Homework6

Meiyu Zhang

August 2022

1 Question 5

Use the definition of θ in order to show the following:

```
a. 5n^3 + 2n^2 + 3n = \theta(n^3)
```

According to the definition of θ :

Let f(n) and g(n) be two functions mapping positive integers to positive real

We say that $f(n) = \theta(g(n))$ if there exist positive real constants c_1 , c_2 and a positive integer constant n_0 , such that $c_2g(n) \leq f(n) \leq c_1g(n)$ for all $n \geq n_0$

In this task, $f(n) = 5n^3 + 2n^2 + 3n = \theta(g(n)) = \theta(n^3)$

First of all, we need to find
$$c_1$$
, c_2 , and n_0 . $5n^3+2n^2+3n \le 5n^3+2n^2\times n+3n\times n^2=5n^3+2n^3+3n^3=10n^3$

Therefore, $c_1 = 10$

We know that f(n) and g(n) be two functions mapping positive integers to positive real numbers.

Therefore, n > 0, $2n^2 + 3n > 0$.

 $5n^3 + 2n^2 + 3n$ is greater than $5n^3$. It means that when n > 0, $5n^3 \le n^3$ $5n^3 + 2n^2 + 3n$.

Take $c_1 = 10$

 $c_2 = 5$

 $n_0 = 0$

Then for all $n \ge n_0$ we have: $5n^3 \le 5n^3 + 2n^2 + 3n \le 10n^3$

Therefore, $5n^3 + 2n^2 + 3n = \theta(n^3)$

b.
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

According to the definition of θ :

Let f(n) and g(n) be two functions mapping positive integers to positive real numbers.

We say that $f(n) = \theta(g(n))$ if there exist positive real constants c_1 , c_2 and a positive integer constant n_0 , such that $c_2g(n) \le f(n) \le c_1g(n)$ for all $n \ge n_0$

In this task, $f(n) = \sqrt{7n^2 + 2n - 8}$, g(n) = n.

Proof:

First of all, let's find c_1 , c_2 , and n_0 .

$$\sqrt{7n^2 + 2n - 8} < \sqrt{7n^2 + 2n} \le \sqrt{7n^2 + 2n * n} = \sqrt{9n^2} = 3n$$

Therefore, 3 is a good fit for c_1 .

When $2n-8 \ge 0$, $\sqrt{7n^2} = \sqrt{7} \times n \le \sqrt{7n^2+2n-8}$. It means that when $n \ge 4, \sqrt{7} \times n \le \sqrt{7n^2 + 2n - 8}.$

Therefore, $\sqrt{7}$ is a good fit for c_2 . And 4 is a good fit for n_0 .

if we take $c_1 = 3$

 $c_2 = \sqrt{7}$

 $n_0 = 4$

Then for all $n \ge n_0$ we have: $\sqrt{7} \times n \le \sqrt{7n^2 + 2n - 8} \le 3n$.

Therefore, $\sqrt{7n^2 + 2n - 8} = \theta(n)$