

## 34.4 Registers

This section describes the internal registers of the I2C module. All register names described in this section are also referenced in other parts of the User's Manual by the module name prefix "I2Cm\_". For an overview of all internal module registers, see **Section 34.4**.

In the following, the registers of the I2C module are listed. First of all, some explanation on the access conditions is given.

#### **Special I2C Register Access Condition**

Besides the general register protection, the I2C module has two main modes that must be considered when programming the peripheral:

- **Configuration Mode:** In this mode the peripheral can be prepared for transmission and reception via the configuration registers, which are only writable in this mode. The peripheral is in the configuration mode when bit RUN is set to 0.
- **Run Mode:** In this mode the peripheral is ready to transmit or receive data. Its configuration registers are locked for write access which will generate a bus error. The peripheral is in the run mode when bit **RUN** is set to 1.

### **I2C Registers Overview**

There are the following blocks of registers (see Figure 354):

- Bus Peripheral Interface Registers
- Global Module Control Registers
- · FIFO Registers
- Basic Interrupt Registers
- Error Interrupt Source Registers
- Protocol Interrupt Source Registers



| Bus Peripheral<br>Interface Registers | Global Module<br>Control Registers  | FIFO<br>Registers                      |
|---------------------------------------|-------------------------------------|----------------------------------------|
| CLC1                                  | ID                                  | TXD                                    |
|                                       | RUNCTRL                             | TPSCTRL                                |
|                                       | ENDDCTRL                            | RXD                                    |
|                                       | FDIVCFG                             | RPSSTAT                                |
|                                       | FDIVHIGHCFG                         | FIFOCFG                                |
|                                       | ADDRCFG                             | MRPSCTRL                               |
|                                       | BUSSTAT                             | FFSSTAT                                |
|                                       | TIMCFG                              |                                        |
| Basic Interrupt<br>Registers          | Error Interrupt<br>Source Registers | Protocol Interrupt<br>Source Registers |
| RIS                                   | ERRIRQSM                            | PIRQSM                                 |
| IMSC                                  | ERRIRQSS                            | PIRQSS                                 |
| MIS                                   | ERRIRQSC                            | PIRQSC                                 |
| ICR                                   |                                     | •                                      |
|                                       |                                     |                                        |
| ISR                                   |                                     |                                        |

Figure 354 I2C Module Registers

The registers overview in **Table 303** shows the internal register names of the module instances, the offset addresses and the links to the names used in this specification.



Table 303 Register Overview - I2C (ascending Offset Address)

| Short Name  | Long Name                                                        | Offset             | Access     | Mode   | Reset                | Page  |  |
|-------------|------------------------------------------------------------------|--------------------|------------|--------|----------------------|-------|--|
|             |                                                                  | Address            | Read Write |        |                      | Numbe |  |
| CLC1        | Clock Control 1 Register                                         | 00000 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 45    |  |
| ID          | Module Identification<br>Register                                | 00008 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 59    |  |
| RUNCTRL     | RUN Control Register                                             | 00010 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 59    |  |
| ENDDCTRL    | End Data Control Register                                        | 00014 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 60    |  |
| FDIVCFG     | Fractional Divider<br>Configuration Register                     | 00018 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 63    |  |
| FDIVHIGHCFG | Fractional Divider High-<br>speed Mode Configuration<br>Register | 0001C <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 64    |  |
| ADDRCFG     | Address Configuration<br>Register                                | 00020 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 61    |  |
| BUSSTAT     | Bus Status Register                                              | 00024 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 62    |  |
| FIFOCFG     | FIFO Configuration Register                                      | 00028 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 69    |  |
| MRPSCTRL    | Maximum Received Packet<br>Size Control Register                 | 0002C <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 70    |  |
| RPSSTAT     | Received Packet Size Status<br>Register                          | 00030 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 68    |  |
| TPSCTRL     | Transmit Packet Size<br>Control Register                         | 00034 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 67    |  |
| FFSSTAT     | Filled FIFO Stages Status<br>Register                            | 00038 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 71    |  |
| TIMCFG      | Timing Configuration<br>Register                                 | 00040 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 64    |  |
| ERRIRQSM    | Error Interrupt Request<br>Source Mask Register                  | 00060 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 77    |  |
| ERRIRQSS    | Error Interrupt Request<br>Source Status Register                | 00064 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 77    |  |
| ERRIRQSC    | Error Interrupt Request<br>Source Clear Register                 | 00068 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 78    |  |
| PIRQSM      | Protocol Interrupt Request<br>Source Mask Register               | 00070 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 80    |  |
| PIRQSS      | Protocol Interrupt Request<br>Source Status Register             | 00074 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 81    |  |



Table 303 Register Overview - I2C (ascending Offset Address) (cont'd)

| Short Name | Long Name                                           | Offset             | Access     | Mode   | Reset                | Page   |  |
|------------|-----------------------------------------------------|--------------------|------------|--------|----------------------|--------|--|
|            |                                                     | Address            | Read Write |        |                      | Number |  |
| PIRQSC     | Protocol Interrupt Request<br>Source Clear Register | 00078 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 82     |  |
| RIS        | Raw Interrupt Status<br>Register                    | 00080 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 72     |  |
| IMSC       | Interrupt Mask Control<br>Register                  | 00084 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 73     |  |
| MIS        | Masked Interrupt Status<br>Register                 | 00088 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 74     |  |
| ICR        | Interrupt Clear Register                            | 0008C <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 75     |  |
| ISR        | Interrupt Set Register                              | 00090 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 75     |  |
| TXD        | Transmission Data Register                          | 08000 <sub>H</sub> | U,SV       | U,SV,P | Application<br>Reset | 67     |  |
|            | Reserved (03FFC <sub>H</sub> Byte)                  | 08004 <sub>H</sub> | BE         | BE     |                      |        |  |
| RXD        | Reception Data Register                             | 0C000 <sub>H</sub> | U,SV       | BE     | Application<br>Reset | 68     |  |
|            | Reserved (03FFC <sub>H</sub> Byte)                  | 0C004 <sub>H</sub> | BE         | BE     |                      |        |  |
| CLC        | Clock Control Register                              | 10000 <sub>H</sub> | U,SV       | SV,E,P | Application<br>Reset | 49     |  |
| MODID      | Module Identification<br>Register                   | 10004 <sub>H</sub> | SV         | BE     | Application<br>Reset | 50     |  |
| GPCTL      | General Purpose Control<br>Register                 | 10008 <sub>H</sub> | SV         | SV,P   | Application<br>Reset | 51     |  |
| ACCEN0     | Access Enable Register 0                            | 1000C <sub>H</sub> | SV         | SV,SE  | Application<br>Reset | 51     |  |
| ACCEN1     | Access Enable Register 1                            | 10010 <sub>H</sub> | SV         | SV,SE  | Application<br>Reset | 52     |  |
| KRST0      | Kernel Reset Register 0                             | 10014 <sub>H</sub> | SV         | SV,E,P | Application<br>Reset | 52     |  |
| KRST1      | Kernel Reset Register 1                             | 10018 <sub>H</sub> | SV         | SV,E,P | Application<br>Reset | 53     |  |
| KRSTCLR    | Kernel Reset Status Clear<br>Register               | 1001C <sub>H</sub> | SV         | SV,E,P | Application<br>Reset | 54     |  |

### Notes

1. All I2C registers are Application Reset registers.



# 34.4.1 Global Module Control Registers

# **Module Identification Register**

This register contains read-only information about the module and its revision.

| Modul      | e Ident  | ificatio | on Regi | ister |    | (00008 <sub>H</sub> ) |    |    |    | <b>Application Reset Value: 00</b> |     |      |    |    | 5705 <sub>H</sub> |
|------------|----------|----------|---------|-------|----|-----------------------|----|----|----|------------------------------------|-----|------|----|----|-------------------|
| 31         | 30       | 29       | 28      | 27    | 26 | 25                    | 24 | 23 | 22 | 21                                 | 20  | 19   | 18 | 17 | 16                |
|            | <b>o</b> |          |         |       |    |                       |    |    |    |                                    |     |      |    |    |                   |
|            | r        |          |         |       |    |                       |    |    |    |                                    |     |      |    |    |                   |
| 15         | 14       | 13       | 12      | 11    | 10 | 9                     | 8  | 7  | 6  | 5                                  | 4   | 3    | 2  | 1  | 0                 |
| MOD_NUMBER |          |          |         |       |    |                       |    |    |    | i                                  | MOD | _REV |    |    |                   |
|            |          |          |         | r     |    |                       |    |    |    |                                    |     | r    |    |    |                   |

| Field          | Bits  | Туре | Description                                                            |
|----------------|-------|------|------------------------------------------------------------------------|
| MOD_REV        | 7:0   | r    | Module Revision Number This bit-field defines the revision number.     |
| MOD_NUMBE<br>R | 15:8  | r    | Module Number This bit-field defines the module identification number. |
| 0              | 31:16 | r    | Reserved Read as 0; should be written with 0.                          |

# **RUN Control Register**

This register selects configuration mode or run mode.

