

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática

Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II Aula 20

6. Interface Processador/Periféricos: tipos e características dos dispositivos de E/S, redes.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Tipos e Características dos Dispositivos de E/S

Características básicas dos dispositivos de E/S (colocando ordem na diversidade...)

- Comportamento do dispositivo:
 - de entrada,
 - de saída, ou
 - de armazenamento
- Parceiro do dispositivo:
 - Aquilo que está do outro lado do dispositivo de E/S, podendo ser um ser humano ou uma máquina
- Taxa de dados:
 - Taxa máxima (ou de pico) em que os dados podem ser transferidos entre o dispositivo de E/S e a memória principal ou o processador

Tipos e Características dos Dispositivos de E/S

A Grande Diversidade dos Dispositivos de E/S

Dispositivo	Comportamento	Parceiro	Taxa de dados (KB/segundo)
Teclado	entrada	ser humano	0,0001
Mouse	entrada	ser humano	0,0038
Entrada de voz	entrada	ser humano	0,264
Entrada de som	entrada	máquina	3
Escaner	entrada	ser humano	3,2
Saída de voz	saída	ser humano	0,2640
Saída de som	saída	ser humano	8
Impressora a laser	saída	ser humano	3,2
Monitor gráfico	saída	ser humano	800 a 8000
Modem	entrada ou saída	máquina	0,016 a 0,064
Rede/LAN	entrada ou saída	máquina	100 a 10000
Rede/LAN sem fio	entrada ou saída	máquina	11 a 54
Disco ótico	armazenamento	máquina	80
Disco Magnético	armazenamento	máquina	240 a 2460

Tipos e Características dos Dispositivos de E/S

O Mouse

A interface entre o mouse e o sistema pode ser feito:

- Por meio de uma série de pulsos gerados pelo mouse quando de seu deslocamento pela superfície
- Ou pelo incremento/decremento de contadores

Tipos e Características dos Dispositivos de E/S

O Mouse

- O processador pode ler os contadores periodicamente ou contar os pulsos para determinar se o mouse se moveu
- O sistema move o cursor pela tela, para refletir a nova posição
- O movimento do cursor é suave (velocidade de movimento do mouse é muito menor que a do processador)

Tipos e Características dos Dispositivos de E/S O Mouse

- Monitorando o estado do ou dos botões do mouse é possível detectar quando um botão é acionado (e por quanto tempo)
- O mapeamento entre posição do mouse/estado dos botões e o sistema é feito por software (por isso podemos alterar a velocidade que o cursor se move na tela etc)
- O método de fazer o sistema monitorar o estado do mouse lendo sinais emitidos por ele é o meio mais comum de interface entre entre dispositivos de baixa velocidade e a máquina e é conhecido por *polling*.

Tipos e Características dos Dispositivos de E/S

Discos Magnéticos

- Armazenamento não-volátil!
- Vantagens dos discos rígidos (HDs) sobre os discos flexíveis (e *floppies*):
- Os HDs são maiores porque são rígidos
- Os HDs têm maior densidade de armazenamento porque podem ser controlados com mais precisão que os discos flexíveis
- Os HDs transferem dados a uma velocidade maior que os flexíveis porque têm maior velocidade de rotação
- Os HDs podem ter mais de uma superfície por drive

Tipos e Características dos Dispositivos de E/S

Discos Magnéticos

Tipos e Características dos Dispositivos de E/S

Características dos HDs

- 1 a 4 discos, cada disco com 2 superfícies graváveis
- Diâmetro entre 2,5 cm e 9 cm
- Esta pilha de discos gira a 5.400 a 15.000 rpm
- Cada superfície de disco é dividida em círculos concêntricos denominados trilhas
- Cada trilha é dividida em setores que contêm as informações
- Cada trilha pode ter de 100 a 500 setores
- Cada setor armazena 512 bytes (há uma iniciativa para aumentar para 4.096 bytes)
- As cabeças de leitura/gravação se movem solidariamente. Cilindro se refere a todas as trilhas sob as cabeças, em determinado ponto, para todas as superfícies

Tipos e Características dos Dispositivos de E/S

Características dos HDs

Para acessar os dados, o S.O. precisa dirigir o disco por um processo de três passos:

- 1. Seek (ou busca): consiste em posicionar a cabeça sobre a trilha apropriada
- 2. Latência rotacional ou atraso rotacional: quando a cabeça tiver atingido a trilha correta, é preciso esperar até o setor desejado atingir a cabeça de escrita/gravação
- 3. Tempo de Transferência: é o tempo para transferir um bloco de bits

Tipos e Características dos Dispositivos de E/S Características dos HDs

- 1. Tempo de Seek (ou tempo de busca)
- Os fabricantes de discos informam os tempos de seek mínimo, máximo e médio
- Os fabricantes decidiram calcular o tempo de seek médio por (soma do tempo para todos os seeks possíveis) / (nº de seeks possíveis)
- Tempo de seek anunciado varia de 3ms a 14ms (mas devido à localidade dos dados acessados, pode ser apenas 25% a 33% do tempo anunciado)

Tipos e Características dos Dispositivos de E/S

Características dos HDs

- 2. Latência rotacional ou atraso rotacional
- A latência média para a informação desejada está no meio do disco
- Como os discos giram a uma rotação entre 5.400 rpm e 15.000 rpm:

Latência rotacional média =
$$\frac{0.5 \text{ rotação}}{5.400 \text{ rpm}} = \frac{0.5 \text{ rotação}}{5.400 \text{ rpm / 60 (seg/min)}}$$

$$= 0.0056 \text{ segundos} = 5.6 \text{ ms}$$
Latência rotacional média = $\frac{0.5 \text{ rotação}}{15.000 \text{ rpm}} = \frac{0.5 \text{ rotação}}{15.000 \text{ rpm / 60 (seg/min)}}$

$$= 0.0020 \text{ segundos} = 2.0 \text{ ms}$$

Tipos e Características dos Dispositivos de E/S

Características dos HDs

- 3. Tempo de Transferência
- É função:
 - Do tamanho do setor
 - Da velocidade de rotação
 - Da densidade de gravação de uma trilha
- As taxas de transferência estão entre 30 e 80 MB/seg (ano de 2004)
- A maioria dos controladores de disco tem uma cache interna que armazena setores enquanto eles passam (esta cache tem taxa de transferência maior, a qual pode chegar até a 320 MB/seg)

Tipos e Características dos Dispositivos de E/S

A Controladora de Discos

- Trata do controle detalhado do disco e da transferência entre o disco e a memória
- Tempo da Controladora: é o *overhead* que a controladora impõe na realização do acesso de E/S

Tipos e Características dos Dispositivos de E/S

Tempo de Leitura do Disco

Exemplo:

Qual é o tempo médio para ler ou escrever um setor de 512 bytes em um disco típico girando a 10.000 rpm?

Considere que fabricante anunciou os seguintes tempos:

- Tempo de seek médio: 6 ms
- Taxa de transferência: 50 MB/s
- Overhead da controladora: 0,2 ms

Suponha que o disco esteja oscioso, de modo que não existe um tempo de espera

Tipos e Características dos Dispositivos de E/S

Tempo de Leitura do Disco

Solução:

$$6.0 \text{ ms} + \frac{0.5 \text{ rotação}}{10.000 \text{ rpm / } 60 \text{ (s/min)}} + \frac{0.5 \text{ KB}}{50 \text{ MB/s}} + 0.2 \text{ ms} =$$

$$= 6.0 + 3.0 + 0.01 + 0.2 = 9.2 \text{ ms}$$

Se o tempo médio de seek medido for 25% do tempo médio anunciado, tem-se:

$$= 1.5 + 3.0 + 0.01 + 0.2 = 4.7 \text{ ms}$$

Tipos e Características dos Dispositivos de E/S

Características de 3 modelos de HD de um fabricante (em 2004)

Caracterísitcas	Seagate ST373453	Seagate ST3200822	Seagate ST94811A
Diâmetro do disco (cm)	8,89	8,89	6,35
Capacidade do disco formatado (GB)	73,4	200,0	40,0
Número de superfícies (cabeças)	8	4	2
Vedlocidade (rpm)	15.000	7.200	5.400
Tamanho da cache de disco interna (MB)	8	8	8
Interface externa, largura de banda (mB/s)	Ultra320 SCSI, 320	Serial ATA, 150	ATA, 100
Taxa de transferencia sustentada (MB/s)	57-86	32-58	34
Tempo de seek minimo (leit/escrita) (ms)	0,2/0,4	1,0/1,2	1,5/2,0
Tempo medio de seek para leit/esc (ms)	3,6/3,9	8,5/9,5	12,0/14,0
Tempo medio para falha (MTBF) (horas)	1.200.000 a 25° C	600.000 a 25° C	330.000 a 25° C
Preço	US\$400 (US\$5/GB)	US\$100 (US\$0,50/GB)	US\$100 (US\$2,50/GB)

Redes

Principais características das redes típicas são:

- Distância: 0,01 a 10.000 quilômetros
- Velocidade: 0,001MB/seg a 10.000MB/seg
- Topologia:
 - Barramento
 - Anel
 - Estrela
 - Árvore
- Linhas compartilhadas:
 - nenhuma (comutada ponto a ponto)
 - compartilhada (*multidrop*)

Redes

A interligação de redes baseia-se no uso de padrões de software chamados família de protocolos.

Os protocolos:

- Permitem a comunicação confiável (sem exigir redes físicas confiáveis)
- Formam uma hierarquia de camadas (com cada camada assumindo responsabilidade por uma parte da tarefa de comunicação geral)
- Cada computador, rede e switch implementa sua camada de padrões (contando com outros componentes para atender fielmente a suas responsabilidades)

Redes

Modelo OSI (Open Systems Interconnect)

- A comunicação ocorre logicamente no mesmo nível do protocolo (tanto no emissor quanto no receptor)
- Mas os serviços do nível inferior é que implementam (de fato) a comunicação
- Esse estilo de comunicação é denominado peer-to-peer

Redes

As Camadas do Modelo OSI

Número da camada	Nome da camada	Função principal	Exemplo de protocolo	Componente da rede
7	aplicação	usada para aplicações escritas especificamente para execução pela rede	FTP, DNS, NFS, http	gateway, switch inteligente
6	apresentação	traduz do formato da aplicação para a rede, e vice-versa		gateway
5	sessão	estabelece, mantém e termina sessões pela rede	Named pipes, RPC	gateway
4	transporte	conexão adicional abaixo da camada de sessão	TCP	gateway
3	rede	traduz endereço de rede lógico e nomeia seu endereço físico (por exemplo, nome de computador para endereço MAC)	IP	roteador, switch ATM
2	enlace de dados	transforma pacotes em bits e, no recebimento, bits em pacotes	Ethernet	bridge, placa de interface de rede
1	física	transmite fluxo de bits para o cabo físico	IEEE 802	hub

Redes

Uma Analogia:
"msg do General A
para o General B"

No final, nenhum dos dois generais sabe quem esteve envolvido no transporte da mensagem e tampouco qual meio foi utilizado

Redes

Uma Pilha (Hipotética) de Protocolos com Duas Camadas

Redes

O TCP/IP define um formato de pacote padrão

