

AG35 Audio User Guide

LTE Module Series

Rev. AG35_Audio_User_Guide_V1.0

Date: 2018-01-25

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2018-01-25	Thirty XU	Initial

Contents

Co	About the Document		
1	Introduction	١	6
2	Topology o	f Voice	7
	2.1. Top	ology of Voice	7
3	Audio Func	tion Modules	8
	3.1. Tx	Path Function Modules	8
	3.1.1.	TX_VOICE_HPF	8
	3.1.2.	TX_VOICE_MIC_GAIN	8
	3.1.3.	TX_VOICE_SLOPE_FILTER	9
	3.1.4.	TX_VOICE_ ELLIPTICAL_FILTER	9
	3.1.5.	TX_VOICE_ENC_GAIN	9
	3.1.6.	TX_VOICE_IIR_MIC1	9
	3.1.7.	TX_VOICE _SMECNS	. 10
	3.1.8.	TX_VOICE _FIR	. 10
	3.1.9.	TX_VOICE _IIR	. 10
	3.1.10.	TX_VOICE _AIG	11
	3.1.11.	TX_VOICE _DRC	11
	3.1.12.	TX_VOICE _VOL	
	3.2. Rx	Path Function Modules	. 12
	3.2.1.	RX_VOICE _FNS	
	3.2.2.	RX_VOICE _WV(_V2)	. 12
	3.2.3.	RX_VOICE _AIG	. 12
	3.2.4.	RX_VOICE _DRC	. 13
	3.2.5.	RX_VOICE _FIR	
	3.2.6.	RX_VOICE _IIR	. 13
	3.2.7.	RX_VOICE _VOL	
	3.2.8.	RX_VOICE _AVC_RVE	
	3.2.9.	RX_VOICE _ECRX	
		RX_VOICE _DEC_GAIN	
		RX_VOICE _PBE	
		RX_VOICE _HPF	
		RX_VOICE _MBDRC	
	3.2.14.	RX_VOICE _SPKR_GAIN	. 16
4	Voice Call T	uning Process	. 17
5	Appendix A	References	18

Table Index

TABLE 1: RELATED DOCUMENT	18
TABLE 2: TERMS AND ABBREVIATIONS	18

Figure Index

FIGURE 1: VOICE TOPOLOGY	7
FIGURE 2: VOICE TUNING PROCESS	17

1 Introduction

This document mainly introduces how to use the audio function of Quectel AG35 module.

2 Topology of Voice

2.1. Topology of Voice

Figure 1: Voice Topology

3 Audio Function Modules

3.1. Tx Path Function Modules

3.1.1. TX_VOICE_HPF

- Recommendation: Enable
- High-Pass Filter (HPF) 200Hz cut-off frequency for Narrowband (NB) voice calls, and 50Hz cut-off frequency for Wideband (WB) voice calls are recommended.

3.1.2. TX_VOICE_MIC_GAIN

- Recommendation: Enable
- Tx voice MIC gain linearly modifies uplink (MIC) signal level, i.e., increasing or decreasing the uplink volume increase to desired SLR. It can be set with the second parameter of AT+QMIC. (Gain range -∞ to 18dB)

3.1.3. TX_VOICE_SLOPE_FILTER

- Recommendation: Disable
- Slope Filter Applied to Tx voice signal, and is only used for Narrowband (NB) voice calls, i.e., at 8kHz sampling rate.

3.1.4. TX_VOICE_ ELLIPTICAL_FILTER

- Recommendation: Disable
- Elliptical Filter Applied to Tx voice signal, and is only used for Narrowband (NB) voice calls, i.e., at 8kHz sampling rate.

3.1.5. TX_VOICE_ENC_GAIN

- Recommendation: Enable
- It linearly modifies uplink (MIC) signal level, i.e., increasing or decreasing uplink volume to desired SLR. (Gain range -∞ to 18dB)

3.1.6. TX_VOICE_IIR_MIC1

- Recommendation: Disable
- Front-End PCM Filter Allows tuning of sending frequency response (SFR) before ECNS; mainly useful for matching microphone response for multi-microphone ECNS.

3.1.7. TX_VOICE _SMECNS

- Recommendation: Enable
- Single Microphone Echo Cancellation and Noise Suppression- echo cancellation and noise suppression for NB and WB voice on single-microphone topologies. It can be set with AT+QEEC command. (Please refer to Enhanced_Echo_Canceller_and_Noise_Suppression_Tuning for more information.)

3.1.8. TX_VOICE _FIR

- Recommendation: Disable
- This will help the module to pass frequency-response tests and allows improvement of overall intelligibility. It can be used simultaneously with the IIR PCM filter.

3.1.9. TX VOICE IIR

- Recommendation: Enable
- This will help the module to pass frequency-response tests and allows improvement of overall intelligibility. It can be used simultaneously with the FIR PCM filter.

3.1.10. TX_VOICE _AIG

- Recommendation: Disable
- Adaptive Input Gain Performs slow gain adaptation prior to DRC, based on desired RMS level. (Refer to 80-N2736-1 for more information.)