# **RUNCTRL**

| RUN Control Register (00010 <sub>H</sub> ) |    |    |    |    |    |     |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |          |     |
|--------------------------------------------|----|----|----|----|----|-----|----|----|----|-------------------------------------------------|----|----|----|----------|-----|
| 31                                         | 30 | 29 | 28 | 27 | 26 | 25  | 24 | 23 | 22 | 21                                              | 20 | 19 | 18 | 17       | 16  |
| 0                                          |    |    |    |    |    |     |    |    |    |                                                 |    | '  |    |          |     |
|                                            | 1  | I  | I  | 1  | l  | I . | 1  | r  | 1  | I                                               | I  | l  | I  | <u> </u> |     |
| 15                                         | 14 | 13 | 12 | 11 | 10 | 9   | 8  | 7  | 6  | 5                                               | 4  | 3  | 2  | 1        | 0   |
|                                            | 1  | 1  | 1  | 1  |    |     | 0  |    | 1  | 1                                               | 1  |    |    | 1        | RUN |
| 1                                          | 1  |    |    | 1  | 1  | 1   | r  |    | 1  |                                                 |    | 1  | 1  |          | rw/ |

| Field | Bits | Туре | Description                                                                                                                              |
|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| RUN   | 0    | rw   | Enable I2C-bus Interface                                                                                                                 |
|       |      |      | 0 <sub>B</sub> I2C-bus interface disabled; write access to configuration registers enabled                                               |
|       |      |      | 1 <sub>B</sub> Participation in I2C-bus communication enabled (if properly configured); write access to configuration registers disabled |



| Field | Bits | Туре | Description                          |
|-------|------|------|--------------------------------------|
| 0     | 31:1 | r    | Reserved                             |
|       |      |      | Read as 0; should be written with 0. |

### **End Data Control Register**

This register is used to either turn around the data transmission direction or address another slave without sending a stop condition. Also the software can stop the slave-transmitter by sending a not-acknowledge when working as master-receiver or even stop data transmission immediately when operating as master-transmitter. The writing to the bits of this control register is only effective in certain states.

#### **ENDDCTRL End Data Control Register** $(00014_{H})$ Application Reset Value: 0000 0000<sub>H</sub> 30 29 27 26 25 24 23 22 19 18 0 0 15 9 8 3 2 1 14 13 12 11 10 6 SETEN SETRS 0 D C

| Field  | Bits | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|--------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SETRSC | 0    | W    | Set Restart Condition This bit is always read as 0.  O <sub>B</sub> Has no effect.  1 <sub>B</sub> The master wants to restart a data transmission (changing slave/direction). The effect depends on the current state. MASTER RECEIVES BYTES: The master puts a not-acknowledge on the bus and switches to MASTER RESTART state. MASTER TRANSMITS BYTES: After the current byte has been sent, the master switches to MASTER RESTART state. |  |  |  |  |  |  |



| Field       | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-------------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SETEND      | 1    | w    | Set End of Transmission This bit is always read as 0.  Note: Do not write 1 to this bit when bus is free. This will cause an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|             |      |      | abort after the first byte when a new transfer is started.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| SETEND<br>0 |      |      | <ul> <li>O<sub>B</sub> Has no effect.</li> <li>1<sub>B</sub> The effect depends on the current state. MASTER RECEIVES BYTES: After receiving the current byte, the master puts a not-acknowledge on the bus to indicate the transmission end to the slave-transmitter. Next it produces a stop condition on the bus and changes its state to LISTENING. MASTER TRANSMITS BYTES: After sending the current byte and receiving an acknowledge or not-acknowledge from the slave-receiver, the master puts a stop condition on the bus to close the data transmission and changes its state to LISTENING. MASTER RESTART: The master puts a stop condition on the bus to close the data transmission and changes its state to LISTENING. SLAVE RECEIVES BYTES: The slave-receiver puts a not-acknowledge on the bus after the received byte and changes its state to TRANSMISSION FINISHED.</li> </ul> |  |  |  |  |  |  |
| 0           | 31:2 | r    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|             |      |      | Read as 0; should be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

# **Address Configuration Register**

This configuration register contains the I2C-address (when addressed as a slave) and some bits that control the basic operation of the peripheral.

### **ADDRCFG**

| Addres | ss Conf | igurati | on Reg | gister |    | (00020 <sub>H</sub> ) |    |    |    | Application Reset Value: 0000 000 |      |     |     |              |      |
|--------|---------|---------|--------|--------|----|-----------------------|----|----|----|-----------------------------------|------|-----|-----|--------------|------|
| 31     | 30      | 29      | 28     | 27     | 26 | 25                    | 24 | 23 | 22 | 21                                | 20   | 19  | 18  | 17           | 16   |
| 0      |         |         |        |        |    |                       |    |    | 1  | SOPE                              | SONA | MnS | МСЕ | GCE          | ТВАМ |
| L      |         |         |        |        | r  |                       |    |    |    | rw                                | rw   | rw  | rw  | rw           | rw   |
| 15     | 14      | 13      | 12     | 11     | 10 | 9                     | 8  | 7  | 6  | 5                                 | 4    | 3   | 2   | 1            | 0    |
|        | 0       |         |        |        |    |                       | 1  | 1  | 1  | AI                                | OR . |     | 1   | 1            | 1    |
|        |         | ,       | r      |        |    | ,                     |    |    |    | r                                 | W    |     |     | <del>!</del> | ,    |

| Field | Bits | Type | Description                                                                                                                                                           |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADR   | 9:0  | rw   | I2C-bus Device Address  This bit-field determines the address of the device when addressed as a slave. (Watch out for reserved addresses by referring to I2C-bus spec |
|       |      |      | V2.1.) Depending on setting of TBAM, this is either a 7-bit address (bits [7:1]) or a 10-bit address (bits [9:0]).                                                    |



| Field | Bits            | Type | Description                                                                                                                                                                  |
|-------|-----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТВАМ  | 16              | rw   | Ten Bit Address Mode                                                                                                                                                         |
|       |                 |      | Note: When this bit is zero, only bits 7 down to 1 of the ADR field are valid.                                                                                               |
|       |                 |      | <ul> <li>0<sub>B</sub> 7-bit address mode enabled.</li> <li>1<sub>B</sub> 10-bit address mode enabled.</li> </ul>                                                            |
| GCE   | 17              | rw   | General Call Enable                                                                                                                                                          |
|       |                 |      | <ul> <li>0<sub>B</sub> Ignore general call occurrence.</li> <li>1<sub>B</sub> Enable general call detection; when detected, an acknowledge will be put on the bus</li> </ul> |
| MCE   | 18              | rw   | Master Code Enable                                                                                                                                                           |
|       |                 |      | <ul> <li>0<sub>B</sub> Device is not able to get along with high-speed mode</li> <li>1<sub>B</sub> Device is able to handle master code</li> </ul>                           |
| MnS   | 19              | rw   | Master / not Slave                                                                                                                                                           |
|       |                 |      | 0 <sub>B</sub> Peripheral is configured as slave                                                                                                                             |
|       | 22              |      | 1 <sub>B</sub> Peripheral is configured as master                                                                                                                            |
| SONA  | 20              | rw   | Stop on Not-acknowledge                                                                                                                                                      |
|       |                 |      | Note: After successful transmission of a master code (during high-<br>speed mode) SONA is not considered till a stop condition is<br>manually generated by SETEND.           |
|       |                 |      | 0 <sub>B</sub> Device changes to MASTER RESTART state.                                                                                                                       |
|       |                 |      | <ul> <li>Device puts a stop condition on the bus and changes to LISTENING state.</li> </ul>                                                                                  |
| SOPE  | 21              | rw   | Stop on Packet End                                                                                                                                                           |
|       |                 |      | Notes                                                                                                                                                                        |
|       |                 |      | 1. This bit-field should be used only in Master Mode. In slave modeshould always be 0.                                                                                       |
|       |                 |      | 2. If device works as receiver a not-acknowledge is always generated on package end.                                                                                         |
|       |                 |      | 3. After successful transmission of a master code (during high-speedmode) SOPE is not considered till a stop condition is manually generated by SETEND.                      |
|       |                 |      | 0 <sub>B</sub> Device enters MASTER RESTART state when the data packet end is indicated by the FIFO.                                                                         |
|       |                 |      | 1 <sub>B</sub> Device puts a stop condition on the bus when the data packet end is indicated by the FIFO and changes to MASTER LISTENING state.                              |
| 0     | 15:10,<br>31:22 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                |

