Unit 4: Dynamic Programming

Course contents:

- Assembly-line scheduling
- Matrix-chain multiplication
- Longest common subsequence
- Optimal binary search trees
- Maximum planar subset of chords

Readings:

Divide-and-Conquer

- The divide-and-conquer paradigm
 - Divide the problem into a number of subproblems.
 - Conquer the subproblems (solve them).
 - Combine the subproblem solutions to get the solution to the original problem.
- Complexity: determined by solving recurrence relations

Dynamic Programming (DP)

- "Programming" in DP refers to a tabular method, not to writing computer code.
- Basic idea: One implicitly explores the space of all possible solutions by
 - Carefully decomposing things into a series of subproblems
 - Building up correct solutions to larger and larger subproblems
- Can you smell the D&C flavor? However, DP is another story!
 - DP does not exam all possible solutions explicitly

Dynamic Programming (DP) vs. Divide-and-Conquer

- Both solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 - Inefficient if they solve the same subproblem more than once.
- Dynamic programming (DP)
 - Applicable when the subproblems are not independent.
 - DP solves each subproblem just once.

An Example

Assembly-line Scheduling

Assembly-line Scheduling

- An auto chassis enters each assembly line, has parts added at stations, and a finished auto exits at the end of the line.
 - $S_{i,i}$: the *j*th station on line *i*
 - $-a_{i,j}$: the assembly time required at station $S_{i,j}$
 - $t_{i,j}$: transfer time from station $S_{i,j}$ to the j+1 station of the other line.
 - $-e_i(x_i)$: time to enter (exit) line i

Optimal Substructure

- Objective: Determine the stations to choose to minimize the total manufacturing time for one auto.
 - Brute force: $\Omega(2^n)$, why?
 - The problem is linearly ordered and cannot be rearranged => Dynamic programming?
- **Optimal substructure:** If the fastest way through station $S_{i,j}$ is through $S_{1,j-1}$, then the chassis must have taken a fastest way from the starting point through $S_{1,i-1}$.

Overlapping Subproblem: Recurrence

- **Overlapping subproblem:** The fastest way through station $S_{1,j}$ is either through $S_{1,j-1}$ and then $S_{1,j}$, or through $S_{2,j-1}$ and then transfer to line 1 and through $S_{1,j}$.
- $f_{i}[j] \text{: fastest time from the starting point through } S_{i,j} \\ f_{1}[j] = \begin{cases} e_{1} + a_{1,1} & \text{if } j = 1 \\ \min(f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$
- The fastest time all the way through the factory

$$f^* = \min(f_1[n] + x_1, f_2[n] + x_2)$$

An Example

Computing the Fastest Time

```
Fastest-Way(a, t, e, x, n)
1. f_1[1] = e_1 + a_{1,1}
2. f_2[1] = e_2 + a_{21}
3. for j = 2 to n
      if f_1[j-1] + a_{1,i} \le f_2[j-1] + t_{2,i-1} + a_{1,i}
               f_1[j] = f_1[j-1] + a_{1i}
6.
              I_1[i] = 1
7. else f_1[j] = f_2[j-1] + t_{2,j-1} + a_{1,j}
8.
               I_{4}[i] = 2
      if f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}
9.
10.
               f_2[j] = f_2[j-1] + a_{2,i}
          I_{2}[j] = 2
11.
12. else f_2[j] = f_1[j-1] + t_{1,i-1} + a_{2,j}
13.
           I_{2}[j] = 1
14. if f_1[n] + x_1 \le f_2[n] + x_2
15.
      f^* = f_1[n] + X_1
     l* = 1
16.
17. else f^* = f_2[n] + x_2
18.
       l^* = 2
                    Time complexity: \Theta(n)
```

- S_{i,i}: the jth station on line i
- a_{i,j}: the assembly time required at S_{i,j}
- t_{i,j}: transfer time from station
 Si,j to the j+1th station of the other line
- e_i(x_i): time to enter (exit) line i
- I_i[j]: The line number whose station j-1 is used in a fastest way through S_{i,i}

Constructing the Fastest Way

Print-Station(*I*, *n*)

