

Proba de Avaliación do Bacharelato Código: 23 para o Acceso á Universidade

CONVOCATORIA EXTRAORDINARIA 2021

FÍSICA

O exame consta de 8 preguntas de 2 puntos, das que poderá responder un <u>MÁXIMO DE 5</u>, combinadas como queira. Se responde máis preguntas das permitidas, <u>só se corrixirán as 5 primeiras respondidas.</u>

PREGUNTA 1. Responda indicando e xustificando a opción correcta:

- 1.1. Dado un planeta esférico de masa M, con raio a metade do raio terrestre e igual densidade que a Terra, a relación entre a velocidade de escape dun obxecto desde a superficie do planeta respecto á velocidade de escape do devandito obxecto desde a superficie da Terra é: A) 0,5. B) 0,7. C) 4.
- 1.2. A ecuación de Einstein $E = m \cdot c^2$ implica que: A) Unha masa m necesita unha enerxía E para poñerse en movemento. B) A enerxía E é a que ten unha masa m cando vai á velocidade da luz. C) E é a enerxía equivalente a unha masa m.

PREGUNTA 2. Responda indicando e xustificando a opción correcta:

- 2.1. A unha esfera metálica comunícaselle unha carga positiva. O campo eléctrico: A) Aumenta linealmente desde o centro da esfera ata a superficie. B) É nulo no interior e constante no exterior da esfera. C) É máximo na superficie da esfera e nulo no interior.
- 2.2. Obsérvase que o número de núcleos N_0 inicialmente presentes nunha mostra de isótopo radioactivo queda reducida a N_0 /16 ao cabo de 24 horas. O período de semidesintegración é: A) 4 h. B) 6 h. C) 8,6 h.

PREGUNTA 3. Responda indicando e xustificando a opción correcta:

- 3.1. Dúas partículas con cargas, respectivamente, Q_1 e Q_2 , describen traxectorias circulares de igual raio nunha rexión na que hai un campo magnético estacionario e uniforme. Ambas as partículas: A) Deben ter a mesma masa. B) Deben ter a mesma velocidade. C) Non é necesario que teñan a mesma masa nin velocidade.
- 3.2. No fondo dun recipiente cheo de auga atópase un tesouro. A distancia aparente entre o tesouro e a superficie é de 30 cm. Cal é a profundidade do recipiente?: A) 30 cm. B) Maior de 30 cm. C) Menor de 30 cm. DATOS: n(aire) = 1; n(auga) = 1,33.

PREGUNTA 4. Desenvolva esta práctica:

Nunha experiencia para medir h, ao iluminar unha superficie metálica cunha radiación de lonxitude de onda $\lambda = 200 \times 10^{-9}$ m, o potencial de freado para os electróns é de 1,00 V. Se $\lambda = 175 \times 10^{-9}$ m, o potencial de freado é 1,86 V. a) Determine o traballo de extracción do metal. b) Represente o valor absoluto do potencial de freado fronte á frecuencia e obteña da dita representación o valor da constante de Planck. Datos: $|q_e| = 1,6 \times 10^{-19}$ C; $c = 3 \times 10^8$ m·s⁻¹.

PREGUNTA 5. Resolva este problema:

En 1969 a nave Apolo 11 orbitou arredor da Lúa a unha distancia media do centro da Lúa de 1850 km. Se a masa da Lúa é de $7,36\times10^{22}$ kg e supoñendo que a órbita foi circular, calcule: a) A velocidade orbital do Apolo 11. b) O período con que a nave describe a órbita. Dato: $G = 6,67\times10^{-11}$ N·m²·kg⁻².

PREGUNTA 6. Resolva este problema:

Por un fío condutor rectilíneo e infinitamente longo, situado sobre o eixe X circula unha corrente eléctrica no sentido positivo do eixe. O valor do campo magnético producido pola devandita corrente é de 6×10^{-5} T no punto A(0, $-y_A$, 0), e de 8×10^{-5} T no punto B(0, $+y_B$, 0). Sabendo que $y_A + y_B = 21$ cm, determine: a) A intensidade que circula polo fío condutor. b) O módulo e a dirección do campo magnético producido pola devandita corrente no punto de coordenadas (0, 8, 0) cm. Dato: $\mu_0 = 4 \times 10^{-7}$ T·m·A⁻¹.

PREGUNTA 7. Resolva este problema:

Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm, propágase por unha corda no sentido positivo do eixe X. No intre t=0, a elongación no punto x=0 é y=2,83 cm. a) Exprese matematicamente a onda e represéntea graficamente en (t=0; 0 < x < 40 cm). b) Calcule a velocidade de propagación da onda e determine, en función do tempo, a velocidade de oscilación transversal da partícula situada en x=5 cm.

PREGUNTA 8. Resolva este problema:

Un obxecto de 4,0 cm de altura está situado a 20,0 cm dunha lente diverxente de 20,0 cm de distancia focal. a) Calcule a potencia da lente e a altura da imaxe. b) Realice o diagrama de raios e indique as características da imaxe.

Solucións

1.1. Dado un planeta esférico de masa M, con raio a metade do raio terrestre e igual densidade que a Terra, a relación entre a velocidade de escape dun obxecto desde a superficie do planeta respecto á velocidade de escape do devandito obxecto desde a superficie da Terra é:

- A) 0,5.
- B) 0,7.
- C) 4.

(A.B.A.U. extr. 21)

Solución: A

A velocidade de escape dun astro é a velocidade mínima adicional que habería que comunicar a un corpo sometido ó seu campo gravitacional, para situalo nun punto no que non estea sometido a devandita atracción, a unha distancia infinita do centro del astro.

A velocidade de escape proporcionaríalle a enerxía, ΔE , necesaria para situalo no infinito.

$$\Delta E = (E_{\rm c} + E_{\rm p})_{\infty} - (E_{\rm c} + E_{\rm p})_{\rm 1}$$

No infinito a enerxía potencial é nula, porque tómase coma orixe de enerxías potenciais.

Tendo en conta que velocidade de escape é a velocidade mínima, a enerxía cinética que tería o obxecto no infinito sería nula.

A enerxía mecánica, suma das enerxías cinética e potencial, no infinito sería nula:

$$E_{\infty} = (E_{\rm c} + E_{\rm p})_{\infty} = 0 + 0 = 0$$

A enerxía potencial dun corpo de masa *m* situado na superficie dun astro de masa *M* e radio *R* é:

$$E_{\rm p} = -G \frac{M \cdot m}{R}$$

Se o corpo atópase na superficie do astro, en repouso respecto do chan, a súa enerxía cinética é nula. A enerxía mecánica na superficie do astro sería:

$$E_{s} = (E_{c} + E_{p})_{s} = 0 + \left(-G\frac{M \cdot m}{R}\right) = -G\frac{M \cdot m}{R}$$

A velocidade de escape v_e comunicaríalle a enerxía ΔE necesaria para situalo no infinito.

$$\Delta E = \frac{1}{2} m \cdot v_e^2 = (E_c + E_p)_{\infty} - (E_c + E_p)_s$$

$$\frac{1}{2} m v_e^2 = 0 - \left(-G \frac{M \cdot m}{R} \right) = G \frac{M \cdot m}{R}$$

Despexando a velocidade de escape, queda:

$$v_{\rm e} = \sqrt{2 G \frac{M}{R}}$$

A densidade é a masa da unidade de volume dun corpo. Como o volume dunha esfera de raio R é $V = 4/3 \pi R^3$, a masa, M, dunha esfera de raio R e densidade ρ é:

$$M = V \cdot \rho = 4/3 \pi R^3 \cdot \rho$$

Substituíndo esta expresión na velocidade de escape da Terra:

$$v_{\text{eT}} = \sqrt{2G \frac{M_{\text{T}}}{R_{\text{T}}}} = \sqrt{2G \frac{4/3\pi R_{\text{T}}^3 \cdot \rho}{R_{\text{T}}}} = \sqrt{8/3\pi G R_{\text{T}}^2 \cdot \rho}$$

A expresión semellante para o planeta P de masa *M* sería:

$$v_{\rm eP} = \sqrt{8/3\pi G R_{\rm P}^2 \cdot \rho}$$

Dividindo a segunda expresión entre a primeira, quedaría:

$$\frac{v_{\rm eP}}{v_{\rm eT}} = \sqrt{\frac{8/3\pi G \rho \cdot R_{\rm P}^2}{8/3\pi G \rho \cdot R_{\rm T}^2}} = \frac{R_{\rm P}}{R_{\rm T}}$$

Como $R_P = \frac{1}{2} R_T$

$$\frac{v_{\rm eP}}{v_{\rm eT}} = \frac{R_{\rm P}}{R_{\rm T}} = \frac{1/2 \frac{R_{\rm T}}{R_{\rm T}}}{\frac{R_{\rm T}}{R_{\rm T}}} = \frac{1}{2} = 0.5$$

- 1.2. A ecuación de Einstein $E = m \cdot c^2$ implica que:
 - A) Unha masa *m* necesita unha enerxía *E* para poñerse en movemento.
 - B) A enerxía *E* é a que ten unha masa *m* cando vai á velocidade da luz.
 - C) E é a enerxía equivalente a unha masa m.

