7. szeminárium: A vállalat

Berde 85. o. \rightarrow 45. feladat

Önnek és néhány csoporttársának a következő ötlete merül fel. Az előadásvázlatok, szemináriumi jegyzetek, kötelező irodalmak másolására fénymásolót létesítenek, egyelőre egy évi működésre az egyetem épületében, kizárólagos fénymásolási joggal. A bérleti díj évi 120 ezer forint, a berendezés költsége 100 000 forint. A berendezés működtetésével járó költségek 1000 forintot tesznek ki naponta. Az eddig felsorolt költségek teljes fedezetére kamatmentes hitelt vesznek fel, amelyet az év végén kell törleszteniük. (Amennyiben belevágnak a vállalkozásba, akkor egy évig minden munkanapon, azaz havonta 22 napon biztosan üzemeltetni fogják a gépeket.) Egy lap másolása Önöknek 3 forintba kerül. A konkurenciát figyelembe véve egy lap másolását 7 forintért vállalják.

Határozzuk meg a vállalkozás éves fix költségét, változóköltség-függvényét, s azt a minimális másolási mennyiséget, amely mellett a tervezett költségek teljesen megtérülnek!

- bérleti díj → 120 000 Ft/ év
- a berendezés költsége → 100 000 Ft
- a berendezés működtetésével járó költségek → 1000 Ft/nap
- a költségek teljes fedezetére kamatmentes hitelt vesznek fel, amelyet az év végén kell törleszteniük
- egy évig minden munkanapon, azaz havonta 22 napon biztosan üzemeltetni fogják a gépeket
- azaz működési idő egy évben → 12 hó · 22 nap = 264 nap
- éves működési költség → 264 nap · 1000 Ft/nap = 264 000 Ft
- másolási költség → 3 Ft/lap
- a másolás ára → 7 Ft/lap
- a) éves fix költség (FC)?
- b) változóköltség-függvény (VC)?
- c) a minimális másolási mennyiség, amely mellett a tervezett költségek teljesen megtérülnek? (p = 7-hez tartozó fedezeti mennyiség)

a) Mekkora az éves fix költség (FC)?

A költségek, amik felmerülnek:

- bérleti díj → 120 000 Ft/ év
- a berendezés költsége → 100 000 Ft
- éves működési költség → 264 nap · 1000 Ft/nap = 264 000 Ft

így az összes fix költség:

FC = 120000 + 100000 + 264000 = 484000 Ft

- másolási költség → 3 Ft/lap → vc → ez az egységenkénti változó költség
- a másolás ára \rightarrow 7 Ft/lap $\rightarrow p \rightarrow$ ez az eladási ár

vc = 3 Ft / lapp = 7 Ft / lap

Az éves fix költség: FC = 484 000 Ft.

b) Határozzuk meg a változóköltség-függvényt (VC)!

• a változó költség függ a megtermelt mennyiségtől, tehát Q-tól >

$$VC = vc \cdot Q$$

 $VC = 3Q$
ha $Q = 0$ akkor $\rightarrow VC = 0$
ha $Q \uparrow$ akkor $\rightarrow VC \uparrow$

A változó költség függvény: VC = 3Q.

- c) Mi az a minimális másolási mennyiség, amely mellett a tervezett költségek teljesen megtérülnek?
- ez tulajdonképpen a p = 7-hez tartozó fedezeti mennyiség
- S → sales → árbevétel, ez egy számviteli-pénzügyi kategória
- TR → Total Revenue → teljes bevétel

A fedezeti mennyiség:

$$S-VC-FC=0$$
 vagy
 $TR-VC-FC=0$
 $TR-TC=0$
 $TR=TC$

$$TR = p \cdot Q$$
 $TC = VC + FC$
 $TR = 7Q$ $TC = 3Q + 484000$
 $TR = TC$
 $7Q = 3Q + 484000$
 $4Q = 484000$
 $Q = 121000$

121 000 db lap az a minimális másolási mennyiség, amely mellett a tervezett költségek teljesen megtérülnek.

Berde 83. o. \rightarrow 39. feladat

Egy vállalkozó első évi tevékenységére vonatkozó adatok a következők: az éves árbevétel 30 millió forint volt, a számlákkal igazolható különböző pénzügyi kiadások együttesen 16 millió forintot tettek ki. A kiadások fedezeteként saját megtakarításaiból 2 millió forintot használt fel. Amennyiben nem vállalkozó lenne, akkor tanult szakmájában évente 2.2 millió forintot kereshetne. A gazdaságra jellemző banki kamat 20 százalék.

