

Вебинар №4. Свойства и Вычисление Пределов.

Сходимость и расходимость последовательностей

Мы уже познакомились с понятием предела последовательности. Теперь формализуем, какие последовательности мы называем сходящимися, а какие — расходящимися.

Определение. Последовательность x_n называется **сходящейся**, если она имеет конечный предел.

Определение. Последовательность x_n называется **расходящейся**, если она не имеет предела (или её предел бесконечен).

Иной взгляд на определение предела

Давайте ещё раз взглянем на определение предела, используя пример последовательности $a_n = \frac{1}{n}$.

$$a_n = \frac{1}{n} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{100}, \dots\right\}$$

Мы уже знаем, что предел этой последовательности равен 0:

$$\lim_{n \to \infty} a_n = 0$$

Напомним строгое определение предела:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n > N_{\varepsilon} \hookrightarrow |a_n - 0| < \varepsilon$$

И для нашей последовательности $a_n = \frac{1}{n}$ это означает:

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \implies \frac{1}{n} < \varepsilon$$

Из чего следует, что $n>\frac{1}{\varepsilon}.$ Тогда мы выбираем N_{ε} как наименьшее целое число, большее $\frac{1}{\varepsilon}:$

$$N_{\varepsilon} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$$

Саму же последовательность a_n , в отличие от геометрического представления на плоскости из прошлого вебинара, можно представлять на числовой прямой следующим образом:

Рис. 1: Геометрическое представление последовательности на прямой

Неравенство $|a_n - 0| < \varepsilon$ можно раскрыть как двойное неравенство:

$$-\varepsilon < a_n - 0 < \varepsilon \implies -\varepsilon < a_n < \varepsilon$$

Это означает, что все члены последовательности, начиная с некоторого номера N_{ε} , лежат внутри так называемого ε -коридора точки a (предела последовательности). Этот ε -коридор или ε -окрестность точки a определяется как:

$$U_{\varepsilon}(a) = \{x \in \mathbb{R} : |x - a| < \varepsilon\} = (a - \varepsilon; a + \varepsilon)$$

Рис. 2: Эпсилон окрестность точки a с радиусом ε

Пример: $U_{0.5}(3)$ — это интервал (3 - 0.5; 3 + 0.5) = (2.5; 3.5).

Рис. 3: Частный случай эпсилон окрестности радиуса 0.5 в точке 3

Другая формулировка определения предела

Иногда определение предела формулируют иначе, что помогает лучше понять его геометрический смысл.

Определение. Число a является пределом последовательности x_n , если вне любой ε -окрестности точки a лежит лишь конечное число элементов последовательности x_n .

Это означает, что, как бы мал ни был коридор вокруг предела a, почти все члены последовательности (бесконечное множество) находятся внутри этого коридора, и только первые члены (конечное множество) могут находиться за его пределами.

Геометрически это выглядит следующим образом:

Рис. 4: Геометрическое представление определения предела для $x_n = \frac{1}{n}$

Как видно из Рис. 4, как бы мал не был эпсилон коридор вокруг точки a=0, вне данного коридора всегда будет находиться лишь конечное число членов последовательности x_n .

Свойства сходящихся последовательностей

Сходящиеся последовательности обладают рядом важных свойств. Рассмотрим основные из них.

Лемма 1. (О единственности предела) У сходящейся последовательности существует ровно один предел.

Доказательство: Докажем это утверждение методом от противного. Предположим, что существует последовательность x_n , которая имеет два различных предела: $\lim_{n\to\infty} x_n = a_1$ и $\lim_{n\to\infty} x_n = a_2$, причем $a_1 \neq a_2$.

Так как $a_1 \neq a_2$, мы можем выбрать ε достаточно малым, чтобы ε -окрестности этих двух точек не пересекались. Например, возьмем $\varepsilon = \frac{|a_2 - a_1|}{2}$.

Рис. 5: Доказательство единственности предела от противного

По определению предела:

- 1. Так как a_1 предел последовательности, то вне любой его окрестности $U_{\varepsilon}(a_1)$ содержится лишь конечное число элементов x_n . Это означает, что почти все члены последовательности (бесконечно много) попадают в $U_{\varepsilon}(a_1)$.
- 2. Так как a_2 предел последовательности, то вне любой его окрестности $U_{\varepsilon}(a_2)$ содержится лишь конечное число элементов x_n . Это означает, что почти все члены последовательности (бесконечно много) попадают в $U_{\varepsilon}(a_2)$.

Однако, мы выбрали ε таким образом, что окрестности $U_{\varepsilon}(a_1)$ и $U_{\varepsilon}(a_2)$ не пересекаются. Это значит, что если какой-либо член последовательности попадает в $U_{\varepsilon}(a_1)$, он не может одновременно находиться в $U_{\varepsilon}(a_2)$, и наоборот.

