Билеты Высшая Математика - 2

Тимур Адиатуллин | telegram, github

Содержание

1	$\mathbf{N}_{\mathbf{HT}}$	егралы
	1.1	Определение и свойства первообразной. Теорема о связи первообразных одной функции
	1.2	Таблица основных неопределенных интегралов (с доказательствами)
	1.3	Интегрирование с помощью замены переменной. Вычисление
	1.4	Интегрирование по частям. Вычисление
	1.5	Интегрирование рациональных дробей.
	1.6	Интегральные суммы Римана. Определение определенного интеграла. Теорема об ограничен-
		ности функции, интегрируемой на отрезке.
	1.7	Теорема об интегрируемости функции на более узком промежутке, о связи интегралов от f
		на промежутках $[a,b], [a,c], [c,b].$
	1.8	Интегрируемость непрерывной функции, монотонной и ограниченной функции.
	1.9	Действия над интегрируемыми функциями.
	1.10	
		точек, и функции, у которой изменены значения в конечном числе точек
		Свойства определенного интеграла.
	1.12	Неравенства для определенных интегралов.
	1.13	Теорема о среднем значении функции на промежутке
	1.14	Непрерывность функции
	1.15	Дифференцируемость функции. Формула Ньютона – Лейбница.
		Формулы интегрирования по частям и замены переменных в определенном интеграле
	1.17	Несобственные интегралы II рода: определение, главное значение. Критерий сходимости ин-
		теграла II рода от неотрицательной функции
		Первый и второй признаки сравнения. Сходимость интеграла
		Абсолютная и условная сходимость несобственных интегралов II рода
	1.20	Несобственные интегралы I рода: определение, главное значение. Признаки сходимости. Схо-
		димость интеграла
		Признак Дирихле. Сходимость интеграла при p>0
	1.22	Площадь криволинейной трапеции. Вычисление площади эллипса с помощью параметризации
		кривой
		Площадь криволинейного сектора.
		Объем прямого кругового цилиндра
	1.25	Объем тела вращения. Объем тела с известными площадями поперечных сечений. Объем
		эллипсоида
	1.26	Длина кривой, заданной параметрически. Следствия. Вычисление длины окружности
2	Алг	ебра
	2.1	Группы, кольца, поля

1 Интегралы

1.1 Определение и свойства первообразной. Теорема о связи первообразных одной функции.

Определение 1.1.

Пусть функция f(x) определена на промежутке $\langle a,b \rangle$. Функция F(x), определенная на промежутке $\langle a,b \rangle$, называется **первообразной** функции f(x) на $\langle a,b \rangle$, если

$$F'(x) = f(x), \quad \forall x \in \langle a, b \rangle.$$

На концах промежутка имеем в виду односторонние производные функции F(x).

Следствие.

Если F(x) является первообразной некоторой функции на $\langle a,b\rangle$, то F(x) непрерывна на $\langle a,b\rangle$.

Теорема о связи первообразных одной функции

Пусть F(x) — первообразная функции f(x) на $\langle a,b\rangle$. Тогда:

1. $\forall c \in R$ F(x) + c также первообразная функции f(x) на $\langle a, b \rangle$. 2. Если $\Phi(x)$ — некоторая первообразная функции f(x) на $\langle a, b \rangle$, то $\exists c \in R \colon \Phi(x) = F(x) + c$.

Доказательство

1. (F(x) + c)' = f(x). 2. $(\Phi(x) - F(x))' = f(x) - f(x) = 0$ на $\langle a, b \rangle$. Следовательно, $\Phi(x) - F(x) = c$ на $\langle a, b \rangle$.

Следствие

Если F(x) — некоторая первообразная функции f(x) на $\langle a,b \rangle$, то каждая функция семейства функций $\{F(x)+c\}$ $(c \in R)$ является **первообразной**, и других первообразных нет.

1.2 Таблица основных неопределенных интегралов (с доказательствами).

Определение 1.2

Описанное выше семейство функций $\{F(x)+c\}$ называется неопределенным интегралом функции f(x) на $\langle a,b\rangle$ и обозначается

$$\int f(x) \, dx.$$

Таблица основных неопределенных интегралов

$$\int 0 \, dx = c \tag{1}$$

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \quad \alpha \neq -1$$
 (2)

$$\int \frac{1}{x} dx = \ln|x| + c \tag{3}$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + c \tag{4}$$

$$\int \sin x \, dx = -\cos x + c \tag{5}$$

$$\int \cos x \, dx = \sin x + c \tag{6}$$

$$\int \frac{1}{\cos^2 x} \, dx = \tan x + c \tag{7}$$

$$\int \frac{1}{\sin^2 x} \, dx = -\cot x + c \tag{8}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c, \quad a > 0$$
(9)

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c, \quad a \neq 0$$
 (10)

$$\int \sinh x \, dx = \cosh x + c \tag{11}$$

$$\int \cosh x \, dx = \sinh x + c \tag{12}$$

$$\int \frac{1}{\cosh^2 x} \, dx = \tanh x + c \tag{13}$$

$$\int \frac{1}{\sinh^2 x} \, dx = \coth x + c \tag{14}$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, \quad a \neq 0$$
 (15)

$$\int \frac{1}{\sqrt{x^2 + \alpha}} dx = \ln\left|x + \sqrt{x^2 + \alpha}\right| + c, \quad \alpha \neq 0$$
 (16)

Комментарий

Формулы справедливы на всех промежутках $\langle a,b \rangle$, на которых существуют функции, стоящие под знаком интеграла.

