Discovering Knowledge in Data

Daniel T. Larose, Ph.D.

Chapter 8 Decision Trees

Prepared by James Steck and Eric Flores

Decision Trees

Decision Trees

- Popular classification method in data mining.
- Decision Tree is a collection of <u>decision nodes</u>, connected by <u>branches</u>, extending downward from <u>root node</u> to terminating <u>leaf nodes</u>.
- Beginning with root node, attributes tested at decision nodes, and each possible outcome results in a branch.
- Each branch leads to a decision node or a leaf node.

Example

- Credit Risk is the target variable
- Customers are classified as either "Good Risk" or "Bad Risk"
- Predictor variables are Savings (Low, Med, High), Assets (Low, High) and Income

Figure 8.1

- Highest-level decision node is <u>root node</u> and tests whether record has Savings = "Low", "Med", or "High"
- Records are firt <u>split</u> according to value of Savings.
- Records with Savings = "Low" go down leftmost branch to next decision node
- Records with Savings = "Med" proceed down middle branch to leaf node. This terminates branch with all records Savings = "Med" classified as "Good Risk". There is no need for another decision node, because our knowledge that the customer has medium savings predicts good credit.
- Records with Savings = "High" go down rightmost branch to another decision node

- Records with Savings = "Low" tested at second-level decision node to determine whether Assets = "Low"
- Those with low assets classified "Bad Risk, while others classified "Good Risk"
- Second-level decision node in right branch tests whether customers with Savings = "High" have Income <= \$30,000
- Those with *Income* less than or equal to \$30,000 classified "Bad Risk". Others classified "Good Risk"
- If no further splits possible, algorithm terminates

- A branch may terminate at a <u>pure leaf node</u>. This means that the subset of records corresponding to that leaf node all have the <u>same target class value</u>.
- A <u>diverse leaf node</u> has records with different target class values ("Good Risk" and "Bad Risk"). Algorithm is possibly unable to split.
- For example, consider the subset of records with Savings = "High" and Income <= \$30,000. Suppose there are 5 such records and all of them have Assets = "Low". Suppose the corresponding leaf node contains 2 "Good Risk" and 3 "Bad Risk" records.
- All these records contain the same predictor values. There is no way to split them further to obtain a pure leaf node.
- In this case, the leaf node is classified as "Bad Risk" with 60% (3/5 records) confidence.

Requirements for using Decision Trees

- Decision Tree is a supervised classification method
- The target variable must be categorical, not continuous.
- Pre-classified target variable must be included in training set
- Decision trees learn by example, so training set should be rich and contain records with varied attribute values
- If training set systematically lacks definable subsets, classification becomes problematic
- There are different measures for leaf node purity
- <u>Classification and Regression Trees (CART)</u> and <u>C4.5</u> are two leading algorithms used in data mining for constructing decision trees (use different measures for leaf node purity)

Classification and Regression Trees

- Classification and Regression Trees (CART) developed by Breiman,
 1984
- Splits at decision nodes are binary, resulting in two branches
- CART recursively partitions data into subsets with similar values for target variable
- Algorithm grows tree by evaluating all predictor variables and choosing optimal split according to "goodness" of candidate split $\Phi(s|t)$

Let $\Phi(s \mid t)$ be a measure of the "goodness" of a candidate split s at node t, where

$$\Phi(s \mid t) = 2P_L P_R \sum_{j=1}^{\# classes} |P(j \mid t_L) - P(j \mid t_R)|$$
and where,
$$t_L = \text{left child node of node } t$$

$$t_R = \text{right child node of node } t$$

$$P_L = \frac{\text{number of records at } t_L}{\text{number of records in training set of the parent}}$$

$$P_R = \frac{\text{number of records at } t_R}{\text{number of records in training set of the parent}}$$

$$P(j \mid t_L) = \frac{\text{number of class } j \text{ records at } t_L}{\text{number of records at } t_L}$$

$$P(j \mid t_R) = \frac{\text{number of class } j \text{ records at } t_R}{\text{number of records at } t_R}$$

 Optimality measure maximizes split over all possible splits at node t

Example

- Predict whether customer is classified "Good" or "Bad" credit risk using three predictor fields (Savings, Assets, Income) according to data in Table 8.2
- All records enter root node, and CART evaluates possible binary splits

Table 8.2

Customer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

- Splits evaluated for Savings, Assets, and Income in Table 8.3
- Income is numeric. CART identifies possible splits based on values it contains
 - Alternatively, the analyst could have categorized it beforehand
- Nine candidate splits, for t = root node

