MS 31: Rational Krylov Methods and Applications

Part I, 1:45 PM - 3:45 PM	Part II, 4:15 PM - 6:15 PM
Steven Elsworth	Volker Grimm
The Block Rational Arnoldi Algo-	Rational Krylov Methods in Dis-
rithm	crete Inverse Problems
Jörn Zimmerling	Melina Freitag
Rational Krylov Subspaces for Wa-	Inexact Rational Krylov Methods
vefield Applications	Applied to Lyapunov Equations
Giampaolo Mele	Davide Palitta
Krylov Methods for Hermitian	Numerical Methods for Lyapunov
Nonlinear Eigenvalue Problems	Matrix Equations with Banded
	Symmetric Data
Stefan Güttel	Patrick Kürschner
Compressing Variable-Coefficient	A Comparison of Rational Krylov
Helmholtz Problems via RKFIT	and Related Low-Rank Methods
	for Large Riccati Equations

The block rational Arnoldi algorithm

Steven Elsworth Stefan Güttel

School of Mathematics, The University of Manchester

Sunday 6th May, 2018

Overview

- Motivation
 - History of block Krylov methods
 - Applications
- Define a block rational Krylov space
- The block rational Arnoldi algorithm
 - Continuation vectors
 - Model order reduction example
- The implicit Q-theorem
- Rational matrix-valued polynomials
 - RKFUNBs
 - Vector Autoregression

Motivation: History and applications

- Block Lanczos algorithm: Cullum and Donath (1974), Golub and Underwood (1977), Ruhe (1979)
- Block Arnoldi algorithm: Saad (1992)
- Block Krylov subspaces: Gutknecht and Schmelzer (2005, 2009),
 Frommer, Lund and Szyld (2017)
- Approximate block rational Krylov subspaces: Mach, Pranic and Vandebril (2014)
- Block GMRES: Simoncini and Gallopoulos (1996), Freitag, Kürschner and Pestana (2018)
- Continuous Ricatti equations: Heyouni and Jbilou (2009)
- Model Order Reduction: Abidi, Hached and Jbilou (2014)

Block Krylov spaces

Let $A \in \mathbb{C}^{N \times N}$, $\mathbf{b} \in \mathbb{C}^{N \times s}$ and suppose the block Krylov matrix $[\mathbf{b}, A\mathbf{b}, \dots, A^m\mathbf{b}]$ if of full column rank.

ullet The classic block Krylov space of order m+1 is defined as

$$\mathcal{K}_{m+1}^{\square}(A,\mathbf{b}) = \left\{ \sum_{k=0}^{m} A^k \mathbf{b} C_k : C_k \in \mathbb{C}^{s \times s} \right\}.$$

• The dimension of this space is $(m+1)s^2$.

Block Krylov spaces

Let $A \in \mathbb{C}^{N \times N}$, $\mathbf{b} \in \mathbb{C}^{N \times s}$ and suppose the block Krylov matrix $[\mathbf{b}, A\mathbf{b}, \dots, A^m\mathbf{b}]$ if of full column rank.

ullet The classic block Krylov space of order m+1 is defined as

$$\mathcal{K}_{m+1}^{\square}(A,\mathbf{b}) = \left\{ \sum_{k=0}^{m} A^k \mathbf{b} C_k : C_k \in \mathbb{C}^{s \times s} \right\}.$$

• The dimension of this space is $(m+1)s^2$.

Definition

Given a nonzero polynomial $q_m \in \mathcal{P}_m$ with roots $\xi_1, \xi_2, \dots, \xi_m \in \overline{\mathbb{C}} \setminus \Lambda(A)$, we define the associated block rational Krylov space of order m+1 as

$$Q_{m+1}^{\square}(A, \mathbf{b}, q_m) := q_m(A)^{-1} \mathcal{K}_{m+1}^{\square}(A, \mathbf{b}).$$