# **Bus Status Register**

This register contains status information of the I2C-bus. This additional information can be used by software to start appropriate actions.







| Field | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BS    | 1:0  | rh   | <ul> <li>Bus Status</li> <li>Shows the current status on the I2C-bus.</li> <li>00<sub>B</sub> I2C-bus is free (no start condition detected).</li> <li>01<sub>B</sub> A start condition has been detected on the bus (bus busy).</li> <li>10<sub>B</sub> The device is working as master and has claimed the control on the I2C-bus (busy master).</li> <li>11<sub>B</sub> A remote master has accessed this device as slave.</li> </ul> |
| RnW   | 2    | rh   | Read/not Write Set by hardware automatically after address byte has been sent/received.  O <sub>B</sub> Working as transmitter (Write to I2C-bus).  1 <sub>B</sub> Working as receiver (Read from I2C-bus).                                                                                                                                                                                                                             |
| 0     | 31:3 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                                                                                                                                                                                                                                                                           |

# **Fractional Divider Configuration Register**

This configuration register is used to program the fractional divider of the I2C-bus for standard and fast mode. Before the peripheral is switched on by setting the RUN bit, the register should be configured.

### **FDIVCFG**

| Fraction | Fractional Divider Configuration Register |    |    |    |    |    |    |    | (00018 <sub>H</sub> ) Application Reset Value |     |    |    |    |    | 0 0000 <sub>H</sub> |
|----------|-------------------------------------------|----|----|----|----|----|----|----|-----------------------------------------------|-----|----|----|----|----|---------------------|
| 31       | 30                                        | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22                                            | 21  | 20 | 19 | 18 | 17 | 16                  |
|          |                                           |    | •  | 0  | !  | ·  | l  |    | !                                             | !   | IN | IC | ·  | ı  | '                   |
| 1        |                                           |    |    | r  |    |    |    |    |                                               |     | r  | W  |    |    |                     |
| 15       | 14                                        | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6                                             | 5   | 4  | 3  | 2  | 1  | 0                   |
|          |                                           | 0  |    |    |    |    |    |    |                                               | DEC |    |    |    |    |                     |
| 1        | 1                                         | r  |    |    |    | 1  |    | 1  |                                               | rw  |    |    | 1  |    |                     |

| Field | Bits | Туре | Description                                                                                                |
|-------|------|------|------------------------------------------------------------------------------------------------------------|
| DEC   | 10:0 | rw   | <b>Decrement Value of Fractional Divider</b> For standard/fast mode, see <b>Clock and Timing Control</b> . |



| Field | Bits            | Туре | Description                                                                                 |
|-------|-----------------|------|---------------------------------------------------------------------------------------------|
| INC   | 23:16           | rw   | Increment Value of Fractional Divider For standard/fast mode, see Clock and Timing Control. |
| 0     | 15:11,<br>31:24 | r    | Reserved Read as 0; should be written with 0.                                               |

### Fractional Divider High-speed Mode Configuration Register

This configuration register is used to program the fractional divider of the I2C-bus for high-speed mode. Before the peripheral is switched on by setting the RUN bit, the register should be configured if high-speed mode is used.

#### **FDIVHIGHCFG**

# Fractional Divider High-speed Mode Configuration Register (0001C<sub>H</sub>) Application Reset Value: 0000 0000<sub>H</sub>

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21  | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|
| 0  |    | ı  | ı  | 0  | ı  | ı  | ı  |    | ı  | I   | IN | IC | ı  | I  | 1  |
| r  |    | 1  | 1  | r  | 1  | 1  | 1  |    | 1  | I   | r  | W  | 1  | I  |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5   | 4  | 3  | 2  | 1  | 0  |
|    | 1  | 0  |    | 1  |    |    | 1  | 1  | 1  | DEC |    |    | 1  |    |    |
|    |    | r  |    |    |    |    |    |    |    | rw  |    |    |    |    |    |

| Field | Bits                   | Туре | Description                                                                                             |
|-------|------------------------|------|---------------------------------------------------------------------------------------------------------|
| DEC   | 10:0                   | rw   | <b>Decrement Value of Fractional Divider</b> For high-speed mode, see <b>Clock and Timing Control</b> . |
| INC   | 23:16                  | rw   | Increment Value of Fractional Divider For high-speed mode, see Clock and Timing Control.                |
| 0     | 15:11,<br>30:24,<br>31 | r    | Reserved Read as 0; should be written with 0.                                                           |

# **Timing Configuration Register**

This configuration register adjusts some timings of the I2C-bus signals SCL and SCA. The delays are given in kernel\_clk cycles (denoted as stages below).

The delayed stages may have +/- 1 stage deviation.



rw

# Inter-Integrated Circuit (I2C)

| TIMCF<br>Timing    |                       | guratio  | on Regi | ster  |        |          | 0 <sub>H</sub> ) |             | Ap    | plicatio | on Res | et Valu  | e: 000( | 0000 <sub>H</sub> |    |
|--------------------|-----------------------|----------|---------|-------|--------|----------|------------------|-------------|-------|----------|--------|----------|---------|-------------------|----|
| 31                 | 30                    | 29       | 28      | 27    | 26     | 25       | 24               | 23          | 22    | 21       | 20     | 19       | 18      | 17                | 16 |
|                    | I                     | ı        | SCL_LC  | W_LEN | T<br>  | I        | 1                |             | 0     |          |        | нѕ       | S_SDA_I | DEL               | I  |
|                    | 1                     | <u> </u> | r       | W     | 1      | <u>I</u> | 1                |             | r     |          |        | <u>I</u> | rw      | 1                 | 1  |
| 15                 | 14                    | 13       | 12      | 11    | 10     | 9        | 8                | 7           | 6     | 5        | 4      | 3        | 2       | 1                 | 0  |
| FS_SC<br>L_LO<br>W | EN_SC<br>L_LO<br>W_LE |          | 0       | SCL_  | DEL_HC | )_STA    | HS_SD            | A_DEL_<br>T | HD_DA |          | SI     | DA_DEL   | HD_D    | AT                | 1  |

rw

rw

| Field                 | Bits | Туре | Description                                                                                                                    |
|-----------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------|
| SDA_DEL_HD<br>_DAT    | 5:0  | rw   | SDA Delay Stages for Data Hold Time in Standard and Fast modes SDA delay stages for data hold time in standard and fast modes. |
|                       |      |      | Note: SDA delay from SCL falling edge but will also affect SDA Setup time relative to next SCL rising edge                     |
|                       |      |      | 00 <sub>H</sub> 3 stages delay                                                                                                 |
|                       |      |      | 3F <sub>H</sub> 66 stages delay                                                                                                |
| HS_SDA_DEL_<br>HD_DAT | 8:6  | rw   | SDA Delay Stages for Data Hold Time in High-speed Mode<br>SDA delay stages for data hold time in HS mode.                      |
|                       |      |      | Note: SDA delay from SCL falling edge but will also affect SDA Setup time relative to next SCL rising edge                     |
|                       |      |      | 000 <sub>B</sub> 3 stages delay                                                                                                |
|                       |      |      | <br>111 <sub>B</sub> 10 stages delay                                                                                           |
| SCL_DEL_HD_           | 11:9 | rw   | SCL Delay Stages for Hold Time Start (Restart) Bit                                                                             |
| STA                   |      |      | 000 <sub>B</sub> 2 stages delay 111 <sub>B</sub> 9 stages delay                                                                |
| EN_SCL_LOW            | 14   | rw   | Enable Direct Configuration of SCL Low Period Length in Fast Mode                                                              |
| _LEN                  |      |      | O <sub>B</sub> SCL low period is a fixed part of the whole period, as defined by FS_SCL_LOW                                    |
|                       |      |      | 1 <sub>B</sub> SCL low period is determined by the setting of SCL_LOW_LEN                                                      |

# **AURIX™ TC3xx**



# Inter-Integrated Circuit (I2C)

| Field           | Bits            | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FS_SCL_LOW      | 15              | rw   | Set Fast Mode SCL Low Period Timing  The internal duration of the SCL low time with respect to the period length as defined by the baudrate setting, can be enlarged for the Fast Speed Mode, in order to meet the asymmetric duty cycle requirements from the standard.  The detailed formulas are given in the functional specification.  O <sub>B</sub> Standard mode SCL low period timing. For INC = 1 it is 5/8 of period.  1 <sub>B</sub> Fast mode SCL low period timing. For INC = 1 it is 6/8 of period. |
| HS_SDA_DEL      | 20:16           | rw   | SDA Delay Stages for Start/Stop bit in High-speed Mode  00 <sub>H</sub> 3 stages delay   07 <sub>H</sub> 10 stages delay                                                                                                                                                                                                                                                                                                                                                                                           |
| SCL_LOW_LE<br>N | 31:24           | rw   | SCL Low Length in Fast Mode  If enabled by EN_SCL_LOW_LEN setting, this field determines the extension of the SCL low time. In case of INC = 1, the low time is extended by the number of kernel_clk cycles. In general, there is a more complex formula, as given in the functional specification.  The total period time is not changed, i.e., the SCL high period is reduced accordingly. Setting SCL low time to period length or higher is not supported and would lead to unpredictable results.             |
| 0               | 13:12,<br>23:21 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



# 34.4.2 FIFO Registers

### **Transmission Data Register**

The software has to write the characters to be transmitted into this register.

