Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Домашняя работа №2

по дисциплине
«Дискретная математика»
Вариант №9

Выполнил:

Студент группы Р3113

Султанов А.Р.

Преподаватель:

Поляков В.И.

г. Санкт-Петербург 2023г.

Оглавление

Оглавление	2
Задание	2

Задание

Рассчитать кратчайшие длины путей данного графа от начальной \boldsymbol{e}_1 до всех остальных вершин:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	0	0	1	0	3	0	1	1	1	0	1
e2	0	0	0	1	0	0	0	0	1	0	0	0
e3	0	0	0	0	5	3	1	0	0	4	1	2
e4	1	1	0	0	0	0	0	3	5	0	0	2
e5	0	0	5	0	0	5	2	0	1	5	0	3
e6	3	0	3	0	5	0	0	0	5	4	3	0
e7	0	0	1	0	2	0	0	1	2	3	2	0
e8	1	0	0	3	0	0	1	0	3	2	2	0
e9	1	1	0	5	1	5	2	3	0	0	0	0
e10	1	0	4	0	5	4	3	2	0	0	0	0
e11	0	0	1	0	0	3	2	2	0	0	0	1
e12	1	0	2	2	3	0	0	0	0	0	1	0

1. Таблица первой итерации алгоритма: Запишем 0^+ для e_1^- и ∞ для остальных вершин. Число с $^+$ означает постоянную пометку вершины. На каждой итерации устанавливается 1 постоянная пометка. $p=e_1^-$

	1
e1	0+
e2	8
e3	8
e4	8
e5	8
e6	8
e7	8
e8	8
e9	8
e10	8
e11	8
e12	8

2. Далее, для каждого "непостоянного" соседа e_1 определяем минимальный путь по формуле $l(x_i) = min(l(x_i), l(p) + c(p, x_i))$, где x_i - рассматриваемая вершина, $l(x_i)$ - текущая длина до вершины, l(p) - длина для вершины с постоянным значением кратчайшего пути, $c(p, x_i)$ - длина от вершины с постоянным значением кратчайшего пути до x_i .

 $\Gamma p = \{e_4, e_6, e_8, e_9, e_{10}, e_{12}\}$ - все пометки временные, уточним их:

$$l(e_4) = min(\infty, 0^+ + 1) = 1$$

$$l(e_6) = min(\infty, 0^+ + 3) = 3$$

$$l(e_8) = min(\infty, 0^+ + 1) = 1$$

$$l(e_{9}) = min(\infty, 0^{+} + 1) = 1$$

$$l(e_{10}) = min(\infty, 0^{+} + 1) = 1$$

$$l(e_{12}) = min(\infty, 0^{+} + 1) = 1$$

$$l(x_{i}^{*}) = min(l(x_{i})) = l(e_{4}) = 1$$

 $\boldsymbol{e}_{_{4}}$ получает постоянную пометку $\boldsymbol{1}^{^{+}}$. $\boldsymbol{p}=\boldsymbol{e}_{_{4}}$

	1	2
e1	0+	
e2	8	8
e3	8	8
e4	8	1+
e5	8	8
e6	8	3
e7	8	8
e8	8	1
e9	8	1
e10	8	1
e11	8	8
e12	8	1

 $\overline{3}$. Не все вершины имеют постоянные пометки. $\Gamma p = \{e_1, e_2, e_8, e_9, e_{12}\}$, временные пометки имеют вершины $\{e_2, e_8, e_9, e_{12}\}$, уточним их:

$$l(e_2) = min(\infty, 1^+ + 1) = 2$$

 $l(e_8) = min(1, 1^+ + 3) = 1$
 $l(e_9) = min(1, 1^+ + 5) = 1$
 $l(e_{12}) = min(1, 1^+ + 2) = 1$

$$l(x_i^{\ *}) = min(l(x_i^{\ })) = l(e_8^{\ }) = 1$$
 $e_8^{\ }$ получает постоянную пометку 1^+ . $p=e_8^{\ }$

	1	2	3
e1	0+		
e2	8	8	2
e3	8	8	8
e4	8	1+	
e5	8	8	8
e6	8	3	3
e7	8	8	8
e8	8	1	1 ⁺
e9	8	1	1
e10	8	1	1
e11	8	8	8
e12	8	1	1

 $\Gamma p = \{e_1, e_4, e_7, e_9, e_{10}, e_{11}\},$ временные пометки имеют вершины $\{e_7, e_9, e_{10}, e_{11}\},$ уточним их:

$$l(e_7) = min(\infty, 1^+ + 1) = 2$$

$$l(e_9) = min(1, 1^+ + 3) = 1$$

$$l(e_{10}) = min(1, 1^+ + 2) = 1$$

$$l(e_{11}) = min(\infty, 1^+ + 2) = 3$$

$$l(x_i^*) = min(l(x_i)) = l(e_9) = 1$$

 e_9 получает постоянную пометку 1^+ . $p=e_9$

	1	2	3	4
e1	0+			
e2	8	8	2	2
e3	8	8	8	8
e4	8	1+		
e5	8	8	8	8
e6	8	3	3	3
e7	8	8	8	2
e8	8	1	1+	
e9	8	1	1	1+
e10	8	1	1	1
e11	8	8	8	3
e12	8	1	1	1

5. Не все вершины имеют постоянные пометки.