Доказательство

Формулы доказываются непосредственной проверкой того, что производная выражения, стоящего справа, совпадает с подынтегральной функцией.

Проверим формулы (15) и (16):

$$\left(\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|\right)' = \frac{1}{4a}\ln\left(\frac{x-a}{x+a}\right)^2' = \frac{1}{4a}\left(\frac{x-a}{x+a}\right)^2\left(\frac{x-a}{x+a}\right)' =$$
(17)

$$= \frac{1}{4a} \left(\frac{x-a}{x+a}\right)^2 \frac{(x-a)(x+a) - (x-a)(x+a)}{(x+a)^2} = \frac{1}{x^2 - a^2}$$
(18)

$$\left(\ln\left|x+\sqrt{x^2+\alpha}\right|\right)' = \frac{1}{2}\left(x+\sqrt{x^2+\alpha}\right)^2\left(x+\sqrt{x^2+\alpha}\right)' = \tag{19}$$

$$=\frac{1}{2}\left(x+\sqrt{x^2+\alpha}\right)^2 2\left(x+\sqrt{x^2+\alpha}\right)\left(1+\frac{x}{\sqrt{x^2+\alpha}}\right) = \frac{x+\sqrt{x^2+\alpha}}{\sqrt{x^2+\alpha}} = \frac{1}{\sqrt{x^2+\alpha}}$$
(20)

1.3 Интегрирование с помощью замены переменной. Вычисление

Теорема: Простейшие свойства неопределенного интеграла

Пусть F(x) дифференцируема на $\langle a,b\rangle$. Тогда

$$\int dF(x) = F(x) + c.$$

Пусть существует $\int f(x)dx$. Тогда

$$d\left(\int f(x)dx\right)=f(x)dx,\quad \text{то есть}\quad \left(\int f(x)dx\right)'=f(x)\quad \text{на}\quad \langle a,b\rangle.$$

Пусть существуют $\int f_1(x)dx$, $\int f_2(x)dx$ на $\langle a,b \rangle$. Тогда существует

$$\int (af_1(x) + bf_2(x))dx = a \int f_1(x)dx + b \int f_2(x)dx$$
 на $\langle a, b \rangle$.

Теорема 1.4: Интегрирование при помощи замены переменной

Пусть существует

$$\int f(t)dt = F(t) + c \text{ Ha } \langle a, b \rangle.$$

Пусть $\varphi(x)$ дифференцируема на $\langle \alpha, \beta \rangle$, $\varphi(\langle \alpha, \beta \rangle) = \langle a, b \rangle$. Тогда существует

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + c \text{ Ha } \langle \alpha, \beta \rangle.$$

Теорема 1.5: Интегрирование при помощи замены переменной (подстановка)

Пусть существует

$$\int f(\varphi(t))\varphi'(t)dt = G(t) + c \text{ Ha } \langle \alpha, \beta \rangle.$$

Пусть $\varphi(t)$ дифференцируема и строго монотонна на $\langle \alpha, \beta \rangle$, $\varphi(\langle \alpha, \beta \rangle) = \langle a, b \rangle$. Тогда существует

$$\int f(x)dx = G(\varphi^{-1}(x)) + c \text{ Ha } \langle a, b \rangle.$$

Пример:

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c \quad (a > 0).$$

1.4 Интегрирование по частям. Вычисление

Теорема 1.6: Интегрирование по частям

Пусть функции u(x), v(x) дифференцируемы на $\langle a,b\rangle$ и существует

$$\int v(x)du(x).$$

Тогда существует

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

Доказательство

Поскольку $d(uv)=u\,dv+v\,du$, то $u\,dv=d(uv)-v\,du$, следовательно, существует $\int u\,dv=uv-\int v\,du$ на $\langle a,b\rangle$.

Пример:

$$\int \sqrt{a^2 + x^2} \, dx = \frac{a^2}{2} \ln|x + \sqrt{a^2 + x^2}| + \frac{x}{2} \sqrt{a^2 + x^2} + c.$$

1.5 Интегрирование рациональных дробей.

Теорема 2.1: Интегрирование правильных рациональных дробей вида $\frac{A}{(x-a)^k}$

$$\int \frac{A}{x-a} dx = \int \frac{A}{x-a} d(x-a) = A \ln|x-a| + c. \tag{1}$$

$$\int \frac{A}{(x-a)^k} dx = \int \frac{A}{(x-a)^k} d(x-a) = \frac{A}{(1-k)(x-a)^{k-1}} + c \quad (k \neq 1).$$
 (2)

Теорема 2.2: Интегрирование правильных рациональных дробей вида $\frac{Bx+C}{(x^2+px+q)^n}$

Выделим полный квадрат из квадратного трехчлена:

$$x^2 + px + q = (x + (p/2))^2 + q^*$$
, где $q^* = q - p^2/4 > 0$, так как $p^2 - 4q < 0$.

Сделаем замену t = x + (p/2), тогда x = t - (p/2) и dx = dt.

