Associativity and Precedence

Dealing with Associativity and Precedence

- CFGs generate balanced parentheses and implicit order of evaluating expressions
 - in the absence of parentheses
- associativity: grouping equivalent operations
 - example: 6 3 + 4
 - is it read as (6 3) + 4 or 6 (3 + 4)?
 - we want left associativity, i.e. evaluate from left to right
- precedence: grouping non-equivalent symbols
 - example: 6 + 3 * 4
 - is it read as (6 + 3) * 4 or 6 + (3 * 4)?
 - we want multiplication to have precedence over addition

Associativity

Associativity of Expressions

Recall this grammar.

1.
$$E \rightarrow B + E$$

5.
$$B \rightarrow D$$

2.
$$E \rightarrow B - E$$

6.
$$D \rightarrow 1$$

3.
$$E \rightarrow B$$

7.
$$D \rightarrow D0$$

4.
$$B \rightarrow 0$$

8.
$$D \rightarrow D1$$

- Consider the tree corresponding to $E \Rightarrow B E \Rightarrow B B + E$
- The expression gets longer by adding more operators and digits (i.e. expressions) on the *right* hand side.
- Since the children get evaluated before the parent, 10 + 11 will be evaluated before 1 - ()
- These rule enforce associativity from the right, i.e. 1 (10+11)

Associativity

Associativity of Expressions

• Swap order of E and B in 1, 2.

1.
$$E \rightarrow E + B$$

5.
$$B \rightarrow D$$

2.
$$E \rightarrow E - B$$

6.
$$D \rightarrow 1$$

3.
$$E \rightarrow B$$

7.
$$D \rightarrow D0$$

4.
$$B \rightarrow 0$$

8.
$$D \rightarrow D1$$

- Consider the tree corresponding to $E \Rightarrow E + B \Rightarrow E B + B$
- The expression gets longer by adding more operators and digits (i.e. expressions) on the *left* hand side.
- Since the children get evaluated before the parent, 1 10 will be evaluated before () + 11
- These rule enforce associativity from the *left*, i.e. (1-10) +11

Associativity

When our grammar is *right recursive*, i.e.

1.
$$E \rightarrow B + E$$

2.
$$E \rightarrow B - E$$

our grammar becomes *right* associative, i.e.

$$E \Rightarrow B - E \Rightarrow B - (B + E)$$

When our grammar is *left* recursive, i.e.

1.
$$E \rightarrow E + B$$

2.
$$E \rightarrow E - B$$

our grammar becomes *left* associative, i.e.

$$E \Rightarrow E + B \Rightarrow (E - B) + B$$

Precedence

Binary Expressions

Now add multiplication and division.

1.
$$E \rightarrow E + B$$

6.
$$B \rightarrow 0$$

2.
$$E \rightarrow E - B$$

7.
$$B \rightarrow D$$

3.
$$E \rightarrow E * B$$

8.
$$D \rightarrow 1$$

4.
$$E \rightarrow E / B$$

9.
$$D \rightarrow D0$$

5.
$$E \rightarrow B$$

10.
$$D \rightarrow D1$$

- Consider the derivation E ⇒ E * B ⇒ E + B * B
- This grammar will evaluate the expression 1+10*11 as (1+10)*11 which ignores the standard rules of precedence.

Precedence

Binary Expressions

Introduce a new non-terminal T

1.
$$E \rightarrow E + T$$

6.
$$B \rightarrow 0$$

2.
$$E \rightarrow E - T$$

7.
$$B \rightarrow D$$

3.
$$T \rightarrow T * B$$

8.
$$D \rightarrow 1$$

4.
$$T \rightarrow T/B$$

9.
$$D \rightarrow D0$$

5.
$$E \rightarrow T$$

10.
$$D \rightarrow D1$$

6.
$$T \rightarrow B$$

- This grammar will evaluate the expression 1 + 10 * 11 as 1+(10*11)
- The T nonterminal is farther from the start symbol E and will be evaluated before expressions involving E.

