Source: Han & Kambar, "Chapter 9.2 Classification by back propagation, Data Mining Concepts & Techniques", pg. 400 - 406

Example : Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values of the network are given in Table 9.1, along with the first training tuple, X = (1, 0, 1) with a class label of 1. This example shows the calculations for backpropagation, given the first training tuple, X. The tuple is fed into the network, and the net input and output of each unit are computed. These values are shown in Table 9.2. The error of each unit is computed and propagated backward. The error values are shown in Table 9.3. The weight and bias updates are shown in Table 9.4.

Figure 9.5 Example of a multilayer feed-forward neural network.

Table 9.1 Initial Input, Weight, and Bias Values

x_1	x_2	x_3	w_{14}	w ₁₅	w ₂₄	w ₂₅	w ₃₄	w ₃₅	w ₄₆	W ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Table 9.2 Net Input and Output Calculations

Unit, j	Net Input, I _j	Output, O _j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1 + e^{0.7}) = 0.332$
5	-0.3+0+0.2+0.2=0.1	$1/(1+e^{-0.1})=0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

Table 9.3 Calculation of the Error at Each Node

Unit, j	Епт _j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

 Table 9.4 Calculations for Weight and Bias Updating

Weight	
or Bias	New Value
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261
W56	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
w_{15}	-0.3 + (0.9)(-0.0065)(1) = -0.306
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
W34	-0.5 + (0.9)(-0.0087)(1) = -0.508
W35	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408