

Geodesic Object Proposals

Philipp Krähenbühl Vladlen Koltun

Stanford University Adobe Research http://www.philkr.net/home/gop

Object Proposals

Find a small set of segment proposals that includes all objects in the scene.

Wrong proposals are allowed.

Uses of Object Proposals

Object detection: Replace sliding window

Geodesic Object Proposals

Multiple Proposals

Evaluation Metric

Overlap between two segments A and B

$$\mathcal{J}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Best overlap of ground truth segment O_k

$$b(O_k) = \max_{P} \mathcal{J}(O_k, P)$$

Average Best Overlap (ABO)

$$\frac{1}{N}\sum_{k}b(O_{k})$$

lpha-recall

$$\frac{1}{N}\sum_{k}^{N}[b(O_{k})>\alpha]$$

VOC 2012 Segment Results

Method	# prop.	ABO	50%-recal I	70%-recall	Time
CPMC [2]	646	0.703	0.784	0.609	252s
Baseline GOP	653	0.712	0.833	0.622	0.6s
Learned GOP	652	0.720	0.844	0.632	1.0s
Cat-Ind OP [4]	1536	0.718	0.820	0.624	119s
Baseline GOP	1090	0.727	0.847	0.644	0.65s
Learned GOP	1199	0.741	0.865	0.673	1.1s
Sel Search [6]	4374	0.735	0.891	0.597	2.6s
Baseline GOP	2089	0.744	0.867	0.673	0.9s
Learned GOP	2286	0.756	0.877	0.699	1.4s
Baseline GOP	3958	0.756	0.881	0.699	1.2s
Learned GOP	4186	0.766	0.889	0.715	1.7s

VOC 2012 Bounding Box Results

Volume under Surface (VUS) Score [5]

	\	/	<u>L J</u>
Method	Linear	Log	Time
Objectness [1]	0.323	0.225	2.2s
BING [3]	0.278	0.189	0.003s
Randomized Prim [5]	0.511	0.274	1.1s
Selective search [6]	0.528	0.301	2.6s
GOP	0.546	0.310	0.9s

References

- [1] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the objectness of image windows. *PAMI*, 34(11), 2012.
- [2] João Carreira and Cristian Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. *PAMI*, 34(7), 2012.
- [3] Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In *IEEE CVPR*, 2014.
- [4] Ian Endres and Derek Hoiem. Category-independent object proposals with diverse ranking. *PAMI*, 36(2), 2014.
- [5] Santiago Manén, Matthieu Guillaumin, and Luc Van Gool. Prime object proposals with randomized Prim's algorithm. In ICCV, 2013.
- [6] Jasper R. R. Uijlings, Koen E. A. van de Sande, Theo Gevers, and Arnold W. M. Smeulders. Selective search for object recognition. *IJCV*, 104(2), 2013.