Векторные представления (word embeddings) в задачах информационного поиска

Информационный поиск: проблемы модели bag of words

- В традиционных подходах к информационному поиску (поиск, классификация текстов) не известны никакие отношения между словами (например, семантическая близость)
 - В поиске нужно расширение запроса
 - В классификации появление слов, которых не было в обучающей выборке – огромная проблема
 - Тематические модели попытка сгруппировать слова в темы

Векторные представления слов?

- Дистрибутивная семантика
 - Идея с 1954 года
 - Реальные эксперименты с 1990 годов
- Использование контекстов для построения векторов слов
 - похожие по смыслу слова встречаются в похожих контекстах.
 - Можно использовать контексты, чтобы сопоставить целевому слову вектор контекстов
 - И тогда можно будет находить сходство между словами (косинусная близость) на основе их векторов
 - Большие размерности применение латентного семантического анализа (LSA) для сокращения пространства, основанного на svd

Проблемы с SVD

- Вычислительная сложность квадратичная
 - Миллионы слов и документов

- Трудно учитывать новые слова и документы
- Нельзя ли как-то иначе сокращать размерность?

До 2013 года: дистрибутивная семантика

he curtains open and the stars shining in on the barely ars and the cold , close stars " . And neither of the w rough the night with the stars shining so brightly , it made in the light of the stars . It all boils down , wr surely under the bright stars , thrilled by ice-white sun , the seasons of the stars ? Home , alone , Jay pla m is dazzling snow , the stars have risen full and cold un and the temple of the stars , driving out of the hug in the dark and now the stars rise , full and amber a bird on the shape of the stars over the trees in front But I could n't see the stars or the moon , only the they love the sun , the stars and the stars . None of r the light of the shiny stars . The plash of flowing w man 's first look at the stars ; various exhibits , aer rief information on both stars and constellations, inc

Но вектора большой размерности: размера словаря

Нейронные языковые модели в дистрибутивной семантике

- (Baroni et al., 2014) Don't count, predict!
- Т.е. классическая дистрибутивная семантика подсчитывает количество совместных встречаемостей слов и вычисляет вектора
- А новые подходы получают векторное представление слов на основе предсказания соседних слов
 - Обучаются векторным представлениям небольшой размерности
 - Mikolov et al. 2013: пакет word2vec

Распределенные представления слов (word embeddings)

- Комбинирование векторной семантики с вероятностными языковыми моделями
- Слово представляется как вектор низкой размерности (100-1000 измерений)
 - Word embedding
- Обучение происходит при решении задачи языкового моделирования, т.е. предсказания последовательностей слов
- Пакеты Word2vec, glove, Fasttext
 - C 2013

Представление значения слова – word2vec (Mikolov et al., 2013)

- 2 базовые архитектуры нейронных сетей:
 - Continuous Bag of Word (CBOW): использует окно контекста для предсказания слова
 - Skip-gram (SG): используется слово для предсказания окружающих слов

Word2vec - Continuous Bag of Word

- "The cat sat on floor"
 - Window size = 2

Нейронная языковая модель:

- Вход one-hot vector вектор всех нулей и одной 1 в позиции текущего слова
- Projection layer выделяет из матрицы вектор, соотв. данному слову (h)
- Выходной уровень получается линейной комбинацией:
 - S=Wh
- Результат выходного уровня вероятность появления слова, так называемый softmax

$$p_i = \operatorname{softmax}(s_i, \vec{s}) = \frac{e^{s_i}}{\sum_i e^{s_j}}$$

• Word2vec - это однослойный персептрон с логистической функцией активации (обобщение для многомерного случая)

Softmax

$$f(x) = \frac{1}{1 + e^{-x}}$$

• Softmax – обобщение применения логистической функции для многомерного случая

$$p_i = \operatorname{softmax}(s_i, \vec{s}) = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

- Softmax повышает максимальную величину и «прижимает» меньшие величины
- Примеры: сеть предсказала значения
- [1,2,3,4,1,2,3] -> softmax [0.024, 0.064, 0.175,
 0.475, 0.024, 0.064, 0.175]

И W, и W' (представление слов контекста) можно рассматривать как представления слов. Но word2vec - W

Вектора word2vec

- Для каждого слова порождаются два вектора
 - Вектор слова как целевого
 - Вектор слова как контекст
 - Это разные вектора
 - Фактически мы хотим, чтобы вектор целевого слова был похож на вектора слов в контексте.

