08.11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年11月12日

出 願 番 号
Application Number:

特願2003-383000

[ST. 10/C]:

[JP2003-383000]

REC'D 0 4 JAN 2005

WIPO

PCT

出 願 人 Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office

2004年12月16日

1) 11]

BEST AVAILABLE COPY

特許願

2054041235

平成15年11月12日 特許庁長官殿 G06F 12/00

【国際特許分類】

【発明者】

大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】

岩田 和也 【氏名】

【発明者】

大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】

足立 達也 【氏名】

【発明者】

大阪府門真市大字門真1006番地 松下電器産業株式会社内 【住所又は居所】

中村 清治 【氏名】

【特許出願人】

000005821 【識別番号】

大阪府門真市大字門真1006番地 【住所又は居所】

松下電器産業株式会社 【氏名又は名称】

【代理人】

100062926 【識別番号】

【弁理士】

東島 隆治 【氏名又は名称】

【選任した代理人】

100113479 【識別番号】

【弁理士】

【氏名又は名称】 大平 覺

【手数料の表示】

【予納台帳番号】 031691 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 0217288 【包括委任状番号】

【請求項1】

外部のホスト装置と通信を行うインターフェース部と、状態レジスタ群と、を有する制 御部と、

前記インターフェース部を通じて前記ホスト装置とそれぞれ通信を行う複数の機能ユニ ットと、を有し、

前記状態レジスタ群は、複数の前記機能ユニットのそれぞれに対応付けられ且つ対応す る前記機能ユニットが動作可能であるか(以下、「動作可能状態」と呼ぶ。)又は否か(以下、「動作不可状態」と呼ぶ。)を示す複数の動作可能状態レジスタと、複数の前記機 能ユニットのそれぞれに対応付けられ且つ対応する前記機能ユニットが処理中であるか(以下、「機能処理中状態」と呼ぶ。)又は否か(以下、「機能未処理状態」と呼ぶ。)を 示す複数の処理状態レジスタを有し、

前記制御部は、前記ホスト装置から命令を受信すると、その命令がいずれかの前記機能 ユニットに対する命令であれば、その命令をその機能ユニットに転送し、その命令が前記 状態レジスタ群の読み出し命令であれば、前記状態レジスタ群の状態を応答として前記ホ スト装置に送信することを特徴とする電子装置。

【請求項2】

前記制御部の起動時、前記状態レジスタ群の全ての前記動作可能状態レジスタは動作不 可状態、全ての前記処理状態レジスタは機能未処理状態に設定されることを特徴とする請 求項1に記載の電子装置。

【請求項3】

前記インターフェース部は、前記ホスト装置をマスターとし、電子装置をスレープとす るマスター/スレーブ方式のデータ通信を前記ホスト装置との間で行い、

前記ホスト装置から機能ユニットの起動命令が入力されると、その機能ユニットが起動 を開始し、その機能ユニットが動作可能状態になれば、その機能ユニットに対応する動作 可能状態レジスタが動作不可状態から動作可能状態になり、前記ホスト装置から機能ユニ ットの停止命令が入力されると、その機能ユニットが停止して動作不可状態となり、その 機能ユニットに対応する動作可能状態レジスタが動作可能状態から動作不可状態になるこ とを特徴とする請求項1に記載の電子装置。

【請求項4】 前記状態レジスタ群は、複数の前記機能ユニットのそれぞれに対応付けられ且つ対応す る前記機能ユニットを起動させるための起動命令レジスタを更に有し、

前記制御部の起動時、前記状態レジスタ群の全ての前記起動命令レジスタは停止に設定 され、

前記ホスト装置は、起動させたい機能ユニットの起動命令レジスタを起動に設定するこ とで、その機能ユニットが起動を開始し、停止させたい機能ユニットの起動命令レジスタ を停止に設定することで、その機能ユニットが停止することを特徴とする請求項1に記載 の電子装置。

【請求項5】

前記インターフェース部は、前記ホスト装置をマスターとし、電子装置をスレープとす るマスター/スレーブ方式のデータ通信を前記ホスト装置との間で行い、

前記機能ユニットが機能処理中であれば、その機能ユニットに対応する処理状態レジス タが機能未処理状態から機能処理中状態になり、

前記機能ユニットが機能処理を終了或いは前記ホスト装置の命令で中断されれば、その 機能ユニットに対応する処理状態レジスタが機能処理中状態から機能未処理状態になるこ とを特徴とする請求項1に記載の電子装置。

前記ホスト装置と前記インターフェース部とは、命令信号線と、データ線とを含む線で 接続され、

前記ホスト装置から電子装置に対する命令と、電子装置から前記ホスト装置への応答と

ことを特徴とする請求項5に記載の電子装置。

【請求項7】

前記状態レジスタ群は、機能処理中の機能ユニットがビジー信号をデータ線に出力する 時に、ホスト装置が前記処理中の機能ユニット以外の機能ユニットとデータの送受信を行 うために、前記データ線のビジー状態を解除するバス開放レジスタを更に有し、

前記制御部は、前記ホスト装置から、前記バス開放レジスタの書き換えコマンドを入力 した場合は、前記バス開放レジスタを書き換え、

前記インターフェース部は、データ線にビジー信号を出力することを止め、前記ホスト 装置は、前記処理中の機能ユニット以外の機能ユニットとデータの送受信が可能となるこ とを特徴とする請求項6に記載の電子装置。

【請求項8】

ホスト装置が複数の機能ユニットを起動させている場合、ホスト装置と機能ユニットと のデータ送受信が終了又は処理停止をしたら、機能処理中状態である機能ユニットがバス の使用権を取得し、複数の機能ユニットの処理状態レジスタが機能処理中状態であれば、 前記ホスト装置が選択した機能ユニットがバスの使用権を取得することを特徴とする請求 項6に記載の電子装置。

【請求項9】

電子装置が多機能ICカードであることを特徴とする請求項1から請求項8のいずれか の請求項に記載の電子装置。

【請求項10】

複数の機能ユニットと、複数の前記機能ユニットのそれぞれに対応付けられており且つ 対応する前記機能ユニットが動作可能であるか否かを示す動作可能状態レジスタと複数の 前記機能ユニットのそれぞれに対応付けられており且つ対応する前記機能ユニットが処理 中であるか否かを示す処理状態レジスタを有する状態レジスタ群と、を有する電子装置の 制御方法であって、

前記機能ユニットが動作可能であるか否かに従って、前記動作可能状態レジスタを書き 換える第1の書き換えステップと、

前記機能ユニットが処理中であるか否かに従って、前記処理状態レジスタを書き換える 第2の書き換えステップと、

外部のホスト装置からいずれかの前記機能ユニットに対する命令を受信すると、その命 令をその機能ユニットに転送する第1の命令受信ステップと、

前記ホスト装置から前記状態レジスタ群の読み出し命令を受信すると、前記状態レジス タ群の状態を応答として前記ホスト装置に送信する第2の命令受信ステップと、

を有することを特徴とする電子装置の制御方法。

【請求項11】

前記第1の書き換えステップは、前記制御部の起動時に、前記状態レジスタ群の全ての 前記動作可能状態レジスタを動作不可状態に設定し、

前記第2の書き換えステップは、前記制御部の起動時に、前記状態レジスタ群の全ての前 記処理状態レジスタを機能未処理状態に設定することを特徴とする請求項10に記載の電 子装置の制御方法。

【請求項12】

前記ホスト装置をマスターとし、電子装置をスレープとするマスター/スレープ方式の データ通信を前記ホスト装置との間で行う電子装置の制御方法であって、

前記第1の書き換えステップは、前記ホスト装置から機能ユニットの起動命令が入力さ れると、その機能ユニットが起動を開始し、動作可能状態になれば、その機能ユニットに 対応する動作可能状態レジスタを動作不可状態から動作可能状態に書き換え、前記ホスト

装置から機能ユニットの停止命令が入力されると、その機能ユニットが停止して動作不可 状態となり、その機能ユニットに対応する動作可能状態レジスタを動作可能状態から動作 不可状態に書き換えることを特徴とする請求項10に記載の電子装置の制御方法。

【請求項13】

複数の前記機能ユニットのそれぞれに対応付けられ且つ対応する前記機能ユニットを起 動させるための起動命令レジスタを更に有する電子装置の制御方法であって、

前記制御部の起動時に、前記状態レジスタ群の全ての前記起動命令レジスタを起動しな いに設定する設定ステップと、

前記ホスト装置から機能ユニットの起動命令が入力されると、その機能ユニットに対応 する前記起動命令レジスタを起動するに曺き換えるステップと、

その機能ユニットを起動させる起動ステップと、

前記ホスト装置から機能ユニットの停止命令が入力されると、その機能ユニットに対応 する前記起動命令レジスタを起動しないに書き換えるステップと、

その機能ユニットを停止させる停止ステップと、

を有することを特徴とする請求項10に記載の電子装置の制御方法。

【請求項14】 前記ホスト装置をマスターとし、電子装置をスレープとするマスター/スレーブ方式の データ通信を前記ホスト装置との間で行う電子装置の制御方法であって、

