

DATA 220
Mathematical Methods for Data Analytics

Dr. Mohammad Masum

- What is Statistics?
 - Descriptive Statistics
 - Inferential Statistics
- What is Data?
- Sample vs. Population
 - Statistic vs parameter

Introduction to Statistics - Sampling

- Sampling is Integral part of ML workflow
 - Sampling from all possible real-world data
 - to create training data
 - to create splits: training, validation and testing data
 - for monitoring purposes
- Not accessible to all real-world data use a subset of real world data (by sampling) for training model
- Infeasible to process all data that you have access to too much time, too much computing power, too much money
- Allows to accomplish a task faster and cheaper
 - For instance, performing a quick experiment with a subset of the data before running model on all the entire data

Sampling

Non-Probability Sampling

- Convenience Sampling
- Snowball Sampling
- Judgement Sampling
- Quota Sampling

Probability Sampling

- Simple Random Sampling
- Stratified Sampling
- Cluster Sampling
- Systematic Sampling

Non-Probability Sampling

- Convenience Sampling samples are selected based on availability
- Snowball Sampling Future samples are selected based on existing samples
- Judgement Sampling experts decide what samples to include
- Quota Sampling selecting samples based on quotas for certain slices without any randomization

Probability Sampling

- Simple Random Sampling: Randomly selecting individuals from a population, where each has an equal chance to be selected
- Stratified Sampling: Dividing the population into distinct groups and then randomly selecting samples from each group.
- Cluster Sampling: Dividing the population into clusters or groups, then randomly choosing some clusters
- Systematic Sampling: Selecting every nth individual from a population after randomly choosing a starting point

Introduction to Statistics – Sampling

- A. We take a list of all students enrolled and identify every 100th student for our sample
- B. We stand in the commons area and stop students as they walk by to get their opinion.
- C. We randomly select 50 classes then interview everyone in those classes.
- D. We take a list of all students that is numbered. We use a random number generator to select 500 numbers. The students corresponding to those numbers on the list are selected for the sample.
- E. We recognize that women may have a different opinion than men so we first divide the population by gender then randomly select male and then randomly select female students for our sample.

Introduction to Statistics – Selection Bias

- Selection Bias Data (samples) are selected in a way that is not reflective / representative of the real-world distribution (entire population)
 - Coverage Bias Data is not selected in a representative fashion
 - Non-Response Bias Data ends up unrepresentative due to participation gaps in the data collection process
 - Sampling Bias Proper randomization is not used during data collection

Introduction to Statistics - Variable types

- Recognizing variable types is important choosing appropriate statistical methods, visualization techniques, and modeling approaches
- Qualitative or categorical represent qualities or categories that cannot be measured numerically
 - Ordinal: categories with a meaningful order
 - Nominal: without a specific order among categories
- Quantitative represent numerical measurements that have meaningful magnitudes and differences
 - Discrete: distinct, separate values and often involve counting
 - Continuous: can take on any value within a certain range

Introduction to Statistics - Variable types - Titanic Dataset

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

- Pclass The passenger class (1 = first class, 2 = second class, 3 = third class)
- **SibSp** The number of siblings or spouses the passenger had on board.
- Parch The number of parents or children the passenger had on board.
- **Embarked** The port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

- Frequency table
 - Frequency a summary of counts for each category of the data
 - Relative frequency ratio between frequency of a category and sum of all frequencies
 - All relative frequencies should add up to 1 or very close to 1

```
1 df['Embarked'].value_counts()

S 644
C 168
Q 77
Name: Embarked, dtype: int64
```

```
1 # Relative Frequency
2 df['Embarked'].value_counts()/len(df)

S 0.722783
C 0.188552
Q 0.086420
Name: Embarked, dtype: float64
```


- Bar chart
 - Pareto Chart descending / ascending bar chart
 - Side by side bar chart
 - Pie chart

Class	Frequency
10-19	
20-29	
30-39	
40-49	

- Histogram
 - Can be used for visualize distribution of continuous variable
 - Frequency distribution of continuous variable by creating classes (groups/bins)
 - All data falls into one of the groups
 - Bins: Same size, No overlap, & No gaps

- Graphical Summaries of data
 - Histogram
 - Can be used for visualize distribution of continuous variable
 - Shape
 - Symmetric
 - Skewed right
 - Skewed left
 - Unimodal
 - Bimodal
 - Uniform

- Determining Bins for Histogram
 - Square root rule: Approximate Square root of sample size
 - Simple & easy to apply
 - May not provide optimal number of bins
 - Scott's normal reference rule: $bins = 3.5 \sigma n^{-\frac{1}{3}}$
 - Consider both sample size and standard deviation of the data
 - Assumes symmetric distribution (which may not be the case)
 - Freedman-Diaconis Rule: $bins = \frac{IQR}{2} n^{-\frac{1}{3}}$
 - Consider sample size and variability of the data
 - Can be sensitive to outliers

Numerical Summaries of data

- Numerical Summaries of data
 - Mean
 - Median
- Comparing the mean and median
 - Which one is best measures of center?
 - Which one is resistant to outliers?

