Math 3B: Lecture 26

Noah White

November 23, 2016

• Homework 5 due on Friday 2 December

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday
- 9-11am Thursday Dec 1, MS 3915A

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday
- 9-11am Thursday Dec 1, MS 3915A
- 1-3pm Thursday Dec 1, MS 5203

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday
- 9-11am Thursday Dec 1, MS 3915A
- 1-3pm Thursday Dec 1, MS 5203
- 3-5pm Friday Dec 2, MS 5225

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday
- 9-11am Thursday Dec 1, MS 3915A
- 1-3pm Thursday Dec 1, MS 5203
- 3-5pm Friday Dec 2, MS 5225
- 9-12pm Monday Dec 5, MS 3974 (Student Math Center)

- Homework 5 due on Friday 2 December
- Monday 28 Nov lecture cancelled
- Wednesday and Friday are review (see Piazza)
- Extra office hours on Thursday, Friday and Monday
- 9-11am Thursday Dec 1, MS 3915A
- 1-3pm Thursday Dec 1, MS 5203
- 3-5pm Friday Dec 2, MS 5225
- 9-12pm Monday Dec 5, MS 3974 (Student Math Center)
- Exam behaviour...

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property

The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property

The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property

The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

We want points (t, y) such that f(y) = 0.

• Suppose f(a) = 0.

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property

The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

We want points (t, y) such that f(y) = 0.

- Suppose f(a) = 0.
- Then (t, a) is on the nullcline, for any t.

Deafinition

An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

i.e. where the right hand side does not depend on t, is called autonomous

Important property

The nullclines of an autonomous equation are horizontal straight lines! Nullclines = equilibrium solutions

We want points (t, y) such that f(y) = 0.

- Suppose f(a) = 0.
- Then (t, a) is on the nullcline, for any t.
- So the line y = a is part of the nullcline, whenever f(a) = 0.

Slope fields and nullclines for autonomous systems

Phase lines/diagram

Phase lines/diagram

Phase lines/diagram

Recipe to draw phase lines

1. Draw a vertical corresponding to y axis

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- 3. Draw up arrows on intervals between dots where the derivative is positive

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- 3. Draw up arrows on intervals between dots where the derivative is positive
- 4. Draw down arrows on intervals between dots where the dericative is negative

Recipe to draw phase lines

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- Draw up arrows on intervals between dots where the derivative is positive
- Draw down arrows on intervals between dots where the dericative is negative

Definition

Recipe to draw phase lines

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- Draw up arrows on intervals between dots where the derivative is positive
- 4. Draw down arrows on intervals between dots where the dericative is negative

Definition

 An equalibrium is stable if the two arrows are pointing towards it.

Recipe to draw phase lines

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- Draw up arrows on intervals between dots where the derivative is positive
- 4. Draw down arrows on intervals between dots where the dericative is negative

Definition

- An equalibrium is stable if the two arrows are pointing towards it.
- It is unstable if the two arrows are pointing away from it.

Recipe to draw phase lines

- 1. Draw a vertical corresponding to y axis
- 2. Draw dots where equilibrim solutions live
- Draw up arrows on intervals between dots where the derivative is positive
- 4. Draw down arrows on intervals between dots where the dericative is negative

Definition

- An equalibrium is stable if the two arrows are pointing towards it.
- It is unstable if the two arrows are pointing away from it.
- It is semistable if the arrows point in the same direction.

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y(y-10)(25-y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y(y-10)(25-y)$$

Classification of equilibria

If a is an equillibrium of

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

(i.e. f(a) = 0) then a is

Classification of equilibria

If a is an equillibrium of

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

- (i.e. f(a) = 0) then a is
 - stable if f'(a) < 0

Classification of equilibria

If a is an equillibrium of

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

(i.e. f(a) = 0) then a is

- stable if f'(a) < 0
- unstable if f'(a) > 0

Classification of equilibria

If a is an equillibrium of

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y)$$

(i.e. f(a) = 0) then a is

- stable if f'(a) < 0
- unstable if f'(a) > 0
- indeterminate if f'(a) = 0

Often in real life situations we would like to study a system that includes an unknown parameter

$$\frac{\mathrm{d}y}{\mathrm{d}t}=f(y,a)$$

The behaviour of the solution depends on a!

Example

The queen Conch population we have been studying grows logistically, they are also harvested but we don't know exactly how many are harvested.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = N(1-N) - h$$

• We would like to study how the behaviour of the solution depends on the parameter.

- We would like to study how the behaviour of the solution depends on the parameter.
- The bahviour of the solution, depends on the equilibria and their stability!

- We would like to study how the behaviour of the solution depends on the parameter.
- The bahviour of the solution, depends on the equilibria and their stability!
- Draw a bifurcation diagram

- We would like to study how the behaviour of the solution depends on the parameter.
- The bahviour of the solution, depends on the equilibria and their stability!
- Draw a bifurcation diagram
- Plot f(y, a) = 0 on the y-a coordinate plane

