CS5760: Cryptanalysis of DES and DES-like Iterated Cryptosystems

Gautam Singh

Indian Institute of Technology Hyderabad

February 3, 2025

- Introduction
- **Preliminaries**

Probability Analysis of S Boxes Characteristic Signal to Noise Ratio

Structures

3 Differential Cryptanalysis of DES Variants

DES Reduced to Four Rounds

DES Reduced to Six Rounds

DES Reduced to Eight Rounds

DES with an Arbitrary Number of Rounds

4 Differential Cryptanalysis of the Full DES

Summary of Differential Cryptanalysis

Data Collection Phase

Data Analysis Phase

Results

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - *Invariant* in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.

Figure 1: *F* function of DES.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Per DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - *Invariant* in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after Sboxes.
 - *Invariant* in XOR operation connecting rounds.
- S boxes are *nonlinear*. Probability analysis performed between input and output XOR.

Figure 1: F function of DES.

1 Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the i^{th} S box, and Si'_O is the output XOR $(1 \le i \le 8)$.

Roves

Probability Analysis of S Boxes

- **1** Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the i^{th} S box, and Si'_O is the output XOR (1 ≤ i ≤ 8).
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_I \rightarrow Si'_O$.
 - 64-by-16 joint probability mass function.

- **1** Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the i^{th} S box, and Si'_O is the output XOR $(1 \le i \le 8)$.
- 2 We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_I \rightarrow Si'_O$.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - \approx 80% entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_I and Si'_O , we can narrow down Si_K to a few possibilities.

- **1** Suppose $Si'_I = Si_I \oplus Si^*_I$ is the input XOR to the i^{th} S box, and Si'_{C} is the output XOR $(1 \le i \le 8)$.
- 2 We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_1, Si'_0) equals the number of 6-bit key blocks Si_K for which $Si'_i \rightarrow Si'_{O}$.
 - 64-by-16 joint probability mass function.
- This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - $\approx 80\%$ entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{l} and Si'_{Q} , we can narrow down Si_{K} to a few possibilities.
- 4 i^{th} S box contributes probability p_i for $Si'_I \to Si'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^{n} P_i$.

- **1** Suppose $Si'_{l} = Si_{l} \oplus Si^{*}_{l}$ is the input XOR to the i^{th} S box, and Si'_{O} is the output XOR (1 < i < 8).
- 2 We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_{l} \rightarrow Si'_{O}$.
 - 64-by-16 joint probability mass function.
- 3 This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - $\approx 80\%$ entries are non-zero/possible for each S box (some have lesser percentages).
 - Given Si'_{l} and Si'_{Q} , we can narrow down Si_{K} to a few possibilities.
- i^{th} S box contributes probability p_i for $\mathit{Si}'_I o \mathit{Si}'_O$.
 - For $X \to Y$ over a round, $P = \prod_i p_i$.
 - Over *n* rounds, $P = \prod_{i=1}^n P_i$.

Desirable for cryptanalysis: high P with large n.

Characteristic

Definition 1 (Characteristic)

An *n-round chracteristic* is a tuple $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ where $\Omega_P = (L', R')$ and $\Omega_T = (l', r')$ are m bit numbers, $\Omega_\Lambda = (\Lambda_1, \ldots, \Lambda_n)$, $\Lambda_i = (\lambda_1^i, \lambda_O^i)$ and $\lambda_1^i, \lambda_O^i, L', R', l', r'$ are $\frac{m}{2}$ bit numbers and m is the block size of the cryptosystem satisfying

$$\lambda_I^1 = R' \tag{1}$$

$$\lambda_I^2 = L' \oplus \lambda_O^1 \tag{2}$$

$$\lambda_I^n = r' \tag{3}$$

$$\lambda_I^{n-1} = I' \oplus \lambda_O^n \tag{4}$$

$$\forall \ 1 < i < n, \ \lambda_O^i = \lambda_I^{i-1} \oplus \lambda_I^{i+1} \tag{5}$$

◆日片《圖片《草片《草片》草。

Characteristic

Definition 2 (Right Pair)

A right pair with respect to an n-round characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ and an independent key K is a pair for which $P' = \Omega_P$ and for each round i of the first n rounds of the encryption of the pair using K the input XOR of the i^{th} round equals λ_I^i and the output XOR of the F function equals λ_O^i . Pairs that do not satisfy these conditions are called *wrong pairs*.

Definition 2 (Right Pair)

A right pair with respect to an n-round characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ and an independent key K is a pair for which $P' = \Omega_P$ and for each round i of the first n rounds of the encryption of the pair using K the input XOR of the i^{th} round equals λ_I^i and the output XOR of the F function equals λ_O^i . Pairs that do not satisfy these conditions are called *wrong pairs*.

Definition 3 (Probability of a Round of a Characteristic)

Round i of an n-round characteristic Ω has probability p_i^{Ω} if $\lambda_I^i \to \lambda_O^i$ with probability p_i^{Ω} by the F function.

Probability of a Characteristic

Definition 4 (Probability of a Characteristic)

An *n*-round characteristic Ω has probability p^{Ω} given by

$$p^{\Omega} = \prod_{i=1}^{n} p_{i}^{\Omega} \tag{6}$$

Probability of a Characteristic

Definition 4 (Probability of a Characteristic)

An *n*-round characteristic Ω has probability p^{Ω} given by

$$\rho^{\Omega} = \prod_{i=1}^{n} p_i^{\Omega} \tag{6}$$

Theorem 5 (Probability of a Characteristic and Right Pairs)

The formally defined probability of a characteristic $\Omega = (\Omega_P, \Omega_\Lambda, \Omega_T)$ is the probability that any fixed plaintext pair satisfying $P' = \Omega_P$ is a right pair when random independent keys are used.

Example of a Characteristic

Figure 2: Example of a two-round characteristic with probability $\frac{14}{64}$.

1 Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .

Signal to Noise Ratio

- **10** Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).

Signal to Noise Ratio

- **1** Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.

Signal to Noise Ratio

- **1** Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.
- Output
 <p

- Right pairs will always suggest the right key value. But right pairs occur with probability p^{Ω} .
- On the other hand, wrong pairs suggest a randomly chosen key (not necessarily the right key in the worst case).
- Suitable counting approach on the key values will "spike" at the right key and have smaller but approximately equal counts at other keys.
- The key with the largest count is likely the actual key.

Definition 6 (Signal-to-Noise Ratio)

The ratio between the number of right pairs and the average count of incorrect subkeys in a counting scheme is called the signal to noise ratio of the counting scheme and is denoted by S/N.

Computing the SNR

Consider the variables shown in Table 1.

Variable	Definition
р	Probability of the characteristic
m	Number of created pairs
α	Average count per analyzed pair
β	Fraction of analyzed pairs
k	Number of key bits counted on

Table 1: Table of variables to compute the SNR.

Computing the SNR

Consider the variables shown in Table 1.

