

PSI-KT: Predictive, Scalable and Interpretable **Knowledge Tracing on Structured Domains**

Hanqi Zhou^{1,2,3,4}, Robert Bamler^{1,2,3}, Charley M. Wu^{1,2,3}, Álvaro Tejero-Cantero^{1,2}

¹University of Tübingen ²Cluster of Excellence Machine Learning ³Tübingen AI Center ⁴IMPRS-IS

TL;DR

We propose a **high-performant**, **scalable** model to track learners' mastery levels with the interpretability required for personalized education, essential for next-generation intelligent tutoring systems.

Why do we care?

What should we learn, and when to practice?

To create personalized and effective curricula, we need:

- 1. Knowledge Tracing: What do learners already know?
- 2. Knowledge Mapping: What are suitable contexts to present content, i.e. what are prerequisites?

Existing models of human learning just can't keep up!

Cognitive models Explicit forgetting &

Flexibility scalability

Neural networks

Model capacity

Interpretability

Tracing knowledge over time

Knowledge Tracing (KT)[1] aims to estimate a learner's knowledge states and predict future performance given the learning interaction history.

Input: Learning history $\mathcal{H}_{1:N}^{\ell} := (x_n, t_n, y_n)_{1:N}^{\ell}$

- Knowledge component (KC) x_n , e.g. pythagorean theorem
- The timestamp of the interaction t_n
- An evaluation of the learner's performance y_n

Output: Prediction of the learner's performance and, optionally, the structure of KCs.

Two key components we cared in modeling human learning in structured domains:

PSI-KT: a hierarchical model from the ground up

Per learner $s_n^\ell := (\alpha_{t_n}^\ell, \mu_{t_n}^\ell, \gamma_{t_n}^\ell)$ for personalization

 α_n^ℓ forgetting rate; μ_n^ℓ consolidated memory; γ_n^ℓ transfer ability. The Markovian evolutio is: a Kalman filtering prior.

Per learner & KC $z_n^{\ell,k}$ for memory dynamics

(1) Global structure \mathcal{A} for knowledge prerequisites The consolidated memory is shifted by the inferred structure:

$$\tilde{\mu}_n^{\ell,k} := \mu_n^\ell + \gamma_n^\ell \sum_{i \neq k} a_{ik} z_n^{\ell,i}$$

(2) Ornstein-Uhlenbeck process for temporal evolution

$$dz^{\ell,k}/dt = \alpha^{\ell} \left(\mu^{\ell} - z^{\ell,k}\right) + \sigma^{\ell} \eta(t)$$

Overall: Structure-aware Ornstein-Uhlenbeck process The transition mean^[2]:

Variational inference: We use amortized variational inference, selecting a distribution family q_{ϕ} with free parameters ϕ to approximate the posterior p_{θ} by minimizing their Kullback-Leibler divergence.

$$ELBO(\theta, \phi) = \mathbb{H}\left(q_{\phi}\left(z_{1:n}, s_{1:n} \mid y_{1:n}\right)\right) + \mathbb{E}_{q_{\phi}\left(z_{1:n}, s_{1:n} \mid y_{1:n}\right)}\log p_{\theta}\left(y_{1:n}, z_{1:n}, s_{1:n}\right)$$

Interpretability of traits and graphs

Inferred cognitive traits are specific to each learner, consistent across data splits, disentangled (i.e., component-wise meaningful) and operationally interpretable.

Representation capacity:

Metric	Dataset	Baseline	PSI-KT
Specificity $\mathrm{MI}(s;\ell)\uparrow$	Assist12 Assist17 Junyi15	8.8 10.1 <u>13.5</u>	$\frac{8.4}{10.0}$
Consistency $^{-1}$ $\mathbb{E}_{\ell_{\mathrm{sub}}}\mathrm{MI}(s^{\ell};\ell_{\mathrm{sub}})\downarrow$	Assist12 Assist17 Junyi15	12.2 6.4 7.7	7.4 6.4 5.0
Disentanglement $D_{\mathrm{KL}}(s \ell) \uparrow$	Assist12 Assist17 Junyi15	$\frac{2.3}{0.6}$ $\frac{5.0}{5.0}$	7.4 8.4 11.5

Operational interpretability:

Individual traits are able to predict meaningful behavior data in the future.

- Consolidated memory vs. initial performance
- Forgetting rate vs. performance difference

The prerequisite structures with inferred edge probabilities are shown to causally support learning^[3].

Predictive accuracy on limited data

Within-learner prediction performance as a function of cohort sizes:

Scalability with more interaction

The Bayesian nature of PSI-KT allows it to be updated with new interaction without retraining^[4].

Cumulative training time of continual learning:

References:

[1] Abdelrahman, G., Wang, Q., & Nunes, B. (2023). Knowledge tracing: A survey. ACM Computing Surveys, 55(11), 1-37.

[2] Särkkä, S., & Solin, A. (2019). Applied stochastic differential equations (Vol. 10). Cambridge University Press. [3] Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological review, 116(4), 661. [4] Nguyen, C. V., Li, Y., Bui, T. D., & Turner, R. E. (2018, February). Variational Continual Learning. In International Conference on Learning Representations.