2014 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time:

10:00 to 12:30

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may continue to write your answer on the back of the answer sheet if you cannot conclude it on the front.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. The blank pages are provided for rough work. Do not detach them from this problem booklet.
- 7. An answer sheet is regarded as invalid if you write marks and/or symbols and/or words unrelated to the answer on it.
- 8. Do not take either the answer sheets or the problem booklet out of the examination room.

Examinee's number	No.
-------------------	-----

Fill this box with your examinee's number.

(blank page for rough work)

Problem 1

A real square matrix M is said to be symmetric if it satisfies the condition $M = M^T$, where M^T denotes the transpose of M. Answer the following questions.

(1) Find all the eigenvalues and their corresponding eigenvectors of the symmetric matrix A given as follows.

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{array}\right)$$

- (2) Prove that if a real square matrix M is symmetric, then all of its eigenvalues are real.
- (3) Even if all the eigenvalues of a real square matrix M are real, M is not necessarily symmetric. Provide a concrete example of such a matrix M.
- (4) Let $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be a non-zero three dimensional real vector. For the symmetric matrix A

defined in question (1), let us define the function f(x, y, z) as follows.

$$f(x, y, z) = \frac{\boldsymbol{u}^T A \boldsymbol{u}}{\boldsymbol{u}^T \boldsymbol{u}}$$

Here, u^T denotes the transpose of u. Moreover, the function g(x, y, z) is defined as follows.

$$g(x,y,z) = \frac{xy + yz}{x^2 + y^2 + z^2}$$

Show that the following equation holds.

$$f(x, y, z) = 1 - 2g(x, y, z)$$

(5) Using eigenvalue decomposition of the symmetric matrix A defined in question (1), show that the following inequality holds for the function g(x, y, z) defined in question (4).

$$-\frac{1}{\sqrt{2}} \le g(x, y, z) \le \frac{1}{\sqrt{2}}$$

Problem 2

For real functions f(x) and g(x) defined on [-1, 1], let

$$(f,g) = \int_{-1}^{1} f(x)g(x)\mathrm{d}x.$$

Answer the following questions.

(1) Calculate (q_0, q_1) , (q_0, q_2) , (q_1, q_2) , (q_0, q_0) , (q_1, q_1) , and (q_2, q_2) for polynomials defined by

 $q_0(x) = 1$, $q_1(x) = x$, $q_2(x) = 3x^2 - 1$.

You may use the fact that $\int_{-1}^{1} h(x)dx = 0$ holds for any odd function h(x).

(2) Let $p_k(x)$ be a polynomial of degree k with respect to x (with the coefficient of x^k not being 0), and consider a series of polynomial functions $p_0(x), p_1(x), \ldots$ In what follows, we say a set of N functions $\{p_0(x), p_1(x), \ldots, p_{N-1}(x)\}$ satisfies the orthonormal condition when

 $(p_i, p_j) = \left\{ egin{array}{ll} 1 & (i=j) \\ 0 & (i
eq j) \end{array}
ight.$

holds for any integers i and j in [0, N-1].

- (2-1) Using $q_0(x)$, $q_1(x)$, and $q_2(x)$ defined in question (1), find a set of functions $\{p_0(x), p_1(x), p_2(x)\}$ satisfying the orthonormal condition.
- (2-2) Find a function $p_3(x)$ so that a set of functions $\{p_0(x), p_1(x), p_2(x), p_3(x)\}$ satisfies the orthonormal condition, where $p_0(x), p_1(x)$, and $p_2(x)$ are the functions derived in question (2-1).
- (3) Suppose that a set of functions $\{p_0(x), p_1(x), \ldots, p_{N-1}(x)\}$ satisfies the orthonormal condition. Then, in a manner similar to question (2-2), a function $p_N(x)$ can be found such that the set of functions $\{p_0(x), p_1(x), \ldots, p_N(x)\}$ satisfies the orthonormal condition. Show that $p_N(x)$ is unique except the sign, following the steps below.
 - (3-1) Generally, a polynomial $f_N(x)$ of degree N can be written as

$$f_N(x) = \sum_{k=0}^N c_k p_k(x).$$

Express the coefficients c_k (k = 0, ..., N) with $p_0(x), p_1(x), ..., p_N(x)$, and $f_N(x)$.

(3-2) Suppose that there exists a polynomial function $\tilde{p}_N(x)$ of degree N different from $p_N(x)$ such that the set of functions $\{p_0(x), p_1(x), \dots, p_{N-1}(x), \tilde{p}_N(x)\}$ also satisfies the orthonormal condition. Then prove that $\tilde{p}_N(x) = -p_N(x)$, by considering the case $f_N(x) = \tilde{p}_N(x)$ in question (3-1).

3

Problem 3

Let $x_0, x_1, x_2, ...$ be a sequence of independent random variables. Each x_i (i = 0, 1, 2, ...) takes value 1 with probability p and value 0 with probability 1 - p. Answer the following questions.

- (1) With regards to the sequence of random variables x_0, x_1, x_2, \ldots , answer the following questions.
 - (1-1) Calculate the variance of x_i , and obtain the probability that $x_0 = x_1 = 1$.
 - (1-2) Let k ($k \ge 0$) be the smallest integer such that $x_k = x_{k+1}$. For example, if x_0, x_1, x_2, \ldots is $1, 0, 0, 1, 0, 1, 1, 1, 0, 0, \ldots$, then k = 1 and $x_k = 0$. Obtain the probability that $x_k = 1$.
- (2) A sequence of random variables y_0, y_1, y_2, \ldots is defined using x_0, x_1, x_2, \ldots as follows.

$$y_0 = 1$$

 $y_{i+1} = y_i + \alpha(x_i - y_i) \quad (i = 0, 1, 2, ...)$

Assume $0 < \alpha < 1$, and answer the following questions.

- (2-1) Show that $y_n = (1-\alpha)^n + \sum_{i=0}^{n-1} (1-\alpha)^{n-i-1} \alpha x_i \ (n=1,2,\ldots).$
- (2-2) Obtain the expected value E_n and the variance V_n of y_n .
- (2-3) Let $E_{\infty} = \lim_{n \to \infty} E_n$ and $V_{\infty} = \lim_{n \to \infty} V_n$. Assuming $\frac{1}{2} , obtain the maximum value of <math>\alpha$ that satisfies the condition

$$E_{\infty} - \sqrt{V_{\infty}} \ge \frac{1}{2}$$
.

(3) A sequence of random variables z_0, z_1, z_2, \ldots is defined using x_0, x_1, x_2, \ldots as follows. If x_j, x_{j+1} is the *i*-th pair of adjacent variables in x_0, x_1, x_2, \ldots such that $x_j = x_{j+1}$, then z_i is defined by $z_i = x_j$. The index *i* starts with 0, so if $x_j = x_{j+1}$ is the first such pair, then $z_0 = x_j$. For example, if x_0, x_1, x_2, \ldots is $1, 0, 0, 1, 0, 1, 1, 1, 0, 0, \ldots$, then $z_0 = 0, z_1 = 1, z_2 = 1, z_3 = 0, \ldots$

Let q_i be the probability that $z_i = 1$. Obtain $\lim_{i \to \infty} q_i$.

(blank page for rough work)

(blank page for rough work)