EPFL

SEMESTER PROJECT

Minimal Rational Interpolation for Time-Harmonic Maxwell's Equations

Fabio Matti

supervised by Prof. Fabio Nobile Dr. Davide Pradovera

1 ABSTRACT

2 Introduction

3 FINITE ELEMENT DISCRETIZATION OF THE TIME-HARMONIC MAXWELL'S EQUATIONS

3.1 VECTOR POTENTIAL FORMULATION OF THE TIME-HARMONIC MAXWELL'S EQUATIONS

Let **E** denote an electric field, **B** a magnetic field strength, ρ an electric charge density, and **j** an electric current density. Maxwell's equations are stated in ? as

$$\nabla \cdot (\epsilon \mathbf{E}) = \rho \tag{3.1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{3.2}$$

$$\nabla \times \mathbf{E} = -\partial_{\mathbf{t}} \mathbf{B} \tag{3.3}$$

$$\nabla \times (\mu^{-1}\mathbf{B}) = \partial_{\mathbf{t}}(\epsilon \mathbf{E}) + \mathbf{j} \tag{3.4}$$

with ε being the permittivity and μ the permeability.

Equation (3.2) allows for an expression of the magnetic field $\mathbf{B} = \nabla \times \mathbf{u}$ in terms of a vector valued function \mathbf{u} , the vector potential (in literature commonly denoted with \mathbf{A}). Similarly, (3.3) suggests rewriting the electric field $\mathbf{E} = -\nabla \phi - \partial_t \mathbf{u}$ using a scalar function ϕ , referred to as the scalar potential.

The physical quantities **E** and **B** remain unchanged if we transform $\mathbf{u} \to \mathbf{u}' = \mathbf{u} + \nabla \psi$ or $\varphi \to \varphi' = \varphi - \vartheta_t \psi$ for arbitrary functions ψ . A convenient choice of ψ is suggested in ? to be

$$\psi = \int_0^t \phi dt' \tag{3.5}$$

which transforms $\phi \to \phi' = 0$ and $\mathbf{u} \to \mathbf{u}' = \mathbf{u} + \nabla \int_0^t \phi dt'$. Thus, the expressions for the electrical and magnetic field become

$$\mathbf{E} = -\partial_{\mathbf{t}}\mathbf{u} \tag{3.6}$$

$$\mathbf{B} = \nabla \times \mathbf{u} \tag{3.7}$$

where I renamed the variable \mathbf{u}' to \mathbf{u} for simplicity.

Plugging the identities (3.6) and (3.7) into (3.4) yields

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) = \varepsilon \partial_+^2 \mathbf{u} + \mathbf{j} \tag{3.8}$$

For the rest of this report, I restrict myself to vector potentials \mathbf{u} that exhibit a harmonic dependence on time t, i.e. may be factorized into a term solely depending on the position \mathbf{x} and a complex exponential: $\mathbf{u}(\mathbf{x},t) = \mathbf{u}(\mathbf{x}) \exp(i\omega t)$. Substituting this expression into (3.8) results in the

Time-harmonic potential equation:
$$\nabla \times (\mu^{-1}\nabla \times \mathbf{u}) - \varepsilon \omega^2 \mathbf{u} = \mathbf{j}$$
 (3.9)

3.2 WEAK FORMULATION FOR THE TIME-HARMONIC POTENTIAL EQUATION

Equation (3.9) may be multiplied by a vector-valued function $\mathbf{v} \in H_{curl}(\Omega)$, where

$$\mathsf{H}_{\mathrm{curl}}(\Omega) = \{ \mathbf{u} : \Omega \to \mathbb{C}, \text{ such that } \mathbf{u} \in \mathsf{L}^2(\mathbb{C})^3, \nabla \times \mathbf{u} \in \mathsf{L}^2(\mathbb{C})^3 \}$$
 (3.10)

and then integrated over all of Ω to obtain

$$\int_{\Omega} (\nabla \times (\mu^{-1} \nabla \times \mathbf{u})) \cdot \mathbf{v} - \omega^2 \int_{\Omega} \epsilon \mathbf{u} \cdot \mathbf{v} = \int_{\Omega} \mathbf{j} \cdot \mathbf{v}$$
 (3.11)

This may further be simplified (3.11) to (see Section 1 for details)

$$\int_{\Omega} (\mu^{-1} \nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v}) - \epsilon \omega^{2} \int_{\Omega} \mathbf{u} \cdot \mathbf{v} = \int_{\Omega} \mathbf{j} \cdot \mathbf{v} + \int_{\partial \Omega} ((\mu^{-1} \nabla \times \mathbf{u}) \times \mathbf{n}) \cdot \mathbf{v} \tag{3.12}$$

where **n** denotes the surface normal to the boundary $\partial\Omega$.

3.3 TWO-DIMENSIONAL RESONANT CAVITY

A resonant cavity is a region Ω enclosed by a boundary $\partial\Omega$. The boundary is subdivided into one (or more) inlets Γ_N and a perfect electrically conducting wall $\Gamma_D = \partial\Omega \setminus \Gamma_N$.

FIGURE 3.1 – Example of a two-dimensional resonant cavity: The rectangular cavity.

