AN 6 - FONCTIONS DE PLUSIEURS VARIABLES

Dans tout le chapitre U désigne un **ouvert** non vide de \mathbb{R}^p avec $p \in \{2, 3\}$.

1 Limites et Continuité

Définition 1

Une fonction réelle de plusieurs variables (réelles) est une fonction définie sur une partie D de \mathbb{R}^p , à valeurs dans \mathbb{R} .

Notation

L'ensemble des fonctions réelles définies sur $D \subset \mathbb{R}^p$ est noté $\mathcal{F}(D,\mathbb{R})$.

Remarque 1

• $\mathcal{F}(D,\mathbb{R})$ muni des lois usuelles est un \mathbb{R} -espace vectoriel.

Définition 2

Soient $f \in \mathcal{F}(U, \mathbb{R})$ et $a \in \overline{U}$.

On dit que f admet une limite l en a si :

$$\forall \varepsilon > 0, \exists r > 0 / \forall x \in U, (\|x - a\| < r \Rightarrow |f(x) - l| < \varepsilon)$$

Proposition 1

Soient $f \in \mathcal{F}(U, \mathbb{R})$ et $a \in \overline{U}$. Si f admet une limite en a, alors elle est unique. On la note $\lim_{x \to a} f(x)$ ou $\lim_{a} f$.

Proposition 2

Soit $a \in \overline{U}$. Le sous-ensemble des fonctions de $\mathcal{F}(U,\mathbb{R})$ admettant une limite en a est un sous-espace vectoriel de l'ensemble de $\mathcal{F}(U,\mathbb{R})$.

Sur ce sev, l'application $f\mapsto \lim f$ est linéaire, c'est-à-dire :

si f et g sont deux fonctions de $\mathcal{F}(U,\mathbb{R})$ admettant une limite en a, alors

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \lim_{a} (\lambda f + \mu g) = \lambda \lim_{a} f + \mu \lim_{a} g$$

Définition 3

Soient $f \in \mathcal{F}(U, \mathbb{R})$, et $a \in U$.

- On dit que f est continue en a si f admet une limite en a.
- On dit que f est continue sur $D \subset U$ si f est continue en tout point de D.
- On dit que f est continue, si f est continue sur U.

Remarque 2

• Si f est continue en a, alors $\lim_{a} f = f(a)$.

Proposition 3

Soient $f \in \mathcal{F}(U,\mathbb{R})$ continue en a, et $g: I \to \mathbb{R}$ telle que $f(U) \subset I$, continue en f(a). Alors $g \circ f$ est continue en a.

Proposition 4

Soient f et g deux fonctions de $\mathcal{F}(U,\mathbb{R})$ continues en $a, \lambda \in \mathbb{R}$; les fonctions $f+g, \lambda f, \frac{1}{f}$ (si elle existe) et $f \times g$ sont continues en a.

Notation

Les fonctions continues sur U à valeurs dans \mathbb{R} sont notées $\mathcal{C}(U,\mathbb{R})$ (ou $\mathcal{C}^0(U,\mathbb{R})$).

Proposition 5

 $\mathcal{C}(U,\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{F}(U,\mathbb{R})$.

Proposition 6

Les applications "composantes":

$$\forall i \in [1, p], \quad dx_i : \begin{vmatrix} \mathbb{R}^p & \to \mathbb{R} \\ (x_1, x_2, \cdots, x_p) & \mapsto x_i \end{vmatrix}$$

sont continues sur \mathbb{R}^p .

Définition 4

Soient $f \in \mathcal{F}(U, \mathbb{R})$ et $a = (a_1, \dots, a_p) \in U$.

Pour tout $i \in [1, p]$, on note $E_i = \{t \in \mathbb{R} / (a_1, \dots a_{i-1}, t, a_{i+1}, \dots, a_p) \in U\}$.