Variable	Definition
р	Probability of the characteristic
m	Number of created pairs
α	Average count per analyzed pair
β	Fraction of analyzed pairs
k	Number of key bits counted on

Table 1: Table of variables to compute the SNR.

Then,

$$S/N = \frac{m \cdot p}{\frac{m \cdot \beta \cdot \alpha}{2^k}} = \frac{2^k \cdot p}{\alpha \cdot \beta} \tag{7}$$

Structures

Many attacks on DES use more than one characteristic.

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

Definition 7 (Quartet and Octet)

A *quartet* is a structure of four ciphertexts that simultaneously contains two ciphertext pairs of one characteristic and two ciphertext pairs of a second characteristic. An *octet* is a structure of eight ciphertexts that simultaneously contains four ciphertext pairs of each of three characteristics.

3 As an example, $(P, P \oplus \Omega_P^1, P \oplus \Omega_P^2, P \oplus \Omega_P^1 \oplus \Omega_P^2)$ is a quartet.

- Many attacks on DES use more than one characteristic.
- Requirement to minimize the amount of plaintexts generated.

Definition 7 (Quartet and Octet)

A *quartet* is a structure of four ciphertexts that simultaneously contains two ciphertext pairs of one characteristic and two ciphertext pairs of a second characteristic. An *octet* is a structure of eight ciphertexts that simultaneously contains four ciphertext pairs of each of three characteristics.

- **3** As an example, $(P, P \oplus \Omega_P^1, P \oplus \Omega_P^2, P \oplus \Omega_P^1 \oplus \Omega_P^2)$ is a quartet.
- 4 Quartets save $\frac{1}{2}$ of the data and octets save $\frac{2}{3}$ of the data.

DES Reduced to Four Rounds

1 Use two one-round characteristics, as shown in Figure 3.

- Use two one-round characteristics, as shown in Figure 3.
- 2 Both characteristics have probability 1.

Figure 3: Characteristics used for cryptanalysis of DES reduced to four rounds.

- Use two one-round characteristics, as shown in Figure 3.
- Both characteristics have probability 1.
- § Example of a *3R-attack*. There are *three* extra rounds after the characteristic is applied.

Figure 3: Characteristics used for cryptanalysis of DES reduced to four rounds.

Figure 4: DES reduced to four rounds.

1 Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

Figure 4: DES reduced to four rounds.

1 Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.

Figure 4: DES reduced to four rounds.

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.

Figure 4: DES reduced to four rounds.

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.
 - 28 bits of B' are zero and hence we can find 28 bits of D'.

Figure 4: DES reduced to four rounds.

 \bullet Using Ω^1 , we have

$$c' = D' \oplus I' = a' \oplus B' \implies D' = B' \oplus I'$$
 (8)

- 2 We have $a' = 0_x \implies A' = 0_x$ and $b' = A' \oplus L' = L'$.
 - In the second round S2, ..., S8 receive zero XOR input.
 - 28 bits of B' are zero and hence we can find 28 bits of D'.
 - We already know d' = r'. So, we employ a counting approach to get K4.

Figure 4: DES reduced to four rounds.

1 To get Si_{Kd} for $2 \le i \le 8$, we verify (9).

$$S(S_E \oplus S_K) \oplus S(S_E^* \oplus S_K) = S_O'$$
 (9)

- Only one plaintext pair is needed since characteristic probability is 1.
- **3** We recover $7 \times 6 = 42$ key bits of K4, which correspond to 42 bits of the master key.
- 4 Exhaustively search the other 14 key bits to get the entire master key.
- **5** We have used the key schedule to our advantage here? What if all the keys were independent?

DES Reduced to Four Rounds: Independent Subkeys

• We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.

DES Reduced to Four Rounds: Independent Subkeys

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.

DES Reduced to Four Rounds: Independent Subkeys

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.

DES Reduced to Four Rounds: Independent Subkeys

- We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.
- § Since $a' = A' = 0_x$, all keys are equally likely. Other characteristics Ω^3 and Ω^4 are chosen such that
 - $S'_{Fa} \neq 0_x$ for all S boxes for both characteristics.
 - For every S box, the S'_{Ea} values differ between the characteristics.
 - Similar counting methods used to get K1 and K2.

DES Reduced to Four Rounds: Independent Subkeys

- 1 We now use Ω^2 to get the remaining 6 subkey bits of K4, as the input to S1 in the second round is now zero.
- 2 We have $C' = b' \oplus d'$. Peeling off/decrypting one round will give us c' completely.
 - Since c' and C' are both completely known, K3 can be completely found using a similar counting argument.
- Since $a' = A' = 0_x$, all keys are equally likely. Other characteristics Ω^3 and Ω^4 are chosen such that
 - $S'_{Fa} \neq 0_x$ for all S boxes for both characteristics.
 - For every S box, the S'_{Fa} values differ between the characteristics.
 - Similar counting methods used to get K1 and K2.
- 4 16 chosen plaintexts are needed for this attack.
 - 8 pairs of Ω^1 and Ω^2 each.
 - 4 pairs of Ω^3 and Ω^4 each.

To reduce the data needed, two octets are used.

1 Two three-round characteristics used, each with probability $\frac{1}{16}$.

Figure 5: Characteristics used for cryptanalysis of DES reduced to 6 rounds.

- **1** Two three-round characteristics used, each with probability $\frac{1}{16}$.
- We have,

$$e' = c' \oplus D' = F' \oplus I' \implies F' = c' \oplus D' \oplus I'$$
 (10)

Figure 5: Characteristics used for cryptanalysis of DES reduced to 6 rounds.

- 1 In the fourth round,
 - with Ω^1 , S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.

- In the fourth round,
 - with Ω^1 , S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- **2** Combining both characteristics, 42 key bits of K6 can be found.

- In the fourth round,
 - with Ω^1 , S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- \bigcirc Combining both characteristics, 42 key bits of K6 can be found.
- **6** Counting on more bits gives high S/N at the cost of exponentially more memory.

- In the fourth round,
 - with Ω^1 , S2, S5, ..., S8 have zero input XORs.
 - with Ω^2 , S1, S2, S4, S5 and S6 have zero input XORs.
- \bigcirc Combining both characteristics, 42 key bits of K6 can be found.
- **6** Counting on more bits gives high S/N at the cost of exponentially more memory.
- ① Due to higher S/N, fewer plaintext pairs are analyzed. This is exploited to get a faster counting algorithm.

The Clique Method

Used to reduce memory when few plaintexts are used to count on more subkey bits.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).
- Goal is to find the largest clique such that the bitwise AND of all masks in the subgraph induced by that clique is nonzero.

