ECE108 Assignment 1

Yi Fan Yu (yf3yu@edu.uwaterloo.ca)

Feb 22, 2017

1 Set Operation

a) $R \subseteq S \iff R \subseteq ((S-T) \cup (R \cap T))$

This statement is false because the implication is only unidirectional.

Proving $R \subseteq S \to R \subseteq ((S - T) \cup (R \cap T))$ $R \subseteq ((S - T) \cup (R \cap T))$ can be simplified to using distributivity

 $R \subseteq (((S-T) \cup R) \cap ((S-T) \cup T))$ where $(S-T) \cup R$ gives you a set X such that $R \subseteq X$ $(S-T) \cup T$ gives you S ...

So... we get $R \subseteq (X \cap S)$ since $R \subseteq X$ and from our assumption $R \subseteq S$. The intersection gives at least R as an answer. Therefore $R \subseteq R$ is true

The opposite way cannot be proved because R does'nt have to be \subseteq S $R \subseteq T$ will suffice the counter-example

Counter-example $S = \{4\}$ $R = \{1,3,5\}$ $T = R = \{1,3,5\}$ $S - T = \{4\}$ $R \cap T = \{1,3,5\}$ $R = (S - T) \cup (R \cap T) = \{1,3,4,5\}$ in this case R is definitely not a subset of S

(b) $(A \cap C) \subseteq (B \cap C) \to A \subseteq B$ proof: let $x \in A \cap B$ we can conclude that...

by the definition of intersection, $\forall x \in A, x \in C$ we deduce that x must be in both A and C

by the definition of subset, $\forall x \in (A \cap C), x \in (B \cap C)$ we can say $\forall x \in A, x \in (B \cap C)$

which means by the definition of intersection that $\forall x \in A, x \in B \land x \in C$ So... $\forall x \in A, x \text{ must be } \in B$ which is the definition of $A \subseteq B$

(c) $A \in B \land B \in C \rightarrow A \in C$ this statement is obviously false since let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{\{3\}, 4\}, 5\}$

we can see that $A \in B \land B \in C$ but $A \notin C$

(d) $A \in B \land B \in C \rightarrow A \subseteq C$ this statement is obviously false since let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{\{3\}, 4\}, 5\}$

we can see that $A \in B \land B \in C$ but $A \not\subseteq C$

(e) $A \in B \land B \subseteq C \rightarrow A \in C$ proof: if $B \subseteq C$

that means $\forall x \in B, x \in C$

now $A \in B$ means that A is an element of B represented by $\forall x$ replacing $\forall x$ by A

we can then conclude $A \in B$ means $A \in C$

(f) $A \in B \land B \subseteq C \rightarrow A \subseteq C$ this is obviously false since we proved that $A \in C$ is true let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{3\}, 4, 5\}$

we can see that $A \in B \land B \subseteq C$ but $A \not\subseteq C$

2 Set operations

Given sets A and B under what condition does A - B = B - Aneed to prove that $A = B \iff A - B = B - A$

Proof:

starting with
$$A = B \rightarrow A - B = B - A$$
 if $A = B$, then $A - B = B - A = \emptyset$

continuing with $A = B \leftarrow A - B = B - A$ Proof:

the definitions for differences are:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$B - A = \{x \mid x \in B \land x \notin A\}$$

if
$$A - B = B - A$$

then it means that $\exists x \in A \mid x \notin B$

because of the equality,

but the same x must exists in B not in A

we can see that no element

We can then conclude that

$$A - B = \emptyset \wedge B - A = \emptyset$$

using the definition of difference we can see that in order for $A - B = \emptyset$, that means that $A \subseteq B$ in order for $B - A = \emptyset$, that means that $B \subseteq A$

therefore $A \subseteq B \land B \subseteq A$

this is the definition of equality A = B.

3 Functions

(a)

- (i) if f is injective, we don't know anything about the relationship between co-domain and image we only know about that image \subseteq co-domain
- (ii) image = co-domain when it is surjective
- (iii) image = co-domain when it is bijective

(b)

(i) if f is injective, it means that the function is invertible and we can map the image (\neq co-domain) back to it's domain so f^{-1} has image the full codomain of f image $(f^{-1}) = \text{dom } (f)$

- (ii) turns out that if f is not injective, it cannot be inverted since f^{-1} does not exist,
- (iii) image $(f^{-1}) = \text{dom } (f)$ when it is bijective

4 Functions

I assume that both X and Y are not empty sets....

(a) there exists an injection $f: X \to Y$

Proof:

if $X \subseteq Y$, this means

 $\forall a (a \in X \to a \in Y)$

a "same" function can be applied that maps all the values in X to its same value, but in Y

$$f: X \to Y$$
$$x \mapsto x$$

Since all values in X is present in Y, and every single value in X maps to one value inside of Y and sets don't have duplicates we've got an injective "equivalence" function

(b) there exists a surjection $g: Y \to X$ well we know that $X \subseteq Y$

so cardinality $(X) \le \operatorname{cardinality}(Y)$

I can conclude that my domain will be either equal or bigger than my codomain

Therefore I can guarantee that my function will not be injective if I need my function to be surjective so a function that $g: Y \to X$

$$x \mapsto xifx \in (X \cap Y)$$

 $andx \mapsto \text{any value} \in Yifx \in (Y - X)$ the mapping to any value will make

sure that our function definition maps all the domain to satisfy the definition of a function

- i. Define $T \subseteq A2$ st $XTy \iff (xRyANDxSY)$ show T is refl sym and transitive to prove it
 - 4. Given poset (x, smallerEq) prove or disprove (a) x ξ = y iff y ξ =-1 x R-1 = (b,a) (a,b) ξ R) (y,x) ξ = so it mean (x,y) ξ =-1
 - (b) $x := y \iff y := x (2,2)$ will prove it false;