Тема III: Комплексные числа

2. Построение поля комплексных чисел

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Постановка задачи

Мы поставили такую задачу: найти поле, которое:

- 1) содержит поле $\mathbb R$ действительных чисел;
- 2) содержит квадратные корни из отрицательных чисел;
- 3) не содержит ничего лишнего.

Мы сейчас предъявим некоторую конструкцию, а затем проверим, что она дает поле, удовлетворяющее условием 1)-3).

Напомним, что поле – это множество, элементы которого можно складывать и умножать, так что выполняются все «обычные» свойства обычного умножения и обычного сложения действительных чисел.

Итак, нам нужно определить множество и две операции на нем.

Конструкция

Определение

Множество $\mathbb C$ комплексных чисел – это декартов квадрат $\mathbb R \times \mathbb R$ множества $\mathbb R$ действительных чисел. Таким образом, *комплексное число* – это упорядоченная пара (a,b) действительных чисел a и b.

Число a называется действительной частью числа z=(a,b) (обозначение ${\rm Re}\,z$), а число b — мнимой частью числа z=(a,b) (обозначение ${\rm Im}\,z$).

Суммой комплексных чисел $z_1=(a,b)$ и $z_2=(c,d)$ называется число

$$z_1 + z_2 := (a + c, b + d),$$

а их произведением называется число

$$z_1 z_2 := (ac - bd, ad + bc).$$

Замечание

Мнимая часть комплексного числа – это действительное число!

Геометрическая интерпретация комплексных чисел

Комплексные числа – это упорядоченные пары действительных чисел. Но ведь упорядоченные пары действительных чисел – это координаты векторов плоскости в некотором фиксированном базисе.

Поэтому комплексные числа можно (и полезно) изображать с помощью векторов (или точек) плоскости.

Геометрическая интерпретация комплексного числа

При этом используют прямоугольную декартову систему координат; ось абсцисс называют *действительной осью*, а ось ординат – *мнимой осью*.

Аксиомы поля

Мы должны проверить, что $\mathbb C$ – поле. Напомним аксиомы поля.

Множество F с операциями сложения + и умножения \cdot называется *полем*, если выполнены следующие 10 аксиом.

- **①** Коммутативность сложения: $\forall a, b \in F \quad a+b=b+a$.
- ② Ассоциативность сложения: $\forall a,b,c \in F \quad (a+b)+c=a+(b+c).$
- **③** Существование нуля: $\exists 0 \in F \ \forall a \in F \ a+0=a$.
- ① Существование противоположного элемента: $\forall a \in F \ \exists b \in F \quad a+b=0.$
- **5** Коммутативность умножения: $\forall a, b \in F \quad ab = ba$.
- lacktriangle Ассоциативность умножения: $\forall a,b,c \in F \quad (ab)c = a(bc)$.
- lacktriangle Существование единицы: $\exists 1 \in F \ \forall a \in F \ a \cdot 1 = a$.
- ① Существование обратного элемента для ненулевых элементов: $\forall a \in F \setminus \{0\} \ \exists b \in F \quad ab = 1.$
- ① Дистрибутивность умножения относительно сложения: $\forall a,b,c \in F \quad (a+b)c = ac + bc.$
- **1** Неодноэлементность: $1 \neq 0$.

Проверка аксиом поля

Первые четыре аксиомы (аксиомы абелевой группы) следуют из свойств сложения векторов и свойств координат. Конечно, эти аксиомы легко проверить и непосредственно. Роль нуля в $\mathbb C$ играет пара (0,0).

Непосредственными вычислениями проверяются и аксиомы 5, 6 и 9 (коммутативность и ассоциативность умножения и дистрибутивность умножения относительно сложения). Например, если $z_1=(a,b)$ и $z_2=(c,d)$, то $z_1z_2=(ac-bd,ad+bc)$, а $z_2z_1=(ca-db,da+cb)$, откуда $z_1z_2=z_2z_1$.

