Comp 388/441 - Human-Computer Interface Design

Week 3 - 29th January 2015

Dr Nick Hayward

Consideration of interaction

- GUIs tend to present graphical controls for user interaction
 - buttons, drop-down boxes and menus, sliders...
- users interact either directly or indirectly
 - gesturing on a touchscreen...
 - pointing device such as a mouse, keyboard...
- inherent assumption users know required actions for a given application

Hierarchical breakdown

- normally a predictable model involving a hierarchical breakdown
 - **goals**: user's high-level goal for interaction with application
 - o write a letter, take a photo, read a book, book a holiday...
 - o goals become **what** the user wants to do
 - o instead of **how** they will do it
 - tasks: allow a user to fulfill their goals
 - o perform some general steps
 - o follow a structured path of activities
 - **actions**: user carries out their tasks by performing interface actions
 - o specific operations in the user interface
 - click a button, select a menu item, drag and drop an element, text entry...

Example - user editing of photo metadata within image library application

- users wants to edit some metadata for a photo in their image library application
 - open the required image document in image application
 - select a menu item to view the current metadata record
 - edit existing text entries in the metadata record
 - enter new text for missing data
 - spell check user input
 - preview the updated image metadata
 - tag or categorise the image

Example - user editing of photo metadata within image library application

- click a menu item to select metadata record
- click on edit option to start modifying record
- delete some data from the record
- enter some new text data
- click on update button to save and close the metadata record

Users & Interaction - Video

Filter photographs based on metadata

Source: Adobe Lightroom Tutorials

Stages of Action

- tends to be easier and quicker for experienced users
 - tasks are known to achieve goal
- new users more hesitant at first
 - uncertain of the required actions to accomplish a task
 - may be uncertain of the tasks necessary to achieve their goal
- some users consult documentation, online tutorials, help forums...
- many simply begin with exploratory approach
- user may continue cycle of exploration through application
- continue until goal completed satisfactorily
 - or, until the user gets stuck and can't move on

Users & Interaction - Video

Super Mario Bros. Speed Run - 4:58.89 - Source: YouTube

Users & Interaction - Video

NES Game: Super Mario Bros. (1985 Nintendo) - Source: YouTube

Seven-Stage Action Cycle Model

- formalised model named Seven-Stage Action Cycle Model
 - Norman, D. The Design of Everyday Things. Basic Books. 2013.
- the model consisted of the following steps:
 - 1. Identifying an immediate goal
 - 2. Forming an intention to act
 - 3. Determining a plan of specific actions
 - 4. Carrying out the actions
 - 5. Observing the results by perceiving the state of the system and the world
 - 6. Interpreting the results
 - 7. Evaluating whether the actions had the desired results

- mental models formed as a user learns tasks within an application
- conceptual representation in our user's mind of how a system works
 - how to operate an application's interface
- naturally reflects a user's current stage of learning and understanding
- this understanding is subject to change
 - changes to reflect new learning, experience...
 - may diminish or disappear as a user forgets details over time
- a user relies on a mental model for an application, scenario...
- user's will also develop expectations based upon such models
- compare a user's mental model to a system's implementation model
 - can begin to explain usability issues and problems

Elements of a mental model relative to applications & user interfaces

- I. interface appearance
- 2. interface concepts, syntax, general rules...
- 3. navigation map
- 4. plans and strategies for accomplishing tasks and reacting to problems etc
- 5. heuristics, conventions...
- 6. perception of application's implementation model

- I. interface appearance
 - users form visual images of the **places** they encounter and repeatedly use within an interface
 - eg: various pages, screens, tabs, windows...
 - for most users, recall of mental images will be vague and inherently imperfect
 - excluding those with eidetic memories
 - interface familiarity leads to familiarity with general layout
 - frequency of use is also important
 - a user is unlikely to be able to sketch in detail an application's interface from a mental model

Super Mario Kart - 1992

Mario Kart 64 - 1996

Mario Kart 7 - 2011

Super Mario Kart - 1992

Mario Kart 64 - 1996

Mario Kart 7 - 2011

- 2. interface concepts, syntax, general rules...
 - application is designed to solve a problem or meet a specific requirement
 - syntax and rules required known as either
 - application domain, business domain, problem domain
 - problem domain may actually be pretty small
 - user may only need to know a handful of concepts
 - more complex and involved applications can be designed with inherent assumption of
 - experience and prior-knowledge
 - a thorough understanding and awareness of required domain
 - awareness of problem domain gained via
 - education, training, experience...
 - other applications may need to communicate and highlight their domain's concepts
 - games, eg: role-playing and fantasy, often seen as extreme example
 - simpler games also require adaptation to their domain's objects, goals...

- 2. interface concepts, syntax, general rules...cont'd
 - many scenarios only require a user's cursory understanding of an application
 - eg: users may not need to know about URLs to use a web browser
 - semi-automated apps following pre-defined paths reduce user learning curve
 - online ticket sites, package delivery...
 - many complex applications, eg: MS Word, still allow a user to get started quickly
 - users may be unaware, or even care, about advanced options
 - learning can be built upon initial, cursory understanding and usage

- 3. navigation map
 - many applications include the notion of places
 - pages, screens, tabs, windows...
 - a navigation map will be formed by a user
 - allows a user to differentiate between these places
 - return quickly to common places
 - navigation becomes a regular action for users in applications
 - maps often applied to comparative applications
 - expectation of similar usage and interaction
 - multiple options for same location
 - users may not always be aware of competing routes
 - preferred routes often take precedence

- 4. plans & strategies for accomplishing tasks & reacting to problems...
 - users often memorise plans of action for given tasks
 - an action plan might reflect a simple sequence of required user steps
 - a more experienced user may internalise a required conceptual structure
 - this mental depiction may not be complete or accurate
 - user may not be aware of why a sequence works or not
 - simply memorised the sequence
 - taught users may know how but not why
 - success by trial and error

- 5. heuristics, conventions...
 - general heuristics may be included in a user's mental model
 - rule of thumb style guidelines
 - other conventions acquired from a broader context
 - learned and added from experience
 - subsequently applied to a given system
 - common UI elements between disparate applications
 - application and operating system
 - allows a user to infer interaction patterns for an application

- 6. perception of application's implementation model
 - users infer patterns for behaviour within an application
 - an application's code and implementation will often remain hidden to a user
 - does not prevent a user from recognising usage patterns
 - not always a bad thing for an application
 - such patterns can be beneficial for a designer
 - content output and rendering a good example of pattern forming
 - user adds content to table
 - notices data added to top of list
 - infers table output pattern

Communicating a mental model

- mental models are also part of the initial design process
- designers naturally form a conceptual mental model for our own application
- our goal is to ensure a user's mental model matches our own
- we can provide structured learning and education
 - documentation, training, demos...
- many users may not read the documentation or follow tutorials
- many users still rely on trial and error
- visual presentation of UI provides cues and guidance to users
- application behaviour provides feedback to the user
- Don Norman refers to the design model and user's model
 - refers to product's interface as system image
- design model and system image need to align

References

Norman,	D.	The	Design	of	Everyday	Things.	Basic	Books.	2013.