Билет 11

1. Математические модели процессов теплопереноса.

1. Теплопроводность — распространение тепла за счет колебательных движении атомов и молекул. Наблюдается в твердых телах и тонких неподвижных слоях жидкости и газа. Теплопроводность описывается законом Фурье:

$$dq=\lambda \frac{\partial T}{\partial x}dF$$
 , где dq — количество тепла, переданное в единицу времени через площадь dF; λ - коэффициент теплопроводности.

<u>Изменение температуры в любой точке объема в любой момент времени</u> можно найти из уравнения теплопроводности вида:

$$\frac{\partial T(\tau, x, y, z)}{\partial \tau} = \frac{\lambda}{c\rho} \left(\frac{\partial^2 T(\tau, x, y, z)}{\partial x^2} + \frac{\partial^2 T(\tau, x, y, z)}{\partial y^2} + \frac{\partial^2 T(\tau, x, y, z)}{\partial z^2} \right)$$

2. *Конвективный теплоперенос* — тепло передается из-за разности плотностей. Такой способ передачи тепла возможен для жидкостей и газов. Описывается уравнением теплоотдачи:

$$dq = \alpha (T1 - T2)dF$$

lpha - коэффициент теплоотдачи

Передача тепла от одной среды к другой через бесконечно плоскую стенку.

Поток тепла от теплоносителя передается стенке вследствие теплопередачи. Этот же поток тепла передается через стенку вследствие теплопроводности. Далее он передается хладоагенту вследствие теплоотдачи

kt – коэффициент теплопередачи

3. *Излучение* — передача тепла электромагнитными волнами, единственный вид теплопереноса, не требующий теплопередающей среды

$$dq = kn(T_1^4 - T_2^4)dF$$

kn – коэффициент излучения

Т1 – температура излучающего тела

Т2 – температура принимающего тела

$$kn = \frac{1}{\frac{1}{k1} + \frac{1}{k2} - \frac{1}{ka}}$$
, $k_a -$ для абсолютно черного тела

Интерполяционные кривые в машинной графике. 1.

Одной из распространенных задач в САПР является графическое представление кривых и поверхностей. Средства компьютерной графики существенно помогают при проектировании, показывая конструктору различные варианты моделирования поверхности. При этом часто возникает задача построения кривой или поверхности, проходящей через ряд заданных точек.

Кривые Лагранжа

Пусть на плоскости задан набор точек:

 $P_i(x_i, y_i)$, i = 0, 1, ..., m, причем $x_0 < x_1 < x_2 < ... < x_m$.

Многочлен Лагранжа имеет вид:

$$L(x) = \sum_{i=0}^{n} y_{i} \prod_{j=0}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Если раскрыть данный многочлен, получим

$$L_m(x) = \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2)...(x - x_n)}{(x_1 - x_0)(x_1 - x_2)...(x_1 - x_n)} y_1 + ...$$

Кривая Безье — параметрическая кривая, задаваемая выражением

$$\mathbf{B}(t) = \sum_{i=0}^{n} \mathbf{P}_{i} \mathbf{b}_{i,n}(t), \quad 0 \leqslant t \leqslant 1$$

где ${f P}_i$ — вектор компонент опорных вершин, а ${f b}_{i,n}(t)$ — базисные функции кривой Безье, называемые также полиномами Бернштейна:

$$\mathbf{b}_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i},$$

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

 $\binom{n}{i} = \frac{n!}{i!(n-i)!}$ ____ число сочетаний из n по i, где n ____ степень полинома, i — порядковый номер опорной вершины.

Линейные кривые

При n = 1 кривая представляет собой отрезок прямой линии, точки \mathbf{P}_0 и \mathbf{P}_1 определяют его начало и конец. Кривая задаётся уравнением:

$$\mathbf{B}(t) = (1-t)\mathbf{P}_0 + t\mathbf{P}_1 \quad t \in [0,1]$$

Квадратичные кривые

Квадратичная кривая Безье (n = 2) задаётся тремя опорными точками: \mathbf{P}_0 , \mathbf{P}_1 и \mathbf{P}_2 .

$$\mathbf{B}(t) = (1-t)^2 \mathbf{P}_0 + 2t(1-t)\mathbf{P}_1 + t^2 \mathbf{P}_2, \quad t \in [0,1]$$

Кубические кривые

В параметрической форме кубическая кривая Безье (n = 3) описывается следующим уравнением:

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \quad t \in [0, 1]$$

Кривые Эрмита:

Используются и многие другие методы, например, метод Эрмита, при котором задаются положения конечных точек кривой и значения первой производной в них.

