AIP Mini-Project - Reinforcement Learning A3C in VizDoom

Anders Christiansen

Table of Contents

- Project description
- Motivation
- Tools/Resources
- Contribution
- Algorithm explanation
- Evaluation
- Discussion

Project Description

 Running the "Asynchronous Advantage Actor-Critic" method in the VizDoom environment, comparing scenarios and hyperparameters.

Motivation

- VizDoom state-of-the-art within RL
- Great environment for comparing hyperparameters
- A3C paper did not test in VizDoom, but in OpenAl

Tools

- VizDoom
- Tensorflow
- TensorBoard
- Run on NVIDIA GeForce 980 GTX

Resources

- A3C based on Juliani implementation
 - https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
- VizDoom https://github.com/mwydmuch/VizDoom
- Project Git https://github.com/RytmeAnders/aip_miniproject

Contribution

- Modifying VizDoom
- Modifying hyperparameters
- Results written to a list, then exported to a .txt

Algorithm - A3C

- Asynchronous: Multiple agent running in parallel, each with their unique instance of the environment
- Advantage: Calculating how much better a chosen action is than expected (R V(s))
- Actor-Critic: Combining Q-learning and policy gradient methods. The agent (the actor)
 determines a policy, which is then updated by a state-value-estimate from the environment (the
 critic)

Algorithm - A3C

- Proposed by Mnih et. al. (2016)
 - https://arxiv.org/pdf/1602.01783.pdf
- Works in discrete and continuous state-spaces
- Much faster than a traditional Deep Q-Network (DQN)

Algorithm - A3C

- Learning by value loss and policy loss
- Value loss: The sum of squared advantages across n workers
 - L = Loss function
 - A = advantage

$$L = \sum_{i=0}^{n} A_i^2 = \sum_{i=0}^{n} (R_i - V_i(s))^2$$
 discounted return state-value

- IN number of threads (CPU kernels)
- Policy loss: Negative logarithm of the product of the policy, the advantage, and the entropy
 - $\Pi(s) = \text{policy for state } s$
 - A(s) = advantage of state s

$$L = -log(\pi(s)) * A(s) - \beta * H(\pi)$$
 attropy of policy Π

List of configurations

Name	Hyperparameters	Value	Scenario
2: nopain_rms	Living Reward: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	0 RMSprop 7e-4 0.99 0.1	Basic.wad
3: pain_adam	Living Reward: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	-1 ADAM 1e-4 0.99 0	Basic.wad
4: pain_rms	Living Reward: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	-1 RMSprop 7e-4 0.99 0.1	Basic.wad
5: nopain_adam	Living Reward: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	0 ADAM 1e-4 0.99 0	Basic.wad
6: defend	Death Penalty: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	1 ADAM 1e-4 0.99 0	DefendTheCenter.wad
7: lowLR	Living Reward: Optimizer: Learning Rate: Discount Factor: Epsilon-Greed:	-1 ADAM 1e-10 0.99 0	Basic.wad

Results

RMSprop episode 50

RMSprop episode 2100

Results

• ADAM episode 25

ADAM episode 1875

Results

Tensorboard

Discussion

- In contrast to the A3C paper, ADAM optimization seems best for VizDoom
- Very small learning rate does not seem to converge
- Also -1 reward on movement is not that necessary in the current configuration