1. Suprafete cibindrice:

$$\Delta: \int P_{1}(x,y,\pm) = 0$$
 $\Rightarrow \int G_{2,\mu} = \int P_{1}(x,y,\pm) = 2$ $+2 \text{ ec. all eurbeit}$

$$2 \text{ plane (le aflu)} \qquad \text{generatearele}$$

$$\Rightarrow o \text{ dreapta interredie de 2 plane}$$

2. Suprafete conice:

Vf.
$$(a,b,c)$$
 (=) $\begin{cases} x=a \end{cases}$ (=) $\begin{cases} P_1(x,y,2)=0 \\ y=b \end{cases}$ $\begin{cases} P_2(x,y,2)=0 \\ P_3(x,y,2)=0 \end{cases}$ $\begin{cases} P_2=p \end{cases} P_3 = p \end{cases} P_3$

Let $\begin{cases} P_3(x,y,2)=0 \\ P_3(x,y,2)=0 \end{cases}$ Saw inversale $\begin{cases} x-a=0 \\ y-b=0 \\ 2-c=0 \end{cases}$ > $y = p \end{cases}$ $\begin{cases} x=a \end{cases}$ $\begin{cases} x=$

3. Suprafite conside

$$D = \begin{cases} P_1(x,y,2) = 0 & \text{ii} : P(x,y,2) = 0 \end{cases} \Rightarrow 6_{x,\mu} = \begin{cases} P_1 = 2P_2 \\ P_2(x,y,2) = 0 \end{cases}$$

$$2 \text{ planwi} \qquad \text{un plan} \qquad +2 \text{ ec.}$$

$$\Rightarrow 0 \text{ dreapta}$$

4. Suprafete de rotatie

Tormule

Elipsa: H(x,y) um pet al elipsei. F_1,F_2 - focare distanta de la F_1 la F_2 = 2c F_1 (- c_1 0) F_2 (c_1 0)

Fin = J(x+c)2+y2 $F_2\pi = J(x-c)^2+y^2$ $F_1\pi + f_2\pi = 2a$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ - ecuația elipsei $c = Ja^2 - b^2$ a = axa marie / 2 $E = \frac{c}{a} \Rightarrow E = J_1 - \frac{b^2}{a^2} - excemtrii ei tatea$ $E = tangentei: <math>f(x-c)^2 + f(x-c)^2 + f(x-c)^2$ $f(x-c)^2 + f(x-c)^2$ f(x-

Hiperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ -ec. friperbolei tr(x,y) f(x) + f(x) + f(x) = -2acurba are ecuatia $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. $E = \int 1 + \frac{b^2}{a^2} - excentricacitatea$ $\frac{x \cdot x_0}{a^2} - \frac{y \cdot y_0}{b^2} = 1$ -ec. tangentei prim didullari $y = kx + \int a^2 k^2 - b^2$ ee, tangentei eu panta k.

Porabola: T(x,y) = um pot. our ecoru $d(n,T) = \sqrt{(x-\frac{p}{2})^2 + y^2}$ $d(n,\Delta) = |x+\frac{p}{2}|$ $y^2 = 2px - ec$ ea nomica a parabolei di parametru p. $y^2 = 2px - ec$ ea nomica $y^2 = 2px - ec$ eanomica $y^2 = 2px - ec$ eanomica

