Lecture 7

Remark 2. For any $f: \{0,1\}^n \to \{0,1\}$ that depends on all n bits, $D(f) \ge \log(n+1)$.

There exists a family of $f_k: \{0,1\}^{k+2^k} \to \{0,1\}$ depending on all $n := k+2^k$ bits such that $D(f) = k+1 \approx \log(n)$. Why? Consider the address function $f: \{0,1\}^{k+2^k} \to \{0,1\}$ defined by $f(a_1a_2 \dots a_kx_0x_1 \dots x_{2^k}) = x_{\overline{a_1 \dots a_k}}$, where $\overline{a_1 \dots a_k}$ is the integer represented by $a_1 \dots a_k$ in binary. (Note that this does not contradict the lower bound since $\log_2(k+2^k+1) \le D(f) \le k+1 = \log_2(2^{k+1})$.)

The $OR_n: \{0,1\}^n \to \{0,1\}$ function is defined by

$$OR_n(x) = x_1 \lor x_2 \lor \dots \lor x_n. \tag{26}$$

Proposition 1. $D(OR_n) = n$.

Proof. $D(OR_n) \le n$ is obvious (what's the DDT?).

For $D(\operatorname{OR}_n) \geq n$. Suppose for contradiction that there is a DDT T with depth(T) < n that computes OR_n . Consider the root-to-leaf path defined by following edges labelled by 0. We may assume wlog (without loss of generality) that the leaf vertex on this path is labelled by 0, else $T(0^n) = 1 \neq \operatorname{OR}_n(0^n)$, contradiction. Suppose the vertices on this path are labelled by i_1, \ldots, i_d , where d < n. Let $j \in [n] - \{i_1, \ldots, i_d\}$ (exists since d < n). Let $x \in \{0, 1\}^n$ be the all-zeros bitstring except for a 1 at position j. Then $T(x) = 0 \neq \operatorname{OR}_n(x)$ contradiction.

Definition 6 (Randomized decision tree (or query algorithm)). A randomized decision tree is a probability distribution \mathcal{T} over deterministic decision trees.

Definition 7 (Randomized query computation). Given $x \in D$ and a randomized decision tree \mathcal{T} , we write $\mathcal{T}(x)$ for the random variable on Γ defined by:

$$\forall i \in \Gamma, \ \Pr[\mathcal{T}(x) = i] := \Pr[T(x) = i \mid T \leftarrow \mathcal{T}]. \tag{27}$$

Let $\epsilon \in (0, 1/2)$. We say that a randomized decision tree \mathcal{T} computes f with (two-sided) bounded-error ϵ if

$$\forall x \in D, \Pr[\mathcal{T}(x) = f(x)] \ge 1 - \epsilon.$$
 (28)

Note that

$$\Pr[\mathcal{T}(x) = f(x)] = \Pr[T(x) = f(x) \mid T \leftarrow \mathcal{T}] = \sum_{T} \Pr[T \mid T \leftarrow \mathcal{T}] \cdot \mathbb{1}[T(x) = f(x)]. \tag{29}$$

Definition 8 (Randomized query complexity). Given a randomized decision tree (RDT) T, its depth is defined by

$$\operatorname{depth}(\mathcal{T}) := \max\{\operatorname{depth}(T) \mid \Pr[T \mid T \leftarrow \mathcal{T}] > 0\}. \tag{30}$$

Then for $\epsilon \in (0, 1/2)$,

$$R_{\epsilon}(f) := \min\{\operatorname{depth}(\mathcal{T}) \mid \mathcal{T} \text{ RDT}, \mathcal{T} \text{ computes } f \text{ with bounded-error } \epsilon\}.$$
 (31)

Also standard to write

$$R(f) := R_{1/3}(f). \tag{32}$$

Definition 9 (Quantum query algorithm). A quantum query algorithm of depth $d \in \mathbb{N}$ is defined by the following data:

- 1. $w \in \mathbb{N}$. (Called the dimension of the workspace of the algorithm.)
- 2. d+1 unitary matrices $U_0, U_1, \ldots, U_d \in \mathbb{C}^n \otimes \mathbb{C}^m \otimes \mathbb{C}^w = \mathbb{C}^{nmw}$.
- 3. A Γ -outcome projective measurement $\mathcal{M} := \{ \Pi_s \mid s \in \Gamma \}$ on \mathbb{C}^{nmw} .

Definition 10 (Quantum oracle). For $x \in \{0, ..., m-1\}^n$, the quantum oracle of x is the unitary matrix $O_x \in \mathbb{C}^{nm \times nm}$ defined by

$$O_x |i\rangle |j\rangle = |i\rangle |(j+x_i) \mod m\rangle,$$
 (33)

for all $i \in [n]$ and $j \in [m]$. (And linearly extended. For $z \in \mathbb{Z}$, $z \mod m$ is the unique integer in the range $\{1, \ldots, m\}$ with the same remainder as z when divided by m.)⁵

In the special case of m=2, the definition is equivalent to⁶

$$O_x |i\rangle |b\rangle = |i\rangle |b \oplus x_i\rangle,$$
 (34)

for all $i \in [n]$ and $b \in \{0, 1\}$, where \oplus denotes XOR and $|b\rangle$ represents a 1-qubit quantum state.

⁵Note that this definition is slightly different than in my lecture notes because in this course, I decided to use $|1\rangle,\ldots,|m\rangle$ to denote the standard basis vectors in \mathbb{C}^m , whereas in the lecture notes, I used $|0\rangle,\ldots,|m-1\rangle$.

⁶Recall that for m=2, we also use $|0\rangle$ to denote $(1,0)^{\top}$ and $|1\rangle$ to denote $(0,1)\top$.

Definition 11 (Quantum query computation). Given $x \in D$ and a quantum query algorithm \mathcal{A} , we write $\mathcal{A}(x)$ for the random variable on Γ defined by:

$$\forall i \in \Gamma, \ \Pr[\mathcal{A}(x) = i] := \|\Pi_i \cdot U_d(O_x \otimes \mathbb{1}_w) \dots U_1(O_x \otimes \mathbb{1}_w) U_0 |1\rangle \|^2, \tag{35}$$

where $\mathbb{1}_w \in \mathbb{C}^{w \times w}$ is the identity matrix and we recall $|1\rangle \in \mathbb{C}^{nmw}$ is the first computational basis vector. (Note there are d occurrences of O_x on the RHS.)

For $\epsilon \in (0, 1/2)$, we say that a quantum query algorithm \mathcal{A} computes f with (two-sided bounded-) error ϵ if

$$\forall x \in D, \Pr[\mathcal{A}(x) = f(x)] \ge 1 - \epsilon, \tag{36}$$

where the probability is over the random variable A(x).

Definition 12 (Quantum query complexity). For $\epsilon \in (0, 1/2)$, $Q_{\epsilon}(f)$ is defined to be the minimum depth of any quantum query algorithm that computes f with (two-sided) bounded-error ϵ . Also standard to write $Q(f) = Q_{1/3}(f)$.