# BeliakovKA 17092024-193351

**Найти** точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса  $z=1.3\text{--}3.5\mathrm{i}$  .



Рисунок 1 — Точки  $s_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|--------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.2  | 0.456    | -137.1 | 23.483   | 99.6 | 0.024    | 55.6 | 0.402    | -63.2  |
| 1.9  | 0.459    | -159.5 | 15.225   | 85.2 | 0.032    | 57.3 | 0.288    | -76.2  |
| 2.6  | 0.466    | -173.5 | 11.106   | 74.9 | 0.040    | 57.9 | 0.241    | -89.1  |
| 3.3  | 0.476    | 176.6  | 8.722    | 67.2 | 0.049    | 57.4 | 0.226    | -100.0 |
| 4.0  | 0.484    | 168.2  | 7.159    | 59.6 | 0.059    | 56.3 | 0.217    | -106.8 |
| 4.7  | 0.497    | 161.2  | 6.065    | 52.4 | 0.068    | 53.7 | 0.203    | -115.5 |
| 5.4  | 0.498    | 155.4  | 5.213    | 45.9 | 0.078    | 51.7 | 0.191    | -121.1 |
| 6.1  | 0.506    | 148.3  | 4.638    | 39.2 | 0.088    | 47.6 | 0.179    | -130.7 |
| 7.0  | 0.527    | 138.2  | 3.999    | 30.1 | 0.100    | 43.1 | 0.151    | -146.7 |

и частоты  $f_{\scriptscriptstyle \rm H}=1.9$  ГГц,  $f_{\scriptscriptstyle \rm B}=7.0$  ГГц.

**Найти** обратные потери по входу  $\,$  на  $f_{\scriptscriptstyle \rm B}$  .

Варианты ОТВЕТА:

1) 11.1 дБ 2) 5.6 дБ 3) 3.4 дБ 4) 6.8 дБ

**Даны** значения s-параметров:

| Freq | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |       |
|------|----------|-------|----------|------|----------|------|----------|-------|
| GHz  | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG   |
| 2.4  | 0.629    | 122.1 | 2.313    | 39.3 | 0.105    | 49.7 | 0.234    | -67.3 |
| 2.5  | 0.637    | 119.8 | 2.216    | 37.1 | 0.109    | 48.7 | 0.231    | -69.8 |
| 2.6  | 0.646    | 117.5 | 2.122    | 34.8 | 0.112    | 47.8 | 0.229    | -72.4 |
| 2.7  | 0.653    | 115.2 | 2.038    | 32.5 | 0.116    | 46.7 | 0.227    | -75.2 |
| 2.8  | 0.661    | 113.0 | 1.958    | 30.1 | 0.119    | 45.7 | 0.226    | -78.0 |
| 2.9  | 0.667    | 110.9 | 1.887    | 28.2 | 0.122    | 44.8 | 0.223    | -80.9 |
| 3.0  | 0.674    | 108.9 | 1.818    | 26.1 | 0.126    | 43.9 | 0.220    | -83.8 |
| 3.1  | 0.679    | 106.9 | 1.757    | 24.4 | 0.129    | 42.9 | 0.219    | -86.9 |
| 3.2  | 0.685    | 105.0 | 1.697    | 22.5 | 0.132    | 42.0 | 0.217    | -89.9 |
| 3.3  | 0.692    | 103.1 | 1.640    | 20.5 | 0.135    | 41.1 | 0.217    | -93.1 |
| 3.4  | 0.700    | 101.2 | 1.584    | 18.4 | 0.139    | 40.2 | 0.217    | -96.2 |

и частоты  $f_{\mbox{\tiny H}}=2.7$   $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=3.2$   $\Gamma\Gamma\mbox{\scriptsize II}.$ 

**Найти** неравномерность усиления в полосе  $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B},$  используя рисунок 2.