Word2vec

Предсказание слова car около слова ants

Большие матрицы, долгая обработка

- Подходы
 - Subsampling frequent words
 - Для the слишком много контекстов,
 - The мало что говорит о соседних словах
 - Решение
 - Слова выкидываются из текста с вероятностью пропорциональной их частоте
 - Negative sampling (негативное сэмплирование)

Негативное сэмплирование

- Обучение по каждому примеру требует пересчета весов для всех слов в выходном слове
- Идея: выбрать некоторое количество (например, 5) негативных слов (т.е. тех которых нет в контексте) и только для них перестроить веса (и также веса пересчитываются для положительных слов)
- Негативные слова выбираются с вероятностью, связанной с их частотой. В реализации word2vec – это выглядит так:

$$P(w_i) = rac{{f(w_i)}^{3/4}}{\sum_{j=0}^n \left({f(w_j)}^{3/4}
ight)}$$

Реализации word2vec

- Исходный код:
 - https://github.com/tmikolov/word2vec
- Gensim
 - https://radimrehurek.com/gensim/model s/word2vec.html
- Есть реализации в пакетах нейронных сетей (Torch, TensorFlow, Theano)
- Есть уже насчитанные модели
 - Для русского языка (rusvectores.org)

иодсли

В настоящий момент вы можете скачать следующие модели (жирным выделены модели, доступные для выбора в веб-интерфейсе):

Идентификатор ▲ ▼	Скачать ▲ ▼	Корпус 🔺 🔻	Размер корпуса ▲ ▼	Объём словаря ▲ ▼	Частотный порог ▲ ▼	Тагсет ▲ ▼	ιA
ruscorpora_upos_skipgram_300_5_2018	191 Мбайт	НКРЯ	250 миллионов слов	195 071	20	Universal Tags	Cc Sk
ruwikiruscorpora_upos_skipgram_300_2_2018	376 Мбайт	НКРЯ и Википедия за декабрь 2017	600 миллионов слов	384 764	40	Universal Tags	Cc Sk
news_upos_cbow_600_2_2018	547 Мбайт	Русскоязычные новости,с сентября 2013 до ноября 2016	почти 5 миллиардов слов	289 191	200	Universal Tags	Cc Be W
araneum_upos_skipgram_300_2_2018	192 Мбайта	Araneum Russicum Maximum	около 10 миллиардов слов	196 620	400	Universal Tags	Cc Sk
araneum_none_fasttextcbow_300_5_2018	1 Гбайт	Araneum Russicum Maximum	около 10 миллиардов слов	195 782	400	Нет	fas CE (3.
araneum_none_fasttextskipgram_300_5_2018	675 Мбайт	Araneum Russicum Maximum	около 10 миллиардов слов	195 782	400	Нет	fas Sk (3-
ruwikiruscorpora- nobigrams_upos_skipgram_300_5_2018	385 Мбайт	НКРЯ и Википедия за декабрь 2017 (без склеивания биграмм)	600 миллионов слов	394 332	40	Universal Tags	Cc Sk

Caйт rusvectores.ru: сходство векторов слов

Semantic associates for *стол* (ALL)

Ruscorpora and Russian Wikipedia

- 1. столик 0.679
- 2. табурет 0.526
- 3. табуретка 0.515
- подоконник
 0.501
- 5. диван 0.491
- 6. стул 0.484
- 7. кровать 0.476
- 8. тумбочка 0.447
- 9. парта 0.439
- 10. кушетка 0.428

Ruscorpora

- 1. столик 0.794
- подоконник
 0.642
- 3. табуретка 0.637
- 4. табурет 0.623
- 5. диван 0.582
- 6. кровать 0.573
- 7. стул 0.570
- 8. кушетка 0.561
- 9. тумбочка 0.561
- 10. кресло 0.552

Web corpus

- 1. столик 0.637
- 2. стул 0.570
- 3. табурет 0.554
- 4. поднос 0.525
- 5. тумбочка 0.517
- 6. табуретка 0.497
- 7. обеденный 0.490
- 8. кушетка 0.482
- 9. кресло 0.479
- сервировочный
 0.470

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

man:woman :: king:?

семантический калькулятор

Вы можете вычислять отношения. Например, **«найти слово D, связанное со словом С таким же образом, как слово А связано со словом В»**. Таким образом можно определять семантические связи между понятиями. В форме ввода приведен пример: какое слово относится к слову **«лондон»**, так же, как **«россия»** относится к **«москве»**? Ответ — **«великобритания»**: Лондон столица Великобритании, а Москва — столица России. Подробнее...

Новостной корпус

- 1. польша 0.41
- 2. белоруссия 0.39
- 3. страна 0.39
- THE.
- 4. германия 0.38

5. европа 0.38

Выберите модель:

▼ Новостной корпус Araneum fastText HKPЯ и Wikipedia HKPЯ

Показывать только:

- Все части речи

Вычислить!

