CHAPITRE 3 GENERALITES SUR LES FONCTIONS NUMERIQUES

I. RESUME DE COURS

Continuité

1) Définitions

$$\boxed{ \textbf{f est continue en } \textbf{x}_0 } \Leftrightarrow \boxed{ \lim_{\textbf{x} \to \textbf{x}_0^-} \textbf{f}(\textbf{x}) = \lim_{\textbf{x} \to \textbf{x}_0^+} \textbf{f}(\textbf{x}) = \textbf{f}(\textbf{x}_0) }$$

On dit que f est continue sur l'intervalle I si f est continue en tout point de I.

2) Propriétés

- Les fonctions polynômes, la fonction sinus, la fonction cosinus sont continues sur IR.
- La fonction \sqrt{x} est continue sur $[0; +\infty[$.
- Une fonction rationnelle est continue sur tout intervalle contenu dans son ensemble de définition.
- La somme, le produit, le quotient, la composée de fonctions continues est une fonction continue sur tout intervalle sur lequel elle est définie.

Autrement dit:

- Si u et v sont continues sur I, alors :
 - \circ Les fonctions ku, u + v, $u \times v$ et u^n (k réel et n entier naturel non nul) sont continues sur I.
 - Les fonctions $\frac{1}{u}$, $\frac{u}{v}$, \sqrt{u} sont continues sur les intervalles où elles sont définies.
- Si la fonction f est continue en a et si la fonction g est continue en f(a) alors la fonction gof est continue en a.

3) Prolongement par continuité

$$\begin{vmatrix} \bullet & a \notin D_f \\ \bullet \lim_{x \to a} f(x) = \ell; & \ell \in \mathbb{R} \end{vmatrix} \Rightarrow \begin{vmatrix} f & \text{admet un prolongement} \\ par & \text{continuité g au point a} \end{vmatrix}$$

Le prolongement :

$$\begin{cases} g(x) = f(x) & \text{si} \quad x \in D_i \\ g(a) = \ell \end{cases}$$

4) Fonctions continues sur un intervalle

Par une fonction continue:

L'image d'un intervalle est un intervalle.

L'image d'un segment est un segment.

5) Théorème des valeurs intermédiaires

$$| \bullet \text{ f est continue sur } [a,b] \} \Rightarrow \begin{vmatrix} \text{l'équation } f(x) = 0 \\ \text{admet au moins une} \\ \text{solution dans } [a,b] \end{vmatrix}$$

6) Théorème de la bijection réciproque

Remarques

Le théorème des valeurs intermédiaires montre l'existence d'une solution à l'équation f(x) = 0. Le théorème de la bijection réciproque en assure l'unicité.

Dérivation

1) Nombre dérivé – dérivabilité

$$\begin{vmatrix} f \text{ est d\'erivable} \\ \text{au point } x_0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ est un nombre r\'eel} \end{vmatrix}$$

Nombre dérivé:
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

f est dérivable sur l'intervalle I si f est dérivable en tout point x_0 de I.

 $\bullet\,\,$ Toute fonction dérivable sur un intervalle I $\,$ est continue sur I (La réciproque est fausse).

2) Dérivées usuelles

Fonction	Dérivée	Domaine de dérivation
k réel (Constante)	0]-∞,+∞[
ax+b	a]-∞,+∞[
$x^n, n > 0$	nx ⁿ⁻¹]-∞,+∞[
$\frac{1}{x}$	$-\frac{1}{x^2}$	ℝ*
$\sqrt{\mathbf{x}}$	$\frac{1}{2\sqrt{x}}$]0,+∞[

Fonction	Dérivée	Domaine de dérivation
sin x	cos x]-∞,+∞[
cos x	-sin x]-∞,+∞[
tan x	1 + tan ² x	$\left]-\frac{\pi}{2},+\frac{\pi}{2}\right[$
ln x	$\frac{1}{x}$	\mathbb{R}^*
e ^x	e ^x]-∞,+∞[

