Lista 4

Równania różniczkowe 1R

Exercise 1. Załóżmy, że funkcja f = f(t,y) jest klasy C^1 na zbiorze $t_0 \le t < \infty$, $-\infty < y < \infty$ oraz spełnia dodatkowe oszacowanie $|f(t,y)| \le K$ na całym tym zbiorze dla pewnej stałej K > 0. Udowodnić, że rozwiązanie zagadnienia

$$y' = f(t, y), y(t_0) = y_0$$

istnieje dla wszystkich $t > t_0$.

Z zajęć:

Z Picarda mamy istnienie rozwiązania na (β, α) i załóżmy nie wprost, że $\alpha < \infty$. Wtedy mamy $\beta < T_1 < T_2 < \alpha$ i z twierdzenia o wartości średniej:

$$|y(T_2) - y(T_1)| = x'(c)|T_2 - T_1| \le K|T_2 - T_1|.$$

Rozważmy ciąg Cauchy'ego $\{T_n\}$ taki, że $|y(T_n)-x(T_m)|\leq K|T_n-T_m|$. Czyli $\{x(T_n)\}$ jest ciągiem Cauchy'ego. Jesteśmy w przestrzeni Banacha, więc jest on zbieżny. Niech $\lim_{n\to\infty}x(T_n)=x_1$. To samo dla T_n : $\lim_{n\to\infty}T_n=t_1$.

Rozważmy nowe zagadnienie x' = f(t, y) i warunek początkowy to $x(t_1) = x_1$. I powtarzamy procedurę.

Z Picarda cośtam cośtam mam jakiś przedział $[t_0, \alpha_1]$ że jest określone, potem $[\alpha_1, \alpha_2]$ etc. Granicyje i dostaję przedział $[t_0, \alpha)$ na którym jest dobrze określone. Moja teza, to że $y(\alpha)$ isnieje i wynosi

$$y_{\alpha} = y_0 + \int_{t_0}^{\alpha} f(s, y) ds$$

bo ta całeczka faktycznie istnieje:

$$|y(\alpha)| = \left| y_0 + \int_{t_0}^{\alpha} f(s, y(s)) ds \right| \leq |y_0| + \int_{t_0}^{\alpha} |f(s, y)| ds \leq y_0 + \int_{t_0}^{\alpha} K ds = y_0 + K(\alpha - t_0) < \infty$$

sprawdźmy, czy lim y(t) = moja wartość.

$$\lim_{t \to \alpha} [y(t) - y_{\alpha}] = \lim_{t \to \alpha} \left[y_0 + \int_{t_0}^t f(s, y) ds - y_0 - \int_{t_0}^{\alpha} f(s, y) ds \right] = \lim_{t \to \alpha} \int_{t_0}^t f(s, y) ds - \lim_{t \to \alpha} \int_{t_0}^t -y_{\alpha} = 0$$

Czyli śmiga.

Exercise 2. Udowodnij, że poniższe równania uzupełnione warunkiem początkowym y(0) = 1 mają rozwiązanie dla wszystkich $t \ge 0$.

a)
$$y' = t^3 - y^3$$

Tutaj pochodna jest ograniczone jest od góry przez t, a od dołu przez -1,

(b)
$$x' = tx + e^{-x}$$

Exercise 3. Uzasadnij, że zagadnienie $y' = 1 + y^2$, y(0) = 0 nie ma rozwiązania określonego na całej proste.

Znaczy bo to jest y = tant + c XD

Alternatywnie, nie ma górnego ograniczenia na |y(t)|, bo to sobie roooośnie więc nie wyśmignie z tego $\lim |y(t)|$.