

Clustering via Estimation Maximization (EM Clustering)

Lecture "Mathematical Data Science" 2021/2022

Frauke Liers

Friedrich-Alexander-Universität Erlangen-Nürnberg

October 26, 2021

Expectation-Maximization Clustering Algorithm (EM)

- further reading: The Elements of Statistical Learning, Chapter 14
- Recall K-means has implicit assumptions (clusters are convex & roughly equally sized) that may not be satisfied.
- alternative way of thinking: decide for each data point the probability with which it belongs to a certain cluster, i.e., a 'soft' clustering. allows clusters of different size, can detect correlations
- problem: this probability distribution is unknown.
- task: estimate probability distribution, improve estimate iteratively

Mixture of Gaussian Distributions

• make quite general assumption: This unknown distribution is a mixture, i.e., superposition, of *K* many (multi-dimensional) Gaussian distributions. Means that probability function is of the form

$$\mathbb{P}(x|\underline{\rho},\underline{\mu},\underline{\Sigma}) = \sum_{k=1}^{K} p_k \cdot \mathcal{N}(x|\mu_k,\Sigma_k)$$

with

$$p = (p_1, \dots, p_K),$$
 $p_k \in \mathbb{R}$ probability vector $\mu = (\mu_1, \dots, \mu_K),$ $\mu_k \in \mathbb{R}^n$ vector of means $\Sigma = (\Sigma_1, \dots, \Sigma_K),$ $\Sigma_k \in \mathbb{R}^{n \times n}$ covariance matrix

where n is the dimension of a data point x, i.e. $x \in \mathbb{R}^n$. recall Gaussian distribution in dimension M with mean vector $\mu \in \mathbb{R}^M$, variance $\Sigma \in \mathbb{R}^{M \times M}$: $\mathcal{N}(x|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^M \det(\Sigma)}} \exp(-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu))$

Recall Covariance Matrix

Let $x = (x_1, \dots, x_n)^{\top}$ be random vector, finite variance and mean. Let covariance matrix $\Sigma = (\Sigma_{x_i, x_j}) \in \mathbb{R}^{n \times n}$ be defined as $\Sigma_{x_i, x_j} = E(x_i - E(x_i))(x_j - E(x_j))$ where E denotes expected values $\mu_X = E(X)$.

- represents important statistical information, in particular correlation between data
- is a real, quadratic, symmetric matrix
- is positive-semidefinite matrix

More Details on Mixture of Gaussians

$$\mathbb{P}(x|\underline{p},\underline{\mu},\underline{\Sigma}) = \sum_{k=1}^K p_k \cdot \mathcal{N}(x|\mu_k,\Sigma_k) \text{ Clustering task: Given data points, estimate}$$

$$\underline{p},\underline{\mu},\underline{\Sigma}.$$

 $\overline{\text{Out}}$ put: Yields for each data point n and for each cluster k an estimated probability that n generated from k.

Assign each data point the mean with highest probability.

Advantage: also clusters are possible that are (partially) contained in each other:

Figure: K = 3 Gaussian Mixture in 1d and generated data.

Responsibility Calculation

Define *responsibility of cluster* k *for* x by observed relative frequencies, i.e., probability that x is generated by Gaussian k.

$$\gamma(\mathbf{x}; \mathbf{k}) = \frac{p_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)}{\sum_{j=1}^K p_j \mathcal{N}(\mathbf{x} | \mu_j, \Sigma_j)}$$

Outline of Expected Maximization Clustering

until assignment step does not do anything;

Compare this to K-means which works similarly. Indeed, K-means is a special case of FM.

A visual comparison

Clustering-Ergebnisse auf dem "Maus" Datensatz:

drawback: **K-means and EM only find local optima.** (recall already K-means problem is NP-hard...)

play around with skikit-learn (machine learning library in python)

Hierarchical Clustering Methods

- do not need to specify number of clusters *K* as input
- need a measure of dissimilarity, e.g., 'distance' between (disjoint) groups of observations, based on pairwise dissimilarities
- clusters at each levels of hierarchy are created by merging clusters at next lower level
- lowest level contains one point each, highest level contains all points
- agglomerative (bottom-up) or divisive (top-down) methods
- e.g., agglomeartive: start at bottom, at each level recursively merge a selected pair of clusters into a single cluster. Next higher level contains one cluster less. Merge those two clusters with smallest dissimilarity. $\Rightarrow N-1$ levels in hierarchy
- often drawn by rooted binary tree, i.e., contains a node as root, each node has not more than two children in the tree.

