Business Case: Target SQL

Project Link

https://console.cloud.google.com/bigquery?sq=119374501015:c09bd3ab6a2e 4a548bedf97f6fbd44fc

Q1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

SELECT * FROM New_Project.INFORMATION_SCHEMA.TABLES;

Customers table

Geolocation table

Order_items Table

order_reviews Table

Orders Table

Payments Table

Products Table

Sellers Table

02 Time period for which the data is given

SELECT

MIN(order_purchase_timestamp) AS first_order,
MAX(order_purchase_timestamp) AS last_order
from `New_Project.orders`;

03 Cities and States of customers ordered during the given period

SELECT DISTINCT

- `New_Project.customers`.customer_city,
- $\verb|`New_Project.customers|`.customer_state|$

FROM

`New_Project.orders`

```
LEFT OUTER JOIN `New_Project.customers` ON
`New_Project.orders`.customer_id = `New_Project.customers`.customer_id;
```


Q2 In-depth Exploration

```
SELECT
case
when hour_of_day>=0 and hour_of_day <=7 then 'Dawn'
when hour_of_day>=7 and hour_of_day <=12 then 'Morning'
when hour_of_day>=12 and hour_of_day <=20 then 'AfterNoon'
when hour_of_day>20 then 'Night' end AS Day_type,
count(*) AS order_count
from(select order_purchase_timestamp,
extract(hour from order_purchase_timestamp)AS hour_of_day from `New_Project.orders`)x
group by Day_type
order by count(*) DESC;
```


Q3 Evolution of E-commerce orders in the Brazil region

1 Get month on month orders by states

```
select
extract(month from o.order_purchase_timestamp) AS Months,
extract(year from o.order_purchase_timestamp) AS Years,
c.customer_state, count(o.order_id) AS orders
from `New_Project.customers` c
JOIN `New_Project.orders` o ON c.customer_id = o.customer_id
group by c.customer_state, Months, years;
```


2 Distribution of customers across the states in Brazil

```
select customer_state, count(*) AS Total_Distribution
from `New_Project.customers`
group by customer_state
order by count(*) DESC;
```


Q4 Impact on Economy

1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only

```
use new_project;
select extract(month from o.order_purchase_timestamp) AS 'Month',
extract(year from o.order_purchase_timestamp) AS 'Year',
round(SUM(p.payment_value),0) AS revenue
from orders o
join payments p ON p.order_id = o.order_id
where Year(o.order_purchase_timestamp) != '2016'
group by Year, Month
order by Year, Month ASC;
```


2 Mean & Sum of price and freight value by customer state

```
select c.customer_state, round(sum(p.freight_value)) AS freight_sales,
round(AVG(p.freight_value)) AS freight_AVG
from `New_Project.customers` c
JOIN `New_Project.orders` o ON c.customer_id = o.customer_id
JOIN `New_Project.order_items` p ON p.order_id = o.order_id
group by c.customer_state;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRA
Row	customer_state	le	freight_sales	freight_AVG	
1	RN		18860.0	36.0	
2	CE		48352.0	33.0	
3	RS		135523.0	22.0	
4	SC		89660.0	21.0	
5	SP		718723.0	15.0	
6	MG		270853.0	21.0	
7	BA		100157.0	26.0	
8	RJ		305589.0	21.0	

Q5 Analysis on sales, freight and delivery time

1 Calculate days between purchasing, delivering and estimated delivery

SELECT order_purchase_timestamp, order_estimated_delivery_date,
TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS
purchasing_days

FROM `New_Project.orders`;

. ,

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVIEW
Row	order_purchase_t	imestamp	order_estimat	ed_delivery_date	purchasing_days	
1	2017-12-09 10:16	:45 UTC	2018-01-29 00	0:00:00 UTC	50	
2	2018-08-10 15:14	:50 UTC	2018-08-17 00	0:00:00 UTC	6	
3	2017-05-13 21:23	:34 UTC	2017-06-27 00	0:00:00 UTC	44	
4	2016-10-07 19:17	:00 UTC	2016-12-01 00	0:00:00 UTC	54	
5	2016-10-05 01:47	:40 UTC	2016-12-01 00	0:00:00 UTC	56	
6	2016-10-07 22:45	:28 UTC	2016-12-01 00	0:00:00 UTC	54	
7	2016-10-05 16:57	:30 UTC	2016-12-01 00	0:00:00 UTC	56	
8	2018-03-08 07:06	:35 UTC	2018-04-19 00	0:00:00 UTC	41	

Load more

2 Find time_to_delivery & diff_estimated_delivery. Formula for the same given below

SELECT order_delivered_customer_date,

order_purchase_timestamp,order_estimated_delivery_date,

 $\label{timestamp_DIFF} \textbf{TIMESTAMP_DIFF} (order_delivered_customer_date, order_purchase_timestamp, DAY) \ AS \\ time_to_delivery,$

TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS
diff_estimated_delivery

FROM `New_Project.orders`;

Query results

★ SAVE RESUL1

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION	DETAILS	EXECUTION GRA	PH PREVIEW	
Row	order_delivered_	customer_date //	order_purcha	se_timestamp	order_e	stimated_delivery_date	time_to_delivery	y diff_estimated_c
1	2018-03-21 22:03	3:51 UTC	2018-02-19 1	9:48:52 UTC	2018-03	3-09 00:00:00 UTC	30	-12
2	2016-11-09 14:53	3:50 UTC	2016-10-09 1	5:39:56 UTC	2016-12	2-08 00:00:00 UTC	30	28
3	2016-11-08 10:58	3:34 UTC	2016-10-03 2	1:01:41 UTC	2016-11	1-25 00:00:00 UTC	35	16
4	2017-05-16 14:49	9:55 UTC	2017-04-15 1	5:37:38 UTC	2017-0	5-18 00:00:00 UTC	30	1
5	2017-05-17 10:52	2:15 UTC	2017-04-14 2	2:21:54 UTC	2017-0	5-18 00:00:00 UTC	32	0
6	2017-05-16 09:07	7:47 UTC	2017-04-16 1	4:56:13 UTC	2017-0	5-18 00:00:00 UTC	29	1
7	2017-05-22 14:1	1:31 UTC	2017-04-08 2	1:20:24 UTC	2017-0	5-18 00:00:00 UTC	43	-4
8	2017-05-22 16:18	3:42 UTC	2017-04-11 1	9:49:45 UTC	2017-0	5-18 00:00:00 UTC	40	-4

3 Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery

```
select c.customer_state, round(sum(p.freight_value)) AS freight_sales,
TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS
time_to_delivery,
TIMESTAMP_DIFF(order_estimated_delivery_date,order_delivered_customer_date, DAY) AS
diff_estimated_delivery
from `New_Project.customers` c
JOIN `New_Project.orders` o ON c.customer_id = o.customer_id
JOIN `New_Project.order_items` p ON p.order_id = o.order_id
group by c.customer_state,time_to_delivery,diff_estimated_delivery
order by c.customer_state,time_to_delivery DESC,diff_estimated_delivery DESC;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH PR
low /	customer_state	le	freight_sales //	time_to_delivery	diff_estimated_c	
1	AC		28.0	72	-31	
2	AC		52.0	66	-24	
3	AC		31.0	42	3	
4	AC		93.0	41	-1	
5	AC		36.0	38	4	
6	AC		61.0	36	17	
7	AC		25.0	34	0	
8	AC		25.0	32	6	

5 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
select c.customer_state, round(AVG(p.freight_value)) AS freight_avg
from `New_Project.customers` c
JOIN `New_Project.orders` o ON c.customer_id = o.customer_id
JOIN `New_Project.order_items` p ON p.order_id = o.order_id
group by c.customer_state
order by freight_avg DESC
limit 5;
```

Highest

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PRE
Row	customer_state	le	freight_avg //		
1	PB		43.0		
2	RR		43.0		
3	RO		41.0		
4	AC		40.0		
5	PI		39.0		

```
select c.customer_state, round(AVG(p.freight_value)) AS freight_avg
from `New_Project.customers` c
JOIN `New_Project.orders` o ON c.customer_id = o.customer_id
JOIN `New_Project.order_items` p ON p.order_id = o.order_id
group by c.customer_state
order by freight_avg ASC
limit 5;
```

Lowest

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row /	customer_state	le	freight_avg //		
1	SP		15.0		
2	PR		21.0		
3	RJ		21.0		
4	DF		21.0		
5	MG		21.0		

```
--6 Top 5 states with highest/lowest average time to delivery
--Highest
```

```
select o.customer_id, c.customer_state,
(order_estimated_delivery_date-order_delivered_customer_date) AS time_to_delivery
from `New_Project.orders` o
join `New_Project.customers` c ON o.customer_id = c.customer_id
order by time_to_delivery DESC
limit 5;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAP	H PREVIEW
Row	customer_id	le	customer_state	10	time_to_del	ivery	li.
1	a5fbb6579eacbe	b02752a143b	SP		0-0 0 3504:	23:13	
2	964253ff0e4e08	180064764a4	MA		0-0 0 3345:	32:15	
3	32cef4bdd6bfa5	0612d81dc77	RS		0-0 0 3223:	24:17	
4	6357fffb5704244	4d552615bbfc	SP		0-0 0 2962:	24:6	
5	6210a37f9d6a26	55a4f3fbe2c21	RJ		0-0 0 2602:	10:53	

