₁ Kapitel 2

₂ Integrationstheorie

2.1 Messbare Funktionen

```
Definition 2.1. Seien (X, A) und (Y, B) messbare R\"{a}ume, f: X \to Y. Dann
```

- f heißt f A-B-messbar (oder kurz messbar), falls f⁻¹(B) ∈ A für alle B ∈ B.
- Es reicht die Eigenschaft $f^{-1}(B) \in \mathcal{A}$ nur für Mengen B zu zeigen, die die
- **Lemma 2.2.** Seien (X, A) und (Y, B) messbare Räume, $f: X \to Y$, und sei
- 9 $S \subseteq \mathcal{B}$ mit $\mathcal{A}_{\sigma}(S) = \mathcal{B}$. Dann ist $f \ \mathcal{A}$ - \mathcal{B} -messbar genau dann, wenn $f^{-1}(B) \in \mathcal{A}$
- 10 für alle $B \in S$.

 σ -Algebra \mathcal{B} erzeugen.

11 Beweis. "
$$\Leftarrow$$
" Wir verwenden $f_*(A)$, siehe Beispiel 1.4. Nach Voraussetzung gilt

$$S \subseteq f_*(\mathcal{A})$$
. Damit ist auch $\mathcal{B} \subseteq f_*(\mathcal{A})$, und f ist \mathcal{A} - \mathcal{B} -messbar.

Verknüpfungen stetiger und messbarer Funktionen sind messbar.

- Lemma 2.3. Seien (X, A) ein messbarer Raum, Y und Z metrische Räume.
- Weiter seien $g: X \to Y$ A- $\mathcal{B}(Y)$ -messbar und $f: Y \to Z$ stetig. Dann ist $f \circ g$
- ¹⁶ \mathcal{A} - $\mathcal{B}(Z)$ -messbar.

17 Beweis. Sei
$$O\subseteq Z$$
 offen. Dann ist $f^{-1}(O)\in \mathcal{B}(Y)$ und $(f\circ g)^{-1}(O)=$

$$g^{-1}(f^{-1}(O)) \in \mathcal{A}.$$

- Im Folgenden sei (X, A) immer ein messbarer Raum.
- Definition 2.1 werden wir für die Spezialfälle $Y = \mathbb{R}$ und $Y = \overline{\mathbb{R}}$ verwenden,
- wobei die Bildräume mit der Borel- σ -Algebra versehen werden. Sei $\mathcal T$ die Menge
- der offenen Mengen auf \mathbb{R}^1 . Dann ist die Borel- σ -Algebra von \mathbb{R} definiert durch

$$\mathcal{B}(\bar{\mathbb{R}}) := \mathcal{A}_{\sigma}(\mathcal{T} \cup \{\{+\infty\}, \{-\infty\}\}),$$

```
also \mathcal{B}(\mathbb{R}) ist die kleinste \sigma-Algebra, die die offenen Teilmengen von \mathbb{R} und die
    einelementigen Mengen \{+\infty\}, \{-\infty\} enthält. Offensichtlich ist \mathcal{B}^1\subseteq\mathcal{B}(\bar{\mathbb{R}}).
     Mithilfe von Lemma 2.2 können wir die Anforderungen an eine messbare Funk-
     tion schon reduzieren.
     Definition 2.4. Eine Funktion f: X \to \mathbb{R} heißt Lebesgue messbar (oder kurz:
     messbar), wenn f A-B^1-messbar ist, also wenn f^{-1}(O) \in A für alle offenen
     Mengen O \subseteq \mathbb{R}.
          Analog heißt f: X \to \mathbb{C} Lebesgue messbar (oder kurz: messbar), wenn f
     \mathcal{A}\text{-}\mathcal{B}(\mathbb{C})\text{-}messbar\ ist,\ also\ wenn\ f^{-1}(O)\in\mathcal{A}\ f\ddot{u}r\ alle\ offenen\ Mengen\ O\subset\mathbb{C}.
          Eine Funktion f: X \to \mathbb{R} heißt Lebesgue messbar (oder kurz: messbar),
     wenn f \mathcal{A}-\mathcal{B}(\mathbb{R})-messbar ist, also wenn f^{-1}(O) \in \mathcal{A} für alle offenen Mengen
     O \subseteq \mathbb{R}, f^{-1}(\{-\infty\}) \in \mathcal{A} \text{ und } f^{-1}(\{+\infty\}) \in \mathcal{A}.
    Folgerung 2.5. Sei f: \mathbb{R}^n \to \mathbb{R} stetig. Dann ist f \mathcal{L}(n)-\mathcal{B}^1-messbar und \mathcal{B}^n-
    \mathcal{B}^1-messbar.
14
    Bemerkung 2.6. Eine stetige Funktion f: \mathbb{R} \to \mathbb{R} muss allerdings nicht \mathcal{L}(1)-
     \mathcal{L}(1)-messbar sein. Das ist der Grund, warum auf dem Bildbereich \mathbb{R} die Borel-
     \sigma-Algebra verwendet wird. Eine stetige aber nicht \mathcal{L}(1)-\mathcal{L}(1)-messbare Funktion
     kann mit der Cantor-Menge konstruiert werden, wir verweisen auf [Tao11, Re-
     mark 1.3.10].
         Ist f:X\to\mathbb{R} Lebesgue messbar, dann ist f auch messbar, wenn f als
20
    Funktion nach \bar{\mathbb{R}} angesehen wird.
21
    Definition 2.7. Sei f: X \to \mathbb{R} eine Funktion. Für \alpha \in \mathbb{R} definiere
                                      \{f < \alpha\} := \{x \in X : f(x) < \alpha\},\
23
     analog \{f \leq \alpha\}, \{f > \alpha\}, \{f \geq \alpha\}.
     Satz 2.8. Sei f: X \to \overline{\mathbb{R}} gegeben. Dann sind die folgenden Aussagen äquivalent:
           (2.9) f ist messbar,
26
           (2.10) \{f < \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
27
           (2.11) \{f \leq \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
           (2.12) \{f > \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
29
           (2.13) \{f \geq \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q}.
     Beweis. Wir beweisen nur die Äquivalenz von (2.9) und (2.10). Ist f messbar,
```

dann ist $\{f < \alpha\} = f^{-1}(\{-\infty\} \cup (-\infty, \alpha)) \in \mathcal{A}$. Sei nun $\{f < \alpha\} \in \mathcal{A}$ für alle

- $\alpha \in \mathbb{Q}$. Wir nutzen aus, dass $f_*(A)$, also die Menge aller Teilmengen $B \subseteq \mathbb{R}$ für
- die $f^{-1}(B) \in \mathcal{A}$ ist, eine σ -Algebra ist, siehe Beispiel 1.4. Sei $\alpha \in \mathbb{R}$. Dann gibt
- s es eine monoton wachsende Folge rationaler Zahlen (α_k) mit $\alpha_k \to \alpha$. Es folgt

$$\{f < \alpha\} = \bigcup_{k=1}^{\infty} \{f < \alpha_k\} \in \mathcal{A}.$$

- 5 Damit ist auch $\{f \geq \alpha\} = \{f < \alpha\}^c \in \mathcal{A}$. Dann gilt für alle $\alpha < \beta$, dass
- $f^{-1}([\alpha,\beta)) \in \mathcal{A}$. Damit sind die Urbilder aller halboffenen Intervalle in \mathcal{A} .
- Damit ist auch $\mathcal{B}^1 \subseteq f_*(\mathcal{A})$. Weiter gilt

$$f^{-1}(\{-\infty\}) = \bigcap_{n \in \mathbb{N}} \{f < -n\} \in \mathcal{A}.$$

- Wegen $\{+\infty\} = (\mathbb{R} \cup \{-\infty\})^c$ ist auch $f^{-1}(\{+\infty\}) \in \mathcal{A}$. Damit sind die Urbilder
- aller Erzeuger von $\mathcal{B}(\bar{\mathbb{R}})$ in \mathcal{A} , und f ist messbar.
- ${}_{11}$ Beispiel 2.14. Sei $A\subseteq X$. Definiere die charakteristische Funktion von A
- 12 durch