Если в $U_{\varepsilon}(a_1)$ лежит бесконечное количество элементов x_n (все, кроме конечного числа), то эти бесконечно многие элементы не могут лежать в $U_{\varepsilon}(a_2)$. Это противоречит тому, что в $U_{\varepsilon}(a_2)$ должно быть бесконечное количество элементов, начиная с некоторого номера.

Мы получили противоречие. Следовательно, наше исходное предположение о существовании двух различных пределов неверно. Таким образом, у сходящейся последовательности может быть только один предел. Доказательство окончено.

Определение. Последовательность x_n называется **ограниченной**, если множество её значений $\{x_1, x_2, \ldots, x_n, \ldots\}$ ограничено. Формально это означает, что существует такое положительное число C (константа), что для всех n выполняется:

$$\exists C > 0 : \forall n \hookrightarrow |x_n| \le C$$

Геометрически это означает, что все члены последовательности находятся в некотором отрезке [-C,C] на числовой прямой, то есть $-C \le x_n \le C$.

Рис. 6: Геометрическая интерпретация ограниченной последовательности

Например, последовательность $x_n = n$ (то есть 1, 2, 3, ...) не является ограниченной, так как её члены могут быть сколь угодно большими, и нельзя найти такое C, чтобы $|n| \le C$ для всех n.

Лемма 2. Любая сходящаяся последовательность ограничена.

Доказательство: Пусть последовательность x_n сходится к некоторому пределу a. По определению предела:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \ge N_{\varepsilon} \hookrightarrow |x_n - a| < \varepsilon$$

Поскольку это утверждение верно для любого $\varepsilon > 0$, оно верно и для конкретного значения $\varepsilon = 1$. Таким образом, для $\varepsilon = 1$ существует такое натуральное число N (обозначим его просто N вместо N_1), что для всех $n \geq N$ выполняется:

$$|x_n - a| < 1 \implies -1 < x_n - a < 1 \implies a - 1 < x_n < a + 1$$

Это означает, что все члены последовательности, начиная с номера N (то есть $x_N, x_{N+1}, x_{N+2}, \ldots$), находятся в интервале (a-1, a+1). Следовательно, хвост последовательности является ограниченным.

Рис. 7: Ограниченность сходящейся последовательности

Что касается первых N-1 членов последовательности (т.е. $x_1, x_2, \ldots, x_{N-1}$), это конечное множество чисел. Конечное множество чисел всегда ограничено. Мы можем найти максимальное значение $M = \max\{x_1, x_2, \ldots, x_{N-1}\}$ и минимальное значение $m = \min\{x_1, x_2, \ldots, x_{N-1}\}$, таким образом мы ограничим первые N-1 членов последовательности: $m \le x_i \le M \ \forall i \in [1; N-1]$. Пусть $M_1 = \max\{|M|, |m|\}$, тогда $|x_i| \le M_1 \ \forall i \in [1; N-1]$

Теперь нам нужно найти одно C такое, чтобы все члены последовательности были ограничены. Выберем $M_2 = \max\{|a-1|, |a+1|\}$. Тогда для всех $n \geq N$ мы имеем $|x_n| < M_2$ (если a-1 и a+1 имеют разные знаки, то M_2 будет максимальный из их модулей).

Пусть $C = \max\{M_1, M_2\}$. Тогда для всех $n \in \mathbb{N}$, $|x_n| \le C$. Таким образом, последовательность x_n ограничена для всех n. Доказательство окончено.

Важное замечание: Обратное утверждение неверно! То есть, ограниченная последовательность не обязательно является сходящейся.

Рассмотрим пример: $x_n = (-1)^n$. Эта последовательность принимает значения $-1, 1, -1, 1, \dots$ Мы можем найти константу C, например, C = 1.5, такую что $|x_n| \le 1.5$ для всех n.

$$-1.5 < (-1)^n < 1.5 \quad \forall n$$

Следовательно, последовательность $x_n = (-1)^n$ является ограниченной. Однако, как мы уже показывали ранее, эта последовательность не является сходящейся, поскольку она колеблется между -1 и 1 и не приближается к единственному значению.

Это можно кратко выразить в виде схемы:

Сходимость
$$\longrightarrow$$
 Ограниченность

Сходимость всегда влечет за собой ограниченность, но ограниченность не всегда влечет за собой сходимость.

Бесконечно малые последовательности

В математическом анализе существует особый тип последовательностей, которые играют ключевую роль в определении пределов и непрерывности — это бесконечно малые последовательности.