Defining block inner-product and block orthogonality †

Definition

A mapping $\langle\!\langle \cdot, \cdot \rangle\!\rangle : \mathbb{C}^{N \times s} \times \mathbb{C}^{N \times s} \to \mathbb{C}^{s \times s}$ is a block inner product onto $\mathbb{C}^{s \times s}$ if $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{C}^{N \times s}$ and $C \in \mathbb{C}^{s \times s}$,

- **2** symmetry: $\langle\!\langle \mathbf{x}, \mathbf{y} \rangle\!\rangle = \langle\!\langle \mathbf{y}, \mathbf{x} \rangle\!\rangle^*$
- **3** definiteness: $\langle\langle \mathbf{x}, \mathbf{x} \rangle\rangle$ is positive definite if \mathbf{x} has full rank, and $\langle\langle \mathbf{x}, \mathbf{x} \rangle\rangle = O_{s \times s}$ if and only if $\mathbf{x} = O_{N \times s}$.

[†]A. Frommer, K. Lund, and D. Szyld, 2017.

Defining block inner-product and block orthogonality †

Definition

A mapping $\langle\!\langle \cdot, \cdot \rangle\!\rangle : \mathbb{C}^{N \times s} \times \mathbb{C}^{N \times s} \to \mathbb{C}^{s \times s}$ is a block inner product onto $\mathbb{C}^{s \times s}$ if $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{C}^{N \times s}$ and $C \in \mathbb{C}^{s \times s}$,

- **2** symmetry: $\langle\!\langle \mathbf{x}, \mathbf{y} \rangle\!\rangle = \langle\!\langle \mathbf{y}, \mathbf{x} \rangle\!\rangle^*$
- **3** definiteness: $\langle\langle \mathbf{x}, \mathbf{x} \rangle\rangle$ is positive definite if \mathbf{x} has full rank, and $\langle\langle \mathbf{x}, \mathbf{x} \rangle\rangle = O_{s \times s}$ if and only if $\mathbf{x} = O_{N \times s}$.
 - $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\} \subset \mathbb{C}^{N \times s}$ is block orthonormal if $\langle \langle \mathbf{x}_i, \mathbf{x}_j \rangle \rangle = \delta_{i,j} I_{s \times s}$, where $\delta_{i,j}$ is the Kronecker delta.
 - A mapping $N(\cdot): \mathbb{C}^{N \times s}(\text{full rank}) \to \mathbb{C}^{s \times s}$ is scaling quotient for $\forall \mathbf{x} \in \mathbb{C}^{N \times s}(\text{full rank}) \text{ if } \exists \mathbf{y} \in \mathbb{C}^{N \times s} \text{ such that}$

$$\mathbf{x} = \mathbf{y} \mathcal{N}(\mathbf{x})$$
 and $\langle\!\langle \mathbf{y}, \mathbf{y}
angle\!\rangle = \mathit{I}_{s imes s}.$

[†]A. Frommer, K. Lund, and D. Szyld, 2017.

Constructing a block rational Krylov basis

Input: $A \in \mathbb{C}^{N \times N}$, $\mathbf{b} \in \mathbb{C}^{N \times s}$ of full rank, finite poles $\{\xi_j\}_{j=1}^m \subset \mathbb{C} \setminus \Lambda(A)$.

- 1. $\mathbf{v}_1 := \mathbf{b} N(\mathbf{b})^{-1}$
- 2. **for** j = 1, ..., m **do**
- 3. Choose a continuation block vector $\mathbf{t}_i \in \mathbb{C}^{js \times s}$
- 4. $\mathbf{w} := (A \xi_j I)^{-1} \mathbf{V}_j \mathbf{t}_j$
- 5. **for** i = 1, ..., j **do**
- 6. $C_{i,j} := \langle \langle \mathbf{v}_i, \mathbf{w} \rangle \rangle$
- 7. Compute $\mathbf{w} := \mathbf{w} \mathbf{v}_i C_{i,j}$
- 8. end for
- 9. $C_{j+1,j} := N(\mathbf{w})$
- 10. $\mathbf{v}_{j+1} := \mathbf{w} \, C_{j+1,j}^{-1}$
- 11. Set $\underline{\mathbf{k}}_j := \underline{\mathbf{c}}_j \underline{\mathbf{t}}_j$ and $\underline{\mathbf{h}}_j := \xi_j \underline{\mathbf{c}}_j \underline{\mathbf{t}}_j$, where $\underline{\mathbf{t}}_j = [\underline{\mathbf{t}}_j^T \quad O]^T$.
- 12. end for

