Санкт-Петербургский государственный электротехнический университет имени В. И. Ленина "ЛЭТИ"

билеты

КОМБИНАТОРИКА И ТЕОРИЯ ГРАФОВ

 Студент:
 Придчин В.Е.

 Группа:
 2308

 Лектор:
 Зяблицева Л.

IATEX

Санкт-Петербург 2024 1 Основные определения теории графов. Смежность и инцидентность вершин и ребер графа. Степени вершин в графе и орграфе. Теоремы о сумме степеней вершин в графе и орграфе. Матрицы смежности и инцидентности. Найти матрицы смежности и инцидентности указанного графа.

V – множество вершин.

E – множество пар вида $(u, v) : u, v \in V$ (множество ребер).

Опр: Графом – называют совокупность 2-ух множеств непустого множества ${\bf E}$

$$E = \{(u,v): u,v \in V\}, \ G(V,E)$$
 — обозначение графа

Опр: Петля – пара вида (v, v) в множестве E.

Опр: Кратные ребра – одинаковые пары в множестве E. Количество кратных ребер - кратность ребра.

Существуют следующие виды графов:

- 1. Псевдограф в графе могут быть и кратные ребра, и петли.
- 2. Мультиграф в графе есть кратные ребра, но нет петель.
- 3. Простой граф отсутствуют и $\kappa pamныe\ peбpa$ и nem nu.

Опр: Ориентированный граф (орграф) – граф с ориентированными ребрами.

Опр: Если e=(u,v) – ребро неориентированного графа, то u,v - концы ребра.

Опр: Если e=(u,v) – ребро (дуга) ориентированного графа, то u - начало ребра, v - конец ребра.

Опр: a, b смежные $\Leftrightarrow e = (u, v)$.

Опр: u, v инцидентны ребру $e \Leftrightarrow e = (u, v)$.

Опр: Степенью вершины v неориентированного графа называется количество ребер инцидентных данной вершине, $\delta(v)$ (петлю считают два раза).

Теорема: Сумма степеней вершин неориентированного графа равна удвоенному числу ребер

$$\sum_{u \in V} \delta(v) = 2r$$
, где r - число ребер

Док-во: Теорема справедлива, так как вклад каждого ребра равен двум.

Опр: Если степень вершины равна нулю, то вершина *изолированная*, $\delta(v) = 0$.

Опр: Если степень вершины равна единице, то вершина *висячая*, $\delta(v)=1$

Опр: Полустепенью исхода(захода) вершина v ориентированного графа называют количество ребер исходящих(заходящих) в данную вершину. $\delta^-(v)$ – полустепень исхода

 $\delta^+(v)$ – полустепень захода

Теорема: Для орграфа справедливо равенство

$$\sum_{u\in V}\delta^-(v)=\sum_{u\in V}\delta^+(v)=r$$
, где r - число ребер

Опр: Матрицей смежности графа(орграфа) называют квадратную матрицу размерностью n, где n=|v| (мощность множества вершин), в котором $a_{ij}=k$, где k - число ребер (v_i,v_j)

Опр: Пусть G(V, E) – неориентированный граф. Матрицей инцидентности неориентированного графа называется матрица B размером n*r, |v|=n, |E|=r, где каждый элемент матрицы:

$$b_{ij} = \left\{ egin{array}{ll} 1, \ \mbox{если} \ v_i \ \mbox{инцидентно ребру} \ e_j \ 0, \ \mbox{иначе} \end{array}
ight.$$

Такая матрица будет симметричной.

Опр: Пусть G(V,E) — ориентированный граф. Матрицей инцидентности ориентированного графа называется матрица B размером $n*r, \ |v| = n, |E| = r,$ где каждый элемент матрицы:

Если есть петля, то на соответствующее место ставят любое число.

Поиск матрицы смежности A и инцидентности B для неориентированного графа:

$$A = \begin{array}{cccc} a & b & c & d \\ a & 0 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ c & 1 & 2 & 0 & 1 \\ d & 0 & 0 & 1 & 1 \end{array}$$

$$B = \begin{pmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ a & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 1 & 1 & 0 & 0 \\ c & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Поиск матрицы смежности A и инцидентности B для ориентированного графа:

2 Полные и двудольные графы. Число ребер в полном графе с п вершинами и в полном двудольном графе (вывод формул).

Опр: Π *олный граф* – простой неориентированный граф у которого любые две вершины смежны.

Количество полных ребер в графе $K_n = C_n^2 = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$.

Опр: Двудольный граф – граф, если его множество вершин V можно разделить на подмножество V_1 и V_2 такое что: $V_1 \cap V_2 = \varnothing$

$$V_1 \cup V_2 = V$$

Смежными могут быть только вершины из разных долей графа.

