Problem 3:

a) R: arbitary logical position

v: variable

t: term

$$(\exists x_0.R)[t/v] = \exists x_0.R[t/v]?$$

- We have to consider the variable x₀ in R
 - If R is x_0 free. This condition ensures that subtitution preserves the meaning of quantified expression.
 - If R is t free. It means that subtituing t for v in R does not introduce any new variable.
- b) Ex: $(\exists x_0.R)[t/v] = \exists x_0.R[t/v]$ does not hold $R(x_0) = "x_0 % 2 == 0"$ $v = x_0$ $t = x_0 + 1$

$$(\exists x_0.R)[t/v] = (\exists x_0. (x_0 \% 2==0))[t/v]$$

- \rightarrow ($\exists x_0$. ($x_0 \% 2==0$))[$x_0 + 1/x_0$]
- \rightarrow ($\exists x_0$. ($x_0+1 \% 2==0$))
- there is an x_0 sothat $x_0+1\% 2 == 0$

$$(\exists x_0.R)[t/v] \neq \exists x_0.R[t/v]$$

In this example the logical proposition doesn't hold because ($(\exists x_0.R)[t/v]$ say that: "there's x_0 that x_0 % 2 == 0 where as $\exists x_0.R[t/v]$ say that also $x_0+1\%2==0$. -> contradiction \bot .

- c)Floyd's rule {P } $v := t \{\exists v_0.(P [v_0/v] \land v = t[v_0/v])\}.$
 - 1. $\{P\}$ v := t $\{Q[t/v]\}$ (Hoare's rule)
 - 2. $\{P\}$ v := t $\{Q[t/v] \land v = t\}$ (Conjunction introduction)
 - 3. {P} v := t $\{\exists v_0.(Q[t/v] \land v = t[v_0/v])\}$ (Existential introduction)
 - 4. $\{P\} v := t \{\exists v_0.(P[v_0/v] \land v = t[v_0/v])\}$ (Substitution)

Problem 4:

a) Determine under which circumstances the following program establishes $0 \le y \le 100$.

Refactor the code:

```
if (x < 34 && x == 2)
    y := x + 1;
else if (x < 34 && x != 2)
    y := 233;
else if (x >= 34 && x < 55)
    y:=21;
else if (x >= 34 && x >= 55)
    y:=144;
```

Conditions:

- 1. For any x in the range x==2, the value of y will be x+1, which satisfies $0 \le y \le 100$.
- 2. For any x in the range x<2 or 2 < x < 34, the value of y will be 233, which does not satisfy the condition
- 3. For any x in the range $34 \le x \le 55$, the value of y will be 21, which satisfies $0 \le y \le 100$.
- 4. For any x in the range $55 \le x \le 99$, the value of y will be 144, which does not satisfy the condition.