Applications à la géométrie

Exercices

5.1. Exercices

Exercice 5.1. Soient \vec{u} et \vec{v} des vecteurs non nuls de \mathbb{R}^3 .

- 1. Supposons que $\vec{u} = (1, 2, 1)$ et $\vec{v} = (-1, 1, 1)$. Justifier que $\text{Vect}(\vec{u}, \vec{v})$ est un plan. Donner une équation implicite de ce plan.
- 2. Supposons que $\vec{u} = (1, 2, 1)$ et $\vec{v} = (-2, -4, -2)$. Justifier que $\text{Vect}(\vec{u}, \vec{v})$ est une droite, et donner un système d'équations paramétriques de cette droite.
- 3. Donner la nature géométrique de $\text{Vect}(\vec{u}, \vec{v})$ en fonction de la nature de la famille (\vec{u}, \vec{v}) .
- 4. Dans quel cas $Vect(\vec{u}, \vec{v})$ est-il la somme directe de $Vect(\vec{u})$ et de $Vect(\vec{v})$?

Exercice 5.2. On se place dans l'espace vectoriel \mathbb{R}^3 .

1. Les hyperplans définis, dans la base usuelle de \mathbb{R}^3 , par

$$P_1: X + 2Y + Z = 0$$
 et $P_2: X + Y + Z = 0$

sont-ils en somme directe?

- 2. Que dire des sous-espaces vectoriels P_1 : X + 2Y + Z = 0 et Vect((1,2,1))?
- 3. Soient E_1 et E_2 des sous-espaces vectoriels de \mathbb{R}^3 . En discutant selon les dimensions de E_1 et E_2 et leur intersection, donner tous les cas où E_1 et E_2 sont en somme directe.

Exercice 5.3. Soient $\vec{v}_1 = (0, 1, -2, 1)$ $\vec{v}_2 = (1, 0, 2, -1)$ $\vec{v}_3 = (3, 2, 2, -1)$, $\vec{v}_4 = (0, 0, 1, 0)$ et $\vec{v}_5 = (0, 0, 0, 1)$ des vecteurs de \mathbf{R}^4 . Les assertions suivantes sont-elles vraies ou fausses? Justifier votre réponse.

- 1. $\operatorname{Vect}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \operatorname{Vect}((1, 1, 0, 0), (-1, 1, -4, 2));$
- 2. $(1, 1, 0, 0) \in \text{Vect}(\vec{v}_1, \vec{v}_2) \cap \text{Vect}(\vec{v}_2, \vec{v}_3, \vec{v}_4);$
- 3. $\operatorname{Vect}(\vec{v}_1, \vec{v}_2) \cap \operatorname{Vect}(\vec{v}_2, \vec{v}_3, \vec{v}_4)$ est une droite vectorielle;
- 4. $\operatorname{Vect}(\vec{v}_1, \vec{v}_2) + \operatorname{Vect}(\vec{v}_2, \vec{v}_3, \vec{v}_4) = \mathbf{R}^4$;
- 5. $\operatorname{Vect}(\vec{v}_1, \vec{v}_2)$ et $\operatorname{Vect}(\vec{v}_2, \vec{v}_3, \vec{v}_4)$ sont en somme directe;
- 6. Vect (\vec{v}_4, \vec{v}_5) est un sous-espace vectoriel supplémentaire de Vect $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ dans \mathbf{R}^4 .

Exercice 5.4. Soit E un R-espace vectoriel de dimension n. Soit $f: E \to E$ un endomorphisme. On suppose que $\operatorname{rg}(f) = 1$.

1. Démontrer que le noyau de f est un hyperplan de E.

- 2. Justifier qu'on a l'alternative suivante. Soit $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$, soit $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
- 3. Dans le cas où $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$, justifier que $f \circ f = 0$.
- 4. Dans le cas où $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$, démontrer que f est un multiple de la projection sur $\operatorname{Im}(f)$ parallelement à $\operatorname{Ker}(f)$.
- 5. Trouver une base de E dans laquelle la matrice de f a $n^2 1$ coefficients nuls.

Exercice 5.5. On pose $E = \mathbf{R}[X]_{\leq 2}$, $F = \{P \in E \mid \int_0^1 P(t)dt = 0\}$ et G = Vect(1+X).

- 1. Démontrer que $E = F \oplus G$.
- 2. Soit p la projection sur F parallèlement à G. Pour tout polynome P de E, déterminer p(P).
- 3. Soit s la symétrie par rapport à F parallèlement à G. Déterminer s(P) pour tout polynôme P dans E.

Exercice 5.6. On se place dans l'espace vectoriel $\mathbf{R}[x]_{\leq 3}$ des fonctions polynomiales de degré au plus 3.

