SHA-1 Secure Hash Algorithm

可厉害的土豆

SHA-1

输入: 0<L<264

输出: 160bit的消息摘要

补位每个512bit的运算

补位

一一怎么补

第一位:补1

其余位:补足够位数的0

直至满足 L mod 512 = 448

512 - 448 = 64

剩余64位为消息的长度

每个512bit的运算

512 bit = 16份 * 32bit

M[0], M[1]....M[15]

扩充

80份 * 32bit

W[0], W[1]....W[79]

每个512bit的运算

———预处理

$$W_{t} = \begin{cases} M_{t}^{(i)} & 0 \le t \le 15 \\ ROTL^{1}(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) & 16 \le t \le 79 \end{cases}$$

Billibili; Sillibili; Sillibili;

$$H_0^{(0)} = 67452301$$

$$H_1^{(0)} = efcdab89$$

$$H_2^{(0)} = 98 \text{badcfe}$$

$$H_3^{(0)} = 10325476$$

$$H_4^{(0)} = c3d2e1f0.$$

2. Initialize the five working variables, a, b, c, d, and e, with the $(i-1)^{st}$ hash value:

$$a = H_0^{(i-1)}$$

$$b = H_1^{(i-1)}$$

$$c = H_2^{(i-1)}$$

$$d=H_3^{(i-1)}$$

$$e = H_4^{(i-1)}$$

3. For
$$t = 0$$
 to 79:
{
$$T = ROTL^{5}(a) + f_{t}(b,c,d) + e + K_{t} + W_{t}$$

$$e = d$$

$$d = c$$

$$c = ROTL^{30}(b)$$

$$b = a$$

$$a = T$$
}

$$K_{t} = \begin{cases} 5a827999 & 0 \le t \le 19 \\ 6ed9eba1 & 20 \le t \le 39 \\ 8f1bbcdc & 40 \le t \le 59 \end{cases}$$

$$ca62c1d6 & 60 \le t \le 79.$$

$$(4.14)$$

 $f_{t}(x, y, z) = \begin{cases} Ch(x, y, z) = (x \land y) \oplus (x \land z) & 0 \le t \le 19 \\ Parity(x, y, z) = x \oplus y \oplus z & 20 \le t \le 39 \\ Maj(x, y, z) = (x \land y) \oplus (x \land z) \oplus (y \land z) & 40 \le t \le 59 \\ Parity(x, y, z) = x \oplus y \oplus z & 60 \le t \le 79. \end{cases}$ (4.1)

```
3. For t = 0 to 79:
        T = ROTL^{5}(a) + f_{t}(b,c,d) + e + K_{t} + W_{t}
        e = d
        d = c
        c = ROTL^{30}(b)
        b = a
        a = T
```

4. Compute the i^{th} intermediate hash value $H^{(i)}$:

$$H_0^{(i)} = a + H_0^{(i-1)}$$

$$H_1^{(i)} = b + H_1^{(i-1)}$$

$$H_2^{(i)} = c + H_2^{(i-1)}$$

$$H_3^{(i)} = d + H_3^{(i-1)}$$

$$H_4^{(i)} = e + H_4^{(i-1)}$$

A Bitwise AND operation.

∨ Bitwise OR ("inclusive-OR") operation.

⊕ Bitwise XOR ("exclusive-OR") operation.

Bitwise complement operation.

+ Addition modulo 2^w .

Left-shift operation, where x << n is obtained by discarding the left-most n bits of the word x and then padding the result with n zeroes on the right.

>> Right-shift operation, where x >> n is obtained by discarding the right-most n bits of the word x and then padding the result with n zeroes on the left.

A.1 SHA-1 Example (One-Block Message)

Let the message, M, be the 24-bit ($\ell = 24$) ASCII string "abc", which is equivalent to the following binary string:

01100001 01100010 01100011.

The message is padded by appending a "1" bit, followed by 423 "0" bits, and ending with the hex value 00000000000018 (the two 32-bit word representation of the length, 24). Thus, the final padded message consists of one block (N = 1).

