金属材料学

Metal Material and Heat Treatment

主讲教师: 曾燕屏

绪

论

一、金属材料的特点、地位和作用

凡由金属元素或金属元素为 主而形成的、具有一般金属特性 的材料统称之为金属材料。

人类社会发展进程简图

优越的综合性能

金属材料的优势

在性能、数量 和质量方面具 有巨大的潜力

各种工程材料中金属材料具有最高的断裂韧性与弹性极限值

各种工程材料中钢具有最高的断裂韧性及足够高的强度

金属材料的性能

金属材料所具有工艺的那种能够适应性能实际生产工艺要求的能力

使用 金属材料满足实际 性能 使用要求的能力 决定金属材料性

能的基本因素

化学成分

内部结构

内部组织

二、金属材料的分类和主要用途

金属材料

钢铁材料

非铁金属材料

金属功能材料

金属间化合物材料

金属基复合材料

各种金属材料中钢铁材料 所占的市场份额

三、金属材料的生命周期

四、金属材料及其制备工艺的设计

五、金属材料的选用及 产品加工工艺的设计

9RZ-60型秸秆揉切机动刀的失效分析

图1 9RZ-60型秸秆 揉切机动刀分布图

技术要求: 动 刀采用65Mn钢 制作,刀口前 10mm的硬度为 HRC50~60, 其 余部分的硬度 <HRC30。

1. 化学成分分析

表1 动刀材料的化学成分

化学成分(%)	С	Si	Mn	Cr	Ni	S	Р
65Mn钢	0.62-0.70	0.17-0.37	0.90-1.20	≤0.25	≤0.25	≤0.045	≤0.040
动刀材料	0.72	0.25	1.06	/	/	0.0083	0.017

2. 硬度测量

表2 动刀刀身与刀口的硬度值

测量位置	刀身	刀口						
		1	2	3	4	5		
硬度值(HRC)	16.0	57.5	57.5	12.5	9.0	11.0		

图2 动刀刀口硬度值的测量位置

3. 断口形貌观察

图3 断口形貌

断口基本为典型的解理断口,说明动刀刀身材料韧性较差。

4. 显微组织观察

横截面

纵截面

图4 显微组织

除刀刃处外,动刀其余部分的显微组织均为粗大的珠光体组织。

5. 改进措施

建议动刀刀身采用如下热处理工艺:

- (1) 830℃油淬, 480℃回火, 回火后的 表面硬度在HRC35~50之间。
- (2) 820±10℃–270℃, 15min等温淬火, 淬火后的表面硬度为HRC52~54。

6. 设计思路

六、金属材料学原理

- 1. 金属材料相图及其应用
- 2. 合金化与材料化学成分设计原理
- 3. 金属材料固态转变基本原理
- 4. 金属工艺过程中的组织演变与工 艺优化设计
- 5. 金属与环境(腐蚀介质、高温、应 力、磨损介质)相互作用原理

七、课程主要内容、学时安排及要求

本课程主要包括三部分:

- (1) 原理篇
- (2) 工艺篇
- (3) 钢铁材料篇

两个实验:

- (1) 化学成分与热处理工艺对钢 组织和性能的影响
- (2) 合金钢显微组织形成过程与 机理分析

本课程总学时为48学时,其中理论教学40学时,实验教学8学时。

八、主要参考书

中文教材

- 1. 吴承建、陈国良、强文江等编著,《金属材料学》,第3版,冶金工业出版社,2016年。
- 2.刘国权主编,《材料科学与工程基础(下册)》,第1版,高等教育出版社, 2015年。

英文参考教材

- 1. J Schaffer, et al. The Science and Design of Engineering Materials.《工程材料科学与设计》第二版国内英文影印版,高等教育出版社,2003
- 2. William D. Callister, Jr., Fundamentals of Materials Science and Engineering/An Interactive text. John Wiley & Sons, Inc., New York. 5th Edition, ISBN 0-471-39551-X. 第五版,国内英文影印版,化学工业出版社,2004

英文参考教材

3. 经典阅读: The Alloying Elements in Steel, by E.C. Bain, 1939. 可由网上免费下载:

http://www.msm.cam.ac.uk/phasetrans/2004/Bain.Alloying/ecbain.html

4. Handbook of Materials Selection, Edited by Myer Kutz. John Wiley & Sons, Inc., New York, 2002. ISBN 0-471-35924-6. (采用其中碳钢与合金钢等章节,包括热处理等内容。PDF)