GAN and Feature Representation

Hung-yi Lee

Outline

Generator (Decoder) Discrimi nator

+

Encoder

GAN+Autoencoder

InfoGAN

BiGAN

GAN + Autoencoder

Photo Editing

https://devblogs.nvidia.com/parallelforall/photo-editing-generative-adversarial-networks-2/

Photo Editing

We can tune z to edit image x

How to modify a specific attribute?

GAN+Autoencoder

- We have a generator (input z, output x)
- However, given x, how can we find z?
 - Learn an encoder (input x, output z)

as close as possible

Attribute Representation

Image

Attributes

Arched eyebrows, attractive, brown hair, heavy makeup, high cheekbones, mouth slightly open, no beard, pointy nose, smiling, straight hair, wearing earrings, wearing lipstick, young.

CelebA

5 o'clock shadows, attractive, bags under eyes, big lips, big nose, black hair, bushy eyebrows, male, no beard, pointy nose, straight hair, young.

$$z_{male}$$

$$= \frac{1}{N_1} \sum_{x \in male} En(x) - \frac{1}{N_2} \sum_{x' \notin male} En(x')$$

Female image

$$x \implies En(x) + z_{male} = z' \implies Gen(z')$$

male image

Find the Attributes

$$z \cdot \frac{z_{male}}{\|z_{male}\|} = 0.76$$

- 0.68 Narrow_Eyes
- 0.48 Bangs
- 0.41 Wearing_Hat
- 0.33 Mouth_Slightly_Open
- 0.30 Chubby

- 0.76 Male
- 0.65 Brown_Hair
- 0.56 Big_Nose
- 0.54 Eyeglasses
- 0.53 Wearing_Hat

- 1.64 Pale_Skin
- 1.28 Blond_Hair
- 1.15 Gray_Hair
- 1.06 No_Beard
- 0.74 Narrow_Eyes

- 2.82 Wearing_Hat
- 1.92 Blurry
- 1.48 Bangs
- 0.80 Gray_Hair
- 0.78 Pale_Skin

https://www.youtube.com/watch?v=9c4z6YsBGQ0

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros. "Generative Visual Manipulation on the Natural Image Manifold", ECCV, 2016.

Basic Idea

Back to z

Method 1

$$z^* = arg \min_{z} L(G(z), x^T)$$
 Difference between G(z) and x^T

Gradient Descent

Pixel-wise

> By another network

Method 2

as close as possible

Method 3

Using the results from *method 2* as the initialization of *method 1*

Back to z - Results

Editing Photos

z₀ is the code of the input image

image

Using discriminator to check the image is realistic or not

$$z^* = \arg\min_{z} U(G(z)) + \lambda_1 ||z - z_0||^2 - \lambda_2 D(G(z))$$

Not too far away from the original image

Does it fulfill the constraint of editing?

Editing Photos - Results

Final System

Neural Photo Editing

Andrew Brock

Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston, Neural Photo Editing with Introspective Adversarial Networks, arXiv preprint, 2017

VAE-GAN

Anders Boesen, Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, "Autoencoding beyond pixels using a learned similarity metric", ICML. 2016

- Minimize reconstruction error
- Minimize reconstruction error
- > z close to normal
- Cheat discriminator
- Discriminate real, generated and reconstructed images

VAE Discriminator provides the similarity measure

GAN

Algorithm

- Initialize En, De, Dis
- In each iteration:
 - Sample M images x^1, x^2, \dots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^M$ from encoder
 - $\tilde{z}^i = En(x^i)$
 - Generate M images $\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^M$ from decoder
 - $\tilde{x}^i = En(\tilde{z}^i)$
 - Sample M codes z^1, z^2, \dots, z^M from prior P(z)
 - Generate M images $\hat{x}^1, \hat{x}^2, \cdots, \hat{x}^M$ from decoder
 - $\hat{x}^i = En(z^i)$
 - Update En to decrease $\|\tilde{x}^i x^i\|$, decrease $KL(P(\tilde{z}^i|x^i)||P(z))$
 - Update De to decrease $\|\tilde{x}^i x^i\|$, increase $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$
 - Update Dis to increase $Dis(x^i)$, decrease $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$

Another kind of discriminator:

real gen recon

X

VAE+GAN - Sample

VAE+GAN - Reconstruction

GAN cannot do reconstruction

InfoGAN

What is InfoGAN?

