

Газовый цех

Автоматизированная система учета

РАСХОДА ГАЗА: ДОМЕННОГО, КОКСОВОГО, ПРИРОДНОГО

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

На разработку программного модуля

на <u>14</u> листах

СОГЛАСОВАНО:		СОГЛАСОВАНО:		
Начальник УВСИТЦУ		Начальник ГЦ		
	К.С.Теличко		С.А.Салдаев	
v w	2017 r	"	2017 г	

ЛИСТ СОГЛАСОВАНИЯ

к Техническому заданию №125-9 от 19.04.2017 г.

СОГЛАСОВАНО:	
УВСИТЦУ:	
Начальник отдела автоматизации	И.Н.Резепин
Начальник бюро программирования	А.А.Загиров
Начальник бюро ДПиУЭ	А.В.Суковицин
ГЦ:	
Заместитель начальника цеха	Д.В.Первухин
РАЗРАБОТАЛ:	
Математик	Н.А.Иванов

Оглавление

1.	Глобальные константы	6
2.	Исходные данные	6
3.	Выходящие данные	6
4.	Алгоритм расчета расхода	8
4.1.	Расчет молярной доли компонентов <i>х_і</i>	9
4.2.	Расчет псевдо-критической температуры $T_{n\kappa}$	9
4.3.	Расчет псевдо-критического давления $P_{\mathit{пк}}$	9
4.4.	Расчет абсолютной температуры T_a	9
4.5.	Расчет абсолютного давления P_a	9
4.6.	Расчет фактора сжимаемости в рабочих условиях <i>Z</i>	10
4.7.	Расчет фактора сжимаемости в стандартных условиях $Z_{\!\scriptscriptstyle c}$	10
4.8.	Расчет плотности при стандартных условиях $ ho_c$	10
4.9.	Расчет плотности в рабочих условиях <i>р</i>	10
4.10). Расчет диаметра ИТ в рабочих условиях	11
4.11	. Расчет диаметра СУ в рабочих условиях	11
4.12	2. Расчет относительного диаметра отверстия СУ eta при рабочей температуре	11
4.13	3. Расчет перевода перепада давления в Па <i>dP</i>	11
4.14	4. Расчет коэффициента скорости входа <i>Е</i>	11
4.15	5. Расчет коэффициента расширения ε	11
4.16	б. Расчет коэффициента истечения <i>С</i>	12
4.17	7. Расчет коэффициента поправки на закругление входной кромки СУ K_n	12
4.18	3. Расчет вязкости μ	12
4.19	9. Расчет коэффициента шероховатости K_{ω}	12
4.20). Расчет критерия рейнольдса <i>Re</i>	12
4.2	1. Расчет объёмного расхода среды приведённого к стандартным условиям Qc	13
5	Список используемой питературы	1/

Аннотация

В техническом задании приводится описание функций, которые необходимо разработать, при использовании алгоритмов описанных в математическом обеспечении [1]. Также указано описание глобальных и локальных констант, их типы данных. Описаны входные данные и данные, которые мы получаем на выходе из программы. Модуль предназначен для работы в АСДУЭ ГАЗ Газового цеха.

Обозначения:

С – при стандартных условиях

К – критический параметр

Пк – псевдо-критический параметр

Пр – приведённый параметр

ПГ – природный газ

ДГ - доменный газ

КГ – коксовый газ

СУ – сужающее устройство ИТ – измерительный трубопровод

РУ – расходомерный узел

1. Глобальные константы

Константы перечисленные в [1] пункт 4 определяем как:

- Тип переменных: double,
- Столбцы таб. №4.1,4.2 объединить в массивы.

Константы перечисленные в [1] пункт 2.1.1 таб. №1 определяем как:

- Тип переменных: double,
- Значения таблицы объединить в двухмерный массив [26 строк][3 столбца],
- Значения первой строки [0,0,0].

2. Исходные данные

Входящие данные (смотри [1] пункт 2.1) записываем в структуру таким образом:

- Объёмные доли компонентов по каждому газу образуют массивы типа double,
- Номер материала трубы и диафрагмы, время эксплуатации РУ, метод отбора имеют тип: integer,
- Остальные параметры имеют тип: double.

3. Выходящие данные

На выходе данные (смотри [1] пункт 2.1) должны формироваться в виде функции, с такими свойствами:

- Тип функции: double,
- Записывает входящие данные в структуру,
- Проводит проверку на соблюдение граничных условий (смотри [1] пункт 3),
- Возвращает значение объемного расхода, которое ей передает функция **Qc** (см. 4.21).

Для каждого типа газа должна быть своя функция вывода, так как количество принимаемых данных различно!

Для природного газа заголовок функции вывода должен выглядеть так:

PG 2016(P izb, P bar, T cel, dP, D it 20, D cy 20, nt, nd, rn, Ra, data, method)

Где входные данные для функции определяются как:

- **P_izb** избыточное давление в (кгс/см²),
- P_bar атмосферное давление в (кгс/см²),
- **T_cel** температура среды в (градусах Цельсия),
- **dP** перепад давления в (кгс/м²),
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия,
- **D_cy_20** диаметр СУ в (мм) при температуре 20 градусов Цельсия,

- nt номер материала ИТ,
- nd номер материала СУ,
- rn начальный радиус закругления входной кромки в (мм),
- Ra коэффициент шероховатости,
- data время эксплуатации РУ в (год),
- method метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

Для доменного газа заголовок функции вывода должен выглядеть так:

DG_2016(CH4_dg, CO2_dg, H2_dg, CO_dg, P_izb, P_bar, T_cel, dP, D_it_20, D_cy_20, nt, nd, rn, Ra, data, method)

Где входные данные для функции определяются как:

- **CH4_dg** объёмная доля метана в (%),
- CO2_dg объёмная доля диоксида углерода в (%),
- **H2_dg** объёмная доля водорода в (%),
- CO_dg объёмная доля моноксида углерода в (%),
- **P_izb** избыточное давление в (кгс/см²),
- **P_bar** атмосферное давление в (кгс/см²),
- T_cel температура среды в (градусах Цельсия),
- **dP** перепад давления в (кгс/м²),
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия,
- **D_cy_20** диаметр СУ в (мм) при температуре 20 градусов Цельсия,
- nt номер материала ИТ,
- nd номер материала СУ,
- rn начальный радиус закругления входной кромки в (мм),
- **Ra** коэффициент шероховатости,
- data время эксплуатации РУ в (год),
- **method** метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

Для коксового газа заголовок функции вывода должен выглядеть так:

KG_2016(CH4_kg, CO2_kg, H2_kg, CO_kg, CnHn_kg, P_izb, P_bar, T_cel, dP, D_it_20, D_cy_20, nt, nd, rn, Ra, data, method)

Где входные данные для функции определяются как:

- **CH4_dg** объёмная доля метана в (%),
- CO2_dg объёмная доля диоксида углерода в (%),
- **H2_dg** объёмная доля водорода в (%),
- CO_dg объёмная доля моноксида углерода в (%),
- CnHn_kg объёмная доля непрерывных углеводородов в (%),
- **P_izb** избыточное давление в (кгс/см²),
- P_bar атмосферное давление в (кгс/см²),
- **T_cel** температура среды в (градусах Цельсия),
- dP перепад давления в (кгс/м²),
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия,
- **D_cy_20** диаметр СУ в (мм) при температуре 20 градусов Цельсия,
- nt номер материала ИТ,
- **nd** номер материала СУ,
- rn начальный радиус закругления входной кромки в (мм),
- **Ra** коэффициент шероховатости,
- data время эксплуатации РУ в (год),
- **method** метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

4. Алгоритм расчета расхода среды

Для того чтобы преступить к расчету расхода газа, необходимо вычислить множество других переменных (смотри [1] пункт 2.2.23).

Для расчета каждого члена формулы расхода газа необходимо завести отдельную функцию типа: double.

Каждая функция должна рассчитывать свой параметр для всех перечисленных газов (смотри [1] пункт 2.1).

4.1. Расчет молярной доли компонентов **x**_i Алгоритм расчета описан в [1] пункт 2.2.6.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Одна локальная переменная имеет тип: integer (для реализации счетчика), остальные тип: double,
- Функция на выходе выдает массив, размер которого равен (3 – ПГ, 5 – ДГ, 7 – КГ), типа: double.

4.2. Расчет псевдо-критической температуры $T_{n\kappa}$ Алгоритм расчета описан в [1] пункт 2.2.8.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 case (5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Одна локальная переменная имеет тип: integer (для реализации счетчика), остальные тип: double,
- Функция на выходе выдает значение типа: double.

4.3. Расчет псевдо-критического давления **Р**_{пк} Алгоритм расчета описан в [1] пункт 2.2.9.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 саse (5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Одна локальная переменная имеет тип: integer (для реализации счетчика), остальные тип: double,
- Функция на выходе выдает значение типа: double.

4.4. Расчет абсолютной температуры T_a Алгоритм расчета описан в [1] пункт 2.2.5.

