rot: Kapitel, blau: Themen, grün: Begriffe, grau: Kommentare.

Allgemeines

Mitternachtsformel. Für $a, b, c \in \mathbb{R}$ gilt: $ax^2 + bx + c = 0 \iff$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$

Potenzen und Logarithmen. Für $a,b,c \in \mathbb{R}$ mit $a \neq 0,b,c >$ $0, b, c \neq 1$ gilt: $\log_c b = a \iff c^a = b \iff \sqrt[3]{b} = c$. Nicht vergessen! $a^b := e^{b \ln(a)}$

Logarithmusregeln. $\log_a b = \frac{\log_c b}{\log_a a}$, $\log_a (n \cdot m) = \log_a n + \log_a m$, $\log_a \frac{n}{m} = \log_a n - \log_a m$, $\log_a n^m = m \cdot \log_a n$, $\log_{ab} n = \frac{1}{b} \cdot \log_a n$, $\log_a 1 = 0$, $\log_a a = 1$, $\log_a a^n = n$, $\log_a \sqrt[n]{a} = \frac{1}{a}$

Bernoulli-Ungleichung. $\forall n > 0, x > -1: (1+x)^n > 1+nx$.

1. Reelle Zahlen

Obere und untere Schranken. Für einen angeordneten Körper $K, X \subset K$ und $s \in K$ gilt:

Pfeile bedeuten $A \Longrightarrow B$ bzw. $A \land B \Longrightarrow C$.

Rechenregeln für Suprema.

- 1. sup(X + Y) = sup(X) + sup(Y)
- 2. $\lambda > 0 \implies \sup(\lambda X) = \lambda \sup(X)$
- 3. $X, Y \subset [0, \infty) \implies \sup(X \cdot Y) = \sup(X) \cdot \sup(Y)$
- 4. $X \subset Y \implies \sup(X) < \sup(Y)$

2. Folgen in \mathbb{R}

Beschränktheit. (a_n) ist nach oben beschränkt, falls $\exists C \in$ \mathbb{R} : $\forall n \in \mathbb{N}$: $a_n < C$, nach unten beschränkt, falls $\exists C \in \mathbb{R}$: $\forall n \in \mathbb{R}$ \mathbb{N} : $a_n > C$ und beschränkt, falls $\exists C > 0 : \forall n \in \mathbb{N} : |a_n| < C$ bzw. falls nach unten und oben beschränkt.

Grenzwert. (a_n) konvergiert gegen a ($\lim a_n = a$ oder $a_n \to a$

für $n \to \infty$), falls $\forall \epsilon > 0$: $\exists n_0 \in \mathbb{N}$: $\forall n \ge n_0$: $|a_n - a| < \epsilon$. Wenn kein solches a existiert, dann divergiert sie.

Beispiele. Für $n \to \infty$ gilt: $\frac{1}{np} \to 0 \ (p \in \mathbb{N}), \ \frac{n}{2n+1} \to \frac{1}{2}, \ x^n \to 0$ (0 < x < 1) und $(1 + \frac{1}{n})^n \rightarrow e$. Es divergiert: $(-1)^n$.

Rechenregeln für Grenzwerte. Falls $\lim a_n = a$ und $\lim b_n = b$,

- 1. $\lim a_n + b_n = a + b$,
- 2. $\lim_{n \to \infty} a_n \cdot b_n = a \cdot b$,
- 3. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ (falls $b \neq 0$),
- 4. $a_n \le b_n$ für alle $n \in \mathbb{N} \implies a \le b$,
- 5. Einschließungskriterium: a = b und $a_n < c_n <$ b_n für fast alle $n \in \mathbb{N} \implies \lim c_n = a$.

Uneigentliche Konvergenz. Eine divergente Folge (an) konvergiert uneigentlich gegen ∞ (bzw. $-\infty$), falls $\forall K > 0 : \exists n_0 \in$ $\mathbb{N}: \forall n > n_0: a_n > K$ (bzw. $a_n < -K$). Notation wie bei Konver-

Beispiele. n^2 , x^n (x > 1) und $\frac{n^2-1}{n}$ konvergieren uneigentlich

Rechenregeln für uneigentliche Grenzwerte. Falls $\lim b_n = \infty$ und $\lim a_n = a$, dann:

- 1. $a \in \mathbb{R} \cup \{\infty\} \implies \lim_{n \to \infty} a_n + b_n = \infty$,
- 2. $a \in \mathbb{R}^+ \cup \{\infty\}$ $\Longrightarrow \lim_{n \to \infty} a_n \cdot b_n = \infty$ und $a \in \mathbb{R}^- \cup \{-\infty\}$ $\Longrightarrow \lim_{n \to \infty} a_n \cdot b_n = -\infty$
- 3. $a \in \mathbb{R} \implies \lim_{h \to \infty} \frac{a_h}{h_h} = 0$.

