Partie IV. L'analyse en composantes principales

Inertie_

Définition l'inertie en un point \mathbf{v} du nuage de points est

$$I_{\mathbf{v}} = \sum_{i=1}^{n} p_i \|\mathbf{e}_i - \mathbf{v}\|_{\mathbf{M}}^2 = \sum_{i=1}^{n} p_i (\mathbf{e}_i - \mathbf{v})' \mathbf{M} (\mathbf{e}_i - \mathbf{v}).$$

l
nertie totale La plus petite inertie possible est
 $I_{\bf g},$ donnée par

$$I_{\mathbf{g}} = \sum_{i=1}^{n} p_i \|\mathbf{e}_i - \mathbf{g}\|_{\mathbf{M}}^2 = \sum_{i=1}^{n} p_i (\mathbf{e}_i - \mathbf{g})' \mathbf{M} (\mathbf{e}_i - \mathbf{g})$$

qui est la seule intéressante puisque $I_{\mathbf{v}} = I_{\mathbf{g}} + ||\mathbf{v} - \mathbf{g}||_{M}^{2}$.

Autres relations $I_{\mathbf{g}}$ mesure la moyenne des carrés des distances entre les individus

$$2I_{\mathbf{g}} = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p_j \|\mathbf{e}_i - \mathbf{e}_j\|_{\mathbf{M}}^2.$$

Interprétation L'inertie totale mesure l'étalement du nuage de points

Calcul de l'inertie_

Forme matricielle L'inertie totale est aussi donnée par la trace de la matrice VM (ou MV)

$$I_{\mathbf{g}} = \operatorname{Tr}(\mathbf{V}\mathbf{M}) = \operatorname{Tr}(\mathbf{M}\mathbf{V})$$

Métrique usuelle $\mathbf{M} = \mathbf{I}_p$ correspond au produit scalaire usuel et

$$I_{\mathbf{g}} = \operatorname{Tr}(\mathbf{V}) = \sum_{i=1}^{p} \sigma_i^2$$

$$I_{\mathbf{g}} = \operatorname{Tr}(\mathbf{D}_{1/\sigma^2}\mathbf{V}) = \operatorname{Tr}(\mathbf{D}_{1/\sigma}\mathbf{V}\mathbf{D}_{1/\sigma}) = \operatorname{Tr}(\mathbf{R}) = p.$$

Variables centrées réduites On se retrouve encore dans le cas où

$$I_{\mathbf{g}} = \operatorname{Tr}(\mathbf{R}) = p.$$

L'analyse de composantes principales (version 2)_____

Principe on cherche à projeter orthogonalement le nuage de points sur un espace F_k de dimension k < p, sous la forme

$$\mathbf{e}_i^* - \mathbf{g} = c_{i1}\mathbf{a}_1 + c_{i2}\mathbf{a}_2 + \dots + c_{ik}\mathbf{a}_k$$

Les vecteurs $\mathbf{a}_1, \dots, \mathbf{a}_k$ définissent l'espace F_k et les $c_{i\ell}$ sont les coordonnées de \mathbf{e}_i^* .

Critère on veut que la moyenne des carrés des distances entre les points \mathbf{e}_i et leur projetés \mathbf{e}_i^* soit minimale. Comme on a toujours (théorème de Pythagore)

$$\|\mathbf{e}_i - \mathbf{g}\|^2 = \|\mathbf{e}_i - \mathbf{e}_i^*\|^2 + \|\mathbf{e}_i^* - \mathbf{g}\|^2,$$

cela revient à maximiser l'inertie du nuage projeté.

On cherche donc F_k , sous espace de dimension k de F_p , qui maximise l'inertie du nuage projeté sur F_k .

Valeurs propres et vecteurs propres : un exemple

Données une matrice et trois vecteurs

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{array} \right]$$

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Vecteurs propres on peut vérifier que

$$Av_1 = 2v_1$$
, $Av_2 = 4v_2$ et $Av_3 = 6v_3$.

