An illustrated guide to processing overlags in the human-listeness data processing pipeline.

i) Chopping up overlapping vocalisations in to mutually exclusive non-overlapping Subvocalistions & temoris overlapping Subvocalisations

Sangle input vocalisation time sosies

Sample onfut vocalisation time series

ii) Computing acoustic estimates for vocahsations composed of verlapping y non-verlapping Sub vicalisations.

Step 1: Estimate % of total vocalisation discation accounted for by each non-overlapping Subvealisation.

	OLP	AN	OLP	AN
Duratin (s)		0.42		0.35
		0·28 d	T	0·23 ΔT
Amplitude (dB)	NA	d_1	NA	d2
' (ab)				

Step 2: Estimate acoustics (amplifiede or frequency) of miginal vocalisation by doing a weighted and age of the acoustics of the constituent non-overlapping park

The fractional devolutions of the two non-overlapping subvicationalisms can be scaled such that they sum to 1. This result in 0.28 AT \$55./and 0.23 AT \$3.45./.

Using these rescaled fractions be approx. amplifule of the original vocalisation is compuled as

d = 0.55d, + 0.45d