Bài Hướng Dẫn Thực Hành

Tìm đường đi ngắn nhất với Dijkstra

1. Thuật toán Dijkstra

Cho G=(X,E) là một đồ thị có trọng không âm gồm n đỉnh. Thuật toán Dijkstra được dùng để tìm đường đi ngắn nhất từ đỉnh i đến j cho trước.

Gọi L là ma trận trọng lượng (với qui ước $L_{hk} = +\infty$ nếu không có cạnh nối từ đỉnh h đến đỉnh k).

Ta sử dụng thêm hai mảng để lưu vết của quá trình tìm đường đi:

- Length[...]: lưu độ dài từ đỉnh đầu i đến các đỉnh trong đồ thị.
- Last[...]: lưu đỉnh liền trước nó trên đường đi.

```
Bước 1: Gán T:= X và gán các nhãn:
    Length[i] = 0;
    Length[k] = +∞ với ∀k ∈ X \ {i};
    Last[k] = -1; ∀k ∈ X;

Bước 2: Nếu j ∉ T thì dừng và giá trị Length[j] là độ dài đường đi ngắn nhất từ i đến j và Last[j] lưu đinh nằm ngay trước j trên đường đi đó.
Bước 3: Chọn đinh v ∈ T sao cho Length[v] nhỏ nhất và gán T:= T\{v}.
Bước 4: ∀k ∈ T và có cạnh nối từ v đến k:
    Nếu Length[k] > Length[v] + L<sub>vk</sub> thì
    Length[k] = Length[v] + L<sub>vk</sub>;
    Last[k] = v;
    Cuối nếu
Cuối với mọi
Trở về bước 2
```

 $Ch\dot{u}$ \dot{y} : Khi thuật toán dừng, nếu Length[j] = $+\infty$ thì không tồn tại đường đi từ i đến j, nếu ngược lại thì Length[j] là độ dài đường đi ngắn nhất.

2. Ví dụ Dijkstra

Cho đồ thị sau:

Tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 2 trong đồ thị.

Bước 1: khởi tạo

Khởi tạo đỉnh 1 với độ dài min hiện tại là 0, và nhãn đỉnh trước là chính nó (hoặc -1, điều này không quan trọng). Các đỉnh còn lại đều được gán độ dài min là ∞. Dưới đây là bảng mô tả

T[]\step	0
0	0
1	1
2	2
3	3

Length[]\step	0
0	∞
1	0
2	∞
3	∞

Last[]\step	0
0	-1
1	-1
2	-1
3	-1

 $Length[0]_1 = 2$

Bước 2: đỉnh 2 vẫn thuộc T ta sang bước kế tiếp.

<u>Bước 3</u>: chọn đỉnh có độ dài nó nhỏ nhất. \mathring{O} đây là đỉnh 1, ta loại đỉnh này ra.

T[]\step	0	1
0	0	0
1	1	1
2	2	2
3	3	3

<u>Bước 4</u>: Các đỉnh còn lại đều có Length[] cực đại nên ta cập nhật lại như sau

Length[]\step	0	1
0	8/	▼ 2
1	0 <	0
2	8 —	-
3	∞	6

Last[]\step	0	1
0	-1_	▼ 1
1	-1	-1
2	-1-	→ -1

3	-1	1

Bước 2 (lần 2): đỉnh 2 vẫn thuộc T ta sang bước kế tiếp.

<u>Bước 3 (lần 2)</u>: trong **T**, chọn đỉnh có độ dài nhỏ nhất. Ở đây là đỉnh 0, nên:

T[]\step	0	1	2
0	0	0	θ
1	1		
2	2	2	2
3	3	3	3

Bước 4 (lần 2): tính độ dài từ đỉnh 0 vừa xét ở trên đến các đỉnh còn lại trong T.

Đỉnh số 3 có chi phí mới là 2+3=5 nhỏ hơn chi phí cũ (6), vì vậy ta cập nhật lại đỉnh này.

Length[]\step	0	1	2
0	8/	V 2	→ 2
1	0 <	0 —	0
2	∞ —		\rightarrow ∞
3	∞	6	5

Last[]\step	0	1	2
0	-1_	V 1	1
1	-1	-1	-1
2	-1	→ -1—	→ -1
3	-1	1	0

Bước 2 (lần 3): đỉnh 2 vẫn thuộc T ta sang bước kế tiếp.

<u>Bước 3 (lần 3)</u>: lấy đỉnh 3 ra khỏi **T** vì có độ dài nhỏ nhất:

T[]\step	0	1	2	3
0	0	0		
1	1			
2	2	2	2	2
3	3	3	3	3

Bước 4 (lần 3): tương tự ta cũng tính độ dài từ đỉnh 3 đến đỉnh còn lại trong T.

Đỉnh số 2 có chi phí mới là $5+2=7 < \infty$.

Length[]\step	0	1	2	3
0	8	▼ 2	▶ 2	2
1	$-\sqrt{0}$	→ 0 <u></u>	0	• ()
2	8	8	8/	▼ 7
3	8	6	5—	→ 5

Last[]\step	0	1	2	3
0	-1/	V 1	1 _	→ 1 →
1	-1	-1	-1	-1
2	-1 —	- 1-	→ -1	▼ 3
3	-1	1	0 —	→ 0

Môn: Lý thuyết đồ thị

Bước 2 (lần 4): đỉnh 2 vẫn thuộc T.

<u>Bước 3 (lần 4)</u>: lấy đỉnh 2 ra khỏi $\mathbf T$ vì có độ dài nhỏ nhất, lúc này

T[]\step	0	1	2	3	4
0	0	0			
1	1				
2	2	2	2	2	2
3	3	3	3		

Lúc này đỉnh 2 không còn nằm trong T nữa, chúng ta kết thúc thuật toán.

Bài Tập Thực Hành

Thuật toán Dijkstra

I. Quy định:

- Thời gian làm bài: 2 tuần (deadline xem trên moodle)
- Loại bài tập: cá nhân
- Cấu trúc bên trong thư mục MSSV bao gồm các thư mục
 - Source: thư muc chứa toàn bô source code
 - o Document: chứa báo cáo (MSSV.doc hoặc MSSV.docx)
 - o Release: thư mục chứa file thực thi (MSSV.exe).
- Nén toàn bộ thư mục thành file MSSV.zip hoặc MSSV.rar
- Nộp bài lên moodle.

Lưu ý: tất cả các bài làm sai quy định sẽ không được chấm tức là 0 điểm.

II. Đề bài:

1. Yêu cầu bắt buộc:

Sử dụng thuật toán Dijkstra tìm đường đi ngắn nhất giữa 2 đỉnh cho trước của đồ thị đơn có hướng và có trọng số dương. Chương trình được viết ở dạng Console với 3 tham số dòng lệnh lần lượt là đường dẫn tập tin đầu vào và đường dẫn tập tin đầu ra: Ví dụ tham số dòng lệnh:

MSSV.exe input.txt output.txt

Hoăc

MSSV.exe C:\input.txt D:\output.txt

Lưu ý: đường dẫn/ tên tập tin đầu vào và đầu ra có thể thay đổi (không cố định)

Cấu trúc dữ liệu đầu vào:

- Dòng đầu tiên: số đỉnh đồ thị (N).
- N dòng tiếp theo: ma trận kề của đồ thị với quy ước:
 - \circ A[i][j] > 0: trọng số cạnh nối trực tiếp i và j.
 - o A[i][j] = 0: không có cạnh nối trực tiếp i và j.
- Dòng cuối cùng: chỉ số đỉnh bắt đầu s và đỉnh kết thúc g.

Cấu trúc dữ liệu đầu ra:

Nếu không có đường đi ngắn nhất từ s đến g thì xuất -1. Ngược lại xuất các thông tin sau:

- Dòng đầu tiên: chi phí đi từ s đến g (tổng trọng số các cạnh phải đi qua).
- Dòng thứ hai: đường đi ngắn nhất từ s đến g.

- Trong trường hợp có nhiều đường đi ngắn nhất từ s đến g thì chỉ cần xuất 1 đường đi tùy ý.
- 2. Yêu cầu nâng cao (cộng điểm):
- Cải tiến thuật toán **Dijkstra** để tìm **tất cả** đường đi ngắn nhất từ s đến g.
- Xuất các đường đi theo thứ tự tăng dần với định nghĩa "nhỏ hơn" như sau:

- O Hoặc Số đỉnh (A) ≤ Số đỉnh (B)
- o Hoặc Số đỉnh (A) = Số đỉnh(B), A(k) < B(k) với $k = min(i \mid A(i) !=B(i))$

Ví dụ:

Tập tin đầu vào	Đồ thị	Tập tin kết quả
9 0 2 1 0 0 0 0 0 10 0 0 0 3 0 0 0 0 0 0 0 1 0 4 0 0 0 0 9 0 0 0 0 1 3 0 0 5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1 2 1 3 3 1 1 1 0 1 1 9 5 1 1 8 2 7	10 08 028 0138 0238 02138 0134678 0234678 02134678

III. Nội dung báo cáo:

Báo cáo cần thể hiện rõ các nội dung sau:

- Ý tưởng thuật toán đã cài đặt (thuật toán Dijkstra và phần cải tiến nếu có).
- Cách tổ chức thiết kế chương trình.