Body Condition of Mother and Calf Humpback Whales (Megoptera novae angiliae) Over Temporal Scales

Lewis Evans, Sophie Paradis, Maya Otsu, and Alyssa Veneri

2023-12-12

```
tinytex::install_tinytex(force = TRUE)
## tlmgr --repository http://www.preining.info/tlgpg/ install tlgpg
## tlmgr option repository 'https://mirrors.mit.edu/CTAN/systems/texlive/tlnet'
## tlmgr update --list
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(tidyr)
library(ggplot2)
library(forcats)
```

Research Questions

- 1. How does the mother and calf body condition index vary by year?
- 2. How does the mother and calf body condition index vary seasonally?

Data Wrangling

Below is the code used to optimize and clean the dataset used to answer the research questions. ## Install packages and organise sheets to be filled

```
# template to be filled
temp<-read.csv("lewis_temp.csv")
# data from master sheet to be transferred
data<-read.csv("Lewis_Raw_Sheet.csv")
# Pulling corrected altitude from master database to analysis data sheet
nm <- c("Corrected_height_m", "Pixel_length")
temp[nm] <- lapply(nm, function(x) data[[x]][match(temp$Filename,data$Filename)])
View(temp)
#write new data back to original temp csv file.
write.csv(temp,"lewis_temp.csv")</pre>
```

preparing to calculate body volumes for each row, need to clean data first:

```
data<-read.csv("Lewis_Raw_Sheet.csv")
head(data,20)</pre>
```

```
Region Year DOY Grade_pass Altitude_Source
                                                           Filename
                                                                        Role
## 1
          HI 2019
                  15
                               N
                                            S Alt 2019.01.15.03.01
                                                                      Mother
## 2
          HI 2019
                   15
                               Y
                                            S Alt 2019.01.15.03.02
                                                                        Calf
## 3
          HI 2019
                   15
                                            S Alt 2019.01.15.06.02
                               N
                                                                      Mother
## 4
          HI 2019
                               N
                                            S_Alt 2019.01.15.08.01
                                                                        Calf
                   15
          HI 2019
## 5
                   16
                               N
                                            S_Alt 2019.01.16.19.01
                                                                      Mother
## 6
          HI 2019
                   16
                               N
                                            S Alt 2019.01.16.19.02
                                                                        Calf
## 7
          HI 2019 16
                               Y
                                            S_Alt 2019.01.16.20.01
                                                                      Mother
## 8
          HI 2019 16
                               Y
                                            S_Alt 2019.01.16.20.02
                                                                        Calf
## 9
          HI 2019
                   16
                               Y
                                            S_Alt 2019.01.16.28.03
                                                                      Mother
## 10
          HI 2019
                   16
                               Y
                                            S_Alt 2019.01.16.28.04 Yearling
## 11
          HI 2019
                   16
                               N
                                            S_Alt 2019.01.16.29.01
                                                                      Mother
          HI 2019 16
## 12
                               N
                                            S_Alt 2019.01.16.29.02
                                                                        Calf
## 13
          HI 2019
                               Y
                                            S Alt 2019.01.16.31.01
                   16
                                                                      Mother
## 14
          HI 2019 16
                               Y
                                            S_Alt 2019.01.16.31.02
                                                                        Calf
## 15
          HI 2019
                               Y
                                            S_Alt 2019.01.18.37.01
                                                                      Mother
                   18
## 16
          HI 2019
                               Y
                   18
                                            S_Alt 2019.01.18.37.02
                                                                        Calf
          HI 2019
                               Y
                                            S Alt 2019.01.18.39.01
## 17
                   18
                                                                      Mother
## 18
          HI 2019
                   18
                               Y
                                            S Alt 2019.01.18.39.02
                                                                        Calf
          HI 2019 18
                               Y
                                            S_Alt 2019.01.18.46.01
## 19
                                                                      Mother
## 20
          HI 2019 18
                               Y
                                            S_Alt 2019.01.18.47.01
                                                                        Calf
##
      Corrected_height_m Pixel_length Pixel_Width_5 Pixel_Width_10 Pixel_Width_15
## 1
             32.97236219
                             0.3491373
                                            9.214691
                                                            14.08607
                                                                           16.75829
## 2
             29.66091393
                             0.1469100
                                            9.168017
                                                            11.96253
                                                                           14.89135
## 3
              35.1236886
                             0.3252343
                                            9.235541
                                                            13.33296
                                                                           15.24165
## 4
              33.1213199
                             0.1727700
                                            8.592942
                                                            11.40709
                                                                           13.43479
## 5
             28.41806378
                             0.4404700
                                            7.601259
                                                            12.22899
                                                                           13.32856
## 6
              28.3481908
                             0.1854800
                                            8.151804
                                                            10.96770
                                                                           12.79753
## 7
             26.92526647
                             0.4740500
                                            7.264967
                                                            11.78561
                                                                           13.53775
## 8
             27.23761989
                             0.1965600
                                                            10.60096
                                            7.527777
                                                                           12.77157
## 9
             44.31016642
                             0.2596200
                                            7.488021
                                                            11.46235
                                                                           12.95918
## 10
                                            7.357397
             40.52863803
                             0.2199700
                                                            11.52921
                                                                           13.42690
## 11
             35.51454667
                                            7.934658
                             0.3499500
                                                            11.76965
                                                                           11.13231
## 12
             35.44183216
                             0.1430300
                                            9.196329
                                                            12.17870
                                                                           13.53997
## 13
             33.51786646
                             0.4236100
                                            7.551070
                                                            11.54780
                                                                           13.30373
```

