

Hydraulic Formulary

Author: Houman Hatami

Tel.: +49-9352-18-1225 Fax: +49-9352-18-1293 houman.hatami@boschrexroth.de

CONTENTS

RELATIONS BETWEEN UNITS	4
IMPORTANT CHARACTERISTIC VALUES OF HYDRAULIC FLUIDS	6
OFNEDAL LIVED ALL LO DEL ATIONO	-
GENERAL HYDRAULIC RELATIONS	
PISTON PRESSURE FORCE	
PISTON FORCES	
HYDRAULIC PRESS	
CONTINUITY EQUATION	
Pressure intensifier	
HYDRAULIC SYSTEM COMPONENT	9
HYDRO PUMP	g
HYDRO MOTOR	9
Hydro motor variable	10
Hydro motor fixed	
Hydro motor intrinsic frequency	
HYDRO PISTON	
Differential piston	
Double acting cylinder	
Cylinder in dinerential control	
Cylinder intrinsic frequency at double acting cylinder	
Cylinder intrinsic frequency at plunger cylinder	
PIPING	
APPLICATION EXAMPLES FOR SPECIFICATION OF THE CYLINDER PRESSURES AND VOLUME FLOWS UNDER POSITIVE AND NEGATIVE LOADS	
DIFFERENTIAL CYLINDER EXTENDING WITH POSITIVE LOAD	
DIFFERENTIAL CYLINDER RETRACTING WITH POSITIVE LOAD	
DIFFERENTIAL CYLINDER EXTENDING WITH NETAGIVE LOAD	
DIFFERENTIAL CYLINDER RETRACTING WITH NEGATIVE LOAD	
DIFFERENTIAL CYLINDER EXTENDING AT AN INCLINED PLANE WITH POSITIVE LOAD	
DIFFERENTIAL CYLINDER RETRACTING AT AN INCLINED PLANE WITH POSITIVE LOAD	
DIFFERENTIAL CYLINDER RETRACTING AT AN LINCLINED PBLANE WITH NEGATIVE LOAD	
HYDRAULIC MOTOR WITH POSITIVE LOAD	
HYDRAULIC MOTOR WITH NEGATIVE LOAD	
IDENTIFICATION OF THE REDUCED MASSES OF DIFFERENT SYSTEMS	32
LINEARE DRIVES	33
Primary applications (Energy method)	
Concentrated mass at linear movements	
Distributed mass at linear movements	
ROTATION	
COMBINATION OF LINEAR AND ROTATIONAL MOVEMENT	
HYDRAULIC RESISTANCES	39
ORIFICE EQUATION	
TROTTLE EQUATION	39

Sales Industry Sector Metallurgy

Formulary Hydraulics

HYDRO ACCUMULATOR	40
HEAT EXCHANGER (OIL- WATER)	41
LAYOUT OF A VALVE	43

Relation between Units

Relation b	etween Units		
Size	Unit	Symbol	Relation
Lengths	Micrometer	μ m	1μm = 0,001mm
	Millimeter	mm	1mm = 0,1cm = 0,01dm = 0,001m
	Centimeter	cm	1cm = 10mm = 10.000μm
	Decimeter	dm	1dm = 10cm = 100mm = 100.000μm
	Meter	m	1m = 10dm = 100cm = 1.000mm = 1.000.000μm
	Kilometer	km	1km = 1.000m = 100.000cm = 1.000.000mm
Surfaces	Square centimeter	cm ²	$1 \text{cm}^2 = 100 \text{mm}^2$
	Square decimeter	dm ²	$1 \text{dm}^2 = 100 \text{cm}^2 = 10.000 \text{mm}^2$
	Square meter	m^2	$1m^2 = 100dm^2 = 10.000cm^2 = 1.000.000mm^2$
	Are	a	1a = 100m ²
	Hectare	ha	$1ha = 100a = 10.000m^2$
	Square kilometer	km ²	$1 \text{km}^2 = 100 \text{ha} = 10.000 \text{a} = 1.000.000 \text{m}^2$
	equal o kilomotor	1311	11417 = 100114 = 1010004 = 110001000111
Volume	Cubic centimeter	cm ³	1cm ³ = 1.000mm ³ = 1ml = 0.001l
	Cubic decimeter	dm ³	$1 \text{dm}^3 = 1.000 \text{cm}^3 = 1.000.000 \text{mm}^3$
	Cubic meter	m ³	1m ³ = 1.000dm ³ = 1.000.000cm ³
	Milliliter	ml	1ml = 0,001l = 1cm ³
	Liter	1	$1I = 1.000 \text{ ml} = 1 \text{dm}^3$
	Hectoliter	' hl	1hl = 100l = 100dm ³
	riccionici	"	1111 - 1001 - 100dill
Density	Gram/	g	.g.kg.t.g
	Cubic centimeter	$\frac{g}{\text{cm}^3}$	$1\frac{g}{cm^3} = 1\frac{kg}{dm^3} = 1\frac{t}{m^3} = 1\frac{g}{ml}$
Force	Newton	N	kg•m J
Weight	Tromton.		$1N = 1 \frac{kg \bullet m}{s^2} = 1 \frac{J}{m}$
			1daN = 10N
Torque	Newton meter	Nm	1Nm = 1J
Pressure	Pascal	Pa	$1Pa = 1N/m^2 = 0.01 \text{ mbar} = \frac{1 \text{kg}}{\text{mbs}^2}$
	Bar	Bar	m•s²
	pound		$1bar = 10 \frac{N}{cm^2} = 100.000 \frac{N}{m^2} = 10^5 Pa$
	$psi = \frac{pound}{inch^2}$	Psi	CHi Hi
	<u>kp</u>		1psi = 0,06895 bar
	$\frac{kp}{cm^2}$		$1\frac{kp}{cm^2} = 0.981bar$
			cm²

