

Point-wise models in MFront

DE LA RECHERCHE À L'INDUSTRIE

MFront training course

Septembre 2022

Thomas Helfer, Maxence Wangermez

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Introduction

▶ Point-wise models (swelling due to solid or gaseous fission products, phase transition, chemical reactions) describes the local evolution of a set of *internal state variables* $(y_j)_{j \in [1:n_y]}$ due to the evolution local thermodynamic environment described by a set of *external state variables* $(z_j)_{i \in [1:n_x]}$.

- ▶ Point-wise models (swelling due to solid or gaseous fission products, phase transition, chemical reactions) describes the local evolution of a set of *internal state variables* $(y_j)_{j \in [1:n_y]}$ due to the evolution local thermodynamic environment described by a set of *external state variables* $(z_j)_{j \in [1:n_y]}$.
- ▶ Up to a certain extent, point-wise models may also be used to describe the evolution of a structure :
 - Oxidation of Zircaloy pipes.

- ▶ Point-wise models (swelling due to solid or gaseous fission products, phase transition, chemical reactions) describes the local evolution of a set of *internal state variables* $(y_j)_{j \in [1:n_y]}$ due to the evolution local thermodynamic environment described by a set of *external state variables* $(z_j)_{j \in [1:n_z]}$.
- ▶ Up to a certain extent, point-wise models may also be used to describe the evolution of a structure :
 - Oxidation of Zircaloy pipes.
- Point-wise models can be seen as a simpliest case of generic behaviours:
 - No thermodynamic force nor consistent tangent operator.

- ▶ Point-wise models (swelling due to solid or gaseous fission products, phase transition, chemical reactions) describes the local evolution of a set of *internal state variables* $(y_j)_{j \in [1:n_y]}$ due to the evolution local thermodynamic environment described by a set of *external state variables* $(z_j)_{j \in [1:n_z]}$.
- ▶ Up to a certain extent, point-wise models may also be used to describe the evolution of a structure :
 - Oxidation of Zircaloy pipes.
- ▶ Point-wise models can be seen as a simpliest case of generic behaviours :
 - **—** No thermodynamic force nor consistent tangent operator.
- ▶ Point-wise models can be used :
 - directly (in a PLEIADES application, in MTest or in MGIS) or used a build are a building block for models
 - as a building block for behaviours.

Evolution of internal state variables, notations

► The *internal state variables* $(y_j)_{j \in [1:n_v]}$ are packed in a vector \vec{Y} :

$$\vec{Y} = \begin{pmatrix} y_1 & \dots & y_{n_y} \end{pmatrix}^T$$

- Note that this notation does not make any assumption on tensorial nature of the state variable y_j that may a scalar, a symmetric tensor, an unsymmetric tensor, etc...

Evolution of internal state variables, notations

► The *internal state variables* $(y_j)_{j \in [1:n_v]}$ are packed in a vector \vec{Y} :

$$\vec{Y} = \begin{pmatrix} y_1 & \dots & y_{n_y} \end{pmatrix}^T$$

- Note that this notation does not make any assumption on tensorial nature of the state variable y_j that may a scalar, a symmetric tensor, an unsymmetric tensor, etc...
- ▶ The external state variables $(z_j)_{j \in [1:n_2]}$ packed in a vector \vec{Z} :

$$\vec{Z} = \begin{pmatrix} z_1 & \dots & z_{n_z} \end{pmatrix}^T$$

Evolution of internal state variables, notations

► The *internal state variables* $(y_j)_{j \in [1:n_v]}$ are packed in a vector \vec{Y} :

$$\vec{Y} = \begin{pmatrix} y_1 & \dots & y_{n_y} \end{pmatrix}^T$$

- Note that this notation does not make any assumption on tensorial nature of the state variable y_j that may a scalar, a symmetric tensor, an unsymmetric tensor, etc...
- ▶ The external state variables $(z_j)_{j \in [1:n_z]}$ packed in a vector \vec{Z} :

$$\vec{Z} = \begin{pmatrix} z_1 & \dots & z_{n_z} \end{pmatrix}^T$$

► The evolution of the internal state variables \vec{Y} is assumed to obey a standard first-order ordinary differential equation (ODE) given by :

$$\vec{Y} = \frac{d\vec{Y}}{d\tau} = \vec{G}(\vec{Y}(\tau), \vec{Z}(\tau))$$

where τ denotes the time variable.

Time discretization, notations

- ► Time is discretized in intervals named time steps.
 - t denotes the time at the beginning of the (considered) time step.
 - $-\Delta t$ is the time increment during the time step.
 - $-t + \Delta t$ corresponds to the time at the end of the step.

Time discretization, notations

- ► Time is discretized in intervals named time steps.
 - **–** *t* denotes the time at the beginning of the (considered) time step.
 - $-\Delta t$ is the time increment during the time step.
 - **–** $t + \Delta t$ corresponds to the time at the end of the step.
- Models in MFront assumes that the values of the external state variables at the beginning of the time step, denoted $\vec{Z}\Big|_t$ and their increments during the time step, denoted $\Delta \vec{Z}$, are known.
 - Since only $\vec{Z}\Big|_t$ and $\Delta \vec{Z}$ are known, the evolution of \vec{Z} during the time step can only be described using a linear interpolation :

$$\left. \vec{Z} \right|_{t+\theta \, \Delta \, t} = \left. \vec{Z} \right|_{t} + \theta \, \Delta \, \vec{Z}$$

where θ is a number in the range [0, 1]

 This assumption generally implies that high order algorithms are generally useless.

