CSC 470 COMPUTER GRAPHICS

Administrativia
Why OpenGL
Course outline/Syllabus
Grading
Other issues

Administrativia

- Instructor: Dr. Natacha Gueorguieva, 1N-205
- Office hours: M, W 1:15 pm-2:15 pm
- Books:
- Hearn D., Baker M., Carither W., Computer Graphics with OpenGL, 4/E, Prentice Hall, ISBN 10: 0 -13-605358-0, ISBN- 13: 978-0-13-605358-3, 2011
- Edward Angel, Interactive Computer Graphics: A Top-Down Approach Using OpenGL, 6/E, Pearson, ISBN-10: 013254523-3, ISBN-13
 978013254523-3
- Edward Angel, Interactive Computer Graphics: A Top-Down Approach Using OpenGL, 5/E, Pearson, ISBN-10: 0321535863, ISBN-13: 978 03215 35863
- Graham Sellers, Richard S Wright, Nicholas Haemel, OpenGL SuperBible: Comprehensive Tutorial and Reference, 6/E ed, Addison-Wesley, ISBN-13: 97803219 02948 ISBN-13: 9780321902948 2013
- Workload as usual a lot. Two projects, six-seven homeworks, 1 midterm, 1 Final, 1 PPT

What is OpenGL?

OpenGL is a computer graphics rendering API

- With it, you can generate high-quality color images by rendering with geometric and image primitives
- It forms the basis of many interactive applications that include 3D graphics
- By using OpenGL, the graphics part of your application can be
 - operating system independent
 - window system independent

What is OpenGL?

- A software API with many functions that allow communication with graphics hardware.
- Cross-platform
- Commonly used in many graphics applications
 - Games
 - CAD
 - Visualization

Why OpenGL?

- Cross platform
- Many companies use it (Raytheon, NUWC, Nvidia, etc.)
- Since OpenGL 3.1 a bit of a mess, but will work on it
- Latest version 4.5
- Managed by the Khronos Group
- Used in gaming, visual effects, movies, medicine, space and other simulators and research and many other

Design and limitations

- OpenGL was designed to produce reasonably looking 3D images quickly and simply.
 - A lot of its design is a rough approximation of how visual phenomena behave in the real world.
 - Meant to only handle rendering, nothing else.
 - So no window management, event-handling, etc.
 - Meant to abstract away graphics hardware into a standard, clean interface.

OpenGL is a state-based API

- Most functions manipulate global state.
- 3 types of functions:
 - Those that modify global state.
 - Those that query global state.
 - Those that cause something to be rendered.
 - e.g., glEnd or glDrawElements

The new OpenGL

- They enforce a new way to program with OpenGL
 - Allows more efficient use of GPU resources
- If you're familiar with "classic" graphics pipelines, modern OpenGL doesn't support
 - Fixed-function graphics operations
 - lighting
 - transformations
- All applications must use shaders for their graphics processing

OpenGL and Graphics

- Computer Graphics is about faking reality in a convincing manner.
- Or creating alternative reality.

Fake reality

Fake reality

Alternative reality

Computer Graphics is

- 3D modeling / geometry
- Simulation / animation / character animation
- Lighting / light transfer
- Textures and color
- Post processing / image processing
- Camera tricks / optics

Computer Graphics is

Scientific Visualization!

Illustration!

NPR / Art! Computational Photography!

Virtual Life!

Course outline/Syllabus

Introduction and Motivation

- Graphics history
- 2D and 3D graphics
- Graphics programming
- Graphics software and hardware systems

Graphics System Hardware

- Hardware, display devices, I/O peripherals
- Vector and raster graphics system
- Interaction techniques

Fundamental Mathematics and Geometry

- Basic mathematics relevant to graphics
- Coordinate systems
- · Points, lines, planes, and normals
- Triangles and polygons
- Geometric primitives
- Curves, and surfaces
- Solid and volumetric models
- 2D and 3D geometric transformation
- Parallel and perspective projection

Scene composition

- Coordinate system
- 2D and 3D geometric transformation
- Object hierarchies
- Viewing and clipping
- Parallel and perspective projection Object and image order rendering

Rendering

- Rendering pipeline
- Scan-conversion: lines and polygons
- Shading/lighting (illumination models)
 Visibility

Image-based techniques

- Sampling
- Filtering
- Anti-aliasing

Others

- Animation
- Transparency and shadows
- Texture mapping
- Ray tracing, radiosity
- Image-based rendering and modeling

Grading

- Projects 30%
- Homeworks + Exercises 20%
- Midterm exam 20%
- Final exam 20%
- PPT 10%
- Homeworks, Exercises, Projects and PPTs are assumed team assignments unless otherwise stated
- Exams are individual
- Cheating is bad you will not learn much, both of us will have to deal with paperwork, administration and expulsion – it is not worth it.

