Лабораторная работа №2.4.1 Определение теплоты испарения жидкости

Рябов О.Е.

20 марта 2024 г.

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

В работе используются: термостат, герметический сосуд, заполненный водой, отсчётный микроскоп.

1 Теоретическая часть

1.1 Уравнение Клапейрона-Клаузиуса

Если считать что насыщенные пары подчиняются закона Менделеева-Клапейрона, и пренебречь удельным объемом жидкости относительно удельного объема паров то из уравнения Клапейрона-Клаузиуса получаем формулу для удельной теплоты испарения

$$L = \frac{RT^2}{\mu P} \frac{dP}{dT} = -\frac{R}{\mu} \frac{d(\ln P)}{d(1/T)} \tag{1}$$

Как видим, если измерить зависимость давления насыщенных паров от температуры по формуле (1) можно получить удельную теплоту испарения.

1.2 Экспериментальная установка

Рис. 1: Установка для определения давления насыщенных паров.

Измерения проводятся на установке, изображенной на рис. 1. С помощью термостата А выставляется желаемя температура, и с помощью микроскопа С измеряется положение менисков ртути в U-образном монометре 15. Давление насыщенных паров считается как разность высот менисков ртути.

Измерения проводятся в 2 этапа. В начале жидкость нагревается, а потом остужается. Это делается для того, чтобы посмотреть зависит ли давление насыщенных паров только от состояния жидкости или нет.

2 Измерения

Измеряем давление по вышеописанной схеме в диапазоне температур от 22 до 37 $^{\circ}C$. Получаем следующие данные

Nº	$T,^{\circ}C$	h_1, mm	h_2, mm	H,mm
0	23.04	81.3	99.0	17.700
1	24.00	81.1	99.3	18.200
2	25.00	80.6	100.0	19.400
3	26.00	79.7	101.1	21.400
4	27.00	79.0	102.0	21.400
5	28.00	78.2	103.0	24.800
6	29.00	77.2	103.9	26.700
7	30.00	76.6	104.9	28.300
8	31.00	75.5	105.5	30.000
9	32.00	75.0	106.6	31.600
10	33.00	74.0	107.2	33.200
11	34.00	73.0	108.8	35.800
12	35.00	72.1	110.0	37.900
13	36.00	71.4	111.0	39.600
14	37.00	70.3	112.1	41.800
15	38.00	68.9	113.4	44.500
16	39.00	67.2	115.0	47.800
17	40.00	66.5	116.2	49.700

$N_{\overline{0}}$	$T,^{\circ}C$	h_1, mm	h_2, mm	H,mm
18	38.00	67.6	114.2	46.600
19	36.00	70.3	111.9	41.600
20	34.00	72.2	109.5	37.300
21	32.00	74.0	107.4	33.400
22	30.00	75.3	105.5	30.200
23	28.00	77.6	103.6	26.000
24	26.00	79.1	101.8	22.700
25	24.00	80.0	100.3	20.300

Таблица 1: Измеренные положения менисков в зависимости от температуры.

В таблице (1) h_1 и h_2 это координаты правого и левого мениска соответственно относительно некоторой точки. Для ошибок измерения имеем следующее

$$\Delta h = 0.05$$

$$\Delta T = 0.01$$

Заметим, что ошибка температуры ΔT это ошибка в значениях термометра, который измеряет температуру воды в термостате. Температура воды в балоне может отличатся от температуры воды в ванне. Столбец H равен 1 если измерение проводились в цикле нагрева и 0 если в цикле охлаждения.

Из графика видно, что синие точки смещены влево, что свидетеьствует о том, что во время цикла охлаждения на релаксацию системы не было уделено достаточно времени. Действительно, во время опыта температура жидкости поднималсь на $1^{\circ}C$ примерно каждые 7-10 минут, в то время как жидкость охлаждался на $2^{\circ}C$ примерно каждые 2-4 минут.

Рис. 2: Зависимость давления насыщенных паров от температуры.

Теперь, для нахождения теплоты испарения построим график зависимости ln(P)(1/T). В предположении что теплота испарения не зависит от температуры эта зависимость имеет вид прямой, а теплота испарения считается по формуле (1). Как видим на рис. 4, для оранжевых точек линейная зависимость довольно хорошая, в отличии от синих точек. Объяснение этому дано выше. Аппроксимируя оранжевые, синие и зеленые точки методом МНК имеем следующее

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\cdot} = (-5780 \pm 360) \tag{2}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\cdot} = (-5750 \pm 90) \tag{3}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\cdot} = (-5780 \pm 360) \tag{2}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\cdot} = (-5750 \pm 90) \tag{3}$$

$$\left(\frac{d(\ln P)}{d(1/t)}\right)_{\cdot} = (-5279 \pm 6) \tag{4}$$

Как видим, в цикле охлаждения ошибки большие, поэтому теплоту испарения будем считать для цикла нагревания. Получаем

$$L = (2650 \pm 40) / \tag{5}$$

$$L_{\cdot} = (2437 \pm 3) / \tag{6}$$

3 Выводы

Сравним наши данные с табличными. При $100^{\circ}C$ теплота испарения $L_{100^{\circ}C} = 2256/$. Как видим, различия большие. Теперь сравним с теплотой испарения при $30^{\circ}C$ - $L_{30^{\circ}C}$ =

Рис. 3: Зависимость ln(P)(1/T).

2430/. Как видим, довоьго близко к L., что свидетельствует о том что на нашем диапазоне температур формулой (1) можно пользоваться. Несмотря на это, мы получили значение L, которое отличается от действительного на $\varepsilon_L=9\%$, что не входит в диапазон погрешности L. Причиной всему этому скорее всего является недостаточное время отведенное для релаксации системы, изи за чего действительная температура в балоне ниже регистрируемого. Именно в следствии этих искажении мы и получаем ошибочное значение L.

Puc. 4: Зависимость ln(P)(1/T).