Block rational Arnoldi decomposition

Consider a block rational Arnoldi decomposition (BRAD)

$$A\mathbf{V}_{m+1}\underline{\mathbf{K}_m}=\mathbf{V}_{m+1}\underline{\mathbf{H}_m}$$

for the space $\mathcal{Q}_{m+1}^{\square}(A,\mathbf{b},q_m)=q_m(A)^{-1}\mathcal{K}_{m+1}^{\square}(A,\mathbf{b})$. The block upper-Hessenberg matrices $\underline{\mathbf{H}}_m$ and $\underline{\mathbf{K}}_m$ form an unreduced pencil $(\underline{\mathbf{H}}_m,\underline{\mathbf{K}}_m)$ with $\underline{\mathbf{H}}_{j+1,j}=\xi_j\overline{\mathbf{K}}_{j+1,j}$.

$$A \qquad |\mathbf{v}_1| \mathbf{v}_2 |\mathbf{v}_3| \frac{|K_{11}|K_{12}|}{|K_{21}|K_{22}|} = |\mathbf{v}_1| \mathbf{v}_2 |\mathbf{v}_3| \frac{|H_{11}|H_{12}|}{|H_{21}|H_{22}|}$$

Unreduced means: At least one of $H_{j+1,j}$ and $K_{j+1,j}$ is nonsingular.

Different choices of continuation block vectors \mathbf{t}_j

- 'first': $\mathbf{t}_j = \begin{bmatrix} I_{s \times s} & O_{s \times s} & \cdots & O_{s \times s} \end{bmatrix}^T$
- 'last': $\mathbf{t}_j = \begin{bmatrix} O_{s \times s} & O_{s \times s} & \cdots & I_{s \times s} \end{bmatrix}^T$
- ullet 'ruhe': Given BRAD, subtract $\xi_j \mathbf{V}_{j+1} \mathbf{K}_j$ from both sides,

$$(A - \xi_j I) \mathbf{V}_{j+1} \underline{\mathbf{K}_j} = \mathbf{V}_{j+1} (\underline{\mathbf{H}_j} - \xi_j \underline{\mathbf{K}_j}).$$

Compute $(\underline{\mathbf{H}_{j}}-\xi_{j}\underline{\mathbf{K}_{j}})=Q\underline{R}$, then

$$\mathbf{V}_{j+1}Q \quad Q^*\underline{\mathbf{K}_j}R^{-1} = (A - \xi_j I)^{-1}\mathbf{V}_{j+1}Q\begin{bmatrix} I_{js \times js} \\ O_{s \times js} \end{bmatrix}.$$

Define

$$\mathbf{t}_1 = I_{s \times s}$$
 and $\mathbf{t}_i = Q(:, \text{ end-s+1:end}).$

Different choices of continuation block vectors \mathbf{t}_j

- 'first': $\mathbf{t}_j = \begin{bmatrix} I_{s \times s} & O_{s \times s} & \cdots & O_{s \times s} \end{bmatrix}^T$
- 'last': $\mathbf{t}_j = \begin{bmatrix} O_{s \times s} & O_{s \times s} & \cdots & I_{s \times s} \end{bmatrix}^T$
- ullet 'ruhe': Given BRAD, subtract $\xi_j \mathbf{V}_{j+1} \mathbf{K}_j$ from both sides,

$$(A - \xi_j I) \mathbf{V}_{j+1} \underline{\mathbf{K}_j} = \mathbf{V}_{j+1} (\underline{\mathbf{H}_j} - \xi_j \underline{\mathbf{K}_j}).$$

Compute $(\underline{\mathbf{H}_{j}}-\xi_{j}\underline{\mathbf{K}_{j}})=Q\underline{R}$, then

$$\mathbf{V}_{j+1}Q \quad Q^*\underline{\mathbf{K}_j}R^{-1} = (A - \xi_j I)^{-1}\mathbf{V}_{j+1}Q \begin{bmatrix} I_{js \times js} \\ O_{s \times js} \end{bmatrix}.$$

Define

$$\mathbf{t}_1 = I_{s \times s}$$
 and $\mathbf{t}_i = Q(:, \text{ end-s+1:end}).$

• Can show: with repeated poles, 'ruhe' = 'last'

Choice of continuation vector matters!

