Package 'OptimalRerandExpDesigns'

October 12, 2022

3000001 12, 2022
Type Package
Title Optimal Rerandomization Experimental Designs
Version 1.1
Date 2021-01-25
Author Adam Kapelner, Michael Sklar, Abba M. Krieger and David Azriel
Maintainer Adam Kapelner < kapelner@qc.cuny.edu>
Description This is a tool to find the optimal rerandomization threshold in non-sequential experiments. We offer three procedures based on assumptions made on the residuals distribution: (1) normality assumed (2) excess kurtosis assumed (3) entire distribution assumed. Illustrations are included. Also included is a routine to unbiasedly estimate Frobenius norms of variance-covariance matrices. Details of the method can be found in `Optimal Rerandomization via a Criterion that Provides Insurance Against Failed Experiments'' Adam Kapelner, Abba M. Krieger, Michael Sklar and David Azriel (2020) <arxiv:1905.03337></arxiv:1905.03337>
License GPL-3
Depends R (>= 3.2.0), ggplot2 (>= 3.0), momentchi2 (>= 0.1.5), GreedyExperimentalDesign (>= 1.3)
Imports stats
RoxygenNote 7.1.0
<pre>URL https://github.com/kapelner/OptimalRerandExpDesigns NeedsCompilation no Repository CRAN Date/Publication 2021-01-28 12:50:06 UTC</pre>
R topics documented:
complete_randomization_plus_one_min_one

Index		16
	summary.W_base_object	15
	summary.optimal_rerandomization_obj	14
	print.W_base_object	14
	print.optimal_rerandomization_obj	
	plot.W_base_object	13
	plot.optimal_rerandomization_obj	12
	optimal_rerandomization_tail_approx	10
	optimal_rerandomization_normality_assumed	9
	optimal_rerandomization_exact	8
	OptimalRerandExpDesigns	7
	generate_W_base_and_sort	6
	frob_norm_sq_debiased_times_matrix	5
	frob_norm_sq_debiased	5

complete_randomization_plus_one_min_one

Implements the complete randomization design (CRD) AKA Bernoulli Trial

Description

Implements the complete randomization design (CRD) AKA Bernoulli Trial

Usage

```
complete_randomization_plus_one_min_one(n, r)
```

Arguments

- n number of observations
- r number of randomized designs you would like

Value

a matrix where each column is one of the r designs

Author(s)

complete_randomization_with_forced_balance_plus_one_min_one

Implements the balanced complete randomization design (BCRD)

Description

Implements the balanced complete randomization design (BCRD)

Usage

```
complete_randomization_with_forced_balance_plus_one_min_one(n, r)
```

Arguments

- n number of observations
- r number of randomized designs you would like

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

```
compute_objective_val_plus_one_min_one_enc
```

Returns the objective value given a design vector as well an an objective function. This is code duplication since this is implemented within Java. This is only to be run if...

Description

Returns the objective value given a design vector as well an an objective function. This is code duplication since this is implemented within Java. This is only to be run if...

```
compute_objective_val_plus_one_min_one_enc(
   X,
   indic_T,
   objective = "abs_sum_diff",
   inv_cov_X = NULL
)
```

frob_norm_sq

Arguments

X The n x p design matrix

indic_T The n-length binary allocation vector

objective The objective function to use. Default is abs_sum_diff.

inv_cov_X Optional: the inverse sample variance covariance matrix. Use this argument if

you will be doing many calculations since passing this in will cache this data.

Value

A vector of computed objective values.

Author(s)

Adam Kapelner

frob_norm_sq

Naive Frobenius Norm Squared

Description

Compute naive / vanilla squared Frobenius Norm of matrix A

Usage

frob_norm_sq(A)

Arguments

Α

The matrix of interest

Value

The Frobenius Norm of A squared.

Author(s)

frob_norm_sq_debiased Debiased Frobenius Norm Squared Var-Cov matrix

Description

Compute debiased Frobenius Norm of matrix Sigmahat (Appendix 5.8). Note that for $S \le 2$, it returns the naive estimate.

