An Introduction to GLIF

Mor Peleg, Ph.D.

Post-doctoral Fellow, SMI, Stanford Medical School, Stanford University, Stanford, CA

Aziz A. Boxwala, M.B.B.S, Ph.D.

Research Scientist and Instructor DSG, Harvard Medical School Brigham & Women's Hospital, Boston, MA

HL7 Winter Working Group Meeting Orlando • January, 2001

Outline

- Computer-interpretable guidelines
- Sharing computer-interpretable guidelines
- Requirements for a shared guideline model
- GLIF

Computer-interpretable guidelines

- In this talk, we address computerinterpretable guidelines that
 - -deliver patient-specific recommendations
 - –are integrated with EMRs and Health Information Systems
 - » Automated reminders/alerts
 - » Decision support and task management
 - » Order entry appropriateness, referral criteria...
 - »Background monitoring, care plans, quality review

Benefits of computer-interpretable guidelines

- Provide automatic decision support
 - Applied to individual patients
 - Can be during the clinical encounter
- Guidelines can be better designed
 - Software tools and guideline models used to specifying logic precisely
 - -Ambiguities reduced
- Can integrate guidelines into workflow
 - -Patient-specific guideline knowledge available at point of care, to person or entity needing it

Benefits, cont'd

- Can be used for quality assurance
 - -Guideline defines gold-standard of care
 - Perform retrospective analysis to test if patients were treated appropriately
- Simulations for educational purposes
- Can aid in human visualization
 - interactive, dynamic display of guideline pathways
 - allows one to focus on relevant sections of flowchart
 - -useful for authoring as well as for use

Benefits: development & dissemination

Outline

- Computer-interpretable guidelines
- Sharing computer-interpretable guidelines
- Requirements for a shared guideline model
- GLIF

Why share computerinterpretable guidelines?

- Leverages cost of guideline development
- Provides consistency in guideline interpretation
- Can minimize misinterpretations and errors through the process of public review
- Facilitates execution rather than just read-only use
- Can provide common basis before local adaptation

Challenges in sharing guidelines by different institutions

- Local adaptation of guidelines
 - -Availability of resources and expertise
 - Local workflow issues
 - Practice preferences
- Integration with information systems
 - -Match patient data in EMR to GL terms
 - Match recommendations in guideline to actions in order entry system
- Every guideline model needs to address these issues

Obstacles to sharing

- Multiplicity of:
 - -conceptual guideline models <
 - -intended applications
 - -authoring tools (separate conceptual from formal, and implementationspecific models?)
 - -dissemination formats (XML, RDF...)

Common shared model

- Ability to share guideline encodings across:
 - -different platforms and systems (e.g., EMRs)
 - -different guideline models
- Joint development of:
 - shared model that incorporates features of different models
 - -tools to support entire guideline life cycle
 - » authoring, validation, local adaptation & mappings, execution, revision and update

Outline

- Computer-interpretable guidelines
- Sharing computer-interpretable guidelines
- Requirements for a shared guideline model
- GLIF

Functional requirements

- The shared model must be based on a set of functional requirements for sharable guidelines
- The functional requirements are organized according to the life-cycle of a computer-based guideline
- These requirements guide the design of GLIF, although we have not satisfied all of them yet

Life cycle of a computerinterpretable guideline

Development requirements

- Expressiveness
- Comprehensibility

Expressiveness

- Ability to express knowledge content of different types of guidelines
 - -Structural parts
 - » Definitions, recommendations, algorithms
 - -Decision-support guideline tasks
 - » Expressive decision model
 - »Goal setting
 - »Specifying work to be performed
 - »Data interpretation
 - » Generating alerts and reminders

Comprehensibility

- Guideline visualization and readability
- Complexity management
- Coherence facilitation (e.g., support material)

Implementation Requirements

- Ease of guideline integration into clinical environments
- Ease of sharing actual specifications

Guideline integration into clinical environments

- Local adaptation of guideline content
- Integration with EMR
 - Mapping references to patient data to entries in the medical record
 - Mapping recommendations to implementable actions
 - » e.g. linking to order entry system printing a prescription
- Workflow integration

