

Бинарная классификация

Это метод машинного обучения, который позволяет разделить данные на две категории

$$y \in \{-1, 1\}$$

Идентификация спама (Да / Нет)

Обнаружение мошеннических операций (Да / Нет)

Классификация опухолей (Доброкачественные / Злокачественные)

Мультиклассовая классификация

Это метод машинного обучения, который позволяет разделить данные на несколько категорий

$$y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Вход: Изображение рукописного номера

Выход: Число

Бинарная классификация

$$\mathbb{Y} \in \{-1, 1\}$$

- **9** -1 Отрицательный класс
- 1 Положительный класс
- **?** A(x) Должен возвращать одно из двух чисел

9 Линейная регрессия

$$a(x) = \theta_0 + \sum_{i=1}^d \theta_i x_i$$

Вещественное число

$$-\infty \leq a(x) \leq +\infty$$

$$a(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j$$

	Class -1	Class 1
0	-0.874904	1.308753
1	-0.413640	1.199750
2	-1.240367	0.653478
3	2.944008	1.246134
4	-0.228938	0.641666
5	-0.198273	0.540919
6	-2.065783	1.182851
7	-0.095081	1.580854
8	-0.211104	0.729224
9	-1.019285	0.979414

$$a(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j$$

	Class -1	Class 1
0	-0.874904	1.308753
1	-0.413640	1.199750
2	-1.240367	0.653478
3	2.944008	1.246134
4	-0.228938	0.641666
5	-0.198273	0.540919
6	-2.065783	1.182851
7	-0.095081	1.580854
8	-0.211104	0.729224
9	-1.019285	0.979414

$$a(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j$$

	Class -1	Class 1
0	-0.874904	1.308753
1	-0.413640	1.199750
2	-1.240367	0.653478
3	2.944008	1.246134
4	-0.228938	0.641666
5	-0.198273	0.540919
6	-2.065783	1.182851
7	-0.095081	1.580854
8	-0.211104	0.729224
9	-1.019285	0.979414

$$a(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j$$

	Class -1	Class 1
0	-0.874904	1.308753
1	-0.413640	1.199750
2	-1.240367	0.653478
3	2.944008	1.246134
4	-0.228938	0.641666
5	-0.198273	0.540919
6	-2.065783	1.182851
7	-0.095081	1.580854
8	-0.211104	0.729224
9	-1.019285	0.979414

$$a(x) = sign\left(\theta_0 + \sum_{j=1}^d \theta_j x_j\right)$$

Class -1 Class 1

0 -0.874904 1.3	308753
------------------------	--------

-0.413640 1.199750

-1.240367 0.653478

2.944008 1.246134

-0.228938 0.641666

-0.198273 0.540919

-2.065783 1.182851

-0.095081 1.580854

-0.211104 0.729224

-1.019285 0.979414

9 Линейная регрессия

$$a(x) = \theta_0 + \sum_{j=1}^d \theta_j x_j$$
 $-\infty \le a(x) \le +\infty$ $a(x) = \langle \theta, x \rangle$

Бинарная классификация

$$a(x) = sign(\langle \theta, x \rangle)$$
 $a(x) = \begin{cases} -1 \\ +1 \end{cases}$

9 Уравнение гиперплоскости

$$\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle = 0$$

$$\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle = |\boldsymbol{\theta}|. |\boldsymbol{x}|. \cos \alpha = 0$$

9 Уравнение гиперплоскости

Если x лежит на гиперплоскости, то $\langle \theta, x \rangle = 0$

 $\langle \theta, x \rangle < 0$ объект слева от неё

 $\langle \theta, x \rangle > 0$ объект справа от неё

$$\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle = 0$$

9 Отступы (Margin)

Расстояние от точки до гиперплоскости $\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle = 0$

$$\frac{|\langle \boldsymbol{\theta}, \boldsymbol{x} \rangle|}{\|\boldsymbol{\theta}\|}$$

