MATH 6210 HOMEWORK 11

COLTON GRAINGER APRIL 16, 2019

Problems set from Chapter 9, Lee, Introduction to Smooth Manifolds.

- 1. 9-1. Suppose M is a smooth manifold, X is a vector field in $\mathfrak{X}M$, and γ is a maximum integral curve of X.
 - (a) Either γ is constant, γ is injective, or γ is periodic and nonconstant.
 - (b) If γ is periodic and nonconstant, then there's a unique positive number T (called the period of γ) such that $\gamma(t) = \gamma(t')$ if and only if $t t' \in T\mathbb{Z}$.
 - (c) The image of γ is an immersed submanifold of M, diffeomorphic to \mathbb{R} , S^1 , or $\operatorname{pt} \approx \mathbb{R}^0$.
- **2.** 9-7. Say M is a connected smooth manifold. The group of diffeomorphisms Diff(M) acts transitively on M. Lemma. Let $B \subset \mathbb{R}^n$ be an open unit ball. If $p, q \in B$, there is a compactly supported smooth vector field
- **3.** 9-10. For each of the following vector fields, find smooth coordinates in a neighborhood of $\begin{bmatrix} 1 & 0 \end{bmatrix}^t$ such that the given vector field is a coordinate vector field.
 - (a) $V = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$.
 - (b) $W = x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$
 - (c) $X = x \frac{\partial}{\partial x} y \frac{\partial}{\partial y}$.
 - (d) $Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}$.
- **4.** 9-16. Exhibit smooth vector fields V, \widetilde{V} , and W on \mathbb{R}^2 such that $V = \widetilde{V} = \partial/\partial x$ along the x-axis but $\mathcal{L}_V W \neq \mathcal{L}_{\widetilde{V}} W$ at the origin.

Note. This shows that it is necessary to know the vector field V to compute $\mathcal{L}_V W$ at a point $p \in M$; it is not sufficient to just know the vector V_p , or even to know the values of V along an integral curve of V.

5. 9-18. Define vector fields $X, Y \in \mathfrak{X}\mathbb{R}^2$ by

 $X \in \mathfrak{X}B$ whose flow θ satisfies $\theta_1(p) = q$.

$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}, \quad Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}.$$

- (a) Compute the flows $X \mathfrak{fl}$ and $Y \mathfrak{fl}$ of X and Y.
- (b) Find open intervals XB and YB containing 0 such that

$$X\mathfrak{fl}_t \circ Y\mathfrak{fl}_s - Y\mathfrak{fl}_s \circ X\mathfrak{fl}_t$$
 is defined for all $\begin{bmatrix} t & s \end{bmatrix}^t$ in $XB \times YB$,

but nonzero at some time $\begin{bmatrix} \bar{t} & \bar{s} \end{bmatrix}^t$.

6. 9-19. Consider $M = \mathbb{R}^3 \setminus \{z\text{-axis}\}$, the open submanifold of \mathbb{R}^3 formed by removing the z-axis. Define $V, W \in \mathfrak{X}M$ by

$$V = \frac{\partial}{\partial x} - \frac{y}{x^2 + y^2} \frac{\partial}{\partial y}, \quad W = \frac{\partial}{\partial y} + \frac{x}{x^2 + y^2} \frac{\partial}{\partial z},$$

COLTON GRAINGER MATH 6210 HW11

and let $v\mathfrak{fl}$, $w\mathfrak{fl}$ be the flows of V and W, respectively. Then V and W commute, but (caveat!) there exist a point $p \in M$ and times $s, t \in \mathbb{R}$ such that

 $(v\mathfrak{fl}_t\circ w\mathfrak{fl}_s)(p)-(w\mathfrak{fl}_s\circ v\mathfrak{fl}_t)(p)\quad \text{is defined and nonzero}.$