Analysis : Case 1

Uniform load, w:	10 N/mm
Length, L:	
Omit beam weight for this case	

C1: Final Meshing

This mesh had two levels of refinement. For the larger blocks, the max element size was 16mm. For the smaller sections, the max element size was 8mm.

Fig. C1.1

C1 : Deflected shape of beam

Fig. C1.2

C1 : Contour Plot of Normal Bending Stresses (σ_.)

Fig. C1.3

C1: Vertical Deflection at midspan from ANSYS Model

In order to easily review the nodes at location Q and the bottom of Cut 1, I created components that would allow me to call them. Fig. C1.4 shows the list of the components which allows me to identify which label corresponds to the nodes in Fig. C1.5.

```
LIST SELECTED COMPONENTS
ENTITY TYPE = NODE

NAME TYPE SUBCOMPONENTS

NODE_CUT_1 NODE 167

NODE_Q NODE 19
```

Fig. C1.4

```
PRINT U
          NODAL SOLUTION PER NODE
 **** POST1 NODAL DEGREE OF FREEDOM LISTING *****
LOAD STEP=
               1 SUBSTEP=
 TIME=
          1.0000
                      LOAD CASE=
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
  NODE
                     UY
    19
        -30.0155815879
   167 -15.2429198449
MAXIMUM ABSOLUTE VALUES
NODE
            19
        -30.0155815879
VALUE
```

Fig. C1.5

C1: Distribution of Bending Stress at Cut 1 and Cut 2

Fig. C1.6

Fig. C1.7

C1 : Calculation of Deflection and Flexural Stress using Elementary Beam Theory

Common Properties								
Width	b	20	mm					
Depth	h	mm						
Modulus of Elasticity	Е	700	N/mm					
Moment of Inertia = bh³/12	I	106667	Pa					
Distance from N.A.	У	20	mm					

Case 1 Unique Properties							
Uniform Load	ω						
Length	L	360	mm				
Moment	h 4	4 162000 Nm					
$=\omega L^2/8$	/VI	162000	NM 				
Deflection at Midspan	δ	20.200					
$= 5wL^4/384EI$	0	29.290	mm				
Flexural Stress		20.275	D.				
=My/I	σ	30.375	Pa				

C1: Comparison of Calcuations to ANSYS Results

	Calculation	ANSYS	Accuracy
Deflection at Midspan	29.290	30.0156	97.58%
Flexural Stress	30.375	30.4673	99.70%

Analysis : Case 2

Uniform load, w:	30 N/mm
Length, L:	
Omit beam weight for this case	

C2: Final Meshing

This mesh had two levels of refinement. For the larger blocks, the max element size was 4mm. For the smaller sections, the max element size was 2mm.

Fig. C2.1

C2: Deflected shape of beam

Fig. C2.2

C2 : Contour Plot of Normal Bending Stresses (σ_x)

Fig. C2.3

C2: Vertical Deflection at midspan from ANSYS Model

Fig. C2.4 shows the list of the components which allows me to identify which label corresponds to the nodes in Fig. C2.5.

```
LIST SELECTED COMPONENTS
ENTITY TYPE = NODE

NAME TYPE SUBCOMPONENTS

NODE_CUT_1 NODE 2970

NODE_Q NODE 538
```

Fig. C2.4

```
PRINT U
          NODAL SOLUTION PER NODE
 **** POST1 NODAL DEGREE OF FREEDOM LISTING *****
 LOAD STEP=
               1 SUBSTEP=
                               1
          1.0000
                      LOAD CASE=
                                  0
 TIME=
 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
   NODE
                     UY
        -1.34568286451
    538
   2970 -0.697286570642
MAXIMUM ABSOLUTE VALUES
NODE
           538
VALUE
        -1.34568286451
```

Fig. C2.5

C2: Distribution of Bending Stress at Cut 1 and Cut 2

Fig. C2.6

Fig. C2.7

C2: Calculation of Deflection and Flexural Stress using Elementary Beam Theory

Common Properties							
Width	b	20	mm				
Depth	h	40	mm				
Modulus of Elasticity	Е	700	N/mm				
Moment of Inertia = bh³/12	I	106667	Pa				
Distance from N.A.	У	20	mm				