The words of the padded message block are then assigned to the words $W_0,...,W_{15}$ of the message schedule:

$$W_0 = 61626380$$

$$W_1 = 00000000$$

$$W_2 = 00000000$$

$$W_3 = 00000000$$

$$W_4 = 00000000$$

$$W_5 = 00000000$$

$$W_6 = 00000000$$

$$W_7 = 00000000$$

$$W_8 = 00000000$$

$$W_9 = 00000000$$

$$W_{10} = 00000000$$

$$W_{11} = 00000000$$

$$W_{12} = 000000000$$

$$W_{13} = 000000000$$

$$W_{14} = 000000000$$

$$W_{15} = 00000018.$$

The following schedule shows the hex values for a, b, c, d, and e after pass t of the "for t = 0 to 79" loop described in Sec. 6.1.2, step 4.

	a	b	\boldsymbol{c}	d	e
t = 0 : t = 1 :	0116fc33 8990536d	67452301 0116fc33	7bf36ae2 59d148c0	98badcfe 7bf36ae2	10325476 98badcfe
t = 2:	a1390f08	8990536d	c045bf0c	59d148c0	7bf36ae2

t	=	3:	cdd8e11b	a1390f08	626414db	c045bf0c	59d148c0
t	=	4:	cfd499de	cdd8e11b	284e43c2	626414db	c045bf0c
t	=	5 :	3fc7ca40	cfd499de	f3763846	284e43c2	626414db
t	=	6:	993e30c1	3fc7ca40	b3f52677	f3763846	284e43c2
t	=	7 :	9e8c07d4	993e30c1	0ff1f290	b3f52677	f3763846
t	=	8:	4b6ae328	9e8c07d4	664f8c30	0ff1f290	b3f52677
t	=	9:	8351f929	4b6ae328	27a301f5	664f8c30	0ff1f290
t	=	10:	fbda9e89	8351f929	12dab8ca	27a301f5	664f8c30
t	=	11:	63188fe4	fbda9e89	60d47e4a	12dab8ca	27a301f5
t	=	12:	4607b664	63188fe4	7ef6a7a2	60d47e4a	12dab8ca
t	=	13 :	9128f695	4607b664	18c623f9	7ef6a7a2	60d47e4a
t	=	14:	196bee77	9128f695	1181ed99	18c623f9	7ef6a7a2
t	=	15 :	20bdd62f	196bee77	644a3da5	1181ed99	18c623f9
t	=	16:	4e925823	20bdd62f	c65afb9d	644a3da5	1181ed99
t	=	17:	82aa6728	4e925823	c82f758b	c65afb9d	644a3da5
t	=	18:	dc64901d	82aa6728	d3a49608	c82f758b	c65afb9d
t	=	19:	fd9e1d7d	dc64901d	20aa99ca	d3a49608	c82f758b
t	=	20:	1a37b0ca	fd9e1d7d	77192407	20aa99ca	d3a49608

t	=	21 :	33a23bfc	1a37b0ca	7f67875f	77192407	20aa99ca
t	=	22 :	21283486	33a23bfc	868dec32	7f67875f	77192407
t	=	23 :	d541f12d	21283486	0ce88eff	868dec32	7f67875f
t	=	24 :	c7567dc6	d541f12d	884a0d21	0ce88eff	868dec32
t	=	25 :	48413ba4	c7567dc6	75507c4b	884a0d21	0ce88eff
t	=	26 :	be35fbd5	48413ba4	b1d59f71	75507c4b	884a0d21
t	=	27 :	4aa84d97	be35fbd5	12104ee9	b1d59f71	75507c4b
t	=	28 :	8370b52e	4aa84d97	6f8d7ef5	12104ee9	b1d59f71
t	=	29 :	c5fbaf5d	8370b52e	d2aa1365	6f8d7ef5	12104ee9
t	=	30 :	1267b407	c5fbaf5d	a0dc2d4b	d2aa1365	6f8d7ef5
t	=	31 :	3b845d33	1267b407	717eebd7	a0dc2d4b	d2aa1365
t	=	32 :	046faa0a	3b845d33	c499ed01	717eebd7	a0dc2d4b
t	=	33 :	2c0ebc11	046faa0a	cee1174c	c499ed01	717eebd7
t	=	34 :	21796ad4	2c0ebc11	811bea82	cee1174c	c499ed01
t	=	35 :	dcbbb0cb	21796ad4	4b03af04	811bea82	cee1174c
t	=	36 :	0f511fd8	dcbbb0cb	085e5ab5	4b03af04	811bea82
t	=	37 :	dc63973f	0f511fd8	f72eec32	085e5ab5	4b03af04
t	=	38 :	4c986405	dc63973f	03d447f6	f72eec32	085e5ab5
t	=	39 :	32de1cba	4c986405	f718e5cf	03d447f6	f72eec32
t	=	40 :	fc87dedf	32de1cba	53261901	f718e5cf	03d447f6