15

$$\chi_A(x) := \begin{cases} 1 & \text{falls } x \in A, \\ 0 & \text{falls } x \notin A. \end{cases}$$

Dann ist χ_A messbar genau dann, wenn $A \in \mathcal{A}$. Ist $B \subseteq X$, dann ist

$$\chi_{A \cap B} = \chi_A \cdot \chi_B, \quad \chi_{A \cup B} = \max(\chi_A, \chi_B).$$

Beispiel 2.15. Ist $f: X \to \mathbb{R}$ messbar und $A \in \mathcal{A}$, dann ist auch die durch

$$(\chi_A \cdot f)(x) := \begin{cases} f(x) & \text{falls } x \in A, \\ 0 & \text{falls } x \notin A \end{cases}$$

- definierte Funktion $\chi_A \cdot f$ messbar. Hier haben wir wieder die Konvention 0 ·
- 19 $\pm \infty := 0$ benutzt. Für $\alpha < 0$ ist

$$\{\chi_A \cdot f < \alpha\} = A \cap \{f < \alpha\} \in \mathcal{A},$$

 $w\ddot{a}hrend \ f\ddot{u}r \ \alpha \geq 0 \ gilt$

$$\{\chi_A \cdot f < \alpha\} = A^c \cup \{f < \alpha\} \in \mathcal{A},$$

- und $\chi_A \cdot f$ ist messbar.
- Nun wollen wir beweisen, dass Summen, Produkte, etc, von messbaren Funk-
- tionen messbar sind. Wir starten mit zwei Hilfsresultaten.

```
Lemma 2.16. Sei g: \mathbb{R} \to \mathbb{R} monoton wachsend, das heißt für alle x, y \in \mathbb{R}
    mit \ x \leq y \ ist \ g(x) \leq g(y). Sei f: X \to \mathbb{R} messbar. Dann ist auch g \circ f messbar.
    Beweis. Wir benutzen Satz 2.8. Sei \alpha \in \mathbb{R}. Dann ist \{g < \alpha\} ein Intervall:
    Definiere \beta := \sup\{x \in \mathbb{R} : g(x) < \alpha\} \in \mathbb{R}. Ist g(\beta) = \alpha dann ist \{g < \alpha\} = \alpha
    [-\infty,\beta), ansonsten ist g(\beta)<\alpha und \{g<\alpha\}=[-\infty,\beta]. In beiden Fällen ist
    f^{-1}(\{g < \alpha\}) = \{g \circ f < \alpha\} messbar.
         Damit bekommen wir folgendes Resultat.
    Satz 2.17. Sei f: X \to \mathbb{R} messbar. Dann sind die folgenden Funktionen mess-
          (2.18) c \cdot f für alle c \in \mathbb{R},
10
          (2.19)  f^+ := \max(f, 0), f^- := \min(f, 0),
11
          (2.20) \operatorname{sign}(f), wobei
12
                                        \operatorname{sign}(y) = \begin{cases} +1 & \text{falls } y > 0 \\ 0 & \text{falls } y = 0 \\ -1 & \text{falls } u < 0 \end{cases}
13
          (2.21) |f|^p \text{ für alle } p > 0,
          (2.22) 1/f falls f(x) \neq 0 für alle x \in X.
15
    Beweis. (2.18): Wir zeigen erst, dass -f messbar ist. Sei \alpha \in \mathbb{R}. Dann ist \{-f < \}
    \{\alpha\} = \{f > -\alpha\}, \text{ also ist } -f \text{ messbar. Sei nun } c \in \mathbb{R}. \text{ Dann ist } g(y) := |c| \cdot y
17
    monoton wachsend, und mit Lemma 2.16 ist |c| \cdot f messbar, also auch -|c| \cdot f.
         (2.19),(2.20): Die Funktionen y\mapsto \max(y,0), y\mapsto \min(y,0) und y\mapsto \operatorname{sign}(y)
19
    sind monoton wachsend. Wegen Lemma 2.16 sind die Funktionen \max(f,0),
    \min(f,0) und \operatorname{sign}(f) messbar.
21
         (2.21): Sei \alpha \in \mathbb{R}. Dann ist \{|f| < \alpha\} = \{f < \alpha\} \cap \{-f < \alpha\}. Dies
22
    ist wegen (2.18) und Satz 2.8 in A, also ist auch |f| messbar. Die Abbildung
    y \mapsto (\max(0,y))^p ist monoton wachsend, damit ist auch |f|^p messbar.
         (2.22): Sei \alpha \in \mathbb{R}. Dann ist
              \{1/f < \alpha\} = (\{f < 0\} \cap \{\alpha f < 1\}) \cup (\{f > 0\} \cap \{\alpha f > 1\}) \in \mathcal{A},
    also 1/f messbar.
                                                                                                           Desweiteren sind Summen, Produkte, Quotienten messbarer Funktionen wie-
```

der messbar.

- Satz 2.23. Es seien $f,g:X\to \bar{\mathbb{R}}$ messbar. Dann sind $f+g,\ f\cdot g$ und f/g
- $_{2}$ messbar, falls diese Funktionen für alle x definiert sind. Die Ausdrücke $\infty \infty$,
- $\pm \infty/\pm \infty$, c/0 für $c \in \mathbb{R}$ sind nicht definiert.
- 4 Beweis. Wir zeigen, dass f+g messbar ist. Sei $\alpha \in \mathbb{R}$. Sei $f(x)+g(x)<\alpha$,
- 5 woraus $f(x) < +\infty$ und $g(x) < +\infty$ folgt. Dann existiert $q \in \mathbb{Q}$ mit $q \in \mathbb{Q}$
- 6 $(g(x), \alpha f(x))$. Dann ist

$$\{f + g < \alpha\} = \bigcup_{q \in \mathbb{O}} (\{f < \alpha - q\} \cap \{g < q\}) \in \mathcal{A},$$

und f + g ist messbar.

12

14

16

30

- Seien zuerst f und g Abbildungen nach \mathbb{R} . Dann folgt die Messbarkeit von
- 10 $f \cdot g$ aus $f \cdot g = \frac{1}{2}((f+g)^2 f^2 g^2)$. Seien nun f und g Abbildungen nach \mathbb{R} .
- Wir definieren die messbare Menge

$$A := \{|f| < \infty\} \cap \{|g| < \infty\}$$

13 sowie die messbaren Funktionen (mit Wertebereich ℝ)

$$\tilde{f} := \chi_A f, \quad \tilde{g} := \chi_A g.$$

Dann ist $\tilde{f} \cdot \tilde{g}$ messbar. Außerdem gilt (beachte $0 \cdot \infty = 0$)

$$f \cdot q = \chi_A \cdot \tilde{f} \cdot \tilde{q} + \chi_{A^c} \cdot \operatorname{sign}(f) \cdot \operatorname{sign}(q) \cdot \infty.$$

- Beide Summanden sind messbar: $\chi_A \cdot \tilde{f} \cdot \tilde{g}$ und $\chi_{A^c} \cdot \mathrm{sign}(f) \cdot \mathrm{sign}(g)$ sind Pro-
- dukte R-wertiger messbarer Funktionen (Beispiel 2.15), Multipikation mit der
- 19 Konstante $+\infty$ erhält Messbarkeit.
- Sei g messbar, so dass $g(x) \neq 0$ für alle x. Dann ist 1/g messbar (2.22).
- Damit ist auch $f/g = f \cdot 1/g$ messbar.
- Aufgrund der Eigenschaften von σ -Algebren können wir recht einfach bewei-
- 23 sen, dass punktweise Infima, Suprema und Grenzwerte von Folgen messbarer
- ²⁴ Funktionen wieder messbar sind.
- Satz 2.24. Seien (f_n) messbare Funktionen von X nach $\bar{\mathbb{R}}$. Dann sind auch
- inf $f_n \in \mathbb{N}$ inf f_n , $\sup_{n \in \mathbb{N}} f_n$, $\lim \inf_{n \to \infty} f_n$, $\lim \sup_{n \to \infty} f_n$ messbare Funktionen. Da-
- bei ist $(\inf_{n\in\mathbb{N}} f_n)(x) := \inf_{n\in\mathbb{N}} f_n(x)$ punktweise definiert. Analog wird für die
- 28 drei anderen Konstrukte verfahren.
- Beweis. Die Messbarkeit von Infimum und Supremum folgt aus Satz 2.8 und

$$\{\inf_{n\in\mathbb{N}} f_n \ge \alpha\} = \bigcap_{n\in\mathbb{N}} \{f_n \ge \alpha\} \in \mathcal{A},$$

$$\{\sup_{n\in\mathbb{N}} f_n \le \alpha\} = \bigcap_{n\in\mathbb{N}} \{f_n \le \alpha\} \in \mathcal{A}.$$

