



# **Infraestructura Cloud Sostenible**

Administración de sistemas informáticos en red / Presencial

Ricardo Evans Llanos

Tutor del TFG



# DEDICATORIA (OPCIONAL)



# Contenido

| DEDI | ICATORIA (OPCIONAL)                                                             | 2  |
|------|---------------------------------------------------------------------------------|----|
| ABS  | STRACT                                                                          | 4  |
| JUS  | TIFICACIÓN DEL PROYECTO                                                         | 5  |
| INTF | RODUCCIÓN                                                                       | 7  |
| OBJ  | ETIVOS                                                                          | 8  |
| Ol   | bjetivo 1: Comparación de centro de datos tradicionales                         | 8  |
| Ol   | bjetivo 2: Evaluar el término "sostenibilidad" utilizando comparativas métricas | 9  |
| Ol   | bjetivo 3: Implementar herramientas de monitorización                           | 9  |
| Ol   | bjetivo 4: Formular prácticas sostenibles para la gestión de infraestructuras   | 11 |
| Ol   | bjetivo 5: Exponer los beneficios de una infraestructura cloud sostenible       | 11 |
| DES  | SCRIPCIÓN                                                                       | 13 |
| a.   | Arquitectura del Proyecto:                                                      | 13 |
| b.   | Casos de uso                                                                    | 14 |
| DISE | EÑOS                                                                            | 21 |
| a.   | Diagrama E/R (Entidad - Relación):                                              | 21 |
| b.   | Diagrama de la base de datos:                                                   | 22 |
| C.   | Descripción de las tablas                                                       | 22 |
| d.   | Relaciones entre las tablas:                                                    | 24 |
| e.   | Diagrama de flujo de navegación:                                                | 25 |
| f.   | Interfaces:                                                                     | 25 |
| TEC  | NOLOGÍA                                                                         | 27 |
| MET  | TODOLOGÍA                                                                       | 28 |
| DES  | SARROLLO                                                                        | 31 |
| Ol   | bjetivo 1                                                                       | 31 |
| Ol   | bjetivo 2                                                                       | 33 |
| Ol   | bjetivo 3                                                                       | 34 |
| TRA  | BAJOS FUTUROS                                                                   | 52 |
| CON  | NCLUSIONES                                                                      | 53 |
| REF  | ERENCIAS                                                                        | 54 |



# **ABSTRACT**

El objetivo del presente proyecto es implantar un entorno cloud, optimizando el uso de recursos y reduciendo la huella de carbono asociada a dicha implementación. Mediante la integración de la computación en la Nube Verde (Green Cloud), la automatización de uso de recursos de hardware y el cambio a energías renovables, se aspira demostrar que es posible combinar la eficiencia operativa en un ámbito más ecológico (responsabilidad con el medio ambiente). También se mostrarán cuadros comparativos de los principales proveedores del mercado, una propuesta sobre prácticas sostenibles para la gestión de infraestructuras, y la implementación de herramientas de monitorización.

Se presentará un marco teórico, en conjunto con un plan práctico que disminuyan en un porcentaje importante las emisiones de carbono frente a lo que conocemos hoy, sin sacrificar la eficiencia, ni la rentabilidad. El fin es logar un diseño que se pueda copiar en cualquier parte, que esté listo para manejar las tareas actuales que consumen gran cantidad de datos y procesamiento, como las de IA, Análisis de datos (Big Data)<sup>1</sup>.

The objective of this project is to implement a cloud environment that optimizes resource use and reduces the carbon footprint associated with such an implementation. By integrating **Green Cloud computing**, **automating hardware resource usage**, and **changing to renewable energy sources**, the aim is to demonstrate that operational efficiency can coexist with a more ecological approach (environmental responsibility). Comparative tables of the main suppliers in the market will also be shown, a proposal on sustainable practices for infrastructure management and the implementation of monitoring tools.

A theoretical framework will be presented, combined with a practical plan to significantly reduce carbon emissions compared to current standards, without compromising efficiency or profitability. The goal is to achieve a replicable design that can be applied anywhere, ready to handle today's data and processing intensive tasks, such as those in Al and Big Data analysis.

-

<sup>&</sup>lt;sup>1</sup> (The International Energy Agency IEA, 2023)



# JUSTIFICACIÓN DEL PROYECTO

La justificación de este proyecto responde a la necesidad de un entorno cloud sostenible, y está basado en los siguientes cuatro aspectos: ambiental, tecnológico, económico y responsabilidad social corporativa.

**Medio ambiente:** El impacto ambiental de los centros de datos es indiscutible, consumen grandes cantidades de energía, en muchos casos dependen de la utilización de fuentes de recursos no renovables y además generan basura tecnológica<sup>2</sup>.

**Tecnológico:** La erupción de la AI, el IoT y el Big Data<sup>3</sup>, requieren cada vez más infraestructuras más potentes. Pero, la eficiencia en cuanto al consumo energético no debe mermar el rendimiento de los sistemas.

**Económico:** Debemos ver este proyecto como una ventaja competitiva. Aunque la inversión inicial en tecnologías avanzadas y la adaptación para utilizar de recursos renovables puede ser importante, a largo plazo se consiguen beneficios por la eficiencia energética y la no utilización de energías de fuentes fósiles<sup>4</sup>.

Responsabilidad Social Corporativa (RSC): Las empresas buscan alinearse con los Objetivos de Desarrollo Sostenible (ODS) de la ONU<sup>5</sup> cada vez más, esto no solo mejora la imagen corporativa, sino que también contribuye a cumplir con estos dichos objetivos.

<sup>&</sup>lt;sup>2</sup> (The International Energy Agency IEA, 2023)

<sup>&</sup>lt;sup>3</sup> (The International Energy Agency IEA, 2023)

<sup>&</sup>lt;sup>4</sup> (IRENA - International Renewable Energy Agency, 2023)

<sup>&</sup>lt;sup>5</sup> (Naciones Unidas - The 17 Goals, s.f.)



### **Tabla comparativa de Proveedores Cloud Sostenibles**

| Proveedor<br>Cloud              | Objetivos                                           | Eficiencia<br>Energética | Monitoreo                                   | Certificaciones                                  | Innovación<br>Propuesta                                       |
|---------------------------------|-----------------------------------------------------|--------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Google<br>Cloud <sup>6</sup>    | 100% energías<br>renovables<br>desde 2017           | Alta                     | Google Cloud<br>Operations Suite            | CarbonNeutral,<br>ISO 14001                      | -                                                             |
| Microsoft<br>Azure <sup>7</sup> | 100%<br>renovables para<br>2025                     | Media-Alta               | Azure Monitor                               | CarbonNeutral,<br>ISO 50001                      | -                                                             |
| AWS<br>(Amazon) <sup>8</sup>    | 50% renovables,<br>objetivo de 100%<br>para 2025    | Media                    | AWS CloudWatch                              | ISO 14001, LEED<br>Certification                 | -                                                             |
| IBM Cloud <sup>9</sup>          | 55% renovables, objetivo de 75% para 2025           | Media                    | IBM Cloud<br>Monitoring                     | ISO 14001,<br>Energy Star                        | -                                                             |
| TFG                             | 100% energías<br>renovables<br>desde el<br>comienzo | Alta                     | Grafana +<br>Prometheus +<br>Python + MySQL | ISO 14001, LEED<br>Certification (en<br>proceso) | Automatización<br>avanzada para<br>optimización<br>energética |

