Classic Classifier

```
In [ ]: %env CUDA_VISIBLE_DEVICES=1
       env: CUDA_VISIBLE_DEVICES=1
In [ ]: import numpy as np
        import cudf
        import cuml
        from cupy import asnumpy
        from joblib import dump, load
In [ ]: def calc f1(cm):
            # Extracting True Positives, False Positives, False Negatives
            TP = cm[0][0]
            FP = cm[0][1]
            FN = cm[1][0]
            # TN = confusion_matrix[1][1] # True Negatives are not needed for F1
            # Calculating Precision and Recall
            precision = TP / (TP + FP) if (TP + FP) > 0 else 0
            recall = TP / (TP + FN) if (TP + FN) > 0 else 0
            # Calculating F1 Score
            if precision + recall == 0: # Avoiding division by zero
                f1 \text{ score} = 0
            else:
                f1_score = 2 * (precision * recall) / (precision + recall)
            return f1_score
```

Load Data

```
In []: train_data_path = "./data/train.csv"

In []: df = cudf.read_csv(train_data_path)
    df.describe()

/home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/co
    re/dataframe.py:5106: FutureWarning: `datetime_is_numeric` is deprecated.
    Specify `datetime_is_numeric=True` to silence this warning and adopt the f
    uture behavior now.
        warnings.warn(
    /home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/co
    re/series.py:3319: FutureWarning: `datetime_is_numeric` is deprecated and
    will be removed in a future release. Specify `datetime_is_numeric=True` to
    silence this warning and adopt the future behavior now.
        warnings.warn(
```

Out[]:		ind_recommended	activation	customer_digital_activity_04	customer_s
	count	1.222998e+07	1.222998e+07	1.472619e+06	1.018
	mean	1.264980e-01	5.725000e-03	9.745803e+00	1.342
	std	3.324100e-01	7.544700e-02	4.156839e+01	6.4547
	min	0.000000e+00	0.000000e+00	1.000000e+00	1.000(
	25%	0.000000e+00	0.000000e+00	1.000000e+00	3.844
	50%	0.000000e+00	0.000000e+00	2.000000e+00	6.437
	75%	0.000000e+00	0.000000e+00	6.000000e+00	1.138
	max	1.000000e+00	1.000000e+00	8.560000e+02	2.489

8 rows × 71 columns

Data Cleanup

```
In []: df.drop(["customer", "merchant"], axis=1, inplace=True)
    df.describe()
```

/home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/core/dataframe.py:5106: FutureWarning: `datetime_is_numeric` is deprecated. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.

warnings.warn(

/home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/core/series.py:3319: FutureWarning: `datetime_is_numeric` is deprecated and will be removed in a future release. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now. warnings.warn(

Out[]:		ind_recommended	activation	customer_digital_activity_04	customer_s
out! II			40111411011		
	count	1.222998e+07	1.222998e+07	1.472619e+06	1.018
	mean	1.264980e-01	5.725000e-03	9.745803e+00	1.342
	std	3.324100e-01	7.544700e-02	4.156839e+01	6.4547
	min	0.000000e+00	0.000000e+00	1.000000e+00	1.0000
	25%	0.000000e+00	0.000000e+00	1.000000e+00	3.844
	50%	0.000000e+00	0.000000e+00	2.000000e+00	6.437
	75%	0.000000e+00	0.000000e+00	6.000000e+00	1.138
	max	1.000000e+00	1.000000e+00	8.560000e+02	2.489

8 rows × 69 columns

```
In []: threshold = len(df.columns) * 0.8
    df_cleaned = df.dropna(thresh=threshold)
    df_cleaned.shape
```

Out[]: (1373560, 69)

In []: df_cleaned.describe()

/home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/core/dataframe.py:5106: FutureWarning: `datetime_is_numeric` is deprecated. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.