- 1. Pour tout $a \in \mathbf{R}$, on note V_a le sous ensemble de $\mathbf{R}[x]_{\leq 3}$ formé des polynômes qui s'annulent en a. Montrer que pour tout réel a, V_a est un sous-espace vectoriel de de $\mathbf{R}[x]_{\leq 3}$.
- 2. Les sous-espaces vectoriels V_1 et V_2 sont-ils en somme directe?
- 3. Montrer que $\mathbf{R}[x]_{\leq 3}$ est la somme directe des sous-espaces $V_1 \cap V_2$ et $V_3 \cap V_4$.
- 4. Justifier que tout polynôme $P \in \mathbf{R}[x]_{\leq 3}$ s'écrit de manière unique comme une some $P = P_1 + P_2$, où $P_1(1) = P_1(2) = 0$, $P_2(3) = P_2(4) = 0$ et $\deg(P_i) \leq 3$.

Exercice 5.7. Certaines des transformations qui servent dans les logiciels de graphisme ou de gestion d'images sont des endomorphimes linéaires du plan \mathbf{R}^2 . Par exemple, la rotation d'un quart de tour à droite est donnée par l'application linéaire $(x,y) \in \mathbf{R}^2 \longmapsto (y,-x) \in \mathbf{R}^2$. Pour chaque application linéaire ci-dessous, décrire la transformation géométrique correspondante.

$$(x,y) \in \mathbf{R}^2 \longmapsto (-x,y) \in \mathbf{R}^2$$
 $(x,y) \in \mathbf{R}^2 \longmapsto (x/2,y/2) \in \mathbf{R}^2$
 $(x,y) \in \mathbf{R}^2 \longmapsto (2x,y) \in \mathbf{R}^2$ $(x,y) \in \mathbf{R}^2 \longmapsto (x+y,y) \in \mathbf{R}^2$.

Exercice 5.8. On munit $E = \mathbf{R}^2$ de sa structure euclidienne usuelle. On note Δ la droite de E engendrée par le vecteur (1,1) et s la symétrie orthogonale par rapport à Δ .

1. Déterminer l'image du vecteur (1,-1) par s.

- 2. Déterminer s(x, y) pour tous $x, y \in \mathbf{R}$.
- 3. Déterminer la matrice de s dans la base usuelle de \mathbb{R}^2 .
- 4. Soit f une application bijective de ${\bf R}$ sur ${\bf R}$. Rappelons que son graphe est l'ensemble

$$\Gamma_f = \{ (x, f(x)), x \in \mathbf{R} \}.$$

Que peut-on dire des ensembles $s(\Gamma_f)$ et $\Gamma_{f^{-1}}$?

5. Représenter sur un même dessin les graphes des application de **R** dans **R** données par $x \mapsto x^3$ et $x \mapsto \sqrt[3]{x}$.

Exercice 5.9. On munit \mathbf{R}^3 du produit scalaire usuel. On note $\vec{u}_1 = (1, -1, 0)$, $\vec{u}_2 = (0, 1, -1)$ et $F = \text{Vect}(\vec{u}_1, \vec{u}_2)$.

- 1. Prouver que la famille (\vec{u}_1, \vec{u}_2) est libre.
- 2. Quelle est la dimension de F^{\perp} , l'orthogonal de F? En donner une base.
- 3. On rappelle qu'une base $(\vec{e_0}, \dots, \vec{e_n})$ d'un espace est dite *orthonormée* si elle vérifie les relations

$$\vec{e}_i \cdot \vec{e}_j = \begin{cases} 1 \text{ si } i = j, \\ 0 \text{ sinon,} \end{cases}$$

pour tous $i, j \in \{1, \dots, n\}$.

- (a) Construire une base orthonormée $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ de \mathbf{R}^3 telle que $\vec{e}_3 \in F^{\perp}$.
- (b) Démontrer que $(\vec{e_1}, \vec{e_2})$ est une base de F.
- (c) Écrire la matrice P de passage de la base usuelle de \mathbf{R}^3 à la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
- (d) Calculer le produit ${}^t\!\!PP$.
- (e) Déterminer l'inverse de la matrice P.
- 4. Soit p la projection orthogonale sur le plan F.
 - (a) Écrire la matrice de p dans la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
 - (b) Déterminer la matrice A de p dans la base usuelle de \mathbb{R}^3 .
 - (c) Calculer A^2 . Expliquer le résultat obtenu.
- 5. Soit s la symétrie orthogonale par rapport au plan ${\cal F}.$
 - (a) Écrire la matrice de s dans la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
 - (b) Déterminer la matrice B de s dans la base usuelle de ${\bf R}^3$.
 - (c) Calculer B^2 . Expliquer le résultat obtenu.

Exercice 5.10. On munit \mathbf{R}^3 du produit scalaire usuel. On note $\vec{u} = (1, 1, 1)$ et D la droite vectorielle engendrée par \vec{u} .

- 1. Donner une équation implicite de l'orthogonal D^{\perp} de D.
- 2. Quelle est la dimension de D^{\perp} ? En donner une base.
- 3. (a) Construire une base orthonormée $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ de \mathbf{R}^3 telle que $\vec{e}_1 \in D$.
 - (b) Démontrer que (\vec{e}_2, \vec{e}_3) est une base de D^{\perp} .
 - (c) Écrire la matrice P de passage de la base usuelle de \mathbb{R}^3 à la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
 - (d) Calculer le produit ${}^t\!PP$.
 - (e) Déterminer l'inverse de la matrice P.
- 4. Soit p la projection orthogonale sur la droite D.
 - (a) Écrire la matrice de p dans la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
 - (b) Déterminer la matrice A de p dans la base usuelle de \mathbb{R}^3 .
 - (c) Calculer A^2 . Expliquer le résultat obtenu.
- 5. Soit s la symétrie orthogonale par rapport à la droite D.
 - (a) Écrire la matrice de s dans la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
 - (b) Déterminer la matrice B de s dans la base usuelle de ${\bf R}^3$.
 - (c) Calculer B^2 . Expliquer le résultat obtenu.
- 6. Soit r la rotation d'angle $\frac{2\pi}{3}$, d'axe la droite D orientée par le vecteur $\frac{1}{\sqrt{3}}(1,1,1)$.
 - (a) Écrire la matrice de r dans la base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.
 - (b) Déterminer la matrice C de r dans la base usuelle de \mathbb{R}^3 .
 - (c) Calculer C^3 . Expliquer géométriquement le résultat obtenu.

Exercice 5.11. Soit E un espace vectoriel euclidien. Soit φ une isométrie vectorielle de E c'est à dire un endomorphisme de E tel que

$$\forall \vec{u} \in E, \quad \|\varphi(\vec{u})\| = \|\vec{u}\|.$$

1. Démontrer que la formule

$$C \cdot C' = {}^t C C'$$

définit un produit scalaire sur l'espace $\mathcal{M}_{n,1}(\mathbf{R})$ des vecteurs colonnes.

2. Soit M la matrice de φ dans un repére orthonormé de E. Soient C_i la i-ème colonne de la matrice M.

(a) Démontrer que

(1)
$$C_i \cdot C_j = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$$

- (b) Que peut-on dire de la famille (C_1, \ldots, C_n) vue comme famille de vecteurs de $\mathcal{M}_{n,1}(\mathbf{R})$?
- (c) Démontrer la formule

$${}^{t}\!M\,M=I_n$$

Une telle matrice est dite orthogonale.

- (d) Que peut-on dire de la matrice $M^{t}M$?
- (e) Construire sur l'espace $\mathcal{M}_{1,n}(\mathbf{R})$ un produit scalaire de sorte que les lignes de M vérifie une condition analogue à celle de (1).

Exercice 5.12. Soient A et B deux points distincts d'un espace affine \mathscr{E} . Démontrer qu'il existe une unique droite affine contenant les points A et B. On appelle cette droite la droite affine passant par A et B et on la note (AB).

Exercice 5.13. Soit \mathscr{E} un espace affine et soit $A \in \mathscr{E}$. Soit k un nombre réel non nul. On appelle homothétie de centre A et de rapport k l'application h qui à un point M de \mathscr{E} associe le point $h(M) = A + k\overrightarrow{AM}$.

- 1. Soit M et N des points de \mathscr{E} . Exprimer le vecteur $\overrightarrow{h(M)h(N)}$ en termes de \overrightarrow{MN} .
- 2. Prouver que l'application h est une application affine.
- 3. Soit M et N des points de \mathscr{E} . Exprimer la longueur h(M)h(N) en termes de la longueur MN.
- 4. Pour quelle valeurs de k l'application h est-elle une isométrie?
- 5. Pour quelle valeur de k l'application h est-elle l'application $\mathrm{Id}_{\mathscr{E}}$?
- 6. Soit \mathscr{D} une droite de \mathscr{E} passant par un point B et de vecteur directeur \vec{u} . Démontrer que $h(\mathscr{D})$ est une droite dont \vec{u} est un vecteur directeur. Que peut-on dire des droites \mathscr{D} et $h(\mathscr{D})$?
- 7. Démontrer le théorème de Thalès :

Théorème 5.1 (Thalès)

Soient A, B et C des points deux à deux distincts de \mathscr{E} . Soit D un point de la droite (AB). Soit Δ la droite parallèle à (BC) passant par D. La droite Δ coupe la droite (AC) en un point E tel que

