11) Veröffentlichungsnummer:

0 395 625

(12)

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 90890106.9

(5) Int. Cl.5: H01F 1/053

22) Anmeldetag: 06.04.90

(3) Priorität: 28.04.89 AT 1021/89

Veröffentlichungstag der Anmeldung: 31.10.90 Patentblatt 90/44

Benannte Vertragsstaaten:
BE CH DE FR GB IT LI NL SE

7) Anmelder: BÖHLER Gesellschaft m.b.H. Nordwestbahnstrasse 12-14 A-1201 Wien(AT)

② Erfinder: Pacher, Oskar, Dr. Kleinweg 6 A-8041 Graz(AT)

Erfinder: Heiss, Siedfried, Dr.

A-3333 Böhlerwerk(AT)

Permanent(-werkstoff) sowie Verfahren zu seiner Herstellung.

Die Erfindung betrifft einen gesinterten SE-Fe-B Permanentmagnetwerkstoff sowie ein Verfahren zu seiner Herstellung. Erfindungsgemäß ist zur Verbesserung der magnetischen Kennwerte vorgesehen, daß in bzw. an den Korngrenzen und/oder im Korngrenzenbereich der magnetischen Phase, vorzugsweise SE₂Fe₁₄B, wobei SE zumindest ein Element aus der Gruppe der Seltenen Erden, z.B. Neodym und/oder Praseodym und/oder Dysprosium und/oder Holmium ist, als Legierungszusatz zumindest ein weiteres Element aus der Gruppe der schweren Seltenen Erden, z.B. Dysprosium und/oder Terbium, und/oder zumindest eine Verbindung zumindest eines Elementes aus der Gruppe der Seltenen Erden, insbesondere Oxide, an- bzw. eingelagert ist (sind).

FP 0 395 625 A2

Permanentmagnet(-werkstoff) sowie Verfahren zur Herstellung desselben

Die Erfindung betrifft einen gesinterten SE-Fe-B-Permanentmagnet(-werkstoff). Ferner betrifft die Erfindung ein verfahren zur Herstellung von SE-Fe-B-Permanentmagnet(en) (-werkstoffen), wobei die Bestandteile des Grundwerkstoffes schmelzmetallurgisch hergestellt werden, sodann pulverisiert und im Magnetfeld verpreßt und anschließend gesintert werden.

Aus der EP-PS 126 802 sind Permanentmagnete bekannt, die unter anderem als Werkstoffe Seltene Erden sowie Bor und gegebenenfalls Kobalt enthalten. Diese Elemente sind auf Grund der eingesetzten Verfahrensparameter in der magnetischen Phase homogen verteilt. Bei der Herstellung der Magnete wird derart vorgegangen, daß eine schmelzmetallurgisch hergestellte Ausgangslegierung vermahlen wird, worauf das Pulver in einem Magnetfeld gepreßt wird, worauf ein Sintervorgang und eine Wärmebehandlung folgen.

Ferner sind aus der EP-PS 101 552 Permanentmagnete bekannt, welche Seltene Erden und Bor und gegebenenfalls weitere Zusatzelemente enthalten. Bei diesen Magneten muß die magnetische Hauptphase allerdings eine intermetallische Verbindung konstanter Zusammensetzung sein, was eine homogene Verteifung aller Elemente bedingt. Bei dieser Ausführungsform besteht jedoch der Nachteil im großen Aufwand auf der legierungstechnischen Seite bei der Herstellung der Ausgangslegierung, welche besonders rein sein muß, um kritische Verunreinigungen zu vermeiden. Abgesehen davon weisen diese Magnete starke Streuungen der magnetischen Daten und schlechte Reproduzierbarkeit auf.

Die Erfindung setzt sich zum Ziel, die Nachteile der bekannten Magnete bzw. ihrer Herstellungsverfahren zu beseitigen und Permanentmagnete, die Seltene Erden enthalten, zu erstellen, die gute Temperaturstabilität besitzen. Ferner sollen die Streuungen der magnetischen Kennwerte durch ein neues und verbessertes Fertigungsverfahren verringert werden.