Следовательно,

$$\int \frac{Bx+C}{(x^2+px+q)^n} dx = \int \frac{B(t-(p/2))+C}{(t^2+q^*)^n} dt =$$

$$= \int \frac{Bt}{(t^2+q^*)^n} dt + \int \frac{C^*}{(t^2+q^*)^n} dt, \quad \text{где} \quad C^* = -B(p/2) + C.$$

Разберем, как вычисляются интегралы $\int \frac{t}{(t^2+q^*)^n} dt$ и $\int \frac{1}{(t^2+q^*)^n} dt$. После вычисления интегралов следует заменить t на $x+\frac{p}{2}$.

a)
$$\int \frac{t}{(t^2 + q^*)^n} dt = \frac{1}{2} \int \frac{2t \, dt}{(t^2 + q^*)^n} = \frac{1}{2} \int \frac{d(t^2 + q^*)}{(t^2 + q^*)^n}$$
$$= \begin{cases} \frac{1}{2} \ln(t^2 + q^*) + c, & n = 1\\ \frac{1}{2(1-n)(t^2 + q^*)^{1-n}} + c, & n \neq 1 \end{cases}$$

Вычисление интеграла I_n

Рассмотрим интеграл:

$$I_n = \int \frac{1}{(t^2 + q^*)^n} dt.$$

Для случая n = 1:

$$I_1 = \int \frac{1}{t^2 + q^*} dt = \frac{1}{\sqrt{q^*}} \arctan \frac{t}{\sqrt{q^*}} + C.$$

Для $n \ge 2$, используем метод интегрирования по частям:

$$I_n = \int \frac{1}{(t^2 + q^*)^n} dt = \left[u = (t^2 + q^*)^{-n}, \quad dv = dt \right].$$

Тогда:

$$du = -n(t^2 + q^*)^{-n-1}2tdt, \quad v = t.$$

$$I_n = \frac{t}{(t^2 + q^*)^n} + 2n \left[\int \frac{t^2}{(t^2 + q^*)^{n+1}} dt \right].$$

Учитывая, что $t^2 = (t^2 + q^*) - q^*$, преобразуем:

$$I_n = \frac{t}{(t^2 + q^*)^n} + 2nI_n - 2nq^*I_{n+1}.$$

Получаем рекуррентную формулу:

$$I_{n+1} = \frac{1}{2nq^*} \left[\frac{t}{(t^2 + q^*)^n} + (2n - 1)I_n \right].$$

Эта формула позволяет вычислять I_2, I_3, \dots последовательно.

Определение 1.2: Определенный интеграл как предел интегральных сумм

Пусть f(x) ограничена на отрезке [a,b]. Рассмотрим разбиение $\tau = \{x_k\}_{k=0}^n$ этого отрезка:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Определим интегральную сумму:

$$\sigma_{\tau} = \sum_{k=1}^{n} f(\xi_k) \Delta x_k,$$

где ξ_k — произвольные точки в $[x_{k-1}, x_k]$, а $\Delta x_k = x_k - x_{k-1}$.

Если существует конечный предел интегральных сумм при стремлении λ_{τ} (ранга разбиения) к нулю, то этот предел называют определенным интегралом функции f(x) на [a,b]:

$$I = \lim_{\lambda_{\tau} \to 0} \sigma_{\tau} = \int_{a}^{b} f(x) dx.$$

1.6 Интегральные суммы Римана. Определение определенного интеграла. Теорема об ограниченности функции, интегрируемой на отрезке.

Определение 1.1: Интегральные суммы Римана

1) Говорят, что выбрано разбиение $\tau = \{x_k\}_{k=0}^n$ отрезка [a,b], если выбраны точки $x_0 = a, x_1, x_2, \dots, x_{n-1}, b$, такие что:

$$x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n$$
.

Длину і-го отрезка разбиения обозначим Δx_i ($\Delta x_i = x_i - x_{i-1}$). Число $\lambda_{\tau} = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\}$ называется рангом разбиения τ .

2) Пусть функция f(x) определена на отрезке [a,b]. Выберем разбиение τ отрезка [a,b]. Выберем в каждом из получившихся отрезков разбиения по точке:

$$\xi_1 \in [x_0, x_1], \quad \xi_2 \in [x_1, x_2], \quad \dots, \quad \xi_n \in [x_{n-1}, x_n].$$

Вычислим значение функции f(x) в этих точках и составим интегральную сумму Римана:

$$\sigma_{\tau} = \sum_{k=1}^{n} f(\xi_k) \Delta x_k.$$

3) Если существует конечный предел I интегральных сумм при стремлении ранга разбиения к нулю, и этот предел не зависит ни от выбора разбиения τ , ни от выбора точек $\xi_1, \xi_2, \ldots, \xi_n$, то этот предел называют определенным интегралом от функции f(x) по отрезку [a,b] и обозначают:

$$\int_{a}^{b} f(x)dx.$$

То есть,

$$\lim_{\lambda_{\tau}\to 0}\sigma_{\tau}$$

то есть,

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 : \, (\lambda_{\tau} < \delta \implies |\sigma_{\tau} - I| < \varepsilon) \, \forall \, \tau, \, \forall \, \{\xi_k\}_{k=0}^n$$

Замечания

- 1) $\lambda_{\tau} \to 0 \Rightarrow n \to \infty$. Обратное неверно.
- 2) Геометрический смысл σ_{τ} для $f(x) \geq 0$.

Определение 1.2

Если существует $\int_a^b f(x)dx$, то говорят, что f(x) интегрируема на отрезке [a,b] и пишут $f(x) \in R([a,b])$ (читается: f(x) принадлежит классу функций, интегрируемых на отрезке [a,b]).

Теорема 1.1

Если f(x) интегрируема на отрезке [a,b], то f(x) ограничена на [a,b].

Замечание

Обратное неверно.

Пример

Функция Дирихле:

$$f(x) = \begin{cases} 1, & x \in Q \\ 0, & x \notin Q \end{cases}$$

где Q — множество рациональных чисел.

1.7 Теорема об интегрируемости функции на более узком промежутке, о связи интегралов от f на промежутках [a,b], [a,c], [c,b].