Tabla 1 - Comparativa de proveedores cloud

### Marcos normativos y legales:

- Internacionales
  - o Acuerdo de París (2015)
  - o Objetivos de Desarrollo Sostenible (ODS) de la ONU
- Regulaciones Europeas
  - Pacto Verde Europeo (European Green Deal)
  - o Directiva de Eficiencia Energética (UE)
- Regulaciones en Estados Unidos
  - Ley de Reducción de la Inflación (Inflation Reduction Act, 2022)
  - Normativas Estatales
- Estándares de la Industria
  - o ISO 14001 (Sistemas de Gestión Ambiental)
  - LEED (Liderazgo en Energía y Diseño Ambiental)
- Justificación Legal para Proveedores Cloud
  - o Justificación Legal para Proveedores Cloud
  - o Regulaciones de Protección de Datos y Sostenibilidad (GDPR)

<sup>7</sup> (Microsoft, 2024)

<sup>&</sup>lt;sup>6</sup> (Google, 2024)

<sup>&</sup>lt;sup>8</sup> (Amazon Web Services, 2024)

<sup>&</sup>lt;sup>9</sup> (IBM, 2024)



# INTRODUCCIÓN

El cloud computing o computación en la nube, viene dando pasos agigantados en los últimos años, y ha cambiado la forma en que las grandes compañías y las personas ponen a disposición o acceden a los recursos tecnológicos. También, impulsado por una necesidad de reducir costos operativos, flexibilidad y escalabilidad. Pero es cambio tiene un impacto medio ambiental muy alto.

Actualmente los centros de datos consumen aproximadamente entre el 1% y 2% de la electricidad global, cifra que podría duplicarse para 2030 debido al ascenso de la IA, el Big Data y el Internet de las Cosas (IoT)10. En promedio una búsqueda en ChatGpt necesita 10 veces más que una búsqueda tradicional en Google11.

Debido a lo previamente expuesto, ¿cómo podríamos implementar y escalar una infraestructura en la nube sin comprometer aún más en medioambiente?

En el presente proyecto, propongo la implantación entorno cloud eficiente y escalable, pero también como un modelo de sostenibilidad. Integrando energías renovables, hardware de bajo consumo y algoritmos de IA para la gestión energética y que constituyen la base de éste trabajo.

\_

<sup>&</sup>lt;sup>10</sup> (The International Energy Agency IEA, 2023)

<sup>&</sup>lt;sup>11</sup> (Goldman Sachs, 2024)



# **OBJETIVOS**

El objetivo principal del proyecto es implementar un entorno cloud que optimice el uso de recursos, reduzca el consumo energético y minimice la huella de carbono, dando como resultado que es posible combinar la eficiencia operativa con responsabilidad con el medio ambiente.

Los objetivos a desarrollar son:

- 1. Comparación de centro de datos tradicionales contra soluciones cloud sostenibles
- 2. Evaluar el término "sostenibilidad", utilizando comparativas métricas de proveedores cloud, en cuanto al uso energías renovables y la eficiencia energética
- 3. Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono
- 4. Formular prácticas sostenibles para la gestión de infraestructuras cloud, adicionando la automatización de recursos y el uso de energías renovables (energía solar, enfriamiento líquido, reutilización, reciclaje)
- 5. Exponer los beneficios de una infraestructura cloud sostenible a través de métricas cuantificables, como la reducción del consumo energético y los costos operativos, durante un periodo de 60 días continuos

Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles

R01 - Recopilación de datos de consumo energético y la huella de carbono de los centros de datos tradicionales.

R01F01 - Investigar y recopilar datos de fuentes confiables

R01F01T01 - Analizar y resumir los datos recopilados

R01F01T01P01 - Confirmar que los datos recopilados sean actuales y provengan de fuentes confiables

R02 - Comparar los datos con los de proveedores cloud sostenibles.



R02F01 - Diseñar tabla comparativa con métricas (consumo energético, uso de energías renovables, etc.)

R02F01T01 - Elaborar una tabla comparativa

R02F01T01P01 - Validar la fidelidad de la tabla comparativa

Objetivo 2: Evaluar el término "sostenibilidad" utilizando comparativas métricas de proveedores cloud, en cuanto al uso energías renovables y la eficiencia energética.

R03 - Definición de las métricas (eficiencia energética, certificaciones ambientales, porcentaje de energías renovables, etc.).

R03F01 - Investigar las políticas y prácticas de cada proveedor

R03F01T01 - Recopilar información de los informes de sostenibilidad de cada proveedor.

R03F01T01P01 - Verificar que los datos sean reales

R04 - Evaluar a los principales proveedores de cloud (Google Cloud, Microsoft Azure, AWS, IBM Cloud).

R04F01 - Crear una tabla de evaluación con las métricas definidas

R04F01T01 - Asignar puntuaciones a cada proveedor

R04F01T02 - Elaborar tabla de métricas para el proyecto

R04F01T01P01 - Validar que los resultados seas confiables

Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono

R05 - Seleccionar las herramientas de monitorización adecuadas, por ejemplo, DataDog, Grafana + Prometheus, Google Cloud Operations Suite, Azure Monitor, AWS CloudWatch, Trend Micro Cloud One, AppDynamics, etc.

R05F01 - Investigar y comparar sobre las herramientas de monitorización disponibles

R05F01T01 - Instalar servidor Linux Ubuntu Server versión 24.04.02, incluir MySQL Server versión 8.0.41, PHP 8.4.4, Python 3.13.2.



R05F01T02 - Crear Base de datos "sostenible", con las tablas usuarios, recursos, alertas, fuentes y consumo y relacionarlas.

R05F01T03 - Instalar y configurar la herramienta de monitorización Grafana 11.5.2.

R05F01T04 - Instalar y configurar las herramientas para captura de métricas Prometheus 3.2.1. y Node Exporter.

R05F01T05 - Diseñar programa en Python para extraer datos de PUE (eficiencia energética) y huella de carbono de los recursos de la nube, diseñando fórmulas para estimar los datos y enlazarlos a los sistemas de métricas y registro automático a la base de datos.

R05F01T06 - Diseñar página de acceso al sistema (frontend) con HTML5 y PHP.

R05F01T07 - Realizar conexión con la base de datos y acceso de usuarios registrados, acceso con seguridad, clave encriptada (hash) y protección contra inyección de SQL, con HTML5 y PHP.

R05F01T08 - Diseñar menú de acceso y gestión de la base de datos de por perfil de usuario en HTML5 y PHP.

R05F01T09 - Realizar conexión con la herramienta de monitorización Grafana con HTML5 y PHP.

R05F01T10 - Realizar recuperación de clave de usuario vía correo electrónico con HTML5 y PHP.

