Descripción del módulo:

Este módulo permite calcular el perfil de velocidad de un objeto cuando este debe recorrer un espacio determinado en un tiempo fijo, conociendo la velocidad al inicio del tramo, y la velocidad a la que debe terminar el tramo. Además, también se fija la aceleración y desaceleración máxima del objeto, y su velocidad máxima. El objeto en ningún momento puede retroceder (velocidad negativa), es decir, la velocidad mínima es igual a 0. En general, existen muchas soluciones (tipos de perfiles) para este problema. En este documento se realiza el cálculo de alguna de ellas, y en un posterior estudio se debería realizar algún tipo de optimización para elegir la mejor de entre todas ellas (por ejemplo, la de menor consumo).

Límites del sistema:

Aunque el problema tenga en general múltiples soluciones, es posible que para determinados valores de los datos de entrada, este problema no tenga solución. Supongamos que el objeto inicia el tramo a una velocidad v0, y debe finalizar a una velocidad v1.

Si el objeto tiene una aceleración máxima a1, considerando un movimiento uniformemente acelerado, entonces el tiempo mínimo requerido para completar el movimiento será:

$$t_1 = \frac{v_1 - v_0}{a_1}$$

Es decir, el movimiento no puede realizarse en menos tiempo, ya que el objeto no podría alcanzar la velocidad final, aunque sí podría tardar más, reduciendo la aceleración. En dicho intervalo de tiempo, la distancia recorrida por el objeto, que coincide con el área bajo la curva de la figura anterior, es:

$$d = \frac{v_0 + v_1}{2} \cdot t_1 = \frac{(v_0 + v_1)(v_1 - v_0)}{2a}$$
 (1)

Es decir, para el intervalo de velocidades indicado, no puede recorrer una distancia menor, pero sí mayor, aumentando el tiempo, o equivalentemente reduciendo la aceleración. Esto se puede comprender mejor con el siguiente ejemplo. Si la velocidad al inicio es v0, y al final debe ser 0, la distancia recorrida es la distancia de frenado, es decir, el objeto no puede detenerse en una distancia menor a la distancia de frenado.

Para nuestro sistema, el problema se plantea de forma inversa. Inicialmente, los datos conocidos son la velocidad al inicio del tramo, y la distancia a recorrer, y en primer lugar debemos determinar el rango de velocidades a la que podemos terminar el tramo, y el tiempo necesario para ello.

Supongamos que la velocidad inicial es v0, y la distancia a recorrer es d. Además, conocemos la aceleración y desaceleración máxima del objeto.

Para que el problema esté correctamente planteado, hay que fijarse en que el área bajo la curva roja es igual al área bajo la curva azul, es decir, la distancia recorrida es la misma, igual a d.

Entonces, a partir de (1), podemos despejar la velocidad máxima (considerando un movimiento uniformemente acelerado), y la velocidad mínima (considerando un movimiento uniformemente desacelerado). Para la velocidad máxima, considerando la aceleración máxima igual a a1:

$$v_1 = \sqrt{v_0^2 + 2 d a_1}$$
 (2)

Del cual sólo es válida la solución positiva, ya que hemos determinado que el objeto no puede tener velocidad negativa. Para la velocidad mínima, considerando la desaceleración máxima igual a a2 (donde a2 > 0):

$$v_2 = \sqrt{v_0^2 - 2 d a_2}$$
 (3)

En el caso del movimiento uniformemente desacelerado, podemos ver que para ciertos valores de los datos iniciales, el problema no tenga solución, es decir, de (3) vemos que necesitamos que:

$$v_0^2 > 2 d a_2$$
 (4)

Si no se cumple la condición anterior, el objeto no puede completar la distancia requerida. Como ejemplo de esto, podemos suponer el lanzamiento de un objeto hacia arriba. Como se trata de un movimiento uniformemente desacelerado (a2 = g), si el objeto no se lanza con la suficiente fuerza, nunca podrá alcanzar la altura requerida.

