Термодинамика и статистическая физика

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Московский государственный технологический университет «СТАНКИН»

Термодинамика и статистическая физика

Методические указания к выполнению лабораторных работ

УДК 536

Термодинамика и статистическая физика: Метод. указ./Сост. А.А. Колоколов, А.В. Прокопенко. — М.: МГТУ «Станкин», 2006.-44 с.

В методических указаниях к лабораторным работам приведен материал для самостоятельной работы для студентов IV семестра по направлениям: 550200, 552800, 552900, 551500, 552200, 553500.

УДК 536

© МГТУ «Станкин», 2006

Лабораторная работа 1

Определение удельной теплоты плавления и изменения энтропии при кристаллизации олова

<u>**Цель работы:**</u> экспериментальное определение удельной теплоты плавления и вычисление изменения энтропии в процессе кристаллизации олова.

Описание установки и вывод расчётных формул

В экспериментальной установке исследование олово помещено в стальную ампулу 2 (рис.1). Ампулу с оловом можно опустить в электрическую печь 1, либо – для охлаждения олова – поднять ампулу вверх. Положение ампулы фиксируется с помощью стопорного винта 7. Электрическое питание печи включается тумблером10. Внутри ампулы находится металлическая трубка-чехол с дифференциальной хромель-копелевой термопарой, горячий спай которой 3 расположен в ампуле, а холодный спай 4 — на воздухе. Концы термопары через гнезда и медные провода соединены с милливольтметром 5, измеряющим возникающую термоэдс. Электрическая печь находится в модуле экспериментального стенда.

Простейшей моделью квазистатического охлаждения тела является охлаждение в среде с постоянной температурой $T_{\rm cp}$. Если процесс охлаждения происходит достаточно медленно, температуру всех точек тела в каждый момент времени можно считать одинаковой. Такой процесс охла-

ждения состоит из непрерывно следующих друг за другом равновесных состояний и, следовательно, является квазистатическим обратимым пропессом.

Применим закон сохранения энергии к квазистатическому процессу охлаждения твердого олова в ампуле после кристаллизации:

$$(C_{o}m_{o} + C_{A}m_{A})dT + \alpha F(T - T_{cp})d\tau = 0, \qquad (1)$$

где: $(C_0 m_0 + C_A m_A) dT$ — тепло, отданное ампулой с оловом при их OXлаждении за время $d\tau$;

 $\alpha F(T-T_{\rm cp})d\tau$ — тепло, полученное окружающей средой через поверхность ампулы F за время $d\tau$;

 C_0, C_A — удельная теплоёмкость олова и материала ампулы

 m_0, m_A — масса олова и ампулы, [кг];

T— температура твёрдого олова, [°C]; $T_{\rm cp}$ — температура окружающей среды, [°C]; α — коэффициент теплоотдачи с поверхно

коэффициент теплоотдачи с поверхности ампулы в ок-

ружающую среду, $\left\lceil \frac{\mathcal{J}_{\mathbf{w}}}{\mathbf{w}^2 \cdot \mathbf{c}} \right\rceil$ (эта величина считается постоянной).

Применяя закон сохранения энергии к процессу кристаллизации олова, можно получить уравнение

$$\lambda_{\kappa} m_{\rm o} + \alpha F(T_{\kappa} - T_{\rm cp}) \Delta \tau_{\kappa} = 0, \qquad (2)$$

где: $\lambda_{\rm k} m_{\rm o}$ тепло, отданное оловом при его кристаллизации за время этого процесса $\Delta \tau_{\kappa}$;

 $\alpha F(T_{\rm \tiny K} - T_{\rm \tiny cp}) \Delta \tau_{\rm \tiny K}$ — тепло, полученное окружающей средой через поверхность ампулы за время кристаллизации;

температура кристаллизации олова.

Из формул (1) и (2) следует:

$$\lambda_{\kappa} = \left(c_{o} m_{o} + c_{A} m_{A}\right) \frac{\Delta \tau_{\kappa} \left(T_{\kappa} - T_{cp}\right)}{m_{o} \left(T - T_{cp}\right)} \cdot \left| \frac{dT}{d\tau} \right|. \tag{3}$$

Вычислим изменение энтропии олова в процессе его кристаллизации при неизменной температуре $T = T_{\kappa} = const.$:

$$\Delta S = \frac{1}{T_{\rm K}} \int_{1}^{2} dQ = \frac{\Delta Q}{T_{\rm K}} = \frac{\lambda_{\rm K} m_{\rm o}}{T_{\rm K}}.$$
 (4)

Следовательно, для определения удельной теплоты кристаллизации $\lambda_{\rm K}$ олова и изменения его энтропии ΔS в этом процессе необходимо измерить $T_{\rm K}$, $\Delta \tau_{\rm K}$ и вычислить производную $\frac{dT}{d\tau}$ функции $T=f(\tau)$ в произвольной точке, соответствующей температуре T твердого олова в процессе его охлаждения. Производная $\frac{dT}{d\tau}$ находится из графика (рис. 2), построенного по результатам эксперимента (кривая охлаждения – область III).

Порядок выполнения работы

- 1. Отвернуть винт 7 ползуна 8 и аккуратно опустить ампулу 2 в печь 1 (рис.1).
- 2. Включить электропитание стенда.
- 3. Включить милливольтметр 5 и нагреватель печи (тумблером 10).
- 4. Проследить в течение 10-15 минут за тем, чтобы олово, находящееся в ампуле, расплавилось. Процесс плавления олова происходит при постоянной температуре температуре плавления. При этом показания милливольтметра практически не изменяются. Окончание процесса плавления можно определить как момент времени, после которого показания милливольтметра начинают возрастать.
- 5. Через 1 2 минуты после завершения процесса плавления олова, отключить электрический нагреватель печи (тумблером 10). Отвернуть винт 7 ползуна 8 и поднять ампулу с оловом 2 из печи 1. Зафиксировать положение ампулы тем же винтом.
- 6. Включить секундомер и через каждые 15-20 секунд снимать показания милливольтметра, фиксирующего термоэдс, пропорциональную разности температур олова и окружающей среды $Q = T T_{\rm cp}$. Измерения продолжать до тех пор, пока не будут пройдены три области процесса охлаждения (рис. 2):
 - область I область полного расплава олова;
 - область II область кристаллизации;

- область III область охлаждения твердого олова.
- 7. Получив 30 40 экспериментальных точек, выключить питание стенда и милливольтметр.

Данные установки и таблица результатов измерений

Масса олова $m_{\rm o} = (50 \pm 1)$ грамм

Масса стальной ампулы $m_{\rm A} = (52 \pm 1)$ грамм

Удельная теплоемкость олова
$$C_{\rm o} = 0.23 \cdot 10^3 \left[\frac{\text{Дж}}{\text{кг} \cdot \text{K}} \right]$$

Удельная теплоемкость стали
$$C_{\rm A} = 0.46 \cdot 10^3 \left[\frac{\rm Дж}{\rm кг \cdot K} \right]$$

№ п/п	τ, c	$\Delta \varepsilon_i$, м ${ m B}$	$\varepsilon_i = \varepsilon_0 + \Delta \varepsilon_i$, MB	T, °C
1				
2				

Обработка результатов измерений

Метод I

- 1. Определить по лабораторному термометру температуру окружающей среды. По градуировочному графику хромель-копелевой термопары определить соответствующее этой температуре значение термоэдс ε_0 .
- 2. Прибавляя к каждому измеренному значению термоэдс $\Delta \varepsilon_i$ значение ε_0 , определить по градуировочному графику температуру олова T_i в процессе охлаждения в соответствующие моменты времени.
- 3. По данным измерения построить график зависимости температуры олова T от времени τ . Определить температуру и время кристаллизации олова T_{κ} и $\Delta \tau_{\kappa}$.
- 4. В области охлаждения твердого олова III выбрать произвольную точку (T, τ) на графике $T = f(\tau)$ и провести в этой точке касательную к графику.
- 5. В выбранной точке определить $\frac{dT}{d\tau}$. Подставив значение $\frac{dT}{d\tau}$ и соответствующую температуру T в формулу (3), вычислить удельную теплоту кристаллизации олова λ_{κ} .
- 6. Воспользовавшись формулой (4), рассчитать изменение энтропии при кристаллизации олова.

7. Оценить погрешность измерения удельной теплоты кристаллизации олова. Результат измерения представить в стандартном виде.

$$\lambda = \lambda \pm \Delta \lambda$$
, [Дж/кг].

Метод II

В этом методе при расчете удельной теплоты кристаллизации олова λ_{κ} также используется выражение (3). Но в этом случае не придется графически определять темп охлаждения твердого олова $-\frac{dT}{d\tau}$.

Как следует из уравнения (1)

$$\frac{dT}{d\tau \left(T - T_{cp}\right)} = -\frac{B}{A}. ag{5}$$

здесь $A = (c_{\rm o} m_{\rm o} + c_{\rm A} m_{\rm A})$ — известная константа, а B = 2F — неизвестная «постоянная установки».

Теперь формулу (3) можно представить так:

$$\lambda_{\kappa} = \left(c_{o} m_{o} + c_{A} m_{A}\right) \frac{\Delta \tau_{\kappa} (T_{\kappa} - T_{cp})}{m_{o}} \frac{B}{A}.$$
 (6)

Для отыскания отношения (B/A), проинтегрируем уравнение (5), разделив предварительно переменные:

$$\int_{T_{\kappa}}^{T} \frac{dT}{T - T_{cp}} = -\frac{B}{A} \int_{0}^{\tau_{ox}} d\tau$$

$$\ln \frac{T - T_{cp}}{T_{\nu} - T_{cp}} = -\frac{B}{A} \tau_{oxn}.$$
(7)

Согласно этому результату, температура твердого олова T в процессе его охлаждения падает от температуры кристаллизации T_{κ} до температуры окружающей среды T_{cp} по экспоненциальному закону:

$$T = T_{cp} + \left(T_{\kappa} - T_{cp}\right) e^{-\frac{B}{A}\tau_{oxn}}.$$

Линейный график функции (7) в полулогарифмических координатах приведен на рис. 3:

Рис. 3

Теперь искомое соотношение констант (B/A) легко отыскать как угловой коэффициент прямой рис. 3.

$$\frac{B}{A} = tg\alpha$$
.

