Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

DEVOIR SURVEILLE DU PREMIER TRIMESTRE EPREUVE DE MATHEMATIQUES

Classe: 3ème Coef: 2 Durée: 2H

13 novembre 2019 Prof: YAWO Kossi Atsu

Exercice 1 (5 pts)

- 1. Calcule et mets les résultats sous la forme de fractions irréductibles : $A = \frac{5}{3} \frac{1}{3} \times \frac{9}{16}$; $B = \frac{3}{4} \frac{2}{3} : \frac{18}{15}$.
- **2.** Calcule et écris le résultat en notation scientifique : $C = \frac{8 \times 10^8 \times 1,6}{0,4 \times 10^{-3}}$.
- **3.** Les dimensions d'un terrain rectangulaire sont proportionnelles à 5 et 9. Sachant que le demi-périmètre de ce terrain est 280m,
 - a. Détermine la longueur et la largeur de ce terrain.
 - **b.** Calcule l'aire de ce terrain.

Exercice 2 (4 pts)

- 1. On pose $D = \sqrt{3 + 2\sqrt{2}}$ et $E = \sqrt{3 2\sqrt{2}}$.
 - **a.** Calcule $(1 + \sqrt{2})^2$ et $(1 \sqrt{2})^2$
 - **b.** En déduire la valeur la plus simple de D et E.
 - **c.** Calcule D + E; D E et $\frac{D}{E}$.
- **2.** Ecris sous la forme de $a\sqrt{b}$: $C = \sqrt{12} \sqrt{3} + \sqrt{48}$
- **3.** Montre que $C = (\sqrt{5} + \sqrt{10})^2 10\sqrt{2}$ est un nombre entier.

Exercice 3 (5 pts)

On donne les polynômes suivants : $P = (x-7)(3x+2) + x^2 - 49 - (x+5)(x-7)$ et $Q = (x-2)^2 - 25$

- 1. Développe réduis et ordonne P suivant les puissances décroissantes de x.
- 2. Factorise P et Q.
- **3.** Soit la fraction rationnelle : $R = \frac{(x-7)(3x+4)}{(x-7)(x+3)}$.
 - a. Détermine la condition d'existence d'une valeur numérique de R.
 - **b.** Simplifie R dans cette condition d'existence.
 - **c.** Détermine la valeur numérique de R pour x = -2 et pour $x = \sqrt{3}$.
 - **d.** Pour quelle valeur de x a-t-on R = 0? $R = \frac{2}{3}$?

Exercice 4 (6 pts)

L'unité de longueur est le centimètre. ABC est un triangle rectangle en B tel que AB = 12 et BC = 5. Fais une figure que tu compléteras au fur et à mesure.

- 1. Marque le point D de [AB] tel AD = 9 puis trace la perpendiculaire à (AB) en D; elle coupe (AC) en E.
- 2. Calculer AC.
- **3.** Que peux-tu dire des droite (DE) et (BC)? Justifie.

8	figure	/ 3 pt(s)
7	•	/ 2 pt(s)
6	•	/ 1 pt(s)
5	•	/ 3.5 pt(s)
4	•	/ 1.5 pt(s)
3	•	/ 4 pt(s)
2	•	/ 2 pt(s)
1	•	/ 3 pt(s)

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

TRAVAUX DIRIGES DE MATHEMATIQUES N°1

Classe: 3ème

Date: 23 novembre 2019 Prof: YAWO Kossi Atsu

Exercice 1

On donne les polynômes suivants : $M = 1 - 16x^2$ et $N = (3x + 15)(x + 2) + x^2 - 25$.

1. Développe, réduis et ordonne suivants les puissances de x le polynôme N.

2. Écris *M* et *N* sous la forme d'un produit de facteurs du premier degré.

3. Soit la fraction rationnelle : $F = \frac{1-16x^2}{(x+5)(4x+1)}$

a. Détermine la condition d'existence d'une valeur numérique de F.

b. Simplifie l'expression de F lorsqu'elle existe.

c. Détermine la valeur numérique de *F* pour x = -2 et pour $x = \sqrt{3}$.

d. Pour quelle valeur de x a-t-on $F = -\frac{2}{3}$

Exercice 2

1. On donne : $A = \frac{8}{3} + (\frac{3}{4} - \frac{5}{6}) + \frac{3}{16}$. Calcule A et donne le résultat sous forme de fraction irréductible.

