FUNCTIONAL DESIGN / TECHNICAL DESIGN

ISE-DMDD "Happy Travel"

FUNCTIONAL DESIGN AND TECHNICAL DESIGN

- Introduction
- Functional Design
- Technical Design

ERM IN RETROSPECTIVE

Many database designers suffer from 'tableitis', i.e. they tend to think in terms of tables instead of entity types (domain concepts).

This might be 'encouraged' by the ERM notation we use, because it looks like a database diagram.

The original ERM notation by Peter Chen (1976) is probably more suitable for conceptual modeling. See example on next slide.

ERD, CHEN NOTATION

ANALYSIS AND DESIGN DOCUMENTATION

- Functional Design (FD, Dutch: FO) also called: Requirements Specification
- Technical Design (TD, Dutch: TO) also called: Software Design

CONTENTS FD AND TD

FD: describes WHAT the system will do

Processes: BPM, Use Case Model

Data: Conceptual Data Model

• Interaction: Relation between processes/tasks

and data

TD: outlines HOW the system will work

Architecture: Hardware, software

Data: PDM, Script, changes in DB schema

• GUI: Detailed UI design + related functions

FUNCTIONAL DESIGN AND TECHNICAL DESIGN

- Introduction
- Functional Design
- Technical Design

GOAL FUNCTIONAL DESIGN

- Specification of functional requirements of information system
- Description of the functionality and the related data of the future information system
- Agreement between customer and development team
- Target audience: customer and development team

CONTENTS FUNCTIONAL DESIGN

Dynamic model (processes, tasks)

- Description of what the system does and the processes it supports
- Candidate techniques: Business Process Model, Use Case Model

Static model (data)

- Abstract representation of the domain (Universe of Discourse)
- Describes the data the system will use (entity types, relationship types, business rules / constraints)
- Candidate techniques: CDM (ERM), FCO-IM information model

Interaction model

- CRUD
 For each function which entity types are modified (Create, Update, Delete) or read (Read).
- User privileges
 Which functions/tasks may be performed by which users / user groups?
- Storyboards
 Screen design and navigation

EXAMPLE ARTIFACTS IN FD

From Case: Happy Travel

CASE HAPPY TAVEL

Travel agency and tour operator Happy Travel organizes trips to European cities. The management of Happy Travel wants to enable customers to book trips online.

All information in the Happy Travel Brochure must be made available on Internet and a system must be developed to support the online booking process.

BUSINESS PROCESS MODEL

USE CASE MODEL

CONCRETE EXAMPLES OF INFORMATION

Happy Travel – Town information	
Town: Pani (
Travel - Booking Form	

CRUD MATRIX

	Accommodation	City	Travel Option	Booking	
Register accommodation	CRUD	CR		R	
Register Travel Options		R	CRUD		

CONCEPTUAL DATA MODEL

Entity Relationship Diagram

- Fact types decribe the semantics, concrete examples clarify further
- For consensus and transferability you should describe important domain concepts in natural language (Data Dictionary)

Domains

Constraints

For business rules that are not visible in the ERD give:

- i. Name of the corresponding business rule
- ii. Related parts of the model (ETs, RTs and attributes)
- iii. Specification of the constraint (in natural language)

Modeling decisions

Usually, there are several data modeling possibilities.

If several options were considered, state them and account for the choice made

DOMAINS

Domain	Datatype	Domain value constraint
ACCNAME	character(25)	
ACCNO	numeric(3)	values>0
BOOKINGNO	number(8)	
CITYCODE	character(3)	
CITYNAME	character(30)	
COMPNAME	character(20)	
DATE	date	
INITIALS	character(6)	
NUMBER_OF_ROOMS	number(2)	values>0
PARTICIPANTNO	number(1)	values>0
PERIODTYPE 'week')	character(12)	values in ('long weekend', 'midweek',
SURNAME	character(25)	
TRAVELCODE	number(4)	
TRAVELTYPE	character(10)	HAN_UNIVERSITY OF APPLIED SCIENCES

DESCRIPTION OF DOMAIN CONCEPTS

Accommodation

A hotel or guest house where the participants of a city trip pass the night. Each accommodation has a unique code, for example PAR002. The three letters refer to the city and the three digits form the sequence number of the accommodation within the town.