- 1. $i = I^*$
- 2. Print "line" *i* ", station " *n*
- 3. for j = n downto 2
- 4. $i = I_i[j]$
- 5. Print "line " i ", station " j-1

line 1, station 6 line 2, station 5 line 2, station 4 line 1, station 3 line 2, station 2 line 1, station 1

Dynamic Programming (DP)

- Typically applied to optimization problem.
- Generic approach
 - Calculate the solutions to all subproblems.
 - Proceed computation from the small subproblems to larger subproblems.
 - Compute a subproblem based on previously computed results for smaller subproblems.
 - Store the solution to a subproblem in a table and never recompute.
- Development of a DP
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution bottom-up.
 - 4. Construct an optimal solution from computed information (omitted if only the optimal value is required).

When to Use Dynamic Programming (DP)

- □ DP computes recurrence efficiently by storing partial results ⇒ efficient only when the number of partial results is small.
- □ Hopeless configurations: n! permutations of an n-element set, 2ⁿ subsets of an n-element set, etc.
- □ Promising configurations: $\sum_{i=1}^{n} i = n(n+1)/2$ contiguous substrings of an *n*-character string, n(n+1)/2 possible subtrees of a binary search tree, etc.
- DP works best on objects that are linearly ordered and cannot be rearranged!!
 - Linear assembly lines, matrices in a chain, characters in a string, points around the boundary of a polygon, points on a line/circle, the left-to-right order of leaves in a search tree, etc.
 - Objects are ordered left-to-right ⇒ Smell DP?

Keys to Dynamic Programming

- Smart recursion: dynamic programming is recursion without repetition.
 - Dynamic programming is NOT about filling in tables; it's about smart recursion.
 - Dynamic programming algorithms store the solutions of intermediate subproblems often but not always in some kind of array or table.
 - A common mistake: focusing on the table (because tables are easy and familiar) instead of the much more important (and difficult) task of finding a correct recurrence.
- □ If the recurrence is wrong, or if we try to build up answers in the wrong order, the algorithm will NOT work!

Summary: Algorithmic Paradigms

- Brute-force (Exhaustive): Examine the entire set of possible solutions explicitly
 - A victim to show the efficiencies of the following methods
- Greedy: Build up a solution incrementally, myopically optimizing some local criterion.
 - Optimization problems that can be solved correctly by a greedy algorithm are very rare.
- Divide-and-conquer: Break up a problem into two subproblems, solve each sub-problem independently, and combine solution to subproblems to form solution to original problem.
- Dynamic programming: Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Matrix-Chain Multiplication

Matrix-Chain Multiplication

☐ If A is a $p \times q$ matrix and B a $q \times r$ matrix, then C = AB is a $p \times r$ matrix

time complexity:
$$O(pqr)$$
.

Matrix-Multiply(A, B)

1. if $A.columns \neq B.rows$

2. error "incompatible dimensions"

3. else let C be a new $A.rows * B.columns$ matrix

4. for $i = 1$ to $A.rows$

5. for $j = 1$ to $B.columns$

6. $c_{ij} = 0$

7. for $k = 1$ to $A.columns$

8. $c_{ij} = c_{ij} + a_{ik}b_{kj}$

9. return C

Matrix-Chain Multiplication (cont'd)

- The matrix-chain multiplication problem
 - Input: Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, matrix A_i has dimension $p_{i-1} \times p_i$
 - Objective: Parenthesize the product $A_1 A_2 ... A_n$ to minimize the number of scalar multiplications
- **Exp:** dimensions: A_1 : 4 **x** 2; A_2 : 2 **x** 5; A_3 : 5 **x** 1 $(A_1A_2)A_3$: total multiplications = 4 **x** 2 **x** 5 + 4 **x** 5 **x** 1 = 60 $A_1(A_2A_3)$: total multiplications = 2 **x** 5 **x** 1 + 4 **x** 2 **x** 1 = 18
- So the order of multiplications can make a big difference!

Matrix-Chain Multiplication: Brute Force

- $A = A_1 A_2 ... A_n$: How to evaluate A using the minimum number of multiplications?
- Brute force: check all possible orders?
 - -P(n): number of ways to multiply n matrices.