3.1.11. TX_VOICE _DRC

- Recommendation: Enable
- Dynamic Range Control Allows automatic gain control for signal levels outside of a desired range. (Refer to 80-N2719-1 for more information.)

3.1.12. TX_VOICE _VOL

- Recommendation: Enable
- This increases or decreases the uplink volume to desired SLR. It can be set with the first parameter
 of AT+QMIC. (Gain range -∞ to 18dB)

3.2. Rx Path Function Modules

3.2.1. RX_VOICE _FNS

- Recommendation: Disable
- Far-End Noise Suppression Performs suppression of noise from the far end contained in the Rx path voice. (Refer to 80-VU805-1 for more information.)

3.2.2. RX_VOICE _WV(_V2)

- Recommendation: Enable
- Wide Voice Enhancement Performs blind bandwidth extension to provide WB data (16kHz sampling rate) and improve the speech intelligibility.

3.2.3. RX_VOICE _AIG

- Recommendation: Disable
- Adaptive Input Gain Performs slow gain adaptation prior to DRC, based on desired RMS level. (Refer to 80-N2736-1 for more information)

3.2.4. RX_VOICE _DRC

- Recommendation: Enable
- Dynamic Range Control Allows automatic gain control for signal levels outside of a desired range.
 (Refer to 80-N2719-1 for more information)

3.2.5. RX_VOICE _FIR

- Recommendation: Disable
- This will help the module to pass frequency-response tests and allows improvement of overall intelligibility. It can be used simultaneously with the IIR PCM filter.

3.2.6. RX_VOICE_IIR

- Recommendation: Enable
- This will help the module to pass frequency-response tests and allows improvement of overall intelligibility. It can be used simultaneously with the FIR PCM filter.

3.2.7. RX_VOICE _VOL

- Recommendation: Enable
- Rx Volume Step Control It can be set with AT+CLVL command.

3.2.8. RX_VOICE _AVC_RVE

- Recommendation: Enable
- AVC (Automatic Volume Control) Increases Rx volume based on the ambient noise level at the near-end device.
- RVE (Receiving Voice Enhancement) Uses sub-band processing to improve the Signal-to-Noise Ratio (SNR) of Rx voice. (Refer to 80-VM323-1 for more information)
- RVE and AVC cannot be used synchronously.

3.2.9. RX_VOICE _ECRX

- Recommendation: Enable
- Echo Canceler Rx Module It can be set with AT+QEEC command. (Refer to Enhanced_Echo_Canceller_and_Noise_Suppression_Tuning for more information.)

3.2.10. RX_VOICE _DEC_GAIN

- Recommendation: Enable
- Linearly modifies Rx signal level, i.e., increasing or decreasing volume to desired RLR.
 (Gain range -∞ to 18dB)

3.2.11. RX_VOICE _PBE

- Recommendation: Disable
- Psychoacoustic Bass Enhancement (PBE) is implemented in the Rx path, before Multi-Band Dynamic Range Compressor (MBDRC). This feature is part of the audio post-processing set of features that are intended to provide audio enhancement for better user experience. (Refer to 80-N0488-1 for more information.)

3.2.12. RX VOICE HPF

- Recommendation: Enable
- High-Pass Filter 200Hz cut-off frequency for Narrowband (NB) voice calls, and 50Hz cut-off frequency for Wideband (WB) voice calls are recommended.

3.2.13. RX_VOICE _MBDRC

- Recommendation: Enable
- Multiband Dynamic Range Control Allows automatic gain control for desired frequency bands along with low-distortion limiter after the sub-band processing. (Refer to 80-N2719-2 for more information.)

3.2.14. RX_VOICE _SPKR_GAIN

- Recommendation: Enable
- Linearly modifies Rx signal level, i.e., increasing or decreasing volume to desired RLR. It can be set with AT+QRXGAIN command. (Gain range -∞ to 18dB)

4 Voice Call Tuning Process

The following is a flowchart of the tuning process for voice call quality conformance testing. The flowchart does not have a stop point, because some modules may need to be revisited several times. This flowchart is intended only to show a possible procedure but not the only way for tuning.

Figure 2: Voice Tuning Process

5 Appendix A References

Table 1: Related Document

SN	Document Name	Remark
[1]	80-n7634-6_a	80-n7634-6_a_amss_8960_voice_tuning_guide

Table 2: Terms and Abbreviations

	Abbreviation
Gain	AIG
me Control	AVC
e Control	DRC
ion and Noise Suppression	ECNS
Suppression	FENS
Response	FIR
r	HPF
Response	IIR
amic Range Control	MBDRC
dulation	PCM
uency Response	RFR
lness Rating	RLR
uare	RMS
	Rx
e Enhancement	RVE
ency Response	SFR
e Enhancement	RMS Rx RVE

SLR	Sending Loudness Rating
SMECNS	Single Microphone Echo Cancellation and Noise Suppression
Tx	Transmit