Apuntes de Inferencia Estadística

Paco Mora

20 de octubre de 2022

Estos apuntes están hechos como un complemento a los apuntes de Lorencio.

Teorema de Wald

Consistencia

Sea $X \sim F(\cdot, \theta), \ \theta \in \Theta, \hat{\theta}_n$ estimador de $\theta \ \forall n \in \mathbb{N}$, definimos las siguientes operaciones:

$$P_{\theta_0}(\hat{\theta}_n \in A) := P(\hat{\theta}_n \in A | \theta = \theta_0)$$

$$E_{\theta_0}[\hat{\theta}_n] = \int \cdots \int_{\psi} \hat{\theta}_n(x) L(x, \theta_0) dx$$

Se dice que $\hat{\theta}_n$ es consistente para $\theta \in \Theta$ si $\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0$ (convergencia en probabilidad), $\forall \theta_0 \in \Theta$

Proposición 1. Si Θ es finito y $\hat{\theta}_n$ es estimador de θ entonces se da la consistencia del estadístico si y solo si:

$$\lim_{n \to \infty} P_{\theta_0}(\hat{\theta}_n = \theta_0) = 1, \ \forall \theta_0 \in \Theta$$

Es decir,

$$\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0 \ \forall \theta \in \Theta \iff \lim_{n \to \infty} P_{\theta_0}(\hat{\theta}_n = \theta_0) = 1$$

Demostración

 \Leftarrow

Trivial.

 \Longrightarrow

Si $\hat{\theta}_n$ es el EMV de θ , tomará un valor aislado dentro de Θ .

Si $\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0$, tomando ε suficientemente pequeño, $\hat{\theta}_n$ solo puede tomar el valor de θ_0 , luego $\lim_{n\to\infty} P_{\theta_0}(\hat{\theta}_n=\theta_0)=1$

Proposición 2. Desigualdad de Jensen

Sea X v.a. y g una función cóncava, entonces E[g(X)] < E(E[X]) siempre que las esperanzas anteriores existan.

Proposición 3. Ley fuerte de Kolmogorov

Sea $\{X_n\}_{n=1}^{\infty}$ sucesión de v.v.a.a. independientes, idénticamente distribuidas y con media finita. Entonces:

$$\sum_{i=1}^{n} \frac{X_i}{n} \xrightarrow{c.s.} E[X]$$

Lema 4. Sean
$$\{A_n\}$$
, $\{B_n\}$ con $\lim_{n\to\infty} \{P(A_n)\} = \lim_{n\to\infty} \{P(B_n)\} = 1$, entonces:
$$\lim_{n\to\infty} P(A_n\cap B_n) = 1$$

Demostración

$$P(A_n \cap B_n) = P(A_n) + P(B_n) - P(A_n \cup B_n)$$

Pero tenemos:

$$1 \ge P(A_n \cup B_n) \ge P(A_n) \to 1$$

Luego $\lim_{n\to\infty} P(A_n \cap B_n) = 1$ y tenemos que:

$$P(A_n \cap B_n) = P(A_n) + P(B_n) - P(A_n \cup B_n) = 1 + 1 - 1 = 1$$

Teorema 5. Sea X variable aleatoria con función de distribución $F(\cdot,\theta)$ para $\theta \in \Theta$, siendo Θ un $conjunto\ infinito.\ Supongamos\ que\ se\ verifica:$

• (A1) El soporte de $F(\cdot, \theta)$ es común para todo $\theta \in \Theta$. • (A2) $E_{\theta_0} \left[\log \frac{f}{X, \theta} \right]$ existe y es finita para todo $\theta, \theta_0 \in \Theta$

Si para todo $n \in \mathbb{N}$ y $(X_1,...,X_n)$ m.a.s de X existe el $\mathrm{EMV}(\hat{\theta}_n)$ de θ y es único entonces $\hat{\theta}_n$ es un estimador consistente del parámetro θ .

