How to use the MeSH.db Package

Koki Tsuyuzaki¹, Itoshi Nikaido^{2,3} and Gota Morota⁴.

January 7, 2013

¹Department of Medical and Life Science, Tokyo University of Science.
 ²Functional Genomics Unit, RIKEN Center for Developmental Biology.
 ³Laboratory for Systems Biology, RIKEN Center for Developmental Biology.
 ⁴Department of Dairy Science, University of Wisconsin-Madison.

k.t.the-answer@hotmail.co.jp

Contents

1	Introduction	1
2	Getting started	2
3	Methods	2
4	Data	3
5	Examples 5.1 Exercises in cols, keytypes, keys and select method	6
	5.2 Annotation of Custic Fibrosis	8

1 Introduction

This document provides the way to use MeSH.db package. MeSH (Medical Subject Headings) is the NLM controlled vocabulary used to manually index articles for MEDLINE/Pubmed (Nelson and et al., 2004). The amount of vocabulary in MeSH is about twice as large as that of GO (Gene Ontology)(Ashburner and et al., 2000) and its category is also wider. Therefore MeSH is expected to be much detailed and exhaustive annotation tool. Some softwares or databases using MeSH are now proposed (Nakazato and et al., 2007, 2009; Saurin and et al., 2010; Sartor and et al., 2012).

MeSH.db is a free R package for handling MeSH in R. Its data are retrieved from MeSH ftp site (http://www.nlm.nih.gov/mesh/filelist.html). MeSH in 2013 has 19 hierarchy and MeSH.db provides 16 of them, which are actually assigned to some MeSH Terms. Each category is expressed to single capital alphabet defined in MeSH as Abbreviations.

Abbreviation	Category
A	Anatomy
В	Organisms
С	Diseases
D	Chemicals and Drugs
E	Analytical, Diagnostic and Therapeutic Techniques and Equipment
F	Psychiatry and Psychology
G	Phenomena and Processes
Н	Disciplines and Occupations
I	Anthropology, Education, Sociology and Social Phenomena
J	Technology and Food and Beverages
K	Humanities
L	Information Science
M	Persons
N	Health Care
V	Publication Type
Z	Geographical Locations

MeSH Term also have hierarchy structure like GO. *MeSH.db* provides its Ancestor-Offspring Relationships (AOR) and Parent-Child Relationships (PCR) as corresponding table. Data of PCR and AOR are also used for calculating the conditional probability in enrichment analysis (*meshr* package).

2 Getting started

To load the MeSH.db package, just type library(MeSH.db). 5 methods and 36 data are provided by MeSH.db.

3 Methods

Following 5 methods are provided by MeSH.db.

MeSH	Function for retrieval of the summary of all object in MeSH.db
MeSH_dbconn	Function for retrieval of the connection of sqlite database
MeSH_dbfile	Function for retrieval of the directory of .sqlite file
MeSH_dbschema	Function for retrieval of the schema of .sqlite database
MeSH_dbInfo	Function for retrieval of the information of .sqlite database

4 Data

Following 36 data are provided by MeSH.db.

MeSHMAPCOUNTS	The number of row of all data
MeSHTERM	MeSH Term
MeSHSYNONYM	The synonym of MeSH Term
MeSHQUALIFIER	Substantial Information of MeSH Term
MeSHAAOR	Ancestor-Offspring Relationships in A category
MeSHBAOR	Ancestor-Offspring Relationships in B category
MeSHCAOR	Ancestor-Offspring Relationships in C category
MeSHDAOR	Ancestor-Offspring Relationships in D category
MeSHEAOR	Ancestor-Offspring Relationships in E category
MeSHFAOR	Ancestor-Offspring Relationships in F category
MeSHGAOR	Ancestor-Offspring Relationships in G category
MeSHHAOR	Ancestor-Offspring Relationships in H category
MeSHIAOR	Ancestor-Offspring Relationships in I category
MeSHJAOR	Ancestor-Offspring Relationships in J category
MeSHKAOR	Ancestor-Offspring Relationships in K category
MeSHLAOR	Ancestor-Offspring Relationships in L category
MeSHMAOR	Ancestor-Offspring Relationships in M category
MeSHNAOR	Ancestor-Offspring Relationships in N category
MeSHVAOR	Ancestor-Offspring Relationships in V category
MeSHZAOR	Ancestor-Offspring Relationships in Z category
MeSHAPCR	Parent-Child Relationships in A category
MeSHBPCR	Parent-Child Relationships in B category
MeSHCPCR	Parent-Child Relationships in C category
MeSHDPCR	Parent-Child Relationships in D category
MeSHEPCR	Parent-Child Relationships in E category
MeSHFPCR	Parent-Child Relationships in F category
MeSHGPCR	Parent-Child Relationships in G category
MeSHHPCR	Parent-Child Relationships in H category
MeSHIPCR	Parent-Child Relationships in I category
MeSHJPCR	Parent-Child Relationships in J category
MeSHKPCR	Parent-Child Relationships in K category
MeSHLPCR	Parent-Child Relationships in L category
MeSHMPCR	Parent-Child Relationships in M category

