# TTIC 31110 Speech Technologies

May 5, 2020

#### **Announcements**

- HW3 due Friday 5/8 7pm
- Tutorial 3 (yesterday) materials available online
- Coming up: Term project
  - End of this week: Materials and guidelines available
  - Week 7: Project proposals due
  - Week 9: Project updates
  - Finals week: Final project presentations & reports
- Feel free to discuss topic ideas with me/Ankita at office hours, via email
- Seek out partners for term project (see survey results, discuss on canvas, etc.)

## Questions from last week/year

We mainly discussed training HMMs for the case of discrete observations; what about continuous observations (e.g. MFCCs)?

- Discrete HMMs can be used with vector quantized features (see Tutorial 2, Lecture 6)
- In a continuous-density HMM, the discrete observation probabilities,  $b_i(k)$ , are replaced by continuous densities  $b_i(\mathbf{o})$
- The observation distributions are typically Gaussian or mixture of Gaussians:  $b_i(\mathbf{o}) = \sum_{k=1}^K c_{ik} \mathcal{N}(\mathbf{o}|\mu_{ik}, \Sigma_{ik}), \ 1 \leq i \leq N$
- In the forward/backward/Viterbi algorithms: same algorithms, just replace  $b_i(k)$  by the value of the corresponding density  $b_i(\mathbf{o})$
- For EM training, the update equations look a bit different.

# Recall: The Baum-Welch re-estimation formulas

M step, with multiple observation sequences  $\mathbf{O}^1, \dots, \mathbf{O}^L$ 

$$\hat{a}_{ij} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{T-1} \xi_{t}^{l}(i, j)}{\sum_{l=1}^{L} \sum_{t=1}^{T-1} \gamma_{t}^{l}(i)}$$

$$\hat{b}_{i}(k) = \frac{\sum_{l=1}^{L} \sum_{t=1, o_{t} = v_{k}}^{T} \gamma_{t}^{l}(i)}{\sum_{l=1}^{L} \sum_{t=1}^{T} \gamma_{t}^{l}(i)}$$

$$\hat{\pi}_{i} = \frac{1}{L} \sum_{i=1}^{L} \gamma_{i}^{l}(i)$$

#### Baum-Welch for continuous-density HMMs

Single-Gaussian case:  $b_i(\mathbf{o}) = \mathcal{N}(\mathbf{o}|\mu_i, \Sigma_i), \ 1 \leq i \leq N$ 

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} = \text{(same as for discrete HMMs!)}$$

$$\hat{\mu}_{i} = \frac{1}{\sum_{t=1}^{T} \gamma_{t}(i)} \sum_{t=1}^{T} \gamma_{t}(i) \mathbf{o}_{t}$$

$$= \text{(same as Gaussian mixture update for "component"} i)}$$

$$\hat{\mathbf{\Sigma}}_i = \frac{1}{\sum_{t=1}^T \gamma_t(i)} \sum_{t=1}^T \gamma_t(i) (\mathbf{o}_t - \hat{\mu}_i) (\mathbf{o}_t - \hat{\mu}_i)^T$$



## Baum-Welch for continuous-density HMMs

#### Gaussian mixture case:

- This is often referred to as an HMM/GMM
- Now state and Gaussian component index are both latent variables
- Update equations now involve  $\gamma_t(i, k) = \text{posterior probability}$  of being in component k in state i at time t
- See Rabiner tutorial for equations

# Questions from last week/year

How does it all fit together? How do I go from a pile of data to a speech recognizer?

# Meta-algorithm 1: Training a (whole-word) HMM/GMM-based speech recognizer

#### (1) Given:

- Training set of L utterances (acoustic features + corresponding word transcriptions)
- Hyperparameters: # states per word, # Gaussians per state,
   HMM "topology" (which transition probabilities are 0)
- Initial parameter values (guess)

#### (2) Repeat until convergence:

- E step: For each training utterance l, run forward and backward algorithms and compute the  $\xi$ s
- M step: Update parameters according to the Baum-Welch equations
- Check convergence (e.g., likelihood not higher than previous iteration by some amount  $\delta$ )

