Прикладная Криптография: Симметричные криптосистемы Поточные шифры

Макаров Артём МИФИ 2018

Семантическая стойкость

- ϵ пренебрежимо малая величина.
- Претендент и Противник эффективные алгоритмы

Пренебрежимо малые величины

Функция $f: Z_{\geq 1} \to R$ называется пренебрежимо малой (negligible), если для всех $c \in R_{>0}$ $\exists n_0 \in Z_{\geq 1} : \forall n \geq n_0$ справедливо неравенство:

$$|f(n)| < \frac{1}{n^{c}}.$$

Теорема 2.1. Функция $Z_{\geq 1} \to R$ пренебрежимо малая, тогда и только тогда когда $\forall c>0$ справедливо равенство:

$$\lim_{n\to\infty}f(n)n^c=0.$$

T.e. на бесконечности функция от n убывает быстрее любого полинома от n .

Примеры

- Пренебрежимо малые функции: 2^{-n} , $2^{-\sqrt{n}}$, $n^{-\log n}$.
 - Убывают быстрее любых полиномов
- Не пренебрежимо малые функции: n^2 , n^{-2} , $n^{-10000000}$.
 - $f(n) = n^2$: $\exists c = 0, \forall n > 0$: $\lim_{n \to \infty} f(n)n^c = n^2 * 1 \neq 0$.
 - $f(n) = n^{-2}$: $\exists c = 3, \forall n > 0$: $\lim_{n \to \infty} f(n)n^c = n^{-2} * n = n \neq 0$.
 - $f(n) = n^{-10000000}$: $\exists c = 10000001, \forall n > 0$: $\lim_{n \to \infty} f(n)n^c = n \neq 0$.

Супер-полиномиальные и полиномиально ограниченные функция

- Функция $f: Z_{\geq 1} \to R$ называется супер-полиномиальной (super-poly), если 1/f пренебрежимо малая.
 - Растёт быстрее любого полинома на бесконечности.
- Функция $f: Z_{\geq 1} \to R$ называется полиномиально-ограниченной (poly bounded), если $\exists c, d \in R_{\geq 0}: \forall n \geq 0$ имеет место неравенство: $|f(n)| \leq n^c + d$
 - Может быть ограничена на бесконечности сверху полиномом степени c.

Пренебрежимо малые величина на практике

На практике величина ϵ — скаляр (формально — функция от некоторых фиксированных ранее параметров системы). Её «малость» оценивают исходя из необходимой для системы стойкости.

Пример:

- ϵ не пренебрежимо малая, если событие вероятно произойдёт при обработки данных порядка гигабайта, $\epsilon \geq 1/2^{30}$
- ϵ пренебрежимо малая, если событие вряд ли произойдёт при «жизни» ключа длины 160 бит, $\epsilon \leq 1/2^{80}$

Пренебрежимо малые величина на практике

При доказательстве стойкости часто получается формула преимущества, ограниченная сверху функцией от некоторых параметров. Пример:

 $Adv_{SS}[A, {\rm E}] \leq q/2^k$, где q — максимально число зашифрований, k- длина ключа.

Для использования конкретной реализации нужно выбрать параметры q и k при заданном уровне стойкости.

Пусть хотим $Adv_{SS}[A, E] \leq 1/2^{80}$, тогда для зашифрования, при использовании ключа с длиной k=128 бит мы можем зашифровать $q \leq \frac{1}{2^{80-k}} = 2^{48}$ сообщений, при параметре стойкости 80 бит.

Параметры системы

Ранее, при введении понятия (вычислимого) шифра, мы описывали его без описания с явным описанием параметров.

На практике многие шифры и другие примитивы имеют так называемые параметры системы, влияющие на производительность и стойкость системы.

Пример – длина ключа (и максимального сообщения) в одноразовом блокноте, модуль в аддитивном одноразовом блокноте.

Эффективный алгоритм

Пусть λ — некоторый параметр. Пусть $p(\lambda)$ - полином над $Z_{\geq 1}$. Пусть $A: A(\lambda, x): \lambda \in Z_{\geq 1}, x \in \{0,1\}^{\leq p(\lambda)}$ (т.е. длина вектора x полиномиальной ограничена на основе параметра).

