Graph Machine Learning

Applications of Graph ML

Different types of tasks

Classical Graph ML tasks

- Node classification: Predict a property of a node
 - Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
 - Example: Knowledge graph completion
- Graph classification: Categorize different graphs
 - Example: Molecule property prediction
- Clustering: Detect if nodes form a community
 - Example: Social circle detection
- Other tasks:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

Node Level ML Tasks

Example 1 Protein folding

A protein chain acquires its native 3D structure

Every protein is made up of a sequence of amino acids bonded together These amino acids interact locally to form shapes like helices and sheets

These shapes fold up on larger scales to form the full three-dimensional protein structure Proteins can interact with other proteins, performing functions such as signalling and transcribing DNA

Image credit: DeepMind

The protein folding problem

Computationally predict a protein's 3D structure based solely on its amino acid sequence

AlphaFold: Solving Protein folding problem

- Key idea: "Spatial graph"
 - Nodes: Amino acids in a protein sequence
 - Edges: Proximity between amino acids (residues)

Spatial graph

Edge Level ML Tasks

Example – Recommender Systems

- Users interacts with items
 - Watch movies, buy merchandise, listen to music
 - Nodes: Users and items
 - Edges: User-item interactions
- Goal: Recommend items users might like

Example Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

Biomedical Graph Link Prediction

- Nodes: Drugs & Proteins
- Edges: Interactions

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

Results and Predictions

Rank	$\operatorname{Drug} c$	Drug d	Side effect r	Evidence found
1	Pyrimethamine	Aliskiren	Sarcoma	Stage <i>et al.</i> 2015
2	Tigecycline	Bimatoprost	Autonomic neuropathy	
3	Omeprazole	Dacarbazine	Telangiectases	
4	Tolcapone	Pyrimethamine	Breast disorder	Bicker et al. 2017
5	Minoxidil	Paricalcitol	Cluster headache	
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo <i>et al.</i> 2016
7	Anagrelide	Azelaic acid	Cerebral thrombosis	
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012
10	Estradiol	Nadolol	Endometriosis	

Subgraph Level ML Tasks

Example Traffic Prediction

Road Network as a Graph

- Nodes: Road segments
- Edges: Connectivity between road segments

Traffic Prediction via GNN

Predict via Graph Neural Networks

Graph Level ML Tasks

Example Drug Discovery

Antibiotics are small molecular graphs

- Nodes: Atoms
- Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Models for Antibiotic Discovery

- A Graph Neural Network graph classification model
- Predict promising molecules from a pool of candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Molecule Generation/Optimization

Graph generation: Generating novel molecules

Use case 1: Generate novel molecules with high drug likeness

Use case 2: Optimize existing molecules to have desirable properties

Physics Simulation

Physical simulation as a graph:

Nodes: Particles

Edges: Interaction between particles

Simulation Learning Framework

A graph evolution task:

Goal: Predict how a graph will evolve over

