Midterms Revision Guide

30.101 Systems & Control, Term 5 2020

Wei Min Cher

06 Mar 2020

Contents

1 W1: Linear Time-Invariant Systems			3
	1.1	Signals	3
		1.1.1 Basic signals	3
	1.2	System Properties	3
	1.3	Complex exponential sinusoidal signals	4
	1.4	Zeros and Poles	4
	1.5	Differential equations	4
		1.5.1 Ordinary Differential Equations (ODEs)	4
	1.6	Laplace Transform (LT)	5
	1.7	Initial Value Theorem	5
	1.8	Final Value Theorem	5
	1.9	Inverse Laplace Transform (ILT)	5
2	W2:	Convolution	6
	2.1	Properties of impulse function	6
	2.2	Convolution integral	6
	2.3	Graphical Method	6
	2.4	Properties of Convolution	6
3	W3:	Fourier Analysis	7
	3.1	Fourier Series	7
	3.2	Convergence Conditions (Dirichlet Conditions)	7
	3.3	Forms of Fourier Series	7
	3.4	Fourier Representation of Aperiodic Signals	7
	3.5	Power of a signal	7
	3.6	Fourier Transform Pairs	8
	3.7	Periodic $x(t)$	8
	3.8	Fourier Transform vs Laplace Transform	8

4	W4:	Modelling Physical Systems	9
	4.1	Translational Mechanical Systems	9
	4.2	Rotational Mechanical Systems	9
	4.3	Energy Method for Mechanical Systems	9
	4.4	Electrical Systems	9
	4.5	Energy Method for Electrical Systems	9
	4.6	Complex Impedance Method for Electrical Systems	10
	4.7	Op-Amps	10
		4.7.1 Examples of Op-Amps	10
	4.8	Analogous Systems	10
	4.9	Transfer Function (TF)	10
	4.10	Impulse-Response Function	11
	4.11	Characteristic Equation (CE)	11
5	W5:	First Order Systems	11
	5.1	LTI System Response	11
	5.2	Parts of System Response	11
	5.3	Mathematical Model of First Order Systems	11
	5.4	Unit Step Response	12
	5.5	Unit Impulse Response	12
	5.6	Unit Ramp Response	12
	5.7	Responses of First Order Systems	13

1 W1: Linear Time-Invariant Systems

1.1 Signals

• Signal: function changing in time and space

Continuous signal e.g. x(t), $-\infty < t < \infty$

Discrete signal e.g. x[k], k = 1, 2, ...

Determinstic signal e.g. $x(t) = \cos \omega t$ exact value of x(t) at any t is known

Random/stochastic signal e.g $x(t) = \cos(\omega t + \phi)$, $\phi = \{0, \frac{\pi}{2}, \pi\}$ esact value of x(t) at any t is unknown

Periodic signal e.g. $x(t) = \sin t$, where x(t) = x(t + T)

Non-periodic signal e.g. $x(t) = \begin{cases} \cos t, & t < 0 \\ \sin t, & t \ge 0 \end{cases}$, where $x(t) \neq x(t+T)$

Bounded signal: x(t) does not $\rightarrow \infty$ as $t \rightarrow \infty$

Unbounded signal: $x(t) \to \infty$ as $t \to \infty$

1.1.1 Basic signals

a. Unit impulse function $\delta(t)$

$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases} \qquad \int_{0^{-}}^{0^{+}} \delta(t) dt = 1$$

b. Unit step function u(t)

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

c. Rectangular function $rect(\frac{t}{T})$

$$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1, & -\frac{T}{2} < t < \frac{T}{2} \\ 0, & \text{elsewhere} \end{cases}$$
$$= u\left(t + \frac{T}{2}\right) - u\left(t - \frac{T}{2}\right)$$

d. Exponential growth/decay function

$$x(t) = Ce^{at}$$

3

- Exponential growth: C > 0
- Exponential decay: C < 0

1.2 System Properties

- 1. Causal: output depends on input at present, past
- 2. Linearity: has property of superposition
- 3. Time Invariance: time shift in output = time shift in inuput

1.3 Complex exponential sinusoidal signals

•
$$\sin(\omega t) = \frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right)$$

•
$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

•
$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

1.4 Zeros and Poles

• General form of G(s):

$$G(s) = \frac{K(s+z+1)(s+z_2)\cdots(s+z_m)}{(s+p_1)(s+p_2)\cdots(s+p_n)} = \frac{N(s)}{D(s)},$$

where N(s) is a polynomial of degree m and D(s) is a polynomial of degree n, and m < n.

