

European Data Management Workshop

22d of June 2022

Focus on Real Time data management of Chl-a

This project has received funding the European Union's Horizon 2020 research and innovation programme under grant agreement No 951842.

Agenda

- Introduction 20 min
 - Meeting objectives
 - Live Notes via HackMD
 - *Introduction (Victor Turpin)*
 - The example of Argo (Catherine Schmechtig)
- C Discussion 1h
- Wrap up 15 min

- Raise and share issues related to real time data management of CHLA and BBP.
- Identify needs and requirements from the operating community to facilitate real time data flow of CHLA and BBP.
- Discuss the solutions to get rid of / limit the impact of those issues in operators and Pis
- Provide inputs for GROOM II data management road map

Meeting objectives

https://hackmd.io/csEWBKBaRV2sa80Bfg3myQ?both

Need support to take note Can/should be a collective effort

Volonteers?

Live Note

The GROOM I Real Time Data Management butterfly

Introduction

GTS

Why is it relevant to look at Argo's approach?

No OceanGliders community SOP on CHLA and BBP yet

With Argo we are sharing the same sensors with similar integration

Is CHLA and BBP real time data management of Argo a reference for our community?

Can we get inspired by the Argo approach?

III. The Argo exemple

Real Time QC http://dx.doi.org/10.13155/35385

Initial QC

CHLA_QC=3

- Global Range QC
- SPIKE QC (not already removed in the official documentation)

Median filter for Dark Spike test estimation and Quenching correction

> Remove the Flagging of the vertical levels with QC=4

IV. CHLA RT QC and RT adjustment in Argo

Adjustment background (1/3) http://dx.doi.org/10.13155/35385

- FChla Data correction needs to consider of
 - Dark correction(Due to the change of dark currents of sensor on float)

IV. CHLA RT QC and RT adjustment in Argo

Adjustment background (2/3)

- FChla Data correction needs to consider of
 - NPQ correction (If profiling at daytime, Due to the fluorescence dynamics of in vivo chlorophyll-a)

Sackmann et al. (2008) BGD

(Xing, ADMT19, 2018)

IV. CHLA RT QC and RT adjustment in Argo

Adjustment background (3/3)

- FChla Data correction needs to consider of
 - Slope correction
 (Due to the factory-calibration issue and fluorescence variability)

Arabian sea Upraeling Ocean Register Re

Fig. 2. Mean slope factors derived from observations of paired HPLC and in situ Chl fluorescence from major oceanographic regions (Table 1). Error bars indicate 95% confidence limits on slope from linear regression of all observations within each region. Lines indicate slope factors of 1 (solid) and 2 (dotted).

(Xing, ADMT19, 2018)

IV. CHLA RT QC and RT adjustment in Argo

Proctor and Roesler (2010) LOmet

Roesler et al. (2017) LOmet

Storing the information (for Float 6902736)

In 6902736_meta.nc

INITIAL CALIBRATION

PREDEPLOYMENT_CALIB_EQUATION =« CHLA=(FLUORESCENCE_CHLA-DARK_CHLA)*SCALE_CHLA » PREDEPLOYMENT_CALIB_COEFFICIENT=« SCALE_CHLA=0.0072, DARK_CHLA=45 » PREDEPLOYMENT_CALIB_COMMENT =« »

In profile file BD6902736_020.nc (PARAMETER_DATA_MODE=« A » for CHLA)

CALIBRATION for adjustment in RT

SCIENTIFIC_CALIB_xxx: post deployment calibration and adjustment information

SCIENTIFIC_CALIB_EQUATION= « CHLA_ADJUSTED=((FLUORESCENCE_CHLA-DARK_CHLA)*SCALE_CHLA)/2 »

SCIENTIFIC_CALIB_COEFFICIENT= « DARK_CHLA=53, SCALE_CHLA=0.0072 »

SCIENTIFIC_CALIB_COMMENT=« CHLA real time adjustment (specified in http://dx.doi.org/10.13155/35385 and computed with MLD_LIMIT=0.03, DELTA_DEPTH=200, DELTA_DEPTH_DARK=50) and following

recommentations of Roesler et al., 2017 (https://doi.org/10.1002/lom3.10185) »

BBP: having reliable metadata is crucial

https://biogeochemical-argo.org/cloud/document/meetings/admt/19/admt19-workshop-7-bgc-argo-d1_16reprocessing_poteau-bbp.pdf

2016 2015

2017

SEANOE

Sea scientific open data edition

SEANOE EuroGOOS SEANOE

BBP:h

https://reproces

Correction of scale factors for backscattering channel on ECO sensors mounted on BGC-Argo floats

Processing B

BBP70 DARK_BACKS(

(khi) is the conve

DARK_BACKSCATTERING SCALE_BACKSCATTERIN

BETA_BACKSCATTERING
BETASW700 is the contribut

Date 2021-02-18

Author(s) Barnard Andrew¹

Affiliation(s) 1 : Sea-Bird Scientific, Research and development department

DOI 10.17882/54520

Publisher SEANOE

Abstract WET Labs investigated the bias found in Poteau et al. 2017:

http://dx.doi.org/10.1002/2017gl073949 and provides a matrix of affected sensors with scale factors for the backscattering channels using a correct weighted phase function constant values

for ECO sensors mounted on BGC-Argo floats.

Licence

Data

(cc) BY-NC

File	Size	Format	Processing	Access
55891.csv	31 KB	CSV	Quality controlled data	Open access

Click to download the data

go-d1_16-

Download metadata
TXT, RIS, XLS, RTF, BIBTEX

Top of the page

2018 !!!!

BBP

RT QC developed by Giorgio Dall'Olmo (PML) in the framework of the EuroArgo-Rise project Endorsed by ADMT22 (2021) soon in the Argo data system

https://www.euro-argo.eu/content/download/157288/file/D4.3_v1.0.pdf

Suggestions of topics:

Can we apply similar real time data management rule for gliders and Argo floats?

What are the required metadata to be able to use CHLA and BBP data in real time?

How to store them?

Real Time adjustment of CHLA and BBP? Can we transfer the technique from Argo to Gliders? Shall it be a DAC or GDAC workload?

Real time QC on CHLA and BBP? What sort of test?

Discussions and feedback from community

- contact@groom-h2020.eu

 - www.groom-h2020.eu

