Application O

_ = I	<u>Table de vérité</u>
Résumer du <u>cours</u>	$\begin{array}{c cccc} P & Q & P \Rightarrow Q \end{array}$
cours	V V V
ms OS	V F F
Ré	F V V
-	F F V
u _C	Application @
ati	Donner la valeur de vérité des propositions suivantes :
Evaluation	• $P: "2 < 5 \Rightarrow -1^2 = 1"$; • $S: "0 > 3 \Rightarrow 3$ est un nombre paire".
3AF	• $Q: "2^2 = -4 \Rightarrow \sqrt{25} = 5"$; • $T: "6 = 2 \times 3 \Rightarrow 37$ est un nombre premier"
8	Remarque
Résumer du cours	• L'implication $Q \Rightarrow P$ s'appelle l'implication réciproque de $P \Rightarrow Q$.
	• " $P \Rightarrow Q$ " et " $Q \Rightarrow P$ " n'ont pas nécessairement même valeur de vérité.
	<u>Exemple</u>
	• $P:$ "4 est un nombre pair"; $Q:$ "-3>0".
	La proposition " $P \Rightarrow Q$ " est fausse mais la proposition " $Q \Rightarrow P$ " est vraie.
<u>és</u>	• $P:"3=1.5"$; $Q:"36$ divise $8"$.
	La proposition " $P \Rightarrow Q$ " est vraie et aussi la proposition " $Q \Rightarrow P$ " est vraie.
	□ Equivalence de deux propositions
mer du cours	L'équivalence de deux proposition P et Q est la proposition qui une valeur
	de vérité « vrai » si P et Q ont même valeur de vérité on la note $P \Leftrightarrow Q$.
) <u>)</u>	$P \Leftrightarrow Q$: se lit P équivalente la proposition Q .
d u	Table de vérité
<u>ier</u>	$P \qquad Q \qquad P \Leftrightarrow Q$
Σ	V V V
Résu	V F F
<u>I</u>	F V F
	F F V
۵I	Application 5
[<u>[</u>]	Donner la valeur de vérité des propositions suivantes :
Evaluation	• P: "ABC un triangle rectangle en A $\Leftrightarrow AB^2 + AC^2 = BC^2$ ".
	$ Q: "x^2+1>0 \Leftrightarrow -4 \in \mathbb{N}" . $
ন	• $R: "4 \times 3 = 20 \Leftrightarrow 5$ est un nombre paire".
	• $S: "1.25 \in \mathbb{Z} \Leftrightarrow 25$ est un multiple de $5"$
8	Soient B. Oct B. twis propositions on a
8	Soient P,Q et R trois propositions on a
2	$(1).P \Leftrightarrow \stackrel{=}{p} \qquad (2).(PetQ) \Leftrightarrow (QetP)$
dı dı	$(3).(PouQ) \Leftrightarrow (QouP)$ $(4).\overline{(PetQ)} \Leftrightarrow \overline{(p)}ou(\overline{Q})$
ner	
umer	$(5).\overline{(PouQ)} \Leftrightarrow \overline{(p)}et(\overline{Q}) \qquad (6).(Pet(QouR)) \Leftrightarrow (PetQ)ou(PetR)$
Résumer du cours	