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

- $= P(n) = \Omega\left(\frac{4^n}{n^{3/2}}\right)$, exponential in n.
- Any efficient solution?
 - The matrix chain is linearly ordered and cannot be rearranged!!
 - Smell Dynamic programming?

Using DP for Matrix-Chain Multiplication

- Applicability of dynamic programming
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems.
 - Overlapping subproblem: a recursive algorithm revisits the same subproblems over and over again; only $\theta(n^2)$ subproblems.
 - Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of *n* matrices
 - # of single matrix: n
 - # of two consecutive matrices: n-1
 - # of three consecutive matrices: n-2

. . .

of n consecutive matrices: 1

Smart Recursion

- m[i, j]: minimum number of multiplications to compute matrix $A_{i...i} = A_i A_{i+1} ... A_i$, $1 \le i \le j \le n$.
 - -m[1, n]: the cheapest cost to compute $A_{1..n}$.

$$-m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$
matrix A has dimension p_i x p_j

- matrix A_i has dimension $p_{i-1} \times p_i$

$$k = j-2$$

$$(A_{i} A_{i+1} A_{i+2} ... A_{j-2})(A_{j-1} A_{j})$$

$$k = j-1$$

$$(A_{i} A_{i+1} A_{i+2} ... A_{j-2} A_{j-1})(A_{j})$$

$$k = i$$

$$(A_{i})(A_{i+1} A_{i+2} ... A_{j-2} A_{j-1} A_{j})$$

$$k = i+1$$

$$(A_{i} A_{i+1})(A_{i+2} ... A_{j-2} A_{j-1} A_{j})$$

$$k = i+1$$

$$(A_{i} A_{i+1})(A_{i+2} ... A_{j-2} A_{j-1} A_{j})$$

$$k = i+2$$

$$(A_{i} A_{i+1} A_{i+2})(... A_{j-2} A_{j-1} A_{j})$$

An Example

matrix	dimension	m	S	
A_I	30 * 35	$6 \wedge 1$	6 🛕 1	
A_2	35 * 15	5 15125 2	$\frac{5}{3}$ $\frac{3}{2}$	
A_3	15 * 5	j 4 11875 10500 3 i 3 9375 7125 5375 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
A_4	5 * 10	$2\sqrt{7875} \times 4375 \times 2500 \times 3500 \times 5$	$\begin{pmatrix} 3 & 3 & 3 & 3 & 3 \\ 2 & (1) & 3 & 3 & 3 & 5 \end{pmatrix}$	
A_{5}	10 * 20	1 15750 2625 750 1000 5000	$\begin{pmatrix} 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$	
A_6	20 * 25	$0 \times 0 \times 0 \times 0 \times 0 \times 0$		
		A_1 A_2 A_3 A_4 A_5 A_6	$((A_1)(A_2 A_3))((A_4 A_5)(A_6)$	
$m[2,4] = \min \begin{cases} m[2,2] + m[3,4] + p1p2p4 = 0 + 750 + 35 \times 15 \times 10 = 6000 \\ m[2,3] + m[4,4] + p1p3p4 = 2625 + 0 + 35 \times 5 \times 10 = 4375 \end{cases}$				
m[2	2,5] = min	$ \begin{cases} m[2,2] + m[3,5] + p1p2p5 = 0 + p1p2p5 = 0 + p1p3p5 = 2625 \\ m[2,3] + m[4,5] + p1p3p5 = 2625 \\ m[2,4] + m[5,5] + p1p4p5 = 4375 \end{cases} $	$5 + 1000 + 35 \times 5 \times 20 = 7125$	
		$(m(2,1) \cdot m(0,0) \cdot p \cdot p \cdot p \cdot m - 10)$	$S \mid O \mid OO \land IO \land BO = IIO/O$	

