

CÁTEDRA DE INGENIERÍA DE SOFTWARE I

Profesor M. en C. Ing. Luis Alberto Muñoz Gómez Diagrama de clases

Objetivo: Mapear los diagramas de secuencia, modelo semántico de datos, tarjetas CRC y contratos hacia un diagrama de clases. Elaborar un documento que contenga dicho diagrama.

Descripción

UML contiene distintos modelos, cada uno con su notación, lo que permite que sean descritos distintos aspectos (estáticos y dinámicos) de un sistema. Un diagrama de clase es un documento que describe el diseño final para la implementación del sistema uniendo el modelo de datos y el modelo de proceso.

La reutilización de código mediante herencia es como sigue.

La agregación y composición son como sigue.

Finalmente, clases abstractas y realización de interfaces.

Basándose en los resultados obtenidos de los diagramas de secuencia de sistema, modelo semántico de datos, tarjetas CRC, diagramas de secuencia de instancias, y contratos de las actividades anteriores, elaborar el diagrama de clases.

Requerimientos

- 1. Completar lo más posible, todos los casos de uso aplicables al proyecto, modificando los documentos de actividades previas para tal efecto.
- 2. Completar lo más posible, todos los diagramas de secuencia del sistema.
- 3. Completar lo más posible, el modelo semántico de datos.
- 4. Completar lo más posible, las tarjetas CRC.
- 5. Completar lo más posible, todos los diagramas de secuencia de instancias.
- 6. Completar lo más posible, todos los contratos.
- 7. Elaborar un documento que cumpla con los siguientes requerimientos.
- 8. Elaborar un diagrama de clases sintético que incluya:
 - a) tantas relaciones asociación como sean posibles acorde a modelo semántico de datos;
 - b) al menos una relación agregación;
 - c) al menos una relación composición;
 - d) al menos una relación de herencia.
- 9. Elaborar un diagrama de clases con al menos una relación de herencia que muestre atributos y métodos de todas las clases involucradas en la herencia.
- 10. Elaborar un diagrama de clase, por cada clase, de tantas como sean posibles mostrando atributos y métodos.
- 11. A continuación del diagrama de cada clase, mostrar una tabla con un listado del estado de 3 objetos, que por ejemplo para la entidad Alumno sería:

dei estado de 3 objetos, que poi e			
codigo	nombre	cicloIngreso	
123	Hugo	2017B	
456	Paco	2018A	
789	Luis	2018B	

- ...mostrando claro, información para todos los atributos; el listado anterior es un ejemplo; no se está diciendo aquí que forzozamente la clase Alumno quede diseñada con los citados 3 atributos;
- ...por otro lado, si la clase Alumno se concibe como hija de otra clase, dicha tabla muestre sus atributos propios y también los atributos de la clase padre, asentando a la derecha del nombre del atributo un "*" si el atributo es heredado de una clase padre; ejemplo:

codigo*	nombre*	cicloIngreso
123	Hugo	2017B
456	Paco	2018A
789	Luis	2018B

...donde "codigo" y "nombre" serían atributos de la clase padre de Alumno.

- 12. Cada diagrama de clase que muestre atributos y métodos, se muestre conectado con una o más clases en un mismo diagrama de clases; esto es, elaborar un diagrama de clases expandido.
- 13. Elaborar tantos diagramas de clases expandidos como sean necesarios, uno por página en el documento, relacionando a las clases en base al diseño arquitectónico.
- 14. Tanto en el diagrama de clases sintético como en los expandidos, la legibilidad del diagrama leyendo de la forma "clase A"-"relación"-"clase B", tenga sentido en lenguaje natural al leer de izq a derecha, o de arriba hacia abajo.
- 15. Evitar los puentes en todo diagrama de clases.
- 16. Incluir en el diagrama de clases las clases administradoras necesarias para el proyecto.
- 17. Actualizar el archivo Excel que muestre las tareas y recursos utilizados según se describió en la actividad previa sobre "Ingeniería de Requerimientos".

Criterios de Evaluación

- Los establecidos en las "Reglas de Operación y Evaluación" del curso.
- Cumplir con la fecha límite de entrega citada en el Excel de Actividades.
- Cumplir con lo establecido en el Formato Estándar para Entrega de Actividades en Documento.
- Calificación en base a cobertura de requerimientos y fecha de entrega.