AMS 261: Probability Theory (Fall 2017)

Homework 4 solutions

1. Consider a sequence $\{X_n:n=1,2,...\}$ of $\overline{\mathbb{R}}$ -valued random variables defined on the same probability space (Ω,\mathcal{F},P) . Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega\in\Omega,\,X_n(\omega)\leq X_{n+1}(\omega)$. Moreover, assume that $\mathrm{E}(X_1)>-\infty$. Denote by X the pointwise limit of $\{X_n:n=1,2,...\}$, that is, for each $\omega\in\Omega,\,X(\omega)=\lim_{n\to\infty}X_n(\omega)$. Prove that $\mathrm{E}(X)=\lim_{n\to\infty}\mathrm{E}(X_n)$. Solution: Since $\{X_n:n=1,2,...\}$ is a (pointwise) increasing sequence of random variables, it is easy to show that the sequence of the corresponding positive parts, $\{X_n^+:n=1,2,...\}$, is increasing with limit given by X^+ . Therefore, applying the MCT to the $\overline{\mathbb{R}}^+$ -valued random variables X_n^+ , we obtain

$$\lim_{n \to \infty} \mathcal{E}(X_n^+) = \mathcal{E}(X^+). \tag{1.1}$$

Similarly, note that $\{-X_n^-:n=1,2,...\}$ is an increasing sequence of $\overline{\mathbb{R}}^-$ -valued random variables. Since $X_1 \leq X_2$ and $\mathrm{E}(X_1) > -\infty$, we have that $\mathrm{E}(X_2)$ exists and $-\infty < \mathrm{E}(X_1) \leq \mathrm{E}(X_2)$ (Fristedt & Gray, 1997, Chapter 4, Theorem 9(iv)). Applying the same argument, we get that $\mathrm{E}(X_n) > -\infty$, for each n, as well as that $\mathrm{E}(X) > -\infty$, which implies that $\mathrm{E}(X_n^-) < \infty$, for all n, as well as $\mathrm{E}(X^-) < \infty$. Next, since $\mathrm{E}(X_1^-) < \infty$, we conclude that X_1^- is almost surely finite, that is, $-X_1^- > -\infty$, almost surely, and thus $c = \inf\{-X_1^-(\omega): \omega \in \Omega\} > -\infty$. Now, $\{-X_n^- - c: n=1,2,...\}$ is an increasing sequence of $\overline{\mathbb{R}}^+$ -valued random variables, and the MCT yields

$$\lim_{n \to \infty} \mathcal{E}(X_n^-) = \mathcal{E}(X^-). \tag{1.2}$$

The result can now be obtained by combining (1.1) and (1.2), noting that $\lim_{n\to\infty} (\mathbb{E}(X_n^+) - \mathbb{E}(X_n^-))$ is well defined because $\mathbb{E}(X_n^-) < \infty$, for all n.

2. Let $\{X_n : n = 1, 2, ...\}$ be a countable sequence of $\overline{\mathbb{R}}^+$ -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) , and assume that $\mathrm{E}(\sum_{n=1}^{\infty} X_n) < \infty$. Show that $\mathrm{E}\left(\sum_{n=1}^{\infty} X_n\right) = \sum_{n=1}^{\infty} \mathrm{E}(X_n)$.

Solution: For n=1,2,..., define $Y_n=\sum_{j=1}^n X_j$. Then the sequence of $\overline{\mathbb{R}}^+$ -valued random variables $\{Y_n:n=1,2,...\}$, defined on (Ω,\mathcal{F},P) , is increasing, since each of the X_j is $\overline{\mathbb{R}}^+$ -valued. Denote by Y the pointwise limit of the Y_n , i.e., for each $\omega\in\Omega$, $Y(\omega)=\lim_{n\to\infty}\sum_{j=1}^n X_j(\omega)=\sum_{n=1}^\infty X_n(\omega)$. Then, using the MCT and additivity of expectation,

$$E\left(\sum_{n=1}^{\infty} X_n\right) = E(Y) = \lim_{n \to \infty} E(Y_n) = \lim_{n \to \infty} \sum_{j=1}^{n} E(X_j) = \sum_{n=1}^{\infty} E(X_n).$$

(Note that the assumption $E(\sum_{n=1}^{\infty} X_n) < \infty$ implies that $\sum_{n=1}^{\infty} X_n$ is an almost surely finite random variable, but is not strictly needed.)

