學號:R08946006 系級:資料科學學程碩一 姓名:周逸平

Q1: Data processing (1%)

Describe how do you use the data for extractive.sh, seq2seq.sh, attention.sh:

- a. How do you tokenize the data.
- b. Truncation length of the text and the summary.
- c. The pre-trained embedding you used.
- a. 如助教 preprocess code 中設定,先設定 <pad> <s> </s> <unk> 四個特殊 token 後,收集資料中所有出現過的 words 並編成 dict,使得每一個 word 都有對應的 token,而後對資料集內單字改為相對應編號。
- b. Length of the text: 300, summary: 80
- c. glove.840B.300d

Q2: Describe your extractive summarization model. (2%)

Describe

- a. your model
- b. performance of your model. (on the validation set)
- c. the loss function you used.
- d. The optimization algorithm (e.g. Adam), learning rate and batch size.
- e. Post-processing strategy.

a. 見尾頁圖 1:

b. 表格如下:

By %	Rouge-1	Rouge-2	Rouge-L
Mine	18.801475	3.147552	12.834048
baseline	18.5	2.6	12.3
diff	0.301475	0.547552	0.534048

- c. BCEWithLogitsLoss
- d. Adam, lr = 1e-03, batch_size = 512, epoch = 8 (取第 4)
- e. 檢查每一 sentence_bound 裡頭的 1 的數量是否有超過該句子長度的 10%,若有,則該 sentence_bound。

舉例:若某 sentence bound 預測結果為 [0,1,0,0,1,1,1,0,1,0] 此句子長度為 $10 \, \text{而} \, 1$ 的總數為 $5 \, , \, 5/10 \, > \, 0.1 \,$,取此句。

Q3: Describe your Seq2Seq + Attention model. (2%)

Describe

- a. your model
- b. performance of your model. (on the validation set)
- c. the loss function you used.
- d. The optimization algorithm (e.g. Adam), learning rate and batch size.

Seq2Seq

- a. 見尾頁圖 2:
- b. 如下表格:

Ву %	Rouge-1	Rouge-2	Rouge-L
Mine	23.678924	5.645541	20.452661
baseline	15	1.8	13
diff	8.678924	3.845541	7.452661

- c. CrossEntropy, ignore_idx = 0
- d. Adam, lr = 1e-04, batch_size = 64, epoch = 20 (取第 20)

Seq2Seq+ATTN

- a. 見尾頁圖 3:
- b. 如下表格:

By %	Rouge-1	Rouge-2	Rouge-L
Mine	25.565535	6.898208	21.715531
baseline	25	5.0	20
diff	0.565535	1.898208	1.715531

- c. CrossEntropy, ignore_idx = 0
- d. Adam, lr = 1e-04, batch_size = 32, epoch = 20 (取第 20)

Q4: Plot the distribution of relative locations (1%)

Plot the distribution of relative locations of your predicted sentences by your extractive model, and describe your findings. (1%)

可以看到句子預測的分布比較偏好數個峰值,比如說靠近0的,以及0.3、0.5、0.7 附近的句子。而這也比較符合人寫作文章時的習慣,即,重點通常穿插在文章中,或者於一小段文字後做個簡單總結再繼續後續的陳述。

Q5: Visualize the attention weights (2%).

跳過

Q6: Explain Rouge-L (1%)

Explain the way Rouge-L is calculated.

可以看到在下圖公式中,計算透過計算 R_lcs 以及 P_lcs 來計算 Rouge-L,其中 LCS 表「最長公共子序列 (Longest common subsequence)」。m,n 為參考摘要以及 生成摘要的長度。

可以看到在 F_lcs 中有個 beta,此 beta 為一常數,通常被設置為一很大的數,使得 F lcs 到最後只考慮 R lcs

$$R_{lcs} = \frac{LCS(X,Y)}{m}$$
 (2)

$$P_{lcs} = \frac{LCS(X,Y)}{n}$$
 (3)

$$F_{lcs} = \frac{(1 + \beta^2) R_{lcs} P_{lcs}}{R_{lcs} + R_{lcs} + R_{lcs}} (4)$$

參考網址 https://blog.csdn.net/Silience Probe/article/details/80700053

圖一

