R_HW1_엄상준

우리는 gavote 라는 데이터를 가지고 Linear Regression Modeling을 하여 분석할 것이다.

1. Data 불러오기

우리는 "faraway" package 안에 있는 gavote 데이터를 이용할 것이다.

data 명령어는 R 에 특정 dataset 을 불러와주는 역할을 한다.

그리고 library 를 통해 faraway package 를 불러올 수 있으며 데이터나 명령어 등에 대해서 궁금한 점들이 있다면, help, help,search 등의 명령어를 통해서 데이터나 명령어 등에 대한 설명을 찾을 수 있다.

```
data(gavote, package='faraway')
library(faraway)
help(gavote)
help(quantile)
help.search('quantiles')
```

2. 데이터 살펴보기

2-1. Overview

이제 데이터를 한 번 살펴보자.

gavote

> gavote								
	equip ecor	n perAA rural	atlanta	gore	bush	other	votes	ballots
APPLING	LEVER poor	0.182 rural	notAtlanta	2093	3940	66	6099	6617
ATKINSON	LEVER poor	0.230 rural	notAtlanta	821	1228	22	2071	2149
BACON	LEVER poor	0.131 rural	notAtlanta	956	2010	29	2995	3347
BAKER	OS-CC poor	0.476 rural	notAtlanta	893	615	11	1519	1607
BALDWIN	LEVER middle	0.359 rural	notAtlanta	5893	6041	192	12126	12785
BANKS	LEVER middle	0.024 rural	notAtlanta	1220	3202	111	4533	4773
BARROW	OS-CC middle	0.079 urbar	notAtlanta	3657	7925	520	12102	12522
BARTOW	OS-PC middle	0.079 urbar	n Atlanta	7508	14720	552	22780	23735

Help 를 통해 살펴본 데이터의 설명으로는 이 데이터는 미국 조지아 주의 대통령 선거에 관한 데이터이다. 각각의 데이터는 미국 조지아의 County 를 의미하며 총 10 개의 variable 로 되어 있다.

equip: 투표 시 사용된 장비의 종류

econ: county 의 경제적 지위

perAA: county 내의 African American 의 비율

```
rural: 시골인지 도시인지 여부
atlanta: county 가 atlanta 에 속해 있는지 아닌지
gore: Gore 에 대한 득표수
bush: Bush 에 대한 득표수
other: 다른 candidate 에 대한 득표수
votes: 총 투표 수
ballots: 총 ballots 수
여기서 ballot 과 vote 의 차이점은 ballot 은 투표권이고 votes 는 투표권을 가지고 투표를 한 경우에 발생한
다. 즉, 투표권이 있더라도 투표를 하지 않는다면, 또는 실패한다면 vote 는 일어나지 않는다.
head(gavote)
           equip
                   econ perAA rural
                                      atlanta gore bush other votes ballots
## APPLING LEVER
                   poor 0.182 rural notAtlanta 2093 3940
                                                           66 6099
                                                                      6617
## ATKINSON LEVER
                   poor 0.230 rural notAtlanta 821 1228
                                                           22 2071
                                                                      2149
## BACON
           LEVER
                   poor 0.131 rural notAtlanta 956 2010
                                                           29 2995
                                                                      3347
           OS-CC
                   poor 0.476 rural notAtlanta 893 615
## BAKER
                                                           11 1519
                                                                      1607
## BALDWIN LEVER middle 0.359 rural notAtlanta 5893 6041
                                                          192 12126
                                                                     12785
           LEVER middle 0.024 rural notAtlanta 1220 3202
## BANKS
                                                         111 4533
                                                                      4773
Head 명령어를 이용하면 데이터를 전부 보지 않고 앞의 몇 개의 데이터만 확인할 수 있다.
str(gavote)
                   159 obs. of 10 variables:
## 'data.frame':
## $ equip : Factor w/ 5 levels "LEVER", "OS-CC",..: 1 1 1 2 1 1 2 3 3 2 ...
            : Factor w/ 3 levels "middle", "poor", ...: 2 2 2 2 1 1 1 1 2 2 ...
## $ econ
## $ perAA : num 0.182 0.23 0.131 0.476 0.359 0.024 0.079 0.079 0.282 0.10
7 ...
## $ rural : Factor w/ 2 levels "rural", "urban": 1 1 1 1 1 1 2 2 1 1 ...
## $ atlanta: Factor w/ 2 levels "Atlanta", "notAtlanta": 2 2 2 2 2 2 2 1 2
2 ...
## $ gore
            : int 2093 821 956 893 5893 1220 3657 7508 2234 1640 ...
## $ bush
            : int 3940 1228 2010 615 6041 3202 7925 14720 2381 2718 ...
## $ other : int 66 22 29 11 192 111 520 552 46 52 ...
```

```
## $ votes : int 6099 2071 2995 1519 12126 4533 12102 22780 4661 4410 ... ## $ ballots: int 6617 2149 3347 1607 12785 4773 12522 23735 5741 4475 ...
```

앞선 명령어들이 데이터를 있는 그대로 보여주었다면, str 명령어는 데이터를 대략적으로 분석해서 보여준다. 예를 들어 총 관측치의 개수, 각 변수들의 type, level 수 등을 알려준다.

이 중 factor 데이터는 equip, econ, rural, atlanta 총 네 개라는 것을 알 수 있다.

summary(gavote)

```
atlanta
##
     eauip
                 econ
                            perAA
                                           rural
## LEVER:74
             middle:69
                         Min.
                               :0.0000
                                         rural:117
                                                    Atlanta
                                                             : 15
                                                    notAtlanta:144
## OS-CC:44
                                        urban: 42
             poor :72
                         1st Qu.:0.1115
## OS-PC:22
                         Median :0.2330
             rich :18
## PAPER: 2
                         Mean
                               :0.2430
## PUNCH:17
                         3rd Qu.:0.3480
##
                               :0.7650
                         Max.
##
                        bush
                                       other
                                                       votes
        gore
## Min.
                                             5.0
         :
             249
                   Min.
                         :
                             271
                                   Min.
                                         :
                                                   Min.
                                                         :
                                                             832
   1st Qu.: 1386
                   1st Qu.:
                            1804
                                   1st Qu.: 30.0
                                                   1st Qu.: 3506
                                   Median: 86.0
## Median : 2326
                   Median :
                            3597
                                                   Median: 6299
## Mean
        : 7020
                   Mean : 8929
                                   Mean
                                        : 381.7
                                                   Mean
                                                        : 16331
##
   3rd Qu.: 4430
                   3rd Qu.: 7468
                                   3rd Qu.: 210.0
                                                   3rd Qu.: 11846
         :154509
## Max.
                   Max. :140494
                                   Max. :7920.0
                                                   Max. :263211
##
      ballots
## Min.
         :
             881
## 1st Qu.: 3694
## Median : 6712
## Mean
         : 16927
## 3rd Qu.: 12251
## Max.
        :280975
```

Summary 는 데이터의 numerical overview를 보여준다. 예를 들어 factor variable의 경우 각 level에 해당되는 데이터의 수는 몇 개인지, 또는 numerical variable의 경우 4분위 값과 최소 최대 값 등을 알려준다.

여기서 알 수 있는 점은 각 county 의 인구수가 제각각이기 때문에 votes 수와 ballots 등의 숫자가 그에 따라 차이가 많이 난다는 점이다.

