Modeling of a Private Monopolist Insurer: Theory and Practice

Clara Verret & Nabil Alami

CentraleSupélec - 3A OCV - Professeur : John Cagnol

Contents

Introduction

- Case 1 : One contract
- 2.1 Model and Equations
- 2.2 Numerical results
- 2.3 Influence of the risk aversion
- ${\bf Case}\ 2: {\bf Multiple\ contracts}$
- 3.1 Model and Equations
- 3.2 Numerical results
- Case 3 : Continuum of contracts
- 4.1 Model and Equations
- 4.2 Results
- Conclusion

Introduction

Introduction

- ▶ Modeling an insurer's strategy in a simplified scenario
- ▶ One contract vs Multiple contracts

Model and equations

- \triangleright Same initial wealth W_0 for all agents
- \bullet : probability of experiencing a financial loss L>0
- ightharpoonup U: agent's attitude toward risk (concave and non decreasing)
- ► Goal: evaluate coverage if contract maximizes expected utility

- \triangleright Single (non mandatory) contract of price P with indemnity R
- ► Goal: maximize profit

Model and Equations

- An agent of type θ evaluates the insurance offer by comparing it's expected utility with and without insurance.
- **▶** Without insurance:

$$V(\theta, 0) = \theta U(W_0 - L) + (1 - \theta)U(W_0).$$

▶ With contract C = (P, R):

$$V(\theta, C) = \theta U(W_0 + R - L - P) + (1 - \theta)U(W_0 - P).$$

Agent accepts
$$\iff G(\theta, P, R) := V(\theta, C) - V(\theta, 0) \ge 0.$$

Model and Equations

▶ We note $\theta_c \in [0,1)$ the unique solution to $G(\theta_c, P, R) = 0$.

Setting $V(\theta, C) = V(\theta, 0)$ gives explicit solution :

$$P(\theta, R) = \frac{1}{\lambda} \ln \left(\frac{\theta e^{\lambda L} + (1 - \theta)}{\theta e^{\lambda (L - R)} + (1 - \theta)} \right), \tag{1}$$

(1) gives the maximum premium that an agent of type θ is willing to pay for a contract offering indemnity R against a potential loss L

Model and Equations

► The insurer profit is given by

$$\Pi(\theta_c, R) = [P(\theta_c, R) - R \cdot A(\theta_c)] \cdot (1 - F(\theta_c))$$

 $A(\theta)$ the average risk of the insured population.

ightharpoonup Existence and uniqueness of optimal (θ^*, R^*) is guaranteed

Numerical analysis

• We choose $L=1, \lambda=3, f \sim Beta(2,5)$

$$\max_{\theta \in [0,1), R \in (0,L)} \left[P(\theta,R) - R \cdot A(\theta) \right] \cdot Q(\theta)$$

with L-BFGS-B algorithm.

The measure of the insured population is $Q(\theta_c) := 1 - F(\theta_c)$

Single contract - Results

Figure – $R^*=0.6913,\,\theta^*=0.1824$ and $\Pi^*(\theta^*,R^*)=0.1181.$ The majority (69%) purchase the contract.

Influence of the risk aversion

Utility function : $U(W) = 1 - e^{-\lambda W}$

- $\lambda \to 0: U(W) \approx W$, the agent is risk neutral
- \triangleright λ increases: the agent becomes more risk-averse, "values certainty over risk", willing to pay a higher premium to avoid risk

Influence of the risk aversion

Figure – Evolution of variables with λ

Influence of the risk aversion

- ightharpoonup For high λ : agents are already highly risk-averse
- At $\lambda \approx 4$, R^* , θ^* have weaker slopes
- if market's λ is approximately known, it gives the insurer an intuition on the risk situation

Multiple contracts

Generalizing to N contracts

- \triangleright N contracts $(C_i)_{1 \leq i \leq N}$
- ▶ Population subdivided into $(\Theta_i)_{i < N}$ according to agent types
- ▶ The agents of types in $\Theta_i = [\theta_{i1}, \theta_{i+1}]$ are offered a contract (P_i, R_i)

Agent chooses to buy it if and only if:

$$V(\theta, C_i) \ge V(\theta, 0)$$

Generalizing to N contracts

▶ Profit per segment $[\theta_i, \theta_{i+1}]$:

$$\Pi_i = (P(\theta_i, R_i) - R_i \cdot A_i) \cdot Q_i$$

with:

$$A_{i} = \frac{\int_{\theta_{i}}^{\theta_{i+1}} \theta' f(\theta') d\theta'}{F(\theta_{i+1}) - F(\theta_{i})}$$

The optimization problem writes:

$$\max_{\substack{\theta_1 < \dots < \theta_N \\ R_i \le L}} \sum_{i=1}^N \Pi_i$$

Optimization is done with differential_evolution

Figure – Results for N=2 contracts

Figure – Results for N=3

Figure – Results for N=6

More contract options have a higher chance to suit different needs of the population

- ightharpoonup Total profit increases with N
- More people are covered

 \blacktriangleright As N increases, more people are covered and the insurer makes a greater profit.

Continuum of contracts

Continuum of contracts

 $N \to \infty$, where the contract function is continuous:

$$R:[0,1]\longrightarrow \mathbb{R}$$

Each agent of type θ is offered a contract with indemnity $R(\theta)$

$$\max_{R(\cdot)} \Pi[R(\cdot)] = \int_0^1 \left[P(\theta, R(\theta)) - R(\theta)\theta \right] f(\theta) \, d\theta,$$

Continuum of contracts

$$\partial_R P(\theta, R(\theta)) - \theta = 0$$

which gives:
$$\frac{\theta e^{\lambda(L-R)}}{\theta e^{\lambda(L-R)} + 1 - \theta} - \theta = 0$$

Solving the first-order condition yields $R^*(\theta) = L$: maximum reimbursement to all individuals, i.e. full insurance coverage.

Figure – Lagrangian integrand $\mathcal{L}(\theta, R)$ evaluated at $R^*(\theta) = L$

• Optimal profit $\Pi^* = 0.29$.

Conclusion

Conclusion

- A simple yet realistic model of a private monopolist insurer
- ► Theoretical and numerical results
- Generalization to more than a single contract and beyond

Merci!