- Used to reduce memory when few plaintexts are used to count on more subkey bits.
- Create a graph where
 - Each plaintext pair is a vertex.
 - There is an edge between two vertices if corresponding pairs suggest the same key value for an S box.
- The edges are labelled with five 64-bit masks (one mask per S box, one bit per suggested key value in the mask).
 - A pair suggests a key value if it passes the check in (9).
- Goal is to find the largest clique such that the bitwise AND of all masks in the subgraph induced by that clique is nonzero.
- **6** Apply this method for both Ω^1 and Ω^2 , ensuring that the suggested keys at S2, S5 and S6 match. Otherwise, use more data.

42 key bits have been found, can exhaustively search remaining 14 bits.

Into S box number	e bits S_{Ee}	Key bits S _{Ke}
S1	+++++	3+++
S2	++3+++	+ 3 + 3 3 3
S3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	++++3+	+ . + . ++
S 7	3+++++	+++.++
S8	+ + 3 + + +	+++++

- 42 key bits have been found, can exhaustively search remanining 14 bits.
- Speed up the search by finding remaining 6 key bits of K6 using Figure 6. Count using checks on S2, S3 and S8 of the fifth round.

Into S box number	e bits S_{Ee}	Key bits S_{K_e}
S1	+++++	3+++
S2	++3+++	+ 3 + 3 3 3
S3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	+ + + + + 3 +	+ . + . ++
S 7	3+++++	+++.++
S 8	+ + 3 + + +	+++++

- 42 key bits have been found, can exhaustively search remanining 14 bits.
- Speed up the search by finding remaining 6 key bits of K6 using Figure 6. Count using checks on S2, S3 and S8 of the fifth round.
 - Exhaustively search remaining 8 bits.

Into S box number	e bits S_{Ee}	Key bits S _{Ke}
S1	+++++	3 + + +
S 2	++3+++	+ 3 + 3 3 3
S3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	++++3+	+ . + . + +
S 7	3+++++	+++.++
S 8	+ + 3 + + +	+++++

- 42 key bits have been found, can exhaustively search remanining 14 bits.
- Speed up the search by finding remaining 6 key bits of K6 using Figure 6. Count using checks on S2, S3 and S8 of the fifth round.
 - Exhaustively search remaining 8 bits.
 - Discard wrong pairs by checking if they satisfy the characteristic and expected value of F'.

Into S box number	e bits S_{Ee}	Key bits S_{Ke}
S1	+++++	3 + + +
S2	++3+++	+ 3 + 3 3 3
S3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	++++3+	+ . + . ++
S 7	3+++++	+++.++
S 8	+ + 3 + + +	+++++

- 42 key bits have been found, can exhaustively search remanining 14 bits.
- Speed up the search by finding remaining 6 key bits of K6 using Figure 6. Count using checks on S2, S3 and S8 of the fifth round.
 - Exhaustively search remaining 8 bits.
 - Discard wrong pairs by checking if they satisfy the characteristic and expected value of F'.
 - Leaves $\frac{1}{16}$ of the pairs, boosts S/N.

Into S box number	e bits S_{Ee}	Key bits S_{Ke}
S2	++3+++	+ 3 + 3 3 3
S 3	+++++	+++++
S4	++++3+	++++
S5	3+++++	+++.++
S6	++++3+	+ . + . ++
S 7	3+++++	+++.++
S 8	+ + 3 + + +	+++++

Data Requirements

The first phase has

$$S/N = \frac{2^{30} \cdot \frac{1}{16}}{4^5} = 2^{16}. \tag{11}$$

Only 7-8 pairs are needed for each characteristic. Since each characteristic has probability $\frac{1}{16}$, we require about 120 pairs of plaintexts.

Data Requirements

The first phase has

$$S/N = \frac{2^{30} \cdot \frac{1}{16}}{4^5} = 2^{16}. \tag{11}$$

Only 7-8 pairs are needed for each characteristic. Since each characteristic has probability $\frac{1}{16}$, we require about 120 pairs of plaintexts.

2 The second phase has

$$S/N = \frac{2^6 \cdot 1}{4} = 16. \tag{12}$$

Though S/N is lesser, we can use the 7-8 right pairs from the first part.

Data Requirements

The first phase has

$$S/N = \frac{2^{30} \cdot \frac{1}{16}}{4^5} = 2^{16}. \tag{11}$$

Only 7-8 pairs are needed for each characteristic. Since each characteristic has probability $\frac{1}{16}$, we require about 120 pairs of plaintexts.

2 The second phase has

$$S/N = \frac{2^6 \cdot 1}{4} = 16. \tag{12}$$

Though S/N is lesser, we can use the 7-8 right pairs from the first part.

3 We can reduce the data required by using quartets. In total, about 240 ciphertexts are needed.

- We use a 5-round characteristic with probability $\approx \frac{1}{10486}$.
- From Figure 7, a right pair has $f' = d' \oplus E' = 40 \ 5C \ 00 \ 00_{x}$
 - In the sixth round, S2, S5, ..., S8 have zero input XORs.
- We have.

$$g' = e' \oplus F' = H' \oplus I'$$

$$\Longrightarrow H' = e' \oplus F' \oplus I'.$$
(13)

$$\implies H' = e' \oplus F' \oplus I'.$$

Figure 7: 5 round characteristic to cryptanalyze DES reduced to 8 rounds.

Improving the Signal to Noise Ratio

- Signal to noise ratio for

 - k=30 is $S/N=\frac{2^{30}}{4^5\cdot 10486}\approx 100$. Requires 2^{30} counters. k=24 is $S/N=\frac{2^{24}}{4^4\cdot 0.8\cdot 10486}\approx 7.8$. Requires 2^{24} counters. k=18 is $S/N=\frac{2^{18}}{4^3\cdot 0.8^2\cdot 10486}\approx 0.6$. Requires 2^{18} counters.

Improving the Signal to Noise Ratio

- Signal to noise ratio for
 - k = 30 is $S/N = \frac{2^{30}}{4^5 \cdot 10486} \approx 100$. Requires 2^{30} counters.
 - k = 24 is $S/N = \frac{2^{24}}{4^4 \cdot 0.8 \cdot 10486} \approx 7.8$. Requires 2^{24} counters.
 - k = 18 is $S/N = \frac{2^{18}}{4^3 \cdot 0.8^2 \cdot 10486} \approx 0.6$. Requires 2^{18} counters.

Why the 0.8 in the denominator?

Improving the Signal to Noise Ratio

- Signal to noise ratio for
 - k = 30 is $S/N = \frac{2^{30}}{4^5 \cdot 10486} \approx 100$. Requires 2^{30} counters.
 - k = 24 is $S/N = \frac{2^{24}}{4^4 \cdot 0.8 \cdot 10486} \approx 7.8$. Requires 2^{24} counters.
 - k = 18 is $S/N = \frac{2^{18}}{4^3 \cdot 0.8^2 \cdot 10486} \approx 0.6$. Requires 2^{18} counters.

Why the 0.8 in the denominator?

If counting on fewer S boxes, choose the ones that maximize the characteristic probability, and check against the other S boxes.

