Bartlett Test

Note that for calculating the confidence intervals, we assumed that the true variance σ^2 is the same for all observations and that the observations are independent.

How can we check if this assumption is valid? Bartlett Test

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_m^2 = \sigma_y^2$$

 H_1 : at least one $\sigma_i^2 \neq \sigma_j^2, i \neq j$

$$\chi_{cal}^2 = \frac{M}{C}$$

where

$$M = (N - m)\ln(s_p^2) - \sum_{i=1}^{m} (n_i - 1)\ln(s_i^2)$$

$$C = 1 + \frac{1}{3(m-1)} \left[\left(\sum_{i=1}^{m} \frac{1}{n_i - 1} \right) - \frac{1}{N-m} \right]$$

$$m = 2^k$$

(Total experiments)

Sample size =
$$n$$

$$N = n_1 + n_2 + ... + n_m$$

The value of M will be large if the sample variances s_i^2 differ greatly in magnitude, and will be zero if all the sample variances are exactly equal.

We will reject H_0 if χ^2_{cal} is too large, i.e.,

$$\chi^2_{\rm cal} > \chi^2_{m-1,\alpha}$$

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platfo

Bartlett Test

Example: Bartlett Test

Here, N = m =

$$\chi_{\nu=m-1}^2 = \frac{M}{C}$$
 where, $M = (N-m)\ln(s_p^2) - \sum_{i=1}^m (n_i - 1)\ln(s_i^2)$, and $C = 1 + \frac{1}{3(m-1)} \left[\left(\sum_{i=1}^m \frac{1}{n_i - 1} \right) - \frac{1}{N-m} \right]$

$$S_1^2 = 24.5$$
, $S_2^2 = 21.78$, $S_3^2 = 134.48$, $S_4^2 = 242.0$, $S_5^2 = 3.92$, $S_6^2 = 8.82$, $S_7^2 = 33.62$, $S_8^2 = 72.00$

The value of M will be large if the sample variances s_i^2 differ greatly in magnitude, and will be zero if all the sample variances are exactly equal.

We will reject H_0 if χ^2_{cal} is too large, i.e., $\chi^2_{cal} > \chi^2_{m-1,\alpha}$

$$\chi^2_{\mathrm{cal}} > \chi^2_{m-1,\alpha}$$

$$S_p^2 = \frac{[(y_{a1} - \bar{y}_1)^2 + (y_{b1} - \bar{y}_1)^2 + \dots + (y_{a8} - \bar{y}_8)^2 + (y_{b8} - \bar{y}_8)^2]}{(2-1) + \dots + (2-1)} = 67.64$$

 $\chi_{\text{cal}}^2 = \frac{5.713}{1.257} = 4.21$ $\chi_{7,\alpha=0.05}^2 = 14.1$

$$M = (16-8) \ln 67.64 - [(2-1) \ln 24.5 + (2-1) \ln 21.78$$

$$+ (2-1) \ln 134.48 + (2-1) \ln 242 + (2-1) \ln 3.92$$

$$+ (2-1) \ln 8.82 + (2-1)33.62 + (2-1) \ln 72.0]$$

$$= 5.713$$

$$C = 1 + \frac{1}{3(8-1)} \left[\left(\sum_{i=1}^{8} \frac{1}{2-1} \right) - \frac{1}{16-8} \right]$$

$$= 1 + \frac{1}{21} [8-5] = 1.357$$

Test#	X1	X2	Х3	Y _{ai} (kpsi)	Y _{bi} (kpsi)	Average (kpsi)
1	-1	-1	-1	84	91	87.5
2	1	-1	-1	90.6	84	87.3
3	-1	1	-1	69.6	86	77.8
4	1	1	-1	76	98	87
5	-1	-1	1	77.7	80.5	79.1
6	1	-1	1	99.7	95.5	97.6
7	-1	1	1	82.7	74.5	78.6
R	1	1	1	93.7	81.7	87.7

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platfo

Trick: Effects Calculation Matrix

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

Calculation Matrix

	Má	ain Effe	cts					
Test	X_1	X_2	X ₃	X_1X_2	X_1X_3	X_2X_3	$X_1X_2X_3$	\overline{y}
1	-1	-1	-1	1	1	1	-1	87.5
2	1	-1	-1	-1	-1	1	1	87.3
3	-1	1	-1	-1	1	-1	1	77.8
4	1	1	-1	1	-1	-1	-1	87
5	-1	-1	1	1	-1	-1	1	79.1
6	1	-1	1	-1	1	-1	-1	97.6
7	-1	1	1	-1	-1	1	-1	78.6
8	1	1	1	1	1	1	1	87.7

Statistical Significance

In general, for 2-factor design, we could have 'a' levels of factor A, and 'b' levels of factor B.

