Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Algebra and Computation

Assignment - 1

Roll: BMC202175 Date: May 15, 2024

Problem 1 Problem Set 1: P5

For a prime p and a positive integer e, prove that $\mathbb{Z}_{p^e}^*$ is cyclic.

Solution: We will prove this in 3 stages: e = 1, e = 2, e > 2.

Case 1: e = 1

Lemma 1. $\sum_{d|n} \varphi(d) = n$

Proof: Consider the list of numbers $S = \left\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$. If we express every number in S as simplified form i.e. $\frac{p}{q}$ form where gcd(p,q) = 1. Then the denominators are all the divisors of n.

Then for any $k \in [n]$ we have

$$\frac{k}{n} = \frac{\frac{k}{\gcd(k,n)}}{\frac{n}{\gcd(k,n)}}$$

Denote $d_k \coloneqq \frac{n}{\gcd(k,n)}$ then d_k is a factor of n. And since $\gcd\left(\frac{k}{\gcd(k,n)},\frac{n}{\gcd(k,n)}\right) = 1$ we have $\frac{k}{\gcd(k,n)} \in \mathbb{Z}_{d_k}^*$. Let $k \in \mathbb{Z}_d^*$ then suppose l is such that $d \times l = n$ then the fraction $\frac{k}{d} = \frac{k \times l}{n} \in S$ and its simplified form is infact $\frac{k}{d}$. Hence for any $d \mid n$, the number of fractions with denominator d is $\varphi(d)$, since for all such fractions the

Hence for any $d \mid n$, the number of fractions with denominator d is $\varphi(d)$, since for all such fractions the numerators are the elements of \mathbb{Z}_d^* . Therefore we have $\sum_{d\mid n} \varphi(d) = n$.

Now define for d such that $d \mid p-1$, $S_d = \{a \in \mathbb{Z}_p^* \mid ord(a) = d\}$. Then we have the following lemma:

Lemma 2. $|S_d| = \varphi(d)$

Proof: First we will show that $|S_d| \in \{0, \varphi(d)\}$ then we will show that $|S_d| = \varphi(d)$. Now if $|S_d| \neq 0$ then $\exists \ a \in S_d$ such that ord(a) = d. Then consider the polynomial $x^d - 1$ over \mathbb{F}_p . $1, a, a^2, \ldots, a^{p-1}$ are its distinct roots. Since the degree is d these are the only roots of the polynomial. Now a^k has order $\frac{d}{\gcd(d,k)}$. Then the elements which has order d are a^k where $\gcd(k,d) = 1$. Hence there are $\varphi(d)$ many powers of a which has order d. Therefore $|S_d| \in \{0, \varphi(d)\}$.

Now we have by Lemma 1

$$\sum_{d|p-1} \varphi(d) = p-1$$

Now $\{S_d\colon d\mid p-1\}$ is a partition of \mathbb{Z}_p^* . Therefore $\sum\limits_{d\mid p-1}|S_d|=p-1$. Hence

$$p-1 = \sum_{d|p-1} |S_d| \le \sum_{d|p-1} \varphi(d) = p-1 \iff |S_d| = \varphi(d) \ \forall \ d \text{ such that } d \mid p-1$$

Hence the number of elements in \mathbb{Z}_p^* which has order d such that $d \mid p-1$

Now we will introduce another definition. Let H be a group. Then Exponent of H is the smallest number n such that $\forall a \in H$, $a^n = 1$. Now we will show that every finite abelian group has an element which has the order to be exponent of the group. Then we will show that \mathbb{Z}_p^* has exponent p-1. With that we can say \mathbb{Z}_p^* has an element which has order p-1. Therefore \mathbb{Z}_p^* is cyclic since $|\mathbb{Z}_p^*| = p-1$ because \mathbb{Z}_p^* is a finite abelian group.

Lemma 3. If G is a finite abelian group with exponent n then $\exists g \in G$ such that ord(g) = n.

