Algèbre linéaire II

(deux semaines)

(du lundi 9 avril 2018 au vendredi 20 avril 2018)

Exercice 1

Soient
$$A = \begin{pmatrix} 2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

Calculer AB et BA.

Exercice 2

Soient
$$A = \begin{pmatrix} 3 & 0 & 2 \\ -1 & 1 & -2 \\ 2 & 1 & 5 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ -2 & 1 & 1 \end{pmatrix}$

Calculer AB et BA.

Exercice 3

Soit
$$A = \begin{pmatrix} 1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{pmatrix}$$

Déterminer A^2 , A^3 et A^4 .

Exercice 4

Soient
$$a$$
 et b deux réels, $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1. Exprimer A en fonction de I_3 , J et J^2 .
- 2. En déduire A^n pour tout entier naturel n non nul.

Exercice 5

1. Soit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -1 & 1 \\ -2 & 1 & -1 \end{pmatrix}$$
. Determiner la matrice A^{-1} .

2. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par

$$f(x, y, z) = (x + y - 2z, x - y + z, -2x + y - z)$$

Montrer que f est bijective et déterminer f^{-1} .

Exercice 6

Soient $E = \mathbb{R}_2[X]$ et $f : E \longrightarrow E$ définie pour tout $P \in E$ par $f(P) = 2(X+1)P - (X^2+1)P'$ et id l'application identique de E c'est-à-dire pour tout $P \in E$, id(P) = P.

Soient enfin $\mathscr{B} = (1, X, X^2)$ et $\mathscr{B}' = (1, X - 1, (X + 1)^2)$ deux bases de E.

- 1. Déterminer $A = \operatorname{Mat}_{\mathscr{B}}(f)$, matrice de f relativement à la base \mathscr{B} .
- 2. Déterminer $B = \operatorname{Mat}_{\mathscr{B}'}(f)$, matrice de f relativement à la base \mathscr{B}' .
- 3. Déterminer $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$, matrice de f relativement aux bases \mathscr{B} , \mathscr{B}' .
- 4. Déterminer $\mathrm{Mat}_{\mathscr{B}',\mathscr{B}}(f)$, matrice de f relativement aux bases \mathscr{B}' , \mathscr{B} .
- 5. Déterminer $P = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(id)$ et $Q = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(id)$.
- 6. Déterminer l'inverse de la matrice $Mat_{\mathscr{B}',\mathscr{B}}(id)$. Que constatez-vous?
- 7. Déterminer $P^{-1}AP$. Que constatez-vous?

Exercice 7

- 1. Déterminer la matrice d'une rotation vectorielle d'angle θ relativement à la base canonique de \mathbb{R}^2 .
- 2. Déterminer la matrice d'une rotation vectorielle d'axe (0z) et d'angle θ relativement à la base canonique de \mathbb{R}^3 .
- 3. Déterminer la matrice d'une symétrie orthogonale d'axe (0x) relativement à la base canonique de \mathbb{R}^2 .

Exercice 8

Soient
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P(X) & \longmapsto & P(X) - XP'(X) \end{array} \right.$$
 et $g: \left\{ \begin{array}{ccc} \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}^3 \\ P(X) & \longmapsto & \left(P(-1), P(0), P(1)\right) \end{array} \right.$

Déterminer les matrices des applications linéaires suivantes relativement aux bases canoniques.

Exercice 9

Soit
$$f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$$
 définie par $f: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

En ayant vérifié que f est bien linéaire, écrire la matrice de f relativement à la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Exercice 10

Les questions 1, 2 et 3 sont indépendantes.

1. Soit
$$f: \left\{ \begin{array}{ll} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P(X) & \longmapsto & (X^2-1)P(2) + 2XP(3) \end{array} \right.$$

Déterminer la matrice de f relativement à la base canonique de $\mathbb{R}_2[X]$.

2. Soient
$$g: \left\{ \begin{array}{ccc} \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ P(X) & \longmapsto & P(X+1) \end{array} \right.$$
 et $h: \left\{ \begin{array}{ccc} \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ P(X) & \longmapsto & P(X-1) \end{array} \right.$

- a. Déterminer les matrices de g et h relativement à la base canonique de $\mathbb{R}_3[X]$.
- b. Déterminer la matrice de g^{-1} relativement à la base canonique de $\mathbb{R}_3[X]$.

3. Soient
$$u: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^2 \\ (x,y,z) & \longmapsto (x+2y+z,y+2z) \end{array} \right.$$
 et $v: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow \mathbb{R}^3 \\ (x,y) & \longmapsto (3x+y,x,2y) \end{array} \right.$

- a. Déterminer les matrices de u et v relativement aux bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .
- b. Déterminer les matrices de $u \circ v$ et $v \circ u$ relativement aux bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

Exercice 11

Soient $(x_0,...,x_n) \in \mathbb{R}^{n+1}$ fixé et V l'application de $\mathbb{R}_n[X]$ vers \mathbb{R}^{n+1} définie pour tout $P \in \mathbb{R}_n[X]$ par

$$V(P) = (P(x_0), \dots, P(x_n))$$

Déterminer la matrice de V relativement aux bases canoniques de $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} .

Exercice 12

Soient E un \mathbb{R} -ev de dimension finie et $(u,v) \in (\mathscr{L}(E))^2$. On note id l'application identique de E dans E c'est-à-dire définies pour tout $x \in E$ par id(x) = x.

- 1. Via le théorème du rang, montrer que si u est injective, alors u est bijective. Montrer de même que si u est surjective, alors u est bijective.
- 2. Montrer que $u \circ v = id \Longrightarrow u$ surjective.
- 3. Montrer que $v \circ u = id \Longrightarrow u$ injective.
- 4. Soient $n \in \mathbb{N}$ tel que $n \ge 2$ et $(A, B) \in \mathscr{M}_n^2(\mathbb{R})$ tel que $AB = I_n$ où I_n est la matrice identité d'ordre n. En considérant les endomorphismes de \mathbb{R}^n associés à A et B, montrer que A est inversible et $BA = I_n$.

Exercice 13

On note I la matrice identité d'ordre 3. Soit $J=\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$

1. Vérifier que $J^2 - J - 2I = 0$. En déduire J^{-1} en fonction de I et J.

N.B.: on rappelle que s'il existe $K \in \mathcal{M}_3(\mathbb{R})$ tel que JK = I alors J est inversible et $J^{-1} = K$.

2. Soit $n \in \mathbb{N}$. On effectue la division euclidienne de X^n par $X^2 - X - 2$. Il existe donc $Q(X) \in \mathbb{R}[X]$ et $R(X) \in \mathbb{R}[X]$ tels que

$$X^n = (X^2 - X - 2)Q(X) + R(X)$$

avec le degré de R strictement inférieur à 2.

Ainsi il existe $(a,b) \in \mathbb{R}^2$ tel que

$$X^n = (X^2 - X - 2)Q(X) + aX + b$$

En remarquant que 2 et -1 sont racines de $X^2 - X - 2$ déterminer a et b.

3. Soit $n \in \mathbb{N}$. En déduire J^n en fonction de n, I et J.

N.B.: On substituera J à l'indéterminée X de la question 2 (sachant que le polynôme 1 devient I).

Par exemple, $X^4 + 2X^3 + 4$ devient après substitution $J^4 + 2J^3 + 4I$.