

On the Importance of Expert Knowledge to Improve Foundation Models for Retinal Fundus Images

Julio Silva-Rodríguez¹ - Hadi Chakor² - Riadh Kobbi² - Jose Dolz¹ - Ismail Ben Ayed¹ ÉTS Montreal¹ - DIAGNOS Inc.²

A Foundation Language-Image Model of the Retina - FLAIR

TAKE-HOME

In Nutshell

- Expert descriptions encode hierarchical dependencies of lesions/diaseases.
- Specialized foundation models are prefered over larger-scale generalist or self-supervised models.

- - COMPETITORS

- METHODS

• Vision-language-label pre-training. Vision $,\theta$, and text , ϕ , encoders map input modalities into a common L^2 – normalized embedding space, with vision and language features u and v. Pre-training consist of aligning paired projections in the label space:

$$L_{i2t}(\theta, \phi, \tau | B) = -\sum_{i \in X_B} \frac{1}{|P_{\tau_B}(i)|} \sum_{i' \in P_{\tau_B}(i)|} \log \frac{\exp(u_i^T v_{i'} / \tau)}{\sum_{j \in \tau_B} \exp(u_i^T v_{j} / \tau)}$$

$$L_{t2i}(\theta, \phi, \tau | B) = -\sum_{j \in \tau_B} \frac{1}{|P_{X_B}(j)|} \sum_{j' \in P_{X_B}(j)|} \log \frac{\exp(u_{j'}^T v_j / \tau)}{\sum_{i \in X_B} \exp(u_i^T v_j / \tau)}$$

• Encoding expert knowledge. We introduce domain expert knowledge by mapping categorical labels to ophtalmologist's descriptions.

Given a category,
$$y^* \to \{T^*\}_1^P = \pi_{EK}(y^*)$$
 "small white or yellow deposits with sharp margins"

RESULTS

(a) Zero-shot		MESSIDOR	FIVES	REFUGE	20x3	$ODIR_{200x3}$	MMAC	Avg.
CLIP BiomedCLIP FLAIR	ViT-B/32 ViT-B/16 RN50	0.200 0.207 0.604	0.256 0.415 0.735	0.433 0.624 0.883	0.333 0.617 0.983	0.480 0.583 0.667	0.183 0.274 0.400	0.314 0.453 0.712
(b) Linear Probing								
ImageNet CLIP BiomedCLIP RETFound FLAIR	RN50 ViT-B/32 ViT-B/16 ViT-B/16 RN50	0.424 0.491 0.433 0.457 0.719	0.741 0.800 0.654 0.765 0.879	0.733 0.720 0.776 0.747 0.843	0.983 0.950 0.866 0.950 1.000	0.887 0.917 0.883 0.887 0.935	0.631 0.642 0.678 0.547 0.740	0.733 0.753 0.715 0.725 0.852

