Практическое занятие №46

Показательные и логарифмические уравнения.

Повторим основные понятия и свойства показательной и логарифмической функций.

Показательная функция

Основные свойства степени. Если $a>0,\ b>0$ и $x,\ x_{1,}\ x_{2}$ — любые действительные числа, то:

$$a^{x_1} \cdot a^{x_2} = a^{x_1 + x_2}; \tag{2.1}$$

$$\frac{a^{x_1}}{a^{x_2}} = a^{x_1 - x_2}; (2.2)$$

$$(a^{x_1})^{x_2} = a^{x_1 \cdot x_2}; (2.3)$$

$$(ab)^x = a^x b^x; (2.4)$$

$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x};\tag{2.1}$$

$$a^x > 0; (2.6)$$

$$a^{x} > 1$$
, если $a > 1$, $x > 0$; (2.7)

$$a^{x_1} < a^{x_2}$$
, если $a > 1$, $x_1 < x_2$; (2.8)

$$a^{x_1} > a^{x_2}$$
, если $0 < a < 1, x_1 < x_2$. (2.9)

Функция вида $y = a^x$, где основанием служит заданное число a > 0, $a \ne 1$, называется *показательной функцией*.

Область определения показательной функции — множество $\mathbb R$ всех действительных чисел.

Множество значений показательной функции — множество всех положительных чисел y>0.

Показательная функция $y = a^x$ является возрастающей при a > 1 на множестве всех действительных чисел и убывающей при 0 < a < 1. Это следует из свойств (2.8), (2.9).

Построим графики показательных функций $y = 2^x$ (рис. 2.11) и $y = \left(\frac{1}{2}\right)^x$ (рис. 2.12) и перечислим их основные свойства.

Логарифмическая функция.

1. Понятие о логарифме числа. Задача определения показателя степени x в простом соотношении $2^x = 8$ оказывается неразрешимой с применением известных шести математических действий. Определив тем не менее, что x = 3, записать решение этой задачи с помощью известных математических знаков невозможно.

Правда, эту задачу легко решить графическим способом — нахождением точки пересечения графиков $y = 2^x$ и y = 8 (рис. 2.15); это точка (3; 8). Графический способ иногда позволяет решить задачу, неразрешимую с применением обычных математических приемов.

В общем виде задача $a^x = N$ разрешима только с введением нового математического действия. Это действие называется нахождением логарифма числа N по основанию a, что записывается таким образом:

$$\log_a N = x. \tag{2.10}$$

Логарифмом положительного числа N по основанию a (a > 0, $a \ne 1$) называется показатель степени, в которую нужно возвести число a, чтобы получить число N.

--, ------, -----

Например, $2^5 = 32$, поэтому $\log_2 32 = 5$; $2^{-3} = \frac{1}{8}$, поэтому $\log_2 (1/8) = -3$; $5^0 = 1$, поэтому $\log_5 1 = 0$; $10^2 = 100$, поэтому $\log_{10} 100 = 2$; $a^1 = a$ (a > 0, $a \ne 1$), поэтому $\log_a a = 1$.

Подставим в выражение $a^x = N$ в качестве x его представление по формуле (2.10). Тогда получим

$$a^{\log_a N} = N. \tag{2.11}$$

Это равенство называется *основным логарифмическим тождеством*. Оно справедливо при $N>0, \ a>0, \ a\neq 1$. Например: $2^{\log_2 8}=8,$ $\left(\frac{1}{3}\right)^{\log_{1/3} 7}=7, \ a^{-3\log_a x}=(a^{\log_a x})^{-3}=x^{-3}.$

2. Свойства логарифмов. Рассмотрим некоторые свойства логарифмов, используемые при выполнении различных преобразований и решении уравнений.

Пусть a > 0, M > 0, N > 0, n — любое действительное число, тогда:

$$\log_a(MN) = \log_a M + \log_a N; \tag{2.12}$$

$$\log_a \frac{M}{N} = \log_a M - \log_a N; \tag{2.13}$$

$$\log_a M^n = n \log_a M; \tag{2.14}$$

$$\log_a \sqrt[n]{M} = \frac{1}{n} \log_a M. \tag{2.15}$$

Докажем эти свойства.

По основному логарифмическому тождеству (2.11) имеем

$$a^{\log_a M} = M; (2.16)$$

$$a^{\log_a N} = N. \tag{2.17}$$

Отметим, что из условия $\log_a x = \log_a y$ (a > 0, $a \ne 1$) следует, что x = y, т. е. если логарифмы двух чисел по одному и тому же основанию равны, то равны и сами числа.

3. Логарифмирование. Действие нахождения логарифма числа называют логарифмированием. Если одночленное выражение составлено из положительных чисел с применением действий умножения, деления, возведения в степень и извлечения корня, то логарифм такого выражения вычисляется с использованием формул (2.12)—(2.15).

