Project 3 FYS4150

Kjetil Karlsen and Vilde Mari Reinertsen

October 5, 2017

Abstract

The program used in this project can be found at Github.

Contents

1	Introduction	2
2	Theory	2
3	Method	2
4	Result	2
5	Discussion	2
6	Conclusion	2

Introduction 1

$\mathbf{2}$ Theory

Sentrifugal: $a = \frac{v^2}{r}$.

We know that the earth needs one year to orbit the sun, meaning that $v = \frac{2\pi r}{1 \text{ year}}$. This can be rewritten with $v = \tilde{v}v_0$ and $r = \tilde{r}r_0$. The units of r and v are contained in $v_0 = \frac{1 \text{Au}}{1 \text{ year}}$ and $r_0 = 1 \text{ Au}$, giving that $\tilde{v}^2 \tilde{r} = 4\pi^2$. In the same way $t = \tilde{t}t_0$, with $t_0 = 1$ year.

$$a_E = \frac{F_E}{M_E} = -G \frac{M_{sun}}{r^2} \tag{1}$$

$$=\frac{v^2}{r}\tag{2}$$

$$GM_{sun} = v^2 r = 4\pi^2 \frac{(1 \text{ Au})^3}{(1 \text{ year})^2}$$

$$\frac{d\tilde{v}}{d\tilde{t}} = -\frac{4\pi^2}{\tilde{r}^2}$$

$$(3)$$

$$\frac{\mathrm{d}\tilde{v}}{\mathrm{d}\tilde{t}} = -\frac{4\pi^2}{\tilde{r}^2} \tag{4}$$

For the rest of the paper we will assume all variables to be dimensionless. In a two dimensional system r = (x, y) = $(r\cos\theta, r\sin\theta)$. This gives the following parametrized relations:

$$\frac{\mathrm{d}v_x}{\mathrm{d}t} = -\frac{4\pi^2 r \cos \theta}{r^3} = -\frac{4\pi^2 x}{r^3}$$

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = -\frac{4\pi^2 r \sin \theta}{r^3} = -\frac{4\pi^2 y}{r^3}$$
(6)

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = -\frac{4\pi^2 r \sin\theta}{r^3} = -\frac{4\pi^2 y}{r^3} \tag{6}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v_x \tag{7}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = v_y \tag{8}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = v_y \tag{8}$$

(9)

3 Method

Result 4

5 Discussion

Conclusion

References