

Рис. 28 Рис. 29

Этим завершается доказательство следствия, так как, согласно теореме 4, пределы слева $f(x_0 - 0)$ и справа $f(x_0 + 0)$ существуют, причём

$$f(x_0 - 0) = \sup_{X < (x_0)} f(x), f(x_0 + 0) = \inf_{X > (x_0)} f(x)$$

поэтому неравенства (5.61) совпадают с неравенством (5.67). \square Замечание 1. В теореме 4 для возрастающей функци $f:X\to R$ рассмотрены случаи, когда inf $X=\alpha\notin X$ и $\sup X=\beta\notin X$. Если же, например, $\alpha\in X$, то, как и для произвольной (немонотонной) функции, здесь возможны два случая: предел $\lim_{x\to\alpha} f(x)$ существует, тогда функция f явля-

ется непрерывной в точке α (рис. 28) или не существует (рис. 29). Аналогичная ситуация имеет место и для точки β .

Замечание 2. Из элементарной математики известно, что функция

$$f(r) = \alpha^r, \ \alpha > 0 \quad (5.68)$$

где г - рациональное число, $r \in Q$, монотонна на множества всех рациональных чисел Q (см. также п. 2.6*). Для каждого действительного числа x множества рациональных чисел r < x, r > x, не пусты и x является их точкой прикосновения. Поэтому, согласно сделствия теоремы 4, для любого действительного числа x существуют пределы $\lim_{r \to x - 0} \alpha^r$ и $\lim_{r \to x + 0} \alpha^r$, $r \in Q$ (по множеству рациональных чисел Q, так как пока у нас показательная функция определена только для рациональных показателей).

В частности, указанные пределы существуют для x=0. Согласно определению предела, их значения равны соответственно значениям пределом последовательностей α^{r_n} при