Claims

What is claimed is:

- 1 1. An arithmetic circuit comprising:
- 2 a plurality of registers;
- an arithmetic unit, for regarding, as inputs, values entered in said
- 4 multiple registers; and
- 5 a plurality of memories, wherein reading of multiple variables from said
- 6 plurality of memories to said plurality of registers is performed during
- 7 the same reading cycle by way of a pipeline process performed by said
- 8 arithmetic unit.
- 1 2. The arithmetic circuit according to claim 1, wherein said arithmetic unit is
- 2 a multiplier adder for, based on values x_1 , x_2 , x_3 and x_4 having an r-bit
- 3 length that are respectively input to a first register, second register, third
- register and fourth register, providing a result Q for $x_1 + x_2 \cdot x_3 + x_4$ having
- 5 a length of 2r bits or 2r+1 bits.
- 1 3. The arithmetic circuit according to claim 2, wherein said multiple
- 2 memories include a first memory and a second memory; and wherein, at
- 3 a stage for writing an operation result, which follows the operation stage
- of said pipeline process, lower r bits Q_L of said operation result Q are
- 5 recorded in said first memory, and upper bits Q_H of said operation result
- 6 Q, excluding said bits Q_L, are recorded in said fourth register, while at a
- 5 stage for reading variables from said registers, which follows said writing
- stage, simultaneously, a variable x_1 is read from said first memory and is
- 9 stored in said first register, and a variable x₃ is read from said second
- memory and is stored in said third register.

- The arithmetic circuit according to claim 3, wherein said first memory
 and said second memory are two-port memories having one data writing
 port and one data reading port.
- The arithmetic circuit according to claim 3, wherein said first memory is a two-port memory having one data writing port and one data reading port, while said second memory is a single-port memory having one port for the writing and reading of data.
- 1 6. The arithmetic circuit according to claim 1, wherein said arithmetic unit is a multiplier adder for, based on values x_1 , x_2 , x_3 , x_4 x_5 and x_6 , having an r-bit length, that are respectively input to a first register, a second register, a third register, a fourth register, a fifth register and a sixth register, and for providing the operation results Q for $x_1 + x_2 \cdot x_3 + x_4 \cdot x_5 + x_6$, which have a length of 2r bits or 2r+1 bits.
 - 7. The arithmetic circuit according to claim 6, wherein said multiple memories include a first memory, a second memory and a third memory; wherein, at a stage for writing an operation result, which follows the operation stage of said pipeline process, lower r bits Q_L of said operation result Q are recorded in said first memory, and upper bits Q_H of said operation result Q, excluding said bits Q_L, are recorded in said sixth register; and wherein, at a stage for reading variables to said registers, which follows said writing stage, simultaneously, a variable x₁ is read from said first memory and is stored in said first register, a variable x₃ is read from said second memory and is stored in said third register, and a variable x₅ is read from said third memory and is stored in said fifth register.

8.	The arithmetic circuit according to claim 7, wherein said first memory is
	a two-port memory having one data writing port and one data reading
	port, and said second memory and said third memories are single-port
	memories having one port for the writing and the reading of data.
	8.

- An arithmetic method using an arithmetic circuit that includes an
 arithmetic unit, which has multiple input registers and multiple memories,
 comprising the steps of:
 - performing an arithmetic operation based on values stored in said input registers;
 - writing the results of said arithmetic operation in said input registers or said memories; and reading multiple variables from said multiple memories and storing said variables in said multiple input registers during the

same pipeline stage.

- 10. The arithmetic method according to claim 9, wherein said arithmetic unit is a multiplier adder for, based on values x_1 , x_2 , x_3 and x_4 having an r-bit length that are respectively input to a first register, a second register, a third register and a fourth register, providing the operation results Q for $x_1 + x_2 \cdot x_3 + x_4$ having a length of 2r bits or 2r+1 bits.
- 1 11. The arithmetic method according to claim 10, wherein said multiple
 2 memories include a first memory and a second memory, further
 3 comprising:
 - a writing step in a pipeline process of said arithmetic unit for recording, in said first memory, lower r bits Q_L of said operation result Q, and for recording, in said fourth register, upper bits Q_H of said operation result Q, excluding said bits Q_L ; and

1

3

4

5

6

4

5

6

7

8	a reading step of performing, at the same reading stage in said
9	pipeline process, the reading of a variable x_1 from said first
10	memory and storing said variable x1 in said first register, and the
11	reading of a variable x₃ from said second memory and storing
12	said variable x₃ in said third register.

- 1 12. The arithmetic method according to claim 11, wherein said first memory 2 and said second memory are two-port memories having one data writing 3 port and one data reading port.
- 13. The arithmetic method according to claim 11, wherein said first memory 1 2 is a two-port memory having one data writing port and one data reading 3 port, while said second memory is a single-port memory having one port 4 for the writing and reading of data.
- 14. The arithmetic method according to claim 9, wherein said arithmetic unit 2 is a multiplier adder for, based on values x1, x2, x3, x4 x5 and x6, having an r-bit length, that are respectively input to a first register, a second register, a third register, a fourth register, a fifth register and a sixth register, and for providing the operation results Q for $x_1 + x_2 \cdot x_3 + x_4 \cdot x_5 + x_5 \cdot x_5 + x_5 \cdot x_5 \cdot x_5 + x_5 \cdot x_$ x₆, which have a length of 2r bits or 2r+1 bits.
- 1 15. The arithmetic method according to claim 14, wherein said multiple 2 memories include a first memory, a second memory and a third memory, 3 further comprising:

a writing step in a pipeline process of said arithmetic unit for recording, in said first memory, lower r bits Q_L of said operation result Q, and for recording, in said sixth register, upper bits QH of said operation result Q, excluding said bits QL; and

8	a reading step of performing, at the same reading stage of said
9	pipeline process, the reading of a variable x_1 from said first
10	memory and storing said variable \mathbf{x}_1 in said first register, the
11	reading of a variable x_3 from said second memory and storing
12	said variable x_3 in said third register, and the reading of a variable
13	$x_{\scriptscriptstyle 5}$ from said third memory and storing said variable $x_{\scriptscriptstyle 5}$ in said fifth
14	register.

1 16. The arithmetic method according to claim 15, wherein said first memory is a two-port memory having one data writing port and one data reading port, while said second and third memories are single-port memories having one port for the writing and reading of data.