Usage

```
frob_norm_sq_debiased(
   Sigmahat,
   s,
   n,
   frob_norm_sq_bias_correction_min_samples = 10
)
```

Arguments

Sigmahat The var-cov matrix of interest

s The number of vectors Sigmahat was generated from

n The length of each vector

frob_norm_sq_bias_correction_min_samples

This estimate suffers from high variance when there are not enough samples. Thus, we only implement the correction beginning at this number of samples otherwise we return the naive estimate. Default is 10.

Value

The unbiased estimate of the Frobenius Norm of a variance-covariance matrix squared.

Author(s)

Adam Kapelner

frob_norm_sq_debiased_times_matrix

Debiased Frobenius Norm Squared Constant Times Var-Cov matrix

Description

Compute debiased Frobenius Norm of matrix P times Sigmahat (Appendix 5.9). Note that for S <= 2, it returns the naive estimate.

Usage

```
frob_norm_sq_debiased_times_matrix(
   Sigmahat,
   A,
   s,
   n,
   frob_norm_sq_bias_correction_min_samples = 10
)
```

Arguments

Sigmahat The var-cov matrix of interest

A The matrix that multiplies Sigmahat

s The number of vectors Sigmahat was generated from

n The length of each vector

frob_norm_sq_bias_correction_min_samples

This estimate suffers from high variance when there are not enough samples. Thus, we only implement the correction beginning at this number of samples otherwise we return the naive estimate. Default is 10.

Value

The unbiased estimate of the Frobenius Norm of A times a variance-covariance matrix quantity squared.

Author(s)

Adam Kapelner

```
generate_W_base_and_sort
```

Generate Base Assignments and Sorts

Description

Generates the base vectors to be used when locating the optimal rerandomization threshold

```
generate_W_base_and_sort(
   X,
   max_designs = 25000,
   imbalance_function = "mahal_dist",
   r = 0,
   max_max_iters = 5
)
```

Arguments

X The data as an $n \times p$ matrix. max_designs The maximum number of designs. Default is 25,000.

imbalance_function

A string indicating the imbalance function. Currently, "abs_sum_difference" and "mahal_dist" are the options with the latter being the default.

r An experimental feature that adds lower imbalance vectors to the base set using

the GreedyExperimentalDesign package. This controls the number of vectors

to search through on each iteration.

max_max_iters An experimental feature that adds lower imbalance vectors to the base set using

the GreedyExperimentalDesign package. The maximum number of iterations

to use for the greedy search.

Value

A list including all arguments plus a matrix W_base_sorted whose max_designs rows are n-length allocation vectors and the allocation vectors are in

Author(s)

Adam Kapelner

Examples

```
n = 100
p = 10
X = matrix(rnorm(n * p), nrow = n, ncol = p)
X = apply(X, 2, function(xj){(xj - mean(xj)) / sd(xj)})
S = 1000
W_base_obj = generate_W_base_and_sort(X, max_designs = S)
W_base_obj
```

OptimalRerandExpDesigns

Optimal Rerandomization Threshold Search for Experimental Design

Description

A tool to find the optimal rerandomization threshold in non-sequential experiments

Author(s)

Adam Kapelner < kapelner@qc.cuny.edu>

References

Kapelner, A

```
optimal_rerandomization_exact
```

Find the Optimal Rerandomization Design Exactly

Description

Finds the optimal rerandomization threshold based on a user-defined quantile and a function that generates the non-linear component of the response

Usage

```
optimal_rerandomization_exact(
   W_base_object,
   estimator = "linear",
   q = 0.95,
   skip_search_length = 1,
   smoothing_degree = 1,
   smoothing_span = 0.1,
   z_sim_fun,
   N_z = 1000,
   dot_every_x_iters = 100
)
```

Arguments

W_base_object An object that contains the assignments to begin with sorted by "linear" for the covariate-adjusted linear regression estimator (default). estimator The tail criterion's quantile of MSE over z's. The default is 95%. skip_search_length In the exhaustive search, how many designs are skipped? Default is 1 for full exhaustive search through all assignments provided for in W_base_object. smoothing_degree The smoothing degree passed to loess. smoothing_span The smoothing span passed to loess. z_sim_fun This function returns vectors of numeric values of size n. No default is provided. The number of times to simulate z's within each strategy. N_z dot_every_x_iters Print out a dot every this many iterations. The default is 100. Set to NULL for no

Value

A list containing the optimal design threshold, strategy, and other information.

printout.

