ГЛАВА 6. ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ О МЕТРИЧЕСКИХ ПРОСТРАНСТВАХ

Напомним некоторые определения

Опр. Пусть M – некоторое непустое множество. Заданная на $M \times M$ числовая функция $\rho(x,y)$ называется метрикой на M, если она обладает следующими тремя свойствами:

- 1) $\rho(x,y) \ge 0 \quad \forall x,y \in M$, причем $\rho(x,y) = 0 \iff x = y$;
- 2) $\rho(x,y) = (y,x)$ $\forall x,y \in M$;
- 3) $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$ $\forall x,y,z \in M$.

Последнее неравенство называется перавенством треугольника. Величина $\rho(x,y)$ называется расстоянием между элементами x и y. Множество M с введенной на нем метрикой ρ называется метрическим пространством.

Примеры. Метрическими пространствами являются:

- a) любое множество $M \subset \mathbb{R}$ с метрикой $\rho(x,y) = |x-y|$;
 - б) любое множество $M \subset \mathbb{R}^m$ с метрикой $\rho(\mathbf{x}, \mathbf{y}) = |\mathbf{x} \mathbf{y}|;$
 - в) произвольное нормированное пространство с метрикой $\rho(x,y) = ||x-y||;$
- $^{\circ}$ г) множество C[a,b] непрерывных на отрезке [a,b] функций с метрикой

$$\rho(x, y) = \max_{[a,b]} |x(t) - y(t)|;$$

д) множество l_p (где $1\leqslant p<\infty$) всех числовых последовательностей $x=\{x_n\}_{n=1}^\infty,$ для которых $\sum_{n=1}^\infty |x_n|^p<\infty,$ с метрикой

$$\rho(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}, \text{ где } x = \{x_n\}_{n=1}^{\infty}, \quad y = \{y_n\}_{n=1}^{\infty}.$$

где $x = \{x_n\}_{n=1}^{\infty}, y = \{y_n\}_{n=1}^{\infty}.$

е) множество l_{∞} всех ограниченных числовых последовательностей $x=\{x_n\}_{n=1}^{\infty}$ с метрикой

$$\rho(x,y) = \sup_{n \ge 1} |x_n - y_n|.$$

ж) пространство $L_p(E)$, $1\leqslant p\leqslant \infty$ с метрикой

$$\rho(f,g) = ||f - g||_{L_p(E)}.$$

Oпр. Последовательность $\{x_n\}_{n=1}^{\infty}$ элементов метрического пространства M называется cxodsumexcs κ элементу $x \in M$, если $\rho(x_n, x) \to 0$ при $n \to \infty$.

Указанное свойство записывают в виде: $x_n \to x$ (в M) при $n \to \infty$ или $x = \lim_{n \to \infty} x_n$, а элемент x называют пределом последовательности $\{x_n\}_{n=1}^{\infty}$.

Опр. Последовательность $\{x_n\}_{n=1}^{\infty}$ элементов метрического пространства M называется фундаментальной, если для любого $\varepsilon>0$ существует число $N(\varepsilon)>0$ такое, что

$$\rho(x_n, x_m) < \varepsilon \quad \forall n, m > N(\varepsilon).$$

• Опр. Метри ческое пространство M называется nonhum, если в нем всякая фундаментальная последовательность является сходящейся (то есть она сходится к некоторому элементу пространства M).

Примеры. Следующие метрические пространства являются полными:

- а) мн \bullet жеств \bullet \mathbb{R} с \bullet стандартн \bullet й метрик \bullet й;
- б) прulletизвulletльнulletе замкнутulletе мнulletжествullet $M\subset \mathbb{R}^m$ сullet стандартнulletй метрикulletй;
- в) пр \bullet странств \bullet C[a,b];
 - г) пр•странств• l_p , $1 \leqslant p \leqslant \infty$;
 - д) пр•странств• $L_p(E)$, $1 \leqslant p \leqslant \infty$.

1 Непрерывные отображения в метрических пространствах

Опр. Пусть M_1 и M_2 – два метрические пространства и $f:M_1 \to M_2$.

Отображение f непрерывно в точке $x_0 \in M_1$, если для всякого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$ такое, что

$$\rho_2(f(x), f(x_0)) < \varepsilon \quad \forall x \in M_1 : \ \rho_1(x, x_0) < \delta(\varepsilon).$$

Говорят, что отображение f непрерывно на M_1 , если оно непрерывно всех

точках $x \in M_1$.

Теорема 1.1. Отображение f непрерывно в точке $x_0 \in M_1$ тогда и только тогда, когда $f(x_n) \to f(x_0)$ для всякой последовательности $\{x_n\}_{n=1}^{\infty} \subset M_1$ такой, что $x_n \to x_0$.

Доказательство. Пусть f непрерывно в точке x_0 и $x_n \to x_0$. Тогда существует $N(\varepsilon)$ такое, что

$$\rho_1(x_n, x_0) < \delta(\varepsilon) \quad \forall n > N(\varepsilon) \quad \Rightarrow \quad \rho_2(f(x_n), f(x_0)) < \varepsilon \quad \forall n > N(\varepsilon).$$

Пусть теперь $f(x_n) \to f(x_0)$ для всякой последовательности $\{x_n\}_{n=1}^{\infty}$ такой, что $x_n \to x_0$. Предположим, что отображение f не является непрерывным в точке x_0 . Тогда существует $\varepsilon_0 > 0$ такое, что для всякого $n \geqslant 1$ существует $x_n \in M_1$ такое, что

$$\rho(f(x_n), f(x_0)) \geqslant \varepsilon_0 \text{ if } \rho_1(x_n, x_0) < 1/n.$$

Опр. Пусть f — взаимно однозначное отображение M_1 на M_2 . Если отображения f и f^{-1} непрерывны, то отображение f называется гомеоморфизмом, а пространства M_1 и M_2 гомеоморфными.

Важным частным случаем гомеоморфизма является изометрия.

Oпр. Взаимно однозначное отображение M_1 на M_2 называется изометрией, если

$$\rho_2(f(x_1), f(x_2)) = \rho_1(x_1, x_2) \quad \forall x_1, x_2 \in M_1.$$

"При этом пространства M_1 и M_2 называются изометрическими.

Изометрические пространства обладают одинаковыми метрическими свойствами и могут восприниматься как тождественн

• равные.