Para el movimiento uniformemente acelerado también tenemos un límite similar. Ya que hemos considerado que el objeto tiene una velocidad máxima, si la solución a (2) da un valor mayor que este, el problema no tendría solución práctica. Es decir, necesitamos:

$$v_0^2 + 2 d a_1 < v_{\text{max}}^2$$
 (5)

Recordemos que en este apartado estamos calculando el rango de velocidades a las que puede terminar el objeto. Sin embargo, si incumplimos la condición (4), la consecuencia es que la velocidad mínima a la que podemos terminar el tramo es 0 (empleando una desaceleración menor que la máxima del objeto, y por tanto el movimiento tardará más tiempo). Si incumplimos la (5),

tenemos que la velocidad máxima a la que podemos terminar el tramo será igual a la velocidad máxima del objeto.

También es posible hacer el cálculo a la inversa, es decir, determinar el rango de velocidades iniciales para terminar a una velocidad determinada. Este cálculo es importante para poder determinar si el objeto va a poder detenerse antes de chocar. Es decir, si el sistema determina que deber finalizar el tramo a velocidad 0, si la velocidad inicial es tal que no se puede cumplir, entonces se producirá una colisión. La única solución a este caso es corregir la velocidad a la que entramos al tramo.

Las expresiones para realizar los cálculos son similares a las vistas antes, cambiando la velocidad inicial por la final, e intercambiando las aceleraciones.

Una vez tengamos determinadas las velocidades de inicio y fin, y la distancia a recorrer, podemos determinar el rango de tiempos entre los que se puede completar el movimiento. No obstante, este tiempo sólo se puede calcular una vez tengamos resuelto el problema del calculo del perfil de velocidades, por lo que lo veremos una vez realizado este cálculo.

Dinámica de dos tramos:

El objeto debe cubrir una distancia d en un tiempo t_2 , partimos de una velocidad inicial v0 y tenemos que terminar a una velocidad final v2. Como se verá más adelante, el problema tiene múltiples soluciones, por lo que elegimos la solución que impone la restricción de que la desaceleración debe ser proporcional a la aceleración. Es decir, si fijamos k = 2, si la aceleración es igual a 1 m/s², entonces la desaceleración será igual a 2 m/s² (k puede ser menor de 1, pero no sería lo normal). A partir de la distancia a recorrer y este tiempo, podemos determinar la velocidad media si su desplazamiento fuese a velocidad constante (aceleración y desaceleración infinita). Esa velocidad es igual a $v_{\rm m}$, como se muestra en la figura.

En la figura podemos comprobar que el objeto parte de una velocidad inicial, acelera hasta una velocidad máxima, y desacelera, con una tasa igual a *k* veces la aceleración, hasta una velocidad final. En la figura también se marca la velocidad media a la que debería ir el objeto para cubrir la distancia en el tiempo requerido. Es decir, el área bajo la curva azul debe ser igual al área definida por la velocidad media.

Para simplificar el problema, podemos eliminar la velocidad inicial, y actualizar todas las velocidades restándoles esta velocidad. Como también hemos actualizado la velocidad media, la simplificación no afecta al resultado final (área definida por las curvas), como se muestra en la figura.

Si suponemos un movimiento uniformemente acelerado hasta t_1 , y posteriormente un movimiento uniformemente desacelerado hasta t_2 , el área sobre esta curva deberá ser igual al desplazamiento total. Es fácil comprobar que cualquier punto (v_1 , t_1) situado sobre la recta roja en la gráfica cumple la condición anterior. Esto es, el área entre las dos líneas rojas por debajo de la línea azul es igual al área por encima, ya que se forman 4 triángulos que son iguales dos a dos, y el área bajo la línea roja inferior es igual al área sobre la línea roja superior, por lo tanto, el área bajo la línea azul es igual a la mitad de dos veces el área definida por la velocidad media, es decir, son el mismo área.

En este problema, las incógnitas son:

- v_1 : velocidad máxima que alcanza el objeto.
- t_1 : instante de tiempo en el que se alcanza la velocidad máxima.
- a_1 : Aceleración hasta el instante t_1 .

Y además definimos:

- $v_0 = 2 v_m v_2$
- $a_0 = v_2 / t_2$

Y como ya hemos mencionado, suponemos que el objeto acelera y desacelera con tasas diferentes, pero relacionadas entre sí. Por lo tanto, supondremos que la desaceleración es k veces mayor que la aceleración, es decir $a_2 = k a_1$, donde k puede ser mayor o menor de 1 (generalmente mayor de 1).