(A.B.A.U. extr. 21)

Solución: C

A ecuación de Einstein establece a relación entre masa e enerxía.

$$E = m \cdot c^2$$

E representa a enerxía dunha partícula e m é a súa masa. Masa e enerxía son aspectos equivalentes. Pódese dicir que E é a enerxía que se pode obter dunha masa m se se desintegrase.

- 2.1. Unha esfera metálica cárgase positivamente atopándose en equilibrio electrostático. O campo eléctrico será:
 - A) Nulo no interior e constante no exterior da esfera.
 - B) Máximo na superficie e nulo no interior.
 - C) Aumenta linealmente dende o centro da esfera.

(A.B.A.U. extr. 21)

Solución: B

A intensidade, $\overline{\textbf{\textit{E}}}$, de campo eléctrico no interior dun condutor metálico en equilibrio é nula. Se non fose así, as cargas desprazaríanse debido á forza do campo.

O campo eléctrico no exterior é igual que o campo creado por unha carga puntual situada no centro da esfera, o seu valor diminúe co cadrado da distancia ao centro:

$$\vec{E} = K \frac{Q}{r^2} \vec{u}$$

Como a carga é positiva, o valor é máximo na superficie.

- 2.2. Obsérvase que o número de núcleos N_0 inicialmente presentes nunha mostra de isótopo radioactivo queda reducida a $N_0/16$ ao cabo de 24 horas. O período de semidesintegración é:
 - A) 4 h.
 - B) 6 h.
 - C) 8,6 h.

(A.B.A.U. extr. 21)

Solución: B

A lei de desintegración radioactiva, que di que o número de átomos que se desintegran na unidade de tempo é proporcional á cantidade de átomos presentes, ($-dN = \lambda \cdot N \cdot dt$), pode expresarse como:

$$N = N_0 \cdot e^{-\lambda \cdot t}$$

N é a cantidade de átomos que quedan sen desintegrar ao cabo dun tempo t, N_0 é a cantidade inicial de átomos e λ é a constante de desintegración.

Obtense unha versión máis manexable da ecuación de desintegración radioactiva, $N = N_0 \cdot e^{-\lambda \cdot t}$, pasando N_0 ao outro membro, aplicando logaritmos neperianos e cambiando o signo:

$$-\ln (N/N_0) = \ln (N_0/N) = \lambda \cdot t$$

Calcúlase a constante de desintegración radioactiva substituíndo N por $N_{\rm o}/16$ e t por 24 h na expresión logarítmica:

$$-\ln\frac{(N_0/16)}{N_0} = -\ln\frac{1}{16} = \ln 16 = 2,77 = \lambda \cdot 24 [h]$$
$$\lambda = \frac{2,77}{24[h]} = 0,116 \text{ h}^{-1}$$

O período de semidesintegración dunha substancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. Cando $t = T_{1/2}$, $N = N_0 / 2$.

Poñendo na ecuación logarítmica: (2 N) en lugar de N_0 , e $T_{1/2}$ en vez de t, queda:

$$\ln (2 N/N) = \lambda \cdot T_{1/2} \qquad \Longrightarrow \lambda \cdot T_{1/2} = \ln 2$$

Calcúlase o período de semidesintegración da relación coa constante de desintegración radioactiva:

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0,693}{0,116 [h^{-1}]} = 6 h$$

Análise: Se o período de semidesintegración é de 6 horas, ao cabo de 24 / 6 = 4 períodos de semidesintegración quedarán $N = N_0 \cdot (1/2)^4 = 1/16 N_0$.

- 3.1. Dúas partículas con cargas, respectivamente, Q_1 e Q_2 , describen traxectorias circulares de igual raio nunha rexión na que hai un campo magnético estacionario e uniforme. Ambas as partículas:
 - A) Deben ter a mesma masa.
 - B) Deben ter a mesma velocidade.
 - C) Non é necesario que teñan a mesma masa nin velocidade.

