MA 578 HW6 Solutions

We will be using the following packages and definitions:

```
library(rstan)
library(bayesplot)
library(beanplot)
source("bslm.R")

iter <- 2000
warmup <- floor(iter / 2)
nsamples <- iter - warmup
nchains <- 4</pre>
```

1 (BDA 14.1)

(a)

Assuming noninformative priors:

Inference for the input samples (4 chains: each with iter = 1000; warmup = 500):

```
Q5
                     Q50
                          Q95 Mean SD
                                         Rhat Bulk_ESS Tail_ESS
(Intercept)
               1.6
                     2.0
                          2.3
                                2.0 0.2
                                            1
                                                  2137
                                                           1948
countyclay
              -0.6 -0.1 0.4 -0.1 0.3
                                                  2057
                                                           2016
countygoodhue -0.6
                     0.0 0.5
                                0.0 0.3
                                                  2118
                                                           1938
                                            1
firstflooryes -0.8 -0.3 0.2 -0.3 0.3
                                            1
                                                  1895
                                                           1957
                     0.8 1.0
                                0.8 0.1
                                            1
                                                  1705
                                                           1636
sigma
               0.7
             -14.1 -10.5 -8.8 -10.9 1.7
                                                  1639
                                                           1678
lp__
```

For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05).

```
mcmc_dens_overlay(sims)
```


The contrast coefficients for the two other counties, Clay and Good Hue, have high posterior probability of being close to zero, so there doesn't seem to be a significant difference in radon levels across counties. Measurements taken in the first floor are slightly lower, about $e^{-0.3} \approx 0.74$ times lower than basement measurements. On average, basement radon levels are $e^2 \approx 7.4$ picoCuries/L.

(b)

As expected, the two posterior predictive distributions are very similar:


```
quantile(ypred_ffyes, c(.025, .975))
```

2.5% 97.5% 0.9548429 28.1956678

2 (BDA 14.11–14.13)

(11.a)

The model states the conditional likelihood

$$egin{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} \ \middle| \ u_i, a, b, \Sigma \stackrel{ ext{ ind}}{\sim} N\Bigg(\begin{bmatrix} 0 \\ a \end{bmatrix} + \begin{bmatrix} 1 \\ b \end{bmatrix} u_i, \Sigma \Bigg), \quad i = 1, \dots, n.$$

But marginalizing out $u_i \stackrel{\text{iid}}{\sim} N(\mu, \tau^2)$ we have

$$\begin{bmatrix} x_i \\ y_i \end{bmatrix} \mid a, b, \Sigma \stackrel{\text{ind}}{\sim} N \left(\begin{bmatrix} 0 \\ a \end{bmatrix} + \begin{bmatrix} 1 \\ b \end{bmatrix} \mu, \Sigma + \tau^2 \begin{bmatrix} 1 \\ b \end{bmatrix} \begin{bmatrix} 1 \\ b \end{bmatrix}^\top \right).$$

(11.b)

Since a and b are ultimately coefficients in a linear regression, it should be fine to set a flat prior on them. The main concern lies in the slope coefficient b since it is also involved in the variance, but Σ should be able to control the posterior and keep it proper.

(12)

From now on, for more generality, let us assume that \mathbf{x}_i has p covariates, and so $\mathbb{E}[y_i \mid a, \mathbf{b}, \mathbf{u}_i] = a + \mathbf{b}^{\top} \mathbf{u}_i$, and that $\Sigma = \sigma^2(I_p \oplus K) = \sigma^2 \mathrm{Diag}\{1, \dots, 1, K\}$ is a diagonal matrix. Moreover, let us set non-informative priors on each \mathbf{u}_i , also of dimension p, $\mathbb{P}(\mathbf{u}) \propto 1$, and σ^2 , $\mathbb{P}(\sigma) \propto 1/\sigma$.

