1

Assignment 1

AI1110:Probability and Random Variables Indian Institute Of Technology Hyderabad

Name: Pradyumn Kangule Roll no.: CS22BTECH11048

12.13.6.12 Question: Suppose we have four boxes A,B,C and D containing coloured marbles as given in table below:

Box	Marble colour		
	Red	White	Black
A	1	6	3
В	6	2	2
С	8	1	1
D	0	6	4

Table 1: Question Table

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is read, what is the probability that it was drawn from

- 1) Box A?
- 2) Box B?
- 3) Box C?

Answer: $1)\frac{1}{15}$ $2)\frac{2}{5}$ $3)\frac{8}{15}$ **Solution:**

Table 2: Events Table

selected box is C selected box is D

Probability of chosen box being A given that drawn marble is red is given by: $Pr(E_1|E)$

Probability of chosen box being B given that drawn marble is red is given by: $Pr(E_2|E)$

Probability of chosen box being C given that drawn marble is red is given by: $Pr(E_3|E)$

Here,

$$\Pr(E|E_1) = \frac{1}{10} \tag{1}$$

$$\Pr(E|E_2) = \frac{6}{10} \tag{2}$$

$$\Pr(E|E_3) = \frac{8}{10} \tag{3}$$

$$\Pr(E|E_4) = \frac{0}{10} \tag{4}$$

$$Pr(E_1) = Pr(E_2) = Pr(E_3) = Pr(E_4) = \frac{1}{4}$$
 (5)

Now by Bayes' theorem,

$$\Pr(E_1|E) = \frac{\Pr(E|E_1)\Pr(E_1)}{\sum_{i=1}^{i=4}(\Pr(E|E_i)\Pr(E_i))}$$
(6)

$$= \frac{\frac{1}{10} \times \frac{1}{4}}{\frac{1}{10} \times \frac{1}{4} + \frac{6}{10} \times \frac{1}{4} + \frac{8}{10} \times \frac{1}{4} + \frac{0}{10} \times \frac{1}{4}}$$
(7)

$$=\frac{\frac{1}{40}}{\frac{15}{40}}\tag{8}$$

$$=\frac{1}{15}\tag{9}$$

$$\Pr(E_2|E) = \frac{\Pr(E|E_2)\Pr(E_2)}{\sum_{i=1}^{i=4} (\Pr(E|E_i)\Pr(E_i))}$$
(10)

$$= \frac{\frac{6}{10} \times \frac{1}{4}}{\frac{1}{10} \times \frac{1}{4} + \frac{6}{10} \times \frac{1}{4} + \frac{8}{10} \times \frac{1}{4} + \frac{0}{10} \times \frac{1}{4}}$$
(11)

$$=\frac{\frac{6}{40}}{\frac{15}{40}}\tag{12}$$

$$=\frac{2}{5}\tag{13}$$

$$Pr(E_{3}|E) = \frac{Pr(E|E_{3})Pr(E_{3})}{\sum_{i=1}^{i=4}(Pr(E|E_{i})Pr(E_{i}))}$$

$$= \frac{\frac{8}{10} \times \frac{1}{4}}{\frac{1}{10} \times \frac{1}{4} + \frac{6}{10} \times \frac{1}{4} + \frac{8}{10} \times \frac{1}{4} + \frac{0}{10} \times \frac{1}{4}}$$

$$= \frac{\frac{8}{40}}{\frac{15}{40}}$$

$$= \frac{8}{15}$$

$$= \frac{8}{15}$$

$$= (17)$$

$$= \frac{\frac{8}{10} \times \frac{1}{4}}{\frac{1}{10} \times \frac{1}{4} + \frac{6}{10} \times \frac{1}{4} + \frac{8}{10} \times \frac{1}{4} + \frac{0}{10} \times \frac{1}{4}}$$
(15)

$$=\frac{\frac{8}{40}}{\frac{15}{40}}\tag{16}$$

$$=\frac{8}{15}\tag{17}$$