18 – Inner Product

Definition: Inner Product

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The **inner product** (or **dot product**) of \mathbf{u} and \mathbf{v} is

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n$$
. \leftarrow [esult is a number (NOT a vector)

1. Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \underbrace{\overset{0}{\overleftarrow{\mathbf{v}}}}_{-2} \mathbf{v} = \overset{0}{\overleftarrow{\mathbf{v}}}_{-2}^{0}$$
. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{u}$.

$$\overline{U \cdot V} = (3)^2 + (-1)^2 + (5)^2 \Rightarrow 9 + 1 + 25 = 35$$

Theorem

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n , and let c be a scalar. Then

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

3.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$$

4.
$$\mathbf{u} \cdot \mathbf{u} \ge 0$$
 and $\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = 0$

Definition: Length & Distance

- The length (or norm) of a vector \mathbf{v} is $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$. We say \mathbf{v} is unit vector if $||\mathbf{v}|| = 1$.
- ullet The **distance** between vectors ${\bf u}$ and ${\bf v}$ is

$$dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}.$$

2. Let
$$\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$.

(a) Compute $dist(\mathbf{v}, \mathbf{w})$.

Angle blw two vectors

(b) Find a unit vector \mathbf{u} in the same direction as \mathbf{v} . Graph \mathbf{u} , \mathbf{v} , and \mathbf{w} .

Theorem

If θ is the angle between \mathbf{u} and \mathbf{v} , then $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$.

Definition: Orthogonality

We say vectors \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$. Equivalently, \mathbf{u} and \mathbf{v} are orthogonal if the angle between them is 90° . $\frac{}{\sqrt[\infty]{\rho_{e}(\rho_{end})_{collar}}}$

3. Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
.

(a) Show that $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ is not orthogonal to \mathbf{v} . What is the angle between \mathbf{v} and \mathbf{w} ?

$$\nabla \cdot \overline{w} = 3 + (-1) + (-1) = 1$$
; $1 \neq 0$; So NOT orthogonal

$$\nabla \cdot \overline{w} = ||\nabla|| ||\overline{w}|| \cos \theta$$

$$1 = \sqrt{11} \cdot \sqrt{3} \cos \theta$$

$$\cos \theta = \frac{1}{\sqrt{33}} \Rightarrow \theta = \arccos\left(\frac{1}{\sqrt{33}}\right) \approx 80^{\circ}$$

Side work

$$||V|| = \sqrt{3^2 + 1^2 + 1^2} = \sqrt{11}$$

$$||V|| = \sqrt{1 + (-1)^2 + (-1)^2} = \sqrt{3}$$

(b) Find three different vectors in \mathbb{R}^3 that are orthogonal to \mathbf{v} . How many other vectors are orthogonal to \mathbf{v} ?

onal to
$$\mathbf{v}$$
?

want \mathbf{u} such that $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}$. write $\mathbf{u} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \end{bmatrix}$

Possible answers

$$\overline{U} = \begin{bmatrix} -\overline{1} \\ \overline{1} \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \overline{1} \end{bmatrix}, \dots$$