

### Grover

Luis Mariano Bibbo Imbibbo@gmail.com

3° Escuela Latinoamericana de Informática Bahía Blanca, Agosto 2024



### Algoritmo de Grover

Algoritmo cuántico que busca en una secuencia desordenada más rápido que cualquier algoritmo clásico conocido.

#### Complejidad:

Clásico: O(N)

• Grover: O  $(\sqrt{N})$ 

Diseñado inicialmente para buscar un único valor.

Generalizado después para buscar múltiples valores: Amplificación de Amplitud (AA).



#### Estructura

#### Consta de dos partes:

- Oráculo: Circuito que da una fase de π a los valores buscados (marcar).
- Difusor: Circuito que amplifica los estados marcados.



#### Estructura: Oracle

Oráculo: Circuito que da una fase de  $\pi$  a los valores buscados (marcar).







#### Estructura: Difusor

Difusor: Circuito que amplifica los estados marcados.







### Como armar el Oráculo 2Q?











#### Cómo armar el Oráculo 3Q?













### Circuito completo 2Q



















# Circuito completo 3Q











# Circuito completo 3Q









# Circuito completo 3Q







 $\pi/2$ 

Phase

 $3\pi/2$ 



### ¿Cuántas iteraciones son las óptimas?

 $k=\left\lfloor rac{\pi}{4}\sqrt{rac{N}{M}}
ight
floor$ 

Fórmula para determinar la cantidad de iteraciones óptimas: 2

#### Prob: 1 estado para 3 Q:

- 0 ite: 0.12500000000000003
- 1 ite: 0.7812500000000001
- 2 ite: 0.9453124999999999
- 3 ite: 0.330078125
- 4 ite: 0.01220703125000009
- 5 ite: 0.5479736328125003
- 6 ite: 0.9997863769531249
- 7 ite: 0.5769729614257806



N= es el número total de estados (usualmente 2<sup>n</sup> si tienes n qubits), M= es el número de estados marcados (objetivos),



### ¿Cuántas iteraciones son las óptimas?

 $k=\left|rac{\pi}{4}\sqrt{rac{N}{M}}
ight|$ 

Fórmula para determinar la cantidad de iteraciones óptimas: 3

#### Prob: 1 estado para 4 Q:

• 0 ite: 0.0625

• 1 ite: 0.47265625

• 2 ite: 0.908447265625

• 3 ite: 0.9613189697265625

• 4 ite: 0.5817041397094724

• 5 ite: 0.1254916787147522

• 6 ite: 0.020380768924951515

• 7 ite: 0.36491288826800855



N= es el número total de estados (usualmente 2<sup>n</sup> si tienes n qubits), M= es el número de estados marcados (objetivos),























https://shorturl.at/3bSPt











$$k = \left\lfloor rac{\pi}{4} \sqrt{rac{N}{M}} 
ight
floor$$







N= es el número total de estados (usualmente 2^n si tienes n qubits), M= es el número de estados marcados (objetivos),



$$k = \left\lfloor \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rfloor$$
 N=16, M=2 => k=2



marked\_states = ["1001", "1111"]





N= es el número total de estados (usualmente 2<sup>n</sup> si tienes n qubits), M= es el número de estados marcados (objetivos),



## FIN

Luis Mariano Bibbo