

Task #2 Two boxes have masses $m_1 = 20$ kg and $m_2 = 10$ kg and are sitting on a frictionless surface connected by a massless cord. If they are pulled with an applied force of $F_A = 50$ N, calculate (a) their acceleration and (b) the tension in the cord connecting them.

Task #2 Two boxes have masses $m_1 = 20$ kg and $m_2 = 10$ kg and are sitting on a frictionless surface connected by a massless cord. If they are pulled with an applied force of $F_A = 50$ N, calculate (a) their acceleration and (b) the tension in the cord connecting them.

Task #3 Two masses $m_1 = 4$ kg and $m_2 = 2$ kg are attached by a string that hangs over a frictionless pulley. What is (a) the tension on the string and (b) the acceleration of the masses? (This is known as an $Atwood\ Machine$)

Task #3 Two masses $m_1 = 4$ kg and $m_2 = 2$ kg are attached by a string that hangs over a frictionless pulley. What is (a) the tension on the string and (b) the acceleration of the masses? (This is known as an $Atwood\ Machine$)

Task #4 We now have what is called a *Modified Atwood Machine* with $m_1 = 4$ kg and $m_2 = 3$ kg. What is (a) the tension on the string and (b) the acceleration of the masses? Again, the surface is frictionless.

Task #4 We now have what is called a *Modified Atwood Machine* with $m_1 = 4$ kg and $m_2 = 3$ kg. What is (a) the tension on the string and (b) the acceleration of the masses? Again, the surface is frictionless.