Определение. Последовательность α_n называется бесконечно малой последовательностью (или Б.М.П.), если её предел равен 0:

$$\lim_{n\to\infty}\alpha_n=0$$

Примеры бесконечно малых последовательностей: $\frac{1}{n}, \frac{(-1)^n}{n}, \frac{1}{\sqrt{n}}, \frac{1}{2^n}$. Все они стремятся к нулю при $n \to \infty$.

Свойства бесконечно малых последовательностей

Лемма 3. Если последовательность x_n сходится к пределу a, то разность $x_n - a$ является бесконечно малой последовательностью.

Доказательство: Дано, что $\lim_{n\to\infty}x_n=a$. Это по определению означает:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \ge N_{\varepsilon} \hookrightarrow |x_n - a| < \varepsilon$$

Пусть мы определим новую последовательность $\alpha_n = x_n - a$. Тогда наше неравенство принимает вид:

$$\forall \varepsilon > 0 \quad \exists N_{\varepsilon} > 0 : \forall n \geq N_{\varepsilon} \hookrightarrow |\alpha_n| < \varepsilon$$

По определению предела, это точно означает, что $\lim_{n\to\infty}\alpha_n=0$. Таким образом, x_n-a является бесконечно малой последовательностью. Доказательство окончено.

Лемма 4. Сумма двух бесконечно малых последовательностей также является бесконечно малой последовательностью.

Доказательство: Пусть α_n и β_n — две бесконечно малые последовательности. Это значит, что $\lim_{n\to\infty}\alpha_n=0$ и $\lim_{n\to\infty}\beta_n=0$.

По определению бесконечно малой последовательности:

- 1. Для любого $\varepsilon > 0$, существует $N_1 > 0$ такое, что для всех $n \ge N_1$ выполняется $|\alpha_n| < \frac{\varepsilon}{2}$.
- 2. Для того же $\varepsilon>0$, существует $N_2>0$ такое, что для всех $n\geq N_2$ выполняется $|\beta_n|<\dfrac{\varepsilon}{2}.$

Теперь рассмотрим сумму $\alpha_n+\beta_n$. Мы хотим показать, что $\lim_{n\to\infty}(\alpha_n+\beta_n)=0$. Возьмем $N_3=\max(N_1,N_2)$. Тогда для всех $n\geq N_3$ одновременно будут выполняться оба неравенства: $|\alpha_n|<\frac{\varepsilon}{2}$ и $|\beta_n|<\frac{\varepsilon}{2}$.

Используя свойство модуля $|x+y| \le |x| + |y|$, получаем:

$$|\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n|$$

Поскольку $n \ge N_3$, мы можем подставить оценки для $|\alpha_n|$ и $|\beta_n|$:

$$|\alpha_n + \beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Таким образом, мы показали, что для любого $\varepsilon > 0$ существует N_3 такое, что для всех $n \ge N_3$ выполняется $|\alpha_n + \beta_n| < \varepsilon$. Это по определению означает, что:

$$\lim_{n \to \infty} (\alpha_n + \beta_n) = 0$$

Доказательство окончено.

Лемма 5. Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Доказательство: Пусть α_n — бесконечно малая последовательность, то есть $\lim_{n\to\infty} \alpha_n = 0$. Пусть y_n — ограниченная последовательность. Это по определению означает, что существует такая константа C > 0, что для всех n выполняется $|y_n| \le C$.

Мы хотим доказать, что произведение $\alpha_n \cdot y_n$ является бесконечно малой последовательностью, то есть $\lim_{n \to \infty} (\alpha_n \cdot y_n) = 0$.

По определению бесконечно малой последовательности для α_n : для любого $\varepsilon' > 0$ существует такое $N_1 > 0$, что для всех $n \ge N_1$ выполняется $|\alpha_n| < \varepsilon'$.

Рассмотрим произведение $\alpha_n \cdot y_n$. Мы знаем, что $|\alpha_n \cdot y_n| = |\alpha_n| \cdot |y_n|$. Так как y_n ограничена, то $|y_n| \leq C$ для всех n. Тогда для $n \geq N_1$:

$$|\alpha_n \cdot y_n| = |\alpha_n| \cdot |y_n| < \varepsilon' \cdot C$$

Мы хотим, чтобы $|\alpha_n \cdot y_n| < \varepsilon$ для любого заданного $\varepsilon > 0$. Для этого выберем $\varepsilon' = \frac{\varepsilon}{C}$ (если C = 0, то y_n - нулевая последовательность, и тогда произведение тоже нулевая, т.е. бесконечно малая. Если C > 0, деление на C корректно).