Demostración

Utilizaremos la Desigualdad de Jensen, tomaremos $g = \log y$ la v.a. $\frac{f(X, \theta)}{f(X, \theta_0)}$. La Desigualdad de Jensen entonces nos dice:

$$E_{\theta_0}\left[\log\left(\frac{f(X,\theta)}{f(X,\theta_0)}\right)\right] < \log\left(E_{\theta_0}\left[\frac{f(X,\theta)}{f(X,\theta_0)}\right]\right)$$

Pero notemos que:

$$E_{\theta_0} \left[\frac{f(X, \theta)}{f(X, \theta_0)} \right] = \int \frac{f(x, \theta)}{f(x, \theta_0)} f(x, \theta_0) dx =_{(A1)} 1$$

Luego tenemos que:

$$E_{\theta_0} \left[\log \left(\frac{f(X, \theta)}{f(X, \theta_0)} \right) \right] < 0$$

Usaremos ahora la ley fuerte de Kolmogorov a la sucesión $\left\{\log\left(\frac{f(X_n,\theta)}{f(X_n,\theta_0)}\right)\right\}_n$ y utilizando que la convergencia casi segura es más fuerte que la convergencia en probabilidad, tenemos:

$$\frac{\log\left(\frac{L(\mathbb{X}, \theta)}{L(\mathbb{X}, \theta_0)}\right)}{n} = \sum_{i=1}^{n} \frac{\log\left(\frac{f(x_i, \theta)}{f(x_i, \theta_0)}\right)}{n} \xrightarrow{P_{\theta_0}} E_{\theta_0} \left[\log\left(\frac{f(X, \theta)}{f(X, \theta_0)}\right)\right] < 0$$

Como a partir de cierto n el logaritmo de la izquierda será negativo podemos tomar:

$$\lim_{n \to \infty} P_{\theta_0} \left(\log \frac{L(\mathbb{X}, \theta)}{L(\mathbb{X}, \theta_0)} < 0 \right) = \lim_{n \to \infty} P_{\theta_0} (L(\mathbb{X}, \theta) < L(\mathbb{X}, \theta_0)) = 1$$

Como el espacio paramétrico es finito, utilizaremos la equivalencia para la definición de consistencia y buscaremos el límite:

$$\lim_{n\to\infty} P_{\theta_0}(\hat{\theta}_n = \theta_0)$$

Estudiamos ahora el suceso $\{\hat{\theta}_n(x) = \theta_0\} = \bigcap_{\substack{\theta \in \Theta \\ \theta \neq \theta_0}} \{L(\mathbb{X}, \theta) < L(X, \theta_0)\}$

El suceso es intersección finita de sucesos cuya probabilidad tienen límite 1. Utilizando el lema llegamos a:

$$\lim_{n \to \infty} P(\hat{\theta}_n = \theta_0) = 1$$

Ejemplo 1. $X \sim \mathcal{U}(\theta, \theta+1), \ \theta \in \mathbb{R}, \ X_1, ..., X_n \ m.a.s \ de \ X, \ (f(x, \theta) = 1, \ si \ x \in (\theta, \theta+1)).$ Buscar

$$L(\mathbb{X},\theta) = 1 \text{ si } (x_i \in (\theta,\theta+1), \ i=1,...,n) \iff (\theta < x_{1:n} \ y \ x_{n:n} < \theta+1) \iff (x_{n:n}-1 < \theta < x_{1:n})$$

$$En \ \alpha(x_{n:n}-1) + (1-\alpha)x_{1:n} \text{ se alcanza el máximo de } L(\mathbb{X},\theta) \ \forall \ \alpha \in (0,1)$$

Método de la función pivote

Proposición 1. Sea X una variable aleatoria con función de distribución continua $F(x,\theta), \ \theta \in \Theta$ $y \ monotona \ y \ sea \ X = (X_1, ..., X_n)$

Para demostrarlo necesitamos algunos resultados

Lema 2. Sea X v.a. con función de distribución F continua, entonces $F(X) \sim \mathcal{U}(0,1)$

Lema 3. Sea
$$\mathcal{U} \sim \mathcal{U}(0,1)$$
, entonces $-\log U \sim \text{Exp}(1)$

Vamos ahora con la demostración de la proposición.