Como ya hemos visto, la coordenada (v_1 , t_1) debe situarse sobre la línea roja superior. Por tanto, podemos obtener la siguiente expresión:

$$v_1 = 2v_m - v_2 + \frac{v_2}{t_2} \cdot t_1$$

Del primer tramo podemos relacionar la velocidad final con la aceleración en este tramo:

$$v_1 = a_1 \cdot t_1$$

Y del segundo tramo podemos relacionarlo con la desaceleración:

$$v_1 = v_2 + k a_1 (t_2 - t_1)$$

Por lo que obtenemos un sistema de tres ecuaciones con tres incógnitas, pero se trata de un sistema no lineal, ya que las aceleraciones están multiplicando al tiempo. Agrupamos las tres ecuaciones, y pasamos los términos independientes al lado izquierdo:

$$v_1 = v_0 + a_0 \cdot t_1 \tag{1}$$

$$v_1 = a_1 \cdot t_1 \tag{2}$$

$$v_1 = v_2 + k a_1 t_2 - k a_1 t_1$$
 (3)

Sustituimos (2) en (1) y (3), para eliminar v_1 del sistema de ecuaciones.

$$a_1 t_1 = v_0 + a_0 \cdot t_1$$
 (4)

$$a_1 t_1 = v_2 + k a_1 t_2 - k a_1 t_1$$
 (5)

Despejamos t_1 de (4) y (5):

$$t_1 = \frac{v_0}{a_1 - a_0} \tag{6}$$

$$t_1 = \frac{v_2 + k \, a_1 \, t_2}{a_1 (1 + k)} \tag{7}$$

Igualamos (6) y (7):

$$\frac{v_0}{a_1 - a_0} = \frac{v_2 + k \, a_1 \, t_2}{a_1 (1 + k)} \tag{8}$$

Y despejamos a_1 de (8):

$$a_1^2 k t_2 + a_1 (v_2 - k a_0 t_2 - v_0 (1+k)) - a_0 v_2 = 0$$
 (9)

Es decir, obtenemos una ecuación de segundo grado para *a*₁:

$$b_2 a_1^2 + b_1 a_1 + b_0 = 0$$

donde los términos son:

$$b_2 = k t_2 \tag{10}$$

$$b_1 = v_2 - k a_0 t_2 - v_0 (1+k)$$
 (11)

$$b_0 = -a_0 v_2 \tag{12}$$

donde:

$$a_0 = \frac{v_2}{t_2} \tag{13}$$

$$v_0 = 2v_m - v_2$$
 (14)

Resolvemos el sistema de ecuaciones para encontrar a_1 . A partir de ese valor, encontramos t_1 y v_1 .

El sistema tiene dos soluciones, pero sólo una es válida. La solución no válida es aquella que fija el tiempo t_1 en un valor fuera del rango $0 - t_2$, lo cual no es físicamente realizable. Para determinar qué solución debemos coger, es decir, la del discriminante positivo o negativo, nos fijamos en primer lugar en el siguiente gráfico:

En este gráfico se representa la velocidad media y la velocidad final, una vez normalizado (es decir, eliminada la velocidad inicial de ambos valores). Del gráfico del perfil, se puede ver que si la velocidad media es igual a la mitad de la velocidad final, el movimiento se puede realizar con un solo tramo, donde la aceleración coincide con el valor a_0 definido anteriormente. Este sería un caso

límite, como se marca en la figura. Entonces, si la velocidad media es mayor de la mitad de la velocidad final, la solución que hay que elegir es la de discriminante positivo, y si es menor, elegimos la del discriminante negativo. Este resultado es independiente de la que la velocidad final o la velocidad media normalizadas sean positivas o negativas, o equivalentemente, mayor o menor que la velocidad inicial. No obstante, siempre que la velocidad media sea menor que la mitad de la velocidad final, el perfil es el contrario al indicado en las gráficas, es decir, primero decelerar y después acelerar.

Si los valores de aceleración y desaceleración son distintos, entonces el resultado no sería el correcto, ya que la resolución supone que el primer tramo se hace siempre con el valor de aceleración, y el segundo con el de desaceleración. Para solventar esto, basta con cambiar el valor de k siempre que detectemos que nos encontramos en la solución negativa. En este caso, simplemente cambiamos el valor de k por 1/k y ya tendríamos el problema resuelto.

