NOTATIONS ET OBJECTIFS DU PROBLÈME

Dans tout le problème, la lettre n désigne un entier supérieur ou égal à 2.

On note:

 \mathbb{N} l'ensemble des nombres entiers naturels;

 \mathbb{Z} l'ensemble des nombres entiers relatifs;

 \mathbb{R} l'ensemble des nombres réels.

Les lettres p et q désignant des nombres entiers relatifs, on note : $\llbracket p,q \rrbracket$ l'ensemble des nombres entiers relatifs compris (au sens large) entre les nombres p et q, autrement dit : $\llbracket p,q \rrbracket = \{m \; ; \; m \in \mathbb{Z} \; / \; p \leq m \text{ et } m \leq q\}$. Par ailleurs, on note :

 \mathfrak{S}_n l'ensemble des permutations de l'ensemble [1, n];

 $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels;

 I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$;

et, si (k, l) appartient à $[1, n]^2$:

 E_{kl} la matrice appartenant à $\mathcal{M}_n(\mathbb{R})$ dont le coefficient situé sur la k-ième ligne et la l-ième colonne vaut 1 et dont tous les autres coefficients sont nuls. On rappelle que la famille $(E_{kl})_{(k,l)\in[1,n]^2}$ est une base de $\mathcal{M}_n(\mathbb{R})$. On note enfin : $M=(m_{ij})$, ou $M=(m_{ij})$ en cas d'ambiguïté, la matrice

$$M = \sum_{(i,j) \in [\![1,n]\!]^2} m_{ij} E_{ij}.$$

La lettre K désignant un réel, on définit les ensembles :

•
$$L_K = \{M \; ; \; M = (m_{ij}) \in \mathcal{M}_n(\mathbb{R}) \; / \; \forall i \in [1, n], \quad \sum_{i=1}^n m_{ij} = K \} \; ;$$

$$\bullet \ L = \bigcup_{K \in \mathbb{R}} L_K \ ;$$

•
$$C_K = \{M ; M = (m_{ij}) \in \mathcal{M}_n(\mathbb{R}) / \forall j \in [1, n], \sum_{i=1}^n m_{ij} = K\} ;$$

$$\bullet \ C = \bigcup_{K \in \mathbb{R}} C_K.$$

Une matrice $M = (m_{ij})$ appartenant à $\mathcal{M}_n(\mathbb{R})$ est dite matrice magique d'ordre n lorsqu'elle vérifie les deux propriétés suivantes :

$$\{m_{ij} ; (i,j) \in [1,n]^2\} = [1,n^2]$$
 \mathbf{P}_1

$$\exists K \in \mathbb{R}, \quad M \in L_K \cap C_K \quad \text{et} \quad \sum_{k=1}^n m_{kk} = \sum_{k=1}^n m_{k,n+1-k} = K \qquad \mathbf{P}_2$$

L'objet du problème est l'étude de quelques propriétés des matrices appartenant à $L \cap C$ et des matrices magiques d'ordre n, avec, notamment, une construction de certaines d'entre elles dans le cas où n est impair.

Les cinq parties du problème peuvent être traitées indépendamment les unes des autres.

QUESTION PRÉLIMINAIRE

Montrer que, si M est une matrice magique d'ordre n, le réel K dont la propriété \mathbf{P}_2 affirme l'existence vaut nécessairement $\frac{n(n^2+1)}{2}$.

Dans toute la suite du problème, on note $K_n = \frac{n(n^2+1)}{2}$.

PARTIE I : ETUDE DES MATRICES MAGIQUES D'ORDRES 2 ET 3

I.1. Montrer qu'il n'existe pas de matrice magique d'ordre 2.

I.2. Soit
$$M = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 une matrice magique d'ordre 3.

- I.2.a. Établir l'inclusion de l'ensemble $\{1, 9\}$ dans l'ensemble $\{a_{12}, a_{21}, a_{23}, a_{32}\}$.
- I.2.b. En déduire l'ensemble des matrices magiques d'ordre 3.

PARTIE II : ÉTUDE DE L'ESPACE VECTORIEL $L \cap C$

II.1.