Improving the Signal to Noise Ratio

- Signal to noise ratio for
 - k = 30 is $S/N = \frac{2^{30}}{4^5 \cdot 10486} \approx 100$. Requires 2^{30} counters.
 - k = 24 is $S/N = \frac{2^{\frac{24}{4}}}{4^4 \cdot 0.8 \cdot 10486} \approx 7.8$. Requires 2^{24} counters.
 - k = 18 is $S/N = \frac{2^{18}}{4^3 \cdot 0.8^2 \cdot 10486} \approx 0.6$. Requires 2^{18} counters.

Why the 0.8 in the denominator?

- If counting on fewer S boxes, choose the ones that maximize the characteristic probability, and check against the other S boxes.
- Notice that

$$e' = 04\ 00\ 00\ 00_x \to E' = P(0W\ 00\ 00\ 00_x) = X0\ 0Y\ Z0\ 00_x$$
 (15)

where $W \in \{0, 1, 2, 3, 8, 9, A, B\}, X, Z \in \{0, 4\}, Y \in \{0, 8\}.$

Improving the Signal to Noise Ratio

- Signal to noise ratio for
 - k = 30 is $S/N = \frac{2^{30}}{4^5 \cdot 10486} \approx 100$. Requires 2^{30} counters.
 - k = 24 is $S/N = \frac{2^{\frac{24}{4}}}{4^4 \cdot 0.8 \cdot 10486} \approx 7.8$. Requires 2^{24} counters.
 - k = 18 is $S/N = \frac{2^{18}}{4^3 \cdot 0.8^2 \cdot 10486} \approx 0.6$. Requires 2^{18} counters.

Why the 0.8 in the denominator?

- If counting on fewer S boxes, choose the ones that maximize the characteristic probability, and check against the other S boxes.
- Notice that

$$e' = 04\ 00\ 00\ 00_x \to E' = P(0W\ 00\ 00\ 00_x) = X0\ 0Y\ Z0\ 00_x\ (15)$$

where $W \in \{0, 1, 2, 3, 8, 9, A, B\}, X, Z \in \{0, 4\}, Y \in \{0, 8\}.$

- ① Thus, $f' = d' \oplus E' = X0.5V Z0.00_x$ where $V = Y \oplus 4$.
 - $Z = 0 \implies E' = 40 \ 08 \ 00 \ 00_x$. This happens with probability $\frac{16}{64}$.
 - All other possiblities having Z=4 happen with probability $\frac{20}{64}$

Modifying the Characteristic

• From (15), the modified probability of $e' \to E'$ is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.

- **1** From (15), the modified probability of e' o E' is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.
- 2 We have doubled the characteristic probability to $\frac{1}{5243}$! Thus, for k = 24, $S/N \approx 15.6$ and for k = 18, $S/N \approx 1.2$.

- **1** From (15), the modified probability of e' o E' is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.
- We have doubled the characteristic probability to $\frac{1}{5243}$! Thus, for $k=24, S/N\approx 15.6$ and for $k=18, S/N\approx 1.2$.
 - Key bits of S5 NOT counted, but used for checking as in (9).

- **1** From (15), the modified probability of $e' \rightarrow E'$ is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.
- We have doubled the characteristic probability to $\frac{1}{5243}$! Thus, for $k=24, S/N\approx 15.6$ and for $k=18, S/N\approx 1.2$.
 - Key bits of S5 NOT counted, but used for checking as in (9).
- § For k = 24, we need 25000 pairs. For k = 18, we need 150000 pairs, where
 - Average count per key is $\frac{150000 \cdot 4^3 \cdot 0.8^2}{2^{18}} = 24$.
 - Right key is counted an additional $\frac{150000}{5243} = 29$ times, for a total count of 24 + 29 = 53.

- **1** From (15), the modified probability of $e' \rightarrow E'$ is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.
- 2 We have doubled the characteristic probability to $\frac{1}{5243}$! Thus, for k = 24, $S/N \approx 15.6$ and for k = 18, $S/N \approx 1.2$.
 - Key bits of S5 NOT counted, but used for checking as in (9).
- § For k = 24, we need 25000 pairs. For k = 18, we need 150000 pairs, where
 - Average count per key is $\frac{150000 \cdot 4^3 \cdot 0.8^2}{2^{18}} = 24$.
 - Right key is counted an additional $\frac{150000}{5243} = 29$ times, for a total count of 24 + 29 = 53.
- 4 After counting on 18 key bits, we count on S2 and S5 of the last round using the 53 filtered pairs.
 - Almost all remanining pairs after both counting schemes should be right pairs (why?).

Modifying the Characteristic

- **1** From (15), the modified probability of $e' \rightarrow E'$ is $\frac{16}{64} + 0.8\frac{20}{64} = \frac{1}{2}$.
- 2 We have doubled the characteristic probability to $\frac{1}{5243}$! Thus, for $k=24, S/N\approx 15.6$ and for $k=18, S/N\approx 1.2$.
 - Key bits of S5 NOT counted, but used for checking as in (9).
- § For k = 24, we need 25000 pairs. For k = 18, we need 150000 pairs, where
 - Average count per key is $\frac{150000 \cdot 4^3 \cdot 0.8^2}{2^{18}} = 24$.
 - Right key is counted an additional $\frac{150000}{5243} = 29$ times, for a total count of 24 + 29 = 53.
- 4 After counting on 18 key bits, we count on S2 and S5 of the last round using the 53 filtered pairs.
 - Almost all remanining pairs after both counting schemes should be right pairs (why?).
 - Hint: What is the probability that a wrong pair survives both counting stages?

ntroduction

Cryptanalysis of Full DES

DES Reduced to Eight Rounds

Finding the Remaining Bits of K8

• Since 20 bits of H and H^* are known we can get corresponding bits of g and g^* .

DES Reduced to Eight Rounds

Finding the Remaining Bits of K8

- Since 20 bits of H and H* are known we can get corresponding bits of g and g*.
- 2 Exhaustive search performed for the remaining 18 bits of K8. We know $G' = f' \oplus h'$.
 - Search for the 12 bits entering S1 and S4 by verifying $S3'_{O\sigma}$.
 - Then exhaustively search for the other
 6 bits using the relations in Figure 8.

Into S box number	g bits S_{Eg}	Key bits S_{Kg}
S1	+ 4 + + + +	3 + 4 +
S2	+ + 3 + + 1	134333
S3	+14+++	+1+41+
S4	++++31	111+
S5	31++4+	+++.++
S 6	4++13+	+ . + . ++
S 7	3 + 4 + + +	+++.++
S8	++31+4	+++++

Figure 8: Dependence of K7 on K8.

Finding the Remaining Bits of K8

- \bigcirc Since 20 bits of H and H* are known we can get corresponding bits of g and g^* .
- Exhaustive search performed for the remaining 18 bits of K8. We know $G'=f'\oplus h'$.
 - Search for the 12 bits entering S1 and S4 by verifying $S3'_{O_{\sigma}}$.
 - Then exhaustively search for the other 6 bits using the relations in Figure 8.
- 3 The last 8 bits can also be exhaustively searched using one ciphertext pair.

