Chapter 15

15.1 Eq. (15.15):

$$F_s = \frac{c'}{\gamma H \cos^2 \beta \tan \beta} + \frac{\tan \phi'}{\tan \beta}$$
$$2 = \frac{15}{(15.5)(H)(\cos^2 30)(\tan 30)} + \frac{\tan 20}{\tan 30}$$
$$2 = \frac{2.235}{H} + 0.63$$

H = 1.63 m

15.2 Eq. (15.16):

$$H_{\rm cr} = \frac{c'}{\gamma} \frac{1}{\cos^2 \beta (\tan \beta - \tan \phi')} = \frac{200}{100} \frac{1}{(\cos^2 22)(\tan 22 - \tan 15)} = 17.1 \, \text{ft}$$

15.3
$$\gamma_{sat} = \frac{(1900)(9.81)}{1000} = 18.64 \text{ kN/m}^3$$

$$\gamma' = 18.64 - 9.81 = 8.83 \text{ kN/m}^3$$

Eq. (15.17):

$$F_s = \frac{c'}{\gamma_{\text{sat}} H \cos^2 \beta \tan \beta} + \frac{\gamma'}{\gamma_{\text{sat}}} \frac{\tan \phi'}{\tan \beta} = \frac{18}{(18.64)(8)(\cos 20)^2 (\tan 20)} + \frac{8.83}{18.64} \frac{\tan 25}{\tan 20}$$
$$= 0.376 + 0.607 = 0.98$$

15.4
$$\gamma_{\text{sat}} = \frac{(G_s + e)\gamma_w}{1 + e} = \frac{(2.6 + 0.5)(62.4)}{1 + 0.5} = 128.96 \text{ lb/ft}^3$$

$$\gamma' = 128.96 - 62.4 = 66.56 \text{ lb/ft}^3$$

$$F_s = \frac{c'}{\gamma_{\text{sat}} H \cos^2 \beta \tan \beta} + \frac{\gamma'}{\gamma_{\text{sat}}} \frac{\tan \phi'}{\tan \beta}$$

$$= \frac{600}{(128.96)(25)(\cos^2 20)(\tan 20)} + \frac{66.56}{128.96} \frac{\tan 22}{\tan 20}$$

$$= 0.579 + 0.573 \approx 1.15$$

15.5 Eq. (15.31):

$$H_{\rm cr} = \frac{4c'}{\gamma} \left[\frac{\sin\beta\cos\phi'}{1 - \cos(\beta - \phi')} \right] = \left[\frac{(4)(400)}{115} \right] \left[\frac{(\sin 50)(\cos 25)}{1 - \cos(50 - 25)} \right] = \mathbf{103.1 ft}$$

15.6
$$F_s = 2$$
; $c'_d = \frac{c'}{F_s} = \frac{400}{2} = 200 \text{ lb/ft}^2$; $\phi'_d = \tan^{-1} \left(\frac{\tan 25}{2}\right) = 13.12^\circ$

$$H = \frac{4c'_d}{\gamma} \left[\frac{\sin \beta \cos \phi'_d}{1 - \cos(\beta - \phi'_d)}\right] = \left[\frac{(4)(200)}{115}\right] \left[\frac{(\sin 50)(\cos 13.12)}{1 - \cos(50 - 13.12)}\right] = 25.94 \text{ ft}$$

15.7
$$H = \frac{4c_d'}{\gamma} \left[\frac{\sin \beta \cos \phi_d'}{1 - \cos(\beta - \phi_d')} \right]; \gamma = 115 \text{ lb/ft}^3$$