前記第2の書き換えステップは、機能ユニットが機能処理中であれば、その機能ユニット に対応する処理状態レジスタを機能未処理状態から機能処理中状態に書き換え、機能ユニ ットが機能処理を終了或いは前記ホスト装置の命令で中断されれば、その機能ユニットに 対応する処理状態レジスタを機能処理中状態から機能未処理状態に書き換えることを特徴 とする請求項10に記載の電子装置の制御方法。

【請求項15】

前記ホスト装置と電子装置とが、命令信号線と、データ線とを含む線で接続されている 電子装置の制御方法であって、

前記ホスト装置から電子装置に対する命令と、電子装置から前記ホスト装置への応答と 、前記状態レジスタ群の状態を示すデータを含むデータとを、前記命令信号線で伝送する

ステップと、 前記ホスト装置から電子装置に伝送する所定のデータと、電子装置から前記ホスト装置 に伝送する所定のデータと、ビジー信号とを、前記データ線で伝送するステップと、

を有することを特徴とする請求項14に記載の電子装置の制御方法。

【請求項16】 複数の前記機能ユニットのそれぞれに対応付けられており且つ対応する機能処理中の機 能ユニットがビジー信号をデータ線に出力する時に、ホスト装置が前記処理中の機能ユニ ット以外の機能ユニットとデータの送受信を行うために、前記データ線のビジー状態を解 除するバス開放レジスタを更に有する電子装置の制御方法であって、

前記ホスト装置から前記バス解放レジスタの書き換えコマンドを入力した場合は、前記 バス解放レジスタを書き換えるステップと、

データ線にビジー信号を出力することを止め、前記処理中の機能ユニット以外の機能ユ ニットとホスト装置との間でデータの送受信を行うステップと、

を有することを特徴とする請求項15に記載の電子装置の制御方法。

【請求項17】

複数の機能ユニットを起動させている場合、

機能ユニットとのデータ送受信が終了又は処理停止をしたら、機能処理中状態である機 能ユニットがバスの使用権を取得し、複数の機能ユニットの処理状態レジスタが機能処理 中状態であれば、前記ホスト装置が選択した機能ユニットがバスの使用権を取得するステ ップと、

を有することを特徴とする請求項15に記載の電子装置の制御方法。

【曹類名】明細書

【発明の名称】電子装置及びその制御方法

【技術分野】

[0001]

本発明は、電子装置及びその制御方法に関する。

【背景技術】

[0002]

近年、音楽や映像データ等の大量データを扱う携帯情報機器(例えば、携帯型パーソナ ルコンピュータ、デジタルスチールカメラ、PDA)の記憶装置として、フラッシュメモ リ等の記憶媒体を有するICカードが注目されている。さらに最近、このICカードは、 データ蓄積のためのストレージ及び機器間のデータ交換のためのブリッジ・メディアとし ての役割だけでなく、機器の機能拡張装置という役割までをも担いつつある(例えば、非 特許文献1参照。)。このように複数の機能ユニットを有するICカードを多機能ICカ ードと呼ぶ。

[0003]

はじめに、図15を用いて従来例の多機能ICカードの構成を説明する。図15は、従 来例の多機能ICカードの構成を示すブロック図である。多機能ICカードは、複数の機 能ユニットを有する。ホスト装置と各機能ユニットとが共通のインターフェース部を通じ てそれぞれ別個に(基本的な通信形態を意味し、例えばホスト装置が複数の機能ユニット を宛先とする共通命令を送信することを除外するものではない。)通信する。

[0004]

図15において、101はホスト装置、1502は多機能ICカードである。多機能I Cカード1502は、制御部1511、第1の機能ユニット112、第2の機能ユニット 113、第3の機能ユニット114を有する。多機能ICカード1502は、バス141 でホスト装置101と接続される。バス141は、命令信号線142、データ線143、 電源線、グラウンド線を含む(電源線、グラウンド線は図示せず)。制御部1511は、 ホスト装置101とバス141を通じて通信を行うインターフェース部121を有する。

[0005]

従来例においては、ホスト装置101はコンピュータ、第1の機能ユニット112はメ モリモジュール(フラッシュメモリで構成されている。)、第2の機能ユニット113は 無線通信モジュール、第3の機能ユニット114はカメラモジュールである。ホスト装置 101と多機能ICカード1502とは、ホスト装置101をマスターとし、多機能IC カード1502をスレープとするマスター/スレープ方式の通信を行う。

[0006]

従来例の多機能ICカードの起動方法について説明する。

多機能ICカード1502を装着したホスト装置101の電源が投入された時または多 機能ICカード1502がホスト装置101に挿入された時に、ホスト装置101はバス 141(電源線、グラウンド線)を通じて多機能ICカード1502に電力を供給する。 ホスト装置101は多機能ICカード1502に起動命令を送信する。多機能ICカード 1502の全ての機能ユニット(制御部と各機能ユニットとを含む。)が起動を実行する 。具体的には、制御部1511、第1の機能ユニット112、第2の機能ユニット113 、第3の機能ユニット114が、それぞれ別個に起動を実行する。各機能ユニットは順次 起動を完了し、全ての機能ユニットの起動が完了すると、各機能ユニット112~114 は動作可能となる。

[0007]

次に、従来例の多機能ICカードの動作方法について説明する。

ホスト装置101は、第1の機能ユニット(メモリモジュール)112に動作命令(プ ロック消去命令であるとする。) を送信する(基本的な通信方法は既に説明した。)。第 1の機能ユニット(メモリモジュール)112は、受信した命令に基づきブロック消去処 理を開始する。第1の機能ユニット(メモリモジュール)112はインターフェース部1

[0008]

第1の機能ユニット(メモリモジュール)112のブロック消去処理が完了すると、第 1の機能ユニット (メモリモジュール) 112はビジー信号の出力を停止する (データ線 143はLowレベル出力状態からHighレベルになる(インターフェース部121の出力は 所定のインピーダンスを有し、例えばホスト装置101からインターフェース部121に データ線143を通じてデータを送信できる状態である。)。これにより、ホスト装置1 01は多機能ICカード1502がレディ (Ready) である (ビジーでない) と認識し、 多機能ICカード1502に他の命令を送信できるようになる。

[0009]

次に、ホスト装置101は、第2の機能ユニット113に動作命令(受信データ出力要 求命令であるとする。)を送信する。ホスト装置101からの命令に基づき、第2の機能 ユニット(無線通信モジュール)113は内部メモリに蓄積した受信データの読み出し及 び出力処理を開始する。第2の機能ユニット(無線通信モジュール)113が受信データ の読み出し及び出力処理を行っている間、第2の機能ユニット(無線通信モジュール)1 13はインターフェース部121及びデータ線143を介してホスト装置101にビジー 信号(Lowレベル)を出力する。

[0010]

次に、従来例の多機能ICカードのフリーズ時の再起動方法について説明する。

ホスト装置101からの動作命令に基づき、第1の機能ユニット (メモリモジュール) 112はデータ書き込み処理を開始する。データ書き込み処理が所定時間内に完了しない 場合は、ホスト装置101は第1の機能ユニット(メモリモジュール)112がフリーズ していると判断し、ホスト装置101は多機能ICカード1502の全ての機能ユニット に再起動命令を送信する。多機能ICカード1502の全ての機能ユニットが再起動する 。全ての機能ユニットの起動が完了すると、各機能ユニット112~114は動作可能と なる。

[0011]

上記のようにホスト装置と多機能ICカードとのシステムにおいては、ホスト装置と各 機能ユニットとが共通のインターフェース部を通じてそれぞれ別個に通信する。これに代 えて、例えば1つのCPUがインターフェース部を通じてホスト装置と全ての通信を行い 、且つそのCPUが複数の機能ユニットの一部又は全部を制御する他の電子装置も考えら れる。他の電子装置の構成と比較して、上記の多機能ICカードの構成においては、複数 の機能ユニットを統合する共通回路(明細書においては制御部と呼ぶ。)は比較的小規模 な回路構成で済むこと、どのような機能ユニットを複合化しても制御部の基本構成を変え る必要がなく、機種展開の開発期間の短縮化及び多機種展開が可能になること、という大 きなメリットがある。

[0012]

【非特許文献 1】「Mastushita Technical Journal 第48卷 第2号」株式会社オー ム社出版、2002年4月、p. 20-23

【発明の開示】

【発明が解決しようとする課題】

[0013]