311

Topic 11 – Top-Down Parsing

Key Ideas

- Parsing
- Top-down and bottom-up parsing
- First(), Follow(), Empty()
- LL(1) Parsing

References

 Basics of Compiler Design by Torben Ægidius Mogensen sections 3.7 to 3.10, 3.12

Review

Review

- Regular Languages
 - e.g. the set of WLP4 tokens
 - e.g. the set of MIPS tokens
 - a*b, regular expressions, DFA, NFA, ε-NFA
 - relatively easy to scan
- Context-free languages add
 - check balanced parentheses, i.e. when does function end, for loop end, etc.
 - capture associativity, precedence
- How are the two related?

Regular Expressions and CFGs

All Regular Languages are Context-free

 Basic Idea: use a CFG to generate the components of the recursive definition of a Regular Expressions

Base Cases

- use $S \to \varepsilon$ to generate language $\mathcal{L} = \{ \varepsilon \}$
- use $S \rightarrow a$ to generate language $\mathcal{L} = \{ a \}$

Building up Expressions

- if E_1 and E_2 are regular expressions, with $S_1 \rightarrow E_1$ and $S_2 \rightarrow E_2$
 - $S \rightarrow S_1S_2$ generates E_1E_2 (concatenation)
 - $S \rightarrow S_1$; $S \rightarrow S_2$ generates $E_1 \mid E_2$ (union)
 - $S \rightarrow SS_1$; $S \rightarrow \varepsilon$ generates E_1^* (*repetition*)

Regular Expressions and CFGs

Exercise

Create a CFG that derives the language a*b | (cd) *

Parsing

What is Parsing

- Parsing: Given a grammar G and a word w, find a derivation for w.
- Our goal: look at the characters in w and decide which rules derived w from the start symbol
- Two strategies
 - 1. Top-down: Find a non-terminal (e.g. X) and replace it with the right-hand side (e.g. aXb if $X \rightarrow aXb$ is a rule).
 - 2. Bottom-up: replace a right-hand side (e.g. aaXbb) with a non-terminal: (e.g. aXb if $X \rightarrow aXb$ is a rule).
- In both of the above strategies, we have to make the correct decision at each step.

Parsing Algorithms

Backtracking

 There is a backtracking algorithm for parsing in a CFG, i.e. try each rule in turn...

```
if we can move "forward"
    do so
    else
     go back a step and try the next rule
stop when we find a derivation
```

- Backtracking is not practical.
 - an exhaustive search
 - takes exponential time
 - will always find derivation, if it exists
- We will look at two linear-time algorithms.

Stack-based Parsing

Using a Stack

- For top-down parsing, we use a stack to remember information about our derivations and/or processed input.
- Recall that CFGs are recognized by a DFA with a stack
- e.g. for language of paired parentheses
 - if input is '(', push it on the stack
 - if input is ')' pop the stack
 - if you pop when the stack is empty: ERROR
 - if the stack is not empty when you are finished processing the input: ERROR
- e.g(()())
- because of the possibility of errors we need to augment our grammar ...

Augmenting Grammars

Using a Stack

- We want to be able to detect both these situations easily
- We augment our grammars by adding
 - a character to *mark the beginning*: ⊢ (also called *BOF*)
 - a character to *mark the end:* ¬ (also called *EOF*)
 - a new start symbol S' that only appears once

1.
$$S' \rightarrow \vdash S \dashv$$

2. $S \rightarrow AyB$
3. $A \rightarrow ab$
4. $A \rightarrow cd$
5. $B \rightarrow z$
6. $B \rightarrow wz$

Exercise Derive the word \vdash abywz \dashv S' $\Rightarrow \vdash$ S \dashv rule (1) $\Rightarrow \vdash$ AyB \dashv rule (2)

⇒ ⊢ abywz Ⅎ

 \Rightarrow + abyB + rule (3)

rule (6)

Parsing Algorithm

- to start, push the start symbol, S', on the stack
- when it is a non-terminal at the top of the stack:
 - expand the non-terminal using a production rule where the RHS of the rule matches the input
- when it is a terminal at the top: match with input
 - pop the terminal off of the stack
 - read the next character from the input

Parsing the Input

To start, push S' on the stack

	Derivation	Read	Input	Stack	Action
1	S'		⊦ abywz	> S'	

