Name: <u>Jerry Jiang</u> 12 End"

1. Let $f(x) = \tan x$. Observe that $f(0) = f(\pi)$ but there is there no $c \in]0, \pi[$ such that f'(c) = 0. Explain why this does not contradict Rolle's theorem.

2. Let f(x) = x + |x|. Prove that f is continuous but not differentiable at x = 0.

continuous. J.

$$f'(0) = \lim_{h \to 0} \frac{(0+h)+[0+h]-0-[0]}{h} = \lim_{h \to 0} \frac{h+[h]}{h}$$

if
$$h \to 0^-$$
, $f'(x) = \frac{0}{h} = 0$; if $h \to 0^+$, $f'(x) = \frac{2h}{h} = 2$.

not differentiable. V.

3. Use the mean value theorem to prove the inequality $|\sin a - \sin b| \le |a - b|$ for all $a, b \in \mathbb{R}$.

We can apply the MUT so that there's a real c that satisfies:

Therefore, sina-sinb=cosc(a-b), so we know that |sina-sinb|=|cosc||a-b| $0 \le |cosc| \le 1$, $|sina-sinb| \le |a-b|$.

4. In $\triangle ABC$, a=9, b=6 and c=12. A circle with centre A and radius 4 meets sides [AB] and [AC] at E and F respectively. The secant (EF) meets (BC) at D. Use Menelaus's theorem to calculate the length CD.

$$\frac{AE}{EB} \cdot \frac{BD}{DC} \cdot \frac{CF}{FA} = -1$$

$$\frac{4}{8} \cdot \frac{9+9}{-9} \cdot \frac{2}{4} = -1$$

5. Verify that $f(x) = 2x^4 - 3x^2 - x + 5$ satisfies the hypotheses of the mean value theorem on the interval [0, 1] and find all numbers c that satisfy the conclusion of the mean value theorem.

Since they're all differentiable, we can for sure apply MVT.

$$f'(c) = \frac{f(1) - f(0)}{1 - 0} = \frac{3 - 5}{1} = -2$$

/4