∘ Zeros (○): points where N(s) = 0 e.g. $s = -z_1, -z_2, \dots, -z_m$

• Poles/roots (×): points where D(s) = 0 e.g. $s = -p_1, -p_2, \dots, -p_n$

1.5 Differential equations

1.5.1 Ordinary Differential Equations (ODEs)

• General form:

$$g\left(\frac{d^n x}{dt^n}, \frac{d^{n-1} x}{dt^{n-1}}, \cdots, x, t\right) = f(t)$$

• where *x* is the dependent variable;

 \circ *t* is the independent variable.

• Linear ODE: output and its derivatives are pure functions of input, and are to power 1

• Non-linear ODE: output and its derivatives are not pure functions of input

• Time Invariant ODE: coefficients are independent of t

• Time Varying ODE: coefficients are functions of t

1.6 Laplace Transform (LT)

If f(t) = 0 for t < 0:

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st} dt, \ t \ge 0$$

- where $s = \sigma + j\omega$
- \int_0^∞ is an improper integral, thus Laplace Transform may not exist
 - o Laplace Transform exists within Region of Convergence (ROC)

1.7 Initial Value Theorem

If f(t) and $\frac{df(t)}{dt}$ are both Laplace Transformable and $\lim_{s\to\infty} sF(s)$ exists,

$$f(0^+) = \lim_{s \to \infty} sF(s)$$

1.8 Final Value Theorem

If f(t) and $\frac{df(t)}{dt}$ are Laplace Transformable and $\lim_{t\to\infty} f(t)$ exists, and sF(s) has all its poles with strictly negative real part,

$$f(\infty) = \lim_{s \to 0} sF(s)$$

1.9 Inverse Laplace Transform (ILT)

- 1. Express F(s) as a proper rational fraction: $F(s) = \frac{N(s)}{D(s)}$, where degree of N(s) < D(s)
- 2. Check roots of D(s):
 - (A) Roots are Real and Distinct

$$F(s) = \frac{N(s)}{D(s)} = \frac{a}{s+p_1} + \frac{a}{s+p_2} + \dots + \frac{a}{s+p_n},$$
where $a_i = (s+p_i)F(s)|_{s=-p_i}$

B Roots are Real and Repetitive

$$F(s) = \frac{b_1}{s+p} + \frac{b_2}{(s+p)^2} + \dots + \frac{b_n}{(s+p)^n}$$
where $b_i = \frac{1}{(n-1)!} \left[\frac{d^{n-i}}{ds^{n-i}} (s+p)^n F(s) \right]_{s=-n}$

© Roots are Complex Conjugates

$$F(s) = \frac{N(s)}{s^2 + cs + d} = C_1 \frac{\omega}{(s+a)^2 + \omega^2} + C_2 \frac{s+a}{(s+a)^2 + \omega^2}$$
where poles, $s = -\frac{c}{2} \pm \frac{\sqrt{c^2 - 4d}}{2}$

- D Combination of Cases A, B, C
 - Rewrite numerator in terms of denominator to simplify
- 3. Use Laplace Transform table pairs to infer f(t) from F(s).

2 W2: Convolution

$$\begin{array}{c|c} x(t) & & y(t) \\ \hline \delta(t) & & h(t) \\ \hline \text{Input} & & \text{Output} \\ \end{array}$$

2.1 Properties of impulse function

- 1. $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$
- $2. \int_{-\infty}^{\infty} x(t)\delta(t-t_0) dt = x(t_0)$

2.2 Convolution integral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau \Longleftrightarrow \int_{-\infty}^{\infty} x(t-\tau)h(\tau) d\tau$$

• It can be written as y(t) = x(t) * h(t)

2.3 Graphical Method

- 1. Flip: $h(\tau) \rightarrow h(-\tau)$
- 2. Shift by $t: h(-\tau) \rightarrow h(t-\tau)$
- 3. Multiply by x: $x(\tau)h(t-\tau)$
- 4. Integrate over τ : $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$

2.4 Properties of Convolution

- Commutative: x(t) * h(t) = h(t) * x(t)
- Associative: $[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$
- Distributive: $x(t) * h_1(t) + x(t) * h_2(t) = x(t) * [h_1(t) + h_2(t)]$

3 W3: Fourier Analysis

3.1 Fourier Series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, \ \omega_0 = \frac{2\pi}{T_0}$$

Synthesis:
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
Analysis:
$$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

3.2 Convergence Conditions (Dirichlet Conditions)

- 1. Signal is integral over any period. $\int_{T_0} |x(t)| < \infty$
- 2. Signal must be bounded. x(t) cannot be $\pm \infty$.
- 3. Finite number of discontinuities in interval T.

