Industry Methods for Safety Assurance & Testing

Module 3, Lesson 2

In this video ...

- Industry perspectives on self driving safety
- Approaches to demonstrating autonomy safety

Waymo Safety Perspective

Based on Waymo Safety Report (2017)

Waymo: Safety Levels

Operational Safety

Functional Safety

Non collision safety

Waymo: Safety Processes

- Identify hazard scenarios & potential mitigation
- Use hazard assessment methods to define safety requirements
 - Preliminary analysis
 - o Fault tree
 - Design Failure Modes & Effects Analyses
- Conduct extensive testing to make sure safety requirements are met

Waymo: Levels of testing to ensure safety

- Simulation testing
 - Test rigorously with simulation, thousands of variations, fuzzing of neighbouring vehicles

Waymo: Levels of testing to ensure safety

- Closed-course testing
 - Follow 28 core + 19
 additional scenario
 competencies on private test
 tracks
 - Focus on four most common crashes:
 - Rear-end, intersection, road departure, lane change

Waymo: Levels of testing to ensure safety

- Real-world driving
 - o Start with smaller fleet, expand steadily
 - o Already testing thousands of vehicles, with more on the way.

General Motors Safety Perspective

GM: Safety

• Address all 12 elements of NHTSA Safety Framework

• Iterative Design

GM: Safety

- Safety through Comprehensive Risk Management and Deep Integration
 - o identify and address risks, validate solutions
 - o prioritize elimination of risks, not just mitigation
- All hardware, software systems meet
 - self-set standards for performance, crash protection, reliability, serviceability, security, safety

0

GM: Safety Processes

- Deductive Analysis
 - o fault tree analysis

- Inductive Analysis
 - Design & Process FMEA

- Exploratory Analysis
 - **HAZOP**: Hazard & Operability Study

GM: Safety Thresholds

All GM vehicles are equipped with two key safety thresholds:

- Fail safes There is redundant functionality (second controllers, backup systems etc) such that even if primary systems fail, the vehicle can stop normally
- **SOTIF** All critical functionalities are evaluated for unpredictable scenarios

GM: Testing

- Performance testing at different levels
- Requirements validation of components, levels
- Fault injection testing of safety critical functionality
- **Intrusive testing** such as electromagnetic interference, etc.
- Durability testing and simulation based testing

Analytical vs Data Driven: Definitions

Analytical Safety

Ensuring the system works in theory and meets safety requirements found by hazard assessment

Data driven safety

Safety guarantee due to the fact that the system has performed autonomously without fail on the roads for a very large number of kms

Are autonomous cars safer?

- Driving is still dangerous!
- Car accidents are mostly caused due to human errors (NHTSA Report, 2015)
- In US, on average
 - o 1 fatal collion per 146 million km
 - o 1 injury collision per 2.1 million km
 - $\circ \sim 1$ collision per 400,000 km

	Estimated	
Critical Reason Attributed to	Number	Percentage* ± 95% conf. limits
Drivers	2,046,000	94% ±2.2%
Vehicles	44,000	2% ±0.7%
Environment	52,000	2% ±1.3%
Unknown Critical Reasons	47,000	2% ±1.4%
Total	2,189,000	100%

^{*}Percentages are based on unrounded estimated frequencies (Data Source: NMVCCS 2005–2007)

Are autonomous cars safer?

- Consider California disengagement rates:
- In 2017, Waymo had
 - o Driven 563,000 km autonomously in California
 - o 63 disengagements
 - o 1 disengagement every 9,000 km
- In 2017, GM had
 - o Driven 210,000 km autonomously in California
 - o 105 disengagements
 - o 1 disengagement every 2,000 km

The Dilemma

- **Question**: How many miles (years) would autonomous vehicles have to be driven to demonstrate with 95% confidence their failure rate to within 20% of the true rate of 1 fatality per 146 million km?
- **Answer**: ~400 years, with a fleet of 100 vehicles travelling all the time (total ~8 billion miles)
 - o [How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? (Kalra et al., 2016)]

Summary

- Industry perspectives
 - o Waymo 5 safety levels, processes, testing
 - o GM iterative design, processes, testing
- Data driven safety
 - o Disengagement rates and road testing requirements