Wurzelfunktionen

20.01.2025

Georg Helmbold, Konrad Krämer und Liam Stedman

1 Einführung

Definitionen

Wurzelfunktion

Eine W. ist eine Funktion vom Typ

$$f: \mathbb{R}_0^+ \to \mathbb{R}_0^+, \ x \mapsto \sqrt[n]{x} \text{ mit } n \in \mathbb{N}.$$

W. sind die *Umkehrfunktionen* der Potenzfunktionen. Die allgemeine Form der Funktionsvorschrift einer W. sieht folgendermaßen aus:

$$f(x) = a \cdot \sqrt[n]{x+b}.$$

Definitionen (ii)

Umkehrfunktion (inverse Funktion)

Eine U. ist die Funktion f^{-1} , die jedem Element des Wertebereichs einer eineindeutigen Funktion f genau ein Element ihres Definitionsbereiches zuordnet. Zum Beispiel sind die natürliche Logarithmusfunktion und die natürliche Exponentialfunktion inverse voneinander.

Alle anderen wichtigen Definitionen sind auf dem Handout oder in der jeweiligen Aufgabenstellung.

2 Aufgabe 5 (Whirlpool)

Definitionen

$$f_a(x)$$

Es sei f_a eine Funktion mit

$$f_a(x) = \frac{1}{2}x \cdot \sqrt{x+a}, \ a \neq 0.$$

 f_a erreicht ihren maximalen Definitionsbereich. Die Graphen von f_a werden mit G_a bezeichnet.

Definitionen (ii)

Abbildung 1: G_a für zwei Werte von a mit $a \in \mathbb{Z}$.

(a)

•••••••

Aufgabe

Bestimmen Sie in Abhängigkeit von a für alle Funktionen f_a den maximalen Definitionsbereich.

(a) - Lösung

Aufgabe

Bestimmen Sie in Abhängigkeit von a für alle Funktionen f_a den maximalen Definitionsbereich.

$$f_a(x) = \frac{1}{2}x \cdot \sqrt{x+a}, \ a \neq 0.$$

Lösung

$$x \in \mathbb{R}, x \ge -a$$

••••••••••

Aufgabe

Die Abbildung zeigt die Graphen für zwei ganzzahlige Werte des Parameters a. Welche?

(b) - Lösung

Aufgabe

Die Abbildung zeigt die Graphen für zwei ganzzahlige Werte des Parameters a. Welche?

Lösung

$$a_1 = 6; a_2 = -1$$

(c)

Aufgabe

Auf genau einem Graphen G_a liegt der Punkt $P\langle 6\mid 6\rangle$. Bestimmen Sie hierfür den zugehörigen Parameterwert a.

(c) - Lösung

Aufgabe

Auf genau einem Graphen G_a liegt der Punkt $P\langle 6\mid 6\rangle$. Bestimmen Sie hierfür den zugehörigen Parameterwert a.

Lösung

$$\sqrt{3+a} = 2 \Rightarrow a = 1$$

•00000000000000000

Aufgabe

Jeder Graph G_a hat genau einen lokalen Extrempunkt. Zeigen Sie, dass $E\langle -\frac{2}{3}a\mid -\frac{a}{3}\sqrt{\frac{a}{3}}\rangle$ dieser Extrempunkt ist.

Prüfen Sie, ob es einen Graphen G_a gibt, für dessen Extrempunkt gilt: die x-Koordinate und die y-Koordinate haben den gleichen Wert. Geben Sie ggf. den entsprechenden Parameterwert a an.

(d) - Lösung

Aufgabe

Jeder Graph G_a hat genau einen lokalen Extrempunkt. Zeigen Sie, dass $E\langle -\frac{2}{3}a \mid -\frac{a}{3}\sqrt{\frac{a}{3}} \rangle$ dieser Extrempunkt ist.

Prüfen Sie, ob es einen Graphen G_a gibt, für dessen Extrempunkt gilt: die x-Koordinate und die y-Koordinate haben den gleichen Wert. Geben Sie ggf. den entsprechenden Parameterwert a an.

Lösung

Ableiten:
$$f_a'(x) = \frac{3x+2a}{4\sqrt{x+a}}$$

 $f_a = 0$ setzen.

In f_a einsetzen.

Aussage ist wahr für a = 12.

••0000000000000000

(e)

Aufgabe

Entscheiden Sie ohne weitere Rechnung, ob es sich bei dem in Teilaufgabe (d) beschriebenen Extrempunkt um einen Hoch- Oder Tiefpunkt des Graphen G_a handelt und begründen Sie Ihre Entscheidung.

(e) - Lösung

Aufgabe

Entscheiden Sie ohne weitere Rechnung, ob es sich bei dem in Teilaufgabe (d) beschriebenen Extrempunkt um einen Hoch- Oder Tiefpunkt des Graphen G_a handelt und begründen Sie Ihre Entscheidung.

Lösung

 f_a'' ist immer > 0, deshalb ist E ein Tiefpunkt.

•••00000000000000

Dreieck

Für jeden Graphen G_a sind seine beiden Schnittpunkte mit der x-Achse und sein lokaler Extrempunkt Eckpunkte eines Dreiecks.

Aufgabe

Berechnen Sie den Wert des Parameters a so, dass dieses Dreieck einen Flächeninhalt von 1,5 FE hat.

••••0000000000000

(f) - Lösung

Dreieck

Für jeden Graphen G_a sind seine beiden Schnittpunkte mit der x-Achse und sein lokaler Extrempunkt Eckpunkte eines Dreiecks.

Aufgabe

Berechnen Sie den Wert des Parameters a so, dass dieses Dreieck einen Flächeninhalt von 1,5 FE hat.

•000000000000

Lösung

$$1,5 = -a \cdot \left(-\frac{a}{3} \cdot \sqrt{\frac{a}{3}} \right) \cdot \frac{1}{2}$$

$$1,5 = \frac{a^2}{3} \cdot \sqrt{\frac{a}{12}} \mid \cdot 3$$

$$4,5 = a^2 \cdot \sqrt{\frac{a}{12}} \mid []^2$$

(f) - Lösung (iii)

$$20,25 = a^4 \cdot \frac{a}{12} = \frac{a^5}{12} \mid \sqrt[5]{[]}; \cdot 12$$

$$a = 3$$

Aufgabe

Beschreiben Sie einen Lösungsweg zur Bestimmung des Parameterwertes a für denjenigen Graphen, für den das Dreieck rechtwinklig ist.

(h)

Aufgabe

Rotiert das Dreieck um seine auf der x-Achse liegende Seite, so entsteht ein Körper. Begründen Sie, dass Sich dieser Körper unabhängig von a stets aus zwei geraden Kreiskegeln mit gemeinsamer Grundfläche zusammensetzt.

(h) - Lösung

Aufgabe

Zeigen Sie unter Verwendung einer beschrifteten Skizze, dass für das Volumen des Körpers aus Teilaufgabe (h) gilt: $V(a) = \frac{\pi}{81} a^4$ VE.

Volumen eines Kegels

$$V = \frac{1}{3}\pi r^2 h$$

(i) - Lösung

Aufgabe

Zeigen Sie unter Verwendung einer beschrifteten Skizze, dass für das Volumen des Körpers aus Teilaufgabe (h) gilt: $V(a) = \frac{\pi}{81}a^4$ VE.

Lösung

Aufgabe

Ein anderer Rotationskörper entsteht, wenn die Fläche, die der Graph G_6 mit der x-Achse vollständig einschließt, um die x-Achse rotiert. Bestimmen Sie das Verhältnis der Volumina dieses Rotationskörpers zu dem des Körpers aus Teilaufgabe (i).

(j) - Lösung

Aufgabe

Ein anderer Rotationskörper entsteht, wenn die Fläche, die der Graph G_6 mit der x-Achse vollständig einschließt, um die x-Achse rotiert. Bestimmen Sie das Verhältnis der Volumina dieses Rotationskörpers zu dem des Körpers aus Teilaufgabe (i).

Lösung

(Definition)

Definition

Ein Whirlpool hat von oben betrachtet die dargestellte Form. Die untere Randkurve wird für $-6 \le x \le -4$ durch den Graphen G_6 und für $-4 \le x \le -2$ durch den Graphen K einer Funktion g modelliert. Die obere Randkurve erhält man durch Spiegelung der unteren Randkurve an der x-Achse. Es gilt: 1 LE = 0.5m.

(k)

Aufgabe

Den Graphen K der Funktion g erhält man durch Spiegelung des Graphen G_6 an einer der beiden Koordinatenachsen und anschließende Verschiebung in Richtung einer der beiden Koordinatenachsen. Geben Sie eine Gleichung für die Funktion g an.

(k) - Lösung

Aufgabe

Den Graphen K der Funktion g erhält man durch Spiegelung des Graphen G_6 an einer der beiden Koordinatenachsen und anschließende Verschiebung in Richtung einer der beiden Koordinatenachsen. Geben Sie eine Gleichung für die Funktion g an.

Lösung