Обрабатывая экспериментальные данные по методу II, нужно вначале руководствоваться пунктами 1-3 метода I. Далее:

4. Заполнить таблицу 2

Таблица 2

$ au_{oxn}$, c	$T-T_{cp},\ ^{\circ}C$	$\ln rac{T_{\kappa}-T_{cp}}{T-T_{cp}}$	Примечание
			Отсчет времени ох- лаждения $(\tau_{oxn} = 0)$
			начать с момента за-
			вершения процесса кристаллизации олова

5. Построить на миллиметровке график зависимости

$$\ln \frac{T_{\kappa} - T_{cp}}{T - T_{cp}} = \frac{B}{A} \tau_{oxn}$$

6. Определить тангенс угла наклона графика к оси времени

$$tg\alpha = \frac{B}{A} = \frac{\ln \frac{T_{\kappa} - T_{cp}}{T - T_{cp}}}{\tau_{oxn}} = \left| \frac{dT}{d\tau} \right| \frac{1}{\left(T - T_{cp}\right)}.$$

7. Вычислить удельную теплоту кристаллизации олова (6):

$$\lambda_{\kappa} = \left(c_{\mathrm{o}} m_{\mathrm{o}} + c_{\mathrm{A}} m_{\mathrm{A}}\right) \frac{\Delta \tau_{\kappa} (T_{\kappa} - T_{cp})}{m} \cdot \frac{B}{A}.$$

8. Рассчитать изменение энтропии олова в процессе кристаллизации и оценить погрешность измерений λ_{κ} , руководствуясь п.п. 6 и 7 метода I.

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики. M.: Hayкa, 1982. Том 1, глава 15.
- 2. Сивухин Д.В. Общий курс физики. М.: Наука, 1979. Том 2, глава 10.

Лабораторные работы 2, 2а и 3

Следующие три работы посвящены исследованию тепловых свойств воздуха.

Прежде чем приступить к эксперименту, необходимо тщательно проработать по учебнику и законспектировать следующие вопросы:

- 1. Внутренняя энергия системы.
- 2. Работа, совершаемая системой

$$A_{1-2} = \int_{V_1}^{V_2} P dV .$$

3. Первое начало термодинамики

$$\Delta'Q = \Delta U + \Delta'A$$
.

- 4. Температура. Шкалы Цельсия и Кельвина.
- 5. Уравнение состояния идеального газа.
- 6. Внутренняя энергия и теплоемкость идеального газа

$$C_V = \frac{dU}{dT},$$

$$C_P = \frac{dU}{dT} + P\left(\frac{\partial V}{\partial T}\right)_P,$$

$$C_P = C_V + R.$$

7. Уравнение адиабатического процесса

$$PV^{\gamma} = const.$$

где: $\gamma = {C_P / \choose C_V}$ — показатель адиабаты (коэффициент Пуассона).

8. Средняя энергия одного моля идеального газа

$$U_M = \frac{i}{2}RT,$$

где: i — число степеней свободы молекулы.

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики. М.: Наука, 1982. Том 2, §§83 88, 97.
- 2. Сивухин Д.В. Общий курс физики. М.: Наука, 1975. Том 2, §§12 21.

Лабораторная работа 2

Определение отношения теплоёмкостей $\frac{C_P}{C_V}$ воздуха

Цель работы: экспериментальное определение показателя адиабаты $\gamma = \frac{C_P}{C_V}$ для воздуха.

Экспериментальная установка и вывод расчетных формул

Основным элементом экспериментальной установки является металлический баллон 1, внутренняя поверхность которого покрыта теплоизолирующей мастикой (рис. 1).

Баллон соединен с U-образным водяным манометром 2 и компрессором 3. Через открытый клапан 4 с помощью компрессора в баллон накачивают воздух, затем клапан закрывают. Через несколько минут температура воздуха в баллоне станет равной температуре в лаборатории. Обозначим эту температуру T_1 (рис. 2). Давление воздуха в баллоне при этом равно

$$P_{1} = P_{0} + P', \tag{1}$$

где: P_0 — атмосферное давление воздуха;

P' — избыточное давление, которое можно определить по показанию U-образного манометра.

Выбрав мысленно в баллоне объем V вдали от клапана 5, будем считать, что число молекул в этом объеме неизменно, а начальное состояние воздуха в нем характеризуется параметрами P_1 , V_1 , T_1 .

Если теперь на короткое время открыть клапан 5, то часть воздуха выйдет из баллона, давление упадет до атмосферного $P_2 = P_0$, а объем выбранного элемента газа возрастет до значения V_2 . Изменение давления воздуха в баллоне происходит при этом столь быстро, что процесс расширения газа с достаточной степенью точности можно считать адиабатным. Температура воздуха понизится ($T_2 < T_1$). В момент закрытия клапана 5, состояние выбранного объема характеризуется параметрами P_2 , T_2 , V_2 . Считая переход из состояния 1 в состояние 2 адиабатным процессом, получим

$$P_1V_1^{\gamma} = P_2V_2^{\gamma} \,. \tag{2}$$

Рис. 2

После закрытия клапана 5 происходит изохорный процесс (V=const.) теплообмена с окружающей средой. Температура воздуха приближается к температуре в лаборатории T_1 , давление воздуха по окончании этого процесса:

$$P_3 = P_0 + P'', (3)$$

где избыточное давление P'' определяется по манометру.

Параметры воздуха после изохорного процесса P_3 , T_1 , $V_3 = V_2$.

Так как температура воздуха в первом и третьем состоянии одинаковы и число молекул в выбранном нами объеме постоянно, то для состояний 1 и 3 по закону Бойля-Мариотта:

$$P_1 \cdot V_1 = P_3 \cdot V_3 = P_3 \cdot V_2. \tag{4}$$

Решая систему уравнений (1) и (4), получаем:

$$\left(\frac{P_3}{P_1}\right)^{\gamma} = \frac{P_2}{P_1}.$$

Прологарифмировав это соотношение, найдем:

$$\gamma = \frac{\ln \frac{P_1}{P_2}}{\ln \frac{P_1}{P_3}}.$$
 (5)

Используя соотношение (1) и (3), получим:

$$\gamma = \frac{\ln\left(1 + \frac{P'}{P_0}\right)}{\ln\left(1 + \frac{P'}{P_0}\right) - \ln\left(1 + \frac{P''}{P_0}\right)}.$$
(6)

Избыточные давления P' и P'' весьма малы по сравнению с атмосферным давлением P_0 , поэтому воспользуемся разложением функции $\ln(1+x)$

в ряд, ограничившись первым членом разложения (для $x \ll 1$). При этом $\ln(1+x) \approx x$. Отсюда из (6) получаем:

$$\gamma = \frac{P'}{P' - P''} = \frac{1}{1 - \frac{h_0}{H}}.$$
 (7)

Здесь $P' = \rho g H$ и $P'' = \rho g h_0$, где H и h_0 — показания манометра в состояниях 1 и 2 (см. график на рис. 2).

Отметим, что значение h_0 соответствует условию, что клапан 5 закрыли точно в момент окончания адиабатного процесса. Однако время протекания этого процесса неизвестно, в связи с этим значение разности уровней h_0 определяют косвенным графическим методом.

Пусть клапан 5 остается открытым в течение некоторого времени. В этом случае процессы, происходящие в объеме V, можно условно изобразить графически, как это сделано на рис. 2.

Здесь 1-2 — адиабатный процесс; 2-4 — изобарный процесс, протекающий в баллоне, если клапан 5 остался открытым после завершения адиабатного расширения; 4-5 — изохорный процесс нагрева газа после закрытия клапана 5. Точки 1, 3, 5 лежат на изотерме, соответствующей температуре T_1 .

Очевидно, что с увеличением времени τ разность уровней жидкости в манометре h, пропорциональная $(P_5 - P_4)$, будет уменьшаться.

Измеряя h_{τ} при разных значениях τ и строя график зависимости $\ln h_{\tau} = f(\tau)$, можно найти значение h_0 экстраполяцией экспериментальной прямой (рис. 3).

Порядок выполнения работы

- 1. Включить питание приборного модуля, компрессор.
- 2. Нажать клавишу клапана 4 и накачать в баллон воздух так, чтобы разность уровней жидкости в манометре стала равной H = 250 300 мм.
- 3. Отпустить клавишу клапана 4, выждать несколько минут, пока температура воздуха в баллоне не станет равной температуре окружающей среды. Записать значения уровней h_1 и h_2 в коленах манометра. В дальнейших опытах начальную разность уровней $H = h_2 h_1$ поддерживать постоянной.

- 4. Резко нажать на клапан сброса 5, соединив баллон с атмосферой. Одновременно включить секундомер. Выдержав клапан открытым в течение заданного времени τ , отпустить клапан. После того как уровни жидкости в манометре стабилизируются, измерить и записать в таблицу 1 уровни $h_{1\tau}$, $h_{2\tau}$ и $h_{\tau} = h_{2\tau} h_{1\tau}$.
- 5. Повторить опыты (пункты 2-4) не менее пяти раз для различных значений времени τ . (Рекомендуемые интервалы $\tau=2, 5, 10, 15, 20$ секунд). Следить за тем, чтобы начальная разность уровней H была постоянной.

Обработка результатов измерений

1. Результаты измерений занести в табл. 1.

Таблица 1

№ п/п	τ, c	$h_1(\tau)$	$h_2(\tau)$	$h_{\tau} = h_{2\tau} - h_{1\tau}$, MM	$\mathrm{ln}h_{ au}$

- 2. Рассчитать значения $\ln h_{\tau}$ для всех значений τ .
- 3. Построить график $\ln h_{\tau} = f(\tau)$ (см. рис. 3).
- 4. Аппроксимировать полученную зависимость прямой линией, экстраполировать ее до пересечения с осью ординат. Точка пересечения имеет координату $\ln h_0$.
- 5. Определить значение h_0 .
- 6. По формуле (7) вычислить экспериментальное значение $\gamma = \frac{1}{1 \frac{h_0}{H}} \, .$
- 7. Оценить погрешность полученного результата $\Delta \gamma$.
- 8. Сравнить экспериментальное значение γ с теоретическим значением (воздух считать двухатомным идеальным газом).

Лабораторная работа 2а

Определение коэффициента Пуассона для воздуха методом Клемана-Дезорма

<u>**Цель работы:**</u> экспериментальное определение коэффициента Пуассона для воздуха классическим методом Клемана-Дезорма.

Описание установки

Приборы и принадлежности: стеклянный баллон с краном, соединенный резиновый трубкой с дифференциальным манометром, насос.

Общая схема установки представлена на рис. 1. Принцип ее действия состоит в следующем.

При помощи насоса в большой стеклянный баллон 3 накачивается воздух до некоторого давления p_1 , превышающего атмосферное:

$$p_1 = H + h_1,$$

где H — атмосферное давление, $h_{\!\scriptscriptstyle 1}$ — избыток давления сверх атмосферного (измеряется водяным манометром 1).

