The slope of a curve

The **slope** of a curve C at a point P is the slope of the tangent line to C at P if such a tangent line exists. In particular, the slope of the graph of y = f(x) at the point x_0 is

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

In Exercises 1–12, find an equation of the straight line tangent to the given curve at the point indicated.

1.
$$y = 3x - 1$$
 at $(1, 2)$

2.
$$y = x/2$$
 at $(a, a/2)$

2.
$$y = x/2$$
 at $(a, a/2)$

$$y' = f'(x) = \frac{1}{2}$$

$$J = \frac{x}{2} = \frac{1}{2} \cdot x$$

$$y' = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

3.
$$y = 2x^2 - 5$$
 at $(2,3)$

$$g' = f'(x) = 4x$$

$$f'(2) = 4.2 + 8 = m$$

$$J = MX + N = 3 = 8.2 + n = -13$$

$$y = 8x - 13$$

4. $y = 6 - x - x^2$ at x = -2

5. $y = x^3 + 8$ at x = -2

6. $y = \frac{1}{x^2 + 1}$ at (0, 1)

7. $y = \sqrt{x+1}$ at x = 3

8. $y = \frac{1}{\sqrt{x}}$ at x = 9

9. $y = \frac{2x}{x+2}$ at x=2

10. $y = \sqrt{5 - x^2}$ at x = 1

11. $y = x^2$ at $x = x_0$

12.
$$y = \frac{1}{x}$$
 at $\left(a, \frac{1}{a}\right)$

21. Find all points on the curve $y = x^3 - x + 1$ where the tangent line is parallel to the line y = 2x + 5.

22. Find all points on the curve y = 1/x where the tangent line is perpendicular to the line y = 4x - 3.

18. Find the slope of the curve $y = x^2 - 1$ at the point $x = x_0$. What is the equation of the tangent line to $y = x^2 - 1$ that has slope -3?

- **19.** (a) Find the slope of $y = x^3$ at the point x = a.
 - (b) Find the equations of the straight lines having slope 3 that are tangent to $y = x^3$.

20. Find all points on the curve $y = x^3 - 3x$ where the tangent line is parallel to the *x*-axis.

16. $f(x) = |x^2 - 1|$ at x = 1

15. $f(x) = (x+2)^{3/5}$ at x = -2