RIPPLE CARRY ADDER

COMPUTER ORGANIZATION PCC-CS302

ARKAPRATIM GHOSH
13000121058
COMPUTER SCIENCE

CONTENT

INTRODUCTION

- What is an adder ?
- Full Adder

RIPPLE CARRY ADDER

- Definition
- Circuit Diagram
- Logic Diagram
- Truth Table

WHAT IS AN ADDER?

An adder is a digital circuit that performs addition of numbers

- They are operated on binary numbers
- In processor it is used to calculate addresses, table operations

FULL ADDER

Used to add two input operand bits plus a carry in bit and outputs a carry out bit and sum bit

The sum is the XOR of the input bits and the carry is the AND of the input bits

Definitions and representations

DEFINITION

- ► It is constructed by cascading full block adders in series
- Each carry bit gets rippled into the next stage
- For two n-bit inputs we need n full adders

CIRCUIT DIAGRAM

LOGIC DIAGRAM

TRUTH TABLE

A ₁	A ₂	A ₃	A ₄	B ₄	B ₃	B ₂	B ₁	S ₄	S ₃	S ₂	S ₁	Carry
0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	1	0	1	0	1	0	0	1	0	0	1
1	1	0	0	1	1	0	0	1	0	0	0	1
1	1	1	0	1	1	1	0	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1