II.1.a. Montrer que L_0 est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et qu'il est engendré par la famille de matrices $(E_{ij} - E_{in})_{(i,j) \in [\![1,n]\!] \times [\![1,n-1]\!]}$. Préciser la dimension de L_0 .

- II.1.b. Soit K un réel. Montrer que, quelle que soit la matrice M appartenant à $\mathcal{M}_n(\mathbb{R})$, M appartient à L_K si et seulement si $M KI_n$ appartient à L_0 .
- II. 1 .c. En déduire que L est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et préciser sa dimension.

II.2.

II.2.a. Montrer que, quelle que soit la matrice $M = \sum_{i=1}^{n} \sum_{j=1}^{n-1} m_{ij} (E_{ij} - E_{in})$ appartenant à L_0 , M appartient à C_0 si et seulement si, pour tout j appartenant à [1, n-1], $\sum_{i=1}^{n} m_{ij} = 0$.

II.2.b. En déduire une base et la dimension de $L_0 \cap C_0$ (après avoir succinctement justifié que $L_0 \cap C_0$ est un espace vectoriel).

II.3.

II.3.a. Montrer que, quelle que soit la matrice M appartenant à $\mathcal{M}_n(\mathbb{R})$, M appartient à $L \cap C$ si et seulement s'il existe un réel K tel que M appartienne à $L_K \cap C_K$.

II.3.b. En déduire la dimension de l'espace $L \cap C$.

PARTIE III : EXEMPLE DE GROUPE OPÉRANT SUR L'ENSEMBLE DES MATRICES MAGIQUES D'ORDRE n

Soit \mathcal{E} un plan affine euclidien rapporté au repère orthonormé $\mathcal{R} = (0, \overrightarrow{u}, \overrightarrow{v})$. On considère un carré ABCD de centre O tel que les vecteurs \overrightarrow{AB} et \overrightarrow{u} d'une part, \overrightarrow{BC} et \overrightarrow{v} d'autre part, soient colinéaires.

On note \mathcal{I} l'ensemble des isométries de \mathcal{E} qui laissent le carré ABCD globalement invariant. On note Ω le point de \mathcal{E} vérifiant $\overrightarrow{O\Omega} = -\frac{n+1}{2}(\overrightarrow{u} + \overrightarrow{v})$ et \mathcal{R}' le repère $(\Omega, \overrightarrow{u}, \overrightarrow{v})$.

III.1.

III.1.a. Soit f un élément de \mathcal{I} . Montrer qu'il existe un couple $(\varepsilon_1, \varepsilon_2)$ appartenant à $\{-1, 1\}^2$ tel que, pour tout point N de \mathcal{E} de coordonnées (x, y) dans le repère \mathcal{R} , les coordonnées (x', y') du point f(N) dans le repère \mathcal{R} vérifient :

$$\begin{cases} x' = \varepsilon_1 x \\ y' = \varepsilon_2 y, \end{cases} \quad \text{ou} \quad \begin{cases} x' = \varepsilon_1 y \\ y' = \varepsilon_2 x. \end{cases}$$

Reconnaître toutes les isométries du plan $\mathcal E$ ainsi définies.

III.1.b. Soit N le point de \mathcal{E} de coordonnées (X,Y) dans le repère \mathcal{R}' . Pour chaque élément f de \mathcal{I} , exprimer les coordonnées (X',Y') du point f(N) dans le repère \mathcal{R}' en fonction de X et de Y.

III.2. Soit f un élément de \mathcal{I} . On considère l'application φ de \mathbb{R}^2 vers \mathbb{R}^2 qui, à un couple (s,t) de réels, associe le couple des coordonnées dans le repère \mathcal{R}' de l'image par f^{-1} du point de coordonnées (s,t) dans ce même repère.

III.l.a. Montrer que, quel que soit le couple (i, j) appartenant à $[1, n]^2$, le couple $\varphi(i, j)$ appartient à $[1, n]^2$.