On dit que \mathbf{v}_1 , \mathbf{v}_2 et \mathbf{v}_3 sont vecteurs propres de \mathbf{A} associés aux valeurs propres $\lambda_1 = 2$, $\lambda_2 = 4$ et $\lambda_3 = 6$.

Propriétés (valables en général)

- $-\mathbf{v}_1$ ou $3\mathbf{v}_1$ sont aussi vecteurs propres de \mathbf{A} associés à λ_1 :
- On a $Tr(\mathbf{A}) = 5 + 4 + 3 = 12 = \lambda_1 + \lambda_2 + \lambda_3$.

Résultat principal (admis)_____

Propriété Il existe p réels $\lambda_1, \ldots, \lambda_p$ et p vecteurs $\mathbf{a}_1, \ldots, \mathbf{a}_p$, tels que

$$\mathbf{VMa}_k = \lambda_k \mathbf{a}_k.$$

— Les $\lambda_k \geq 0$ sont les *valeurs propres* de **VM** et sont classées par ordre décroissant :

$$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_p \ge 0.$$

— Les \mathbf{a}_k sont les vecteurs propres de **VM** et sont « **M**-orthonormaux » :

$$\langle \mathbf{a}_k, \mathbf{a}_k \rangle_{\mathbf{M}} = 1, \qquad \langle \mathbf{a}_k, \mathbf{a}_\ell \rangle_{\mathbf{M}} = 0 \text{ si } k \neq \ell.$$

Théorème principal La projection sur k variables est obtenue en considérant les k premières valeurs propres $\lambda_1, \ldots, \lambda_k$ et les $\mathbf{a}_1, \ldots, \mathbf{a}_k$ correspondants, appelés axes principaux.

Le calcul ne dépend pas du nombre de variables retenues.

Idée du lien avec l'inertie on sait que $I_{\mathbf{g}} = \operatorname{Tr}(\mathbf{VM}) = \lambda_1 + \cdots + \lambda_p$. Si on ne garde que les données relatives à $\mathbf{a}_1, \ldots, \mathbf{a}_k$, on gardera l'inertie $\lambda_1 + \cdots + \lambda_k$, et c'est le mieux qu'on puisse faire.

Partie V. Les éléments de l'ACP

Changement de coordonnées

$$\mathbf{e}_i - \mathbf{g} = (y_i^1, y_i^2)' = y_i^1(1, 0)' + y_i^2(0, 1)' = c_{i1}\mathbf{a}_1 + c_{i2}\mathbf{a}_2$$

Les composantes principales

Coordonnées des individus supposons que $\mathbf{e}_i - \mathbf{g} = \sum_{\ell=1}^{p} c_{i\ell} \mathbf{a}_{\ell}$, alors

$$\langle \mathbf{e}_i - \mathbf{g}, \mathbf{a}_k \rangle_{\mathbf{M}} = \sum_{\ell=1}^p c_{i\ell} \langle \mathbf{a}_\ell, \mathbf{a}_k \rangle_{\mathbf{M}} = c_{ik}$$

La coordonnée de l'individu centré $\mathbf{e}_i - \mathbf{g}$ sur l'axe principal \mathbf{a}_k est donc donné par la projection \mathbf{M} -orthogonale

$$c_{ik} = \langle \mathbf{e}_i - \mathbf{g}, \mathbf{a}_k \rangle_{\mathbf{M}} = (\mathbf{e}_i - \mathbf{g})' \mathbf{M} \mathbf{a}_k.$$

Composantes principales ce sont les variables $\mathbf{c}_k = (c_{1k}, \dots, c_{nk})$ de taille n définies par

$$\mathbf{c}_k = \mathbf{Y} \mathbf{M} \mathbf{a}_k$$
.

Chaque \mathbf{c}_k contient les coordonnées des projections Morthogonales des individus centrés sur l'axe défini par les \mathbf{a}_k .