Bottom-Up DP Matrix-Chain Order

```
Matrix-Chain-Order(p) // p = \langle p_0, p_1, ..., p_n \rangle
1. n = p.length - 1
   Let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i = 1 to n
        m[i, i] = 0
5. for l = 2 to n
                      // I is the chain length
         for i = 1 to n - l + 1
6.
7.
             j = i + l - 1
8.
         m[i, j] = \infty
            for k = i to i-1
9.
                 q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
10.
11.
             if q < m[i, j]
12.
                     m[i, j] = q
13.
                     s[i, j] = k
14. return m and s
```

A_i dimension $p_{i-1} \times p_i$

```
m
matrix | dimension
                                                                                             S
           30 * 35
 A,
                                                 10,500>
 A_2
           35 * 15
                                             (7,125)
                                                     (5,375)
 A_3
           15 * 5
                                 (7,875)
                                                 2,500×3,500
 A_{A}
            5 * 10
                              15,750 \times 2,625
                                              750
                                                     (1.000 \times 5,000)
 A_{5}
           10 * 20
 A_6
           20 * 25
                                           A_3 A_4 A_5 A_6
```

$$m[2,4] = \min \left\{ \begin{array}{l} m[2,2] + m[3,4] + p_1 p_2 p_4 = 0 + 750 + 35 \times 15 \times 10 = 6000. \\ m[2,3] + m[4,4] + p_1 p_3 p_4 = 2625 + 0 + 35 \times 5 \times 10 = 4375. \end{array} \right.$$

Constructing an Optimal Solution

- s[i, j]: value of k such that the optimal parenthesization of $A_i A_{i+1} \dots A_j$ splits between A_k and A_{k+1}
- Optimal matrix $A_{1...n}$ multiplication: $A_{1...s[1, n]}A_{s[1, n] + 1...n}$
- **Exp:** call Print-Optimal-Parens(s, 1, 6): $((A_1 (A_2 A_3))((A_4 A_5) A_6))$

```
Print-Optimal-Parens(s, i, j)

1. if i == j

2. print "A_i"

3. else print "("

4. Print-Optimal-Parens(s, i, s[i, j])

5. Print-Optimal-Parens(s, s[i, j] + 1, j)

6. print ")"
```

matrix	dimension	m	S
$\overline{A_{I}}$	30 * 35	5 15,125 2	6/\1
A_2	35 * 15	j 4 11,875 10,500 3 i	j 5 3 2 i
A_{3}	15 * 5	$3 \begin{array}{c} 3 \\ 9,375 \\ 7,125 \\ 5,375 \\ 4 \\ 3,500 \\ 5 \\ 5 \\ 6 \\ 7,875 \\ 4,375 \\ 2,500 \\ 3,500 \\ 5 \\ 6 \\ 7,875 \\ 6 \\ 7,875 \\ 7,125$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A_4	5 * 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 \overline{)} \overline{)} \overline{3} \overline{)} \overline{3} \overline{)} 5 \overline{)} 5$
A 5	10 * 20	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle \langle 5 \rangle$
A_6	20 * 25	A, A , A , A , A	V V V V

Top-Down, Recursive Matrix-Chain Order

□ Time complexity: $\Omega(2^n)$ ($\sum_{k=1}^{n-1} (T(k) + T(n-k) + 1)$).

```
Recursive-Matrix-Chain(p, i, j)

1. if i == j

2. return 0

3. m[i, j] = \infty

4. for k = i to j-1

5  q = \text{Recursive-Matrix-Chain}(p, i, k)

+ Recursive-Matrix-Chain(p, k+1, j) + p_{i-1}p_kp_j

6. if q < m[i, j]

7. m[i, j] = q

8. return m[i, j]
```


Top-Down DP Matrix-Chain Order (Memorization)

Complexity: $O(n^2)$ space for m[] matrix and $O(n^3)$ time to fill in $O(n^2)$ entries (each takes O(n) time)

```
Memoized-Matrix-Chain(p) // p = \langle p_0, p_1, ..., p_n \rangle
1. n = p.length - 1
2. let m[1..n, 1..n] be a new table
3. for i = 1 to n
4. for j = i to n
5. m[i, j] = \infty
6. return Lookup-Chain(m, p, 1, n)
```

```
Lookup-Chain(m, p, i, j)

1. if m[i, j] < \infty

2. return m[i, j]

3. if i == j

4. m[i, j] = 0

5. else for k = i to j - 1

6. q = \text{Lookup-Chain}(m, p, i, k) + \text{Lookup-Chain}(m, p, k+1, j) + p_{i-1}p_kp_j

7. if q < m[i, j]

8. m[i, j] = q

9. return m[i, j]
```