- When it is a non-terminal at the top of stack: expand the non-terminal (using a production rule) so that the top of the stack matches the first symbol of the input.
 - in this case use rule 1 (S' \rightarrow \vdash S \dashv) because the first symbol of the input and the RHS of rule 1 is ' \vdash '

	Derivation	Read	Input	Stack	Action
1	S'		⊦ abywz	> S'	expand (1)
2	⊢ S ⊣		⊢ abywz ⊣	> F S +	

Parsing the Input

Since the top of the stack matches the first char of the input,
 pop ⊢ off the stack and read the next char of the input

	Derivation	Read	Input	Stack	Action
2	⊢ S ⊣		⊢ abywz ⊣	> F S +	match
3	⊢ S ⊣	F	abywz -l	> S -l	

 The top of the stack in a non-terminal so expand it using rule 2 (S → AyB). There is only one choice of rule to use.

	Derivation	Read	Input	Stack	Action
3	⊢ S ⊣	F	abywz 1	> S +	expand (2)
4	⊦ AyB ⊣	F	abywz Ⅎ	> A y B +	

Parsing the Input

- The top of the stack in a non-terminal so expand it.
- There are two possible rules to use: 3 (A → ab) and 4 (A → cd) but only the RHS of rule 3 matches the input a.

	Derivation	Read	Input	Stack	Action
4	⊦ AyB ⊣	F	abywz ⊦	> A y B +	expand (3)
5	⊦ AyB ⊣	F	abywz ⊦	> a b y B +	match

· Read from input and pop the next three chars, which match.

	Derivation	Read	Input	Stack	Action
6	⊦ abyB ⊣	⊦ a	bywz 1	> b y B +	match
7	⊦ abyB ⊣	⊦ ab	ywz 1	> y B +	match
8	⊦ abyB ⊣	⊦ aby	wz 1	> B +	

Parsing the Input

- Again, the top of the stack in a non-terminal so expand it.
- There are two possibilities: 5 B \rightarrow z or 6 B \rightarrow wz, but only the RHS of rule 6 matches the input w.

	Derivation	Read	Input	Stack	Action
8	⊦ abyB ⊣	⊦ aby	wz 1	> B -l	expand (6)
9	⊦ abywz ⊣	⊦ aby	wz 1	> w z -l	

Pop off the stack and read the next two chars, which match.

	Derivation	Read	Input	Stack	Action
9	⊦ abywz ⊣	⊦ aby	wz 1	> w z -l	match
10	⊦ abywz ⊣	⊦ abyw	z +	> z	match
11	⊦ abywz 1	⊦ abywz	+	> 1	

Parsing the Input

 The last character in the input matches the last character on the stack, pop it off the stack and accept the string.

	Derivation	Read	Input	Stack	Action
11	⊦ abywz	⊦ abywz	4	> +	match
12	⊦ abywz ⊣	⊦ abywz-l		>	ACCEPT

 The next slide shows the complete parsing of abywz using the grammar:

1.
$$S' \rightarrow FS + S$$

2.
$$S \rightarrow AyB$$

3.
$$A \rightarrow ab$$

4.
$$A \rightarrow cd$$

5.
$$B \rightarrow z$$

6.
$$B \rightarrow wz$$

Parsing the Input

	Derivation	Read	Input	Stack	Action
1	S'		⊦ abywz ⊣	> S'	expand (1)
2	⊦ S -l		⊢ abywz ⊣	> F S -1	match
3	⊢ S -l	F	abywz 1	> S -l	expand (2)
4	⊦ AyB ⊣	F	abywz 1	> A y B +	expand (3)
5	⊦ AyB ⊣	F	abywz 1	> a b y B +	match
6	⊦ abyB ⊣	⊦ a	bywz 1	> b y B +	match
7	⊦ abyB ⊦	⊦ ab	y wz 1	> y B +	match
8	⊦ abyB ⊣	⊦ aby	wz -l	> B +	expand (6)
9	⊦ abywz 1	⊦ aby	wz -l	> w z 1	match
10	⊦ abywz -l	⊦ abyw	z -l	> z	match
11	⊦ abywz 1	⊦ abywz	4	> -	ACCEPT

Top-down parsing with a stack

invariant (i.e. true throughout entire process)
 derivation = input already read + stack (read from the top-down), e.g.

```
- Line 3: ► S +
```

- Line 6: ⊢a byB +
- Line 9: Faby wz 1
- How do we know when we are done?
 - both stack and input contain +
- How do we know which rule to use?