2. Fonction propositionnelle

du	<u>Exemple</u>
Résumer du cours	\otimes On considère la fonction propositionnelle suivante : " $(x \in \mathbb{Z}); x^2 - 1 = 0$ "
Rési	" $(\forall x \in \mathbb{Z}); x^2 - 1 = 0$ " F ; " $(\exists x \in \mathbb{Z}); x^2 - 1 = 0$ " V ; " $(\exists ! x \in \mathbb{Z}); x^2 - 1 = 0$ " F
	Question:
	1) Donner la valeur de vérité des propositions suivantes :
	$P:"(\forall y \in \mathbb{R})(\exists x \in \mathbb{R}); y = 2x - 1" \qquad ;$
	$Q:"(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); y = 2x - 1" S:"(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}); y = 2x - 1"$
	2) Que remarquez-vous ?
n j	<u>Remarque</u> :
Résumer du cours	•L'ordre des quantificateurs de même nature n'a aucune importance pour
	déterminer le sens du terme quantifié. •L'ordre des quantificateurs de nature différents est important pour
Z	déterminer le sens du terme quantifié.
Evaluation	Exercice 1 de la série
	⇒ <u>Négation d'une proposition quantifiée</u>
	<u>Propriété</u>
	Soit " $(x \in E)$; $P(x)$ " une fonction propositionnelle
ILS	\otimes La négation de la proposition " $(\exists x \in E); P(x)$ " est la proposition
	\otimes La négation de la proposition " $(\exists x \in E); P(x)$ " est la proposition " $(\forall x \in E); \overline{P(x)}$ ".
	" $(\forall x \in E); \overline{P(x)}$ ".
	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple
Résumer du cours	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple • La négation de la proposition $P: (\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition
	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple
	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple • La négation de la proposition $P: (\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition
	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple • La négation de la proposition $P: (\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition $\overline{P}: (\exists x \in \mathbb{R}); x^2 < 0$ ".
	" $(\forall x \in E); \overline{P(x)}$ ". \otimes La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". Exemple • La négation de la proposition $P: (\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition $\overline{P}: (\exists x \in \mathbb{R}); x^2 < 0$ ". • La négation de la proposition $P: (\exists x \in \mathbb{R}); x^2 - 2 = 0$ " est la proposition
	" $(\forall x \in E); \overline{P(x)}$ ". & La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". **Exemple* • La négation de la proposition $P: "(\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition $\overline{P}: "(\exists x \in \mathbb{R}); x^2 < 0$ ". • La négation de la proposition $P: "(\exists x \in \mathbb{R}); x^2 - 2 = 0$ " est la proposition $\overline{P}: "(\forall x \in \mathbb{R}); x^2 - 2 \neq 0$ ". **Application ©* Déterminer la valeur de vérité des propositions suivantes, puis donner leur négation.
	" $(\forall x \in E); \overline{P(x)}$ ". & La négation de la proposition " $(\forall x \in E); P(x)$ " est la proposition " $(\exists x \in E); \overline{P(x)}$ ". **Exemple* • La négation de la proposition $P: "(\forall x \in \mathbb{R}); x^2 \geq 0$ " est la proposition $\overline{P}: "(\exists x \in \mathbb{R}); x^2 < 0$ ". • La négation de la proposition $P: "(\exists x \in \mathbb{R}); x^2 - 2 = 0$ " est la proposition $\overline{P}: "(\forall x \in \mathbb{R}); x^2 - 2 \neq 0$ ". **Application ©* Déterminer la valeur de vérité des propositions suivantes, puis donner leur

	T -	
	On a $x^2 = x - 1 \Rightarrow x^2 - x + 1 = 0$	
Résumer du cours	On a $\Delta = (-1)^2 - 4 \times 1 \times 1 = -3 < 0$	
lu c	Donc l'équation n'a pas de solutions ; donc il y a une contradiction	
E 151	Par conséquent $(\forall x \in \mathbb{R}); x^2 \neq x-1$	
Evaluation	Application OO	
	1) Montrer que $(\forall n \in \mathbb{N})$; $n-1 \neq n-2$	
	2) ABC un triangle de côtés $AB = 4$, $AC = 3$ et $BC = 6$. Montrer que le	
	triangle ABC n'est pas rectangle en A.	
	3) Soient $(\forall x \in \mathbb{R}_+^*)(\forall y \in \mathbb{R}_+^*)(\forall z \in \mathbb{R}_+^*)$ tels que $xyz > 1$ et	
	$x+y+z < \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ Montrer que $x \ne 1$, $y \ne 1$ et $z \ne 1$	
	5. Résonnement par récurrence	
	Propriété .	
	Soit $P(n)$ une fonction propositionnelle et $n_0 \in \mathbb{N}$ tel que $n \ge n_0$	
	Pour montrer que " $(\forall n \ge n_0)$; $P(n)$ " est vraie, on suit les étapes suivantes :	
	• Vérifier que $P(n_0)$ est vraie	
	• Supposer que " $P(n)$ " est vraie.	
	• Montrer que " $(\forall n \ge n_0)$; $P(n+1)$ " est vraie	
Résumer du cours	• Conclure que " $(\forall n \ge n_0)$; $P(n)$ " est vraie	
	• D'après le principe de récurrence on a " $(\forall n \ge n_0)$; $P(n)$ ".	
qn		
er (Remarque En utilisant le principe de récurrence si n est un nombre entier naturel.	
	Exemple	
Résu	Montrer que $(\forall n \in \mathbb{N})$; $3^n \ge 2n+1$	
	Pour $n = 0$ on a $3^0 = 1 \ge 2 \times 0 + 1$ est une proposition vraie	
	Supposons que $3^n \ge 2n+1$ est vraie et Montrer $3^{n+1} \ge 2(n+1)+1$ cà-d Mq	
	$3^{n+1} \ge 2n+3$	
	On a $3^n \ge 2n+3$ $3 \times 3^n \ge 3(2n+1) \Rightarrow 3^{n+1} \ge 6n+3$	
	Or $6n+3 \ge 2n+3$	
	Alors $3^{n+1} \ge 2n+3$	
	d'après le principe de récurrence on a $(\forall n \in \mathbb{N})$; $3^n \ge 2n+1$.	
	Application OQ	
퇴	1) Soit $n \in \mathbb{N}$. Montrer que	
Evaluation	• $2^n \ge n+1$	
	$\bullet \ 1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$	
	• Le nombre 4 ⁿ −1 est un multiple de 3.	
	2) Montrer $(\forall n \in \mathbb{N}^*)$; $1+2+3+\dots+n=\frac{n(n+1)}{2}$	