

WEBENCH ® **Electrical Simulation Report**

Type : Lowpass Response : Butterworth Topology : Sallen_Key
Order : 6

Stage Qty: 3

Device = OPA604AP Topology = Custom LP Filter Created = 2/9/15 4:36:07 AM User ID = 1198965

Design Id = 11 eSim Id = 1

Simulation Type = Closed Loop Freq

Response

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S1	Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
2.	A1_S2	Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
3.	A1_S3	Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
4.	C1_S1	Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
5.	C1_S2	Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
6.	C1_S3	Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
7.	C2_S1	Kemet	C0402C101J5GACTU Series= C0G	Cap= 100.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
8.	C2_S2	Samsung Electro- Mechanics	CL05C201JB5NNNC Series= C0G	Cap= 200.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
9.	C2_S3	AVX	04025A151JAT2A Series= C0G	Cap= 1.5 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0402 3 mm ²
10.	R1_S1	Panasonic	ERJ-6ENF1182V Series= 225	Res= 11.8 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
11.	R1_S2	Panasonic	ERJ-6ENF7151V Series= 225	Res= 7.15 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
12.	R1_S3	Panasonic	ERJ-6ENF3481V Series= 225	Res= 3.48 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
13.	R2_S1	Panasonic	ERJ-6ENF1622V Series= 225	Res= 16.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
14. R2_S2	Panasonic	ERJ-6ENF1332V Series= 225	Res= 13.3 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
15. R2_S3	Panasonic	ERJ-6ENF4021V Series= 225	Res= 4.02 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Simulation Parameters

#	Name	Parameter Name	Description	Values
1.	Vsignal	AC DC	AC Voltage Source Amplitude AC Voltage Source DC Offset	1 V 0.0 V
2.	Vcc	V	Vcc Supply Rail Value	5.0 V
3.	Vee	V	Vee Supply Rail Value	-5.0 V

Design Inputs

	9			
#	Name	Value	Description	
1.	CapacitorTolerance	E24	Capacitor series - 5 Passive capacitance tolerance	
2.	DualSupply	+/-5.0 V	Power supply(s) to active chips	
3.	FilterOrder	6.0		
4.	FilterResponse	Butterworth		
5.	FilterTopology	Sallen_Key		
6.	FilterType	Lowpass		
7.	Gain	1.0 V/V		
8.	NumberOfStages	3.0		
9.	PassbandFrequency	100.0 kHz		
10.	ResistorTolerance	E96	Resistor series - 1% Passive resistor tolerance	
11.	SeedCapacitance	100.0 pF	Seed Capacitance to start design of filter	
12.	SettlingTimeErrorBand	100.0 m%	Settling Time Error Band	
13.	SettlingTimeSpecification	100.0 µsec	Settling Time Specification	
14.	StepResponseOvershootSpec	20.0 %	Step Response Overshoot	
15.	StopbandAttenuation	-100.0 dB		
16.	StopbandFrequency	1000.0 kHz		

Design Assistance

1. **OPA604AP** Product Folder: http://www.ti.com//product/OPA604: contains the data sheet and other resources.

Filter Stage :1

Cutoff Frequency
Gain Bandwidth
Stage Gain
Stage Q
Stage Topology
StageNo

100.0 kHz
5.2 MHz
1.0 V/V
520.0 m
Stage Topology
Sallen_Key
1.0

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S1	Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
2.	C1_S1	Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
3.	C2_S1	Kemet	C0402C101J5GACTU Series= C0G	Cap= 100.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
4.	R1_S1	Panasonic	ERJ-6ENF1182V Series= 225	Res= 11.8 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
5.	R2_S1	Panasonic	ERJ-6ENF1622V Series= 225	Res= 16.2 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Filter Stage :2

Cutoff Frequency
Gain Bandwidth
Stage Gain
Stage Q
Stage Topology
StageNo

100.0 kHz
7.1 MHz
1.0 V/V
710.0 m
Stage Topology
Sallen_Key
2.0

Electrical BOM

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1. A1_S	2 Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
2. C1_S	2 Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
3. C2_S	2 Samsung Electro- Mechanics	CL05C201JB5NNNC Series= C0G	Cap= 200.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
4. R1_S	2 Panasonic	ERJ-6ENF7151V Series= 225	Res= 7.15 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
5. R2_S	2 Panasonic	ERJ-6ENF1332V Series= 225	Res= 13.3 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Filter Stage:3

Cutoff Frequency 100.0 kHz
Gain Bandwidth 19.3 MHz
Stage Gain 1.0 V/V
Stage Q 1.93
Stage Topology Sallen_Key
StageNo 3.0

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	A1_S3	Texas Instruments	OPA604AP	GbwTyp= 20.0 MHz VccMin= 9.0 V VccMax= 48.0 V	1	\$1.05	DIP 0 mm ²
2.	C1_S3	Samsung Electro- Mechanics	CL05C910JB5NCNC Series= C0G	Cap= 91.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
3.	C2_S3	AVX	04025A151JAT2A Series= C0G	Cap= 1.5 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.02	0402 3 mm ²
4.	R1_S3	Panasonic	ERJ-6ENF3481V Series= 225	Res= 3.48 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
5.	R2_S3	Panasonic	ERJ-6ENF4021V Series= 225	Res= 4.02 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.