

SILABUS MATA KULIAH MATEMATIKA DISKRIT

Penyusun

Ni Luh Dewi Sintiari, Ph.D.

PROGRAM STUDI D4 TEKNOLOGI REKAYASA PERANGKAT LUNAK JURUSAN TEKNIK INFORMATIKA UNIVERSITAS PENDIDIKAN GANESHA SINGARAJA TAHUN AKADEMIK 2022/2023

SILABUS

I. IDENTITAS MATA KULIAH

Program Studi : Teknologi Rekayasa Perangkat Lunak

Mata Kuliah : Matematika Diskrit

Kode : RPLD422304

Semester : III

SKS : 3 (Teori)

Prasyarat : -

Dosen Pengampu : Ni Luh Dewi Sintiari, Ph.D.

II. DESKRIPSI MATA KULIAH

Mata kuliah Matematika Diskrit merupakan mata kuliah dasar di program studi Teknik Rekayasa Perangkat Lunak. Matematika Diskrit meliputi berbagai materi penting dari beberapa bidang seperti teori himpunan, relasi, fungsi, logika matematika, dasar induksi matematika dan rekursi, kombinatorika, dan teori graf. Perkuliahan ini ditujukan untuk membangun keterampilan mahasiswa dalam berpikir logis, analitis, dan kritis.

III. CP MATA KULIAH

1. CP Sikap

- S1. Bertakwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religius.
- S2. Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika.
- S8. Menginternalisasi nilai, norma dan etika akademik.
- S9. Menunjukkan sikap bertanggung jawab atas pekerjaan di bidang keahliannya secara mandiri.
- S10. Menginternalisasi semangat kemandirian, kejuangan, dan kewirausahaan.

2. CP Pengetahuan

- P1. Mampu memahami dan menguasai konsep dasar ilmu komputer secara umum seperti matematika, algoritma, pemrograman, dan basis data.
- P2. Mampu memahami dan menguasai konsep pengembangan perangkat lunak, mulai dari analisis kebutuhan, perancangan, pengembangan, dan implementasi perangkat lunak.

3. CP Keterampilan Umum

KU1. Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang ilmu Komputer.

KU2. Mampu menunjukkan kinerja mandiri, bermutu, dan terukur.

4. CP Keterampilan Khusus

KK1. Terampil dalam menganalisis kebutuhan, merancang, dan mengimplementasikan rancangan, dan menguji perangkat lunak.

IV. METODE PEMBELAJARAN

Metode pembelajaran yang digunakan adalah metode ceramah, pembelajaran kooperatif, presentasi, dan kelompok kerja.

V. BAHAN BACAAN

- 1. Discrete Mathematics and Its Applications Ed. 7, oleh Kenneth H. Rosen
- 2. Diktat Matematika Diskrit Revisi 4, oleh Rinaldi Munir, Institut Teknologi Bandung
- 3. Slide Kuliah Matematika Diskrit, oleh Dewi Sintiari

VI. GARIS BESAR RENCANA PEMBELAJARAN

No.	Capaian Pembelajaran	Sub-CPMK	Bahan
	(CP)		Kajian/Materi
			Pembelajaran
1	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menjelaskan urgensi dan	Pengenalan
	KU2	penerapan Matematika Diskrit dalam bidang	Matematika Diskrit
	C4 C2 C0 C0 C40 P4 P2	Informatika.	TT.
2	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep	Himpunan
	KU1, KK1	himpunan dalam pemecahan masalah di bidang Informatika dengan baik dan benar.	
3	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu mengaplikasikan konsep	Relasi
	KU1, KU2, KK1	relasi dalam penyelesaian masalah/kasus yang	
	1101,1101,1111	melibatkan relasi.	
4	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu mengaplikasikan konsep	Fungsi
	KU1, KU2, KK1	fungsi dalam penyelesaian masalah/kasus yang	
	C1 C2 C0 C0 C10 D1 D2	melibatkan fungsi.	I:l M-4:l
5	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa memiliki kemampuan berpikir sesuai dengan alur logika, serta mampu	Logika Matematika
	KU1, KU2, KK1	mengaplikasikan konsep-konsep logika	
		matematika dalam penyelesaian	
		permasalahan/kasus di bidang Informatika.	
6	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu membuktikan kebenaran	Pembuktian
	KU1, KU2, KK1	dari suatu pernyataan secara formal dengan	Matematika
	C1 C2 C0 C0 C10 P1 P2	menggunakan konsep pembuktian matematis.	ъ т
7	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep dasar teori bilangan dalam pemecahan masalah di	Dasar Teori
	KU1, KU2, KK1	bidang Informatika.	Bilangan
8		UJIAN TENGAH SEMESTER	
9	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menggunakan konsep	Induksi Matematika
	KU1, KU2, KK1	induksi dan rekursi untuk menyelesaikan	& Relasi Rekurens
		permasalahan matematis yang melibatkan	
		induksi matematika maupun pemodelan rekursif.	
10	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep	Kombinatorika
	KU1, KU2, KK1	kombinatorika untuk menyelesaikan permasalahan yang berkaitan dengan	
		kombinatorika.	
11	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menggunakan konsep	Probabilitas Diskrit
	KU1, KU2, KK1	probabilitas untuk menganalisis probabilitas	
		suatu kejadian, baik dalam dunia nyata maupun	
12	04 00 00 00 010 71 72	terkait dengan dunia komputer.	
12	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep graf	Dasar Teori Graf
	KU1, KU2, KK1	dalam pemecahan masalah di bidang Informatika.	
13	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep graf	Aplikasi Teori Graf
	KU1, KU2, KK1	dalam pemecahan masalah di bidang	12piniusi 1com Giul
	1.01, 1.02, 1.1.1	Informatika.	
14	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan konsep graf	Graf Pohon

		KU1, KU2, KK1	dalam pemecahan masalah di bidang		
			Informatika.		
1	5	S1, S2, S8, S9, S10, P1, P2,	Mahasiswa mampu menerapkan berbagai	Penerapan	
		KU1, KU2, KK1	konsep Matematika Diskrit dalam pemecahan	Matematika Diskrit	
			masalah kontekstual di bidang Informatika		
1	6	UJIAN AKHIR SEMESTER			

Mengetahui,

Koordinator Program Studi, Dosen Pengampu Mata Kuliah,

 Ketut Agus Seputra, S.ST., M.T.
 Ni Luh Dewi Sintiari, Ph.D.

 NIP. 199008152019031018
 NIR. 1992050820220102014