R16

Code No: **R1641022**

Set No. 1

IV B.Tech I Semester Regular Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Electrical and Electronics Engineering)

Time: 3 hours Max			Marks: 70				
		Question paper consists of Part-A and Part-B					
		Answer ALL sub questions from Part-A					
		Answer any FOUR questions from Part-B					

PART-A (14 Marks)							
1.	a)	What is the purpose of level translator in an op-amp?	[3]				
	b)	List the different feedback configurations of an op-amp.	[2]				
	c)	Draw a circuit to find $V_0 = (V_1 + V_2) - (V_3 + V_4)$.	[3]				
	d)	What are the disadvantages of passive filter?	[2]				
	e)	Draw the block schematic of the PLL.	[2]				
	f)	What is the output analog voltage of a 4 bit DAC for an input bit stream of 1101					
	,	and reference voltage of 5V?	[2]				
		$\mathbf{PART-B}\ (4x14 = 56\ Marks)$					
2.	a)	Derive the expression for voltage gain, input resistance and output resistance of					
	•	Dual input Balanced output Differential Amplifier.	[7]				
	b)	List out the characteristics of single ended input, balance output differential					
	,	amplifier.	[7]				
			L . J				
3.	a)	A differential amplifier has a common a common mode gain $A_C = 0.1$ and					
	/	difference mode gain Ad = 200. Let the input signal be $V_1 = 1050 \mu V$ and $V_2 =$					
		950 μV. Compute the output voltage and CMRR.	[7]				
	b)	What is the need for frequency compensation in practical op-amps and how do	r. 1				
	0)	you achieve them?	[7]				
		you deline to them.	[,]				
4.	a)	Find R ₁ and R _f in the practical integrator (lossy integrator), so that the peak gain					
•)	is 20 dB and the gain is 3 dB down from its peak when ω =10,000 rad/sec. Use a					
		capacitance of $0.01 \mu F$.	[7]				
	b)	What is a voltage to current converter? How can an op-amp be used as a voltage	۲,٦				
	0)	to current converter for grounded load?	[7]				
		to current converter for grounded road.	[,]				
5.	a)	Compare the frequency response characteristics of first order and second order					
٠.)	Butterworth filters.	[7]				
	b)	With neat sketches, explain the response of II order Butterworth Filter. Derive an	۲, ٦				
	0)	expression for the critical frequency.	[7]				
		empression for the efficient mequency.	۲,٦				
6.	a)	A Schmitt trigger with the upper threshold level $V_{UT} = 0V$ and hysteresis width					
	,	$V_{\rm H}$ =0.2V converts a 1KHz sine wave of amplitude 4V _{PP} into a square wave.					
		Calculate the time duration of the negative and positive portion of the output					
		waveform.	[7]				
	b)	List the applications of Astable multivibrator.	[7]				
	0)	Zist the uppressions of ristable main violation	۲,٦				
7.	a)	A certain ADC has a full-scale of 2.55V (i.e., $V_A = 2.55V$ produces a digital					
	,	output of (11111111). It has a specified of 0.1% F.S. determine the maximum					
		amount by which the V_{AX} output can differ from the analog input.	[7]				
	b)	Explain parallel comparator (flash) ADC.	[7]				
	- /	1 0f1	r - 1				

IV B.Tech I Semester Regular Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B **** PART-A (14 Marks) 1. a) Define the term Differential amplifier. [3] b) What is an op-amp? [2] c) What is the difference between ac and dc amplifiers? [3] d) Draw the circuit diagram of all pass filter. [2] e) What is PLL? [2] What is meant by the resolution of a D/A converter? f) [2] PART-B (4x14 = 56 Marks)Compare the different configurations of differential amplifiers. 2. [7] Draw and explain the block diagram of an op-amp. [7] a) Explain the operation of op-amp based instrumentation amplifier. 3. [7] b) Write a brief note on the importance of compensating networks. [7] A Schmitt trigger with the upper threshold level $V_{UT} = 0V$ and hysteresis width V_H =0.2V converts a 1KHz sine wave of amplitude 4V_{PP} into a square wave. Calculate the time duration of the negative and positive portion of the output waveform. [7] b) Draw an op-amp summing amplifier circuit and obtain an expression for the output voltage. [7] Discuss the characteristics of Butterworth filter. 5. a) [7] b) Design a wide band pass filter having $f_L=400Hz$, $f_H=2KHz$ and pass band gain=4. Find the value of Q of the filter. [7] Sketch the functional schematic of 555 timer and explain how it can be used as a 6. a) monostable multivibrator? And also draw the waveforms. [7] b) How can 555 timer can be used as Schmitt trigger? [7] 7. a) Draw the block diagram of 3-bit R-2R ladder DAC and explain its operation. [7] b) Write the total number of clock pulses needed for counter type, flash, SAR, and dual slope ADC's. [7]

R16

Code No: **R1641022**

Set No. 3

IV B.Tech I Semester Regular Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B

		PART-A (14 Marks)	
1.	a)	What is meant by current mirror? Explain.	[3]
	b)	What are the merits and demerits of Dominant pole compensation method?	[2]
	c)	List the applications of sawtooth wave generator.	[3]
	d)	What are the advantages of active filters over passive filters?	[2]
	e)	Why is Schmitt trigger called as regenerative comparator?	[2]
	f)	What are the limitations of weighted resistor type D/A converter?	[2]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	Draw the circuit of Dual input and unbalanced output differential amplifier and	
		derive the expression for its output voltage.	[7]
	b)	Explain in detail about the operation of level translator with the help of neat	
		diagrams.	[7]
3.	a)	What are the characteristics of an ideal op-amp?	[7]
	b)	What are the limitations of open loop configuration of an op-amp?	[7]
4.	a)	Draw the circuit diagram of a typical instrumentation amplifier and explain why	
	L)	two stage op-amp circuit is used as an instrumentation amplifier.	[7]
	b)	What are the limitations of an ordinary op-amp integrator? Draw the circuit of a practical integrator and explain how it will eliminate these limitations.	[7]
		practical integrator and explain now it will eliminate these inilitations.	[,]
5.	a)	Design a second order Butterworth LPF having upper cutoff frequency 1KHz.	[7]
	b)	Design a wide band pass filter having f _L =400Hz, f _H =2KHz and pass band	[7]
		gain=4. Find the value of Q of the filter.	[7]
6.	a)	Explain the working of a Schmitt trigger.	[7]
	b)	Explain how a PLL can be used as a frequency multiplier.	[7]
_			
7.	a)	Explain the 4-bit weighted resistor type D/A converter in detail.	[7]
	b)	Describe the successive approximation A/D conversion principle.	[7]

Code No: **R1641022**

R16

Set No. 4

Max. Marks: 70

IV B.Tech I Semester Regular Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Electrical and Electronics Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

		$\underline{\mathbf{IAK1-A}}$ (14 Marks)	
1.	a)	What are the advantages of IC's over discrete circuits?	[3]
	b)	The output voltage of a certain op-amp circuit changes by 20V in 4µs. What is its	
		Slew rate?	[2]
	c)	What are the applications of peak detectors?	[3]
	d)	Draw the frequency response of notch filter.	[2]
	e)	Which is greater "capture range" or "lock in range"?	[2]
	f)	Which type of A/D converter is faster? Why?	[2]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	With a neat sketch explain the operation of current mirror circuit.	[7]
	b)	Draw the circuit diagram of level translator. Explain the operation with suitable	r. 1
	- /	examples	[7]
		1	
3.	a)	Define the terms:	
	ŕ	(i) Slew Rate (ii) CMRR	[7]
	b)	Distinguish between practical and ideal Op-amp. Draw its equivalent circuit.	[7]
	,		
4.	a)	Design an op-amp differentiator that will differentiate an input signal with $f_{max} =$	
		100 Hz. Draw the output waveform for a sine wave of 1v peak at 100 Hz applied	
		to the differentiator.	[7]
	b)	Explain in detail about Logarithmic amplifier.	[7]
5.	a)	With a neat diagram, explain about IC1496 modulator.	[7]
	b)	Draw 4 th order Butterworth high pass filter.	[7]
6.	a)	Using a block diagram explain the functioning of 555.	[7]
	b)	Draw and explain the 555 timer circuit in Astable mode to get output waveform	
		with 50% duty cycle.	[7]
7.	a)	An 8-bit A/D converter accepts an input voltage signal of range 0 to 10V. What	
		is the minimum value of the input voltage required to generate a change of	
		1 LSB?	[7]
	b)	Describe the operation of dual slope A/D converter.	[7]