近年の多機能ICカードは、ホスト装置に装着することによりホスト装置にオプション 機能を追加する機器拡張装置としての役割が大きくなってきている。1つの多機能ICカ ードが、より多くの機能を搭載する傾向にある。

複数の機能ユニットを有し、ホスト装置と各機能ユニットとが共通のインターフェース

[0014]

しかしながら、起動時間は機能ユニットによって異なる。従来の電子装置においては、 起動時間の短い機能ユニットが起動を完了し、動作可能になった後も、起動時間の長い機 能ユニットが起動中は、ホスト装置は、動作可能になった機能ユニットに命令を送ること が出来ないという問題があった。

電子装置(例えば多機能ICカード)の機能が多様化することにより、ホスト装置が全 ての機能ユニットが起動を完了するまで待つ時間が長くなるという問題があった。

ホスト装置は、電子装置全体としてビジーであるかレディであるかを判断して電子装置 に次の命令を送信していた故に、異なる機能ユニットに並行して処理を命令することがで きないという問題があった。

また、ホスト装置が1つのICカードと認識しているため、1つの機能ユニットがフリ ーズした場合でもICカード全体を再起動しなくてはならないという問題があった。

従来の電子装置においては、ホスト装置は、各機能ユニットがそれぞれ動作可能である か否かを知ることが出来なかった。

従来の電子装置において、ホスト装置が、機能ユニットが動作可能であるか否かを知る ために、その機能ユニットに例えば状態を問い合わせる命令を送信することが考えられる 。しかし、機能ユニットが動作できない(起動しておらず、又はホスト装置に応答できな い)場合、ホスト装置はその命令に対するレスポンスを受信することが出来ない。ホスト 装置は、機能ユニットに送信した命令に対するレスポンスが所定時間内に戻ってこない(タイムアウトになる)ことに基づいて、その機能ユニットが動作できないことを知った。

[0016]

しかし、タイムアウトと判断するための所定時間は、通常の通信時間と比較してはるか に長い。従来の方法によれば、1又は複数の機能ユニットが動作できない場合、ホスト装 置が全ての機能ユニットについて、動作可能であるか否かを知るまでに非常に長い時間が かかった。又、レスポンスが戻ってこないことは、機能ユニットが動作できないことの他 、他の原因に起因する可能性もある。従来の電子装置においては、ホスト装置は、各機能 ユニットがそれぞれ動作可能であるか否かを正確に知ることが困難であった。

[0017]

従来の電子装置においては全ての機能ユニットを起動させていたが、ユーザが使用しな い機能ユニットもあり、使用しない機能ユニットまで起動することは無駄な電力消費の要 因となっていた。

[0018]

本発明は、このような問題点に鑑みてなされたものであり、複数の機能ユニットを有し 、ホスト装置と各機能ユニットとが共通のインターフェースを通じてそれぞれ別個に通信 する電子装置であって、ホスト装置が、各機能ユニットがそれぞれ動作可能であるか否か を素早く且つ正確に知ることができる電子装置(多機能ICカードを含む。)及びその制 御方法を提供することを目的とする。

この構成により、本発明は、以下の電子装置を提供することを目的とする。

本発明は、起動中に、起動時間の長い機能ユニットが起動を行っている間にも、ホスト 装置からの命令により、既に起動を完了した機能ユニットに処理を実行させることができ る電子装置 (多機能 I Cカードを含む。) 及びその制御方法を提供することを目的とする

[0019]

本発明は、1つの機能ユニットが処理を実行してビジーである間にも、他の機能ユニッ トに別個の命令を送信し、他の機能ユニットに処理を実行させることができる電子装置(

本発明は、各機能ユニット単位で再起動可能な電子装置(多機能ICカードを含む。) 及びその制御方法を提供することを目的とする。

本発明は、1つの命令で動作させたい機能ユニットのみを全て起動させることができる 低消費電力の電子装置(多機能ICカードを含む。)及びその制御方法を提供することを 目的とする。

【課題を解決するための手段】

[0020]

上記課題を解決するため、本発明は下記の構成を有する。請求項1に記載の発明は、外 部のホスト装置と通信を行うインターフェース部と、状態レジスタ群と、を有する制御部 と、前記インターフェース部を通じて前記ホスト装置とそれぞれ通信を行う複数の機能ユ ニットと、を有し、前記状態レジスタ群は、複数の前記機能ユニットのそれぞれに対応付 けられ且つ対応する前記機能ユニットが動作可能であるか(以下、「動作可能状態」と呼 ぶ。) 又は否か(以下、「動作不可状態」と呼ぶ。) を示す複数の動作可能状態レジスタ と、複数の前記機能ユニットのそれぞれに対応付けられ且つ対応する前記機能ユニットが 処理中であるか(以下、「機能処理中状態」と呼ぶ。)又は否か(以下、「機能未処理状 態」と呼ぶ。)を示す複数の処理状態レジスタを有し、前記制御部は、前記ホスト装置か ら命令を受信すると、その命令がいずれかの前記機能ユニットに対する命令であれば、そ の命令をその機能ユニットに転送し、その命令が前記状態レジスタ群の読み出し命令であ れば、前記状態レジスタ群の状態を応答として前記ホスト装置に送信することを特徴とす る電子装置である。

[0021]

本発明は、複数の機能ユニットを有し、ホスト装置と各機能ユニットとが共通のインタ ーフェースを通じてそれぞれ別個に通信する電子装置であって、ホスト装置が、各機能ユ ニットがそれぞれ動作可能であるか否か、処理中であるか否かを正確に知ることができる 電子装置を実現できる。

それぞれの機能ユニットが起動完了し動作可能になった時、その機能ユニットに対応す る動作可能状態レジスタを動作可能であることを示すように書き換える方法は任意である 。例えば各機能ユニットが直接それに対応する動作可能状態レジスタを動作可能であるこ とを示すように書き換えても良い。又は、制御部が各機能ユニットと通信を行い、制御部 が機能ユニットが動作可能になったという情報を取得した時、制御部がその機能ユニット に対応する動作可能状態レジスタを動作可能であることを示すように書き換えても良い。

それぞれの機能ユニットが処理中になった時、その機能ユニットに対応する処理状態レ ジスタを機能処理中であることを示すように書き換える方法は任意である。例えば各機能 ユニットが直接それに対応する処理状態レジスタを機能処理中であることを示すように書 き換えても良い。又は、制御部が各機能ユニットと通信を行い、制御部が機能ユニットが 処理中になったという情報を取得した時、制御部がその機能ユニットに対応する処理状態 レジスタを機能処理中であることを示すように書き換えても良い。

「前記状態レジスタ群の状態を応答として前記ホスト装置に送信する」ことは、状態レ ジスタ群の状態情報をそれ自体に含む応答を送信しても良く、又は状態レジスタ群の状態 情報のデータを添付された応答を送信しても良い。

[0022]

請求項2に記載の発明は、前記制御部の起動時、前記状態レジスタ群の全ての前記動作 可能状態レジスタは動作不可状態、全ての前記処理状態レジスタは機能未処理状態に設定 されることを特徴とする請求項1に記載の電子装置である。

本発明は、各機能ユニット単位で起動可能な電子装置を実現できる。本発明は、例えば ある機能ユニットがフリーズした場合、他の機能ユニットの処理を中断させることなく、 その機能ユニットのみを再起動させることができる電子装置を実現できるという作用を有 する。

[0023]

[0024]

本発明によれば、起動中に、起動が完了した機能ユニットを個別に知ることが出来る。 これにより、起動時間の長い機能ユニットが起動を行っている間にも、ホスト装置からの 命令により、既に起動を完了した機能ユニットに処理を実行させることができる電子装置 を実現できる。

[0025]

前記状態レジスタ群は、複数の前記機能ユニットのそれぞ 請求項4に記載の発明は、 れに対応付けられ且つ対応する前記機能ユニットを起動させるための起動命令レジスタを 更に有し、前記制御部の起動時、前記状態レジスタ群の全ての前記起動命令レジスタは停 止に設定され、前記ホスト装置は、起動させたい機能ユニットの起動命令レジスタを起動 に設定することで、その機能ユニットが起動を開始し、停止させたい機能ユニットの起動 命令レジスタを停止に設定することで、その機能ユニットが停止することを特徴とする請 求項1に記載の電子装置である。

[0026]

本発明は、1つの命令で(起動レジスタの書き込み命令のみで)動作させたい機能ユニ ットのみを全て起動させることができる低消費電力の電子装置(多機能ICカードを含む 。)を実現できる。

起動レジスタが、対応する機能ユニットに対して動作開始を命令することを示す場合に 、対応する機能ユニットが動作を開始する方法は任意である。例えば各起動レジスタがそ れに対応する機能ユニットと直接接続されており、その機能ユニットに動作開始を直接命 令しても良い。又は、制御部が各機能ユニットと通信を行い、制御部がその機能ユニット に動作開始を命令しても良い。