Bei 3. reicht es, dass (a_n) beschränkt ist.

Monotonie von Folgen. Eine reelle Folge (an) heißt monoton wachsend, falls $\forall n \in \mathbb{N}$: $a_{n+1} > a_n$. Analog monoton fallend für <, streng monoton wachsend für > und streng monoton fallend

Häufungspunkt.

- 1. Falls $(n_k)_{k\in\mathbb{N}}$ streng monoton wachsend oder fallend, dann $(a_{n\nu})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$
- 2. Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt von $(a_n)_{n \in \mathbb{N}}$, wenn \exists Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ von $(a_n)_{n\in\mathbb{N}}$, die gegen a konvergiert.

Wichtige Aussagen:

- Bolzano-Weierstrass: (a_n) beschränkt $\implies (a_n)$ hat mindestens einen Häufungspunkt.
- (a_n) monoton fallend oder wachsend $\implies (a_n)$ hat höchstens einen Häufungspunkt,
- (a_n) konvergent \implies (a_n) hat genau einen Häufungspunkt
- (a_n) uneigentlich Konvergent gegen $-\infty$ oder $\infty \implies (a_n)$ hat keinen Häufungspunkt

Limes superior und limes inferior. Falls (a_n) nach unten (bzw. oben) beschränkt ist, ist $\limsup a_n$ (bzw. $\liminf a_n$) sein größter

(bzw. kleinster) Häufungspunkt.

Eigenschaften. Für eine reelle Folge (a_n) gilt:

Schwarze Pfeile bedeuten $A \implies B$ bzw. $A \land B \implies C$ und rote $\neg A \lor \neg B$, d. h. A und B schließen sich gegenseitig aus.

3. Folgen in \mathbb{C} und \mathbb{R}^n

Komplexe Zahlen. $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. Für z = a + bi gilt:

- Konjugierte: z̄ = a − bi.
- Betrag: $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$
- $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ und $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$
- Dreiecksungleichungen: $||z_1| |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$. Für $z_1 = a_1 + b_1 i$ und $z_2 = a_2 + b_2 i$ gilt:
- Addition: $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$,
- Subtraktion: $z_1 z_2 = (a_1 a_2) + (b_1 b_2)i$,
- Multiplikation: $z_1 \cdot z_2 = (a_1 a_2 b_1 b_2) + (a_1 b_2 + a_2 b_1)i$,
- Division: $\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \left(\frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2}\right) + \left(\frac{b_1a_2 a_1b_2}{a_2^2 + b_2^2}\right)i.$

Jede komplexe Zahl z = a + bi mit $z \neq 0$ lässt sich eindeutig in die Polarform $z = re^{\varphi i}$ bringen. Es gilt:

- $a = r \cos(\varphi)$.
- $b = r \sin(\varphi)$,
- $r = \sqrt{a^2 + b^2}$ und
- $\int \arccos(a/r)$ falls b > 0 $-\arccos(a/r)$ sonst

Beschränktheit. $(z_n) = (a_n + ib_n)$ ist beschränkt, falls $\exists C >$ 0: $\forall n \in \mathbb{N}$: $|z_n| < C$ bzw. falls a_n und b_n beschränkt sind.

Grenzwert. Die Definition der Eigenschaften konvergent und di**vergent** sind in \mathbb{C} identisch wie in \mathbb{R} (s. Kapitel 2).

Eigenschaften. Die Eigenschaften konvergent, divergent und beschränkt haben dieselben Beziehungen wie bei reellen Folgen (s. Bild). Die restlichen Eigenschaften können für Folgen in C oder \mathbb{R}^n nicht definiert werden.

4. Reihen

Konvergenzkriterien. Sei (an) eine komplexe (oder reelle) Zah-

- Nullfolgenkriterium. Es gilt: a_n konvergiert nicht gegen Null $\implies \sum_{k=1}^{\infty} a_k$ divergiert.
- Majoranten- und Minorantenkriterium. Sei (b_n) eine reelle
- Zahlenfolge mit $|a_n| \leq b_n$ für fast alle $n \in \mathbb{N}$. Dann gilt:
- 1. $\sum_{k=1}^{\infty} b_k$ konvergiert $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergiert absolut, 2. $\sum_{k=1}^{\infty} a_k$ divergiert $\Longrightarrow \sum_{k=1}^{\infty} b_k$ divergiert.
- Quotientenkriterium. Falls $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existiert und $a_n \neq 0$ für fast alle $n \in \mathbb{N}$, dann gilt:
- $1. \ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \implies \sum_{k=1}^{\infty} a_k \ \text{konvergiert absolut,}$
- 2. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \implies \sum_{k=1}^{\infty} a_k$ divergiert.
- Wurzelkriterium. Es gilt:
 - 1. $\limsup \sqrt[n]{|a_n|} < 1 \implies \sum_{k=1}^{\infty} a_k$ konvergiert absolut,
- 2. $\limsup \sqrt[n]{|a_n|} > 1 \implies \sum_{k=1}^{\infty} a_k$ divergiert.
- Leibniz-Kriterium. Falls (a_n) reell und monoton fallend, dann gilt: $\lim_{n\to\infty} a_n = 0 \implies \sum_{k=1}^{\infty} (-1)^k a_k$ konvergiert.