--

Методы решения показательных и логарифмических уравнений

1. Показательные уравнения. Уравнение, содержащее переменную в показателе степени, называется показательным.

При решении показательных уравнений вида

$$a^{f(x)} = a^{\phi(x)} (a > 0, a \neq 1)$$

используется следующее свойство:

$$(a^{f(x)} = a^{\varphi(x)}) \Leftrightarrow (f(x) = \varphi(x)).$$

Преобразование показательного уравнения к виду $a^{f(x)} = a^{\phi(x)}$ выполняется многими способами. Рассмотрим некоторые из них.

I. Способ уравнивания оснований. Проиллюстрируем его на примерах решения следующих уравнений.

Пример 2.6

Решить уравнение
$$\left(\frac{1}{0,125}\right)^{2x} = 128.$$

Решение

Левую часть уравнения представим в виде
$$\left(\frac{1}{0,125}\right)^{2x}=8^{2x}=(2^3)^{2x}$$
, правую — в виде $128=2^7$. Тогда $3\cdot 2x=7, x=7/6$.

Пример 2.7

Решить уравнение $2^{x-2} = 5^{2-x}$.

Решение

Правую часть уравнения можно представить в виде $\frac{1}{5^{x-2}}$; умножая обе части уравнения на 5^{x-2} , приходим к $2^{x-2} \cdot 5^{x-2} = 1$, иначе, $10^{x-2} = 1$, в то же время правую часть этого уравнения можно представить в виде $1 = 10^0$, отсюда x-2=0, x=2.

II. Логарифмирование обеих частей уравнения. Применение основного логарифмического тождества. Рассмотрим следующие примеры.

Пример 2.8

Решить уравнение $3^{2x-3} = 11^{1-x}$.

Решение

Прологарифмировав обе части уравнения по основанию 10, получим

$$(3^{2x-3} = 11^{1-x}) \Leftrightarrow ((2x-3)\lg 3 = (1-x)\lg 11) \Leftrightarrow$$

$$\Leftrightarrow (2x\lg 3 - 3\lg 3 = \lg 11 - x\lg 11) \Leftrightarrow (2x\lg 3 + x\lg 11 = \lg 11 + 3\lg 3) \Leftrightarrow$$

$$\Leftrightarrow (x(2\lg 3 + \lg 11) = \lg 11 + 3\lg 3) \Leftrightarrow \left(x = \frac{\lg 11 + 3\lg 3}{2\lg 3 + \lg 11}\right).$$

Пример 2.9

Решить уравнение $3^{\chi} = 8$.

Решение

Согласно основному логарифмическому тождеству (2.11) имеем $8 = 3^{\log_3 8}$, тогда

$$(3^x = 8) \Leftrightarrow (3^x = 3^{\log_3 8}) \Leftrightarrow (x = \log_3 8).$$

К этому результату можно прийти, логарифмируя обе части уравнения по основанию 3:

$$(3^x = 8) \Leftrightarrow (x\log_3 3 = \log_3 8) \Leftrightarrow (x = \log_3 8/\log_3 3).$$

Из последнего выражения согласно тождеству (2.23) следует

$$x = (\lg 8)/(\lg 3)$$
.

С использованием таблиц получим $x = \frac{0,903}{0,477} \approx 1,89$.

III. *Преобразование к квадратному уравнению*. Рассмотрим следующие примеры.

Пример 2.10

Решить уравнение $5^x + \frac{125}{5^x} = 30$.

Решение

Умножим все члены уравнения на 5^x :

$$5^{2x} - 30 \cdot 5^x + 125 = 0.$$

Решив это уравнение относительно 5^x , получим два корня: $5^{x_1}=5$, $5^{x_2}=25$. Следовательно, $x_1=1$, $x_2=2$.

Пример 2.11

Решить уравнение $6 \cdot 2^{2x} - 13 \cdot 6^x + 6 \cdot 3^{2x} = 0$.

Решенце

Преобразовав второй член уравнения, получим

$$6 \cdot 2^{2x} - 13 \cdot 2^x \cdot 3^x + 6 \cdot 3^{2x} = 0.$$

Разделив все члены уравнения на 3^{2x} (при этом $3^{2x} \neq 0$), получим относительно переменной $(2/3)^x$ квадратное уравнение

$$6 \cdot (2/3)^{2x} - 13 \cdot (2/3)^x + 6 = 0.$$

Решив это уравнение, получим (2/3) x_1 = 2/3, (2/3) x_2 = 3/2, следовательно, x_1 = 1, x_2 = -1.

IV. Способ группировки. Проиллюстрируем этот способ на следующем примере.

Пример 2.12

Решить уравнение $5^{2x+1} + 7^{x+1} - 175^x - 35 = 0$.