Into S box number	g bits S_{Eg}	Key bits S_{Kg}
S1	+ 4 + + + +	3 + 4 +
S2	++3++1	134333
S3	+14+++	+1+41+
S4	++++31	111+
S5	31++4+	+++.++
S6	4++13+	+ . + . ++
S 7	3 + 4 + + +	+++.++
S8	++31+4	+++++

Figure 8: Dependence of K7 on K8.

DES Reduced to Fight Rounds

Memory Saving Techniques

① We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.

- 1) We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).

- We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).
- 2 Use a *heuristic* weighting function to discard even more wrong pairs.

- We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).
- Use a heuristic weighting function to discard even more wrong pairs.
 - Based on the idea that a right pair suggests more key values than a wrong pair.

- We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).
- Use a heuristic weighting function to discard even more wrong pairs.
 - Based on the idea that a right pair suggests more key values than a wrong pair.
 - Weighting function is product of key values suggested by the five countable S boxes of the last round.

- We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).
- Use a heuristic weighting function to discard even more wrong pairs.
 - Based on the idea that a right pair suggests more key values than a wrong pair.
 - Weighting function is product of key values suggested by the five countable S boxes of the last round.
 - Threshold chosen to discard most wrong pairs. Experimentally good threshold is 8192 which discards 97% of the wrong pairs.

- We can discard wrong pairs as and when they are identified. Leaves $0.8^5 \approx \frac{1}{3}$ of all pairs.
 - Still not enough for 18 bits (reduces to 50000 pairs).
- 2 Use a *heuristic* weighting function to discard even more wrong pairs.
 - Based on the idea that a right pair suggests more key values than a wrong pair.
 - Weighting function is product of key values suggested by the five countable S boxes of the last round.
 - Threshold chosen to discard most wrong pairs. Experimentally good threshold is 8192 which discards 97% of the wrong pairs.
- 3 The weighting function reduces number of analyzed pairs to 7500, leading to improvements in runtime.

Enhanced Characteristic's Probability

• Use relations between input and output bits of the S boxes in the characteristic to refine choices for plaintexts.

DES Reduced to Eight Rounds

Enhanced Characteristic's Probability

- Use relations between input and output bits of the S boxes in the characteristic to refine choices for plaintexts.
- Main idea:
 - Find relation between input bits for a high probability entry in the pairs XOR distribution table.
 - Find information about the key bits at those positions (this could be found earlier).
 - Choose plaintexts accordingly to boost characteristic probability and signal to noise ratio.

Extension to Nine Rounds

Characteristic shown in Figure 7 extended with extra round shown in Figure 9.

Figure 9: Extension of characteristic for cryptanalysis of DES reduced to 9 rounds.

Extension to Nine Rounds

- Characteristic shown in Figure 7 extended with extra round shown in Figure 9.
- $oldsymbol{2}$ Characteristic probability $pprox 10^{-6}$.
 - $S/N = \frac{2^{30}}{4^5 \cdot 10^6} \approx 1.$
 - About 30 million pairs and an array of 2³⁰ counters needed.

Figure 9: Extension of characteristic for cryptanalysis of DES reduced to 9 rounds.

Extension to Nine Rounds

- Characteristic shown in Figure 7 extended with extra round shown in Figure 9.
- $oldsymbol{2}$ Characteristic probability $pprox 10^{-6}$.
 - $S/N = \frac{2^{30}}{4^5 \cdot 10^6} \approx 1.$
 - About 30 million pairs and an array of 2³⁰ counters needed.
- This attack requires a lot of data and memory, hence it is unrealistic.

Figure 9: Extension of characteristic for cryptanalysis of DES reduced to 9 rounds.

DES with an Arbitrary Number of Rounds

Iterative Characteristics

Can concatenate with itself to create longer characteristics. Useful for arbitrary rounds.

Figure 10: An iterative characteristic for DES.

- Can concatenate with itself to create longer characteristics. Useful for arbitrary rounds.
- Figure 10 shows a characteristic with optimal probability (why?).

Figure 10: An iterative characteristic for DES.

- Can concatenate with itself to create longer characteristics. Useful for arbitrary rounds.
- Figure 10 shows a characteristic with optimal probability (why?).
 - Another value of $\psi=1B$ 60 00 00_x .

Figure 10: An iterative characteristic for DES.

- Can concatenate with itself to create longer characteristics. Useful for arbitrary rounds.
- Figure 10 shows a characteristic with optimal probability (why?).
 - Another value of $\psi = 1B$ 60 00 00_x .
- 6 Add an extra round for "free" by concatenating just the first round again.

Figure 10: An iterative characteristic for DES.

- Can concatenate with itself to create longer characteristics. Useful for arbitrary rounds.
- Figure 10 shows a characteristic with optimal probability (why?).
 - Another value of $\psi = 1B$ 60 00 00_x .
- 6 Add an extra round for "free" by concatenating just the first round again.
- 4 15-round extension has probability 2⁻⁵⁶. Just the iterative characteristic is not enough!

Figure 10: An iterative characteristic for DES.

DES with an Arbitrary Number of Rounds

3R-Attacks

Ocunting done on subkey bits of the last round that enter S boxes whose corresponding S boxes in the round which follows the last round of the characteristic have zero input XORs.

DES with an Arbitrary Number of Rounds

- Ocunting done on subkey bits of the last round that enter S boxes whose corresponding S boxes in the round which follows the last round of the characteristic have zero input XORs.
 - In DES reduced to four rounds: "...zero input XORs in...the second round".

- Counting done on subkey bits of the last round that enter S boxes whose corresponding S boxes in the round which follows the last round of the characteristic have zero input XORs.
 - In DES reduced to *four* rounds: "...zero input XORs in...the *second* round".
- Not advisable for larger rounds due to small S/N.

- Ocunting done on subkey bits of the last round that enter S boxes whose corresponding S boxes in the round which follows the last round of the characteristic have zero input XORs.
 - In DES reduced to four rounds: "...zero input XORs in...the second round".
- **2** Not advisable for larger rounds due to small S/N.
- More powerful compared to 0R/1R/2R-attacks due to smaller characteristic length.
 - For fixed number of iterations in a cryptosystem, 3R-attacks are the most useful.

DES with an Arbitrary Number of Rounds

2R-Attacks

Ocunt on all bits of the subkey of the last round (why?).

DES with an Arbitrary Number of Rounds

- Count on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.

- Oount on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.
- 8 Example: DES reduced to 9 rounds.
 - 7-round iterative characteristic has probability $\approx 2^{-24}$.