On appelle i-ème fonction partielle de f en a l'application :

$$f_i: \begin{vmatrix} E_i & \to & \mathbb{R} \\ t & \mapsto & f_i(t) = f(a_1, ..., a_{i-1}, t, a_{i+1}, ..., a_p) \end{vmatrix}$$

Proposition 7

Soit $f \in \mathcal{F}(U,\mathbb{R})$, continue en $a \in U$. Alors, pour tout $i \in [1,p]$, la i-ème fonction partielle de f en a est continue en a_i .

Attention!

La réciproque est fausse.

Théorème 1

Une fonction continue sur un fermé borné de \mathbb{R}^p est bornée et atteint ses bornes.

2 Dérivées partielles du premier ordre

Définition 5

Soient $f \in \mathcal{F}(U, \mathbb{R})$, et $a = (a_1, a_2, \dots, a_p) \in U$

On dit que f admet une dérivée partielle par rapport à la i-ème variable x_i , au point a si la i-ème fonction partielle de f en a admet une dérivée en a_i .

Si elle existe, on note:

$$\frac{\partial f}{\partial x_i}(a) = \partial_i f(a) = \lim_{t \to 0} \frac{f(a_1, a_2, \dots, a_i + t, \dots, a_p) - f(a_1, a_2, \dots, a_i, \dots, a_p)}{t}$$

appelée dérivée partielle (d'ordre 1) de f en a par rapport à la i-ème variable ou i-ème dérivée partielle (d'ordre 1) de f en a.

Si cette limite n'existe pas, alors on dit que f n'admet pas de dérivée partielle par rapport à la i-ème variable au point a.

Remarque 3

• Quand il n'y a que 2 ou 3 variables on note souvent les dérivées partielles de la façon suivante :

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$ et $\frac{\partial f}{\partial z}$ au lieu de $\frac{\partial f}{\partial x_i}$

ou bien également, si les variables sont ρ et θ :

$$\frac{\partial f}{\partial \rho}$$
 et $\frac{\partial f}{\partial \theta}$

Attention!

Une fonction de plusieurs variables peut ne pas être continue en a, et admettre des dérivées partielles en a!

Définition 6

Soit $f \in \mathcal{F}(U,\mathbb{R})$. Si elle existe, on appelle encore *i-ème dérivée partielle* de f la fonction réelle $\frac{\partial f}{\partial x_i}$ définie sur U par $\frac{\partial f}{\partial x_i}: a \in U \mapsto \frac{\partial f}{\partial x_i}(a) \in \mathbb{R}$

Définition 7

On dit que $f \in \mathcal{F}(U,\mathbb{R})$ est de classe \mathcal{C}^1 sur U si f admet p dérivées partielles continues sur U, c'est à dire si : $\forall i \in [1, p]$, l'application partielle $\frac{\partial f}{\partial x_i}$ est définie et continue sur U.

Notation

L'ensemble des fonctions réelles de classe \mathcal{C}^1 sur U est noté $\mathcal{C}^1(U,\mathbb{R})$.

Exemple 1

- 1. Les fonctions linéaires de \mathbb{R}^p dans \mathbb{R} sont de classe C^1 .
- 2. Les fonctions polynomiales de la forme :

$$(x_1, ..., x_p) \mapsto \sum_{(\alpha_1, ..., \alpha_p) \in I} \lambda_{(\alpha_1, ..., \alpha_p)} x_1^{\alpha_1} ... x_p^{\alpha_p}$$

où I est un sous-ensemble fini de \mathbb{N}^p , sont de classe \mathbb{C}^1 .

Proposition 8

 $\mathcal{C}^1(U,\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{F}(U,\mathbb{R})$.

De plus $\forall i \in [1, n]$ l'application définie sur $\mathcal{C}^1(U, \mathbb{R})$ par $f \mapsto \frac{\partial f}{\partial x_i}$ est linéaire, c'est-à-dire : si f et g sont deux fonctions de $\mathcal{C}^1(U,\mathbb{R})$, alors :

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \frac{\partial (\lambda f + \mu g)}{\partial x_i} = \lambda \frac{\partial f}{\partial x_i} + \mu \frac{\partial g}{\partial x_i}$$

