DOŚWIADCZENIE YOUNGA PRZY WYKORZYSTANIU MIKROFAL

T. Fas

20 stycznia 2018

STRESZCZENIE

W doświadczeniu próbowano powtórzyć doświadczenie z dwoma szczelinami przy wykorzystaniu mikrofal. Jednakże otrzymany wzór interferencyjny nie jest zgodny z przewidywaniami teoretycznymi.

WSTEP

Jeśli fala płaska przejdzie przez szczelinę, to odchodzi do zjawiska dyfrakcji, czyli ugięcia fali na krawędziach szczeliny. Rozkład natężenia I fali na ekranie równoległym do szczeliny i prostopadłym do biegu wiązki jest dany wzorem:

$$I = I_0 \left(\frac{\sin(\pi l \sin(\theta)/\lambda)}{\pi l \sin(\theta)/\lambda} \right)^2, \tag{1}$$

gdzie λ to długość fali, to szerokość szczeliny, a θ to kąt zawarty między prostą łączącą punkt na ekranie i środek szczeliny, a między prostą prostopadłą do ekranu i przechodzącą przez środek szczeliny.

Jeżeli mamy do czynienia z dwoma szczelinami, to dochodzi dodatkowo do zjawiska interferencji: amplituda fali jest sumą amplitud przechodzących przez obie szczeliny. Z tego powodu Równanie (1) ulega modyfikacji i otrzymujemy:

$$I = 2I_0 \left[1 + \gamma \cos \left(2\pi d \sin(\theta/\lambda) \right) \right] \left(\frac{\sin \left(\pi l \sin(\theta)/\lambda \right)}{\pi l \sin(\theta)/\lambda} \right)^2, \tag{2}$$

gdzie γ jest współczynnikiem spójności wiązek, a d jest odległością między środkami szczelin.

W doświadczeniu, zamiast natężenia, mierzono napięcie na detektorze, które było wprost proporcjonalne do natężenia fali. Celem doświadczenia było zbadanie, czy dane eksperymentalne zgadzają się z Równaniem (2).

UKŁAD DOŚWIADCZALNY

Układ doświadczalny składał się z generatora mikrofal, detektora, miernika napięcia oraz ze ścianki, która pozwalała na kontrolowanie liczby szczelin, ich szerokości i wzajemnej odległości między nimi. Detektor znajdował się na obrotowym ramieniu, które w łatwy sposób pozwalało na zmierzenie kąta θ . Samo ramię było zaczepione do środka ścianki.

WYNIKI POMIARÓW

Wartości napięć i kątów dla pojedynczej szczeliny zamieszczono w Tabelach 1-4, wyniki pomiarów dla dwóch szczelin są przedstawione w Tabelach 5 i 6.

Tabela 1: Wyniki pomiarów dla $l=0,1~\mathrm{m}.$

	Tabel	a 1. v	y mr.	pom	iaiow	uia i	-0,1	111.	
θ [°]	0	5	10	15	20	-5	-10	-15	-20
I [mV]	2.5	2.5	2	0.9	0.1	2.1	1.1	0.5	0.5

Tabela 2: Wyniki pomiarów dla $l=0,05~\mathrm{m}.$

θ [°]	0	5	10	15	20	-5	-10	-15	-20	13	12	-25
I [mV]	0,6	0,7	0,8	0,75	0,35	0,7	0,65	0,65	0,3	0,75	0,75	0,175

Tabela 3: Wyniki pomiarów dla $l=0,07~\mathrm{m}.$

					·	1			,				
$\theta \ [^{\circ}]$	0	5	10	15	20	25	-5	-10	-15	-20	-25	30	35
I [mV]	1,2	1,4	1,4	1,1	0,35	0,2	1,2	0,95	0,7	0,1	0,05	0	0

Tabela 4: Wyniki pomiarów dla l = 0,03 m.

