第二十八章

博弈论

博弈论能够帮助我们来对市场中主体的行为 受到其他主体行为的影响的策略行为进行建 模。

- 寡头垄断的研究 (行业中仅包含几个厂商)
- 卡特尔的研究; 例如 OPEC
- 外部性的研究;例如对于公共资源的使用比如捕鱼。
- 对于军事策略的研究。
- 讨价还价。
- ■市场的运行机制。

- 1
- 一个博弈包含:
 - 一些参与者
 - ■每个参与者的策略
 - 每个参与者选择不同决策行为的收益矩阵。

- 一个仅包含两个参与者的博弈称为两人博弈。
- 我们研究的博弈仅包含两个参与者,每个参与 者可以选择两种不同的行为策略。

- 参与者A 和 B。
- A 可以采取两种行为: "上"和"下"。
- B 可以采取两种行为: "左"和"右"。
- 包含了四种可能决策组合支付的表格称为博弈的收益矩阵。

参与者 B

L R

参与者 A **D**

(3,9)	(1,8)
(0,0)	(2,1)

这是博弈的 收益矩阵

左边显示A的收益 右边显示B的收益

参与者 B

L R

参与者 A D (0,0) (1,8)

博弈的一组策略为一对决策组合如(U,R),其中第一个元素为参与者A的策略,第二个元素为参与者B的策略。

参与者 B

L R

参与者A D (3,9) (1,8) (0,0) (2,1)

博弈收益矩阵

例如. 假如A采取上而B采取右的策略,那么A的收益为1,B的收益为8。

参与者 B

L R

参与者 A D (0,0) (1,8)

博弈的收益矩阵

假如A采取下的策略而B采取右的策略,那么A的收益为2,B的收益为1。

参与者 B L R (3,9) (1,8)

(0,0) (2,1)

我们可能看到哪种策略组合结果?

参与者 A

参与者 B

_

参与者 A **D**

(3,9)	(1,8)
(0,0)	(2,1)

(U,R) 是否为一个 有可能的策略组合 结果?

(U,R) 是否为一个 有可能的策略组合 结果?

假如B采取右的策略那么A的最优策略为下,因为它能使得A的收益从1变为2。因此(U,R)不是一个有可能出现的策略组合结果。

参与者 B

_ F

参与者 A D

(3,9)	(1,8)
(0,0)	(2,1)

(U,R) 是否为一个 有可能的策略组合 结果?

参与者 B L R U (3,9) (1,8) 参与者 A D (0,0) (2,1)

(D,R) 是否为一个 有可能的策略组合 结果?

假如B采取右的策略,A的最佳策略为下。

参与者 B

参与者 A

(D,R) 是否为一个 有可能的策略组合 结果?

假如B采取右的策略,A的最佳策略为下。 假如A采取下的策略,B的最佳策略为右。因此(D,R) 是一个可能出现的策略组合结果。

参与者B

_

R

参与者 A D

(D,L) 是否为一个 有可能的策略组合 结果?

参与者 B

参与者 A D

(D,L) 是否为一个 有可能的策略组合 结果?

假如A采取下的策略,B的最佳策略为右。 因此(D,L)不是一个可能出现的策略组合结果。

参与者 B

参与者 A

(U,L) 是否为一个 有可能的策略组合 结果?

参与者 B

(U,L) 是否为一个 有可能的策略组合 结果?

(3,9) (1,8) 参与者 A (0,0) (2,1)

假如A采取上的策略,B的最佳策略为左。

参与者 B

L F

参与者 A **D**

(U,L) 是否为一个 有可能的策略组合 结果?

假如A采取上的策略,B的最佳策略为左。 假如B采取左的策略,A的最佳策略为上。 因此(U,L)为一个可能出现的策略组合结果。

博弈论中的策略组合中,每个参与者的决策都 是对其它参与者决策的最佳反应决策时所达到 的均衡称为

纳什均衡。

■ 我们的例子中有两个纳什均衡 (U,L) 和(D,R)。

两人博弈的例子

参与者 B L R

U (3,9) (1,8) 参与者 A D (0,0) (2,1)

(U,L)和(D,R)为此博弈的纳什均衡。

两人博弈的例子

参与者 B

L R

参与者 A D (3,9) (1,8) (0,0) (2,1)

(U,L) 和 (D,R) 为此博弈的纳什均衡。但是我们发现:对两个参与者来说,(U,L) 比 (D,R) 更受偏好。我们是否一定仅会看到 (U,L)的博弈均衡结果?

■ 为了了解帕累托偏好结果是否一定就是一个博弈的结果。考虑一个很有名的囚徒困境博弈问题。

克莱德 S C S (-5,-5) (-30,-1) 邦妮 C (-1,-30) (-10,-10)

这个博弈的可能结果是什么样子?