3. Let $\{X_n : n = 1, 2, ...\}$, $\{Y_n : n = 1, 2, ...\}$, and $\{Z_n : n = 1, 2, ...\}$ be sequences of \mathbb{R} -valued random variables (all the random variables are defined on the same probability space). Assume that: (a) $\mathrm{E}(X_n)$ and $\mathrm{E}(Z_n)$ exist for all n and are finite; (b) each of the three sequences converges almost surely (denote by X, Y, and Z the respective almost sure limits); (c) $\mathrm{E}(X)$, $\mathrm{E}(Y)$, and $\mathrm{E}(Z)$ exist and are finite; (d) $X_n \leq Y_n \leq Z_n$ almost surely; (e) $\lim_{n\to\infty} \mathrm{E}(X_n) = \mathrm{E}(X)$, and $\lim_{n\to\infty} \mathrm{E}(Z_n) = \mathrm{E}(Z)$. Show that $\lim_{n\to\infty} \mathrm{E}(Y_n) = \mathrm{E}(Y)$.

Solution: Consider the sequence of random variables $\{Z_n - Y_n : n = 1, 2, ...\}$. Based on assumption (d), $Z_n - Y_n \ge 0$, almost surely, and, therefore, using the Fatou lemma,

$$E(\liminf_{n \to \infty} (Z_n - Y_n)) \le \liminf_{n \to \infty} E(Z_n - Y_n).$$
(3.1)

Using assumption (b), we obtain that the almost sure limit of the sequence $\{Z_n - Y_n : n = 1, 2, ...\}$ is given by Z - Y, and so $\liminf_{n \to \infty} (Z_n - Y_n) = \lim_{n \to \infty} (Z_n - Y_n) = Z - Y$, almost surely. Therefore, using properties of the \liminf for numerical sequences, (3.1) yields

$$\begin{array}{ll} \mathrm{E}(Z-Y) & \leq & \lim\inf_{n\to\infty}\mathrm{E}(Z_n-Y_n) = \liminf_{n\to\infty}\{\mathrm{E}(Z_n)-\mathrm{E}(Y_n)\} \\ & = & \liminf_{n\to\infty}\mathrm{E}(Z_n) + \liminf_{n\to\infty}\{-\mathrm{E}(Y_n)\} = \mathrm{E}(Z) - \limsup_{n\to\infty}\mathrm{E}(Y_n), \end{array}$$

since $E(Z) = \lim_{n\to\infty} E(Z_n) = \liminf_{n\to\infty} E(Z_n)$ (assumption (e)). Rearranging terms in the above inequality, we have $E(Y) \ge \limsup_{n\to\infty} E(Y_n)$.

Analogously, consider the sequence $\{Y_n - X_n : n = 1, 2, ...\}$, which is, almost surely, non-negative, and

