Внешний курс раздел 3

Криптография на практике

Александр Андреевич Шуплецов

Содержание

1	Цель работы	5
2	Выполнение работы	6
3	Выводы	15
4	Список литературы	16

Список иллюстраций

2.1	первое задание	•	•		•	•	•	•		•	•	•	•	•	•	•	•	6
2.2	второе задание	•																7
2.3	третье задание	•																7
2.4	четвертое задание	•																8
2.5	пятое задание	•																8
2.6	шестое задание	•																9
2.7	седьмое задание	•																9
2.8	восьмое задание	•																10
2.9	девятое задание	•																10
2.10	десятое задание	•																11
2.11	одиннадцатое задание	•																11
2.12	двенадцатое задание	•																12
2.13	тринадцатое задание	•																12
2.14	четырнадцатое задание	,																13
2.15	пятнадцатое задание	•																13
2.16	шестнадцатое задание																	14

Список таблиц

1 Цель работы

Изучить основы криптографии.

2 Выполнение работы

1. В асимметричных криптографических примитивах обе стороны имеют пару ключей - публичный и секретный.

Рис. 2.1: первое задание

2. Криптографическая хэш-функция, в отличие от обычной хэш-функции, не обеспечивает конфиденциальность захэшированных данных, но она стойкая к коллизиям, эффективно вычисляется, дает на выходе фиксированное число бит независимо от объема входных данных.

Рис. 2.2: второе задание

3. К алгоритмам цифровой подписи относятся зарубежные RSA и ECDSA, российский ГОСТ Р 34.10-2012.

Рис. 2.3: третье задание

4. Код аутентификации сообщения относится к симметричным примитивам.

Рис. 2.4: четвертое задание

5. Обмен ключами Диффи-Хэллмана - это асимметричный примитив генерации общего секретного ключа.

Рис. 2.5: пятое задание

6. Протокол электронной цифровой подписи относится к протоколам с публичным ключом.

Рис. 2.6: шестое задание

7. Алгоритм верификации электронной цифровой подписи требует на вход подпись, открытый ключ, сообщение.

Рис. 2.7: седьмое задание

8. Электронная цифровая подпись не обеспечивает конфиденциальность.

Рис. 2.8: восьмое задание

9. Для отправки налоговой отчетности в ФНС понадобится самый сильный тип сертификата электронной подписи - усиленная квалификационная.

Рис. 2.9: девятое задание

10. Квалифицированный сертификат ключа проверки электронной подписи можно получить в удостоверяющем (сертификационном) центре.

Рис. 2.10: десятое задание

11. MasterCard и MИР являются платежными системами в предоставленном в задании списке.

Рис. 2.11: одиннадцатое задание

12. Примерами многофакторной аутентификации являются комбинация проверка пароля + код в sms сообщении, комбинация код в sms сообщении + отпечаток пальца, капча с паролем и пароль с пин кодом не являются примерами многофакторной аутентификации.

Рис. 2.12: двенадцатое задание

13. При онлайн платежах сегодня используется многофакторная аутентификация покупателя перед банком-эмитентом - банком, на счете которого покупатель хранит денежные средства.

Рис. 2.13: тринадцатое задание

14. Сложность нахождения прообраза как свойство криптографической хэшфункции используется в доказательстве работы майнера.

Рис. 2.14: четырнадцатое задание

15. Консенсус в некоторых системах блокчейн обладает свойствами: открытость, живучесть, постоянство.

Рис. 2.15: пятнадцатое задание

16. Цифровая подпись используется в качестве криптографического примитива в блокчейне.

Рис. 2.16: шестнадцатое задание

3 Выводы

Я изучил основы криптографии.

4 Список литературы

Конспекты к лекциям курса "Основы кибербезопасности".