Exercícios #5 Solução

Valor total: 3 pontos

Questão 1

Considere a **Questão 7** dos **Exercícios #2**. Resolva o modelo de PL usando algum software apropriado e descreva a solução obtida.

Resolvendo o modelo com o LINGO, temos:

Objective value: 9.000000

Variable	Value	Reduced Cost
X1	2.00000	0.000000
X2	0.000000	1.000000
X3	1.000000	0.000000
X4	3.000000	0.000000
X6	0.000000	0.000000
X7	3.00000	0.000000
X8	0.000000	0.000000
X9	0.000000	1.000000
Row	Slack or Surplus	Dual Price
1	9.000000	-1.000000
2	0.000000	-1.000000
3	0.000000	0.000000
4	0.000000	0.000000
5	0.000000	0.000000
6	0.000000	-1.000000
7	0.000000	0.000000
8	0.000000	0.000000
9	0.00000	-1.000000
10	0.000000	0.000000

Com isso, teremos a seguinte quantidade de estudantes iniciando em cada um dos horários:

j:	1	2	3	4	5	6	7	8	9
Horário:	08:01	09:01	10:01	11:01	12:01	13:01	14:01	15:01	16:01
	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
Demanda:	2	2	3	4	4	3	3	3	3
Alunos iniciando:	2	1	1	3	1	-	3	-1	-

No total, 9 estudantes serão contratados, e todos os horários serão preenchidos com a demanda mínima de estudantes.

Questão 2

Considere a Questão 8(a) dos Exercícios #2.

```
X<sub>ij</sub> - Quantidade da cultura i plantada na fazenda j. 

Max. 6000 * (X_{a1} + X_{a2} + X_{a3}) + 4500X_{b1} + 4500X_{b2} + 4500X_{b3} + 5500X_{c1} + 5500X_{c2} + 5500X_{c3} s.a. 

Área 1) X_{a1} + X_{b1} + X_{c1} \le 950 

Área 2) X_{a2} + X_{b2} + X_{c2} \le 735 

Área 3) X_{a3} + X_{b3} + X_{c3} \le 840 

Água 1) 5X_{a1} + 4X_{b1} + 4.5X_{c1} \le 1500 

Água 2) 5X_{a2} + 4X_{b2} + 4.5X_{c2} \le 900 

Água 3) 5X_{a3} + 4X_{b3} + 4.5X_{c3} \le 1200 

Área A) X_{a1} + X_{a2} + X_{a3} \le 950 

Área B) X_{b1} + X_{b2} + X_{b3} \le 800 

Área C) X_{c1} + X_{c2} + X_{c3} \le 1200
```

a) Resolva o modelo de PL usando algum software apropriado e descreva a solução obtida.

Objective value:	4400000.		
Variable	Value	Reduced Cost	
XA1	0.000000	111.1111	(a)
XA2	0.000000	111.1111	
XA3	0.000000	111.1111	
XB1	0.000000	388.8889	(b)
XB2	0.000000	388.8889	
XB3	0.000000	388.8889	
XC1	333.3333	0.000000	
XC2	200.0000	0.000000	
XC3	266.6667	0.000000	
Row	Slack or Surplus	Dual Price	
AREA_1	616.6667	0.000000	
AREA_2	535.0000	0.000000	
AREA_3	573.3333	0.000000	
AGUA_1	0.000000	1222.222	(c)
AGUA_2	0.000000	1222.222	
AGUA_3	0.000000	1222.222	
AREA_A	950.0000	0.000000	
AREA_B	800.0000	0.000000	
AREA_C	400.0000	0.000000	

Plantar apenas a cultura C, dividindo seu plantio em 333,33 ha na fazenda 1, 200 ha na fazenda 2 e 266,67 ha na fazenda 3. O lucro total será de \$ 4.400.000,00. Toda a água disponível será usada nos plantios, e haverá sobra de área disponível nas fazendas 1 (616,67 ha), 2 (235 ha) e 1 (573,33 ha). Também haverá sobra na capacidade de plantio das culturas A (950 ha), B (800 ha) e C (400 ha).

b) Dada a BASE ótima obtida, monte a equação matricial correspondente do sistema:

Maximizar
$$f = c_B x_B$$

s.a. $Bx_B = b$

identificando numericamente as matrizes $B \in B^{-1}$, e os vetores $c_R \in b$.