Тогда для выбранного ε' найдется N_1 такое, что для всех $n \geq N_1$ выполняется:

$$|\alpha_n \cdot y_n| < \left(\frac{\varepsilon}{C}\right) \cdot C = \varepsilon$$

Таким образом, для любого $\varepsilon > 0$ мы нашли N_1 такое, что для всех $n \ge N_1$ выполняется $|\alpha_n \cdot y_n| < \varepsilon$. Это по определению означает, что:

$$\lim_{n \to \infty} (\alpha_n \cdot y_n) = 0$$

Доказательство окончено.

Теорема 1. Арифметические свойства пределов

Пусть даны две сходящиеся последовательности: $\lim_{n\to\infty}x_n=a$ и $\lim_{n\to\infty}y_n=b.$ Тогда:

1) Предел суммы (или разности) последовательностей равен сумме (или разности) их пределов:

$$\lim_{n \to \infty} (x_n + y_n) = a + b$$

2) Предел произведения последовательностей равен произведению их пределов:

$$\lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b$$

3) Предел частного последовательностей равен частному их пределов, при условии, что предел знаменателя не равен нулю:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b},$$
 при $b \neq 0$

Доказательство: Для доказательства этих свойств мы будем активно использовать свойства бесконечно малых последовательностей, которые мы только что установили.

По **Лемме 3**, так как $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} y_n = b$, мы можем представить члены этих последовательностей следующим образом:

- 1. $x_n a = \alpha_n$, где α_n б.м. последовательность $(\lim_{n \to \infty} \alpha_n = 0)$. Отсюда $x_n = a + \alpha_n$.
- 2. $y_n-b=\beta_n$, где β_n б.м. последовательность $(\lim_{n\to\infty}\beta_n=0)$. Отсюда $y_n=b+\beta_n$.

Доказательство свойства 1) (Предел суммы): Рассмотрим сумму $x_n + y_n$:

$$x_n + y_n = (a + \alpha_n) + (b + \beta_n) = (a + b) + (\alpha_n + \beta_n)$$

По **Лемме 4**, сумма двух бесконечно малых последовательностей $(\alpha_n + \beta_n)$ также является бесконечно малой последовательностью. Это означает, что $\lim_{n\to\infty} (\alpha_n + \beta_n) = 0$. Таким образом, выражение $(a+b) + (\alpha_n + \beta_n)$ стремится к a+b при $n\to\infty$. Следовательно:

$$\lim_{n \to \infty} (x_n + y_n) = a + b$$

Что и требовалось доказать.

Доказательство свойства 2) (Предел произведения): Рассмотрим произведение $x_n \cdot y_n$:

$$x_n \cdot y_n = (a + \alpha_n)(b + \beta_n)$$

Раскроем скобки:

$$= a \cdot b + a \cdot \beta_n + b \cdot \alpha_n + \alpha_n \cdot \beta_n$$

Теперь проанализируем каждое слагаемое:

 $a \cdot b$ — это константа.

 $a \cdot \beta_n$: β_n — бесконечно малая последовательность. Константа a является ограниченной последовательностью. По **Лемме 5**, произведение бесконечно малой последовательности

на ограниченную есть бесконечно малая последовательность. Значит, $a \cdot \beta_n$ — бесконечно малая последовательность.

 $b \cdot \alpha_n$: Аналогично, α_n — бесконечно малая последовательность, b — ограниченная константа. По **Лемме 5**, $b \cdot \alpha_n$ — бесконечно малая последовательность.

 $\alpha_n \cdot \beta_n$: α_n — бесконечно малая последовательность. β_n — бесконечно малая последовательность, а значит, по **Лемме 2**, она является ограниченной. По **Лемме 5**, произведение $\alpha_n \cdot \beta_n$ — бесконечно малая последовательность.

Сумма $(a \cdot \beta_n + b \cdot \alpha_n + \alpha_n \cdot \beta_n)$ является суммой трех бесконечно малых последовательностей. По расширению **Леммы 4**, сумма конечного числа бесконечно малых последовательностей также является бесконечно малой последовательностью. Таким образом, $\lim_{n \to \infty} (a \cdot \beta_n + b \cdot \alpha_n + \alpha_n \cdot \beta_n) = 0$. Следовательно:

$$\lim_{n \to \infty} (x_n \cdot y_n) = a \cdot b$$

Что и требовалось доказать.

