# PRESENTACIÓN PROYECTO FINAL

FUNDAMENTOS DE BASE DE DATOS

UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

# INTRODUCCIÓN

Este trabajo tiene como objetivo la creación de una base de datos relacional a partir de un archivo con datos crudos pertenecientes a **películas.** A continuación se presentan los pasos a seguir:

# PASO 1. NORMALIZACIÓN DE LAS COLUMNAS

PRIMERA FORMA
NORMAL

TERCERA FORMA
NORMAL

SEGUNDA FORMA
NORMAL

### 2. MODELO CONCEPTUAL



#### **RELACIONES EXISTENTES**

#### **UNO A MUCHOS**

- Crear una tabla para cada entidad o elemento en la relación.
- Asignar una clave primaria única a cada tabla.
- Crear una clave foránea en la tabla "muchos" que haga referencia a la clave primaria de la tabla "1".



#### **MUCHOS A MUCHOS**

- Crear una tabla para cada entidad o elemento en la relación.
- Crear una tercera tabla que actúe como tabla intermediaria entre las dos tablas originales.
- Asignar claves foráneas a esta tercera tabla que hagan referencia a las claves primarias de las tablas originales.



#### **TABLA PERSONA**

'Cast', 'Crew' y 'Director' contienen los nombres de integrantes que participan de alguna forma en la película. Estos necesitan ser normalizados en una tabla con datos comunes, en este caso llamada Persona.





# 3. MODELO LÓGICO



# 4. MODELO FÍSICO



## 6. CURSOR DE ORIGINAL\_LANGUAGE

```
OPEN CursorOL;
CursorOL_loop: LOOP
     FETCH CursorOL INTO nameOL;
 -- Si alcanzo el final del cursor entonces salir del ciclo repetitivo
     IF done THEN
         LEAVE CursorOL_loop;
     END IF;
     IF nameOL IS NULL THEN
         SET nameOL = '';
     END IF;
     SET @_oStatement = CONCAT('INSERT INTO original_languageCURSOR (name) VALUES (\'',
     nameOL,'\');');
     PREPARE sent1 FROM @_oStatement;
     EXECUTE sent1;
     DEALLOCATE PREPARE sent1;
```

```
DROP TABLE IF EXISTS original_languageCURSOR;

CREATE TABLE original_languageCURSOR (
    name varchar(255) PRIMARY KEY
);

SELECT * FROM original_languageCURSOR;
```

# 6. CURSOR DE PRODUCTION\_COUNTRIES

```
cursorLoop: LOOP
   FETCH myCursor INTO idMovie, idProdCoun;
-- Controlador para buscar cada uno de los arrays
  SET i = 0;
-- Si alcanzo el final del cursor entonces salir del ciclo repetitivo
IF done THEN
 LEAVE cursorLoop;
END IF ;
WHILE(JSON_EXTRACT(idProdCoun, CONCAT('$[', i, '].iso 3166 1')) IS NOT NULL) DO
SET idJSON = JSON_EXTRACT(idProdCoun, CONCAT('$[', i, '].iso_3166_1'));
SET i = i + 1;
SET @sql_text = CONCAT("INSERT INTO MovieProdCompTemp VALUES (', idMovie, ', ', REPLACE(idJSON,"\"',"), '); ');
  PREPARE stmt FROM @sql_text;
  EXECUTE stmt;
  DEALLOCATE PREPARE stmt;
END WHILE;
END LOOP ;
```

#### 7. MIGRACION DE DATOS

```
INSERT INTO `original_language`(`name_original_language`)
SELECT `name`
FROM original_languageCURSOR;
```

```
INSERT INTO `Status`(`nameStatus`)
SELECT `name`
FROM statusCURSOR;
```

```
INSERT INTO Movie (

idMovie, budget, homepage, original_title,
overview, popularity, release_date, revenue,
runtime, tagline, title, vote_average,
vote_count)

SELECT

id, budget, homepage, original_title, overview,
popularity, release_date, revenue, runtime,
tagline, title, vote_average, vote_count

FROM movie_dataset.movie_dataset_crudo;
```

# GRACIAS POR SU ATENCIÓN