Correction du TD n°1 : Groupes et groupes cycliques

Exercice 1. Vrai/Faux, première édition

Pour chaque affirmation qui suit, démontrer sa véracité ou trouver un contre-exemple :

- 1. Le groupe $\mathbb Z$ est produit de deux groupes non triviaux.
- 2. Soit G un groupe. Si G a un nombre fini de sous-groupes, alors G est fini.

Correstion de l'exercice 1

1. Faux.

L'intersection de deux sous-groupes non triviaux de Z est non trivial. Supposons que

$$\mathbb{Z} \xrightarrow{\sim} G \times H$$
.

Les sous-groupes $\iota^{-1}(G \times \{e\})$ et $\iota^{-1}(\{e\} \times H)$ sont d'intersection triviale. Il en découle que l'un des deux est trivial, i.e. que G ou H est trivial.

2. Vrai.

Soit G un groupe avec un nombre fini de sous-groupes. Un élément d'ordre infini de G correspond à un sous-groupe isomorphe à \mathbb{Z} . Le groupe G admettrait alors une infinité de sous-groupes, correspondant aux $n\mathbb{Z}$ pour $n \geq 1$. Nous avons démontré que tout élément de G est d'ordre fini. Les sous-groupes $\langle g \rangle$ pour $g \in G$ sont donc finis, en nombre fini 1 . Puisque ces sous-groupes recouvrent G, le groupe G est fini.

Exercice 5. Groupes finis monogènes

On rappelle (ou alors reprouvez-le!) que les sous-groupes de \mathbb{Z} sont exactement les $n\mathbb{Z}$ pour $n \in \mathbb{N}$. Rappelons également que pour un élément g d'un groupe G, l'application

$$\mathbb{Z} \to G, \ n \mapsto g^n$$

est un morphisme de groupes. S'il n'est pas injectif, on appelle ordre de g et on écrit $\omega(g)$ l'entier naturel tel que le noyau s'écrive $\omega(g)\mathbb{Z}$.

1. Vérifier que

$$\omega(g) = \min\{n \in \mathbb{N}_{\geq 1} \mid g^n = 1\} = \gcd\{n \in \mathbb{N}_{\geq 1} \mid g^n = 1\}.$$

2. Déduire que $g^n = 1 \Leftrightarrow \omega(g)|n$.

Soit $n \geq 2$ et $\zeta_n \in \mathbb{C}$ une racine primitive n-ième de l'unité (i.e. un élément de $(\mathbb{C}^{\times}, \times)$ d'ordre n). On appelle μ_n le sous-groupe des racines n-ièmes de l'unité.

3. Vérifier que

$$\mathbb{Z}/n\mathbb{Z} \to \mu_n, \ a + n\mathbb{Z} \mapsto \zeta_n^a$$

est un isomorphisme de groupes.

Par la suite, nous cherchons à retrouver les premiers résultats d'arithmétique en choisissant la meilleure vision entre $\mathbb{Z}/n\mathbb{Z}$ et μ_n . Il sera souvent pratique de se donner une intuition avec μ_n est parfois nécessaire de raisonner sur $\mathbb{Z}/n\mathbb{Z}$.

^{1.} Mais à ce stade, rien ne garantit qu'il n'y ai pas des redondances infinies.

- 4. Soit d|n, a-t-il des éléments d'ordre d dans μ_n ?
- 5. Soit $k \in \mathbb{Z}$. Quel est l'ordre de $k + n\mathbb{Z}$ dans $n\mathbb{Z}$?
- 6. Prouver le théorème des restes chinois avec votre point de vue préféré, puis avec l'autre point de vue.
- 7. Démontrer que tout sous-groupe d'un groupe cyclique est cyclique.

Correction de l'exercice 5

- 1. Demandez-vous quels sont l'élément strictement positif le plus petit de $\omega(g)\mathbb{Z}$ et le PGCD de ses éléments.
- 2. En utilisant la première question

$$g^n=1\Leftrightarrow n$$
 appartient au noyau
$$\Leftrightarrow n\in\omega(g)\mathbb{Z}$$

$$\Leftrightarrow \omega(g)|n$$

- 3. L'application est bien définie car $\zeta_n^n=1$ donc $\zeta_n^{a+nk}=\zeta_n^a$. On vérifie que c'est un morphisme de groupes. On vérifie qu'elle est injective en regardant son noyau et $\zeta_n^a=1$ ssi $a\in n\mathbb{Z}$ par définition de l'ordre. Puisque la source et le but ont même cardinal, c'est un isomorphisme.
- 4. La question se reformule en : y a-t-il des racines primitives d-ièmes de l'unité dans μ_n ? En écrivant n=d'd, tout $\zeta\in\mu_d$ vérifie $\zeta_n=\zeta^{d'd}=(\zeta^d)^{d'}=1$. Ainsi, $\mu_d\subset\mu_n$ et la réponse est oui.
- 5. Nous cherchons à décire $\{l \in \mathbb{Z} \mid l(k+n\mathbb{Z}) = n\mathbb{Z}\}$. Cet ensemble se réécrit $\{l \in \mathbb{Z} \mid lk \in n\mathbb{Z}\}$. En utilisant une relation de Bézout entre k et n, il se réécrit $\{l \in \mathbb{Z} \mid l \gcd(k,n) \in n\mathbb{Z}\}$. Ainsi l'ordre de k est $n/\gcd k$, n.
- 6. Soient $(a, b) \in \mathbb{N}_{\geq 1}$ premiers entre eux. Le point de vue arithmétique revient à considérer le morphisme de groupes donné par les réductions modulo a et b

$$\mathbb{Z}/ab\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}, \ k + ab\mathbb{Z} \mapsto (k + a\mathbb{Z}, k + b\mathbb{Z}).$$

Tout élément $k + ab\mathbb{Z}$ dans son noyau vérifie a|k et b|k. Puisqu'ils sont premiers entre eux, le théorème de Gauss affirme que ab|k. Le morphisme est donc injectif et un argument de cardinalité conclut.