We can use Stan to sample from this model,

```
data {
  int<lower=0> n; // #observations
  int<lower=0> p; // #predictors
  real<lower=0> K; // variance scale
  matrix[n, p] X;
  vector[n] y;
parameters {
  real a;
  vector[p] b;
  matrix[n, p] U;
  real<lower=0> sigma;
}
model {
  for (i in 1:n)
    for (j in 1:p)
      X[i, j] ~ normal(U[i, j], sigma);
  y ~ normal(a + U * b, sqrt(K) * sigma);
  target += -log(sigma);
```

or just resort to Gibbs sampling. In this case, conditional on \mathbf{u} we can sample a and \mathbf{b} from a usual linear regression of y on \mathbf{u} since $y_i \mid \mathbf{u}_i, \sigma^2 \stackrel{\text{ind}}{\sim} N(a + \mathbf{b}^\top \mathbf{u}_i, \sigma^2 K)$. The conditional posterior on σ^2 needs to account for the variance in \mathbf{x} ,

$$\mathbb{P}(\sigma^2 \mid a, \mathbf{b}, \mathbf{u}, y, \mathbf{x}) \propto \frac{1}{\sigma^2} \prod_{i=1}^n (\sigma^2)^{-p/2} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{x}_i - \mathbf{u}_i)^\top (\mathbf{x}_i - \mathbf{u}_i)\right\} (\sigma^2)^{-1/2} \exp\left\{-\frac{1}{2K\sigma^2} (y_i - a - \mathbf{b}^\top \mathbf{u}_i)^2\right\}$$

that is,

$$\sigma^2 \mid a, \mathbf{b}, \mathbf{u}, y, \mathbf{x} \sim \text{Inv-}\chi^2 \left(n(p+1), \frac{\sum_{i=1}^n (\mathbf{x}_i - \mathbf{u}_i)^\top (\mathbf{x}_i - \mathbf{u}_i) + (y_i - a - \mathbf{b}^\top \mathbf{u}_i)^2 / K}{n(p+1)} \right).$$

Finally, since for i = 1, ..., n

$$\begin{bmatrix} \mathbf{x}_i \\ y_i \end{bmatrix} \mid a, \mathbf{b}, \sigma^2, \mathbf{u}_i \sim N \left(\begin{bmatrix} 0 \\ a \end{bmatrix} + \begin{bmatrix} I_p \\ \mathbf{b}^\top \end{bmatrix} \mathbf{u}_i, \sigma^2 \begin{bmatrix} I_p & 0 \\ 0 & K \end{bmatrix} \right),$$

that is,

$$\mathbf{z}_i = \begin{bmatrix} \mathbf{x}_i \\ (y_i - a)/\sqrt{K} \end{bmatrix} \, \middle| \, \mathbf{b}, \sigma^2, \mathbf{u}_i \sim N \Bigg(\underbrace{\begin{bmatrix} I_p \\ \mathbf{b}^\top/\sqrt{K} \end{bmatrix}}_{X_{tr}} \mathbf{u}_i, \sigma^2 I_{p+1} \Bigg),$$

we just need to regress \mathbf{z}_i on X_u to sample from \mathbf{u}_i . Putting all together, we have our sampler:

```
\# [x_i', y_i]' \sim N([u_i', a + b' * u_i]', sigma2 * (I_p (+) K))
# Non-informative priors for u_i, a, b, and sigma2
sample_error_in_vars <- function (y, X, K = 1,</pre>
                                     iter = 2000, warmup = floor(iter / 2), nchains = 4) {
  n <- nrow(X); p <- ncol(X)</pre>
  sqrt_K <- sqrt(K)</pre>
  params <- c("(Intercept)", colnames(X), "sigma", "lp__")</pre>
  sims <- mcmc_array(iter - warmup, nchains, params)</pre>
  for (chain in 1:nchains) {
    bl \leftarrow lm(y \sim X); gamma \leftarrow coef(bl)
    alpha <- gamma[1]; beta <- gamma[-1]</pre>
    U <- X
    for (it in 1:iter) {
      # [ sigma | alpha, beta, U, X, Y ]
      sigma <- sqrt(rinvchisq(1, n * (p + 1),
                                 sum(apply(X - U, 1, crossprod)) +
                                   sum((y - alpha - U %*% beta) ^ 2) / K))
      \# [ U / alpha, beta, sigma, X, Y ]
      Xu <- rbind(diag(p), beta / sqrt_K)</pre>
      Z <- cbind(X, (y - alpha) / sqrt_K)</pre>
      for (i in 1:n) U[i,] <- bslm_sample1(Z[i,], Xu, sigma)
      # [ alpha, beta | sigma, U, X, Y ]
      gamma <- bslm_sample1(y, cbind(1, U), sqrt_K * sigma)</pre>
      alpha <- gamma[1]; beta <- gamma[-1]
      target <- sum(dnorm(X, U, sigma, log = TRUE)) +</pre>
        sum(dnorm(y, alpha + U %*% beta, sqrt_K * sigma, log = TRUE)) -
        log(sigma)
      if (it > warmup)
        sims[it - warmup, chain, ] <- c(gamma, sigma, target)</pre>
    }
  }
  sims
```