A larger address range ( $8000_H$  to BFFC<sub>H</sub>) is reserved for the FIFO. Accessing any address in the defined range has the same effect as accessing the first address.

A read access to TXD register is not possible, it will return 0 in all cases. Reading has no effect on the FIFO When using byte or half word access from the bus, the TX FIFO pointer will only be increased, if one of the following conditions is fulfilled:

- The most significant byte or half word of the FIFO stage is written
- · The packet end is reached

**TXD** 

| Transr | missior | n Data F | Registe | er |    | (08000 <sub>H</sub> ) |                                       |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|--------|---------|----------|---------|----|----|-----------------------|---------------------------------------|----|----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30      | 29       | 28      | 27 | 26 | 25                    | 24                                    | 23 | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
|        | TXD     |          |         |    |    |                       |                                       |    |    |                                                 |    |    |    |    |    |  |
|        | W       |          |         |    |    |                       |                                       |    |    |                                                 |    |    |    |    |    |  |
| 15     | 14      | 13       | 12      | 11 | 10 | 9                     | 8                                     | 7  | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
|        | TXD     |          |         |    |    |                       |                                       |    |    |                                                 |    |    |    | '  |    |  |
|        | 1       | 1        | 1       | l  | 1  | 1                     | · · · · · · · · · · · · · · · · · · · | N/ | 1  | <u> </u>                                        | 1  | 1  | 1  | 1  |    |  |

| Field | Bits | Туре | Description                  |
|-------|------|------|------------------------------|
| TXD   | 31:0 | w    | Transmission Data            |
|       |      |      | Characters to be transmitted |

### **Transmit Packet Size Control Register**

This register is used to indicate the peripheral the size of the packet to be transmitted. Writing the packet size to this register if the FIFO controller is configured for flow controller mode initiates the data requests (BREQ, SREQ, ...). Writing to this register in configuration state has no impact.

#### **TPSCTRL**

| Transr   | nit Pac | ket Siz | e Cont | rol Reg  | gister | (00034 <sub>H</sub> ) |          |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |          |          |          |    |  |
|----------|---------|---------|--------|----------|--------|-----------------------|----------|----|----|-------------------------------------------------|----|----------|----------|----------|----|--|
| 31       | 30      | 29      | 28     | 27       | 26     | 25                    | 24       | 23 | 22 | 21                                              | 20 | 19       | 18       | 17       | 16 |  |
|          | •       | '       |        |          | •      | •                     |          | 0  | "  | •                                               |    | '        |          | '        |    |  |
|          |         | I       | I      | <u> </u> | 1      | 1                     | <u> </u> | r  |    | 1                                               | I  | <u> </u> | <u> </u> | <u> </u> |    |  |
| 15       | 14      | 13      | 12     | 11       | 10     | 9                     | 8        | 7  | 6  | 5                                               | 4  | 3        | 2        | 1        | 0  |  |
|          | 0       |         |        |          |        |                       | ı        | Т  | PS |                                                 |    | ı        |          | ı.       |    |  |
| <u>I</u> | r       |         |        |          |        |                       |          | r  | wh |                                                 |    |          |          |          |    |  |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                         |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TPS   | 13:0  | rwh  | Transmit Packet Size Length in characters of the transmit packet, write value range: 1 to 16383 Reading returns the written value as long as it is not loaded to an internal counter. After that, reading returns 0 and a new value can be written. |
| 0     | 31:14 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                                                                                       |

### **Reception Data Register**

The software can read the received characters from this register.

A larger address range ( $C000_H$  to  $FFFC_H$ ) is reserved for the FIFO . Reading from any address in the defined range has the same effect as reading from the first address.

| Recept | tion Da | ta Reg | ister |    |    |    | (0C00 | 0 <sub>H</sub> ) |    | Application Reset Value: 0000 0000 <sub>H</sub> |    |    |    |    |    |  |
|--------|---------|--------|-------|----|----|----|-------|------------------|----|-------------------------------------------------|----|----|----|----|----|--|
| 31     | 30      | 29     | 28    | 27 | 26 | 25 | 24    | 23               | 22 | 21                                              | 20 | 19 | 18 | 17 | 16 |  |
| RXD    |         |        |       |    |    |    |       |                  |    |                                                 |    |    |    |    |    |  |
| 1      | rh      |        |       |    |    |    |       |                  |    |                                                 |    |    |    |    |    |  |
| 15     | 14      | 13     | 12    | 11 | 10 | 9  | 8     | 7                | 6  | 5                                               | 4  | 3  | 2  | 1  | 0  |  |
| RXD    |         |        |       |    |    |    |       |                  |    |                                                 |    |    |    |    |    |  |
|        | rh      |        |       |    |    |    |       |                  |    |                                                 |    |    |    |    |    |  |

| Field | Bits | Туре | Description                        |
|-------|------|------|------------------------------------|
| RXD   | 31:0 | rh   | Reception Data Received characters |

### **Received Packet Size Status Register**

This register indicates the size of the received data packet to the software. The software should read this register after the last request of a packet.

#### **RPSSTAT**

| Receiv | ed Pac   | ket Siz  | e Statı  | us Regi  | ster     |          | (0003 | 0 <sub>H</sub> ) |    | Ар       | plication | on Res   | et Valu  | e: 0000  | 0000 <sub>H</sub> |
|--------|----------|----------|----------|----------|----------|----------|-------|------------------|----|----------|-----------|----------|----------|----------|-------------------|
| 31     | 30       | 29       | 28       | 27       | 26       | 25       | 24    | 23               | 22 | 21       | 20        | 19       | 18       | 17       | 16                |
|        | !        | !        | !        | !        |          | !        | '     | 0                |    | !        | !         |          |          | !        | '                 |
|        | <u> </u> | <u>I</u> | 1     | r                | 1  | <u> </u> | <u> </u>  | <u> </u> | <u> </u> | <u>I</u> | 1                 |
| 15     | 14       | 13       | 12       | 11       | 10       | 9        | 8     | 7                | 6  | 5        | 4         | 3        | 2        | 1        | 0                 |
| 0      |          |          |          |          |          | R        | PS    |                  |    |          |           |          |          |          |                   |
|        | r        | 1        | 1        | 1        |          | 1        | 1     | r                | ·h | 1        | 1         |          |          | 1        |                   |



| Field | Bits  | Туре | Description                                                                   |
|-------|-------|------|-------------------------------------------------------------------------------|
| RPS   | 13:0  | rh   | Received Packet Size Length in characters of the received packet (0 to 16383) |
| 0     | 31:14 | r    | Reserved Read as 0; should be written with 0.                                 |

# **FIFO Configuration Register**

This configuration register is used to set up the FIFO before the peripheral is enabled and data is received or transmitted.

### **FIFOCFG**

| FI       | FO C | onfigu | ration | Registe | er |    | (00028 <sub>H</sub> ) |      |    |    |      | Application Reset Value: 0000 0022, |    |      |      |      |  |  |
|----------|------|--------|--------|---------|----|----|-----------------------|------|----|----|------|-------------------------------------|----|------|------|------|--|--|
|          | 31   | 30     | 29     | 28      | 27 | 26 | 25                    | 24   | 23 | 22 | 21   | 20                                  | 19 | 18   | 17   | 16   |  |  |
|          | '    | !      | I      | ı       | I  | ı  | 0                     | ı    | 1  | I  | I    | ı                                   | ı  | CRBC | TXFC | RXFC |  |  |
| <u> </u> |      |        |        | 1       |    |    | r                     | 1    |    |    |      | 1                                   | 1  | rw   | rw   | rw   |  |  |
|          | 15   | 14     | 13     | 12      | 11 | 10 | 9                     | 8    | 7  | 6  | 5    | 4                                   | 3  | 2    | 1    | 0    |  |  |
|          | 0    |        | TXFA   |         | 0  |    | RX                    | RXFA |    | )  | TXBS |                                     | 0  |      | RX   | BS   |  |  |
|          | ı    | r      | r      | W       |    | r  | r                     | W    |    | r  | rw   | W                                   | •  | r    |      | W    |  |  |

| Field | Bits | Туре | Description                                                               |
|-------|------|------|---------------------------------------------------------------------------|
| RXBS  | 1:0  | rw   | RX Burst Size                                                             |
|       |      |      | 00 <sub>B</sub> 1 word                                                    |
|       |      |      | 01 <sub>B</sub> 2 words                                                   |
|       |      |      | 10 <sub>B</sub> 4 words                                                   |
|       |      |      | 11 <sub>B</sub> Do not use this combination                               |
| TXBS  | 5:4  | rw   | TX Burst Size                                                             |
|       |      |      | 00 <sub>B</sub> 1 word                                                    |
|       |      |      | 01 <sub>B</sub> 2 words                                                   |
|       |      |      | 10 <sub>B</sub> 4 words                                                   |
|       |      |      | 11 <sub>B</sub> Do not use this combination                               |
| RXFA  | 9:8  | rw   | RX FIFO Alignment                                                         |
|       |      |      | Use byte alignment wherever it is possible.                               |
|       |      |      | 00 <sub>B</sub> Byte aligned (character alignment)                        |
|       |      |      | 01 <sub>B</sub> Half word aligned (character alignment of two characters) |
|       |      |      | 10 <sub>B</sub> Word aligned (character alignment of four characters)     |
|       |      |      | 11 <sub>B</sub> Do not use this combination                               |



| Field | Bits   | Туре | Description                                                                                 |
|-------|--------|------|---------------------------------------------------------------------------------------------|
| TXFA  | 13:12  | rw   | TX FIFO Alignment                                                                           |
|       |        |      | Use byte alignment wherever it is possible.                                                 |
|       |        |      | 00 <sub>B</sub> Byte aligned (character alignment)                                          |
|       |        |      | 01 <sub>B</sub> Half word aligned (character alignment of two characters)                   |
|       |        |      | 10 <sub>B</sub> Word aligned (character alignment of four characters)                       |
|       |        |      | 11 <sub>B</sub> Do not use this combination                                                 |
| RXFC  | 16     | rw   | RX FIFO Flow Control                                                                        |
|       |        |      | 0 <sub>B</sub> RX FIFO not as flow controller                                               |
|       |        |      | 1 <sub>B</sub> RX FIFO as flow controller                                                   |
| TXFC  | 17     | rw   | TX FIFO Flow Control                                                                        |
|       |        |      | 0 <sub>B</sub> TX FIFO not as flow controller                                               |
|       |        |      | 1 <sub>B</sub> TX FIFO as flow controller                                                   |
| CRBC  | 18     | rw   | Clear Request Behavior Configuration                                                        |
|       |        |      | Used to configure the clear request behavior for the FIFO data request.                     |
|       |        |      | Can only be used for single request and must be set to "0" when burst                       |
|       |        |      | accesses are used in the system (eg. when TX/RXBS > 0)                                      |
|       |        |      | 0 <sub>B</sub> Data request is cleared by Software.                                         |
|       |        |      | 1 <sub>B</sub> Data request is cleared automatically when Write/Read access to FIFO occurs. |
| 0     | 3:2,   | r    | Reserved                                                                                    |
|       | 7:6,   |      | Read as 0; should be written with 0.                                                        |
|       | 11:10, |      |                                                                                             |
|       | 15:14, |      |                                                                                             |
|       | 31:19  |      |                                                                                             |

# **Maximum Received Packet Size Control Register**

This register is used to limit the received packet size. The register value may be changed in any state of the FIFO.

### **MRPSCTRL**

| Maxim | um Re    | ceived   | Packet   | t Size C | ontrol   | Regist   | er(000 | 2C <sub>H</sub> ) |    | Ар       | plicati  | on Res | et Valu  | e: 0000  | 0000 <sub>H</sub> |
|-------|----------|----------|----------|----------|----------|----------|--------|-------------------|----|----------|----------|--------|----------|----------|-------------------|
| 31    | 30       | 29       | 28       | 27       | 26       | 25       | 24     | 23                | 22 | 21       | 20       | 19     | 18       | 17       | 16                |
| 0     |          |          |          |          |          |          |        |                   |    |          |          |        |          |          |                   |
|       | <u> </u> | <u>I</u> | <u>I</u> | <u> </u> | <u> </u> | <u>I</u> |        | r                 | 1  | <u> </u> | <u>I</u> | 1      | <u>I</u> | <u> </u> | 1                 |
| 15    | 14       | 13       | 12       | 11       | 10       | 9        | 8      | 7                 | 6  | 5        | 4        | 3      | 2        | 1        | 0                 |
| (     | 0 MRPS   |          |          |          |          |          |        |                   |    |          |          |        |          |          |                   |
| 1     | r        | 1        | 1        | 1        | ļ.       | 1        | 1      | r۷                | vh | 1        | 1        | 1      | I        | 1        |                   |



| Field | Bits  | Туре | Description                                                                                                                                                                                                                                                                                                                                   |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRPS  | 13:0  | rwh  | Maximum Received Packet Size Length in characters of packet to be received; write value range: 0 (unlimited size) to 16383 Reading returns the written value as long as the previous packet has not been read completely from the FIFO. After that, MRPS is loaded to an internal register, reading returns 0 and a new value can be written. |
| 0     | 31:14 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                                                                                                                                                                                 |

# Filled FIFO Stages Status Register

This register is used to indicate the number of filled FIFO stages.

### **FFSSTAT**

| Filled I | FIFO St  | ages S   | tatus R  | egiste   | r      | (00038 <sub>H</sub> ) |    |    |     | Application Reset Value: 0000 0000, |    |    |    |    |    |
|----------|----------|----------|----------|----------|--------|-----------------------|----|----|-----|-------------------------------------|----|----|----|----|----|
| 31       | 30       | 29       | 28       | 27       | 26     | 25                    | 24 | 23 | 22  | 21                                  | 20 | 19 | 18 | 17 | 16 |
|          | ı        | ı        | ı        | ı        | ı      | ı                     |    | 0  | ·   | ı                                   | ı  | ı  | ı  |    | '  |
|          | <u>I</u> | <u>I</u> | <u>i</u> | <u>I</u> | İ.     | ı                     | ı  | r  | 1   | <u>I</u>                            | ı  | İ. | İ. | İ  |    |
| 15       | 14       | 13       | 12       | 11       | 10     | 9                     | 8  | 7  | 6   | 5                                   | 4  | 3  | 2  | 1  | 0  |
|          | ı        | ı        | 1        | <u>'</u> | )<br>) | 1                     | 1  | 1  | i i |                                     | 1  | FI | FS | 1  |    |
|          |          |          |          |          | r      | ı.                    |    |    |     |                                     |    | r  | h  |    | '  |

| Field | Bits | Туре | Description                           |
|-------|------|------|---------------------------------------|
| FFS   | 5:0  | rh   | Filled FIFO Stages                    |
|       |      |      | Number of filled FIFO stages (0 to 8) |
| 0     | 31:6 | r    | Reserved                              |
|       |      |      | Read as 0; should be written with 0.  |



# 34.4.3 Basic Interrupt Registers

For an overview of the Service Request Block (SRB) see **Section 34.3.1.7**.

### **Raw Interrupt Status Register**

This read-only register returns the current raw status value (without reflecting the mask) of the interrupt request sources. One status bit is provided for each request. A write to this register has no effect. The status bits are set by hardware or software (via register ISR) and can be cleared by software (via register ICR).

