Prawdopodobieństwo całkowite i warunkowe

Prawdopodobieństwo całkowite. Niech będzie dana przestrzeń probabilistyczna (Ω, Σ, P) oraz zdarzenia $A_1, A_2, A_n \in \Sigma$ spełniająca warunki: $P(A_i)>0$ dla każdego $i=1,...,n;\,A_i\cap A_j\neq\emptyset$ dla wszystkich $i\neq j;\,A_1\cup...A_n=\Omega$

Prawdopodobieństwo warunkowe: $P(B|A) = \frac{P(B \cap A)}{P(A)}$

Wtedy dla każdego zdarzenia $B \in \Sigma$ zachodzi następująca równość: $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$

Wzór Bayesa: $P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$

Niezależność zdarzeń: $P(A \cap B) = P(A) \cdot P(B), P(A_{k_1} \cap ... \cap A_{k_r}) = P(A_{k_1}) \cdot ... \cdot P(A_{k_r})$

Wartość oczekiwana i wariancja

Wartość oczekiwana dla rozkładu dyskretnego: $m = E(X) = \sum_{i=1}^{n} x_i p_i$, ciągłego: $m = E(X) = \int_{-\infty}^{\infty} x f(x) dx$

Wariancja: $\sigma^2 = D^2(X) = E((X-m)^2)$, odchylenie standardowe: $\sigma = \sqrt{\sigma^2} = \sqrt{D^2(X)}$

Wariancja dla rozkładu dyskretnego: $D^2(X) = \sum_{i=1}^n (x_i - m)^2 p_i$, dla rozkładu ciągłego: $D^2(X) = \int_{-\infty}^{\infty} (x - m)^2 f(x) dx$

Zmienne niezależne gdy dla dowolnych zdarzeń $B_1,...,B_k \in \Sigma$: $P(X_1 \in B_1,...,X_k \in B_k) = P(X_1 \in B_1) \cdot ... \cdot P(X_k \in B_k)$

Wartości własności i wariancji:

 $\text{jeżeli } X = const = c, \text{ to } E(X) = c; \quad E(aX) = aE(X) \forall a \in \mathbb{R}; \quad E(X+Y) + E(X) + E(Y); \quad D^2(X) + E(X^2) - E(X)^2; \quad D^2(aX) = a^2D^2(X) \forall a \in \mathbb{R}; \quad D^2(A) + D^2(A) = a^2D^2(A) \forall a \in \mathbb{R}; \quad D^2(A) = a^2D^2(A) \Rightarrow a^2D^2$ X = const = c to $D^2(X) = 0$;

jeżeli X i Y są niezależnymi zmiennymi losowymi, to $D^2(X+Y) = D^2(X) + D^2(Y)$

Rozkłady

Rozkład Bernouliego: $\binom{n}{k} p^k (1-p)^{n-k}$, m=np, $\sigma^2=np(1-p)$

Jeżeli $X \sim B(n,p)$ i $Y \sim B(m,p)$ są dwiema niezależnymi zmiennymi losowymi o rozkładzie dwumianowym, wtedy ich suma X+Y jest zmienną losową o rozkładzie dwumianowym B(n+m,p)

Rozkład Poissona $(m\geqslant 100 \land p\leqslant \frac{1}{10}): f(x)=\frac{e^{-\lambda}\lambda^k}{k!}, \ \lambda=np, \ m=\lambda, \ \sigma=\lambda$ Dla dwóch zmiennych losowych o rozkładzie Poissona z parametrami λ i μ suma tych zmiennych losowych ma rozkład Possiona o parametrze $\lambda+\mu$ Rozkład geometryczny: $p^k(1-p)^{n-k}, \ m=\frac{1}{p}, \ \sigma=\frac{1-p}{p^2}$

Rozkład jednostajny: $f(x) = \frac{1}{b-a}$ gdy $x \in [a,b], 0$ gdy $x \notin [a,b], F(x) = 0$ gdy x < a $\frac{x-a}{b-a}$ gdy $x \in [a,b]$ 1 gdy $x > b, m = \frac{a+b}{2}, \sigma = \frac{(b-a)^2}{12}$ Rozkład wykładniczy: $f(x) = \lambda e^{-\lambda x}$, $F(x) = 1 - e^{-\lambda x}$, $m = \frac{1}{\lambda}$, $\sigma = \frac{1}{\lambda^2}$

Rozkład normalny: $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x-\mu^2}{2\sigma^2}}$

Dla X bedącego zmienną losową o rozkładzie normalnym $N(m,\sigma)$ i Y=aX+b, gdzie $a\neq 0$ Y ma rozkład normalny $N(am+b,|a|\sigma)$

Dystrybuanta zmiennej losowej: $F(x) = F_X(x) = P_X((-\infty, x]) = P(X \in (-\infty, x])$.

