3 Збіжність і неперервність

В основі поняття збіжності послідовностей в топологічних просторах лежать аксіоми зліченності, які в свою чергу використовують поняття локальної бази в точці.

Визначення 3.1. Система β_{x_0} відкритих околів точки x_0 називається *локальною базою в точці* x_0 , якщо кожний окіл U точки x_0 містить її деякий окіл V із системи β_{x_0} .

Визначення 3.2. Топологічний простір X називається таким, що *за-довольняє першій аксіомі зліченності*, якщо в кожній його точці існує локальна база, що складається із не більш ніж зліченої кількості околів пієї точки.

Визначення 3.3. Топологічний простір X називається таким, що $\mathit{sado-вольняе}$ другій $\mathit{akciomi}$ зліченності, або простором із зліченною базою, якщо він має базу, що складається із не більш ніж зліченої кількості відкритих множин.

Лема 3.4

Якщо простір X задовольняє другій аксіомі зліченності, то він задовольняє і першій аксіомі зліченності.

 \mathcal{A} оведення. Нехай $U_1, U_2, \dots, U_n, \dots$ зліченна база в просторі X, тоді $\beta_{x_0} = \{U_k \in \beta : x_0 \in U_k\}$ — зліченна локальна база в точці x_0 .

Лема 3.5

Існують простори, що задовольняють першій аксіомі зліченності, але не задовольняють другій аксіомі зліченності.

Доведення. В якості контрприкладу розглянемо довільну незліченну множину X, в якій введено дискретну топологію $\tau = 2^X$.

Вправа 3.6. Переконайтеся що ви розумієте, чому цей простір задовольняє першій аксіомі зліченності, але не задовольняє другій аксіомі зліченності перед тим як читати далі.

Приклад 3.7

Простір \mathbb{R}^n , топологія якого утворена відкритими кулями, задовольняє першій аксіомі зліченності, оскільки в кожній точці $x_0 \in X$ існує зліченна локальна база $S(x_0, 1/n)$.

Очевидно, що цей простір задовольняє і другій аксіомі зліченності, оскільки має зліченну базу, що складається з куль $S(x_n, r)$, де центри куль x_n належать зліченній скрізь щільній множині (наприклад, мають раціональні координати), а r — раціональне число.

Поняття точки дотику і замикання множини відіграють основну роль в топології, оскільки будь-яка топологічна структура повністю описується в цих термінах.

Проте поняття точки дотику занадто абстрактне. Набагато більше змістовних результатів можна отримати, якщо виділити широкий клас просторів, топологічну структуру яких можна описати виключно в термінах границь збіжних послідовностей.

Визначення 3.8. Послідовність точок $\{x_n\}$ топологічного простору X називається збіжною до точки $x_0 \in X$, якщо кожний окіл U_0 точки x_0 містить всі точки цієї послідовності, починаючи з деякої. Точку x_0 називають границею цієї послідовності: $\lim_{n \to \infty} x_n = x_0$.

Приклад 3.9

В довільному тривіальному просторі послідовність збігається до будьякої точки цього простору.

Довільна гранична точка множини A довільного топологічного простору X є точкою дотику. Проте в загальних топологічних просторах не для всякої точки дотику $x \in A$ існує послідовність $\{x_n\} \subset A$, що до неї збігається.

Приклад 3.10

Нехай X — довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \{\varnothing, X \setminus \{x_1, x_2, \dots, x_n, \dots\}\}.$$

Доведення. Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності.

Припустимо, що в просторі існує нестаціонарна послідовність $\{x_n\} \to x_0$. Тоді, взявши в якості околу точки x_0 множину U, яка утворюється викиданням із X всіх членів послідовності $\{x_n\}$, які відрізняються від точки x_0 , ми дійдемо до протиріччя з тим, що окіл U мусить містити всі точки послідовності $\{x_n\}$, починаючи з деякої.

Тепер розглянемо підмножину $A = X \setminus \{x_0\}$. Точка x_0 є точкою дотику множини A. Справді, якщо U — довільний відкритий окіл точки x_0 , то за означенням відкритих в X множин, доповнення $X \setminus U$ є не більш ніж зліченим.

$$U \in \tau \implies U = X \setminus \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies X \setminus U = X \setminus (X \setminus \{x_1, x_2, \dots, x_n, \dots\}) = \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies A \cap U \neq \emptyset,$$

оскільки $\operatorname{card} A = c$, а доповнення $X \setminus U$ і тому не може містити в собі незліченну множину A.