囚徒困境

假如邦妮选择沉默, 克莱德的最佳策略为供认。

假如邦妮选择沉默, 克莱德的最佳策略为供认。 假如邦妮选择供认,克莱德的最优策略为供认。

囚徒困境

		克莱德	
		S	C
邦妮	S	(-5,-5)	(-30,-1)
	С	(-1,-30)	(-10,-10)

因此不论邦妮选择什么策略,克莱德的最优策略总是供认。供认对于克莱德来说是一个占优策略

同样地,不论克莱德选择什么策略,邦妮的最佳 策略为供认。供认对于邦妮来说也是占优策略。

唯一的纳什均衡为 (C,C),尽管 (S,S) 能使得邦妮 和克莱德的处罚更轻。这个唯一的纳什均衡是无 效率的。

- 在上面来两个例子中,参与者同时做出他们的 决策。
- 这样的博弈称为同步博弈。

决策时机

- 在上面来两个例子中,参与者同时做出他们的 决策。
- 这样的博弈称为同步博弈。
- 首先行动的参与者称为领导者,后行动的参与者称为追随者。

- 有时一个博弈可能含有几个纳什均衡,很难确定哪一种均衡结果更有可能发生。
- 当一个博弈为一个序贯博弈时,那么就有可能 其中的一个纳什均衡比其它均衡更有可能发生。

序贯博弈的例子

参与者 B L R (3,9) (1,8) 参与者 A D (0,0) (2,1)

(U,L) 和 (D,R) 都为同时决策时的纳什均衡,我们无法判断哪种均衡更有可能发生。

序贯博弈的例子

参与者 B L R (3,9) (1,8) 参与者 A D (0,0) (2,1)

假设这个博弈为序贯博弈,A为领导者而B为追随者。我们可以把这个博弈的拓展形式写出来。

这两个均衡哪个更有可能发生?

假如A先选择决策U,B后选择策略L;A所得收益为3。

假如A先选择决策U,B后选择策略L;A所得收益为3。假如A先选择策略D,B后选择策略R;A所得收益为2。

假如A先选择决策U,B后选择策略L;A所得收益为3。假如A先选择策略D,B后选择策略R;A所得收益为2。

参与者 B L R (3,9) (1,8) 参与者 A D (0,0) (2,1)

在考虑我们之前的例子。假设博弈是同步的,我们发现这个博弈有两个纳什均衡; (U,L)和 (D,R)。

参与者 B L R (3,9) (1,8) 参与者 A D (0,0) (2,1)

参与者A 已经被考虑了上或者下的决策,但没有把这两种策略联合起来考虑。*例如,*仅做出单纯的上或下决策。上和下为参与者A的**纯策略**。

类似地,左和右为参与者B的纯策略。

参与者 B L R (3,9) (1,8) 参与者 A D (0,0) (2,1)

因此,(U,L)和(D,R) 为**纯策略纳什均衡**。是否每一个 博弈都至少有一个纯策略纳什均衡?

参与者 B L R U (1,2) (0,4) 参与者 A D (0,5) (3,2)

这是一个新的博弈。是否存在纯策略的纳什均衡?

参与者 B L R U (1,2) (0,4) 参与者 A D (0,5) (3,2)

(U,L)是否为一个纳什均衡?

参与者 B

参与者 A D

(1,2)	(0,4)
(0,5)	(3,2)

(U,L)是否为一个纳什均衡?不是。

(U,R) 是否为一个纳什均衡?

参与者 B

.

R

参与者 A D

(1,2)	(0,4)
(0,5)	(3,2)

(U,L)是否为一个纳什均衡?不是。

(U,R)是否为一个纳什均衡?不是。

(D,L)是否为一个纳什均衡?

参与者 B

LF

参与者A

D

(1,2)	(0,4)
(0,5)	(3,2)

(U,L)是否为一个纳什均衡?不是。

(U,R)是否为一个纳什均衡?不是。

(D,L)是否为一个纳什均衡?不是。

(D,R) 是否为一个纳什均衡?

参与者 B

L

多与者 A D

(1,2)	(0,4)
(0,5)	(3,2)

(U,L)是否为一个纳什均衡?不是。

(U,R)是否为一个纳什均衡?不是。

(D,L)是否为一个纳什均衡?不是。

(D,R) 是否为一个纳什均衡? 不是。

参与者 B (1,2)(0,4)参与者 A (3,2)(0,5)

因此但采取纯策略时,该博弈没有纳什均衡。但是这个 博弈在采取混合策略时有一个纳什均衡。

- 参与者A选择一个概率分布(π_U,1-π_U),表示参与者A 有π_U的概率选择策略上,有1-π_U的概率选择策略下; 而不是单纯的选择上或者下的策略。
- 参与者A混合了上和下的纯策略。
- 概率分布(pU,1-pU)为参与者A的混合策略。

- 类似地,参与者B选择概率分布 $(π_L,1-π_L)$,表示有 $π_L$ 的概率他会选择左,有 $1-π_L$ 的概率他会选择右。
- ■参与者B混合了左和右的纯策略。
- 概率分布(pL,1-pL)为参与者B的混合策略。

参与者 B L R U (1,2) (0,4) 参与者 A D (0,5) (3,2)

这个博弈没有纯策略纳什均衡,当有混合策略纳什均衡。混合纳什均衡结果是如何计算的?

