Integrazione secondo Lebesgue 1

- 1. Misure e funzioni misurabili
- 2. Definizione di integrale di Lebesgue
- 3. Confronto con Riemann
- 4. Teoremi principali

Figura 1: Integrale secondo Lebesgue, intuizione geometrica

$$\int_{a}^{b} f = \lim_{N \to +\infty} \sum_{k=1}^{N} l(f^{-1}(j_{k})) \cdot y_{k}$$

1.0.1 Misure e funzioni misurabili

Definizione: Sia X insieme, e sia $F \subseteq P(X)$ una famiglia di sottoinsie-

- F si dice una σ -algebra se: (i) $\varnothing \in F$ (ii) $A \in F \implies X \setminus A \in F$ (iii) $\{A_n\}_{n \in \mathbb{N}} \subseteq F \implies \bigcup_n A_n \in F$

Osservazione: $\{A_n\}_{n\in\mathbb{N}}\subseteq F \implies \bigcap_n A_n\in F$ Esempi

- X qualsiasi, F = P(X) = parti di X
- $X = \mathbb{R}^n$, F = la pià piccola σ -algebra contenente gli aperti (σ di Borell)

Definizione: la coppia (X, F) si dice spazio misurabile

Definizione: Sia (X, F) spazio misurabile, una misura positiva su (X, F) è una funzione

$$\mu: F \to \mathbb{R} \cup \{+\infty\}$$

tale che

- 1. $\mu(A) \ge 0 \forall A \in F \text{ (positività)}$
- 2. Se $\{A_n\}$ è una famiglia al più numerabile di insiemi di F2 a 2 disgiunti allora

$$\mu(\cup_n A_n) = \sum_{n \ge 1} \mu(A_n)$$

(additività, eventualmente $+\infty = +\infty$)

Esempi:

- $(X, P(X)), \mu(A) = \operatorname{card} A$
- (X, P(X)) fissato $x_0 \in X$

$$\mu(A) = \begin{cases} 1 \text{ se } x_0 \in A \\ 0 \text{ se } x_0 \notin A \end{cases}$$

Osservazione: Seguono da 1), 2)

3. $A_1 \subseteq A_2 \subseteq \ldots, A \in F$

$$\implies \mu(\cup_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

4. $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots, A_i \in F, \mu(A_1) < +\infty$

$$\implies \mu(\cap_n A_n) = \lim_{n \to \infty} \mu(A_n)$$

Teorema: Esistono su \mathbb{R}^n una σ -algebra M (misurabile secondo lebesgue) e una misura positiva m (misura di Lebesgue in \mathbb{R}^n) tali che:

- Tutti gli insiemi aperti appartengono a M
- $A \in M$ e $m(A) = 0 \implies \forall B \subseteq A, B \in M$ e m(B) = 0 (completezza)
- $A = \{x \in \mathbb{R}^n : a_i < x_i < b_i \ i = 1, \dots, n\}$

$$\implies m(A) = \prod_{i=1}^{n} (b_i - a_i) = (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n)$$

[...]

Osservazione: Non tutti i sottoinsiemi di \mathbb{R}^n sono misurabili secondo Lebesgue.

Osservazione: La misura di Lebesgue in \mathbb{R}^n estende il concetto di volume

n-dimensionale

Osservazione: Gli insiemi di misura nulla sono importanti

Definizione: Una funzione $f:\mathbb{R}^n\to\mathbb{R}$ si dice misurabile secondo Lebesgue se

 $\forall A \subseteq \mathbb{R}$ aperto, $f^{-1}(A)$ misurabile secondo Lebesgue

 $\forall C \subseteq \mathbb{R}$ chiuso , $f^{-1}(C)$ misurabile secondo Lebesgue

Osservazione: f continua \Longrightarrow f misurabile secondo Lebesgue (f continua \Longrightarrow $\forall A$ aperto $f^{-1}(A)$ aperto \Longrightarrow $\forall A$ aperto $f^{-1}(A)$ misurabili

Osservazione 2: Sono misurabili anche limiti, inferiore, superiore di funzinoni continue (di funzioni misurabili)

Più in generale se

$$f: E \to \mathbb{R}$$

con E misurabile, f si dice misurabile secondo Lebesgue se $\forall A\subseteq\mathbb{R}$ aperto $E\cap f^{-1}(A)$ misraubile secondo Lebesgue

1.0.2 Definzione di integrale secondo Lebesgue

Sia f: E misurabile $\subseteq \mathbb{R}^n \to \mathbb{R}$ misurabile.

