1-10 Set Theory (III): Functions

魏恒峰

hfwei@nju.edu.cn

2019年12月10日

Function

Function

Function

PROOF! PROOF! PROOF!

Definition of Functions

$$R \subseteq A \times B$$

is a *relation* from A to B

 $R \subseteq A \times B$ is a *function* from A to B if

 $\forall a \in A : \exists! b \in B : (a, b) \in f.$

$$R \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

Notations:

$$f:A\to B$$

$$R \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

Notations:

$$f:A\to B$$

$$dom(f) = A$$
 $ran(f) = f(A) \subseteq B \triangleq cod(f)$

$$R \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

Notations:

$$f:A\to B$$

$$dom(f) = A \qquad \operatorname{ran}(f) = f(A) \subseteq B \triangleq \operatorname{cod}(f)$$

$$f: a \mapsto b \stackrel{\triangle}{=} f(a)$$

 $R \subseteq A \times B$ is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

For Proof:

 $\forall a \in A:$

$$\forall a \in A : \exists b \in B : (a, b) \in f$$

 $R \subseteq A \times B$ is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

For Proof:

 $\forall a \in A:$

$$\forall a \in A : \exists b \in B : (a,b) \in f$$

 $\exists ! b \in B :$

$$\forall b, b' \in B : (a, b) \in f \land (a, b') \in f \implies b = b'$$

$$D: \mathbb{R} \to \mathbb{R}$$

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet Function

UD Problem 14.3 (g)

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}$$

9/12

UD Problem 14.3 (g)

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}$$

$$x = 6$$

UD Problem 14.5

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

UD Problem 14.5

$$f: \mathcal{P}(\mathbb{R}) \to \mathbb{Z}$$

$$f(A) = \begin{cases} \min(A \cap \mathbb{N}) & \text{if } A \cap \mathbb{N} \neq \emptyset \\ -1 & \text{if } A \cap \mathbb{N} = \emptyset \end{cases}$$

By the Well-Ordering Principle of \mathbb{N}

Axiom (Axiom of Extensionality)

$$\forall A : \forall B : \forall x : (x \in A \iff x \in B) \iff A = B.$$

Axiom (Axiom of Extensionality)

$$\forall A : \forall B : \forall x : (x \in A \iff x \in B) \iff A = B.$$

Theorem (The Principle of Functional Extensionality)

f, g are functions:

$$f = g \iff dom(f) = dom(g) \land \left(\forall x \in dom(f) : f(x) = g(x) \right)$$

Axiom (Axiom of Extensionality)

$$\forall A : \forall B : \forall x : (x \in A \iff x \in B) \iff A = B.$$

Theorem (The Principle of Functional Extensionality)

f, g are functions:

$$f = g \iff dom(f) = dom(g) \land \left(\forall x \in dom(f) : f(x) = g(x) \right)$$

It may be that $cod(f) \neq cod(g)$.

Definition (Intersection, Union)

$$f_1, f_2: A \to B$$

- (i) Q: Is $f_1 \cup f_2$ a function from A to B?
- (ii) Q: Is $f_1 \cap f_2$ a function from A to B?

Thank You!