

计算机组成原理实验

授课老师: 吴炜滨

大纲

- ➤ Logisim入门实验
 - LED计数电路
 - 数据编码器
 - 7段数码管显示驱动电路

实验目的

- Logisim快速入门
 - · 熟悉Logisim基本功能,常用操作
 - · 熟悉Logisim基本组件库
 - 掌握Logisim自动生成电路的方法
- 实验基础
 - 组合逻辑电路设计基本概念
- 实验任务
 - 绘制LED计数电路
 - 构建一个数据编码器
 - 设计7段数码管显示驱动电路

大纲

- ➤ Logisim入门实验
 - LED计数电路

- 按图绘制电路
 - · 增加共享的标签: LED计数

■ 熟悉I/O引脚

- 给出引脚具体标签
- 尝试快捷键
 - 方向键、ALT+数字
- 熟悉引脚所有属性

■ 熟悉逻辑门

- 熟悉逻辑门所有属性
- 尝试快捷键
 - 方向键、数字键、ALT+ 数字

- 功能测试
 - 用输出1的个数来表示输入引 脚的编号

封装子电路

■ 封装子电路

封装子电路

封装子电路

- 修改默认封装
 - 调整为正方形边框
 - 修改边框的粗细以及填充颜色
 - 调整引脚位置
 - 增加引脚说明
- 快捷键使用
 - shift +鼠标拖拽:绘制正方形

子电路功能测试

- 按图绘制电路
 - LED计数子电路
 - 增加按钮, LED指示灯

子电路功能测试

■功能测试

· 观察LED指示灯点亮的数目 是否和按键的编号一致

大纲

- ➤ Logisim入门实验
 - 数据编码器

- LED计数电路
 - 利用LED指示灯的数目来表示按键的编号
 - 较原始
- 直接用三位的二进制数输出按钮的编号
 - 5输入的按键编码器: 生成按键的编码

LED计数

- ■輸入
 - 5个,不同编号的按键
- 输出
 - 3位,按键编码值
- 设计方法
 - 真值表 → 自动生成电路

- 5输入的完整的真值表
 - 输入

- 5输入的完整的真值表
 - 输出

■ 5输入的完整的真值表

- 高位是Out3, 低位 Out1
- 优先级: 5号按键> 4号按键> 3号按键> 2号按键> 1号按键
- 被按下的最高优先级的按键如果是5号按键,输出应该是5,输出的二进制信号值应该是 101
- 被按下的最高优先级的按键如果是4号按键,输出应该是4,输出的二进制信号值应该是 100

•

自动生成电路

 \supset Combinational Analysis - \square X

文件 编辑 项目 模拟 窗口 帮助

输入 输出 真值表 表达式 最小项

In1	In2	In3	In4	In5	Out1	Out2	Out3
0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	1
0	0	0	1	0	0	0	1
0	0	0	1	1	1	0	1
0	0	1	0	0	1	1	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	1
0	0	1	1	1	1	0	1
0	1	0	0	0	0	1	0
0	1	0	0	1	1	0	1
0	1	0	1	0	0	0	1
0	1	0	1	1	1	0	1

■ 自动生成的电路

■ 化简后的电路

- 子电路封装
 - 修改默认封装如下

5输入编码电路测试

- 在LED计数测试电路基础上
 - 增加编码器
 - 增加分线器
 - 增加探针
 - 增加接地
 - 增加电源
 - 增加16进制显示器

分线器

■功能

• 将多位宽线路中的某些位分离出来, 或将多个线路合并为一个多位宽线路

属性	朝向	输出	位宽	外观	位x
功能	器件方向	分线端端口数	汇聚端位宽	外观选择	汇聚端第x位映射至分线端端口号

分线器

选区:	分离器(Splitter)
朝向	东
输出	3
位宽	8
外观	左手性
位0	0 (顶部)
位1	0 (顶部)
位2	0 (顶部)
位3	1
位4	1
位5	1
位6	2 (底部)
位7	2 (底部)

分线器

选区:	分离器(Splitter)
朝向	东
输出	3
位宽	8
外观	左手性
位0	0 (顶部)
位1	0 (顶部)
位2	0 (顶部)
位3	1
位4	1
位5	1
位6	2 (底部)
位7	2 (底部)

选区: 分离器(Splitter)					
朝向	东				
输出	3				
位宽	8				
外观	左手性				
位0	O (顶部)				
位1	O (顶部)				
位2	O (顶部)				
位3	1				
位4	O (顶部)				
位5	1				
位6	2 (底部)				
位7	无				

5输入编码电路测试

- 在LED计数测试电路基础上
 - 增加编码器
 - 增加分线器
 - 增加探针
 - 增加接地
 - 增加电源
 - 增加16进制显示器

16进制显示数码管

小数点控制

5输入编码电路测试

大纲

- ➤ Logisim入门实验
 - 7段数码管显示驱动电路

■ 功能: 利用7段数码管显示4位二进制输入对应的16进制输出值

• 输入: 4位二进制值

• 输出: 7段显示管7个输出控制信号

• 小数点单独进行控制

- 7段数码管点亮逻辑
 - 设计方法: 真值表→自动生成电路

- 构建输入
 - 输入高位到低位
 - X3到X0

■ 构建输出

Seg_1 Seg_2 Seg_3 Seg_4

Seg_5 Seg_6 Seg_7

■ 填写真值表

选中某个输出值,长按0 将按序清零所有输出值

■ 填写真值表

1	2	3	4	5	6	П	8	9	
1	2	3	4	5	6	7	8	9	0

Seg_1 Seg_2 Seg_3 Seg_4

Seg_5 Seg_6 Seg_7

■自动生成电路

7段数码管显示驱动自动测试

选区: 计数键	器(Counter)
数据位宽	4
最大值	0xf
溢出时操作	重新计数
触发方式	上升沿
标签	
标签字体	SansSerif 标准 12

■ 增加计数器、时钟

7段数码管显示驱动自动测试

- 驱动计数器
 - Ctrl+t 时钟单步
 - Ctrl+k时钟自动运行,开启自动测试

 □ Logisim: 实验3 数码管驱动测试 of Logisim 窗口 帮助 启用信号模拟 Ctrl+E 重置模拟器 Ctrl+R 信号传递一步 Ctrl+I Logisim* 实验1 LED计数 退出到 实验1 LED计数 实验2 5输入编 讲入到 实验2 5输入编 实验3 数码管 时钟前进一步 Ctrl+T 实验3 数码管 启用时钟模拟 Ctrl+K 实验3 数码管 2路选择器(1 时钟频率 4.1 KHz 2路选择器(1 2路选择器自动 2 KHz 记录器... 4位无符号比较 1 KHz 16位无符号比较器 16位无符号比较器自动测试 512 Hz 4位并行加载寄存器 16位并行加载寄存器 256 Hz 4位BCD计数器 128 Hz BCD计数器状态转换(自动生成) RCD计数器输出函数(自动生成) 64 Hz 电路:实验3数码管驱动测试 电路名称 实验3 数码管驱动测试 32 Hz 共享的标签 16 Hz 共享的标签朝向 8 Hz 共享的标签字体 SansSerif 标准 12 4 Hz 2 Hz 1 Hz

集成到LED计数测试电路

谢谢!