Two Approaches to DP

- 1. Bottom-up iterative approach
 - Start with recursive divide-and-conquer algorithm.
 - Find the dependencies between the subproblems (whose solutions are needed for computing a subproblem).
 - Solve the subproblems in the correct order.
- 2. Top-down recursive approach (memorization)
 - Start with recursive divide-and-conquer algorithm.
 - Keep top-down approach of original algorithms.
 - Save solutions to subproblems in a table (possibly a lot of storage).
 - Recurse only on a subproblem if the solution is not already available in the table.
- If all subproblems must be solved at least once, bottom-up DP is better due to less overhead for recursion and for maintaining tables.
- If many subproblems need not be solved, top-down DP is better since it computes only those required.

Longest Common Subsequence

Longest Common Subsequence

- □ **Problem:** Given $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, find the **longest common subsequence (LCS)** of X and Y.
- **Exp:** $X = \langle a, b, c, b, d, a, b \rangle$ and $Y = \langle b, d, c, a, b, a \rangle$ LCS = $\langle b, c, b, a \rangle$ (also, LCS = $\langle b, d, a, b \rangle$).
- **Exp:** DNA sequencing:
 - S1 = ACCGGTCGAGATGCAG;
 - S2 = GTCGTTCGGAATGCAT;
 - LCS S3 = CGTCGGATGCA
- Brute-force method:
 - Enumerate all subsequences of X and check if they appear in Y.
 - Each subsequence of X corresponds to a subset of the indices {1, 2, ..., m} of the elements of X.
 - There are 2^m subsequences of X. Why?

Optimal Substructure for LCS

 \Box Let $X_m = \langle x_1, x_2, ..., x_m \rangle$ and $Y_n = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and $Z_k = \langle z_1, z_2, ..., z_k \rangle$ be LCS of X_m and Y_n .

- Case 1:
$$x_m = y_n$$
 $X_{m-1} = \langle x_1, x_{,2...}, x_{m-1} \rangle$
 $X_m = \langle a, b, c, d, a \rangle$ $Z_k = \langle ..., a \rangle$
 $Y_n = \langle c, b, d, a \rangle$ Z_{k-1}

- Case 2: $x_m \neq y_n$

$$X_{m}=\langle a, b, c, d, a \rangle$$
 $X_{m}=\langle a, b, c, d, a \rangle$
 $Y_{n}=\langle c, b, d, b \rangle$
 $Y_{n}=\langle c, b, d, b \rangle$

■ z_k may not be x_m ■ z_k may not be y_n

$$X_{m} = \langle a, b, c, d, a \rangle$$

$$Y_{n} = \langle c, b, d, b \rangle$$

$$Y_{n-1}$$

Optimal Substructure for LCS (cont'd)

- □ Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and $Z = \langle z_1, z_2, ..., z_k \rangle$ be LCS of X and Y.
 - 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies Z is an LCS of X_{m-1} and Y.
 - 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies Z is an LCS of X and Y_{n-1} .

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } x_i = y_j, i, j > 0, \\ \max(c[i,j-1], c[i-1,j]) & \text{if } x_i \neq y_j, i, j > 0. \end{array} \right.$$

- = c[i, j]: length of the LCS of X_i and Y_j
- _ c[m, n]: length of LCS of X and Y
- Basis: c[0, j] = 0 and c[i, 0] = 0

