1 Approximation Algorithm II Homework 1

2 Approximation Algorithm II Homework 2

A Primal-dual algorithm for Shortest path Problem Symbols:

- G = (V, E) connected graph
- $w: E \to \mathbb{R}_+$ cost function on edges
- $S = \{S | S \subset V \text{ and } s \in S \text{ and } t \notin S\}$, which are cuts cross s, t.
- $\delta(S) = \{e \in E | |S \cap e| = 1\}$ which are edges crossing S

Question, find minimum cost path from s to t in G. Form of LP:

min
$$\sum_{e \in E} x_e \cdot w(e)$$
subject to
$$\forall S \in \mathcal{S} \quad \sum_{e: e \in \delta(S)} x_e \ge 1$$

$$\forall e \in E \qquad x_e \ge 0$$

Problem 2.1 What is the dual of this LP?

Solution:

$$\max \sum_{S \in \mathcal{S}} y_S$$
 subject to
$$\forall e \in E \quad \sum_{S: e \in \delta(S)} y_S \leq w(e)$$

$$\forall S \in \mathcal{S} \qquad y_S \geq 0$$

The primal-dual algorithm

- 1. $F \leftarrow \emptyset$
- $2. y \leftarrow 0$
- 3. while there is not path connecting s, t in F
 - Let C be the connected component of s in G' = (V, F).

- Increase y_C until some constaint become tight: $\exists e': \sum_{S:e \in \delta(S)} y_S = w(e')$
- $F \leftarrow F \cup \{e'\}$
- 4. return a path P in F connecting s,t (Prunning, just choose the path, not whole F)

Correctness

Problem 2.2 In how many iterations of the while loop can a given dual variable be increased?

Solution: Once. C is chosen only when there are e' crossing its boundary, after that, it's not connected component any more. \square

Problem 2.3 Using Q2, argue the algorithm terminates to a solution.

Solution: C is strictly increased every iteration. G is connected and finite, hence must stop for $s, t \in C$, hence a solution. \square

Approximation Ratio

Lemma 2.1 At any step, set F is a tree containing s.

Proof: Induction by |C|. When |C| = 1, obviouse. Assume when |C| = i - 1, F is a tree containing s, then the newly add edge e' = (u, v) must have one vertex in C and the other vertex in V - C because $e' \in \delta(C)$, then next step $F \cup \{(u, v)\}$ is still a tree. \square

Problem 2.4 Recall a tight lower bound between the value of the optimal fractional solution for the dual $val(y^*)$ and the value of the value of shortest path between s, t, denoted by P^* .

Solution: Note the fractional optimal x^* of primal equals to fractional dual

$$val(x^*) = val(y^*)$$

and x^* is the relaxation of the integral problem, so,

$$val(y^*) = val(x^*) \le P^*$$

.

Problem 2.5 Argue that the solution y is feasible for the dual.

Solution: In the while loop, any increasement will not violate the constraints, so the y_S 's are remaining feasible.

Problem 2.6 Combine Q4 and Q5, recall a tight lower bound between val(y) and P^* .

Solution: By definition $val(y) \leq val(y^*)$, hence

$$val(y) \le val(x^*) \le P^*$$

In the following, we want to show:

$$\sum_{e \in P} w(e) \le val(y)$$

Problem 2.7 Consider $e \in P$, what is the relationship between w(e) and $\sum_{S:e \in \delta(S)} y_S$?

Solution: The algorithm ensures the complementary slackness: e is included only if its contraints becomes tight, hence

$$\sum_{S:e\in\delta(S)}y_S=w(e)$$

Problem 2.8 Using Q7, give the relationship between $\sum_{e \in P} w(e)$ and y_s .

Solution:

$$\sum_{e \in P} w(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$

Problem 2.9 Using Q8, give relation between $\sum_{e \in P} \sum_{S:e \in \delta(S)} y_S$ and y_S and $|P \cap \delta(S)|$.