Proof: By structure theorem we have

$$G \cong \mathbb{Z}_{q_1} \times \cdots \times \mathbb{Z}_{q_m}$$

where q_1, \ldots, q_m are primes powers. Now $\forall g \in G$, $ord(g) \mid lcm(q_1, \ldots, q_m)$. The element in $\mathbb{Z}_{q_1} \times \cdots \times \mathbb{Z}_{q_m}$, $(1, 1, \ldots, 1)$ has order $lcm(q_1, \ldots, q_m)$. So the exponent of G is $lcm(q_1, \ldots, q_m)$ and the corresponding element of $(1, \ldots, 1)$ has order $lcm(q_1, \ldots, q_m)$.

Lemma 4. \mathbb{Z}_p^* has exponent p-1.

Proof: Over \mathbb{F}_p the equation $x^{p-1}-1$ has p-1 roots which are all the elements of \mathbb{Z}_p^* . There does not exists any polynomial of lower degree which satisfies this property. Hence the exponent of \mathbb{Z}_p^* is p-1.

Therefore there exists an element of \mathbb{Z}_p^* which has order p-1. Therefore the group \mathbb{Z}_p^* is cyclic.

Case 2: e = 2

Lemma 5. Let g be generator of the group \mathbb{Z}_p^* . Then either g or g + p is generator for $\mathbb{Z}_{p^2}^*$.

Proof: We have $|\mathbb{Z}_{p^2}^*|\varphi(p^2)=p(p-1)$. Let g has order m in $\mathbb{Z}_{p^2}^*$. Then $g^p\equiv 1 \mod p$. Hence $p-1\mid m$. Therefore m=p(p-1) or m=p-1 since $m\mid p(p-1)$. If its the first case then we are done. For the later take the element g+p. Again let its order is m'. Then $(g+p)^{m'}\equiv 1 \mod p$. So $p-1\mid m'$. Hence m' can be either p-1 or p(p-1). If it is also p-1 then we have

$$1 \equiv (g+p)^{p-1} \equiv g^{p-1} + (p-1)g^{p-2}p + p^2(\cdots) \bmod p^2$$
$$\equiv g^{p-1} + p(p-1)g^{p-2} \bmod p^2$$
$$\equiv 1 + p(p-1)g^{p-2} \bmod p^2$$

Therefore

$$p(p-1)g^{p-2} \equiv 0 \bmod p^2 \iff p \mid (p-1)g^{p-2}$$

which is not possible since gcd(p, p-1) = 1 and gcd(p, g) = 1. Contradiction. Hence at least one of g and g + p has order p(p-1).

With this lemma we have an element of $\mathbb{Z}_{p^2}^*$ which has order $p(p-1)=|\mathbb{Z}_{p^2}^*|$. So $\mathbb{Z}_{p^2}^*$ is cyclic.

Case 3: e > 2

Lemma 6. $(1+p)^{p^k} \equiv 1 + p^{k+1} \mod p^{k+2}$

Proof:

$$(1+p)^{p^k} \equiv ((1+p)^p)^{p^{k-1}}$$

$$\equiv \left(1+p^2 + \binom{p}{2}p^2\right)^{p^{k-1}} \mod p^{k+2}$$

$$\equiv 1+p^2 \times p^{k-1} \mod p^{k+2}$$

$$\equiv 1+p^{k+1} \mod p^{k+2}$$

Therefore

$$(1+p)^{p^{k+1}} \equiv (1+p^{k+1})^p \equiv 1+p \times p^{k+1} \equiv 1+p^{k+2} \equiv 1 \mod p^{k+2}$$

Hence (1+p) has order p^{k+1} in $\mathbb{Z}_{p^{k+2}}^*$. Or we can say 1+p has order p^{e-1} is $\mathbb{Z}_{p^e}^*$.

Let g be the generator of \mathbb{Z}_p^* . Then let the order of g in $\mathbb{Z}_{p^e}^*$ is m. Then $p-1\mid m$. So g has order $p^k(p-1)$. Therefore the number $g(1+p) \mod p^e$ has order $p^{e-1}(1-p) = \varphi(p^e)$. Therefore $\mathbb{Z}_{p^e}^*$ is a cyclic group.

Problem 2 Problem Set 1: P6

Let $N=p_1p_2\cdots p_k$ be a Carmichael number and p_i 's are primes. In class we have seen that given N as input, a single pass of Miller-Robin primality test outputs a nontrivial factor of N with probability $\geq \frac{1}{2}$. We can do a finer calculation and get better success probability. Show that a single pass of Miller-Robin primality test outputs a nontrivial factor of N with probability $1-\frac{1}{2k-1}$.

