

### A thinking question & some data

- Q?: How does HDL change as people age?
- Data: Jackson Heart Study (JHS)
  - 500 randomly sampled African American participants from Jackson, MS
  - Measures:
    - HDL: Fasting High Density Lipoprotein Chol (mg/dl) (good)
    - Age: in years (bad <sup>⊕</sup>)
  - What does the data look like?













### What do we usually get to see in lit?

- Unfortunately too common:
   "Age was significantly related to HDL, p<0.05"</li>
- If you're lucky:

  "Age was significantly related to HDL; slope=0.16, p<0.05"
- If you're really lucky:



# **EDA lecture Overview**

- Part 0: A thinking question HDL vs Age
- Part 1: Intro and Basic EDA
  - Ideas & Basics
  - Some tools:
    - Histograms, Boxplots, Quantile-Quantile (Q-Q) plots
    - Scatterplots & Scatterplot matrices
    - Descriptive Statistics
- Part 2: Gaussian (Normal) distribution
  - Mean, variance, standard deviation.
  - Standardization / Z values.
- Part 3: Why can't we all just be normal?
  - Skewness, means vs medians, etc.

# **EDA Introduction: Doing research**

- Research is a process. It is iterative. It is messy and full of uncertainty.
- <u>Scientific Method</u>: (inductive from empirical data to theory):
  - 1. Define the question
  - 2. Gather information and resources (observe)
  - 3. Form hypothesis
  - 4. Perform experiment and collect data
  - **5.** Analyze this! (this class)
  - 6. Interpret data and draw conclusions that serve as a starting point for new hypothesis
  - 7. Publish results
  - 8. Retest (frequently done by other scientists)

Crawford S, Stucki L (1990), "Peer review and the changing research record", "J Am Soc Info Science", vol. 41, pp 223-228



# **EDA Introduction: Data Analysis**

• Data Analysis is also a **process**. It is **iterative**. It examines both patterns AND **uncertainty**.

#### **General Data Analysis Steps:**

- 1. Get the raw data in and clean it
- 2. Exploratory Data Analysis (EDA)
- 3. Initial estimation / inference
- 4. Determine primary models/output
- 5. Diagnostics

(lather, rinse, repeat)

### **Exploratory data analysis**

- "An approach to analysing data for the purpose of formulating hypotheses worth testing, complementing the tools of conventional statistics for testing hypotheses"

John Wilder Tukey 1915-2000 (aged 85)

- Tukey held that too much emphasis in statistics was placed on hypothesis testing (confirmatory data analysis).
- · Some objectives of EDA are to:
  - Suggest hypotheses about the causes of observed phenomena
  - Assess assumptions on which statistical inference will be based
  - Support the selection of appropriate statistical tools and techniques
  - Provide a basis for further data collection
- Many EDA techniques have been adopted into data mining

<sup>•</sup> Conversation with John W. Tukey and Elizabeth Tukey, Luisa T. Fernholz and Stephan Morgenthaler, Statistical Science, Volume 15, Number 1 (2000), 79-94.

<sup>•</sup> Exploratory data analysis is an attitude, a flexibility, and a reliance on display, NOT a bundle of techniques, and should be so taught, John W. Tukey The American Statistician, 34(1), (Feb., 1980), pp. 23-25.

# **Exploratory data analysis**

Tukey argued data analysis involves 2 phases

- 1. Exploratory data analysis
  - Used to understand the data
    - to see patterns in the data
    - · to find violations of statistical assumptions
  - Mostly graphical
  - Helps develop hypotheses
  - Data driven
- 2. 'Confirmatory' data analysis
  - Inferential Statistics
    - Estimates, confidence intervals, hypotheses tests, etc.
  - EDA and theory driven



- EDA questions
  - What is a typical value?
  - What is the uncertainty / how spread out are the data?
  - What is a good distributional fit for the data?
  - What values may be inappropriate?
  - What are the relationships between two attributes?
  - Etc.
- You must build an understanding from EDA to effectively use any confirmatory statistical tools
  - Never run a regression without plotting the data first
  - Etc.
- The specific form of EDA depends on the data and questions at hand.

# Some example data: JHS

- Jackson Heart Study:
- http://jhs.jsums.edu/jhsinfo/
- Purpose: explore the reasons for CVD disparity and uncover new approaches to reduce it.

HDL





currsmoke

waist

male

3: Do you now smoke cigarettes

3a: Waist to nearest cm

Gender==Male

request actual JHS research datasets

# JHS example data: First 10 obs

| id | age   | bmi   | bmigp | glucose | diabetes | bpmed | hd1 | 1d1 | tg  |
|----|-------|-------|-------|---------|----------|-------|-----|-----|-----|
| 1  | 55.13 | 25.97 | 1     | 84      | 0        | 1     | 55  | 139 | 142 |
| 2  | 63.03 | 62.61 | 2     | 116     | 0        | 1     | 52  | 149 | 69  |
| 3  | 59.04 | 26.61 | 1     | 94      | 0        | 0     | 62  | 138 | 72  |
| 4  | 45.99 | 32.97 | 2     | 92      | 0        | 0     | 36  | 124 | 79  |
| 5  | 40.95 | 29.48 | 1     | 80      | 0        | 0     | 38  | 118 | 71  |
| 6  | 56.96 | 23.76 | 0     | 89      | 0        | 0     | 42  | 91  | 85  |
| 7  | 36.05 | 24.01 | 0     | 80      | 0        | 0     | 51  | 186 | 140 |
| 8  | 46.12 | 31.92 | 2     | 106     | 0        | 0     | 37  | 135 | 78  |
| 9  | 63.03 | 28.85 | 1     | 119     | 1        | 1     | 39  | 145 | 172 |
| 10 | 50    | 35    | 2     | 88      | 0        | 0     | 48  | 84  | 49  |

| educgp | chd | alcohol | egfr   | leptin | systolic | diasto~c | currsm~e |
|--------|-----|---------|--------|--------|----------|----------|----------|
| 4      | 0   | 1       | 72.8   | 4.5    | 113      | 79       |          |
| 2      | 0   | 0       | 87.09  | 52.1   | 137      | 75       |          |
| 2      | 0   | 1       | 78.24  | 29.3   | 111      | 54       |          |
| 2      | 0   | 1       | 110.92 | 22.9   | 107      | 79       | N        |
| 3      | 0   | 1       | 84.26  | 23.2   | 121      | 81       |          |
| 4      | 0   | 0       | 95.26  | 2.9    | 126      | 87       |          |
| 3      | 0   | 1       | 94.68  | 5.3    | 119      | 90       |          |
| 4      | 0   | 1       | 92.84  | 49.4   | 110      | 76       |          |
| 1      | 0   | 0       | 77.23  | 17.2   | 144      | 78       | N        |
| 2      | 0   | 0       | 91.26  | 41.3   | 118      | 79       |          |

# **Some JHS Questions**

- Some EDA questions
  - What is a typical value for HDL?
  - How spread out are the HDL?
  - -What is a good distributional fit for HDL?
  - What values of HDL may be inappropriate?
  - Is there a relationship between HDL & Age?
  - Do these things vary across Gender?



# "Short" Digression on:

- Measures of Central Tendency –(Means & Medians)
  - Sample Versus Population -
    - Distributional Shapes -

# Sample Mean $\overline{X}$

The Average or Arithmetic Mean

Shorthand notation  $\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$ 

 $= 99 \, \text{mmHg}$ 

- Add up data, then divide by sample size (n)
  - The sample size n is the number of observations (pieces of data)
- Example: n = 5 Systolic blood pressures (mmHg)

$$X_1 = 120$$

$$X_2 = 80$$
  
 $X_3 = 90$ 

$$X_4 = 110$$

$$X_5^4 = 95$$

- Sensitive to extreme values
  - One data point could make a big change in sample mean

