Batch:Hinglish

Digital Logic Combinational Circuits

DPP-03

[MCQ]

1. A demultiplexer of size 1×8 with active low outputs, is programmed as shown below. The circuit has three inputs x, y, z and generates two outputs y_1 , y_2 .

If de-multiplexer has active high output instead of active low outputs, then in order that outputs do not change

- (a) NAND gates should be replaced by NOR gates
- (b) NAND gates should be replaced by OR gates
- (c) NAND gates should be replaced by AND gates
- (d) the inputs x, y, z should be inverted

[MCQ]

★★☆

2. For what values of A, B, C the output (Y) will be 0

- (a) A = 1, B = 0, C = 0
- (b) A = 0, B = 1, C = 1
- (c) A = 1, B = 1, C = 0
- (d) A = 1, B = 1, C = 1

[MCQ]

3. The figure shown below is a block diagram of _____ demultiplexer?

- (a) 1 to 4
- (b) 1 to 8
- (c) 1 to 16
- (d) None of the above

[MCQ]

4. Identify the circuit shown below?

- (a) Bidirectional buffer
- (b) De-multiplexer
- (c) Multiplexer
- (d) Encoder

[NAT]

5. How many inputs will a decimal to BCD encoder have?

[MCQ]

- **6.** Which one of the following de multiplexer requires only five select lines?
 - (a) 1×2 de Mux
 - (b) 1×4 De Mux
 - (c) 1×8 De Mux
 - (d) 1×32 De Mux

[NAT]

7. What is the minimum number of 1×4 De Mux required to implement 1×2^{10} De Mux.____

[MCQ]

8. To implement a 1 : 128 De-Mux we require *M* number of 1 : 8 De-mux and N numbers of 1 : 2 De-mux.

Then which of the following is correct

- (a) (M-N)/2 = 9
- (b) M + N = M
- (c) M/N = M
- (d) (M+N)/2=9

[MCQ]

9. Consider a circuit as shown below:

Output y is

- (a) A + B
- (b) $\overline{A \cdot B}$
- (c) $A \oplus B$
- (d) A ⊙ *B*

[MCQ]

10. Consider a combinational circuit as shown below.

For any sequence A, B which of the output pins $(y_0 \text{ to } y_3)$ can be active

- (a) y_0 and y_3 only
- (b) y_1 and y_2 only
- (c) y_1 only
- (d) all pins can be active

Answer Key

- 1. (b)
- **2. (b)**
- 3. (c)
- 4. (c)
- **5.** (10)
- 6. (d)
- 7. (341)
- 8. (c)
- 9. (c)
- **10.** (b)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{for more questions, kindly visit the library section: Link for web: } \frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4