(1) 整数 $n=0,1,2,\cdots$ と正数 a_n に対して

$$f_n(x) = a_n(x - n)(n + 1 - x)$$

とおく.2 つの曲線 $y=f_n(x)$ と $y=e^{-x}$ が接するような a_n を求めよ.

(2) $f_n(x)$ は (1) で定めたものとする. $y=f_0(x)$, $y=e^{-x}$ と y 軸で囲まれる図形の面積を S_0 , $n \ge 1$ に対し $y=f_{n-1}(x)$, $y=f_n(x)$ と $y=e^{-x}$ で囲まれる図形の面積を S_n とおく.このとき $\lim_{n \to \infty} (S_0+S_1+\cdots+S_n)$ を求めよ.