(A.B.A.U. extr. 21)

Solución: C

Se só actúa a forza magnética:

$$\Sigma \overline{F} = \overline{F}_{R}$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Se as cargas son distintas, para que o raio sexa o mesmo, deber ter momentos lineais, $m \cdot v$, proporcionais ás cargas. Pero non é necesario que teñan a mesma masa ou velocidade.

$$\frac{m_1 \cdot v_1}{Q_a} = \frac{m_2 \cdot v_2}{Q_2} = R \cdot B = \text{constante}$$

- 3.2. No fondo dun recipiente cheo de auga atópase un tesouro. A distancia aparente entre o tesouro e a superficie é de 30 cm. Cal é a profundidade do recipiente?:
 - A) 30 cm.
 - B) Maior de 30 cm.
 - C) Menor de 30 cm.

Datos: n(aire) = 1; n(auga) = 1,33.

(A.B.A.U. extr. 21)

Solución: B

Aplicando a lei de Snell da refracción:

$$1,33 \cdot \text{sen } \theta_i = 1,00 \cdot \text{sen } \theta_r$$

Por tanto:

$$sen \theta_{i} < sen \theta_{r}$$
$$\theta_{i} < \theta_{r}$$

Á vista do debuxo debe cumprirse que: $h > h_a$

- 4. Nunha experiencia para medir h, ao iluminar unha superficie metálica cunha radiación de lonxitude de onda $\lambda = 200 \times 10^{-9}$ m, o potencial de freado para os electróns é de 1,00 V. Se $\lambda = 175 \times 10^{-9}$ m, o potencial de freado é 1,86 V.
 - a) Determina o traballo de extracción do metal.
 - b) Representa o valor absoluto do potencial de freado fronte á frecuencia e obtén da dita representación o valor da constante de Planck.

Datos: $|q_e| = 1.6 \times 10^{-19} \text{ C}$; $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

(A.B.A.U. extr. 21)

Solución:

a) A ecuación de Einstein do efecto fotoeléctrico pode escribirse:

$$E_{\rm f} = W_{\rm e} + E_{\rm c}$$

Na ecuación, $E_{\rm f}$ representa a enerxía do fotón incidente, $W_{\rm e}$ o traballo de extracción do metal e $E_{\rm c}$ a enerxía cinética máxima dos electróns (fotoelectróns) emitidos.

A enerxía que leva un fotón de frecuencia f é:

$$E_{\rm f} = h \cdot f$$

En esta ecuación, h é a constante de Planck.

O potencial de freado V é a diferencia de potencial que detén o paso de electróns, sendo unha medida da súa enerxía cinética máxima $E_{\rm c}$, sendo q a carga do electrón en valor absoluto:

$$E_{\rm c} = q \cdot V$$

A ecuación de Einstein quedaría:

$$h \cdot f = W_e + q \cdot V$$

O traballo de extracción e a constante de Planck poden calcularse resolvendo un sistema de dúas ecuacións con dúas incógnitas:

$$h \cdot f_1 = W_e + q \cdot V_1$$
$$h \cdot f_2 = W_e + q \cdot V_2$$

Expresando a frecuencia f en función da lonxitude de onda λ : $f = c/\lambda$ e substituíndo os datos, supoñendo tres cifras significativas, quedaría:

$$\begin{cases} \frac{h \cdot 3 \cdot 10^{8}}{200 \cdot 10^{-9}} = W_{e} + 1.6 \cdot 10^{-19} \cdot 1.00 \\ \frac{h \cdot 3 \cdot 10^{8}}{175 \cdot 10^{-9}} = W_{e} + 1.6 \cdot 10^{-19} \cdot 1.86 \end{cases} \Rightarrow \begin{cases} 1.50 \cdot 10^{15} \cdot h = W_{e} + 1.60 \cdot 10^{-19} \\ 1.71 \cdot 10^{15} \cdot h = W_{e} + 2.98 \cdot 10^{-19} \end{cases}$$

Restándoas obteríase unha expresión en función de h:

$$0.21 \cdot 10^{15} \cdot h = 1.38 \cdot 10^{-19}$$

Calcúlase *h*, despexándoa da relación anterior:

$$h = \frac{1,38 \cdot 10^{-19}}{0.21 \cdot 10^{15}} = 6,6 \cdot 10^{-34} \text{ J} \cdot \text{s}$$

