Relations and Digraphs

Lecture 4
Discrete Mathematical
Structures

Relations and Digraphs

- Part I: Relations and Digraphs
 - □ Product sets and partitions
 - Binary relations and their digraphic form
 - □ Paths in relations
 - □ Representing relations
- Part II: Equivalence Relation
 - □ Properties of relations
 - Equivalence relations and equivalence classes
 - Equivalence relations and partitions

为"关系"建立数学模型

可以将"大学在籍"看成某个个人与某个大学之间的关系。 我们能够如何描述这个关系呢?

Ordered Pair and Cartesian Product

For any sets A,B

$$A \times B = \{(a,b) | a \in A, b \in B\}$$

is called *Cartesian Product* of A and B

Example:

$$\{1,2,3\}\times\{a,b\} = \{(1,a), (2,a), (3,a), (1,b), (2,b), (3,b)\}$$

■ For finite A, B, $|A \times B| = |A| \times |B|$

Generalized Cartesian Product

Cartesian product of m nonempty sets:

$$A_1 \times A_2 \times ... \times A_m = \{(a_1, a_2, ..., a_m) | a_i \in A_i, i=1,2...,m \}$$

Describing the attributes of objects using Cartesian product:

```
A computer program can be characterized by 3 attributes:

Language={C(c), Java(j), Fortran(f), Pascal(p), Lisp(l)}

Memory={2 meg(2), 4 meg(4), 8 meg(8)}

OS={UNIX(u), Windows(w), Linus(l)}

Then, any object in Language×Memory×OS can be assigned to a specific program to characterized it.
```

Properties of Cartesian Product

- $A \times \phi = \phi \times A = \phi$
- \blacksquare $A \times B = B \times A \Leftrightarrow A = B \vee A = \phi \vee B = \phi$
 - □ Proof
 - - If $A = \phi$, $A \times B = \phi \times B = \phi$, $B \times A = \phi$, So $A \times B = B \times A$
 - If $B=\phi$, $A\times B=B\times A$
 - If A=B, $A\times B=B\times A$
 - $\square \Rightarrow$ By contradiction
 - □ If $A \neq B$, $A \neq \phi$, and $B \neq \phi$, there must an a such that either $a \in A$, but $a \notin B$; or $a \notin A$, but $a \in B$.
 - CASE 1: let b be any element in B, then $(a,b) \in A \times B$, but $(a,b) \notin B \times A$, $A \times B \neq B \times A$. Contradiction!
 - CASE 2:...

Properties of Cartesian Product

For any sets A,B and C

$$A \times (B \cup C) = \{(x, y) | x \in A, y \in B \text{ or } y \in C\}$$

$$= \{(x, y) | x \in A, y \in B \text{ or } x \in A, y \in C\}$$

$$= \{(x, y) | (x, y) \in A \times B \text{ or } (x, y) \in A \times C\}$$

$$= (A \times B) \cup (A \times C)$$

Easy to see:

These are called the first distribution laws

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

1

Relation as a Set

- Let A and B be nonempty sets. A relation R from A to B is a subset of A×B.
 - □ If $a \in A$, $b \in B$, then "a is related to b by R" is written as:

 \blacksquare R is a relation on A, if $R \subseteq A \times A$

Some Relations as Examples

- $A=\{1,2,3\}$, $B=\{r,s\}$, $R=\{(1,r),(2,s),(3,r)\}$, then R is a relation from A to B.
- $A = \{1,2,3,4\}, \\ R = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
 - \square then R is a relation on A, $\{(x,y)|x\leq y, x\in A, y\in A\}$
- N is the set of all natural numbers (starting from 1), defining a relation R on N, such that, for any $m,n \in N$, $(m,n) \in R$ if and only if m divides n. So, $R \subseteq N \times N$, and R contains (3,6), (5,25), (7,21), etc.
 - \square {(m,n) | m \in N,n \in N, m|n}

Special Binary Relations

- Empty relation on (any) set A.
 - ☐ It is just a empty set.
- Universal relation on set $A: E_A$
 - $\Box E_A = A \times A$
- **Equality**: I_A
 - $\Box I_A = \{(x,x) | x \in A\}$

Domain and Range of Relations

- Let $R \subseteq A \times B$, then
 - □ The domain of R, Dom(R) is defined as:
 {x|x∈A, and exists some y∈B, such that xRy}
 - □ The range of R, Ran(R) is defined as:
 {y|y∈B, and exists some x∈A, such that xRy}
 - \square Note: Dom(R) $\subseteq A$, and, Ran(R) $\subseteq B$

