2019-2020 学年 第一学期期末试卷

学号_	姓名	成绩
考试	日期: 2020年1月7日	
	考试科目:《数理经	统计》
-, ;	填空题(本题共16分,每小题4分)	
1. t	设 x_1, x_2, \dots, x_n 是来自正态总体 $N(0, \sigma^2)$ 的简单	样本,对给定的 $\alpha(0<\alpha<\frac{1}{2})$,
	用 $z_{1-\alpha}$ 表示标准正态分布的 $1-\alpha$ 分位数,则	$P\{ \overline{x} \leq \frac{\sigma}{\sqrt{n}} z_{1-\alpha}\} = \underline{\hspace{1cm}} \circ$
2.	设 x_1,x_2,\cdots,x_n 是来自正态总体 $N(0,\sigma^2)$ 的简	单样本,则当 $c=$ 时,随
	机变量 $c(\bar{x}^2 + \hat{\sigma}^2)$ 服从 χ^2 分布,其中 $\bar{x} = \frac{1}{n}\sum_{i=1}^n x_i$	$\hat{\sigma}_{i=1}^{n} x_{i}$, $\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$
3.	设 x_1,x_2,\cdots,x_n 是来自总体 X 的简单样本,记	$\mu = E(X)$, $\sigma^2 = Var(X) < +\infty$,
	则在μ的所有线性无偏估计组成的集合{Σ̄́́ι	$c_i x_i : \sum_{i=1}^n c_i = 1$ } 中,方差最小的线
10.	性无偏估计为。	
4.	设 x_1, x_2, \dots, x_{10} 是来自 Poisson 总体 $P(\lambda)$ 的	商单样本,其中未知参数 λ>0。
	考虑假设检验问题: $H: \lambda = \lambda_0 = 1.5$, $H_1: \lambda < \lambda_0$	$k_0=1.5$,则显著性水平 α 下的 一
}	致最优势检验函数为 $\varphi(x_1,x_2,\cdots,x_{10})=$, 且满
,	足 $E_{\lambda_0}(\varphi(x_1,x_2,\cdots,x_n))=\alpha$ 。(只给出表达形式	式,不需具体给出临界值等)

二、(本题 12 分)设总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

其中 $\theta>0$ 。 $x_1,x_2,...,x_n$ 是来自总体 X 的简单样本。(1) 求 θ 的一致最小方差无偏估计; (2) 问 θ 的一致最小方差无偏估计是否是有效估计? 说明理由。

三、(本题 12 分) 设 x_1, x_2, \dots, x_n 是来自正态总体 $N(0, \sigma^2)$ 的简单样本。考虑假设检验问题

$$H_0: \sigma^2 = \sigma_0^2, \qquad H_1: \sigma^2 > \sigma_0^2$$

(1) 求显著性水平 α (0 < α < 1) 的似然比检验,并用检验函数 φ (x) 表示之; (2) 求 φ (x) 的势,并讨论其单调性。

四、(本题 10 分) 考虑某四因子二水平试验,除考察因子 A,B,C,D 外,还需考察交互作用 $A\times B$, $A\times C$,所考虑指标是越大越好。选用表 $L_8(2^7)$,主因子的安排和试验数据如表 2 所示。

- (1) 根据表 1 完成表头设计;
- (2) 试用极差分析方法指出因子的主次顺序和最优搭配。

表 1 L₈(2⁷)交互作用列表

1	2	3	4	5	6	7
(1)	3	2	5	4	7	6
	(2)	1	6	7	4	5
		(3)	7	6	5	4
	4		(4)	1	2	3
				(5)	3	2
					(6)	1
						(7)

表 2 L₈(2⁷)正交表

列号		D .		\boldsymbol{A}	C		B	实验数据
试验号	1		4	4 5	6	6 7	大型双加	
1	1	1	1	1	1	1	1	2.02
2	1	1	1	2	2	2	2	1.78
3	1	2	2	1	1	2	2	2.08
4	1	2	2	2	2	1	1	1.69
5	2	1	2	1	2	1	2	2.23
6	2	1	2	2	1	2	1	2.16
7	2	2	1	1	2	2	1	1.95
8	2	2	1	2	1	1	2	1.84

五、(本题 10 分)设随机向量(x₁,x₂,x₃)协方差矩阵为

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & -2 \\ 0 & -2 & 2 \end{pmatrix}$$

(1) 欲使主成分的方差累计贡献率不小于85%,应选几个主成分?(2)求(1)中所选的主成分。