Даны точки, из каждой выходит вектор, являющийся касательной к куску кривой, выходящей из этой точки.

Для построения простейшей кривой достаточно двух точек. Существует параметр t, принадлежащий отрезку [0,1] и изменяющийся на нем с некоторым шагом.

$$x_{t} = x_{1}(2t^{3} - 3t^{2} + 1) + x_{2}(-2t^{3} + 3t^{2}) + x_{B1}(t^{3} - 2t^{2} + t) + x_{B2}(t^{3} - t^{2})$$

$$y_{t} = y_{1}(2t^{3} - 3t^{2} + 1) + y_{2}(-2t^{3} + 3t^{2}) + y_{B1}(t^{3} - 2t^{2} + t) + y_{B2}(t^{3} - t^{2}),$$

где x_{B1} , y_{B1} и x_{B2} , y_{B1} - координаты векторов относительно точек.

Пример:

Геометрические сплайны

В некоторых случаях требуется обеспечить глобальную гладкость интерполяционного полинома на всем отрезке.

<u>Сплайн</u> – особым образом построенные гладкие кусочные функции, сочетающие в себе локальную простоту и глобальную для всего отрезка интерполяции гладкость.

В-сплайны:

В более общей форме В-сплайнов кривая в общем случае задается соотношением:

$$P(t) = \square_{i=0}^{n} P_i \quad N_{im}(t)$$

где P_i - значения координат в вершинах ломаной, используемой в качестве управляющей ломаной для кривой, t - параметр, N_{im} - весовые функции, определяемые рекуррентным соотношением:

$$\begin{split} N_{i,1} &= \begin{array}{c} \square & 1, \ e c \pi u \ x_i \ \square \ t \ \square \ x_{i+1} \\ \square & 0, \quad \text{в других случаяx} \\ \\ N_{i,k}(t) &= \frac{(t - x_i) \ N_{i,k-1}(t)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - t) \ N_{i+1,k-1}(t)}{x_{i+k} - x_{i+1}} \end{split}$$

Квадратичный:

Для его построения требуется минимум три точки.

Тогда
$$x_t = 0.5t^2x_3 + (0.5 - t + t^2)x_2 + (0.5 - t^2 + t)x_1$$

 $y_t = 0.5t^2y_3 + (0.5 - t + t^2)y_2 + (0.5 - t^2 + t)y_1$

Пример:

Кубический:

Для его построения требуется минимум 4 точки.

$$x_{t} = (\frac{1}{6}(1-t)^{3})x_{1} + (\frac{2}{3} + \frac{1}{2}t^{3} - t^{2})x_{2} + (\frac{2}{3} + \frac{1}{2}(t-1)^{3} + (t-1)^{2})x_{3} + \frac{t^{3}}{6}x_{4}$$

$$y_{t} = (\frac{1}{6}(1-t)^{3})y_{1} + (\frac{2}{3} + \frac{1}{2}t^{3} - t^{2})y_{2} + (\frac{2}{3} + \frac{1}{2}(t-1)^{3} + (t-1)^{2})y_{3} + \frac{t^{3}}{6}y_{4}$$

3. Представить алгоритм решения уравнения методом простых итераций.

Дано уравнение f(x)=0. Необходимо записать его в виде $x=\phi(x)$. Будем искать точку пересечения графиков функций y=x и $y=\phi(x)$, которая и будет решением уравнения f(x)=0. Условие сходимости: $|\phi'(x)|<1$ при x, близких x.

Алгоритм:

- 1. НАЧАЛО
- 2. Ввод начального приближения х0
- 3. Ввод точности е
- 4. $x1 = \phi(x0)$
- Цикл пока |x1-x0|>e
- 6. x0=x1
- 7. $x1 = \phi(x0)$
- 8. Конец цикла
- 9. Вывод х1
- 10.КОНЕЦ