Лабораторная работа №1.

ВЫЧИСЛЕНИЯ ПО РЕКУРРЕНТНЫМ ФОРМУЛАМ С ПОМОЩЬЮ ОПЕРАТОРОВ ЦИКЛА.

Вычислить приближенное значение функции, вычислив сумму конечного числа элементов ряда двумя способами, используя разные типы циклов:

- 1) с заданной точностью (критерий остановки цикла значение текущего члена ряда не превосходит точность);
- 2) для заданного количества членов ряда.

Дополнительные требования:

- 1. Переход к способу вычисления реализовать на этапе выполнения с помощью условного оператора.
- 2. Проверять корректность введенных данных на этапе выполнения. В случае ввода пользователем некорректных данных (например, отрицательное число членов ряда) на этапе выполнения, возвращать его к повторному вводу, не завершая выполнение программы.
- 3. Не использовать математические функции (из math.h) для вычисления результата.

Номер варианта	Задание
1	x^{3} x^{5} x^{2m-1}
	$sh x = x + \frac{x^3}{3!} + \frac{x^3}{5!} + \dots + \frac{x^{2m-1}}{(2m-1)!} + \dots, x \in \mathbb{R},$
2	$x^2 x^4 x^{2m}$
	$ch x = 1 + \frac{x}{2!} + \frac{x}{4!} + \dots + \frac{x}{(2m)!} + \dots, x \in \mathbb{R},$ $\ln(1-x) = x^{2} + \frac{x^{3}}{4!} + \dots + \frac{x}{(2m)!} + \dots, x \in \mathbb{R},$
3	$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{2} - \dots - \frac{x^n}{2} - \dots, x \in [-1; 1[.$
4	$\frac{2}{1+r} \left(\frac{3}{r^3} \frac{n}{r^5} \right)$
-	$\ln \frac{1+x}{1-x} = 2\left[x + \frac{x}{3} + \frac{x}{5} + \dots + \frac{x}{2m-1} + \dots\right], x \in]-1; 1[,$
5	$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots, x \in]-1; 1[,$
6	$\frac{1}{1} = 1 + x + x^2 + \dots + x^n + \dots, x \in]-1; 1[,$
7	$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots + (n+1)x^n + \dots, x \in]-1; 1[,$
8	x^3 x^5 $(1)^{m-1}$ x^{2m-1}
	$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + \dots, x \in \mathbb{R},$
9	$x^2 x^4 (1)^m x^{2m}$
	$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^m \frac{x^{2m}}{(2m)!} + \dots, x \in \mathbb{R},$
10	3 5 2
	$arctg \ x = x - \frac{x^3}{3} + \frac{x^3}{5} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{2m-1} + \dots, x \in [-1; 1].$
11	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, x \in]-1; 1],$
12	$\frac{1}{(2n)!} x^n$
	$\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \dots - \frac{(2n)! x^n}{(1-2n)n!^2 4^n} - \dots, x \in]-1;1[$
13	
	$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \dots + \frac{(-1)^n (2n)! x^n}{(1-2n)n!^2 4^n} + \dots, x \in]-1;1[$
14	$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + +$
	2
	$+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\dots, x\in]-1; 1[,$
15	$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \dots + \frac{(-1)^n x^n}{n!} + \dots$
	$e = 1 - \frac{1!}{1!} + \frac{2!}{2!} - \dots + \frac{n!}{n!} + \dots$
16	$\sum_{n=0}^{\infty} (-1)^{n+1} x^{2n+1}$
	$\arctan x = \sum_{n=0}^{\infty} (-1)^{n+1} \cdot \frac{x^{2n+1}}{2n+1} \qquad x > 1$
	71-0

17	$\ln x = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{(x-1)^n}{n} \qquad 0 < x < 2$
18	$\ln x = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{(x-1)^n}{n} \qquad 0 < x < 2$ $\ln x = 2 \cdot \sum_{n=0}^{\infty} \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}} \qquad 0 < x$
19	$\sin^2 x = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{2^{2n-1} x^{2n}}{(2n)!} \qquad x < 1$
20	$\sin^3 x = \frac{1}{4} \cdot \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{(3^{2n-1} - 3)x^{2n+1}}{(2n+1)!} \qquad x < 1$ $\cos^2 x = 1 - \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{2^{2n-1}x^{2n}}{(2n)!} \qquad x < 1$
21	$\cos^2 x = 1 - \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{2^{2n-1} x^{2n}}{(2n)!} \qquad x < 1$
22	$\cos^3 x = \frac{1}{4} \cdot \sum_{n=1}^{\infty} (-1)^n \cdot \frac{(3^{2n} + 3)x^{2n}}{(2n)!} \qquad x < 1$
23	$\exp(-x^2) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{n!} \qquad x < 1$
24	$e^{x}(1+x) = \sum_{n=0}^{\infty} \frac{x^{n}(n+1)}{n!}$ x < 2.4
25	$\arccos x = \frac{\pi}{2} - x - \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n)(2n+1)} \qquad x < 1$
26	$\arcsin x = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n)(2n+1)} \qquad x < 1$
27	$\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} (-1)^n \cdot (n+1)x^n \qquad x < 1$
28	$\frac{1}{\sqrt{1+x}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)x^n}{2 \cdot 4 \cdot 6 \cdots (2n)} \qquad x < 1$
29	$\frac{1}{2} - x - \frac{1}{2}\sqrt{1 - 4x} = \sum_{k=2}^{\infty} \frac{(2k)!}{2(2k-1)(k!)^2} x^k \qquad x \in \left[-\frac{1}{4}; \frac{1}{4} \right]$