Exercice 1. Déterminer, si elles existent, les racines des trinômes suivants.

a)
$$f(x) = -2x^2 + 3x - 4$$

b)
$$g(x) = \frac{1}{2}x^2 - 4x + 8$$

c)
$$h(x) = -x^2 - 2x + 35$$

Exercice 2. Factoriser les trinômes suivants.

a)
$$f(x) = 2x^2 - 4x - 16$$

b)
$$g(x) = 3x^2 - 18x + 27$$

c)
$$h(x) = x^2 + x - 1$$

Exercice 3. Trois fonctions polynômes de degré 2 ont été représentées ci-dessous : les fonctions f, g et h. Pour chaque fonction, déterminer, lorsqu'elle existe, sa forme factorisée.

Objectif. Utiliser des propriétés des racines.

Exercice 4. Pour chaque fonction, déterminer une racine évidente. Puis déterminer l'autre racine, et la forme factorisée.

a)
$$f(x) = 2x^2 - 14x + 12$$

b)
$$g(x) = 2x^2 - 8x - 10$$

c)
$$h(x) = x^2 - 6x + 8$$

Exercice 5. Sans calculer explicitement les racines, déterminer leur somme et leur produit pour $f(x) = 2x^2 - 5x + 1$.

Exercice 6. Déterminer deux nombres ayant pour somme 10 et pour produit 23,04

Objectif. Résoudre des inéquations du second degré.

Exercice 7. Sans calcul, dresser le tableau de signes de chaque fonction

a)
$$f(x) = -3x + 9$$

b)
$$f(x) = 2(-x+5)(6x-12)$$

c)
$$g(x) = -2\left(x - \frac{1}{3}\right)^2$$

d)
$$h(x) = x^2 + 5$$

Exercice 8. Dresser le tableau de signes de chaque fonction.

a)
$$f(x) = 2x^2 - 4x - 16$$

b)
$$g(x) = 9x^2 + 24x + 16$$

c)
$$h(x) = 2x^2 - 5x + 6$$

Exercice 9. Résoudre dans \mathbb{R} les inéquations suivantes, sans utiliser le discriminant.

(A):
$$x^2 - 2x > 0$$

(B) : $x^2 - 81 \le 0$

$$(C)$$
: $(x - 1.5)(x + 2.8) > 0$

(D): $x^2 + 20 < 0$

Exercice 10. Résoudre dans \mathbb{R} les inéquations suivantes.

(A):
$$x^2 + x + 1 > 0$$

(B): $3x^2 - 4x + \frac{4}{3} \le 0$

(C):
$$-2x^2 + 3x - 6 < 0$$

(D):
$$-7x^2 + 4x - 9 > -8$$

Exercice 11. On veut étudier la position relative d'une parabole d'équation $y = 2x^2 - 3x + 5$ et d'une droite d'équation y = 5x - 3.

- 1. Déterminer le ou les points d'intersection de la parabole et de la droite.
- 2. On pose $f(x) = 2x^2 3x + 5$ et g(x) = 5x 3
- a) Étudier le signe de f(x) g(x).
- b) En déduire la position relative de la parabole et de la droite.

Exercice 12. Preuve du théorème général.

1. Mettre sous forme canonique l'expression $f(x) = ax^2 + bx + c$

2. Rappel:
$$\alpha = -\frac{b}{2a}$$
; $\beta = f\left(-\frac{b}{2a}\right)$; $\Delta = b^2 - 4ac$

a) Montrer que $\beta = -\frac{\Delta}{4a}$

b) Montrer que
$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$

On a "donc"
$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2\right)$$

- c) Quelle condition doit vérifier Δ pour avoir le droit d'écrire l'égalité précédente ?
- 3. On suppose que Δ vérifie cette condition.
- a) Rappeler l'identité remarquable $X^2 Y^2 = ...$
- b) En choisissant X et Y judicieusement, factoriser f(x).
- c) Quelles sont les racines de f(x) ?
- d) Que peut-on dire des racines quand $\Delta = 0$?
- 4. Si $\Delta < 0$:
- a) Quel est le signe de $-\frac{\Delta}{4a^2}$? et de $\left(x + \frac{b}{2a}\right)^2$?
- b) Si a > 0, quel est le signe f(x) ? et si a < 0 ? En déduire que f(x) ne peut pas avoir de racines.