Optimización Robusta Distribucional basada en datos aplicada a optimización de portafolios

Diego Fonseca

19 de junio de 2019

Optimización estocástica y su reformulación robusta distribucional

Optimización de portafolios desde la perspectiva de Markowitz

Un problema de optimización estocástica es de la forma

$$J^* = \min_{x \in \mathbb{X}} \mathbb{E}_{\mathbb{P}}[f(x,\xi)]$$

donde $f: \mathbb{X} \times \Xi \to \mathbb{R}$, \mathbb{X} es la región factible y ξ es un elemento aleatorio con distribución \mathbb{P} soportada en Ξ .

Para efectos de notación definimos $J(x) := \mathbb{E}_{\mathbb{P}}[f(x,\xi)].$

Objetivo: Aproximar superiormente J^* . Yo no diría que este es el principal objetivo, lo quitaría

Aproximación robusta distribucional J^*

Sea $\mathcal D$ un conjunto de distribuciones de probabilidad de tal manera que $\mathbb P\in\mathcal D$ con alta probabilidad, entonces el problema de optimización robusta distribucional DRO que aproxima J^* superiormente con alta probabilidad es

$$\widehat{J}_{N} := \min_{\mathbf{x} \in \mathbb{X}} \sup_{\mathbb{Q} \in \mathcal{D}} \mathbb{E}_{\mathbb{Q}}[f(\mathbf{x}, \xi)]. \tag{1}$$

A (1) también se le conoce como *versión robusta distribucional* de J^* .

Dada una muestra $\widehat{\xi}_1,\ldots,\widehat{\xi}_N$ de \mathbb{P} , $\widehat{\mathbb{P}}_N$ la distribución empírica de terminada por esta muestra y $\varepsilon>0$., consideramos $\mathcal{D}=\mathcal{B}_{\varepsilon}\left(\widehat{\mathbb{P}}_N\right)$ siendo esta la bola cerrada respecto a una métrica p-Wasserstein de radio ε y centro $\widehat{\mathbb{P}}_N$.

Métrica de Wasserstein

Definición 1 (Métrica de Wassertein)

La distancia de Wasserstein $W_p(\mu, \nu)$ entre $\mu, \nu \in \mathcal{P}_p(\Xi)^1$ es definida por

$$W_p^p(\mu,\nu) := \inf_{\Pi \in \mathcal{P}(\Xi \times \Xi)} \left\{ \int_{\Xi \times \Xi} d^p(\xi,\zeta) \Pi(d\xi,d\zeta) \; \middle| \; \begin{array}{l} \Pi(\cdot \times \Xi) = \mu(\cdot), \\ \Pi(\Xi \times \cdot) = \nu(\cdot) \end{array} \right\}$$

donde

$$\mathcal{P}_p(\Xi) := \big\{ \mu \in \mathcal{P}(\Xi) \ : \ \textstyle \int_\Xi d^p(\xi,\zeta_0) \mu(d\xi) < \infty \text{ para algun } \zeta_0 \in \Xi \big\}$$

donde d es una métrica en Ξ .

En el contexto de $\mathcal{P}_p(\Xi)$ la bola de radio $\varepsilon>0$ con centro en $\mu\in\mathcal{P}_p(\Xi)$ es

$$\mathcal{B}_{\varepsilon}^{p}(\mu) = \left\{ \nu \in \mathcal{P}_{p}(\Xi) \mid W_{p}^{p}(\mu, \nu) \leq \varepsilon^{p} \right\}. \tag{2}$$

La métrica p-Wasserstein también esta definida para distribuciones fuera de $\mathcal{P}_p(\Xi)$, lo que probablemente podría ocurrir es que ese conjunto la métrica de Wasserstein sea infinito.

Para resolver (1), momentáneamente centraremos nuestra atención en el problema de maximización interno:

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\varepsilon}(\widehat{\mathbb{P}}_{N})} \mathbb{E}_{\mathbb{Q}}[f(\xi)]. \tag{3}$$

Suposición 1: Asumimos f que alguna de las siguientes condiciones:

- 1. f es continua y es tal que existe C>0 y $\xi_0\in\Xi$ tal que $|f(\xi)|\leq C(1+d^p(\xi,\xi_0))$ para todo $\xi\in\Xi$.
- 2. f es acotada.
- 3. f es máximo de funciones concavas, es decir, $f = \max_{k \le K} f_k$ donde cada $-f_k$ es propia, convexa e inferiormente semicontinua respecto a ξ .