2. Calcule $(3-2\sqrt{5})^2$ et écris plus simplement $B=\sqrt{29-12\sqrt{5}}$.

3. On considère l'expression $C = \frac{\sqrt{2}(\sqrt{2} - \sqrt{3})}{\sqrt{3} + \sqrt{2}}$

a. Rend rationnel le dénominateur de *A*.

b. Donne un encadrement de *A* à 10^{-2} près sachant que 1,414 < $\sqrt{2}$ < 1,415 et 1,732 < $\sqrt{3}$ < 1,733

Exercice 3

 (\mathscr{C}) est un cercle de centre O et de diamètre [BC] tel que BC = 8. A est un point du cercle (\mathscr{C}) tel que BA = 4. B' est le symétrique de B par rapport à A.

1. Démontre que le triangle BAC est rectangle en A.

2. Calcule AC.

3. Démontre que AOB est un triangle équilatéral.

4. Calcule la mesure en degré de chacun des angles du triangle *AOC*.

5. Calcule BB'.

6. Démontre que (AC) est la médiatrice de [BB']

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

COMPOSITION DU PREMIER TRIMESTRE EPREUVE DE MATHEMATIQUES

Classe: 3^{ème} Coef: 2 Durée: 2H

13 décembre 2019 Prof: YAWO Kossi Atsu

Exercice 1 (4 pts)

- 1. Calcule et donne le résultat sous forme de fraction irréductible : $A = \frac{8}{3} + (\frac{3}{4} \frac{5}{6}) + \frac{3}{16}$; $B = \frac{5}{3} \frac{1}{3} \times \frac{9}{16}$
- **2.** Calcule et donne le résultat en notation scientifique : $C = \frac{6 \times 10^5 6 \times 10^3}{3 \times 10^{11}}$
- **3.** Calcule $(3-2\sqrt{5})^2$ et écris plus simplement $D=\sqrt{29-12\sqrt{5}}$.
- **4.** Ecris sous la forme de $a\sqrt{b}$ où a et b sont des nombres entiers et b le plus petit possible : $E = \sqrt{27} + 7\sqrt{75} \sqrt{300}$

Exercice 2 (5 pts)

On donne les polynômes suivants : $M = 1 - 16x^2$ et $N = (3x + 15)(x + 2) + x^2 - 25$.

- 1. Développe, réduis et ordonne suivants les puissances de x le polynôme N.
- **2.** Écris *M* et *N* sous la forme d'un produit de facteurs du premier degré.
- **3.** Soit la fraction rationnelle : $F = \frac{1-16x^2}{(x+5)(4x+1)}$
 - **a.** Détermine la condition d'existence d'une valeur numérique de *F*.
 - **b.** Simplifie l'expression de *F* lorsqu'elle existe.
 - **c.** Détermine la valeur numérique de *F* pour x = -2 et pour $x = \sqrt{3}$.
 - **d.** Pour quelle valeur de x a-t-on $F = -\frac{2}{3}$

Exercice 3 (6 pts)

- 1. Construire un triangle ABC tel que AC = 12cm, AB = 13cm et BC = 5cm.
- **2.** Placer le point R appartenant à [AC] tel que AR = 9cm.
- **3.** Placer le point T appartenant à [AB] tel que la droite (RT) soit perpendiculaire à la droite (AC).
- **4.** Démontre que le triangle *ABC* est rectangle.
- **5.** Que peut-on dire des droites (RT) et (BC)? Justifier.
- **6.** Calcule la valeur exacte de la longueur du segment [AT].

Exercice 4 (5 pts)

 (\mathscr{C}) est un cercle de centre O et de diamètre [BC] tel que BC = 8. A est un point du cercle (\mathscr{C}) tel que BA = 4. B' est le symétrique de B par rapport à A.