Dendrogram

from statistical learning book:

FIGURE 14.12. Dendrogram from agglomerative hierarchical clustering with average linkage to the human tumor microarray data.

Dendrogram

- a word of caution: small changes in data can lead to quite different dendrograms
- is hierarchical structure actually intrinsic to the data?

Principal Component Analysis PCA

Principal Component Analysis (PCA):

- first idea by Karl Pearson in 1906
- improvements by Harold Hotelling in the 1930s
- widespread use since raise of **computers**

Applications:

- Multivariate statistics
- Cluster analysis
- Data reduction
- Feature extraction
- Image processing
- •

Prelimininaries

- general approach from multivariate statistics
- structures large data sets through eigenvalues and covariances
- represents data through principal components, i.e. linear combinations of statistical variables

What is given?

- input data set with $N \in \mathbb{N}$ points $x^{(1)}, \dots, x^{(N)} \in \mathbb{R}^M$
- no a-priori knowledge about data needed (e.g., cluster label)
- statistically interpretable as *N* observations of *M* random variables.(e.g., we have measured *M* features for *N* people / objects.)

Objectives of PCA

What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information, i.e. project data points in

Objectives of PCA

What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information, i.e. project data points in k-dimensional space, with k < M, such that no or not much information gets lost.

Objectives of PCA

What is the goal?

- Structure identification in the data
- Extraction of meaningful features
- Data reduction to most expressive information, i.e. project data points in k-dimensional space, with k < M, such that no or not much information gets lost.

Computing PCA: Data centering

Centering the data in the origin

ightarrow Computation of mean value $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$

In the following: $y^{(i)} = x^{(i)} - \overline{X}$, i = 1, ..., N centered data

Computing PCA: Covariance matrix

Computation of covariance matrix $C \in \mathbb{R}^{M \times M}$:

$$C := \frac{1}{N} \sum_{i=1}^{N} y^{(i)} y^{(i)^T}$$

$$C_{k,l} = \frac{1}{N} \sum_{i=1}^{N} y_k^{(i)} y_l^{(i)} = \frac{1}{N} \sum_{i=1}^{N} (y_k^{(i)} - 0) (y_l^{(i)} - 0)$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y_k^{(i)} - \overline{Y_k}) (y_l^{(i)} - \overline{Y_l}) =: Cov(y_k, y_l)$$

Recall Linear Algebra Lectures: Diagonalisation of C

Aim: Alternative data representation: $y^{(i)} \in \mathbb{R}^M \to z^{(i)} \in \mathbb{R}^k$,

- based on orthogonal vectors ('principal components')
- vectors should be aligned with directions of highest variance
- data representation should be uncorrelated
 - $\rightarrow Cov(z_j, z_l) = 0 \text{ for } j \neq l$
 - \rightarrow diagonalisation of matrix C

(Finite-dimensional) spectral theorem from Linear Algebra:

Let $C \in \mathbb{R}^{M \times M}$ be a real, symmetric matrix. Then there exists an orthogonal matrix S, such that:

$$S^TCS = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_N \end{pmatrix},$$

for which $\lambda_1, \ldots, \lambda_M \in \mathbb{R}$ are the eigenvalues of C. The columns of S are orthonormal eigenvectors of C.

We get the wanted alternative data representation by computing **eigenvalues** and respective **eigenvectors** of *C*.

Thus, we need to (numerically) solve the eigenvalue problem:

$$\lambda \mathbf{v} = \mathbf{C} \mathbf{v}$$

Recall: A solution can be found by various methods:

- roots of characteristic polynomial
- QR algorithm
- Jacobi eigenvalue algorithm
- singular value decomposition
- etc.

