Q-Learning

Hung-yi Lee

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Critic

The output values of a critic depend on the actor evaluated.

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s

 $V^{\pi}(s)$ is smaller

Critic

V以前的阿光(大馬步飛) = badV變強的阿光(大馬步飛) = good

How to estimate $V^{\pi}(s)$

Monte-Carlo (MC) based approach

• The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_b

$$S_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longrightarrow G_b$$

How to estimate $V^{\pi}(s)$

Temporal-difference (TD) approach

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

$$Var[kX] = k^2 Var[X]$$

MC v.s. TD

MC v.s. TD

[Sutton, v2, Example 6.4]

The critic has the following 8 episodes

•
$$s_a, r = 0, s_b, r = 0$$
, END

•
$$s_{h}, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_h, r = 1$$
, END

•
$$s_b, r = 1$$
, END

•
$$s_h, r = 0$$
, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) = ? 0? 3/4?$$

Monte-Carlo:
$$V^{\pi}(s_a) = 0$$

Temporal-difference:

$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$

3/4 3/4 0

Another Critic

- State-action value function $Q^{\pi}(s,a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

State-action value function

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Another Way to use Critic: Q-Learning

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

Q-Learning

- Given $Q^{\pi}(s,a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

- $\succ \pi'$ does not have extra parameters. It depends on Q
- Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$V^{\pi'}(s) \geq V^{\pi}(s), \text{ for all state s}$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\leq \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s))$$

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$$

$$= E[r_{t+1} + V^{\pi}(s_{t+1}) | s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$\leq E[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) | s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$= E[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2}) | \dots]$$

$$\leq E[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2})) | \dots] \dots \leq V^{\pi'}(s)$$

Target Network

Exploration

$$Q(s, a) = 0$$
 Never explore

$$Q(s,a) = 1$$

$$a_3$$

$$Q(s,a)=0$$

Never explore

The policy is based on Q-function

$$a = arg \max_{a} Q(s, a)$$

This is not a good way for data collection.

Epsilon Greedy

 ε would decay during learning

$$a = \begin{cases} arg \max_{a} Q(s, a), \\ random, \end{cases}$$

with probability $1 - \varepsilon$

otherwise

Boltzmann Exploration

$$P(a|s) = \frac{exp(Q(s,a))}{\sum_{a} exp(Q(s,a))}$$

Replay Buffer

Buffer

exp

exp

exp

exp

 s_t, a_t, r_t, s_{t+1}

Put the experience into buffer.

 π interacts with the environment

The experience in the buffer comes from different policies.

Drop the old experience if the buffer is full.

 $\pi = \pi'$

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

Buffer Replay Buffer exp exp Put the experience into buffer. s_t, a_t, r_t, s_{t+1} exp exp π interacts with the environment $\pi = \pi'$ In each iteration: 1. Sample a batch Find a new actor 2. Update Q-Learning $Q^{\pi}(s,a)$ π' "better" than π function

Off-policy

Typical Q-Learning Algorithm

- Initialize Q-function \hat{Q} , target Q-function $\hat{Q}=Q$
- In each episode
 - For each time step t
 - Given state s_t , take action a_t based on Q (epsilon greedy)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \widehat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 - Every C steps reset $\hat{Q} = Q$

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Double DQN

Q value is usually over-estimated

Double DQN

Q value is usually over estimate

Tend to select the action that is over-estimated

Double DQN

Q value is usually over estimate

$$Q(s_t, a_t) \longleftrightarrow r_t + \max_a Q(s_{t+1}, a)$$

• Double DQN: two functions Q and Q' Target Network

$$Q(s_t, a_t) \longleftarrow r_t + Q'\left(s_{t+1}, arg \max_a Q(s_{t+1}, a)\right)$$

If Q over-estimate a, so it is selected. Q' would give it proper value. How about Q' overestimate? The action will not be selected by Q.

Hado V. Hasselt, "Double Q-learning", NIPS 2010 Hado van Hasselt, Arthur Guez, David Silver, "Deep Reinforcement Learning with Double Q-learning", AAAI 2016

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas, "Dueling Network Architectures for Deep

Reinforcement Learning", arXiv preprint,

Dueling DQN

state

Q(s,a)action

-1 0	6	1
-2 -1	3	1

3

 Π

V(s) Average of column +

3

4

A(s,a)

sum of column = 0

1	3	-1	0
-1	-1	2	0
0	-2	-1	0

Dueling DQN - Visualization

Dueling DQN - Visualization

Prioritized Reply

The data with larger TD error in previous training has higher probability to be sampled.

Experience Buffer

Multi-step

Balance between MC and TD

Noisy Net

https://arxiv.org/abs/1706.01905 https://arxiv.org/abs/1706.10295

Noise on Action (Epsilon Greedy)

$$a = \begin{cases} arg \max_{a} Q(s, a), & with probability 1 - \varepsilon \\ random, & otherwise \end{cases}$$

Noise on Parameters

$$a = arg \max_{a} \tilde{Q}(s, a)$$

Inject noise into the parameters of Q-function at the beginning of each episode $\tilde{Q}(s,a)$

Add noise

The noise would NOT change in an episode.

Noisy Net

- Noise on Action
 - Given the same state, the agent may takes different actions.
 No real policy works in this way
 - No real policy works in this way
- Noise on Parameters
 - Given the same (similar) state, the agent takes the same action.
 - → State-dependent Exploration
 - Explore in a consistent way

有系統地試

Demo

https://blog.openai.com/better-exploration-with-parameter-noise/

Distributional Q-function

- State-action value function $Q^{\pi}(s,a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

Different distributions can have the same values.

Distributional Q-function

A network with 3 outputs

A network with 15 outputs (each action has 5 bins)

Demo

Rainbow

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Continuous Actions

• Action a is a continuous vector

$$a = arg \max_{a} Q(s, a)$$

Solution 1

Sample a set of actions: $\{a_1, a_2, \dots, a_N\}$

See which action can obtain the largest Q value

Solution 2

Using gradient ascent to solve the optimization problem.

Continuous Actions

Solution 3 Design a network to make the optimization easy.

https://www.youtube.com/watch?v=ZhsEKTo7V04

Continuous Actions

Solution 4 Don't use Q-learning

Acknowledgement

• 感謝林雨新同學發現投影片上的錯字