MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim 2

Stefan Kohl

Data: 07.06.2012, Ora: 14:00 - 15:30

Emri.	Mbiemri:	

Pergjigjuni 3 pyetje e meposhtme. Nuk i lejohet te perdore asgje pervec leter e bardhe dhe nje stilolaps. Maksimumi i pikeve te mundshme eshte 30.

1. A konvergjojne vargjet $\lim_{n\to\infty} f_n(x)$ me $f_n(x)$ si me poshte ne \mathbb{R} , dhe nese po, kemi vetem konvergjencen pikesore apo edhe konvergjencen uniforme?:

1.
$$f_n(x) = 0$$

5.
$$f_n(x) = x + n$$

9.
$$f_n(x) = x + \frac{1}{n}$$

2.
$$f_n(x) = 1$$

6.
$$f_n(x) = nx$$

6.
$$f_n(x) = nx$$
 10. $f_n(x) = \frac{x}{n}$

3.
$$f_n(x) = x$$

7.
$$f_n(x) = x^2$$

3.
$$f_n(x) = x$$
 7. $f_n(x) = x^2$ 11. $f_n(x) = \frac{n}{x^2 + 1}$

4.
$$f_n(x) = n$$

4.
$$f_n(x) = n$$
 8. $f_n(x) = x^2 + nx$ 12. $f_n(x) = \frac{x^2}{n}$

12.
$$f_n(x) = \frac{x^2}{n}$$

(12 pike)

- 2. Vertetoni apo gjeni kundershembuj:
 - 1. Per cdo $c, x \in \mathbb{R}$ funksioni konstant $f_c(x) = c$ eshte i vazhdueshem ne x.
 - 2. Per cdo $c, x \in \mathbb{R}$ funksioni konstant $f_c(x) = c$ eshte i diferencueshem ne x.
 - 3. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte i vazhdueshem ne intervalin [0, 1] eshte i vazhdueshem edhe ne intervalin [1, 2].
 - 4. Cdo funksion $f:\mathbb{R}\to\mathbb{R}$ i cili eshte i vazhdueshem ne cdo $x\in\mathbb{R}$ eshte i difference when ne x = 0.
 - 5. Nese $f: \mathbb{R} \to \mathbb{R}$ eshte nje funksion i vazhdueshem te tille qe $\forall x \in \mathbb{Q} \ f(x) \in \mathbb{Q}$, ne kemi gjithmon $\forall x \in \mathbb{R} \setminus \mathbb{Q} \ f(x) \in \mathbb{R} \setminus \mathbb{Q}$.
 - 6. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ te tille qe $f([0,1] \cup [2,3]) = [0,1]$ nuk eshte i vazhdueshem.
 - 7. Cdo varg funksionesh (f_n) i cili konvergjon uniformisht ne intervalin $[0, 1 - \epsilon]$ per cdo $\epsilon > 0$ konvergion uniformisht edhe ne intervalin [0, 1].

(14 pike)

3. Gjeni nje funksion $f: \mathbb{R} \to \mathbb{R}$ te vazhdueshme te tille qe f([0,1]) =]0,1[, apo tregoni qe nje funksion te tille nuk egziston. (4 pike)