Improving Short-Term Forecasts by Anticipating Data Revisions

Valeria Marras, ISI Foundation 2025/03/03

Problem statement and goals

- The quality of epidemiological data is crucial for accurate surveillance and forecasting
- Data collected in surveillance systems are often **retrospectively revised**, leading to discrepancies between initially reported and final values

Why data are revised?

- Surveillance systems rely on sentinel physicians' reports
- In certain periods of the year the reports are delayed

Problem:

Forecast trained on **initially reported data** and compared to **later revised** values.

Problem statement and goals

Analysis of retrospective corrections in **ERVISS surveillance data**¹

- Data Revision: Process of updating previously published surveillance data
- We considered the following targets
 - o ILI incidence
 - ARI incidence

Goals:

- Measure the problem and characterise it:
 - Estimate the magnitude of data revisions
 - Finding the factors influencing the review process
- Develop correction models to estimate revisions for newly reported data
- Improve the quality of forecasting models by understanding data revision patterns

¹https://erviss.org/

Outline

- 1. Data Revision magnitude overview
- 2. Influence of time-dependent patterns in the revision process
- 3. Data revision estimation for forecasting improvement
- 4. Models & Methodology
- 5. Results & next steps

Outline

- 1. Data Revision magnitude overview
- 2. Influence of time-dependent patterns in the revision process
- 3. Data revision estimation for forecasting improvement
- 4. Models & Methodology
- 5. Results & next steps

Weekly incidence values from the latest update and all previous reports for the same week

- Revision process:
 - Some countries carry out revisions

Weekly incidence values from the latest update and all previous reports for the same week

- Revision process:
 - Some countries carry out revisions
 - Others do not

Weekly incidence values from the latest update and all previous reports for the same week

- Revision process:
 - Some countries carry out revisions
 - Others do not

Weekly incidence values from the latest update and all previous reports for the same week

- Revision process:
 - Some countries carry out revisions
 - Others do not
- Challenging behaviour
 - New Year: critical week
 - Possible under reporting
 - Never revised in subsequent reports

Data revision magnitude

Boxplot of overall magnitude percentage error:

- Difference between first reported value and the final corrected value for a given week (Season 2023-24)
- Countries presenting most significant revisions:
 - o ILI: BE, DK, FR, NL, NO, IT
 - ARI: BE, FR, DE, ES

Data revision magnitude

Boxplot of overall magnitude percentage error:

- Difference between first reported value and the final corrected value for a given week (Season 2023-24)
- Countries presenting most significant revisions:
 - o ILI: BE, DK, FR, NL, NO, IT
 - ARI: BE, FR, DE, ES

Outline

- 1. Data Revision magnitude overview
- 2. Influence of time-dependent patterns in the revision process
- 3. Data revision estimation for forecasting improvement
- 4. Models & Methodology
- 5. Results & next steps

Influence of time-dependent patterns in the revision process

Probability of Revision

Probability that a given week's data will be revised in future reports.

Influence of time-dependent patterns in the revision process

Probability of Revision

Probability that a given week's data will be revised in future reports.

Magnitude of Revisions

Average absolute change in reported values

Influence of time-dependent patterns in the revision process

Magnitude of Revisions

values

Average absolute change in reported

Weeks After Original Report

Probability of Revision

Probability that a given week's data will be revised in future reports.

Weeks After Original Repor

Data revision estimation for forecasting improvement

Fom data analysis

- Many countries do not carry out retrospective revisions
- Both positive and negative revisions
- Heterogeneity in revising countries
- Age is an important feature to characterize the problem

Goals

- Estimate the magnitude of data revision based on the historical dataset
- Improve forecasting models by incorporating revision patterns and probabilities

Outline

- 1. Data Revision magnitude overview
- 2. Influence of time-dependent patterns in the revision process
- 3. Data revision estimation for forecasting improvement
- 4. Models & Methodology
- 5. Results & next steps

Models & Methodology

Given the **heterogeneity** of curves across countries

- Explicit mathematical form is not ideal
- We chose a machine learning approach.

Models used to estimate revision magnitude:

- Decision Tree Regressor (**DT**):
 Captures non-linear relationships by splitting data into decision nodes.
- Random Forest Regressor (**RF**):
 An ensemble of decision trees that reduces variance and improves generalization by averaging multiple predictions.

Models & Methodology

Features & Target

- Features: Age (weeks after original report), Value
- Target: Magnitude of data revision

Approach

- Training: Data from 2023/24 season
- Test: Data from 2024/25 season
- Countries: Revising countries from previous season

Models & Methodology

We want to estimate **how good** the predictions of the models are compared to baseline models

- Baseline Model: uses historical revision distribution by age to randomly select revision values
- Persistence Model: assumes no revision occurs

Results (ILI)

- Test set **RMSE** comparison:
 - RF and DT outperform baseline
 - RF: best performance

Country	DT	RF	Baseline	Persistence
BE	9.42	7.96	11.1	10.1
DK	6.3	6.1	18	14.9
FR	0.69	0.63	3.05	5.04
NL	0.84	0.84	0.97	0.99
NO	4.2	4.3	6.6	7.3
IT	3.8	3.6	6.3	4.9

Results (ILI)

- Comparing revision
 actual values with
 predicted values
 from Decision Tree
 and Random Forest
 models
- R² confirms better performance of RF over DT

Results (ARI)

- Comparing revision
 actual values with
 predicted values
 from Decision Tree
 and Random Forest
 models
- R² confirms better performance of RF over DT

Next Steps

- Use revision magnitude estimation to improve forecast model performance
 - Train the forecasting model on data adjusted with estimated revisions and evaluate its performance
 - Compare the results with the same model trained on the original data to assess the impact of revision adjustments
- Extend revision magnitude estimation to other targets:
 - SARI incidence
 - Virological detections (RSV, SARS-CoV-2, . . .)