Übungsblatt 4

Aufgabe 13 (0.5+1+1.5+2). Wir betrachten die Fibonaccifolge $(f_n)_{n\in\mathbb{N}}$ definiert durch $f_{n+2}=f_{n+1}+f_n$ und $f_0=f_1=1$. Wir setzen $a_n:=\frac{f_{n+1}}{f_n}$.

- (i) Finden Sie eine rekursive Beschreibung der Folge $(a_n)_n$.
- (ii) Zeigen Sie, dass $1 \le a_n \le 2$ für alle $n \in \mathbb{N}$ gilt.
- (iii) Untersuchen Sie die Teilfolgen $(a_{2n})_{n\in\mathbb{N}}$ und $(a_{2n+1})_{n\in\mathbb{N}}$ auf Monotonie.
- (iv) Konvergiert $(a_n)_n$? Wenn ja, zu welchem Grenzwert?

Aufgabe 14 (1+1+1+1+1).

- (i) Berechnen Sie iⁿ für alle $n \in \mathbb{N}$.
- (ii) Stellen Sie $\frac{1+i}{3+2i}$ in der Form a+ib, $a,b \in \mathbb{R}$, dar.
- (iii) Untersuchen Sie die quadratische Gleichung $x^2 + px + q = 0$ für $p, q \in \mathbb{R}$. Wann hat diese nur reelle Lösungen und wie viele sind das dann jeweils? Kann man in den anderen Fällen die Gleichung in \mathbb{C} lösen? Was sind dann die Lösungen?
- (iv) Finden Sie alle komplexen Lösungen von $x^3 = 1$ und stellen Sie diese in \mathbb{R}^2 graphisch dar.
- (v) Bestimmen Sie $\left(\frac{1+\mathrm{i}}{\sqrt{2}}\right)^n$ für $n\in\mathbb{N}$ und stellen Sie diese komplexen Zahlen graphisch dar.

Aufgabe 15 (1.5+2+1.5).

- (i) Sei $(a_n)_n$ eine reelle Folge. Zeigen Sie, dass $\sum_{k=1}^{\infty} (a_k a_{k-1})$ genau dann konvergent ist, wenn der Limes von $(a_n)_n$ in \mathbb{R} existiert. Was ist dann der Grenzwert?
- (ii) Wenden Sie (i) auf die Reihen $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ und $\sum_{k=2}^{\infty} \frac{2}{k^2-1}$ an. Hinweis: Schreiben Sie $\frac{1}{k(k+1)}$ in der Form $\frac{a}{k} + \frac{b}{k+1}$ für geeignete a, b.
- (iii) Sei $(a_n)_n$ eine Folge nichtnegativer reeller Zahlen. Zeigen Sie, dass die Reihe $\sum_{i=0}^{\infty} a_i$ genau dann in \mathbb{R} konvergiert, wenn die Folge der zugehörigen Partialsummen nach oben beschränkt ist.

 $^{^1\}mathrm{F\"{u}r}\ z\in\mathbb{C}\setminus\{0\}$ sei $z^0=1.$

Aufgabe 16 (2+(1.5+1.5)).

(i) Sei $M_0 = [0, 1]$. Wir definieren eine Folge aus Mengen M_n , wobei jedes M_n eine disjunkte Vereinigung von Intervallen² ist, rekursiv wie folgt: Die Menge M_{n+1} entsteht aus M_n , indem jedes der Intervalle von M_n gedrittelt wird und das mittlere entfernt wird.

Sei s_n die Summe der Längen der Intervalle in M_n . Bestimmen Sie s_n , untersuchen Sie die Folge $(s_n)_n$ auf Konvergenz und bestimmen Sie ggf. den Grenzwert.

(ii) Sei P_0 das gleichseitige Dreieck mit Seitenlänge 1. Wir definieren die Polygone P_n rekursiv wie folgt: P_{n+1} entsteht aus P_n , indem jede Kante des Polygons gedrittelt wird, auf dem mitteleren Drittel ein gleichseitiges Dreieck mit Seitenlänge gleich dem mittleren Drittel gesetzt wird und dann dieses mittlere Drittel gelöscht wird.

Sei ℓ_n der Umfang des Polygons P_n und A_n der Flächeninhalt des Polygons $P_n.$

- (a) Bestimmen Sie ℓ_n und zeigen Sie, dass $\lim_{n\to\infty}\ell_n=\infty$ gilt.
- (b) Bestimmen Sie $A_n A_{n-1}$. Zeigen Sie, dass A_n für $n \to \infty$ konvergiert.

Abgabe am Mittwoch 02.12.20 bis 14 Uhr – bitte nicht vor Dienstag 9 Uhr abgeben

 $^{^2}$ Eine Vereinigung von Mengen ist disjunkt, wenn jede zwei dieser Menge kein Element gemeinsam haben.