

MediSafe – Stay away and defeat diseases

2022 - 143

Supervisor Mr. Ravi Supunya

Co- Supervisor Mr. Samantha Rajapaksha

External Supervisor

Dr. Shashika Liyanage

IT18077698

Thennakoon T.M.B.C.K

IT19015422

Perera B.A.A.W.S

IT19015040

Rasuni Wageesha

IT19011608

Senanayaka S.A.M.A.B.M

Research problem

- There are some diseases that have arisen at present. (Heart attack, Pneumonia, Wheezing, Dengue, Covid'19)
- □ High cost for diagnosis.
- □ Informal lifestyle and busyness.
- Don't have enough idea about current situation of the country.

Background

Disease and ICD (10 th Sevision) Code		2019		2018		2017		2016		3015		2016		2013		2012		2011		2010°	
		Rank	×	Rank	N.	Rank	100	Rank	*	Rank.	N	Rank	N	Rank	N.	Rarik	×	Rank	%	Rarik	×
schwenicheurt disesse	20-25	1	15.1	. 1	15.0	3	14.2	1	14.1	1	14.2	- 1	14.8	1	14.7	1	18.4	1	13.4	1	12.8
Zoonotic and other bacterial diseases	A20-A49	2	12.1	3	10.9	- 2	11.5	3	11.6	3	9.7	- 3	9.1	6	7.9	6	7.1	6	6,7	6	6.6
Neo plasms ¹	C00 - D48	3	11.7	2	11.7	3	10.5	2	12.0	2	11.0	2	11.7	2	11.2	2	11.6	2	11,8	2	11.1
Success of the respiratory system excluding diseases of upper respiratory tract, preumonia and influence	580 - 122, 140 - 198	/ 4	30.7	- 3	9.9	.4	9.8	- 5	8.3	4	9.2	6	8.0	: 5	7.9	5	72	5	6.9	5	7.0
Presmonia	112 - JUS	5	8.0	7	7.8	-6	8.2	7	5.4	. 7	7.5	.7.	6.6	. 8	6.1	8	5.7	9	5.2	9	5.2
Pulmosary heart disease and diseases of the pulmosary circulation	R8-61	6	7.6	- 6	7.9	5	8.5	4	8.7	5	8.3	4	8.6	(4)	8.4	3	9.0	4	8.7	3	8.7
Cerebrovascular disease	193 - 199	7	7.6	- 5	E.O	- 27	3.7	. 6	8.2	- 8	8.2	5	B.4	1	8.5	4.	8.7	3	8,7	4	8.7
Diseases of the urinary system	N00 - N39	8	5.8	8	5.8	1	5.9	8	6.3	8	6.2	8	6.3	7	5.2	7	6.3	7	5,7	8	5.7
Diseases of the gastro-intestinal tract	826 - K92	9	5.0	9	5.1	. 9	5.1	9	5.5	9	5.3	9	5.7	9	5.7	9	5.4	8	5.4	7:	6.2
Traumatic Injuries	500 - T19, W54	30	3.5	10	3.9	10	3.8	10	3.9	10	3.8	10	3.5	11	3.3	11	3.7	11	3,5	11	3.7
Disease of the nervous system	G00 - G38	11	13	13	14	14	1,4	14	1.4	17	1.3	16	14	15	1.4	16	1.5	19	1.4	18	1.6
Symptoms, signs and abnormal clinical and labo	R00 - R95	12	13	11	1.5	12	1.5	12	1.6	13	7.3	11	3.2	10	4.8	10	4.5	10	4.1	10	5.0
Diabetes mellitus	E10-E34	13	13	12	1.4	11	17	11	1.8	13	1.5	13	1.6	13	1.6	14	1.7	14	1.9	16	1.7

¹ includes deaths reported from the Cancer Hospital (not analysed by site and type of neoplasm

Source: Medical Statistics Unit Ministry of Health http://www.health.gov.lk/moh_final/english/public/elfinder/files/publications/AHB/AHS%202019.pdf

Excludes Mulintinu District

Overall solutions - 50%

- Developed an Arduino-based device that detects certain types of symptoms to diagnose certain heart and lung related diseases.
- Use some machine learning based techniques to identify diseases. and clarify it.
- Show diseases spread rate to the user.
- Developing a mobile application and web application to facilitate patient usage.