Határozzuk meg a vállalkozás normál profitját, gazdasági profitját és számviteli profitját!

- az éves árbevétel → 30 millió Ft
- a számlákkal igazolható különböző pénzügyi kiadások → 16 millió Ft
- a kiadások fedezeteként felhasznált megtakarítás → 2 millió Ft
- amennyiben nem vállalkozó lenne, akkor tanult szakmájában évente 2.2 millió Ft kereshetne
- a gazdaságra jellemző banki kamat → 20%
- a) a vállalkozás számviteli profitja?
- b) a vállalkozás gazdasági profitja?
- c) a vállalkozás normál profitja?

Számviteli profit =

- + éves árbevétel
- számlákkal igazolható költségek (explicit költség)

Gazdasági profit =

- + éves árbevétel
- számlákkal igazolható költségek (explicit költség)
- elszalasztott kamatjövedelem
- elszalasztott kereset

Normál profit =

- +elszalasztott kamatjövedelem
- +elszalasztott bér

a) Határozzuk meg a vállalkozás számviteli profitját!

Számviteli profit =

- + éves árbevétel
- számlákkal igazolható költségek (explicit költség)

Számviteli profit =

- + 30 millió Ft
- 16 millió Ft
- + 14 millió Ft

A számviteli profit 14 millió Ft.

b) Határozzuk meg a vállalkozás gazdasági profitját!

Gazdasági profit =

- + éves árbevétel
- számlákkal igazolható költségek (explicit költség)
- elszalasztott kamatjövedelem
- elszalasztott kereset

elszalasztott kamatjövedelem = (megtakarítások \cdot banki kamat) elszalasztott kamatjövedelem = 2 millió Ft \cdot 0.2 = 0.4 millió Ft

Gazdasági profit =

- + 30 millió Ft
- 16 millió Ft
- 0.4 millió Ft
- 2.2 millió Ft
- + 11.4 millió Ft
- ha a gazdasági profit pozitív, akkor a vállalat tulajdonosai a működést választják
- 11.4 millió Ft > 0
- azaz megéri működtetni a vállalkozást
- a negatív gazdasági profit azt jelenti, hogy az vállalat erőforrásait máshol jobban lehetne hasznosítani

A gazdasági profit 11.4 millió Ft.

c) Határozzuk meg a vállalkozás normál profitját!

Normál profit =

- +elszalasztott kamatjövedelem
- +elszalasztott bér

Normál profit =

- + 0.4 millió Ft
- + 2.2 millió Ft
- + 2.6 millió Ft

A normál profit 2.6 millió Ft.

implicit költség lehet:

- elszámolható
- és nem elszámolható

explicit költség:

• csak elszámolható költség (a számlákkal igazolható kts)

normál profit → az implicit költségekből nem elszámolható rész pl. feláldozott munkajövedelem, feláldozott tőkejövedelem, rejtett költségek, alternatív költség

gazdasági profit = árbevétel – elszámolható költségek (explicit ktsek) – normál profit (az implicit költség nem elszámolható része)

gazdasági profit = számviteli profit – normál profit (az implicit költség nem elszámolható része)

számviteli profit = árbevétel – elszámolható költségek (explicit ktsek)

normál profit = az implicit költségekből a nem elszámolható rész

számviteli profit = gazdasági profit + normál profit (az implicit költségből a nem elszámolható rész)

- 11.4 millió + 2.6 millió = 14 millió
- a gazdasági profit esetén az implicit költségek nem elszámolható részét le kell vonni → a számviteli profitnál nem → így visszakorrigáljuk

Költségek és profitok

ÁRBEVÉTEL (R)							
GAZDASÁGI	GAZDASÁGI PROFIT						
EXPLICIT KÖLTSÉGEK	IMPLICIT KÖLTSÉGEK		GAZDASÁGI PROFIT				
EXPLICIT KÖLTSÉGEK	ELSZÁM. IMPL.KTG	NEM ELSZ IMP.KTG	GAZDASÁGI PROFIT				
SZÁMVITELI KÖI	SZÁMVITELI PROFIT						
SZÁMVITELI KÖI	NORMÁL PROFIT	GAZDASÁGI PROFIT					

Normálprofit az adott gazdaságban bárki által szokásosan elérhető jövedelem (átlagmunkabér, banki kamatok)

explicit költségek: azok a költségek, melyek megjelennek a vállalkozás számviteli kimutatásaiban; ezek közvetlenül befolyásolják a vállalkozás jövedelmezőségét Pl.