[0027]

請求項5に記載の発明は、前記インターフェース部は、前記ホスト装置をマスターとし 、電子装置をスレーブとするマスター/スレーブ方式のデータ通信を前記ホスト装置との 間で行い、前記機能ユニットが機能処理中であれば、その機能ユニットに対応する処理状 態レジスタが機能未処理状態から機能処理中状態になり、前記機能ユニットが機能処理を 終了或いは前記ホスト装置の命令で中断されれば、その機能ユニットに対応する処理状態 レジスタが機能処理中状態から機能未処理状態になることを特徴とする請求項1に記載の 電子装置である。

[0028]

本発明によれば、1つの機能ユニットがビジー状態である時に、他の機能ユニットが動 作可能であるか否かを個別に知ることが出来る。本発明は、1つの機能ユニットが処理を 実行してビジーである間にも、他の機能ユニットに別個の命令を送信し、他の機能ユニッ トに処理を実行させる(並行して処理を実行させる)ことができる電子装置を実現できる という作用を有する。

電子装置は、動作可能状態レジスタと処理状態レジスタとを兼ねても良い。

[0029]

請求項6に記載の発明は、前記ホスト装置と前記インターフェース部とは、命令信号線 と、データ線とを含む線で接続され、前記ホスト装置から電子装置に対する命令と、電子 装置から前記ホスト装置への応答と、前記状態レジスタ群の状態を示すデータを含むデー タとは、前記命令信号線で伝送され、前記ホスト装置から電子装置に伝送する所定のデー

タと、電子装置から前記ホスト装置に伝送する所定のデータと、前記機能ユニットが機能 処理中状態でビジー状態にあることを示すビジー信号とは、前記データ線で伝送される、 ことを特徴とする請求項5に記載の電子装置である。

[0030]

ホスト装置は、データ線を通じてビジー信号が出力されている間にも、命令信号線を通じて状態レジスタ群の状態を知ることが出来る。本発明によれば、ホスト装置は、いずれかの機能ユニットがビジーである(動作不可である)ことを従来と同様のビジー信号で知ることが出来ると同時に(ホスト装置からの命令に対してスレーブである電子装置が応答していることを従来同様に簡便に知ることができ、且つ従来の電子装置との互換性を維持しつつ)、本発明の方法により、各機能ユニットが動作可能であるか否かを個別に知ることが出来る。

本発明は、従来の電子装置との互換性を維持しつつ、本発明特有の効果を奏する電子装置を実現できる。

[0031]

請求項7に記載の発明は、前記状態レジスタ群は、機能処理中の機能ユニットがビジー信号をデータ線に出力する時に、ホスト装置が前記処理中の機能ユニット以外の機能ユニットとデータの送受信を行うために、前記データ線のビジー状態を解除するバス開放レジスタを更に有し、前記制御部は、前記ホスト装置から、前記バス開放レジスタの書き換え命令を入力した場合は、前記バス開放レジスタを書き換え、前記インターフェース部は、データ線にビジー信号を出力することを止め、前記ホスト装置は、前記処理中の機能ユニット以外の機能ユニットとデータの送受信が可能となることを特徴とする請求項6に記載の電子装置である。

[0032]

本発明は、特定の機能ユニットに係るビジー信号のみの出力を適応的に許可し又は禁止する電子装置を実現する。例えば以下の動作が可能になる。ホスト装置は、第1の機能ユニットに命令を送信し、第1の機能ユニットからビジー信号が戻ってきた後(第1の機能ユニットがその処理を開始したことをホスト装置が知った後)、第1の機能ユニットに起因するビジー信号を禁止することが出来る。次にホスト装置は、第2の機能ユニットに命令を送信し、第2の機能ユニットからのビジー信号を受信して、第2の機能ユニットがその処理を開始したことを知ることが出来る。

本発明は、ビジー信号の出力を適応的に止めて、ビジー信号を伝送していたデータ線を 、データ伝送に使用できる電子装置を実現できる。

複数のデータ線のうち、少なくとも1本のデータ線がビジー信号の伝送経路を兼ねており且つ上記の構成を有する場合は、その電子装置は本請求項の技術的範囲に含まれる。ビジー信号の出力を止める方法は、本請求項に記載の方法でも良く、ビジー信号の発生要因がどの機能ユニットに起因するかを問わず、ビジー信号の出力を一切禁止しても良い。

[0033]

請求項8に記載の発明は、ホスト装置が複数の機能ユニットを起動させている場合、ホスト装置と機能ユニットとのデータ送受信が終了又は処理停止をしたら、機能処理中状態である機能ユニットがバスの使用権を取得し、複数の機能ユニットの処理状態レジスタが機能処理中状態であれば、前記ホスト装置が選択した機能ユニットがバスの使用権を取得することを特徴とする請求項6に記載の電子装置である。本発明は、まだ処理中の機能ユニットにバス使用権を戻すことができる電子装置を実現できる。

[0034]

請求項9に記載の発明は、電子装置が多機能ICカードであることを特徴とする請求項1から請求項8のいずれかの請求項に記載の電子装置である。本発明は、上記の効果を奏する多機能ICカードを実現する。

又、本発明は、上記の電子装置と同様の効果を奏する、電子装置の制御方法を実現する

【発明の効果】

[0035]

本発明によれば、複数の機能ユニットを有し、ホスト装置と各機能ユニットとが共通の インターフェースを通じてそれぞれ別個に通信する電子装置であって、ホスト装置が、各 機能ユニットがそれぞれ動作可能であるか否かを素早く且つ正確に知ることができる電子 装置(多機能ICカードを含む。)及びその制御方法を実現できるという有利な効果が得 られる。

本発明によれば、起動中に、起動時間の長い機能ユニットが起動を行っている間にも、 ホスト装置からの命令により、既に起動を完了した機能ユニットに処理を実行させること ができる電子装置(多機能ICカードを含む。)及びその制御方法を実現できるという有 利な効果が得られる。

[0036]

本発明によれば、1つの機能ユニットが処理を実行してビジーである間にも、他の機能 ユニットに別個の命令を送信し、他の機能ユニットに処理を実行させることができる電子 装置(多機能ICカードを含む。)及びその制御方法を実現できるという有利な効果が得 られる。

本発明によれば、フリーズした機能ユニットのみを再起動できる電子装置(多機能IC カードを含む。)及びその制御方法を実現できるという有利な効果が得られる。

本発明によれば、1つの命令で動作させたい機能ユニットのみを全て起動させることが できる低消費電力の電子装置(多機能ICカードを含む。)及びその制御方法を実現でき るという有利な効果が得られる。

本発明によれば、一気に高い起動電流が生じることを防止できる電子装置(多機能IC カードを含む。)及びその制御方法を実現できるという有利な効果が得られる。

本発明によれば、ホスト装置が、各機能ユニットの処理状態をリアルタイムで把握でき る電子装置(多機能ICカードを含む。)及びその制御方法を実現できるという有利な効 果が得られる。

【発明を実施するための最良の形態】

[0037]

以下、本発明の実施をするための最良の形態を具体的に示した実施の形態について、図 面とともに記載する。

[0038]

《実施の形態1》

図1~図7を用いて本発明の実施の形態1の電子装置及びその制御方法について説明す る。

はじめに、図1、図2を用いて本発明の実施の形態1の電子装置の構成を説明する。図 1は、本発明の実施の形態1によるホスト装置101及び多機能ICカード102の構成 を示すプロック図である。本発明の実施の形態1によるホスト装置101は、従来例のホ スト装置101(図15)と同一である。本発明の実施の形態1による多機能ICカード 102は、従来例の多機能ICカード1502(図15)と類似の構成を有する。

[0039]

多機能ICカード102は、従来例(図15)の制御部1511に代えて制御部111 を有する。制御部111は、インターフェース部121、状態レジスタ群122を有する 。状態レジスタ群122は、起動命令レジスタ群131、動作可能状態レジスタ群132 、処理状態レジスタ群133を有する。制御部111に状態レジスタ群122が追加され ている点で、実施の形態1の多機能ICカード102は従来例(図15)と異なる。

それ以外の点で、実施の形態1の多機能ICカード102は従来例(図15)と同一で ある。図1において、従来例(図15)と同一のプロックには同一の符号を付している。 従来例と同一のプロックの説明を省略する。

[0040]

ホスト装置101と多機能ICカード102とは、ホスト装置101をマスターとし、 多機能 I Cカード102をスレープとするマスター/スレープ方式の通信を行う。具体的

[0041]