2-2. Undercount data

```
우리가 이번 데이터에서 분석하고자 하는 것은 각 county 의 예상 Undercount 이다. Undercount
라는 것은 투표권에서 실제 투표수를 제한 것이다. 그런데 앞서 우리는 county 인구 수에 따라서
undercount 의 크기가 제각각일 것임을 알 수 있었다. 따라서 좀 더 정확한 분석을 위해 우리는
undercount 의 절대적 크기가 아닌 상대적 크기를 고려하는 것이 분석에 더 정확할 것이다.
이에 따라 변수를 생성하면,
gavote$undercount <- (gavote$ballots-gavote$votes)/gavote$ballots</pre>
또한 Undercount 의 4 분위 수는 다음과 같다.
summary(gavote$undercount)
##
     Min. 1st Qu. Median
                           Mean 3rd Qu.
## 0.00000 0.02779 0.03983 0.04379 0.05647 0.18812
이 때 평균이 0.043 인데, 중요한 것은 overall relative undercount 와는 차이가 있다는 점이다.
with(gavote, sum(ballots-votes)/sum(ballots))
## [1] 0.03518021
Graphical Summary 는 변수에 대한 이해를 돕는 데에 사용된다.
hist(gavote$undercount, main='Undercount', xlab='Percent Undercount')
```

Undercount

Histogram 을 통해 살펴본 결과 오른쪽의 outlier 들로 인해 조금 skewed 된 모양이라는 것을 확인할 수 있다.

만약 bins 의 선택으로 인해 그래프 모양이 민감하게 변하는 것이 싫다면 Kernel Density Estimate 방법을 사용할 수도 있다.

plot(density(gavote\$undercount), main="Undercount")
rug(gavote\$undercount)

Undercount

→ 그래프의 모양이 좀 더 smooth 해진 것을 확인할 수 있다.

2-3. categorical data visualization

이번에는 categorical variable 들을 시각화하여 살펴보자.

Pie 명령어를 통해 각 level 들의 비중이 어느 정도 되는 지를 시각적으로 살펴볼 수 있다. pie(table(gavote\$equip), col=gray(0:4/4))

하지만 pie chart 는 상대적인 비중에 대한 비교가 조금 어려울 수 있다.

그래서 우리는 대신 Pareto Chart 를 이용할 수 있으며 barplot 명령어를 통해 이를 나타낼 수 있다.

barplot(sort(table(gavote\$equip), decreasing = TRUE), las=2) ##Las=2 bar Labe L 들이 세로로 나타나게 함.

2-4. Scatter Plot

두 Numerical 또는 Quantitative 변수에 관해서는 scatter plot 을 그려서 두 변수 간의 관계를 알아볼 수 있다.

우선 gore 의 득표와 proportion of African American 의 관계에 대해 살펴보고자 한다.

그전에 단지 득표수만 고려한다면 인구 수에 따라 편차가 크기 때문에 득표율을 기준으로 하기로 한다.

Plot 명령어를 사용하고 알고 싶은 두 변수를 방정식의 형태로 argument 에 넣는다.

(y 축에 나타나는 변수 ~ x 축에 나타나는 변수)

gavote\$pergore <- gavote\$gore/gavote\$votes
plot(pergore ~ perAA, gavote, xlab='Proportion African American', ylab='Propo
rtion for Gore')</pre>

→ 두 변수 간의 양의 상관관계가 있다는 것을 알 수 있다.

2-5. Side-by-side boxplots

만약 Quantitative 와 Qualitative 변수 간의 관계를 알고 싶다면 boxplot 을 이용하면 된다. plot(undercount ~ equip, gavote, xlab='', las=3)

→ Equip 차이에 따른 undercount 차이는 별로 없는 것으로 보인다.

2-6. Cross-tabulations

만약 level 이 세 네 개가 넘는 두 Qualitative 간의 관계를 알아보고 싶다면 cross-tabulation을 이용하면 된다. Cross-tabulation은 두 변수를 기준으로 하여 각 빈도수를 나타내는 표이다. 예를 들어 아래의 표에서 atlanta에 해당하면서 rural에 해당하는 county는 한 곳뿐이라는 것을 알 수 있다. Cross-tabulation을 보여줄 수 있는 명령어는 xtabs 이다.

xtabs(~ atlanta + rural, gavote)

rural
atlanta rural urban
Atlanta 1 14
notAtlanta 116 28

2-7. Change the variable name

그런데 rural의 경우 level들의 이름 중 하나와 factor의 명이 같다는 문제점이 있다. 따라서 헷갈림을 방지하기 위해 우리는 rural 변수의 변수명을 바꿔주고자 한다.

Names 명령어를 통해 gavote dataset 의 변수명들을 확인할 수 있다. names(gavote)

```
## [1] "equip" "econ" "perAA" "rural" "atlanta" ## [6] "gore" "bush" "other" "votes" "ballots"
```

[11] "undercount" "pergore"

Rural 의 경우 변수 명 list에서 4 번 째에 위치하므로 4 번 째 요소의 이름을 usage 로 바꿔주기로 한다.

names(gavote)[4] <- 'usage' ## 변수 내의 Level 의 Label 이랑 이름이 중복돼서 혼란 을 피하기 위해 바꿔준다.

2-8. Correlation

Qualitative 변수들 간의 상관관계를 알아보기 위해서 Correlation을 확인할 수도 있다.

Correlation 은 -1 에서 1 사이의 값으로 0 에서 멀어질수록 두 변수 간에 상관관계가 높다는 것을 알려준다(양의 값인 경우 양의 상관관계).

우리는 일단 perAA, ballots, undercount, pergore 간의 correlation을 알아보고자 한다.

nix <- c(3,10,11,12) ## 해당 변수들의 위치 설정

correlation 을 계산해주는 명령어는 cor 이다. cor(gavote[,nix])

perAA ballots undercount pergore ## perAA 1.0000000 0.02773230 0.2296874 0.92165247 ## ballots 0.0277323 1.00000000 -0.1551724 0.09561688 ## undercount 0.2296874 -0.15517245 1.0000000 0.21876519 ## pergore 0.9216525 0.09561688 0.2187652 1.00000000

위의 결과로 알 수 있는 것은 앞서 scatter plot 에서도 알 수 있었듯이, African American 의 비율과 gore 의 득표율 간에는 강한 양의 상관관계가 있다는 것을 알 수 있다.

3. Fitting a Linear Model

이제 본격적으로 Linear Model 을 설정하고 분석을 진행할 것이다.

우리는 다음과 같은 linear model formula 를 상정하고 분석할 것이다.

Undercount = β_0 (intercept) + β_1 pergore + β_2 perAA + ε

R 에서 Linear Model 식을 세워주는 명령어는 lm 이다. 그리고 '='을 '~'로 표현하고 변수들의 결합은 +로 표현한다.

lmod <- lm(undercount~pergore+perAA, gavote)</pre>

세워진 model의 coefficient 값들(베타 추정치)을 확인해보면 다음과 같다. coef(lmod)

(Intercept) pergore perAA ## 0.03237600 0.01097872 0.02853314

3-2. Predicting

그리고 세워진 model을 토대로 Response(undercount)의 값들의 추정치(fitted value)를 구해보면 다음과 같다.

predict(lmod)

##	APPLING	ATKINSON	BACON	BAKER	BALDWIN
	7	7	2,10011		-,
##	0.04133661	0.04329088	0.03961823	0.05241202	0.04795484
##	BANKS	BARROW	BARTOW	BEN.HILL	BERRIEN
##	0.03601558	0.03794768	0.03824856	0.04568440	0.03951183
##	BIBB	BLECKLEY	BRANTLEY	BROOKS	BRYAN
##	0.04918830	0.04084040	0.03670210	0.04716214	0.03946337
##	BULLOCH	BURKE	BUTTS	CALHOUN	CAMDEN
##	0.04272642	0.05136792	0.04401044	0.05485224	0.04179928
##	CANDLER	CARROLL	CAT00SA	CHARLTON	CHATHAM
##	0.04344251	0.03976103	0.03602163	0.04292433	0.04750227
##	CHATTAHOOCHEE	CHATT00GA	CHEROKEE	CLARKE	CLAY
##	0.04764892	0.03942706	0.03555377	0.04504196	0.05549852
##	CLAYTON	CLINCH	COBB	COFFEE	COLQUITT
##	0.05405937	0.04421053	0.04099018	0.04394917	0.04171247
##	COLUMBIA	COOK	COWETA	CRAWFORD	CRISP
##	0.03793540	0.04412875	0.03966886	0.04419461	0.04611705
##	DADE	DAWSON	DECATUR	DEKALB	DODGE
##	0.03605864	0.03511850	0.04669830	0.05475324	0.04331231
##	D00LY	DOUGHERTY	DOUGLAS	EARLY	ECHOLS
##	0.05151597	0.05358825	0.04115587	0.04775781	0.03789845
##	EFFINGHAM	ELBERT	EMANUEL	EVANS	FANNIN
##	0.03881787	0.04444902	0.04584928	0.04515983	0.03598472
##	FAYETTE	FLOYD	FORSYTH	FRANKLIN	FULTON
##	0.03833868	0.03963718	0.03451702	0.03800347	0.05058744
##	GILMER	GLASCOCK	GLYNN	GORDON	GRADY
##	0.03569792	0.03705342	0.04223991	0.03694448	0.04373769
##	GREENE	GWINNETT	HABERSHAM	HALL	HANCOCK
##	0.04733356	0.03915798	0.03575577	0.03718296	0.06279187

##	HARALSON	HARRIS	HART	HEARD	HENRY
##	0.03751672	0.04064671	0.04107793	0.03930191	0.03963794
##	HOUSTON	IRWIN	JACKSON	JASPER	JEFF.DAVIS
##	0.04200207	0.04290696	0.03728655	0.04390438	0.04004298
##	JEFFERSON	JENKINS	JOHNSON	JONES	LAMAR
##	0.05324856	0.04825427	0.04439236	0.04313121	0.04425755
##	LANIER	LAURENS	LEE	LIBERTY	LINCOLN
##	0.04385018	0.04507076	0.03892391	0.05067472	0.04573235
##	LONG	LOWNDES	LUMPKIN	MACON	MADISON
##	0.04339329	0.04517635	0.03613962	0.05581840	0.03751186
##	MARION	MCDUFFIE	MCINTOSH	MERIWETHER	MILLER
##	0.04692807	0.04574544	0.04924682	0.04919190	0.04265158
##	MITCHELL	MONROE	MONTGOMERY	MORGAN	MURRAY
##	0.04981344	0.04307184	0.04374217	0.04313021	0.03598129
##	MUSCOGEE	NEWTON	OCONEE	OGLETHORPE	PAULDING
##	0.04960889	0.04200194	0.03670443	0.04063029	0.03733922
##	PEACH	PICKENS	PIERCE	PIKE	POLK
##	0.04954864	0.03590777	0.03847804	0.03948920	0.04017706
##	PULASKI	PUTNAM	QUITMAN	RABUN	RANDOLPH
##	0.04455514	0.04454688	0.05088522	0.03608373	0.05331472
##	RICHMOND	ROCKDALE	SCHLEY	SCREVEN	SEMINOLE
##	0.05132390	0.04023190	0.04457407	0.04855631	0.04511893
##	SPALDING	STEPHENS	STEWART	SUMTER	TALBOT
##	0.04318359	0.03870448	0.05658610	0.05004936	0.05616301
##	TALIAFERRO	TATTNALL	TAYLOR	TELFAIR	TERRELL
##	0.05671849	0.04243780	0.04913822	0.04657823	0.05354144
##	THOMAS	TIFT	TOOMBS	TOWNS	TREUTLEN
##	0.04576222	0.04230964	0.04250660	0.03602581	0.04565230
##	TROUP	TURNER	TWIGGS	UNION	UPSON
##	0.04327165	0.04764528	0.05110591	0.03589563	0.04343877
##	WALKER	WALTON	WARE	WARREN	WASHINGTON
##	0.03703049	0.03889793	0.04265003	0.05416216	0.05126179
##	WAYNE	WEBSTER	WHEELER	WHITE	WHITFIELD
##	0.04046588	0.05186413	0.04486532	0.03605758	0.03683139
##	WILCOX	WILKES	WILKINSON	WORTH	
##	0.04440304	0.04868008	0.04954797	0.04397619	

3-3. Residuals

Residual($\hat{\varepsilon} = y - X\hat{\beta}$) 또한 구할 수 있다.

residuals(lmod)

