Projeto Demonstrativo 2 - Calibração de câmeras

Samuel Venzi Lima Monteiro de Oliveira 14/0162241 samuel.venzi@me.com

23-04-2016

1 Objetivos

O objetivo deste processo é realizar um estudo sobre câmera e sua calibração. A partir desse estudo, desenvolver um método para calculo de dimensões de objetos dada a distância entre este e a câmera.

2 Introdução

O uso de câmeras no âmbito da visão computacional é uma competência essencial devido às inúmeras aplicações práticas existentes. Tais aplicações vão desde câmeras de vigilância até carros autônomos, portanto é necessário saber sobre o funcionamento de câmeras e entender seus detalhes para que seja bem aplicada. Os principais pontos abordados neste estudo são a calibração de câmeras e, a partir disso, a avaliação do tamanho de objetos no *frame* da imagem capturada.

A estrutura básica das câmeras atuais segue a estrutura consagrada pelos primeiros estudos feitos sobre capturas de imagens. O que essa estrutura permite é a entrada de luz por um orifício ou conjunto de lentes e sua projeção em um filme ou sensor que captura a imagem. As câmeras modernas utilizam lentes e sensores, e é importante entender como essas duas partes influenciam na maneira que deve se lidar com a manipulação de imagens dessas câmeras.

Com a introdução de lentes nas câmeras, foi possível a captura de imagens de muito melhor qualidade pois elas permitiam maior entrada de luz sem o desfoque da imagem, o que acontecia com o aumento do oríficio. Porém, a depender da qualidade de fabricação da lente, com elas ocorre o fenômeno da distorção que pode ser um grande problema para certas aplicações. No caso do uso de sensores, certas caracteríscas são importantes serem conhecidas, como seu tamanho e o tamanho de seus *pixels*.

A calibração da câmera tem como função anular certas distorções da imagem que possam ocorrer por sua parte física. Portanto, alinhando hardware e software pode-se ter a representação mais fiel possível e a partir dessa representação retirar informações de interesse.

Figura 2.1

Na figura 2.1 pode-se verificar algumas das variáveis de calibração. O sistema de referência é o plano da imagem, chamado também de frame e as coordenadas dos pixels no frame são dados por um par ordenado (x,y).

A partir de estudos, são extraídas informções sobre a câmera, como seus parâmetros intrínsecos e extrínsicos. Onde os parâmetros intrínsecos caracterizam propriedades óticas, geométricas e digitais da câmera, além de sua distorção.

3 Materiais e Metodologia

3.1 Materiais

- Computador com ambiente Linux (Ubuntu)
- Câmera própria do computador
- OpenCV
- Esfera com 6cm de diâmetro

3.2 Metodologia

Antes de mexer com a câmera em si, foi criada uma aplicação que captura o clique do mouse em dois pontos arbitrários da janela, desenha um linha e calcula a distância em *pixels* entre eles. O programa primeiramente cria uma imagem genérica, foi escolhida uma completamente preta, e com o uso de funções do OpenCV, captura e desenha uma linha ente dois pontos. Após isso ele calcula a distância Euclidiana Bidimensional.

Após isso, com a utilização de um programa de calibração já pronto, foi feita a calibração da câmera. Esse procedimento é muito importante e deve ser feito de forma extremamente cuidadosa. O procedimento consiste em usar um padrão conhecido pelo programa e a partir de pequenas diferenças encontradas entre o padrão original e o capturado e aplicar correções à imagem. Neste experimento foi usado um padrão xadrez com quadrados com 28mm de lado. Ocorrem 30 capturas por calibração e com o tabuleiro, deve-se percorrer todo o espectro da imagem. Ao final desse procedimento, o programa gera dois arquivos XML, um com parâmetros de distorção e outro com parâmetros intrínsecos da câmera. Para garantir mais confiança nos resultados, o procedimento é repetido 5 vezes e os valores finais dos parâmetros são as respectivas médias das 5 medições.

Com a calibração feita, o programa de medição de distância foi adicionado ao programa da câmera já calibrada com os parâmetros finais. A partir disso, com um objeto com dimensões conhecidas, uma esfera com 6cm de diâmetro, e a distâncias pré-definidas foi medido tamanho em *pixels* do objeto na imagem do computador, tanto para a imagem pura da câmera quanto para a imagem gerada pela calibração com o objetivo de comparar e analisar as diferenças.