##	14	32.12062813	0.1519900	6.906498	10.29645	13.14793
	15	29.82653577	0.4328000	7.773092	11.93179	13.77891
	16	30.91753566	0.1587100	7.774773	10.95052	12.63967
	17	28.95496055	0.3999100	6.978168	10.54792	12.86602
	18	30.95948877	0.1614000	7.535857	11.08413	12.26405
	19	29.72669054	0.4367700	7.161791	10.72130	12.92166
	20	33.40264928	0.1454500	9.667448	11.36653	13.47669
##		Pixel_Width_20 Pixel				
##	1	17.60272	18.97778	21.82566	21.32035	23.46663
##		19.27598	19.39924	20.14465	20.47707	20.60363
##		16.46303	20.91649	21.71981	22.57257	24.47837
##	4	17.99478	19.00087	20.61068	20.94254	20.53144
##	5	14.26289	17.53144	16.76094	17.62161	19.22495
##		17.40439	17.49475	17.82366	18.11683	18.59816
##		13.92794	17.20895	16.92749	17.47834	19.05466
##		17.10737	18.06163	18.82385	19.20491	18.99115
##		13.83876	17.44389	17.51684	17.76539	17.58225
	10	15.19218	18.65696	19.46731	20.66172	21.92376
	11	13.82885	17.48153	17.35476	17.63721	18.73034
	12	17.00266	18.71652	20.14160	20.31278	19.31423
	13	13.88924	16.89439	18.24686	18.37969	19.58700
	14	16.11030	17.49982	18.51418	18.20086	17.98907
	15	14.33013	17.92958	17.48693	17.90626	19.60360
	16	17.10741	16.43856	18.56772	19.05737	18.97150
	17	13.83772	17.00028	16.70581	16.42969	17.36708
	18	16.50976	17.12640	18.65631	18.95578	19.53071
	19	14.03786	17.13754	17.11963	17.11527	18.27278
##	20	18.04932	17.90279	19.60061	20.06176	19.21272
##		Pixel_Width_45 Pixel				
##	1	23.48878	23.24622	22.05670	20.48338	17.15620
##	2	20.52011	19.38956	17.30192	14.44496	11.64315
##	3	24.76568	23.72228	22.25214	19.60454	16.97563
##	4	20.42106	19.39355	18.11501	16.06948	13.12512
##	5	19.39205	19.03363	17.85561	16.04386	14.20165
##	6	18.36427	17.15453	15.43386	13.45949	11.13915
##	7	19.37626	19.05142	17.65981	16.34621	14.01598
##	8	18.83388	18.33518	17.08391	14.32996	12.05849
##	9	17.69819	17.55115	16.09979	14.18050	12.92683
##	10	22.04131	21.78012	19.30108	17.82342	16.05820
##	11	19.43507	18.97326	17.56442	15.76950	13.55491
##	12	18.70602	17.53451	16.28507	14.67773	13.02331
##	13	20.00920	20.23003	19.68546	18.35524	16.11702
##	14	17.63002	16.79251	15.70816	13.79602	11.28902
##	15	20.32834	20.06035	18.40953	16.57174	13.94073
##	16	18.21947	16.51763	14.11057	11.70644	10.15790
##	17	17.87276	17.38125	16.32448	14.47927	12.26478
##	18	18.80565	18.42439	15.99676	13.62290	11.30035
##	19	18.78152	18.47390	16.82046	15.25812	13.12270
##	20	19.19343	18.78801	16.40225	13.77020	11.13886
##		Pixel_Width_70 Pixel	_Width_75 Pixe	l_Width_80 Pixel	_Width_85 Pixel	_Width_90
##	1	13.368451	9.313393	5.996423	4.145080	6.428957
##	2	9.400436	7.252516	5.628185	4.630932	7.018416
##	3	13.265143	9.806319	6.205202	3.880260	3.781384
##	4	10.408040	8.035108	5.839893	5.002380	7.944888

```
## 8
            9.445162
                                                             3.899297
                                                                             7.493124
                             7.078139
                                             4.690090
## 9
           10.534293
                             8.485563
                                             5.250565
                                                             3.108060
                                                                             2.805712
## 10
           12.431880
                             9.600389
                                             6.004028
                                                             2.826976
                                                                             4.630283
## 11
                                                                             2.502679
           10.928039
                             7.677108
                                             5.489817
                                                             3.713897
## 12
           10.196921
                             7.472869
                                             4.762985
                                                             3.779840
                                                                             9.420200
## 13
           13.071048
                             9.824728
                                             6.404522
                                                             3.051423
                                                                             2.151714
## 14
            9.349803
                             7.899898
                                             6.515875
                                                             5.011698
                                                                             6.906907
## 15
           10.340296
                             7.439381
                                             5.763816
                                                             3.246921
                                                                             3.712072
## 16
            8.412008
                             7.032644
                                             5.787230
                                                             4.361447
                                                                             5.207700
## 17
           10.318540
                             7.615860
                                             5.193292
                                                             3.288621
                                                                             2.651242
                             7.079675
## 18
            8.461549
                                             5.254443
                                                             4.514248
                                                                             5.923629
## 19
                                                                             2.183869
            10.391854
                             7.994633
                                             5.271805
                                                             3.200238
## 20
            9.179532
                             8.096080
                                             5.616791
                                                             5.176974
                                                                             7.508265
##
      Pixel_Width_95
## 1
           26.440150
## 2
           19.082293
## 3
           12.272840
## 4
           18.171346
## 5
           11.559919
## 6
           17.642882
## 7
           10.445093
## 8
           19.441146
## 9
           12.048172
## 10
           17.471110
## 11
           10.486013
## 12
           18.765224
## 13
           11.537238
## 14
            19.155079
## 15
            7.513404
## 16
           16.646037
## 17
           11.754325
## 18
            18.803778
## 19
            10.114084
## 20
            18.330342
dim(data)
## [1] 2686
               28
#remove rows containg NA value
data <- data %>% drop_na()
dim(data)
## [1] 2671
               28
# Only keep rows containing S_Alt altitude source
data<-subset(data, Altitude_Source == 'S_Alt')</pre>
dim(data)
## [1] 2446
              28
```