- bérköltség,
- lízingdíj,
- reklámköltségek,
- bérleti díjak

implicit költségek: ezek alternatív költségek; nem olyan egyszerűen nyomon követhető költségek, mint az explicit költségek, de ki lehet őket számítani; eszközök használatakor merülnek fel, nem eszközök vásárlásakor, vagy bérlésekor

két döntési alternatíva közül annak a tevékenységnek a várható jövedelme jelenik meg alternatíva költségként, amibe végül nem fogtunk bele, melyet feláldoztunk a másik alternatív tevékenység folytatásáért cserébe Pl.

- egy üzleti tevékenységre fordított idő, amelyet jobban el lehetne tölteni egy másik feladattal
- a készletekből származó éves cash flow, ha eladtuk a vállalkozásunkat
- kifizetések, amelyeket egy bérelt ingatlanból keresnénk
- az eltelt idő, míg egy berendezés karbantartása folyik
- egy munkavállaló betanít egy másikat \rightarrow ennek az alternatív költsége az a jövedelem, amit a betanító munkavállaló az eredeti munkakörében keresett volna a vállalat számára
- értékcsökkenés → ez elszámolható

Berde 84. o. \rightarrow 43.a) feladat

Egy vállalat költségfüggvénye $c(y) = 3y^3 - 36y^2 + 180y + 294$

- Határozzuk meg a VC, FC, AVC, AFC, AC és MC függvényeket!
- Kétféle számítással is adjuk meg az AC és AVC függvények minimumpontjainak helyét és értékét!
- a) Határozzuk meg a VC, FC, AC, AVC, AFC és MC függvényeket!

$$c(y) = 3y^3 - 36y^2 + 180y + 294$$

VC → Variable Cost → változó költség

$$c(y) = 3y^3 - 36y^2 + 180y + 294$$

 $FC = 294$
VC = $3y^3 - 36y^2 + 180y$
minden olyan költség, ami v tól függ

minden olyan költség, ami y-tól függ

$$FC$$
 → Fixed Cost → fix költség
 $FC = 294$

$AC \rightarrow$ Average Cost \rightarrow átlagköltség

$$AC = \frac{TC}{Q}$$
 \rightarrow az egységre eső teljes költség

$$c(y) = 3y^{3} - 36y^{2} + 180y + 294$$
 /:y
$$\frac{C(y)}{y} = \frac{3y^{3} - 36y^{2} + 180y + 294}{y}$$

$$\frac{C(y)}{y} = \frac{3y^{3}}{y} - \frac{36y^{2}}{y} + \frac{180y}{y} + \frac{294}{y}$$

$$\frac{C(y)}{y} = 3y^{2} - 36y + 180 + \frac{294}{y}$$

$$AC = 3y^{2} - 36y + 180 + \frac{294}{y}$$

$$AFC = \frac{294}{y}$$

$$AVC = 3y^{2} - 36y + 180$$

$$AC = AFC + AVC$$

AFC → átlagos fix költség

AVC → átlagos változó költség

<u>AVC → Average Variable Cost → átlagos változó költség</u>

$$AVC = \frac{VC}{Q}$$
 \rightarrow egy egységre eső változó költség

$$AVC = \frac{3y^3}{y} - \frac{36y^2}{y} + \frac{180y}{y}$$

 $AVC = 3y^2 - 36y + 180$

AFC → Average Fixed Cost → átlagos fix költség

$$AFC = \frac{FC}{Q}$$
 \Rightarrow egy egységre eső fix költség

$$AFC = \frac{294}{y}$$

MC → Marginal Cost → határköltség

 ${\bf határk\"olts\'eg}$: a teljes költség Q szerinti deriváltja; megmutatja, hogy ha egy egységgel nő a termelés, akkor hogyan változik az összes költség

$$MC = \frac{dTC}{dQ}$$
 vagy $MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$, mivel a fix költség nem változik

$$c(y) = 3y^{3} - 36y^{2} + 180y + 294$$

$$MC = \frac{dC}{dy} = \frac{d}{dy} (3y^{3} - 36y^{2} + 180y + 294) = 3 \cdot 3y^{2} - 2 \cdot 36y + 180 + 0$$

$$\frac{dC}{dy} = 9y^{2} - 72y + 180$$

$$MC = 9y^2 - 72y + 180$$

b) Kétféle számítással is adjuk meg az AC és AVC függvények minimumpontjainak helyét és értékét!