Решение

Преобразуем это уравнение:

$$(5^{2x+1} + 7^{x+1} - 175^x - 35 = 0) \Leftrightarrow (5 \cdot 25^x + 7 \cdot 7^x - 25^x \cdot 7^x - 35 = 0) \Leftrightarrow \\ \Leftrightarrow (25^x (5 - 7^x) - 7(5 - 7^x) = 0) \Leftrightarrow ((5 - 7^x)(25^x - 7) = 0 \Leftrightarrow \\ \Leftrightarrow (5 - 7^{x_1} = 0; 25^{x_2} - 7 = 0).$$

Следовательно, $x_1 = \log_7 5$, $x_2 = \log_{25} 7$.

Логарифмические уравнения. Уравнение, содержащее переменную под знаком логарифма или в основании логарифма, называется логарифмическим. Проиллюстрируем различные способы решения таких уравнений с помощью следующих примеров.

Пример 2.17

Решить уравнение $\log_{x} 16 - \log_{x} 2 = 1/2$. Решение

$$(\log_x 16 - \log_x 2 = 1/2) \Leftrightarrow \begin{cases} \log_x (16/2) = 1/2, & \begin{cases} x^{1/2} = 8, \\ x > 0, & \Leftrightarrow \\ x \neq 1 \end{cases} \end{cases} \Leftrightarrow \begin{cases} x^{1/2} = 8, \\ x > 0, \\ x \neq 1. \end{cases}$$

Решением является x = 64.

Пример 2.18

Решить уравнение $\lg(x-3) + \lg(x-2) = 1 - \lg 5$.

Решение

Учитывая, что $1 = \lg 10$, потенцируем:

$$(\lg(x-3) + \lg(x-2) = 1 - \lg 5) \Leftrightarrow \begin{cases} \lg(x-3) + \lg(x-2) = \lg 10 - \lg 5, \\ x-3>0, \\ x-2>0 \end{cases} \Leftrightarrow \begin{cases} \lg[(x-3)(x-2)] = \lg(10/5), \\ x>3, \end{cases} \Leftrightarrow \begin{cases} (x-3)(x-2) = 2, \\ x>3, \end{cases} \Leftrightarrow \begin{cases} x^2 - 5x + 4 = 0, \\ x>3 \end{cases} \Leftrightarrow \begin{cases} x = 1, \\ x = 4, \\ x>3. \end{cases}$$

Данной системе удовлетворяет единственное решение x = 4.

Пример 2.19

Решить уравнение $\lg^2 x + \lg x^2 = \lg^2 2 - 1$.

Решенце

Данное уравнение преобразуем к квадратному, решив которое относительно переменной $\lg x$, получим

$$\begin{split} (\lg^2 x + \lg x^2 &= \lg^2 2 - 1) \Leftrightarrow \begin{cases} \lg^2 x + 2\lg x - \lg^2 2 + 1 = 0, \\ x > 0 \end{cases} \Leftrightarrow \begin{cases} \lg x = -1 - \lg 2, \\ \lg x = -1 + \lg 2, \Leftrightarrow \\ x > 0 \end{cases} \\ \Leftrightarrow \begin{cases} \lg x + \lg 2 = -1, \\ \lg x - \lg 2 = -1, \Leftrightarrow \\ x > 0 \end{cases} \begin{cases} \lg(2x) = -1, \\ \lg(x/2) = -1, \Leftrightarrow \\ x > 0 \end{cases} \end{cases} \begin{cases} 2x = 10^{-1}, \\ x/2 = 10^{-1}. \end{cases} \end{split}$$

Корнями исходного уравнения являются $x_1 = 0.05$ и $x_2 = 0.2$.

Пример 2.20

Решить уравнение $x^{lgx} = 100x$.

Решение

Логарифмируя обе части уравнения по основанию 10 и решая затем полученное квадратное уравнение, находим

$$(x^{\lg x} = 100x) \Leftrightarrow \begin{cases} \lg x \cdot \lg x = \lg 100 + \lg x \\ x > 0, \\ x \neq 1 \end{cases} \Leftrightarrow \begin{cases} \lg^2 x - \lg x - 2 = 0, \\ x > 0, \\ x \neq 1 \end{cases} \Leftrightarrow \begin{cases} \lg x = -1, \\ \lg x = 2, \\ x > 0, \\ x \neq 1. \end{cases}$$

Исходному уравнению удовлетворяют корни $x_1 = 0.1$ и $x_2 = 100$.

Задание: тест «Показательные и логарифмические уравнения»

Глава 12 «Элементы теории вероятности и математической статистики», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изл..стер. — М.: ИШ «Акалемия». 2017. - 256 с.

В случае отсутствия печатного издания, вы можете ооратиться к Электронно-библиотечной системе.

Список использованных интернет-ресурсов:

- https://urait.ru/
- 2. https://www.resolventa.ru/data/metodsch/degeq.pdf
- 3. https://www.resolventa.ru/data/metodsch/logeq.pdf