청색긴잔광형광체 CaAl₂O₄:Eu²⁺,Nd³⁺의 발광세기에 미치는 활성제혼입량의 영향

김금성, 정훈일

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《과학연구부문에서 최첨단돌파전을 힘있게 벌려 경제발전과 국방력강화, 인민생활향상에 이바지하는 가치있는 연구성과들을 많이 내놓아야 합니다.》

지금까지 개발된 청색긴잔광형광체에는 알루민산염계형광체인 $CaAl_2O_4:Eu^{2+},Nd^{3+}$, 규산염계형광체인 $Sr_2MgSi_2O_7:Eu^{2+},Dy^{3+}$ 등이 있다.[1,4] 규산염계형광체는 화학적 및 열안정성이 알루민산염계형광체보다 좋지만 발광색이 연청색인것으로 하여 색순도가 알루민산염계형광체보다 떨어지므로 3원색긴잔광형광체제조[2,3]에 리용하지 못한다.

우리는 고온고상법으로 제조한 청색긴잔광형광체 $CaAl_2O_4:Eu^{2+},Nd^{3+}$ 의 발광세기에 미치는 활성제들인 Eu^{2+},Nd^{3+} 혼입량의 영향을 평가하였다.

실 험 방 법

CaAl₂O₄:Eu²⁺,Nd³⁺형광체는 CaCO₃(99.5%), Al₂O₃(99.95%)을 기질원료로, Eu₂O₃(99.95%), Nd₂O₃(99.95%)을 활성제원료로, H₃BO₃(99.5%)을 용제로 하여 고온고상법으로 합성하였다.

원료들을 정확히 평량하고 마노절구에서 일정한 시간동안 혼합한 다음 절대에틸알콜 (99.7%)을 첨가하여 균일하게 혼합하였다. 이것을 알루미나도가니에 넣고 뚜껑을 덮은 다음 고온소성로에 넣고 활성탄으로 환원성분위기를 보장하면서 1 350℃에서 4h동안 소성하여 형광체를 합성하였다.

합성반응식은 다음과 같다

(1-x-y)CaCO₃+Al₂O₃+xEu²++yNd³+ = Ca₁-x-yAl₂O₄:xEu²+,yNd³++(1-x-y)CO₂ 시료들의 려기 및 발광스펙트르는 형광스펙트르분석기(《RF-5000》)로 측정하였다 Eu²+만을 첨가하고 최적혼입량을 결정한 다음 Nd³+의 혼입량을 변화시키면서 발광특성을 고찰하였다.

잔광감쇠특성은 합성한 시편을 태양빛으로 30min동안 려기시킨 다음 형광스펙트르 분석기에서 30min에 한번씩 발광세기를 측정하는 방법으로 고찰하였다.

실험결과 및 고찰

 $CaAl_2O_4$ 결정은 단사정계이며 공간군은 P21/n이다. $CaAl_2O_4$ 결정구조에서 Ca^{2+} 은 서로 다른 세가지 배위환경에 놓이는데 한가지는 9배위위치에, 다른 두가지는 6배위위치에 놓이다.

활성제들인 Eu²⁺(이온반경 0.125nm)과 Nd³⁺(이온반경 0.115nm)은 6배위위치(0.100nm) 보다 9배위위치(0.118nm)에 더 잘 치환되여 들어간다.

Al³⁺의 이온반경은 0.057nm로서 Eu²⁺과 Nd³⁺의 이온반경보다 매우 작으므로 치환되

기 어렵다. 따라서 $CaAl_2O_4$: Eu^{2+} , Nd^{3+} 형광체의 려기 및 발광특성은 9배위위치의 Ca^{2+} 과 치환된 Eu^{2+} , Nd^{3+} 의 특성으로 볼수 있다.

 Eu^{2+} 의 영향 Eu^{2+} 혼입량에 따르는 $Ca_{1-x}Al_2O_4:xEu^{2+}$ 형광체의 발광세기(상대세기)변화는 그림 1과 같다.

