带间断系数的弹性问题

2023年1月14日

目录

1	引言																	2
2	有限	元近似	和闭	锁														2
	2.1	误差估	计															2
	2.2	闭锁现	象															3
3	算例																	5
	3.1	模型 .																5
	3.2	变分 .																6
	3.3	剖分与	基函	á数														7
		3.3.1	剖分	} .														7
		3.3.2	线性	生元														7
	3.4	形成线	性方	7程约	组													8
		3.4.1	刚度	更矩	阵													8
		3.4.2	边界	早条	件													8
	3.5	实验结	果															8

1 引言

具有间断系数的方程成为交界面问题。这类问题起源于许多应用领域, 例如 2 种不同材料或者相同材料在不同状态下物理机制的研究 [3]

平面弹性力学方程组是弹性力学中最基础、最常见的模型。当研究的弹性体形状和受力具有一定特点时,通过适当的简化处理,就可以归结为平面弹性问题 [1]。

对于各向同性均匀介质的平面弹性问题,当材料的 Lamé 常数 $\lambda \to \infty$ 时,即对于几乎不可压介质,通常低阶的协调有限元解,往往不再收敛到原问题的解,或者达不到最优收敛阶,这就是闭锁现象,使用非协调有限元可克服闭锁现象 [2]。

本文将通过数值实验的方法,考察对于具有间断系数的平面弹性问题, 使用 C-R 元是否仍可以解除闭锁现象。

2 有限元近似和闭锁

2.1 误差估计

假设 Ω 是一个凸多边形区域,并且 Γ_1 or Γ_2 中任意一个为空。对于纯位移问题 ($\Gamma_2 = \emptyset$),我们只需考虑齐次边界条件。

令 T^h 是 Ω 三角划分的一个非退化族。对于纯位移问题 $(\Gamma_2=\emptyset)$,我们使用有限元空间

$$(1.3.1) V_h := \{ \nu \in H^1(\Omega) : \nu|_T$$
为线性函数, $\forall T \in T^h \}$,

并且对于纯牵引力问题 $(\Gamma_1 = \emptyset)$, 我们使用

$$(1.3.2) V_h := \{ \nu \in H^1(\Omega) : \nu|_T$$
为线性函数, $\forall T \in T^h \}$,

(1.3.3) Theorem[4]. 令 $u \in H^2(\Omega) \cap H^1(\Omega)$ 满足纯位移问题,并且 $u_h \in V_h$ 满足

$$a(u_h, \nu) = \int_{\Omega} f \cdot \nu dx \quad \forall \nu \in V_h.$$

则存在一个正常数 $C_{(\mu,\lambda)}$ 使得

$$(1.3.4) ||u - u_h||_{H^1(\Omega)} \le C_{(\mu,\lambda)} h ||u||_{H^2(\Omega)}.$$

(1.3.5) Theorem. \diamondsuit $u \in H^2(\Omega)$ 满足纯牵引力问题。 \diamondsuit $u_h \in V_h$ 满足

$$a(u_h, \nu) = \int_{\Omega} f \cdot \nu dx + \int_{\Gamma} t \cdot \nu ds \quad \forall \nu \in V_h.$$

则存在一个正常数 $C_{(\mu,\lambda)}$ 使得

$$||u - u_h||_{H^1(\Omega)} \le C_{(\mu,\lambda)} h ||u||_{H^2(\Omega)}.$$

2.2 闭锁现象

对于固定的 μ 和 λ ,定理 1.3.3 和 1.3.5 给出了弹性问题令人满意近似的有限元近似。但是这些有限元方法的性能随着 λ 趋向于 ∞ 而变差。这就是所谓的锁定现象。

令 $\Omega = (0,1) \times (0,1)$. 我们考虑 $\mu = 1$ 时的纯位移边值问题:

(1.3.6)
$$div\{2\epsilon(u^{\lambda}) + \lambda tr(\epsilon(u^{\lambda}))\delta\} = f \quad in \quad \Omega$$

$$u^{\lambda}|_{\partial\Omega} = 0.$$

 $u^{\lambda}|_{\partial\Omega} = 0.$ 注意给定的 f ,当 $\lambda \to \infty$,(1.2.33) 说明 $\|divu^{\lambda}\|_{H^{1}(\Omega)} \to 0$. 换句话说,我们正在处理一种几乎不可能压缩的弹性材料。为了强调对 λ 的依赖,我们将应力张量 (1.1.3) $\sigma_{\lambda}(\nu)$ 和变分形式 (1.2.2) $a_{\lambda}(\nu,\omega)$ 表示为

$$\begin{split} \sigma_{\lambda}(\nu) &= 2\epsilon(\nu) + \lambda tr(\epsilon(\nu))\delta \\ a_{\lambda}(\nu,\omega) &= \int_{\Omega} \{2\epsilon(\nu) : \epsilon(\omega) + \lambda div\nu div\omega\} dx. \end{split}$$