##	APPLING	ATKINSON	BACON	BAKER	BALDWIN
##	3.694660e-02	-6.994927e-03	6.555058e-02	2.348407e-03	3.589940e-03
##	BANKS	BARROW	BARTOW	BEN.HILL	BERRIEN
##	1.426726e-02	-4.406713e-03	1.987376e-03	1.424361e-01	-2.498669e-02
##	BIBB	BLECKLEY	BRANTLEY	BROOKS	BRYAN

```
## -5.040438e-03 -1.032579e-02 3.335900e-02 -4.461253e-03 -3.946337e-02
         BULLOCH
                         BURKE
                                       BUTTS
                                                  CALHOUN
  -4.407512e-03 -1.153479e-02 2.036622e-03 3.134631e-02 -3.346921e-02
         CANDLER
##
                       CARROLL
                                    CATOOSA
                                                  CHARLTON
                                                                 CHATHAM
    1.274103e-04 -2.401269e-03 -1.432571e-02 6.687554e-03 -2.317240e-02
## CHATTAHOOCHEE
                     CHATTOOGA
                                    CHEROKEE
                                                    CLARKE
  -3.134900e-02 1.128378e-02 -1.478981e-02 -2.420792e-02 -1.276988e-02
                       CLINCH
                                       COBB
                                                   COFFEE
                                                                COLQUITT
   -2.387409e-02 -1.064340e-02 -3.465258e-02 -1.741877e-02 -4.725510e-03
##
        COLUMBIA
                          COOK
                                      COWETA
                                                  CRAWFORD
                 3.437592e-02 -1.228910e-02 -2.629814e-02
##
    4.557823e-03
                                                            1.482385e-02
##
            DADE
                        DAWSON
                                     DECATUR
                                                    DEKALB
                                                                   DODGE
##
    9.499013e-03 -1.762724e-02 -1.504472e-02 -1.809054e-02 -1.568160e-02
           DOOLY
                                     DOUGLAS
##
                     DOUGHERTY
                                                     EARLY
                                                                  ECHOLS
    1.106725e-02 1.302490e-03 -1.047622e-02 8.324335e-03 2.080176e-02
##
       EFFINGHAM
                        ELBERT
                                     EMANUEL
                                                     EVANS
    2.991246e-02 -2.649599e-02 -4.584928e-02 -6.758328e-03 -1.351190e-03
##
         FAYETTE
                         FLOYD
                                     FORSYTH
                                                  FRANKLIN
  -3.092625e-02 -3.871541e-03 1.164519e-03 3.008646e-02 1.263527e-02
                     GLASCOCK
                                                    GORDON
          GILMER
                                       GLYNN
                                                                   GRADY
  -3.397497e-03
                  3.567386e-02 -9.109594e-03
                                              1.685814e-02
                                                           2.464313e-02
          GREENE
                      GWINNETT
                                  HABERSHAM
                                                      HALL
                                                                 HANCOCK
    1.627004e-02 -3.295423e-02 3.035196e-02 -9.231782e-03 -1.087175e-02
##
        HARALSON
                        HARRIS
                                        HART
                                                     HEARD
    1.382490e-02 -2.050480e-02 -1.585480e-02 1.145499e-02 -1.494596e-02
         HOUSTON
                        IRWIN
                                     JACKSON
                                                    JASPER
                                                              JEFF.DAVIS
##
  -1.182299e-02 -3.078365e-02 -8.488548e-03
                                              1.414627e-02
                                                           3.713236e-02
##
       JEFFERSON
                       JENKINS
                                     JOHNSON
                                                     JONES
  -1.125200e-02 -7.203976e-03 -1.804991e-02 -1.893311e-04 -3.538550e-03
##
##
          LANIER
                       LAURENS
                                         LEE
                                                   LIBERTY
                                                                 LINCOLN
    1.497335e-02 -8.750812e-03 -8.665610e-03 -1.695379e-02
                                                           1.396462e-02
            LONG
                       LOWNDES
                                     LUMPKIN
                                                     MACON
##
                                                                 MADISON
   -6.757149e-03 -2.669000e-02 -1.638940e-02 -1.940494e-03 -5.890828e-03
##
          MARION
                      MCDUFFIE
                                   MCINTOSH
                                              MERIWETHER
                                                                  MILLER
   -4.601315e-02 -4.469098e-03
                               2.483619e-02 1.614664e-02 -1.330621e-02
##
        MITCHELL
                        MONROE
                                 MONTGOMERY
                                                    MORGAN
    2.854002e-02 -5.302281e-03 -1.886848e-02 4.780742e-03 6.343119e-03
                        NEWTON
                                      OCONEE OGLETHORPE
        MUSCOGEE
                                                                PAULDING
   -7.237717e-03 -1.181356e-03 -1.971648e-02 6.523126e-03 -9.800841e-03
                                      PIERCE
                                                      PIKE
           PEACH
                       PICKENS
                                                                    POLK
   -2.775587e-02 -2.362305e-02
                               5.630602e-03 -5.859127e-03 -1.774015e-03
                        PUTNAM
##
         PULASKI
                                     QUITMAN
                                                     RABUN
##
    1.211247e-02
                 1.698470e-02 -2.188415e-02 -8.597412e-04
                                                           9.630461e-02
        RICHMOND
##
                      ROCKDALE
                                      SCHLEY
                                                  SCREVEN
                                                                SEMINOLE
##
    3.943407e-03 -1.094021e-02 -2.539142e-02 -2.517055e-02
                                                            1.407009e-02
        SPALDING
                      STEPHENS
                                                    SUMTER
##
                                     STEWART
                                                                  TALBOT
                                              9.863392e-03 -2.925028e-02
  -1.742084e-02 -7.995867e-04
                               2.633931e-03
##
      TALIAFERRO
                      TATTNALL
                                      TAYLOR
                                                   TELFAIR
                                                                 TERRELL
## -1.099874e-03 2.644187e-02 4.943506e-02 4.732579e-02 -2.916246e-03
```

```
##
          THOMAS
                          TIFT
                                      TOOMBS
                                                     TOWNS
                                                                TREUTLEN
##
    1.051077e-02
                  1.659632e-03
                                1.709950e-02 -9.191787e-03 4.890489e-02
                        TURNER
##
           TROUP
                                      TWIGGS
                                                     UNION
                                                                   UPSON
                                                            1.446136e-02
## -6.743701e-03
                  2.939342e-02 1.815259e-02 8.028909e-04
##
          WALKER
                        WALTON
                                        WARE
                                                    WARREN
                                                              WASHINGTON
   1.587605e-03 -3.416505e-03 2.104733e-02 -1.777402e-02 -1.719221e-02
##
##
           WAYNE
                       WEBSTER
                                     WHEELER
                                                     WHITE
                                                               WHITFIELD
## 5.198114e-05 -8.706238e-03 4.630606e-02 4.144113e-03 -1.369061e-02
##
                        WILKES
          WILCOX
                                   WILKINSON
                                                     WORTH
## -1.765407e-02 -2.208434e-02 -3.583489e-02 1.749795e-02
```

3-4. Deviance or RSS

우리는 이제 우리의 model 이 우리의 데이터에 얼마나 잘 부합(fit)하는 지를 확인해보고자 한다.

Linear Model 의 경우 RSS $(\hat{\varepsilon}^T\hat{\varepsilon})$ 를 통해 이를 확인하는데 R 에서는 deviance 명령어를 통해 이 값을 확인할 수 있다(deviance 명령어는 RSS 보다 더 일반적인 measure 인데, linear model 의 경우 RSS 값을 출력해준다).

deviance(lmod)

[1] 0.09324918

3-5. Degrees of freedom

자유도도 구해줄 수 있다. 자유도는 관측치의 수에서 coefficient 의 개수를 빼준 값으로 df.residual 명령어를 통해서 구할 수도 있고 그냥 직접 계산할 수도 있다.

df.residual(lmod)

[1] 156

#number of cases - the number of coefficients
nrow(gavote) - length(coef(lmod))

[1] 156

3-6. Estimation of standard error of error

Error 의 표준오차는 $\sqrt{RSS/df}$ 이므로 다음과 같이 계산할 수 있다. sqrt(deviance(lmod)/df.residual(lmod))

[1] 0.02444895

아니면 summary 명령어를 이용하여 다음과 같이 구할 수도 있다.

```
lmodsum <- summary(lmod)</pre>
lmodsum$sigma
## [1] 0.02444895
3-7.coefficient of determination or percentage of variance explained or R^2
deviance 의 경우 model 이 얼마나 fit 한 지를 절대적인 관점에서는 알려주지만, 상대적인 관점에
서는 알려주지 않는다. 따라서 상대적인 관점에서 model 이 얼마나 fit 한지를 알려주는
coefficient of determination(또는 R^2) 값을 살펴보자.
Summary 에 내장된 것을 활용할 수도 있고
lmodsum$r.squared
## [1] 0.05308861
직접 계산을 통해서 구할 수도 있다.
cor(predict(lmod), gavote$undercount)^2
## [1] 0.05308861
3-8.Adjusted R^2
그런데 R^2은 predictor의 개수가 올라가면 덩달아 올라간다는 단점이 있다. 따라서 이를 보완해
주기 위해서 adjusted R^2 을 사용한다.
Adjusted R^2 역시 summary 에 내장되어 있다.
lmodsum$adj.r.squared
## [1] 0.04094872
3-9. summary
Summary 명령어를 통해 여지껏 계산했던 것들을 한 번에 확인할 수 있다.
summary(lmod)
##
## Call:
## lm(formula = undercount ~ pergore + perAA, data = gavote)
##
## Residuals:
        Min
                  10
                       Median
                                    3Q
                                             Max
## -0.046013 -0.014995 -0.003539 0.011784 0.142436
##
```

```
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03238
                           0.01276
                                     2.537
                                             0.0122 *
## pergore
                0.01098
                           0.04692
                                     0.234
                                             0.8153
                                     0.928
## perAA
                0.02853
                           0.03074
                                             0.3547
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.02445 on 156 degrees of freedom
## Multiple R-squared: 0.05309,
                                    Adjusted R-squared: 0.04095
## F-statistic: 4.373 on 2 and 156 DF, p-value: 0.01419
만약 위의 요약이 너무 양이 많고 복잡해 보인다면, faraway package 안에 있는 sumary 함수를
이용해서 좀 더 간단하게 살펴볼 수 있다.
library(faraway)
sumary(lmod)
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.032376
                          0.012761 2.5370 0.01216
## pergore
               0.010979
                          0.046922 0.2340 0.81531
                          0.030738 0.9283 0.35470
## perAA
               0.028533
##
## n = 159, p = 3, Residual SE = 0.02445, R-Squared = 0.05
4. Interpretation
이제 qualitative 변수들을 좀 더 추가하고 이를 해석해보도록 하자.
우선 좀 더 명확하게 하기 위해서 pergore 와 perAA 등 quantitative 변수들을 중앙화했다.
gavote$cpergore <- gavote$pergore - mean(gavote$pergore)</pre>
gavote$cperAA <- gavote$perAA - mean(gavote$perAA)</pre>
그리고 model 의 방정식에 usage 와 equip 이라는 qualitative 변수들을 추가하였으며 cpergore
와 usage 의 경우 interaction term 이 있는 것을 상정하였다.
lmodi <- lm(undercount ~ cperAA+cpergore*usage+equip, gavote)</pre>
이를 formula 로 표현하면
undercount
= \beta_0 (intercept) + \beta_1 cperAA + \beta_2 cpergore + \beta_3 usageurban + \beta_4 equipOSCC + \beta_5 equipOSPC
+ \beta_6 equipPAPER + \beta_7 equipPUNCH + \beta_8 cpergore: usageurban + \epsilon
```