R05F01T01P01 - Verificar que las herramientas estén correctamente configuradas

R06 - Configurar las herramientas para medir el consumo energético y la huella de carbono

R06F01 - Configurar las herramientas seleccionadas en la plataforma cloud

R06F01T01 - Crear paneles de control para visualizar las métricas

R06F01T02 - Realizar pruebas de funcionamiento



#### R06F01T01P01 - Validar las métricas mostradas

Objetivo 4: Formular prácticas sostenibles para la gestión de infraestructuras cloud, adicionando la automatización de recursos y el uso de energías renovables (energía solar, enfriamiento líquido, reutilización, reciclaje).

R07 - Escoger prácticas sostenibles aplicables a la gestión de infraestructuras cloud

R07F01 - Investigar mejores prácticas en sostenibilidad cloud

R07F01T01 - Compilar información sobre prácticas sostenibles

R05F01T01P01 - Verificar que las prácticas propuestas sean las correctas

R08 - Proponer el plan de implementación para las prácticas

R08F01 - Desarrollar el plan para la implementación de estas prácticas.

R08F01T01 - Elaboración del documento con las prácticas propuestas y su plan de implementación

R08F01T02 - Presentar el documento para revisión y aprobación

R08F01T01P01 - Validar el plan de implementación

Objetivo 5: Exponer los beneficios de una infraestructura cloud sostenible a través de métricas cuantificables, como la reducción del consumo energético y los costos operativos, durante un periodo de 60 días continuos.

R09 - Definir métricas cuantificables para medir los beneficios (por ejemplo, reducción del consumo energético, disminución de costos operativos)

R09F01 - Comparar las métricas antes y después de la implementación

R09F01T01 - Recopilar datos iniciales

R09F01T02 - Implementar el entorno cloud sostenible, incluyendo servidores

R09F01T01P01 - Verificar las métricas



R10 - Recopilar datos antes y después de la implementación de la infraestructura cloud sostenible

R10F01 - Elaborar un informe con los resultados obtenidos

R10F01T01 - Recopilar datos finales y compararlos con los datos iniciales

R10F01T02 - Elaboración de informe de resultados

R10F01T01P01 - Validar los datos obtenidos, perfectamente comparados



# **DESCRIPCIÓN**

a. Arquitectura del Proyecto:

La **arquitectura general del proyecto**, la podemos ver el siguiente diagrama (Imagen 1), mostrando los elementos principales y cómo interactúan entre sí.

#### Elementos:

- Frontend: Interfaz de usuario, para gestionar el acceso al sistema y mantenimiento de la base de datos y conexiones al servicio de monitoreo, realizada con HTML, CSS, JavaScript y Php. Se tiene contemplada la aceptación sobre de uso de datos y cookies por parte del usuario en cuanto a uso y tratamiento de la información.
- 2. **Servicios Externos:** APIs de terceros, ejemplo, OpenAI, proveedores de cloud. Para interrelaciones futuras.
- 3. **Backend /energía:** Fuentes energéticas alternativas, que se asignan a cada recurso del cloud, pudiendo ser energías renovables como eólica, solar, etc., o no renovables como las fósiles carbón, gas natural o petróleo.
- 4. **Backend:** Todo el parque de recursos de la nube como, servidores, pcs, contenedores y servicios cloud.
- 5. **Monitorización:** El monitoreo de los recursos lo realizaremos con la herramienta Grafana, que se podrá acceder desde la interfaz frontend.
- 6. **Base de Datos:** El servidor que utilizaremos es MySQL, con una base de datos relacional
- 7. **Métricas o consumo:** La recolección de métricas lo haremos con la herramienta Prometheus, Node-Exporter y programas en Python para capturar las mediciones de consumo energético y la huella de carbono cada 30 segundos, y enviarlas en tiempo real al panel de monitorización (Dashboard) y a la base de datos; tabla "consumo".



# Arquitectura del Proyecto



Imagen 1 – Arquitectura del proyecto

# b. Casos de uso

Caso de uso: Inicio de sesión



Imagen 2 - Caso de uso: Iniciar sesión



| DESCRIPCIÓN: Inicio de sesión         |                                          |  |
|---------------------------------------|------------------------------------------|--|
| PRECONDICIONES:                       | POSTCONDICIONES:                         |  |
| Debe existir el usuario               | El usuario accede al sistema, ingresando |  |
|                                       | sus credenciales, usuario y clave        |  |
|                                       | (descifrado de hash)                     |  |
| DATOS ENTRADA                         | DATOS SALIDA                             |  |
| Id usuario                            | Nombre y apellido del usuario            |  |
| Clave                                 | Perfil del usuario                       |  |
|                                       | Fecha y hora                             |  |
| TABLAS:                               | CLASES: LOGIN.PHP                        |  |
| USER                                  | DB_CONNECT.PHP                           |  |
| INTERFACES: INDEX.PHP                 |                                          |  |
| Tabla 2 – Caso de uso: Iniciar sesión |                                          |  |

### Caso de uso: Consultar estado de los Recursos



Imagen 3 – Caso de uso: Consultar estado de los recursos



| <b>DESCRIPCIÓN</b> : Consultar estado de los Recursos   |                                           |  |
|---------------------------------------------------------|-------------------------------------------|--|
| PRECONDICIONES:                                         | POSTCONDICIONES:                          |  |
| Usuario logado                                          | Cuadro de mando o Dashboard               |  |
| DATOS ENTRADA                                           | DATOS SALIDA                              |  |
| Solicitud de consulta de estado de los                  | Estados de los nodos:                     |  |
| nodos                                                   | Lista de servidores, bases de datos, etc. |  |
|                                                         | Consumo energético, huella de carbono     |  |
| TABLAS:                                                 | CLASES: AUTH.PHP                          |  |
| USER, NODO                                              |                                           |  |
| METRICAS, ENERGIA                                       |                                           |  |
| INTERFACES: INDEX.PHP                                   |                                           |  |
|                                                         |                                           |  |
| Tabla 3 - Caso de uso: Consultar estado de los Recursos |                                           |  |

# Caso de uso: Optimizar los recursos



Imagen 4 – Caso de uso: Optimizar los recursos



| DESCRIPCIÓN: Optimizar los recursos           |                                           |  |
|-----------------------------------------------|-------------------------------------------|--|
| PRECONDICIONES:                               | POSTCONDICIONES:                          |  |
| Usuario logado                                | Cuadro de mando o Dashboard               |  |
| DATOS ENTRADA                                 | DATOS SALIDA                              |  |
| Solicitud del usuario al sistema para         | Lista actualizada de los nodos, con el    |  |
| optimizar los recursos o nodos                | consumo energético y la huella de carbono |  |
|                                               | optimizado, es decir a la baja.           |  |
| TABLAS:                                       | CLASES: AUTH.PHP                          |  |
| USER, NODO                                    |                                           |  |
| METRICAS, ENERGIA                             |                                           |  |
| INTERFACES: RECURSOS.PHP, INDEX.PHP           |                                           |  |
|                                               |                                           |  |
| Table 4. Oass de uses Ontimina la sessione    |                                           |  |
| Tabla 4 — Caso de uso: Optimizar los recursos |                                           |  |

