PROBLEM SET 5

16822 Geometry-based Methods in Vision (Fall 2023)

https://piazza.com/cmu/fall2023/16822

OUT: Nov. 14, 2023 DUE: Nov. 21, 2023 11:59 PM Instructor: Shubham Tulsiani TAs: Ben Eisner, Nupur Kumari

START HERE: Instructions

• Collaboration policy: All are encouraged to work together BUT you must do your own work (code and write up). If you work with someone, please include their name in your write up and cite any code that has been discussed. If we find highly identical write-ups or code without proper accreditation of collaborators, we will take action according to university policies, i.e. you will likely fail the course. See the Academic Integrity Section detailed in the initial lecture for more information.

• Submitting your work:

- We will be using Gradescope (https://gradescope.com/) to submit the Problem Sets. Please use the provided template. Submissions can be written in LaTeX, or submitted as a scanned PDF. Regrade requests can be made, however this gives the TA the opportunity to regrade your entire paper, meaning if additional mistakes are found then points will be deducted. Each derivation/proof should be completed on a separate page. For short answer questions you should include your work in your solution.
- For questions where you must fill in a blank, please make sure your final answer is fully included in the given space. You may cross out answers or parts of answers, but the final answer must still be within the given space. We accept either LaTex pdfs or scanned documents as long as the location of each question is annotated properly.
- Materials: The data that you will need in order to complete this assignment is posted along with the writeup and template on Piazza.

1 Parametrizing Rotations [20 pts]

[6 pts] Are the	se statements true o	r false?			
(a) Given a qua	ternion $q, -q$ repre	sents its inverse	rotation.		
(b) Given quate	ernions q_1 and q_2 , the	ne composition of	f these 2 rotation	is is $q_1 + q_2$.	
(c) Given a uni	t quaternion q such	that $ q = 1$, the	ere is a unique ro	otation it correspo	onds to.

 ternion $q = [\sqrt{3}/2,$, , , 1.		

	$\mathbf{r}_1 = nor$	$rmalize(\mathbf{v}_1)$), \mathbf{r}_2 =	= normalize	$\mathbf{e}(\mathbf{v}_2 - (\mathbf{v}_2 -$	$(\mathbf{r}_1)\mathbf{r}_1),$	$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_3$	r_2 .
iven \mathbf{v}_1 utput \mathbf{r}_1'	$\mathbf{v}_2 \in \mathbb{R}^3.$ $\mathbf{r}_2', \mathbf{r}_3'$ usin	What's the $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$	e output ${f R}$	$\mathcal{L}' = F(\mathbf{v}_1',$	$\mathbf{v}_2')$ if \mathbf{v}_1' =	$=\mathbf{v}_1,\mathbf{v}_2'=$	$-\mathbf{v}_2+\mathbf{v}_1$?	Represent the

4.	[6 pts] Given corresponding 3D points $\{(\mathbf{p}_i, \mathbf{q}_i)\} \in (\mathbb{R}^3, \mathbb{R}^3)$, we want to find the optimal rigid trans-
	form. Assume the points are already mean-centered so we only need to find the rotation. For every pair
	of points $(\mathbf{p}_i, \mathbf{q}_i)$, both points are located on one of the x, y and z axes. Namely,

$$\forall i, \quad \mathbf{p}_i = [u_i, 0, 0], \quad \mathbf{q}_i = [v_i, 0, 0]$$
 or
$$\mathbf{p}_i = [0, u_i, 0], \quad \mathbf{q}_i = [0, v_i, 0]$$
 or
$$\mathbf{p}_i = [0, 0, u_i], \quad \mathbf{q}_i = [0, 0, v_i]$$

(a) [2 pts] Wh	(a) [2 pts] What are the possible rotations intuitively?					

(b) [4 pts] Prove they are the only answers mathematically.

2 Learning-based SfM [8pts]

	b) the camera is set to 10 meters away from the object but the baseline between the two cameras keeps he same?	(a) the baselin	e between the two	cameras is set to	40 cm?	
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						
ut the baseline between the two cameras keeps						

6.	[4 pts] How many	potential keypoints d	loes superpoint predi	ct at most from a 12	28×128 image?	

Attendan	ce Question: Among Lectures 20-22, how many did you attend in person?
Collabora	ation Questions Please answer the following:
1. Did	you receive any help whatsoever from anyone in solving this assignment?
	○ Yes
	○ No
•	• If you answered 'Yes', give full details:
	• (e.g. "Jane Doe explained to me what is asked in Question 3.4")
2. Did	you give any help whatsoever to anyone in solving this assignment?
	Yes
	O No
•	• If you answered 'Yes', give full details:
	• (e.g. "I pointed Joe Smith to section 2.3 since he didn't know how to proceed with Question 2")
3. Did	you find or come across code that implements any part of this assignment?
	○ Yes
	○ No
	• If you answered 'Yes', give full details (book & page, URL & location within the page, etc.).