- 1. Démontre que le triangle BAC est rectangle en A.
- **2.** Calcule AC.
- 3. Démontre que *AOB* est un triangle équilatéral.
- 4. Calcule la mesure en degré de chacun des angles du triangle AOC.
- **5.** Calcule BB'.
- **6.** Démontre que (AC) est la médiatrice de [BB']

1	fraction	/ 1.5 pt(s)
2	puissance	/ 1 pt(s)
3	racine carrées	/ 1.5 pt(s)
4	TOTAL PARTIEL= 9.00	/ 0 pt(s)
5	développer	/ 0.5 pt(s)
6	factoriser	/ 1 pt(s)
7	condition d'existence	/ 0.75 pt(s)
8	simplifier	/ 0.75 pt(s)
9	valeur numérique	/ 1.5 pt(s)
10	équation	/ 0.5 pt(s)
11	TOTAL PARTIEL= 9.00	/ 0 pt(s)
12	•	/ 6 pt(s)
13	TOTAL PARTIEL= 9.00	/ 0 pt(s)
14	cercle circonscrit à un triangle	/ 0.5 pt(s)
15	théorème de Pythagore	/ 1 pt(s)
16	cercle et distance	/ 1 pt(s)
17	angles d'un triangle	/ 1.5 pt(s)
18	symétrie	/ 0.5 pt(s)
19	médiatrice d'un segment	/ 0.5 pt(s)
20	TOTAL PARTIEL= 9.00	/ 0 pt(s)
-	TOTAL	/ 20.00 pt(s)

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

TRAVAUX DIRIGES DE MATHEMATIQUES N°2

Classe: 3ème

Date: 25 janvier 2020 Prof: YAWO Kossi Atsu

Exercice 1

1. On donne les polynômes suivants :

$$F = (12x^2 - 3)(x + 3) + (x^2 - 9)(2x - 1)$$
 et $G = 4x^3 - x$.

a. Factorise F et G.

b. Développe, réduis et ordonne F suivant les puissances croissantes de x.

2. Soit H la fraction rationnelle telle que : $H = \frac{(12x^2 - 3)(x + 3) + (x^2 - 9)(2x - 1)}{4x^3 - x}$.

a. Trouve la condition d'existence d'une valeur numérique de H.

b. Simplifie l'écriture de H.

c. Pour quelle valeur numérique de H=0? H=1.

d. Calcule la valeur numérique de H pour $x = \sqrt{2}$ puis donne un encadrement à 10^-2 près de cette valeur sachant que : $1,414 < \sqrt{2} < 1,415$.

Exercice 2

Le plan étant muni d'un repère orthonormé (O, I, J) et l'unité de longueur le centimètre, on considère les points : A(-5;1); B(1;7) et D(1;1).

1. a. Place les points A, B et C dans ce repère. (On compléteras la figure au fur et à mesure).

b. Calcule les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{BD} puis en déduire les distances \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{BD} .

c. Quelle est la nature du triangle BAD? Justifier.

2. On considère le point E(7;7). Démontre que le quadrilatère BADE est un parallélogramme puis calculer les coordonnées de son centre M.

3. a. Détermine une équation de la droite (AB) puis de la droite (AE) sous la forme de y = ax + b.

b. En déduire le coefficient directeur de la droite (*DE*).

4. Soit (Δ) la perpendiculaire à (AE) passant par D; (Δ) coupe (AE) en G.

a. Détermine les coordonnées du vecteur \overrightarrow{AE} puis en déduire une équation de (Δ) .

b. Calculer les coordonnées du point G.

