Premier problème : une équation fonctionnelle polynomiale.

- 1. Soit (P,Q) solution tel que P est constant, alors $d((1-X^2)Q^2)=d(1-P^2)\leq 0$, soit $2+2d(Q)\leq 0$, d'où $d(Q)\leq -1$. Par conséquent, $d(Q)=-\infty$, i.e Q=0. Mais alors $P^2=1$, donc $P=\pm 1$. Réciproquement, (1,0) et (-1,0) sont des couples de polynômes solutions.
- 2. (a) On évalue l'équation fonctionnelle polynomiale en 1, ce qui donne $P^2(1)+(1-1^2)Q^2(1)=1$, ie. $P^2(1)=1$, soit $P(1)=\pm 1$.
 - (b) On note U = P, puis $V = (1 X^2)Q$, ce qui permet d'écrire la relation de Bezout UP + VQ = 1. D'après le théorème de Bezout, P et Q sont premiers entre eux.
 - (c) On dérive l'équation polynomiale, ce qui entraı̂ne $2PP' + (1 X^2)2QQ' 2XQ^2 = 0$, soit encore $PP' = Q(XQ Q'(1 X^2))$. On en déduit que Q divise PP'. Or $Q \wedge P = 1$ d'après 2.b). Le lemme de Gauss implique alors Q divise P'.
 - (d) Comme $(1-X^2)Q^2=1-P^2$, on a l'égalité de degrés $2+2d(Q)=d(1-P^2)$. Or P est non constant, donc $d(1-P^2)=d(P^2)=2d(P)$. On a alors d(P)=1+d(Q). En outre, comme P est non constant, on a également d(P')=d(P)-1, d'où d(P')=d(Q). Couplé à la relation de divisibilité Q|P', on en déduit que Q et P' sont associés.
 - (e) Comme $Q=\frac{P'}{\lambda}$, le terme dominant de Q vaut $\frac{ma_m}{\lambda}X^{m-1}$. On en déduit que le terme dominant de $P^2+(1-X^2)Q^2$ vaut $a_m^2X^{2m}-X^2\Big(\frac{ma_m}{\lambda}\Big)^2X^{2(m-1)}=a_m^2\Big(1-\frac{m^2}{\lambda^2}\Big)X^{2m}$.
 - (f) Comme $P^2+(1-X^2)Q^2=1$ et m>0, ce terme dominant est nul, donc $a_m^2\left(1-\frac{m^2}{\lambda^2}\right)=0$. Or $a_m\neq 0$, puisque c'est un coefficient dominant. On en déduit $1-\frac{m^2}{\lambda^2}=0$, i.e $\lambda^2=m^2$. Cela entraı̂ne via 2.d) $P'^2=m^2Q^2$.
 - (g) La question précédente fournit $m^2P^2 + (1-X^2)P'^2 = m^2$ puisque $m \ne 0$. En dérivant, on obtient

$$2m^2PP' + (1-X^2)2P'P'' - 2XP'^2 = 0$$

Comme P est non constant, $P' \neq 0$, et on en déduit par intégrité de $\mathbb{R}[X]$ que

$$m^2P = XP' + (X^2 - 1)P''$$

3. (a) Le cosinus est deux fois dérivable, donc g est deux fois dérivable. Soit $t \in \mathbb{R}$. On a

$$g'(t) = -\sin(t)f'(\cos(t))$$
 et $g''(t) = -\cos(t)f'(\cos(t)) + \sin^2(t)f''(\cos(t))$

Par conséquent,

$$-(g''(t) + n^2g(t)) = (\cos^2(t) - 1)f''(\cos(t)) + \cos(t)f'(\cos(t)) - n^2f(\cos(t))$$

Comme le cosinus est une surjection sur [-1,1], on en déduit que f est solution de (E_n) si et seulement si g est solution de (E_n') .

(b) Il s'agit d'une équation différentielle linéaire du deuxième ordre à coefficients constants. Son polynôme caractéristique vaut $X^2 + n^2$ qui a pour racines in et -in, qui sont distinctes puisque $n \neq 0$. L'ensemble des solutions à valeurs réelles de (E'_n) est donc

$$\{t \mapsto \alpha \cos(nt) + \beta \sin(nt) | (\alpha, \beta) \in \mathbb{R}^2\}$$

4. (a) Notons p = d(S) et a_p son coefficient dominant. Alors le coefficient dominant de $XS' + (X^2 - 1)S''$ vaut $pa_p + p(p-1)a_p = p^2a_p$, tandis que le coefficient dominant de n^2S vaut n^2a_p . On en déduit $p^2a_p = n^2a_p$. Comme $a_p \neq 0$, $p^2 = n^2$, puis p = n car ce sont des entiers naturels.