Роль единицы в $\mathbb C$ играет пара (1,0). Действительно, для любой пары $(a,b)\in\mathbb C$ имеем $(a,b)\cdot(1,0)=(a\cdot 1-b\cdot 0,a\cdot 0+b\cdot 1)=(a,b).$ Поскольку $(1,0)\neq(0,0)$, выполнена и аксиома $\emph{10}.$

Остается проверить аксиому 8. Если $z=(a,b) \neq 0$, то $a^2+b^2 \neq 0$.

Положим
$$t:=\left(rac{a}{a^2+b^2},rac{-b}{a^2+b^2}
ight)$$
. Тогда

$$zt = (a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right) =$$

$$= \left(\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}, \frac{-ab}{a^2 + b^2} + \frac{ab}{a^2 + b^2} \right) = (1,0).$$

Что сделано и что осталось сделать

Мы поставили задачу: найти поле, которое:

- сейчас мы находимся здесь -
- 1) содержит поле \mathbb{R} действительных чисел;
- 2) содержит квадратные корни из отрицательных чисел;
- 3) не содержит ничего лишнего.

${\mathbb C}$ содержит ${\mathbb R}$ и квадратные корни из отрицательных чисел

Мы будем отождествлять комплексное число (a,0) с действительным числом a и считать множество всех действительных чисел $\mathbb R$ подмножеством множества всех комплексных чисел: $\mathbb R=\{(a,0)\mid a\in\mathbb R\}.$

Определение

Комплексное число i := (0,1) называется мнимой единицей.

При геометрической интерпретации 1=(1,0) – орт действительной оси, а i=(0,1) – орт мнимой оси.

По определению умножения комплексных чисел

$$i^2 = (0,1)(0,1) = (-1,0).$$

Как мы уже договорились, мы не различаем комплексное число (-1,0) и действительное число -1. Таким образом, $i^2=-1.$ Мы видим, что в $\mathbb C$ существует квадратный корень из -1.

Более того, если a – произвольное отрицательное действительное число, то $(0,\sqrt{-a})(0,\sqrt{-a})=(a,0)=a$. Итак, в $\mathbb C$ существует квадратный корень из любого отрицательного числа.

Что сделано и что осталось сделать

- Мы поставили задачу: найти поле, которое:
- 1) содержит поле $\mathbb R$ действительных чисел;
- 2) содержит квадратные корни из отрицательных чисел;
- сейчас мы находимся здесь -
- 3) не содержит ничего лишнего (т.е. среди всех полей со свойствами 1)
- и 2) наша конструкция минимальная).

Алгебраическая форма записи комплексного числа

Заметим, что $(a,b)=(a,0)+(0,b)=(a,0)+(b,0)\cdot(0,1)=a+bi.$

Определение

Выражение a+bi называется *алгебраической формой* числа (a,b).

Заметим, что

$$(a+bi)+(c+di)=(a,b)+(c,d)=(a+c,b+d)=(a+c)+(b+d)i, \\ (a+bi)(c+di)=(a,b)(c,d)=(ac-bd,ad+bc)=(ac-bd)+(ad+bc)i.$$

Важный вывод:

• сложение и умножение комплексных чисел в алгебраической форме осуществляется как сложение и умножение обычных многочленов от i; при умножении дополнительно учитывается, что $i^2=-1$:

$$(a+bi)(c+di) = ac + (ad+bc)i + bdi^2 = (ac-bd) + (ad+bc)i.$$

Конструкция поля \mathbb{C} – минимально возможная

Пусть F – произвольное поле, которое содержит поле $\mathbb R$ и квадратные корни из отрицательных действительных чисел. Зафиксируем такой элемент $e\in F$, что $e^2=-1$.

Тогда F содержит все элементы вида a+be, где $a,b\in\mathbb{R}$. Ясно, что такие элементы складываются и перемножаются в F по тем же правилам, по которым складываются и перемножаются комплексные числа в алгебраической форме:

$$(a+be) + (c+de) = (a+c) + (b+d)e,$$

 $(a+be)(c+de) = (ac-bd) + (ad+bc)e.$

Сопоставим комплексному числу $a+bi\in\mathbb{C}$ элемент $a+be\in F$. Легко проверить, что так определенное отображение взаимно однозначно и сохраняет операции сложения и умножения. Итак, поле $\mathbb C$ вкладывается в поле F. Таким образом, $\mathbb C$ вкладывается в любое поле, которое содержит $\mathbb R$ и квадратные корни из отрицательных чисел. Это и означает, что наша конструкция поля $\mathbb C$ минимально возможная.