Motivation

77777777707799779958

Regular GAN

(b) Varying c_1 on regular GAN (No clear meaning)

The second reg

- c must have clear influence on x, so the encoder can recover c from x
- > c will be easy to interpret

A specific dimension c_i cannot cooperate with other feature dimensions to have influence.

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

(d) Wide or Narrow

(c) Lighting

(a) Continuous variation: Lighting

(b) Discrete variation: Plate Context

(a) Azimuth (pose)

(b) Presence or absence of glasses

(c) Hair style

(d) Emotion

BiGAN

Jeff Donahue, Philipp Krähenbühl, Trevor Darrell, "Adversarial Feature Learning", ICLR, 2017

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, Aaron Courville, "Adversarially Learned Inference", ICLR, 2017

BiGAN

from encoder or decoder? Discriminator Image x code z

Algorithm

- Initialize encoder En, decoder De, discriminator Dis
- In each iteration:
 - Sample M images x^1, x^2, \dots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^M$ from encoder
 - $\tilde{z}^i = En(x^i)$
 - Sample M codes z^1, z^2, \dots, z^M from prior P(z)
 - Generate M codes $\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^M$ from decoder
 - $\tilde{x}^i = De(z^i)$
 - Update Dis to increase $Dis(x^i, \tilde{z}^i)$, decrease $Dis(\tilde{x}^i, z^i)$
 - Update En and De to decrease $Dis(x^i, \tilde{z}^i)$, increase $Dis(\tilde{x}^i, z^i)$

from encoder or decoder? Discriminator code z Image x Evaluate the difference between P and Q

Optimal encoder and decoder:

$$En(x') = z'$$
 De(z') = x' For all x'

$$De(z'') = x'' \Rightarrow En(x'') = z''$$
 For all z''

$$En(x'') = z''$$

BiGAN

Optimal encoder and decoder:

$$En(x') = z'$$

En(x') = z' De(z') = x'

For all x'

 $De(z'') = x'' \implies En(x'') = z''$

For all z"

Concluding Remarks

GAN+Autoencoder

Next Time: Energy-based GAN

Original Idea

DiscriminatorData (target) distributionGenerated distribution

Discriminator leads the generator

Original Idea

- When the data distribution and generated distribution is the same.
- The output of discriminator will be flat everywhere.
- However, discriminator is often used in pre-training.
 - It contains useful information.
- We always use the discriminator obtained in the last iteration as the initialization of the next step.

Energy-based Model

- We want to find an evaluation function F(x)
 - Input: object x (e.g. images), output: scalar (how good x is)

 \mathcal{X}

- Real x has high F(x)
- F(x) can be a network
- We can find good x by F(x):

Generate x with large F(x)

How to find F(x)?

Evaluation

scalar

Energybased GAN

- We want to find an evaluation function
 F(x)
- How to find F(x)?

In the end

Energy-based Model

- Preview: Framework of structured learning (Energy-based Model)
 - ML Lecture 21: Structured Learning Introduction
 - https://www.youtube.com/watch?v=5OYu0vxXEv8
 - ML Lecture 22: Structured Learning Linear Model
 - https://www.youtube.com/watch?v=HfPw40JPays
 - ML Lecture 23: Structured Learning Structured SVM
 - https://www.youtube.com/watch?v=YjvGVVrCrhQ
 - ML Lecture 24: Structured Learning Sequence Labeling
 - https://www.youtube.com/watch?v=o9FPSqobMys
 - Graphical model & Gibbs sampling
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_ 2015_2/Lecture/MRF%20(v2).ecm.mp4/index.html