Para todo $x \in \mathbb{X}$.

Teorema 2 (Teorema principal)

Bajo la Suposición 1 el problema (3) se puede reformular como el problema de optimización semi-infinito

$$\begin{cases}
\inf_{\lambda, s} \lambda \varepsilon^{p} + \frac{1}{N} \sum_{i=1}^{N} s_{i} \\
\text{sujeto a} \sup_{\xi \in \Xi} \left(f(\xi) - \lambda d^{p}(\xi, \widehat{\xi}_{i}) \right) \leq s_{i} \quad \forall i \leq N. \\
\lambda \geq 0.
\end{cases} \tag{4}$$

Para demostrar este teorema se caracteriza (3) como un problema cónico lineal y en ese contexto se emplean resultados de dualidad fuerte para este tipo de problemas.

Optimización de portafolios desde la perspectiva de Markowitz

Modelo de media-varianza de Markowitz

Sea $\xi = (\xi_1, \dots, \xi_m) \in \mathbb{R}^m$ el *vector aleatorio* con distribución \mathbb{P} que representa los retornos de m activos con riesgo, se quiere encontrar un vector de pesos $x = (x_1, \dots, x_m) \in \mathbb{R}^m$ que le garantice al inversionista un retorno esperado mínimo μ , pero con una volatilidad baja. Esta visión es representada en el siguiente modelo:

$$J := \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^m} & \operatorname{Var}_{\mathbb{P}} \left[\langle \mathbf{x}, \xi \rangle \right] \\ \text{sujeto a} & \mathbb{E}_{\mathbb{P}} \left[\langle \mathbf{x}, \xi \rangle \right] \ge \mu, \\ & \sum_{i=1}^m x_i = 1. \end{cases}$$
 (5)

Si se conociera la matriz de covarianza E y el vector de valores esperados ${\bf m}$ del vector aleatorio ξ entonces (5) es equivalente al problema de optimización

$$\begin{cases} \min_{x \in \mathbb{R}^m} & x^T E x \\ \text{sujeto a} & \mathbf{m}^T x \ge \mu, \\ & \sum_{i=1}^m x_i = 1. \end{cases}$$
 (6)

Pero en la practica E y \mathbf{m} no son conocidos, ante esta situación es común considerar E y \mathbf{m} como las versiones muéstrales. De modo que la aproximación Robusta Distribucional es una opción viable.

Versión Robusta Distribucional:

Fijando $x \in \mathbb{R}^m$ definimos $\zeta^x := \langle x, \xi \rangle$ la cual es una variable aleatoria, llamamos \mathbb{P}^x su distribución la cual depende de \mathbb{P} , luego, dada $\widehat{\xi}_1, \dots, \widehat{\xi}_N$ una muestra de \mathbb{P} , entonces $\widehat{\zeta}_1^x, \dots, \widehat{\zeta}_N^x$ definida por $\widehat{\zeta}_i^x := \langle x, \widehat{\xi}_i \rangle$ es una muestra de ζ^x , esto permite definir la distribución empírica $\widehat{\mathbb{P}}_N^x$ asociada a ζ^x la cual es dada por

$$\widehat{P}_N^{\mathsf{x}} := \sum_{i=1}^N \delta_{\widehat{\zeta}_i^{\mathsf{x}}}.$$

En el espacio de las distribuciones se considera la noción de distancia determinada por la métrica de 2-Wasserstein denotada por W_2 , esto permite considerar el conjunto

$$\mathcal{B}_{\varepsilon||x|}(\widehat{\mathbb{P}}_{N}^{x}) = \left\{ \mathbb{Q} \in \mathcal{P}(\mathbb{R}^{m}) \mid W(\mathbb{Q}, \widehat{\mathbb{P}}_{N}^{x}) \leq \varepsilon ||x|| \right\}.$$

Este conjunto es la bola respecto a la métrica 2-Wasserstein con centro en $\widehat{\mathbb{P}}_{N}^{\times}$ y radio $\varepsilon \|x\|$.