Case 1 Unique Properties							
Uniform Load	ω	30	N/mm				
Length	L	120	mm				
Moment	М	54000 Nm					
$=\omega L^2/8$	171	34000	INIII				
Deflection at Midspan	δ	1.085	mm				
$= 5wL^4/384EI$		1.005	mm				
Flexural Stress	σ	10.125	Da				
=My/I		10.125	Pa 				

C2: Comparison of Calcuations to ANSYS Results

	Calculation	ANSYS	Accuracy
Deflection at Midspan	1.085	1.3457	80.61%
Flexural Stress	10.125	10.4331	97.05%

Analysis : Case 3

C3: Fundamental Natural Frequencies of the Beam System

Through four different substeps you are abble to see the different displacements and frequencies of the beam. Fig. C3.5 provides a table combining all of the numbers.

Fig. C3.1

Fig. C3.2

Fig. C3.3

Fig. C3.4

***** INDEX OF DATA SETS ON RESULTS FILE *****

SET	TIME/FREQ	LOAD STEP	SUBSTEP	CUMULATIVE
1	0.41083	1	1	1
2	3.1031	1	2	2
3	3.8685	1	3	3
4	1 6.3510	1	4	4

Fig. C3.5

Analysis: Case 4

Uniform load, w: 7.5 N/mm	1
Length, L:	
Omit beam weight for this case	

C4: Bilinear Material Model with Kiematic Hardening

Fig. C4.1 is the preview of the relationships that will be used for modeling the loads and deflections.

Fig. C4.1

C4: Deflected Shape of Beam

Fig. C4.2

C4 : Contour Plot of Plastic Strains (ϵ_x)

Fig. C4.3

C4: Distribution of Total Strain at Midspan

Fig. C4.4

Appendix: Convergence Studies - Case 1

Mesh 0

ALL=1

Mesh 1

LG=5, SM=1

Case 1

The initial mesh that was used during the building of the model was with everything sized at 1mm. When you refine a mesh by level 1 it reduces the size by 1/2. I applied this methodology and just rebuilt the models each time and increasing or reducing the size by 1/2. Since It was too many nodes to refine smaller than 1, I created a multi-zone area for the model in order to refine around the cuts more. Once I determined that there was minimal impact by refining the mesh smaller, I decided to take a different approach and increase the mesh size until there was a substantial difference. After I found this new baseline, I then proceeded to reduce the mesh size again until there was less than .01% change.

Mesh 2

LG=5,SM=.5

δ_{y} at Q	-30.01732	-30.01716		-30.01702													
δ_{y} at Cut 1	-15.24462	-15.24446		-15.24433													
δ_{max}	30.1717	30.1716		30.1715													
σ_{max}	30.4749	30.4749		30.475													
		M1/M0		M2/M1													
δ_{y} at Q Diff		-0.00052%	-	0.00046%													
δ_y at C1 Diff		-0.00102%	-	0.00090%													
$\delta_{ ext{max}}$ Diff		-0.00033%	-	0.00033%													
$\sigma_{\scriptscriptstyle{max}}$ Diff		0.00000%	(0.00033%													
Case 1	Mesh 0	Mesh 3		Mesh 4		Mesh 5		Mesh 6		Mesh 7		Mesh 8					
	ALL=1	LG=2,SM=2	L	G=4,SM=4	LC	G=8,SM=8	LG:	=16,SM=16		ALL=16		ALL=32					
$\delta_{_{y}}$ at Q	-30.01732	-30.01732	-	30.01730	-(30.01710	-3	30.01594	-3	30.01594	-3	30.01011					
δ_{y} at Cut 1	-15.24462	-15.24462	-	15.24461		-15.24444		-15.24444		-15.24444		15.24343	-1	15.24342	-	5.24018	
δ_{max}	30.1717	30.1717		30.1717	30.1715		30.1715		30.1715		30.1704			30.1704		30.1645	
σ_{max}	30.4749	30.4744		30.4722		30.4673		30.4668		30.4863		30.5469					
		M3/M0		M4/M3		M5/M4		M6/M5		M7/M6		M8/M7					
$\delta_{_{_{\boldsymbol{y}}}}$ at Q Diff		0.00000%	-	0.00005%	-(0.00069%	-C	0.00386%	0	.00001%	-0	-0.01942%					
$\delta_{_y}$ at C1 Diff		0.00000%	-	0.00006%	-(0.00113%	-C	0.00660%	-0	0.00007%	-0	.02123%					
δ_{max} Diff		0.00000%	(0.00000%	-(0.00066%	-0.00365%		0.00000%		-0.01956%						
σ_{max} Diff		-0.00164%	-	0.00722%	-(0.01608%	-0	0.00164%	0	.06400%	(.19878%					
Case 1	Mesh 8	Mesh 9		Mesh 10													
	ALL=32	LG=32, SM=	16	LG=16, SM	=8												
δ_{y} at Q	-30.01011	-30.01593		-30.0155	8												
δ_{y} at Cut 1	-15.24018	-15.24342		-15.24292	2												
δ_{max}	30.1645	30.1704		30.17													
σ_{max}	30.5469	30.4666		30.4673													
		M9/M8		M10/M9													
δ_{y} at Q Diff		0.01940%		-0.00118°	%												
δ_y at C1 Diff		0.02124%		-0.003279	%												
δ_{max} Diff		0.01956%		-0.001339	%												
$\sigma_{\scriptscriptstyle{max}}$ Diff		-0.26287%)	0.00230%	/o												