5.245174

3.718700

5.396030

3.469279

2.812207

3.718112

3.075581

7.884673

2.601100

5

6

7

11.511003

9.107958

11.400634

7.885681

6.044240

8.498591

Calculate Total length of whale and length of 5% intervals

```
# Calculate TL
data$TL <- data$Corrected_height_m*data$Pixel_length

#check range to see for anomolies
range(data$TL)

## [1] 3.753996 14.787516</pre>
```

```
#equation to change 5% intervals from pixel length to absolute length
data<-data %>% mutate(across(c("Pixel_Width_5","Pixel_Width_10","Pixel_Width_15","Pixel_Width_20","Pix
View(data)
```

isolating 5 % intervals

[1] "numeric"

"Rep.class" = "Role")

```
colnames(data)[10:28] <- c("Width.5.proc.m","Width.10.proc.m","Width.15.proc.m","Width.20.proc.m","Width.
#Renaming TL and Role.
data <- data %>%
    rename("Total.length.m" = "TL",
```

reorganisng/subsetting and reprganisng columns of interest. changename to BM

```
BM<-as.data.frame(data[,c("Filename","Total.length.m","Rep.class","Width.5.proc.m","Width.10.proc.m","Width.frame(data[,c("Filename","Total.length.m","Rep.class","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.m","Width.5.proc.
```

choosing 5% intervals from 5%-85% of the whale.