| RIS<br>Raw In | nterrup | t Statu | ıs Regi | ster |    |    | (0008 | 0 <sub>H</sub> ) |    | Ар            | plicatio            | on Res | et Valu       | e: 0000      | 0000 <sub>H</sub> |
|---------------|---------|---------|---------|------|----|----|-------|------------------|----|---------------|---------------------|--------|---------------|--------------|-------------------|
| 31            | 30      | 29      | 28      | 27   | 26 | 25 | 24    | 23               | 22 | 21            | 20                  | 19     | 18            | 17           | 16                |
|               | ı       | •       |         | ı    | ı  | ı  | '     | D                | ļ. |               | ı                   |        | •             | ı            | '                 |
|               | I       |         | 1       | I    | I  | I  | 1     | r                | 1  | 1             | 1                   | l .    |               | I            |                   |
| 15            | 14      | 13      | 12      | 11   | 10 | 9  | 8     | 7                | 6  | 5             | 4                   | 3      | 2             | 1            | 0                 |
|               | 1       | 1       | 1       | 1    | 0  | 1  | 1     | ı                | ı  | I2C_P<br>_INT | I2C_E<br>RR_IN<br>T | RRFU   | LBREQ<br>_INT | SREQ_<br>INT | LSREQ<br>_INT     |
|               |         |         |         |      | r  |    |       | •                | •  | rh            | rh                  | rh     | rh            | rh           | rh                |

| Field       | Bits | Type | Description                                                                |
|-------------|------|------|----------------------------------------------------------------------------|
| LSREQ_INT   | 0    | rh   | Last Single Request Interrupt                                              |
|             |      |      | 0 <sub>B</sub> No interrupt request                                        |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                   |
| SREQ_INT    | 1    | rh   | Single Request Interrupt                                                   |
|             |      |      | 0 <sub>B</sub> No interrupt request                                        |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                   |
| LBREQ_INT   | 2    | rh   | Last Burst Request Interrupt                                               |
|             |      |      | 0 <sub>B</sub> No interrupt request                                        |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                   |
| BREQ_INT    | 3    | rh   | Burst Request Interrupt                                                    |
|             |      |      | 0 <sub>B</sub> No interrupt request                                        |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                   |
| I2C_ERR_INT | 4    | rh   | I2C Error Interrupt                                                        |
|             |      |      | This is the combined bit for indication of FIFO errors due to overflow and |
|             |      |      | underflow.                                                                 |
|             |      |      | 0 <sub>B</sub> No interrupt request                                        |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                   |



| Field     | Bits | Туре | Description                                                            |
|-----------|------|------|------------------------------------------------------------------------|
| I2C_P_INT | 5    | rh   | I2C Protocol Interrupt                                                 |
|           |      |      | This is the combined bit for indication of a protocol event in the I2C |
|           |      |      | kernel.                                                                |
|           |      |      | 0 <sub>B</sub> No interrupt request                                    |
|           |      |      | 1 <sub>B</sub> Interrupt request pending                               |
| 0         | 31:6 | r    | Reserved                                                               |
|           |      |      | Read as 0; should be written with 0.                                   |

### **Interrupt Mask Control Register**

A write of 1 to a particular bit of this register enables the corresponding interrupt request; a write of 0 disables it. A read to this register returns the current mask bits. After reset all requests are disabled.

| IMSC<br>Interr | upt Ma | sk Con | trol Re | gister |    |    | (0008 | 4 <sub>H</sub> ) |    | Ар            | plicati             | on Res | et Valu       | e: 0000      | 0000 <sub>H</sub> |
|----------------|--------|--------|---------|--------|----|----|-------|------------------|----|---------------|---------------------|--------|---------------|--------------|-------------------|
| 31             | 30     | 29     | 28      | 27     | 26 | 25 | 24    | 23               | 22 | 21            | 20                  | 19     | 18            | 17           | 16                |
|                |        | '      |         | '      |    |    |       | 0                |    |               | '                   |        | '             | '            | <u>'</u>          |
|                |        |        |         |        |    |    |       | r                |    |               |                     |        |               |              |                   |
| 15             | 14     | 13     | 12      | 11     | 10 | 9  | 8     | 7                | 6  | 5             | 4                   | 3      | 2             | 1            | 0                 |
|                |        | 1      |         |        | 0  |    | 1     | 1                | 1  | I2C_P<br>_INT | I2C_E<br>RR_IN<br>T | RRFU   | LBREQ<br>_INT | SREQ_<br>INT | LSREQ<br>_INT     |

rw

rw

rw

rw

rw

rw

| Field       | Bits | Туре | Description                                                                                                        |
|-------------|------|------|--------------------------------------------------------------------------------------------------------------------|
| LSREQ_INT   | 0    | rw   | Last Single Request Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled |
| SREQ_INT    | 1    | rw   | Single Request Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled      |
| LBREQ_INT   | 2    | rw   | Last Burst Request Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled  |
| BREQ_INT    | 3    | rw   | Burst Request Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled       |
| I2C_ERR_INT | 4    | rw   | I2C Error Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled           |
| I2C_P_INT   | 5    | rw   | I2C Protocol Interrupt  0 <sub>B</sub> Interrupt request disabled  1 <sub>B</sub> Interrupt request enabled        |



| Field | Bits | Туре | Description                          |
|-------|------|------|--------------------------------------|
| 0     | 31:6 | r    | Reserved                             |
|       |      |      | Read as 0; should be written with 0. |

# **Masked Interrupt Status Register**

This read-only register returns the masked status value (derived from registers **RIS** and **IMSC**) of the corresponding interrupt requests. A write to this register has no effect.

| MIS<br>Maske | d Inter | rupt St | tatus R | egiste | r  |    | (0008 | 8 <sub>H</sub> ) |    | Ар            | plicatio            | on Res       | et Valu       | e: 0000      | 0000 <sub>H</sub> |
|--------------|---------|---------|---------|--------|----|----|-------|------------------|----|---------------|---------------------|--------------|---------------|--------------|-------------------|
| 31           | 30      | 29      | 28      | 27     | 26 | 25 | 24    | 23               | 22 | 21            | 20                  | 19           | 18            | 17           | 16                |
|              |         |         | '       |        |    |    |       | D                |    |               | '                   |              | '             |              |                   |
|              |         |         |         |        |    |    |       | r                |    |               |                     |              |               |              |                   |
| 15           | 14      | 13      | 12      | 11     | 10 | 9  | 8     | 7                | 6  | 5             | 4                   | 3            | 2             | 1            | 0                 |
|              | 1       | 1       | 1       | 1      | 0  | 1  | 1     | 1                | 1  | I2C_P<br>_INT | I2C_E<br>RR_IN<br>T | BREQ_<br>INT | LBREQ<br>_INT | SREQ_<br>INT | LSREQ<br>_INT     |
| <u></u>      | •       |         |         |        | r  |    |       |                  |    | rh            | rh                  | rh           | rh            | rh           | rh                |

| Field       | Bits | Туре | Description                                                                           |
|-------------|------|------|---------------------------------------------------------------------------------------|
| LSREQ_INT   | 0    | rh   | Last Single Request Interrupt                                                         |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| SREQ_INT    | 1    | rh   | Single Request Interrupt                                                              |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| LBREQ_INT   | 2    | rh   | Last Burst Request Interrupt                                                          |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| BREQ_INT    | 3    | rh   | Burst Request Interrupt                                                               |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| I2C_ERR_INT | 4    | rh   | I2C Error Interrupt                                                                   |
|             |      |      | This is the combined bit for indication of FIFO errors due to overflow and underflow. |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| I2C_P_INT   | 5    | rh   | I2C Protocol Interrupt                                                                |
|             |      |      | This is the combined bit for indication of a protocol event in the I2C                |
|             |      |      | kernel.                                                                               |
|             |      |      | 0 <sub>B</sub> No interrupt request                                                   |
|             |      |      | 1 <sub>B</sub> Interrupt request pending                                              |
| 0           | 31:6 | r    | Reserved                                                                              |
|             |      |      | Read as 0; should be written with 0.                                                  |



### **Interrupt Clear Register**

On a write of 1 to a particular bit of this write-only register, the corresponding interrupt request is cleared; a write of 0 has no effect. Reading the register returns 0.

| I | CK  |
|---|-----|
| I | nte |



| Field     | Bits | Туре | Description                            |
|-----------|------|------|----------------------------------------|
| LSREQ_INT | 0    | w    | Last Single Request Interrupt          |
|           |      |      | 0 <sub>B</sub> No change               |
|           |      |      | 1 <sub>B</sub> Clear interrupt request |
| SREQ_INT  | 1    | w    | Single Request Interrupt               |
|           |      |      | 0 <sub>B</sub> No change               |
|           |      |      | 1 <sub>B</sub> Clear interrupt request |
| LBREQ_INT | 2    | w    | Last Burst Request Interrupt           |
|           |      |      | 0 <sub>B</sub> No change               |
|           |      |      | 1 <sub>B</sub> Clear interrupt request |
| BREQ_INT  | 3    | w    | Burst Request Interrupt                |
|           |      |      | 0 <sub>B</sub> No change               |
|           |      |      | 1 <sub>B</sub> Clear interrupt request |
| 0         | 31:4 | r    | Reserved                               |
|           |      |      | Read as 0; should be written with 0.   |

### **Interrupt Set Register**

On a write of 1 to a particular bit of this write-only register, the corresponding interrupt request is set; a write of 0 has no effect. Reading the register returns 0.