Pochodna dystrybuanty to funkcja rozkładu: F'(x) = f(x)

Dystrybuanta jest niemalejąca, $\lim_{x\to-\infty}F(x)=0$, $\lim_{x\to\infty}F(x)=1$. Dla rozkładu dyskretnego: $F(x)=\sum_{i:x_i\leqslant x}p_i$

Centralne twierdzenie graniczne

Dla $S_n = X_1 + ... + X_n$, gdzie X_i to niezależne zmienne losowe z tym samym rozkładem, nadzieją m i wariancją σ^2 , $\sigma > 0$: $Z_n = \frac{S_n - E(S_n)}{\sqrt{D^2(S_n)}} = \frac{S_n - nm}{\sigma \sqrt{n}}$ - Z_n to standaryzacja sumy S_n , $E(Z_n) = 0$, $D^2(Z_n) = 1$

tw. Lindeberga-Levy'ego: $\forall x \in \mathbb{R} \lim_{n \to \infty} P(Z_n \leq x) = \Phi(x)$

Centralne twierdzenie graniczne dla sum: $\forall x \in \mathbb{R} \lim_{n \to \infty} (F_{S_n}(x) - \Phi_{nm,\sigma\sqrt{n}}(x)) = 0$ Centralne twierdzenie graniczne dla średnich: $\forall x \in \mathbb{R} \lim_{n \to \infty} (F_{\underline{S_n}}(x) - \Phi_{m,\frac{\sigma}{\sqrt{n}}}(x)) = 0$

tw. de Moivre'a-Laplace'a (gdy X_i to ciąg niezależnych prób Bernoullego z tym samym p): $\forall x \in \mathbb{R} \ P\left(\frac{S_n - np}{\sqrt{npq}} \leqslant x\right) \to \Phi(x)$

Przedziały ufności Estymacja Przedziałowa

Dla wartości oczekiwanej w rozkładzie normalnym ze znanym odchyleniem standardowym (na poziomie ufności $1-\alpha$):

 $(\bar{X} - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(1 - \frac{\alpha}{2}), \bar{X} + \frac{\sigma}{\sqrt{n}}\Phi^{-1}(1 - \frac{\alpha}{2})), (\infty, \bar{X} + \frac{\sigma}{\sqrt{n}}\Phi^{-1}(1 - \alpha)), (\bar{X} - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(1 - \alpha), \infty)$

Dla wartości oczekiwanej w rozkładzie normalnym z nieznanym odchyleniem standardowym: $(\bar{X}-\frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\frac{\alpha}{2}),\bar{X}+\frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\frac{\alpha}{2})),\,(-\infty,\bar{X}+\frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\alpha)),\,(\bar{X}-\frac{S}{\sqrt{n-1}}F_{t_{n-1}}^{-1}(1-\alpha),\infty),$

Dla frakcji. Próbka prosta $X_1, ..., X_n$ pochodzi z rozkładu dwupunktowego B(1, p). W przypadku. Dla próbki dużej (n > 30): $(\hat{p} - \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \Phi^{-1}(1-\frac{\alpha}{2}), \hat{p} + \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \Phi^{-1}(1-\frac{\alpha}{2})) , (0, \hat{p} + \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \Phi^{-1}(1-\alpha), (\hat{p} - \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}} \Phi^{-1}(1-\alpha), 1)$ Dla wariancji w rozkładzie normalnym z nieznaną wartością oczekiwaną: $(\frac{nS^2}{F^{-1}}, \frac{nS^2}{(1-\frac{\alpha}{2})}, \frac{nS^2}{F^{-1}}, \frac{(\alpha)}{2}), (0, \frac{nS^2}{F^{-1}}, \frac{(\alpha)}{2}), (0, \frac{nS^2}{F^{-1}}, \frac{(\alpha)}{2}))$

Przedziały ufności dla wartości oczekiwanej - uwagi. Jeżeli rodzina rozkładów nie jest znana oraz próbka jest duża $(n \geqslant 30)$, to konstruując przedziały ufności dla wartości oczekiwanej m możemy rozważyć zmienną losową $Z=\frac{X-m}{S}\sqrt{n}\approx N(0,1)$

