Learning Latent Forests for Medical Relation Extraction

Zhijiang Guo*, Guoshun Nan*, Wei Lu and Shay Cohen

Medical Relation Extraction

Input Sentence

Crystallographic analysis of the human *phenylalanine hydroxylase* catalytic domain with bound *catechol* inhibitors at 2.0 A resolution.

Output Relation

Down regulator

Sequence-based Methods

Dependency-based Methods

Sequence-based Method

Operates only on the text sequences, RNN (Liu et al., 2017) or **Transformer** (Verga et al., 2018) is used as the *sequence encoder*.

Dependency-based Method

Incorporates *dependency structures* into the model, **Graph LSTM** (Peng et al., 2017) or **GRN** (Song et al., 2019) is used as the encoder.

Dependency-based Method

Dependency-based models are able to *capture non-local relations* that are obscure from the surface form alone (Zhang et al., 2018).

Dependency Tree

Graph LSTM (Peng et al., 2017) is used to encode the *1-best* dependency tree generated by an off-the-shelf parser.

Dependency Tree

For the medical domain, *parsing accuracies drop significantly* (Lease and Charniak, 2005), which leads to *error propagation*.

Dependency Forest

Recent works (Song et al., 2019; Jin et al., 2020) use *dependency forests* that consist of arcs that a parser is *relatively confident* about.

Dependency Forest Construction

Edgewise (Song et al., 2019): keeps all the edges with scores greater than a threshold. Scores are given by a parser trained on news domain.

Dependency Forest Construction

KBests (Song et al., 2019): finds **K highest-scored trees**, then merge them by **combining identical dependency edges** to make the forest.

Dependency Forest Construction

FullForest (Jin et al., 2020): defines the forest as a 3-dimensional tensor.

Dependency Forest Construction

3D Tensor: each point representing the conditional probability $p(w_j, l/w_i)$ of one word w_i modifying another word w_j with a relation l.

Dependency Forest Construction

3D Tensor: use the dependency parser trained on the news domain to obtain the tensor and *adjust the parser by relation extraction loss*.

Deep bi-affine parser (Dozat and Manning, 2017)

Motivation

 Research Question: Can we build a model without relying on an out-of-domain parser?

Motivation

 Yes! We treat the dependency structure as a latent variable and induce it end-to-end.

Model

Model

Forest Inducer

• *Multi-head attention* is used to construct *N attention matrices*, which will be fed into the next module to obtain *N latent forests* in order to capture different dependencies in different representation subspaces.

Forest Inducer

• *Matrix-Tree Theorem* (Tutte, 1984; Koo et al., 2007) is used to induce *N* latent structures, i.e., edge-weighted dependency forests.

Model

Forest Encoder

• Given the generated latent forests, we use the *densely-connected* graph convolutional networks (Guo et al., 2019) as the encoder.

Data Statistics

Dataset	Relations	Domain	Train	Dev	Test
PGR	2	Medical	11,780	N/A	219
CPR	5	Medical	16,107	10,030	14,269
Semeval 10-task8	10	News	10,717	N/A	N/A

Results on medical dataset: PGR

Results on medical dataset: CPR

Results on news dataset: Semeval-2010 task 8

Type	Model	w Parser	F1
Tree	Song et al., 2019	Y	84.6
Tree	Zhang et al., 2018	Υ	84.8
Forest	Jin et al., 2020	Υ	85.7
Forest	Guo et al., 2019	Υ	85.7
Forest	Song et al., 2019	Υ	86.3
Forest	Ours	N	85.7

Conclusion

 Instead of using an out-of-domain parser, we treat the dependency structure as a latent variable and induce the task-specific forests.

• Extensive experiments show that our proposed method is able to achieve state-of-the-art results on *medical relation extraction* tasks.

Thank you!

Code Available:

https://github.com/Cartus/Latent-Forests