$F_{s(assumed)}$	$\phi_d' = \tan^{-1} \left(\frac{\tan 15}{F_s} \right)$	$c_d' = \frac{c'}{F_s}$	β	Н
	(deg)	(lb/ft^2)	(deg)	(m)
1.6	9.5	125	50	13.7
1.8	8.47	111	50	11.63
1.76	8.66	113.6	50	12.0

$$F_s \approx 1.76$$

15.8
$$\rho = 1700 \text{ kg/m}^3; \ \gamma = \frac{(1700)(9.81)}{1000} = 16.68 \text{ kN/m}^3; \ c' = 18 \text{ kN/m}^2; \ \phi' = 20^\circ$$

$$\beta = \tan^{-1}\left(\frac{1}{2}\right) = 26.57^\circ; \ F_s = 2; \ c'_d = \frac{c'}{F_s} = \frac{18}{2} = 9 \text{ kN/m}^2$$

$$\phi'_d = \tan^{-1} \left(\frac{\tan \phi'}{F_s} \right) = \tan^{-1} \left(\frac{\tan 20}{2} \right) = 10.31^{\circ}$$

$$H = \frac{4c_d'}{\gamma} \left[\frac{\sin \beta \cos \phi_d'}{1 - \cos(\beta - \phi_d')} \right] = \left[\frac{(4)(9)}{16.68} \right] \left[\frac{(\sin 26.57)(\cos 10.31)}{1 - \cos(26.57 - 10.31)} \right] = \mathbf{23.74} \,\mathbf{m}$$

15.9 $m \approx 0.192$ (From Figure 15.13). Eq. (15.36):

$$H_{\rm cr} = \frac{c_u}{\gamma m} = \frac{30}{(17)(0.192)} =$$
9.19 m - - Toe failure

15.10 $m \approx 0.192$ for $\beta = 60^{\circ}$ (Figure 15.13)

$$c_d = \frac{c_u}{FS_s} = \frac{30}{2} = 15 \text{ kN/m}^2$$

$$H = \frac{c_d}{\gamma m} = \frac{15}{(17)(0.192)} = 4.6 \text{ m}$$

15.11
$$\beta = \tan^{-1} \left[\frac{1}{1} \right] = 45^{\circ}$$
. For $\beta = 45^{\circ}$ and $D = 1.2$, $m = 0.18$ (Figure 15.13).

$$c_d = \frac{c_u}{FS} = \frac{25}{2} = 12.5 \text{ kN/m}^2$$

$$H = \frac{c_d}{\gamma m} = \frac{12.5}{(17)(0.18)} = 3.86 \text{ m}$$

15.12
$$H_{cr} = \frac{c_u}{\gamma m} = \frac{25}{(18)(0.18)} = 7.72 \text{ m.}$$
 It is a **toe circle.**

15.13 a.
$$D = \frac{12}{8.5} = 1.41$$
; $\gamma_{\text{sat}} = 18.5 \text{ kN/m}^3$. For $\beta = 40^\circ$ and $D = 1.41$, $m = 0.175$.

$$H_{\rm cr} = \frac{c_u}{\gamma m}$$
; $c_u = (8.5)(18.5)(0.175) = 27.5 \text{ kN/m}^2$

- b. From Figure 15.13, midpoint circle
- c. From Figure 15.15, $n \approx 0.7$.

Distance =
$$nH = (0.7)(8.5) = 5.95$$
 m

15.14
$$F_s = \frac{c_u}{\gamma H} M$$
. $\beta = 30^\circ$; $H = 16$ m; $c_u = 50$ kN/m².

From Figure 15.19 for $k_h = 0.4$ and D = 1, $M \approx 4$

$$F_s = \frac{50}{(17)(16)}(4) = \mathbf{0.735}$$

15.15
$$F_s = \frac{c_u}{\gamma H} M$$
. $\beta = 60^\circ$; $c_u = 1000 \text{ lb/ft}^2$; $\gamma = 115 \text{ lb/ft}^3$; $H = 50 \text{ ft}$; $k_h = 0.3$.

