4.3. Exercices

4.3.1 Exercice 1

Soient X et Y deux variables aléatoires centrées et réduites; notons ρ leur coefficient de corrélation, et posons $Z = X - \rho Y$. Montrer que Y et Z ne sont pas corrélées.

4.3.2 Exercice 2 (Paradoxe téléphonique)

Deux personnes entrent au même instant dans deux cabines téléphoniques (3) voisines; on suppose que leurs temps de communication, notés X et Y, sont des variables aléatoires indépendantes, de même loi exponentielle de paramètre $\alpha > 0$.

- 1) On note T la variable aléatoire égale au temps d'attente avant qu'une des deux cabines ne se libère. Déterminer la loi de T et calculer son espérance.
- 2) La première personne à terminer sa conversation attend la seconde pendant une durée notée U. Déterminer la loi de la variable U; comparer alors l'attente moyenne U à la durée moyenne de communication $1/\alpha$.

4.3.3 Exercice 3 (Statistique d'ordre)

Soient X_1, X_2, \ldots, X_n des variables aléatoires réelles indépendantes. On note $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ les valeurs ordonnées de ces variables, c'est-à-dire que $X_{(1)}$ est la plus petite des valeurs $X_1, X_2, \ldots, X_n, X_{(2)}$ la seconde plus petite, etc. On suppose que les X_k admettent tous la même densité f. Montrer que $(X_{(1)}, X_{(2)}, \ldots, X_{(n)})$ admet pour densité

$$g(y_1, y_2, \dots, y_n) = n! f(y_1) f(y_2) \cdots f(y_n) 1_{y_1 < y_2 < \dots < y_n}.$$

4.3.4 Exercice 4 (Inversibilité d'une matrice « aléatoire »)

Soit M une matrice carrée d'ordre 2:

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

dont les coefficients A, B, C et D sont des variables aléatoires absolument continues et indépendantes. Montrer que M est presque sûrement inversible. (Cet exercice se généralise bien évidemment à des matrices de taille $n \times n$.)

4.3.5 Exercice 5

Soit $\mathbf{Y} = (\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3)$ un vecteur aléatoire normal :

$$\mathcal{N}_{3p} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}, \begin{pmatrix} \Sigma & 0 & 0 \\ 0 & \Sigma & 0 \\ 0 & 0 & \Sigma \end{pmatrix} \right)$$

On pose $\bar{X} = \frac{1}{3}(X_1 + X_2 + X_3)$.

- 1. Trouver une matrice B telle que : $B\mathbf{Y} = \begin{pmatrix} X_1 \bar{X} \\ \bar{X} \end{pmatrix}$
- 2. Calculer $Var(B\mathbf{Y})$
- 3. Les vecteurs $X_1 \bar{X}$ et \bar{X} sont-ils indépendants?

4.3.6 Exercice 6

Soit $\mathbf{X} = (X_1, X_2, X_3, X_4)$ un vecteur normal $\mathcal{N}_4(\mu, \Sigma)$ avec :

$$\mu = \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 3 & 2 & 0 \\ 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 9 \end{pmatrix}$$

- 1. Quelle est la loi de (X_1, X_4) ?
- 2. Quelle est la loi de $X_1 X_3$?
- 3. Quelle est la loi de (X_1, X_2) sachant X_4 ?
- 4. Quelle est la loi de (X_1, X_2) sachant X_3 ?

4.3.7 Exercice 7

Soient (X_1, X_2, \dots, X_n) un vecteur aléatoire normal tel que $\mathbb{E}(X_i) = \mu$ et

$$\operatorname{Var}(X_i) = \sigma^2 \quad \forall i = 1, \dots, n \quad \text{et} \quad \operatorname{Cov}(X_i, X_j) = \rho \sigma^2 \quad \forall i, j = 1, \dots, n \ (i \neq j), \quad \rho \in [-1, 1]$$

- 1. Donner la loi de la variable aléatoire $\bar{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 2. Étudier le comportement asymptotique de $\bar{X}(n)$. (on calculera la fonction caractéristique de $\bar{X}(n)$ ainsi que sa limite quand n tend vers l'infini.)

