Probabilistic Modeling

IntroML
Natalie Davidson
natalie.davidson@inf.ethz.ch

Motivation

Motivation

Motivation

Minimizing least squares error

The hypothesis that minimizes the risk is given by the conditional mean.

---- shown on board ----

Minimizing least squares error

The hypothesis that minimizes the risk is given by the conditional mean.

---- shown on board ----

How do we identify the appropriate conditional distribution? What do you assume it is for this example?

Maximum Likelihood Estimation

The hypothesis that minimizes the risk is given by the conditional mean.

---- shown on board ----

How do we identify the appropriate conditional distribution? What do you assume it is for this example?

Make a statistical assumption about your data to define P(Y|X=x).

Use MLE to identify most likely parameters for the estimated conditional distribution.

Likelihood Function

- The likelihood gives the probability of the observations given the parameters.
 - \circ P(Y=y | Θ , X=x)
- We wants to find Θ such that $P(Y=y \mid \Theta, X=x)$ is maximized
 - Maximum Likelihood Estimator
 - $\circ \quad \Theta^* = \operatorname{argmax}_{\Theta} P(x \mid \Theta)$

Likelihood Function - coin example

- We flip a coin twice times and get HT. We assume the coin is fair.
 - \circ Θ = P(Heads) = P(Tails) = 0.5
- Likelihood
 - \circ P(HT | Θ) = (0.5 * (1-0.5)) = 0.25

Likelihood Function - coin example

- We flip a coin twice times and get HT. We assume the coin is fair.
 - \circ Θ = P(Heads) = P(Tails) = 0.5
- Likelihood
 - \circ P(HT | Θ) = (0.5 * (1-0.5)) = 0.25

Likelihood Function - coin example

- We flip a coin twice times and get HT. We assume the coin is fair.
 - \circ Θ = P(Heads) = P(Tails) = 0.5
- Likelihood
 - \circ P(HT | Θ) = (0.5 * (1-0.5)) = 0.25

Does amount of oxygen in a cell predict the expression of the gene HIF?

Oxygen level in a cell → HIF expression (simplified model)

- This is the observed levels of HIF when oxygen is at 15%.
- What is the distributional assumption?

- This is the observed levels of HIF when oxygen is at 15%.
- What is the distributional assumption?
 - Positive
 - Discrete

- This is the observed levels of HIF when oxygen is at 15%.
- What is the distributional assumption?

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Does amount of oxygen in a cell predict the expression of the gene HIF?

- This is the observed levels of HIF when oxygen is at 15%.
- What is the distributional assumption?

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

 MLE estimator for mean of poisson shown on board

- This is the observed levels of HIF when oxygen is at 15%.
- What is the distributional assumption?

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- Key assumption:
 - o mean = variance

Variance = 1.85

Variance = 0.52

Variance = 3.1

- Does amount of oxygen in a cell predict the expression of the gene HIF?
 - We want to model the conditional distribution of P(HIF expression level | Amount of Oxygen)

- Does amount of oxygen in a cell predict the expression of the gene HIF?
 - We want to model the conditional distribution of P(HIF expression level | Amount of Oxygen)
 - Can we simply model conditional distribution with w^Tx?
 - Remember: our estimator w^Tx models the mean of our conditional distribution.

- Does amount of oxygen in a cell predict the expression of the gene HIF?
 - We want to model the conditional distribution of P(HIF expression level | Amount of Oxygen)
 - Can we simply model conditional distribution with w^Tx?
 - Remember: our estimator w^Tx models the mean of our conditional distribution.

Link Function

Remember from logistic regression, our conditional distribution is Bernoulli

Link Function

• Remember from logistic regression, our conditional distribution is Bernoulli

Link Function

Remember from logistic regression, our conditional distribution is Bernoulli

Canonical Link Functions

Common distributions with typical uses and canonical link functions

Distribution	Support of distribution	Typical uses	Typical uses Link name		Mean function	
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X}oldsymbol{eta}$	
Exponential	real: $(0,+\infty)$	Exponential-response data, scale parameters	Negative inverse $\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mathbf{X}\mathbf{\beta} = -u^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$	
Gamma	(0, 100)	Ziponomiai rosponos data, sodio parametero		$A P = -\mu$		
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$	
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$	
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence				
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences				
	integer: $[0,K)$		Logit	$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$	
Categorical	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1	outcome of single K-way occurrence				
Multinomial	$ extit{ extit{K-vector of integer: } [0,N]}$	count of occurrences of different types (1 K) out of N total K-way occurrences				