세워진 model 의 관련 값들을 살펴보면 sumary(lmodi)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0432973	0.0028386	15.2529	< 2.2e-16
cperAA	0.0282641	0.0310921	0.9090	0.364786
cpergore	0.0082368	0.0511562	0.1610	0.872299
usageurban	-0.0186366	0.0046482	-4.0095	9.564e-05
equipOS-CC	0.0064825	0.0046799	1.3852	0.168060
equipOS-PC	0.0156396	0.0058274	2.6838	0.008097
equipPAPER	-0.0090920	0.0169263	-0.5372	0.591957
equipPUNCH	0.0141496	0.0067827	2.0861	0.038658
cpergore:usageurban	-0.0087995	0.0387162	-0.2273	0.820515

n = 159, p = 9, Residual SE = 0.02335, R-Squared = 0.17

해석:

- 1. usageurban, equipOSCC, equipOSPC, equipPAPER, equipPUNCH 는 모두 dummy variable 이다.
- 2. cpergore:usageurban 은 usageurban dummy variable 과 cpergore value 값의 곱이다. 즉, usagerural 이라면 0 값이 나온다.
- 3. 평균적인 gore voter 와 african american 들을 가지고 있고 lever machine 을 사용한 rural county 를 고려해보자. 이 때 rural 과 lever 는 위에서 reference level 로 사용되었다. 따라서 predicted undercount 에 이러한 term 들은 기여하지 않는다. 또한 두 quantitative 변수들을 모두 centered 해줬기 때문에 이 term 들도 prediction 에 들어가지 않는다. 만약 이러한 term 들이 모두 빠진다면 predicted undercount 는 intercept 의 추정치인 4.33%가 된다.
- 4. 만약 equipment 로 OS-PC를 사용하는 것을 제외하고 다른 변수들은 변하지 않는다면, predicted undercount 는 1.56% 상승할 것이다. 다만 조심할 것은 lever machine을 사용하는 지역에 비해 OS-PC를 사용하는 지역의 undercount 가 1.56% 높다고 생각하면 안 된다. 다른 변수들의 영향도 있기 때문이다. 하지만 만약 lever machine을 사용하는 지역이 만약 OS-PC로 갈아 탄다면 1.56% 상승할 것이라고는 얘기할 수 있다.

- 5. 만약 African American 이 아예 없는 지역에서 모두 African American 인 지역으로 county 가 바뀐다면 undercount 는 2.83% 증가할 것이다.
- 6. usage 와 pergore 의 해석은 따로따로 이뤄질 수 없다. 왜냐하면 interaction term 이 존재하기 때문이다. 시골지역에서는 gore voters 가 10% 증가한다면 undercount 가 0.08% 증가할 것이다. 그러나 도시 지역에서는 (0.00824-0.00880)*10=-0.0056% 로 오히려 감소할 것이라고 예측해야 한다. 즉 pergore 에서 interaction estimation을 더해주어야 한다.

5. Hypothesis Testing

만약 두 모델 중 어떤 모델이 더 적합한 지를 알고 싶다면 F-test 를 사용하면 된다. R 에서는 anova 를 이용해서 F-Test 를 진행할 수 있는데 만약 p-value Y 0.05 보다 낮다면 Model Y 을 기각한다. 즉, model Y 를 채택한다.

anova(lmod, lmodi)

```
## Analysis of Variance Table
##
## Model 1: undercount ~ pergore + perAA
## Model 2: undercount ~ cperAA + cpergore * usage + equip
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 156 0.093249
## 2 150 0.081775 6 0.011474 3.5077 0.002823 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

각각의 predictors 들에 대해서도 test 를 진행할 수 있다. drop1 명령어를 활용하면 우리의 full model 과 full model 에서 변수들을 하나씩 제외했을 때의 model을 F-test 해준다. 따라서 만약 p-value 값이 낮다면 그 변수가 중요하다는 것을 알려준다.

```
drop1(lmodi, test='F')
## Single term deletions
##
## Model:
## undercount ~ cperAA + cpergore * usage + equip
                 Df Sum of Sq
##
                                   RSS
                                           AIC F value Pr(>F)
## <none>
                              0.081775 -1186.1
                 1 0.0004505 0.082226 -1187.2 0.8264 0.36479
## cperAA
## equip
                 4 0.0054438 0.087219 -1183.8 2.4964 0.04521 *
## cpergore:usage 1 0.0000282 0.081804 -1188.0 0.0517 0.82051
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

그런데 여기서 알 수 있는 것은 cpergore:usage 에서 interaction term 만 고려되고 main effect 인 cpergore 와 usage 는 고려되지 않았다는 것이다.

이는 Hierarchy principle 로, interaction 에 대응되는 lower-order term 들은 model 안에 유지되어야 한다는 원칙에 따른 것이다.

따라서 여기서는 interaction 은 유의미하지 않다는 것을 알지만 main effect 들에 살펴보기 위해 서는 추가적인 step 이 필요하다.

6. Confidence Interval

각 predictor 들의 Confidence Interval 을 구할 수 있는데 여기서 만약 C.I 가 0을 포함하는 구간이라면 해당 변수의 t-test의 p-value 값은 5%이상이다. 따라서 이를 통해 어떤 변수가 통계적으로 유의한 지를 확인해볼 수 있다.

confint(lmodi)

```
##
                            2.5 %
                                       97.5 %
## (Intercept)
                     0.0376884415 0.048906189
## cperAA
                     -0.0331710614 0.089699222
## cpergore
                     -0.0928429315 0.109316616
## usageurban
                     -0.0278208965 -0.009452268
## equipOS-CC
                     -0.0027646444 0.015729555
## equipOS-PC
                     0.0041252334 0.027153973
                     ## equipPAPER
                     0.0007477196 0.027551488
## equipPUNCH
## cpergore:usageurban -0.0852990903 0.067700182
```

7. Diagnostics

우리는 Linear Model을 세울 때 여러 가정들을 상정한다. 여기서는 그 가정들이 유효한 지를 살펴볼 것이다.

