Radiologist-Level Pneumonia Detection with Deep Learning

Gaëtan Dissez et Guillaume Duboc

Analyser des radios des poumons

Multi-label classification

13 pathologies différentes identifiables

Plan

- I. Le dataset CheXpert
- II. Architecture: Densely Connected Convolutional Network (DenseNet)
- III. Résultats et comparaison avec les radiologues
- IV. Heatmap: localiser les pathologies

I. Le dataset CheXpert

Input: Radio des poumons

Output: Vecteur binaire de taille 14

Dans le dataset train, 4 labels possibles:

- 1 (pathologie présente)
- 0 (pathologie absente)
- '' (pathologie absente)
- -1 (incertitude)

No Finding	Enlarged Cardiomediastinum	Cardiomegaly	Lung Opacity	Lung Lesion	Edema	Consolidation	Pneumonia	Atelectasis	Pneumothorax	Pleural Effusion	Pleural Other	Fracture	Support Devices
1.0									0.0				1.0
		-1.0	1.0		-1.0	-1.0		-1.0		-1.0		1.0	
			1.0			-1.0						1.0	
			1.0			-1.0						1.0	

I. Le dataset CheXpert

Train set: 223 414 images

Validation set: 234 images

	Positif	Incertain	Negatif
No Finding	10,0%	0,0%	90,0%
Enlarged Cardiomediastinum	4,8%	5,6%	89,6%
Cardiomegaly	12,1%	3,6%	84,3%
Lung Opacity	47,3%	2,5%	50,2%
Lung Lesion	4,1%	0,7%	95,2%
Edema	23,4%	5,8%	70,8%
Consolidation	6,6%	12,4%	81,0%
Pneumonia	2,7%	8,4%	88,9%
Atelectasis	14,9%	15,1%	70,0%
Pneumothorax	8,7%	1,4%	89,9%
Pleural Effusion	38,6%	5,2%	56,2%
Pleural Other	1,6%	1,2%	97,2%
Fracture	4,0%	0,3%	95,7%
Support Devices	51,9%	0,5%	47,6%

DenseNet

ResNet

Comparaison ResNet vs. Densenet

Sur notre Dataset:

- validation_loss = 0.358 pour DenseNet 121
- validation_loss = 0.39 pour ResNet50

Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (left) and FLOPs during test-time (right).

source: G. Huang et al., Densely Connected Convolutional Networks, 2018

III. Résultats et comparaison avec les radiologues

Évolution de la *loss* sur un premier modèle

model: DenseNet 121

policy: U-Ones

epochs: 3

Loss: BCE Loss

Optimization: Adam optimizer

Courbes ROC pour différentes epoch avec DenseNet

AUROC means: epoch1(0.72) < epoch2(0.74) < epoch3(0.76)

Courbes ROC pour deux pre-processing différents avec DenseNet

AUROC means: U-zeros (0.71) < U-ones (0.74)

Courbes ROC pour deux réseaux différents : ResNet et DenseNet

AUROC means: DenseNet (0.76) > ResNet(0.66)

III. Résultats et comparaison avec les radiologues

Comparaison avec le projet CheXpert: https://stanfordmlgroup.github.io/competitions/chexpert/

Attention: pas le même test set...

0		
	AUROC Stanford	AUROC
Atelectasis	0,85	0,69
Cardiomelagy	0,9	0,77
Consolidation	0,9	0,67
Edema	0,92	0,81
Pleural Effusion	0,97	0,84

III. Résultats et comparaison avec les radiologues

Comparaison avec les radiologues

IV. Heatmap