Théorème 2

Soient f et g dans $C^1(U, \mathbb{R})$. Alors : • $f \times g$ est de classe C^1 sur U, et $\forall i \in [1, n]$:

$$\frac{\partial (f \times g)}{\partial x_i} = \frac{\partial f}{\partial x_i} \times g + f \times \frac{\partial g}{\partial x_i}$$

• $\frac{1}{a}$ est de classe C^1 sur tout ouvert $V \subset U$ sur lequel g ne s'annule pas, et $\forall i \in [1, n]$:

$$\frac{\partial \frac{1}{g}}{\partial x_i} = -\frac{1}{g^2} \frac{\partial g}{\partial x_i}$$

Définition 8

Soient $f \in C^1(U, \mathbb{R})$ et $a \in U$. On appelle **gradient** de f en a, le vecteur $\overrightarrow{Gradf}(a)$ défini par :

$$\overrightarrow{Grad f}(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_p}(a) \end{pmatrix}$$

On le note également $\nabla f(a)$ (se lit "nabla" f en a).

Théorème-Définition 1 Formule de Taylor Young à l'ordre 1

Soit f une application de classe C^1 sur une boule ouverte B(a,r) de \mathbb{R}^p , à valeurs dans \mathbb{R} .

Alors, $\forall h = (h_1, \dots, h_p) \in \mathbb{R}^p$ tel que ||h|| < r, on a :

$$f(a+h) = f(a) + \frac{\partial f}{\partial x_1}(a) \times h_1 + \dots + \frac{\partial f}{\partial x_p}(a) \times h_p + ||h|| \varepsilon(h)$$

où $\varepsilon \in \mathcal{F}(U,\mathbb{R})$ est telle que $\lim_{h \to 0_{\mathbb{R}^p}} \varepsilon(h) = 0$.

Cette expression s'appelle le développement limité de f à l'ordre 1.

Notation différentielle

Si on note $dx_i : h = (h_1, \dots, h_p) \mapsto h_i$ la i-ème application composante, on note $df = \sum_{i=1}^p \frac{\partial f}{\partial x_i} dx_i$.

Ainsi, $\forall a \in U, \forall h = (h_1, ..., h_p) \in \mathbb{R}^p$,

$$df(a).h = \frac{\partial f}{\partial x_1}(a) \times h_1 + ... + \frac{\partial f}{\partial x_p}(a) \times h_p$$

Théorème 3

Soient I un intervalle de \mathbb{R} , $(x_1, x_2, \dots, x_p) \in (C^1(I, \mathbb{R}))^p$ et $f \in C^1(U, \mathbb{R})$ où U est un ouvert de \mathbb{R}^p tel que $\forall t \in I, (x_1(t), x_2(t), \dots, x_p(t)) \in U$.

Alors, la fonction $F: \mathbb{R} \to \mathbb{R}$, définie par :

$$\forall t \in I, F(t) = f(x_1(t), x_2(t), \cdots, x_p(t))$$

est de classe C^1 sur I et vérifie :

$$\forall t \in I, F'(t) = \sum_{i=1}^{p} \left(\frac{\partial f}{\partial x_i}(x_1(t), ..., x_p(t)) \times x_i'(t) \right)$$

Remarque 4

• En utilisant la notation différentielle, pour p=3, on a :

$$\frac{dF}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt},$$

ce qui donne :

$$dF = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz.$$

3 Application en géométrie

Dans cette section, on se place dans le plan orienté \mathscr{P} muni d'un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$; U désigne toujours un ouvert de \mathbb{R}^2 .

Définition 9

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. L'ensemble Γ des points M du plan de coordonnées (x,y) vérifiant f(x,y)=0 est appelé courbe plane d'équation cartésienne f(x,y)=0.