$$B^{-1} = \begin{bmatrix} 0 & 0 & 0 & \frac{2}{9} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2}{9} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{2}{9} & 0 & 0 & 0 \\ 1 & 0 & 0 & \frac{-2}{9} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{-2}{9} & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{-2}{9} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{-2}{9} & \frac{-2}{9} & \frac{-2}{9} & 0 & 0 & 1 \end{bmatrix}$$

- c) Dê o significado dos Custos Reduzidos e dos Preços Duais diferentes de zero da solução ótima:
 - (a) Para cada ha que forçarmos do plantio da cultura A em qualquer uma das três fazendas, o lucro total será reduzido em \$111,11. Ou: O plantio da cultura A em qualquer uma das três fazendas só será interessante economicamente se o lucro dela por ha for aumentado em pelo menos \$111,11.
 - (b) Para cada ha que forçarmos do plantio da cultura B em qualquer uma das três fazendas, o lucro total será reduzido em \$388,89. Ou: O plantio da cultura B em qualquer uma das três fazendas só será interessante economicamente se o lucro dela por ha for aumentado em pelo menos \$388,89.
 - (c) Para cada m³ que conseguirmos a mais de água em qualquer uma das três fazendas, aumentaremos o lucro em \$1.222,22. Ou: se pudermos conseguir mais água a um custo inferior a \$1.222,22 por m³, podemos aumentar ainda mais o lucro.

Questão 3 (baseado em TAHA, pág. 26)

A All-Natural Coop produz três cereais matutinos, A, B e C, usando quatro ingredientes: aveia granulada, uva-passa, coco ralado e lascas de amêndoas. As disponibilidades diárias dos ingredientes são de 30t, 2t, 1t e 1t, respectivamente. Os custos correspondentes por tonelada são de \$ 100, \$ 120, \$ 110 e \$ 200. O cereal A é uma mistura de 50:5:2 de aveia, passas e amêndoa. O cereal B é uma mistura de 60:2:3 de aveia, coco e amêndoa. O cereal C é uma mistura de 60:3:4:2 de aveia, passas, coco e amêndoas. Os cereais são produzidos em caixas grandes de 1 kg. A All-Natural vende os cereais A, B e C a \$2,00, \$2,50 e \$3,00 a caixa, respectivamente. A demanda mínima diária dos cereais A, B e C é de 500, 600 e 500 caixas

a) Escreva o modelo de PL de modo a maximizar o lucro (receita menos o custo) com a venda de cereais.

```
A, B, C = qtd. de caixas de 1kg de cada tipo de cereal.
```

```
Max 2*A + 2.5*B + 3*C
   -0.1*((50/57)*A + (60/65)*B + (60/69)*C)
   -0.12*((5/57)*A + (3/69)*C)
   -0.11*((2/65)*B + (4/69)*C)
   -0.2*((2/57)*A + (3/65)*B + (2/69)*C)
s.a.
A >= 500
B >= 600
C > = 500
[Aveia]
           (50/57)*A + (60/65)*B + (60/69)*C <= 30000
[Passas]
            (5/57)*A
                                  + (3/69)*C <= 2000
                                  + (4/69)*C <= 1000
[Coco]
                        (2/65)*B
[Amendoas]
            (2/57)*A + (3/65)*B + (2/69)*C <= 1000
```

b) Resolva o modelo de PL usando algum software apropriado e descreva a solução obtida.

```
Objective value:
                       76467.97
      Variable
                          Value
                                         Reduced Cost
                                             0.000000
             Δ
                       13723.85
             В
                       600,0000
                                             0.000000
              C
                       16931.54
                                             0.000000
           Row
                   Slack or Surplus
                                           Dual Price
              2
                       13223.85
                                             0.000000
              3
                                           -0.8033846
                                                          (a)
                       0.000000
              4
                       16431.54
                                             0.000000
                       2684.615
                                             0.000000
         AVEIA
        PASSAS
                       60.00000
                                             0.000000
          COCO
                       0.000000
                                             22.95000
                                                          (b)
      AMENDOAS
                       0.000000
                                             54.00000
                                                          (c)
```

Produzir 13.723,85 caixas de cereal A, 600 caixas de B e 16.931,54 caixas de C. O lucro será de \$ 76.467,97.

