1:
$$\alpha_1 = 10^{-3}$$
 > default
2: $\beta_1 = 0.9, \ \beta_2 = 0.999, \ \beta_3 = 0.999$ > default
3: $c = 10$ > default
4: $\epsilon = 10^{-8}$ > default

5:
$$m_0 = v_0 \leftarrow 0$$

6: $t \leftarrow 0$

7: **while** stopping condition is not reached **do**

8:
$$t \leftarrow t + 1$$

9: $g_t \leftarrow \nabla_{\theta} f(\theta_t)$

10:
$$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

11: $\widehat{m}_t \leftarrow m_t / (1 - \beta_1^t)$
12: $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$

13:
$$\widehat{v}_t \leftarrow v_t/(1-\beta_2^t)$$

14: **if**
$$t > 1$$
 then
15: $d_t \leftarrow \frac{|f_t - f_{t-1}|}{\min\{f_t, f_{t-1}\} - f^*}$
16: $\widehat{d}_t \leftarrow \text{clip}(d_t, [1/c, c])$

16:
$$a_t \leftarrow \operatorname{cnp}(a_t, \lfloor 1/c, c \rfloor)$$

17: $\widetilde{d}_t \leftarrow \beta_3 \widetilde{d}_{t-1} + (1-\beta_3) \widehat{d}_t$
18: **else**

19:
$$\widetilde{d}_t \leftarrow 1$$
20: **end if**

21:
$$\theta_t \leftarrow \theta_{t-1} - \frac{\alpha_1}{\widetilde{d}_t} \frac{\widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$$

22: end while

23: **return** θ_t