Plot 명령어는 우리 Model의 가정 점검에 대한 유용한 4개의 graph를 출력해준다. plot(lmodi)

→ 이 plot 은 lack of fit 를 감지할 수 있게 해준다. 만약 residual 이 curvilinear trend 를 보여준다면, 이는 어느 한 변수의 변형 등, model 에 수정이 필요하다는 것을 의미한다. 또한 이 plot 은 constant variance of error assumption 을 체크하는 데에도 사용될 수 있다. 여기에서는 outlier 들이 몇 개 존재하지만 전체적으로 봤을 때 우리의 가정에 큰 문제는 없는 것으로 보인다.

→ 여기서는 Residual 에 square root 를 씌워준 것에 대한 plot 이다.

Theoretical Quantiles Im(undercount ~ cperAA + cpergore * usage + equip)

- $lacksymbol{\rightarrow}$ 이 plot 은 sorted residual 과 $\Phi^{-1}\left(\frac{i}{n+1}\right)$ for i=1,...,n을 비교하는 plot 이다.
- → 만약 이 plot 에서 point 들이 점선을 따라 위치한다면 normality of error 가정은 합리적이라고 할 수 있다.
- → 다만 끝 부분에서 차이가 벌어지는 것을 알 수 있는데, 이는 우리가 robust fitting method 를 사용하는 것을 고려해야 함을 보여준다. Robust fitting 은 뒤에서 설명한다.

- → Leverage 는 hat matrix 의 대각행렬 값이다. 그리고 Leverage 값이 높으면 $var(\hat{\varepsilon})$ 값이 작아지기 때문에 높은 leverage 값은 어떤 case 가 influential 이 될 가능성이 높은 지를 알려준다.
- → Cook's Distance 는 influence 를 확인하기에 유명한 방법이다. Cook's Distance 의 값이 높을수록 influential 한 case 이다.
- → 위의 plot 에서는 두 개의 case 가 비교적 높은 cook's distance 를 가지고 있다는 것을 알 수 있다.

```
Cooks.distance 명령어를 통해 cooks.distance 가 일정 수준을 넘는 case 들을 찾아낼 수 있다. 여기서는 0.1을 기준으로 한다.

gavote[cooks.distance(lmodi)>0.1,]

## equip econ perAA usage atlanta gore bush other votes ballots ## BEN.HILL OS-PC poor 0.282 rural notAtlanta 2234 2381 46 4661 5741 ## RANDOLPH OS-PC poor 0.527 rural notAtlanta 1381 1174 14 2569 3021 ## undercount pergore cpergore cperAA
```

```
## BEN.HILL 0.1881205 0.4792963 0.07097452 0.03901887
## RANDOLPH 0.1496193 0.5375633 0.12924148 0.28401887
```

여기서의 case 들은 기대값보다 훨씬 높은 undercounts 값들을 가지고 있다는 것을 알수 있다. 따라서 이 case 들은 influential 이다.

일련의 양의 관측치에서 일부 사례가 비정상적으로 극단적인지 여부를 판단하는 데 유용한 기법은 half-normal plot 이다.

여기서는 선형성을 보는 대신 outlier 에 집중하면 된다.

halfnorm(hatvalues(lmodi))


```
Hatvalue 가 높은 case 들을 찾아보자.
gavote[hatvalues(lmodi)>0.3,]
##
              equip econ perAA usage
                                       atlanta gore bush other votes ballots
## MONTGOMERY PAPER poor 0.243 rural notAtlanta 1013 1465
                                                             31 2509
                                                                         2573
## TALIAFERRO PAPER poor 0.596 rural notAtlanta 556
                                                                 832
                                                     271
                                                                         881
##
              undercount
                          pergore
                                       cpergore
                                                      cperAA
## MONTGOMERY 0.02487369 0.4037465 -0.004575261 1.886792e-05
## TALIAFERRO 0.05561862 0.6682692 0.259947458 3.530189e-01
```

위의 case 들은 High leverage 를 갖지만 predictor 의 값들이 remarkable 하지 않다는 점에서 influential 하지는 않다.

Partial residual plot 은 x_i 대 $\hat{\varepsilon} + \hat{\beta}_i x_i$ 의 관계를 보여준다. 즉, 다른 variable 을 제외하고 Response 와 해당 predictor 간의 관계를 보여준다.

termplot(lmodi, partial=TRUE, terms=1)

→ cperAA 와 Response 는 양의 상관관계를 나타낸다.

8. Robust Regression

Least Square 방법은 normal error에 대해서는 잘 작동하지만, long-tailed error에 대해서는 형편없는 성능을 보여준다. 따라서 이를 보완하기 위해 outlier 들을 제거해줄 수도 있지만 단순히 outlier 를 제거하는 것은 또다른 outlier 들을 만들어내는 등의 문제를 야기할 수 있다. 따라서 robust regression을 이용하는 것이 하나의 방안이 될 수 있다.

우선 흔히 사용되는 방법은 larger error에 대한 비중을 낮추는 것이다. 이를 Huber method 라고하는데, MASS 패키지의 rlm 명령어가 이 방식을 기본적으로 사용한다.

```
library(MASS)
rlmodi<- rlm(undercount ~ cperAA+cpergore*usage+equip, gavote)</pre>
summary(rlmodi)
##
## Call: rlm(formula = undercount ~ cperAA + cpergore * usage + equip,
      data = gavote)
## Residuals:
         Min
                     10
                            Median
                                            3Q
                                                     Max
## -6.026e-02 -1.165e-02 -6.587e-06 1.100e-02 1.379e-01
##
## Coefficients:
##
                      Value
                               Std. Error t value
## (Intercept)
                       0.0414 0.0023
                                         17.8662
## cperAA
                       0.0327 0.0254
                                          1.2897
## cpergore
                       -0.0082 0.0418
                                          -0.1972
## usageurban
                       -0.0167 0.0038
                                          -4.4063
                       0.0069 0.0038
## equipOS-CC
                                          1.8019
                       0.0081 0.0048
## equipOS-PC
                                         1.6949
## equipPAPER
                       -0.0059 0.0138
                                          -0.4269
## equipPUNCH
                       0.0170 0.0055
                                          3.0720
## cpergore:usageurban 0.0073 0.0316
                                          0.2298
## Residual standard error: 0.01722 on 150 degrees of freedom
```

Robust Estimation method 를 사용하면 Inferential method 는 적용하기 어려워진다. 따라서 앞서 Least Square 를 사용했을 때의 summary 와 다른 모양을 확인할 수 있다. 앞서 Least Square method model 과의 가장 큰 차이점은 equip OS-PC의 coefficient 가 절반 정도로 감소했단 것이다. 나머지 변수에서는 큰 차이점은 없다.

9. Weighted Least Squares

우리는 인구수가 더 적은 곳에서는 ballot 과 votes 의 숫자 자체가 작기 때문에 조금만 값이 변해도 undercount 의 값이 더 쉽게 변동할 수 있다는 것을 예상할 수 있다. 따라서 이를 보완해주기 위해서 각 case 들에 다른 weight 값을 부여해줄 수 있다. Weight 값은 보통 $var(y_i)$ 의 역수를 기준으로 하는데, 여기서는 ballot 의 역수를 기준으로 하기로 한다.