Booking

A customer of a city trip books an accommodation in the destination city for a period (week, midweek or long weekend). He might also book the travel to the city or travels on its own. Furthermore the participants and the booked rooms are registered.

.

EXPLANATION OF CHOICES

Currently Happy Travel offers only single and double rooms in the accommodations.

It is expected this will not change in the near future.

Therefore it was decided to model the fact types about the number of single and double rooms in an accommodation as two attributes in the ET ACCOMMODATION,

Instead of using seperate entity types ROOM_TYPE and ACCOMMODATION_ROOM_TYPE,

although this last option is more flexible because it allows easy addition of other room types in future.

CONSTRAINTS

C1 corresponds with BR1 RulePeriodDates

- Concerns: ET Period, attributes startdate and enddate
- Specification: For each period the startdate must be before the enddate

C2 corresponds with BR2 RuleTravelDestination

- Concerns:ETs and RTs Booking, BookedAccommodation, Accommodation, CityOfAccomodation, City, BookedTravel,TravelOption,TravelDestination
- Specification: If a booking contains a travel, then the destination of the travel should equal the city of the booked accommodation.

C3 corresponds with BR3 RuleParticipant

- Concerns: ETs and RTs Booking, BookingOfParticipant, Participant, attributes initials, surname and birthdate
- Specification: There are no participants of a booking with the same combination of initials, surname and birth date.

.

FUNCTIONAL DESIGN AND TECHNICAL DESIGN

- Introduction
- Functional Design
- Technical Design

GOALTECHNICAL DESIGN

- In the TD is described <u>how</u> functions of the information system will be built
- Document design choices (should be consistent with requirements in FD)
- Target audience: development team and maintenance team

CONTENTS TECHNICAL DESIGN

- System and software architecture
 - client/server, 3-tier, etc.
 - overview of modules, forms, reports, databases, interfaces with other systems
 - relations between these components
- Physical database schema
- GUI design
- Design choices

PHYSICAL DATABASE SCHEMA

Physical database schema, derived from CDM For each table

- Description (for example: related fact types)
- Columns (attributes)
- Domains: which data type (user defined domain)?
- Primary key
- Foreign key(s) and FK-references
- Declarative constraints: check, not null, unique

Integrity rules

Description and implementation (triggers/stored procedures)

Implementation choices

- introduction surrogate (dummy) ID's
- indexes (where, why, clustered/nonclustered, ...)
-

DESCRIPTION OF TABLES AND COLUMNS

Table: Booking	This table contains data about bookings made by customers
column	description
bookingno	unique number of a booking
citycode	citycode of the town where the booked accommodation is located
accommodationno	Sequence number of the booked accommodation within this city
travelcode	code of the booked travel option
startdate	startdate of the stay period of this booking
single_rooms	number of single rooms of this booking
double_rooms	number of double rooms of this booking

OF APPLIED SCIENCES

INTEGRITY RULES

IR1 corresponds with C1 and BR1 RulePeriodDates

- Specification: For each period the startdate is before the enddate
- Implementation: check-constraint CHECK_PERIODDATES on table Period

IR2 corresponds with C2 and BR2 RuleTravelDestination

- Specification: If a booking contains a travel, then the destination of the travel should equal the city of the booked accommodation.
- Implementation: trigger TRAVELDESTINATION on table Booking

IR3 corresponds with C3 and BR3 RuleParticipant

- Specification: There are no participants of a booking with the same combination of initials, surname and birth date.
- Implementation: Unique on columns (initials, surname, birthdate) in table Participant