3) Opérations sur les dérivées

Fonction	Dérivée
au	au'
u + v	u'+ v'
u•v	u'•v+u•v'
$\frac{1}{u}$	$\frac{-\mathbf{u'}}{\mathbf{u^2}}$
$\frac{\mathbf{u}}{\mathbf{v}}$	$\frac{\mathbf{u}' \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v}'}{\mathbf{v}^2}$
$\sqrt{\mathbf{u}}$	$\frac{\mathbf{u'}}{2\sqrt{\mathbf{u}}}$
(u) ⁿ	$\mathbf{nu'}(\mathbf{u})^{\mathbf{n-1}}$
u o v	v'.(u'∘ v)

4) Dérivée de la réciproque

$$\begin{vmatrix} \bullet f(a) = b \\ \bullet f'(a) = c \end{vmatrix} \Rightarrow \begin{vmatrix} \bullet f^{-1}(b) = a \\ \bullet (f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{c} \end{vmatrix}$$

5) Inégalités des accroissements finis

• f est dérivable sur I,• a,b∈ I, a < b,• il existe m, M∈
$$\mathbb{R}$$
 tels que :m ≤ f'(x) ≤ M sur I.
$$m(b-a) ≤ f(b) - f(a) ≤ M(b-a)$$

• f est dérivable sur I,
• il existe
$$M \in \mathbb{R}$$
 tel que :
$$|f'(x)| \le M \text{ sur I.}$$

Courbes : symétries – asymptotes – tangentes

Soit f une fonction numérique et $\,C_{\rm f}\,$ sa courbe représentative dans un repère orthonormé.

1) Eléments de symétrie

Si, pour tout $x \in D_f$, on a	alors, C admet
$2a-x \in D_f$ et	
f(2a-x) = f(x)	la droite d'équation x=a comme axe de symétrie.
f(2a-x) = 2b-f(x)	le point M(a,b) comme centre de symétrie.
f(-x) = f(x)	l'axe (Oy) comme axe de symétrie et f est paire.
$\mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$	l'origine O comme centre de symétrie et f est impaire.

2) Asymptotes parallèles aux axes

Si	alors la courbe C, possède une asymptote
$\lim_{x\to x_0} f(x) = \pm \infty$	<u>verticale</u> d'équation $x = x_0$
$\lim_{x \to \pm \infty} f(x) = y_0$	horizontale d'équation $y = y_0$

3) Asymptote oblique et branches paraboliques

Si $\lim_{x \to +\infty} f(x) = \pm \infty$, on calcule $\lim_{x \to +\infty} \frac{f(x)}{x}$. Trois cas se présentent :

Si	alors
$\lim_{x\to +\infty} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}} = \pm \infty$	C admet une <u>branche parabolique</u> de direction (Oy) en +∞.
$\lim_{x\to +\infty} \frac{f(x)}{x} = 0$	C admet une <u>branche parabolique</u> de direction (Ox) en $+\infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \; ; a \in \mathbb{R}^* \qquad \text{on calcule } \lim_{x \to +\infty} (f(x) - ax) \; :$$

- Soit $\lim_{x \to +\infty} (f(x) ax) = \infty$, alors C admet une <u>branche parabolique</u> de direction la droite d'équation y = ax
- Soit $\lim_{x \to +\infty} (f(x) ax) = b$, avec $b \in \mathbb{R}$, alors C admet une <u>asymptote oblique</u>, c'est la droite d'équation y = ax + b.

Cela est équivalent à chacune des situations suivantes :

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$$

$$\begin{cases} f(x) = ax + b + \varphi(x), & a \neq 0 \\ \lim_{x \to +\infty} \varphi(x) = 0 \end{cases}$$

Le signe de d(x) = f(x) - (ax+b) détermine les positions relatives de C et son asymptote oblique.