DES with an Arbitrary Number of Rounds

- Count on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.
- 8 Example: DES reduced to 9 rounds.
 - 7-round iterative characteristic has probability $\approx 2^{-24}$.
 - Five S boxes in the eighth round have $S'_{Eh} = S'_{Ih} = 0$, thus $S'_{Oh} = 0$. This happens for wrong pairs with probability $\frac{1}{16}$. For other S boxes, this probability is 0.8.

- Ocunt on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.
- Second Example: DES reduced to 9 rounds.
 - 7-round iterative characteristic has probability $\approx 2^{-24}$.
 - Five S boxes in the eighth round have $S'_{Eh} = S'_{Ih} = 0$, thus $S'_{Oh} = 0$. This happens for wrong pairs with probability $\frac{1}{16}$. For other S boxes, this probability is 0.8.
 - Counting on 48 bits of K9 has $S/N = \frac{2^{48} \cdot 2^{-24}}{4^8 \cdot 0.8^3 \cdot (\frac{1}{16})^5} \approx 2^{29}$.

- Count on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.
- 3 Example: DES reduced to 9 rounds.
 - 7-round iterative characteristic has probability $\approx 2^{-24}$.
 - Five S boxes in the eighth round have $S'_{Fh} = S'_{Ih} = 0$, thus $S'_{Oh} = 0$. This happens for wrong pairs with probability $\frac{1}{16}$. For other S boxes, this probability is 0.8.
 - Counting on 48 bits of K9 has $S/N = \frac{2^{48} \cdot 2^{-24}}{4^8 \cdot 0.8^3 \cdot (\frac{1}{16})^5} \approx 2^{29}$. Counting on 18 bits of K9 has $S/N = \frac{2^{18} \cdot 2^{-24}}{4^3 \cdot 0.8^5 \cdot 0.8^3 \cdot (\frac{1}{16})^5} \approx 2^{11}$.

- Count on all bits of the subkey of the last round (why?).
- Wrong pairs discarded if input XORs of S boxes in the previous round may not cause expected output XORs.
- 3 Example: DES reduced to 9 rounds.
 - 7-round iterative characteristic has probability $\approx 2^{-24}$.
 - Five S boxes in the eighth round have $S'_{Fh} = S'_{Ih} = 0$, thus $S'_{Oh} = 0$. This happens for wrong pairs with probability $\frac{1}{16}$. For other S boxes, this probability is 0.8.

 - Counting on 48 bits of K9 has $S/N = \frac{2^{48} \cdot 2^{-24}}{4^8 \cdot 0.8^3 \cdot (\frac{1}{16})^5} \approx 2^{29}$. Counting on 18 bits of K9 has $S/N = \frac{2^{18} \cdot 2^{-24}}{4^3 \cdot 0.8^5 \cdot 0.8^3 \cdot (\frac{1}{16})^5} \approx 2^{11}$.
 - Total of 2²⁶ pairs needed. Filtering on last two rounds leaves $0.8^3 \cdot (\frac{1}{16})^5 \cdot 0.8^8 \approx 2^{-24}$ of wrong pairs. The clique method can be used since there are few pairs.

• Count on all bits of the subkey of the last round entering the S boxes with nonzero input XORs.

- Count on all bits of the subkey of the last round entering the S boxes with nonzero input XORs.
- \bigcirc Verify against r' itself and perform possibility checks on other S boxes in the last round.

- Count on all bits of the subkey of the last round entering the S boxes with nonzero input XORs.
- 2 Verify against r' itself and perform possibility checks on other S boxes in the last round.
- **6** Example: DES reduced to 10 rounds.
 - 9-round iterative characteristic has probability $\approx 2^{-32}$.

- Ocunt on all bits of the subkey of the last round entering the S boxes with nonzero input XORs.
- 2 Verify against r' itself and perform possibility checks on other S boxes in the last round.
- Second Example: DES reduced to 10 rounds.
 - 9-round iterative characteristic has probability $\approx 2^{-32}$.
 - Right pairs have $r'=\psi$ and 20 btits in I' going out of S4, ..., S8 are zero.

1R-Attacks

- Count on all bits of the subkey of the last round entering the S boxes with nonzero input XORs.
- 2 Verify against r' itself and perform possibility checks on other S boxes in the last round.
- 8 Example: DES reduced to 10 rounds.
 - 9-round iterative characteristic has probability $\approx 2^{-32}$.
 - Right pairs have $r'=\psi$ and 20 btits in l' going out of S4, ..., S8 are zero.
 - Wrong pairs pass these checks with probability 2^{-52} . Thus, counting on 18 key bits has $S/N = \frac{2^{18} \cdot 2^{-32}}{4^3 \cdot 2^{-52}} = 2^3 \cdot 2^{34}$ pairs are needed.

Summary of Differential Cryptanalysis

Complexity of Differential Cryptanalysis Attacks So Far

No. of rounds	No. pairs needed	No. pairs used	No. bits found	Characteristics	S/N	Comments
4	23	23	42	1 1	16 [6]	
6	27	27	30	3 1/16	216 *	
8	215	213	30	5 1/10,486	15.6 [24]	
8	217	213	30	5 1/10,486	1.2 [18]	
8	220	219	30	5 1/55,000	1.5 [24]	The iterative characteristic
9	225	224	30	6 1/1,000,000	1.0 [30]	Extension to six rounds
9	226	8	48	7 2-24	229 *	
10	234	4	18	9 2-32	232 *	
11	235	211	48	9 2-32	221 *	
12	242	4	18	11 2-40	224 *	
13	243	219	48	11 2-40	4 [30]	
14	250	4	18	13 2-48	216 *	
15	251	227	48	13 2-48	2.5 [42]	Needs a huge memory. With less memory needs 2 ⁵⁷ pairs
16	257	25	18	15 2-56	28 *	Slower than exhaustive search

Figure 11: Summary of time and space complexity of differential cryptanalysis on DES.

Summary of Differential Cryptanalysis

Main Idea of the New Attack

• The iterative characteristic by itself is not enough due to low probability.

Main Idea of the New Attack

- The iterative characteristic by itself is not enough due to low probability.
- We need to add an extra round at no additional cost.

Summary of Differential Cryptanalysis

Main Idea of the New Attack

- The iterative characteristic by itself is not enough due to low probability.
- We need to add an extra round at no additional cost.
- 6 A new round 1 created followed by 15-round 2R-attack to speed up cryptanalysis and reduce memory.

Summary of Differential Cryptanalysis

Main Idea of the New Attack

- 1 The iterative characteristic by itself is not enough due to low probability.
- We need to add an extra round at no additional cost.
- 6 A new round 1 created followed by 15-round 2R-attack to speed up cryptanalysis and reduce memory.
- 4 This attack has two phases: data collection and data analysis.

• Want to generate plaintexts that are fed to 15-round attack after first round.

Figure 12: Modified 2R-attack on DES.

- Want to generate plaintexts that are fed to 15-round attack after first round.
- 2 Let v₀,..., v₄₀₉₅ be the 2¹² 32-bit constants consisting of all possible values at the 12 output positions of S1, S2 and S3 after the first round, and zero elsewhere.