A partir de lo anterior definimos el conjunto

$$\mathbb{X} := \left\{ x \in \mathbb{R}^m \mid \sum_{i=1}^m x_i = 1, \ \mathbb{E}_{\mathbb{Q}}[\zeta^x] \ge \mu \ \forall \, \mathbb{Q} \in \mathcal{B}_{\|x\|_{\mathcal{E}}}(\widehat{\mathbb{P}}_N^x) \right\} \\
= \left\{ x \in \mathbb{R}^m \mid \sum_{i=1}^m x_i = 1, \ \inf_{\mathbb{Q} \in \mathcal{B}_{\|x\|_{\mathcal{E}}}(\widehat{\mathbb{P}}_N^x)} \mathbb{E}_{\mathbb{Q}}[\zeta^x] \ge \mu \right\} \tag{7}$$

Entonces la versión Robusta Distribucional de (5) es

$$\widehat{J_N} := \underset{\mathbf{x} \in \mathbb{X}}{\operatorname{minimizar}} \sup_{\mathbb{Q} \in \mathcal{B}_{\|\mathbf{x}\|\varepsilon}(\widehat{\mathbb{P}}_N^{\mathbf{x}})} \operatorname{Var}_{\mathbb{Q}} \left[\zeta^{\mathbf{x}} \right]. \tag{8}$$

Llamaremos a este problema DR-MRK.

El Teorema principal permite mostrar que

$$\inf_{\mathbb{Q}\in\mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_{N}^{x})}\mathbb{E}_{\mathbb{Q}}[\zeta^{x}] = \frac{1}{N}\sum_{i=1}^{N}\widehat{\zeta}_{i}^{x} - \varepsilon \|x\|.$$

Luego podemos reescribir X como

$$\mathbb{X} = \left\{ x \in \mathbb{R}^m \mid \sum_{i=1}^m x_i = 1, \ \frac{1}{N} \sum_{i=1}^N \widehat{\zeta}_i^{\times} - \varepsilon \|x\| \ge \mu \right\}$$
$$= \left\{ x \in \mathbb{R}^m \mid \sum_{i=1}^m x_i = 1, \ \frac{1}{N} \sum_{i=1}^N \langle x, \widehat{\xi}_i \rangle - \varepsilon \|x\| \ge \mu \right\}$$
(9)

Por otro lado, introduciendo una variable de holgura se obtiene

$$\sup_{\mathbb{Q}\in\mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_{N}^{x})} \mathrm{Var}_{\mathbb{Q}}\left[\zeta^{x}\right] = \sup_{\substack{\eta\geq\mu,\\ \left(\eta-\frac{1}{N}\sum_{i=1}^{N}\widehat{\zeta}_{i}^{x}\right)^{2}\leq\varepsilon^{2}\|x\|^{2}}} \left\{ \begin{array}{ll} \sup_{\mathbb{Q}\in\mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_{N}^{x})} & \mathrm{Var}_{\mathbb{Q}}\left[\zeta^{x}\right] \\ \sup_{0\leq x\leq 1} \mathrm{sujeto} \text{ a} & \mathbb{E}_{\mathbb{Q}}\left[\zeta^{x}\right] = \eta. \end{array} \right.$$

La primer tarea es reescribir el problema interno

$$\begin{cases} & \sup & \operatorname{Var}_{\mathbb{Q}}\left[\zeta^{x}\right] \\ & \mathbb{Q} \in \mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_{N}^{x}) \\ & \text{sujeto a} & \mathbb{E}_{\mathbb{Q}}\left[\zeta^{x}\right] = \eta. \end{cases}$$

En ese sentido es importante el siguiente Teorema.