(b) On écrit directement

$$\begin{split} (X^2-1)S'' + XS' &= (X^2-1)\sum_{k=2}^n k(k-1)a_k X^{k-2} + X\sum_{k=1}^n ka_k X^{k-1} \\ &= \sum_{k=0}^n k^2 a_k X^k - \sum_{k=0}^{n-2} (k+2)(k+1)a_{k+2} X^k \\ &= n^2 a_n X^n + (n-1)^2 a_{n-1} X^{n-1} + \sum_{k=0}^{n-2} \left(k^2 a_k - (k+1)(k+2)a_{k+2} \right) X^k \end{split}$$

L'égalité avec $n^2S = \sum_{k=0}^{n} n^2 a_k X^k$ fournit alors l'ensemble d'égalités

$$(n-1)^2 a_{n-1} = n^2 a_{n-1}$$
 et $\forall k \in [[0, n-2]], k^2 a_k - (k+1)(k+2)a_{k+2} = n^2 a_k$

Comme $2n-1 \neq 0$, on en déduit $a_{n-1} = 0$, puis

$$\forall k \in [[0, n-2]], (k^2 - n^2)a_k = (k+1)(k+2)a_{k+2}.$$

(c) Pour tout entier p dans $\left[\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]\right]$, on note $\mathcal{H}_p: a_{n-(2p+1)}=0$, et $a_{n-2p}=\left(\frac{-1}{4}\right)^p\frac{(n-p-1)!}{p!(n-2p)!}na_n$ et on démontre sa validité par récurrence. Initialisation : pour p=0, on a déjà démontré que $a_{n-1}=0$. D'autre part, $\left(\frac{-1}{4}\right)^0\frac{(n-0-1)!}{0!(n-2\times0)!}na_n=\frac{n!}{n!}a_n=a_n$. Hérédité : soit p tel que $0\leq p-1\leq \lfloor n/2\rfloor$ et \mathcal{H}_p est vraie. Alors en exploitant la question précédente pour k=n-2p-3, il vient $((n-2p-3)^2-n^2)a_{n-2p-3}=(n-2p-2)(n-2p-1)a_{n-2p-1}$. Comme 2p< n et $a_{n-(2p+1)}=0$, on obtient $a_{n-(2p+3)}=0$. D'autre part, l'égalité de la question précédente fournit pour k=n-2p-2 fournit

$$\begin{split} a_{n-2(p+1)} &= \frac{(n-2p)(n-2p-1)}{(-2p-2)(2n-2p-2)} a_{n-2p} \\ &= \left(\frac{-1}{4}\right) \frac{(n-2p)(n-2p-1)}{(p+1)(n-(p+1))} \left(\frac{-1}{4}\right)^p \frac{(n-p-1)!}{p!(n-2p)!} n a_n \\ &= \left(\frac{-1}{4}\right)^{p+1} \frac{(n-(p+1)-1)!}{(p+1)!(n-2(p+1))!} n a_n \end{split}$$

Le principe de récurrence permet de conclure.

(d) En notant $U = \frac{n}{2} \sum_{p=0}^{\lfloor n/2 \rfloor} (-1)^p \frac{(n-p-1)!}{p!(n-2p)!} (2X)^{n-2p}$, on vient de montrer que si S est solution non nulle, alors on dispose de $a_n \in \mathbb{R}^*$ tel que $S = a_n U$. Réciproquement, les calculs précédents montrent que U est solution, donc que μU l'est également pour tout réel μ par linéarité. L'ensemble des solutions polynomiales de (E_n) est alors