Δ [0]	Ω	E	10	15	20	25	30	5	10	15	-20	25	-30
0 []	U)	10	10	20	∠5	30	-0	-10	-10	-20	-25	-30
I [mV]	0,25	0,3	0,3	0,4	0,25	0,25	0,125	0,3	0,35	0,4	0,15	0,15	0,15

Tabela 5: Wyniki pomiarów dla l = 0.02 m i d = 0.08 m.

		1	Tabela		iki poiiii			72 III I W	-0,00					
θ [°]	0	1	2	3	4	5	6	7	8	9	10	11	12	13
I [mV]	0,55	0,6	0,65	0,65	0,675	0,7	0,675	0,65	0,575	0,475	0,35	0,275	0,175	0,1
θ [°]	14	15	16	17	18	19	20	21	22	23	24	25	26	27
I [mV]	0,05	0,025	0,025	0,05	0,125	0,2	0,25	0,325	0,35	0,35	0,35	0,4	0,5	0,6
θ [°]	28	29	30	31	32	33	34	35	36	37	38	39	40	41
I [mV]	0,6	0,575	0,5	0,425	0,325	0,25	0,225	0,175	0,15	0,1	0,05	0,05	0,025	0,025
θ [°]	42	43	44	45	46	47	48	49	50	51	52	53	54	55
I [mV]	0,025	0,025	0,025	0,05	0,05	0,075	0,1	0,1	0,125	0,125	0,125	0,125	0,15	0,125
θ [°]	56	57	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
I [mV]	0,125	0,1	0,525	0,5	0,425	0,375	0,325	0,25	0,2	0,125	0,075	0,05	0,025	0,025
θ [°]	-13	-14	-15	-16	-17	-18	-19	-20	-21	-22	-23	-24	-25	-26
I [mV]	0,05	0,05	0,1	0,2	0,3	0,375	0,45	0,525	0,575	0,6	0,575	0,5	0,45	0,45
θ [°]	-27	-28	-29	-30	-31	-32	-33	-34	-35	-36	-37	-38	-39	-40
I [mV]	0,425	0,35	0,3	0,25	0,175	0,1	0,075	0,05	0,025	0,025	0,025	0,025	0,05	0,05
θ [°]	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50	-51	-52	-53	-54
I [mV]	0,075	0,1	0,1	0,1	0,15	0,15	0,175	0,175	0,2	0,2	0,2	0,15	0,15	0,15
θ [°]		-55			-56			-57		-5	58	-5	59	-60
I [mV]		0,15			0,125			0,1		0.	,1	0.	,1	0,1

Tabela 6: Wyniki pomiarów dla l = 0,04 m i d = 0,1 m.

θ [°]	0	2	4	6	8	10	12	14	16	18	20	22	24	26
I [mV]	0,975	1,15	1,175	1	0,65	0,125	0,075	0,1	0,35	0,7	0,775	0,725	0,5	0,45
θ [°]	28	30	32	34	36	38	40	42	44	46	48	50	52	54
I [mV]	0,375	0,2	0,125	0,125	0,2	0,375	0,275	0,25	0,25	0,225	0,2	0,15	0,1	0,05
θ [°]	56	58	60	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22
I [mV]	0,05	0,05	0,05	0,6	0,45	0,225	0,1	0,125	0,3	0,5	0,675	0,875	0,775	0,65
θ [°]	-24	-26	-28	-30	-32	-34	-36	-38	-40	-42	-44	-46	-48	-50
I [mV]	0,4	0,275	0,25	0,275	0,35	0,35	0,35	0,35	0,35	0,3	0,275	0,15	0,125	0,1
θ [°]	-52	-54	-56	-58	-60	1	3	5	-	-1	-,	3	-5	5
I [mV]	0,075	0,075	0,075	0,05	0,075	1,075	1,175	1,125	0	,85	0.	,6	0,33	25

ANALIZA DANYCH

Punkty z Tabel 1-4 naniesiono na wykresy przedstawione kolejno na Rysunkach 1-4.

