$I_{\rm \kappa p} =$	
$\mathbf{D}I_{\kappa p}$	=

5 Обчислюємо е/т:

$$<\frac{e}{m}>=\frac{8}{(\mu\mu_{0}nd)^{2}}\cdot\frac{U_{A}}{I_{\kappa p}^{2}}=\frac{32}{(\mu\mu_{0}n(d_{A}-d_{K}))^{2}}\cdot\frac{U_{A}}{I_{\kappa p}^{2}}=$$

При цьому враховуємо, що

- **§** діаметр анода лампи $d_A = 1,2 \cdot 10^{-2} \ M$;
- **§** діаметр катода лампи $d_K = 2.0 \cdot 10^{-3} \ M$;

Дата виконання:	
Допуск	
Відмітка про виконання:	
Відмітка про оформлення:	
Відмітка про захист:	

Розрахунковий лист до лабораторної роботи № 13 (v.2.01)

«Визначення питомого заряду електрона за допомогою магнетрона»

		-	
група	студент		

Мета роботи

1 Експериментально визначити питомий заряд електрона.

Виконання роботи

1 Збираємо (перевіряємо) електричну схему експериментальної установки. З дозволу викладача включаємо джерела живлення. Даємо декілька хвилин на прогрівання приладів. Встановлюємо розмір анодної напруги

$$U_A =$$
 _____ (вказується викладачем).

 $U_A =$ _____ (вказується викладачем). 2 Поступово збільшуючи струм соленоїда I_c , через кожні 0,05 Aвимірюємо значення анодного струму I_4 . Результати вимірювань записуємо до таблиці 2.1.

Таблиня 2.1

٠.	weviiiiiiii = 1								
	$U_A=$,	В							
	I_A , MA								
	$I_{\rm c}, A$								
٠									

I_A , MA			
$I_{\rm c}, A$			

I_A , MA			
$I_{\rm c}, A$			

I_A , MA			
$I_{\rm c}, A$			

- 3 За даними експерименту будуємо графік $I_A = f(I_c)$.
- 4 За графіком визначаємо $I_{\kappa p}$, та її похибку $\mathrm{D}I_{\kappa p}$ (див. рис. 2.4)

$$D(e/m) = <\frac{e}{m} > \sqrt{\left(\frac{DU_A}{U_A}\right)^2 + \left(\frac{2DI_{\kappa p}}{I_{\kappa p}}\right)^2} =$$

В цій формулі

$$DU_A =$$

похибка вимірювання напруги вольтметром (похибка приладу). 6 Остаточний результат записуємо у вигляді

$$e/m = \langle e/m \rangle \pm D(e/m) =$$

№ 13 «Визначення питомого заряду електрона за допомогою магнетрона»

висновки

Знайдено питомий заряд електрона. Він дорівнює

$$e/m = \langle e/m \rangle \pm \mathbf{D}(e/m) =$$

3 вимірів інших дослідників (таблиці фізичних величин) відомі значення заряду електрона та його маса:

$$e = 1,60 \cdot 10^{-19} \text{ Km}, \quad m = 9,11 \cdot 10^{-31} \text{ kg}.$$

Звідси знаходимо, що

$$e/m = 1.76 \cdot 10^{11} \text{ Кл/кг}$$

Як бачимо, результати вимірів, що проведені в лабораторній роботі з точністю до похибки вимірів ______ з результатами вимірів інших дослідників.