Set width and height at 0 and 100%BL from rostrum to be 0

```
BM$Width.0.proc.m<-0
BM$Height.0.proc.m<-0
BM$Width.100.proc.m<-0
BM$Height.100.proc.m<-0
```

Calculate the body width and height at 90 and 95%BL from rostrum based on linear interpolation between 85 and 100%BL from rostrum

```
BM$Width.90.proc.m<-BM$Width.85.proc.m-(1*(BM$Width.85.proc.m/3))
BM$Width.95.proc.m<-BM$Width.85.proc.m-(2*(BM$Width.85.proc.m/3))
BM$Height.90.proc.m<-BM$Height.85.proc.m-(1*(BM$Height.85.proc.m/3))
BM$Height.95.proc.m<-BM$Height.85.proc.m-(2*(BM$Height.85.proc.m/3))
```

Re-order data frame (necessary for the next step)

```
BM<-BM[,c(which(colnames(BM)=="Width.0.proc.m"), which(colnames(BM)=="Width.5.proc.m"):which(colnames(BM) width.col.start<-which(colnames(BM)=="Width.0.proc.m")  #Extracts the column number of the starti

Height.col.start<-which(colnames(BM)=="Height.0.proc.m")  #Extracts the column number of the starti
```

Calculate the body volume of the whales

```
BM$Volume.m3<-NA  #Creates an empty storage vector for body volume

for(y in 1:length(BM[,1])){  #Runs a loop for every individual in the data frame

for(k in 1:(length(seq(0,100,5))-1)){  #Runs a loop for every body segment (volume between two mea

f.ellipse<-function(x){  #Formula to calculate the volume of an ellipse

   (BM[y,Width.col.start+(k-1)]+((BM[y,(Width.col.start+k)]-BM[y,Width.col.start+(k-1)])*x))/2*(BM[y)

}
Volume.temp<-integrate(f.ellipse,lower=0,upper=1)$value*BM$Total.length.m[y]*0.05  #Multiplies the
```

```
ifelse(k==1,Store1<-Volume.temp,Store1<-c(Store1,Volume.temp)) #Stores the out
}

BM$Volume.m3[y]<-sum(Store1) #Calculates the
}</pre>
```

check data

```
plot(BM$Total.length.m,BM$Volume.m3)
```



```
#Check data makes sense/that there arent many outliers
data$Volume.m3 <- NA
nm <- c("Volume.m3")
data[nm] <- lapply(nm, function(x) BM[[x]][match(data$Filename,BM$Filename)])
View(data)
plot(data$Total.length.m,data$Volume.m3)</pre>
```



```
#write the CSV file
write.csv(data, "Lewis_Raw_Sheet.csv")
```

Data Analysis

Below is the code and plots used to analyze our data with the corresponding statistical analysis.

```
###Create regression###
whales <- read.csv("Lewis_Raw_Sheet.csv")</pre>
model <- lm(Volume.m3 ~ Total.length.m, data = whales)</pre>
model
##
## Call:
## lm(formula = Volume.m3 ~ Total.length.m, data = whales)
  Coefficients:
##
      (Intercept)
                    Total.length.m
##
          -18.322
                             3.771
whale_plot <- plot(whales$Total.length.m, whales$Volume.m3, main = "Whale Length vs. Volume",</pre>
     xlab = "Whale Length (m)", ylab = "Whale Body Volume (m^3)")
```

Whale Length vs. Volume


```
summary_result <- summary(model)
summary_result</pre>
```

```
##
## Call:
## lm(formula = Volume.m3 ~ Total.length.m, data = whales)
##
## Residuals:
##
                1Q Median
       Min
                                3Q
## -8.9548 -1.8605 -0.1104 1.6421 14.8411
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                               0.18839
                                        -97.26
## (Intercept)
                  -18.32208
                                                 <2e-16 ***
                               0.01905 197.95
                                                 <2e-16 ***
## Total.length.m
                    3.77054
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 3.176 on 2164 degrees of freedom
## Multiple R-squared: 0.9477, Adjusted R-squared: 0.9476
## F-statistic: 3.919e+04 on 1 and 2164 DF, p-value: < 2.2e-16
r_squared <- summary_result$r.squared</pre>
r_squared
```

