Recommendation System

Collaborative Filtering

Why Recommender?

"We are leaving the age of information and entering the age of recommendation."

— Chris Anderson in "The Long Tail"

The Age of Recommendation

Search:

User ltems

Recommend:

Items User

Amazon: A personalized online store

Picture from: amazon.com

Amazon: A personalized online store

Introduction to Data Mining

\$120.16 FREE Shipping. Temporarily out of stock. Order now and we'll deliver when available. We'll e-mail you w

What Other Items Do Customers Buy After Viewing This Item?

Data Science for Business: What you need to know about data mining and data-analytic thinking Paperback

> Foster Provost

全全全 102

\$37.99 **Prime**

Introduction to Data Mining Paperback

Pang-ning Tan

*********** 4

Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Sy

Jiawei Han

全全全公公 28

\$60.22 **Prime**

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series i > Ian H. Witten

★★★☆☆ 52

\$40.65 **Prime**

Picture from: amazon.com

Recommender System

- Recommendation systems (RS) help to match users with items
 - Ease information overload
 - Sales assistance (guidance, advisory, persuasion,...)

RS are software agents that elicit the interests and preferences of individual consumers [...] and make recommendations accordingly.

They have the potential to support and improve the quality of the decisions consumers make while searching for and selecting products online.

» (Xiao & Benbasat 20071)

Different system designs / paradigms

- Based on availability of exploitable data
- Implicit and explicit user feedback
- Domain characteristics

Recommender Problem

A good recommender

- Show programming titles to a software engineer and baby toys to a new mother.
- Don't recommend items user already knows or would find anyway.
- Expand user's taste without offending or annoying him/her...

Challenges

- Huge amounts of data, tens of millions of customers and millions of distinct catalog items.
- Results are required to be returned in real time.
- New customers have limited information.
- Old customers can have a glut of information.
- Customer data is volatile.

Amazon's solution

1. Amazon Recommendation Engine

- Amazon's model that implements recommendation algorithm.
- Recommendation algorithm is designed to personalize the online store for each customer.

2. Algorithm feature

- Most recommendation algorithms start by finding a set of similar customers whose purchased and rated items overlap the user's purchased and rated items.
- The Amazon's item-to-item collaborative filtering is focusing on finding similar items instead of similar customers.

3. Recommendation Engine Workflow

Traditional Recommendation Algorithms

Two mostly used traditional algorithms:

1. User Based Collaborative Filtering

2. Cluster Models

User Based Collaborative Filtering

Approach

- Represents a customer as an N-dimensional vector of items
- Vector is positive for purchased or positively rated items and negative for negatively rated items
- Based on cosine similarity: finds similar customers/users

$$similarity(\vec{A}, \vec{B}) = \cos(\vec{A}, \vec{B}) = \frac{\vec{A} \cdot \vec{B}}{\|\vec{A}\| * \|\vec{B}\|}$$

- Generates recommendations based on a few customers who are most similar to the user
- Rank each item according to how many similar customers purchased it

Problems

- computationally expensive, O(MN) in the worst case, where
 - M is the number of customers and
 - N is the number of items
- dimensionality reduction can increase the performance, BUT, also reduce the quality of the recommendation
- For very large data sets, such as 10 million customers and 1 million items, the algorithm encounters severe performance and scaling issues

Cluster Models

Approach

- Divide the customer base into many segments and treat the task as a classification problem
- Assign the user to the segment containing the most similar customers
- Uses the purchases and ratings of the customers in the segment to generate recommendations
- Cluster models have better online scalability and performance than collaborative filtering because they compare the user to a controlled number of segments rather than the entire customer base.

Problems

- Quality of the recommendation is low
- The recommendations are less relevant because the similar customers that the cluster models find are not the most similar customers
- To improve quality, it needs online segmentation, which is almost as expensive as finding similar customers using collaborative filtering

Amazon's Item-to-Item CF

Difference with User-to-User CF

Amazon's Item-to-Item CF

Collaborative Filtering based recommender systems

Content based recommender systems

Knowledge based recommender systems

Hybrid recommender systems

Collaborative Filtering (CF)

The most prominent approach to generate recommendations

- used by large, commercial e-commerce sites
- well-understood, various algorithms and variations exist
- applicable in many domains (book, movies, DVDs, ..)

