BIAŁYNICKI-BIRULA FUNCTORS

1. Introduction

In this notes we study Białynicki-Birula functors. In the first section we prove some results concerning the forgetful functor $Rep(M) \to Rep(G)$, where M is an affine monoid k-scheme and G is its group of units (we assume that G is open and schematically dense in M). These results will be used in the following sections.

We assume that *k* is a field. In these notes we use the following notational convention.

Remark 1.1. Since the Yoneda embedding $\mathbf{Sch}_k \hookrightarrow \widehat{\mathbf{Sch}_k}$ is full and faithful, we identify \mathbf{Sch}_k with the subcategory of $\widehat{\mathbf{Sch}_k}$ consisting of representable presheaves on \mathbf{Sch}_k . In particular, if X is a k-scheme, then we denote by the same symbol the presheaf representable by X.

2. TANNAKIAN FORMALISM FOR QUOTIENT STACKS

In this section we discuss an application of the main result of [Hall and Rydh, 2019]. For this we need to briefly discuss *algebraic stacks*, although for our purposes there is no need to use any technical details of this language. We refer the interested reader to the excellent exposition [Olsson, 2016] of this subject. We note the following facts.

- (1) An algebraic stack is a category fibered over \mathbf{Sch}_k satisfying certain extra conditions described in [Olsson, 2016, Definition 4.6.1] and [Olsson, 2016, Definition 8.1.4]. By [Olsson, 2016, Definition 8.2.1, Example 8.2.3] there are well defined notions of *locally noetherian*, *noetherian and excellent algebraic stacks*.
- (2) A morphism of algebraic stacks is a morphism of fibered categories over \mathbf{Sch}_k . If \mathcal{X} and \mathcal{Y} are algebraic stack, then we denote by $\mathrm{Mor}(\mathcal{X},\mathcal{Y})$ the corresponding category of morphisms.
- (3) For every locally noetherian algebraic stack \mathcal{X} there exists an abelian monoidal category $\mathfrak{Coh}(\mathcal{X})$ of coherent sheaves on \mathcal{X} ([Olsson, 2016, Definition 9.1.14]). If \mathcal{X} and \mathcal{Y} are locally noetherian algebraic stacks, then we denote by $\operatorname{Hom}_{r,\otimes,\cong}(\mathfrak{Coh}(\mathcal{X}),\mathfrak{Coh}(\mathcal{Y}))$ the category of right exact, monoidal functors $\mathfrak{Coh}(\mathcal{X}) \to \mathfrak{Coh}(\mathcal{Y})$ with natural isomorphism as morphisms.
- **(4)** If $f: \mathcal{X} \to \mathcal{Y}$ is a morphism of locally noetherian algebraic stacks, then f induces the functor $f^*: \mathfrak{Coh}(\mathcal{Y}) \to \mathfrak{Coh}(\mathcal{X})$ such that $f^* \in \operatorname{Hom}_{r, \otimes, \cong}(\mathfrak{Coh}(\mathcal{X}), \mathfrak{Coh}(\mathcal{Y}))$.
- (5) Let **G** be a locally algebraic group k-scheme and let X be a k-scheme equipped with an action of **G**. We consider \mathbf{Sch}_k as a Grothendieck site with respect to fppf topology ([Olsson, 2016, Example 2.1.14]). Next the quotient fibered category $[X/\mathbf{G}]$ ([Monygham, 2020b, Definition 9.5]) with respect to this topology is an algebraic stack by [Olsson, 2016, Example 8.1.12].
- (6) In (5) if k-scheme X is locally noetherian (noetherian, excellent), then [X/G] is a locally noetherian (noetherian, excellent) by [Olsson, 2016, Definition 8.2.1, Example 8.2.3] and [Olsson, 2016, Example 8.1.12].
- (7) In (5) if k-scheme X is locally noetherian, then there exists an equivalence of monoidal categories $\mathfrak{Coh}([X/\mathbf{G}]) \cong \mathfrak{Coh}_{\mathbf{G}}(X)$ ([Olsson, 2016, Exercise 9.H]). Moreover, this equivalence is functorial with respect to \mathbf{G} -equivariant morphism. That is if Y is another locally noetherian k-scheme with action of \mathbf{G} and $f: X \to Y$ is a \mathbf{G} -equivariant morphism, then f induces a morphism $[f/\mathbf{G}]: [X/\mathbf{G}] \to [Y\mathbf{G}]$ by [Monygham, 2020b, Theorem 9.7] and the square

1

$$\begin{array}{ccc} \mathfrak{Coh}([Y/\mathbf{G}]) & \xrightarrow{[f/\mathbf{G}]^*} \mathfrak{Coh}([X/\mathbf{G}]) \\ & & & \downarrow \cong \\ & & & \downarrow \cong \\ & \mathfrak{Coh}_{\mathbf{G}}(Y) & \xrightarrow{f^*} \mathfrak{Coh}_{\mathbf{G}}(X) \end{array}$$

of categories and functors is commutative.

(8) If **G** is smooth and affine over k, then $[X/\mathbf{G}]$ has affine stabilizers.

Remark 2.1. Let Spec k be a point equipped with the trivial action of a smooth and affine group **G**. Then (7) together with [Monygham, 2020a, Example 4.7] impy that $\mathfrak{Coh}([\operatorname{Spec} k/\mathbf{G}])$ can be identified with the category $\operatorname{\mathbf{Repf}}_{\mathbf{G}}$ of finite dimensional representations of **G**.

Let us state the main result of [Hall and Rydh, 2019].

