Решение на комбинирана контролна работа 3 по Алгебра 1

Задача 1. Спрямо базис $e=(e_1,e_2,e_3)$ на линейно пространство V над полето на комплексните числа $\mathbb C$ линейният оператор $\varphi_1:V\to V$ действа по правилото

$$\varphi_1(x_1e_1 + x_2e_2 + x_3e_3) = (x_1 - x_2)e_1 + (-x_1 + x_2 + x_3)e_2 + (x_1 - x_2 - x_3)e_3,$$

а линейният оператор $\varphi_2:V o V$ действа по правилото

$$\varphi_2(x_1e_1 + x_2e_2 + x_3e_3) = (x_1 + x_3)e_1 + (-x_1 + x_2)e_2 + (x_2 - x_3)e_3.$$

Да се намерят стойностите на параметъра $p \in \mathbb{C}$, за които линейният оператор $\varphi_1^2 + p\varphi_2$ е обратим.

Решение: За да намерим матрицата \mathcal{A}_{φ_1} на φ_1 спрямо базиса $e=(e_1,e_2,e_3)$ на V, полагаме $x_1=1,\,x_2=x_3=0$ и пресмятаме $\varphi_1(e_1)=e_1-e_2+e_3$. Аналогично, за $x_2=1,\,x_1=x_3=0$ получаваме $\varphi_1(e_2)=-e_1+e_2-e_3$, а за $x_3=1,\,x_1=x_2=0$ намираме $\varphi_1(e_3)=e_2-e_3$. Следователно

$$\mathcal{A}_{\varphi_1} = \left(\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{array} \right).$$

По същия начин, за $x_1=1, x_2=x_3=0$ пресмятаме $\varphi_2(e_1)=e_1-e_2$. Полагаме $x_2=1, x_1=x_3=0$ и пресмятаме $\varphi_2(e_2)=e_2+e_3$, а за $x_3=1, x_1=x_2=0$ намираме $\varphi_2(e_3)=e_1-e_3$. Това ни дава матрицата

$$\mathcal{A}_{\varphi_2} = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{array} \right)$$

на φ_2 спрямо базиса e на V. Матрицата на $\varphi_1^2 + p\varphi_2$ спрямо базиса e на V е

$$\mathcal{A}_{\varphi_1+p\varphi_2} = \mathcal{A}_{\varphi_1}^2 + p\mathcal{A}_{\varphi_2} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix} + p \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} + p \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 2+p & -2 & -1+p \\ -1-p & 1+p & 0 \\ 1 & -1+p & -p \end{pmatrix}.$$

Операторът $\varphi_1^2 + p\varphi_2 : V \to V$ е обратим тогава и само тогава, когато матрицата $\mathcal{A}_{\varphi_1^2 + p\varphi_2} \in M_{3\times 3}(\mathbb{C})$ е обратима. Последното е в сила точно когато $\mathcal{A}_{\varphi_1^2 + p\varphi_2}$ е неособена. Пресмятаме детерминантата на $\mathcal{A}_{\varphi_1^2 + p\varphi_2}$ като изнасяме общ множител (p+1) от втория ред, прибавяме втория стълб към първия и развиваме получената детерминанта по нейния втори ред, т.е.

$$\det(\mathcal{A}_{\varphi_1^2+p\varphi_2}) = \begin{vmatrix} 2+p & -2 & -1+p \\ -1-p & 1+p & 0 \\ 1 & -1+p & -p \end{vmatrix} = (p+1) \begin{vmatrix} 2+p & -2 & -1+p \\ -1 & 1 & 0 \\ 1 & -1+p & -p \end{vmatrix} = (p+1) \begin{vmatrix} p & -2 & -1+p \\ 0 & 1 & 0 \\ p & -1+p & -p \end{vmatrix} = (-1)^{2+2} \cdot 1 \begin{vmatrix} p & -1+p \\ p & -p \end{vmatrix} = (p+1)[-p^2 - p(p-1)] = (p+1)(-2p^2+p) = -p(2p-1)(p+1)$$

Оттук, $\det(\mathcal{A}_{\varphi_1^2+p\varphi_2})=-p(2p-1)(p+1)\neq 0$ точно когато $p\in\mathbb{C}\setminus\left\{-1,0,\frac{1}{2}\right\}$. В резултат, операторът $\varphi_1^2+p\varphi_2$ е обратим тогава и само тогава, когато $p\in\mathbb{C}\setminus\left\{-1,0,\frac{1}{2}\right\}$.

