Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

A macrocyclic receptor containing two viologen species connected by conjugated terphenyl groups

Long Chen,^a Kate J. C. Lim,^a Tahkur S. Babra,^a James O. Taylor,^a Martin Pižl,^{b,c} Robert Evans,^d Ann M. Chippindale,^a František Hartl,^a Howard M. Colquhoun*^a and Barnaby W. Greenland*^{a,e}

^aDepartment of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK; email: h.m.colquhoun@reading.ac.uk

- ^b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- ^c Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
- ^d Aston University Institute of Materials Research, School of Engineering and Applied Science, Birmingham, B4 7ET, UK.
- ^e Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, BN1 9QJ, UK; email b.w.greenland@sussex.ac.uk

Contents Page Table S1 Atom numbering and comparison of structural data of 4⁴⁺ from solid state Table S2 Selected DFT calculated bond lengths and angles for 4⁴⁺, 4²⁽⁺⁺⁾ and 4......S3 Table S3. TD-DFT (PBEO/PCM-MeCN) calculated low-lying transitions of triplet 4^{2(•+)} Figure S1 Molecular orbitals of 4⁴⁺ involved in the calculated transition at 339 nmS6 Figure S3 Molecular orbitals of 4 involved in the calculated transition at 453 nm......S7 Figure S4 Calculated electronic absorption spectra for $4^{2(*+)}$ with vertical excitations.....S7 Figure S5 Calculated α -spinorbitals of $\mathbf{4}^{2^{(*+)}}$ involved in UV-vis electronic transitions.......S8 Figure S6 Calculated b-spinorbitals of 4^{2(•+)} involved in UV-vis electronic transitions.....S9 Figure S7 DOSY NMR data.....S10 Figure S8 ¹H and ¹³C NMR spectra for **4**⁴⁺......S11 Figure S9 ¹H and ¹³C NMR spectra for **10**......S12

Table S1. A comparison of selected experimental and *in vacuo* DFT calculated bond lengths (Å) and angles (°) for **4**⁴⁺.

Macrocycle **4**⁴⁺ with atoms numbered (hydrogens removed for clarity).

Bond	Exp.	Calc.
		(in vacuo)
N51-C3	1.451	1.447
N52-C64	1.450	1.447
N1-C53	1.451	1.447
N2-C14	1.450	1.447
N1-C22	1.353	1.349
C22-C21	1.375	1.374
C21-C18	1.368	1.398
C18-C17	1.470	1.484
C17-C16	1.397	1.398
C16-C15	1.355	1.374
C15-N2	1.352	1.349
N52-C65	1.352	1.349
C65-C66	1.355	1.374
C66-C67	1.397	1.398
C67-C68	1.470	1.484
C68-C71	1.368	1.398
C71-C72	1.375	1.374
C72-N51	1.353	1.349

Angle	Ехр.	Calc.
		(in vacuo)
N51-C3-C8	118.3	117.7
C3-N51-C72	117.8	118.5
C71-C68-C67	120.5	117.9
C68-C67-C66	120.6	117.9
C65-N52-C64	119.8	118.5
N52-C64-C63	117.8	117.7
N2-C14-C13	117.8	117.7
C14-N2-C15	119.8	118.5
C16-C17-C18	120.6	117.9
C17-C18-C21	120.5	117.9
C22-N1-C53	117.8	118.5
N1-C53-C58	118.3	117.7

Table S2. Comparison of selected DFT calculated (polarizable continuum model, PCM-MeCN) bond lengths (Å) and angles (°) for **4**⁴⁺, **4**^{2(•+)} and **4** (for atom numbering see Table S1).

Note the strong variation in the C-N and C-C bond lengths in the heterocycle rings (red entries) for each of the sequential oxidation states of the macrocycle (4^{4+} , $4^{2(*+)}$ and 4). In contrast, note the relative invariance with oxidation state of the bond lengths calculated in the polyaromatic spacer units (purple entries). The C-N bonds between the heterocycle rings and polyaromatic spacer units (green entries) also become shorter upon the reduction, which is ascribed to a better π -overlap between C(p) and N(p) orbitals due increasing planarity of the viologen units (Figure 6 in the main text).

