

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27$$
 $Price + 648.61$ $AdExp + 1802.61$ $PromExp$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + 648.61 AdExp + 1802.61 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$\downarrow$$

$$Sales = -25096.83 - 5055.27 Price + 648.61 AdExp + 1802.61 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + 648.61 AdExp + 1802.61 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + 648.61 AdExp + 1802.61 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + 1802.61 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + 1802.61 PromExp$$

For every 1000 dollars increase in advertisement spending, the sales increase by 648.6 (~649) units, all other variables remaining at the same level.

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + \underline{1802.61} PromExp$$

For every 1000 dollars increase in advertisement spending, the sales increase by 648.6 (~649) units, all other variables remaining at the same level.

Belief held by Salespeople...

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + 1802.61 PromExp$$

For every 1000 dollars increase in advertisement spending, the sales increase by 648.6 (~649) units, all other variables remaining at the same level.

Belief held by Salespeople...

For every 1000 dollars increase in advertising expenditure, the unit sales increase by 500 units.

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + 1802.61 PromExp$$

For every 1000 dollars increase in advertisement spending, the sales increase by 648.6 (649) units, all other variables remaining at the same level.

Belief held by Salespeople...

For every 1000 dollars increase in advertising expenditure, the unit sales increase by 500 units.

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = -25096.83 - 5055.27 Price + \underline{648.61} AdExp + 1802.61 PromExp$$

For every 1000 dollars increase in advertisement spending, the sales increase by 648.6 (~649) units, all other variables remaining at the same level.

Belief held by Salespeople...

For every 1000 dollars increase in advertising expenditure, the unit sales increase by 500 units.

Sales =
$$\beta_0$$
 + β_1 Price + β_2 AdExp + β_3 PromExp

Sales = $-25096.83 - 5055.27$ Price + 648.61 AdExp + 1802.61 PromExp

Estimates based on Sample data

True beta values, fixed but unknown

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$
Sales = $\beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Estimates based on Sample data

Hypothesis testing needed to test this belief.

Hypothesis test needed to test whether β_2 is equal to 500

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$

Step 1: Formulate Hypothesis

```
\rightarrow Null Hypothesis H_0: \beta_2 = 500
```


Step 1: Formulate Hypothesis

```
Null Hypothesis H_0: \beta_2 = 500
```

 \rightarrow Alternate Hypothesis H_A : $\beta_2 \neq 500$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$ Alternate Hypothesis H_A : $\beta_2 \neq 500$

Step 1: Formulate Hypothesis

Null Hypothesis H_0 : $\beta_2 = 500$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}}$$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

$$t-\text{statistic} = \frac{b_2 - \beta_2}{s_{b_2}}$$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

$$t\text{-statistic} = \frac{b_2 - \beta_2}{s_{b_2}}$$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}}$$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Step 1: Formulate Hypothesis

Null Hypothesis
$$H_0$$
: $\beta_2 = 500$
Alternate Hypothesis H_A : $\beta_2 \neq 500$

Step 2: Calculate the t-statistic

t-statistic =
$$\frac{b_2 - \beta_2}{s_{b_2}} = 0.711$$

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 1 : Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Rejection region for the t-statistic

Step 1: Formulate Hypothesis

Step 2 : Calculate the t-statistic

Step 3: Rejection region for the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Rejection region for the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Rejection region for the t-statistic

Step 1: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Rejection region for the t-statistic