Each combination is replicated 'n' times

General Arrangement for a Two-Factor Factorial Design

			Fact	or B	
			2		b
	1	$y_{111}, y_{112}, \dots, y_{11p}$	$y_{121}, y_{122}, \dots, y_{12n}$		$y_{1b1}, y_{1b2}, \ldots, y_{1bn}$
Factor A	2	$y_{211}, y_{212}, \dots, y_{21n}$	$y_{221}, y_{222}, \dots, y_{22n}$		$y_{2b1}, y_{2b2}, \dots, y_{2bn}$
	\vdots				
	a	$y_{a11}, y_{a12}, \dots, y_{a1n}$	$y_{a21}, y_{a22}, \dots, y_{a2n}$		$y_{ab1}, y_{ab2}, \dots, y_{abn}$

What is the effects model and hypothesis test?

Factor B 2 b $y_{111}, y_{112},$ $y_{121}, y_{122},$ $y_{1b1}, y_{1b2},$ \dots, y_{11n} \dots, y_{12n} \dots, y_{1bn} $y_{211}, y_{212},$ $y_{221}, y_{222},$ $y_{2b1}, y_{2b2},$ \dots, y_{21n} \dots, y_{22n} \dots, y_{2bn} $y_{ab1}, y_{ab2},$ $y_{a21}, y_{a22},$ $y_{a11}, y_{a12},$ \dots, y_{abn} \dots, y_{a1n} \dots, y_{a2n}

In the two-factor factorial, both row and column factors (or treatments), A and B, are of al interest. Specifically, we are interested in **testing hypotheses** about the equality of row treatment effects, say

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$

 $H_1:$ at least one $\tau_i \neq 0$ (5.2a)

and the equality of column treatment effects, say

$$H_0: \beta_1 = \beta_2 = \dots = \beta_b = 0$$

 $H_1: \text{at least one } \beta_j \neq 0$ (5.2b)

We are also interested in determining whether row and column treatments *interact*. Thus, we also wish to test

$$H_0: (\tau \beta)_{ij} = 0$$
 for all i, j
 $H_1: \text{at least one } (\tau \beta)_{ij} \neq 0$ (5.2c)

We now discuss how these hypotheses are tested using a **two-factor analysis of variance**.

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

Effects Model

Factor A

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, n \end{cases}$$

Statistical Design of Experiments and Data Analysis

ANOVA for Two-Factor Factorial Design

The Analysis of	Variance Table	for the Two-Factor	Factorial, Fixed Effects Model		α
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	
A treatments	$SS_A \checkmark$	a-1	$MS_A = \frac{SS_A}{a-1}$	E	F1-0, a-1, abcn-1)
B treatments	$SS_B \checkmark$	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$	F1-a, b-1, ab(n-1)
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$	F1-a, (a-1)(b-1), ab(n-1)
Error	$SS_E \checkmark$	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$		
Total	$SS_T \checkmark$	abn-1			

Life Data (in hours) for the Battery Design Experiment												
Material		Temperature (°F)										
Туре	15			70				125	<i>y</i> _i			
	130	155	(520)	34	40	220	20	70	620)			
1	74	180	(539)	80	75	(229)	82	58	(230)	998		
	150	188	(623)	136	122	(479)	25	70	(198)			
2	159	126	(023)	106	115	479)	58	45	(196)	1300		
	138	110	(576)	174	120	(583)	96	104	(342)			
3	168	160	570	150	139	(303)	82	60	542)	1501		
У. <i>j</i> .		1738			1291			770		$3799 = y_{}$		

	Life Data (i	n hours) for the Batter	y Design Experiment			N = abw
	Material		Temperature (°F	")		
	Type	15	70	125	<i>y</i> _i	= 2 x 3 x 4
	1	130 155 74 180 13	34 4 0 57.25 80 75	20 70 82 58 57.5	998	= 36
	2	150 188 159 126	136 122 106 115 119.75	25 70 58 45 49.5	1300	
	3 _ y _{.j.}	138 110 168 160 1738	174 120 150 139 145.75	96 104 82 60 770	1501 $(3799) = y$	36 terms
SSTO	+al =	ZZZ	$y_{jjk}^2 = (130^2 +$	2 2 2 155 + 74 + 188	+ 34 + 40	$\frac{2}{+ \cdot + 96 + 104 + 82 + 60}$
	=	478647	2	Grand Mean	= ZZZ	
SSine	ean =	$N \overline{y}^2 = 36$	\ 2 t /		7	= 105.53
SSmat	eria) =			$r \left(\frac{1300}{12} - 105.53\right)$		atforms where it can be accessed by others.