Formulary	Hvdraulics
Ullilulaiv	rivuraulics

Formulary Hydrauli	CS		
Mass	Milligram	mg	1mg = 0.001g
	Gram	g	1g = 1.000mg
	Kilogram	kg	1kg = 1000g = 1.000.000 mg
	Ton	t	1t = 1000kg = 1.000.000g
	Mega gram	Mg	1Mg = 1t
Acceleration	Meter/	$\frac{\mathrm{m}}{\mathrm{s}^2}$	$1\frac{\mathrm{m}}{\mathrm{s}^2} = 1\frac{\mathrm{N}}{\mathrm{kg}}$
	per square second	S	$1g = 9.81 \text{ m/s}^2$
			ig = 9,01 iii/s
Angular speed	One/Casend	1	2 n in 1/2
Angulai speed	One/ Second	$\frac{1}{s}$	ω = 2•π•n n in 1/s
	Radiant/ Second	rad	
		S	
Power	Watt	W	Nm I kaam m
rowei	Newton meter/ second	Nm/s	$1W = 1\frac{Nm}{s} = 1\frac{J}{s} = 1\frac{kg \bullet m}{s^2} \bullet \frac{m}{s}$
	Joule/ second	J/s	
Manle/Engage	\Mattacasad	١٨/-	
Work/ Energy	Watt second	Ws	$1 \text{Ws} = 1 \text{Nm} = 1 \frac{\text{kg} \bullet \text{m}}{\text{s}^2} \bullet \text{m} = 1 \text{J}$
Heat volume	Newton meter	Nm	5
	Joule	J	11/1/h 1 000 1/h 1000-26001//o 2 6-10 ⁶ 1//o
	Kilowatt hour	kWh	$1 \text{kWh} = 1.000 \text{ Wh} = 1000 \cdot 3600 \text{Ws} = 3,6 \cdot 10^6 \text{Ws}$
	Kilo joule	kJ	$= 3,6 \cdot 10^3 \text{kJ} = 3600 \text{kJ} = 3,6 \text{MJ}$
	Mega joule	MJ	
Mechanic	Newton/ square	$\frac{N}{mm^2}$	$1\frac{N}{mm^2} = 10bar = 1MPa$
tension	millimeter		mm²
Plane angle	Second	,,	1'' = 1'/60
	Minute	,	1' = 60''
	Degree	•	$1^{\circ} = 60' = 3600'' = \frac{\pi}{180^{\circ}} \text{rad}$
	Radiant	rad	
			1rad = 1m/m = 57,2957°
			1rad = 180°/π
Onesal	0.00	4/-	
Speed	One/second	1/s	$\frac{1}{s} = s^{-1} = 60 \mathrm{min}^{-1}$
	One/minute	1/min	1 1
			$\frac{1}{\min} = \min^{-1} = \frac{1}{60s}$

Important Characteristic Values of Hydraulic Fluids

	HLP	HFC	HFA (3%)	HFD
Density at 20°C [kg/m³]	880	1085	1000	925
Kinematic Viscosity at 40°C [mm²/s]	10-100	36-50	0,7	15-70
Compressions Module E at 50°C [Bar]	12000-14000	20400-23800	15000- 17500	18000- 21000
Specific Heat at 20°C [kJ/kgK]	2,1	3,3	4,2	1,3-1,5
Thermal Conductivity at 20°C [W/mK]	0,14	0,4	0,6	0,11
Optimal Temperatures [°C]	40-50	35-50	35-50	35-50
Water Content [%]	0	40-50	80-97	0
Cavitation Tendency	low	high	very high	low

General Hydraulic Relations

Piston Pressure Force

Figure	Equation / Equation Variations	Symbols / Units
F A P	$F = 10 \bullet p \bullet A$ $F = p \bullet A \bullet \eta \bullet 10$ $A = \frac{d^2 \bullet \pi}{4}$ $d = \sqrt{\frac{4 \bullet F \bullet 0,1}{\pi \bullet p}}$ $p = 0,1 \bullet \frac{4 \bullet F}{\pi \bullet d^2}$	F = piston pressure force[N] p = fluid pressure[bar] A = piston surface[cm²] d = piston diameter[cm] η = efficiency cylinder

Piston Forces

Figure	Equation / Equation Variations	Symbols / Units
Figure F	Equation / Equation Variations $F = p_e \bullet A \bullet 10$ $F = p_e \bullet A \bullet \eta \bullet 10$ $A = \frac{\mathrm{d}^2 \bullet \pi}{4}$ A For annulus surface: $A = \frac{(\mathrm{D}^2 - \mathrm{d}^2) \bullet \pi}{4}$	F = piston pressure force[N] p _e = excess pressure on the piston[bar] A = effective piston surface[cm²] d = piston diameter[cm] η = efficiency cylinder

Hydraulic Press

Figure	Equation / Equation Variations	Symbols / Units
A ₂	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$ $F_1 \bullet s_1 = F_2 \bullet s_2$ $\varphi = \frac{F_1}{F_2} = \frac{A_1}{A_2} = \frac{s_2}{s_1}$	$\begin{split} F_1 &= \text{Force at the pump piston[N]} \\ F_2 &= \text{Force at the operating piston[N]} \\ A_1 &= \text{Surface of the pump piston [cm}^2] \\ A_2 &= \text{Surface of the operating piston [cm}^2] \\ s_1 &= \text{Stroke of the pump piston [cm]} \\ s_2 &= \text{Stroke of the operating piston [cm]} \\ \phi &= \text{Gear ratio} \end{split}$

Continuity Equation

Figure	Equation / Equation Variations	Symbols / Units
$Q_1 = A_1 = A_2 = Q_2$ $\overline{V_1} = \overline{V_2}$	$Q_{1} = Q_{2}$ $Q_{1} = A_{1} \bullet v_{1}$ $Q_{2} = A_{2} \bullet v_{2}$ $A_{1} \bullet v_{1} = A_{2} \bullet v_{2}$	Q _{1,2} = Volume flows [cm³/s, dm³/s, m³/s] A _{1,2} = Area surfaces [cm², dm², m²] v _{1,2} = Velocities [cm/s, dm/s, m/s]

Piston Speed

Figure	Equation / Equation Variations	Symbols / Units
Q, V ₂	$v_{1} = \frac{Q_{1}}{A_{1}}$ $v_{2} = \frac{Q_{2}}{A_{2}}$ $A_{1} = \frac{d^{2} \cdot \pi}{4}$ $A_{2} = \frac{(D^{2} - d^{2}) \cdot \pi}{4}$	$v_{1,2}$ = Piston speed [cm/s] $Q_{1,2}$ = Volume flow [cm ³ /s] A_1 = Effective piston surface (circle) [cm ²] A_2 = Effective piston surface (ring) [cm ²]

Pressure Intensifier

Figure	Equation / Equation Variations	Symbols / Units
P A ₁	$\mathbf{p}_1 \bullet \mathbf{A}_1 = \mathbf{p}_2 \bullet \mathbf{A}_2$	p_1 = Pressure in the small cylinder [bar] A_1 = Piston surface [cm ²] p_2 = Pressure at the large cylinder [bar] A_2 = Piston surface [cm ²]

Hydraulic System Components

Hydro Pump

$$Q = \frac{V \bullet n \bullet \eta_{\mathrm{vol}}}{1000} \text{ [I/min]}$$

$$P_{an} = \frac{p \bullet Q}{600 \bullet \eta_{ges}} [kW]$$

$$M = \frac{1,59 \bullet V \bullet \Delta p}{100 \bullet \eta_{mh}} [\text{Nm}]$$

$$\eta_{\mathrm{ges}} = \eta_{\mathrm{vol}} \bullet \eta_{\mathrm{mh}}$$

Q = Volume flow [I/min]

V = Nominal volume [cm³]

n = Drive speed of the pump [min⁻¹]

P_{an} = Drive power [kW]

p = Service pressure [bar]

M = Drive torque [Nm]