ホスト装置101と多機能ICカード102との通信方法を説明する。ホスト装置10 1は、命令信号線142を通じていずれかの機能ユニット(例えば第1の機能ユニット1 12)を宛先とする命令を送信する。制御部111のインターフェース部121は、命令 を受信する。制御部111は、宛先である機能ユニットにその命令を転送する。その機能 ユニットは命令を受信し、それに対する応答を生成し、制御部111に送信する。制御部 111は、受信した応答を命令信号線142を通じてホスト装置101に送信する。

[0042]

命令又は応答にデータを添付する場合も有る。多くのデータはデータ線143を通じて 伝送される。起動命令レジスタ群131、動作可能状態レジスタ群132及び処理状態レ ジスタ群133の状態情報(実施の形態においてはそれぞれ3ビットデータである。)を 含むデータは、命令信号線142を通じて伝送される。データ線143は、1本でも良く 複数本でも良い。

実施の形態において、制御部111は、ホスト装置101から命令を受信すると、宛先 を検出してその宛先の機能ユニットに命令を伝送している。これに代えて、制御部111 は、ホスト装置101から命令を受信すると、その命令を全ての機能ユニット112~1 14に送信しても良い。この場合、各機能ユニットは、その機能ユニット宛ての命令のみ を選択して取り込み、実行する。

[0043]

図1において、制御部111と各機能ユニット112~114とは、それぞれ別個の通 信線で接続されている。各通信線は、機能ユニットの通信 i / f に応じたものと、各機能 ユニットの状態情報を伝達する専用線(状態情報線)とで構成されている。バス141と 同一構成のバスは、ホスト装置101と各機能ユニット112~114との間の命令、応 答及びデータ通信に使用される。状態情報線については、後述する。

これに代えて、制御部111と各機能ユニット112~114とは、共通のバス(バス 141と同一構成のバス)で接続されていても良い(状態情報を他の情報と同様に共通の バスを通じて伝送する。)。

[0044]

図2は、本発明の実施の形態1による多機能ICカードの状態レジスタ群122の構成 を示す図である。

起動命令レジスタ群131は、第1の機能ユニット112の起動命令レジスタ211、 第2の機能ユニット113の起動命令レジスタ212、第3の機能ユニット114の起動 命令レジスタ213で構成されている。各機能ユニットの起動命令レジスタ211~21 3が0の場合は、ホスト装置101から各機能ユニットに対して起動命令が送信されてい ない又は停止命令が送信されていることを示す。各機能ユニットの起動命令レジスタ21 1~213が1の場合は、ホスト装置101から各機能ユニットに対して起動命令が送信 されていることを示す。

多機能ICカード102に電源が投入された時点で、制御部111は状態レジスタ群1 22の全ての起動命令レジスタ211~213を0(停止)に設定する。各機能ユニット は起動しない状態で留まる。

[0045]

動作可能状態レジスタ群132は、第1の機能ユニット112の動作可能状態レジスタ 221、第2の機能ユニット113の動作可能状態レジスタ222、第3の機能ユニット 114の動作可能状態レジスタ223で構成されている。各機能ユニットの動作可能状態 レジスタ221~223が0の場合は、各機能ユニットが未起動又は起動中の状態(動作 不可状態)であることを示す。各機能ユニットの動作可能状態レジスタ221~223が 1の場合は、各機能ユニットが起動完了の状態(動作可能状態)を示す。

各機能ユニット112~114は、それぞれの状態情報線を通じて状態情報(機能ユニ ットが動作可能状態か又は動作不可状態かの情報)を制御部111に伝達する。制御部1 11は、各機能ユニット112~114の状態情報に応じて、対応する動作可能状態レジ スタ221~223を設定する。

[0046]

処理状態レジスタ群133は、第1の機能ユニット112の処理状態レジスタ231、 第2の機能ユニット113の処理状態レジスタ232、第3の機能ユニット114の処理 状態レジスタ233で構成されている。各機能ユニットの処理状態レジスタ231~23 3が0の場合は、各機能ユニットが機能処理中状態であることを示す。各機能ユニットの 処理状態レジスタ231~233が1の場合は、各機能ユニットが機能未処理状態を示す

各機能ユニット112~114は、それぞれの状態情報線を通じて状態情報(機能ユニ ットが機能処理中状態か又は機能未処理状態かの情報)を制御部111に伝達する。制御 部111は、各機能ユニット112~114の状態情報に応じて、対応する処理状態レジ スタ231~233を設定する。

[0047]

これに代えて、各機能ユニット112~114が、動作可能状態レジスタ221~22 3、処理状態レジスタ231~233を直接設定しても良い。

ホスト装置101は、状態レジスタ群122の読み出し命令を制御部111に送信する ことにより、制御部111から状態レジスタ群122の状態を応答として取得することが 出来る。

[0048]

次に、図3~図7を用いて本発明の実施の形態1による電子装置の制御方法を説明する 。図3は、本発明の実施の形態1による多機能ICカードの起動方法のフローチャートで ある。多機能ICカード102を装着したホスト装置101の電源が投入された時または 多機能ICカード102がホスト装置101に挿入された時に、ステップ301で、ホス ト装置101はバス141(電源線、グラウンド線)を通じて多機能ICカード102に 電力を供給する。ステップ302で、多機能ICカード102の制御部111は自動的に 起動する。ステップ303で、制御部111は全ての起動命令レジスタ211~213に 0 (停止)を設定する。ステップ304で、制御部111は全ての動作可能状態レジスタ 221~223に0 (動作不可状態)を設定する。ステップ305で、制御部111は処 理状態レジスタ231~233に0(機能未処理状態)を設定する。ステップ303~ス テップ305は、状態レジスタ群122の初期設定である。制御部111の起動が完了す ると、ホスト装置101は多機能ICカード102と通信可能になる。

[0049]

ステップ306で、ホスト装置101は多機能ICカード102がどのような機能ユニ ットを有するかを問い合わせる。具体的には、制御部111は多機能ICカード102に 内蔵されている全ての機能ユニットの情報を有しており、ホスト装置101は制御部11 1からその機能ユニット情報を取得する。ステップ307で、ホスト装置101はステッ プ306で取得した機能ユニット情報に基づき、使用する機能ユニットを選択する(ユー ザがホスト装置101の操作部を通じて使用する機能ユニットを指定しても良い。)。ホ スト装置101は、選択した機能ユニットの起動命令(起動命令レジスタ群131の書き 込み命令)を多機能ICカード102に送信する。

[0050]

ステップ308で、多機能ICカード102の制御部111は、受信した起動命令に基 づき、ホスト装置101が起動命令した機能ユニットに対応する起動命令レジスタを1(起動)に書き換える。ステップ309で、制御部111は、通信線を通じて、起動命令レ ジスタが1 (起動) に書き換えられた機能ユニットに起動命令を送信する。起動命令を受 信した機能ユニットは、ACK応答を制御部111に返し、起動を開始する。ステップ3

[0051]

図4は、本発明の実施の形態1による多機能ICカードの動作方法のフローチャートで ある。ステップ401で、ホスト装置101は、起動が完了した(動作可能状態になった)機能ユニットの動作命令を多機能ICカード102に送信する。ステップ402で、制 御部111は、状態情報線を通じてその機能ユニットが処理中状態になったことを知ると 、ホスト装置101が動作命令した機能ユニットに対応する処理状態レジスタを1(機能 処理中状態)に書き換える。ステップ403で、動作命令を受信した機能ユニットは、A C K応答を制御部111に返し、動作を開始する。ステップ404で、制御部111は、 状態情報線を通じてその機能ユニットが動作終了/中断の状態(機能未処理状態)になっ たことを知ると、その機能ユニットに対応する処理状態レジスタを 0 (機能未処理状態) に書き換える。

[0052]

図5は、本発明の実施の形態1による多機能ICカードの機能ユニットの起動及び動作 方法の一例を示したタイムチャートである。図6は、図5における起動命令レジスタ群1 31、動作可能状態レジスタ群132及び処理状態レジスタ群133の状態変化を示す図 である。図6の符号(時刻)501~506を付した起動命令レジスタ群131、動作可 能状態レジスタ群132及び処理状態レジスタ群133は、図5の同一符号の時刻におけ る起動命令レジスタ群131、動作可能状態レジスタ群132及び処理状態レジスタ群1 33の状態を示す。図6において、更新したレジスタの値に丸を付けている。

[0053]

ホスト装置101が、第2の機能ユニット(無線通信モジュール)113及び第3の機 能ユニット(カメラモジュール)114を使用する機能ユニットとして選択した場合(ス テップ307)について説明する。

時刻501で、状態レジスタ群122は初期設定される。具体的には、起動命令レジス タ211~213は0(停止)に、動作可能状態レジスタ221~223は0(動作不可 状態)に、処理状態レジスタ231~233は0(機能未処理状態)に設定される(ステ ップ303~ステップ305)。

[0054]

