2.7 Nonhomogeneous ODEs

$$y'' + p(x)y' + q(x)y = r(x)$$

Method of Undetermined Coefficients

Loter: Method of variation of povometers

$$y'' + y = 0.001x^2$$
, $y(0) = 0$, $y'(0) = 1.5$.

externá force

guess the graph of $y(x)$

$$y'' + y = 0.001x^2$$
, $y(0) = 0$, $y'(0) = 1.5$.

-> solve the corresponding homogeneous equ Y"+z=0, get Zh=Cit,+CzZz

-> quest c formula yp which solved

Y"+Y = 0.001x2 | Yp will not have any arbit contacts)

-> Final solution:
$$y = C_1y_1 + C_2y_2 + y_p$$

$$y'' + y = 0.001x^2$$
, $y(0) = 0$, $y'(0) = 1.5$.

-> solve the corresponding homogeneous equ Y"+y=0, get Xn=Cit,+Cix,

$$y'' + y = 0.001x^2$$
, $y(0) = 0$, $y'(0) = 1.5$.

 \Rightarrow quess a formula $\exists p$ which satisfies

 $y'' + y = 0.001x^2$
 \Rightarrow seems like $\exists q = a_0 + a_1 x + a_2 x^2$

will work.

 \Rightarrow find $a_0 a_1, a_1 by colving $y''_0 + y_0 = 0.001x^2$

e composing constants, $x_1, x_2 + x_1 + x_2 + x_2 + x_3 + x_4 + x_4 + x_5 + x$$

 $aa_{x} + (a_{0} + o_{1}x + o_{2}x^{2}) = 0.001x^{2}$ 02 = 0.001 $2a_2+a_0=0$ ab = -0.002 つ 省。= -0.002+0.001火2 general solution: y = C1 cosx + C2 sinx -0.002 +0.001 x2 H.W. find C1, C2 using other conditions y(0)=0

$$y'' + 3y' + 2.25y = -10e^{-1.5x}, y(0) = 1, y'(0) = 0.$$

$$d^2+3d+2.25=0$$
 $d=-3\pm\sqrt{9-9}=-\frac{3}{2}$

$$y_{\mu} = e^{-3/2}(C_1x + C_2)$$

will not work (why)

-> try
$$y_p = c \times e^{-1.5x}$$

will not work either (why)
-> try $y_p = c \times^2 e^{-1.5x}$
 $y'_1 = 2c \times e^{-1.5x} - 1.5 c \times^2 e^{-1.5x}$
 $y''_1 = 2c \times e^{-1.5x} - 3c \times e^{-1.5x}$

$$\frac{3}{6} + \frac{3}{3} + \frac{2}{6} + \frac{2}$$

-) general solution
$$y = e^{-1.5x} (c_1 x + c_2) + (-5)x^2 e^{-1.5x}$$

$$y'' + 2y' + 0.75y = 2\cos x - 0.25\sin x + 0.09x$$
, $y(0) = 2.78$, $y'(0) = 2.78$,

Today, -> more problems with coefficients un deter min ed -> Resonance

-> LCR circuite aquations

8. Solve this using method of undetermined coefficients $y'' + 5y' + 4y = 10e^{-3x}$ $y'' + 5y' + 4y = 10e^{-3x}$ y'' + 5y' + 4y = 0

-) homogeneous eqn y"+5y'+4y=0 1 = (e-4x+C)e -> then find yp which solves $y'' + 5y' + 4y = 10e^{-3x}$