Теорема

1) Пусть

$$f(x) \in R([a,b]), [a_1,b_1] \subseteq [a,b]$$
 Тогда $f(x) \in R([a_1,b_1])$

2) Пусть

$$c \in [a, b], f(x) \in R([a, c]), f(x) \in R([c, b])$$

Тогда

$$f(x) \in R([a,b])$$
 и $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

(без доказательства)

1.8 Интегрируемость непрерывной функции, монотонной и ограниченной функции.

Теорема

1) Если f(x) непрерывна на [a,b], то f(x) интегрируема на [a,b].

$$f(x) \in C([a,b]) \Rightarrow f(x) \in R([a,b]).$$

- 2) Если f(x) ограничена на [a,b] и непрерывна там всюду, за исключением конечного числа точек, то f(x) интегрируема на [a,b].
 - 3) Если f(x) монотонна и ограничена на [a,b], то f(x) интегрируема на [a,b]. (без доказательства)

1.9 Действия над интегрируемыми функциями.

Теорема 1.4: Действия над интегрируемыми функциями

Если $f(x) \in R([a,b])$ и $g(x) \in R([a,b])$, то: 1) $\alpha f(x) + \beta g(x) \in R([a,b])$, и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

2) $f(x)g(x) \in R([a,b])$.

1.10 Теорема об интегрировании функции, равной нулю всюду, за исключением конечного числа точек, и функции, у которой изменены значения в конечном числе точек.

Теорема 1.5

1) Пусть f(x) определена и ограничена на [a,b] и равна нулю всюду, за исключением конечного числа точек. Тогда

$$\int_{a}^{b} f(x)dx = 0.$$

2) Пусть $g(x) \in R([a,b])$.

Если в конечном числе точек изменить значения функции g(x), то функция останется интегрируемой, и величина интеграла не изменится.

1.11 Свойства определенного интеграла.

Теорема 1.6: Свойства определенного интеграла

1)

$$\int_{a}^{b} dx = b - a.$$

2) Пусть a,b,c — три числа, $p = \max\{a,b,c\},\ q = \min\{a,b,c\}.$ Если $f(x) \in R([q,p]),$ то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

3) Если $f(x) \in R([a,b])$, то $|f(x)| \in R([a,b])$, и

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

1.12 Неравенства для определенных интегралов.

Теорема 1.7

Пусть $f(x) \in R([a,b]), A \leq f(x) \leq B$ на [a,b]. Тогда

$$A(b-a) \le \int_a^b f(x)dx \le B(b-a).$$

Следствия

1) Пусть $f(x) \in R([a,b])$ и $f(x) \ge 0$ на [a,b]. Тогда

$$\int_a^b f(x)dx \ge 0 \quad \text{(взять } A = 0).$$

2) Пусть $f(x),g(x)\in R([a,b])$ и $f(x)\geq g(x)$ на [a,b]. Тогда

$$\int_a^b f(x)dx \ge \int_a^b g(x)dx$$

$$\int_a^b (f(x) - g(x))dx \ge 0, \text{ то есть},$$

$$\int_a^b f(x)dx \ge \int_a^b g(x)dx \ge 0.$$

3) Пусть $f(x) \in R([a,b])$ и $|f(x)| \leq K$ на [a,b]. Тогда

$$\left| \int_{a}^{b} f(x)dx \right| \le K(b-a)$$

$$-K \le f(x) \le K \quad \Rightarrow \quad -K(b-a) \le \int_{a}^{b} f(x)dx \le K(b-a).$$

1.13 Теорема о среднем значении функции на промежутке.

Теорема 1.8: о среднем значении функции на промежутке

Пусть $f(x) \in C([a,b])$. Тогда существует $x^* \in [a,b]$, такое что:

$$\int_{a}^{b} f(x)dx = f(x^*)(b-a).$$

Замечание

Формула

$$\int_{a}^{b} f(x)dx = f(x^{*})(b-a)$$

справедлива и при b < a (умножим обе части равенства на -1).

1.14 Непрерывность функции

Определение 1.4

Пусть $f(x) \in R([a,b])$.

Рассмотрим функцию $\Phi(x) = \int_a^x f(t)dt$, определенную на [a,b].

Функция $\Phi(x)$ называется функцией верхнего предела интеграла от f(x).

Теорема 1.9

Функция $\Phi(x)$ непрерывна на [a, b].

Доказательство

Зафиксируем произвольную точку $x_0 \in [a, b]$. Тогда для любой точки $x \in [a, b]$:

$$\int_{a}^{x} f(t)dt = \int_{a}^{x_0} f(t)dt + \int_{x_0}^{x} f(t)dt,$$

то есть,

$$\Phi(x) - \Phi(x_0) = \int_{x_0}^x f(t)dt.$$

Поскольку $f(x) \in R([a,b])$, то f(x) ограничена на [a,b], то есть,

$$\exists K : |f(x)| \leq K$$
 на $[a, b]$.

Тогда

$$\left| \int_{x_0}^x f(t)dt \right| \le K|x - x_0|.$$

Следовательно,

$$|\Phi(x) - \Phi(x_0)| \le K|x - x_0| \xrightarrow{x \to x_0} 0.$$

Таким образом,

$$\lim_{x \to x_0} \Phi(x) = \Phi(x_0),$$

то есть, $\Phi(x)$ непрерывна в точке x_0 .

Поскольку x_0 — произвольная точка отрезка [a,b], то $\Phi(x)$ непрерывна на [a,b].

Теорема 1.10

В каждой точке x промежутка [a,b], в которой f(x) непрерывна, существует $\Phi'(x) = f(x)$.

Доказательство

Зафиксируем произвольную точку $x_0 \in [a, b]$, в которой функция непрерывна. Возьмем произвольное $\varepsilon > 0$.

$$\exists \delta > 0 : (|t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \varepsilon),$$

то есть,

$$f(x_0) - \varepsilon < f(t) < f(x_0) + \varepsilon, \quad \forall t \in (x_0 - \delta, x_0 + \delta).$$

Пусть $|\Delta x| < \delta$. Тогда на отрезке с концами в точках x_0 и $x_0 + \Delta x$ функция f(t) удовлетворяет неравенству.

- 1) Тогда:
- a) Пусть $\Delta x \ge 0$,

$$(f(x_0) - \varepsilon)\Delta x \le \int_{x_0}^{x_0 + \Delta x} f(t)dt \le (f(x_0) + \varepsilon)\Delta x;$$

б) Пусть $\Delta x < 0$,

$$(f(x_0) - \varepsilon)(-\Delta x) \le \int_{x_0 + \Delta x}^{x_0} f(t)dt \le (f(x_0) + \varepsilon)(-\Delta x).$$

Разделим все части неравенства из пункта а) на Δx , а все части неравенства из пункта б) на $-\Delta x$. Получим:

$$f(x_0) - \varepsilon \le \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt \le f(x_0) + \varepsilon,$$

что эквивалентно:

$$\left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt - f(x_0) \right| \le \varepsilon.$$

2) Рассмотрим

$$\Phi(x_0 + \Delta x) - \Phi(x_0) = \int_a^{x_0 + \Delta x} f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^{x_0 + \Delta x} f(t)dt.$$

Следовательно,

$$\frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt.$$

3) Получили, что

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \quad (|\Delta x| < \delta \Rightarrow \left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| \le \varepsilon).$$

Отсюда

$$\lim_{\Delta x \to 0} \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = f(x_0),$$

то есть, существует $\Phi'(x_0) = f(x_0)$.

1.15 Дифференцируемость функции. Формула Ньютона – Лейбница.

Следствия

1) Частный случай (теорема Барроу):

Пусть $f(x) \in C([a,b])$. Тогда F'(x) = f(x) на [a,b].

(То есть, у любой непрерывной на отрезке функции существует первообразная.)

2) Формула Ньютона-Лейбница:

Пусть $f(x) \in C([a,b]), F(x)$ — некоторая первообразная функции f(x) на [a,b]. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Доказательство

2) Так как $\Phi(x) = \int_a^x f(t) dt$ также является первообразной функции f(x) на [a,b], то существует число c:

$$\Phi(x) = \int_{a}^{x} f(t)dt = F(x) + c,$$

то есть,

$$\int_{a}^{x} f(t)dt = F(x) + c \quad \forall x \in [a, b].$$

Пусть x = a.

$$0 = F(a) + c.$$

Следовательно, c = -F(a). Пусть x = b.

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

1.16 Формулы интегрирования по частям и замены переменных в определенном интеграле.

Теорема 1.11

Пусть $u(x), v(x) \in C^1([a,b])$. Тогда:

$$\int_{a}^{b} u(x)dv(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

$$(u(x)v(x)\Big|_a^b = u(b)v(b) - u(a)v(a)).$$

Теорема 1.12

Пусть $f(x) \in C([a,b])$ (или $f(x) \in C([b,a])$); $\varphi(t) \in C^1[\alpha,\beta]$, причем $\varphi([\alpha,\beta]) = [a,b]$ (или $\varphi([\alpha,\beta]) = [b,a]$), $\varphi(\alpha) = a$, $\varphi(\beta) = b$ (например, $\varphi(t)$ монотонна на $[\alpha,\beta]$). Тогда

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{a}^{b} f(x)dx.$$

Несобственные интегралы II рода: определение, главное значение. 1.17Критерий сходимости интеграла II рода от неотрицательной функции.

Определение 2.1

1) Пусть f(x) определена на (a, b] и не ограничена в любой правой полукрестности точки a. Пусть $f(x) \in R([\alpha, b]) \ \forall \alpha \in (a, b].$

$$\int_{a}^{b} f(x)dx$$

Символ $\int_a^b f(x) dx$ называется несобственным интегралом II рода. Если существует конечный предел $I = \lim_{\alpha \to a+0} \int_{\alpha}^b f(x) dx$, то символу $\int_a^b f(x) dx$ приписывают значение I, то есть,

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a+0} \int_{\alpha}^{b} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

2) Пусть f(x) определена на [a,b) и не ограничена в любой левой полукрестности точки b. Пусть $f(x) \in R([a,\beta)) \ \forall \beta \in [a,b).$

Символ $\int_a^b f(x)dx$ называется несобственным интегралом II рода.

Если существует конечный предел

б)

$$I = \lim_{\beta \to b-0} \int_{a}^{\beta} f(x) dx,$$

то символу $\int_a^b f(x)dx$ приписывают значение I, то есть,

$$\int_{a}^{b} f(x)dx = \lim_{\beta \to b-0} \int_{a}^{\beta} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

3) Пусть f(x) определена на [a,b] всюду, за исключением точки $c \in (a,b)$, и не ограничена в любой окрестности точки c.

Пусть f(x) интегрируема на любом отрезке, содержащемся в [a,b] и не содержащем точку c.

$$\int_{a}^{b} f(x)dx$$

В этом случае символ $\int_a^b f(x)dx$ также называется несобственным интегралом II рода.

