

SEQUENCE LISTING

<110> Robinson, John Allen
Stojanovic-Susulic, Vedrana
Babij, Philip
Murrills, Richard John

<120> A Novel PTH Responsive Gene

<130> AM100401

<150> US 60/425,532
<151> 2002-11-12

<160> 63

<170> PatentIn version 3.2

<210> 1
<211> 2146
<212> DNA
<213> Rat

<400> 1
ccgggctgag ccgcagccgc agccgcaagc cgaacggccg ctgggcgcgc ccgcaacagg 60
ggaggatggg ctgcggcggg agccgagccg atgccatcga gccccgtac tatgagagct 120
ggacccggga gaccgagtcc acctggctca cctacaccga ctcggacgcg ctgcccagcg 180
ccgcagccac ggacagcggc cccgaggcgg gccgcctgca cgccggtgtg ctggaagacg 240
ggccgtcctc taacggtgtg ctccgacctg cagccccagg tggaaatagcc aacccagaga 300
agaagatgaa ctgtgggacc caatgtccca actcacagag cctcagctca ggccctctga 360
cccagaagca gaatggcctt tggaccacag aggctaaaag ggatgccaag cgaatgtctg 420
caagagaagt cgcttatcagc gtcacagaga atatccggca gatggacaga agtaaaaggg 480
tcacaaagaa ctgcatcaat tagcagtgtc tgggtgtgga agcacatgaa cttctttgtg 540
gcgtccagtc aaagaatatt gaagaagtgg gtgtcactca ctgaacgtgg atgcctctga 600
gacgcacg gccacccacg cggtgacgac catcccggtt tcctgtttat cacatacaga 660
aaatacatcg aaaagtccctg gaatatgttc acagattgcc aaactatggt ttgttttcc 720
tctctgcagc ttccgttagca gggctgctg taaccatggt gaagccgtg ggcctgtgaa 780
tgaatattgg aatccccggg gcaaggagct cacgctagcg tagaaatttc acagtgcgtg 840
gtttcggaca agctcccttt tcctccttcc ttttaaata cggccattgt tttcacttaa 900
gagctggctc tcaccaactc taaactcaa aatacaagaa tcagagaaac agagagactc 960
agaatgagat tcacatcgtcc tagttcacg tgctgactcc ccggtgcccta tgcggtgcc 1020
ttaggaggtg tctatgacac acacacacac acacacacac acacacacac 1080
acacacctgt tcctcctcta cctggaaagg tctcccaggc tggcatcagg cattggcttc 1140
cgaatcacaa tgtcacatgt ttggggccct tgcacccaac ctgcacccgc tttggacct 1200

agctccatgt ggctttccc atagcttct agttccctgt tcttctcatg gactttgtac	1260
tccagtcagg tcatttgcag ctgtaatcaa agactggaca ccactcccg gggaaaggta	1320
ccttaggaaca catggtgaca cacacgatgc ccccttggcc ttctgtaca cagccccaaag	1380
gaccgtgtta ttttgtatc tgcaaagcaa tttagttgga aagccagagc ctgggtgatg	1440
tatattcctg ctgacatcag accaagaagg cactgtattg gaaaggcaggc agccaacaca	1500
gccaagccat gctctgatat ggacccttcc cccacattcc taaacacatc ctccctgcaaa	1560
gtatggcaca gcctgagttt gaaaggaccg ttcacttgct tgggcttatt aaaggtatag	1620
tccaaagtgt gtcaaactgt atcaacagac tccacatcta gcagcaagag cagtctggtg	1680
acatgtttat acgacacagt ccaagagaag taacctaagc gggctaaaat gcagatgctc	1740
acgcctgtct ctgaagtgat ttctccaaca cagacagaac tgtaaaactgt gcgtttattc	1800
gtattaaaat tcactgccaa tcttgtCCA gctacagtaa cagacacaga ggggggttgga	1860
gtctggcagt cacgaccgta catctgactc tatggggagg cttgagactc aggagaatga	1920
cctgaaccct gcggcacagg accaaccatt gcagtggaat ctcaattcta gttttaaggt	1980
agctttctat ccatcgcaaa tgtatgtctt ctccctgtcc rtgtagacta cagttttccc	2040
caacctctct caccttgact cttgtcaaa gggcttttag ggaacttcat gttctgacaa	2100
tttaactaat aaaacaaaag caagccccgt gaaaaaaaaa ccgggc	2146