Folgende Reihen konvergieren und können als Majoranten benutzt werden:

- $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$ (für |z| < 1)
- Teleskopreihe: $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1$
- $\sum_{k=1}^{\infty} \frac{1}{k^s}$ (konvergiert für $s \in \mathbb{Q}, s \ge 2$)
- Exponentialreihe: $\sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z$ (für alle $z \in \mathbb{C}$)
- Logarithmusreihe: $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$ (für $x \in$

Folgende Reihen divergieren und können als Minoranten benutzt werden:

- $\sum_{k=0}^{\infty} z^k$ (divergiert für $|z| \ge 1$)
- Harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$

Potenzreihe. $P(z):=\sum_{k=0}^{\infty}c_kz^k; c_k\in\mathbb{C}; z\in\mathbb{C}$. Für den Konvergenzradius $R:=\frac{1}{\limsup \sqrt[K]{|c_k|}}$ gilt:

- $|z| < R \implies P(z)$ konvergiert, • $|z| > R \implies P(z)$ divergient.
- Cauchy-Produkt.

- 1. Für absolut konvergente, komplexe Reihen $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ gilt $\left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{m=0}^{\infty} c_m$ mit $c_m =$
- $\sum_{k=0}^{m} a_k b_{m-k}.$ 2. Für Potenzreihen $\sum_{k=0}^{\infty} a_k z^k \text{ und } \sum_{k=0}^{\infty} b_k z^k \text{ mit Konvergenzradien } R_a \text{ und } R_b \text{ ist } (\sum_{k=0}^{\infty} a_k z^k) (\sum_{k=0}^{\infty} b_k z^k) = \sum_{m=0}^{\infty} c_m z^m \text{ mit } c_m = \sum_{k=0}^{m} a_k b_{m-k} \text{ eine Potenzreihe mit Konvergenzradius min } \{R_a, R_b\}.$

Exponential function. Es gilt $\exp(x) = e^x$ und für $\forall z, w \in \mathbb{C}, x \in \mathbb{C}$ \mathbb{R} . $n \in \mathbb{N}$:

- $\begin{array}{ll} \bullet & \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!} \\ \bullet & \exp(z+w) = \exp(z) \cdot \exp(w), \\ \bullet & \exp(-z) = \frac{1}{\exp(z)}, \exp(z) \neq 0 \land \exp(\overline{z}) = \exp(z), \end{array}$
- $\bullet \left| \exp(z) \sum_{k=0}^{n} \frac{z^k}{k!} \right| \le 2 \cdot \frac{|z|^{n+1}}{(n+1)!}$
- $\bullet \quad \lim (1 + \frac{z}{n})^n = \exp(z),$
- $\lim_{x \to \infty} \frac{e^x 1}{x} = 1$, $\lim_{x \to \infty} x^n e^x = 0$, $\lim_{x \to \infty} \frac{e^x}{x^{-n}} = \infty$,
- $e^{i\frac{\pi}{2}} = i$, $e^{i\pi} = -1$, $e^{z+2\pi i} = e^z$.
- $e^{ix} = \cos(x) + i\sin(x), |e^{ix}| = 1.$

Trigonometrische Funktionen.

- $\sin(x) := \frac{e^{ix} e^{-ix}}{2i} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$
- $\cos(x) := \frac{e^{ix} + e^{-ix}}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$ $\tan(x) := \frac{\sin(x)}{\cos(x)}$,
- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$,
- $\sin(2z) = 2\sin(z)c\cos(z)$,
- cos(z + w) = cos(z) cos(w) sin(z) sin(w),

- $cos(x) = Re(e^{ix}), sin(x) = Im(e^{ix}),$
- $\cos(2z) = \cos^2(z) \sin^2(z)$,
- $\sin^2(z) + \cos^2(z) = 1$.

Umkehrfunktionen trigonometrischer Funktionen.

- $\arcsin(x) = \sum_{k=0}^{\infty} {2k \choose k} \frac{x^{2k+1}}{4^k (2k+1)}$
- $arccos(x) = \frac{\pi}{2} arcsin(x)$,
- $\arctan(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}$

Hyperbelfunktionen.