Teorema 3

Sea ζ un a variable aleatoria con distribución \mathbb{P} y tal que se conoce su esperanza, es decir, se sabe que $\mathbb{E}_{\mathbb{P}}[\zeta] = \eta$, además, sea $\widehat{\zeta}_1, \ldots, \widehat{\zeta}_N$ una muestra de ζ y $\varepsilon^2 \geq \left(\frac{1}{N}\sum_{i=1}^N(\eta-\widehat{\zeta}_i)\right)^2$. Considerando $\mathcal{B}_{\varepsilon}(\widehat{\mathbb{P}}_N)$ como la bola respecto a la métrica 2-Wasserstein de radio ε centrada en $\widehat{\mathbb{P}}_N$ la distribución empírica respecto a la muestra anterior, entonces

$$\begin{cases}
\sup_{\mathbb{Q}\in\mathcal{B}_{\varepsilon}(\widehat{\mathbb{P}}_{N})} \mathbb{E}_{\mathbb{Q}}\left[\left(\zeta-\eta\right)^{2}\right] \\
\sup_{sujeto\ a} \mathbb{E}_{\mathbb{Q}}\left[\zeta\right] = \eta.
\end{cases} = \left(\sqrt{\frac{1}{N}\sum_{i=1}^{N}\widehat{\zeta}_{i}^{2} - \left(\frac{1}{N}\sum_{i=1}^{N}\widehat{\zeta}_{i}\right)^{2}} + \sqrt{\varepsilon^{2} - \left(\frac{1}{N}\sum_{i=1}^{N}\left(\eta-\widehat{\zeta}_{i}\right)\right)^{2}}\right)^{2}.$$
(10)

Por lo tanto

$$\left\{ \begin{array}{ll} \sup\limits_{\mathbb{Q} \in \mathcal{B}_{\|x\|\in\widehat{\mathbb{P}}_N^x\}}^{N}} \operatorname{Var}_{\mathbb{Q}}\left[\zeta^x\right] \\ \sup\limits_{\text{sujeto a}} & \mathbb{E}_{\mathbb{Q}}\left[\zeta^x\right] = \eta. \end{array} \right. \\ = \left(\sqrt{\frac{1}{N} \sum_{i=1}^{N} \langle x, \widehat{\xi}_i \rangle^2 - \frac{1}{N^2} \left(\sum_{i=1}^{N} \langle x, \widehat{\xi}_i \rangle \right)^2} + \sqrt{\varepsilon^2 \left\| x \right\|^2 - \left(\eta - \frac{1}{N} \sum_{i=1}^{N} \langle x, \widehat{\xi}_i \rangle \right)^2} \right)^2$$

Así pues, por este teorema se infiere que (8) es equivalente al problema de optimización:

$$\widehat{J_{N}} = \underset{x \in \mathbb{X}}{\text{minimizar}} \begin{cases} \sup_{\eta \geq \mu} & \left(\sqrt{\frac{1}{N} \sum_{i=1}^{N} \langle x, \hat{\xi}_{i} \rangle^{2} - \frac{1}{N^{2}} \left(\sum_{i=1}^{N} \langle x, \hat{\xi}_{i} \rangle \right)^{2}} + \sqrt{\varepsilon^{2} \|x\|^{2} - \left(\mu - \frac{1}{N} \sum_{i=1}^{N} \langle x, \hat{\xi}_{i} \rangle \right)^{2}} \right)^{2} \\ \text{sujeto a} & \left(\eta - \frac{1}{N} \sum_{i=1}^{N} \hat{\zeta}_{i}^{x} \right)^{2} \leq \varepsilon^{2} \|x\|^{2} \end{cases}$$

(11)

Pero el problema de maximización interno de (11) puede solucionarse explícitamente, en realidad dicho problema alcanza su valor óptimo en $\eta^* = \frac{1}{N} \sum_{i=1}^N \widehat{\zeta}_i^{\mathsf{x}}$, por lo tanto, (11) se puede reescribir como

$$\widehat{J}_{N} = \begin{cases} \min_{\mathbf{x} \in \mathbb{R}^{m}} \left(\sqrt{\frac{1}{N} \sum_{i=1}^{N} \langle \mathbf{x}, \widehat{\xi}_{i} \rangle^{2} - \frac{1}{N^{2}} \left(\sum_{i=1}^{N} \langle \mathbf{x}, \widehat{\xi}_{i} \rangle \right)^{2} + \varepsilon \|\mathbf{x}\| \right)^{2}} \\ \sup_{i=1}^{N} \langle \mathbf{x}, \widehat{\xi}_{i} \rangle - \varepsilon \|\mathbf{x}\| \ge \mu, \\ \sum_{i=1}^{m} x_{i} = 1. \end{cases}$$

$$(12)$$

4□ > 4圖 > 4 = > 4 = > = 9 < ○</p>

El problema (12) se puede simplificar aun más.