- $AC = MC \rightarrow \text{fedezeti pont} \rightarrow \text{van profit, vagy nincs profit, ennek a határa}$
- $AVC = MC \rightarrow$ üzembezárási pont \rightarrow bezár vagy nem zár be a vállalat, ennek a határa
- az MC → az AVC és az AC minimumám megy keresztül

Az AC függvény minimumpontjának helye és értéke → ez a fedezeti pont A két megoldási lehetőség:

- minimalizáljuk az AC függvényt
- az AC minimumpontja ott lesz, ahol metszi az MC függvényt \rightarrow AC = MC

1. megoldási lehetőség

 $AC = 3y^2 - 36y + 180 + \frac{294}{y}$ \rightarrow az AC minimumpontjában lesz a fedezeti pont \rightarrow azaz minimalizáljuk a függvényt \rightarrow deriváljuk y szerint, és egyenlővé tesszük nullával

$$\frac{dAC}{dy} = \frac{d}{dy} (3y^2 - 36y + 180 + 294y^{-1}) = 2 \cdot 3y - 36 + 0 + (-1) \cdot 294y^{-1-1}$$

$$\frac{dAC}{dy} = 6y - 36 - 294y^{-2}$$

$$6y-36-294y^{-2} = 0$$

$$6y-36-294\frac{1}{y^2} = 0$$

$$6y^3-36y^2-294 = 0$$

$$y = 7$$

- ez az AC minimuma
- ha y = 7-et behelyettesítjük az AC függvénybe, akkor megkapjuk, hogy Ft-ban kifejezve hol van a fedezeti pont

$$AC = 3y^{2} - 36y + 180 + \frac{294}{y}$$

$$AC = 3 \cdot 7^{2} - 36 \cdot 7 + 180 + \frac{294}{7}$$

$$AC = 147 - 252 + 180 + 42$$

$$AC = 117$$

2. megoldási lehetőség

ott lesz minimális az AC, ahol $\rightarrow AC = MC$

A vállalat fedezeti pontja y = 7-nél van, azaz ahol az AC = 117.

Az AVC függvény minimumpontjának helye és értéke \rightarrow ez **az üzembezárási pont** A két megoldási lehetőség:

- minimalizáljuk az AVC függvényt
- az AVC minimumpontja ott lesz, ahol metszi az MC függvényt \rightarrow AVC = MC

1. megoldási lehetőség

 $AVC = 3y^2 - 36y + 180 \rightarrow \text{az}$ AVC minimumpontjában lesz az üzembezárási pont \rightarrow azaz minimalizáljuk a függvényt \rightarrow deriváljuk y szerint, és egyenlővé tesszük nullával

$$\frac{dAVC}{dy} = \frac{d}{dy} (3y^2 - 36y + 180) = 2 \cdot 3y - 36 + 0 = 6y - 36$$

$$\frac{dAVC}{dy} = 6y - 36$$

$$6y - 36 = 0$$
$$6y = 36$$
$$y = 6$$

- ez az AVC minimuma
- ha y = 6-ot behettesítjük az AVC függvénybe, akkor megkapjuk, hogy Ft-ban kifejezve, hol van az üzembezárási pont

11

$$AVC = 3y^2 - 36y + 180$$

 $AVC = 3 \cdot 6^2 - 36 \cdot 6 + 180 = 108 - 216 + 180$
 $AVC_{min} = 72$

2. megoldási lehetőség

ott lesz minimális az AVC, ahol $\rightarrow AVC = MC$

$$AVC = MC$$

$$AVC = 3y^{2} - 36y + 180$$

$$MC = 9y^{2} - 72y + 180$$

$$3y^{2} - 36y + 180 = 9y^{2} - 72y + 180 /-3y^{2}$$

$$-36y + 180 = 6y^{2} - 72y + 180 /+36y$$

$$180 = 6y^{2} - 36y + 180 /-180$$

$$0 = 6y^{2} - 36y$$

$$0 = y(6y - 36)$$

Egy szorzat akkor lesz nulla, ha vagy az egyik, vagy a másik tényező nulla: $y_1 = 0 \rightarrow$ a nulla nem lehet üzembezárási pont