Diese Ziele werden bei einem Permanentmagnet(-werkstoff) der eingangs genannten Art dadurch erreicht, daß in bzw. an den Korngrenzen und/oder im Korngrenzenbereich der magnetischen Phase, vorzugsweise SE₂Fe₁₄B, wobei SE zumindest ein Element aus der Gruppe der Seltenen Erden, vorzugsweise Neodym und/oder Dysprosium und/oder Praseodym, und/oder Holmium ist, als Legierungszusatz zumindest ein weiteres Element aus der Gruppe der schweren Seltenen Erden, vorzugsweise Gadolinium, Holmium, Dysprosium und/oder Terbium, und/oder zumindest eine metall- gegebenenfalls oxidbildende Verbindung zumindest eines Elementes aus der Gruppe der Seltenen Erden, vorzugsweise der schweren Seltenen Erden, insbesondere Oxide und/oder Nitride, gegebenenfalls gemeinsam mit Korängrenzenlegierungszusätzen, umfassend Oxide und/oder Nitride und/oder Boride, zumindest eines der Elemente Kobalt, Chrom, Aluminium, Titan und/oder Tantal, an- bzw. eingelagert ist (sind). Ein Verfahren der eingangs genannten Art ist erfindungsgemäß dadurch gekennzeichnet, daß der Schmelzmetallurgisch hergestellte, pulverisierte Grundwerkstoff mit pulverisierten Legierungszusätzen, nämlich zumindest einem Element aus der Gruppe der schweren Seltenen Erden, vorzugsweise Gadolinium und/oder Holmium und/oder Dysprosium und/oder Terbium und/oder zumindest einer zumindest ein SE- Metall enthaltenden,

vorzugsweise thermodynamisch stabilen, gegebenenfalls metalloxidbildenden Verbindung, insbesondere Oxiden und/oder Nitriden, gegebenenfalls gemeinsam mit pulverisierten Korngrenzenlegierungszusätzen, bestehend aus Oxiden und/oder Nitriden und/oder Boriden zumindest eines der Elemente Kobalt, Chrom, Aluminium, Titan oder Tantal vermengt und danach unter Magnetfeldausrichtung mit den Legierungszusätzen und gegebenenfalls den Korngrenzenlegierungszusätzen gemeinsam verpreßt und gesintert sind. Auf Grund der erfindungsgemäßen Vorgangsweise, die eine neue Art einer Korngrenzenlegierungstechnik darstellt, wird eine Reihe von Vorteilen erreicht, indem spezielle Diffusionszonen an den Korngrenzen ausgebildet werden bzw. im Korngrenzenbereich der magnetischen Phase eine Anreicherung von Zusatzwerkstoffen erfolgt, wodurch eine Behinderung der Domänwandbeweglichkeit bei gleichzeitig kleinerer Korngröße erreicht wird. Damit ergeben sich verbesserte Koerzitivkraftwerte bei gleichzeitig hoher Remanenz bzw. einer Steigerung des Energieproduktes BHmax.

Ein besonderes Kennzeichen des neuen erfindungsgemäßen Permanentmagnet(-werkstoffes) ist die spezifische Elementanreicherung in der Korngrenze bzw.im Korngrenzenbereich sowie ein Konzentrationsgradient am Kornrand der magnetischen Phase. Dadurch wird die Temperaturäbhangigkeit der Koerzitivkraft ausgesprochen günstig beeinflußt und zeigt bei Raumtemperatur und insbesondere auch bei erhöhten Temperaturen bei gleichzeitiger hoher Remanenz günstige Werte. Durch diese Eigenschaften kann die Anwendbarkeit des erfindungsgemäßen Magnetwerkstoffes auf Arbeitstemperaturen von über 180°C erweitert werden, wobei die Curietemperatur über 500°C liegt.

Besonders gute magnetische Werte werden erhalten, wenn die Legierungszusätze, d.h. die dem Grundwerkstoff zugegebenen Elemente bzw. Verbindungen aus der Gruppe der schweren Seltenen Erden ausgewählt werden und in Form von thermodynamisch stabilen vorzugsweise die Oxide der SE-Metalle

bildenden Verbindungen eingesetzt bzw. zulegiert werden, wobei vorteilhafterweise durch Mikrodiffusion entstehende Konzentrationsgradienten unter 5µ, vorzugsweise unter 0,5µ, ausgebildet werden. Auch die Korngrenzenlegierungszusätze sollen thermodynamisch stabile Verbindungen sein.

Die erfindugsgemäße Wirkung der Korngrenzenanreicherungen dürfte auf partielle Auflösungs- und Wiederausscheidungsvorgänge zurückzuführen sein, die völlig überraschend auch die Durchschnittskorngröße der magnetischen Phasen herabsetzt.

