- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- TIPO OMPI

(43) Internationales Veröffentlichungsdatum 30. Mai 2003 (30.05.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/043993 A1

- (51) Internationale Patentklassifikation?: C07D 239/46, 239/48, 239/42, 239/52, 403/12, A01N 43/54
- (21) Internationales Aktenzeichen:

PCT/EP02/12807

(22) Internationales Anmeldedatum:

15. November 2002 (15.11.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 101 56 279.9 19. November 2001 (19.11.2001) DI
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): GYPSER, Andreas [DE/DE]; B 4 4, 68159 Mannheim (DE). GROTE,

Thomas [DE/DE]; Im Hoehenhausen 18, 67157 Wachenheim (DE). SCHWÖGLER, Anja [DE/DE]; Heinrich-Lanz-Strasse 3, 68165 Mannheim (DE). RHEINHEIMER, Joachim [DE/DE]; Merziger Str. 24, 67063 Ludwigshafen (DE). SCHIEWECK, Frank [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). TORMO I BLASCO, Jordi [ES/DE]; Mühlweg 47, 67117 Limburgerhof (DE). ROSE, Ingo [DE/DE]; C 2, 19, 68159 Mannheim (DE). SCHÄFER, Peter [DE/DE]; Römerstr. 1, 67308 Ottersheim (DE). GEWEHR, Markus [DE/DE]; Goethestrasse 21, 56288 Kastellaun (DE). GRAM-MENOS, Wassilios [GR/DE]; Samuel Hahnemann Weg 9, 67071 Ludwigshafen (DE). MÜLLER, Bernd [DE/DE]; Stockingerstrasse 7, 67227 Frankenthal (DE). AMMERMANN, Eberhard [DE/DE]; Von-Gagern-Str. 2, 64646 Heppenheim (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstr. 9, 67117 Limburgerhof (DE). LORENZ, Gisela [DE/DE]; Erlenweg 13, 67434 Hambach (DE). STIERL, Reinhard [DE/DE]; Ginsterstr. 17, 67112 Mutterstadt (DE).

[Fortsetzung auf der nächsten Seite]

- (54) Title: 5-PHENYLPYRIMIDINES, AGENTS COMPRISING THE SAME, METHOD FOR PRODUCTION AND USE THEREOF
- (54) Bezeichnung: 5-PHENYLPYRIMIDINE, VERFAHREN ZU IHRER HERSTELLUNG, SIE ENTHALIENDE MITTEL UND IHRE VERWENDUNG

(57) Abstract: 5-Phenylpyrimidines of formula (I), where the substituents and the indices have the following meanings: R^1 , $R^2 = H$, alkyl, haloalkyl, cycloalkyl, halocycloalkyl, alkenyl, haloalkenyl, alkinyl or haloalkinyl, where R^1 and R^2 together with the nitrogen atom to which they are bonded may form a saturated or unsaturated ring, interrupted by an ether, thio, sulphoxy or sulphonyl group and which can be substituted by one to four groups R^a and/or R^b , $R^3 = H$, halo, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy or alkenyloxy, $R^4 = H$, halo, cyano, hydroxy, mercapto, azido, alkyl, alkenyl, alkinyl, haloalkyl, alkoxy, alkenyloxy, alkinyloxy, haloalkoxy, alkylthio,

(57) Zusammenfassung: 5-Phenylpyrimidine der Formel (I), in der die Substituenten und der Index folgende Bedeutung haben: R¹,R² Wasserstoff, Alkyl, Halogenalkyl, Cycloalkyl, Halogencyclo-alkyl, Alkenyl, Halogenalkenyl, Alkinyl oder Halogenalki-nyl, R¹ and R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten Ring bilden, der durch eine Ether-, Thio-, Sulfoxyloder Sulfonyl-Gruppe unterbrochen sein and durch eine bis vier Gruppen R³ and/oder R⁵ substituiert sein kann; R³ Wasserstoff, Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkenyloxy; R⁴ Wasserstoff, Halogen, Cyano, Hydroxy, Mercapto, Azido, Al-kyl, Alkenyl, Alkinyl, Halogenalkyl, Alkoxy, Alkenyloxy, Alkinyloxy, Halogenalkoxy, Alkylthio, Alkenylthio, Alkinylthio, Halogenalkylthio, -ON=CR³R⁵, -CR°=NOR³, -NR°N=CR³R⁵, -NR³R⁵, -NR³R⁵, -NR°C (=0) NR³R⁵, -CR° (=NOR°) R°, -OC (=0) R°, -C (=NOR°) NR³R⁵, -CR° (=NOR°) R°, -CC (=0) NR³R⁵, -CR° (=NOR°), -CR° (=NOR°), -CR° (=NOR°), -CC (=0) NR³R⁵, -CCC (=0) NR³R⁵, -CR° (=NOR°), -CCC (=0) NR³R⁵, -CCCC (=0) NCCCC (=0) NCCCCC (=0) NCCCC (=0) NCCCC (=0) NCCCC (=0) NCCCC (=0) NCCCC (=0) NC

- (74) Gemeinsamer Vertreter: BASF AKTIENGE-SELLSCHAFT; 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

5-Phenylpyrimidine, Verfahren zu ihrer Herstellung, sie enthal-5 tende Mittel und ihre Verwendung

Die vorliegende Erfindung betrifft 5-Phenylpyrimidine der Formel T

10

25

$$\begin{array}{c}
\mathbb{R}^{1} \\
\mathbb{N} \longrightarrow \mathbb{R}^{2}
\end{array}$$

$$\mathbb{R}^{3} \longrightarrow \mathbb{X}_{m}$$

15 in der die Substituenten und der Index folgende Bedeutung haben:

 R^1,R^2 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Halogencycloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Alkinyl oder C_2 - C_6 -Halogenalkinyl,

R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch eine Ether-(-0-), Thio-(-S-), Sulfoxyl-(-S[=0]-) oder Sulfonyl-(-SO₂-) Gruppe unterbrochen sein und/oder durch eine bis vier Gruppen R² und/oder R³ substituiert sein kann;

Ra, Rb unabhängig voneinander Wasserstoff, $C_1-C_6-Alkyl$, C_2-C_8-Al- kenyl, $C_2-C_8-Alkinyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkoxy$, $C_1-C_6-Halogenalkoxy$,

 C_3-C_{10} -Cycloalkyl, Phenyl oder fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, wobei die cyclischen Reste teilweise oder vollständig substituiert sein können durch folgende Gruppen R $^{\rm x}$:

40

45

35

Rx unabhängig voneinander Cyano, Nitro, Amino, Amino-carbonyl, Aminothiocarbonyl, Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl-carbonyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkyloxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-Alkylamino, C₁-C₆-Alkylamino-carbonyl, Di-C₁-C₆-Alkylaminocarbonyl, C₁-C₆-Alkyl-

aminothiocarbonyl, Di- C_1 - C_6 -Alkylaminothiocarbonyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkenyloxy, Phenyl, Phenoxy, Benzyl, Benzyloxy, 5- oder 6-gliedriges Heterocyclyl, 5- oder 6-gliedriges Hetaryl, 5- oder 6-gliedriges Hetaryloxy, C (=NOR $^{\alpha}$)-OR $^{\beta}$ oder OC (R^{α})₂-C (R^{β})=NOR $^{\beta}$,

·10

5

wobei die cyclischen Gruppen ihrerseits unsubstituiert oder substituiert sind durch einen bis drei Reste Ry:

Ry Cyano, Nitro, Halogen, Hydroxy, Amino, Amino-

15

carbonyl, Aminothiocarbonyl, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkylsulfonyl, C₁-C₆-Alkylsulfoxyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alk-oxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₁-C₆-Alkylaminocarbonyl, Di-C₁-C₆-alkylaminocarbonyl, Di-C₁-C₆-alkylaminothiocarbonyl, Di-C₁-C₆-Alkylaminothiocarbonyl, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkenyl, Phenyl, Phenoxy, Phenylthio, Benzyl, Benzyloxy, 5- oder 6-gliedriges Heterocyclyl, 5- oder 6-gliedriges Hetaryl, 5- oder

20

25

R^{α} , R^{β} Wasserstoff oder C_1 - C_6 -Alkyl;

6-gliedriges Hetaryloxy oder $C(=NOR^{\alpha})-OR^{\beta}$;

30

Ra und Rb können auch gemeinsam über eine Alkylenoder Alkenylenkette mit dem überbrückenden Atom einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden;

Wasserstoff, Halogen, Cyano, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogen-alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy oder C_3 - C_8 -Alkenyl-oxy;

R⁴ **40** 45

 $-NR^{a}C(=NOR^{c})R^{c}$, $-OC(=0)R^{c}$, $-C(=NOR^{c})NR^{a}R^{b}$, $-CR^{c}(=NNR^{a}R^{b})$, $-C(=0)NR^{a}R^{b}$ oder $-C(=0)R^{c}$;

- R^c eine der bei R^a und R^b genannten monovalenten Gruppen;
- X Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkyl;
 und
 - m eine ganze Zahl von 1 bis 5.

Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser 10 Verbindungen, sie enthaltende Mittel sowie deren Verwendung zur Bekämpfung von Schadpilzen.

Pyridylpyrimidin-Derivate mit fungizider Wirkung sind bekannt aus EP-A 407 899 DE-A 42 27 811 und WO-A 92/10490. Tetrahydropyrimi15 din-Derivate mit fungizider Wirkung sind aus GB-A 2 277 090 bekannt.

Die in den vorstehend genannten Schriften beschriebenen Verbindungen sind als Pflanzenschutzmittel gegen Schadpilze geeignet.

20

Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Daher lag als Aufgabe zugrunde, Verbindungen mit verbesserter Wirksamkeit zu finden.

- 25 Demgemäß wurden die eingangs definierten Phenylpyrimidinderivate I gefunden. Außerdem wurden Verfahren zu ihrer Herstellung sowie sie enthaltende Mittel zur Bekämpfung von Schadpilzen und ihre Verwendung in diesem Sinne gefunden.
- 30 Die Verbindungen der Formel I weisen eine gegenüber den bekannten Verbindungen erhöhte Wirksamkeit gegen Schadpilze auf.

Die Verbindungen I können auf verschiedenen Wegen erhalten werden.

35

Vorteilhaft geht man zur Herstellung der Verbindungen der Formel I, in der \mathbb{R}^4 für Cyanooder eine über ein Heteroatom gebundene Gruppe steht, von Sulfonen der Formel II aus. In Formel II haben die Substituenten X_m und \mathbb{R}^1 bis \mathbb{R}^3 die Bedeutung wie in Formel I und \mathbb{R}^4 und \mathbb{R}^4 steht für \mathbb{R}^4 -Alkyl, bevorzugt für Methyl.

Die Sulfone der Formel II werden mit Verbindungen der Formel III unter basischen Bedingungen umgesetzt. Aus praktischen Gründen kann alternativ direkt das Alkalimetall-, Erdalkalimetall- oder 45 Ammoniumsalz der Verbindung III eingesetzt werden.

5

20

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 25°C bis 250°C, vorzugsweise 40°C bis 210°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. DE-A 39 01 084; 10 Chimia, Bd. 50, S. 525-530 (1996); Khim. Geterotsikl. Soedin, Bd. 12, S. 1696-1697 (1998)].

Geeignete Lösungsmittel sind halogenierte Kohlenwasserstoffe, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, 15 1,2-Dimethoxyethan, Dioxan, Anisol und Tetrahydrofuran, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid. Besonders bevorzugt werden Ethanol, Dichlormethan, Acetonitril und Tetrahydrofuran. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und
Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kalium-

- 25 hydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat in Betracht. Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch im Überschuß verwendet werden.
- 30 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, III in bis zu 10fachem, insbesondere bis zu 3fachem Überschuß bezogen auf II einzusetzen.
- 35 Verbindungen der Formel I, in der R⁴ für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Halogenalkyl steht, werden vorteilhaft aus Phenylmalonestern der Formel IV durch Umsetzung mit Amidinen der Formel V erhalten.

40
$$O = OR'$$
 NH_2 N

Diese Umsetzung erfolgt vorteilhaft unter den aus J. Chem. Soc. 45 (1943) S. 388 und J. Org. Chem. (1952) Bd. 17, S. 1320 bekannten Bedingungen.

Phenylmalonester der Formel IV sind aus EP-A 10 02 788 bekannt.

Hydroxypyrimidine der Formel VI werden in Halogenverbindungen VII überführt [vgl. J. Chem. Soc. (1943) S. 383; Helv. Chim. Acta 5 (1981) Bd. 64, S. 113-152]. Als Halogenierungsmittel kommen dabei insbesondere POCl₃ und POBr₃ in Betracht.

Aus Halogenpyrimidinen VII werden durch Umsetzung mit Aminen VIII Verbindungen der Formel I erhalten.

10

15

Diese Umsetzung erfolgt vorteilhaft unter den aus J. Chem. Soc. (1943) S. 383 und Chem. Eur. J. (1999) Bd. 5 (12), S. 3450-3458 bekannten Bedingungen.

20 Phenylpyrimidine der Formel I, in der R³ für Cyano oder über Sauerstoff gebundene Gruppen steht, werden vorteilhaft aus den entsprechenden Halogenverbindungen der Formel I durch Umsetzung mit Verbindungen IX unter basischen Bedingungen erhalten. Aus praktischen Gründen kann alternativ direkt das Alkalimetall-, Erdalkatimetall- oder Ammoniumsalz der Verbindung IX eingesetzt werden.

30

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 25°C bis 250°C, vorzugsweise 40°C bis 210°C, in einem inerten organischen Lösungsmittel ggf. in Gegenwart einer Base [vgl. Recl.

35 Trav. Chim. Pays-Bas (1942) Bd. 61, S. 291; J. Heterocycl. Chem. (1993) Bd. 30 (4), S. 993-995].

Geeignete Lösungsmittel sind Ether, Sulfoxide, Amide, besonders bevorzugt Dimethylsulfoxid, N,N-Dimethylformamid, N-Methylpyrro
1 don, N N-Dimethylacetamid, Diethylether, Tetrahydrofuran, 1,2-Dimethoxyethan. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkali-45 metall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calziumhydroxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kalium6

hydrid und Calziumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calziumcarbonat in Betracht.

5 Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch im Überschuß verwendet werden.

Phenylpyrimidine der Formel I, in der R³ für C₁-C₆-Alkyl oder, C₁-C₆-Halogenalkyl steht, werden vorteilhaft aus den entsprechen10 den Halogenverbindungen der Formel I durch Umsetzung mit metallorganischen Verbindungen der Formel X, in der M für eine Gruppe
Mg-Hal, Zn-R³ oder B(OR)₂ steht, wobei Hal ein Halogenatom und R
Wasserstoff oder C₁-C₄-Alkyl bedeutet und R³ für C₁-C₆-Alkyl
steht, erhalten.

15

20

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von -25°C bis 250°C, vorzugsweise 0°C bis 150°C, in einem inerten organischen Lösungsmittel, ggf. in Gegenwart eines Übergangsmetallkatalysators [vgl. Chem. and Pharm. Bull. (1980) Bd. 28, Nr. 2, S. 571-577; Tetrahedron Lett. (1996) Bd. 37 (8), S. 1309; Tetrahedron Lett. (1994) Bd. 35 (19), S. 3155; Synlett (1999) Bd. 7, S. 1145].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, 30 aromatische Kohlenwasserstoffe, Ether, besonders bevorzugt Diethylether, Tetrahydrofuran, 1,2-Dimethoxyethan, Benzol, Toluol und Xylol. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

35 Als Übergangsmetall-Katalysatoren sind Eisen-, Kobalt-, Nickel-, Rhodium-, Platin- oder Palladium-Verbindungen, besonders Nickel(0)-, Nickel(II)- Palladium(0)- und Palladium(II)-Verbindungen geeignet. Dabei können Salze wie Palladiumchlorid oder Palladiumacetat oder auch Pd-Komplexe verwendet werden. Voraus40 setzung ist nur, daß die Liganden am Palladium unter den Reaktionsbedingungen vom Substrat verdrängt werden können.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, X in 45 bis zu 10fachem, insbesondere bis zu 3fachem Überschuß bezogen auf I einzusetzen.

Die für die Herstellung der Verbindungen I benötigten Ausgangsstoffe der Formel II können nach literaturbekannten Methoden beispielsweise auf folgender Syntheseroute erhalten werden:

5 Ausgehend von Phenylmalonsäurealkylestern der Formel XI und Thioharnstoff werden Verbindungen der Formel XII erhalten,

wobei in Formel XI R für C_1 - C_6 -Alkyl steht. Die Reaktion erfolgt üblicherweise in einem protischen Lösungsmittel wie z.B. Alkoholen, insbesondere Ethanol, gegebenenfalls in Gegenwart einer

- 15 Base, wie Na₂CO₃ und NaHCO₃. Die Reaktionstemperatur liegt vorzugsweise bei 70-220°C [vgl. Collect. Czech. Chem. Commun., Bd. 48, S. 137-143 (1983); Heteroat. Chem., Bd. 10, S. 17-23 (1999); Czech. Chem. Commun., Bd. 58, S. 2215-2221 (1993)].
- 20 Die benötigten Phenylmalonsäureester XI sind aus EP-A 10 02 788 bekannt.

Verbindungen XII werden durch Alkylierungsmittel XIII zu Thiobarbitursäurederivaten umgesetzt. In Formel XIII bedeutet R C₁-C₆-Al-25 kyl und X eine nucleophil abspaltbare Abgangsgruppe. Formel XIII steht allgemein für übliche Alkylierungsmittel, wie Methylchlorid und Methylbromid, Dimethylsulfat oder Methansulfonsäuremethylester.

