Expresión Regular a DFA: Método del Árbol

- 1. Agregar al final de la Expresión Regular el símbolo de # (fin del componente) → (ER)#
- 2. Construir el árbol de Sintaxis. Colocar en cada hoja el identificador único (número).
- 3. Calcular las siguientes operaciones sobre cada nodo del árbol.
 - a. Anulable
 - b. First pos
 - c. Last pos
 - d. Follow pos
- 4. Construir la tabla de Transiciones.
- 5. Dibujar el diagrama de transiciones.

Anulable:

- a No anulable
- C₁* Anulable
- C_1 + No anulable (si C_1 es no anulable)
- C_1 ? Anulable

C_1	C_2		
Anulable	Anulable	$C_1 \mid C_2$ Anulable	$C_1 \cdot C_2$ Anulable
Anulable	No Anulable	$C_1 \mid C_2$ Anulable	$C_1 \cdot C_2$ No anulable
No anulable	Anulable	$C_1 \mid C_2$ Anulable	$C_1 \cdot C_2$ No anulable
No anulable	No Anulable	$C_1 \mid C_2$ No anulable	$C_1 \cdot C_2$ No anulable

	Anulable	First	Last	Follow
a (hoja)	No anulable	a	a	
$C_1 \mid C_2$	$ \begin{array}{c c} If \ (Anulable(C_1) \parallel Anulable(C_2)) \\ Anulable \end{array} $	$F=F(C_1)+F(C_2)$	$L=L(C_1)+L(C_2)$	
	Else No anulable			
C ₁ . C ₂	If (Anulable(C ₁) && Anulable(C ₂)) Anulable Else No anulable	If $(Anulable(C_1))$ $F=F(C_1)+F(C_2)$ Else $F=F(C_1)$	If $(Anulable(C_2))$ $L=L(C_1)+L(C_2)$ Else $L=L(C_2)$	$\forall i \in L(C_1) \rightarrow F(C_2)$ $\in Follow de i.$
C ₁ *	Anulable	$F=F(C_1)$	L=L(C ₁)	$\forall i \in L(C_1) \rightarrow F(C_1)$ $\in Follow de i.$
C ₁ +		F=F(C ₁)	L=L(C ₁)	$\forall i \in L(C_1) \rightarrow F(C_1)$ $\in Follow de i.$
C ₁ ?	Anulable	$F=F(C_1)$	$L=L(C_1)$	

Ejemplo 2 (Exp. Reg. a DFA): **a** (**a** | **b**)* **b**

- 1. Agregar al final de la Expresión Regular el símbolo de # (fin del componente) → [ER]# [a (a | b)*b]#
- 2. Construir el árbol de Sintaxis. Colocar en cada hoja el identificador único (número verde).

- 3. Calcular las siguientes operaciones sobre cada nodo del árbol.
 - a. Anulable
 - b. First pos
 - c. Last pos
 - d. Follow pos

Hoja		Follow Pos	
a	1	2,3,4	
a	2	2,3,4	
b	3	2,3,4	
b	4	5	
#	5		

4. Construir la tabla de Transiciones. El estado inicial = First pos del nodo raíz.

Estado	Entrada (Terminales)	
	a	b
X0={1}	X1={2,3,4}	
X1={2,3,4}	X1={2,3,4}	X2={2,3,4,5}
→ X2={2,3,4,5}	X1={2,3,4}	X2={2,3,4,5}

- → Estado de aceptación.
- 5. Dibujar el diagrama de transiciones.

