Лабораторная работа 5.4.1.

Вязовцев Андрей, Б01-005

02.11.22

Цель работы: Измерить пробег α -частиц в воздухе двумя способами и определить энергию частиц.

В работе используются: торцевой счётчик Гейгера, сцинтилляционный счётчик.

Теоретическая справка:

Явление радиоктивности состоит в самопроизвольном распаде ядер с испусканием одной или нескольких частиц. К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В нашей работе мы будем рассматривать первое явление.

При α -распаде исходное родительское ядро испускает ядро гелия (α -частицу) и превращается в дочернее ядро, число протонов и нейтронов которого меньше на две единицы. Функциональная связь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой:

$$lgT_{1/2} = \frac{a}{\sqrt{E}} + b \tag{1}$$

Экспериментально энергию α -частиц удобно определять по величине их пробега в веществе. Они, главным образом, теряют свою энегрию от неупругих столкновений с атомами вещества. Эти столкновения вызывают ионизацию и возбуждение атомов, поэтому такие потери называются ионизационными.

В нашем рабочем диапазоне (от 4 до 9 МэВ) длину пробега можно вычислить с помощью следующей экспериментальной формулы:

$$R = 0.32E^{3/2} \tag{2}$$

где R выражается в сантиметрах, а E — в МэВ.

Экспериментальная установка:

Энергию β -частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой линзой». На рис. 3 изображена схема установки. А на рис. 2 — общая блок-схема.

Рис. 1. Установка для измерения пробега α -частиц с помощью торцевого счётчика Гейгера

Рис. 2. Установка для измерения пробега α -частиц с помощью сцинтилляционного счётчика

Ход работы:

Рис. 3. Схема устройства ионизационной камеры

I. Исследование пробега α -частиц с помощью счётчика Гейгера:

- 1. Включим установку в сеть, дадим ей прогреться. Убедимся, что она «чувствует» α -частицы.
- 2. Снимем зависимость скорости счёта от расстояния x от источника до приёмника. Результаты представлены в таблице 1.

t, c	70.218	40.162	40.212	44.857	76.341	125.074	120.178	40.209
N	907	657	603	612	506	42	26	581
x, MM	10.0	12.0	14.0	16.0	18.0	20.0	25.0	15.0
t, c	40.206	40.206	40.584	51.685	119.88	34 119.97	75 120.12	23
N	568	544	505	502	339	108	47	
x, MM	ı 15.5	16.5	17.0	17.5	18.5	19.0	19.5	

Таблица 1. Измерения на счётчике Гейгера

3. Построим график $\frac{N}{t}(x)$ и $\frac{d(N/t)}{dx}(x)$ (см. рис. 4). Определим по нем средний и экстраполированный пробег α -частиц.

Получаем:

$$R_{
m cp} pprox 18$$
 мм $R_{
m 9} = 19.2 \pm 1.2$ мм

Т. к. $p_{\rm atm}=99.6$ кПа, т. е. плотность воздуха $\rho\approx 1.184\cdot 10^{-3}~\frac{\Gamma}{{\rm cm}^3}$, то можно перевести величины в $\frac{\Gamma}{{\rm cm}^2}$:

$$R_{\rm cp} \approx 2.1 \cdot 10^{-3} \; \frac{\Gamma}{{
m cm}^2}$$

$$R_{\rm s} = (2.27 \pm 0.14) \; \cdot 10^{-3} \; \frac{\Gamma}{{
m cm}^2}$$

Рис. 4. Красивый график N(x)

II. Определение пробега α -частиц с помощью сцинтилляционного счётчика:

- 4. Включим установку в сеть, дадим ей прогреться. Настроим её по инструкции.
 - 5. Снимем зависимость N(p). Результаты на таблице 2.

Δp , mm. pt. ct.		735	725	700	675	5	65	0	62	5	600	575
N		3582	3308	2932	252	4	1 2123		318	37	2125	2185
t, c		10	10	10	10		10		20)	20	40
	Δp , mm. pt. ct.		550	500	450	4(00	350	0 4	475	525	
	N		1677	489	80	1	5	7		342	723	
	t, c			50	50	5	0	20)	50	50	

Таблица 2. Измерения на сцинтилляционном счётчике

6. Построим график N(p), где $p=p_{\text{атм}}-\Delta p,\ p_{\text{атм}}=747$ мм. рт. ст. Найдём, аналогично предыдущему пункту, $p_{\text{ср}}$ и p_{9} . Получаем:

$$p_{
m cp} pprox 147$$
 мм. рт. ст. $p_{
m s} = (230 \pm 50)$ мм. рт. ст.

7. Пересчитаем пробег к R при p=760 мм. рт. ст. и T=288 К. Учтём, что общая длина установки 9 см.

$$R_{\rm cp} \approx 17~{
m mm} = 2 \cdot 10^{-3} \; rac{\Gamma}{{
m cm}^2}$$

$$R_{\rm b} = (27 \pm 6)~{
m mm} = (3.2 \pm 0.7) \cdot 10^{-3} \; rac{\Gamma}{{
m cm}^2}$$

8. Отсюда найдём толщину слюды:

$$l = 1.2 \cdot (R_{II} - R_I) = (10 \pm 7) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}$$

9. Вычислим по формуле (2) энегрию α -частиц:

$$E = (4 \pm 1) \text{ МэВ}$$

Что находится около рамкок погрешности с реальным значением $E=5.15~{
m MpB}.$

Рис. 5. Красивый график N(p)

III. Определение пробега α -частиц с помощью ионизационной камеры:

- 10. Включим установку в сеть.
- 11. Исследуем зависимость I(p). Результаты представлены в таблице 3.

Δp , mm. pt. ct.	0	50	100	150	200	250	300
I , πA	922	935	947	960	943	865	752
Δp , mm. pt. ct.	350	400	450	500	550	600	650
I , Π A	660	559	457	374	290	206	127
Δp , mm. pt. ct.	700	125	175	225	275	325	375
<i>I</i> , пА	51	953	960	904	812	707	612

Таблица 3. Измерения с помощью ионизационной камеры

12. Из графика находим, что:

$$p_{\rm s} = (554 \pm 12)$$
 мм. рт. ст.

13. Далее найдём величины из предыдущих пунктов. Учтём, что 0.5 см и 10 см — диаметры первого и второго электродов.

$$R_9 = (3.40 \pm 0.07) \cdot 10^{-3} \frac{\Gamma}{\text{cm}^2}$$

 $E = (4.8 \pm 0.1) \text{ M} \cdot \text{B}$

Полученное значение энергии близко к табличному, хоть и не попадает в рамки погрешности.