Domain specific languages related to models

▶ The Model DSL is historically the first DSL dedicated to models.

Domain specific languages related to models

- ▶ The Model DSL is historically the first DSL dedicated to models.
- ▶ The DefaultModel, the RungeKuttaModel and the ImplicitModel have been introduced in recent versions of MFront as a consequence of the work on generic behaviours.
 - Those DSLs are much more powerful than the Model DSL.
 - Their conventions are more consistent with the rest of MFront.
 - Alas, there is no interface for the PLEIADES architecture nor licos yet.

A simple chemical reaction

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

➤ To illustrate the implementation of models with 'MFront', let us consider a system of two chemical species A and B whose evolution is given by the following reaction:

$$A \stackrel{k_1}{\rightleftharpoons} B$$

➤ To illustrate the implementation of models with 'MFront', let us consider a system of two chemical species A and B whose evolution is given by the following reaction:

$$A \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} B$$

▶ The molar concentrations [A] and [B] thus satisfies :

$$\begin{cases} \frac{d[A]}{d\tau} = k_2[B](\tau) - k_1[A](\tau) \\ \frac{d[B]}{d\tau} = k_1[A](\tau) - k_2[B](\tau) \end{cases}$$

➤ To illustrate the implementation of models with 'MFront', let us consider a system of two chemical species A and B whose evolution is given by the following reaction:

$$A \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} B$$

▶ The molar concentrations [A] and [B] thus satisfies :

$$\begin{cases} \frac{d[A]}{d\tau} = k_2[B](\tau) - k_1[A](\tau) \\ \frac{d[B]}{d\tau} = k_1[A](\tau) - k_2[B](\tau) \end{cases}$$

ightharpoonup [A] + [B] is constant (conservation of mass).

➤ To illustrate the implementation of models with 'MFront', let us consider a system of two chemical species A and B whose evolution is given by the following reaction:

$$A \stackrel{k_1}{\underset{k_2}{\rightleftharpoons}} B$$

▶ The molar concentrations [A] and [B] thus satisfies :

$$\begin{cases} \frac{d[A]}{d\tau} = k_2[B](\tau) - k_1[A](\tau) \\ \frac{d[B]}{d\tau} = k_1[A](\tau) - k_2[B](\tau) \end{cases}$$

- ▶ [A] + [B] is constant (*conservation of mass*).
- ► Hence, the evolution of the system is driven by the following condensed equation :

$$\frac{d[A]}{d\tau} = k_2([A]|_t + [B]|_t) - (k_1 + k_2)[A](\tau)$$

mentation with the Model DSL. First tests

Constant reaction rate coefficients

Reaction rate coefficients	Value
k ₁	$\frac{1}{60} s^{-1}$
k ₂	$\frac{1}{120} s^{-1}$

▶ If the reaction rate coefficients k_1 and k_2 are assumed constant, a closed formed solution is given by :

$$[A]|_{t+\Delta t} = \frac{B}{K} + \left(\frac{K [A]|_{t} - B}{K}\right) \exp\left(-K \Delta t\right)$$

with:
$$B = k_2 ([A]|_t + [B]|_t)$$
 and $K = k_1 + k_2$.

A first implementation

```
@DSL Model:
@Model ChemicalReaction1:
@Author Thomas Helfer:
@Date 09/07/2022:
@UseQt true;
@UnitSystem SI:
//! molar concentration of species A
@StateVariable quantity<real, 0, 0, 0, 0, 0, 1> ca:
ca.setEntryName("MolarConcentrationOfSpeciesA");
ca.setDepth(1);
//! molar concentration of species B
@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 1> cb;
cb.setEntryName("MolarConcentrationOfSpeciesB");
cb.setDepth(1);
//! rate coefficient of the reaction transforming species A to species B
k1.setEntryName("ReactionRateCoefficientAB");
//! rate coefficient of the reaction transforming species B to species A
@Parameter frequency k2 = 0.0083333333333333333;
k2.setEntryName("ReactionRateCoefficientBA"):
@Function ChemicalReaction {
 const auto B = k2 * (ca 1 + cb 1);
 const auto K = k1 + k2
 const auto e = \exp(-K * dt);
 ca = ca \ 1 * e + (B / K) * (1 - e);
 cb = ca 1 + cb 1 - ca:
```


//! molar concentration of species A

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> ca; ca.setEntryName("MolarConcentrationOfSpeciesA"); ca.setDepth(1);

//! molar concentration of species B

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> cb; cb.setEntryName("MolarConcentrationOfSpeciesB"); cb.setDepth(1);

▶ @StateVariable (or equivalently @Output) declares new **scalar** state variables.

//! molar concentration of species A

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> ca; ca.setEntryName("MolarConcentrationOfSpeciesA"); ca.setDepth(1);

//! molar concentration of species B

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> cb; cb.setEntryName("MolarConcentrationOfSpeciesB"); cb.setDepth(1);

- @StateVariable (or equivalently @Output) declares new scalar state variables.
- ► The depth of a state variable x has the following meaning:
 - **–** 0 : only $x|_{t+\Delta t}$, is available and associated with a variable named x.
 - = 1 : $x|_t$ is associated with the variable $\mathbf{x}_{-}1$ and $x|_{t+\Delta t}$ is associated with the variable \mathbf{x}_{-} .
 - higher values are hardly ever been used and highly discouraged.