3.3 Forms of Fourier Series

1.
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

2.
$$x(t) = a_0 + 2\sum_{k=1}^{\infty} A_k \cos(k\omega_0 t + \theta_k)$$

3.
$$x(t) = a_0 + 2 \sum_{k=1}^{\infty} [B_k \cos k\omega_0 t - C_k \sin k\omega_0 t]$$

3.4 Fourier Representation of Aperiodic Signals

• $\tilde{x}(t)$ is T_0 periodic, which is made by repeating the aperiodic signal x(t)

•
$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
, $\omega_0 = \frac{2\pi}{T_0}$

- As $T_0 \to \infty$, $\omega_0 \to 0$
- Converges to Fourier Transform

3.5 Power of a signal

• Sum of squares of all the Fourier coefficients

Power =
$$\sum_{k=-\infty}^{\infty} |a_k|^2$$

3.6 Fourier Transform Pairs

Fourier Transform
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

Inverse Fourier Transform $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$

3.7 Periodic x(t)

• Fourier Transform of x(t) is an impulse train

$$X(\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

3.8 Fourier Transform vs Laplace Transform

Fourier Transform:
$$\int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 Laplace Transform: $\int_{0}^{\infty} x(t)e^{-st} dt$

- Limits of Integration: $-\infty$ to ∞ (FT), 0 to ∞ (LT)
- Location of complex variable: $j\omega$ lies on the imaginary axis (FT), s can be any complex number in the region of convergence (LT)
- Existence of FT and LT: If the imaginary axis is not in region of convergence of LT, FT does not exist while LT exists.
- Equivalence of FT and LT: If x(t) = 0, t < 0 and imaginary axis is in region of convergence of LT, FT is LT evaluated on the imaginary axis.
- Non-equivalence of FT and LT: If $x(t) \neq 0$ for t < 0, then FT \neq LT.

4 W4: Modelling Physical Systems

4.1 Translational Mechanical Systems

	Mass	Spring	Damper
Force	$f = m\ddot{x}$	$f_k = k(x_2 - x_1)$	$f_b = b(\dot{x}_2 - \dot{x}_1)$
Conservative energies	$KE = \frac{1}{2}m\dot{x}^2$ $PE = mgh$	$PE = \frac{1}{2}kx^2$	NOT CONSERVATIVE
Other laws	Power $P = f\dot{x}$	N2L: $\sum f = ma = m\ddot{x}$	N3L

4.2 Rotational Mechanical Systems

	Mass	Spring	Damper
Torque	$ au = J\ddot{\Theta}$	$\tau_k = k(\theta_2 - \theta_1)$	$\tau_b = b(\dot{\theta}_2 - \dot{\theta}_1)$
Conservative energies	$KE = \frac{1}{2}J\dot{\theta}^2$	$PE = \frac{1}{2}k\theta^2$	NOT CONSERVATIVE
Other laws	Power $P = \tau \dot{\theta}$	N2L: $\sum \tau = J\alpha = J\ddot{\theta}$	N3L

4.3 Energy Method for Mechanical Systems

- Conservative systems only
- Do not dissipate energy due to friction

$$\frac{d}{dt}(KE + PE) = 0$$

4.4 Electrical Systems

	Inductor	Capacitor	Resistor
Current or Voltage	$V_a - V_b = L \frac{di_L}{dt}$	$i_C = C \frac{d}{dt} (V_a - V_b)$	$V_a - V_b = i_R R$
Conservative energies	$E_L = \frac{1}{2}Li^2 = \frac{1}{2}L\dot{q}^2$	$E_C = \frac{1}{2}CV_{ab}^2 = \frac{q^2}{2C}$	NOT CONSERVATIVE
Other laws	Power $P = VI$	KVL, KCL	Ohm's Law

4.5 Energy Method for Electrical Systems

- Conservative systems only
- Do not dissipate energy due to heat loss (no resistors)

$$\frac{d}{dt}(E_L + E_C) = 0$$

4.6 Complex Impedance Method for Electrical Systems

• Ohm's Law: E(s) = Z(s)I(s)

• Impedances in series: $Z = Z_1 + Z_2 + Z_3 + \cdots$

• Impedances in parallel: $Z = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_2} + \frac{1}{Z_3} + \cdots$

4.7 Op-Amps

Ideal Op-Amp:
$$e_0 = K(e_2 - e_1)$$

• Differential gain of real op-amps: $K \approx 10^5$ to 10^6

• Infinite input impedance

• Zero output impedance

• Voltage at e_1 = Voltage at e_2

• Current at each input lead is zero

4.7.1 Examples of Op-Amps

a. Inverting amplifier

$$G(s) = \frac{E_o(s)}{E_i(s)} = -\frac{Z_f}{Z_i}$$

b. Non-inverting amplifier

$$G(s) = \frac{E_o(s)}{E_i(s)} = \frac{Z_1 + Z_2}{Z_1}$$

c. Summing amplifier

$$G(s) = \frac{E_o(s)}{E_i(s)} = -\left(\frac{Z_4}{Z_1}E_1(s) + \frac{Z_4}{Z_2}E_2(s) + \frac{Z_4}{Z_3}E_3(s)\right)$$