Когда воздух в баллоне примет температуру окружающего воздуха, быстро открывается кран 2 и воздух выпускается наружу до тех пор, пока давление в баллоне не станет равным атмосферному.

Выход воздуха происходит быстро, и, пренебрегая в первом приближении передачей тепла через стенки баллона, процесс расширения воздуха в баллоне можно считать адиабатическим. При этом расширяющийся воздух совершает работу против внешних сил – внешнего атмосферного давления. Следовательно, температура воздуха в баллоне понизится.

Если теперь закрыть кран 2 и дать воздуху в баллоне нагреться до температуры окружающего воздуха, то его давление возрастёт до некоторой величины

$$p_2 = H + h_2,$$

где h_2 – избыток давления над атмосферным.

Из полученных трёх состояний воздуха в баллоне несложно рассчитать коэффициент Пуассона.

Выделим мысленно некоторую массу *т* воздуха, которая остается в баллоне в течение всего эксперимента. Рассмотрим три состояния этой массы газа:

№пп	Состояние системы	Объем	Давление	Температура
1	Кран 2 закрыт, воздух сжат	V_{1}	$H + h_1$	Комнатная
2	Кран 2 открыт, воздух адиа-батически расширен	V_2	Н	Ниже комнат- ной
3	Кран 2 закрыт. Температура установилась	V_2	$H+h_2$	Комнатная

В состояниях 1 и 3 воздух имеет одинаковую температуру, поэтому

$$V_1(H+h_1)=V_2(H+h_2),$$

или

$$\frac{V_1}{V_2} = \frac{H + h_2}{H + h_1} \,. \tag{1}$$

(Уравнение Бойля-Мариотта).

Процесс 1-2 – адиабатическое расширение газа. Согласно уравнению Пуассона:

$$(H + h_1)V_1^{\gamma} = HV_2^{\gamma},$$

$$\left(\frac{V_1}{V_2}\right)^{\gamma} = \frac{H}{H + h_1}.$$
(2)

Из (1) и (2) следует:

$$\frac{H}{H+h_1} = \left(\frac{H+h_2}{H+h_1}\right)^{\gamma}.$$

Логарифмирование дает

$$\gamma = \frac{\lg H - \lg(H + h_1)}{\lg(H + h_2) - \lg(H + h_1)}.$$

Преобразуем этот результат:

$$\frac{\ln \frac{H}{H + h_1}}{\ln \frac{H + h_2}{H + h_1}} = \frac{\ln \frac{H + h_1}{H}}{\ln \frac{H + h_1}{H + h_2}} = \frac{\ln \left(1 + \frac{h_1}{H}\right)}{\ln \left(1 + \frac{h_1}{H}\right)} = \frac{\ln \left(1 + \frac{h_1}{H}\right)}{\ln \left(1 + \frac{h_1}{H}\right) - \ln \left(1 + \frac{h_2}{H}\right)}.$$

Напомним, что избыточные давления h_1 и h_2 (мм водяного столба) значительно меньше атмосферного давления H (~10м водяного столба). Поэтому раскладывая функцию $\ln(1+x)$ в ряд, можно ограничиться только первым числом разложения

$$ln(1+x) \approx x$$
 (при $x << 1$).

В нашем случае:

$$\gamma = \frac{\ln \frac{H}{H + h_1}}{\ln \frac{H + h_2}{H + h_1}} \qquad \frac{\frac{h_1}{H}}{\frac{h_1}{H} - \frac{h_2}{H}} = \frac{h_1}{h_1 - h_2}$$

$$\gamma = \frac{h_1}{h_1 - h_2}.$$
(3)

3aдание. Определение отношения $C_{\scriptscriptstyle p}/C_{\scriptscriptstyle V}$ для воздуха

- 1. Закрыть кран 2 и, осторожно нагнетая воздух насосом, накачивать воздух в баллон 3, пока разность уровней в манометре не достигнет 20 25 см.
- 2. Когда давление окончательно установится, произвести отсчёт разности уровней воды в обоих коленах манометра $1 (h_1)$.
- 3. Быстро повернув кран 2, открыть на короткое время баллон 3 и тотчас же закрыть кран.
- 4. Когда давление окончательно установится, записать разность уровней воды в обоих коленах манометра $1 (h_2)$
- 5. Повторить опыт не менее 10 раз. Результаты измерений представить в виде таблицы.
- 6. Вычислить γ по формуле (3).
- 7. Определить основные источники погрешности при определении коэффициента Пуассона данным методом. Конечный результат представить в стандартном виде: $\gamma = \overline{\gamma} \pm \Delta \overline{\gamma}$.

Лабораторная работа 3

Определение удельной теплоемкости воздуха при постоянном давлении — C_P

<u>**Цель работы:**</u> ознакомление с одним из методов экспериментального определения теплоемкости газа при постоянном давлении.

Экспериментальная установка

Установка выполнена в виде двух блоков: функционального модуля и блока питания. На рис. 1 представлена блок-схема (δ) и лицевая панель (a) функционального модуля.

Рис. 1

На передней панели модуля расположены U-образный водяной манометр с измерительной линейкой, гнезда 2 и 3 для подключения источника питания и вольтметра. Здесь же смонтирован кнопочный переключатель 4 для последовательного подключения вольтметра: к термопаре (<), балластному сопротивлению (R_0) и нагревателю ($R_{\rm H}$). Клапан 5 служит для включения подачи воздуха в установку, к штуцеру 6 подсоединяется пневмопровод от компрессора. Нормальное положение клапана 5 — "открыто".

Воздух прокачивается компрессором через трубку 7 (см. рис. 1), размещенную в теплоизолирующей оболочке 8 (сосуд Дюара). Расход воздуха измеряют по перепаду давления на капилляре 9, который вместе с трубкой 7 образует единую проточную магистраль. Протекая через трубку, воздух нагревается электрической спиралью 10. Разность температур на входе и на выходе трубки измеряется дифференциальной термопарой, имеющей два спая — горячий 11 и холодный 12. ЭДС термопары измеряют милливольтметром, подключенным к ней через разъемы 3 и переключатель 4. Электрический нагреватель 10 питается постоянным током от блока питания, подключенного к нагревателю через разъемы 2. Напряжение на нагревателе $U_{\rm H}$ измеряют вольтметром, подключенным к нему через разъемы 3 и

переключатель 4. Ток в нагревателе определяется по измеренному милливольтметром напряжению U_0 на образцовом сопротивлении R_0 :

$$I_{\rm H} = \frac{U_0}{R_0} \,.$$

Для измерений теплоемкости C_P в данной лабораторной работе воздух прокачивают через трубку 7 с размещенным в ней нагревателем 10, которые находятся в теплоизолирующей оболочке — сосуде Дюара.

В процессе эксперимента измеряются: количество тепла, отдаваемое нагревателем воздуху в единицу времени ($Q = I_P \cdot U_H$), массовый расход воздуха через трубку m, разность температур воздуха на выходе и входе в сосуд Дюара ΔT . Величина теплоемкости C_P определяется соотношением:

$$C_P = \frac{I_{\rm H}U_{\rm H}}{m \cdot \Lambda T}$$
.

Данный метод измерения C_P не учитывает тепловые потери калориметра ввиду их малости по сравнению с теплом, полученным воздухом.

Порядок выполнения работы

- 1. Выписать данные установки и измерительных приборов.
- 2. Включить электропитание приборного модуля, компрессор, вольтметр.
- 3. Убедиться в том, что на выходе источника питания отсутствует напряжение. Регулятор напряжения должен быть повернут против часовой стрелки до упора.
- 4. Выяснить у преподавателя, при каких значениях напряжения на нагревателе необходимо провести измерения. Рекомендуемые значения $U_{\rm H}\!=\!2,4,6,8,10~{\rm B}.$
- 5. Клавишей $R_{\rm H}$ переключателя 4 подключить вольтметр к нагревателю и регулятором напряжения источника питания установить первое из заданных значений напряжений $U_{\rm H}$. Записать в табл. 1 показание прибора.
- 6. Клавишей (<) переключателя 4 подключить вольтметр к термопаре. Наблюдать за показаниями прибора, измеряющего ЭДС термопары до тех пор, пока прибор не будет регистрировать постоянное во времени значение ЭДС термопары. Записать в табл.1 показание милливольтметра.
- 7. Клавишей R_0 переключателя 4 подключить вольтметр к образцовому сопротивлению. Записать показания прибора. Результат занести в табл. 1.

8. Произвести отсчет разности уровней жидкости h в U-образном манометре и вычислить перепад давления на концах капилляра по формуле:

$$\Delta P = \rho g h$$
,

где: ρ — плотность жидкости, [кг · м $^{-3}$];

h — перепад уровней, [м].

9. Определить расход воздуха в установке, используя соотношение Пуазейля

$$m = \frac{\pi r_0^4 \Delta P}{8 \eta l} \rho_{\text{возд}},$$

где: $\rho_{\text{возд}}$ — плотность воздуха, [кг · м⁻³];

 r_0 — радиус капилляра, [м];

l — длина капилляра, [м];

η — коэффициент внутреннего трения воздуха при данной температуре.

- 10.Пункты 5 9 повторить для следующих четырех значений напряжения на нагревателе. Данные занести в табл. 1.
- 11.Отключить компрессор, вольтметр, электропитание приборного модуля.

Данные установки

Радиус капилляра $r_0 = 0.7 \text{ мм}.$

Длина капилляра l = 58.5 мм.

Сопротивление образцового регистра $R_0 = 0.1 \text{ Om.}$

Коэффициент внутреннего трения

воздуха при температуре 20°C $\eta = 18.1 \text{ мкПa} \cdot \text{c}$

Таблица 1

№ п/п	$U_{ m H},{ m B}$	U_0 , м ${ m B}$	$\Delta arepsilon_i$, м ${ m B}$	Q, Дж/с	ΔT , K
1					
2					

Обработка результатов измерений

1. Определить по ртутному термометру температуру воздуха в лаборатории и принять ее равной температуре воздуха на входе в калориметр — $T_{\rm Bx}$.

- 2. По градуировочному графику хромель-копелевой термопары определить термоэдс ε_0 , соответствующую входной температуре $T_{\rm Bx}$.
- 3. Прибавляя к каждому измеренному значению $\Delta \varepsilon$ значение ε_0 , определить по градуировочному графику термопары температуру воздуха на выходе из калориметра $T_{\text{вых}}$.
- 4. Рассчитать разность температур воздуха на выходе и входе калориметра: $\Delta T = T_{\text{вых}} T_{\text{вх}}$.
- 5. По полученным данным построить график зависимости температурного перепада от мощности нагревателя:

$$Q = I_{\text{H}} \cdot U_{\text{H}} = f(\Delta T).$$

Убедиться в линейности этой зависимости и вычислить коэффициент наклона прямой $K = \frac{Q}{\Delta T}$ (см. рис. 2).