Вы также можете попробовать более сложные операции над векторами, чем простое решение пропорции.

Введите в «положительную» и «отрицательную» формы не более 10 слов через пробел. RusVectōrēs сложит вектора положительных слов и вычтет из них отрицательные. Затем он выдаст слова, наиболее близкие к получившемуся вектору. Если вы оставите отрицательное поле пустым, RusVectōrēs просто найдет центр лексического кластера, образованного положительными словами.

телефон маленький

Выберите модель:

- Новостной корпус Araneum fastText HKPЯ и Wikipedia
- НКРЯ

Показывать только:

- Прилагательные
 Имена собственные
 Глаголы
- Существительные
 Наречия
 Все части речи

Вычислить!

Сексизм нейронных языковых

RusVectorēs

Похожие слова

Визуализации

Калькулятор

Различные операции

Модели

О проекте

Вычислить!

Контакты

RU/EN

oomanin lookin kanbkynniop

Вы можете вычислять отношения. Например, **«найти слово D, связанное со словом С таким же образом, как слово А связано со словом В»**. Таким образом можно определять семантические связи между понятиями. В форме ввода приведен пример: какое слово относится к слову **«лондон»**, так же, как **«россия»** относится к **«москве»**? Ответ — **«великобритания»**: Лондон столица Великобритании, а Москва — столица России. Подробнее...

Новостной корпус

- 1. швея 0.43
- 2. логист 0.41
- 3. компьютерщик 0.40
- 4. тестировщик 0.39
- 5. продажник 0.39

Araneum fastText

- 1. программистка 0.83
- 2. програмист 0.82
- 3. программер 0.74
- 4. программинг 0.72
- программистский 0.67

Выберите модель:

▼ Новостной корпус
 Araneum fastText
 HKPЯ и Wikipedia
 HKPЯ

Показывать только:

- Прилагательные Ммена собственные Глаголы Существительные Наречия
- Все части речи

Вычислить!

Вы также можете попробовать более сложные операции над векторами, чем простое решение пропорции.

Введите в «положительную» и «отрицательную» формы не более 10 слов через пробел. Rus Vectōrēs сложит вектора положительных слов и вычтет из них отрицательные. Затем он выдаст слова, наиболее близкие к получившемуся вектору. Если вы оставите отрицательное поле пустым, Rus Vectōrēs просто найдет центр лексического кластера, образованного положительными словами.

телефон маленький
выберите модель:
Л Новостной корпус Г Araneum fastText ☐ НКРЯ и Wikipedia☐ НКРЯ
доказывать только:
Прилагательные ⊚ Имена собственные ⊚ Глаголы Существительные ⊚ Наречия ⊚ Все части речи
у Существительные 💮 Паречил 🍪 Осе части речи

Слова, выделенные зеленым, являются высокочастотными (доля слова в корпусе выше 0.00001); слова, выделенные красным, являются низкочастотными (доля слова в корпусе ниже 0.0000005).

Датасеты для тестирования по аналогиии

- Аналогии "a is to a * as b is to b *
 - MSR's analogy dataset
 - 8000 морфосинтаксических аналогий
 - good is to best as smart is to smartest
 - Google's analogy dataset
 - 19544 морфосинтаксических и семантических аналогий
 - Paris is to France as Tokyo is to Japan

Расширение запроса: Relevance-based Word Embeddings (Zamani, Croft, 2017)

- Появление векторных представлений слов (word2vec) привело к использованию их для расширения запроса в информационном поиске
- Однако цель обучения таких представлений слов направлена на сходство слов в небольшом контексте, что не соответствует целям информационного поиска
- Нужно создать специализированные модели для обучения векторных представлений слов для целей расширения запроса

Архитектура сети

Архитектура сети

- Вход запрос в виде обычного (sparse) вектора длины N, где N – размер словаря,т.е. стоят 1 в местах соотв. слов
- Скрытый слой преобразует исходный вектор в dense вектор, т.е. вектор низкой размер $\vec{q} = \vec{q}_s \times W_O$

• Выходной слой сети должен предсказывать слова пелевантные запросу $\sigma(\vec{q} \times W_w + b_w)$

Обучение

- Миллион разных запросов из AOL лога запросов (2006)
- Рассматривалось 10 первых документов выдачи
- Т.е задача нейронной сети была предсказывать распределение слов в этих первых документах

Table 1: Collections statistics.