4.8 Analogous Systems

• Physically different systems but sharing the same differential equations and transfer functions

• More than 1 mechanical-electrical system analogy

 \circ Spring-Mass \leftrightarrow Series-RLC: Force-Voltage Analogy

o Spring-Mass ↔ Parallel-RLC: Mass-Capacitance Analogy

4.9 Transfer Function (TF)

$$G(s) = \frac{\mathcal{L}(\text{output})}{\mathcal{L}(\text{input})} \bigg|_{\text{zero initial conditions}}$$

10

• Order of system = highest power of s in denominator

4.10 Impulse-Response Function

• g(t): unit impulse-response function of system

$$G(s) = \mathcal{L}(g(t))$$

4.11 Characteristic Equation (CE)

Denominator of TF = 0

- Polynomial order ↔ degree/order of system
- Solutions to CE are poles of system

5 W5: First Order Systems

5.1 LTI System Response

- Find system response
 - \circ Input $\stackrel{\mathrm{TF}}{\longleftrightarrow}$ output
- Methods: time domain, frequency domain
- Standard input signals:
 - o Unit impulse
 - o Unit step
 - o Unit ramp
 - o Sine wave

5.2 Parts of System Response

- Transient Response: Immediate response after application of input response
- Steady-state Response: Long-time response after application of input response

5.3 Mathematical Model of First Order Systems

DE:
$$T\frac{dy}{dx} + y = Ax$$

TF:
$$\frac{Y(s)}{X(s)} = \frac{A}{Ts+1}$$

- Time constant/characteristic time: *T*
- DC gain: A

5.4 Unit Step Response

• Input:
$$x(t) = u(t)$$
 $\Rightarrow X(s) = \frac{1}{s}$

• Output:
$$Y(s) = \frac{A}{s(Ts+1)} = A\left(\frac{1}{s} - \frac{1}{s+\frac{1}{T}}\right)$$

By ILT: $y(t) = A\left[1 - e^{-\frac{t}{T}}\right], \ t \ge 0$

1. Time constant:
$$y(T) \approx 0.63A$$

2. Initial speed =
$$\frac{dy}{dt}\Big|_{t=0} = \frac{A}{T}$$

3. 2% settling speed: When
$$y(t_{ss}) = 0.98A$$
, $t_{ss} = 4T$.

4. Steady state error,
$$e_{ss} = \lim_{t \to \infty} [u(t) - y(t)] = 1 - A$$

5.5 Unit Impulse Response

• Input:
$$x(t) = \delta(t)$$
 $\Rightarrow X(s) = 1$

• Output:
$$Y(s) = \frac{A}{Ts+1} = \frac{A}{T} \left(\frac{1}{s+\frac{1}{T}} \right)$$

By ILT: $y(t) = \frac{A}{T} e^{-\frac{t}{T}}$, $t \ge 0$

1. Time constant:
$$y(t) \approx 0.37A$$

2. Initial speed =
$$\frac{dy}{dt}\Big|_{t=0} = -A$$

3. Steady state error,
$$e_{ss} = \lim_{t \to \infty} [\delta(t) - y(t)] = \lim_{t \to \infty} \left[-\frac{A}{T} e^{-\frac{t}{T}} \right] = 0$$

5.6 Unit Ramp Response

• Input:
$$x(t) = t \implies X(s) = \frac{1}{s^2}$$

• Output:
$$Y(s) = \frac{A}{s^2(Ts+1)} = \frac{A}{s^2} - \frac{AT}{s} + \frac{AT^2}{Ts+1}$$

By ILT: $y(t) = At - AT + ATe^{-\frac{t}{T}}, \ t \ge 0$

1. Initial speed =
$$\frac{dy}{dt}\Big|_{t=0} = A - Ae^{-\frac{t}{T}}$$

2. Steady state error,
$$e_{ss} = \lim_{t \to \infty} \left[r(t) - y(t) \right] = \lim_{t \to \infty} \left[t - AT \left(\frac{t}{T} - 1 + e^{-\frac{t}{T}} \right) \right] = AT + \lim_{t \to \infty} \left[t(1 - A) \right]$$

5.7 Responses of First Order Systems

- Unit ramp function, r(t): $y_r(t) = AT\left(\frac{t}{T} 1 + e^{-\frac{t}{T}}\right)$, $t \ge 0$
- Unit step function, u(t): $y_u(t) = A(1 e^{-\frac{t}{T}})$, $t \ge 0$
- Unit impulse function, $\delta(t)$: $y_{\delta}(t) = \frac{A}{T}e^{-\frac{t}{T}}$, $t \ge 0$
- Properties:

$$\circ \ \frac{d}{dt}y_r(t) = y_u(t)$$

$$\circ \ \frac{d}{dt}y_u(t) = y_{\delta}(t)$$

 $\circ\;$ Applies to higher order systems as well