Case No.: 58716US002

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A fused polycrystalline material comprising Al₂O₃ and Y₂O₃, wherein at least a portion of the Al₂O₃ is transitional Al₂O₃, and wherein at least a portion of the Al₂O₃ and Y₂O₃ are present as a complex Al₂O₃·Y₂O₃.
- 2. (Original) The fused polycrystalline material according to claim 1, wherein the complex $Al_2O_3 \cdot Y_2O_3$ exhibits a garnet crystal structure.
- 3. (Original) The fused polycrystalline material according to claim 1, wherein the complex Al₂O₃·Y₂O₃ exhibits a perovskite crystal structure.
- 4. (Original) The fused polycrystalline material according to claim 1, wherein the complex Al₂O₃·Y₂O₃ exhibits a microstructure comprising dendritic crystals.
- 5. (Original) The fused polycrystalline material according to claim 4, wherein the dendritic crystals have an average size of less than 2 micrometers.
- 6. (Original) The fused polycrystalline material according to claim 1 comprising at least 50 percent by weight of the Al₂O₃.
- 7. (Original) The fused polycrystalline material according to claim 6, wherein the complex Al₂O₃·Y₂O₃, exhibits a garnet crystal structure.
- 8. (Original) The fused polycrystalline material according to claim 6, wherein the complex Al₂O₃·Y₂O₃, exhibits a perovskite crystal structure.

- 9. (Original) The fused polycrystalline material according to claim 6, wherein the complex Al₂O₃·Y₂O₃ exhibits a microstructure comprising dendritic crystals.
- 10. (Original) The fused polycrystalline material according to claim 9, wherein the dendritic crystals have an average size of less than 2 micrometers.
- 11. (Original) A fused polycrystalline particle comprising Al₂O₃ and Y₂O₃, wherein at least a portion of the Al₂O₃ is transitional Al₂O₃, and wherein at least a portion of the Al₂O₃ and Y₂O₃ are present as a complex Al₂O₃·Y₂O₃.
- 12. (Original) The fused polycrystalline particle according to claim 11, wherein the complex Al₂O₃·Y₂O₃, exhibits a garnet crystal structure.
- 13. (Original) The fused polycrystalline particle according to claim 11, wherein the complex Al₂O₃·Y₂O₃, exhibits a perovskite crystal structure.
- 14. (Original) The fused polycrystalline particle according to claim 1, wherein the complex Al₂O₃·Y₂O₃ exhibits a microstructure comprising dendritic crystals.
 - 15. (Original) A plurality of fused polycrystalline particles according to claim 11.
- 16. (Original) The plurality of fused polycrystalline particles according to claim 15 comprising at least 50 percent by weight of the Al₂O₃, based on the total weight of the respective particle.
- 17. (Original) A plurality of particles having a specified nominal grade, wherein at least a portion of the plurality of particles are particles according to claim 16.
- 18. (Original) The plurality of particles having a specified nominal grade according to claim 17, wherein the complex Al₂O₃·Y₂O₃, exhibits a garnet crystal structure.

- 19. (Original) The plurality of particles having a specified nominal grade according to claim 17, wherein the complex Al₂O₃·Y₂O₃, exhibits a perovskite crystal structure.
- 20. (Original) The plurality of particles having a specified nominal grade according to claim 17, wherein the complex Al₂O₃·Y₂O₃, exhibits a microstructure comprising dendritic crystals.
- 21. (Original) The plurality of particles having a specified nominal grade according to claim 20, wherein the dendritic crystals have an average size of less than 2 micrometers.
- 22. (Original) The plurality of particles having a specified nominal grade according to claim 17, wherein the specified nominal grade is at least one of an ANSI, FEPA, or JIS standard.
- 23. (Original) The plurality of fused polycrystalline particles according to claim 16 comprising at least 75 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline particle.
- 24. (Original) The plurality of fused polycrystalline particles according to claim 16 comprising at least 85 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline particle.
- 25. (Original) The plurality of fused polycrystalline particles according to claim 16 comprising, by weight, the Al₂O₃ in a range from 40 to 90 percent by weight and the Y₂O₃ in a range from 60 to 10 percent by weight, based on the total weight of the respective fused polycrystalline particle.
- 26. (Original) A fused polycrystalline material comprising (a) alpha alumina having an average crystallite size in a range from 1 to 10 micrometers, and (b) complex Y₂O₃·metal oxide present as a distinct crystalline phase.

