CMPT-413 Computational Linguistics

 $\label{lem:anoop} A noop \ Sarkar \\ \ http://www.cs.sfu.ca/{\sim} anoop \\$

February 16, 2007

- ▶ So far we've seen the probability of a sentence: $P(w_0, ..., w_n)$
- ▶ What is the probability of a collection of sentences, that is what is the probability of a corpus
- Let $T = s_0, \dots, s_m$ be a text corpus with sentences s_0 through s_m
- What is P(T)? Let us assume that we trained P(·) on some training data, and T is the test data

- $ightharpoonup T = s_0, \dots, s_m$ is the text corpus with sentences s_0 through s_m
- $\triangleright P(T) = \prod_{i=0}^m P(s_i)$
- $P(s_i) = P(w_0^i, \ldots, w_n^i)$
- Let W_T be the length of the text T measured in words
- ▶ Then for the unigram model, $P(T) = \prod_{w \in T} P(w)$
- Upper bound on probability of text T is 1
- So for each word w in text T of length W_T a good upper bound for P(w) will be:

$$P(w) = \frac{1}{W_T}$$

▶ Cross entropy is a distance measure between target p_t and estimate p_e .

$$H(p_t, p_e) = -\sum_{x \in \mathcal{E}} p_t(x) \log_2 p_e(x)$$

▶ We can use our upper bound for the target $p_t(x) = \frac{1}{W_T}$

$$H_P(T) = -\sum_{w \in T} \frac{1}{W_T} \log_2 P(w)$$

= $-\frac{1}{W_T} \log_2 \prod_{w \in T} P(w) = -\frac{1}{W_T} \log_2 P(T)$

- Above we use a unigram model P(w), but the same derivation holds for bigram, trigram, . . .
- ▶ Cross entropy for T: $H(T) = -\frac{1}{W_T} \log_2 P(T)$
- ▶ Perplexity of test data $T: PP(T) = 2^{H(T)}$

- Lower cross entropy values and perplexity values are better
 Lower values mean that the model is better
 Correlation with performance of the language model in various applications
- Performance of a language model is its cross-entropy or perplexity on test data (unseen data)
 corresponds to the number bits required to encode that data
- ➤ On various real life datasets, typical perplexity values yielded by n-gram models on English text range from about 50 to almost 1000 (corresponding to cross entropies from about 6 to 10 bits/word)

Bigram Models

In practice:

$$P(\mathsf{Mork} \; \mathsf{read} \; \mathsf{a} \; \mathsf{book}) = \\ P(\mathsf{Mork} \; | \; < \mathsf{start} >) \times P(\mathsf{read} \; | \; \mathsf{Mork}) \times \\ P(\mathsf{a} \; | \; \mathsf{read}) \times P(\mathsf{book} \; | \; \mathsf{a}) \times \\ P(< \mathsf{stop} > \; | \; \mathsf{book})$$

► $P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$ On unseen data, $c(w_{i-1}, w_i)$ or worse $c(w_{i-1})$ could be zero

$$\sum_{w_i} \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} = ?$$

Smoothing

- Smoothing deals with events that have been observed zero times
- Smoothing algorithms also tend to improve the accuracy of the model

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Not just unobserved events: what about events observed once?

Add-one Smoothing

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-one Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{1 + c(w_{i-1}, w_i)}{V + c(w_{i-1})}$$

► Let *V* be the number of words in our vocabulary Assign count of 1 to unseen bigrams

Add-one Smoothing

$$P(\mathsf{Mindy\ read\ a\ book}) = \\ P(\mathsf{Mindy\ }| < \mathsf{start} >) \times P(\mathsf{read\ }| \ \mathsf{Mindy}) \times \\ P(\mathsf{a\ }| \ \mathsf{read}) \times P(\mathsf{book\ }| \ \mathsf{a}) \times \\ P(< \mathsf{stop} > \ | \ \mathsf{book})$$

Without smoothing:

$$P(\text{read} \mid \text{Mindy}) = \frac{c(\text{Mindy, read})}{c(\text{Mindy})} = 0$$

With add-one smoothing (assuming c(Mindy) = 1 but c(Mindy, read) = 0):

$$P(\text{read} \mid \text{Mindy}) = \frac{1}{V+1}$$

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ Add-one smoothing works horribly in practice. Seems like 1 is too large a count for unobserved events.
- Additive Smoothing:

$$P(w_i \mid w_{i-1}) = \frac{\delta + c(w_{i-1}, w_i)}{(\delta \times V) + c(w_{i-1})}$$

 $lackbox{0} < \delta \leq 1$ Still works horribly in practice, but better than add-one smoothing.