Die Reaktion kann in Wasser oder auch einem dipolar aprotischen 35 Lösungsmittel wie z.B. N,N-Dimethylformamid durchgeführt werden [vgl. US 5,250,689], sie erfolgt vorteilhaft in Gegenwart einer Base, wie beispielsweise KOH, NaOH, NaHCO3 und Na₂CO₃ oder Pyridin. Die Reaktionstemperatur liegt vorzugsweise bei 10-60°C.

40 Verbindungen XIV werden in Dichlorpyrimidine der Formel XV überführt [vgl. EP-A 745 593; WO-A 99/32458; J.Org. Chem. Bd. 58, S. 3785-3786 (1993)].

45 XIV
$$(C1)$$
 $R-S$ N XV

Als Chlorierungsmittel [C1] eignen sich beispielsweise POCl3, PCl3/Cl2 oder PCl5. Die Reaktion kann in überschüssigem Chlorierungsmittel (POCl3) oder einem inerten Lösungsmittel durchgeführt werden. Diese Umsetzung erfolgt üblicherweise zwischen 10 und 5 180°C.

Durch Aminierung mit XVI werden die Dichlorverbindungen der Formel XV in die Verbindungen der Formel XVII überführt.

10
$$XV + R^{1} \xrightarrow{R^{2}} R^{2}$$

$$R-S \longrightarrow N \longrightarrow X_{m}$$

$$XVII$$

- 15 Diese Umsetzung erfolgt vorzugsweise bei 20 bis 120°C [vgl. J. Chem. Res. S (7), S. 286-287 (1995); Liebigs Ann. Chem., S. 1703-1705 (1995)] in einem inerten Lösungsmittel gegebenenfalls in Gegenwart einer Hilfsbase, wie NaHCO3, Na2CO3 oder tert. Amine.
- 20 Die Amine der Formel XVI sind käuflich oder literaturbekannt oder können nach bekannten Methoden hergestellt werden.

Die Thioverbindungen XVII werden zu den Sulfonen der Formel II oxidiert.

XVII

$$R-SO_2$$
 $N=X_m$
 R^1
 $N-R^2$
 X_m
 R^2
 X_m
 X_m

30

25

Die Reaktion wird vorzugsweise bei 10 bis 50°C in Gegenwart protischer oder aproptischer Lösungsmittel durchgeführt [vgl.: B. Kor. Chem. Soc., Bd. 16, S. 489-492 (1995); Z. Chem., Bd. 17, S. 63 (1977)]. Geeignete Oxidationsmittel sind beispielsweise Wasser-35 stoffperoxid oder 3-Chlorperbenzoesäure.

Die Einführung von von Chlor verschiedenen Gruppen R3 in die Sulfone II kann analog der Verbindungen der Formel I erfolgen.

- 40 Verbindungen der Formel I, in der R4 für -C(=0)Rc, -C(=0)NRaRb, -C(=NORc)NRaRb, -C(=NNRaRb)Rc oder -C(=NORa)Rc steht, werden vorteilhaft aus Verbindungen der Formel I, in der R4 Cyano bedeutet. erhalten.
- 45 Verbindungen der Formel I, in der R4 für -C(=0)NRaRb oder -C(=NORc)NRaRb steht, sind aus sind aus den entsprechenden Nitrilen (R4=Cyano) durch Verseifung zu den Carbonsäuren der Formel Ia

9

unter sauren oder basischen Bedingungen und Amidierung mit Aminen HNRaRb. Die Verseifung erfolgt üblicherweise in inerten polaren Lösungsmitteln, wie Wasser oder Alkoholen, bevorzugt mit anorganischen Basen, wie Alkali- oder Erdalkalimetallhydroxiden, insbesondere NaOH.

Diese Umsetzungen erfolgen vorteilhaft unter den aus Chem. and Pharm. Bull. 1982, Bd.30, N12, S.4314 bekannten Bedingungen.

Aus Amiden der Formel Ib werden durch Oximierung mit substituierten Hydroxyaminen H₂N-OR^c unter basischen Bedingungen die Verbindungen der Formel I, in der R⁴ für -C(=NOR^c)NR^aR^b steht, erhalten [vgl. US 4,876,252]. Die substituierten Hydroxyamine können als freie Base oder bevorzugt in Form Ihrer Säureadditionssalze eingesetzt werden. Aus praktischen Gründen kommen dabei insbesondere

die Halogenide, wie die Chloride oder die Sulfate in Frage.

30

Ib H_2N-OR^c R^b R^b $N-R^2$ R^c R^c

35 Alternativ können die Amidoxime der Formel Ic, in der R^a und R^b für Wasserstoff stehen, auch aus den entsprechenden Nitrilen (R⁴=Cyano) durch Umsetzung mit Hydroxylamin und anschließender Alkylierung erhalten werden. Diese Umsetzung erfolgt vorteilhaft unter den aus DE-A 198 37 794 bekannten Bedingungen.

40

45

Verbindungen der Formel I, in der R⁴ für -C(=0)R^c steht, sind aus den entsprechenden Nitrilen (R⁴=Cyano) durch Umsetzung mit Grignard-Verbindungen R^c-Mg-Hal, wobei Hal für ein Halogenatom, insbesondere für Chlor oder Brom steht, zugänglich.

5

35

$$NC \xrightarrow{N}_{R^3} X_m \xrightarrow{R^c-Mg-Hal} \xrightarrow{R^c}_{N} X_m \text{ Id}$$

Diese Umsetzung erfolgt vorteilhaft unter den aus J. Heterocycl. Chem. 1994, Bd.31(4), S.1041 bekannten Bedingungen.

10 Die Substituenten und Indices in Formeln Ia, Ib und Ic entsprechen denen in Formel I.

Verbindungen der Formel I, in der R⁴ für -C(=NNR^aR^b)R^c steht, sind über die Carbonylverbindungen Id zugänglich. Sie werden durch Um15 setzung von Id mit Hydrazinen H₂NNR^aR^b, bevorzugt unter den aus J.
Org. Chem. 1966, Bd.31, S.677 bekannten Bedingungen erhalten.

Verbindungen der Formel I, in der R⁴ für -C(=NOR^a)R^c steht, sind über Oximierung vomn Carbonylverbindungen Id zugänglich. Die Oxi20 mierung von Id erfolgt analog der Oximierung der Verbindungen Ib.

Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter vermindertem Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

40 Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4 oder 6 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl
wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl,
2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl,
Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl,

PCT/EP02/12807 · WO 03/043993

11

2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methyl-5 propyl und 1-Ethyl-2-methylpropyl;

Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 6 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch 10 Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Di-15 fluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

Alkoxy: geradkettige oder verzweigte Alkylgruppen mit 1 bis 20 10 Kohlenstoffatomen (wie vorstehend genannt), welche über ein Sauerstoffatom (-0-) an das Gerüst gebunden sind;

Alkylthio: geradkettige oder verzweigte Alkylgruppen mit 1 bis 10 oder 1 bis 4 Kohlenstoffatomen (wie vorstehend genannt), welche 25 über ein Schwefelatom (-S-) an das Gerüst gebunden sind;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie 30 Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 35 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl,

1,2-Dimethyl-2-propenyl, 1-Ethyl-1propenyl, 1-Ethyl-2propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl,

- 40 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-bute-
- 45 nyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-

12

buteny1, 2,3-Dimethy1-2-buteny1, 2,3-Dimethy1-3-buteny1, 3,3-Dimethy1-1-buteny1, 3,3-Dimethy1-2-buteny1, 1-Ethy1-1-buteny1,
1-Ethy1-2-buteny1, 1-Ethy1-3-buteny1, 2-Ethy1-1-buteny1, 2-Ethy1-2-buteny1, 2-Ethy1-3-buteny1, 1,1,2-Trimethy1-2-propeny1,
5 1-Ethy1-1-methy1-2-propeny1, 1-Ethy1-2-methy1-1propeny1 und
1-Ethy1-2-methy1-2-propeny1;

Halogenalkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

- 15 Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl,
- 20 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl,
 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl,
 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl,
- 25 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl,
 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl1-methyl-2-propinyl;

30

Halogenalkinyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

Alkinyloxy: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 3 bis 8 Kohlenstoffatomen und einer Dreifach-40 bindung in einer beliebigen, nicht zum Heteroatom benachbarten, Position (wie vorstehend genannt), welche über ein Sauerstoffatom

(-0-) an das Gerüst gebunden sind;

13

Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6, 8 oder 10 Kohlenstoffringgliedern, z.B. C₃-C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl;

5- oder 6-gliedriges Heterocyclyl enthaltend neben Kohlenstoff-ringgliedern ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl,

10 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Isothiazolidinyl, 4-Isothiazolidinyl, 5-Isothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thia-

15 zolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 1,2,4-Oxadiazolidin-3-yl, 1,2,4-Oxadiazolidin-5-yl, 1,2,4-Thiadiazolidin-5-

yl, 1,2,4-Triazolidin-3-yl, 1,3,4-Oxadiazolidin-2-yl, 1,3,4-Thiadiazolidin-2-yl, 1,3,4-Triazolidin-2-yl, 2,3-Dihydrofur-2-yl,

20 2,3-Dihydrofur-3-yl, 2,4-Dihydrofur-2-yl, 2,4-Dihydrofur-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-Dihydrothien-3-yl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-3-yl, 3-Pyrrolin-3-yl, 3-Isoxazolin-3-yl, 4-Isoxazolin-3-yl, 2-Isoxazolin-4-yl, 3-Isoxazolin-

25 4-yl, 4-Isoxazolin-4-yl, 2-Isoxazolin-5-yl, 3-Isoxazolin-5-yl, 4-Isoxazolin-5-yl, 2-Isothiazolin-3-yl, 3-Isothiazolin-3-yl, 4-Isothiazolin-3-yl, 2-Isothiazolin-4-yl, 3-Isothiazolin-4-yl, 4-Isothiazolin-4-yl, 2-Isothiazolin-5-yl, 3-Isothiazolin-5-yl, 4-Isothiazolin-5-yl, 2,3-Dihydropyrazol-1-yl, 2,3-Dihydropyra-

30 zol-2-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3-Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-1-yl, 3,4-Dihydropyrazol-3-yl, 3,4-Dihydropyrazol-4-yl, 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-1-yl, 4,5-Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-2-yl, 2,3-Dihydrooxazol-2-yl,

35 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxa-zol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydro-

40 pyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 2-Piperazinyl, 1,3,5-Hexahydro-triazin-2-yl und 1,2,4-Hexahydrotriazin-3-yl;

5- oder 6-gliederiges Heteroaryl, welches neben Kohlenstoffringgliedern Heteroatome aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann: Aryl wie vorstehend genannt oder einoder zweikerniges Heteroaryl, z.B.

- 5 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ring-
- glieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 1.0 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl,
- 2-Imidazolyl, 4-Imidazolyl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadia-15 zol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl;
- benzokondensiertes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome oder ein Stickstoffatom und ein Sauer-.20 stoff- oder Schwefelatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, und in welchen zwei benachbarte
- Kohlenstoffringglieder oder ein Stickstoff- und ein benachbar-25 tes Kohlenstoffringglied durch eine Buta-1,3-dien-1,4diylgruppe verbrückt sein können;
- 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoff-30 atome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1,2,4-Triazin-3-yl;

Alkylen: divalente unverzweigte Ketten aus 1 bis 4 CH2-Gruppen, z.B. CH₂, CH₂CH₂, CH₂CH₂CH₂ und CH₂CH₂CH₂CH₂;

Oxyalkylen: divalente unverzweigte Ketten aus 2 bis 4 CH2-Gruppen, 40 wobei eine Valenz über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂CH₂, OCH₂CH₂CH₂ und OCH₂CH₂CH₂CH₂;

Oxyalkylenoxy: divalente unverzweigte Ketten aus 1 bis 3 CH2-Gruppen, wobei beide Valenzen über ein Sauerstoffatom an das 45 Gerüst gebunden ist, z.B. OCH2O, OCH2CH2O und OCH2CH2CH2O;

15

Alkenylen: divalente unverzweigte Ketten aus 1 bis 3 CH₂-Gruppen und einer CH=CH-Gruppe in einer beliebiegen Position, z.B. CH=CHCH₂, CH₂CH=CHCH₂, CH=CHCH₂CH₂, CH₂CH=CHCH₂ und CH=CHCH₂CH₂;

5

Im Hinblick auf ihre bestimmungsgemäße Verwendung der Phenylpyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

10

Insbesondere werden Verbindungen I bevorzugt, in denen \mathbb{R}^1 für Wasserstoff steht.

Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen R¹ und R² unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, C_2 - C_6 -Alkenyl bedeuten.

Insbesondere werden Verbindungen der Formel I bevorzugt, in denen R^1 für C_1 - C_4 -Alkyl und R^2 für Wasserstoff steht.

20

Besonders bevorzugt sind Verbindungen I, in denen R¹ und R² gemeinsam mit dem überbrückenden Stickstoffatom einen gesättigten oder ungesättigten fünf- oder sechsgliederigen Ring bilden, der durch eine Ether- (-0-), Thio- (-S-), Sulfoxyl- (-S[=0]-) oder Sulfonylgruppe (-SO2-) unterbrochen sein und/oder der durch eine oder zwei Methyl- oder Halogenmethylgruppen substituiert sein kann oder in dem zwei benachbarte Kohlenstoffatome durch eine Methylengruppe verbrückt sind. Die Substitution durch eine oder

zwei Methyl- oder Halogenmethylgruppen, insbesondere eine oder 30 zwei Methylgruppen ist besonders bevorzugt.

Außerdem werden Verbindungen der Formel I bevorzugt, in denen R¹ und R² gemeinsam eine Butylen-, Pentylen- oder eine Pentenylen-kette bilden, die durch eine Alkyl-, insbesondere eine Methyl35 gruppe substituiert, oder in den zwei benachbarte Kohlenstoff-atome durch eine Methylengruppe verbrückt sein können.

Ferner werden Verbindungen der Formel I bevorzugt, in denen R¹ und R² gemeinsam eine Pentylen- oder eine Pentenylenkette bilden, die 40 durch eine Methylgruppe substituiert ist.

Besonders bevorzugt sind Verbindungen I, in denen R^1 und R^2 gemeinsam mit dem überbrückenden Stickstoffatom eine 3- oder 4-Methylpiperidinylgruppe oder eine 2-Methylpyrrolidingruppe bilden.

Daneben werden Verbindungen I besonders bevorzugt, in denen \mathbb{R}^3 für Halogen, insbesondere für Chlor steht.

Gleichermaßen besonders bevorzugt sind Verbindungen I, in denen R⁴

5 Wasserstoff, Cyano, Azido, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₆-Halogenalkyl, -ON=CR^aR^b oder -NR^cN=CR^aR^b oder -C(=NOR^c)NR^aR^b bedeutet.

Insbesondere werden Verbindungen I bevorzugt, in denen R⁴ für 10 Cyano, -CR^aNOR^b oder -ON=CR^aR^b, insbesondere für -ON=CR^aR^b steht.

Daneben werden Verbindungen I bevorzugt, in denen R^4 für -NH(=NH)NHR°, -NHC(=O)NHRª, -NHC(=O)Rª, -OC(=O)Rª, -C(=NOR°)NH2 oder -CR°(=NNRªRb) steht.

15

Weiterhin werden Verbindungen I bevorzugt, in denen R^4 für $-NR^cN=CR^aR^b$ steht.

Gleichermaßen bevorzugt sind Verbindungen I, in denen R^4 für 20 -C(=NOR^c)NR^aR^b, insbesondere für -C(=NOR^c)NH₂ steht.

Daneben werden Verbindungen I besonders bevorzugt, in denen R^4 für C_1 - C_6 -Alkenyl oder Azido steht.

25 Außerdem werden Verbindungen I bevorzugt, in denen Ra und Rb gleich oder verschieden sind und Wasserstoff, C1-C6-Alkyl, C1-C4-Alkoxy, Phenyl oder einen fünf- oder sechsgliedrigen aromatischen Heterocyclus bedeuten, wobei die Ringe ggf. durch eine bis drei Gruppen Rx substituiert sein können; die Bedeutungen Wasserstoff, Alkyl, Alkoxy und ggf. substituiertes Phenyl sind von diesen besonders bevorzugt.

Besonders bevorzugte Ausgestaltungen für die Reste Ra und Rb sind C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, C₃-C₆-Al
35 kenyl, C₃-C₆-Halogenalkenyl, C₁-C₄-Alkoxy, C₁-Halogenalkoxy, Pyridyl, Pyrazolyl, Phenyl oder Benzyl, oder Ra und Rb bilden gemeinsam eine Butylen- oder Pentylenkette, wobei die cyclischen Gruppen durch bis zu vier Substituenten aus Halogen, C₁-C₄-Alkyl, C₁-Halogenalkyl, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkoxy-C₁-C₂-alkyl

30 substituiert sein können.

Eine bevorzugte Ausgestaltung für Rc ist Wasserstoff.

Gleichermaßen bevorzugt sind Verbindungen I, in denen X für 45 Chlor, Fluor, Methyl, Trifluormethyl oder Methoxy steht.

17

Außerdem werden Verbindungen I besonders bevorzugt, in denen ein oder zwei Substituenten X orthoständig zu der Verknüpfungsstelle mit dem Pyrimidinring stehen.