Table 8.3

Candidate Split	Left Child Node t _L	Right Child Node t _R
1	Savings = Low	Savings = {Medium or High}
2	Savings = Medium	Savings = {Low or High}
3	Savings = High	Savings = {Low or Medium}
4	Assets = Low	Assets = {Medium or High}
5	Assets = Medium	Assets = {Low or High}
6	Assets = High	Assets = {Low or Medium}
7	Income <= \$25K	Income > \$25K
8	Income <= \$50K	Income > \$50K
9	Income <= \$75K	Income > \$75K

• Values for components of optimality measure candidate splits, t = root node

Table 8.4

Split	P_{L}	P_R	P(j t _L)	P(j t _R)	2P _L P _R	$Q(s \mid t)$	$\Phi(s \mid t)$
1	.375	.625	G: .333 B: .667	G: .8 B: .2	0.46875	0.934	0.4378
2	0.375	0.625	G: 1 B: 0	G: 0.4 B: 0.6	0.46875	1.2	0.5625
3	0.25	0.75	G: 0.5 B: 0.5	G: 0.667 B: 0.333	0.375	0.334	0.1253
4	0.25	0.75	G: 0 B: 1	G: 0.833 B: 0.167	0.375	1.667	0.6248
5	0.5	0.5	G: 0.75 B: 0.25	G: 0.5 B: 0.5	0.5	0.5	0.25
6	0.25	0.75	G: 1 B: 0	G: 0.5 B: 0.5	0.375	1	0.375
7	0.375	0.625	G: 0.333 B: 0.667	G: 0.8 B: 0.2	0.46875	0.934	0.4378
8	0.625	0.375	G: 0.4 B: 0.6	G: 1 B: 0	0.46875	1.2	0.5625
9	0.875	0.125	G: 0.571 B: 0.429	G: 1 B: 0	0.21875	0.858	0.1877

- Optimality measure <u>maximized</u> to 0.6248, when Assets = "Low" (Left branch), Assets = "Medium or High" (Right branch)
- Left branch terminates to pure leaf node; both records have target value = "Bad Risk"
- Right branch diverse and calls for further partitioning

- Behavior of Optimality Measure
 - Observe values of Optimality Measure components
 - Recall the component values from last example
- When is Optimality Measure large?
 - Measure $\Phi(s|t)$ is large when its main components are large.

(1) Larger values of $\Phi(s \mid t)$ tend to be associated with larger values of its main components : $2P_L P_R$ and $\sum_{j=1}^{\#classes} |P(j \mid t_L) - P(j \mid t_R)|$

When is component Q(s|t) large?

(2) Let
$$Q(s \mid t) = \sum_{j=1}^{\#classes} |P(j \mid t_L) - P(j \mid t_R)|$$

 $Q(s \mid t)$ is large when the distance between

 $P(j | t_L)$ and $P(j | t_R)$ is maximized across each class value

- Q(s|t) is maximized when proportions of records in child nodes are as different as possible
- Maximum occurs when for each class value, two child nodes are pure (one contains all the class observations and the other contains none)
- For Credit Risk = "Good" or "Bad", there are two classes (i.e., k = 2). So, the maximum possible value for component Q(s|t) is k=2.

- What is the maximum value for 2PLPR?
 - Component is maximized when proportion of records in P_L and P_R branches are equal
 - Optimality measure favors balanced splits of records between left and right branches
 - Theoretical maximum is 2(0.5)(0.5) = 0.5, which happens at k=5.

- Additional Data Partitions Using CART
 - Repeat for every decision node that is not a leaf node:
 - Find the training records associated with the decision node.
 - Recompile a table of available candidate splits at the decision node based on its associated training records.

- Additional Data Partitions Using CART
 - In our example, CART grows full tree by iterating twice more.
 Creates candidate splits, and splits records at decision node according to optimality measure (Table 8.5 Page 180)

- Classification Error Rate
 - CART recursively builds tree by following the procedure outlined previously
 - After tree is "fully grown", not all leaf nodes are necessarily homogenous. Some might be diverse leaf nodes
 - Leads to certain level of <u>classification error</u>
 - Consider the records in table below. They cannot be further partitioned, and are classified as "Bad"

Customer	Savings	Assets	Income	Credit Risk
004	High	Low	<=\$30K	Good
009	High	Low	<=\$30K	Good
027	High	Low	<=\$30K	Bad
031	High	Low	<=\$30K	Bad
104	High	Low	<=\$30K	Bad

- Probability that a record in the given leaf node is classified correctly (as "Bad") is 3/5 = 0.60 = 60%
- <u>Classification error rate</u> for leaf node is 0.40 = 40%. 2/5 "Good" records classified incorrectly ("Bad")
- CART calculates classification error rate for tree as the weighted average of the individual leaf error rates
- The weight of each leaf equals to the proportion of records in that leaf

Pruning

- As tree grows, each subset of records to partition becomes smaller and less representative
- Fully grown tree has lowest classification error rate
- However, the resulting model may be too complex, resulting in overfitting the training set
- CART avoids overfitting (memorizing) the training set by <u>pruning</u> nodes and branches that reduce generalizability
- (Self Study) CART algorithm finds adjusted classification error rate that penalizes tree for having too many leaf nodes (too much complexity)
 - Leo Breiman, Jerome Friedman, Richard Olshen, and Charles
 Stone, Classification and Regression Trees, Chapman & Hall/CRC Press, Boca Raton, FL, 1984.

