GIET UNIVERSITY GUNUPUR-765022

DEPARTMENT OF BSH

DISCRETE MATHEMATICAL STRUCTURE (CSE & IT)

Pre – Requisite: Fundamental of sets, solution of algebraic equations

Subject Code			Title of the subject								L	T	P	C	
]	DISCR	ETE M	ATHE	MATIC	AL ST	RUCTU	JRE	3	1	0	4	
	Co	ourse E	ducat	ional	Objec	tives							ı	ı	
CEO1	To know logica	l equiva	alence	and to	apply	in var	rious p	roofs.							
CEO2	To know about relation and recurrence relation														
CEO3	To study Boolean Algebra and its properties														
CEO3	To know about Graphs and trees.														
CEO4	To know about Graphs and accs.														
Course Ou	itcomes: Toward	ls the e	nd of	the co	urse s	tudent	ts will	be abl	e to :						
CO1	Understanding t	he con	cept of	logic.	group	os, latti	ice. gr	aphs a	nd tree	es					
CO2	Memorize the logical gates, recurrence formulas and different types of graphs														
CO3	Evaluate the arguments ,predicates and quantifiers ,solution of recurrence relations ,methods of solution														
CO4	Analyze recurrence relation by generating functions and groups, binary trees														
CO5	Categorize different types of graphs, and it's property														
CO6	Solve the logical equivalences, Boolean algebra and pre order and post order of arthmic operations									;					
		CO-P	O & P	SO M	lappin	ıg									
COs	PROGRAMME OUTCOMES PSOs														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2													
CO2	2	3													_
CO3	2	3				1									
CO4	2	3													
CO5 CO6	2 2	3													
200					1	S	SYLL	ABUS							
UNIT I -	MATHEMATI	CAL 1	LOGI	C AN	ID SE	ТТН	EOR	Y		(1	0 Hou	rs)			
Propositio	nal logic, Logi	cal F	็ดแร่งจ	lence	Pred	licate	Calcı	ilne s	and O	`		•	t Cal	culus	Nested
1			•		, 1100	neate	Carci	iius, c	iiu Q	uantiili	C15 DK	tte IIICII	ı Cal	curus,	1103100
Quantifier	s, Proof method	s and S	Strateg	gies.											
UNIT II-	RECURRENC	E RE	LATI	ON						(1	0 Hou	rs)			
Recurrenc	e relation, Solu	tion to	recu	rrence	e relat	ion, C	Genera	iting f	unctio	ons, In	clusion	and e	exclus	sion p	rinciple
Relation a	nd their properti	ies, Clo	sure	of rela	ations,	, Equi	valen	e rela	tions,	Partial	order	relatio	ns, po	sets	
UNIT III.	GROUP THE	ORY									12 Ho	urs)			
		J								`	110				

Semi groups, Monoids, Groups, Subgroups, and Permutation groups, Normal subgroups, Homomorphism, Isomorphism.

UNIT IV- GRAPH THEORY

(10 Hours)

Basic Definitions – Some Special Graphs – Matrix Representation of Graphs --- Paths and circuits – Eulerian Theorem, Hamiltonian Theorem. Graphs – connected graphs, Graph coloring, Trees - Spanning Trees - Rooted trees – Binary Trees, Minimum Spanning tree -Kruskal's algorithm, Prim's algorithm, Tree Traversal.

UNIT V - BOOLEAN ALGEBRA AND LATTICES

(10 Hours)

Lattices, Distributive and Complemented Lattices, Sub-lattices, Boolean Lattices and Boolean algebra, Boolean Functions and Boolean Expressions

Reference Books:

- 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Sixth Edition, 2008, Tata McGraw Hill Education, New Delhi
- 2. J. P. Trembly and Manohar, Discrete Mathematical structures with applications to computer science
- 3. C. L. Liu and D. Mohaptra, "Elements of Discrete Mathematics", Third Edition, 2008,
- 4. N. Deo, Graph Theory and Applications to Engineering and Computer Science, Prentice Hall of India
- Ralph P. Grimaldi," Discrete and Combinatorial Mathematics", Fifth Edition, 2005, Pearon Education, New Delhi.