Good-Turing Smoothing: (Good, 1953)

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- Imagine you're sitting at a sushi bar with a conveyor belt.
- You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of yellowtail
- ► Chance you will observe a new kind of seafood: $\frac{3}{18}$
- ► How likely are you to see another plate of salmon: should be $<\frac{2}{18}$

Good-Turing Smoothing

- ► How many types of seafood (words) were seen once? Use this to predict probabilities for unseen events

 Let n_1 be the number of events that occurred once: $p_0 = \frac{n_1}{N}$
- ► The Good-Turing estimate states that for any *n*-gram that occurs *r* times, we should pretend that it occurs *r** times

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$

Good-Turing Smoothing

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ► How likely is new data? Let n₁ be the number of items occurring once, which is 3 in this case. N is the total, which is 18.

$$p_0 = \frac{n_1}{N} = \frac{3}{18} = 0.166$$

Good-Turing Smoothing

- ▶ 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail
- ▶ How likely is *octopus*? Since c(octopus) = 1 The GT estimate is 1^* .

$$r^* = (r+1)\frac{n_{r+1}}{n_r}$$
$$p_{GT} = \frac{r^*}{N}$$

▶ To compute 1^* , we need $n_1 = 3$ and $n_2 = 1$

$$1^* = 2 \times \frac{1}{3} = \frac{2}{3}$$

$$p_1 = \frac{1^*}{18} = 0.037$$

▶ What happens when $n_{r+1} = 0$? (smoothing before smoothing)

Simple Good-Turing: linear interpolation for missing n_{r+1}

Comparison between Add-one and Good-Turing

freq	num with freq r	NS	Add1	SGT
r	n_r	p_r	p_r	p_r
0	0	0	0.0294	0.12
1	3	0.04	0.0588	0.03079
2	2	0.08	0.0882	0.06719
3	1	0.12	0.1176	0.1045
5	1	0.2	0.1764	0.1797
_10	1	0.4	0.3235	0.3691

$$N = (1*3) + (2*2) + 3 + 5 + 10 = 25$$

$$V = 1 + 3 + 2 + 1 + 1 + 1 = 9$$

▶ NS = No smoothing:
$$p_r = \frac{r}{N}$$

▶ Add1 = Add-one smoothing:
$$p_r = \frac{1+r}{V+N}$$

▶ SGT = Simple Good-Turing:
$$p_0 = \frac{n_1}{N}$$
, $p_r = \frac{(r+1)\frac{n_{r+1}}{n_r}}{N}$ with linear interpolation for missing values where $n_{r+1} = 0$ (Gale and Sampson, 1995) $http://www.grsampson.net/AGtf1.html$

• Check that: $1.0 == \sum_r n_r \times p_r$

Simple Backoff Smoothing: incorrect version

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ▶ In add-one or Good-Turing: P(the | string) = P(Fonz | string)
- ▶ If $c(w_{i-1}, w_i) = 0$, then use $P(w_i)$ (back off)
- ▶ Works for trigrams: back off to bigrams and then unigrams
- Works better in practice, but probabilities get mixed up (unseen bigrams, for example will get higher probabilities than seen bigrams)

Backoff Smoothing: Jelinek-Mercer Smoothing

$$P_{ML}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

- ► $P_{JM}(w_i \mid w_{i-1}) = \lambda P_{ML}(w_i \mid w_{i-1}) + (1 \lambda)P_{ML}(w_i)$ where, $0 \le \lambda \le 1$
- Notice that P_{JM} (the | string) > P_{JM} (Fonz | string) as we wanted
- ▶ Jelinek-Mercer (1980) describe an elegant form of this interpolation:

$$P_{JM}(n \text{gram}) = \lambda P_{ML}(n \text{gram}) + (1 - \lambda)P_{JM}(n - 1 \text{gram})$$

▶ What about $P_{JM}(w_i)$? For missing unigrams: $P_{JM}(w_i) = \lambda P_{ML}(w_i) + (1 - \lambda) \frac{\delta}{V}$

$$P_{JM}(n \operatorname{gram}) = \lambda P_{ML}(n \operatorname{gram}) + (1 - \lambda)P_{JM}(n - 1 \operatorname{gram})$$

- \blacktriangleright Different methods for finding the values for λ correspond to variety of different smoothing methods
- Katz Backoff (include Good-Turing with Backoff Smoothing)

$$P_{katz}(y \mid x) = \begin{cases} \frac{c^*(xy)}{c(x)} & \text{if } c(xy) > 0\\ \alpha(x)P_{katz}(y) & \text{otherwise} \end{cases}$$