Calcúlase o traballo de extracción substituíndo o valor de *h* na primeira das dúas ecuacións:

$$1.5 \cdot 10^{15} \cdot 6.6 \cdot 10^{-34} = W_{e} + 1.6 \cdot 10^{-19}$$

$$W_{e} = 1.5 \cdot 10^{15} \cdot 6.6 \cdot 10^{-34} - 1.6 \cdot 10^{-19} = 8.3 \cdot 10^{-19} \text{ J}$$

b) Cunha folla de cálculo pódese debuxar a gráfica e obter a ecuación da liña de tendencia. Ordenamos a ecuación de Einstein para que se axuste á gráfica do potencial de freado fronte a frecuencia.

$$V = (h/q) \cdot f - W_e/q$$

Esta é a ecuación dunha recta:

$$y = m \cdot x + b$$

Nela, V é a variable dependente (y), f é a variable independente (x), (h/q) sería a pendente m e $(-W_e/q)$ a ordenada b na orixe.

$$V = 4.01 \cdot 10^{-15} f - 5.02$$

O traballo de extracción W_e pode calcularse da ordenada na orixe b:

$$b = -5,02 = -W_e / q$$

$$W_e = 5.02 \cdot q = 5.02 \text{ [V]} \cdot 1.6 \cdot 10^{-19} \text{ [C]} = 8.0 \cdot 10^{-19} \text{ J}$$

A constante de Planck *h* obtense da pendente *m*:

$$h = q \cdot m = 1,6 \cdot 10^{-19} \text{ [C]} \cdot 4,01 \cdot 10^{-15} \text{ [V/s}^{-1]} = 6,4 \cdot 10^{-34} \text{ J} \cdot \text{s}$$

b) O período con que a nave describe a órbita.

Dato:
$$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$$
. (A.B.A.U. extr. 21)

Rta.: a) v = 1630 m/s; b) $T = 7,15 \cdot 10^3 \text{ s.}$

Cifras significativas: 3

 $M = 7.36 \cdot 10^{22} \text{ kg}$ $r = 1850 \text{ km} = 1.85 \cdot 10^6 \text{ m}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

ν Τ

m

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^{2}} \vec{u}_{r}$$

$$\Sigma \vec{F} = m \cdot \vec{a}$$

$$v = \frac{2\pi \cdot r}{T}$$

$$a_{N} = \frac{v^{2}}{T}$$

Datos

Masa da Lúa Raio da órbita Constante da gravitación universal

Incógnitas

Valor da velocidade lineal do satélite

Período da órbita

Outros símbolos

Masa do satélite

Ecuacións

Lei de Newton da gravitación universal

(forza que exerce un planeta esférico sobre un corpo puntual)

2.ª lei de Newton da Dinámica

Velocidade lineal nun movemento circular uniforme de raio r e período T

Aceleración normal dun obxecto que se move cunha velocidade lineal, v, nunha traxectoria circular de radio r

Solución:

A forza gravitacional, \overline{F}_G , que exerce un astro de masa M sobre un satélite de masa m que xira arredor del nunha órbita de radio r, é unha forza central, está dirixida cara ao astro, e réxese pola lei de Newton da gravitación universal:

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^{2}} \vec{u}_{r}$$

Nesta expresión, G é a constante da gravitación universal, e \overline{u}_r , o vector unitario na dirección da liña que une o astro co satélite. En módulos:

$$F_{\rm G} = G \frac{M \cdot m}{r^2}$$

En moitos casos a traxectoria do satélite é practicamente circular arredor do centro do astro. Como a forza gravitacional é unha forza central, a aceleración só ten compoñente normal, a_N . Ao non ter aceleración tanxencial, o módulo, v, da velocidade lineal é constante e o movemento é circular uniforme.

