

Chapter 7 Pushdown Automata

Nondeterministic Pushdown Automata PDA and CFL DPDA and DCFL

-

Pushdown Automata (PDA)

- Automata: FA, PDA, TM...
- Grammar: RG, CFG, CSG ...
- Language: RL, CFL, CSL ...
 - PDA is the model of nondeterministic topdown parser
 - For CFL
 - CFG generator
 - PDA recognizer

Difference between FA and PDA

- An informal definition of PDA
 - An input string
 - A read head to exam input once cell at a time
 - A finite state machine to control moves
 - LIFO push down stack
- DPDA is not equivalent to NPDA

Memory makes PDA a more powerful recognizer/accepter

Definition 7.1

A nondeterministic pushdown accepter (npda) is defined by the septuple

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
- Q, Σ , δ , q₀, and F are the same as they are in FA
- lacktriangleright Γ is a finite set of symbols called the stack alphabet
- $z \in \Gamma$ is the stack start symbol
- $\delta: \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \text{finite subset of } \mathbb{Q} \times \Gamma^*$

Example 7.1 sample NPDA transition rule

- $\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\}$
- What does this transition rule mean?
 - Two things can happen when in q₁, read a, and top of the stack is b
 - Move to q₂, and the string cd replaces b
 - 2. Move to q_3 , and pop b

NPDA Examples

- \blacksquare FA \rightarrow NPDA
 - Every FA can be transformed to a PDA
- $\{a^nb^n, n \ge 0\}$
 - Can you design an algorithm for this PDA?
- **Example 7.2**. $L = \{a^nb^n, n \ge 0\} \cup \{a\}$
 - PDA design and implementation
 - Design an algorithm first
 - Present your design in transition function, TG, or in picture notation (in Cohen book)

Example 7.3 TG for npda in example 7.2

The Language Accepted by a PDA

• M = (Q,
$$\Sigma$$
, Γ , δ , q₀, z, F)

- $L(M) = \{w \in \Sigma^* : (q_0, w, z) \to^*_M (p, \lambda, u), p \in F, u \in \Gamma^* \}$
- Language accepted by M is the set of all strings that can put M into a final state at the end of the string.

More examples of NPDA -1

- DPDA for L = $\{wXw^R\}$ $w \in (a+b)^*$
 - Algorithm design in English
- NPDA for ODDPALINDROME
 - Algorithm design...
- NPDA for EVENPALINDROME
 - Example 7.5 Linz
 - Focus on its algorithm design first!
 - Try to draw the TG

•

More examples of NPDA -2

- Example 7.4
 - Construct a npda for the language
 - L = {w \in {a, b}*: $n_a(w) = n_b(w)$ }
 - Algorithm design for this npda
 - Counter 0 is pushed into stack for each a read
 - Negative counter 1 for counting b's that are to be matched against a's later
 - TG in next slide

TG for $n_a(w) = n_b(w)$

a, 0, 00; b, 1, 11a, z, 0z; b, 0, λ;b, z, 1z; a, 1, λ,

Exercises from Linz 7.1

- Construct npda's that accept the following languages on $\Sigma = \{a, b, c\}$
- Exercise #4
 - (c) L = $\{a^nb^mc^{n+m}: n \ge 0, m \ge 0\}$

- Try it in class
 - Algorithm first
 - Implementation next

PDA and CFL

- Theorem 7.1
 - For every CFL, there is an npda M such that L = L(M)
 - Proof (outline)
 - CFL → CFG in Greibach normal form, G
 - G = (V, T, S, P)
 - $M = (\{q_0, q_1, q_f\}, T, V \cup \{z\}, \delta, q_0, z, \{q_f\})$
 - See detail steps in the constructive proof on page 186-187

Example 7.6 - 1

generated by grammar S → aSbb | a

- \bullet S \rightarrow aSA | a
- \bullet A \rightarrow bB
- \blacksquare B \rightarrow b

The start symbol S is put on the stack by

•
$$\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$$

 \blacksquare S \rightarrow aSA | a are represented in the PDA by

•
$$\delta(q_1, a, S) = \{(q_1, SA), (q_0, \lambda)\}$$

Example 7.6 - 2

- In an analogous manner,
 - \bullet A \rightarrow bB gives
 - $\delta(q_1, b, A) = \{(q_1, B)\}$
 - \blacksquare B \rightarrow b gives
 - $\delta(q_1, b, B) = \{(q_1, \lambda)\}$
 - Appearance of z signals the completion and pda is put into final state
 - $\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$

CFG for PDA

- Theorem 7.2
 - If L = L(M) for some npda M, the L is a CFL
 - Proof.
 - A constructive proof to show that it is always possible to construct a grammar from a npda.
 - This theorem tells us that there always a CFG for a language represented by a npda.
 - In practice, one may design a CFG directly from the give CFL

DPDA and DCFL

- A PDA M is said to be deterministic if it is an automaton as defined in Definition 7.1 for NPDA, subject to
 - For any given input symbol and stack top, at most one move can be made
 - When a λ-move is possible for some configuration, no input-consuming alternative is available
- DCFL L if and only if there exists a dpda M such that L = L(M)