Jeżeli natomiast próbka jest mała (n < 30) oraz pochodzi z rozkładu B(1,p) to konstruując przedział ufności dla p możemy rozważyć zmienną losową $K = \#\{i : X_i = 1\} \sim B(n, p)$

Wektor losowy

Wektor losowy: funkcja $X: \Omega \to \mathbb{R}^n \ (Y: \Omega \to \mathbb{R}^n)$ na przestrzeni (Ω, Σ, P) , rozkład wektora losowego $X: P_X(B) = P(X^{-1}(B) \ \text{dla} \ B \subset \mathbb{R}^n$. Dla $A_1 \subset \mathbb{R}^n A_2 \subset \mathbb{R}^m \colon P_X(A_1) = P_{(X,Y)}(A_1 \times \mathbb{R}^m) \text{ i } P_Y(A_2) = P_{(X,Y)}(\mathbb{R}^n \times A_2) \text{ są rozkładami brzegowymi, a } P_{(X,Y)} \text{ to rozkład łączny.}$

Niezależność wektorów losowych o rozkładach ciągłych $f_{(X,Y)}(x,y) = f_X(x) f_Y(y)$

dla $x \in \mathbb{R}^n, y \in \mathbb{R}^m, P_X(x) > 0, P_Y(y) > 0, f_X(x) > 0, f_Y(y) > 0$

Rozkłady warunkowe wektora losowego (dyskretny): $P_{X|Y=y}(B) = P(X \in B|Y=y) = \frac{P(X \in B, Y=y)}{P(Y=y)}$ dla $B \subset \mathbb{R}^n$

Rozkłady warunkowe wektora losowego (ciągłego): $f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_{Y}(x)}$ dla $y \in \mathbb{R}^m$ Warunkowa wartość oczekiwana: E(X|Y=y)

Regresja Liniowa

Model regresji liniowej: $Y_i = \alpha + \beta x_i + U_i$ dla i = 1,...,n,

Wyznaczenie estymatorów α i β MNK: wyznaczamy arg min $S(\alpha,\beta)$ dla $S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$, otrzymujemy $\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$ $\hat{\beta} = \frac{n\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$ $\hat{\alpha}$ i $\hat{\beta}$ są nieobciążone. Wyznaczenie estymatorów metodą największej wiarygodności dla błędów normalnych:

 $L(\alpha,\beta,\sigma^2) = f_1(y_1) \cdots f_n(y_n), \text{ gdzie } f_i(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(y-\alpha-\beta x_i)^2}{(2\sigma^2)}} \text{ dostajemy te same estymatory jak w MNK oraz } \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2 \text{ a także } E(\hat{\sigma^2}) = \frac{n-2}{n} \sigma^2$

Analiza wariancji (ANOVA)

Rozkład F(-Snedecora):

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach χ_p^2 i χ_q^2 .

Zatem $F = \frac{X/p}{Y/q}$ posiada rozkład F-Snedecora o (p,q) stopniach swobody, jeżeli T jest zmienną losową o rozkładzie t_q , to $T^2 \sim F_{1,q}$, $E(F) = \frac{q}{q-2}$

oraz $D^2(F)=\frac{2q^2(p+q-2)}{p(q-2)^2(q-4)}$ dla q>4 Jednoczynnikowa analiza wariancji:

 Mając k niezależnych próbek prostych: $X_{11},..,X_{1n_1},X_{21},..,X_{2n_2},...,X_{k1},..,X_{kn_k}$ które pochodzą z $N(m_1,\sigma),...,N(m_k,\sigma)$ testujemy hipotezę: $H_0: m_1 = m_2 = ... = m_k$ wobec $H_1:$ nie wszystkie wartości m_i są sobie równe. Do weryfikacji H_0 służy $f = \frac{MSTR}{MSE}$, $MSTR = \frac{1}{k-1}\sum_{i=1}^k n_i(\bar{x_i} - \bar{x})^2$, $MSE = \frac{1}{n-k} \sum_{i=1}^{k} n_i s_i^2$

 $n=\sum_{i=1}^k n_i, \ \bar{x_i}$ jest średnią arytmetyczną z i-tej próbki, s_i^2 jest wariancją z i-tej próbki, \bar{x} jest średnią arytmetyczną ze wszystkich obserwacji, która daje $F=F(X_{11},...,X_{kn_k})$ o rozkładzie F-Snedecora o (k-1,n-k) stopniach swobody.