Proposición 4

Sea M la matriz de tamaño $m \times N$ cuyas columnas son los vectores de la muestra $\hat{\xi}_1, \dots, \hat{\xi}_N$ y sean $\mathbf{0}, \mathbf{e} \in \mathbb{R}^N$ los vectores columna de ceros y unos respectivamente A partir de estas convenciones se definen las matrices

$$E := \frac{1}{N}MM^{T} - \frac{1}{N^{2}}(Me)(Me)^{T}$$
 $y L := \frac{1}{N}(Me)^{T}$.

Ya que E es semidefinida positiva entoncessemidefinida positiva de modo que existe una matriz K tal que $E=KK^T$. Entonces (12) es equivalente al problema de optimización

Se debe tener en cuenta que (13) puede no ser factible para algunos valores de ε , concretamente, dada L y μ se tiene que (13) es factible si

$$arepsilon < \widehat{\epsilon}_{\mathcal{N}}(\mu) := \left\{ egin{array}{ll} \sup & \dfrac{Lx - \mu}{\|x\|} \ \sup & x \in \mathbb{R}^m \end{array}
ight. \quad \left. \sup_{i=1}^m x_i = 1.
ight.$$

La dependencia de N en $\widehat{\epsilon}_N(\mu)$ se debe a que L depende de la muestra. En adelante llamaremos radio extremo factible a la expresión $\widehat{\epsilon}_N(\mu)$.

El problema de maximizar el retorno sujeto a una varianza acotada

$$J' := \begin{cases} \underset{x \in \mathbb{R}^m}{\text{máx}} & \mathbb{E}_{\mathbb{P}} \left[\langle x, \xi \rangle \right] \\ \text{sujeto a} & \text{Var}_{\mathbb{P}} \left[\langle x, \xi \rangle \right] \leq \nu, \\ & \sum_{i=1}^m x_i = 1. \end{cases}$$
 (14)

Siguiendo las mismas técnicas que se emplearon para para proponer una versión Robusta de (5) y lograr su reformulación (13), se tiene que la versión Robusta de (14) con su reformulación es:

$$\left\{ \begin{array}{ll} \underset{x \in \mathbb{R}^m}{\text{máx}} & \underset{\mathbb{Q} \in \mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_N^x)}{\text{finf}} \mathbb{E}_{\mathbb{Q}}[\zeta^x] \\ \text{sujeto a} & \underset{\mathbb{Q} \in \mathcal{B}_{\|x\|\varepsilon}(\widehat{\mathbb{P}}_N^x)}{\text{sujeto a}} \text{ Var}_{\mathbb{Q}}\left[\zeta^x\right] \leq \nu, \\ & e^T x = 1. \end{array} \right. = \left\{ \begin{array}{ll} \underset{x \in \mathbb{R}^m}{\text{máx}} & Lx - \varepsilon \, \|x\| \\ \text{sujeto a} & \left(\left\| \mathcal{K}^T x \right\| + \varepsilon \, \|x\| \right)^2 \leq \nu \\ & e^T x = 1. \end{array} \right.$$

(15)

Elección de ε para el problema de minimizar la varianza sujeto a un retorno acotado inferiormente.

Priorizando el Riesgo: Este es $\varepsilon_{\rm var}$ el menor valor posible de ε que satisface

$$V(\varepsilon) := \mathbb{E}_{\mathbb{P}^N} \left[\widehat{J}_N(\varepsilon) - \operatorname{Var}_{\mathbb{P}} \left[\langle \widehat{x}_N(\varepsilon), \xi \rangle \right] \right] \ge 0. \tag{16}$$

Priorizando rentabilidad: Este es $\varepsilon_{\mathrm{ret}}$ el menor valor de ε que satisface

$$R(\varepsilon) := \mathbb{E}_{\mathbb{P}^N} \left[\mathbb{E}_{\mathbb{P}} \left[\langle \widehat{x}_N(\varepsilon), \xi \rangle \right] \right] \ge \mu. \tag{17}$$

