## Prof.dr.sc. Bojana Dalbelo Bašić

Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

> www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

## Učenje na temelju primjera





## Učenje na temelju primjera

- Dosadašnje metode nastoje konstruirati eksplicitan opis ciljne funkcije.
- Metode učenja na temelju primjera pohranjuju primjere za učenje.
- Postupak generalizacije odgođen je do trenutka potrebe za klasifikacijom novog uzorka.
  - Metoda k-najbližih susjeda (engl. k-nearest-neighbor)
  - Metoda lokalne regresije s težinskim faktorima (engl. locally weighted regression)
  - Zaključivanje na temelju slučajeva (engl. case based reasoning)
  - Radijalne bazne funkcije (engl. radial basis functions)



### Lazy vs. eager

- Lazy (lijene) metode
  - Odgađaju odluku o klasifikaciji sve do trenutka predočavanja novog primjera (upita).
  - Metoda k najbližih susjeda, metoda lokalne regresije s težinskim faktorima i zaključivanje na temelju slučajeva.
- Eager (marljive, nestrpljive) metode
  - Sve do sada iznesene metode (npr. ID3).
  - Od gornje navedenih: radijalne bazne funkcije.



### Prednosti lijenih metoda

- Dvije važne razlike (prednosti) lijenih metoda, tj. metoda s odgodom, naspram ostalih metoda:
  - Konstruiraju različitu aproksimaciju ciljne funkcije za svaki različiti novi upit (primjer koji treba biti klasificiran)
  - Umjesto procjene ciljne funkcije, jednom za cijeli prostor, te metode procjenjuju ciljnu funkciju samo lokalno, u okolini novog primjera. Takva lokalna procjena ciljne funkcije je pogodna za vrlo kompleksne ciljne funkcije
- Nedostatak metoda učenja na temelju primjera:
  - visoka cijena klasificiranja novog primjera
  - razmatraju se sve značajke nekog primjera prilikom klasifikacije iako samo neke mogu imati utjecaj na ciljnu funkciju (k-najbližih susjeda)
  - složenost modela (a time i broj parametara) raste s brojem primjera (neparametarske metode!)



### Metoda k najbližih susjeda

- Engl. k-nearest-neighbors, skraćeno k-nn
- Ideja je da se novi primjer klasificira tako da se pogledaju njemu najbliži primjeri iz skupa za učenje.
- Primjeri su najčešće točke u n-dimenzijskom prostoru R<sup>n</sup>, a za račun udaljenosti koristi se euklidska metrika.
  - Moguće je da primjeri budu npr. nizovi znakova, a za udaljenost da se koristi Levenshteinova udaljenost.
- Dva moguća zadatka:
  - Klasifikacija vrijednosti ciljne funkcije su iz konačnog skupa.
  - Regresija ciljna funkcija poprima realne vrijednosti.



## Metoda k najbližih susjeda

- Klasifikacija točaka iz prostora R<sup>n</sup> korištenjem euklidske metrike.
- Primjer x opisan je vektorom značajki

$$(x_1, x_2, ..., x_n)$$

Euklidska udaljenost dvaju vektora x<sup>a</sup> i x<sup>b</sup> je

$$d(x^{a}, x^{b}) = \sqrt{\sum_{i=1}^{n} (x_{i}^{a} - x_{i}^{b})^{2}}$$

Za ciljnu funkciju s diskretnim vrijednostima:

f: 
$$\mathbb{R}^n \to \mathbb{C}$$
, gdje je  $\mathbb{C} = \{\mathbb{C}_1, \mathbb{C}_2, ..., \mathbb{C}_K\}$ 



## Algoritam k najbližih susjeda (k-nn)

- Algoritam za učenje
  - Za svaki primjer za učenje (x<sup>(i)</sup>, y<sup>(i)</sup>) dodaj primjer na listu primjeri\_za\_učenje.
- Algoritam klasifikacije
  - Za dani primjer x<sub>q</sub> s nepoznatom klasifikacijom
  - Neka x<sub>1</sub>, x<sub>2</sub>, ...,x<sub>k</sub> označavaju k primjera koji su najbliži x<sub>q</sub>.
- Vrati

$$h(x_q) = \underset{v \in \{0,1,...,K\}}{\operatorname{arg\,max}} \sum_{i=1}^k \delta(v, y^{(i)})$$

gdje je  $\delta(a,b)=1$  ako a=b, 0 inače.

- $h(x_q)$  je najčešća vrijednost ciljne funkcije koja se pojavljuje među k primjera za učenje koji su najbliži upitu  $x_q$
- Napomena: treba birati neparan k kako bi h(xq) bila deterministička funkcija



## Algoritam k najbližih susjeda (k-nn)

Razlika kod 1-nn i 5-nn algoritma:





- k-nn algoritam nikad ne oblikuje eksplicitnu hipotezu za ciljnu funkciju
- Za 1-nn možemo je predočiti Voronoyjevim dijagramom.
   Decizijska površina je konveksni poliedar koji okružuje svaki primjer za učenje.



- Na primjeru će se vidjeti da se rastom k smanjuje varijanca, ali se povećava pristranost.
- Uz poznatu pravu distribuciju svih primjera konstruiran je optimalan Bayesov klasifikator čija je decizijska granica prikazana zelenom iscrtkanom crtom.
- Idealno: Što veći broj primjera N; velik ali ne prevelik k
   (ne premalen, inače je prevelika varijanca, ali ne prevelik, inače je prevelika pristranost)
  - k definira složenost modela (k je hiperparametar)



• k = 1, N=100



### Visoka varijanca

(granica između klasa je nezaglađena i vrlo bi se razlikovala za neki drugi skup primjera D)



k = 3, N=100



## Ovo je dobar odabir parametra *k*

Primijetite da može biti E(h|D)>0, ako k>1

(idealno, primjeri s kojima hipoteza nije konzistentna su oni koji sačinjavaju šum)



• k = 5, N=100



• k = 15, N=100



• k = 31, N=100



Visoka pristranost (granica je previše zaglađena)



• k = 1, N=600



Puno primjera uvijek pomaže, ali k mora biti veći. Ovdje je previsoka varijanca.



k = 3, N=600



k = 5, N=600





• k = 15, N=600





• k = 31, N=600



Ovo je dobar odabir parametra *k* (velik, ali ne prevelik; red veličine manji od N)

Parametar *k* određuje složenost modela, pa **optimalnu** vrijednost za *k* možemo odrediti **unakrsnom provjerom** (kao što to radimo i kod drugih algoritama)



### Regresija pomoću algoritma k-nn

 Umjesto najčešće pojavljivane vrijednosti ciljne funkcije, odgovor na upit je srednja vrijednost ciljnih funkcija k najbližih susjeda.

$$h(x_q) = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$



# Modifikacija algoritma k-nn uvođenjem težinskih faktora udaljenosti

 Uvođenje težinskih faktora w<sub>i</sub> za svaki od k susjeda, koji ovisi o njegovoj udaljenosti od upita x<sub>q</sub>.

$$h(x_q) = \underset{v \in \{0,1,...,K\}}{\arg \max} \sum_{i=1}^k w_i \delta(v, y^{(i)})$$

$$w_i = \frac{1}{d(x_i, x_q)^2}$$

U slučaju x<sub>i</sub>=x<sub>q</sub> pridružujemo funkciji vrijednost y<sup>(i)</sup>

# Modifikacija algoritma k-nn uvođenjem težinskih faktora udaljenosti

U slučaju regresije (kontinuirane ciljne funkcije):

$$h(x_q) = \frac{\sum_{i=1}^{k} w_i y^{(i)}}{\sum_{i=1}^{k} w_i}$$

Ovo je tzv. Shepardova metoda



### Primjedbe na algoritam k-nn

#### Prednosti:

- efikasna induktivna metoda
- robusna na šum u primjerima za učenje
- (Cover i Hart) Ako broj primjera za učenje teži u beskonačno, onda je greška 1-nn klasifikatora najviše dva puta veća od greške optimalnog Bayesovog klasifikatora.
- Induktivna pristranost:
  - pretpostavka da je klasifikacija upita x<sub>q</sub> slična klasifikaciji primjera u blizini.
- Udaljenost se računa na temelju svih značajki (za razliku od ID3 ili učenja skupova pravila koji odabiru podskupove značajki pri formiranju hipoteze).

### Primjedbe na algoritam k-nn

- «Curse of dimensionality» osjetljivost algoritma k-nn na sve značajke bez obzira na dimenziju prostora (broj značajki) i njihov značaj za ciljnu funkciju.
  - Moguće rješenje: rastezanje ili stiskanje osi euklidskog prostora (množenje vrijednosti značajki faktorima) da bi se smanjio utjecaj nevažnih značajki.
  - Općenitije rješenje: smanjenje dimenzionalnosti ili odabir podskupa značajki
- Praktična tema vezana za k-nn je efikasno indeksiranje prostora primjera zbog brzog dohvata primjera kod novog upita.



### Nazivlje

- Metode s odgodom područje statističkog raspoznavanja uzoraka
- Regresija način aproksimacije ciljne funkcije s realnim vrijednostima
- Rezidual (ostatak) pogreška  $h(x^{(i)}) y^{(i)}$
- Jezgrena funkcija (engl. kernel function) funkcija udaljenosti koja se koristi za određivanje težinskih faktora primjera za učenje, tj. jezgrena funkcija K je takva da je

$$w_i = K \left( (x^{(i)}, x_q) \right)$$



- Engl. locally weighted regression
- Algoritam k-nn se može interpretirati kao aproksimiranje ciljne funkcije u h(x) u točci x=x<sub>a</sub>.
- Regresija s težinskim faktorima generalizacija je te metode jer konstruira eksplicitnu aproksimaciju ciljne funkcije na cijelom lokalnom području oko x<sub>q</sub>.
- Aproksimacija ciljne funkcije, može biti ostvarena:
  - linearnom funkcijom
  - kvadratnom funkcijom
  - višeslojnom neuronskom mrežom



#### Lokalna regresija s težinskim faktorima

Radi se aproksimacija samo u okolini točke upita x<sub>q</sub> aproksimacija realne funkcije

doprinos primjera za učenje ovisi o težinskom faktoru koji je funkcija udaljenosti

- Neka je dan je upit x<sub>q</sub>
  - konstruira se aproksimacija h(x) ciljne funkcije koja odgovara primjerima za učenje u okolini x<sub>q</sub>
  - aproksimacija se koristi za izračun vrijednosti h(x<sub>q</sub>)





h aproksimiramo linearnom funkcijom

$$h(x) = w_0 + w_1 x_1 + \ldots + w_n x_n$$

x<sub>i</sub> je vrijednost *i*-te značajke primjera x.



Metoda globalne aproksimacije:

$$E(h \mid D) = \frac{1}{2} \sum_{i=1}^{N} (h(x^{(i)}) - y^{(i)})^{2}$$

- Tri moguća kriterija prilagodbe ove metode za lokalnu aproksimaciju:
  - 1. Minimizacija kvadrata pogreške samo nad *k* najbližih susjeda.

$$E_{1}(h \mid D) = \frac{1}{2} \sum_{\substack{x^{(i)} \in k \text{ najblizih} \\ \text{susjeda od } x_{q}}}^{N} (h(x^{(i)}) - y^{(i)})^{2}$$



2. Minimizacija kvadrata pogreške nad skupom primjera za učenje *D* uz umnožak s težinskim faktorima

$$E_2(h \mid D) = \frac{1}{2} \sum_{i=1}^{N} (h(x^{(i)}) - y^{(i)})^2 K(d(x_q, x^{(i)}))$$

3. Kombinacija 1. i 2.

$$E_{1}(h \mid D) = \frac{1}{2} \sum_{\substack{x^{(i)} \in k \text{ najblizih} \\ \text{susjeda od } x_{q}}}^{N} (h(x^{(i)}) - y^{(i)})^{2} K(d(x_{q}, x^{(i)}))$$

- Model pod 2 je računski najzahtjevniji.
- Ako usvojimo 3. model, pravilo učenja je:

$$\Delta w_j = \eta \sum_{\substack{x^{(i)} \in k \text{ najblizih} \\ \text{susjeda od } x_q}}^N K(d(x_q, x^{(i)}))(h(x^{(i)}) - y^{(i)}) x^{(i)}$$

- Napomena:
  - Postoji niz varijanti metode linearne regresije s težinskim faktorima. Funkcija f(x) je u našem slučaju linearna, no koriste se još i kvadratna aproksimacijska funkcija, ali ne i složenije zbog cijene koja bi se platila za izračunavanje takve funkcije za svaki pojedini upit.



### Radijalne bazne funkcije (RBF)

- Metoda aproksimacije funkcije (povezana sa k-nn i lokalnom regresijom).
- Hipoteza je funkcija oblika:

$$h(x) = w_0 + \sum_{u=0}^{k} w_u K_u(d(x_u, x))$$
 (1)

### gdje su:

- x<sub>11</sub> su primjeri iz X
- K(d(x<sub>u</sub>,x)) je jezgrena funkcija koja se smanjuje kada udaljenost raste
- k je proizvoljan broj jezgrenih funkcija
- lako je h(x) globalna aproksimacija f(x), doprinos svake K<sub>u</sub>(d(x<sub>u</sub>,x)) je lokalan – samo u okolini x<sub>u</sub>



• Uobičajen izbor za  $K_u(d(x_u,x))$  su Gaussove\* funkcije s centrom u  $x_u$  i varijancom  $\sigma^2$ .

$$K_u(d(x_u,x)) = e^{-\frac{1}{2\sigma_u^2}d^2(x_u,x)}$$



<sup>\*</sup> Zapravo nije prava Gaussova gustoća vjerojatnosti (nedostaje normalizacijski faktor)



- Prema (Hartman et al., 1990), izraz (1) može aproksimirati bilo koju funkciju proizvoljno točno za dovoljno veliki broj Gaussovih jezgri uz uvjet da se varijance mogu nezavisno odrediti.
  - "Univerzalni aproksimator"





http://diwww.epfl.ch/mantra/tutorial/english/rbf/html/index.html



- Funkcija (1) se može interpretirati kao dvoslojna neuronska mreža:
- Prvi sloj računa K<sub>u</sub>(d(x<sub>u</sub>,x))
- Drugi sloj je linearna kombinacija vrijednosti prvog sloja





- Parametri mreže RBF uče se u dva koraka:
  - 1. Određuje se broj skrivenih jedinica k, određuje se  $x_u$  i  $\sigma^2$  koji određuju jezgrenu funkciju.
  - Na temelju minimizacije zbroja kvadrata pogreške određuju se težinski faktori w<sub>i</sub> tako da mreža odgovara podacima za učenje. Za vrijeme te faze jezgrene funkcije se ne mijenjaju pa je učenje efikasno.
- Nekoliko metoda za izbor broja k:
  - 1. Za svaki primjer za učenje (x<sup>(i)</sup>,y<sup>(i)</sup>) po jedna jezgrena funkcija s centrom u x<sup>(i)</sup> i s dijeljenom varijancom. Na ovaj način RBF-u potpunosti odgovara primjerima za učenje (raspored RBF-ova je gušći tamo gdje ima više primjera).



- Broj jezgrenih funkcija < N (efikasniji način)</li>
   Centri x<sub>u</sub> mogu biti smješteni:
  - uniformno po X
  - neuniformno,
  - slučajnim izborom, izvlačeći primjere iz skupa za učenje u skladu s njihovom distribucijom (što nam za to treba?)
  - prototipovima grupa primjera za učenje (uz uporabu algoritma grupiranja)
- Zaključak:
  - RBF daju globalnu aproksimaciju ciljne funkcije kao linearnu kombinaciju više lokalnih jezgrenih funkcija.
  - mogu biti trenirane efikasnije od unaprijednih neuronskih mreža s algoritmom backpropagation (taj algoritam radi u dva koraka)