Более того, наш аргумент показывает, что поле $\mathbb C$ единственно с точностью до *изоморфизма* – как бы мы не строили поле с условиями 1)–3), получится по существу одно и то же с точностью до выбора обозначений.

Комплексное сопряжение

Определение

Если x=a+bi – комплексное число, то число a-bi называется комплексно сопряженным к x и обозначается через \overline{x} .

При геометрической интерпретации сопряжение – это отражение точки комплексной плоскости относительно действительной оси.

Свойства операции комплексного сопряжения

Если x и y – произвольные комплексные числа, то:

- 1) $\overline{\overline{x}} = x$;
- 2) $x = \overline{x}$ тогда и только тогда, когда x действительное число;
- 3) $x + \overline{x}$ действительное число;
- 4) $x\cdot\overline{x}$ действительное число; более того, $x\cdot\overline{x}\geqslant 0$, причем $x\cdot\overline{x}=0$ тогда и только тогда, когда x=0;
- $5) \ \overline{x+y} = \overline{x} + \overline{y};$
- 6) $\overline{xy} = \overline{x} \cdot \overline{y}$.

Комплексное сопряжение (2)

Доказательство. Пусть x = a + bi и y = c + di.

- 1) $\overline{\overline{x}} = \overline{a bi} = a + bi = x$.
- 2) Если $x=\overline{x}$, т. е. a+bi=a-bi, то 2bi=0, откуда b=0, и значит $x\in\mathbb{R}.$ Обратно, если $x\in\mathbb{R},$ то b=0, и потому $x=\overline{x}.$
- 3) Достаточно учесть, что $x + \overline{x} = 2a$.
- 4) А здесь достаточно учесть, что $x \cdot \overline{x} = (a+bi)(a-bi) = a^2 + b^2$.
- 5) Ясно, что

$$\overline{x+y} = \overline{(a+bi) + (c+di)} = \overline{(a+c) + (b+d)i} =$$
$$= (a+c) - (b+d)i = (a-bi) + (c-di) = \overline{x} + \overline{y}.$$

6) Ясно, что

$$\overline{xy} = \overline{(a+bi)(c+di)} = \overline{(ac-bd) + (ad+bc)i} =$$
$$= (ac-bd) - (ad+bc)i = (a-bi)(c-di) = \overline{x} \cdot \overline{y}.$$

Все свойства доказаны.

Сопряженные числа и квадратные уравнения

Замечание

Если $z\in\mathbb{C}\setminus\mathbb{R}$ – комплексное число, не являющееся действительным, то zи \overline{z} – корни квадратного уравнения с действительными коэффициентами и отрицательным дискриминантом. Обратно, корни любого квадратного уравнения с действительными коэффициентами и отрицательным дискриминантом - комплексно сопряженные числа.

Доказательство. Если $z=a+bi\in\mathbb{C}\setminus\mathbb{R}$, то $b\neq 0$. Ясно, что z и \overline{z} – корни уравнения

$$(x-z)(x-\overline{z}) = x^2 - (z+\overline{z})x + z \cdot \overline{z} = x^2 - 2ax + a^2 + b^2 = 0.$$

Дискриминант этого уравнения равен $a^2 - (a^2 + b^2) = -b^2 < 0$.