	2652455	00470564	24005 644	E0110045	47001 E a la	
t = 59:	3f52de5a	09d785fd	3498bfd4	f211824f	d79915ab	
t = 60 :	d756c147	3f52de5a	4275e17f	3498bfd4	f211824f	
t = 61 :	548c9cb2	d756c147	8fd4b796	4275e17f	3498bfd4	
t = 62:	b66c020b	548c9cb2	f5d5b051	8fd4b796	4275e17f	
t = 63:	6b61c9e1	b66c020b	9523272c	f5d5b051	8fd4b796	
t = 64:	19dfa7ac	6b61c9e1	ed9b0082	9523272c	f5d5b051	
t = 65 :	101655f9	19dfa7ac	5ad87278	ed9b0082	9523272c	
t = 66:	0c3df2b4	101655f9	0677e9eb	5ad87278	ed9b0082	
t = 67:	78dd4d2b	0c3df2b4	4405957e	0677e9eb	5ad87278	
t = 68:	497093c0	78dd4d2b	030f7cad	4405957e	0677e9eb	
t = 69 :	3f2588c2	497093c0	de37534a	030f7cad	4405957e	
t = 70:	c199f8c7	3f2588c2	125c24f0	de37534a	030f7cad	
t = 71 :	39859de7	c199f8c7	8fc96230	125c24f0	de37534a	
t = 72:	edb42de4	39859de7	f0667e31	8fc96230	125c24f0	A
t = 73:	11793f6f	edb42de4	ce616779	f0667e31	8fc96230	
t = 74:	5ee76897	11793f6f	3b6d0b79	ce616779	f0667e31	
t = 75:	63f7dab7	5ee76897	c45e4fdb	3b6d0b79	ce616779	
t = 76:	a079b7d9	63f7dab7	d7b9da25	c45e4fdb	3b6d0b79	
t = 77 :	860d21cc	a079b7d9	d8fdf6ad	d7b9da25	c45e4fdb	
t = 78 :	5738d5e1	860d21cc	681e6df6	d8fdf6ad	d7b9da25	
t = 79:	42541b35	5738d5e1	21834873	681e6df6	d8fdf6ad	

That completes the processing of the first and only message block, $M^{(1)}$. The final hash value, $H^{(1)}$, is calculated to be

$$H_0^{(1)} = 67452301 + 42541b35 = a9993e36$$

 $H_1^{(1)} = efcdab89 + 5738d5e1 = 4706816a$
 $H_2^{(1)} = 98badcfe + 21834873 = ba3e2571$
 $H_3^{(1)} = 10325476 + 681e6df6 = 7850c26c$
 $H_4^{(1)} = c3d2e1f0 + d8fdf6ad = 9cd0d89d$.

The resulting 160-bit message digest is

a9993e36 4706816a ba3e2571 7850c26c 9cd0d89d.

参考资料

Secure Hash Standard: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

4

感谢观看 祝你每顿吃饱 每晚睡好 身体健康 学业有成 工作顺利

7,

可厉害的土豆