Methods of Analysis of Resistive Circuits

- 여러 개의 전압원, 전류원이 동시에 연결되어 있는 복잡한 회로를 해석할 필요.
- -아래와 같은 회로를 해석할 때 기본적으로 사용하는 방법이 있음.
- -복잡한 회로를 다룰 때 해석하는 방법 : Node voltage 와 mesh current 를 사용.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 134

Circuit Theory I Lecture 4-1

Node Voltage Analysis-KCL(I)

- Node는 두개 이상의 회로 소자가 모이는 점.
- 기준 전위로 생각하는 node를 reference node로 하고, ground symbol을 표시.
- reference node와 각 node a, b, c 사이의 전위를 v_a , v_b , v_c 로 표시.
- $-v_a, v_b, v_c$ 가 변수이고 미지수가 될 수 있음.
- $-v_a=v_s$ 이므로 미지수가 아님.

KCL을 이용해서 node b, c에서 방정식을 만들수 있다.

node b:

(R₂를 통해 b →a로 흐르는 전류)

- + (R₄를 통해 b →ground로 흐르는 전류)
- + (R₃를 통해 b →c로 흐르는 전류)=0

$$\frac{v_b - v_a}{R_2} + \frac{v_b - 0}{R_4} + \frac{v_b - v_c}{R_3} = 0$$

Node Voltage Analysis-KCL(II)

node c:

(R₃를 통해 c→ b로 흐르는 전류)

+(R₅를 통해 c→ ground로 흐르는 전류)

+(R₁를 통해 c→ a로 흐르는 전류) = 0

$$\frac{v_c - v_b}{R_3} + \frac{v_c - 0}{R_5} + \frac{v_c - v_a}{R_1} = 0$$
 (2)

(1)과 (2)를 정리하고, $v_a = v_s$ 를 대입하면 연립방정식을 얻게 된다.

전류원이 있는 회로

- 전류원이 있는 회로.

node 1 :
$$\frac{v_1 - v_3}{R_1} + \frac{v_1 - v_2}{R_2} + (-i_a) = 0$$

node 2 :
$$\frac{v_2 - v_1}{R_2} + \frac{v_2 - 0}{R_3} + \frac{v_2 - v_3}{R_4} = 0$$

node 3 :
$$\frac{v_3 - v_1}{R_1} + \frac{v_3 - v_2}{R_4} + \frac{v_3 - 0}{R_5} + i_b = 0$$

Cramer's Rule

• 연립 방정식을 푸는 방법

$$\begin{bmatrix} a_{11}a_{12}a_{13}a_{14} \\ a_{21}a_{22}a_{23}a_{24} \\ a_{31}a_{32}a_{33}a_{34} \\ a_{41}a_{42}a_{43}a_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \qquad D = \begin{bmatrix} a_{11}a_{12}a_{13}a_{14} \\ a_{21}a_{22}a_{23}a_{24} \\ a_{31}a_{32}a_{33}a_{34} \\ a_{41}a_{42}a_{43}a_{44} \end{bmatrix}$$

$$x_1 = \frac{D_1}{D}, \quad x_2 = \frac{D_2}{D}, \quad x_3 = \frac{D_3}{D}, \quad x_4 = \frac{D_4}{D}$$

$$D_1 = \begin{bmatrix} b_1a_{12}a_{13}a_{14} \\ b_2a_{22}a_{23}a_{24} \\ b_3a_{32}a_{33}a_{34} \\ b_4a_{42}a_{43}a_{44} \end{bmatrix} = b_1 \begin{bmatrix} a_{22}a_{23}a_{24} \\ a_{32}a_{33}a_{34} \\ a_{42}a_{43}a_{44} \end{bmatrix} - b_2 \begin{bmatrix} a_{12}a_{13}a_{14} \\ a_{22}a_{23}a_{24} \\ a_{42}a_{43}a_{44} \end{bmatrix}$$

$$+ b_3 \begin{bmatrix} a_{12}a_{13}a_{14} \\ a_{22}a_{23}a_{24} \\ a_{42}a_{43}a_{44} \end{bmatrix} - b_4 \begin{bmatrix} a_{12}a_{13}a_{14} \\ a_{22}a_{23}a_{24} \\ a_{32}a_{33}a_{34} \\ a_{42}a_{43}a_{44} \end{bmatrix}$$

전압원이 있는 회로

- 전압원은 일정한 전압을 유지하면서 전류는 자유로이 흘린다.