Алгоритм A называется **эффективным**, если $\exists t(\lambda) : t -$ полиномиально ограниченная, $\epsilon(\lambda) : \epsilon -$ перенебрежимо малая: $\forall \lambda \in Z_{\geq 1}, \forall x \in \{0,1\}^{\leq p(\lambda)}$ вероятность того, что время исполнения алгоритма A на входе (λ, x) превысит $t(\lambda)$ не превосходит $\epsilon(\lambda)$.

Иными словами, алгоритм A — эффективный, если при заданном параметре на полиномиально ограниченном входе он выполняется за полиномиальное время.

Пример эффективного алгоритма с параметром

Одноразовый блокнот переменной длины. E = (E, D) на $K = \{0,1\}^L$, $M = C = \{0,1\}^{\leq L}$, где $L = \lambda$ – фиксированный **параметр**

$$E(k,m) = k[0..l-1] \oplus m$$

$$D(k,c) = k[0..l-1] \oplus c$$

Длина входов алгоритма $E\colon in\in I=K\times M\colon |I|\leq 2^{2L}\Rightarrow |in|=2L,$ полиномиально ограниченна сверху полиномом $p(l)=p(\lambda)=2L+1$ Длина входов алгоритма $E\colon in\in I=K\times M\colon |I|=2^{2L}\Rightarrow |in|=2L,$ полиномиально ограниченна сверху полиномом $p(l)=p(\lambda)=2L+1$

Эффективность в игре

Ранее мы указывали, что в играх будем рассматривать только эффективные (вычислимые) алгоритмы, как для Претендента, так и для Противника. Иными словами, в игре должно быть полиномиально ограниченное число шагов, Противник обладает полиномиально ограниченным временем и ёмкостью. Т.е. алгоритм игры должен быть эффективным.

Эффективность в игре

Два эксперимента игры называются статистически неразличимыми, если не существует эффективного алгоритма противника, способного различить эти эксперименты.

Т.е. $\forall A\ Adv_{disc} = |\Pr[b'=1|b=0] - \Pr[b'=1|b=1]| \leq \epsilon$, где ϵ – пренебрежимо малая величина.

Эффективность в игре

Пусть a, b — распределения на $\{0,1\}^n$. a и b называются статистически неразличимыми, если не существует эффективного алгоритма противника, способного различить эти распределения в игре на распознание. Обозначается $a \approx_p b$.

Т.е. $\forall A\ Adv_{disc}=|\Pr[b'=1|b=0]-\Pr[b'=1|b=1]|\leq \epsilon$, где ϵ – пренебрежимо малая величина.

Параметр стойкости

Параметром стойкости называют двоичный логарифм, от необходимого числа операций для осуществления теоретической или практической атаки.

Пример: идеальный (нет атак, помимо перебора ключа) шифр с ключом длины l, параметр стойкости l бит (необходимо перебрать весь ключ).

Пример: Семантически стойкий шифр E = (E, D): $\forall A \ Adv_{SS}[A, E] \le 1/2^k$, параметр стойкости k бит.

Оценки величин

Параметр стойкости 10 бит это много или мало? А 2^{10} бит? При каком параметре стойкости принято считать систему стойкой?

Необходимый параметр стойкости зависит от приложения используемой криптосистемы.

Для систем общего назначения рекомендуемые параметры стойкости 80-256 бит.

Оценки величин

 \sim 2 240 - число элементарных частиц в обозримой вселенной

 $\sim 1/2^{119}$ - шанс выиграть в лотерею, с миллионом участников 6 раз подряд

 2^{60} - секунд с большого взрыва (2^{200} - в планковких единицах)

 \sim 2^{42} - вычислительная сложность майнинга биткоина (2018 год)

 $\sim 2^{30}$ - можно перебрать на домашнем компьютере за несколько часов

Идея одноразового блокнота

Одноразовый блокнот — сложение (побитное) случайного равновероятного вектора ключа с вектором открытого текста, для получения шифртекста.

Проблема (Теорема Шеннона) – длина ключа должна быть больше или равна длине сообщения.

Основная идея — заменить случайный длинный вектор ключа на «псевдослучайную» последовательность, называемую гаммой.