З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x_0 \notin A$ випливає, що жодна послідовність точок із множини A не може збігатися до точки дотику $x_0 \notin A$.

Теорема 3.11

Якщо простір X задовольняє першій аксіомі зліченності, то $x_0 \in \overline{A}$ тоді і лише тоді, коли x_0 є границею деякої послідовності $\{x_n\}$ точок із A.

Доведення. Достатність. Якщо в довільному топологічному просторі послідовність $\{x_n\} \in A$, $\lim_{n\to\infty} x_n = x_0$, то $x_0 \in \overline{A}$.

Необхідність. Нехай $x_0 \in \overline{A}$. Якщо $x_0 \in A$, достатньо в якості $\{x_n\} \in A$ взяти стаціонарну послідовність.

Припустимо, що $x_0 \in \overline{A} \setminus A$ і $U_1, U_2, \ldots, U_n, \ldots$ — зліченна локальна база в точці x_0 , до того ж $\forall n \in \mathbb{N} \colon U_{n+1} \subset U_n$. (Якщо б ця умова не виконувалася, ми взяли б іншу базу $\{V_n\}$, де $V_n = \bigcap_{k=1}^n U_k$). Оскільки $A \cap U_n \neq \emptyset$, взявши за x_n довільну точку із $A \cap U_n$, ми отримаємо послідовність $\{x_n\} \in A$, $\lim_{n \to \infty} x_n = x_0$.

Дійсно, нехай V — довільний окіл точки x_0 . Оскільки $U_1,U_2,\ldots,U_n,\ldots$ база в точці x_0 , існує такий елемент U_{n_0} , який належить цій базі, що

$$U_{n_0} \subset V$$
. З іншого боку, для всіх $n \geq n_0$: $U_{n+1} \subset U_n$. Це означає, що $\forall n \geq n_0$: $x_n \in A \cap U_n \subset U_{n_0} \subset U$. Отже, $x_0 = \lim_{n \to \infty} x_n$.

Поняття неперервного відображення належить до фундаментальних основ топології.

Визначення 3.12. Відображення $f: X \to Y$ називається *сюр'єктивним*, якщо f(X) = Y, тобто множина X відображається на весь простір Y.

Визначення 3.13. Відображення $f: X \to Y$ називається *ін'єктивним*, якщо з того, що $f(x_1) \neq f(x_2)$ випливає, що $x_1 \neq x_2$.

Визначення 3.14. Відображення $f: X \to Y$, яке одночасно є сюр'єктивним та ін'єктивним, називається *бієктивним*, або взаємно однозначною відповідністю між X і Y.

Тепер нагадаємо основні співвідношення для образів та прообразів множин відносно функції $f: X \to Y$.

Якщо $A,B\subset X$, то

- 1. $A \subset B \implies f(A) \subset f(B) \not\implies A \subset B$;
- 2. $A \neq \emptyset \implies f(A) \neq \emptyset$;
- 3. $f(A \cap B) \subset f(A) \cap f(B)$;
- 4. $f(A \cup B) \subset f(A) \cup f(B)$.

Якщо $A', B' \subset Y$, то

1.
$$A' \subset B' \implies f^{-1}(A') \subset f^{-1}(B')$$
:

2.
$$f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B');$$

3.
$$f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$$
.

Якщо $B' \subset A' \subset Y$, то

1.
$$f^{-1}(A' \setminus B') = f^{-1}(A') \setminus f^{-1}(B');$$

2.
$$f^{-1}(Y \setminus B') = X \setminus f^{-1}(B');$$

Для довільних множин $A\subset X$ і $B'\subset Y$

$$1.\ A\subset f^{-1}(f(A));$$

2.
$$f(f^{-1}(B')) \subset B'$$
.

Введемо поняття неперервного відображення.

Визначення 3.15. Нехай X і Y — два топологічних простора. Відображення $f: X \to Y$ називається неперервним в точці x_0 , якщо для довільного околу V точки $y_0 = f(x_0)$ існує такий окіл U точки x_0 , що $f(U) \subset V$.

Визначення 3.16. Відображення $f: X \to T$ називається *неперервним*, якщо воно є неперервним в кожній точці $x \in X$.

