Daily Prep Assignment for Feb 23rd

Overview

Basic learning objectives

These are the tasks you should be able to perform with reasonable fluency when you arrive at our next class meeting. Important new vocabulary words are indicated *in italics*.

- If $\mathbf{r}(\mathbf{t})$ is a position function then the derivative, $\mathbf{r}'(\mathbf{t})$, is its velocity vector.
- The derivative of vector valued function $\mathbf{r}(\mathbf{t}) = \langle \mathbf{x}(\mathbf{t}), \mathbf{y}(\mathbf{t}), \mathbf{z}(\mathbf{t}) \rangle$ is computed component-wise, i.e. $\mathbf{r}'(\mathbf{t}) = \langle \mathbf{x}'(\mathbf{t}), \mathbf{y}'(\mathbf{t}), \mathbf{z}'(\mathbf{t}) \rangle$
- The *anti-derivative* of a vector valued function is computed component-wise.

Advanced learning objectives

In addition to mastering the basic objectives, here are the tasks you should be able to perform **after class**, with **practice**.

- The second derivative of a position function is its acceleration function.
- Draw the position, velocity, and acceleration vectors given a vector value function.
- Find an equation for the tangent line of a vector valued function at a specified point.
- If $\mathbf{v}(\mathbf{t})$ is a velocity function then the anti-derivative is its position function.
- Compute the arc length of a curve.
- Understand why the arc length computation works.
- Given a vector valued function know how parametrize with respect to arc length.

To prepare for class

Preview activities:

- Preview activity 9.7.1
- Preview activity 9.8.1

Reading:

- Read section 9.7
- Read the first half of section 9.8 about arc length and parameterizing with respect to arc length. We will not be covering curvature.

Watching: Watch these additional resources if you want support reading the text.

- 1. Overview of 9.7: https://youtu.be/-J0XHyJmpUA
- 2. Overview of 9.8: https://youtu.be/nmj-0tavw3A

During and after class

- 9.7.2
- 9.7.3
- 9.7.4
- 9.7.5
- 9.7.6
- 9.8.2
- 9.8.3
- 9.8.4
- WeBWork is optional