12

^{1. &}quot;A person who never made a mistake never tried anything new." — Albert Einstein

^{2. &}quot;Procrastination makes easy things hard and hard things harder." — Mason Cooley

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

DEVOIR SURVEILLÉ DU DEUXIÈME TRIMESTRE EPREUVE DE MATHEMATIQUES

Classe: 3ème Coef: 2 Durée: 2H

12 février 2020

Prof: YAWO Kossi Atsu

Exercice 1 (5,5pts pts)

1. On donne les nombres suivants :

$$A = (-4) \times (4 - 2^3) \; ; \qquad B = \frac{(2^3)^2 \times 10^{-7}}{32 \times 10^{-8}} \; ; \qquad C = 3\sqrt{8} - 3\sqrt{2} + \sqrt{32} - 2\sqrt{18} \; ; \qquad D = 3\sqrt{36} + 2\sqrt{100} - \sqrt{144} \; ; \\ E = \frac{3}{2} - \frac{10}{3} \times \frac{12}{5}$$

- a. Montre que A, B et D sont des nombres entiers à déterminer.
- **b.** Écris plus simplement C.
- c. Écris E sous la forme de fractions irréductible.
- **2.** On donne les intervalles suivants : $A = (-3)^2 + (-3)^2 + (-3)^2 = (-3)^2 + (-3)^2 = ($
 - a. Traduis chacun de ces intervalles par une inégalité.
 - **b.** Détermine : $A \cap B$; $B \cup C$ et $A \cap C$

Exercice 2 (5 pts)

On donne les polynômes suivants :

$$M = 4(x-1)^2 - (x-5)^2$$
; $N = x^2 - 6x + 9 - (3-x)(2x+1)$

- 1. Développe, réduis et ordonne M suivant les puissances décroissantes de x.
- 2. Écris M et N sous la forme de produit de facteurs du premier degré.
- **3.** On considère la rationnelle $H = \frac{x^2 6x + 9}{(3x 2)(x 3)}$
 - a. Détermine la condition d'existence d'une valeur numérique de H.
 - **b.** Simplifie H lorsqu'elle existe.
 - **c.** Calcule la valeur numérique de H pour $x = \sqrt{2}$, écris le résultat sans radical au dénominateur.

Exercice 3 (5 pts)

L'unité de longueur est le centimètre. Soit (\mathscr{C}) le demi-cercle de diamètre [NI] tel que NI=10. O est un point de (\mathscr{C}) tel que OI=6.

- 1. Fais une figure que tu complèteras au fur et à mesure.
- **2.** Démontre que le triangle *NIO* est rectangle.
- 3. Calcule NO.
- **4.** H est le projeté orthogonal de O sur [NI]. Calcule OH, $tan\widehat{INO}$ puis déduis un encadrement d'ordre zéro de la mesure de l'angle \widehat{INO} .
- **5.** Place le point P sur le segment [NO] tel que $\overrightarrow{OP} = \frac{3}{4}\overrightarrow{ON}$. La parallèle à (OI) passant par P coupe [NI] en R. Calcule PR.

Exercice 4 (4,5 pts)

Dans le plan muni d'un repère orthonormé (O,I,J) on donne les points : A(-3;0) ; B(2;-3) et C(5;2).

- 1. Calcule AB, BC et AC.
- 2. Justifie que le triangle ABC est rectangle et isocèle.
- **3.** Calcule les coordonnées du point K milieu de [AC].
- 4. D est l'image de B par la symétrie de centre K. Calcule les coordonnées de D.
- 5. Donne et justifie la nature du quadrilatère ABCD.

-	TOTAL	/ 0.00 pt(s)
---	-------	--------------

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

TRAVAUX DIRIGES DE MATHEMATIQUES N°3

Classe: 3ème

Date: 29 février 2020 Prof: YAWO Kossi Atsu

Exercice 1

Dans le plan muni d'un repère orthonormé (O, I, J), on considère les points A, B et C tel que : $\overrightarrow{OA} = 7\overrightarrow{OI} + \overrightarrow{OJ}$; $\overrightarrow{OB} = 8\overrightarrow{OI} + 4\overrightarrow{OJ}$ et $\overrightarrow{CO} = \overrightarrow{OI} - 7\overrightarrow{OJ}$.

- 1. Place les points A, B et C dans le repère.
- **2. a.** Montre que les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.
 - **b.** Donne en justifie la nature du triangle ABC.
- 3. Soient le point M milieu du segment [AC] et le point D symétrique de B par rapport à M.
 - a. Détermine les coordonnées de M et de D.
 - **b.** Précise la nature du quadrilatère ABCD. Justifie.
- **4. a.** Construis le cercle (\mathscr{C}) circonscrit au quadrilatère ABCD.
 - **b.** Précise son centre, calcule son rayon et montre qu'il passe par le point O.