	Bond Length (Å)		
Bond	4 ⁴⁺	4 ^{2(•+)}	4
N51-C3	1.442	1.424	1.403
N52-C64	1.442	1.425	1.403
N1-C53	1.442	1.424	1.403
N2-C14	1.442	1.425	1.403
N1-C22	1.350	1.370	1.391
C22-C21	1.373	1.358	1.346
C21-C18	1.395	1.422	1.448
C18-C17	1.473	1.423	1.381
C17-C16	1.395	1.422	1.448
C16-C15	1.373	1.358	1.346
C15-N2	1.349	1.370	1.390
N52-C65	1.349	1.370	1.390
C65-C66	1.373	1.358	1.346
C66-C67	1.395	1.422	1.448
C67-C68	1.473	1.423	1.381
C68-C71	1.395	1.422	1.448
C71-C72	1.373	1.358	1.346
C72-N51	1.350	1.370	1.391
C3-C8	1.386	1.390	1.397
C8-C7	1.395	1.395	1.395
C7-C9	1.476	1.476	1.477
C9-C10	1.395	1.394	1.395
C10-C11	1.394	1.394	1.395
C11-C12	1.476	1.476	1.477
C12-C13	1.395	1.395	1.395
C13-C14	1.386	1.389	1.397
C53-C58	1.386	1.390	1.397
C58-C57	1.395	1.395	1.395
C57-C59	1.476	1.476	1.477
C59-C60	1.395	1.394	1.395

	Bond Angle (°)		
	4 ⁴⁺	4 ^{2(•+)}	4
N51-C3-C8	118.2	119.1	120.1
C3-N51-C72	119.2	120.4	121.4
C71-C68-C67	120.2	122.2	123.4
C68-C67-C66	120.1	122.2	123.4
C65-N52-C64	119.1	120.4	121.3
N52-C64-C63	118.3	119.1	120.0
N2-C14-C13	118.3	119.1	120.0
C14-N2-C15	119.1	120.4	121.3
C16-C17-C18	120.1	122.2	123.4
C17-C18-C21	120.1	122.2	123.4
C22-N1-C53	119.1	120.4	121.4
N1-C53-C58	118.2	119.1	120.1

C60-C61	1.394	1.394	1.395
C61-C62	1.476	1.476	1.477
C62-C63	1.395	1.395	1.395
C63-C64	1.386	1.389	1.397

Table S3. TD-DFT (PBE0/PCM-MeCN) calculated low-lying transitions of triplet **4**^{2(*+)} with oscillator strength higher than 0.005 (see Figure S7). Molecular spinorbitals involved in the electronic transitions are depicted in Figures S8 and S9.