L'autre point de vue revient à considérer le morphisme de groupes

$$\mu_a \times \mu_b \to \mu_{ab}, \ (\zeta, \xi) \mapsto \zeta \xi.$$

Il est correctement défini puisque $(\zeta\xi)^{ab}=(\zeta^a)^b(\xi^b)^a=1$. Ce morphisme est injectif : si (ζ,ξ) appartient au noyau alors $(\zeta\xi)^a=1$, soit $\xi^a=1$. Ainsi $\omega(\xi)|a$. Comme il divise b par définition, il divise leur PGCD. Ainsi $\xi=1$ et pour des raisons analogues $\zeta=1$. Un argument de cardinalité conclut.

Pour relier les deux morphismes, il faut choisir des racines primitives ζ_a et ζ_b puis prendre (prouver que l'on peu prendre) $\zeta_a\zeta_b$ pour racine primitive ab-ième.

7. Intiutivement dans μ_n , on peut se convaincre qu'un sous-groupe est engendré par son élément de plus petit ordre. Donnons une preuve arithmétique. Nous considérons $H < \mathbb{Z}/n\mathbb{Z}$ et son image réciproque par

$$\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
.

C'est encore un sous-groupe de \mathbb{Z} , contenant $n\mathbb{Z}$. Ce noyau s'écrit donc $k\mathbb{Z}$ pour k|n. Nous en déduisons que $H = \frac{k\mathbb{Z}}{n\mathbb{Z}}$, engendré par k.

Exercice 9. Ordre et conjugaison

Soit G un groupe fini. On rappelle que deux éléments g et g' sont dits conjugués dans G s'il existe $h \in G$ tels que $g' = hgh^{-1}$.

- 1. Démontrer que deux éléments conjugués dans G sont de même ordre.
- 2. Deux éléments de même ordre dans G sont-ils toujours conjugués? Trouver tous les groupes abéliens finis pour lesquels la réponse est positive.

Correction de l'exercice 9

1. On a caractérisé $\omega(g)$ comme générateur du sous-groupe $\{n \in \mathbb{Z} \mid g^n = 1\}$. Or,

$$\forall n, (hgh^{-1})^n = hg^nh^{-1}$$

donc les deux ensembles coïncident pour g et g'.

2. Dans un groupe abélien, le seul élément conjugué à g est lui-même. Il n'existe donc au plus un élément de chaque ordre. Or, si g est d'ordre $n \geq 3$, il existe plusieurs éléments d'ordre n dans $\langle g \rangle$. Pour le voir, regarder l'isomorphisme avec μ_n obtenu à l'exercice 5. Ainsi, G contient le neutre et au plus un élément d'ordre 2. Les seuls groupes fonctionnant sont isomorphes à $\{1\}$ ou $\mathbb{Z}/2\mathbb{Z}$.

Exercice 10. Ordre de certaines puissances p-ièmes

Soient G un groupe, H l'un de ses sous-groupes et p un nombre premier. On pose $a \in G \backslash H$ tel que $a^p \in H$. Montrer que $\operatorname{ord}(a) = p \operatorname{ord}(a^p)$.

Correction de l'exercice 10

Si a est d'ordre infini, alors aucun $(a^p)^n$ ne peut être trivial donc a^p aussi. Si a est d'ordre fini, alors $(a^p)^{\operatorname{ord}(a)} = e$ donc a^p est d'ordre fini et nous avons que

$$\operatorname{ord}(a^p) = \frac{\operatorname{ord}(a)}{\operatorname{pgcd}(\operatorname{ord}, p)}.$$

Si le PGCD vaut 1, les éléments a et a^p ont même ordre. L'inclusion des sous-groupes $\langle a^p \rangle \subseteq \langle a \rangle$ ainsi que l'égalité de leur cardinaux entraı̂ne que $\langle a \rangle = \langle a^p \rangle \subset H$. Ceci est impossible. Ainsi, pgcd(ord(a), p) = p et l'on obtient l'identité souhaitée.

On propose aussi une preuve plus conceptuelle. Rappelons que l'ordre de a a été défini a partir du noyau du morphisme

$$\varphi_a: \mathbb{Z} \to G, \ n \mapsto a^n.$$

Puisque $e \in H$, le noyau de φ_a est contenu dans $\varphi_a^{-1}(H)$. Les hypothèses donnent des informations sur le sous-groupe $\varphi_a^{-1}(H)$ de \mathbb{Z} . Puisque $a \notin H$, ce sous-groupe ne contient pas 1 et puisque $a^p \in H$, ce sous-groupe contient p. Il s'agit donc de $p\mathbb{Z}$.

Le diagramme suivant est commutatif:

$$\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\varphi_a} G \\
p \times - \downarrow & \nearrow \\
\mathbb{Z} & & \end{array}$$

et puisque $\operatorname{Ker}(\varphi_a) \subseteq p\mathbb{Z}$, l'inclusion $p\operatorname{Ker}(\varphi_{a^g}) \subseteq \operatorname{Ker}(\varphi_a)$ est une égalité. L'identité sur les ordres s'en déduit.