Duality Between Data and Approximation Error

Sanjay Krishnan @ MemSQL March 12, 2015

In Collaboration With: Jiannan Wang, Daniel Haas, Juan Sanchez, Eugene Wu, Wenbao Tao, Tim Kraska, Tova Milo, Michael Franklin, Ken Goldberg

Outline

- Not all errors are created equal
- Approximating Materialized Views
- Results

Database-User Interaction Model

Database-User Interaction Model

Database Research Is Largely About Error

Database Research Is Largely About Error

Why is error troubling?

- We use approximations all the time
- Recipe for a VLDB/SIGMOD paper
 - Step 1. Prove your problem is NP-Hard
 - Step 2. Apply Heuristic
- Something deeper going on?

Good Errors

- Approximations in real life
 - Opinion Polls, Clinical Trials
- Why do we trust these?

Approximation vs. Data Error

The Sample-and-Clean Problem [SIGMOD 2014]

Focus on Aggregate Queries (e.g. sum, count, avg)

Intuitive Example: Average Age of Survey Participants

 Large datasets are time consuming to fix

The SampleClean approach:

- Take a uniform sample of records
- 2. Fix errors in the sample
- 3. (AQP) Average age in the sample.
- 4. (CORR) Average change in age after cleaning.

_	_			
	Α	В	С	D
				What parish do
1	Date	Participant ID Number	Age	you live in?
2	18-06-14	249	28	Naluwoli
3	17-06-14	2977	20	
4	17/06/2014	03500	52	Butansi
5	19/06/2014	4194	32	Naluwoli
6	17/06/2014	07420	19 1/2	Butansi
7	17/06/2014	07428	21	Naluwoli
8	17/06/2014	10011	Twenty	Butansi
9	17/06/2014	10061	30	Butansi
10	13-06-14	10431	27	Butansi
11	18/06/2014	10685	27 years	Butansi
12	19/06/2014	10920	19 years	Naluwoli
13	19/06/2014	10982	25	Naluwoli
14	13-06-14	11164	22	Naluwoli
15	17/06/2014	12138	Twenty-Two	Naluwoli

[HumTech 15]

Aggregate Queries Do Not Need Fully "Clean" Data

Outline

- Not all errors are created equal
- Approximating Materialized Views
- Results

Materialized Views

• Stored, pre-computed query result

```
SELECT avg(salary)
FROM employees, payroll
WHERE payroll.id = employee.id
```

SELECT sum(salary)
FROM employees, payroll
WHERE payroll.id = employee.id
AND employee.location = 2

SELECT avg(salary)
FROM employees, payroll
WHERE payroll.id = employee.id
GROUP BY employee.location

CREATE VIEW employee_payroll
AS SELECT *
FROM employees, payroll
WHERE payroll.id = employee.id

Materialized Views

Re-write queries on the view

CREATE VIEW employee_payroll AS SELECT * FROM employees, payroll WHERE payroll.id = employee.id

SELECT avg(salary) FROM employee_payroll

SELECT sum(salary)
FROM employee_payroll
WHERE employee.location = 2

SELECT avg(salary)
FROM employee_payroll
GROUP BY employee.location

Materialized View Staleness

 If the database is updated the materialized view is stale.

id	Name	Salary	Location
1	John	40k	1
2	Al	66k	2
3	Sally	100k	2
4	Sue	48k	1

CREATE VIEW employee_payroll AS SELECT * FROM employees, payroll WHERE payroll.id = employee.id

Incremental Maintenance

- Many algorithms have been proposed to keep MVs up-to-date.
- Avoids recomputation but still expensive for every incoming update.
- DBToaster [Koch et al. 2014]

Materialized View Staleness

Batched Maintenance

id	Name	Salary	Location
1	John	40k	1
2	Al	66k	2
3	Sally	100k	2
4	Sue	48k	1

CREATE VIEW employee_payroll AS SELECT *
FROM employees, payroll
WHERE payroll.id = employee.id

Maintenance Workflow

- Stale View: S
- Up-to-date View: S'
- Maintenance Strategy M

SampleClean Philosophy

- To answer aggregate queries we don't need the full view
- Stale View: Ssample
- Up-to-date View: S'sample
- Cleaning Strategy C

 $S_{sample} \longrightarrow C(S_{sample}, Updates, Base Data) \longrightarrow S'_{sample}$

Frequency Determined By Sampling Ratio

Deriving The Cleaning Strategy C

- Bad Alternative 1: Maintain then sample (correct but slow)
- Bad Alternative 2: Sample then maintain (incorrect but fast)

CREATE VIEW employee_payroll AS SELECT sum(salary), count(*) FROM employees, payroll WHERE payroll.id = employee.id GROUP BY employee.location

Problem of Provenance

- Sampling does not commute with all operations.
- If a row is sampled from a derived relation, we must ensure that all contributing rows are also sampled.
- We can do this by enforcing unique keys.

DEFINITION 2 (PRIMARY KEY GENERATION). For every relational expression R, we define the primary key attribute(s) of every expression to be:

- Base Case: All relations (leaves) must have an attribute p which is designated as a primary key. That uniquely identifies rows.
- $\sigma_{\phi}(R)$: Primary key of the result is the primary key of R
- Π_(a1,...,ak)(R): Primary key of the result is the primary key of R. The primary key must always be included in the projection.
- ⋈_{φ(r1,r2)} (R₁, R₂): The primary key of the result is the tuple of the primary keys of R₁ and R₂.
- γ_{f,A}(R): The primary key of the result is the group by key A
 (which may be a set of attributes).
- R₁∪R₂: Primary key of the result is the union of the primary keys of R₁ and R₂
- R₁ ∩ R₂: Primary key of the result is the intersection of the primary keys of R₁ and R₂
- $R_1 R_2$: Primary key of the result is the primary key of R_1

For every node at the expression tree, these keys are guaranteed to uniquely identify a row.

Deterministic Sampling

- Use a hash mod operation to ensure that all rows with a given primary key are sampled.
- Optimization posed as sampling push down.

Estimating A Query Result

 (AQP) Given a clean sample of data how to estimate an aggregate query result.

$$q(S') \approx k(m) * q(S'_{sample})$$

• (CORR) Estimate a correction to existing results

$$q(S) - q(S') \approx k(m) * (q(S_{sample}) - q(S'_{sample}))$$

CORR works better when the error is small AQP is more robust

Outline

- Not all errors are created equal
- Approximating Materialized Views
- Results

Experimental Setup

- TPCD on MySQL (Join Views, Complex Nested Views)
 - 10 GB
 - Only modification to MySQL was the hashing primitive
- Conviva Inc. on Spark (Aggregate Views)
 - 1TB
 - Apache Spark 1.1 Catalyst for push down
 - RDDs are immutable

TPCD: LINEITEM ORDER JOIN

TPCD: LINEITEM ORDER JOIN ACCURACY

TPCD: LINEITEM ORDER JOIN ACCURACY

TPCD: Queries as Views

Conviva

Conviva