Exercice 2

Le plan est muni d'un repère orthonormé (O, I, J). L'unité de longueur est le centimètre.

- **1. a.** Place dans le repère les points A(0;4), B(6;1) et C(2;-3).
 - **b.** Construis H le projeté orthogonal du point C sur la droite (AB).
- 2. On se propose de déterminer les coordonnées du point H; pour cela :
 - a. Détermine une équation cartésienne de la droite (AB).
 - **b.** Détermine le coefficient directeur et une équation cartésienne de la droite (CH).
 - c. Déduis- en les coordonnées de H.

Exercice 3

Soient f et g deux applications définies sur \mathbb{R} par :

$$f(x) = (9x^2 - 25)(4x - 1) + (16x^2 - 8x + 1)(6x - 10)$$
 et $g(x) = (3x - 5)[(5x - 1)^2 - 4(3x + 2)^2]$

- 1. Mettre f(x) et g(x) sous la forme de produit de facteurs du premier degré.
- **2.** On pose $Q(x) = \frac{f(x)}{g(x)}$ Quelle est la condition d'existence d'une valeur numérique de Q ? Simplifie Q.
- **3.** On définit dans \mathbb{R} la fraction rationnelle $S(x) = \frac{1-4x}{x+5}$
 - **a.** Calcule $S(\sqrt{3})$ et rend rationnelle le dénominateur.
 - **b.** Résoudre dans \mathbb{R} l'équation S(x) = 1

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

COMPOSITION DU DEUXIÈME TRIMESTRE EPREUVE DE MATHEMATIQUES

Classe: 3ème Coef: 2 Durée: 2H

11 mars 2020

Prof: YAWO Kossi Atsu

Exercice 1 (4 pts)

- **1.** Calcule les nombres : $M = \frac{2}{7} \frac{3}{7} \times (\frac{2}{3})^2$ et $N = (\frac{2}{3} 3) \div \frac{1}{9} + 7$
- **2.** On considère les nombres : $A = \sqrt{81} \sqrt{108} + \sqrt{48} \sqrt{25}$; $B = (1 \sqrt{3})^2$ et $C = \sqrt{A}$.
 - **a.** Calcule B et montre que : $A = 4 2\sqrt{3}$.
 - b. Déduis-en une écriture simplifiée de C.

Exercice 2 (5 pts)

- 1. On donne les expressions littérales suivantes : $E = 2x(3x 4) (4 3x)^2$ et $F = (9x^2 4) (2x 3)(3x 2)$
 - a. Développe, réduis et ordonne E suivant les puissances croissantes de x.
 - **b.** Factorise E et F.
 - **c.** Résous dans R l'équation (3x-2)(x+5) = 0.
- **2.** Soit Q la fraction rationnelle telle que $Q = \frac{3x(x-3)-2(x-3)}{(3x-2)(x+5)}$
 - a. Détermine la condition d'existence d'une valeur numérique de Q.
 - b. Simplifie Q dans cette condition.
 - **c.** Calcule la valeur exacte de Q pour $x = \sqrt{2}$.

Exercice 3 (4 pts)

L'unité de longueur est le centimètre. \overrightarrow{ABC} est un triangle rectangle en B tel que $\overrightarrow{AB} = 6$ et $\overrightarrow{AC} = 8$. M et N sont deux points tels que $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AC}$.

- 1. Trouve les distances AM et AN puis fais la figure.
- 2. Justifie que les droites (BC) et (MN) sont parallèles.
- **3.** Calcule BC, $cos\widehat{BAC}$ et $tan\widehat{BAC}$.
- **4.** A l'aide de la table trigonométrique, trouve l'encadrement d'ordre zéro de la mesure de l'angle \widehat{BAC} .