5 Daneben werden Verbindungen IA besonders bevorzugt,

10

in denen \mathbb{R}^1 bis \mathbb{R}^4 wie für Formel I definiert sind und \mathbb{X}^1 bis \mathbb{X}^5 gleich oder verschieden sind und

 X^1 Fluor, Chlor, C_1 - C_4 -Alkyl, C_1 - C_2 -Halogenalkyl oder C_1 - C_4 -Alkoxy; und

 X^2, X^3, X^4, X^5 Wasserstoff oder eine der bei X^1 und X^2 genannten Gruppen bedeuten.

Insbesondere werden Verbindungen IA bevorzugt, in denen
20 X¹,X² Fluor, Chlor, Methyl, Trifluormethyl oder Methoxy;
X³,X⁴,X⁵ Wasserstoff oder eine der bei X¹ und X² genannten Gruppen bedeuten.

Außerdem werden Verbindungen I besonders bevorzugt, in denen X_m 25 für F_5 , 2-Cl, 2-F, 2-CH₃, 2-OCH₃, 2,6-Cl₂, 2,6-F₂, 2-Cl-6-F, 2-Br-6-F, 2-CH₃-4-Cl, 2-CH₃-4-F, 2-CH₃-5-F, 2-CH₃-6-F, 2-CH₃-4-OCH₃, 2-CF₃-4-F, 2-CF₃-5-F, 2-CF₃-6-F, 2-CF₃-4-OCH₃, 2-OCH₃-6-F, 2,4,6-Cl₃, 2,3,6-F₃, 2,4,6-F₃, 2,4,6-(CH₃)₃, 2,6-F₂-4-CH₃, 2,6-F₂-4-OCH₃, 2,4-F₂-6-OCH₃, 2,6-(CH₃)₂-4-OCH₃ und 30 2,6-(CH₃)₂-4-F steht.

Insbesondere werden Verbindungen I bevorzugt, in denen X_m für F_5 , $2,6-Cl_2$, $2,6-F_2$, $2-Cl_3-4-F$, $2-Cl_3-4-F$, $2-Cl_3-6-F$, $2-Cl_3-4-Cl$ und $2,4,6-F_3$ steht.

35

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Phycomyceten und Basidiomyceten,

40 aus. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen,

45 Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrank-5 heiten:

- Alternaria-Arten, Podosphaera-Arten, Sclerotinia-Arten, Physalospora canker an Gemüse und Obst,
- Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- 10 Corynespora cassiicola an Gurken,
 - Colletotrichum-Arten an Obst und Gemüse,
 - Diplocarpon rosae an Rosen,
 - Elsinoe fawcetti und Diaporthe citri an Citrus-Früchten,
 - Sphaerotheca-Arten an Kürbisgewächsen, Erdbeeren und Rosen,
- 15 Cercospora-Arten an Erdnüssen, Zuckerrüben und Auberginen,
 - Erysiphe cichoracearum an Kürbisgewächsen,
 - · Leveillula taurica an Paprika, Tomaten und Auberginen,
 - Mycosphaerella-Arten an Äpfeln und japanischer Aprikose,
 - Phyllactinia kakicola, Gloesporium kaki, an japanischer Apri-
- 20 kose,
 - Gymnosporangium yamadae, Leptothyrium pomi, Podosphaera leucotricha und Gloedes pomigena an Äpfeln,
 - · Cladosporium carpophilum an Birnen und japanischer Aprikose,
 - Phomopsis-Arten an Birnen,
- 25 Phytophthora-Arten an Citrusfrüchten, Kartoffeln, Zwiebeln, insbesondere Phytophthora infestans an Kartoffeln und Tomaten,
 - Blumeria graminis (echter Mehltau) an Getreide,
 - Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
 - Glomerella cingulata an Tee,
- 30 Drechslera- und Bipolaris-Arten an Getreide und Reis,
 - Mycosphaerella-Arten an Bananen und Erdnüssen,
 - Plasmopara viticola an Reben,
 - Personospora-Arten an Zwiebeln, Spinat und Chrysantemen,
 - Phaeoisariopsis vitis und Sphaceloma ampelina an Grapefruits,
- 35 Pseudocercosporella herpotrichoides an Weizen und Gerste,
 - Pseudoperonospora-Arten an Hopfen und Gurken,
 - Puccinia-Arten und Typhula-Arten an Getreide und Rasen,
 - Pyricularia oryzae an Reis,
 - Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
- 40 Stagonospora nodorum und Septoria tritici an Weizen,
 - Uncinula necator an Reben,
 - Ustilago-Arten an Getreide und Zuckerrohr, sowie
 - · Venturia-Arten (Schorf) an Äpfeln und Birnen.

WO 03/043993

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie Paecilomyces variotii im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

19

5

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der 10 Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

15

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

20 Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 0,1 g, vorzugsweise 0,01 bis 0,05 g je Kilogramm Saatgut benötigt.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich 25 die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.

- 30 Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Ver-35 bindung gewährleisten.
 - Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgier-
- 40 mitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B.
- 45 Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline,

WO 03/043993

Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergier-5 mittel wie Lignin-Sulfitablaugen und Methylcellulose.

20

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Al-

- 10 kylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit
- 15 Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxy-
- 20 liertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittle-

- 25 rem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol,
- 30 Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.
- 35 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranula-40 te, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, ge-
- 45 mahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produk-

21

te, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 5 Gew.-*, vorzugsweise zwischen 0,1 und 90 Gew.-* des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind:

10

I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.

15

- II. 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit (Wirkstoffgehalt 23 Gew.-%).
- III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1Mol Ölsäure-N-monoethanolamid, 2 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).

30

- IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).
- V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen (Wirkstoffgehalt 80 Gew.-%).

22

VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbindung mit 10 Gew.-Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).

5

VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gew.-Teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

15

- VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.-Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
- 25 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Versteuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
- 35 Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-,
- 40 Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

WO 03/043993

23

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

10 .

Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mit-15 teln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungizi-20 den oder auch mit Düngemitteln. Beim Vermischen der Verbindungen

- I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.
- 25 Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:
 - Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethyldithiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylen-
- 30 bisdithiocarbamat, Manganethylenbisdithiocarbamat, Mangan-Zinkethylendiamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak-Komplex von Zink-(N, N-ethylen-bis-dithiocarbamat), Ammoniak-Komplex von Zink-(N, N'-propylen-bis-dithiocarbamat), Zink-(N,N'-propylenbis-dithiocarbamat), N,N'-Polypropylen-
- bis-(thiocarbamoyl)disulfid;
 - Nitroderivate, wie Dinitro-(1-methylheptyl)-phenylcrotonat, 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat, 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat, 5-Nitro-isophthalsäure-di-isopropylester;
- 40 heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2-Chlor-N-(4'-chlor-biphenyl-2-yl)-nicotinamid, 2,4-Dichlor-6-(o-chloranilino)-s-triazin, O,O-Diethyl-phthalimidophosphonothioat, 5-Amino-1-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4- triazol, 2,3-Dicyano-1,4-dithioanthrachi-
- 45 non, 2-Thio-1,3-dithiolo[4,5-b]chinoxalin, 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benzimidazol, 2-(Furyl-(2))-benzimidazol, 2-(Thiazol-

PCT/EP02/12807 WO 03/043993

y1-(4))-benzimidazol, N-(1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid, N-Trichlormethylthio-tetrahydrophthalimid, N-Trichlormethylthio-phthalimid,

24

- N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid, 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol, 2-Rhodanmethylthiobenzthiazol, 1,4-Dichlor-2,5-dimethoxybenzol, 4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon, Pyridin-2-thio-1-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
- 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid, 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methylfuran-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäureanilid, 2,4,5-Trimethyl-furan-3-carbonsäureanilid, 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-me-
- 15 thoxy-2,5-dimethyl-furan-3-carbonsaureamid, 2-Methyl-benzoesaure-anilid, 2-Iod-benzoesäure-anilid, N-Formyl-N-morpholin-2,2,2-trichlorethylacetal, Piperazin-1,4-diylbis-1-(2,2,2-trichlorethyl)-formamid, 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan, 2,6-Dimethyl-N-tridecyl-morpholin
- 20 bzw. dessen Salze, 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethyl-morpholin, N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin, 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol,
- 25 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazol, N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff, 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon, 1-(4-Chlorphenoxy) -3, 3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
- 30 (2RS, 3RS)-1-[3-(2-Chlorphenyl)-2-(4-fluorphenyl)-oxiran-2-ylmethyl]-1H-1,2,4-triazol, α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol, 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyridinmethanol, 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
- 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,
 - Strobilurine wie methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate, (E)-2-(methoxyimino) -N-methyl-2- $[\alpha$ -(2,5-xylyloxy)-o-tolyl]acetamide, {2-[6-(2-chlorophenoxy)-5-fluoropyrimidin-4-yloxy]phe-
- 40 nyl}(5,6-dihydro-1,4,2-dioxazin-3-yl)methanone O-methyloxime, methyl (E)-methoxyimino $[\alpha-(o-tolyloxy)-o-tolyl]$ acetate, (E)-2-(methoxyimino)-N-methyl-2-(2-phenoxyphenyl)acetamide, $(2E)-2-(methoxyimino)-2-\{2-[(3E,5E,6E)-5-(methoxyimino)-4,6-di$ methyl-2,8-dioxa-3,7-diazanona-3,6-dien-1-yl]phenyl}-N-methyl-
- acetamide, methyl-(E)-3-methoxy-2-{2-[6-(trifluoromethyl)-2-pyridyloxymethyl]phenyl}acrylate, methyl N-{2-[1-(4-chlorophe-

25

nyl)-1H-pyrazol-3-yloxymethyl]phenyl}(N-methoxy)carbamate, methyl (E)-methoxyimino- $\{(E)-\alpha-[1-(\alpha,\alpha,\alpha-\text{trifluoro-m-tolyl})\text{ ethyllideneaminooxy}]$ -o-tolyl}acetate,

- Anilinopyrimidine wie N-(4,6-Dimethylpyrimidin-2-yl)-anilin,
- N-[4-Methyl-6-(1-propinyl)-pyrimidin-2-yl]-anilin, N-[4-Methyl-6-cyclopropyl-pyrimidin-2-yl]-anilin,
 - Phenylpyrrole wie 4-(2,2-Difluor-1,3-benzodioxol-4-yl)-pyrrol-3-carbonitril,
 - Zimtsäureamide wie 3-(4-Chlorphenyl)-3-(3,4-dimethoxyphe-
- nyl)-acrylsäuremorpholid, 3-(4-Fluorphenyl)-3-(3,4-dimethoxy-phenyl)-acrylsäuremorpholid,
 - sowie verschiedene Fungizide, wie Dodecylguanidinacetat, 1-(3-Brom-6-methoxy-2-methyl-phenyl)-1-(2,3,4-trimethoxy-6-methyl-phenyl)-methanon, 3-[3-(3,5-Dimethyl-2-oxycyclohe-
- xyl)-2-hydroxyethyl]-glutarimid, Hexachlorbenzol, DL-Me-thyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat,
 DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methyl-ester, N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyro-lacton, DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alanin-
- methylester, 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin, 3-(3,5-Dichlorphenyl)-5-methyl-5-methoxymethyl-1,3-oxazolidin-2,4-dion, 3-(3,5-Dichlorphenyl)-1-isopropylcarbamoylhydantoin, N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid, 2-Cyano-[N-(ethylaminocarbo-
- nyl)-2-methoximino]-acetamid, 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol, 2,4-Difluor-α-(1H-1,2,4-triazolyl-1methyl)-benzhydrylalkohol, N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin, 1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol,
- 5-Chlor-2-cyano-4-p-tolyl-imidazol-1-sulfonsäuredimethylamid, 3,5-Dichlor-N-(3-chlor-1-ethyl-1-methyl-2-oxo-propyl)-4-methyl-benzamid.

Synthesebeispiele

35

Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle I mit physikalischen Daten aufgeführt.

Beispiel 1: Herstellung von [6-Chlor-2-(N'-isopropylidene-hydra-zino)-5-(2,4,6-trifluorphenyl)-pyrimidin-4-yl]-((S)-1-trifluorme-thyl-ethyl)-amin [I-1)

. 3

0,065 g (2,4 mmol) Natriumhydrid wurden in 10 ml Dimethylformamid (DMF) mit 0,16 g (2,2 mmol) Acetonoxim versetzt. Nach 1 Std. Rühren bei 20 bis 25°C wurde 1,0 g (2,2 mmol) [6-Chlor-2-methansulfo-10 nyl-5-(2,4,6-trifluor-phenyl)-pyrimidin-4-yl]-((S)-1-trifluorme-thyl-ethylamin (Abk. <u>Sulfon 1</u>) zugegeben. Nach weiteren 14 Std. Rühren bei 20 bis 25°C wurde die Mischung auf Wasser gegossen und mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, dann getrocknet und schließlich vom 15 Lösungsmittel befreit. Es bleiben 0,6 g der Titelverbindung vom Fp.: 157-159°C zurück.

Beispiel 2: Herstellung von [6-Chlor-2-methoxy-5-(2,4,6-trifluor-phenyl)-pyrimidin-4-yl]-((S)-1-trifluormethyl-ethyl)-amin [I-24]

20

25

Eine Lösung von 282 mg (0,65 mmol) <u>Sulfon 1</u> in 4 ml wasserfr. DMF wurde mit 294 mg (1,30 mmol) Natriummethylat (90%ig in Methanol) versetzt. Nach 16 Std. Rühren bei 20 bis 25°C wurde mit MTBE verdünnt, mit Wasser gewaschen, dann getrocknet. Nach Abdestillieren des Lösungsmittels und Chromatographie an Kieselgel wurden 0,14 g der Titelverbindung vom Fp. 121-129°C erhalten.

Beispiel 3: Herstellung von [6-Chlor-2-methylsulfa-nyl-5-(2,4,6-trifluor-phenyl)-pyrimidin-4-yl]-isopropyl-amin 35 [I-30]

40

Eine Lösung von 216 mg (0,5 mmol) [6-Chlor-2-methansulfo-nyl-5-(2,4,6-trifluor-phenyl)-pyrimidin-4-yl]-isopropylamin (Abk. Sulfon 2) in 2 ml wasserfr. DMF wurde mit 70 mg (1,0 mmol) Natriumthiomethylat gelöst in 3 ml wasserfr. THF versetzt. Nach 16 Std. Rühren bei 20 bis 25°C wurde mit MTBE verdünnt, mit Wasser gewaschen, dann getrocknet. Nach Abdestillieren des Lösungsmit-

27

tels und Chromatographie an Kieselgel wurden 0,21 g der Titelverbindung vom Fp. 112-116°C erhalten.

Beispiel 4: Herstellung von [6-Chlor-2-hydrazino-5-(2,4,6-tri-5 fluorophenyl)-pyrimidin-4-yl]-((S)-1-trifluoromethyl-ethyl)-amin

10

Eine ethanolische Lösung von 0,5 g (1,15 mmol) Sulfon 1 und 0,13 g (2,54 mmol) Hydrazinhydrat wurde 2 Std. bei 20 bis 25°C gerührt. Nach Abdestillieren des Lösungsmittels und Auskochen des 15 Rückstandes in Diisopropylether wurde der Rückstand abfiltriert und mit Diisopropylether/Hexan 1:1 nachgewaschen.

Beispiel 5: Herstellung von [6-Chloro-2-[N'-(1-trifluormethylethylidene)-hydrazino]-5-(2,4,6-trifluorphenyl)-pyrimi-

20 din-4-yl]-((S)-1-trifluoromethyl-ethyl)-amin [I-56]

25

Eine Lösung von 0,8 g (2,07 mmol) des Hydrazids aus Bsp. 4 und 0,28 g (2,49 mmol) 1,1,1-Trifluoraceton in Acetonitril wurde 16 Std. bei 20 bis 25°C gerührt. Der Niederschlag wurde abfil-30 triert; aus dem Filtrat erhielt man nach Chromatographie an Kieselgel (CH:MTBE 95:5) 0,3 g der Titelverbindung vom Fp. 205-207 °C.

Beispiel 6: Herstellung von [6-Chlor-2-(N-phenyl-hydrazino)-5-35 (2,4,6-trifluorphenyl)-pyrimidin-4-yl]-((S)-1-trifluormethylethyl)-amin [I-62]

40

Eine ethanolische Lösung von 0,5 g (1,15 mmol) <u>Sulfon 1</u> und 0,15 g (1,38 mmol) Phenylhydrazin wurde 14 Std. refluxiert. Nach 45 Abkühlen und Abdestillieren des Lösungsmittels und Chromatographie an Kieselgel (Cyclohexan: Methyl-tert.butylether [MTBE] 95:5) wurden 0,36 g der Titelverbindung erhalten.

Beispiel 7: Herstellung von [2-Azido-6-chlor-5-(2,4,6-trifluor-5 phenyl)-pyrimidin-4-yl]-((S)-1-trifluoromethyl-ethyl)-amin [I-66]

Eine Lösung von 0,5 g (1,15 mmol) <u>Sulfon 1</u> und 0,11 g (1,62 mmol) Natriumazid in Acetonitril wurde 2 Std. refluxiert. Nach Abkühlen und Abdestillieren des Lösungsmittels und Digerieren des Rück-15 standes in Wasser wurden 0,33 g der Titelverbindung vom Fp. 152-154°C erhalten.

