Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 3

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

0.1.	DMC		1
	0.1.1.	Pierwszy współczynnik psi	4
		Drugi współczynnik psi	
		Trzeci współczynnik psi	

0.1. DMC

Podczas dobierania DMC dobieramy takie parametry jak:

- D horyzont dynamiki
- N horyzont predykcji
- N_u horyzont sterowania
- współczynniki wagowe macierzy Ψ w ilości n_y =3
- współczynniki wagowe macierzy Λ w ilości $n_u=4$

W tym przypadku wszystkie horyzonty przyjmiemy jako stałe przy czym przyjmujemy D=N= N_u =200, przy czym to liczba zebranych kroków odpowiedzi skokowych. Zmniejszanie horyzontów żadko poprawia jakość regulacji, celem takich działań najczęściej jest zmniejszenie złożoności obliczeniowej i tym samym czasu obliczeń. Dobieranie nastaw zaczęliśmy od dobrania kolejnych współczynników wagowych ψ , a następnie współczynników λ . Poniżej zamieściliśmy wykresy sterowań i wyjść dla nastaw początkowych (wszystkie współczynniki równe 1) oraz tabelkę w wartościami błędów dla wszystkich wyjść.

$oldsymbol{E}$	E1	E2	E3
118,9959	30,7112	31,6862	56,5985

Tab. 1. Wartości błędów dla nastaw początkowych

Rys. 1. Wartości wejść przy nastawach początkowych DMC

Rys. 2. Wartości wyjść przy nastawach początkowych DMC

0.1.1. Pierwszy współczynnik psi

Po kilku testach doszliśmy do wniosku, że najlepsza wartość ψ_1 to 2,7. Zmniejszając lub zwiekszając tę wartość zwiększają się błędy. Wartości błędów dla różnych wartości ψ_1 znajdują się w tabeli 2. Przebiegi sygnałów sterujących i wyjść są się na wykresach 3 oraz 4. Większość wykresów nie różni się tak bardzo. Najbardziej poprawił się przebieg y1, co ma sens biorąc pod uwagę, że kolejne współczynniki psi mają największy wpływ na kolejne wyjścia.

0.1.2. Drugi współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_2 (taka dla której błąd E jest najniższy) to 40. Błędy dla różnych wartości znajdują się w tabeli 3. Przebiegi znajdują się na wykresach 5 i 6. Wartości wejścia trzeciego nieco się pogorszyły, ale za to widać znaczną poprawę w regulacji sygnału y2.

0.1.3. Trzeci współczynnik psi

Najlepsza znaleziona przez nas podczas testowania wartość ψ_3 (taka dla której błąd E jest najniższy) to 7. Błędy dla różnych wartości znajdują się w tabeli 4. Przebiegi znajdują się na wykresach 7 i 8.

$\boldsymbol{\psi_1}$	$oldsymbol{E}$	$m{E}1$	E2	E3
1	118,9959	30,7112	31,6862	56,5985
2,7	$116,\!2096$	20,3765	32,4374	63,3958
5	116,5936	17,5255	32,7217	66,3464

Tab. 2. Wartości błędów dla różnych wartości ψ_1

ψ_{2}	$oldsymbol{E}$	E1	E2	E3
1	116,2096	20,4374	32,4374	63,3958
40	$110,\!5704$	20,6878	14,9057	74,9769
100	110,6651	20,7139	14,2842	75,6670

Tab. 3. Wartości błędów dla różnych wartości ψ_2

ψ_3	$oldsymbol{E}$	E1	E2	E3
1	110,5704	20,6878	14,9057	74,9769
7	85,3216	35,4493	15,0596	34,8127
15	90,5030	49,4658	15,2455	25,7917

Tab. 4. Wartości błędów dla różnych wartości ψ_3

Rys. 3. Wartości wejść przy różnych wartościach ψ_1

Rys. 4. Wartości wyjść przy różnych wartościach ψ_1

Rys. 5. Wartości wejść przy różnych wartościach ψ_2

Rys. 6. Wartości wyjść przy różnych wartościach ψ_2

Rys. 7. Wartości wejść przy różnych wartościach ψ_3

Rys. 8. Wartości wyjść przy różnych wartościach ψ_3