Работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

Андрей Киркича, Б01-202, МФТИ, 2023

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат или магазин сопротивлений

Теоретичские сведения

Теплопроводность - процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды.

$$\vec{q} = -\kappa \cdot \vec{\nabla}T \tag{1}$$

закон Фурье

$$Q = \frac{2\pi L}{\ln r_0/r_1} \kappa \Delta T \tag{2}$$

$$R(t) = R_{273} \cdot (1 + \alpha t) \tag{3}$$

Методика измерений

Рисунок 1: схема экспериментальной установки

Рисунок 2: электрическая схема для измерения сопротивления

На оси полой цилиндрической размещена металлическая нить. Полость трубки заполнена воздухом, стенки помещены в кожух, через который пропускается вода из термостата. Для предотвращения конвекции труба расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры.

По пропускаемому через нить постоянному току и напряжению вычисляется мощность нагрева по закону Джоуля-Ленца и сопротивление по закону Ома.

Сопротивление нити является однозначной функцией её температуры. Эта зависимость измеряется по экстраполяции мощности нагрева к нулю. Если материал нити известен, то зависимость можно найти по справочным данным.

Чем выше ток, тем с большей точностью он будет измерен. Однако при этом квадратично возрастает выделяющаяся на резисторе мощность, а значит, температура резистора становится выше, чем объекта, температуру которого надо измерить.

В данной работе для решения этой проблемы строится нагрузочная кривая в диапазоне температур $20\text{--}80^{\circ}C$. В этом интервале кривую можно приблизить линейной функцией (3). Экстраполяция этой зависимости для $Q \to 0$ позволит определить температуру нити по значению её сопротивления R при произвольной мощности нагрева.

В работе использовалась установка со следующими характеристиками:

- Материал нити платина
- \bullet L=0.4 м длина нити
- $2r_0 = 0.7$ см внутренний диаметр цилиндрической трубки
- \bullet $2r_1=0.05$ мм диаметр платиновой нити

Результаты измерений

Было проведено пять измерений нагрузочных кривых. Результаты измерений и графики зависимости $R_{\rm H}(Q)$ при разных значениях температуры представлены ниже.

$T,^{\circ}C$	α	$R_{\scriptscriptstyle \mathrm{M}}$, O _M	U, B	I, MA	Q, Bt	$R_{\scriptscriptstyle \rm H},~{ m O}_{\scriptscriptstyle m M}$	T,°C	α	$R_{\scriptscriptstyle \mathrm{M}}$, $O_{\scriptscriptstyle \mathrm{M}}$	U, B	I, MA	Q, Bt	$R_{\scriptscriptstyle \rm H},{ m O}_{\scriptscriptstyle m M}$
22	0.01	180.0	0.38	18.75	0.0071	20.3		0.40	11.6	2.18	93.79	0.2045	23.2
	0.05	69.5	0.86	40.25	0.0346	21,4]	0.45	9.8	2.28	97.83	0.2231	23.3
	0.10	43.3	1.13	55.20	0.0624	20.5	1	0.50	8.3	2.37	101.45	0.2404	23.4
	0.20	24.7	1.50	74.65	0.1120	20.1	1	0.60	5.8	2.54	108.05	0.2744	23.5
	0.30	16.5	1.85	88.12	0.1630	21.0]	0.70	3.9	2.69	113.60	0.3056	23.7
	0.40	11.6	2.09	98.61	0.2061	21.2	67	0.01	180.0	0.43	18.46	0.0079	23.3
	0.45	9.8	2.19	103.04	0.2257	21.3]	0.05	69.5	0.91	38.96	0.0355	23.4
	0.50	8.3	2.29	107.04	0.2451	21.4		0.10	43.3	1.24	52.79	0.0655	23.5
	0.60	5.8	2.47	114.32	0.2824	21.6		0.20	24.7	1.68	70.40	0.1183	23.9
37	0.01	180.0	0.39	18.65	0.0073	20.9]	0.30	16.5	1.98	82.36	0.1631	24.0
	0.05	69.5	0.85	39.80	0.0338	21.4		0.40	11.6	2.22	91.52	0.2032	24.3
	0.10	43.3	1.17	54.36	0.0636	21.5]	0.45	9.8	2.32	95.39	0.2213	24.3
	0.20	24.7	1.59	73.18	0.1164	21.7]	0.50	8.3	2.41	98.85	0.2382	24.3
	0.30	16.5	1.89	86.13	0.1628	21.9]	0.60	5.8	2.58	105.13	0.2712	24.5
	0.40	11.6	2.09	98.61	0.2061	21.2		0.70	3.9	2.73	110.43	0.3015	24.7
	0.45	9.8	2.24	100.36	0.2248	22.3	80	0.01	180.0	0.45	18.38	0.0083	24.4
	0.50	8.3	2.33	104.15	0.2427	22.4		0.05	69.5	0.94	38.60	0.0363	24.3
	0.60	5.8	2.50	111.05	0.2776	22.5		0.10	43.3	1.28	52.14	0.0667	24.5
	0.70	3.9	2.66	116.90	0.3110	22.8		0.20	24.7	1.71	69.27	0.1185	24.6
	0.80	2.4	2.79	141.30	0.3942	19.7		0.30	16.5	2.02	80.81	0.1632	24.9
52	0.01	180.0	0.42	18.56	0.0078	22.6		0.40	11.6	2.25	89.66	0.2017	25.0
	0.05	69.5	0.88	39.38	0.0347	22.3		0.45	9.8	2.35	93.36	0.2194	25.1
	0.10	43.3	1.21	53.57	0.0648	22.6]	0.50	8.3	2.44	96.69	0.2359	25.2
	0.20	24.7	1.63	71.77	0.1170	22.7		0.60	5.8	2.61	105.13	0.2744	24.8
	0.30	16.5	1.94	84.21	0.1634	23.0		0.70	3.9	2.75	107.79	0.2964	25.5

Таблица 1: реузльтаты измерений

В некоторых графиках наблюдаются сильные отклонения нескольких точек - они не вписываются в общий характер зависимости. Поэтому в аппроксимации эти точки не учитывались.

Рисунок 3: график зависимости $R_{\rm H}(Q)$ при температуре $T_1=22^{\rm o}C$

 $Pucyнo\kappa$ 4: график зависимости $R_{\rm n}(Q)$ при температуре $T_2=37^{\rm o}C$

Рисунок 5: график зависимости $R_{\rm n}(Q)$ при температуре $T_3=52^{\rm o}C$

Видно, что графики представляют из себя отражение линейной зваисимости между $R_{\scriptscriptstyle \rm H}$ и Q.

Рисунок 6: график зависимости $R_{\rm n}(Q)$ при температуре $T_3=67^{\rm o}C$

Рисунок 7: график зависимости $R_{\rm n}(Q)$ при температуре $T_3=80^{\rm o}C$

По приведённым выше данным можно найти значения сопротивлений при Q=0 и построить их зависимость от T.

T, K	R, Om
295	20.20
310	21.07
325	22.35
340	23.22
353	24.36

Таблица 2: зависимость сопротивления нити от её температуры

Рисунок 8: график зависимости сопротивления нити от температуры

Экстраполируя график к T=273 К получаем $R_{273}=(19\pm1)$ Ом. Теперь можно найти температурный коэффициент сопротивления материала нити:

$$\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = (3.9 \pm 0.4) \cdot 10^{-3} \text{ K}^{-1}$$

Затем находим отношения $\frac{dQ}{d(\Delta T)}=\frac{dR/dT}{dR/dQ}$ и, используя формулу (2), коэффициенты теплопроводности.

T, K	$\frac{dR}{dQ}, \frac{\mathrm{O}_{\mathrm{M}}}{\mathrm{B}_{\mathrm{T}}}$	$\frac{dQ}{d(\Delta T)}, \frac{\mathrm{B_T}}{\mathrm{K}}$	$\kappa, \frac{B_T}{M \cdot K}$
295	4.85	0.0148	0.029
310	5.41	0.0132	0.026
325	4.20	0.0171	0.034
340	4.97	0.0144	0.028
353	3.95	0.0181	0.036

Tаблица 3: значения $\frac{dR}{dQ}$, $\frac{dQ}{d(\Delta T)}$ и κ для каждого значения температуры

Ниже представлен график зависимости $\kappa(T)$.

Рисунок 9: график зависимости теплопроводности воздуха от температуры

Сложно говорить о какой-либо зависимости.

Расчёт погрешностей

- r_0, r_1, L считаем константами без погрешности
- $\sigma_T = 0.1 \text{ K}$
- $\sigma_{R_{\rm M}}=0.1~{
 m Om}$
- $\sigma_U = 0.01 \text{ B}$
- $\sigma_I = 0.01 \text{ MA}$
- $\sigma_Q = U \cdot \sigma_I + I \cdot \sigma_U \approx 0.01Q$
- $\sigma_{R_{\text{H}}} = \frac{1}{I} \cdot \sigma_U + \frac{U}{I^2} \cdot \sigma_I \approx 0.01 R_{\text{H}}$
- $\sigma_{rac{dR}{dQ}},\ \sigma_R,\ \sigma_{R_{273}}$ и $\sigma_{rac{dR}{dT}}$ определяются программно из метода наименьших квадратов
- $\bullet \ \sigma_{\alpha} = \frac{1}{R_{273}} \cdot \sigma_{\frac{dR}{dT}} + \frac{dR/dT}{R_{273}^2} \cdot \sigma_{R_{273}}$
- $\sigma_{\frac{dQ}{d(\Delta T)}} = \frac{1}{dR/dQ} \cdot \sigma_{\frac{dR}{dT}} + \frac{dR/dT}{(dR/dQ)^2} \cdot \sigma_{\frac{dR}{dQ}} \approx 0.04 \frac{dQ}{d(\Delta T)}$
- $\sigma_{\kappa} = \frac{\ln r_0/r_1}{2\pi L} \cdot \sigma_{\frac{dQ}{d(\Delta T)}} \approx 0.04\kappa$

Вывод

Результат работы противоречивый. С одной стороны, из нагрузочных кривых получили хорошее приближение графика зависимости R(T) к прямой линии, что и ожидалось увидеть (формула (3)), а также совпадение температурного коэффициента сопротивления материала нити в пределах погрешности с табличным значением ($\alpha = (3.9 \pm 0.4) \cdot 10^{-3} \; \mathrm{K}^{-1}$, табличное - $3.729 \cdot 10^{-3} \; \mathrm{K}^{-1}$). С другой стороны, зависимость полученного из этих данных коэффициента теплопроводности от температуры нельзя каким-либо образом охарактеризовать. Проблема кроется в угловых коэффициентах прямых, описывающих зависимость $R_{\rm H}(Q)$. На графиках есть резко выпадающие из общей зависимости точки. После изменения параметров система переходит в стационарное состояние не сразу, а по истечении нескольких десятков секунд. При измерениях значения тока испытывали большие по амплитуде флуктуации, а показания снимали, не дожидаясь установления равновесия. Также мог повлиять набор

сопротивлений - некоторые сопротивления могли отличаться в реальности от тех, которые планировалось устанавливать. Прибор не самый новый: проводящие элементы могли износиться или их химический состав изменился. Стоило дожидаться установления равновесия и провести больше измерений для каждой температуры, чтобы зависимость приняла более уверенный характер.