Рис. 2

6. Рассчитать удельную теплоемкость воздуха при постоянном давлении:

$$C_P = \frac{I_{\rm H}U_{\rm H}}{\Lambda Tm} = \frac{K}{m}$$
.

7. Погрешность результата C_P оценить по формуле:

$$\Delta C_P = C_P \sqrt{\left(\frac{\Delta I_{\rm H}}{I_{\rm H}}\right)^2 + \left(\frac{\Delta U_{\rm H}}{U_{\rm H}}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta \Delta T}{\Delta T}\right)^2} \ .$$

8. Конечный результат представить в виде:

$$C_P = \overline{C}_P \pm \Delta C_P.$$

Лабораторная работа 4

Определение коэффициента вязкости жидкостей по методу Стокса

<u>Цель работы:</u> экспериментальное определение коэффициента вязкости жидкостей методом Стокса.

<u>В теоретическом введении</u> к работе самостоятельно разобрать и законспектировать следующие вопросы:

- 1. Внутреннее трение жидкости и газа. Природа силы внутреннего трения.
- 2. Формула Ньютона для силы вязкости:

$$F = \eta S \frac{\Delta V}{\Delta x} \,. \tag{1}$$

- 3. Ламинарное и турбулентное течение жидкости. Число Рейнольдса (Re).
- 4. Движение тел в жидкости и газах. Силы трения и лобового сопротивления. Подъемная сила.
- 5. Формула Стокса сила сопротивления движению шарика в жидкостях при малых значениях Re.

$$F = 6\pi \eta r V F = 6\pi \eta r V = 3\pi \eta dV. \tag{2}$$

Описание установки

Экспериментальная установка для определения коэффициента внутреннего трения по методу Стокса, представляет собой два стеклянных цилиндрических сосуда 1 (рис. 1), наполненных жидкостями разной вязкости. На вертикальной стойке 2, расположенной между сосудами, смонтированы два подвижных указателя 3 и 4, расстояние между которыми L измеряется по линейке 5.

Для каждой жидкости проводят серию опытов. В сосуд через пробку 6 опускают поочередно пять небольших шариков, плотность которых ρ_1 больше плотности жидкости ρ_2 . Диаметры шариков предварительно измеряют с помощью микрометра. Расстояние между поверхностью жидкости и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась, при этом на участке L между указателями 3 и 4 движение шарика будет равномерным.

В опыте измеряют диаметр шариков микрометром, расстояние между указателями — линейкой и время движения каждого шарика на этом участке — секундомером. Температуру измеряют по комнатному термометру.

Рис. 1

При движении шарика в вязкой жидкости с постоянной скоростью V_0 на него будут действовать следующие силы (рис. 2): сила тяжести $F_{\text{тяж}} = \rho_1 g V = F_1$, сила Архимеда $F_A = \rho_2 g V = F_2$, сила Стокса $F_C = 3\pi dV_0 \eta = F_3$.

Так как скорость шарика V_0 постоянна, то уравнение второго закона Ньютона в проекции на вертикальную ось можно записать в виде:

$$-F_1 + F_2 + F_3 = 0. (3)$$

Подставляя в (3) выражения для сил F_1 , F_2 , F_3 , а также учитывая, что объем шарика:

$$V = (1/6)\pi d^3, (4)$$

где: d — диаметр шарика, получаем выражение для коэффициента внутреннего трения жидкости:

$$\eta = (1/18)(\rho_1 - \rho_2)gd^2/V_0. \tag{5}$$

Установившуюся скорость движения шарика на участке L вычисляют по формуле:

$$V_0 = L/\tau$$
,

где: т — время движения шарика между указателями.

Окончательно формула для подсчета коэффициента внутреннего трения принимает вид:

$$\eta = (1/18)(\rho_1 - \rho_2)g\tau d^2/L. \tag{6}$$

Порядок выполнения работы

- 1. Измерить диаметр шариков с помощью микрометра. Измерение каждого шарика повторить не менее трех раз, всякий раз поворачивая шарик (его форма может отличаться от сферической). Результаты измерений занести в табл. 1.
- 2. Определить температуру T воздуха в лаборатории, считая ее равной температуре жидкости. Включить подсветку сосудов.
- 3. Аккуратно через пробку 6 опустить шарик в сосуд.
- 4. Секундомером измерить время (τ) прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера глаз наблюдателя располагался на уровне соответствующего указателя. Результаты измерения времени τ занести в табл. 2. Рассчитать среднее значение диаметра шарика.

Таблица 1

№ п/п	Измерение диаметра шарика						
	d_1 , mm	d_2 , mm	d_3 , MM	$d_{ m cp}$, mm			
1							
2							
3							
4							
5							

Таблица 2 Расстояние L = [MM]

		№ шарика				
		1	2	3	4	5
M/	τ (c)					
Жидкость 1	η (Πa · c)					
Жидкость 2	τ (c)					
	η (Πa · c)					

5. Проделать подобный эксперимент для второй жидкости.

Обработка результатов измерений

- 1. По формуле (6) рассчитать коэффициент внутреннего трения жидкости для каждого опыта.
- 3. Рассчитать погрешность измерения коэффициента вязкости $\Delta \eta$.
- 4. Окончательный результат представить в виде $\eta = \overline{\eta} \pm \Delta \eta$.

Плотность веществ

Вещество	Плотность, $\kappa \Gamma/M^3$		
Свинец	$11.3 \cdot 10^3$		
Водный раствор глицерина	$1.26\cdot 10^3$		
Касторовое масло	$0.9 \cdot 10^{3}$		

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики. М.: Наука, 1982. Том 1, глава 9, §§75, 76, 78.
- 2. Сивухин Д.В. Общий курс физики. М.: Наука, 1975. Том 1, глава 12 §§96, 98, 101.

Лабораторная работа 5

Измерение коэффициента теплопроводности воздуха методом нагретой нити

<u>**Цель работы:**</u> экспериментальное определение коэффициента теплопроводности воздуха.

<u>В теоретическом введении</u> к работе дать краткое изложение следующих вопросов:

1. Явления переноса в газах: диффузия, теплопроводность, внутреннее трение. Закон Фурье одномерного процесса теплопроводности:

$$dQ = -\chi \frac{dT}{dx} dS dt. (1)$$

2. Теоретическое значение коэффициента теплопроводности (вывод):

$$\chi = \frac{1}{3} \langle \vartheta \rangle \lambda \rho C_V. \tag{2}$$

3. Тепловое движение молекул газа. Эффективное сечение молекул. Средняя длина свободного пробега молекул:

$$\lambda = \frac{1}{\sqrt{2}n\sigma}.\tag{3}$$

4. Среднее значение скорости теплового движения молекул:

$$\langle V \rangle = \sqrt{\frac{8kT}{\pi m_0}} \,. \tag{4}$$

Описание установки и вывод расчётных формул

Принципиальная схема экспериментальной установки представлена на рис. 1.

Нагреваемая вольфрамовая нить 1 находится в цилиндрическом стеклянном баллоне с двойными стенками, между которыми залита вода 2. Температура воды в баллоне 3 и, следовательно, температура стенки трубки $T_{\rm c}$ постоянна в течение опыта. Вольфрамовая нить подключается к регулируемому источнику питания приборного модуля. Ток в нити определяется по падению напряжения U_0 на образцовом сопротивлении R_0 . Напряжение на нити $U_{\rm H}$ и напряжение на образцовом сопротивлении U_0 измеряют вольтметром измерительного модуля при соответствующем положении переключателя на передней панели установки.

При нагревании нити вдоль радиуса трубки создается градиент температуры $\frac{dT}{dr}$. Площадь, через которую передается тепло, равна площа-

ди цилиндра, коаксиального с нагретой нитью: $S = 2\pi rL$. При этом уравнение теплопроводности Фурье (1) принимает вид:

$$dQ = -\chi \frac{dT}{dr} 2\pi r L d\tau, \qquad (5)$$

где L — длина цилиндра радиусом r.

Далее рассматриваются два экспериментальных метода определения теплопроводности. Познакомьтесь с обоими, а эксперимент проводите по методике, которая вам (или преподавателю) больше понравится.

Метод I

Мы остановились на уравнении теплопроводности Фурье (5).

Учитывая, что $\frac{dr}{r} = d(\ln r)$, запишем выражение для мощности теплового потока через поверхность цилиндра радиусом r:

$$q = \frac{dQ}{d\tau} = -\chi(r)\frac{dT}{d(\ln r)} \cdot 2\pi L. \tag{6}$$

Используя среднее (по радиусу) значение коэффициента теплопроводности воздуха, находящегося между нитью (r_1) и внутренней поверхностью трубки (r_2) , можно записать соотношение (6) в следующем виде:

$$q = -\chi_{\rm cp} \frac{T_{\rm cr} - T_{\rm H}}{\ln\left(\frac{r_2}{r_1}\right)} \cdot 2\pi L. \tag{7}$$

Эксперимент проводят при постоянной температуре трубки $T_{\rm cr}$. Увеличение электрической мощности dP, выделяемой в нити, приводит к увеличению мощности теплового потока dq, при этом температура нити возрастает на величину $dT_{\rm H}$. Поэтому из формулы (7) следует:

$$dP = dq = \frac{2\pi L}{\ln\left(\frac{r_2}{r_1}\right)} x dT_{\rm H}, \tag{8}$$

где: r_1 — радиус нити;

 r_2 — внутренний радиус трубки;

 $T_{\rm cr}$ — температура стенки трубки;

 $T_{\rm \tiny H}$ — температура нити.

Из соотношения (8) получим:

$$\chi = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi L} \cdot \frac{dP}{dT_H} \,. \tag{9}$$

Для определения производной $\frac{dP}{dT_{\rm H}}$ используют зависимость $P=f(T_{\rm H})$, которую находят по экспериментальным данным. Мощность теплового потока $P=I_{\rm H}\cdot U_{\rm H}$ вычисляют по напряжению на нити $U_{\rm H}$ и току $I_{\rm H}$, протекающему через образцовое сопротивление R_0 и нить: $I_{\rm H}=\frac{U_0}{R_0}$.

Температуру нити определяют по температурному изменению сопротивления нити:

$$t_{\rm H} = \frac{R_{\rm H} - R_{\rm H0}}{\alpha_t R_{\rm H0}}, {\rm ^{\circ}C},$$
 (10)

где: $R_{\rm H0}$ — электрическое сопротивление нити при $t=0^{\circ}{
m C}$;

 $R_{\rm H}$ — сопротивление нити при температуре опыта;

 α_t — температурный коэффициент сопротивления материала нити.

Дифференцируя (10), получаем:

$$\frac{dR_{\rm H}}{dT_{\rm H}} = \alpha_t R_{\rm H0}. \tag{11}$$

Подставляя $dT_{\rm H}$ из формулы (11) в формулу (9), получаем окончательное выражение для расчета коэффициента теплопроводности:

$$\chi = \frac{\ln\left(\frac{r_2}{r_1}\right)}{2\pi L} \cdot \alpha_t R_{\text{H}0} \frac{dP}{dR_{\text{H}}}.$$
 (12)

Теперь при вычислении коэффициента теплопроводности χ можно воспользоваться графиком зависимости $P=f(R_{\rm H})$ для нахождения производной $\frac{dP}{dR_{\rm H}}$.

Порядок выполнения работы

1. Выписать данные установки.

- 2. Убедиться в том, что все приборы выключены. Повернуть регулятор напряжения на универсальном блоке питания (БП) против часовой стрелки до упора.
- 3. Соединить источник питания и вольтметр приборного модуля с разъемами «ИП» и «V» измерительного модуля.
- 4. Включить электропитание приборного модуля, источник питания, вольтметр.
- 5. Согласовать с преподавателем, при каких значениях напряжения на источнике питания следует проводить эксперименты. Рекомендуемые значения напряжения: 1, 2, 3, 4, 5, 6 В.
- 6. Переключить тумблер объектов измерений в положение $R_{\rm H}$ для измерения напряжения на вольфрамовой проволоке.
- 7. Поворотом ручки БП по часовой стрелке установить первое значение напряжения на нити $U_{\rm H}$. При этом следить за показаниями вольтметра. Провести отсчет напряжения на вольфрамовой проволоке. Результат занести в табл. 1.
- 8. Переключить тумблер объектов измерений в положение R_0 для измерения падения напряжения на образцовом сопротивлении U_0 .
- 9. Провести отсчет падения напряжения на образцовом сопротивлении U_0 . Результат занести в табл. 1.
- 10.Пункты 6 9 повторить для следующих значений напряжения на вольфрамовой проволоке.
- 11.Снять напряжение на БП. Выключить измерительные приборы и стенд.

Данные установки и таблица результатов измерений

Диаметр вольфрамовой проволоки, мм	$d_1 = 0.1$
Внутренний диаметр трубки, мм	$d_2 = 6.0$
Сопротивление нити при 0°C, Ом	$R_{{\scriptscriptstyle { m H}}0}=3.0$
Температурный коэффициент сопротивления	
вольфрамовой проволоки, ${}^{\circ}\mathrm{C}^{-1}$	$\alpha_t = 3.8 \cdot 10^{-3}$
Длина нити, мм	$L = 420 \pm 5$
Образцовое сопротивление, Ом	$R_0 = 0.10$

Таблица 1

№ п/п	$U_{\scriptscriptstyle m H},{ m B}$	U_0 , B	$I_{\scriptscriptstyle \mathrm{H}},\mathrm{A}$	$R_{\rm H}$, Om	$T_{\scriptscriptstyle \mathrm{H}},\mathrm{K}$	<i>P</i> , Вт	X, BT/ (M · K)
1							
2							
3							

Обработка результатов измерений

- 1. Построить на миллиметровой бумаге график зависимости $P = f(R_{\rm H})$ (рис. 2).
- 2. Выбрать три точки на кривой и графически определить производную $\frac{dP}{dR_{\rm H}}$ в этих точках. Для этого провести в выбранных точках касательные к кривой и определить коэффициент наклона каждой из них.
- 3. Рассчитать по формуле (12) коэффициент теплопроводности, а по формуле (10) температуру в выбранных точках.
- 4. Вычислить погрешность измерения коэффициента теплопроводности.

Метод II

Вновь вернемся к уравнению теплопроводности Фурье (5). Теперь запишем его в несколько ином виде: поток тепловой энергии, то есть энергия, протекающая в единицу времени $\left(\frac{dQ}{d\tau}\right)$ через поверхность цилиндра произвольным радиусом r, коаксиального с нитью нагрева, пропорционален градиенту температуры $\left(\frac{dT}{dr}\right)$ и площади боковой поверхности цилиндра

$$\frac{dQ}{d\tau} = -\chi \frac{dT}{dr} 2\pi rh \,. \tag{13}$$

Цилиндр выберем так, чтобы его радиус находился в области между нитью и внутренней поверхностью трубки.

Вспомним, что коэффициент теплопроводности идеального газа можно представить в виде (см. [1, § 131]):

$$\chi = \frac{1}{3} < \vartheta > \lambda \rho C_V, \tag{14}$$

где: $\langle 9 \rangle = \sqrt{\frac{8kT}{\pi m}}$ — средняя скорость теплового движения молекул;

$$\lambda = \frac{1}{\sqrt{2}\sigma n}$$
 — длина свободного пробега молекул;

 $p = n \cdot m$ — плотность газа;

 C_V — удельная теплоемкость газа при постоянном объеме;

n — концентрация молекул газа;

m — масса молекулы.

Учитывая это, приходим к выводу, что коэффициент теплопроводности пропорционален $T^{\frac{1}{2}}$:

$$\chi = \frac{1}{3} \sqrt{\frac{8kT}{\pi m}} \frac{1}{\sqrt{2\sigma n}} n \cdot m \cdot C_V = AT^{\frac{1}{2}}, \text{ где } A = \frac{2C_V}{3\sigma} \sqrt{\frac{km}{\pi}}.$$
 (15)

Тогда тепловой поток (13) запишем так:

$$\frac{dQ}{d\tau} = -\chi \frac{dT}{dr} 2\pi rh = -AT^{\frac{1}{2}} \frac{dT}{dr} 2\pi rh = IU.$$
 (16)

Эта теплота равна энергии, излучаемой ежесекундно нагретой нитью, то есть мощности этого нагревателя P = IU.

Проинтегрируем последнее уравнение, разделив предварительно переменные:

$$T^{\frac{1}{2}}dT = -\frac{IU}{2\pi h \cdot A} \frac{dr}{r};$$

$$\frac{2}{3}T^{\frac{3}{2}} = -\frac{IU}{2\pi h A} \ln r + C.$$
(17)

Для определения константы «C» обратимся к граничному условию: на внутренней поверхности трубки ($r=r_2$) температура равна температуре воздуха в лаборатории T_{κ} . Отсюда:

$$C = \frac{2}{3}T_{\kappa}^{\frac{3}{2}} + \frac{IU}{2\pi hA} \ln r_2.$$
 (18)

Определив значение «C», перепишем результат (17) еще раз:

$$\frac{2}{3} \left(T^{\frac{3}{2}} - T_{\kappa}^{\frac{3}{2}} \right) = \frac{IU}{2\pi hA} \ln \frac{r_2}{r} \,. \tag{19}$$

Учитывая, что на поверхности нагретой нити $(r = r_1)$ температура газа равна температуре нити T_1 , запишем окончательно:

$$\frac{2}{3} \left(T_1^{\frac{3}{2}} - T_{\kappa}^{\frac{3}{2}} \right) = \frac{IU}{2\pi hA} \ln \frac{r_2}{r_1} \,. \tag{20}$$

Это выражение можно использовать для экспериментального определения постоянной A. Определив эту константу, легко вычислить и искомый коэффициент теплопроводности воздуха см. (15).

<u>Порядок выполнения работы</u> остается прежним, а обработка экспериментального материала несколько изменится.

Для каждой мощности нагревателя P = IU вычислить температуру нагретой нити (10).

Зная температуру T_1 , рассчитать для каждой мощности значение функции

$$F(T_1) = \frac{4\pi h \left(T_1^{\frac{3}{2}} - T_{\kappa}^{\frac{3}{2}}\right)}{3\ln\frac{r_2}{r_1}}.$$
 (21)

Построить график $F(T_1) = f(IU)$. Как следует из уравнения (10), эта зависимость должна быть линейной:

$$\frac{4\pi h \left(T_1^{\frac{3}{2}} - T_{\kappa}^{\frac{3}{2}}\right)}{3\ln\frac{r_2}{r_1}} = F(T_1) = \frac{IU}{A}.$$

Рассчитать постоянную A как угловой коэффициент полученной прямой (см. рис. 4):

$$A = \frac{b}{a}$$
.

Используя (15) вычислить коэффициент теплопроводности χ для разных температур нити.

Оценить погрешность результата.

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики. М.: Наука, 1982. Том 1, Глава XVI, §§128, 129, 131.
- 2. Сивухин Д.В. Общий курс физики. М.: Наука, 1975. Том 2, Глава VII, §§ 86, 87, 89.

Лабораторная работа 6

Измерение коэффициента внутреннего трения (вязкости) воздуха и средней длины свободного пробега молекул воздуха

<u>Цель работы</u>: экспериментальное исследование процесса ламинарного течения газа в круглой трубе. Измерение вязкости воздуха и средней длины свободного пробега молекул воздуха.

<u>В теоретическом введении</u> к работе необходимо рассмотреть следующие вопросы:

1. Тепловое движение молекул газа. Эффективное сечение молекул. Средняя длина свободного пробега:

$$\bar{\lambda} = \frac{1}{\sqrt{2}n\sigma}.\tag{1}$$

Среднее значение скорости теплового движения молекул:

$$\bar{V}_{\mathrm{T}} = \sqrt{\frac{8kT}{\pi m_0}} \,. \tag{2}$$

2. Природа силы внутреннего трения. Формула Ньютона для силы вязкого сопротивления:

$$F = \eta \left| \frac{dV}{dz} \right| \cdot S. \tag{3}$$

3. Теоретическое значение коэффициента вязкости газа (вывод):

$$\eta = \frac{1}{3} \overline{V}_{\mathrm{T}} \overline{\lambda} \rho \,. \tag{4}$$

4. Течение газа в круглой трубе. Распределение скорости частиц газа в сечении трубы:

$$V(r) = V_0 \left(1 - \frac{r^2}{R^2} \right).$$

5. Объемный расход газа (формула Пуазейля):

$$Q = \frac{P_1 - P_2}{8\eta L} \pi R^4.$$
 (5)

Схема экспериментальной установки

Схема установки представлена на рис. 1. Установка включает в себя капилляр 1, соединенный одним концом через систему пневмопровода с

мерной емкостью 2 и U-образным манометром 3. Другой конец капилляра сообщается с атмосферой.

Мерная емкость 2 соединена резиновой трубкой 4 со вспомогательным сосудом 5, в котором находится вода. С помощью резиновой трубки 6 мерная емкость соединена с микрокомпрессором (МК).

При закрытом клапане K_1 и открытом (нажатом) клапане K_2 вода из вспомогательного сосуда 5 через трубку 4 перетекает в мерную емкость 2. При этом вода вытесняет воздух из мерной емкости через капилляр в атмосферу. Так как сечение капилляра мало, то возникает разность давлений воздуха на его концах, которая измеряется водяным U-образным манометром.

С помощью секундомера измеряют время истечения заданного объема воздуха из мерной ёмкости. Объем вытекшего воздуха вычисляют по показаниям уровнемера 7.

Для повторения опыта закрывают клапан K_2 и, включив компрессор, открывают клапан K_1 . При этом вода возвращается из мерной емкости 2 во вспомогательную ёмкость 5. Уровень воды в мерной ёмкости контролируют по уровнемеру 7.

Порядок выполнения работы

- 1. Включить электропитание приборного модуля.
- 2. Включить компрессор. Нажав клавишу клапана K_1 , перекачать воду из мерной емкости 2 во вспомогательную 5. Отпустить клавишу клапана K_1 .
- 3. Нажать клавишу клапана K_2 . В момент прохождения уровня воды в мерной емкости нижней отметки уровнемера H_1 включить се-

- кундомер. Провести отсчет разности уровней жидкости в водяном U-образном манометре Δh_1 . Результат занести в табл. 1.
- 4. В момент прохождения воды в мерной ёмкости верхней отметки уровнемера H_2 выключить секундомер и провести отсчет разности уровней воды в U-образном манометре Δh_2 . Отпустить клавишу клапана K_2 . Результат занести в табл. 1.

Таблица 1

№ п/п	Δh_1 , mm	Δh_2 , mm	τ, c	$\Delta P_{\rm cp}$, Πα	η, Па · с
1					
2					
Средн.					

- 5. Пункты 2 4 повторить 3 4 раза.
- 6. При перетекании воды из вспомогательной емкости в мерную (клавиша клапана K_2 нажата) провести отсчёты уровней воды h_1 и h_2 в коленах U-образного манометра через равные промежутки времени $\Delta \tau$. Результаты занести в табл. 2.

Таблица 2

№ п/п	Δτ, c	h_1 , мм	h_2 , мм	Δh , mm	$(P_1 - P_2)$, Πa
1					
2					
• • •					

По барометру определить давление воздуха в лаборатории $P_{\text{атм}}$; по термометру определить температуру воздуха T.

Данные установки

Длина капилляра, мм 35.7 Радиус капилляра, мм 0.37 Площадь сечения мерной емкости, см² 70

Обработка результатов измерений

По результатам каждого опыта (табл. 1) рассчитать коэффициенты внутреннего трения η, используя формулу Пуазейля (5),

$$\eta = \frac{P_1 - P_2}{8LQ} \pi R^4.$$
 (6)

Вычислить среднее значение коэффициента внутреннего трения воздуха:

$$\overline{\eta} = \frac{\sum_{i=1}^{n} \eta_i}{n}.$$

При этом нужно учитывать 2 момента:

- а) средний объёмный расход газа равен $Q = V_{\tau}$;
- б) поскольку разность давлений на концах капилляра в момент включения секундомера Δh_1 и в момент его выключения Δh_2 различна, то необходимо взять среднюю разность давлений за время проведения опыта:

$$\Delta P_{\rm cp} = (P_1 - P_2)_{\rm cp} = \frac{\Delta h_1 + \Delta h_2}{2} \rho g.$$
 (7)

Ясно, что такой метод расчета среднего значения перепада давлений справедлив, если в процессе эксперимента разность давлений меняется как линейная функция времени. В линейности этой зависимости необходимо убедиться, построив на миллиметровой бумаге график $\Delta P = f(\tau)$ по результатам табл. 2.

Определить среднюю длину пробега молекулы воздуха (см. формулу (4))

$$\overline{\lambda} = \frac{3\eta}{\rho \overline{V}_{T}}$$
.

Напомним, что здесь $\overline{V}_{\rm T} = \sqrt{\frac{8kT}{\pi m}}$ — средняя тепловая скорость молекул воздуха, ρ — плотность воздуха.

Объединив последние три выражения, получим расчетную формулу для вычисления средней длины свободного пробега молекулы воздуха:

$$\lambda = 1.88 \frac{\eta}{P_0} \sqrt{\frac{RT}{M}} \,; \tag{8}$$

$$\rho = \frac{P_0 M}{RT}$$
 — плотность воздуха,

где: $P_0 = P_{\text{атм}}$ — атмосферное давление, Па; T — температура воздуха в лаборатории, К; M = 29 г/моль — молярная масса воздуха.

Оценить погрешность определения вязкости воздуха. Учитывая, что погрешность определения уровней воды в коленах U-образного манометра в несколько раз превышает погрешность остальных величин, входящих в формулу (6), ошибка измерения η может быть представлена в виде:

$$\Delta \eta = \overline{\eta} \frac{\sqrt{(\Delta h_1)^2 + (\Delta h_2)^2}}{h_1 - h_2}.$$

Окончательно результаты измерения коэффициента вязкости и длины свободного пробега молекулы воздуха представить в виде:

$$\eta = \overline{\eta} \pm \Delta \eta$$

$$\lambda = \overline{\lambda} \pm \Delta \lambda .$$

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики, М.: Наука, 1982, Том I, глава XVI, §§128, 129, 132.
- 2. Сивухин Д.В. Общий курс физики, М.: Наука, 1979, Том II, глава VII, §§86, 87, 89.

Лабораторная работа 7

Экспериментальное исследование распределения термоэлектронов по энергиям

<u>Цель работы</u> заключается в экспериментальном определении функции распределения термоэлектронов по энергиям вблизи анода электронной лампы (на примере пентода 6П9).

В теоретическом введении к работе рассмотреть следующие вопросы:

- 1. Распределение скоростей молекул газа.
- 2. Закон распределения скоростей Максвелла:

$$f(V) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{mV^2}{2kT}}.$$
 (1)

3. Распределение молекул по значениям кинетической энергии их поступательного движения (є):

$$f(\varepsilon) = \frac{2}{\sqrt{\pi} (kT)^{3/2}} e^{-\frac{\varepsilon}{kT}} \sqrt{\varepsilon}.$$
 (2)

4. Экспериментальная проверка закона распределения Максвелла (опыты Штерна и Ламберта).

Описание установки

Распределение термоэлектронов по энергиям исследуют на установке, электрическая схема которой представлена на рис. 1.

В качестве электронной лампы здесь используется пентод (1) с тремя сетками между катодом К и анодом А. Катод подогревается переменным током от трансформатора (Тр) с выходным напряжением 6.3 В. Питание сеток лампы, а также цепи регулировки задерживающего потенциала (R_2 , R_3) осуществляется от внешнего стабилизированного источника постоянного тока (И.П.).

Сопротивление R_1 служит для регулировки анодного тока лампы в отсутствие задерживающего потенциала U_3 . Сопротивления R_2 и R_3 («Грубо», «Точно») позволяют изменять задерживающий потенциал U_3 с необ-

ходимой степенью точности. Сопротивление $R_4 = 20.0$ Ом служит для измерения анодного тока лампы.

Для изучения распределения термоэлектронов по энергиям используют метод задерживающего потенциала. Электроны, вылетевшие из катода, образуют облако, в котором они распределены по энергиям в соответствии с функцией распределения Максвелла:

$$f(\varepsilon k) = \frac{2}{\sqrt{\pi}} (kT)^{-3/2} e^{-\frac{\varepsilon k}{kT}} \sqrt{\varepsilon k}.$$
 (3)

Некоторая часть электронов вытягивается из прикатодной области напряжением $U_{\rm C}$ на первую сетку лампы и затем ускоряется до энергии:

$$\varepsilon_{v} = eU_{v},$$
(4)

где U_{v} – напряжение между катодом и второй сеткой.

При этом энергия всех электронов увеличивается на одинаковую величину ε_{y} , много большую чем начальная энергия термоэлектронов.

Распределение ускоренных электронов по энергиям анализируют методом задерживающего потенциала, для чего между второй сеткой и анодом лампы подают регулируемое напряжение U_3 и измеряют I_a .

На анод попадают только те электроны, энергия которых больше, чем работа электростатического поля по перемещению электронов от второй сетки к аноду, равная eU_3 .

В соответствии с этим анодный ток при фиксированном ускоряющем напряжении изменяется в зависимости от величины задерживающего напряжения. Зависимость $I_a = f(U_3)$, будет иметь вид, представленный на рис. 2 (кривая 1). Дифференцируя эту зависимость по U_3 , получим распределение электронов по энергиям (пунктирная кривая 2 на рис. 2).

Распределение термоэлектронов по проекциям скорости 9 на направление ускоряющей силы, действующей в электрическом поле на термоэлектроны, записывают в следующем виде:

$$f(\vartheta) = C_V e^{-\frac{m(\vartheta - \vartheta_y)^2}{2kT}},\tag{5}$$

где: C_V — нормировочная постоянная;

т — масса электрона;

k — постоянная Больцмана;

T — температура термоэлектронов в прикатодном облаке;

 $\vartheta_y = \sqrt{2eU_y/m}$ — скорость, приобретенная электроном после прохождения разности потенциалов U_y ;

e — заряд электрона.

Для термоэлектронов, движущихся к аноду, $\vartheta > 0$, поэтому в (5) можно перейти от скорости ϑ к энергии электрона $\varepsilon = m\vartheta^2/2$:

$$f(\varepsilon) = C_{\varepsilon} e^{-\frac{\left(\sqrt{\varepsilon} - \sqrt{\varepsilon_{y}}\right)^{2}}{kT}},$$
(6)

где C_{ε} — нормировочная постоянная.

Используя соотношения $\varepsilon = eU_3$ и $\varepsilon_y = eU_y$, получим следующее выражение, описывающее кривую 2 на рис. 2:

$$f(U_3) = C_V e^{-\frac{e(\sqrt{U_3} - \sqrt{U_y})^2}{kT}}.$$
 (7)

Положение максимума данной кривой определяют по формуле:

$$U_{3 \max} = U_{\nu}, \tag{8}$$

а её ширину:

$$\Delta U_3 = \sqrt{4 \frac{kT}{e} U_y} \ . \tag{9}$$

Задание и порядок выполнения работы

- 1. Изучить схему экспериментальной установки.
- 2. Подсоединить источник питания приборного модуля к экспериментальному модулю через соответствующие разъёмы.

- 3. Включить блок питания и лабораторный модуль. Установить напряжение источника питания $U_{\rm ИП} = U_y$ (создающего ускоряющее поле для термоэлектронов) в пределах 6-8 В.
- 4. С помощью сопротивлений R_1 и R_2 установить задерживающий потенциал $U_3 = 0$.
- 5. Регулятором $U_{\rm C}$ установить ток анода не более 1.5 мА. При этом показания милливольтметра должны лежать в пределах U=(25-30) мВ. После прогрева лампы снять вольтамперную характеристику с шагом 0.5 В. Для этого, изменяя $U_{\rm 3}$ через 0.5 В, в каждой точке измерить анодный ток. На падающем участке характеристики менять $U_{\rm 3}$ с шагом 0.1 В.
- 6. Измерения повторить для трех различных значений U_y . Результаты измерений занести в таблицу:

№ п/п	1	2	
$U_{\scriptscriptstyle 3}\left(\mathrm{B}\right)$			
U_4^* (MB)			
$I_{\rm a}({\rm MA})$			
dI/dV			

Обработка результатов измерений

1. Рассчитать значение анодного тока:

$$I_{\rm a} = \frac{U_4}{R_4}.\tag{10}$$

2. Построить графики зависимостей:

$$I_{\rm a} = I_{\rm a}(U_{\rm 3}, U_{\rm y});$$
 (11)

И

$$\frac{dI_{\rm a}}{dU_{\rm 3}} = f(U_{\rm 3}, U_{\rm y}),\tag{12}$$

для трех значений ускоряющего напряжения U_y .

3. Используя графики функций (12), проверить выполнение соотношений (8) и (9).

Рекомендуемая литература

- 1. Савельев И.В. Курс общей физики, М.: Наука, 1977, Том I, §§ 48, 99.
- 2. Сивухин Д.В. Общий курс физики, М.: Наука, 1975, Том II, §§ 71, 72.

 $^{^*}$ U_4 — падение напряжения на R_4 = 20.0 Ом.

Лабораторная работа 8

Изучение эффекта Джоуля-Томсона

<u>**Цель работы:**</u> экспериментальное наблюдение эффекта Джоуля-Томсона, изучение термодинамической теории этого явления.

<u>В теоретическом введении</u> должны быть рассмотрены следующие вопросы:

- 1. Общая термодинамическая теория эффекта Джоуля-Томсона.
- 2. Эффект Джоуля-Томсона для газа Ван-дер-Ваальса.

Экспериментальная установка

Рабочими элементами установки являются текстолитовая гильза 1, в которой находится войлочная пробка 2, образующая пористую перегородку (рис. 1).

Воздух прокачивают сквозь перегородку с помощью компрессора 3. Избыточное давление на перегородке регулируют вентилем 4, соединяющим линию с атмосферой. Закрывая вентиль, можно поднимать давление на перегородке от 0 до 0.6 МПа. Это избыточное давление регистрируется манометром 5. Температуру воздуха перед перегородкой измеряют с помощью хромель-копелевой термопары, горячий спай которой 6 расположен на входе газового потока. Температурный перепад на пористой пробке измеряют с помощью дифференциальной хромель-копелевой термопары, спаи которой расположены по обе стороны от перегородки 2.

Термоэдс термопар 6 и 7, регистрирующих температуру потока и температурный перепад на перегородке, заводится на милливольтметр 8. Измерения производят поочередно, переключая тумблер 9 либо в положение (>) — T, либо в положение (») — ΔT .

Операционная часть

- 1. Включить электропитание тумблером «Сеть».
- 2. Включить милливольтметр тумблером «V».
- 3. Переключатель термопар 9 поставить в положение ">" измерение термоэдс термопарой перед пористой перегородкой.
- 4. Включить компрессор. Вентилем 4 установить первое значение избыточного давления $\Delta P_1 = 0.1 \text{ M}\Pi a = 1 \text{ кг/cm}^2$.
- 5. Наблюдая за показаниями милливольтметра, дождаться пока температура воздуха стабилизируется.
- 6. Переключатель термопар 9 поставить в положение "»" измерение термоэдс дифференциальной термопарой. Измерить эту термоэдс $\Delta \varepsilon_1$, соответствующую перепаду давления ΔP_1 .
- 7. Переключатель 9 вернуть в положение ">". Манипулируя вентилем 4, установить следующий перепад давления на перегородке ΔP_i .
- 8. Дождаться стабилизации температуры воздуха на входе ε_0 и, переключив 9 в положение "»", произвести новое измерение термоэдс дифференциальной термопары $\Delta \varepsilon_i$.
- 9. Меняя давление на перегородке, измерить соответствующие температурные перепады для 5 6 значений перепада давлений. Результаты измерений занести в табл. 1.

Таблица 1.

№ п/п	$\Delta P \cdot 10^{-5}$, Πa	ϵ_0 , мB	Δε, мВ	ΔT_2 , K	$\Delta T_2/\Delta P$, K/ Πa
1	ΔP_1	ϵ_1	$\Delta arepsilon_1$		
2					

Обработка результатов измерений

Для каждого значения избыточного давления ΔP_i :

1. Вычислить изменение температуры воздуха перед перегородкой относительно температуры окружающей среды:

$$\Delta t_0(>) = \frac{\varepsilon(MB)}{0.064}$$
, °C.

2. Определить изменение температуры при течении воздуха через пористую перегородку под действием перепада давления ΔP_0 :

$$\Delta t(\gg) = \frac{\Delta \varepsilon (MB)}{0.064}, {}^{\circ}C.$$

- 3. Рассчитать коэффициент Джоуля-Томсона $\Delta t_i/\Delta P_i$ для каждого значения ΔP_i .
- 4. Рассчитать среднее значение коэффициента Джоуля-Томсона:

$$\overline{\mu}_{\rm DT} = \frac{\sum_{i=1}^{N} \frac{\Delta t_i}{\Delta P_i}}{N}.$$

5. Учитывая, что коэффициент Джоуля-Томсона связан с поправками «*a*» и «*b*» в уравнении Ван-дер-Ваальса:

$$\mu_{\rm DT} = \frac{\Delta P}{\Delta T} \approx \frac{\left(\frac{2a}{RT} - b\right)}{C_P},$$

оценить значение поправки (a), пренебрегая влиянием на эффект поправки (b).

Оценить погрешность полученного результата и сравнить с табличным значением.

Рекомендуемая литература

1. Сивухин Д.В. Курс общей физики. — М.: Наука, 1975, Том 2, §§46, 104.

Учебные задания по физике для студентов второго курса дневного отделения

факультетов МЕУП и Технологический (кроме экологов)

- 1. Первое начало термодинамики
- 1. Определить изменение внутренней энергии моля идеального одноатомного газа при изобарическом изменении объема от 10л до 20л при давлении 5атм.
- 2. В цилиндре под поршнем находится углекислый газ CO_2 массой 0.2 кг. Какую работу совершает газ при его нагревании на 88° C, если давление газа считать постоянным?
- 3. С некоторой массой идеального газа совершен круговой процесс 123, изображенный на диаграмме (V, T), где V объем и T абсолютная температура газа. Изобразить этот процесс на диаграмме (P, V), где P давление газа, и указать, на каких стадиях газ получал и отдавал тепло.

4. Идеальный одноатомный газ расширяется согласно уравнению $PV^{1/2} = \text{const}$, где P- давление и V- объем газа. Определить молярную теплоемкость газа в этом процессе.

2. Тепловые машины

- 5. Каким путем можно эффективнее повысить КПД машины Карно: увеличивая температуру нагревателя T_1 на ΔT при фиксированной температуре холодильника T_2 или понижая температуру холодильника T_2 на такую же величину ΔT при фиксированной температуре нагревателя T_1 ?
- 6. Идеальная тепловая машина, работающая по циклу Карно, получает тепло от нагревателя с температурой 200° С и отдает тепло холодильнику с температурой 15° С, совершая за один цикл работу 10МДж. Определить тепло, отдаваемое холодильнику за один цикл.
- 7. Определить работу, совершаемую идеальным газом массой m с молярной массой μ при изотермическом расширении от объема V_1 до объема V_2 при температуре T. Какое количество тепла получил газ при этом расширении?
- 8. Идеальная тепловая машина, работающая по обратному циклу Карно, получает тепло от воды с температурой 273 К и передает его кипятильнику с температурой 373 К. Сколько воды превращается в пар при образовании 1 кг льда, если удельная теплота плавления льда $^{3,3\cdot10^5}$ Дж/кг и удельная теплота парообразования воды $^{2,26\cdot10^6}$ Дж/кг?

3. Второе начало термодинамики

- 9. Определить изменение энтропии одного моля идеального газа при изохорном, изобарном, изотермическом и адиабатном процессах.
- 10. Определить изменение энтропии одного моля вещества при его плавлении и испарении.
- 11. Два тела массами m_1 и m_2 , имеющие температуры T_1 и T_2 , помещены в адиабатическую оболочку. Определить равновесную температуру тел и изменение энтропии системы при установлении теплового равновесия, если удельная теплоемкость обоих тел равна C.

12. Определить изменение энтропии при замерзании 1 г воды с температурой 273 К.

4. Распределения Максвелла и Больцмана

- 13. Определить наиболее вероятную, среднюю и среднеквадратичную скорости молекул хлора при температуре 500 К.
- 14. Определить среднюю тепловую энергию классического гармонического осциллятора при температуре Т.
- 15. Определить среднюю потенциальную энергию молекул азота в однородном поле силы тяжести, если температура атмосферы считается постоянной и равной Т.
- 16. Определить максимальную полярную теплоемкость газа CO_2 (молекула CO_2 является линейной). Оценить температуру «замораживания» колебательных степеней свободы молекулы CO_2 , если частоты ее продольных колебаний v_1 = $4\cdot10^{13}$ Γ ц, v_2 = $7\cdot10^{13}$ Γ ц и поперечного колебания v_3 = $2\cdot10^{13}$ Γ ц.

5. Процессы переноса

- 17. Получить формулы для коэффициентов диффузии и теплопроводности идеального газа.
- 18. Средняя длина свободного пробега молекул водорода при нормальных условиях равна $1,3\cdot 10^{-7}$ м. Определить газокинетический диаметр молекулы водорода.
- 19. Сколько столкновений за 1с испытывает атом неона при давлении 100 Па и температуре 600 К, если его газокинетический диаметр равен $2 \cdot 10^{-10}$ м?
- 20. Как изменится вязкость газа, если его объем уменьшить в два раза: 1) изотермически и 2) изобарически?

Учебные задания по физике для студентов второго курса дневного отделения

факультета «Метрологическая информатика» (IV семестр)

1. Первое начало термодинамики

1. Определить изменение внутренней энергии моля идеального одноатомного газа при изобарическом изменении объема от 10л до 20л при давлении 5атм.

