QMDDを用いた 量子回路シミュレータの 並列化手法

立命館大学 情報理工学部 次世代コンピューティング研究室 三石 海人

QMDDを用いた表現

- QMDD: Quantum Multiple-valued Decision Diagrams
 - 量子回路を表現・操作するためのデータ構造
 - 行列表現よりも必要メモリを削減

• 零行列や共通する部分行列を利用して圧縮

$$U = \begin{pmatrix} U_{00} & U_{01} \\ U_{10} & U_{11} \end{pmatrix}$$

行列表現

QMDDの構造①

0	0	0	0	0	0	0 7
1	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	1	. 0	0	0	0
0	0	0	$\frac{1+i}{2}$	0	$\frac{1-i}{2}$	0
0	0	0	_	$\frac{1+i}{2}$	Ō	$\frac{1-i}{2}$
0	0	0	$\frac{1-i}{2}$	Õ	$\frac{1+i}{2}$	$\overline{\stackrel{2}{0}}$
0	0	0	$\tilde{0}$	$\frac{1-i}{2}$	Õ	$\frac{1+i}{2}$
	0 1 0 0 0 0 0	$\begin{array}{cccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

QMDDの構造②

	4								
ſ	1	0	0	0	0	0	0	0	7
	0	1	0	U	0	0	0	0	
	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	0	0	
	0	0	0	0	$\frac{1+i}{2}$	0	$\frac{1-i}{2}$	0	T
	0	0	0	0	$\tilde{0}$	$\frac{1+i}{2}$	Õ	$\frac{1-i}{2}$	
	0	0	0	0	$\frac{1-i}{2}$	0	$\overset{1+i}{\overset{2}{0}}$	Õ	
١	0	0	0	0	$\overset{2}{0}$	$\frac{1-i}{2}$	$\tilde{0}$	$\frac{1+i}{2}$	
ľ	•				:	2		4	_

QMDDの構造③

			:		= = =				
	Γ 1	0	0	0	0	0	0	0	1
	0	1	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	0	0	
•	0	0	0	0	$\frac{1+i}{2}$	0	$\frac{1-i}{2}$	0	
•	0 0	0	0 0	0 0	$0^{\frac{1+i}{2}}$	$0\\ \frac{1+i}{2}$	$\begin{array}{c} \frac{1-i}{2} \\ 0 \end{array}$	$0_{\frac{1-i}{2}}$	
	0 0 0	0 0 0	0 0 0	0 0 0	0	$0\\\frac{1+i}{2}\\0$	0	$0\\\frac{1-i}{2}\\0$	
	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		$0\\ \frac{1+i}{2}\\ 0\\ \frac{1-i}{2}$		$0\\ \frac{1-i}{2}\\ 0\\ \frac{1+i}{2}$	

$$CV_{0,0} = 1 * 1 * 1 * 1 = 1$$

 $CV_{7,7} = 1 * \frac{1+i}{2} * 1 * 1 = \frac{1+i}{2}$

QMDDの構造④

		<u> </u>		i e				
1	0	0	0	0	0	0	0	7
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	$\frac{1+i}{2}$	0	$\frac{1-i}{2}$	0	T
0	0	0	0	0	$\frac{1+i}{2}$	Ō	$\frac{1-i}{2}$	
0	0	0	0	$\frac{1-i}{2}$	0	$\frac{1+i}{2}$	0	
0	0	0	0	Õ	$\frac{1-i}{2}$	Õ	$\frac{1+i}{2}$	
	1 0 0 0 0 0 0 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

処理効率を向上させるための仕組み

ユニークテーブル

• QMDDのノードを保存する

- 保存したノードの再利用
- →メモリ効率向上

演算キャッシュ

加算・乗算・テンソル積の 演算結果をキャッシュ

・過去の演算結果を再利用

→演算の処理速度向上

提案手法

- 1. QMDDの演算アルゴリズムの非同期並列化
- 2. 排他制御における待機時間の回避
- 3. 対角行列に相当するQMDDの演算効率化
 - 付録に掲載

QMDD演算の並列化

例: X + H
$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$(1*0) + (\frac{1}{\sqrt{2}}*1)$$

$$(1*1) + (\frac{1}{\sqrt{2}}*1)$$

$$(1*1) + (\frac{1}{\sqrt{2}}*1)$$

$$(1*0) + (\frac{1}{\sqrt{2}}*-1)$$

各エッジの処理をスレッドに分割

```
Algorithm 1 QMDD の加算処理
Input: e0, e1: QMDD のルートエッジ
Output: QMDD の和 result
 1: if cache hit then
      result \leftarrow cache.\ find(key(e0, ADD, e1))
 3: end if
 5: if T(e1) then
       swap(e0, e1)
 7: end if
                                子ノードのエッジを再帰的に処理
 9: if T(e0) then
      if w(e0) == 0 then
         result \leftarrow e1
11:
12:
      else
         result \leftarrow edge(w(e0) + w(e1), v(e1))
13:
      end if
14:
15: end if
16:
17: for i = 0 to 2^2 - 1 do
      p = edge(w(e0) * w(E_i(e0)), v(E_i(e0)))
      q = edge(w(e1) * w(E_i(e1)), v(E_i(e1)))
      z[i] = add(p, q)
21: end for
22: result \leftarrow edge(node(z))
23: cache.insert(key(e0, ADD, e1), result)
24:
25: Presult
```

並列処理による弊害

- 排他的なアクセス
 - read→共有ロック
 - 他スレッドのwrite不可
 - write→占有ロック
 - 他スレッドのread, write不可

排他制御による待機時間

待機時間の回避

スレッドのタスクを複数の ファイバーに分割


```
Algorithm 1 QMDD の加算処理
Input: e0, e1: QMDD のルートエッジ
Output: QMDD の和 result
 1: if cache hit then
      result \leftarrow cache.\ find(key(e0, ADD, e1))
3: end if
 5: if T(e1) then
      swap(e0, e1)
 7: end if
                               子ノードのエッジを再帰的に処理
9: if T(e0) then
      if w(e0) == 0 then
         result \leftarrow e1
11:
12:
      else
         result \leftarrow edge(w(e0) + w(e1), v(e1))
13:
      end if
15: end if
17: for i = 0 to 2^2 - 1 do
      p = edge(w(e0) * w E_i(e0)), v E_i(e0)
      q = edge(w(e1) * w E_i(e)), \iota
      z[i] = add(p, q)
21: end for
22: result \leftarrow edge(node(z))
23: cache. insert(key(e0, ADD, e1), result)
24:
                            共有資源へのアクセス 11
25: Presult
```

ファイバーでの改善

ロック待ち発生

 \downarrow

ファイバーの切り替え

非クリティカルセクションを処理

比較実験

- ランダムな回転角とターゲットビットを持つ量子回転ゲート (Rx, Ry, Rz) 200 個をシミュレーション
- 量子ビット数1~20
- 既存手法、マルチスレッドによる並列処理、提案手法で比較

環境項目	パラメータ値
OS	macOS15.2
チップ	Apple M3
メモリ	8GB
コア	8
コンパイラ	Apple Clang 16.0.0
C++バージョン	C++20
Boost バージョン	1.87.0

実験結果

それぞれ10回ずつ処理を行った際の平均処理時間(ms)と変化率(%)

量子ビット	既存手法	スレッドのみを 並列処理		提案手法	
	平均処理時間	平均処理時間	変化率	平均処理時間	変化率
2	6.23	13.35	114.36	13.02	109.16
4	19.80	32.27	63.01	32.38	63.56
6	60.25	87.41	45.08	72.59	20.48
8	220.39	263.37	19.50	199.03	-9.69
10	844.45	896.73	6.19	636.19	-24.66
12	3400.67	3231.48	-4.98	2546.35	-25.12
14	14001.26	12412.10	-11.35	10453.05	-25.34
16	62582.81	51552.37	-17.63	43996.75	-29.70
18	292819.60	217616.90	-25.68	167629.00	-42.75
20	1264967.70	873290.70	-30.96	636008.86	-49.72

考察

- 規模の小さい量子回路の処理は逐次処理が高速
 - ・スイッチングなどのコスト > 並列化による恩恵
- ファイバーはクリティカルセクションに対して有効

• 量子回路が大きくなるにつれて並列化による恩恵が大きくなる

まとめと今後の課題

まとめ

- QMDDの演算アルゴリズムの並列化手法の提案
 - マルチスレッド処理による非同期並列化
 - マルチファイバー処理による待機時間の回避
- 提案手法は一定以上の大きさの量子回路において有効
 - ベンチマークテストでは最大49%の処理時間を短縮

課題

- 回路全体の並列化
 - 対角行列や演算キャッシュを考慮した優先度設定
- 更なるメモリ効率の向上
 - ユニークテーブルに保存するQMDDのノードの寿命の考慮

付録

付録: 量子状態の行列表現

・量子状態 → 一次元ベクトル

例)
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• 複数量子ビットの量子状態はテンソル積で導出

例)
$$|00\rangle = |0\rangle|0\rangle = {1 \choose 0}\otimes {1 \choose 0} = {1 \choose 0 \choose 0}$$

付録: 量子ゲートの行列表現

・量子ゲート → 二次元のユニタリ行列

例)
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• 量子ゲートの作用は行列積で導出

例)
$$X|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$|0\rangle - X - |1\rangle$$

付録: 主なQMDD表現① 量子状態

行列表現

• 例) |0}

 $\binom{1}{0}$

例) |1)

 $\binom{0}{1}$

付録: 主なQMDD表現② 単一量子ゲート

行列表現

例) Xゲート

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

付録: 主なQMDD表現③ 複数量子ゲート

行列表現

例) CNOTゲート

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

付録: 主なQMDD表現④ 実験で使用したゲート

Rxゲート

$$\begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \qquad \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

Ryゲート

$$\begin{pmatrix}
\cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\
\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{pmatrix}$$

Rzゲート

$$\begin{pmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$$

付録: ファイバーの概要

- 軽量な並行処理の単位
- 単一スレッド内で動作
- プログラム内で明示的に切り替え
 - ノンプリエンプティブ
 - yield()関数によってファイバーを切り替え
 - OSによるスレッドのスイッチングに比べて 時間的なコストが小さい
- Boostライブラリで実装

付録:

対角行列に相当するQMDDの演算効率化

- 多くのゲートが対角行列
 - 位相ゲートやパウリZゲート

- 単位行列
 - 量子ゲートの拡張などに多用
- 演算中の再帰するエッジを限定的に
 - 重みが0になるエッジへの再帰を省略