9 Отступы (Margin)

$$M_i = y_i \langle \theta, x_i \rangle$$

 $M_i>0$ классификатор дает верный ответ

 $M_i < 0$ классификатор ошибается

9 Функция потерь в классификации

Бинарная функция потерь

$$L(y,a) = [a \neq y]$$

Функционал ошибки - доля ошибок

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

9 Доля ошибок для линейного классификатора

$$a(x) = sign(\langle \theta, x \rangle)$$

Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i] = \frac{1}{\ell} \sum_{i=1}^{\ell} [sign(\langle \boldsymbol{\theta}, x_i \rangle) \neq y_i]$$

Недифференцируемая функция

9 Отступы для линейного классификатора

Функционал ошибки:

$$Q(\theta, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [sign(\langle \theta, x_i \rangle) \neq y_i]$$

Альтернативная запись:

$$M_i = y_i \langle \theta, x_i \rangle$$

$$Q(\theta, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle \theta, x_i \rangle < 0]$$

9 Отступы для линейного классификатора

Функция потерь:

$$L(M) = [y_i \langle \theta, x_i \rangle < 0]$$

$$L(y, a(x)) = \begin{cases} 0 & \text{if } y = a(x) \\ 1 & \text{if } y \neq a(x) \end{cases}$$

$$V(M) = \max(1 - M)$$

$$Q(M) = (1 - M)^2$$

$$S(M) = \frac{1}{(1 + e^M)}$$

$$L(M) = log_2(1 + e^{-M})$$

$$\mathsf{E}(M) = e^{-M}$$

Квадратичная функция потерь

$$L_i(\theta) = (1 - M_i)^2 = (1 - \theta^T \cdot x_i \cdot y_i)^2$$

$$Q(\theta) = \sum_{i=1}^{\ell} (1 - \theta^{T}.x_{i}.y_{i})^{2} \rightarrow min_{\theta}$$

$$\frac{\partial Q(\theta)}{\partial \theta} = -2.\sum_{i=1}^{\ell} (1 - \theta^{T}.x_{i}.y_{i}).x_{i}^{T}.y_{i} = 0$$

$$\sum_{i=1}^{\ell} x_{i}^{T}.y_{i} - \theta^{T}.\sum_{i=1}^{\ell} x_{i}.x_{i}^{T}.y_{i}^{2} = 0$$

$$\theta^{T} = \sum_{i=1}^{\ell} x_{i}^{T}.y_{i}.\left(\sum_{i=1}^{\ell} x_{i}.x_{i}^{T}\right)^{-1}$$

9 Логистическая функция потерь

$$Q(\theta, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + e^{y_i \langle \theta, x_i \rangle}) \to \frac{\min}{\theta}$$

Вычисляем градиент:

$$\nabla Q(\theta, \mathbf{X}) = -\frac{1}{\ell} \sum_{i=1}^{\ell} \frac{\mathbf{y_i} \mathbf{x_i}}{1 + e^{\mathbf{y_i} \langle \theta, \mathbf{x_i} \rangle}}$$

9 Градиентный спуск

Выбираем логистическую функцию потерь:

$$Q(\theta, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + e^{-y_i \langle \theta, x_i \rangle}) \to \min_{\theta}$$

Вычисляем градиент:

$$\nabla_{\theta} Q(\theta, X) = -\frac{1}{\ell} \sum_{i=1}^{\ell} \frac{x_i y_i}{1 + e^{(y_i \langle \theta, x_i \rangle)}}$$

Делаем градиентный спуск:

$$\theta^{(t)} = \theta^{(t-1)} + \alpha \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{x_i y_i}{1 + e^{(y_i \langle \theta, x_i \rangle)}}$$

9 Пример регуляризации

$$Q(\theta, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + e^{-y_i \langle \theta, x_i \rangle}) \to \min_{\theta}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log \left(1 + e^{-y_i \langle \theta, x_i \rangle} \right) + \lambda \|\theta\|_2 \to \min_{\theta}$$