120 + 80 + 90 + 110 + 95

- Why is it called the *sample* mean?
  - To distinguish it from population mean

# Population versus Sample

- Population—The entire group you want information about
  - For example: The blood pressure of all 18-year-old female college students in the United States
- Sample—A part of the population from which we actually collect information and draw conclusions about the whole population
  - For example: Sample of N=5 blood pressures
     18-year-old female college students in the United States
- NOTE: The sample mean  $\overline{X}$  is not the population mean  $\mu$ 
  - More on this in upcoming sampling distribution and statistical inference lectures

# **Population versus Sample**

### **Population**

Population mean:  $\mu$  Population variability:  $\sigma^2$ 

#### Sample

Sample mean:  $\overline{X}$ Sample var:  $s^2$ 

- $\overline{X}$  & s<sup>2</sup> are just estimates of  $\mu$  &  $\sigma^2$
- Q: How good are these estimates?
- A: It depends...

(upcoming Stat Inf lecture)

### Sample Median

- The median is the middle number
  - (50% lie above & 50% lie below: ie 50th percentile)
  - Example

- The sample median is not sensitive to extreme values
  - Example: If 120 became 200, the median would remain the same, but the mean would increase from 99 to 115.

80 90 95 110 200

# Sample Median

• If the sample size is an even number, median is an average (recall 50% above & below)

80 90 95 110 120 125

Median
$$\frac{95 + 110}{2} = 102.5 \text{ mmHg}$$

# **Shapes of the Distribution**

• Three common shapes of data distributions:



# **Shapes of the Distribution**

 Three less common shapes of frequency distributions:





# **Shapes of Distributions**

- Symmetric (Right and left sides are mirror images)
  - Left tail looks like right tail
  - Mean = Median = Mode
- Normal distribution is a Symmetric Distribution



### **The Normal Distribution**

Q: Is every variable normally distributed?

A : Absolutely not

Q: Then why do we spend so much time on it?

A : Some variables are normally distributed; a bigger reason is the "Central Limit Theorem" (more later)

- We can describe any Normal distribution with just 2 #'s:  $N(\mu, \sigma^2)$
- A "Standard" Normal is denoted N(0,1)



### Normal Distribution: the 68-95-99 Rule

- 68% of the data fall within one standard deviation of the mean
- 95% of the data fall within two standard deviations of the mean
- 99.7% of the data fall within three standard deviations of the







#### Potential Dangers with Assumptions & no EDA

- The rule says that if a population is normally distributed, then approximately 95% of the population will be within 2 SD of  $\mu$
- It doesn't guarantee that exactly 95% of your sample of data will fall within 2 SD of  $\bar{x}$

3

### **Last Digression: Standard Normal Scores**

- Idea: How many standard deviations away from the mean are you?
- Standard Score (Z) =

Value - mean
Standard deviation

Pr(Z<1.25) = 89.4% (area under the curve)



- Why is this really useful?
- Consider HDL ~ N(49.2, 13)
- Q: Pr(HDL > 65.5 mg/dl)?
- Standardize HDL value
   Z = (65.5-49.2)/13 ≈ 1.25
- Pr(HDL > 65.5)
- = Pr(Z > 1.25) = 89.4%

### Back to EDA: Boxplots (HDL example)

- 5 # distb summary:
  - Q1, Q2 (med), Q3
  - Lower, upper whiskers

Visualize Distb.





Why 1.5\*IQR?

If Normal: range for ≈ 99% of data





#### Triglycerides across subgroups • Q: How do the values of TG compare across different subgroups? 500 Can you 300 visualize the distributions? 200 100 Do you think TG is approx Normal? Diabetic Non-Diab Non-Diab Diabetic Non-Smoker Smoker Male





- Sometimes transformations are helpful and sometimes they are not.
- It all depends on the questions of interest
- "Congress is not interested in how many log(dollars) are spent on health care"

### **Summary**

- Examine all your variables thoroughly and carefully before you begin analysis
- Use visual displays whenever possible
- Use EDA to show the story that addresses good questions



# **Recommended Reading**

- Anything by Tukey, especially Exploratory Data Analysis (Tukey, 1997)
- Anything by Cleveland, especially Visualizing Data (Cleveland, 1993)
- Visual Display of Quantitative Information (Tufte, 1983)