

MM54HC688/MM74HC688 8-Bit Magnitude Comparator (Equality Detector)

General Description

This equality detector utilizes advanced silicon-gate CMOS technology to compare bit for bit two 8-bit words and indicates whether or not they are equal. The $\overline{P=Q}$ output indicates equality when it is low. A single active low enable is provided to facilitate cascading of several packages and enable comparison of words greater than 8 bits.

This device is useful in memory block decoding applications, where memory block enable signals must be generated from computer address information.

The comparator's output can drive 10 low power Schottky equivalent loads. This comparator is functionally and pin

compatible to the 54LS688/74LS688. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 20 ns
- Wide power supply range: 2-6V
- Low quiescent current: 80 µA (74 Series)
- Large output current: 4 mA (74 Series)
- Same as 'HC521

Connection and Logic Diagrams

Order Number MM54HC688 or MM74HC688

Truth Table

Inp				
Data	Enable	P=Q		
P,Q	G			
P = Q	L	L		
P > Q	L	Н		
P < Q	L	Н		
Х	Н	Н		

TL/F/5018-2

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\mbox{CC}}\!+\!0.5\mbox{V}$
Clamp Diode Current (I _{IK} , I _{OK})	$\pm20~mA$
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to $+150^{\circ}\text{C}$

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Min Max
Supply Voltage (V_{CC}) 2 6

Operating Conditions

DC Input or Output Voltage 0 V_{CC} V (V_{IN}, V_{OUT}) Operating Temp. Range (T_A) MM74HC -40 +85 °C MM54HC -55 +125 °C

Units

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		2.0V 4.5V		1.5 3.15	1.5 3.15	1.5 3.15	V V
	·		6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH} Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V	
	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V	
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any P or Q to Output		21	30	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Enable to any Output		14	20	ns

AC Electrical Characteristics

 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Typ Guaranteed Limits				
t _{PHL} , t _{PLH}	Maximum Propagation Delay, P or Q to Output		2.0V 4.5V 6.0V	60 22 19	175 35 30	220 44 38	263 53 45	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to Output		2.0V 4.5V 6.0V	45 15 13	120 24 20	150 30 25	180 36 30	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)			45				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \, V_{CC}^2 \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC} \, V_{CC} \,$

Order Number MM74HC688N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408