4 Resultados

Uma calibração de câmera rende dois arquivos XML com os parâmetros de distorção e parâmetros intrínsecos. Então para as 5 calibrações feitas, temos 2 arquivos para cada. As médias e desvios padrões calculados seguem nas tabelas 1 e 2.

Com um grid de 8 retângulos montado no frame da câmera, a medida em pixels da esfera em cada uma das células para distâncias diferentes é mostrado na tabela 3 (undistort) e 4 (raw). (Cada medida foi feita 5 vezes.)

Table 1: média dos parâmetros de distorção

parâmetro	média	desvio padrão	
1	-2.062004	1.766675	
2	-49.042293	108.069947	
3	0.085966	0.043708	
4	-0.071295	0.022296	

Table 2: média dos parâmetros intrínsecos

parâmetro	média		
1	259.555691		
2	326.942780		
3	2703.41079		
4	241.911987		

Table 3: média dos tamanhos da esfera para cada célula da janela Undistort

	distância (m)	0,2	0,8	1,5	3,0
•	cell 1	166,497800	52,817740	27,505600	12,539450
	cell 2	$135,\!159200$	$45,\!854020$	$24,\!380280$	11,625720
	cell 3	$129,\!121500$	46,160020	$24,\!275700$	$11,\!299180$
	cell 4	139,846400	$49,\!413517$	24,263340	10,907740
	cell 5	$172,\!203600$	60,735533	$29,\!371820$	14,194814
	cell 6	$135,\!622800$	$49,\!419720$	$26,\!814820$	$10,\!498260$
	cell 7	157,069400	$47,\!414640$	28,070640	$10,\!477860$
	cell 8	186,630800	50,993100	26,623400	11,557340

Table 4: média dos tamanhos da esfera para cada célula da janela Raw								
_	distância (m)	0,2	0,8	1,5	3,0			
-	cell 1	139,659800	42,586260	22,792967	10,834630			
	cell 2	$132,\!449800$	$45,\!288380$	$23,\!637840$	11,809080			
	cell 3	122,982833	46,880040	24,240880	10,907740			
	cell 4	129,864000	47,007250	$24,\!226620$	10,924880			
	cell 5	157,237000	53,756267	27,121240	12,721157			
	cell 6	134,815200	$50,\!243360$	27,056580	10,056534			
	cell 7	158,016800	$47,\!215040$	26,623280	10,886160			
	cell 8	180,105600	51,005650	25,935867	11,511780			

5 Discussão e Conclusões

5.1 Discussão

Devido dificuldade apresentada no processo de calibração da câmera, os parâmetros gerados não foram os melhores possíveis e os resultados apresentados se basearam em imagens levemente distorcidas, principalmente nas bordas. Esse efeito pode ser visto, principalmente, na comparação entre os tamanhos em pixels da esfera na saída raw e na saída undistort (calibrada). Nas células 1, 4, 5 e 8 (células dos 4 cantos de vídeo), apresenta-se uma maior diferença entre os tamanhos, onde a imagem estava mais distorcida. Portanto para melhor refletir o tamanho do objeto, recomenda-se que ele esteja localizado no centro do frame da câmera.

Um dos possíveis motivos para uma calibração mal-sucedida pode ser alguma irregularidade na confecção por parte do fabricante, já que a câmera utilizada é embutida em um computador e, portanto, deve ser barata. Outro aspecto importante notar é que a calibração é feita manualmente, portanto é extremamente difícil alcançar a precisão desejável para que se possa garantir uma calibração razoável.

5.2 Conclusões

Com o que foi exposto, é possível perceber a real dificuldade de calibrar câmeras por ser um processo extremamente suscetível a erros do calibrador. Também é possível concluir que a qualidade de fabricação da câmera é um fator importante.

6 Bibliografia

A bibliografia principal utilizada foram sites da internet.

 $\label{lem:http://docs.opencv.org/3.1.0/d4/d32/classcv_1_1_InputArray.html#a0bd4ebf9eddfba4e1f8b5c3a099fa0ec\&gsc.tab=0$

http://docs.opencv.org/3.0.0/da/d54/group__imgproc__transform.html#ga7dfb72c9cf9780a347fbe3d1c47e5d5a

http://docs.opencv.org/3.0-rc1/dd/d74/tutorial_file_input_output_with_xml_yml.html

http://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html#line

http://answers.opencv.org/question/38576/return-coordinate-values-from-mouse-callback-function-and-sa