Circuitos Lógicos Álgebra Booleana Simplificação de circuitos lógicos

Prof.: Daniel D. Silveira

Álgebra de Boole

- Variáveis booleanas são representadas através de letras e podem assumir dois apenas dois valores 0 e 1
- Expressão booleana é uma expressão matemática cujas variáveis são booleanas
- Através de postulados, propriedades, teoremas fundamentais e identidades da álgebra de Boole é possível a simplificação das expressões que representam os circuitos lógicos

Postulados

Postulado da complementação

Seja A o complemento de A:

Se
$$A = 0$$
, logo $\overline{A} = 1$

Se
$$A = 1$$
, $\log \overline{A} = 0$

Através do postulado, estabelecemos a seguinte identidade:

Se
$$A = 0$$
, logo $\overline{A} = 1$, e se $\overline{A} = 1$, logo $A = 0$

Se
$$A=1$$
, $\log \overline{A}=0$, e se $\overline{A}=0$, $\log \overline{A}=1$

Assim sendo, podemos escrever: $\overline{A} = A$

Postulados

Postulado da adição: As regras da adição na

álgebra de Boole são: 1°) 0+0=0

2°) 0+1=1

3°) 1+0=1

4°) 1+1=1

Através do postulado podemos definir as seguintes identidades:

$$A+0=A$$
, se $A=0=>0+0=0$; se $A=1=>1+0=1$

$$A+1=1$$
, se $A=0=>0+1=1$; se $A=1=>1+1=1$

$$A+A=A$$
, se $A=0=>0+0=0$; se $A=1=>1+1=1$

$$A + \overline{A} = 1$$
, se A=0=>0+1=1; se A=1=>1+0=1

Postulados

 Postulado da Multiplicação: As regras da multiplicação booleana são 1°) 0.0=0 2°) 0.1=0

3°) 1.0=0

4°) 1.1=1

Através do postulado, podemos estabelecer as identidades:

$$A.0=0$$
, se $A=0=>0.0=0$; se $A=1=>0.1=0$

A.1=A, se
$$A=0=>0.1=0$$
; se $A=1=>1.1=1$

A.A=A, se
$$A=0=>0.0=0$$
; se $A=1=>1.1=1$

$$A.A = 0$$
, se $A = 0 = > 0.1 = 0$; se $A = 1 = > 1.0 = 0$

Propriedade comutativa na adição:

$$A+B=B+A$$

A	В	A + B	B + A
0	0	0	0
0	1	1	1 0
1	0	1	10
1	1	10	10

• Propriedade comutativa na multiplicação:

A	В	A . B	B . A
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Propriedade associativa na adição:

$$A + (B + C)=(A + B) + C=A + B + C$$

A	В	C	A+(B+C)	(A+B)+C	A+B+C
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0 1	1	u econo el	80 100
1	1	1	or 1 tone	n con i coma	1

Propriedade associativa na multiplicação:

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$$

A	В	C	A.(B.C)	(A.B).C	A.B.C
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0.	0	0
1	1	1	1	1	1

Propriedade distributiva:

$$A. (B + C) = A.B + A.C$$

A	В	C	A(B+C)	AB + AC
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Teoremas de De Morgan

O complemento do produto é igual a soma

dos complementos

$$\overline{A.B} = \overline{A} + \overline{B}$$

A	В	A.B	A+B
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

$$\overline{A.B.C...N} = (\overline{A} + \overline{B} + \overline{C} + ... + \overline{N})$$

Teoremas de De Morgan

 O complemento do a soma é igual ao produto dos complementos (extensão do primeiro teorema)

