Relación 1 de problemas

- 1. Realiza un análisis descriptivo de los datos británicos de ingresos familiares en 1975 (reescalados dividiendo por la media) contenidos en el fichero Datos-ingresos.txt. En concreto, calcula los estadísticos de posición o tendencia central, las medidas de dispersión, representa un diagrama de cajas y un estimador del núcleo de la función de densidad. Comenta los resultados.
- 2. Demuestra que

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \min_{a \in \mathbb{R}} \sum_{i=1}^{n} (x_i - a)^2.$$

¿Qué significa esto en relación con la interpretación intuitiva de la media muestral?

- 3. Representa en el mismo gráfico los diagramas de cajas correspondientes a la variable *Largo* del fichero tortugas.txt para los ejemplares hembra y para los ejemplares macho. Emplea colores distintos para los dos diagramas.
- 4. Los datos del fichero kevlar.txt corresponden al tiempo hasta el fallo (en horas) de 101 barras de un material utilizado en los transbordadores espaciales, llamado Kevlar49/epoxy, sometidas a un cierto nivel de esfuerzo. Los datos han sido tomados de Barlow et al. (1984).
 - (a) Calcula las principales medidas descriptivas numéricas de estos datos.
 - (b) Representa un diagrama de cajas.
 - (c) Representa un histograma con un número de clases apropiado.
 - (d) Estudia la presencia de datos atípicos en la muestra. Si hay datos atípicos, suprímelos y repite todos los apartados anteriores. Compara los resultados obtenidos.
- 5. El paquete gapminder contiene un fichero de datos de población, esperanza de vida y renta per cápita de los países del mundo entre 1952 y 2007. Instala el paquete y lleva a cabo los siguientes gráficos:
 - (a) Un histograma de la esperanza de vida en 2007 de los países de Europa.
 - (b) Diagramas de cajas con las esperanzas de vida de cada continente en el año 1952.
 - (c) Un diagrama de dispersión de la renta per cápita y la esperanza de vida de cada país en el año 2007.
 - (d) Mejora el gráfico anterior representando cada punto de un color diferente en función del continente al que pertenece cada país y representando la renta per cápita en una escala logarítmica (mira esta documentación).
- 6. Determina razonadamente si las siguientes afirmaciones son verdaderas o falsas:

- (a) Si añadimos 7 a todos los datos de un conjunto, el primer cuartil aumenta en 7 unidades y el rango intercuartílico no cambia.
- (b) Si todos los datos de un conjunto se multiplican por -2, la desviación típica se dobla.
- (c) Si todos los datos de un conjunto se multiplican por 2, la varianza se dohbla.
- (d) Si cambiamos el signo de todos los datos de un conjunto, el coeficiente de asimetría también cambia de signo.
- (e) Al multiplicar por tres todos los datos de un conjunto, el coeficiente de asimetría no varía.
- (f) Si el coeficiente de correlación entre dos variables vale -0.8, los valores por debajo del promedio de una variable están asociados con valores por debajo del promedio de la otra.
- (g) Si para todo i, se cumple $y_i < x_i$, el coeficiente de correlación entre x e y es negativo.
- (h) Al restar una unidad a cada dato de un conjunto, la desviación típica siempre disminuye.
- (i) Si a un conjunto de datos con media \bar{x} se le añade un nuevo dato que coincide con \bar{x} , la media no cambia y la desviación típica disminuye.
- 7. Calcula el diagrama de dispersión de las dos variables correspondientes al peso y a la circunferencia de abdomen que aparecen en el fichero Datos-bodyfat.txt. Calcula la recta de regresión y el coeficiente de correlación. Comenta los resultados. Análogas preguntas para las dos variables X e Y del fichero Datos-geyser.txt, que corresponden a la duración de las erupciones y el tiempo hasta la siguiente erupción de un geyser.
- 8. Para tres conjuntos de datos se han representado los correspondientes histogramas y diagramas de cajas. Relaciona cada histograma con el diagrama de cajas que le corresponde:

9. Se presenta a continuación el diagrama de dispersión correspondiente a dos variables:

Contesta a las siguientes preguntas:

- (a) ¿Existe relación entre las variables?
- (b) ¿Hay algún dato atípico?
- (c) De los tres valores siguientes: 0.01, 0.83 y -0.73, ¿cuál crees que podría corresponder al coeficiente de correlación entre x e y?
- 9. Un estudio sobre el efecto de la temperatura en el rendimiento de un proceso químico proporciona los siguientes resultados:

Temperatura (x)				-2	-1	0	1	2	3	4	5
Rendimiento (y)	1	5	4	7	10	8	9	13	14	13	18

- (a) Representa el diagrama de dispersión de los datos anteriores y calcula el coeficiente de correlación entre las dos variables. ¿Se puede admitir que existe una relación lineal aproximada entre ambas, es decir, $y_i \approx a + bx_i$?
- (a) Calcula el término independiente y la pendiente de la recta de mínimos cuadrados.
- (a) ¿Qué rendimiento predecirías para un nuevo proceso realizado a temperatura x = 3.5?
- 10. Disponemos de un conjunto de observaciones x_1, \ldots, x_{100} , ya ordenadas de menor a mayor, cuya media muestral es \bar{x} . Creamos una nueva muestra añadiendo a la anterior los valores x_1 y x_{100} . ¿Qué condición se debe cumplir para que la media muestral de la nueva muestra coincida con \bar{x} , la media muestral de la muestra original?
- 11. Sea $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ una muestra de datos bivariantes, con media muestra (\bar{x}, \bar{y}) . Añadimos a la muestra el punto (\bar{x}, \bar{y}) . Determina si la covarianza de la nueva muestra es mayor, menor o igual que la de la muestra original.
- 12. Tenemos una muestra x_1, \ldots, x_n cuya media es \bar{x} y cuya varianza muestral es s_n^2 . Duplicamos ahora el tamaño muestral añadiendo los valores de signo opuesto a los originales:

$$x_1,\ldots,x_n,-x_1,\ldots,-x_n.$$

Llamamos \tilde{s}_n^2 a la varianza muestral de esta segunda muestra. ¿Cuál es mayor, s_n^2 ó \tilde{s}_n^2 ?

- 13. Dada una muestra $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, con $n \geq 2$, se pide obtener la recta $\hat{y} = \hat{b}x$, que pasa por el origen (0, 0) y minimiza la suma de los residuos al cuadrado entre todas las rectas de ecuación y = bx. Escribe la fórmula de \hat{b} y la expresión de la suma de los residuos al cuadrado en función de los valores muestrales.
- 14. Sea una muestra $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, con $n \geq 2$. Para realizar el ajuste lineal al conjunto de datos, suponemos que las observaciones tienen importancias relativas diferentes, cuantificadas mediante unos pesos $\omega_1, \ldots, \omega_n$ (es decir, $0 \leq \omega_i \leq 1$ para todo $1 \leq i \leq n$ y $\sum_{i=1}^n \omega_i = 1$). El error cuadrático medio ponderado (ECMP) obtenido al aproximar la muestra mediante la recta de ecuación y = a + bx se define como

ECMP
$$(a, b) := \sum_{i=1}^{n} \omega_i (y_i - (a + bx_i))^2.$$

Halla los valores de a y b que minimizan ECMP(a, b).

15. El fichero star.txt contiene la temperatura y la intensidad de la luz en un conjunto de estrellas. Calcula y representa la recta de mínimos cuadrados para explicar la temperatura en función de la intensidad de la luz. Comenta el resultado.