Proofs without words I

Exercises in METAPOST

Toby Thurston

March 2021 —

Contents

Geometry and Algebra

3

Geometry and Algebra

The Pythagorean theorem I
The Pythagorean theorem II
The Pythagorean theorem III
The Pythagorean theorem IV
The Pythagorean theorem V
The Pythagorean theorem VI
A Pythagorean theorem: $aa' = bb' + cc'$
The rolling circle squares itself
On trisecting an angle
Trisection in an infinite number of steps
Trisection of a line segment
The vertex angles of a star sum to 180°
Viviani's theorem I
Viviani's theorem II
A theorem about right angles
Area and the projection theorem of a right triangle
Chords and tangents of equal length
Completing the square
Algebraic areas I
Algebraic areas II
Sum of squares identity

The Pythagorean theorem I

— adapted from the Chou pei san ching

The Pythagorean theorem II

Behold!

— Bhāskara (12th century)

The Pythagorean theorem III

— based on Euclid's proof

The Pythagorean theorem IV

— H. E. Dudeney (1917)

The Pythagorean theorem \boldsymbol{V}

— James A. Garfield (1876)

The Pythagorean theorem VI

— Michael Hardy

A Pythagorean theorem: aa' = bb' + cc'

$$\frac{x}{b'} = \frac{b}{a} \implies \frac{x}{b} = \frac{b'}{a} \implies ax = bb';$$

$$\frac{y}{c'} = \frac{c}{a} \implies \frac{y}{c} = \frac{c'}{a} \implies ay = cc';$$

$$\therefore aa' = a(x + y) = bb' + cc'.$$

— Enzo R. Gentile

The rolling circle squares itself

— Thomas Elsner

On trisecting an angle

— Rufus Isaacs

Trisection in an infinite number of steps

 $\frac{1}{3} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots$

— Eric Kincanon

Trisection of a line segment

 $\overline{AF} = \frac{1}{3} \cdot \overline{AB}$

— Scott Cobel

The vertex angles of a star sum to $180\ensuremath{^\circ}$

— Fouad Nakhli

Viviani's theorem I

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

This shows a particular example, with C'GQ collinear, rather than the general case

— Samuel Wolf

Viviani's theorem II

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

— Ken-Ichiroh Kawasaki

A theorem about right angles

The internal bisector of the right angle of a right triangle bisects the square on the hypotenuse

— Roland H. Eddy

Area and the projection theorem of a right triangle

— Sidney H. Kung

Chords and tangents of equal length

If circle C_1 passes through the center O of circle C_2 , the length of the common chord \overline{PQ} is equal to the tangent segment \overline{PR} .

— Roland H. Eddy

Completing the square

$$x^2 + ax = (x + a/2)^2 - (a/2)^2$$

— Charles D. Gallant

Algebraic areas I

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$

— Shirley Wakin

Algebraic areas II

$$(a+b+c)^{2} + (a+b-c)^{2} + (a-b+c)^{2} + (a-b-c)^{2} = (2a)^{2} + (2b)^{2} + (2c)^{2}$$

— Sam Pooley and K. Ann Drude

Sum of squares identity

$$(a^2 + b^2)(c^2 + d^2) = (ab + bc)^2 + (bd - ac)^2$$

— Diophantus of Alexandria