

Von Vektordaten zum Rasterkartenwerk mit QGIS Server

Erfahrungsbericht über die automatisierte Erstellung des Basisplans der amtlichen Vermessung

Andreas Schmid

Kanton Solothurn,

Amt für Geoinformation

Übersicht

- Ausgangslage
- Überblick über die gewählte Lösung
- Erarbeitete Komponenten
 - Symbolisierung
 - Skript
 - Nachverarbeitung
- Resultat
 - Beispiele
 - Erstellungsdauer , Datenmenge

Ausgangslage

- Verpflichtung der Kantone zur Führung des Basisplans der amtlichen Vermessung
 - Verordnung über Geoinformation, Katalog der Geobasisdaten des Bundesrechts
- Weisung zur Darstellung des Basisplans der amtlichen Vermessung «BP-AV» (Eidgenössische Vermessungsdirektion)
 - Rasterplanprodukt
 - Massstab 1:10'000, 1:5'000 und 1:2'500
 - Farbige und schwarz-weisse Variante

Ausgangslage

- Datengrundlage
 - Daten der amtlichen Vermessung (Vektordaten)
 - auch Höhenmodell (Höhenkurven)
 - Relief und Felsdarstellung von swisstopo (Rasterdaten)
- Aufgabe: Automatische Rasterisierung von Vektordaten
 - Regelmässige Aktualisierung
- Systemlandschaft Amt für Geoinformation
 - FOSSGIS-Software: PostGIS, QGIS

Gewählte Lösung, Überblick

- QGIS Server (WMS) als Renderer
- GDAL für Endverarbeitung der Karten
- Python-Skript steuert den Ablauf

Normales QGIS-Projekt

- Vektordaten aus PostGIS
- Reliefschummerung (Rasterdaten)

Symbolisierung

- Vorgaben (in Millimetern) konnten direkt eingegeben werden
- Farben mussten von CMYK in RGB umgerechnet werden

Beispiel Kantonsgrenze

Spezielle Fälle

 Strassen: Regelbasierender Stil mit doppelter Randbreite und überlagerter weissen Abdeckfläche

Symbolisierung Strasse

Beschriftungen von Punkten

- Ortsnamen, Namen von Fliessgewässern
- Exakte Platzierung erforderlich (Blattrand)
- Gelöst mit «Datendefinierten Einstellungen» Erstellung von Views mit Attributen für x- und y-Koordinaten erforderlich
- Neu in QGIS Master: Beschriftung wird immer genau über dem Punkt platziert

- Beschriftungen von Flächen
 - Flurnamen
 - Neu in QGIS Master: Platzierung im Zentrum des Polygons, nicht nur im Zentrum des sichtbaren Teils des Polygons

Reduktion Anzahl Beschriftungen

- Gewässernamen
 - PostGIS-View: Berechnung eines 500m-Gitters mit PostGIS-Funktion «ST_SnapToGrid»
 - Reduktion auf Beschriftungen, die am nächsten bei einem Gitterpunkt liegen

Ohne Reduktion der Anzahl Gewässer-Beschriftungen

Mit Reduktion der Anzahl Gewässer -Beschriftungen

Koordinatenkreuze

- Mit fTools erzeugt
 - In QGIS unter Vektor > Forschungswerkzeuge > Regelmässige Punkte

Blatteinteilung

- Mit fTools erzeugt
 - In QGIS unter Vektor > Forschungswerkzeuge > Vektorraster

- Situation (in 3 horizontalen Streifen)
- Beschriftungen
- Massstab 1:5'000: Liegenschaften
- Zusätzlich jeweils ein World File erzeugen (.pngw)

0.25 0.0 0.0 -0.25 602400.125 215049.875

GeoTIFFs erzeugen mit GDAL

- gdalbuildvrt
 - Kombination der drei horizontalen Streifen zu einer Datei
- gdalwarp
 - Beschriftungen überlagern
 - Bildinhalt auf die Kantonsfläche clippen
- gdal_translate
 - Komprimieren
 - DPI-Metainformation setzen
- gdaladdo
 - Overviews (Pyramiden) hinzufügen