Canonical Link Functions

Common distributions with typical uses and canonical link functions

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$	Mean function	
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X}oldsymbol{eta}$	
Exponential	real: $(0,+\infty)$	Exponential-response data, scale parameters	Negative	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$	
Gamma	real. $(0, +\infty)$	Exponential-response data, scale parameters	inverse	$\mathbf{A}oldsymbol{ ho} = -\mu$		
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$	
Poisson	integer: $0,1,2,\ldots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$	
Bernoulli	integer: $\{0,1\}$	outcome or single yes/no occurrence				
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$	
	integer: $[0,K)$		Logit			
Categorical	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1	outcome of single K-way occurrence				
Multinomial	$ extit{ extit{ iny K-vector of integer: } [0,N]}$	count of occurrences of different types (1 K) out of N total K-way occurrences				

- Does amount of oxygen in a cell predict the expression of the gene HIF?
 - We want to model the conditional distribution of P(HIF expression level | Amount of Oxygen)
 - Can we simply model conditional distribution with w^Tx?
 - Remember: our estimator w^Tx models the mean of our conditional distribution.

- Now we have all the elements to find an optimal w
 - Conditional Distribution: Poisson
 - Link function: Log

- Does amount of oxygen in a cell predict the expression of the gene HIF?
 - We want to model the conditional distribution of P(HIF expression level | Amount of Oxygen)
 - Can we simply model conditional distribution with w^Tx?
 - Remember: our estimator w^Tx models the mean of our conditional distribution.

- Now we have all the elements to find an optimal w
 - Conditional Distribution: Poisson
 - Link function: Log

MLE estimate on board

Does amount of oxygen in a cell predict the expression of the gene HIF?

Oxygen level in a cell → HIF expression (simplified model)

Does amount of oxygen in a cell predict the expression of the gene HIF?

metabolism

Bias-Variance Trade-off

- Ridge Regression Demo
 - https://cscheid.net/writing/data_science/regularization/

- We have a prior assumption about how our weightings should be distributed
- Bayes Rule
 - $\qquad P(\Theta, X=x \mid Y=y) \subseteq P(Y=y \mid \Theta, X=x) * P(\Theta)$

- We have a prior assumption about how our weightings should be distributed
- Bayes Rule
 - $\circ \quad P(\Theta, X=x \mid Y=y) \propto P(Y=y \mid \Theta, X=x) * P(\Theta)$
 - Posterior

 Likelihood * Prior
 - \circ We can place a distributional assumption on Θ

- We have a prior assumption about how our weightings should be distributed
- Bayes Rule
 - $\circ \quad P(\Theta, X=x \mid Y=y) \propto P(Y=y \mid \Theta, X=x) * P(\Theta)$

 - \circ We can place a distributional assumption on Θ
- Elements of Maximum A Posteriori Estimation
 - What is the conditional distribution $P(Y=y \mid \Theta, X=x)$?
 - How do we model the relationship between mean of the conditional distribution with our predictor (link function)?
 - What is the distribution on our parameters?

- We have a prior assumption about how our weightings should be distributed
- Bayes Rule
 - $\circ \quad P(\Theta, X=x \mid Y=y) \propto P(Y=y \mid \Theta, X=x) * P(\Theta)$

 - \circ We can place a distributional assumption on Θ
- Elements of Maximum A Posteriori Estimation
 - What is the conditional distribution $P(Y=y \mid \Theta, X=x)$? **Poisson**
 - How do we model the relationship between mean of the conditional distribution with our predictor (link function)? log
 - What is the distribution on our parameters? Conjugate Priors

Conjugate Priors

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$oxed{lpha + \sum_{i=1}^n x_i, \ eta + n - \sum_{i=1}^n x_i}$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$
Binomial	p (probability)	Beta	α, β	$lpha + \sum_{i=1}^n x_i, \ eta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$\operatorname{BetaBin}(ilde{x} lpha',eta')$ (beta-binomial)
Negative binomial with known failure number, <i>r</i>	p (probability)	Beta	α, eta	$lpha + \sum_{i=1}^n x_i, \ eta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{\text{[note 1]}} \text{ (i.e., } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
			k, θ	$k+\sum_{i=1}^n x_i,\;rac{ heta}{n heta+1}$	k total occurrences in $\frac{1}{ heta}$ intervals	$\mathrm{NB}(ilde{x} \mid k', heta')$ (negative binomial)
Poisson	λ (rate)	Gamma	$\alpha,eta^{[note3]}$	$\alpha + \sum_{i=1}^n x_i, \; \beta + n$	lpha total occurrences in eta intervals	$\mathrm{NB}\Big(ilde{x} \mid lpha', rac{1}{1+eta'}\Big)$ (negative binomial)
Categorical	<pre>p (probability vector), k (number of categories; i.e., size of p)</pre>	Dirichlet	α	$oldsymbol{lpha}+(c_1,\ldots,c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$p(ilde{x} = i) = rac{{lpha_i}'}{\sum_i {lpha_i}'} \ = rac{{lpha_i} + c_i}{\sum_i {lpha_i} + n}$
Multinomial	p (probability vector), k(number of categories;i.e., size of p)	Dirichlet	α	$\boldsymbol{\alpha} + \sum_{i=1}^n \mathbf{x}_i$	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$\operatorname{DirMult}(\tilde{\mathbf{x}} \mid \boldsymbol{lpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, N	M (number of target members)	Beta- binomial ^[4]	n=N,lpha,eta	$lpha + \sum_{i=1}^n x_i, \ eta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	
Geometric	p ₀ (probability)	Beta	α, β	$lpha+n,eta+\sum_{i=1}^n x_i-n$	$lpha-1$ experiments, $eta-1$ total failures $^{[\text{note 1}]}$	