$$\{\mu U | \mu \in \mathbb{R}\}$$

- 5. (a) On procède par récurrence double. Pour tout n dans \mathbb{N}^* , on note $\mathcal{H}_n: \left(d(T_n)=n, T_n \in \mathbb{Z}[X], \operatorname{dom}(T_n)=2^{n-1}\right)$. Initialisations: $T_1=X$, donc $d(T_1)=1$, et $T_1\in \mathbb{Z}[X]$. De plus, $2^{1-1}=1=\operatorname{dom}(T_1)$. Ainsi \mathcal{H}_1 est vraie. $T_2=2X^2-1$, donc $d(T_2)=2$, $T_2\in \mathbb{Z}[X]$ et $\operatorname{dom}(T_2)=2=2^{2-1}$. Ainsi \mathcal{H}_2 est vérifiée. Hérédité: soit $n\in \mathbb{N}^*$ tel que \mathcal{H}_n et \mathcal{H}_{n+1} sont vraies. Alors $d(2XT_{n+1})=n+2$ et $d(T_n)=n\neq n+2$, donc $d(2XT_{n+1}-T_n)=n+2$. On en déduit que $\operatorname{dom}(T_{n+2})=\operatorname{dom}(2XT_{n+1})=2\operatorname{dom}(T_{n+1})=2\cdot 2^{n-1+1}=2^{n+1}$. De plus, les coefficients de T_{n+2} sont des combinaisons entières des coefficients de T_{n+1} et T_n qui à coefficients dans \mathbb{Z} , donc T_{n+2} est à coefficients dans \mathbb{Z} . Ainsi, \mathcal{H}_{n+2} est vraie. La propriété annoncée en découle par récurrence.
 - (b) On procède encore par récurrence double. Soit $t \in \mathbb{R}$. Pour tout n dans \mathbb{N} , on note $\mathcal{H}_n : \mathcal{T}_n(\cos(t)) = \cos(nt)$. Initialisations : $\mathcal{T}_0(\cos(t)) = 1 = \cos(0t)$, $\mathcal{T}_1(\cos(t)) = \cos(t) = \cos(1t)$, donc \mathcal{H}_0 et \mathcal{H}_1 sont vraies. Hérédité : soit $n \in \mathbb{N}$ tel que \mathcal{H}_n et \mathcal{H}_{n+1} sont vraies. Alors

$$T_{n+2}(\cos(t)) = 2\cos(t)T_{n+1}(\cos(t)) - T_n(\cos(t))$$

$$= 2\cos(t)\cos((n+1)t) - \cos(nt)$$

$$= \cos((n+2)t) + \cos(nt) - \cos(nt)$$

$$= \cos((n+2)t)$$

2

Ainsi, \mathcal{H}_{n+2} est vérifiée et la propriété en découle par récurrence.

(c) Soit $n \in \mathbb{N}$. Les questions précédentes montrent que T_n est un tel polynôme. Soit P qui vérifie les mêmes critères. Alors

$$\forall x \in [-1, 1], (P - T_n)(x) = \cos(n \arccos(x)) - \cos(n \arccos(x)) = 0$$

Le polynôme $P-T_n$ possède une infinité de racines, donc est le polynôme nul. Ainsi $P=T_n$, ce qui prouve l'unicité.

- (d) D'après 5.b) et 3.b) $t \mapsto T_n(\cos(t))$ est solution de (E'_n) donc T_n est solution de (E_n) d'après 3.a).
- (e) Daprès 4.d), on dispose de $\mu \in \mathbb{R}$ tel que $T_n = \mu U$. On compare leurs coefficients dominants : dom $(U) = 2^{n-1}$ et dom $(T_n) = 2^{n-1}$ d'après 5.a), donc $T_n = U$ et l'ensemble des solutions polynomiales est l'ensemble des fonctions proportionnelles à T_n d'après 4.d).
- 6. (a) Soit $n \in \mathbb{N}^*$, $T_n(1) = \cos(n \arccos(1)) = \cos(0) = 1$.
 - (b) D'après 2.g), P est solution de (E_n) , donc on dispose de μ dans \mathbb{R}^* tel que $P = \mu T_n$. D'après 2.a), $P(1) = \pm 1$, donc $\mu = \pm 1$, puisque $T_n(1) = 1$. D'après 1.f), $Q^2 = \frac{P'^2}{n^2} = \frac{T_n'^2}{n^2}$, donc $Q = \frac{T_n'}{n}$ ou $Q = -\frac{T_n'}{n}$.
 - (c) Réciproquement, soit $n \in \mathbb{N}^*$, $t \in \mathbb{R}$. On remarque par dérivation que $-\sin(t)T_n'(\cos(t)) = -n\sin(nt)$, ce qui entraîne

$$T_n^2(\cos(t)) + (1 - \cos^2(t)) \frac{T_n'^2(\cos(t))}{n^2} = T_n^2(\cos(t)) + \frac{1}{n^2} \left[-\sin(t) T_n'(\cos(t)) \right]^2$$
$$= \cos^2(nt) + \sin^2(nt)$$
$$= 1$$

On en déduit que le polynôme $T_n^2 + (1 - X^2) \frac{T_n'^2}{n^2} - 1$ possède une infinité de racines (tous les réels de [-1,1]), ce qui entraîne l'égalité polynomiale. Ainsi, $(\pm T_n, \pm \frac{T_n'}{n})$ est bien solution. L'ensemble des solutions à P constant a été vu en question 1. Conclusion,

$$\left\{ (P,Q) \in \mathbb{R}[X]^2 \middle| P^2 + (1-X^2)Q^2 = 1 \right\} = \left\{ (\pm 1,0) \right\} \cup \left\{ \left(\pm T_n, \pm \frac{T_n'}{n} \right) \middle| n \in \mathbb{N}^* \right\}$$

