Практическая работа №1 Простейшие алгоритмы

3adanue: Найти сумму двух целых чисел A и B.

Для решения поставленной задачи потребуются компоненты:

- A L¹ класса Label для подписи компонента A тв;
- A ТВ класса ТехtВох для ввода числа A;
- В_L класса Label для подписи компонента В_ТВ;
- в тв класса техtвох для ввода числа B;
- Res_L класса Label для подписи компонента Res_TB;
- Res_тв класса техтвох для вывода результата. Данный компонент должен быть недоступным для редактирования, что достигается путем установки свойства ReadOnly в значение true;
 - Calc В класса Button для активизации расчета.

Установим следующие значения свойств компонентов (таблица 4):

Таблица 4 — Значения свойств компонентов для примера выполнения задания по работе с простейшими алгоритмами

Компонент.Свойство	Значение
A_L.Text	Число &А
B_L.Text	Число &В
Res_L.Text	&Результат
Res_TB.ReadOnly	true
Calc_B.Text	Рас&чет

Опишем событие Click кнопки Calc_B²:

Внешний вид и пример работы программы показаны на рисунке 1.

<u></u> Просте	йшие алгоритмы	×
Число <u>А</u>	1	Рас <u>ч</u> ет
Число <u>В</u>	2	
<u>Р</u> езультат	3	

Рисунок 1 — Внешний вид и пример работы программы, реализующей простейшие алгоритмы

Задания по вариантам:

Задание: В соответствии с вариантом задания организовать ввод требуемых исходных данных и вывод результатов расчета с использованием компонентов класса TextBox. При наличии в формуле числа π , подставлять значение Math.PI.

- 1. Из куба с ребром a был выточен шар радиуса R ($R \le a/2$). Вычислить объемы куба и шара ($V_{uap} = \frac{4}{3}\pi R^3$), а также процент материала, ушедшего в отходы.
- 2. Автомобиль проехал расстояние s с реальной скоростью v. Однако во время движения потребовалось затратить время t на ремонт. Определить, с учетом ремонта, общее время движения и среднюю скорость автомобиля.
- 3. Из материала с плотностью ρ изготовлен диск радиусом r. Каким должна быть толщина диска, чтобы он имел массу m?
- 4. Вычислить объем и массу трубы длиной l, с внутренним и внешним радиусами r и R (r < R), изготовленную из материала плотностью ρ ($V_{mp} = l\pi(R^2 r^2)$).
- 5. Прямая с известными параметрами a и b проходит через две точки $O_1(x_1, y_1)$ и $O_2(x_2, y_2)$, ординаты которых y_1 и y_2 известны. Определить x_k , если известно, что расстояния $x_1 \leftrightarrow x_k$ и $x_2 \leftrightarrow x_k$ одинаковы. Уравнение прямой y=ax+b.
- 6. Из бруска длиной L с ребрами a, b был выточен цилиндр длиной l, имеющий радиус r ($r \le a/2$, $r \le b/2$, $l \le L$). Вычислить объемы бруска и цилиндра, а также процент материала, ушедшего в отходы.
- 7. Корабль движется в неподвижной воде равномерно и прямолинейно со скоростью v. Катер проходит расстояние от кормы до носа корабля за время t. Определить скорость катера относительно воды, если длина корабля L.
- 8. Какую плотность должен иметь материал, из которого изготовлена деталь в форме прямоугольного треугольника с катетами a и b, толщиной h, если масса детали m?
- 9. Дана прямая с коэффициентом a (y = ax + b), проходящая через точку $O_1(x_1, y_1)$. Определить ординату y_2 точки O_2 , принадлежащей прямой, если известна ее абсцисса x_2 .
- 10. В кубе с ребром a имеется дефект в виде шара диаметром d (d < a). Определить массу куба, если его плотность ρ . Объем шара: $V_{uap} = \frac{4}{3}\pi R^3$.
- 11. Из деревянной доски вырезана трапеция с основаниями a,b и высотой h. Определить толщину доски, если масса полученной трапеции m. Считать, что плотность доски ρ . Площадь трапеции: $S_{mpan} = \frac{(a+b)}{2}h$.

- 12. Даны коэффициенты двух прямых a, b, c, d (y=ax+b, y=cx+d). Известно, что прямые не параллельны ($a \neq c$), Определить координаты точки пересечения этих прямых.
- 13. Из материала плотностью ρ_1 изготовлен параллелепипед длиной a, шириной b и высотой c. Какова масса параллелепипеда, и какой должна быть высота параллелепипеда, чтобы при изготовлении его из материала плотностью ρ_2 у него остались прежними масса, длина и ширина?
- 14. Двигаясь по течению реки, катер преодолел расстояние L за t_1 . Двигаясь в обратном направлении, катер преодолел то же расстояние за t_2 ($t_2 > t_1$). Определить скорость движения катера в неподвижной воде и скорость течения реки.
- 15. Вычислить объем полого цилиндра длиной l, внешний радиус которого r_1 , а соотношение внешнего и внутреннего радиуса a ($a = \frac{r_1}{r_2} > 1$).
- 16. Известно, что прямая проходит через две точки $O_1(x_1, y_1)$ и $O_2(x_2, y_2)$ $(x_1 \neq x_2, y_1 \neq y_2)$. Определить параметры a и b данной прямой. Уравнение прямой: y = ax + b.
- 17. Имеется трапеция площадью S, высота которой h. Определить длины оснований трапеции a и b, если известно, что $\frac{a}{b} = k$. Площадь трапеции $S_{mpan} = \frac{(a+b)}{2}h$.
- 18. Вычислить объем и массу трубы, которая имеет длину l, плотность ρ , толщину стенок a и внутренний радиус r_1 ($V_{mp} = l\pi \left(r_2^2 r_1^2\right)$), где r_2 внешний радиус).
- 19. При покупке товара стоимостью C_1 руб. была предоставлена скидка в размере n_1 руб. Определить процент скидки, а также сумму, которую надо заплатить за товар стоимостью C_2 руб. при этом проценте скидки.
- 20. При движении со скоростью 40 км/ч автомобиль расходует n_1 литров топлива на 100 км пути, а при движении со скоростью 80 км/ч $-n_2$ литров. Определить, сколько литров топлива израсходовал автомобиль, если он проехал L_1 км со скоростью 40 км/ч и L_2 км со скоростью 80 км/ч.
- 21. Монитор имеет разрешение экрана $W_1 \times H_1$ точек. На экране отображается окно шириной W_2 и высотой H_2 точек ($W_2 \le W_1$; $H_2 \le H_1$). Определить долю экрана, не занятого окном.
- 22. Из прямоугольника шириной w и высотой h получена трапеция той же высоты с основаниями a и b (a, $b \le w$). Определить какую долю составляет площадь трапеции от площади прямоугольника. Площадь трапеции: $S_{mpan} = \frac{\left(a+b\right)}{2}h$.
- 23. При покупке товара стоимостью до C_1 руб. включительно предоставляется скидка в размере n_1 %. При покупке товара стоимостью C_2 руб.

- $(C_2 > C_1)$. скидка определяется по формуле $\frac{C_1 n_1}{100} + \frac{(C_2 C_1) n_2}{100}$, где n_2 процент скидки на сумму, превышающую C_1 , %. Определить сумму скидки при покупке товара стоимостью C_2 .
- 24. Принтер может распечатать n_1 страниц при заполнении страницы на p_1 %. Определить, сколько страниц может быть распечатано на принтере, если страницы заполнены на p_2 %. Примечание: ответ может быть дробным.
- 25. Для изготовления медали диаметром D и толщиной H использовался материал с плотностью ρ . Определить объем медали и ее стоимость, если стоимость единицы веса материала C.