A aceleración normal, nun movemento circular uniforme de raio r, obtense da expresión:

$$a_{\rm N} = \frac{v^2}{r}$$

Como a forza gravitacional que exerce o astro sobre o satélite é moito maior que calquera outra, pódese considerar que é a única forza que actúa.

$$\Sigma \overline{F} = \overline{F}_{G}$$

A 2.ª lei de Newton di que a forza resultante sobre un obxecto produce unha aceleración directamente proporcional á forza, sendo a súa masa, *m*, a constante de proporcionalidade.

$$\Sigma \overline{F} = m \cdot \overline{a}$$

Expresada para os módulos, queda:

$$\left|\sum \vec{F}\right| = m \cdot |\vec{a}|$$

$$F_{\rm G} = m \cdot a_{\rm N}$$

Substituíndo a expresión do módulo, F_G, da forza gravitacional, e a da aceleración normal, queda:

$$G\frac{M \cdot m}{r^2} = m \frac{v^2}{r}$$

Despexando a velocidade orbital do satélite, queda:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

a) Calcúlase a velocidade orbital substituíndo os valores dos datos:

$$v = \sqrt{\frac{G \cdot M}{r}} = \sqrt{\frac{6,67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \cdot 7,36 \cdot 10^{22} \left[\text{kg} \right]}{1,85 \cdot 10^6 \left[\text{m} \right]}} = 1,63 \cdot 10^3 \text{ m/s} = 1,63 \text{ km/s}$$

b) O período calcúlase a partir da expresión da velocidade lineal no movemento circular uniforme:

$$v = \frac{2\pi \cdot r}{T}$$
 $\Rightarrow T = \frac{2\pi \cdot r}{v} = \frac{2 \cdot 3.14 \cdot 1.85 \cdot 10^6 \text{ [m]}}{1.63 \cdot 10^3 \text{ [m/s]}} = 7.15 \cdot 10^3 \text{ s} = 1 \text{ h} 59 \text{ min}$

- 6. Por un fío condutor rectilíneo e infinitamente longo, situado sobre o eixe X circula unha corrente eléctrica no sentido positivo do eixe. O valor do campo magnético producido pola devandita corrente é de 6×10^{-5} T no punto A(0, $-y_A$, 0), e de 8×10^{-5} T no punto B(0, $+y_B$, 0). Sabendo que yA + yB = 21 cm, determina:
 - a) A intensidade que circula polo fío condutor.
 - b) O módulo e a dirección do campo magnético producido pola devandita corrente no punto de coordenadas (0, 8, 0) cm.

Dato:
$$\mu_0 = 4 \pi \times 10^{-7} \text{ T·m·A}^{-1}$$
. (A.B.A.U. extr. 21)
Rta.: a) $I = 36 \text{ A}$; b) $\overline{\mathbf{B}} = 9 \cdot 10^{-5} \overline{\mathbf{k}} \text{ T}$.

Datos

Campo magnético no punto A Campo magnético no punto B Posición do punto A Posición do punto B

Distancia entre os puntos A e B

Posición do punto C

Permeabilidade magnética do baleiro

Incógnitas

Intensidade de corrente polo condutor

Módulo e dirección do campo magnético no punto C

Ecuacións

Lei de Biot-Savart: campo magnético, $\overline{\textbf{\textit{B}}}$, creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Cifras significativas: 3

$$\overline{\mathbf{B}}_{A} = 6,00 \cdot 10^{-5} \text{ T}
\overline{\mathbf{B}}_{B} = 8,00 \cdot 10^{-5} \text{ T}
\underline{\mathbf{r}}_{A} (0, -y_{A}, 0) \text{ cm}
\underline{\mathbf{r}}_{B} (0, +y_{B}, 0) \text{ cm}
\underline{\mathbf{r}}_{C} (0, 8,00, 0) \text{ cm}
\underline{\mathbf{r}}_{C} (0, 8,00, 0) \text{ cm}
\underline{\mathbf{r}}_{C} = 4 \pi \cdot 10^{-7} \text{ T·m·A}^{-1}$$

Υ

 $\frac{I}{m{B}_{\mathrm{C}}}$

X

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético $\overline{\textbf{\textit{B}}}$ creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

Substituíndo valores na ecuación do campo magnético creado polo condutor no punto $A(0, -y_A, 0)$ cm:

$$|\vec{B}_{A}| = 6,00 \cdot 10^{-5} [T] = \frac{4 \pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot I}{2 \pi \cdot \gamma_{A} \cdot 10^{-2} [m]}$$

$$I = 3.00 \cdot v_{A}$$

Analogamente para o punto $B(0, y_B, 0)$ cm:

$$|\vec{B}_{B}| = 8,00 \cdot 10^{-5} [T] = \frac{4 \pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot I}{2 \pi \cdot y_{B} \cdot 10^{-2} [m]}$$

$$I = 4,00 \cdot y_{B}$$

Empregando o dato:

$$y_{\rm A} + y_{\rm B} = 21.0$$

Despexando y_A e y_B nas ecuacións anteriores, pódese escribir:

$$\frac{I}{3,00} + \frac{I}{4,00} = 21,0 \Rightarrow \frac{4,00 I + 3,00 I}{12,0} = 21,0$$

$$I = \frac{21,0 \cdot 12,0}{7,00} = 36,0 \text{ A}$$

$$y_{A} = 12,0 \text{ cm}$$

$$y_{B} = 9,00 \text{ cm}$$

b) O campo magnético creado polo condutor no punto C(0, 8, 0) cm é:

$$\vec{\boldsymbol{B}}_{\mathrm{C}} = \frac{\mu_{0} \cdot I}{2\pi \cdot r} (\vec{\mathbf{k}}) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 36,0 \left[\text{A} \right]}{2\pi \cdot 0,0800 \left[\text{m} \right]} (\vec{\mathbf{k}}) = 9,00 \cdot 10^{-5} \vec{\mathbf{k}} \text{ T}$$

- 7. Unha onda harmónica transversal de frecuencia 2 Hz, lonxitude de onda 20 cm e amplitude 4 cm, pro- págase por unha corda no sentido positivo do eixe X. No intre t = 0, a elongación no punto x = 0 é y = 2,83 cm.
 - a) Expresa matematicamente a onda e represéntaa graficamente en (t = 0; 0 < x < 40 cm).
 - b) Calcula a velocidade de propagación da onda e determina, en función do tempo, a velocidade de oscilación transversal da partícula situada en x = 5 cm.

(A.B.A.U. extr. 21)

Rta.: a) $y = 0.0400 \text{ sen}(4 \pi t - 10 \pi x + \pi / 4) \text{ [m]}$; b) $v_p = 0.400 \text{ m/s}$; $v = 0.503 \cos(4 \pi t - \pi / 4) \text{ [m/s]}$.

Datos	Cifras significativas: 3
Frecuencia	$f = 2,00 \text{ Hz} = 2,00 \text{ s}^{-1}$
Lonxitude de onda	$\lambda = 20.0 \text{ cm} = 0.200 \text{ m}$
Amplitude	A = 0.0400 m = 0.0400 m
Elongación en $x = 0$ para $t = 0$	y = 2.83 cm = 0.0283 m
Incógnitas	
Ecuación da onda (frecuencia angular e número de onda)	ω, k
Velocidade de propagación	$ u_{ m p}$
Velocidade da partícula en $x = 5$ cm en función do tempo	ν
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T
Ecuacións	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Frecuencia angular	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_p = \lambda \cdot f$

Solución:

a) Tómase a ecuación dunha onda harmónica en sentido positivo do eixe X:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3.14 \cdot 2.00 \text{ [s}^{-1}] = 4.00 \cdot \pi \text{ [rad} \cdot \text{s}^{-1}] = 12.6 \text{ rad} \cdot \text{s}^{-1}$$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14 \text{ [rad]}}{0,200 \text{ [m]}} = 10\pi \text{ rad/m} = 31,4 \text{ rad/m}$$

Calcúlase a fase inicial a partir da elongación en x = 0 para t = 0.

$$y(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + \varphi_0) \text{ [m]}$$

$$0.0283 \text{ [m]} = 0.0400 \cdot \text{sen}(12.6 \cdot 0 - 31.4 \cdot 0 + \varphi_0) \text{ [m]} = 0.0400 \cdot \text{sen}(\varphi_0)$$

$$\text{sen}(\varphi_0) = 0.0283 / 0.0400 = 0.721$$

$$\varphi_0 = \text{arcsen } 0.721 = 0.786 \text{ rad} = \pi / 4 \text{ rad}$$

A ecuación de onda queda:

$$v(x, t) = 0.0400 \cdot \text{sen}(12.6 \cdot t - 31.4 \cdot x + 0.786) \text{ [m]} = 0.0400 \cdot \text{sen}(4 \pi \cdot t - 10 \pi \cdot x + \pi / 4) \text{ [m]}$$

A representación gráfica é a da figura:

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e a frecuencia:

$$v_p = \lambda \cdot f = 0,200 \text{ [m]} \cdot 2,00 \text{ [s}^{-1}] = 0,400 \text{ m/s}$$

