

Combining MCMC algorithms

On veut simuler une loi a posteriori $(\alpha, m|\text{data})$ avec α continue et m discrète. Comment faire?

Algorithme de Gibbs:

Simuler $\alpha_n \sim \alpha | m_n$ avec une itération de NUTS / MALA

Simuler $m_{n+1} \sim m |\alpha_n|$ avec une itération de Metropolis-Hastings

Géré automatiquement par PyMC: à chaque variable (ou groupe de variables) est associé le meilleur algorithme (exemple en TP).

Algorithmes MCMC

Combining MCMC algorithms

On veut simuler une loi a posteriori $(\alpha, m | \text{data})$ avec α continue et m discrète. Comment faire?

Algorithme de Gibbs:

Simuler $\alpha_n \sim \alpha | m_n$ avec une itération de NUTS / MALA

Simuler $m_{n+1} \sim m | \alpha_n$ avec une itération de Metropolis-Hastings

Géré automatiquement par PyMC: à chaque variable (ou groupe de variables) est associé le meilleur algorithme (exemple en TP).

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Résumé

Algorithme	Méthode	Utilité
Aigorianio	Modifodo	

