Microblog Conversation Recommendation via Joint Modeling of Topics and Discourse

Xingshan Zeng¹, Jing Li², Lu Wang³, Nicholas Beauchamp³, Sarah Shugars³, Kam-Fai Wong¹

¹The Chinese University of Hong Kong ²Tencent AI Lab ³Northeastern University

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

For the famous:

• For the famous:

• For the famous:

So many discussions!

• For ordinary people:

So many discussions!

So many discussions!

Which conversations to engage in?

For ordinary people:

So many discussions!

Which conversations to engage in?

Conversation Recommendation!

Related Work

Related Work

• Conventional Recommender Systems:

Collaborative filtering! (Pan et al. 2008; McAuley and Leskovec 2013)

Recommendation on Social Media:

Post-level recommendation! Can't handle conversations! (Yan et al. 2012; Chen et al. 2012; Pan et al. 2013; Yu et al. 2016)

Conversation Modeling:

Unsupervised; Word distribution! (Ritter et al. 2010)

Objective:

Post recommendation ——— Conversation recommendation

Objective:

Post recommendation —— Conversation recommendation New Task!

Objective:

Post recommendation ——— Conversation recommendation New Task!

- Features:
- 1) Reply history
- ②Conversation context (Discourse behaviors / Dialog acts: agreement, argument, etc.)

• Our thinking:

• Our thinking:

Conversation 1

Sam: My paper has been accepted

by ACL!

Tom: Congrats!

Amy: Congrats!

.

Conversation 2

Jack: Python is the best programming

language in the world!

Tom: Nonsense! Java is the best!

Jack: What? Writing Java is a waste of time!

.

• Our thinking:

Conversation 1

Sam: My paper has been accepted

by ACL!

Tom: Congrats!

Amy: Congrats!

.

Conversation 2

Jack: Python is the best programming

language in the world!

Tom: Nonsense! Java is the best!

Jack: What? Writing Java is a waste of time!

.

Which conversation is Tom more likely to return?

• Our thinking:

Conversation 1

Sam: My paper has been accepted

by ACL!

Tom: Congrats!

Amy: Congrats!

.

Conversation 2

Jack: Python is the best programming

language in the world!

Tom: Nonsense! Java is the best!

Jack: What? Writing Java is a waste of time!

.

Which conversation is Tom more likely to return?

Joint effect of topics and discourse!

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

Overall Idea:

Collaborative Filtering + Probabilistic Graphical Model

Overall Idea:

Collaborative Filtering + Probabilistic Graphical Model

$$\min \mathcal{L} + \mu \cdot NLL(\mathcal{C} \mid \mathbf{\Theta})$$

Overall Idea:

Collaborative Filtering + Probabilistic Graphical Model (Reply preference)

$$\min \mathcal{L} + \mu \cdot NLL(\mathcal{C} \mid \mathbf{\Theta})$$

Overall Idea:

• Overall Idea:

(Control the trade-off between the two effects)

- Reply Preference:
- One-Class Collaborative Filtering

- Reply Preference:
- One-Class Collaborative Filtering

$$\mathcal{L} = \sum_{u=1}^{|\mathcal{U}|} \sum_{c=1}^{|\mathcal{C}|} f_{u,c} \cdot (p_{u,c} - r_{u,c})^2$$

- Reply Preference:
- One-Class Collaborative Filtering

$$\mathcal{L} = \sum_{u=1}^{|\mathcal{U}|} \sum_{c=1}^{|\mathcal{C}|} f_{u,c} \cdot (p_{u,c} - r_{u,c})^2$$
 Real score $f_{u,c} = \left\{egin{array}{ll} s & ext{if } r_{u,c} = 1 ext{ (i.e., user replied)} \ 1 & ext{if } r_{u,c} = 0 \end{array}
ight.$

• Reply Preference:

- Reply Preference:
- Predicting score:

Computed according to both topic and discourse effect!

- Reply Preference:
- Predicting score:

Computed according to both topic and discourse effect!

$$p_{u,c} = \lambda \cdot \gamma_u^U \cdot \gamma_c^C + (1 - \lambda) \cdot \delta_u^U \cdot \delta_c^C + b_u + b_c + a$$

- Reply Preference:
- Predicting score:

Computed according to both topic and discourse effect!

$$p_{u,c} = \lambda \cdot \gamma_u^U \cdot \gamma_c^C + (1-\lambda) \cdot \delta_u^U \cdot \delta_c^C + b_u + b_c + a$$
 trade-off bias offset topic vectors discourse vectors

Corpus Likelihood:

Corpus Likelihood:

Corpus Likelihood:

Connecting conversation topics and user preferences

Corpus Likelihood:

Connecting conversation topics and user preferences

Connecting conversation discourse structure and user discourse behaviors

Corpus Likelihood:

Connecting conversation topics and user preferences

Connecting conversation discourse structure and user discourse behaviors

Model Description Connecting conversation topics and user Corpus Likelihood: preferences Word $u_{c,m}$ distributions γ_c^C Connecting $x_{c,m,n}$ conversation M_c discourse Word type structure and user discourse switcher behaviors (Ternary) Generative Graph

13

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

Datasets

- US Election
- TREC

Datasets

- US Election
- TREC

Dataset	# of user	# of conv	# of msg
US Election	4,300	2,013	22,092
TREC	10,122	7,500	38,999

Statistics of two datasets

Datasets

- US Election
- TREC

Dataset	# of user	# of conv	# of msg
US Election	4,300	2,013	22,092
TREC	10,122	7,500	38,999

Statistics of two datasets

Experiment setup:

The first 75% of each conversation as training history; 50% for development, 50% for test.

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

Evaluation

Evaluation:

Conversation recommendation: a ranking problem!

- MAP (Mean Average Precision)
- Precision@K
- nDCG@K (Normalized Discounted Cumulative Gain @ K)

Comparison

- Baselines:
- Random
- Length
- Popularity
- Comparisons:
- One-Class Collaborative Filtering (OCCF) (Pan et al. 2008)
- Ranking SVM (RSVM) (Duan et al. 2010)
- Collaborative Personalized Tweet Recommendation (CTR) (Chen et al. 2012)
- CF + LDA (Adapted HFT) (McAuley and Leskovec 2013)

Results

Baselines

Comparisons

	Madala		US Election		TREC		
	Models	MAP	P@1	nDCG@5	MAP	P@1	nDCG@5
/	Random	0.018	0.004	0.009	0.006	0.001	0.002
	Length	0.025	0.002	0.003	0.013	0.002	0.004
	Popularity	0.050	0.010	0.025	0.023	0.005	0.010
/	OCCF	0.637	0.589	0.649	0.410	0.385	0.425
	RSVM	0.687	0.680	0.690	0.554	0.575	0.559
	CTR	0.673	0.649	0.678	0.475	0.431	0.495
	Adapted HFT	0.698	0.652	0.706	0.487	0.447	0.504
	Our Model	0.762	0.750	0.757	0.591	0.591	0.600

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

How's the performance when trained on different conversation history?

How's the performance for different user sparsity?

of conversations that users have participated in training

TREC dataset

What if only considering topic or discourse?

Models	US Election	TREC
Adapted HFT (content based)	0.698	0.487
Our Model (topic only)	0.711	0.491
Our Model (discourse only)	0.705	0.483
Our Model (full)	0.762	0.591

What if only considering topic or discourse?

	Models	US Election	TREC
	Adapted HFT (content based)	0.698	0.487
•	Our Model (topic only)	0.711	0.491
	Our Model (discourse only)	0.705	0.483
	Our Model (full)	0.762	0.591

What if only considering topic or discourse?

$\lambda = 1$	
$\lambda = 0$	

Models	US Election	TREC
Adapted HFT (content based)	0.698	0.487
Our Model (topic only)	0.711	0.491
Our Model (discourse only)	0.705	0.483
Our Model (full)	0.762	0.591

What if only considering first time replies?

Models	US Election	TREC
OCCF	0.035	0.033
RSVM	0.023	0.002
CTR	0.029	0.016
Adapted HFT	0.054	0.058
Our Model	0.083	0.090

What if only considering first time replies?

Models	US Election	TREC
OCCF	0.035	0.033
RSVM	0.023	0.002
CTR	0.029	0.016
Adapted HFT	0.054	0.058
Our Model	0.083	0.090

(MAP scores)

A difficult task!

What if only considering first time replies?

Models	US Election	TREC
OCCF	0.035	0.033
RSVM	0.023	0.002
CTR	0.029	0.016
Adapted HFT	0.054	0.058
Our Model	0.083	0.090

(MAP scores)

A difficult task!

- Only use features of history and context!
- Discourse behavior history is important!

Outline

- Introduction
- Model
- Datasets
- Evaluation and Results
- Further Analysis
- Conclusion

Conclusion

- A new task: conversation recommendation
- A novel framework for microblog conversation recommendation (CF + Graphical Model)
- A probabilistic graphical model that can capture both topics and discourse information
- Experiment results show the effectiveness of the model

Thank you!

Datasets:

http://www.ccs.neu.edu/home/luwang/datasets/microblog_conversation.zip

