#### Disseny de registres

Rosa M. Badia Ramon Canal DM Tardor 2004



### Tipus d'elements de memòria

- Utilitzats per emmagatzemar informació binària (registres).
- Depenen de la sincronització amb el rellotge:
  - Flip-flop: sincronitzat per flanc
  - Latch: sincronitzat per nivell
  - Pulse-mode
  - Asíncrons (sense rellotge)
- Varietat en la seva implementació:
  - Velocitat
  - Càrrega sobre el rellotge
  - Estàtics / dinàmics



#### Latches vs Flip-flops

#### Latches

- level sensitive circuit that passes inputs to Q when the clock is high (or low) - transparent mode
- input sampled on the falling edge of the clock is held stable when clock is low (or high) - hold mode
- Flip-flops (edge-triggered)
  - edge sensitive circuits that sample the inputs on a clock transition
    - positive edge-triggered: 0 → 1
    - negative edge-triggered: 1 → 0
  - built using latches (e.g., master-slave flipflops)



### Flip-flop tipus D

- Emmagatzema una dada en el flanc descendent del rellotge:
  - t<sub>setup</sub> : temps abans del flanc de rellotge en que les dades han d'estar estables
  - t<sub>hold</sub> : temps després del rellotge en que les dades s'han de mantenir estables
  - t<sub>d-q</sub> : temps de propagació





• Estructura Master-Slave estàtica







- Master: transparent
- Slave: emmagatzema un dada







- Master: emmagatzema un dada
- Slave: transparent







- Master: emmagatzema un dada
- Slave: transparent







- Master: transparent
- Slave: emmagatzema un dada







- Podem eliminar una porta de pas
- L'inversor que implementa el feedback ha de ser "weak"





- Podem eliminar una porta de pas
- L'inversor que implementa el feedback ha de ser "weak"



 L'inversor weak ha de posar menys corrent que l'entrada



# Flip-flop tipus D alternatiu

- Evita utilitzar les portes de pas
- Les substitueix per portes tri-state





# Flip-flop tipus D alternatiu

- Evita utilitzar les portes de pas
- Les substitueix per portes tri-state





#### Flip-flop tipus D alternatiuC<sup>2</sup> MOS

- Clocked CMOS, evita utilitzar les portes de pas
- Les substitueix per portes tri-state





- Emmagatzema una dada a la capacitat d'entrada de l'inversor
- Requereix una freqüència mínima d'operació





- Emmagatzema una dada a la capacitat d'entrada de l'inversor
- Requereix una freqüència mínima d'operació





Estructura Master-Slave







- Master: transparent
- Slave: emmagatzema una dada







- Master: transparent
- Slave: emmagatzema un dada







- Master: emmagatzema una dada
- Slave: transparent







- Master: transparent
- Slave: emmagatzema una dada







### Latch tipus D

- emmagatzema una dada en el nivelli negatiu del rellotge:
  - t<sub>hold</sub>: dades estables després de la fase transparent
  - -t<sub>latch</sub>: temps de propagació





#### Latch tipus D

- emmagatzema una dada en el nivell negatiu del rellotge:
  - -t<sub>hold</sub>: dades estables després de la fase transparent
  - -t<sub>latch</sub>: temps de propagació
  - -t<sub>setup</sub>: dades estables abans de la fase opaca





### Latch tipus D estàtic

• Utilitza el mateix esquema que el flip-flop.



transparent



### Latch tipus D estàtic

• Utilitza el mateix esquema que el flip-flop.



Opaco



### Latch tipus D dinàmic C<sup>2</sup>MOS

 Permet un millor control del node intern que emmagatzema el valor en el latch.





















#### Power PC Flipflop







#### Power PC Flipflop





32

#### Pulsed FF (AMD-K6)

- Pulse registers a short pulse (glitch clock) is generated locally from the rising (or falling) edge of the system clock and is used as the clock input to the flipflop
  - race conditions are avoided by keeping the transparent mode time very short (during the pulse only)
  - advantage is reduced clock load; disadvantage is substantial increase in verification complexity



33

#### Sense Amp FF (StrongArm SA100)

- Sense amplifier (circuits that accept small swing input signals and amplify them to full rail-to-rail signals) flipflops
  - advantages are reduced clock load and that it can be used as a receiver for reduced swing differential buses





# Flipflop Comparison Chart

| Name               | Туре      | #clk ld       | #tr | t <sub>set-up</sub>                  | t <sub>hold</sub> | t <sub>pFF</sub>                     |
|--------------------|-----------|---------------|-----|--------------------------------------|-------------------|--------------------------------------|
| Mux                | Static    | 8 (clk-!clk)  | 20  | 3t <sub>pinv</sub> +t <sub>ptx</sub> | 0                 | t <sub>pinv</sub> +t <sub>ptx</sub>  |
| PowerPC            | Static    | 8 (clk-!clk)  | 16  |                                      |                   |                                      |
| 2-phase            | Ps-Static | 8 (clk1-clk2) | 16  |                                      |                   |                                      |
| T-gate             | Dynamic   | 4 (clk-!clk)  | 8   | t <sub>ptx</sub>                     | t <sub>o1-1</sub> | 2t <sub>pinv</sub> +t <sub>ptx</sub> |
| C <sup>2</sup> MOS | Dynamic   | 4 (clk-!clk)  | 8   |                                      |                   |                                      |
| TSPC               | Dynamic   | 4 (clk)       | 11  | t <sub>pinv</sub>                    | t <sub>pinv</sub> | 3t <sub>pinv</sub>                   |
| S-O TSPC           | Dynamic   | 2 (clk)       | 10  |                                      |                   |                                      |
| AMD K6             | Dynamic   | 5 (clk)       | 19  |                                      |                   |                                      |
| SA 100             | SenseAmp  | 3 (clk)       | 20  |                                      |                   |                                      |



#### Conclusions

- Elements de memòria per emmagatzemar informació en el data-path dels processadors
- Diferents tipus de bistables segons l'estratègia de "clocking".
  - Master-slave.
  - Dinàmics / estàtics.
- Els bistables necessiten un caracterització especial:
  - temps de hold.
  - temps de setup.
  - temps de latch.



# Bancs de registres





#### Bancs de registres

- Descodificador d'escriptura: com els descodificadors de fila de les RAM
- Descodificadors de lectura: com els descodificadors de columna de les RAM
  - Per exemple, en arbre

