Chapter 3 Notes

3.1:

A simple pendulum consists of:

- A particle of mass mmm
- A massless string connected to a rigid support

Angle θ \theta θ :

- Defined as the angle between the string and the vertical
- Assumed that the string remains taut at all times

Forces acting on the pendulum:

- 1. Gravity
- 2. Tension in the string

Force components:

- Parallel components sum to zero (since the string is inextensible)
- Perpendicular force to the string is: $F\theta = -mgsin\theta$
- The negative sign indicates that the force is always directed opposite to the displacement from the vertical ($\theta = 0$).

3.2:

Realistic modification:

- The previous equation (3.2) describes a frictionless pendulum.
- Damping is added to make the system more realistic.

Sources of friction:

- Bearing friction at the pivot point.
- Air resistance.

Frictional force assumption:

- Proportional to velocity \rightarrow modeled as $-q(d\theta/dt)-q(d\theta/dt)-q(d\theta/dt)$.
- Here, qqq is a damping parameter that measures the strength of the damping.
- The negative sign ensures that friction opposes the motion.

Equation of motion for damped pendulum:

$$rac{d^2 heta}{dt^2} = -rac{g}{\ell} heta - qrac{d heta}{dt}$$

• Second term (-q $d\theta/dt$) models friction.

Solution and regimes:

- The equation is still linear and can be solved analytically.
- Three distinct physical regimes exist.

3.3:

Advancing the model:

- Moving beyond previous simplifications.
- Incorporating damping, nonlinearity, and external driving force.

Key modifications:

- 1. Nonlinearity:
 - No small-angle approximation \rightarrow keeps sinθ instead of using θ.
- 2. Damping:
 - Friction term remains $-q(d\theta/dt)$.
- 3. Driving Force:
 - \circ Added sinusoidal force: FDsin(Ω Dt).

Equation of Motion:

$$rac{d^2 heta}{dt^2} = -rac{g}{\ell}\sin heta - qrac{d heta}{dt} + F_D\sin(\Omega_D t)$$

• This defines the nonlinear, damped, driven pendulum.

Rewriting into first-order differential equations.

• Introducing $\omega = d\theta/dt$:

$$egin{split} rac{d\omega}{dt} &= -rac{g}{\ell}\sin heta - q\omega + F_D\sin(\Omega_D t) \ & rac{d heta}{dt} &= \omega \end{split}$$

• These equations allow for numerical computation of $\theta(t)$.