TD 3 PROBABILITÉS - COUPLES DE VARIABLES ALÉATOIRES DISCRÈTES - 1SN

Exercice 1: Tirages sans remise.

On considère une urne constituée de N>1 boules numérotées de 1 à N. On tire deux boules sans remise dans cette urne. On note X_1 le numéro de la première boule et X_2 le numéro de la seconde boule.

- 1) Déterminer les lois de X_1, X_2 et du couple (X_1, X_2) (on prendra soin de préciser les domaines de ces variables et vecteur aléatoires).
- 2) Déterminer la covariance entre X_1 et X_2 . On rappelle que :

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \text{ et } \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$

3) Déterminer la loi du couple (Z, U) avec $Z = X_1 - X_2$ et $U = X_1$ (on prendra soin de représenter graphiquement l'ensemble des valeurs possibles du couple (Z, U)). En déduire la loi de Z.

Exercice 2 : Décorrélation n'implique pas indépendance !

Soit X une variable aléatoire de loi normale $\mathcal{N}(0,1)$ et Y une variable aléatoire binaire prenant les valeurs +1 et -1 avec $P[Y=1]=P[Y=-1]=\frac{1}{2}$. On suppose que X et Y sont indépendantes et on pose Z=XY.

- 1) Déterminer la loi de Z
- 2) Déterminer la covariance du couple (X, Z) notée cov(X, Z)
- 3) Calculer P[X + Z = 0] et en déduire que X et Z ne sont pas indépendantes.

Exercice 3 : couple de variables aléatoires discrète et continue.

Soit (X, Y) un couple de variables aléatoires réelles telles que Y suit une loi exponentielle de paramètre c (de densité notée q(y)) et pour y > 0 la loi de X sachant Y = y est la loi de Poisson de paramètre y:

$$g(y) = ce^{-cy} \qquad y > 0$$

$$g(y) = 0 \qquad y \le 0$$

$$P[X = k | Y = y] = \frac{y^k}{k!}e^{-y} \qquad k \in \mathbb{N}$$

Déterminer P[X = k].

Exercice 4: parties entières et fractionnaires

Soit U une variable aléatoire de loi uniforme sur [0,1[. Si k est un entier fixé $(k \in \mathbb{N}^*)$, on définit les variables aléatoires X et Y de la façon suivante :

$$\begin{array}{lll} X & = & \operatorname{Ent}\left(kU\right) \\ Y & = & \operatorname{Frac}\left(kU\right) = kU - \operatorname{Ent}(kU) \end{array}$$

où $\operatorname{Ent}(kU)$ et $\operatorname{Frac}(kU)$ désignent les parties entières et fractionnaires de kU. Montrer que X et Y sont deux variables aléatoires indépendantes, la première de loi uniforme sur $\{0,...,k-1\}$, la seconde de loi uniforme sur [0,1[

Applications aux sciences du numérique

Exercice 5: paquets prioritaires et non prioritaires

On suppose que le nombre de paquets X arrivant dans un commutateur de réseau pendant un intervalle de temps Δ suit une loi de Poisson de paramètre λ . Afin de garantir une certaine qualité de service dans ce réseau, on distingue les paquets prioritaires des paquets non-prioritaires. On note $p \in]0,1[$ la probabilité qu'un paquet soit prioritaire et Y le nombre de paquets prioritaires arrivant au commutateur pendant l'intervalle de temps Δ . On suppose également que les instants d'arrivées de paquets sont des variables aléatoires indépendantes.

- 1) Déterminer la loi conditionnelle de $Y \mid X = x$ puis la loi du couple (X, Y).
- 2) Quelle est la loi marginale de Y? Les variables aléatoires X et Y sont-elles indépendantes?
- 3) On pose Z = X Y. Que représente Z? En déduire sa loi (sans aucun calcul).
- 4) Quelle est la loi du couple (Z, Y)? Les variables aléatoires Z et Y sont-elles indépendantes?

$$P(X=n)=\frac{\lambda^n e^{-\lambda}}{n!}$$
 $P(Y=k|X=n)=\frac{\lambda^n e^{-\lambda}}{n!}$
 $P(X=k|X=n)=\frac{\lambda^n e^{-\lambda}}{n!}$
 $P(X|X)=\frac{\lambda^n e^{-\lambda}}$