A velocidade obtense derivando a ecuación de movemento con respecto ao tempo:

$$v = \frac{dy}{dt} = \frac{d[0,040 \text{ } 0\text{sen}(12,6 \cdot t - 31,4 \cdot x + 0,786)]}{dt} = 0,040 \text{ } 012,6 \cos(12,6 \cdot t - 31,4 \cdot x + 0,786) \text{ [m/s]}$$

$$v = 0,503 \cdot \cos(12,6 \cdot t - 31,4 \cdot x + 0,786) \text{ [m/s]}$$

Para x = 5 cm (=0,05 m), a expresión queda:

$$v = 0.503 \cdot \cos(12.6 \cdot t - 31.4 \cdot 0.0500 + 0.786) = 0.503 \cdot \cos(12.6 \cdot t - 0.786) = 0.503 \cdot \cos(4 \pi \cdot t - \pi / 4) \text{ [m/s]}$$

- 8. Un obxecto de 4,0 cm de altura está situado a 20,0 cm dunha lente diverxente de 20,0 cm de distancia focal.
 - a) Calcula a potencia da lente e a altura da imaxe.
 - b) Realiza o diagrama de raios e indica as características da imaxe.

(A.B.A.U. extr. 21)

Rta.: a) P = -5,00 dioptrías; y' = 2,0 cm.

Datos (convenio de signos DIN)

Altura do obxecto Posición do obxecto Distancia focal da lente

Incógnitas

Potencia da lente Altura da imaxe

Ecuacións

Relación entre a posición da imaxe e a do obxecto nas lentes

Aumento lateral nas lentes

Potencia dunha lente

Cifras significativas: 3

$$y = 4,00 \text{ cm} = 0,0400 \text{ m}$$

 $s = -20,0 \text{ cm} = -0,200 \text{ m}$
 $f = -20,0 \text{ cm} = -0,200 \text{ m}$

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

$$A \qquad \qquad \iota = \frac{y'}{y} = \frac{s'}{s}$$

$$P = \frac{1}{f}$$

Solución:

a) A potencia da lente é a inversa da distancia focal. Como a lente é diverxente, esta é negativa:

$$P = \frac{1}{f'} = \frac{1}{-0,200[\text{m}]} = -5,00 \text{ dioptrias}$$

Polo convenio de signos, os puntos situados á esquerda da lente teñen signo negativo.

Para unha lente diverxente, f = -0.20 m.

Substitúense os datos na ecuación das lentes:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'} \Rightarrow \frac{1}{s'} - \frac{1}{-0,200 \, [\, m\,]} = \frac{1}{-0,200 \, [\, m\,]}$$

Calcúlase a posición da imaxe despexando:

$$\frac{1}{s'} = \frac{1}{-0,200 \text{ [m]}} - \frac{1}{-0,200 \text{ [m]}} = -5,00 \text{ [m]}^{-1} - 5,00 \text{ [m]}^{-1} = -10,00 \text{ [m]}^{-1} \Rightarrow s' = -0,100 \text{ m}$$

A imaxe fórmase a 10 cm á esquerda da lente.

Substitúense os datos na ecuación do aumento lateral nas lentes, e calcúlase a altura da imaxe despexando:

$$A_{\rm L} = \frac{y'}{y} = \frac{s'}{s} = \frac{-0,100 \text{ [m]}}{-0,200 \text{ [m]}} = 0,500$$

$$y' = A_L \cdot y = 0.500 \cdot 0.040 \text{ m} = 0.020 \text{ m} = 2.0 \text{ cm}$$

A imaxe é virtual (s' < 0), dereita ($A_L > 0$) e menor ($|A_L| < 1$). b)

Debúxase un esquema de lente diverxente (unha liña vertical rematada por dous «ángulos» ou puntas de frechas investidas), e sitúase o foco F á esquerda da lente.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta.

Debúxase de forma que a súa prolongación pase polo foco da esquerda, F, un punto simétrico ao foco F'.

Os raios non se cortan. Córtase o raio dirixido ao centro da lente coa prolongación do raio refractado.

O punto de corte é o correspondente á punta da imaxe I. Debúxase unha frecha vertical nese punto.

Análise: Os resultados dos cálculos numéricos están en consonancia co debuxo.

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 16/07/24