

Tegaki コネクタ

ユーザーガイド

版 1.0

目次

概要	1
 なぜ、Tegaki コネクタが必要か	
Tegaki コネクタのメリット	
Tegaki コネクタを構成する	
前提条件	
構成手順	2
稼働確認	2
オブジェクトの入力	2
オブジェクトの出力	3
全体の動き	
拡張の考え方	
拡張のポイント	2

概要

なぜ、Tegaki コネクタが必要か

AI-OCR エンジンとして名高い Cogent Labs 社の Tegaki を Blue Prism から利用するには、Tegaki の UI または Web API を操作する必要がある。いずれを用いるにせよ、前処理(ファイル読込など)や後処理(読み取り結果の構造化など)は必要となるため、Blue Prism のオブジェクト(VBO)として Tegaki コネクタを開発した。

Tegaki コネクタのメリット

Blue Prism ユーザーは、このアセットを活用し、またユーザー固有の要件に基づいて拡張をすることで、以下のようなメリットを享受できる。

- 1. Blue Prism と Tegaki を連携させる際に、連携に必要な前処理、後処理にかかる開発工数・時間を削減できる
- 2. Blue PrismとTegakiを連携させる際のユースケースに応じて、開発済みの部品を拡張できる
- 3. Blue Prism から REST API を呼ぶ際に必要な、基本的な処理を学習できる

Tegaki コネクタを構成する

前提条件

- 1. Blue Prism 6.8 で構成されたエンタープライズ RPA 環境¹
- 2. Tegaki 環境および Web API でアクセスするための API キー2
- 3. 以下のオブジェクト (VBO)。すべて Blue Prism DX (https://digitalexchange.blueprism.com/dx/search) から入手可能
 - A) Base64Encoder
 - B) Utility General
 - C) Utility JSON
 - D) Utility Blue Prism Process Info

¹ 6.8 で動作確認をしているが、基本的な構造は 6.4 以降の機能で構成されているため、6.4 以降であれば多少の修正で動くことが見込める

² Tegaki の API は v2 を前提としている

E) Utility - File Management

構成手順

bprelease のインポート

Tegaki コネクタ v1.0.bprelease を Blue Prism にインポートする。

認証情報の設定

認証情報「Tegaki API key」のトークンに Tegaki の api key の値を設定し、適切な権限付与を行う。

チューニング

データアイテム「待機時間」と「カウンター上限」を使って、画像アップロード後の Tegaki の処理完了を待っている。「待機時間」は Tegaki に処理完了を問い合わせる間隔で、カウンター上限は問合せ回数の上限を意味している。環境に合わせて、これらの値を調整できる。

稼働確認

オブジェクトの入力

Tegaki コネクタの入力は2項目ある。

#	項目名	型	概要
	画像イメージのファイルパス	テキスト	画像イメージのファイルパス(フルパス)
-	2 テンプレート JSON のファイルパス	テキスト	テンプレート JSON のファイルパス(フルパス)

適当なプロセスを作成し、項目に適切な値を設定する。

オブジェクトの出力

Tegaki コネクタの出力は2項目ある。

#	項目名	型	概要
1	読み取り結果(コレクション)	コレクション	読み取り結果(構造体)
2	読み取り結果(テキスト)	テキスト	読み取り結果(JSON 形式のテキスト)

コレクションの構造体は以下のようになっている。

全体の動き

全体の動きは、デモ動画を参照。

https://www.youtube.com/watch?v=o_KJZxu5ACY

拡張について

拡張の考え方

大きく分けて2つの方向性が考えられる。

- 1. Tegaki コネクタそのものの精度向上
- 2. Tegaki コネクタへの機能追加

拡張のポイント

主な拡張のポイントは以下である。

- 1. request アクションの結果の State に応じた処理の追加
- 2. より多くの API への対応

以上