

# Relazione di calcolo

# SuperProfessional 35 Quadro XP





- 1- Descrizione della struttura.
- 2- Materiali utilizzati.
- 3- Carichi considerati.
- 4- Modello di calcolo.
- 5- Calcoli.
- 6- Tabelle delle portate





#### DESCRIZIONE DELLA STRUTTURA

La struttura in oggetto è una trave reticolare modulare realizzata con tubolari in lega di alluminio e struso. I moduli hanno le dimensioni mostrate nella tavola allegata. I correnti in ogni modulo sono realizzati con tubolari 50 x 3 mentre i diagonali sono tubolari 30 x 3 saldati ai correnti come in figura. La continuità fra i moduli è garantita da opportune boccole collegate con i correnti da tre spine. Le distanze fra gli interassi dei correnti sono pari a 30 cm.

#### MATERIALI UTILIZZATI

Il materiale utilizzato è una lega di alluminio Al-Zn5.4Mg0.8Zr con denominazione 7108 HB 120 secondo le norme UNI EN 575 avente una resistenza allo snervamento pari a  $\sigma$  =2750 Kg/cmq, ed un modulo E=700000 kg/cmq. Si considera un coefficiente di sicurezza pari a  $\upsilon$ =1.7 e si ottiene come a  $\sigma$  adm=1620 kg/cmq . In prossimità delle saldature il materiale termicamente alterato subisce un decadimento delle caratteristiche meccaniche per cui la resistenza residua di tali tratti è pari a  $\sigma$  =2150 kg/cmq ed applicando un coefficiente di sicurezza 1.7 si ottiene  $\sigma$  a dm=1264 kg/cmq. Le saldature sono realizzate c on materiale di apporto S-Al Mg5 a vente u na resistenza pari a 1200 kg/cmq. Considerando che il processo di saldatura realizzato è di prima classe, la resistenza della saldatura è pari a 1100 kg/cmq per le condizioni di carico I e per una saldatura del tipo testa a testa e 660 kg/cmq per le saldature a cordone d'angolo.Per saldature con materiale diverso , ad esempio con 6082 si ottiene  $\sigma$ =650 kg/cmq per saldature testa a testa e  $\sigma$ =480 kg/cmq per saldature a cordone d'angolo.

#### CARICHI

Il calcolo è stato eseguito considerando due tipologie di carico. Un carico concentrato P applicato in prossimità della mezzeria ed un carico uniformemente distribuito sull'intera luce della trave . Il carico è stato considerato statico, applicato in corrispondenza dei nodi del corrente inferiore.



#### MODELLO DI CALCOLO

Per il calcolo della struttura in esame è stato utilizzato il metodo delle tensioni ammissibili.

Lo schema di calcolo delle azioni M T N dovute ai carichi è quello di una trave in semplice appoggio.

Le verifiche di resistenza sono state eseguite solo sulle sezioni maggiormente sollecitate: la mezzeria per gli sforzi flessionali, ed i diagonali in prossimità degli appoggi per gli sforzi di taglio. Essendo la trave molto snella , gli elementi sono stati verificati anche alla instabilità utilizzando la nota relazione di Eulero  $Ner=\pi^2EJ/L^2_0$ , dove  $L_0=\alpha L$  ( $\alpha=0.8$ ).

Nel caso del diagonale L= 49.5 cm . Nei confronti della instabilità si è utilizzato un coefficiente di sicurezza pari a v=3.0.

#### CALCOLI

Dati relativi al corrente:

Dimensioni 50 x 3 mm

Area =  $4.427 \text{ cm}^2$ 

J=12.28 cm4

W=4.912 cm3

Dati relativi al diagonale:

Dimensioni 30 x 3.0

Area = 2.54 cm<sup>2</sup>

 $J = 2.34 \text{ cm}^4$ 

 $W = 1.56 \text{ cm}^3$ 

Lunghezza =49.5 cm

Caratteristiche della sezione nel suo complesso:

Area =  $17.7 \text{ cm}^2$ 

 $J = 3970 \text{ cm}^4$ 

 $W = 226 \text{ cm}^3$ 

Verifica a flessione:

Applicando la formula M/W ottengo come massima tensione considerando tutte le tipologie di carico:

 $\sigma = 880 \text{ kg/cm}^2 \le 1620 \text{ kg/cm}^2$ 

## VERIFICA A TAGLIO

Un singolo diagonale può resistere a trazione 2000 kg , ed a compressione considerando la formula di Eulero =2197 kg. I diagonali sono inclinati e sono uno compresso ed uno teso. Il taglio totale resistente è :

T= 2800 Kg



### · VERIFICA DELLE SPINE

Ci sono tre spine aventi  $\phi$ =10 mm. La rottura avviene per cedimento del tubo di spessore 3 mm a rifollamento. Pertanto si esegue tale verifica.

Tiro totale = 4.42\*1000=4420 kg

Area resistente = 0.3\*2\*1.0\*3=1.8 cmq

σ=4420/1.8=2455 kg/cmq <2.0xσadm=3240 kg/cmq

# TRALICCIO A QUATTRO CORRENTI

Lega di alluminio Al-Zn5.4Mg0.8Zr - designazione numerica 7108 Materiale di apporto saldature S-Al Mg5.

- Correnti tubo Ø mm 50 x 3
- Diagonali tubo Ø mm 30 x 3

### TABELLA DELLE PORTATE UTILI DEL TRALICCIO

Con coefficiente di sicurezza sulla resistenza di progetto del materiale base adiacente al giunto termicamente alterato.

V = 1,5

| LUNGHEZZA<br>( mt ) | CARICO CONCENTRATO (Kg) | CARICO DISTRIBUITO ( Kg/mt ) | FRECCIA<br>(cm) |
|---------------------|-------------------------|------------------------------|-----------------|
| mt 4                | 1230                    | 730                          | 1,2             |
| mt 6                | 950                     | 350                          | 2,9             |
| mt 8                | 850                     | 230                          | 5,4             |
| mt 10               | 680                     | 140                          | 8,2             |
| mt 12               | 540                     | 93                           | 11,3            |
| mt 14               | 460                     | 65                           | 15,7            |
| mt 16               | 370                     | 46                           | 19,5            |
| mt 18               | 305                     | 34                           | 25,4            |
| mt 20               | 250                     | 25                           | 30,8            |
| mt 22               | 205                     | 19                           | 37,8            |

- · Schema di calcolo: trave su due appoggi.
- · Portate valide per carichi statici.
- · Carichi applicati nei nodi dei correnti inferiori.
- · La freccia teorica non considera il gioco nei giunti.

Il tecnico incaricato

Pagina 4 di 4



DEGLI INGE