Lowest

```
select o.customer_id, c.customer_state,
(order_estimated_delivery_date-order_delivered_customer_date) AS time_to_delivery
from `New_Project.orders` o
join `New_Project.customers` c ON o.customer_id = c.customer_id
order by time_to_delivery ASC
limit 5;
```

7 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Highest

```
select o.customer_id, c.customer_state,
(o.order_estimated_delivery_date-o.order_delivered_customer_date) AS
diff_estimated_delivery
from `New_Project.orders` o
join `New_Project.customers` c ON o.customer_id = c.customer_id
order by diff_estimated_delivery DESC
limit 5;
```

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH F	PREVIEW
Row /	customer_id	le	customer_state	10	diff_estima	ted_delivery	
1	a5fbb6579eacbe	b02752a143b	SP		0-0 0 3504:	23:13	
2	964253ff0e4e08	180064764a4	MA		0-0 0 3345:	32:15	
3	32cef4bdd6bfa5	0612d81dc77	RS		0-0 0 3223:	24:17	
4	6357fffb5704244	4d552615bbfc	SP		0-0 0 2962:	24:6	
5	6210a37f9d6a26	5a4f3fbe2c21	RJ		0-0 0 2602:	10:53	

Lowest

```
select o.customer_id, c.customer_state,
(o.order_estimated_delivery_date-o.order_delivered_customer_date) AS
diff_estimated_delivery
from `New_Project.orders` o
join `New_Project.customers` c ON o.customer_id = c.customer_id
order by diff_estimated_delivery ASC
limit 5;
```

Q6 Payment type analysis:

1 Month over Month count of orders for different payment types

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order, p.payment_type
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
group by Months, Years, p.payment_type
order by Months ASC, Years DESC;
```


credit_card

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
WHERE p.payment_type = 'credit_card'
group by Months, Years
order by Months ASC, Years DESC;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	Months	Years	Monthly_order	
1	1	2018	5520	
2	1	2017	583	
3	2	2018	5253	
4	2	2017	1356	
5	3	2018	5691	
6	3	2017	2016	
7	4	2018	5455	
8	4	2017	1846	

voucher

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
WHERE p.payment_type = 'voucher'
group by Months, Years
order by Months ASC, Years DESC;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	Months	Years	Monthly_order	
1	1	2018	416	
2	1	2017	61	
3	2	2018	305	
4	2	2017	119	
5	3	2018	391	
6	3	2017	200	
7	4	2018	370	
8	4	2017	202	

UPI

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
WHERE p.payment_type = 'UPI'
group by Months, Years
order by Months ASC, Years DESC;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	Months	Years	Monthly_order	
1	1	2018	1518	
2	1	2017	197	
3	2	2018	1325	
4	2	2017	398	
5	3	2018	1352	
6	3	2017	590	
7	4	2018	1287	
8	4	2017	496	

debit_card

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
WHERE p.payment_type = 'debit_card'
group by Months, Years
order by Months ASC, Years DESC;
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	E
Row	Months	Years	Monthly_order		
1	1	2018	109		
2	1	2017	9		
3	2	2018	69		
4	2	2017	13		
5	3	2018	78		
6	3	2017	31		
7	4	2018	97		
8	4	2017	27		

not_defined

```
select extract(month from o.order_purchase_timestamp) AS Months,
extract(Year from o.order_purchase_timestamp) AS Years,
count(o.order_id) as Monthly_order
from `New_Project.orders` o
JOIN `New_Project.payments`p ON p.order_id = o.order_id
WHERE p.payment_type = 'not_defined'
group by Months, Years
order by Months ASC, Years DESC;
```

JOB INFORMATION				RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	11	Months	11	Years	Monthly_order		
1			8	2018	2		
2			9	2018	1		

2 Count of orders based on the no. of payment installments

select payment_installments, count(order_id) AS total_orders
from `New_Project.payments`
group by payment_installments;

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVI
Row /	payment_installr	total_orders			
1	0	2			
2	1	52546			
3	2	12413			
4	3	10461			
5	4	7098			
6	5	5239			
7	6	3920			
8	7	1626			
9	8	4268			
10	9	644			
11	10	5328			
12	11	23			
13	12	133			
14	13	16			
15	14	15			

7. Actionable Insights

E-commerce on Brazil really has a growing trend along the time. It can be clearly seen in general that customers are more prone to buy things online than before. As per this observation, smooth and fast delivery service would increase the sales more

8. Recommendations

Monday are the preferred day for Brazilian's customers and they tend to buy more at afternoons. So that, more active and smooth customer services at this time should be , would really help to increase sales