Опр: Полный двудольный граф – каждая вершина одной доли соединяется с другой. K_{t_1,k_2} , где t_1,k_2 – количество вершин в долях графа.

В полном двудольном графе содержится $t_1 \cdot t_2$ ребер.

3 Изоморфизм и гомеоморфизм графов. Примеры изоморфных и гомеоморфных графов. Способы проверки изоморфизма графов. Инварианты графа. Дополнение графа, проверка изоморфизма графов с помощью дополнений. Выяснить, являются ли графы G1 и G2 изоморфными, гомеоморфными.

Опр: *Изоморфизм графов* – биективное отображение $\varphi: V_1 \to V_2$, такое что:

$$(\forall u, v \in V)((u, v) \in E_1) \Leftrightarrow (\varphi(u), \varphi(v)) \in E_2$$

Изоморфные графы обозначаются: $G_1 \cong G_2$

Изоморфные объекты *не различимы* с точки зрения математики. Это экземпляры одного и того же математического объекта. Изоморфные объекты имеют одинаковое число элементов и свойств.

Изоморфизм графов можно определить:

- 1. По определению (найдя биективное отображение множества вершин, сохраняющее смежность)
- 2. Перерисовав один из графов так, чтобы изображение совпало с другим графом
- 3. Сравнив матрицы смежности графов

Теорема: Графы изоморфны тогда и только тогда, когда матрицу смежности одного из них можно получить из матрицы смежности другого путём одновременной перестановки местами i-ой и j-ой строк и столбцов.

Пример изоморфных графов:

Опр: *Инвариантом изоморфизма графов* называется некоторое (обычно числовое) значение или упорядоченный набор значений, характеризующий структуру графа и не зависящий от способа его задания.

Инвариантами графа являются:

- 1. Количество вершин
- 2. Количество ребер
- 3. Набор степеней вершин (упорядоченный)
- 4. Определитель матрицы смежности
- 5. Количество компонент связности
- 6. Хроматическое число и т.д.

Пусть G(V, E) – простой неориентированный граф.

Опр: Дополнением графа G называется граф $\overline{G}(\overline{V},\overline{E})$, у которого $\overline{V}=V$, в множестве \overline{E} содержатся ребра полного графа, которых нет в множестве E.

Теорема: Простые графы G и H изоморфны тогда и только тогда, когда изоморфны их дополнения.

$$G\cong H\Leftrightarrow \overline{G}\cong \overline{H}$$

Опр: Граф является самодополнительным, если он изоморфен своему дополнению.

Понятие изоморфизма можно дать и для произвольных графов.

Опр: Граф $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$ изоморфны, если \exists биективные отображения $\varphi: V_1 \to V_2$ и $h: E_1 \to E_2$ такие, что:

$$e = (u, v) \in E_1 \Leftrightarrow h(e) = (\varphi(u), \varphi(v)) \in E_2$$

4 Маршруты, цепи, циклы в графе. Метрические характеристики графа. Найти эксцентриситет вершины указанного графа, радиус, диаметр графа, центральные и периферийные вершины указанного графа.

Опр: *Маршрут* (путь) в графе – это конечная чередующаяся последовательность смежных вершин и ребер, соединяющих эти вершины.

 $Mаршрут - \text{последовательность } v_1 e_1 v_2 e_2 \dots e_{s-1} v_s e_s v_{s+1} \dots v_k,$ в которой чередуются все вершины и ребра. $e_s = (v_s, v_{s+1}).$

Опр: Длина маршрута – количество ребер в маршруте.

Опр: Hyль-маршрут – последовательность из одной вершины v.

Опр: Замкнутый маршрут (циклический) – последовательность, в которой совпадает начальная вершина с конечной. Иначе – незамкнутый (открытый).

Опр: Цепь – незамкнутый маршрут, где все ребра попарно различны.

Опр: Простая цепь – цепь, где все вершины попарно различны.

Опр: $Uu\kappa n - \mu \kappa n - \mu \kappa n + \mu \kappa$

Опр: *Простой цикл* – цикл, где все *вершины*, *кроме первой и последней* попарно различны.

Теорема: Из любого цикла можно выделить простой цикл c той же начальной вершиной.

