Ordenamientos parcial y lineal

Ronald Mas Angel Ramirez

12 de junio de 2020

Contenido

- Elementos minimales y maximales
- ② Diagrama de Hasse
- Ordenamiento lineal
- Ordenamiento por inclusión parcial y total

Elementos minimales y maximales

Definición

Sea (X, \leq) un conjunto ordenado.

- 1) Un elemento $a \in X$ se dice que es elemento minimal de (X, \leq) si no existe $x \in X$ tal que $x \prec a$.
- 2) Un elemento $a \in X$ se dice que es elemento maximal de (X, \preceq) si no existe $x \in X$ tal que $x \succ a$.

Definición de la companya della companya della companya de la companya della comp

Sea (X, \leq) un conjunto ordenado.

- 1) Un elemento $a \in X$ se dice que es el elemento mínimo de (X, \preceq) si $a \preceq x, \forall x \in X$.
- 2) Un elemento $a \in X$ se dice que es el elemento máximo de (X, \preceq) si $x \preceq a, \forall x \in X$.

Diagrama de Hasse

Es una representación gráfica simplificada de un conjunto ordenado finito. **Ejemplo:** En el Ejemplo 1) el elemento minimal y maximal coinciden con el elemento mínimo y máximo respectivamente. En el ejemplo 2) el elemento minimal coincide con el elemento mínimo y no posee elemento máximo.

 Diagrama de Hasse del conjunto linealmente ordenado

$$(A, \leq) = (\{1, 2, \cdots, 7\}, \leq)$$
:

Elemento minimal:1 Elemento maximal:7 Diagrama de Hasse del conjunto parcialmente ordenado

$$(B, |) = (\{1, 2, \cdots, 10\}, |)$$
:

Elemento minimal:1 Elemento maximales:6,7,8,9,10

Más ejemplos

3) Diagrama de Hasse del conjunto parcialmente ordenado

$$(C,\subseteq)=(\{1,2,3\},\subseteq)$$

Elemento minimal: Ø

Elemento maximal: $\{1, 2, 3\}$

Teorema

Todo conjunto parcialmente ordenado (X, \preceq) posee al menos un elemento minimal.

Prueba:

Sea $x_0 \in X$. Si x_0 es minimal no hay nada que probar, caso contrario existe $x_1 \prec x_0$, luego si x_1 es minimal no hay nada que probar, caso contrario existe $x_2 \prec x_1$. Luego como X es finito, al proceder una cantidad finita de veces se tiene el resultado deseado.

Teorema

Sea (X, \preceq) un conjunto finito parcialmente ordenado. Entonces existe un ordenamiento lineal \leq en X tal que $x \preceq y$ implica que $x \leq y$.

Ordenamiento por inclusión

Definición

Sean (X, \preceq) y (X', \preceq') dos conjuntos ordenados. Una aplicación $f: X \to X'$ es llamada un **encaje** de (X, \preceq) en (X', \preceq') si cumple las siguientes propiedades:

- 1) f es una aplicación inyectiva.
- 2) $f(x) \leq' f(y)$ si y sólo si $x \leq y$.

Observaciones:

- ullet Si f es un encaje y también sobreyectiva entonces f e un isomorfismo.
- Un encaje f significa que una parte de (X', \preceq') , es decir la parte $\{f(x) : x \in X\}$ se parece a (X, \preceq) .

Ejemplo

Ejemplo: Sean los siguientes diagramas de Hasse de dos conjuntos ordenados.

Son ejemplos de encajes:

No son ejemplos de encajes:

Teorema

Para todo conjunto ordenado (X, \preceq) existe un encaje en $(2^X, \subseteq)$.

Prueba:

Definamos:

$$f: X \rightarrow 2^X$$

 $x \mapsto f(x) = \{y \in X : y \leq x\}.$

Veamos que f es un encaje

- 1) Si f(x) = f(y), entonces por ser \leq reflexiva se tiene que $x \in f(x)$ y $y \in f(Y)$, luego $x \leq y$ y $y \leq x$ y por ser \leq antisimétrica se tiene x = y. Por tanto f es inyectiva.
- Veamos que, si $x \leq y$ entonces $f(x) \subseteq f(y)$: Sea $z \in f(x)$ entonces $z \leq x$ y por transitividad de \leq se tiene que $z \leq y$, luego $z \in f(y)$.
 - Veamos que, si $f(x) \subseteq f(y)$ entonces $x \preceq y$: Como $f(x) \subseteq f(y)$ entonces $x \in f(y)$ y por tanto $x \preceq y$.

Diagrama de Hasse de $(2^X, \subseteq)$

En particular, para $X = \{1, 2, ..., n\}$ el conjunto ordenado $(2^X, \subseteq)$ se denotan por B_n . Veamos los diagramas de Hasse de B_1, B_2, B_3 .

Una aplicación de adicionar propiedades a dichos conjuntos es el estudio del Álgebra de Boole.

Independencia sobre un conjunto ordenado

En adelante usemos P para denotar un conjunto finito parcialmente ordenado (X, \leq) .

Definición

Un conjunto $A \subseteq X$ es llamado **independiente** en P si cualquier par de elementos distintos de A son incomparables.

Denotamos:

$$\alpha(P) = \max\{|A| : A \text{ es indenpendiente en } P\}.$$

Ejemplo: Para los conjuntos parcialmente ordenados

se tiene que $\alpha(P_1) = 3$ y $\alpha(P_2) = 4$.

Definición

Un conjunto $A \subseteq X$ es llamado una cadena en P si cualquier par de elementos son comparables.

Denotamos:

$$w(P) = max\{k \in \mathbb{Z}_{\geq 0} : k = \text{número de elementos de la cadena P}\}$$

Ejemplo: Para los conjuntos parcialmente ordenados del ejemplo anterior se tiene que $w(P_1) = 3$ y $w(P_2) = 2$.

Teorema

Para conjunto finito ordenado $P = (X, \preceq)$ se cumple que:

$$\alpha(P) \cdot w(P) \ge |X|$$
.