SAFE RETURN DOUBTFUL: WEEK 9

Jordan Hanson November 5, 2019

Whittier College Department of Physics and Astronomy

SUMMARY

Climate science

- 1. **How do we know** adding ice to ocean will cause sea level rise? (The ice cubes in a glass concept).
- 2. How do we know historical temperature of ice?
- 3. How do we know the speed of ice flowing into ocean?

ADDING ICE TO OCEAN AND SEA LEVEL RISE

The density of something is the mass divided by the volume:

$$\rho = \frac{m}{V} \tag{1}$$

The units can be kilograms per meter cubed, or kg/m³. If we know the density of a material and the volume, we can know the mass of the object:

$$m = \rho V \tag{2}$$

(Examples).

The force of gravity, or weight (as we saw once before) is the mass of an object, times the gravitational *acceleration*, called *g*:

$$w = mg (3)$$

The value of g is 9.81 meters per second squared, or 9.81 m/s². When an object floats, the buoyant force must balance the weight. When a mass in kilograms is multiplied by g, the units of force are *Newtons*. (Examples).

The buoyant force

The buoyant force is an upward force placed on an object suspended in a liquid that is equal in magnitude to the weight force of the displaced volume of liquid.

Example, suppose a sailboat displaces 45 cubic meters of water. The weight force is equal to the mass of that water in the *upwards direction*. What's the mass of that water? $m = \rho V$, so $m = 1000 \text{ kg/m}^3 \times 45 \text{ m}^3$, so 45,000 kg. What is the *weight* of that water? w = mg, so $w = 45,000 \text{ kg} \times 9.81 \text{ m/s}^2$, or 441,450 Newtons (about 99,000 lbs).

What is the weight of that water? w = mg, so w = 45,000 kg $\times 9.81$ m/s², or 441,450 Newtons (about 99,000 lbs).

Figure 1: A diagram of the buoyant force balancing the weight.

Questions for table discussion:

- Given what you've seen, why does a ship made of metal float? Isn't metal more dense than water?
- What is the weight force in Newtons of a person with mass 55 kg?
- What is the weight of an ice cube that is a cube of 10 cm on each side, and the density of ice is 918 kg/m^3 ?

Questions for table discussion:

- Given what you've seen, why does a ship made of metal float? Isn't metal more dense than water?
- What is the weight force in Newtons of a person with mass 55 kg?
- What is the weight of an ice cube that is a cube of 10 cm on each side, and the density of ice is 917 kg/m³?

Figure 2: An iceberg is mostly below the water. Can we determine what fraction of the iceberg is below the water, and therefore the displaced water?

Suppose a block of ice of height *V* and horizontal area *A* is floating in the ocean. The volume is

$$V = Ah$$
 (4)

Let the density of ice be $ho_{\rm ice}$, and let the density of water be $ho_{\rm w}$. The weight of the iceberg is

$$w = mg (5)$$

$$W = \rho_{\rm ice} Vg \tag{6}$$

$$w = \rho_{\rm ice} Ahg \tag{7}$$

Table discussion: What is the *weight* of an iceberg that has an area of 1 km by 1 km on top, a height of 1 km?

Continuing, the weight of the iceberg is

$$W_i = \rho_{\rm ice} Ahg \tag{8}$$

How much water does the iceberg displace? Let the height *above* the water be x_1 and the depth below the water be x_2 , such that $x_1 + x_2 = h$. The displaced water volume is

$$V_d = Ax_2 \tag{9}$$

The displaced water mass is $m_w = \rho_w V_d$, so

$$m_{\rm W} = \rho_{\rm W} A x_2 \tag{10}$$

The weight of the displaced water just requires us to multiply by g, so

$$W_{w} = \rho_{w} A x_{2} g \tag{11}$$

Thus, we have the weight of the displaced water, $\rho_w A x_2 g$, and the weight of the iceberg, $\rho_{\rm ice} A h g$. According to the buoyant force principle, these two weights are **equal.** Thus,

$$\rho_{\mathsf{W}}\mathsf{A}\mathsf{x}_2g = \rho_{\mathrm{ice}}\mathsf{A}\mathsf{h}g\tag{12}$$

Given that $h = x_1 + x_2$, let's simplify this...(board).

$$\frac{X_1}{X_2} = \frac{\rho_{\rm w} - \rho_{\rm ice}}{\rho_{\rm ice}} \tag{13}$$

Equation 13 is the fraction of the iceberg that peaks above the surface.

$$\frac{X_1}{X_2} = \frac{\rho_{\rm w} - \rho_{\rm ice}}{\rho_{\rm ice}} \tag{14}$$

Equation 14 is the fraction of the iceberg that peaks above the surface. Given that you can see \approx 10 percent of an iceberg, and that 90 percent is beneath the surface, we know how much water is displaced.

$$V_{wd} = Ax_1 \left(\frac{\rho_{ice}}{\rho_w - \rho_{ice}} \right) \tag{15}$$

What is the water level rise if we toss an iceberg into a giant bucket of water?

Suppose the giant bucket has a length and a width of l, so an area of l^2 . What is the water level rise Δy ?

Here's how to solve for it:

$$l \times l \times \Delta y = V_{wd} \tag{16}$$

$$\Delta y = \frac{Ah}{l^2} \left(\frac{\rho_{\rm ice}}{\rho_{\rm w}} \right) \tag{17}$$

What is the sea level rise if l = 1 km, h = 1 km, and A = 1 km²? Recall that ice density is 917 kg/m³, and water density is 1000 kg/m³.

So that was an example of how adding ice to the ocean causes sea level rise. Here is a short video summary of research into Antarctic and Greenland contributions to sea level rise: https://youtu.be/YRe1ymYR45k

And here is how certain people view the science:

https://youtu.be/lPgZfhnCAdI

Climate science

- 1. **How do we know** adding ice to ocean will cause sea level rise? (The ice cubes in a glass concept).
- 2. (Next time): How do we know **historical** temperature of ice?
- 3. (Next time): How do we know the speed of ice flowing into ocean?