= 10e $Try y_p = Ce^{3x}$

-) find c by solving
$$y''_{p} + 5y'_{p} + 4y_{p} = 10e^{-3x}$$

$$(9c - 15c + 4c)e^{-3x} = 10e^{-3x}$$

$$-2c = -3x$$

$$-2c = -5$$

$$-3x = 10 = -5$$

$$-3x = -5$$

$$-3x = -5$$

$$-3x = -5$$

$$-3x = -5$$

$$\frac{1}{3} = -\frac{3x}{5e^{-3x}} = -\frac{5e^{-3x}}{5e^{-3x}}$$

$$\frac{1}{3} = \frac{-4x}{5e^{-x}} + \frac{-5e^{-3x}}{5e^{-3x}}$$

$$y'' + 3y' + 2y = 12x^{2}$$

$$2(y_{p} = A + Bx + Cx^{2})$$

$$3(y'_{p} = B + 2cx)$$

$$3''_{p} = 2c$$

12x2 = (2A+3B+2C) + (2B+6C)x

+ 2CX2

$$2A + 3B + 2C = 0$$

$$2B + 6C = 0$$

$$2C = 12$$

$$2C = 12$$

$$2C = 12$$

$$y'' - 9y = 18 \cos \pi x$$

$$-q(Y_p = A \cos Rx + R \sin Rx)$$

$$Y_p' = -AR \sin Rx + GR \cos Rx$$

$$(Y_p'' = -AR \cos Rx - RR^2 \sin Rx)$$

 $A = \frac{-18}{9+\pi^2} \int_{-18}^{18} W_1 \times W_2 \times W_3 \times W_4 \times W_4$

2.8 Modeling: Forced Oscillations

$$my'' + cy' + ky = r(t).$$

Mechanically this means that at each instant t the resultant of the internal forces is in equilibrium with r(t). The resulting motion is called a **forced motion** with **forcing function** r(t), which is also known as **input** or **driving force**, and the solution y(t) to be obtained is called the **output** or the **response** of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force of the form

$$r(t) = F_0 \cos \omega t \qquad (F_0 > 0, \omega > 0).$$

Then we have the nonhomogeneous ODE

$$my'' + cy' + ky = F_0 \cos \omega t.$$

Its solution will reveal facts that are fundamental in engineering mathematics and allow us to model resonance.

Q.
$$y'' + y' = 0$$

Solution: $y = c_1 \cos x + c_2 \sin x$

now solve
$$y'' + y = F_0 \omega s(\omega x)$$

 $\chi'' + \chi = 0$ solution: $z = c_1 \cos x + c_2 \sin x$ = A cos (x+a) now solve y"+y=Fows(wx) y = c, wsx+cz sinx + Fo ess(wx) what if w = 1? if w=1, yp= Axasx+Bxxn2

Y'= A CORX - AXSIUX + BSIUN + BX WIX $y''_p = -2A \sin x - A x \cos x + 2x \cos x - B x x \sin x$ Fourx = - 2A sink + 2B ws x A = 0 $B = \frac{F_0}{2}$ $X_p = \frac{F_0}{2} \times \sin 2x$

Resonance System's a input force frequency watch

 $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}$ sketch of the general solution. draw a rough cased w + r

cases) w+n

 $A_{b} = C \times \omega s (ux)$

$$t \le \pi$$
 and 0 if $t \to \infty$; here, $y(0) = 0$, $y'(0) = 0$. This models an undamped system on which a force F acts during some interval of time (see Fig. 59), for instance, the force on a gun barrel when a shell is fired, the barrel being braked by heavy springs (and then damped by a

24. Gun barrel. Solve $y'' + y = 1 - t^2/\pi^2$ if $0 \le 1$

during some interval of time (see Fig. 59), for instance, the force on a gun barrel when a shell is fired, the barrel being braked by heavy springs (and then damped by a dashpot, which we disregard for simplicity). Hint: At π both y and y' must be continuous.

must be continuous.

$$k = 1$$

$$F = 1 - t^2/\pi$$

$$F = 0$$

must be continuous.

$$k = 1$$
 $F = 1 - t^2/\pi^2$

Slep
$$O$$
 solve
 $y''+y=1-t^2$

with the andition that $y(n) = y_1(n)$ $y'(n) = y_1'(n)$

2.9 Modeling: Electric Circuits

next time

Name Symbol Notation	Unit Voltage Drop
Ohm's Resistor — WW— R Ohm's Resista	ance ohms (Ω) RI
Inductor $ L$ Inductance	henrys (H) $L \frac{dI}{dt}$
Capacitor \longrightarrow \longrightarrow C Capacitance	farads (F) Q/C

EXAMPLE 1 RLC-Circuit

Find the current I(t) in an RLC-circuit with $R = 11~\Omega$ (ohms), $L = 0.1~\mathrm{H}$ (henry), $C = 10^{-2}~\mathrm{F}$ (farad), which is connected to a source of EMF $E(t) = 110~\mathrm{sin}~(60 \cdot 2\pi t) = 110~\mathrm{sin}~377~t$ (hence 60 Hz = 60 cycles/sec, the usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor charge are 0 when t = 0.