<210> 2
<211> 145
<212> PRT
<213> Rat

<400> 2

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly Val Leu Glu Asp Gly Pro Ser Ser Asn Gly
50 55 60

Val Leu Arg Pro Ala Ala Pro Gly Gly Ile Ala Asn Pro Glu Lys Lys
65 70 75 80

Met Asn Cys Gly Thr Gln Cys Pro Asn Ser Gln Ser Leu Ser Ser Gly
85 90 95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Trp Thr Thr Glu Ala Lys Arg
100 105 110

Asp Ala Lys Arg Met Ser Ala Arg Glu Val Ala Ile Ser Val Thr Glu
115 120 125

Asn Ile Arg Gln Met Asp Arg Ser Lys Arg Val Thr Lys Asn Cys Ile
130 135 140

Asn
145

<210> 3
<211> 2847
<212> DNA
<213> Homo sapiens

<400> 3
gcccggacta ggggcggcgg gcaccgcagg agctccgcgc ggctgcagcg cgggcggag 60
cggggacgcg atgtcgccgc cgccgcctcc ttgcgggccc gggctgcgcc tccggggctg 120
agccgcccgc agagccgaca gccgagcagc cgctgggcgc tcccgccgc caggaggatg 180
ggctgcggcg ggagccgggc ggatgccatc gagccccgct actacgagag ctggaccgg 240
gagacagaat ccacctggct cacctacacc gactcggacg cgccgcccag cgccgcccgc 300
ccggacagcg gccccgaagc gggcggcctg cactcggca tgctggaaga tggactgccc 360
tccaatggtg tgcccccgtac tacagccccaa ggtgaaatacc caaacccaga gaagaagacg 420
aactgtgaga cccagtgcggaaatccccaaag acgcctcagct cagggccctct gacccagaaa 480
cagaatggcc ttcagaccac agaggctaaa agagatgcta agagaatgcc tgcaaaaagaa 540
gtcaccatta atgtaacaga tagcatccaa cagatggaca gaagtcgaag aatcacaaag 600
aactgtgtca actagcagag agtccaagca gaagggcaga tggacttctt cagtgtcctt 660
cacggcactg gatcccatca aagaaccttgc aagaagtggc tgcccttgc tggacctgaa 720
ttctactgag tccctggcaa gactgtctta cctggcagca aactgctgcc tgatttgg 780
ggaccttctg agccttctac ttatcatgta aatgtattgg cacagtgcctt acatatgtta 840
ataaaactgca aatgtgcagt tcagttgtc tctttgcaac tcctgtataa cggctggtg 900
taaaaagtagt gagttaaagc tacaggtcag tttatgaaac agaaaagtag gaatgcattt 960
tctgggtgaa agagtcacac ctttgtcta taactctcct gcccattataa gtgtattctg 1020
tttcaggcaa gcttattctt tccttcttc attttaaata ttgtcattac aaatcttacc 1080
aggttcactt aaaagctggc tttcatccaa ctctaaaccc acatattgaa aaaatcaagg 1140
tacagggaaaa ctccttgtta tccttgcgtt ctttgttgc tatgagacag atcggatcca 1200
gtttcccatg caccaaccca ctgccccatgg catgtcttgc ggaggtgtct gtgaaggcagt 1260