Deuxième problème : la fonction dilogarithme

- 1. (a) Le terme de plus haut degré vaut $\binom{2n+1}{1}(-1)^0X^n = (2n+1)X^n$. Or $2n+1 \neq 0$ donc d(P)=n.
 - (b) Soit *t* ∈]0, $\pi/2$ [.

$$\begin{split} e^{i(2n+1)t} &= \left(e^{it}\right)^{2n+1} \\ &= (\cos(t) + i\sin(t))^{2n+1} \\ &= \sum_{k=0}^{2n+1} \binom{2n+1}{k} i^k \sin^k(t) \cos^{2n+1-k}(t) \\ &= \sum_{p=0}^{n} \binom{2n+1}{2p} i^{2p} \sin^{2p}(t) \cos^{2n+1-2p}(t) + \sum_{p=0}^{n} \binom{2n+1}{2p+1} i^{2p+1} \sin^{2p+1}(t) \cos^{2n-2p}(t) \end{split}$$

On en déduit en passant à la partie imaginaire :

$$\sin((2n+1)t) = \sum_{n=0}^{n} {2n+1 \choose 2p+1} (-1)^{p} \sin^{2p+1}(t) \cos^{2(n-p)}(t)$$

Or $t \in]0, \pi/2[$, donc $\sin(t) \neq 0$, d'où $\sin^{2n+1}(t) \neq 0$. On en déduit

$$\sin((2n+1)t) = \sin^{2n+1}(t) \sum_{p=0}^{n} {2n+1 \choose 2p+1} (-1)^{p} \sin^{2(p-n)}(t) \cos^{2(n-p)}(t)$$

$$= \sin^{2n+1}(t) \sum_{p=0}^{n} {2n+1 \choose 2p+1} (-1)^{p} \left(\cot^{2}(t) \right)^{n-p}$$

$$= \sin^{2n+1}(t) P_{n}(\cot^{2}(t))$$

(c) Soit $k \in [[1, n]]$, alors $0 < \frac{k\pi}{2n+1} < \frac{\pi}{2}$. Par conséquent, on peut appliquer ce qui précède au réel $\frac{k\pi}{2n+1}$, ce qui entraîne

$$P_{n}\left(\cot^{2}(\frac{k\pi}{2n+1})\right) = \frac{\sin\left((2n+1)\frac{k\pi}{2n+1}\right)}{\sin^{2n+1}\left(\frac{k\pi}{2n+1}\right)} = \frac{\sin(k\pi)}{\sin^{2n+1}\left(\frac{k\pi}{2n+1}\right)} = 0$$

(d) La cotangente est dérivable sur $]0,\pi/2[$, de signe constant strictement positif. De plus, $\cot n' = -1/\sin^2 < 0$, donc elle est strictement décroissante, donc $\cot n^2$ est strictement décroissante sur $]0,\pi/2[$ donc injective. Ainsi, la famille $\left(\cot n^2(\frac{k\pi}{2n+1})\right)_{1\leq k\leq}$ comporte bien n réels distincts qui forment alors n racines distinctes de P_n . Comme P_n est de degré n, on en déduit que P_n est simplement scindé. Comme il est de coefficient dominant (2n+1), on obtient la factorisation

$$P_n = (2n+1) \prod_{k=1}^{n} \left(X - \cot^2 \left(\frac{k\pi}{2n+1} \right) \right)$$

(e) On utilise les relations coefficients racines : la somme des racines vaut l'opposé du coefficient d'avantdernier degré divisé par le coefficient dominant, ce qui donne

$$\sum_{k=1}^{n} \cot^2\left(\frac{k\pi}{2n+1}\right) = -\frac{\binom{2n+1}{2\cdot 1+1}(-1)^1}{\binom{2n+1}{1}} = \frac{\binom{2n+1}{3}}{\binom{2n+1}{1}} = \frac{(2n+1)(2n)(2n-1)}{3!(2n+1)} = \frac{n(2n-1)}{3}$$