| ISR<br>Interru | upt Set | Regist | er |    |    |    | (0009 | 0 <sub>H</sub> ) |    | Ар            | plicatio            | on Res       | et Valu       | e: 0000      | 0000 <sub>H</sub> |
|----------------|---------|--------|----|----|----|----|-------|------------------|----|---------------|---------------------|--------------|---------------|--------------|-------------------|
| 31             | 30      | 29     | 28 | 27 | 26 | 25 | 24    | 23               | 22 | 21            | 20                  | 19           | 18            | 17           | 16                |
|                | ļ       | ·      | ļ  | ·  | ļ  | ļ  |       | 0                | '  | ļ             | !                   | ļ            | ļ             | ļ.           | '                 |
|                | 1       |        |    |    | 1  | 1  |       | r                | I  |               |                     | 1            | 1             | 1            |                   |
| 15             | 14      | 13     | 12 | 11 | 10 | 9  | 8     | 7                | 6  | 5             | 4                   | 3            | 2             | 1            | 0                 |
|                | 1       | 1      | 1  | 1  | 0  | 1  | 1     | 1                |    | I2C_P<br>_INT | I2C_E<br>RR_IN<br>T | BREQ_<br>INT | LBREQ<br>_INT | SREQ_<br>INT | LSREQ<br>_INT     |
|                |         |        |    |    | r  |    |       |                  |    | W             | W                   | W            | W             | W            | W                 |

| Field       | Bits | Туре | Description                          |
|-------------|------|------|--------------------------------------|
| LSREQ_INT   | 0    | w    | Last Single Request Interrupt        |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| SREQ_INT    | 1    | w    | Single Request Interrupt             |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| LBREQ_INT   | 2    | w    | Last Burst Request Interrupt         |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| BREQ_INT    | 3    | w    | Burst Request Interrupt              |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| I2C_ERR_INT | 4    | w    | I2C Error Interrupt                  |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| I2C_P_INT   | 5    | w    | I2C Protocol Interrupt               |
|             |      |      | 0 <sub>B</sub> No change             |
|             |      |      | 1 <sub>B</sub> Set interrupt request |
| 0           | 31:6 | r    | Reserved                             |
| -           |      |      | Read as 0; should be written with 0. |



# 34.4.4 Error Interrupt Source Registers

For an overview of the source register operation see **Section 34.3.1.7.2**.

### **Error Interrupt Request Source Mask Register**

A write of 1 to a particular bit of this register enables the corresponding error interrupt request source; a write of 0 disables it. A read to this register returns the current mask bits. After reset all sources are enabled.

The interrupts are explained in detail in description of register **ERRIRQSS**.

### **ERRIRQSM**

| Error I | nterru | pt Req | uest Sc | ource M | lask Re | gister   | (0006 | 0 <sub>H</sub> ) |    | Ар | plicati | on Res      | et Valu     | e: 0000     | 000F <sub>H</sub> |
|---------|--------|--------|---------|---------|---------|----------|-------|------------------|----|----|---------|-------------|-------------|-------------|-------------------|
| 31      | 30     | 29     | 28      | 27      | 26      | 25       | 24    | 23               | 22 | 21 | 20      | 19          | 18          | 17          | 16                |
|         | 1      |        |         |         | 1       |          |       | 0                |    |    |         |             |             |             |                   |
|         |        |        |         |         |         |          |       | r                | 1  |    |         |             |             |             |                   |
| 15      | 14     | 13     | 12      | 11      | 10      | 9        | 8     | 7                | 6  | 5  | 4       | 3           | 2           | 1           | 0                 |
|         | 1      | ı      | 1       | 1       |         | <b>)</b> | 1     | 1                | 1  | 1  | 1       | TXF_O<br>FL | TXF_U<br>FL | RXF_O<br>FL | RXF_U<br>FL       |
|         | •      |        | •       |         |         | r        | •     | •                | •  |    | •       | rw          | rw          | rw          | rw                |

| Field   | Bits | Туре | Description                                      |
|---------|------|------|--------------------------------------------------|
| RXF_UFL | 0    | rw   | RX FIFO Underflow                                |
|         |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|         |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| RXF_OFL | 1    | rw   | RX FIFO Overflow                                 |
|         |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|         |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| TXF_UFL | 2    | rw   | TX FIFO Underflow                                |
|         |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|         |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| TXF_OFL | 3    | rw   | TX FIFO Overflow                                 |
|         |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|         |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| 0       | 31:4 | r    | Reserved                                         |
|         |      |      | Read as 0; should be written with 0.             |

### **Error Interrupt Request Source Status Register**

This read-only register returns the current raw status value (without reflecting the mask) of the error interrupt request sources. A write to this register has no effect. The error status bits are set by hardware and can be cleared by software (via register **ERRIRQSC**).



#### **ERRIRQSS**

#### Error Interrupt Request Source Status Register (00064<sub>H</sub>) Application Reset Value: 0000 0000 H 26 25 24 23 22 20 18 17 16 0 15 9 7 5 4 3 14 13 12 11 10 8 6 TXF\_O TXF\_U RXF\_O RXF\_U 0 FL FL FL FL rh rh rh rh

| Field   | Bits | Туре | Description                                      |
|---------|------|------|--------------------------------------------------|
| RXF_UFL | 0    | rh   | RX FIFO Underflow                                |
|         |      |      | The FIFO has detected an RX FIFO underflow.      |
|         |      |      | 0 <sub>B</sub> No interrupt request              |
|         |      |      | 1 <sub>B</sub> Interrupt request pending         |
| RXF_OFL | 1    | rh   | RX FIFO Overflow                                 |
|         |      |      | The I2C kernel has detected a RX FIFO overflow   |
|         |      |      | 0 <sub>B</sub> No interrupt request              |
|         |      |      | 1 <sub>B</sub> Interrupt request pending         |
| TXF_UFL | 2    | rh   | TX FIFO Underflow                                |
|         |      |      | The I2C kernel has detected a TX FIFO underflow. |
|         |      |      | 0 <sub>B</sub> No interrupt request              |
|         |      |      | 1 <sub>B</sub> Interrupt request pending         |
| TXF_OFL | 3    | rh   | TX FIFO Overflow                                 |
|         |      |      | The FIFO has detected a TX FIFO overflow.        |
|         |      |      | 0 <sub>B</sub> No interrupt request              |
|         |      |      | 1 <sub>B</sub> Interrupt request pending         |
| 0       | 31:4 | r    | Reserved                                         |
|         |      |      | Read as 0; should be written with 0.             |

### **Error Interrupt Request Source Clear Register**

On a write of 1 to a particular bit of this write-only register, the corresponding error interrupt request source is cleared and if no further error interrupt request sources are active, the whole error interrupt is cleared. If the corresponding bit is set by SW via the **ISR** register, then it can be cleared by setting any non-reserved bit of the interrupt request source clear register. A write of 0 has no effect. Reading the register returns 0.

The interrupts are explained in detail in description of register **ERRIRQSS**.



# **ERRIRQSC**

| Error I | -  | pt Req | uest Sc | urce C | lear Re | egister | (0006 | 8 <sub>H</sub> ) |    | Ар | plicati | ion Res     | et Valu     | e: 0000     | 0000 <sub>H</sub> |
|---------|----|--------|---------|--------|---------|---------|-------|------------------|----|----|---------|-------------|-------------|-------------|-------------------|
| 31      | 30 | 29     | 28      | 27     | 26      | 25      | 24    | 23               | 22 | 21 | 20      | 19          | 18          | 17          | 16                |
|         | 1  | 1      | 1       | 1      | 1       | 1       | ' (   | 0                | 1  | 1  | 1       | 1           | ı           | ı           |                   |
|         |    |        |         |        |         |         |       | r                | 1  |    |         |             | I           | l           |                   |
| 15      | 14 | 13     | 12      | 11     | 10      | 9       | 8     | 7                | 6  | 5  | 4       | 3           | 2           | 1           | 0                 |
|         | 1  | ı      | 1       | 1      |         | 0       | 1     | 1                | 1  | 1  | i i     | TXF_O<br>FL | TXF_U<br>FL | RXF_O<br>FL | RXF_U<br>FL       |
| -       | •  | •      | •       | •      | •       | r       |       | •                | •  | •  |         | W           | W           | W           | W                 |

| Field   | Bits | Туре | Description                                                                                                                              |
|---------|------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| RXF_UFL | 0    | w    | RX FIFO Underflow  0 <sub>B</sub> No change                                                                                              |
| RXF_OFL | 1    | w    | 1 <sub>B</sub> Clear interrupt request source  RX FIFO Overflow  0 <sub>B</sub> No change  1 <sub>B</sub> Clear interrupt request source |
| TXF_UFL | 2    | w    | TX FIFO Underflow  0 <sub>B</sub> No change  1 <sub>B</sub> Clear interrupt request source                                               |
| TXF_OFL | 3    | w    | TX FIFO Overflow  0 <sub>B</sub> No change  1 <sub>B</sub> Clear interrupt request source                                                |
| 0       | 31:4 | r    | Reserved Read as 0; should be written with 0.                                                                                            |



# 34.4.5 Protocol Interrupt Source Registers

For an overview of the source register operation see **Section 34.3.1.7.2**.