cataacctgct cctcatctgc ctggaaagtc ctcctattcc agtgtccatg ttggcctcca	1320
gtccttaatg tcaccatgct tgtggccaat gcatccaaat aaggataccc ctcagggctc	1380
agcttagacat tgcaattttg catagcttc cagttccctt tgcttgcctt cttgactgtt	1440
ttccctctct atcggggtca cttgcaattg ttaatcaaag attgaacact gcgtaggaga	1500
gggagatgat ccagagacat gtggcagcag gcatggctc cccttggcct ctctgtacac	1560
tgccccagga ctgtcatttt ggcacatgc aaggaatcac ttttagaaagc cagcacctgg	1620
ttgatgtgta ttcatactga cattagattt atgtgcactg cattagaaat gaggttagctg	1680
acacagaaaa aggatgtttt gataggaata attttctagt atgtcttcaa acatgttcat	1740
ctggaagtat tttcctccaa agtaatgttag catgattttt caaggattgt taacatgcct	1800
gggattggaa aagataggac taaagttgtg ccaaactata tcaataaatt ccatgttttag	1860
cagaaatagg cagcctattt gtgttatgtt tatgtAACat agtccagaga actgacatgc	1920
aggtcaaaag tcagatacgc aacccctta tctgctaact ctgttattct tcaaacacaa	1980
gtggtagtg tcattttcc ttccttcctt ccattggcag attgtatatt tattcacaaa	2040
acattaaatg tccatcctgt gccaggtact atgcagatgt tgagggattt ggggtctgg	2100
tagtcgtgac tatctatcctt gaatctaaca gtgacttcat aactaggaga ctgaattttaga	2160
cccttaaggt atagtgtgtg ttgcaaatac ctctgcaatg gaaacttttta tattcaggg	2220
aggtttgtgt cttaaacttag gtgttctaattt caatgtacaa gactttacca tacacgcaac	2280
tttagttttt ctaaaccttc atcattttgtt gattcttga gaaagggtttt ttaggaactt	2340
tatgttctaa aaaatgtttt taacaataat aagataaaaag aaaaacctgtt gattcatatg	2400
tccccactgg cattactcag caggagcccc cagctgccaaggttggcag tgatcctgca	2460
agttcaagggtt ctctttctcc ctggggatgtt gctttgtggc ttctcttac agctttgttt	2520
ctgcatcagt tcactgctgc atgttgcattt gaatttatca ccttaagaaa gtgtctctgt	2580
tttatataga aacactttctt cacttacagg ggagaaggaa atgcagggca catgatctgg	2640
ccctccccag aacaatctgg atttcacggaa gacagcaacc agaagttaaa ccatgtgact	2700
aaaaatgcattt ctggctactt tttcatgtat gtatgagaca gaaactaattt cttactatcc	2760
tatttagata ccactttca ttgcaaagttt tttgtcaata aagtcaattaa ttttaaacat	2820
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaag	2847

<210> 4
 <211> 145
 <212> PRT
 <213> Homo sapiens
 <400> 4

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
 Page 4

1	5	10	15
---	---	----	----

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
 20 25 30

Ser Asp Ala Pro Pro Ser Ala Ala Ala Pro Asp Ser Gly Pro Glu Ala
 35 40 45

Gly Gly Leu His Ser Gly Met Leu Glu Asp Gly Leu Pro Ser Asn Gly
 50 55 60

Val Pro Arg Ser Thr Ala Pro Gly Gly Ile Pro Asn Pro Glu Lys Lys
 65 70 75 80

Thr Asn Cys Glu Thr Gln Cys Pro Asn Pro Gln Ser Leu Ser Ser Gly
 85 90 95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Gln Thr Thr Glu Ala Lys Arg
 100 105 110

Asp Ala Lys Arg Met Pro Ala Lys Glu Val Thr Ile Asn Val Thr Asp
 115 120 125

Ser Ile Gln Gln Met Asp Arg Ser Arg Arg Ile Thr Lys Asn Cys Val
 130 135 140

Asn
 145

<210> 5
 <211> 271
 <212> DNA
 <213> Homo sapiens

<400> 5
 atgggctgcg gcgggagccg ggcggatgcc atcgagcccc gctactacga gagctggacc 60
 cgggagacag aatccacctg gtcacacctac accgactcgg acgcgcccgc cagcgccgccc 120
 gccccggaca gcggcccccga agcgggcggc ctgcactcgg gctaaaagag atgctaagag 180
 aatgcctgca aaagaagtca ccattaatgt aacagatagc atccaacaga tggacagaag 240
 tcgaagaatc acaaagaact gtgtcaacta g 271