Есть два равносильных способа приписать символу $\int_a^b f(x)dx$ числовое значение: a)

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\int_a^b f(x)dx$$
 сходится, если $\int_a^c f(x)dx$ и $\int_c^b f(x)dx$ сходятся.

$$\int_{a}^{b} f(x)dx = \lim_{\delta_1 \to 0, \delta_2 \to 0} \left(\int_{a}^{c-\delta_1} f(x)dx + \int_{c+\delta_0}^{b} f(x)dx \right).$$

Замечание

Если не существует конечный

$$\lim_{\delta_1 \to +0} \left(\int_a^{c-\delta_1} f(x) dx \right) + \int_{c+\delta_2}^b f(x) dx,$$

но существует конечный

$$\lim_{\delta \to +0} \left(\int_a^{c-\delta} f(x) dx + \int_{c+\delta}^b f(x) dx \right),$$

то этот предел называют главным значением интеграла

$$\int_{a}^{b} f(x)dx$$

и обозначают **v.p.**

$$\int_{a}^{b} f(x)dx.$$

(то есть,

$$v.p. \int_{a}^{b} f(x)dx = \lim_{\delta \to +0} \left(\int_{a}^{c-\delta} f(x)dx + \int_{c+\delta}^{b} f(x)dx \right).$$

Лемма 2.1

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

1) Пусть $a' \in (a, b)$. Тогда

$$\int_a^b f(x) dx \, \operatorname{сходится} \Leftrightarrow \int_a^{a'} f(x) dx \, \operatorname{сходится} \, \operatorname{u} \, \int_{a'}^b f(x) dx \, \operatorname{сходится}$$

(II)
$$\int_{a}^{b} f(x)dx = \int_{a}^{a'} f(x)dx + \int_{a'}^{b} f(x)dx$$
).

2) Пусть $c \neq 0$. Тогда

$$\int_a^b cf(x)dx \ \text{еходится} \Leftrightarrow \int_a^b f(x)dx \ \text{еходится}$$

$$(\text{и} \ \int_a^b cf(x)dx = c \int_a^b f(x)dx).$$

Теорема 2.1

Критерий сходимости несобственного интеграла II рода от неотрицательной функции.

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Пусть $f(x) \ge 0$ на [a,b). Тогда

$$\int_a^b f(x)dx \, \operatorname{сходится} \, \Leftrightarrow \exists K \geq 0 : \int_a^\beta f(x)dx \leq K \quad \forall \beta \in [a,b).$$

Лемма 2.2

Пусть F(x) возрастает на [a,b). Тогда

 $\lim_{x\to b-0}F(x)$ конечный $\Leftrightarrow F(x)$ ограничена сверху на [a,b).

(без доказательства)

Первый и второй признаки сравнения. Сходимость интеграла 1.18

Теорема 2.2

Первый признак сравнения несобственных интегралов II рода от неотрицательных функций. Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

- Пусть $f(x) \geq g(x) \geq 0$ на [a,b). Тогда: 1) Если $\int_a^b f(x) dx$ сходится, то $\int_a^b g(x) dx$ тоже сходится. 2) Если $\int_a^b g(x) dx$ расходится, то $\int_a^b f(x) dx$ тоже расходится.

Теорема 2.3

Второй признак сравнения несобственных интегралов ІІ рода от неотрицательных функций. Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Пусть f(x), q(x) > 0 на [a, b), и

$$\lim_{x \to b-0} \frac{f(x)}{g(x)} = l, \quad l \neq 0, l \neq \infty$$

(например, $f(x) \sim g(x)$). Тогда

$$\int_a^b f(x)dx$$
 сходится \iff $\int_a^b g(x)dx$ сходится.

Примеры

Пусть p > 0.

$$\int_a^b \frac{dx}{(b-x)^p}, \quad \int_a^b \frac{dx}{(x-a)^p}, \quad \int_a^b \frac{dx}{x^p}$$

Сходятся при p < 1, расходятся при $p \ge 1$.

$$\int_{a}^{b} \frac{dx}{x^{p}} = \begin{cases} \frac{x^{1-p}}{1-p} \Big|_{a}^{b}, & p \neq 1\\ \ln(x) \Big|_{a}^{b}, & p = 1 \end{cases}$$

$$\exists$$
 существует $\lim_{a \to +0} \int_a^b \frac{dx}{x^p}$ только при $p < 1$

Примеры интегралов

a)
$$\int_0^1 \frac{dx}{\sqrt{1-x^4}}$$
 сходится.

б)
$$\int_0^2 \frac{dx}{x^3\sqrt{x+x^4}}$$
 расходится.

Абсолютная и условная сходимость несобственных интегралов II рода.

Определение 2.2

Рассмотрим интеграл из пункта 2) определения 2.1 (для интегралов из пунктов 1) и 3) аналогично).

Если сходится $\int_a^b |f(x)| dx$, то интеграл $\int_a^b f(x) dx$ называют абсолютно **сходящимся**.

Теорема 2.4

Если несобственный интеграл сходится абсолютно, то он сходится. (без доказательства)

Замечание

Обратное неверно. Если интеграл $\int_a^b |f(x)| dx$ расходится, а интеграл $\int_a^b f(x) dx$ сходится, то говорят, что интеграл $\int_a^b f(x) dx$ сходится условно.

