Definition

If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ and $A = \bigcup_{n=1}^{\infty} A_n$, we write $A_n \uparrow A$.

Definition

If $A_1 \supseteq A_2 \supseteq \ldots$ and $A = \bigcap_{n=1}^{\infty} A_n$, we write $A_n \downarrow A$.

Example. Given $A_1, A_2, \ldots \in \mathcal{F}$, consider $\bigcup_{k=1}^{\infty} A_k, \bigcup_{k=2}^{\infty} A_k \ldots$ as $n \to \infty$,

$$\bigcup_{k=n}^{\infty} A_k \downarrow \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} A_m = \limsup_{n} A_n.$$

Also,

$$\bigcap_{k=n}^{\infty} A_k \uparrow \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_m = \liminf_n A_n.$$

Note.

$$\liminf_{n} A_n \subseteq \lim_{n} \sup_{n} A_n.$$

"("all but finitely many A_n ") \subseteq ("infinitely many of the A_n ")" (this is not a proof).

Proof

Take $\omega \in \liminf_n A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \Rightarrow \omega \in \bigcap_{k=n}^{\infty} A_k$ for at least one n. Then there exists a $N \geq 1$ such that $\omega \in A_N, A_{N+1}, \ldots \Rightarrow \omega \in \bigcup_{k=1}^{\infty} A_k, \omega \in \bigcup_{k=2}^{\infty} A_k, \ldots$ Hence, it's in all of them (the intersection) so it's in limsup.

Definition: common value

If $\lim \inf_n A_n = \lim \sup_n A_n$, define $\lim_n A_n$ to be the **common value**.

Lemma

$$\left(\limsup_{n} A_{n}\right)^{c} = \liminf_{n} A_{n}^{c}.$$

by De Morgan's law.

In probability, "sets" represent "events". liminf and limsup are also "events".

1) $\limsup_n A_n =$ "the event that infinitely many of the events A_n occur" / " A_n occurs infinitely often" / " A_n i.o.".

$$P(A_n \text{i.o.}) = P(\limsup_n A_n).$$

2) $\liminf_n A_n = "A_n \text{ occurs almost always"}/"A_n \text{ a.a."}.$

Example. Let $A_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n^2}{n}\}$. So for example $A_2 \nsubseteq A_3$.

Claim: $\limsup_{n} A_n = \mathbb{Q}_+$.

Proof

Clearly $\limsup_n A_n \subseteq \mathbb{Q}_+$. On the other hand, take any positive rational $\frac{a}{b}$. Assume $b \neq 0$, a, b are non-negative integers, and are coprime (have no common factors).

Case (1). $a = 0 \Rightarrow \frac{a}{b} = 0 \Rightarrow \frac{a}{b} \in A_n \quad \forall n \ge 1.$

Case (2). $b = 1 \Rightarrow \frac{a}{b} = a \Rightarrow \frac{a}{b} = a \in A_n \quad \forall n \ge a.$

Case (3). Otherwise, in order for $\frac{a}{b}$ to be in A_n , choose n large enough, so n has to be a multiple of b, i.e. n=kb. Thus, $\frac{a}{b}=\frac{ka}{kb}=\frac{ka}{n}$. To get $\frac{a}{b}\in A_n$, we need $ka\in\{0,1,2,\ldots,n^2\}$. That is, need $a\in\{0,\frac{1}{k},\frac{2}{k},\ldots,\frac{n^2}{k}\}$. This will happen if $\frac{n^2}{k}\geq a\Rightarrow n\geq \sqrt{ka}\Rightarrow \frac{a}{b}\in A_n$ for infinitely many $n>\sqrt{ka}$. So, any positive rational $\frac{a}{b}$ is in all A_n for n large enough.

$$\frac{a}{b} \in \limsup_{n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Example. Claim: $\liminf_n A_n = nn$.

Theorem: continuity of probabilities

- (i) if $A_n \uparrow A$, then $\lim_{n \to \infty} P(A_n) = P(A)$.
- (ii) if $A_n \downarrow A$, then $\lim_{n \to \infty} P(A_n) = P(A)$.

Proof

For (i), rewrite A as a disjoint union, $A=\bigcup_{n=1}^{\infty}B_n$ where $B_1=A_1,B_2=A_2\setminus A_1=A_2\cap A_1^c$. Then

$$P(A) = P(\bigcup_{n=1}^{\infty} B_n)$$

$$= \sum_{n=1}^{\infty} P(B_n) \quad \text{by countable additivity}$$

$$= \lim_{m \to \infty} \sum_{n=1}^{m} P(B_n)$$

$$= \lim_{m \to \infty} P\left(\bigcup_{n=1}^{m} B_n\right)$$

$$= \lim_{m \to \infty} P\left(\bigcup_{n=1}^{m} A_n\right)$$

$$= \lim_{m \to \infty} P(A_m)$$

Since $A_1 \subseteq A_2 \subseteq \dots$

Theorem: 4.1

(i) For any sequence $(A_n) \subseteq \mathcal{F}$.

$$P\left(\liminf_{n} A_{n}\right) \leq \liminf_{n} P(A_{n}) \leq \limsup_{n} P(A_{n}) \leq P(\limsup_{n} A_{n}).$$

(ii) If $\lim_{n\to\infty} A_n = A$, then

$$\lim_{n \to \infty} P(A_n) = P(A).$$

Definition

If (x_n) is a sequence in \mathbb{R} ,

$$\liminf_{n} x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right).$$

$$\limsup_{n} x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right).$$

Proof

(ii) follows from (i) by the "squeeze theorem".

(i): let
$$B_n = \bigcap_{k=n}^{\infty} A_k$$
, $B = \bigcup_{n=1}^{\infty} B_n$. So $B_1 \subseteq B_2 \subseteq \ldots$ and $B_n \uparrow B$.

$$P(\liminf_{n} A_{n}) = P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{n}\right)$$

$$= P(B)$$

$$= \lim_{n \to \infty} P(B_{n}) \text{ by continuity of probabilities}$$

$$= \lim_{n \to \infty} P\left(\bigcap_{k=n}^{\infty} A_{k}\right)$$

$$= \liminf_{n} P\left(\bigcap_{k=n}^{\infty} A_{k}\right)$$

$$\leq \liminf_{n} P(A_{n}) \text{ by monotonicity of } P$$

Definition: independent events

Let (Ω, \mathcal{F}, P) be a probability space. Let $(A_n) \subseteq \mathcal{F}$. Then A_1, A_2, \ldots are mutually independent if for any $j \in \{2, 3, \ldots, n\}$ and any indices $1 \leq k_1 < \ldots < k_j \leq n$,

$$P(A_{k_1} \cap A_{k_2} \cap \ldots \cap A_{k_i}) = P(A_{k_1})P(A_{k_2}) \ldots P(A_{k_i}).$$