Schwarz-weisse 1-Bit-Bilder

Anpassung QGIS Server

- qgshttprequesthandler.cpp:
 - QImage palettedImg = img->convertToFormat(QImage::Format_Indexed8, colorTable, Qt::ColorOnly | Qt::ThresholdDither | Qt::ThresholdAlphaDither | Qt::NoOpaqueDetection);
 - QImage palettedImg = img->convertToFormat(QImage::Format_Mono,
 Qt::MonoOnly | Qt::ThresholdDither | Qt::ThresholdAlphaDither | Qt::NoOpaqueDetection);
- qgswmsserver.cpp:
 - appendFormats(doc, elem, QStringList() << "image/jpeg" << "image/png" << "image/png; mode=8bit" << "image/png; mode=1bit");

Resultat in GetCapabilities

```
    [...]
        <GetMap>
            <Format>image/jpeg</Format>
            <Format>image/png</Format>
            <Format>image/png; mode=8bit</Format>
            <Format>image/png; mode=1bit</Format>
            [...]
            </GetMap>
            [...]
```


Schwarz-weisse 1-Bit-Bilder

Beispiel-URL

• http://localhost/cgi-bin/qgis_mapserv.fcgi?map=/usr/lib/cgi-bin/bpav5000sw.qgs&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=bpav5000sw_situation&BBOX=598125.0%2C262000.0%2C602500.0%2C263000.0&CRS=EPSG%3A21781&HEIGHT=4000&WIDTH=17500&DPI=508&FORMAT=image%2Fpng%3B+mode%3D1bit&TRANSPARENT=False

Resultat 1:5'000

Resultat 1:5'000

Resultat 1:5'000

Resultat 1:10'000

Resultat 1:10'000

Resultat

Datenmengen, Erstellungsdauer

- Kantonsfläche: 790 km²
- Desktop-PC mit Intel Core i5-660 CPU (2 Kerne, 3.33GHz),
 3.7GB RAM

	Kartenblätter	Datenmenge	Erstellungsdauer
1:5'000 farbig	112	8.5GB (inkl. Liegenschaften)	7h
1:5'000 schwarz-weiss	112	400MB (inkl. Liegenschaften)	2.5h
1:10'000 farbig	39	2.5GB	2.25h
1:10'000 schwarz-weiss	39	100MB	1h

Verfügbar als WMS

http://www.so.ch/departemente/bau-und-justiz/sogis/web-map-services-wms/wms-basisplan.html

oder

www.sogis.ch > Web Map Services > WMS Basisplan

Kontakt

Andreas Schmid

Kanton Solothurn, Amt für Geoinformation andreas.schmid@bd.so.ch

DANKE FÜR IHRE AUFMERKSAMKEIT

- Karten von QGIS Server (WMS) per URL anfordern
 - Situation (in 3 horizontalen Streifen)
 http://localhost/cgi-bin/qgis_mapserv.fcgi?map=/usr/lib/cgi-bin/bpav5000f.qgs &SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=bpav5000f_situation&BBOX=598125.0%2C262000.0%2C602500.0%2C263000.0&CRS=EPSG%3A21781&FORMAT=image%2Fpng&HEIGHT=4000&WIDTH=17500&DPI=508&TRANSPARENT=False
 - Beschriftungen
 - Massstab 1:5'000: Liegenschaften
 - Zusätzlich jeweils ein World File erzeugen (.pngw)