Solution:

$$\sum_{e \in P} \sum_{S: e \in \delta(S)} y_S = \sum_{S \in S} \sum_{e \in P} 1_{e \in \delta(S)} \cdot y_S$$
$$= \sum_{S \in S} y_S \cdot |P \cap \delta(S)|$$

We now want to prove the following:

$$\forall S, y_S > 0 \Rightarrow |P \cap \delta(S)| = 1$$

Assume not, then exists S, such that $y_S > 0$ but $|P \cap \delta(S)| \ge 2$

Problem 2.10 Using Lemma 2.1 and $y_S > 0$, explain the contradiction

Solution: $y_S > 0$ then it has to be some C during the iteration. If it exists, then choose maximal such C that $|P \cap \delta(C)| \geq 2$, then exists $e, e' \in P$, cross C, not matter to assume e = (u, v), e' = (u', v') and $u, u' \in C$ and $v, v' \in V - C$, $e \neq e'$.

But P is a path connecting s,t, we now have s-uv-t and s-u'v'-t, hence P must have shape s-uv-u'v'-t and s-u'v'-uv-t, i.e. s-uv-u'v'-uv-t, hence P have loop and contradict to $P \subset F$ must be a tree.

Problem 2.11 Conclude using Q6, Q9, Q10

Solution:

$$\sum_{e \in P} w(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$

$$= \sum_{S \in S} \sum_{e \in P} 1_{e \in \delta(S)} \cdot y_S$$

$$= \sum_{S \in S} y_S \cdot |P \cap \delta(S)|$$

$$= \sum_{S \in S} y_S$$

$$< val(y)$$

Problem 2.12 Explain why the pruning part is important, which question use this?

Solution: Q10. Or $|P \cap \delta(S)|$ might be great than 1.

Compare to Dijkstra's algorithm

Let $d(i) = w((s,i)), \forall (s,i) \in E$ and $d(i) = \infty$ for other. Let $D = \{s\}$.

Add min d(i)'s i to D and update all $j \notin D$ connected to i using the following:

$$d(j) = \min(d(i) + w(i, j), d(j))$$

Consider the primal-dual, start with $F = \emptyset$,

Increase the dual corresponding to the set of vertices induced by $F \cup \{s\}$ until some constraint becomes tight and adds the corresponding e to F.

Problem 2.13 Prove (s,i) is the first edge added to F iff i is the second vertex added to D (the first is s).

Proof: Edge cross the singleton cut $\{s\}$ are just edges of form (s,i). And $y_{\{e\}} \leq w(e)$, the first hitted e must have smallest w(e) = w(s,i), just the second one in Dijkstra algorithm.

We define a notion of time, initially the time is 0 and after we increased a dual variable by ϵ , the time is ϵ .

We now fix a set C_0 that is a connected component of F containing s at some time in the execution of the primal-dual algorithm.

Denote by a(e) the time at which constaint $\sum_{S:e\in\delta(S)} y_S = w(e)$ would become tight if we never stop to increase y_S (even if some other gets voilated)

Moreover, for all $j \notin C_0$, let $l(j) = \min_{(j,i) \in E} a(e)$.

Problem 2.14 Using l(j), which vertex of $V - C_0$ will be added to C_0 in the next iteration?

Solution: Let j be the one getting the minimum of l(j), this will be added to C_0

Problem 2.15 $S' = S \cup \{j\}$, which appear in $\delta(S') - \delta(S)$?

Solution: Edges of form (j, V - S').

Problem 2.16 How to modify l(k) for each $k \notin S'$ after j is added to S.

Solution:

$$l(k) \leftarrow \min(l(k), l(j) + w(j, k))$$

Problem 2.17 Using Q16 and $d(j)$, conclude about the order in which vertices are added to $G' = (V, F)$ of primal-dual and to D of Dijkstra.
Solution: $l(i)$ is updated in the same way as $d(i)$, hence the order of adding vertices in primal-dual and Dijkstra are same.
Complexity:
Problem 2.18 Based on Q13, what is the best known worst-case complexity for primal-dual algorithm?
Solution: Same as Dijkstra, hence $O(E \cdot V)$ or $O(E \cdot \log(V))$ using a heap. $\hfill\Box$