第8章数字系统设计基础 Design of Digital Systems

§ 8.1 概述

数字系统 二二> 模块 子系统

每个子系统 { 控制器 数据处理器

关系:

状态变量

结果作为状态变量反馈给控制器.

§ 8.2 算法状态机 — ASM 图表 Algorithmic State Machine

ASM: 数字系统控制过程的算法流程图

与通常算法流程图不同, ASM图表示了准确的时间序列

特点:

- 1. 操作是按时间序列进行的
- 2. 操作取决于某一判断(外输入及反馈信号)

8.2.1 ASM 符号

1. 状态框 (rectangle)

在T1 (代码 001) 状态下, 输出 Z = 0, 下一个 CLK 到来,数据处 理器进行操作 A+1.

状态框内的操作为无条件操作。是此状态下将要实现的操作,将在下一个CLK到来时执行。

$$A \leftarrow A+1$$

寄存器传输语言

Register Transfer Languages (RTL)

$$R \leftarrow SR \quad (R \text{ shift right})$$

$$A \leftarrow 0$$
 (A clear)

$$F \leftarrow 1$$
 (F set 1)

2. 判断框 (prism 菱形) 条件 **T1 T0** ↓ T0 00 Ф0 11 MN X $\mathbf{X}\mathbf{Y}$ **10 T5 T2 T1 T1 T3 T2**

控制器根据判断框内容(条件)决定下一个 CLK 到时状态转换

3输出

2 输出

4 输出

3. 条件框 (ellipse 椭圆)

条件框内的操作为条件操作 它的入口只能接判断框的分支

练习:分析下面 ASM图.

在T₁状态下(001),

输出:START

若输入 E = 1, 下一个 CLK 到来 R 复位 (清0), 否则 R 保持, 新状态为 T₂ (010)

8.2.2 ASM块

规则:每个ASM 块必须包含只能包含一个状态框,以及与之相连的判定框和条件框。

练习: ASM块

一个状态框 两个判定框 一个条件框

划分 ASM 块的意义:

一个ASM块定义数字系统的一个时序,即一个ASM块内的操作在一个CLK周期完成。

T₀ 状态下,下一个 *CLK* 到来:

数据处理器

 $R \leftarrow 0$

控制器

(条件操作) 若
$$E = 0$$
, $F = 0$,

$$E = 0, F = 1,$$

若 E=1,

状态
$$T_0 \rightarrow T_3$$

$$T_0 \rightarrow T_1$$
 $T_0 \rightarrow T_2$

一个ASM块中的不同器件在一个CLK内各自完成各自的操作(同一器件不能同时做两件事)

E, F: 外输入,已知,不是 T_0 完成后的第二步,是同时判断并操作. T_0 是在前一个CLK 时形成的.

现态 T_0 与状态框内的操作不是在同一个CLK内

ASM~状态图的关系

ASM → 状态图

	ASM	状态图	
状态转换	V	√	
转换条件	V	√	
数据处理器操作	\checkmark	X	
描述	系统	控制器	

相同

相异

例 1

需要几个 CLK?

3 CLKs

每个ASM块一个CLK实现

1st CLK: 实现 T₀;

 $2^{\text{nd}} CLK : R \leftarrow SR$,

若 X = 1, $T_0 \rightarrow T_2$;

 $3^{rd} CLK : A \leftarrow 0$

 $T_2 \rightarrow T_3$.

例 2. 纠错

(1)

错:

条件框的入口 只能接判断框

换成:

在两个 CLK 操作

(2)

错:

在一个*CLK* 周期内*R* 操作两 次 (一个 ASM).

> 将一个操 作移到另一 个框内.

8.2.3 ASM图表的建立

例 1

在 T_0 状态下,若控制输入X和Y分别等于0和1,系统实现条件操作:寄存器R左移,并转移到状态 T_1 ,试画出其ASM图。

ASM:

例 2:用数字系统记录并显示车场内的存车数目,入口出口都有光电元件,每当有汽车进入车场时,光线有变化,信号Y 由 $1\rightarrow 0$;汽车离开车场时,出口信号Z 由 $1\rightarrow 0$;信号Y, Z 与时钟同步,记录车场车辆数目的数据处理器是一可逆计数器,画出该数字系统的ASM图表.

$$\begin{array}{c}
 \mathcal{L} \\
 \mathcal{$$

设 N: 车场内目前的车辆数

$$S:$$
开始信号 $\int S=1$ 开始 $\int S=0$ 保持

ASM

A: 计数器

N: 车场内现有车辆数操作 $A \leftarrow N$ 需要一个CLK,需要一个状态框.