Рисунок 2 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.8 дБ 2) 1.6 дБ 3) 0.6 дБ 4) 3.3 дБ

#### Даны значения s-параметров:

| Freq | $s_{11}$ |        | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |       |
|------|----------|--------|----------|------|----------|------|----------|-------|
| GHz  | MAG      | ANG    | MAG      | ANG  | MAG      | ANG  | MAG      | ANG   |
| 1.5  | 0.454    | -148.5 | 19.134   | 92.6 | 0.027    | 56.3 | 0.340    | -68.9 |
| 1.6  | 0.457    | -151.6 | 18.003   | 90.5 | 0.028    | 56.5 | 0.324    | -70.8 |
| 1.7  | 0.456    | -154.6 | 16.998   | 88.6 | 0.029    | 56.8 | 0.311    | -72.5 |
| 1.8  | 0.458    | -157.0 | 16.042   | 86.9 | 0.031    | 57.1 | 0.299    | -74.1 |
| 1.9  | 0.459    | -159.5 | 15.225   | 85.2 | 0.032    | 57.3 | 0.288    | -76.2 |
| 2.0  | 0.458    | -161.5 | 14.477   | 83.6 | 0.033    | 57.6 | 0.280    | -77.6 |
| 2.1  | 0.458    | -163.7 | 13.813   | 82.1 | 0.034    | 57.7 | 0.271    | -79.4 |
| 2.2  | 0.459    | -165.8 | 13.160   | 80.4 | 0.035    | 57.7 | 0.264    | -81.3 |
| 2.3  | 0.460    | -167.8 | 12.606   | 79.1 | 0.037    | 57.9 | 0.257    | -83.1 |
| 2.4  | 0.461    | -169.8 | 12.059   | 77.6 | 0.038    | 58.0 | 0.251    | -85.0 |
| 2.5  | 0.463    | -171.7 | 11.579   | 76.3 | 0.039    | 57.9 | 0.246    | -87.0 |

и частоты  $f_{\scriptscriptstyle \rm H}=1.6$   $\Gamma\Gamma$ ц,  $f_{\scriptscriptstyle \rm B}=2.3$   $\Gamma\Gamma$ ц.

**Найти** модуль  $s_{12}\;$  в дБ на частоте  $f_{\scriptscriptstyle \rm B}$  .

#### Варианты ОТВЕТА:

- 1) -11.8 дБ
- 2) -6.7 дБ
- 3) 22.0 дБ
- 4) -28.7 дБ

Даны значения s-параметров:

| Freq | $s_{11}$ |       | $s_{21}$ |      | $s_{12}$ |      | $s_{22}$ |        |
|------|----------|-------|----------|------|----------|------|----------|--------|
| GHz  | MAG      | ANG   | MAG      | ANG  | MAG      | ANG  | MAG      | ANG    |
| 1.0  | 0.557    | 164.3 | 5.587    | 74.3 | 0.050    | 58.2 | 0.270    | -42.2  |
| 1.6  | 0.579    | 144.0 | 3.515    | 58.3 | 0.074    | 56.2 | 0.253    | -50.0  |
| 2.2  | 0.616    | 127.5 | 2.526    | 43.8 | 0.098    | 51.5 | 0.238    | -62.4  |
| 2.8  | 0.661    | 113.0 | 1.958    | 30.1 | 0.119    | 45.7 | 0.226    | -78.0  |
| 3.4  | 0.700    | 101.2 | 1.584    | 18.4 | 0.139    | 40.2 | 0.217    | -96.2  |
| 4.0  | 0.738    | 91.4  | 1.317    | 6.9  | 0.157    | 34.5 | 0.222    | -116.1 |
| 4.6  | 0.768    | 82.9  | 1.110    | -3.3 | 0.173    | 29.1 | 0.237    | -135.2 |

**Найти** точку (см. рисунок 3), соответствующую  $s_{22}$  на частоте 2.2 ГГц.



Рисунок 3 – Кривые  $s_{11}$  и  $s_{22}$ 

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Задан двухполюсник на рисунке 4, причём R1 = 118.47 Ом.



Рисунок 4 – Двухполюсник

**Найти** полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до  $\infty$ .



Рисунок 5 — Полуокружности  $\Gamma_i$  на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.