Beispiel 8: Herstellung von 6-Chloro-5-(2-chloro-6-fluor-phenyl)-N1-isopropyl-N2-phenylpyrimidin-2,4-diamin [I-69]

10

45

Eine Suspension von 2,9 g Butyllithium (15%ige Lösung in Hexan) in 15 ml Tetrahydrofuran [THF] wurde bei -70℃ mit 0,62 g (6,6 mmol) Anilin versetzt, dann 1 Stunde bei -70°C nachgerührt. Nach Zusatz von 1,0 g (2,64 mmol) [6-Chlor-5-(2-chlor-6-fluor-30 phenyl)-2-methansulfonyl-pyrimidin-4-yl]-isopropyl-amin (Abk. Sulfon 3) wurde auf 20 bis 25°C erwärmt. Die Reaktionsmischung wurde in Eiswasser gegossen und mit Salzsäure angesäuert. Es wurde mit 2 x 40 ml MTBE extrahiert, aus den vereinigten organischen Phasen wurde nach Trocknen und Abdestillieren des Lösungs-35 mittels 1,0 g der Titelverbindung erhalten.

Beispiel 9: Herstellung von 4-Chlor-6-((S)-1-trifluormethylethylamino)-5-(2,4,6-trifluorphenyl)-pyrimidin-2-carbonitril [I-73]

Eine Lösung von 0,5 g (1,15 mmol) <u>Sulfon 1</u> und 0,36 g (2,31 mmol) Tetraethylammoniumcyanid in Dichlormethan wurde 20 Std. bei 20 bis 25°C gerührt. Nach Abdestillieren des Lösungsmittels und Chromatographie an Kieselgel (Cyclohexan [CH]:MTBE 9:1) wurden 0,18 g 5 der Titelverbindung vom Fp. 134-136°C erhalten.

Beispiel 10: Herstellung von 4-Chlor-5-(2-chlor-6-fluorphenyl)-6-isopropylamino-pyrimidin-2-carbonitril [I-74]

10

15 Eine Lösung von 1,0 g (2,63 mmol) <u>Sulfon 3</u> und 0,21 g (3,16 mmol) Kaliumcyanid in Acetonitril wurde 5 Tage bei 20 bis 25°C gerührt. Das Lösungsmittel wurde abdestilliert und der Rückstand in MTBE: Essigsäureethylester [EE] 9:1 digeriert. Nach Abfiltrieren und Einengen des Filtrats wurden 0,61 g der Titelverbindung vom Fp. 186-188°C erhalten.

25

30

35

40

پخ	××	-
R R2		▗ᢟ ▗ᢡ
R.		Z
	Α. 1	

		3	0					
phys. Daten (Fp.[°C])	157~159	88-92	176-179	151-155	110-112	145-146	139-141	350
×	H	Ħ	H	H	Ħ	H	н	斑.
×	Ŀ	Ĺτι	Ĺτι	Ĥ	Ħ	ĮΉ	Ľ4	स्रि
×	Ħ	н,	Ħ	н	Ħ	н	н	Ħ
X2	দৈ	Ħ	দি	įτι	ſΞŧ	ĹŦ	Ŀų	ĵz,
1X	ഥ	Ē	<u>Γ</u> τ,	ĺτι	ĨΉ	ĮΉ	ĺΉ	ŢĿţ
R4	-0-N=C (CH ₃) ₂	ON		-0-N=C (CH3) C6H5	-ON=C(CH ₃)-OCH ₂ CH ₃	-O-N=CHC6H5	-0-N=CHCH ₃	H ₃ C CH ₃ H ₃ C CH ₃
, В	ເລ	CJ	CI	າວ :	CI	ີເລ	ָרָז.	. CI
R ²	н	H	H	н	н	н	н	н
R.1	(S)-CH(CF3)CH3	(S) -CH (CF ₃) CH ₃	(S) -CH (CF ₃) CH ₃	$(S) - CH(CF_3) CH_3$	(S) –CH (CF_3) CH ₃	(S) $-CH(CF_3)CH_3$	(S) -CH (CF_3) CH ₃	(S)-CH(CF3)CH3
Nr.	I-1	I-2	I-3	I-4	I-5	9-I	I-7	1-8

Tabelle

					,	31						,				
phys. Daten (Fp.[°C])	84-86	68~70	87~90	137-139	147-149	Öl	165-168	Öl	110-112	125-127	116-117	98-100	118-121	108-111	129-131	121-129
×5	н	н	Н	Н	H	н	H	н	Ħ	Н	Н	н	н	н	н	Н
**	பூ	Etq.	ſτį	ī	Ħ	ſΞı	Ħ	দ	Ħ	н	٠ تىر	Ħ	H	Ħ	ſΞą	Œ
×	н	用	Н	田	н	Ħ	Ħ	н	Ħ	Ħ	н	Ħ	田	H	H	H
X2	ÍΨ	ſΣι	দ	Œ	Īτι	Ē	ĮΞι	124	ĮΉ	ĮΞŧ	ĵt,	ſτι	ъ	[<u>F</u> 1	ſω.	Щ
X1	ĹΉ	[X ₁	Ŀι	ſΞij	ᄗ	[Zi	CJ	Ŀ	디	ᄗ	ĺΉ	ᄗ	ᄗ	ᄗ	Ē,	ы
R4		H ₃ C N O	-0-N=CH(2,6-C12-C6H3)	-0-CH ₃	-0-CH ₃	-0-CH2CH3	-0-CH ₂ CH ₃	-0-CH2CH2CH3	-0-CH2CH2CH3	-0-CH(CH ₃) ₂	-0-CH2CH2CH3	-0-CH2CH2CH3	-0-C(CH ₃) ₃	-0-CH (CH ₃) CH ₂ CH ₃	-0-СН (СН3) СН2СН3	-0-CH ₃
R3	C1	ij	IJ	ರ	CJ	Ţ	CJ	CJ	្រ	บ	บ	CI	ប	บี	CJ	CJ
R ²	щ	H	н	Н	Н	н	Н	Н	н	н	н	н	н	Ħ	н	н
R ¹	(S)-CH(CF3)CH3	(S)-CH(CF ₃)CH ₃	(S)-CH(CF3)CH3	CH(CH ₃) ₂	CH (CH ₃) 2	CH (CH ₃) ₂	CH(CH ₃) ₂	(S)-CH(CF3)CH3	CH(CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	(S) -CH (CF_3) CH ₃	(S) -CH (CF_3) CH ₃			
Nr.	. 6-I	I-10	I-11	I-12	I-13	I-14	I-15	I-16	I-17	I-18	I-19	I-20	I-21	I-22	1-23	I-24

	1	Г	Т	Т		Т	Γ_	Г	T -	1		Т	Τ-	1	Т	Г	1	Г	Т
phys. Daten (Fp.[°C])	147-149	159-161	164-169	Öl	Öl	112-116	106-110	δı	104-108	95-98	Öl	Öl	111-113	Öl	94-96	Öl	114-117	Öl	69-89
χ ₂	H	н	H	н	н	H	H	Н	н	н	H	H	Н	н	H	Н	н	H	H
*	Ŀ	Ħ	H	Ħ	缸	ы	н	Ēι	H	ഥ	н	ŭ	н	н	H	F	Ħ	표	田
, X	ж	H	н	H	ж	H	Ħ	H	H	H	H	H	H	H	耳	H	H	H	Е
X ₂	Ęť	Œ	ßi,	দ্র	fz.	ſΞŧ	ſĽι	Ē	ម	Ŀı	Ŀı	ĮΞį	ĮΞų	<u>ن</u> ــا	ĮŦ1	Ēų	Ēų	ſΞų	E
×	Ŀı	Ħ	ប	E1	ĹΉ	Œ	CJ	ſτι	CI	Ēų	CJ	Ē	CI	IJ	딩	£4	C]	Ē	臼
R4	-0-CH ₂ CH ₃	-0-CH (CH ₃) ₂	OH-	-0-CH ₂ CH ₃	HC \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-S-CH ₃	-S-CH ₃	-S-CH2CH3	-S-CH ₂ CH ₃	-S-CH2CH2CH3	-S-CH2CH2CH3	-S-CH (CH ₃) ₂	-S-CH (CH ₃) ₂	-S-CH2CH2CH3	-S-C(CH ₃) ₃	-S-CH (CH ₃) CH ₃ CH ₂	-S-CH (CH ₃) CH ₂ CH ₃	-S-CH ₂ CH ₃	-S-CH ₂ CH ₂ CH ₃
R ³	CI	CJ	c_1	เว	CI	ᄗ	ີ່ເນ	CJ	CI	ເມ	บ	ເລ	ເວ	ご	CI	ᄗ	CJ	T.O	CJ
\mathbb{R}^2	н	Н	CH2-	CH2	CH2-	н	н	Н	Н	Н	H	Н	H	н	н	Н	H	Н	Ħ
R.1	(S)-CH(CF ₃)CH ₃	(S)-CH(CF3)CH3	-CH2CH2CH (CH3) CH2CH2-	-CH2CH2CH (CH3) CH2CH2-	-CH2CH2CH (CH3) CH2CH2-	CH(CH ₃) ₂	CH(CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	(S) -CH (CF3) CH3	(S) -CH (CF3) CH3				
Nr.	I-25	I-26	I-27	I-28	I-29	I-30	I-31	I-32	I-33	I-34	I-35	I-36	I-37	I-38	I-39	I-40	1-41	I-42	I-43

										3	3								
phys. Daten (Fp.[°C])	73-76	Öl	Öl	64~65	124-126	Öl	Öl	Ől	Öl	135-137	Öl	Öl	205-207	185-187	84-87	138-140	205-208	152-155	ΩT
X ₅	н	н	н	Ħ	н	Ħ	Ħ	Ħ	н	Ħ	н	Ħ	н	Н	H	н	н	н	н
×	F	Ħ	ſ±į	ĺΉ	н	н	н	H	н	Ħ	Ϊ'n	Œ	Бъ	Œ	E4	ĬΉ	ĬΉ	Ŀ	দ
×	H	#	H	Ħ	н	Ħ	Ħ	н	Ħ	Ħ	н	н	н	н	н	Ħ	Н	H	н
*	표	Œ,	(Eq.	ſĿι	Ħ	н	Ħ	Ħ	н	田	ſz,	Ľ.	ſτι	[II,	Ēυ	ĨΉ	ഥ	ĮΣĄ	ഥ
× X	দ	Ĕij	ſΉ	ſu,	ſī,	Ēι	Ē4	ſzι	ſτι	ഥ	[It	ſΞij	Ēų	Ē4,	124	Įτι	Ē	Ŀı	н
ጽ4	-S-CH(CH ₃) ₂	-S-CH ₂ CH ₂ CH ₃	-S-C(CH ₃) ₃	-S-CH (CH ₃) CH ₂ CH ₃	-S-CH ₃	-S-CH ₃	-S-CH ₃	-S-CH ₃	-S-CH ₃	-S-CH ₃	-N(CH ₃)-N=C(CF ₃)CH ₃	-N (CH3) -N=C (CH3) -C6H5	-NH-N=C (CF3) CH3	-NH-N=C (CH ₃) -C ₆ H ₅	-NH-N=C (CF3) -C6H5	-NH-N=CH-C6H5	-N(CH ₃)-N=C(CH ₃) ₂	-N(CH ₃)-N=CH-C ₆ H ₅	-NH-NH-C ₆ H ₅
R ³	CJ	ᄗ	ᄗ	디	5	딩	ដ	ᄗ	ᄗ	ᄗ	ប	ច	บี	ដ	ยี	ᄗ	ជ	ᄗ	CI
R ²	н	н	Н	н	H	CH ₂ CH ₃	CH2-	н		H	н	н	н	н	н	Ħ	н	H	н
R.1	(S)-CH(CF3)CH3	(S) -CH (CF3) CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	CH2CH=CH2	CH2CH3	-CH2CH2CH (CH3) CH2CH2-	CH (CH ₃) ₂	-CH2SCH2CH2-	CH2-Ph	(S) -CH (CF3) CH3	(S)-CH(CF3)CH3	CH (CH ₃) ₂	СН (СН3) 2	CH (CH ₃) ₂	CH (CH ₃) ₂	(S) ~CH (CF3) CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3
Nr.	77-I	I-45	7-46	L7-I	I-48	1-49	I-50	15-I	I-52	I-53	79-I	I-55	95-I	L1	.85-I	I-59	09-I	19-1	I-62

								34									
phys. Daten (Fp.[°C])	132-134	126-128	Öl	152-154	91-94	151-153	Ω	το	107-109	άı	134-136	186-188	83-85	06-18	12-51	Ől	ΰl
X5	н	н	н	н	н	н	н	н	Н	н	Н	н	Н	н	н	н	н
ХĄ	<u>[</u> Σ4	Ŀı	Ħ	Ħ	Н	田	н	#	н	Ħ	E	Ħ	[14 [14	耳	Н	Ħ	н
Х³	Ħ	Ħ	н	H	н	н	H	н	Ħ	H	Ħ	Ħ	Ħ	Ħ	ъ	Ħ	н
₩.	ĹΉ	(E)	ſτι	Ęi,	Eti	ſΞı	Œ	Īτι	ĮŦ,	Ĺτι	Ē	ſτι	ĮΉ	Į÷1	н	Įzi	Ē
×1	. <u>E</u> ri	E4	ſτι	Ēι	CJ	디	CJ	CI	디	디	ſτι	CT	দ	디	н	딩	ᄗ
R4	CI N	-N (CH ₃) -NH ₂	-NH-NH-CH2CF3	-N ₃	-N(CH ₃) ₂	-NH-OCH ₃	-NH-C ₆ H ₅	H ₃ C-N-CH ₃	-NHCH (CH ₃) ₂	-N (CH ₂ CH ₃) ₂	-CN	-CN	-CH ₃	-CH ₃	-CH3	-CH2CH3	-CH ₂ CH=CH ₂
ъ³	IJ	IJ	IJ.	5	ᄗ	<u>5</u>	ប	C1	び	디	ರ	C1	ប	ប	CJ	ដ	CJ
R ²	н	Н	Ħ	н	н	н	H	н	CH2-	CH2-	Ħ	н	н	н	CH3	CH2-	CH2-
R1	(S) -CH (CF ₃) CH ₃	(S) -CH (CF3) CH3	(S) -CH (CF3) CH3	(S) -CH (CF3) CH3	CH(CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	-CH2CH2CH (CH3) CH2CH2-	-CH2CH2CH (CH3) CH2CH2-	(S) -CH (CF3) CH3	CH(CH ₃) ₂	(S) -CH (CF ₃) CH ₃	(S)-CH(CF3)CH3	CH (CH ₃) ₂	-CH2CH2CH (CH3) CH2CH2-	-CH2CH2CH (CH3) CH2CH2-
Nr.	I-63	I-64	I-65	99-I	L-67	1-68	I-69	I-70	I-71	I-72	I-73	I-74	I-75	1-76	I-77	I-78	6L-I

				· · · · · · · · · · · · · · · · · · ·				35	, 							·
phys. Daten (Fp.[°C])	Öl	94-96	91	180	157	159	113-118	Ü	10	10	Ω	Öl	Öl	ŢĢ	QT	99-105
¥2	н	н	Н	H	H	Ħ	н	H	н	н	н	н	н	Н	Ħ	н
×4	H	Εť	Ħ	ĹΉ	[±4	വ	Ħ	оснз	£	Ħ	ÍΤι	£ι	н	CH3	CH3	Į.
×3	н	H	н	H	H	н	н	Ħ	H	н	Ħ	H	н	н	н	н
X 2	Ħ	Ħ	Ħ	ĮΣų	Ĺί	Ēι	Ē	ſτι	Ēι	Σtr	Ēt,	Ē4,	ſz,	н	н	ഥ
×	CJ	ſΞų	H.	ĪΉ	দি	Ēη	ĬΉ	Œ	댼	Ēι	ĮΉ	[Ir	ᄗ	阳	CH3	দ
R4	-CH(CH ₃) ₂	-S-CH ₃	-0-N=C(CH ₃) ₂	0-N-	N.O	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	No.	-CF ₃	-0-N=C(CH ₃) ₂	N-0-W-	\0\n\	-NH-C (=NH) CH ₃	-NH-C (=NH) CH3	-NH-C (=NH) CH ₃	-NH-C(=NH)CH3	-CN
R ³	CJ	IJ	CJ	C1	<u> </u>	딩	บี	CJ	CJ	CI	מן	IJ.	CI	CI	CI	CJ
R ² .	2CH2-	н	Н	н	H	Ħ	H	H	H2-	H2	H2-	H2-	'H2-	CH3)-	H2-	H
\mathbf{R}^1	-CH2CH2CH (CH3) CH2CH2-	(S)-CH(CF3)CH3	C (CH ₃) CH ₂ CH ₃	С (СН3) СН2СН3	C (CH ₃) CH ₂ CH ₃	C(CH3)CH2CH3	C (CH ₃) CH ₂ CH ₃	(R)-C(CH3)CH2CH3	-СН (СН ₃) СН ₂ СН ₂ СН ₂ -	-СН (СН ₃) СН ₂ СН ₂ -	-CH (CH ₃) CH ₂ CH ₂ CH ₂ -	-CH (CH3) CH2CH2CH2-	-CH (CH ₃) CH ₂ CH ₂ CH ₂ -	-СН (СН3) СН2СН2СН (СН3) -	-СН (СН ₃) СН ₂ СН ₂ -	(R) -C (CH ₃) CH (CH ₃) ₂
Nr.	1-80	I-81	I-82	I-83	I-84	I-85	1-86	I-87	I-88	I-89	1-90	16-I	26-I	I-93	I-94	I-95