Cálculo del tiempo mínimo y máximo:

En primer lugar vamos a calcular el valor del tiempo mínimo requerido para poder completar una distancia d, teniendo en cuenta que el sistema tiene una aceleración a_1 y una desaceleración a_2 máxima. El tiempo mínimo se produce cuando el perfil es primero acelerar y después desacelerar, porque, como veremos posteriormente, para calcular el tiempo máximo emplearemos el perfil contrario, primero desacelerar y luego acelerar.

En este caso, calcularemos en primer lugar los valores de t_1 (tiempo de aceleración) y t_2 (tiempo de desaceleración), y el tiempo total requerido será la suma de ambos tiempos.

Calculamos el valor de la velocidad máxima a partir de las velocidades extremas:

$$v_1 = v_0 + a_1 \cdot t_1$$

 $v_1 = v_2 + a_2 \cdot t_2$

Igualando ambas expresiones, obtenemos la relación entre t_1 y t_2 :

$$t_1 = \frac{v_2 - v_0}{a_1} + \frac{a_2}{a_1} \cdot t_2 = t_0 + k_0 t_2 \tag{1}$$

Donde hemos hecho:

$$t_0 = \frac{v_2 - v_0}{a_1}$$
$$k_1 = \frac{a_2}{a_1}$$

Calculamos la integral sobre la curva azul, que se corresponderá con la distancia total recorrida:

$$d = v_0 \cdot t_1 + \frac{a_1 \cdot t_1^2}{2} + v_2 \cdot t_2 + \frac{a_2 \cdot t_2^2}{2}$$
 (2)

Eliminamos el 2 del denominador, y sustituimos (1) en (2):

$$2d=2v_0(t_0+k_0\cdot t_2)+a_1(t_0+k_0t_2)^2+2v_0t_2+a_2t_2^2$$

Desarrollamos la expresión y agrupamos términos:

$$t_2^2(a_1\cdot k_0^2+a_2)+t_2\cdot 2(v_0k_0+a_1t_0k_0+v_2)+a_1t_0^2+2v_0t_0-2d=0$$

Es decir, obtenemos una ecuación de segundo grado para el cálculo de t_2 :

$$b_2 t_2^2 + b_1 t_2 + b_0 = 0$$

donde los términos son:

$$b_2 = a_1 k_0^2 + a_2$$

$$b_1 = 2(v_0 k_0 + a_1 t_0 k_0 + v_2)$$

$$b_0 = a_1 t_0^2 + 2v_0 t_0 - 2d$$

donde:

$$t_0 = \frac{v_2 - v_0}{a_1}$$
$$k_0 = \frac{a_2}{a_1}$$

Resolvemos el sistema de ecuaciones para encontrar t_2 . A partir de ese valor y (1), encontramos t_1 y el tiempo total requerido será $t_1 + t_2$.

Esta expresión sería la empleada para el caso de que el perfil sea primero acelerado y luego desacelerado, que se corresponde con el tiempo mínimo necesario para completar el movimiento. Para calcular el tiempo máximo, necesitamos que el perfil sea al revés, es decir primero desacelerado y luego acelerando. En este caso, el cálculo es ligeramente distinto al anterior. Por un lado, el cálculo de las constantes t_0 y k_0 sería así:

$$t_0 = \frac{v_0 - v_2}{a_2}$$
$$k_0 = \frac{a_1}{a_2}$$

Por otro lado, si intercambiamos los valores y signos de las aceleraciones:

$$a_1' = -a_2$$

$$a_2' = -a_1$$

y empleamos estos nuevos valores en lugar de los originales, la expresión para la distancia (2) sigue siendo la misma, por lo que el resto del desarrollo será similar.

Para este segundo caso, cuando la velocidad límite v1, que en este caso es la mínima, se hace cero, la solución a la ecuación se hace compleja, y por tanto, no existe solución numérica en este caso. No obstante, si el sistema alcanza en algún momento la velocidad 0, entonces el tiempo máximo se

puede considerar infinito, ya que siempre podremos pararnos en velocidad 0 el tiempo que queramos y luego continuar el movimiento, y siempre cumpliríamos las restricciones.

