)
$$\int \frac{18x}{1+6x^3} dx$$

d)
$$\int \frac{e^x}{e^x+6} dx$$

In (a), $w = x^{17} + 16$ works and in (d) $w = e^x + 6$ will work.

Discussion

Which of the following integrals yields an arcsine or arctangent function upon integration after an appropriate substitution?

a)
$$\int \frac{x}{4-x^2} dx$$

b)
$$\int \frac{4}{4+x^2} dx$$

c)
$$\int \frac{x}{\sqrt{4-x^2}} dx$$

d)
$$\int \frac{4}{\sqrt{4+x^2}} dx$$

Definite Integrals by Substitution

To Use Substitution to Find Definite Integrals

Either

- Compute the indefinite integral, expressing an antiderivative in terms of the original variable, and then evaluate the result at the original limits,
- Convert the original limits to new limits in terms of the new variable and do not convert the antiderivative back to the original variable.

Evaluate

$$\int_1^3 \frac{dx}{5-x}.$$

Definite Integrals by Substitution

To Use Substitution to Find Definite Integrals

Either

- Compute the indefinite integral, expressing an antiderivative in terms of the original variable, and then evaluate the result at the original limits,
- Convert the original limits to new limits in terms of the new variable and do not convert the antiderivative back to the original variable.

Evaluate

$$\int_{1}^{3} \frac{dx}{5-x}.$$

Solution:

Let w = 5 - x, then dw = -dx. In particular, when x = 1, w = 4, and when x = 3, w = 2, therefore,

$$\int_{1}^{3} \frac{dx}{5-x} = \int_{4}^{2} \frac{-dw}{w} = -\ln|w||_{4}^{2} = -(\ln 2 - \ln 4) = 0.693$$

More Complex Substitutions

Find

$$\int \sqrt{1+\sqrt{x}} dx$$

This time, the derivative of the inside function is nowhere to be seen. Nevertheless, we try $w=1+\sqrt{x}$. Then $w+1=\sqrt{x}$, so $(w+1)^2=x$. Therefore, 2(w+1)dw=dx. We have

$$\int \sqrt{1+\sqrt{x}} dx = \int \sqrt{w} 2(w-1) dw = 2 \int w^{1/2} (w-1) dw$$
$$= 2 \int (w^{3/2} - w^{1/2}) dw = 2 \left(\frac{2}{5} w^{5/2} - \frac{2}{3} w^{3/2}\right) + C$$
$$= 2 \left(\frac{2}{5} (1+\sqrt{x})^{5/2} - \frac{2}{3} (1+\sqrt{x})^{3/2}\right) + C$$