Complex Numbers Problem Set #1

Walter Johnson Mathematics Team

May 2021

Problems are ordered from easiest to hardest difficulty, with high probability. None of the problems require a calculator, calculus, analysis, or an abacus. If you have any questions, just ask!

1

If $f(z) = \frac{z+1}{z-1}$, then find $f^{1991}(2+i)$

$\mathbf{2}$

Let arg(z) be the angle that complex number z makes with the positive real axis. Compute

$$\arg(2+i) + \arg(3+i)$$

3

Define a sequence of complex numbers by $z_1=0$, $z_{n+1}=z_n^2+i$ for $n\geq 1$. How far away from the origin is z_{111} ?

4

A function f is defined by $f(z) = i\overline{z}$, where $i = \sqrt{-1}$ and \overline{z} is the complex conjugate of z. How many values of z satisfy both |z| = 5 and f(z) = z?

5

For a non-zero complex number z, let $f(z) = 1/\overline{z}$. Let $\omega = f(z)$. As z varies along the line

$$(1+2i)z - (1-2i)\overline{z} = i$$

what curve does ω trace?

6

A function f is defined on the complex numbers by f(z) = (a+bi)z, where a and b are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that |a+bi|=8, find the value of b^2 .

7

Let

$$z = \frac{1+i}{\sqrt{2}}$$

Evaluate

$$\left(z^{1^2} + z^{2^2} + \dots + z^{12^2}\right) \cdot \left(\frac{1}{z^{1^2}} + \frac{1}{z^{2^2}} + \dots + \frac{1}{z^{12^2}}\right)$$

8

Find the number of ordered pairs of real numbers (a, b) such that $(a + bi)^{2002} = a - bi$.

9

For how many positive integers n less than or equal to 1000 is

$$(\sin t + i\cos t)^n = \sin nt + i\cos nt$$

true for all real t?

10

Let z be a complex number satisfying

$$z^2 + z + 1 = 0$$

Compute

$$\left(z+\frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \dots + \left(z^{45} + \frac{1}{z^{45}}\right)^2$$

11

Let $\xi = \cos(\frac{2\pi}{7}) + i\sin(\frac{2\pi}{7})$ be a seventh root of unity. Compute the value of

$$(2\xi+\xi^2)(2\xi^2+\xi^4)(2\xi^3+\xi^6)(2\xi^4+\xi^8)(2\xi^5+\xi^{10})(2\xi^6+\xi^{12})$$

12

There exists a degree 3 polynomial f in four complex variables such that the four complex numbers z_1 , z_2 , z_3 , z_4 form a parallelogram on the complex plane if and only if $f(z_1, z_2, z_3, z_4) = 0$. Find

$$\frac{f(1,6,1,8)}{f(0,3,3,9)}$$

13

Complex numbers a, b and c are the zeros of a polynomial $P(z) = z^3 + qz + r$, and $|a|^2 + |b|^2 + |c|^2 = 250$. The points corresponding to a, b and c in the complex plane are the vertices of a right triangle with hypotenuse h. Find h^2 .

14

Let $P(z) = z^8 + (4\sqrt{3} + 6)z^4 - (4\sqrt{3} + 7)$. What is the minimum perimeter amoung all the 8-sided polygons in the complex plane whose vertices are precisely the zeros of P(z)?

15

Find the probability that when 12 elements of this set are randomly chosen and multiplied, their product is -1

$$\{\sqrt{2}i, -\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i), \frac{1}{\sqrt{8}}(1-i), \frac{1}{\sqrt{8}}(-1-i), \frac{1}{\sqrt{8}}(-1+i)\}$$

16

Let complex numbers z_1, z_2, z_3 be in geometric progression. The average of z_1, z_2, z_3 is 10, and the average of the squares of z_1, z_2, z_3 is 20i. Compute z_2

17

Let z be a non-real complex number with $z^{23} = 1$. Compute

$$\sum_{k=0}^{22} \frac{1}{1+z^k+z^{2k}}$$