7

R-relative Set

- If R is a relation from set A to B
 - □ For any $x \in A$, R-relative set of x, R(x) is: $\{y | y \in B, xRy\}$ (this is a subset of B)
 - □ For any A_1 ⊆A, R-relative set of $R(A_1)$ is: $\{y|y\in B, \text{ there exists some } x\in A_1 \text{ such that } xRy\}$
 - □ Note that: $R(A_1) = \bigcup_{x \in A_1} R(x)$

Properties of R-relative Sets

- Let R be a relation from A to B, A_1 , A_2 be subsets of A, then:
 - (a) $A_1 \subseteq A_2 \Longrightarrow R(A_1) \subseteq R(A_2)$
 - (b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
 - (c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$
 - Proof of (c): for any $y \in R(A_1 \cap A_2)$, then there exists some x in $A_1 \cap A_2$ such that xRy. So, $x \in A_1$, $x \in A_2$. It follows that $y \in R(A_1)$ and $y \in R(A_2)$, thus $y \in R(A_1) \cap R(A_2)$.
- Equality doesn't hold. Counterexample: considering relation " \leq " on Z, $A_1 = \{0,1,2\}, A_2 = \{9,13\}, R(A_1)$ is the set of all nonnegative integers, and $R(A_2)$ is the set of integers not less than 9, so, $R(A_1) \cap R(A_2) = \{9,10,11,12,...\}$, but $A_1 \cap A_2 = \emptyset$, which results $R(A_1 \cap A_2) = \emptyset$.

Representing Relations as Matrices

$$A = \{a_1, a_2, a_3\}$$

$$B = \{b_1, b_2, b_3, b_4\}$$

$$R = \{(a_1, b_1), (a_1, b_4), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3)\}$$

 $(a_i, b_j) \in R$ if and only if: $m_{i,j} = 1$

Representing Relations as Digraphs

Digraph representation is used only for relations on one set.

Path in Digraph

- A path of length n in R from a to b is a finite sequence π : a, x_1 , x_2 ,..., x_{n-1} , b, such that: aRx_1 , $x_{n-1}Rb$, and x_iRx_{i+1} for i=1,...n-2
- A path in R corresponds to a succession of edges in the digraph representation of the relation, which consists of n edges.
- It is not required that all elements in a, x_1 , x_2 ,..., x_{n-1} , b are distinct.

New relations defined using Paths

 π_1 : a, b, e, d, c length: 4 π_2 : a, b, e, a length: 3(cycle) π_3 : b, b length: 1(ring)

Generalized(connctivity):

 $xR^{\infty}y$ if there is a path of any length from x to y.

New relations defined using Paths

Digraph of R

```
R^2=\{(a,b), (a,c), (a,d), (a,e), (b,a), (b,b), (b,c), (b,d), (b,e), (e,b), (e,c)\}
R^3=\{(a,a), (a,b), (a,c), (a,d), (a,e), (b,a), (b,b), (b,c), (b,d), (b,e), (e,b), (e,e)\}
R^\infty=\{(a,a), (a,b), (a,c), (a,d), (a,e), (b,a), (b,b), (b,c), (b,d), (b,e), (d,c), (e,a), (e,b), (e,c), (e,d), (e,e)\}
```

R² by Matrix Multiplication

If *R* is a relation on $A = \{a_1, a_2, ..., a_n\}$, then $M_{R^2} = M_R \otimes M_R$ Proof:

Let
$$M_R = [m_{ij}]$$
 and $M_{R^2} = [n_{ij}]$ Let $M^* = [m^*_{ij}] = M_R \otimes M_R$,
then $m^*_{ij} = 1$ if and only if for some $k(1 \le k \le n)$, $m_{ik} = 1$ and $m_{kj} = 1$.
By definition of relation matrix, $a_i R a_k$, $a_k R a_j$.

Thus $a_i R^2 a_j$, and so $n_{ij} = 1$, which means that $m^*_{ij} = 1$ if and only if $n_{ij} = 1$.

So,
$$M_R \otimes M_R = M_{R^2}$$

Rⁿ by Matrix Multiplication

For $n \ge 2$, and R a relation on a finite set A, we have $M = M \otimes M \otimes \dots \otimes M = (n \text{ factors})$

$$M_{R^n} = M_R \otimes M_R \otimes \cdots \otimes M_R$$
 (*n* factors)

Let P(n) mean that the statement holds for $n \ge 2$

Base: P(2) holds

Induction: Assuming that P(k) Let $M_{R^{k+1}} = [x_{ij}], M_{R^k} = [y_{ij}], \text{ and } M_R = [m_{ij}].$

a) $x_{ij} = 1 \implies M_{R^k} \overset{.}{\triangle} M_R[i, j] = 1.$

If $x_{ij} = 1$, these is a (k+1)-path from a_i to a_j . Let a_s be the node next the last node a_j . So, there is a k-path from a_i to a_s , an edge from a_s to a_j ,

i.e.
$$y_{is} = 1$$
, $m_{sj} = 1$. $M_{R^k} \stackrel{\triangle}{A} M_R[i, j] = 1$.