Théorème 4 Théorème des fonctions implicites

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. On note Γ la courbe plane d'équation cartésienne f(x,y) = 0. Soit M_0 un point du plan de coordonnées (x_0, y_0) telles que :

$$\begin{cases} f(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) \neq 0 \end{cases}$$

Alors il existe deux intervalles ouverts I et J centrés en x_0 et y_0 respectivement, avec $I \times J \subset U$, et une fonction $\varphi: I \to J$ de classe \mathcal{C}^1 tels que :

$$\forall (x,y) \in I \times J, \ f(x,y) = 0 \Leftrightarrow y = \varphi(x)$$

Remarque 5 Reformulation

• Si $\overrightarrow{Grad} f(x_0, y_0)$ n'est pas colinéaire à \vec{i} , alors au voisinage de (x_0, y_0) il existe un paramétrage local de Γ par la première variable x.

Définition 10

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. On note Γ la courbe plane d'équation cartésienne f(x,y)=0.

- On dit qu'un point M_0 de coordonnées (x_0, y_0) de Γ est un point régulier de Γ si $\overrightarrow{Grad} f(x_0, y_0) \neq \overrightarrow{0}$.
- On dit que Γ est une courbe régulière si tous ses points sont réguliers.

Proposition 9

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. On note Γ la courbe plane d'équation cartésienne f(x,y) = 0. Soit M_0 un point régulier de Γ de coordonnées (x_0, y_0) . Alors :

• L'équation de la tangente à Γ en M_0 est donnée par :

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = 0$$

• Le vecteur $\overrightarrow{Grad} f(x_0, y_0)$ est orthogonal à la ligne de niveau $f(x, y) = f(x_0, y_0)$ (c'est-à-dire $\overrightarrow{Grad} f(x_0, y_0)$ est orthogonal à tout vecteur directeur de la tangente à la courbe d'équation $f(x, y) = f(x_0, y_0)$ en (x_0, y_0)), et orienté dans le sens des valeurs croissantes de f.

4 Dérivées partielles d'ordre 2

Définition 11

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. En cas d'existence, on appelle dérivées partielles d'ordre 2 ou dérivées partielles secondes de f, les dérivées partielles des dérivées partielles (premières) de f.

En cas d'existence, on note, pour $(i, j) \in [1, p]^2$:

$$\partial_{i,j}(f) = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial \frac{\partial f}{\partial x_j}}{\partial x_i}$$

la i-ème dérivée partielle de la j-ème dérivée partielle, et si i=j, on note :

$$\partial_{i,i}(f) = \frac{\partial^2 f}{\partial x_i^2} = \frac{\partial \frac{\partial f}{\partial x_i}}{\partial x_i}$$

Remarque 6

• Il y a donc au maximum p^2 dérivées partielles secondes.

Définition 12

Soit $f \in \mathcal{C}^1(U, \mathbb{R})$.

On dit que f est de classe \mathcal{C}^2 sur U si les p applications $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_p}$ sont de classe \mathcal{C}^1 sur U.

Remarque 7

• $f \in \mathcal{C}^1(U,\mathbb{R})$ est de classe \mathcal{C}^2 sur U si elle admet des dérivées partielles secondes et que celles-ci sont continues sur U.

Notation

L'ensemble des fonctions réelles de classe \mathcal{C}^2 sur U est noté $\mathcal{C}^2(U,\mathbb{R})$.

Proposition 10

 $C^2(U,\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{F}(U,\mathbb{R})$.

De plus $\forall (i,j) \in [1,p]^2$ l'application définie sur $\mathcal{C}^2(U,\mathbb{R})$ par $f \mapsto \partial_{i,j}(f)$ est linéaire, c'est-à-dire : si f et g sont deux fonctions de $\mathcal{C}^2(U,\mathbb{R})$, alors :

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \partial_{i,j}(\lambda f + \mu g) = \lambda \partial_{i,j}(f) + \mu \partial_{i,j}(g)$$

Théorème 5

On considère deux applications f et g de classe \mathbb{C}^2 sur \mathbb{U} . Alors :

- $f \times g$ est de classe C^2 sur U.
- $\frac{f}{g}$ est de classe C^2 sur tout ouvert $V \subset U$ sur lequel g ne s'annule pas.