<u>Llipsoidul:</u> $\frac{x^2}{c^2} + \frac{y^2}{c^2} = 1 - ec$ elipsoidului a,b,c-semiaxe Q+b+c => elipsoid trianial a=b => elipsorid de rotație => x2+y2 + z2 = 1 e=b=c=> elipsoidul = sferà de rara a ec. unui plan care tnece prim 02 are ecuatra de forma 11: AX+By = 0 X-Xo = 4-40 = Z-Zo -ec. monmalei la planul II caru trea prim holxo, yo, 70) dacă Mo (sirmetrieul) & elipsoidului => ii-e plan di sirmetrie (A): $y = y_0 + m_0 t$ - ec. parametrica v(l, m, m) - v. directed $z = z_0 + m \cdot t$ M(Xo, yo, to) Intecuim în ec. elipsoidului $\frac{(x_0+lt)^2}{a^2} + \frac{(y_0+mt)^2}{b^2} + \frac{(q_0+mt)^2}{c^2} - (=0.$ => +2 (b? e2 12 + Q? c2 m2 + a2 b2 m2) + St(b2 c2 xol + a2 c2 your + a2 b2 20 m) = 0. is ec. de intersectie ¿ e tangenta elipsoidului « ec di interseçtie admite soluție dublă. =) (b²c?xol+a²c?yom+a²b?7om=0. *) m (b²c?xo, a²c²yo, a²b?7o) => m. v=0. > onice dreaptă care trece prim Mozi are vect director care voujica ecuațiamente genpendiculară ge m. b2c2xo(x-xo)+a2c2yo(y-yo)+a2b27o(7-70)=0 -ec. plamului targent Xixo + Jigo + 7.70 = 1 -ec. Flamului bangent la elipsoid im Pot tro Comul de gradul al doilea; $\frac{x^2}{g^2} + \frac{y^2}{b^2} - \frac{z^2}{e^2} = 0$ - ec. comului de gr.? xxo + y-yo = 2 20 =0 -ee. Planului tangent in to a=b - con de notatie =) $\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 0$ Hiperboloidul cu o pâmra: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - ec. hiperb. cu o pointai$ Omsideram sist de ecuatie $\lambda(\frac{x}{a} - \frac{t}{c}) = \mu(1 - \frac{t}{b})$ prime familie $\mu(\frac{x}{a} + \frac{t}{c}) = \lambda(1 + \frac{t}{b})$ 3, 1 Mu se anuliasa simultan rescriem ecuatile 3' dem velori lui je sau à gi obtinem écuatile edoue familie = $\int \lambda(\frac{x}{a} - \frac{t}{c}) = B(1+\frac{t}{b})$ for calculy $B(\frac{x}{a} + \frac{t}{c}) = \lambda(1-\frac{t}{b})$ duim mi, me- pedoni dinectori dim primul sistem Bi ma, my, ped din dim dum mi, me-person $U_2 = m_3 \times m_1$ $U_2 = \frac{1}{\|V_1\| \cdot \|V_2\|} \times \frac{1}{\|V_2\| \cdot \|V_2\|} \times$

Hipenboloidul ou doug parme: x2+ y2 =-1 a=b-hiperbolaid au doute famor du notatil =) $\frac{x^2+y^2}{a^2} - \frac{z^2}{c^2} = -1$ $\frac{1}{2}$ \frac Paraboloid eliphic: $\frac{\chi^2}{P} + \frac{y^2}{2} = 27 - eq.$ paraboloidului eliphic P, 2eTR+P=2, - paraboloid eliptic du notație => x2+y2 = 27 (3) x2+y2=272 2xo(x-xo) +Pyo(y-yo)-P2(2-20)=0-ec. planului tangent X:X0 + 9:40 = P(7+70) Paraloloid hiperbolic: x2 - y2 = 2t -ec. paral, hip. 7,2, ER, Familie de drepte ca la hiperbolidul en o penna (generatoure rectilinie ale para boloidului hiperbolic.) 一等一等(一等) エ (x + 3) = 2 3 9 (x + 3) = 2 3 9 (x - 4) = x 丁) 1 (一量)=2川2 (M(x) + 5/2) = 2 15 Juima generation X·Xo - 9.90 = 7+70 - ecuatio Flamului tangent (a suprafeții) Cilimdru eliphic: x + 2 = 1 -ec. a=b => estimatru de rotatre => X2+y2=a2 putem sour ec parametrica imbouim im ec cilimetrului, obtimem ec. de gradul 2, no e cilindrului » termenul liber = 0, & gi cilindrul au un singur punct « ecuatia are sol dublo » bixolta yom= 0 m t bixo, azyo, o), ull, m, m) m u=0 » #dreaptă care truce printo, iar vect director very ca relative este perpeneliculara pe m. => m-vect mormal X. X2 + 9.40 = 1. -ec. planului tangent <u>Cilimorul Priperbolicie</u> $\frac{x^2-y^2}{a^2-b^2}=1-ec$, $\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1-ec$. Planului tangont Cilimatru parabolic: 42=2px pert-parametrul atimobrului parab

-p(x-x0)+y01y-y0)=0 (=) y-y0=p(x+x0) -ec. planului tangent