Lecture 1.2

Closed-form Equation, Type of Gradient Descent

(Batch, Stochastic, Mini-batch) - Definition, properties.

Closed-form Equation

- Closed-form Equation: closed-form equation is a mathematical expression that provides a direct way to compute a value without requiring iterative procedures or infinite series
 - Example:
 - **Sum of an Arithmetic Series**: The sum of the first n terms of an arithmetic series with the first term **a** and common difference d is:

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

Gradient Descent

- Gradient Descent is an optimization algorithm used in machine learning and deep learning to minimize the loss function by updating the model's parameters in the direction of the steepest descent
- The type of gradient descent depends on how much data is used to compute the gradient at each iteration
- Gradient descent is also called "the deepest downward slope algorithm"
- It is very important in machine learning, where it is used to minimize a cost function

Loss function

$$E(w) = \frac{1}{2N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

• Where $f(x_i) = w^T x_i$, then

$$\frac{\partial E}{\partial w} = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i) x_i$$

Mathematical Formulation of Gradient Descent

$$w = w - \eta \nabla E(w)$$

- w : Model parameters (weights)
- η : Learning rate
- $\nabla E(w)$: Gradient of the loss function E(w) with respect to w
- It can be also written as:

$$w = w - \eta \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i) x_i$$

Gradient Descent Visualization Loss Function E(w)**Gradient Descent Steps** E(w) (Loss) w. (Meight)s

Numerical Problem

- Let $E(w) = (w-3)^2 + 2$, $\eta = 0.1$, w = 0, then find w and E(w) for five iterations:
 - So, we see $x_i = 1$, therefore iterations can be solved in terms of w only

•
$$\frac{\delta E}{\delta w} = 2(w-3)$$

•
$$w_{new} = w_{old} - \eta \nabla E(w_{old}) \Rightarrow 0.8w_{old} + 0.6$$

SI	w	E(w)
1	0	11
2	0.6	7.76

SI	w	E(w)
1	0	11
2	0.6	7.76
2	1.0800	5.6864
2	1.4640	4.3593
2	1.7712	3.5099

Batch Gradient Descent

 Batch Gradient Descent is an optimization algorithm used to minimize a loss function by iteratively updating the model's parameters using the entire dataset to calculate the gradient

Advantages:

- Computes the gradient with high precision using the entire dataset
- Converges steadily towards the minimum
- Suitable for smooth and convex loss functions

Disadvantages:

- Memory-intensive when the dataset is large
- Requires processing the entire dataset for each iteration

Stochastic Gradient Descent

- Stochastic Gradient Descent (SGD) is a variant of gradient descent where the model parameters are updated using only a single training example at a time, rather than the entire dataset
- This leads to faster updates and can help the algorithm escape local minima, making it suitable for large datasets
- Advantages
 - Faster Updates
 - Escaping Local Minima
 - Scalability
- Disadvantages
 - Noisy Convergence
 - Requires More Iterations

Mini-Batch Gradient Descent

- Mini-batch Gradient Descent is a hybrid approach between Batch Gradient Descent and Stochastic Gradient Descent. It aims to combine the advantages of both by updating the model parameters using a subset (mini-batch) of the training data rather than the entire dataset (batch) or just one data point (stochastic)
 - **Mini-batch**: The dataset is divided into small batches, each containing a fixed number of training examples (The size of each mini-batch (denoted as b) is a hyper-parameter)
 - Gradient Calculation: For each mini-batch, the gradient is calculated based on the average of the training examples in that batch
 - Weight Update: The model parameters are updated using the computed gradient for the mini-batch
 - Repeat for all mini-batches until convergence
- Advantages: Faster than Batch GD, Less Noisy than SGD
- Disadvantages: Choosing the Right Batch Size, Memory Considerations