- $sinh(x) := \frac{e^x e^{-x}}{2} = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2n+1)!}$
- $cosh(x) := \frac{e^x + e^{-x}}{2} = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2n)!}$
- $tanh(x) := \frac{sinh(x)}{cosh(x)}$
- $\cosh^2(x) = \frac{1}{2} \cosh(x) + \frac{1}{2}$,
- $\cosh^2(z) \sinh^2(z) = 1$.

Werte von Sinus und Kosinus

5. Stetiakeit

Defintion. $f: D \to \mathbb{R}$ stetig in $c \Leftrightarrow \forall (x_n)$ mit $\lim_{n \to \infty} x_n =$ c gilt $\lim f(x_n) = f(c)$

Rechergeln. $D \subseteq \mathbb{R}$; $f, g: D \to \mathbb{R}$; f, g stetig in $c \Rightarrow f + g, f$ $g, \frac{f}{g} \ (g \neq 0)$ stetig in c

Komposition. $D, D' \subseteq \mathbb{R}, f : D \to \mathbb{R}$ stetig in c

• $v := f(c) \in D' \land a$ stetia in $v \Rightarrow (a \circ f) : D \to \mathbb{R}$ stetia in c • f, g stetig $\land f(D) \subseteq D' \Rightarrow (g \circ f) : D \to \mathbb{R}$ stetig

 ε - δ -Charakterisierung. $D \subseteq \mathbb{R}$, $f : D \to \mathbb{R}$, $c \in D \Rightarrow f$ stetig in $c \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : \forall x \in D : |x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$ **Zwischenwertsatz.** $f:[a,b] \rightarrow \mathbb{R}$ stetig $\Rightarrow \forall y \in \mathbb{R}$ mit $\min\{f(a), f(b)\} \le y \le \max\{f(a), f(b)\} : \exists x \in [a, b] : f(x) = y$ Satz von Maximum und Minimum. Für $f:[a,b] \to \mathbb{R}$ stetig gilt: f ist beschränkt und f nimmt in [a, b] Maximum und Minimum an, d.h. $\exists x_{\text{max}}, x_{\text{min}} \in [a, b] : f(x_{\text{max}}) = \sup\{f(x) : x \in a\}$ [a, b] $\land f(x_{\min}) = \inf\{f(x) : x \in [a, b]\}.$

Stetigkeit in \mathbb{C} und \mathbb{R}^n , wörtlich übertragbar. $D \subseteq \mathbb{C}$ bzw. \mathbb{R}^n abgeschlossen: $\forall f$ stetig: $D \to \mathbb{C}$ bzw. $f: D \to \mathbb{R}^m$ beschränkt und nimmt auf D Maximum und Minimum an Stetigkeit von Potenzreihen. $f(z) = \sum_{k=0}^{\infty} c_k z^k \Rightarrow f: \{z: |z| < 0\}$

6. Differentiation

R} $\rightarrow \mathbb{C}$ stetig

Definition Ableitung. Für $f:(a,b)\to\mathbb{R}$ und $c\in(a,b)$ gilt: $f'(c) := \lim \frac{f(x) - f(c)}{c}$

Spezielle Ableitungen.

 $|f(x)||c \quad x^c \quad e^x \ln(x) \sin(x) \cos(x) \tan(x)$ $|f'(x)| = 0 cx^{c-1} e^x \frac{1}{x} \cos(x) - \sin(x) \frac{1}{\cos(x)^2}$

 $\arcsin(x) \arccos(x) \arctan(x) \arcsin(x) \arcsin(x) \arctan(x)$ $1+x^{2}$

Alternative Darstellung: $tan'(x) = 1 + tan(x)^2$

Ableitungsregeln.

- Summerregel: (f(x) + g(x))' = f'(x) + g'(x).
- Faktorregel: $(c \cdot f(x))' = c \cdot f'(x)$.
- Produktregel: $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.
- Quotientenregel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g(x)^2}$
- Kettenregel: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$.

Injektivität, Surjektivität und Bijektivität. Sei $f: A \rightarrow B$ eine Spezielle Stammfunktionen. beliebige Funktion. Dann gilt:

- f injektiv \iff Für jedes $y \in B$ gibt es höchstens ein $x \in A$
- mit f(x) = v. • f surjektiv \iff Für jedes $y \in B$ gibt es mindestens ein $x \in A \text{ mit } f(x) = y.$
- f bijektiv \iff f injektiv und surjektiv \iff Für jedes $y \in B$ gibt es genau ein $x \in A$ mit $f(x) = y \iff$ Es existiert eine Umkehrfunktion f^{-1} von f.

Für A Intervall und f stetig gilt:

- f injektiv \iff f streng monoton wachsend oder streng monoton wachsend
- f bijektiv $\implies f^{-1}$ auch stetig.