N.B: les définitions ci-dessus sont analogues lorsque x tend vers $-\infty$.

4) Tangentes

Si	alors
f est dérivable en x ₀	C admet une tangente en
	$\mathbf{M}_{0}(\mathbf{x}_{0},\mathbf{y}_{0})$
D est la tangente à C en M ₀ (x ₀ ,y ₀)	L'équation de D :
D n'est pas verticale.	$y = f'(x_0)(x - x_0) + f(x_0)$
la tangente D// la droite d'équation $y = \mu x + \delta$	$\mathbf{f}'(\mathbf{x}_0) = \mathbf{\mu}$
la tangente $D \perp$ la droite d'équation $y = \mu x + \delta$	$\mu f'(x_0) = -1$
la tangente D est horizontale	$\mathbf{f}'(\mathbf{x}_0) = 0$
$\lim_{x \to \infty} \frac{f(x) - f(x_0)}{f(x)} = \infty$	C admet une tangente (ou
$\lim_{x \to x_0} \frac{1}{x - x_0} = 0$	demi tangente) verticale
	d'équation $x = x_0$.

II. QUESTIONNAIRES A CHOIX MULTIPLE

QCM₁

On considère une fonction numérique f dérivable sur son domaine de définition D_f , de dérivée f'. Son tableau de variation est donné ci-dessous. On nomme (C) la courbe représentative de la fonction f dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

Pour chaque question, parmi les réponses proposées, une seule réponse est exacte. Préciser la bonne réponse.

N°	Question	Réponse A	Réponse B	Réponse C	Réponse D
1	L'ensemble de définition de f est :	ℝ \ { -2 }	ℝ \{ 2;3 }	R\{2}	\mathbb{R}
2	L'équation $f(x) = 0$ admet dans D_f exactement :	3 solutions	2 solutions	1 solution	aucune solution
3	La courbe (C) admet une asymptote d'équation :	x = 3	x = 2	y = 2	y = 3
4	La fonction f est une fonction :	paire	impaire	ni paire ni impaire	monotone
5	L'équation de la tangente à (C) au point d'abscisse $x_0 = 3$ est :	x=1	y = 2	y = 3x + 2	y = 2x + 3
6	$\lim_{x\to -\infty} \frac{f(x)}{x} \text{ est égale à :}$	0	-3		+∞

N°	Questions	Réponse A	Réponse B	Réponse C	Réponse D
1	Si pour tout $x \in D_f$, f(8-x)+f(x)=4 alors C_f est symétrique par rapport à :	A(4;2)	A(2;4)	la droite d'équation x = 4	A(8,4)
2	Si $\frac{2x^2 - 3x + 4}{x + 1} = ax + b + \frac{c}{x + 1}$ pour tout $x \neq -1$, alors	a = 1 $b = -5$ $c = 4$	a = 2;b = -5 et c = 9	a = 2; b = -3 et $c = 4$	a = 3 $b = -2$ $c = 4$
3	$f(x) = x + \frac{1}{x}$ alors:	$\mathbf{D}_{\mathrm{f}} = \mathbb{R}$	f'(1) = 0	f'(-1) = 2	f'(1) = 2
4	Si pour tout $x \in D_f$, f(4-x) = 6-f(x) alors C_f est symétrique par rapport à :	A(2;6)	A(8,4)	La droite d'équation x=4	A(2,3)
5	Si $f(x) = \frac{x^2 + 5x + 6}{x + 1}$ et $f(x) = ax + b + \frac{c}{x + 1}$ pour tout $x \neq -1$, alors	a = 1 $b = -4$ $c = 3$	a=1;b=4 et c=2	a = 1; b = 4 et $c = -2$	a=1 b=5 c=6
6	Sif(x) = $\frac{x}{x^2 + x + 1}$, alors la tangente à C _f en $x_0 = 0$ a pour équation:	y = x	y = x +1	y = x -1	y = -x

Soit f la fon ction définie par $f(x) = \frac{2x+3}{x-2}$ et (C) sa courbe dans un repère orthonormé (O, \vec{i}, \vec{j}) .

