二. 守恒定律

1. 能量守恒 (均匀的时间)

[运动积分] 在力学系统运动过程中, 描述其状态的 2s 个变量 $q_i, \dot{q}_i (i=1,...,s)$ 随时间变化. 但存在关于这些变量的某些函数, 其值在运动过程中保持恒定, 且仅由初始条件决定. 这样的函数被称为运动积分.

[守恒量的可加性] 对于几个相互独立部分组成的系统, 守恒量的值等于各个部分相应值之和. [能量守恒 (时间均匀性)] 系统的能量 $E = \sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L$ 在封闭系统中保持不变, 是运动积分.

由于时间具有均匀性, 封闭系统的拉格朗日函数 $L(q,\dot{q})$ 不显含时间. 拉格朗日函数对时间的全导数为 $\frac{dL}{dt} = \sum_i \frac{\partial L}{\partial q_i} \dot{q}_i + \sum_i \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$.

由拉格朗日方程 (运动方程) $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i}$, 得 $\frac{dL}{dt} = \sum_i \dot{q}_i \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} + \sum_i \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i = \frac{d}{dt} \sum_i \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} \right)$. 即 $\frac{d}{dt} \left(\sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) = 0.$

由此知守恒量 $E = \sum_{i} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}} - L.$

[保守系统] 能量守恒的力学系统.

[n 次齐次函数] 满足条件 $f(ax_1,...,ax_s) = a^n f(x_1,...,x_s)$ 的函数 f 被称为 n 次齐次函数. [齐次函数的欧拉定理] 对于 $f(a\vec{x}) = a^n f(\vec{x}), \ \vec{x} = (x_1,...,x_s), \ \hat{f} \sum_i \frac{\partial f(\vec{x})}{\partial x_i} x_i = n f(\vec{x}).$

在
$$f(a\vec{x}) = a^n f(\vec{x})$$
 两端对 a 求导, 得 $\sum_i \frac{\partial f(\vec{x})}{\partial ax_i} x_i = na^{n-1} f(\vec{x})$.

[封闭系统 (或恒定外场中的系统) 能量守恒] $E = T(q, \dot{q}) + U(q)$ 或 $E = \sum_{a} \frac{m_a v_a^2}{2} + U(\vec{r}_1, \vec{r}_2, ...)$, 其中 T 是速度的二次函数.

对于 $E = \sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L$ 中的 $\sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i}$, 利用 $L = T(\cdot, \dot{q}) - U(q)$ 和齐次函数的欧拉定理得 $\sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} = \sum_i \dot{q}_i \frac{\partial T}{\partial \dot{q}_i} = 2T.$ 代入 $E = \sum_i \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L$ 得 $E = T(q, \dot{q}) + U(q)$.

2. 动量守恒 (均匀的空间)

[**动量守恒 (空间均匀性)**] 对于封闭力学系统, 其动量 $\vec{P} = \sum_a m_a \vec{v}_a$ 是运动积分, 保持不变.

由空间的均匀性, 封闭力学系统在空间中整体平移后性质不变.

设无穷小位移 $\vec{\varepsilon} \to \vec{0}$, 则 $\vec{r}_a \to \vec{r}_a + \vec{\varepsilon}$. 系统拉格朗日量的变化量 $\delta L = \sum_a \frac{\partial L}{\partial \vec{r}_a} \cdot \delta \vec{r}_a = \vec{\varepsilon} \cdot \sum_a \frac{\partial L}{\partial \vec{r}_a}$.

对于任意 $\vec{\varepsilon}$, 都有 $\delta L = 0$. 即 $\sum_{a} \frac{\partial L}{\partial \vec{r}_{a}} = \vec{0}$. 由拉格朗日方程 $\frac{d}{dt} \frac{\partial L}{\partial \vec{q}} = \frac{\partial L}{\partial \vec{q}}$, 得:

$$\sum_{a} \frac{d}{dt} \frac{\partial L}{\partial \vec{q}_a} = \frac{d}{dt} \sum_{a} \frac{\partial L}{\partial \vec{v}_a} = \vec{0}.$$

有守恒量 (运动积分) $\vec{P} = \sum_{a} \frac{\partial L}{\partial \vec{v}_a}$. 由封闭系统的拉格朗日函数 $L = \sum_{a} \frac{m_a}{2} v_a^2 - U(\vec{r})$ 得:

$$\vec{P} = \sum_{a} m_a \vec{v}_a$$
.

[动量分量守恒条件]

没有外场的情况: 动量矢量的三个分量都守恒.

有外场的情况: 如果势能不显含某个笛卡儿坐标, 则相应的该方向的动量分量守恒.

[**质点的动量**] 无论相互作用是否忽略, 封闭系统的动量都等于系统内所有质点动量 $\vec{p}_a = m_a \vec{v}_a$ 之和.

[作用与反作用互等定律 (牛顿第三定律)] 对于只有两个质点的封闭系统, 两个质点的相互作用满足 $\vec{F}_1 + \vec{F}_2 = \vec{0}$.

由
$$\sum_{a} \frac{\partial L}{\partial \vec{r}_a} = \vec{0}$$
 和 $L = T(\vec{r}) - U(\vec{r})$ 得: $-\sum_{a} \frac{\partial U}{\partial \vec{r}_a} = \vec{0}$, 即 $-\sum_{a} \vec{F}_a = \vec{0}$.

对于 a = 2 的系统, $\vec{F}_1 + \vec{F}_2 = \vec{0}$.

[广义动量] 在广义坐标下,广义动量 $p_i = \frac{\partial L}{\partial \dot{q}_i}$. 广义动量在笛卡儿坐标系下是 \vec{p}_a 的分量,一般为广义速度 \dot{q}_i 的齐次线性函数,不是质量与速度之积.

[**广义力**] 广义动量对时间的导数, $F_i = \frac{\partial L}{\partial q_i}$.

[广义拉格朗日方程 (运动方程)] 用广义动量和广义力表示拉格朗日方程 $\frac{d}{dt}\frac{\partial L}{\partial q_i} = \frac{\partial L}{\partial q_i}$ 为 $\dot{p}_i = F_i$.

[**封闭系统的动量相对不同惯性系的取值**] 封闭系统的动量相对不同惯性参考系有不同值, $\vec{P}=\vec{P'}+\vec{V}\sum_a m_a$.

惯性系 K' 相对 K 以速度 \vec{V} 运动,质点相对两系的速度 \vec{v}_a 和 \vec{v}_a 满足 $\vec{v}_a = \vec{v}_a' + \vec{V}$. 此时两参考系中质点的动量 \vec{P} 和 \vec{P}' 有: $\vec{P} = \sum_a m_a \vec{v}_a = \sum_a m_a \vec{v}_a' + \sum_a m_a \vec{V}$.

[力学系统相对参考系静止] 若 K' 的运动使其中力学系统的动量 $\vec{P'}=\vec{0}$, 即 K' 的速度为 $\vec{V}=\frac{\vec{P}}{\sum m_a}=\frac{\sum \vec{v}_a}{\sum m_a}$ 时, 力学系统相对参考系 K' 静止.

[**质量的可加性**] 系统的动量 \vec{P} 和系统整体运动速度 \vec{V} 的关系可等效视为一个质点的动量与速度关系, 该点的质量为 $\mu = \sum m_a$.

[**质心**] 系统的动量可视为系统整体径矢 $\vec{R} = \frac{\sum m_a \vec{r}_a}{\sum m_a}$ 对时间的导数. 该点被称为系统的质心.

[封闭系统动量守恒的质心表述] 封闭系统的质心作匀速直线运动.

[**内能**] 整体静止的力学系统的能量 E_{int} 被称为系统的内能,包括系统内质点相对运动的动能和相互作用的势能. 系统的总能量 $E = \frac{\mu V^2}{2} + E_{int}$.