그림 1. Eu²⁺혼입량에 따르는 Ca_{1-x}Al₂O₄:xEu²⁺형광체의 발광세기변화

그림 1에서 보는바와 같이 Eu^{2+} 혼입량이 많아짐에 따라 형광체의 발광세기는 증가하다가 0.01mol근방에서 최대로 되며 그 이상에서는 감소한다. 그것은 Eu^{2+} 혼입량이 너무많으면 기질살창에서 린접한 Eu^{2+} 들사이의 거리가 가까와지고 같은 배위환경에 놓여있는 활성제이온들사이의 무복사에네르기전달이 일어나면서 농도소광현상이 나타나기때문이다. 따라서 Eu^{2+} 의 혼입량을 0.01mol로 선정하였다.

Nd³⁺의 영향 Nd³⁺혼입량에 따르는 Ca_{0.99-y}Al₂O₄:0.01Eu²⁺,yNd³⁺형광체의 발광세기(상대세기)변화는 그림 2와 같다.

그림 2. Nd³⁺혼입량에 따르는 Ca_{0.99-v}Al₂O₄:0.01Eu²⁺,vNd³⁺형광체의 발광세기변화

그림 2에서 보는바와 같이 Nd^{3+} 혼입량이 많아짐에 따라 형광체의 발광세기가 증가하다가 0.03mol이상에서는 변화가 거의 없다. 형광체의 발광세기는 Eu^{2+} 만을 혼입하였을 때보다 더 세며 특히 Nd^{3+} 혼입량이 0.03mol일 때에는 1.48배 더 세다.

따라서 Nd³⁺의 혼입량을 0.03mol로 선정하였다.

잔광감쇠특성 Nd³⁺은 혼입되여 함정준위를 형성하므로 CaAl₂O₄:Eu²⁺,Nd³⁺형광체는 긴 잔광특성을 가진다. Ca_{0.96}Al₂O₄:0.01Eu²⁺,0.03Nd³⁺형광체의 잔광감쇠특성은 그림 3과 같다.

그림 3. Ca_{0.96}Al₂O₄:0.01Eu²⁺,0.03Nd³⁺형광체의 잔광감쇠특성

그림 3에서 보는바와 같이 형광체는 30min후에 발광세기(상대세기)가 급격히 감소하며 육안으로 관찰될 때까지의 잔광시간은 8h이다.

맺 는 말

고온고상법으로 합성한 $CaAl_2O_4$: Eu^{2+} , Nd^{3+} 형광체의 발광세기에 미치는 활성제혼입량의 영향을 밝혔다. 발광세기가 최대인 활성제혼입량은 Eu^{2+} 0.01mol, Nd^{3+} 0.03mol이다. 이 형광체의 잔광시간은 8h이다.

참 고 문 헌

- [1] T. Dong et al.; J. Optoelectron Adv. Mat., 5, 617, 2011.
- [2] P. Smert et al.; J. Lumin., 129, 1140, 2009.
- [3] B. Liu et al.; J. Lumin., 122, 121, 2007.
- [4] L. Haiyen et al.; J. Rare Earths, 25, 19, 2007.

주체110(2021)년 4월 5일 원고접수

Influence of Doped Amount of Activators on the Luminescence Intensity of Blue Long Persistence Phosphor CaAl₂O₄:Eu²⁺,Nd³⁺

Kim Kum Song, Jong Hun Il

The $CaAl_2O_4$: Eu^{2+} , Nd^{3+} phosphor was synthesized by high temperature-solid state method and the influence of doped amount of activators on its luminescence intensity was considered. The optimum doped amounts of activators are Eu^{2+} 0.01mol and Nd^{3+} 0.03mol. The lasting time of the phosphor is 8h.

Keywords: CaAl₂O₄, long persistence, activator