Demostración

Tenemos que $\{F(X) \le x\} \iff \{X \le F^{-1}(x)\},$ entonces:

$$P(F(X) \le x) = P(X \le F^{-1}(x)) = F(F^{-1}(x)) = x \ \forall x \in (0,1)$$

Demostración

$$T(X, \theta) = -\sum_{j=1}^{n} \log F(X_j, \theta)$$
 trivialmente es monótona en θ (al serlo F)

Vemos ahora que $T(X, \theta)$ no depende de θ en su distribución.

$$T(X,\theta) = \sum_{j=1}^{n} E_j$$

Inferencia Estadística

Donde E_j son Exp(1) indep. entre sí. Pero sabemos que la suma de exponenciales tiene una distribución Gamma:

$$T(X,\theta) \sim \Gamma(1,n)$$

Luego no depende de θ .

Ejemplo del teorema de Newman-Pearson

Ejemplo 2. Sea $X \sim N(\mu, \theta^2)$ con θ^2 conocida. Se considera una m.a.s simple de tamaño n de X. Obtener el test de máxima potencia y extensión de α para el test (contraste):

$$H_0: \mu = \mu_0$$

$$H_1: \mu = \mu_1$$

Aplicamos el teorema de Neyman-Pearson. Tenemos que el test UMP viene dado por:

$$S_1 = \{x \in \text{Sop}(X) : \frac{L(x, \mu_1)}{L(x, \mu_0)} \ge k\}$$

Donde k verifica que $\alpha = P_{\theta_1}(X \in S)$

$$L(x,\mu) = \left(\frac{1}{\sigma\sqrt{2\pi}}^n e^{\frac{-1}{2}\frac{\sum (x_i - \mu)^2}{\sigma^2}}\right) = \left(\frac{1}{\sigma\sqrt{2\pi}}^n e^{-\frac{1}{2}\frac{\sum x_i^2 - 2\mu\sum x_i + n\mu}{\sigma^2}}\right) \to \frac{L(X,\mu_1)}{L(X,\mu_0)} =$$

$$= exp\{-\frac{1}{2\sigma^2}(2(\mu_0 - \mu_1)\sum x_i + n(\mu_1^2 - \mu_0^2))\}$$

$$S_1 = \{x \in \text{Sop}(X): -\frac{1}{2\sigma^2}(2(\mu_0 - \mu_1)\sum x_i + n(\mu_1^2 - \mu_0^2)) \ge k' = \log k\} =$$

$$\{x \in \text{Sop}(X): \sum x_i \leq \frac{-2\sigma^2k' - n(\mu_1^2 - \mu_0^2)}{2(\mu_1 - \mu_0)} \} = \{x \in \text{Sop}(X): \underbrace{\frac{\sum x_i}{n}} \leq \underbrace{\frac{-2\sigma^2k' - n(\mu_1^2 - \mu_0^2)}{2n(\mu_1 - \mu_0)}}_{=:k''} \}$$

Fijando α , tendremos que buscar $k''(\alpha)$. Sabemos que $\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

$$\alpha = P_{\mu_0} \left(\overline{X} \ge k''(\alpha) \right) = P_{\mu_0} \left(\underbrace{\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}}_{Z \sim N(0,1)} \ge \frac{k''(\alpha) - \mu_0}{\sigma / \sqrt{n}} \right) \to \frac{k''(\alpha) - \mu_0}{\sigma / \sqrt{n}} = Z_{1-\alpha}$$

Luego
$$k''(\alpha) = \mu_0 + Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$$

La probabilidad de error de tipo 2 es:

$$\beta = P_{\mu_1}(\overline{X} < \mu_0 + Z_{1-\alpha}\frac{\sigma}{\sqrt{n}}) = P\left(\frac{\overline{X} - \mu_1}{\sigma/\sqrt{n}} < \frac{\mu_0 - \mu_1 + Z_{1-\alpha}\frac{\sigma}{\sqrt{n}}}{\sigma/\sqrt{n}}\right) = P\left(Z < \frac{\mu_0\mu_1}{\sigma/\sqrt{n}} + Z_{1-\alpha}\right)$$