ID	collection	queries (title only)	#docs	avg doc length	#qrels
AP	Associated Press 88-89	TREC 1-3 Ad-Hoc Track, topics 51-200	165k	287	15,838
Robust	TREC Disks 4 & 5 minus TREC 2004 Robust Track,		528k	254	17,412
	Congressional Record	topics 301-450 & 601-700	J60K	4J4	17,114
GOV2	2004 crawl of .gov domains	TREC 2004-2006 Terabyte Track,	25m	648	26,917
		topics 701-850	43111		
ClueWeb	ClueWeb 09 - Category B	TREC 2009-2012 Web Track	50m	1506	18,771
		topics 1-200	JUIII	1300	

Результаты

Collection	Metric	MLE	word2vec		GloVe		Relbased Embedding		
Conection	Wietric		external	target	external	target	RLM	RPE	
AP	MAP	0.2197	0.2399	0.2420	0.2319	0.2389	0.2580 ⁰¹²³⁴	0.2543 ⁰¹²³⁴	
	P@20	0.3503	0.3688	0.3738	0.3581	0.3631	0.3886 ⁰¹²³⁴	0.3812 ⁰³⁴	
	NDCG@20	0.3924	0.4030	0.4181	0.4025	0.4098	0.4242 ⁰¹²³⁴	0.4226^{01234}	
Robust	MAP	0.2149	0.2218	0.2215	0.2209	0.2172	0.2450 ⁰¹²³⁴	0.237201234	
	P@20	0.3319	0.3357	0.3337	0.3345	0.3281	0.3476 ⁰¹²³⁴	0.3409 ⁰²⁴	
	NDCG@20	0.3863	0.3918	0.3881	0.3918	0.3844	0.3982 ⁰¹²³⁴	0.3955 ⁰	
GOV2	MAP	0.2702	0.2740	0.2723	0.2718	0.2709	0.2867 ⁰¹²³⁴	0.2855 ⁰¹²³⁴	
	P@20	0.5132	0.5257	0.5172	0.5186	0.5128	0.5367 ⁰¹²³⁴	0.5358 ⁰¹²³⁴	
	NDCG@20	0.4482	0.4571	0.4509	0.4539	0.4485	0.4576 ⁰²³⁴	0.4557 ⁰²⁴	
ClueWeb	MAP	0.1028	0.1033	0.1033	0.1029	0.1026	0.1066 ⁰¹²³⁴	0.1031	
	P@20	0.3025	0.3040	0.3053	0.3033	0.3048	0.3073	0.3030	
	NDCG@20	0.2237	0.2235	0.2252	0.2244	0.2244	0.2273 ⁰¹	0.2241	

Подход FastText

- В качестве векторного представления для слова берется среднее из представлений входящих в него nграмм
 - то есть слово «ребенок» это некоторая усредненная сумма векторов «ре», «еб», «бе», «ен» и т.д. (пример для биграмм)
- Плюсы подхода:
 - Символьные n-граммы встречаются чаще, чем слова целиком.
 - Учтем похожесть контекстов слов с одинаковыми аффиксами.
 - n-граммы из аффиксов «выловят» семантику и синтаксис,
 - n-граммы из корней лексику.

Предобученные вектора FastText https://fasttext.cc/docs/en/crawl-vectors.html

Нейронные сети в задачах информационного поиска

- Векторные представления слов (embeddings), обученные на основе нейронных сетей дают возможность снижения проблемы различия между запросом и документом
 - Нейронная сеть DSSM в глобальных поисковых системах
 - От векторной модели документов к векторным моделям слов и других сущностей (графов)
- Задачи классификации сейчас лучшие результаты получаются нейронными сетями
- Вопросно-ответный поиск используется преобразование вопроса и ответа в единое векторное пространство в процессе обучения нейронной сети

Задание-10

- Пусть есть коллекция текстов из 4 слов a, b, c, d
- Рассмотрим последовательность слов " a b c"
- Т.е. нужно предсказать слово b
 - сжимаем в вектор длины 2

Задание-10 (продолжение) • Случайная инициализация матрицы W задана

- - -0122
 - -1220
- Случайная инициализация матрицы W' такая
 - -0112
 - -1120
 - Какие вероятности предсказания слов получатся после применения softmax

Задание 11. Синонимайзинг

- Насколько близости по векторным представлениям слов могут быть использованы для синонимической замены.
- Выбрать какой-нибудь корпус в интерфейсе
 - https://rusvectores.org/ru/associates/
- Синонимайзинг
- Пройдите по словам (существительное, прилагательное, глагол) из ваших трех фактов и замените на первый вариант близкого по модели слова. В какой доле случаев замены действительно будут синонимичными и смысл фактов не изменится?