

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERIA Y TECNOLOGIAS

AVANZADAS

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

UNIDAD DE APRENDIZAJE:

Provecto Integrador.

NIVEL: III

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Desarrolla la planeación de un proyecto con base en una metodología mecatrónica.

CONTENIDOS:

Conceptualización. h

Diseño detallado. 11.

Validación computacional del Diseño. 111

Documentación del proyecto.

ORIENTACIÓN DIDÁCTICA:

La presente unidad se abordará a partir de la estrategia de aprendizaje orientado a proyectos (AOP). El facilitador aplicará los métodos de enseñanza heurístico, deductivo, inductivo, analítico y sintético. Las actividades y técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: Desarrollo del proyecto, organizadores gráficos, Iluvia de ideas, análisis y solución de ejercicios, desarrollo de simulaciones numéricas y algoritmos computacionales, discusiones guiadas, exposiciones, búsqueda bibliográfica y cibergráfica y desarrollo de prácticas de laboratorio.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación formativa, sumativa y rúbricas de autoevaluación y coevaluación.

Esta unidad de aprendizaie también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los criterios establecidos por la Academia.
- Acreditación en otra unidad académica del IPN u otra institución educativa, nacional o internacional, externa al IPN, con la cual se tenga convenio.

BIBLIOGRAFÍA:

- Ashby Michael F. (2005), Materials Selection in Mechanical Design (3rd Edition), Italy: Elselvier, ISBN: 978-0750661683.
- Bishop R. H. (2005). Mechatronics: An Introduction. USA: CRC Press Taylor & Francis. ISBN: 978-0849363580.
- Bishop R. H. (2007), Mechatronics Systems, Sensors, and Actuators Fundamentals and Modeling (2nd Edition). USA: CRC Press Taylor & Francis. ISBN: 978-0849392580.
- Bolton W. (2009). Mechatronics: A Multidisciplinary Approach (4th Edition). UK: Pearson-Prentice Hall. ISBN: 978-0132407632.
- Boothroyd Geoffrey, Dewhurst Peter, Knight Winston A. (2011). Product Design for Manufacture and Assembly (3rd Edition). USA: CRC Press. ISBN: 978-1420089271.

SECRETARÍA ACADÉMICA

UNIDAD ACADÉMICA: Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas

Avanzadas

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

PROFESIONAL ASOCIADO: N/A

ÁREA FORMATIVA: Profesional

MODALIDAD: Escolarizada.

UNIDAD DE APRENDIZAJE: Proyecto Integrador.

TIPO DE UNIDAD DE APRENDIZAJE: Práctica/Obligatoria.

VIGENCIA: Agosto 2012

NIVEL: III

CRÉDITOS: 3.0 Tepic - 2.90 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye a formar el perfil de egreso Ingeniero Mecatrónico, porque integra las técnicas y herramientas del diseño mecatrónico en un proyecto de ingeniería. Asimismo, se favorecen las competencias siguientes: resolución de problemas, toma de decisiones, trabajo en equipo, identificación de problemas relevantes del contexto profesional, la comunicación, la creatividad, y el pensamiento crítico; para la solución de problemas afines al área de ingeniería.

Las unidades de aprendizaje precedentes son: Dibujo asistido por computadora, Herramientas computacionales, Control de sistemas mecatrónicos, Modelado y simulación de sistemas mecatrónicos. Las consecuentes son: Proyecto integrador II, Diseño básico de elementos de máquinas, Diseño avanzado de elementos de máquinas y Trabajo Terminal I y II.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Desarrolla la planeación de un proyecto con base en una metodología mecatrónica.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 0.0

HORAS PRÁCTICA/SEMANA: 3.0

HORAS TEORÍA/SEMESTRE: 0.0

HORAS PRÁCTICA/SEMESTRE:

54.0

HORAS TOTALES/SEMESTRE:

54.0

UNIDAD DE APRENDIZAJE DISEÑADA
POR: Academia de Mecatrónica

REVISADA Académica

APROBADA POR: Subdirección
Académica

APROBADA POR: Consejo Tecnico Genevitivo Escolar.

INTITUT INTERPOR MENEVAL

M. en C. Arqui Rafael Ganvallo: Domínguez
Prasidente del GTCE.
8 de Febrero de 2012

AUTORIZADO POR: Comisión de Programas Académicos del Consejo General Consultivo del IPN.

M. en C-Daffny Rosado Mereno Coordinador de la Comisión de Programas Académicos: 11 de Abril de 2012

4

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Proyecto integrador.

upiitaipn

OJA:

DE

N° UNIDAD TEMÁTICA: I		NOMBRE: Conceptualiza	ación
(DE COMPETENCIA		
Determina la metodología del diseño mecatrónico con	base en las necesidades y	requerimientos del proyec	to
	HORAS AD	HORAS TAA Actividades de	

No.	CONTENIDOS	Actividades de Docencia		Aprendizale		CLAVE BIBLIOGRÁFICA
		T	Р	T	Р	
1.1	Metodologías de diseño convencional.		0.5			1B, 2C y 8B
1.2	Metodologías de diseño mecatrónico.		0.5			
1.3	Identificación de las necesidades y requerimientos.		0.5		2.5	
1.3.1	Especificaciones de Diseño del Producto – PDS.					
1.3.2	División en áreas funcionales.					
1.4 1.4.1 1.4.2 1.4.3	Diseño conceptual. Técnicas de Creatividad. Análisis Morfológico. Modelo aproximado de manufactura y		1.0		2.5	
1.4.4 1.4.5	ensamble. Planeación. Hojas de trabajo.					
1.5 1.5.1	Selección del Diseño Conceptual. Herramientas para la toma de decisiones.		1.0		2.5	
1.5.2	Viabilidad Tecnológica y temporal.					
	Subtotales:	0.0	3.5	0.0	8.5	

ESTRATEGIAS DE APRENDIZAJE

Encuadre del curso.

La presente unidad se abordará a partir de la estrategia de aprendizaje orientado a proyectos (AOP). El facilitador aplicará los métodos de enseñanza heurístico e inductivo. Las actividades y técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: Propuesta del proyecto del sistema mecatrónico, lluvia de ideas y desarrollo de prácticas de laboratorio 1, 2 y 3.

Table 1 To 1 To 1			1000			
Port	ata	10	NO	OMMO	ODO	30.
F- (3) (all	HU.	ue	CALIFO		03.

Evaluación Diagnóstica	
Propuesta del proyecto	10%
Participación en la lluvia de ideas	5%
Reportes de las prácticas de laboratorio	30%
Evaluación escrita	50%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Proyecto integrador.

HOJA:

DE

10

Nº UNIDAD TEMÁTICA: II

UNIDAD DE COMPETENCIA

NOMBRE: Diseño detallado.

Plantea el diseño detallado del proyecto mecatrónico; con base en las herramientas para la administración de proyectos, la selección y el cálculo de componentes comerciales y de diseño

No.	CONTENIDOS	Activida			CLAVE BIBLIOGRÁFICA	
		T	P	Т	P	
2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Herramientas de administración del proceso de diseño. Introducción a las herramientas de administración. Estructura de división de tareas. Matriz de asignación de responsabilidades. Cronograma de actividades. Estimación de costos/gastos.		0.5		3.0	4C, 3B, 9B y 11B
2.2 2.2.1 2.2.2	Selección de componentes comerciales. Técnicas de selección. Criterios de selección.		1.0		4.0	
2.3 2.3.1 2.3.2 2.3.3 2.3.3.1 2.3.4	Componentes de diseño. Selección de materiales y procesos. Diseño de formas. Factor de seguridad de diseño. Tolerancias. Diseño para la manufactura y ensamble – DFMA.		2.0		8.5	
	Subtotales:	0.0	3.5	0.0	15.5	

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará a partir de la estrategia de aprendizaje orientado a proyectos (AOP). El facilitador aplicará el método de enseñanza analítico. Las actividades y técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: diseño del proyecto, exposiciones, busqueda bibliográfica y cibergráfica y desarrollo de prácticas de laboratorio 4, 5, 6 y 7.

Portafolio de evidencias:	
Avance del proyecto (1).	10%
Reportes de las prácticas de laboratorio.	30%
Evaluación escrita.	30%
Exposiciones	20%
Reporte del análisis de fuentes bibliográficas.	5%
Autoevaluación y coevaluación (rúbrica).	5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Proyecto integrador.

HOJA: 5

NOMBRE: Validación computacional del diseño

10

N° UNIDAD TEMÁTICA: III

UNIDAD DE COMPETENCIA

Demuestra la funcionalidad del proyecto mecatrónico, con base en las herramientas computacionales y modelos de ensamble y programas de control.

No. CONTENIDOS		Activid	AS AD ades de encia	HORAS Activida Apren Autór	ides de dizaje	CLAVE BIBLIOGRÁFICA
		T	P	T	P	
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Modelado del proyecto. Modelo del funcionamiento del sistema. Modelo del ensamble del sistema. Modelo del programa de control. Modelo geométrico. Modelado estético.		0.5		3.0	5B, 4C y 10B
3.2	Fundamentos de análisis por elemento finito.		0.5		3.0	
3.3	Validación computacional dinámica.		0.5		3.0	
3.4	Validación computacional mecatrónica.		0.5		3.0	
	Subtotales:	0.0	2.0	0.0	12.0	

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará a partir de la estrategia de aprendizaje orientado a proyectos (AOP). El facilitador aplicará el método de enseñanza deductivo. Las actividades y técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: planeación del proyecto, análisis y solución de ejercicios, desarrollo de simulaciones numéricas y algoritmos computacionales, discusiones guiadas y desarrollo de prácticas de laboratorio 8 y 9.

Portafolio	de	evi	der	icias:	
	unn	00	dal	provi	-

nio de evidencias.	
Avance del proyecto (2).	30%
Reportes de las prácticas de laboratorio	20%
Reporte de la implementación de algoritmos computacionales.	20%
Participación en la discusión guiada.	10%
Solución de ejercicios.	15%
Autoevaluación y coevaluación (rúbrica).	5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Proyecto integrador.

upiitaipn

HOJA. C

NOMBRE: Documentación del proyecto

DE

10

Nº UNIDAD TEMÁTICA: IV

UNIDAD DE COMPETENCIA

Diseña planos y diagramas de la manufactura y el ensamble del proyecto con base en el análisis integral.

No.	CONTENIDOS	HORAS AD Actividades de docencia		Actividades de Aprendizaie		CLAVE BIBLIOGRÁFICA	
		Т	Р	T	Р		
4.1 4.1.1 4.1.2 4.1.2.1	Modelo de manufactura y ensamble. Plan de manufactura y ensamble. Programa de mantenimiento. Refacciones.		0.5		2.0	7B y 6B	
4.2 4.2.1 4.2.2	Planos normalizados de fabricación. Tolerancias. Normas de dibujo.		0.5		2.0		
4.3	Diagramas de algoritmos de control.		0.5		1.5		
4.4 4.4.1 4.4.2 4.4.3	Diagramas esquemáticos. Eléctricos. Electrónicos. Neumáticos.		0.5		1.5		
	Subtotales	0.0	2.0	0.0	7.0		

ESTRATEGIAS DE APRENDIZAJE

La presente unidad se abordará a partir de la estrategia de aprendizaje orientado a proyectos (AOP). El facilitador aplicará los métodos de enseñanza analítico y sintético. Las actividades y técnicas que auxiliarán a la estrategia seleccionada serán las siguientes: Reporte final del proyecto, organizadores gráficos, discusiones guiadas, exposiciones y desarrollo de prácticas de laboratorio 10, 11 y 12.

Portafolio de evidencias:	
Reporte final del proyecto	40%
Reportes de las prácticas de laboratorio	20%
Diagramas	10%
Exposiciones	10%
Participación en las discusiones guiadas	15%
Autoevaluación y coevaluación (rúbrica)	5%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Proyecto Integrador.

HOJA: 7 DE 10

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Necesidades y especificaciones del Proyecto (PDS).	1	3.0	Laboratorio de electrónica y de neumática y de control de procesos.
2	Diseño conceptual del proyecto integrador.	t	6.0	001101000000000000000000000000000000000
3	Selección del diseño conceptual y análisis de viabilidad.	1	3.0	
4	Herramientas de administración de proyectos.	11	4.0	
5	Selección de componentes comerciales.	П	3.0	
6	Definición de componentes de diseño.	11	8.0	
7	Diseño para la manufactura y ensamble – DFMA.	16	4.0	
8	Validación computacional mecatrónica.	II MARIE	8.0	
9	Modelo de manufactura y ensamble.	111	6.0	
10	Planos normalizados de fabricación.	IV	3.0	
11	Diagramas de algoritmos de control.	IV	3.0	
12	Diagramas esquemáticos.	IV	3.0	
		TOTAL DE		
		HORAS	54.0	

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas aportan el 20% de la calificación de las unidades temáticas I, III y IV; y el 30% en la unidad temática II.

Será indispensable contar con todas las prácticas realizadas para tener el derecho de acreditar la unidad de aprendizaje, el cual está considerado dentro de la evaluación continua.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

upilita ipn

UNIDAD DE APRENDIZAJE:

Proyecto Integrador.

HOJA:

8

DE

10

PERÍODO	UNIDAD	PROCEDIMIENTO DE EVALUACIÓN		
1	1	Evaluación continua 50% Evaluación escrita 50%		
2	11	Evaluación continua 70% Evaluación escrita 30%		
3	III	Evaluación continua 100% Evaluación escrita 0%		
4	IV	Evaluación continua 100% Evaluación escrita 0%		
		Los porcentajes con los que cada unidad temática contribuyen a la evaluación fina son: La unidad I aporta el 25% de la calificación final. La unidad III aporta el 25% de la calificación final. La unidad III aporta el 25% de la calificación final. La unidad IV aporta el 25% de la calificación final. Esta unidad de aprendizaje también se puede acreditar mediante: Evaluación de saberes previamente adquiridos con base en los criterio que establezca la Academia. Acreditación en otra unidad académica del IPN u otra institución educativa nacional o internacional, externa al IPN, con la cual se tenga convenio.		

SECRETARÍA ACADÉMICA

Proyecto Integrador. UNIDAD DE APRENDIZAJE:

HOJA:

DE

	2	ъ.	ı,

CLAVE	В	C	BIBLIOGRAFÍA
1	Х		Ashby Michael F. (2005). Materials Selection in Mechanical Design (3 rd Edition). Italy: Elselvier. ISBN: 978-0750661683.
2		X	Bishop R. H. (2005). Mechatronics: An Introduction. USA: CRC Press Taylor & Francis. ISBN: 978-0849363580.
3	Х		Bishop R. H. (2007). Mechatronics Systems, Sensors, and Actuators - Fundamentals and Modeling (2 nd Edition). USA: CRC Press Taylor & Francis. ISBN: 978-0849392580.
4		×	Bolton W. (2009). Mechatronics: A Multidisciplinary Approach (4 th Edition). UK: Pearson-Prentice Hall. ISBN: 978-0132407632.
5	X		Boothroyd Geoffrey, Dewhurst Peter, Knight Winston A. (2011). Product Design for Manufacture and Assembly (3 rd Edition). USA: CRC Press. ISBN: 978-1420089271.
6	Х		Bradley David & Russell David W. (2010). Mechatronics in Action: Case Studies in Mechatronics – Applications and Education. UK: Springer Series. ISBN: 978-1849960793.
7		×	D. A. Bradley (1991). MECHATRONICS: Electronics in products and processes. Florida: T & F. ISBN: 0412-582902.*
8		X	Dym, Patrick (2009). El proceso de diseño en la ingeniería: Cómo desarrollar soluciones efectivas. Limusa Wiley. ISBN: 968-1862015.
9	х		Hurst Kenneth (1999). Engineering Design Principles. USA: Elselvier. ISBN: 978-0340598290.*
10		Х	Nikolay, Avgoustinov (2009). Modelling in Mechanical Engineering and Mechatronics. ISBN: 978-1846289095. http://dx.doi.org/10.1007/978-1-84628-909-5.
11		×	Nigel Cross (2010). Métodos de Diseño: Estrategias para el diseño de productos , Limusa Wiley. ISBN: 968-1862015.
			*Libro clásico.

SECRETARÍA ACADÉMICA

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

1. DATOS GENERALES

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS UNIDAD ACADÉMICA:

AVANZADAS

PROGRAMA ACADÉMICO:

Ingeniería Mecatrónica

NIVEL III

ÁREA DE FORMACIÓN:

Institucional

Científica Básica

Profesional

Terminal y de Integración

ACADEMIA: Mecatrónica

UNIDAD DE APRENDIZAJE: Proyecto Integrador.

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

Maestría en Ciencias en Ciencias ó Ingeniería área

mecatrónica.

2. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE: Desarrolla la planeación de un proyecto con base en una metodología mecatrónica.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
Análisis concurrente. Lenguaje de programación. En el uso equipo de cómputo en sistemas operativos. Dibujo asistido por computadora. Dominio de paquetes de simulación. (Matlab, Solidworks, ANSYS, etc.)	Dos años mínimos de experiencia profesional en campo del diseño mecatronico. Un año de experiencia en docencia.	Dominio de la asignatura. Manejo de grupos. Comunicación oral y escrita. Capacidad de análisis y síntesis. Manejo de materiales Didácticos. Organización. Creatividad. Liderazgo.	Responsabilidad. Tolerancia. Honestidad. Compromiso social. Proactivo. Comunicativo. Previsor. Respeto (maestro-alumno). Ética profesional y personal. Superación docente y profesional. Solidaridad. Compromiso social y ambiental. Puntualidad.

ELABORÓ

Dr. Leonel Germán Corona Ramírez Presidente de Academia

M. en C. Jorge Fonseca Campos Subdirector Académico

M. en C. Arodi Rafael Carvallo Dominguez

Directo Profesional Interdisciplinaria EN INGENIERIA Y TEG. AVANZADAS

DIRECCION