TP3: Illustration de Théorèmes du cours avec R

Exercice 1 Dans tout l'exercice, pile sera associé à 1, et face à zéro. De plus, on notera θ la probabilité d'avoir pile.

- 1. Réalisez l'expérience aléatoire suivante : lancer n=15 fois une pièce de monnaie équilibrée. Pour ce faire on simulera (à l'aide de R) successivement 15 variables aléatoires de Bernoulli. On note x_i le résultat du ième lancer, où $i=1,\ldots,15$. Indiquer le résultat de l'expérience que vous venez de réaliser et donner la valeur de \overline{x} .
- 2. Faites 20 fois l'expérience aléatoire ci-dessus, et noter à chaque fois la valeur de \overline{x} obtenue.
 - (a) Imaginez un instant que vous ignorez le fait que la pièce est équilibrée. Que représente alors chaque \overline{x} ? Que constatez-vous? Commentez.
 - (b) Faites la moyenne de tous ces \overline{x} , puis comparer cette valeur à 0.5. On constate alors un écart entre ces deux valeurs : commentez cet écart relativement au fait que \overline{X} est un estimateur sans biais de θ .

Exercice 2 Soit une variable X de loi exponentielle de paramètre λ . On considère X_1, X_2, \ldots une suite infinie de variables indépendantes de même loi que X.

- 1. Calculer l'estimateur du maximum de vraisemblance $\hat{\lambda}$ du paramètre λ .
- 2. On note $\hat{\lambda}_n$ l'estimateur du maximum de vraisemblance issu de l'échantillon $\{X_1,...,X_n\}$.
 - (a) Simuler avec R la suite des X_i pour $i \in \{1, ..., 10000\}$ et $\lambda = 1.5$.
 - (b) Produire un graphique représentant l'évolution de $\hat{\lambda}_n$ pour n variant de 1 à 10000. Que constate-on? Pouvait-on s'y attendre?
- 3. Indiquer pourquoi $\sqrt{n}(\hat{\lambda}_n \lambda)$ est asymptotiquement gaussien.
- 4. On pose $Y = \sqrt{500}(\hat{\lambda}_{500} \lambda)$ et on considère 1000 variables aléatoires Y_i pour $i \in \{1, ..., 1000\}$ indépendantes et de même loi que Y.
 - (a) Confirmer l'approximation gaussienne en réalisant avec R un histogramme des valeurs prises par les Y_j pour $j \in \{1, ..., 1000\}$.
 - (b) Commenter l'écart entre l'histogramme et la densité gaussienne.
- 5. On s'intéresse maintenant à l'espérance de X.
 - (a) Que vaut l'espérance de X?
 - (b) Quel est son estimateur du maximum de vraisemblance?
 - (c) En utilisant deux théorèmes différents, indiquer pourquoi cet estimateur est asymptotiquement gaussien.