Package 'grrrr'

June 6, 2023

Type Package
Title Set of grouped regression methods
Version 1.0
Date 2023-06-02
Author Bartosz Rozek, Jakub Szypula
Description This package allows user to create grouped regression models such as grouped lasso and grouped lars. User also can test them with a given framework which can be extended to handle additionalmethods.
RoxygenNote 7.2.3
Imports ggplot2, purrr, pracma, gglasso
Encoding UTF-8
R tonics documented:
n mucs ancimiement

+,test_container,test_results-method	2
calculate_cp	3
calculate_me	3
calculate_test	4
calc_group_lars	4
calc_group_lasso	5
categorize_matrix	5
count_factors	5
create_boxplot,test_container,character-method	5
create_model1	7
create_model2	7
create_model3	3
create_model4	3
create_table,test_container-method)
df_lars)
df_lasso)
find_alpha_lars)
first_up	l
generate_noise	l

	get_test,test_container,character-method	12
	group_lars-class	12
	group_lasso-class	13
	norm_L	14
	perform_ttest,test_container,character,character-method	14
	quad_roots	15
	test_container-class	15
	test_lars	16
	test_lars_group	16
	test_lasso_group	17
	test_lasso_group_library	17
	test_ls	18
	test_result-class	18
	test_results-class	19
	test_step	19
	%-%	20
Index		21

+, test_container, test_results-method $Adding \ test_results \ to \ container$

Description

Adding test_results to container

Usage

```
## S4 method for signature 'test_container,test_results'
e1 + e2
```

Arguments

```
e1 test_container. Instance of class test_container
e2 test_results. Instance of class test_results
```

Value

instance of class test_container with added new test_results.

calculate_cp 3

calculate_cp Calculation of Cp value

Description

Calculation of Cp value

Usage

```
calculate_cp(indexes, group_sizes, betas, betas_ls, X, y, df_function)
```

Arguments

indexes array with factors chosen in the model group_sizes array with sizes of consecutive groups betas beta coefficients in the investigated model

betas_ls beta coefficients in the OLS model build on the same data

X matrix of regressorsy target variable

df_function function that calculates degrees of freedom for specific model

Value

value of Cp statistic

calculate_me Calculation of model error value

Description

Calculation of model error value

Usage

```
calculate_me(X, beta_hat, beta)
```

Arguments

X matrix of regressors

beta_hat beta coefficients in the investigated model

beta original beta coefficients used to generate data set

Value

value of model error

4 calc_group_lars

calculate_test

Function used to test specific method

Description

Function used to test specific method

Usage

```
calculate_test(name, test_function, n, create_model, ...)
```

Arguments

Value

test_results object

calc_group_lars

Creates a instance of group lars model

Description

Creates a instance of group lars model

Usage

```
calc_group_lars(X, y, groups, result_indicator = "cp", true_betas = NULL)
```

Arguments

X matrix with regressors

y target variable

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

result_indicator

one of values ("cp", "me"). Indicates which of those two statistic should be used

to select the final model. To use "me" also true_betas needs to be supplied.

true_betas array of true values of betas

calc_group_lasso 5

Value

object of class group_lars

Description

Creates a instance of group lasso model

Usage

```
calc_group_lasso(X, y, groups, result_indicator = "cp", true_betas = NULL)
```

Arguments

X matrix with regressors

y target variable

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

result_indicator

one of values ("cp", "me"). Indicates which of those two statistic should be used

to select the final model. To use "me" also true_betas needs to be supplied.

true_betas array of true values of betas

Value

object of class group_lasso

```
{\tt categorize\_matrix} \quad \textit{Trichotomization of values in the matrix}
```

Description

Trichotomization of values in the matrix

Usage

```
categorize_matrix(Z)
```

Arguments

Z matrix

Value

matrix with trichomizated values

count_factors

Function used to calculate unique factors

Description

Function used to calculate unique factors

Usage

```
count_factors(betas, betas_names)
```

Arguments

betas values of coefficients
betas_names names of the coefficients

Value

number of unique factors

Description

Creates boxplot for test_container.