N°	Question	Réponse A	Réponse B	Réponse C	Réponse D
1	L'ensemble de définition de f est	$\mathbb{R} \setminus \left\{ \frac{-3}{2} \right\}$	ℝ \{2}	$\mathbb{R} \setminus \left\{ \frac{-3}{2}; 2 \right\}$	R
2	Le nombre d'asymptotes de (C) est	0	1	2	3
3	(C) coupe l'axe des abscisses au point de coordonnées	(2;0)	(0;2)	(-3;0)	(-1,5;0)
4	La dérivée f' de f est définie par :	$f'(x) = \frac{-7}{\left(x-2\right)^2}$	$f'(x) = \frac{7}{(x-2)^2}$	$f'(x) = \frac{4x-1}{(x-2)^2}$	$f'(x) = \frac{8}{(x-2)^2}$
5	La fonction f	paire	impaire	ni paire, ni impaire	croissante
6	La courbe (C) est symétrique par rapport :	à la droite d'équation x = 2	au point de coordonnées (2;0)	au point de coordonnées (2;2)	à la droite d'équation x = 1

Dans le plan rapporté à un repère orthonormal, la courbe (C) ci-contre représente une fonction f définie et dérivable sur \mathbb{R} . La droite (T) est tangente à la courbe (C) au point A d'abscisse 1. La droite d'équation y=0 est asymptote à la courbe (C) en $+\infty$.

La courbe (C) admet une branche parabolique de direction (Oy) en -∞.

N°	Question	Réponse A	Réponse B	Réponse C	Réponse D
1	On a	f(0) = 0	f'(0) = e	f'(0) = 0	f(0) = -1
2	Le coefficient directeur de la droite (T) est égal à :	0	1	-1	3
3	On a	$\lim_{x\to +\infty} f(x) = 0$	$\lim_{x\to 0} f(x) = +\infty$	$\lim_{x\to 4} f(x) = 0$	$\lim_{x\to +\infty} f(x) = 6$
4	L'équation $f(x) = 2$	n'a pas de solution	a une unique solution	a deux solutions	a trois solutions
5	On a	f(1) = 0	f(1)=1	f(1) = 2	f(1)=3
6	$\lim_{x\to\infty}\frac{f(x)}{x}=$	0	+∞	∞	1

Soit f une fonction dérivable sur $\mathbb{R}\setminus\{1\}$ de tableau de variations :

N°	Réponses	A	В	C	D
1	Le domaine	\mathbb{R}	R\{1,3}]-∞,1[∪]3,+∞[ℝ \{1}
	de définition				
	de f est:				
2	La fonction f	bornée	croissante	décroissante	non
	est				monotone
3	La courbe C	x=3	x = 1	y = 3x - 2	x = -2
	admet une				
	asymptote				
	d'équation				
4	L'équation	3	2 solutions	1 solution	aucune
	f(x) = -3	solutions			solution
	admet				
	exactement				
5	$\lim \frac{f(x)}{} =$	-∞	+∞	1	0
	-∞ X				
6	L'équation	3	2 solutions	1 solution	aucune
	$\mathbf{f}(\mathbf{x}) = 0$	solutions			solution
	admet				
	exactement				

III. ENONCES DES EXERCICES CORRIGES

Exercice 1

Calculer les limites suivantes (Expliquer la méthode de levée d'indétermination):

$$\lim_{x \to 2} \frac{3x^3 - 7x^2 + x + 2}{x^2 - 4}$$

$$\lim_{x\to 3} \frac{x^{10} - 3^{10}}{x - 3}$$

$$\lim_{x\to+\infty}(x-\sqrt{x})$$

Exercice 2

Soit $f(x) = \frac{\sqrt{x-1}}{x-1}$. Calculer $\lim_{x\to 1} f(x)$ par trois méthodes