 $\Gamma p = \{e_1, e_2, e_4, e_5, e_6, e_7, e_8\},$ временные пометки имеют вершины $\{e_2, e_5, e_6, e_7\},$ уточним их:

$$l(e_2) = min(2, 1^+ + 1) = 2$$

$$l(e_5) = min(\infty, 1^+ + 1) = 2$$

$$l(e_6) = min(3, 1^+ + 5) = 3$$

$$l(e_7) = min(2, 1^+ + 2) = 2$$

$$l(x_i^*) = min(l(x_i)) = l(e_{10}) = 1$$

 $e_{10}^{}$ получает постоянную пометку 1^{+} . $p=e_{10}^{}$

	1	2	3	4	5
e1	0+				
e2	8	8	2	2	2
e3	8	8	∞	8	8
e4	8	1+			
e5	8	8	8	8	2
e6	8	3	3	3	3
e7	8	8	∞	2	2
e8	8	1	1+		
e9	8	1	1	1+	
e10	8	1	1	1	1+
e11	8	8	8	3	3
e12	8	1	1	1	1

 $\Gamma p = \{e_1, e_3, e_5, e_6, e_7, e_8\}, \ \text{временные пометки имеют вершины}$ $\{e_3, e_5, e_6, e_7\}, \ \text{уточним их}:$

$$l(e_3) = min(\infty, 1^+ + 4) = 5$$

$$l(e_5) = min(2, 1^+ + 5) = 2$$

$$l(e_6) = min(3, 1^+ + 4) = 3$$

$$l(e_7) = min(2, 1^+ + 3) = 2$$

$$l(x_i^*) = min(l(x_i)) = l(e_{12}) = 1$$

 $e_{_{12}}$ получает постоянную пометку $1^{^{+}}$. $p=e_{_{12}}$

1	2	3	4	5	6

e1	0+					
e2	8	8	2	2	2	2
e3	8	8	8	∞	8	5
e4	8	1+				
e5	8	8	8	8	2	2
e6	8	3	3	3	3	3
e7	8	8	×	2	2	2
e8	8	1	1+			
e9	8	1	1	1+		
e10	8	1	1	1	1+	
e11	8	8	8	3	3	3
e12	∞	1	1	1	1	1+

7. Не все вершины имеют постоянные пометки. Г $p=\{e_1,e_3,e_4,e_5,e_{11}\}$, временные пометки имеют вершины $\{e_3,e_5,e_{11}\}$, уточним их:

$$l(e_3) = min(5, 1^+ + 2) = 3$$

$$l(e_5) = min(2, 1^+ + 3) = 2$$

$$l(e_{11}) = min(3, 1^+ + 1) = 2$$

$$l(x_i^*) = min(l(x_i)) = l(e_2) = 2$$

 $e_{_{2}}$ получает постоянную пометку $2^{^{+}}$. $p\,=\,e_{_{2}}$

	1	2	3	4	5	6	7
e1	0+						
e2	8	8	2	2	2	2	2 ⁺
e3	8	8	8	∞	8	5	3
e4	8	1+					
e5	8	8	8	8	2	2	2
e6	8	3	3	3	3	3	3
e7	8	8	8	2	2	2	2
e8	8	1	1+				
e9	8	1	1	1+			
e10	8	1	1	1	1+		
e11	8	8	8	3	3	3	2
e12	8	1	1	1	1	1+	

8. Не все вершины имеют постоянные пометки. Г $p=\{e_4,e_9\},$ временные пометки не имеет ни одна из этих вершин.

$$l(x_i^*) = min(l(x_i)) = l(e_5) = 2$$

 $e_{_{5}}$ получает постоянную пометку 2 $^{^{+}}$. $p=e_{_{5}}$

	1	2	3	4	5	6	7	8
e1	0+							
e2	8	8	2	2	2	2	2 ⁺	
e3	8	8	8	∞	8	5	3	3
e4	8	1+						
e5	8	8	8	∞	2	2	2	2 ⁺
e6	8	3	3	3	3	3	3	3

e7	8	8	8	2	2	2	2	2
e8	8	1	1+					
e9	8	1	1	1+				
e10	8	1	1	1	1+			
e11	8	8	8	3	3	3	2	2
e12	8	1	1	1	1	1+		

