

http://r-bayesian-networks.org/ gilles.kratzer@math.uzh.ch arianna.comin@sva.se

GILLES KRATZER, APPLIED STATISTICS GROUP, UZH

ARIANNA COMIN, DEP. OF DISEASE CONTROL AND EPIDEMIOLOGY, SVA

SVEPM WORKSHOP, UTRECHT 27.03.2019

BAYESIAN NETWORKS MEET OBSERVATIONAL DATA

MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION PREDICTION

Credit Card Fraud Detection Using Bayesian and Neural Networks

Sam Maes

Karl Tuyls

Bram Vanschoenwinkel

Bernard Manderick

Vrije Universiteit Brussel - Department of Computer Science Computational Modeling Lab (COMO)

Pleinlaan 2

B-1050 Brussel, Belgium

{sammaes@,ktuyls@,bvschoen@,bernard@arti.}vub.ac.be

Abstract

This paper discusses automated credit card fraud detection by means of machine learning. In an era of digitalization, credit card fraud detection is of great importance to financial institutions. We apply two machine learning techniques suited for reasoning under uncertainty: artificial neural networks and

do the fraud detection. After a process of learning, the program is supposed to be able to correctly classify a transaction it has never seen before as fraudulent or not fraudulent, given some features of that transaction.

The structure of this paper is as follows: first we introduce the reader to the domain of credit card fraud detection. In Sections 3 and 4 we briefly ex-

MOTIVATIONAL EXAMPLE: CREDIT CARD FRAUD DETECTION PREDICTION

Credit Card Fraud Detection Using Bayesian and Neural Networks

2	Sam Maes - I	Karl Tuvls - Bram Vanschoenwin	
	experiment	$\pm 10\%$ false pos	$\pm 15\%$ false pos
	ANN-fig 2(a)	60% true pos	70% true pos
	ANN-fig 2(a)	47% true pos	58% true pos
	ANN-fig 2(c)	60% true pos	70% true pos
	BBN-fig 2(e)	68% true pos	74% true pos
	BBN-fig 2(g)	68% true pos	74% true pos

Abstract

This paper discusses tection by means of of digitalization, cre great importance to

Table 1: This table compares the results achieved with ANN and BBN, for a false positive rate of re- le features of that spectively 10% and 15%.

rocess of learning, e to correctly clasn before as fraud-

s follows: first we

two machine learning techniques suited for reasoning under uncertainty: artificial neural networks and

introduce the reader to the domain of credit card fraud detection. In Sections 3 and 4 we briefly ex-

MOTIVATIONAL EXAMPLE: VETERINARY EPIDEMIOLOGY DATA VISUALISATION

Contents lists available at SciVerse ScienceDirect

Preventive Veterinary Medicine

journal homepage: www.elsevier.com/locate/prevetmed

Using Bayesian networks to explore the role of weather as a

potential determinant of disease in pigs

B.J.J. McCormick^a, M.J. Sanchez-Vazquez^b, F.I. Lewis

^a Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA

^b OIE Organisation Mondiale de la Santé Animale, 12, rue de Prony, 75017 Paris, France

^c Section of Epidemiology, University of Zurich, Zurich, Switzerland

MOTIVATIONAL EXAMPLE: SOCIAL SCIENCES DATA INTERPRETATION

Discovering complex interrelationships between socioeconomic status and health in Europe: A case study applying Bayesian Networks

Javier Alvarez-Galvez a, b, *

^b Complutense University of Madrid, Department of Sociology IV (Research Methodology and Communication Theory), Campus de Somosaguas, Faculty of Political

Fig. 1. Bayesian networks describing interrelationships between SES and health in five European welfare states.

^a Loyola University Andalusia, Department of International Studies, Campus de Palmas Altas, Faculty of Political Sciences and Law, Seville 41014, Spain

BAYESIAN NETWORKS IN THE MACHINE LEARNING WORLD

OUTLINE OF THE TALK

Objective of the workshop:

How to learn Bayesian networks from observational data?

OUTLINE OF THE TALK

Objectif of the workshop:

select

How to learn Bayesian networks from observational data?

Bayesian Networks are defined by two elements:

Network structure:

Directed Acyclic Graph (DAG): G = (V, A)

in which each node vi ∈ V corresponds to a random variable Xi

Probability distribution:

Probability distribution X with parameters Θ , which can be factorised into smaller local probability distributions according to the arcs aij \in A present in the graph.

A BN encodes the factorisation of the joint distribution

$$P(\mathbf{X}) = \prod_{j=1}^{n} P(X_j \mid \mathbf{Pa}_j, \Theta_j)$$
, where \mathbf{Pa}_j is the set of parents of X_j

PLAN

- 1. From observationnal dataset deduce probabilistic model
 - Usually discrete BN or jointly Gaussian
 - Epidemiological constrain: mixture of distributions
- 2. From probabilistic model deduce structure

Observational dataset

Probabilistic model

$$P(X_1, \dots, X_n) =$$

$$P(X_i | X_j, \dots) \dots$$

Network structure

# Nodes	# DAGs	is Inference		Typical domain of interest		
1 - 15 Nodes	< 10 ⁴¹ DAGs	Exact inference	190-			
16 - 25 Nodes	< 10 ¹⁰⁰ DAGs	Exact inference possible				
26 - 50 Nodes	< 10 ⁴⁰⁰ DAGs	Approximate inference		ENOMICS		
51 - 100 Nodes	< 10 ¹⁷⁰⁰ DAGs	Approximate inference		GENON	PROTEOMICS	
101 - 1000 Nodes	< 10 ¹⁰⁰⁰⁰⁰ DAGs	10 ¹⁰⁰⁰⁰⁰ DAGs (very) approximative inference		PROTE		

Approximations:

- Iimiting number of parents per node
- Decomposable scores/efficient algorithm
- Score equivalence

The conditional probability of A given B is:

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

Bayes theorem:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C if: $A \perp\!\!\!\perp_P B|C$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

ELEMENT OF GRAPH THEORY

Let A, B and C non intersecting subsets of nodes in a DAG G

A is conditionally independent of B given C if: $A \perp\!\!\!\perp_P B | C$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

$$A \perp \!\!\!\perp_P B|C$$

LEARNING BAYESIAN NETWORKS

Structure learning

Parameter estimation

Parameter learning

$$P(\mathcal{M}|\mathcal{D}) = \underbrace{P(\Theta_{\mathcal{M}}, \mathcal{S}|\mathcal{D})}_{\text{model learning}} = \underbrace{P(\Theta_{\mathcal{M}}|\mathcal{S}, \mathcal{D})}_{\text{parameter learning structure learning}} \cdot \underbrace{P(\mathcal{S}|\mathcal{D})}_{\text{parameter learning structure learning}}$$

Search and score algorithm

Search and score algorithm

Parameter estimation

- compute marginal posterior density
- ▶ regression estimate

Search and score algorithm

Parameter estimation

- compute marginal posterior density
- ▶ regression estimate

Using R

buildscorecache()

mostprobable()

fitabn()

SELECTED BIBLIOGRAPHY

ELEMENT OF GRAPH THEORY: MARKOV BLANKET

The Markov Blanket of a node is the set of parents, co-parents and children.

$$P(X_k \mid X_n, k \neq n) = P(X_k \mid X_{\mathrm{MB}(k)}), \forall k$$

The Markov Blanket of a node is the set of nodes that shields the index node from the rest of the network

Local Markov property:

$$X \perp \text{Non-Descendants}(X) | Pa(X)$$

LEARNING BAYESIAN NETWORKS

- In a practical perspective, for observational data, if learning algorithms rely on probabilistic learning algorithm. Then one can learn up to the Markov equivalence class.
- Markov equivalence class are the set of DAGs that have the same skeleton and v-structure.