Para el cálculo del tiempo mínimo, nos falta chequear si se supera la velocidad máxima del sistema. Para ello, una vez tenemos el valor de t1, conocida la aceleración, podemos calcular la velocidad máxima del perfil:

$$v_1 = a_1 t_1$$

Y si esta es mayor que la velocidad máxima, entonces el cálculo anterior no sirve, y hay que recalcular este tiempo teniendo en cuenta esta limitación. Para ello, calculamos el tiempo que se tarda en alcanzar la velocidad máxima:

$$t_1 = \frac{v_{\text{max}} - v_0}{a_1}$$

durante este tiempo, el objeto ha recorrido la siguiente distancia:

$$d_1 = \frac{v_{\text{max}} + v_0}{2} t_1 = \frac{(v_{\text{max}} + v_0)(v_{\text{max}} - v_0)}{2 a_1}$$

Y para el tramo de desaceleración, tenemos una expresión similar:

$$d_2 = \frac{(v_{\text{max}} + v_2)(v_{\text{max}} - v_2)}{2 a_2}$$

Con estos dos valores, podemos determinar la distancia que faltaría por recorrer en el tramo a velocidad constante:

$$d_{12} = d_t - (d_1 + d_2)$$

Y el tiempo necesario para completar el movimiento será:

$$t_{12} = \frac{d_{12}}{v_{\text{max}}}$$

Dinámica de tres tramos a velocidad máxima:

Este perfil está pensado para los casos en los que el perfil de 2 tramos supera la velocidad máxima del objeto sin superar la aceleración máxima. Como se ve en la figura, el objeto acelera hasta que alcanza su velocidad máxima. Observese que en la figura las velocidades ya están normalizadas, es decir, se ha restado la velocidad inicial a todas las velocidades. A partir de ese momento el objeto se mantiene a velocidad constante durante un tiempo, momento en el que comienza a desacelerar hasta alcanzar la velocidad final.

En este caso las incógnitas son los tiempos intermedios t0 y t1, y los valores de aceleración y desaceleración. No obstante, igual que en el caso anterior, consideraremos la desaceleración un valor proporcional al de la aceleración, es decir:

$$a_2 = k a_1$$

por lo que las aceleraciones solo supondrán una incógnita en el problema. Comenzamos calculando el espacio recorrido por el objeto:

$$d = \frac{v_{\text{max}}t_0}{2} + v_{\text{max}}(t_1 - t_0) + \frac{v_{\text{max}} + v_2}{2}(t_2 - t_1)$$

Despejamos t0:

$$t_0 = \frac{v_{max} - v_2}{v_{max}} t_1 + \frac{(v_{max} + v_2)t_2 - 2d}{v_{max}}$$

Hacemos:

$$k_{1} = \frac{v_{max} - v_{2}}{v_{max}}$$

$$k_{2} = \frac{(v_{max} + v_{2})t_{2} - 2d}{v_{max}}$$

Y finalmente tenemos:

$$t_0 = k_1 t_1 + k_2$$

A continuación relacionamos la velocidad máxima con las aceleraciones. Para el tramo de aceleración:

$$v_{\text{max}} = a_1 t_0$$

Y para el tramo de desaceleración:

$$v_{\text{max}} = v_2 + k a_1 (t_2 - t_1)$$

Despejamos la aceleración en ambas expresiones, y las igualamos:

$$\frac{v_{\text{max}}}{t_0} = \frac{v_{\text{max}} - v_2}{k(t_2 - t_1)}$$

Volvemos a despejar el valor de t0:

$$t_0 = \frac{-v_{\text{max}} k}{v_{\text{max}} - v_2} t_1 + \frac{v_{\text{max}} k t_2}{v_{\text{max}} - v_2}$$

