Introduction to Computer Networks

Peer-to-Peer Content Delivery (BitTorrent) (§7.5.4)

Topic

- Peer-to-peer content delivery
 - Runs without dedicated infrastructure
 - BitTorrent as an example

Context

- Delivery with client/server CDNs:
- Efficient, scales up for popular content
- Reliable, managed for good service
- ... but some disadvantages too:
 - Need for dedicated infrastructure
 - Centralized control/oversight

P2P (Peer-to-Peer)

- Goal is delivery without dedicated infrastructure or centralized control
 - Still efficient at scale, and reliable
 - Key idea is to have participants (or peers) help themselves
 - Initially Napster '99 for music (gone)
 - Now BitTorrent '01 onwards (popular!)

P2P Challenges

- No servers on which to rely
 - Communication must be <u>peer-to-peer</u> and self-organizing, not client-server
 - Leads to several issues at scale ...

P2P Challenges (2)

- 1. Limited capabilities
 - How can one peer deliver content to all other peers?
- 2. Participation incentives
 - Why will peers help each other?
- 3. Decentralization
 - How will peers find content?

Overcoming Limited Capabilities

- Peer can send content to all other peers using a distribution tree
 - Typically done with replicas over time
 - Self-scaling capacity

Overcoming Limited Capabilities (2)

- Peer can send content to all other peers using a distribution tree
 - Typically done with replicas over time
 - Self-scaling capacity

Providing Participation Incentives

- Peer play two roles:
 - Download (→) to help themselves,
 and upload (←) to help others

Providing Participation Incentives (2)

- Couple the two roles:
 - I'll upload for you if you upload for me
 - Encourages cooperation

Enabling Decentralization

- Peer must learn where to get content
 - Use <u>DHTs</u> (Distributed Hash Tables)
- DHTs are fully-decentralized, efficient algorithms for a distributed index
 - Index is spread across all peers
 - Index lists peers to contact for content
 - Any peer can lookup the index
 - Started as academic work in 2001

BitTorrent

- Main P2P system in use today
 - Developed by Cohen in '01
 - Very rapid growth, large transfers
 - Much of the Internet traffic today!
 - Used for legal and illegal content
- Delivers data using "torrents":
 - Transfers files in pieces for parallelism
 - Notable for treatment of incentives
 - Tracker or decentralized index (DHT)

Bram Cohen (1975—)

By Jacob Appelbaum, CC-BY-SA-2.0, from Wikimedia Commons

BitTorrent Protocol

- Steps to download a torrent:
 - 1. Start with torrent description
- Contact tracker to join and get list of peers (with at least seed peer)
- Or, use DHT index for peers
 - Trade pieces with different peers
- Favor peers that upload to you rapidly; "choke" peers that don't by slowing your upload to them

BitTorrent Protocol (2)

All peers (except seed) retrieve torrent at the same time

14

BitTorrent Protocol (3)

Dividing file into pieces gives parallelism for speed

BitTorrent Protocol (4)

Choking unhelpful peers encourages participation

BitTorrent Protocol (5)

DHT index (spread over peers) is fully decentralized

P2P Outlook

- Alternative to CDN-style clientserver content distribution
 - With potential advantages
- P2P and DHT technologies finding more widespread use over time
 - E.g., part of skype, Amazon
 - Expect hybrid systems in the future

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey