Mondredi

ONDES ÉLECTROMAGNÉTIQUES

Une onde électromagnétique dans le vide (sans charges ni courants) est caractérisée par un champ électrique

 $\vec{E} = E^{\circ} \exp(-x/\delta) \cos(kz - \omega t) \vec{e}_{y}$ où δ , k et ω sont des constantes. **a.** Quels qualificatifs peut-on utiliser pour décrire cette onde ? Independe de la condition qui lie les paramètres δ , k et ω ? Alambet : $\Delta E - \frac{1}{2} \frac{\partial^{2} E}{\partial x^{2}} = \frac{\partial^{2} E}{\partial x^{2}}$

d. Calculer le champ magnétique associé à E.

e. Calculer les valeurs moyennes temporelles (sur un nombre entier de période) du vecteur de Poynting et de la densité volumique d'énergie.

f. Définir et calculer la « vitesse de propagation de l'énergie ».

On utilise le modèle classique de l'atome d'hydrogène. Il est constitué d'un proton immobile (charge +e) autour duquel se déplace un électron (masse $\,m$, charge $\,-e\,$) sur une trajectoire circulaire de rayon $\,r$.

a. Exprimer l'énergie mécanique E_m (énergie cinétique + énergie potentielle électrostatique) en fonction de $\,r$.

b. Montrer que la puissance électromagnétique rayonnée P peut-être écrite sous la forme $P=\alpha E_m^4$ où α est une constante.

A cause de la puissance rayonnée, l'énergie de l'atome ne peut rester constante; r doit varier. On suppose que la variation relative de r sur un tour est assez faible pour considérer que la relation établie à la question précédente reste valable.

c. On note $\,E_0\,$ et $\,P_0\,$ l'énergie mécanique et la puissance rayonnée à l'instant initial $\,t=0\,$. On définit $\,\tau=-E_0\,$ / $\,P_0\,$. Quelle est, a priori, la signification physique de $\, au\,$? Exprimer $\,P\,$ en fonction de $\, au\,$, $\,E_0\,$ et $\,E_m\,$.

d. Par un bilan énergétique, établir l'équations différentielle vérifiée par la fonction $E_m(t)$.

e. Résoudre cette équation différentielle (elle est à variables séparables) et exprimer la durée de vie de l'atome en fonction de τ .

f. AN. À t=0 , r=53 pm (rayon de l'atome d'hydrogène « réel »). Calculer E_0 , P_0 , au et la durée de vie. Commenter.

3. Loi de Planck.

Dans une cavité parallélépipédique (longueurs des côtés a,b et d) les seuls modes propres harmoniques possibles sont caractérisés par des triplets d'entiers positifs (n_1, n_2, n_3) . Pour chaque triplet existent deux modes de pulsation ω telle

que $\omega^2 = \left(\frac{n_1\pi c}{a}\right)^2 + \left(\frac{n_2\pi c}{b}\right)^2 + \left(\frac{n_3\pi c}{d}\right)^2$. Chaque mode peut-être occupé par n photons (n entier positif ou nul)

d'énergie totale $nh\nu$. À la température T, la probabilité p(n) d'avoir n photons est proportionnelle au facteur de

Boltzmann: $p(n) = A \exp\left(-\frac{nh\nu}{k_BT}\right)$ (A est une constante de normalisation telle que $\sum_{n=0}^{\infty} p(n) = 1$, h est la

constante de Planck et k_B la constante de Boltzmann).

a. Quel est le nombre moyen de photons dans un mode de fréquence ν ? Quelle est l'énergie moyenne de ce mode ?

b. On se place dans l'espace abstrait de dimension 3 dans lequel le mode (n_1, n_2, n_3) est représenté par le point de

coordonnées $\left(\frac{n_1\pi c}{a}, \frac{n_1\pi c}{b}, \frac{n_1\pi c}{d}\right)$. Comment est représenté dans cet espace l'ensemble de tous les modes possibles?

Comment y est représentée la pulsation ω ?

c. On suppose que ω est très grande devant $\pi c / a$, $\pi c / b$ et $\pi c / d$. Où sont placés les modes dont la pulsation est comprise entre ω et $\omega + d\omega$? Combien y en a-t-il?

d. Quelle est l'énergie moyenne associée à ces modes ?

e. Montrer que l'énergie volumique moyenne dans la cavité vérifie $\frac{\mathrm{d} W}{V} = \frac{8\pi h}{c^3} \frac{\nu^3 \mathrm{d} \nu}{\exp\left(\frac{h\nu}{h/T}\right) - 1}$