notes on mirror symmetry

3 may (Alex)

Main reference for these notes is Gross, sect. 14.

We wish to understand

Theorem 1 (Bogomolov-Tian-Todorov). Any Calabi-Yau manifold has unobstructed deformations.

Definition. An *almost compelx structure* is an endomorphism J...

Remark. It is a fact by Borel & Serre (1953) that the only spheres which admit an almost complex structure are S^2 and S^6 .

Example. All complex manifolds are almost complex manifolds.

Theorem 2. A necessary and sufficient condition for a 2u-smooth manifold M to admit an almost complex structure is that the group of tangent bundle of M could be reduced to U(n).

Theorem 3 (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. Then, the following are equivalent:

1. (six conditions...)

proposition 4. An almost complex structure on a real 2-dimensional manifold is a complex structure.

Proof. By the Newlander-Nirenberg theorem, given a point $p \in U \subset M$ and a vector field $\mathfrak{X}U$, we have that (V,JV) is a frame, and

$$N(V, JV) = [V, JV] + J[V, JV] + J[V, J^2V] - [JV, J^2V] = 0$$

Definition. A *deformation* of complex analytic space M over a germ (S, s_0) of complex analytic space is a triple $\pi_i X$, i) such that

$$\begin{matrix} X \xleftarrow{embedding} & M \\ \pi \!\!\! \downarrow & & \downarrow \\ (S,s_0) \xleftarrow{s_0} & pt \end{matrix}$$

where M is a compact manifold, $M \simeq \pi^{-1}(s_0)$ and π is proper smooth.

Theorem 5 (Ehresmann). Let $\pi: X \to S$ be a proper family of differentiable manifold. If S is connected, then all fibres are diffeomorphic.

Theorem 6 (Kodaira). Let X_0 be a compact Kähler manifold. If $X \to S$ is a deformation, then any fibre X_t is again Kähler.

Theorem 7 (Kuranashi).

- 1. Any compact complex manifold admits a universal deformation.
- 2. If $\Gamma(X_0, T_{x_0}) = 0$ then it admits a universal deformation.

Lemma. Let J be an almost complex structure sufficiently close to J_0 so that it is represented by a form $\lambda \in A^{0,1}T^{1,0}M$. Then J is integrable if and only if

$$\bar{\eth}\lambda_{\mathfrak{i}}+\frac{1}{2}[\lambda_{\mathfrak{j}},\lambda_{\mathfrak{j}}]=0.$$

Theorem 8 (Maurier-Cartan).

$$\bar{\partial} \phi + [\phi, \phi] = 0$$

where

$$\varphi=\varphi(t)=\sum_{i=1}\varphi_it_i$$

Definition.

- The *Kodaira-Spencer class* of a one-parameter deformation J_t of a complex stucture J is induced by a homology class $\varphi_1 \in H^1(X, Tx)$.
- The Kodaira-Spancer map is

$$T_sS \rightarrow H^1(X_s, T_{X_s}) = T_{[X_s]} \operatorname{Def}(X_{s_0})$$

References

[1] Mark Gross. "Calabi—Yau Manifolds and Mirror Symmetry". In: Calabi-Yau Manifolds and Related Geometries: Lectures at a Summer School in Nordfjordeid, Norway, June 2001. Ed. by Geir Ellingsrud et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 69–159. ISBN: 978-3-642-19004-9. DOI: 10.1007/978-3-642-19004-9_2. URL: https://doi.org/10.1007/978-3-642-19004-9_2 (cit. on p. 1).