C4.5 Algorithm

- C4.5 is extension of ID3 developed by Quinlan in 1992.
- Similar to CART, C4.5 builds a tree by recursively visiting decision nodes and choosing an optimal split, until no further splits are possible
- Key Differences Between CART and C4.5
 - Unlike CART, C4.5 is not limited to binary splits and produces a tree with variable shape (not necessarily a binary tree)
 - C4.5 produces a separate branch for each categorical value. This
 may result in more "bushiness" than desired, since some values
 may have low frequency or may naturally be associated with
 other values.
 - C4.5 uses a different method to measure the homogeneity occurring at leaf nodes

- C4.5 uses <u>information gain</u> or <u>entropy reduction</u> to select optimal split at each decision node
- In Engineering, information is analogous to signal, and entropy is analogous to noise

• What is Entropy?

- For an event with probability p, the average amount of information in bits required to transmit the result is $-log_2(p)$
- For example, toss a fair coin with p = 0.5. Result of toss transmitted using $-log_2(0.5) = 1$ bit of information. This 1 bit of information represents the result of a toss as 0 or 1 that corresponds to either "HEAD" or "TAIL".
- Another example, toss a fair dice. Consider the event "5" with probability 1/6. We need $-log_2(1/6) = 2.6$ bit of information. So, we need at least 3 bits to represent the result "5" as 101

- Consider a variable X which can have k values with probabilities $p_1, p_2, ..., p_k$
- The smallest number of bits, on average per symbol, needed to transmit a stream of symbols representing the values of X observed is called the <u>Entropy</u> of X defined as:

$$H(X) = -\sum_{j} p_{j} \log_{2}(p_{j})$$

Expected minimum number of bits required to represent X

 In other words, for variables with several outcomes, we use a weighted sum of -log2(p)'s to transmit the result, where weights are equal to the outcome probabilities.

- How Does C4.5 use Entropy?
 - Consider a candidate split S that partitions the training data set T into subsets $T_1, T_2, ..., T_k$
 - The <u>Mean information requirement</u> can be calculated as the <u>weighted</u> sum of <u>entropies associated with each subset Ti</u>

$$H_{\mathcal{S}}(T) = \sum_{i=1}^{k} p_i H(T_i),$$

- \circ where weights Pi represents proportion of records in subset Ti
- $^{\circ}$ H(T_i) is calculated for each subset considering the target variable (classification label) as a random variable with probability of each class equal to proportion of records with that label in subset T_i

- Information Gain
 - C4.5's uses Information Gain

$$gain(S) = H(T) - Hs(T)$$

- It represents the increase in information produced by partitioning training data T according to the candidate split S
- Among all candidate splits at a decision node, C4.5 chooses the split that has the maximum information gain, i.e., gain(S)

Example

 C4.5 is illustrated with the example from Table 8.2 where a customer is classified either "Good" or "Bad" credit risk using three predictor fields

Table 8.2

Customer	Savings	Assets	Income (\$1000s)	Credit Risk
1	Medium	High	75	Good
2	Low	Low	50	Bad
3	High	Medium	25	Bad
4	Medium	Medium	50	Good
5	Low	Medium	100	Good
6	High	High	25	Good
7	Low	Low	25	Bad
8	Medium	Medium	75	Good

As with CART, consider all candidate splits for root node shown below

Table 8.6

Candidate Split		Child Nodes	
1	Savings = Low	Savings = Medium	Savings = High
2	Assets = Low	Assets = Medium	Assets = High
3	Income <= \$2	5,000	Income > \$25,000
4	Income <= \$50	0,000	Income > \$50,000
5	Income <= \$7!	5,000	Income > \$75,000

Alternative split for income:

income<=25k, 25k< income <=50k, 50k<income<=75k, income>75k

Calculate Entropy of training set <u>before splitting</u>, where 5/8 records classified "Good" and 3/8 "Bad"

$$H(T) = -\sum_{j} p_{j} \log_{2}(p_{j}) = -\frac{5}{8} \log_{2}(\frac{5}{8}) - \frac{3}{8} \log_{2}(\frac{3}{8}) = 0.9544 \text{ bits}$$

- Compare each candidate split against H(T) = 0.9544 to determine which split maximizes the information gain
- Candidate I

