Inatel

C209 – Computação Gráfica e Multimídia EC215 – Multimídia

Compressão de Imagens – Parte 2: JPEG

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

Introdução

- O método de compressão com perdas JPEG baseia-se na remoção de componentes "irrelevantes" das imagens.
- Para isto, depende no fato de não conseguirmos ver cores tão bem quanto vemos em escala de cinza.
- Nossos olhos são mais sensíveis ao verde do que a azul e vermelho.
- Não vemos mudanças de intensidade de alta frequência, então estes pedaços da imagem que mudam muito rapidamente podem ser removidos.

JPEG

Imagem

Mudança de espaço e subamostragem de cor

DCT

Quantização

Codificação

JPEG

JPEG

Imagem

Mudança de espaço e subamostragem de cor

DCT

Quantização

Codificação

JPEG

Imagem

- JPEG: Joint Photographic Experts Group → grupo responsável pelo padrão JPEG.
- MPEG: Moving Picture Experts Group → formado pela ISO para definir padrões para a compressão e transmissão de áudio e vídeo.
- No MPEG, os pixels são organizados em uma hierarquia.
- O menor elemento tratável pelo MPEG é o Bloco, formado por uma matriz de 8x8 pixels.

Imagem

JPEG

Imagem

Mudança de espaço e subamostragem de cor

DCT

Quantização

Codificação

JPEG

- Mudança do espaço de cor RGB para YCrCb.
 - Separar a luminância (brilho) e crominância (cor / vermelho e azul) de cada pixel.
 - Olho humano n\u00e4o percebe cromin\u00e4ncia muito bem.

- Quantização do sinal RGB: 256 níveis para cada componente de cor.
- Número de bits/pixels: 24 bits/pixel.
- Sinal de luminância digital:

$$Y = 0.257\mathbf{R} + 0.505\mathbf{G} + 0.098\mathbf{B} + 16$$

• Sinais diferenças de cor

$$C_r = 0,439$$
R $-0,368$ **G** $-0,071$ **B** $+128$
 $C_b = -0,148$ **R** $-0,291$ **G** $+0,439$ **B** $+128$

- As componentes R, G e B podem assumir valores entre 0 e 255.
- Os sinais Y, Cr e Cb também são representados com 8 bits cada.

- Após a mudança de espaço de cor, é feita a subamostragem, ou seja, redução da quantidade de cor na imagem.
 - Redução significante do tamanho com pouco impacto na qualidade da imagem.
 - Um fator de redução comum é "2 em cada direção" (ou seja, 4x menos cor no total).
 - Em softwares como o Photoshop, este fator pode ser ajustado pelo usuário.

• Formato de subamostragem: J:a:b → um arranjo de Jx2 pixels.

- J = # de pixels de luminância na primeira linha (ex.: 4)
- a = # de pixels de crominância na primeira linha
- b = # de pixels de crominância na segunda linha

JPEG

Imagem

Mudança de
espaço e
subamostragem
de cor

DCT
Quantização
Codificação
JPEG

• Ideia geral: representar os dados da imagem como uma somatória de ondas cossenoidais.

- Aumentando o número de cossenos, aumenta-se a quantidade de formas de onda que podem ser produzidas.
- A soma (combinação) das ondas pode ser feita de forma ponderada.
- Cada onda representa uma pequena parte constituinte da saída.
- Componentes de alta frequência na imagem → cossenoides de alta frequência.
- A remoção de componentes de alta frequência não deve afetar a visualização geral da imagem.

- Se tivermos um sinal de tamanho 8, é possível representa-lo com 8 ondas cossenoidais de frequências diferentes
- Dividir a imagem em grupos de 8x8 pixels
- Codificar separadamente cada grupo de pixels
- Estes grupos podem ser replicados exatamente usando 64 cossenoides
- A cada bloco, um coeficiente é associado, indicando qual a contribuição desta cossenoide na composição da imagem

Considere a seguinte imagem em escala de cinza como exemplo.

- Como saber quais cossenoides devem ser usadas?
- Como calcular a contribuição de cada uma para formar aquela imagem?

Passo 0: dispor os valores de brilho dos pixels do bloco em uma matriz

Input Block										
62	55	55	54	49	48	47	55			
62	57	54	52	48	47	48	53			
61	60	52	49	48	47	49	54			
63	61	60	60	63	65	68	65			
67	67	70	74	79	85	91	92			
82	95	101	106	114	115	112	117			
96	111	115	119	128	128	130	127			
109	121	127	133	139	141	140	133			

Passo 1: subtrair 128 de todos os valores do *input block* → *shifted block*

Shifted Block									
-66	-73	-73	-74	-79	-80	-81	-73		
-66	-71	-74	-76	-80	-81	-80	-75		
-67	-68	-76	-79	-80	-81	-79	-74		
-65	-67	-68	-68	-65	-63	-60	-63		
-61	-61	-58	-54	-49	-43	-37	-36		
-46	-33	-27	-22	-14	-13	-16	-11		
-32	-17	-13	-9	0	0	2	-1		
-19	-7	-1	5	11	13	12	5		