Théorème 6 Théorème de Schwarz

Soit $f \in \mathcal{F}(U, \mathbb{R})$. Si f est de classe C^2 , alors :

$$\forall (i,j) \in [1,p]^2, \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Remarque 8

- Ce théorème donne une condition nécessaire et permet donc surtout de montrer le caractère non C^2 d'une application.
- Si f est de classe C^2 sur U, alors l'opération de dérivation partielle est commutative. On dit alors que, pour f, les dérivées partielles secondes croisées sont égales.

Théorème 7 Formule de Taylor-Young à l'ordre 2

Soit f une application de classe C^2 sur une boule ouverte B(a,r) de \mathbb{R}^p , à valeurs dans \mathbb{R} .

Alors, $\forall h = (h_1, \dots, h_p) \in \mathbb{R}^p$ tel que ||h|| < r, on a :

$$f(a+h) = f(a) + \sum_{i=1}^{p} h_i \frac{\partial f}{\partial x_i}(a) + \frac{1}{2} \sum_{i,j=1}^{p} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(a) + ||h||^2 \varepsilon(h)$$

où $\varepsilon \in \mathcal{F}(U,\mathbb{R})$ est telle que $\lim_{h \to 0_{\mathbb{R}^p}} \varepsilon(h) = 0$.

5 Extrema d'une fonction de deux variables (p = 2)

Définition 13

Soient $f \in \mathcal{F}(U, \mathbb{R})$ et $a \in U$.

ullet On dit que f admet un $maximum\ local\ en\ a\ si$:

$$\exists r \in \mathbb{R}_+^* / \forall x \in B(a, r), f(x) \le f(a).$$

 \bullet On dit que f admet un maximum local strict en a si :

$$\exists r \in \mathbb{R}_+^* / \forall x \in B(a,r) \setminus \{a\}, f(x) < f(a).$$

• On dit que f admet un $maximum\ global\ sur\ D\subset U$ si :

$$\exists a \in D / \forall x \in D, \ f(x) < f(a).$$

• On dit que f admet un maximum global strict sur $D \subset U$ si :

$$\exists a \in D / \forall x \in D \setminus \{a\}, f(x) < f(a).$$

Remarque 9

• On a les mêmes définitions pour un minimum.

Définition 14

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. On appelle point critique de f tout point de U en lequel toutes les dérivées partielles de f sont nulles.

Remarque 10

• Un point critique est donc un point en lequel le gradient est nul.

Théorème 8 CN d'existence

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$. Si f admet un extremum local en $u \in U$, alors u est un point critique de f.

Attention!

La réciproque est fausse.

Remarque 11

- ullet Un extremum global de f de classe C^1 sur un ensemble F fermé borné, est donc à rechercher :
 - \hookrightarrow parmi les extrema locaux sur l'intérieur $\overset{\circ}{F}$,
 - \hookrightarrow ou parmi les autres points, ceux de Fr(F).

Définition 15

Soit $f \in \mathcal{C}^2(U,\mathbb{R})$. On appelle matrice hessienne de f en a la matrice :

$$H_f(a) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(a) & \frac{\partial^2 f}{\partial x \partial y}(a) \\ \frac{\partial^2 f}{\partial y \partial x}(a) & \frac{\partial^2 f}{\partial y^2}(a) \end{pmatrix}$$

Remarque 12

• $H_f(a)$ est symétrique puisque, f étant de classe C^2 , $\frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$

Proposition 11

Soient $f \in \mathcal{C}^2(U, \mathbb{R})$ et $a \in U$ un point critique de f.

Si la matrice hessienne de f en a (qui est symétrique réelle, donc diagonalisable) admet deux valeurs propres λ et μ non nulles, alors :

- \hookrightarrow Si λ et μ sont de signes contraires (det $(H_f(a)) < 0$), alors f n'admet pas d'extremum en a; le point a est alors appelé point col, ou point selle.
- \hookrightarrow Si λ et μ sont de même signe $(\det(H_f(a)) > 0)$, alors
 - \hookrightarrow Si $\lambda > 0$ et $\mu > 0$ (tr($H_f(a)$) > 0), f admet un minimum local en a;
 - \hookrightarrow Si $\lambda < 0$ et $\mu < 0$ (tr($H_f(a)$) < 0), f admet un maximum local en a;

Remarque 13

• Si l'une au moins des deux valeurs propres est nulle $(\det(H_f(a)) = 0)$, alors il faut faire une étude plus complète de f.