令 T^h 为 Ω (cf. 图 1) 的一个规则三角剖分,并且 V_h 被定义为 (1.3.1)。 对于每一个 $u\in H^2(\Omega)\cap H^1_0(\Omega)$,定义 $u_h^\lambda\in V_h$ 为以下方程组的特解

$$a_{\lambda}(u_h^{\lambda}, \nu) = \int_{\Omega} [-div\sigma_{\lambda}(u)] \cdot \nu dx \quad \forall \nu \in V_h.$$

定义 $L_{\lambda,h}$ 为

$$L_{\lambda,h}:=\sup\{\frac{|u-u_h^{\lambda}|_{H^1(\Omega)}}{\|\operatorname{div}\sigma_{\lambda}(u)\|_{L^2(\Omega)}}:0\neq u\in H^2(\Omega)\cap H^1(\Omega)\}.$$

我们要证明存在一个与 h 无关的正常数 C 使得

(1.3.7)
$$\lim_{\lambda \to \infty} \inf L_{\lambda,h} \ge C.$$

式 (1.3.7) 意味着: 无论 h 取多小, 只要 λ 足够大, 我们都能找到 $u \in$

 $H^{2}(\Omega) \cap H^{1}(\Omega)$ 使得相对误差 $|u - u_{h}|_{H^{1}(\Omega)} / \|div\sigma_{\lambda}(u)\|_{L^{2}(\Omega)}$ 以一个与 h 无关的常数为下界。换句话说,有限元方法的性能将会随着 λ 变大而变坏。为证明式 (1.3.7),我们首先观察到

$$\{\nu \in V_h : div\nu = 0\} = \{0\}$$

(cf.exercise 11.x.14). 因此, 映射 $\nu \to div\nu$ 是有限维空间 V_h 到 $L^2(\Omega)$ 的一个一对一映射, 并且存在一个正常数 $C_1(h)$ 使得

令 ψ 是 $\overline{\Omega}$ 上的无穷次可微函数,使得在 Ω 的边界上 $curl\psi = 0$ 且 $\|\epsilon(curl\psi)\|_{L^2(\Omega)} = 1$ 。令 $u := curl\psi$ 。则 $u \in H^2(\Omega) \cap H^1(\Omega)$,并有

$$(1.3.10) divu = 0,$$

(1.3.12)
$$\sigma_{\lambda}(u) = 2\epsilon(u).$$

根据 (1.3.10), (1.3.11) 和 1.2 节开始的分步积分得

$$(1.3.13) - \int_{\Omega} div \epsilon(u) \cdot u dx = \int_{\Omega} \epsilon(u) : \epsilon(u) dx = 1.$$

根据 (1.3.12), (1.3.13) 推断

(1.3.14)
$$\lim_{\lambda \to \infty} div \sigma_{\lambda}(u) = 2 div \epsilon(u) \neq 0.$$

由 (2.5.10) 得,

$$(1.3.15) a_{\lambda}(u - u_h^{\lambda}, u - u_h^{\lambda}) = \min_{\nu \in V_h} a_{\lambda}(u - \nu, u - \nu) \le a_{\lambda}(u, u).$$

由 (1.3.10) 和 (1.3.11), 我们得到

$$(1.3.16) a_{\lambda}(u, u) = 2.$$

因此,对于 λ 足够大时有

$$(1.3.17) a_{\lambda}(u - u_h^{\lambda}, u - u_h^{\lambda}) \le 2.$$

由 (1.3.10) 和 (1.3.17) 得

$$\begin{split} \sqrt{\lambda} \| div u_h^{\lambda} \|_{L^2(\Omega)} &= \sqrt{\lambda} \| div (u - u_h^{\lambda}) \|_{L^2(\Omega)} \\ &\leq \sqrt{a_{\lambda} (u - u_h^{\lambda}, u - u_h^{\lambda})} \\ &< \sqrt{2} \end{split}$$