设力学系统相对惯性参考系 K 和 K' 的能量为 E 和 E'. 由 $\vec{v}=\vec{v'}+\vec{V}$ 得:

$$\begin{cases} E = \frac{1}{2} \sum_{a} m_{a} v_{a}^{2} + U = \frac{1}{2} \sum_{a} (\vec{v}' + \vec{V})^{2} + U = \frac{1}{2} \sum_{a} m_{a} v'^{2} + \vec{V} \cdot \sum_{a} m_{a} \vec{v}' + \frac{\mu V^{2}}{2} + U \\ E' = \frac{1}{2} \sum_{a} m_{a} v'^{2} + U \end{cases}$$

$$\label{eq:energy_energy} \mbox{EV} \ E = E' + \vec{V} \cdot \vec{P}' + \frac{\mu V^2}{2}.$$

对于相对惯性系 K' 静止的力学系统, 由 $\vec{P}'=0,\,E_{int}=E',\,$ 有 $E=E'+\frac{\mu V^2}{2}.$

3. 角动量守恒(各向同性的空间)

[角动量守恒 (空间各向同性)] 对于封闭系统, 其角动量 (动量矩) $M = \sum_{a} \vec{r}_{a} \times \vec{p}_{a}$ 是运动积分, 保持不变 (但其值与原点选择有关).

由于封闭力学系统整体在空间中任意转动时, 力学性质保持不变. 设无穷小转动矢量 $\delta \vec{\varphi}$, 其大小 $\delta \varphi \to \vec{0}$, 方向沿转动轴方向.

当系统转动时, 径矢 \vec{r} 的增量 $\delta \vec{r}$ 满足 $|\delta \vec{r}| = r \sin \theta \delta \varphi (\theta$ 是径矢与转轴的夹角), 且位移矢量的方向垂直于过 \vec{r} 和 $\delta \vec{\varphi}$ 的平面, 得 $\delta \vec{r} = \delta \vec{\varphi} \times \vec{r}$.

对于速度同样有 $\delta \vec{v} = \delta \vec{\varphi} \times \vec{v}$.

由拉格朗日函数
$$L = L(\vec{r}, \vec{v})$$
 得: $\delta L = \sum_{a} \left(\frac{\partial L}{\partial \vec{r}_a} \cdot \delta \vec{r}_a + \frac{\partial L}{\partial \vec{v}_a} \cdot \delta \vec{v}_a \right) = 0.$

曲
$$\vec{p}_a = \frac{\partial L}{\partial \vec{v}_a}$$
 和 $\dot{\vec{p}}_a = \frac{\partial L}{\partial \vec{r}_a}$ 得: $\sum_a \left[\dot{\vec{p}}_a \cdot (\delta \vec{\varphi} \times \vec{r}_a) + \vec{p}_a \cdot (\delta \vec{\varphi} \times \vec{v}_a) \right] = 0.$

$$\exists \mathbb{P} \ \delta \vec{\varphi} \cdot \sum_{a} (\vec{r}_a \times \dot{\vec{p}}_a + \vec{v}_a \times \vec{p}_a) = \delta \vec{\varphi} \cdot \frac{d}{dt} \sum_{a} \vec{r}_a \times \vec{p}_a = 0.$$

上式对任意 $\delta \vec{\varphi}$ 都成立, 故有守恒量 (运动积分) $\vec{M} = \sum_a \vec{r}_a \times \vec{p}_a$. 因表达式包括径矢, 所以 \vec{M} 的值与原点的选择有关.

[不同坐标系角动量值的不确定性]

设两个坐标系的原点相差径矢 \vec{a} ,同一点对于两坐标系原点的径矢分别为 $\vec{r_a}$ 和 $\vec{r_a}$,有 $\vec{r_a} = \vec{r_a} + \vec{a}$.

则两系中角动量分别为
$$\begin{cases} \vec{M} = \sum_{a} \vec{r_a} \times \vec{p_a} = \sum_{a} \vec{r_a'} \times \vec{p_a} + \vec{a} \times \sum_{a} \vec{p_a} \\ \vec{M'} = \sum_{a} \vec{r_a'} \times \vec{p_a} \end{cases}, \text{ 即 } \vec{M} = \vec{M'} + \vec{a} \times \vec{P}.$$

当系统整体静止时, $\vec{P} = \vec{0}$, $\vec{M} = \vec{M}'$. 此时角动量的值与原点选择无关.

[不同惯性系的角动量守恒] $\vec{M} = \vec{M}' = \vec{R} \times \vec{P}$.