Figure 12: Modified 2R-attack on DES.

For arbitrary 64-bit P, define

$$P_i \triangleq P \oplus (v_i, 0) \tag{16}$$

$$\bar{P}_i \triangleq (P \oplus (v_i, 0)) \oplus (0, \psi) \tag{17}$$

$$T_i \triangleq DES(P_i, K) \tag{18}$$

$$\bar{T}_i \triangleq DES(\bar{P}_i, K).$$
 (19)

Data Collection Phase

For arbitrary 64-bit P, define

$$P_i \triangleq P \oplus (v_i, 0) \tag{16}$$

$$\bar{P}_i \triangleq (P \oplus (v_i, 0)) \oplus (0, \psi) \tag{17}$$

$$T_i \triangleq DES(P_i, K) \tag{18}$$

$$\bar{T}_i \triangleq DES(\bar{P}_i, K).$$
 (19)

Observe that $P_i \oplus \bar{P}_j = (v_k, \psi)$. Each v_k occurs exactly 2^{12} times (why?).

For arbitrary 64-bit P, define

$$P_i \triangleq P \oplus (v_i, 0) \tag{16}$$

$$\bar{P}_i \triangleq (P \oplus (v_i, 0)) \oplus (0, \psi) \tag{17}$$

$$T_i \triangleq DES(P_i, K) \tag{18}$$

$$\bar{T}_i \triangleq DES(\bar{P}_i, K).$$
 (19)

- Observe that $P_i \oplus \bar{P}_j = (v_k, \psi)$. Each v_k occurs exactly 2^{12} times (why?).
- **3** We still don't know the best k for which $\psi \to v_k$.

For arbitrary 64-bit P, define

$$P_i \triangleq P \oplus (v_i, 0) \tag{16}$$

$$\bar{P}_i \triangleq (P \oplus (v_i, 0)) \oplus (0, \psi) \tag{17}$$

$$T_i \triangleq DES(P_i, K) \tag{18}$$

$$\bar{T}_i \triangleq DES(\bar{P}_i, K).$$
 (19)

- ② Observe that $P_i \oplus \bar{P}_j = (v_k, \psi)$. Each v_k occurs exactly 2^{12} times (why?).
- **3** We still don't know the best k for which $\psi \rightarrow v_k$.
 - Exhaustive search over the 2²⁴ pairs is too slow.

1 For arbitrary 64-bit P, define

$$P_i \triangleq P \oplus (v_i, 0) \tag{16}$$

$$\bar{P}_i \triangleq (P \oplus (v_i, 0)) \oplus (0, \psi) \tag{17}$$

$$T_i \triangleq DES(P_i, K) \tag{18}$$

$$\bar{T}_i \triangleq DES(\bar{P}_i, K).$$
 (19)

- ② Observe that $P_i \oplus \bar{P}_j = (v_k, \psi)$. Each v_k occurs exactly 2^{12} times (why?).
- **3** We still don't know the best k for which $\psi \to v_k$.
 - Exhaustive search over the 2²⁴ pairs is too slow.
 - Exploit the cross-product structure to speed up the search.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

1 A right pair has zero output XOR at S4, ..., S8 of the last round.

- A right pair has zero output XOR at S4, ..., S8 of the last round.
- 2 Hash the 2^{13} plaintexts P_i , \bar{P}_i based on these 2^{20} values. Only $2^{24} \cdot 2^{-20} = 2^4 = 16$ pairs will survive.

- A right pair has zero output XOR at S4, ..., S8 of the last round.
- 2 Hash the 2^{13} plaintexts P_i , \bar{P}_i based on these 2^{20} values. Only $2^{24} \cdot 2^{-20} = 2^4 = 16$ pairs will survive.
- **3** Additional S boxes can be tested in the first, fifteenth and sixteenth round to discard about 92.55% of surviving pairs, leaving about $16 \cdot 0.0745 = 1.19$ pairs per structure.

- A right pair has zero output XOR at S4, ..., S8 of the last round.
- 2 Hash the 2^{13} plaintexts P_i , \bar{P}_i based on these 2^{20} values. Only $2^{24} \cdot 2^{-20} = 2^4 = 16$ pairs will survive.
- **3** Additional S boxes can be tested in the first, fifteenth and sixteenth round to discard about 92.55% of surviving pairs, leaving about $16 \cdot 0.0745 = 1.19$ pairs per structure.
 - Input XOR for right pairs in first and fifteenth rounds are fixed, so use number of non-zero entries of corresponding lines in the pairs XOR distribution table. Fraction of surviving pairs is $(\frac{14}{16} \cdot \frac{13}{16} \cdot \frac{15}{16})^2 \cdot 0.8^8 = 0.0745$.

- Oher in the standard of the last round.
 Oher is a standard of the last round.
- ② Hash the 2^{13} plaintexts P_i , \bar{P}_i based on these 2^{20} values. Only $2^{24} \cdot 2^{-20} = 2^4 = 16$ pairs will survive.
- **3** Additional S boxes can be tested in the first, fifteenth and sixteenth round to discard about 92.55% of surviving pairs, leaving about $16 \cdot 0.0745 = 1.19$ pairs per structure.
 - Input XOR for right pairs in first and fifteenth rounds are fixed, so use number of non-zero entries of corresponding lines in the pairs XOR distribution table. Fraction of surviving pairs is $(\frac{14}{16} \cdot \frac{13}{16} \cdot \frac{15}{16})^2 \cdot 0.8^8 = 0.0745.$
- **4** Each structure has right pair with probability $2^{12} \cdot 2^{-47.2} = 2^{-35.2}$. Multiple structures needed.

- A right pair has zero output XOR at S4, ..., S8 of the last round.
- 2 Hash the 2^{13} plaintexts P_i , \bar{P}_i based on these 2^{20} values. Only $2^{24} \cdot 2^{-20} = 2^4 = 16$ pairs will survive.
- **3** Additional S boxes can be tested in the first, fifteenth and sixteenth round to discard about 92.55% of surviving pairs, leaving about $16 \cdot 0.0745 = 1.19$ pairs per structure.
 - Input XOR for right pairs in first and fifteenth rounds are fixed, so use number of non-zero entries of corresponding lines in the pairs XOR distribution table. Fraction of surviving pairs is $(\frac{14}{16} \cdot \frac{13}{16} \cdot \frac{15}{16})^2 \cdot 0.8^8 = 0.0745$.
- **4** Each structure has right pair with probability $2^{12} \cdot 2^{-47.2} = 2^{-35.2}$. Multiple structures needed.
- Input to data analsyis phase contains mix of right and wrong pairs.

Data Analysis Phase

Uses negligible space. Fewer suggested key values can be tried immediately.