2 Per Definition ist

$$\liminf_{n \to \infty} f_n(x) = \sup_{n \in \mathbb{N}} \inf_{k \ge n} f_k(x).$$

- Wegen des gerade Gezeigten ist $x \mapsto \inf_{k \geq n} f_k(x)$ messbar für alle n, und damit
- auch $x \mapsto \liminf_{n \to \infty} f_n(x)$. Analog folgt der Beweis für lim sup.
- Folgerung 2.25. Seien (f_n) messbare Funktionen von X nach $\bar{\mathbb{R}}$. Weiter sei
- 7 $f:X \to \bar{\mathbb{R}}$ gegeben mit $f(x)=\lim_{n\to\infty}f_n(x)$ für alle x. Dann ist auch f
- 8 messbar.
- Wir zeigen nun, dass sich Lebesgue-messbare Funktionen durch einfache
- ¹⁰ Funktionen approximieren lassen.
- **Definition 2.26.** Sei $f: X \to \mathbb{R}$ messbar. Dann heißt f einfache Funktion,
- wenn f(X) eine endliche Menge ist.
- Lemma 2.27. Sei $f: X \to \mathbb{R}$ einfach, dann existieren $c_1 \dots c_n \in \mathbb{R}$ und
- paarweise disjunkte, messbare Mengen $A_1 \dots A_n$, so dass $\bigcup_{i=1}^n A_i = X$ und

$$f = \sum_{j=1}^{n} c_j \chi_{A_j}.$$

- 16 Beweis. Da f einfach ist, ist $f(X) \subseteq \mathbb{R}$ eine endliche Menge. Dann existieren
- $n \in \mathbb{N}$ und $c_1 \dots c_n \in \mathbb{R}$ so, dass $f(X) = \{c_1 \dots c_n\}$. Mit $A_j := f^{-1}(\{c_j\}) \in \mathcal{A}$
- 18 folgt die Behauptung.
- Das heißt, eine Funktion ist einfach, wenn sie eine Linearkombination cha-
- 20 rakteristischer Funktionen ist.
- Folgerung 2.28. Sind f, g einfache Funktionen, dann sind auch f+g und $f \cdot g$
- 22 einfache Funktionen.
- Beweis. Wegen Lemma 2.27 gibt es reelle Zahlen c_i und d_j sowie messbare
- Mengen A_i und B_j , so dass

$$f = \sum_{i=1}^{n} c_i \chi_{A_i}, \quad g = \sum_{j=1}^{m} d_j \chi_{B_j}$$

und $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$, wobei dies disjunkte Vereinigungen sind. Dann

ist
$$A_i = \bigcup_{j=1}^m (A_i \cap B_j)$$
, $\chi_{A_i} = \sum_{j=1}^m \chi_{A_i \cap B_j}$ und

$$f + g = \sum_{i=1}^{n} c_i \chi_{A_i} + \sum_{j=1}^{m} d_j \chi_{B_j} = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \chi_{A_i \cap B_j}.$$

Für das Produkt erhalten wir

$$f \cdot g = \left(\sum_{i=1}^n c_i \chi_{A_i}\right) \left(\sum_{j=1}^m d_j \chi_{B_j}\right) = \sum_{i=1}^n \sum_{j=1}^m c_i d_j \chi_{A_i \cap B_j}.$$

3

- **Satz 2.29.** Sei $f: X \to [0, +\infty]$ messbar. Dann existiert eine Folge (f_n) nicht-
- negativer, einfacher Funktionen mit $f_n(x) \nearrow f(x)$ für alle x. Ist f beschränkt,
- 6 dann ist die Folge (f_n) gleichmäßig beschränkt, und die Konvergenz $f_n \to f$ ist
- ⁷ gleichmäβig.

11

15

- 8 Beweis. Wir konstruieren die f_{n} durch eine Unterteilung des Bildbereichs. Sei
- 9 $n \in \mathbb{N}$. Wir unterteilen das Intervall [0,n) in $n2^n$ -viele Intervalle der Länge 2^{-n} .
- Setze für $j = 1 \dots n2^n$

$$A_{n,j} := f^{-1}\left(\left[\frac{j-1}{2^n}\frac{j}{2^n}\right)\right).$$

2 Damit definieren wir die einfache Funktion

$$f_n(x) := n\chi_{\{f \ge n\}} + \sum_{i=1}^{n2^n} \chi_{A_{n,j}} \cdot \frac{j-1}{2^n}.$$

Damit gilt $f_n(x) \leq f(x)$. Wegen

$$A_{n,j} = A_{n+1,2j-1} \cup A_{n+1,2j}$$

- folgt $f_n(x) \leq f_{n+1}(x)$. Es bleibt noch die Konvergenz zu zeigen. Ist f(x) < n
- dann ist $x \in A_{n,j}$ für ein passendes j, und es gilt $f(x) \leq f_n(x) + \frac{1}{2^n}$. Damit
- bekommen wir $f_n(x) \to f(x)$ falls $f(x) < +\infty$. Ist $f(x) = +\infty$, dann ist $f_n(x) =$
- 19 n für alle n, und die Konvergenz $f_n(x) \to f(x) = +\infty$ folgt.
- Sei f beschränkt. Dann existiert ein $N \in \mathbb{N}$ mit f(x) < N für alle x. Daraus
- folgt $f_n(x) < N$ für alle n und x. Für n > N ist dann $f_n(x) \le f(x) \le f_n(x) + \frac{1}{2^n}$
- für alle x, woraus die gleichmäßige Konvergenz folgt.
- Im Folgenden werden wir die abkürzende Schreibweise

$$f_n \nearrow f \quad \Leftrightarrow \quad f_n(x) \nearrow f(x) \ \forall x \in X$$

₂₅ benutzen.

- Folgerung 2.30. Sei $f:X\to \bar{\mathbb{R}}$ messbar. Dann existiert eine Folge (ϕ_n)
- einfacher Funktionen mit $|\phi_n(x)| \le |f(x)|$ und $\phi_n(x) \to f(x)$ für alle x.

- Beweis. Wir approximieren |f| durch eine Folge nicht negativer, einfacher Funk-
- tionen (ϕ_n) , Satz 2.29. Die Funktion sign(f) ist eine einfache Funktion. Die
- ³ Funktionen $\mathrm{sign}(f)\cdot\phi_n$ haben dann die gewünschten Eigenschaften, wobei wir
- ⁴ Folgerung 2.28 benutzt haben.

5 2.2 Das Lebesgue-Integral

- 6 Es sei (X, \mathcal{A}, μ) ein Maßraum.
- **Definition 2.31.** Sei $f:X\to [0,+\infty)$ eine einfache Funktion mit f=
- $\sum_{i=1}^{n} c_i \chi_{A_i}$ mit paarweise disjunkten Mengen (A_i) . Dann ist

$$\int f \, \mathrm{d}\mu := \sum_{i=1}^n c_i \mu(A_i)$$

- 10 das Lebesque Integral von f.
- Da $\mu(A_i) = +\infty$ sein kann, ist $\int f d\mu$ im Allgemeinen in \mathbb{R} . Um unbestimmte
- Ausdrücke zu vermeiden, haben wir das Integral nur für nicht negative Funk-
- 13 tionen definiert.