(12.a-b)

```
dogs <- read.csv("data/dogs.csv", comment = "#")
y <- log(dogs$rate)
X <- model.matrix(~ log(mass) - 1, data = dogs)
sims <- sample_error_in_vars(y, X, K = 1)
monitor(sims)</pre>
```

Inference for the input samples (4 chains: each with iter = 1000; warmup = 500):

	Q5	Q 50	Q95	Mean	SD	Rhat	Bulk_ESS	Tail_ESS
(Intercept)	4.8	5.0	5.1	5.0	0.1	1.00	1184	1068
log(mass)	0.5	0.6	0.7	0.6	0.0	1.00	1182	1001
sigma	0.0	0.1	0.1	0.1	0.0	1.02	247	342
lp	14.7	24.6	29.8	23.7	4.8	1.02	246	349

For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05).

mcmc_dens_overlay(sims)

In the original scale we have good evidence of a positive association between metabolic rate and body mass of dogs, with roughly rate $\propto \text{mass}^{0.6}$.

(12.c)

```
sims <- sample_error_in_vars(y, X, K = 2)
monitor(sims)</pre>
```

Inference for the input samples (4 chains: each with iter = 1000; warmup = 500):

```
Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
(Intercept)
            4.8
                 5.0 5.1 5.0 0.1
                                       1
                                             1412
                                                     1184
log(mass)
            0.6 0.6 0.7 0.6 0.0
                                      1
                                             1368
                                                     1205
sigma
            0.0 0.0 0.1 0.0 0.0
                                              403
                                                      376
                                       1
           18.0 26.8 31.6 26.1 4.4
                                              428
                                                      465
lp__
```

For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05).

Coefficient estimates have not changed considerably, but the shared scale on measurement errors, σ , has a lower estimate now.

(13)

```
X <- model.matrix(~ log(mass) + log(surface) - 1, data = dogs)
sims <- sample_error_in_vars(y, X, K = 1)
monitor(sims)</pre>
```

Inference for the input samples (4 chains: each with iter = 1000; warmup = 500):

```
Q5
                   Q50
                        Q95 Mean SD
                                      Rhat Bulk_ESS Tail_ESS
(Intercept)
            -6.9
                   0.6
                        9.0
                             0.7 5.4
                                      1.02
                                                291
                                                          460
                                     1.02
                                                293
                                                          464
log(mass)
             -0.5
                  0.2
                        1.0
                             0.2 0.5
log(surface) -0.6
                  0.6
                        1.7
                             0.6 0.8 1.02
                                                291
                                                          454
sigma
                                                          210
              0.0 0.0 0.1
                             0.0 0.0 1.06
                                                 94
lp__
             25.4 39.5 49.2 38.6 7.7 1.06
                                                 97
                                                          217
```

For each parameter, Bulk_ESS and Tail_ESS are crude measures of effective sample size for bulk and tail quantities respectively (an ESS > 100 per chain is considered good), and Rhat is the potential scale reduction factor on rank normalized split chains (at convergence, Rhat <= 1.05).

mcmc_acf(sims)

mcmc_dens_overlay(sims)

mcmc_pairs(sims)

and log(surface) inflates the posterior covariance of **b** and makes convergence difficult due to a thinly shaped region of high posterior mass, as evidenced by the higher autocorrelation in the mcmc_acf plots. From the mcmc_pairs plot we can see that all covariates are highly correlated *a posteriori*. Note that, due to variance inflation, log(mass) and log(surface) don't seem to be relevant in explaining log(rate).

3

(a)

The joint distribution is

$$\mathbb{P}(\beta, \sigma^2, \mathbf{y}) \propto (\sigma^2)^{-\left(\frac{n+p+\nu}{2}+1\right)} \exp\left\{-\frac{1}{2\sigma^2} \left[\nu \tau^2 + RSS(\beta) + (\beta - \beta_0)^\top \Sigma_0^{-1} (\beta - \beta_0)\right]\right\}.$$

As we've seen in class, with $\beta^* = (X^\top X)^{-1} X^\top \mathbf{y}$,

$$RSS(\beta) = RSS(\beta^*) + (\beta - \beta^*)^{\top} X^{\top} X (\beta - \beta^*).$$

