

Part 4

挖掘预处理 郎大为 J.D. Power

课程大纲

- 挖掘预处理[1小时]
 - 数据的类型
 - 数据的可能问题
 - 数据预处理的方法

数据的类型

什么是数据: Data Nomenclature

- 数据样本与属性的收集
- 一个属性就是一个样本的性质或者特征。
 - 属性也被称作变量,特征,性质等。
- 一系列特征的集合被称为样本。
 - 样本也被称作记录,样本点,例子等

数据中变量的类型

- 名义变量
 - 例子:ID,眼睛的颜色..
- 次序变量
 - 例子:排名(比如薯片味道的排名,1~10),级别,学历,身高(高,中,低)
- 间隔变量
 - 例子:日历上的时间,摄氏度,华氏度..
- 比率变量
 - 例子:开尔文温度,长度,时间....

数据中变量的类型

变量类型是取决于变量可以进行那种种类的运算

- 特异: =
- 排序: < >
- 加法/减法: + -
- 乘法/除法: */

规则是这样的:

- 名义变量: 特异
- 排序变量: 特异 & 排序
- 间隔变量: 特异 , 排序 & 加减
- 比率变量: 上述4种运算

名义变量

- 描述:
 - 名义变量的值只是名字上不同,或者说,名义变量只提供了足够判断两个观测是否不同。
- 例子
 - 工号,眼睛颜色,性别
- 分析工具:
 - 众数,熵,列联表相关性

次序变量

- 描述:
 - 次序变量提供了足够的信息供人们为观测值排序
- 例子
 - 一个矿产的优劣,成绩,门牌号
- 分析工具:
 - 中位数,百分位数,秩相关系数,符号秩检验

间隔变量

- 描述:
 - 对于间隔变量,变量之差的度量是有意义的:每个单位都是相同的
- 例子
 - 日历上的时间,摄氏度,华氏度
- 分析工具:
 - 均值,标准差,皮尔逊相关系数,t,F检验

比率变量

- 描述:
 - 对于比率变量,变量之间的差异与比率都是有意义的。
- 例子
 - 开尔文温度,货币数量,年龄,长度,次数
- 分析工具:
 - 几何均值,百分率,调和均值

离散变量和连续变量

- 离散变量
 - 只有有限或者可列个属性值
 - 例子:门牌号,次数,文档中的字
 - 经常可以看作整数变量
 - 二元变量是离散变量的特例(0-1)
- 连续变量
 - 有一个真实的数值来做属性值
 - 例子:温度,身高,体重
 - 实际上,连续变量只能有有限的数值或者小数
 - 连续变量可以作为浮点变量的特例

数据集的类型

- 记录
 - 数据矩阵
 - 文档
 - 交易数据
- 图数据
 - 社交网络数据
 - 分子式
- 排序
 - 空间数据
 - 时间数据
 - 基因序列数据

记录型数据

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

数据矩阵

Projection of x Load	Projection of y load	Distance	Load	Thickness	
10.23	5.27	15.22	2.7	1.2	
12.65	6.25	16.22	2.2	1.1	

文档数据

	team	coach	pla y	ball	score	game	n wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

交易数据

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

图数据

有序数据

```
(AB) (D) (CE)
(BD) (C) (E)
(CD) (B) (AE)
```

数据的可能问题

为什么需要准备数据?

- 几乎所有建模方法都假定数据是一个矩阵形式并且是干净的数据。
- 从几个不同的数据源中的不同表格中提取数据是一项关键的工作。
- 最终模型的结果总依赖于数据的质量。

现实的数据都不是可以简单收集的

- 数据可能出现的问题?
- 我们怎么从数据中发现问题?
- 我们怎么解决这些问题?
- 可能会遇到的问题:
 - 噪声, 离群点
 - 缺失值
 - 重复记录

基本流程

- 从业务系统或者数据仓库中提取数据
- 整合数据
- 探索数据并检验数据的完备性(离群值,缺失值)
- 转化数据并建立新的变量
 - 属性的转化,聚合,离散化,新变量的生成
- 删除不具预测能力或预测能力很低的冗余的变量

噪音

- 无法避免
- 更多的数据会使噪音减弱
- 可能通过一个良好的模型来减弱噪音的影响
- 例子
 - 信号很差的电话
 - 带雪花的电视频道

离群点

- 离群点是数据中一些观测值的特征与其他观测值相差较远的情况。
- 考虑是否要将离群点消除
- 例子
 - IQ
 - 跳水比赛打分

缺失值

- 缺失值产生的原因
 - 数据没有采集到(e.g人们倾向于拒绝提供自己的年龄和体重)
 - 属性不一定适合所有的观测值(年收入数据对于未成年人)
- 解决缺失值
 - 消除样本
 - 预测缺失值
 - 忽略缺失值来进行建模
 - 用其他数据代替(用频率的加权平均)
 - 通过联系业务人员恢复数据

数据源

- 业务系统
 - 原始数据 (raw data)
 - 可能会有错误
 - 最能描述业务的数据源
- 数据仓库/数据集市
 - 理想的数据来源
 - 提供清洁、有条理的数据
- 合并数据可能会导致重复数据

数据预处理的方法

- 检验各个数据集的统计性质
- 探索变量间的统计性质
- 比较数据集
- 确定数据完整性
 - 寻找无效值
 - 寻找离群值
 - 寻找缺失值

保证训练集与验证集用同样的统计性质

• 确定所有的在第一个数据集的性质都在第二个数据集中体现

• 确定各个性质在两个数据集中的比例近似相等

```
v2 <- factor(sample(letters[1:2], 100, replace=TRUE, prob=c(0.4, 0.6)))
mat <- rbind(table(v1), table(v2))
chisq. test(mat)

Pearson's Chi-squared test

data: mat
X-squared = 0, df = 1, p-value = 1</pre>
```

• 确定数据的集中程度和离散程度相似

qqplot(v1, v2) abline(0, 1)

离群点的探测

有三种主要的方法来确定离群点

- 确定一个基于业务或者统计的区间来定义离群值
- 用一个候补模型和一系列统计量来确定
- 用聚类的方法把数据集分割成较小的子集

对于离群点的定义是主观的,因此,当我们在数据挖掘中标记了一些变量是离群点,或许不一定意味着他们应当被删除

缺失数据

什么是缺失数据,他们是怎么出现的?

- 未知值
- 错误值
- 在一个数值变换中没有定义的值

处理缺失值的方法:

- 忽略这个观测记录
- 用一个其他值代替:
 - 0/NA
 - 均值/中位数/众数
 - 常数
- 插补数据(EM)
- 现实方法

缺失值的模式

```
library(VIM)
data(sleep)
which(is.na(sleep$Dream))
```

[1] 1 3 4 14 24 26 30 31 47 53 55 62

complete.cases(sleep)

- [17] TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
- [49] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

识别缺失值的模式

aggr(sleep)

用VIM包来插入缺失值

sleep_knn <- kNN(sleep) #knn impuration</pre>

Time difference of 0.022922 secs

aggr(sleep_knn, delimiter="_imp")