$$6y - 36 = 0$$
$$6y = 36$$
$$\mathbf{y_2} = \mathbf{6}$$

$$VAGY \\ 0 = 6v^2 - 36v$$

$$ax^2 + bx + c = 0$$

a megoldó képlet
$$\rightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac \rightarrow ez$$
 a diszkrimináns

ha
$$D = 0$$
 \rightarrow akkor 1 megoldás van

ha
$$D > 0$$
 \rightarrow akkor 2 megoldás van

ha $D < 0 \rightarrow$ akkor nincs megoldás

$$0=6y^2-36y$$

$$x = \frac{-(-36) \pm \sqrt{(-36)^2 - 4 \cdot 6 \cdot 0}}{2 \cdot 6}$$

$$x = \frac{36 \pm \sqrt{1296 - 0}}{12}$$

$$x_{1} = \frac{36 + 36}{12} = \mathbf{6}$$

$$x_{2} = \frac{36 - 36}{12} = \frac{0}{12} = 0$$

$$\mathbf{y} = \mathbf{6}$$

A vállalat üzembezárási pontja y = 6-nél van, azaz ahol az AVC = 72.

Berde 83. o. \rightarrow 36. feladat

Egy vállalat költségfüggvénye: $TC = 30 + 20Q - 5Q^2 + Q^3$

- a) Milyen időtávról van szó? Válaszunkat indokoljuk meg!
- b) Határozzuk meg a vállalat fix költségét!
- c) Írjuk fel a vállalat VC, AC, AVC és MC függvényeit!
- d) Hol lesz az üzembezárási pont/ üzemszüneti pont?

a) Milyen időtávról van szó? Válaszunkat indokoljuk meg!

$$TC = 30 + 20Q - 5Q^2 + Q^3$$

ha Q = 0, akkor:

$$TC = 30 + 20Q - 5Q^2 + Q^3 = 30 + 20 \cdot 0 - 5 \cdot 0^2 + 0^3 = 30$$

 $TC = 30 \implies FC = 30$

• ha van fix költség, akkor rövid távról van szó

TC → Total Cost → teljes költség

FC → Fixed Cost → fix költség → nem függ a termelés volumenétől

 $VC \rightarrow Variable Cost \rightarrow változó költség \rightarrow függ a termelés volumenétől, <math>Q$ -tól

Q → kibocsátás, a termelt mennyiség

Rövid távú költségfüggvényről van szó, mert ha nem termel semmit a vállalat, akkor is lesznek költségei. Ezeket hívjuk fix költségeknek.

b) Határozzuk meg a vállalat fix költségét!

$$TC = 30 + 20Q - 5Q^2 + Q^3$$

ha Q = 0, akkor:

$$TC = 30 + 20Q - 5Q^2 + Q^3 = 30 + 20 \cdot 0 - 5 \cdot 0^2 + 0^3 = 30$$

 $TC = 30 \implies FC = 30$

A vállalat fix költsége $30 \rightarrow FC = 30$

c) Írjuk fel a vállalat VC, AC, AVC és MC függvényeit!

VC → Variable Cost → változó költség

$$TC = 30 + 20Q - 5Q^2 + Q^3$$

$$FC = 30$$

$$VC = 20Q - 5Q^2 + Q^3$$

minden olyan költség, ami Q-tól függ

AC → Average Cost → átlagköltség

$$AC = \frac{TC}{Q}$$
 \rightarrow az egységre eső teljes költség

$$TC = 30 + 20Q - 5Q^{2} + Q^{3} / Q$$

$$\frac{TC}{Q} = \frac{30 + 20Q - 5Q^{2} + Q^{3}}{Q}$$

$$\frac{TC}{Q} = \frac{30}{Q} + \frac{20Q}{Q} - \frac{5Q^{2}}{Q} + \frac{Q^{3}}{Q}$$

$$\frac{TC}{Q} = \frac{30}{Q} + 20 - 5Q + Q^{2}$$

$$AC = \frac{30}{Q} + 20 - 5Q + Q^{2}$$

$$AFC = \frac{30}{Q}$$

$$AVC = 20 - 5Q + Q^{2}$$

$$AC = AFC + AVC$$

AFC → átlagos fix költség AVC → átlagos változó költség

<u>AVC</u> → Average Variable Cost → átlagos változó költség

$$AVC = \frac{VC}{Q}$$
 \rightarrow egy egységre eső változó költség

$$AVC = \frac{20Q}{Q} - \frac{5Q^2}{Q} + \frac{Q^3}{Q} = 20 - 5Q + Q^2$$

$$AVC = 20 - 5Q + Q^2$$

AFC → Average Fixed Cost → átlagos fix költség

$$AFC = \frac{FC}{Q}$$
 \Rightarrow egy egységre eső fix költség

$$AFC = \frac{30}{Q}$$

MC → Marginal Cost → határköltség

határköltség: a teljes költség *Q* szerinti deriváltja; megmutatja, hogy ha egy egységgel nő a termelés, akkor hogyan változik az összes költség

$$MC = \frac{dTC}{dQ}$$
 vagy $MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$, mivel a fix költség nem változik

$$TC = 30 + 20Q - 5Q^{2} + Q^{3}$$

$$MC = \frac{dTC}{dQ} = \frac{d}{dQ} (30 + 20Q - 5Q^{2} + Q^{3}) = 0 + 20 - 2 \cdot 5Q + 3Q^{2}$$

$$MC = 20 - 10Q + 3Q^{2}$$

Varian [2010] 400.o.

 $AC = MC \rightarrow$ fedezeti pont \rightarrow van profit, vagy nincs profit, ennek a határa $AVC = MC \rightarrow$ üzembezárási pont \rightarrow bezár vagy nem zár be a vállalat, ennek a határa

• az MC → az AVC és az AC minimumám megy keresztül

A költséggörbék ábrázolásához

- a határköltséggörbe (MC) az átlagos változó költséggörbe (AVC) alatt halad annak minimumáig, ott metszi, a minimum után pedig felette helyezkedik el
- a határköltséggörbe (MC) az átlagköltséggörbe (AC) alatt halad annak minimumáig, ott metszi, a minimum után pedig felette helyezkedik el
- mivel AC=AVC+AFC → AFC=AC-AVC → ezért az AC és az AVC közötti távolság csökken
- az AC mindig felette van az AVC-nek
- ha olyan a termelési függvényünk, mely kezdetben növekvő hozadékú → akkor parabola az MC (a határtermék (MP) és a határköltség (MC) között fordított arányosság van → ha MP nő, akkor MC csökken → ha MP csökken, akkor MC nő
- az első kibocsátott egység határköltsége (MC) és átlagos változó költsége (AVC) azonos

d) Hol lesz az üzembezárási pont/ üzemszüneti pont?

1. megoldási lehetőség

 $AVC = 20 - 5Q + Q^2 \rightarrow \text{az AVC}$ minimumpontjában lesz az üzembezárási pont \rightarrow azaz minimalizáljuk a függvényt \rightarrow deriváljuk Q szerint, és egyenlővé tesszük nullával

$$\frac{dAVC}{dQ} = \frac{d}{dQ} \left(20 - 5Q + Q^2 \right) = 0 - 5 + 2Q = 2Q - 5$$

$$\frac{dAVC}{dQ} = 2Q - 5$$

$$2Q - 5 = 0$$
$$2Q = 5$$

$$Q_{AVC_{min}} = 2.5$$

- ez az AVC minimuma
- ha Q = 2.5-et behelyettesítjük az AVC függvénybe, akkor megkapjuk, hogy Ft-ban kifejezve hol van az üzembezárási pont

$$AVC = 20 - 5Q + Q^{2}$$

 $AVC = 20 - 5 \cdot 2.5 + 2.5^{2} = 20 - 12.5 + 6.25$
 $AVC_{min} = 13.75$

2. megoldási lehetőség

• ott lesz minimális az AVC, ahol $\rightarrow AVC = MC$

$$AVC = MC$$

$$AVC = 20 - 5Q + Q^{2}$$

$$MC = 20 - 10Q + 3Q^{2}$$

$$20 - 5Q + Q^{2} = 20 - 10Q + 3Q^{2}$$

$$20 - 5Q = 20 - 10Q + 2Q^{2}$$

$$20 = 20 - 5Q + 2Q^{2}$$

$$0 = 2Q^{2} - 5Q$$

$$0 = Q(2Q - 5)$$

Egy szorzat akkor lesz nulla, ha vagy az egyik, vagy a másik tényező nulla:

$$2Q - 5 = 0$$
$$2Q = 5$$
$$Q_2 = 2.5$$

 $Q_{1} = 0$

VAGY

$$0 = 2Q^2 - 5Q$$

 $ax^2 + bx + c = 0$

a megoldó képlet
$$\rightarrow x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac \rightarrow \text{ez}$$
 a diszkrimináns
ha $D = 0 \rightarrow \text{akkor 1 megoldás van}$
ha $D > 0 \rightarrow \text{akkor 2 megoldás van}$
ha $D < 0 \rightarrow \text{akkor nincs megoldás}$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 0}}{2 \cdot 2}$$
$$x = \frac{5 \pm \sqrt{25 - 0}}{4}$$

$$x_1 = \frac{5+5}{4} = \frac{10}{4} = 2.5$$

$$x_2 = \frac{5-5}{4} = \frac{0}{4} = 0$$

$$Q = 2.5$$

A vállalat üzembezárási pontja Q = 2.5-nél van, azaz ahol az AVC = 13.75.

6. feladat

Töltse ki a táblázatot!

Q	TC	FC	VC =	AFC	AVC	AC	MC
			=TC-FC	$AFC = \frac{FC}{Q}$	$AVC = \frac{VC}{Q}$	$AC = \frac{TC}{Q}$	$MC = \frac{\Delta TC}{\Delta Q}$
0	200	1)	2) 0	_	_	_	_
		200					
1	250	200	3) 50	4) 200	5) 50	6) 250	50
2	290	200	90	100	45	145	40
3	340	200	140	66.67	46.67	113.33	50
4	400	200	200	50	50	100	60

1)-2) ha Q = 0, akkor az összes költség fix költség lesz \rightarrow mivel VC = 0

$$TC = FC + VC$$

$$TC = FC + 0$$

$$TC = FC$$

$$200 = FC$$

Így a fix költség végig 200.

3) ezután ki lehet tölteni az összes VC-t

ha
$$Q = 1 \rightarrow VC = TC - FC \rightarrow VC = 250 - 200 = 50$$

ha
$$O = 2 \rightarrow VC = TC - FC \rightarrow VC = 290 - 200 = 90$$

ha
$$Q = 3 \rightarrow VC = TC - FC \rightarrow VC = 340 - 200 = 140$$

ha
$$Q = 4 \rightarrow VC = TC - FC \rightarrow VC = 400 - 200 = 200$$

4) az átlagos fix költségek (AFC)

ha
$$Q = 1 \implies AFC = \frac{FC}{Q} \implies AFC = \frac{200}{1} = 200$$

ha
$$Q = 2 \implies AFC = \frac{FC}{O} \implies AFC = \frac{200}{2} = 100$$

ha
$$Q = 3 \implies AFC = \frac{FC}{O} \implies AFC = \frac{200}{3} = 66.67$$

ha
$$Q = 4 \Rightarrow AFC = \frac{FC}{Q} \Rightarrow AFC = \frac{200}{4} = 50$$

5) az átlagos változó költségek (AVC)

ha
$$Q = 1 \to AVC = \frac{VC}{Q} \to AVC = \frac{50}{1} = 50$$

ha
$$Q = 2 \Rightarrow AVC = \frac{VC}{Q} \Rightarrow AVC = \frac{90}{2} = 45$$

ha
$$Q = 3 \implies AVC = \frac{VC}{Q} \implies AVC = \frac{140}{3} = 46.67$$

ha
$$Q = 4 \implies AVC = \frac{VC}{Q} \implies AVC = \frac{200}{4} = 50$$

6) az átlagköltségek (AC)

ha
$$Q = 1 \Rightarrow AC = \frac{TC}{Q} \Rightarrow AC = \frac{250}{1} = 250$$

ha $Q = 2 \Rightarrow AC = \frac{TC}{Q} \Rightarrow AC = \frac{290}{2} = 145$
ha $Q = 3 \Rightarrow AC = \frac{TC}{Q} \Rightarrow AVC = \frac{340}{3} = 113.33$
ha $Q = 4 \Rightarrow AC = \frac{TC}{Q} \Rightarrow AVC = \frac{400}{4} = 100$

