Resumo Teórico - ICC II

Por: João Paulo Domingues dos Santos - Universidade de São Paulo

(1) Identidades Matemáticas:

(1.1) Logaritmos:

$$\log_b a = c \Leftrightarrow b^c = a$$

$$\log_b ac = \log_b a + \log_b c$$

$$\log_b (a/c) = \log_b a - \log_b c$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b a^n = n\log_b a$$

$$b^{\log_c a} = a^{\log_c b} \Rightarrow b^{\log_b a} = a$$

(1.2) Somas:

$$\sum_{i=1}^{n} i = (n+1)\frac{n}{2}$$

$$(a_1 + a_n)\frac{n}{2}, \text{ caso geral da soma da pa.}$$

$$\sum_{i=0}^{n} a^i = \frac{a^n \cdot a - 1}{a - 1} = \frac{1 - a^{n+1}}{1 - a}$$

$$\left(\frac{a_n q - a_1}{q - 1}\right), \text{ caso geral da soma da pg.}$$

$$\sum_{i=0}^{\infty} a^i = \frac{1}{1 - a} \Leftrightarrow |a| < 1$$

$$\left(\frac{a_1}{1 - q}\right), \text{ caso geral da soma infinita da pg.}$$

(1.3) Indução Finita:

Seja $P(n),\,n\in\mathbb{N},$ uma proposição qualquer. Para provar P(n), procede-se como segue:

(1.3.1) Fraca:

- (i) Provar que vale $P(n_0)$, $n_0 < n$; (Caso base)
- (ii) Supor que P(k) vale, para um certo k; (Hipótese de indução)
- (iii) Provar que vale P(k+1).

(1.3.2) Forte:

- (i) Provar que vale $P(n_0)$, $n_0 < n$; (Caso base)
- (ii) Supor vale $P(n) \quad \forall \quad n \in \mathbb{I} = [n_0, k] , \mathbb{I} \subset \mathbb{N}$
- (iii) Provar que vale P(k+1).

(2) Complexidade Assintótica:

(2.1) Relacionamento Assintótico:

Dizemos que g(n) domina assintoticamente f(n) se existem c e n_0 tais que: $|f(n)| \le c|g(n)|$, $\forall n \ge n_0$ e $c, n_0 > 0$

obs:

 $\wedge = \text{conectivo}$ "e"lógico.

 \exists = existe um único.

 \forall = para todo

:= tal que

(2.2) Notação *O*:

g(n) cresce no máximo como $f(n) \Rightarrow g(n) \in O(f(n))$

$$O(f(n)) = \{g(n) : \exists c, n_0 > 0 \land 0 \le g(n) \le cf(n) , \forall n \ge n_0\}$$

Propriedades (2.2.1)

$$u(n) \in O(f(n)) \Rightarrow au(n) \in O(f(n)), a \text{ constante}$$

$$u(n) \in O(f(n))$$
 e $v(n) \in O(g(n)) \Rightarrow [u(n) + v(n)] \in O(f(n) + g(n))$

$$u(n) \in O(f(n))$$
 e $v(n) \in O(g(n)) \Rightarrow [u(n).v(n)] \in O(f(n).g(n))$

$$u(n) \in O(f(n))$$
 e $f(n) \in O(g(n)) \Rightarrow u(n) \in O(g(n))$

Se f(n) é um polinômio de grau d, então $f(n) \in O(n^d)$

$$n^k \in O(a^n) \quad \forall k > 0 \ e \ a > 1$$

$$log_2 n^k \in O(log_2 n) , \forall k > 0$$

$$(\log_2 n)^{k_1} \in O(n^{k_2}) , \forall k_1, k_2 > 0$$

(2.3) Notação Ω :

g(n) cresce no mínimo tão lentamente quanto $f(n) \Rightarrow g(n) \in \Omega(f(n))$

$$\Omega(f(n)) = \{g(n): \exists \quad c, n_0 > 0 \quad \land \quad 0 \le cf(n) \le g(n) \quad , \quad \forall \quad n \ge n_0\}$$

