CSC2541: Deep Reinforcement Learning

Lecture 3: Monte-Carlo and Temporal Difference

Slides borrowed from David Silver, Andrew Barto

Jimmy Ba

Algorithms

Multi-armed bandits

Finite MDPs with model

Linear model

Large/infinite MDPs

UCB-1, Thompson Sampling

dynamic programming

LQR

Theoretically intractable

Need approx. algorithm

Outline

- MDPs without full model or with unknown model
 - a. Monte-Carlo methods
 - b. Temporal-Difference learning
- Seminar paper presentation

- Problem: we would like to estimate the value function of an unknown MDP under a given policy.
- The state-value function can be decomposed into immediate reward plus discounted value of successor state.

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

- Problem: we would like to estimate the value function of an unknown MDP under a given policy.
- The state-value function can be decomposed into immediate reward plus discounted value of successor state.

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

We can lump the stochastic policy and transition function under expectation.

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

Idea: use Monte-Carlo samples to estimate expected discounted future returns

$$v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

- Average returns observed after visits to s
 - a. The first time-step t that state s is visited in an episode,
 - b. Increment counter $N(s) \leftarrow N(s) + 1$
 - c. Increment total return $S(s) \leftarrow S(s) + Gt$
 - d. Value is estimated by mean return V(s) = S(s)/N(s)
- Monte-Carlo policy evaluation uses empirical mean return vs expected return

First-visit Monte Carlo policy evaluation

Initialize:

```
\pi \leftarrow \text{policy to be evaluated}
```

 $V \leftarrow$ an arbitrary state-value function

 $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

- (a) Generate an episode using π
- (b) For each state s appearing in the episode:

 $R \leftarrow$ return following the first occurrence of s

Append R to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Backup diagram for Monte-Carlo

- Entire episode included
- Only one choice at each state (unlike DP)
- MC does not bootstrap
- Time required to estimate one state does not on the total number of states

Off-policy MC method

• Use importance sampling for the difference in behaviour policy π vs control policy π

Suppose we have n_s returns, $R_i(s)$, from state s, each with probability $p_i(s)$ of being generated by π and probability $p_i'(s)$ of being generated by π' . Then we can estimate

$$V^{\pi}(s) \approx \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$

which depends on the environmental probabilities $p_i(s)$ and $p'_i(s)$. However,

$$p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}}^{a_k}$$

and

$$\frac{p_i(s_t)}{p_i'(s_t)} = \frac{\prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) \mathcal{P}_{s_k s_{k+1}}^{a_k}}{\prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) \mathcal{P}_{s_k s_{k+1}}^{a_k}} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}.$$

Thus the weight needed, $p_i(s)/p'_i(s)$, depends only on the two policies and not at all on the environmental dynamics.

Monte-Carlo vs Dynamic Programming

- Monte Carlo methods learn from complete sample returns
- Only defined for episodic tasks
- Monte Carlo methods learn directly from experience
 - a. On-line: No model necessary and still attains optimality
 - b. Simulated: No need for a full model
- MC uses the simplest possible idea: value = mean return
- Monte Carlo is most useful when
 - a. a model is not available
 - b. enormous state space

Monte-Carlo control

How to use MC to improve the control policy?

Monte-Carlo control

- How to use MC to improve the current control policy?
- MC estimate the value function of a given policy
- Run a variant of the policy iteration algorithms to improve the current behaviour

Policy improvement

Greedy policy improvement over V requires model of MDP

$$\pi'(s) = \operatorname*{argmax}_{s \in \mathcal{A}} \mathcal{R}^{\mathsf{a}}_{s} + \mathcal{P}^{\mathsf{a}}_{ss'} V(s')$$

Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$$

- MC methods provide an alternate policy evaluation process
- One issue to watch for:
 - a. maintaining sufficient exploration! exploring starts, soft policies
- No bootstrapping (as opposed to DP)

- Problem: learn $V\pi$ online from experience under policy π
- Incremental every-visit Monte-Carlo:
 - a. Update value V toward actual return G

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

b. But, only update the value **after** an entire episode

- Problem: learn $V\pi$ online from experience under policy π
- Incremental every-visit Monte-Carlo:
 - a. Update value V toward actual return G

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- b. But, only update the value **after** an entire episode
- Idea: update the value function using bootstrap
 - a. Update value V toward **estimated** return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- The simplest TD learning algorithm, TD(0)
- Update value V toward estimated return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- a. $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- b. $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is the TD error

TD Bootstraps and Samples

- Bootstrapping: update involves an estimate
 - a. MC does not bootstrap
 - b. TD bootstraps
 - c. DP bootstraps
- Sampling: update does not involve an expected value
 - a. MC samples
 - b. TD samples
 - c. DP does not sample

Backup diagram for TD(n)

• Look farther into the future when you do TD backup (1, 2, 3, ..., n steps)

Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
- You can learn before knowing the final outcome
 - a. TD can learn online after every step
 - b. MC must wait until end of episode before return is known
- You can learn without the final outcome
 - a. TD can learn from incomplete sequences
 - b. TD works in continuing (non-terminating) environments

TD vs MC Learning: bias/variance trade-off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ unbiased estimate of ∇T
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $V\pi$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $V\pi$
- TD target is much lower variance than the return:
 - a. Return depends on many random actions, transitions, rewards
 - b. TD target depends on one random action, transition, reward

TD vs MC Learning

TD and MC both converges, but which one is faster?

TD vs MC Learning

TD and MC both converges, but which one is faster?

TD vs MC Learning: bias/variance trade-off

- MC has high variance, zero bias
 - a. Good convergence properties
 - b. (even with function approximation)
 - c. Not very sensitive to initial value
 - d. Very simple to understand and use
- TD has low variance, some bias
 - a. Usually more efficient than MC
 - b. TD(0) converges to $V\pi$
 - c. (but not always with function approximation)

On-Policy TD control: Sarsa

 Turn TD learning into a control method by always updating the policy to be greedy with respect to the current estimate:

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., \epsilon-greedy)
Repeat (for each step of episode):
Take action a, observe r, s'
Choose a' from s' using policy derived from Q (e.g., \epsilon-greedy)
Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma Q(s', a') - Q(s, a) \right]
s \leftarrow s'; a \leftarrow a';
until s is terminal
```

Off-Policy TD control: Q-learning

One - step Q - learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$


```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)

Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
s \leftarrow s';
until s is terminal
```

TD Learning

- TD methods approximates DP solution by minimizing TD error
- Extend prediction to control by employing some form of policy iteration
 - a. On-policy control: Sarsa
 - b. Off-policy control: Q-learning
- TD methods bootstrap and sample, combining aspects of DP and MC methods

Dopamine Neurons and TD Error

Wolfram Schultz, Peter Dayan, P. Read Montague.

Neural Substrate of Prediction and Reward, 1992

Α

Summary

Questions

- What is common to all three classes of methods? DP, MC, TD
- What are the principle strengths and weaknesses of each?
- What are the principal things missing?
- What does the term bootstrapping refer to?
- What is the relationship between DP and learning?