The APIC-EM

Cisco SDN Model with APIC-EM

What is the APIC-EM?

The Cisco Application Policy Infrastructure Controller Enterprise Module (APIC-EM):

- A Software-Defined Networking (SDN) controller for enterprise networks
- A virtual, software-only, or physical appliance
- Creates an intelligent, open, programmable network with open APIs
- Can transform business-intent policies into dynamic network configuration
- Provides a single point for network-wide automation and control

APIC-EM – Log in

Virtualized APIC-EM Controllers are available in several DevNet Sandboxes:

Always On, NetAcad instances

- For NetAcad users only
- https://DevNetSBX-NetAcad-APICEM-1.cisco.com
- https://DevNetSBX-NetAcad-APICEM-2.cisco.com
- https://DevNetSBX-NetAcad-APICEM-3.cisco.com
- User/PW: Ask your instructor

Always on, public instance

- For to all DevNet users
- https://SandBoxAPICEM.cisco.com
- User: devnetuser PW: Cisco123!

APIC-EM – Log in

A virtualized APIC-EM Controller is available in a DevNet Sandbox:

Always on, NetAcad only instances

- For NetAcad users in specific regions.
- https://DevNetSBX-NetAcad-APICEM-1.cisco.com
- https://DevNetSBX-NetAcad-APICEM-2.cisco.com
- https://DevNetSBX-NetAcad-APICEM-3.cisco.com
- User/PW: Ask your instructor

Always on, public instance

- For all DevNet users
- https://SandBoxAPICEM.cisco.com
- User: devnetuser PW: Cisco123!

APIC-EM Home Page

APIC-EM Applications

Network Plug-and-Play (PnP)

Provides a unified approach to provision enterprise networks comprised of Cisco routers, switches, and wireless access points with a near-zero-touch deployment experience.

Easy QoS

Provides a simple way to classify and assign application priority.

Intelligent WAN (IWAN)

Simplifies WAN deployments by providing an intuitive, policy-based interface that helps IT abstract network complexity and design for business intent.

Path Trace

Greatly eases and accelerates the task of connection monitoring and troubleshooting.

More information on the Cisco APIC-EM.

APIC-EM Topology Page

Programming the APIC-EM REST API

REST APIs

What is so great about REST*?

- Hosts
- Devices
- Users
- + more

How does this work?

- In mobile apps
- In console apps
- In web apps

Country Road

Pumpkin Patch

*representational state transfer (REST).

REST APIS

- Use HTTP protocol methods and transport
- API endpoints exist as server processes that are accessed through URIs
- Webpages present data and functionality in human-machine interaction driven by a user.
- APIs present data and functionality in machine-machine interactions driven by software.

Directory of Public APIs: https://www.programmableweb.com/apis/directory

How does this work?

Anatomy of a REST Request

REST requests require the following elements (requirements may differ depending on the API):

Method

— GET (retrieve), POST (create), PUT (update), DELETE (remove)

URL

– Example: http://{APIC-EMController}/api/v1/host

Authentication

Basic HTTP, OAuth, none, Custom

Custom Headers

- HTTP Headers
- Example: Content-Type: application/json

Request Body

JSON or XML containing data needed to complete request

What is in the Response?

HTTP Status Codes

- http://www.w3.org/Protocols/HTTP/HTRESP.html
- -200 OK
- -201 Created
- -401, 403 Authorization error
- -404 Resource not found
- -500 Internal Error

