Project Modules: Robot Arduino Servos Mechanism Hardware **Embedded** External power supply Software

Software Submodules: User Main code Tasks to do Interface Robot **Kinematics** → Speed converter **Abstraction** Computations Servo - link VarSpeedServo **library** angle converter Communicate with the servos.

Main Class of The System*:

RobotARR5

angle_t clawClosingAngle
VarSpeedServo joint[3]
VarSpeedServo claw
angle_t servoAngle[3]
coordinates_t currentCoordinates
orientation_t currentOrientation
int jointSpeed[3]
int clawSpeed

RobotARR5(coordinates_t initialCoordinates)
void setClawClosingAngle(angle_t closingAngle)
void getClawClosingAngle(void)
void closeClaw(void)
void openClaw(void)
coordinates_t getCurrentCoordinates(void)
orientation_t getCurrentOrientation(void)
void setJointSpeed(joint_t joint, int speed)
int getJointSpeed(void)
void setClawSpeed(int speed)
int getClawSpeed(void)
void goTo(coordinates_t position)

New typedefs:

- angle_t: special type of int
- coordinates_t: struct with x, y and z
- orientation_t: struct with all 9 parameters of the rotation matrix
- joint_t: Value from an enum.

Typical workflow with the robot:

- 1) Instantiate the class;
- 2) Set the joint and claw speeds;
- 3) Order the robot to go to the desired position;
- 4) While it's moving, track it's coordinates;
- 5) Order it to close the claw;
- 6) Order it to go to another position;
- 7) Track the coordinates again;
- 8) Order it to open the claw.