Appendix : Convergence Studies - Case 2

The first thing I checked with Case 2 was to see if the difference between the mesh used with Case 1 base-line and final was a comparable difference if the same two were used for Case 2. Unfortunately they were not close enough for me to accept. I stepped the outcome up to one step above what was used with Case 1, and then started refining from there. I ended up chosing Mesh 4, which now looking at the numbers I have determined it was not adequately descritized.

Case 2	Mesh 0	Mesh 10				
	All=1	LG=16, SM=8				
$\delta_{_{y}}$ at Q	-1.34568	-1.34581				
δ_{y} at Cut 1	-0.69729	-0.69747				
δ_{max}	1.40696	1.40708				
σ_{max}	10.4331	10.4113				
		M10/M0	Case 1 M10/M0	Difference C1 -> C2		
δ_y at Q Diff		0.00927%	-0.00578%	-0.00349%		
δ_y at C1 Diff		0.02639%	-0.01114%	-0.01526%		
δ_{max} Diff		0.00853%	-0.00563%	-0.00289%		
$\sigma_{ ext{max}}$ Diff		-0.20895%	-0.02494%	-0.18401%		

Case 2	Mesh 1	Mesh 2	Mesh 3	Mesh 4	Mesh 5	
	LG=32, SM=16	LG=16, SM=8	LG=8, SM=4	LG=4, SM=2	LG=2, SM=1	
δ_y at Q	-1.34569473	-1.345807623	-1.345680846	-1.345682763	-1.345682865	
δ_y at Cut 1	-0.6973392	-0.697470642	-0.697227077	-0.697292698	-0.697286571	
δ_{max}	1.40575	1.40708	1.40671	1.40696	1.40696	
σ_{max}	10.4083	10.4113	10.4256	10.4319	10.4331	
		M2/M1	M3/M2	M4/M3	M5/M4	
δ_y at Q Diff		0.00839%	-0.00942%	0.00014%	0.00001%	
δ_y at C1 Diff		0.01885%	-0.03492%	0.00941%	-0.00088%	
δ_{max} Diff		0.09461%	-0.02630%	0.01777%	0.00000%	
$\sigma_{ ext{max}}$ Diff		0.02882%	0.13735%	0.06043%	0.01150%	

Appendix : Convergence Studies - Case 3

For Case 3 I did not try and compare to Case 1 differences since the measurements and procedures were too different. I started with the same baseline mesh as I did for Case 2. I decided to use substep 4 for the refinement since it was the last step. After a futile effort, I determined substep 4 was too volitile and switched to substep 1. While substep 1 still seem to be too volitile, I relaxed my tolerace and settled for the first refinement that was within 1%