時刻502で、ホスト装置101からの起動命令に基づき、第2の機能ユニット(無線 通信モジュール)113の起動命令レジスタ212及び第3の機能ユニット(カメラモジ ュール)114の起動命令レジスタ213が1(起動)に書き換えられる(ステップ30 8)。第1の機能ユニットの起動命令レジスタ211は0 (停止)のままである。第2の 機能ユニット(無線通信モジュール)113及び第3の機能ユニット(カメラモジュール)114は起動を開始する(ステップ309)。この時、全ての動作可能状態レジスタ2 21~223は0(動作不可状態)である。第2の機能ユニット(無線通信モジュール) 113の起動処理には、通信の相手方を探す処理も含まれる。このため、通常第2の機能 ユニット(無線通信モジュール)113の起動時間は、第3の機能ユニット(カメラモジ ユール) 114の起動時間よりはるかに長い。

[0055]

時刻503で、第3の機能ユニット(カメラモジュール)114は起動を完了する。第 3の機能ユニット (カメラモジュール) 114の動作可能状態レジスタ223は1 (動作 可能状態)に書き換えられる(ステップ310)。これにより、ホスト装置101は状態 レジスタ群122に問い合わせることにより、第3の機能ユニット(カメラモジュール) 114の起動が完了したことが分かる。

時刻504で、ホスト装置101は第3の機能ユニット(カメラモジュール)114に ズーム命令(動作命令)を送信する。第3の機能ユニット(カメラモジュール)114の 処理状態レジスタ233が1(機能処理中状態)に魯き換えられる(ステップ402)。

第2の機能ユニット(無線通信モジュール)113が起動中であっても、第3の機能ユニ ット(カメラモジュール)114はズーム(動作)する。

[0056]

時刻505で、第3の機能ユニット(カメラモジュール)114のズーム処理が終了す る。第3の機能ユニット(カメラモジュール)114の処理状態レジスタ233が0(機 能未処理状態)に書き換えられる(ステップ404)。

時刻506で、第2の機能ユニット(無線通信モジュール)113も起動を完了する。 第2の機能ユニット(無線通信モジュール)113の動作可能状態レジスタ222は1(動作可能状態)に書き換えられる(ステップ310)。以降、第2の機能ユニット(無線 通信モジュール)113及び第3の機能ユニット(カメラモジュール)114は、ホスト 装置101からの指令に基づき動作する。

[0057]

図7は、本発明の実施の形態1による多機能ICカードの停止方法のフローチャートで ある。ステップ701で、ホスト装置101は、動作可能状態の機能ユニットの停止命令 を多機能 I Cカード102に送信する。ステップ702で、制御部111は、受信した停 止命令に基づき、ホスト装置101が停止命令した機能ユニットに対応する起動命令レジ スタを 0 (停止) に書き換える。ステップ 7 0 3 で、制御部 1 1 1 は、受信した停止命令 に基づき、ホスト装置101が停止命令した機能ユニットに対応する動作可能状態レジス タを 0 (動作不可状態) に書き換える。ステップ 7 0 4 で、停止命令を受信した機能ユニ ットは、ACK応答を制御部111に返し、起動を停止する。

[0058]

本実施の形態では、起動命令レジスタ、動作可能状態レジスタ及び処理状態レジスタを 1もしくは0の1ビットデータで表わしたが、これに限られるものではない。

本実施の形態では、3個の機能ユニットを有する多機能 I Cカードにおいて、2個の機 能ユニットを起動する場合について説明した。多機能ICカードが有する機能ユニットの 数は、これに限られるものではない。又、ホスト装置101は、任意のタイミングで任意 の数の機能ユニットを起動させることが出来る。

本実施の形態は、はじめに制御部(共通の機能ユニットを含む。)を起動し、次に使用 する機能ユニットを起動する。制御部のみが起動した時の多機能ICカードの消費電力は 、全ての機能ユニットが起動した時の多機能ICカードの消費電力にくらべて極めて小さ い。起動を2段階で行い、不要な機能ユニットを起動しないことにより、省電力を実現す ることができる。

[0059]

本実施の形態は、多機能ICカードが状態レジスタ群を持つ構成により、ホスト装置は この状態レジスタ群の状態情報を得ることにより、各機能ユニットの起動状態を把握する ことができる。これにより、起動時間が異なる複数の機能ユニットを有する多機能ICカ ードにおいて、最も起動時間が長い機能ユニットの起動が完了するまで待つことなく、起 動時間の短い機能ユニットの処理を進めることができる。

[0060]

本実施の形態では、使用する機能ユニットが複数の場合、ステップ309で複数の機能 ユニットを同時に起動している。これに代えて、1つの機能ユニットの起動が完了すれば 、次の機能ユニットの起動を開始するというように、制御部が1つずつ順番に機能ユニッ トを起動することとしてもよい。これにより、ホスト装置から多機能ICカードに一気に 大きな起動電流が流れることを防止できる。ホスト装置が例えば携帯端末のように限られ た電力で動作する装置であっても、ホスト装置は、パルス的に大きな電力負担が発生する ことがない故、多機能ICカードを安定して動作させることが出来る。

制御部は、起動命令レジスタ群がなく、動作可能状態レジスタ群、処理状態レジスタ群 のみを有する構成であっても良い。この場合、ホスト装置は、各機能ユニットに起動命令 を送信する。

[0061]

図8~図13を用いて本発明の実施の形態2の電子装置及びその制御方法について説明

はじめに、図8、図9を用いて本発明の実施の形態2の電子装置の構成を説明する。図 8は、本発明の実施の形態2によるホスト装置101及び多機能ICカード802の構成 を示すブロック図である。実施の形態2によるホスト装置101は、実施の形態1のホス ト装置101(図1)と同一である。本発明の実施の形態2による多機能ICカード80 2は、実施の形態1の多機能ICカード102(図1)と類似の構成を有する。

[0062]

多機能ICカード802は、実施の形態1(図1)の制御部111に代えて制御部81 1を有する。制御部811は、インターフェース部121、状態レジスタ群822を有す る。状態レジスタ群822は、起動命令レジスタ群131、動作可能状態レジスタ群13 2、処理状態レジスタ群133、バス解放レジスタ群834を有する。状態レジスタ群8 22にバス解放レジスタ群834が追加されている点で、実施の形態2の多機能ICカー ド802は実施の形態1の多機能ICカード102(図1)と異なる。

それ以外の点で、実施の形態2の多機能ICカード602は実施の形態1(図1)と同 一である。図6において、実施の形態1(図1)と同一のブロックには同一の符号を付し ている。実施の形態1と同一のブロックの説明を省略する。

[0063]

ホスト装置101と多機能ICカード802とは、ホスト装置101をマスターとし、 多機能ICカード802をスレーブとするマスター/スレープ方式の通信を行う。詳細は 実施の形態1において詳述した。

[0064]

図9は、本発明の実施の形態2による多機能ICカードの状態レジスタ群822の構成 を示す図である。

起動命令レジスタ群131、動作可能状態レジスタ群132及び処理状態レジスタ群1 33については実施の形態1で説明した。バス解放レジスタ群834は、第1の機能ユニ ット112のバス解放レジスタ941、第2の機能ユニット113のバス解放レジスタ9 42、第3の機能ユニット114のバス解放レジスタ943から構成されている。

[0065]

各機能ユニットに対応するバス解放レジスタ941~943が0の場合は、ホスト装置 101から各機能ユニットに対してバス解放命令が送信されていないことを示す。インタ ーフェース部117がそれに対応する機能ユニットがビジーである(ホスト装置101か らの命令に応答できない)ことに起因してビジー信号を出力できる状態であることを示す

各機能ユニットに対応するバス解放レジスタ941~943が1の場合は、ホスト装置 101から各機能ユニットに対してバス解放命令が送信されていることを示す。インター フェース部121がそれに対応する機能ユニットがビジーであることに起因してビジー信 号を出力できない状態であることを示す。

多機能ICカード802に電源が投入された時点で、制御部811はバス解放レジスタ 群834の全てのバス解放レジスタ941~943を0(バス未解放)に設定する。イン ターフェース部121が任意の機能ユニットがビジーであるごとに起因してビジー信号を 出力できる。

[0066]

ホスト装置101が、バス開放レジスタ群834の書き込み命令(ホスト装置101に よって指定された機能ユニットがビジーであることに起因して、インターフェース部12 1 がビジー信号を出力することを禁止し、バスを開放する命令)を制御部 1 1 1 に送信す ると、制御部111はバス開放レジスタ群834の状態を暋き込み命令に従って暋き換え る。具体的には、ホスト装置101がその機能ユニットがビジーであることに起因してビ ジー信号を出力することを禁止した機能ユニットに対応するバス開放レジスタが1に書き