warnings.warn(

/home/dx/miniconda3/envs/rapids-24.02/lib/python3.10/site-packages/cudf/core/series.py:3319: FutureWarning: `datetime_is_numeric` is deprecated and will be removed in a future release. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now. warnings.warn(

		•			
Out[]:		ind_recommended	activation	customer_digital_activity_04	customer_s
	count	1.373560e+06	1.373560e+06	1.373560e+06	1.373{
	mean	2.369470e-01	1.963200e-02	3.283215e+00	1.251
	std	4.252100e-01	1.387330e-01	2.212771e+01	4.676
	min	0.000000e+00	0.000000e+00	1.000000e+00	1.0000
	25%	0.000000e+00	0.000000e+00	1.000000e+00	4.373
	50%	0.000000e+00	0.000000e+00	1.000000e+00	6.745
	75%	0.000000e+00	0.000000e+00	1.000000e+00	1.129
	max	1.000000e+00	1.000000e+00	8.470000e+02	1.500(

8 rows × 69 columns

```
In []: from cuml.model_selection import train_test_split

X = df_cleaned.drop(["activation", "ind_recommended"], axis=1)
y = df_cleaned["activation"]
print(X.shape, y.shape)
```

(1373560, 67) (1373560,)

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
```

Random Forest

```
In [ ]: from cuml.ensemble import RandomForestClassifier
        rfc = RandomForestClassifier(n estimators=100,
                                     max depth=16)
In [ ]: rfc.fit(X_train, y_train)
Out[]: RandomForestClassifier
        RandomForestClassifier()
In [ ]: from cuml.metrics import accuracy_score
        y_train_pred = rfc.predict(X_train)
        rf_train_accuracy = accuracy_score(y_train, y_train_pred)
        print("Train accuracy: ", rf_train_accuracy)
        y_test_pred = rfc.predict(X_test)
        rf_test_accuracy = accuracy_score(y_test, y_test_pred)
        print("Test accuracy: ", rf_test_accuracy)
       Train accuracy: 0.9867188334465027
       Test accuracy: 0.9827929139137268
In [ ]: from cuml.metrics import confusion_matrix
        print("Train: ",confusion_matrix(y_train, y_train_pred, convert_dtype=Tru
        print("Test: ",confusion_matrix(y_test, y_test_pred, convert_dtype=True))
       Train: [[1077149
                              0]
        [ 14594 7105]]
       Test: [[269254
                         191]
        [ 4536
                  731]]
In [ ]: print("F1: ", calc_f1(confusion_matrix(y_test, y_test_pred, convert_dtype
       F1: 0.991289301229659
In [ ]: dump(rfc, 'rfc.joblib')
Out[]: ['rfc.joblib']
In [ ]:
        SVM
```

```
In [ ]: from cuml.svm import SVC
svm = SVC(kernel='rbf', class_weight='balanced')
```

```
In [ ]: svm.fit(X train, y train)
SVC()
In [ ]: from cuml.metrics import accuracy_score
        y_train_pred = svm.predict(X_train)
        svm_train_accuracy = accuracy_score(y_train, y_train_pred)
        print("Train accuracy: ", svm_train_accuracy)
        y_test_pred = svm.predict(X_test)
        svm_test_accuracy = accuracy_score(y_test, y_test_pred)
        print("Test accuracy: ", svm_test_accuracy)
       Train accuracy: 0.7885931730270386
       Test accuracy: 0.7888770699501038
In [ ]: from cuml.metrics import confusion_matrix
        print("Train: ",confusion_matrix(y_train, y_train_pred, convert_dtype=Tru
        print("Test: ",confusion_matrix(y_test, y_test_pred, convert_dtype=True))
       Train: [[853296 223853]
        [ 8451 13248]]
       Test: [[213519 55926]
       [ 2072 3195]]
In [ ]: print("F1: ", calc_f1(confusion_matrix(y_test, y_test_pred, convert_dtype
       F1: 0.8804253704879638
In [ ]: dump(svm, 'svm.joblib')
Out[]: ['svm.joblib']
```