Theorem 2.2 ([Hall and Rydh, 2019, Theorem 1.1]). Let \mathcal{X} be a noetherian algebraic stack with affine stabilizers. For every locally excellent algebraic stack \mathcal{T} the functor

$$\operatorname{Mor}(\mathcal{X},\mathcal{T}) \xrightarrow{f \mapsto f^*} \operatorname{Hom}_{r,\otimes,\cong} (\mathfrak{Coh}(\mathcal{T}),\mathfrak{Coh}(\mathcal{X}))$$

is an equivalence of categories.

Keeping our previous remarks in mind we deduce the following result.

Corollary 2.3. Let G be an smooth affine group k-scheme and let X, Z be k-schemes equipped with an action of G. Suppose that Z is noetherian and X is locally of finite type over k. Then

$$\operatorname{Mor}([Z/\mathbf{G}],[X/\mathbf{G}]) \xrightarrow{f \mapsto f^*} \operatorname{Hom}_{r,\otimes,\cong} \left(\mathfrak{Coh}([X/\mathbf{G}]), \mathfrak{Coh}([Z/\mathbf{G}]) \right)$$

is an equivalence of categories.

Proof. Note that [Z/G] is a noetherian algebraic stack according to **(5)** and **(6)**. It has affine stabilizers according to **(8)**. Similarly by **(5)** [X/G] is an algebraic stack. Moreover, it is locally excellent according to the fact that X is locally excellent (it is locally of finite type over k and k is a field) and **(6)**. Then by Theorem **2.2** we derive that the functor in the statement is an equivalence of categories.

Corollary 2.4. Let G be an smooth affine group k-scheme and let X, Z be k-schemes equipped with an action of G. Suppose that Z is noetherian and X is locally of finite type over k. Then we have a bijection

$$\left\{f:Z\to X\,\middle|\, f\text{ is }\mathbf{G}\text{-}equivariant}\right\}\xrightarrow{f\mapsto f^*} \left\{F\in \mathrm{Hom}_{r,\otimes,\cong}\left(\mathfrak{Coh}_{\mathbf{G}}(X),\mathfrak{Coh}_{\mathbf{G}}(Z)\right)\,\middle|\, F\cdot p_X^*=p_Z^*\right\}$$

where $p_X^* : \mathbf{Repf}(\mathbf{G}) \to \mathfrak{Coh}_{\mathbf{G}}(X)$ and $p_Z^* : \mathbf{Repf}(\mathbf{G}) \to \mathfrak{Coh}_{\mathbf{G}}(Z)$ are functors induced by \mathbf{G} -equivariant morphisms $p_X : X \to \operatorname{Spec} k$ and $p_Z : Z \to \operatorname{Spec} k$, respectively.

Proof. Since fppf topology is subcanonical, [Monygham, 2020b, Theorem 9.7] shows that there exists a bijection

$$\{f: Z \to X \mid f \text{ is } \mathbf{G}\text{-equivariant}\} \xrightarrow{f \mapsto [f/\mathbf{G}]} \{h: [Z/\mathbf{G}] \to [X/\mathbf{G}] \mid [p_X/\mathbf{G}] \cdot h = [p_Y/\mathbf{G}]\}$$

Corollary 2.3 implies that there exists a bijection

$$\left\{h: [Z/\mathbf{G}] \to [X/\mathbf{G}] \,\middle|\, [p_X/\mathbf{G}] \cdot h = [p_Y/\mathbf{G}]\right\} \xrightarrow{h \mapsto h^*} \left\{F \in \mathrm{Hom}_{r, \otimes, \cong}\left(\mathfrak{Coh}([X/\mathbf{G}]), \mathfrak{Coh}([Z/\mathbf{G}])\right) \,\middle|\, F \cdot [p_X/\mathbf{G}]^* = [p_Z, \mathbf{G}]^*\right\}$$

Next (7) implies that there exists a bijection

$$\left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}([X/\mathbf{G}]), \mathfrak{Coh}([Z/\mathbf{G}])\right) \, \middle| \, F \cdot [p_X/\mathbf{G}]^* = [p_Z, \mathbf{G}]^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}}(Z)\right) \, \middle| \, F \cdot p_X^* = p_Z^* \right\} \\ \longrightarrow \left\{F \in \operatorname{Hom}_{r, \otimes, \cong} \left(\mathfrak{Coh}_{\mathbf{G}}(X), \mathfrak{Coh}_{\mathbf{G}$$

and for a **G**-equivariant morphism $f: Z \to X$ the image of $[f/\mathbf{G}]^* : \mathfrak{Coh}([X/\mathbf{G}]) \to \mathfrak{Coh}([Z/\mathbf{G}])$ under this bijection is $f^* : \mathfrak{Coh}_{\mathbf{G}}(X) \to \mathfrak{Coh}_{\mathbf{G}}(Z)$. These imply that the map of classes

$$\left\{f:Z\to X\,\middle|\, f\text{ is }\mathbf{G}\text{-equivariant}\right\}\xrightarrow{f\mapsto f^*}\left\{F\in\mathrm{Hom}_{r,\otimes,\cong}\left(\mathfrak{Coh}_{\mathbf{G}}(X),\mathfrak{Coh}_{\mathbf{G}}(Z)\right)\,\middle|\, F\cdot p_X^*=p_Z^*\right\}$$

is a bijection.

Note that Corollary 2.4 relies on some asumptions regarding G, X and Z. It is worth noting that Joachim Jelisiejew and the author were able to obtain a slightly more general (yet unpublished) result.