17

- 14 Lemma 2.32. Das Lebesgue-Integral für einfache Funktionen ist wohldefiniert:
- ¹⁵ Gilt $f = \sum_{i=1}^{n} c_i \chi_{A_i} = \sum_{j=1}^{m} d_j \chi_{B_j}$ mit paarweise disjunkten Mengen (A_i) und
- paarweise disjunkten Mengen (B_j) , dann gilt

$$\sum_{i=1}^{n} c_i \mu(A_i) = \sum_{j=1}^{m} d_j \mu(B_j).$$

- Beweis. Wir können annehmen, dass $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$. Falls nicht set-
- ¹⁹ zen wir $A_{n+1} = (\bigcup_{i=1}^n A_i)^c$, $c_{n+1} = 0$.
- Ist $A_i \cap B_i \neq \emptyset$ dann folgt $c_i = d_i$: Sei $x \in A_i \cap B_i$, dann ist $f(x) = c_i = b_i$,
- da die Mengen (A_i) und die Mengen (B_j) paarweise disjunkt sind. Weiter ist
- 22 $A_i = \bigcup_{j=1}^m (A_i \cap B_j)$ und $B_j = \bigcup_{i=1}^n (A_i \cap B_j)$ Damit bekommen wir

$$\sum_{i=1}^{n} c_{i}\mu(A_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i,j: A_{i} \cap B_{j} \neq \emptyset} c_{i}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i,j: A_{i} \cap B_{j} \neq \emptyset} d_{j}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} d_{j}\mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} d_{j}\mu(B_{j}).$$

Dieses Integral für einfache Funktionen hat folgende Eigenschaften.

- ³ Satz 2.33. Seien $f, g: X \to [0, +\infty)$ einfache Funktionen. Dann gelten folgende
- 4 Aussagen:
- $(1) \int (cf) d\mu = c \int f d\mu \text{ für alle } c \in \mathbb{R} \text{ mit } c \ge 0,$
- $(2) \int f + g \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu + \int g \, \mathrm{d}\mu,$
- (3) ist $f \leq g$, dann ist $\int f d\mu \leq \int g d\mu$,
- 8 (4) $\int \chi_A d\mu = \mu(A) \text{ für alle } A \in \mathcal{A}.$
- Beweis. (1) folgt sofort aus der Definition. (2) Wegen Lemma 2.27 gibt es reelle
- Zahlen c_i und d_j sowie messbare Mengen A_i und B_j , so dass

$$f = \sum_{i=1}^{n} c_i \chi_{A_i}, \quad g = \sum_{j=1}^{m} d_j \chi_{B_j}$$

- und $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$, wobei dies disjunkte Vereinigungen sind. Wie im
- 13 Beweis von Folgerung 2.28 bekommen wir

$$f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \chi_{A_i \cap B_j}.$$

15 Damit ist

11

$$\int f + g \, d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} c_i \mu(A_i \cap B_j) + \sum_{j=1}^{m} \sum_{i=1}^{n} d_j \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} c_i \mu(A_i) + \sum_{j=1}^{m} d_j \mu(B_j) = \int f \, d\mu + \int g \, d\mu.$$

- 17 (3) Sei $x \in A_i \cap B_j$. Dann gilt $f(x) = c_i \leq g(x) = d_j$. Mit Argumenten wie im
- 18 Beweis von Lemma 2.32 bekommen wir

$$\int f \, \mathrm{d}\mu = \sum_{i=1}^n c_i \mu(A_i) = \sum_{i,j: A_i \cap B_j \neq \emptyset} c_i \mu(A_i \cap B_j)$$

$$\leq \sum_{i,j: A_i \cap B_j \neq \emptyset} d_j \mu(A_i \cap B_j) = \sum_{j=1}^m d_j \mu(B_j) = \int g \, \mathrm{d}\mu.$$

1 (4)
$$\chi_A = 1 \cdot \chi_A + 0 \cdot \chi_{A^c}$$
 ist eine einfache Funktion mit $\int \chi_A d\mu = \mu(A) + 0 \cdot \mu(A^c) = \mu(A)$.

Wir können messbare Funktionen durch einfache Funktionen approximieren.

- Dies werden wir benutzen, um das Lebesgue-Integral für messbare Funktionen
- 5 zu definieren. Wir beginnen mit dem Integral nicht-negativer Funktionen, damit
- 6 wir die Monotonie der Konvergenz aus Satz 2.29 benutzen können. In den Beweis
- des nächsten Satzes geht entscheidend die Stetigkeit von Maßen auf monoton
- wachsenden Folgen messbarer Mengen (1.29) ein.
- Lemma 2.34. Sei (f_n) eine Folge nichtnegativer, einfacher Funktionen mit $f_n \nearrow f$, f einfache Funktion. Dann gilt

$$\int f_n \, \mathrm{d}\mu \nearrow \int f \, \mathrm{d}\mu.$$

Beweis. Wir betrachten die beiden Fälle $\int f d\mu = +\infty$ und $\int f d\mu < +\infty$.

(1) Angenommen $\int f d\mu = +\infty$. Da f eine einfache Funktion ist, existiert ein c > 0 und ein $A \in \mathcal{A}$, so dass $\mu(A) = +\infty$ und $f \geq c$ auf A. Für $n \in \mathbb{N}$ setze $A_n := \{x : f_n(x) \geq c/2\}$. Da $(f_n(x))$ monoton wachsend ist, folgt $A_n \subseteq A_{n+1}$.

Aus der punktweisen Konvergenz $f_n(x) \to f(x)$ folgt $\bigcup_{n=1}^{\infty} A_n \supseteq A$. Dann folgt $\mu(A_n) \to \mu(A) = +\infty$ aus (1.29). Aus der Ungleichung $\chi_{A_n} \stackrel{c}{\subseteq} \leq f_n$ folgt

folgt $\mu(A_n) \to \mu(A) = +\infty$ aus (1.29). Aus der Ungleichung $\chi_{A_n} \frac{c}{2} \leq f_n$ folgt $\int f_n d\mu \geq \mu(A_n) \frac{c}{2} \to +\infty$ (Satz 2.33).

9 (2) Sei nun $\int f d\mu < \infty$. Dann ist $(\int f_n d\mu)$ eine beschränkte, monoton wachsende Folge, also konvergent. Weiter ist $B := \{f > 0\} \in \mathcal{A}$ mit $\mu(A) < \infty$.

Da f eine einfache Funktion ist, ist f beschränkt, und es existiert M > 0 mit f(x) < M für elle x. Soi c > 0. Für $n \in \mathbb{N}$ sotze R. $P = R \cap \{f > f = c\}$. Denn

 $f(x) \leq M$ für alle x. Sei $\epsilon > 0$. Für $n \in \mathbb{N}$ setze $B_n := B \cap \{f_n \geq f - \epsilon\}$. Dann

folgt $B_n \subseteq B_{n+1}$ und $\bigcup_{n=1}^{\infty} B_n = B$, und wir bekommen $\lim_{n\to\infty} \mu(B_n) = \mu(B) < \infty$ und $\lim_{n\to\infty} \mu(B \setminus B_n) = 0$ aus (1.29) und (1.30). Wir schätzen nun

das Integral der einfachen und nicht-negativen Funktion $f - f_n$ von oben ab.

Auf B_n ist $f - f_n \le \epsilon$, auf $B \setminus B_n$ ist $f - f_n \le f \le M$, während auf B^c gilt

 $f = f_n = 0$. Dann ist $f - f_n \le \chi_{B_n} \epsilon + \chi_{B \setminus B_n} M$ und es folgt

$$0 \le \int f - f_n \, \mathrm{d}\mu \le \int \chi_{B_n} \epsilon + \chi_{B \setminus B_n} M \, \mathrm{d}\mu = \mu(B_n) \epsilon + \mu(B \setminus B_n) M \to \mu(B) \epsilon.$$

²⁹ Da $\mu(B) < \infty$ und $\epsilon > 0$ beliebig war, folgt

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int f \, \mathrm{d}\mu - \int f - f_n \, \mathrm{d}\mu \right) = \int f \, \mathrm{d}\mu.$$

Nun zeigen wir, dass der Grenzwert von $(\int f_n d\mu)$ für $f_n \nearrow f$ nur vom

32

- Grenzwert f abhängt, und nicht von der konkreten Wahl der (f_n) . Dies ist ein
- ² wichtiger Schritt, um das Lebesgue-Integral definieren zu können.
- Lemma 2.35. Seien (f_n) , (g_n) Folgen nichtnegativer, einfacher Funktionen mit
- $f_n \nearrow f$, $g_n \nearrow f$, f messbar. Dann gilt