# Caso de uso: Generar reportes



Imagen 5 - Caso de uso: Generar reportes



| DESCRIPCIÓN: Generar reportes               |                                           |  |
|---------------------------------------------|-------------------------------------------|--|
| PRECONDICIONES:                             | POSTCONDICIONES:                          |  |
| Usuario logado                              | Cuadro de mando o Dashboard               |  |
| DATOS ENTRADA                               | DATOS SALIDA                              |  |
| Solicitud del usuario al sistema que genere | Reportes detallados de los nodos, con el  |  |
| reportes                                    | consumo energético y la huella de carbono |  |
|                                             |                                           |  |
| TABLAS:                                     | CLASES: AUTH.PHP                          |  |
| USER, NODO                                  |                                           |  |
| METRICAS, ENERGIA                           |                                           |  |
| INTERFACES: INDEX.PHP                       |                                           |  |
|                                             |                                           |  |
| Tabla 5 – Caso de uso: Generar reportes     |                                           |  |

# Caso de uso: Configurar las Alertas



Imagen 6 – Caso de uso: Configurar las Alertas



| DESCRIPCIÓN: Configurar las Alertas           |                                        |  |
|-----------------------------------------------|----------------------------------------|--|
| PRECONDICIONES:                               | POSTCONDICIONES:                       |  |
| Usuario logado                                | Cuadro de mando o Dashboard            |  |
| DATOS ENTRADA                                 | DATOS SALIDA                           |  |
| Configuración de umbrales específicos,        | Lista de notificaciones para cuando se |  |
| sobre ele el consumo energético y huella      | superen los umbrales configurados.     |  |
| de carbono                                    |                                        |  |
| TABLAS:                                       | CLASES: AUTH.PHP                       |  |
| USER, NODO                                    |                                        |  |
| METRICAS, ENERGIA, ALERTAS                    |                                        |  |
| INTERFACES: INDEX.PHP, ALERTAS.PHP            |                                        |  |
|                                               |                                        |  |
| Tabla 6 - Caso de uso: Configurar las Alertas |                                        |  |

# Caso de uso: Recolectar las métricas



Imagen 7 – Caso de uso: Recolectar las métricas



| DESCRIPCIÓN: Recolectar las métricas           |                                            |  |
|------------------------------------------------|--------------------------------------------|--|
| PRECONDICIONES:                                | POSTCONDICIONES:                           |  |
| Sistema de monitorización activo y nodos       | Recolección de métricas de los recursos    |  |
| activos                                        | cloud                                      |  |
| DATOS ENTRADA                                  | DATOS SALIDA                               |  |
| Métricas sobre el consumo energético y         | Métricas de consumo energético y huella    |  |
| huella de carbono de cada uno de los           | de carbono de cada uno de los recursos del |  |
| recursos del cloud                             | cloud                                      |  |
| TABLAS:                                        | CLASES:                                    |  |
| NODO, METRICAS                                 |                                            |  |
| ENERGIA                                        |                                            |  |
| INTERFACES:                                    |                                            |  |
| Tabla 7 – Caso de uso: Recolectar las métricas |                                            |  |

# Caso de uso Notificar las Alertas



Imagen 8 – Caso de uso: Notificar las Alertas



| DESCRIPCIÓN: Notificar las Alertas           |                                           |  |
|----------------------------------------------|-------------------------------------------|--|
| PRECONDICIONES:                              | POSTCONDICIONES:                          |  |
| Sistema de monitorización activo, nodos      | Umbrales previamente configurados         |  |
| activos y umbrales configurados              | superados.                                |  |
| DATOS ENTRADA                                | DATOS SALIDA                              |  |
| Métricas sobre el consumo energético y       | Alertas de consumo energético y huella de |  |
| huella de carbono de cada uno de los         | carbono de cada uno de los recursos del   |  |
| recursos del cloud versus los umbrales       | cloud, por encima de los niveles de un    |  |
| configurados                                 | sistema cloud sostenible.                 |  |
| TABLAS:                                      | CLASES:                                   |  |
| USER, NODO                                   |                                           |  |
| METRICAS, ENERGIA, ALERTAS                   |                                           |  |
| INTERFACES:                                  |                                           |  |
| Tabla 8 - Caso de uso: Notificar las Alertas |                                           |  |

# **DISEÑOS**

a. Diagrama E/R (Entidad - Relación):



Imagen 9 – Diagrama E/R de la base de datos



# b. Diagrama de la base de datos:



Imagen 10 – Diagrama de la base de datos

### c. Descripción de las tablas

Tabla 1: Usuario

Contiene la información de los usuarios que interactúan con el sistema.

| Campo          | Tipo de dato | Descripción                               |
|----------------|--------------|-------------------------------------------|
| iduser         | INT (PK)     | Código del usuario                        |
| nombre         | VARCHAR(100) | Nombre completo del usuario               |
| email          | VARCHAR(100) | Correo electrónico del usuario            |
| password       | VARCHAR(255) | Contraseña cifrada del usuario            |
| rol            | VARCHAR(50)  | Rol del usuario (admin, usuario, auditor) |
| fecha_registro | DATETIME     | Fecha y hora de registro del usuario.     |

Tabla 9 – Descripción de las tablas: User



Tabla 2: Recurso

Contiene la información de los recursos cloud (servidores, bases de datos, etc.).

| Campo             | Tipo de dato | Descripción                                  |
|-------------------|--------------|----------------------------------------------|
| idrecurso         | INT (PK)     | Código del recurso / nodo                    |
| nombre            | VARCHAR(100) | Nombre que describe el recurso               |
| tipo              | VARCHAR(50)  | Tipo de nodo (servidor, base de datos, etc.) |
| Idenergia         | INT (FK)     | Tipo de energía utilizada (relación con la   |
|                   |              | tabla Fuente)                                |
| Estado            | VARCHAR(50   | Estado actual del nodo (activo, inactivo,    |
|                   |              | etc.)                                        |
| fecha_inicio      | DATETIME     | Fecha y hora de creación del nodo            |
| energia_renovable | TINYINT      | Si es renovable o no (1,0)                   |

Tabla 10 – Descripción de las tablas: Recurso

# Tabla 3: Consumo

Registro de los datos de la eficiencia energética (PUE) y huella de carbono de los recursos

| Campo        | Tipo de dato | Descripción                                |
|--------------|--------------|--------------------------------------------|
| idmetrica    | INT (PK)     | Código de la métrica                       |
| idrecurso    | INT (FK)     | Nodo asociado (relación con la tabla       |
|              |              | Recurso)                                   |
| fecha_medida | DATETIME     | Fecha y hora de la medición                |
| pue          | FLOAT        | Power Usage Efectiveness - eficiencia      |
|              |              | energética se mide entre 1.5 - 2.5         |
| carbono      | FLOAT        | Huella de carbono en kg de CO <sub>2</sub> |

Tabla 11 – Descripción de las tablas: Métricas



**Tabla 4:** Alertas

Registro de los umbrales para la emisión de alertas

| Campo          | Tipo de dato | Descripción                                   |
|----------------|--------------|-----------------------------------------------|
| idalerta       | INT (PK)     | Código de la alerta                           |
| iduser         | INT (FK)     | Usuario que configura la alerta (relación con |
|                |              | la tabla Usuario)                             |
| idrecurso      | INT (FK)     | Nodo asociado (relación con la tabla          |
|                |              | Recurso)                                      |
| umbral_energia | FLOAT        | Umbral de consumo para activar la alerta.     |
| umbral_carbono | FLOAT        | Umbral de huella para activar la alerta.      |
| fecha_alerta   | DATETIME     | Fecha y hora de creación de la alerta         |