Обратно, если у квадратного уравнения $x^2 + px + q = 0$ с действительными коэффициентами дискриминант $\Delta := \frac{p^2}{4} - q$ отрицателен, то корни

$$-rac{p}{2}\pm\sqrt{\Delta}$$
 этого уравнения — комплексно сопряженные числа. $\ \square$

Деление комплексных чисел, записанных в алгебраической форме

Свойство 4) можно использовать для того, чтобы найти алгебраическую форму числа $\frac{a+bi}{c+di}.$ В самом деле, умножив числитель и знаменатель этой дроби на c-di, имеем:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2} =$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2} \cdot i.$$

Модуль и аргумент комплексного числа

Определение

Пусть комплексное число z=a+bi изображается на плоскости точкой M(a,b) (см. рисунок). Длина отрезка OM называется модулем числа z. Если $z\neq 0$, то угол между положительным направлением действительной оси и отрезком OM называется аргументом числа z. У числа 0 аргумент не определен. Модуль комплексного числа z обозначается через |z|, а аргумент — через $\arg(z)$. Имеем $|z|=\sqrt{a^2+b^2}$.

Модуль и аргумент комплексного числа

Два замечания

- ① Для действительных чисел, рассматриваемых как комплексные, введенное только что понятие модуля совпадает со стандартным понятием модуля (абсолютной величины). В самом деле, если $z=a+0\cdot i$, то $|z|=\sqrt{a^2+0^2}=\sqrt{a^2}=|a|$.
- ② Аргумент ненулевого комплексного числа определен неоднозначно: если φ аргумент числа a+bi, то $\varphi+2\pi k$ также его аргумент при любом целом k. Такое соглашение принимается, чтобы при непрерывном движении точки по комплексной плоскости ее аргумент изменялся непрерывно.

Свойства модуля комплексного числа

Свойства модуля комплексного числа

Если x и y – произвольные комплексные числа, то:

- $1) |x| = |\overline{x}|;$
- $2) x \cdot \overline{x} = |x|^2;$
- 3) $|x+y| \le |x| + |y|$;
- 4) $|xy| = |x| \cdot |y|$.

Доказательство. 1), 2) Пусть x = a + bi. Тогда

$$|\overline{x}|=|a-bi|=\sqrt{a^2+(-b)^2}=\sqrt{a^2+b^2}=|x|$$
 in
$$x\cdot\overline{x}=(a+bi)(a-bi)=a^2+b^2=|x|^2.$$

3) Обозначим через $A,\,B$ и C точки на плоскости, отвечающие числам $x,\,y$ и x+y соответственно при геометрической интерпретации комплексных чисел. Если точки $A,\,B,\,O$ не лежат на одной прямой (левый рисунок на следующем слайде), то, поскольку длина стороны треугольника меньше суммы длин двух других его сторон, имеем

$$|x + y| = |OC| < |OA| + |AC| = |OA| + |OB| = |x| + |y|.$$

Свойства модуля комплексного числа (2)

Пусть теперь точки A, B и O лежат на одной прямой. Если A и B лежат по одну сторону от точки O (см. центральный рисунок), то, очевидно,

$$|x + y| = |OC| = |OA| + |OB| = |x| + |y|.$$

Пусть точки A и B лежат по разные стороны от точки O (см. правый рисунок). Без ограничения общности можно считать, что $|x|\geqslant |y|$. Тогда точка C принадлежит отрезку OA, и потому

$$|x + y| = |OC| \le |OA| = |x| \le |x| + |y|.$$

Модуль суммы комплексных чисел

Свойства модуля комплексного числа (3)

3) Это свойство можно проверить прямым вычислением, но проще вывести его из свойства 2).

Имеем:

$$|xy|^2 \stackrel{2)}{=} xy \cdot \overline{xy} = xy\overline{xy} = x\overline{x} \cdot y\overline{y} \stackrel{2)}{=} |x|^2 \cdot |y|^2.$$

Отсюда $|xy| = |x| \cdot |y|$.

Тригонометрическая форма комплексных чисел

Пусть r — модуль, а φ — аргумент комплексного числа $a+bi \neq 0$. Имеем $r=\sqrt{a^2+b^2},\,\cos\varphi=\frac{a}{\sqrt{a^2+b^2}}$ и $\sin\varphi=\frac{b}{\sqrt{a^2+b^2}}$, см. рисунок.

Следовательно,

$$a+bi=\sqrt{a^2+b^2}\cdot\left(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{a^2+b^2}}\cdot i\right)=r(\cos\varphi+i\sin\varphi).$$

Определение

Если r — модуль, а φ — аргумент комплексного числа a+bi, то запись $r(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой этого числа.