Suppose the current density $\mathbf{j} \equiv 0$ and orient the coordinate system in such a way that $\mathbf{u} = \mathbf{u}_z \mathbf{e}_z$ and $\mathbf{v} = \mathbf{v}_z \mathbf{e}_z$. Consequently,

$$(\mu^{-1}\nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v}) = (\mu^{-1}\nabla u_z) \cdot (\nabla v_z)$$
(3.13)

Define $g_z = ((\mu^{-1}\nabla \times \mathbf{u}) \times \mathbf{n})_z$ along the boundary Γ_N , to convert (3.12) into the weak formulation for a two-dimensional resonant cavity

$$\int_{\Omega} (\mu^{-1} \nabla u_z) \cdot (\nabla v_z) - \omega^2 \int_{\Omega} \varepsilon u_z v_z = \int_{\partial \Omega} g_z v_z$$
 (3.14)

3.4 WAVEGUIDE

3.5 IMPERFECT CONDUCTOR

4 MINIMAL RATIONAL INTERPOLATION FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS

_	T v			ъ.	-
5	$\mathbf{E} \mathbf{X}$	Α	M	PI.	ES

- 5.1 TWO-DIMENSIONAL RECTANGULAR CAVITY
- 5.2 DUAL MODE CIRCULAR WAVEGUIDE FILTER

FIGURE 5.1 – Dual-mode circular waveguide filter.

5.3 IMPERFECTLY CONDUCTING BOUNDARIES

6 CONCLUSION AND OUTLOOK

7 APPENDIX

7.1 DETAILED DERIVATION FOR THE WEAK FORMULATION OF THE TIME-HARMONIC POTENTIAL EQUATION

The goal is to rewrite the curl-integral on the left-hand side of (3.11):

$$\int_{\Omega} (\nabla \times (\mu^{-1} \nabla \times \mathbf{u})) \cdot \mathbf{v} \tag{7.1}$$

In order to simplify the curls and apply the Gauss theorem, I first show prove the vector calculus identity

$$(\nabla \times \mathbf{a}) \cdot \mathbf{b} = \nabla \cdot (\mathbf{a} \times \mathbf{b}) + \mathbf{a} \cdot (\nabla \times \mathbf{b}) \tag{7.2}$$

where **a**, **b** are vector-value functions. The completely antisymmetric tensor ε_{ijk} , frequently referred to as the Levi-Civita tensor, may be employed to rewrite the components of the curl of a vector-function **a** as the sum

$$(\nabla \times \mathbf{a})_{k} = \sum_{i} \sum_{j} \varepsilon_{ijk} \partial_{i} u_{j} \tag{7.3}$$

where ϑ_i denotes the partial derivative with respect to the i-th coordinate direction. This yields

$$(\nabla \times \mathbf{a}) \cdot \mathbf{b} = \sum_{k} (\nabla \times \mathbf{a})_{k} b_{k}$$

$$= \sum_{k} (\sum_{i} \sum_{j} \varepsilon_{ijk} \partial_{i} \alpha_{j}) b_{k}$$

$$= \sum_{k} \sum_{i} \sum_{j} \partial_{i} (\varepsilon_{ijk} \alpha_{j} b_{k}) - \sum_{k} \sum_{i} \sum_{j} \alpha_{j} (\varepsilon_{ijk} \partial_{i} b_{k})$$

$$= \sum_{k} \sum_{i} \sum_{j} \partial_{i} (\varepsilon_{jki} \alpha_{j} b_{k}) - \sum_{k} \sum_{i} \sum_{j} \alpha_{j} ((-\varepsilon_{ikj}) \partial_{i} b_{k})$$

$$= \sum_{k} \partial_{i} (\mathbf{a} \times \mathbf{b})_{i} + \sum_{j} u_{j} (\nabla \times \mathbf{b})_{j}$$

$$= \nabla \cdot (\mathbf{a} \times \mathbf{b}) + \mathbf{a} \cdot (\nabla \times \mathbf{b})$$

$$(7.4)$$

by expressing the scalar product as a component-sum, using the product rule and applying the symmetry and anti-symmetry properties of the Levi-Civita tensor. Now the identity (7.2) to (7.1) together with Gauss' theorem gives

$$\int_{\Omega} (\nabla \times (\mu^{-1} \nabla \times \mathbf{u})) \cdot \mathbf{v} = \int_{\Omega} \nabla \cdot ((\mu^{-1} \nabla \times \mathbf{u}) \times \mathbf{v}) + \int_{\Omega} (\mu^{-1} \nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v})$$

$$= \int_{\partial \Omega} ((\mu^{-1} \nabla \times \mathbf{u}) \times \mathbf{v}) \cdot \mathbf{n} + \int_{\Omega} (\mu^{-1} \nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v})$$
(7.5)

For later convenience, the boundary integral can further be simplified using

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = -(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b} \tag{7.6}$$

This identity follows immediately from a small manipulation with the Levi-Civita tensor:

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \sum_{k} (\sum_{i} \sum_{j} \varepsilon_{ijk} a_{i} b_{j}) c_{k}$$

$$= \sum_{j} (\sum_{i} \sum_{k} (-\varepsilon_{ikj}) a_{i} c_{k}) b_{j}$$

$$= -(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$$
(7.7)

The boundary integral becomes

$$\int_{\partial\Omega} ((\mu^{-1}\nabla \times \mathbf{u}) \times \mathbf{v}) \cdot \mathbf{n} = -\int_{\partial\Omega} ((\mu^{-1}\nabla \times \mathbf{u}) \times \mathbf{n}) \cdot \mathbf{v}$$
 (7.8)

This concludes the short derivation, because now (7.1) may be rewritten as

$$-\int_{\partial\Omega} ((\mu^{-1}\nabla \times \mathbf{u}) \times \mathbf{v}) \cdot \mathbf{n} + \int_{\Omega} (\mu^{-1}\nabla \times \mathbf{u}) \cdot (\nabla \times \mathbf{v})$$
 (7.9)