参与者 B

L, π_L R, $1-\pi_I$

 $\mathbf{U}, \pi_{\mathsf{U}}$ 参与者 A **D**, $1-\pi_U$

(0,4)

(0,5)(3,2)

参与者 B

L, π_L R, $1-\pi_I$

 $\mathbf{U}, \pi_{\mathbf{U}}$ 参与者 A **D**, $1-\pi_{U}$

(1,2)	(0,4)
(0,5)	(3,2)

A选择上策略时的预期收益为多少?

参与者 B

L, π_{L} R, $1-\pi_{L}$

U, π_U 参与者 A **D**, 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

A选择上策略的预期收益为π_L。 A选择下策略的预期收益为多少?

参与者 B

L, π_L R, 1- π_L

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

A选择上策略的预期收益为 $π_L$ 。 A选择下策略的预期收益为 $3(1 - π_L)$ 。

参与者 B

L, π_L R, 1- π_L

U, π_U 参与者 A D, 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

A选择上策略的预期收益为πL。

A选择下策略的预期收益为3(1 - $π_L$)。

假如 $\pi_L > 3(1 - \pi_L)$ 那么A仅选择上的策略,但是当A采用上的纯策略时没有纳什均衡。

参与者 B

L, π_L R, 1- π_L

U, π_U 参与者 A D, 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

A选择上策略的预期收益为 π_L 。

A选择下策略的预期收益为3(1 - $π_L$)。

假如 $\pi_L < 3(1 - \pi_L)$ 那么A仅选择下策略,但是当A采用下的纯策略时没有纳什均衡。

参与者 B

L, π_L R, 1- π_L

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

存在纳什均衡的必要必要条件为 $\pi_L = 3(1 - \pi_L) \Rightarrow \pi_L = 34$; B采用左和右的混合策略时必须要使A对采取上和下的策略所得收益无差异。

参与者B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

存在纳什均衡的必要必要条件为 $\pi_L = 3(1 - \pi_L) \Rightarrow \pi_L = 34$; B采用左和右的混合策略时必须要使A对采取上和下的策略所得收益无差异。

参与者 B

L, 3/4 **R**, 1/4

U, π_U 参与者 A D, 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

参与者 B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D**, 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

B选择左的策略时的预期收益为多少?

参与者B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

B选择左的策略的预期收益为 $2π_U$ + $5(1 - π_U)$ 。 B选择右的策略的预期收益为多少?

参与者 B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3, <mark>2</mark>)

B选择左的策略的预期收益为 $2\pi_U$ + 5(1 - π_U)。

B选择右的策略的预期收益为 $4π_U$ + $2(1 - π_U)$ 。

参与者B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

B选择左的策略的预期收益为 $2\pi_U + 5(1 - \pi_U)$ 。 B选择右的策略的预期收益为 $4\pi_U + 2(1 - \pi_U)$ 。 假如 $2\pi_U + 5(1 - \pi_U) > 4\pi_U + 2(1 - \pi_U)$ 那么B仅选择左的策略,但是当B仅采用左的策略时不存在纳什均衡。

参与者 B

L, 3/4 **R**, 1/4

U, π_U 参与者 A **D,** 1-π_U

(1,2)	(0,4)
(0,5)	(3,2)

B选择左的策略的预期收益为 $2\pi_U + 5(1 - \pi_U)$ 。 B选择右的策略的预期收益为 $4\pi_U + 2(1 - \pi_U)$ 。 假如 $2\pi_U + 5(1 - \pi_U) < 4\pi_U + 2(1 - \pi_U)$ 那么B仅采取右的策略,但是当B仅采取右的策略时不存在纳什均衡。

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A D, 2/5

(1,2)	(0,4)
(0,5)	(3,2)

存在纳什均衡的必要条件为:

 $2\pi_U + 5(1 - \pi_U) = 4\pi_U + 2(1 - \pi_U) \Rightarrow \pi_U = 3/5;$ A使用上和下的混合策略必须要使得B采取左和右的策略 时所得收益无差异。

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2)	(0,4)
(0,5)	(3,2)

A的混合策略为 (3/5, 2/5)而B的混合策略为(3/4, 1/4)时,此博弈存在唯一的纳什均衡。

4

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2) 9/20	(0,4)
(0,5)	(3,2)