对足够大的 λ 有

$$\lim_{\lambda \to \infty} \|div u_h^{\lambda}\|_{L^2(\Omega)} = 0.$$

由式 (1.3.9) 有

$$\lim_{\lambda \to \infty} \|u_h^{\lambda}\|_{H^1(\Omega)} = 0.$$

最后, 我们得到

(1.3.19)
$$\lim_{\lambda \to \infty} \inf L_{\lambda,h} \ge \lim_{\lambda \to \infty} \inf \frac{|u - u_h^{\lambda}|_{H^1(\Omega)}}{\|div\sigma_{\lambda}(u)\|_{L^2(\Omega)}}$$

$$= \frac{|u|_{H^1(\Omega)}}{\|div\sigma(u)\|_{L^2(\Omega)}} > 0.$$

3 算例

3.1 模型

令

$$\sigma(u) = 2\mu\epsilon(u) + \lambda tr(\epsilon(u))\delta$$

$$\epsilon(u) = \frac{1}{2}(gradu + (gradu)^t)$$

$$tr(\tau) = \tau_{11} + \tau_{22}$$

$$grad(u) = \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{\partial u_1}{\partial y} \\ \frac{\partial u_2}{\partial x} & \frac{\partial u_2}{\partial y} \end{pmatrix}$$

$$\delta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$divu = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y}$$

$$div\tau = \begin{pmatrix} \frac{\partial \tau_{11}}{\partial x} + \frac{\partial \tau_{12}}{\partial y} \\ \frac{\partial \tau_{12}}{\partial x} + \frac{\partial \tau_{22}}{\partial y} \end{pmatrix}$$

考察模型

$$-div\sigma(u) = f \quad \in \Omega$$
$$u|_{\Gamma} = 0$$

其中
$$u=(u_1,u_2)^t$$
 为求解向量, $f=(f_1,f_2)^t$ 为右端向量, $\Omega=[0,1]\times[0,1]$

$$u_{1} = (x-1)(y-1)ysin(x)$$

$$u_{2} = (x-1)(y-1)xsin(y)$$

$$f_{1} = -((2\mu + \lambda)y(y-1)(2cos(x) - (x-1)sin(x)) + (\mu + \lambda)(2x-1)(sin(y) + (y-1)cos(y)) + 2\mu(x-1)sin(x))$$

$$f_{2} = -((2\mu + \lambda)x(x-1)(2cos(y) - (y-1)sin(y)) + (\mu + \lambda)(2y-1)(sin(x) + (x-1)cos(x)) + 2\mu(y-1)sin(y))$$

3.2 变分

设 $\nu = (\nu_1, \nu_2)^t$, $\nu_1, \nu_2 \in C_0^{\infty}(\Omega)$, 方程两边同乘 ν 并积分得

$$-\int_{\Omega}div\sigma(u)\nu dxdy=\int_{\Omega}f\nu dxdy$$

由

$$fdiva = div(fa) - a : gradf$$
$$\int_{\Omega} divadV = \int_{\partial\Omega} adS$$

得

$$\begin{split} &-\int_{\Omega}div\sigma(u)\nu dxdy\\ &=-\int_{\Omega}div(\sigma(u)\nu)dxdy-\int_{\Omega}\sigma(u):grad\nu dxdy\\ &=-\int_{\Gamma}\sigma(u)\nu dxdy+\int_{\Omega}\sigma(u):grad\nu dxdy \end{split}$$

$$= \int_{\Omega} \sigma(u) : grad\nu dx dy$$

所以

$$\int_{\Omega} \sigma(u) : grad\nu dxdy = \int_{\Omega} f\nu dxdy$$

该问题的变分问题为, 求 $u \in H^1(\Omega)$ 使得 $u|_{\Gamma_1} = g$, 并且

$$a(u,\nu) = \int_{\Omega} f \cdot \nu dx dy \quad \forall \nu \in V$$

其中

$$\begin{split} a(u,\nu) :&= \int_{\Omega} \sigma(u) : grad\nu dx dy \\ &= \int_{\Omega} 2\mu \epsilon(u) : grad\nu + \lambda divudiv\nu dx dy \\ V :&= \{ \nu \in H^1(\Omega) \quad | \quad \nu|_{\Gamma} = 0 \} \end{split}$$

3.3 剖分与基函数

3.3.1 剖分

对区间 Ω 按图 1 方式剖分,并对节点和单元进行编号,各节点坐标为 (x_i,y_i) , $i=0,\ldots,n$,

设基函数为

$$(\varphi_0, 0)^t, (0, \varphi_0)^t, (\varphi_1, 0)^t, (0, \varphi_1)^t, ..., (\varphi_n, 0)^t, (0, \varphi_n)^t$$

 φ_i 为线性元,以下得到其在各单元上表达式。

3.3.2 线性元

如图 2,设 $\triangle(p_0,p_1,p_2)$ 是以 p_0,p_1,p_2 为顶点的任意三角型元,面积为 S。在 $\triangle(p_0,p_1,p_2)$ 内任取一点 p_3 ,坐标为 (x,y)。过 p_3 点作与三个顶点的连线,将 $\triangle(p_0,p_1,p_2)$ 分成三个三角形: $\triangle(p_1,p_2,p_3),\triangle(p_0,p_3,p_2),\triangle(p_0,p_1,p_3)$,其面积分别为 S_0,S_1,S_2