Node 2에서 1으로 흐르는 전류 = i_x

$$v_2 = v_1 + 10 \tag{1}$$

$$v_3 = -15$$
 (2)

KCL

node 1:
$$\frac{v_1 - 0}{R_2} + (-i_x) + \frac{v_1 - v_3}{R_1} = 0$$
 (3)

node 2:
$$i_x + \frac{v_2 - 0}{R_4} + \frac{v_2 - v_3}{R_3} = 0$$
 (4)

미지수: v_1, v_2, i_x

식 : 3개

Supernode

• Supernode: 독립 또는 종속 전압원이 연결되어있는 두 개의 node로 구성.

Supernode

• 미지수가 두 개이고 식이 두 개.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 116

Dependent Voltage Source가 있는 회로

$$v_x = v_3 - v_1$$

(1)

$$v_1 = v_2 + 0.5v_x$$

(2)

node 2에서 1로 Dependent voltage source에 흐르는 전류: $i_{\scriptscriptstyle x}$

KCL

node 1:
$$\frac{v_1 - 0}{R_2} + (-i_x) + \frac{v_1 - v_3}{R_1} = 0$$
 (3)

node 2:
$$i_x + (-i_s) + \frac{v_2 - v_3}{R_3} = 0$$
 (4)

미지수:
$$v_x$$
, i_x , v_1 , v_2 , v_3

식 : 5개

Mesh Current Analysis - Planar and Nonplanar Circuits

Mesh current analysis is applicable only to planar networks.

 Nonplanar circuit with a crossover.

· Planar circuit with four meshes.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 122-123

Path, Loop and Mesh

(c) This path is a loop but not a mesh, since it encloses other loops.

(a) The set of branches identified by the heavy lines is neither a path nor a loop.

(b) The set of branches here is not a path, since it can be traversed only by passing through the central node twice.

(d) This path is also a loop but not a mesh.

(e, f) Each of these paths is both a loop and a mesh.

William Hayt, Jack Kemmerly and Steven Durbin, Engineering Circuit Analysis, 8th edition, McGraw-Hill, 2012, p. 93

Mesh Current Analysis-KVL

- Mesh : 가장 기본이 되는 回路
- Mesh마다 mesh current를 지정.
- KCL은 자동적으로 만족.
- 각 소자에 흐르는 전류는 mesh current의 합 또는 차로 표현.
- 예 : R_2 저항에 흐르는 전류 (i_{R_2}) = i_1 i_3

mesh 1:
$$R_2(i_1 - i_3) + R_3(i_1 - i_2) + (-v_A) = 0$$

mesh 2:
$$R_3(i_2 - i_1) + v_B + R_4 i_2 = 0$$

mesh 3:
$$R_1 i_3 + (-v_B) + R_2 (i_3 - i_1) = 0$$

- 소자 내에서 전압이 강하되는 방향이 양.

Node 사이에 전류원이 있는 회로

- 전류원에 걸리는 전압을 v_x 라 하자.

mesh 1 :
$$R_4 i_1 + R_2 (i_1 - i_3) + v_x = 0$$

mesh 2 :
$$V_s + (-v_x) + R_3 (i_2 - i_3) = 0$$

mesh 3:
$$R_1 i_3 + R_3 (i_3 - i_2) + R_2 (i_3 - i_1) = 0$$

또한, 전류원에서 I_s 의 전류가 흘러야 하므로

$$I_s = i_2 - i_1$$

미지수:
$$i_1, i_2, i_3, v_x$$

식 : 4개

Dependent Current Source가 있는 회로

$$v_x = R_3 i_2$$

$$\beta v_x = i_2 - i_1$$

mesh 1:
$$R_1 i_1 + v_2 + (-V_s) = 0$$

mesh 2:
$$R_2i_2 + R_3i_2 + (-v_a) = 0$$

미지수 :
$$i_1$$
, i_2 , v_x , v_a

식: 4개

Applications – Logic Probe (I)

- 시스템이 잘 동작하는지 알기 위하 여 node voltage 를 점검한다.
- 그림은 logic probe 회로를 보이고 있다.
- 프루브의 LOGIC IN 단자를 회로의 node 에 접촉하여 전압을 측정.
- High 상태 : 1.8 ~ 5 V 라면 red LED 가 동작.
- LOW 상태 : 0 ~ 1.2 V 라면 green LED 가 동작.
- Floating 상태 : 1.2 ~ 1.8 V 라면 오동작 상태.