Haverá uma sobra de 2.684,615 kg de aveia e 60 kg de passas

- c) Dê o significado dos Custos Reduzidos e dos Preços Duais diferentes de zero da solução ótima.
 - (d) Para cada caixa de cereal B que aumentarmos o limite mínimo, haverá uma redução de \$0,80 no lucro total. O contrário também é verdadeiro.
 - (e) Para cada kg que conseguirmos a mais de coco, aumentaremos o lucro em \$22,95. Ou: se pudermos conseguir mais coco a um custo inferior a \$22,95 o kg, podemos aumentar o lucro.
 - (f) Para cada kg que conseguirmos a mais de amêndoas, aumentaremos o lucro em \$54. Ou: se pudermos conseguir mais amêndoas a um custo inferior a \$54 o kg, podemos aumentar o lucro.

Questão 4 (baseado em Winston, pág. 92)

Você decidiu entrar no negócio de doces. Você está pensando em produzir dois tipos de doces: Slugger Candy e Easy Out Candy, ambos compostos exclusivamente de açúcar, nozes e chocolate. No momento, você tem em estoque 3 kg de acúcar, 0,6 kg de nozes e 0,85 kg de chocolate. A mistura usada para fazer o Easy Out Candy deve conter pelo menos 20% de nozes. A mistura usada para fazer o Slugger Candy deve conter pelo menos 10% de nozes e 10% de chocolate. Cada 100g de Easy Out Candy pode ser vendida por \$5, e cada 100g de Slugger Candy por \$4.

a) Escreva o modelo de PL de modo a maximizar a receita com a venda de doces.

```
xij = kg de (açúcar, nozes, chocolate) usado para produzir (Slugger Candy, Easy
Out Candy).
Max 40*(x11 + x21 + x31) + 50*(x12 + x22 + x32)
x21 >= 0.1*(x11 + x21 + x31)
x31 >= 0.1*(x11 + x21 + x31)
x22 >= 0.2*(x12 + x22 + x32)
[açúcar] x11 + x12 <= 3
           x21 + x22 <= 0.6
[nozes]
[chocolate] x31 + x32 <= 0.85
```

b) Resolva o modelo de PL usando algum software apropriado e descreva a solução obtida.

Ohi	ective	value:	193,5000
\mathbf{c}	CCCTVC	varuc.	177.7000

Variable	Value	Reduced Cost	
X11	2.320000	0.000000	
X21	0.2900000	0.000000	
X31	0.2900000	0.000000	
X12	0.6800000	0.000000	
X22	0.3100000	0.000000	
X32	0.5600000	0.000000	
Row	Slack or Surplus	Dual Price	
2	0.000000	-100.0000	(a)
3	0.00000	0.000000	
4	0.00000	-100.0000	(b)
ACUCAR	0.00000	30.00000	(c)
NOZES	0.00000	130.0000	(d)
CHOCOLATE	0.000000	30.00000	(e)

Fabricar:

2,88 kg de Slugger Candy, misturando 2,32 kg de acúcar, 0,29 kg de nozes e 0,29 kg de chocolate. 1,55 kg de Easy Out Candy, misturando 0,68 kg de açúcar, 0,31 kg de nozes e 0,56 kg de chocolate. A receita total será de \$ 193,50.

Não irá sobrar ingrediente algum, e todos os doces terão exatamente o mínimo exigido de ingredientes.

- c) Dê o significado dos Custos Reduzidos e dos Preços Duais diferentes de zero da solução ótima.
 - Para cada kg de nozes que aumentarmos na exigência do Slugger Candy, reduziremos a receita (g) em \$100. O contrário também é verdadeiro.
 - Para cada kg de chocolate que aumentarmos na exigência do Slugger Candy, reduziremos a (h) receita em \$100. O contrário também é verdadeiro.
 - (i) Para cada kg que conseguirmos a mais de açúcar, aumentaremos a receita em \$30. Ou: se pudermos conseguir mais açúcar a um custo inferior a \$30 o kg, podemos aumentar a receita.
 - (j) Para cada kg que conseguirmos a mais de nozes, aumentaremos a receita em \$130. Ou: se pudermos conseguir mais nozes a um custo inferior a \$130 o kg, podemos aumentar a receita.
 - (k) Para cada kg que conseguirmos a mais de chocolate, aumentaremos a receita em \$30. Ou: se pudermos conseguir mais chocolate a um custo inferior a \$30 o kg, podemos aumentar a receita.