Usage

```
## S4 method for signature 'test_container, character'
create_boxplot(container, column)
```

Arguments

 $\verb|container| & test_container. Instance of test_container_class|\\$

column character. Column which values will be presented in the boxplot. One of the

("model_error", "n_factors", "cpu_time")

Value

ggplot2 object with boxplot

create_model1 7

create_model1

Creation of type 1 data set

Description

Creation of type 1 data set

Usage

```
create_model1(n = 50, p = 15)
```

Arguments

n number of observations

p number of variables

Value

list with three elements - X: design matrix, y: target variable, betas: coefficients used to create y

create_model2

Creation of type 2 data set

Description

Creation of type 2 data set

Usage

```
create_model2(n = 100, p = 4)
```

Arguments

n number of observations

p number of variables

Value

list with three elements - X: design matrix, y: target variable, betas: coefficients used to create y

8 create_model4

create_model3

Creation of type 3 data set

Description

Creation of type 3 data set

Usage

```
create_model3(n = 100, p = 16)
```

Arguments

n number of observations

p number of variables

Value

list with three elements - X: design matrix, y: target variable, betas: coefficients used to create y

create_model4

Creation of type 4 data set

Description

Creation of type 4 data set

Usage

```
create_model4(n = 100, p1 = 10, p2 = 10)
```

Arguments

n number of observations

p1 number of discrete variables

Value

list with three elements - X: design matrix, y: target variable, betas: coefficients used to create y

```
create_table,test_container-method
```

Creates table with aggregated results of the tests

Description

Creates table with aggregated results of the tests

Usage

```
## S4 method for signature 'test_container'
create_table(container)
```

Arguments

```
container test_container. Instance of class test_container
```

Value

data frame with results of all tests. This table's shape is based on the results in the article.

df_lars

Calculates degrees of freedom for group lars model.

Description

Calculates degrees of freedom for group lars model.

Usage

```
df_lars(indexes, group_sizes, betas_ls)
```

Arguments

indexes array with factors chosen in the model group_sizes array with sizes of consecutive groups betas beta coefficients in the investigated model

betas_ls beta coefficients in the OLS model build on the same data

Value

number of degrees of freedom

10 find_alpha_lars

df_lasso

Calculates degrees of freedom for group lasso model.

Description

Calculates degrees of freedom for group lasso model.

Usage

```
df_lasso(indexes, group_sizes, betas_ls)
```

Arguments

indexes array with factors chosen in the model group_sizes array with sizes of consecutive groups betas beta coefficients in the investigated model

betas_ls beta coefficients in the OLS model build on the same data

Value

number of degrees of freedom

find_alpha_lars

Finds optimum for quadratic equation needed to find next factor included in the LARS algorithm.

Description

Finds optimum for quadratic equation needed to find next factor included in the LARS algorithm.

Usage

```
find_alpha_lars(X, r, j, mcs, gamma_)
```

Arguments

X matrix with regressors
r current residuals
j candidate factor
mcs current "active set"
gamma_ current direction

Value

value of root which is in [0,1] interval

first_up

first_up

Makes first letter of string uppercase

Description

Makes first letter of string uppercase

Usage

```
first_up(x)
```

Arguments

Х

string

Value

transformed string

generate_noise

Generating noise for target variable

Description

Generating noise for target variable

Usage

```
generate_noise(Y, ratio)
```

Arguments

Y array

ratio signal-to-noise-ratio

Value

array with noise

group_lars-class

Description

Test getter

Usage

```
## S4 method for signature 'test_container, character'
get_test(container, name)
```

Arguments

container test_container. Instance of test_container class
name character. Name of the test to be returned

Value

instance of class test_results from the container. If there is no test with such a name method will throw an error.

```
group_lars-class Class storing information about group lasso model
```

Description

Class storing information about group lasso model

Value

instance of group_lars class

Slots

```
X matrix. Design matrix
y numeric. Target variable
betas numeric. Final beta coefficients
betas_path list. List of all beta coefficients obtain during calculations
true_betas numericOrNULL. Beta coefficients used in target variable calculations
Cp numeric. Value of Cp
Cp_path list. List of values of Cp obtained during calculations
```

group_lasso-class 13

model_error numericOrNULL. Value of model_error for final model. Not null only if true_betas was supplied.

me_path listOrNULL. List of values of model_error obtained during calculations. Not null only if true_betas was supplied.

group_lasso-class Class storing information about group lasso model

Description

Class storing information about group lasso model

Value

instance of group_lasso class

Slots

X matrix. Design matrix

y numeric. Target variable

betas numeric. Final beta coefficients

betas_path list. List of all beta coefficients obtain during calculations

true_betas numericOrNULL. Beta coefficients used in target variable calculations

lambda_max numeric. Maximum value of lambda

lambda_best numeric. Value of lambda used for final model

Cp numeric. Value of Cp

Cp_path list. List of values of Cp obtained during calculations

model_error numericOrNULL. Value of model_error for final model. Not null only if true_betas was supplied.

me_path listOrNULL. List of values of model_error obtained during calculations. Not null only if true_betas was supplied.

