MA-102: Elementary Real Analysis Assignment - 1

- 1. Let $a,b \in \mathbb{R}$. Show that if $a \le b+1/n \ \forall n \in \mathbb{N}$, then $a \le b$.
- 2. Let *A* and *B* be two non-empty subsets of \mathbb{R} such that $\sup A$, $\inf A$, $\sup B$ and $\inf B$ exist. Define $C = \{x + y : x \in A, y \in B\}$ and $D = \{x y : x \in A, y \in B\}$, and prove the following: $\sup C = \sup A + \sup B$, $\inf C = \inf A + \inf B$, $\sup D = \sup A \inf B$ and $\inf D = \inf A \sup B$
- 3. Find the *sup* and *inf* of the following sets of real numbers:
- (i) $\{x:(x-a)(x-b)(x-c)(x-d)<0\}$, where a < b < c < d
- (ii) $\{x: x = 2^{-p} + 3^{-q} + 5^{-r}\}$, where p, q and r take on all positive integer values.
- 4. Find the largest $\varepsilon > 0$ such that S contains the ε neighborhood of x_0 :

(i)
$$x_0 = 3/4$$
, $S = [1/2,1)$ (ii) $x_0 = 5$, $S = (-1,\infty)$

5. Find the limit points of the following sets and classify them as open or closed sets:

$$(i) \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\} \ (ii) \ \left[m - \frac{1}{2}, \ m + \frac{1}{2} \right] \ (iii) \left[0, 1 \right] \cup \left[2, 3 \right] \ (iv) \left\{ 1, -1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3}, \ldots \right\}$$

- 6. For $n \ge 1$, let $I_n = \left[\frac{1}{2n+1}, \frac{1}{2n}\right]$ and $S = \bigcup_{n=1}^{\infty} I_n$. Then find the set of limit points, boundary points and exterior of S.
- 7. Prove that a set is closed if and only if it contains all its limit points.
- 8. Prove that: if S is closed and bounded, then *supS* and *inf S* are both in S.
- 9. Prove the following by using mathematical induction:
 - (i) If $s_0 > 0$ and $s_n = 1 e^{-s_{n-1}}$, $n \ge 1$, then $0 < s_n < 1$, $n \ge 1$.

(ii) If
$$R, x_0 > 0$$
 and $x_{n+1} = \frac{1}{2} \left(\frac{R}{x_n} + x_n \right), n \ge 0$, then

$$x_n > x_{n+1} > \sqrt{R}$$
 and $x_n - \sqrt{R} \le \frac{1}{2^n} \frac{(x_0 - \sqrt{R})^2}{x_0}, n \ge 1$.

- (iii) For what integer n, $\frac{1}{n!} > \frac{8^n}{(2n)!}$. Prove it by induction.
- 10. Prove that if $x_n \to a$ and $|y_n x_n| \le \frac{1}{n} \ \forall n \in \mathbb{N}$, then $y_n \to a$.
- 11. Find limit of the following sequences

(i)
$$s_n = \sqrt{n}(\sqrt{4n+3} - 2\sqrt{n})$$
 (ii) $s_n = \frac{2.4.6...2n}{2.5.8...(3n-1)}$ (iii) $s_n = \frac{1}{n^5} \sum_{k=0}^{5} {n \choose k} 2^k$ (iv) $s_n = \sum_{k=0}^{5} \frac{k}{n^2}$

12. Find the limit inferior and limit superior of the sequences $\{a_n\}$, where

(i)
$$a_n = \sin \frac{n\pi}{2} + \frac{(-1)^n}{n}$$
 (ii) $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$ (iii) $a_n = \frac{(-1)^n}{n^2}$

13. Check convergence of the following sequences using the Cauchy general principle.

(i)
$$\left\{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{\left(-1\right)^{n-1}}{n}\right\}$$
, (ii) $\left\{1+\frac{1}{4}+\frac{1}{7}+\ldots+\frac{1}{3n-2}\right\}$.

14. Test the following sequence for convergence and find its limit, if exists

(i)
$$s_1 = 5$$
, and $s_{n+1} = \sqrt{4 + s_n} \quad \forall n \ge 1$ (ii) $s_1 = 1$ and $s_{n+1} = \frac{s_n^2 + 3}{2s_n} \quad \forall n \ge 1$

15. Show that

(i)
$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$$
 (ii) $\lim_{n \to \infty} \frac{(n!)^{1/n}}{n+1} \to \frac{1}{e}$

(iii)
$$a_n = \frac{3n!}{(n!)^3}$$
, then $\{a_n^{1/n}\}$ converges, find its limit.

(iv)
$$s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \quad \forall n \in \mathbb{N}$$
, is convergent.

- 16. Show that the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ converges to e (Euler's number). 17. Show that the following sequences are divergent:

$$(i)\left\{\sqrt{\frac{n^2+1}{5}}\right\}$$

(ii)
$$\{n^2 - n^3\}$$

(ii)
$$\{n^2 - n^3\}$$
 (iii) $\{\frac{c^n}{n}\}, c > 1.$

18. Prove that every increasing unbounded sequence diverges to ∞.

Answers

3. (i) $\sup = d$, $\inf = a$ (ii) $\sup = 31/30$, $\inf = 0$ 4. (i) 1/4 (ii) 6

$$5.(i)\{0\} \cup \{n^{-1}: n \in \mathbb{N}\}$$
, neither open nor closed $(ii)\left[m-\frac{1}{2}, m+\frac{1}{2}\right]$, open $(iii)[0,1] \cup [2,3]$, closed

(iv)
$$\{0\}$$
, neither open nor closed 6.S, $\{0,1/n: n \ge 2\}$, $(-\infty,0) \cup \left[\bigcup_{n=1}^{\infty} \left(\frac{1}{2n+2}, \frac{1}{2n+1}\right)\right] \cup (1/2,\infty)$

11. (i) 3/4 (ii) 0 (iii) 4/15 (iv) 0 12.(i)-1,1(ii)-1,1(iii)0 14. (i)
$$\frac{1+\sqrt{17}}{2}$$
 (ii) $\sqrt{3}$