R 에서는 간단하게 lm 명령어에 weight argument 를 추가해주면 자동으로 weighted least square method 로 변환된다.

```
wlmodi <- lm(undercount ~ cperAA+cpergore*usage+equip, gavote,
weights=ballots)
summary(wlmodi)</pre>
```

```
##
## Call:
## lm(formula = undercount ~ cperAA + cpergore * usage + equip,
##
      data = gavote, weights = ballots)
##
## Weighted Residuals:
##
      Min
               10 Median
                              3Q
                                     Max
## -6.1949 -0.9342 -0.0455 1.0443 11.4357
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 0.003443 12.689 < 2e-16 ***
                      0.043687
## cperAA
                      0.068093
                                 0.027538
                                            2.473
                                                  0.01453 *
                                          -0.889 0.37550
## cpergore
                      -0.046885
                                 0.052747
                                          -4.815 3.56e-06 ***
## usageurban
                      -0.017916
                                 0.003721
## equipOS-CC
                      0.005582
                                 0.004648
                                           1.201 0.23168
## equipOS-PC
                      -0.005823
                                 0.004689
                                          -1.242
                                                  0.21623
                                          -0.380
## equipPAPER
                                 0.037294
                                                  0.70483
                      -0.014154
## equipPUNCH
                                           2.913 0.00413 **
                      0.015661
                                 0.005376
                                 0.035635
                                           0.337 0.73683
## cpergore:usageurban 0.011998
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.179 on 150 degrees of freedom
## Multiple R-squared: 0.4099, Adjusted R-squared: 0.3784
## F-statistic: 13.02 on 8 and 150 DF, p-value: 3.669e-14
결과를 확인해보면 Unweighted fit 과 매우 다르다는 것을 알 수 있다. 이는 결과가 몇 개의
large county 에 영향을 많이 받았기 때문이다.
그런데 우리는 Undercount 의 variation 이 단지 ballot 의 수에만 영향을 받는 가를 고려해야 한
다. Undercount 에 영향을 주는 변수 중에 ballot size 와는 무관한 변수들도 존재한다. 따라서
우리는 이 effect 들의 상대적인 크기를 고려해보아야 한다.
가장 작은 county 에서 평균적인 undercount 를 고려했을 때 binomial 을 이용한 standard
deviation 은
> sqrt(0.035*(1-0.035)/881)
```

그런데 이는 Unweighted method 에서의 standard error 값인 0.0233 보다 훨씬 작은 값이다. 그리고 이 effect 는 크기가 큰 다른 county 에서 훨씬 더 작게 나타날 것이다. 따라서 다른 변수들

##881은 min(ballot)이고 0.035는 overall average undercount 값.

[1] 0.006191697

이 variation에 더 큰 영향을 미칠 것이기 때문에 weighted로 하지 말고 그냥 unweighted로 놔두는 것을 추천한다.

10. Transformation

변수들을 변환하는 것에 대해 살펴보자. 우선 Response 의 경우 skewed 되어있을 때(box-cox method 를 통해 확인 가능) MASS 패키지에서 boxcox function을 이용하면 정규분포 형태로 바꿔주는 것이 가능하다. 그러나 Response의 형태를 변환하는 것은 해석의 어려움 등 여러 문제를 가지고 있기 때문에 주의를 요해서 바꿔야 한다.

반면 Predictor 들을 변환하는 것은 덜 문제적이다. cperAA 의 degree 를 늘려서 계산해보자. plmodi <- lm(undercount ~ poly(cperAA, 4) + cpergore*usage + equip, gavote) summary(plmodi)

```
##
## Call:
## lm(formula = undercount ~ poly(cperAA, 4) + cpergore * usage +
##
      equip, data = gavote)
##
## Residuals:
##
                   10
                         Median
                                       30
                                                Max
## -0.058563 -0.012963 -0.001987 0.009230 0.127984
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                  0.002875 15.115 < 2e-16 ***
                       0.043460
## poly(cperAA, 4)1
                       0.052258
                                  0.069391
                                             0.753 0.45260
## poly(cperAA, 4)2
                      -0.002988
                                  0.026135 -0.114 0.90914
## poly(cperAA, 4)3
                      -0.005363
                                  0.024267
                                            -0.221
                                                    0.82538
## poly(cperAA, 4)4
                                            -0.682 0.49606
                       -0.016513
                                  0.024199
## cpergore
                       0.013153
                                  0.056930
                                             0.231 0.81761
                                            -4.035 8.76e-05 ***
## usageurban
                      -0.019129
                                  0.004741
                                             1.364 0.17455
## equipOS-CC
                       0.006440
                                  0.004720
## equipOS-PC
                       0.015587
                                  0.005879
                                            2.652
                                                    0.00889 **
                                            -0.597
## equipPAPER
                                  0.017204
                                                    0.55137
                       -0.010272
## equipPUNCH
                       0.014053
                                  0.006866
                                             2.047
                                                    0.04247 *
## cpergore:usageurban -0.010538
                                  0.041362
                                           -0.255
                                                    0.79926
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02354 on 147 degrees of freedom
```

```
## Multiple R-squared: 0.1726, Adjusted R-squared: 0.1107
## F-statistic: 2.788 on 11 and 147 DF, p-value: 0.002539

차수를 늘려보았지만 cperAA term 들은 모두 통계적으로 유의하지 않기 때문에 제거 가능하다.

termplot(plmodi, partial=TRUE, terms=1)
```


library(splines)
blmodi <- lm(undercount ~ cperAA + bs(cpergore, 4) + usage + equip, gavote)
termplot(blmodi, partial=TRUE, terms=2)</pre>

→ Spline 과 Polynomial 을 비교해보면, Polynomial 의 경우 좀 더 진동이 큰 fit 을 보여주며 원래의 관찰 범위를 넘어서는 경우 예측 성능이 떨어진다. 그러나 spline 은 조금 더 stable 한 형태를 보여주며 더 좋은 local fit 을 보여준다. 따라서 extrapolation properties 도 좀 더 안정적이다. (성능이 더 좋다)

11. Variable Selection

우리는 Response 를 예측함에 있어서 모든 Variable 이 필요하지는 않다. 오히려 적절한 Variable 을 고름으로써 더 좋은 예측 성능을 낼 수 있다. 따라서 이번에는 어떤 Variable 을 선택해야하는 지에 대한 것을 살펴보고자 한다.

우선 R^2 을 기준으로 선택할 수 있다. 즉, R^2 이 높은 model을 선택하는 것이다. 그러나 이는 오직 quantitative predictors 에만 적용할 수 있다는 문제점이 있다.

또다른 변수를 선택하는 기준에 있어서 Akaike Information Criterion(AIC)이라는 것이 있다.

AIC = -2 maximum log likelihood + 2p (p 는 parameter 의 개수)

AIC 가 작을수록 좋은 모델인 것이다.