Tabla 12 - Descripción de las tablas: Alertas

Tabla 5: Fuente

Registro de los tipos de energía posibles para utilizar por los recursos

| Campo     | Tipo de dato | Descripción                                  |
|-----------|--------------|----------------------------------------------|
| idenergia | INT (PK)     | Código del tipo de energía                   |
| nombre    | VARCHAR(100) | Nombre tipo de energía (solar, eólica, etc.) |
| renovable | BOOLEAN      | Si es renovable o no                         |

Tabla 13 - Descripción de las tablas: Energía

#### d. Relaciones entre las tablas:

**Recurso - Fuente:** Cada Nodo o Recurso está asociado a un tipo de fuente energía a través del campo "idenergia" en la tabla Recurso. Relación uno a muchos

**Recurso - Consumo:** Cada Recurso puede tener múltiples métricas asociadas a la tabla Consumo (consumo energético, huella de carbono, etc.). Relación uno a muchos.

Usuario - Alertas: Cada usuario puede configurar múltiples alertas. Relación uno a muchos.

Recurso - Alertas: Cada alerta está asociada a un nodo o recurso. Relación uno a muchos.



# e. Diagrama de flujo de navegación:



Imagen 11 – Diagrama de navegación

### f. Interfaces:

### 1. Acceso al sistema





# 1. Monitoreo / Dashboard



Imagen 12 - Interfaces Dashboard



# **TECNOLOGÍA**

Las tecnologías y herramientas utilizadas para este proyecto son:

### **Ubuntu Server:**

Sistema Operativo Ubuntu Server versión 24.04.02 LTS Utilizado para instalar las herramientas de monitoreo y captura de métricas.



#### **Grafana Dashboard:**

Herramienta de monitorización versión 15.05.02 OSS Edition. Utilizado para crear paneles de visualización, como gráficas, listas, etc. de componentes o recursos del entorno cloud.



### **Prometheus:**

Herramienta de gestión de alertas, métricas y monitoreo de sistemas versión 2.0.

Utilizado para la captura de métricas de todos los recursos del entorno cloud, en cuanto a consumo energético y huella de carbono.



#### MySQL:

Sistema gestor de bases de datos relacionales versión 8.0.41. Utilizado para el almacenamiento de las métricas de los recursos de la nube, parametrización de alertas, usuarios y recursos.



#### VMWare:

Utilizado para implementación o simulación del entorno cloud, en local.



### Python:

Leguaje de programación Python versión 3.12.3.

Utilizado para la automatización en el manejo de las capturas de las métricas de los recursos y el registro en la base de datos.





# **METODOLOGÍA**

a. Link a Github: https://github.com/ricardoevansll/TFG

#### b. Actividades:

- Recolección de datos de los proveedores cloud y elaboración de tablas para estimar las métricas a utilizar en el proyecto. 4 horas de trabajo.
- Instalar servidor Linux Ubuntu Server versión 24.04.02, incluir MySQL Server versión 8.0.41, PHP 8.4.4, Python 3.13.2. 3 horas de trabajo.
- Crear Base de datos "sostenible", con las tablas usuarios, recursos, alertas, fuentes y consumo y relacionarlas. 4 horas de trabajo.
- Instalar y configurar la herramienta de monitorización Grafana 11.5.2. 4 horas de trabajo.
- Instalar y configurar las herramientas para captura de métricas Prometheus 3.2.1. y
   Node Exporter. 6 horas de trabajo.
- Diseñar programa en Python para extraer datos de PUE (eficiencia energética) y
  huella de carbono de los recursos de la nube, diseñando fórmulas para estimar los
  datos y enlazarlos a los sistemas de métricas y registro automático a la base de datos.
   6 horas de trabajo.
- Diseñar página de acceso al sistema (frontend) con HTML5 y PHP. 6 horas de trabajo.
- Realizar conexión con la base de datos y acceso de usuarios registrados, acceso con seguridad, clave encriptada (hash) y protección contra inyección de SQL, con HTML5 y PHP. 8 horas de trabajo.
- Diseñar menú de acceso y gestión de la base de datos de por perfil de usuario en HTML5 y PHP. 8 horas de trabajo.
- Realizar conexión con la herramienta de monitorización Grafana con HTML5 y PHP.
   2 horas de trabajo.
- Realizar recuperación de clave de usuario vía correo electrónico con HTML5 y PHP.
   3 horas de trabajo.
- Configurar las herramientas para medir el consumo energético y la huella de carbono con paneles de control. 8 horas de trabajo.
- Pruebas y modificaciones de las herramientas para medir el consumo energético y la huella de carbono con paneles de control. 8 horas de trabajo.



70,00€

**Presupuesto.** Con detalle de horas, indispensable si se realiza en grupo, y coste total del desarrollo por cada requisito.

| cloudSostenible PRESUPUESTO                                                                                                                                                  |             | ,               | fecha: | 10/03/2025 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------|------------|
| Actividad                                                                                                                                                                    | Coste /hora | Horas estimadas | Total  |            |
| Recolección de datos de los proveedores cloud y elaboración de tablas                                                                                                        | 60,00 €     | 4               |        | 240,00€    |
| Instalar servidor Linux Ubuntu Server, MySQL Server, PHP y Python                                                                                                            | 60,00€      | 3               |        | 180,00€    |
| Crear Base de datos "sostenible", con las tablas usuarios, recursos, alertas, fuentes y consumo y relacionarlas                                                              | 60,00 €     | 4               |        | 240,00€    |
| Instalar y configurar la herramienta de monitorización Grafana                                                                                                               | 60,00 €     | 4               |        | 240,00€    |
| Instalar y configurar Prometheus y Node Exporter                                                                                                                             | 60,00€      | 6               |        | 360,00€    |
| Programa en Python para extraer datos de PUE (eficiencia energética) y huella de carbono y envío a los sistemas de métricas y registro automático a la base de datos         | 60,00 €     | 6               |        | 360,00€    |
| Diseñar página de acceso al sistema (frontend) con HTML5, CCS, JS y $\operatorname{PHP}$                                                                                     | 60,00 €     | 6               |        | 360,00€    |
| Conexión con la base de datos y acceso de usuarios registrados, acceso con seguridad, clave encriptada (hash) y protección contra invección de SQL, con HTML5, CSS, JS v PHP | 60,00 €     | 8               |        | 480,00€    |
| Diseñar menú de acceso y gestión de la base de datos de por perfil de usuario en HTML5, CSS, JS y PHP                                                                        | 60,00 €     | 8               |        | 480,00€    |
| Conexión Grafana con el menú de acceso, HTML5, CSS y PHP                                                                                                                     | 60,00€      | 2               |        | 120,00€    |
| Recuperación de clave de usuario vía correo electrónico HTML5 y PHP                                                                                                          | 60,00 €     | 3               |        | 180,00€    |
| Configurar las herramientas para medir el consumo energético y la huella de carbono con paneles de control                                                                   | 60,00 €     | 8               |        | 480,00€    |
| Pruebas y modificaciones de las herramientas para medir el consumo energético y la huella de carbono con paneles de control                                                  | 60,00 €     | 8               |        | 480,00€    |
|                                                                                                                                                                              |             |                 |        |            |