Research Objectives

Implement a device to get parameters of the patient and identify Covid'19. (Possibility as a percentage)

Disease level wise identification and provide suggestions/recommendations to reduce the risk level.

Identify the exact lung disease among other lung diseases.

Identify the three major diseases spread rate in Sri Lanka.

Focusing areas

IT18077698

Thennakoon T.M.B.C.K

Specialization | Information Technology

Research question

Identify
 all measurements using
 single device with few
 minutes.

 Simple and userfriendly
 web application and mobile application. ☐ Provide probability to infect Covid 19 & Give what are the necessary actions need to get by patient.

Get necessary inputs and Generate healthy recommendations to day-to-day life.

IT18077698 | Thennakoon T M B C K | 2022-143

Achieved - 50%

System diagram

Latest technologies in MediSafe

Requirements

Functional

- Interoperability
- Accuracy
- Compliance

Non - functional

- Maintainability
- Manageability
- Usability
- Integrity

- Checking the manual again with the doctor for data obtained from the tool and what is provided in the processed data output.
- Periodically check the accuracy of the data obtained by the device
- Identifying hazards and hazardous situations associated with a medical device.

Medisafe device

File Edit Sketch Tools Help If int count - 0; 17 int temp bps: 18 //-----Firebase------20 #include <ArduinoJson.h> 21 #include "FirebaseESP8266.h" 22 #include <ESP8266WiFi.ho 23 // Set these to run example. 24 #define FIREBASE_HOST "medisafe-research-default-rtdb.firebase10.com/unit_1" 25 #define FIREBASE AUTH "qjnABtFp7TrCzENApcxBGQSeI21kghAc10PwrBB5" 26 #define WIFI SSID "supun" 27 #define WIFI_PASSWORD "supun111191" 28 FirebaseData firebaseData; 29 30 #define SENSOR D4 31 long currentMillis = 0; 32 long previousMillis = 0; 33 int interval - 1000; 34 //boolean ledState = LOW: 35 float calibrationFactor = 4.5: 36 volatile byte pulseCount; 37 byte pulselSec = 0; 38 float flowRate; 39 unsigned int flowMilliLitres; 40 unsigned long totalMilliLitres; 41 // -----led 43 #define REDLED D5 Arduino IDE MBBula), 80 MHz, Flash, Disabled (new aborts on dom), Disabled, All SSL ciphers (most compatible), 32KB cache + 32KB IRAM (balanced), Use pgm_tead macros for IRA


```
C:\WINDOWS\system32\cmd.exe
(covid) C:\Users\user>cd C:\Users\user\Desktop\24-04-2022\covid
(covid) C:\Users\user\Desktop\24-04-2022\covid>C:
(covid) C:\Users\user\Desktop\24-04-2022\covid>python Runcovid.py
type oxygen level : 90
type your pulse : 96
type your Temperature : 90
confidence : 100.0 %
The probability of having a covid infection is 35.36000000000004%
Traceback (most recent call last):
 File "Runcovid.py", line 1, in <module>
   from covid import predicto
ImportError: cannot import name 'predictc' from 'covid' (C:\Users\user\Desktop\24-04-2022\covid\covid.py)
(covid) C:\Users\user\Desktop\24-04-2022\covid>
                                                                             Covid prediction
                                                                                     output
```


IT18077698 | Thennakoon T M B C K | 2022-143

Self work breakdown structure

Individual overleaf conference paper

IT19015422

Perera B.A.A.W.S

Specialization | Information Technology

Research question

 How to identify the people who are suffering in such lung and heart diseases (level wise)

> How to check current situation in cost effectively

 How to provide easily recommendations via web/ mobile application to the user

What are the solutions we can give due to shortage of medicines

IT19015422 | Perera B.A.A.W.S | 2022-143

Achieved - 50%

System diagram

Progress

- Study the technology
- Data collecting
- Data analysis
- Find proper algorithm (Knearest neighbors)
- Train the model
- Get the output as level
 wise related to the disease

