4

Your name is: _____ Grading 1 2 3

1 (25 pts.)

- (a) Find equations (**do not solve**) for the coefficients C, D, E in $b = C + Dt + Et^2$, the parabola which best fits the four points (t,b) = (0,0), (1,1), (1,3) and (2,2).
- (b) In solving this problem you are projecting the vector $b = \underline{\hspace{1cm}}$ onto the subspace spanned by $\underline{\hspace{1cm}}$. The projection in terms of C, D, E is $p = \underline{\hspace{1cm}}$.

2 (28 pts.) Let

$$A = \left[\begin{array}{rrr} 3 & 4 & 6 \\ 0 & 1 & 0 \\ -1 & -2 & -2 \end{array} \right].$$

- (a) Find the eigenvalues of the singular matrix A.
- (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
- (c) By expressing (1,1,1) as a combination of eigenvectors or by diagonalizing $A=S\Lambda S^{-1},$ compute

$$A^{99}\left[egin{array}{c}1\\1\\1\end{array}
ight]$$
 .

3 (25 pts.) Start with two vectors (the columns of A):

$$a_1 = \begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$$
 and $a_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- (a) With $q_1 = a_1$ find an orthonormal basis q_1, q_2 for the space spanned by a_1 and a_2 (column space of A).
- (b) What shape is the matrix R in A = QR and why is $R = Q^T A$? Here Q has columns q_1 and q_2 . Compute the matrix R.
- (c) Find the projection matrices P_A and P_Q onto the column spaces of A and Q.

- 4 (22 pts.) (a) If Q is an orthogonal matrix (square with orthonormal columns), show that $\det Q = 1$ or -1.
 - (b) How many of the 24 terms in $\det A$ are nonzero, and what is $\det A$?

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$