CODEC

Codage / Décodage (Compression / Décompression)

Introduction

Transmission analogique : le procédé reproduit la forme même du signal que l'on veut transmettre.

Transmission numérique : on traduit le signal en une suite de bits.

Transmission numérique

signal analogique

signal numérique

1100100011

avantages :

- transmission de 0 et de 1
- multiplexage simplifié
- possibilité de rajouter des informations

remarque :

 le signal transmis est parfois transformé à nouveau en un signal analogique

Chaîne de transmission

Chaîne de transmission

- échantillonnage
- quantification
- compression
- cryptage
- codage canal (contre les erreurs)
- unité de mise en forme (bande de base ou modulation)

Synoptique d'une chaîne de transmission

Qualité d'un système de transmission

- Occupation spectrale du signal émis
- Débit de transmission
- Complexité du codec
- Probabilité d'erreur transmis par bit transmis faible

Exemple d'une transmission numérique

- Codage MIC 30 voies : signal téléphonique entre 2 CAA
 - Signal analogique [300; 3400 Hz]
 - Fréquence d'échantillonnage f_e = 8 kHz
 - Quantification non linéaire sur 256 niveaux
 - Codage sur 8 bits
 - Débit d'une voie D = 64 kbits/s
 - Multiplexage temporel

Numérisation

- Elle consiste à transformer un signal analogique en signal numérique.
- Elle se décompose en deux étapes :
 - l'échantillonnage,
 - la quantification.

Échantillonnage

 Cette opération consiste à transformer un signal analogique (continu en temps et en amplitude) en signal discret (discontinu en temps et continu en amplitude); en capturant des valeurs (échantillons) du signal de façon périodique, à la période Te.

Échantillonnage

 u*(t) est un signal échantillonné : discontinu en temps mais continu en amplitude

Problème lié à l'échantillonnage

• Théorème de Shannon:

Un signal analogique échantillonné à bande passante limitée [0 ; f_{max}] peut être reconstruit correctement à partir de ses échantillons si f_{e} > 2 f_{max}

Filtre anti-repliement (anti-aliasing)

Étude spectrale

Spectre du signal à échantillonner :

Étude spectrale du signal échantillonné

Si Shannon n'est pas vérifié!

Réception d'un signal échantillonné

- Il faut « re-fabriquer » un signal analogique à partir des échantillons :
 - idéalement, il faut relier les échantillons entre eux;
- D'après l'étude spectrale :
 - filtre passe-bas idéal de fréquence de coupure fe/2
- En réalité, on utilise un bloqueur d'ordre 0 (+ filtre passe-bas).

Quantification

 On cherche à convertir un signal échantillonné (dont l'amplitude peut prendre une infinité de valeurs) en une séquence de caractères discrets, issus d'un alphabet fini de N caractères.

Exemple de quantification

- Numérisation sur n = 3 bits,
 - $d'où N = 2^3 = 8 \text{ niveaux},$
 - pas de quantification $q = \Delta U / N$

Définitions

- La résolution du convertisseur est le nombre n de bits sur lequel sont codés les niveaux de tension;
- Le pas de quantification est appelé quantum.
 C'est la plus petite variation de tension que le convertisseur peut coder.
- A une tension u correspond un nombre numérique Num.

Retour à l'exemple

- Résolution : n
- Nbre de niveaux (valence): N = 2ⁿ
- Quantum : $q = \Delta U / N = \Delta U / 2^n$
- Valeur de Num :
 - Num q < u < (Num + 1) q
 - Num = Partie entière (u/q)

Débit de transmission

Débit : nombre de bits transmis par seconde.

$$-$$
 D = n fe

Exemple de transmission

- u(t) = 1 V
- valeur transmise 001
- en réception

$$0.625 \text{ V} < u_q < 1.25 \text{ V}$$

 on choisit la valeur centrale

soit
$$u_{q} = 0.9375 \text{ V}$$

Reconstitution du signal quantifié

- L'émetteur transmet l'identité de l'intervalle dans lequel se trouve la valeur instantanée du signal.
- Le récepteur reconstitue de son mieux la valeur du signal correspondante; il admet qu'elle se trouve au milieu de l'intervalle.
- y = Num * q + q/2

Erreur de quantification

 C'est la différence qu'il existe entre le signal source et le signal régénéré.