Bei einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß der Grundwerkstoff 15 Atom-% (± 5 Atom-%) SE, 77 Atom-% (±10 Atom-%) Fe und 8 Atom-% (± 5 Atom-%) B aufweist. Gewisse Variationen in der Zusammensetzung des Grundwerkstoffes sind somit möglich; ebenso ist der Einsatz verschiedener Seltener Erden im Grundstoff bzw. in den Legierungszusätzen allein oder in Kombination möglich.

Es hat sich erwiesen, daß es zur Vermeidung der Wanderung der Domänwände ausreicht, wenn die Legierungszusätze 0,2 bis 2,5 Gew.-%, vorzugsweise 0,8 bis 2 Gew.-%, insbesondere 1 bis 1,5 Gew.-% des Grundwerkstoffes ausmachen. Größere Mengen an Legierungszusätzen beeinflussen die Kennwerte des Werkstoffes in unerwünschter Weise.

Um die Oberfläche des pulverisierten Grundwerkstoffes mit den pulverisierten Legierungszusätzen in guten Kontakt zu bringen, ist erfindungsgemäß vorgesehen, daß die Legierungszusätze Teilchen mit Abmessungen kleiner als 5µ, vorzugsweise kleiner als 1µ insbesondere kleiner als 0,5µ, vermahlen werden und daß der schmelzmetallurgisch hergestellte Grundwerkstoff zu Teilchen mit Abmessungen kleiner als 200µ, vorzugsweise kleiner al 100µ, insbesondere kleiner als 50µ, insbesondere durch hochenergetische Zerkleinerung, zerkleinert wird. Erfindungsgemäß ist sodann vorgesehen, daß die pulverisierten Legierungszusätze und der zerkleinerte Grundwerkstoff zur Vermengung gemeinsam vermahlen werden, bis die Teilchen des Grundwerkstoffes Abmessungen kleiner als 30µ, vorzugsweise kleiner als 20µ, insbesondere kleiner als 15µ, erreichen. Durch das gemeinsame Vermahlen tritt neben einer Homogenisierung eine Anlagerung der feinen Legierungszusätze an den zerkleinerten Teilchen des Grundwerkstoffes ein, was den nachfolgenden Sintervorgang ausgesprochen gut beeinflußt. Der Grundwerkstoff kann dabei im wesentlichen vollständig mit dem feineren Pulver umgeben werden.

Beim Sintern wird derart vorgegangen, daß im Vakuum so lange gesintert wird, bis an bzw. in den Korngrenzen eine Anreicherung der Legierungszusätze erfolgt bzw. bis sich durch Mikrodiffusion in der magnetischen Phase an den Korngrenzen Konzentrationsgradienten ausbilden, die 5µ, vorzugsweise 1µ, insbesondere 0,5µ, nicht wesentlich überschreiten. Vorteilhaft ist es dabei, wenn nicht länger als 20 Minuten, vorzugsweise 10 bis 20 Minuten, insbesondere etwa 15 Minuten, gesintert wird bzw. das Sintern gegebenenfalls nur so lange durchgeführt wird, daß keine Zerlegung bzw. vollständige Diffusion der zugegebenen Verbindung, insbesondere keine vollständige Zerlegung gebildeter SE-Oxide bzw. Korngrenzenlegierungszusätze eintritt. Zu große Anlagerungen der Legierungzusätze würden die magnetischen Eigenschaften des Werkstoffes verschlechtern; eine unerwünschte Zerlegung (z.B. Oxidzerlegung) einer zugegebenen Verbindung eines Seltenen Erdmetalles könnte z.B. die Auflösung dieses Metalles in der magnetischen Phase bewirken.

Im folgenden wird die Erfindung anhand von Tabellen, der Zeichnung und Beispielen näher erläutert. Beilliegende Zeichnung zeigt in Fig. 1 ein Flußdlagramm, welches die erfindungsgemäßen Verfahrensschritte schematisch wiedergibt. Fig. 2 zeigt einen Ablagerungs- bzw. Konzentrationsverlauf.

