Übung 11

Ausgabe 21.05.2018

1 Glukose Transport durch eine Zellmembran

Die Aufnahme von Glukose in das Dünndarmepithel wird durch den Na⁺-Ionen Gradienten ermöglicht. Die Konzentration von Na⁺ im Darm ist $c_{\mathrm{Na^+}}^{\mathrm{a}}=140~\mathrm{mmol/L}$, in der Epithelzelle ist die Konzentration von Na⁺ $c_{\mathrm{Na^+}}^{\mathrm{i}}=40~\mathrm{mmol/L}$ und das Membranpotential weist $V_m=-80~\mathrm{mV}$ auf. Die Temperatur im Dünndarm beträgt dabei 37°C .

- 1. Welcher Transporttyp ist der Na⁺/Glukose Transport?
- 2. Berechnen Sie auf Grundlage der freien Enthalpien ΔG das maximale Konzentrationsverhältnis $c_{\rm Gluc}^{\rm i}/c_{\rm Gluc}^{\rm a}$, welches durch dieses Transportsystem überwunden werden kann.
- 3. Berechnen Sie die freie Enthalpie ΔG , die für einen primären aktiven Transport von Glukose in die Epithelzelle erforderlich wäre (Nettoladung der Glukose z=0). Benützen Sie für die Berechnung das maximale Konzentrationsverhältnis $c_{\rm Gluc}^{\rm i}/c_{\rm Gluc}^{\rm a}$, das Sie in Teilaufgabe 2 erhalten haben.
- 4. Berechnen Sie die freie Enthalpie ΔG , die durch den Fluss von Na⁺ in die Zelle zustande kommt.
- 5. In diesem System wäre der Na⁺-Gradient, der für die Aufnahme von Glukose in die Epithelzelle erforderlich ist, schnell zerstört. Wie stellt der Organismus sicher, dass der Na⁺-Gradient konstant bleibt? Wieso wird das in Aufgabenteil 2 berechnete maximale Konzentrationsverhältnis von Glukose nie erreicht?
- 6. Kommt das Membranpotential von $V_{\rm m}=-80~{\rm mV}$ nur durch den Na⁺-Gradienten zustande? Wenn nicht, welche weiteren Ionen beeinflussen das Membranpotential einer Zelle?

2 Michaelis-Menten Enzym Kinetik

Die Carboanhydrase ist ein Enzym, das im menschlichen Stoffwechsel eine wichtige Rolle spielt. Es katalysiert die Hydratisierung von Kohlenstoffdioxid zu Kohlensäure, welche nach folgendem Mechanismus abläuft:

$$CO_2 + H_2O + (E) \rightleftharpoons HCO_3^- + H^+ + (E)$$
.

Die Geschwindigkeitskonstante der nichtenzymatischen Reaktion beträgt $k = 1 \times 10^{-1} \text{s}^{-1}$. In Anwesenheit des Enzyms erhöht sich die effektive Geschwindigkeitskonstante auf $k_{\text{eff}} = 4 \times 10^6 \frac{\text{mol}}{1 \text{s}}$

- Anhand der Einheiten der Geschwindigkeitskonstanten sehen Sie, dass die empirisch gefundenen Reaktionsordnungen unterschiedlich sind. Geben Sie die jeweiligen Reaktionsordnungen an.
- 2. Wieso unterscheiden sich die Reaktionsordnungen? Wieso wird keine Reaktion zweiter Ordnung für die unkatalysierte Reaktion beobachtet, obwohl zwei Reaktanden daran beteiligt sind $(CO_2 + H_2O)$?
- 3. Wie hängt die Reaktionsgeschwindigkeit im enzymkatalysierten Fall allgemein von der Substratkonzentration ab, wenn die Reaktion der Michaelis-Menten-Kinetik gehorcht?
- 4. Unter welcher Voraussetzung folgt daraus die empirisch beobachtete Reaktionsordnung?

De Voe und Kistiakowsky (J. American Chemical Society 83 (1961), 274) studierten die enzymatisch katalisierte Kinetik von CO₂. In dieser Reaktion geht CO₂ in Hydrogenkarbonat über. Dieses wird in den Blutkreislauf transportiert und in den Lungen zu CO₂ umgesetzt. Die folgenden anfänglichen Reaktionsraten für die Hydrolyse von CO₂ wurden bei einer Start-Enzymkonzentration von 3.0 nM bei einer Temperatur von 0.5 °C ermittelt:

Rate $\left[\frac{M}{s}\right]$	$[CO_2]$ $[mM]$
3.2×10^{-5}	3
5.8×10^{-5}	6
1.02×10^{-4}	12
1.98×10^{-4}	48

5. Bestimmen Sie einen Ausdruck für die maximale Reaktionsgeschwindigkeit v_{max} ausgehend von der Michaelis-Menten-Gleichung:

$$v = \frac{k[E][S]}{K_M + [S]}.$$
 (1)

- 6. Linearisieren Sie Gleichung 1. Gehen Sie wie folgt vor: Setzen Sie den Ausdruck für $v_{\rm max}$ wieder in Gleichung 1 ein und bilden Sie den Kehrwert der Gleichung.
- 7. Führen Sie eine lineare Regression durch und bestimmen Sie v_{\max} , die Michaelis-Menten-Konstane $K_{\rm M}$ und die Geschwindigkeitskonstante k.

3 Enzymkinetik und Umsatzraten

Das Enzym Acetylcholinesterase katalysiert die Spaltung von Acetylcholin unter Mithilfe von Wasser in Acetat und Cholin. Die Michaelis-Menten Konstante beträgt dabei $K_{\rm M}=8\cdot 10^{-4}\,\frac{\rm mol}{\rm l}$.

- 1. Die Acetylcholinesterase besitzt eine Molekülmasse von $M=2.7\cdot 10^2$ kDa. Die Aktivität des Enzyms beträgt 10^4 Einheiten pro mg Enzym. Eine Einheit setzt bei Standardbedingungen und Substratsättigung $3.5\,\mu\text{mol}$ Substrat pro Minute um.
 - a) Berechnen sie die Umsatzrate k_{cat} (in Einheiten von [1/s]).
 - b) Wie viel Mol Acetylcholin werden pro Minute und Liter bei $[E]_{tot} = 3.8 \cdot 10^{-4} \frac{g}{l}$ und einer Acetylcholinkonzentration $[S] = 2.2 \cdot 10^{-7} \frac{mol}{l}$ zu Beginn der Reaktion gespalten?
- 2. Ist diese enzymatische Katalysation diffusionskontrolliert?
- 3. Neostigmine ist ein Medikament, welches die Acetylcholinesterase durch Bindung an die Acetylcholinbindungsstelle inhibiert.
 Welche Art von Inhibititor ist Neostigmine und wieso?
- 4. Wie kann man experimentell herausfinden was für ein Inhibitor Neostigmine ist (mit Zeichnung)?