Final Report

Team 1

Jerry Xu Yan Xu Brian Solmos

Table of Content

- Project Overview
- Block Level Overview
- Work Distribution
- Architecture
- Simulation/Verification
- Implementation
- Results
- Future Work

Project Overview

- · Goal:
- Track the position of a stylus in a 3D coordinate system using FPGA and a camera

Project Overview

- Our Solution:
- Uses one overhead camera to detect a green marker attached to the back of the pen
- Obtain x and y coordinates by finding the center of the marker
- Derive z coordinate based on the size of the marker in the screen.

D8M Camera Module

- · Control Camera (Autofocus, Frame Rate, Resolution...)
- Convert RAW to RGB
- Buffer Image Data
- Control Video Output
- Perform Location Tracking
- · Generate Highlighted Video Stream

D8M Camera Module

- · RFS Wi-Fi Module
 - Establish and Maintain Wi-Fi Connection
 - Read Location Tracker
 - · Create Data Payload
 - Send UDP Packet to PC

RFS Wi-Fi Module

Work Distribution

- Brian:
- Developed the Tracking Code and Testbench
- Optimized the Tracking Design
- · Yan:
- · Developed the camera module and integrated with Wi-Fi module
- Add location information to video output through tracker
- Jerry:
- · Developed the Wi-Fi module and integrated with camera module
- Tested and fixed the integrated system
- Developed the Python plotting code

Architecture – Strategy

Location Tracker

- Use a streaming architecture similar to Sobel
- FPGA record the line number of the first and last green pixels it sees to obtain y coordinate
- Record the column number of the rightmost and leftmost green pixel to obtain x coordinate
- Use the average of the ratio of x and y pixel count of a reference position with the measured x and y pixel count to find the z coordinate

Architecture – Strategy

- · Wi-Fi and D8M Camera Module
- Developed separately based on samples from Altera
- Modified the sample code to achieve desired functions
- Verify using simulation and on-board testing
- Merged into one large design

Architecture – Optimizations

- · Reduce number of states in state machine
- Optimize task division between states
- Change multiplication and division to shifting
- Reduce memory overhead
- Remove unused modules

Location Tracker

• D8M Camera Module Top Level

RAW to RGB

Conversion

System Top Level

Architecture – Data Flow

Structure of Overall Design

Architecture – Design Difficulties

• D8M Camera Module

- Understand the functions of different modules
- Understand the content of signals
- Design the tracker based on VGA control signals
- Reduce number of states so that every pixel only takes 2 cycles
- Generate global reset signal to ensure synchronization across components

Architecture – Design Difficulties

RFS Wi-Fi Module

- Control memory utilization
- Generate and send outputs using C Code
- Debug with standard C Errors
- Design and implement SOPC with Platform designer

Simulation/Verification

Green Region Detection

Simulation/Verification

- Serialized Green Region Detection
 - The counter is set to three.
 - · Smooth execution and FIFO works fine.

```
# vsim -classdebug -voptargs="+acc" "+notimingchecks" -L work work.tracking tb -wlf tracking tb.wlf
# Start time: 11:41:38 on May 31,2022
# Loading sv std.std
# Loading work.tracking tb
# Loading work.tracking
# Loading work.fifo
# WARNING: No extended dataflow license exists
# ** Warning: (vsim-WLF-5000) WLF file currently in use: tracking tb.wlf
            File in use by: vxul9 Hostname: DESKTOP-4A5RIDA ProcessID: 1748
            Attempting to use alternate WLF file "./wlftkzv20e".
# ** Warning: (vsim-WLF-5001) Could not open WLF file: tracking tb.wlf
            Using alternate file: ./wlftkzv20e
# @ 20: Loading file green_dot.bmp...
# @ 7776050: center x is 362...
# @ 7776050: center v is 101...
# @ 7776050: width out
# @ 7776050: height out
# @ 15552050: width out
# @ 15552050: height out
# @ 23328050: width out
# @ 23328050: height out
# ** Note: $finish : ./tracking tb.sv(222)
     Time: 23328050 ns Iteration: 1 Instance: /tracking tb
```

Simulation/Verification

- Timing Analysis for Tracking Module
 - Required Clock Frequency

LUTs for combinational functions (total_luts)	441	Non I/O Registers (non_io_reg)	189	
I/O Pins	102	I/O registers (total_io_reg)	0	
DSP Blocks (dsp_used)	0 (15)	Memory Bits	12288	
Detailed report		Hierarchical Area report		

Clock Name (clock_name)	Req Freq (req_freq)	Est Freq (est_freq)	Slack (slack)	
tracking clock_25	50.0 MHz	288.1 MHz	16.529	
tracking clock_50	50.0 MHz	181.5 MHz	14.491	
<u>Detailed report</u>		Timing Report View		

Implementation

Resource Utilization

- Logic utilization (in ALMs) 9,664 / 41,910 (23 %)
- Total registers 16805
- Total pins 108 / 314 (34 %)
- Total virtual pins 0
- Total block memory bits 4,317,376 / 5,662,720 (76 %)
- Total DSP Blocks 5 / 112 (4 %) Total PLLs 2 / 6 (33 %)
- Total DLLs 0/4(0%)

Results

• Spiral Movement Tracking Result

Results

· Circle in XY Plane

Results

· Circle in XZ Plane

Future Work

- Add HUD style data display using the NIOS II processor
- Support higher quality video stream
- Include additional sensors like gyro that can account for tilted markers
- Improve our coordinate calculation code to reduce the impact of noise.
 - Require continuous green pixels
 - Ignoring smaller regions.