Our Goal: to be able to correctly predict which rule applies!

Meaning of LL(1)

- first 'L' means process the input from Left to right
- second 'L' means find a Leftmost derivation
- 1 means algorithm is allowed to look ahead 1 token

Goal: Unambiguous Prediction

- Find what rule applies if A (a non-terminal) is on the stack and
 α (a terminal) is the next symbol in the input to be read
- For LL(1) grammars
 - for all non-terminals A and all terminals a: $|Predict(A, a)| \le 1$

328

- i.e. given an A on the top of the stack and an a as the next input character at most one rule can apply.
- Implement Predict(A, a) as a table.

How to Construct a Predictor Table: First()

 ask: For each non-terminal {S', S, A, B} what are the possible terminals they can derive on the leftmost side.

1.
$$S' \rightarrow F S + I$$

2.
$$S \rightarrow AyB$$

3.
$$A \rightarrow ab$$

4.
$$A \rightarrow cd$$

5.
$$B \rightarrow z$$

6.
$$B \rightarrow wz$$

	а	b	С	d	У	W	Z	H	4
S'								1	
S	2		2						
Α	თ		4						
В						6	5		

- How to read table: if S' is on the stack and the next input is ⊢,
 the entry at (S', ⊢) is 1, so apply rule 1.
- Empty cells are error states.

Filling up a Row

- Question: What is the first rule I apply that will eventually derive the first non-terminal (i.e. the one on the left)
- How to fill a row: start with that row's non-terminal and try all applicable rules, tracking which terminal symbol appears as the first character on the left.

Row 1: S'		Row 3: A	
1. $S' \rightarrow \vdash S \dashv$	(rule 1)	3. $A \rightarrow ab$	(rule 3)
		4. $A \rightarrow cd$	(rule 4)
Row 2: S			
2. $S \rightarrow AyB$	(rule 2)	Row 4: B	
3. $A \rightarrow ab$		5. $B \rightarrow z$	(rule 5)
4. $A \rightarrow cd$		6. $B \rightarrow wz$	(rule 6)

How to Construct a Predictor Table: Follow()

- To understand Follow(), we need to add a rule where a non-terminal disappears, e.g. B $\rightarrow \epsilon$
 - 1. $S' \rightarrow F S + I$
 - 2. $S \rightarrow AyB$
 - 3. $A \rightarrow ab$
 - 4. $A \rightarrow cd$
 - 5. $B \rightarrow z$
 - 6. $B \rightarrow wz$
 - 7. $B \rightarrow \varepsilon$

	а	b	С	d	У	W	Z	L	4
S'								1	
S	2		2						
Α	თ		4						
В						6	5		7

- We can have: $S' \Rightarrow \vdash S \dashv \Rightarrow \vdash AyB \dashv \Rightarrow \vdash abyB \dashv \Rightarrow \vdash aby \dashv$
 - i.e. \dashv can appear after B but there is no rule $B \rightarrow \dashv$
 - the symbol " \dashv " comes from the production 1: $S' \rightarrow \vdash S \dashv$

How to Construct a Predictor Table: Follow()

- The terminal symbol "+" is in Follow(B)
- Why: there is a derivation from the start symbol S' \Rightarrow * α B $\dashv \gamma$, where
 - α and γ are (possibly empty) sequences of terminals and non-terminals
 - there is a rule $B \rightarrow \varepsilon$
 - the terminal " \dashv " does not come after B because there is a derivation B $\Rightarrow \dashv \gamma$,
 - but it can follow after B, because there is a derivation from S' that puts "+" after B and then has B disappear (i.e. B $\to \varepsilon$).

How to Construct a Predictor Table

Calculating Empty(α)

- Sometimes called nullable(α)
- Asking if α can disappear?
- Here $B_i \in (N \cup T), \ \alpha \in (N \cup T)^*$
- **Empty**(α) = true if $\alpha \Rightarrow * \epsilon$
 - False if α has a terminal in it, only non-terminals can disappear.
 - True if there is a rule $\alpha \rightarrow \epsilon$
 - For any rule of the form $\alpha \to B_1B_2...B_n$ Empty(α) is true if each of Empty(B_1), Empty(B_2), ..., Empty(B_n) is true.