Im folgenden wird die erfindungsgemäße Verfahrensführung anhand des in Fig. 1 dargestellten schematischen Flußdiagrammes erläutert. Ausgehend von einer schmelzmetallurgisch hergestellten Grundlegierung erfolgt eine Zerkleinerung dieser Legierung zu einem Pulver mit Abmessungen von vorteilhafterweise kleiner als 50µ. Die ausgewählten Legierungszusätze werden ebenfalls pulverisiert bzw. vermahlen, vorteilhafterweise auf Teilchen mit Abmessungen kleiner als 5µ. Diese beiden Pulver werden sodann gemeinsam vermahlen, bis die Teilchen des schmelzmetallurgisch hergestellten Grundwerkstoffes Abmessungen, vorzugsweise kleiner als 10µ bzw. 15µ, erhalten. Dieses Pulver mit einer im wesentlichen homogen vorliegenden Teilchenverteilung, die gegebenenfalls nach einem Homogenisierungsschritt erreicht wird, wird sodann zu der gewünschten Form im Magnetfeld verpreßt und anschließend bei Temperaturen von 900° bis 1200° C gesintert.

Wenn man von einem Grundwerkstoff ausgeht, der 15 Atom-% Seltene Erden, 77 ATom-% Eisen und 8 Atom-% Bor enthält, wobei als Seltene Erden vorteilhafterweise Neodym eingesetzt wird, so erhält man in dem schmelzmetallurgisch hergestellten Grundwerkstoff drei ausgeschiedene Phasen mit folgender Zusammensetzung:

Eine erste Phase, die etwa 90 bis 95 Vol.-% ausmacht, mit einer Zusammensetzung von 1,8 Atom-% Neodym, 82,4 Atom-% Eisen und 5,8 Atom-% Bor, welche Phase die magnetische Phase darstellt. Als weitere Phase erhält man in einer Menge von etwa 5 bis 10 Vol.-% eine Phase mit etwa 11,1 Atom-%

Neodym, 44,4 Atom-% Eisen und 44,4 ATom-% Bor, wobei das Verhältnis von 1:4 von Seltenen Erden zu Eisen etwas variieren kann (z.B.(1+e):4). Als weitere Phase erhält man in einer Menge von bis 5 Vol.-% eine neodymreiche Phase, wobei die letzteren beiden Phasen weitgehend paramagnetisch sind. Um diese drei Phasen beim magnetischen Werkstoff homogen vorliegen zu haben, erfolgt die Pulverisierung bzw. das Mahlen des Grundwerkstoffes. Gleichzeitig hat diese Homogenisierung bzw. Zerkleinerung den Zweck, daß, da beim Sintervorgang die magnetische erste Phase nicht geschmolzen wird, durch ein An-bzw. Aufschmelzen der weiteren Phase die metallische Bindung des Sinterwerkstückes erfolgt. Diese weitere aufschmelzende Phase stellt ferner den Träger für die zugegebenen Legierungszusätze dar und diffundiert mit diesen in die Korngrenzenbereiche der magnetischen Phase bzw. lagert sich dort an. Schematisch ist diese Anlagerung in Fig. 2 dargestellt, in der der Konzentrationsverlauf der Legierungszusätze über den Grenzverlauf zweier Körner dargestellt ist. Man erkennt die an der Grenze zwischen den Körnern angelagerten Legierungszusätze, welche ein Wandern der Domänwände verhindern und somit die Koerzitivkraft der magnetischen Phase erhöhen.

In der beiliegenden Tabelle 1 werden für vorteilhafte Legierungen die erfindungsgemäß erreichbaren Werte von BHmax für 25°C und 160°C angegeben. Man erkennt, daß die korngrenzenlegierten Werkstoffe durchwegs ein besseres Energieprodukt BHmax aufweisen, abgesehen davon, daß auch eine bessere Temperaturbeständigkeit und eine einfachere Herstellung gegeben sind.

In der beiliegenden Tabelle 2 sind die erfindungsgemäßen Legierungszusätze angeführt, wie sie den in der Tabelle 1 angeführten Grundwerkstoffen zugesetzt sind.