Seja o 1o. Teorema:
$$\overline{A.B} = \overline{A} + \overline{B}$$

Reescrevendo assim:
$$A.B = \overline{(\overline{A} + \overline{B})}$$

E chamando \overline{A} de X e \overline{B} de Y

Tem-se o 2o teorema: X.Y = X + Y

$$\frac{\overline{(A+B)}}{\overline{A} \cdot \overline{B}} \xrightarrow{porta} Porta NOU$$

$$\xrightarrow{A} \cdot \overline{B} \xrightarrow{porta} S \iff A \xrightarrow{B} \cdot S$$

$$(A+B+C+...+N) = A.B.C...N$$

Identidades auxiliares

• A + AB = A = > A(1+B) = A

$$A + \overline{A}.B = A + B$$

$$A + \overline{A}.B = \overline{A + \overline{A}.B}$$
 Identidade: $\overline{A} = A$

$$\overline{\overline{A} + \overline{A}.B} = \overline{\overline{A}.(\overline{A}.B)}$$

 $A + A.B = A.(\bar{A}.B)$ 20 Teorema de De Morgan

$$=\overline{\overline{A}.(A+\overline{B})}$$

10 Teorema de De Morgan

$$=(\overline{\overline{A}.A}+\overline{A}.\overline{\overline{B}})$$

Propriedade distributiva e identidade A.A = 0

$$=\overline{\overline{A.B}}$$

10 Teorema de De Morgan

$$= A + B$$

$$A + \overline{A}.B = A + B$$

Identidades auxiliares

$$(A + B).(A + C) = A + B.C$$

$$(A+B).(A+C) = A(A+B) + C(A+B)$$

$$= A.A + A.B + A.C + B.C$$

$$= A + A.B + A.C + B.C$$

$$= A + A.(B+C) + B.C$$

$$= A.(1 + B + C) + C.B$$

$$= A.1 + C.B$$

$$\therefore (A+B).(A+C) = A+BC$$

Propriedades utilizadas:

Distributiva Distributiva

A = A

1+A=1 e A.1=A

Quadro Resumo

Postulados				
Complementação	Adição	Multiplicação		
A=0 $ar{A}$ =1	0+0=0	0.0=0		
A=1 $ar{A}$ =0	0+1=1	0.1=0		
	1+0=1	1.0=0		
	1+1=1	1.1=1		

Identidades				
Complementação	Adição	Multiplicação		
	A+0=A	A.0=0		
$ar{ar{A}}$ =A	A+1=1	A.1=A		
A=A	A+A=A	A.A=A		
	A+ <i>Ā</i> =1	A. $ar{A}$ =0		

Propriedades

Comutativa: A+B=B+A A.B=B.A

Associativa: A+(B+C)=(A+B)+C=A+B+C A.(B.C)=(A.B).C=A.B.C

Distributiva: A(B+C)=AB+AC

Identidades auxiliares A+AB=A $A+\overline{A}B=A+B$ (A+B).(A+C)=A+BC

Simplificação de Expressões Booleanas

- Simplificações de expressões implicam em simplificações de circuitos
- São possíveis dois métodos para se realizar simplificações de expressões:

Álgebra de Boole

Mapas de Veitch-Karnaugh

Simplificação de expressões booleanas

Exemplo

Seja simplificar a expressão:

$$S = ABC + A\overline{C} + A\overline{B}$$

$$S = A(BC + \overline{C} + \overline{B})$$

Evidenciando o termo A

$$S = A[BC + (\overline{C} + \overline{B})]$$

Associativa

$$S = A[BC + (\overline{C} + \overline{B})]$$

$$\overline{A} = A$$

$$S = A[BC + (\overline{BC})]$$

De Morgan e, chamando BC de Y

$$S = A[Y + Y] = A$$

Simplificação de expressões booleanas

Exercícios propostos

Simplifique as expressões abaixo:

$$S1 = (A + B + C) \cdot (\overline{A} + \overline{B} + C)$$

$$S2 = (\overline{AC} + B + D) + C(\overline{ACD})$$

$$S3 = [(\overline{A + B}) \cdot \overline{C}] + [\overline{D(C + B)}]$$

$$S4 = (\overline{A} + \overline{B} + \overline{C}) \cdot (A + B + \overline{C})$$

$$S5 = \overline{A} \cdot \overline{B} \cdot C + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$S6 = \{[\overline{A(B + C)}] \cdot D\} \cdot (\overline{A + B})$$