 $norm_L$

Vector norm mentioned in the article

Description

Vector norm mentioned in the article

Usage

```
norm_L(vector, p)
```

Arguments

vector array

p multiplier of identity matrix

Value

vector norm

```
perform_ttest, test_container, character, character-method

*Performs check if results of the models are statistically different*
```

Description

Performs check if results of the models are statistically different

Usage

```
## S4 method for signature 'test_container, character, character'
perform_ttest(container, tests_rows, tests_cols)
```

Arguments

container test_container. Instance of test_container class

tests_rows character. One group of tests (may be an array). Will be presented in the rows

tests_cols character. Second group of tests (may be an array). Will be presented in the

columns

Value

table with p-values of t-test.

quad_roots 15

quad_roots

Very simple quadratic equation solver

Description

Very simple quadratic equation solver

Usage

```
quad_roots(a, b, c)
```

Arguments

С

a quadratic coefficient
b linear coefficient

constant coefficient

Value

array with two roots

```
test_container-class
```

Object that stores instances of tests_results

Description

Object that stores instances of tests_results

Value

object of class test_container

Slots

tests list. List of tests_results instances

16 test_lars_group

test_lars

Function that test lars method without grouping

Description

Function that test lars method without grouping

Usage

```
test_lars(X, y, true_betas, groups, ...)
```

Arguments

X design matrix y target variable

true_betas beta coefficients used in Y calculation

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

Value

instance of test_result class

test_lars_group

Function that test group lars method

Description

Function that test group lars method

Usage

```
test_lars_group(X, y, true_betas, groups, ...)
```

Arguments

X design matrixy target variable

true_betas beta coefficients used in Y calculation

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

Value

instance of test_result class

test_lasso_group 17

test_lasso_group

Function that test group lasso method

Description

Function that test group lasso method

Usage

```
test_lasso_group(X, y, true_betas, groups, ...)
```

Arguments

X design matrix y target variable

true_betas beta coefficients used in Y calculation

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

Value

instance of test_result class

```
test_lasso_group_library
```

Function that test group lasso method from external package

Description

Function that test group lasso method from external package

Usage

```
test_lasso_group_library(X, y, true_betas, groups)
```

Arguments

X design matrix y target variable

true_betas beta coefficients used in Y calculation

groups list of integers with a length equals to number of columns in X. Indicates to

which group given variable belongs to

Value

instance of test_result class

18 test_result-class

test_ls

Function that test OLS method

Description

Function that test OLS method

Usage

```
test_ls(X, y, true_betas, groups)
```

Arguments

X design matrixy target variable

true_betas beta coefficients used in Y calculation groups added only to keep function's shape

Value

instance of test_result class

```
test_result-class Title
```

Description

Title

Value

instance of test_result class

Slots

```
model_error numeric. Model error obtained in the test n_factors numeric. Number of factors obtained in the test cpu_time numeric. CPU time obtained in the test
```

test_results-class 19

test_results-class Class containing information from multiple tests runs

Description

Class containing information from multiple tests runs

Value

instance of test_results class

Slots

```
name character. Name of the model

model_error numeric. Mean model error

model_error_list numeric. All model errors obtained during testing

model_error_std numeric. Standard deviation of model error

n_factors numeric. Mean number of factors

n_factors_list integer. All numbers of factors obtained during testing

n_factors_std numeric. Standard deviation of number of factors

cpu_time numeric. Mean CPU time

cpu_time_list numeric. All CPU times obtained during testing

cpu_time_std numeric. Standard deviation of CPU time
```

test_step

Function that test stepwise regression method

Description

Function that test stepwise regression method

Usage

```
test_step(X, y, true_betas, groups)
```

Arguments

X design matrixy target variable

true_betas beta coefficients used in Y calculation groups added only to keep function's shape

Value

instance of test_result class

20

응-응

A easier form of setting part of array to zero

Description

```
Implementation of b_-j=(b^'_1, ..., b^'_j-1, 0', b^'_j+1, ..., b^'_J)
```

Usage

```
vector %-% index
```

Arguments

vector array which is meant to be used index indexes were zeros will be inserted

Value

array with zeros in selected indexes

Index

```
+, test_container, test_results-method, test_lars_group, 16
                                        test_lasso_group, 17
%-%, 20
                                        test_lasso_group_library, 17
                                        test_ls, 18
calc_group_lars,4
                                       test_result-class, 18
calc_group_lasso, 5
                                       test_results-class, 19
calculate_cp, 3
                                        test_step, 19
calculate_me, 3
calculate_test, 4
categorize_matrix, 5
\verb"count_factors", 6
create_boxplot,test_container,character-method,
create_model1,7
create_model2,7
create_model3,8
create_model4,8
create_table, test_container-method,
df_lars,9
df_lasso, 10
find_alpha_lars, 10
first_up, 11
generate_noise, 11
get_test, test_container, character-method,
      12
group_lars-class, 12
group_lasso-class, 13
norm_L, 14
perform_ttest, test_container, character, character-method,
quad_roots, 15
test_container-class, 15
test_lars, 16
```