Exercice 3

Calculer $\lim_{x\to +\infty} f(x)$ dans chacun des cas suivants :

1)
$$f(x) = \sqrt{4x^2 + 1} - x$$

2)
$$f(x) = \sqrt{x^2 + 1} - x$$

Exercice 4

On considère la fonction numérique f définie $\overline{par: f(x) = -x^4 + 2x^2 + x}$ et soit

- (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.
- 1) Déterminer une équation de la tangente T à la courbe (C) au point A(-1, 0).
- 2) Montrer que cette droite est aussi tangente à (C) en un autre point que l'on précisera.
- 3) Montrer que la courbe (C) admet des tangentes horizontales en trois points d'abscisses α, β et γ vérifiant : $-0.9 < \alpha < -0.8$, $-0.3 < \beta < -0.2$ et $1.1 < \gamma < 1.2$.

Déterminer les réels a, b, c pour que la courbe de la fonction $f(x) = ax + b + \frac{c}{x-1}$:

- passe par le point A(2; 4),
- admette au point A(2; 4), une tangente horizontale, et
- aie au point d'abscisse 3 une tangente parallèle à la droite d'équation y = x + 4
- 2) Vérifier que le point $\Omega\left(1; \frac{4}{3}\right)$ est un centre de symétrie de la courbe de f.

Exercice 6

Soit
$$g(x) = \frac{4}{3}x - 1 + \frac{4}{3x - 3}$$
.

- 1) Dresser le tableau de variations de g.
- 2) Montrer que la courbe (C) de g admet deux asymptotes dont l'une (D) est oblique et préciser la position de (D) par rapport à (C).
- 3) Déterminer la tangente (T) à (C) au point d'abscisse 3. Déterminer la position de (T) par rapport à (C).
- 4) Tracer soigneusement (T), (D) et (C) dans un repère orthonormé.
- 5) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $4x^2 (3m+7)x + 3m + 7 = 0$. Retrouver les résultats algébriquement.

Exercice 7

1) Soit $P(x) = x^4 + 6x^2 - 16x + 9$.

Déterminer une racine évidente de P, factoriser P et déterminer son signe.

- 2) Soit $f(x) = \frac{x^3 x^2 + 3x + 5}{x^2 + 3}$, soit C sa courbe représentative dans un repère orthonormé d'unité 2 cm.
- a) Déterminer D_f l'ensemble de définition de f.
- b) Montrer que f est dérivable sur \mathbf{D}_{f} . Calculer sa dérivée et vérifier que

$$f'(x) = \frac{P(x)}{(x^2+3)^2}$$
.

- c) Dresser le tableau de variations de f.
- 3.a) Trouver a, b, c tels que pour tout x de D_f : $f(x) = ax + b + \frac{c}{x^2 + 3}$.
- b) Montrer que C a une asymptote D et étudier la position de C par rapport à D.
- c) Tracez D et C.
- 4.a) Montrer que f réalise une bijection de ${\mathbb R}\,$ sur un intervalle J que l'on déterminera.
- b) Représenter (C) et(C') la courbe de f⁻¹, dans un nouveau repère.
- c) Calculer $(f^{-1})'(0)$.

- 1) On considère le polynôme $P(x) = x^3 3x^2 + 2$.
- a) Calculer P(1) et factoriser P(x).
- b) Etudier le signe de P(x).