Идея одноразового блокнота

Заменяем использование случайного ключа k псевдослучайной последовательностью γ . Если последовательность «неотличима» от случайной равновероятной, то шифртекст c' неотличим от шифртекста в одноразовом блокноте.

k

 $pprox_p$

m

m

 \approx_{p}

 $c' = m \oplus G(k)$

Поточный шифр

Эффективно вычислимая функция $G: S \to R$ называется псевдослучайным генератором на (S,R) PRG.

Шифр E = (E, D) с параметрам (l, L) на (K, M, C): $K = \{0,1\}^l$, $M = C = \{0,1\}^L$, называется **поточным шифром**, если

$$E(k,m) = G(k) \oplus m$$
,

где $G: \{0,1\}^l \to \{0,1\}^L$ - псевдослучайный генератор.

Аналогично можно ввести Поточный шифр по произвольному модулю.

Стойкость поточного шифра сводится к «качеству» псевдослучайной последовательности $\gamma = G(k)$

Стойкий псевдослучайный генератор

Пусть G псевдослучайный генератор на (S,R). Рассмотрим игру с двумя экспериментами. В эксперименте 0 Претендент отправляет псевдослучайную величину r=G(s). В эксперименте 1- случайную величину $r \leftarrow R$. Задача Противника угадать, случайную, или псевдослучайную величину он получил.

Стойкий псевдослучайный генератор

Пусть W_b - событие того, что b'=1 в эксперименте b.

Тогда Преимуществом Противника A против алгоритма G в игре на различимость есть величина

$$Adv_{PRG}[A, G] = |\Pr[W_0] - \Pr[W_1].$$

Стойкий псевдослучайный генератор

Генератор G называют **стойким псевдослучайным генератором** (secure PRG), если для любых эффективных противников A величина $PRG_{adv}[A,G] \leq \epsilon$, где ϵ – пренебрежимо малая величина.

Противника A часто называют **статистическим тестом**.

Если генератор G — стойкий, то последовательность $\gamma = G(s)$ называют (эффективно) статистически неразличимой от случайной последовательности или стойкой псевдослучайной. Обозначается $\gamma \approx_P r$, где r — случайная последовательность.

Энтропия генератора

Пусть G на $(S, \{0,1\}^n)$.

Очевидно, что генератор может выдать не более |S| различных последовательностей.

Т.е. максимально возможная энтропия выходной последовательности $\gamma \leftarrow G(s), s \leftarrow S$ равна энтропии случайной величины s, т.е. $H(\gamma) \leq H(s) \leq \log_2 |S|$

Таким образом максимально возможная длина периода генератора $l=2^{H(\gamma)}=|S|$

Пример: Пусть $S = \{0,1\}^{128}$, тогда максимально возможный период выходной последовательности составляет 2^{128} , энтропия 128 бит.

Статистическая неразличимость

Пусть G на $(S, \{0,1\}^n)$.

Рассмотрим множество возможных значений $R \subset \{0,1\}^n : \{r = G(S), \forall s \in S\}.$

Тогда если G — стойкий генератор, то эффективный Противник не может определить содержится ли элемент $r' \in \{0,1\}$ в R.

Непредсказуемость генераторов

Пусть G псевдослучайный генератор на (S,R).

• Генератор G называется **предсказуемым**, если \exists эффективный алгоритм A и $\exists 0 \le i \le n-1$:

$$Adv_{pred} = \Pr[A(G(k)[0..i])) = G(k)[i+1]] > 1/2 + \epsilon$$

Где ϵ — не пренебрежимо малая. Т.е. Существует эффективный алгоритм способный по i+1 биту предсказать i+2.

• Генератор G называется **непредсказуемым**, если \forall эффективных алгоритмов справедливо

$$Adv_{pred} = \Pr[A(G(k)[0..i])) = G(k)[i+1]] \le 1/2 + \epsilon,$$

для пренебрежимо малой ϵ .

Непредсказуемость генераторов

Теорема 2.2. Пусть G псевдослучайный генератор (PRG) на (S,R).

