Gradient Descent

1. Khái niệm

Gradient Descent là gì?

Giả sử bạn có một hàm chi phí J(w, b) và bạn muốn tối thiểu hóa nó.

- Với hồi quy tuyến tính, đây là hàm chi phí dựa trên lỗi bình phương.
- Nhưng gradient descent không chỉ dùng cho hồi quy tuyến tính nó có thể dùng để tối thiểu bất kỳ hàm nào, kể cả với nhiều tham số như:

$$J(w_1, w_2, ..., w_n, b)$$

Mục tiêu là điều chỉnh các giá trị $w_1,...,w_n$, b sao cho J nhỏ nhất.

Cách gradient descent hoạt động:

 Chọn giá trị khởi tạo cho w và b. Với hồi quy tuyến tính, bạn có thể đơn giản bắt đầu từ:

$$w=0, \quad b=0$$

- Thực hiện gradient descent:
 - o Ở mỗi bước, bạn sẽ **cập nhật một chút** giá trị của w và b
 - Mỗi lần như vậy sẽ làm giảm giá trị của J(w, b) cho đến khi J gần đạt giá trị nhỏ nhất.

Đặc điểm của gradient descent

- Điểm bắt đầu ảnh hưởng lớn đến nơi bạn sẽ kết thúc.
- Nếu bạn **bắt đầu từ một vị trí khác** (chỉ cách vài bước), gradient descent có thể **dẫn bạn đến một cực tiểu khác hoàn toàn**.
- Cả hai điểm đáy này đều là cực tiểu cục bộ (local minima).
- Khi đã đi vào một cực tiểu, gradient descent không thể tự thoát ra để tìm thung lũng khác, vì nó chỉ "nhìn quanh gần mình" để đi xuống — không "nhìn xa".

Gradient Descent 1

2. Cài đặt

Đây là công thức gradient descent:

$$w:=w-lpha\cdotrac{d}{dw}J(w,b)$$

Ý nghĩa của biểu thức trên là:

- Cập nhật tham số w bằng cách lấy giá trị hiện tại của nó,
- ullet Trừ đi một lượng nhỏ: $lpha \cdot rac{d}{dw} J(w,b)$,
- Trong đó:
 - α là learning rate (tốc độ học),
 - $\circ \;\; rac{d}{dw} J(w,b)$ là đạo hàm của hàm chi phí theo w.
- α (alpha): là learning rate, thường là số nhỏ như 0.01, quyết định kích thước bước nhảy mỗi lần đi xuống "dốc".
 - Alpha lớn → bước nhảy lớn → có thể đi nhanh nhưng dễ "nhảy qua" điểm tối ưu.
 - Alpha nhỏ → bước nhảy nhỏ → ổn định hơn nhưng chậm hơn.
- $\frac{d}{dw}J(w,b)$ là đạo hàm của hàm chi phí theo w. Đạo hàm này cho bạn biết nên bước về hướng nào để giảm J nhanh nhất.
- Tương tự, ta cũng có cập nhật cho bbb:

$$b:=b-lpha\cdotrac{d}{db}J(w,b)$$

Cập nhật đồng thời (Simultaneous Update)

Vì mô hình có 2 tham số w và b, bạn cần cập nhật **cả hai đồng thời**. Điều này có nghĩa là:

- 1. Tính giá trị mới của www và bbb trước,
- 2. Lưu chúng vào biến tạm temp_w và temp_b,
- 3. Sau đó mới gán lại giá trị cho w và b.

```
temp_w = w - alpha * dJ_dw
temp_b = b - alpha * dJ_db
```

w = temp_w b = temp_b

3. Learning rate

Việc chọn **learning rate (α)** đúng là **rất quan trọng** đối với hiệu quả của thuật toán Gradient Descent. Nếu chọn sai, thuật toán **có thể cực kỳ chậm** hoặc thậm chí **không hội tụ**.

Trường hợp 1: Learning rate quá nhỏ

Giả sử ta khởi tạo gradient descent tại một điểm nào đó trên đồ thị của J(w).

- Nếu lpha rất nhỏ, ví dụ lpha=0.0000001
- Mỗi bước cập nhật sẽ rất bé chỉ là những bước đi tí hon
- Cập nhật sau mỗi bước:

$$w:=w-lpha\cdotrac{d}{dw}J(w)$$

- Mặc dù hướng đi đúng, nhưng tiến rất chậm.
- Kết quả là cần rất nhiều bước mới tới được điểm cực tiểu. Tóm lại: Gradient descent sẽ hội tụ, nhưng rất chậm → không hiệu quả.

Trường hợp 2: Learning rate quá lớn

Giả sử bạn khởi tạo từ một điểm gần cực tiểu.

- Nếu lpha quá lớn, bước cập nhật sẽ là **bước nhảy khổng lồ**
- Điều này có thể khiến thuật toán **nhảy qua bên kia của cực tiểu**, và **tăng** giá trị hàm chi phí thay vì giảm.
- Sau mỗi bước, nếu vẫn giữ α lớn, bạn tiếp tục **nhảy qua nhảy lại**, và **càng** lúc càng xa cực tiểu.

Tóm lại: Với α quá lớn \rightarrow **thuật toán dao động** hoặc thậm chí **diverge (phân kỳ)**.

Trường hợp đặc biệt: W ở ngay cực tiểu

Giả sử sau một số bước, w đã ở ngay cực tiểu cục bộ của hàm chi phí.

Gradient Descent 3

- ullet Tại cực tiểu: đạo hàm $rac{d}{dw}J(w)=0$
- Do đó:

$$w := w - \alpha \cdot 0 = w$$

- Tức là: w không đổi, Gradient Descent giữ nguyên tham số.
- Đây là hành vi mong muốn, vì bạn đã tìm được nghiệm.

4. Gradient Descent trong Linear Regression

Tính chất hàm cost trong Linear Regression

Một điều đặc biệt: hàm mất mát bình phương sai số là một hàm lồi (convex).

- Nó chỉ có một điểm cực tiểu duy nhất không có cực tiểu cục bộ
- Vì vậy, Gradient Descent luôn tìm ra nghiệm toàn cục (global minimum),
 miễn là bạn chọn learning rate hợp lý.

5. Batch Gradient Descent

Batch Gradient Descent là một biến thể của gradient descent, trong đó:

- Mỗi bước cập nhật đều sử dụng toàn bộ tập dữ liệu huấn luyện
- Khi tính đạo hàm, ta dùng tổng từ i = 1 đến m, với m là số mẫu huấn luyện

Có những biến thể của Gradient Descent **không sử dụng toàn bộ dữ liệu** cho mỗi bước, mà dùng **một phần nhỏ** (ví dụ: Mini-Batch hoặc Stochastic Gradient Descent)