Funzioni semplici

S funzione semplice è una funzione (misurabile) che assume un numero finito di valori (ciascuno su un insieme misurabile).

$$S = \sum_{k=1}^{N} \alpha_k \chi_{E_i}, \ \chi_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Dove gli E_i sono insiemi misurabili 2 a 2 disgiunti

$$\int_{E} S := \sum_{k=1}^{N} \alpha_{k} m(E_{k})$$

Precisazione: con la convenzione $0 \cdot \infty = 0$

Funzioni misurabili $f \geq 0$

$$\int_E f := \sup_{\substack{S \text{ semplici} \\ S \geq f}} \int_E S \quad \bigg(= \inf_{\substack{S \text{ semplici} \\ S \geq f}} \int_E^S \bigg)$$

Funzioni misurabili di segno qualsiasi

Data f misurabile su E misurabile, scriviamo:

$$f = f^+ - f^- \text{ con } f^+, f^- \geq 0, \ f^+ := \max\{f, 0\}, \ f^- := -\min\{f, 0\}$$

$$\int_E f := \int_E f^+ - \int_E f^-$$

Figura 2: Funzioni di segno qualsiasi

A patto che almeno uno tra i due integrali sia finito, (eventualmente l'integrale vale $\pm\infty$

Definizione: $f: E \to \mathbb{R}$ misurabile si dice integrabile secondo Lebesgue se

$$\int_E f \in \mathbb{R}$$

Osservazione: f è integrabile secondo Lebesgue $\iff \int_E f^\pm \in \mathbb{R}$ Quindi f integrabile secondo Lebesgue $\iff |f|$ integrabile secondo Lebesgue, infatti

$$|f| = f^+ + f^-$$

1.0.3 Proprietà principali dell'integrale di Lebesgue

1) Linearità: f,g Lebesgue integrabili, $\alpha,\beta\in\mathbb{R}\implies \alpha f+\beta g$ Lebesgue integrabile e

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

2) Monotonia: f, g Lebesgue integrabili, $f \leq g$ q.o. su E

$$\implies \int_{E}^{f} \leq \int_{E} g$$

3) Maggiorazione del modulo: f Lebesgue integrabile

$$\implies \left| \int_{E} f \right| \leq \int_{E} |f|$$

Segue da 2), $-|f| \le f \le |f| \implies -\int_E |f| \le \int_E f \le \int_E |f|$

4) L'integrale di Lebesgue "non vede" gli insiemi di misura nulla. Si
aSsemplice, $E\to\mathbb{R}$

$$S(x) = \begin{cases} 0 \text{ su } E \setminus N \\ 1 \text{ su } N \end{cases} \qquad m(N) = 0$$

$$\int_E S = m(E \setminus N) \cdot 0 + m(N) \cdot 1 = 0$$

Più in generale, se f misurabile: $E \to \mathbb{R}$ se f si annulla su E tranne che su un insieme di misura nulla

$$\int_E f = 0$$

Conseguenza: se f,g misurabili: $E \to \mathbb{R}$ se f=g su E tranne che su un insieme di misura nulla

$$\int_{E} f = \int_{E} g$$

Definizione: Si dice che una proprietà P(x) vale per q.o. $x \in E$ se P(x) vale $\forall x \in E \setminus N$, con m(N) = 0

Quindi

- f = 0 q.o. su $E \implies \int_E = 0$
- f = g q.o. su $E \implies \int_E f = \int_E g$

1.1 Confronto Riemann-Lebesgue

1.1.1 Integrali propri

f R-integrabile $\implies f$ L-integrabile, in caso affermativo, i valori degli integrali coincidono, in generale non vale il viceversa.

 (\implies) Le funzioni semplici seconodo Lebesgue S_L sono una classe più ampia delle funzinoi semplici secondo Riemann S_R

$$\sup_{\substack{s \in S_R \\ s < f}} \int_E s \le \sup_{\substack{s \in S_L \\ s < f}} \int_E s \le \inf_{\substack{s \in S_L \\ s \ge f}} \int_E s \le \inf_{\substack{s \in S_R \\ s \ge f}} \int_E s$$

Controesempio: $\exists f$ L-integrabile ma non R-integrabile.

$$f(x) = \begin{cases} 1 \text{ se } x \in \mathbb{Q} \\ 0 \text{ se } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Non R-integrabile poiché approssimando da sotto e da sopra non si trova lo stesso valore

$$s \in S_R, s \ge f \implies s \ge 1 \text{ su } (0,1) \implies \int_0^1 s \ge 1$$

$$s \in S_R, s \le f \implies s \le 0 \text{ su } (0,1) \implies \int_0^1 s \le 0$$

fè però L-integrabile, $\int_0^1 f = 0$

$$\int_0^1 f = 1 \cdot m(0,1) \cap \mathbb{Q} + 0 \cdot m((0,1) \cap (\mathbb{R} \setminus \mathbb{Q})) = 0$$

1.1.2 Integrali impropri

In \mathbb{R} , supponiamo che f limitata, sia R-integrabile su $[-L, L] \forall L > 0$.

Allora: f L-integrabile su $\mathbb{R} \iff |f|$ R-integrabile (in senso improprio su \mathbb{R}). E in tal caso l'integrale di Lebesgue di f coincide con l'integrale improprio di f. Analogamente se f non è limitata.

Controesempio: una funazione R-integrabile ma non R-integrabile in modulo e quindi non L-integrabile.

$$f(x) = \frac{\sin x}{x} \text{ su } (0, +\infty)$$

Riemann integrabile su $(0, +\infty)$ (tramite analisi complessa) Ma non è Riemann integrabile in modulo

$$\int_0^{+\infty} \frac{|\sin x|}{x} = +\infty$$

(Tramite serie)