MeSHNPCR	Parent-Child Relationships in N category
MeSHVPCR	Parent-Child Relationships in V category
MeSHZPCR	Parent-Child Relationships in Z category

In MeSH.db, all data are extracted by 4 functions defined by AnnotationForge; **keytypes**, **cols**, **keys** and **select**. keys function has 1 optional parameter keytype and select function also has 3 optional parameter keys, cols and keytype. cols is the columns which you can retrieved by select and keytype is the columns which you can specify as the option in keys and select functions.

Object Name	cols	keytype
MeSHMAPCOUNTS	MAPNAME, COUNT	MAPNAME
	MESHID, MESHTERM,	MESHID, MESHTERM,
MeSHTERM	CATEGORY	CATEGORY
MeSHSYNONYM	MESHID, MESHSYNONYM	MESHID
	QUALIFIERID, SUBHEADING,	
MeSHQUALIFIER	MESHID	QUALIFIERID, MESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHAAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHBAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHCAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHDAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHEAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHFAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHGAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHHAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHIAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHJAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHKAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHLAOR	OFFSPRINGMESHID	OFFSPRINGMESHID

	ANCESTERMESHID,	ANCESTERMESHID,
MeSHMAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHNAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHVAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	ANCESTERMESHID,	ANCESTERMESHID,
MeSHZAOR	OFFSPRINGMESHID	OFFSPRINGMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHAPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHBPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHCPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHDPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHEPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHFPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHGPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHHPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHIPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHJPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHKPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHLPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHMPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHNPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHVPCR	CHILDMESHID	CHILDMESHID
	PARENTMESHID,	PARENTMESHID,
MeSHZPCR	CHILDMESHID	CHILDMESHID

5 Examples

5.1 Exercises in cols, keytypes, keys and select method

MeSH.db uses cols, keytypes, keys and select functions defined by AnnotationForge. Here we shows how to use these functions in MeSH.db.

First, install and load the MeSH.db.

> library(MeSH.db)

ls shows all object in MeSH.db.

> ls("package:MeSH.db")

[1]	"MeSH"	"MeSH_dbconn"	"MeSH_dbfile"	"MeSH_dbInfo"
[5]	"MeSH_dbschema"	"MeSHAAOR"	"MeSHAPCR"	"MeSHBAOR"
[9]	"MeSHBPCR"	"MeSHCAOR"	"MeSHCPCR"	"MeSHDAOR"
[13]	"MeSHDPCR"	"MeSHEAOR"	"MeSHEPCR"	"MeSHFAOR"
[17]	"MeSHFPCR"	"MeSHGAOR"	"MeSHGPCR"	"MeSHHAOR"
[21]	"MeSHHPCR"	"MeSHIAOR"	"MeSHIPCR"	"MeSHJAOR"
[25]	"MeSHJPCR"	"MeSHKAOR"	"MeSHKPCR"	"MeSHLAOR"
[29]	"MeSHLPCR"	"MeSHMAOR"	"MeSHMAPCOUNTS"	"MeSHMPCR"
[33]	"MeSHNAOR"	"MeSHNPCR"	"MeSHQUALIFIER"	"MeSHSYNONYM"
[37]	"MeSHTERM"	"MeSHVAOR"	"MeSHVPCR"	"MeSHZAOR"
[41]	"MeSHZPCR"			

Here we use cols, keytypes, keys and select against MeSHMAPCOUNTS.

cols returns the rows which you can retrieve in MeSHMAPCOUNTS.

