Отчёт по лабораторной работе

Лабораторная №3 по математическом моделированию

Дзахмишев Камбулат Заурович

Содержание

1	Цель работы	5
2	Цель работы	6
3	Выполнение лабораторной работы	7
4	Выполнение лабораторной работы	8
5	Выполнение лабораторной работы	9
6	Выполнение лабораторной работы	10
7	Вывод	11
Список литературы		12

Список иллюстраций

3.1	Часть кода по первому случаю	7
4.1	Часть кода по второму случаю.	8
5.1	Первый график (модель боевых действий между регулярными войсками)	9
6.1	Второй график (модель боевых действий с участием регулярных войск и партизанских отрядов).	10

Список таблиц

1 Цель работы

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями()х t и()у t. В начальный момент времени страна X имеет армию численностью 32 888 человек, а в распоряжении страны У армия численностью в 17 777 человек. Для упрощения модели считаем, что коэффициенты, , ,а b с h постоянны. Также считаем()Р t и()Q t непрерывные функции.

2 Цель работы

Постройте графики изменения численности войск армии X и армии У для следующих случаев: 1. Модель боевых действий между регулярными войсками: dx/dy = 0.55x(t) - 0.77y(t) + 1.5sin(3t + 1); dy/dt = 0.66x(t) - 0.44y(t) + 1.2cos(t + 1)

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов: $dx/dt = -0.27x(t) - 0.88y(t) + \sin(20t)$; $dy/dt = -0.68x(t)y(t) - 0.37y(t) + \cos(10t) + 1$

Рис. 3.1: Часть кода по первому случаю.

Рис. 4.1: Часть кода по второму случаю.

Рис. 5.1: Первый график (модель боевых действий между регулярными войсками).

Рис. 6.1: Второй график (модель боевых действий с участием регулярных войск и партизанских отрядов).

7 Вывод

В ходе данной лабораторной работы построил модель ведения боевых действий и увидел, что с начального момента времени численномть армии У начала убывать по мере увеличения численности армии X для первого случая. Во втором случае почему-то сразу видно резкое уменьшение численности войск армии У.

Список литературы