CSE 373

Graphs 2: Dijkstra's Algorithm

reading: Weiss 9.3

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Recall: DFS, BFS

- depth-first search (DFS): Explore each possible path as far as possible before backtracking.
 - Often implemented recursively.
 - DFS paths from a to all vertices (assuming ABC edge order):
 - to b: {a, b}
 - to c: {a, b, e, f, c}
 - to d: {a, d}
 - to e: {a, b, e}
 - to f: {a, b, e, f}
 - to g: {a, d, g}
 - to h: {a, d, g, h}

- breadth-first search (BFS): Take one step down all paths and then immediately backtrack.
 - A queue of vertices to visit.
 - Always returns shortest path (one with fewest edges):
 - to b: {a, b}
 - to c: {a, e, f, c}
 - to d: {a, d}
 - to e: {a, e}
 - to f: {a, e, f}
 - to g: {a, d, g}
 - to h: {a, d, h}

DFS/BFS and weight

- DFS and BFS do not consider edge weights.
 - The minimum weight path is not necessarily the shortest path.
 - Sometimes weight is more important:
 - example: plane flight costs, network transmission (latency btwn servers)
 - BFS(a,f) yields [a,e,f], but [a,d,g,h,f] has lower cost (6 vs. 9)

Dijkstra's Algorithm

- **Dijkstra's algorithm**: Finds the minimum-weight path between a pair of vertices in a weighted directed graph.
 - Solves the "one vertex, shortest path" problem in weighted graphs.
 - Made by famous computer scientist Edsger Dijkstra (look him up!)
 - basic algorithm concept: Create a table of information about the currently known best way to reach each vertex (cost, previous vertex), and improve it until it reaches the best solution.
- Example: In a graph where vertices are cities and weighted edges are roads between cities, Dijkstra's algorithm can be used to find the shortest route from one city to any other.

Dijkstra pseudocode

```
function dijkstra(v_1, v_2):
  for each vertex v:
                                       // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices, ordered by distance}.
  while pqueue is not empty:
     v := \text{remove vertex from } pqueue \text{ with minimum cost.}
     mark v as visited.
     for each unvisited neighbor n of v:
        cost := v's cost + weight of edge <math>(v, n).
        if cost < n's cost:
          n's cost := cost.
          n's previous := v.
  reconstruct path from v_2 back to v_1, following previous pointers.
```

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

pqueue = [A:0, B: ∞ , C: ∞ , D: ∞ , E: ∞ , F: ∞ , G: ∞]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
              by distance.
                                                                                       D
  while pqueue is not empty:
    v := pqueue.removeMin(). // A
                                                                                        1
    mark v as visited.
    for each unvisited neighbor n of v: // B, D
       cost := v's cost + edge(v, n)'s weight.
                                                                       F
       if cost < n's cost:
                                    // B's cost = 0 + 2
         n's cost := cost.
                                    // D's cost = 0 + 1
         n's previous := v.
```

pqueue = [D:1, B:2, C: ∞ , E: ∞ , F: ∞ , G: ∞]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
              by distance.
  while pqueue is not empty:
    v := pqueue.removeMin(). // D
    mark v as visited.
    for each unvisited neighbor n of v: // C, E, F, G
       cost := v's cost + edge(v, n)'s weight.
                                    // C's cost = 1 + 2
       if cost < n's cost:
                                    // E's cost = 1 + 2
         n's cost := cost.
                                    // F's cost = 1 + 8
         n's previous := v.
                                    // G's cost = 1 + 4
```

pqueue = [B:2, C:3, E:3, G:5, F:9]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
             by distance.
                                                                                                                          3
                                                   3
  while pqueue is not empty:
    v := pqueue.removeMin(). // B
    mark v as visited.
    for each unvisited neighbor n of v: // E
       cost := v's cost + edge(v, n)'s weight. // 2 + 10
       if cost < n's cost:
                                    // 12 > 3; false
         n's cost := cost.
                                    // no costs change.
         n's previous := v.
```

pqueue = [C:3, E:3, G:5, F:9]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
             by distance.
                                                                                                                          3
                                                   3
  while pqueue is not empty:
    v := pqueue.removeMin(). // C
    mark v as visited.
    for each unvisited neighbor n of v: // F
       cost := v's cost + edge(v, n)'s weight. // 3 + 5
       if cost < n's cost:
                                    //8<9
         n's cost := cost.
                                   // F's cost = 8
         n's previous := v.
```

pqueue = [E:3, G:5, **F:8**]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
             by distance.
                                                                                                                          3
                                                   3
  while pqueue is not empty:
    v := pqueue.removeMin(). // E
    mark v as visited.
    for each unvisited neighbor n of v: // G
       cost := v's cost + edge(v, n)'s weight. // 3 + 6
       if cost < n's cost:
                                    // 9 > 5; false
         n's cost := cost.
                                    // no costs change.
         n's previous := v.
```

pqueue = [G:5, F:8]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
             by distance.
                                                                                                                          3
                                                  3
  while pqueue is not empty:
    v := pqueue.removeMin(). // G
    mark v as visited.
    for each unvisited neighbor n of v: // F
       cost := v's cost + edge(v, n)'s weight. // 5 + 1
                                                                       F
       if cost < n's cost:
                                    //6<8
         n's cost := cost.
                                   // F's cost = 6.
         n's previous := v.
```

pqueue = [**F:6**]

dijkstra(A, F);

reconstruct path from v_2 back to v_1 , following previous pointers.

```
0
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
             by distance.
                                                                                                                          3
                                                   3
  while pqueue is not empty:
    v := pqueue.removeMin(). // F
    mark v as visited.
    for each unvisited neighbor n of v: // none
       cost := v's cost + edge(v, n)'s weight.
       if cost < n's cost:
                                    // no costs change.
         n's cost := cost.
         n's previous := v.
```

pqueue = []

dijkstra(A, F);

```
function dijkstra(v_1, v_2):
  for each vertex v: // Initialize vertex info
     v's cost := infinity.
     v's previous := none.
  v_1's cost := 0.
  pqueue := {all vertices,
               by distance.
  while pqueue is not empty:
    v := pqueue.removeMin().
    mark v as visited.
    for each unvisited neighbor n of v:
        cost := v's cost + edge(v, n)'s weight.
        if cost < n's cost:
          n's cost := cost.
          n's previous := v.
  reconstruct path from v_2 back to v_1, following previous pointers.
```


// path = [A, D, G, F]

Algorithm properties

- Dijkstra's algorithm is a *greedy algorithm*:
 - Make choices that currently seem the best.
 - Locally optimal does not always mean globally optimal.
- It is correct because it maintains the following two properties:
 - 1) for every marked vertex, the current recorded cost is the lowest cost to that vertex from the source vertex.
 - 2) for every unmarked vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v.

Dijkstra's runtime

- For sparse graphs, (i.e. graphs with much less than $|V|^2$ edges) Dijkstra's is implemented most efficiently with a priority queue.
 - initialization: O(|V|)
 - while loop: O(|V|) times
 - remove min-cost vertex from pq: O(log |V|)
 - potentially perform |E| updates on cost/previous
 - update costs in pq: O(log |V|)
 - reconstruct path: O(|E|)
 - Total runtime: $O(|V| \log |V| + |E| \log |V|)$
 - = $O(|E| \log |V|)$, because |V| = O(|E|) if graph is connected
 - if a list is used instead of a pq: $O(|V^2| + |E|) = O(|V|^2)$

Dijkstra exercise

- Use Dijkstra's algorithm to determine the lowest cost path from vertex A to all of the other vertices in the graph.
 - Keep track of previous vertices so that you can reconstruct the path.