<210> 6
 <211> 54
 <212> PRT
 <213> Homo sapiens

<400> 6
 Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr

1

5

10

15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Pro Pro Ser Ala Ala Ala Pro Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ser Gly
50

<210> 7
<211> 1988
<212> DNA
<213> Mouse

<400> 7
gcagcagcca cagccgcaag ccgagcggcc gccgggcgcg cccgcaacac gggaggatgg 60
gctgcggcg gagccgagcc gatgccatcg agccccgcta ctacgagagt tggaccggg 120
agacggagtc cacctggctc acctacaccg actcggacgc gctgcccagc gccgcagcca 180
cggacagcgg ccccggaggcg ggccgcctgc acgcgggtgt gctggaagac ggactgtcct 240
ctaacggggt gctccgaccc tcagccccgg gtgaaatagc caacccagag aagaagatga 300
actgtggac ccaatgtccc aactcacaga acctcagctc aggccctctg acccagaaac 360
agaatggcct ctgggcccaca gaggctaaga gggatgctaa gcggatgtct gcaagagaag 420
tggctattaa cgttacagag aatattcggc agatggacag aagtaaaagg gtcaccaaga 480
actgcatcaa ttagcagtgc ccggatgtgg aggcatgta acttcttggt ggagtcttagt 540
caaagaatcc tgaagaagtt gatgtcactc gatgagtgtg gatgcctctg agtgcacacac 600
ggccacccaa cgctgtgacg aacatctcg tttcctgttt atcacatata gaaaatacat 660
cgaaaagtcc tgaatatatgt tcatagattt ccaaatgtg gtttgtttt tccccctctgc 720
agcttccata gcatggtctg ctgttagccat ggcgactggc acagaaaggc tggagtaacg 780
gaatccctgt caaggagctc acactcgtgc agagcttct cagtgtgtgg ttgcagacaa 840
actccttctt tcctcctttc ctttaata cggccaccac aaaattact gtttctactt 900
aagagctggc tcccagccaa ctctaaatcc agaaatacaa gaatccaaaa aaccagagag 960
actcggAACG agctgaatca gtcccagctt cacgtgtgg ctccccgggt cctactcggt 1020
gtctttgaga ggtgtctatg agacacgcac atgcacacgc acacacacac acataacctgt 1080
ttctccctcta cctggaaagg actcccaggc tagcatccag gcgttggctt ccaaaccaga 1140
atgtcacatg tctgtggcct ttgctccctt tggacctag cttcatgttg cttttccccca 1200
tagcttcca gttccctatt gttctgggtgg gctttgtacc ttcagtcagg tggtcatttg 1260
cagctggaca ccactcacag ggggaaagt gacctaggaa cacatggtgg cacacgttat 1320

acccctttgg cccttctgta cacagcccc aaggaccatgt tatttttgtt atctgcagag	1380
taatttagttt ggaaagccag aggctggttg atgtatattc ctgttgacat agtctaacaa	1440
ggcactcact gtattgaaaa acaggcacca acatggtaaa gcgatgcttt gataggaacc	1500
cttccccagc attcctaagc acaccccttgcagtttgcacatgtatgcatggacatgtctga	1560
aaggactgtt aacatgcttg ggcttattaa ggtccaagtc atatcaaact gtaccaacaa	1620
actcacatct agcagcaata gtagtctggc ggcacatgttca cgtgacagtt caagagaagt	1680
cacccaagcg gattaagatg cagatgctca ctgctgtctc tgacttattt ctccaacaca	1740
agtagaactg tagactgtat gtttatttagt gtttaagattc actgccaacc ttgtgccagc	1800
tacagtaaca gtcgcagagg gatttggagt cggttggatc cgactgtact tctgactctg	1860
tgaggaggct tggtactcag gagactgaca cggaccctgt ggcacaagac caatgattgc	1920
agtggaatct cacacttagg taaaggttagc tttctgtcaa tcacagatgt atgtcttctc	1980
ctttgccg	1988

<210> 8
<211> 145
<212> PRT
<213> Mouse

<400> 8

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly Val Leu Glu Asp Gly Leu Ser Ser Asn Gly
50 55 60

