Week 10 November 26, 2021

1 Open Questions

Exercise 1. (*) Each user on a computer system has a password, which is seven or eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least two digits. How many possible passwords are there?

Exercise 2. (*)

- 1. A group contains n men and n women. How many ways are there to arrange these people in a row if the men and women alternate?
- 2. Suppose that a department contains 10 men and 15 women. How many ways are there to form a committee with six members if it must have the same number of men and women?

Exercise 3. (**) An exam has 12 questions, with 4 possible answers for each question. How many students should complete the exam to ensure that at least 3 students will submit the exact same answers?

Exercise 4. (*)

- 1. How many functions are there from $A = \{0, 1, 2, 3\}$ to $B = \{0, 1, 2\}$?
- 2. How many injective functions are there from $A = \{0, 1, 2, 3\}$ to $B = \{0, 1, 2, 3, 4, 5, 6\}$?

Exercise 5. (*) How many bit strings of length 10 contain

- 1. exactly four 1s?
- 2. at most four 1s?
- 3. at least four 1s?
- 4. an equal number of 0s and 1s?

Exercise 6. (**) How many distinct five-card poker hands contain:

- 1. One pair (poker hand containing two cards of the same kind and three cards of three other kinds).
- 2. Two pairs (poker hand containing two cards of the same kind, two cards of another kind and one card of a third kind).
- 3. Three of a kind (poker hand containing three cards of the same kind and two cards of two other kinds).

Exercise 7. (**) Prove the hockey-stick identity using a mathematical argument (as opposed to a combinatorial argument):

For any integers n and r with $0 \le r \le n$, we have

$$\sum_{i=r}^{n} \binom{i}{r} = \binom{n+1}{r+1}.$$

2 Exam Questions

 \bigcirc 45.

 \bigcirc 2002.

Exercise 8. (*) Suppose that in the future every telephone in the world is assigned a number that contains a country code that is 1 to 3 digits long that is of the form X, XX, XXX followed by a 10-digit telephone number of the form NXX-NXX-XXXX, where N can take any values from 2 through 9 and X any values from 0 to 9. How many unique phone numbers would be available worldwide according to this numbering plan? \bigcirc 12876000 \bigcirc 7.104 × 10¹² \bigcirc 6.4 \times 10¹⁵ $\bigcirc 3.058 \times 10^{12}$ Exercise 9. 1. (*) The number of distinct triples (x_1, x_2, x_3) of non-negative integers x_1, x_2, x_3 such that $x_1 + x_2 + x_3 + x_4 + x_4 + x_5 +$ $x_3 = 8$ equals \bigcirc 495. \bigcirc 330. \bigcirc 165. \bigcirc 45. 2. (*) The number of distinct triples (x_1, x_2, x_3) of non-negative integers x_1, x_2, x_3 such that $x_1 + x_2 + x_3 + x_4 + x_4 + x_5 +$ $x_3 \le 8$ equals \bigcirc 495. \bigcirc 330. \bigcirc 165. \bigcirc 45. 3. (**) The number of distinct quadruples (x_1, x_2, x_3, x_4) of non-negative integers x_1, x_2, x_3, x_4 such that $x_1 + x_2 + x_3 + x_4 < 8$ equals \bigcirc 495. \bigcirc 330. \bigcirc 165. \bigcirc 45. 4. (**)The number of distinct quadruples (x_1, x_2, x_3, x_4) of non-negative integers x_1, x_2, x_3, x_4 such that $x_i \ge i$ and $x_1 + x_2 + x_3 + x_4 \le 18$ equals \bigcirc 495. \bigcirc 330. \bigcirc 165.

5. (***) The number of distinct quintuples $(x_1, x_2, x_3, x_4, x_5)$ of non-negative integers x_1, x_2, x_3, x_4, x_5 such that $x_1 \ge 3, x_2 \ge 3, x_3 \ge 0, x_4 \ge 8$ and $0 \le x_5 \le 3$, and $x_1 + x_2 + x_3 + x_4 + x_5 < 24$ equals

 \bigcirc 1750.

O 715.

O 210.

^{* =} easy exercise, everyone should solve it rapidly

** = moderately difficult exercise, can be solved with standard approaches

** = difficult exercise, requires some idea or intuition or complex reasoning