Combo 3

2 de julio de 2024

1. Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivamente enumerable (no hace falta que defina "función Σ -recursiva)

Diremos que un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -recursivamente enumerable cuando sea vacio o haya una funcion $F : \omega \to \omega^n \times \Sigma^{*m}$ tal que $I_F = S$ y $F_{(i)}$ sea Σ -recursiva, para cada $i \in \{1, ..., n+m\}$.

2. Defina s^{\leq}

Sea Σ un alfabeto no vacio y supongamos \leq es un orden total sobre Σ . Definimos $s^{\leq}: \Sigma^* \to \Sigma^*$ de la siguiente manera:

- $s^{\leq}((a_n)^m)=(a_1)^{m+1},$ para cada $m\geq 0$
- $s \leq (\alpha a_i(a_n)^m) = \alpha a_{i+1}(a_1)^m$, cada vez que $\alpha \in \Sigma^*$, $1 \leq i < n$ y $m \geq 0$

3. Defina $*\leq$

Sea Σ un alfabeto no vacio y supongamos \leq es un orden total sobre Σ . Definamos $*^{\leq}:\omega\to\Sigma^*$ recursivamente de la siguiente manera:

- $*\leq (0) = \varepsilon$
- $* \le (i+1) = s \le (* \le (i))$

4. Defina $\#^{\leq}$

Sea Σ un alfabeto no vacio y supongamos \leq es un orden total sobre Σ . Definimos la funcion $\#^{\leq}$ de la siguiente manera

$$\begin{array}{cccc} \#^{\leq}: \Sigma^{*} & \rightarrow & \omega \\ & \varepsilon & \rightarrow & 0 \\ a_{i_{k}}...a_{i_{0}} & \rightarrow & i_{k}n^{k} + ... + i_{0}n^{0} \end{array}$$