Разбор первых домашних заданий очереди, деки, амортизационный анализ

Артем Оганджанян

Q-Bit

21 апреля 2020 г.

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Алгоритм

head

tail

Алгоритм

head

head

tail

4□ > 4♠ > 4 ≥ > 4 ≥ > 9

Алгоритм

head

tail

head

tail

head

tail

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ 900

head

 a_0

Алгоритм

head

tail

 a_2 tail

head

a ₀	a_1	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	a ₅	a ₆	a ₇	
----------------	-------	-----------------------	-----------------------	-----------------------	----------------	----------------	----------------	--

tail

head

*a*₃

*a*₅

*a*₆

*a*₇

tail

 a_1

Поля

```
CTEK:
int capacity = DEFAULT_CAPACITY;
int *stack = new int[capacity];
int size_ = 0;
```

Поля

```
Cтек:
int capacity = DEFAULT_CAPACITY;
int *stack = new int[capacity];
int size_ = 0;

Oчередь:
int capacity = DEFAULT_CAPACITY;
int *queue = new int[capacity];
int head = 0, tail = 0;
```

int size()

Стек: return size_;

int size()

Стек:

```
return size_;
Oчередь:
return (tail - head + capacity) % capacity;
```

void change_capacity(int new_capacity)

```
CTEK:

int *new_stack = new int[new_capacity];

for (int i = 0; i < size_; ++i) {
    new_stack[i] = stack[i];
}

delete[] stack;

stack = new_stack;

capacity = new_capacity;
```

void change_capacity(int new_capacity)

```
Очередь:
int *new_queue = new int[new_capacity];
if (tail >= head) {
 for (int i = head; i < tail; ++i) {
    new_queue[i - head] = queue[i];
} else {
 for (int i = head; i < capacity; ++i) {</pre>
    new_queue[i - head] = queue[i];
 for (int i = 0; i < tail; ++i) {
    new_queue[capacity - head + i] = queue[i];
```

void change_capacity(int new_capacity)

```
Oчередь:

tail = size();

head = 0;

delete[] queue;

queue = new_queue;

capacity = new_capacity;
```

void push(int value)

```
Cтек:
ensure_capacity(size_ + 1);
stack[size_++] = value;
```

void push(int value)

```
Стек:
ensure_capacity(size_ + 1);
stack[size_++] = value;

Очередь:
ensure_capacity(size() + 2);
queue[tail] = value;
tail = (tail + 1) % capacity;
```

int pop()

```
Cтек:
int result = stack[--size_];
ensure_capacity(size_);
return result;
```

int pop()

```
Стек:
int result = stack[--size_];
ensure_capacity(size_);
return result;
Очередь:
int result = queue[head];
head = (head + 1) \% capacity;
ensure_capacity(size());
return result:
```

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

void push_front(int value)

```
ensure_capacity(size() + 2);
head = (head - 1 + capacity) % capacity;
deque[head] = value;
```

int pop_back()

```
tail = (tail - 1 + capacity) % capacity;
int result = deque[tail];
ensure_capacity(size());
return result;
```

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Односвязный список

Узлы

```
Cтек:
struct stack_node {
  int element;
  stack_node *prev;
};
```

Узлы

```
Стек:
struct stack_node {
  int element;
  stack_node *prev;
};
Очередь:
struct queue_node {
  int element;
 queue_node *next;
};
```

Поля

```
CTEK:
stack_node *top = NULL;
int size_ = 0;
```

16/34

Поля

```
Стек:

stack_node *top = NULL;

int size_ = 0;

Очередь:

queue_node *head = NULL, *tail = NULL;

int size_ = 0;
```

void push(int value)

```
Стек:
stack_node *new_top = new stack_node{value, top};
top = new_top;
++size_;
```

17 / 34

void push(int value)

```
Стек:
stack_node *new_top = new stack_node{value, top};
top = new_top;
++size :
Очередь:
queue_node *new_tail = new queue_node{value, NULL};
if (tail != NULL) {
  tail->next = new_tail:
  tail = new_tail;
} else {
  head = tail = new_tail:
++size :
```

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Двусвязный список

Двусвязный список

Узлы

```
struct deque_node {
  int element;
  deque_node *next;
  deque_node *prev;
};
```

