QUIZ 1: CHAPTER 1 FEBRUARY 9

Name: Solutions

- All answers should be fully justified.
- Complete this quiz without any aids, including the text or your peers.
- (1) Prove that $p \to (q \land r) \equiv (p \to q) \land (p \to r)$ using the table of common logical equivalences.

$$P \rightarrow (q \wedge r) \equiv \neg p \vee (q \wedge r)$$
 Conditional
$$\equiv (\neg p \vee q) \wedge (\neg p \vee r)$$
 Distributive
$$\equiv (p \rightarrow q) \wedge (p \rightarrow r)$$
 Conditional (x2)

(2) Prove that $(p \wedge q) \to r \not\equiv (p \to r) \wedge (q \to r)$.

$$p: T$$
 $q: F$

make $(p \land q) \rightarrow r$
but $(p \rightarrow r) \land (q \rightarrow r)$
 $r: F$
 T

(vacuously)

(3) Determine whether each of the following statements are true or false in each of the given domains. Give brief justifications.

Domain	$\exists x \ \forall y \ x \leq y$	$\forall y \; \exists x \; x \le y$
N = {0,1,2,}	T w/x=0, ty 0=y is true in N	T Given y, picking x=y satisfies x=y
Z	F no matter what x is, Some integers are less. (There is no "smallest integer.")	T Same

(4) Complete the proof below that the following argument is valid.

$$\forall x \ (P(x) \to Q(x))$$
 (a)
 $\exists x \ \neg Q(x)$ (b)

 $\exists x \ \neg P(x)$

1.
$$\exists x \neg Q(x)$$
 Hypothesis (b)

2. (c is a particular element) $\land \neg Q(c)$ Existential Instantiation, (i)

3. $\neg Q(c)$ Simplification, (2)

4. $\forall x (P(x) \rightarrow Q(x))$ Hypothesis (a)

5. c is a particular element Simplification, (2)

6. $P(c) \rightarrow Q(c)$ Universal Instantiation, (4) & (5)

7. $\neg P(c)$ Modus Tollens using statement numbers ... (3) & (6)

8. $\exists x \neg P(x)$ Existential Generalization, (5) & (7)