Ease of sharing actual specifications

- Easy to transport specifications among collaborators
 - -Text format
 - -XML/RDF
- Standard representations should not contain proprietary, applicationdependent details
 - -e.g., devoid of visualization details

Use requirements

- Support different usage modes
 - -Interactive use
 - Batch processing
- Version control

Outline

- Computer-interpretable guidelines
- Sharing computer-interpretable guidelines
- Requirements for a shared guideline model
- GLIF

GLIF

- GuideLine Interchange Format
- A format for sharing clinical guidelines independent of platforms and systems
- Based on an object-oriented logical model of concepts
- Has an XML-based syntax (RDF Schema)

An Approach to Enhance Sharing

- A multi-level representation
- Designed to support multiple vocabularies and medical knowledge bases
- InterMed: multi-institutional development process
- GLIF is evolving as an open standard
 - Cooperation with other guideline modeling groups (Arden, USAM, GEM)

GLIF model

- Object-oriented representation model for guidelines
- Flowchart representation of a temporal sequence of clinical steps

GLIF classes

- Action steps: recommendations for clinical actions to be performed
 - e.g., Prescribe aspirin
- Decision steps: decision criteria for conditional flowchart traversal
 - -e.g., if patient has pain then ...
- Branch and synchronization steps allow concurrency
- Patient-state step: characterizes patient's clinical state

GLIF3 Modeling Process

3 Representation Levels

A. Author/viewer level

- Conceptual flowchart of clinical actions and decisions
 - Aids in human understanding

B. Abstract machine representation

- Can be executed by an interpreter
- Correctness can be analyzed

C. Integration into application environments

- Application-specific mappings and modifications
- Not yet supported

Abstract Machine Representation

- Unambiguous syntax for logical expressions
 - based on Arden Syntax
- All logical expressions & actions refer to defined concepts (medical ontology)
- Allowed values, ranges, & time constraints
- Can be interpreted and analyzed for correctness
 - syntax, type, and range checking

GLIF example: Guideline

Eligibility Criteria

GLIF example: Guideline

Algorithm

Patient state step

Branch Step

Or "any order"

Synchronization step

Action step

Action tasks

Action tasks specify work to be performed

- Medically-Oriented
 - –Prescription
 - -Lab test order
- Programming-Oriented
 - -Call sub-guideline
 - –Send message
 - –Get patient data (from EMR or User)

Medically-oriented tasks

- Refer to a medical domain ontology that supports:
 - -Standard vocabularies
 - -Standard data models for representing patient data

e.g., HL-7's Unified Service Action Model (USAM)

A medically-oriented task

39

Calling Sub-guidelines: Nesting

Nesting (comprehensibility)

Get data task

Get knowledge task

Decision model

Case Step

 represent decisions that can be automated by directly evaluating logical criteria based on data items from the EMR

Choice Step

 represent choices that should be made by the user since they are either safety-critical or require knowledge that is not specified by the guideline

Specifying patient data

Choice Step

Option 1
(transplant)
StrictRuleIn
availability of a
donor kidney

Choice Step (Pre-ESRD evaluation)

Option 2 (hemodialysis/HD)

Option 3 (Peritoneal dialysis/PD)

RuleIns

Patients who prefer PD or will not go to HD

• •

RuleOuts

Peritoneal leaks

. .

StrictRuleOuts

Documented loss of peritoneal function or extensive abdominal adhesions that limit dialysate flow

. .

GLIF3: Summary

- GLIF3 is a language designed to allow sharing of clinical guidelines across different platforms and systems
- GLIF3 enables encoding of the logic of guidelines in a way that is computable
 - Highly structured specification
 - Formal expression syntax (based on Arden Syntax)
 - Medical domain ontology (vocabularies, USAM)
- For more information see www.GLIF.org

Architecture for software tools

GLIF: a proposed basis for a shared representation

- GLIF addresses authoring & dissemination
- InterMed's major focus now is on:
 - -mapping to clinical information systems
 - -tools to facilitate validation and execution
- Under the HL7 GLIF SIG:
 - -collaborative refinement and extension to support the needs of the guideline life cycle
 - reconciliation of functional requirements of different models and identification of those most important for supporting implementation

Macro Step

- Subclasses of action and decision steps
- Declaratively specify a procedural pattern

 Benefits for authoring, visual understanding, and execution of guidelines