•
$$\mathcal{E}_{q}(t) = u(t) - u_{q}(t)$$

•
$$| E_q(t) | < q / 2$$

Rapport signal à bruit (SNR) de quantification

- SNR = 10 log $(p_u(t) / P_q)$
 - p_u(t) puissance instantanée du signal analogique
 - P_q puissance moyenne de l'erreur de quantification.
- Plus SNR est grand moins le bruit est important.
- SNR = $6n + 20log(u(t)/U_{max}) + 4.7$

Limite de la quantification linéaire

Améliorations

Principe de la quantification non uniforme

Compression linéaire

William PUECH

Compression par segments

MIC par segments

P 1 2 3 4 5 6 7

bit de polarité 3 bits codent les 8 segments

4 bits codent 16 niveaux par segment

Problème

- D = nf_e = 8*8. 10^3 = 64 kbits/s
- Débit trop grand pour système GSM ou voix sur IP.
 - GSM: nécessité de rajouter des bits de correction d'erreurs car « lignes » de transmission très peu sûres,
 - voix sur IP : partage de la bande passante disponible entre voix et données.

Modulations différentielles

 Principe: les modulations numériques différentielles quantifient non pas la valeur instantanée du signal mais la différence entre l'échantillon à l'instant t et l'échantillon précédent.

Modulations différentielles

Modulation Delta

- C'est une modulation numérique différentielle caractérisée par :
 - une quantification à un seul bit
- Ses paramètres sont :
 - la fréquence d'échantillonnage,
 - le pas de quantification,
 - le débit D = f_e.

Principe du MIC A

Limites du MIC Δ

Saturation de pente

Granularité

Autres modulations différentielles

- Modulation PCM différentielle (DPCM)
 - Modulation Delta avec n ≠ 1
- Modulation Delta-Adaptative
 - Le pas de quantification est « adaptable »
- Modulation DPCM Adaptative (ADPCM)
 - même qualité que PCM à 32 kbits/s, acceptable jusqu'à 16 kbits/s.

Application à la vidéo

Compression MPEG

se base sur le fait que dans une séquence vidéo, la majorité des scènes sont fixes ou bien changent très peu ; il suffit alors de décrire seulement le changement d'une image à l'autre.

- Succession des Frames :
 - IBBPBBPBBP...

Autres techniques de codage de la voix

- Quantification vectorielle : regrouper les échantillons pour les transmettre, fabrication d'un « dictionnaire ».
- Codage par prédiction : on reconstruit la parole à partir d'un filtre et d'une suite d'impulsions (sons voisés).

Principe codage GSM

- Echantillonnage à 8 kHz sur 20 ms :
 - 160 échantillons codés sur 13 bits.
- On transmet en fait seulement 260 bits :
 - 36 bits: coefficients du premier filtre LPC,
 - 4 * 9 bits : coefficients du deuxième filtre LTP,
 - 4*(3*13+6): amplitudes des impulsions du signal d'excitation RPE.
- Débit = 13 kbits/s

Compression

- Cette opération consiste à réduire la taille d'un fichier numérique (texte, image, son, vidéo ...)
- Quotient de compression
 - Q = nbre bits image compressée / nbre bits image originale

Exemple de compression

 Nous sommes jeudi. J'arriverai à la gare demain soir : le vendredi 6 novembre à 20h30.

Serai à la gare le 6-11 à 20h30.

Diminution de la robustesse aux erreurs

 Nous sommes jeudi 5. J'arriverai à la gar demain soir : le vendredi 6 novembre à 20h30.

Serai à la gare le 8-11 à 20h30

2 types de compression

- Compression sans perte :
 - Codage RLE (Run Length Encoding),
 - Codage Huffman,
 - Codage LZW.
- Compression avec pertes:
 - MP3, Ogg Vorbis,
 - JPEG,
 - MPEG.

Compression sans pertes

Codage RLE :

 Toute suite de bits identiques est remplacée par un couple (nbre occurrence, bit).

Codage Huffman :

 Coder ce qui est fréquent sur peu de place et coder sur des séquences plus longues ce qui revient rarement.

Codage LZW (code zip et format gif)

 Des successions de caractères se retrouvent plus souvent que d'autres; on les remplace par un nouveau caractère, en construisant au fur et à mesure un dictionnaire.