Solution: Let ϕ be the isomorphism of

$$\mathbb{Z}_N^* \cong \mathbb{Z}_{p_1}^* \times \cdots \times \mathbb{Z}_{p_k}^*$$

Now suppose $N-1=2^v m$ where m is odd. Let $a \in \{2,\ldots,N-2\}$ Let l_a be the minimum such that $a^{2^{l_a+1}m} \mod N \equiv 1$. Surely for all $a, l_a > 0$ and $l_a \le N-1$ Now take $l = \max\{l_a \mid a \in \{2,\ldots,N-2\}\}$. Therefore l > 0 and $l \le N-1$. For all k < l there exists $a \in \{2,\ldots,N-2\}$ such that $a^{2^{k+1}m} \not\equiv 1 \mod N$.

Now consider the group

$$G_N = \{ a \in \mathbb{Z}_N^* \mid a^{2^l m} \equiv \pm 1 \mod N \}$$

Now there exists at least one \tilde{a} such that $\tilde{a}^{2^l m} \equiv -1 \mod N$ since otherwise for all $a \in \{2, ..., N-2\}$, $l_a \leq l-1$. Then $\max\{l_a \mid a \in \{2, ..., N-2\}\} \leq l-1$ which contradicts that the value we got is l. Hence there exist a $\tilde{a} \in \mathbb{Z}_N^*$ such that $\tilde{a}^{2^l m} \equiv -1 \mod N$.

Now $\phi(\tilde{a}^{2^l m}) = (-1, ..., -1)$. Suppose $\phi(\tilde{a}) = (\tilde{a}_1, ..., \tilde{a}_k)$. Then we have

$$\forall i \in [k], \ \tilde{a}_i^{2^l m} \equiv -1 \mod p_i$$

Now for any $i \in [k]$ the corresponding element in \mathbb{Z}_N^* of $(1,\ldots,1,\tilde{a}_i,1,\ldots,1)$ denote by g. Then $g^{2^lm} \not\equiv -1 \mod N$. There are k many slots here and in each slot we have 2 options 1 or \tilde{a}_i . Hence with above like construction we can have at most 2^k many elements. Among these the elements $(1,\ldots,1)$ and $(\tilde{a}_1,\ldots,\tilde{a}_k)$ are in G_N . All the other elements remain in distict cosets of G_N in \mathbb{Z}_N^*/G_N . Hence

$$Pr_{a \in_R \mathbb{Z}_N^*} [a \in \mathbb{Z}_N^* - G_N] \ge \frac{2^k - 2}{2^k} = 1 - \frac{1}{2^{k-1}}$$

Hence

 $Pr[Primality Test outputs a nontrivial factor of N] \ge 1 - \frac{1}{2^{k-1}}$

Problem 3 Problem Set 1: P7

Design a randomized polynomial time algorithm such that given N and $\varphi(N)$ as inputs, it outputs a non-trivial factor of N with probability at least $\frac{1}{2}$, where $\varphi(\cdot)$ is the Euler's totient function

Solution:

Problem 4 Problem Set 1: P13

Design a deterministic polynomial time algorithm to compute the gcd of two univariate polynomials using resultants and linear system solving.

Solution: Let $p, q \in \mathbb{F}[x]$ where $\deg p = m$ and $\deg q = n$. The Sylvester matrix generated by p, q is $S_{p,q}$. Let for any $k \in \mathbb{N}$, $\mathbb{F}_k := \{f \in \mathbb{F}[x] \mid \deg f < k\}$. Then for $(u, v) \in \mathbb{F}_n \times \mathbb{F}_m$, $S_{p,q}(u, v) = up + vq$.

Let gcd(p,q) = h and deg h = d.