Author(s)

Adam Kapelner

Examples

```
n = 100
p = 10
X = matrix(rnorm(n * p), nrow = n, ncol = p)
X = apply(X, 2, function(xj){(xj - mean(xj)) / sd(xj)})
S = 25000

W_base_obj = generate_W_base_and_sort(X, max_designs = S)
design = optimal_rerandomization_exact(W_base_obj,
z_sim_fun = function(){rnorm(n)},
skip_search_length = 10)
design
```

optimal_rerandomization_normality_assumed

Find the Optimal Rerandomization Design Under the Gaussian Approximation

Description

Finds the optimal rerandomization threshold based on a user-defined quantile and a function that generates the non-linear component of the response

Usage

```
optimal_rerandomization_normality_assumed(
   W_base_object,
   estimator = "linear",
   q = 0.95,
   skip_search_length = 1,
   dot_every_x_iters = 100
)
```

Arguments

W_base_object An object that contains the assignments to begin with sorted by estimator "linear" for the covariate-adjusted linear regression estimator (default). q The tail criterion's quantile of MSE over z's. The default is 95%. skip_search_length

In the exhaustive search, how many designs are skipped? Default is 1 for full exhaustive search through all assignments provided for in W_base_object.

```
dot_every_x_iters
```

Print out a dot every this many iterations. The default is 100. Set to NULL for no printout.

Value

A list containing the optimal design threshold, strategy, and other information.

Author(s)

Adam Kapelner

Examples

```
n = 100
p = 10
X = matrix(rnorm(n * p), nrow = n, ncol = p)
X = apply(X, 2, function(xj){(xj - mean(xj)) / sd(xj)})
S = 25000

W_base_obj = generate_W_base_and_sort(X, max_designs = S)
design = optimal_rerandomization_normality_assumed(W_base_obj, skip_search_length = 10)
design
```

```
optimal_rerandomization_tail_approx
```

Find the Optimal Rerandomization Design Under the Tail and Kurtosis Approximation

Description

Finds the optimal rerandomization threshold based on a user-defined quantile and kurtosis based on an approximation of tail standard errors

```
optimal_rerandomization_tail_approx(
   W_base_object,
   estimator = "linear",
   q = 0.95,
   c_val = NULL,
   skip_search_length = 1,
   binary_search = FALSE,
   excess_kurtosis_z = 0,
   use_frob_norm_sq_unbiased_estimator = TRUE,
   frob_norm_sq_bias_correction_min_samples = 10,
```

```
smoothing_degree = 1,
smoothing_span = 0.1,
dot_every_x_iters = 100
)
```

Arguments

W_base_object An object that contains the assignments to begin with sorted by imbalance.

estimator "linear" for the covariate-adjusted linear regression estimator (default).

q The tail criterion's quantile of MSE over z's. The default is 95%.

c_val The c value used (see Equation 8 in the paper). The default is NULL correspond-

ing to qnorm(q).

skip_search_length

In the exhaustive search, how many designs are skipped? Default is 1 for full exhaustive search through all assignments provided for in W_base_object.

binary_search If TRUE, a binary search is employed to find the optimal threshold instead of an

exhaustive search. Default is FALSE.

excess_kurtosis_z

An estimate of the excess kurtosis in the measure on z. Default is 0.

 ${\tt use_frob_norm_sq_unbiased_estimator}$

If TRUE, this would use the debiased Frobenius norm estimator instead of the naive. Default is TRUE.

frob_norm_sq_bias_correction_min_samples

The bias-corrected estimate suffers from high variance when there are not enough samples. Thus, we only implement the correction beginning at this number of

vectors. Default is 10 and this parameter is only applicable if use_frob_norm_sq_unbiased_estimator is TRUE.

smoothing_degree

The smoothing degree passed to loess.

smoothing_span The smoothing span passed to loess.

dot_every_x_iters

Print out a dot every this many iterations. The default is 100. Set to NULL for no printout.