# Meta-algorithm 2: Training and tuning a (whole-word) HMM/GMM-based speech recognizer

- (1) Given:
  - Training set of L utterances (acoustic features + corresponding word transcriptions)
  - Development (held out/tuning) set of D utterances
  - Set of allowed hyperparameters: range of # states per word, range of # Gaussians per state
- (2) For each allowed combination of hyperparameters:
  - Train recognizer using meta-algorithm 1
  - Record performance (error rate) on dev set
- (3) Choose trained recognizer with best dev-set performance (In practice, there are more efficient ways to tune hyperparameters than the for-loop above (the above is a "grid search"))

#### Questions from last week/year

#### What about silence?

- Treat it like just another word in the vocabulary
- Often we have one "word" for utterance-initial/utterance-final silence, and one for short inter-word silences
- One twist: We usually don't have silences marked in training data, so we allow for optionally skipping the silences

### **Details: Measuring performance**

- Most common measure: Word error rate (WER)
- WER = (# substitutions + # deletions + # insertions)/(# wds in reference script)
- Example:

```
REF: The * dogs are barking now
HYP: The uh smogs * barking *
I S D D
```

- WER = (1+1+2)/5 = 80%
- Can be computed efficiently using dynamic programming (like DTW, Viterbi)
- Note: WER can be above 100%

#### Questions from last time

How are HMMs used for speech technologies besides speech recognition?

- Unsupervised learning, e.g. discovering sound units in a low-resource language
  - Take a pile of speech without transcriptions
  - Train a single HMM on all of it
  - Each state is a "sound unit"
  - Look for short/long repeated sequences of states to discover phones/words
- Speech synthesis
  - Much like HMMs for speech recognition, but trained on a single speaker's speech
  - Some care needed to ensure continuity across synthesized frames
  - Possibly replaced by neural methods

# Recall: Hybrid generative/discriminative models

#### Typical approach:

- 1 Train a frame-based discriminative classifier of sub-word units (e.g. phones, phone states, triphone states) given some labeled training data,  $c^* = f_c(\mathbf{o})$ , where c is the class and  $\mathbf{o}$  is a frame feature vector
- 2 The output is a posterior probability  $p(c|\mathbf{o})$
- 3 Convert  $p(c|\mathbf{o})$  to something like an observation model (a "likelihood"):  $p(\mathbf{o}|c) \propto \frac{p(c|\mathbf{o})}{p(c)}$
- 4 Use the result in place of the observation model in an HMM
- 5 Most popular type of frame classifier by far: neural network

#### Recall: Feedforward neural networks

A feedforward neural network (NN, or DNN) is any vector function  $f(\mathbf{x})$  of a vector input  $\mathbf{x}$  that can be written as a composition of simple "layers"



- $\bullet$  Each node i in each layer l outputs  $y_i^l = \sigma(\mathbf{w}_i^l \cdot \mathbf{y}_i^{l-1} + b_i^l)$
- Or writing each layer's output as a vector:  $\mathbf{y}^l = \sigma_l(\mathbf{W}_l\mathbf{y}^{l-1} + \mathbf{b}^l)$ , where  $\sigma$  is applied element-wise
- (Letting  $y^0 = x$ )
- Final output:  $f(\mathbf{x}) = \mathbf{y} = \mathbf{y}^L$  for an L-layer network



#### Recall: Multi-class outputs



Typical activation function for final layer: Softmax

$$y_i = \frac{\exp(z_i)}{\sum_{j=1}^n \exp(z_j)}$$

where  $z_i = \mathbf{w}_i \cdot \mathbf{x} + b_i$  (Note: layer indexing dropped;  $\mathbf{x}$  refers to the input of the current layer)

• Outputs are  $\geq 0$  and sum to 1, so can be thought of as class posterior probabilities  $p({\rm class}\ i|{\bf x})$ 

#### Recap: Training neural networks

The parameters are learned to minimize some loss, or measure of badness of the outputs

- A NN is an MLP if it is trained with perceptron loss (though often "MLP" is used to refer to any feedforward NN)
- For multi-class classification (softmax output layer activation function), most common loss is cross-entropy loss  $\ell_{CE} = -\sum_c y_c \log f_c(\mathbf{x})$ , where  $\mathbf{x}$  is input vector for one example in training set  $y_c = 1$  if ground-truth label = c, 0 otherwise  $f_c(\mathbf{x})$  is our estimate of  $p(c|\mathbf{x})$
- Cross-entropy loss also called *log loss*, because  $\ell_{CE} = -\log f_{c^*}(\mathbf{x})$  where  $c^*$  is the ground-truth label
- Total loss is the sum of the loss over all training examples