Несобственные интегралы I рода: определение, главное значение. 1.20Признаки сходимости. Сходимость интеграла

Определение 3.1

1) Пусть f(x) определена на $[a, +\infty)$, $f(x) \in R([a, A]) \ \forall A \in (a, +\infty)$. Символ $\int_a^{+\infty} f(x)dx$ называется несобственным интегралом I рода. Если существует конечный предел

$$I = \lim_{A \to +\infty} \int_{a}^{A} f(x) dx,$$

то символу $\int_a^{+\infty} f(x)dx$ приписывают значение I, то есть,

$$\int_{a}^{+\infty} f(x)dx = \lim_{A \to +\infty} \int_{a}^{A} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

2) Пусть f(x) определена на $(-\infty, b], f(x) \in R([B, b]) \forall B \in (-\infty, b).$

Символ $\int_{-\infty}^{b} f(x)dx$ называется несобственным интегралом I рода.

Если существует конечный предел

$$I = \lim_{B \to -\infty} \int_{B}^{b} f(x) dx,$$

то символу $\int_{-\infty}^{b} f(x) dx$ присваивают значение I, то есть,

$$\int_{-\infty}^{b} f(x)dx = \lim_{B \to -\infty} \int_{B}^{b} f(x)dx$$

и говорят, что несобственный интеграл сходится.

Если предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

3) Пусть f(x) определена на $(-\infty, +\infty)$, f(x) интегрируема на любом отрезке. В этом случае символ $\int_{-\infty}^{+\infty} f(x) dx$ также называется несобственным интегралом I рода.

Есть два равносильных способа приписать символу $\int_{-\infty}^{+\infty} f(x)dx$ числовое значение:

a)
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

где c — произвольная точка из $(-\infty, +\infty)$. Интеграл $\int_{-\infty}^{+\infty} f(x)dx$ еходится, если сходятся $\int_{-\infty}^{c} f(x)dx$ и $\int_{c}^{+\infty} f(x)dx$.

6)
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to -\infty, B \to +\infty} \int_{A}^{B} f(x)dx.$$

Замечание

Если не существует конечный

$$\lim_{A \to +\infty} \int_{A}^{B} f(x) dx,$$

но существует конечный

$$\lim_{B \to +\infty} \int_{-B}^{B} f(x) dx,$$

то этот предел называют **главным значением интеграла**

$$\int_{-\infty}^{+\infty} f(x)dx$$

и обозначают **v.p.**

$$\int_{-\infty}^{+\infty} f(x)dx.$$
 (то есть, $v.p.$
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{B\to +\infty} \int_{-B}^{B} f(x)dx).$$

Примеры

1)
$$\int_{-\infty}^{+\infty} x dx$$

сходится только в смысле главного значения, и его главное значение равно 0.

$$2) \int_{a}^{A} \frac{dx}{x^{p}}$$

сходится при p>1, расходится при $p\leq 1.$

$$\int_{a}^{A} \frac{dx}{x^{p}} = \begin{cases} \frac{x^{1-p}}{1-p} \Big|_{a}^{A}, & p \neq 1\\ (\ln x) \Big|_{a}^{A}, & p = 1 \end{cases}$$

$$\exists \lim_{A \to \infty} \int_a^A \frac{dx}{x^p}$$
 только при $p > 1$.

только при p > 1.

Признак Дирихле. Сходимость интеграла при р>0. 1.21

Определение 3.2

Рассмотрим интеграл из определения 3.1.

$$\int_{a}^{+\infty} |f(x)| dx$$

Если сходится $\int_a^{+\infty} f(x)dx$, то интеграл называют **абсолютно сходящимся**.

Теорема 3.1

- Признак Дирихле сходимости несобственного интеграла I рода. Рассмотрим интеграл $\int_a^{+\infty} f(x)g(x)dx$. Пусть: 1) $f(x) \in C([a,+\infty))$ и имеет ограниченную первообразную на $[a,+\infty)$; 2) $g(x) \in C^1([a,+\infty))$, g(x) монотонно убывает на $[a,+\infty)$ и $\lim_{x\to +\infty} g(x)=0$. Тогда интеграл $\int_a^{+\infty} f(x)g(x)dx$ сходится.

Пример

Интеграл

$$\int_{a}^{+\infty} \frac{\sin x}{x^{p}} dx$$

(при a>0, p>0) **сходится абсолютно** при p>1, **сходится условно** при $0< p\leq 1.$

1.22 Площадь криволинейной трапеции. Вычисление площади эллипса с помощью параметризации кривой.

Пример

Найдем площадь эллипса, то есть, фигуры, ограниченной кривой

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Введем параметризацию эллипса:

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t, \quad t \in [0, 2\pi] \end{cases}$$

Функции $y_1(x)=b\sqrt{1-\frac{x^2}{a^2}},\quad y_2(x)=-b\sqrt{1-\frac{x^2}{a^2}}$ - верхняя и нижняя части кривой. Тогда площадь эллипса

$$S = \int_{-a}^{a} (y_1(x) - y_2(x)) dx = \int_{-a}^{a} y_1(x) dx - \int_{-a}^{a} y_2(x) dx = [x = x(t), y = y(t)] =$$

$$= \int_{\pi}^{0} y(t) dx(t) - \int_{\pi}^{2\pi} y(t) dx(t) = -\int_{0}^{2\pi} y(t) dx(t) = ab \int_{0}^{2\pi} \sin^2 t dt$$

$$= \frac{ab}{2} \int_{0}^{2\pi} (1 - \cos 2t) dt = \pi ab.$$

Замечание

Мы на примере показали справедливость утверждения:

Если
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [\alpha, \beta]$$

- уравнение гладкой замкнутой кривой без самопересечений, пробегаемой против часовой стрелки и ограничивающей слева от себя фигуру площадью S, то

$$S = -\int_{\alpha}^{\beta} y(t)dx(t) = -\int_{\alpha}^{\beta} y(t)x'(t)dt.$$

1.23 Площадь криволинейного сектора.