- 2. Le sinus est concave sur $[0,\pi/2[$ (puisque deux fois dérivable, de dérivée seconde $-\sin \le 0$ sur cet intervalle). Il est donc au-dessous de sa tangente en 0, ce qui donne $\forall t \in [0,\pi/2[$, $\sin(t) \le t$. D'autre part, la fonction tangente est convexe sur $[0,\pi/2[$ (puisque deux fois dérivable, de dérivée seconde $2\tan(1+\tan^2) \ge 0$ sur cet intervalle). Elle est donc au-dessus de sa tangente en 0, ce qui donne $\forall t \in [0,\pi/2[$, $t \le \tan(t)$.
- 3. Soit $t \in]0, \pi/2[$, alors $\sin(t) > 0$ et $\tan(t) > 0$. La fonction $u \mapsto 1/u^2$ étant décroissante sur \mathbb{R}^{+*} , on déduit de ce qui précède

$$\frac{1}{\tan^2(t)} \le \frac{1}{t^2} \le \frac{1}{\sin^2(t)}$$

Or
$$\frac{1}{\sin^2(t)} = \frac{\cos^2(t) + \sin^2(t)}{\sin^2(t)} = \cot^2(t) + 1$$
, donc

$$\cot^2(t) \le \frac{1}{t^2} \le 1 + \cot^2(t)$$

4. Soit $n \in \mathbb{N}^*$ et $k \in [[1, n]]$. On applique l'inégalité précédente au réel $\frac{k\pi}{2n+1}$ qui est bien dans $]0, \pi/2[$. Cela entraîne

$$\cot^2\left(\frac{k\pi}{2n+1}\right) \le \frac{(2n+1)^2}{k^2\pi^2} \le 1 + \cot^2\left(\frac{k\pi}{2n+1}\right)$$

Il vient alors par sommation

$$\sum_{k=1}^{n} \cot^2 \left(\frac{k\pi}{2n+1} \right) \le \sum_{k=1}^{n} \frac{(2n+1)^2}{k^2 \pi^2} \le \sum_{k=1}^{n} \left(1 + \cot^2 \left(\frac{k\pi}{2n+1} \right) \right)$$

D'arès la question 1.e), on en déduit

$$\frac{n(2n-1)}{3} \le \sum_{k=1}^{n} \frac{(2n+1)^2}{k^2 \pi^2} \le n + \frac{n(2n-1)}{3}$$

5. Soit $n \in \mathbb{N}^*$. En multipliant l'inégalité précédente par $\pi^2/(2n+1)^2 > 0$, il vient

$$\frac{\pi^2}{6} \frac{n(n-1/2)}{(n+1/2)^2} \leq \sum_{k=1}^n \frac{1}{k^2} \leq \pi^2 \frac{n}{(2n+1)^2} + \frac{\pi^2}{6} \frac{n(n-1/2)}{(n+1/2)^2}$$

D'après les limites des fonctions rationnelles, les encadrants de gauche et droite tendent tous deux vers $\pi^2/6$ quand n tend vers $+\infty$. Le théorème d'encadrement assure alors que la suite $\left(\sum_{k=1}^n \frac{1}{k^2}\right)_{n\in\mathbb{N}^*}$ est convergente de limite $\pi^2/6$.

II. Étude de la régularité de f.

1. (a) Soit t < 1. Alors $g'(t) = \frac{1}{1-t} = 0!(1-t)^{-1}$. On en déduit par récurrence classique :

$$\forall n \in \mathbb{N}^*, g^{(n)}(t) = (n-1)!(1-t)^{-n} = \frac{(n-1)!}{(1-t)^n}$$

(b) Soit $t \in \mathbb{R}$. Il s'agit d'une somme géométrique de raison t. Pour t = 1, $\sum_{k=0}^{n-1} t^k = n$. Si $t \neq 1$, $\sum_{k=0}^{n-1} t^k = \frac{1-t^n}{1-t}$. En particulier,

$$\forall t \in]-\infty, 1[, \frac{1}{1-t} = \sum_{k=0}^{n-1} t^k + \frac{t^n}{1-t}]$$

Soit $x \in]-\infty, 1[$. En intégrant l'égalité précédente entre 0 et x, on obtient

$$[-\ln(1-t)]_0^x = \sum_{k=0}^{n-1} \left[\frac{t^{k+1}}{k+1} \right]_0^x + \int_0^x \frac{t^n}{1-t} dt$$

soit encore

$$-\ln(1-x) = \sum_{k=0}^{n-1} \frac{x^{k+1}}{k+1} + \int_0^x \frac{t^n}{1-t} dt = \sum_{k=1}^n \frac{x^k}{k} + \int_0^x \frac{t^n}{1-t} dt$$

