

Akademia Górniczo-Hutnicza Wydział Fizyki i Informatyki Stosowanej Fizyka Techniczna Metody Obliczeniowe Fizyki i Techniki 1

Zrealizował: Ryś Przemysław

Rok akademicki: 2022/2023 Semestr VI Grupa projektowa nr 1

Temat projektu:

Lab 7: Przepływ stacjonarny cieczy lepkiej nieściśliwej

Data wykonania ćwiczenia Data oddania sprawozdania Ocena 25.06.2023 25.06.2023

Wstęp

Tematem projektu było rozwiązanie dyskretnej wersji równania Laplace'a dla lepkiej nieściśliwej cieczy zarówno z jak i bez zastawki, która umiejscowiona jest w niesymetrycznym obszarze. Funkcje te spełniają równania Cauchy'ego - Riemanna, czyli warunek na to, aby były one analityczne. Z tego powodu funkcje potencjału przepływu i funkcje strumienia, które spełniają te równania, są szczególnie użyteczne w analizie przepływu płynów, gdyż pozwalają na opisanie i analizę płynów za pomocą narzędzi z teorii funkcji zespolonych.

Obliczenia przeprowadzone zostały dla przypadku przepływu stacjonarnego lepkiej, nieściśliwej cieczy opływającej przeszkodę. Współrzędne naroży przeszkody wynoszą: (-5,-40), (-5,10), (5,10), (5,40). Projekt realizowałem z wykorzystaniem środowiska Jupyter opartego na kernelu Python 3. Korzystałem z wbudowanych bibliotek numerycznych pythona, wymagane funkcje deklarowałem zaś sam.

Zadanie 1. Przepływ w rurze bez zastawki (przepływ Poiseuille)

Rys. 1: Wartości funkcji strumienia w zależności od położenia w rurze

Rys. 2: Wartości funkcji wirowości w zależności od położenia w rurze

Rys. 3: Wartości funkcji strumienia i wirowości w przekroju x=0, czyli dla i=0

Rys. 4: Wartości funkcji strumienia i wirowości w przekroju x=0.7, czyli dla $i=70\,$

Zadanie 2. Przepływ z zastawką

Rys. 5: Linie strumienia w zależności od położenia w rurze dla gradientu ciśnienia wynoszącego Q=-1

Rys. 6: Rozkład prędkości pionowej dla gradientu ciśnienia wynoszącego ${\cal Q}=-1$

Rys. 7: Rozkład prędkości poziomej dla gradientu ciśnienia wynoszącego ${\cal Q}=-1$

Rys. 8: Linie strumienia w zależności od położenia w rurze dla gradientu ciśnienia wynoszącego Q=-10

Rys. 9: Rozkład prędkości pionowej dla gradientu ciśnienia wynoszącego $Q=-10\,$

Rys. 10: Rozkład prędkości poziomej dla gradientu ciśnienia wynoszącego $Q=-10\,$

Rys. 11: Linie strumienia w zależności od położenia w rurze dla gradientu ciśnienia wynoszącego $Q=-100\,$

Rys. 12: Rozkład prędkości pionowej dla gradientu ciśnienia wynoszącego $Q=-100\,$

Rys. 13: Rozkład prędkości poziomej dla gradientu ciśnienia wynoszącego $Q=-100\,$

Rys. 14: Linie strumienia w zależności od położenia w rurze dla gradientu ciśnienia wynoszącego $Q=-200\,$

Rys. 15: Rozkład prędkości pionowej dla gradientu ciśnienia wynoszącego $Q=-200\,$

Rys. 16: Rozkład prędkości poziomej dla gradientu ciśnienia wynoszącego $Q=-200\,$

Rys. 17: Linie strumienia w zależności od położenia w rurze dla gradientu ciśnienia wynoszącego $Q=-400\,$

Rys. 18: Rozkład prędkości pionowej dla gradientu ciśnienia wynoszącego $Q=-400\,$

Rys. 19: Rozkład prędkości poziomej dla gradientu ciśnienia wynoszącego $Q=-400\,$