显然 $S_0 + S_1 + S_2 = S$, 令

$$L_0 = \frac{S_0}{S}, \quad L_1 = \frac{S_1}{S}, \quad L_2 = \frac{S_2}{S}$$

$$\begin{cases} L_0 = \frac{1}{2S}[(x_2y_3 - x_3y_2) + (y_2 - y_3)x + (x_3 - x_2)y] \\ L_1 = \frac{1}{2S}[(x_3y_0 - x_0y_3) + (y_3 - y_0)x + (x_0 - x_3)y] \\ L_2 = \frac{1}{2S}[(x_0y_1 - x_1y_0) + (y_0 - y_1)x + (x_1 - x_0)y] \end{cases}$$

因为

$$\begin{cases} L_0 = \begin{cases} 1, & x = x_0, y = y_0 \\ 0, & x = x_1, y = y_1 \\ 0, & x = x_2, y = y_2 \end{cases} \\ L_1 = \begin{cases} 0, & x = x_0, y = y_0 \\ 1, & x = x_1, y = y_1 \\ 0, & x = x_2, y = y_2 \end{cases} \\ L_2 = \begin{cases} 0, & x = x_0, y = y_0 \\ 0, & x = x_1, y = y_1 \\ 1, & x = x_2, y = y_2 \end{cases} \end{cases}$$

所以在此区间上 $\varphi_i = L_i$ 。

3.4 形成线性方程组

3.4.1 刚度矩阵

设 $\varphi_{xi}=(\varphi_i,0)^t, \varphi_{yi}=(0,\varphi_i)^t, \ i=0,\ldots,n$ 为试探函数空间 U_h 的基函数,则任一 $u_h\in U_h$ 可表成

$$u_h = \sum_{i=1}^n u_1^i \varphi_{xi} + \sum_{i=1}^n u_2^i \varphi_{yi}, \quad u^i = u_h(x_i, y_i)$$

令 $\phi_{2i}=\varphi_{xi}$, $\phi_{2i+1}=\varphi_{yi}$, $c_{2i}=u_1^i$, $c_{2i+1}=u_2^i$ 带入变分形式得

$$\sum_{j=0}^{2n+1} a(\phi_j, \phi_i)c_i = (f, \phi_i) \quad i = 0, ..., 2n+1$$

矩阵形式为

$$Ac = F$$

$$A = (a(\phi_i, \phi_j))_{(2n+1)\times(2n+1)}$$

$$F = ((f, \phi_i))_{(2n+1)\times 1}$$

$$c = (c_i)_{(2n+1)\times 1}$$

3.4.2 边界条件

模型为齐次边界条件,若 (x_i, y_i) 为边界点,则 A 第 2i 行第 2i 列,第 2i+1 行第 2i+1 列元素为 1,其他元素及 F(2i),F(2i+1) 都为 0。

3.5 实验结果

表 1: 线性元误差

h	3.125e-2	7.812e-3	1.953e-3	4.882e-4	1.220e-4	3.051e-5
1	3.1007e-3	6.6322e-4	1.4833e-4	4.3538e-5	1.6079e-5	6.2883e-6
10	3.4359e-3	1.3916e-3	4.5128e-4	1.2428e-4	3.2305e-5	8.1245e-6
100	3.3958e-3	9.0716e-3	3.6454e-3	1.0038e-3	2.6076e-4	6.5941e-5
1e3	3.4040e-3	8.5781e-2	3.5580e-2	9.8154e-3	2.5446e-3	6.4444e-4
1e4	3.4050e-3	8.5287e-1	3.5492e-1	9.7931e-2	2.5383e-2	6.4295e-3
1e5	3.4051e-3	8.5237	3.5484	9.7909e-1	2.5377e-1	6.4280e-2

参考文献

- [1] 王兆清, 徐子康, and 李金. 不可压缩平面问题的位移-压力混合重心插值 配点法. 应用力学学报, 35(3):631-636, 2018.
- [2] 陈绍春 and 肖留超. 平面弹性的一个新的 locking-free 非协调有限元. 应用数学, 20(4):739-747, 2007.
- [3] 邵文婷. 求解一类交界面问题的模态基函数谱元法数值实验. 上海第二工业大学学报, 34(4):283-290, 2017.
- [4] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. *The mathematical theory of finite element methods*, volume 3. Springer, 2008.

图 1: 单位正方形的规则三角剖分

1 0

图 3

图 4: 线性元误差