Représentation des individus dans un plan principal_____

Qu'est-ce que c'est? pour deux composantes principales \mathbf{c}_1 et \mathbf{c}_2 , on représente chaque individu i par un point d'abscisse c_{i1} et d'ordonnée c_{i2} .

Quand? Elle est utile pour des individus discernables.

Propriétés des composantes principales

Moyenne arithmétique les composantes principales sont centrées :

$$\bar{c}_k = \mathbf{c}_k' \mathbf{D_p} \mathbf{1}_n = \mathbf{a}_k' \mathbf{M} \mathbf{Y}' \mathbf{D_p} \mathbf{1}_n = 0$$

car $\mathbf{Y}'\mathbf{D_p}\mathbf{1}_n = \mathbf{0}$ (les colonnes de \mathbf{Y} sont centrées).

Variance la variance de \mathbf{c}_k est λ_k car

$$var(\mathbf{c}_k) = \mathbf{c}_k' \mathbf{D}_{\mathbf{p}} \mathbf{c}_k = \mathbf{a}_k' \mathbf{M} \mathbf{Y}' \mathbf{D}_{\mathbf{p}} \mathbf{Y} \mathbf{M} \mathbf{a}_k$$
$$= \mathbf{a}_k' \mathbf{M} \mathbf{V} \mathbf{M} \mathbf{a}_k = \lambda_k \mathbf{a}_k' \mathbf{M} \mathbf{a}_k = \lambda_k.$$

Par conséquent on a toujours $\lambda_k \geq 0$

Covariance de même, pour $k \neq \ell$,

$$cov(\mathbf{c}_k, \mathbf{c}_\ell) = \mathbf{c}_k' \mathbf{D}_{\mathbf{p}} \mathbf{c}_\ell = \dots = \lambda_\ell \mathbf{a}_k' \mathbf{M} \mathbf{a}_\ell = 0.$$

Les composantes principales ne sont pas corrélées entre elles.

Facteurs principaux_

Définition on associe à \mathbf{a}_k le facteur principal $\mathbf{u}_k = \mathbf{M}\mathbf{a}_k$ de taille p. C'est un vecteur propre de $\mathbf{M}\mathbf{V}$ car

$$\mathbf{MV}\mathbf{u}_k = \mathbf{MVM}\mathbf{a}_k = \lambda_k \mathbf{M}\mathbf{a}_k = \lambda_k \mathbf{u}_k$$

Calcul en pratique, on calcule les \mathbf{u}_k par diagonalisation de \mathbf{MV} , puis on obtient les $\mathbf{c}_k = \mathbf{Y}\mathbf{u}_k$. Les \mathbf{a}_k ne sont pas intéressants.

Interprétation Si on pose $\mathbf{u}_k' = (u_{1k}, \dots, u_{pk})$, on voit que la matrice des u_{jk} sert de matrice de passage entre la nouvelle base et l'ancienne

$$c_{ik} = \sum_{j=1}^p y_i^j u_{jk}, \qquad \mathbf{c}_k = \sum_{j=1}^p \mathbf{y}^j u_{jk} \qquad \mathbf{c}_k = \mathbf{Y} \mathbf{u}_k$$

Formules de reconstitution.

Reconstitution Par définition des \mathbf{c}_k , on a $\mathbf{e}_i - \mathbf{g} = \sum_{k=1}^p c_{ik} \mathbf{a}_k$, et donc

$$y_i^j = \sum_{k=1}^p c_{ik} a_{kj}, \quad \mathbf{y}^j = \sum_{k=1}^p \mathbf{c}_k a_{kj}, \quad \mathbf{Y} = \sum_{k=1}^p \mathbf{c}_k \mathbf{a}_k'$$

Les a_{kj} forment de matrice de passage entre l'ancienne base et la nouvelle.

Approximation Les k premiers termes fournissent la meilleure approximation de \mathbf{Y} par une matrice de rang k au sens des moindres carrés (théorème de Eckart-Young).