Für f differenzierbar und A offenes Intervall gilt:

- f'(x) > 0 für alle $x \in A \iff f$ monoton wachsend.
- f'(x) > 0 für alle $x \in A \implies f$ strengmonoton wachsend.
- f'(x) < 0 für alle $x \in A \iff f$ monoton fallend.
- f'(x) < 0 für alle $x \in A \implies f$ streng monoton fallend.

falls f stetig ist, dann kann man oft die Surjektivität mit dem Zwischenwertsatz beweisen.

Ableitung von Umkehrfunktionen. Falls f bijektiv und differenzierbar, dann gilt: $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

7. Anwendungen der Differentialrechnung

Extrempunkte. Für $f:(a,b)\to\mathbb{R}$ zweimal stetig differenzierbar und $x \in (a, b)$ gilt:

- f'(x) = 0 und $f''(x) > 0 \implies x$ ist lokales Minimum.
- x ist lokales Minimum $\implies f'(x) = 0$ und f''(x) > 0, • f'(x) = 0 und $f''(x) < 0 \implies x$ ist lokales Maximum,
- x ist lokales Maximum $\implies f'(x) = 0$ und f''(x) < 0.

Satz von Rolle. $f: [a, b] \to \mathbb{R}$ differenzierbar mit f(a) = f(b) $\implies \exists \xi \in (a, b) : f'(\xi) = 0.$

Mittelwertsatz der Differentialrechnung. $f:[a,b] \to \mathbb{R}$ differen-

zierbar $\implies \exists \xi \in (a,b) \colon f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

Landau-Symbole. Für $c \in \mathbb{R} \cup \{-\infty, \infty\}$ gilt:

- f(x) = o(g(x)) für $x \to c \iff \lim_{x \to c} \frac{f(x)}{g(x)} = 0$,
- $f(x) = \mathcal{O}(g(x))$ für $x \to c \iff$ es gibt ein K > 0, so dass für jede Folge $(x_n) \to c$ und fast alle $n \in \mathbb{N}$ gilt: $|f(x_n)| \leq K \cdot |g(x_n)|$.

Vielleicht hilfreich (aus Wikipedia): $\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty \implies f(x) =$ $\mathcal{O}(a(x))$ für $x \to c$.

Satz von l'Hospital. Seien $c \in \mathbb{R} \cup \{-\infty, \infty\}$ und $f, g: (a, b) \to \mathbb{R}$ stetig differenzierbar mit $g'(x) \neq 0 \ (\forall x \in (a, b))$ und entweder $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ oder } \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \infty. \text{ Falls}$ $\lim_{x\to c} \frac{f'(x)}{g'(x)} \text{ existiert, dann gilt: } \lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$

8. Integration

Wichtige Beziehungen. Für $f: [a, b] \to \mathbb{R}$ gilt:

f diff'bar $\implies f$ stetig $\implies f$ beschränkt $\implies f$ integrierbar

Eigenschaften integrierbarer Funktionen. Für $f, g: [a, b] \rightarrow \mathbb{R}$ integrierbar und $c \in \mathbb{R}$ gilt:

- 1. Linearität: $\int_a^b c \cdot f(x) dx = c \cdot \int_a^b f(x) dx$,
- 2. Additivität: $\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$, 3. Monotonie: $f(x) \leq g(x)$ für alle $x \in [a, b] \Longrightarrow$
- $\int_a^b f(x) dx < \int_a^b g(x) dx$
- 4. Zerlegbarkeit: $c \in (a, b) \implies \int_a^b f(x) dx = \int_a^c f(x) dx +$

Mittelwertsatz der Integralrechnung. $f:[a,b] \to \mathbb{R}$ stetig \Longrightarrow $\exists \xi \in [a,b] \colon \int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a).$

Stammfunktion $F: [a, b] \rightarrow \mathbb{R}$ heißt **Stammfunktion** von $f: [a, b] \to \mathbb{R}$, falls F' = f.

Hauptsatz der Differential- und Integralrechnung

- 1. $F(x) = \int_{a}^{x} f(t) dt$ ist eine Stammfunktion von f.
- 2. Für jede Stammfunktion F von f gilt: $\int_a^b f(x) dx =$ $[F(x)]_{x=a}^b$

f(x) c	xc	$\frac{1}{x}$	e ^x	ln(x)	sin(x)	cos(x)
F(x) cx	$\frac{x^{c+1}}{c+1}$	$\ln x $	e^{x}	$x \ln(x) - x$	$-\cos(x)$	sin(x)

Hier ist F(x) nur eine mögliche Stammfunktion von f(x)! Integrationsregeln.

- Partielle Integration: $\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) \int f'(x) dx$
- Substitutionssregel. $\int f(g(x)) \cdot g'(x) dx = \left[\int f(y) dy \right]_{y=g(x)}$ Rezept: 1. Ersetze überall g(x) durch y. 2. Schreibe $\int \cdots dx$ in $\int \frac{dy}{dx} dy$ um und kürze alle übrigen x weg.