- GeoTIFFs erzeugen (farbig)
 - gdalbuildvrt: VRT der drei horizontalen Streifen bilden
 - gdalwarp: Beschriftungen überlagern, gleichzeitig Bildinhalt auf die Kantonsfläche clippen

gdalwarp -q -wm 512 -overwrite -co 'TILED=YES' -s_srs EPSG:21781 -t_srs EPSG:21781 -te 598125.0 260000.0 602500.0 263000.0 -of GTiff -dstalpha -cutline PG: "host=srsofaioi4531.ktso.ch dbname=sogis user=mspublic" -csql "SELECT ST_SetSRID(ST_Buffer(geometrie,3.0),-1) FROM (SELECT ST_Union(ARRAY(SELECT geometrie FROM av_basisplan.maske_kanton WHERE art='Kantonsfläche' UNION SELECT ST_Buffer(geometrie,2.0 / 3.0 * 3.0, 'endcap=flat') FROM av_avdpool_ng.landesgrenzen_landesgrenzabschnitt)) AS geometrie) AS kantonsflache_und_landesgrenzbuffer" tmp_local/bpav5000f/bpav5000f_1066-24_situation.vrt tmp_local/bpav5000f/bpav5000f_1066-24_1_beschriftungen.png tmp_local/bpav5000f/bpav5000f_1066-24_72ppi.tif

- gdal_translate: Komprimieren und DPI setzen
 gdal_translate -q -mo TIFFTAG_XRESOLUTION=508 -mo TIFFTAG_YRESOLUTION=508 -of GTiff co 'TILED=YES' -co 'COMPRESS=LZW' tmp_local/bpav5000f/bpav5000f_1066-24_72ppi.tif
 tmp_local/bpav5000f/bpav5000f_1066-24.tif
- gdaladdo: Overviews (Pyramiden) hinzufügen
 gdaladdo -q -r average tmp_local/bpav5000f/bpav5000f_1066-24.tif 2 4 8 16 32

- GeoTIFFs erzeugen (schwarz-weiss)
 - gdalwarp: Beschriftungen auf die Kantonsfläche clippen, als VRT speichern
 - gdalwarp -q -wm 512 -overwrite -dstnodata 0 -of VRT -cutline PG: "host=srsofaioi4531.ktso.ch dbname=sogis user=mspublic" -csql "SELECT ST_SetSRID(ST_Buffer(geometrie,3.0),-1) FROM (SELECT ST_Union(ARRAY(SELECT geometrie FROM av_basisplan.maske_kanton WHERE art='Kantonsfläche' UNION SELECT ST_Buffer(geometrie,2.0 / 3.0 * 3.0, 'endcap=flat') FROM av_avdpool_ng.landesgrenzen_landesgrenzabschnitt)) AS geometrie) AS kantonsflache_und_landesgrenzbuffer" tmp_local/bpav5000sw/bpav5000sw_1066-24_beschriftungen.vrt
 - gdalbuildvrt: NODATA-Wert des Halo-Layers setzen gdalbuildvrt -q -srcnodata 1 tmp_local/bpav5000sw/bpav5000sw_1066-24_beschriftungenhalo.vrt tmp_local/bpav5000sw/bpav5000sw_1066-24_1_beschriftungenhalo.png
 - gdalbuildvrt: Die drei horizontalen Streifen mit dem Halo-Layer und den Beschriftungen überlagern

- GeoTIFFs erzeugen (schwarz-weiss)
 - gdal_translate: VRT in GeoTIFF konvertieren, komprimieren und DPI setzen
 - gdal_translate -q -a_srs EPSG:21781 -mo TIFFTAG_XRESOLUTION=508 -mo TIFFTAG_YRESOLUTION=508 -of GTiff -co 'TILED=YES' -co 'COMPRESS=CCITTFAX4' -co 'NBITS=1' tmp_local/bpav5000sw/bpav5000sw_1066-24.vrt tmp_local/bpav5000sw/bpav5000sw_1066-24.tif
 - gdaladdo: Overviews (Pyramiden) hinzufügen
 gdaladdo -q -r nearest tmp_local/bpav5000sw/bpav5000sw_1066-24.tif 2 4 8 16 32