Total

4.200,00€



# Diagrama de Gantt





# **DESARROLLO**

Objetivo 1: Comparación de centro de datos tradicionales contra soluciones cloud sostenibles

R02F01T01: Elaborar una tabla comparativa

| Aspecto a valorar                                    | CPDs Tra | dicionales | Cloud S | ostenibles |
|------------------------------------------------------|----------|------------|---------|------------|
|                                                      | Nivel    | Valores    | Nivel   | Valores    |
| Consumo Energético (PUE - Power Usage Effectiveness) | Alto     | 1.8 - 2.5  | Bajo    | 1.1 - 1.5  |
| Huella de Carbono                                    | Alta     |            | Baja    |            |
| Uso de Energías Renovables                           | Bajo     |            | Alto    |            |
| Eficiencia Energética                                | Media    |            | Alta    |            |
| Escalabilidad                                        | Limitada |            | Alta    |            |

Imagen 14 - Tabla comparativa CPD tradicionales vs cloud sostenibles

De los datos recogidos de diversas fuentes, detallamos lo siguiente:

### Consumo Energético

- Centros Tradicionales: Tienen un PUE (Power Usage Effectiveness) promedio de 1.8 a 2.5, lo que significa que gran parte de la energía se pierde en refrigeración y otros sistemas auxiliares.<sup>12</sup>
- Cloud Sostenibles: Tienen un PUE promedio de 1.1 a 1.5, gracias a la optimización de hardware y sistemas de refrigeración avanzados.<sup>13</sup>

### Huella de Carbono

- **Centros Tradicionales**: Dependen en gran medida de energías no renovables (carbón, gas natural), lo que genera una huella de carbono alta.<sup>14</sup>
- Cloud Sostenibles: Utilizan energías renovables (solar, eólica, etc.) y compensan sus emisiones, reduciendo significativamente su huella de carbono.<sup>15</sup>

<sup>13</sup> (DatacenterDynamics, 2024)

<sup>&</sup>lt;sup>12</sup> (Danfoss, s.f.)

<sup>&</sup>lt;sup>14</sup> (Siscotec, 2024)

<sup>&</sup>lt;sup>15</sup> (Google, 2024)



### Uso de Energías Renovables:

- Centros Tradicionales: El uso de energías renovables es limitado y depende de la ubicación y políticas locales.
- Cloud Sostenibles: Proveedores como Google Cloud y Microsoft Azure ya operan con 100% energías renovables, y otros como AWS e IBM Cloud tienen objetivos claros para lograrlo.<sup>16</sup>

### Eficiencia Energética:

- Centros Tradicionales: La eficiencia depende de la antigüedad del hardware y la infraestructura.
- Cloud Sostenibles: Utilizan hardware optimizado y técnicas de virtualización para maximizar la eficiencia.<sup>17</sup>

#### Escalabilidad:

- Centros Tradicionales: La escalabilidad es limitada y requiere inversión en infraestructura física.
- Cloud Sostenibles: Ofrecen escalabilidad elástica, permitiendo ajustar los recursos según la demanda sin necesidad de inversión adicional.<sup>18</sup>

### R02F01T01P01: Validar la fidelidad de la tabla comparativa

Los valores fueron extraídos desde las páginas oficiales de los principales proveedores cloud y de informes privados de empresas respetables con bases a informes de Uptime Institute.

**Conclusiones:** Debemos mantenernos en el umbral PUE entre 1 y 1.5, con una huella de carbono baja, y un nivel alto en el uso de energías renovables, eficiencia energética y escalabilidad, para considerarnos un sistema de cloud sostenible.

32

<sup>&</sup>lt;sup>16</sup> (Microsoft, 2024)

<sup>&</sup>lt;sup>17</sup> (Amazon Web Services, 2024)

<sup>&</sup>lt;sup>18</sup> (IBM, 2024)



Objetivo 2: Evaluar a los principales proveedores de cloud (Google Cloud, Microsoft Azure, AWS, IBM Cloud).

# R04F01T01: Asignar puntuaciones a cada proveedor

| Métricas                          | Google Cloud <sup>19</sup>       | Microsoft<br>Azure <sup>20</sup>      | AWS (Amazon) <sup>21</sup>               | IBM Cloud <sup>22</sup>                 |
|-----------------------------------|----------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|
| Energías<br>Renovables            | 100% desde 2017                  | 100% para 2025                        | 50%,<br>100% para 2025                   | 55%<br>75% para 2025                    |
| Eficiencia<br>Energética (PUE)    | 1.1 - 1.2                        | 1.2 - 1.3                             | 1.2 - 1.4                                | 1.3 - 1.5                               |
| Huella de Carbono                 | Neutral desde<br>2007            | Neutral desde<br>2012                 | Compensa emisiones                       | Compensa emisiones                      |
| Certificaciones<br>Ambientales    | ISO 14001,<br>CarbonNeutral      | ISO 14001, ISO<br>50001               | ISO 14001, LEED<br>Cert.                 | ISO 14001, Energy<br>Star               |
| Compromiso con<br>ODS de la ONU   | Sí                               | Sí                                    | Sí                                       | Sí                                      |
| Herramientas de<br>Monitorización | Google Cloud<br>Operations Suite | Azure Monitor                         | AWS CloudWatch                           | IBM Cloud<br>Monitoring                 |
| Innovación en<br>Sostenibilidad   | Enfriamiento por IA              | Azure<br>Sustainability<br>Calculator | AWS Customer<br>Carbon Footprint<br>Tool | IBM Environmental<br>Intelligence Suite |

# R04F01T02: Elaborar tabla de métricas para el proyecto

| Métrica                                 | Descripción                                                                          | Unidad de<br>Medida                | Objetivo                                                  |
|-----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|
| Consumo Energético                      | Consumo de energía                                                                   | kWh                                | Reducir en un 50% en el primer año.                       |
| Huella de Carbono                       | Emisiones de CO <sub>2</sub> generadas                                               | Ahorro de<br>10ton CO <sub>2</sub> | Alcanzar la neutralidad de carbono en 2 años.             |
| Porcentaje de<br>Energías<br>Renovables | Porcentaje de energía renovable utilizada                                            | 75%                                | Alcanzar el 100% en 3 años.                               |
| Eficiencia Energética<br>(PUE)          | Relación entre la energía total consumida y la energía utilizada por los equipos IT. | 1.5                                | Mantener un PUE menor a 1.5.                              |
| Tiempo de Actividad<br>(Uptime)         | Disponibilidad                                                                       | 99.9%                              | Mantener una disponibilidad del 99.9%.                    |
| Costes Operativos                       | Costos asociados                                                                     | €0.05/kWh                          | Reducir los costos operativos en un 30% en el primer año. |

<sup>&</sup>lt;sup>19</sup> (Google, 2024)

<sup>&</sup>lt;sup>20</sup> (Microsoft, 2024) <sup>21</sup> (Amazon Web Services, 2024)

<sup>&</sup>lt;sup>22</sup> (IBM, 2024)



| Alineación con los Objetivos de<br>Desarrollo Sostenible (ODS) de la<br>ONU. | 9  | Puntuación de 9-10  |
|------------------------------------------------------------------------------|----|---------------------|
| Grado de satisfacción de los<br>usuarios con el entorno cloud<br>sostenible. | 10 | Puntuación de 8-10. |

R04F01T01P01: Validar que los resultados seas confiables

Los valores fueron extraídos desde las páginas oficiales de los proveedores en sus informes de 2024 sobre la sostenibilidad.