Split on Savings, "High" = 2 records, "Medium" = 3 records, and "Low" = 3 records:

$$P_{High} = \frac{2}{8}$$
, $P_{Medium} = \frac{3}{8}$, $P_{Low} = \frac{3}{8}$

- Of records Savings = "High", I is "Good" and I is "Bad". P = 0.5 of choosing "Good" record
- Where Savings = "Medium", 3 are "Good", so P = 1.0 choosing "Good"
- Of records Savings = "Low", I is "Good" and 2 are "Bad". This results P = 0.33 choosing "Good"
- Entropy of 3 branches, "High", "Medium", and "Low", are:

$$H(High) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$$

$$H(Medium) = -\frac{3}{3}\log_2(\frac{3}{3}) - \frac{0}{3}\log_2(\frac{0}{3}) = 0$$

$$H(Low) = -\frac{1}{3}\log_2(\frac{1}{3}) - \frac{2}{3}\log_2(\frac{2}{3}) = 0.9183$$

 Combining Entropy for three branches, along with corresponding proportion Pi:

$$H_S(T) = \sum_{i=1}^k P_i H_S(T_i) = \frac{2}{8}(1) + \frac{3}{8}(0) + \frac{3}{8}(0.9183) = 0.5944 \text{ bits}$$

- Information Gain represented by split on Savings attribute is $H(T) H_{Savings}(T) = 0.9544 0.5944 = 0.36$ bits
- How are these measures interpreted?
 - Before split, H(T) = 0.9544 bits. It takes 0.9544 bits on average to transmit the credit risk associated with the 8 records in the data set
 - After split, 0.36 bits less required to transmit the credit risk associated with the 8 records in the data set

- Splitting based on Savings results in HSavings(T) = 0.5944. Now, on average, fewer bits of information required to transmit the credit risk associated with 8 records
- Reduction in Entropy is Information Gain, i.e., 0.9544 0.5944 =
 0.36 bits of information gained by splitting based on Savings
- C4.5 chooses the candidate split with the highest Information
 Gain as an optimal split at the root node
- Information Gain for other 4 candidate splits calculated similarly

- Information Gain for 5 candidate splits occurring at root node are summarized below (pages 175-178 of Larose textbook)
- Candidate split 2 has the highest Information Gain = 0.5487 bits,
 and is chosen for initial split

Table 8.7

Candidate Split	Child Nodes	Information Gain (Entropy Reduction)
1	Savings = Low Savings = Medium Savings = High	0.36 bits
2	Assets = Low Assets = Medium Assets = High	0.5487 bits
3	Income <= \$25,000 Income > \$25,000	0.1588 bits
4	Income <= \$50,000 Income > \$50,000	0.3475 bits
5	Income <= \$75,000 Income > \$75,000	0.0923 bits

- Initial split results in two terminal leaf nodes and one secondlevel decision node
- Records with Assets = "Low" and Assets = "High" have the same target class value, "Bad" and "Good", respectively

Figure 8.6

 C4.5 iterates at Decision Node A, choosing optimal split from list of four possible candidate splits (pages 178-179 of Larose textbook)

- Diagram below shows fully-grown C4.5 tree. It is "bushier" and one level shallower, compared to tree build by CART
- Both algorithms concur on importance of Assets (root level) and Savings (second level)

Figure 8.7

- (Self-Study) After fully growing the tree, C4.5 performs pessimistic postpruning, if necessary. Increases the generality of the tree
 - Mehmed Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, 2nd edn, Wiley-Interscience, Hoboken, NJ, 2011.

Decision Rules

- Decision Trees produce <u>interpretable</u> output in human-readable form
- Decision Rules are constructed directly from a Decision Tree output by traversing the unique path from the root node to a given leaf node
- Decision Rules have the form of <u>IF antecedent THEN consequent</u>
- Antecedent consists of the attributes' values from branches of a given path
- Consequent is the classification of the records contained in a particular leaf node corresponding to a path

Decision Rules (cont'd)

Recall the full decision tree produced by C4.5. Table below shows
 Decision Rules associated with the tree

Table 8.10

Antecedent	Consequent	Support	Confidence
If assets = low	then bad credit risk.	2/8	1.00
If assets = high	then good credit risk.	2/8	1.00
If assets = medium and savings = low	then good credit risk.	1/8	1.00
If assets = medium and savings = medium	then good credit risk.	2/8	1.00
If assets = medium and savings = high	then bad credit risk.	1/8	1.00

- <u>Support</u> of decision rule shows proportion of records in training set resting in leaf node
- <u>Confidence</u> is percentage of records in leaf node, for which decision rule is true
- Although confidence levels reported for this example are 100%, but this is not typical in real-world examples