Implementation Roadmap for Spiking Decision Transformer Novel Contributions

Prepared by Vishal Pandey

June 28, 2025

Abstract

This document provides a step-by-step LaTeX-formatted roadmap for integrating five novel modules into the Spiking Decision Transformer (SNN-DT) codebase. Each phase describes the high-level design, implementation steps, and validation strategy.

Contents

1	Phase 1: Adaptive, Data-Driven Temporal Windows	2
	1.1 High-Level Design	2
	1.2 Implementation Steps	2
	1.3 Ablation & Validation	2
2	Phase 2: Hybrid Local Plasticity + Surrogate-Gradient	2
	2.1 High-Level Design	2
	2.2 Implementation Steps	2
	2.3 Ablation & Validation	3
3	Phase 3: Spike-Domain Positional Encodings & Routing	9
	3.1 Positional Spiking Codes	
	3.2 Dendritic-Style Routing	3
	3.3 Implementation Steps	
	3.4 Ablation & Validation	
4	Phase 4: Theoretical Convergence & Expressivity	9
	4.1 Expressivity Theorem	3
	4.2 Convergence Bound	
	4.3 Implementation Steps	
	4.4 Validation	
5	Phase 5: Scalable, Sparse Spiking Attention	4
	5.1 Locality-Sensitive Hashing (LSH)	4
	5.2 Block-Sparse Attention	
	5.3 Implementation Steps	
	5.4 Ablation & Validation	

1 Phase 1: Adaptive, Data-Driven Temporal Windows

1.1 High-Level Design

• Learn a per-token gate:

$$g_i = \sigma(w_q^{\top} x_i + b_q) \in [0, 1].$$

• Define token-specific window length:

$$T_i = [T_{\text{max}} \cdot g_i].$$

• Unroll each token's LIF projection over its own T_i .

1.2 Implementation Steps

1. Model: In SpikingSelfAttention, add

```
self.window_gate = nn.Linear(hidden_dim, 1)
```

followed by a sigmoid.

- 2. Compute $g = window_gate(x)$ after embedding.
- 3. Refactor the time loop:

```
for i, xi in enumerate(tokens):
   Ti = ceil(T_max * g[i])
   for t in range(Ti):
      # LIF projection ...
```

4. **Regularization:** Add penalty $\lambda \mathbb{E}[T_i]$ to the loss.

1.3 Ablation & Validation

- Plot average T_i vs. token index or return-to-go.
- Compare reward and spike counts to fixed-T.

2 Phase 2: Hybrid Local Plasticity + Surrogate-Gradient

2.1 High-Level Design

Combine global backprop with a local three-factor rule in the output LIF layer:

$$\Delta W_O \propto \underbrace{\sum_t \operatorname{pre}(t) \operatorname{post}(t)}_{\text{eligibility}} \times R_t.$$

2.2 Implementation Steps

- 1. Subclass Norse's LIFCell to accumulate eligibility traces.
- 2. After each trajectory, compute and apply:

$$W_O \leftarrow W_O + \eta_{\text{local}} e_{ij} G_t$$
.

3. Normalize/clamp the local update to stabilize training.

2.3 Ablation & Validation

- Measure epochs to target reward with/without local plasticity.
- Report training curves for both variants.

3 Phase 3: Spike-Domain Positional Encodings & Routing

3.1 Positional Spiking Codes

Encode position via learned oscillators:

$$pos_spike_k(t) = \mathbf{1}(sin(\omega_k t + \phi_k) > 0).$$

Learnable parameters: $\{\omega_k, \phi_k\}$.

3.2 Dendritic-Style Routing

After computing H heads' outputs $\{y_i^{(h)}(t)\}$, apply a routing MLP:

$$\alpha = \operatorname{softmax}(W_{\text{route}}[y_i^{(1)}, \dots, y_i^{(H)}]).$$

Re-weight heads by α .

3.3 Implementation Steps

- 1. In embedding, generate phase_spikes alongside rate spikes.
- 2. In multi-head wrapper:

```
concat = torch.stack(head_outputs, dim=-1) # [..., H]
alpha = F.softmax(self.route_mlp(concat), dim=-1)
mixed = (concat * alpha).sum(-1)
```

3.4 Ablation & Validation

- Compare performance with/without phase coding.
- Visualize learned ω_k, ϕ_k .

4 Phase 4: Theoretical Convergence & Expressivity

4.1 Expressivity Theorem

Claim. For any dense attention matrix $A \in \mathbb{R}^{L \times L}$ and $\varepsilon > 0$, there exist spike trains of length $T = O(\log \frac{1}{\varepsilon})$ such that

$$\|\operatorname{softmax}(\alpha S) - A\|_{\infty} < \varepsilon.$$

4.2 Convergence Bound

Under Lipschitz surrogate gradients, SNN-DT gradient descent converges to ANN-DT gradients as spike counts increase.

4.3 Implementation Steps

- Formalize assumptions (bounded weights, Lipschitz constant L_{σ}).
- Write proof sketch in a new theory.tex appendix.

4.4 Validation

Empirically plot $||W_{SNN} - W_{ANN}||$ vs. average spikes T.

5 Phase 5: Scalable, Sparse Spiking Attention

5.1 Locality-Sensitive Hashing (LSH)

Hash accumulated spike vectors $q_i \in \{0,1\}^T$ into buckets; compute attention only within buckets.

5.2 Block-Sparse Attention

Divide the sequence into blocks of size B. Compute full attention within each block and use a global "summary" head across block means.

5.3 Implementation Steps

- 1. Implement LSH hashing: bucket = torch.sign(random_proj @ qi)
- 2. Refactor double loop:

```
for block in blocks:
    # intra-block attention
# summary head attends across block means
```

5.4 Ablation & Validation

- Measure spikes & latency up to N = 500.
- Show returns remain within 95% of dense attention.

Version Control & Workflow

- Use separate feature branches: adaptive-window, local-plasticity, etc.
- After each merge, run benchmarks to catch regressions.
- Maintain consistent style (e.g. Google Python Style Guide).