 $\Gamma p = \{e_3, e_6, e_7, e_9, e_{10}, e_{12}\}, \ \text{временные пометки имеют вершины} \ \{e_3, e_6, e_7\}$, уточним их:

$$l(e_3) = min(3, 2^+ + 5) = 3$$

 $l(e_6) = min(3, 2^+ + 5) = 3$
 $l(e_7) = min(2, 2^+ + 2) = 2$

$$l(x_i^*) = min(l(x_i)) = l(e_7) = 2$$

 e_{7} получает постоянную пометку 2^{+} . $p=e_{7}^{-}$

	1	2	3	4	5	6	7	8	9
e1	0+								
e2	8	8	2	2	2	2	2+		
e3	8	8	8	8	8	5	3	3	3
e4	8	1+							
e5	8	8	8	8	2	2	2	2 ⁺	
e6	8	3	3	3	3	3	3	3	3
e7	8	8	8	2	2	2	2	2	2+
e8	8	1	1+						

e9	8	1	1	1+					
e10	8	1	1	1	1+				
e11	8	8	8	3	3	3	2	2	2
e12	8	1	1	1	1	1+			

 $\Gamma p \ = \ \{e_{_{3}}, e_{_{5}}, e_{_{8}}, e_{_{9}}, e_{_{10}}, e_{_{11}}\},$ временные пометки имеют вершины $\{e_{_{3}}, e_{_{11}}\},$ уточним их:

$$l(e_3) = min(3, 2^+ + 1) = 3$$

 $l(e_{11}) = min(2, 2^+ + 2) = 2$
 $l(x_i^*) = min(l(x_i)) = l(e_{11}) = 2$

 $e_{11}^{}$ получает постоянную пометку 2 $^{+}$. $p = e_{11}^{}$

	1	2	3	4	5	6	7	8	9	10
e1	0+									
e2	8	8	2	2	2	2	2+			
e3	8	8	8	∞	∞	5	3	3	3	3
e4	8	1+								
e5	8	8	8	8	2	2	2	2 ⁺		
e6	8	3	3	3	3	3	3	3	3	3
e7	8	8	∞	2	2	2	2	2	2+	
e8	8	1	1+							
e9	8	1	1	1						
e10	8	1	1	1	1+					
e11	8	8	8	3	3	3	2	2	2	2 ⁺

e12 ∞ 1 1 1 1 1 1 1

11. Не все вершины имеют постоянные пометки. Г $p=\{e_3,e_6,e_7,e_8,e_{12}\}$, временные пометки имеют вершины $\{e_3,e_6\}$, уточним их:

$$l(e_3) = min(3, 2^+ + 1) = 3$$

 $l(e_6) = min(3, 2^+ + 3) = 2$
 $l(x_i^*) = min(l(x_i)) = l(e_3) = 3$

 $e_{_{3}}$ получает постоянную пометку $3^{^{+}}$. $p=e_{_{3}}$

	1	2	3	4	5	6	7	8	9	10	11
<u> </u>	1		3	4	3	U	/	0	9	10	11
e1	0+										
e2	8	8	2	2	2	2	2 ⁺				
e3	8	8	8	∞	∞	5	3	3	3	3	3+
e4	8	1+									
e5	8	8	8	∞	2	2	2	2+			
e6	8	3	3	3	3	3	3	3	3	3	3
e7	8	8	8	2	2	2	2	2	2 ⁺		
e8	8	1	1+								
e9	8	1	1	1+							
e10	8	1	1	1	1+						
e11	8	8	8	3	3	3	2	2	2	2 ⁺	
e12	8	1	1	1	1	1+					

 $\Gamma p = \{e_{_{\! 5}}, e_{_{\! 6}}, e_{_{\! 7}}, e_{_{\! 10}}, e_{_{\! 11}}, e_{_{\! 12}}\}, \text{ временные пометки имеют вершины } \{e_{_{\! 6}}\},$ уточним их:

$$l(e_6) = min(3, 3^+ + 3) = 3$$

 $l(x_i^*) = min(l(x_i)) = l(e_6) = 3$

 $e_{_{6}}$ получает постоянную пометку $3^{^{+}}$. $p=e_{_{6}}$

	1	2	3	4	5	6	7	8	9	10	11	12
e1	0+											
e2	8	8	2	2	2	2	2+					
e3	8	8	8	∞	8	5	3	3	3	3	3+	
e4	8	1+										
e5	8	8	8	∞	2	2	2	2+				
e6	8	3	3	3	3	3	3	3	3	3	3	3 ⁺
e7	8	8	8	2	2	2	2	2	2+			
e8	8	1	1+									
e9	8	1	1	1+								
e10	8	1	1	1	1+							
e11	8	8	8	3	3	3	2	2	2	2 ⁺		
e12	8	1	1	1	1	1+						

13. Все пометки постоянные.

Длина кратчайшего пути:

от
$$e_1$$
 до e_2 =2

от
$$e_{1}$$
 до e_{3} =3

от
$$e_1$$
 до $e_4^{=1}$

- от e_1 до e_5 =2
- от e_1 до $e_6^{=3}$
- от e_1 до e_7 =2
- от e_1 до e_8 =1
- от e_1 до e_9 =1
- от \boldsymbol{e}_1 до $\boldsymbol{e}_{10}^{=1}$
- от e_{1} до e_{11} =2
- от e_1 до $e_{12}^{=1}$