//! molar concentration of species A

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> ca; ca.setEntryName("MolarConcentrationOfSpeciesA"); ca.setDepth(1);

//! molar concentration of species B

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> cb; cb.setEntryName("MolarConcentrationOfSpeciesB"); cb.setDepth(1);

- @StateVariable (or equivalently @Output) declares new scalar state variables.
- ightharpoonup The depth of a state variable x has the following meaning:
 - **–** 0 : only $x|_{t+\Delta t'}$ is available and associated with a variable named x.
 - = 1 : $x|_t$ is associated with the variable x_1 and $x|_{t+\Delta t}$ is associated with the variable x.
 - higher values are hardly ever been used and highly discouraged.
- ► The quantity type allows to define new quantities. Its integer template parameters have the following meaning in SI:

$$kg^{i_1} m^{i_2} s^{i_3} A^{i_4} K^{i_5} cd^{i_6} mol^{i_7}$$

//! molar concentration of species A

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> ca; ca.setEntryName("MolarConcentrationOfSpeciesA"); ca.setDepth(1);

//! molar concentration of species B

@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 0, 1> cb; cb.setEntryName("MolarConcentrationOfSpeciesB"); cb.setDepth(1);

- @StateVariable (or equivalently @Output) declares new scalar state variables.
- ightharpoonup The depth of a state variable x has the following meaning:
 - **–** 0 : only $x|_{t+\Delta t}$, is available and associated with a variable named x.
 - 1 : $x|_t$ is associated with the variable x_1 and $x|_{t+\Delta t}$ is associated with the variable x.
 - higher values are hardly ever been used and highly discouraged.
- ► The quantity type allows to define new quantities. Its integer template parameters have the following meaning in SI:

$$kg^{i_1} m^{i_2} s^{i_3} A^{i_4} K^{i_5} cd^{i_6} mol^{i_7}$$

▶ Variables can be documented using a doxygen-like syntax.

The @Function keyword

```
@Function ChemicalReaction {
    const auto B = k2 * (ca_1 + cb_1);
    const auto K = k1 + k2;
    const auto e = exp(- K * dt);
    ca = ca_1 * e + (B / K) * (1 - e);
    cb = ca_1 + cb_1 - ca;
}
```

- Several functions can be defined, although this feature has hardly been used in pratice. It is highly recommended to define only one function per model.
 - The '@Integrator' keyword has been introducted in Version 4.1 for consistency with behaviours and does not expect a function name;
- ▶ The implementation readily translates the analytical formula in C++ :

$$[A]|_{t+\Delta t} = \frac{B}{K} + \left(\frac{K [A]|_t - B}{K}\right) \exp(-K \Delta t)$$

with:
$$B = k_2 ([A]|_t + [B]|_t)$$
 and $K = k_1 + k_2$.

Compilation and testing with MTest

▶ mfront --obuild --interface=generic ChemicalReaction1.mfront

Compilation and testing with MTest

- ▶ mfront --obuild --interface=generic ChemicalReaction1.mfront
- ▶ mtest ChemicalReaction1.mtest

Compilation and testing with MTest

- ▶ mfront --obuild --interface=generic ChemicalReaction1.mfront
- mtest ChemicalReaction1.mtest
- ► MTest generates a file named ChemicalReaction1.res which contains the evolution of the state variables as a function of time.

Results of the first test

FIGURE – Evolution of the molar concentrations of species [A] and [B].

▶ tplot "ChemicalReaction1.res" -u 1:2 -title="Species
A" "ChemicalReaction1.res" -u 1:3 -title="Species
B" -with-grid -xlabel="Time (s)" -ylabel="Molar

Adding unit tests

```
// loading the model
@Model 'src/libModel.so' 'ChemicalReaction1':
// initial value of the molar concentration of species B
@Real 'B0' 0.1:
@StateVariable 'MolarConcentrationOfSpeciesB' 'B0':
// time discretization
@Times {
 0, 360 in 100
// some useful variables
@Real 'k1' 'ChemicalReaction1::ReactionRateCoefficientAB':
@Real 'k2' 'ChemicalReaction1::ReactionRateCoefficientBA':
@Real 'K' 'k1 + k2':
@Real 'B' 'k2 * B0';
// unit tests
@Test<function>'MolarConcentrationOfSpeciesA''(B/K) * (1 - \exp(-K * t))' 1e-14:
@Test<function>'MolarConcentrationOfSpeciesB' 'B0 - (B/K) * (1 - exp(-K * t))' 1e-14;
```

▶ Unit tests can be defined using analytical solutions or reference files.

Using the MTest Python module

```
import std import fel. tests import mest. WerboseLevel. VERBOSE_QUIET)

m = mtest.MTest()
m.setAuthor("Thomas Helfer")
m.setDate("09/08/2022")
m.setModel("generic", 'src/libModel.so', 'ChemicalReaction1')
m.setStateVariableInitialValue("MolarConcentrationOfSpeciesB", 0.1)
m.setStateVariableInitialValue("MolarConcentrationOfSpeciesB", 0.1)
m.setTimes([3.6 * i for i in range(0, 100]))
output_file = "ChemicalReaction1—python.res".format(k1)
m.setOutputFileName(output_file)
m.exectUef)
```

► The MTest Python module can be used to identify models using the LDC-OD component.

