1. 实验名称及目的

动态建模实验:分析多旋翼总质量、转动惯量矩阵、螺旋桨推力系数、螺旋桨拉力系数对整个多旋翼飞行性能产生的影响;在 MATLAB/Simulink 上建立完整的多旋翼飞行器模型。在姿态模型方面,可以采用四元数模型、旋转矩阵模型,或者欧拉角模型;在 RflySi m3D 中添加四旋翼的三维模型;

2、实验原理

动态建模的实验原理包括刚体运动学模型(跟质量与受力无关,只研究位置、速度、姿态、角速度等参量,常以质点为模型)、刚体动力学模型(它与一般刚体动力学模型最大的不同是,拉力方向始终与机体轴轴的负方向一致)、控制效率模型(它与一般刚体动力学模型最大的不同是,拉力方向始终与机体轴轴的负方向一致)、动力单元模型(以无刷直流电机、电调和螺旋桨为一组的整个动力机构。输入是 $0\sim1$ 的电机油门指令,输出是螺旋桨转速)。

基础实验的指令包为 e2/e2.1。我们复制一些系统参数 e2 / e2.1 /icon/ Init、/e2.1/Init_control.m。方便您修改。e2 / e2.3 /dynamics.slx 是我们建立的四轴飞行器动力学模型。你可以自己设计多旋翼机动力学模型根据我们的设计风格。e2/e2.3/Init 中的四轴飞行器参数。采用系统辨识法得到 M' 为真实的飞机,这也用于随后的模型。'e2/e2.3/myownUAV'是一个简单的四轴飞行器模型,我们提供,其中包括一个 3D 模型和两个 xml 配置文件。xml 文件中的模型路径和参数应该与路径一致四轴飞行器模型参数。

3、实验效果

分析不同参数对飞行效果的影响,分别通过 MATLAB 和 UE 建立四旋翼无人机的控制模型和三维模型。

4、文件目录

文件夹/文件名称	说明		
第 06 讲_实验二_动态建模实验.pdf	实验配套课件。		
e2.1	课件基础实验资料,详细操作见: Readme.pdf		
e2.3	课件设计实验资料,详细操作见: Readme.pdf		

1、实验名称及目的

动态建模实验:分析多旋翼总质量、转动惯量矩阵、螺旋桨推力系数、螺旋桨拉力系数对整个多旋翼飞行性能产生的影响;

2、实验原理

动态建模的实验原理包括刚体运动学模型(跟质量与受力无关,只研究 位置、速度、姿态、角速度等参量,常以质点为模型)、刚体动力学模型(它与一般刚体动力学模型最 大的不同是,拉力方向始终与机体轴 轴的负方向一 致)、控制效率模型(它与一般刚体动力学模型最 大的不同是,拉力方向始终与机体轴 轴的负方向一 致)、动力单元模型(以无刷直流电机、电调和螺旋 桨为一组的整个动力机构。输入是 0~1 的电机油门指 令,输出是螺旋桨转速)。

详细内容请参考上层路径文献**错误!未找到引用源。**第 06 讲_实验二_动态建模实验.ppt x,文献**错误!未找到引用源。**第 04 讲_动力系统建模和估算 V2.pptx。

3、实验效果

通过调整不同的参数,理解设置不同的参数对飞行的影响。

4、文件目录

文件夹/文件名称		说明
	Init.m	模型初始化参数文件。
	MavLinkStruct.mat	MAVLink 结构体数据文件。
icon	pixhawk.png	Pixhawk 硬件图片。
	SupportedVehicleTypes.pdf	机架类型修改说明文件。
	F450.png	F450 飞机模型图片。
e2_1.slx		Simulink 仿真模型文件。
Init_control.m		控制器初始化参数文件。

5、运行环境

序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		
3	MATLAB 2017B 及以上		

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 Init_control.m 文件,点击运行。打开 e2_1.sl x 文件。

Step 2:

在 $e2_1.slx$ 文件右侧输出的 Z 方向位置鼠标右击,在弹出的对话框中选择"Log Select ed Singals",即可记录每次仿真结果。

Step 4:

总质量对飞行影响:在 Simulink 中点击运行,等待运行完成后,点击 Simulation Data I nspector(或数据检查器),在弹出的对话框左侧选择保存的数据,右侧即可看到记录的 Z 方向数据。可看到该数据在基本上稳定在-100 的位置,多旋翼处于悬停状态。此时,多旋翼质量和油门比率:

ModelParam_uavMass = 1.4; %Mass of UAV(kg)
Thrust=0.6085; % Thrust Percentage

Step 5:

总质量对飞行影响:在Init_control.m文件中,修改多旋翼质量和油门比率为:

ModelParam_uavMass = 2.0; %Mass of UAV(kg)
Thrust=0.7032; % Thrust Percentage

保存 Init_control.m 文件并运行,在 Simulink 中点击运行,等待运行完成后,点击 Simulation Data Inspector(或数据检查器),在弹出的对话框左侧选择保存的数据,右侧即可看到记录的 Z 方向数据。可看到该数据在基本上稳定在-100 的位置,多旋翼处于悬停状态。

Step 6:

总质量对飞行影响:与 Step 1 相似,分别在 pitch_d 和 pitch 通道添加 "Log Selected Singals",如下图。

Step 7:

转动惯量对偏航角变化率的影响:与 Step 1 相似,分别在 yawRate_d 和 r(yawRate)通道添加 "Log Selected Singals"。在 Init_control.m 文件中,修改多旋翼偏航角速率为:

```
ModelParam_uavMass = 1.4; %Mass of UAV(kg)

roll_d=0; % desired roll (rad)
pitch_d=0; % desired pitch(rad)
yawRate_d=0.2; % desired yaw rate(rad/s)

Thrust=0.6085; % Thrust Percentage
```

保存 Init_control.m 文件并运行,在 Simulink 中点击运行,等待运行完成;在 Init_control.m 文件中,修改 Z 轴的转动惯量为:

```
ModelParam_uavMass = 1.4; %Mass of UAV(kg)

ModelParam_uavJzz = 0.0366*2;

roll_d=0; % desired roll (rad)
pitch_d=0; % desired pitch(rad)
yawRate_d=0.2; % desired yaw rate(rad/s)

Thrust=0.6085; % Thrust Percentage
```

保存 Init_control.m 文件并运行,在 Simulink 中点击运行,等待运行完成;点击 Simula tion Data Inspector (或数据检查器),在弹出的对话框左侧选择 yawRate_d 和两次运行的 r (yawRate)通道数据,右侧即可看到保存的数据。

Step 8:

螺旋桨拉力系数对多旋翼飞行姿态的影响:与 Step 1 相似,分别在 yawRate_d 和 r(ya wRate)通道添加 "Log Selected Singals"。在 Init_control.m 文件中,修改拉力系数为:

```
ModelParam_uavMass = 1.4; %Mass of UAV(kg)

ModelParam_motorCr = 2296; %Motor throttle-speed curve slope(rad/s)

roll_d=0; % desired roll (rad)
pitch_d=0; % desired pitch(rad)
yawRate_d=0; % desired yaw rate(rad/s)

Thrust=0.6085; % Thrust Percentage
```

保存 Init_control.m 文件并运行,在 Simulink 中点击运行,等待运行完成;点击 Simula tion Data Inspector(或数据检查器),在弹出的对话框左侧选择 yawRate_d 和两次运行的 r (yawRate)通道数据,右侧即可看到保存的数据。注:此刻可将 Thrust=0.6085 修改为 Thrust=0.3042,多旋翼将重新悬停。

Step 9:

螺旋桨力矩系数对偏航角变化率的影响:在 Init_control.m 文件中,修改力矩系数、偏

航角速率为:

```
ModelParam_uavMass = 1.4; %Mass of UAV(kg)

ModelParam_motorCr = 1148; %Motor throttle-speed curve slope(rad/s)

ModelParam_rotorCm = 1.779e-07*2; %Rotor torque coefficient(kg.m^2)

roll_d=0; % desired roll (rad)
pitch_d=0; % desired pitch(rad)
yawRate_d=0.2; % desired yaw rate(rad/s)

Thrust=0.6085; % Thrust Percentage
```

保存 Init_control.m 文件并运行,在 Simulink 中点击运行,等待运行完成;点击 Simula tion Data Inspector(或数据检查器),在弹出的对话框左侧选择 yawRate_d 和两次运行的 r (yawRate)通道数据,右侧即可看到保存的数据。

注:本实验详细原理讲解请见课程其他配套资料。更多学习资料见: $\frac{https://doc.rflysim.co}{m/o}$.

7、参考资料

- [1]. Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, 2017.
- [2]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [3]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.
- [4]. 第 06 讲_实验二_动态建模实验.pptx.
- [5]. 第 04 讲_动力系统建模和估算 V2.pptx.

8、常见问题

Q1: 无

A1: 无

1、实验名称及目的

动态建模实验:在 MATLAB/Simulink 上建立完整的多旋翼飞行器模型。在姿态模型方面,可以采用四元数模型、旋转矩阵模型,或者欧拉角模型;在 RflySim3D 中添加四旋翼的三维模型:

2、实验原理

根据多旋翼飞行器动态建模原理公式进行 MATLAB/Simulink 建模,进行完整的多旋翼飞行器模型创建。详细内容请参考上层路径文献错误!未找到引用源。第 06 讲_实验二_动态建模实验.pptx,文献错误!未找到引用源。第 04 讲_动力系统建模和估算 V2.pptx。

3、实验效果

实现四旋翼控制模型和三维模型建立。

4、文件目录

文件夹/文件名称		件夹/文件名称	说明	
	Init.m		模型初始化参数文件。	
icon	MavLinkStruct.mat		MAVLink 结构体数据文件。	
	pixhawk.png		Pixhawk 硬件图片。	
	SupportedVehicleTypes.pdf		机架类型修改说明文件。	
	F450.png		F450飞机模型图片。	
VehicleModel		DroneyeeX680	UE生成的四旋翼模型文件。	
		DroneyeeX680.max	3D MAX 完整四旋翼模型文件。	
		DroneyeeX680.xml	完整四旋翼的 xml 建模文件。	
		DroneyeeX680Body.FBX	四旋翼机体模型通用格式文件	
		DroneyeeX680Body.max	3D MAX 四旋翼机体模型文件。	
		DroneyeeX680Prop.FBX	四旋翼螺旋桨模型通用格式文件。	
		DroneyeeX680Prop.max	3D MAX 完整四旋翼螺旋桨模型文件。	
Init.m		Init.m	控制器初始化参数文件。	
dynamics.slx		dynamics.slx	Simulink 动力学模型文件	

5、运行环境

序号	软件要求	硬件要求		
	九斤女 本	名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版			
3	MATLAB 2017B 及以上			
4	Unreal Engine 4.27.1 及以上			
5	3D MAX 2020 及以上			

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

注:本实验详细原理及步骤讲解请见课程其他配套资料。更多学习资料见: https://www.bil https://www.bil https://www.bil https://www.bil https://www.bil https://www.bil https://www.bil ibili.com/video/BV1jm4y117sw/?spm_id_from=333.999.0.0&vd_source=1654a620e9867b8f2275 https://www.bil ibili.com/video/BV1jm4y117sw/ https://www.bil https://www.bil https://www.bil <a href="mailto:ibili.c

7、参考资料

- [6]. Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, 2017.
- [7]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [8]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.
- [9]. 第 06 讲_实验二_动态建模实验.pptx.
- [10]. 第 04 讲_动力系统建模和估算 V2.pptx.

8、常见问题

Q1: 无

A1: 无