#### Aside: A teeny bit of information theory

• If X is a discrete random variable taking one of N values with probabilities  $p_1, \ldots, p_N$ , respectively, then the **entropy** of X is

$$H(X) = -\sum_{i=1}^{N} p_i \log_2 p_i$$

- This is the average number of bits needed to represent X
- If the distribution of X is uniform, then  $H(X) = \log_2 N$
- A related term is **perplexity**  $PP_p(X) = 2^{H(X)}$
- If the distribution of X is uniform, then what is PP(X)

#### Aside: A teeny bit of information theory

ullet The **cross-entropy** of a model distribution q with respect to a true distribution p is

$$H(p,q) = -\sum_{i=1}^{N} p_i \log_2 q_i$$

- This is the average number of bits needed to represent X drawn from p using a code optimized for q
- Going back to cross-entropy loss:

$$\ell_{CE} = -\sum_{c} y_c \log f_c(\mathbf{x})$$

- This is the cross-entropy between the true distribution  $y_c$  and our estimate of it  $f_c(\mathbf{x})$
- $y_c$  happens to be a very simple distribution:  $y_c = 1$  if true label = c, 0 otherwise
- If we had some other ground-truth distribution ("soft" labels), could still use cross-entropy
- But then it would not be equivalent to log loss



## Aside: A teeny bit of information theory

Cross-entropy loss:  $\ell_{CE} = -\sum_c y_c \log f_c(\mathbf{x})$ 

- Viewing the ground-truth label as a distribution over labels c, this is the cross-entropy between that distribution and the network's output distribution  $f_c(\mathbf{x})$
- This is a measure of dissimilarity between distributions
- (For our purposes, equivalent to KL divergence)
- What is the minimum of this loss? (Note if needed:  $x \log x \to 0$  as  $x \to 0$

#### Power of two layers

- Theoretical result [Cybenko 1989]: 2-layer net with sigmoid hidden units can approximate any continuous function over compact domain to arbitrary accuracy, given enough hidden units
- Examples: 3 hidden units with  $\tanh(z) = \frac{e^{2z}-1}{e^{2z}+1}$  activation



[from Bishop]

#### Back to speech recognition...

#### Reminder: Hybrid ASR systems

- Use a DNN to produce a posterior for each class c (= HMM state) given an input frame of acoustic features  $\mathbf{o}$
- Posterior is converted to a scaled likelihood via  $p(\mathbf{o}|c) \propto \frac{p(c|\mathbf{o})}{p(c)}$

#### Where do class labels for all frames come from?

- Frames may have ground-truth (human) labels
- ... Or labels can be produced via a Viterbi alignment ("forced alignment") using an existing HMM/GMM system
- ... Or we can use "soft labels" = posteriors produced by running forward-backward using an existing HMM/GMM system
- (The latter makes sense if using cross-entropy loss)

# Meta-algorithm 1a: Training a (whole-word) HMM/DNN-based speech recognizer

#### (1) Given:

- Training set of L utterances (acoustic features, corresponding word transcriptions, state label per frame)
- Hyperparameters: # states per word, # Gaussians per state,
   HMM "topology", # DNN layers, # DNN hidden units,
   learning rate, regularization parameters...
- Initial parameter values for  $a_{ij}, \pi_i$  (not  $b_i(\mathbf{o})$ ),  $\Theta$
- (2) Train DNN: Repeat until convergence
  - One step of gradient descent
  - ullet Check convergence (e.g., loss not improved by at least  $\delta_{DNN})$
- (3) Train HMM: Repeat until convergence
  - ullet E step: For each training utterance l, run forward and backward algorithms and compute the  $\xi$ s
  - M step: Update parameters according to the Baum-Welch equations, **except**  $b_i(\mathbf{o})$

#### **Tandem models**

Never mind the whole posterior conversion business: Use the NN outputs as features!