Theorem 2.5 ([Jelisiejew and Sienkiewicz, 2020, Theorem A.2]). Let G be an affine algebraic group over K. Let Z, X be K-schemes equipped with an action of G and assume that X is quasi-compact and quasi-separated. Suppose that $F: \mathfrak{Q}coh_G(X) \to \mathfrak{Q}coh_G(Z)$ is a cocontinuous, monoidal functor such that $F \cdot p_X^* = p_Z^*$. Then there exists a unique G-equivariant morphism $f: Z \to X$ such that $f^* = F$.

3. Relations between representations of a monoid and its group of units

In this section we study the relation between the category $\mathbf{Rep}(\mathbf{M})$ of representations of an affine monoid k-scheme \mathbf{M} and the category $\mathbf{Rep}(\mathbf{G})$ of representations of its group of units \mathbf{G} . Let $i:k[\mathbf{M}] \to k[\mathbf{G}]$ be the morphism of k-bialgebras induced by $\mathbf{G} \hookrightarrow \mathbf{M}$. Let us first note the following elementary result.

Fact 3.1. Assume that G is open and schematically dense in M. Then i is an injective morphism of k-algebras.

Proof. This follows from [Görtz and Wedhorn, 2010, Proposition 9.19]. □

Fact 3.2. The forgetful functor $Rep(M) \rightarrow Rep(G)$ creates colimits and finite limits.

Proof. This follows from [Monygham, 2020d, Theorem 14.3, Theorem 14.4] and the commutative triangle

of functors. \Box

The theorem below characterizes representations of G which are contained in the image of the forgetful functor $Rep(M) \rightarrow Rep(G)$.

Theorem 3.3. Assume that G is open and schematically dense in M. Let V be a G-representation. Then the following are equivalent.

- (i) V is in the image of the forgetful functor $Rep(M) \rightarrow Rep(G)$.
- (ii) The coaction $d: V \to k[\mathbf{G}] \otimes_k V$ factors through $i \otimes_k 1_V : k[\mathbf{M}] \otimes_k V \hookrightarrow k[\mathbf{G}] \otimes_k V$.

Proof. In the proof we denote by $\Delta_{\mathbf{M}}$ and $\Delta_{\mathbf{G}}$ comultiplications of $k[\mathbf{M}]$ and $k[\mathbf{G}]$, respectively. We also denote by $\xi_{\mathbf{M}}$ and $\xi_{\mathbf{G}}$ counits of $k[\mathbf{M}]$ and $k[\mathbf{G}]$, respectively. According to Fact 3.1 i is an injective morphism of k-algebras.

Clearly (i) \Rightarrow (ii). We prove the converse. Suppose that (ii) holds. Let $c: V \to k[\mathbf{M}] \otimes_k V$ be a unique morphism such that $d = (i \otimes_k 1_V) \cdot c$. It suffices to prove that c is the coaction of the bialgebra $k[\mathbf{M}]$ on V. Observe that

$$(i \otimes_k i \otimes_k 1_V) \cdot (1_{k[\mathbf{M}]} \otimes_k c) \cdot c = (i \otimes_k d) \cdot c = (1_{k[\mathbf{G}]} \otimes_k d) \cdot d = (\Delta_{\mathbf{G}} \otimes_k 1_V) \cdot d =$$

$$= (\Delta_{\mathbf{G}} \otimes_k 1_V) \cdot ((i \otimes_k 1_V) \cdot c) = ((\Delta_{\mathbf{G}} \cdot i) \otimes_k 1_V) \cdot c = (i \otimes_k i \otimes_k 1_V) \cdot (\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot c$$

Since $i \otimes_k i \otimes_k 1_V$ is a monomorphism, we deduce that $(1_{k[\mathbf{M}]} \otimes_k c) \cdot c = (\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot c$. Moreover, we have

$$(\xi_{\mathbf{G}} \otimes_k 1_V) \cdot d = (\xi_{\mathbf{G}} \otimes_k 1_V) \cdot ((i \otimes_k 1_V) \cdot c) = (\xi_{\mathbf{M}} \otimes_k 1_V) \cdot c$$

and hence $(\xi_{\mathbf{M}} \otimes_k 1_V) \cdot c$ is the canonical isomorphism $V \cong k \otimes_k V$. Thus c is the coaction of $k[\mathbf{M}]$ and $d = (i \otimes_k 1_V) \cdot c$. Therefore, V is in the image of $\mathbf{Rep}(\mathbf{M}) \to \mathbf{Rep}(\mathbf{G})$.

Theorem 3.4. Assume that G is open and schematically dense in M. Then Rep(M) is a full subcategory of Rep(G) closed under subobjects and quotients.

Proof. In the proof we denote by $\Delta_{\mathbf{M}}$ and $\Delta_{\mathbf{G}}$ comultiplications of $k[\mathbf{M}]$ and $k[\mathbf{G}]$, respectively. We also denote by $\xi_{\mathbf{M}}$ and $\xi_{\mathbf{G}}$ counits of $k[\mathbf{M}]$ and $k[\mathbf{G}]$, respectively. According to Fact 3.1 i is an injective morphism of k-algebras.