Completed(50%)

90% Progress presentation

- Provide suggestions and recommendations to the user
- Web application implementation
- Mobile application implementation

- Completion of mobile application
- Completion of web application
- Integrate member components together

Final Presentation

Latest technologies in MediSafe

- https://data.world/informatics -edu/heart-disease-prediction
- https://www.kaggle.com/data sets/johnsmith88/heartdisease-dataset

- K nearest neighbor algorithm
- Libraries pandas, sklearn, joblib, numpy

- Vs Code
- Jupyter notebook
- Anaconda prompt

IT19015422 | Perera B.A.A.W.S | 2022-143

Requirements

Functional

- Interoperability
- Authentication.
- Report generate
- User friendly

Non - functional

- Quality
- Durability
- Security
- Privacy

- Entering current situation features difficult to known by person . So that those features will get from the implemented device. (In future – 90%)
- ✓ Adults are not well fluent in new technologies.
- ✓ Validity of the disease level will depend on the user inputs.

Model training

```
From sklearn.wodel selection import train test split
     from sklearn.preprocessing import StandardScaler
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import classification report, confusion matrix
     import pendes as pd
     dataframe_H = pd.read_csv('Heart_attack.csv')
     dataframe P - pd.read csv('Pneumonia.csv'
     dataframe_W = pd.read_csv('Wheexing.csv')
11
          'age', 'Gender', 'Cholesterol', 'Pulse', 'Smoke', 'Alcohol', 'Risk'
14
15
17
          'age', 'Gender', 'Shortness of breath', 'Pulse', 'Smoke', 'Alcohol', 'Risk'
15
19
21
         'age', 'Gender', 'Anxiety', 'Shortness_of_breath', 'Smoke', 'Alcohol', 'Risk'
22
23
     XH - dataframe H.ilocf:, :-11.values
     yH = dataframe_H.iloc[:, 6].values
     XP - dataframe_P.iloc[:, :-1].values
     yP - dataframe P.iloc[:, 6].values
     XW = dataframe W.iloc[:, :-1].values
     yW - dataframe W.iloc[:, 6].values
     X trainH, X testH, y trainH, y testH = train test split(XH, yH, test size=0.20)
    X_trainP, X_testP, y_trainP, y_testP = train_test_split(XP, yP, test_size=0.20)
```

```
* predictov 5 ×
    MANAGEMENT AND THE PARTY OF THE PARTY OF
X trainH, X testH, y trainH, y testH - train test split(XH, yH, test size-0.20)
X_trainP, X_testP, y_trainP, y_testP = train_test_split(XP, yP, test_size=0.20)
X_trainW, X_testW, y_trainW, y_testW - train_test_split(XN, yW, test_size-0.20)
scalerH - StandardScaler()
scalerP - StandardScaler()
scalerW = StandardScaler()
scalerH.fit(X trainH)
scalerP.fit(X trainP)
scalerW.fit(X_trainW)
X trainH - scalerH.transform(X trainH)
X testH - scalerH.transform(X testH)
X trainP - scalerP.transform(X trainP)
X testP - scalerP.transform(X testP)
X trainW = scalerW.transform(X trainW)
X testW = scalerW.transform(X_testW)
classifierH - KNeighborsClassifier(n_neighbors-6)
classifierP - KNeighborsClassifier(n neighbors-6)
classifierW - KNeighborsClassifier(n neighbors-6)
classifierH.fit(X trainH, y trainH)
classifierP.fit(X trainP, y trainP)
classifierW.fit(X_trainW, y_trainW)
scaler fileH = "scalerH.save"
```

```
predict.py 5 ×
predict.py > ...
59
     classifierH.fit(X trainH, y trainH)
      classifierP.fit(X trainP, y trainP)
