First-Come First-Served

Adaptación (ver referencias)

FCFS

- Primer proceso que solicita la CPU es el primer proceso que la recibe
- Se implementa mediante una cola FIFO
- Proceso que entra a la cola de listo, su PCB se enlaza al final de la cola
- Cuando CPU queda libre, primer proceso en cola de listo se le asigna la CPU
- Desventaja
 - El promedio de tiempo de espera en la cola de listo suele ser alto

Procesos	Tiempo necesario en CPU
$P_{\mathtt{1}}$	24 ms
P_2	3 ms
P ₃	3 ms

Orden de llegada: P₁, P₂, P₃

Tiempo espera $P_1 = 0$

Tiempo espera $P_2 = 24$

Tiempo espera $P_3 = 27$

Tiempo espera promedio = (24+27)/3 = 17ms

Procesos	Tiempo necesario en CPU
P_{1}	24 ms
P_2	3 ms
P ₃	3 ms

Orden de llegada: P₂, P₃, P₁

Tiempo espera $P_1 = 6$

Tiempo espera $P_2 = 0$

Tiempo espera $P_3 = 3$

Tiempo espera promedio = (6+0+3)/3 = 3ms

FCFS

- Los tiempos de espera pueden variar en función de los tiempos de ráfagas de CPU.
- Un proceso intensivo de CPU y con ráfagas largas de CPU haría que proceso intensivos de E/S permanezcan mucho tiempo en cola de listo esperando por la CPU.
 - Situación que se podría resolver dando el turno a los procesos de menos necesidad de CPU.
- FCFS es NO apropiativo
 - Proceso en CPU se mantiene hasta que termina o hasta que se bloquea por E/S
 - Mantener la CPU para un solo proceso no conviene en sistemas interactivos.

Referencias

• Silberschatz, A., Baer Galvin, P., & Gagne, G. (2018). CPU Scheduling. In *Operating Systems Concepts* (10th ed., pp. 205–206). John Wiley & Sons, Inc.