(c) Soit $x \in [0,1[$ et $t \in [0,x]$. Alors $0 \le t \le x < 1$, donc $1-t \ge 1-x > 0$, donc $0 < \frac{1}{1-t} \le \frac{1}{1-x}$, puis $0 \le \frac{t^n}{1-t} \le \frac{t^n}{1-x}$. On en déduit par croissance de l'intégrale,

$$0 \le R_n(x) \le \int_0^x \frac{t^n}{1-x} dt = \frac{1}{1-x} \left[\frac{t^{n+1}}{n+1} \right]_0^x = \frac{1}{1-x} \frac{x^{n+1}}{n+1}.$$

Soit à présent x dans [-1,0] et $t \in [x,0]$. Alors $x \le t \le 0$, donc $1-x \ge 1-t \ge 1 > 0$, donc $\frac{1}{1-t} \le 1$, puis $\frac{|t|^n}{1-t} \le |t|^n$. On en déduit par croissance de l'intégrale et inégalité triangulaire

$$0 \le \left| \int_0^x \frac{t^n}{1-t} dt \right| \le \int_x^0 \frac{|t|^n}{1-t} dt = \left[\frac{t|t|^{n+1}}{n+1} \right]_x^0 = \frac{|x|^{n+1}}{n+1}$$

2. (a) On exploite le résultat II.1) pour n = 2,

$$\forall x \in [-1, 1[, -\ln(1-x) = x + \frac{x^2}{2} + R_2(x)]$$

Or les inégalités précédentes indiquent

$$\forall x \in [0,1[,0 \le \frac{R_2(x)}{x^2} \le \frac{1}{1-x} \frac{x}{3} \xrightarrow[x \to 0^+]{} 0$$

$$\forall x \in [-1, 0], 0 \le \frac{|R_2(x)|}{x^2} \le \frac{x}{3} \xrightarrow[x \to 0^-]{} 0$$

On en déduit par théorème d'encadrement, $\frac{\ln(1-x)+x+x^2/2}{x^2} \xrightarrow[x\to 0]{} 0$.

(b) Soit $x \in]-\infty, 1[\setminus \{0\},$

$$f(x) - 1 = \frac{-\ln(1-x) - x}{x} = -x \frac{\ln(1-x) + x + x^2/2}{x^2} + x \xrightarrow[x \to 0]{} 0.$$

Ainsi, $f(x) \xrightarrow[x \to 0]{} 1 = f(0)$, donc f est continue en 0.

(c) Soit $x \in]-\infty,1[\setminus\{0\}]$, On assemble le taux d'accroissement de f en 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{-\ln(1 - x) - x}{x^2} = -\frac{\ln(1 - x) + x + x^2/2}{x^2} + \frac{1}{2} \xrightarrow[x \to 0]{} \frac{1}{2}$$

Ainsi, ce taux d'accroissement admet la limite finie 1/2 en 0. Ainsi, f est dérivable en 0 et f'(0) = 1/2.

(d) Soit *x* dans $]-\infty,0[\cup]0,1[$.

$$f'(x) = \frac{1}{x(1-x)} + \frac{\ln(1-x)}{x^2} = \frac{1}{1-x} \left[\frac{\ln(1-x) + x}{x^2} \right] - \frac{1}{1-x} \frac{\ln(1-x)}{x}$$

(e) On passe à la limite quand x tend vers 0 dans l'égalité précédente. Comme vu auparavant,

$$\frac{\ln(1-x)+x}{x^2} \xrightarrow[x\to 0]{-1}, \quad \frac{\ln(1-x)}{x} \xrightarrow[x\to 0]{-1}, \quad \frac{1}{1-x} \xrightarrow[x\to 0]{-1}$$

On en déduit que $f'(x) \xrightarrow[x \to 0]{} -\frac{1}{2} + 1 = \frac{1}{2} = f'(0)$. Ainsi, f' est continue en 0, donc de classe C^1 sur $]-\infty, 1[$.

III. Étude de L et de son prolongement en 1.

- 1. (a) f est continue, donc d'après le théorème fondamental du calcul intégral. L est dérivable et L' = f. Comme f est de classe C^1 , L est de classe C^2 .
 - (b) Toujours d'après le théorème fondamental du calcul intégral,

$$\forall x \in [-1, 1[, L'(x) = f(x)] = \begin{cases} \frac{-\ln(1-x)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

En particulier, pour tout x dans [-1,1[,f(x)>0,donc L est strictement croissante.]

2. (a) Soit $x \in]-1,0[\cup]0,1[$. D'après les inégalités II.2)

$$0 \le \left| \frac{R_n(x)}{x} \right| \le \begin{cases} \frac{1}{1 - x} \frac{|x|^n}{n+1} & \text{si } x > 0\\ \frac{|x|^n}{n+1} & \text{si } x < 0 \end{cases}$$

Comme n > 0, les majorants ont tous 0 pour limite quand x tend vers 0. Par théorème d'encadrement, $R_n(x)/x \xrightarrow[x \to 0]{} 0$, ce qui permet le prolonger continûment en 0 par 0. Mais alors, d'après II.1),

$$\forall x \in [-1, 0[\cup]0, 1[, \frac{-\ln(1-x)}{x} = \sum_{k=1}^{n} \frac{x^{k-1}}{k} + \frac{R_n(x)}{x} = \sum_{k=0}^{n-1} \frac{x^k}{k+1} + \frac{R_n(x)}{x}$$

En x = 0, on constate que l'égalité est encore valide via le prolongement de f et de $R_n(x)/x$.

(b) Soit $x \in [-1, 1]$. Si x = 0, la suite considérée est constante égale à f(0) = 1. Si $x \in [-1, 0]$ et $n \in \mathbb{N}^*$. Alors

$$\left| f(x) - \sum_{k=0}^{n-1} \frac{x^k}{k+1} \right| = \left| \frac{R_n(x)}{x} \right| \le \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

On en déduit le résultat par théorème d'encadrement. Si $x \in [0,1[$ et $n \in \mathbb{N}^*$. Alors, puisque |x| < 1, on a

$$\left| f(x) - \sum_{k=0}^{n-1} \frac{x^k}{k+1} \right| = \left| \frac{R_n(x)}{x} \right| \le \frac{1}{1-x} \frac{x^n}{n+1} \xrightarrow[n \to +\infty]{} 0$$

ce qui démontre le résultat attendu dans cet autre cas.

3. (a) On sait d'après les croissances comparées que $\frac{\ln(1-t)}{t}\sqrt{1-t} \xrightarrow[t\to 1^-]{} 0$. Comme cette limite est finie, on en déduit que $t\mapsto f(t)\sqrt{1-t}$ est bornée dans un voisinage V à gauche de 1. On dispose alors de η et β des réels strictement positifs tels que $\forall t\in [1-\eta,1[,f(t)\sqrt{1-t}\leq\beta]$. D'autre part, $t\mapsto f(t)\sqrt{1-t}$ est continue sur le segment $[0,1-\eta]$, donc est majorée sur ce segment d'après le TBA. Ainsi, on dispose de γ un réel positif tel que $\forall x\in [0,1-\eta]$, $f(t)\sqrt{1-t}\leq\gamma$. En posant $\alpha=\max(\beta,\gamma)$, on obtient

$$\forall x \in [0,1[,f(t) \le \frac{\alpha}{\sqrt{1-t}}]$$

(b) Soit $x \in [0, 1[$, la croissance de l'intégrale donne

$$\int_0^x f(t)dt \le \alpha \int_0^x \frac{dt}{\sqrt{1-t}} = \alpha \left[(-2)\sqrt{1-t} \right]_0^x = 2\alpha \left(1 - \sqrt{1-x} \right) \le 2\alpha$$

- (c) Ce qui précède indique que la fonction L est majorée. D'après III.1.b), elle est croissante. D'après le théorème de la limite monotone, L admet une limite finie en 1.
- (d) On procède par double inégalité. Soit $x \in]0,1[$ et $n \in \mathbb{N}^*$. En intégrant III.2.a), on obtient

$$L(x) = \sum_{k=0}^{n-1} \frac{x^{k+1}}{(k+1)^2} + \int_0^x \frac{R_n(t)}{t} dt = \sum_{k=1}^n \frac{x^k}{k^2} + \int_0^x \frac{R_n(t)}{t} dt$$

Or $t\mapsto R_n(t)/t$ est positive sur [0,x]. On en déduit par croissance de L, $\sum_{k=1}^n \frac{x^k}{k^2} \le L(x) \le \ell$, et ce pour tout x dans [0,1[. Puisque les fonctions polynomiales sont continues, on en déduit par passage à la limite quand x tend vers 1^- , $\sum_{k=1}^n \frac{1}{k^2} \le \ell$, et ce pour tout n dans \mathbb{N}^* . D'après I.5), $\sum_{k=1}^n \frac{1}{k^2} \xrightarrow[n \to +\infty]{} \frac{\pi^2}{6}$. On en déduit par passage à la limite quand n tend vers $+\infty$, $\frac{\pi^2}{6} \le \ell$.