- 2) On considère la fonction f définie sur $\mathbb{R} \{2\}$ par $f(x) = \frac{x^3 3x + 2}{x 2}$ et C sa courbe représentative dans un repère orthogonal (en abscisse 1 cm pour 1 unité, en ordonnée 1 cm pour 2 unités).
- a) Déterminer les limites de f en $+\infty$, en $-\infty$ et en 2. Préciser les asymptotes verticales et horizontales éventuelles.
- b) Montrer que f'(x) = $\frac{2P(x)}{(x-2)^2}$.
- c) Etudier les variations de f et dresser son tableau de variation.
- 3) Pour quelle abscisse a la tangente au point d'abscisse a est-elle horizontale? Justifier.
- 4) Trouver a, b, c et d tels que $f(x) = ax^2 + bx + c + \frac{d}{x-2}$.
- 5) On appelle g la fonction définie par $g(x) = x^2 + 2x + 1$ et P sa courbe représentative.
- a) Déterminer les limites en $+\infty$ et en $-\infty$ de f(x) g(x). Que peut-on en déduire sur les courbes C et P ?
- b) Etudier la position relative de C et P.
- c) Tracer C, T et P dans le même repère.

V. EXERCICES DE SYNTHESE

Exercice 1

Soit f la fonction numérique définie par $f(x) = \frac{x^2 + 3x + 3}{2x + 2}$ et (C) sa courbe représentative dans un repère orthonormé d'unité 1 cm.

- 1.a) Déterminer le domaine de définition de f et calculer les limites de f aux bornes de ce domaine.
- b) Etudier le sens de variation de f et dresser son tableau de variation
- 2.a) Déterminer les réels a,b et c tels que $f(x) = ax + b + \frac{c}{2x+2}$
- b) En déduire que (C) admet une asymptote oblique Δ , dont on donnera l'équation.
- c) Etudier la position relative entre (C) et Δ
- 3. a) Construire la courbe (C) et ses asymptotes.
- b) Montrer que (C) admet un centre de symétrie que l'on précisera.
- 4) Soit g la restriction de f sur l'intervalle $I =]0,+\infty[$
- a) Montrer que g est une bijection de]0,+∞[sur un intervalle Jque l'on déterminera.
- b) Déterminer $g^{-1}\left(\frac{7}{4}\right)$ et $\left(g^{-1}\right)'\left(\frac{7}{4}\right)$.
- c) Montrer que l'équation g(x)=x admet une unique solution α que l'on déterminera la valeur exacte et une valeur approchée à 10^{-2} près.
- d) Tracer, dans le même repère, la courbe (C') de la fonction g⁻¹.
- 5) On considère l'intervalle K = [2;3]
- a) Montrer que, $x \in K$ implique que $\forall x \in K$, $f(x) \in K$
- b) Montrer que $\forall x \in K$, $|f'(x)| \le \frac{1}{2}$
- 6) Soit (u_n) la suite définie par $u_0 = 2$ et $u_{n+1} = g(u_n)$

- a) Montrer que $\forall n \in \mathbb{N}, u_n \in K$.
- b) Montrer que $\forall n \in \mathbb{N}$, $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$.
- c) En déduire que $\forall n \in \mathbb{N}, |u_n \alpha| \le \frac{1}{2^n}$
- d) En déduire la limite de (u,).

Partie A

Soit la fonction numérique définie par $g(x) = x^3 - 3x - 4$

- 1) Dresser le tableau de variation de g.
- 2) Montrer que l'équation g(x)=0 admet une unique solution α dans $\mathbb R$ et que $2<\alpha<3$.
- 3) Donner le signe de g(x) sur \mathbb{R} .

Partie B

On considère la fonction numérique f définie par : $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$ et soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$

- 1.a) Calculer $\lim_{x \to -1^-} f(x)$, $\lim_{x \to -1^+} f(x)$, $\lim_{x \to -1^-} f(x)$, $\lim_{x \to 1^+} f(x)$.
- b) Interpréter graphiquement les limites précédentes.
- 2.a) Montrer que $\forall x \in D_f$, $f(x) = x + 2 + \frac{x+2}{x^2 1}$
- b) En déduire que la courbe (C) admet une asymptote oblique Δ à préciser puis étudier la position relative de (C) et Δ .
- c) Calculer $\lim_{x\to\infty} f(x)$, $\lim_{x\to+\infty} f(x)$.
- 3) Montrer que $\forall x \in D_f$, $f'(x) = \frac{xg(x)}{(x^2 1)^2}$. En déduire le signe de f'(x) sur D_f (On pourra utiliser A.3).
- 4) Dresser le tableau de variations de f.
- 5) Déterminer les points de (C) où la tangente est parallèle la droite d'équation y = x + 2.

- 6) Donner une équation de la tangente de (C) en $x_0 = -2$
- 7) Construire la courbe (C)
- 8) Soit h la restriction de f sur l'intervalle $I =]-\infty; -1[$
- a) Montrer que h réalise une bijection de I sur un intervalle J à préciser.
- b) Calculer $(h^{-1})'(0)$.

Soit f la fonction de variable réelle définie par : $f(x) = \frac{x^2 - 3x + 6}{x - 2}$

On désigne par C sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$ d'unité 2cm.

- 1) Déterminer les réels a ;b et c tel que : $f(x) = ax + b + \frac{c}{x-2}$, $\forall x \in D_f$
- 2) Dresser le tableau de variations de f.
- 3) Montrer que C admet deux asymptotes D et D' dont l'une D est oblique.

Etudier les positions relatives de D et (C)

- 4.a) Donner une équation de la tangente T à la courbe (C) au point d'abscisse $x_0 = 1$.
- b) Existe-t-il des points de (C) où la tangente est perpendiculaire à l'asymptote oblique D ? Si oui, donner des équations de ces tangentes.
- 5) Vérifier que pour tout x de D_f on a f(4-x)+f(x)=2 et interpréter graphiquement.
- 6) Soit g la restriction de f sur l'intervalle I =]0;2[.
- a) Montrer que $g:I \to J$ réalise une bijection où J est un intervalle que l'on déterminera.
- b) Dresser le tableau de variations de g⁻¹.
- c) Calculer $(g^{-1})'(-4)$. Donner, par deux méthodes différentes l'équation de la droite T' tangente à (C') courbe de g^{-1} au point d'abscisse $x_0 = -4$.

- 7.a) Tracer les courbes (C) et (C').
- b) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $x^2-(3+m)x+6+2m=0$. Retrouver ces résultats algébriquement.

On considère la fonction $f(x) = \frac{x^4 - 6x^2 + 1}{x^3 - x}$ et sa courbe (C) dans un repère orthonormé.

- 1) Trouver a, b et c tels que $f(x) = x + \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}$.
- 2) Déterminer l'ensemble de définition de f. Etudier la parité et les variations de f.
- 3) Calculer les limites de f aux bornes de Df. Préciser les asymptotes à (C).
- 4) Etudier la position de (C) par rapport à la droite D d'équation (y = x).
- 5) Tracer D et C.
- 6) Résoudre l'équation f(x) = 0.

Exercice 5

Soit la fonction f, définie sur $\mathbb{R} \setminus \{-1, +1\}$ par $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$ et C sa courbe représentative dans le plan muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$ (unité : 2 cm)

Partie A: Etude d'une fonction auxiliaire.

Soit g définie sur \mathbb{R} par $g(x) = x^3 - 3x - 4$.

- 1) Dresser le tableau de variations de la fonction g.
- 2) Montrer qu'il existe un réel α unique tel que $g(\alpha) = 0$. Vérifier que $2 \le \alpha \le 3$ puis déterminer une valeur approchée de α à 5.10^{-1} près.
- 3) Etudier le signe de g(x) sur \mathbb{R} .

Partie B: Etude de la fonction f.

1) Déterminer les limites de la fonction f aux bornes de son ensemble de définition.

- 2) Montrer que pour tout x de $\mathbb{R}\setminus\{-1,+1\}$, $f'(x) = \frac{xg(x)}{(x^2-1)^2}$. En déduire le tableau de variation de f.
- 3) Montrer que pour tout x de $\mathbb{R}\setminus\{-1,+1\}$, $\mathbf{f}(\mathbf{x})=\mathbf{x}+2+\frac{\mathbf{x}+2}{\mathbf{x}^2-1}$. En déduire que C admet une asymptote oblique D à l'infini. Etudier la position de C par rapport à D.
- 4) Déterminer les abscisses des points de C où la tangente est parallèle à la droite d'équation y = x + 2
- 5) Tracer la droite D, les tangentes du 4. ainsi que la courbe C.
- 6) Soit h la restriction de f sur l'intervalle $I = [3, +\infty]$.
- a) Montrer que $h:I\to J$ réalise une bijection où J est un intervalle que l'on déterminera.
- b) Dresser le tableau de variations de h⁻¹.
- c) Calculer $(h^{-1})'(\frac{45}{8})$.

Soit f la fonction de variable réelle définie par : $f(x) = \frac{x^2 + 2x - 3}{x + 1}$.

On désigne par C sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1) Déterminer les réels a ;b et c tel que $f(x) = ax + b + \frac{c}{x+1}$ pour tout $x \in D_f$.
- 2) Dresser le tableau de $\,$ variations de f . Justifier que la courbe $\,$ C n'admet pas de tangentes horizontales.
- 3) Montrer que C admet deux asymptotes et que leur point d'intersection est un centre de symétrie de C.
- 4) Etudier les positions relatives de C et son asymptote oblique.
- 5) Préciser les points d'intersections de C avec les axes.
- 6) On considère la droite D d'équation 2x y 1 = 0.

Existe-t-il des points de C où la tangente est parallèle à D? Si oui, donner des équations de ces tangentes.

- 7) Tracer la courbe C.
- 8) Soit k la restriction de f sur l'intervalle $]-1,+\infty[$.
- a) Montrer que k réalise une bijection de]−1,+∞[sur un intervalle J que l'on déterminera.
- b) Construire dans un nouveau repère orthonormé, les courbes représentatives de k et de sa réciproque .
- c) Calculer $k^{-1}(0)$, $(k^{-1})'(0)$.
- d) Donner l'équation de la tangente T' à la courbe C' de k⁻¹ au point d'abscisse 0.

Exercice 7

Soit f la fonction définie par $f(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$ et C sa courbe dans un repère orthonormé

- 1) Montrer que pour tout x : f(-x) = 2 f(x); Interpréter graphiquement.
- 2) Montrer que le point de coordonnées (0;1) est un point d'inflexion.
- 3) Etudier les variations de f.
- 4)Tracer la courbe de f.
- a) Montrer que f admet une fonction réciproque f⁻¹
- b) Donner l'expression de f⁻¹
- c) Dresser le tableau de variation de f⁻¹ Tracer sa courbe.

Exercice 8

On considère la fonction numérique $f(x) = \sqrt{|x^2 + 3x - 10|}$. (C) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) Ecrire f sans valeur absolue
- 2) Déterminer les asymptotes éventuelles à la courbe (C)
- 3) Dresser le tableau de variation
- 4) Montrer que la partie de (C) sur [-5,2] est un demi cercle à préciser.
- 5) Tracer (C).

Dépôt légal N°2176/2020 Bibliothèque nationale Nouakchott

Essebil Au Bac

Dans les ouvrages de la collection ESSEBIL AU BAC-Mathématiques vous trouverez chaque trimestre:

ESSEBIL AU BAC - Mathématiques

- ✓ Des résumés de cours pour réviser rapidement et mémoriser les formules
- ✓ Des QCM pour l'entraînement et la maîtrise des notions du programme
- ✓ Des exercices corrigés variés et progressifs pour teser et approfondir vos connaissances
- ✓ Des exercices de synthèse et des problèmes non corrigés pour préparer éfficacement l'épreuve du Bac.
- ✓ Quelques traductions pour améliorer le niveau d'acquisition.

Essebil Au Bac 7DHorma Hamoud 134