gares es ana es.	Transition	
Main component (%)	energy [eV]	Oscillator
Wain component (70)	(nm)	strength
α-HOSO-1 → α-LUSO (68)	(1111)	
α -HOSO $\rightarrow \alpha$ -LUSO+1 (70)	2.04 (607)	Weak (~0)
α -HOSO-1 \rightarrow α -LUSO+1 (68)	2.12 (584)	1.090
α -HOSO $\rightarrow \alpha$ -LUSO (68)		
α -HOSO-1 \rightarrow α -LUSO+2 (78) α -HOSO \rightarrow α -LUSO+7 (35)	2.88 (431)	0.014
α -HOSO $\rightarrow \alpha$ -LUSO+3 (71)	2.90 (428)	0.137
	2.90 (426)	0.137
α -HOSO $\rightarrow \alpha$ -LUSO+3 (40)	2.09 (446)	0.042
β -HOSO-2 $\rightarrow \beta$ -LUSO (38)	2.98 (416)	0.942
β -HOSO $\rightarrow \beta$ -LUSO+1 (49)	2.45 (204)	0.025
β -HOSO-1 $\rightarrow \beta$ -LUSO (62)	3.15 (394)	0.035
β -HOSO $\rightarrow \beta$ -LUSO+1 (44)	3.16 (392)	0.315
β -HOSO-1 $\rightarrow \beta$ -LUSO (64)	3.31 (374)	0.006
β -HOSO $\rightarrow \beta$ -LUSO+1 (65)		
β -HOSO-4 $\rightarrow \beta$ -LUSO+1 (45)	3.33 (373)	0.439
β-HOSO-5 → β-LUSO (39)		
β-HOSO-2 → β-LUSO (76)		0.058
β-HOSO-5 → $β$ -LUSO (41)	3.54 (351)	
β-HOSO-4 → $β$ -LUSO+1 (40)		
α -HOSO-1 \rightarrow α -LUSO+8 (42)		
α -HOSO-1 \rightarrow α -LUSO+13 (43)	3.60 (344)	0.029
α -HOSO $\rightarrow \alpha$ -LUSO+9 (48)	, ,	
α-HOSO → α-LUSO+12 (78)		
α -HOSO-1 \rightarrow α -LUSO+8 (57)	3.61 (343)	0.020
α-HOSO → α-LUSO+9 (51)	, ,	
α -HOSO-1 \rightarrow α -LUSO+10 (78)		
α -HOSO $\rightarrow \alpha$ -LUSO+11 (44)	3.62 (342)	0.013
β-HOSO-3 → β-LUSO+1 (40)		
β -HOSO-7 \rightarrow β -LUSO (54)	3.83 (324)	0.13
β-HOSO-6 → β-LUSO+1 (54)	5.55 (521)	
Mixed	3.98 (312)	0.024
β -HOSO-12 \rightarrow β -LUSO (59)	3.99 (311) 0.13	
β-HOSO-11→ β-LUSO+1 (59)	0.00 (011)	0.10
$β$ -HOSO-13 \rightarrow $β$ -LUSO+1 (66)	4.06 (305) 0.090	
β -HOSO-14 \rightarrow β -LUSO (67)	4.00 (000)	0.030

Figure S1. Molecular orbitals of **4**⁴⁺ involved in the calculated transition at 339 nm.

Figure S2. Molecular orbitals of $4^{2(\bullet+)}$ involved in the calculated transition at 584 nm.

Figure S3. Molecular orbitals of 4 involved in the calculated transition at 453 nm.

Figure S4. Calculated electronic absorption spectra for $4^{2(\bullet+)}$ with vertical excitations. (See Table S3 and Figures S5 and S6 for more details.)

Figure S5. Calculated α -spinorbitals of $\mathbf{4}^{2(\bullet+)}$ involved in the UV-vis electronic transitions (Table S3).

Figure S6. Calculated β -spinorbitals of $\mathbf{4}^{2(\bullet+)}$ involved in the UV-vis electronic transitions (Table S3).

DOSY ¹H NMR data

Figure S7. Four DOSY spectra (CD₃CN) corresponding to samples of 1.3 mM $\mathbf{4}^{4+}$ and 0, 1.3, 2.6 and 13 mM $\mathbf{10}$ respectively (used to construct Figure 7 in the paper). Only the region between 8 and 10 ppm shown. In the sample containing 13 mM $\mathbf{4}^{4+}$, peaks at ca. 8.5 ppm are not included in analysis due to overlap of signals from both species. Purple line indicates estimate for diffusion coefficient of $\mathbf{4}^{4+}$ in the absence of any complexation.

¹H and ¹³C NMR spectra of **4**⁴⁺

Figure S8. 1 H NMR [(CD₃)₂CO, 400 MHz] and 13 C NMR (CD₃CN, 100 MHz) spectra of $\mathbf{4}^{4+}.4(PF_{6}^{-})$

Figure S9. 400 MHz 1 H and 100 MHz 13 C NMR spectra of 10 (CDCl₃)

155

145

135

125

115 105 chemical shift (ppm) 95 90

85 80 75 70 65