      classifierW.fit(X_trainW, y_trainW)
63
      scaler fileH = "scalerH.save"
      scaler_fileP = "scalerP.save"
      scaler fileW = "scalerW.save"
      model fileH = "model fileH.save"
      model fileP = "model fileP.save"
      model fileW = "model fileW.save"
72
73
      jb.dump(scalerH, scaler fileH)
      jb.dump(scalerP, scaler fileP)
      jb.dump(scalerW, scaler fileW)
      ib.dump(classifierH, model fileH)
      jb.dump(classifierP, model fileP)
      jb.dump(classifierW, model_fileW)
81
      # y predict = classifier.predict(X test)
83
     # # Print results:
      # print(confusion_matrix(y_test, y_predict))
     # print(classification report(y test, y predict))
```

```
Levelimplementation
                           predict.py 5
                 from sklearn.model selection import train test split
                 from sklearn.preprocessing import StandardScaler
                 from sklearn.neighbors import KNeighborsClassifier
                 #from sklearn.metrics import classification report, confusion matrix
                 import joblib as jb
                 import pandas as pd
                 scaler fileH = "scalerH.save"
                 scaler fileP = "scalerP.save"
                 scaler fileW = "scalerW.save"
            10
            11
                 model fileH = "model fileH.save"
            12
                 model fileP = "model fileP.save"
            13
                 model fileW = "model fileW.save"
            14
            15
                 scalerH = jb.load(scaler fileH)
            16
                 scalerP = jb.load(scaler fileP)
            17
                 scalerW = jb.load(scaler fileW)
            18
            19
                 classifierH = jb.load(model fileH)
            20
                 classifierP = jb.load(model fileP)
            21
                 classifierW = jb.load(model fileW)
            22
            23
```

```
run.pv 4 × predict.pv 5
run.py > ...
 23
 25
      print('
                                USER DETAILS
 26
 27
      print(
      age = input('Enter your age : ')
 28
      Gender = input('Enter your gender (1 - Male, 0 - Female) : ')
      Cholesterol = input('Enter your Cholesterol value : ')
      Pulse = input('Enter your pulse : ')
      Smoke = input('Are you smoking (1 - Smoking , 0 - Not smoking ) : ')
      Alcohol = input('Alcohol usage (1 - Yes, 0 - No) : ')
      Shortness of breath = input('Have any Shortness_of_breath (1 - Yes, 0 - No) : ')
      Anxiety - input('Have any Anxiety (1 - Yes, 0 - No) : ')
      valH = [age, Gender, Cholesterol, Pulse, Smoke, Alcohol]
      valP = [age, Gender, Shortness of breath, Pulse, Smoke, Alcohol]
      valW = [age, Gender, Anxiety, Shortness of breath, Smoke, Alcohol]
      valH = scalerH.transform([valH])
      valP = scalerH.transform([valP])
      valW = scalerH.transform([valW])
      v predictH = classifierH.predict(valH)
      y predictP = classifierH.predict(valP)
      y predictW = classifierH.predict(valW)
      print('')
      print(' Your diseases levels :')
      print('----')
      print('Heart Attack :',y predictH)
      print('Pneumonia :',y predictP)
      print('Wheezing :',y_predictW)
 53
```