7) a határköltségek (MC)

$$\Delta TC_1 = TC_1 - TC_0 = 250 - 200 = 50$$

$$\Delta Q_1 = Q_1 - Q_0 = 1 - 0 = 1$$

$$\Delta TC_2 = TC_2 - TC_1 = 290 - 250 = 40$$

$$\Delta Q_2 = Q_2 - Q_1 = 2 - 1 = 1$$

$$\Delta TC_3 = TC_3 - TC_2 = 340 - 290 = 50$$

$$\Delta Q_3 = Q_3 - Q_2 = 3 - 2 = 1$$

$$\Delta TC_4 = TC_4 - TC_3 = 400 - 340 = 60$$

$$\Delta Q_4 = Q_4 - Q_3 = 4 - 3 = 1$$

$$MC_{1} = \frac{\Delta TC_{1}}{\Delta Q_{1}} = \frac{50}{1} = 50$$

$$MC_{2} = \frac{\Delta TC_{2}}{\Delta Q_{2}} = \frac{40}{1} = 40$$

$$MC_{3} = \frac{\Delta TC_{3}}{\Delta Q_{3}} = \frac{50}{1} = 50$$

$$MC_{4} = \frac{\Delta TC_{4}}{\Delta Q_{4}} = \frac{60}{1} = 60$$

a TC két részre bontható → VC FC, az AC két részre bontható → AVC, AFC MC

TC = FC + VC

$$AC = \frac{TC}{Q}$$
 \Rightarrow az egy egységre eső teljes költség, illetve $AC = AFC + AVC$

$$AVC = \frac{VC}{Q}$$
 \Rightarrow az egy egységre eső változó költség
$$AFC = \frac{FC}{Q}$$
 \Rightarrow az egy egységre eső fix költség

$$MC = \frac{dTC}{dQ}$$
 vagy $MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$, mivel a fix költség nem változik

7. feladat

Töltse ki a táblázatot!

Q	TC	VC	MC	FC
	=FC+VC	=TC-FC	$MC = \frac{\Delta TC}{\Delta C}$	=TC-VC
			$MC = \frac{\Delta Q}{\Delta Q}$	
0	1000	2) 0	_	1) 1000
10	1500	3) 500	4) 50	1000
30	5) 2000	6) 1000	25	1000

1) ha Q = 0, akkor az összes költség fix költség lesz \rightarrow mivel VC = 0

$$TC = FC + VC$$

$$TC = FC + 0$$

$$TC = FC$$

$$1000 = FC$$

Így a fix költség végig 1000.

2-3) ezután ki lehet tölteni a VC-ket Q=0-nál és Q=10-nél

ha
$$Q = 0 \rightarrow VC = TC - FC \rightarrow VC = 1000 - 1000 = 0$$

ha
$$Q = 10 \rightarrow VC = TC - FC \rightarrow VC = 1500 - 1000 = 500$$

4) a határköltség (MC) Q=10-nél:

$$\Delta TC_1 = TC_1 - TC_0 = 1500 - 1000 = 500$$

$$MC_1 = \frac{\Delta T C_1}{\Delta Q_1} = \frac{500}{10} = \mathbf{50}$$

$$\Delta Q_1 = Q_1 - Q_0 = 10 - 0 = 10$$

5) a teljes költség (TC) Q=30-nál

$$MC_3 = \frac{\Delta TC_3}{\Delta Q_2} = 25$$

$$\Delta Q_3 = Q_3 - Q_2 = 30 - 10 = 20$$

$$\frac{\Delta TC_3}{20} = 25$$

$$\Delta TC_3 = 500$$

$$\Delta TC_3 = TC_3 - TC_2$$

$$500 = TC_3 - 1500$$

$$TC_3 = 2000$$

6) a változó költség (VC) Q=30-nál

ha
$$Q = 30 \rightarrow VC = TC - FC \rightarrow VC = 2000 - 1000 = 1000$$

a TC két részre bontható → VC FC,

az AC két részre bontható → AVC, AFC

MC

TC = FC + VC

$$AC = \frac{TC}{Q}$$
 \rightarrow az egy egységre eső teljes költség, illetve $AC = AFC + AVC$

$$AVC = \frac{VC}{Q}$$
 \rightarrow az egy egységre eső változó költség

$$AVC = \frac{VC}{O}$$
 \rightarrow az egy egységre eső változó költség

$$AFC = \frac{FC}{Q} \rightarrow \text{az egy egységre eső fix költség}$$

$$MC = \frac{dTC}{dQ}$$
 vagy $MC = \frac{\Delta TC}{\Delta Q} = \frac{\Delta VC}{\Delta Q}$, mivel a fix költség nem változik