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu.$$

6 Beweis. Sei $n \in \mathbb{N}$ fest. Definiere

$$h_m = \min(f_n, g_m).$$

- Dies ist eine einfache Funktion. Aus der Voraussetzung folgt $h_m \nearrow f_n$ für $m \to \infty$
- $_{9}$ ∞ . Aus Lemma 2.34 bekommen wir dann

$$\lim_{m \to \infty} \int h_m \, \mathrm{d}\mu = \int f_n \, \mathrm{d}\mu.$$

- Da $h_m \leq g_m$ folgt mit der Monotonie des Integrals $\int h_m d\mu \leq \int g_m d\mu$. Grenz-
- 12 übergang auf beiden Seiten der Ungleichung ergibt

$$\int f_n d\mu = \lim_{m \to \infty} \int h_m d\mu \le \liminf_{m \to \infty} \int g_m d\mu.$$

14 Für $n \to \infty$ bekommen wir

$$\limsup_{n \to \infty} \int f_n \, \mathrm{d}\mu \le \liminf_{m \to \infty} \int g_m \, \mathrm{d}\mu.$$

Vertauschen wir in dieser Argumentation die Rollen von f_n und g_m erhalten wir

$$\limsup_{n \to \infty} \int g_n \, \mathrm{d}\mu \le \liminf_{m \to \infty} \int f_m \, \mathrm{d}\mu.$$

- Daraus folgt, dass die Grenzwerte existieren und gleich sind.
- Definition 2.36. Sei $f: X \to [0, +\infty]$ messbar. Sei (f_n) eine Folge einfacher,
- 20 nichtnegativer Funktionen mit $f_n \nearrow f$. Dann ist das Lebesgue-Integral von f
- 21 definiert als

22

10

13

$$\int f \, \mathrm{d}\mu := \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

- Wegen Lemma 2.35 ist das Lebesgue-Integral von f wohldefiniert: der Wert
- $\int f \, \mathrm{d}\mu$ hängt nicht von der konkreten Wahl der approximierenden, einfachen
- Funktionen (f_n) ab.
- Satz 2.37. Seien $f, g: X \to [0, +\infty]$ messbare Funktionen. Dann gilt
- (1) $\int (cf) d\mu = c \int f d\mu \ f\ddot{u}r \ alle \ c \ge 0$

- $(2) \int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu,$
- (3) ist $f \leq g$, dann ist $\int f d\mu \leq \int g d\mu$,
- (4) $sind (f_m)$ messbare Funktionen von X nach $[0, +\infty]$ mit $f_m \nearrow f$, dann $gilt \int f_m d\mu \nearrow \int f d\mu$.
- Beweis. (1)–(3) Seien (f_n) und (g_n) Folgen einfacher, nichtnegativer Funktionen
- 6 mit $f_n \nearrow f$ und $g_n \nearrow g$. (1) und (2) folgen nun direkt aus Satz 2.33. Für (3)
- benutzen wir $\min(f_n, g_n) \nearrow f$ und $\int \min(f_n, g_n) d\mu \leq \int g_n d\mu$.
- $_{8}$ (4) Für jedes m existiert ein Folge einfacher, nichtnegativer Funktionen
- 9 $(f_{m,n})$ mit $f_{m,n} \nearrow f_m$ für $n \to \infty$. Definiere die einfache Funktion h_m durch

$$h_m(x) := \max_{i,j \le m} f_{i,j}(x).$$

Dann ist $(h_m(x))$ monoton wachsend. Für $i, j \leq m$ ist $f_{i,j} \leq f_i \leq f_m$. Dann ist

 $h_m \leq f_{m,m} \leq f_m \leq f$, und es folgt $\int h_m d\mu \leq \int f_m d\mu \leq \int f d\mu$. Wir zeigen

 $h_m(x) \to f(x)$.

10

21

Seien $r, s \in \mathbb{R}$ mit r < s < f(x). Dann existiert m, so dass $s \leq f_m(x)$.

Weiter existiert ein n, so dass $r \leq f_{m,n}(x)$. Daraus folgt $r \leq h_{\max(m,n)}(x)$ und

 $r \leq \lim_{m \to \infty} h_m(x)$. Da r < f(x) beliebig war, folgt $h_m(x) \to f(x)$. Damit folgt

 $h_m \nearrow f$ und $\int h_m d\mu \to \int f d\mu$, woraus die Behauptung folgt.

2.3 Integrierbarkeit

Wir wollen nun messbare Funktionen mit Werten in $\bar{\mathbb{R}}$ integrieren. Wir verwen-

20 den folgende Bezeichnungen

$$f^+ := \max(f, 0), \quad f^- := \min(f, 0).$$

- 22 Dann ist $f = f^+ + f^-$.
- **Definition 2.38.** Sei $f: X \to \mathbb{R}$ messbar. Es sei eines der Integrale $\int f^+ d\mu$,
- $\int (-f^-) d\mu$ endlich. Dann ist das Lebesgue-Integral von f definiert als

$$\int f \,\mathrm{d}\mu := \int f^+ \,\mathrm{d}\mu - \int (-f^-) \,\mathrm{d}\mu.$$

Sind beide Integrale $\int f^+ d\mu$, $\int (-f^-) d\mu$ endlich, dann heißt f integrierbar.

27 **Satz 2.39.** Sei $f:X\to \bar{\mathbb{R}}$ messbar. Dann ist f integrierbar genau dann, wenn

 $\int |f| \, \mathrm{d}\mu < +\infty.$

Beweis. Sei f integrierbar. Wegen $|f| = f^+ + (-f^-)$ ist $\int |f| d\mu = \int f^+ d\mu +$

 $\int (-f^-) d\mu < +\infty$, wobei wir Satz 2.37 benutzt haben. Sei nun $\int |f| d\mu < +\infty$.

- Da $f^+ \leq |f|$ und $0 \leq -f^- \leq |f|$ folgt die Behauptung mit der Monotonie des
- ² Integrals aus Satz 2.37.
- **Lemma 2.40.** Es sei $f := f_1 f_2$ mit $f_i : X \to \mathbb{R}^+$ messbar und $\int f_i d\mu < \infty$
- 4 $f\ddot{u}r\ i=1,2.$ Dann ist f integrierbar, und es gilt

$$\int f \,\mathrm{d}\mu = \int f_1 \,\mathrm{d}\mu - \int f_2 \,\mathrm{d}\mu.$$

- 6 Beweis. Es gilt $|f| \leq f_1 + f_2$, und mit Satz 2.37 folgt $\int |f| d\mu < +\infty$. Wegen
- ⁷ Satz 2.39 ist f integrierbar. Aufgrund der Konstruktion ist $f_1 \geq f^+$. Definiere
- 8 die nichtnegative Funktion g durch

$$g := f_1 - f^+ = f - f^+ + f_2 = f^- + f_2.$$

Da $|g| \leq |f_1|$ ist g integrierbar. Damit bekommen wir

$$\int f_1 d\mu - \int f_2 d\mu = \int (g + f^+) d\mu - \int (g - f^-) d\mu$$

$$= \int g d\mu + \int f^+ d\mu - \left(\int g d\mu + \int (-f^-) d\mu \right)$$

$$= \int f^+ d\mu - \int (-f^-) d\mu = \int f d\mu.$$

12 Hierbei haben wir Satz 2.37 benutzt.

11

- Die Schwierigkeit des Beweises war, dass wir die Additivität des Integrals bisher nur für nichtnegative Funktionen haben.
- Satz 2.41. Es seien $f, g: X \to \overline{\mathbb{R}}$ integrierbare Funktionen. Dann gilt:
- (1) $\int (cf) d\mu = c \int f d\mu \ f\ddot{u}r \ alle \ c \in \mathbb{R}.$
- 17 (2) Ist f + g definiert, dann ist f + g integrierbar, und es gilt $\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu$.
- 19 (3) Ist $f \leq g$, dann ist $\int f d\mu \leq \int g d\mu$.
- $(4) | \int f \, \mathrm{d}\mu | \leq \int |f| \, \mathrm{d}\mu.$
- Beweis. Wegen $|cf| \leq |c| \cdot |f|$ und $|f+g| \leq |f| + |g|$ folgt die Integrierbarkeit
- von cf und f+g aus Satz 2.39 und Satz 2.37. Sei $c\geq 0$. Dann ist $(cf)^+=cf^+$
- und $(cf)^- = cf^-$, und es folgt (1). Wegen Lemma 2.40 bekommen wir aus
- $f + g = (f^+ + g^+) (-f^- g^-)$

$$\int f + g \, d\mu = \int f^+ + g^+ \, d\mu - \int f^- + g^- \, d\mu$$
$$= \int f^+ \, d\mu + \int g^+ \, d\mu - \int f^- \, d\mu - \int g^- \, d\mu = \int f \, d\mu + \int g \, d\mu,$$