Example Problem: Approximate transfer function

$$H(s) = c^*(sE - A)^{-1}\mathbf{b}$$

over frequency range i[0,40], for nonsymmetric matrices $\{A,E\} \subset \mathbb{R}^{N\times N}$ and block vector $\mathbf{b} \in \mathbb{R}^{N\times 2}$, where $N=11730^{\dagger}$.

Method: Compute orthonormal block rational Krylov basis \mathbf{V}_m . Project $A_m = \mathbf{V}_m^* A \mathbf{V}_m$ and $E_m = \mathbf{V}_m^* E \mathbf{V}_m$, and define approximation

$$H_m(s) = (c^* \mathbf{V}_m)(sE_m - A_m)^{-1}(\mathbf{V}_m^* \mathbf{b}).$$

[†]G. Lassaux and K. Willcox, *Model reduction for active control design using multiple-point Arnoldi methods*, AIAA Paper, 616 (2003), pp. 1–11.

Choice of continuation vector matters!

Cyclically repeat 4 equispaced poles on i[0, 40], until dimension m = 24. Use CGS without reorthogonalisation.

- cond: $\kappa(\mathbf{X})$, condition number of block basis before orthogonalisation.
- orth: $\|\mathbf{V}^T\mathbf{V} I\|_2$, orthogonality of computed block basis.

The block rational Arnoldi algorithm

Essentially equal BRADs

Definition

Two orthonormal BRADs, $A\mathbf{V}_{m+1}\underline{\mathbf{K}_m} = \mathbf{V}_{m+1}\underline{\mathbf{H}_m}$ and $A\widehat{\mathbf{V}}_{m+1}\underline{\widehat{\mathbf{K}}_m} = \widehat{\mathbf{V}}_{m+1}\underline{\widehat{\mathbf{H}}_m}$, are **essentially equal** if there exists a unitary block diagonal matrix $\mathbf{D}_{m+1} \in \mathbb{C}^{(m+1)s \times (m+1)s}$, and a block upper-triangular nonsingular matrix $\mathbf{T}_m \in \mathbb{C}^{ms \times ms}$, such that $\widehat{\mathbf{V}}_{m+1} = \mathbf{V}_{m+1}\mathbf{D}_{m+1}$, $\widehat{\mathbf{H}}_m = \mathbf{D}_{m+1}^*\mathbf{H}_m\mathbf{T}_m$, and $\widehat{\mathbf{K}}_m = \mathbf{D}_{m+1}^*\mathbf{K}_m\mathbf{T}_m$.

Implicit Q-theorem allows rerunning

Theorem ([Mach et al., 2014][E. & Güttel, 2018])

Consider an orthonormal BRAD, $A\mathbf{V}_{m+1}\underline{\mathbf{K}_m} = \mathbf{V}_{m+1}\underline{\mathbf{H}_m}$ with poles $\{\xi_j\}_{j=1}^m \subset \overline{\mathbb{C}} \setminus \Lambda(A)$.

The block-orthonormal matrix \mathbf{V}_{m+1} and the pencil $(\underline{\mathbf{H}}_m, \underline{\mathbf{K}}_m)$ are essentially uniquely determined by \mathbf{v}_1 and the poles ξ_1, \dots, ξ_m .

Consider a BRAD $AV_{m+1}K_m = V_{m+1}H_m$.