Bottom-Up DP for LCS

- Find the right order to solve the subproblems
- □ To compute c[i, j], we need c[i-1, j-1], c[i-1, j], and c[i, j-1]
- □ *b*[*i*, *j*]: points to the table entry w.r.t. the optimal subproblem solution chosen when computing *c*[*i*, *j*]

```
LCS-Length(X, Y)
1. m = X.length
2. n = Y.length
3. let b[1..m, 1..n] and c[0..m, 0..n]
    be new tables
4. for i = 1 to m
        c[i, 0] = 0
6. for j = 0 to n
        c[0, j] = 0
8. for i = 1 to m
9.
         for j = 1 to n
             if X_i == Y_i
10.
11.
                  c[i, j] = c[i-1, j-1]+1
                 b[i, j] = " \setminus "
12.
             elseif c[i-1,j] \ge c[i, j-1]
13.
14.
                  c[i,j] = c[i-1, j]
                 b[i, j] = `` \uparrow "
15.
             else c[i, j] = c[i, j-1]
16.
                  b[i, j] = " \leftarrow "
17.
18. return c and b
```


Example of LCS

- □ LCS time and space complexity: *O*(*mn*).
- □ $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle \Rightarrow$ LCS = $\langle B, C, B, A \rangle$.

Constructing an LCS

□ Trace back from b[m, n] to b[1, 1], following the arrows: O(m+n) time.

Print-LCS(b, X, i, j)

1. **if** i == 0 or j == 02. **return**3. **if** $b[i, j] == " \setminus "$ 4. Print-LCS(b, X, i-1, j-1)

5. print x_i 6. **elseif** $b[i, j] == " \uparrow "$ 7. Print-LCS(b, X, i-1, j)

8. **else** Print-LCS(b, X, i, j-1)

Top-Down DP for LCS

- c[i, j]: length of the LCS of X_i and Y_j , where $X_i = \langle x_1, x_2, ..., x_i \rangle$ and $Y_j = \langle y_1, y_2, ..., y_j \rangle$.
- \Box c[m, n]: LCS of X and Y.
- □ Basis: c[0, j] = 0 and c[i, 0] = 0.

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } x_i = y_j, i, j > 0, \\ \max(c[i,j-1], c[i-1,j]) & \text{if } x_i \neq y_j, i, j > 0. \end{array} \right.$$

The top-down dynamic programming: initialize c[i, 0] = c[0, j] = 0, c[i, j]

= NIL

```
TD-LCS(i, j)

1. if c[i,j] == NIL

2. if x_i == y_j

3. c[i, j] = TD-LCS(i-1, j-1) + 1

4. else c[i, j] = max(TD-LCS(i, j-1), TD-LCS(i-1, j))

5. return c[i, j]
```


Optimal Binary Search Trees

Optimal Binary Search Tree

Given a sequence $K = \langle k_1, k_2, ..., k_n \rangle$ of n distinct keys in sorted order $(k_1 < k_2 < ... < k_n)$ and a set of probabilities $P = \langle p_1, p_2, ..., p_n \rangle$ for searching the keys in K and $Q = \langle q_0, q_1, q_2, ..., q_n \rangle$ for unsuccessful searches (corresponding to $D = \langle d_0, d_1, d_2, ..., d_n \rangle$ of n+1 distinct dummy keys with d_i representing all values between k_i and k_{i+1}), construct a binary search tree whose expected search cost is smallest.

An Example

i	0	1	2	3	4	5
p_{i}		0.15	0.10	0.05	0.10	0.20
q_{i}	0.05	0.10	0.05	0.05	0.05	0.10

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

$$d_0 \qquad d_1 \qquad k_4 \qquad d_5$$

$$d_2 \qquad d_3 \qquad \text{Optimal!!}$$

$$E[search cost in T] = \sum_{i=1}^{n} (depth_{T}(k_{i}) + 1) \cdot p_{i} + \sum_{i=0}^{n} (depth_{T}(d_{i}) + 1) \cdot q_{i}$$

$$= 1 + \sum_{i=1}^{n} depth_{T}(k_{i}) \cdot p_{i} + \sum_{i=0}^{n} depth_{T}(d_{i}) \cdot q_{i}$$

Optimal Substructure

- If an optimal binary search tree T has a subtree T containing keys k_i , ..., k_j , then this subtree T must be optimal as well for the subproblem with keys k_i , ..., k_j and dummy keys d_{i-1} , ..., d_i .
 - Given keys k_i , ..., k_j with k_r ($i \le r \le j$) as the root, the left subtree contains the keys k_i , ..., k_{r-1} (and dummy keys d_{i-1} , ..., d_{r-1}) and the right subtree contains the keys k_{r+1} , ..., k_j (and dummy keys d_r , ..., d_j).
 - For the subtree with keys k_i , ..., k_j with root k_i , the left subtree contains keys k_i , ..., k_{i-1} (no key) with the dummy key d_{i-1} .