- Then use standard HMM/GMMs with these features as inputs
- Idea developed at ICSI Berkeley (e.g., Hermansky et al. 2000)
- $\mathbf{o}' = [y_1(\mathbf{o}) \ y_2(\mathbf{o}) \ \dots y_n(\mathbf{o})]$
- If the  $y_i(\mathbf{o})$  represent probabilities, then we typically take their logs:  $\mathbf{o}' = [\log(f_1(\mathbf{o})) \log(f_2(\mathbf{o})) \ldots]$

# Tandem models (2)

Alternatively, use outputs from a lower layer, and make that layer narrow (a "bottleneck layer") to reduce dimensionality



# Tandem models: More tricks (3)

- These features are often appended to the original features, e.g. MFCCs, so the new feature vector is  $[\mathbf{o}\ \mathbf{o}']$  (hence, "tandem"!)
- Typically, the input is a concatenation of acoustic vectors over a window of 7-20 frames around the current frame (very high-dimensional!)

#### Visualizing learned acoustic features

Given raw spectrum input (Sainath et al. ASRU 2013):



# Visualizing learned acoustic features

Given a mel-spectrogram patch as input:



#### Current state of hybrid and tandem models

#### As of 7-8 years ago:

- Depending on the task, HMM/NN models may or may not outperform HMM/GMM-based models
- Tandem models typically outperform their HMM/GMM-based counterparts

#### Now:

- DNNs have caused a revolution in ASR
- The state of the art is now often\* hybrid HMM/NN systems, with DNN-based tandem systems somewhat behind
- Tandem models have some advantages, e.g. easier to adapt to new speakers
- \*And for some domains, end-to-end neural network models are now the state-of-the-art

#### What changed?

- More data
- More compute (GPUs)
- deeper networks
- ⇒ wider network outputs
- Pretraining (that's probably not important, but was useful in getting NNs into the mainstream)
- Better regularization

# Recall: Visualizing learned acoustic features

Given a mel-spectrogram patch as input:



# Convolutional neural networks (CNNs)

But if we start from spectrograms, then it might help to consider:

- Many of the useful patterns are local in time-frequency
- Many of the useful patterns repeat in different time-frequency locations
- But they don't exactly repeat... they move around a bit between speakers, contexts, etc.



## Convolutional neural networks (CNNs)

CNNs are DNNs with some twists to take into account these considerations

- They encode local patterns with subsets of nodes that only consider small patches of the input (filters)
- They encode repetition of patterns by applying the same weights to different patches of the input (weight sharing)
- They normalize for inexact repetition by pooling information over multiple areas in the input
- Developed in the mid-1990s (really even the 1980s...) by Yann LeCun and colleagues
- Became hugely popular for image processing/computer vision starting in 2012
- Borrowed into speech recognition shortly thereafter

#### **CNNs**



Key ingredients: local filters, sharing for repetition, pooling for inexact repetition

#### **CNNs**

#### Ofter easier to think about convolutional layers in 2D



#### **CNNs**

Convolutions can be applied to different kinds of features at the same time:



# **CNNs: Example filters**



# Dependence on number/types of layers



| # of convolutional vs. fully connected layers | WER  |
|-----------------------------------------------|------|
| No conv, 6 full (DNN)                         | 21.6 |
| 1 conv, 5 full                                | 21.3 |
| 2 conv, 4 full                                | 18.9 |
| 3 conv, 3 full                                | 20.2 |

# Dependence on activation type

Table 12 WER on broadcast news, 50 hr.

| Model   | Feature                   | Non-linearity | dev04f |
|---------|---------------------------|---------------|--------|
| GMM/HMM | fBMMI                     |               | 18.8   |
| DNN     | fMLLR                     | sigmoid       | 16.3   |
| CNN     | log-mel                   | sigmoid       | 15.8   |
| CNN+DNN | log-mel+(fMLLR+i-vectors) | sigmoid       | 14.2   |
| CNN+DNN | log-mel+(fMLLR+i-vectors) | ReLU          | 13.6   |
| DNN     | log-mel+(fMLLR+i-vectors) | ReLU          | 14.2   |

**Table 13** WER on broadcast news, 400 hr.

| Model                            | Feature                                                | Non-linearity              | dev04f                              |
|----------------------------------|--------------------------------------------------------|----------------------------|-------------------------------------|
| GMM/HMM<br>DNN<br>CNN<br>CNN+DNN | fBMMI<br>fMLLR<br>log-mel<br>log-mel+(fMLLR+i-vectors) | sigmoid<br>sigmoid<br>ReLU | 16.0<br>15.1<br>13.5<br><b>12.7</b> |

# **CNNs** applied to MFCCs