6 Fonctions de \mathbb{R}^p dans \mathbb{R}^n

Les applications considérées dans cette section sont définies sur un ouvert U de \mathbb{R}^p à valeurs dans \mathbb{R}^n , avec $1 \le p \le 3$ et $1 \le n \le 3$.

On notera $\mathcal{F}(U,\mathbb{R}^n)$ l'ensemble de ces fonctions.

${\bf Remarque}\, {\bf 14}$

• $\mathcal{F}(U,\mathbb{R}^n)$ muni des lois usuelles est un \mathbb{R} -espace vectoriel.

On utilisera la norme euclidienne sur l'espace de départ et sur celui d'arrivée.

6.1 Limites et continuité

Définition 16

Soit $f \in \mathcal{F}(U, \mathbb{R}^n)$.

• On dit que f admet une limite l en $a \in \overline{U}$ si :

$$\forall \varepsilon > 0, \exists r > 0 / \forall x \in U, (\|x - a\| < r \Rightarrow \|f(x) - l\| < \varepsilon)$$

- On dit que f est continue sur $D \subset U$ si f admet une limite en tout point de D.
- On dit que f est continue si f est continue sur U.

Définition 17

Soit $f \in \mathcal{F}(U, \mathbb{R}^n)$. On note $f : x = (x_1, \dots, x_p) \mapsto f(x) = (f_1(x), \dots, f_n(x))$.

Les applications f_1, \ldots, f_n , qui sont définies sur U à valeurs dans \mathbb{R} , sont appelées applications coordonnées de la fonction f.

Théorème 9

Soient $f \in \mathcal{F}(U, \mathbb{R}^n)$ et $a \in \overline{U}$.

La fonction f admet une limite en a (resp. est continue sur $D \subset U$) si, et seulement si toutes ses fonctions coordonnées f_i admettent une limite en a (resp. sont continues sur $D \subset U$).

Remarque 15

• On pourra ainsi utiliser tous les résultats sur la continuité pour les applications de \mathbb{R}^p dans \mathbb{R} établis précédemment.

6.2 Dérivées partielles

Définition 18

On dit que $f \in \mathcal{F}(U,\mathbb{R}^n)$ admet une dérivée partielle (première) par rapport à la i-ème variable en $a \in U$ si pour tout $k \in [1, n]$, l'application coordonnée f_k de f admet une dérivée partielle en a. On note alors :

$$\frac{\partial f}{\partial x_i}(a) = \left(\frac{\partial f_1}{\partial x_i}(a), \frac{\partial f_2}{\partial x_i}(a), \cdots, \frac{\partial f_n}{\partial x_i}(a)\right).$$

On dit que $\frac{\partial f}{\partial x_i}(a)$ est la *i-ème dérivée partielle* (d'ordre 1) de f en a ou encore la dérivée partielle (d'ordre 1) par rapport à la variable x_i .

Remarque 16

• Si $f \in \mathcal{F}(U,\mathbb{R}^n)$ admet un i-ème dérivée partielle en $a = (a_1,...,a_p) \in U$ alors :

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a_1, ..., a_i + t, ..., a_p) - f(a_1, ..., a_i, ..., a_p)}{t}$$

Attention!

Comme pour les fonctions à valeurs dans \mathbb{R} , l'existence de dérivées partielles en a n'implique pas la continuité en a.

Définition 19

Soit $f \in \mathcal{F}(U, \mathbb{R}^n)$. Si elle existe, on appelle encore *i-ème dérivée partielle* de f la fonction $\frac{\partial f}{\partial x_i}$ définie sur U par $\frac{\partial f}{\partial x_i}$: $a \in U \mapsto \frac{\partial f}{\partial x_i}(a) \in \mathbb{R}^n$

Définition 20

On dit que $f \in \mathcal{F}(U, \mathbb{R}^n)$ est de classe \mathcal{C}^1 sur U si f admet p dérivées partielles continues sur U, c'est à dire si : $\forall i \in [\![1,p]\!]$, l'application partielle $\frac{\partial f}{\partial x_i}$ est définie et continue sur U.