- $_{\scriptscriptstyle 1}\,$ wobei wir wieder die Additivität aus Satz 2.37 benutzt haben. Damit ist (2)
- bewiesen. Zu (3): ist $f \leq g$ dann ist $f^+ \leq g^+$ und $f^- \leq g^-$, woraus mit der
- Monotone aus Satz 2.37

$$\int f \, d\mu = \int f^+ \, d\mu - \int (-f^-) \, d\mu \le \int f^+ \, d\mu - \int (-f^-) \le \int g \, d\mu$$

- folgt. (4) bekommen wir aus $-|f| \le f \le |f|$ und (3)(1).
- **Definition 2.42.** Es sei $\mathcal{L}^1(\mu)$ die Menge aller integrierbaren Funktionen von
- 7 X nach \mathbb{R} .

- Die Menge $\mathcal{L}^1(\mu)$ versehen mit der üblichen Addition und Skalarmultiplika-
- 9 tion ist ein Vektorraum wegen Satz 2.41.
- 10 Lemma 2.43. Die Abbildung

$$f\mapsto \|f\|_{\mathcal{L}^1(\mu)}:=\int |f|\,\mathrm{d}\mu$$

- ist eine Halbnorm auf $\mathcal{L}^1(\mu)$, d.h., es gilt:
- 13 (1) $||f+g||_{L^1(\mu)} \le ||f||_{L^1(\mu)} + ||g||_{L^1(\mu)} \text{ für alle } f, g \in \mathcal{L}^1(\mu),$
- (2) $||cf||_{L^1(\mu)} \le |c| ||f||_{L^1(\mu)} \text{ für alle } f \in \mathcal{L}^1(\mu), c \in \mathbb{R}.$
- Im Allgemeinen folgt aus $||f||_{L^1(\mu)} = 0$ nicht, dass f = 0.
- Beispiel 2.44. Dazu betrachte den Maßraum $(\mathbb{R},\mathcal{L}(1),\lambda^1)$. Setze $f:=\chi_{\mathbb{Q}}$.
- Dann ist $\int f d\mu = \lambda^1(\mathbb{Q}) = 0$ aber $f \neq 0$.
- Satz 2.45. Es seien $f, g: X \to \overline{\mathbb{R}}$ messbare Funktionen. Dann gelten folgende
- 19 Aussagen:
- (1) $\int |f| d\mu = 0 \Leftrightarrow \{x : f(x) \neq 0\} \text{ ist } \mu\text{-Nullmenge.}$
- (2) Ist f integrierbar, dann ist $\{x: f(x) = \pm \infty\}$ eine μ -Nullmenge.
- 22 (3) Sei $\{x: f(x) \neq g(x)\}$ eine μ -Nullmenge. Dann ist f integrierbar genau 23 dann, wenn g integrierbar ist. In diesem Falle gilt $\int f d\mu = \int g d\mu$.
- 24 Beweis. (1) Für $k \in \mathbb{N}$ definiere $A_k := \{\frac{1}{k} \le |f| \le k\}$. Dann ist $\chi_{A_k}|f| \le |f|$,
- und es gilt $\chi_{A_k}|f| \nearrow |f|$. Aus Satz 2.37 bekommen wir $\int \chi_{A_k}|f| \,\mathrm{d}\mu \nearrow \int |f| \,\mathrm{d}\mu$.
- Weiter ist $\frac{1}{k}\chi_{A_k} \leq \chi_{A_k}|f| \leq k\chi_{A_k}$ woraus wiederum mit Satz 2.37

$$\frac{1}{k}\mu(A_k) \le \int \chi_{A_k} |f| \, \mathrm{d}\mu \le k\mu(A_k)$$

- folgt. Ist $\int |f| d\mu = 0$ dann ist $\int \chi_{A_k} |f| d\mu = 0$ für alle k, also auch $\mu(A_k) = 0$
- ² für alle k. Dies impliziert $\mu(\{f \neq 0\}) = \mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu(A_k) = 0$. Ist
- $\int |f| d\mu > 0$, dann ist $\int \chi_{A_k} |f| d\mu > 0$ für ein k, und damit auch $\mu(A_k) > 0$.
- 4 (2) Setze $A := \{|f| = +\infty\}$. Dann ist $\infty \cdot \mu(A) \leq \int |f| \, d\mu < \infty$, also
- $\mu(A) = 0.$
- (3) Sei $N := \{ f \neq g \}$. Wegen (1) haben wir

$$\int |f| \,\mathrm{d}\mu = \int (\chi_N + \chi_{N^c}) |f| \,\mathrm{d}\mu = \int \chi_{N^c} |f| \,\mathrm{d}\mu = \int \chi_{N^c} |g| \,\mathrm{d}\mu = \int |g| \,\mathrm{d}\mu.$$

- Damit ist f integrierbar genau dann, wenn g integrierbar ist.
- **Definition 2.46.** Sei $P: X \to \{wahr, falsch\}$ eine Abbildung (ein einstelliges
- Prädikat auf X im Sinne der Logik). Dann gilt P μ -fast überall (oder P(x) gilt
- für μ -fast alle $x \in X$) genau dann, wenn es eine Menge $N \in \mathcal{A}$ mit $\mu(N) = 0$
- gibt, so dass P(x) für alle $x \in N^c$ gilt.
- Damit lassen sich die Aussagen von Satz 2.45 wie folgt ausdrücken:
- (1) $\int |f| d\mu = 0 \Leftrightarrow f = 0 \mu$ -fast überall.
- 5 (2) Ist f integrierbar, dann ist $f \notin \{\pm \infty\}$ μ -fast überall.
- 16 (3) Ist f = g fast überall, dann ist $\int f d\mu = \int g d\mu$.
- 17 **Lemma 2.47.** Sei (X, \mathcal{A}, μ) ein vollständiger Maßraum. Seien $f, g: X \to \bar{R}$
- gegeben, so dass f messbar und f = g fast überall ist. Dann ist g messbar.
- 19 Beweis. Sei N eine μ -Nullmenge, so dass f(x) = g(x) für alle $x \in \mathbb{N}^c$. Sei $\alpha \in \mathbb{R}$.
- 20 Dann ist

$$g^{-1}((-\infty,\alpha]) = \left(N^c \cap f^{-1}((-\infty,\alpha])\right) \cup \left(N \cap g^{-1}((-\infty,\alpha])\right).$$

- Da N eine Nullmenge ist, und der Maßraum vollständig ist, ist $N \cap g^{-1}((-\infty, \alpha])$
- $_{23}$ als Teilmenge einer Nullmenge messbar. Und g ist messbar.
- **Definition 2.48.** Es sei $A \in \mathcal{A}, \ f: X \to \bar{\mathbb{R}}.$ Dann ist das Integral über A
- 25 definiert als

$$\int_{A} f \, \mathrm{d}\mu := \int \chi_{A} f \, \mathrm{d}\mu.$$

- 27 Es reicht, wenn $\chi_A f$ messbar ist.
- Aufgabe 2.49. Es sei $f \in X \to \mathbb{R}^+$ messbar. Dann ist die Abbildung ν definiert
- 29 durch

$$\nu(A) := \int_A f \,\mathrm{d}\mu$$

ein positives Ma β auf A. Die Funktion f hei β t Dichtefunktion von ν .

Definition 2.50. Sei $f: X \to \mathbb{C}$ messbar. Dann heißt f integrierbar, falls $\operatorname{Re} f$

2 und Im f integrierbar sind, und wir definieren

$$\int f \, \mathrm{d}\mu := \int \mathrm{Re} \, f \, \mathrm{d}\mu + i \int \mathrm{Im} \, f \, \mathrm{d}\mu.$$

- Bei der Integration komplexwertiger Funktionen entstehen keine neuen Ef-
- ⁵ fekte: Die Abbildung $f \mapsto \int f \, d\mu$ ist C-linear für komplexwertige Funktionen.
- Eine messbare Funktion $f:X\to\mathbb{C}$ ist integrierbar genau dann, wenn |f| in-
- 7 tegrierbar ist. Die Menge aller solcher integrierbarer Funktionen ist wieder ein
- 8 Vektorraum.

₉ 2.4 Konvergenzsätze

- Es sei (f_n) ein Folge messbarer Funktionen, die punktweise gegen f konvergiert.
- Wir wollen nun untersuchen, wann gilt

$$\int f_n \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu.$$

- Dies ist eine nicht-triviale Frage, denn das Integral haben wir über einen Grenz-
- wert definiert.
- Beispiel 2.51. Im Maßraum $(\mathbb{R}, \mathcal{L}(1), \lambda^1)$ definieren wir die folgenden Funk-
- 16 tionenfolgen
- $f_n(x) = n\chi_{(0,1/n)}(x),$
 - $\bullet \ g_n(x) = \chi_{(n,n+1)}(x),$
- $h_n(x) = \frac{1}{n} \chi_{(0,n)}(x)$.
- Dann konvergieren (f_n) , (g_n) und (h_n) punktweise gegen Null, aber die Integrale
- 21 nicht: $\int f_n d\lambda^1 = \int g_n d\lambda^1 = \int h_n d\lambda^1 = 1$. Hier kann man Grenzwertbildung
- 22 und Integral nicht vertauschen.
- Satz 2.52 (Monotone Konvergenz). Seien (f_n) integrierbare Funktionen von
- ²⁴ X nach \mathbb{R} mit $f_n \nearrow f$ punktweise. Dann gilt $\int f_n d\mu \nearrow \int f d\mu$. Existiert ein
- 25 M > 0, so dass $\int f_n d\mu < M$ für alle n gilt, dann ist f integrierbar.
- Beweis. Definiere $g_n:=f_n-f_1\geq 0,\ g=f-f_1\geq 0.$ Dann gilt $g_n\nearrow g,$
- $\int g_n d\mu \nearrow \int g d\mu$ (Satz 2.37). Da f_1 integrierbar ist, folgt $\int f_n d\mu \nearrow \int f d\mu$.
- 28 Weiter folgt

$$0 \le \int g \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu \le M - \int f_1 \, \mathrm{d}\mu,$$

also ist g integrierbar und damit auch f.

- Beispiel 2.53. Die Funktionenfolgen $f_n = \chi_{[0,n]}$ und $g_n = -\chi_{[n,+\infty)}$ im Maß-
- $_2$ raum $(\mathbb{R},\mathcal{L}(1),\lambda^1)$ zeigen, dass monotone Konvergenz alleine nicht reicht für
- 3 die Aussagen des Satzes.
- Satz 2.54 (Lemma von Fatou). Es sei (f_n) eine Folge messbarer, nicht nega-
- 5 tiver Funktionen. Dann gilt

$$\int (\liminf_{n \to \infty} f_n(x)) \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

- ⁷ Beweis. Definiere $g_n(x) := \inf_{k > n} f_n(x)$. Dann die Funktionen g_n nichtnegative
- und messbar. Weiter gilt $g_n \leq f_n$ und $g_n \geq \lim\inf_{n \to \infty} f_n$. Also bekommen wir
- 9 aus Satz 2.37

$$\int (\liminf_{n \to \infty} f_n(x)) d\mu = \lim_{n \to \infty} \int g_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

- Beispiel 2.55. Gleichheit gilt in Satz 2.54 im Allgemeinen nicht, siehe $f_n(x) = n\chi_{(0,1/n)}$ aus Beispiel 2.51. Auf die Nichtnegativität kann nicht verzichtet wer-
- den: für $f_n(x) = -n\chi_{(0,1/n)}$ gilt die Behauptung nicht.
- Satz 2.56 (Dominierte Konvergenz). Es sei (f_n) eine Folge messbarer Funktio-
- nen, f messbar, g integrierbar. Gilt $f_n(x) \to f(x)$ und $|f_n(x)| \le g(x)$ für alle n
- und μ -fast alle x, dann folgt $\lim_{n\to\infty}\int |f_n-f|\,\mathrm{d}\mu=0$ und $\lim_{n\to\infty}\int f_n\,\mathrm{d}\mu=0$
- 18 $\int f d\mu$.
- Beweis. (1) Wir nehmen zuerst an, dass $f_n(x) \to f(x)$ und $|f_n(x)| \le g(x)$ für
- alle n und alle x gilt. Daraus folgt $|f(x)| \leq g(x)$ für alle x. Damit sind die
- Funktionen f und f_n integrierbar. Wir setzen $g_n:=2g-|f_n-f|\geq 0$. Nach
- ₂₂ Satz 2.54 ist

$$2 \int g \, \mathrm{d}\mu = \int (\liminf_{n \to \infty} g_n(x)) \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int g_n \, \mathrm{d}\mu$$
$$= \liminf_{n \to \infty} \int 2g - |f_n - f| \, \mathrm{d}\mu$$
$$= 2 \int g \, \mathrm{d}\mu - \limsup_{n \to \infty} \int |f_n - f| \, \mathrm{d}\mu$$
$$\le 2 \int g \, \mathrm{d}\mu.$$

- Damit ist $\limsup_{n\to\infty} \int |f_n f| d\mu = 0$, woraus mit Satz 2.41 die Behauptung
- 25 folgt.

- (2) Sei nun $f_n(x) \to f(x)$ und $|f_n(x)| \le g(x)$ für alle n und μ -fast alle x.
- Dann existiert eine μ -Nullmenge N, so dass $f_n(x) \to f(x)$ und $|f_n(x)| \leq g(x)$

- für alle n und alle $x \in N^c$. Die Funktionen $\chi_{N^c} f_n$, $\chi_{N^c} f$ erfüllen dann die
- Voraussetzungen von Beweisteil (1). Es folgt also $\lim_{n\to\infty} \int \chi_{N^c} |f_n f| d\mu = 0$.
- Da $\chi_{N^c}|f_n-f|$ und $|f_n-f|$ sich nur auf der Nullmenge N unterscheiden, gilt

$$4 \int \chi_{N^c} |f_n - f| \, \mathrm{d}\mu = \int |f_n - f| \, \mathrm{d}\mu \to 0.$$

- Beispiel 2.57. Auf die Existenz der integrierbaren gemeinsamen oberen Schran-
- ke kann im Allgemeinen nicht verzichtet werden, wie Beispiel 2.51 zeigt.
- **Satz 2.58** (Vollständigkeit von $\mathcal{L}^1(\mu)$). Es sei (f_n) eine Folge integrierbarer
- Funktionen, die eine Cauchyfolge bezüglich $\|\cdot\|_{\mathcal{L}^1(\mu)}$ ist, d.h. für alle $\epsilon>0$
- existiert ein N, so dass $||f_m f_n||_{\mathcal{L}^1(\mu)} < \epsilon$ für alle n, m > N.
- Dann existiert ein $f \in \mathcal{L}^1(\mu)$ mit $||f_n f||_{\mathcal{L}^1(\mu)} \to 0$. Weiter existiert ein
- $g \in \mathcal{L}^1(\mu)$ und eine Teilfolge, so dass $f_{n_k}(x) \to f(x)$ und $|f_{n_k}(x)| \leq g(x)$ für
- alle k und μ -fast alle x.
- Beweis. (1) Wir nehmen zuerst an, dass $\sum_{n=1}^{\infty} \|f_{n+1} f_n\|_{\mathcal{L}^1(\mu)} < \infty$. Definiere
- die messbaren Funktionen

$$g_m := |f_1| + \sum_{n=1}^m |f_{n+1} - f_n|, \quad g := |f_1| + \sum_{n=1}^\infty |f_{n+1} - f_n|.$$