We first prove that $\mathbf{Rep}(\mathbf{M})$ is a full subcategory of $\mathbf{Rep}(\mathbf{G})$. For this consider \mathbf{M} -representations V,W and a their morphism $f:V\to W$ as \mathbf{G} -representations. Let c_V and c_W be coactions of $k[\mathbf{M}]$ on V and W, respectively. Our goal is to prove that f is a morphism of \mathbf{M} -representations. Consider the diagram

$$k[\mathbf{G}] \otimes_{k} V \xrightarrow{1_{k[\mathbf{G}]} \otimes_{k} f} k[\mathbf{G}] \otimes_{k} W$$

$$i \otimes_{k} 1_{V} \qquad \qquad \uparrow i \otimes_{k} 1_{W}$$

$$k[\mathbf{M}] \otimes_{k} V \xrightarrow{1_{k[\mathbf{M}]} \otimes_{k} f} k[\mathbf{M}] \otimes_{k} W$$

$$\downarrow c_{V} \qquad \qquad \downarrow c_{W}$$

$$V \xrightarrow{f} W$$

in which the outer square is commutative. Our goal is to prove that the bottom square is commutative. We have

$$(i \otimes_k 1_W) \cdot c_W \cdot f = \left(1_{k[\mathbf{G}]} \otimes_k f\right) \cdot (i \otimes_k 1_V) \cdot c_V = (i \otimes_k 1_W) \cdot \left(1_{k[\mathbf{M}]} \otimes_k f\right) \cdot c_V$$

Since $i \otimes_k 1_W$ is a monomorphism, we deduce that $c_W \cdot f = (1_{k[\mathbf{M}]} \otimes_k f) \cdot c_V$. Hence f is a morphism of \mathbf{M} -representations.

Next we prove that $\mathbf{Rep}(\mathbf{M})$ is a subcategory of $\mathbf{Rep}(\mathbf{G})$ that is closed under subquotients. Consider an \mathbf{M} -representation V and its quotient \mathbf{G} -representations $q:V \twoheadrightarrow W$. We show that W is a quotient \mathbf{M} -representation of V. Let c_V be the coaction of \mathbf{M} on V and let d_W be the coaction of \mathbf{G} on W. We have a commutative diagram

and hence $d_W(W) \subseteq k[\mathbf{M}] \otimes_k W$. Thus Theorem 3.3 implies that W is a representation of \mathbf{M} and q is a morphism of \mathbf{M} -representations. This shows that $\mathbf{Rep}(\mathbf{M})$ is a subcategory of $\mathbf{Rep}(\mathbf{G})$ closed under quotients. Next let $j: U \hookrightarrow V$ be a \mathbf{G} -subrepresentation of a \mathbf{M} -representation V. By what we proved above the cokernel $q: V \twoheadrightarrow W$ of j in $\mathbf{Rep}(\mathbf{G})$ is contained in $\mathbf{Rep}(\mathbf{M})$. Since both $\mathbf{Rep}(\mathbf{M})$ and $\mathbf{Rep}(\mathbf{G})$ are abelian and the forgetful functor $\mathbf{Rep}(\mathbf{M}) \rightarrow \mathbf{Rep}(\mathbf{G})$ is exact, we derive that the kernel of q in $\mathbf{Rep}(\mathbf{M})$ coincides with its kernel in $\mathbf{Rep}(\mathbf{G})$. Thus U is a \mathbf{M} -representation and $j: U \hookrightarrow V$ is a morphism of \mathbf{M} -representations. Hence $\mathbf{Rep}(\mathbf{M})$ is the category of $\mathbf{Rep}(\mathbf{G})$ closed under subobjects.

Theorem 3.5. Assume that **G** is open and schematically dense in **M**. Let V be a **G**-representation of **G**. There exists an **M**-representation W and a surjective morpism q:V woheadrightarrow W of **G**-representations such that for every **M**-representation U and a morphism f:V woheadrightarrow U of **G**-representations there exists a unique morphism $\tilde{f}:W woheadrightarrow U$ of **M**-representations making the triangle

commutative.

Proof. Assume first that V is finite dimensional. Let \mathcal{K} be a set of **G**-subrepresentations of V that consists of all $K \subseteq V$ such that V/K carries a structure of **M**-representation. Clearly $\mathcal{K} = \emptyset$ because $\{0\} \in \mathcal{K}$. Since V is finite dimensional, there exists a finite subset $\{K_1, ..., K_n\} \subseteq \mathcal{K}$ such that

$$\bigcap_{i=1}^{n} K_i = \bigcap_{K \in \mathcal{K}} K$$

Then a morphism

$$V/\left(\bigcap_{K\in\mathcal{K}}K\right)\ni v\mapsto \left(v\bmod K_i\right)_{1\leq i\leq n}\in\bigoplus_{i=1}^nV/K_i$$

is a monomorphism and hence by Theorem 3.4 the quotient $W = V/(\bigcap_{K \in \mathcal{K}} K)$ is an **M**-representation. Let $g: V \twoheadrightarrow W$ be the canonical epimorphism. Consider now a morphism $f: V \to U$ of **G**-representations, where U is an **M**-representation. Then $\operatorname{im}(f)$ is a **G**-subrepresentation of U and by Theorem 3.4 we derive that $\operatorname{im}(f)$ is an **M**-representation. This implies that $\ker(f)$ is in \mathcal{K} . Hence f factors through g. Thus there exists a unique morphism $\tilde{f}: W \to U$ of **G**-representations such that $\tilde{f} \cdot g = f$. This completes the proof in case when V is finite dimensional.