Val Leu Arg Pro Ala Ala Pro Gly Gly Ile Ala Asn Pro Glu Lys Lys
65 70 75 80

Met Asn Cys Gly Thr Gln Cys Pro Asn Ser Gln Asn Leu Ser Ser Gly
85 90 95

Pro Leu Thr Gln Lys Gln Asn Gly Leu Trp Ala Thr Glu Ala Lys Arg
100 105 110

Asp Ala Lys Arg Met Ser Ala Arg Glu Val Ala Ile Asn Val Thr Glu
115 120 125

Asn Ile Arg Gln Met Asp Arg Ser Lys Arg Val Thr Lys Asn Cys Ile
130 135 140

Asn
145

<210> 9
<211> 1821
<212> DNA
<213> Mouse

<400> 9
gcagcagcca cagccgcaag ccgagcggcc gccgggcgcg cccgcaacac gggaggatgg 60
gctgcggcgg gagccgagcc gatgccatcg agccccccta ctacgagagt tggaccggg 120
agacggagtc cacctggctc acctacaccg actcggacgc gctgcccagc gccgcagcca 180
cggacagcgg ccccggaggcg ggcggcctgc acgcgggcta agagggatgc taagcggatg 240
tctgcaagag aagtggctat taacgttaca gagaatattc ggcagatgga cagaagtaaa 300
agggtcacca agaactgcat caattagcag tgcccgatg tggaggcaga tgaacttctt 360
ggtggagtct agtcaaagaa tcctgaagaa gttgatgtca ctcgatgagt gtggatgcct 420
ctgagtgaca cacggccacc caacgctgtg acgaacatct cggtttcctg tttatcacat 480
atagaaaata catcgaaaag tcctgaaata tggcataga ttgccaaaat gtggttgtt 540
ttttccccctc tgtagcttcc atagcatggt ctgctgtac catggcgact ggcacagaaa 600
ggctggagta acggaatccc tgtcaaggag ctcacactcg tgcagagctt tctcagtgtg 660
tggttgcaga caaactcctt cttccctcct tccctttaa atacggccac cacaaaattt 720
actgtttca cttaaagagct ggctcccagc caactctaaa tccagaaata caagaatcca 780
aaaaaccaga gagactcgaa acgagctgaa tcagtcccag cttcacgtgc tggctccccg 840
gtgcctactc ggtgtctttg agaggtgtct atgagacacg cacatgcaca cgcacacaca 900
cacacatacc tggcttcctc ctacctggaa aggactccca ggcttagcatc caggcgttgg 960
cttccaaacc agaatgtcac atgtctgtgg ctttgctcc ctttggacc tagcttcatg 1020
ttgctttcc ccatagcttt ccagttccct attgttctgg tggctttgt accttcagtc 1080
agggtggcat ttgcagctgg acaccactca caggggggaa agtgcacccatgg 1140
tggcacacgt gataccctt tggcccttct gtacacagcc ccaaggacca tggatgtt 1200
ggtatctgca gagtaattag tttggaaagc cagaggctgg ttgatgtata ttcctgttga 1260
catagtctaa caaggcactc actgtattga aaaacaggca ccaacatggt aaagcgatgc 1320
tttgcatgtt acccttcccc agcattccctt agcacacccctt cctgcagagt atgttgcac 1380
agcatgatgtc tggaaaggact gttaacatgc ttgggcttat taagggtccaa gtcatatcaa 1440
actgtaccaa caaactcaca tctagcagca atagtagtct ggcggcatgc ttacgtgaca 1500

gttcaagaga agtcacccaa gcggattaag atgcagatgc tcactgctgt ctctgactta 1560
tttctccaac acaagttagaa ctgtagactg tatgtttatt agtgttaaga ttcactgcc 1620
accttgcgcc agctacagta acagtcgcag agggatttgg agtcgggaag tcacgactgt 1680
acttctgact ctgtgaggag gcttggtact caggagactg acacggaccc tgtggcacaa 1740
gaccaatgat tgcagtggaa tctcacactt aggtaaaggt agcttctgt caatcacaga 1800
tgtatgtctt ctcccttgcc g 1821

