Исследование структуры ДНК

семинар 1

Структура В-формы ДНК

https://www.rcsb.org/structure/1bna

https://www.rcsb.org/3d-view/1BNA/1

- Explore in 3D: Structure
- add representation (ball&stick),
- delete representation (cartoon)
- hide components (water)

2) Измерить расстояние между двумя основаниями (выбрать picking level - atom)

PDB ID: 1BNA

Структура ДНК с 5mC

Задача: поиск метилированных островков CpG в PDB

- Explore in 3D: Structure
- скрыть воду, ионы, белок (можно добавить 2 компонента Nucleic, Protein)
- для Nucleic сделать репрезентацию ball&stick
- открыть последовательность chain D, найти CpG островок на структуре, (см modified monomer)
- Выделить CpG на структуре, добавить label, посмотреть ориентацию метильной группы

Задача: поиск Z-ДНК в PDB

- например, структура4ОСВ
- визуализировать в виде cartoon, ball&stick

Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures

http://web.x3dna.org/

Задача: Исследование геометрических параметров ДНК

- 1. посчитать Local base-pair step параметры для ДНК из структур: B-DNA (1BNA), Z-DNA (4OCB)
- 2. http://web.x3dna.org/analyze/par ameter
- 3. Analysis -> Parameter Tables -> Local base-pair step parameters

a. ^ .a.				A1.16					
Step ID	Step	Base1	Base2	Shift	Slide	Rise	Tilt	Roll	Twist
1	C/G	A:1:C	A:2:G	0.34	0.05	3.62	-2.7	7.62	40.55
2	G/C	A:2:G	A:3:C	0.81	0.05	3.47	2.13	-3.26	38.66
3	C/G	A:3:C	A:4:G	-0.31	0.6	2.85	12.98	5.26	24.5
4	G/A	A:4:G	A:5:A	0.82	0.39	3.38	0	2.87	42.41
5	A/A	A:5:A	A:6:A	0.46	-0.08	3.36	3.85	1.28	36.94
6	A/T	A:6:A	A:7:T	1.01	-0.61	3.22	5.73	-2.24	35.4
7	T/T	A:7:T	A:8:T	0.19	-0.15	3.2	7.28	0.39	31.07
8	T/C	A:8:T	A:9:C	0.5	-0.17	3.37	2.02	-1.78	38.2
9	C/G	A:9:C	A:10:G	0.77	0.7	3.4	5.23	8.6	29.49
10	G/C	A:10:G	A:11:C	-0.87	0.48	3.96	-2.69	-18.65	39.11

Задача: построить фрагмент ДНК с тремя формации (A,B,C)

http://web.x3dna.org/index.php/rebuild

Rebuiding -> Combination of A-, B-, or C-forms

Задача: построить фибриллу Z-DNA

- http://web.x3dna.org/index.php/fibermodel

Задача: генерация комплекса ДНК-белок на заданной последовательности и форме ДНК

- 1. выбрать в PDB структуру референс (например, 3F27)
- 2. 3DNA -> Composite ->

Знакомство с HistoneDB 2.0

https://histonedb.bioeng.ru/

Задача: сделать множественное выравнивание гистонов Н2А

- 1. Выбрать из Curated sequence нужные гистоновые варианты (например, канонический, macro, short H2A.B, H2A.Z) для человека и мыши положить последовательности в корзину
- 2. Сделать MSA

Знакомство с NuclDB

https://nucldb.intbio.org/

NuclDB

Pol II-DSIF-SPT6-PAF1c-TFIIS complex with rewrapped

https://nucldb.intbio.org/structure/7UNC

Задача: сравнение структур нуклеосом с canonical H2A, H2A.B, macroH2A, H2A.Z

- 1. менее стабильные нуклеосомы с Н2А.В
- 2. другие заряды в H2A.B в acidic patch
- 3. Макро-домен H2A не разрешен, так что разница структур с каноническим не велика

Comparative analysis of selected structures