Numerical Summaries of data

Accessing individual data may not be feasible for all cases -

- Data Privacy: For confidentiality, data might be presented as frequency distributions to protect individual data points.
- Data Collection Challenges: When precise data collection is difficult, intervals or categories are used for reporting.

Calculate means for grouped data

- 1. Compute midpoint of each class in the frequency distribution
- 2. For each class: midpoint * frequency
- 3. Find sum of all the values in step 2 and then divide by total # of observations

	Class	Frequency	Midpoint	Midpoint_Frequency
0	\$0-\$49	25	24.5	612.5
1	\$50-\$99	45	74.5	3352.5
2	\$100-\$149	30	124.5	3735.0

[4]	1 total_midpoint_frequency
	7700.0
[5]	1 total_frequency
	100
[7]	1 group_mean
	77.0

- Mode
 - values that occurs most frequently in a set of data (categorical variables)
 - understanding dominant categories and making informed decisions based on the frequency of occurrence
 - Values corresponding to the peaks of the distribution (Continuous Variables)
 - detecting potential clusters or patterns, guiding decisions like price points, or understanding key trends in a dataset

Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Туре	Description	Example	Result
Arithmetic mean	Sum of values of a data set divided by number of values	(1+2+2+3+4+7+9) / 7	4
Median	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3
Mode	Most frequent value in a data set	1, 2 , 2 , 3, 4, 7, 9	2

Introduction to Statistics – Modes

- Explore 1,000 customer payment preferences for an online retail platform
- Use the mode to make a decision

Customer Preferred Payment Methods

Most common payment method: Credit Card Decision: Promote Credit Card offers to boost sales.

```
# Make a decision based on the mode
if mode_payment == 'Credit Card':
    decision = "Promote Credit Card offers to boost sales."
elif mode_payment == 'PayPal':
    decision = "Enhance PayPal integration for customer convenience."
else:
    decision = "Explore incentives for using the most common payment method."
print("Most common payment method:", mode_payment)
print("Decision:", decision)
```


Introduction to Statistics – Modes

 Consider a dataset of employee salaries - contains two distinct groups: junior employees and senior employees

Identify the Modes:

- First mode: Corresponds to junior employee salaries occurs at ...
- Second mode: Corresponds to senior employee salaries occurs at ..

Decision: Adjust Compensation Packages:

- Different compensation packages for junior and senior employees based on the modes.
 - Junior employees: Competitive entry-level salaries, growth opportunities.
 - Senior employees: Compensation reflects experience and responsibilities.

- Measures of Spread
 - Range: largest data value lowest data value
 - Variance: measures how the data points are spread from the mean
 - Standard deviation: square root of the variance
 - Practice:

$$S^2 = rac{\sum (x_i - ar{x})^2}{n-1}$$

 S^2 = sample variance

 x_i = the value of the one observation

 \bar{x} = the mean value of all observations

n = the number of observations

- Variance threshold a baseline feature selection method
 - A feature with higher variance indicates that the data points are more diverse and less clustered around the mean
 - feature carries more information or exhibits greater variability
 - Conversely, a feature with lower variance indicates that the data points are closer to the mean,
 indicating less variability and potentially less informative content

- Variance threshold a baseline feature selection method
 - 1. Compute the variance of each feature in the dataset.
 - 2. Set a threshold value for the variance
 - Remove the features with variance below the threshold: Features with a variance below this threshold are considered to have low variability
 - Retain the features with variance above the threshold for further analysis or modeling

- Variance threshold a baseline feature selection method
 - Example: Consider a dataset with the following features: Age, Height, Weight, and Income. We want to use the variance threshold method to select features with a variance above a threshold of 10.
 - Compute the variance of each feature:
 - Age: Variance = 10.5
 - Height: Variance = 2.1
 - Weight: Variance = 15.2
 - Income: Variance = 4.8
 - Features with variance below the threshold (Height and Income) are considered to have low variability.
 - Remove the features with low variance (Height and Income) from the dataset

- The empirical Rule (68-95-99.7 rule)
 - Many histogram have a bell shaped or symmetric distribution, in that case we can apply empirical rule
- Practice
 - Suppose we have a bell-shaped and symmetrical distribution data with mean 100 and std of 5. Based on the empirical rule:
 - What are the cut off values for middle 68%
 - What percentage of the values are greater than 110?
 - What percentage of the values are less than 95?
 - What percentage of the values are between 85 and 115?
 - What percentage of the values are between 90 and 105?

- Chebyshev's inequality
 - If the distribution is unknown
 - At least 75% data within 2 std
 - At least 88.9% data within 3 std
- Suppose that we have a data distribution with mean 50 and std 3:
 - Assume the data distribution is bell-shaped: what are the cut-off values for middle
 95%
 - If we can not assume the data distribution is bell-shaped, at least what percentage of values are between 41 and 59?

- Measure of position
 - Z score: tells us how many standard deviations the original observation falls away from the mean and in which direction
 - Example: suppose heights of this class students approximately bell-shaped and symmetrical with mean 65 inches and std 1.7 inches.
 - 1. What is the z-score of a student who is (a) 70 inches tall (b) 63 inches tall?
 - 2. Find what is the height of a student with a z-score of 1.5?

7	=	x	μ
			σ

Z = standard score

 \boldsymbol{x} = observed value

 μ = mean of the sample

 σ = standard deviation of the sample

feature_value	z_score
8	0.592187
3	-1.258396
8	0.592187
9	0.962303
4	-0.888280

- Z score and the empirical rule
 - Draw the curve and mark the cut-off values for z-scores.
- How comparing values in two different distributions?
 - Example: The mean length of one-year-old spotted flounder is 126 mm with standard deviation of 18 mm and the mean length of two-year-old spotted flounder is 162 mm with a standard deviation of 28 mm. The distribution of flounder lengths is approximately bell-shaped.
 - 1. Anna caught a one-year-old flounder that was 150 mm in length. What is the z score for this weight?
 - 2. Luis caught a two-year old flounder that was 190 mm in length. What is the z-score for this length?
 - 3. Whose fish is longer relative to fish the same age?

- Application of Z-score:
 - Z- score standardization
 - Z score for outlier detection
 - Assumes normality
 - Sensitive to outliers
 - Fixed threshold
 - Can be solved using Quantiles (or, dynamic thresholding)
 - Modified Z-score for outlier detection: $modified\ Z-score = \frac{0.6745\ (x-median)}{MAD}$
 - Median Absolute Deviation, MAD = median(|x median|)
 - Robust to non-normal distribution
 - Less sensitive to extreme outliers

- Modified Z-score for outlier detection: $modified\ Z-score = \frac{0.6745\ (x-median)}{MAD}$
 - Median Absolute Deviation, MAD = median(|x median|)

feature_value	z_score	abs_deviation	modified_z_score
8	0.592187	0.0	0.0000
3	-1.258396	5.0	-3.3725
8	0.592187	0.0	0.0000
9	0.962303	1.0	0.6745
4	-0.888280	4.0	-2.6980

- Quartiles: divide the data into four equal parts
- Five Number Summary: minimum, Q1, median, Q3, maximum
- Interquartile Range (IQR): Q3-Q1
- Outliers: we can find outliers using IQR \rightarrow [Q1 1.5 * IQR, Q3 + 1.5 * IQR]
- Practice: Is there any outlier in the table?

- Boxplots: a graph that represent the five number summary
 - We can also include outliers if any
 - Can be used to understand the distribution of the data
- Comparing boxplots

Which distribution has the largest IQR?
Which distribution has the largest maximum value?
Which distribution has a lower Q1?
Which distribution has a lower median?
Which distribution is symmetric?

- Scatter Plots
 - Allows to visualize association between two variables
 - Predictor (or explanatory) variables and response variable
 - Example-
 - Can be used for examining association between variables
 - Positive association
 - Negative association
 - No association
 - Form can be linear and non-linear

- Strength of scatter plots
 - Correlation coefficient (r) only calculate how strong a linear relation is
 - Calculate correlation coefficient
 - Values of r ranges between -1 and 1
- Examples

- Correlation matrix
- Covariance a single number that measures the linear relationship between two variables
 - Correlation is the scaled version of the covariance
 - Covariance value can be **between** -x and + x while correlation coefficient can be between -1 and 1

Kendall Correlation for Ordinal Data

Introduction to Statistics

- Linear Regression
- What is extrapolation?
- What is residual?
- How to interpret the slope?

Introduction to Statistics

- Practice –Describe the scatterplot.
 Remember that you must mention direction and shape.
 - Now obtain the regression equation


```
1 # The coefficients
2 print("Coefficients: \n", regr.coef_)

Coefficients:
[0.26937586]

[30] 1 # The intercept
2 print("Intercepts: \n", regr.intercept_)
```

Intercepts:

2.2423960474085756

	gpa	
0	5.0	3.7
1	3.0	3.5
2	7.0	4.0
3	1.0	2.7
4	0.5	2.0
5	4.0	3.5
6	3.0	3.3
7	5.5	3.8
8	2.5	3.4
9	2.0	2.6
10	0.6	2.0
11	6.0	3.6
12	5.0	3.2

Introduction to Statistics

- Using the regression equation, what would you predict that the GPA would be for a student who studies **4.2 hours**?
- Using the regression equation, what would you predict that the GPA would be for a student who studies **8 hours**?
- Calculate the residual for student index 5
- What is the slope? (give units)
- Interpret the slope.

- Probability
 - A fair die is rolled: find the probability that an even number comes up.
- Sample space
 - Find the sample space when a coin is tossed (a) once (b) twice and (c) thrice

- Probability model
 - The probabilities should be legitimate between 0 and 1
 - Sum of all the probabilities in the sample space should equal 1

- Probability rules
 - The probability of an event is always in between 0 and 1
 - If a event A cannot occur then P(A) = 0
 - If a event is certain to occur then P(A) = 1

- Compound event
 - is formed by combining two or more events
 - can be represented using contingency table (
 frequency table that represents two variables)
- Practice: A collection of color pencils are listed below in the table.
- 1. What is the probability that it is green?
- 2. What is the probability that it does not have an eraser?
- 3. What is the probability that it is green and eraser?

	Red	Green	Blue	Total
Eraser	10	15	5	
No Eraser	3	5	2	
Total				

- What is the probability that it is green and has no eraser?
- What is the probability that it either red or has an eraser?
- What is the probability that it is green or has no eraser?

	Red	Green	Blue	Total
Eraser	10	15	5	
No Eraser	3	5	2	
Total				

- General Addition Rule: P(A or B) =
- Mutually exclusive events: no intersection or overlap of two events
- Addition rule for mutually exclusive events: P(A or B) =
- Practice: given- P(A) = 0.32, P(B) = 0.12, P(C) = 0.15
 - 1. If the P(A or B) is 0.44, are A and B mutually exclusive? Why or why not?
 - 2. if the P(B or C) is 0.2, are B and C mutually exclusive? Why or why not?
- Complements:

- Independence
 - Multiplication rule for two independent event: if A and B are independent → P(A and B) =
- Example: Two dice are rolled, and each produces a number between 1 and 6. Let A represent the event in which the number on the first die is even and B represent the event in which the number on the second die is 6.
 - Explain why events A and B are independent
 - Find P(A), P(B), and P(A and B)

- Sampling with or without replacement
- Practice:

- Practice: A jar contains 10 balls: 7 red and 3 blue:
 - First list the possible outcomes for drawing two balls with replacement then find the probability of obtaining each outcome
 - what is the probability of getting red both times?
 - what is the probability of getting blue exactly once?
 - what is the probability of getting blue at least once?

- Practice: Taz's tree cutting service sends a survey to its customers after each job. It was found that 26% of the customers from the past year were dissatisfied with the service given. Let D represent dissatisfied, and S represent satisfied.
 - Give a probability model for the satisfaction level when randomly selecting three customers.
 (hint: find the sample space for randomly selecting three customers using S and D.)
 - What is the probability that when three customers are randomly selected, at least one is dissatisfied?
 - What is the probability that when four customers are randomly selected, at least one is dissatisfied?
- Practice: A fair coin is tossed five times. What is the probability that it comes up heads at least once?

- A random variable is a numerical outcome of a probability experiment
 - Discrete random variable
 - Continuous random variable
- Probability distribution
 - Criteria for probability distribution is same as probability model
 - Probability should be [0,1] and sum of the probabilities equal 1
 - Example:

• Practice: