Polynomials

Liam Baker

Stellenbosch Camp 2019 Advanced Algebra

1 What is a polynomial?

A field is a set with well-behaved enough notions of addition, subtraction, multiplication and division, e.g. \mathbb{Q} , \mathbb{R} , \mathbb{C} . \mathbb{Z} is not a field since dividing two nonzero integers does not always yield an integer.

Problem: Show that \mathbb{Z}_p (i.e. the integers modulo a prime number p) is a field.

A ring is a set with well-behaved enough notions of addition, subtraction, and multiplication (not necessarily division), e.g. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . \mathbb{N} is not a ring since we cannot always subtract two natural numbers and expect a positive result.

Problem: Show that \mathbb{Z}_n (i.e. the integers modulo a fixed integer n) is a ring.

Every field is a ring.

A polynomial is an algebraic expression $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where the *coefficients* a_0, a_1, \ldots are in some ring R. The set of all polynomials with coefficients in R and variable x is denoted R[x]; this is itself a ring! But never a field...

The largest n such that the coefficient of x^n is nonzero (i.e. $a_n \neq 0$) is called the *degree* of p, sometimes denoted deg p. a_0 is called the *constant term*, $a_{\deg p}$ is called the *leading term*, and the polynomial with all coefficients equal to zero is called the *zero polynomial*.

A number r such that p(r) = 0 is called a root or zero of p.

- 2 Fundamental Results
- 3 Euclidean Division Algorithm
- 4 Fundamental Theorem of Algebra
- 5 Viète's Formulas
- 6 Problems

1.