Assignment-04

Herrey Data-table:

Tank 01:

slope,

$$m = \frac{\sum (x - \bar{x}) \cdot (y - \bar{y})}{\sum (x - \bar{x})^2}$$

$$\sum (x-\bar{x})^2$$

$$\overline{X} = \frac{\sum X}{N}$$

$$\overline{Y} = \frac{\Sigma y}{N}$$

$$\Sigma(x-\bar{x})\cdot(y-\bar{y})=(2-4.5714)\cdot(35-47.1428)+$$

Herce, N= 7,

$$\sum (x-\bar{x}) = (2-4.5714)^{2} + (4-4.5714)^{2} + (5-4.5714)^{2} + (5-4.5714)^{2} + (5-4.5714)^{2} + (5-4.5714)^{2} + (7-4.5714)^{2} + (7-4.5714)^{2} = 14.2448$$

NOW, $m = \frac{\sum (x-\bar{x}) \cdot (y-\bar{y})}{\sum (x-\bar{x})^{2}} = \frac{46.4286}{14.2448} = 3.2593$,

then, $c = \bar{y} - m\bar{x} = 47.1428 - (3.2593) \cdot (4.5714)$

$$= 32.2432$$
,
then, predicted the value, $x = 6$,
Using this equation, $y = mx + c$

$$= (3.2593)(6) + 32.2432$$

$$\therefore 14 = 51.799$$
Clavusef

Tank 02:

Compute the residuals for each data point;

Predicted Result's

Predicted = mx+c

Y- Pred = 3.2593 * (2) + 32.2432 = 38.7618

Xx Y-Pred = 3.2593 x (4) + 32.2432 = 45.2804

Y-Pried = 3.2593 * (5) + 32.2432 = 48.5397

Y-Pred = 3.2893 * (3) + 32.2432 = 42.0211

Y-Pred = 3.2593 * (6) + 32.2432 = 51.799

Y-Pred = 3.2593 x (5) + 32.2432 = 48.539}

4 Pried = 3.2593 * (7) + 32.2432 = 55.0583

•					_
50,	weight	Pruice	predicted	Pesiduals	
	2	35	38.7618	-3.7618	١
	Ч	60	45.2804	14.7196	1
	5	20	48.5397	-28.539又	Ī
	3	50	42.0211	7.9789	
	6	50	51.799	-1.799	Ľ
	5	ร 5	48.5397	6.4603	L
	7	60	55.0583	4.9417	

then, Residual (loss) = observed_-priedicted value Residual for x = (35-38.7618) = -3.7618 Residual for X = (60-45.2804) = 14.7196 Residual for x = (20-48.5397) = -28.5397 pesidual for x = (50-42.0211) = 7.9789 Residual for x = (50-51.799) = -1.799 Pesidual for x = (55-48.5397)=6.4603 Residual for n = (60-55.0583) = 4.9417 Tank 03: Mean Squared Emmon (MSE) = = = = [y:-ŷ:)

50,
MSE =
$$-\frac{1}{\pi} \sum_{i=1}^{\infty} (y_i - \hat{y}_i)_{i=1}^{2}$$

= $-\frac{1}{7} ((35 - 38.7618)^2 + (60 - 45.2804)^2 +$
 $(20 - 48.5397)^2 + (50 - 42.0211)^2 + (50 -$
 $51.799)^2 + (55 - 48.5397)^2 + (60 - 55.0583)$

MSE=
$$\frac{1}{4}$$
 $(-3.7618)^2 + (14.7196)^2 + (-28.5397)^2 + (7.9789)^2 + (-1.799)^2 + (6.4603)^2 + (4.9417)^2$

MSE = $\frac{1}{4}$ $(14.1511 + 216.667 + 814.514)^4$

63.6628 + 3.2364 + 41.7354 + 24.4203)

MSE = $\frac{1}{7}$ (1178.387)

MSE = 168.341

and Mean Absolute Error (MAE) = $\frac{1}{7}$ $\frac{5}{121}$ $\frac{1}{7}$ $\frac{1$

MAE =
$$\frac{1}{7}$$
 (3.7618 + 14.7196 + 28.5397 + 7.9789
+ 1.799 + 6.4603 + 4.9417)

55.05831)

$$MAE = \frac{1}{7} (68.201)$$

Anso