Resultados numéricos

Los resultados numéricos que se traducen en las siguiente gráficas originadas por simulaciones realizadas para un portafolio compuesto de cuatro bienes, es decir, m=4, la distribución de ξ es multinormal con matriz de covarianza C y vector de medias \mathbf{m} dados por

$$C = \begin{bmatrix} 185 & 86,5 & 80 & 20 \\ 86,5 & 196 & 76 & 13,5 \\ 80 & 76 & 411 & -19 \\ 20 & 13,5 & -19 & 25 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{m} = (14, 12, 15, 17).$$

Para los siguientes experimentos se toma $\mu = 20$.

Priorizando el riesgo

(a) Desempeño fuera de muestra $\mathrm{Var}_{\mathbb{P}}[\langle\widehat{x}_N,\xi\rangle]$ (linea verde y área sombreada verde) y $\mathrm{Var}_{\mathbb{P}}[\langle\widehat{x}_N^{muest},\xi\rangle]$ (linea azul y área sombreada azul) donde \widehat{x}_N^{muest} es la solución muestral. (b) certificado \widehat{J}_N (linea verde y área sombreada verde) y $\mathrm{Var}_{\widehat{\mathbb{P}}_N}[\langle\widehat{x}_N^{muest},\xi\rangle]$ (linea azul y área sombreada azul). (c) Retorno esperado $\mathbb{E}_{\mathbb{P}}[\langle\widehat{x}_N,\xi\rangle]$ (linea verde y área sombreada verde) y $\mathbb{E}_{\mathbb{P}}[\langle\widehat{x}_N^{muest},\xi\rangle]$ (linea azul y área sombreada azul). Se tomó $\varepsilon=\varepsilon_{\mathrm{var}}$.

Priorizando el retorno

(a) Desempeño fuera de muestra $\mathrm{Var}_{\mathbb{P}}[\langle \widehat{\chi}_N, \xi \rangle]$ (linea verde y área sombreada verde) y $\mathrm{Var}_{\mathbb{P}}[\langle \widehat{\chi}_N^{muest}, \xi \rangle]$ (linea azul y área sombreada azul) donde $\widehat{\chi}_N^{muest}$ es la solución muestral. (b) certificado \widehat{J}_N (linea verde y área sombreada verde) y $\mathrm{Var}_{\widehat{\mathbb{P}}_N}[\langle \widehat{\chi}_N^{muest}, \xi \rangle]$ (linea azul y área sombreada azul). (c) Retorno esperado $\mathbb{E}_{\mathbb{P}}[\langle \widehat{\chi}_N, \xi \rangle]$ (linea verde y área sombreada verde) y $\mathbb{E}_{\mathbb{P}}[\langle \widehat{\chi}_N^{muest}, \xi \rangle]$ (linea azul y área sombreada azul). Se tomó $\varepsilon = \varepsilon_{\mathrm{ret}}$.

Desempeño en la frontera eficiente respecto a arepsilon

Desempeño en la frontera eficiente respecto a arepsilon

Estimacion para $\varepsilon=0.6$ y N=100 y 1000 remuestreos Estimacion para $\varepsilon=0.8$ y N=100 y 1000 remuestr

Trabajo en progreso y futuro Se esta trabajando en un método iterativo que combina los problemas (8) y (15) con el fin de estimar puntos en la frontera eficiente. La idea de este enfoque surge de los resultados evidenciados en las imágenes anteriores.

Gracias por su atención.

Esfahani, PM. y Kuhn, D. A.

Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

arXiv preprint arXiv:1505.05116v2, 2016.

Lee, C. y Mehrotra, S.

A distributionally-Robust Optimization approach for finding support vector machines.

Optimization Online, 2015.

Pflug, G. y Wozabal, D. Ambiguity in portfolio selection.

Quantitative finance, 435-442, 2006.

Luo, F. y Mehrotra, S

Decomposition Algorithm for Distributionally Robust Optimization using Wasserstein Metric.

preprint arXiv:1610.05627v2, 2017.

Shapiro, A. and Dentcheva, D. Lectures on Stochastic programming: modeling and theory. SIAM, 2016.