INFSCI 2809: Spatial Data Analytics Midterm Exam

Student Name: Zechen Wang
PITTID: zew20@pitt.edu

PART A

I. Maps

The map for 'PALocs':

Random Quadrat Sample Approach - PALocs

The map for 'PACoals':

Random Quadrat Sample Approach - PACoals

II. Tables

The table for 'PALocs':

	K	X	К – μ	$(K-\mu)^2$	$X(K-\mu)^2$
1	0	22	-1.1167	1.24694	27.4328
2	1	77	-0.1167	0.01361	1.04806
3	2	20	0.88333	0.78028	15.6056
4	3	1	1.88333	3.54694	3.54694
Total		120			47.6333

The table for 'PACoals':

	K	X	Κ – μ	$(K-\mu)^2$	$X(K-\mu)^2$
1	0	202	-16.424	269.748	54489.1
2	35	2	18.576	345.068	690.136
3	166	1	149.576	22373	22373
4	9	1	-7.424	55.1158	55.1158
5	42	1	25.576	654.132	654.132
6	102	1	85.576	7323.25	7323.25
7	3	2	-13.424	180.204	360.408
8	57	1	40.576	1646.41	1646.41
9	83	1	66.576	4432.36	4432.36
10	145	1	128.576	16531.8	16531.8
11	51	1	34.576	1195.5	1195.5
12	123	1	106.576	11358.4	11358.4
13	1	3	-15.424	237.9	713.699
14	50	1	33.576	1127.35	1127.35
15	25	1	8.576	73.5478	73.5478
16	38	1	21.576	465.524	465.524
17	10	1	-6.424	41.2678	41.2678
18	2	1	-14.424	208.052	208.052
19	40	1	23.576	555.828	555.828
20	169	1	152.576	23279.4	23279.4
21	259	1	242.576	58843.1	58843.1
22	82	1	65.576	4300.21	4300.21
23	41	1	24.576	603.98	603.98
24	63	1	46.576	2169.32	2169.32
25	299	1	282.576	79849.2	79849.2
26	178	1	161.576	26106.8	26106.8
27	27	2	10.576	111.852	223.704
28	113	1	96.576	9326.92	9326.92
29	24	1	7.576	57.3958	57.3958
30	97	1	80.576	6492.49	6492.49
31	6	2	-10.424	108.66	217.32
32	135	1	118.576	14060.3	14060.3
33	195	1	178.576	31889.4	31889.4
34	191	1	174.576	30476.8	30476.8
35	130	1	113.576	12899.5	12899.5
36	5	1	-11.424	130.508	130.508
37	321	1	304.576	92766.5	92766.5
38	194	1	177.576	31533.2	31533.2

39	16	1	-0.424	0.17978	0.17978
40	159	1	142.576	20327.9	20327.9
41	168	1	151.576	22975.3	22975.3
42	138	1	121.576	14780.7	14780.7
43	78	1	61.576	3791.6	3791.6
Total		250			611397

III. Decisions

For 'PALocs':

- If I use large size and large number of quadrats, the VMR is less than 1.0, indicates an evenly spaced arrangement;
- If I use large size and small number of quadrats, the VMR is less than 1.0, indicates an evenly spaced arrangement;
- If I use small size and large number of quadrats, the VMR is around 1.0 (sometimes smaller than, sometimes larger than, depending on the random situation), indicates that most points are evenly spaced, but some points have a tendency toward clustering in the pattern;
- If I use small size and small number of quadrats, the VMR is around 1.0. In this situation, the random approach does not capture the feature of the map very well. Therefore, this result is less important than previous.
- **Conclude**: based on VMR, the data set is randomly scattered.

For 'PACoals':

- If I use large size and large number of quadrats, the VMR is larger than 1.0 (VMR > 300 in most cases), indicates a clustered arrangement;
- If I use large size and small number of quadrats, the VMR is larger than 1.0 (VMR > 200 in most cases), indicates a clustered arrangement;
- If I use small size and large number of quadrats, the VMR is larger than 1.0 (around 50 in most cases), indicates a clustered arrangement;
- If I use small size and small number of quadrats, the VMR is larger than 1.0 (fluctuate widely, but always larger than 1.0), indicates a clustered arrangement;
- **Conclude**: based on VMR, the data set is clustered.

PART B

I. G function plots

For 'PALocs':

For 'PACoals':

II. F function plots

For 'PALocs':

For 'PACoals':

III. Comparing the results of G and F function

[Basic knowledge: if events are clustered in a corner of the study region, G rises sharply at short distances because many events have a very close nearest neighbor. The F function, on the other hand, it likely to rise slowly at first, but more rapidly at longer distances, because a good proportion of the study area is fairly empty, so that many locations are at quite long distances from the nearest event in the pattern. For evenly spaced patterns, the opposite is true.]

For 'PALocs':

Form the plot, F function rises faster than G function at the beginning, based on the basic knowledge, it indicates that the data set is evenly spaced.

For 'PACoals':

G function, F function - PACoals

From the plot, G function rises sharply and much faster than F function, based on the basic knowledge, it indicates that the data set is clustered.