F: 输出

入,
$$Y = 1$$
 无车入 $Y = 0$ 有车入

出,
$$Z$$
 $\begin{cases} Z=1$ 无车出 $Z=0$ 有车出

- 例 3: 设计一个数字系统,它有三个4位的寄存器 $X \setminus Y \setminus Z$,并实现下列操作:
- (1) 启动信号S 出现,将两个4 位二进制数 N_1 、 N_2 分别传送给寄存器 X、Y;
- (2) 如果 X > Y, 左移X, 结果送给Z;
- (3) 如果 X < Y, 右移X, 结果送给Z;
- (4) 如果 X = Y, 将 X 或 Y 送给 Z.

练习: 一个数字系统在T₁ 状态下,若启动信号S=0, 保持 T_1 状态不变,若S=1, 则完成条件操作: $A \leftarrow N1$, $B \leftarrow N2$,状态由 $T_1 \rightarrow T_2$ 。在 T,状态下,下一个CLK到, 完成无条件操作 $B \leftarrow B - 1$, P右移,状态由 $T_2 \rightarrow T_3$; 若 M=1, 状态由 $T_2 \rightarrow T_4 \rightarrow T_1$ 。 画出该数字系统的ASM图。

§ 8.3 数字系统设计

8.3.1 数字系统设计步骤

- 1. 分析
- **2. ASM**
- 3. 设计控制器

状态转换

4. 设计数据处理器

条件操作和无条件操作

5. 电路

8.3.2 数字系统设计举例

例 1:设计三种图案彩灯控制系统的控制器。三种 图案彩灯依次循环亮,其中苹果形图案灯亮 16 s, 香蕉形图案灯亮 12 s,葡萄形图案灯亮 9 s。

1. 分析

输入:

$$16 \text{ s} : X=1$$

9s:Z=1

定时启动 $t \int = 1$ 计时开始 = 0 否则

输出:

灯亮

苹果形: A=1

香蕉形: B=1

葡萄形: G=1

逻辑高有效

2. 建立 ASM图

3. 设计控制器

$$(X, Y, Z \rightarrow T_0, T_1, T_2)$$

方法1:

每个状态一个触发器

状态数 = FFs

选择 D-FF, $Q^{n+1} = D$

根据ASM图,各个状态的输入条件作为D-FF的控制输入方程.

任何时刻,只能存在一个状态(=1),其它状态=0

3 状态, 3 D-FF, 输入 D, 输出 T_i

$$T_0=1$$
, $D_0=T_0\overline{X}+T_2Z$

$$T_1=1, D_1=T_0X+T_1\overline{Y}$$

$$T_2=1$$
, $D_2 = T_1Y + T_2\overline{Z}$

4. 电路

选择 3个 D-FF,

$$Q^{n+1} = D$$

输入D,输出T_i

$$T_0=1$$
, $D_0=T_0\overline{X}+T_2Z$

$$T_1=1, D_1=T_0X+T_1\overline{Y}$$

$$T_2=1, D_2=T_1Y+T_2\overline{Z}$$

例 2. 十字路口交通灯管理系统 (例 8.8)

在主干道 A 和小道 B 的十字交叉路口,设置 交通灯管理系统。小道 B 路口设有传感器 M,小 道有车M=1,否则M=0.

主干道通车最短16 s, 超过16 s, 若小道有车 (M = 1),主干道绿灯灭黄灯亮3 s,然后红灯亮. 小道绿灯 (通车) 最长时间16 s, 在16 s内,只要小道无车 (M = 0),小道由绿灯变黄灯 (3 s) 后变红灯,主干道红灯变绿灯. 16 s 和3 s 定时信号由加法计数器完成,时间到,t = 1,计数器清0,重新计时下一个定时时间.

1. 分析:

输出: AG, AY, AR, BG, BY, BR = 1 亮 输入、输出均是高电平有效(=1)

系统需要几部分:

2. 建立 ASM图

3. 控制器设计 $(用 M, Y, Z 得到: T_0, T_1, T_2, T_3)$

方法2:用 MUX, D-FF, 译码器设计控制器

根据 ASM: 4 个状态 T₀, T₁, T₂, T₃

输出: 高电平有效 2-4 译码器

其入口接两个 D-FF 的出口 Q_1, Q_0

D-FF的入口各接一个4-1 MUX

4-1 MUX入口接M, Y, Z, 实现

控制 M, Y, Z T_0, T_1, T_2, T_3

状态表, 找到 Q_1^{n+1} , Q_0^{n+1} (即 D_1 , D_0) 与输入 M, Y, Z 的关系 从ASM图:

状态 符号	现状态 Q ₁ ⁿ Q ₀ ⁿ	输入 Y Z M	新状态 Q_1^{n+1} Q_0^{n+1}	输出 T ₀ T ₁ T ₂ T ₃
T_0	0 0	0 Ф Ф 1 Ф 0 1 Ф 1	$egin{pmatrix} {\bf 0} & {f 0} & {f 0} \ {f 0} & {f 0} \ {f 0} & {f 1} \ \end{pmatrix} {\it YM}$	1 0 0 0
T_1	0 1	Φ 0 Φ Φ 1 Φ	$egin{array}{cccc} \mathbf{Z} \left\{ egin{array}{cccc} 0 & 1 \ 1 & 0 \end{array} ight\} \ ar{\mathbf{Z}} \end{array}$	0 1 0 0
T_2	1 0	0 Ф 1 0 Ф 0 1 Ф Ф	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0
T ₃	1 1	Φ 0 Φ Φ 1 Φ	$egin{array}{cccc} ar{z} & \{ egin{array}{cccc} 1 & 1 \\ 0 & 0 \ \end{array} \} & ar{z} \end{array}$	0 0 0 1

4-1MXU的输入即转换条件,也就是 D-FF 的输入变量方程,用引入变量 K-map (VEM),把 M, Y, Z 作引入变量.

四个小格分别为4-1MUX的输入端变量

电路

$$T_0$$
 状态($T_0T_1T_2T_3 = 1000$), $Q_1Q_0 = 00$,使 $A_1A_0 = 00$, $(4-1$ 选 D_0 ')

$$D_1 = W_1 = 0$$
, $D_0 = W_0 = MY$, 下一个 *CLK* 到来, $Q_1^{n+1} = D_1 = 0$, $Q_0^{n+1} = D_0 = MY$.

若
$$MY = 0$$
, 即 $\left\{ \begin{array}{l}$ 或支路无车 $\\$ 或 16 s 未到 $\end{array} \right\} Q_1Q_0 = 00$, 保持 T_0

当 MY = 1 (支路有车, 16 s 到), $Q_1Q_0 = 01$, 输出新状态 T_1 (0100);

4. 数据处理器设计

(1) 灯电路

$$AG = T_0$$

$$AY = T_1$$

$$AR = T_2 + T_3$$

状态	AG	AY	AR	BG	BY	BR
$\mathbf{T_0}$	1	0	0	0	0	1
T_1	0	1	0	0	0	1
$\mathbf{T_2}$	0	0	1	1	0	0
T_3	0	0	1	0	1	0

$$BG = T_2$$

$$BY = T_3$$

$$BR = T_0 + T_1$$

(2) 定时启动电路 (产生 t = 1)

定时启动:
$$t=1$$
 ASM: $t=1$ 条件

$$t = T_0 YM + T_1 Z + T_2 Y + T_2 \overline{YM} + T_3 Z$$
$$= T_0 YM + (T_1 + T_3)Z + T_2 (Y + \overline{M})$$

(3) 计时电路 (产生Y,Z)

2个计数器 Y:16 s, Z:3 s.

74161 驱动要求

用74161实现: M-16 (Y) 和 M-3 (Z)

控制信号操作		驱动条件 CLR LD CNT CNP D ₃ D ₂ D ₁ D ₀								
,	下降沿 丁	Clear (清0)	0	Ф	Φ	Φ	Ф	Φ	Φ	Φ
	t	启动 (预置)	1	0	1	1	0	0	0	0

$$CLR$$
 上 下降指 $\overline{LD} = \overline{t}$ $D_3D_2D_1D_0 = 0000$ $ENT = ENP = 1$

$$Q_3Q_2Q_1Q_0 = 1111$$

(CO = 1) 时, $Y = 1$ (M-16)
 $Q_3Q_2Q_1Q_0 = 0010$ 时,
 $Z = 1$ (M-3)

Y和Z输出

ASM 分析,

什么状态下计时16 s, 3 s?

$$Y = (T_0 + T_2)CO = 1$$

即 T_0 或 T_2 状态下,

$$CO = 1 (Q_3Q_2Q_1Q_0 = 1111)$$

$$Y=1$$
;

$$Z = (T_1 + T_3)Q_1 = 1$$

即 T₁ 或 T₃ 状态下,

$$Q_3Q_2Q_1Q_0 = 0010$$

$$Z=1$$
.

系统

- 注:① 整个系统用一个CLK 脉冲(控制器和计数器)
 - ② 整个系统用一个 \overline{CLR} (包括 $\overline{R_D}$) \ \

作业

- 8.3
- 8.5
- 8.7
- 8.8
- 8.10