

☆ Key Points

word embedding.

networks.

A deep averaging network

consists of two components: a

traditional neural network and a

Use stochastic gradient descent

(SGD) to train deep averaging

- > Course Shortcuts
- > Student Lounge
- > Q&A
- > Explore a Neural Network
- > Use Convolutional NeuralNetworks for Image Analysis
- Analyze Sequence Data with Neural Sequence Models
 - Module Introduction:
 Analyze Sequence Data
 with Neural Sequence
 Models
 - Adapt Neural Networks for Sequence Models
 - Review Neural Sequence Models
 - Find the Embedded Relationship of Words
 - Formalize Word Embeddings
 - Use Word Embeddings to Predict Sentiment
 - Review Deep Averaging Networks
 - Translate Text with
 Recurrent Neural
 Networks
 - Review Recurrent Neural
 Networks
 - Sequence Models Cheat
 Sheet
 - Implement Neural Sequence Models for Sentiment Analysis
 - Module Wrap-up: Analyze
 Sequence Data with
 Neural Sequence Models
 - Course Exit Survey
 - Thank You and Farewell
 - Stay Connected

Deep Learning and Neural Networks >

Review Deep Averaging Networks

The goal of a sentiment analysis task is to tell whether the sentiment behind a text is positive or negative. In this case, what you are trying to learn is a classification model that classifies whether a sequence of words is positive or negative.

One way to approach this task is to use a deep averaging network. A deep averaging network consists of two components: a word embedding and a traditional neural network (sometimes even a linear classifier, which is a neural network without hidden layers).

A deep averaging network makes predictions, following these four steps:

- 1. Input a sequence of words s_1, \ldots, s_n
- 2. Convert these words to word embeddings $\mathbf{w}_1, \dots, \mathbf{w}_n$ based on the network's internal word embedding
- 3. Average all the word embeddings to get a vector representation of the sequence $\mathbf{v} = \frac{1}{n}(\mathbf{w}_1 + \cdots + \mathbf{w}_n)$
- 4. Pass the vector \mathbf{v} to the neural network to determine whether the sequence is positive or negative

A deep averaging network (DAN) can be trained using SGD. Training a DAN is almost identical to training a standard neural network. We use a standard cross entropy loss to predict if a sentence is, for example, positive or negative. When we do back-propagation, we update the weights of the neural network. However, we do one additional step: We also take a gradient update with respect to the word embeddings. This gradient can easily be computed with the chain rule using the back-propagation algorithm.

Deep averaging networks are one of the simplest neural sequence models. In this case, the averaging operation is the encoder (it produces a vector representation of the sequence) and the neural network is the decoder (the output is a simple scalar).

◆ Previous

Next ▶