https://en.wikipedia.org/wiki/Conjugate_prior

Conjugate Priors

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, eta	$lpha + \sum_{i=1}^n x_i, \ eta + n - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$p(ilde{x}=1)=rac{lpha'}{lpha'+eta'}$
Binomial	p (probability)	Beta	α, β	$oxed{lpha+\sum_{i=1}^n x_i,\ eta+\sum_{i=1}^n N_i-\sum_{i=1}^n x_i}$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	$\operatorname{BetaBin}(ilde{x} lpha',eta')$ (beta-binomial)
Negative binomial with known failure number. r	p (probability)	Beta	α, eta	$\alpha + \sum_{i=1}^n x_i, \ \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{\text{[note 1]}} \text{ (i.e., } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
			k, θ	$k+\sum_{i=1}^n x_i,\;rac{ heta}{n heta+1}$	k total occurrences in $\frac{1}{\theta}$ intervals	$\mathrm{NB}(ilde{x} \mid k', heta')$ (negative binomial)
Poisson	λ (rate)	Gamma	lpha,~eta[note 3]	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	lpha total occurrences in eta intervals	$\mathrm{NB}\Big(ilde{x} \mid lpha', rac{1}{1+eta'}\Big)$ (negative binomial)
Categorical	p (probability vector), k(number of categories;i.e., size of p)	Dirichlet	α	$oldsymbol{lpha}+(c_1,\ldots,c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$p(ilde{x} = i) = rac{{lpha_i}'}{\sum_i {lpha_i}'} \ = rac{{lpha_i} + c_i}{\sum_i {lpha_i} + n}$
Multinomial	p (probability vector), k(number of categories;i.e., size of p)	Dirichlet	α	$oldsymbol{lpha} + \sum_{i=1}^n \mathbf{x}_i$	$lpha_i - 1$ occurrences of category $i^{ ext{[note 1]}}$	$\operatorname{DirMult}(\mathbf{ ilde{x}}\mid oldsymbol{lpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, <i>N</i>	M (number of target members)	Beta- binomial ^[4]	n=N,lpha,eta	$lpha + \sum_{i=1}^n x_i, \ eta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{[note 1]}}$	
Geometric	p ₀ (probability)	Beta	α, β	$lpha+n,eta+\sum_{i=1}^n x_i-n$	$lpha-1$ experiments, $eta-1$ total failures $^{[{ m note}~1]}$	

https://en.wikipedia.org/wiki/Conjugate_prior

Conjugate Priors

 $f(x;k, heta)=rac{x^{k-1}e^{-rac{x}{ heta}}}{ heta^k\Gamma(k)}\quad ext{ for }x>0 ext{ and }k, heta>0.$

https://en.wikipedia.org/wiki/Gamma distribution

Prior - Likelihood - Posterior Demo

https://rpsychologist.com/d3/bayes/

- We have a prior assumption about how our weightings should be distributed
- Bayes Rule
 - $P(\Theta, X=x \mid Y=y) \propto P(Y=y \mid \Theta, X=x) * P(\Theta)$

 - \circ We can place a distributional assumption on Θ
- Elements of Maximum A Posteriori Estimation
 - What is the conditional distribution $P(Y=y | \Theta, X=x)$? **Poisson**
 - How do we model the relationship between mean of the conditional distribution with our predictor (link function)? log
 - What is the distribution on our parameters? Conjugate Priors Gamma

MAP derivation written on board

References + online guides

- https://www.statlect.com/fundamentals-of-statistics/Poisson-distribution-maximum-likelihood
- https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/ppt/22-MAP.pdf
- http://statmath.wu.ac.at/courses/heather_turner/glmCourse_001.pdf
- https://www.cs.indiana.edu/~predrag/classes/2015springb555/4.pdf
- https://www.irit.fr/~Herwig.Wendt/data/EstDect_TD1_compl.pdf
- https://www4.stat.ncsu.edu/~reich/ABA/notes/PoissonGamma.pdf
 - https://www4.stat.ncsu.edu/~reich/ABA/derivations4.pdf