Entonces:

$$Z_{\beta} = \frac{k''(\alpha) - \mu_1}{\frac{\sigma}{\sqrt{n}}}$$

$$\mu_0 + Z_{1-\alpha} \frac{\sigma}{\sqrt{n}} = \mu_1 + Z_{\beta} \frac{\sigma}{\sqrt{n}} \implies \frac{\mu_1 \mu_0}{Z_{1-\alpha} - Z_{\beta}} = \frac{\sigma}{\sqrt{n}} \implies n = \left(\frac{\sigma(Z_{1-\alpha} - Z_{\beta})}{\mu_1 - \mu_0}\right)^2$$

Ejemplo 3. Si $X \sim N(\mu, \sigma^2 = 4)$ representa la duración en días de una determinada enfermedad y se considera la duración de una muestra de 9 enfermos resultando en días: 5,3,4,2,6,4,5,3,4. Aplicar los resultandos del ejemplo anterior para decidir entre:

$$H_0: \mu = 3$$

frente a:

$$H_1: \mu = 4$$

 $con\ una\ extensi\'on\ de\ lpha=0.05$

En primer lugar tenemos que nuestra región de rechazo es:

$$S_1 = \left\{ x \in \mathbb{R}^9 : \ \overline{X} \ge 3 + Z_{0,95} \frac{2}{3} \right\} = \left\{ x \in \mathbb{R}^9 : \ \overline{X} \ge 4,1 \right\}$$

Además tenemos que en este caso $\overline{X} = 4$. Luego como $4 \not\geq 4,1$ aceptamos H_0 , es decir, que $\mu = 3$.

Proposición 4. Si $A(\theta)$ es monótona creciente (decreciente).

a) En el caso $\theta_0 < \theta$:

$$\delta(x) = \begin{cases} 0 & T(x) < (>)c \\ 1 & T(x) \ge (\le)c \end{cases}$$

b) En el caso $\theta_0 > \theta$:

$$\delta(x) = \begin{cases} 0 & T(x) > (<)c \\ 1 & T(x) \le (\ge)c \end{cases}$$

Demostración

Si tenemos $L(x, \theta) = exp\{A(\theta)T(\theta) + B(\theta) + h(x)\}$

$$\frac{L(x,\theta_1)}{L(x,\theta_0)} = exp\{(A(\theta_1)A(\theta_0))T + (B(\theta_1) - B(\theta_0))\}$$

Entonces si escribimos S_1 como en el teorema de Neyman-Pearson y despejamos:

$$S_1 = \{x \in \text{Sop}(X) : T \ge (\le) \frac{k' - (B(\theta_1) - B(\theta_0))}{A(\theta_1)A(\theta_0)} \}$$

La desigualdad depende del signo de $A(\theta_1)A(\theta_0)$ (o sea, si es creciente o decreciente).

Ejemplo 4. Sea $X \sim \text{Exp}(\theta)$. Dada una m.a.s. de tamaño n, obtener el test de máxima potencia y extensión α para el test (contraste)

$$H_0: \theta = \theta_0$$

$$H_1:\theta=\theta_1$$

The a: $H_1: \theta = \theta_1$ En este caso, $A(\theta) = -\theta \ y \ T = \sum_{i=1}^n X_i$. Luego A es decreciente. Supongamos $\theta_0 < \theta_1$, entonces:

$$S_1 = \{x \in \mathbb{R}^n_+ : \sum_{i=1}^n X_i \le c\}$$

$$\alpha = P_{\theta = \theta_0}(X \in S_1) = P_{\theta_0}\left(\sum X_i \le c\right)$$

En el tema 2 obtuvimos que $\sum X_i \sim \Gamma()$. Si llamamos a la función cuantil de Γ , G entonces G_{Γ}