Nom	
Prénom	
Groupe	

Note	/ 10
------	------

Algorithmique Types algébriques abstraits

SUP S1 EPITA

Examen B1

30 octobre 2024

Consignes (à lire):

- □ Vous devez répondre directement **sur ce sujet**.
 - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées.
 - Aucune réponse au crayon de papier ne sera corrigée.
- $\hfill\Box$ La présentation est notée.
- \square Durée : 30 Min.

Exercice 1 (Listes itératives : opération mystère - 5 points)

Supposons la signature du type abstrait algébrique liste itérative vu en cours et dont voici un extrait.

TYPES

liste, place

UTILISE

entier, élément

OPÉRATIONS

 $liste-vide : \rightarrow liste$

accès : liste × entier \rightarrow place contenu : place \rightarrow élément

 $i\grave{e}me$: liste \times entier \rightarrow élément

 $longueur \quad : \quad \text{liste} \rightarrow \text{entier}$

Supposons l'opération $myst\`ere$ suivante :

OPÉRATIONS

```
myst\`ere: Liste \times Entier \times Entier \rightarrow Liste
```

PRÉCONDITIONS

 $myst\`ere(\lambda,\ x,\ y)$ est-défini-ssi $1 \le x \le y \le longueur(\lambda)$

AXIOMES

```
\begin{split} 1 \leq x \leq y \leq longueur(\lambda) \Rightarrow longueur(myst\`ere(\lambda, x, y)) = longueur(\lambda) - y + x - 1 \\ 1 \leq x \leq y \leq longueur(\lambda) \ \& \ 1 \leq i < x \Rightarrow i\`eme(myst\`ere(\lambda, x, y), i) = i\`eme(\lambda, i) \\ 1 \leq x \leq y \leq longueur(\lambda) \ \& \ x \leq i \leq longueur(\lambda) - y + x - 1 \Rightarrow \\ i\`eme(myst\`ere(\lambda, x, y), i) = ieme(\lambda, i + y - x + 1) \end{split}
```

AVEC

 λ : Liste x, y, i: Entier

Pour chaque liste proposée, indiquer quelle sera la liste résultante après application de l'opération mystère pour les arguments proposés.

Liste d'origine	Opération	Liste résultante
$\lambda = \{1, 1, 2, 3, 5, 5, 8, 9, 9\}$	$myst\`ere(\lambda,3,5)$	
$\lambda = \{1, 1, 2, 3, 5, 5, 8, 9, 9\}$	$myst\`ere(\lambda,1,4)$	
$\lambda = \{1, 1, 2, 3, 5, 5, 8, 9, 9\}$	$myst\`ere(\lambda,6,9)$	
$\lambda = \{1, 1, 2, 3, 5, 5, 8, 9, 9\}$	$myst\`ere(\lambda, 8, 8)$	
$\lambda = \{1, 1, 2, 3, 5, 5, 8, 9, 9\}$	$myst\`ere(\lambda,1,9)$	

Exercice 2 (Listes récursives – 5 points)

Supposons le type abstrait algébrique Liste récursive vu en cours et rappelé ci-dessous.

```
TYPES
      liste, place
UTILISE
      élément
OPÉRATIONS
      listevide
                    : \rightarrow liste
                         liste \rightarrow place
       t\hat{e}te
                     : place \rightarrow élément
       contenu
                    : liste \rightarrow élément
      premier
                     : élément \times liste \rightarrow liste
       cons
      fin
                      : liste \rightarrow liste
                          place \rightarrow place
      succ
PRÉCONDITIONS
      t\hat{e}te(\lambda) est-défini-ssi \lambda \neq listevide
      fin(\lambda) est-défini-ssi \lambda \neq listevide
      premier(\lambda) est-défini-ssi \lambda \neq listevide
AXIOMES
      premier(cons(e, \lambda)) = e
      fin(cons(e, \lambda)) = \lambda
      contenu(t\hat{e}te(\lambda)) = premier(\lambda)
      succ(t\hat{e}te(\lambda)) = t\hat{e}te(fin(\lambda))
AVEC
      liste
                    \lambda
```

On ajoute l'opération supprime-sup qui permet de supprimer dans une liste tous les éléments strictement supérieurs à un élément donné.

OPÉRATIONS

élément

```
supprime\text{-}sup:liste × élément → liste
```

Donner les axiomes déduisant une valeur pour la suppression des éléments strictement supérieurs à l'élément x dans la liste récursive λ . Vous préciserez les PRÉCONDITIONS s'il y en a.