Gexp: Genemarker Expert 머신러닝 기반 멀티 클래스 분석 바이오 마커 탐지 소프트웨어

센서쟁이 팀 - 김예지, 한채은, 강서연, 이선우 발표자 - 한채은

질병을 진단하는 센서, Biomarker

Biomarker: 몸 안의 변화 (병적 상태, 약물 치료 반응성, 질병의 진행)를 알아 낼 수 있는 생물학적 지표

Biomarker 탐지의 사용

예상 바이오 마커

특정 약물에 대한 반응군과 비반응군을 구별

대리표지자 바이오 마커

약물 치료효과를 모니터링

진단 바이오 마커

병의 유무를 진단

독성 바이오 마커

특정약물에 대한 부작용을 나타낸 그룹 찾아냄

예후 바이오 마커

질병의 예후를 알려줌

유전자 Biomarker란?

RNA 코로나 진단 키트

• 진단에 사용되는 유전자 바이오 마커

: 엔벨로프(env), 뉴클레오 캡시드(N), 스파이크(S), ORF1 코딩 유전자의 조합

Oncotype DX : 유방암 예후진단

- 21개의 바이오 마커 유전자로 유방암 재발 스코어 산출
- 세계 주요 가이드 라인에 포함된 키트

Why? 왜 Gexp를 사용해야 하는가?

왜 gexp일까?

∢I ▶ I▶

❖ 다중 분류(Multiclass)의 필요성

현재질병 유무 판단미래질병 세부 분류 판단

왜 gexp일까?

❖ 비선형성(non-linearity) 고려 필요성

유전자 독립적 분석, 이진 분류(binary class)

유전자 간 <mark>관계</mark> 고려, Multi class 분석 가능한

Tree ensemble 기반 머신 러닝 사용

왜 gexp일까?

❖ 사용성을 높인 구현 구조

- 1. 편의성
- 각 기능을 함수 모듈로 구현
 - 1) load_labeled_data
 - 2) biomarker_rank
 - 3) plot_stepwise_accuracy
 - 4) desecribe_genelist
 - 5) plot_heatmap

- 2. 유연성
- 함수 옵션을 통한 커스터마이징 지원

예) 데이터 라벨링에서 37종의 암 선택 로드

```
cancer_list: list, len(list) <= 37

["ACC", "BLCA", "BRCA", "CESE", "CHOL", "COAD", "COADREAD", "DLBC", "ESCA", "GBM", "GBMLGG", "HNSC", "KICH", "KIPAN", "KIRC", "KIRP", "LAML", "LGG", "LIHC", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", "PRAD", "READ", "SARC", "SKCM", "STAD", "STES", "TGCT", "THCA", "THYM", "UCEC", "UCS", "UVM"]
원하는 TCGA data 암 종류를 리스트 형식의 Argument로 입력
```

예) 5가지 method 별 중요도 유전자 선택

```
Model: {'RF, 'Ada', 'EXtra', 'DT', 'XGB'}
sklearn.ensemble.RandomForestClassifier
sklearn.ensemble.AdaBoostClassifier
sklearn.ensemble.ExtraTreesClassifier
sklearn.tree.DecisionTreeClassifier
xgboost.XGBClassifier
```

예) 다양한 정확도 메트릭스 선택 가능

```
accuracy_metric : list , default = ['accuracy']

['f1', 'accuracy', 'precision', 'recall', 'roc', 'aic', 'bic']
성능 평가의 지표 (sklearn.metrics)

multi_class = True
    ['f1', 'accuracy', 'precision', 'recall', 'roc'], average='macro' 사용

multi_class = None
    ['f1', 'accuracy', 'precision', 'recall', 'roc', 'aic', 'bic'], average='binary'을 사용
```


How?

Gexp 프로세스 및 구현

01. TCGA 데이터

02. Gexp 구현

TCGA

- : The Cancer Genome Atlas Since 2006 (NCI & National Human Genome Research Institute 주관)
- 미국 암 환자의 유전체 빅데이터 아카이브 프로젝트
- 전 유전체 종류 중 RNA기반 발현량 데이터 사용 (임상(clinical), DNA, RNA, 단백질, Methylation, microRNA...)
 - 33 종류 암 / 11,000명 환자

20,000개의 암 유전 분석을 하기 위해 발현 중요도가 높은 유전자를 선택하는 것이 핵심!!

TCGA - BRCA subtype

- ❖ 유방암 환자의 아종 라벨 데이터
 - 유방암의 4개 아종 분류

(LumA, LumB, Her2, Basal)

2019 해외 공개 English

TCGA Breast cancer selection dataset

TCGA Breast cancer selection dataset RICHARD TJÖRNHAMMAR;

MS and TCGA Breast cancer selection dataset

dataon의 TCGA Breast cancer selection dataset 사용

- > complete_data_gen_tcga.zip
- > NIHMS393293-supplement-2.xls

PAM50 mRNA

U

Basal-like Basal-like Basal-like Basal-like Basal-like Basal-like HER2-enriched HER2-enriched HER2-enriched HER2-enriched HER2-enriched HER2-enriched Luminal A Luminal A Luminal A Luminal A Luminal A Luminal A Luminal B Luminal B Luminal B Luminal B Luminal B Luminal B

BRCApatients_type.csv

Hybridization REF	Tumor	Subtype
TCGA-A8-A07B-01A-1	BRCA	LumA
TCGA-A8-A08B-01A-1	BRCA	Her2
TCGA-A8-A08P-01A-1	BRCA	LumB
TCGA-A8-A094-01A-1	BRCA	Her2
TCGA-A8-A09T-01A-1	BRCA	LumA
TCGA-AO-A03O-01A	BRCA	LumB
TCGA-BH-A0DZ-01A	BRCA	LumA
TCGA-A2-A04P-01A-3	BRCA	Basal
TCGA-A2-A04Q-01A	BRCA	Basal
TCGA-A2-A04T-01A-2	BRCA	Basal

국가연구데이터플랫폼: DataON (kisti.re.kr)

How?