Basic Graphics System

Image formed in frame buffer

Computer Graphics: 1950-1960

- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters
 - Simple displays using A/D converters to go from computer to calligraphic CRT
- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Computer Graphics: 1960-1970

- Wireframe graphics
 - Draw only lines
- Sketchpad
- Display Processors
- Storage tube

wireframe representation of sun object

Computer Graphics: 1970-1980

- Raster Graphics
- Beginning of graphics standards
 - IFIPS
 - GKS: European effort
 - Becomes ISO 2D standard
 - Core: North American effort
 - 3D but fails to become ISO standard
- Workstations and PCs

Raster Graphics

 Image produced as an array (the raster) of picture elements (pixels) in the frame buffer

Raster Graphics

 Allows us to go from lines and wire frame images to filled polygons

Computer Graphics: 1980-1990

Realism comes to computer graphics

smooth shading

environment mapping

bump mapping

Computer Graphics: 1980-1990

- Special purpose hardware
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipeline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

- OpenGLAPI
- Completely computer-generated feature-length movies (Toy Story) are successful
- New hardware capabilities
 - Texture mapping
 - Blending
 - Accumulation, stencil buffers

Computer Graphics: 2000-2010

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave
- Programmable pipelines

Generic Flat Panel Display

Computer Graphics 2011-

- Graphics is now ubiquitous
 - Cell phones
 - Embedded
- OpenGL ES and WebGL
- Alternate and Enhanced Reality
- 3D Movies and TV

OpenGL pipeline history

- OpenGL 1.0 was released on July 1st, 1994
- Its pipeline was entirely fixed-function
 - the only operations available were fixed by the implementation

 The pipeline evolved, but remained fixed-function through OpenGL versions 1.1 through 2.0 (Sept. 2004)

OpenGL pipeline history

- OpenGL 2.0 (officially) added programmable shaders
 - vertex shading augmented the fixed-function transform and lighting stage
 - fragment shading augmented the fragment coloring stage
- However, the fixed-function pipeline was still available

OpenGL pipeline history

- OpenGL 3.0 introduced the deprecation model
 - the method used to remove features from OpenGL
- The pipeline remained the same until OpenGL 3.1 (released March 24th, 2009)
- Introduced a change in how OpenGL contexts are used

Context Type	Description	
Full	Includes all features (including those marked deprecated) available in the current version of OpenGL	
Forward Compatible	Includes all non-deprecated features (i.e., creates a context that would be similar to the next version of OpenGL)	

Exclusively programmable pipeline

- OpenGL 3.1 removed the fixed-function pipeline
 - programs were required to use only shaders

- Additionally, almost all data is GPU-resident
 - all vertex data sent using buffer objects

More programmability

 OpenGL 3.2 (released August 3rd, 2009) added an additional shading stage – geometry shaders

Context profiles

- OpenGL 3.2 also introduced context profiles
 - profiles control which features are exposed
 - currently two types of profiles: core and compatible

Context Type	Profile	Description
Full	core	All features of the current release
	compatible	All features ever in OpenGL
Forward Compatible	core	All non-deprecated features
	compatible	Not supported

Latest

 OpenGL 4.1 (released July 25th, 2010) included additional shading stages – tessellation-control and tessellation-evaluation shaders

OpenGL ES and WebGL

- OpenGL ES 2.0
 - Designed for embedded and hand-held devices such as cell phones
 - Based on OpenGL 3.1
 - Shader based
- WebGL
 - JavaScript implementation of ES 2.0
 - Runs on most recent browsers