Typische Stammfunktionen

- $\int f(x) \cdot f'(x) dx = \left[\int y dy \right]_{y=f(x)} = \left[\frac{1}{2} y^2 \right]_{y=f(x)} = \frac{1}{2} f(x)^2$,
- $\int \frac{f'(x)}{f(x)} dx = \left[\int \frac{1}{y} dy \right]_{y=f(x)} = \left[\ln |y| \right]_{y=f(x)} = \ln |f(x)|.$
- Für Stammfunktionen der Form $\int \frac{c}{(x-b)^2} dx$ gilt: $\int \frac{c}{(x-b)^a} dx = \begin{cases} c \ln|x-b| & \text{falls } a = 1\\ \frac{c(x-b)^{1-a}}{1-a} & \text{falls } a \neq 1. \end{cases}$

9. Mehr zu Integralen

Uneigentliche Integrierbarkeit. Seien $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ mit a < b. Die Funktion $f: I \to \mathbb{R}$ heißt uneigentlich integrierbar,

- I = [a, b) und $\int_a^b f(x) dx := \lim_{x \to a} \int_a^y f(x) dx$ existiert,
- I = (a, b] und $\int_a^b f(x) dx := \lim_{y \to a} \int_y^b f(x) dx$ existiert oder
- I = (a, b) und ein $c \in (a, b)$ existiert, so dass f in (a, c]und [c, b) uneigentlich integrierbar ist. Dann setzt man: $\int_a^b f(x) \, \mathrm{d}x := \lim_{v \downarrow a} \int_y^c f(x) \, \mathrm{d}x + \lim_{v \uparrow b} \int_c^y f(x) \, \mathrm{d}x \text{ existiert,}$

Taylorpolynom und -reihe. Für $n \in \mathbb{N}$ ist $T_n f(x; c) :=$ $\sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ das n-te Taylorpolynom von f in c und $T_\infty f(x;c)$ entsprechend die Taylorreihe von f in c. Eigenschaften von Taylorpolynomen

- $f(x) = \sum_{k=1}^{\infty} c_k z^k \implies T_n f(x; 0) = \sum_{k=1}^n c_k z^k$
- $T_n(f \cdot g) = T_n f \cdot T_n g$.

Satz von Taylor. $f(x) - T_n f(x; c) = R_{n+1}(x)$ mit $R_{n+1}(x) =$ $\frac{1}{n!} \int_{c}^{x} (x-t)^{n} f^{(n+1)}(t) \, \mathrm{d}t = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1} \text{ für ein } \xi \in [c,x].$ Inspesondere: $R_{n+1}(x) = \mathcal{O}((x-c)^{n+1})$ für $x \to c$.

10. Kurven

Kurven. Für $n \in \mathbb{N}$ und ein Intervall $I \subseteq \mathbb{R}$ ist iede stetige Abbildung $\gamma: I \to \mathbb{R}$ eine parametrisierte Kurve. Das Bild $\{\gamma(t) \mid t \in I\}$ heißt Spur von γ . Für $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ nennt man γ_i die *i*-te Komponentenfunktion von γ .

Man kann $\gamma(t)$ auch als Spaltenvektor darstellen! **differenzierbare Kurven.** Sei $I \subseteq \mathbb{R}$ ein Intervall und $\gamma: I \to \mathbb{R}^n$ eine Kurven mit stetig differenzierbaren Komponentenfunktionen

- $\gamma'(t) = (\gamma'_1(t), \dots, \gamma'_n(t))$ heißt Tangentialvektor oder Geschwindigkeitsvektor.
- $\|\gamma'(t)\|_2$ ist die Geschwindigkeit zur Zeit t.
- γ heißt regulär an der Stelle t, falls $\gamma'(t)$ nicht der Nullverktor ist. In diesem Fall nennt man $T_{\gamma}(t) = \frac{1}{\|\gamma'(t)\|_2}$ den

Tangentialeinheitsvektor in t.

• Man nennt γ regulär, falls sie in jedem $t \in I$ regulär ist. Sonst ist sie singulär.

Es gilt: $\|(x_1,\ldots,x_n)\|_2 = \sqrt{x_1^2 + \ldots + x_n^2}$. Oft schreibt man einfach ||...|| statt ||...||₂.