Lemma 7. dim ker $S_{p,q} = \deg gcd(p,q)$

Proof: Let $(x,y) \in \ker S_{p,q}$. Then px + qy = 0. Now denote $p = hp_0$ and $q = hq_0$. Hence $gcd(p_0,q_0) = 1$. Therefore

$$px + qy = 0 \iff p_0x + q_0y = 0 \iff p_0x = -q_0y$$

Therefore $q_0 \mid x$ and $p_0 \mid y$. So let $x = q_0 g_x$ and $y = p_0 g_y$. Then

$$p_0x + q_0y = 0 \iff p_0q_0g_x + q_0p_0g_y = 0 \iff p_0q_0(g_x + g_y) = 0 \iff g_x = -g_y$$

So denote $g = g_x = -g_y$. So $x = g_0g$, $y = -p_0g$. Now

$$\deg x < \deg q \iff \deg q_0 + \deg g < \deg q_0 + \deg h \iff \deg g < \deg h$$

Hence for each $(x,y) \in |S\rangle_{p,q}$ there exists unique $g \in \mathbb{F}_d$ such that $x = q_0g$ and $y = -p_0g$ and also for each $g \in \mathbb{F}_d$ we have $x = q_0g$ and $y = -p_0g$ such that px + qy = 0. Hence there exists a bijection $\mathbb{F}_d \cong \ker S_{p,q}$ by $g \mapsto (q_0g, -p_0g)$

Therefore by Rank-Nullity Theorem

$$rank(S_{p,a}) + dim ker S_{p,a} = m + n$$

Therefore $\operatorname{rank}(S_{p,q}) = m+n-d$. Hence the last d rows of the row echelon form of the $S_{p,q}^T$ are zeros. Let $(S_{p,q}^T)^*$ denote the row echelon form of $S_{p,q}^T$. Let e_i denote the ith row of $(S_{p,q}^T)^*$. Hence the last nonzero row of $(S_{p,q}^T)^*$ is e_{m+n-d} . We have $\deg e_{m+n-d} \leq d$. Now for $i \in [n]$ the ith row of $S_{p,q}^T$ is just $x^{n-i}p$ and for $n+1 \leq j \leq n+m$ the jth row is $x^{m+n-j}q$. Hence

$$e_{m+n-d} = \sum_{i=1}^{n} \alpha_i x^{n-i} p + \sum_{i=n+1}^{m+n} \alpha_i x^{m+n-i} q$$

The LHS has degree $\leq d$ and the RHS is divisible by h since $h \mid p$ and $h \mid q$. Hence $h = e_{m+n-d}$ up to some unit multiplication. Therefore we can say e_{m+n-d} is the gcd of p,q. Therefore the algorithm will be **Algorithm:**

Step 1 Construct $S_{p,q}$

Step 2 Find Row Echelon Form of $S_{p,q}^T$ by Gaussian Elimination

Step 3 Output the last nonzero row

Problem 5 Problem Set 1: P14

Give a polynomial time algorithm to compute the gcd of two bivariate polynomials, without using bivariate factorization.

Solution:

Lemma 8. Let R be an Euclidean Domain. Let $p \in R$ be a prime and $f, g \in R[x]$ be nonzero. Let $h = \gcd(f, g) \in R[x]$. Denote $\overline{f} = f \mod p$ and $\overline{g} = g \mod p$ and $d = \deg h$ and $\alpha = lc(h)$. Assume $p \nmid b = \gcd(lc(f), lc(g)) \in R$ and $\overline{d} = \deg \gcd(\overline{f}, \overline{g})$. Then

1. $\alpha \mid b$

2. $\overline{d} \ge d$

3. $d = \overline{d} \iff \overline{\alpha} \cdot gcd(\overline{f}, \overline{g}) = \overline{h} \iff p \nmid \text{Res}(\frac{f}{h}, \frac{g}{h})$

Proof:

- 1. Now *h* divides both f, g. Therefore lc(h) divides both lc(f) and lc(g) in R. Hence $\alpha \mid b$
- 2. Let $u = \frac{f}{h}$ and $v = \frac{g}{h}$. Since $p \nmid b \implies p \nmid lc(h)$. Hence $\deg h = \deg \overline{h} = d$. Now

$$\overline{u}\overline{h} = \overline{f}$$
 and $\overline{v}\overline{h} = \overline{g}$

Hence $\overline{h} \mid \overline{f}$ and $\overline{h} \mid \overline{g} \implies \overline{h} \mid gcd(\overline{f}, \overline{g})$. Therefore $\deg gcd(\overline{f}, \overline{g}) \ge \deg \overline{h} \implies \overline{d} \ge d$.