Доказательство свойства 3) (Предел частного): Чтобы доказать это свойство, нам достаточно показать, что если $\lim_{n\to\infty}y_n=b$ и $b\neq 0$, то $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{b}$. Тогда, используя уже доказанное свойство предела произведения, мы получим:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \left(x_n \cdot \frac{1}{y_n} \right) = \left(\lim_{n \to \infty} x_n \right) \cdot \left(\lim_{n \to \infty} \frac{1}{y_n} \right) = a \cdot \frac{1}{b} = \frac{a}{b}$$

Итак, докажем, что $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{b}$. Для этого нам нужно показать, что $\frac{1}{y_n}-\frac{1}{b}$ является бесконечно малой последовательностью.

$$\frac{1}{y_n} - \frac{1}{b} = \frac{b - y_n}{by_n}$$

Мы знаем, что $y_n - b = \beta_n$ (бесконечно малая последовательность). Тогда $b - y_n = -\beta_n$. Подставим это в выражение:

$$\frac{b - y_n}{by_n} = \frac{-\beta_n}{by_n} = \beta_n \cdot \left(\frac{-1}{by_n}\right)$$

Мы имеем произведение бесконечно малой последовательности β_n на последовательность $\left(\frac{-1}{by_n}\right)$. По **Лемме 5**, чтобы доказать, что это произведение является бесконечно малой последовательностью, нам нужно показать, что последовательность $\left(\frac{-1}{by_n}\right)$ является ограниченной.

Так как $\lim_{n\to\infty}y_n=b$ и $b\neq 0$, то для достаточно больших n члены y_n будут находиться вблизи b. В частности, мы можем выбрать $\varepsilon=\frac{|b|}{2}$. Тогда найдется такой N_0 , что для всех $n\geq N_0$ выполняется $|y_n-b|<\frac{|b|}{2}$. Из неравенства треугольника $(||y_n|-|b||\leq |y_n-b|)$, следует, что $|y_n|-|b|\geq -|y_n-b|>-\frac{|b|}{2}$, то есть $|y_n|>|b|-\frac{|b|}{2}=\frac{|b|}{2}$.

Это означает, что для $n \ge N_0$, $|y_n|$ ограничено снизу положительным числом $\frac{|b|}{2}$. Тогда для $n \ge N_0$:

$$\left| \frac{-1}{by_n} \right| = \frac{1}{|b||y_n|} < \frac{1}{|b| \cdot \frac{|b|}{2}} = \frac{2}{|b|^2}$$

Поскольку $\frac{2}{|b|^2}$ — это некоторая константа (так как $b \neq 0$), то последовательность $\left(\frac{-1}{by_n}\right)$ является ограниченной (начиная с N_0).

Таким образом, произведение $\beta_n \cdot \left(\frac{-1}{by_n}\right)$ является произведением бесконечно малой последовательности на ограниченную последовательность, что по **Лемме 5** есть бесконечно малая последовательность. Следовательно, $\lim_{n \to \infty} \left(\frac{1}{y_n} - \frac{1}{b}\right) = 0$, что означает $\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{b}$.

Применяя это к исходному выражению, получаем:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$$

Что и требовалось доказать.

Полезные фишки и неопределенности

Прежде чем перейти к решению примеров, давайте узнаем несколько полезных соотношений и список так называемых "неопределенностей которые часто встречаются при вычислении пределов.

Полезные соотношения:

$$\left[\frac{1}{\infty}\right] = 0, \quad \left[\frac{1}{0}\right] = \infty, \quad \lim_{n \to \infty} \frac{1}{n} = 0$$

Примеры различных видов пределов:

- 1. Предел не существует: $\lim_{n\to\infty} (-1)^n$ (как мы уже обсуждали, последовательность колеблется).
- 2. Предел конечный: $\lim_{n\to\infty}\frac{1}{n}=0$.
- 3. Предел бесконечный: $\lim_{n\to\infty} n = \infty$.

Неопределенности: При вычислении пределов часто возникают ситуации, когда прямое подставление значения, к которому стремится переменная (например, ∞), приводит к выражениям, которые не дают однозначного ответа. Такие выражения называются неопределенностями. Для их раскрытия требуются специальные методы.

$$\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}; \quad \begin{bmatrix} \infty \\ \overline{\infty} \end{bmatrix}; \quad [\infty - \infty]; \quad [0 \cdot \infty]; \quad [1^{\infty}]; \quad [0^{0}]; \quad [\infty^{0}]$$

Примеры вычисления пределов последовательностей

Давайте рассмотрим различные примеры вычисления пределов, используя арифметические свойства пределов и методы раскрытия неопределенностей.

Отношение многочленов $\left[\frac{\infty}{\infty}\right]$

Если внутри предела есть отношение многочленов и при подстановке $n \to \infty$ возникает неопределенность вида $\left[\frac{\infty}{\infty}\right]$, то стандартный метод ее раскрытия — деление числителя и знаменателя на старшую степень n.