Analogously, consider the sequence $\{Y_n-X_n:n=1,2,...\}$, which is, almost surely, non-negative, and converges, almost surely, to Y-X, based on assumptions (d) and (b), respectively. Hence, $\mathrm{E}(Y)-\mathrm{E}(X)=\mathrm{E}(Y-X)=\mathrm{E}(\lim_{n\to\infty}(Y_n-X_n))=\mathrm{E}(\liminf_{n\to\infty}(Y_n-X_n))$, and, thus, using, again, the Fatou lemma and properties of the $\liminf_{n\to\infty}\mathrm{E}(Y)-\mathrm{E}(X)\leq \liminf_{n\to\infty}\mathrm{E}(Y_n-X_n)=\liminf_{n\to\infty}\{\mathrm{E}(Y_n)-\mathrm{E}(X_n)\}=\lim\inf_{n\to\infty}\mathrm{E}(Y_n)-\mathrm{E}(X)$, since $\liminf_{n\to\infty}\mathrm{E}(X_n)=\lim_{n\to\infty}\mathrm{E}(X_n)=\mathrm{E}(X)$ from assumption (e). Hence, $\mathrm{E}(Y)\leq \liminf_{n\to\infty}\mathrm{E}(Y_n)$, which, combined with $\mathrm{E}(Y)\geq \limsup_{n\to\infty}\mathrm{E}(Y_n)$, proves the result.

- 4. Let $\{X_n:n=1,2,...\}$ be a countable sequence of \mathbb{R} -valued random variables defined on a common probability space (Ω,\mathcal{F},P) . Assume that there exist finite real constants p>1 and K>0 such that $\sup_n \mathbb{E}(|X_n|^p) \leq K$. Show that $\{X_n:n=1,2,...\}$ is uniformly integrable. Solution: For any c>0, we can write $\mathbb{E}(|X_n|1_{(|X_n|\geq c)})=\mathbb{E}(|X_n|^p|X_n|^{1-p}1_{(|X_n|\geq c)})\leq c^{1-p}\mathbb{E}(|X_n|^p),$ since p>1. Therefore, $\sup_n \mathbb{E}(|X_n|1_{(|X_n|\geq c)})\leq c^{1-p}\sup_n \mathbb{E}(|X_n|^p)\leq Kc^{1-p},$ using the assumption. Hence, finally, $\lim_{c\to\infty}\sup_n \mathbb{E}(|X_n|1_{(|X_n|\geq c)})\leq \lim_{c\to\infty}(Kc^{1-p})=0$, proving the result.
- 5. Let X be an \mathbb{R} -valued random variable, defined on probability space (Ω, \mathcal{F}, P) , with finite expectation $\mu = \mathrm{E}(X)$ and finite standard deviation $\sigma = \{\mathrm{Var}(X)\}^{1/2}$. Prove that for any $0 \le z \le \sigma$,

$$P(\{\omega \in \Omega: |X(\omega) - \mu| \geq z\}) \geq \frac{\sigma^4 \{1 - (z/\sigma)^2\}^2}{\operatorname{E}(|X - \mu|^4)}.$$

Solution: Let $Y = |X - \mu|^2$. We have $E(Y) = E(|X - \mu|^2) = Var(X) < \infty$, by assumption. If $E(Y^2) = E(|X - \mu|^4) = \infty$, the inequality holds true (the right hand side is 0 in this case). The case $E(Y^2) = 0$ is not of interest for the inequality (the right hand side is not well defined in this case); note that if $E(Y^2) = 0$ (and since $E(Y) < \infty$), Y is almost surely equal to a finite constant. Therefore, consider the case $0 < E(Y^2) < \infty$. The result is obtained by applying to random variable Y the inequality that can be viewed as a complement to Chebyshev inequality (Fristedt & Gray, 1997, Corollary 5.5; proved in class). In particular, setting $\lambda = z^2/\sigma^2$, for any $0 \le z \le \sigma$, we have (note that $\lambda \in [0,1]$)

$$P(\left\{\omega \in \Omega : |X(\omega) - \mu|^2 \ge z^2 \sigma^{-2} \mathrm{E}(|X - \mu|^2)\right\}) \ge \left(1 - \frac{z^2}{\sigma^2}\right)^2 \frac{\{\mathrm{E}(|X - \mu|^2)\}^2}{\mathrm{E}(|X - \mu|^4)},$$

which yields the result noting that $\sigma^2 = E(|X - \mu|^2) < \infty$.