对于不同惯性系 K 和 K', 设 K' 相对于 K 的速度为 \vec{V} . 假定某时刻两惯性系的原点重合, 此时质点相对于两系的径矢相同. 质点相对于两系的速度满足 $\vec{v}_a = \vec{v}_a' + \vec{V}$.

质点在两系的角动量为
$$\begin{cases} \vec{M} = \sum_{a} \vec{r_a} \times \vec{p_a} = \sum_{a} m_a \vec{r_a} \times \vec{v_a} = \sum_{a} m_a \vec{r_a} \times \vec{v_a} + \sum_{a} m_a \vec{r_a} \times \vec{V} \\ \vec{M'} = \sum_{a} m_a \vec{r_a} \times \vec{v_a'} \end{cases}$$
 .

$$\mathbb{H} \vec{M} = \vec{M}' + \mu \vec{R} \times \vec{V}.$$

若系统相对坐标系 K' 静止, 则 \vec{V} 是系统质心相对 K 的速度, $\mu \vec{V}$ 是系统相对 K 的总动量 \vec{P} , 即 $\vec{M}=\vec{M}'+\vec{R}\times\vec{P}$.

[内禀角动量] 力学系统在相对其质心静止的参考系中的角动量.

[角动量分量守恒的情况]

- 1. 封闭系统中, 系统整体的角动量的各个分量守恒;
- 2. 角动量在外场对称轴上的投影守恒;
- 3. 在球对称的外场中, 角动量在任意过中心的轴上的投影守恒;
- 4. 沿 z 轴均匀的外场中, 角动量的投影 M_z 守恒.

[角动量在任意轴的投影] $M_z = \sum_{a} \frac{\partial L}{\partial \dot{\varphi}_a}$, 其中 φ 是绕 z 轴的转角.

在柱坐标系
$$r, \varphi, z$$
 中,
$$\begin{cases} x_a = r_a \cos \varphi_a \\ y_a = r_a \sin \varphi_a \end{cases}, v_a^2 = \dot{r}_a^2 + r_a^2 \dot{\varphi}_a^2 + \dot{z}_a^2.$$
 $z_a = z_a$

$$\mathbb{P} L = \frac{1}{2} \sum_{a} m_a (\dot{r}_a^2 + r_a^2 \dot{\varphi}_a^2 + \dot{z}_a^2) - U.$$

对
$$L$$
 求 $\dot{\varphi}_a$ 的导数 $\frac{\partial L}{\partial \dot{\varphi}_a} = \sum_a m_a r_a^2 \dot{\varphi}_a$. 由 $p_a = m_a v_a = m_a r_a \dot{\varphi}_a$ 得 $\frac{\partial L}{\partial \dot{\varphi}_a} = \sum_a r_a p_a$.

由
$$M_z = \sum_a r_a p_a$$
 得 $M_z = \frac{\partial L}{\partial \dot{\varphi}_a}$.

4. 力学相似性

[运动方程不变的变换] 拉格朗日函数乘任意常数不会改变运动方程. 对于一些情况, 无需求解运动方程就可以得到有关运动性质的一些结论.

假设势能是坐标的齐次函数,即势能函数满足 $U(\alpha \vec{r_1}, \alpha \vec{r_2}, ..., \alpha \vec{r_n}) = \alpha^k U(\vec{r_i}, \vec{r_2}, ..., \vec{r_n})$, 其中 α 是任意常数, k 是函数的齐次次数.

引入变换 $\vec{r_a} = \alpha \vec{r_a}, t' = \beta t$. 此时所有的速度 $\vec{v_a} = \frac{d\vec{r_a}}{dt'} = \frac{\alpha}{\beta} \frac{d\vec{r_a}}{dt} = \frac{\alpha}{\beta} \vec{v_a}$, 动能 $T_a' = \frac{m}{2} \vec{v'}^2 = \frac{m}{2} \frac{\alpha^2}{\beta^2} \vec{v'}^2 = \frac{\alpha^2}{\beta^2} T_a$, 势能 $U' = \alpha^k U$. 此时拉格朗日函数 $L' = T' - U' = \frac{\alpha^2}{\beta^2} T - \alpha^k U$.

若 $\frac{\alpha^2}{\beta^2} = \alpha^k$ 则 $L' = \alpha^k L$, 运动方程将不变. 条件即 $\beta = \alpha^{1-\frac{k}{2}}$.