Parametric studies with the MTest Python module

```
import std
import tfel.tests
import mtest
mtest.setVerboseMode(mtest.VerboseLevel.VERBOSE QUIET)
0.004166666666666667, 0.033333333333333333333
         0.06666666666666667]:
   m = mtest, MTest()
   m.setAuthor("Thomas Helfer")
   m.setDate("09/08/2022")
   m.setModel('generic', 'src/libModel.so', 'ChemicalReaction1')
   m.setStateVariableInitialValue('MolarConcentrationOfSpeciesB', 0.1)
   m.setParameter('ReactionRateCoefficientAB', float(k1))
   m.setTimes([3.6 * i for i in range(0, 100)])
   output_file = "ChemicalReaction1 - python - parametric - {}.res".format(k1)
   m.setOutputFileName(output file)
   m.execute()
```

► See the MFront' book to see how to perform parametric studies in bash

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Reaction rate coefficients as functions of the temperature

Material properties	Value
k ₁₀	0.018377505387559667 s ⁻¹
k ₂₀	0.01013198112809354 s ⁻¹
T_{a1}	3000 K ⁻¹
$T_{\alpha 2}$	1500 K ⁻¹

▶ The reaction rate coefficients k_1 and k_2 are now assumed to depend on the temperature following the Arrhenius law, as follows:

$$\begin{cases} k_1 = k_{10} \exp\left(-\frac{T}{T_{a1}}\right) \\ k_2 = k_{20} \exp\left(-\frac{T}{T_{a2}}\right) \end{cases}$$

where k_{10} , T_{a1} , k_{20} and T_{a2} are material coefficients.

Numerical schemes

- No closed-form solution exists.
- ► The ordinary differential equation can be integrated over the time step as follows :

$$\Delta \vec{Y} = \int_{t}^{t+\theta \Delta t} \vec{G}\left(\vec{Y}(\tau), \vec{Z}(\tau)\right) d\tau$$

- ► Various numerical schemes can be built by approximating the integral on the right hand side. In this tutorial, we consider:
 - The trapezoidal rule
 - The generalized mid-point rule

cea

Code factorization

▶ All the implementations based on the Model DSL will share the same internal state variables, the same external state variable (the temperature) and the same parameters.

Code factorization

- ➤ All the implementations based on the Model DSL will share the same internal state variables, the same external state variable (the temperature) and the same parameters.
- ▶ Moreover, the parameters' declaration can be shared between all DSLs.

Code factorization

- ► All the implementations based on the Model DSL will share the same internal state variables, the same external state variable (the temperature) and the same parameters.
- Moreover, the parameters' declaration can be shared between all DSLs.
- ▶ It is thus convenient to factorize their declaration in two auxiliary files :
 - ChemicalReaction-parameters.mfront which contains the declaration of the parameters. This file can be imported by all DSLs.
 - ChemicalReaction-common.mfront contains the declaration of the internal state variables and the external state variable and imports the ChemicalReaction-parameters.mfront file. This file is only compatible with the Model DSL.

Code factorization

- ➤ All the implementations based on the Model DSL will share the same internal state variables, the same external state variable (the temperature) and the same parameters.
- ▶ Moreover, the parameters' declaration can be shared between all DSLs.
- ▶ It is thus convenient to factorize their declaration in two auxiliary files :
 - ChemicalReaction-parameters.mfront which contains the declaration of the parameters. This file can be imported by all DSLs.
 - ChemicalReaction-common.mfront contains the declaration of the internal state variables and the external state variable and imports the ChemicalReaction-parameters.mfront file. This file is only compatible with the Model DSL.
- ► The ChemicalReaction-common.mfront file can be imported by the @Import keyword, as follows:

@Import "ChemicalReaction - common.mfront";

The ChemicalReaction-common.mfront file

```
@UseQt true;
@UnitSystem SI;

//! molar concentration of species A
@StateVariable quantity-real, 0, 0, 0, 0, 0, 1 > ca;
ca.setEntryName("MolarConcentrationOfSpeciesA");
ca.setDepth(1);

//! molar concentration of species B
@StateVariable quantity-real, 0, 0, 0, 0, 0, 0, 1 > cb;
cb.setEntryName("MolarConcentrationOfSpeciesB");
cb.setDepth(1);

@ExternalStateVariable temperature T;
T.setGlossaryName("Temperature");
T.setDepth(1);

@Import "ChemicalReaction—parameters.mfront";
```


The ChemicalReaction-parameters.mfront file

```
//! reference rate coefficient of the reaction transforming species A to species B
```

@Parameter frequency k01 = 0.018377505387559667;

k01.setEntryName("ReferenceReactionRateCoefficientAB");

//! reference rate coefficient of the reaction transforming species B to species A

@Parameter frequency k02 = 0.01013198112809354;

k02.setEntryName("ReferenceReactionRateCoefficientBA");

//! activation temperature reaction transforming species B to species A

@Parameter temperature Ta1 = 3000;

Ta1.setEntryName("ActivationTemperatureAB");

//! activation temperature reaction transforming species B to species A

@Parameter temperature Ta2 = 1500;

Ta2.setEntryName("ActivationTemperatureBA");