Теорема 4.2

Площадь криволинейного сектора, то есть, фигуры, ограниченной лучами $\varphi=\alpha,\, \varphi=\beta$ и непрерывной кривой $r=r(\varphi)$ ((r,φ) - полярные координаты), равна

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\varphi) d\varphi.$$

1.24 Объем прямого кругового цилиндра.

Определение 4.2

Функция V(T), определенная на некотором классе Ω множеств в пространстве, называется объемом, если она обладает следующими свойствами:

- 1) Монотонность: $\forall T_1, T_2 \in \Omega : T_1 \subseteq T_2 \Rightarrow V(T_1) \leq V(T_2)$.
- 2) **Аддитивность**: Если T_1 и T_2 не имеют общих внутренних точек, то $V(T_1 \cup T_2) = V(T_1) + V(T_2)$.
- 3) **Инвариантность**: Если T_1 можно совместить с T_2 при помощи параллельного переноса и поворота, то $V(T_1) = V(T_2)$.
- 4) Нормировка: объем прямоугольного параллелепипеда равен произведению длин его трех смежных сторон.

Замечание

Множества из Ω называются кубируемыми или измеримыми по Жордану. Все множества, которые мы рассматриваем, измеримы (без доказательства).

Лемма 4.1

Объём V прямого кругового цилиндра (тела T, ограниченного поверхностью $x^2+y^2=R^2$ и плоскостями z=0,z=h) равен

$$V = \pi R^2 h.$$

1.25 Объем тела вращения. Объем тела с известными площадями поперечных сечений. Объем эллипсоида.

Теорема: Объем тела вращения

Пусть
$$f \in C[a,b], \quad f \ge 0$$
 на $[a,b].$

Объём V тела T, полученного путём вращения подграфика y=f(x) вокруг оси OX, равен:

$$V = \pi \int_a^b f^2(x) \, dx.$$

Объем тела с известными площадями поперечных сечений

Рассмотрим тело T, заключенное между плоскостями x = a, x = b.

Пусть Q(x) - фигура, полученная при сечении тела плоскостью $x = const, (x \in [a, b])$

Пусть Q(x) - фигура, полученная при сечении тела плоскостью $\forall x \in [a,b]$ и функция S(x) = S(Q(x)) непрерывна на [a,b].

Тогда
$$V = \int_a^b S(x) dx$$

Объем элипсоида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

В сечении элипсоида пл-тью $x=x_0$ имеем эллимсоида пл-тью

$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \frac{x_0^2}{a^2} \iff \frac{y^2}{\left[b\sqrt{1 - \frac{x_0^2}{a^2}}\right]^2} + \frac{z^2}{\left[c\sqrt{1 - \frac{x_0^2}{a^2}}\right]^2} = 1$$

$$\Rightarrow$$
 площадь сечения $S(x_0) = \pi b_1 c_1 = \pi bc \left(1 - \frac{x_0^2}{a^2}\right)$

$$\Rightarrow V = \int_{-a}^a S(x) \, dx = \int_{-a}^a \pi bc \left(1 - \frac{x_0^2}{a^2}\right) dx$$

$$= \pi bc \left[\left(a - \frac{a^3}{3a^2}\right) - \left(-a + \frac{a^3}{3a^2}\right)\right] = \pi bc \left(2a - \frac{2}{3}\right) = \frac{4}{3}\pi abc$$

Следствие

Обьем шара радиуса $R\left(a=b=c=R\right),$ есть $\frac{4}{3}\pi R^3$

1.26 Длина кривой, заданной параметрически. Следствия. Вычисление длины окружности.

Определение:

Рассмотрим кривую, заданную параметрически

$$\gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad (1), \quad t \in [\alpha, \beta], \quad \varphi(t), \psi(t) \in C([\alpha, \beta])$$

(кривая - совокупность точек плоскости с координатами $(\varphi(t), \psi(t))$ где $t \in [\alpha, \beta]$)

Если точка $A(\varphi(\alpha), \psi(\alpha))$ ссовпадает с точкой $A(\varphi(\beta), \psi(\beta))$, то кривая называется **замкнутой** Кривая называется **гладкой**, если φ и ψ имеют непрерывные производные, которые не обращаются одновременно в **ноль**

Определение:

Рассмотрим кривую (1). Пусть $\tau = \{t\}_{k=0}^n$ - некоторое разбиение $[\alpha, \beta]$. Составим:

$$l(r) = \sum_{k=1}^{n} \sqrt{\left[\varphi(t_k) - \varphi(t_{k-1})\right]^2 + \left[\psi(t_k) - \psi(t_{k-1})\right]^2}$$

- длина ломаной с вершинами в точках $(\varphi(t_k), \psi(t_k)), (k=0,1,\ldots,n)$ Длина кривой назовем:

$$l = \sup_{\tau \in T} l(\tau)$$

(здесь T - набор всевозможных разбиений $[\alpha,\beta])$

Если l конечно, то кривая называется спрямляемой.

Замечания. (без доказательства)

- 1) Всякая гладкая кривая допускает параметризацию.
- 2) Длина криво обладжает свойствой аддитивности.

Т.е, если l_1 - длина кривой γ между точками A и $B,\ l_2$ - длина кривой между точками B и , то $l=l_1+l_2$ - длина кривой γ между точками A и

- 2 Алгебра
- 2.1 Группы, кольца, поля.