R 에서는 step 명령어를 이용하면 AIC 가 제일 작은 모델을 골라준다.

```
biglm <- lm(undercount ~ (equip+econ+usage+atlanta)^2 + (equip+econ+usage+atl
anta)*(perAA+pergore), gavote)
smallm <- step(biglm, trace=FALSE)</pre>
summary(smallm)
##
## Call:
## lm(formula = undercount ~ equip + econ + usage + perAA + equip:econ +
      equip:perAA + usage:perAA, data = gavote)
##
## Residuals:
                  10
                       Median
                                    30
##
        Min
                                             Max
## -0.059044 -0.009856 0.000000 0.008238
                                        0.082598
##
## Coefficients: (2 not defined because of singularities)
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.0435310 0.0051439
                                           8.463 3.27e-14 ***
                     -0.0128784 0.0072732 -1.771 0.078809 .
## equipOS-CC
## equipOS-PC
                      0.0034922 0.0111518
                                           0.313 0.754635
                     -0.0578329 0.0363659 -1.590 0.114038
## equipPAPER
## equipPUNCH
                     ## econpoor
                      ## econrich
                     -0.0157358   0.0124077   -1.268   0.206836
## usageurban
                     ## perAA
                     ## equipOS-CC:econpoor -0.0114503 0.0097147 -1.179 0.240550
## equipOS-PC:econpoor
                     0.0424178 0.0137504
                                           3.085 0.002458 **
                            NA
                                      NA
                                              NA
                                                      NA
## equipPAPER:econpoor
## equipPUNCH:econpoor -0.0160832
                                0.0131594 -1.222 0.223704
## equipOS-CC:econrich
                      0.0047127
                                0.0151356
                                           0.311 0.755987
## equipOS-PC:econrich -0.0111987
                                0.0167837
                                          -0.667 0.505728
## equipPAPER:econrich
                            NA
                                      NA
                                              NA
                                                      NA
## equipPUNCH:econrich 0.0168340 0.0216487
                                           0.778 0.438128
## equipOS-CC:perAA
                      0.1181524 0.0326074
                                           3.623 0.000407
## equipOS-PC:perAA
                      0.0321434 0.0451861
                                           0.711 0.478056
                      0.1260840 0.0803911
## equipPAPER:perAA
                                           1.568 0.119066
## equipPUNCH:perAA
                      0.1243346 0.0500734
                                           2.483 0.014216 *
## usageurban:perAA
                     -0.0472147 0.0290180 -1.627 0.105984
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01964 on 139 degrees of freedom
## Multiple R-squared: 0.4554, Adjusted R-squared: 0.381
## F-statistic: 6.118 on 19 and 139 DF, p-value: 4.37e-11
```

```
그런데 단순히 예측하는 것이 아니라 변수들 간의 관계를 설명하는 것에 관심이 있다면, 좀 더 manual 하게
변수들을 고를 수 있다. 이 때는 앞서 살펴본 F-test 가 사용될 수 있다.
drop1(smallm, test='F')
## Single term deletions
##
## Model:
## undercount ~ equip + econ + usage + perAA + equip:econ + equip:perAA +
##
      usage:perAA
                                                  Pr(>F)
##
             Df Sum of Sa
                              RSS
                                     AIC F value
## <none>
                         0.053627 -1231.1
              6 0.0075232 0.061150 -1222.3 3.2500 0.005084 **
## equip:econ
## equip:perAA 4 0.0068439 0.060471 -1220.0 4.4348 0.002101 **
## usage:perAA 1 0.0010214 0.054649 -1230.1 2.6474 0.105984
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
보면 usage:perAA 의 p-value 가 높으므로 제거 가능하다.
이를 고려해서 최종 모델을 세우면 다음과 같다.
finalm <- lm(undercount ~ equip + econ + perAA + equip*econ + equip:perAA, ga
vote)
sumary(finalm)
##
## Coefficients: (2 not defined because of singularities)
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.0418709 0.0050276 8.3282 6.497e-14
                     -0.0113268 0.0073726 -1.5363 0.1266999
## equipOS-CC
## equipOS-PC
                      0.0085750 0.0111781 0.7671 0.4442883
## equipPAPER
                     ## equipPUNCH
## econpoor
                     0.0202659 0.0055290 3.6654 0.0003489
                     -0.0169664 0.0123919 -1.3692 0.1731284
## econrich
## perAA
                     ## equipOS-CC:econpoor -0.0109645 0.0098849 -1.1092 0.2692236
## equipOS-PC:econpoor
                     0.0483848 0.0137954 3.5073 0.0006076
## equipPUNCH:econpoor -0.0035601 0.0124266 -0.2865 0.7749211
## equipOS-CC:econrich
                     0.0022777 0.0153780 0.1481 0.8824646
## equipOS-PC:econrich -0.0133182   0.0170541 -0.7809   0.4361491
## equipPUNCH:econrich 0.0200315 0.0219974 0.9106 0.3640450
## equipOS-CC:perAA
                      0.1072494 0.0328551 3.2643 0.0013771
                     -0.0059062 0.0434140 -0.1360 0.8919805
## equipOS-PC:perAA
## equipPAPER:perAA
                      0.1291364 0.0818061 1.5786 0.1166763
## equipPUNCH:perAA
                      0.0868490 0.0464997 1.8677 0.0638751
##
## n = 159, p = 18, Residual SE = 0.02000, R-Squared = 0.43
```

```
12. conclusion
마지막으로 우리의 최종 모델을 해석해보자.
우선 interaction 을 해석하기 위해 table 을 만들어보자.
우선 econ 과 equip 간의 상호작용을 살펴보기 위해 perAA 는 0.233 으로 고정한 table 을 만든다.
pdf <- data.frame(econ=rep(levels(gavote$econ), 5), equip=rep(levels(gavote$e</pre>
quip), rep(3,5)), perAA=0.233)
pdf
##
       econ equip perAA
## 1
     middle LEVER 0.233
       poor LEVER 0.233
## 2
## 3
       rich LEVER 0.233
## 4
     middle OS-CC 0.233
## 5
       poor OS-CC 0.233
## 6
       rich OS-CC 0.233
## 7
     middle OS-PC 0.233
## 8
       poor OS-PC 0.233
## 9
       rich OS-PC 0.233
## 10 middle PAPER 0.233
       poor PAPER 0.233
## 11
## 12
       rich PAPER 0.233
## 13 middle PUNCH 0.233
## 14
       poor PUNCH 0.233
## 15
       rich PUNCH 0.233
그 다음 필요한 변수들은 모두 주어졌으므로 이에 해당하는 Expected Undercount 값을 계산한다.
pp <- predict(finalm, new=pdf)</pre>
xtabs(round(pp,3) ~ econ + equip, pdf)
##
          equip
## econ
            LEVER OS-CC OS-PC
                                PAPER PUNCH
            0.032
                   0.046
                         0.039
                                0.004
                                      0.037
##
    middle
##
    poor
            0.052
                   0.055
                         0.108 0.024
                                      0.053
##
    rich
            0.015
                  0.031 0.009 -0.013 0.040
보면 econ 의 status 가 낮을수록 undercount 값이 높아진다는 것을 알 수 있다.
또한 OS-PC 의 경우 Poor 계층에서 확연한 문제를 보인다는 것을 알 수 있다.
```

```
같은 방식으로 perAA 와 equip을 비교할 수 있다. 여기서는 perAA를 임의로 세 개의 그
룹으로 나눠줄 수 있다.
pdf <- data.frame(econ=rep('middle', 15),</pre>
                equip = rep(levels(gavote$equip), rep(3,5)),
                perAA=rep(c(.11, 0.23, 0.35), 5))
pp <- predict(finalm, new=pdf)</pre>
propAA <- gl(3,1,15, labels=c('low', 'medium', 'high'))</pre>
xtabs(round(pp, 3) ~ propAA + equip, pdf)
##
         equip
## propAA
           LEVER OS-CC OS-PC PAPER PUNCH
##
    low
           0.037 0.038 0.045 -0.007 0.031
    medium 0.032 0.046 0.039 0.003 0.036
##
##
    high 0.027 0.053 0.034 0.014 0.042
보면 명확한 상관관계를 파악하기 힘들다.
결론: economic status 는 undercount 에 명확한 상관관계를 보여준다(계층이 낮을수록
높은 관계). Voting Equip 와 African American 의 비율은 모두 undercount 에 영향을
주지만 그 방향은 명확하지 않다.
```