III.2.b. Soit Φ_f l'application de $\mathcal{M}_n(\mathbb{R})$ dans lui-même qui, à une matrice $M = (m_{ij})$, associe la matrice $\Phi_f(M) = (m'_{ij})$ vérifiant, pour tout (i,j) appartenant à $[1,n]^2$, $m'_{ij} = m_{kl}$, le couple (k,l) étant égal à $\varphi(i,j)$. Montrer que l'application Φ_f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

III.3. Soit \mathcal{F} l'ensemble $\{\Phi_f ; f \in \mathcal{I}\}$. Montrer que (\mathcal{F}, \circ) est un groupe isomorphe au groupe (\mathcal{I}, \circ) . (Le symbole \circ désigne la composition des applications.)

III.4.

III.4.a. Vérifier que l'image d'une matrice magique d'ordre n quelconque par un élément de \mathcal{F} quelconque est une matrice magique d'ordre n.

III.A.b. Soient f et g des éléments de \mathcal{I} . Montrer que, s'il existe une matrice magique M d'ordre n telle que $\Phi_f(M) = \Phi_g(M)$, alors f = g.

III.4.c. Montrer que l'ensemble des matrices magiques d'ordre n est fini et que son cardinal est un multiple de 8.

PARTIE IV : ÉTUDE D'UN GROUPE ASSOCIÉ À CERTAINES PERMUTATIONS DE $[\![1,n]\!]$

Étant donnée une permutation quelconque σ de $[\![1,n]\!]$, on note A_{σ} la matrice (a_{ij}) appartenant à $\mathcal{M}_n(\mathbb{R})$ et vérifiant, pour tout (i,j) appartenant à $[\![1,n]\!]^2$, $a_{ij} = \delta_{\sigma(i),j}$, ce dernier symbole (dit « de Kronecker ») étant défini par la relation :

 $\delta_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{sinon.} \end{cases}$

On note S l'ensemble $\{A_{\sigma} / \sigma \in \mathfrak{S}_n\}$.

IV. 1. Soient σ un élément de \mathfrak{S}_n et $M=(m_{ij})$ un élément de $\mathcal{M}_n(\mathbb{R})$. Expliciter le terme général de la matrice $A_{\sigma}M$, puis le terme général de la matrice MA_{σ} .

IV.2. Montrer que (S, \times) est un groupe isomorphe au groupe (\mathfrak{S}_n, \circ) . (Le symbole \times désigne la multiplication matricielle.)

IV.3.

IV.3.a. Soit K un réel. Montrer que, pour toute matrice M appartenant à $L_K \cap C_K$ et toutes permutations σ et σ' de $[\![1,n]\!]$, $A_\sigma M A_{\sigma'}$ appartient à $L_K \cap C_K$.

IV.3.b. On note \mathfrak{I}_n l'ensemble des permutations σ de $[\![1,n]\!]$ telles que :

$$\forall k \in [1, n] \quad \sigma(n+1-k) = n+1-\sigma(k)$$
.

Soit σ un élément de \mathfrak{I}_n . Montrer que, si M est une matrice magique de taille n, alors $A_{\sigma}MA_{\sigma^{-1}}$ en est aussi une.

IV.4. On note \mathcal{J} l'ensemble $\{A_{\sigma} / \sigma \in \mathfrak{I}_n\}$.

IV.4.a. Montrer que (\mathcal{J}, \times) est un sous-groupe de (\mathcal{S}, \times) .

IV.4.b. Déterminer le nombre d'éléments de \mathcal{J} .

PARTIE V : CONSTRUCTION DE MATRICES MAGIQUES D'ORDRE n IMPAIR

V.A. Cas où n n'est pas multiple de 3.

On suppose dans cette section V.A. que n est un entier impair non multiple de 3. On dit que deux entiers p et q sont congrus module n, et l'on note $p \equiv q$ (n), lorsque n divise p - q.