▶ where $\alpha(x)$ is chosen to make sure that $P_{katz}(y \mid x)$ is a proper probability

$$\alpha(x) = 1 - \sum_{y} \frac{c^*(xy)}{c(x)}$$

$$P_{JM}(n \text{gram}) = \lambda P_{ML}(n \text{gram}) + (1 - \lambda)P_{JM}(n - 1 \text{gram})$$

- ▶ Deleted Interpolation (Jelinek, Mercer) compute λ values to minimize cross-entropy on **held-out** data which is deleted from the initial set of training data
- ▶ Improved JM smoothing, a separate λ for each w_{i-1} :

$$P_{JM}(w_i \mid w_{i-1}) = \lambda(w_{i-1})P_{ML}(w_i \mid w_{i-1}) + (1 - \lambda(w_{i-1}))P_{ML}(w_i)$$
 where $\sum_i \lambda(w_i) = 1$ because $\sum_{w_i} P(w_i \mid w_{i-1}) = 1$

$$P_{JM}(\textit{n} \textit{gram}) = \lambda P_{ML}(\textit{n} \textit{gram}) + (1 - \lambda)P_{JM}(\textit{n} - 1\textit{gram})$$

- ▶ Witten-Bell smoothing use the n − 1 gram model when the n gram model has too few unique words in the n gram context
- Absolute discounting (Ney, Essen, Kneser)

$$P_{abs}(y \mid x) = \begin{cases} \frac{c(xy) - D}{c(x)} & \text{if } c(xy) > 0\\ \alpha(x) P_{abs}(y) & \text{otherwise} \end{cases}$$

compute $\alpha(x)$ as was done in Katz smoothing

$$P_{JM}(ngram) = \lambda P_{ML}(ngram) + (1 - \lambda)P_{JM}(n - 1gram)$$

- ▶ Kneser-Ney smoothing P(Francisco | eggplant) > P(stew | eggplant)
 - ► *Francisco* is common, so interpolation gives *P*(Francisco | eggplant) a high value
 - ▶ But Francisco occurs in few contexts (only after San)
 - stew is common, and occurs in many contexts
 - Hence weight the interpolation based on number of contexts for the word using discounting

$$P_{JM}(ngram) = \lambda P_{ML}(ngram) + (1 - \lambda)P_{JM}(n - 1gram)$$

- Modified Kneser-Ney smoothing (Chen and Goodman) multiple discounts for one count, two counts and three or more counts
- Finding λ: use Generalized line search (Powell search) or the Expectation-Maximization algorithm

Trigram Models

▶ Revisiting the trigram model:

```
P(w_1, w_2, ..., w_n) = P(w_1) \times P(w_2 \mid w_1) \times P(w_3 \mid w_1, w_2) \times P(w_4 \mid w_2, w_3) \times ... P(w_i \mid w_{i-2}, w_{i-1}) ... \times P(w_n \mid w_{n-2}, ..., w_{n-1})
```

- ▶ Notice that the length of the sentence *n* is variable
- What is the event space?

The stop symbol

- Let $\Sigma = \{a, b\}$ and the language be Σ^* so $L = \{\epsilon, a, b, aa, bb, ab, bb . . . \}$
- ► Consider a unigram model: P(a) = P(b) = 0.5
- ► P(a) = 0.5, P(b) = 0.5, $P(aa) = 0.5^2 = 0.25$, P(bb) = 0.25 and so on.
- ▶ But P(a) + P(b) + P(aa) + P(bb) = 1.5 !!

$$\sum_{w} P(w) = 1$$

The stop symbol

- ▶ What went wrong? No probability for $P(\epsilon)$
- ► Add a special stop symbol:

$$P(a) = P(b) = 0.25$$

 $P(stop) = 0.5$

▶ P(stop) = 0.5, $P(a \text{ stop}) = P(b \text{ stop}) = 0.25 \times 0.5 = 0.125$, $P(aa \text{ stop}) = 0.25^2 \times 0.5 = 0.03125$ (now the sum is no longer greater than one)

The stop symbol

With this new stop symbol we can show that $\sum_{w} P(w) = 1$ Notice that the probability of any sequence of length n is $0.25^{n} \times 0.5$

Also there are 2^n sequences of length n

$$\sum_{w} P(w) = \sum_{n=0}^{\infty} 2^{n} \times 0.25^{n} \times 0.5$$
$$\sum_{n=0}^{\infty} 0.5^{n} \times 0.5 = \sum_{n=0}^{\infty} 0.5^{n+1}$$
$$\sum_{n=1}^{\infty} 0.5^{n} = 1$$