Gexp 프로세스 및 구현

01. TCGA 데이터

02. Gexp 구현

Cancer BioMarker Detection

Step-wise accuracy

Biomarker 선택 및 시각화

1. load_labeled_data

사용자가 선택한 암에 대하여 해당 데이터를 정상 환자를 제거한 암 환자의 유전체 데이터만 불러와 암 이름을 라벨링 한 하나의 프레임으로 만든다.

입력 예시

LUAD.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt
LUSC.rnaseqv2_illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes_normalized_data.data.txt

출력 예시

- cancer_data.csv

ZZEF1 23140	ZZZ3 26009	psiTPTE22 387590	tAKR 389932	Target
1989.3074	611.7619	757.3737	1.2014	LUAD
1424.1557	426.7888	5.4951	0.0	LUAD
1520.5742	477.9904	186.1244	0.4785	LUAD
1582.9518	509.7419	318.4249	0.0	LUAD
265.3543	738.5827	7.0866	0.0	LUSC
702.6641	960.9895	11.4177	0.4757	LUSC
589.6485	757.5263	5.9321	18.3894	LUSC
807.1795	1008.7179	48.2051	0.0	LUSC

TGCA 데이터 로드 및 라벨링 **Gene marker** 탐지

Step-wise accuracy

Biomarker 선택 및 시각화

biomarker_rank

트리 기반 5가지 method을 이용해 cancer 별, subtype 별로 <mark>중요 유전자(biomarker)를</mark> 한눈에 순위화한 랭킹 프레임을 얻는다.

입력 예시

사용 가능 method 종류

- RandomForestClassifier
- XGBoostClassifier
- AdaBoostClassifier
- DecisionTreeClassifier
- ExtraTreesClassifier

출력 예시

- rank.csv

Ran	k		
		RF	XGB
1	KRT5 3852	1	2
2	PVRL1 5818	2	150
3	KRT31 3881	3	152
4	C3orf21 152002	4	152
5	ARHGEF38 54848	5	152
6	TMEM40 55287	6	152
7	SFTA2 389376	7	152
8	CAPN8 388743	8	152
9	YEATS2 55689	9	152
10	LASS3 204219	10	4

0

Step-wise accuracy

Biomarker 선택 및 시각화

3. plot_stepwise_accuracy

step_num의 값에 따라서 단계별로 <mark>상위 N개 유전자</mark>를 바이오 마커로 선 택했을 때, 정확도 성능을 method 별로 비교해 시각화 한다.

입력 예시

출력 예시

- accuracy.jpeg, score.csv

Step-wise accuracy

Biomarker 선택 및 시각화

4. desecribe_genelist

가장 성능이 좋은 method 방법으로 상위 유전자로 선택된 바이오 마커로 유전자 개념을 쉽게 이해 가능한 gene cards 연결 데이터 프레임 출력

입력 예시

출력 예시

- gene_description.csv

유전자ID 대표		ID 대표	타입 위:	치	유전자 설명	유전자 정보 링크
	GeneID	Symbol	type_of_gene	map_location	description	links
0	54848	ARHGEF38	protein- coding	4q24	Rho guanine nucleotide exchange factor 38	https://www.genecards.org/cgi-bin/carddisp.pl? gene=54848
1	408	ARRB1	protein- coding	11q13.4	arrestin beta 1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=408
2	53637	S1PR5	protein- coding	19p13.2	sphingosine-1-phosphate receptor 5	https://www.genecards.org/cgi-bin/carddisp.pl? gene=53637
3	121391	KRT74	protein- coding	12q13.13	keratin 74	https://www.genecards.org/cgi-bin/carddisp.pl? gene=121391
4	646	BNC1	protein- coding	15q25.2	basonuclin 1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=646
5	339967	TMPRSS11A	protein- coding	4q13.2	transmembrane serine protease 11A	https://www.genecards.org/cgi-bin/carddisp.pl? gene=339967
6	348825	TPRXL	pseudo	3p25.1	tetrapeptide repeat homeobox like (pseudogene)	https://www.genecards.org/cgi-bin/carddisp.pl? gene=348825
7	4680	CEACAM6	protein- coding	19q13.2	CEA cell adhesion molecule 6	https://www.genecards.org/cgi-bin/carddisp.pl? gene=4680
8	221	ALDH3B1	protein- coding	11q13.2	aldehyde dehydrogenase 3 family member B1	https://www.genecards.org/cgi-bin/carddisp.pl? gene=221

Step-wise accuracy

Biomarker 선택 및 시각화

5. plot_heatmap

선택한 바이오 마커 유전자의 유전자 발현량을 시각화 합니다.

입력 예시

출력 예시

- heatmap.jpeg

암 서브타입

기대효과 Biomarker 시장의 동향과 기대효과

🔎 기대 효과

❖ 차세대 유전자 분석 NGS(Next Generation Sequencing)

Source: MSCI(Aug 2021) Why Genomics is Poised for Growth

유전체 빅데이터, 연구는 기하급수적으로 증가

Biomarker를 사용한 발전 전망

유전체 분석시장 규모 추이

Success rates by use of patient preselection biomarkers

자료: The Biotechnology Innovation Organization, 미래에셋대우 리서치센터

바이오마커 활용 시 임상시험 성공률

Biomarker의 전망 증가, 활용도 증가

감사합니다.