From Figure 15.20, $M \approx 3$.

$$F_s = \frac{1000}{(115)(50)}(4) =$$
0.57

15.16 a.
$$\beta = \tan^{-1}\left(\frac{1}{2}\right) = 26.57^{\circ}$$

$$\frac{F_s}{\tan \phi'} = \frac{1}{\tan 20} = 2.75$$

From Figure 15.27

$$\frac{c'}{\gamma H_{\rm cr} \tan \phi'} \approx 0.05$$

Or,

$$0.05 = \frac{20}{(16)(H_{cr})(\tan 20)} = 68.7 \text{ m}$$

b.
$$\frac{F_s}{\tan \phi'} = \frac{1}{\tan 25} = 2.14$$
. $\beta = \tan^{-1} \left(\frac{1}{1.5}\right) = 33.7^{\circ}$.

Figure 15.27:

$$\frac{c'}{\gamma H_{cr} \tan \phi'} \approx 0.035; \quad \frac{750}{(110)(H_{cr})(\tan 25)} = 0.035$$

$$H_{\rm cr} = 417.8 \ {\rm ft}$$

15.17
$$\beta = \tan^{-1}\left(\frac{1}{2}\right) = 26.57^{\circ}$$
; $\phi' = 10^{\circ}$; $c' = 700 \text{ lb/ft}^2$; $\gamma = 110 \text{ lb/ft}^3$.

ϕ'_d (deg)	$F_{\phi'} = \frac{\tan \phi'}{\tan \phi_d'}$	m	$c'_d = m\gamma H$ (lb/ft^2)	$F_{c'} = \frac{c'}{c'_d}$
5	2.01	0.098	539	1.30
6	1.68	0.090	495	1.41
8	1.25	0.078	429	1.63
10	1.00	0.064	352	1.99

The plot of $F_{c'}$ vs. $F_{\phi'}$ is shown. From the figure, $F_{c'} = F_{\phi'} = F_s = 1.5$.

15.18 n' = 1; $\phi' = 20^{\circ}$; $c' = 400 \text{ lb/ft}^2$; $\gamma = 115 \text{ lb/ft}^3$; H = 30 ft

ϕ'_d (deg)	$F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}$	m	$c'_d = m\gamma H$ (lb/ft ²)	$F_{c'} = \frac{c'}{c'_d}$
5	4.16	0.133	458.9	0.87
8	2.06	0.105	362.3	1.1
10	1.36	0.080	276.0	1.45
20	1.00	0.058	200.1	2.0

The plot of $F_{c'}$ vs. $F_{\phi'}$ is shown. From the figure, $F_{\phi'} = F_{c'} = F_s \approx 1.36$.

15.19 n' = 2.5; $\beta = \tan^{-1} \left(\frac{1}{2.5} \right) = 21.8^{\circ}$; $\phi' = 12^{\circ}$; $c' = 24 \text{ kN/m}^2$; $\gamma = 16.5 \text{ kN/m}^3$; H = 12 m

ϕ'_d (deg)	$F_{\phi'} = \frac{\tan \phi'}{\tan \phi'_d}$	m	$c_d' = m\gamma H$ (kN/m^2)	$F_{c'} = \frac{c'}{c'_d}$
5	2.43	0.088	17.42	1.38
8	1.51	0.060	11.88	2.02
10	1.21	0.048	9.50	2.53
12	1.00	0.038	7.52	3.19

The plot of $F_{c'}$ vs. $F_{\phi'}$ is shown on the next page.

From the figure, $F_{\phi'} = F_{c'} = F_s = 1.75$.

15.20 a. Refer to the figure.

$$\frac{40}{x} = \sin 30^\circ$$
; $x = 80$ ft

$$\frac{40}{\text{Radius}, R} = \sin 35^\circ; R = \frac{40}{\sin 35} = 69.73 \text{ ft}$$

With radius R = 69.73 ft, the trial surface circle has been drawn.

Now the following table can now be prepared.

