PROBABILITÉS CONDITIONNELLES E03C

EXERCICE N°4 Des questions à se poser...

Soient Ω un univers et A et B deux événements de probabilité non nulle. Les affirmations suivantes sont-elles vraies ou fausses ? Justifier la réponse.

1) L'événement A et son événement contraire \overline{A} sont indépendants.

Faux

Les événements A et \overline{A} sont incompatibles donc pas indépendants

Les événements A et \overline{A} sont incompatibles donc $P(A \cap \overline{A}) = 0$.

Or $P(A) \neq 0$ et donc $P(\overline{A}) \neq 0$

Si A et \overline{A} étaient indépendants, on aurait $P(A) \times P(\overline{A}) = 0$ ce qui n'est pas le cas.

2) Si A et B sont indépendants alors A et B ne sont pas incompatibles.

Vrai

$$P(A) \neq 0$$
, $P(B) \neq 0$ et A et B sont indépendants

donc

$$P(A \cap B) = P(A) \times P(B) \neq 0$$

Ainsi

A et B ne sont pas incompatibles.

3) Si A et B sont indépendants alors $P_A(B) = P_B(A)$.

Faux

Si
$$P(A) \neq P(B)$$

alors

$$P_A(B) = P(B) \neq P(A) = P_B(A)$$

Notez que cela peut arriver mais que ce n'est pas forcément le cas.

4) Si A et B sont indépendants alors \overline{A} et B le sont aussi.

Vrai

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

$$= P(B) - P(A) \times P(B)$$

$$= P(B) \times (1 - P(A))$$

$$= P(B) \times P(\overline{A})$$
(car A et B sont indépendants)
$$= P(B) \times P(\overline{A})$$

Ainsi $P(\overline{A} \cap B) = P(B) \times P(\overline{A})$ qui signifie que \overline{A} et B sont indépendants.