Інакше кажучи, неперервне відображення зберігає граничні властивості: якщо точка $x \in X$ є близькою до деякої множини $A \subset X$, то точка $y = f(x) \in Y$ є близькою до образу множини A.

Теорема 3.17

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатнью, щоб прообраз $f^{-1}(V)$ будь-якої відкритої множини $V \subset Y$ був відкритою множиною в X.

Доведення. Необхідність. Нехай $f: X \to Y$ — неперервне відображення, а V— довільна відкрита множина в Y. Доведемо, що множина $U = f^{-1}(V)$ є відкритою в X.

Для цього візьмемо довільну точку $x_0 \in U$ і позначимо $y_0 = f(x_0)$. Оскільки множина V є відкритим околом точки y_0 в просторі Y, а відображення f є неперервним в точці x_0 , в просторі X існує відкритий окіл U_0 точки x_0 , такий що $f(U_0) \subset V$. Звідси випливає, що $U_0 \subset U$. Отже, множина U є відкритою в X.

$$f \in C(X,Y) \implies \exists U_0 \in \tau_X : x_0 \in U_0, f(U_0) \subset V \implies$$

 $\implies f^{-1}(f(U_0)) \subset f^{-1}(V) = U \implies U_0 \subset f^{-1}(f(U_0)) \subset U \implies U \in \tau_X.$

Достатність. Нехай прообраз $f^{-1}(V)$ довільної відкритої в Y множини V є відкритим в X, а $x_0 \in X$ — довільна точка. Доведемо, що відображення f є неперервним в точці x_0 .

Дійсно, нехай $y_0 = f(x_0)$, а V — її довільний відкритий окіл. Тоді $U = f^{-1}(V)$ за умовою теореми є відкритим околом точки x_0 , до того ж $f(U) \subset V$. Отже, відображення f є неперервним в кожній точці $x_0 \in X$. Таким чином, f є неперервним в X.

$$V \in \tau_X, U \stackrel{\text{def}}{=} f^{-1}(V) \in \tau_X \implies$$

 $\implies f(U) = f(f^{-1}(V)) \subset V \implies f \in C(X, Y).$

Теорема 3.18

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатнью, щоб прообраз $f^{-1}(V)$ будь-якої замкненої множини $V \subset Y$ був замкненою множиною в X.

Доведення випливає з того, що доповнення відкритих множин є замкненими, а прообрази множин, що взаємно доповнюють одна одну, самі взаємно доповнюють одна одну.

Теорема 3.19

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатнью, щоб $\forall A \subset X: f(\overline{A}) \subset \overline{f(A)}$.

Доведення. Необхідність. Нехай відображення $f: X \to Y$ є неперервним, а $x_0 \in \overline{A}$. Покажемо, що $y_0 = f(x_0) \in \overline{f(A)}$.

Справді, нехай V — довільний окіл точки y_0 . Тоді внаслідок неперервності f існує окіл U, який містить точку x_0 такий, що $f(U) \subset V$. Оскільки $x_0 \in \overline{A}$, то в околі U повинна міститись точка $x' \in A$ (можливо, вона збігається з точкою x_0). Разом з тим, очевидно, що y' = f(x') належить одночасно множині f(A) і околу V, тобто $y_0 \in \overline{f(A)}$.

$$f \in C(X,Y) \implies \forall V \in \tau_Y : f(x_0) \in V : \exists U \in \tau_X : x \in U, f(U) \subset V.$$
$$x_0 \in \overline{A} \implies U \cap A \neq \varnothing \implies \exists x' \in U \cap A \implies$$
$$\implies f(x') \in f(U \cap A) \subset f(U) \cap f(A) \implies y_0 = f(x_0) \in \overline{f(A)}.$$

Достатність. Нехай $\forall A \subset X : f(\overline{A}) \subset \overline{f(A)}$ і B — довільна замкнена в Y множина. Покажемо, що множина $A = f^{-1}(B)$ є замкненою в X.

Нехай x_0 — довільна точка із \overline{A} . Тоді $f(x_0) \in f(\overline{A}) \subset \overline{f(A)}$. Разом з тим

$$A = f^{-1}(B) \implies f(A) = f(f^{-1}(B)) \subset B \implies \overline{f(A)} \subset \overline{B} = B.$$

Тому $f(x_0) \in B$, отже, $x_0 \in A$. Таким чином, $\overline{A} \subset A$, тобто A — замкнена множина. Звідси випливає, що відображення f є неперервним.

