TABLE II
SUMMARY OF RESULTS FOR THE SOFT LANDING EXAMPLE

Control Policy	Optimal Control with Known Parameters	CE Control with Unknown Parameters	Dual Control with Unknown Parameters
Average cost	15	104	28
Maximum cost in a sample of 20 runs Standard deviation of the	35	445	62
cost	9	114	11
Average miss distance squared Weighted cumulative con-	28	192	32
trol energy prior to final stage	1	7	12

Fig. 5. Average estimation error squared in θ_1 , θ_2 , θ_3 for the soft landing example.

point in the state space, while the aim before was to hit a surface. Therefore, it should be expected that the average cost is higher than in the previous example. This is seen to hold true, as shown in Tables I and II, for the dual control and the optimal control with known parameters. However, for CE control, it does not hold true. This may look strange at first sight, but careful analysis of the simulation will offer an explanation for this.

Table II indicates the improvement of dual control over CE control, both in average performance and reliability. The terminal miss distance squared for the dual control is

Fig. 6. Average estimation error squared in θ_4 , θ_5 , θ_6 for the soft landing example.

Fig. 7. Average cumulative control energy for the soft landing example.