Big Data Dimension Reduction using PCA

Sufficient Statistics

Xuelong Wang

November 29, 2017

- Introduction
- 2 PCA Regression
- 3 Sufficient Statistics
- 4 PCA on Big Data

Challenge of Big Data

- Memory Barrier
 - The size of data is too large to load into memory
 - More specifically, n is way more large than p
- The computation time
 - It could be very time consuming if only use single core or cluster

Solution

- Sufficient statistics
 - PCA regression only uses sufficient statistics
 - Sufficient statistics can be calculated by scanning the data row-by-row

- Parallel computation
 - Multiple threads
 - Map-Reduced structure

Basic idea of PCA

Singular Value Decomposition

$$X_s = UDV^T$$
 ,where $x_{ij,s} = \frac{x_{ij} - x}{s_j}$ $U = (u_1, \dots, u_r)$ is a n by r orthogonal matrix $D = diag(d_1, \dots, d_r)$ is a r by r diagonal matrix $V = (v_1, \dots, v_r)$ is a p by r orthogonal matrix

Basic idea of PCA

Principle Component and Loading

$$X_s = \underbrace{\begin{bmatrix} d_1 u_1 \dots d_r u_r \end{bmatrix}}_{\mathsf{PCs}} \underbrace{\begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}}_{\mathsf{Loading}}$$

- $PC_i = d_i u_i = X v_i$ is the jth principle component
- The sample variance of PC_i is d_i^2/n

Basic idea of PCA

Reduced matrix $X_{s,k}$

$$X_{s,k} = \sum_{i=1}^k d_j \mathbf{u_j} \mathbf{v_k} = U_k D_k V_k^T$$
, Its Variation $\sum_{i=1}^k d_j^2/n$.

Sufficient Statistics

Its proportion of the total variation is

$$\lambda_k = \frac{\sum_{j=1}^k d_j^2}{\sum_{j=1}^r d_j^2}$$

• If a small k such that $\lambda_k \approx 1$, we can use $U_k D_k$ in the follow up analysis

Follow-up analysis

The PCA approach is applied to a linear regression

Model

Introduction

$$y = \mathbb{1}_n \alpha_s + U_k D_K \beta_{s,k} + \epsilon_{s,k},$$

Where $\epsilon_{s,k} \sim N(0, \sigma_{s,k}^2 I_n)$

LSE and their variance

$$\hat{\alpha}_s = \bar{Y}, \quad \hat{\beta}_{s,k} = D_k^{-1} U_k^T y \quad (PCs \text{ are Orthogonal})$$

$$\mathbb{V}(\hat{\sigma}_{s,k}^2) = [y^T (\underbrace{\mathbb{I}_n - \mathbb{J}_n/n - U_k U_k^T}_{\mathbb{I}_n - P_k}) y] / (n - k)$$

Factorization Theorem

$$f(x_1, x_2, ..., x_n; \theta) = \phi[u(x_1, ..., x_n); \theta] h(x_1, ..., x_n)$$

- $u(x_1,...,x_n)$ is the sufficient statistics for θ
- If θ is a vector, then $u(x_1,...,x_n)$, the Joint Sufficient Statistics, will be also a vector.

model

$$y = \mathbb{1}_n \alpha + X\beta + \epsilon, \ \epsilon \sim N(0, \sigma^2 I_n)$$

Sufficient Statistics

Log-Likelihood function

$$\log \{f(y|x,\alpha,\beta,\sigma)\} = \frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2$$
$$-\frac{1}{2\sigma^2}(c_{yy} - 2\alpha c_y + 2c_{xy}\beta + n\alpha^2 + 2\alpha c_x^T\beta + \beta^T C_{xx}\beta)$$

- Define: $C(y, X) = (c_0, c_{yy}, c_y, \boldsymbol{c}_{xy}, \boldsymbol{c}_x, C_{xx})$
- Note that $\ell(\alpha, \beta, \sigma)$ only depends on $\mathcal{C}(y, X)$