Пример 1.

$$\lim_{n \to \infty} \frac{3n+2}{2n-1}$$

При $n \to \infty$ числитель $3n+2 \to \infty$ и знаменатель $2n-1 \to \infty$. Это неопределенность вида $\left[\frac{\infty}{\infty}\right]$. Старшая степень n в числителе и знаменателе — $n^1=n$. Разделим каждый член числителя и знаменателя на n:

$$\lim_{n\to\infty}\frac{\frac{3n}{n}+\frac{2}{n}}{\frac{2n}{n}-\frac{1}{n}}=\lim_{n\to\infty}\frac{3+\frac{2}{n}}{2-\frac{1}{n}}$$

Теперь, используя свойство $\lim_{n \to \infty} \frac{C}{n^k} = 0$:

$$= \frac{3+0}{2-0} = \frac{3}{2}$$

Otbet: $\frac{3}{2}$.

Пример 2.

$$\lim_{n \to \infty} \frac{7n^2 + 5n - 100}{1241 + 3n^2 - 20n}$$

При $n \to \infty$ получаем неопределенность $\left[\frac{\infty}{\infty}\right]$. Старшая степень n в числителе и знаменателе — n^2 . Разделим каждый член на n^2 :

$$\lim_{n \to \infty} \frac{\frac{7n^2}{n^2} + \frac{5n}{n^2} - \frac{100}{n^2}}{\frac{1241}{n^2} + \frac{3n^2}{n^2} - \frac{20n}{n^2}} = \lim_{n \to \infty} \frac{7 + \frac{5}{n} - \frac{100}{n^2}}{\frac{1241}{n^2} + 3 - \frac{20}{n}}$$

Применяем предел:

$$=\frac{7+0-0}{0+3-0}=\frac{7}{3}$$

Otbet: $\frac{7}{3}$.

Пример 3.

$$\lim_{n \to \infty} \frac{2n^3 + 3n - 10}{3n^4 + 1}$$

При $n \to \infty$ получаем неопределенность $\left[\frac{\infty}{\infty}\right]$. Старшая степень n в знаменателе (и во всем выражении) — n^4 . Разделим каждый член на n^4 :

$$\lim_{n \to \infty} \frac{\frac{2n^3}{n^4} + \frac{3n}{n^4} - \frac{10}{n^4}}{\frac{3n^4}{n^4} + \frac{1}{n^4}} = \lim_{n \to \infty} \frac{\frac{2}{n} + \frac{3}{n^3} - \frac{10}{n^4}}{3 + \frac{1}{n^4}}$$

Применяем предел:

$$=\frac{0+0-0}{3+0}=\frac{0}{3}=0$$

Ответ: 0.

Пример 4.

$$\lim_{n \to \infty} \frac{5n^3 + 7}{n^2 - 100n + 2}$$

При $n \to \infty$ получаем неопределенность $\left[\frac{\infty}{\infty}\right]$. Старшая степень n в числителе (и во всем

выражении) — n^3 . Разделим каждый член на n^3 :

$$\lim_{n \to \infty} \frac{\frac{5n^3}{n^3} + \frac{7}{n^3}}{\frac{n^2}{n^3} - \frac{100n}{n^3} + \frac{2}{n^3}} = \lim_{n \to \infty} \frac{5 + \frac{7}{n^3}}{\frac{1}{n} - \frac{100}{n^2} + \frac{2}{n^3}}$$

Применяем предел:

$$=\frac{5+0}{0-0+0}=\frac{5}{0}=\infty$$

Other: ∞ .

Пример 5.

$$\lim_{n \to \infty} \frac{9n^2 + 3}{\sqrt[3]{27n^6 + 81n^3 + 8}}$$

При $n \to \infty$ получаем неопределенность $\left[\frac{\infty}{\infty}\right]$. Чтобы определить старшую степень n для деления, посмотрим на числитель (n^2) и знаменатель. В знаменателе под кубическим корнем старшая степень n^6 . Извлекая кубический корень из n^6 , получаем $\sqrt[3]{n^6} = n^{6/3} = n^2$. Таким образом, старшая степень и в числителе, и в знаменателе одинакова — n^2 . Разделим каждый член числителя и знаменателя (включая члены под корнем) на n^2 . Заметим, что $n^2 = \sqrt[3]{(n^2)^3} = \sqrt[3]{n^6}$.

$$\lim_{n \to \infty} \frac{\frac{9n^2}{n^2} + \frac{3}{n^2}}{\sqrt[3]{\frac{27n^6}{n^6} + \frac{81n^3}{n^6} + \frac{8}{n^6}}} = \lim_{n \to \infty} \frac{9 + \frac{3}{n^2}}{\sqrt[3]{27 + \frac{81}{n^3} + \frac{8}{n^6}}}$$

Применяем предел:

$$= \frac{9+0}{\sqrt[3]{27+0+0}} = \frac{9}{\sqrt[3]{27}} = \frac{9}{3} = 3$$

Ответ: 3.

Пример 6.

$$\lim_{n \to \infty} (\sqrt{9n^2 + 8n + 7} - \sqrt{9n^2 - 10n + 11})$$

При $n \to \infty$ получаем неопределенность $[\infty - \infty]$. Для раскрытия таких неопределенностей, содержащих корни, применяется метод умножения на сопряженное выражение. Умножим и разделим на $(\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11})$. Используем формулу $(A - B)(A + B) = A^2 - B^2$:

$$\lim_{n \to \infty} \frac{(\sqrt{9n^2 + 8n + 7} - \sqrt{9n^2 - 10n + 11})(\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11})}{\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11}}$$

$$= \lim_{n \to \infty} \frac{(9n^2 + 8n + 7) - (9n^2 - 10n + 11)}{\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11}}$$

$$= \lim_{n \to \infty} \frac{9n^2 + 8n + 7 - 9n^2 + 10n - 11}{\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11}}$$

$$= \lim_{n \to \infty} \frac{18n - 4}{\sqrt{9n^2 + 8n + 7} + \sqrt{9n^2 - 10n + 11}}$$

Теперь у нас неопределенность $\left[\frac{\infty}{\infty}\right]$. Старшая степень в числителе — $n^1=n$. В знаменателе под корнем n^2 , извлекаем корень $\sqrt{n^2}=n$. Значит, делим все члены на n. Для членов под корнем это будет n^2 .

$$\lim_{n \to \infty} \frac{\frac{18n}{n} - \frac{4}{n}}{\sqrt{\frac{9n^2}{n^2} + \frac{8n}{n^2} + \frac{7}{n^2}} + \sqrt{\frac{9n^2}{n^2} - \frac{10n}{n^2} + \frac{11}{n^2}}}$$

$$= \lim_{n \to \infty} \frac{18 - \frac{4}{n}}{\sqrt{9 + \frac{8}{n} + \frac{7}{n^2}} + \sqrt{9 - \frac{10}{n} + \frac{11}{n^2}}}$$

Применяем предел:

$$= \frac{18 - 0}{\sqrt{9 + 0 + 0} + \sqrt{9 - 0 + 0}} = \frac{18}{\sqrt{9} + \sqrt{9}} = \frac{18}{3 + 3} = \frac{18}{6} = 3$$

Ответ: 3.

Отношение показательных последовательностей $\left[\frac{\infty}{\infty}\right]$ или $\left[\frac{0}{0}\right]$

При работе с пределами, содержащими показательные последовательности, важно определить, какая из баз растет (или убывает) быстрее всего. Лемма 6.

$$\lim_{n\to\infty}q^n=0$$
при $|q|<1$

Доказательство: Пусть |q| < 1. Если q = 0, то $q^n = 0$ для $n \ge 1$, и предел очевидно равен 0.

Пусть
$$0<|q|<1$$
. Тогда $\frac{1}{|q|}>1$. Обозначим $\frac{1}{|q|}=1+h$, где $h=\frac{1}{|q|}-1>0$. Тогда
$$|q^n|=|q|^n=\left(\frac{1}{1+h}\right)^n=\frac{1}{(1+h)^n}.$$

По неравенству Бернулли, для h > 0 и $n \in \mathbb{N}$, имеем $(1+h)^n \ge 1 + nh$. Следовательно:

$$|q^n| = \frac{1}{(1+h)^n} \le \frac{1}{1+nh}$$

Мы хотим показать, что $\lim_{n\to\infty}|q^n|=0$. Для этого, по определению предела, для любого $\varepsilon>0$ нам нужно найти N_ε такое, что для всех $n\geq N_\varepsilon$ выполняется $|q^n|<\varepsilon$.

Итак, мы хотим, чтобы $\frac{1}{1+nh} < \varepsilon$.

$$1 < \varepsilon(1 + nh)$$

$$\frac{1}{\varepsilon} < 1 + nh$$

$$\frac{1}{\varepsilon} - 1 < nh$$

$$n > \frac{1}{h} \left(\frac{1}{\varepsilon} - 1\right)$$

Мы можем выбрать $N_{\varepsilon}=\left\lfloor \frac{1}{h}\left(\frac{1}{\varepsilon}-1\right) \right\rfloor +1.$ Таким образом, для любого $\varepsilon>0$ существует N_{ε}

такое, что для всех $n \geq N_{\varepsilon}$ выполняется $|q^n| < \varepsilon$. Это доказывает, что $\lim_{n \to \infty} q^n = 0$ при |q| < 1. Доказательство окончено.

