Unit 1 Notes

Module 2

General Notes

- Quantity: A characteristic or attribute of some object you can imagine measuring.
 - When defining or identifying a quantity, we must be specific about what object, and what specific characteristic about that object, we're referring to.
- Variable: A character or symbol used to represent a quantity.
- Evaluate: To find the output of a function corresponding to a given input.
- Solving: To find the input of a function corresponding to a given output
- Domain: the set of all reasonable inputs values of a function.
- Range: The set of all corresponding output values of a function
- Interval Notation: [0, 100]
- Inequality: $0 \le x \le 100$

Functions

Function Language

We say "output as a function of input" or "output in terms of input" - y as a function of x **or** y in terms of x - E.g. Length of the steel band with respect to the radius of the oil drums

If an input points to more than one output, then it is **not** a function.

Example 1

Suppose the following graph of the function *f* represents John's weight (in pounds) as a function of time *t*, measured in days since January 1, 2008.

- a. Identify the input and output quantities for the function f.
 input: t number of days since Jan 1, 2008 output: f(t) John's weight in pounds
- b. Evaluate f (60). What does this value represent in the context of the problem?
 f(60) = 180
 John's weighs 180 pounds 60 days after Jan 1, 2008.
- c. Solve f(t) = 160 for t using the graph. Describe what each solution represents. f(t) = 160 when t = 15, 119, & 175 Fifteen days after Jan 1, 2008, John weighed 160 pounds. John also weighed 160 pounds 119 days after Jan 1, 2008 and 175 days after Jan 1, 2008

Example 2

Given
$$m(x) = \frac{2x-3}{x+4}$$
,

a. Evaluate m(4)

$$m(4) = \frac{2(4) - 3}{4 + 4} = \frac{5}{8}$$

b. Evaluate m(z)

$$m(z) = \frac{2z - 3}{z + 4}$$

c. Evaluate m(w + 2)

$$m(w+2) = \frac{2(w+2) - 3}{(w+2) + 4} = \frac{2w + 4 - 3}{w+6} = \frac{2w+1}{w+6}$$

d. Solve m(x) = 3

$$3 = \frac{2x - 3}{x + 4}$$

$$3(x+4) = 2x - 3$$

$$3x + 12 = 2x - 3$$

$$x = -15$$

Example 3 - Oil Drum Problem

For the Oil Drum Problem

It turns out that the function that determines the length of the steel band needed to tie three oil drums of radius r is

$$L = m(r) = (6 + 2\pi)r$$
• Evaluate $m(3.5)$
• Solve $m(r) = 29$

$$m(3.5) = (6 + 2\pi)(3.5)$$

$$m(3.5) \approx 42.99 \text{ feet}$$
Solve $m(r) = 29$

$$\frac{29}{6 + 2\pi} = r$$

$$2.36 \approx r$$

- L is the output
- r is the input

Inverse Functions

An inverse function is a function that undoes the operations of an original function.

- This function inverses the oil drum problem's function.
- The m is the inverse, not a negative exponent

- This image shows that L is a function of r (the name of the function is m) and that r is a function of L (specifically, the function is the inverse of function m and is written m-1).
- y = f(x) means that x = f-1(y) if the inverse of f is a function.
- The inverse of a function is not always a function.
 - A function has one input and one output

The formula F = p(c) = 1.8c + 32 will input the temperature in degrees Celsius and output the temperature in degrees Fahrenheit.

a. Find the formula for the inverse function.

$$F = 1.8c + 32$$

$$F - 32 = 1.8c$$

$$\frac{F - 32}{1.8} = c$$
Since $F = p(c)$ means $c = p^{-1}(F)$,
$$c = p^{-1}(F) = \frac{F - 32}{1.8}$$

b. Evaluate $p^{-1}(50)$ and explain its meaning in the problem context.

$$p^{-1}(50) = \frac{50 - 32}{1.8} = 10$$

Meaning: When the temperature is 50° Fahrenheit, it is 10° Celsius.

- F is the output
- c is the input
- Always write the notation indicating that the input and outputs have switched.