Value

A list containing the optimal design threshold, strategy, and other information.

Author(s)

Adam Kapelner

Examples

```
n = 100
p = 10
X = matrix(rnorm(n * p), nrow = n, ncol = p)
```

```
X = apply(X, 2, function(xj){(xj - mean(xj)) / sd(xj)})
S = 25000

W_base_obj = generate_W_base_and_sort(X, max_designs = S)
design = optimal_rerandomization_tail_approx(W_base_obj,
skip_search_length = 10)
design
```

```
plot.optimal_rerandomization_obj
```

Plots a summary of a optimal_rerandomization_obj object

Description

Plots a summary of a optimal_rerandomization_obj object

Usage

```
## S3 method for class 'optimal_rerandomization_obj' plot(x, ...)
```

Arguments

x The optimal_rerandomization_obj object to be summarized in the plot

The option advanced = TRUE can be passed here for optimal rerandomization results from algorithm type "approx" to see how all the terms in the criterion behave. You can pass s_min which controls the minimum number of vectors the plot begins at. Below a certain number, the criterion is unstable. Also, title, subtitle, xlab and ylab can be passed here.

Value

No return value, called for side effects

Author(s)

plot.W_base_object 13

plot.W_base_object

Plots a summary of the imbalances in a W_base_object object

Description

Plots a summary of the imbalances in a W_base_object object

Usage

```
## S3 method for class 'W_base_object'
plot(x, ...)
```

Arguments

x The W_base_object object to be summarized in the plot

title, subtitle, xlab, bins can be specified here to be passed to the ggplot plotting function. Also log10 can be set to FALSE to not log the x-axis.

Value

No return value, called for side effects

Author(s)

Adam Kapelner

```
print.optimal_rerandomization_obj
```

 $Prints\ a\ summary\ of\ a\ {\it optimal_rerandomization_obj}\ object$

Description

Prints a summary of a optimal_rerandomization_obj object

Usage

```
## S3 method for class 'optimal_rerandomization_obj' print(x, ...)
```

Arguments

x The optimal_rerandomization_obj object to be summarized in the console

... Other parameters to pass to the default print function

Value

No return value, called for side effects

Author(s)

Adam Kapelner

```
print.W_base_object Prints a summary of a W_base_object object
```

Description

Prints a summary of a W_base_object object

Usage

```
## S3 method for class 'W_base_object'
print(x, ...)
```

Arguments

x The W_base_object object to be summarized in the console

... Other parameters to pass to the default print function

Value

No return value, called for side effects

Author(s)

Adam Kapelner

```
summary.optimal\_rerandomization\_obj\\ Prints\ a\ summary\ of\ a\ optimal\_rerandomization\_obj\ object
```

Description

Prints a summary of a optimal_rerandomization_obj object

```
## S3 method for class 'optimal_rerandomization_obj'
summary(object, ...)
```

Arguments

object The optimal_rerandomization_obj object to be summarized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.W_base_object Prints a summary of a W_base_object object

Description

Prints a summary of a W_base_object object

Usage

```
## S3 method for class 'W_base_object'
summary(object, ...)
```

Arguments

object The W_base_object object to be summarized in the console
... Other parameters to pass to the default summary function

Author(s)

Index

```
{\tt complete\_randomization\_plus\_one\_min\_one},
\verb|complete_randomization_with_forced_balance_plus_one_min_one|,\\
compute_objective_val_plus_one_min_one_enc,
frob_norm_sq, 4
frob_norm_sq_debiased, 5
frob_norm_sq_debiased_times_matrix, 5
generate_W_base_and_sort, 6
optimal_rerandomization_exact, 8
optimal_rerandomization_normality_assumed,
optimal_rerandomization_tail_approx,
OptimalRerandExpDesigns, 7
\verb"plot.optimal_rerandomization_obj", 12"
plot.W_base_object, 13
\verb|print.optimal_rerandomization_obj|, 13
print.W_base_object, 14
summary.optimal_rerandomization_obj,
        14
summary.W_base_object, 15
```