Notation

L'ensemble des fonctions de classe \mathcal{C}^1 sur U ouvert de \mathbb{R}^p à valeurs dans \mathbb{R}^n est noté $\mathcal{C}^1(U,\mathbb{R}^n)$.

Proposition 12

f est classe \mathcal{C}^1 si, et seulement si pour tout $k \in [1, n]$, l'application coordonnée f_k de f est de classe \mathcal{C}^1 .

Définition 21

Soient $f \in \mathcal{F}(U, \mathbb{R}^n)$ et $a \in U$.

• On dit que l'application f possède des dérivées partielles d'ordre 2 en a si, pour tout $k \in [1, n]$, l'application coordonnée f_k de f admet des dérivées partielles d'ordre 2 en a. On note alors :

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \left(\frac{\partial^2 f_1}{\partial x_i \partial x_j}(a), \frac{\partial^2 f_2}{\partial x_i \partial x_j}(a), \cdots, \frac{\partial^2 f_n}{\partial x_i \partial x_j}(a)\right).$$

la i-ème dérivée partielle de la j-ème dérivée partielle en a.

• Si, pour tout $k \in [1, n]$, l'application coordonnée f_k de f est de classe C^2 , alors on dit que f est classe C^2 .

Remarque 17

 On en déduit que l'on conserve toutes les propriétés (linéarité, ...) que l'on avait pour les applications à valeurs dans ℝ.

Théorème 10

On considère les applications suivantes :

- $h: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 sur U, ouvert de \mathbb{R}^2 .
- f et g de \mathbb{R}^2 dans \mathbb{R} , de classe \mathcal{C}^1 sur V, ouvert de \mathbb{R}^2 tel que : $\forall (x,y) \in V, (f(x,y),g(x,y)) \in U$.

Alors l'application $F: \left| \begin{array}{ccc} V & \to & \mathbb{R} \\ (x,y) & \mapsto & h(f(x,y),g(x,y)) \end{array} \right|$ est de classe \mathcal{C}^1 sur V et :

$$\frac{\partial F}{\partial x} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial h}{\partial g} \frac{\partial g}{\partial x} \quad \text{et} \quad \frac{\partial F}{\partial y} = \frac{\partial h}{\partial f} \frac{\partial f}{\partial y} + \frac{\partial h}{\partial g} \frac{\partial g}{\partial y}$$

Exemple 2 Passage en coordonnées polaires dans \mathbb{R}^2 :

Soit $u: \left| \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (\rho, \theta) & \mapsto & (\rho \cos \theta, \rho \sin \theta) \end{array} \right|$ est de classe \mathcal{C}^1 sur \mathbb{R}^2 .

Soit la fonction $h: \mathbb{R}^2 \to \mathbb{R}$, et $F: \mathbb{R}^2 \to \mathbb{R}$ définie par $F(\rho, \theta) = h \circ u(\rho, \theta)$. Alors si h est de classe \mathcal{C}^1 sur \mathbb{R}^2 , F est de classe \mathcal{C}^1 sur \mathbb{R}^2 , et on a :

$$\frac{\partial F}{\partial \rho}(\rho, \theta) = \cos \theta \frac{\partial h}{\partial x}(u(\rho, \theta)) + \sin \theta \frac{\partial h}{\partial y}(u(\rho, \theta))$$

$$\frac{\partial F}{\partial \theta}(\rho,\theta) = -\rho \sin \theta \frac{\partial h}{\partial x}(u(\rho,\theta)) + \rho \cos \theta \frac{\partial h}{\partial y}(u(\rho,\theta))$$

Application:

Dans le plan \mathbb{R}^2 muni de sa base canonique (\vec{i}, \vec{j}) , pour $\theta \in \mathbb{R}$, on définit la base $(\overrightarrow{u_r}, \overrightarrow{u_\theta})$, dite *comobile*, par $\overrightarrow{u_r} = \cos \theta \ \overrightarrow{i} + \sin \theta \ \overrightarrow{j}$ et $\overrightarrow{u_\theta} = -\sin \theta \ \overrightarrow{i} + \cos \theta \ \overrightarrow{j}$.