Поля

```
deque_node *head = NULL, *tail = NULL;
int size_ = 0;

deque() {
  head = new deque_node{0, NULL, NULL};
  tail = new deque_node{0, NULL, NULL};
  head->next = tail;
  tail->prev = head;
}
```

void push(deque_node *next, int value)

```
deque_node *node = new deque_node{value, next, next->prev};
next->prev = node;
node->prev->next = node;
++size_:
```

int pop(deque_node *node)

```
auto [result, next, prev] = *node;
delete node;
next->prev = prev;
prev->next = next;
--size_;
return result;
```

push

```
void push_front(int value) {
   push(head->next, value);
}

void push_back(int value) {
   push(tail, value);
}
```

pop

```
int pop_front() {
   return pop(head->next);
}
int pop_back() {
   return pop(tail->prev);
}
```

front, back

```
int front() {
   return head->next->element;
}
int back() {
   return tail->prev->element;
}
```

Бонус

```
Список:
```

```
deque_node *head = NULL, *tail = NULL;
int size_ = 0;
```

Бонус

```
Список:
deque_node *head = NULL, *tail = NULL;
int size_ = 0;
Циклический список:
deque_node *fake = NULL;
int size = 0:
deque() {
  fake = new deque_node{0, NULL, NULL};
  fake->next = fake:
  fake->prev = fake;
```

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Разбор первых домашних заданий

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

29 / 34

capacity = 2

1	1	2+1							
1	2	3							

$$n = 3$$
, time = $3 + 2 = 5$

1	1	2+1							
1	2	3							

$$n = 3$$
, time = $3 + 2 = 5$

$$n = 5$$
, time $= 5 + 4 + 2 = 11$

1	1	2+1	1	4+1	1	1	1	8+1				
1	2	3	4	5	6	7	8	9				

$$n = 9$$
, time $= 9 + 8 + 4 + 2 = 23$

1	1	2+1	1	4+1	1	1	1	8+1				
1	2	3	4	5	6	7	8	9				

$$n = 9$$
, time $= 9 + 8 + 4 + 2 = 23$

									1							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

$$n = 17$$
, time = $17 + 16 + 8 + 4 + 2 = 47$

Формула

$$n = 2^k + 1$$

Формула

$$n = 2^k + 1$$

$$S_n = \sum_{i=1}^n b_i = \frac{b_1(q^n-1)}{q-1}$$

Формула

$$n = 2^k + 1$$

$$S_n = \sum_{i=1}^n b_i = \frac{b_1(q^n-1)}{q-1}$$

time(n) =
$$n + \sum_{i=1}^{k} 2^{i}$$

= $n + 2(2^{k} - 1)$
= $n + 2(n - 2)$
= $3n - 4$
= $O(n)$

Оглавление

- Контест на dots
 - Очередь на массиве
 - Дек на массиве
 - Очередь на списке
 - Дек на списке
- Асимптотика вектора
 - Увеличение массива
 - Уменьшение массива

Рассмотрим операции между двумя изменениями размера массива.

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

$\frac{n}{2}$ n	2n
-------------------	----

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

<u>n</u> 2	n		21
------------	---	--	----

Рассмотрим только операции удаления или только операции добавления.

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

$\left \begin{array}{c c} \frac{n}{2} \end{array} \right \left \begin{array}{c c} n \end{array} \right \left \begin{array}{c c} 2 \end{array} \right $	n
---	---

Рассмотрим только операции удаления или только операции добавления.

• Стало $\frac{n}{2}$.

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

<u>n</u> 2	n			2 <i>n</i>
------------	---	--	--	------------

Рассмотрим только операции удаления или только операции добавления.

ullet Стало $rac{n}{2}$. Потратили времени $rac{n}{2}+rac{n}{2}=n$

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

<u>n</u> 2	n		2 <i>n</i>
------------	---	--	------------

Рассмотрим только операции удаления или только операции добавления.

- ullet Стало $rac{n}{2}$. Потратили времени $rac{n}{2}+rac{n}{2}=n$
- Стало 2*n*.

Рассмотрим операции между двумя изменениями размера массива. n элементов с реальным размером массива 2n.

$\frac{n}{2}$ n $2n$	
------------------------	--

Рассмотрим только операции удаления или только операции добавления.

- ullet Стало $rac{n}{2}$. Потратили времени $rac{n}{2}+rac{n}{2}=n$
- Стало 2n. Потратили времени n + 2n = 3n.

Конец!

Вопросы?