Now consider the general V. Let \mathcal{F} be the set of all finite dimensional \mathbf{G} -representations of V. According to [Monygham, 2020d, Corollary 15.2] we deduce that $V = \operatorname{colim}_{F \in \mathcal{F}} F$. By the case considered above we deduce that for every F in \mathcal{F} there exists a universal morphism $q_F : F \to W_F$ of \mathbf{G} -representations into an \mathbf{M} -representation W_F . Note that if $F_1 \subseteq F_2$ are two elements of \mathcal{F} , then

$$\begin{array}{ccc}
F_1 & \xrightarrow{q_{F_1}} & W_{F_1} \\
\downarrow & & \downarrow \\
F_2 & \xrightarrow{q_{F_2}} & W_{F_2}
\end{array}$$

Thus $\{W_F\}_{F\in\mathcal{F}}$ together with morphisms $W_{F_1} \to W_{F_2}$ for $F_1 \subseteq F_2$ in \mathcal{F} form a diagram parametrized by the poset \mathcal{F} . The category $\mathbf{Rep}(\mathbf{M})$ has small colimits ([Monygham, 2020d, Corollary 14.5]) and we define $W = \mathrm{colim}_{F\in\mathcal{F}}W_F$. This is also a colimit of this diagram in the category $\mathbf{Rep}(\mathbf{G})$ by Fact 3.2. We also define $q = \mathrm{colim}_{F\in\mathcal{F}}q_F : V = \mathrm{colim}_{F\in\mathcal{F}}F \to W$. Since a colimit of a family of epimorphisms is an epimorphism, we derive that q is an epimorphism of \mathbf{G} -representations. Suppose now that $f: V \to U$ is a morphism of \mathbf{G} -representations and U is an \mathbf{M} -representation. Then $f_{|F}$ uniquely factors through q_F for every F in \mathcal{F} . Hence by universal property of colimits we derive that f factors through g in a unique way. This completes the proof.

4. BIAŁYNICKI-BIRULA FUNCTORS

In this section we fix an affine group *k*-scheme **G**. Let **M** be an affine monoid *k*-scheme with zero **o** such that **G** is its group of units.

Definition 4.1. Let X be a k-scheme equipped with an action of G. For every k-scheme Y we define

$$\mathcal{D}_X(Y) = \{ \gamma : \mathbf{M} \times_k Y \to X \mid \gamma \text{ is } \mathbf{G}\text{-equivariant} \}$$

This gives gives rise to a subfunctor \mathcal{D}_X of $\operatorname{Mor}_k(\mathbf{M} \times_k (-), X) : \operatorname{\mathbf{Sch}}_k^{\operatorname{op}} \to \operatorname{\mathbf{Set}}$. We call it *the Białynicki-Birula functor of* X.

Fact 4.2. Let X be a scheme equipped with an action of G. Then \mathcal{D}_X is a Zariski sheaf.

Proof. This is a consequence of the fact that $\operatorname{Mor}_k(\mathbf{M} \times_k (-), X)$ is a Zariski sheaf and if we glue **G**-equivariant morphisms, then the result is **G**-equivariant. Indeed, this shows that \mathcal{D}_X is a Zariski subsheaf of $\operatorname{Mor}_k(\mathbf{M} \times_k (-), X)$.

Remark 4.3. Let *X* be a *k*-scheme equipped with an action of **G**. Then there are canonical morphism of functors

$$\mathcal{D}_X \xrightarrow{i_X} X$$

$$s_X \left(\bigvee_{X^G} r_X \right)$$

which we define now. First let us explain that in the diagram X stands for the presheaf representable by the k-scheme X (Remark 1.1) and X^G denotes the functor of fixed points of X ([Monygham, 2020c, Definition 7.1]). Now fix k-scheme Y and $\gamma \in \mathcal{D}_X(Y)$, then we define

$$i_X(\gamma) = \gamma_{|\{e\}\times_{k}X} = \gamma \cdot \langle e, 1_X \rangle, r_X(\gamma) = \gamma_{|\{e\}\times_{k}X} = \gamma \cdot \langle e, 1_X \rangle$$

where $e : \operatorname{Spec} k \to \mathbf{M}$ is the unit of \mathbf{M} and $\mathbf{o} : \operatorname{Spec} k \to \mathbf{M}$ is the zero. Next if $f : Y \to X$ is a morphism in $X^{\mathbf{G}}(Y)$, then we define

$$s_X(f) = f \cdot pr_Y$$

where $pr_Y : \mathbf{M} \times_k Y \to Y$ is the projection. Finally note that $r_X \cdot s_X = 1_{XG}$.

Remark 4.4. Let X be a k-scheme equipped with an action of G. Then M (actually the presheaf of monoids represented by M) acts on \mathcal{D}_X . Indeed, fix k-scheme Y, $\gamma \in \mathcal{D}_X(Y)$ and $m: Y \to M$. Then we define the product

$$m\gamma = \gamma \cdot \langle m, 1_{\gamma} \rangle$$

and this determines an action of **M** on \mathcal{D}_X . Moreover, with respect to this action i_X is **G**-equivariant and r_X , s_X are **M**-equivariant (X^G is equipped with trivial action of **M**).

Remark 4.5. Let X,Y be k-schemes equipped with actions of G and let $f:X\to Y$ be a G-equivariant morphism, then there exists a morphism of functors $\mathcal{D}_f:\mathcal{D}_X\to\mathcal{D}_Y$ given by

$$\mathcal{D}_f(\gamma) = f \cdot \gamma$$

for every element γ of the functor \mathcal{D}_X .

Let *X* be a *k*-scheme equipped with an action of **G**. It is useful to discuss subfunctors of \mathcal{D}_X defined by closed **G**-stable subschemes of *X*.

Theorem 4.6. Let X be a k-scheme equipped with an action of the group G. Suppose that G is open and schematically dense in M. If $j: Z \hookrightarrow X$ is a closed G-stable subscheme of X, then the square

$$\begin{array}{ccc}
\mathcal{D}_Z & \xrightarrow{\mathcal{D}_j} & \mathcal{D}_X \\
\downarrow^{i_Z} & & \downarrow^{i_X} \\
Z & \xrightarrow{j} & X
\end{array}$$

is cartesian in the category of presheaves on \mathbf{Sch}_k .