Output \WINDOWS\system32\cmd.exe (test) C:\Users\hp>cd E:\Research\new final\disease (test) C:\Users\hp>e: (test) E:\Research\new final\disease>python run.py USER DETAILS Enter your age : 35 Enter your gender (1 - Male, 0 - Female) : 0 Enter your Cholesterol value : 255 Enter your pulse : 98 Are you smoking (1 - Smoking , 0 - Not smoking) : 0 Alcohol usage (1 - Yes, 0 - No) : 0 Have any Shortness of breath (1 - Yes, 0 - No) : 0 Have any Anxiety (1 - Yes, 0 - No) : 0 Your diseases levels : Heart Attack : ['Medium'] Pneumonia : ['Low'] Wheezing : ['Low']

(test) E:\Research\new final\disease>

Self work breakdown structure

Individual overleaf conference paper

https://www.overleaf.com/project/626e65c27e9110853ed631c7

IT19015040

Rasuni Wageesha H.A

Specialization | Information Technology

Research question

There are many different types of lung diseases and diagnosing one might be difficult.

Achieved - 50%

System diagram

Progress

- Collecting diseases images.
- Identify how to develop the system.
- Trained images and generated a model using CNN.
- Got the output using trained module for test data.

Completed(50%)

90% Progress presentation

- Provide details of the disease.
- Web application implementation.
- Mobile application implementation.

- Completion of mobile application.
- Completion of web application.
- Integrate member

COI

Final Presentation

Technologies in MediSafe

Requirements

Functional

• Upload the lung image to the system.

Non – functional

- Performance
- Availability
- Reliability

| IT9015040 | Rasuni Wageesha H.A | 2022-143

Normal chest X rays

PNEUMONIA Chest Xray

Model training

```
□ □ □ 08 -
      File Edit Selection View Go Run Terminal Help
                                                                                                                                                                                    train.py - IT19015040 - Visual Studio Code
                 EXPLORER
                                                                                                                                             train.py M 🗶 📳 trainimq.ipynb U
                                                                                                                                                                                                                                                                                                                                                                                                                            ta III ...
                                                                                                  predict.py M
                                                                                                   train py
                                                                                                                                                                                                                                                                                                                                                                                                           Services of the services of th
                                                                                                                   image batch, labels batch = next(iter(normalized ds))
               ~ predict
                                                                                                                    first image = image batch[0]
                 covid 2.jpeq
                 COVID19(463).jpg
                                                                                                                  print(np.min(first image), np.max(first image))
                 Lung Opacity-4664.png
                 person1_virus_6.jpeq
                                                                                                                   num classes = 4
                 person1 virus 7.jpeg
                                                                                                                   model = Sequential([
                 · predict.py
                                                                                                                        layers.experimental.preprocessing.Rescaling(1./255, input shape=(img height, img width, 3)).
                > variables
                                                                                                                        layers.Conv2D(16, 3, padding-'same', activation-'relu'),
                F labels.txt
                                                                                                                       layers.MaxPooling2D(),
               saved_model.pb
                                                                                                                        layers.Conv2D(32, 3, padding='same', activation='relu'),
              () signature ison
                                                                                                                        layers.MaxPooling2D(),
              · train.py
                                                                                                                        layers.Conv2D(64, 3, padding='same', activation='relu'),
                                                                                                                        layers.MaxPooling2D(),
              training.ipynb
                                                                                                                        layers.Flatten(),
                                                                                                                        layers.Dense(128, activation='relu'),
                                                                                                                        layers.Dense(num_classes)
                                                                                                                 #using adam optimizer
                                                                                                                   model.compile(optimizer-'adam',
                                                                                                                                                      loss=tf.keras.losses.SparseCategoricalCrossentropy(from logits=True),
                                                                                                                                                     metrics=['accuracy'])
                                                                                                                   model.summary()
                                                                                                                  checkpoint path = "training 1/cp.ckpt"
                                                                                                                   checkpoint_dir = os.path.dirname(checkpoint_path)
                                                                                                                  cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
                                                                                                                                                                                                                                              save weights only-True,
In 84, Col 22 Spaces: 2 UTF-8 UF Python P D
```

Model training

Pre-processing

```
File Edit Selection View Go Run Terminal Help
                                                                                                                                                   predict.py - IT19015040 - Visual Studio Code
                                                                                                                                                                       th III --
                                       predict.py M X 🚺 train.py M
                                                                         training pynb U
    ∨ IT19015040
                                       predict > predict.py
     predict
                                                  def process image(self, image, input shape) -> np.ndarray:
      covid 2 peg
      COVID19(463).ipg
                                                      Given a PIL Image, center square crop and resize to fit the expected model input, and convert from [8,2]
      Lung Opacity-4664.png
      person1 virus 6 peq
                                                      width, height = image.size
                                                      # ensure image type is compatible with model and convert if not
      person1 virus 7 ipeq
                                                      if image.mode !- "RGB":
      predict.pv
                                                          image - image.convert("RGB")
     > variables

    labels.txt

                                                      if width != height:
     saved model.pb
                                                          square size = min(width, height)
     () signature ison
                                                          left = (width - square size) / 2
     train.py
                                                          top = (height - square size) / 2
                                                          right = (width + square size) / 2
     trainimq.ipynb
                                                          bottom = (height + square_size) / 2
                                                          image - image.crop((left, top, right, bottom))
                                                      input width, input height - input shape[1:3]
                                                      if image.width != input_width or image.height != input_height:
                                                          image = image.resize((input_width, input_height))
                                                      ■ make 0-1 float instead of 0-255 int (that PIL Image loads by default)
                                                      image - np.asarray(image) / 255.0
                                                      return np.expand_dims(image, axis=0).astype(np.float32)
                                                  def process output(self, outputs) -> dict:
                                                      out_keys = ["label", "confidence"]
                                                      results = {}
P IT19015040-kingDisease*+ ◆ ◎ 0 ▲ 0
                                                                                                                                    In 63, Col 72 Spaces: 4 UTF-8 CRLF Python R Q
```