> cols(MeSHMAPCOUNTS)

[1] "MAPNAME" "COUNT"

key types returns the rows which you can use the option as keys and select functions against ${\tt MeSHMAPCOUNTS}.$

> keytypes(MeSHMAPCOUNTS)

[1] "MAPNAME"

Here we get to know that MAPNAME is available.

keys function specifies the value of keytype.

select method specifies the rows in particular cols having user-defined keys and retrieved data as single dataframe like SQL's SELECT statement. Now we retrieve the rows in which MAPNAME is equivalent to "MeSHTERM".

```
> select(MeSHMAPCOUNTS, keys=k[1,], cols=c("MAPNAME","COUNT"),
+ keytype="MAPNAME")

MAPNAME COUNT
1 MeSHTERM 54843
```

By the way, here we don't have to specify keytype option against MeSHMAPCOUNTS, because MeSHMAPCOUNTS only has single col which is possible to be keytype and keytype is consequently specified.

```
> select(MeSHMAPCOUNTS, keys=k[1,], cols=c("MAPNAME","COUNT"))
MAPNAME COUNT
1 MeSHTERM 54843
```

The same can be said of MeSHSYNONYM.

5.2 Annotation of Cystic Fibrosis

Next we will annotate one of genetic diseases, $Cystic\ Fibrosis\ (CF)$ by MeSH. Let's try to search CF in MeSHTERM.

- > cols(MeSHTERM)
- [1] "MESHID" "MESHTERM" "MESHCATEGORY"

MESHID, MESHTERM and MESHCATEGORY can be retrieved and ...

- > keytypes(MeSHTERM)
- [1] "MESHID" "MESHTERM" "MESHCATEGORY"

all of them are available as keytype option.

select function retrieves the rows in which MESHTERM is "Cystic Fibrosis" in MeSHTERM table.

```
> CF <- select(MeSHTERM, keys="Cystic Fibrosis",
```

- + cols=c("MESHID", "MESHTERM", "MESHCATEGORY"), keytype="MESHTERM")
- > CF

MESHID MESHTERM MESHCATEGORY

1 D003550 Cystic Fibrosis

select function shows that MESHID of CF is D003550 and CF is in C (Disease) category.

Using MeSHSYNONYM, we can also check whether CF has synonyms.

- > select(MeSHSYNONYM, keys=CF[1,1],
- + cols=c("MESHID", "MESHSYNONYM"), keytype="MESHTERM")

MESHID

- 1 D003550
- 3 D003550
- 4 D003550
- 5 D003550
- 6 D003550
- 7 D003550
- 8 D003550
- 9 D003550 10 D003550
- MESHSYNONYM
- 1 Mucoviscidosis | TO47 | NON | EQV | OMIM (2013) | ORD (2010) | UNK
- (19XX) | 740329 | abcdeeef
- 3 Fibrocystic Disease of Pancreas | TO47 | NON | NRW | UNK

(19XX) | 740329 | FIBROCYSTIC DIS OF PANCREAS | abcdefv

- 4 Pancreatic Cystic Fibrosis | TO47 | NON | NRW | UNK (19XX) | 740329 | abcdef
- 5 Pulmonary Cystic Fibrosis | T047 | NON | NRW | NLM (2005) | 031030 | PULM CYSTIC FIBROSIS | abcdef v
- 6 Cystic Fibrosis, Pancreatic
- 7 Cystic Fibrosis, Pulmonary
- 8 Fibrosis, Cystic
- 9 Pancreas Fibrocystic Disease
- 10 Pancreas Fibrocystic Diseases

We can get to know that CF has some synonyms like Mucoviscidosis, Fibrocystic Disease of Pancreas, Pancreastic Cystic Fibrosis and so on.

MeSH also defines QUALIFIER, which is more rough category (SUBHEADING). We can also use select function against MeSHQUALIFIER.

```
> select(MeSHQUALIFIER, keys=CF[1,1],
```

+ cols=c("QUALIFIERID","SUBHEADING","MESHID"), keytype="MESHID")