			·							_					
phys. Daten	120-123	106-109	120-123	84-101	156-158	Öl	Öl	Öl	Ő1	Öl	Öl	127	Öl	98-102	Öı
X ₅	Ħ	н	н	H	H	H	н	щ	Ħ	H	н	Ħ	Ħ	Ħ	Ħ
X4	F	[Eq.	ĺΞi,	Ēij	Ец	ſτι	н	н	н	Ħ	H	Ŀı	OCH ₃	<u>բ</u>	ĪΈι
×3	H	н	. #	н	н	н	н	н	н	н	H	н	н	H	н
*	Щ	[Z 4	Ĺή	된	Ŗ	ŭ	F	F	ľч	ſΞi	ſΞŧ	H	ഥ	댼	Įτι
×1	ĺΉ	Œί	Ľι	Ħ	E	ង	CI	CJ	CJ	CI	IJ	CJ	Œ,	ĬΉ	Į.,
7	-0-N=C(CH ₃) ₂	0,N	ON	но-	ND-	$-NH-C(=NH)CH_3$	-0-N=C (CH ₃) ₂	N-O-N	ON	-ON=C (CH ₃) -OCH ₂ CH ₃	-ON=CH-C6H5	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	-CF3	-0-N=C (CH ₃) ₂	ON
, %	CJ	CI	CI	כו	CI	CJ	CJ	IJ	IJ	ᄗ	디	ᄗ	CJ	C1	CJ
R2	Н	н	H	н	н	Н	н	Н	Ħ	Ħ	н	Ħ	Н		
R1	(R) -C(CH ₃)CH(CH ₃) ₂	(R) -C (CH ₃) CH (CH ₃) ₂	(R) -C (CH ₃) CH (CH ₃) ₂	(R) -C(CH ₃) CH(CH ₃) ₂	(R) -C(CH ₃) CH(CH ₃) ₂	(S) -C(CH ₃) CH(CH ₃) ₂	(R) -C(CH ₃) CH(CH ₃) ₂	(R) -C(CH3)CH(CH3)2	(R)-C(CH ₃)CH(CH ₃) ₂	(R) -C(CH ₃)CH(CH ₃) ₂	(R)-C(CH ₃)CH(CH ₃) ₂	(R) -C (CH ₃) CH (CH ₃) ₂	(R) -C (CH ₃) CH (CH ₃) ₂	-(CH ₂) ₅ -	- (CH ₂) 5-
Nz.	96-I	I-97	I-98	I-99	I-100	I-101	I-102	I-103	I-104	I-105	I-106	I-107	I-108	I-109	I-110

			·			31							
phys. Daten (Fp.[°C])	őì	Öl	123~125	133	155	146	126-129	Ül	Ül	ŢĢ .	107-109	Öl	141-149
× S	Н	Ħ	н	H	н	H	н	H	Ħ	H	H	H	H
×	Įt,	[± ₁	F	F	<u> </u>	Ēt.	댼	Ŀı	ĹΉ	<u>Γ</u> 4	E4	Ēι	Ēι
×	н	н	н	н	н	Ħ	H	н	н	H	Ħ	Н	H
*≈	Ĺτι	űι	ĹΊ	Ħ	দি	Ēά	Ē	Ĺ	[Ţij	Įtų .	Ħ	Œ	দ
X1	Ēų.	Ĺτι	년	H	ഥ	ſει	Œ	Œ	Σú	Īτį	[FI	ĮΉ	Œ
R4	N, O	C1 NH NH H	-NH-C (=0) CH ₃	-ON=C(CH ₃) ₂	N-O-N-O	O	- CN	-0-N=C(CH ₃) ₂	N-O-N-O	0 'N'	-CN	-CH ₃	-0-N=C (CH ₃) ₂
æ3	CI	ರ	ប	IJ	C1	ប	ប	CI	C1	ប	CJ	CI	เว
R ²		* .		Н	H	н	H	H2_	H2-	H2	H2-	Н2-	2_
. R ¹	- (CH ₂) s-	- (CH ₂) ₅ -	– (CH ₂) ₅ –	CH (CH ₂ CH ₃) ₂	- (CH ₂) 3CH (CH ₃) CH ₂ -	- (CH ₂) ₃ CH (CH ₃) CH ₂ -	- (CH ₂) 3CH (CH ₃) CH ₂ -	- (CH ₂) 3CH (CH ₃) CH ₂ -	– (CH ₂) ₃ CH (CH ₃) CH ₂ –	-(CH ₂) ₂ SO ₂ (CH ₂) ₂ -			
Nr.	I-111	I-112	I-113	I-114	I-115	1-116	I-117	I-118	I-119	I-120	I-121	I-122	I-123

	,			,		- 30		,			
phys. Daten (Fp.[°C])	179-188	181-191	Öl	Ωľ	ΩT	ΩT	86-68	82–90	Öl	Öl	Ü
×5×	ж	н	H	H	н	н	Н	ж	ж	н	ж
×	ÇE4	Ĺt.,	ū	Ħ	Ŧ	ĮΞų ·	Ē	ΣΉ	Ľι	Ľų	ĹΉ
%	н	н	Н	Н	. н	н	Н	н	ж	н	н
×	Ē	ધ	Ħ	Ħ	Ħ	Ŧ	ſτι	Įžų.	Ę	Įžų.	[Eq)
×	<u>[24</u>	Ĥ	냰	표	Æ	দি	Ŀ	Ēυ	ফি	ſΣų	Ĺτ
R4	N,O	N, O	-NH-C (=NH) CH ₃	-ON=C (CH ₃) ₂	N°O′	N, O	S	-ON=C(CH ₃) ₂	ON	N, O	H ₃ C~O~N ₂ O′
ж ₃	CI	じ	บี	C]	CI	CJ .	เร	ដ	ਹ ਹ	CJ	CI.
R ²	2_	2_	2-	2-	2-	1.2	2_				
R ¹	- (CH ₂) ₂ SO ₂ (CH ₂) ₂ -	-(CH ₂) ₂ SO ₂ (CH ₂) ₂ -	- (CH ₂) ₂ SO ₂ (CH ₂) ₂ -	- (CH ₂) ₂ CH=CHCH ₂ -	-(CH2)2CH=CHCH2-	– (CH2) 2CH=CHCH2–	- (CH ₂) ₂ CH=CHCH ₂ -	$H_3 \subset C_0 \searrow^{CH_3}$	H ₃ C CCH	H ₃ C CO CCH ₃	H ₃ C COCCH ₃
Nz.	I-124	I-125	I-126	I-127	I-128	I-129	I-130	I-131	I-132	I-133	I-134

		<u>,</u>			39	<u> </u>					
phys. Daten (Fp.[°C])	96	72	125	119	154	Öl	98-102	Öl	Öl	Öl	Ŏ1
×	н	Ħ	H	H ·	Н	Н	Ħ	н	Н	Н	Н
×	[īː,	[24	ĹΉ	Ĺτι	Γtι	н	Ē	Ĺτι	Íτι	ഥ	ĹΊ
×	Ħ	运 ,	Н	н	H	Ħ	н	н	Н	Н	н
X2	ĹΉ	Ēų	Įtų	Ĺ	Ēŧ	CH3	ſ±,	ឝ	Ĺτι	ĺτι	Įτų
×	<u> </u>	· [ī4	Íτι	ĮΞ ₄	Ēt,	CH3	Ľη	ſω	Ēυ	뇬	ſτι
R4	H ₃ C \ CH ₃ CH ₃	H_3 C C H_3 C C H_3 C	-ON=CH-C ₆ H ₅	-ON=C (CH3) -C6H5	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	-0-N=C(CH ₃) ₂	-0-N=C(CH ₃) ₂ .	-0-N=C (CH ₃) ₂	N,o	N ^O N	H ₃ C Y N O CH ₃ CH ₃
ж 3	CJ	เว	CJ	CJ	CJ	CJ	CJ	CH3	ับ	CI	บี
R ²		, E		3	_m	H ₂) ₂ -	H ₂) 2-	H ₂) ₂ -	.H ₂) ₂ –	H ₂) 2-	H2)2-
FR	H ₃ C C CH	H ₃ C CH	H3 C C CH	H ₃ CCOCH	H ₃ C 0 CH	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -
Nr.	I-135	I-136	I-137	I-138	I-139	I-140	I-141	I-142	I-143	I-144	I-145

		-		•				40								
phys. Daten (Fp.[°C])	7.0	Öl	96	128	Ül	105	QI	Öl	Öl	Ől	239-242	Öl	Ól	106-124	Û	0.1
ΧS	н	Н	Н	н	н	н	Н	н	н	н	Ħ	Ħ	н	н	н	н.
×	ſτι	Εī	[II]	Ŀ	ţzı	ĬΞŧ	Íμ	ľΉ	Щ	ſτι	Ĺτι	Íτι	ſΞŧ	Eq	፲	Ēυ
к×	н	H	H	H	н	н	Н	н	н	Ħ	Н	н	H	Н	Н	н
X 2	দ.	Ēų	ഥ	н	দ	ж	ĹΉ	<u>[</u> ±1	Ŀ	H	ĨΉ	Ŀ	Ē	Ēų,	İτι	Ēι
×	দ	Ŀı	Ĩτι	Ēυ	Ēι	CH ₃	Ŀ	Ēι	Ĺτι	ſΞŧ	Œ	įτι	Ė	Ħ	īu	Įtų.
R4	-ON=C(CH ₃)-OCH ₂ CH ₃	-ON=CH-C ₆ H ₅	-ON=C(CH ₃)-C ₆ H ₅	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	-ON=C (CH ₃) -OCH ₂ CH ₃	0 N 0	0~N	0 M	-ON=CH-CeHs	-O-N=CH(2,6-Cl ₂ -C ₆ H ₃)	HO-	-CH ₃	-CH2CH3	-CN	-CN	C≡C—
R ³	CJ	ᄗ	김	ᄗ	OCH ₃	OCH3	оснз	оснз	OCH ₃	OCH3	. [3	CI	ᄗ	OCH ₃	CJ	C1
R1 R2	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	– (СН ₂) ₂ СН (СН ₃) (СН ₂) ₂ –	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -
Nr.	I-146	I-147	I-148	I-149	I-150	I-151	I-152	I-153	I-154	I-155	I-156	I-157	I-158	I-159	I-160	I-161

												11	-T			
phys. Daten	(Fp. [°C])	777	Öl	Öl	Öl	Öl	Öl	Öl	Öl	Öl	01	Öl	Öl	Öl	Ğ1	01
×5	:	ц	н	Н	H	H	Н	Ħ	H	Ħ	H	н	н	н	н	Ħ
×	ŗ	. 4	ഥ	Ľij	ഥ	댸	Ē	ដ្	E4	Œ	Ē	E4	Īъ	ſž4	Įti	Ęri
Ę.	ħ	4	H	н	н	H	H	E	H	H	н	ж	н	H	H	出
×	β	4	լել	Œ	ſų	Œ	ſα	Ŀ	Œ	Œ	ţ	ĹΉ	Ē	Ēų	Ĺtı	Įzi.
×	- G	4	Ŀ	[보	Eq	Ē	ſΞι	Ēų	ſΣι	ſΞı	fti	· হিন	Ēς	Ē	Ľ	, E4
R4	-C (CH2)=N-OCH2	Supp. 17 (Sup) 5	-C(CH ₃)=N-OCH ₂ CH ₃	-C (CH ₃)=N-O (CH ₂) ₂ CH ₃ .	-C(CH ₃)=N-OCH(CH ₃) ₂	~C(CH ₃)=N-O(CH ₂) ₃ CH ₃	-C (CH ₃)=N-OC (CH ₃) ₃	-C (CH ₃) =N-OCH ₂ CH=CHCl	-C (CH ₃) =N-OCH ₂ CH=CH ₂	-C (CH ₃) =N-OCH ₂ CC1=CH ₂	$-C(CH_3)=N-O(CH_2)_2OCH_3$	CH ₃ CH ₃ CH ₃	H ₃ C _H O C _H C _H	-C(CH ₃)=N-NH-C(CH ₃) ₂	EHD N-N	CH ₃
R ₃	ฮ		디	ដ	ប	CJ	CJ	CJ	บี	겁	CI	C1	- 5	5	CJ	บี
R1 R2	- (CH ₂) 2CH (CH ₃) (CH ₂) 3-	7.20	-(CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -
Nr.	I-162	7 163	7-103	I-164	I-165	I-166	I-167	I-168	I-169	I-170	I-171	I-172	I-173	I-174	I-175	I-176

	<u> </u>						
phys. Daten (Fp.[°C])	ΰı	ÓΊ	Öl	Ól	őı	61	Öl
χ ₅	H	Ħ	н	Ħ	H	ш	Ħ
X4	म	Ĩtι	<u>ī</u> t.	Ħ	면	Ħ	Ħ
×3	H .	H	Ħ	H .	н	н	н
×	Įtų .	អ	Ħ	[H	더	Ħ	[H
×	Ĺτι	<u>,</u> [ъ	ľΉ	ĬĽ4	Þ	ŢŦ	Įτι
R4	OCH ₃	CH3 OCH3	$\bigcup_{CH_3}^{H_3} \bigcup_{CH_3}^{C}$	$\bigvee_{H}^{N'N}\bigvee_{CH_3}$	-C(CH ₃)=N-N(CH ₃)-C ₆ H ₅	O ₂ S CH ₃	CH ₃
1 33	ដ	덩	ਹ	.ฮ	ជ	ฮ	5
R1 R2	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	– (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ –	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -
Nr.	I-177 - (CH	I-178 -(CH	I-179 - (CH	I-180 -{CH	I-181 - (CH	I-182 -(CH	I-183 - (CH

							4.5			·			
phys. Daten (Fp.[°C])	Öl	Ől	Öl	Öl	Öl	Öl	0.1	Öl	Öl	Öl	109	0.1	Öl
×55	Ħ	Ħ	H	н	Ħ	Н	H	н	H	H	H	Ħ	Œ
*	Įri	ĮŦ	ഥ	Ĺτι	Ħ	OCH3	оснз	OCH ₃	OCH ₃	OCH3	Ħ	Н	н
~	Ħ	Ħ	H	н	Ħ	н	Ħ	H	Ħ	н	Ħ	щ	Ħ
×2	[44	দ	ĺΉ	. [I4	GH3	ſτι	मि	ഥ	H	拓	H	ţī	ĮΞŧ
×	ᅜ	Ŀı	Œ	Ēť	CH ₃	ĒΨ	ĨΉ	ĬΨ	Ħ	Œ	CJ	C]	ָבן.
R4	H ₃ C'N CH ₃	-C (NH ₂) =N-OH	-C (NH ₂) =N-OCH ₃	H ₃ C _O 'N	45°	-0-N=C (CH ₃) ₂	ON	N-0/	-CN	-CF ₃	-0-N≂C (CH ₃) ₂	ON	N-0
ж 23	CI	ជ	CJ		CI	CJ	CI	บ	บี	CI	CI	C1	บี
R ¹ R ²	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	— (СН ₂) ₂ СН (СН ₃) (СН ₂) ₂ —	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	– (СН ₂) ₂ СН (СН ₃) (СН ₂) ₂ –
Nr.	I-184 (I-185 -(I-186 –(I-187 – (I-188 -(I-189 -()	I-191 – (I-192 –(I-193 -(I-194 -(I-195 – (I-196 – (

