The Laplace Transform

$$F(s) = \mathcal{L}[f(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{j2\pi} \int_{\sigma_1 - j\infty}^{\sigma_1 + j\infty} F(s)e^{st}ds$$

Properties of the Laplace Transform (one sided)

Linearity:
$$\mathcal{L}[af_1(t) + bf_2(t)] = a\mathcal{L}[f_1(t)] + b\mathcal{L}[f_2(t)]$$

Time Differentiation:

$$\mathcal{L} \left\lceil \frac{df}{dt} \right\rceil = sF(s) - f(0)$$

$$\mathcal{L}\left[\frac{d^{n} f}{dt^{n}}\right] = s^{n} F(s) - s^{n-1} f(0) - s^{n-2} \frac{df}{dt}\Big|_{t=0} - \dots - \frac{d^{n-1} f}{dt^{n-1}}\Big|_{t=0}$$

Time Integration:
$$\mathcal{L}\left[\int_{0^{-}}^{t} f(t')dt'\right] = F(s)/s$$

Scaling:
$$\mathcal{L}[f(at)] = \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

Time Shift:
$$\mathcal{L}[f(t-\tau)] = F(s)e^{-\tau s}$$

Frequency Shift:
$$\mathcal{L}\left[e^{-at}f(t)\right] = F\left(s+a\right)$$

Initial Value:
$$\lim_{s \to \infty} sF(s) = f(0)$$

Final Value:
$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

R L C V-I Relations in the Laplace domain

$$i = C \frac{dv}{dt} \qquad v = L \frac{di}{dt} \qquad v = iR$$

$$V(s) = \left(\frac{1}{Cs}\right)I(s) + \frac{v(0^{-})}{s} \qquad V(s) = LsI(s) - Li(0^{-}) \qquad V(s) = RI(s)$$

Solution to first order Differential Equation

$$\tau \frac{dx}{dt} + x(t) = B \qquad x(t) = Ae^{\left(-\frac{t}{\tau}\right)} + B$$

$$\tau = RC \text{ or } L/R$$

$$B = x(\infty), \quad A = x(0) - x(\infty)$$

Roots of a Quadratic equation

$$ax^2 + bx + c = 0$$
 has roots $\alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Laplace Transform Pairs

f(t)	F(s)	f(t)	F(s)
u(t)	$\frac{1}{s}$	$\left(\frac{1}{\omega}\sin\omega t\right)u(t)$	$\frac{1}{s^2+\omega^2}$
t.u(t)	$\frac{1}{s^2}$	$\cos \omega t.u(t)$	$\frac{S}{S^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$(1-\cos\omega t)u(t)$	$\frac{\omega^2}{s(s^2+\omega^2)}$
$e^{at}.u(t)$	$\frac{1}{s-a}$	$\sin(\omega t + heta).u(t)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
$t.e^{at}.u(t)$	$\frac{1}{(s-a)^2}$	$\cos(\omega t + \theta).u(t)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}e^{at}u(t)$	$\frac{1}{(s-a)^n}$	$e^{-\alpha t}\sin \omega t.u(t)$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$\frac{1}{(a-b)} (e^{at} - e^{bt}) u(t)$	$\frac{1}{(s-a)(s-b)}$	$e^{-\alpha t}\cos\omega t.u(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega^2}$
$\left[\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ct}}{(a-c)(b-c)}\right] u(t)$	$\frac{1}{(s+a)(s+b)(s+c)}$	$\sinhlpha t.u(t)$	$\frac{\alpha}{s^2 - \alpha^2}$
$(1-e^{at})u(t)$	$\frac{-a}{s(s-a)}$	$\coshlpha t.u(t)$	$\frac{s}{s^2-\alpha^2}$

Two Port Parameters

Name	Function		Equation
	Express	In terms of	
Impedance (z)	V ₁ , V ₂	I ₁ , I ₂	$V_1 = z_{11}I_1 + z_{12}I_2$ $V_2 = z_{21}I_1 + z_{22}I_2$
Admittance (y)	I ₁ , I ₂	V ₁ , V ₂	$I_1 = y_{11}V_1 + y_{12}V_2 I_2 = y_{21}V_1 + y_{22}V_2$
Transmission (T)	V ₁ , I ₁	V ₂ , -I ₂	$V_1 = AV_2 - BI_2$ $I_1 = CV_2 - DI_2$
Inverse transmission (t)	V ₂ , I ₂	V ₁ , -I ₁	$V_2 = A'V_1 - B'I_1 I_2 = C'V_1 - D'I_1$
Hybrid (h)	V ₁ , I ₂	V ₂ , I ₁	$V_1 = h_{11}I_1 + h_{12}V_2$ $I_2 = h_{21}I_1 + h_{22}V_2$
Inverse hybrid (g)	V ₂ , I ₁	V ₁ , I ₂	$ \begin{array}{rcl} I_1 & = & g_{11}V_1 + g_{12}I_2 \\ V_2 & = & g_{21}V_1 + g_{22}I_2 \end{array} $