CRT details

- Heating element (filament)
- Electrons pulled towards anode focusing cylinder
- Vertical and horizontal deflection plates
- Beam strikes phosphor coating on front of tube

Display technologies

- Cathode Ray Tubes (CRTs)
 - Most common display device today
 - Evacuated glass bottle
 - Extremely high voltage

Electron gun

- Contains a filament that, when heated, emits a stream of electrons
- Electrons are focused with an electromagnet into a sharp beam and directed to a specific point of the face of the picture tube
- The front surface of the picture tube is coated with small phospher dots
- When the beam hits a phospher dot it glows with a brightness proportional to the strength of the beam and how long it is hit

CRT characteristics

- •What is the largest (diagonal) CRT you have seen?
 - Why is that the largest?
 - Evacuated tube == massive glass
 - Symmetrical electron paths (corners vs. center)
- •How might one measure CRT capabilities?
 - Size of tube
 - Brightness of phosphers vs. darkness of tube
 - Speed of electron gun
 - Width of electron beam
 - Pixels?

- Vector Displays
 - Early computer displays: basically an oscilloscope
 - Control X,Y with vertical/horizontal plate voltage
 - Often used intensity as Z (close things were brighter)
- Name two disadvantages
- Just does wireframe
- Complex scenes cause visible flicker

Raster Displays

- Raster: A rectangular array of points or dots
- Pixel: One dot or picture element of the raster
- Scan line: A row of pixels

What is a pixel?

Wood chips Chrome spheres Trash

Daniel Rozin - NYU: (movies) http://fargo.itp.tsoa.nyu.edu/~danny/art.html

Raster Displays

- Black and white television: an oscilloscope with a fixed scan pattern: left to right, top to bottom
 - As beam sweeps across entire face of CRT, beam intensity changes to reflect brightness
- Analog signal vs. digital display

- •Can a computer display work like a black and white TV?
 - Must synchronize
 - Your program makes decisions about the intensity signal at the pace of the CPU...
 - The screen is "painted" at the pace of the electron gun scanning the raster
 - Solution: special memory to buffer image with scan-out synchronous to the raster. We call this the framebuffer.
 - Digital description to analog signal to digital display

Phosphers

- Fluorescence: Light emitted while the phospher is being struck by electrons
- Phosphorescence: Light emitted once the electron beam is removed
- Persistence: The time from the removal of the excitation to the moment when phosphorescence has decayed to 10% of the initial light output

Refresh

- Frame must be "refreshed" to draw new images
- As new pixels are struck by electron beam, others are decaying
- Electron beam must hit all pixels frequently to eliminate flicker
- Critical fusion frequency
 - Typically 60 times/sec
 - Varies with intensity, individuals, phospher persistence, lighting...

Interlaced Scanning

- Assume we can only scan all pixels of entire screen
 30 times / second
- To reduce flicker, divide frame into two "fields" of odd and even lines

1/30 Sec		1/30 Sec	
1/60 Sec	1/60 Sec	1/60 Sec	1/60 Sec
Field 1	Field 2	Field 1	Field 2
Frame		Frame	

CRT timing

- Scanning (left to right, top to bottom)
 - Vertical Sync Pulse: Signals the start of the next field
 - Vertical Retrace: Time needed to get from the bottom of the current field to the top of the next field
 - Horizontal Sync Pulse: Signals the start of the new scan line
 - Horizontal Retrace: The time needed to get from the end of the current scan line to the start of the next scan line

Display Technology: Color CRTs

- Color CRTs are much more complicated
 - Requires manufacturing very precise geometry
 - Uses a pattern of color phosphors on the screen:

Delta electron gun arrangement

In-line electron gun arrangement

Why red, green, and blue phosphors?