換えられる。

インターフェース部121は、バス開放レジスタが1である機能ユニットがビジーにな っても、ビジー信号を出力しない。インターフェース部121は、ビジー状態であり且つ その機能ユニットに対応付けられたバス開放レジスタが0(バス未開放(ビジー信号を出 力できる。))である機能ユニットが存在する場合にのみ、ビジー信号を出力する。

[0067]

次に、図10~図13を用いて本発明の実施の形態2による電子装置の制御方法を説明 する。図10は、本発明の実施の形態2による多機能ICカードの機能ユニットの並行処 理方法の一例を示したタイムチャート1である。図11は、図10における処理状態レジ スタ状態群133及びバス開放レジスタ群834の状態変化を示す図である。図11の符 号(時刻)1001~1006を付した処理状態レジスタ状態群133及びバス開放レジ スタ群834は、図10の同一符号の時刻における処理状態レジスタ状態群133及びバ ス開放レジスタ群834の状態を示す。図11において、更新したレジスタの値に丸を付 けている。

[0068]

全ての機能ユニット112~114が処理を行っていない状態で、第1の機能ユニット (メモリモジュール) 112がブロック消去処理を開始し、その処理中に第2の機能ユニ ット(無線通信モジュール)113が読み出し処理を行う場合について説明する。

時刻1001で、全ての機能ユニットが動作していない状態であるため、処理状態レジ スタ231~233は全て0(機能未処理状態)であり、バス解放レジスタ941~94 3は全て0(バス未解放)である。

[0069]

時刻1002で、ホスト装置101からのブロック消去指令を命令信号線142を通じ て伝送する。第1の機能ユニット(メモリモジュール)112は命令信号線142を通じ てホスト装置101に応答を返し、ブロック消去処理を開始する。第1の機能ユニット(メモリモジュール)112はインターフェース部117及びデータ線143を介してホス ト装置101にビジー信号を出力する(データ線143はLowレベルになる。)。第1の 機能ユニット(メモリモジュール)112の処理状態レジスタ231は1(機能処理中状 態) に書き換えられる。

[0070]

状態レジスタ群822の状態情報の要求命令、その応答(状態レジスタ群822の状態 情報のデータを含む。)は全て命令信号線142を通じて伝送される。データ線143が ビジー信号で占有されている間にも、ホスト装置101は状態レジスタ群822の状態情 報を制御部811に問い合わせることにより、第1の機能ユニット112が機能処理中状 態であり(その処理状態レジスタが1である。)、そのことに起因してデータ線143を 通じてビジー信号が出力されていることを知る。

[0071]

時刻1003で、ホスト装置101は命令信号線142を通じてバス開放命令(バス開 放レジスタ群834の書き込み命令)を送信する。制御部611は、命令信号線142を 通じて応答を返す。第1の機能ユニット(メモリモジュール)112のバス開放レジスタ 941は1(バス開放)に書き換えられる。インターフェース部121は、バス開放レジ スタ群834に基づいて、ビジー信号の出力を停止する(データ線123はLowレベルか らHighレベルになる。)。データ線143が解放されることにより、他の機能ユニット1 13、114がデータ線143を使用可能になる。

[0072]

時刻1004で、ホスト装置101からのデータ読み出し指令に基づき、第2の機能ユ ニット(無線通信モジュール)113はデータ読み出し処理を開始する。第2の機能ユニ ット(無線通信モジュール)113はインターフェース部121及びデータ線143を介 してホスト装置101にビジー信号を出力する(データ線123はLowレベルになる。) 。第2の機能ユニット(無線通信モジュール)113の処理状態レジスタ232は1(機

[0073]

時刻1005で、第1の機能ユニット(メモリモジュール)112はブロック消去処理 を完了する。第1の機能ユニット(メモリモジュール)112の処理状態レジスタ231 は0(機能未処理状態)に書き換えられる。ホスト装置101は命令信号線142を通じ てバス未開放命令(バス開放レジスタ群834の書き込み命令)を送信する。第1の機能 ユニット(メモリモジュール)112のバス開放レジスタ941は0(バス未開放)に書 き換えられる。

[0074]

時刻1006で、第2の機能ユニット(無線通信モジュール)113はデータ読み出し 処理を完了する。第2の機能ユニット(無線通信モジュール)113の処理状態レジスタ 232は0 (機能未処理状態) に書き換えられる。全ての機能ユニットの処理状態レジス タ231~233が0 (機能未処理状態) であるため、インターフェース部121は、ビ ジー信号の出力を停止する(データ線143はLowレベルからHighレベルになる。)。

[0075]

図12は、本発明の実施の形態2による多機能ICカードの機能ユニットの並行処理方 法の一例を示したタイムチャート2である。図13は、図12における処理状態レジスタ 状態群133及びバス開放レジスタ群834の状態変化を示す図である。図13の符号(時刻)1001~1004、1201~1203を付した処理状態レジスタ状態群133 及びバス開放レジスタ群834は、図12の同一符号の時刻における処理状態レジスタ状 態群133及びバス開放レジスタ群834の状態を示す。図13において、更新したレジ スタの値に丸を付けている。

[0076]

図10では、時刻1005で第1の機能ユニット(メモリモジュール)112のブロッ ク消去処理が完了した後、1006で第2の機能ユニット(無線通信モジュール)113 のデータ読み出し処理が完了している。図12では、時刻1201で第2の機能ユニット (無線通信モジュール) 113のデータ読み出し処理が完了した後、時刻1203で第1 の機能ユニット(メモリモジュール)112のブロック消去処理が完了している。図12 の時刻 $1001\sim1004$ は、図10と同様であるため説明を省略する。

[0077]

時刻1201で、第2の機能ユニット(無線通信モジュール)113はデータ読み出し 処理を完了する。第2の機能ユニット(無線通信モジュール)113の処理状態レジスタ 232は0 (機能未処理状態) に書き換えられる。第2の機能ユニット (無線通信モジュ ール)113はビジー信号の出力を停止する(データ線123はLowレベルからHighレベ ルになる。)。

[0078]

時刻1202で、ホスト装置101は命令信号線142を通じてバス未開放命令(バス 開放レジスタ群834の書き込み命令)を送信する。第1の機能ユニット(メモリモジュ ール)112のバス開放レジスタ941は0(バス未開放)に書き換えられる。この時点 で、まだ第1の機能ユニット(メモリモジュール)112の処理状態レジスタ231が1 (機能処理中状態) であるため、インターフェース部121は、データ線143を介して ホスト装置101にビジー信号を出力する(データ線123はLowレベルになる。)。

時刻1203で、第1の機能ユニット(メモリモジュール)112はプロック消去処理 を完了する。第1の機能ユニット(メモリモジュール)112の処理状態レジスタ231 は 0 (機能未処理状態) に書き換えられる。第1の機能ユニット(メモリモジュール)1 12はビジー信号の出力を停止する(データ線123はLowレベルからHighレベルになる 。)。

[0079]

本実施の形態では、第1の機能ユニット (メモリモジュール) 112がプロック消去処 理中に第2の機能ユニット(無線通信モジュール)113が読み出し処理を行う場合につ

本実施の形態では、3個の機能ユニットを有する多機能 I Cカードにおいて、2個の機 能ユニットの処理を並行して行う場合について説明した。例えば4個以上の機能ユニット を有する多機能ICカードにおいても、又は3個以上の機能ユニットの処理を並行して行 う場合についても本発明を適用可能である。

[0080]

本実施の形態は、多機能ICカードが状態レジスタ群(バス開放レジスタ群を含む。) を持つ構成により、ホスト装置はこの状態レジスタ群の状態情報を得ることにより、各機 能ユニットの処理状態を把握することができる。これにより、データ線にビジー信号が出 力されていても、多機能ICカードはバスを解放し、データ線を他の機能ユニットの処理 に使用することが可能となる。さらに、複数の機能ユニットが並行して処理可能となるこ とにより、合計の処理時間を短縮することが可能となる。

[0081]

実施の形態 1 の機能を有する(ホスト装置は全ての機能ユニットの起動状態を容易に知 ることが出来る。)状態レジスタ群と、実施の形態2の機能を有する(ホスト装置は全て の機能ユニットの動作状態を容易に知ることが出来る。)状態レジスタ群とを別個に設け

バス開放レジスタ群を全ての機能レジスタに共通のレジスタ(1 ビット)とし、ビジー 信号の発生要因がどの機能ユニットに起因するかを問わず、バス開放レジスタを1に設定 することにより、ビジー信号の出力を一切禁止するようにしても良い。

[0082]

《実施の形態3》

図8、図14を用いて本発明の実施の形態3の電子装置及びその制御方法について説明 する。

はじめに、図8を用いて本発明の実施の形態3の電子装置の構成を説明する。図8は、 本発明の実施の形態3による多機能ICカードの構成を示すブロック図である。本発明の 実施の形態3による多機能ICカードは、実施の形態2と同一の構成(図8)を有する。 その説明を省略する。