Beispiel:

20

Eine Legierung der Zusammensetzung Nd (33 Gew.-%), Fe (53 Gew.-%), Co (13 Gew.-%) und B (1 Gew.-%) wird auf eine Korngröße kleiner als 100 vorzerkleinert und gemeinsam mit feingemahlenem Dy₂O₃ (kleiner 5μ) weiter vermahlen. Durch das gemeinsame Vermahlen entsteht eine innige,homogene Vermischung zwischen den beiden Pulvern. Die homogene Mischung der feinen Pulver wird in einem Magnetfeld aufmagnetisiert, ausgerichtet und verpreßt. Bei einer Temperatur zwischen 1000 °C und 1100 °C wird der Grünling gesintert und anschließend zwischen 600 °C und 900 °C wärmebehandelt. Die Remanenz der Magnete bei Raumtemperatur beträgt 1,2T und reduziert sich auf ca. 1,1T bei 160 °C. Die Koerzitivkraft wird von 1400kA/m bei Raumtemperatur auf 650kA/m bei 160 °C reduziert. Das maximale Energieprodukt variiert zwischen 280kJ/m³ und 240kJ/m³ im Temperaturbereich zwischen 20 °C und 160 °C. Durch die inhomogene Verteilung des Dysprosiums im hartmagnetischen (Nd,Dy)₂ Fe₁₄ B Korn , insbesondere durch den Dysprosium-Konzentrationsgradienten entlang des Kornquerschnittes mit steigendem Dy-Gehalt zu den Korngrenzen hin, wird auch bei Co- hältigen SE-Fe-B-Permanentmagneten mit erhöhter Curie-Temperatur auf Grund der Koerzitivkraftsteigerung ein Einsatz dieser Magnete über 160 °C möglich.

40

45

50

Tabelle 1

ZUSAMMENSETZUNG		ERFINDUNGSGEMÄß KORNGRENZENLEGIERT		OHNE KORNGRENZENLEGIERUNG		
	Atom-%		BHmax kJ/m³	BHmax kJ/m³	BHmax kJ/m ³	BHmax kJ/m³
2		ZUSÄTZE	25 ° C	170°C	25°C	170 °C
	77Fe-88-15Nd	A1 A2 A3	285 290 285	85 85 105	290	60
		B1 B2	280 285	130 80		150
	77Fe-88-13Nd-2DY	A1 A2 B1	270 275 280	160 160 150	270	150
5	71Fe-6Co-88-15Nd	A1 A2 B1 A3 A4	270 260 265 280 270	90 170 155 175 165	270	80
, י	65Fe-12Co-88-15Nd	A1 A2 A3 B1	270 260 280 255 270	110 175 185 160 165	260	95
5	57Fe-20Co-88-15Nd	A4 A1 A2 B1 A3 A4	260 255 220 270 270	115 155 155 165 170	210	100

Tabelle 2

٠	•	
۰		

50			
55			

ZUSAMME	NSETZUNG DER LEGIERUNGSZUSÄTZE		
ZUSÄTZE (Bezeichnung in Tab 1)	ZUSAMMENSETZUNG DER ZUSÄTZE in Gew% bezogen auf Pulvergewicht des Grundmaterials		
A 1 A 2 A 3 A 4 B 1 B 2	1 % Dy_2O_3 1 % Dy_2O_3 + 1 % Al_2O_3 0,5 % Dy_2O_3 + 0,5 % $AlBx$ 0,5 % Dy_2O_3 + 0,5 % TiN 0,5 % Dy_2O_3 + 0,5 % TaN + 0,5 Dy 1 % CoB + 0,5 % TaN		