Output

Self work breakdown structure

Individual overleaf conference paper

https://www.overleaf.com/project/626ea0e7a31e802185bd3e61

IT19011608

Senanayaka S.A.M.A.B.M

Specialization | Information Technology

2022-143

Research question

• Identify the diseases count on the sri lanka

Target domain

Achieved - 50%

System diagram

Progress

- Study the technology
- Data collecting
- Data analysis
- Find proper algorithm
- Train the model
- identify the spread rate count

Completed(50%)

90% Progress presentation

- Create API connection
- Web application implementation
- Mobile application implementation

- Completion of mobile application
- Completion of web application
- Integrate member components together

Final Presentation

Technologies in MediSafe

Requirements

Functional

- Identify the spread rate count
- Display the data healthcare dashboard

Non – functional

- Accuracy
- Availability

Pre- processing stage

Model training stage

```
Timetizm.igyitb > 😍 model = Seguential@fmodel.addf.5TM(50, input_shape=(t/ain:Xahape(1), train:Xahape(2)))-6model.addf.Cense(1))-4model.compile@css="mae's optimizer="adam
Code + Markdown | D Run All | ■ Clear Outputs of All Cells | □ Sected | □ Section | ■ Variables | ■ Outline
      model - Sequential()
      model.add(1579(50, input shape (train X.shape[1], train X.shape[2])))
      model.add(ownse(1))
      model.compile(loss='mae', optimizer='adam')
      history = model.fit(train X, train Y, epochs=50, batch size=32, validation data=(test X, test y), verbose=2, shuffle=+alse)
     pyplot:legend()
  Output exceeds the size Limit. Open the full output data in a text editor
  229/229 - 4s - loss: 0.0139 - val loss: 0.0111 - 4s/epoch - 17ms/step
  279/229 - is - loss: 0.0110 - val loss: 0.0009 - 712ms/epoch - 3ms/step
  229/229 - 1s - loss: 0.0092 - val loss: 0.0093 - 678ms/epoch - 3ms/step
  Epoch 4/50
  229/229 - 1s - loss: 0.0080 - val loss: 0.0088 - 059ms/epoch - 3ms/step
  229/229 - 1s - loss: 0.0086 - val loss: 0.0088 - 612ms/epoch - 3ms/step
  229/229 - 1s - loss: 8.0087 - val loss: 0.0088 - 649ms/cpoch - 3ms/stop
  229/229 - 1s - loss: 0.0086 - val loss: 0.0089 - 635ms/epoch - 3ms/step
  Epoch 8/50
  229/229 1s loss: 0.0086 - val loss: 0.0095 - 631ms/epoch - 3ms/step
  Enoch 9/59
  229/229 - 15 - loss: 0.0000 - val loss: 0.0007 - 60005/epoch - 505/step
```

Output

```
Select C\Windows\system32\cmd.exe
                                                                                                                                                                                                   ce to use GPU. Follow the guide at https://www.tensorflow.prg/install/epu for how to download and setup the required libraries for your platform.
   predicted date: 2023/05/30 spread rate count is: 1043
```

Self work breakdown structure

Individual overleaf conference paper

ttps://www.overleaf.com/project/626ea4545e41706fc4ffa8d9

Commercialization

Thank You

Do you have any questions?