Bogenlänge. Die Bogenlänge einer stückweise stetig differenzierbaren Kurve $\gamma: [a, b] \to \mathbb{R}^n$ ist $L(\gamma) = \int_a^b ||\gamma'(t)||_2 dt$. Krümmung. Für eine zweimal stetig differenzierbare Kurve $\gamma(t) = (x(t), y(t))$ ist $\kappa(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{2}$ ihre Krüm-

11. Differential rechnung in \mathbb{R}^n

Gradient und Hesse-Matrix. Seien $n \in \mathbb{N}$ und $M \subseteq \mathbb{R}^n$ offen. Für jede einmal bzw. zweimal stetig differenzierbare Funktion

$$f: M \to \mathbb{R} \text{ heißt } \nabla f(x) \text{ bzw. } \nabla^2 f(x) \text{ mit } \nabla f(x) = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_n f(x) \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} \partial_{11} f(x) & \cdots & \partial_{1n} f(x) \\ \vdots & & \vdots \\ \partial_{n1} f(x) & \cdots & \partial_{nn} f(x) \end{pmatrix} \text{ der Gradient bzw. die }$$

$$\text{Hesse-Matrix von } f \text{ in } x \in M. \text{ Für die partiellen Ableitungen}$$

gilt: $\partial_{ii}f(x) = \partial_i\partial_i f(x) = \partial_i\partial_i f(x)$.

Mehrdimensionale Extrempunkte. Für $n \in \mathbb{N}$, $M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}$ zweimal stetig differenzierbar und $c \in M$ gilt:

- f hat ein lokales Minimum in $c \implies \nabla^2 f(c)$ positiv semide-
- f hat ein lokales Maximum in $c \implies \nabla^2 f(c)$ negativ semi-• $\nabla f(c) = 0$ und $\nabla^2 f(c)$ positiv definit $\implies f$ hat ein isolier-
- tes lokales Minimum in c. • $\nabla f(c) = 0$ und $\nabla^2 f(c)$ negative definit $\implies f$ hat ein iso-
- liertes lokales Maximum in c. • $\nabla f(c) = 0$ und $\nabla^2 f(c)$ indefinit $\implies f$ hat einen Sattel-
- punkt in c.

Falls $\nabla f(c) = 0$, dann heißt c kritischer Punkt.

Definitheit von Matrizen.

Für eine $(n \times n)$ -Matrix A heißt $\chi_A(\lambda) = \det(A - \lambda I_n)$ das charakteristische Polynom von A. Die Nullstellen von χ_A nennt man Eigenwerte von A. Die Matrix $A - \lambda I_n$ ist nichts anderes als A mit " $-\lambda$ " bei iedem Element der Hauptdiagonale. Beispiel: Für $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ gilt: $\chi_A(\lambda) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$

$$(a - \lambda)(d - \lambda) - bc$$
.
Für $A \in \mathbb{R}^{n \times n}$ gilt:

- A positiv semidefinit ←⇒ alle Eigenwerte sind > 0,
- A negativ semidefinit ←⇒ alle Eigenwerte sind < 0,
- A positiv definit ←⇒ alle Eigenwerte sind > 0,
- A negativ definit ←⇒ alle Eigenwerte sind < 0,
- A indefinit ⇐⇒ ∃ negative und positive Eigenwerte.

12. Integralrechnung in \mathbb{R}^n

Zweidimensionale Integrale. Eine Menge der Form N $\{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, g(x) \le y \le h(x)\}$ heißt Normalbe-

Für N gilt: $\iint_N f(x,y)d(x,y) := \int_a^b \left(\int_{q(x)}^{h(x)} f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x.$

Man kann x und y vertauschen, d.h. die Skizze an der Hauptdiagonale spiegeln. Das Ergebnis des Integrals ist das Volumen eines Körpers mit Grundfläche N und Höhe f(x, y).

Satz von Fubini. Für einen rechteckigen Normalbereich $N = [a_1, b_1] \times [a_2, b_2]$ gilt: $\iint_N f(x, y) d(x, y) :=$ $\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x, y) \, \mathrm{d}x \right) \mathrm{d}y.$

Die Reihenfolge der Integrale spielt also keine Rolle. Das lässt sich auf $N = [a_1, b_1] \times ... \times [a_n, b_n]$ verallgemeinern.

13. Differentialgleichungen

Die allgemeine Lösung (AL) hängt von $c \in \mathbb{R}$ (Methoden 1-3) oder $c_1, c_2 \in \mathbb{R}$ (Methoden 4-6) ab und ist somit mehrdeutig.

Die spezielle Lösung (SL) ist eindeutig benötigt $y(t_0) = y_0$ (Methoden 1-3) oder $(y(t_0) = y_0 \text{ und } y'(t_1) = y_1 \text{ (Methoden 4-6)}.$ Für die **SL** muss man bei Methoden 4-6 t_0 und t_1 in **AL** und Ableitung der **AL** einsetzen und c_1 und c_2 bestimmen.

