

Evolutionary Design of Nearest Prototype Classifiers

Tiago José – tjs2

Tiago Neves - tnb

Motivação

- Base de dados muito grande
- Existência de parâmetros de aprendizado

Objetivo

- Criar protótipos para diminuir o tamanho da base
- Eliminar a existência de parâmetros de aprendizado

Conceitos

Protótipo rotulado:

$$r_i = \langle p, s \rangle$$

 p é o espaço do protótipo
 s é a classe a que protótipo pertence

Classificador:

$$C = \{r_1, \dots, r_n\}$$

Conceitos

Padrão:

 v_r é cada exemplo usado para treinamento ou teste $V = \{r_1, ..., r_m\}$

Classe:

$$S_j$$

$$S = \{S_1, \dots, S_L\}$$

Qualidade de um protótipo:

$$quality(r_i)$$

Estrutura

Estrutura - Conjunto de Classes

- $\forall v \in V$, $v = \langle p, s_i \rangle$, $s_i \in S$, então $v \in S_i$
- $s_j \in S$:

-
$$regions(s_j) = \sum_{i=1}^{N} \delta(r_i, s_j)$$
, onde $\delta = \begin{cases} 1, & sse \ r_i = \langle p, s_j \rangle \\ 0, & otherwise \end{cases}$

$$-expectation(s_j) = \frac{\|s_j\|}{regions(s_j)}$$

Estrutura – Conjunto de Padrões

• $\forall v = \langle p, s_j \rangle \in V$, $s_j \in S$, $r_i = \langle p_i, s' \rangle \in C$, então $v \in V_{ij}$ sse $\forall r_{i'} = \langle p_{i'}, s'' \rangle \in C$, $d(p_v, p_i) \leq d(p_v, p_{i'})$

• $d(x,y) = \sum_{i=0}^{i < K} (x[i] - y[i])^2$

Estrutura - Conjunto de Protótipos

- $\forall v = \langle p_v, s_j \rangle \in V$, $r_i = \langle p_i, s' \rangle \in C$, então $v \in R_i$ sse $\forall r_{i'} = \langle p_{i'}, s'' \rangle \in C$, $d(p_v, p_i) \leq d(p_v, p_{i'})$
- $r_i = \langle p, s_j \rangle$:
 - $accuracy(r_i) = \frac{\|V_{ij}\|}{\|R_i\|}$
 - $apportation(r_i) = \frac{2||V_{ij}||}{expectation(s_j)}$
 - $quality(r_i) = min(1, accuracy(r_i) * apportation(r_i))$

	S1	S2
$R_1 = \langle p_1, s_2 \rangle$	$ V_{11} = 7$	$ V_{12} = 9$
$R_2 = \langle p_2, s_1 \rangle$	$ V_{21} = 10$	$ V_{22} =2$
$R_3 = \langle p_3, s_2 \rangle$	$ V_{31} = 3$	$ V_{32} = 9$

Estrutura – Exemplo

- Número de protótipos: 3
- Número de classes: 2
- Número de instâncias: 40
- $regions(s_1): 1 (r_2 = \langle p_2, s_1 \rangle)$
- $||s_1||$: 20 ($||V_{11}|| + ||V_{21}|| + ||V_{31}|| = 7 + 10 + 3$)
- $expectation(s_1)$: 20 $\left(\frac{\|s_1\|}{regions(s_1)} = \frac{20}{1}\right)$

	S1	S2
$R_1 = \langle p_1, s_2 \rangle$	$ V_{11} = 7$	$ V_{12} = 9$
$R_2 = \langle p_2, s_1 \rangle$	$ V_{21} = 10$	$ V_{22} =2$
$R_3 = \langle p_3, s_2 \rangle$	$ V_{31} =3$	$ V_{32} = 9$

Estrutura – Exemplo

•
$$accuracy(r_2)$$
: 0.83 $\left(\frac{\|V_{ij}\|}{\|R_i\|} = \frac{10}{12}\right)$

•
$$apportation(r_2)$$
: $1\left(\frac{2\|V_{ij}\|}{expectation(s_j)} = \frac{2*10}{20}\right)$

•
$$quality(r_2): 0.83 \begin{pmatrix} min(1, accuracy(r_i) * apportation(r_i)) \\ min(1, 0.83 * 1) \end{pmatrix}$$

Algoritmo - Inicialização

- O número inicial de protótipos é sempre um
- A localização desse protótipo inicial é irrelevante
- Não há parâmetros de aprendizado

Algoritmo – Obtenção de Informação

Gera-se a abstração: Class Sets S_1 S_{i} S_L V_{11} R_1 V_{lj} V_{lL} Prototype Sets • • • ••• V_{i1} V_{iL} R_N V_{N1} V_{Nj} V_{NL}