<210> 10
<211> 54
<212> PRT
<213> Mouse

<400> 10

Met Gly Cys Gly Gly Ser Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr
1 5 10 15

Glu Ser Trp Thr Arg Glu Thr Glu Ser Thr Trp Leu Thr Tyr Thr Asp
20 25 30

Ser Asp Ala Leu Pro Ser Ala Ala Ala Thr Asp Ser Gly Pro Glu Ala
35 40 45

Gly Gly Leu His Ala Gly
50

<210> 11
<211> 16
<212> PRT
<213> Artificial

<400> 11

Arg Ala Asp Ala Ile Glu Pro Arg Tyr Tyr Glu Ser Trp Thr Arg Glu
1 5 10 15

<210> 12
<211> 12
<212> PRT
<213> Artificial

<400> 12

Glu Asp Gly Leu Pro Ser Asn Gly Val Pro Arg Ser
1 5 10

<210> 13
<211> 13
<212> PRT
<213> Artificial

<400> 13

Glu Ala Lys Arg Asp Ala Lys Arg Met Asp Ala Lys Glu
1 5 10

<210> 14

<211> 14

<212> PRT

<213> Artificial

<400> 14

Gln Met Asp Arg Ser Arg Arg Ile Thr Lys Asn Cys Val Asn
1 5 10

<210> 15

<211> 792

<212> DNA

<213> Mouse

<400> 15

tttgctggtg ttgttcatcc atcgctttta gaacaagtgg ccagaaaaact tgggagggggg 60
atttttgtga gcttcggagc tacccagaac agaaagatgg ttttaaagag gggtagatag 120
gttagtgttgc gactggatcc gtgggtggat gcacaggtgg acagatgagg gatggatgg 180
tggatggatg ggagcccagg aggtcgactg aagactgaag agggaccctt tttcttcttc 240
ccaccacctg tctgctactc tttgcacccg catctgccag aacactgaag aaggactgg 300
cggtctggcg gtgggagagg cgagggtttag ggggtctggg gaaggaaagt ggagaggagg 360
agggccttgg agacagagag gaggggcccc cgggagccc ggcgtggcag cggctctggc 420
ggtagggga ccaatgtcgc tgccgccc tcctcctcgg gggccggagc tgcgtcgccc 480
gggctgagca gcagccacag cgcacagcg agcggccgccc gggcgccccc gcaacacggg 540
aggatggct gcggcgggag ccgagccat gccatcgagc cccgctacta cgagagttgg 600
acccggaga cggagtccac ctggctcacc tacaccgact cggacgcgt gcccagcgcc 660
gcagccacgg acagcgcccc cgaggcgggc ggcctgcacg cgggtgagtg agccccgcgc 720
ccgcgaggcc cggctgcctg cagcgagctg gagctgcagg ggagcctggg ggttagccagc 780
aacccatatgg ca 792

<210> 16

<211> 29

<212> DNA

<213> Rat

<220>

<223> oligonucleotide

<400> 16

cccacattcc taaacacatc ctccctgcaa

29

<210> 17	
<211> 22	
<212> DNA	
<213> Rat	
<220>	
<223> Oligonucleotide	
<400> 17	
ccatgctctg atatggaccc tt	22
<210> 18	
<211> 22	
<212> DNA	
<213> Rat	
<220>	
<223> Oligonucleotide	
<400> 18	
tcaaactcag gctgtgccat ac	22
<210> 19	
<211> 22	
<212> DNA	
<213> Mouse	
<220>	
<223> Oligonucleotide	
<400> 19	
tgtgaggagg cttggtactc ag	22
<210> 20	
<211> 22	
<212> DNA	
<213> Mouse	
<220>	
<223> Oligonucleotide	
<400> 20	
gagattccac tgcaatcatt gg	22
<210> 21	
<211> 24	
<212> DNA	
<213> Mouse	
<220>	
<223> Oligonucleotide	
<400> 21	
tgacacggac cctgtggcac aaga	24
<210> 22	
<211> 18	
<212> DNA	
<213> Homo sapiens	