Два замечания

- Тригонометрическая форма комплексного числа определена неоднозначно – это вытекает из неоднозначности аргумента комплексного числа.
- Число 0 не имеет тригонометрической формы, так как у него не определен аргумент.

Умножение и деление комплексных чисел, записанных в тригонометрической форме

С помощью тригонометрической формы легко находятся произведение и частное от деления двух комплексных чисел. В самом деле, пусть $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$. Тогда $z_1 z_2 = r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) =$ $=r_1r_2\big[(\cos\varphi_1\cos\varphi_2-\sin\varphi_1\sin\varphi_2)+i(\cos\varphi_1\sin\varphi_2+\sin\varphi_1\cos\varphi_2)\big]=$ $= r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2));$ $\frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 - i\sin\varphi_2)}{r_2(\cos\varphi_2 + i\sin\varphi_2)(\cos\varphi_2 - i\sin\varphi_2)} =$ $=\frac{r_1((\cos\varphi_1\cos\varphi_2+\sin\varphi_1\sin\varphi_2)+i(\sin\varphi_1\cos\varphi_2-\cos\varphi_1\sin\varphi_2))}{r_2(\cos^2\varphi_2+\sin^2\varphi_2)}=$ $= \frac{r_1}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right).$

Мы видим, что:

- модуль произведения двух комплексных чисел равен произведению их модулей, а аргумент произведения равен сумме аргументов;
- модуль частного от деления z_1 на z_2 равен частному от деления модуля z_1 на модуль z_2 , а аргумент частного разности аргументов z_1 и z_2 .

Возведение в степень комплексных чисел, записанных в тригонометрической форме

Из результата о произведении комплексных чисел в тригонометрической форме по индукции легко вывести, что

$$(r(\cos\varphi + i\sin\varphi))^n = r^n(\cos n\varphi + i\sin n\varphi) \tag{1}$$

для любого натурального n. Таким образом,

 при возведении комплексного числа в натуральную степень его модуль возводится в эту степень, а аргумент умножается на показатель степени.

Из формулы (1) при r=1 получается равенство

$$(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi,$$

известное как формула Муавра.

Синусы и косинусы кратных углов

Комбинация формулы Муавра и формулы бинома Ньютона — неисчерпаемый источник комбинаторных и тригонометрических тождеств. Для примера выведем формулы, выражающие $\sin 5\varphi$ и $\cos 5\varphi$ через $\sin \varphi$ и $\cos \varphi$. Имеем

$$(\cos \varphi + i \sin \varphi)^5 = \cos^5 \varphi + 5i \cos^4 \varphi \sin \varphi + 10i^2 \cos^3 \varphi \sin^2 \varphi +$$

$$+ 10i^3 \cos^2 \varphi \sin^3 \varphi + 5i^4 \cos \varphi \sin^4 \varphi + i^5 \sin^5 \varphi =$$

$$= \cos^5 \varphi + 5i \cos^4 \varphi \sin \varphi - 10 \cos^3 \varphi \sin^2 \varphi -$$

$$- 10i \cos^2 \varphi \sin^3 \varphi + 5 \cos \varphi \sin^4 \varphi + i \sin^5 \varphi =$$

$$= \cos^5 \varphi - 10 \cos^3 \varphi \sin^2 \varphi + 5 \cos \varphi \sin^4 \varphi +$$

$$+ (5 \cos^4 \varphi \sin \varphi - 10 \cos^2 \varphi \sin^3 \varphi + \sin^5 \varphi)i.$$

С другой стороны, из формулы Муавра при n=5 вытекает, что $(\cos\varphi+i\sin\varphi)^5=\cos 5\varphi+i\sin 5\varphi$. Следовательно,

$$\cos 5\varphi = \cos^5 \varphi - 10\cos^3 \varphi \sin^2 \varphi + 5\cos \varphi \sin^4 \varphi \quad \mathbf{u}$$

$$\sin 5\varphi = 5\cos^4 \varphi \sin \varphi - 10\cos^2 \varphi \sin^3 \varphi + \sin^5 \varphi.$$