- Dann gilt $g_m \nearrow g$. Weiter ist $\int g_m d\mu = \|f_1\|_{\mathcal{L}^1(\mu)} + \sum_{n=1}^m \|f_{n+1} f_n\|_{\mathcal{L}^1(\mu)}$,
- woraus mit der monotonen Konvergenz $\int g \, \mathrm{d}\mu < \infty$ folgt. Dann ist (Satz 2.45)
- $g<+\infty$ fast überall, und es folgt $\sum_{n=1}^{\infty}|f_{n+1}-f_n|<+\infty$ fast überall. Damit ist
- $(f_n(x))$ für fast alle x eine Cauchyfolge, also konvergent. Wir definieren f(x) =
- $\lim_{n\to\infty} f_n(x)$ falls der Grenzwert existiert, sonst setzen wir f(x):=0. Da
- $|f_n(x)| \leq g(x)$ für alle x, folgt $|f| \leq g$ fast überall. Mit dominierter Konvergenz
- Satz 2.56 bekommen wir $\int |f_n f| d\mu \to 0$.
- (2) Sei nun (f_n) eine Cauchyfolge. Dann finden wir eine Teilfolge (f_{n_k}) mit
- $||f_{n_{k+1}} f_{n_k}||_{\mathcal{L}^1(\mu)} < 2^{-k}$. Wegen Teil (1) existiert f mit $||f_{n_k} f||_{\mathcal{L}^1(\mu)} \to 0$. 24
- Dann hat die Cauchyfolge (f_n) eine konvergente Teilfolge, und ist also selbst
- konvergent. Außerdem ist (f_{n_k}) punktweise fast überall konvergent und besitzt
- eine gemeinsame, intergrierbare obere Schranke. 27
- (2') Beweis ohne das Axiom der abhängigen Auswahl. Sei N_k die kleinste Zahl in
- \mathbb{N} , für die $||f_m f_n||_{\mathcal{L}^1(\mu)} < 2^{-k}$ für alle $n, m \geq N_k$. Dann ist (N_k) monoton wachsend,
- aber unter Umständen nicht streng monoton wachsend. Definiere $\tilde{f}_k := f_{N_k}$. Wegen
- Teil (1) folgt $\|\tilde{f}_k f\|_{\mathcal{L}^1(\mu)} \to 0$. Sei $\epsilon > 0$. Wähle k so, dass $\|\tilde{f}_k f\|_{\mathcal{L}^1(\mu)} < \epsilon/2$ und
- $2^{-k} < \epsilon/2$. Dann ist $||f_n f||_{\mathcal{L}^1(\mu)} \le ||f_n \tilde{f}_k||_{\mathcal{L}^1(\mu)} + ||\tilde{f}_k f||_{\mathcal{L}^1(\mu)} < \epsilon$ für $n \ge N_k$.
- 33
- Beispiel 2.59. Man bekommt im Allgemeinen die punktweise Konvergenz nur für eine Teilfolge. Wir betrachten den Maßraum ($\mathbb{R}, \mathcal{L}(1), \lambda^1$). Definiere $f_n =$
- $2^{j/2}\chi_{[k2^{-j},(k+1)2^{-j}]}$ für $n=2^j+k,\ 0\leq k<2^j$. Dann ist $||f_n||_{\mathcal{L}^1(\lambda^1)}=2^{-j/2}\to 0$.

- Aber die Folge f_n ist nicht punktweise konvergent, und es existiert auch keine
- 2 integrierbare gemeinsame obere Schranke.

2.5 Vergleich mit Riemann-Integral

- 4 Sei $I = [a, b], a, b \in \mathbb{R}, a < b.$
- Eine Abbildung $\phi: I \to \mathbb{R}$ heißt Treppenfunktion, falls $a_1, \ldots, a_{n+1} \in \mathbb{R}$ und
- $\sigma = \varphi_1, \dots, \varphi_n \in \mathbb{R}$ existieren mit $a = a_1 < a_2 < \dots < a_{n+1} = b$ und $\phi|_{(a_i, a_{i+1})} = \phi_i$.
- 7 Das Riemann-Integral von ϕ ist definiert durch

$$R - \int_a^b \phi(x) dx := \sum_{i=1}^n \phi_i(a_{i+1} - a_i).$$

- Der Vektorraum aller solcher Treppenfunktionen sei $\mathcal{T}(I)$.
- Definition 2.60. Eine Funktion $f: I \to \mathbb{R}$ heißt Riemann integrierbar, wenn ailt

12
$$R := \sup \left\{ R - \int_a^b \phi(x) \, \mathrm{d}x : \ \phi \in \mathcal{T}(I), \ \phi \le f \right\}$$
13
$$= \inf \left\{ R - \int_a^b \phi(x) \, \mathrm{d}x : \ \phi \in \mathcal{T}(I), \ f \le \phi \right\}.$$

14 In diesem Fall setzen wir

15

$$R - \int_{a}^{b} f(x) \, \mathrm{d}x := R.$$

- Wir arbeiten hier im Maßraum ($\mathbb{R}^1, \mathcal{L}(1), \lambda^1$).
- Satz 2.61. Sei $f: I \to \mathbb{R}$ Riemann integrierbar. Dann ist f λ^1 -integrierbar und es gilt

$$R - \int_a^b f(x) \, \mathrm{d}x = \int_I f \, \mathrm{d}\lambda^1.$$

- Beweis. Sei ϕ eine Treppenfunktion. Dann ist ϕ sowohl $\mathcal{B}^1 \mathcal{B}^1$ -messbar, und
- damit auch $\mathcal{L}(1) \mathcal{B}^1$ -messbar. Außerdem ist $R \int_a^b \phi \, \mathrm{d}x = \int_I \phi \, \mathrm{d}\lambda^1$.
- Aus der Riemann-Integrierbarkeit von f bekommen wir für jedes n die Exis-
- tenz von Treppenfunktionen ϕ_n und ψ_n mit $\phi_n \leq f \leq \psi_n$ und $R \int_a^b (\psi_n \psi_n) d\mu$
- ϕ_n $dx \leq \frac{1}{n}$. Daraus folgt $\|\psi_n \phi_n\|_{L^1(\lambda^1)} = R \int_a^b (\psi_n \phi_n) dx \to 0$.
- Wegen Satz 2.58 gibt es eine Teilfolgen, so dass $\psi_{n_k} \phi_{n_k} \to 0$ fast überall.
- Da $\phi_n \leq f \leq \psi_n$ folgt daraus $\lim_{k\to\infty} \psi_{n_k} = \lim_{k\to\infty} \phi_{n_k} = f(x)$ für fast alle
- $x \in [a, b]$. Da der Maßraum $(\mathbb{R}^1, \mathcal{L}(1), \lambda^1)$ vollständig ist, folgt daraus die Mess-
- barkeit von f. Aus der Integrierbarkeit von ϕ_n und ψ_n folgt die Integrierbarkeit

von f. Grenzübergang in

$$R - \int_a^b \phi_n \, \mathrm{d}x = \int_I \phi_n \, \mathrm{d}\lambda^1 \le \int_I f \, \mathrm{d}\lambda^1 \le \int_I \psi_n \, \mathrm{d}\lambda^1 = R - \int_a^b \psi_n \, \mathrm{d}x$$

- liefert die Gleichheit von Riemann- und Lebesgue-Integral.
- Bemerkung 2.62. Ein ähnliches Resultat gilt auch für den Borel-Lebesgue-
- Maβraum ($\mathbb{R}^1, \mathcal{B}^1, \lambda^1$): Nach Änderung auf einer λ^1 -Nullmenge ist die Riemann-
- integrierbare Funktion f dann auch messbar und integrierbar, und die Integrale
- stimmen überein.
- **Beispiel 2.63.** Die Funktion $\chi_{\mathbb{Q}}$ ist λ^1 -integrierbar aber nicht Riemann inte-
- Das uneigentliche Riemann-Integral R- $\int_1^\infty \frac{\sin x}{x} \, dx$ existiert und ist endlich, während die Funktion f definiert durch $f(x) = \frac{\sin x}{x}$ nicht auf dem Intervall
- $[1,+\infty)$ λ^1 -integrierbar ist, und das Integral $\int_{[1,\infty)} f \, d\lambda^1$ ist nicht definiert.