b) $M_{R^k} \ddot{A} M_R[i,j] = 1 \implies x_{ij} = 1$

If $M_{R^k} \not \to M_R[i,j] = 1$, there must be an s, $y_{is} = 1$, and $m_{sj} = 1$. Which means there is a k-path from a_i to a_s , and an edge from a_s to a_i

Connectivity Relation

Connectivity relation, R^{∞} on some set A is defined as:

$$\forall x, y \in A, (x, y) \in R^{\infty}$$
 if and only if there is some path in R from x to y

Note:
$$R^{\infty} = R \cup R^2 \cup R^3 \cup \dots = \bigcup_{n=1}^{\infty} R^n$$

So,
$$M_{R^{\infty}} = M_R \vee M_{R^2} \vee M_{R^3} \vee \cdots$$

$$= M_R \vee (M_R)_{\infty}^2 \vee (M_R)_{\infty}^3 \vee \cdots (M_R)_{\infty}^n$$

Reflexivity

- Relation R on A is
 - \square Reflexive if for all $a \in A$, $(a,a) \in R$
 - □ Irreflexive if for all (a,a) ∉ R
- Let *A*={1,2,3}, *R*⊆*A*×*A*
 - \square {(1,1),(1,3),(2,2),(2,1),(3,3)} is reflexive
 - \square {(1,2),(2,3),(3,1)} is irreflexive
 - \square {(1,2),(2,2),(2,3),(3,1)} is neither reflexvie nor irreflexive.
- \blacksquare R is reflexive relation on A if and only if $I_A \subseteq R$

Visualized Reflexivity

Symmetry

- Relation R on A is
 - □ Symmetric whenever $(a,b) \in R$, then $(b,a) \in R$
 - \square Antisymmetric if whenever $(a,b) \in R$ and $(b,a) \in R$ then a=b.
 - □ **Asymmetric** if whenever $(a,b) \in R$ then $(b,a) \notin R$ (Note: neither anti- nor a-symmetry is the negative of symmetry)
- Let A={1,2,3}, R⊆A×A
 - \square {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} is symmetric.
 - \square {(1,2),(2,3),(2,2),(3,1)} is antisymmetric.
 - \square {(1,2),(2,3),(3,1)} is antisymmetric and asymmetric.
 - \square {(11),(2,2)} is symmetric and antisymmetric.
 - □ φ is symmetric and antisymmetric, and asymmetric!
- R is symmetric relation on A if and only if $R^{-1}=R$

Visualized Symmetry

Transitivity

- Relation R on A is
 - □ Transitivity if whenever $(a,b) \in \mathbb{R}$, $(b,c) \in \mathbb{R}$, then $(a,c) \in \mathbb{R}$
- Let A={1,2,3}, R⊆A×A
 - \square {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)} is transitive
 - \square {(1,2),(2,3),(3,1)} is not transitive.
 - \square Both {(1,3)} and ϕ are transitive.
- R is transitive relation on A if and only if $R^n \subseteq R$ for all $n \ge 1$

Visualized Transitivity

Some Often Used Relations

			<		=₃	ф	E
reflexivity	√	✓	×	✓	✓	×	✓
irreflexivity	×	×	✓	×	×	✓	×
symmetry	√	×	×	×	✓	✓	✓
antisymmetry	√	✓	✓	✓	×	✓	×
transitivity	√	✓	✓	✓	✓	✓	✓

What's Wrong?

- A wrong proof: if R is a symmetric and transitive relation on A, then R must be reflexive.
- Proof:
 - □ For any $a,b \in A$, if $(a,b) \in R$, by the symmetry of R, $(b,a) \in R$; since R is transitive, $(a,a) \in R$. So, R is reflexive.

