TRUE or FALSE. Justify.

- (1) Every bounded sequence is a convergent sequence.
- (2) To prove that the formula

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2 - \frac{1}{2^{n-1}}$$

is true for every natural number $n \in \mathbb{N}$ by the Principle of Mathematical Induction, it is logically sufficient to show that

- $1 = 2 \frac{1}{2^{1-1}}$, and • $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{k-1}} \neq 2 - \frac{1}{2^{k-1}}$ for some natural number k.
- (3) To prove that a sequence $\{a_n\}_{n=1}^{\infty}$ is bounded above by 10 by the Principle of Mathematical Induction, it is logically sufficient to show that
 - $a_1 < 10$, and
 - if $a_k < 10$ for some natural number k, then $a_{k+1} < 10$.
- (4) Every sequence has a bounded subsequence.
- (5) If a sequence has a divergent subsequence, then it diverges.
- (6) Every Cauchy sequence converges.
- (7) Every convergent sequence is Cauchy.
- (8) There is a sequence without any monotone subsequence.
- (9) If $\{a_n\}_{n=1}^{\infty}$ is Cauchy, then the sequence $\{a_n a_{2n}\}_{n=1}^{\infty}$ converges to 0.
- (10) The limit of $f(x) = \frac{x^2-2x+3}{x-7}$ as x approaches 3 is -3/2.
- (11) The function $f(x) = \cos(1/x)$ has a limit as x approaches 0.
- (12) If $\lim_{x\to -1} f(x)/g(x) = 1$, then $\lim_{x\to -1} f(x) = \lim_{x\to -1} g(x)$.
- (13) If $\lim_{x\to -1} f(x)$ and $\lim_{x\to -1} g(x)$ both exist, then $\lim_{x\to -1} f(x)g(x)$ exists.
- (14) If $\lim_{x\to -1} f(x)$ and $\lim_{x\to -1} g(x)$ both exist, then $\lim_{x\to -1} f(x)/g(x)$ exists.
- (15) If $\lim_{x\to 2} f(x) = 3$ and $\lim_{x\to 1} g(x) = 2$, then $\lim_{x\to 1} (f \circ g)(x) = 3$.

- (16) If $\lim_{x\to 0} f(x) = 3$, then the sequence $\{f(1/n)\}_{n=1}^{\infty}$ converges to 3.
- (17) If f is a function defined on \mathbb{R} and $\{f(1/n)\}_{n=1}^{\infty}$ converges to 3, then $\lim_{x\to 0} f(x) = 3$.
- (18) If f is a function defined on \mathbb{R} , $\{f(1/n)\}_{n=1}^{\infty}$ converges to 3, and $\lim_{x\to 0} f(x) = L$, then L=3.
- (19) If $\{a_n\}_{n=1}^{\infty}$ converges to 1 and $\{b_n\}_{n=1}^{\infty}$ converges to -2, then $\{a_{3n-1}b_n b_{n^2}/4\}_{n=1}^{\infty}$ converges to $-5 = (3 \cdot 1 1)(-2) (-2)^2/4$.
- (20) The sequence $a_n = \sqrt{\pi n \lfloor \pi n \rfloor}$ has a convergent subsequence, where $\lfloor x \rfloor$ denotes \int the largest integer that is smaller than x.
- (21) For a given sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
- (22) For a given convergent sequence, there are at most two real numbers that occur as limits of subsequences of the sequence.
- (23) The function $f(x) = \frac{x^2 2x + 3}{x 7}$ is continuous on $(7, \infty)$.
- (24) The function $f(x) = \frac{x^2 2x + 3}{x 7}$ is continuous on \mathbb{R} .
- (25) The function $f(x) = \sqrt{|x^3 7x + 1|}$ is continuous on \mathbb{R} .
- (26) If $\lim_{x\to a} f(x)$ exists, then f(x) is continuous at x=a.
- (27) There is some $c \in [-1, 0]$ such that $c^5 + c^3 + 1 = 0$.
- (28) There is some $c \in (-1, 0)$ such that $c^5 + c^3 + 1 = 0$.
- (29) If f is continuous on \mathbb{R} and a < b, and y is between f(a) and f(b), then there is exactly one $c \in [a, b]$ such that f(c) = y.
- (30) If f is defined on \mathbb{R} and f has the property that for every a < b if y is between f(a) and f(b) then there is some $c \in [a, b]$ such that f(c) = y, then f is continuous on \mathbb{R} .