3. $d = \overline{d} \iff \deg \overline{h} = \deg \gcd(\overline{f}, \overline{g})$. Now $p \nmid b$ and $\alpha \mid b$ so $p \nmid \alpha$. Hence α is a unit in $R/\langle p \rangle$ as $R/\langle p \rangle$ is a field. In a field gcd is always taken to be monic. Now $\overline{\alpha} = lc(\overline{h})$. Since $\deg \overline{h} = \deg \gcd(\overline{f}, \overline{g})$ we can say $\overline{h} = u \cdot \gcd(\overline{f}, \overline{g})$ for some unit $u \in R/\langle p \rangle$. Now since $\gcd(\overline{f}, \overline{g})$ is monic we have $u = \overline{\alpha}$ Therefore $d = \overline{d} \implies \overline{\alpha} \cdot \gcd(\overline{f}, \overline{g}) = \overline{h}$. Other direction obviously becomes true as $\overline{\alpha}$ is a unit in $R/\langle p \rangle$.

Now $p \nmid b \implies p$ divides at most one of lc(u) or lc(v). WLOG assume $p \nmid lc(u)$. We know

$$p \mid \text{Res}(u, v) \iff \gcd(\overline{u}, \overline{v}) \neq 1 \text{ in } R/\langle p \rangle$$

So

$$gcd(\overline{f}, \overline{g}) = gcd(\overline{u}, \overline{v}) \cdot \frac{\overline{h}}{\overline{\alpha}} \iff \overline{\alpha}gcd(\overline{f}, \overline{g}) = gcd(\overline{u}, \overline{v})\overline{h}$$

$$\iff \overline{h} = gcd(\overline{u}, \overline{v})\overline{h}$$

$$\iff gcd(\overline{u}, \overline{v}) = 1$$

$$\iff p \nmid \text{Res}(\overline{u}, \overline{v})$$

$$\iff p \nmid \text{Res}(u, v)$$

Algorithm 1: Modular Bivariate GCD Algorithm

Input:

```
1. Primitive Polynomials f, g \in \mathbb{F}[x, y] = R[x]
```

```
2. \deg_x f = n \ge \deg_x g \ge 1
```

3. $\deg_v f$, $\deg_v g \leq d$

```
Output: h = gcd(f,g) \in \mathbb{F}[x,y]
```

```
1 begin
```

```
b \leftarrow gcd(lc(f), lc(g)), FAIL \leftarrow 1
 2
        while FAIL do
 3
             Choose a random monic irreducible polynomial p \in \mathbb{F}[y] with deg p = d + 1 + \deg b
 4
             \overline{f} \longleftarrow f \mod p, \overline{g} \longleftarrow g \mod p
 5
             Use Extended Euclidean Algorithm over \mathbb{F}[y]/\langle p \rangle on \overline{f} and \overline{g} to compute the monic v \in R/\langle p \rangle
             Compute w, f', g' \in R[x] with \deg_v w, \deg_v f', \deg_v g' < \deg p such that:
                                       w \equiv bv \mod p  f'w \equiv bf \mod p  g'w \equiv bg \mod p
            if \deg_v(f'w) = \deg_v(bf) and \deg_v(g'w) = \deg(bg) then
 8
              FAIL \leftarrow 0
             return premitive part of w w.r.t x
10
```

Now in $\mathbb{F}[x,y]$ let gcd(f,g) = h and $r = \operatorname{Res}_x\left(\frac{f}{h},\frac{g}{h}\right) \in \mathbb{F}[y]$. Now $\deg_y b < \deg_y p = \deg p$ and hence $p \nmid b$. Assume $p \nmid r$ then by Lemma 8 we have $\alpha \cdot v \equiv h \mod p$ and $\alpha \mid b$. Therefore

$$w \equiv bv \equiv \left(\frac{b}{\alpha}\right) h \bmod p$$

Now primitive part of w=premitive part of $\left(\frac{b}{a}\right)h$ =h. Hence correct result is returned.

Now if $p \mid r$ then by Lemma 8 we have $\deg_x gcd(\overline{f}, \overline{g}) > \deg_x h$. If the degree conditions in step 8 are satisfied then the congruences in step 7 would be equalities and the primitive part of w will be a common divisor of f and g of higher degree than $\deg_x h$. Contradiction. So the degree conditions will not be satisfied.