	QUALIFIERID	SUBHEADING	MESHID
1	Q000097	blood	D003550
2	Q000134	cerebrospinal fluid	D003550
3	Q000139	chemically induced	D003550
4	Q000145	classification	D003550
5	Q000150	complications	D003550
6	Q000175	diagnosis	D003550
7	Q000178	diet therapy	D003550
8	Q000188	drug therapy	D003550
9	Q000191	economics	D003550
10	Q000196	embryology	D003550
11	Q000201	enzymology	D003550
12	Q000208	ethnology	D003550
13	Q000209	etiology	D003550
14	Q000235	genetics	D003550
15	Q000266	history	D003550
16	Q000276	immunology	D003550
17	Q000378	metabolism	D003550
18	Q000382	microbiology	D003550
19	Q000401	mortality	D003550
20	Q000451	nursing	D003550
21	Q000453	epidemiology	D003550
22	Q000469	parasitology	D003550
23	Q000473	pathology	D003550
24	Q000503	physiopathology	D003550
25	Q000517	$\verb"prevention \& control"$	D003550

```
26
       Q000523
                         psychology D003550
27
       Q000530
                        radiography D003550
28
       Q000531 radionuclide imaging D003550
                       radiotherapy D003550
29
       Q000532
30
       Q000534
                     rehabilitation D003550
31
       Q000601
                             surgery D003550
32
       Q000628
                             therapy D003550
33
       Q000652
                               urine D003550
34
       Q000662
                         veterinary D003550
35
       Q000736
                    ultrasonography D003550
                            virology D003550
36
       Q000821
```

As mentioned before, MeSH has hierarchical structure. AOR tell us upper (or lower) hierarchical MeSH Term. We already know CF is categorized in C, so MeSHCAOR is suitable here.

```
> ao <- select(MeSHCAOR, keys=CF[1,1],
+ cols=c("ANCESTORMESHID","OFFSPRINGMESHID"), keytype="OFFSPRINGMESHID")
> ao
```

ANCESTORMESHID OFFSPRINGMESHID

1	D007232	D003550
2	D008171	D003550
3	D010182	D003550
4	D030342	D003550

There are D007232, D008171, D010182 and D030342 above CF.

We will translate these MeSH ID to MeSH Term.

```
> select(MeSHTERM, keys=ao[,1], cols=c("MESHTERM"), keytype="MESHID")
```

MESHTERM

- 1 Infant, Newborn, Diseases
- 2 Lung Diseases
- 3 Pancreatic Diseases
- 4 Genetic Diseases, Inborn

CF is recognized as various kind of diseases.

PCR tell us the direct upper (or lower) MeSH Term. select function is applied to MeSHCPCR in the same way.

```
> pc <- select(MeSHCPCR, keys=CF[1,1],
+ cols=c("PARENTMESHID","CHILDMESHID"), keytype="CHILDMESHID")
> pc
```

PARENTMESHID CHILDMESHID

1	D010182	D003550
2	D008171	D003550
3	D030342	D003550
4	D007232	D003550

Same MeSH IDs are retrieved, which means MeSH Term of CF is assigned in different branches of MeSH hierarchy separetelly.

Once we set keytype to opposite direction (OFFSPRINGMESHID to ANCESTORMESHID), we can also retrieved MeSH ID in lower hierarchy.

```
> select(MeSHCAOR, keys=CF[1,1],
+ cols=c("ANCESTORMESHID","OFFSPRINGMESHID"), keytype="ANCESTORMESHID")
[1] ANCESTORMESHID OFFSPRINGMESHID
<0 rows> (or 0-length row.names)
```

There are any MeSH ID, which means CF has no lower hierarchy.

References

- Ashburner, M. and et al. (2000). Gene ontology: tool for the unification of biology. the gene ontology consortium. *Nat. Genet.*, 25(1):25–29.
- Nakazato, T. and et al. (2007). Biocompass: a novel functional inference tool that utilizes mesh hierarchy to analyze groups of genes. *In Silico Biol.*, 8(1):53–61.
- Nakazato, T. and et al. (2009). Gendoo: functional profiling of gene and disease features using mesh vocabulary. *Nucleic Acids Res.*, 37:W166–W169.
- Nelson, S. J. and et al. (2004). The mesh translation maintenance system: structure, interface design, and implementation. *Stud. Health Technol. Inform.*, 107:67–69.
- Sartor, M. A. and et al. (2012). Metab2mesh: annotating compounds with medical subject headings. *Bioinformatics*, 28(10):1408–1410.
- Saurin, D. J. and et al. (2010). Genemesh: a web-based microarray analysis tool for relating differentially expressed genes to mesh terms. *BMC Bioinformatics*, 11:166.