Proof. The fact that the square is commutative follows by examination of definitions in Remarks 4.3 and 4.5. Pick k-scheme Y, $f: Y \to Z$ and $\gamma \in \mathcal{D}_X(Y)$ such that $j \cdot f = i_X(\gamma)$. This is depicted in the diagram

$$f \longmapsto_{j} j \cdot f = \gamma_{|\{e\} \times_{k} X}$$

Our goal is to show that there exists a unique **G**-equivariant morphism $\eta : \mathbf{M} \times_k Y \to U$ such that $\mathcal{D}_j(\eta) = \gamma$ and $i_Z(\eta) = f$. This is depicted by the diagram

$$\frac{\eta}{r_{u}} \xrightarrow{\mathcal{D}_{j}} \gamma = j \cdot \eta$$

$$f = \eta_{|\{e\} \times_{k} X}$$

It suffices to prove that γ factors through j. First note that the assumption $\gamma_{|\{e\}\times_k Y} = j \cdot f$ implies that

$$\gamma_{|\mathbf{G} \times_k Y} = j \cdot f \cdot pr_Y$$

where $pr_Y: \mathbf{G} \times_k Y \to Y$ is the projection. This implies that $\gamma_{|\mathbf{G} \times_k}$ factors through j. Consider scheme-theoretic preimage $\gamma^{-1}(Z)$. Then $\gamma^{-1}(Z)$ is a closed \mathbf{G} -stable (as an inverse image of a \mathbf{G} -stable closed subscheme under the \mathbf{G} -equivariant morphism) subscheme of $\mathbf{M} \times_k Y$, which contains $\mathbf{G} \times_k Y$. Since \mathbf{G} is open, schematically dense in \mathbf{M} and k is a field, we derive that $\mathbf{G} \times_k Y$ is open and schematically dense in $\mathbf{M} \times_k Y$. Thus $\gamma^{-1}(Z) = \mathbf{M} \times_k Y$ and hence γ factors through j.

In order to prove interesting result in the spirit of Theorem 4.6 which concerns open **G**-stable subschemes, we need to assume that **M** is a Kempf monoid.

Theorem 4.7. Let X be a k-scheme equipped with an action of the group G of units of a Kempf monoid M. If $j:U \hookrightarrow X$ is an open G-stable subscheme of X, then the square

$$\begin{array}{ccc}
\mathcal{D}_{U} & \xrightarrow{\mathcal{D}_{j}} & \mathcal{D}_{X} \\
\downarrow^{r_{U}} & & \downarrow^{r_{X}} \\
U^{G} & \xrightarrow{j^{G}} & X^{G}
\end{array}$$

is cartesian in the category of presheaves on Sch_k .

As we shall see this result follows from the following.

Lemma 4.7.1. Let K be an algebraicaly closed field over k. Suppose that

$$\mathbf{M}_K = \operatorname{Spec} K \times_k \mathbf{M}, \mathbf{G}_K = \operatorname{Spec} K \times_k \mathbf{G}$$

and let \mathbf{o}_K be the unique K-point of \mathbf{M}_K lying over \mathbf{o} . Let V be an open \mathbf{G}_K -stable subscheme of \mathbf{M}_K such that $\mathbf{o}_K \in V$. Then $V = \mathbf{M}_K$.

Proof of the lemma. Since \mathbf{M} is a Kempf monoid, there exists a closed embedding of monoids $v: \mathbb{A}^1_K \hookrightarrow \mathbf{M}_K$ preserving zeros such that $v_{|\mathbb{G}_{m,K}} \subseteq \mathbf{G}_K$. Fix a point $p \in \mathbf{M}_K$ and let $u: \operatorname{Spec} k(p) \to \mathbf{M}_K$ be the associated morphism of K-schemes. Consider the composition

$$\mathbb{A}^1_{k(p)} = \mathbb{A}^1_K \times_K \operatorname{Spec} k(p) \xrightarrow{v \times_K u} \mathbf{M}_K \times_K \mathbf{M}_K \longleftrightarrow \mathbf{M}_K$$

where the second morphism is the multiplication. Clearly h is $\mathbf{G}_{m,k(p)}$ -equivariant. Hence $h^{-1}(V)$ is an open $\mathbf{G}_{m,k(p)}$ -stable subscheme of $\mathbb{A}^1_{k(p)}$ containing zero of this monoid k(p)-scheme (because $\mathbf{o}_K \in V$ by assumption). Since the only open $\mathbf{G}_{m,k(p)}$ -stable subscheme of $\mathbb{A}^1_{k(p)}$ containing zero is $\mathbb{A}^1_{k(p)}$, we derive that $h^{-1}(V) = \mathbb{A}^1_{k(p)}$. Thus $p \in V$. Since p is arbitrary point of \mathbf{M}_K , we derive that $V = \mathbf{M}_K$.