Pattern Sets

Algoritmo - Mutação

• $\forall r_i = \langle p, s \rangle \in C$, $s = \arg\max_j ||V_{ij}|||$

- X Prototype of class 1 + Instance of class 1
- Prototype of class 2 O Instance of class 2

Algoritmo – Reprodução

- A escolha do S_i é baseado no método da roleta
- O tamanho da fatia é proporcional a $\|V_{ij}\|$

- Quais protótipos $r_{i'}$, tentarão desafiar o protótipo r_i ?
 - Os protótipos $r_{i'}$ ∈ $neighbours(r_i)$
- Qual protótipo $r_{i'}$ desafiará o protótipo r_i ?
 - Método da roleta
 - O tamanho da fatia é proporcional a:
 - $|quality(r_i) quality(r_{i'})|$
- O que determina se r_i aceita o desafio?
 - $P_{fight}(r_i, r_{i'}) = |quality(r_i) quality(r_{i'})|$

• $r_{i'} = \langle p_{i'}, s_{i'} \rangle$, $r_i = \langle p_i, s' \rangle$ e $s_i \neq s_j$:

- X Prototype of class 1 + Instance of class 1
- Prototype of class 2 O Instance of class 2

- $r_{i'} = \langle p_{i'}, s_{i'} \rangle$, $r_i = \langle p_i, s' \rangle$ e $s_i = s_i$:
 - Método da roleta para decidir o vencedor
 - O tamanho da fatia é proporcional a qualidade dos protótipos
 - A quantidade de padrões que são transferidos depende da probabilidade proporcional as qualidades de cada protótipo

• $r_{i'} = \langle p_{i'}, s_{i'} \rangle$, $r_i = \langle p_i, s' \rangle$ e $s_i = s_j$:

- X Prototype of class 1 + Instance of class 1
- ☐ Prototype of class 2 ☐ Instance of class 2

Algoritmo – Deslocamento

• $r_i = \langle p_i, s_j \rangle \rightarrow \langle centroide(V_{ij}), s_j \rangle$

Algoritmo – Exclusão de Protótipos

• $P_{die}(r_i) = \begin{cases} 0 & , quality(r_i) > 0.5 \\ 1 - 2 * quality(r_i), quality(r_i) \leq 0.5 \end{cases}$

Algoritmo - Condição de Parada

- Número máximo de iterações
- Acurácia desejada
- Convergência do número de protótipos
- Convergência da acurácia
- Combinação das abordagens citadas acima

Avaliação – ENPC – Bases Desbalanceadas

Dataset	Iterações	Gen. Ad	ccuracy	Maj. A	ccuracy	Min. Ad	ccuracy	AUC. A	ccuracy	Data Re	duction
alocc1	100	0.80	0.03	0.85	0.04	0.71	0.04	0.78	0.03	0.89	0.04
glass1	200	0.81	0.05	0.86	0.03	0.71	0.09	0.79	0.05	0.87	0.03
!! 0 4	100	0.98	0.02	0.95	0.05	1.00	0.00	0.97	0.02	0.94	0.03
ecoli-0_vs_1	200	0.96	0.02	0.91	0.07	0.99	0.01	0.95	0.03	0.95	0.02
iris0	100	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.94	0.02
ITISU	200	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.93	0.03
alaccO	100	0.79	0.07	0.81	0.06	0.74	0.12	0.78	0.08	0.89	0.02
glass0	200	0.81	0.08	0.83	0.04	0.76	0.25	0.80	0.12	0.84	0.06
ecoli1	100	0.91	0.04	0.95	0.05	0.78	0.13	0.87	0.06	0.94	0.03
econi	200	0.91	0.03	0.95	0.04	0.80	0.01	0.88	0.01	0.96	0.01
new-thyroid2	100	0.95	0.04	0.98	0.02	0.83	0.17	0.90	0.09	0.96	0.02
new-triyroid2	200	0.97	0.02	0.98	0.02	0.94	0.11	0.96	0.05	0.97	0.01
new-thyroid1	100	0.98	0.02	0.98	0.02	1.00	0.00	0.99	0.01	0.95	0.03
new-thyrold1	200	0.99	0.02	0.98	0.02	1.00	0.00	0.99	0.01	0.96	0.02
ecoli2	100	0.95	0.02	0.96	0.03	0.91	0.06	0.93	0.03	0.97	0.01
econz	200	0.96	0.02	0.97	0.02	0.91	0.06	0.94	0.03	0.96	0.01
glass6	100	0.90	0.06	0.91	0.07	0.83	0.15	0.87	0.08	0.99	0.00
giasso	200	0.90	0.05	0.91	0.06	0.83	0.15	0.87	0.07	0.98	0.01
glass2	100	0.87	0.07	0.93	0.10	0.15	0.30	0.54	0.10	0.95	0.04
gidssz	200	0.89	0.04	0.97	0.05	0.00	0.00	0.48	0.02	0.97	0.01
shuttle-c2-vs-c4	100	0.99	0.02	1.00	0.00	0.90	0.20	0.95	0.10	0.92	0.01
31141116-02-03-04	200	0.99	0.02	1.00	0.00	0.90	0.20	0.95	0.10	0.95	0.02
glass-0-1-6 vs 5	100	0.95	0.01	0.99	0.01	0.10	0.20	0.55	0.09	0.98	0.02
R1022-0-T-0_42_2	200	0.94	0.03	0.98	0.03	0.10	0.20	0.54	0.08	0.98	0.02

