

Lógica, teoría de números y conjuntos

Taller Preparcial #4

1. Considere la siguiente afirmación:

Afirmación: Sea A un conjunto y R una relación en A. Si R es simétrica y transitiva, entonces R es reflexiva.

Y considere el siguiente intento de "demostración":

Demostración: Supongamos que R es simétrica y transitiva y sean $x, y \in A$. Entonces, como R es simétrica, se tiene que xRy y por lo tanto yRx. Como R es transitiva y, además, xRy y yRx, entonces xRx. Por lo tanto, R es reflexiva.

- a. Construya un contraejemplo para esta afirmación.
- b. ¿Por qué falla el razonamiento en el intento de demostración?
- 2. Sea A un conjunto, R una relación en A y definamos $\triangle = \{(a, a) : a \in A\}$. Demuestre que R es antisimétrica sii $R \cap R^{-1} \subseteq \triangle$.
- 3. Una relación R en un conjunto A es circular si para cada $a, b, c \in A$, si aRb y bRc entonces cRa. Demuestre que R es reflexiva y circular sii R es una relación de equivalencia.
- 4. Sean R y S relaciones de equivalencia en un conjunto A. Demuestre que si el conjunto de todas las clases de equivalencia de R es igual al conjunto de todas las clases de equivalencia de S, entonces R = S.
- 5. Sea $A \subseteq \mathbb{Z}$ demuestre que si A tiene un elemento mínimo, entonces este elemento es único.
- 6. Demuestre por contradicción que si 4|n, entonces $4 \nmid n+2$.