- Uses negligible space. Fewer suggested key values can be tried immediately.
- ② Due to key scheduling

- Uses negligible space. Fewer suggested key values can be tried immediately.
- Due to key scheduling
 - 28 bits of left key register are used as inputs to S1, S2 and S3 of first and fifteenth rounds, and S1, ..., S4 of sixteenth round.

- Uses *negligible* space. Fewer suggested key values can be tried immediately.
- Due to key scheduling
 - 28 bits of left key register are used as inputs to S1, S2 and S3 of first and fifteenth rounds, and S1, ..., S4 of sixteenth round.
 - 24 key bits of right key register are used in sixteenth round. Total of 28
 + 24 = 52 key bits used.

- Uses negligible space. Fewer suggested key values can be tried immediately.
- Due to key scheduling
 - 28 bits of left key register are used as inputs to S1, S2 and S3 of first and fifteenth rounds, and S1, ..., S4 of sixteenth round.
 - 24 key bits of right key register are used in sixteenth round. Total of 28 + 24 = 52 key bits used.
- $\frac{2^{-32}}{0.8^8}$ keys survive by comparing output XOR to expected value.

- Uses negligible space. Fewer suggested key values can be tried immediately.
- Oue to key scheduling
 - 28 bits of left key register are used as inputs to S1, S2 and S3 of first and fifteenth rounds, and S1, ..., S4 of sixteenth round.
 - 24 key bits of right key register are used in sixteenth round. Total of 28 + 24 = 52 key bits used.
- $\frac{2^{-32}}{0.8^8}$ keys survive by comparing output XOR to expected value.
- 4 $\frac{2^{-12}}{\frac{14}{16} \cdot \frac{13}{16} \cdot \frac{15}{16}}$ key values remain by comparing output XOR of three S boxes in the first and fifteenth round each.

- Uses negligible space. Fewer suggested key values can be tried immediately.
- Oue to key scheduling
 - 28 bits of left key register are used as inputs to S1, S2 and S3 of first and fifteenth rounds, and S1, ..., S4 of sixteenth round.
 - \bullet 24 key bits of right key register are used in sixteenth round. Total of 28 + 24 = 52 key bits used.
- $\frac{2^{-32}}{0.8^8}$ keys survive by comparing output XOR to expected value.
- 4 $\frac{2^{-12}}{\frac{14}{16} \cdot \frac{13}{16} \cdot \frac{15}{16}}$ key values remain by comparing output XOR of three S boxes in the first and fifteenth round each.
- 6 Multiplying them together, each pair suggests 0.84 values for these 52 key bits. In total, each structure suggests $1.19 \cdot 0.84 \cdot 2^4 = 16$ values.

• Verify each key by peeling up two rounds and checking against output of 13-round characteristic. Costs $16 \cdot \frac{2}{16} \cdot 2 = 4$ equivalent DES operations.

		1				K	16				
		Le	eft K	ey R	egist	er	Ri	ght F	ey F	legist	er
		S1	S2	S3	S4	X	S5	S6	S7	S8	Х
K1	S1		2	1	1	2					-
	S2	2		1	2	1					
	S3	2			3	1					
	S4	2	3	1							
	Х		1	3							
	S5							1	2	2	1
	S6						3		2	1	
	S7							2		2	2
	S8	1					2	3			1
	Х	Ì					1		2	1	

Figure 13: Common bits between K1 and K16.

- Verify each key by peeling up two rounds and checking against output of 13-round characteristic. Costs $16 \cdot \frac{2}{16} \cdot 2 = 4$ equivalent DES operations.
 - After this filtering, perform trial encryption to determine the right key.

							16				
		Le	Left Key Register					ight Key Register			
		S1	S2	S3	S4	Х	S5	S6	S7	S8	X
K1	S1		2	1	1	2					
	S2	2		1	2	1					
	S3	2			3	1					
	S4	2	3	1							
	X		1	3							
	S5							1	2	2	1
	S6						3		2	1	
	S7							2		2	2
	S8]					2	3			1
	X	1					1		2	1	

Figure 13: Common bits between K1 and K16.

- Verify each key by peeling up two rounds and checking against output of 13-round characteristic. Costs $16 \cdot \frac{2}{16} \cdot 2 = 4$ equivalent DES operations.
 - After this filtering, perform trial encryption to determine the right key.
- 2 $S/N = \frac{2^{52} \cdot 2^{-47.2}}{\frac{1.19}{2^{12}} \cdot 0.84} = 2^{16.8}$. If this test succeeds, then we have found the right key with very high probability.

			K16								
		Le	eft K	ey R	egist	er	Right Key Register				
		S1	S2	S3	S4	Х	S5	S6	S7	S8	Х
K1	S1		2	1	1	2					
	S2	2		1	2	1					
	S3	2			3	1					
	S4	2	3	1							
	X		1	3							
	S5							1	2	2	1
	S6	1					3		2	1	
	S7							2		2	2
	S8	1					2	3			1
	X						1		2	1	

Figure 13: Common bits between K1 and K16.

- Verify each key by peeling up two rounds and checking against output of 13-round characteristic. Costs $16 \cdot \frac{2}{16} \cdot 2 = 4$ equivalent DES operations.
 - After this filtering, perform trial encryption to determine the right key.
- ② $S/N = \frac{2^{52} \cdot 2^{-47.2}}{\frac{1.19}{212} \cdot 0.84} = 2^{16.8}$. If this test succeeds, then we have found the right key with very high probability.
- Using common key bits, we can speed up the data analysis, as shown in Figure 13.

Figure 13: Common bits between K1 and K16.

General Form of the Attack

Theorem 8

Given a characteristic with probability p and signal-to-noise ratio S/N for an iterated cryptosystem with k key bits, we can apply an attack which encrypts $\frac{2}{p}$ chosen plaintexts in the data collection phase and whose complexity is $\frac{2^k}{S/N}$ encryptions during the data analysis phase.

Theorem 8

Given a characteristic with probability p and signal-to-noise ratio S/N for an iterated cryptosystem with k key bits, we can apply an attack which encrypts $\frac{2}{p}$ chosen plaintexts in the data collection phase and whose complexity is $\frac{2^k}{S/N}$ encryptions during the data analysis phase.

Appropriately chosen metastructures can reduce the number of plaintexts to $\frac{1}{p}$. Further, the effective time complexity can be reduced by a factor of $f \leq 1$ if a wrong key can be discarded by carrying out a fraction f of the rounds.

Reculto

Results

Rounds	Chosen	Analyzed	Complexity	Best Pi	revious
	Plaintexts	Plaintexts	of Analysis	Time	Space
8	2^{14}	4	29	216	224
9	2 ²⁴	2	2 ³²	2 ²⁶	230
10	224	214	215	2^{35}	-
11	231	2	232	2^{36}	_
12	231	221	221	243	_
13	239	2	2^{32}	244	230
14	239	2^{29}	229	251	-
15	247	27	237	2^{52}	242
16	247	236	2^{37}	258	

Figure 14: Results of memoryless DES attack.