Avaliação – ENPC x KNN – Bases Desbalanceadas

Dataset	Algoritmo	Gen. Ad	ccuracy	Maj. Accuracy		Min. Accuracy		AUC. Accuracy		Data Reduction	
-11	ENPC - 200	0.81	0.05	0.86	0.03	0.71	0.09	0.79	0.05	0.87	0.03
glass1	KNN	0.81	0.05	0.89	0.02	0.67	0.12	0.78	0.06	-	-
osoli O vs. 1	ENPC - 100	0.98	0.02	0.95	0.05	1.00	0.00	0.97	0.02	0.94	0.03
ecoli-0_vs_1	KNN	0.97	0.02	0.95	0.07	0.98	0.03	0.96	0.03	-	-
iris0	ENPC - 200	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.93	0.03
ITISU	KNN	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	-	-
glass0	ENPC - 200	0.81	0.08	0.83	0.04	0.76	0.25	0.80	0.12	0.84	0.06
giassu	KNN	0.84	0.06	0.86	0.08	0.80	0.08	0.83	0.06	-	-
ecoli1	ENPC - 200	0.91	0.03	0.95	0.04	0.80	0.01	0.88	0.01	0.96	0.01
econi	KNN	0.86	0.04	0.92	0.04	0.67	0.12	0.80	0.06	-	-
new-thyroid2	ENPC - 200	0.97	0.02	0.98	0.02	0.94	0.11	0.96	0.05	0.97	0.01
new-thyrolaz	KNN	0.99	0.01	0.99	0.01	0.97	0.06	0.98	0.03	-	-
new-thyroid1	ENPC - 200	0.99	0.02	0.98	0.02	1.00	0.00	0.99	0.01	0.96	0.02
new-thyrolat	KNN	0.98	0.01	0.98	0.01	0.97	0.06	0.98	0.02	-	-
ecoli2	ENPC - 200	0.96	0.02	0.97	0.02	0.91	0.06	0.94	0.03	0.96	0.01
econz	KNN	0.95	0.04	0.96	0.04	0.87	0.12	0.92	0.07	-	-
glass6	ENPC - 200	0.90	0.05	0.91	0.06	0.83	0.15	0.87	0.07	0.98	0.01
giasso	KNN	0.96	0.02	0.99	0.01	0.79	0.14	0.89	0.07	-	-
alacca	ENPC - 200	0.89	0.04	0.97	0.05	0.00	0.00	0.48	0.02	0.97	0.01
glass2	KNN	0.87	0.05	0.92	0.05	0.22	0.19	0.57	0.11	-	-
shuttle-c2-vs-c4	ENPC - 100	0.99	0.02	1.00	0.00	0.90	0.20	0.95	0.10	0.92	0.01
SHULLIE-UZ-VS-U4	KNN	0.99	0.02	1.00	0.00	0.90	0.20	0.95	0.10	-	-
glass-0-1-6 vs 5	ENPC - 100	0.95	0.01	0.99	0.01	0.10	0.20	0.55	0.09	0.98	0.02
RI922-0-T-0_A2_2	KNN	0.96	0.02	0.97	0.02	0.80	0.24	0.89	0.12	-	-