Правило: Если внутри предела есть отношение показательных последовательностей и неопределенность $\left[\frac{\infty}{\infty}\right]$, то делим числитель и знаменатель на член с **наибольшим основанием**.

Пример 7.

$$\lim_{n \to \infty} \frac{3 \cdot 2^{4n} + 6 \cdot 3^{2n} + 15^n}{8 \cdot 11^n + 9 \cdot 4^{2n} + 13^n}$$

Перепишем степени: $2^{4n} = (2^4)^n = 16^n$ $3^{2n} = (3^2)^n = 9^n$ $4^{2n} = (4^2)^n = 16^n$ Тогда выражение принимает вид:

$$\lim_{n \to \infty} \frac{3 \cdot 16^n + 6 \cdot 9^n + 15^n}{8 \cdot 11^n + 9 \cdot 16^n + 13^n}$$

Наибольшее основание здесь 16. Разделим каждый член числителя и знаменателя на 16^n :

$$\lim_{n \to \infty} \frac{\frac{3 \cdot 16^n}{16^n} + \frac{6 \cdot 9^n}{16^n} + \frac{15^n}{16^n}}{\frac{8 \cdot 11^n}{16^n} + \frac{9 \cdot 16^n}{16^n} + \frac{13^n}{16^n}} = \lim_{n \to \infty} \frac{3 + 6\left(\frac{9}{16}\right)^n + \left(\frac{15}{16}\right)^n}{8\left(\frac{11}{16}\right)^n + 9 + \left(\frac{13}{16}\right)^n}$$

По **Лемме 6**, все члены вида $\left(\frac{a}{b}\right)^n$ стремятся к 0, так как их основания меньше 1.

$$=\frac{3+6\cdot 0+0}{8\cdot 0+9+0}=\frac{3}{9}=\frac{1}{3}$$

OTBET: $\frac{1}{3}$.

Правило: Если внутри предела есть отношение показательных последовательностей и неопределенность $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (что часто бывает, когда степени отрицательные, например, $a^{-n} = (1/a)^n$), то делим числитель и знаменатель на член с **наименьшим основанием** (то есть на тот, который стремится к нулю медленнее всего).

Пример 8.

$$\lim_{n \to \infty} \frac{5^{-n} + 4 \cdot 3^{-2n}}{2 \cdot 5^{-n} + 3 \cdot 7^{-n} + 3^{-2n}}$$

Перепишем отрицательные степени в положительные: $5^{-n} = \left(\frac{1}{5}\right)^n \ 3^{-2n} = \left(\frac{1}{3^2}\right)^n = \left(\frac{1}{9}\right)^n$ $7^{-n} = \left(\frac{1}{7}\right)^n$ Выражение становится:

$$\lim_{n \to \infty} \frac{\left(\frac{1}{5}\right)^n + 4\left(\frac{1}{9}\right)^n}{2\left(\frac{1}{5}\right)^n + 3\left(\frac{1}{7}\right)^n + \left(\frac{1}{9}\right)^n}$$

Все члены стремятся к 0 при $n \to \infty$, так как основания дробей меньше 1. Это неопределенность $\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix}$. Наименьшее основание (т.е. которое убывает медленнее всего) среди $\frac{1}{5}, \frac{1}{9}, \frac{1}{7}$ является $\frac{1}{5}$.

Значит, делим каждый член числителя и знаменателя на $\left(\frac{1}{5}\right)^n$:

$$\lim_{n \to \infty} \frac{\frac{(1/5)^n}{(1/5)^n} + \frac{4(1/9)^n}{(1/5)^n}}{\frac{2(1/5)^n}{(1/5)^n} + \frac{3(1/7)^n}{(1/5)^n} + \frac{(1/9)^n}{(1/5)^n}} = \lim_{n \to \infty} \frac{1 + 4\left(\frac{1/9}{1/5}\right)^n}{2 + 3\left(\frac{1/7}{1/5}\right)^n + \left(\frac{1/9}{1/5}\right)^n} = \lim_{n \to \infty} \frac{1 + 4\left(\frac{5}{9}\right)^n}{2 + 3\left(\frac{5}{9}\right)^n + \left(\frac{5}{9}\right)^n}$$

По **Лемме 6**, $\left(\frac{5}{9}\right)^n \to 0$ и $\left(\frac{5}{7}\right)^n \to 0$ при $n \to \infty$, так как их основания меньше 1.

$$= \frac{1+4\cdot 0}{2+3\cdot 0+0} = \frac{1}{2}$$

Otbet: $\frac{1}{2}$