

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

lmage Deblurring

Digital Image Processing

Image Deburring

Instructors: Tran Thi Thanh Hai

Le Thi Lan

Student 1: Pham Tung Lam - 20224321

Student 2: Bui Thi Ngoc Anh - 20224276

Table of contents

- 1. Introduction
- 2. Proposed method
 - 2.1. Generative Adversarial Network (GAN)
 - 2.2. How does a GAN works
 - 2.3. ResNet-Based generator
 - 2.4. Discriminator
 - 2.5. Loss function
- 3. Experiment
 - 3.1. Discriminator Training
 - 3.2. Generator Training
 - 3.3. Logging and Validation
- 4. Model Evaluation
- 5. Discussion and Conclusion

 Single image deblurring aims to restore a latent sharp image from a blurry one.

There are several methods for this work

Figure 2. Comparison of coarse-to-fine image deblurring network architectures: (a) DeepDeblur, (b) PSS-NSC, (c) MT-RNN, and (d) proposed MIMO-UNet.

- In this report, we learn about GANs and try to replicate its application to image deblurring.
- Because of the limitations of the device, we will build the network according to the most basic theory.

Figure 4. DCGANs - Generator architecture

2. Proposed method

2.1. Generative Adversarial Network (GAN)

- Generative Adversarial Networks (GANs) are a powerful class of neural networks that are used for an unsupervised learning.
- GANs are made up of two neural networks, a <u>discriminator</u> and a <u>generator</u>.
- They use <u>adversarial training</u> to produce artificial data that is identical to actual data.
- The <u>Generator</u> attempts to <u>fool</u> the <u>Discriminator</u>, which is tasked with accurately distinguishing between <u>produced</u> and <u>genuine data</u>, by producing <u>random noise samples</u>.
- Through <u>adversarial training</u>, these models engage in a <u>competitive</u> <u>interplay</u> until the <u>generator</u> becomes adept at creating <u>realistic</u> <u>samples</u>, fooling the <u>discriminator</u> approx imately <u>half the time</u>.

The steps involved in how a GAN works:

1. Initialization:

Two neural networks are created: a Generator (G) and a Discriminator (D).

2. Generator's First Move:

• G takes a random noise vector as input.

2. Generator's First Move:

 Using its internal layers and learned patterns, G transforms the noise vector into a new data sample, like a generated image.

3. Discriminator's Turn:

 D receives two kinds of inputs: Real data samples from the training dataset and the data samples generated by G in the previous step.

3. Discriminator's Turn:

 D's job is to analyze each input and determine whether it's real data or something G cooked up.

3. Discriminator's Turn:

 It outputs a probability score between 0 and 1. A score of 1 indicates the data is likely real, and 0 suggests it's fake.

4. The Learning Process:

 If D correctly identifies real data as real (score close to 1) and generated data as fake (score close to 0), both G and D are rewarded to a small degree.

4. The Learning Process:

However, the key is to continuously improve. If D
consistently identifies every thing correctly, it won't learn
much. So, the goal is for G to eventually trick D.

5. Generator's Improvement:

- When D mistakenly labels G's creation as real (score close to 1), it's a sign that G is on the right track.
- In this case, G receives a significant positive update, while D receives a penalty for being fooled.

6. Discriminator's Adaptation:

- Conversely, if D correctly identifies G's fake data (score close to 0), but G receives no reward, D is further strengthened in its discrimination abilities. This ongoing duel between G and D refines both networks over time.
- As training progresses, G gets better at generating realistic data, making it harder for D to tell the difference. Ideally, G becomes so adept that D can't reliably distinguish real from fake data.
- At this point, G is considered well-trained and can be used to generate new, realistic data samples

2.3. ResNet-based Generator

- Residual Network In order to solve the problem of the vanishing/exploding gradient, this architecture introduced the concept called Residual Blocks.
- In this network, they use a technique called skip connections
- The skip connection connects activations of a layer to further layers by skipping some layers in between.

Figure 7. Basic residual block

2.3. ResNet-based Generator

- In this study, we implement a ResNet Generator network to address the problem of image deblurring, aiming to reconstruct sharp and detailed images from blurred inputs.
- The network consists of three main components: an encoder, a bottleneck with Residual Blocks, and a decoder.

```
class Generator(nn.Module):
   def __init__(self, num_residual_blocks=6):
        super(Generator, self).__init__()
        # Encoder
        self.encoder = nn.Sequential(
           nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3),
           nn.BatchNorm2d(64),
           nn.ReLU(inplace=True),
           nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
           nn.BatchNorm2d(128),
           nn.ReLU(inplace=True),
           nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
        # Bottleneck with residual blocks
       self.bottleneck = nn.Sequential(
            *[ResidualBlock(256) for _ in range(num_residual_blocks)]
```

```
# Decoder
self.decoder = nn.Sequential(
    nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
    nn.BatchNorm2d(128),
    nn.ReLU(inplace=True),
    nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
    nn.BatchNorm2d(64),
    nn.ReLU(inplace=True),
    nn.Conv2d(64, 3, kernel_size=7, stride=1, padding=3),
    nn.Tanh()
)
```


2.3. ResNet-based Generator

Summary of how is works:

1.Input: Original image (CxHxW)

2.Basic feature extraction: Encoder transforms input through convolution layers, BatchNorm, and ReLU.

3.Learning complex features: Bottleneck processes features via a sequence of residual blocks.

4.Image reconstruction: Decoder reconstructs the output using transposed convolutions and Tanh.

5. Output: Fake image (C'xHxW)

```
class Generator(nn.Module):
   def __init__(self, num_residual_blocks=6):
       super(Generator, self).__init__()
        # Encoder
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3),
           nn.BatchNorm2d(64),
           nn.ReLU(inplace=True),
           nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
           nn.BatchNorm2d(128),
           nn.ReLU(inplace=True),
            nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
       # Bottleneck with residual blocks
       self.bottleneck = nn.Sequential(
            *[ResidualBlock(256) for _ in range(num_residual_blocks)]
```

```
# Decoder
self.decoder = nn.Sequential(
    nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
    nn.BatchNorm2d(128),
    nn.ReLU(inplace=True),
    nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
    nn.BatchNorm2d(64),
    nn.ReLU(inplace=True),
    nn.Conv2d(64, 3, kernel_size=7, stride=1, padding=3),
    nn.Tanh()
)
```


2.4. Discriminator

- In this study, we employ a Convolutional Neural Network based Discriminator to evaluate the realism of reconstructed images in the image deblurring task.
- The architecture consists of multiple Convolutional layers applied sequentially to extract features and reduce the spatial dimensions of the input image while increasing the feature depth.

```
class Discriminator(nn.Module):
    def __init__(self):
       super(Discriminator, self).__init__()
       self.model = nn.Sequential(
           # Input: (B, 3, H, W)
           nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), # Downsample
           nn.LeakyReLU(0.2, inplace=True),
           nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), # Downsample
           nn.BatchNorm2d(128),
           nn.LeakyReLU(0.2, inplace=True),
           nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), # Downsample
           nn.BatchNorm2d(256),
           nn.LeakyReLU(0.2, inplace=True),
           nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # Downsample
           nn.BatchNorm2d(512),
           nn.LeakyReLU(0.2, inplace=True),
           nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0), # Final classification
           nn.Sigmoid() # Output: Validity score
```


2.5. Loss function

Adversarial loss is expressed as:

$$\mathcal{L}_{adv}(G, D) = \mathbb{E}_{x \sim \text{data}}[\log D(x)] + \mathbb{E}_{z \sim \text{noise}}[\log(1 - D(G(z)))]$$

Validation loss:

$$\text{val_loss} = \frac{1}{N} \sum_{i=1}^{N} |\text{fake_images}_i - \text{sharp}_i|$$

The pixel loss:

$$\mathcal{L}_{pixel}(G) = \mathbb{E}_{x,y \sim data} \left[\|y - G(x)\|_1 \right]$$

The Discriminator loss:

$$\mathcal{L}_{\text{real}} = \mathcal{L}_{\text{adv}}(D(x_{real}), y_{real})$$

$$\mathcal{L}_{D} = \frac{\mathcal{L}_{\text{real}} + \mathcal{L}_{\text{fake}}}{2}$$

$$\mathcal{L}_{D} = \frac{\mathcal{L}_{\text{real}} + \mathcal{L}_{\text{fake}}}{2}$$

The total loss for the Generator:

$$\mathcal{L}_{G_{adv}} = \mathcal{L}_{adv}(D(G(z)), y_{real})$$

$$\mathcal{L}_{G_{pix}} = \mathbb{E}\left[\|G(z) - x_{sharp}\|_{1}\right]$$

$$\mathcal{L}_{G} = \mathcal{L}_{G_{adv}} + 100.\mathcal{L}_{G_{pix}}$$

3. Experiment

3. Experiment

Dataset:

- GOPro: 2,902 images (Training, Validation, Test sets).
- Training: 1,029 blurry & 1,029 sharp images (Resized: 1280x720 → 640x360).
- Validation: 422 blurry & 422 sharp images.

Preprocessing:

- Align blurry and sharp images for synchronization.
- Maintain original aspect ratio during resizing.

Hardware:

AMD Ryzen 7, NVIDIA RTX 3040Ti.

3. Experiment

3.1. Discriminator Training 3.2. Generator Training

Input

- Real sharp images (labeled as 1).
- Fake images (labeled as 0).

Loss:

- Minimize adversarial loss to distinguish real vs. fake images.
- Optimizer updates weights accordingly.

Input:

Blurry images → Generate fake sharp images.

Loss

- **Adversarial Loss:** Fool discriminator (fake \rightarrow real).
- Pixel Loss: Difference between generated & ground-truth images.
- **Total Loss:** Weighted combination (Pixel Loss × 100).

3.3. Logging and Validation

Logging:

- Every 5 steps: Generator
 & Discriminator loss
 recorded.
- After each epoch: Validate on the validation set.

Validation Loss:

- Measure pixel loss on validation data.
- Save best generator model based on lowest validation loss.

4. Model Evaluation

Evaluation Process

- Pre-Trained Model:
 - Load best checkpoint weights.
- Dataset:
 - GOPro & RealBlur test sets.
- Evaluation:
 - Use DataLoader (batch size = 1) to process images one by one.
 - Generate sharp images from blurry inputs.

4. Model Evaluation

General statistics

Metric	Mean	Std	Min	Max
PSNR	23.979077	4.747543	7.644042	34.360462
SSIM	0.760050	0.218749	0.054897	0.976034

Peak Signal-to-Noise Ratio (PSNR):

- Evaluates pixel-wise differences.
- Higher PSNR = better similarity to ground truth.

- Structural Similarity Index Measure (SSIM):

- Considers perceptual quality: luminance, contrast, structure.
- Higher SSIM = better structural similarity.

4. Model Evaluation

- PSNR and SSIM computed for <u>each test</u> <u>image</u>.
- Results <u>highlight</u> the model's ability to <u>recover sharp images</u>.
- Metrics printed to the console for analysis.

Model	PSNR	SSIM
DeepDeblur [11]	29.23	0.916
SRN [21]	30.26	0.934
PSS-NSC [3]	30.92	0.942
DMPHN [23]	31.20	0.945
RADN [13]	31.76	0.953
SVDN [24]	29.81	0.937
MIMO-UNet [22]	31.73	0.951
MIMO-UNET++ [22]	32.68	0.959
Proposed model	23.97	0.7601

Performance Summary

- Metrics Comparison
 - PSNR: Proposed Model (23.97) vs. State-of-the-art (e.g., MIMO-UNET++: 32.68)
 - SSIM: Proposed Model (0.7601) vs. MIMO-UNET++ (0.959), RADN (0.953)

Challenges

- Low PSNR: Difficulty in reconstructing high-frequency details.
- **Low SSIM:** Limited structural similarity to ground-truth images.
- Comparison to Other Models
 - MIMO-UNET++: Advanced multi-scale & attention mechanisms.
 - *SRN*, *PSS-NSC*: Higher robustness to diverse blur patterns

Improvement Directions

- Model Architecture: Multi-scale processing, attention mechanisms.
- Loss Functions: Perceptual loss, refined adversarial loss.
- Training
 - Larger datasets.
 - Hyperparameter tuning.
 - Transfer learning with pre-trained models.

Conclusion

- Achievements:
 - Implemented GAN-based deblurring model.
 - Valuable insights gained despite challenges.
- Limitations:
 - Performance below expectations.
 - Struggled with complex blur patterns.
- Future Directions:
 - Explore alternative architectures (e.g., encoder-decoder).
 - Optimize loss functions and training processes.
 - Investigate noise handling and dataset augmentation.

THANK YOU!

Division of Labor

Student	Tasks		
Phạm Tùng Lâm	Studied about Generator and reconstructed it		
Pilani Tung Lam	Dataset works		
Dùi Thi Naga Anh	Studied about Discriminator and reconstructed it		
Bùi Thị Ngọc Anh	Construct utils functions		
	Training model		
D-4	Write research		
Both	Testing		
	Slide making		