Avaliação - ENPC - Bases Balanceadas

Dataset	Iterações	Gen. Ad	ccuracy	AUC. Ad	ccuracy	Data Re	duction
-1	100	0.71	0.09	0.72	0.09	0.68	0.01
glass	200	0.70	0.09	0.71	0.10	0.68	0.02
imaga cogmontation	100	0.93	0.01	0.96	0.01	0.98	0.00
image_segmentation	200	0.92	0.02	0.95	0.01	0.98	0.00
ionosphere	100	0.88	0.05	0.86	0.06	0.98	0.01
ionosphere	200	0.89	0.03	0.87	0.03	0.97	0.01
iris	100	0.97	0.04	0.96	0.06	0.95	0.01
IIIS	200	0.97	0.03	0.96	0.04	0.94	0.02
liver	100	0.58	0.08	0.57	0.09	0.66	0.02
liver	200	0.62	0.08	0.61	0.08	0.66	0.01
nandiaita	50	0.94	0.03	0.92	0.03	1.00	0.00
pendigits	100	0.95	0.01	0.92	0.03	1.00	0.00
nima diabatas	100	0.71	0.06	0.68	0.07	0.79	0.03
pima_diabetes	200	0.70	0.06	0.68	0.08	0.76	0.02
conor	100	0.88	0.05	0.87	0.05	0.88	0.01
sonar	200	0.86	0.06	0.85	0.06	0.88	0.02
	100	0.82	0.03	0.81	0.02	1.00	0.00
spambase	200	0.82	0.03	0.81	0.04	1.00	0.00
hiala	100	0.65	0.03	0.60	0.05	0.73	0.01
vehicle	200	0.66	0.05	0.61	0.06	0.73	0.01
vowel	100	0.95	0.04	0.96	0.05	0.84	0.00
vowei	200	0.96	0.02	0.97	0.03	0.84	0.00
wine	100	0.95	0.05	0.96	0.05	0.94	0.02
wille	200	0.97	0.04	0.96	0.05	0.95	0.01
woost	100	0.48	0.03	0.47	0.04	0.57	0.07
yeast	200	0.50	0.03	0.49	0.03	0.51	0.01

Avaliação - ENPC x KNN - Bases Balanceadas

Dataset	Iterações	Gen. Ad	ccuracy	AUC. A	ccuracy	Data Re	duction
-1	ENPC - 100	0.71	0.09	0.72	0.09	0.68	0.01
glass	KNN	0.70	0.05	0.71	0.06	0.00	0.00
:	ENPC - 100	0.93	0.01	0.96	0.01	0.98	0.00
image_segmentation	KNN	0.97	0.01	0.98	0.00	0.00	0.00
ionoenhoro	ENPC - 200	0.89	0.03	0.87	0.03	0.97	0.01
ionosphere	KNN	0.86	0.04	0.82	0.05	0.00	0.00
iris	ENPC - 200	0.97	0.03	0.96	0.04	0.94	0.02
1115	KNN	0.95	0.05	0.95	0.07	0.00	0.00
liver	ENPC - 200	0.62	0.08	0.61	0.08	0.66	0.01
livei	KNN	0.62	0.06	0.61	0.06	0.00	0.00
pendigits	ENPC - 100	0.95	0.01	0.92	0.03	1.00	0.00
pendigits	KNN	0.99	0.00	0.99	0.00	0.00	0.00
pima diabetes	ENPC - 100	0.71	0.06	0.68	0.07	0.79	0.03
piiria_uiabetes	KNN	0.70	0.05	0.66	0.06	0.00	0.00
sonar	ENPC - 100	0.88	0.05	0.87	0.05	0.88	0.01
SUIIdi	KNN	0.87	0.11	0.86	0.12	0.00	0.00
spambase	ENPC - 100	0.82	0.03	0.81	0.02	1.00	0.00
Sparribase	KNN	0.91	0.01	0.91	0.01	0.00	0.00
vehicle	ENPC - 200	0.66	0.05	0.61	0.06	0.73	0.01
veriicie	KNN	0.70	0.05	0.63	0.07	0.00	0.00
vowel	ENPC - 200	0.96	0.02	0.97	0.03	0.84	0.00
vowei	KNN	0.99	0.02	0.98	0.04	0.00	0.00
wine	ENPC - 200	0.97	0.04	0.96	0.05	0.95	0.01
wifie	KNN	0.96	0.03	0.97	0.02	0.00	0.00
yeast	ENPC - 100	0.50	0.03	0.49	0.03	0.51	0.01
yeast	KNN	0.52	0.04	0.51	0.05	0.00	0.00

Avaliação - Visualização da redução - Banana

200 Iterações

Avaliação - Visualização da redução - Normal

200 Iterações

Avaliação – Visualização da redução – Norma Multimodal

200 Iterações

Conclusão

- Ótimo desempenho em bases desbalanceadas, mas dependendo da disposição dos dados, tende a não gerar protótipos da classe minoritária. Chega a ser melhor que o KNN;
- Bom desempenho em bases balanceadas chegando a ser tão bom quanto o KNN, perdendo, em alguns casos, por pouco.

Evolutionary Design of Nearest Prototype Classifiers

Tiago José – tjs2

Tiago Neves - tnb

