NAME: SECTION:

Laplace Transform \mathcal{L}

Time	Frequency	Time	Frequency
f(t)	$\mathcal{L}[f](s)$	$\mathcal{L}^{-1}[F](t)$	F(s)
f+g	$\mathcal{L}[f] + \mathcal{L}[g]$	cf	$c\mathcal{L}[f]$
f'	$s\mathcal{L}[f] - f(0)$	$f^{(n)}$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
tf(t)	$-\frac{d}{ds}F(s)$	$t^n f(t)$	$(-1)^n F^{(n)}(s)$
f(t) = f(t+T)	$\frac{\int_0^T f(t)e^{-st}dt}{1 - e^{-sT}}$	$f * g(t) = \int_0^t f(t - \tau)g(\tau)d\tau$	$\mathcal{L}[f]\mathcal{L}[g]$
f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	$\frac{1}{a}f\left(\frac{t}{a}\right)$	F(as)
1	$\frac{1}{s}$	$\delta(t-c)$	e^{-cs}
$e^{\lambda t}$	$\frac{1}{s-\lambda}$	$e^{\lambda t}f(t)$	$F(s-\lambda)$
t^n	$\frac{n!}{s^{n+1}}$	$t^p \text{ for } p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$\cos \omega t$	$\frac{\frac{s}{s^2 + \omega^2}}{\frac{s}{s^2 + \omega^2}}$
$\sinh at$	l I I	$\cosh at$	$\frac{s}{s^2-a^2}$
u(t-c)	$\frac{s^2 - a^2}{e^{-cs}}$	u(t-c)f(t-c)	$e^{-cs}F(s)$

Heaviside unit step function u, Dirac delta δ , gamma function Γ

Quiz 11: Find the inverse Laplace transform of the frequency function

$$F(s) = \frac{3-s}{s^2 + 4s + 5}$$

$$\mathcal{L}^{-1}[F](t) = \mathcal{L}^{-1}\left[\frac{5 - (s+2)}{(s+2)^2 + 1^2}\right](t)$$

$$= e^{-2t}\mathcal{L}^{-1}\left[\frac{5 - s}{s^2 + 1^2}\right](t)$$

$$= e^{-2t}\left(5\mathcal{L}^{-1}\left[\frac{1}{s^2 + 1^2}\right](t) - \mathcal{L}^{-1}\left[\frac{s}{s^2 + 1^2}\right]\right)$$

$$= e^{-2t}\left(5\cos t - \sin t\right)$$