Team name:

Please write down all people in your team.

1.

3. 4.

Grading

Question	Score	Max
1		4
2		4
3		2
Total		10

2.

6.6 Matrices and Markov Chains

The Gambler's Ruin Problem

Page 478 of the book highlights a game played between two characters: Player "H" and Player "T". Each character begins with a certain amount of markers (or tokens), and they play by flipping a **coin**. Whenever one of them loses a "round", they give one marker to their opponent.

If a *heads* is flipped, then Player H wins a marker from Player T. For a *tails*, Player T wins a marker from Player H. The game is over once somebody is out of markers.

Game setup: For the game we'll be talking about in thie example, the rules are:

- There are 3 total markers (so one player will have more markers than the other)
- Once somebody is out of markers, the game is over.
- Each coin flip, the loser gives one of their markers to the other player. (One gains, one loses)

Game states: Before we start modeling the game with a matrix, let's map out all the game states. We won't worry about what is the beginning state, and each coin flip, one person gains a marker and one person loses a marker. There are four possible states in the game:

State #	H's markers	T's markers
1	0	3
2	1	2
3	2	1
4	3	0

State diagram: Given these states, and the fact that each coin flip one person loses a marker and gives it to the other, our state diagram would look like:

State change matrix: Now we will build out a matrix to show the probability of switching between states.

The matrix will be 4×4 . Each **row** will be a state, and each cell in that row is the probability of going from that state to a new state.

	State 1	State 2	State 3	State 4
State 1 \rightarrow	1	0	0	0
State $2 \rightarrow$	1/2	0	1/2	0
State $3 \rightarrow$	0	1/2	0	1/2
State $4 \rightarrow$	0	0	0	1

This matrix is in the format, "from row state to col state". In Row 2, the probability of going from (State 2 \rightarrow State 1) is 1/2, because the coin flip has a half chance of being heads, and a half chance of being tails.

State 1 and State 4 they are gameover states: you cannot move from State 1 to another state, so it has a 1 in that cell.

Question 1 ____ / 4

Let's say a game starts where Player H has 2 markers and player 1 has 1 marker. This is state 3.

What is the probability of...

- a. Going from State 3 to State 1?
- b. Going from State 3 to State 2?
- c. Going from State 3 to State 3?
- d. Going from State 3 to State 4?

Transition Matrix

If you have a game with states 1 through n, then your transition matrix M is

 $M_{i,j} = Prob$ (the game changes from state i to state j in one move).

^aDiscrete Structures, Ensley and Crawley

Question 2 ____ / 4

Let's say in the game there are 2 total markers instead of three.

a. What are all the states in the game?

b. Draw the transition matrix for this game.

Transition Matrix

Given the matrices M and N, where the amount of rows in M is the same amount of columns in N, we can find the product $P = M \cdot N$ where each entry at row i, column j of P is the row-column product of row i from M and column j from N. In other words,

$$P_{i,j} = M_{i,1} \cdot N_{1,j} + M_{i,2} \cdot N_{2,j} + \dots$$

a

^aDiscrete Structures, Ensley and Crawley

Question 3 _____ / 2

Calculate the product $M \cdot M$ (aka M^2) for our original game with 3 markers.

	Col 1	Col 2	Col 3	Col 4
Row 1	1	0	0	0
Row 2	1/2	0	1/2	0
Row 3	0	1/2	0	1/2
Row 4	0	0	0	1

The result ends up being the probability that the game processes from state i to state j in **two** moves.

$$M_{1,1}^2 = \begin{array}{cccc} M_{1,1} \cdot M_{1,1} + & M_{1,2} \cdot M_{2,1} + & M_{1,3} \cdot M_{3,1} + & M_{1,4} \cdot M_{4,1} \\ 1 \cdot 1 & 0 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \end{array} = 1$$

- $M_{1,2}^2$
- $M_{1,3}^2$
- $M_{1,4}^2$
- $M_{2,1}^2$
- $M_{2,2}^2$
- $M_{2,3}^2$
- $M_{2,4}^2$
- $M_{3,1}^2$
- $M_{3,2}^2$
- $M_{3,3}^2$
- $M_{3,4}^2$
- $M_{4,1}^2$
- $M_{4,2}^2$
- $M_{4,3}^2$
- $M_{4.4}^2$

Draw the matrix M^2 :

Theorem 1

If M is an $n \times n$ transition matrix reflecing the one-move transition probabilities for states 1 through n of a game, then for any integer $k \geq 1$, the entry in row i, column j of the Matrix M^k is the probability of the game moving from state i to state j in k moves. ^a

^aDiscrete Structures, Ensley and Crawley