Proof of the theorem. The fact that the square is commutative follows by examination of definitions in Remarks 4.3 and 4.5. Pick k-scheme Y, $f \in U^G$ and $\gamma \in \mathcal{D}_X(Y)$ such that $j^G(f) = r_X(\gamma)$. This is depicted in the diagram

$$f \longmapsto_{j^{\mathbf{G}}} j \cdot f = \gamma_{|\{\mathbf{o}\} \times_{k} X}$$

Our goal is to show that there exists a unique **G**-equivariant morphism $\eta : \mathbf{M} \times_k Y \to U$ such that $\mathcal{D}_i(\eta) = \gamma$ and $r_U(\eta) = f$. This is depicted by the diagram

$$\frac{\eta}{r_{u}} \xrightarrow{\mathcal{D}_{j}} \gamma = j \cdot \eta$$

$$f = \eta_{|\{\mathbf{o}\} \times_{k} X}$$

Fir this it suffices to prove that γ factors through j. Consider $W = \gamma^{-1}(U)$. Note that W is an open **G**-stable (as an inverse image of a **G**-stable open subscheme under the **G**-equivariant morphism) subscheme of $\mathbf{M} \times_k Y$, which contains $\{\mathbf{o}\} \times_k Y$. Lemma 4.7.1 asserts that for every geometric point \overline{y} of Y we have $W_{\overline{y}} = \mathbf{M}_{k(\overline{y})}$, where $W_{\overline{y}}$ is the fiber over \overline{y} of the projection $\mathbf{M} \times_k Y \to Y$ restricted to W. Since W is open subscheme of $\mathbf{M} \times_k Y$, this implies that $W = \mathbf{M} \times_k Y$ and hence γ factors through j.

As we shall see below both Theorems are extremely useful properties of Białynicki-Birula functors. Now we introduce a formal version of this functor.

Definition 4.8. Let **M** be an affine monoid k-scheme with zero **o** and let **G** be its group of units. For every $n \in \mathbb{N}$ let $\mathbf{M}_n \hookrightarrow \mathbf{M}$ be an n-th infinitesimal neighborhood of **o** in **M**. Let X be a k-scheme equipped with an action of **G**. For every k-scheme Y we define

$$\widehat{\mathcal{D}}_X(Y) = \left\{ \left\{ \gamma_n : \mathbf{M}_n \times_k Y \to X \right\}_{n \in \mathbb{N}} \middle| \forall_{n \in \mathbb{N}} \gamma_n \text{ is } \mathbf{G}\text{-equivariant and } \gamma_{n+1 \mid \mathbf{M}_n \times_k Y} = \gamma_n \right\}$$

This gives gives rise to a functor $\widehat{\mathcal{D}}_X$. We call it the formal Białynicki-Birula functor of X.

Remark 4.9. Let **M** be an affine monoid k-scheme with zero **o** and let **G** be its group of units. Let X be a k-scheme equipped with an action of **G**. Then there exists a canonical morphism of functors $\mathcal{D}_X \to \widehat{\mathcal{D}}_X$ given by

$$\gamma \mapsto \{\gamma_{|\mathbf{M}_n \times_k Y}\}_{n \in \mathbb{N}}$$

for every $\gamma \in \mathcal{D}_X(Y)$ and every k-scheme Y.

5. Representability of Białynicki-Birula functor for Kempf monoids

In this section we prove various results concerning representability of Białynicki-Birula functors.

Theorem 5.1. Let M be an affine monoid k-scheme with open and schematically dense group of units G. Suppose that X is an affine k-scheme equipped with an ation of G. Then \mathcal{D}_X is representable and i_X is a closed immersion of k-schemes.

Proof. Since X is an affine k-scheme, the action of G on X corresponds to the coaction of k[G] by $c:\Gamma(X,\mathcal{O}_X)\to k[G]\otimes_k\Gamma(X,\mathcal{O}_X)$. Note that c is a morphism of k-algebras. By Theorem 3.5 there exists a universal morphism $q:\Gamma(X,\mathcal{O}_X)\twoheadrightarrow W$ of G-representations into a M-representation. Let $I\subseteq\Gamma(X,\mathcal{O}_X)$ be the ideal generated by $\ker(q)$. Fix f in I. Then

$$f = \sum_{i=1}^{n} g_i \cdot f_i$$

where $g_i \in k[G]$ and $f_i \in \ker(q)$ for $1 \le i \le n$. Then

$$c(f) = c\left(\sum_{i=1}^{n} g_i \cdot f_i\right) = \sum_{i=1}^{n} c(g_i) \cdot c(f_i) \subseteq \left(k[\mathbf{G}] \otimes_k \Gamma(X, \mathcal{O}_X)\right) \cdot \left(k[\mathbf{G}] \otimes_k \ker(q)\right) \subseteq k[\mathbf{G}] \otimes_k I$$

Thus $c(I) \subseteq k[\mathbf{G}] \otimes_k I$ and hence I is a **G**-representation. Consider

$$X^+ = V(I) = \operatorname{Spec} \Gamma(X, \mathcal{O}_X)/I \longrightarrow X$$

Since $\Gamma(X, /cO_X)/I$ is the quotient **G**-representation of W, we deduce by Theorem 3.5 that $\Gamma(X, \mathcal{O}_X)/I$ is a **M**-representation. Hence X^+ is a k-scheme equipped with action of \mathbf{M} and $X^+ \hookrightarrow X$ is **G**-equivariant. Suppose now that Y is an affine k-scheme. Then $\mathbf{M} \times_k Y$ is a **M**-scheme with respect to the left-hand side action of \mathbf{M} and hence $\Gamma(\mathbf{M} \times_k Y, \mathcal{O}_{\mathbf{M} \times_k Y})$ is a **M**-representation. Now Theorem 3.5 implies that if $\gamma : \mathbf{M} \times_k Y \to X$ is a **G**-equivariant morphism, then a morphism $\gamma^\# : \Gamma(X, \mathcal{O}_X) \to \Gamma(\mathbf{M} \times_k Y, \mathcal{O}_{\mathbf{M} \times_k Y})$ of k-algebras and **G**-representations factors through $g : \Gamma(X, \mathcal{O}_X) \to W$ and thus by construction of I we have