Если G — стойкий, то G — непредсказуемый.

ightharpoonup Если G — стойкий, то его выход вычислительно неотличим от случайной последовательности. А для случайной последовательности невозможно предсказать следующий бит. $Pred_{avd}[A,G] = PRG_{adv}[B,G]$

Непредсказуемость генераторов

Теорема 2.3. Yao'82 . Пусть G псевдослучайный генератор (PRG) на (S,R).

Если G — непредсказуемый, то G — стойкий

⊳ без доказательства. Идея доказательства – если мы не можем предсказать 1 следующий бит, то значит у нас нет никаких возможностей определить является ли данная величина случайной, или выходом псевдослучайного генератора

Поточные шифры и семантическая стойкость

Теорема 2.4. Пусть $G: S \to \{0,1\}^n$ стойкий генератор (PRG).

Тогда поточный шифр E определённый с использованием G семантически стойкий, т.е. $\forall A \colon A$ — противник в игре на семантическую стойкость, \exists противник B в игре на стойкость PRG (различимость):

$$Adv_{ss}[A, E] \le 2 * Adv_{PRG}[B, G]$$

Идея доказательства

Теорема 2.4. Пусть $G: S \to \{0,1\}^n$ стойкий генератор (PRG).

Тогда поточный шифр E определённый с использованием G семантически стойкий, т.е. $\forall A : A$ — противник в игре на семантическую стойкость, \exists противник B в игре на стойкость PRG (различимость):

$$Adv_{ss}[A, E] \le 2 * Adv_{PRG}[B, G]$$

ightharpoonup Пусть A противник в игре на семантическую стойкость.

Пусть претендент также генерирует $r \stackrel{R}{\leftarrow} \{0,1\}^n$.

Пусть W_b событие, при котором b'=1

Теорема 2.4. Пусть $G: S \to \{0,1\}^n$ стойкий генератор (PRG).

Тогда поточный шифр E определённый с использованием G семантически стойкий, т.е. $\forall A : A$ — противник в игре на семантическую стойкость, \exists противник B в игре на стойкость PRG (различимость):

$$Adv_{ss}[A, E] \le 2 * Adv_{PRG}[B, G]$$

Пусть A противник в игре на семантическую стойкость.

Пусть претендент шифрует сообщение одноразовым блокнотом (ОТР). Пусть R_b событие, при котором b'=1.

Теорема 2.4. Пусть $G: S \to \{0,1\}^n$ стойкий генератор (PRG).

Тогда поточный шифр E определённый с использованием G семантически стойкий, т.е. $\forall A : A$ — противник в игре на семантическую стойкость, \exists противник B в игре на стойкость PRG (различимость):

$$Adv_{ss}[A, E] \le 2 * Adv_{PRG}[B, G]$$

Утверждение 2.4.1. $Adv_{ss}[A, OTP] = 0 = |\Pr[R_0] - \Pr[R_1]|$

Утверждение 2.4.2. $\exists B : Adv_{PRG}[B,G] = |\Pr[W_b] - \Pr[R_b]|$, т.е. B - противник, которые пытается различить PRG и OTP.

$$\Rightarrow$$
 $Adv_{SS}[A,E] = |Pr[W_0] - Pr[W_1]| \le 2 * Adv_{PRG}[B,G]$

Поточные шифры и семантическая стойкость

Утверждение 2.4.2. $\exists B : Adv_{PRG}[B,G] = |\Pr[W_b] - \Pr[R_b]|$, т.е. B - противник, которые пытается различить PRG и OTP.

Алгоритм В:

$$Adv_{PRG}[B,G] = |\Pr[B(r)=1] - \Pr[B(G(k))=1|,$$
где $k \overset{R}{\leftarrow} K, r \overset{R}{\leftarrow} \{0,1\}^n$ $\Pr[B(r)=1] = \Pr[R_0], \quad \Pr[B(G(k))=1| = \Pr[W_0]$ $\Rightarrow Adv_{PRG}[B,G] = |\Pr[W_b] - \Pr[R_b]|.$

Поточные шифры и семантическая стойкость

Теорема 2.5. Пусть $G: S \to \{0,1\}^n$ генератор (PRG).

Тогда если поточный шифр E определённый с использованием G семантически стойкий, то G — стойкий генератор.

⊳без доказательства <