Overlapping Subproblem: Recurrence

- - Want to find e[1, n].
 - $= e[i, i-1] = q_{i-1}$ (only the dummy key d_{i-1}).
- If k_r ($i \le r \le j$) is the root of an optimal subtree containing keys k_i , ..., k_j and let $w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$, then

$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$$

= $e[i, r-1] + e[r+1, j] + w(i, j)$ Node depths increase by 1 after

Recurrence:

Node depths increase by 1 after merging two subtrees, and so do the costs

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

Computing the Optimal Cost

- □ Need a table e[1..n+1, 0..n] for e[i, j] (why e[1, 0] and e[n+1, n]?)
- \square Apply the recurrence to compute w(i, j) (why?)

$$w[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ w[i,j-1] + p_j + q_j & \text{if } i \leq j \end{cases}$$
 | Optimal-BST(p, q, m)
1. let $e[1..n+1, 0..n], w[1..n+1, 0..n],$ and $root[1..n, 1..n]$ be new tables

□ root[i, j]: index r for which k_r is the root of an optimal search tree containing keys k_i , ..., k_i .


```
Optimal-BST(p, q, n)
2. for i = 1 to n + 1
3. e[i, i-1] = q_{i-1}
4. w[i, i-1] = q_{i-1}
5. for l = 1 to n
6. for i = 1 to n - l + 1
7. j = i + l - 1
8. e[i, j] = \infty
         w[i, j] = w[i, j-1] + p_i + q_i
10. for r = i to i
11.
              t = e[i, r-1] + e[r+1, j] + w[i, j]
12.
              if t < e[i, j]
13.
                  e[i, j] = t
14.
                 root[i, i] = r
15. return e and root
```


i	0	1	2	3	4	5
$p_{\rm i}$		0.15	0.10	0.05	0.10	0.20
$q_{\rm i}$	0.05	0.10	0.05	0.05	0.05	0.10

$$e[1, 1] = e[1, 0] + e[2, 1] + w(1,1)$$

= 0.05 + 0.10 + 0.3
= 0.45

i	0	1	2	3	4	5
$p_{\rm i}$		0.15	0.10	0.05	0.10	0.20
$q_{\rm i}$	0.05	0.10	0.05	0.05	0.05	0.10

e[1, 2] = min
$$\begin{cases} e[1,0] + e[2,2] + w[1,2] \\ e[1,1] + e[3,2] + w[1,2] \end{cases}$$

= min $\begin{cases} 0.05 + 0.4 + 0.45 \\ 0.45 + 0.05 + 0.45 \end{cases}$
= 0.9

Keys for Dynamic Programming

- DP typically is applied to optimization problems.
- DP works best on objects that are linearly ordered and cannot be rearranged
- Elements of DP
 - Optimal substructure: an optimal solution contains within its optimal solutions to subproblems.
 - Overlapping subproblem: a recursive algorithm revisits the same problem over and over again; typically, the total number of distinct subproblems is a polynomial in the input size.

Keys for Dynamic Programming

- Dynamic programming can be used if the problem satisfies the following properties:
 - There are only a polynomial number of subproblems
 - The solution to the original problem can be easily computed from the solutions to the subproblems
 - There is a natural ordering on subproblems from "smallest" to "largest," together with an easy-to-compute recurrence
- Standard operation procedure for DP:
 - 1. Formulate the answer as a recurrence relation or recursive algorithm (start with divide-and-conquer).
 - 2. Show that the number of different instances of your recurrence is bounded by a polynomial.
 - 3. Specify an order of evaluation for the recurrence so you always have what you need.