Analyse complexe Fonctions

méromorphes

Question 1/23

Image de f au voisinage de z_0 qui est une singularité essentielle

Réponse 1/23

Si V est un voisinage de z_0 dans U alors $f(V \setminus \{z_0\})$ est dense dans \mathbb{C}

Question 2/23

$$\sum_{\alpha \in A} u_{\alpha}(z)$$
 converge normalement sur tout compact de U

Réponse 2/23

Pour tout compact K de U, il existe une partie F_K finie de A telle que pour tout $\alpha \in A \setminus F_K$, u_{α} n'a pas de pôles dans K et $\sum_{\alpha \in A \setminus F_K} u_{\alpha}(z)$ converge normalement sur K

Question 3/23

Fonction elliptique holomorphe sur $\mathbb C$

Réponse 3/23

Une fonction elliptique et holomorphe sur \mathbb{C} est constante

Question 4/23

Réseau de $\mathbb C$

Réponse 4/23

$$\Lambda \leqslant \mathbb{C}$$
 de la forme $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$

Question 5/23

Fonction elliptique pour Λ

Réponse 5/23

Fonction f méromorphe sur \mathbb{C} vérifiant $f(z + \lambda) = f(z)$ pour tout $z \in \mathbb{C}$, $\lambda \in \Lambda$

Question 6/23

f est méromorphe sur U

Réponse 6/23

 $f: U \setminus F \to \mathbb{C}$ est holomorphe avec F une partie discrète et fermée de U et f est méromorphe en tout point de F

Question 7/23

f est méromorphe en z_0

Réponse 7/23

f admet une singularité illusoire ou un pôle en z_0

Question 8/23

$$\zeta(s)$$

Réponse 8/23

$$\sum_{n=1}^{+\infty} \frac{1}{n^{n}}$$

Question 9/23

CNS de Convergence de
$$\sum_{\lambda \in \Lambda} \frac{1}{|\lambda|^{\alpha}}$$
 avec Λ un réseau

Réponse 9/23

$$\alpha > 2$$

Question 10/23

$$G_n(\alpha \Lambda)$$

$$G_n(\Lambda) = \sum_{\lambda \in \Lambda \setminus \{0\}} \frac{1}{\lambda^n}$$

Réponse 10/23

$$rac{1}{lpha^n}G_n(\varLambda)$$

Question 11/23

Coefficients de la DSE de $u(z) = \sum_{\alpha \in A} u_{\alpha}(z)$ en z_0

Réponse 11/23

Si pour tout
$$\alpha \in A$$
, $u_{\alpha}(z) = \sum_{n \in \mathbb{Z}} a_{\alpha,n} (z - z_0)^n$

alors $a_n = \sum a_{\alpha,n}$ qui converge absolument

 $\alpha \in A$

Question 12/23

Formes des fonction elliptiques pour Λ

Réponse 12/23

Si f est une fonction elliptique pour Λ alors il existe un unique $(R, S) \in \mathbb{C}(X)$ tel que $f = R(\wp_{\Lambda}) + S(\wp_{\Lambda})\wp'_{\Lambda}$

Question 13/23

Grand théorème de Picard

Réponse 13/23

Si f a une singularité essentielle en z_0 alors il existe $F \subset \mathbb{C}$, $|F| \leq 1$ telle que pour tout V voisinage de z_0 dans U, $\mathbb{C} \setminus F \subset f(V \setminus \{z_0\})$

Question 14/23

f admet une singularité illusoire en z_0

Réponse 14/23

f est bornée au voisinage de z_0 Pour tout n < 0, $a_n = 0$ f se prolonge en \widetilde{f} folomorphe sur U

Question 15/23

Théorème de Mittag-Leffler

Réponse 15/23

Soit U un ouvert de \mathbb{C} et F une partie discrète et fermée de U, alors pour $(P_a)_{a\in F}$ des polynômes non nuls sans termes constants, il existe une fonction méromorphe suc C qui a exactement F comme pôles et qui admet $P_a\left(\frac{1}{z-a}\right)$ comme partie singulière en tout

$$\in \Lambda$$

Question 16/23

Identité d'Euler

Réponse 16/23

$$\cot(z) = \frac{1}{z} + \sum_{n=1}^{+\infty} \left(\frac{1}{z + n\pi} + \frac{1}{z - n\pi} \right)$$

Question 17/23

Pôles de $\sum u_{\alpha}(z)$ qui converge normalement sur tout compact

Réponse 17/23

Pour F_{α} les pôles de u_{α} alors $F = \bigcup F_{\alpha}$ est une partie discrète fermée de U et $u(z) = \sum u_{\alpha}(z)$ converge absolument sur $\alpha \in A$ $U \setminus F$

Question 18/23

Partie singulière de f en z_0

Réponse 18/23

Partie négative du développement en série de Laurent de f holomorphe sur $U \setminus \{z_0\}$ où $z_0 \in U$

Question 19/23

f admet une singularité essentielle en z_0

Réponse 19/23

f est holomorphe sur $U \setminus \{z_0\}$ et la singularité en z_0 n'est ni illusoire ni un pôle

Question 20/23

$$\wp_{A}(z)$$

Réponse 20/23

$$\frac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{(z+\lambda)^2} - \frac{1}{\lambda^2} \right)$$

 \wp_{Λ} converge normalement sur tout compact de $\mathbb C$ et définit une fonction méromorphe sur $\mathbb C$ et Λ -périodique

Question 21/23

Convergence de
$$\sum_{\alpha \in A} u_{\alpha}^{(n)}(z)$$

Réponse 21/23

 $\alpha \in A$

Si $\sum_{\alpha \in A} u_{\alpha}(z)$ converge normalement vers u sur tout compact de \mathbb{C} alors u est méromorphe et $\sum_{\alpha \in A} u_{\alpha}^{(n)}(z)$ converge normalement vers $u^{(n)}(z)$

Question 22/23

Propriété de
$$G_n : \mathbb{H} \longrightarrow \mathbb{C}$$

$$\tau \longmapsto G_n(\mathbb{Z} + \tau \mathbb{Z})$$

$$G_n(\Lambda) = \sum_{\lambda \in \Lambda \setminus \{0\}} \frac{1}{\lambda^n}$$

$$\mathbb{H} - \{\alpha \in \mathbb{C} \mid \operatorname{Im}(\alpha) > 0\}$$

 $\mathbb{H} = \{ z \in \mathbb{C}, \operatorname{Im}(z) > 0 \}$

Réponse 22/23

 G_n est holomorphe

Question 23/23

f admet un pôle d'ordre k en z_0

Réponse 23/23

$$|f(z)| \xrightarrow[z \to z_0]{} + \infty$$
 Il existe $k \geqslant 1$ tel que $a_{-k} \neq 0$ et pour tout $n < -k, \ a_n = 0$ Il existe $P \in \mathbb{C}[X]$ tel que $f(z) - P\left(\frac{1}{z - z_0}\right)$ est bornée au voisinage de z_0