Teoría de la Computación y Lenguajes Formales

Máquinas de Turing

Prof. Hilda Y. Contreras

Departamento de Computación

hyelitza@ula.ve

Máquinas de Turing Contenido

- Introducción
- Historia e importancia
- Modelo básico de la MT
- Ejemplo
- Lenguajes tipo 0
- Variaciones de la MT
- Conclusiones

Máquinas de Turing Introducción

Jerarquía de Chomsky

- Gramáticas
- "Poder generativo débil"
- -Jerarquía implicativa (tipo i incluye tipo i+1)

Gramáticas Tipo 0
Gramáticas Tipo 1
Gramáticas Tipo 2
Gramáticas Tipo 3

Máquinas de Turing Introducción

Tip o	Gramática	Lenguaje	Máquina
0	Irrestricta $\lambda_1, \lambda_2 \rightarrow \beta_1, \beta_2$	Recursivament e enumerables	Máquina de Turing
1	Dependiente del Contexto $x\lambda Z \rightarrow x\beta Z$	Dependiente del contexto	Autómatas linealmente acotados
2	Independiente del Contexto A → β	Independiente del Contexto	Autómatas de Pila
3	Regulares A → aB; A → a	Regulares	Autómatas finitos

Máquinas de Turing Historia

De la matemática a la computación:

- Siglo XIX, D. Hilbert
 Validación de fórmulas matemáticas
- 1931, K. Gödel
 Teorema de la incompletitud
- 1936, A. Turing
 Modelo de cualquier proposición posible

Máquinas de Turing Historia

Máquinas de Turing

Teoría Matemática de la Computación

Tesis o hipótesis de Church-Turing

"Cualquier forma general de computación nos permitirá calcular únicamente las funciones recursivas parciales"

Máquinas de Turing Importancia

- Modelo teórico
- Máquina simple, sencilla y precisa
- Generalidad
- Determinar características de los problemas
 - Decidible (existe un algoritmo)
 - Tratable (existe un algoritmo rápido)

Componentes:

- Unidad de Control (autómata finito)
- Cinta infinita

Cinta infinita

- Infinita a ambos extremos
- Dividida en casillas
- Un símbolo por casilla, inicializada en B
- Entrada w ubicada sobre la cinta infinita
- Cabezal que indica posición actual. Inicia en el primer símbolo de la entrada.
- Cabezal con movimiento secuencial infinidad de veces de izquierda a derecha
- Leer/escribir en cada transición

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q_0}, \mathbf{B}, \mathbf{F})$$

- Q: conjunto de estados
- Σ: símbolos de entrada
- Γ : símbolos de la cinta. Γ contiene a Σ U B
- δ : Qx $\Gamma \rightarrow$ Qx Γ x {D,I}
- q₀: estado inicial
- **B**: símbolo espacio en blanco
- F: conjunto de estados de aceptación

• Transición $\delta(q, X_i) = (p, Y, I)$

Unidad de

• Entrada (Σ^*)

(q) (x) (y) (x) (y) (y)

$$X_1 X_2 ... X_{i-1} X_i X_{i+1} ... X_n$$

Descripción instantánea: $X_1 X_2 ... X_{i-1} q X_i X_{i+1} ... X_n$

Movimiento |-

$$X_1 \dots X_{i-1} \mathbf{q} X_i X_{i+1} \dots X_n \vdash X_1 \dots X_{i-2} \mathbf{p} X_{i-1} Y X_{i+1} \dots X_n$$

Múltiples movimientos | *
 qw | * β₁pβ₂

Máquinas de Turing Ejemplo

 Diseñar una máquina de Turing que acepte el lenguaje:

$$L = \{ 0^n 1^n \mid n \ge 1 \}$$

Idea:

- Cambiar 0 por X y 1 por Y en una pasada
- Repetir hasta el final de la cadena de entrada
- Si hay XnYn la máquina acepta
- $-\Sigma = \{0,1\}$
- $-\Gamma = \{0,1,X,Y,B\}$

Máquinas de Turing Ejemplo

 La máquina de Turing que acepta el lenguaje: { 0ⁿ1ⁿ | n ≥ 1} (archivo 0n1n.jff)

Máquinas de Turing Ejemplo

	0	1	X	Y	В
$\rightarrow q_0$	(q_1,X,D)			(q_3,Y,D)	
q_1	$(q_1,0,D)$	(q_2,Y,I)		(q_1,Y,D)	
q_2	$(q_2,0,I)$		(q_0,X,D)	(q_2,Y,I)	
q_3				(q_3,Y,D)	(q_4,B,D)
*q ₄					

para w = 01 se tiene $q_001 \mid Xq_11 \mid q_2XY \mid Xq_0Y \mid XYq_3B \mid XYBq_4B$ ¿Cuál es la secuencia de \mid para w= 0011 y w=0010 ?

Máquinas de Turing Lenguaje tipo 0

Sea $\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q_0}, \mathbf{B}, \mathbf{F})$ una Máquina de Turing

Lenguaje aceptado se define:

L(M) = { w | w en
$$\Sigma^*$$
, $q_0w \mid^* \alpha_1 q \alpha_2$, α_1
y α_2 en Γ^* y q en \mathbf{F} }

L(M) es un lenguaje recursivamente enumerable

Máquinas de Turing Lenguaje tipo 0

- Lenguaje Recursivamente Enumerable
 Existe una MT
- Lenguaje Recursivo (decidible = algoritmo)
 Existe una MT que siempre para

Lenguaje Recursivamente
Enumerable

Lenguaje Recursivo

Máquinas de Turing Utilidad

- Aceptador Lenguajes
 ¿w en L?
- Generador de Lenguajes 01B0011B000111B...
- Computador de funciones matemáticas sobre enteros
 0^m10ⁿ generar 0^{mxn}

Máquinas de Turing Conclusiones

- MT es la máquina abstracta más poderosa
- MT consta de un autómata finito y una cinta infinita
- MT reconoce los lenguajes tipo 0 recursivamente enumerables
- Si MT se detiene para toda entrada, el lenguaje es recursivo

Contenido

- Técnicas de construcción de la MT:
 - Memoria en la unidad de control
 - Multipistas
 - Multicintas
- MT generadora de lenguajes y MT calculadora de funciones
- Lenguajes recursivamente enumerables
- Lenguajes tipo 1
- Gramáticas sin restricciones

Modelo básico de MT

 $\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q_0}, \mathbf{B}, \mathbf{F})$ $\delta: \mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times \{D, I\}$ $\delta(\mathbf{q}, X_i) = (\mathbf{p}, Y_i, D)$ $\mathbf{L} = \{ \mathbf{0^n 1^n \mid n \ge 1} \}$ $\mathsf{JFLAP}: \mathsf{On1n.iff}$

Técnicas de construcción de MT

- Extensiones del modelo básico (una cinta, una pista, sin memoria en el control)
- Ninguna técnica aumenta el poder de la MT
- Técnicas facilitan la programación, disminuye el número de transiciones, mejora la comprensión del algoritmo, etc.

Almacenamiento en la UC

$$M = (Q', \Sigma, \Gamma, \delta, q_0, B, F)$$

- Utiliza el estado de control para almacenar una cantidad finita de información.
- Conjunto Q de estados cambia $Q = \{q_0, q_1\}$ y $\Delta = \{0,1\}$ (Δ información finita) $Q' = Q_x \Delta = \{[q_0,0], [q_0,1], [q_1,0], [q_1,1]\}$

Almacenamiento en la UC

Por ejemplo: $L = \{ 01^* + 10^* \}$

- Almacenar el primer símbolo leído
- $\Delta = \{0,1,B\}$
- JFLAP: <u>01a10a.jff</u>

$$\delta([q_0,B],0) = ([q_1,0],0,D)$$

 $\delta([q_1,0],1) = ([q_1,0],1,D)$
 $\delta([q_1,0],B) = ([q_1,B],B,D)$
 $\delta([q_0,B],1) = ([q_1,1],1,D)$
 $\delta([q_1,1],0) = ([q_1,1],0,D)$
 $\delta([q_1,1],B) = ([q_1,B],B,D)$

MT con multiples pistas

 Un solo cabezal. La cinta está dividida en un número finito de k pistas, la función de transición tiene la siguiente forma:

$$\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{D,I\}$$

MT con multiples pistas

- Pistas múltiples (multipistas)
- La cinta almacena en cada celda un vector k
 dimensional de símbolos a los que se accede
 simultáneamente.

Un *movimiento* de la máquina implica:

- (a) Cambiar el estado del control finito
- (b) Escribir k símbolos en la celda analizada
- (c) Mover el cabezal de la cinta a la izquierda o a la derecha.

MT con mútiples cintas

 Hay k cintas diferentes y k cabezales.
 La función de transición para máquinas de Turing con n cintas:

$$\delta: \mathbf{Q} \times \Gamma^{k} \rightarrow \mathbf{Q} \times \Gamma^{k} \times \{\mathbf{D}, \mathbf{I}, \mathbf{E}\}^{k}$$

MT con mútiples cintas

- Un movimiento de la máquina multicinta depende del estado del control finito y de los símbolos analizados por cada cabezal de cada cinta
- Un movimiento de la máquina multicinta implica:
- (a) Cambiar el estado del control finito
- (b) Escribir un símbolo en cada una de las celdas analizadas
- (c) Mover cada cabezal de cinta a la izquierda o a la derecha independientemente

MT con mútiples cintas

• Por ejemplo: $L = \{ a^n b^n c^n \mid n \ge 0 \}$

JFLAP: turingAnBnCnMulti.jff

MT calculadora

- Calcula funciones f: Σ* → Γ*, es decir
 f(w) = v, donde w en Σ* y v en Γ*
- q_0w -* q_fv , donde v = f(w)
- Uso de notación "unaria" para codificar los valores del dominio y el rango.

$$X = 0^{x}$$
, p.e. $3 = 0^{3} = 000$

No tiene estados de aceptación

MT calculadora

Por ejemplo: sustracción propia

$$\mathbf{m} - \mathbf{n} \begin{cases} \mathbf{m} - \mathbf{n} & \text{si } \mathbf{m} \ge \mathbf{n} \\ \mathbf{0} & \text{si } \mathbf{m} < \mathbf{n} \end{cases}$$

m-n si m ≥ n p.e: operandos 3 y 2 para la operación 3 -2
Entrada = 000100
Si m < n

JFALP: calculam-nMulti.jff

- MT no necesita cadena de entrada
- MT comienza a operar con la cinta en blanco en el estado inicial q₀.
- Cada vez que MT retorna al estado inicial q₀, hay una cadena w en L escrita sobre la cinta (salida de solo escritura).
- Todas las cadenas de L son, eventualmente, generadas por M.

Por ejemplo: $L = \{ 0^{2n} | n > 0 \}$

MT de 2 cintas:

$$\begin{split} &\delta(q0,B,B) = (q1,(0,I),(\#,D)) \text{ // inicio de la cadena salida} \\ &\delta(q1,0,B) = (q1,(0,I),(B,E)) \text{ // busca inicio del contador n} \\ &\delta(q1,B,B) = (q2,(B,D),(B,E)) \text{ // busca inicio del contador n} \\ &\delta(q2,0,B) = (q3,(0,E),(0,D)) \text{ // coloca cinda 2 el 0 impar} \\ &\delta(q3,0,B) = (q2,(0,D),(0,D)) \text{ // coloca cinda 2 el 0 par} \\ &\delta(q2,B,B) = (q0,(B,E),(B,E)) \text{ // fin del contador n, próxima cadena} \end{split}$$

Por ejemplo: $L = \{ 0^{2n} | n > 0 \}$

JFLAP: genera02nMulti.jff

Por ejemplo: $L = \{ 0^{n}1^{n} | n > 0 \}$

MT No determinista

δ: Qx
$$\Gamma$$
 → (Qx Γ x {D,I})*
δ(q,X_i) = { (p,Y_i,D), (r,Z_i,D),...,(q,X_i,I) }

- El indeterminismo de MT se refiere a las opciones que la máquina pueda tener en cualquier configuración por la función δ
- M acepta w si existe un camino desde q₀ hasta un estado final

Equivalencias de MT

- Teorema: para cualquier máquina de Turing M₁ con k cintas existe otra equivalente M₂ con una sola cinta
- Teorema: para cualquier máquina de Turing M₁ no determinista existe otra equivalente M₂ determinista
- Teorema: para cualquier máquina de Turing M₁ con cinta infinita en ambos sentidos existe otra equivalente M₂ con cinta limitada por la izquierda

Lenguajes recursivamente enumerables

Lenguaje recursivamente enumerable: si existe una máquina de Turing M tal que L(M) = L. Define la clase Lr.e.

Lenguaje recursivo: si existe una máquina de Turing M tal que L(M)=L y M se detiene ante cualquier entrada. Define la clase Lrec

Lrec es subconjunto de Lr.e

Una función es *computable* si puede ser calculada por una máquina de Turing.

Propiedades de clausura

Propiedad	LR	LLC	LRE
U (unión)	S	S	S
∩ (intersección)	S	N	S
complemento	S	N	N
concatenación	S	S	S
n LR	S	S	S

Propiedades de clausura

Propiedad	LR	LLC	LRE
Kleene-clausura	S	S	S
Reflejo	S	S	S
Morfismo	S	S	S
Morfismo ⁻¹	S	S	S
Diferencia	S	N	S

Algoritmos de decisión

Problemas	LR	LLC	LRE
Equidad	D	N	N
Inclusión	D	N	N
Membresía	D	D	N
Vacuidad	D	D	N
Finitud	D	D	N

Jerarquía de Chomsky

Tipo	Lenguaje	Máquina	Gramática G = (V,T,P,S)
0	Recursivamente enumerable	Máquina de Turing	Gramática sin restricciones α → β
			(α, β en (V U T)*, α contiene una variables)
1	Dependiente del Contexto	Autómata linealmente acotado	Gramática sensible al contexto $\alpha \Rightarrow \beta$ (α , β en (V U T)*, α contiene una variables, $ \beta \ge \alpha $)
2	Independiente del Contexto	Autómata de Pila	Gramática libre de contexto A → α (A en V y α en (V U T)*)
	Lenguaje Regular	Autómata finito	Gramática Regular A → aB A → a (A,B en V y a en T)

Lenguajes sensibles al contexto

Gramáticas sensibles al contexto

 Una gramática G = (V,T,P,S) es una gramática sensible de contexto si todas las producciones son de la forma

$$\alpha \rightarrow \beta$$

 donde α, β en (V+T)* y |α| ≤ |β|, α contiene al menos una variable V

Lenguajes sensibles al contexto

Gramáticas sensibles al contexto

```
Por ejemplo: L = \{a^nb^nc^n \mid n > 0\}
S \rightarrow A_0BCS_1 \mid A_0BC
S_1 \rightarrow ABCS_1 \mid ABC
BA \rightarrow AB
CA \rightarrow AC
CB \rightarrow BC
A_0 \rightarrow a, aA \rightarrow aa, aB \rightarrow ab
bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc
```

Lenguajes sensibles al contexto

Autómatas linealmente acotadas

Un autómata de memoria limitada linealmente (ALL) es una máquina de Turing no determinista monocinta que satisface las siguientes condiciones:

- El alfabeto de entrada incluye los limitadores ¢ (izquierda) y \$ (derecha)
- 2. El ALL no mueve el cabezal de la cinta fuera de los limitadores ni escribe sobre ellos

Teorema: *L* es un lenguaje sensible al contexto (de tipo 1) sii *L* es aceptado por un ALL

Gramáticas sin restricciones

 Una gramática G = (V,T,P,S) es una gramática de tipo 0 (irrestricta) si todas las producciones son de la forma

$$\alpha \rightarrow \beta$$

donde α en (V+T)⁺, β en (V+T)*

Teorema: L es un lenguaje recursivamente enumerable sii L=L(G) donde G es de tipo 0.

Gramática irrestricta

Gramáticas irrestricta

Por ejemplo: $L = \{ ww \mid w \text{ en } (a+b)^* \}$

 $S \rightarrow FM$

F → FaA | FbB

 $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$

 $AM \rightarrow Ma$, $BM \rightarrow Mb$

 $F \rightarrow \lambda, M \rightarrow \lambda$