nement that wa	as within .1%.										
Case 3 Sub=4 Mesh 1		Mesh 2		Mesh 3		Mesh 4			Mesh 5		
	LG=32, SM=16	LG=16, SM=8		LG=8, SM=4		LG=	LG=4, SM=2		G=2, SM=	=1	
Frequency	7.13497	6.99014		6.87927		6.	6.64242		6.3915		
δ_{max}	0.41743	0.42480	0.424802		0.422222		0.452673		0.555384		
		M2/M1	M2/M1		M3/M2		M4/M3		M5/M4		
Frequency Diff		-2.02986	%	-1.58609%		-3.4	-3.44295%		3.77754%	<mark>⁄0</mark>	
δ_{max} Diff		1.765319	%	-0.607	34%	7.21208%		2	2.689899	<mark>%</mark>	
Case 3 Sub=4	Mesh 1a	Mesh 2a	Me	esh 3a	Mesh	4a	Mesh 5a	a			
_	ALL=16	ALL=8	А	LL=4	ALL=	=2	ALL=1				
Frequency	7.19015	7.08105	6.8	35946	6.806	75	6.35103	}			
δ_{max}	0.419254		0.4	24583	0.423935		0.56910)			
		M2/M1	М	3/M2	M4/N	Л3	13 M5/M4				
Frequency Diff		1.51735% -3.1		2934%	-0.76843%		-6.69512	%			
δ_{max} Diff		-0.10137%	1.37383%		-0.152	62%	34.24181	%			
Case 3 Sub=1	Mesh 1b	Mesh 2b	Me	esh 3b	Mesh	4b	Mesh 5k)	Mesh	6b	
	ALL=16	ALL=8	ALL=4		ALL=	LL=2 ALL=			LG=1, S	M=1	
Frequency	0.41226	0.414618	0.4	11565	0.411193		0.41083		0.410	83	
δ_{max}	0.422626	0.423305	0.4	23576	0.422	473	0.42226		0.4222	259	
		M2/M1	М	3/M2	M4/N	Л3	M5/M4				
Frequency Diff		0.57197%	0.2	4890%	-1.072	30%	-0.08828	%			
δ_{max} Diff		0.16066%	0.0	6402% -0.260		40%	0% -0.05065%				
Case 3 Sub=1	Mesh 6b	Mesh 7b		Mesh 8b		Mesh 9b Free					
	LG=1, SM=1	LG=10, S	M=1 LG=10), SM=.5 LG		G=10, SM=.5				
Frequency	0.41083	0.410613		0.409739			0.412041				
δ_{max}	0.422259	0.422167		0.421793			0.422767				
		M7/M	6 M8/M		B/M7	M8/M9					
Frequency Diff		-0.05282%		-0.21285%		(0.56182%				
$\delta_{\scriptscriptstyle{max}}$ Diff		-0.02179%		-0.08859%		(0.23092%				

Appendix : Convergence Studies - Case 4

The first thing I checked with Case 4 was to see if the difference between the mesh used with Case 1 base-line and final was a comparable difference if the same two were used for Case 4. While it was very close, the difference was just over my ideal threshold of .01%. After refining the mesh once, it was within the tolerance.

Case 4	Mesh 0	Mesh 10								
	All=1	LG=16, SM=8								
$\delta_{_{y}}$ at Q	-78.20845	-78.20649								
δ_y at Cut 1	-39.65608	-39.65418								
δ_{max}	78.4356	78.4336								
$\sigma_{ ext{max}}$	45.0832	45.0769								
		M10/M0	Ca	ase 1 M10/M0	Difference C1 -> C2					
δ_y at Q Diff		-0.00250%		-0.00578%	0.00327%					
δ_y at C1 Diff		-0.00479%		-0.01114%	0.00634%					
δ_{max} Diff		-0.00255%		-0.00563%	0.00308%					
$\sigma_{\scriptscriptstyle{max}}$ Diff		-0.01397%		-0.02494%	0.01096%					
	"				31		*	"	"	
Case 4	Mesh 10	Mesh 2								
	LG=16, SM=8	LG=8, SM=4	4							
δ_y at Q	-78.20649	-78.20819								
δ_y at Cut 1	-39.65418	-39.65583								

Case 4	Mesh 10	Mesh 2			
	LG=16, SM=8	LG=8, SM=4			
δ_y at Q	-78.20649	-78.20819			
δ_{y} at Cut 1	-39.65418	-39.65583			
δ_{max}	78.4336	78.4353			
σ_{max}	45.0769	45.081			
		M10/M0			
δ_y at Q Diff		0.00218%			
δ_y at C1 Diff		0.00416%			
δ_{max} Diff		0.00217%			
$\sigma_{ ext{max}}$ Diff		0.00910%			