(2.4) Notação Θ :

g(n)cresce tão rapidamente quanto f(n) (não são necessariamente iguais) $\Rightarrow g(n) \in \Theta(f(n))$

$$\Theta(f(n)) = \{g(n): \exists \quad c_1, c_2, n_0 > 0 \quad \land \quad 0 \leq c_1 f(n) \leq g(n) \leq c_2 f(n) \quad , \quad \forall \quad n \geq n_0 \}$$

Ou, de forma equivalente:

$$\Theta(f(n)) = \{g(n) : g(n) \in O(f(n)) \quad \land \quad g(n) \in \Omega(f(n))\}$$

(2.5) Notação o:

g(n) cresce mais lentamente que $f(n) \Rightarrow g(n) \in o(f(n))$

$$o(f(n)) = \{g(n): \forall c > 0 \ \exists | \ n_0 > 0 : 0 \le g(n) < cf(n) , \forall n > n_0 \}$$

Ou, ainda:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

(2.6) Notação ω :

g(n) cresce mais rapidamente que $f(n) \Rightarrow g(n) \in \omega(f(n))$

$$\omega(f(n)) = \{g(n): \forall c > 0 \quad \exists | \quad n_0 > 0 \quad : \quad 0 \le cf(n) < g(n) \quad , \quad \forall \quad n > n_0 \}$$

Ou, ainda:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$$

(3) Recursão:

Técnica de programação na qual uma função pode chamar a si mesma. Pode ser expressa como:

1. Já terminamos? Se sim, mostre os resultados (Caso(s) base)
2. Se não, simplifique o problema em termos de problemas menores e encaixe os resultados.

(4) Divisão e Conquista:

Paradigma de projeto de algoritmos baseada em indução forte, isto é, a hipótese de indução é que sabemos resolver o problema para qualquer valor de entrada entre n_0 e n-1. Diferentemente da construção incremental, que supõe que sabemos resolver apenas para n-1.

 $Dividir \text{ em subproblemas} \to \underbrace{Conquistar \text{ os subproblemas}}_{\text{recursivamente}} \to Combinar \text{ as}$

soluções para compor a solução original.

(5) Equações de recorrência:

Função condicional definida em termos de si mesma. Exemplo:

$$f(n) = \begin{cases} c_1 & \text{se } n = n_0 \\ f(n-k) + h(n) & \text{caso contrário} \end{cases}$$

Onde:

f(n-k): Chamada recursiva

 n_0 : Caso base

 c_1 : Resultante do caso base

h(n): Função secundária em n (geralmente é constante).

(5.1) Equações de recorrência em divisão e conquista:

Recorrências da forma:

$$T(n) = \begin{cases} c_1 & \text{se } n = n_0 \\ a.T\left(\frac{n}{b}\right) + f(n) & \text{caso contrário} \end{cases}$$

Onde:

 n_0 : Caso base

 c_1 : Resultante do caso base

 $\frac{n}{b}$: Tamanho dos subproblemas

a: Número de subproblemas

f(n): Custo de etapas anteriores.

(5.2) Teorema mestre:

Maneira eficiente de determinar diretamente a complexidade de algoritmos de divisão e conquista:

Sejam $a \ge 1$, $b \ge 2$ e $T(n): \mathbb{N} \to \Re$, definida como segue: $T(n) = a.T\left(\frac{n}{b}\right) + f(n)$, então:

- (1) Se $f(n) \in O(n^{(\log_b a) \epsilon})$ para certo $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$.
- (2) Se $f(n) \in \Theta(n^{\log_b a})$ então $T(n) \in \Theta(n^{\log_b a}.\log n)$.
- (3) Se $f(n) \in \Omega(n^{(\log_b a) + \epsilon})$ para certo $\epsilon > 0$ e se $af\left(\frac{n}{b}\right) \le cf(n)$ para c < 1 e n sufficientemente grande, então $T(n) \in \Theta(f(n))$.

(6) Tentativa e Erro:

Adequado quando é necessário usar recursividade para problemas onde é preciso tentar todas as alternativas possíveis. A idéia é decompor o processo em um número finito de subtarefas parciais.

(i) Passos em direção à solução final são tentados e registrados (ii) Se esses passos não levam à solução final, então eles podem ser retirados do registro.