Objetivo 3: Implementar herramientas de monitorización con el fin de medir el consumo energético y la huella de carbono

**R05F01T01**: Instalar servidor Linux Ubuntu Server versión 24.04.02, incluir MySQL Server versión 8.0.41, PHP 8.3.6, Python 3.12.3.

#### a. Instalación de Ubuntu Server





### b. Instalación de Mysql

```
No VM quests are running outdated hypervisor (gemu) binaries on this host.

revans@wm25-grafana:-$ sudo service mysql status

• mysql.service - MySQL Community Server

Loaded: loaded (/usr/Lib/systemd/system/mysql.service; enabled; preset: enabled)

Active: active (running) since Wed 2025-03-05 19:20:37 UTC; 20s ago

Process: 5372 ExecStartPre=/usr/share/mysql/mysql-systemd-start pre (code=exited, stata)

Main PID: 5380 (mysqld)

Status: "Server is operational"

Tasks: 38 (limit: 4552)

Memory: 364.1M (peak: 378.4M)

CPU: 938ms

CGroup: /system.slice/mysql.service

-5380 /usr/sbin/mysqld

Mar 05 19:20:37 vm25-grafana systemd[1]: Starting mysql.service - MySQL Community Server.

Lines 1-14/14 (END)

revans@vm25-grafana:~$ |
```

### c. Versión de PHP y Python

```
revans@vm25-grafana:~\frac{\times}{\times} \ php -v

PHP 8.3.6 (cli) (built: Dec 2 2024 12:36:18) (NTS)

Copyright (c) The PHP Group

Zend Engine v4.3.6, Copyright (c) Zend Technologies

with Zend OPcache v8.3.6, Copyright (c), by Zend Technologies

revans@vm25-grafana:~\frac{\times}{\times} python3 --version

Python 3.12.3

revans@vm25-grafana:~\frac{\times}{\times}
```

**R05F01T02:** Crear Base de datos "Sotenible", con las tablas usuarios, recursos, alertas, fuentes y consumo y relacionarlas.

a. Creación de la base de datos "sostenible" y tablas:



#### 1. Tabla Usuario



| iduser   int<br>nombre   varchar(100 | NO                |     |                   |                   |
|--------------------------------------|-------------------|-----|-------------------|-------------------|
| nombre   varchar(100                 |                   | PRI | NULL              | auto_increment    |
|                                      |                   | 1 1 | NULL              |                   |
| email varchar(100                    | )   NO            | UNI | NULL              |                   |
| password varchar(255                 | )   NO            |     | NULL              | 1                 |
| rol   enum('admin                    | ','usuario')   NO | 1 1 | NULL              | 1                 |
| fecha_registro   timestamp           | YES               | !!  | CURRENT_TIMESTAMP | DEFAULT_GENERATED |



#### 2. Tabla Fuente



### 3. Tabla Recurso





#### 4. Tabla Consumo

```
← 🗐 Servidor: localhost:3306 » 🧻 Base de datos: sostenibl
  Ejecutar la(s) consulta(s) SQL en la base de datos sostenible: (a)
      1 use sostenible;
       2 CREATE TABLE consumo (
           id INT AUTO_INCREMENT PRIMARY KEY,
            id_recurso INT NOT NULL,
            timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
            pue FLOAT NOT NULL,
            carbon FLOAT NOT NULL,
      8
            FOREIGN KEY (id_recurso) REFERENCES recurso(id_recurso) ON DELETE CASCADE
      9);
mysql> DESCRIBE consumo;
  Field
                             | Null | Key | Default
                | Type
                                                                    | Extra
                                NO
                                        PRI
                                               NULL
                                                                      auto_increment
                  int
   id
   id_recurso
                                NO
                                        MUL
                                               NULL
                  int
                                                                      DEFAULT_GENERATED
   timestamp
                  timestamp
                                YES
                                               CURRENT_TIMESTAMP
  pue
                  float
                                NO
                                               NULL
                  float
   carbon
                                NO
                                               NULL
5 rows in set (0.01 sec)
mysql>
```

# 5. Tabla Alertas



# b. Esquema de la base de datos



### c. Datos iniciales

#### 1. Tabla fuente

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO fuente (nombre, renovable) VALUES ('Solar', TRUE), ('Eólica', TRUE), ('Hidroeléctrica', TRUE), ('Geotérmica', TRUE), ('Marina', TRUE), ('Gas Natural', FALSE), ('Petróleo', FALSE), ('Carbón', FALSE);
```



```
Mostrar ventana de consultas SQL

MySQL ha devuelto un conjunto de valores vacío (es decir: cero columnas). (La consulta tardó 0.0002 segundos.)

use sostenible;

[Editar en línea] [Editar] [Crear código PHP]

8 filas insertadas.

La Id de la fila insertada es: 8 (La consulta tardó 0.0005 segundos.)

INSERT INTO fuente (nombre, renovable) VALUES ('Solar', TRUE), ('Eólica', TRUE), ('Hidroeléctrica', TRUE), ('Geotérmica', TRUE), ('Marina', TRUE), ('Gas Natural', FALSE), ('Petróleo', FALSE), ('Carbón', FALSE);

[Editar en línea] [Editar] [Crear código PHP]
```

### 2. Tabla recurso







# 3. Tabla Usuario (con hash para encriptar la clave)



#### 4. Tabla Alertas

```
Ejecutar la(s) consulta(s) SQL en la base de datos sostenible:

1 use sostenible;
2 INSERT INTO alertas (id_usuario, id_recurso, umbral_pue, umbral_carbono) VALUES
3 (1, 1, 1.5, 50),
4 (2, 2, 1.4, 40),
5 (2, 3, 1.3, 40);
```





# R05F01T03: Instalar y configurar la herramienta de monitorización Grafana 11.5.2.





**R05F01T04:** Instalar y configurar las herramientas para captura de métricas Prometheus 3.2.1. y Node Exporter.

#### a. Instalación de Prometheus





## b. Instalación de Node Exporter



**R05F01T05**: Diseñar programa en Python para extraer datos de PUE (eficiencia energética) y huella de carbono de los recursos de la nube, diseñando fórmulas para estimar los datos y enlazarlos a los sistemas de métricas y registro automático a la base de datos.

#### a. Programa Python3 (exporter.py) para exportar métricas.

Programa desarrollado para que se conecte a la base de datos "sostenible", donde verifica la existencia del identificador de recurso (id\_recurso), recupera el dato tipo de energía utilizada, si es renovable o no. Realiza los cálculos de del PUE y la huella de carbono. Programa que esta siendo ejecutado automáticamente cada 30 segundos mediante la herramienta Node-Exporter, desde cada nodo o recurso de la nube.

Programa exporter.py



#### Servicio node- exporter