Если
$$a(x) = sign(\langle \theta, x \rangle - t) \ge 0.5 \rightarrow y = 1$$

Если
$$a(x) = sign(\langle \theta, x \rangle - t) \le 0.5 \rightarrow y = 0$$

Классификация (Classification)

$$a(x) = sign(\langle \theta, x \rangle)$$

Вероятность - это число на отрезке [0;1]

В логистической регрессии для предсказания вероятности используется сигмоида

$$a(x) = \sigma(\langle \theta, x \rangle)$$

где
$$oldsymbol{\sigma} = rac{\mathbf{1}}{\mathbf{1} + \mathrm{e}^{-\langle oldsymbol{ heta}, \mathbf{x}
angle}}$$

Обучение линейных классификаторов

Square loss

Модель

$$a(x) = \sigma(\theta_0 x_0 + \theta_1 x_1 + ... + \theta_d x_d) = \sigma(\langle \theta, x \rangle)$$

Функция потерь

$$L(a(x), y) = (a(x) - y(x))^2$$
 – квадратичная ошибка

$$L_{MSE} = (y_i - x_i^T \theta) = \frac{(y_i^2 - y_i \cdot x_i^T \theta)^2}{y_i^2} = (1 - y_i \cdot x_i^T \theta)^2$$

$$Q(M) = (1 - M)^2$$

Square loss

$$Q(M) = (1 - M)^2$$

Функция потерь:

Non-Convex

9 Задача кредитного скоринга

Доход (x_1)	Наличие жилья <mark>(х₂)</mark>	Наличие работы (x_3)	Число детей <mark>(х₄)</mark>	(Y)
100 000	1	1	2	1
100 000	1	1	2	-1
100 000	1	1	2	-1
100 000	1	1	2	1
100 000	1	1	2	1
150 000	1	0	3	-1
150 000	1	0	3	-1
150 000	1	0	3	-1
150 000	1	0	3	-1
150 000	1	0	3	-1
150 000	1	0	3	1

$$P(y|x,\theta)$$

$$x = [100\ 000,1,1,2]$$

$$P(y = +1 | x, \theta) = \frac{3}{5} = 0.6$$

$$P(y = -1 | x, \theta) = 1 - P(y = +1 | x, \theta)$$

$$=1-\frac{3}{5}=0.4$$

🛭 Бинарная классификация

$$a(x) = \sigma(\langle \theta, x \rangle)$$

Метод максимального правдоподобия

$$P(y|x,\theta)$$

$$a(x) = \underset{\theta}{argmax} P(y|x,\theta)$$

$$L(\theta) = \prod_{i=1}^{n} P(y_i|x_i,\theta)$$

🚱 Метод максимального правдоподобия

$$a(x) = \underset{\theta}{argmax} P(y|x,\theta)$$

В общем случае для всей обучающей выборки

$$P(y_1, y_2, ..., y_n | x_1, x_2, ..., x_n, \theta_1, \theta_2, ..., \theta_d)$$

Наивный байесовский классификатор (Naïve Bayes classifier)

$$L(\theta) = \prod_{i=1}^{n} P(y_i|x_i,\theta)$$

Распределение Бернулли

	(1, если любит кофе (0, если не любит кофе
$x_i = \{$	0, если не любит кофе

$$x_i$$
 0 1 $P(x_i = k)$ $1 - \rho$ ρ

$$x_1 = 1, x_2 = 0, x_3 = 1, ..., x_n = 0$$

Задача: найти ML-оценку для ho

$$L(\rho | x_1, ..., x_n) = \mathbb{P}(x_1, ..., x_n | \rho)$$

$$= \mathbb{P}(x_1 | \rho). \mathbb{P}(x_2 | \rho). \mathbb{P}(x_3 | \rho). \mathbb{P}(x_d | \rho)$$

$$= \rho . (1 - \rho). \rho (1 - \rho) =$$

$$\rho^{\sum x_i}. (1 - \rho)^{n - \sum x_i} \to \max_{\rho}$$

Прологарифмируем:

$$\ln L = \sum x_i \cdot \ln \rho + \left(n - \sum x_i\right) \cdot \ln(1 - \rho) \to \max_{\rho}$$

9 Интерпретация вывода гипотезы

$$p(y = 1|x; \theta) = \sigma(\langle \theta, x \rangle)$$

$$p(y = 0|x; \theta) = 1 - \sigma(\langle \theta, x \rangle)$$

$$p(y|x; \theta) = \sigma(\langle \theta, x \rangle)^{y} (1 - \sigma(\langle \theta, x \rangle))^{1-y}$$

Функция правдоподобия

$$L(\theta) = p(Y|X;\theta) = \prod_{i=0}^{m} p(y^{(i)} | x^{(i)}; \theta) = \prod_{i=1}^{m} \sigma(\theta^{T} x^{(i)})^{y(i)} (1 - \sigma(\theta^{T} x^{(i)}))^{1-y^{(i)}}$$

$$L(\theta) = \log L(\theta) = \log \prod_{i=1}^{n} \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{y(i)} (1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))^{1-y^{(i)}}$$

$$log_abc = log_a b + log_a c$$

$$L(\theta) = \log L(\theta) = \log \prod_{i=1}^{n} \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{y(i)} (1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))^{1-y^{(i)}}$$

$$= \sum_{i=1}^{n} \log(\boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{y(i)} + \log(1 - \boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))^{1-y^{(i)}})$$

$$\log_a b^c = c \cdot log_a b$$

$$L(\theta) = \log L(\theta) = \log \prod_{i=1}^{n} \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{y(i)} (1 - \sigma(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))^{1-y(i)}$$

$$= \sum_{i=1}^{n} \log(\boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})^{y(i)} + \log(1 - \boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))^{1-y^{(i)}})$$

$$= \sum_{i=1}^{m} y^{(i)} log \sigma(\theta^{T} x^{(i)}) + (1 - y^{(i)}) log(1 - \sigma(\theta^{T} x^{(i)}))$$

$$\mathbf{L}(\boldsymbol{\theta}) = \sum_{i=1}^{m} y^{(i)} \log \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) \log (1 - \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))$$

$$-L(\boldsymbol{\theta}) = \sum_{i=1}^{m} -y^{(i)} log \boldsymbol{\sigma} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) - (1 - y^{(i)}) log (1 - \boldsymbol{\sigma} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}))$$

Логарифм функции правдоподобия

$$\mathbf{L}(\boldsymbol{\theta}) = \sum_{i=1}^{m} -y^{(i)} \log \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}) - (1 - y^{(i)}) \log (1 - \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))$$

Функция потерь

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{m} y^{(i)} x^{(i)} (1 - \boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})) \qquad \qquad \frac{\partial L}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{m} (y^{(i)} - 1) \boldsymbol{x}^{(i)} \boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{m} y^{(i)} x^{(i)} \left(1 - \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}) \right) + \sum_{i=1}^{m} (y^{(i)} - 1) \boldsymbol{x}^{(i)} \boldsymbol{\sigma} (\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)})$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{m} x^{(i)} (y^{(i)} - \boldsymbol{\sigma}(\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}))$$

Логарифм функции правдоподобия

$$\mathbf{L}(\boldsymbol{\theta}) = \sum_{i=1}^{m} -y^{(i)} \log \boldsymbol{\sigma} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) - (1 - y^{(i)}) \log (1 - \boldsymbol{\sigma} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}))$$

Градиент

$$\nabla Q(\boldsymbol{\theta}) = \frac{1}{\ell} \sum_{i=1}^{\ell} x^{(i)} (y^{(i)} - \boldsymbol{\sigma}(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}))$$

Сдвигаемся по антиградиенту

$$\theta^t = \theta^{t-1} - \alpha \nabla Q(\theta^{t-1})$$

Функция потерь:

$$Cost(a(x), y) = \begin{cases} -\log(a(x)), & y = 1 \\ -\log(1 - a(x)), & y = 0 \end{cases}$$

Функция потерь:

$$Q(\theta, X) = \sum_{i=1}^{n} Q(a(x^{(i)}), y^{(i)})$$

$$Q(a(x^{(i)}), y^{(i)}) = -y^{(i)}\log(a(x^{(i)})) + (1 - y^{(i)})\log(1 - a(x^{(i)}))$$

Метрики качества классификации

Accuracy

Accuracy - это доля правильных ответов модели.

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

 $a(x_i)$ — предсказание класса на объекте x_i

 y_i - правильный ответ

 $[a(x_i) = y_i]$ — индикатор, то есть величина, равная 1, если $a(x_i)$ = y_i , и 0 иначе

Несбалансированы

Пример: Fraud detection

Пусть в тренировочных данных 1000 транзакций, и 50 из них мошеннические.

Класс +1: 50 (мошеннические)

Класс -1: 590 (нормально)

Модель: a(x) = -1

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Доля правильных ответов : 0.95

Сбалансированы

Пример: кредитный скоринг

в тестовых данных в задаче скоринга 1000 клиентов

Доля правильных ответов: 0.8

Можно ли сказать, что модель имеет хорошее качество?

Сбалансированы

Пример: кредитный скоринг

в тестовых данных в задаче скоринга 1000 клиентов

Доля правильных ответов: 0.8

Можно ли сказать, что модель имеет хорошее качество?

- модель выдает кредит клиентам, которые его не вернут
- модель не выдает кредит клиентам, которые его вернут

Матрица ошибок

	Y=1	Y=-1
a(x)=1 срабатывание	True Positive (TP)	False Positive(FP)
a(x)=-1 пропуск	False Negative(FN)	True Negative(TN)

Матрица ошибок

модель предсказывает, выдавать клиенту кредит или нет.

данные сбалансированы: всего 200 клиентов, по 100 клиентов каждого класса

Модель 1: $a_1(x)$

	Y=1	Y=-1
а(x)=1 Получили кредит	80	20
a(x)=-1 Не получили кредит	20	80

Модель 2: $a_2(x)$

	Y=1	Y=-1
а(x)=1 Получили кредит	48	2
a(x)=-1 Не получили кредит	52	98

Точность (precision)

precision(a,X)=
$$\frac{TP}{TP + FP}$$

Можно ли доверять классификатору, когда он относит объект к положительному классу?

Матрица ошибок

Модель 1: $a_1(x)$

	Y=1	Y=-1
a(x)=1 Получили кредит	80	20
a(x)=-1 Не получили кредит	20	80

precision(a_1 ,X)=0.8

Модель 2: $a_2(x)$

	Y=1	Y=-1
а(x)=1 Получили кредит	48	2
a(x)=-1 Не получили кредит	52	98

precision(a_2 ,X)=0.96

Полнота (recall)

recall(a,X)=
$$\frac{TP}{TP+FN}$$

Какую долю положительного класса модель смогла выявить?

Матрица ошибок

Модель 1: $a_1(x)$

	Y=1	Y=-1
a(x)=1 Получили кредит	80	20
a(x)=-1 Не получили кредит	20	80

recall(a_1,X)=0.8

Модель 2: $a_2(x)$

	Y=1	Y=-1
а(x)=1 Получили кредит	48	2
a(x)=-1 Не получили кредит	52	98

recall(a_2 ,X)=0.48

Медицинская диагностика

	Y=1	Y=-1
a(x)=1	10	20
a(x)=-1	90	10000

accuracy(a,X)=0.99

precision(a_1 ,X)=0.33

recall(a_1 ,X)=0.1

доля правильных ответов

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Точность

precision(a,X)=
$$\frac{TP}{TP + FP}$$

Полнота

recall(a,X)=
$$\frac{TP}{TP + FN}$$

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

Модель	Precision	recall	Α
$a_1(x)$	0.1	1	0.55

Арифметическое среднее

$$A = \frac{1}{2}(precision + recall)$$

Модель	Precision	recall	Α
$a_1(x)$	0.1	1	0.55
$a_2(x)$	0.55	0.55	0.55

Минимальное значение

M = min(precision, recall)

Минимальное значение

M = min(precision, recall)

Модель	Precision	recall	M
$a_1(x)$	0.1	1	0.1

Минимальное значение

M = min(precision, recall)

Модель	Precision	recall	M
$a_1(x)$	0.1	1	0.1
$a_2(x)$	0.55	0.55	0.55

Минимальное значение

M = min(precision, recall)

Модель	Precision	recall	M
$a_1(x)$	0.1	1	0.1
$a_2(x)$	0.55	0.55	0.55
$a_2(x)$	0.55	0.90	0.55

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

Модель	Precision	recall	F
$a_1(x)$	0.55	0.55	0.55

$$F = \frac{2 * precision * recall}{precision + recall}$$

Модель	Precision	recall	F
$a_1(x)$	0.55	0.55	0.55
$a_2(x)$	0.55	0.90	0.68

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

если β =1 Важнее recall и precision

$$F = \frac{(1+1^2)*precision*recall}{1^2*precision+recall} = \frac{2*precision*recall}{precision+recall}$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 1.5$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 1.5$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 1.5$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

Модель	Precision	recall	F1-Mepa	F1.5-мера
$a_1(x)$	0.9	0.4	0.55	0.48

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

Модель	Precision	recall	F1-Mepa	F1.5-мера
$a_1(x)$	0.9	0.4	0.55	0.48
$a_2(x)$	0.6	0.9	0.55	0.78

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 100$$

Модель	Precision	recall	F100-Mepa
$a_1(x)$	0.9	0.8	0.8

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 0.25$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 0.25$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 0.25$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

$$\beta = 0.25$$

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

Модель	Precision	recall	F1-Mepa	F0.25-мера
$a_1(x)$	0.5	1	0.67	0.52

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

Модель	Precision	recall	F1-Mepa	F0.25-мера
$a_1(x)$	0.5	1	0.67	0.52
$a_2(x)$	0.8	0.6	0.69	0.78

если
$$\beta=0$$
 Важнее $precision$

$$F_0 = \frac{(1+0^2) * precision * recall}{0^2 * precision + recall}$$

$$F_0 = \frac{precision * recall}{recall} = precision$$

Модель	Precision	recall	F0-Mepa
$a_1(x)$	0.8	0.9	0.8

доля правильных ответов

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Точность

precision(a,X)=
$$\frac{TP}{TP + FP}$$

Полнота

recall(a,X)=
$$\frac{TP}{TP + FN}$$

F-мера

$$F = \frac{(1 + \beta^2) * precision * recall}{\beta^2 * precision + recall}$$

WEIGHTED УСРЕДНЕНИЕ метрика

Y	$a_1(x)$	$a_2(x)$
0	0	0
0	0	0
0	1	0
0	1	0
0	1	0
1	1	1
1	1	1
1	1	0
1	1	0
1	1	0

$a_1(x)$	Precision	Recall	F1-Mepa
Класс О	1.0	0.4	0.57
Класс 1	0.62	1.0	0.77

Micro

Υ	$a_1(x)$
0	0
0	0
0	1
0	1
0	1
1	1
1	1
1	1
1	1
1	1

$$accuracy = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

accuracy	Precision	Recall	F1-Mepa
0.7			

Micro

$a_1(x)$
0
0
1
1
1
1
1
1
1
1

$$precision_{micro} = \frac{Oбщее количество TP}{Oбщее количество $TP + O$ бщее количество $FP$$$

accuracy	Precision	Recall	F1-Mepa
0.7	0.7		

Micro

Υ	$a_1(x)$
0	0
0	0
0	1
0	1
0	1
1	1
1	1
1	1
1	1
1	1

$$F_{micro} = \frac{2*precision_{micro}*recall_{micro}}{precision_{micro} + recall_{micro}}$$

accuracy	Precision	Recall	F1-Mepa
0.7	0.7	0.7	0.7

Macro

Υ	$a_1(x)$
0	0
0	0
0	1
0	1
0	1
1	1
1	1
1	1
1	1
1	1

$$Precision_{macro} = \frac{1}{N} \sum_{i=1}^{N} Precision_{s}$$

$Precision_0$	$Precision_1$
0.62	1

$$Precision_{macro} = \frac{Precision_0 + Precision_1}{2} = 0.81$$

Macro

Υ	$a_1(x)$
0	0
0	0
0	1
0	1
0	1
1	1
1	1
1	1
1	1
1	1

$$Recall_{macro} = \frac{1}{N} \sum_{i=1}^{N} Recall_{i}$$

$Recall_0$	$Recall_1$
1.0	0.4

$$Precision_{macro} = \frac{Recall_0 + Recall_1}{2} = 0.7$$

Macro

Υ	$a_1(x)$
0	0
0	0
0	1
0	1
0	1
1	1
1	1
1	1
1	1
1	1

$$F - \text{Mepa}_{macro} = \frac{1}{N} \sum_{i=1}^{N} F - \text{Mepa}_{i}$$

$F-Mepa_0$	$F-{ m Mepa}_1$
0.76	0.57

$$F - \text{Mepa}_{macro} = \frac{F - \text{Mepa}_0 + F - \text{Mepa}_1}{2} = 0.67$$

Weighted

$$Precision_{weighted} = \sum_{i=0}^{N} \frac{$$
 Количество элементов в классе i $*Precision_i$

$$Recall_{weighted} = \sum_{i=0}^{N} \frac{\text{Количество элементов в классе } i}{\text{Количество элементов}} * Recall_i$$

$$F- \text{Mepa}_{weighted} = \sum_{i=0}^{N} \frac{\text{Количество элементов в классе } i}{\text{Количество элементов}} * F- \text{Мера}_i$$

Применение

Micro – когда у нас данные сбалансированы

MNIST- образцы рукописного написания цифр

Применение

Macro – когда у нас данные несбалансированы

Антифрод – выявление мошеннических транзакций

	Precision	Recall	F1-Mepa
Класс О	0.95	1.0	0.97
Класс 1	0	0	0
Micro	0.95	0.95	0.95
Macro	0.47	0.95	0.93

Применение

Weighted – когда необходимо дать классу вес согласно его количеству

MNIST- образцы рукописного написания цифр

	Precision	Recall	F1-Mepa
Класс 0	1	1.0	1
Класс 1	0.92	1.0	0.96
Класс 2	0	0	0
Micro	0.95	0.95	0.95
Macro	0.64	0.67	0.65
Weighted	0.90	0.95	0.93

Класс 0	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

Precision = 0.8 Recall = 0.66

Precision = 1 Recall = 0.66

Precision = 0.66 Recall = 1

Левая точка: (0,1)

Правая точка: (1,r)

r-доля положительных объектов

Для идеального классификатора проходит через (1,1)

Левая точка: (0,1)

Правая точка: (1,r)

r-доля положительных объектов

Для идеального классификатора проходит через (1,1)

Левая точка: (0,1)

Правая точка: (1,r)

r-доля положительных объектов

Для идеального классификатора проходит через (1,1)

Левая точка: (0,1)

Правая точка: (1,r)

r-доля положительных объектов

Для идеального классификатора проходит черерз (1,1)

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	0
0.84905661	1	0
0.96629213	1	0
0.98675023	1	0
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{1}{1+0} = 1$$

Recall =
$$\frac{TP}{TP+FN} = \frac{1}{1+5} = 0.167$$

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	0
0.84905661	1	0
0.96629213	1	0
0.98675023	1	1
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{2}{2+0} = 1$$

Recall =
$$\frac{TP}{TP+FN} = \frac{2}{2+4} = 0.334$$

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	0
0.84905661	1	0
0.96629213	1	1
0.98675023	1	1
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{3}{3+0} = 1$$

Recall =
$$\frac{TP}{TP+FN} = \frac{3}{3+3} = 0.5$$

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	0
0.84905661	1	1
0.96629213	1	1
0.98675023	1	1
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{4}{4+0} = 1$$

Recall =
$$\frac{TP}{TP+FN} = \frac{4}{4+2} = 0.667$$

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	1
0.84905661	1	1
0.96629213	1	1
0.98675023	1	1
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{4}{4+1} = 0.8$$

Recall =
$$\frac{TP}{TP+FN} = \frac{4}{4+2} = 0.667$$

Proba	Класс	
0.0	0	1
0.0	0	1
0.0	1	1
0.0	1	1
0.54545455	0	1
0.84905661	1	1
0.96629213	1	1
0.98675023	1	1
1.0	1	1

Precision =
$$\frac{TP}{TP+FP} = \frac{6}{6+3} = 0.667$$

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6+0} = 1$$

PR-AUC

PR-AUC площадь под PR-кривую

PR-AUC=0.98

Ось X — False Positive Rate

$$\mathsf{FPR} = \frac{TP}{FP + TN}$$

доля неверно принятых объектов отрицательного класса

Ось X — False Positive Rate

$$\mathsf{FPR} = \frac{TP}{FP + TN}$$

доля неверно принятых объектов отрицательного класса

Ось Y — True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

доля верно принятых объектов положительного класса

Класс О	Класс 1
0.1509434	0.8490566
0.03125	0.96875
1.	0.
1.	0.
1.	0.
1	0
0.	1.
0.03370787	0.96629213
0.45454545	0.54545455

$$TPR = 0.667$$

Левая точка: (0,0)

Правая точка: (1,1)

Для идеального классификатора проходит через (0,1)

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	0
0.84905661	1	0
0.96629213	1	0
0.98675023	1	0
1.0	1	1

$$TPR = \frac{TP}{TP + FN} = \frac{1}{1+5} = 0.167$$

$$FPR = \frac{TP}{FP + TN} = \frac{0}{0+3} = 0$$

Proba	Класс		
0.0	0	0	
0.0	0	0	
0.0	1	0	
0.0	1	0	
0.54545455	0	0	
0.84905661	1	0	
0.96629213	1	1	
0.98675023	1	1	
1.0	1	1	

$$TPR = \frac{TP}{TP + FN} = 0.5$$

$$FPR = \frac{TP}{FP + TN} = 0$$

Proba	Класс		
0.0	0	0	
0.0	0	0	
0.0	1	0	
0.0	1	0	
0.54545455	0	0	
0.84905661	1	1	
0.96629213	1	1	
0.98675023	1	1	
1.0	1	1	

$$TPR = \frac{TP}{TP + FN} = 0.66$$

$$FPR = \frac{TP}{FP + TN} = 0$$

Proba	Класс	
0.0	0	0
0.0	0	0
0.0	1	0
0.0	1	0
0.54545455	0	1
0.84905661	1	1
0.96629213	1	1
0.98675023	1	1
1.0	1	1

$$TPR = \frac{TP}{TP + FN} = \frac{4}{4 + 2} = 0.667$$

$$FPR = \frac{TP}{FP + TN} = \frac{1}{1+2} = 0.334$$

Proba	Класс	
0.0	0	1
0.0	0	1
0.0	1	1
0.0	1	1
0.54545455	0	1
0.84905661	1	1
0.96629213	1	1
0.98675023	1	1
1.0	1	1

$$TPR = \frac{TP}{TP + FN} = \frac{6}{6+0} = 1$$

$$FPR = \frac{TP}{FP + TN} = \frac{3}{3+0} = 1$$

ROC-AUC

Свойства ROC-AUC:

•ROC-AUC принимает значение от 0 до 1.

ROC-AUC идеальной модели равен 1

- •ROC-AUC модели, которая случайным образом предсказывает классы, равен 0.5.
- •Чем больше ROC-AUC, тем лучше наш алгоритм сортирует объекты по вероятностям то есть тем лучше алгоритм решает задачу классификации.