Exercice 4 (7 pts)

Dans le plan muni d'un repère orthonormé (O, I, J), on considère les points A, B et C tel que : $\overrightarrow{OA} = 7\overrightarrow{OI} + \overrightarrow{OI}$; $\overrightarrow{OB} = 8\overrightarrow{OI} + 4\overrightarrow{OI}$ et $\overrightarrow{CO} = \overrightarrow{OI} - 7\overrightarrow{OI}$.

- 1. Place les points A, B et C dans le repère.
- **2. a.** Montre que les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.
 - **b.** Donne en justifie la nature du triangle ABC.
- 3. Soient le point M milieu du segment [AC] et le point D symétrique de B par rapport à M.
 - a. Détermine les coordonnées de M et de D.
 - b. Précise la nature du quadrilatère ABCD. Justifie.
- **4. a.** Construis le cercle (\mathscr{C}) circonscrit au quadrilatère ABCD.
 - **b.** Précise son centre, calcule son rayon et montre qu'il passe par le point O.

Tel: 93 56 92 92 / 97 19 20 84 email: couronnedor20@gmail.com

TRAVAUX DIRIGES DE MATHEMATIQUES N°4

Classe: 3^{ème}

Date: 08 mars 2020 Prof: YAWO Kossi Atsu

Exercice 1 (4 pts)

1. Calcule les nombres : $M = \frac{2}{7} - \frac{3}{7} \times (\frac{2}{3})^2$ et $N = (\frac{2}{3} - 3) \div \frac{1}{9} + 7$

2. On considère les nombres : $A = \sqrt{81} - \sqrt{108} + \sqrt{48} - \sqrt{25}$; $B = (1 - \sqrt{3})^2$ et $C = \sqrt{A}$.

a. Calcule B et montre que : $A = 4 - 2\sqrt{3}$.

b. Déduis-en une écriture simplifiée de C.

Exercice 2 (5 pts)

1. On donne les expressions littérales suivantes : $E = 2x(3x - 4) - (4 - 3x)^2$ et $F = (9x^2 - 4) - (2x - 3)(3x - 2)$

a. Développe, réduis et ordonne E suivant les puissances croissantes de x.

b. Factorise E et F.

c. Résous dans R l'équation (3x-2)(x+5) = 0.

2. Soit Q la fraction rationnelle telle que $Q = \frac{3x(x-3)-2(x-3)}{(3x-2)(x+5)}$

a. Détermine la condition d'existence d'une valeur numérique de Q.

b. Simplifie Q dans cette condition.

c. Calcule la valeur exacte de Q pour $x = \sqrt{2}$.

Exercice 3 (4 pts)

L'unité de longueur est le centimètre. \overrightarrow{ABC} est un triangle rectangle en B tel que $\overrightarrow{AB} = 6$ et $\overrightarrow{AC} = 8$. M et N sont deux points tels que $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AC}$.

1. Trouve les distances AM et AN puis fais la figure.

2. Justifie que les droites (BC) et (MN) sont parallèles.

3. Calcule BC, $\cos \widehat{BAC}$ et $\tan \widehat{BAC}$.

4. A l'aide de la table trigonométrique, trouve l'encadrement d'ordre zéro de la mesure de l'angle \widehat{BAC} .

Exercice 4 (7 pts)

Dans le plan muni d'un repère orthonormé (O, I, J), on considère les points A, B et C tel que : $\overrightarrow{OA} = 7\overrightarrow{OI} + \overrightarrow{OI}$; $\overrightarrow{OB} = 8\overrightarrow{OI} + 4\overrightarrow{OI}$ et $\overrightarrow{CO} = \overrightarrow{OI} - 7\overrightarrow{OI}$.

1. Place les points A, B et C dans le repère.

2. a. Montre que les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.

b. Donne en justifie la nature du triangle ABC.

3. Soient le point M milieu du segment [AC] et le point D symétrique de B par rapport à M.

a. Détermine les coordonnées de M et de D.

b. Précise la nature du quadrilatère ABCD. Justifie.

4. a. Construis le cercle (*C*) circonscrit au quadrilatère ABCD.

b. Précise son centre, calcule son rayon et montre qu'il passe par le point O.