Визначення 3.20. Бієктивне відображення $f: X \to Y$ називається гомеоморфним, або гомеоморфізмом, якщо і само відображення f і обернене відображення f^{-1} єнеперервними.

Визначення 3.21. Топологічні простор X і Y називаються *гомеомор-фними*, або *топологічно еквівалентними*, якщо існує хоча б одне гомеоморфне відображення $f: X \to Y$.

Цей факт записується так: $X \stackrel{f}{\equiv} Y$.

Приклад 3.22

Тривіальний приклад гомеоморфізму — тотожнє перетворення.

Приклад 3.23

Відображення, що задається строго монотонними неперервними дійсними функціями дійсної змінної є гомеоморфізмами. Гомеоморфним образом довільного інтервалу є інтервал.

Визначення 3.24. Неперервне відображення $f: X \to Y$ називається $\epsilon i \partial \kappa p u m u m$, якщо образ будь-якої відкритої множини простору X є відкритим в Y.

Визначення 3.25. Неперервне відображення $f: X \to Y$ називається *замкненим*, якщо образ будь-якої замкненої множини простору X є замкненим в Y.

Зауваження 3.26 — Поняття відкритого і замкненого відображення не є взаємовиключними. Тотожне відображення одночасно є і відкритим, і замкненим.

Приклад 3.27

Відображення вкладення (ін'єктивне відображення) $i:A\subset X\to X$ є відкритим, якщо підмножина A є відкритою, і замкненим, якщо пілмножина A є замкненою.

Теорема 3.28

Відображення $f:X\to Y$ є замкненим тоді і лише тоді, коли $\forall A\subset X:f(\overline{A})=\overline{f(A)}.$

Доведення. Необхідність. Оскільки замкнене відображення є неперервним (за означенням), то внаслідок теореми $3.19 \ \forall A \subset X : f(\overline{A}) \subset \overline{f(A)}$.

Разом з тим, очевидно, що $f(A)\subset f(\overline{A})$, тому внаслідок монотонності замикання $\overline{f(A)}\subset \overline{f(\overline{A})}$.

Оскільки відображення f є замкненим, то $\overline{f(\overline{A})}=f(\overline{A}).$ Таким чином, $\overline{f(A)}=f(\overline{A}).$

Достатність. Функція f є неперервною внаслідок теореми 3.19. З умови $\overline{f(A)} = f(\overline{A})$ для замкненої множини $A \subset X$ отримуємо, що $f(A) = \overline{f(A)}$, тобто образ будь-якої замкненої множини є замкненим.

Теорема 3.29

Відкрите бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення. Оскільки $f: X \to Y$ — бієктивне відображення, існує обернене відображення $f^{-1}: Y \to X$. Оскільки $\forall A \subset X: (f^{-1})^{-1}(A) = f(A)$ і, за умовою теореми, f — відкрите відображення, то прообрази відкритих підмножин із X є відкритими.

З теореми 3.17 випливає, що відображення f^{-1} є неперервним. Оскільки бієктивне відкрите відображення завжди є неперервним, доходимо висновку, що f — гомеоморфізм.

Теорема 3.30

Замкнене бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення цілком аналогічне попередній теоремі.

Теорема 3.31

Гомеоморфне відображення $f:X\equiv Y$ одночасно є і відкритим, і замкненим.

Доведення. Нехай $f^{-1}: Y \to X$ — обернене відображення. Тоді $\forall A \subset X: f(A) = (f^{-1})^{-1}(A)$. Оскільки відображення f є гомеоморфізмом, відображення f і f^{-1} є неперервними.

Оскільки образ множини A при відображенні f є прообразом множини A при відображенні $(f^{-1})^{-1}$ і обидва ці відображення є неперервними,

то відображення f є відкритим і замкненим одночасно, тобто відкриті множини переводить у відкриті, а замкнені — у замкнені.

Теорема 3.32

Бієктивне відображення $f:X\to Y$ є гомеоморфізмом тоді і лише тоді, коли воно зберігає операцію замикання, тобто $\forall A\subset X:f(\overline{A})=f(A)$.

Необхідність випливає з теорем 3.28 і 3.31, а достатність — з теорем 3.28 і 3.30.