Life Data (in	n hours) fo	r the Ba	ttery Design	n Experim	ent					
Material					Temperatu	re (°F)				
Туре		15		70)			125		y _i
<u> </u>	74	155 180	134.75	34	75	57.25	20 82	70 58	57.5	998
2	150 159	188 126	155.75	136 106 174	122 115 120	119.75	25 58	70 45 104	49.5	1300
3 y.j.	138 168	110 160 1738	144	150		45.75	96 82	60 770	85.5	1501 3799 = y

$$SS_{temp} = 3 \times 4 \times \left[\frac{1738}{12} - 105.53 + \left(\frac{1201}{12} - 105.53 \right) + \left(\frac{770}{12} - 105.53 \right) \right]$$

$$= 39118.72$$
For replicates,
$$= 21(4)18.72$$

$$= (130-134.75) + (155-134.75) + ... + (34-57.25) + (40-57.25)^{2}$$

$$= 51(4)18.72$$

NOTE: You do NOT where over poission to share the or any Spite Norms with any See Sugar to pload the or any of the patterns where it can be accessed by others.

Life Data (in hours) for the Battery Design Experiment										
Material					Tempera	ature (°F)				
Type		15		70				125	<i>y</i> _i	
_	130	155	424.75	34	40	F7.0F	20	70		
1	74	180	134.75	80	75	57.25	82	58	57.5	998
	150	188	155.75	136	122	119.75	25	70	40 F	
2	159	126	155./5	106	115	119.75	58	45	49.5	1300
	138	110	144	174	120	4.45.75	96	104	85.5	
3	168	160	144	150	139	145.75	82	60	05.5	1501
У.ј.		1738			1291			770		$3799 = y_{}$

Analysis of Variance for	Battery	Life	Data
--------------------------	---------	------	------

Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	$\boldsymbol{F_0}$	<i>P</i> -Value
Material types	10,683.72	2	5,341.86	7.91	0.0020
Temperature	39,118.72	2	19,559.36	28.97	< 0.0001
Interaction	9,613.78	4	2,403.44	3.56	0.0186
Error	18,230.75	27	675.21		
Total	77,646.97	35			

cessed by others.

How would you check Model Adequacy?

Material				Tempera	ature (°F)				
Гуре	1	15	7	0			125		<i>y</i> _i
	(130)	(155)	34	40		20	70	_	
1	74	180	80	75	57.25	82	58	57.5	998
	150	188	136	122	119.75	25	70	40 F	
2	159	126	106	115	119.75	58	45	49.5	1300
	138	110 144	174	120	445.75	96	104	85.5	
3	168	160	150	139	145.75	82	60	05.5	1501
У. <i>j</i> .		1738		1291			770		3799 = 1

Regression Model

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.51
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6 \(\)
8	1	1	1	87.7

Main Effects

Ambient temperature (E_1) 9150 psi

Wind Velocity (E₂) - 5100 psi

Bar Size (E_3) 850 psi

Two-Variable Interactions

Ambient temperature-Wind Velocity (E₁₂) 0 psi

Ambient temperature-Bar Size (E_{13}) 4650 psi

Wind Velocity-Bar Size (E₂₃) -100 psi

Three-Variable Interaction

Ambient temperature-Wind Velocity-Bar Size (E₁₂₃) -4700 psi

What is the regression model?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3$$

U, = Bo + B1(-1) + B2(-1) + B3(-1) + B12(+1) + B2(+1) + B2(+1)

+ Pan (-1)

we want to find & Bi /

8.53250000e+01 4.57500000e+00 -2.55000000e+00 4.25000000e-01 -3.55271368e-15 2.32500000e+00 -5.00000000e-02 -2.35000000e+00]

Let's say that we want to fit the following model,

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

$$\epsilon_i = \underline{y_i} - \hat{\underline{y_i}}$$

With 'least square fit', the aim is to find such coefficients, that minimizes the total sum of squares of error.