出现收益(1,2)的概率为: $3/5 \times 3/4 = 9/20$ 。

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2) 9/20	(0,4) 3/20
(0,5)	(3,2)

出现收益 (0,4) 的概率为:

$$3/5 \times 1/4 = 3/20_{\circ}$$

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2)	(0,4)
9/20	3/20
(0,5)	(3,2)
6/20	(0,2)

出现收益(0,5)的概率为: $2/5 \times 3/4 = 6/20$ 。

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A D, 2/5

(1,2) 9/20	(0,4) 3/20
(0,5)	(3,2)
6/20	2/20

出现收益 (3,2) 的概率为:

$$2/5 \times 1/4 = 2/20_{\circ}$$

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2) 9/20	(0,4) 3/20
(0,5)	(3,2)
6/20	2/20

A的纳什均衡预期收益为:

$$1 \times 9/20 + 3 \times 2/20 = 3/4_{\circ}$$

参与者 B

L, 3/4 **R**, 1/4

U, 3/5 参与者 A **D,** 2/5

(1,2)	(0,4)
9/20	3/20
(0,5)	(3,2)
6/20	2/20

A的纳什均衡预期收益为:

$$1 \times 9/20 + 3 \times 2/20 = 3/4$$

B的纳什均衡预期收益为:

$$2 \times 9/20 + 4 \times 3/20 + 5 \times 6/20 + 2 \times 2/20 = 16/5$$

- 4
- 一个有着有限个参与者,每个参与者都有有限 个纯策略的博弈至少存在一个纳什均衡。
- 假如没有纯策略纳什均衡,那么该博弈至少存在一个混合策略纳什均衡。

- 重复博弈是指一定时期内重复进行的博弈。
- 参与者对某一策略是否敏感很大程度上取决于 该博弈是否
 - ■重复有限次
 - 重复无限次

假设这个博弈在三个时期t = 1, 2, 3每期内仅会 进行一次。哪些结果是有可能的?

		克莱德	
		S C	
≠7 <i>十</i> 尺	S	(-5,-5)	(-30,-1)
邦妮	С	(-1,-30)	(-10,-10)

假设第3期博弈已经开始,(该博弈已经进行了两次)。 克莱德应该怎么做? 邦妮又该怎么做?

		克莱德	
		S C	
≠7 <i>廿</i> 尺	S	(-5,-5)	(-30,-1)
邦妮	С	(-1,-30)	(-10,-10)

假设第3期博弈已经开始, (该博弈已经进行了两次)。 克莱德应该怎么做? 邦妮又该怎么做? 两个都应该供 认。

		克莱德	
		S C	
≠7 <i>十</i> 尺	S	(-5,-5)	(-30,-1)
邦妮	С	(-1,-30)	(-10,-10)

现在假设第二期博弈已经开始。克莱德和邦妮都预期下次对方会供认。克莱德和邦妮会怎么做?

		克莱德	
		S C	
邦妮 C	(-5,-5)	(-30,-1)	
	С	(-1,-30)	(-10,-10)

现在假设第二期博弈已经开始。克莱德和邦妮都预期下次对方会供认。克莱德和邦妮会怎么做?两个人都应该选择供认。

		克莱德	
		S C	
≠ ₹₹₩	S	(-5,-5)	(-30,-1)
邦妮	С	(-1,-30)	(-10,-10)

在博弈开始的第1期。克莱德和邦妮都预期对方会在下期供认。克莱德和邦妮会怎么做?

		克莱德	
		S C	
≠7 <i>廿</i> 尺	S	(-5,-5)	(-30,-1)
邦妮	С	(-1,-30)	(-10,-10)

在博弈开始的第1期。克莱德和邦妮都预期对方会在下期供认。克莱德和邦妮会怎么做? 两个人都应该选择供认。

		克莱德	
		S	C
邦妮	S	(-5,-5)	(-30,-1)
	С	(-1,-30)	(-10,-10)

该博弈唯一可信的(子博弈完美)纳什均衡是每期克莱德和邦妮都选择供认。

		克莱德	
		S	С
邦妮	S	(-5,-5)	(-30,-1)
	С	(-1,-30)	(-10,-10)

该博弈唯一可信的(子博弈完美)纳什均衡是每期克莱德和邦妮都选择供认。如果该博弈进行的次数很大但仍是有限次,结果与三次博弈一样。

		克莱德	
		S	C
邦妮	S	(-5,-5)	(-30,-1)
	С	(-1,-30)	(-10,-10)

然而,当博弈为无限博弈时,那么该博弈存在大量可信的纳什均衡。

		克莱德	
		S	С
邦妮	S	(-5,-5)	(-30,-1)
	С	(-1,-30)	(-10,-10)

(C,C) 永远是一个这样的纳什均衡。但是(S,S)也有可能是一个纳什均衡,因为参与者如果不合作会受到另一参与者的惩罚。(选择供认)。