More about $\mathcal{C}(y,X)$

Elements of $\mathcal{C}(y,X)$

$$c_0 = n, \ c_{yy} = \sum_{i=1}^n Y_i^2, \ c_y = \sum_{i=1}^n Y_i,$$
$$c_{xy} = \sum_{i=1}^n Y_i x_i, \ c_x = \sum_{i=1}^n x_i, \ C_{xx} = \sum_{i=1}^n x_i x_i^T$$

Sufficient Statistics

00000

- Notice that $\mathcal{C}(y, X)$ is the Joint sufficient statistics for (α, β, σ)
- All terms are in the summation format, so it can be calculated by reading the data row-by-row

Computation of $\mathcal{C}(y,X)$

Algorithm 1 Computation of C(y, X) Based on A Single Processor

Sufficient Statistics

Input: row-by-row of the data

Output: C(y, X)

- 1: **procedure** Algorithm for $(c_0, c_{yy}, c_y, \mathbf{c}_{xy}, \mathbf{c}_x, \mathbf{C}_{xx})$
- Let c_0 , c_{yy} , c_y , \mathbf{c}_{xy} , \mathbf{c}_x , and \mathbf{C}_{xx} be values, vectors, and matrix, respectively, all equal to zero
- **for** the *i*th row of the data **do** update $c_0 = c_0 + 1$, $c_{yy} = s_{yy} + Y_i^2$, $c_y = c_y + Y_i$, $c_{xy} = c_{xy} + Y_i x_i$, $c_x = c_{yy} + c$ $\mathbf{c}_x + \mathbf{x}_i$, and $\mathbf{C}_{xx} = \mathbf{C}_{xx} + \mathbf{x}_i \mathbf{x}_i^T$ until the last row is scanned
- end for 4:
- Output 5:
- 6: end procedure
 - $\mathcal{O}((p+1)^2)$ memory size
 - $\mathcal{O}(n(p+1)^2)$ floating operations

Sufficient Statistics based on X_s

Statistics affected by standardization

$$C_{s,xx} = X_s^T X_s, \quad c_{s,xy} = X_s^T y, \quad c_{s,x} = \mathbb{1}_n^T X_s / n$$

Sufficient Statistics

0000

 It can be proved that, those statistics can be computed directly from $\mathcal{C}(y,X)$

Key step

$$c_{s,k,xy} = V_k^T c_{s,xy} = V_k^T V D U^T y = D_k U_k^T y \ \Rightarrow \ U_k^T y = D_k^{-1} c_{s,k,xy}$$

Back to PCA regression

$$X_s = UDV^T$$

Sufficient Statistics

Since n is large, it's not available to calculate U. However, we can only use V and D to get the estimated coefficients and variance.

PCA regression based on sufficient statistics

- **1** D, V can be calculated by $C_{s,xx} = X_s^T X_s = VD^2 V^T$
- ② $U_k^T y = D_k^{-1} c_{s,k,xy}$, so $\hat{\beta}_{s,k} = D_k^{-2} c_{s,k,xy}$ ③ $\mathbb{V}(\hat{\sigma}_{s,k}^2) = [c_{yy} c_{yy}/n c_{s,k,xy}^T D_k^{-2} c_{s,k,xy}]/(n-k)$

Parallel Computation with Distributed Systems

Algorithm 2 Computation of C(y, X) in MapReduce

Input: row-by-row of individual sub-data sets Output: C(y, X)

- 1: procedure Parallel computation based on (17)
- **Map tasks:** compute $C(\mathbf{y}_i, \mathbf{X}_i)$ using Step 3 of Algo-2: rithm 1 for $i = 1, \dots, K$ individually **Reduce task:** let $C(\mathbf{y}, \mathbf{X}) = \sum_{i=1}^{K} C(\mathbf{y}_i, \mathbf{X}_i)$

- 3:
- 4: Output
- 5: end procedure

Introduction

Introduction

Tonglin Zhang, Baijian Yang. 2016. "Big Data Dimension Reduction Using Pca."