Observations:

- C positive semi-definite ⇒ only non-negative eigenvalues
- $\lambda_i \equiv$ data variance along direction of eigenvector $v^{(j)}$
- eigenvectors form a new local coordinate system

A simple example:

- Data is distributed within hyperplane parallel to plane $span(e_1, e_2)$ \rightarrow no variance in direction e_3 (no depth)
- easy to recognize from eigenvalue λ_3 , because S^TCS leads to:

$$D = egin{pmatrix} \lambda_1 > 0 & 0 & 0 \ 0 & \lambda_2 > 0 & 0 \ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues $\lambda_1, \lambda_2 > 0$ leads to data reduction

A simple example:

- Data is distributed within hyperplane parallel to plane $span(e_1, e_2)$
 - \rightarrow no variance in direction e_3 (no depth)
- easy to recognize from eigenvalue λ_3 , because S^TCS leads to:

$$D = \begin{pmatrix} \lambda_1 > 0 & 0 & 0 \\ 0 & \lambda_2 > 0 & 0 \\ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues $\lambda_1, \lambda_2 > 0$ leads to data reduction

A simple example:

- Data is distributed within hyperplane parallel to plane $span(e_1, e_2)$
 - \rightarrow no variance in direction e_3 (no depth)
- easy to recognize from eigenvalue λ_3 , because S^TCS leads to:

$$D = \begin{pmatrix} \lambda_1 > 0 & 0 & 0 \\ 0 & \lambda_2 > 0 & 0 \\ 0 & 0 & \lambda_3 = 0 \end{pmatrix}$$

• Selection of eigenvalues $\lambda_1, \lambda_2 > 0$ leads to data reduction

The actual PCA

Define transformation matrix:

$$T := (\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(k)}) \in \mathbb{R}^{M \times k},$$

for which $v^{(1)}, \ldots, v^{(k)}$ are the respective eigenvectors of the $1 \le k \le M$ largest eigenvalues.

Principal component analysis:

- transform the data: $z^{(i)} := T^T y^{(i)} = T^T (x^{(i)} \overline{X})$ for i = 1, ..., N
- $z^{(i)} \in \mathbb{R}^k$ contains the most relevant information (features) of the input data
- The components $z_i^{(i)}, j = 1, ..., k$ are called **principal components**
- If T is quadratic $(k = M) \Rightarrow PCA$ is simply a rotation in \mathbb{R}^M

The principal components of the input data are typically used as features in classification or clustering tasks.

Summary of PCA

For given input data $x^{(1)}, \dots, x^{(N)} \in \mathbb{R}^M$ the PCA can be computed as

The (linear) PCA algorithm

- 1. Compute mean value of data $\overline{X} = \sum_{i=1}^{N} x^{(i)}$
- 2. Center data via $y^{(i)} = x^{(i)} \overline{X}$
- 3. Compute covariance matrix $C = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} y^{(i)^T}$
- 4. Determine the *M* eigenvalues and eigenvectors of *C* numerically
- 5. Select $1 \le k \le M$ respective eigenvectors $v^{(1)}, \dots, v^{(k)}$ of the k largest non-vanishing eigenvalues
- 6. Assemble selected eigenvectors $v^{(1)}, \ldots, v^{(k)}$ columnwise to matrix $T \in \mathbb{R}^{M \times k}$
- 7. Compute principal components for each centered input point $y^{(i)} \in \mathbb{R}^M$ via:

$$T^T y^{(i)} = z^{(i)} \in \mathbb{R}^k$$

Properties of the PCA

Data reconstruction

Reconstructing the centered input data from its principal components is (partially) possible via:

$$Tz^{(i)} = \tilde{y}^{(i)}$$
, for $i = 1, \dots, N$

It is clear that $\tilde{y}^{(i)} = y^{(i)}$ iff $\lambda_j = 0$ for k < j < M

Otherwise: Loss of information

Additional problems:

- computational complexity is: $\mathcal{O}(M^3)$ for eigenvalue decomposition + $\mathcal{O}(NM^2)$ for calculation of covariance matrix
 - \rightarrow numerically expensive for large M (dimension of data space)
- number of principal components (and hence possible features) is bounded by

example: $x \in \mathbb{R}^2 \Rightarrow \text{max}$. two principal components

• (linear) PCA does not allow for extraction of nonlinear features

Conclusions and Outlook

- PCA is a good tool for data reduction and feature extraction
- can be interpreted as **linear transformation** of input data to a feature space
- computational complexity mainly depends on dimension *M* of data space
- PCA is restricted to linear features

Thank you for your attention!