Lab Worksheet

ชื่อ-นามสกุล นาย ภคพล อยู่ยืน รหัสนศ. 663380226-7 Section. 1

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: CLUMP COUNTS

Clump counts (https://codingbat.com/prob/p193817) เป็นโปรแกรมที่ใช้ในการนับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \longrightarrow 2$$

$$[1, 1, 2, 1, 1] \rightarrow 2$$

$$[1, 1, 1, 1, 1] \rightarrow 1$$

ซอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมลที่เกาะอย่ด้วยกันอย่ที่

https://github.com/ChitsuthaCSKKU/SOA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุน การนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีค่าเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

แบบฝึกปฏิบัติที่ 7.1 Control flow graph

จากโจทย์และ Source code ที่กำหนดให้ (CountWordClumps.java) ให้เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให้ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให้ครบถ้วน

ตอบ

Branch:

1_True = return 0;

1_False = int count = 0;

int prev = nums[0];

boolean inClump = false;

Lab instruction

```
4_False = return count;
```

count
$$+= 1$$
;

Condition:

A = nums = null

B = nums.length == 0

C = int i < nums.length

D = nums[i] == prev

E = !inClump

F = nums[i] != prev

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Line coverage

ตอบ

CP353201 Software Quality Assurance (1/2568) Lab instruction

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
1	null	0	Line No.: 6,7
2	[]	0	Line No.: 6,7
3	[1,1,1]	1	Line No.: 6,10,11,12,14,15,16,17,20,25
4	[0,0,1,2,2]	2	Line No.:
			6,10,11,12,14,15,16,17,20,21,22,25

Line coverage =
$$\left(\frac{13}{13}\right) \times 100 = 100\%$$

แบบฝึกปฏิบัติที่ 7.3 BLOCK COVERAGE

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Block coverage

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
5	[]	0	Block: 1,2
6	[1,1]	1	Block: 1,3,4,6,7,8,5
7	[2,3]	0	Block: 1,3,4,6,8,9,5
8	[4,4,5,6,6]	2	Block: 1,3,4,6,7,8,9,5

Block coverage =
$$\left(\frac{9}{9}\right) \times 100$$
 = 100%

แบบฝึกปฏิบัติที่ 7.4 Branch Coverage

Lab instruction

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่า Branch coverage

<u>ตอบ</u>

*x_T = Branch $\vec{\mathfrak{N}} \times = \mathsf{True}$, x_F = Branch $\vec{\mathfrak{N}} \times = \mathsf{False}$

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
9	[]	0	Path: 1-2
			Branch: 1_T
10	[1]	0	Path: 1-3-4-5
			Branch: 1_F , 4_F
11	[1,1]	1	Path: 1-3-4-6-7-8-4-5
			Branch: 1_F, 4_T, 6_T, 8_F, 4_F
12	[2,3]	0	Path: 1-3-4-6-8-9-4-5
			Branch: 1_F, 4_T, 6_F, 8_T, 4_F
13	[0,0,1]	1	Path: 1-3-4-6-7-8-4-6-8-9-4-5
			Branch: 1_F, 4_T, 6_T, 6_F, 8_F, 8_T, 4_F

Branch coverage = $\left(\frac{8}{8}\right) \times 100 = 100\%$

Lab instruction

แบบฝึกปฏิบัติที่ 7.5 Condition Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่า Condition coverage

<u>ตอบ</u>

Condition:

A = nums = null, B = nums.length == 0, C = int i < nums.length, D = nums[i] == prev, E = !inClump, F = nums[i] != prev

Test Case No.	Input(s)	Expected Result(s)	Path and Condition
14	null	0	Path: 1-2
			Condition: A
15	[]	0	Path: 1-2
			Condition: B
16	[1,1]	1	Path: 1-3-4-6-7-8-4-5
			Condition: C, D, E
17	[2,3]	0	Path: 1-3-4-6-8-9-4-5
			Condition: C, E, F

Condition coverage = $\left(\frac{6}{6}\right) \times 100 = 100\%$

แบบฝึกปฏิบัติที่ 7.6 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า C/DC coverage
- 4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผลการทดสอบ

<u>ตอบ</u>

Condition:

A = nums = null, B = nums.length == 0, C = int i < nums.length, D = nums[i] == prev, E = !inClump, F = nums[i] != prev

Test Case	Input(s)	Expected Result(s)	Actual Result(s)	Path, Branch, and
No.				Condition
18	null	0	Pass/Fail: Pass	Path: 1-2
				Branch: 1_T
				Condition: A
19	[]	0	Pass/Fail: Pass	Path: 1-2
				Branch: 1_T
				Condition: B
20	[1]	0	Pass/Fail: Pass	Path: 1-3-4-5
				Branch: 1_F, 4_F
				Condition: -
21	[1,1]	1	Pass/Fail: Pass	Path: 1-3-4-6-7-8-4-5
				Branch: 1_F, 4_T, 6_T,
				4_F, 8_F
				Condition: C, D, E

Lab instruction

22	[2,3]	0	Pass/Fail: Pass	Path: 1-3-4-6-8-9-4-5
				Branch: 1_F , 4_T , 6_F ,
				8_T, 4_F
				Condition: C, E, F
23	[3,3,4]	1	Pass/Fail: Pass	Path: 1-3-4-6-7-8-4-6-8-9-
				4-5
				Branch: 1_F , 4_T , 6_T ,
				8_F, 6_F, 8_T, 4_F
				Condition: C, D, E, F

C/DC coverage =
$$\left(\frac{14}{14}\right) \times 100 = 100\%$$