Ansprüche

- 1. Gesinterter SE-Fe-B-Permanentmagnet(-werkstoff), dadurch gekennzeichnet, daß in bzw. an den Korngrenzen und/oder im Korngrenzenbereich der magnetischen Phase, vorzugsweise SE₂Fe₁₄ B , wobei SE zumindest ein Element aus der Gruppe der Seltenen Erden, vorzugsweise Neodym und/oder Dysprosium und/oder Praseodym,und/oder Holmium ist, als Legierungszusatz zumindest ein weiteres Element aus der Gruppe der schweren Seltenen Erden, vorzugweise Gadolinium, Holmium, Dysprosium und/oder Terbium und/oder zumindest eine metall-gegebenenfalls oxidbildende Verbindung zumindest eines Elementes aus der Gruppe der Seltenen Erden, vorzugsweise der schweren Seltenen Erden, insbesondere Oxide und/oder Nitride, gegebenenfalls gemeinsam mit Korngrenzenlegierungszusätzen, umfassend Oxide und/oder Nitride und/oder Boride, zumindest eines der Elemente Kobalt, Chrom, Aluminium, Titan und/oder Tantal, an-bzw. eingelagert ist (sind).
- 2. Permanentmagnet(-werkstoff) nach Anspruch 1, dadurch gekennzeichnet, daß die An- bzw. Einlagerungen an den Korngrenzen bzw. im Korngrenzenbereich eine Dicke von 0,005 bis 10 μ , vorzugsweise von 0,05 bis 1 μ , insbesondere von 0,05 bis 0,5 μ , besitzen.
- 3. Permanentmagnet (-werkstoff) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Grundwerkstoff 15 Atom-% (± 5 Atom-%) SE, 77 Atom-% (± 10 Atom-%) Fe und 8 Atom-% (± 5 Atom-%) B aufweist.
- 4. Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Eisen bis zu 30 Atom-% durch Kobalt substituiert ist.
- 5. Permanent(-werkstoff) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Legierungszusätze 0,2 bis 2,5 Gew.-%, vorzugsweise 0,8 bis 2 Gew.-%, insbesondere 1 bis 1,5 Gew.-% des Grundwerkstoffes ausmachen.
- 6. Verfahren zur Herstellung von SE-Fe-B-Permanentmagnet(en) (-werkstoffen), wobei die Bestandteile des Grundwerkstoffes schmelzmetallurgisch hergestellt werden, sodann pulverisiert und im Magnetfeld verpreßt und anschließend gesintert werden, insbesondere zur Herstellung von Permanentmagnet(en) (-werkstoffen) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der schmelzmetallurgisch hergestellte, pulverisierte Grundwerkstoff mit pulverisierten Legierungzusätzen, nämlich zumindest einem Element aus der Gruppe der schweren Seitenen Erden, vorzugsweise Gadolinium und/oder Holmium und/oder Dysprosium und/oder Terbium und /oder zumindest einer zumindest ein SE-Metall enthaltenden, vorzugsweise thermodynamisch stabilen, gegebenenfalls metalloxidbildenden Verbindung, insbesondere Oxiden und/oder Nitriden, gegebenenfalls gemeinsam mit pulverisierten Korngrenzenlegierungszusätzen, bestehend aus Oxiden und/oder Nitriden und/oder Boriden zumindest eines der Elemente Kobalt, Chrom, Aluminium, Titan oder Tantal vermengt und danach unter Magnetfeldausrichtung mit den Legierungszusätzen und gegebenenfalls den Korngrenzenlegierungszusätzen gemeinsam verpreßt und gesintert wird.
- 7. Verfahren nach Anspruch 6. dadurch gekennzeichnet, daß die Legierungszusätze zu Teilchen mit Abmessungen kleiner 5µ, vorzugsweise kleiner 1µ, insbesondere kleiner 0,5µ, vermahlen werden.
- 8. Verfahren nach Anspruch 6 oder 7 dadurch gekennzeichnet, daß der schmelzmetallurgisch hergestellte Grundwerkstoff zu Teilchen mit Abmessungen kleiner 200 μ , vorzugsweise kleiner 100 μ , insbesondere kleiner 50 μ , insbesondere durch hochenergetische Zerkleinerung, zerkleinert wird.
- 9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die pulverisierten Legierungszusätze und der zerkleinerte Grundwerkstoff zur Vermengung gemeinsam vermahlen werden, bis die Teilchen des Grundwerkstoffes Abmessungen kleiner als 30µ, vorzugsweise kleiner 20µ, insbesondere kleiner 15µ, erreichen.
- 10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß das Sintern im Vakuum bei Temperaturen zwischen 800° und 1300°C, vorzugsweise 900° bis 1200°C, vorteilhafterweise bei Temperaturen bis 1000°C, insbesondere bei Temperaturen erfolgt, bei denen die magnetische Phase noch nicht, die anderen Phasen des Grundwerkstoffes jedoch zumindest auf- bzw. angeschmolzen sind.
- 11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß so lange gesintert wird, bis an bzw. in den Korngrenzen(bereichen) eine Anreicherung der Legierungszusätze erfolgt bzw. bis sich durch Mikrodiffusion in der magnetischen Phase an bzw. in den Korngrenzen(bereichen) Konzentrationsgradienten ausbilden, die 5µ, vorzugsweise 1µ, insbesondere 0,5µ, nicht wesentlich überschreiten.
- 12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß nicht länger als 20 Minuten, vorzugsweise 10 bis 20 Minuten, insbesondere etwa 15 Minuten, gesintert wird bzw. das Sintern gegebenenfalls nur so lange durchgeführt wird, daß keine Zerlegung bzw. vollständige Diffusion der als Legierungszusatz zugegebenen Verbindung(en) bzw. allfälliger Korngrenzenlegierungszusätze eintritt.
- 13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet,daß als schmelzmetallurgisch hergestellter Grundwerkstoff ein Werkstoff mit 15 Atom-% (± 5 Atom-%) Seltene Erden, 77 Atom-%

(±10 Atom-%) Eisen und 8 Atom-% (± 5 Atom-%) Bor eingesetzt wird.