Moreover, by the centering trick,

$$(\beta - \beta^*)^\top X^\top X (\beta - \beta^*) + (\beta - \beta_0)^\top \Sigma_0^{-1} (\beta - \beta_0) = (\widehat{\beta} - \beta^*)^\top X^\top X (\widehat{\beta} - \beta^*) + (\widehat{\beta} - \beta_0)^\top \Sigma_0^{-1} (\widehat{\beta} - \beta_0) + (\beta - \widehat{\beta})^\top \Sigma_\beta^{-1} (\beta - \widehat{\beta}),$$

with $\Sigma_{\beta}^{-1} = X^{\top}X + \Sigma_{0}^{-1}$ and $\widehat{\beta} = \Sigma_{\beta}(X^{\top}X\beta^{*} + \Sigma_{0}^{-1}\beta_{0}) = \Sigma_{\beta}(X^{\top}\mathbf{y} + \Sigma_{0}^{-1}\beta_{0})$. Finally, since $X^{\top}(\mathbf{y} - X\beta^{*}) = 0$, $(\widehat{\beta} - \beta^{*})^{\top}X^{\top}(\mathbf{y} - X\beta^{*}) = 0$, and so

$$RSS(\beta^*) + (\widehat{\beta} - \beta^*)^\top X^\top X(\widehat{\beta} - \beta^*) = RSS(\widehat{\beta}),$$

and the result follows, that is,

$$RSS(\beta) + (\beta - \beta_0)^{\mathsf{T}} \Sigma_0^{-1} (\beta - \beta_0) = RSS(\widehat{\beta}) + (\widehat{\beta} - \beta_0)^{\mathsf{T}} \Sigma_0^{-1} (\widehat{\beta} - \beta_0) + (\beta - \widehat{\beta})^{\mathsf{T}} \Sigma_\beta^{-1} (\beta - \widehat{\beta}).$$

(b)

We can recognize the density of $\beta \sim N(\widehat{\beta}, \sigma^2 \Sigma_{\beta})$, $(\sigma^2)^{-p/2} \exp\{-(\beta - \widehat{\beta})^{\top} \Sigma_{\beta}^{-1} (\beta - \widehat{\beta})/(2\sigma^2)\}$ in the joint, and so, since it integrates to a constant, we have after marginalizing β ,

$$\mathbb{P}(\sigma^2, \mathbf{y}) \propto (\sigma^2)^{-\left(\frac{n+\nu}{2}+1\right)} \exp\left\{-\frac{1}{2\sigma^2} \left[\nu \tau^2 + RSS(\widehat{\beta}) + (\widehat{\beta} - \beta_0)^{\top} \Sigma_0^{-1} (\widehat{\beta} - \beta_0)\right]\right\},$$

that is, $\sigma^2 \mid \mathbf{y} \sim \mathsf{Inv} \cdot \chi^2 (n + \nu, (\nu \tau^2 + RSS(\widehat{\beta}) + (\widehat{\beta} - \beta_0)^\top \Sigma_0^{-1} (\widehat{\beta} - \beta_0)) / (n + \nu)).$

(c)

Expanding, we have

$$RSS(\widehat{\beta}) + \widehat{\beta}^{\top} \Sigma_0^{-1} \widehat{\beta} = \mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} X \widehat{\beta} - \widehat{\beta}^{\top} X^{\top} \mathbf{y} + \widehat{\beta}^{\top} (X^{\top} X + \Sigma_0^{-1}) \widehat{\beta},$$

but since $\widehat{\beta} = \Sigma_{\beta} X^{\top} \mathbf{y}$ and thus

$$\widehat{\boldsymbol{\beta}}^\top (\boldsymbol{X}^\top \boldsymbol{X} + \boldsymbol{\Sigma}_0^{-1}) \widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\beta}}^\top \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} \widehat{\boldsymbol{\beta}} = \mathbf{y}^\top \boldsymbol{X} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{\beta}} \boldsymbol{X}^\top \mathbf{y} = \mathbf{y}^\top \boldsymbol{X} \widehat{\boldsymbol{\beta}},$$

we then have

$$RSS(\widehat{\beta}) + \widehat{\beta}^{\top} \Sigma_0^{-1} \widehat{\beta} = \mathbf{y}^{\top} \mathbf{y} - \widehat{\beta} X^{\top} \mathbf{y} = \mathbf{y}^{\top} (I_n - \underbrace{X \Sigma_{\beta} X^{\top}}) \mathbf{y}.$$