<220>		
<223>	Oligonucleotide	
<400>	22	
	atgcttgtgg ccaatgca	18
<210>	23	
<211>	27	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	Oligonucleotide	
<400>	23	
	gatagagagg gaaaacagtc aagaaga	27
<210>	24	
<211>	27	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<223>	Oligonucleotide	
<400>	24	
	accgcctcagg gctcagctag acattgc	27
<210>	25	
<211>	27	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide	
<400>	25	
	ccatccta at cagactcact atagcgc	27
<210>	26	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide	
<400>	26	
	gattccactg caatgggttgg tcct	24
<210>	27	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide	

<400> 27	aaccgggatg gtcgtcaccc cgta	24
<210> 28		
<211> 25		
<212> DNA		
<213> Artificial		
<220>		
<223> Oligonucleotide		
<400> 28	ctgtccatct gccggatatt ctcttg	25
<210> 29		
<211> 22		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 29	ttccccagca ttcctaagca ca	22
<210> 30		
<211> 24		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 30	tacggcaaag gagaagacat acat	24
<210> 31		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 31	gcaggaggcca cagccgcaag	20
<210> 32		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 32	cggcaaagga gaagacatac	20

<210> 33
 <211> 1086
 <212> DNA
 <213> Homo sapiens

<400> 33
 ctctgaccca gaaacagaat ggccttcaga ccacagaggc taaaagagat gctaagagaa 60
 tgcctgcaaa agaagtccacc attaatgtaa cagatagcat ccaacagatg gacagaagtc
 gaagaatcac aaagaactgt gtcaacttagc agagagtcca agcagaaggg cagatggact
 tcttcagtgt cttcacggc actggatccc atcaaagaac cttgaagaag tggctgcccc 120
 ttgctggacc tgaattctac tgagtccctg gcaagactgt cttacctggc agcaaactgc
 tgcctgattt gttgggaccc tctgagcctt ctacttatca tgtaaaatgtt ttggcacagt
 gcttacatat gtaataaaac tgcaaatgtg cagttcagtt tgtctcttg caactcctgt 180
 aatacggtct ggtgtaaaag tagtgagttt aagctacagg tcagttatg aaacagaaaa 240
 gtagggatgc attttctggg tgaaagagtc acaccttagt gctataactc tcctgccccat
 gatagtgtat tctgtttcag gcaagcttac tcttccttc tttcattttt aatattgtca 300
 ttacaaatct taccaggttc actaaaagc tggctttcat ccaactctaa acccacatat
 tgaaaaaaatc aaggtacagg aaaactcctt gttatccttg tttccttagc ttggatgag
 acagatcgga tccagttcc catgcaccaa cccactgccc atggcatgtc tttgggaggt 360
 gtctgtgaag cagtcataacc tgctcctcat ctgcctggaa agtcctccta ttccagtg 420
 catgttggcc tccagtcctt aatgtcacca tgcttggc caatgcattcc aaataaggat
 acccctcagg gctcagctag acattgcaat tttgcatacg tttcagttc ctttgcctg 480
 tcttcttgac tgtcttcctt ctctatcggg gtcacttgca attgttaatc aaagattgaa 540
 cactgcgttag gagagggaga tgatccagag acatgtggca gcaggcatgg cttcccttg
 gcctct 600
 1086

<210> 34
 <211> 31
 <212> DNA
 <213> Homo sapiens

<220>
 <223> Oligonucleotide

<400> 34
 gaagatctcc accatggct gcggcgggag c 31

<210> 35
 <211> 28
 <212> DNA
 <213> Homo sapiens

<220>
 <223> Oligonucleotide

<400> 35		
gaagatctct agttgacaca gttctttg		28
<210> 36		
<211> 18		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> Oligonucleotide		
<400> 36		
atgggctgcg gcgggagc		18
<210> 37		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<220>		
<223> Oligonucleotide		
<400> 37		
gatcaactgt gtcaagaaac		20
<210> 38		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 38		
ccccgctact acgagagttg		20
<210> 39		
<211> 20		
<212> DNA		
<213> Mouse		
<220>		
<223> Oligonucleotide		
<400> 39		
ctacgtcaag aaccactggg		20
<210> 40		
<211> 397		
<212> DNA		
<213> Mouse		
<400> 40		
gccccgctac tacgagagtt ggacccggga gacggagtcc acctggctca cctacaccga		60
ctcggacgcg ctgcccagcg ccgcagccac ggacagcggc cccgaggcgg gcggcctgca		120
cgcgggtgtg ctggaagacg gactgtcctc taacgggtg ctccgacctg cagccccggg		180