- 2. В цилиндре под поршнем находится углекислый газ CO_2 массой 0.2кг. Какую работу совершает газ при его нагревании на 88° C, если давление газа считать постоянным?
- 3. С некоторой массой идеального газа совершен круговой процесс 1231, изображенный на диаграмме (V,T), где V объем и T абсолютная температура газа. Изобразить этот процесс на диаграмме (P,V), где P давление газа, и указать, на каких стадиях газ получал и отдавал тепло.

4. Объем 1 моля идеального газа с показателем адиабаты γ изменяется по закону V=a/T, где а — положительная постоянная, T — абсолютная температура. Определить количество тепла Q, полученное газом в этом процессе при увеличении температуры на ΔT .

2. Тепловые машины

- 5. Каким путем можно эффективнее повысить КПД машины Карно: увеличивая температуру нагревателя T_1 на ΔT при фиксированной температуре холодильника T_2 или понижая температуру холодильника T_2 на такую же величину ΔT при фиксированной температуре нагревателя T_1 ?
- 6. Идеальная тепловая машина, работающая по циклу Карно, получает тепло от нагревателя с температурой 200° С и отдает тепло холодильнику с температурой 15° С, совершая за один цикл работу 10МДж. Определить тепло, отдаваемое холодильнику за один цикл.
- 7. Определить работу, совершаемую идеальным газом массой m с молярной массой μ при изотермическом расширении от объема V_1 до объема V_2 при температуре T. Какое количество тепла получил газ при этом расширении?
- 8. Идеальная тепловая машина, работающая по обратному циклу Карно, получает тепло от воды с температурой 273 К и передает его кипятильнику с температурой 373 К. Сколько воды превращается в пар при образовании 1 кг льда, если удельная теплота плавления льда $3,3\cdot10^5$ Дж/кг и удельная теплота парообразования воды $2,26\cdot10^6$ Дж/кг?

3. Теплоемкость газов

- 9. Идеальный одноатомный газ расширяется согласно уравнению $PV^{1/2} = \text{const}$, где P- давление и V- объем газа. Определить молярную теплоемкость газа в этом процессе.
- 10. Определить молярные теплоемкости Cv и Cp для газовой смеси, состоящей из m_1 грамм азота и m_2 грамм аргона, если показатель адиабаты для азота γ_1 , а для аргона γ_2 . Газы считать идеальными, внутренняя энергия которых описывается выражением
- $U = v \frac{RT}{\gamma 1}$, где v число молей, R универсальная газовая постоянная.
- 11. Найти уравнение процесса для идеального газа, при котором теплоем-кость C газа меняется c температурой T по закону $C = \alpha T$, где $\alpha > 0$ постоянная.
- 12. Вычислить молярную теплоемкость идеального газа для процесса, в котором давление $P = \beta V$, где $\beta > 0$ постоянная и V объем газа. Считать, что молярная теплоемкость Cv не зависит от температуры.

4. Второе начало термодинамики

- 13. Определить изменение энтропии одного моля идеального газа при изохорном, изобарном, изотермическом и адиабатном процессах.
- 14. Определить изменение энтропии одного моля вещества при его плавлении и испарении. Удельная теплота и температура фазовых превращений считаются известными.
- 15. Два тела массами m_1 и m_2 , имеющие температуры T_1 и T_2 , помещены в адиабатическую оболочку. Определить равновесную температуру тел и изменение энтропии системы при установлении теплового равновесия, если удельная теплоемкость обоих тел равна C.
- 16. Определить изменение энтропии при замерзании 1 г воды с температурой 273 К. Удельная теплота плавления льда $\lambda = 333 \cdot 10^3 \, \text{Дж/кг}$.

5. Уравнение Ван-дер-Ваальса

- 17. Определить плотность воды в критической точке, если для воды Pkp = 219 атм и Tkp = 374° C.
- 18. Определить внутреннее (молекулярное) давление воды, если в уравнении Ван-дер-Ваальса для воды $\mathbf{a} = 5.5 \cdot 10^6 \, (\text{атм·см}^6) / \text{моль}^2$.
- 19. Считая, что жидкость в процессе испарения подчиняется уравнению Ван-дер-Ваальса, а удельная теплота испарения q равна работе против силы внутреннего давления жидкости, оценить величину q с помощью величины внутреннего давления P и плотности жидкости ρ .
- 20. Выразить давление, температуру и объем 1моля вещества в критической точке через постоянные а и b уравнения Ван-дер-Ваальса.

6. Распределение Максвелла

- 21. Определить наиболее вероятную, среднюю и среднеквадратичную скорости молекул хлора при температуре 500 К.
- 22. Как зависит от давления средняя скорость молекул идеального одноатомного газа при адиабатном процессе?
- 23. Определить среднеквадратичную частоту вращения молекулы кислорода относительно оси, проходящей через центр масс молекулы перпендикулярно её оси симметрии, если температура газа $T=300~\mathrm{K}$ и момент инерции молекулы относительно заданной оси $I=19,2\cdot10^{-40}~\mathrm{r\cdot cm}^2$.
- 24. Определить максимальную молярную теплоемкость газа CO_2 (молекула CO_2 является линейной). Оценить температуру «замораживания» колебательных степеней свободы молекулы CO_2 , если частоты ее продольных колебаний v_1 = $4\cdot10^{13}$ Γ ц, v_2 = $7\cdot10^{13}$ Γ ц и поперечного колебания v_3 = $2\cdot10^{13}$ Γ ц.

7. Распределение Больцмана

- 25. Определить среднюю тепловую энергию классического гармонического осциллятора при температуре Т.
- 26. Определить среднюю потенциальную энергию молекул азота в однородном поле силы тяжести, если температура атмосферы считается постоянной и равной Т.
- 27. В поле тяжести Земли находятся пылинки с массой $m = 2 \cdot 10^{-18}$ г и объемом $V = 10^{-15}$ см³. Определить высоту h, на которой концентрация пылинок в 2 раза меньше их концентрации вблизи земной поверхности. Давление воздуха $P = 10^5$ Па и его температуру T = 300 К считать постоянной.
- 28. Определить теплоемкость газа, находящегося в однородном поле силы тяжести при температуре Т, если число молекул газа равно N.

8. Процессы переноса

- 29. Получить формулы для коэффициентов диффузии и теплопроводности идеального газа.
- 30. Средняя длина свободного пробега молекул водорода при нормальных условиях равна $1,3\cdot10^{-7}$ м. Определить газокинетический диаметр молекулы водорода.
- 31. Сколько столкновений за 1 с испытывает атом неона при давлении 100 Па и температуре 600 К, если его газокинетический диаметр равен $2 \cdot 10^{-10}$ м?
- 32. Как изменится вязкость газа, если его объем уменьшить в два раза: 1) изотермически и 2) изобарически?

Дополнительные задачи

- 1. Построить графики изобарического процесса для идеального газа в переменных (V, T), (P, V), (P, T), где V объём, P давление и T температура.
- 2. С помощью молекулярно-кинетической теории показать, что при квазистатическом перемещении поршня в теплоизолированном цилиндре, заполненном идеальным одноатомным газом, давление P и объем V газа связаны уравнением $PV^{5/3} = Const.$
- 3. На диаграмме (P, V), где P давление и V объем идеального газа с показателем адиабаты γ , изображен цикл Отто, где 12 адиабатное сжатие, 23 изохорное нагревание, 34 адиабатное расширение и 41 изохорное охлаждение. Определить КПД цикла Отто.

- 4. Доказать, что при установлении теплового равновесия в системе, описанной в задаче №11, полная энтропия возрастает.
- 5. Определить плотность воды в критической точке, где давление 219 атм. и температура 374°C.
- 6. Считая, что жидкость в процессе испарения подчиняется уравнению Ван-дер-Ваальса, и, рассматривая удельную теплоту испарения как величину работы против сил внутреннего давления жидкости, оценить удельную теплоту испарения на основе плотности и внутреннего давления жидкости.
- 7. Выразить среднее число молекул газа, соударяющихся с единичной площадкой поверхности сосуда в единицу времени, через среднюю скорость молекул, если функция распределения молекул по скоростям является изотропной. Рассмотреть частный случай закона распределения Максвелла.
- 8. Используя классическую теорию теплоемкости, определить удельную теплоемкость при постоянном давлении газа следующего молярного состава: He = 20%, $H_2 = 30\%$ и $CH_4 = 50\%$.

- 9. Получить соотношение между коэффициентами диффузии D и подвижностью частицы B, рассматривая состояние термодинамического равновесия газа в однородном поле силы тяжести при температуре T.
- 10.Записать и решить уравнение движения сферической частицы в вязкой жидкости с учетом действия силы тяжести, силы Архимеда и силы Стокса. Частица движется в вертикальном направлении.

СОДЕРЖАНИЕ

ЛАБОРАТОРНАЯ РАБОТА 1	1
Определение удельной теплоты плавления и изменения энтропии пр кристаллизации олова	
ЛАБОРАТОРНЫЕ РАБОТЫ 2 И 31	.0
ЛАБОРАТОРНАЯ РАБОТА 21	1
Определение отношения теплоёмкостей $\frac{C_P}{C_V}$ воздуха	. 1
ЛАБОРАТОРНАЯ РАБОТА 31	9
Определение удельной теплоемкости воздуха при постоянном давлении — C_P	9
ЛАБОРАТОРНАЯ РАБОТА 42	23
Определение коэффициента вязкости жидкостей по методу Стокса 2	23
ЛАБОРАТОРНАЯ РАБОТА 52	26
Измерение коэффициента теплопроводности воздуха методом нагретой нити	26
ЛАБОРАТОРНАЯ РАБОТА 6	35
Измерение коэффициента внутреннего трения (вязкости) воздуха и средней длины свободного пробега молекул воздуха	
ЛАБОРАТОРНАЯ РАБОТА 7	39
Экспериментальное исследование распределения термоэлектронов по энергиям	
ЛАБОРАТОРНАЯ РАБОТА 84	4
Изучение эффекта Джоуля-Томсона	4
УЧЕБНЫЕ ЗАДАНИЯ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ВТОРОГО КУРСА ДНЕВНОГО ОТДЕЛЕНИЯ4	6
1. Первое начало термодинамики Ошибка! Закладка не определена	4.
2. Тепловые машиныОшибка! Закладка не определена	
3. Второе начало термодинамики. Ошибка! Закладка не определена	
4. Распределения Максвелла и Больцмана Ошибка! Закладка н определена.	E
5. ПРОЦЕССЫ ПЕРЕНОСАОШИБКА! ЗАКЛАДКА НЕ ОПРЕДЕЛЕНА	4.

Дополнительные задачи4	46
------------------------	----