RLC circuits

Resonant frequency:
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
,

Series circuit:
$$\alpha = \frac{R}{2L}$$
, Parallel circuit: $\alpha = \frac{1}{2RC}$

Response to a DC forcing function
$$V_f$$
: $v(t) = v_f(t) + v_n(t) = V_f + A_1 e^{s_1 t} + A_2 e^{s_2 t}$

Where:
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - {\omega_0}^2}$$

Miller's Theorem:

$$Z_1 = \frac{Z}{1 - K}$$
 , $Z_2 = \frac{KZ}{K - 1}$, $K = \frac{V_2}{V_1}$

Impedance and Frequency Scaling:

$$R^* = bR$$
, $L^* = \frac{b}{a}L$, $C^* = \frac{1}{ab}C$

Differentiation

$$\frac{d(g(h(x)))}{dx} = \frac{d(g(h(x)))}{dh} \frac{d(h(x))}{dx}$$

$$\frac{d}{dx} (f(x) \cdot g(x)) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cot x) = -\csc^{2} x$$

$$\frac{d}{dx}(\arctan x) = \sec^{2} x \tan x$$

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d}{dx}(\operatorname{arcsin} x) = \frac{1}{1+x^{2}}$$

$$\frac{d}{dx}(\operatorname{arcsin} x) = \cot x$$

Integration

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int a^{x} dx = \frac{1}{\ln a} a^{x} + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \frac{dx}{1+x^{2}} = \arctan x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + c$$

$$\int \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x + c$$

ENSC3021 INFORMATION SHEET for PART II

BJT Forward Active Region Hybrid π Model

$I_E = (\beta + 1)I_B$	$I_C = \beta I_B$ $I_E = (\beta + 1)I_B$	$g_m = \frac{I_c}{V_T}$	$V_T = \frac{kT}{q}$
$r_{\pi} = \frac{\beta}{g_m}$	$\frac{1}{r_o} \approx \frac{I_C}{V_A}$	$f_T = \frac{g_m}{2\pi \left(C_\pi + C_\mu\right)}$	V_A Early Voltage

Enhancement FET Model

NMOS Transistor	PMOS Transistor
$K_{n}' = \mu_{n} C_{ox} = \mu_{n} \frac{\mathcal{E}_{ox}}{t_{ox}}$	$K_{p}^{'} = \mu_{p} C_{ox} = \mu_{p} \frac{\varepsilon_{ox}}{t_{ox}}$
The cutoff region ($V_{GS} \le V_t$):	The cutoff region $(V_{GS}>V_t)$:
$I_{DS}=0$	I _{DS} =0
The linear region $(0 \le V_{DS} \le V_{GS} - V_t)$	The linear region $(0>V_{DS}>V_{GS}-V_t)$
$I_{DS} = K_n' \frac{W}{L} [(V_{GS} - V_t) V_{DS} - \frac{V_{DS}^2}{2}]$	$I_{DS} = -K_p' \frac{W}{L} [(V_{GS} - V_t)V_{DS} - \frac{V_{DS}^2}{2}]$
The saturation region (0 \leq V _{GS} $-$ V _t \leq V _{DS})	The saturation region (0> V _{GS} -V _t >V _{DS})
$I_{DS} = \frac{K_n'}{2} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$	$I_{DS} = -\frac{K_p'}{2} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$

Enhancement N Channel FET Saturated Region Small Signal Model

(Source connected to substrate)

$g_m = \frac{2I_D}{V_{OV}}$	$r_O = \frac{1}{\lambda I_D}$
$V_{OV} \triangleq V_{GS} - V_{T}$	
(overdrive voltage)	

Miller's Theorem

Bisection Theorem

(a) Bisection Theorem Common Mode Equivalence

(b) Bisection Theorem Differential Mode Equivalence

