N 18MAB 302 T DISCRETE MATHEMATICS

CYCLE TEST-3

Unit 4

- 1. Set of all 2x2 non singular matrices with real entries under matrix multiplication
 - (a) Doesn't form a group
- (b) forms an abelian group
- (c) Forms a finite group
- (d) forms an infinite non-abelian group

Ans: (d)

- 2. Subgroup of the group of real numbers under addition (R,+) is
 - (a) (Z,+)
 - (b) $(Z^+,+)$
 - (c) (Q,•)
 - (d) (R, -)

Ans: (a)

- 2. In the cyclic group $G=\{1,-1,i,-i\}$ under multiplication it's generators are
 - a) $\{1,i\}$
 - b) $\{1,-i\}$
 - c) $\{-1,i\}$
 - d) {i,-i}

Ans: (d)

- 4.In a permutation group S_3 , if $p = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}$, then inverse of p is
- (a) $\begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$
- $(b) \ \begin{pmatrix} a & b & c \\ a & c & b \end{pmatrix}$
- $(c) \quad \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}$
- $(d) \quad \begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix}$

Ans: (a)

5.In a permutation group if $P_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix} P_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ then $P_2 * P_1 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$

- a) P_1
- $_{\mathsf{b}}$ $P_{_{2}}$
- c) $oldsymbol{P}_{_{\! 1}}^{^{-1}}$
- d) $oldsymbol{P}_{\scriptscriptstyle 2}^{^{\scriptscriptstyle -1}}$

Ans: b

6.If {G,*} is a finite cyclic group of order n with "a " as generator element, thenis also a generator iff the GCD of (m,n)=1 where m < n.

- a) a^m
- b) aⁿ
- c) a^{m+n}
- d) b⁻¹

Ans: a

7. The inverse of the element "a" in group (G,*) with binary operation a*b=a+b+2

- (a) a

- (b) a^{-1} (c) -2 (d) -(a+4)

Ans: (d)

8. The order of the element –i in the group {1, -1,i,-i} under multiplication is

- a) 1
- b) 2
- c) 3
- d) 4

Ans: (d)

9.A cycli	ic group is	
	a) Subgroup	
	b) Abelian group	
	c) permutation group	
	d) Dihedral group	
Ans: b		
10. In a	group, (G, *) for any a, b ϵ G, $(a*b)^{-1} = \dots$	
	a) $a^{-1} * b^{-1}$ b) $b^{-1} * a^{-1}$ c) $a*b$ d) $b*a$	
ans b		
11. If *is the binary operation on the set R of real numbers defined by a *b = a+b+2ab, then the identity element is		
a) 0		
b) 1		
c) 1+2a		
d) 2a		
Ans:a		
12. The kernel of a homomorphism f from a group (G,*) to another group (G' , Δ) is a of (G , *)		
	 a) Empty subset of G b) Subgroup of G c) Abelian subgroup of G d) Cyclic Subgroup of G 	
	Ans: b	

13.If a and b are any two elements of a group G such that $(a*b)^2 = a^2*b^2$, then G is a		
a) Cyclic group		
b) Abelian Group		
c) Permutation Group		
d) Dihedral Group		
Ans: b		
14. The identity element of a group is the only element whose order is		
a) 1		
b) 2		
c) n		
d) m + n		
Ans: a		
15.The multiplicative group {1, ω , ω^2 } where ω is a cube root of unity is a		
a)Ring		
b) Non-abelian group		
c) Cyclic group		
d) Monoid		
Ans: c		
16.A commutative ring with unity and without zero divisors is called an		
a) Integral domain		
b) zero divisor		
c) Ring homomorphism		
d) Field		
Ans:a		
17. Every finite integral domain is a		
a) cyclic group		
b) Non-commutative Ring		
c)Non abelian group		

Ans: d	
18.The in	overse operation of encoding is
a	a)Group code
b) Hamming code
С	c)) Decoding
d	d) Input message
Ans:c	
19.The n	number of 1's in the binary string is called
а	a) Distance
b	o) Group code
С	c)weight
d	d) Parity digit
Ans:c	
20. A cod	de can correct a set of atmost 'K' errors iff the minimum distance between any two code words
a	a) 2k-1
b	o) k+1
С	c) k
d	d) 2k + 1
Ans:d	
21. The r	number of errors can be corrected between the encoded words 000 and 111 is
a	a) Three errors
b	o) Two errors
С	c) Zero or one error

d) Field

d) Four errors
Ans:c
22. If x = 10110 , y = 11110, then H(x,y) =
a)2
b) 1
c) 3
d) 4
Ans:b
23. The device which transforms the encoded message into their original form is
a) encoder
b) Decoder
c) Hamming Code
d) coding theory
Ans: b
24.If (B^n, \bigoplus) is where \bigoplus is addition modulo 2
a) Field
b) Cyclic group
c) Abelian group
d) Ring homomorphism.
Ans: c

25. Find the code words for e(111), e(110) generated by the parity check matrix:

$$H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ when the encoding function is } e: B^3 \rightarrow B^6,$$

- a) 000000,001010
- b) 000110,100110
- c) 110000,110100
- d) 111001,110010 Ans :d

.