### **Protocol Interrupt Request Source Mask Register**

A write of 1 to a particular bit of this register enables the corresponding protocol interrupt request source; a write of 0 disables it. A read to this register returns the current mask bits. After reset all sources are enabled.

The interrupts are explained in detail in description of register PIRQSS.

### **PIRQSM**

| Proto | col Inte | rrupt F | Reques | t Sour | ce Masl | k Regis | ter(00 | 070 <sub>H</sub> ) |    | Ар         | plicatio | on Res | et Valu | e: 0000 | 007F <sub>H</sub> |
|-------|----------|---------|--------|--------|---------|---------|--------|--------------------|----|------------|----------|--------|---------|---------|-------------------|
| 31    | 30       | 29      | 28     | 27     | 26      | 25      | 24     | 23                 | 22 | 21         | 20       | 19     | 18      | 17      | 16                |
|       |          |         |        |        |         |         |        | 0                  |    |            |          |        |         |         |                   |
| 1     |          |         |        |        |         |         |        | r                  | 1  |            |          |        |         |         |                   |
| 15    | 14       | 13      | 12     | 11     | 10      | 9       | 8      | 7                  | 6  | 5          | 4        | 3      | 2       | 1       | 0                 |
|       | 1        |         |        | 0      |         |         |        |                    | RX | TX_EN<br>D | NACK     | AL     | МС      | GC      | АМ                |
|       | 1        |         |        | r      | 1       |         | 1      | 1                  | rw | rw         | rw       | rw     | rw      | rw      | rw                |

| Field  | Bits | Туре | Description                                      |
|--------|------|------|--------------------------------------------------|
| AM     | 0    | rw   | Address Match                                    |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| GC     | 1    | rw   | General Call                                     |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| МС     | 2    | rw   | Master Code                                      |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| AL     | 3    | rw   | Arbitration Lost                                 |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| NACK   | 4    | rw   | Not-acknowledge Received                         |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| TX_END | 5    | rw   | Transmission End                                 |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| RX     | 6    | rw   | Receive Mode                                     |
|        |      |      | 0 <sub>B</sub> Interrupt request source disabled |
|        |      |      | 1 <sub>B</sub> Interrupt request source enabled  |
| 0      | 31:7 | r    | Reserved                                         |
|        |      |      | Read as 0; should be written with 0.             |



### **Protocol Interrupt Request Source Status Register**

This read-only register returns the current raw status value (without reflecting the mask) of the protocol interrupt request sources. A write to this register has no effect. The protocol interrupt status bits are set by hardware and can be cleared by software (via register **PIRQSC**).

### **PIRQSS**

| Protoc | ol Inte | rrupt F | Reques | t Sourc | e Stat | us Regi | ister(0 | 0074 <sub>H</sub> ) |    | Ар         | plicatio | on Res | et Valu | e: 0000 | 0000 <sub>H</sub> |
|--------|---------|---------|--------|---------|--------|---------|---------|---------------------|----|------------|----------|--------|---------|---------|-------------------|
| 31     | 30      | 29      | 28     | 27      | 26     | 25      | 24      | 23                  | 22 | 21         | 20       | 19     | 18      | 17      | 16                |
|        |         |         |        |         |        |         |         | 0                   |    |            |          |        |         |         |                   |
|        |         |         |        |         | I.     |         | I.      | r                   |    |            |          |        |         |         |                   |
| 15     | 14      | 13      | 12     | 11      | 10     | 9       | 8       | 7                   | 6  | 5          | 4        | 3      | 2       | 1       | 0                 |
|        | 1       |         | 1      | 0       |        |         |         |                     | RX | TX_EN<br>D | NACK     | AL     | МС      | GC      | АМ                |
| 1      |         | 1       |        | r       | 1      | 1       | 1       | I                   | rh | rh         | rh       | rh     | rh      | rh      | rh                |

| Field | Bits | Туре | Description                                                                                                                                                                                                                                                        |
|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АМ    | 0    | rh   | Address Match Device (in master or slave mode) is addressed by remote master (matching device address). Accordingly, bit-field BS in register BUSSTAT is set to 11 <sub>B</sub> .  0 <sub>B</sub> No interrupt request 1 <sub>B</sub> Interrupt request pending    |
| GC    | 1    | rh   | General Call Remote master has transmitted a general call. $0_B$ No interrupt request $1_B$ Interrupt request pending                                                                                                                                              |
| МС    | 2    | rh   | Master Code Remote master has transmitted a master call.  0 <sub>B</sub> No interrupt request  1 <sub>B</sub> Interrupt request pending                                                                                                                            |
| AL    | 3    | rh   | Arbitration Lost Device (master mode) lost the control on the I2C-bus due to losing arbitration procedure. Accordingly, bit-field BS in register BUSSTAT is set to $01_{\rm B}$ . $0_{\rm B}$ No interrupt request $1_{\rm B}$ Interrupt request pending           |
| NACK  | 4    | rh   | Not-acknowledge Received When working as transmitter this interrupt indicates a not-acknowledge from the remote receiver. The SW has to decide what further steps have to be taken.  O <sub>B</sub> No interrupt request  1 <sub>B</sub> Interrupt request pending |



| Field  | Bits | Туре | Description                                                                                                                                                                                                                                                                                                                        |
|--------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX_END | 5    | rh   | $\begin{tabular}{ll} \textbf{Transmission End} \\ \textbf{The device has ended the data transfer properly (after stop condition has been put on the bus or the MASTER RESTART state has been entered.)} \\ \textbf{0}_{B} & \textbf{No interrupt request} \\ \textbf{1}_{B} & \textbf{Interrupt request pending} \\ \end{tabular}$ |
| RX     | 6    | rh   | Receive Mode  12C kernel indicates switching from transmitting data to receiving data.  0 <sub>B</sub> No interrupt request  1 <sub>B</sub> Interrupt request pending                                                                                                                                                              |
| 0      | 31:7 | r    | Reserved Read as 0; should be written with 0.                                                                                                                                                                                                                                                                                      |

# **Protocol Interrupt Request Source Clear Register**

On a write of 1 to a particular bit of this write-only register, the corresponding protocol interrupt request source is cleared and if no further protocol interrupt request sources are active, the whole protocol interrupt is cleared. If the corresponding **RIS** bit is set by SW via the **ISR** register, then it can be cleared by setting any non-reserved bit of the interrupt request source clear register. A write of 0 has no effect. Reading the register returns 0.

The interrupts are explained in detail in description of register **PIRQSS**.

### **PIRQSC**

| Protoc | Protocol Interrupt Request Source Clear Register(00078 <sub>H</sub> ) |    |    |    |    |    |    |    |    | Application Reset Value: 0000 0000 <sub>H</sub> |      |    |    |    |    |
|--------|-----------------------------------------------------------------------|----|----|----|----|----|----|----|----|-------------------------------------------------|------|----|----|----|----|
| 31     | 30                                                                    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21                                              | 20   | 19 | 18 | 17 | 16 |
|        | 1                                                                     |    |    | 1  | 1  | 1  |    | 0  | 1  |                                                 |      |    | 1  |    |    |
|        | r                                                                     |    |    |    |    |    |    |    |    |                                                 |      |    |    |    |    |
| 15     | 14                                                                    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5                                               | 4    | 3  | 2  | 1  | 0  |
|        | 1                                                                     | 1  | 1  | 0  | 1  | 1  | 1  | 1  | RX | TX_EN<br>D                                      | NACK | AL | МС | GC | АМ |
|        |                                                                       | ,  |    | r  |    |    |    |    | W  | W                                               | W    | W  | W  | W  | W  |

| Field | Bits | Туре | Description                                                       |  |  |  |  |  |
|-------|------|------|-------------------------------------------------------------------|--|--|--|--|--|
| АМ    | 0    | w    | Address Match                                                     |  |  |  |  |  |
|       |      |      | 0 <sub>B</sub> No change<br>1 <sub>B</sub> Clear Interrupt source |  |  |  |  |  |
| GC    | 1    | w    | General Call                                                      |  |  |  |  |  |
|       |      |      | 0 <sub>B</sub> No change<br>1 <sub>B</sub> Clear Interrupt source |  |  |  |  |  |
| МС    | 2    | w    | Master Code                                                       |  |  |  |  |  |
|       |      |      | 0 <sub>B</sub> No change<br>1 <sub>B</sub> Clear Interrupt source |  |  |  |  |  |