ECO 102: Topics in Economics

Ecole Polytechnique, Spring 2022

Professors: Geoffroy Barrows, Benoit Schmutz

Teaching Assistants: Arnault Chatelain, Maddalena Conte

TD 5 (part 2): Migrant segregation

In this TD we will analyse migrant segregation in France. As usual, download the folder TD_2_5.zip, write your answers directly in the Tex script and type your Stata commands in a do file.

Exercise

In this TD, we try to understand why non-European immigrants tend to live more in public housing, based on the French Household Survey.

- 1. Prepare the dataset: load the dataset and (following the help dofile) create:
 - non european: a variable indicating the origin
 - deprived: a variable indicating if the individual lives in a "sensitive urban area"
 - various control variables
- 2. Regress deprived on non_european. What is the unconditional effect of being a non-European migrant on living in a deprived area? Add household characteristics (many_kids, employed, female, married_couple, low_diploma, high_occupation) as additional independent variables. What is the conditional effect? Export the results.

```
deprived = \alpha + \beta * non\_european + \varepsilon

deprived = \alpha + \beta * non\_european + c * dummy\_variables
```

3. Which individual characteristic makes immigrants more likely to live in deprived areas? Regress the variable deprived on all individual characteristics (many_kids, employed, female, married_couple, low_diploma, high_occupation), interacting each of these variables with non_european, one at the time, (in 6 separate regressions). What do you see?

```
deprived = \alpha + \beta_1 * non\_european + \varepsilon + \beta_2 * many\_kids + \beta_3 * non\_euro \times manykids
```

We find that the variable of low diploma and many kids have a huge effect on the possibilities of living in the deprived area. For the low diploma the coefficients of regression increased by 0.08 and 0.16 for Europeans and Non-Europeans. For many_kids variable we have increased by 0.11 and 0.17 for Europeans and Non-Europeans. Other variables do not have significant effect on the possibilities of living in the deprived area.

	(1)	(2)
	deprived	deprived
non_european	0.28***	0.27***
	(0.01)	(0.01)
many_kids		0.12***
		(0.01)
employed		-0.01**
		(0.01)
female		0.04***
		(0.01)
married_couple		-0.06***
		(0.00)
low_diploma		0.09***
		(0.01)
high occupation		-0.05***
0		(0.01)
Constant	0.17***	0.14***
	(0.00)	(0.01)
# Observations	27137	27137
R squared	0.020	0.058
Mean Dep. Var		

Table 1: The regressions table of the unconditional and additional variables

- 4. What is the role of push and pull factors at the local level? What role does public housing play?
 - (a) Create a location identifier at the city-size-region level (use the variables tu2010 and rg and the Stata function group). Run the same regression as in part (2) using house-hold characteristics, but now add the location fixed effects (using the Stata function reghtfe and the option absorb). How does the conditional effect change? What does this suggest?

With location fixed effects, the effect of non european is smaller, This means that if we considered european residents and non european residents who live in a same city scale, the gap of the living condition between these two groups are smaller.

- (b) Generate a variable hlm to identify individuals living in social housing (lsy1 == "1"). Calculate the fraction of non-Europeans living in social housing (note: we subtract each individual from this fraction). Calculate the fraction of all individuals living in social housing. Calculate the fraction of non-Europeans not living in social housing (see code in Stata help do file).
- (c) Calculate pull factor to understand whether non-European migrants are more attracted to places with a higher concentration of non-European migrants. Calculate push factor to understand if more limited access to public housing reduces the presence of non-European migrants in distressed areas (see code in Stata help do file).

	(1)	(2)	(3)
	deprived	deprived	deprived
non ouronoan	0.20***	0.20***	0.20***
non_european			
	(0.01)	(0.01)	(0.01)
many_kids	0.09***	0.09***	0.09***
	(0.01)	(0.01)	(0.01)
employed	0.00	0.00	0.00
	(0.00)	(0.00)	(0.00)
female	0.02***	0.02***	0.02***
10111010	(0.00)	(0.00)	(0.00)
	()	()	,
$married_couple$	-0.03***	-0.03***	-0.03***
	(0.00)	(0.00)	(0.00)
1 1. 1	0.10***	0.10***	0.10***
$low_diploma$	0.10***	0.10***	0.10***
	(0.00)	(0.00)	(0.00)
high_occupation	-0.06***	-0.06***	-0.06***
mgn_occupation	(0.01)	(0.01)	(0.01)
	(0.01)	(0.01)	(0.01)
Constant	0.13***	0.13***	0.13***
	(0.01)	(0.01)	(0.01)
# Observations	27137	27137	27137
R squared	0.200	0.200	0.200
Mean Dep. Var			

Table 2: Caption

(d) Run the same regression as in part (4a), without fixed effects and adding the following independent variables: $inter_1_non_european$, $inter_1_other$, $frac_hlm$, $frac_non_european$. What do you see? Run the same regression adding the following independent variables: $inter_2_non_european$, $inter_2_other$. What do you see? Export results of the 3 regressions in this section.

inter_1_non_european: Pull factor: Non=european living attracted to more non-european migrants,

 $inter_1_other_european$: European more attracted to living with non-european migrants

inter_2_non_europeanL: Push factor: if non-europeans don't live in public housing, the non-european immigrants are less likely to live in deprived areas

For pull factor, we can see that chances are much higher that for non-european who tends to live with more non-european migrants to live in deprived area. For push factor, if non-europeans don't have access to public housing, non-european not living in deprived area will have a positive effect on immigrants living in deprived area. If non-europeans don't have access to public housing, European not living in deprived area will cause less non-european live in deprived area.

5. What is the role of past location? Does living in social housing in the past impact whether one lives in a deprived area in the current period?

- (a) Identify whether individuals lived in social housing in the past. Create a variable called past hlm with the following condition: vsy == "1".
- (b) Identify whether the previous municipality in which households lived had a deprived area using the variable *vcomzus* (if it is equal to 0 and non-missing, the individual did not live in deprived area in the past). Create a new variable called *past_non_deprived*.
- (c) Run the same baseline regression as before, but now interact non_european with these past_hlm. Do the same as before, but now use a triple-interaction term which also includes past_non_deprived. Do the same as before but now add location fixed effects. How do you interpret these results? Export regression results.
- (d) The regressions in the previous section identified movers. We now look at non-movers. Create a dummy non_mover equal to 1 if vlr == "1" or vlr == "2". Run the baseline regression on non-movers only. Run this same regression, but now interact non_european with hml (whether the individual lives in social housing). Run this same regression but add fixed effects. How do you interpret these results? Export regression results.

reg deprived non_european#many_kids employed female married_couple low_diploma high_occupation

	Source	SS	df	MS	Number of obs		
	Model	231.186128	8	28.8982661	F(8, 27128) Prob > F		209.84 0.0000
	Residual				R-squared		
_					Adj R-squared	=	0.0580
	Total	3967.10764	27,136	.14619353	Root MSE	=	.3711

deprived	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
non_european#many_kids						
0 1	.1106364	.0085897	12.88	0.000	.0938001	.1274727
1 0	.253977	.0135902	18.69	0.000	.2273395	.2806145
1 1	.422801	.0241609	17.50	0.000	.3754444	.4701577
employed	012016	.0052197	-2.30	0.021	0222469	0017851
female	.0353071	.0050139	7.04	0.000	.0254797	.0451346
married_couple	0554296	.0049753	-11.14	0.000	0651814	0456777
low_diploma	.0851636	.005146	16.55	0.000	.0750773	.09525
high_occupation	0530419	.0062603	-8.47	0.000	0653124	0407714
_cons	.1411093	.0062326	22.64	0.000	.1288932	.1533255

Figure 1: The regression result of the variable many kids

Source	SS	df	MS	Number F(8, 27		=	27,137 210.94	
Model	232.328645	8	29.0410807	Prob >		=	0.0000	
Residual	3734.77899	27,128	27,128 .137672478 R-squared		R-squared		0.0586	
				Adj R-s	Adj R-squared		0.0583	
Total	3967.10764	27,136	.14619353	Root MS	E	=	.37104	
	deprived	Coef.	Std. Err.	t	P> t		[95% Conf.	Interval]
_european#1	.ow_diploma							
	0 1	.0818908	.0052347	15.64	0.000		.0716306	.0921511
	1 0	.2239268	.0171136	13.08	0.000		.1903833	.2574703
	1 1	.3897262	.01695	22.99	0.000		.3565033	.4229492
	many_kids	.1149027	.0082267	13.97	0.000		.098778	.1310275
	employed	0130143	.0052235	-2.49	0.013		0232527	0027759
	female	.0349223	.0050141	6.96	0.000		.0250944	.0447501
marr	ied_couple	0554064	.0049745	-11.14	0.000		0651567	0456562
high_	occupation	0530993	.0062592	-8.48	0.000		0653676	040831
	_cons	.1433447	.0062727	22.85	0.000		.1310499	.1556395

Figure 2: The regression result of the variable $low_diploma$