- Локальная переменная имеет тип: double,
- Функция на выходе выдает значение типа: double.

4.5. Расчет абсолютного давления P_a Алгоритм расчета описан в [1] пункт 2.2.4.

- Локальная переменная имеет тип: double,
- Функция на выходе выдает значение типа: double.

4.6. Расчет фактора сжимаемости в рабочих условиях **Z** Алгоритм расчета описан в [1] пункт 2.2.10.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- В расчете для ПГ используется давление **Р**_a в Мпа, необходимо учесть это и сделать перевод величины (см. [1] пункт 2.2.4),
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.7. Расчет фактора сжимаемости в стандартных условиях \mathbf{Z}_{c} Алгоритм расчета описан в [1] пункт 2.2.11.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.8. Расчет плотности при стандартных условиях ρ_c Алгоритм расчета описан в [1] пункт 2.2.13.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- В расчете для ПГ используется давление P_a в Мпа, необходимо учесть это и сделать перевод величины (см. [1] пункт 2.2.4),
- Локальные переменные имеют тип: double, integer,
- Функция на выходе выдает значение типа: double.

4.9. Расчет плотности в рабочих условиях ρ Алгоритм расчета описан в [1] пункт 2.2.14.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- В расчете для ПГ используется давление **Р**_a в Мпа, необходимо учесть это и сделать перевод величины (см. [1] пункт 2.2.4),
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

- 4.10. Расчет диаметра ИТ в рабочих условиях Алгоритм расчета описан в [1] пункт 2.2.1.
 - Локальные переменные имеют тип: double,
 - Функция на выходе выдает значение типа: double.
- 4.11. Расчет диаметра СУ в рабочих условиях Алгоритм расчета описан в [1] пункт 2.2.1.
 - Локальные переменные имеют тип: double,
 - Функция на выходе выдает значение типа: double.
 - 4.12. Расчет относительного диаметра отверстия СУ β при рабочей температуре

Алгоритм расчета описан в [1] пункт 2.2.1.

- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.
- 4.13. Расчет перевода перепада давления в Па **дР** Алгоритм расчета описан в [1] пункт 2.2.4.
 - Локальные переменные имеют тип: double,
 - Функция на выходе выдает значение типа: double.
- 4.14. Расчет коэффициента скорости входа **Е** Алгоритм расчета описан в [1] пункт 2.2.3.
 - Локальные переменные имеют тип: double,
 - Функция на выходе выдает значение типа: double.
- 4.15. Расчет коэффициента расширения ε Алгоритм расчета описан в [1] пункт 2.2.16.
 - Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int)
 case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
 - Функция также вычисляет показатель адиабаты k (см. [1] пункт 2.2.15) необходимый для расчета коэффициента расширения ε ,
 - В расчете для ПГ используется давление P_a в Мпа, необходимо учесть это и сделать перевод величины (см. [1] пункт 2.2.4),
 - Локальные переменные имеют тип: double,
 - Функция на выходе выдает значение типа: double.

4.16. Расчет коэффициента истечения **С** Алгоритм расчета описан в [1] пункт 2.2.18.

- Функция принимает значение, которое является результатом работы функции расчета **Re**(смотри пункт 4.20. настоящего документа) типа: double,
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.17. Расчет коэффициента поправки на закругление входной кромки СУ K_n Алгоритм расчета описан в [1] пункт 2.2.2.

- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.18. Расчет вязкости μ Алгоритм расчета описан в [1] пункт 2.2.7.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- В расчете для ПГ используется давление **Р**_a в Мпа, необходимо учесть это и сделать перевод величины (см. [1] пункт 2.2.4),
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.19. Расчет коэффициента шероховатости K_{w} Алгоритм расчета описан в [1] пункт 2.2.20.

- Функция принимает значение, которое является результатом работы функции расчета **Re**(смотри пункт 4.20. настоящего документа) типа: double,
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.20. Расчет критерия Рейнольдса **Re** Алгоритм расчета описан в [1] пункт 2.2.22.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

4.21. Расчет объёмного расхода среды приведённого к стандартным условиям **Qc**

Алгоритм расчета описан в [1] пункт 2.2.23.

- Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа,
- Локальные переменные имеют тип: double,
- Функция на выходе выдает значение типа: double.

5. Список используемой литературы

- 1. Математическое обеспечение. Алгоритм расчета доменного, коксового и природного газов. Челябинск, 2017.
- 2. Общеотраслевые руководящие методические материалы по созданию и применению автоматизированных систем управления технологическими процессами в отраслях промышленности. 1986.