- 14. Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß in dem schmelzmetallurgisch hergestellten Werkstoff Eisen bis zu 30 Atom-% durch Kobalt substituiert wird.
- 15. Verfahren nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß die Legierungszusätze im Ausmaß von 0,2 bis 2,5 Gew.-%, vorzugsweise 0,8 bis 2 Gew.-%, insbesondere 1 bis 1,5 Gew.-% des schmelzmetallurgisch hergestellten pulverisierten Grundwerkstoffes diesem zugesetzt werden.
- 16. Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, daß ein Grundwerkstoff eingesetzt wird, der als Seltene Erden Neodym und/oder Dysprosium und/oder Holmium enthält.
- 17. Verfahren nach einem der Ansprüche 6 bis 16, dadurch gekennzeichnet, daß der gesinterte Werkstoff einer Wärmebehandlung in einem Temperaturbereich von 350° bis 1200°C unterzogen wird.

55

15

20

25

30

35

40

45

Fig. 1

(1) Veröffentlichungsnummer: 0 395 625 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90890106.9

(51) Int. Cl.5: H01F 1/053

22) Anmeldetag: 06.04.90

Priorität: 28.04.89 AT 1021/89

43 Veröffentlichungstag der Anmeldung: 31.10.90 Patentblatt 90/44

(A) Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL SE

Veröffentlichungstag des später veröffentlichten Recherchenberichts: 06.11.91 Patentblatt 91/45 1 Anmelder: BÖHLER Gesellschaft m.b.H. Nordwestbahnstrasse 12-14 A-1201 Wien(AT)

Erfinder: Pacher, Oskar, Dr. Kleinweg 6 A-8041 Graz(AT)

Erfinder: Heiss, Siedfried, Dr.

A-3333 Böhlerwerk(AT)

Permanent(-werkstoff) sowie Verfahren zu seiner Herstellung.

Die Erfindung betrifft einen gesinterten SE-Fe-B Permanentmagnetwerkstoff sowie ein Verfahren zu seiner Herstellung. Erfindungsgemäß ist zur Verbesserung der magnetischen Kennwerte vorgesehen, daß in bzw. an den Korngrenzen und/oder im Korngrenzenbereich der magnetischen Phase, vorzugsweise SE₂Fe₁₄B, wobei SE zumindest ein Element aus der Gruppe der Seitenen Erden, z.B. Neodym und/oder Praseodym und/oder Dysprosium und/oder Holmium ist, als Legierungszusatz zumindest ein weiteres Element aus der Gruppe der schweren Seltenen Erden, z.B. Dysprosium und/oder Terbium, und/oder zumindest eine Verbindung zumindest eines Elementes aus der Gruppe der Seltenen Erden, insbesondere Oxide, an- bzw. eingelagert ist (sind).