Hacemos:

$$k_{3} = \frac{-v_{\text{max}} k}{v_{\text{max}} - v_{2}}$$

$$k_{4} = \frac{v_{\text{max}} k t_{2}}{v_{\text{max}} - v_{2}} = -k_{3} t_{2}$$

Tenemos:

$$t_0 = k_3 t_1 + k_4$$

Nótese que en ambas constantes, el denominador se hace 0 cuando la velocidad final requerida coincida con la velocidad máxima. Sin embargo, este caso nunca se dará si empleamos este perfil cuando el perfil de 2 tramos supera la velocidad máxima como se indicó al principio. En esta situación, si se especifica la velocidad final igual a la velocidad máxima, el perfil anterior lo podrá realizar, y por tanto nunca se llamará a este otro perfil. Si se especifica una velocidad final mayor que la máxima, el problema no tiene solución, ya que el objeto nunca podrá alcanzar la velocidad final, independientemente del tipo de perfil empleado. Recopilando ambos resultados, tenemos un sistema de dos ecuaciones con dos incógnitas:

$$\begin{cases} t_0 = k_1 t_1 + k_2 \\ t_0 = k_3 t_1 + k_4 \end{cases}$$

Resolviendo para t1:

$$t_1 = \frac{k_4 - k_2}{k_1 - k_3}$$

Dinámica de tres tramos con velocidad nula:

Este perfil es similar al anterior, pero para los casos en los que el perfil de 2 tramos alcanza velocidades negativas. Esta situación no es del todo irrealizable, ya que supone que el objeto avanza hacia atrás durante un tiempo para volver a avanzar hacia adelante. Sin embargo, en este caso, es más simple detener el objeto durante el tiempo necesario y luego volver a acelerar hasta alcanzar la velocidad final.

Para simplificar el problema, hacemos t0 igual a t1, es decir, eliminamos el tramo en el que el objeto está parado, y una vez que tengamos los valores de los tramos de desaceleración y aceleración, el tramo restante se correspondería con el tiempo que falta para alcanzar el tiempo solicitado. De esta forma, las incógnitas serían t0 y t2.

Calculamos la distancia recorrida en los dos tramos no nulos:

$$d = \frac{v_0}{2}t_0 + \frac{v_2}{2}(t_2 - t_0)$$

Despejamos t2:

$$t_2 = \frac{2d + (v_2 - v_0)t_0}{v_2}$$

Relacionamos las velocidades extremas con las aceleraciones. Para la velocidad inicial:

$$v_0 = k a_1 t_0$$

Y para la velocidad final:

$$v_2 = a_1(t_2 - t_0)$$

Despejamos la aceleración, igualamos y despejamos t2 de la expresión resultante:

$$t_2 = \frac{k v_2 + v_0}{v_0} t_0$$

Resumiendo, hemos obtenido las siguientes expresiones:

$$t_2 = \frac{2d + (v_2 - v_0)t_0}{v_2}$$
$$t_2 = \frac{kv_2 + v_0}{v_0}t_0$$

Finalmente, igualamos ambas expresiones, y despejamos el valor de t0:

$$t_0 = \frac{2 d v_0}{k v_2^2 + v_0^2}$$

Dinámica de 3 tramos con velocidad máxima libre:

(Este caso no se emplea) Eliminamos la velocidad inicial, como en el caso anterior, para simplificar el problema. Eso supone restar dicha velocidad de todas las velocidades implicadas:

Obtenemos la relación entre la velocidad intermedia y la velocidad final v_2 :

$$v_2 = a_0 t_0 - a_1 (t_2 - t_1) \tag{1}$$

Calculamos el área sobre la curva azul:

$$d = \frac{a_0 t_0^2}{2} + a_0 t_0 (t_1 - t_0) + \frac{a_0 t_0 + v_2}{2} (t_2 - t_1)$$
 (2)

Despejamos t_1 de (1):

$$t_1 = \frac{v_2 - a_0 t_0 + a_1 t_2}{a_1} = \frac{v_2}{a_1} - \frac{a_0}{a_1} t_0 + t_2 \tag{3}$$

Multiplicamos por 2 en (2), y desarrollamos la expresión:

$$2d = a_0t_0^2 + 2a_0t_0t_1 - 2a_0t_0^2 + a_0t_0t_2 - a_0t_0t_1 + v_2t_2 - v_2t_1$$
 (4)

Simplificamos (4) y sacamos factor común a t_1 :

$$2d = -a_0t_0^2 + a_0t_0t_2 + v_2t_2 + (a_0t_0 - v_2)t_1$$
 (5)