Passo 2: aplicar a DCT no shifed block → DCTII coefficients

Cálculo da DCT:

$$F(u,v) = \frac{1}{4}C_uC_v \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos\left[\frac{(2x+1)u\pi}{16}\right] \cos\left[\frac{(2y+1)v\pi}{16}\right]$$

$$C_u = \frac{1}{\sqrt{2}}$$
 para $u = 0$, $C_u = 1$ caso contrário $C_v = \frac{1}{\sqrt{2}}$ para $v = 0$, $C_v = 1$ caso contrário

Cálculo da IDCT:

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C_u C_v F(u,v) \cos \left[\frac{(2x+1)u\pi}{16} \right] \cos \left[\frac{(2y+1)v\pi}{16} \right]$$

Isto resultará em uma matriz onde cada coeficiente indica a contribuição de sua respectiva cossenoide.

DCTII Coefficients										
-370	-29,7	-2,6	-2,5	-1,1	-3,7	-1,5	-0,08			
-231	44,9	24,5	-0,3	9,3	3,9	4,3	-1,4			
62,8	8,5	-7,6	-2,7	0,3	-0,4	0,5	-0,8			
12,5	-14,6	-3,5	-3,4	2,4	-1,3	2,7	-0,4			
-4,9	-3,9	0,9	3,6	0,1	5,1	1,1	0,5			
0,5	3,1	-1,4	0,2	-1,1	-1,5	-1,1	0,9			
4,4	2,3	-1,7	-1,6	1,1	-2,7	1,1	-1,4			
-10,2	-1,8	5,9	-0,4	0,3	0,4	-1	0			

Imagem

Mudança de
espaço e
subamostragem
de cor

DCT

Quantização

Codificação

JPEG

Quantização

- O processo de remoção dos dados de alta frequência é chamado de quantização. Para isto, utilizam-se tabelas de quantização.
- Divide-se cada coeficiente pelo valor de quantização, arredondando o resultado para o inteiro mais próximo.

DCTII Coefficients									
-370	-29,7	-2,6	-2,5	-1,1	-3,7	-1,5	-0,08		
-231	44,9	24,5	-0,3	9,3	3,9	4,3	-1,4		
62,8	8,5	-7,6	-2,7	0,3	-0,4	0,5	-0,8		
12,5	-14,6	-3,5	-3,4	2,4	-1,3	2,7	-0,4		
-4,9	-3,9	0,9	3,6	0,1	5,1	1,1	0,5		
0,5	3,1	-1,4	0,2	-1,1	-1,5	-1,1	0,9		
4,4	2,3	-1,7	-1,6	1,1	-2,7	1,1	-1,4		
-10,2	-1,8	5,9	-0,4	0,3	0,4	-1	0		

JPEG Quantization Table										
16	12	14	14	18	24	49	72			
11	10	16	24	40	51	61	12			
13	17	22	35	64	92	14	16			
22	37	55	78	95	19	24	29			
56	64	87	98	26	40	51	68			
81	103	112	58	57	87	109	104			
121	100	60	69	80	103	113	120			
103	55	56	62	77	92	101	99			

	Quantized									
-23	-2	0	0	0	0	0	0			
-21	4	2	0	0	0	0	0			
5	1	0	0	0	0	0	0			
1	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0			

Imagem
Subamostragem
de cor

DCT

Quantização

Codificação

JPEG

Codificação

- Para serem escritos em arquivo, os valores são codificados usando um algoritmo como o de Huffman para comprimir ainda mais os dados.
- O percurso é feito em zig-zag: -23, -2, -21, 5, 4, 0, 0, 2, 1, 1, 0, 0, ..., 0
- Percorrendo desta forma, obtém-se vários zeros consecutivos, que são facilmente comprimidos pelo algoritmo de Huffman, RLE etc.

Quantized									
-23	-2	0	0	0	0	0	0		
-21	4	2	0	0	0	0	0		
5	1	0	0	0	0	0	0		
1	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		

Imagem

Mudança de espaço e subamostragem de cor

DCT

Quantização

Codificação

JPEG

- Para descomprimir uma imagem, faz-se o processo no sentido contrário:
 - Multiplica-se os valores presentes no arquivo pelos seus respectivos coeficientes da tabela de quantização, que também é salva no arquivo (uma para cada bloco);
 - Aplica-se a Tansformada Inversa do Cosseno (DCTIII) → shifted block;
 - Soma-se o valor 128 a todos os valores → output block.
- Ao comparar as imagens original e descomprimida, alguns valores estarão faltando. É justamente neste fato que reside a compressão.
- Uma forma de ajustar a qualidade no momento da compressão é diminuindo (ex.: dividindo por dois) ou aumentando (ex.: multiplicando por dois) os valores da tabela de quantização.

Referências

- Ask Alex The 411 on 4:4:4. Disponível em
 https://www.youtube.com/watch?v=7JYZDnenaGc.
- Computerphile JPEG 'files' & Colour (JPEG Pt1). Disponível em https://www.youtube.com/watch?v=n_uNPbdenRs.
- Computerphile JPEG DCT, Discrete Cosine Transform (JPEG Pt2).
 Disponível em < https://www.youtube.com/watch?v=Q2aEzeMDHMA>.