La matrice de passage est la matrice de la rotation d'angle θ .

Pour $h: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 , on a $\nabla h = \frac{\partial h}{\partial x} \vec{i} + \frac{\partial h}{\partial y} \vec{j}$.

En notant toujours h l'application $h \circ u$, la formule de changement de base donne :

$$\nabla h = \left(\cos\theta \frac{\partial h}{\partial x} + \sin\theta \frac{\partial h}{\partial y}\right) \overrightarrow{u_r} + \left(-\sin\theta \frac{\partial h}{\partial x} + \cos\theta \frac{\partial h}{\partial y}\right) \overrightarrow{u_\theta} = \frac{\partial h}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial h}{\partial \theta} \overrightarrow{u_\theta}$$

7 Équations aux dérivées partielles

Définition 22

On appelle équation aux dérivées partielles ou E.D.P. toute équation faisant intervenir les dérivées partielles d'une fonction inconnue f.

7.1 Équation aux dérivées partielles du premier ordre

Théorème 11 Équation simple

Les solutions de classe \mathcal{C}^1 sur U (ouvert de \mathbb{R}^2) de l'équation :

$$\frac{\partial f}{\partial x}(x,y) = g(x,y),$$

avec g continue sur U sont de la forme :

$$f(x,y) = \int g(x,y)dx + K(y)$$
 où

- $\int g(x,y)dx$ est une primitive quelconque de g par rapport à x;
- K est une application quelconque de classe C^1 sur la projection de U sur (Oy).

Remarque 18

• Il arrive que l'on ait besoin de faire un changement de variables pour se ramener à cette forme.

Méthode d'étude de systèmes différentiels d'équations aux dérivées partielles

On étudie ici, sur un ouvert de \mathbb{R}^2 , les systèmes différentiels d'équations aux dérivées partielles de la forme :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = g(x,y) \\ \frac{\partial f}{\partial y}(x,y) = h(x,y) \end{cases}$$

Méthode:

- \hookrightarrow On intègre la première équation, ce qui donne une fonction inconnue K(y).
- \hookrightarrow On dérive ensuite par rapport à y l'expression de f obtenue.
- \hookrightarrow Pour finir, on introduit le résultat obtenu dans la deuxième équation, ce qui donne une expression de K'(y) qu'on intègre.

Remarque 19

- On vérifie d'abord que les dérivées partielles croisées sont égales, en dérivant la première équation par rapport à x et la seconde par rapport à y.
 - Si ce n'est pas le cas, il y a peu de chances qu'il y ait des solutions puisque f ne peut être de classe C^2 .
- Si c'est plus simple, on peut inverser l'ordre des deux équations.
- \bullet En aucun cas, on n'intègre les deux équations séparément, car on obtient alors deux expressions différentes de f dont on ne sait pas quoi faire...

7.2 Équation aux dérivées partielles du second ordre

Théorème 12

Les solutions de classe C^2 sur U (ouvert de \mathbb{R}^2), de l'équation :

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 0$$

sont de la forme :

$$f(x,y) = xK(y) + L(y)$$

où K et L sont des applications quelconques de classe \mathcal{C}^2 sur la projection de U sur (Oy).

${\bf Th\'{e}or\`{e}me~13}$

Les solutions de classe \mathcal{C}^2 sur U (ouvert de \mathbb{R}^2), de l'équation :

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = 0$$

sont de la forme :

$$f(x,y) = K(x) + L(y)$$

où K et L sont des applications quelconques de classe C^2 sur la projection de U sur (Ox) et (Oy) respectivement.

Remarque 20

• Comme pour les équations aux dérivées partielles du premier ordre, il arrive que l'on ait besoin d'un changement de variable pour obtenir une équation de l'une des formes précédentes.