Headers

Body

- -JSON
- -XML

Example output of a HTTP response in the Postman application

JSON and XML

JSON in sample × 53 1 + { 2 + "response": { "request": { "sourceIP": "10.1.15.117", "destIP": "10.2.1.22", "periodicRefresh": false, "id": "feb8f5c6-56d1-45ec-9a49-bd4afac5c887", "status": "COMPLETED", 9 "createTime": 1506693815419, 10 "lastUpdateTime": 1506693823127 11 "lastUpdate": "Fri Sep 29 14:03:43 UTC 2017", 12 13 -"networkElementsInfo": [14 * 15 "id": "48cdeb9b-b412-491e-a80c-7ec5bbe98167", 16 "type": "wireless", 17 "ip": "10.1.15.117", "linkInformationSource": "Switched" 18 19 20 + 21 "id": "cd6d9b24-839b-4d58-adfe-3fdf781e1782", "name": "AP7081.059f.19ca", 22 23 "type": "Unified AP", 24 "ip": "10.1.14.3", 25 "role": "ACCESS", "linkInformationSource": "Switched". 26 27 ₹ "tunnels": [28 "CAPWAP Tunnel" 29 30 31 ₹ 32 "id": "5b5ea8da-8c23-486a-b95e-7429684d25fc", 33 "name": "CAMPUS-Access1". 34 "type": "Switches and Hubs", 35 "ip": "10.1.12.1", "ingressInterface": { 36 ₹ 37 ₹ "physicalInterface": { 38 "id": "dd2c47ea-ad19-4a1e-ad0e-82d9deefd61b", 39 "name": "GigabitEthernet1/0/26" 40 41 42 -"egressInterface": { 43 -"physicalInterface": { 44 "id": "38c72319-855e-43bc-8458-94f695d435b6", "name": "GigabitEthernet1/0/1"

XML

```
1 <?xml version="1.0" encoding="UTF-8" ?>
 2 ▼ <response>
         <reauest>
            <sourceIP>10.1.15.117</sourceIP>
            <destIP>10.2.1.22</destIP>
            <periodicRefresh>false</periodicRefresh>
            <id>feb8f5c6-56d1-45ec-9a49-bd4afac5c887</id>
            <status>COMPLETED</status>
9
            <createTime>1506693815419</createTime>
10
            <lastUpdateTime>1506693823127/lastUpdateTime>
11
12
         <lastUpdate>Fri Sep 29 14:03:43 UTC 2017</lastUpdate>
13 ₹
         <networkElementsInfo>
14
            <id>48cdeb9b-b412-491e-a80c-7ec5bbe98167</id>
15
            <type>wireless</type>
16
            <ip>10.1.15.117</ip>
17
            <linkInformationSource>Switched</linkInformationSource>
18
         </networkElementsInfo>
19 +
         <networkFlementsInfo>
20
            <id>cd6d9b24-839b-4d58-adfe-3fdf781e1782</id>
21
            <name>AP7081.059f.19ca</name>
22
            <type>Unified AP</type>
23
            <ip>10.1.14.3</ip>
24
            <role>ACCESS</role>
25
            <linkInformationSource>Switched</linkInformationSource>
26
            <tunnels>CAPWAP Tunnel</tunnels>
27
         </networkElementsInfo>
28 ₹
         <networkElementsInfo>
29
            <id>5b5ea8da-8c23-486a-b95e-7429684d25fc</id>
30
            <name>CAMPUS-Access1</name>
31
            <type>Switches and Hubs</type>
32
            <ip>10.1.12.1</ip>
33 ₹
            <ingressInterface>
34 ₹
                <physicalInterface>
35
                     <id>dd2c47ea-ad19-4a1e-ad0e-82d9deefd61b</id>
36
                     <name>GigabitEthernet1/0/26</name>
37
                </physicalInterface>
38
            </ingressInterface>
39 +
            <egressInterface>
40 -
                <physicalInterface>
41
                     <id>38c72319-855e-43bc-8458-94f695d435b6</id>
42
                     <name>GigabitEthernet1/0/1</name>
43
                </physicalInterface>
44
            </egressInterface>
```

What about authentication?

- None: The API resource is public and anybody can place the request.
- Basic HTTP: The username and password are passed to the server in an encoded string.
- OAuth: Open standard for HTTP authentication and session management.
 Creates an access token associated to a specific user that also specifies the user rights.
- **Token:** A token is created and passed with each API call, but there is no session management and tracking of clients which simplifies interaction between the server and client.
- → APIC-EM uses **Token** for authentication management. The APIC-EM calls this token a service ticket.

View the APIC-EM Swagger Documentation

POST /ticket Swagger Try it out!

- 1. Click Model Schema
- 2. Click the yellow box under Model Schema
- 3. Enter the DevNet Sandbox APIC-EM credentials between the quotes.
- 4. Click the "Try it out!" button.
- 5. If successful, the ticket number will be in the response body JSON.

