Distributed Systems

Chun-Feng Liao

廖峻鋒

Department of Computer Science
National Chengchi University

Distributed Systems

Resource and Service Management

Chun-Feng Liao

廖峻鋒

Dept. of Computer Science

National Chengchi University

Introduction

Resource/ Service

Resource

- An entity that is available in limited supply
 - Ex: memory, storage, DB connection, network connection, security token, IoT devices
- 若此資源主要透過軟體API提供,則又稱為Service
- Roles
 - Resource user
 - Resource provider
- Categories
 - Reusable/ non-reusable
 - Exclusive/ concurrent

	reusable	non-reusable
exclusive	memory	processing time
concurrent	read-only object	_

Introduction

- Name
 - 一個參考,透過它,可以透過網路存取Resource or Service
 - 例: URI、URN
- ・設置方式
 - 集中式

有效率,要 maintain directory

- 問目錄(registry directory)
 - Ex: DNS LDAP
- 分散式
 - 沒效率,但不用 maintain directory
 - Ex: mDNS SSDP

Resource/ Service Discovery

- The core technology of resource/ service management
- user能即時得知一定範圍內的其它資源/服務相關資訊的機制,包含:
 - Presence
 - 目前是否存在於「此系統」
 - Description
 - Type: 能夠提供的功能類型
 - Access point: (網路) 位置
 - Location: (實體) 位置
 - Attributes: 可以描述此節點的資訊
 - Ex: type=printer, cost = 1 per page, location=201R

Common Characteristics of **Discovery Protocols**

- Presence Management
 - 判斷誰在這個空間
 - Presence announcement and capability advertisement
 - Evicting failed or left services
- O Service Lookup 想要的特定功能節點

- Match a "specification (template)" with "capabilities"
 - By type
 - By type, and then filter by attributes
 - By semantic approaches

服務發現機制的一般性模型

有什麼功能放在 CD

Design Issues

Service and attribute naming

- Naming approach
 - User friendly names

頻寬足夠

- 若不小心管理,可能會有名稱混淆或重複的問題
- Ex: TV, stereo, air conditioner,...
- URL、URN亦屬於此類
- Machine friendly names 頻寬不夠的狀況
 - 使用者較難了解意義(需要透過額外機制或工具轉換)
 - Ex: UUID (BLE採用UUID)
 - 61C4D231-FE17-4AD1-B159-64F880FFC44E

Service and attribute naming

- A client searches a service by a name and attributes
 - Template-based

易寫・較低效

○ 提供特定命名格式 (URN)

加底線是 mDNS 的格式

. 區隔

• mDNS/DNS-SD: light._sub._http._tcp.local

一般 IP 網路上運行的服務發現協議

報品:

- UPnP: urn:schemas-upnp-org:device:BinaryLight:1
- Template-based and predefined

難寫,高效

- 除命名格式,對於常用名稱也提供標準定義
 - BLE:以<mark>規格書定義了一系列16-bit 的代碼</mark>對應到不同的Attribute types
 - GATT (Generic Attribute Profile)

只要 maintain 一個小型 database 就能運行服務發現

ATT (Attribute Protocol):

 $a_k \in A, a_k = (i_k, \tau_k, v_k)$ Attribute: (handle, type, value/ref)

還原結構(對照規格書)

Attribute: (handle, type, value/ref) **GATT View** ATT View Declaration: Primary Service (0x2800) (0x0001, 0x2800, 0x1800) Generic Access (0x1800) (reference) Declaration: Characteristic (0x2803) (0x0002, 0x2803, [R, 0x0003, 0x2A00]) R, 0x0003, Device Name (0x2A00) (0x0003, 0x2A00, "Binary Light") Device Name: "Binary Light" Declaration: Primary Service (0x2800) (0x0004, 0x2800, 0x2600) Binary Light Service (0x2600) Declaration: Characteristic (0x2803) (0x0005, 0x2803, [RW, 0x0006, 0x7F00]) RW, 0x0005, Device Status (0x7F00) Device Status: on (0x0006, 0x7F00, 0x0001) User Description(0x2901): "status" (0x0007, 0x2901, "status")

Design Issues

Initial communication method

加入群體時,如何讓大家認識? Registry/gateway

○ Unicast 登記 ②

The most efficient, but need to configure network addresses with prior knowledge.

Multicast
 (Transport Layer)
 UPnP, mDNS/DNS-SD

Design Issues

Discovery and registration

• Announcement-based Client要自己維護服務清單

Interested parties listen on a channel. When a service announces its availability and information, all parties hear the information.

• Query-based 服務清單由registry (directory)統一維護

A party receives an immediate response to a query and doesn't need to process unrelated announcements. 新的東西進來要註冊

Discovery Infrastructure

Directory-based

- maintain registery
- Has dedicated registries that maintain information and status of service components
- Ex: CORBA, Web Services, Jini
- O Non-directory-based device 會廣播,需要的人會自己記錄

 - Rely on broadcasting or multicasting mechanisms
 - Ex: UPnP, P2P systems

Directory-based

Case: Jini

https://river.apache.org/

- a network architecture for the construction of distributed systems in the form of modular co-operating services
- Originally developed by Sun Microsystems (1998)

Non-Directory-based

SSDP Announcement

簡單服務發現協定

NOTIFY * HTTP/1.1

NT: urn:schemas-upnp-org:device:DimmableLight:1

USN: uuid:ecd54de1-9008-4df5-b5bb-a0722612afdc::

urn:schemas-upnp-org:device:DimmableLight:1

NTS: ssdp:alive

SERVER: Windows NT/5.0, UPnP/1.0

LOCATION: http://192.168.4.37:1810/

HOST: 239.255.255.250:1900 群播位址

CACHE-CONTROL: max-age=900 有效期間

Content-Length: 0

SSDP Query

M-SEARCH * HTTP/1.1

ST: urn:schemas-upnp-org:device:MediaRenderer:1 要搜尋的目標種類

MX: 10 最多等幾秒回應

MAN: "ssdp:discover"

HOST: 239.255.255.250:1900 群播位址

Content-Length: 0

mDNS/DNS-SD

PTR 階段:知道服務類型

SRV 階段:詳細資訊

TXT: 質性資訊(key = value)

AAAA: ip

Design Issues

Information state

Soft state

<mark>服務宣告一個短期間</mark>,在此一短期間之後,服務就當做無 效

SSDP Announcement

NOTIFY * HTTP/1.1

NT: urn:schemas-upnp-org:device:DimmableLight:1

USN: uuid:ecd54de1-9008-4df5-b5bb-a0722612afdc::

urn:schemas-upnp-org:device:DimmableLight:1

NTS: ssdp:alive

SERVER: Windows NT/5.0, UPnP/1.0

LOCATION: http://192.168.4.37:1810/

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age=900

Content-Length: 0 有效期間

Hard state

必須明確詢問,以確認服務的離開或關閉

Design Issues

Discovery scope

Network topology

Ex: LAN

User role

Lets users control the target domain, but it requires prior knowledge of the target service and its domain

此處 skip

Context

Temporal, spatial, and user activity information can also help define the discovery scope

和context無關的就不加以搜尋

Design Issues

Example

Selection

Manual

user 選擇

Gives user total control. Tedious and user might not know

enough information.

Automatic

固定配置

The service discovery protocols select the service.

裝置發現及整合

Step1:將基地台插入服 務主機

Step2:串接控制裝置於 家電上

Automatic Service Composition

Design Issues

Service invocation

Level 3:Application operation

Ex: UPnP Device Architecture

Level 2:Communication mechanism

MOM (Simulated RPC)

Level 1:Service location

REST

Level 2: Communication Mechanism

- Ex: Simulated RPC in MOM
 - MOM can also be used for synchronous communications
 - Frequently used in enterprise systems to replace conventional

Level 3: Application Operation

Level 3: Application Operation

```
POST /_urn-schemas-upnp-org-service-ConnectionManager_control HTTP/1.1
SOAPACTION: "urn:schemas-upnp-org:service:ConnectionManager:1#
              GetProtocolInfo"
CONTENT-TYPE: text/xml; charset="utf-8"
HOST: 192.168.4.100:1123
Content-Length: 294
<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
   <u:GetProtocolInfo xmlns:u="urn:schemas-upnp-
org:service:ConnectionManager:1" />
 </s:Body>
</s:Envelope>
```

```
HTTP/1.1 200 OK
EXT:
CONTENT-TYPE: text/xml; charset="utf-8"
SERVER: Windows NT/5.0, UPnP/1.0
Content-Length: 638
<?xml version="1.0" encoding="utf-8"?>
<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"</p>
             xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
 <s:Body>
   <u:GetProtocolInfoResponse xmlns:u="urn:schemas-upnp-org:service:ConnectionManager:1">
     <Source />
     <Sink>http-get:*:audio/mpegurl:*,http-get:*:audio/mp3:*,http-get:*:audio/mpeg:*,http-get:*:audio/x-ms-
wma:*,http-get:*:audio/wma:*,http-get:*:audio/mpeg3:*,http-get:*:video/x-ms-wmv:*,http-get:*:video/x-ms-
asf:*,http-get:*:video/x-ms-avi:*,http-get:*:video/mpeg:*</Sink>
   </u:GetProtocolInfoResponse>
 </s:Body>
</s:Envelope>
```

Service discovery design issues

此 part skip

Usage

Explicitly released

A client must explicitly release a service's resource once service usage is granted.

Lease-based

A client and a service negotiate a service usage period, which the client can later cancel or renew. Resources will be reclaimed when leases expire.

Lease-based service usage handles dynamic conditions better in pervasive computing environments.

Design Issues

Status Inquiry

Polling

SP 一直發出搜尋指令,如果裝置存在就會 respond

A client can keep up with a service's events or status by polling it periodically.

(Case: SSDP M-Search)

Notification (Heartbeat)

(Case: SSDP Notify)

裝置固定時間單向傳送訊息給 SP

Heartbeat

Device 多久時間回傳一次 => Eviction Period(EP)

如果 Device 已經死了, SP 要什麼時候知道

EP:每次檢查 Heartbeat 的時間 HBP: Heartbeat 的間隔

Heartbeat

Polling

Polling雖然一次要二個network access,但<mark>可以由Client自行控制頻率</mark>

FD Latency is Significant!

 The FD Latencies of existing Discovery Protocols are high:

Example:

EP 不會太久 希望不要太常點名

For Heartbeat, FD Latency < Eviction Period (EP)

SSDP / UPnP: EP=1800s (0.5 hrs)

Rendezvous: EP=7200s (2hrs)

• SLP: EP=64800s (18hrs)

Jini: EP=120s (2min)

The Trade-Offs

- If the EP or PP too short may cause:
 - Network flooding
 - Heavy loading of services

