1 Putnam

- 1. Divide and conquer to understand better, i.e. to check if something is divisible, break it up, $\frac{10+5}{2} = \frac{10}{2} \frac{5}{2}$, now check, if one is fraction and other is not, then sum is integer + fraction.
- 2. A rational + an irrational is irrational.
- 3. A rational × irrational is irrational.
- 4. Sometimes breaking up something is not the way to go, instead write it in simplete form, example, $\sqrt{2} + \sqrt{3} + \sqrt{5} = r$.
- 5. Sum of two rationals is always rational.
- 6. Apparently either or in math has a beyond terrible definition.
- 7. Try to reduce the complexity of the problem by starting from the middle, instead of n, n + 1, n + 2, try, n 1, n, n + 1.
- 8. The distance from the origin is a very important function.

2 Predicates

- 1. A predicate can either be quantified to always be true or sometimes true, the former is known as universally quantified, while the latter as existentially quantified.
- 2. NOT $(\exists x, P(x))$ IFF $\forall x$. NOT (P(x)).

3 Patterns Of Proofs

3.1 Proof by Contradiction

- 1. A proof by contracdiction is essentially proving the contrapositive of T \implies P, which is, $\neg P \implies F$, this means if we can prove that $\neg P \implies F$, then P must be true.
- 2. We have to assume the initial statement is false, and take the negation to be true.
- 3. If a sequance of deduction contradicts the hypothesis then we have an inderect proof.
- 4. If it contradicts a fact to be known true we have reductio ad absurdum.

3.2 Proofs about Sets

- 1. \in means is an element of.
- 2. Order does not matter in sets, nor number of times an element appears.
- $3.\,$ Informally, a set is just a collection of objects, which are called elements.
- 4. A set can contain a set.
- 5. $\{x, x\} = \{x\}.$

Symbol	Set	Elements
Ø	empty set	
\mathbb{N}	non-negative integers	$\{0, 1, 2,\}$
$\mathbb Z$	integers	$\{, -1, 0, 1,\}$
\mathbb{Q}	rational numbers	0.5, -9, 33.33, ect
\mathbb{R}	real numbers	$\pi, \sqrt{2}, 9.9, \text{ ect.}$
\mathbb{C}	complex numbers	i, 34, ect.

1. \mathbb{R}^+ is only positive real numbers.