[0083]

次に、図14を用いて本発明の実施の形態3による電子装置の制御方法を説明する。図 14は、本発明の実施の形態3による多機能ICカードのフリーズ時の再起動方法のフロ ーチャートである。

全ての機能モジュール112~114は起動完了しているが、処理を行っていない状態 で、第1の機能ユニット(メモリモジュール)112がデータ書き込み処理を開始し、そ の処理がフリーズした場合について説明する。

[0084]

最初、起動レジスタ211~213は全て1 (起動)であり、動作可能状態レジスタ2 21~223は全て1 (動作可能状態) であり、処理状態レジスタ231~233は全て 0 (機能未処理状態)であり、バス開放レジスタ941~943は全て0 (バス未開放)

ステップ1401で、ホスト装置101は第1の機能ユニット(メモリモジュール)1 12にデータ書き込み命令を送信する。ステップ1402で、制御部811は、状態情報 線を通じて第1の機能ユニット112が機能処理中状態になったことを知ると、第1の機 能ユニット(メモリモジュール)112に対応する処理状態レジスタ231を1(機能処 理中状態)に書き換える。ステップ1403で、第1の機能ユニット(メモリモジュール) 112は、受信したデータ書き込み命令に基づきデータ書き込み処理を開始する。

[0085]

ステップ1404で、ホスト装置101は第1の機能ユニット(メモリモジュール)1 12のデータ書き込み処理が所定時間内に完了したか否かを判断する。この所定時間とは

、正常に処理すれば確実に処理を完了できる時間である。この所定時間は処理の種類、デ ータ量により異なる。

ステップ1404でデータ書き込み処理が所定時間内に完了した場合は、ステップ14 12に進む。ステップ1412で、制御部811は第1の機能ユニット(メモリモジュー ル) 112の処理状態レジスタ231を0(機能未処理状態)に書き換え、このフローチ ャートを終了する。第1の機能ユニット(メモリモジュール)112は、ホスト装置10 1からの指令に基づき新たな処理を実行することができる。

[0086]

ステップ1404でデータ書き込み処理が所定時間内に完了しない場合は、ホスト装置 101は第1の機能ユニット(メモリモジュール)112の書き込み処理がフリーズして いると判断し、ステップ1405に進む。ステップ1405で、制御部811は、ホスト 装置101からの指令に基づいて、第1の機能ユニット(メモリモジュール)112の起 動命令レジスタ211を0(停止)に書き換える。ステップ1406で、制御部811は 第1の機能ユニット(メモリモジュール)112の動作可能状態レジスタ221を0(動 作不可状態)に書き換える。ステップ1407で、制御部811は第1の機能ユニット(メモリモジュール)112の処理状態レジスタ231を0(機能未処理状態)に書き換え る。ステップ1408で、第1の機能ユニット(メモリモジュール)112は起動を停止 する。

[0087]

ステップ1409で、制御部811は、ホスト装置101からの指令に基づいて、第1 の機能ユニット(メモリモジュール)112の起動命令レジスタ211を1(起動)に書 き換える。ステップ1410で、第1の機能ユニット(メモリモジュール)112は起動 を開始する。ステップ1411で、制御部811は、状態情報線を通じて第1の機能ユニ ット(メモリモジュール)112が起動完了の状態(動作可能状態)になったことを知る と、第1の機能ユニット(メモリモジュール)112に対応する動作可能状態レジスタを 1 (動作可能状態) に書き換え、このフローチャートを終了する。第1の機能ユニット (メモリモジュール)112は、ホスト装置101からの指令に基づき新たな処理を実行す ることができる。

ステップ1408、ステップ1410で第1の機能ユニット(メモリモジュール)11 2のみが停止、起動を行っている。第2の機能ユニット113及び第3の機能ユニット1 14は、動作可能状態を継続する。

[0088]

本実施の形態では、第1の機能ユニット (メモリモジュール) 112のデータ書き込み 処理の場合について説明しているが、他の機能ユニットの他の処理の場合についても同様 に、オーバータイム等に基づいて、機能ユニットを再起動させることができる。

実施の形態2、3では、起動命令レジスタ、動作可能状態レジスタ、処理状態レジスタ 及びバス開放レジスタを1もしくは0の1ビットデータで表わしたが、これに限られるも のではない。

本実施の形態では、3個の機能ユニットを有する多機能ICカードについて説明した。 多機能ICカードが有する機能ユニットの数は、これに限られるものではない。

[0089]

本実施の形態は、各機能ユニット単位で起動することができる。 1 つの機能ユニットが フリーズした場合、全機能ユニットを再起動する必要はない。これによれば、他の機能ユ ニットが動作中でも、その動作を中断することがなくなり、フリーズした機能ユニットの みを再起動することが可能となる。また、フリーズした機能ユニットを再起動している間 でも、ホスト装置は他の機能ユニットに処理の指令を送信することができ、その機能ユニ ットは処理を開始することができる。

本発明は、多機能ICカードだけでなく、所定の電子装置(複数の機能ユニットを有し ,ホスト装置と各機能ユニットとが共通のインターフェースを通じてそれぞれ別個に通信 する電子装置) に適用可能である。

【産業上の利用可能性】

[0090]

本発明の電子装置は、多機能ICカードとして有用である。

【図面の簡単な説明】

[0091]

【図1】本発明の実施の形態1によるホスト装置及び多機能ICカードの構成を示す ブロック図

【図2】本発明の実施の形態1による多機能ICカードの状態レジスタ群の構成を示す図

- 【図3】本発明の実施の形態1による多機能ICカードの起動方法のフローチャート
- 【図4】本発明の実施の形態1による多機能ICカードの動作方法のフローチャート
- 【図 5】 本発明の実施の形態 1 による多機能 I Cカードの機能ユニットの起動及び動作方法の一例を示したタイムチャート
- 【図 6 】図 5 における起動命令レジスタ群、動作可能状態レジスタ群及び処理状態レジスタ群の状態変化を示す図
- 【図7】本発明の実施の形態1による多機能ICカードの停止方法のフローチャート
- 【図8】本発明の実施の形態2によるホスト装置及び多機能ICカードの構成を示す ブロック図
- 【図9】本発明の実施の形態2による多機能ICカードの状態レジスタ群の構成を示す図
- 【図10】本発明の実施の形態2による多機能ICカードの機能ユニットの並行処理 方法の一例を示したタイムチャート1
- 【図11】図10における処理状態レジスタ状態群及びバス開放レジスタ群の状態変化を示す図
- 【図12】本発明の実施の形態2による多機能ICカードの機能ユニットの並行処理 方法の一例を示したタイムチャート2
- 【図13】図12における処理状態レジスタ状態群及びバス開放レジスタ群の状態変化を示す図
- 【図14】本発明の実施の形態3による多機能ICカードのフリーズ時の再起動方法のフローチャート
- 【図15】従来例の多機能ICカードの構成を示すブロック図

【符号の説明】

[0092]

-	
1 0 1	ホスト装置
102,802,1502	多機能ICカード
111,811,1511	制御部
1 1 2	第1の機能ユニット
1 1 3	第2の機能ユニット
1 1 4	第3の機能ユニット
1 2 1	インターフェース部
1 2 2 , 8 2 2	状態レジスタ群
1 3 1	起動命令レジスタ群
1 3 2	動作可能状態レジスタ群
1 3 3	処理状態レジスタ群
1 4 1	バス
1 4 2	命令信号線
1 4 3	データ線
8 3 4	バス開放レジスタ群

【書類名】図面 【図1】

3/

【図5】

【図6】

【図7】

【図8】

【図13】

【図15】

【書類名】要約書

【要約】

初期化時間を短縮でき、処理中の機能ユニットがあっても他の機能ユニットが 【課題】 並行して処理できる電子装置を提供する。

【解決手段】 本発明の電子装置は、外部のホスト装置と通信を行うインターフェース部 と、状態レジスタ群と、を有する制御部と、インターフェース部を通じてホスト装置とそ れぞれ通信を行う複数の機能ユニットと、を有し、状態レジスタ群は、複数の機能ユニッ トのそれぞれに対応付けられ且つ対応する機能ユニットが動作可能であるか否か、処理中 であるか否かを示す複数の状態レジスタを有し、制御部は、ホスト装置から命令を受信す ると、その命令がいずれかの機能ユニットに対する命令であれば、その命令をその機能ユ ニットに転送し、その命令が状態レジスタ群の読み出し命令であれば、状態レジスタ群の 状態を応答としてホスト装置に送信する。

【選択図】

図 1

特願2003-383000

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由] 住 所

1990年 8月28日

新規登録

大阪府門真市大字門真1006番地

氏 名 松下電器産業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defeate in the images in all the last and use I in it. I all it.
Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.