Case No.: 58716US002

- 27. (Original) The fused polycrystalline material according to claim 26 comprising at least 50 percent by weight of the Al₂O₃.
- 28. (Original) A method of making fused polycrystalline material, the method comprising:

heating a fused polycrystalline material comprising Al₂O₃ and Y₂O₃, wherein at least a portion of the Al₂O₃ is transitional Al₂O₃, and wherein at least a portion of the Al₂O₃ and Y₂O₃ are present as a complex Al₂O₃·Y₂O₃ to provide the fused polycrystalline material according to claim 26.

29. (Original) A method of making fused polycrystalline material according to claim 26, the method comprising:

providing a melt comprising Al₂O₃ and Y₂O₃; cooling the melt to directly provide the fused polycrystalline material.

- 30. (Withdrawn) A fused polycrystalline abrasive particle comprising (a) alpha alumina having an average crystallite size in a range from 1 to 10 micrometers, and (b) complex Y₂O₃·metal oxide present as a distinct crystalline phase.
- 31. (Withdrawn) A plurality of fused polycrystalline abrasive particles according to claim 30.
- 32. (Withdrawn) A plurality of abrasive particles having a specified nominal grade, wherein at least a portion of the plurality of abrasive particles are fused polycrystalline abrasive particles according to claim 31.
- 33. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles have an average crystallite size in a range from 1 to 8 micrometers.

- 34. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles have an average crystallite size in a range from 1 to 5 micrometers.
- 35. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles comprise at least 50 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 36. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles comprise at least 75 percent by weight Al_2O_3 , based on the total weight of the respective fused polycrystalline abrasive particle.
- 37. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles comprise at least 85 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 38. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein at least a portion of the plurality of fused polycrystalline abrasive particles comprise, by weight, the Al₂O₃ in a range from 40 to 90 percent by weight and the Y₂O₃ in a range from 60 to 10 percent by weight, based on the total weight of the respective fused polycrystalline abrasive particle.
- 39. (Withdrawn) The plurality of abrasive particles according to claim 32, wherein the specified nominal grade is at least one of an ANSI, FEPA, or JIS standard.
- 40. (Withdrawn) The plurality of fused polycrystalline abrasive particles according to claim 31 comprising at least 50 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline abrasive particle.

- 41. (Withdrawn) The plurality of fused polycrystalline abrasive particles according to claim 31 comprising at least 75 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 42. (Withdrawn) The plurality of fused polycrystalline abrasive particles according to claim 31 comprising at least 85 percent by weight Al₂O₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 43. (Withdrawn) The plurality of fused polycrystalline abrasive particles according to claim 31 comprising, by weight, the Al₂O₃ in a range from 40 to 90 percent by weight and the Y₂O₃ in a range from 60 to 10 percent by weight, based on the total weight of the respective fused polycrystalline abrasive particle.
- 44. (Withdrawn) An abrasive article comprising binder and abrasive particles, wherein at least a portion of the abrasive particles are fused polycrystalline abrasive particles according to claim 31.
- 45. (Withdrawn) The abrasive article according to claim 44, wherein the abrasive article is selected from the group consisting of a bonded abrasive article, a coated abrasive article, and a non-woven abrasive article.
- 46. (Withdrawn) The abrasive article according to claim 44, wherein the fused polycrystalline abrasive particles comprise at least 75 percent by weight AbO₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 47. (Withdrawn) The abrasive article according to claim 44, wherein the fused polycrystalline abrasive particles comprise at least 85 percent by weight AbO3, based on the total weight of the respective fused polycrystalline based abrasive particle.

