Topic 3: Set Cover Problem

Input: n elements: $U = \{s_1, s_2, ..., s_n\}$ m subsets of U: $S_1, S_2, ..., S_m$ $(S_i \subset U)$ Weight (cost) of each subset: w_i (i = 1, 2, ..., m)

Output: Cover C (Selection from m subsets): $\bigcup S_i = U$ $S_i \in C$

Objective: Minimize the total weight: $\sum W_i$ $S_i \in C$

Minimize
$$w = \sum_{S_i \in C} w_i$$
 subject to $\bigcup_{S_i \in C} S_i = U$

Good subset: Small weight with many elements

$$\frac{w_i}{|S_i|}$$

After some elements are covered $\frac{W_i}{|S_i \cap R|}$

Greedy Set Cover Algorithm

Select the best subset with the best evaluation.

Greedy Set Cover Algorithm

Select the best subset with the best evaluation.

(Programming Exercise 6)

```
procedure Greedy-Set-Cover
   Start with R=U and no sets selected
   while R \neq \emptyset do
       Select set S_i that minimizes \frac{w_i}{|S_i \cap R|}
       Delete set S_i from R
   end while
    Return the selected sets
end procedure
```

Exercise 6-1:

Create an example of the set cover problem where a good solution is not obtained by the greedy algorithm.

Simple Example

$$w = 4 \text{ by } C = \{S_1, S_4, S_5, S_6, \}, \quad w = 2.2 \text{ by } C = \{S_2, S_3\}$$

Approximation Quality of Algorithm: ?-approximation

When an element s is covered by S_i , the cost c_s paid by s is

$$c_s = \frac{w_i}{|S_i \cap R|}$$
 for all $s \in S_i \cap R$

(since the total cost paid by all elements covered by S_i is w_i .)

If C is the cover obtained by the greedy set cover algorithm and c_s is calculated during the execution of the algorithm,

$$\sum_{S_i \in C} w_i = \sum_{S \in U} c_S$$
 (the right-hand side will be evaluated)

Preparation

Harmonic Function:
$$H(n) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

(i) For every set S_k ,

(c_s is calculated during the execution of the greedy algorithm)

Let us assume that d elements in $S_k = \{s_1, s_2, ..., s_d\}$ is covered in the order of $s_1, s_2, ..., s_d$ by the greedy algorithm. Consider the iteration when s_j is covered. Before this iteration, $\{s_j, s_{j+1}, \ldots, s_{j+1},$

...,
$$s_d$$
 $\subset R$. Thus $\frac{w_k}{|S_k \cap R|} = \frac{w_k}{d-j+1}$

At this iteration, the algorithm selects S_i with the minimum average cost. So, w_i w_k w_k

average cost. So,
$$c_{s_j} = \frac{w_i}{|S_i \cap R|} \le \frac{w_k}{|S_k \cap R|} = \frac{w_k}{d - j + 1}$$

Thus $\sum_{s \in S_k} c_s = \sum_{j=1}^d c_{s_j} \le \sum_{j=1}^d \frac{w_k}{d-j+1} = \frac{w_k}{d} + \frac{w_k}{d-1} + \dots + \frac{w_k}{1} = w_k H(d)$

Example

If s_1 is covered by S_i (not S_k), the following relation holds:

$$c_1 = \frac{w_i}{|S_i \cap R|} \le \frac{w_k}{|S_k \cap R|} = \frac{w_k}{d - j + 1} = \frac{w_k}{4} \quad (d = 4, j = 1)$$

If s_1 is covered by S_k , the following relation holds:

$$c_1 = \frac{w_k}{|S_k \cap R|} = \frac{w_k}{d - j + 1} = \frac{w_k}{4}$$

$$S_k = \{s_1, s_2, s_3, s_4\}$$

Example

If s_2 is covered by S_i (not S_k), the following relation holds:

$$c_2 = \frac{w_i}{|S_i \cap R|} \le \frac{w_k}{|S_k \cap R|} = \frac{w_k}{d - j + 1} = \frac{w_k}{3} \quad (d = 4, j = 2)$$

If s_2 is covered by S_k , the following relation holds:

$$c_2 = \frac{w_k}{|S_k \cap R|} = \frac{w_k}{d - j + 1} = \frac{w_k}{3}$$

$$\sum_{s \in S_k} c_s = \sum_{j=1}^d c_{s_j} \le \sum_{j=1}^d \frac{w_k}{d-j+1} = \frac{w_k}{d} + \frac{w_k}{d-1} + \dots + \frac{w_k}{1} = w_k H(d)$$

(ii)
$$w \le H(\max_k |S_k|) w^*$$

The obtained weight w by the greedy algorithm is not worse than $H(d^*)$ times of the optimal weight w^* where $d^* = \max_k |S_k|$.

Let
$$C^*$$
 be the optimal set cover: $w^* = \sum_{S_i \in C^*} w_i$
From (i), we have

$$\sum_{s \in S_i} c_s \le H(|S_i|) w_i \le H(d^*) w_i \implies w_i \ge \frac{1}{H(d^*)} \sum_{s \in S_i} c_s$$

Since
$$C^*$$
 is a set cover, $\sum_{S_i \in C^*} \sum_{s \in S_i} c_s \ge \sum_{s \in U} c_s$
Thus

$$w^* = \sum_{S_i \in C^*} w_i \ge \sum_{S_i \in C^*} \left| \frac{1}{H(d^*)} \sum_{S \in S_i} c_S \right| \ge \frac{1}{H(d^*)} \sum_{S \in U} c_S = \frac{1}{H(d^*)} \sum_{S_i \in C} w_i$$

$$w^* \ge \frac{w}{H(d^*)} \implies w \le H(d^*)w^*$$

Harmonic Function:
$$H(n) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\int_{1}^{n+1} (1/x) dx = \ln(n+1) \le H(n) \le 1 + \int_{1}^{n} (1/x) dx = 1 + \ln(n)$$

Harmonic Function:
$$H(n) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\int_{1}^{n+1} (1/x) dx = \ln(n+1) \le H(n) \le 1 + \int_{1}^{n} (1/x) dx = 1 + \ln(n)$$

Harmonic Function:
$$H(n) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$\int_{1}^{n+1} (1/x) dx = \ln(n+1) \le H(n) \le 1 + \int_{1}^{n} (1/x) dx = 1 + \ln(n)$$

