Probabilistic Machine Learning (CS772A), Fall 2022 Indian Institute of Technology Kanpur Homework Assignment Number 3

QUESTION

1

Student Name: Subhajyoti Saha

Roll Number: 21111269 *Date:* November 18, 2022

1 Monte-Carlo Approximations (15 marks)

$$\begin{split} \hat{f} &= \frac{1}{S} \sum_{s=1}^{S} f(z^{(s)}) \\ \Rightarrow E[\hat{f}] &= \frac{1}{S} \sum_{s=1}^{S} E[f(z^{(s)})] \\ &= \frac{1}{S} S. E[f] \\ &= E[f] \text{ [Prooved]} \end{split}$$

It is prooved that the MCMC preserves the mean.

$$Var[\hat{f}] = \frac{1}{S^2} \sum_{i=1}^{S} Var[f(z^{(s)})]$$
$$= \frac{1}{S^2} S. Var[f]$$
$$= \frac{1}{S} Var[f]$$
$$= \frac{1}{S} E[(f - E[f])^2]$$

From the above equation, it is proven that the variation of MCMC samplers got reduced as the no of samples got incressed.

Probabilistic Machine Learning (CS772A), Fall 2022 Indian Institute of Technology Kanpur Homework Assignment Number 3

7

QUESTION

Student Name: Subhajyoti Saha

Roll Number: 21111269

Date: November 18, 2022

$$\begin{split} \ln q^*(w) &= E_{\beta,\alpha_1,\dots,\alpha_D}[\ln P(y,X,w,\beta,\alpha_1,\dots\alpha_D)] + const \\ &= E_{\beta,\alpha_1,\dots,\alpha_D}[\ln P(y|X,w)P(w)P(\beta)P(\alpha_1)\dots P(\alpha_D)] + const \\ &= \int q(\beta) \ln P(y|X,w)d\beta + \int q(\alpha_1)\dots q(\alpha_D) \ln P(w)d\alpha_1\dots d\alpha_D + const \\ &= \sum_{i=1}^n \int q(\beta) \ln P(y_i|x_i,w)d\beta + \int q(\alpha_1)\dots q(\alpha_D) \sum_{i=1}^D \ln P(w_i|\alpha_i)d\alpha_1\dots d\alpha_D + const \\ &= \sum_{i=1}^n \int q(\beta) \ln P(y_i|x_i,w)d\beta + \sum_{i=1}^D \int q(\alpha_i) \ln P(w_i|\alpha_i)d\alpha_i + const \\ &= \sum_{i=1}^n \int q(\beta) \ln N(y_i|w_i^Tx_i,\beta^{-1})d\beta + \sum_{i=1}^D \int q(\alpha_i) \ln N(w_i|0,\alpha_i^{-1})d\alpha_i + const \\ &= \sum_{i=1}^n - E_\beta[\frac{\beta}{2}(y_i-w^Tx_i)^2] - \sum_{i=1}^D E_{\alpha_i}[\frac{\alpha_i}{2}w_i^2] + const \\ &= -\sum_{i=1}^n \frac{E_\beta[\beta]}{2}(y_i-w^Tx_i)^2 - \sum_{i=1}^D \frac{E_{\alpha_i}[\alpha_i]}{2}w_i^2 + const \\ &= -\sum_{i=1}^n \frac{E_\beta[\beta]}{2}(w^Tx_ix_i^Tw - 2y_iw^Tx_i) - \sum_{i=1}^D \frac{E_{\alpha_i}[\alpha_i]}{2}w_i^2 + const \\ &= -\frac{1}{2}w^T[E_\beta[\beta]\sum_{i=1}^n x_ix_i^T + diag(E_{\alpha_i}[\alpha_i],\dots E_{\alpha_i}[\alpha_i])]w + w^T(\sum_{i=1}^n y_ix_i)E_\beta[\beta] + const \\ \Rightarrow \ln q^*(w) &= \ln N(w|\mu,\Sigma) \\ \Rightarrow (\Sigma^{-1}) &= \left[E_\beta[\beta]\sum_{i=1}^n x_ix_i^T + diag(E_{\alpha_i}[\alpha_i],\dots E_{\alpha_i}[\alpha_i])\right] \\ \mu &= \Sigma(\sum_{i=1}^n y_ix_i)E_\beta[\beta] \end{split}$$

