

Basics of Mobile Robotics presentation

Kilian Pouderoux Matas Jones Gautier Demierre Geoffroy Renaut

Source:

https://roboticopenplatform.org/wiki/Thy

Professor: Francesco Mondada

Table of contents

- Computer Vision
- Global Navigation
- Motion Control
- Local Navigation and
- Kidnapping
- Kalman filter
- FSM
- Demo
- Questions

EPFL

Computer Vision

Gaussian blur

Median blur

Mask range

Closing

Connected
Components

FindContours

EPFL

Global Navigation

- Use of a A* algorithm with an approximate cell decomposition of the map.
- Heuristic function defined as the euclidian distance divided by two.
- The neighboring cells explored can be further away than usual.

The obtained path is then cleaned by removing points where no change of direction occurs.

EPFL

Motion control

Motion control based on differential drive

Local navigation

Trial-and-error avoidance system

Execution order:

Obstacle detection Corresponding state: Transit

Move away from obstacle Corresponding state: Deviate

Bypass the obstacle Corresponding state: Bypass

Return to initial path
Corresponding state: back_to_path

Kidnapping

Threshold of 18 on both x and y axes of the IMU

Acceleration $18 \times 0.45 \approx 8.1 \text{ N}$

Return a boolean for the FSM

EPFL Kalman filter

- Improve estimation of state
- Sensor fusion with state estimation

Non-linear system -> Extended Kalman Filter

Final State Machine

Let's run it..

Demonstration

Questions?

Thank you!