Approach

use the "wisdom of the crowd" to recommend items

Basic assumption and idea

- Users give ratings to catalog items (implicitly or explicitly)
- Customers who had similar tastes in the past, will have similar tastes in the future

Pure CF Approaches

Input

Only a matrix of given user-item ratings

Output types

- A (numerical) prediction indicating to what degree the current user will like or dislike a certain item
- A top-N list of recommended items

User-based nearest-neighbor collaborative filtering (1)

The basic technique

- Given an "active user" (Alice) and an item *i* not yet seen by Alice
 - find a set of users (peers/nearest neighbors) who liked the same items as Alice in the past **and** who have rated item *i*
 - use, e.g. the average of their ratings to predict, if Alice will like item i
 - do this for all items Alice has not seen and recommend the best-rated

Basic assumption and idea

- If users had similar tastes in the past they will have similar tastes in the future
- User preferences remain stable and consistent over time

User-based nearest-neighbor collaborative filtering (2)

Example

A database of ratings of the current user, Alice, and some other users is given:

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen

User-based nearest-neighbor collaborative filtering (3)

Some first questions

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Measuring user similarity (1)

A popular similarity measure in user-based CF: Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated both by a and b

- Possible similarity values between -1 and 1

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a) (r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

Measuring user similarity (2)

A popular similarity measure in user-based CF: Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated both by a and b

- Possible similarity values between -1 and 1

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

sim = 0,85 sim = 0,00 sim = 0,70 sim = -0,79

Making predictions

A common prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Item-based collaborative filtering

Basic idea:

- Use the similarity between items (and not users) to make predictions

Example:

- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- Produces better results in item-to-item filtering
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - U: set of users who have rated both items a and b

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Making predictions

A common prediction function:

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction
- An analysis of the MovieLens dataset indicates that "in most real-world situations, a neighborhood of 20 to 50 neighbors seems reasonable" (Herlocker et al. 2002)

Explicit ratings

- Probably the most precise ratings
- Most commonly used (1 to 5, 1 to 7 Likert response scales)
- Research topics
 - Optimal granularity of scale; indication that 10-point scale is better accepted in movie dom.
 - An even more fine-grained scale was chosen in the joke recommender discussed by Goldberg et al. (2001), where a continuous scale (from -10 to +10) and a graphical input bar were used
 - No precision loss from the discretization
 - User preferences can be captured at a finer granularity
 - Users actually "like" the graphical interaction method
 - Multidimensional ratings (multiple ratings per movie such as ratings for actors and sound)
- Main problems
 - Users not always willing to rate many items
 - number of available ratings could be too small → sparse rating matrices → poor recommendation quality
 - How to stimulate users to rate more items?

Implicit ratings

- Typically collected by the web shop or application in which the recommender system is embedded
- When a customer buys an item, for instance, many recommender systems interpret this behavior as a positive rating
- Clicks, page views, time spent on some page, demo downloads ...
- Implicit ratings can be collected constantly and do not require additional efforts from the side of the user
- Main problem
 - One cannot be sure whether the user behavior is correctly interpreted
 - For example, a user might not like all the books he or she has bought; the user also might have bought a book for someone else
- Implicit ratings can be used in addition to explicit ones; question of correctness of interpretation

Data sparsity problems

Cold start problem

– How to recommend new items? What to recommend to new users?

Straightforward approaches

- Ask/force users to rate a set of items
- Use another method (e.g., content-based, demographic or simply nonpersonalized) in the initial phase
- Default voting: assign default values to items that only one of the two users to be compared has rated (Breese et al. 1998)

Alternatives

- Use better algorithms (beyond nearest-neighbor approaches)
- Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions
 - Assume "transitivity" of neighborhoods

Thank You