Sustituimos (3) en (5):

$$2d = -a_0 t_0^2 + a_0 t_0 t_2 + v_2 t_2 + (a_0 t_0 - v_2) \left(\frac{v_2}{a_1} - \frac{a_0}{a_1} t_0 + t_2 \right)$$
 (6)

Desarrollamos el paréntesis:

$$2d = -a_0 t_0^2 + a_0 t_0 t_2 + v_2 t_2 + \left(\frac{a_0 v_2 t_0}{a_1} - \frac{a_0^2 t_0^2}{a_1} + a_0 t_0 t_2 - \frac{v_2^2}{a_1} + \frac{a_0 v_2 t_0}{a_1} - v_2 t_2 \right)$$
(7)

Obtenemos una ecuación de segundo grado para *t*₀. Agrupamos los términos:

$$t_0^2 \left(-a_0 - \frac{a_0^2}{a_1} \right) + t_0 \left(2a_0t_2 + 2\frac{a_0v_2}{a_1} \right) - \frac{v_2^2}{a_1} - 2d = 0 \quad (8)$$

Tenemos una ecuación de segundo grado, con los siguientes coeficientes:

$$b_2 t_1^2 + b_1 t_1 + b_0 = 0$$

donde los términos son:

$$b_{2} = -a_{0} - \frac{a_{0}^{2}}{a_{1}} = -\frac{a_{0}}{a_{1}} (a_{1} + a_{0})$$

$$b_{1} = 2a_{0} \left(t_{2} + \frac{v_{2}}{a_{1}} \right)$$

$$b_{0} = \frac{-v_{2}^{2}}{a_{1}} - 2d$$
(11)

Con t_0 , calculamos t_1 a partir de (3). Si el tramo debe ser a la inversa, es decir, primero desacelerar y luego acelerar, lo único que cambia es el signo de d en (8), lo que se traduce en cambiar el signo de d en (11), y al calcular las respuestas, las aceleraciones cambian de signo.

Dinámica de 1 tramo:

Una vez normalizadas las velocidades, si calculamos el área bajo la curva azul:

$$d = \frac{v_2 t_1}{2} + v_2 (t_2 - t_1)$$

Despejando, tenemos el valor de t_1 :

$$t_1 = 2 \frac{v_2 t_2 - d}{v_2}$$

Cálculo de la distancia mínima (borrar):

Se refiere al cálculo de la siguiente distancia. Si suponemos que las velocidades son v_{ini} y v_{fin} , y la aceleración máxima es a_1 , entonces calculamos la distancia que recorreríamos si partimos desde v_{ini} y aceleramos de forma uniforme con a_1 hasta llegar a v_{fin} . Esta distancia sería la siguiente. Comenzamos calculando el tiempo que tardamos en alcanzar la velocidad v_{fin} :

$$t = \frac{v_{\text{fin}} - v_{\text{ini}}}{a_1}$$

Y la distancia recorrida con el movimiento anterior será:

$$d = \frac{v_{\text{ini}} + v_{\text{fin}}}{2} t = \frac{(v_{\text{fin}} + v_{\text{ini}})(v_{\text{fin}} - v_{\text{ini}})}{2 a_1}$$
(1)

Si la distancia a recorrer fuese menor, entonces tendríamos que emplear una aceleración mayor, para poder llegar a la velocidad final antes, y así recorrer un espacio menor. Como la máxima aceleración es a_1 , podemos concluir que no es posible recorrer una distancia menor que la obtenida en (1). Por lo tanto, la distancia anterior se corresponde con la distancia mínima que se puede recorrer para las velocidades y aceleración indicadas. No obstante, hay que tener en cuenta que si la velocidad final es menor que la velocidad inicial, entonces el movimiento será uniformemente desacelerado, por lo que las expresiones cambian. En concreto, el tiempo necesario para completar el proceso será:

$$t = \frac{v_{\rm ini} - v_{\rm fin}}{a_2}$$

Y la distancia recorrida:

$$d = \frac{v_{\text{ini}} + v_{\text{fin}}}{2} t = \frac{(v_{\text{fin}} + v_{\text{ini}})(v_{\text{ini}} - v_{\text{fin}})}{2 a_2}$$
 (2)

Por lo tanto, tenemos que evaluar el signo de la diferencia de velocidades y emplear (1) o (2) en función de esto.