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 90 89 0106

	EINSCHLÄG				
ategorie	Kennzeichnung des Dokumer der maß	ts mit Angabe, sowelt erforderlich, geblichen Telle		rifft ruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.5)
×	EP-A-0 208 807 (UNION C * Ansprüche 1-6 * * Seite 5,	IL COMPANY OF CALIFORN Zeile 24 - Seite 8, Zeile 29 *	NIA) 1,3,4 10,1	-,6,8, 6,17	H 01 F 1/053
x	IEEE TRANSLATION JOUR vol. 3, no. 2, Februar 1988, 151; K.OHASHI ET AL.: "Eff tion on Nd Fe B Magnets" * das ganze Dokument *	NAL on MAGNETICS in JAP NEW YORK US Seiten 145 - ects of Rare Earth Oxide Add	10,1		
Α	PATENT ABSTRACTS OF (C-433)(2653) 3 Juli 1987, & JP-A-62 27548 (SUMITON 05 Februar 1987, * das ganze Dokument *	JAPAN vol. 11, no. 206 MO SPECIAL METALS CO L'	1,3,4		
E	EP-A-0 389 626 (MITSUBI * Ansprüche 1, 17, 21-25 * * Absatz 2 *	SHI METAL CORP.) Seite 23, Absatz 2 - Seite 24	1,5,6	9,9	·
			Ì		RECHERCHIERTE SACHGEBIETE (Int. CI.5)
					H 01 F
•					
D	er vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt			
Recherchenort		Abschlußdatum der Recherc	he		Prüfer
	Den Haag	09 September 91			DECANNIERE L.J.
Y:	KATEGORIE DER GENANNTEN von besonderer Bedeutung allein b von besonderer Bedeutung in Verbi anderen Veröffentlichung derselber	etrachtet ndung mit einer D	nach dem Ai in der Anme aus anderen	nmelded Idung an Gründe	ent, das jedoch erst am oder atum veröffentlicht worden ist geführtes Dokument n angeführtes Dokument
A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur		& eorien oder Grundsätze	&: Mitglied der gleichen Patentfa übereinstimmendes Dokument		n Patentfamilie,

EUROPEAN SEARCH REPORT

Application Number EP 99 10 5857

		ERED TO BE RELEVANT		
Category	Citation of document with ir of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
X	RAJA K MISHRA ET AL OF HOT FORMED NEODY WITH ENERGY PRODUCT JOURNAL OF APPLIED vol. 73, no. 10 PT. pages 6470-6472, XP * page 6470, column 6471, column 2, par * page 6472, column 2 *	1,3	H01F1/055 H01F1/057	
X	PATENT ABSTRACTS OF vol. 017, no. 653 (3 December 1993 & JP 05 217744 A 27 August 1993 * abstract *	E-1469),	8,10	
X	NDFEB PERMANENT MAG JOURNAL OF APPLIED	ON MICROSCOPY TURED RAPIDLY QUENCHED NETS" PHYSICS, 02, 15 November 1991, 000281686	12,13, 15-17	TECHNICAL FIELDS SEARCHED (Int.CI.6)
X	PATENT ABSTRACTS OF vol. 018, no. 490 (13 September 1994 & JP 06 (158238 A) (CO LTD), 7 June 199 * abstract *	C-1249), SUMITOMO SPECIAL METALS	18,20, 22,23	
Y	EP 0 395 625 A (BOE	HLER GMBH)	25,26,30	
A	31 October 1990 * page 3, line 12 -	line 27; claim 1 * -/	29	
	The present search report has	been drawn up for all claims	1	
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	25 June 1999	Dec	anniere, L
X : part Y : part doci A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anotument of the same category inclogical background written disclosure trinediate document	T: theory or principl E: earlier patent do after the filing da her D: document cited i L: document cited f &: member of the s document	cument, but publi te n the application or other reasons	shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 99 10 5857

		RED TO BE RELEVANT	Bolovost	CLASSIFICATION OF THE
Category	Citation of document with inc of relevant passa	dication, where appropriate, ges	Relevant to claim	APPLICATION (Int.Cl.6)
Y	JUNG-PIL YANG ET ALSON THE STRUCTURE OF SINTERED ND15FE77B8 JOURNAL OF MAGNETISM MATERIALS, vol. 110, no. 3, 1 ML261-L263, XP0003245 the whole document	M AND MAGNETIC May 1992, pages 515	25,26,30	·
A	FUERST C D ET AL: ADDITIVES IN DIE-UPS JOURNAL OF APPLIED I vol. 69, no. 8, 15 / 5826-5828, XP0002410 * the whole document	SET ND-FE-B MAGNETS" PHYSICS, April 1991, pages DO1	32,33, 35-37, 40,41	
				TECHNICAL FIELDS SEARCHED (Int.CI.6)
	The present search report has		<u> </u>	Examiner
	Place of search	Date of completion of the search	Doc	canniere, L
1	THE HAGUE	25 June 1999		
X:pa Y:pa do A:teo	CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone rticularly relevant if combined with anot current of the same category chnological background no-written disclosure ermediate document	after the filing da	ocument, but pub ate in the application for other reasons	isned on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 10 5857

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

25-06-1999

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0395625 A	31-10-1990	AT 393177 B AT 102189 A DD 294124 A DE 59007732 D PL 164473 B	26-08-1991 15-01-1991 19-09-1991 05-01-1995 31-08-1994