[1] 0.9476658

```
# Plot with points of different colors based on Region
colors <- ifelse(whales$Region == "HI", "blue", "black")
whale_plot <- plot(
   whales$Total.length.m, whales$Volume.m3,
   main = "Whale Length vs. Volume",
   xlab = "Whale Length (m)", ylab = "Whale Body Volume (m^3)",
   col = colors, pch = 16, cex = 0.5
)
whale_plot</pre>
```

NULL

```
smoothed_data <- lowess(whales$Total.length.m, whales$Volume.m3)
lines(smoothed_data, col = "red", lwd = 2)
legend("topleft", legend = c("Hawaii", "Alaska"), col = c("blue", "black"), pch = 16, cex = 1, title =</pre>
```

Whale Length vs. Volume

Log-Transformed Whale Length vs. Volume


```
summary_result_log <- summary(log_regression)
summary_result_log</pre>
```

```
##
## Call:
## lm(formula = log_volume ~ log_length, data = whales)
##
## Residuals:
##
                  1Q
                       Median
## -0.40714 -0.08384 -0.00541 0.07253 0.48363
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
                           0.013381
                                    -317.9
## (Intercept) -4.254489
                                              <2e-16 ***
                                      489.4
                                              <2e-16 ***
## log_length
                3.007065
                           0.006145
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.1216 on 2164 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.991
## F-statistic: 2.395e+05 on 1 and 2164 DF, p-value: < 2.2e-16
r_squared_log <- summary_result_log$r.squared</pre>
r_squared_log
```

```
## [1] 0.991045
```

Plot with points of different colors based on Region

```
colors <- ifelse(whales$Region == "HI", "blue", "black")
whale_plot <- plot(
  whales$log_length, whales$log_volume,
  main = "Log-Transformed Whale Length vs. Volume",
    xlab = "Log(Whale Length (m))", ylab = "Log(Whale Body Volume (m^3))",
  col = colors, pch = 16, cex = 0.5
)
whale_plot
## NULL</pre>
```

legend("topleft", legend = c("Hawaii", "Alaska"), col = c("blue", "black"), pch = 16, cex = 1, title =
abline(log_regression, col = "red")