How to Construct a Predictor Table

Calculating Follow(A)

- Asking: Starting from the start symbol, does the terminal be ever occur immediately following A.
- Here $b \in T$, $A \in N$, $B_i \in (N \cup T)$, $\alpha, \beta \in (N \cup T)^*$
- Follow(A) = {b | $S' \Rightarrow * \alpha Ab\beta$ }

```
Initialize by setting Follow(A) = \{\} // the empty set for each rule of the form A \rightarrow B<sub>1</sub>B<sub>2</sub>...B<sub>n</sub>:
```

for each n:

```
if (B_i \text{ is a non-terminal})

Follow(B_i) = \text{Follow}(B_i) \cup \text{First } (B_{i+1}B_{i+2}...B_n)

if (\text{Empty}(B_1B_2...B_{i-1}))

Follow(B_i) = \text{Follow}(B_i) \cup \text{Follow}(A)
```

How to Construct a Predictor Table

Calculating Predict(A, a)

- Asking: If A is on the top of the stack and a is the next symbol in the input, which rule should be used to expand A?
- Here α , $\beta \in (N \cup T)^*$ $\alpha \in T$ $A \in N$
- **Predict**(A, a) = { A $\rightarrow \alpha \mid a \in First(\alpha)$ } \cup { A $\rightarrow \beta \mid a \in Follow(A) and Empty(<math>\beta$) = true }

```
Input: w
push: ⊢S +
for each a \in W
   while (top of stack is some non-terminal A ) {
      pop A
      if (Predict(A, a) == (A \rightarrow \alpha) { // 1. Try to predict rule
         push \alpha on stack (in reverse)
      else
         reject
                                        // no rule found, error
                                        // 2. Try to match symbol
      pop c
      if (c \neq a) reject
                                        // no match found
accept w
```

Example of LL(1) Parsing

LL(1) Parsing

	Derivation	Read	Input	Stack	Action
1	S'		⊦ abywz ⊣	> S'	predict(S', ⊢) = 1
2	⊢ S		⊢ abywz ⊣	> F S - 1	match
3	⊢ S	F	abywz 1	> S -l	predict(S, a) = 2
4	⊦ AyB ⊣	F	abywz 1	> A y B -1	predict(A, a) = 3
5	⊦ AywB ⊣	F	abywz 1	> a b y B +	match
6	⊦ abywB ⊣	⊦ a	bywz 1	> b y B +	match
7	⊦ abywB ⊣	⊦ ab	ywz 1	> y B -l	match
8	⊦ abywB ⊣	⊦ aby	wz -l	> B ⊣	predict(B,w) = 6
9	⊦ abywz 1	⊦ aby	wz -l	> w z +	match
10	⊦ abywz 1	⊦ abyw	z -l	> z -l	match
11	⊦ abywz 1	⊦ abywz	4	> 1	ACCEPT

Non-LL(1) Grammars

A Non-LL(1) Grammar

G: 1.
$$S \rightarrow ab$$

2.
$$S \rightarrow acb$$

- |L(G)| = 2, i.e. L(G) = {ab, acb}
- Not in LL(1).

	а	b	С
S	1,2		

- The predict table is ambiguous.
- Must look ahead to the second symbol in order to tell which rule to use. The predict table must consider pairs of terminals.
- G is in LL(2).

	aa	ab	ac	ba	bb	bc	са	cb	СС
S		1	2						

Non-LL(1) Grammars

Converting a Non-LL(1) Grammar

LL(2)

G: 1.
$$S \rightarrow ab$$

2.
$$S \rightarrow acb$$

LL(1)

G': 1'.
$$T \rightarrow a X$$

2'.
$$X \rightarrow b$$

3'.
$$X \rightarrow cb$$

	а	b	С
Т	1		
Х		2	3

- Rewrite overlapping productions (1 and 2) so that
 - one rule contains the common prefix (a) and
 - a new non-terminal (X) produces the different suffixes (b and cb).