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

$$Y_{exp}$$
 = $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$\begin{bmatrix} \hat{Y} \end{bmatrix} = \begin{bmatrix} \hat{Y} \end{bmatrix}$$

where, $[\times] = \begin{bmatrix} 1 & \chi_{11} & \chi_{21} & \chi_{31} \\ 1 & \chi_{12} & \chi_{22} & \chi_{33} \\ 1 & \chi_{10} & \chi_{20} & \chi_{303} \end{bmatrix}$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

Let's say that we want to fit the following model,

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

Thus,
$$L = \sum \xi_1^2 = [\xi_1^T [\xi]]$$

$$= \begin{bmatrix} Y_{exp} - \hat{Y} \end{bmatrix} \begin{bmatrix} Y_{exp} - \hat{Y} \end{bmatrix}$$

$$= \begin{bmatrix} Y_{exp} - XB \end{bmatrix} \begin{bmatrix} Y_{exp} - XB \end{bmatrix}$$

$$= \begin{bmatrix} Y_{exp} - XB \end{bmatrix} \begin{bmatrix} Y_{exp} - XB \end{bmatrix}$$

$$\begin{array}{c} \left(\begin{array}{c} \mathcal{E}_{1} \\ \mathcal{E}_{2} \end{array} \right) = \begin{bmatrix} \mathcal{E}_{1} \\ \mathcal{E}_{2} \end{bmatrix} = \begin{bmatrix} \mathcal{E}_{exp} - \mathcal{E}_{1} \\ \mathcal{E}_{2} \end{bmatrix} = \begin{bmatrix} \mathcal{E}_{2} \\ \mathcal{E}_{2} \end{bmatrix} = \begin{bmatrix} \mathcal{E}_{1} \\ \mathcal{E}_{2} \end{bmatrix} = \begin{bmatrix} \mathcal{E}_{2} \\ \mathcal$$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

Let's say that we want to fit the following model,

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

$$-2[\times]^{T}[Y_{exp}] + 2[\times]^{T}[\times)[\beta] = 0$$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

What if we want to fit a model like $\hat{y} = \beta_0 + \beta_1 \alpha_1 + \beta_2 \alpha_2 + \beta_3 \alpha_3 + \beta_{123} \alpha_1 \alpha_2 \alpha_3$

thun, rename
$$7172 = 249$$
 $717273 = 75, $24 = 26$
 $1312 = 1349$ $133 = 135, $131 = 136$$$

then do the same procedure as before

The yield from a certain chemical depends on either the chemical formulation of the input materials or the mixer speed, or both.

A 2-level factorial design was run with three replicates and the yield data are shown below.

Find main effects and interaction effects.

x ₁	X ₂	Уa	y _b	У _с	\overline{y}
-1	-1	10	20	30	20
1	-1	40	30	50	40
-1	1	60	30	60	50
1	1	40	45	50	45

Consider following factorial design with 2 variables (k = 2), and 3 levels each

Each combination replicated 4 times (n = 4)

Life (in hours) Data for the Battery Design Example

Material	Temperature (°F)								
Type	1	15	7	0	1	25			
1	130	155	34	40	20	70			
	74	180	80	75	82	58			
2	150	188	136	122	25	70			
	159	126	106	115	58	45			
3	138	110	174	120	96	104			
	168	160	150	139	82	60			

What is the effects model and hypothesis test?

The yield form, a certain chemical depends on

either the **chemical formulation of the input materials** or **the mixer speed**, **or both**.

A 2-level factorial design was run with three replicates and the yield data are shown below.

Find Main and Interaction Effects and their Confidence Intervals, and Significance using ANOVA

X ₁	X ₂	y a	y_b	У _с	\overline{y}
-1	-1	10	20	30	20
1	-1	40	30	50	40
-1	1	60	30	60	50
1	1	40	45	50	45

						^			
x ₁	x ₂	y _a	y _b	y _c	\overline{y}	Confidence interval for E, VCCY) = c2V(1)			
$\boxed{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}} \end{array} }$	-1	10 <	20	30	(20)				
1	-1	40	30	50	40	$V(E_1) = V\left(\frac{\overline{Y_2} - \overline{Y}_1 + \overline{Y_4} - \overline{Y_3}}{2}\right)$			
-1	1	60	30	60	50	2			
1	1	40	45	50	45 ⁽	$= \frac{1}{4} \frac{\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{100+00+\sqrt{1000+000+000+0000000000$			
VCE	$V(E_1) = \frac{5^2}{3}$								
VCE	V(Ez) = 573 = V(E12) Yua+Unc - Yestyshthz								
	$\frac{V(E_1) = 573 - V(E_{12})}{= \frac{1}{36}} = \frac{12}{36} $								
	$\frac{12}{36} = \frac{12}{36} = \frac{1}{3} = $								
Confi	Confidence interval $E; \pm t_{\nu, \alpha} \sqrt{\frac{c_{\nu}^2}{3}}$								
	3								
	at 95% contidence to, $\alpha = t_{8,0.025} = 2.306$ from take								
	$E_1^2 \pm 2.306$, $131.2\sqrt{3} = E_1^2 \pm 15.25$								
	78								