V.A.l. Montrer qu'il existe un entier m premier avec n tel que, pour tout quadruplet (i, j, k, l) appartenant à \mathbb{Z}^4 ,

$$\left\{ \begin{array}{l} k \equiv 2i+j \ (n) \\ l \equiv i+2j \ (n) \end{array} \right. \quad \text{si et seulement si} \quad \left\{ \begin{array}{l} i \equiv m \left(2k-l\right) \ (n) \\ j \equiv m \left(2l-k\right) \ (n) \, . \end{array} \right.$$

Ainsi, pour tout couple (k, l) appartenant à $[1, n]^2$, il existe un et un seul couple (i, j) appartenant à $[1, n]^2$ tel que :

$$\begin{cases} k \equiv 2i + j \ (n) \\ l \equiv i + 2j \ (n) \end{cases}.$$

On note alors $i = \alpha(k, l)$ et $j = \beta(k, l)$.

V.A.2. On note $\mathbb{Z}/n\mathbb{Z}$ l'anneau quotient de \mathbb{Z} par l'idéal $n\mathbb{Z}$ et, si x est élément de \mathbb{Z} , \dot{x} la classe d'équivalence de x dans $\mathbb{Z}/n\mathbb{Z}$.

V.A.2.a. Soient u et v deux entiers relatifs, u non nul. Montrer que, si u et n sont premiers entre eux, l'application $x \mapsto \dot{u}\dot{x} + \dot{v}$ est une bijection de $\mathbb{Z}/n\mathbb{Z}$ sur lui-même.

V.A.2.b. En déduire que, pour tout l appartenant à $[\![1,n]\!]$, la somme $\sum_{k=1}^n \alpha\left(k,l\right) \text{ est constante (préciser sa valeur en fonction de }n).$

Soit $W = (w_{i,j})$ la matrice appartenant à $\mathcal{M}_n(\mathbb{R})$ et vérifiant, pour tout (i,j) appartenant à $[1,n]^2$:

$$w_{i,j} = n(i-1) + j.$$

Soit $G = (g_{k,l})$ la matrice appartenant à $\mathcal{M}_n(\mathbb{R})$ et vérifiant, pour tout (k,l) appartenant à $[1, n]^2$:

$$g_{k,l} = w_{\alpha(k,l),\beta(k,l)}.$$

V.A.3. Construire G dans le cas où n = 5.

Dans la suite, l'entier n n'est plus supposé égal à 5.

V.A.4.

V.A.4.a. Montrer que l'ensemble des coefficients de G est $[1, n^2]$.

V.A.4.b. Montrer que G est une matrice magique d'ordre n.

V.A.5. Dans cette question, on établit une propriété supplémentaire de la matrice G. Si i appartient à [1, n], on note

$$E_i = \{(k, l) ; (k, l) \in [1, n]^2 / k - l \equiv i (n) \}.$$

V.A.5.a. Montrer que, pour tout i appartenant à $[\![1,n]\!], \sum\limits_{(k,l)\in E_i}g_{kl}=K_n.$

V.A.5.b. Déterminer n autres ensembles $F_1, F_2, ..., F_n$ analogues aux ensembles $E_1, E_2, ..., E_n$ tels que, pour tout i appartenant à $[\![1,n]\!], \sum_{(k,l)\in F_i} g_{kl} = K_n$.

${\rm V.B.}$ Composition de deux matrices magiques. Cas où n est multiple de 3.

Soient p et q deux entiers supérieurs ou égaux à 3.

A partir d'une matrice magique $A=(a_{kl})$ d'ordre p et d'une matrice magique $B=(b_{ij})$ d'ordre q, on considère la matrice carrée $D=(d_{uv})$ d'ordre pq vérifiant, pour tout (k,l) appartenant à $[\![1,p]\!]^2$ et tout (i,j) appartenant à $[\![1,q]\!]^2$, $d_{(i-1)p+k,(j-1)p+l}=a_{kl}+(b_{ij}-1)p^2$.

V.B.l. Construire D dans le cas particulier où les matrices A et B sont égales à $\begin{pmatrix} 4 & 3 & 8 \\ 9 & 5 & 1 \\ 2 & 7 & 6 \end{pmatrix}$.

V.B.2. Montrer que, pour toutes matrices magiques A et B d'ordres respectifs p et q, D est une matrice magique d'ordre pq.

V.B.3. En déduire que, si n est un multiple de 3, l'ensemble des matrices magiques d'ordre n n'est pas vide.