Logic probe (a) schematic with nodal voltages, (c) photograph of commercially available unit.

Applications – Logic Probe (II)

- 회로의 왼쪽 부분은 분압회로.
- Op amp 는 입력 저항(임피던스)가 매우 크고, 입력 전압을 증폭하여 출력.
- **Op** amp 를 사용하는 이유?
- 저항 $R_5=1~\mathrm{M}\Omega$ 과 같이 큰 저항을 사용하는 이유?

Circuit Theory I Lecture 4-15

Applications – Logic Probe (III)

- LOGIC IN 전압이 1 V 인 경우, 어떤 LED 가 동작하는가?
- LED 는 diode와 같은 특성을 보이고, 전류가 흐르면 빛을 발한다.
- LOGIC IN 전압이 3 V 인 경우, 어떤 LED 가 동작하는가?
- LOGIC IN 전압이 1.6 V 인 경우, 어떤 LED 가 동작하는가?

Comparator

- 입력을 비교하여 두 출력 중 하나를 출력으로 함.

$$v_{0}(t) = \begin{cases} V_{H} & if & v_{+} > v_{-} \\ V_{L} & if & v_{+} < v_{-} \end{cases}$$

- 입력 전류는 영.
- 기호 : Op amp에 comparator라고 씀.

Operational Amplifier

(a) A μ A741 integrated circuit has eight connecting pins

주요한 단자

- 1. inverting input
- 2. noninverting input
- 3. output
- 4. positive power supply (v^+)
- 5. negative power supply (v^-)
- NC: no connection
- Balance(offset null) : compensate for a degradation

(b) The correspondence between the circled pin numbers of the integrated circuit and the nodes of the operational amplifier.

Simple Equivalent Circuit of Op-Amp

Ideal op amp.

$$i_1 = 0$$
, $i_2 = 0$, v_1 - $v_2 = 0$

(c) The finite gain model of and operational amplifier

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 229

Ideal Operational Amplifier

Table. Operating Condition for an Ideal **Operational Amplifier**

Variable

Ideal Condition

Inverting node input current

$$i_1 = 0$$
 $\longleftarrow R_i \to \infty$

Noninverting node input current

$$i_2 = 0$$

Voltage difference between inverting node voltage v₁ and noninverting node voltage v₂

$$v_2$$
 - v_1 = 0 \leftarrow $A \rightarrow \infty$

The ideal operational amplifier

 Ideal operational amplifier Op amp input current는 영이다.

$$i_1 = 0, \quad i_2 = 0$$

Input node voltage는 같다.

$$v_2 = v_1$$

* Virtual short condition.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 210

Voltage Follower and Loading Effect

Voltage follower (buffer amplifier)

 $v_{\cdot} = v_{in} = v_{out}$

(a) Circuit#1 before

(b) After Circuit#2 is connected

Circuit #1의 출력은 Circuit #2 를 연결하는 순간 변하고 만다. 이 를 Loading effect라고 한다.

그림(b)와 같은 전압은 바뀌게 된다. Op amp의 voltage follower를 이용하면 출력전압을 그대로 유지할 수 있다.

(c) Preventing loading using a voltage follower

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 217-218

Voltage Follower (Buffer or Isolation Amplifier)

 $20 \text{ k}\Omega$

(a) A voltage divider before a 30 k Ω resistor is added

(b) A voltage divider after a 30-k Ω resistor is added

그림 (a)의 경우
$$v_a = \frac{60}{20+60}v_{in} = \frac{3}{4}v_{in}$$

그림 (b)의 경우.

 $30 \ \mathrm{k}\Omega$ 의 저항을 연결했으므로

$$v_b = \frac{60/30}{20 + 60/30} = \frac{1}{2}v_{in}$$

그림 (c)와 같이voltage follower를 삽입. Node a의 KCL

$$\frac{v_a - v_{in}}{20k\Omega} + \frac{v_a - 0}{60k\Omega} = 0 \quad \Rightarrow \left(\frac{1}{20k\Omega} + \frac{1}{60k\Omega}\right)v_a = \frac{v_{in}}{20k\Omega}$$
$$v_a = 3/4 v_{in}$$

(c) A voltage follower is added to prevent loading

$$v_{out} = v_a$$
 $01 = v_{out} = 3/4 v_{in}$

$$i_c = \frac{3}{4} v_{in} / 30k\Omega = v_{in} / 40k\Omega$$

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 219

Applications – Boosting a Car Battery (I)

- 자동차의 배터리가 방전되었을 경우 다른 차의 배터리로 충전하는 경우가 있다.
- 두 배터리를 케이블로 연결하고 10 ~ 15 분 정도 충전한다.
- 자동차 배터리의 내부 저항은 수십 $\mathbf{m}\Omega$ 정도이므로 전압 차가 수 \mathbf{V} 정도라도 전류는 수십 \mathbf{A} 가 흐른다. 따라서, 자동차 배터리 전용 케이블을 사용해야 한다.
- 잘못 연결하면 수 백 A 의 전류가 흘러서 자동차의 전기시스템을 망가뜨린다.