Задача 2. Спрямо някакъв базис на линейно пространство U над полето \mathbb{Q} на рационалните числа, линейният оператор $\psi: U \to U$ има матрица

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0 & -1 \\ -2 & -3 & -1 & 0 \\ 3 & 4 & 2 & 1 \\ -1 & -2 & 0 & 1 \end{array}\right).$$

Да се намерят базиси на сечението $\ker(\psi) \cap \operatorname{im}(\psi)$ и на сумата $\ker(\psi) + \operatorname{im}(\psi)$ на ядрото $\ker(\psi)$ и на образа $\operatorname{im}(\psi)$ на ψ .

Решение: Координатите на векторите от ядрото $\ker(\psi)$ на ψ са решенията на хомогенната система линейни уравнения с матрица от коефициенти A. Умножаваме първия ред по 2 и прибавяме към втория. Умножаваме първия ред по (-3) и прибавяме към третия ред. Прибавяме първия ред към четвъртия и свеждаме към

$$\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 \\
0 & 1 & -1 & -2 \\
0 & -2 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right).$$

Умножаваме втория ред по (-2) и прибавяме към първия. Изпускаме третия ред, зашото е пропорционален на втория. Изпускаме нулевия четвърти ред и получаваме

$$\left(\begin{array}{cccc} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \end{array}\right).$$

Следователно $\ker(\psi)$ е пространството от решения на хомогенната система линейни уравнения

$$\begin{vmatrix} x_1 & +2x_3 & +3x_4 & = 0 \\ x_2 & -x_3 & -2x_4 & = 0 \end{vmatrix}$$
 (1)

с общо решение

$$x_1 = -2x_3 - 3x_4$$
, $x_2 = x_3 + 2x_4$ за произволни $x_3, x_4 \mathbb{Q}$.

Векторите

$$a_1 = (-2, 1, 1, 0)$$
 и $a_2 = (-3, 2, 0, 1)$

образуват базис на пространството от решения $\ker(\psi)$ на тази система. В частност, ψ има дефект $d(\psi) = \dim \ker(\psi) = 2$. По Теоремата за ранга и дефекта на линейно изображение на крайномерно пространство, рангът на ψ е

$$\dim \operatorname{im}(\psi) = \operatorname{rk}(\psi) = \dim(U) - d(\psi) = 4 - 2 = 2.$$

Следователно, произволни два непропорционални стълба образуват базис на образа $im(\psi)$ на ψ . Например, първият и третият стълб на A образуват базис

$$b_1 = (1, -2, 3, -1), b_2 = (0, -1, 2, 0)$$

на $\operatorname{im}(\psi)$. За да намерим хомогенна система линейни уравнения с пространство от решения $\operatorname{im}(\psi) = l(b_1, b_2)$ решаваме хомогенната система линейни уравнения с матрица от коефициенти

$$\left(\begin{array}{c}b_1\\b_2\end{array}\right) = \left(\begin{array}{ccc}1 & -2 & 3 & -1\\0 & -1 & 2 & 0\end{array}\right).$$

Умножаваме втория ред по (-2), прибавяме към първия и свеждаме към

$$\left(\begin{array}{cccc} 1 & 0 & -1 & -1 \\ 0 & -1 & 2 & 0 \end{array}\right).$$

Общото решение на тази хомогенна система линейни уравнения е

$$x_1 = x_3 + x_4, \quad x_2 = 2x_3$$
 за произволни $x_3, x_4 \in \mathbb{Q}$.

Векторите

$$c_1 = (1, 2, 1, 0)$$
 и $c_2 = (1, 0, 0, 1)$

образуват базис на пространството от решения и $\operatorname{im}(\psi)$ е пространството от решения на хомогенната система линейни уравнения

$$\begin{vmatrix} x_1 & +2x_2 & +x_3 & = 0 \\ x_1 & +x_4 & = 0 \end{vmatrix} . (2)$$

Сечението $\ker(\psi) \cap \operatorname{im}(\psi)$ е пространството от решения на хомогенната система линейни уравнения

$$\begin{vmatrix} x_1 & +2x_3 & +3x_4 & = 0 \\ x_2 & -x_3 & -2x_4 & = 0 \\ x_1 & +2x_2 & +x_3 & = 0 \\ x_1 & +x_4 & = 0 \end{vmatrix},$$

получена чрез обединение на уравненията на $\ker(\psi)$ с уравненията на $\operatorname{im}(\psi)$. Матрицата от коефициенти на тази хомогенна система линейни уравнения е

$$\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & -2 \\
1 & 2 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right).$$

Изваждаме първия ред от третия и четвъртия, за да сведем към

$$\begin{pmatrix}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 2 & -1 & -3 \\
0 & 0 & -2 & -2
\end{pmatrix}.$$

Умножаваме втория ред и прибавяме към третия. Делим четвъртия ред на (-2) и получаваме

$$\left(\begin{array}{cccc} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right).$$

Изпускаме четвъртия ред, защото съвпада с третия. Прибавяме третия ред към втория. Умножаваме третия ред по (-2), прибавяме към първия и свеждаме към

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array}\right).$$

Общото решение на получената хомогенна система линейни уравнения е

$$x_1 = -x_4, \quad x_2 = x_4, \quad x_3 = -x_4$$
 за произволно $x_4 \in \mathbb{Q}$.

Следователно векторът

$$(-1,1,-1,1)$$

е базис на нейното пространство от решения $\ker(\psi) \cap \operatorname{im}(\psi)$.

По Теоремата за размерност на сума и сечение,

$$\dim(\ker(\psi) + \operatorname{im}(\psi)) = \dim(\ker(\psi)) + \dim(\operatorname{im}(\psi)) - \dim(\ker(\psi) \cap \operatorname{im}(\psi)) = 2 + 2 - 1 = 3.$$

Следователно $\ker(\psi) + \operatorname{im}(\psi) = l(a_1, a_2) + l(b_1, b_2) = l(a_1, a_2, b_1, b_2)$ има базис, съставен от три вектора от множеството $\{a_1, a_2, b_1, b_2\}$. Образуваме матрицата

$$\begin{pmatrix} b_1 \\ b_2 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 3 & -1 \\ 0 & -1 & 2 & 0 \\ -2 & 1 & 1 & 0 \\ -3 & 2 & 0 & 1 \end{pmatrix}.$$

Прилагаме към нея умножение на ред с ненулево рационално число или умножение на ред с рационално число и прибавяне към следващ ред, така че да не променим линейни

обвивки на началните отсечки на системата b_1, b_2, a_1, a_2 . По-точно, прибавяме удвоения първи ред към третия. Прибавяме утроения първи ред към третия и свеждаме към

$$\left(\begin{array}{ccccc}
1 & -2 & 3 & -1 \\
0 & -1 & 2 & 0 \\
0 & -3 & 7 & -2 \\
0 & -4 & 9 & -2
\end{array}\right).$$

Умножаваме втория ред по (-3) и прибавяме към третия. Умножаваме втория ред по (-4), прибавяме към четвъртия и получаваме

$$\left(\begin{array}{ccccc}
1 & -2 & 3 & -1 \\
0 & -1 & 2 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 1 & -2
\end{array}\right).$$

Първите три реда на получената матрица са линейно независими, така че векторите b_1, b_2, a_1 образуват базис на $\ker(\psi) + \operatorname{im}(\psi) = l(a_1, a_2, b_1, b_2)$.

Задача 3. Нека $\varphi: V \to V$ е линеен оператор с матрица $A \in M_{n \times n}(\mathbb{Q})$ спрямо базис $e = (e_1, \dots, e_n)$ на линейното пространство V над полето \mathbb{Q} на рационалните числа. Координатите на образа $\varphi(v) = \sum_{i=1}^n x_i e_i$ на произволен вектор $v \in V$ имат

сума $\sum_{i=1}^n x_i = 3$. Кои от следните твърдения са винаги в сила за оператора φ и за единичната матрица $E_n \in M_{n \times n}(\mathbb{Q})$:

- (i) 3 e характеристичен корен на φ ;
- (ii) сумата на характеристичните корени на φ е 3;
- (iii) 3 е собствена стойност на φ ;
- (iv) съществува ненулев вектор $v \in V \setminus \{\mathcal{O}_V\}$, изпълняващ равенството $\varphi(v) = 3v$;
- (v) стълбовете на матрицата $A-3E_n\in M_{n\times n}(\mathbb{Q})$ са линейно независими;
- (vi) всеки ред на матрицата $A-3E_n \in M_{n \times n}(\mathbb{Q})$ принадлежи на линейната обвивка на останалите редове;
 - (vii) матрицата $A 3E_n \in M_{n \times n}(\mathbb{Q})$ е от ранг n;
- (viii) единственият вектор $v \in V$, изпълняващ равенството $\varphi(v) = 3v$ е нулевият вектор $v = \mathcal{O}_V$.

Решение: Нека $A=(a_{ij})_{i,j=1}^n\in M_{n\times n}(\mathbb{Q})$ има елементи $a_{ij}\in\mathbb{Q}$. По условие, за произволен вектор $v\in V$ координатите на $\varphi(v)\in V$ спрямо базиса $e=(e_1,\ldots,e_n)$ имат сума 3. В частност, за произволно $1\leq i\leq n$ координатите на

$$\varphi(e_i) = \sum_{j=1}^n a_{ji} e_j \in V$$

имат сума

$$\sum_{j=1}^{n} a_{ji} = 3,$$

т.е. всеки стълб на $A \in M_{n \times n}(\mathbb{Q})$ има сума 3. Оттук, за произволно $\lambda \in \mathbb{Q}$ сумата на редовете $r_1(\lambda), \ldots, r_n(\lambda) \in M_{1 \times n}(\mathbb{Q})$ на матрицата

$$A - \lambda E_n = \begin{pmatrix} r_1(\lambda) \\ r_2(\lambda) \\ \dots \\ r_n(\lambda) \end{pmatrix} \in M_{n \times n}(\mathbb{Q}) \quad e$$

$$r_1(\lambda) + r_2(\lambda) + \ldots + r_n(\lambda) = (3 - \lambda, 3 - \lambda, \ldots, 3 - \lambda) = (3 - \lambda)(1, 1, \ldots, 1).$$
 (3)

В частност, $r_1(3)+r_2(3)+\ldots+r_n(3)=(0,0,\ldots,0)$, така че редовете $r_1(3),r_2(3),\ldots,r_n(3)$ на $A-3E_n$ са линейно зависими и $\det(A-3E_n)=0$. Това доказва, че $3\in\mathbb{Q}$ е характеристичен корен на A и на φ . Затова твърдение (i) е вярно. Съгласно $3\in\mathbb{Q}$, характеристичният корен 3 на φ е собствена стойност на φ и (iii) е винаги вярно. Съществува собствен вектор $v\in V\setminus\{\mathcal{O}_V\}$ на φ , отговарящ на собствената стойност 3, така че $\varphi(v)=3v$ и (iv) е винаги вярно. Съгласно (3) имаме $r_1(3)+r_2(3)+\ldots+r_n(3)=(0,0,\ldots,0)$ и всеки ред $r_i(3)$ на $A-3E_n$ е в линейната обвивка на останалите редове. Затова условие (vi) е винаги в сила.

Нищо не може да се каже за сумата на характеристичните корени на φ , така че (ii) не винаги е в сила. Съгласно (vi), вектор-редовете на $A-3E_n\in M_{n\times n}(\mathbb{Q})$ са линейно зависими. По Теоремата за ранга на матрица и ранга на нейните вектор-редове и вектор-стълбове, рангът на $A-3E_n$ е $\mathrm{rk}(A-3E_n)< n$ и стълбовете на $A-3E_n$ са линейно зависими. Затова (v) и (vii) никога не са изпълнени. Условието (viii) е отрицание на винаги изпълненото условие (iv), така че (viii) никога не е и в сила.