for some morphism f of k-algebras and G-representations. Since both $\Gamma(X, \mathcal{O}_X)/I$ and $\Gamma(\mathbf{M} \times_k Y, \mathcal{O}_{\mathbf{M}} \times_k Y)$ are \mathbf{M} -representations and by Theorem 3.4 the subcategory $\mathbf{Rep}(\mathbf{M}) \subseteq \mathbf{Rep}(\mathbf{G})$ is full, we derive that f is a morphism of \mathbf{M} -representations. Thus f corresponds to a unique \mathbf{M} -equivariant morphism $\eta: \mathbf{M} \times_k Y \to X^+$ such that the diagram

is commutative. Now this result can be extended to an arbitrary k-scheme Y, since $Mor_k(\mathbf{M} \times_k (-), X^+)$ is a Zariski sheaf and a morphism that is \mathbf{M} -equivariant locally on the domain is \mathbf{M} -equivariant. Thus for every k-scheme Y we have a bijection

$$\mathcal{D}_X(Y) \ni \gamma \mapsto \eta \in \{\mathbf{M}\text{-equivariant morphisms } \mathbf{M} \times_k Y \to X^+\}$$

Since we also have a bijection

$$\{\mathbf{M}\text{-equivariant morphisms }\mathbf{M}\times_k Y\to X^+\}\ni \eta\mapsto \eta\cdot \langle e,1_{X^+}\rangle\in \mathrm{Mor}_k(Y,X^+)$$

and both this bijections are natural, we derive that \mathcal{D}_X is represented by X^+ and moreover, $i_X: \mathcal{D}_X \to X$ is a closed immersion $X^+ \hookrightarrow X$.

In order to prove more interesting result we need to recall some fact..

Remark 5.2. Let **G** be a geometrically connected and locally algebraic group over k. It follows by [Monygham, 2020c, Theorem 7.2] that for every k-scheme X equipped with an action of **G** there exists closed subscheme $X^{\mathbf{G}}$ of X representing the fixed point functor.

Corollary 5.3. Let G be a geometrically connected and locally algebraic group k-scheme and M be a Kempf monoid having G as a group of units. Suppose that X is a k-scheme equipped with an action of G such that there exists a family U of open affine G-stable open subschemes of X such that

$$X^{\mathbf{G}} \subseteq \bigcup_{U \in \mathcal{U}} U$$

Then \mathcal{D}_X *is representable.*

Proof. Note that **G** is affine group k-scheme as a unit group of an affine monoid **M** ([Monygham, 2020d, Proposition 12.4]). Moreover, **M** is a Kempf monoid and hence **G** is open and schematically dense in **M**. By Theorem 5.1 each \mathcal{D}_U is representable by a k-scheme. On the other hand by Theorem 4.7 for each $U \in \mathcal{U}$ we have a cartesian square

of functors. Since both $U^{\mathbf{G}}$ and $X^{\mathbf{G}}$ are k-schemes by Remark 5.2, this implies that $\{\mathcal{D}_U \to \mathcal{D}_X\}_{U \in \mathcal{U}}$ is an open cover of \mathcal{D}_X as a pullback of an open cover $\{U^{\mathbf{G}} \to X^{\mathbf{G}}\}_{U \in \mathcal{U}}$. Hence Fact 4.2 and [Görtz and Wedhorn, 2010, Theorem 8.9] (or if you like [Monygham, 2019, Theorem 4.6]) imply that \mathcal{D}_X is representable.

Corollary 5.4. Let G be a geometrically connected and locally algebraic group k-scheme and M be a Kempf monoid having G as a group of units. Suppose that X is a locally linear G-scheme. Then \mathcal{D}_X is representable.

Proof. This is a consequence of Corollary 5.3.

Theorem 5.5. Let G be a geometrically connected and locally algebraic group k-scheme and M be a Kempf monoid having G as a group of units. Suppose that X is a k-scheme equipped with action of G. Then $\widehat{\mathcal{D}}_X$ is representable.

(1) aa

REFERENCES

[Görtz and Wedhorn, 2010] Görtz, U. and Wedhorn, T. (2010). Algebraic Geometry: Part I: Schemes. With Examples and Exercises. Advanced Lectures in Mathematics.

[Hall and Rydh, 2019] Hall, J. and Rydh, D. (2019). Coherent tannaka duality and algebraicity of hom-stacks. *Algebra Number Theory*, 13(7):1633–1675.

[Jelisiejew and Sienkiewicz, 2020] Jelisiejew, J. and Sienkiewicz, Ł. (2020). Białynicki-birula decomposition for reductive groups in positive characteristic. *arXiv*, pages arXiv–2006.

[Monygham, 2019] Monygham (2019). Geometry of k-functors. github repository: "Monygham/Pedo-mellon-a-minno".

[Monygham, 2020a] Monygham (2020a). Algebraization of formal **M**-schemes. *github repository: "Monygham/Pedo-mellon-a-minno"*.

[Monygham, 2020b] Monygham (2020b). Fibered categories and equivariant objects. *github repository: "Monygham/Pedomellon-a-minno"*.

[Monygham, 2020c] Monygham (2020c). Group schemes over field. *github repository: "Monygham/Pedo-mellon-a-minno"*. [Monygham, 2020d] Monygham (2020d). Monoid k-functors and their representations. *github repository: "Monygham/Pedo-mellon-a-minno"*.

[Olsson, 2016] Olsson, M. (2016). Algebraic Spaces and Stacks. Colloquium Publications. American Mathematical Society.