Daten	9	169				109	109	109	109	109	109	109	109	109	601	601	601
phys. Date (Fp.[c])	126	164-169	Ü	Ü	107-109		10	010	01 01	01 01	010000000000000000000000000000000000000	01 01 01 01	010000000000000000000000000000000000000	01 01 01 01 01 01 01	01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01	01 01 01 01 01 01 01 01 01 01 01 01 01 0
X ₅	Ħ	H	н	Ħ	Н		Ħ	нн	ннн	ннн	нннни	нннни	н н н н н н н	н н н н н н н	н н н н н н н н	н н н н н н н н	н н н н н н н н н н
X 4	H	H	Ħ	Ħ	H	_	H	нн	ннн	шшш	ннннн	н н н н н	H H H H CH ₃	Н Н Н Н СН3	н н н н н н н н н н н н н н н н н н н	H H H H H H H H H H H H H H H H H H H	H H H H H H CH ₃ CH ₃ CH ₃
£	н	Н	Ħ	н	H		H	出出	H H H	H H H H	н н н н н	H H H H H H	н н н н н н	нпннни	н н н н н н н	H H H H H H H H	н н н н н н н н н
×	Ŀ	দ	Ĥ	Ē	ſz	1	1 [Zi	4 E4 E4	- E1 E1 E1	· [24 [24 [24		· 다 다 다 다 다 다		. F F F F E E H H H			
4	ᄗ	บ	ប	ប	٦	;	5 5	3 3 3	5 5 5	ਰ ਹ ਹ ਹ ਹ	ថ	5 5 5 5 5 5 6				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 C C C C C C C C C C C C C C C C C C C
# 4	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	НО	-0-CH ₂ CH ₃	-0-CH ₂ CH (CH ₃) CH ₂ CH=CH ₂	-NHCH2CH3N (CH3) 2	7	-N (CH ₃ CH ₂) ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH (CH ₃) ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH (CH ₃) ₂ -CH (CH ₃) ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃) ₂ -CH ₂ CH=CH ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃ -CH ₂ CH=CH ₂ -CN -S-CH ₃	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃ -CH (CH ₃) ₂ -CH ₂ CH=CH ₂ -CN -CN -S-CH ₃	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃) ₂ -CH ₂ CH=CH ₂ -CN -S-CH ₃ -S-CH ₃ -S-CH ₃	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃) ₂ -CH ₂ CH=CH ₂ -CN -CN -S-CH ₃ -O-N=C (CH ₃) ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH=CH ₂ -CH ₂ CH=CH ₂ -CN -S-CH ₃ -S-CH ₃ -O-N=C (CH ₃) ₂ -O-N=C (CH ₃) ₂	-N (CH ₃ CH ₂) ₂ -CH ₂ CH ₃ -CH ₂ CH ₃) ₂ -CH ₂ CH=CH ₂ -CN -CN -S-CH ₃ -O-N=C (CH ₃) ₂ -CN -CN
·	IJ	IJ	CI	. CJ	5	7	1 J	5 5 5	3 3 3 3	5 5 5 5 5	5 5 5 5 5 5	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	12)2-	I2) 2-	I2)2-	12) 2-	[0]	7/7	[2] 2-	[2] 2- [2] 2-	[2] 2- [2] 2- [2] 2- [2] 2-	2) 2 2) 2- 2) 2- 2) 2- 2) 2-	[2] 2 [2] 2 [2] 2 [2] 2 [2] 2 [2] 2	[2] 2 - [2] 2	2) 2 2) 2 2) 2 2) 2 2) 2 2) 2 2) 2 2) 2 2) 2	2) 2 2) 2- 2) 2- 2) 2- 2) 2- 2) 2- 2) 2- 2) 2- 2) 2-	2) 2 - 2 - 2 2 2 2 2 2 2 2	2) 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	2) 2 2) 2- 2) 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-
-t-	-(CH ₂) ₂ CH(CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	$-(CH_2)_2CH(CH_3)(CH_2)_2-$		- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ - - (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -
Nr.	I-197	I-198	I-199	I-200	I-201		I-202	I-202 I-203	I-202 I-203 I-204	I-202 I-203 I-204 I-205	I-202 I-203 I-204 I-205 I-206	I-202 I-203 I-204 I-205 I-206 I-207	I-202 I-203 I-204 I-205 I-206 I-207 I-208	I-202 I-203 I-204 I-205 I-207 I-209 I-209	I-202 I-203 I-204 I-205 I-207 I-209 I-209 I-210	I-202 I-203 I-204 I-205 I-207 I-209 I-210 I-211	I-202 I-203 I-204 I-205 I-207 I-209 I-210 I-211 I-212

nys. Daten (Fp.[ºC])	01	148	ĽÖ	1	Öl	Ö1 75–77	01 75-77 205-207	01 75-77 205-207 185-187	01 75-77 205-207 84-87		01 75-77 205-207 185-187 84-87 51								
X ⁵ pnys. (Fp.	н	н	H																
× ₄ ×	CH3 I	CH3 I	H	,		+-	+							++++++	+++++++		+++++++++++		+++++++++++++++++++++++++++++++++++++++
x ₃		E H	H	\vdash	_	-	+	1-1-		++++		+++++							
	н	H	H	ŀ	H H														
	<u> </u>	E E	<u>F</u>	ŀ	 E4				+++-					┤┤┤┤┤	╼┼╌┼╌┼╌┼╌┼╌┼╌┼	╼┼╌╂╌┼╌┼╌┼╌┼╌┼╌┼╌┼			
	P.	-		Ľ															
R4	N'0/	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)	-S-CH ₃	יווט"ט"	Euro-0-	-CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅	-CH ₃ -CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃	-CH ₃ -CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH ₂ CH ₅ -O-CH ₂ CH ₃ -O-CH ₃ CH ₃ -O-CH ₃ CH ₃ -O-CH ₃ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -S-CH ₂ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -S-CH ₂ CH ₃ -S-CH ₂ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -S-CH (CH ₃) CH ₃ CH ₂ -S-CH (CH ₃) 2	-CH ₃ -CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -S-CH ₃ CH ₃	-CH ₃ -O-N=C (CH ₃) CF ₃ -NH-N=C (CH ₃) -C ₆ H ₅ -NH-N=C (CF ₃) -C ₆ H ₅ -NH-N=CH-C ₆ H ₅ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -O-CH ₂ CH ₃ -S-CH (CH ₃) CH ₃ CH ₂ -S-CH (CH ₃) 2 -S-CH (CH ₃) 2 -S-CH (CH ₃) 2
	[]	CJ	ご		C]	C1 C1	บ บ บ	U U U U	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td></td></td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td></td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	H ₂) 2—	H ₂) 2-	¥ .	CHACHA	2442	CH ₃	CH ₃	CH ₃ H H	CH ₃ H H	CH ₃ H H H H	CH ₃ CH ₃ H H H H H	CH ₃ CH ₃ H H H H H H H H H H H H H H H H H H H	CH ₃ CH ₃ H H H H H H H H	CH ₃ CH ₃ H H H H H H H H H H H H H H H H H H H	CH3 CH3 H H H H H H H H H H H H H H H H	СН ₃ СН ₃ Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	CH3 CH3 H H H H H H H H H H H H H H H H	СН ₃ СН ₃ СН ₃ Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	CH3 CH3 CH3 H H H H H H H H H H H H H H
R1	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	- (CH ₂) ₂ CH (CH ₃) (CH ₂) ₂ -	-CH2SCH2CH2-	CH ₂ CH ₃		CH (CH ₃) ₂	CH (CH ₃) ₂ CH (CH ₃) ₂	CH (CH ₃) ₂ CH (CH ₃) ₂ CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂
Nr.	I-214	I-215	I-216	I-217		I-218	I-218 I-219	I-218 I-219 I-220	I-218 I-219 I-220 I-221	I-218 I-219 I-220 I-221 I-222	I-218 I-219 I-220 I-221 I-222 I-223	I-218 I-219 I-220 I-221 I-222 I-223 I-224	I-218 I-219 I-220 I-222 I-223 I-224 I-225	I-218 I-219 I-220 I-221 I-223 I-224 I-225 I-226	I-218 I-219 I-220 I-222 I-223 I-224 I-226 I-226 I-227	I-218 I-219 I-220 I-222 I-224 I-226 I-226 I-226 I-227	I-218 I-219 I-220 I-221 I-223 I-224 I-225 I-226 I-227 I-228 I-228 I-228	I-218 I-219 I-220 I-222 I-224 I-226 I-226 I-227 I-228 I-228 I-229 I-230	I-218 I-219 I-220 I-221 I-224 I-226 I-226 I-226 I-226 I-227 I-228 I-229 I-229 I-231

							4	16						-8-				
phys. Daten (Fp.[°C])	Öl	61	147-149	165-168	110-112	125-127	118-121	98-100	108-111	106-110	Öl	111-113	94-96	Öl	114-117	104-108	186-188	Öl
.č×	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	H	H	Ħ	Щ.	H	н	H	Н	H	н	Н	Н
×	Ħ	н	Н	Н	н	H	H	H	Ħ	Ħ	н	H	H	H.	Н	H	H	H
*	н	扭	H	н	H	н	Н :	н	н	н	Н	Ħ	Ħ	н	Ħ	Ħ	н	н
×	Ē	Œ	E	Eı	ſĿi,	ſϤ	ſει	Ēυ	Œ	[E4	Œ,	EL,	ľμ	ſτι	Eu	EL,	E4	Н
×	디	C1	បី	CJ	CJ	디	딩	김	ü	ᄗ	ű	ᄗ	ᄗ	ᄗ	ij	ᄗ	딩	Ēų
R4	-NH-C ₆ H ₅	H, N, H	-0-CH ₃	-0-CH ₂ CH ₃	-0-CH2CH2CH3	-0-СН (СН3) ²	-0-C (CH3) 3	-0-CH ₂ CH ₂ CH ₃	-0-сн (сн ³) сн ² сн ³	-S-CH ₃	-S-CH2CH2CH3	-S-CH(CH ₃) ₂	-S-C(CH ₃) ₃	-S-CH2CH2CH3	-S-CH (CH ₃) CH ₂ CH ₃	-S-CH ₂ CH ₃	-CN	-S-CH ₃
8 3	디	ฮ	ᄗ	CI	당	CJ	CJ	CJ	ĊŢ	CJ	ເລ	CI.	당	[]	딥	딩	IJ	C.1
\mathbb{R}^2	н	ш	H	Н	н	н	н	Н	н	н	н	Н	H .	H	Н	н	H	н
R1	СН (СН3) 2	СН (СН3) 2	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂	CH (CH ₃) ₂					
Nr.	I-233	I-234	I-235	I-236	I-237	I-238	I-239	I-240	I-241	I-242	I-243	I-244	I-245	I-246	I-247	I-248	I-249	I-250

ſ		т-	т-	_	_		т	т -	· 47		_		
	phys. Daten (Fp.[°C])	124-126	135-137	139-141	157-159	88-92	176-179	110-112	350	68-70	145-146	151-155	87-90
	X2	H	Н	H	H	Ħ	Ħ	H	Ħ	н	H	H	H
	×	Ħ	H	Ē.	F	ſτι	E	E4	Įτι	Ħ	FI	ы	Ŀ
	×	Ħ	н	H	Ħ	н	H	H	ж	. H	H	н	H
	×	H	н	Ĥ	더	fΣι	ĺΉ	ഥ	ĹĽų .	Īti .	ſ4	ĮΞŧ	Ē
	×	ഥ	Ŀı	E	[# -	E 1.	ĹΉ	Eq	ţ±ı	Ĭτι	Ŀı	Ŀ	댐
	R4	-S-CH ₃	-S-CH ₃	-0-N=CHCH ₃	-0-N=C (CH ₃) ₂	,0, _N ,0	N,O,N	-ON=C(CH ₃)-OCH ₂ CH ₃	$H_3 C C H_3 C H_3 C H_3$	H ³ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-ON=CH~C6H5	-ON=C(CH3)C6H5	-0-N=CH(2,6-Cl ₂ -C ₆ H ₃)
	R ³	CJ	CJ	ប	CI	CI	CI	CI	CI	CJ	IJ	당	CI
	. R ²	Н	Н	Н	Н	н	Н	Н	Н	H	H	н	Н
	R1	CH2CH=CH2	CH2-C6H5	(S) –CH (CF ₃) CH ₃	(S) -CH(CF3)CH3	(S)-CH(CF ₃)CH ₃	(S)-CH(CF3)CH3	(S) -CH (CF3) CH3	(S) -CH (CF3) CH3	(S) -CH(CF ₃) CH ₃	(S)-CH(CF3)CH3	(S)-CH(CF ₃)CH ₃	(S) -CH (CF3) CH3
	Nr.	1-251	I-252	I-253	I-254	I-255	I-256	I-257	I-258	I-259	I-260	I-261	I-262

						48								
phys. Daten (Fp.[°C])	84–86	Öl	Ğ1	152-155	205-208	ΰı	Öl	132-134	126-128	Öl	152-154	137-146	121-129	147-149
X5	н	н	н	Ħ	Ħ	Ħ	H	н	н	Ħ	Ħ	H	Ħ	Н
*	Б ч .	Ēι	Fi	Ft	ĮΉ	Eu	į Įžų	[īzi	Ŀ	ĮΞ	Ŀ	F	F4	Ħ
ξ×	н	н	н	Н	н	H	H	Ħ	H	щ	н	н	Ħ	н
X ₂	F	Ŀ	ы	Ē	ĹΉ	ĒΨ	Ħ	Et4	Ēų	ഥ.	Ĺ	ĮΣį	Ē	Ħ
×1	ĹΉ	Ĺ	Ĺ	ſΉ	ſϤ	ſει	ĒΉ	[z ₄	ſΞı	ſτι	Ēų	Ĩ24	Ŀ	Ē,
R4		F ₃ C / N N CH	-N (CH ₃) -N=C (CH ₃) -C ₆ H ₅	-N (CH ₃) -N=CH-C ₆ H ₅	-N(CH ₃)-N=C(CH ₃) ₂	-NH-C (=NH) CH ₃	-NH-NH-C ₆ H ₅	C1 — H	-N (CH ₃) -NH ₂	-NH-NH-CH2CF3	-N ₃	HO-	-0-CH ₃	-0-CH ₂ CH ₃
R3	CJ	c <u>i</u>	CJ	IJ	ប	CJ	CI	CI	ເວ	ប	ᄗ	บี	บี	디
R ²	н	Ħ	н	H ·	н	н	н	н	H	H	Н	H	н	Н
R1	(S)-CH(CF3)CH3	(S) -CH(CF3)CH3	(S) -CH (CF_3) CH ₃	(S) –CH (CF_3) CH ₃	(S) –CH (CF_3) CH ₃	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S) -CH (CF3) CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S) -CH (CF_3) CH ₃	(S)~CH(CF3)CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3
Nr.	I-263	I-264	I-265	I-266	I-267	I-268	I-269	I-270	I-271	I-272	I-273	I-274	I-275	1-276

	T	T	Т	\Box	T	T-	T	T	Т	1	T	T		T	T	т-	
phys. Daten (Fp.[°C])	159-161	116-117	129-131	Öl	69-89	73-76	Öl	Öl	64-65	83-85	134-136	87-90	82	130	69	120	87
ЖŞ	н	H	H	H	H	Н	H	Ħ	Ħ	H	Ħ	Ħ	Н	Ħ	Ħ	Ħ	Ħ.
×	뚀	Ħ	Į.	E	F	Œ,	ĵΞι	Eq	Ħ	Ŀı	Ŀı	H	E	缸	Ĺ	Ē	ш
×	н	H	н	Ħ	Ħ	H	н	田	Ħ	н	H	н	H	H	н	Н	н
×	ſτı	Ŀı	ſτι	Eq.	ß	Fi	Œ	ß	Ħ	Œ	Æ	ľч	Ē	टिय	ĺΉ	म	ſτι
×	ĬΉ	Γtη	[t ₁	দ	Ęť	Ēų	Ŀ	드	Ŀ	Ŀ	Œ	บี	ы	ĴΈι	Ĺτι	ĨΉ	F4
R.	-0-CH(CH ₃) ₂	-0-CH2CH2CH3	-0-CH (CH ₃) CH ₂ CH ₃	-S-CH ₂ CH ₃	-S-CH ₂ CH ₂ CH ₃	-S-CH (CH ₃) ₂	-S-C (CH ₃) ₃	-S-CH2CH2CH3	-S-CH (CH ₃) CH ₂ CH ₃	-СН3	NO-	-CH ₃	-0-N=C(CH ₃) ₂	O	°°, N°, O°, N°, N°, N°, N°, N°, N°, N°, N°, N°, N	-ON=C (CH ₃) -OCH ₂ CH ₃	H ₃ CH ₃ CH ₃
, x3	김	겁	ប	ប	딩	딩	ᄗ	บ	CJ	CJ	CI	: CJ	C1	CI	CI	ເວ	CI
R ²	H	Н	Н	н	н	H	Ħ	н	н	Н	Н	H	н	.н	H	Н	Ħ
R1	(S)-CH(CF3)CH3	(S)-CH(CF ₃)CH ₃	(S)-CH(CF ₃)CH ₃	(S) –CH (CF_3) CH ₃	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S)-CH(CF3)CH3	(S) -CH (CF ₃) CH ₃	(S) -CH (CF ₃) CH ₃	(S) -CH (CF ₃) CH ₃	(R/S) -CH (CF ₃) CH ₃	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3
Nr.	I-277	I-278	I-279	I-280	I-281	I-282	I-283	I-284	I-285	I-286	I-287	I-288	I-289	I-290	I-291	I-292	I-293

						_ 5
phys. Daten (Fp.[°C])	76	140	175	157	Öl	108-112
× 55	н	Ħ	Ħ	H	Ħ	H
×	ſτų	Ţ	ſτι	뚀	ਹਿ ਮ	ഥ
×	. н	н	н	Ħ	ж	Ħ
*	ř.	ſĽι	Œι	ſщ	Ĺτι	ft _i
×	Įri	Ē	ſτι	Ħ	Œı	ſΞi
₽4	H_3 $C \xrightarrow{CH_3} N \xrightarrow{O}$ H_3 $C \xrightarrow{CH_3}$	-ON=CH-C ₆ H ₅	-ON=C (CH ₃) -C ₆ H ₅	-ON=CH-(2,6-Cl ₂ -C ₆ H ₃)	CI N N N H H H	-N (CH ₃) ₂
R 3	IJ	IJ	CJ	CJ	C1	CJ
R ²	缸	Н	н	Н	H	H·
\mathbb{R}^1	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3	(R/S) -CH (CF ₃) CH ₃	(R/S)-CH(CF3)CH3	(R/S)-CH(CF3)CH3
Νr.	I-294	I-295	I-296	I-297	I-298	I-299

Die \mathbb{R}^4 -Gruppen sind über die freien Valenzen an den Pyrimidin-Grundkörper gebunden.

Die Gruppen R⁴ können aufgrund ihrer C=C-, C=N- und N=N-Doppelbindungen als E/Z-Isomerengemische vorliegen. Beispiele für die Wirkung gegen Schadpilze

Die fungizide Wirkung der Verbindungen der Formel I ließ sich 5 durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als 10%ige Emulsion in einem Gemisch aus 70 Gew.-% Cyclohexanon, 20 Gew.-% Nekanil® LN (Lutensol® AP6, Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) und 10 Gew.-% Wettol® EM (nichtionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl) aufbereitet und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

15 Anwendungsbeispiel 1 - Wirksamkeit gegen die Septoria-Blattflekkenkrankheit des Weizens (Septoria tritici)

Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Riband" wurden mit wäßriger Wirkstoffaufbereitung, die aus einer 20 Stammlösung bestehend aus 10 % Wirkstoff, 85 % Cyclohexanon und 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht

- 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. 24 Stunden nach dem Antrocknen des Spritzbelages wurden sie mit einer wässrigen Sporensuspension von Septoria tritici inokuliert. Die Suspension enthielt 2.0 x 106 Sporen/ml. Die Versuchspflanzen
- wurden anschließend im Gewächshaus bei Temperaturen zwischen 18 und 22°C und einer relativen Luftfeuchtigkeit nahe 100 % aufgestellt. Nach 2 Wochen wurde das Ausmaß der Krankheitsentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.
- 30 In diesem Test zeigten die mit 250 ppm der Wirkstoffe Nr. 1, 12 bis 15, 18, 19, 21, 24 bis 26, 30, 32, 33, 54, 55, 60, 61 bis 65, 86, 160, 223, 224, 226, 228, 235 bis 239, 248, 254, 264, 265, 269, 270, 271, 272 und 275 bis 278 der Tabelle I behandelten Pflanzen maximal 7 % Befall, während die unbehandelten Pflanzen 35 zu 90 % befallen waren.

Anwendungsbeispiel 2 - Wirksamkeit gegen die Netzfleckenkrankheit der Gerste (Pyrenophora teres)

- 40 Blätter von in Töpfen gewachsenen Gerstenkeimlingen der Sorte "Igri" wurden mit wäßriger Wirkstoffaufbereitung, die aus einer Stammlösung bestehend aus 10 % Wirkstoff, 85 % Cyclohexanon und 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht und 24 Stunden nach dem Antrocknen des Spritzbelages mit einer
- 45 wäßrigen Sporensuspension von Pyrenophora [syn. Drechslera] teres, dem Erreger der Netzfleckenkrankheit, inokuliert. Anschließend wurden die Versuchspflanzen im Gewächshaus bei Temperaturen

WO 03/043993 PCT/EP02/12807

52

zwischen 20 und 24°C und 95 bis 100 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß der Krankheitsentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.

5 In diesem Test zeigten die mit 250 ppm der Wirkstoffe Nr. 1, 55, 60, 64, 73, 88, 130, 134, 160, 163, 165, 168, 171, 185, 186, 254, 255, 265, 267, 271, 274, 276, 277, 278 und 287 der Tabelle I behandelten Pflanzen nicht über 15 % Befall, während die unbehandelten Pflanzen zu 100 % befallen waren.

10

Anwendungsbeispiel 3 - Protektive Wirksamkeit gegen den durch Sphaerotheca fuliginea verursachten Gurkenmehltau

Blätter von in Töpfen gewachsenen Gurkenkeimlingen der Sorte

15 "Chinesische Schlange" wurden im Keimblattstadium mit wässriger
Wirkstoffaufbereitung, die aus einer Stammlösung bestehend aus
10 % Wirkstoff, 85 % Cyclohexanon und 5 % Emulgiermittel angesetzt wurde, bis zur Tropfnässe besprüht. 20 Stunden nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wässri20 gen Sporensuspension des Gurkenmehltaus (Sphaerotheca fuliginea)
inokuliert. Anschließend wurden die Pflanzen im Gewächshaus bei
Temperaturen zwischen 20 und 24°C und 60 bis 80 % relativer Luftfeuchtigkeit für 7 Tage kultiviert. Dann wurde das Ausmaß der
Mehltauentwicklung visuell in %-Befall der Keimblattfläche ermit25 telt.

In diesem Test zeigten die mit 250 ppm der Wirkstoffe Nr. 86, 88,
100, 121, 130, 141, 160, 163, 168, 171, 185, 186, 189, 206, 220,
249, 253 bis 261, 265, 266, 271, 273, 275, 276, 287 und 299 der
30 Tabelle I behandelten Pflanzen nicht über 10 % Befall, während
die unbehandelten Pflanzen zu 85 % befallen waren.

35

Patentansprüche:

1. 5-Phenylpyrimidine der Formel I

5

$$\mathbb{R}^{4} \longrightarrow \mathbb{N} \mathbb{R}^{2} \times \mathbb{N}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \times \mathbb{N}$$

10

15

20

in der die Substituenten und der Index folgende Bedeutung haben:

 R^1,R^2 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Halogency-cloalkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Alkinyl oder C_2 - C_6 -Halogenalkinyl,

R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch eine Ether-(-O-), Thio-(-S-), Sulfoxyl-(-S[=O]-) oder Sulfenyl-(-SO₂-) Gruppe unterbrochen sein und durch eine bis vier Gruppen Rª und/oder Rb substituiert sein kann;

25

 R^a, R^b unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_8 -Alkenyl, C_2 - C_8 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy,

30

 C_3 - C_{10} -Cycloalkyl, Phenyl oder fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, wobei die cyclischen Reste teilweise oder vollständig substituiert sein können durch folgende Gruppen R^x :

40

35

Rx unabhängig voneinander Cyano, Nitro, Amino, Aminocarbonyl, Aminothiocarbonyl, Halogen, Hydroxy, C1-C6-Alkyl, C1-C6-Halogenalkyl, C1-C6-Alkylcarbonyl, C1-C6-Alkylsulfonyl, C1-C6-Alkylsulfoxyl, C3-C6-Cycloalkyl, C1-C6-Alkoxy, C1-C6-Halogenalkoxy, C1-C6-Alkyloxyl, C1-C6-Alkylthio, C1-C6-Alkylamino, Di-C1-C6-Alkylamino, C1-C6-Alkylamino, C1-C6-Alkylaminocarbonyl, Di-C1-C6-Alkylaminocarbonyl, C1-C6-Alkylamino-

5

10

15

20

25

30

35

thiocarbonyl, Di-C₁-C₆-Alkylaminothiocarbonyl, C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, Phenyl, Phenoxy, Benzyl, Benzyloxy, 5- oder 6-gliedriges Heterocyclyl, 5- oder 6-gliedriges Hetaryl, 5- oder 6-gliedriges Hetaryloxy, C(=NOR $^{\alpha}$)-OR $^{\beta}$ oder OC(R^{α})₂-C(R^{β})=NOR $^{\beta}$,

wobei die cyclischen Gruppen ihrerseits unsubstituiert oder substituiert sind durch einen bis drei Reste Ry:

RY Cyano, Nitro, Halogen, Hydroxy, Amino, Aminocarbonyl, Aminothiocarbonyl, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkylsulfonyl, C_1-C_6-Alkylsulfoxyl,$ $C_3-C_6-Cycloalkyl$, $C_1-C_6-Alkoxy$, C_1-C_6-Halo genalkoxy, C_1 - C_6 -Alkoxycarbonyl, C_1 - C_6 -Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₁-C₆-Alkylaminocarbonyl, Di-C₁-C₆-alkylaminocarbonyl, C₁-C₆-Alkylaminothiocarbonyl, Di-C1-C6-alkylaminothiocarbonyl, C2-C6-Alkenyl, C2-C6-Alkenyloxy, C3-C6-Cycloalkyl, C3-C6-Cycloalkenyl, Phenyl, Phenoxy, Phenylthio, Benzyl, Benzyloxy, 5- oder 6-gliedriges Heterocyclyl, 5- oder 6-gliedriges Hetaryl, 5- oder 6-gliedriges Hetaryloxy oder $C(=NOR^{\alpha})-OR^{\beta}$;

R^{α} , R^{β} Wasserstoff oder C_1 - C_6 -Alkyl;

Ra und Rb können auch gemeinsam über eine Alkylen- oder Alkenylenkette mit dem überbrückenden Atom einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden;

R^c eine der bei R^a und R^b genannten monovalenten Gruppen;

- R³ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl,
 40 C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy
 oder C₃-C₈-Alkenyloxy;
- Wasserstoff, Halogen, Cyano, Hydroxy, Mercapto, Azido, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₆-Halo-genalkyl, C₁-C₆-Alkoxy, C₃-C₈-Alkenyloxy, C₃-C₈-Alkinyloxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio, C₃-C₈-Alkenylthio, C₃-C₈-Alkinylthio, C₁-C₆-Halogenalkylthio,

-ON=CRaRb, -CRc=NORa, -NRcN=CRaRb, -NRaRb, -NRcNRaRb,

-NORa, -NRcC(=NRc')NRaRb, -NRcC(=O)NRaRb, -NRaC(=O)Rc,

-NRaC(=NORc)Rc', -OC(=O)Rc, -C(=NORc)NRaRb,

-CRc(=NNRaRb), -C(=O)NRaRb oder -C(=O)Rc;

5

X Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenal-kyl; und

m eine ganze Zahl von 1 bis 5.

. 10

2. 5-Phenylpyrimidine der Formel I gemäß Anspruch 1,

$$\mathbb{R}^{1} \longrightarrow \mathbb{N} = \mathbb{R}^{2} \longrightarrow \mathbb{N}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \longrightarrow \mathbb{N}$$

15

in der die Substituenten und der Index folgende Bedeutung haben:

20

 R^1,R^2 unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_3 - C_6 -Cycloalkyl, C_3 - C_6 -Halogenalkenyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Halogenalkenyl, C_2 - C_6 -Alkinyl oder C_2 - C_6 -Halogenalkinyl,

25

 R^1 und R^2 können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Ring bilden, der durch ein Sauerstoffatom unterbrochen sein und einen C_1 - C_6 -Alkylsubstituenten tragen kann oder in dem zwei benachbarte Kohlenstoffringglieder durch eine C_1 - C_4 -Alkylengruppe verbrückt sein können;

30

Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy oder C₃-C₈-Alkenyloxy;

40

45

35

Wasserstoff, Halogen, Cyano, Hydroxy, Mercapto, Azido, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₃-C₈-Alkenyloxy, C₃-C₈-Alkinyloxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio, C₃-C₈-Alkenylthio, C₃-C₈-Alkinylthio, C₁-C₆-Halogenalkylthio, C₁-C₆-Halogenalkylthio, C₁-C₈-Rogenylthio, C₁-C₈-Rogenylthi

 R^a , R^b unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, C_2 - C_8 -Alkenyl, C_2 - C_8 -Alkinyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy,

C₃-C₁₀-Cycloalkyl, Phenyl oder fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S, wobei die cyclischen Reste teilweise oder vollständig substituiert sein können durch folgende Gruppen R*:

Rx unabhängig voneinander Cyano, Nitro, Amino,
Aminocarbonyl, Aminothiocarbonyl, Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkylsulfonyl,
C₁-C₆-Alkylsulfoxyl, C₃-C₆-Cycloalkyl,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkyloxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino,
Di-C₁-C₆-Alkylamino, C₁-C₆-Alkylaminocarbonyl,
Di-C₁-C₆-Alkylaminocarbonyl, C₁-C₆-Alkylaminothiocarbonyl, Di-C₁-C₆-Alkylaminothiocarbonyl,
C₂-C₆-Alkenyl, C₂-C₆-Alkenyloxy, Phenyl, Phenoxy, Benzyl, Benzyloxy, 5- oder 6-gliedriges
Heterocyclyl, 5- oder 6-gliedriges Hetaryl,
5- oder 6-gliedriges Hetaryloxy, C(=NOR^α)-OR^β
oder OC(R^α)₂-C(R^β)=NOR^β,

wobei die cyclischen Gruppen ihrerseits unsubstituiert oder substituiert sind durch einen bis drei Reste Ry:

Ry Cyano, Nitro, Halogen, Hydroxy, Amino,
Aminocarbonyl, Aminothiocarbonyl,

C1-C6-Alkyl, C1-C6-Halogenalkyl,

C1-C6-Alkylsulfonyl, C1-C6-Alkylsulfoxyl,

C3-C6-Cycloalkyl, C1-C6-Alkoxy, C1-C6-Halogenalkoxy, C1-C6-Alkoxycarbonyl, C1-C6-Al-kylthio, C1-C6-Alkylamino, Di-C1-C6-Alkylamino,

Di-C1-C6-Alkylaminocarbonyl,

Di-C1-C6-alkylaminocarbonyl,

Di-C1-C6-alkylaminocarbonyl,

C1-C6-Alkylaminothio-carbonyl, C2-C6-Alkenyloxy,

C3-C6-Cycloalkyl, C3-C6-Cycloalkenyl, Phenyl, Phenoxy, Phenylthio, Benzyl, Benzyloxy,

C5- oder 6-gliedriges Heterocyclyl,

15

10

20

25

30

35

40

5- oder 6-gliedriges Hetaryl, 5- oder 6-gliedriges Hetaryloxy oder $C(=NOR^{\alpha})-OR^{\beta}$;

 R^{α} , R^{β} Wasserstoff oder C₁-C₆-Alkyl;

5

X Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy oder C_1 - C_6 -Halogenal-kyl; und

m eine ganze Zahl von 1 bis 5.

10

- 3. Verbindungen der Formel I gemäß Anspruch 1, in der
- R4 Wasserstoff, Cyano, Azido, C₁-C₆-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₆-Halogenalkyl, -CR^c=NOR^c, -ON=CR^aR^b oder -NR^cN=CR^aR^b oder -C(=NOR^c)NR^aR^b, bedeutet.
 - Verbindungen der Formel I gemäß Anspruch 1, in der R⁴ für -ON=CR^aR^b steht.
- 20 5. Verbindungen der Formel I gemäß Anspruch 1, in der \mathbb{R}^4 für $-\mathbb{C}\mathbb{R}^c = \mathbb{N}\mathbb{O}\mathbb{R}^a$ steht.
- Verfahren zur Herstellung von Verbindungen der Formel gemäß
 Anspruch 1, in der R⁴ für Cyano oder eine über ein Heteroatom
 gebundene Gruppe steht, durch Umsetzung von Sulfonen der Formel II,

30

$$\begin{array}{c} R^{1} \\ N-R^{2} \\ N \end{array}$$

$$R-SO_{2} N \longrightarrow R^{3}$$

$$R^{3}$$

in der R für $C_1-C_4-Alkyl$ steht, mit Verbindungen der Formel III,

35

in der \mathbb{R}^4 die vorstehend gegebene Bedeutung hat, unter basischen Bedingungen.

40

7. Verfahren zur Herstellung von Verbindungen der Formel gemäß Anspruch 1, in der R³ für Halogen und R⁴ für Wasserstoff, Alkyl, Alkenyl, Alkinyl oder Halogenalkyl steht, durch Umsetzung von Phenylmalonestern der Formel IV

$$O = \bigcup_{O \in \mathcal{N}'} (A_m)$$

$$O = \bigcup_{O \in \mathcal{N}'$$

5

mit Amidinen der Formel V,

10

in der R⁴ die vorstehend genannte Bedeutung hat, und Halogenierung der entstandenen Dihydroxypyrimidine VI

15

mit Halogenierungsmitteln zu Dihalogenpyrimidinen VII,

$$\mathbb{R}^4 \xrightarrow{\mathbb{N}} \mathbb{A}^{\mathbb{X}_{\mathrm{m}}} \qquad \qquad \mathbb{V}_{\mathrm{II}}$$

in der Hal für Brom oder Chlor steht, die mit Aminen der Formel VIII,

25

in der \mathbb{R}^1 und \mathbb{R}^2 die für Formel I gegebene Bedeutung haben, zu Verbindungen der Formel I umgesetzt werden.

30

35

45

8. Verfahren zur Herstellung von Verbindungen der Formel gemäß Anspruch 1, in der R³ für Cyano, C₁-C₆-Alkoxy, C₁-C₆-Halogen-alkoxy oder C₃-C₈-Alkenyloxy steht, durch Umsetzung von Pyrimidinen der Formel I, in der R³ für Halogen steht, mit Verbindungen der Formel IX

in der R³ die vorstehend genannte Bedeutung hat, unter basischen Bedingungen.

9. Verfahren zur Herstellung von Verbindungen der Formel gemäß Anspruch 1, in der R^3 für C_1 - C_6 -Alkyl steht, durch Umsetzung von Pyrimidinen der Formel I, in der R^3 für Halogen steht, mit metallorganischen Verbindungen der Formel X

 R^3-M

X

in der M für eine Gruppe Mg-Hal, Zn-R³ oder B(OR)₂ steht, wobei Hal ein Halogenatom und R Wasserstoff oder C₁-C₄-Alkyl bedeutet und R³ für C₁-C₆-Alkyl steht.

- 10. Fungizides Mittel, enthaltend einen festen oder flüssigen Trägerstoff und eine Verbindung der Formel I gemäß den Ansprüchen 1 bis 5.
- Verfahren zur Bekämpfung von phytopathogenen Schadpilzen, dadurch gekennzeichnet, daß man die Pilze oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß den Ansprüchen 1 bis 5 behandelt.