연결 방법

- 멀쩡한 차는 계속 시동을 걸어둔다.
- 보안경과 장갑을 착용한다.
- 연결 케이블의 빨간 단자를 시름거리는 차 의 배터리 + 단자에 연결한다.
- 연결 케이블의 다른 쪽 빨간 단자를 멀쩡한 차의 배터리 + 단자에 연결한다.
- 연결 케이블의 까만 단자를 멀쩡한 차의 배터리 단자에 연결하고, 다른 쪽을 시름 거리는 차의 배터리 - 단자에 연결한다.
- 연결 중 단자가 차체나 부품에 닿지 않도록 주의한다.

Current level if the booster battery is improperly connected.
Boylestad 책 239쪽 그림 7.57

Applications – Boosting a Car Battery (II)

- 그림과 같이 제대로 연결이 되었다면 다음과 같이 해석.
- 연결 케이블의 + 단자 쪽 전압을 ν 라 하자.
- 정상 배터리의 전압은 12 V, 방전된 배터리의 전압은 11.7 V 라 하자.

$$\frac{v-12}{0.02} + \frac{v-11.7}{0.01} = 0$$
$$v = 11.8 \text{ V}$$

- 따라서, 연결 케이블에 흐르는 전류 10 A 이다.

Boylestad 책 237쪽 그림 7.55

Applications – Boosting a Car Battery (III)

- 충전이 진행될 때 방전된 차의 시동을 걸 때 전류는 어떻게 흐르는지 살펴보자.
- 연결 케이블의 + 단자 쪽 전압을 v 라 하자.
- 시동 모터가 배터리에 병렬적으로 연결되고 모터저항은 100 $m\Omega$ 정도이다.
- 정상 배터리의 전압은 12 V, 방전된 배터리의 전압은 11.8 V 라 하자.

$$\frac{v-12}{0.02} + \frac{v-0}{0.1} + \frac{v-11.8}{0.01} = 0,$$

$$v = 11.125 \text{ V}$$

- 방전된 배터리의 전압은 11 V 라 하자.

$$\frac{v-12}{0.02} + \frac{v-0}{0.1} + \frac{v-11}{0.01} = 0,$$

$$v = 10.625 \text{ V}$$

- 따라서, 시동 모터에 흐르는 전류 106.25 A 이다.
- 정상 차의 배터리에서 **68. 75 A**, 방전 차 의 배터리에서 **37.5 A** 가 흘러나온다.

- 따라서, 시동 모터에 흐르는 전류 111.25 A 이다.
- 정상 차의 배터리에서 **43. 75 A**, 방전 차의 배터 리에서 **67.5 A** 가 흘러나온다.

Potentiometer Angle Display (I)

- Potentiometer 회전각을 표시하는 소자 만들기.
- 회전각은 180 0에서 180 0까지 회전.
- + 15 V, 15 V power supplies, 저항 R_1 , R_2 , potentiometer 를 사용한다.
- 그림의 v_i 는 회전각 θ 에 비례하고, 증폭기를 이용하여 v_i 를 v_o 로 비례적으로 증폭한다. v_O 1t

$$v_o = k \cdot \theta$$
 where $k = 0.1 \frac{\text{volt}}{\text{degree}}$

증폭기의 내부 회로는 그림과 같다.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 143

Potentiometer Angle Display (II)

$$a = \frac{\theta}{360^{\circ}} + \frac{1}{2} \Longrightarrow \theta = \left(a - \frac{1}{2}\right) \cdot 360^{\circ}$$

$$\frac{v_i}{2M\Omega} + \frac{v_i - 15}{R_1 + aR_p} + \frac{v_i - (-15)}{R_2 + (1 - a)R_p} = 0$$

$$R_1 = R_2$$
를 가정

근사식을 구함.

Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuits, 8th edition, John Wiley and Sons, 2010, p. 143