Log-Transformed Whale Length vs. Volume


```
summary_result_log <- summary(log_regression)
summary_result_log</pre>
```

```
##
## Call:
## lm(formula = log_volume ~ log_length, data = whales)
##
```

```
## Residuals:
##
       Min
                  1Q
                     Median
                                    30
                                            Max
## -0.40714 -0.08384 -0.00541 0.07253 0.48363
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.254489
                           0.013381 -317.9
                                              <2e-16 ***
              3.007065
## log_length
                           0.006145
                                    489.4
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.1216 on 2164 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.991
## F-statistic: 2.395e+05 on 1 and 2164 DF, p-value: < 2.2e-16
r_squared_log <- summary_result_log$r.squared</pre>
r_squared_log
## [1] 0.991045
###Calculating residuals###
residuals_vector <- residuals(log_regression)</pre>
head(residuals_vector)
##
                           2
                                        3
                                                                               6
                                                     4
                                                                  5
## 0.117148607 0.006315415 -0.018770543 -0.097434808 0.219220464 0.133003399
residual_variance <- var(residuals_vector)</pre>
head(residual variance)
## [1] 0.01476808
whales$BCI <- residuals_vector</pre>
head(whales)
     X Region Year DOY Grade_pass Altitude_Source
                                                           Filename Rep.class
## 1 2
           HI 2019 15
                                Y
                                             S_Alt 2019.01.15.03.02
                                                                         Calf
## 2 7
           HI 2019 16
                                Y
                                             S_Alt 2019.01.16.20.01
                                                                       Mother
## 3 8
           HI 2019 16
                                Y
                                             S_Alt 2019.01.16.20.02
                                                                         Calf
## 4 9
           HI 2019 16
                                Y
                                             S_Alt 2019.01.16.28.03
                                                                       Mother
## 5 10
           HI 2019 16
                                Y
                                             S_Alt 2019.01.16.28.04 Yearling
## 6 13
           HI 2019 16
                                Y
                                             S_Alt 2019.01.16.31.01
                                                                       Mother
    Corrected_height_m Pixel_length Width.5.proc.m Width.10.proc.m
## 1
              29.66091
                             0.14691
                                          0.3994949
                                                          0.5212653
## 2
              26.92527
                             0.47405
                                          0.9272948
                                                          1.5043068
## 3
              27.23762
                             0.19656
                                          0.4030241
                                                          0.5675568
## 4
              44.31017
                             0.25962
                                          0.8614074
                                                          1.3186065
## 5
              40.52864
                             0.21997
                                          0.6559182
                                                          1.0278384
## 6
              33.51787
                             0.42361
                                          1.0721390
                                                          1.6396154
    Width.15.proc.m Width.20.proc.m Width.25.proc.m Width.30.proc.m
          0.6488881
                         0.8399478
                                           0.8453190
## 1
                                                          0.877800
```

```
## 2
           1.7279477
                           1.7777515
                                           2.1965369
                                                            2.160612
## 3
                                           0.9669881
                                                            1.007797
           0.6837677
                           0.9158989
## 4
           1.4907987
                           1.5919845
                                           2.0067111
                                                            2.015104
## 5
           1.1970195
                           1.3543958
                                           1.6632835
                                                            1.735527
## 6
           1.8889308
                           1.9720644
                                           2.3987504
                                                            2.590781
##
    Width.35.proc.m Width.40.proc.m Width.45.proc.m Width.50.proc.m
## 1
                                           0.8941606
           0.8922854
                            0.897800
                                                           0.8448973
## 2
           2.2309215
                            2.432123
                                           2.4731709
                                                           2.4317089
## 3
           1.0281975
                            1.016753
                                           1.0083333
                                                           0.9816338
## 4
           2.0436958
                            2.022627
                                           2.0359649
                                                           2.0190499
## 5
           1.8420096
                            1.954522
                                           1.9650014
                                                           1.9417163
## 6
           2.6096411
                            2.781060
                                           2.8410066
                                                           2.8723615
##
    Width.55.proc.m Width.60.proc.m Width.65.proc.m Width.70.proc.m
## 1
           0.7539285
                                                           0.4096226
                           0.6294370
                                           0.5073486
           2.2540847
## 2
                           2.0864176
                                           1.7889882
                                                           1.4551682
## 3
           0.9146428
                           0.7672011
                                           0.6455904
                                                           0.5056776
## 4
           1.8520885
                           1.6312966
                                           1.4870776
                                                           1.2118446
## 5
           1.7207080
                           1.5889729
                                           1.4316019
                                                           1.1083126
## 6
           2.7950413
                                           2.2883757
                           2.6061701
                                                           1.8558932
##
    Width.75.proc.m Width.80.proc.m Width.85.proc.m Width.90.proc.m
## 1
           0.3160273
                           0.2452473
                                           0.2017922
                                                           0.3058264
## 2
           1.0847535
                           0.6887451
                                           0.4745769
                                                           0.3320024
## 3
           0.3789513
                                           0.2087616
                                                           0.4011689
                           0.2510993
## 4
                                           0.3575452
                                                           0.3227636
           0.9761627
                           0.6040148
## 5
           0.8558828
                           0.5352642
                                           0.2520273
                                                           0.4127937
           1.3949643
                           0.9093462
                                           0.4332564
                                                           0.3055112
##
    Width.95.proc.m Total.length.m Volume.m3 log_length log_volume
                                                                              BCI
## 1
           0.831508
                           4.357485 1.334750
                                               1.471895 0.2887440 0.117148607
## 2
           1.333204
                          12.763923 30.255767
                                                2.546623 3.4096868 0.006315415
## 3
            1.040845
                          5.353827 2.164153 1.677812 0.7720293 -0.018770543
                          11.503805 19.952769 2.442678
## 4
            1.385998
                                                          2.9933679 -0.097434808
## 5
            1.557564
                          8.915085 12.723143 2.187745
                                                          2.5434226 0.219220464
## 6
            1.638115
                          14.198503 47.307513 2.653137 3.8566691 0.133003399
###Create month column###
whales <- whales %>%
 mutate(Date = as.Date(paste(Year, DOY, sep = "-"), format = "%Y-%j"))
whales <- whales %>%
  mutate(Month = format(Date, "%m"))
avg_bv_per_month <- whales %>%
 group_by(Year, Month, Rep.class) %>%
  summarise(Avg_BV = mean(Volume.m3))
## 'summarise()' has grouped output by 'Year', 'Month'. You can override using the
## '.groups' argument.
print(avg_bv_per_month)
## # A tibble: 63 x 4
## # Groups:
               Year, Month [27]
##
      Year Month Rep.class Avg_BV
##
      <int> <chr> <chr>
                             <dbl>
## 1 2019 01
                  Calf
                              1.75
```

```
2 2019 01
                  Mother
                             33.3
##
   3 2019 01
                  Yearling
                             12.7
##
   4 2019 03
                  Calf
                              2.10
##
##
   5 2019 03
                  Mother
                             24.6
##
       2019 06
                  Calf
                              5.08
##
      2019 06
                  Mother
                             26.6
   8 2019 07
                  Calf
                              7.09
   9 2019 07
                             28.4
##
                  Mother
## 10 2019 08
                  Calf
                              7.59
## # i 53 more rows
```

