PRAM Algorithms

Prepared by:

Dr. Rashmi S

PRAM Algorithms

- Parallel machines computers with more than one processor
- Compared to serial computing, parallel computing is much better suited for modeling, simulating and understanding complex, real world phenomena
- Ex- weather forecasting , Medical imaging and diagnosis

1 Computational Model

- Most popular theoretical Model : PRAM (parallel random-access machine)
 - X processors, P₀, P₁, ..., P_{x-1} share global memory (or shared memory) and a common clock
 - May execute different instructions at the same time, e.g. read/write at the same time
 - Key assumption: running time can be measured as the number of parallel memory accesses
 - i.e. In 1-cpu machine, to do 1 statement, say, 1 unit of time. In p-cpu machines, to do 1 statement (each cpu in parallel), also, 1 unit of time

1 2 3 Processors

1 2 3 4 5 6 Memory Global (Shared)

Memory

Possible Read and write Conflict!

Variants of PRAM algorithms

- Concurrent Read (CR): may read same location at the same time
- Exclusive Read (ER) no two processors can read same location at the same time
- Also, Concurrent Write (CW) and Exclusive Write (EW)
- Read from and write to same location at the same time is not allowed
- Types of algorithms: EREW, CREW, ERCW, CRCW
 Not many algorithms on ERCW
 A PRAM that supports EREW is called EREW-PRAM (similarly, we can define CRCW-PRAM etc)

- Most algorithms assume n, log n, or n/lg n number of processors. In practice, this is not a realistic assumption.
- For CW, assume all CPU write the same value.
 - common CRCW PRAM permitted only if all have the same message to write
 - arbitrary CRCW PRAM one of them will be successful (write)
 - priority CRCW PRAM the one with the highest priority

Simple CRCW algorithm:

To compute a[0] = a[1] || a[2] || ... || a[n]Boolean (or logical) OR of the n bits a[1:n] - a[1], a[2], ..., a[n]

for each processor i ($1 \le i \le n$) in parallel if (A[i] = 1) then A[0] := A[i];

The boolean OR of n bits can be computed in O(1) time on an n-processor common CRCW PRAM.

Running time analysis: For a given problem X with input size n,

Let the run time of a parallel algorithm using p processors be T(n,p)

Let the run time of a best known sequential algorithm be S(n)

The total work of a parallel algorithm is :
 p * T(n,p)

 The speedup of a parallel algorithm is S(n)/T(n,p)

- A parallel algorithm is said to be work-optimal if p * T(n,p) = O(S(n))
- A parallel algorithm is work-optimal if and only if it has linear speedup
- For above example(Logical OR):
 - S(n) = O(n), $n*T(n,n) = n*O(1) \rightarrow$ work optimal.
- If speedup is O(p) then the algorithm is said to have a <u>linear speedup</u>

2 Prefix computation

- Let \oplus = binary, associative operator, i.e. (x \oplus y) \oplus z = x \oplus (y \oplus z)
- Example : +, -, *, AND, OR etc
- Problem: Given n elements, x₁, x₂, ..., x_n.
 Compute n elements x₁, x₁⊕ x₂, ...,
 x₁⊕ x₂⊕ x₃... x_{n-1}⊕ x_n

Algorithm: using n CPUs; assume n is 2^k

for each
$$CPU_i$$
 in parallel /* initialize */
$$y[i] = x_i$$
for $i = 0$ to k-1 do
for each CPU_j where $j > 2^i$ in parallel
$$y[j] = y[j] \oplus y[j-2^i]$$

• Example : input <3 1 4 5 2 3 6 7>

	index	1	2	3	4	5	6	7	8
initial	y[]	3	1	4	5	2	3	6	7
i = 0	y[]		4	5	9	7	5	9	13
i = 1	y[]			8	13	12	14	16	18
i = 2	y[]					15	18	24	31

- Analysis
 - Above algorithm is EREW (or CREW) algorithm
 - The run time of best sequential algorithm is O(n)

The run time of above algorithm is, $T(n,n) = O(\lg n)$ The total work is $O(n \lg n)$ It is not work optimal!

 To get work optimal algorithm, we need to use only (n/log n) CPUs

- Work optimal algorithm : using (n/log n) CPUs
 - 1. Assign log n elements to each CPU
 - Each CPU computes the prefixes of its assigned log n elements using a simple sequential algorithm
 - 3. From Step 2, use last element from each CPU, i.e. total (n/log n) elements.
 - Use (n/log n) CPUs to compute prefixes of theses n/log n elements using previous parallel algorithm (see example, record results in a new array)
 - 4. Each CPU updates its log n elements using results from Step 3

• Example : input <3 1 4 5 2 3 6 7>

	CPU 1				CPU 2	CPU 3		
index	1	2	3	4	5	6	7	8
Step 1	3	1	4	5	2	3	6	7
Step 2	3	4	<u>8</u>	5	7	<u>10</u>	6	<u>13</u>
Step 3			8			18		31
Step 4	3	4	8	13	15	18	24	31

Analysis

```
Step 1 : O(\log n)
Step 2 : O(\log n)
Step 3 : O(\log (n/\log n)) = O(\log n)
Step 4 : O(\log n)
Total work : (n/\log n) * O(\log n) = O(n)
```

It is work optimal!