变换后,运动轨迹几何上相似,但尺寸不同.

不同轨迹上的时间之比满足 $\frac{t'}{t} = \beta$, 轨迹线度之比 $\frac{l'}{l} = \alpha$. 由 $\beta = \alpha^{1-\frac{k}{2}}$, 得 $\frac{t'}{t} = \left(\frac{l'}{l}\right)^{1-\frac{k}{2}}$.

同理:
$$\frac{v'}{v} = \left(\frac{l'}{l}\right)^{\frac{k}{2}}, \frac{E'}{E} = \left(\frac{l'}{l}\right)^{k}, \frac{M'}{M} = \left(\frac{l'}{l}\right)^{1+\frac{k}{2}}.$$

[势能是坐标线性函数的实例]

自由落体: 在均匀重力场中, 势函数是坐标的线性函数 (k=1), 此时 $\frac{t'}{t}=\sqrt{\frac{l'}{l}}$;

开普勒第三定律: 对于两个质点的引力 (或库仑力), 势能与两点间的距离成反比, 即势能 是 k=-1 的齐次函数, 此时 $\frac{t'}{t}=\left(\frac{t'}{l}\right)^{\frac{3}{2}}$.

[**位力定理**] 如果力学系统在有限空间中运动, 势能是坐标的齐次函数, 则动能和势能的时间平均值之间存在非常简单的关系 $2\bar{T} = \sum_a \overline{\vec{r_a} \cdot \frac{\partial U}{\partial \vec{r_a}}}$. 其中 $\sum_a \overline{\vec{r_a} \cdot \frac{\partial U}{\partial \vec{r_a}}}$ 被称为系统的位力.

由 $T=T(v^2)$, 根据欧拉齐次函数定理有 $\sum_a \frac{\partial T}{\partial \vec{v}_a} \cdot \vec{v}_a = 2T$. 由 $\frac{\partial T}{\partial \vec{v}_a} = \vec{p}_a$ 得:

$$2T = \sum_{a} \vec{p}_a \cdot \vec{v}_a = \frac{d}{dt} \sum_{a} \vec{p}_a \cdot \vec{r}_a - \sum_{a} \dot{\vec{p}}_a \cdot \vec{r}_a.$$

由函数对时间的平均 $\bar{f}=\lim_{\tau\to\infty}\frac{1}{\tau}\int_0^{\tau}f(t)dt$. 若 f(t) 是某个有界函数 F(t) 的全导数, 则 $\bar{f}=0$. 即 $\bar{f}=\lim_{\tau\to\infty}\frac{F(\tau)-F(0)}{\tau}=0$.

若系统在有限空间中运动,则 $\sum_{a}\vec{p}_{a}\cdot\vec{r}_{a}$ 有界,表达式 $2\bar{T}=-\overline{\sum_{a}\vec{p}_{a}\cdot\vec{r}_{a}}$.

由
$$-\frac{\partial U}{\partial \vec{r}_a} = \dot{\vec{p}}_a$$
 得: $2\bar{T} = \sum_a \overline{\vec{r}_a \cdot \frac{\partial U}{\partial \vec{r}_a}}$.

[位力定理的齐次函数情况] 当势能是所有径矢 \vec{r}_a 的 k 次齐次函数时, $2\bar{T}=k\bar{U}$.

等价情况: $\bar{U} = \frac{2}{k+2}E, \bar{T} = \frac{k}{k+2}E.$

由位力定理 $2\bar{T} = \sum_{a} \overline{\vec{r}_a \cdot \frac{\partial U}{\partial \vec{r}_a}}$, 当势能 $U(\alpha \vec{r}_1, ..., \alpha \vec{r}_n) = \alpha^k U(\vec{r}_1, ..., \vec{r}_n)$ 时, $\sum_{a} \overline{\vec{r}_a \cdot \frac{\partial U}{\partial \vec{r}_a}} = k\bar{U}$.

曲
$$E = \bar{E} = \bar{T} + \bar{U}$$
, 得: $\bar{U} = \frac{2}{k+2}E, \bar{T} = \frac{k}{k+2}E$.