Life stage and residual


```
###Facet grid with month###
#omit yearling#
whales_filtered1 <- whales %>%
filter(Rep.class != "Yearling")
```

```
ggplot(whales_filtered1, aes(x = Month, y = BCI, fill = Rep.class)) +
  geom_boxplot() +
  facet_grid(~Year) +
  labs(x = "Month", y = "BCI", fill = "Rep.class") +
  ggtitle("Box Plot Facet Grid for BCI by Month and Class for Each Year")
```

Box Plot Facet Grid for BCI by Month and Class for Each Year


```
###Facet grid with month 1,2, and 3###
whales_subset <- whales %>% filter(Month %in% c("01", "02", "03"))
whales_filtered <- whales_subset %>%
    filter(Rep.class != "Yearling")
ggplot(whales_filtered, aes(x = as.factor(Month), y = BCI, fill = Rep.class)) +
    geom_boxplot() +
    facet_grid(~Year) +
    labs(x = "Month", y = "BCI", fill = "Rep.class") +
    ggtitle("Box Plot Facet Grid for BCI by Month and Class for Each Year")
```

Box Plot Facet Grid for BCI by Month and Class for Each Year


```
###Perform a t-test to compare BCI of calf and mother###
# Exclude 'yearling' class
#################whales_filtered <- whales %>%
whales_filtered <- whales %>%
  filter(Rep.class != "Yearling")
table(whales_filtered$Rep.class)
##
##
      Calf Mother Mother
##
      1046
              1097
whales_filtered$Rep.class <- fct_collapse(whales_filtered$Rep.class, Mother = c('Mother', 'Mother'))</pre>
table(whales_filtered$Rep.class)
##
##
     Calf Mother
            1099
##
     1046
t_test_result <- t.test(BCI ~ Rep.class, data = whales_filtered)</pre>
print(t_test_result)
##
```

Welch Two Sample t-test

```
##
## data: BCI by Rep.class
## t = 1.6244, df = 2141.8, p-value = 0.1044
## alternative hypothesis: true difference in means between group Calf and group Mother is not equal to
## 95 percent confidence interval:
## -0.001728381 0.018409689
## sample estimates:
    mean in group Calf mean in group Mother
##
            0.001745506
                                -0.006595148
#T-test for Hawaii
t_test_hawaii <- t.test(BCI ~ Rep.class, data = whales_filtered[whales_filtered$Region == "HI", ])
print("T-Test for Hawaii:")
## [1] "T-Test for Hawaii:"
print(t_test_hawaii)
## Welch Two Sample t-test
##
## data: BCI by Rep.class
## t = -3.1041, df = 1903, p-value = 0.001937
## alternative hypothesis: true difference in means between group Calf and group Mother is not equal to
## 95 percent confidence interval:
## -0.026202972 -0.005912059
## sample estimates:
    mean in group Calf mean in group Mother
            -0.01075828
                                  0.00529924
##
#T-test for Alaska
t_test_alaska <- t.test(BCI ~ Rep.class, data = whales_filtered[whales_filtered$Region == "AK", ])
print("T-Test for Alaska:")
## [1] "T-Test for Alaska:"
print(t_test_alaska)
##
## Welch Two Sample t-test
## data: BCI by Rep.class
## t = 13.145, df = 215.44, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group Calf and group Mother is not equal to
## 95 percent confidence interval:
## 0.1724013 0.2332230
## sample estimates:
    mean in group Calf mean in group Mother
             0.09733226
                                -0.10547985
##
```

```
###Creating a time series plot###
##TIME SERIES
##First, find the average BV of calves and mothers per month
#convert year and DOY to date format
###make avg per month
whales <- whales %>%
 mutate(Date = as.Date(paste(Year, DOY, sep = "-"), format = "%Y-%j"))
# Extract month from the date
whales <- whales %>%
 mutate(Month = format(Date, "%m"))
# Group by Year, Month, and class, then calculate the average body volume
avg_bv_per_month <- whales %>%
 group_by(Year, Month, Rep.class) %>%
 summarise(Avg_BV = mean(Volume.m3))
## 'summarise()' has grouped output by 'Year', 'Month'. You can override using the
## '.groups' argument.
# View the resulting dataset with average body volume per month for each year and Rep.class
print(avg_bv_per_month)
## # A tibble: 63 x 4
## # Groups: Year, Month [27]
##
      Year Month Rep.class Avg_BV
##
     <int> <chr> <chr>
## 1 2019 01
                Calf
                            1.75
               Mother
## 2 2019 01
                            33.3
## 3 2019 01 Yearling 12.7
## 4 2019 03 Calf
                           2.10
## 5 2019 03 Mother
                            24.6
## 6 2019 06 Calf
                            5.08
## 7 2019 06 Mother
                           26.6
## 8 2019 07 Calf
                            7.09
## 9 2019 07
                 Mother
                            28.4
## 10 2019 08
                 Calf
                           7.59
## # i 53 more rows
##NEXT, prepare data by excluding yearling class to focus on mothers and calves,
#then group by year, month and class to calculate avg body volume for each year
# Exclude 'yearling' class
whales_filtered <- whales %>%
 filter(Rep.class != "Yearling")
# Group by Year, Month, and Rep. class, then calculate the average BCI
avg_BCI_per_month <- whales_filtered %>%
 group by (Year, Month, Rep. class) %>%
 summarise(Avg_BCI = mean(BCI))
```

```
## 'summarise()' has grouped output by 'Year', 'Month'. You can override using the
## '.groups' argument.
```

```
# Plotting for each year
for (year in 2019:2022) {
  # Subset data for the current year
  year_data <- avg_BCI_per_month %>%
   filter(Year == year) %>%
   filter(Rep.class != "Yearling") # Filter out 'yearling' within each year
  # Plotting average body volume over months for each Rep. class
  ggplot(year_data, aes(x = as.numeric(Month), y = Avg_BCI, group = Rep.class, color = Rep.class)) +
    geom line() +
   labs(title = paste("Average Body Volume Over Months for Whales in", year),
         x = "Month", y = "Average BCI") +
    scale_x_continuous(breaks = 1:12, labels = month.abb) +
   theme_minimal() +
   theme(legend.position = "bottom")
#Doesnt print all years, only 2022. So Next codes will plot each separately
  # You can save the plot here or use any preferred method to display it
  # ggsave(filename = paste("Avg_BV_over_months_", year, ".png"), plot = last_plot())
print(last_plot())
```

Average Body Volume Over Months for Whales in 2022

Rep.class — Calf — Mother

```
# Filter data for year 2020
data_2020 <- avg_BCI_per_month %>%
  filter(Year == 2020)

# Plotting for 2020
ggplot(data_2020, aes(x = Month, y = Avg_BCI, group = Rep.class, color = Rep.class)) +
  geom_line() +
```



```
Rep.class — Calf — Mother — Mother
```



```
Rep.class — Calf — Mother
```



```
Rep.class — Calf — Mother — Mother
```

Average Over BCI for Whales (2019–2022)

summary(lm(Avg_BCI~Month*Year, data_years))

```
##
## lm(formula = Avg_BCI ~ Month * Year, data = data_years)
##
## Residuals:
         Min
                    1Q
                          Median
                                                 Max
## -0.174353 -0.048193 -0.002956 0.053466 0.189335
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.4515878 43.5106655
                                       0.263
                                                0.793
## Month
               -0.4125044 6.9919074
                                      -0.059
                                                0.953
               -0.0056655 0.0215338
## Year
                                      -0.263
                                                0.794
              0.0002026 0.0034606
                                       0.059
                                                0.954
## Month:Year
##
## Residual standard error: 0.08721 on 52 degrees of freedom
## Multiple R-squared: 0.01491, Adjusted R-squared:
## F-statistic: 0.2624 on 3 and 52 DF, p-value: 0.8522
```