Seismology and Seismic Imaging 5. Ray tracing in practice

N. Rawlinson

Research School of Earth Sciences, ANU

Introduction

- Although 1-D whole Earth models are an acceptable approximation in some applications, lateral heterogeneity is significant in many regions of the Earth (e.g. subduction zones) and therefore needs to be accounted for.
- Ray tracing in laterally heterogeneous media is non-trivial, and many different schemes have been devised in the last few decades.
- I will briefly discuss the following schemes:
 - Ray tracing
 - Finite difference solution of the eikonal equation
 - Shortest Path Ray tracing (SPR)

Initial value ray tracing

From before, the ray equation is given by:

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[U \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} \right] = \nabla U$$

where U is slowness, ${\bf r}$ is the position vector and s is path length.

• The quantity $d\mathbf{r}/ds$ is a unit vector in the direction of the ray, so in 2-D Cartesian coordinates:

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} = [\sin i, \cos i]$$

where *i* is the ray inclination angle.

Substitution of this expression into the ray equation yields:

$$\frac{\mathrm{d}i}{\mathrm{d}s} = \frac{1}{U} \left[\cos i \frac{\partial U}{\partial x} - \sin i \frac{\partial U}{\partial z} \right]$$

• Since $d\mathbf{r}/ds = [dx/ds, dz/ds] = [\sin i, \cos i]$,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v \sin i$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = v \cos i$$

$$\frac{\mathrm{d}i}{\mathrm{d}t} = -\cos i \frac{\partial v}{\partial x} + \sin i \frac{\partial v}{\partial z}$$

where v = v(x, z) is wavespeed.

The above coupled system of ordinary differential equations represents an initial value form of the ray equation. ■ The example below shows a fan of 100 rays traced by solving the initial value ray equations using a 4th order Runge Kutta scheme.

Initial value ray tracing is powerful

Reflection paths

Shooting and bending methods

Shooting

Bending

- Ray tracing becomes less robust as the complexity of the medium increases.
- Can find a limited class of later arrivals.

The failure of ray tracing

Eikonal solvers

- Seek finite difference solution of eikonal equation throughout a gridded velocity field (Vidale, 1988,1990).
- Very fast but first arrival only.
- Stability is an issue.

Shortest Path Ray tracing (SPR)

- A network or graph is formed by connecting neighbouring nodes with traveltime path segments (Moser, 1991).
- Find path of minimum traveltime between source and receiver through network using Dijkstra-like algorithms.

Not as fast as eikonal solvers, but tends to be more stable.

The Fast Marching Method (FMM)

- FMM = grid based numerical scheme for tracking the evolution of monotonically advancing interfaces via FD solution of the eikonal equation.
- Only computes the first arrival in continuous media, but combines unconditional stability and rapid computation.
- It will always work regardless of the complexity of the medium. This is a very desirable feature.
- First introduced by James Sethian (1996), who subsequently applied it to a range of problems in the physical sciences.

Medical imaging

Geodesics

Robotic navigation

FMM in continuous media

Narrow band sweeps through grid like a forest fire

Entropy condition:
Once a point burns,
it stays burnt

ullet Heap sort algorithm used to locate grid points in narrow band with minimum traveltime $\Rightarrow O(M \log M)$ operation count for FMM.

Updating grid points

• The eikonal equation $|\nabla_{\mathbf{x}}T| = s(\mathbf{x})$ is solved using an entropy satisfying upwind scheme.

$$\begin{bmatrix}
\max(D_a^{-x}T, -D_b^{+x}T, 0)^2 + \\
\max(D_c^{-y}T, -D_d^{+y}T, 0)^2 + \\
\max(D_e^{-z}T, -D_f^{+z}T, 0)^2
\end{bmatrix}_{ijk}^{\frac{1}{2}} = s_{i,j,k}$$

$$D_1^{-x}T_i = \frac{T_i - T_{i-1}}{\delta x} \qquad D_2^{-x}T_i = \frac{3T_i - 4T_{i-1} + T_{i-2}}{2\delta x}$$

• D_1 or D_2 are used depending on availability of upwind traveltimes.

Stability

The unconditional stability of FMM is due in part to its ability to handle propagating wavefront discontinuities.

Example

Movie

FMM in layered media

A locally irregular mesh of triangles is used to suture the velocity nodes to the interface nodes.

A first-order entropy satisfying upwind scheme is used to solve the eikonal equation within the irregular mesh.

Example

Movies