$$\begin{split} \ln q^*(\beta) &= E_{w,\alpha_1,\dots\alpha_D}[\ln P(y,X,w,\beta,\alpha_1,\dots\alpha_D)] + const \\ &= E_w[\ln P(y|X,w) + \ln P(\beta)] + const \\ &= \sum_{i=1}^n E_w[\ln N(y_i|w^Tx_i,\beta^{-1})] + \ln Gamma(\beta|a_o,b_o) + const \\ &= \frac{n}{2}\ln\beta - \frac{\beta}{2}\sum_{i=1}^n E_w[(y_i-w^Tx_i)^2] + (a_o-1)\ln\beta - b_o\ln\beta \\ &= \frac{n}{2}\ln\beta - \frac{\beta}{2}\sum_{i=1}^n (y_i-E_w[w]^Tx_i)^2 + (a_o-1)\beta - b_o\ln\beta + const \\ &= (\frac{n}{2}+a_o-1)\ln\beta - (b_o+\frac{1}{2}\sum_{i=1}^n (y_i-E_w[w]^Tx_i)^2)\beta + const \\ &\Rightarrow \ln q^*(\beta) = \ln Gamma(\beta|\hat{a},\hat{b}) \\ &\Rightarrow \hat{a} = (\frac{n}{2}+a_o) \\ &\Rightarrow \hat{b} = (b_o+\frac{1}{2}\sum_{i=1}^n (y_i-E_w[w]^Tx_i)^2) \\ &\ln q^*(\alpha_i) = E_{w,\beta,\alpha_{j;j\neq i}}[\ln P(y,X,w,\beta,\alpha_{j;j\neq i})] + const \\ &= E_w[\ln P(w) + \ln P(\alpha_i)] + const \\ &= E_w[\sum_{i=1}^D \ln N(w_i|0,\alpha_i) + \ln P(\alpha_i)] + const \\ &= E_w[\sum_{i=1}^D \ln N(w_i|0,\alpha_i) + \ln P(\alpha_i)] + const \\ &= E_w[\frac{1}{2}\ln\alpha_i - \frac{\alpha_i}{2}w_i^2 + (e_o-1)\ln\alpha_i - f_o\alpha_i] + const \\ &= (\frac{1}{2}+e_o-1)\ln\alpha_i - (\frac{E_w[w_i^2]}{2}+f_o)\alpha_i + const \\ &\Rightarrow \ln q^*(\alpha_i) = \ln Gamma(\alpha_i|\hat{e},\hat{f}) \\ &\Rightarrow \hat{e} = \frac{1}{2}+e_o \\ &\Rightarrow \hat{f} = \frac{E_w[w_i^2]}{2} + f_o \end{split}$$

The above distribution is same for all $q^*(\alpha_i)$ for i = 1, ...D.

Probabilistic Machine Learning (CS772A), Fall 2022 Indian Institute of Technology Kanpur Homework Assignment Number 3

3

QUESTION

Student Name: Subhajyoti Saha

Roll Number: 21111269 Date: November 18, 2022

The CPs of all the variable are shown below:

$$\begin{split} P(\lambda_i|\lambda_{jj\neq i},\alpha,\beta,x_1,..x_n) &= P(\lambda_i|x_1,\alpha,\beta) \\ &= P(x_i|\lambda_i)P(\lambda_i|\alpha,\beta) \\ &= Poisson(x_i|\lambda_i)Gamma(\lambda_i|\alpha,\beta) \\ &= \frac{\lambda_i^{x_i}e^{-\lambda_i}}{x_i!} \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \lambda_i^{\alpha-1}e^{-\frac{\lambda_i}{\beta}} \\ &\propto \lambda_i^{x_i+\alpha-1}e^{-\frac{i(1+\beta)}{\beta}} \\ &\Rightarrow P(\lambda_i|x_1,\alpha,\beta) &= Gamma(_i|\hat{\alpha},\hat{\beta}) \\ &\Rightarrow \hat{\alpha} &= x_i + \alpha \\ &\Rightarrow \hat{\beta} &= \frac{\beta}{1+\beta} \\ P(\alpha|\lambda_1,\lambda_2,..\lambda_N,x_1,...x_N,\beta) &= P(\alpha|\lambda_1,...\lambda_N,\beta) \\ &= \prod_{i=1}^N P(\lambda_i|\alpha,\beta)P(\alpha)P(\beta) \\ &= \prod_{i=1}^N Gamma(\lambda_i|\alpha,\beta)Gamma(\alpha|a,b)Gamma(\beta|c,d) \end{split}$$

The above CP is not in closed form.

We may use MH to sample from this.

$$\begin{split} P(\beta|\lambda_1,..\lambda_N,x_1,...x_N,\alpha) &= P(\beta|\lambda_1,..\lambda_N,\alpha) \\ &= \prod_{i=1}^N P(\lambda_i|\alpha,\beta)P(\beta)P(\alpha) \\ &= \prod_{i=1}^N Gamma(_i|\alpha,\beta)Gamma(\alpha|a,b)Gamma(\beta|c,d) \end{split}$$
 is also not in closed form

The above CP is also not in closed form.

Probabilistic Machine Learning (CS772A), Fall 2022 Indian Institute of Technology Kanpur Homework Assignment Number 3

QUESTION

4

Student Name: Subhajyoti Saha

Roll Number: 21111269 *Date:* November 18, 2022

$$\begin{split} P(r_{ij}|R) &\approx P(\hat{r_{ij}}|R) \\ &= \frac{1}{S} \sum_{s=1}^{S} P(r_{ij}|u_{i}^{(s)}, v_{j}^{(s)}) \\ &= \frac{1}{S} \sum_{s=1}^{S} N(r_{ij}|u_{i}^{(s)T}v_{j}^{(s)}, \beta^{-1}) \\ &\Rightarrow E[r_{ij}|R)] = \int r_{ij}p(r_{ij}|R)dr_{ij} \\ &= \frac{1}{S} \int r_{ij} \sum_{s=1}^{S} N(r_{ij}|u_{i}^{(s)T}v_{j}^{(s)}, \beta^{-1})dr_{ij} \\ &= \frac{1}{S} \sum_{s=1}^{S} \int r_{ij}N(r_{ij}|u_{i}^{(s)T}v_{j}^{(s)}, \beta^{-1})dr_{ij} \\ &= \frac{1}{S} \sum_{s=1}^{S} (u_{i}^{(s)T}v_{j}^{(s)}) \\ &\Rightarrow Var_{P(\hat{r_{ij}}|R}[r_{ij}|R)] = Var[u_{i}^{T}v_{j} + \epsilon] \\ &= Var[\epsilon] \text{ [The other one is const.]} \\ &= \frac{1}{\beta} \end{split}$$