# Math 415 - Lecture 24

Least squares

### Wednesday October 21st 2015

Textbook reading: Chapter 3.3

Suggested practice exercises: Exercises 3, 5, 6, 13, 24, 25

**Khan Academy video:** Least Squares Approximation, Least Squares Examples, Another Least Squares Example

### 1 Review

Let W be a subspace of  $\mathbb{R}^n$  and  $\mathbf{x}$  in  $\mathbb{R}^n$  (but maybe not in W). Let  $\mathbf{x}_W$  be the orthonormal projection of  $\mathbf{x}$  onto W. (vector in W as close as possible to  $\mathbf{x}$ )

• If  $\mathbf{v}_1, \dots, \mathbf{v}_m$  is an orthogonal basis of W then

$$\mathbf{x}_W = \underbrace{\left(\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1}_{\text{proj. of } \mathbf{x} \text{ onto } \mathbf{v}_1} + \dots + \underbrace{\left(\frac{\mathbf{x} \cdot \mathbf{v}_m}{\mathbf{v}_m \cdot \mathbf{v}_m}\right) \mathbf{v}_m}_{\text{proj. of } \mathbf{x} \text{ onto } \mathbf{v}_m}.$$

• The decomposition  $\mathbf{x} = \underbrace{\mathbf{x}_W}_{\text{in }W} + \underbrace{\mathbf{x}^{\perp}}_{\text{in }W^{\perp}}$  is unique.

# 2 Least squares

### 2.1 Least squares

**Definition.**  $\hat{\mathbf{x}}$  is a **least squares solution** of the system  $A\mathbf{x} = \mathbf{b}$  if  $\hat{\mathbf{x}}$  is such that  $A\hat{\mathbf{x}} - \mathbf{b}$  is as small as possible.





- If  $A\mathbf{x} = \mathbf{b}$  is consistent, then a least squares solution  $\hat{\mathbf{x}}$  is just an ordinary solution. (in that case,  $A\hat{\mathbf{x}} \mathbf{b} = 0$ )
- Interesting case:  $A\mathbf{x} = \mathbf{b}$  is inconsistent. (in other words: the system is overdetermined)

**Idea.**  $A\mathbf{x} = \mathbf{b}$  is consistent  $\iff \mathbf{b}$  is in Col(A)

So if  $A\mathbf{x} = \mathbf{b}$  is inconsistent we

- replace **b** with its projection  $\hat{\mathbf{b}}$  onto Col(A),
- and solve  $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ .(consistent by construction!)

Example 1. Find the least squares solution to  $A\mathbf{x} = \mathbf{b}$ , where

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

Solution.

| The normal equations                                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Theorem 1. $\hat{\mathbf{x}}$ is a least squares solution of $A\mathbf{x} = \mathbf{b} \iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$<br>Proof. |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |
|                                                                                                                                                |  |

Example 2 (again). Find the least squares solution to  $A\mathbf{x} = \mathbf{b}$ , where

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

Solution.

Example 3. Find the least squares solution to  $A\mathbf{x} = \mathbf{b}$ , where

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

What is the projection of **b** onto Col(A)?

Note that the columns of A are not orthogonal.

| Solution. |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

# 4 Applications

## 4.1 Least square regression lines

Experimental data:  $(x_i, y_i)$ , for  $i = 1, 2, 3, \ldots$  Wanted: parameters  $\beta_1, \beta_2$  such that  $y_i \approx \beta_1 + \beta_2 x_i$  for all i



The approximation should be so that

$$SS_{res} = \underbrace{\sum_{i} [y_i - (\beta_1 + \beta_2 x_i)]^2}_{residue \ sum \ of \ squares}$$
 is as small as possible.

*Example* 4. Find  $\beta_1, \beta_2$  such that the line  $y = \beta_1 + \beta_2 x$  best fits the data points (2,1), (5,2), (7,3), (8,3).

| Solution. |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |
|           |  |  |

Example 5. Blood is drawn form volunteers to determine the effects of a new experimental drug designed to lower cholesterol levels, The following data shows the results of varying the dosage from 0 unit to 1 units in step of 0.2 of a unit. Find a line  $C = \beta_1 D + \beta_2$  that best fits the data. What drug usage would you recommend if you want to accomplish a Cholesterol level of 215?

| Drug Dosage: D | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1   |
|----------------|-----|-----|-----|-----|-----|-----|
| Cholesterol: C | 289 | 273 | 254 | 226 | 213 | 189 |

# Solution.