4.3.8 Exercice 8

Soient X_1, X_2, X_3 et X_4 i.i.d de loi commune $\mathcal{N}_1(\mu, \sigma^2)$

- 1. Quelle est la loi de $\mathbf{X} = (X_1, X_2, X_3, X_4)$?
- 2. Vérifier que la matrice

$$O = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{3}{2\sqrt{3}} \end{pmatrix}$$

est orthogonale. (c-à-d. $OO^T = O^TO = I_4$)

- 3. Quelle est la loi de $\mathbf{Y} = O\mathbf{X}$?
- 4. En posant $\mathbf{Y} = (Y_1, Y_2, Y_3, Y_4)$, montrer que :

$$Y_1^2 = \bar{X} := \frac{1}{4} \sum_{i=1}^4 X_i$$
 et $\frac{1}{4} \sum_{i=2}^4 Y_i^2 = s^2 := \left(\frac{1}{4} \sum_{i=1}^4 X_i\right) - \bar{X}^2$

5. En déduire la loi de \bar{X} , la loi de $\frac{4s^2}{\sigma^2}$ et l'indépendance entre ces deux variables.

4.3.9 Exercice 9

Loi uniforme sur la sphère.

Soit X un vecteur aléatoire suivant la loi $\mathcal{N}(0, I_d)$. Pour r > 0, on note H_r^{n-1} la loi de $r \frac{X}{\|X\|}$. Soit O une matrice orthogonale. Montrer que H_r^{n-1} est invariante par O.

On admettra dans la suite que H_r^{n-1} est l'unique mesure à support sur la sphère de rayon r et invariante par l'action du groupe orthogonal.

4.3.10 Exercice 10

Lemme de Poincaré.

Soit $S_a^{n-1}=\{x\in\mathbb{R}^n:\|x\|=a\}$ la sphère de rayon a plongée dans \mathbb{R}^n où

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Soient μ_n la probabilité uniforme sur $S_{\frac{1}{\sqrt{n}}}^{n-1}$ (autrement dit $\mu_n = H_{\frac{1}{\sqrt{n}}}^{n-1}$), $\pi_n : \mathbb{R}^n \to \mathbb{R}$ la projection définie par $\pi_n(x) = x_1$ et γ_n la mesure image de μ_n par π_n . Ainsi, pour tout $a < b \in \mathbb{R}$,

$$\gamma_n([a,b]) = \mu_n(\pi_n^{-1}([a,b])) = \mu_n\left(\left\{x \in S_{\frac{1}{\sqrt{n}}}^{n-1} : a \le x_1 \le b\right\}\right).$$

À l'aide de l'exercice précédent, démontrer le résultat suivant, appelé lemme de Poincaré. Pour toute fonction $\Phi : \mathbb{R} \to \mathbb{R}$ continue bornée,

$$\lim_{n \to \infty} \int \Phi(x) \gamma_n(dx) = \int \Phi(x) \gamma(x) dx = \int \Phi(x) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$

4.3.11 Exercice 11

Soit $(X,Y) \sim \mathcal{N}(0,I_2)$. Montrer que XY a même loi que la variable $\frac{1}{2}(X^2 - Y^2)$. Indication : penser à la formule de polarisation

$$XY = \frac{1}{4} ((X + Y)^2 - (X - Y)^2).$$

4.3.12 Exercice 12

La loi uniforme sur la sphère unité de dimension m est la loi de $\frac{X}{\|X\|_2}$, où $X \sim \mathcal{N}(0, I_m)$. Soit F un sous-espace de dimension n de \mathbb{R}^m , P_F la projection orthogonale sur F. Montrer que si M suit la loi uniforme sur la sphère de dimension m, alors $\|P_F(M)\|_2^2$ suit la loi Bêta de paramètres $\left(\frac{m}{2}, \frac{n-m}{2}\right)$.