String Construction

Amanda has a string, s, of m lowercase letters that she wants to copy into a new string, p. She can perform the following operations any number of times to construct string p:

- Append a character to the end of string p at a cost of 1 dollar.
- Choose any substring of p and append it to the end of p at no charge.

Given n strings (i.e., $s_0, s_1, \ldots, s_{n-1}$), find and print the *minimum* cost of copying each s_i to p_i on a new line.

Input Format

The first line contains a single integer, n, denoting the number of strings. Each line i of the n subsequent lines contains a single string, s_i .

Constraints

- $1 \le n \le 5$
- $1 \le m \le 10^5$

Subtasks

• $1 < m < 10^3$ for 45% of the maximum score.

Output Format

For each string s_i (where $0 \leq i < n$), print the minimum cost of constructing string p_i on a new line.

Sample Input

```
2
abcd
abab
```

Sample Output

```
4
2
```

Explanation

Query 0: We start with s = "abcd" and p = "".

- 1. Append character 'a' to p at a cost of 1 dollar, p = "a".
- 2. Append character 'b' to p at a cost of 1 dollar, p = "ab".
- 3. Append character 'c' to p at a cost of 1 dollar, p= "abc".
- 4. Append character 'd' to p at a cost of 1 dollar, p = "abcd".

Because the total cost of all operations is 1+1+1+1=4 dollars, we print ${\bf 4}$ on a new line.

- 1. Append character 'a' to p at a cost of 1 dollar, p = "a".
- 2. Append character ${}^{\mathbf{b}}{}^{\mathbf{b}}$ to p at a cost of 1 dollar, $p = {}^{\mathbf{u}}\mathbf{a}\mathbf{b}{}^{\mathbf{u}}$.
- 3. Append substring "ab" to p at no cost, p = "abab".

Because the total cost of all operations is $\mathbf{1}+\mathbf{1}=\mathbf{2}$ dollars, we print $\mathbf{2}$ on a new line.

Note

A substring of a string S is another string S' that occurs "in" S (Wikipedia). For example, the substrings of the string "abc" are "a", "b", "c", "ab", "bc", and "abc".