Methode 1 ("Trennung der Variablen").

$$y'(t) = f(t) \cdot g(y(t)).$$

Jede AL erfüllt G(y(t)) = F(t) + c für $c \in \mathbb{R}$, wobei F(t) = $\int f(t) dt$ und $G(t) = \int \frac{1}{g(t)} dt$ beliebige Stammfunktionen von f(t) und $\frac{1}{g(t)}$ sind. Die SL erfüllt $\int_{y_0}^{y(t)} \frac{1}{g(u)} du = \int_{t_0}^t f(s) ds$. **Methode 2.** $y'(t) + a(t) \cdot y(t) = 0$.

- 1. Bestimme eine beliebige Stammfunktion $A(t) = \int a(t) dt$
- 2. AL: $y(t) = ce^{-A(t)}$ für $c \in \mathbb{R}$. SL: $y(t) = y_0 e^{A(t_0) A(t)}$ Methode 3.

$$y'(t) + a(t) \cdot y(t) = f(t).$$

- 1. Bestimme eine beliebige Stammfunktion $A(t) = \int a(t) dt$
- 2. AL: $y(t) = e^{-A(t)} \cdot (c + B(t))$, wobei $B(t) = \int e^{A(t)} \cdot f(t) dt$ eine beliebige Stammfunktion von $e^{A(t)} \cdot f(t)$ ist. SL: y(t) = $e^{A(t_0)-A(t)} \cdot (y_0 + \int_{t_0}^t e^{A(s)-A(t_0)} \cdot f(s) \, ds).$

Methode 4.

Falls $a^2 > 4b$:

$$y''(t) + ay'(t) + by(t) = 0.$$

1. Bestimme $\lambda_1 = -\frac{a}{2} + \sqrt{\left(\frac{a}{2}\right)^2 - b}$ und $\lambda_2 = -\frac{a}{2}$

2. AL: $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ Falls $a^2 = 4b$:

- 1. Bestimme $\lambda_0 = -\frac{a}{2}$
- 2. AL: $y(t) = (c_1 + c_2 t)e^{\lambda_0 t}$ Falls $a^2 < 4b$:
- 1. Bestimme $\alpha = -\frac{a}{2}$ und $\beta = \sqrt{b (\frac{a}{2})^2}$
- 2. AL: $y(t) = (c_1 \cos(\beta t) + c_2 \sin(\beta t))e^{\alpha t}$. Methode 5

$$y''(t) + ay'(t) + by(t) = a_n t^n + \ldots + a_1 t + a_0.$$

1. Bestimme die AL $y_h(t)$ von

$$y_h''(t) + ay_h'(t) + by_h(t) = 0.$$

- 2. Stelle ein Polynom $y_n(t) = b_n t^n + \ldots + b_1 t + b_0$ mit Parametern b_0, b_1, \ldots, b_n auf.
- 3. Setze $y_p(t)$, $y_p'(t)$ und $y_p''(t)$ in $y_p''(t) + ay_p'(t) + by_p(t) = p(t)$ ein und bestimme b_0, b_1, \ldots, b_n .
- 4. AL: $y(t) = y_h(t) + y_p(t)$.

Methode 6.

$$y''(t) + ay'(t) + by(t) = e^{\alpha t}(a_1 \cos(\beta t) + a_2 \sin(\beta t)).$$

- 1. Bestimme die AL $y_h(t)$ von $y_h''(t) + ay_h'(t) + by_h(t) = 0$.
- 2. Stelle $y_p(t) = e^{\alpha t} (b_1 \cos(\beta t) + b_2 \sin(\beta t))$ in Abhängigkeit von b_1 , b_2 auf.
- 3. Setze $y_p(t)$, $y'_p(t)$ und $y''_p(t)$ in $y''_p(t) + ay'_p(t) + by_p(t) =$ $e^{\alpha t}(a_1\cos(\beta t)+a_2\sin(\beta t))$ ein und bestimme b_1 und b_2 .
- 4. AL: $y(t) = y_h(t) + y_p(t)$.

Lineare Systeme von Differentialgleichungen. y'(t) = Ay(t) für eine Matrix A, d.h.

$$y'_{1}(t) = a_{11}y_{1}(t) + \ldots + a_{1n}y_{n}(t)$$

$$\vdots$$

$$y'_{n}(t) = a_{1n}y_{1}(t) + \ldots + a_{nn}y_{n}(t)$$

- Berechne die Eigenwerte $\lambda_1, \ldots, \lambda_k$ von A.
- 2. Berechne die zugehörigen Eigenvektoren v_1, \ldots, v_k . Für alle i = 1, ..., k soll gelten: $(A - \lambda_i I_n) v_i = 0$.
- 3. AL: $y(t) = c_1 e^{\lambda_1 t} v_1 + \ldots + c_k e^{\lambda_k t} v_k$ für $c_1, \ldots, c_k \in \mathbb{R}$. Für die SL Anfangsbedingungen in die AL einsetzen
- © 2017 Carlos Camino & Martin Stroschein