- 6. Let $\{X_n:n=1,2,...\}$ be a sequence of \mathbb{R} -valued random variables defined on a common probability space (Ω,\mathcal{F},P) . Suppose there exists an \mathbb{R}^+ -valued random variable Y, defined on (Ω,\mathcal{F},P) , such that $\mathrm{E}(Y)<\infty$ and $|X_n|\leq Y$, almost surely, for all n. Show that $\{X_n:n=1,2,...\}$ is uniformly integrable. Solution: Fix c>0. Because $|X_n|\leq Y$, almost surely, for all n, we have $1_{(|X_n|\geq c)}\leq 1_{(Y\geq c)}$, almost surely, for all n. By combining the above inequalities, $|X_n|1_{(|X_n|\geq c)}\leq Y1_{(Y\geq c)}$, almost surely, for all n. Therefore, $\mathrm{E}(|X_n|1_{(|X_n|\geq c)})\leq \mathrm{E}(Y1_{(Y\geq c)})$, for all n, and so $\sup_n \mathrm{E}(|X_n|1_{(|X_n|\geq c)})\leq \mathrm{E}(Y1_{(Y\geq c)})$. Next, $\lim_{c\to\infty}\sup_n \mathrm{E}(|X_n|1_{(|X_n|\geq c)})\leq \lim_{c\to\infty}\mathrm{E}(Y1_{(Y\geq c)})=0$, and thus $\lim_{c\to\infty}\sup_n \mathrm{E}(|X_n|1_{(|X_n|\geq c)})=0$. (Note that the result $\lim_{c\to\infty}\mathrm{E}(Y1_{(Y\geq c)})=0$ was proved in class, using the assumptions that $Y\geq 0$ and $\mathrm{E}(Y)<\infty$, and applying the DCT to the sequence $Z_k=Y1_{(Y\geq k)}\leq Y$.)
- 7. Consider a countable sequence $\{X_n: n=1,2,...\}$ of $\overline{\mathbb{R}}$ -valued random variables, defined on a common probability space (Ω,\mathcal{F},P) , and an increasing function $G:[0,\infty)\to[0,\infty)$, which satisfies $\lim_{t\to\infty}\{t^{-1}G(t)\}=\infty$ and $0<\sup_n\mathbb{E}\{G(|X_n|)\}<\infty$. Prove that $\{X_n: n=1,2,...\}$ is uniformly integrable. Solution: Fix $\varepsilon>0$ and let $A=\varepsilon^{-1}\sup_n\mathbb{E}\{G(|X_n|)\}$ (we have $0< A<\infty$, by assumption). Because $\lim_{t\to\infty}\{t^{-1}G(t)\}=\infty$, we can find large c (which depends on ε) such that

$$t^{-1}G(t) \ge A, \quad \forall t \ge c. \tag{7.1}$$

For n=1,2,..., let $Y_n=|X_n|1_{(|X_n|\geq c)}$. For any $\omega\in\Omega$ with $|X_n(\omega)|\geq c$, we have $Y_n(\omega)\geq c$, and using (7.1), $G(Y_n(\omega))\geq AY_n(\omega)$. Moreover, for any $\omega\in\Omega$ with $|X_n(\omega)|< c$, we have $Y_n(\omega)=0$, and since $G(0)\geq 0$, the inequality $G(Y_n(\omega))\geq AY_n(\omega)$ is still valid. Therefore, for any n=1,2,..., $A|X_n|1_{(|X_n|\geq c)}\leq G(|X_n|1_{(|X_n|\geq c)})\leq G(|X_n|)$, using the assumption that G is increasing. Taking expectations, $E(|X_n|1_{(|X_n|\geq c)})\leq A^{-1}E\{G(|X_n|)\}$, and therefore, $\sup_n E(|X_n|1_{(|X_n|\geq c)})\leq A^{-1}\sup_n E\{G(|X_n|)\}=\varepsilon$, which provides the result, since the inequality above holds true for any $\varepsilon>0$ and any c'>c.