20

10

25

30

35 -

Internat Application No

PCT/EP 02/12807 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D239/46 C07D CO7D239/48 C07D239/42 CO7D239/52 C07D403/12 A01N43/54 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data, EPO-Internal, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 727 214 A (WELLCOME) 21 August 1996 (1996-08-21) 1,2 the whole document WO 99 19305 A (KRENITSKY PHARMA.) χ 1,2 22 April 1999 (1999-04-22) page 67, line 33 -page 71; claim 1 X US 5 597 827 A (ALISTAIR A. MILLER) 1,2 28 January 1997 (1997-01-28) claims; examples US 5 591 746 A (ALISTAIR A. MILLER) X 1,2 7 January 1997 (1997-01-07) claims; examples Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance Invention earlier document but published on or after the international document of panicular relevance; the claimed invention cannot be considered novel or cannot be considered to linvolve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 6 February 2003 24/02/2003 Name and mailing address of the ISA Authorized officer European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Francois, J

Application No
PCT/EP 02/12807

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 02		
Category •	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
K	CHEMICAL ABSTRACTS, vol. 125, no. 17, 1996		1,10	•
	Columbus, Ohio, US; abstract no. 221864m, page 1109; column 1;	· · ·		
·	XPŎO2230224 abstract; figure I & PL 169 025 A (POLITECHNIKA SLASKA) 31 May 1996 (1996-05-31)		*-	
۱	CHEMICAL ABSTRACTS, vol. 114, no. 5,		1,10	
0.00	1991 Columbus, Ohio, US; abstract no. 57530z,	-0.0		
	page 247; column 1; XP002230225 abstract & JP 02 200678 A (KUMIAI)			
,,x	8 August 1990 (1990-08-08) WO 02 74753 A (BASF)		1,2,10,	
,	26 September 2002 (2002-09-26) claims; figures I,VIII		11	
, x	WO 01 96314 A (BASF) 20 December 2001 (2001-12-20) claims; figure VIII		1,2,10, 11	
	γ		. "	•
			. :	ē
		,		
		•	•	
	, v			
			•	
		*		

in amation on patent family members

Internat Application No PCT/EP 02/12807

	ent document In search report	=	Publication date		Patent family member(s)	Publication date
FP.	727214	A	21-08-1996	EP	0727212 A2	21-08-1996
	, _,	•		EP	0727213 A2	21-08-1996
				ĒΡ	0727214 A2	21-08-1996
	•			EP	0713703 A2	29-05-1996
				EP	0715851 A2	12-06-1996
				AP	164 A	12-01-1992
				AT	144422 T	15-11-1996
					639216 B2	22-07-1993
			· .	AU		
	,			AU	4596489 A	14-06-1990
			1	AU	4915493 A	13-01-1994
				ΑU	5195296 A	18-07-1996
				AU	5195396 A	04-07-1996
				AU	690443 B2	23-04-1998
	•			ΑU	5195596 A	04-07-1996
		•	•	AU	5195696 A	04-07-1996
				CA	2004747 A1	07-06-1990
		•		CN	1052306 A	19-06-1991
				CN	1119099 A	27-03-1996
				CN	1115756 A ,B	31-01-1996
						20-12-1995
	•			CN.	1113487 A ,B	21-02-1996
		. '		CN	1117046 A	
				·DD	292250 A5	25-07-1991
			• •	DE	68927368 D1	28-11-1996
		•		DK:	90399 A	24-06-1999
				DK	613289 A	08-06-1990
	_			EP	0372934 A2	13-06-1990
111.		•		ES	2095842 T3	01-03-1997
				FI .	955939 A	11-12-1995
				FΙ	955940 A	11-12-1995
		•		. FĪ	955941 A	11-12-1995
			•	GR	3022031 T3	31-03-1997
				HK	1004092 A1	13-11-1998
				HU	55764 A2	28-06-1991
					-	28-11-1995
				HU	9500740 A3	28-11-1995
				HU	9500754 A3	
				ΙE	80711 B1	16-12-1998
			* * *	IL	92558 A	31-01-1996
				ΙL	111627 A	10-06-1997
				ΙL	114335 A	06-12-2000
				JP	2202876 A	10-08-1990
				JP	2795498 B2	10-09-1998
				KR	145308 B1	15-07-1998
	•			LT	269 A ,B	25-10-1994
				ĹV	10442 A ,B	20-02-1995
				MC	2076 A	12-10-1990
				MX	9203422 A1	01-07-1992
					3503455 WI.	01 07 133E
พก	9919305	Α	22-04-1999	AU	9693998 A	03-05-1999
110				CA	2305255 A1	22-04-1999
	•			EP	1025091 A1	09-08-2000
				JΡ	2001519416 T	23-10-2001
				WO	9919305 A2	22-04-1999
			,144	US	6440965 B1	27-08-2002
US	5597827	Α	28-01-1997	AP	164 A	12-01-1992
				AT .	144422 T	15-11-1996
				AU	639216 B2	22-07-1993
				AU	4596489 A	14-06-1990

In amation on patent family members

PCT/EP 02/12807

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5591746	A 07-01-1997	AP 164 A AT 144422 T AU 639216 B2 AU 4596489 A AU 4915493 A AU 5195296 A AU 5195396 A AU 5195596 A AU 5195596 A CA 2004747 A1 CN 1052306 A CN 1119099 A CN 1115756 A ,B CN 1113487 A ,B CN 1117046 A	12-01-1992 15-11-1996 22-07-1993 14-06-1990 13-01-1994 18-07-1996 04-07-1996 23-04-1998 04-07-1996 04-07-1996 07-06-1990 19-06-1991 27-03-1996 31-01-1996 20-12-1995 21-02-1996

Immemation on patent family members

Internat Application No PCT/EP 02/12807

	atent document d in search report	:	Publication date	_	Patent family member(s)	Publication date
US	5591746	Α		DD	292250 A5	25-07-1991
				DE	68927368 D1	28-11-1996
				DK	90399 A	24-06-1999
			•	DK	613289 A	08-06-1990
**	•			. EP	0372934 A2	13-06-1990
				EP	0727212 A2	21-08-1996
				EP	0727213 A2	21-08-1996
		•		EP	0727214 A2	21-08-1996
				EP	0713703 A2	29-05-1996
				EP	0715851 A2	12-06-1996
٠.			•	ES	2095842 T3	01-03-1997
				FI	955939 A	11-12-1995
		•	•	FI	955940 A	11-12-1995
			• • •	FI	955941 A	11-12-1995
				GR	3022031 T3	31-03-1997
		·		HK	1004092 A1	13-11-1998
	•	:	•	HU	55764 A2	28-06-1991
			· .	HU	9500740 A3	28-11-1995
		•		HU	9500754 A3	28-11-1995
				ΙE	80711 B1	16-12-1998
•	•	•	1)(1	ĨĹ,	92558 A	31-01-1996
				ĪĹ	111627 A	10-06-1997
		•	,	IL	114335 A	06-12-2000
	•			JP	2202876 A	10-08-1990
				JP	2795498 B2	10-09-1998
			. •	KR	145308 B1	15-07-1998
			· .	LT .	269 A ,B	25-10-1994
	•			ĹΫ	10442 A .B	20-02-1995
	.·			MC	2076 A	12-10-1990
PL	169025	Α	30-05-1994	PL	296745 A1	30-05-1994
JP	02200678	Α	08-08-1990	NONE		
MO	0274753	A	26-09-2002	WO	02074753 A2	26-09-2002
. —— WO	0196314	. A	20-12-2001	AU	7056401 A	24-12-2001
		,		WO	0196314 A1	20-12-2001

INTERNATIONALES RECHERCHENBERICHT

les Aktenzeichen PCT/EP 02/12807

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D239/46 C07D239/48 C07D239/42 A01N43/54 CO7D239/52 C07D403/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ C07D \ A01N$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Geblete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendele Suchbegriffe)

CHEM ABS Data, EPO-Internal, PAJ

Kalegorie°	Bezelchnung der Veröffentlichung, soweit erforderlich unter Angabe dar in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	EP 0 727 214 A (WELLCOME) 21. August 1996 (1996-08-21) das ganze Dokument	1,2
X	WO 99 19305 A (KRENITSKY PHARMA.) 22. April 1999 (1999-04-22) Seite 67, Zeile 33 -Seite 71; Anspruch 1	1,2
X	US 5 597 827 A (ALISTAIR A. MILLER) 28. Januar 1997 (1997-01-28) Ansprüche; Beispiele	1,2
X	US 5 591 746 A (ALISTAIR A. MILLER) 7. Januar 1997 (1997-01-07) Ansprüche; Beispiele	1,2
· ·	-/	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationaten Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	kann nicht als auf erfinderischer Tätigkeit berunend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kalegorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
6. Februar 2003	24/02/2003
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevolimächtigter Bediensteter Francois, J

INTERNATIONALER RECHERCHENBERICHT

Internation es Aktenzeicher
PCT/EP 02/12807

/Fortest-	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
ategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden T	eil e	Betr. Anspruch Nr.
(CHEMICAL ABSTRACTS, vol. 125, no. 17, 1996 Columbus, Ohio, US; abstract no. 221864m,		1,10
	Seite 1109; Spalte 1; XP002230224 Zusammenfassung; Abbildung I & PL 169 025 A (POLITECHNIKA SLASKA) 31. Mai 1996 (1996-05-31)		
4	CHEMICAL ABSTRACTS, vol. 114, no. 5, 1991	*	1,10
	Columbus, Ohio, US; abstract no. 57530z, Seite 247; Spalte 1; XP002230225 Zusammenfassung & JP 02 200678 A (KUMIAI) 8. August 1990 (1990-08-08)		
, X	WO 02 74753 A (BASF) 26. September 2002 (2002-09-26) Ansprüche; Abbildungen I,VIII		1,2,10,
,,χ	WO 01 96314 A (BASF) 20. Dezember 2001 (2001-12-20) Ansprüche; Abbildung VIII		1,2,10,
		٠	
	*	,	
	*		
			,
			- 8
•	*	. *	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, de zur selben Patentfamilie gehören

Internation is Aktenzeichen
PCT/EP 02/12807

	· · · · · · · · · · · · · · · · · · ·	- 		rui/Er	02/12807		
	Recherchenbericht ihrtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung		
EF	P 727214 A	21-08-1996	EP	0727212 A2	21-08-1996		
			EP	0727213 A2	21-08-1996		
			EP	0727214 A2	21-08-1996		
•			ĒΡ	0713703 A2	29-05-1996		
		. *	EP	0715851 A2			
					12-06-1996		
			AP	164 A	12-01-1992		
			ΑT	144422 T	15-11-1996		
			ΑU	639216 B2	22-07-1993		
			AU	4596489 A	14-06-1990		
			AU	4915493 A	13-01-1994		
			AU	5195296 A	18-07-1996		
			AU	5195396 A	04-07-1996		
			AU	690443 B2	23-04-1998		
			AU	5195596 A	04-07-1996		
			AU				
				5195696 A	04-07-1996		
	:	a	CA	2004747 A1	07-06-1990		
		* · · · · · · · · · · · · · · · · · · ·	CN	1052306 A	19-06-1991		
	- X - "	**	CN	1119099 A	27-03-1996		
	• • •		CN	1115756 A ,B	31-01-1996		
			CN		20-12-1995		
	•			1113487 A ,B			
	11 .		CN .	1117046 A	21-02-1996		
			DD	292250 A5	25-07 -1991		
		• : :	DE	68927368 D1	28-11-1996		
	•		DK	90399 A	24-06-1999		
			DK				
	* .			613289 A	08-06-1990		
	•		EP '	0372934 A2	13-06-1990		
			ES	2095842 T3	01-03-1997		
	*		FI	955939 A	11-12-1995		
			FΙ	955940 A	11-12-1995		
			FĪ	955941 A	11-12-1995		
			GR	3022031 T3	31-03-1997		
		* ***	HK	1004092 A1	13-11-1998		
			HU	55764 A2	28-06-1991		
		•	HU	9500740 A3	28-11-1995		
			HÜ	9500754 A3	28-11-1995		
	* * * * * * * * * * * * * * * * * * * *		ΙE	80711 B1	16-12-1998		
			IL	92558 A	31-01-1996		
			ΙL	111627 A	10-06-1997		
	•	•	ĨĹ	114335 A	06-12-2000		
		*		2202876 A			
			JP		10-08-1990		
	·		JP	2795498 B2	10-09-1998		
		•	KR	145308 B1	15-07-1998		
			LT	269 A ,B	25-10-1994		
			ĹŸ	10442 A ,B	20-02-1995		
•			MC	2076 A	12-10-1990		
	÷						
			MX	9203422 A1	01-07-1992		
WO) 9919305	22-04-1999	AU	. 9693 998 A	03-05-1999		
			CA	2305255 A1	22-04-1999		
			EP	1025091 A1	09-08-2000		
			JP	2001519416 T	23-10-2001		
		•	WO	9919305 A2	22-04-1999		
	•		US	6440965 B1	27-08-2002		
US	5 5597827 A	28-01-1997	AP	164 A	12-01-1992		
	• •		AT	144422 T	15-11-1996		
			AU	639216 B2	22-07-1993		
			ΑU	ひょうりん しひ ガイ	44-U/-1993		
			AU	4596489 A	14-06-1990		

INTERNATIONALER DECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internation Aktenzeichen
PCT/EP 02/12807

		PCT/EP 02/12807				
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		litglied(er) der Patentfamilie	Datum der Veröffentlichung		
US 5597827 A		AU .	4915493 A	13-01-1994		
		AU	5195296 A	18-07-1996		
		AU	5195396 A	04-07-1996		
		AU	690443 B2	23-04-1998		
	*	AU	5195596 A	04-07-1996		
8						
•	•	AU	5195696 A	04-07-1996		
		CA	2004747 A1	07-06-1990		
		CN	1052306 A	19-06-1991		
·		CN :	1119099 A	27-03-1996		
	•	CN	1115756 A ,B	31-01-1996		
		CN	1113487 A ,B	20-12-1995		
•		CN	1117046 A	21-02-1996		
		DD	292250 A5	25-07-1991		
		DE	68927368 D1	28-11-1996		
		DK	90399 A.	24-06-1999		
		DK	613289 A			
•	•			08-06-1990		
	•	EP	0372934 A2	13-06-1990		
	*	EP	0727212 A2	21-08-1996		
		EP	0727213 A2	21-08-1996		
4		EP	0727214 A2	21-08-1996		
•		EP	0713703 A2	29-05-1996		
· .		EP	0715851 A2	12-06-1996		
		ES	2095842 T3	01-03-1997		
·		FI	955939 A	11-12-1995		
		FI	955940 A	11-12-1995		
		FΪ	955941 A	11-12-1995		
*		GR	3022031 T3	31-03-1997		
	* a	HK				
			1004092 A1	13-11-1998		
	k	HU	55764 A2	28-06-1991		
÷		HU	9500740 A3	28-11-1995		
	*	HU	9500754 A3	28-11-1995		
	· · · · · · · · · · · · · · · · · · ·	IE	80711 B1	16-12-1998		
		IL	92558 A	31-01-1996		
	. •	IL	111627 A	10-06-1997		
		ΙL	. 114335 A	06-12-2000		
	* *	JP `	2202876 A	10-08-1990		
		JP.	2795498 B2	10-09-1998		
		KR	145308 B1	15-07-1998		
		LT	269 A ,B	25-10-1994		
		LV	10442 A ,B	20-02-1995		
		MC	2076 A	12-10-1990		
			20/0 A .	12 10-1990		
US 5591746 A	07-01-1997	AP	164 A	12-01-1992		
		AT	144422 T	15-11-1996		
	•	AU	639216 B2	22-07-1993		
		AU	4596489 A	14-06-1990		
	*	AU	4915493 A	13-01-1994		
		AU	5195296 A	18-07-1996		
* * *		AII	5195396 A	04-07-1996		
		AU	2132230 W	0.0, 1350		
			690443 B2	23-04-1998		
		AU	690443 B2	23-04-1998		
		AU AU	690443 B2 5195596 A	23-04-1998 04-07-1996		
		AU AU AU	690443 B2 5195596 A 5195696 A	23-04-1998 04-07-1996 04-07-1996		
		AU AU AU CA	690443 B2 5195596 A 5195696 A 2004747 A1	23-04-1998 04-07-1996 04-07-1996 07-06-1990		
		AU AU AU CA CN	690443 B2 5195596 A 5195696 A 2004747 A1 1052306 A	23-04-1998 04-07-1996 04-07-1996 07-06-1990 19-06-1991		
		AU AU AU CA CN CN	690443 B2 5195596 A 5195696 A 2004747 A1 1052306 A 1119099 A	23-04-1998 04-07-1996 04-07-1996 07-06-1990 19-06-1991 27-03-1996		
		AU AU AU CA CN CN	690443 B2 5195596 A 5195696 A 2004747 A1 1052306 A 1119099 A 1115756 A ,B	23-04-1998 04-07-1996 04-07-1996 07-06-1990 19-06-1991 27-03-1996 31-01-1996		
		AU AU AU CA CN CN	690443 B2 5195596 A 5195696 A 2004747 A1 1052306 A 1119099 A	23-04-1998 04-07-1996 04-07-1996 07-06-1990 19-06-1991 27-03-1996		

INTERNATIONALER BECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Palentfamilie gehören

Internation es Aktenzeichen
PCT/EP 02/12807

•		101/21 02/1200/			
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5591746 A		DD	292250	A5	25-07-1991
10 0001740		DE	68927368		28-11-1996
	•	DK	90399		24-06-1999
·	-8-	DK	613289		08-06-1990
		EP	0372934		13-06-1990
*	*	- ĒP	0727212		21-08-1996
		ĒΡ	0727213		21-08-1996
		EP	0727214		21-08-1996
		ĒΡ	0713703		29-05-1996
·		ĒP	0715851		12-06-1996
		ËS	2095842		01-03-1997
4.		FI	955939		11-12-1995
		FI	955940		11-12-1995
	•	FΙ	955941		11-12-1995
		GR	3022031	T3	31-03-1997
•		HK	1004092		13-11-1998
		HU	55764		28-06-1991
		- HU	9500740		28-11-1995
•		HU	9500754		28-11-1995
		ΙE	80711	B 1	16-12-1998
	· · · · · · · · · · · · · · · · · · ·	IL	92558	A .	31-01-1996
		IL	111627	Α	10-06-1997
		IL	114335	A	06-12-2000
0		JP	2202876	Α	10-08-1990
		JP	2795498		10-09-1998
;		KR	145308		15-07-1998
	••••	LT		A,B	25-10-1994
		LV	10442		20-02-1995
••		MC	2076	A	12-10-1990
PL 169025 A	30-05-1994	PL	296745	A1	30-05-1994
JP 02200678 A	08-08-1990	KEINE	·		
WO 0274753 A	26-09-2002	WO	02074753	A2	26-09-2002
WO 0196314 A	20-12-2001	AU	7056401	Α	24-12-2001
	8 · · · ·	WO	0196314	Δ1 .	20-12-2001