Док-во: Пусть \exists цикл $v_1e_1v_2e_2\dots v_se_s\dots v_je_j\dots v_ne_nv_1$. Если все вершины, кроме первой и последней, различны, то этот цикл простой. Допустим в цикле есть совпадающие вершины (не первая и не последняя) $v_s=v_j$. Тогда удаляем часть маршрута между этими вершинами.

$$v_1e_1v_2e_2\dots v_se_s\dots v_je_j\dots v_ne_nv_1 \Rightarrow v_1e_1v_2e_2\dots v_se_j\dots v_ne_nv_1$$

Так как $v_s = v_j$, то полученная последовательность является маршрутом. Продолжая получим простой цикл. \Box

Теорема: Из любой цепи можно выделить простую цепь с теми же начальными и конечными вершинами (док-во аналогично).

Опр: Cвязанные вершины в графе — \exists маршрут с началом в первой вершине и концом на второй.

Опр: Связный граф – две любые вершины являются связанными.

Пусть G(V, E) – связный неориентированный граф $(v_i, v_j \in V)$.

Опр: Расстояние между вершинами, $d(v_i, v_j)$ – длина кратчайшего маршрута между этими вершинами.

Опр: Эксцентриситет вершины графа – число, максимальное из расстояний между этой вершиной и всеми остальными вершинами.

$$\varepsilon(v_i) = \max d(v_i, v_j), v_j \in V, i \neq j$$

Опр: \mathcal{L} *иаметр графа*, $\mathcal{L}(G)$ – максимальный из всех эксцентриситетов вершин данного графа.

Опр: $Paduyc\ zpa\phi a,\ R(G)$ — минимальный из всех эксцентриситетов вершин данного графа.

Опр: Периферическая вершина – ее эксцентриситет равен диаметру.

Опр: *Центральная вершина* – ее эксцентриситет равен радиусу.

Опр: *Центр графа* – множество всех центральных вершин.

Пример: Найти эксцентриситеты вершин, диаметр и радиус графа, периферийные и центральные вершины.

$$\varepsilon(1) = 5, \varepsilon(2) = 4, \varepsilon(3) = 3, \varepsilon(4) = 3,$$

 $\varepsilon(5) = 3, \varepsilon(6) = 4, \varepsilon(7) = 5, \varepsilon(8) = 5.$
 $D(G) = 5, R(G) = 3.$

Периферийные: 1, 7, 8 Центральные: 3, 4, 5

5 Алгоритмы обхода графа в глубину и ширину.

Опр: Обход графа (поиск на графе) — это процесс систематического просмотра всех ребер или вершин графа с целью отыскания ребер или вершин, удовлетворяющих некоторому условию.

Опр: Поиск в ширину (BFS) нужен для нахождения расстояний между вершин в связном графе. Алгоритм по принципу напоминает "пожар".

Алгоритм поиска в ширину:

- 1. Все вершины окрашиваются в белый цвет.
- 2. Выбирается первая вершина, раскрашивается в черный цвет и заносится в очередь.
- 3. Посещается первая вершина из очереди. Все смежные с ней белые вершины раскрашиваются в черный цвет и заносятся в очередь. После этого эта вершина удаляется из очереди.
- 4. Повторяется шаг 3 до тех пор пока очередь не пуста.

Сложность поиска в ширину при нематричном представлении графа равна O(n+m), так как рассматриваются все п вершин и m ребер. Использование матрицы смежности приводит к оценке $O(n^2)$.

Если граф не является связным, то нужно добавить шаг 5, в котором написать, что нужно повторять 2 шаг до тех пор, пока в графе не останется белых вершин.

Если сначала присвоить первой вершине значение 0, потом смежным с ней вершинам 0+1=1, и так далее, то в итоге для каждой вершины будет найдено расстояние от первой вершины.

Опр: Поиск в глубину (DFS) исследует конкретную ветку в графе и только потом переходит к другой (если они остануться нерассмотренными).

Вершины графа могут быть раскрашены в три цвета: белый цвет означает, что в вершине еще не были, серый — что в вершине были, но еще вернемся, черный — что были и больше не рассматриваем.

Алгоритм поиска в глубину:

- 1. Всем вершинам графа присваиваем белый цвет.
- 2. Выбираем первую вершину и раскрашиваем в серый цвет.
- 3. Для последней раскрашенной в серый цвет вершины выбираем белую смежную ей вершину (если такая вершина есть), раскрашиваем ее в серый цвет и переходим к шагу 3.
- 4. Повторяем шаг 3 до тех пор, пока все вершины не будут раскрашены в черный цвет.

Если для рассматриваемой вершины белых смежных с ней вершин нет, то рассматриваемую вершину раскрашиваем в черный цвет и переходим к шагу 3.

Временная сложность алгоритма зависит от представления графа. Если применена матрица смежности, то временная сложность равна $O(n^2)$, а если нематричное представление – O(n+m): рассматриваются все вершины и все ребра.