Compression avec pertes

- Pour les fichiers multi-média car le récepteur (Système auditif, SVH) n'est pas sensible à toutes les variations (fréquences) du signal.
- MP3, Ogg Vorbis, JPEG, MPEG...
- Ces compressions se basent sur une autre représentation du signal (représentation fréquentielle et non temporelle)

Représentations d'un même signal

 Représentation temporelle : évolution du signal avec le temps.

 Représentation fréquentielle (spectre) : amplitude des fréquences présentes dans le signal

Cas particulier : le « la »

Flûte

fondamental: 440 Hz 3 harmoniques

Un autre « la »

Piano

fondamental: 440 Hz beaucoup plus d'harmoniques

Principe de la compression MP3

- Traduction des échantillons temporels en représentation fréquentielle (TFD: Transformée de Fourier Discrète),
- Suppression des fréquences hautes,
- Suppression des fréquences masquées,
- Codage Huffman pour traduire les données.

Exemple de compression MP3

Comparaison avec la compression Ogg Vorbis

- Débit variable : le débit s'adapte à la musique pour conserver une qualité sonore constante.
- Bitrate : débit instantané.
- CBR (Constant Bit Rate) / VBR (Variable Bit Rate)

Retour sur la compression JPEG

- Transformation du format RGB en Luminance / Chrominance,
- Ré-échantillonnage de la chrominance,
- Découpage de l'image en bloc 8*8,
- Application de la fonction DCT (Discrete Cosinus Transform)
- Quantification de chaque bloc,
- Lecture Zig-Zag,
- Encodage de l'image avec Huffman.

Exemple compression JPEG

Image Originale

Transformation du format RGB

Changement espace couleurs Y, Cb, Cr

Ré-échantillonnage de le chrominance

Application de la DCT

DCT de Y (même taille)

Intérêt de la DCT

Conclusion

- Choix d'un codec :
 - signal source,
 - complexité du codec,
 - débit,
 - retard de reconstruction,
 - tenue aux erreurs de transmission,
 - qualité (différences entre signal reconstitué et signal initial)

D'autres liens

- Codage vidéo, formats CIF, QCIF
- Codage JPEG et JPEG2000

Annexe Calcul de la DCT

$$F(u,v) = \frac{C_u}{2} \frac{C_v}{2} \sum_{y=0}^{7} \sum_{x=0}^{7} f(x,y) \cos \left[\frac{(2x+1)u\pi}{16} \right] \cos \left[\frac{(2y+1)v\pi}{16} \right]$$

$$C_{\mathbf{u}} = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } \mathbf{u} = 0, \\ 1 & \text{if } \mathbf{u} > 0 \end{cases}; C_{\mathbf{v}} = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } \mathbf{v} = 0, \\ 1 & \text{if } \mathbf{v} > 0 \end{cases}$$

Exercice

- Quelle fréquence d'échantillonnage choisiriez-vous pour :
 - le signal téléphonique sachant que le canal entre l'abonné et le CAA a une bande passante égale à [300 Hz; 3400 Hz];
 - un signal audio ?

Exercice

- Un système d'enregistrement de CD échantillonne chacune des deux voies stéréo à la fréquence de 44.1 kHZ.
 - Expliquer le choix de la fréquence d'échantillonnage.
 - Donner la valeur du SNR si chaque échantillon est codé sur 8 bits sachant que : SNR = 1.76 + 6.02n
 - En fait un SNR de 50 dB est perçu comme un léger souffle par l'oreille humaine ; déterminer le nombre de bits nécessaires pour avoir un SNR supérieur à 80 dB.
 - Pourquoi, d'après vous, les échantillons sont codés sur 16 bits.
 - Quel est le débit du système d'enregistrement?

Exercice 2

- On souhaite transmettre une image de télévision de 576 lignes et 720 points par ligne.
- Calculer le nombre de bits nécessaires pour coder une image sans compression au format RGB, au format luminance / chrominance. On suppose que l'on utilise 1 octet pour chaque « couleur ».
- « Quel est l'intérêt de ce deuxième format ?
- Calculer alors le nombre de bits nécessaires si on utilise un souséchantillonnage 4-2-2 (2h1v), puis 4-2-0 (2h2v).
- Dans chaque cas, calculer la quantité de données pour stocker 1 heure 30 de vidéo.
- Conclure connaissant la capacité d'un DVD.