Trapezoidal rule

► The integral on the right hand size can be approximated by the trapezoidal rule as follows :

$$\Delta \vec{Y} \approx \frac{\Delta t}{2} \left(\vec{G} \left(\vec{Y} (t), \vec{Z} (t) \right) + \vec{G} \left(\vec{Y} (t + \Delta t), \vec{Z} (t + \Delta t) \right) \right)$$

Trapezoidal rule

► The integral on the right hand size can be approximated by the trapezoidal rule as follows :

$$\Delta \vec{Y} \approx \frac{\Delta t}{2} \left(\vec{G} \left(\vec{Y} \left(t \right), \vec{Z} \left(t \right) \right) + \vec{G} \left(\vec{Y} \left(t + \Delta t \right), \vec{Z} \left(t + \Delta t \right) \right) \right)$$

▶ Applied to the chemical reaction example, this scheme leads to the approximation of the increment Δ [A]:

$$\Delta [A] = \frac{B}{1 + K}$$

where:

$$-B = \Delta t \left(\langle k_2 \rangle \left[B \right] \right|_t - \langle k_1 \rangle \left[A \right] \right|_t \right) \text{ with } \begin{cases} \langle k_1 \rangle = \frac{k_1 \left(T \right|_{t+\Delta t} \right) + k_1 \left(T \right|_t \right)}{2} \\ \langle k_2 \rangle = \frac{k_2 \left(T \right|_{t+\Delta t} \right) + k_2 \left(T \right|_t \right)}{2} \end{cases}$$

$$- K = \frac{\Delta t}{2} \left(k_1 \left(T|_{t+\Delta t} \right) + k_2 \left(T|_{t+\Delta t} \right) \right).$$

Trapezoidal rule

► The integral on the right hand size can be approximated by the trapezoidal rule as follows :

$$\Delta \vec{Y} \approx \frac{\Delta t}{2} \left(\vec{G} \left(\vec{Y} \left(t \right), \vec{Z} \left(t \right) \right) + \vec{G} \left(\vec{Y} \left(t + \Delta t \right), \vec{Z} \left(t + \Delta t \right) \right) \right)$$

▶ Applied to the chemical reaction example, this scheme leads to the approximation of the increment Δ [A]:

$$\Delta [A] = \frac{B}{1 + K}$$

where:

$$-B = \Delta t \left(\langle k_2 \rangle \left[B \right] |_t - \langle k_1 \rangle \left[A \right] |_t \right) \text{ with } \begin{cases} \langle k_1 \rangle = \frac{k_1 \left(T |_{t+\Delta t} \right) + k_1 \left(T |_t \right)}{2} \\ \langle k_2 \rangle = \frac{k_2 \left(T |_{t+\Delta t} \right) + k_2 \left(T |_t \right)}{2} \end{cases}$$

$$- K = \frac{\Delta t}{2} \left(k_1 \left(T|_{t+\Delta t} \right) + k_2 \left(T|_{t+\Delta t} \right) \right).$$

▶ This closed-form expression of Δ [A] is due to the linear nature of the function \vec{G} .

Implementation using the trapezoidal rule

```
@DSL Model:
@Model ChemicalReaction2:
@Author Thomas Helfer;
@Date 09/07/2022:
@Import "ChemicalReaction - common.mfront";
@Function ChemicalReaction {
 constexpr auto zero = quantity<real, 0, 0, 0, 0, 0, 0, 1>{};
 const auto k1 bts = k01 * exp(-T 1 / Ta1);
 const auto k1 ets = k01 * exp(-T/Ta1):
 const auto k2_bts = k02 * exp(-T_1 / Ta2);
 const auto k2 \text{ ets} = k02 * \exp(-T / Ta2);
 const auto mean k1 = (k1 bts + k1 ets) / 2;
 const auto mean_k2 = (k2_bts + k2_ets) / 2;
 const auto B = dt * (mean k2 * cb 1 - mean k1 * ca 1);
 const auto K = dt * (k1 ets + k2 ets) / 2;
 ca = ca 1 + B / (1 + K):
 cb = ca 1 + cb 1 - ca:
 if (cb < zero) {
   cb = zero:
   ca = ca 1 + cb 1:
 if (ca < zero) {
   ca = zero:
   cb = ca 1 + cb 1;
```


The generalized midpoint rule

► The general ordinary differential equation can be integrated over the time step using the generalized midpoint rule as follows :

$$\Delta \vec{Y} \approx \Delta t \vec{G} \left(\vec{Y} \Big|_{t+\theta \Delta t}, \vec{Z} \Big|_{t+\theta \Delta t} \right)$$

where θ is a numerical parameter between 0 and 1.

The generalized midpoint rule

► The general ordinary differential equation can be integrated over the time step using the generalized midpoint rule as follows:

$$\Delta \vec{Y} \approx \Delta t \vec{G} \left(\vec{Y} \Big|_{t+\theta \Delta t}, \vec{Z} \Big|_{t+\theta \Delta t} \right)$$

where θ is a numerical parameter between 0 and 1.

▶ Applied to the chemical reaction example, this scheme leads to the approximation of the increment Δ [A]:

$$\Delta [A] = \frac{B}{1 + \theta K}$$

with
$$\begin{cases} B = \Delta t \left(k_2 \left(T|_{t+\theta \Delta t} \right) \left[B \right] |_t - k_1 \left(T|_{t+\theta \Delta t} \right) \left[A \right] |_t \right) \\ K = \Delta t \ k_1 \left(T|_{t+\theta \Delta t} \right) \end{cases}$$

Implementation using the midpoint rule

```
@DSL Model:
@Model ChemicalReaction3:
@Author Thomas Helfer:
@Date 09/07/2022:
@Import "ChemicalReaction—common.mfront":
//! numerical parameter of the generalized mid—point rule
@Parameter real theta = 0.5:
theta.setEntrvName("Theta"):
@Function ChemicalReaction {
 constexpr auto zero = quantity<real, 0, 0, 0, 0, 0, 0, 1>{};
 const auto T mts = T 1 * (1 - \text{theta}) + \text{theta} * T;
 const auto k1 mts = k01 * exp(-T mts / Ta1);
 const auto k2 mts = k02 * exp(-T mts / Ta2):
 const auto B = dt * (k2 mts * cb 1 - k1 mts * ca 1);
 const auto K = dt * (k1 mts + k2 mts);
 ca = ca 1 + B / (1 + K * theta):
 cb = ca 1 + cb 1 - ca:
 // imposing positivity of the molar concentrations
 if (cb < zero){
   cb = zero:
   ca = ca 1 + cb 1;
 if (ca < zero){
   ca = zero:
   cb = ca 1 + cb 1;
```


A third scheme

- ▶ If the temperature increment is assumed small over a time step, an interesting scheme is to resuse the first one and evaluate the rate coefficients k_1 and k_2 at the middle of the time step $t + \frac{\Delta t}{2}$.
- ► The advantage of this implementation is that the exact solution is retrieved if the temperature is constant.

Implementation of the third scheme

```
@DSL Model;
@Model ChemicalReaction4;
@Author Thomas Helfer;
@Date 09/07/2022;

@Import "ChemicalReaction—common.mfront";

@Function ChemicalReaction {
    const auto T_mts = (T_1 + T) / 2;
    const auto k1_mts = k01 * exp(-T_mts / Ta1);
    const auto k2_mts = k02 * exp(-T_mts / Ta2);
    const auto B = k2_mts * (ca_1 + cb_1);
    const auto K = k1_mts + k2_mts;
    const auto e = exp(-K * dt);
    ca = ca_1 * e + (B / K) * (1 - e);
    cb = ca_1 + cb_1 - ca;
```

```
@Author Thomas Helfer;
@Date 09/08/2022;
@Model 'src/libModel.so' 'ChemicalReaction2';

@Real 'B0' 0.1;

@StateVariable 'MolarConcentrationOfSpeciesB' 'B0';

@Real T0' 700;
@Real T1' 400;
@Real 'tau0' 30;
@Exel 'tau0' 30;
@ExternalStateVariable<function> Temperature' T0 + T1 * sin(t/tau0)';

@Times {
0, 200 in 100, 720 in 20
};
```

► The temperature is a periodic function of time with a period shorter than the relaxation time of the chemical reaction.

The DefaultModel DSL

First implementation

```
@DSL DefaultModel:
@Model ChemicalReaction5:
@Author Thomas Helfer:
@Date 09/07/2022:
@UseQt true;
@UnitSystem SI:
//! molar concentration of species A
@AuxiliaryStateVariable quantity<real, 0, 0, 0, 0, 0, 1> ca;
ca.setEntryName("MolarConcentrationOfSpeciesA");
//! molar concentration of species B
@AuxiliaryStateVariable quantity<real, 0, 0, 0, 0, 0, 1> cb;
cb.setEntrvName("MolarConcentrationOfSpeciesB");
@Import "ChemicalReaction - parameters.mfront";
@Integrator{
 const auto T mts = T + dT / 2;
 const auto k1 mts = k01 * exp(-T mts / Ta1);
 const auto k2 mts = k02 * exp(-T mts / Ta2):
 const auto B = k2 \text{ mts} * (ca + cb);
 const auto K = k1 mts + k2 mts;
 const auto e = \exp(-K * dt):
 const auto sum = ca + cb:
 ca = ca * e + (B / K) * (1 - e);
 cb = sum - ca:
```

Improvements

► A priori time step scaling factor

Improvements

- ► A priori time step scaling factor
- ► A posterior time step scaling factor

Oxidation of pipes of Zircaloy alloys

 Many models of the litterature describing the oxidation of pipes made of Zircaloy alloys at constant temperature takes the following form:

$$I_0^2\left(\tau\right) = K\left(T\right)\,\tau$$

where I_0 is the oxidation length and τ the time from the beginning of the experiment.

Oxidation of pipes of Zircaloy alloys

Many models of the litterature describing the oxidation of pipes made of Zircaloy alloys at constant temperature takes the following form:

$$I_0^2\left(\tau\right) = K\left(T\right)\,\tau$$

where I_0 is the oxidation length and τ the time from the beginning of the experiment.

▶ The function K(T) is generally choosen of the form :

$$K(T) = K_0 \exp\left(-\frac{E_a}{RT}\right)$$

where K_0 is characteristic of the pipe considered (material and size), E_a is an activation energy ($J.mol^{-1}$) and R is the perfect gas constant.

Oxidation of pipes of Zircaloy alloys

Many models of the litterature describing the oxidation of pipes made of Zircaloy alloys at constant temperature takes the following form:

$$I_0^2\left(\tau\right) = K\left(T\right)\,\tau$$

where I_0 is the oxidation length and τ the time from the beginning of the experiment.

▶ The function K(T) is generally choosen of the form :

$$K(T) = K_0 \exp\left(-\frac{E_a}{RT}\right)$$

where K_0 is characteristic of the pipe considered (material and size), E_a is an activation energy $(J.mol^{-1})$ and R is the perfect gas constant.

► A model appliable in case of non constant temperature can be obtained by differentiating the previous equation with respect to time :

$$2I_0 \frac{\mathrm{d}I_0}{\mathrm{d}\tau} = K(T)$$

Numerical scheme

► The previous Ordinary Differential Equation can be integrated over a time step $[t:t+\Delta t]$ as follows :

$$|I_0|_{t+\Delta t}^2 - |I_0|_t^2 = \int_t^{t+\Delta t} K(T(\tau)) \Delta \tau \approx K(T + \theta \Delta T) \Delta t,$$

► This leads to the following update scheme :

$$I_0|_{t+\Delta t} = \sqrt{I_0|_t^2 + K(T + \theta \Delta T) \Delta t}$$

The Runge-Kutta algorithms

Runge-Kutta algorithms estimates the solution at the end of the time step by the weighted sum of approximations $\Delta \vec{Y}$ of the increment $\Delta \vec{Y}$

as follows:
$$\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \sum_{i=1}^n b_i \Delta \vec{\tilde{Y}}^{(i)}$$

The Runge-Kutta algorithms

Runge-Kutta algorithms estimates the solution at the end of the time step by the weighted sum of approximations $\Delta \vec{Y}$ of the increment $\Delta \vec{Y}$

as follows:
$$\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \sum_{i=1}^n b_i \Delta \vec{\tilde{Y}}^{(i)}$$

▶ The approximations $\Delta \, \tilde{\vec{Y}}^{(i)}$ are given by successive evaluations of the rate function \vec{G} :

$$\begin{cases} \Delta \vec{\tilde{Y}}^{(1)} = \Delta t \vec{G} \left(\vec{\tilde{Y}}^{(1)}, \vec{Z} \Big|_{t} \right) & \text{with } \vec{\tilde{Y}}^{(1)} = \vec{Y} \Big|_{t} \\ \Delta \vec{\tilde{Y}}^{(2)} = \Delta t \vec{G} \left(\vec{\tilde{Y}}^{(2)}, \vec{Z} \Big|_{t+c_{2} \Delta t} \right) & \text{with } \vec{\tilde{Y}}^{(2)} = \vec{Y} \Big|_{t} + a_{21} \Delta \vec{\tilde{Y}}^{(1)} \\ \vdots \\ \Delta \vec{\tilde{Y}}^{(n)} = \Delta t \vec{G} \left(\vec{\tilde{Y}}^{(n)}, \vec{Z} \Big|_{t+c_{n} \Delta t} \right) & \text{with } \vec{\tilde{Y}}^{(n)} = \vec{Y} \Big|_{t} + a_{n1} \Delta \vec{\tilde{Y}}^{(1)} + \ldots + a_{n,n-1} \Delta \vec{\tilde{Y}}_{n-1} \end{cases}$$

with $\vec{Z}\Big|_{t+c_i \Delta t} = \vec{Z}\Big|_t + c_j \Delta \vec{Z}$ being the estimates of \vec{Z} at time $t + c_j \Delta t$.

The Runge-Kutta algorithms

Runge-Kutta algorithms estimates the solution at the end of the time step by the weighted sum of approximations $\Delta \vec{Y}$ of the increment $\Delta \vec{Y}$ as follows: $\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \sum_{i=1}^{m} b_i \Delta \vec{\tilde{Y}}^{(i)}$

lacktriangle The approximations $\Delta \, ec{ ilde{Y}}^{(i)}$ are given by successive evaluations of the rate function \vec{G} :

$$\begin{cases} \Delta \vec{Y}^{(1)} = \Delta t \vec{G} \left(\vec{Y}^{(1)}, \vec{Z} \Big|_t \right) & \text{with} \quad \vec{Y}^{(1)} = \vec{Y} \Big|_t \\ \Delta \vec{Y}^{(2)} = \Delta t \vec{G} \left(\vec{Y}^{(2)}, \vec{Z} \Big|_{t+c_2 \Delta t} \right) & \text{with} \quad \vec{Y}^{(2)} = \vec{Y} \Big|_t + a_{21} \Delta \vec{Y}^{(1)} \\ \vdots \\ \Delta \vec{Y}^{(n)} = \Delta t \vec{G} \left(\vec{Y}^{(n)}, \vec{Z} \Big|_{t+c_n \Delta t} \right) & \text{with} \quad \vec{Y}^{(n)} = \vec{Y} \Big|_t + a_{n1} \Delta \vec{Y}^{(1)} + \ldots + a_{n,n-1} \Delta \vec{Y}_{n-1} \end{cases}$$
with $\vec{Z} \Big|_{t+c_n \Delta t} = \vec{Z} \Big|_t + c_j \Delta \vec{Z}$ being the estimates of \vec{Z} at time $t + c_j \Delta t$.

with $\vec{Z}\Big|_{t+c_i \wedge t} = \vec{Z}\Big|_t + c_j \Delta \vec{Z}$ being the estimates of \vec{Z} at time $t + c_j \Delta t$.

▶ A particular algorithm is thus caractherized by n, a_{ii} , b_i and c_i .

A classical fourth order Runge-Kutta algorithm

► The classical fourth order Runge-Kutta is based on the following scheme :

$$\vec{Y}\Big|_{t+\Delta t} = \vec{Y}\Big|_t + \frac{1}{6} \left(\Delta \vec{\tilde{Y}}^{(1)} + 2 \Delta \vec{\tilde{Y}}^{(2)} + 2 \Delta \vec{\tilde{Y}}^{(3)} + \Delta \vec{\tilde{Y}}^{(4)} \right)$$

with:

$$\begin{cases} \Delta \vec{\tilde{Y}}^{(1)} = \Delta t \vec{G} \left(\vec{Y}^{(1)}, \vec{Z} \Big|_t \right) & \text{with } \vec{Y}^{(1)} = \vec{Y} \Big|_t \\ \Delta \vec{\tilde{Y}}^{(2)} = \Delta t \vec{G} \left(\vec{Y}^{(2)}, \vec{Z} \Big|_t + \frac{\Delta \vec{Z}}{2} \right) & \text{with } \vec{Y}^{(2)} = \vec{Y} \Big|_t + \frac{\Delta \vec{Y}^{(1)}}{2} \\ \Delta \vec{\tilde{Y}}^{(3)} = \Delta t \vec{G} \left(\vec{Y}^{(3)}, \vec{Z} \Big|_t + \frac{\Delta \vec{Z}}{2} \right) & \text{with } \vec{Y}^{(3)} = \vec{Y} \Big|_t + \frac{\Delta \vec{Y}^{(2)}}{2} \\ \Delta \vec{\tilde{Y}}_4 = \Delta t \vec{G} \left(\vec{Y}^{(4)}, \vec{Z} \Big|_{t+\Delta t} \right) & \text{with } \vec{Y}^{(4)} = \vec{Y} \Big|_t + \Delta \vec{Y}^{(3)} \end{cases}$$

Corrector/predictor algorithms

- Some algorithms allow to compute a lower order approximation for free.
- ► The difference between the higher order estimate and the lower order approximation is an estimate of the integration error :
 - automatic sub-stepping.

Available algorithms

- Without substepping :
 - euler, rk2, rk4
- ► With automatic substepping :
 - rk42, rk54, rkCastem

Conventions of the RungeKuttaModel DSL

- ▶ The @Derivative code block is used to compute the rate \vec{Y} of the state variables for a given estimate $\vec{Y}^{(i)}$:
- ➤ In the @Derivative code block, the following conventions holds:
 - **–** dy denotes the value of the rate of the variable *y*.
 - y denotes the value of $y^{(i)}$.

Implementation

```
@DSL RungeKuttaModel;
@Model ChemicalReaction6:
@UseOt true:
@UnitSystem SI;
@Algorithm rk54:
@Epsilon 1e-14;
@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 1> ca:
ca.setEntryName("MolarConcentrationOfSpeciesA");
@AuxiliaryStateVariable quantity<real, 0, 0, 0, 0, 0, 1> cb;
cb.setEntrvName("MolarConcentrationOfSpeciesB");
@Import "ChemicalReaction - parameters.mfront";
@LocalVariable quantity<real, 0, 0, 0, 0, 0, 0, 1> sum:
@InitLocalVariables {
 sum = ca + cb:
@Derivative{
 const auto k1 = k01 * exp(-T / Ta1):
 const auto k2 = k02 * exp(-T / Ta2);
 dca = k2 * sum - (k1 + k2) * ca;
@UpdateAuxiliaryStateVariables {
 cb = sum - ca:
```

The ImplicitModel DSL

@DSL ImplicitModel;

Implementation

```
@Model ChemicalReaction7:
@Author Thomas Helfer:
@Date 09 / 07 / 2022:
@UseQt true;
@UnitSystem SI:
@Epsilon 1e-14;
@Theta 0.5:
//! molar concentration of species A
@StateVariable quantity<real, 0, 0, 0, 0, 0, 0, 1> ca:
ca.setEntrvName("MolarConcentrationOfSpeciesA");
//! molar concentration of species B
@AuxiliaryStateVariable quantity<real, 0, 0, 0, 0, 0, 1> cb;
cb.setEntryName("MolarConcentrationOfSpeciesB");
@Import "ChemicalReaction - parameters.mfront";
//! sum of the molar concentrations of species A and B
@LocalVariable quantity<real, 0, 0, 0, 0, 0, 0, 1> sum;
/*!
* reaction rate coefficient of the reaction transforming species A to species
* B at the middle of the time step
 */
@LocalVariable frequency k1 mts:
/*!
* reaction rate coefficient of the reaction transforming species B to species
* A at the middle of the time step
 */
@LocalVariable frequency k2 mts;
```

Applications

Conclusions

- ▶ The examples of this tutorial can be downloaded here :
 - https://github.com/thelfer/MFrontBookExamples

Thank you for your attention. Time for discussion!

https://tfel.sourceforge.net
https://www.researchgate.net/project/TFEL-MFront
https://twitter.com/TFEL_MFront
https://github.com/thelfer/

tfel-contact@cea.fr

The development of MFront is supported financially by CEA, EDF and Framatome in the framework of the PLEIADES project.