Finding The Inverse

1. Write the formula without the notation:

1.
$$c = j(b) = 5b + 12$$

2.
$$c = 5b + 12$$

2. Isolate the input until it's by itself

Inverse of a Graph Example

10. The graph of g is given to the right.

The graph of g is given a.

Find each of the following:

i. $g(0) = \bigcup_{i=1}^{n} g(-1) = \bigcup_{i=1}^{n} g(-1)$

iii. a when g(a) = -2 iv. Solve g(a) = 0.

a=-2.5

b. List the domain and range of the function.

D: -36042 [3,2] R: -5 = g(a) = 4 [-5,4] c. Is the inverse a function? Explain

NO. For some inputs, there are 2 outputs

Writing Out Functions

<

11. Given a function p(s) = b where s = the number of square mile of a forest and b = the number of rabbits in the forest, explain the meaning of the following.

When thusize of aforest is 100 6g miles, there are 85 rabbits

Unit1 Module 2 Homework Inputs

The # of rabbits in a forest that is 54 sq miles

The # of square miles a forest is with

bits q3 rabbits in it. # nabb c. $p^{-1}(93)$

sq mi

Domain and Range

- **Domain:** the set of all reasonable inputs values of a function.
- Range: The set of all corresponding output values of a function

Example 1

The function that determines the length of the steel band needed to tie three oil drums of radius *r* is

$$L = m(r) = (6 + 2\pi)r$$

What would be a practical domain and range for this function? i.e., what values make sense for the radius and length of the steel band?

I would guess that the radius of an oil drum is not less than one half of a foot and probably not more than 5 feet. So the *practical domain* would be $0.5 \le r \le 5$ also written as [0.5, 5] in interval notation.

Since a radius of 0.5 feet would require a steel band of 6.14 feet, and a since a radius of 5 feet would require a steel band of 61.42 feet, the *practical range* would be

 $6.14 \le L \le 61.42$ also written as [6.14, 61.42] in interval notation.

Example 2

The letter grade earned on a test with respect to the percentage grade earned.

Practical Domain: [0, 100]

Practical Range: $\{A, B, C, D, F\}$

Example 3

Suppose the following graph of the function *f* represents John's weight (in pounds) as a function of time *t*, measured in days since January 1, 2008.

Determine the practical domain and range.

Practical Domain: [0, 220]

Practical Range: [140, 190]

Intercepts

Vertical Intercepts

The **Vertical Intercept** of a function is the coordinate point where the graph of the function crosses the vertical axis.

- This point will always be in the form (0, b)
- The vertical intercept can be found graphically by determining the point where teh graph crosses the vertical axis.
- The vertical intercept can be found in a table or algebraically by first determining the value of \mathbf{b} .
 - To do this, find the output of the function for an input of 0 (or f(0) = b). You then write the intercept in the form (0, b).

Horizontal Intercepts

The **Horizontal Intercept** of a function is the coordinate point where the graph of the function crosses the horizontal axis.

- The point will always be in the form (a, 0).
- The horizontal intercept can be found graphically by determining the point where the graph crosses the horizontal axis.
- The horizontal intercept can be found in a table or algebraically by first determining the value of **a**.

- To do this, find the input of the function for an output of 0 (or solve for a when f(a) = 0). You then write the intercept in the form (a, 0).

Constant Rate of Change

change in output value change in input value

It is said that two quantities are related by a **constant rate of change (CROC)** if the *ratio of the changes in quantities* is always the same.

• Find the changes between each value in a table for all relevant columns, and use those in this formula.

Example 1

Change in time elapsed Δt	Time Elapsed in min	Amount of water in a bath tub in gallons, a	Change in amount of water in tub Δa
	1	11.75	
1.5	2.5	14.375	2.625
2.5	5	18.75	4.375
3	8	24	5.25

• The triangle just means change

To figure out if the ratio is the same, the changes should all equal the same number when put into the formula:

$$\frac{\Delta a}{\Delta t} = \frac{2.625}{1.5} = \frac{4.375}{2.5} = \frac{5.25}{3} = 1.75$$

 $\bullet\,$ Because all the numbers equal the same, it is ${\bf constant}.$

This would be written as: For every additional minute that the water is left running, the amount of water in the bathtub increases by 1.75 gallons.