Case No.: 58716US002

- 48. (Withdrawn) The abrasive article according to claim 44, wherein the fused polycrystalline abrasive particles comprise, by weight, the AhO3 in a range from 40 to 90 percent by weight and the Y2O3 in a range from 60 to 10 percent by weight, based on the total weight of the respective fused polycrystalline abrasive particle.
- 49. (Withdrawn) A method of making fused polycrystalline abrasive particles, the method comprising:

heating a plurality of fused polycrystalline particles comprising A_2O_3 and Y_2O_3 , wherein at least a portion of the Al_2O_3 is transitional Al_2O_3 , and wherein at least a portion of the Al_2O_3 and Y_2O_3 are present as a complex $Al_2O_3 \cdot Y_2O_3$ to provide the fused polycrystalline abrasive particles according to claim 31.

- 50. (Withdrawn) The method according to claim 49, wherein the fused polycrystalline abrasive particles comprise at least 75 percent by weight AbO₃, based on the total weight of the respective fused polycrystalline abrasive particle.
- 51. (Withdrawn) The method according to claim 49, wherein the fused polycrystalline, abrasive particles comprise at least 85 percent by weight AhO3, based on the total weight of the respective fused polycrystalline abrasive particle.
- 52. (Withdrawn) The method according to claim 49, wherein the fused polycrystalline abrasive particles comprise, by weight, the AbO₃ in a range from 40 to 90 percent by weight and the Y₂O₃ in a range from 60 to 10 percent by weight, based on the total weight of the respective fused polycrystalline abrasive particle.
- 53. (Currently Amended; Withdrawn) A method of making fused polycrystalline abrasive particles according to claim 31, the method comprising:

providing a melt comprising Al₂O₃ and Y₂O₃; shaping the melt into precursor particles;

Case No.: 58716US002

cooling the precursor particles to directly provide fused polycrystalline particles comprising Al_2O_3 and Y_2O_3 , wherein at least a portion of the Al_2O_3 is transitional Al_2O_3 , and wherein at least a portion of the Al_2O_3 and Y_2O_3 are present as a complex $Al_2O_3 \cdot Y_2O_3$; and

heating the fused polycrystalline particles comprising Al₂O₃ and Y₂O₃ to provide the fused polycrystalline abrasive particles according to claim 31.

- 54. (Withdrawn) The method according to claim 53 further comprising grading the fused polycrystalline abrasive particles to provide a specified nominal grade including the fused polycrystalline abrasive particles.
- 55. (Withdrawn) A method of making fused polycrystalline abrasive particles, the method comprising:

providing a melt comprising Al₂O₃ and Y₂O₃;

cooling the melt to provide fused polycrystalline material comprising Al_2O_3 and Y_2O_3 , wherein at least a portion of the Al_2O_3 is transitional Al_2O_3 , and wherein at least a portion of the Al_2O_3 and Y_2O_3 are present as a complex Al_2O_3 :

crushing the fused polycrystalline material comprising Al₂O₃ and Y₂O₃ to provide particles comprising Al₂O₃ and Y₂O₃; and

heating the particles to provide the fused polycrystalline abrasive particles according to claim 31.

- 56. (Withdrawn) The method according to claim 57 further comprising grading the fused polycrystalline abrasive particles to provide a specified nominal grade including the fused polycrystalline abrasive particles.
- 57. (Withdrawn) The method according to claim 57 further comprising grading the fused polycrystalline particles comprising Al₂O₃ and Y₂O₃ prior to heating to provide a specified nominal.

Case No.: 58716US002

58. (Withdrawn) A method of abrading a surface, the method comprising:
contacting at least one fused polycrystalline abrasive partials according to claim 26 with a
surface of a workpiece; and

moving at least one of the fused polyerystalline absolve particle or the contacted surface to absolve at least a portion of the surface with the fused polyerystalline absolve particle.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.