Equivalence Relation

- Relation R on A is an equivalence relation if and only if it is reflexible, symmetric and transitive.
- "Equility" is a special case of equivalence relation.
- An example:
 - $\square R \subseteq Z \times Z$, $(x,y) \in R$ if and only if $\frac{|x-y|}{3}$ is integer, i.e. $x \equiv y \pmod{3}$

Partition of a Set

A **partition** of a set A, π , is a set of the nonempty subsets of A. (so, $\pi \subseteq \rho(A)$, satisfying:

1. For any $x \in A$, there is some $A_i \in \pi$, such that $x \in A_i$.

i.e.
$$\bigcup_{i} A_{i} = A$$

2. For any A_i , $A_i \in \pi$, if $i \neq j$, then:

$$A_i \cap A_j = \phi$$

Partition Generated by Equivalence

- Equivalence class:
 - □ Let R is a equivalence relation on A, then given $a \in A$, R(a) is a equivalence class induced by R.
- Quotient set:
 - \square Q={ $R(x)|x\in A$, and R is a equivalence on A}
- Quotient set is a partition:
 - For any $a \in A$, $a \in R(a)$ (remember that R is reflexible)
 - For any a,b∈A
 - $(a,b) \in R$ if and only if R(a)=R(b), and
 - (a,b) ∉ R if and only if $R(a) \cap R(b) = \phi$

Equivalence induced by Partition

Given a partition on A, we can define a relation R on A as following:

 $\forall x,y \in A, (x,y) \in R$ if and only if: x,y belong to the same block.

Ex. $(x,y) \in R (y,z) \in R (x,z) \in R (x,x) \in R$ etc.

It is straight to prove that *R* is reflexible, symmetric and transitive, so, it is an equivalence relation.

Product of Equivalence

• R_1, R_2 are equivalences defined respectively on sets X_1 and X_2 . Define relation S on $X_1 \times X_2$ as follows:

$$< x_1, x_2 > S < y_1, y_2 > \text{ if and only if } x_1 R_1 y_1 \perp x_2 R_2 y_2$$

- Then, S is also a equivalence, defined on $X_1 \times X_2$.
 - □ Reflexivity: for any $\langle x,y\rangle \in X_1 \times X_2$, since both R_1, R_2 are reflexive, $\langle x,x\rangle \in R_1$, $\langle y,y\rangle \in R_2$; $\therefore \langle x,y\rangle S\langle x,y\rangle$;
 - □ Symmetry: assume that $\langle x_1, x_2 \rangle S \langle y_1, y_2 \rangle$, which means that $x_1 R_1 y_1$ and $x_2 R_2 y_2$, so, $y_1 R_1 x_1$ and $y_2 R_2 x_2$, because of the symmetry of R_1 and R_2 . So, $\langle y_1, y_2 \rangle S \langle x_1, x_2 \rangle$;
 - □ Transitivity: assume that $\langle x_1, x_2 \rangle S \langle y_1, y_2 \rangle$, and $\langle y_1, y_2 \rangle S \langle z_1, z_2 \rangle$, then $x_1 R_1 y_1$, $y_1 R_1 z_1$, $x_2 R_2 y_2$, $y_2 R_2 z_2$. Since both R_1 and R_2 are transitive, we have: $x_1 R_1 z_1$, and $x_2 R_2 z_2$, so, $\langle x_1, x_2 \rangle S \langle z_1, z_2 \rangle$.

An Example with Geometry

- For (x, y) and (u, v) in R^2 , define: $(x, y) \sim (u, v)$ iff. $x^2 + y^2 = u^2 + v^2$.
- Prove that ~ defines an equivalence relation on R² and interpret the equivalence classes geometrically.

7

Another example, revisited

Prove:

Among any 1001 different numbers randomly selected from the subset of natural numbers $\{1,2,...,2000\}$ must be two, x,y, satisfying $x/y=2^k$.

(k is an integer)

The Proof

- Create 1000 sets, each contains a unique odd integer between 1 and 2000, along with its multiplication of 2^k not greater than 2000.
 - □ A relation R: for any x,y in the sett, xRy if and only if both can be represented as $p2^{k1}$ $p2^{k2}$ for same p and some k1,k2 (k1,k2>=1).
 - ☐ It is easy to prove that it is an equivalence,
 - \square x R y implies $x/y = 2^m$ or $y/x = 2^m$, for some m
- The **Quotient** has 1000 elements.

等价关系用于计数

- 用英语单词"hello"中的5个字母可以造出多少个不同的"词"?
 - □可以先假设两个"I"一个是大写,一个是小写,显然可以造出5! 个"词"。在这些"词"的集合上定义关系 R, a R b 当且仅当忽略大小写,a,b 完全一样。可以证明这是等价关系,我们要求的结果恰是等价类的个数。
- 如果是用英语单词 "aardvark" 代替上述例子中的 "hello",结果是多少呢?

re.

Home Assignments

- To be checked
 - □ Ex 4.1: 16; 18; 24; 30-31, 33-40
 - □ Ex 4.2: 20; 25-26; 28, 32, 34; 36
 - □ Ex 4.3: 18-21; 27-28; 30-33
 - □ Ex 4.4: 14, 16, 18, 20, 22, 31-36; 38; 40
 - □ Ex 4.5: 19-20, 22-24, 27-29