

Audio-Beamformer

Thierry Schwaller

Florian Baumgartner

ldee

Akustik

Arrays

Design

Evaluation

Fazit

Direktiver Lautsprecher entwickeln

Audio Beam Steering

Konzept

Akustik

Arrays

Design

Evaluation

Fazit

Klassisches Lautsprecher Array

Parametrisches Lautsprecher Array

Direktivität

Akustik

Arrays

Design

Evaluation

Akustische Direktivität
$$D_T(\varphi) = \frac{\sin \frac{\omega a \sin \varphi}{2c}}{\frac{\omega a \sin \varphi}{2c}}$$

Direktivität $a = \lambda / 2$

Akustik

Arrays

Design

Evaluation

Schallausbreitung

Akustik

Arrays

Design

Evaluation

Direktivität $a = 2\lambda$

Akustik

Arrays

Design

Evaluation

Schallausbreitung

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Fazit

Sound from Ultrasound

Akustik

Arrays

Design

Evaluation

Fazit

Demodulation in der Luft

Demodulation

$$p \propto \frac{d^2}{dt^2} E^2(t)$$

Zweite Ableitung führt zu Hochpass

Ideale Umhüllende
$$E(t) = \sqrt{1 + m \int \int f(t) dt^2}$$

Akustik

Arrays

Design

Evaluation

Fazit

Amplituden Modulation

Umhüllende

$$E(t) = \frac{1}{2} \left(1 + mf(t) \right)$$

Hörbares Signal

$$f_{RX}(t) = mf(t) + \frac{1}{2}m^2f^2(t)$$

Akustik

Arrays

Design

Evaluation

Fazit

Modified AM

Ähnlicher Aufbau wie QAM

Störterm-Unterdrückung

Akustik

Arrays

Design

Evaluation

Fazit

Piezoelektrischer Ultraschall-Transducer

Hohe Güte

 $f_R = 40 \text{ kHz}$

Schmale Bandbreite

Vorteile von Arrays

Akustik

Arrays

Design

Evaluation

Fazit

Höherer Schalldruck

Verstärkung der Richtcharakteristik

Ermöglicht Beamforming

Richtcharakteristik

Akustik

Arrays

Design

Evaluation

Fazit

Richtcharakteristik

$$D_A(\varphi) = \frac{\sin \frac{Mks \sin \varphi}{2}}{M \cdot \sin \frac{ks \sin \varphi}{2}}$$

Akustik

Arrays

Design

Evaluation

Fazit

Richtcharakteristik M = 5

Akustik

Arrays

Design

Evaluation

Fazit

Richtcharakteristik

Akustik

Arrays

Design

Evaluation

Fazit

Dolph-Chebyshev Window

Akustik

Arrays

Design

Evaluation

Fazit

Beamsteering

Unterschiedliche Verzögerungen

Wellenfronten ergeben Winkel

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Fazit

Anforderungen

Stand-Alone

Easy to use

Professional

Akustik

Arrays

Design

Evaluation

Fazit

Aufbau Array

Hexagonale Anordnung

Akustik

Arrays

Design

Evaluation

Fazit

Aufbau Array

Matlab Simulation

Akustik

Arrays

Design

Evaluation

Fazit

Signalfluss

Raspberry Pi Compute Module 4

Arrays

Design

Evaluation

Evaluation

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

2x2xEinführung External **USB-Ports** Akustik Camera **Arrays** External → HDMI* Monitor Design Touch LCD **Evaluation** Display **Fazit** DC/DC **T**11 **RGB-LEDs** Converter

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Fazit

PCB

Akustik

Arrays

Design

Evaluation

Fazit

GUI

Akustik

Arrays

Design

Evaluation

Fazit

Endprodukt

Akustik

Arrays

Design

Evaluation

Fazit

Funktioniert es?

Quantifizierung

Akustik

Arrays

Design

Evaluation

Fazit

Ultraschall-Messungen

Keine Absorber-Kammer

Human Expertise Test

17 Teilnehmer: innen Audio Qualität Richtcharakteristik

Messsetup

Akustik

Arrays

Design

Evaluation

Audio Qualität

Akustik

Arrays

Design

Evaluation

Fazit

1 2 3 4 5 6

4

Acceptable
hearing
experience,
speech
recognizable
without effort

5

Enjoyable
hearing
experience,
appropriate for
daily use

4.5 Sprache

4.2 Musik

Akustik

Arrays

Design

Evaluation

Fazit

Richtcharakteristik

Beam Steering

Akustik

Arrays

Design

Evaluation

Beam Steering

Akustik

Arrays

Design

Evaluation

Akustik

Arrays

Design

Evaluation

Fazit

Grating Lobe

Grating Lobe

Min. / Max. Winkel

Minimaler Winkel

$$\varphi_{min} = \sin^{-1} \frac{\tau_{min} c_0}{Md} \approx 0.21^{\circ}$$

Maximaler Winkel

$$\varphi_{max} = \sin^{-1} \frac{\tau_{max} c_0}{Md} \approx 53.4^{\circ}$$

$$\tau_{max} = \tau_{min} \cdot N_{MC} = 320 \ ns \cdot 4092 = 654 \ \mu s$$

Far Field

Transducer $d_T \approx 3a \approx 6.5 cm$

 $Array d_A \approx 3 L \ddot{a}nge Array \approx 78 cm$