Lecture 10

Jacobi Symbol, Computation, Zolotareff's Definition

p prime, a integer $\not\equiv 0 \mod p$, a is quadratic residue if $a \equiv x^2 \mod p$.

Eg.
$$p = 5$$
, $x = \pm 1, \pm 2 \Rightarrow x^2 = 1, 4$

Eg.
$$p = 7$$
, $x = \pm 1, \pm 2, \pm 3 \Rightarrow x^2 = 1, 4, 2$

Eg.
$$p = 11, x = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5 \Rightarrow x^2 = 1, 4, -2, 5, 3$$

Eg.
$$p = 13, x = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6 \Rightarrow x^2 = 1, 4, -4, 3, -1, -3$$

Legendre Symbol

$$\left(\frac{a}{p}\right) = \begin{cases} -1 & \text{if } a \text{ is a quadratic non-residue} \mod p \\ 1 & \text{if } a \text{ is a quadratic residue} \mod p \\ 0 & \text{if } p \text{ divides } a \end{cases}$$

Quadratic Reciprocity (p, q are prime)

$$(q|p)(p|q) = \begin{cases} -1 & \text{if } p \text{ and } q \equiv 3 \mod 4\\ 1 & \text{else} \end{cases}$$

Eg.
$$(7|11)(11|7) = -1, (11|7) = (4|7)$$

$$(-1|p) = \begin{cases} -1 & \text{if } p \equiv 3 \mod 4\\ 1 & \text{if } p \equiv 1 \mod 4 \end{cases}$$

$$(2|p) = \begin{cases} -1 & \text{if } p \equiv \pm 3 \mod 8\\ 1 & \text{if } p \equiv \pm 1 \mod 8 \end{cases}$$

If $a \equiv a' \mod p$ then (a|p) = (a'|p), and (ab|p) = (a|p)(b|p).

Primitive element mod p: integer g and $g, g^2, g^3, \dots g^{p-1}$ all distinct mod p.

Eg.
$$p = 7, g = 3 \Rightarrow g^k = 3, 2, 6, 4, 5, 1$$

In terms of primitive roots, a is quadratic residue if $a=g^k$, k even, non-residue if k odd

$$(ab|p) = (a|p)(b|p) \begin{cases} (\text{odd}) + (\text{odd}) & \text{power of } g \Rightarrow \text{even} \\ (\text{even}) + (\text{odd}) & \text{power of } g \Rightarrow \text{odd} \\ (\text{even}) + (\text{even}) & \text{power of } g \Rightarrow \text{even} \end{cases}$$

Gauss's Lemma - write $a, 2a\dots \frac{p-1}{2}a\equiv$ integers in the interval $[-\frac{p}{2},\frac{p}{2}]$. Count the number of negatives γ to get $(a|p)=(-1)^{\gamma}$. To evaluate (2|p), notice that the set $\{2,2\cdot 2,3\cdot 2\dots \frac{p-1}{2}\cdot 2\}$ are in interval [2,p-1] and that the number of even numbers from $\frac{p}{2}$ to p is γ

Eg.
$$(17|31) - 17 \equiv 1 \mod 4$$
 so $(17|31)(31|17) = 1$, so $(17|31) = (31|17) = (31|17) = -(17|3) = -(1|3) = -1$.

Eg.
$$(17|31) = (48|31) = (4^2 \cdot 3|31) = (4|31)^2(3|31) = (3|31) = -(31|3) = -(1|3) = -1.$$

Jacobi Symbol - generalizes Legendre to any two numbers $P, Q = q_1, q_2, \dots q_k$ product of primes

$$\left(\frac{P}{Q}\right) = \left(\frac{P}{q_1}\right) \left(\frac{P}{q_2}\right) \dots \left(\frac{P}{q_k}\right)$$

where Legendre is 0 if P, Q not relatively prime. Warning: Jacobi being 1 does NOT imply that P is a square mod Q.

Eg.
$$(-1|77) = (-1|7)(-1|11) = (-1)(-1) = 1$$

Properties:

$$(P|QQ') = (P|Q)(P|Q')$$
, and $(PP'|Q) = (P|Q)(P'|Q)$.

Eg. (127|233) - 127,233 are prime, $127 \equiv 3 \mod 4$ and $233 \equiv 1 \mod 4$. (127|233) = (233|127) = -(21|127) = -(127|21) = -(1|21) = -(1|7)(1|3) = -1, so 127 non quadratic residue mod 233

(Definition) Permutation: A **permutation** of set $\{0, 1, ... n\}$ is a bijection mapping S to S.

Permutations can result in cycles - for example, the mapping of $\{0,1,2,3,4,5,6\}$ to $\{0,3,2,4,6,5,1\}$ in cycle notation is $(1\,3\,4\,6)(0)(2)(5)$.

Zolotarev's Definition - Computing (P|Q) using permutations: take the set $\{0,1,\ldots Q-1\}$ and map using multiplication by $P \mod Q$, which is a permutation if P,Q are relatively prime. Write permutation in cycle notation, then count the number of even length cycles e to get $(P|Q) = (-1)^e$.

$$Q = 7, \quad P = 4, \text{ and } \{0, 1, 2, 3, 4, 5, 6\}$$
$$\Rightarrow \{0, 4, 1, 5, 2, 6, 3\}$$
$$\Rightarrow (0)(1 \ 4 \ 2)(3 \ 5 \ 6)$$
$$e = 0, (4|7) = (-1)^0 = 1$$

Eg.

$$Q = 7, P = 5, \text{ and } \{0, 1, 2, 3, 4, 5, 6\}$$
$$\Rightarrow \{0, 5, 3, 1, 6, 4, 2\}$$
$$\Rightarrow (0)(154623)$$
$$e = 1, (5|7) = (-1)^{1} = -1$$

MIT OpenCourseWare http://ocw.mit.edu

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.