Display Technology: Color CRTs

- Color CRTs have
 - Three electron guns
 - A metal shadow mask to differentiate the beams

Display Technology: Raster

Raster CRT pros:

- Allows solids, not just wireframes
- Leverages low-cost CRT technology (i.e., TVs)
- Bright! Display emits light

Cons:

- Requires screen-size memory array
- Discreet sampling (pixels)
- Practical limit on size (call it 40 inches)
- Bulky
- Finicky (convergence, warp, etc)

CRTs – A Review

- Raster Displays (early 70s)
 - like television, scan all pixels in regular pattern
 - use frame buffer (video RAM) to eliminate sync problems
- RAM
 - ¼ MB (256 KB) cost \$2 million in 1971
 - Do some math...
 - 1280 x 1024 screen resolution = 1,310,720 pixels
 - Monochrome color (binary) requires 160 KB
 - High resolution color requires 5.2 MB

Movie Theaters

- U.S. film projectors play film at 24 fps
 - Projectors have a shutter to block light during frame advance
 - To reduce flicker, shutter opens twice for each frame resulting in 48 fps flashing
 - 48 fps is perceptually acceptable
- European film projectors play film at 25 fps
 - American films are played 'as is' in Europe, resulting in everything moving 4% faster
 - Faster movements and increased audio pitch are considered perceptually acceptable

Viewing Movies at Home

- Film to DVD transfer
 - Problem: 24 film fps must be converted to
 - NTSC U.S. television interlaced 29.97 fps 768x494
 - PAL Europe television 25 fps 752x582
- Use 3:2 Pulldown
 - First frame of movie is broken into first three fields (odd, even, odd)
 - Next frame of movie is broken into next two fields (even, odd)
 - Next frame of movie is broken into next three fields (even, odd, even)...

Display Technology: LCDs

- Liquid Crystal Displays (LCDs)
 - LCDs: organic molecules, naturally in crystalline state, that liquefy when excited by heat or E field
 - Crystalline state twists polarized light 90°.

Display Technology: LCDs

- Transmissive & reflective LCDs:
 - LCDs act as light valves, not light emitters, and thus rely on an external light source.
 - Laptop screen
 - backlit
 - transmissive display
 - Palm Pilot/Game Boy
 - reflective display

Display Technology: Plasma

- Plasma display panels
 - Similar in principle to fluorescent light tubes
 - Small gas-filled capsules are excited by electric field, emits UV light
 - UV excites phosphor
 - Phosphor relaxes, emits some other color

Display Technology

- Plasma Display Panel Pros
 - Large viewing angle
 - Good for large-format displays
 - Fairly bright

Cons

- Expensive
- Large pixels (~1 mm versus ~0.2 mm)
- Phosphors gradually deplete
- Less bright than CRTs, using more power

Images and Raster Graphics

- Real world is continuous (almost)
- How to represent images on a display?
- Raster graphics: use a bitmap with discrete pixels
- Raster scan CRT
- (paints image line by line)

- Cannot be resized without loss
- Compare to vector graphics
 - Resized arbitrarily. For drawings
 - But how to represent photos, CG?

Displays and Raster Devices

- CRT, flat panel, television (rect array of pixels)
- Printers (scanning: no physical grid but print ink)
- Digital cameras (grid light-sensitive pixels)
- Scanner (linear array of pixels swept across)
- Store image as 2D array (of RGB [sub-pixel] values)
 - In practice, there may be resolution mismatch, resize
 - Resize across platforms (phone, screen, large TV)
- Vector image: description of shapes (line, circle, ...)
 - E.g., line art such as in Adobe Illustrator
 - Resolution-Independent but must rasterize to display
 - Doesn't work well for photographs, complex images

Resolutions

- Size of grid (1920x1200 = 2,304,000 pixels)
 - 32 bit of memory for RGBA framebuffer 8+ MB
- For printers, pixel density (300 dpi or ppi)
 - Printers often binary or CMYK, require finer grid
 - iPhone "retina display" > 300 dpi. At 12 inches, pixels closer than retina's ability to distinguish angles
- Digital cameras in Mega-Pixels (often > 10 MP)
 - Color filter array (Bayer Mosaic)
 - Pixels really small (micron)

Monitor Intensities

- Intensity usually stored with 8 bits [0...255]
- HDR can be 16 bits or more [0...65535]
- Resolution-independent use [0...1] intermediate
- Monitor takes input value [0...1] outputs intensity
 - Non-zero intensity for 0, black level even when off
 - 1.0 is maximum intensity (output 1.0/0.0 is contrast)
 - Non-linear response (as is human perception)
 - 0.5 may map to 0.25 times the response of 1.0
 - Gamma characterization and gamma correction
 - Some history from CRT physics and exponential forms