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}.$$

- 8. Soit $f:\mathscr{E}\to\mathscr{E}$ une application affine telle qu'il existe $k\in\mathbf{R}-\{0,1\}$ tel que $\vec{f}=k\mathrm{Id}_{\overrightarrow{\mathscr{E}}}$
 - (a) Démontrer qu'il existe au plus un point $B \in \mathcal{E}$ tel que f(B) = B.
 - (b) Soit $M \in \mathcal{E}$ tel que $f(M) \neq M$. Démontrer qu'il existe un point B de la droite (Mf(M)) tel que f(B) = B.
 - (c) Démontrer que f est une homothétie.
- 9. Que peut-on dire d'une application affine $f: \mathscr{E} \to \mathscr{E}$ telle qu'il existe un nombre réel non nul k de sorte que $\vec{f} = k \operatorname{Id}_{\overrightarrow{\mathscr{E}}}$.
- 10. On suppose que f (resp. g) est une homothétie ou une translation. Démontrer qu'il en est de même de $f \circ g$.
- 11. Trouver des homothéties f et g telles que la composée $f \circ g$ soit une translation de vecteur non nul.

Problème 5.1. Représentation matricielle des applications affines.

Soient \mathscr{E} et \mathscr{F} des espaces affines de dimensions m et n respectivement. On se donne un repère affine $\widetilde{\boldsymbol{e}} = (O_{\mathscr{E}}, \vec{e}_1, \dots, \vec{e}_m)$ de \mathscr{E} et un repère affine $\widetilde{\boldsymbol{f}} = (O_{\mathscr{F}}, \vec{f}_1, \dots, \vec{f}_n)$ de \mathscr{F} . Pour tout entier $d \in \mathbf{N}$, on note \mathscr{H}_d l'hyperplan affine de \mathbf{R}^{d+1} définit par l'équation $X_{n+1} = 1$. On note $\Phi_{\widetilde{\boldsymbol{e}}}$ l'application de \mathscr{H}_m dans \mathscr{E} définie par

$$\Phi_{\tilde{e}}(\lambda_1,\ldots,\lambda_n,1) = O_{\mathscr{E}} + \sum_{k=1}^m \lambda_k \vec{e}_k.$$

On définit de manière similaire l'application $\Phi_{\tilde{f}}$. Pour toute matrice $A \in \mathcal{M}_{n+1,m+1}(\mathbf{R})$, on note Ψ_A l'application linéaire de \mathbf{R}^{m+1} dans \mathbf{R}^{n+1} définie par A, c'est-à-dire celle dont la matrice dans les bases usuelles est A.

- 1. Démontrer que $\Phi_{\widetilde{e}}$ est une application affine bijective.
- 2. Soit $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n+1\\1\leqslant j\leqslant m+1}}\in \mathcal{M}_{n+1,m+1}(\mathbf{R}).$ Démontrer que l'inclusion

$$\Psi_A(\mathscr{H}_m) \subset \mathscr{H}_n$$

vaut si et seulement la dernière ligne de A est donnée par :

$$a_{m+1,k} = \begin{cases} 1 \text{ si } k = n+1, \\ 0 \text{ sinon.} \end{cases}$$

Une telle matrice sera dite affine. Si cette condition est vérifiée, on note ψ_A l'application de \mathcal{H}_m dans \mathcal{H}_n donnée par $M \mapsto \Psi_A(M)$.

- 3. Soit A une matrice affine. Démontrer que ψ_A est une application affine.
- 4. Soit A une matrice affine. Démontrer qu'il existe une unique application $\varphi : \mathscr{E} \to \mathscr{F}$ telle que $\varphi(\Phi_{\widetilde{e}}(M)) = \Phi_{\widetilde{f}}(\psi_A(M))$ pour tout $M \in \mathscr{H}_m$. Démontrer que φ est une application affine.
- 5. Inversement, on se donne une application affine $\varphi: \mathscr{E} \to \mathscr{F}$.
 - (a) Démontrer qu'il existe une unique application $\psi: \mathcal{H}_m \to \mathcal{H}_n$ telle que $\varphi(\Phi_{\widetilde{e}}(M)) = \Phi_{\widetilde{f}}(\psi(M))$ pour tout $M \in \mathcal{H}_m$ et que cette application est affine.
 - (b) Démontrer qu'il existe une unique application linéaire $\Psi: \mathbf{R}^{m+1} \to \mathbf{R}^{n+1}$ telle que $\Psi(M) = \psi(M)$ pour tout $M \in \mathscr{H}_m$.
- (c) Vérifier que la matrice de Ψ dans les bases usuelles de \mathbf{R}^{m+1} et \mathbf{R}^{n+1} est affine. Avec les notations de la dernière question, A est appelée la matrice de l'application φ dans les repères \widetilde{e} et \widetilde{f} . On note

$$A = \operatorname{Mat}_{\widetilde{e},\widetilde{f}}(\varphi).$$

6. Vérifier que la matrice ainsi définie coïncide avec celle définie dans les compléments du chapitre 4.