```
GNU nano 7.2 /etc/systemd/system/exporter.service

[Unit]
Description=Prometheus Exporter for Power Consumption
After=network.target

[Service]
ExecStart=/home/revans/myenv/bin/python3 /home/revans/exporter.py
WorkingDirectory=/home/revans
Restart=always
User=revans
Group=revans
Environment="SERVER_NAME=servidor1"

[Install]
WantedBy=multi-user.target
```

Para la confección de las formulas se deben considerar aspectos como el porcentaje de uso del CPU y el valor de consumo energético. El valor de consumo energético se puede calcular si se tiene un UPS conectado al equipo, ejecutando lecturas constantes del mismo, sin embargo, otra practica utilizada utilizar un estimado tomando en consideración otros valores máximos que pueden alcanzar como el uso del CPU (capturado por node-emplorer), 200W que es el consumo máximo de un servidor y 50W cuando esté inactivo. Esta última técnica es la que utilizaremos para alcanzar el valor de consumo energético, que es clave para aplicar las formulas de PUE y huella de carbono, las cuales describo a continuación.



## Cálculos de huella de carbono y PUE:

- Simulación del uso de CPU en porcentaje:
  - **CPU** = random.uniform(10, 90)
- Cálculo estimado del consumo energético:
  - Consumo\_watts = ((cpu / 100) \* 200) + 50 # 200W en carga, 50W en idle
    - Uso CPU (%) → Obtenido desde node exporter.
    - o 200W → Consumo máximo estimado de un servidor.
    - 50W → Consumo base del servidor cuando está inactivo.

#### - Cálculo de la huella de carbono:

#### Factores:

Carbón: 0.9 kg CO<sub>2</sub>/kWh

Gas Natural: 0.4 kg CO<sub>2</sub>/kWh

Energía Solar o Eólica: 0 kg CO<sub>2</sub>/kWh

#### Cálculo:

Emisiones CO<sub>2</sub> = Consumo Energético (kWh) x Factor de Emisión (kg CO<sub>2</sub>/kWh)
 CARBÓN = (Consumo\_watts / 1000) \* 0.4

Ahora, si el recurso o servidor que le estamos calculando las emisiones de CO<sub>2</sub>, y si éste esta conectado a una fuente de energía sostenible, estamos igualando el resultado al **valor mínimo de 0.02**. No lo colocamos en 0.0 como otros proveedores, porque hay un impacto indirecto inevitable como la fabricación de hardware, desechos electrónicos, refrigeración de los centros de datos, el uso del suelo, la cadena de suministro, cultura de consumo, efecto rebound, etc.

- Cálculo del PUE estimado (entre 1.5 y 2.5)
  - PUE = Consumo total del Datacenter (W) / Consumo de TI (W)
  - **PUE** = round(random.uniform(1.5, 2.5), 2)



Bajo el mismo fundamento del cálculo de la huella de carbono, si el recurso o servidor que le estamos analizando el PUE está conectado a una fuente de energía sostenible, le estamos aplicando una reducción del 20% al calculo final.

R05F01T06: Diseñar página de acceso al sistema (frontend) con HTML5 y PHP.



**R05F01T07:** Realizar conexión con la base de datos y acceso de usuarios registrados, acceso con seguridad, clave encriptada (hash) y protección contra inyección de SQL, con HTML5 y PHP.





**R05F01T08**: Diseñar menú de acceso y gestión de la base de datos de por perfil de usuario en HTML5 y PHP.

# 1. Menú / gestión de usuarios



# 2. Menú / gestión de fuentes-energía





1. Menú / gestión de recursos



2. Menú de Gestión de alertas





**R05F01T09**: Realizar conexión con la herramienta de monitorización Grafana desde el frontend.



**R05F01T10:** Realizar recuperación de clave de usuario vía correo electrónico con HTML5 y PHP.

R05F01T01P01: Verificar que las herramientas estén correctamente configuradas

R06F01T01: Crear paneles de control para visualizar las métricas

Configurar Alertas en Grafana

Si PUE > 2.0 → Enviar alerta

Si Huella de carbono > 0.5 kg  $CO_2 \rightarrow Enviar$  alerta

Si Consumo energético > 180W → Enviar alerta

R06F01T02: Realizar pruebas de funcionamiento

R06F01T01P01: Validar las métricas mostradas



# TRABAJOS FUTUROS

Para mejorar los trabajos realizados, en siguiente paso es incorporar una herramienta de inteligencia artificial (IA), que tome decisiones en tiempo real cuando se superen los umbrales de control de consumo energético y huella de carbono. Esto dará un salto de calidad, en cuanto a la automatización de los controles y mejorar los resultados en el corto plazo.



# **CONCLUSIONES**

Conclusión profesional del proyecto.



# REFERENCIAS

- Amazon Web Services. (2024). https://aws.amazon.com/. Obtenido de AWS Sustainability: https://aws.amazon.com/es/sustainability/
- Danfoss. (s.f.). https://www.danfoss.com/. Obtenido de https://www.danfoss.com/es-es/about-danfoss/insights-for-tomorrow/integrated-energy-systems/data-center-power-consumption/
- DatacenterDynamics. (05 de diciembre de 2024). https://www.datacenterdynamics.com/es/.

  Obtenido de La empresa revela cifras de PUE por primera vez:

  https://www.datacenterdynamics.com/es/noticias/los-centros-de-datos-globales-de-aws-lograron-un-pue-de-115-en-2023/
- Goldman Sachs. (14 de Mayo de 2024). https://www.goldmansachs.com. Obtenido de https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
- Google. (2024). https://sustainability.google/. Obtenido de 2024 Environmental Report: https://sustainability.google/reports/google-2024-environmental-report/
- IBM. (2024). https://www.ibm.com. Obtenido de Sustainability solutions from IBM: https://www.ibm.com/sustainability
- IRENA International Renewable Energy Agency. (Agosto de 2023). https://www.irena.org. Obtenido de https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022
- Microsoft. (2024). https://cdn-dynmedia-1.microsoft.com/. Obtenido de 2024 Environmental Sustainability Report: https://cdn-dynmedia-1.microsoft.com/is/content/microsoftcorp/microsoft/msc/documents/presentations/CSR/M icrosoft-2024-Environmental-Sustainability-Report.pdf
- Naciones Unidas The 17 Goals. (s.f.). https://www.un.org. Obtenido de https://www.un.org/sustainabledevelopment/sustainable-development-goals/
- Siscotec. (2024). https://siscotec.com/. Obtenido de Impacto de los centros de datos en el medio ambiente y la sostenibilidad: https://siscotec.com/blog/xperti-1/impacto-de-los-centros-de-datos-en-el-medio-ambiente-y-la-sostenibilidad-14
- The International Energy Agency IEA. (2023). https://www.iea.org. Obtenido de https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks