

www.gradeup.co

Prep Smart. Score Better. Go gradeup

Trigonometry

Definition: Trigonometry means Trigonon: Triangle and Metron: Measure. It is a branch of mathematics that deals with the angles and the sides of the triangle.

Angle: Angle is defined by the particular rotation of line from initial position to a final position. The end point O about which the line rotates is called the vertex of the angle.

Let, OX – Base position OY – Final position θ – Angle

Sign Convention for measurement of angle: Generally, we consider anticlockwise rotation as positive and clockwise rotation as negative.

Circular system:

The measure of an angle subtended at the centre of a circle by an arc of length equal to the radius of the circle.

Consider a circle of radius r having centre at O. Let A be a point on the circle. Now cut off an arc AB whose length is equal to the radius r of the circle. Then by the definition the measure of $\angle AOB$ is 1 radian $(=1^c)$.

1 radian =
$$\frac{180^{\circ}}{\pi}$$
 \Rightarrow π radians = 180°

Note:

• 1 Radian = $\frac{180^{\circ}}{\pi}$ degree \approx 57°17′15″ (approx.)

• 1 degree = $\frac{\pi}{180^{\circ}}$ radian \approx 0.0175 radian

Relationship between an arc and an angle:

If "I'' is the length of an arc of a circle of radius "r", then the angle θ (in radians) subtended by this arc at the centre of the circle is given by

$$\theta(in \ radians) = \frac{l}{r}$$

Trigonometric Ratios and Functions:

Let $\angle ABC = \theta$ (Acute angle of right-angle triangle) Here, AB = Base (B) AC = Perpendicular (P) BC = Hypotenuse (H) There are six trigonometric ratios,

Pythagoras theorem for the given right-angled theorem, we have:

(Perpendicular)² + (Base)² = (Hypotenuse)²

$$\Rightarrow$$
 (P)² + (B)² = (H)²

$$Sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{AC}{BC}$$

$$Cos \theta = \frac{Base}{Hypotenuse} = \frac{AB}{BC}$$

$$Tan \theta = \frac{Perpendicular}{Base} = \frac{AC}{AB}$$

$$Cot \ \theta = \frac{Base}{Perpendicular} = \frac{AB}{AC}$$

$$Sec~\theta = \frac{Hypotenuse}{Base} = \frac{BC}{AB}$$

$$Cosec \ \theta = \frac{Hypotenuse}{Perpendicular} = \frac{BC}{AC}$$

Values/Signs of Trigonometric ratio (functions) in different Quadrants:

The signs depend on the quadrant in which the terminal side of the angle lies.

- 1. $\sin(90^{\circ} \theta) = \cos \theta$
- 2. $cos(90^{\circ} \theta) = sin \theta$
- 3. $\sin(90^{\circ} + \theta) = \cos \theta$
- 4. $\cos(90^{\circ} + \theta) = -\sin\theta$
- 5. $\sin(180^{\circ} \theta) = \sin \theta$
- 6. $cos(180^{\circ} \theta) = -cos \theta$
- 7. $\sin(180^{\circ} + \theta) = -\sin\theta$
- 8. $cos(180^{\circ} + \theta) = -cos \theta$
- 9. $\sin(270^{\circ} \theta) = -\cos\theta$
- 10. $cos(270^{\circ} \theta) = -sin \theta$
- 11. $\sin(270^{\circ} + \theta) = -\cos\theta$
- 12. $cos(270^{\circ} + \theta) = sin \theta$

Note:

- 1. $\sin(2n\pi + \theta) = \sin\theta$ and $\cos(2n\pi + \theta) = \cos\theta$ where n is an integer.
- 2. $\sin(n\pi) = 0$ and $\cos(n\pi) = (-1)^n$ and $\tan(n\pi) = 0$ where n is an integer.
- 3. $\sin(2n+1)\left(\frac{\pi}{2}\right)=(-1)^n$ and $\cos(2n+1)\left(\frac{\pi}{2}\right)=0$ where n is an integer.

θ	0°	30°	45°	60°	90°	180°	270°	360°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8	0	8	0
cot θ	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	8	0	8
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	8	-1	8	1

cosec θ ∞ 2 $\sqrt{2}$ $\frac{2}{\sqrt{3}}$ 1 ∞ -1	1 6 1 -1 1 6 1
--	----------------

Basic trigonometric identities:

1. Sin
$$\theta$$
. Cosec $\theta = 1$

2.
$$\cos \theta \cdot \sec \theta = 1$$

3. Tan
$$\theta$$
. Cot $\theta = 1$

4. Tan
$$\theta = \frac{\sin \theta}{\cos \theta}$$

5.
$$Cot\theta = \frac{Cos\theta}{Sin\theta}$$

6.
$$Sin^2\theta + Cos^2\theta = 1$$

7.
$$Sec^2\theta - Tan^2\theta = 1$$

Thus,
$$(Sec\theta - Tan\theta)(Sec\theta + Tan\theta) = 1$$

If
$$(Sec\theta + Tan\theta) = x$$
 then $(Sec\theta - Tan\theta) = \frac{1}{x}$

8.
$$Cosec^2\theta - Cot^2\theta = 1$$

Thus,
$$(Cosec\theta - Cot\theta)(Cosec\theta + Cot\theta) = 1$$

If
$$(Cosec\theta - Cot\theta) = x$$
 then $(Cosec\theta + Cot\theta) = \frac{1}{x}$

Important trigonometric formulas:

1.
$$(\sin\theta + \cos\theta)^2 + (\sin\theta - \cos\theta)^2 = 2$$

2.
$$Sin^4\theta + Cos^4\theta = 1 - 2Sin^2\theta \cdot Cos^2\theta$$

3.
$$\sin^6\theta + \cos^6\theta = 1 - 3\sin^2\theta \cdot \cos^2\theta$$

4.
$$Sec^2\theta + Cosec^2\theta = Sec^2\theta \cdot Cosec^2\theta$$

5.
$$Tan\theta + Cot\theta = Sec\theta$$
. $Cosec\theta$

Trigonometric Formulas involving sum or difference of angles:

1.
$$Sin(A + B) = Sin(A)Cos(B) + Cos(A)Sin(B)$$

2.
$$Sin(A - B) = Sin(A)Cos(B) - Cos(A)Sin(B)$$

3.
$$Cos(A + B) = Cos(A)Cos(B) - Sin(A)Sin(B)$$

4.
$$Cos(A - B) = Cos(A)Cos(B) + Sin(A)Sin(B)$$

5.
$$Tan(A + B) = \frac{Tan A + Tan B}{1 - Tan A \times Tan B}$$

6.
$$Tan(A - B) = \frac{Tan A - Tan B}{1 + Tan A \times Tan B}$$

7.
$$\operatorname{Tan}(45^{\circ} + A) = \frac{1 + \operatorname{Tan} A}{1 - \operatorname{Tan} A} = \frac{(\operatorname{Cos} A + \operatorname{Sin} A)}{(\operatorname{Cos} A - \operatorname{Sin} A)}$$

8.
$$Tan(45^{\circ} - A) = \frac{1 - Tan A}{1 + Tan A} = \frac{(CosA - SinA)}{(CosA + SinA)}$$

9.
$$\cot(A + B) = \frac{\cot A \cdot \cot B - 1}{\cot B + \cot A}$$

10.
$$\cot(A - B) = \frac{\cot A \cdot \cot B + 1}{\cot B - \cot A}$$

11.
$$Cos(A + B) \cdot Cos(A - B) = Cos^2 A - Sin^2 B$$

12.
$$\operatorname{Sin}(A + B) \cdot \operatorname{Sin}(A - B) = \operatorname{Sin}^2 A - \operatorname{Sin}^2 B = \operatorname{Cos}^2 B - \operatorname{Cos}^2 A$$

13.
$$\operatorname{Sin}(2A) = 2\operatorname{Sin}(A)\operatorname{Cos}(A) = \left[\frac{2\operatorname{Tan}A}{1+\operatorname{Tan}^2A}\right]$$

14.
$$\cos(2A) = \cos^4(A) - \sin^4(A) = \cos^2(A) - \sin^2(A) = \left[\frac{1 - \tan^2 A}{1 + \tan^2 A}\right]$$

15.
$$Cos(2A) = 2Cos^2(A) - 1 = 1 - 2Sin^2(A)$$

16.
$$Tan(2A) = \frac{[2Tan(A)]}{[1-Tan^2(A)]}$$

17.
$$Sec(2A) = \frac{Sec^2A}{2 - Sec^2A}$$

18. Cosec (2A) =
$$\frac{\text{Sec A.Cosec A}}{2}$$

19.
$$\operatorname{SinA} \cdot \operatorname{CosB} = \frac{\sin(A+B) + \sin(A-B)}{2}$$

20.
$$CosA \cdot CosB = \frac{cos(A+B) + cos(A-B)}{2}$$

21.
$$SinA \cdot SinB = \frac{cos(A+B) - cos(A-B)}{2}$$

22. CosA. CosB =
$$\frac{Cos(A+B)+Cos(A-B)}{2}$$

23.
$$\operatorname{SinA} + \operatorname{SinB} = 2 \sin \left(\frac{A+B}{2} \right) \cos \left(\frac{A-B}{2} \right)$$

24.
$$SinA - SinB = 2cos\left(\frac{A+B}{2}\right)sin\left(\frac{A-B}{2}\right)$$

25.
$$CosA + CosB = 2cos\left(\frac{A+B}{2}\right)cos\left(\frac{A-B}{2}\right)$$

$$26.\text{CosA} - \text{CosB} = -2\text{sin}\left(\frac{A+B}{2}\right)\text{sin}\left(\frac{A-B}{2}\right)$$

Important Results:

1.
$$\sin 3A = 3\sin A - 4\sin^3 A = 4\sin(60^\circ - A) \cdot \sin A \cdot \sin(60^\circ + A)$$

2.
$$\cos 3A = 4\cos^3 A - 3\cos A = 4\cos(60^\circ - A) \cdot \cos A \cdot \cos(60^\circ + A)$$

3.
$$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} = \tan(60^\circ - A) \cdot \tan A \cdot \tan(60^\circ + A)$$

4.
$$Cot3A = Cot(60^{\circ} - A). CotA. Cot(60^{\circ} + A)$$

Some important values to remember:

1.
$$\sin(75^\circ) = \frac{\sqrt{3}+1}{2\sqrt{2}} = \cos(15^\circ)$$

2.
$$Sin(18^{\circ}) = \frac{\sqrt{5}-1}{4} = Cos(72^{\circ}) = Sin(\frac{\pi}{10})$$

3. $Cos(75^{\circ}) = \frac{\sqrt{3}-1}{2\sqrt{2}} = Sin(15^{\circ})$
4. $Cos(36^{\circ}) = \frac{\sqrt{5}+1}{4} = Sin(54^{\circ}) = Cos(\frac{\pi}{5})$
5. $Tan(75^{\circ}) = \frac{\sqrt{3}+1}{\sqrt{3}-1} = (2+\sqrt{3}) = Cot(15^{\circ})$

3.
$$\cos(75^\circ) = \frac{\sqrt{3}-1}{2\sqrt{2}} = \sin(15^\circ)$$

4.
$$Cos(36^{\circ}) = \frac{\sqrt{5}+1}{4} = Sin(54^{\circ}) = Cos(\frac{\pi}{5})$$

5.
$$Tan(75^\circ) = \frac{\sqrt{3}+1}{\sqrt{3}-1} = (2+\sqrt{3}) = Cot(15^\circ)$$

6.
$$Tan(22.5^{\circ}) = \sqrt{2} - 1 = Cot(67.5^{\circ}) = Cot(\frac{3\pi}{8}) = tan(\frac{\pi}{8})$$

7.
$$Tan(67.5^{\circ}) = \sqrt{2} + 1 = Cot(22.5^{\circ})$$

Conditional Trigonometric Identities:

1. If
$$A + B = 90^{\circ}$$
 then

(i)
$$SinA = CosB or CosA = SinB$$
,

(ii)
$$TanA = CotB or TanB = CotA$$
,

(iv)
$$Sin^2A + Sin^2B = 1$$
 and $Cos^2A + Cos^2B = 1$

(v) SinA. SecB =
$$1$$
 and CosA. CosecB = 1

(vi)
$$TanA. TanB = 1$$
 and $CotA. CotB = 1$

2. If
$$A + B = 45^{\circ}$$
 then

(i)
$$(CotA - 1)(CotB - 1) = 2$$

3. If
$$A + B + C = 180^{\circ}$$
 then

(i)
$$TanA + TanB + TanC = TanA. TanB. TanC$$

(ii)
$$\frac{1}{\text{TanA.TanB}} + \frac{1}{\text{TanB.TanC}} + \frac{1}{\text{TanA.TanC}} = 1$$

(iii)
$$CotA. CotB + CotB. CotC + CotA. CotC = 1$$

(iv)
$$\operatorname{Tan}(\frac{A}{2}) \cdot \operatorname{Tan}(\frac{B}{2}) + \operatorname{Tan}(\frac{B}{2})\operatorname{Tan}(\frac{C}{2}) + \operatorname{Tan}(\frac{C}{2})\operatorname{Tan}(\frac{A}{2}) = 1$$

(v)
$$\operatorname{Cot}(\frac{A}{2}) + \operatorname{Cot}(\frac{B}{2}) + \operatorname{Cot}(\frac{C}{2}) = \operatorname{Cot}(\frac{A}{2})\operatorname{Cot}(\frac{B}{2})\operatorname{Cot}(\frac{C}{2})$$

4. If
$$aSin\theta + bCos\theta = p$$
 then $bSin\theta - aCos\theta = \sqrt{(a^2 + b^2 - p^2)}$