Z otrzymanych wyników, tylko dane z Tabeli 1 i Tabeli 3 przypominają kształtem oczekiwaną krzywą. W przypadku danych z Tabeli 2 i Tabeli 4 wzięto pod uwagę możliwość odczytu wyników ze złej skali i próbowano dokonać przeliczenia wyników z jednej skali na inną. Otrzymane wyniki również były rozrzucone chaotycznie. Tak więc w dalszej analizie brano pod uwagę tylko wyniki z Tabeli 1 i Tabeli 2. Niepewności napięć obliczono, korzystając ze wzoru:

$$u_I = \sqrt{\frac{\Delta^2}{3} + (0,015I)^2},\tag{3}$$

gdzie $\Delta=0,05$ mV dla Tabeli 1 i $\Delta=0,025$ mV dla danych z Tabeli 3 jest dokładnością, z jaką obserwator był w stanie odczytać wynik, a drugi człon wynika z tego, iż dokładność miernika wynosi 1,5%.

Rysunek 1: Punkty pomiarowe: Tabela 1.

Rysunek 2: Punkty pomiarowe: Tabela 2.

Rysunek 3: Punkty pomiarowe: Tabela 3.

Rysunek 4: Punkty pomiarowe: Tabela 4.

Do danych próbowano dopasować krzywą zadaną Równaniem (1). Wykorzystano w tym celu program gnuplot. Krzywe najlepszego dopasowania są przedstawione na Rysunku 5 i Rysunku 6. Parametry dopasowania znajdują się w Tabeli 7.

Tabela 7: Parametry dopasowania.

	Ta	bela 1	Tabela 3				
Parametr	Wartość	Niepewność	Wartość	Niepewność			
λ [m]	20,837	1253	20,6914	599,6			
<i>l</i> [m]	46,0549	2774	37,885	1099			
$I_0 [\mathrm{mV}]$	2,41435	0,5299	1,5191	0,1799			

Rysunek 5: Krzywa najlepszego dopasowania: Rysunek 6: Krzywa najlepszego dopasowania: Tabela 1. Tabela 3.

Wartości χ^2 wynoszą kolejno 1250 i 955 dla danych z Tabeli 1 i Tabeli 3. Wartości te są znacznie większe od wartości krytycznych, więc nie można mówić o zgodności wyników z przewidywaniami teoretycznymi.

Na Rysunku 5 i rysunku 6 widać, iż dane wydają się być przesunięte względem punktu (0,0) o stałą wartość. Po przesunięciu punktów o 2.5° w lewo, postanowiono jeszcze raz dopasować krzywą do punktów. Parametry nowego dopasowania znajdują się w Tabeli 8, a nowe krzywe dopasowania znajdują się na Rysunku 7 i Rysunku 8

Rysunek 7: Krzywa najlepszego dopasowania:Rysunek 8: Krzywa najlepszego dopasowania: Tabela 1. Tabela 3.

Tabela 8: Parametry dopasowania.

	Ta	bela 1	Tabela 3				
Parametr	Wartość	Niepewność	Wartość	Niepewność			
$\lambda [m]$	27,916	983,8	26,85	571,6			
l [m]	64,944	2291	48,5263	1035			
$I_0 [\mathrm{mV}]$	2,63736	0,2578	1,473	0,1099			

Jako, że zastosowano przesunięcie wszystkich punktów o stałą wartość, to test χ^2 nie może zostać przeprowadzony. Przyglądając się rysunkom, widać, dobre dopasowanie krzywej na Rysunku 7, czego nie można powiedzieć o krzywej z Rysunku 8. Dodatkowo wartości parametrów nie zgadzają się z wartościami rzeczywistymi, szerokość szczeliny otrzymana poprzez dopasowanie krzywej jest wielokrotnie większa od wartości rzeczywistej, a niepewność tej wielkości jest zbyt duża, by móc sensownie porównywać otrzymane wartości. Można uznać, iż otrzymane dane nie są zgodne z przewidywaniami.

Dane z Tabeli 5 i Tabeli 6 przedstawiono kolejno na Rysunku 9 i Rysunku 10. Niepewności napięć obliczono z Równania (3) dla $\Delta=0,025$ mV. Do tych danych dopasowano zależność daną Równaniem (2), przy czym na potrzeby analizy danych od razu zastosowano przesunięcie punktów o -5°. Krzywe dopasowania są przedstawione na Rysunku 11 i Rysunku 12, a parametry dopasowania znajdują się w Tabeli 8.

Rysunek 9: Punkty pomiarowe: Tabela 5.

Rysunek 10: Punkty pomiarowe: Tabela 6.

Tak jak wcześniej, ze względu na przesunięcie punktów, przeprowadzenie testu χ^2 nie jest możliwe. Pozostaje więc wizualna ocena dopasowania krzywych do punktów. Rysunek 11 z całą pewnością nie przedstawia poprawnego dopasowania krzywej do punktów, z kolei Rysunek 12 zdaje się wskazywać na przybliżoną zgodność danych z Równaniem (2) w przedziale trzech środkowych maksimów. Jednakże żadne z tych dopasowań nie jest w pełni zgodne z danymi. Po raz kolejny otrzymane dane nie są zgodne z hipotezą.

Tabela 9: Parametry dopasowania.

	Tal	oela 5	Tabela 6				
Parametr	Wartość	Niepewność	Wartość	Niepewność			
λ [m]	0,0343479	0,08395	10,179	14,3			
<i>l</i> [m]	0,0249651	0,06044	8,6088	11,99			
$I_0 [\mathrm{mV}]$	0,186343	0,009043	0,311253	0,01138			
d [m]	0,0789246	0,1929	29,6492	41,7			
γ	0,735274	0,07815	0,73256	0,05756			

Rysunek 11: Krzywa najlepszego dopasowania:Rysunek 12: Krzywa najlepszego dopasowania: Tabela 5. Tabela 6.

Rysunek 13 przedstawia dane z Tabeli 5 wraz z naniesioną krzywą najlepszego dopasowania, dla której założono, iż $\lambda=0,03$ oraz $\gamma=1$. Jak widać, krzywa ta nie pokrywa się z danymi eksperymentalnymi. Po raz kolejny otrzymano niezgodność wyników.

Rysunek 13: Dopasowanie krzywej.

Szybki rzut oka na Rysunek 13 sugeruje, iż lepsze dopasowanie otrzymano by, gdyby wykres przesunąć w lewą stronę. Jednakże bliższa analiza wykresu i punków pomiarowych ujawnia asymetrię między różnicami punków i wykresu. Podczas gdy drugie maksimum z lewej strony jest bardzo dobrze dopasowane do krzywej, to jego odpowiednik po prawej stronie przejawia maksymalne odchylenie od krzywej. Tak więc przesunięcie wykresu nie naprawi dopasowania krzywej.

DYSKUSJA WYNIKÓW I WNIOSKI

Otrzymane wartości są niezgodne z przewidywaniami teoretycznymi, choć wizualnie zdają się przedstawiać poszukiwany rozkład. Prawdopodobnie na niezgodność wyników złożyło się kilka czynników: generator nie znajdował się idealnie w punkcie 0, co powodowało przesuniecie całego wykresu; szczeliny mogły nie być ustawione symetrycznie względem generatora, co zmieniało rozkład fali, mogło również dochodzić do interferencji z falami odbitymi od ścian; szczególnie widać to po wartościach w drugim maksimum, to po lewej stronie znajdowało się blisko ścin i przedstawia ono inne wartości, niż jego odpowiednik po prawej stronie, który był maksymalnie oddalony od ścian. Podsumowując: choć eksperyment nie zakończył się sukcesem, to otrzymane dane i ich analiza pozwolą na lepsze przeprowadzenie takich doświadczeń w przyszłości.