- 1) Primeiramente, vamos computar os dados necessários para resolução do problema. Temos um quadro com resolução Full HD, o que nos dá 1920 * 1080 pixel / quadro = 2.073.600 pixel / quadro. Além disso, a resolução é colorida pelo sistema de cores RGB, onde cada uma das três cores é representada por uma matriz. Logo, temos 2.073.600 pixel * 3 / quadro = 6.220.800 pixel / quadro. Cada pixel é capaz de exibir 256 tonalidades (equivalente a 8 bits), portanto temos (6.220.800 pixel / quadro) * (8 bit / pixel) = 49.766.400 bit / quadro para representar um único quadro (frame) do vídeo. O vídeo possui 10 segundos e exibe 30 quadros por segundo, resultando em 10 segundo * (30 quadro / segundo) = 300 quadro. Enfim, temos (49.766.400 bit / quadro) * (300 quadro) = 14.929.920.000 bit para serem transmitidos durante todo o vídeo. A rede possui uma taxa de transferência de 10 megabits por segundo, portanto o resultado é obtido dividindo a quantidade total de bits a serem transmitidos pela taxa de transferência: (14.929.920.000 bit) / ((10 * (2 ^ 20 bit)) / segundo) = 1.423,828125 segundo, aproximadamente 24 minutos.
- 2) Primeiramente, vamos supor as seguintes máscaras para o filtro da média ponderada:

Tamanho	Máscara para média ponderada									
1x3	1 3 1									
1x5	1 3 5 3 1									
1x7	1 3 5 7 5 3 1									

a) Primeiro sinal:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	6	4	5	5	18	22	20	20	21	19	4	4	3	4	4	5	7

i) Filtro da média

(1) Tamanho 3

																				1
5 5 5 5 5 9 15 20 21 20 20 15 9 4 4 4 4 5	7	5	4	4	4	4	9	15	20	20	21	20	15	9	5	5	5	5	5	5

(2) Tamanho 5

	2																		
5	5	5	5	5	8	11	14	17	20	20	17	14	10	7	4	4	5	5	7

(3) Tamanho 7

(4) Visualização gráfica

ii) Filtro da mediana

					(1)	Tan	nanho	3											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	5	5	18	20	20	20	20	19	4	4	4	4	4	5	7
					(2)	Tan	nanho	5											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	5	5	18	20	20	20	20	19	4	4	4	4	4	5	7
					(3)	Tan	nanho	7											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	5	6	18	20	20	20	20	19	4	4	4	4	4	5	7

iii) Filtro da média ponderada

					(1)	Tam	nanho	3											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	5	8	16	21	20	20	20	16	7	4	3	4	4	5	7
					(2)	Tam	nanho	5											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	6	9	15	19	20	20	19	15	9	5	4	4	4	5	7
					(3)	Tam	nanho	7											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5	5	5	5	5	7	10	14	18	20	20	18	14	10	6	4	4	4	5	7

ii) Filtro da mediana

(1) Tamanho 3 (2) Tamanho 5 (3) Tamanho 7

iii) Filtro da média ponderada

					(1)	Tam	anho	3											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	4	6	8	10	12	14	16	18	18	18	16	14	12	10	8	6	4	2	2
					(2)	Tam	anho	5											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	4	6	8	10	12	14	16	17	18	17	16	14	12	10	8	6	4	2	2
					(3)	Tam	anho	7											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	4	6	8	10	12	14	16	17	17	17	16	14	12	10	8	6	4	2	2

c) Terceiro sinal:

i) Filtro da média (1) Tamanho 3 (2) Tamanho 5 (3) Tamanho 7

ii) Filtro da mediana

(1) Tamanho 3 **(2)** Tamanho 5 (3) Tamanho 7

iii) Filtro da média ponderada

(1) Tamanho 3 (2) Tamanho 5 (3) Tamanho 7

Quanto aos resultados obtidos, destaca-se alguns pontos:

- (1) O filtro da média trouxe uma suavização do sinal, o que acarreta em perda de nitidez e redução de ruído. Nota-se, ainda, que um filtro de tamanho maior resulta em uma maior a suavização. Especialmente no terceiro sinal, o filtro da média obteve resultados mais expressivos em razão do sinal não apresentar uma distribuição normal.
- (2) O filtro da mediana trouxe um equilíbrio para os pontos máximos e mínimos, o que reduz ruídos aleatórios do tipo sal e pimenta. Os pontos máximos no segundo sinal e máximos e mínimos no primeiro sinal foram suavizados, enquanto o terceiro sinal não apresentava ruídos aleatórios e, portanto, não sofreu alterações.
- (3) O filtro da média ponderada escolhido deu mais importância para os elementos centrais, de forma a reduzir o borramento no processo de suavização. Especialmente nos primeiro e terceiro sinais, houve uma suavização um pouco mais fraca quando comparada ao filtro da média, porém este processo de suavização apresentou menor perda de nitidez.

Obs.: script para cálculo dos filtros e plotagem dos gráficos anexo.