Given $\widetilde{A} \in \mathbb{C}^{\widetilde{N} \times \widetilde{N}}$ and $\widetilde{\mathbf{v}}_1 \in \mathbb{C}^{\widetilde{N} \times s}$, we can construct

$$\widetilde{\mathbf{V}}_{m+1} = [\widetilde{\mathbf{v}}_1, \cdots, \widetilde{\mathbf{v}}_{m+1}]$$

such that

$$\widetilde{A}\widetilde{\mathbf{V}}_{m+1}\mathbf{K}_m=\widetilde{\mathbf{V}}_{m+1}\mathbf{H}_m.$$

Rational matrix-valued polynomials

We can show that

$$\mathbf{v}_{j+1} = R_j(A) \circ \mathbf{v}_1 \text{ for } j = 1, 2, \dots, m,$$

where $R_j(z) = q_m(z)^{-1}(C_{j,0} + zC_{j,1} + \cdots + z^mC_{j,m})$, and $C_{j,i} \in \mathbb{C}^{s \times s}$ are encoded in $(\underline{\mathbf{H}}_j, \underline{\mathbf{K}}_j)$.

• RKFUNB is a representation of a rational matrix-valued function of the form ($\underline{\mathbf{H}}_m$, $\underline{\mathbf{K}}_m$, coeffs) where coeffs is an array of square $s \times s$ matrices. The rational function is defined as

$$R(z) = R_0(z) \operatorname{coeffs}(1) + \cdots + R_m(z) \operatorname{coeffs}(m+1).$$

[†]If $P(z) = C_0 + zC_1 + \cdots + z^m C_m$, where $\{C_0, \dots, C_m\} \subset \mathbb{C}^{s \times s}$. Let $A \in \mathbb{C}^{N \times N}$, $\mathbf{b} \in \mathbb{C}^{N \times s}$, then $P(A) \circ \mathbf{b} = C_0 + A\mathbf{b}C_1 + \cdots + A^m\mathbf{b}C_m$.

What is Vector Autoregression?

A stationary mean centred multivariate time series \mathbf{y} can be modelled by VAR(p) process if

$$\mathbf{y}_t = \mathbf{y}_{t-1}C_1 + \cdots + \mathbf{y}_{t-p}C_p + \varepsilon_t,$$

where $C_1, \ldots, C_p \in \mathbb{C}^{s \times s}$ and ε is multivariate white noise.

What is Vector Autoregression?

A stationary mean centred multivariate time series \mathbf{y} can be modelled by VAR(p) process if

$$\mathbf{y}_t = \mathbf{y}_{t-1}C_1 + \cdots + \mathbf{y}_{t-p}C_p + \varepsilon_t,$$

where $C_1,\ldots,C_p\in\mathbb{C}^{s imes s}$ and arepsilon is multivariate white noise.

Vector Autoregression as an RKFUNB

Define

$$A = \begin{pmatrix} \mathbf{0} & I_{N-1 \times N-1} \\ 0 & \mathbf{0}^T \end{pmatrix}, \ \mathbf{b} = \mathbf{y}_t, \ \mathtt{xi} = [\underbrace{\infty, \dots, \infty}_{p-1}] \ \mathsf{and} \ F = A^p.$$

Using block bilinear form

$$\langle\!\langle \mathbf{x}, \mathbf{y} \rangle\!\rangle = \mathbf{x}^* \begin{pmatrix} I_{N-p \times N-p} & O_{N-p \times p} \\ O_{p \times N-p} & O_{p \times p} \end{pmatrix} \mathbf{y},$$

we minimise

$$\|A^{p}\mathbf{b} - (\mathbf{v}_{1}C_{1} + \cdots + \mathbf{v}_{p}C_{p})\|^{2} = \|F\mathbf{b} - r(A) \circ \mathbf{b}\|^{2}.$$

Conclusions and Future Work

- 'ruhe' continuation vector is a good default continuation strategy.
- Implicit Q-Theorem allows rerunning a decomposition.
- RKFUNBs provide a representation of rational matrix-valued polynomials.
- S. Elsworth, S. Güttel, The block rational Arnoldi algorithm, In preparation.
- MATLAB Rational Krylov Toolbox: http://rktoolbox.org.
- Block generalisation of RKFIT.
- ARMA and VARMA models