D'autre part, on peut majorer $\sum_{k=1}^{n} \frac{x^k}{k^2} \le \sum_{k=1}^{n} \frac{1}{k^2} \le \frac{\pi^2}{6}$. Cela fournit alors

$$L(x) \le \frac{\pi^2}{6} + \int_0^x \frac{R_n(t)}{t} dt$$

D'après III.1.c), on a $\forall t \in]0,x], \frac{R_n(t)}{t} \leq \frac{1}{1-t} \frac{t^n}{n+1}$ y compris en 0 au vu du prolongement continu en 0. On en déduit par croissance de l'intégrale,

$$0 \le \int_0^x \frac{R_n(t)}{t} dt \le \frac{1}{(n+1)} R_n(x) \le \frac{1}{1-x} \frac{x^{n+1}}{(n+1)^2}.$$

Puisque $0 \le x < 1$, $\frac{1}{1-x} \frac{x^{n+1}}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0$. Le théorème d'encadrement fournit alors $\int_0^x \frac{R_n(t)}{t} dt \xrightarrow[n \to +\infty]{} 0$. Mais alors $L(x) \le \frac{\pi^2}{6}$ par passage à la limite dans les inégalités. On passe ensuite à la limite quand x tend vers 1^- , ce qui fournit $\ell \le \frac{\pi^2}{6}$.

Conclusion, $\ell = \frac{\pi^2}{6}$.

IV. Application au calcul d'intégrales

1. Soit a > 0. Le changement de variable indiqué fournit $dt = e^{-x} dx$ et $x = -\ln(1-t)$. On en déduit

$$J_a = \int_{1-e^{-a}}^{1-e^{-1/a}} \frac{-\ln(1-t)}{t} dt = L(1-e^{-1/a}) - L(1-e^{-a})$$

Or $1 - e^{-a} \xrightarrow[a \to 0^+]{} 0$ et $1 - e^{-1/a} \xrightarrow[a \to 0^+]{} 1$. On en déduit d'après la continuité de L en 0 et sa limite en 1 que $J_a \xrightarrow[a \to 0^+]{} \ell - L(0) = \pi^2/6$.

2. (a) On note $g:]-1,1[\to\mathbb{R},x\mapsto L(x)+L(-x)-\frac{1}{2}L(x^2)$. Elle est dérivable puisque L l'est. De plus,

$$\forall x \in]-1,1[\setminus \{0\}, g'(x) = L'(x) - L'(-x) - xL'(x^2)$$

$$= f(x) - f(-x) - xf(x^2)$$

$$= \frac{-\ln(1-x)}{x} - \frac{\ln(1+x)}{x} + \frac{\ln(1-x^2)}{x}$$

$$= \frac{-\ln((1-x)(1+x)) + \ln((1-x)(1+x))}{x^2}$$

$$= 0$$

De plus, comme L est de classe C^1 , on en déduit que g est de classe C^1 , donc que g'(0) = 0 par passage à la limite. Comme]-1,1[est un intervalle, on en déduit que g est constante égale à $g(0) = L(0) + L(0) - \frac{1}{2}L(0) = 0$. On obtient ainsi

$$\forall x \in]-1,1[,L(x)+L(-x)=\frac{1}{2}L(x^2)$$

(b) Comme L est continue en -1 et admet une limite ℓ en 1, ce qui précède fournit par passage à la limite quand x tend vers 1, $\ell + L(-1) = \frac{\ell}{2}$, soit encore $L(-1) = -\frac{\ell}{2} = -\frac{\pi^2}{12}$. Ainsi

$$\int_{-1}^{0} \frac{-\ln(1-t)}{t} dt = -L(-1) = \frac{\pi^2}{12}$$

3. (a) On note $h:]0,1[\to \mathbb{R}, x \mapsto L(1-x) + L(x) + \ln(x) \ln(1-x)$. Cette fonction est dérivable et

$$\forall x \in]0,1[,h'(x) = -f(1-x) + f(x) + \frac{\ln(1-x)}{x} - \frac{\ln(x)}{1-x} = 0$$

Comme]0,1[est un intervalle, h est constante. on cherche la limite de h en 1. Or $\ln(x)\ln(1-x) = \frac{\ln(x)}{1-x}(1-x)\ln(1-x) \xrightarrow[x\to 1]{} -1\cdot 0 = 0$. Par conséquent, $h(x)\xrightarrow[x\to 1]{} L(0) + \ell = \pi^2/6$. On en déduit $\forall x \in]0,1[,L(1-x)+L(x)=\frac{\pi^2}{6}-\ln(x)\ln(1-x)$.

(b) On évalue ce qui précède en x=1/2, ce qui donne $2L(1/2)=\frac{\pi^2}{6}-\ln^2(1/2)$. Conclusion,

$$\int_0^{1/2} \frac{-\ln(1-t)}{t} dt = L(1/2) = \frac{\pi^2}{12} - \frac{\ln^2(2)}{2}$$

8