 η_{ges} = Total efficiency (0,8-0,85)

 η_{vol} = Volumetric efficiency (0,9-0,95)

 η_{mh} = Hydro-mechanic efficiency(0,9-0,95)

Hydro Motor

$$Q = \frac{V \bullet n}{1000 \bullet \eta_{\text{vol}}}$$

$$n = \frac{Q \bullet \eta_{vol} \bullet 1000}{V}$$

$$M_{ab} = \frac{\Delta p \bullet V \bullet \eta_{mh}}{20 \bullet \pi} = 1,59 \bullet V \bullet \Delta p \bullet \eta_{mh} \bullet 10^{-2}$$

$$P_{ab} = \frac{\Delta p \bullet Q \bullet \eta_{ges}}{600}$$

Q = Volume flow [I/min]

V = Nominal volume [cm³]

n = Drive speed of the pump [min⁻¹]

 η_{ges} = Total efficiency (0,8-0,85)

 η_{vol} = Volumetric efficiency (0,9-0,95)

 η_{mh} = Hydro-mechanic efficiency (0,9-0,95)

 Δp = Pressure difference between motor inlet and outlet (bar)

P_{ab} = Output power of the motor [kW]

 M_{ab} = Output torque [Nm]

9

Hydro Motor Variable

$$M_d = \frac{30000}{\pi} \bullet \frac{P}{n}$$

$$P = \frac{\pi}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\pi} \bullet \frac{P}{M_d}$$

$$M_{d} = \frac{M_{d \, max}}{i \bullet \eta_{Getr}}$$

$$n = \frac{n_{max}}{i}$$

$$\Delta p = 20\pi \bullet \frac{M_d}{V_g \bullet \eta_{mh}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \eta_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \eta_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \eta_{ges}}$$

 $M_d = Torque [Nm]$

P = Power [kW]

n = Speed [min⁻¹]

 $M_{dmax} = Max torque [Nm]$

i = Gear ratio

 η_{Getr} = Gear efficiency

 η_{mh} = Mech./hydraulic efficiency

 η_{vol} = Vol. efficiency

 $V_g = Flow volume [cm^3]$

Hydro Motor Fixed

$$\mathbf{M_d} = \frac{30000}{\pi} \bullet \frac{\mathbf{P}}{\mathbf{n}}$$

$$P = \frac{\pi}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\pi} \bullet \frac{P}{M_d}$$

$$M_{d} = \frac{M_{d \, max}}{i \bullet \eta_{Getr}}$$

$$n = \frac{n_{\text{max}}}{i}$$

$$\Delta p = 20\pi \bullet \frac{M_{_d}}{V_{_g} \bullet \eta_{_{mh}}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \eta_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \eta_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \eta_{ges}}$$

 $M_d = Torque [Nm]$

P = Power [kW]

 $n = Speed [min^{-1}]$

 M_{dmax} = Max torque [Nm]

i = Gear ratio

 η_{Getr} = Gear efficiency

 η_{mh} = Mech./hydraulic efficiency

 η_{vol} = Vol. efficiency

 $V_g = Flow volume [cm^3]$

Hydro Motor Intrinsic Frequency

$$\boldsymbol{\omega}_0 = \sqrt{\frac{2 \bullet E}{J_{red}} \bullet \frac{(\frac{V_G}{2\pi})^2}{(\frac{V_G}{2} + V_R)}}$$

$$f_0 = \frac{\omega_0}{2\pi}$$

V_G = Displacement [cm³]

 ω_0 = Intrinsic angular frequency [1/s]

 f_0 = Intrinsic frequency [Hz]

 J_{red} = Moment of inertia red. [kgm²]

 $E_{\ddot{o}l} = 1400 \text{ N/mm}^2$

 V_R = Volume of the line [cm³]

Hydro Cylinder

$$A = \frac{{d_1}^2 \bullet \pi}{400} = \frac{{d_1}^2 \bullet 0,785}{100} \text{ [cm}^2\text{]}$$

$$A_{st} = \frac{{d_2}^2 \bullet 0,785}{100} [\text{cm}^2]$$

$$A_R = \frac{({d_1}^2 - {d_2}^2) \bullet 0,785}{100} \, [\text{cm}^2]$$

$$F_D = \frac{p \bullet d_1^2 \bullet 0,785}{10000} \text{ [kN]}$$

$$F_z = \frac{p \bullet (d_1^2 - d_2^2) \bullet 0,785}{10000} \text{[kN]}$$

$$v = \frac{h}{t \cdot 1000} = \frac{Q}{A \cdot 6} [\text{m/s}]$$

$$Q_{th} = 6 \bullet A \bullet v = \frac{V}{t} \bullet 60 \text{ [I/min]}$$

$$Q = \frac{Q_{th}}{\eta_{vol}}$$

$$V = \frac{A \bullet h}{10000} [I]$$

$$t = \frac{A \bullet h \bullet 6}{O \bullet 1000} \text{ [s]}$$

d₁ = Piston diameter [mm]

d₂ = Piston rod diameter [mm]

p = Service pressure [bar]

v = Stroke speed [m/s]

V = Stroke volume [I]

Q = Volume flow, considering the leakages (I/min)

Q_{th} = Volume flow, without considering the leakages (I/min)

 η_{vol} = Volumetric efficiency (approx. 0,95)

h = Stroke [mm]

t = Stroke time [s]

Differential Cylinder

$$d_{K} = 100 \bullet \sqrt{\frac{4 \bullet F_{D}}{\pi \bullet p_{K}}}$$

$$p_{K} = \frac{4 \bullet 10^{4} \bullet F_{D}}{\pi \bullet d_{K}^{2}}$$

$$p_{St} = \frac{4 \cdot 10^{4} \cdot F_{Z}}{\pi \cdot (d_{K}^{2} - d_{St}^{2})}$$

$$\varphi = \frac{{d_{K}}^{2}}{({d_{K}}^{2} - {d_{St}}^{2})}$$

$$Q_K = \frac{6 \bullet \pi}{400} \bullet V_a \bullet d_K^2$$

$$Q_{St} = \frac{6 \cdot \pi}{400} \cdot v_e \cdot (d_K^2 - d_{St}^2)$$

$$v_{e} = \frac{Q_{St}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$V_a = \frac{Q_K}{\frac{6\pi}{400} \bullet d_K^2}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \bullet 10^{6}} \bullet d_{\operatorname{St}}^{2} \bullet h$$

$$Vol_{F} = \frac{\pi}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{St}^{2})$$

d_K = Piston diameter [mm]

d_{st} = Rod diameter [mm]

 F_D = Pressure force [kN]

 F_z = Traction force [kN]

 p_K = Pressure at the piston side [bar]

 ϕ = Aspect ratio

Q_K = Volume flow piston side [I/min]

Q_{St} = Volume flow rod side [I/min]

v_a = Extending speed [m/s]

v_e = Retracting speed [m/s]

Vol_p = Working volume [I]

Vol_F = Fill-up volume [I]

h = Stroke [mm]

Double Acting Cylinder

$$p_{A} = \frac{4 \cdot 10^{4}}{\pi} \cdot \frac{F_{A}}{(d_{K}^{2} - d_{StA}^{2})}$$

$$p_{B} = \frac{4 \bullet 10^{4}}{\pi} \bullet \frac{F_{B}}{(d_{K}^{2} - d_{StB}^{2})}$$

$$Q_{A} = \frac{6 \bullet \pi}{400} \bullet v_{a} \bullet (d_{K}^{2} - d_{StA}^{2})$$

$$Q_{B} = \frac{6 \bullet \pi}{400} \bullet V_{b} \bullet (d_{K}^{2} - d_{StB}^{2})$$

$$v_{e} = \frac{Q_{St}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$v_{a} = \frac{Q_{K}}{\frac{6\pi}{400} \bullet d_{K}^{2}}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \bullet 10^{6}} \bullet d_{\operatorname{St}}^{2} \bullet h$$

$$Vol_{FA} = \frac{\pi}{4 \cdot 10^6} \cdot h \cdot (d_K^2 - d_{StA}^2)$$

$$Vol_{FB} = \frac{\pi}{4 \cdot 10^6} \cdot h \cdot (d_K^2 - d_{StB}^2)$$

d_K = Piston diameter [mm]

d_{stA} = Rod diameter A-side [mm]

d_{stB} = Rod diameter B-side [mm]

 $F_A = Force A [kN]$

 $F_B = Force B [kN]$

p_A = Pressure at the A-side [bar]

p_B = Pressure at the B-side [bar]

Q_A = Volume flow A-side [I/min]

Q_B = Volume flow B-side [I/min]

 $v_a = Speed a [m/s]$

 $v_b = Speed b [m/s]$

Vol_p = Compensating volume [I]

Vol_{FA} = Fill-up volume A [I]

Vol_{FB} = Fill-up volume B [I]

Cylinder in Differential Control

$$d_{st} = 100 \bullet \sqrt{\frac{4 \bullet F_D}{\pi \bullet p_{St}}}$$

$$p_{K} = \frac{4 \bullet 10^{4} \bullet F_{D}}{\pi \bullet d_{St}^{2}}$$

$$p_{St} = \frac{4 \cdot 10^{4} \cdot F_{Z}}{\pi \cdot (d_{K}^{2} - d_{St}^{2})}$$

$$Q = \frac{6 \bullet \pi}{400} \bullet v_a \bullet d_{St}^2$$

Extension:

$$v_a = \frac{Q_P}{\frac{6\pi}{400} \bullet d_{St}^2}$$

$$Q_K = \frac{Q_P \bullet d_K^2}{d_{St}^2}$$

$$Q_{St} = \frac{Q_{P} \bullet (d_{K}^{2} - d_{St}^{2})}{d_{St}^{2}}$$

Retraction:

$$v_{e} = \frac{Q_{P}}{\frac{6\pi}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$Q_{St}=Q_P$$

$$Q_{K} = \frac{Q_{P} \cdot d_{K}^{2}}{(d_{K}^{2} - d_{St}^{2})}$$

$$\operatorname{Vol}_{p} = \frac{\pi}{4 \cdot 10^{6}} \cdot d_{St}^{2} \cdot h$$

$$Vol_{F} = \frac{\pi}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{St}^{2})$$

d_K = Piston diameter [mm]

d_{st} = Rod diameter [mm]

 $F_D = Pressure force [kN]$

 F_z = Traction force [kN]

 p_K = Pressure at the piston side [bar]

p_{St} = Pressure at the rod side [bar]

h = Stroke [mm]

Q_K = Volume flow piston side [I/min]

Q_{St} = Volume flow rod side [I/min]

 $Q_P = Pump flow [I/min]$

v_a = Extending speed [m/s]

v_e = Retracting speed [m/s]

Vol_p = Working volume [I]

 $Vol_F = Fill-up volume [I]$

10.01.2013

16

Cylinder Intrinsic Frequency at Differential Cylinders

$$A_K = \frac{{d_K}^2 \pi}{\frac{4}{100}}$$

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\pi}{\frac{4}{100}}$$

$$V_{RK} = \frac{d_{RK}^2 \pi}{4} \bullet \frac{L_K}{1000}$$

$$V_{RSt} = \frac{d_{RSt}^2 \pi}{4} \bullet \frac{L_{St}}{1000}$$

$$m_{RK} = \frac{V_{RK} \bullet \rho_{\ddot{0}}}{1000}$$

$$m_{RSt} = \frac{V_{RSt} \bullet \rho_{\ddot{o}l}}{1000}$$

$$h_{k} = \frac{\left(\frac{A_{R} \bullet h}{\sqrt{A_{R}^{3}}} + \frac{V_{RSt}}{\sqrt{A_{R}^{3}}} - \frac{V_{RK}}{\sqrt{A_{K}^{3}}}\right)}{\left(\frac{1}{\sqrt{A_{R}}} + \frac{1}{\sqrt{A_{K}}}\right)}$$

$$\omega_{0} = \sqrt{\frac{1}{m} \bullet (\frac{A_{K}^{2} \bullet E_{\ddot{O}L}}{A_{K} \bullet h_{K}} + \frac{A_{R}^{2} \bullet E_{\ddot{O}l}}{A_{R} \bullet (h - h_{K})} + \frac{A_{R}^{2} \bullet E_{\ddot{O}l}}{10}})$$

$$f_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{\"{o}lred}} = m_{\text{RK}} \left(\frac{d_{\text{K}}}{d_{\text{RK}}} \right)^4 + m_{\text{RSt}} \left(\frac{1}{d_{\text{RSt}}} \sqrt{\frac{400 \bullet A_{\text{R}}}{\pi}} \right)$$

 $A_K = Piston surface [cm^2]$

 A_R = Piston ring surface [cm²]

d_K = Piston diameter [mm]

 d_{St} = Piston rod diameter [mm]

 $d_{RK} = NW$ - piston side [mm]

L_K = Length of piston side [mm]

d_{RSt} = NW-rod side [mm]

L_{St} = Length of rod side [mm]

h = Stroke [cm]

V_{RK} = Volume of the line piston side [cm³]

 V_{RSt} = Volume of the line rod side [cm³]

 m_{RK} = Mass of the oil in the line piston side [kg]

m_{RSt} = Mass of the oil in the line rod side [kg]

h_K = Position at min intrinsic frequency [cm]

 f_0 = Intrinsic frequency [Hz]

 ω_0 = Angular frequency

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{\"{olred}} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

Cylinder Intrinsic Frequency at Double Acting Cylinders

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\pi}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{RK}^{2}\pi}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{_{R}} = \frac{V_{_{R}} \bullet \rho_{_{\ddot{o}l}}}{1000}$$

$$\omega_0 = 100 \bullet \sqrt{\frac{2 \bullet E_{\ddot{o}l}}{m_{red}}} \bullet (\frac{A_R^2}{\frac{A_R \bullet h}{10} + V_{RSt}})$$

Equation applies only to the middle position of the double rod cylinder

Natural frequency of any position can be calculated using the equation for the differential cylinder (as shown on page 17, however AK = AR)

$$\mathbf{f}_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{olred}} = 2 \bullet m_{\text{RK}} \left(\frac{1}{d_{\text{R}}} \sqrt{\frac{400 \bullet A_{\text{R}}}{\pi}} \right)^{4}$$

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{olred} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

 A_R = Piston ring surface [cm²]

d_K = Piston diameter [mm]

d_{St} = Piston rod diameter [mm]

 $d_R = NW [mm]$

 L_K = Length of the piston side [mm]

h = Stroke [mm]

 V_R = Volume of the line [cm³]

 m_R = Mass of the oil in the line [kg]

f₀ = Intrinsic frequency

 ω_0 = Angular frequency

Cylinder Intrinsic Frequency for Plunger Cylinders

$$A_{K} = \frac{d_{K}^{2} \pi}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{K}^{2}\pi}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{R} = \frac{V_{R} \bullet \rho_{\ddot{o}l}}{1000}$$

$$\omega_0 = 100 \bullet \sqrt{\frac{E_{\ddot{o}l}}{m_{red}} \bullet (\frac{{A_K}^2}{{A_K} \bullet h + V_{RSt}})}$$

$$f_0 = \frac{\omega_0}{2\pi}$$

$$m_{\text{ölred}} = 2 \bullet m_R \left(\frac{d_K}{d_R}\right)^4$$

$$\omega_{01} = \omega_0 \bullet \sqrt{\frac{m_{red}}{m_{olred} + m_{red}}}$$

$$f_{01} = \frac{\omega_{01}}{2\pi}$$

 $A_K = Piston surface [cm^2]$

d_K = Piston diameter [mm]

d_R = Diameter of the piping [mm]

L_K = Length piston side [mm]

L_R = Length of the line [mm]

h = Stroke [mm]

 $V_R = Volume of the line [cm³]$

 M_R = Mass of the oil in the line [kg]

 f_0 = Intrinsic frequency

 ω_0 = Angular frequency

Piping

$$\Delta p = \lambda \bullet \frac{1 \bullet \rho \bullet v^2 \bullet 10}{d \bullet 2}$$

$$\lambda_{lam.} = \frac{64}{Re}$$

$$\lambda_{turb.} = \frac{0.316}{\sqrt[4]{\text{Re}}}$$

$$Re = \frac{\mathbf{v} \bullet \mathbf{d}}{\upsilon} \bullet 10^3$$

$$v = \frac{Q}{6 \cdot d^2 \cdot \frac{\pi}{4}} \cdot 10^2$$

$$d = \sqrt{\frac{400}{6 \cdot \pi} \cdot \frac{Q}{V}}$$

 Δp = Pressure loss at direct piping [bar]

 ρ = Density [kg/dm³] (0,89)

 λ = Pipe friction coefficient

 $\lambda_{lam.}$ = Pipe friction coefficient for laminar flow

 $\lambda_{turb.}$ = Pipe friction coefficient for turbulent flow

I = Length of the line [m]

v = Velocity in the line [m/s]

d = Internal diameter of the piping [mm]

 $v = \text{Kinematic viscosity } [\text{mm}^2/\text{s}]$

Q = Volume flow in the piping [l/min]

Application Examples for Specification of the Cylinder Pressures and Volume Flows under Positive and Negative Load

Nomenclature

Parameters	Symbols	Units
Acceleration / deceleration	A	m/s²
Cylinder surface	A ₁	cm ²
Ring surface	A ₂	cm ²
Aspect ratio	φ =A₁/A₂	-
Total force	F _T	daN
Acceleration force	F _a =0,1∙m•a	daN
External forces	F _E	daN
Friction forces (coulomb friction)	F _C	daN
Sealing friction force	F _R	daN
Weight force	G	daN
Mass	$m = \frac{G}{g} + m_K$	kg
Piston mass	m _K	kg
Volume flow	Q=0,06•A•v _{max}	l/min
	V _{max}	cm/s
Torque	T=α•J+ T _L	Nm
Load torque	T _L	Nm
Angular acceleration	α	rad/s²
Inertia moment	J	kgm²

Differential Cylinder Extending with Positive Load

Layout:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN]

Given Parameters

 $F_{T} = 4450 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 5,25 \text{ bar}$

 $A_1 = 53,50 \text{ cm}2$

 $A_2 = 38,10 \text{ cm} 2$

 $\phi = 1,40$

 $v_{max} = 30,00 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + R^2 [F_T + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q=0.06 \bullet A_1 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{210 \bullet 38,1 + 1,4^2[4450 + (5,25 \bullet 38,1)]}{38,1(1+1,4^3)} = 120bar$$

$$p_2 = 5,25 + \frac{210 - 120}{1,4^2} = 52bar$$

Q= 0,06•53,5•30=96 l/min

$$Q_{\rm N} = 96\sqrt{\frac{35}{210 - 120}} = 601 / \min$$

Differential Cylinder Retracting with Positive Load

Layout:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN]

Given Parameters

 $F_T = 4450 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 5,25 \text{ bar}$

 $A_1 = 53,50 \text{ cm}2$

 $A_2 = 38,10 \text{ cm} 2$

 $\varphi = 1,40$

 $v_{max} = 30,00 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F_T + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

$$Q = 0.06 \bullet A_2 \bullet v_{max}$$
 I/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{2}}} \quad I/min$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^2) + 4450 + (5, 25 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 187bar$$

$$p_1 = 5,25 + [(210 - 187)1,4^2] = 52bar$$

Q= 0,06•38,1•30=69 l/min

$$Q_N = 96\sqrt{\frac{35}{210 - 187}} = 841 / \min$$

Differential Cylinder Extending with Negative Load

Layout:

$$F_T = F_a + F_R - G$$
 [daN]

Given Parameters

 $F_T = -2225 \text{ daN}$

 $P_S = 175 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 81,3 \text{ cm}^2$

 $A_2 = 61,3 \text{ cm}^2$

 $\phi = 1.3$

 $v_{max} = 12,7 \text{ cm/s}$

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + \varphi^2 [F_T + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

$$Q = 0.06 \bullet A_1 \bullet v_{max}$$
 I/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{1}}} \quad I/min$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{175 \cdot 61,3 + 1,3^2[-2225 + (0 \cdot 61,3)]}{61,3(1+1,3^3)} = 36bar$$

$$p_2 = 0 + \frac{175 - 36}{1.3^2} = 82bar$$

Q= 0,06•81,3•12,7=62 l/min

$$Q_{\rm N} = 62\sqrt{\frac{35}{175 - 36}} = 311 / \min$$

Differential Cylinder Retracting with Negative Load

Layout:

 $F_T = F_a + F_R - G$ [daN]

Given Parameters

 $F_T = -4450 \text{ daN}$

 $P_{S} = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 81,3 \text{ cm}^2$

 $A_2 = 61,3 \text{ cm}^2$

 $\varphi = 1,3$

 $v_{max} = 25,4$ cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 \varphi^3) + F_T + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q = 0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{2}}} \quad I/min$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_2 = \frac{(210 \bullet 61, 3 + 1, 3^2) - 4450 + (0 \bullet 61, 3 \bullet 1, 3)]}{61, 3(1 + 1, 3^3)} = 122bar$$

$$p_1 = 0 + [(210 - 122)] = 149bar$$

Q= 0,06•61,3•25,4=93 l/min

$$Q_{\rm N} = 93\sqrt{\frac{35}{210 - 122}} = 591 / \min$$

Differential Cylinder Retracting at an Inclined Plane with Positive Load

Layout:

 $F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$

Given Parameters

 $F_T = 2225 \text{ daN}$

 $P_S = 140 \text{ bar}$

 $P_T = 3.5 \text{ bar}$

 $A_1 = 31,6 \text{ cm}^2$

 $A_2 = 19,9 \text{ cm}^2$

 $A_2 = 19,3$ $\phi = 1,6$

 $v_{max} = 12,7 \text{ cm/s}$

 $==> p_1$ and p_2

$$p_1 = \frac{p_S A_2 + \varphi^2 [F + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q = 0.06 \bullet A_1 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\scriptscriptstyle S} - p_{\scriptscriptstyle 1}}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{(140 \bullet 19.9) + 1.6^2[2225 + (3.5 \bullet 19.9)]}{19.9(1 + 1.6^3)} = 85bar$$

$$p_2 = 35 + \frac{140 - 85}{1,6^2} = 25bar$$

Q= 0,06•31,6•12,7=24 I/min

$$Q_{\rm N} = 24 \sqrt{\frac{35}{140 - 85}} = 19$$
 I/min

Differential Cylinder Retracting at an Inclined Plane with Positive Load

Layout:

 $F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$

Given Parameters

 $F_T = 1780 \text{ daN}$

 $P_S = 140 \text{ bar}$

 $P_T = 3.5 \text{ bar}$

 $A_1 = 31,6 \text{ cm}^2$

 $A_2 = 19,9 \text{ cm}^2$

 $\varphi = 1,6$

 $v_{max} = 12,7 \text{ cm/s}$

 $==> p_1$ and p_2

$$p_2 = \frac{(p_s A_2 \varphi^3) + F + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N, depending on the load pressure p₁.

 $Q = 0.06 \cdot A_2 \cdot v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_2}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_2 = \frac{(140 \bullet 19, 9 \bullet 1, 6^3) + 1780 + [3, 5 \bullet 19, 9 \bullet 1, 6)]}{19, 9(1 + 1, 6^3)} = 131bar$$

$$p_1 = 3.5 + [(140 - 131) \cdot 1.6^2 = 26bar$$

Q= 0,06•19,9•12,7=15 l/min

$$Q_{\rm N} = 15\sqrt{\frac{35}{140 - 131}} = 30$$
 I/min

Differential Cylinder Extending at an Inclined Plane with Negative Load

Layout:

$$F_T = F_a + F_E + F_R + [G \cdot (\mu \cdot \cos \alpha - \sin \alpha)] daN$$

Given Parameters

 $F_T = -6675 \text{ daN}$

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 53,5 \text{ cm}^2$

 $A_2 = 38,1 \text{ cm}^2$

 $\sigma = 1.4$

 v_{max} = 25,4 cm/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + \varphi^2 [F + (p_T A_2)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{\varphi^2} \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

$$Q=0.06 \bullet A_1 \bullet v_{max}$$
 I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\scriptscriptstyle S} - p_{\scriptscriptstyle 1}}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{(210 \bullet 106) + 1,2^2[-6675 + (0 \bullet 106)]}{106(1 + 1,4^3)} = 131bar$$

Caution!!!

Negative load is leading to cylinder cavitation. Specified parameters to be changed by means of using a larger cylinder size, increasing the system pressure or reducing the necessary total force.

$$A_1 = 126 \text{ cm}^2$$
 $A_2 = 106 \text{ cm}^2$ $R=1,2$

$$p_2 = \frac{210 - 44}{1,2^2} = 116bar$$

$$Q_N = 192\sqrt{\frac{35}{210-44}} = 88 \text{ l/min}$$

Differential Cylinder Retracting at an Inclined Plane with Negative Load

Layout:

 $F = F_a + F_E + F_R + [G \cdot (\mu \cdot \cos \alpha - \sin \alpha)] daN$

Given Parameters

F = -6675 daN

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $A_1 = 53,5 \text{ cm}^2$

 $A_2 = 38,1 \text{ cm}^2$

 $\varphi = 1,4$

 $v_{max} = 25,4$ cm/s

 $==> p_1$ and p_2

$$p_2 = \frac{(p_S A_2 \varphi^3) + F + (p_T A_2 \varphi)]}{A_2 (1 + \varphi^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)\varphi^2]$$
 bar

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_2 .

 $Q=0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_{\rm N} = Q \sqrt{\frac{35}{p_{\rm S} - p_2}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^3) + [-6675 + (0 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 107 \text{bar}$$

$$p_1 = 0 + [(210 - 107) \cdot 1,4^2] = 202bar$$

$$Q_{_{\rm N}} = 58 \sqrt{\frac{35}{210-107}} = 34 \text{ l/min}$$

Hydraulic Motor with a Positive Load

Layout:

 $\mathsf{T} = \alpha \bullet \mathsf{J} + \mathsf{T}_\mathsf{L} \qquad [\mathsf{Nm}]$

Given Parameters

T = 56,5 Nm

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $D_{\rm M} = 82 \, {\rm cm}^3/{\rm rad}$

 ω_{M} = 10 rad/s

 $==> p_1$ and p_2

$$p_1 = \frac{p_S + p_T}{2} + \frac{10\pi T}{D_M}$$
 bar

$$p_2 = p_S - p_1 + p_T \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q_M = 0.01 \bullet \omega_M \bullet D_M$ I/min

$$Q_{\rm N} = Q_{\rm M} \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \bullet \pi \bullet 56,5}{82} = 127 \text{bar}$$

$$p_2 = 210 - 127 + 0 = 83bar$$

Q_M= 0,01•10•82=8,2 l/min

$$Q_N = 8.2 \sqrt{\frac{35}{210 - 127}} = 5.3 \text{ l/min}$$

Hydraulic Motor with a Negative Load

Layout:

$$\mathsf{T} = \alpha \bullet \mathsf{J}\text{-}\mathsf{T}_\mathsf{L} \qquad \ \ \, [\mathsf{Nm}]$$

Given Parameters

T = -170 Nm

 $P_S = 210 \text{ bar}$

 $P_T = 0$ bar

 $D_M = 82 \text{ cm}^3/\text{rad}$

 $\omega_{M} = 10 \text{ rad/s}$

 $==> p_1$ and p_2

$$p_1 = \frac{p_S + p_T}{2} + \frac{10\pi T}{D_M} \text{ bar}$$

$$p_2 = p_S - p_1 + p_T \text{ bar}$$

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q_M = 0.01 \bullet \omega_M \bullet D_M$ I/min

$$Q_{\rm N} = Q_{\rm M} \sqrt{\frac{35}{p_{\rm S} - p_{\rm I}}} \quad \text{l/min}$$

Selection of a Servo valve 10% larger than the calculated nominal volume flow.

Calculation:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \bullet \pi \bullet (-170)}{82} = 40bar$$

$$p_2 = 210 - 40 + 0 = 170$$
bar

Q_M= 0,01•10•82=8,2 l/min

$$Q_{\rm N} = 8.2 \sqrt{\frac{35}{210-40}} = 3.6 \text{ l/min}$$

Identification of the Reduced Masses of Different Systems

The different components (cylinder / motors ...) have to be dimensioned for the layout of the necessary forces of a hydraulic system, so that the acceleration and the deceleration of a mass is correct and targeted.

The mechanics of the system are defining the stroke of the cylinders and motors.

Speed- and force calculations have to be carried out.

Statements with view to acceleration and its effects on the system can be made by fixing the reduced mass of a system.

The reduced mass (M) is a concentrated mass, exerting the same force – and acceleration components as the regular mass at the correct system.

The reduced moment of inertia (I_e) has to be considered for rotational systems.

The reduced mass has to be fixed in a first step for considerations with stroke measuring systems or for applications with deceleration of a mass!

Newton's second axiom is used for the specification of the acceleration forces.

 $F = m \bullet a$

F= force [N]

m= mass [kg]

a= acceleration [m/s²]

The following equation is applied for rotational movements:

$$\Gamma = \mathbf{I} \bullet \theta''$$

 $\Gamma \text{= torque [Nm]}$

Í= moment of inertia [kgm²]

 θ'' = angular acceleration [rad/s²]

Linear Drives

Primary Applications (Energy Method)

The mass is a concentrated mass and the rod I is weightless. The cylinder axis is positioned rectangular to the rod I.

Relation between cylinder and rod:

$$\theta' = \frac{v_c}{r} = \frac{v_m}{1}$$

$$\theta'' = \frac{a_c}{r} = \frac{a_m}{1}$$

Needed torque for acceleration of the mass:

$$\Gamma = IX \theta'' = F \bullet r$$

$$= m \bullet 1^{2} X \theta'' \qquad I = m \bullet 1^{2}$$

$$= m \bullet 1^{2} X \frac{a_{m}}{1} \qquad \theta'' = \frac{a_{m}}{1}$$

$$= m \bullet 1X a_{m}$$

$$= F = \frac{m \bullet 1 \bullet a_{m}}{r} = m \bullet i \bullet a_{m} \qquad i = \frac{1}{r}$$

m•i can be considered as mass movement m.

$$F = m \bullet i \bullet a_m = m \bullet i \bullet \frac{1 \bullet a_c}{r} = m \bullet i^2 \bullet a_c = M \bullet a_c \qquad \qquad \text{mit} \qquad \frac{a_c}{r} = \frac{a_m}{1}$$

F= cylinder force

M= reduced mass

a_c= acceleration of the cylinder rod

General validity:

$$M = m \bullet i^2$$

The same result can be obtained by the aid of the energy method (kinetic energy of the mass m). The dependence of the mass movement with the cylinder movement can be specified with the help of the geometry of the system.

Energy of the mass:

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}m \bullet l^2 \bullet \theta'^2 \qquad (l=m \bullet i^2)$$

Initially hydraulics
$$= \frac{1}{2} \mathbf{m} \bullet \mathbf{l}^2 \bullet \left(\frac{\mathbf{v}_c}{\mathbf{r}}\right)^2 \qquad (\mathbf{v}_c = \mathbf{r} \bullet \boldsymbol{\theta}')$$

$$= \frac{1}{2} \mathbf{m} \bullet \frac{\mathbf{l}^2}{\mathbf{r}^2} \bullet \mathbf{v}_c^2$$

$$= \frac{1}{2} \mathbf{M} \bullet \mathbf{v}_c^2 \qquad \mathbf{M} = \mathbf{m} \bullet \mathbf{i}^2 \text{ and } \mathbf{i} = \mathbf{l}/\mathbf{r}$$

Concentrated Mass with Linear Movements

v is the horizontal component of v'. v' is positioned rectangular to rod I. Energy method:

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}m \bullet l^2 \bullet \theta'^2$$

$$= \frac{1}{2}m \bullet l^2 \bullet \left(\frac{v'}{r}\right)^2 \qquad (\theta' = v'/r)$$

$$= \frac{1}{2}m \bullet \frac{l^2}{r^2} \bullet v'^2$$

$$= \frac{1}{2}m \bullet i^2 \bullet v'^2$$

with v=v´•cosα

==> KE =
$$\frac{1}{2}$$
 m•i²•v'²
$$= \frac{1}{2} \frac{m •i²}{(\cos \alpha)^2} •v² = \frac{1}{2} M •v²$$
with $M = m \frac{i²}{(\cos \alpha)^2}$ ==> M is position-depending

If: $\alpha = 0$ then, $\alpha = 1$ and $M = mi²$
 $\alpha = 90°$ then, $\cos \alpha = 0$ and $M = \infty$

$$\alpha = 30°$$
 then, $\cos \alpha = \pm 0.866$ and $M\alpha = m \frac{i²}{0.75}$

If a cylinder is moving a mass, as shown in the preceding figure, and the movement is situated between -30° and $+30^{\circ}$, the acceleration- and deceleration forces have to be calculated in the center of motion with a reduced mass, twice as large as the one in the neutral center.

Distributed Mass at Linear Movements

When considering the same rod I with the mass m, you can here also calculate the reduced mass of the rod.

$$KE = \frac{1}{2}I \bullet \theta'^2 = \frac{1}{2}X \bullet \frac{1}{3}m \bullet 1^2 \bullet \theta'^2 \qquad \qquad \frac{1}{3} \bullet m \bullet 1^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet 1^2 \bullet \left(\frac{\mathbf{v}'}{\mathbf{r}}\right)^2 \qquad (\theta' = \mathbf{v}'/\mathbf{r})$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet \frac{1^2}{\mathbf{r}^2} \bullet \mathbf{v}'^2$$

$$= \frac{1}{2}X \bullet \frac{1}{3}m \bullet \mathbf{i}^2 \bullet \mathbf{v}'^2$$

with v=v ´•cosα

$$= \frac{1}{2} \mathbf{X} \bullet \frac{1}{3} \bullet \frac{\mathbf{m} \bullet \mathbf{i}^2}{(\cos a)^2} \bullet \mathbf{v}^2 = \frac{1}{3} \bullet \mathbf{M} \bullet \mathbf{v}^2$$

$$M = \frac{1}{2} \bullet \frac{m \bullet i^2}{(\cos a)^2}$$

Rotation

If considering now a rotating mass with a moment of inertia I, driven by a motor (ratio D/d).

$$\begin{aligned} \text{KE} &= \frac{1}{2} \mathbf{I} \bullet \theta'^2{}_{\text{m}} = \frac{1}{2} \mathbf{I} \bullet (\theta' \bullet \frac{d}{D})^2 & \text{l= moment of inertia [kgm}^2] \\ &= \frac{1}{2} \mathbf{I} \bullet \left(\frac{d}{D}\right)^2 \bullet \theta'^2 & \theta' = \text{angular acceleration [rad/s}^2] \\ &= \frac{1}{2} \mathbf{I} \bullet \mathbf{i}^2 \bullet \theta'^2 & \text{l}_{\text{e}} = \mathbf{I} \bullet \mathbf{i}^2 \\ &= \frac{1}{2} \mathbf{I}_{\text{e}} \bullet \theta'^2 & \text{l}_{\text{e}} = \mathbf{I} \bullet \mathbf{i}^2 \\ &= \mathbf{i} = \mathbf{d}/D \end{aligned}$$

If a gearbox has to be used, i has to be considered. If i=D/d, then I_e =I/i²

Combination of Linear and Rotational Movement

A mass m is here moved by a wheel with radius r. The wheel is weightless.

$$KE = \frac{1}{2} m \cdot v^{2}$$

$$= \frac{1}{2} m \cdot (r \cdot \theta')^{2} \qquad v = r \cdot \theta'$$

$$= \frac{1}{2} m \cdot r^{2} \cdot \theta'^{2}$$

$$= \frac{1}{2} I_{e} \cdot \theta'^{2} \qquad I_{e} = m \cdot r^{2}$$

Hydraulic Resistances

The resistance of an area reduction is the change of the applied pressure difference Δp to the corresponding volume flow change.

Orifice Equation

$$Q_{Blende} = 0.6 \bullet \alpha_K \bullet \frac{d_B^2 \bullet \pi}{4} \bullet \sqrt{\frac{2 \bullet \Delta p}{\rho}}$$

 $\alpha_{\text{K}}\!=\!$ flow coefficient (0,6-0,8)

 $\rho = 0.88 \, [kg/dm^3]$

d_B = orifice diameter [mm]

 Δp = pressure difference [bar]

Q_{orifice}= [I/min]

Throttle Equation

$$Q_{Drossel} = \frac{\pi \bullet r^4}{8 \bullet \eta \bullet 1} \bullet (p_1 - p_2)$$

η=ρ•ν

$$Q_{throttle} = [m^3/s]$$

 $\eta = \text{dynamic viscosity [kg/ms]}$

I = throttle length [m]

r = radius [m]

 $v = kinematic viscosity [m^2/s]$

 $\rho = 880 \text{ [kg/m}^3\text{]}$

Hydro Accumulator

$$\Delta V = V_0 \left(\frac{p_0}{p_1}\right)^{\frac{1}{\kappa}} \bullet \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}}\right]$$

$$p_{2} = \frac{p_{1}}{\left[1 - \frac{\Delta V}{V_{0} \left(\frac{p_{0}}{p_{1}}\right)^{\frac{1}{\kappa}}}\right]^{\kappa}}$$

$$V_0 = \frac{\Delta V}{\left(\frac{p_0}{p_1}\right)^{\frac{1}{\kappa}} \bullet \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{1}{\kappa}}\right]}$$

 $\kappa = 1,4$ (adiabatic compression)

 ΔV = effective volume [I]

V₀ = accumulator size [I]

 p_0 = gas filling pressure [bar]

 p_1 = service pressure min [bar] (pressure loss at the valve)

 p_2 = service pressure max [bar]

$$p_0 = <0,9*P_1$$

Provide an accumulator in the pressure circuit for pressure-controlled pumps!

Swivel time of pump t_{SA} of the pump catalog.

$$\Delta V = Q \bullet t_{SA}$$

Heat Exchanger (Oil - Water)

$$ETD = t_{ol} - t_{K}$$

$$p_{01} = \frac{P_V}{ETD}$$

$$\Delta t_{_K} = \frac{14 \bullet P_{_V}}{V_{_K}}$$

Calculation of $\Delta t_{\ddot{\text{O}}\text{I}}$ is different, depending on the respective hydraulic fluid.

 $V_{\ddot{O}I} = oil flow [I/min]$

P_V = dissipation power [kW]

t_{Öl} = inlet temperature oil [°C]

 $\Delta t_{Ol} = cooling of the oil [K]$

t_K = inlet temperature cooling water [°C]

 Δt_{K} = heating of the cooling water [K]

V_K = cooling water flow [I/min]

ETD = inlet temperature difference [K]

 p_{01} = spec. cooling capacity [kW/h]

The size of the heat exchangers can be defined by the calculated value p_{01} of the diagrams of the different manufacturers.

Example AB-Standards:

Layout of a Valve

The necessary volume flow can be calculated based on the cylinder data as well as on the extending – and retracting speeds.

P= Ps system pr.-PLload pr.-P Treturn pressure

(Load pressure
$$\approx \frac{2}{3}$$
*System pressure)

At optimal efficiency

 F_T = load force [daN]

P_S = system pressure [bar]

 P_T = return pressure [bar]

 A_1 = piston surface cm2

 A_2 = ring surface cm2

 φ = aspect ratio cylinder

v_{max} = extending speed of the cylinder cm/s

 \rightarrow p₁ and p₂

$$p_{2} = \frac{(p_{S}A_{2}\varphi^{3}) + F_{T} + (p_{T}A_{2}\varphi)]}{A_{2}(1+\varphi^{3})} \text{ bar}$$

$$p_{1} = p_{T} + [(p_{S} - p_{2})\varphi^{2}] \text{ bar}$$

FI FI LIFY F2/7 Just

Verification of the cylinder dimensioning and calculation of the nominal volume flow Q_N , depending on the load pressure p_1 .

 $Q=0.06 \bullet A_2 \bullet v_{max}$ I/min

$$Q_N = Q \sqrt{\frac{X}{p_S - p_2}} \quad \text{l/min}$$

X=35 (Servo valve) pressure loss via a leading edge X=35 (Prop valve) pressure loss via a leading edge (Prop valve with shell)

X=5 (Prop valve) pressure loss via a leading edge (Prop valve without shell)

Selection of a valve 10% larger than the calculated nominal volume flow

Translation: Harm/March 16, 2011