Yancong Lin

http://yanconglin.github.io/

Postdoc, Computer Vision Lab, Delft University of Technology, The Netherlands Office: $5.E.040 \star Building 28 \star Van Mourik Broekmanweg 6 \star 2628 XE Delft \star the Netherlands Phone: (+31)6.5555.4608 \star E-mail: y.lin-1@tudelft.nl$

SUMMARY	
,	ive, hands-on researcher on 3D computer vision.
Experience in deep	p learning, geometric priors, scene understanding, 3D reconstruction.
EXPERIENCE	
1/2022 - 9/2022	Postdoc, Delft University of Technology, The Netherlands
EDUCATION	
9/2017-4/2022	PhD, Delft University of Technology, The Netherlands
Dissertation:	Data-efficient learning of geometric structures from single-view images
9/2014 - 6/2017	MEng in Computer Science, Tianjin University, China
9/2010-6/2014	BSc in Physics, Southwest Jiaotong University, China
Projects	
1/2022 - 9/2022	3D reconstruction of aircraft engine blades
, ,	Generate photo-realistic 3D models from a single video using NeRF.
3/2021 - 9/2021	3D symmetry plane detection from single-view images
	Incorporated 3D mirror geometry into CNNs;
	Reduced dependency on big data and achieved real-time inference.
3/2020 - 3/2021	Geometric priors for deep vanishing point detection
	Presented a differentiable mapping from image plane to spherical point cloud
	Proposed a learning-based detector robust to domain shift (synthetic - real
9/2017 - 3/2020	Deep Hough-Transform line priors
	Proposed a stand-alone Hough Transform module for end2end learning;
	Enhanced the performance of CNNs in a small-data regime.
9/2015 - 1/2016	Engineering: Multi-view 3D video capture system
	Implemented real-time 3D display (16 cameras, 30 FPS, 1920×1080).
KEY PUBLICATIONS]

KEY PUBLICATIONS

- 1. Deep vanishing point detection: Geometric priors make dataset variations vanish. Y. Lin, R. Wiersma, S. Pintea, K. Hildebrandt, E. Eisemann and J. C. van Gemert. CVPR 2022.
- 2. Deep Hough-Transform line priors. Y. Lin, S. Pintea, and J. C. van Gemert. ECCV 2020.
- 3. Investigating transformers in the decomposition of polygonal shapes as point collections. A. Alfieri, **Y. Lin**, and J. C. van Gemert. ICCV-workshop 2021, Best Student Paper.

Skills & Awards	
Teaching	Seminar Computer Vision by Learning (MSc, 2018-2021)
Reviewing	CVPR/ICCV/ECCV, Outstanding reviewer at CVPR'22
Programming	Python, C++, CUDA (implemented Conv2d from scratch)
Workshop	Visual Inductive Priors for Data-Efficient Deep Learning Workshop
Awards	National Scholarship, Ministry of Education, China (2016)
Interests	

Fitness, Formula 1, Premier League, NBA