1

GATE 2022 BIOMEDICAL ENGINEERING

EE:1205 Signals and systems Indian Institute of Technology, Hyderabad

Sai Preetam Umesh Sasankota EE23BTECH11221

I. Question 40

The block diagrams of an ideal system and a real system with their impulse responses are shown below. An auxiliary path is added to the delayed impulse response in the real system.

For a unit impulse input $(x(t) = \delta(t))$ to both systems, gain β is chosen such that y(4T) is same for both systems. The value of β is:

For both signals to be equal at t = 4T:

$$e^{-\alpha 4T}u(4T) = \left[\beta(u(4T) - u(-T)) + e^{-\alpha(3T)}u(3T)\right]$$
(1)

$$e^{-\alpha 4T} = \beta + e^{-\alpha 3T} \tag{2}$$

$$\implies \beta = e^{-3\alpha T} \left(1 - e^{-\alpha T} \right) \tag{3}$$

Hence the answer is (C)

$$(A) e^{-3\alpha T} \left(1 - e^{-2\alpha T} \right)$$

$$(B) - e^{-\alpha T} \left(1 - e^{-3\alpha T} \right)$$

$$(C)\,e^{-3\alpha T}\left(1-e^{-\alpha T}\right)$$

$$(D) e^{-2\alpha T} \left(1 - e^{-2\alpha T}\right)$$

II. SOLUTION

No.	Output	Function
1	y_I	$e^{-\alpha t}u\left(t\right)$
2	y_R	$\beta \left(u\left(t\right) -u\left(t-5T\right) \right) +e^{-\alpha \left(t-T\right) }u\left(t-T\right)$

TABLE 0 Values