tggaaatagcc aacccagaga agaagatgaa ctgtgggacc caatgtccca actcacagaa	240
cctcagctca ggcctctga cccagaaaca gaatggcctc tggccacag aggctaagag	300
ggatgctaag cgatgtctg caagagaagt ggctattaac gttacagaga atattcgca	360
gatggacaga agtaaaaggg tcaccaagaa ctgcata	397
<210> 41	
<211> 21	
<212> DNA	
<213> Homo sapiens	
<220>	
<223> Oligonucleotide	
<400> 41	
gcttggaaat ggactgccct c	21
<210> 42	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<220>	
<223> Oligonucleotide	
<400> 42	
ctctgtggtc tgaaggccat tc	22
<210> 43	
<211> 21	
<212> DNA	
<213> Rat	
<220>	
<223> Oligonucleotide	
<400> 43	
gaagacgggc cgtcctctaa c	21
<210> 44	
<211> 21	
<212> DNA	
<213> Rat	
<220>	
<223> Oligonucleotide	
<400> 44	
gtccaaaggc cattctgctt c	21
<210> 45	
<211> 18	
<212> DNA	
<213> Rat	
<220>	

<223> oligonucleotide		
<400> 45 acggggccgtc ctctaaacg		18
<210> 46		
<211> 22		
<212> DNA		
<213> Rat		
<220>		
<223> oligonucleotide		
<400> 46 acattgggtc ccacagttca tc		22
<210> 47		
<211> 24		
<212> DNA		
<213> Rat		
<220>		
<223> oligonucleotide		
<400> 47 agccccaggt ggaatagcca accc		24
<210> 48		
<211> 21		
<212> RNA		
<213> Rat		
<220>		
<223> oligonucleotide		
<400> 48 uagccaaccc agagaagaau u		21
<210> 49		
<211> 21		
<212> RNA		
<213> Rat		
<220>		
<223> oligonucleotide		
<400> 49 uucuuucucug gguuggcuau u		21
<210> 50		
<211> 21		
<212> RNA		
<213> Rat		
<220>		
<223> oligonucleotide		
<400> 50 cucacagagc cucagcuau u		21

<210> 51
<211> 21
<212> RNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 51
ugagcugagg cucugugagu u 21

<210> 52
<211> 21
<212> RNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 52
gaacugcauc aauuagcagu u 21

<210> 53
<211> 21
<212> RNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 53
cugcuaauug augcaguucu u 21

<210> 54
<211> 21
<212> RNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 54
cuucuuuugug gcguccaguu u 21

<210> 55
<211> 21
<212> RNA
<213> Rat

<220>
<223> Oligonucleotide

<400> 55
acuggacgccc acaaagaagu u 21

<210> 56
<211> 21

<212> RNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 56
uccaccuggc ucaccuacau u 21

<210> 57
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 57
uguaggugag ccagguggau u 21

<210> 58
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 58
uacccaaccc agagaagaau u 21

<210> 59
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 59
uucuucucug gguuggguau u 21

<210> 60
<211> 21
<212> RNA
<213> Homo sapiens

<220>
<223> Oligonucleotide

<400> 60
gagaugcuua gagaaugccu u 21

<210> 61
<211> 21
<212> RNA
<213> Homo sapiens

<220>

<223> oligonucleotide

<400> 61

ggcauucucu uagcaucucu u

21

<210> 62

<211> 21

<212> RNA

<213> Homo sapiens

<220>

<223> oligonucleotide

<400> 62

gcagaagggc agauggacuu u

21

<210> 63

<211> 21

<212> RNA

<213> Homo sapiens

<220>

<223> oligonucleotide

<400> 63

aguucaucug cccuucugcu u

21