		Weight of slice			
Slice	Area of slices	$W_n = A \times \gamma$	α_n	$W_n \cos \alpha_n$	$W_n \sin \alpha_n$
	(ft ²)	(kip/ft)	(deg)	(kip/ft)	(kip/ft)
1	$\frac{(26)(20)}{2} = 260$	29.9	47	20.39	21.86
2	2		32	28.28	17.67
3	$\frac{(20)(32+20)}{2} = 520$	59.8	20	59.19	20.45
4	$\frac{(20)(20)}{2} = 200$	23	5	22.91	2.00
-			•	$\sum 127.77$	Σ61.98

$$F_{s} = \frac{R\theta c' + (\sum W_{n} \cos \alpha_{n}) \tan \phi'}{\sum W_{n} \sin \alpha_{n}}$$

$$= \frac{(69.73) \left[\left(\frac{\pi}{180} \right) (70) \right] (0.4) + (127.77) (\tan 20)}{61.98} = 1.3$$

Note: The accuracy can be increased by increasing the number of slices.

b. As in Part a,
$$\frac{H}{x} = \sin \alpha$$
; $x = \frac{H}{\sin \alpha} = \frac{5}{\sin 30} = 10 \text{ m}$

$$\frac{\left(\frac{x}{2}\right)}{R} = \sin\frac{\theta}{2}, \text{ or } \frac{5}{\sin 40} = R = 7.78 \text{ m}$$

With a radius R = 7.78 m, the trial surface has been drawn.

The following table can now be prepared.

Slice	Area of slices (m ²)	Weight of slice $W_n = A \times \gamma$ (kN/m)	α_n (deg)	$W_n \cos \alpha_n$ (kN/m)	$W_n \sin \alpha_n$ (kN/m)
1	$\frac{(2.6)(1.5)}{2} = 1.95$	33.35	54	19.60	29.98
2	$\frac{(2.6+4.2)(2)}{2} = 6.80$	116.28	38	91.63	71.59
3	$\frac{(4.2+2.8)(2)}{2} = 7.00$	119.70	20	112.48	40.94
4	$\frac{(3)(2.8)}{2} = 4.20$	71.82	6	71.43	7.52
	_			$\Sigma 295.14$	Σ150.02

$$F_s = \frac{R\theta c' + (\sum W_n \cos \alpha_n) \tan \phi'}{\sum W_n \sin \alpha_n}$$

$$= \frac{(7.78) \left[\left(\frac{\pi}{180} \right) (80) \right] (18) + (295.14) (\tan 15)}{150.02} = 1.83$$

Note: The accuracy will improve with smaller slices.

15.21
$$\phi' = 20^{\circ}$$
; $\beta = 26.57^{\circ}$; $r_u = 0.5$; $\frac{c'}{\gamma H} = \frac{300}{(120)(25)} = 0.1$.

Using Table 15.3, the following table can be prepared.

D	m'	n'	$F_s = m' - n' r_u$
Toe circle	1.804	2.101	0.75
1.00	1.841	1.143	1.27
1.25	1.874	1.301	1.22
1.50	2.079	1.528	1.32

$$F_s \approx 0.75$$
.

15.22
$$\phi' = 20^{\circ}$$
; $\beta = 18.43^{\circ}$; $r_u = 0.5$; $\frac{c'}{\gamma H} = \frac{6}{(20)(6)} = 0.05$.

Using Table 15.3, the following table can be prepared.

D	m'	n'	$F_s = m' - n' r_u$
1.00	1.840	1.387	1.15
1.25	1.834	1.493	1.09
1.50	2.011	1.705	1.16

 $F_s \approx 1.09$.

15.23
$$\beta = 20^{\circ}$$
; $\phi' = 15^{\circ}$; $r_u = 0.5$; $\gamma = 17.5 \text{ kN/m}^3$; $c' = 20 \text{ kN/m}^2$; $H = 15 \text{ m}$

$F_{s(assumed)}$	$\frac{c'}{\gamma HF_s}$	ϕ'_d (deg)	$F_{s(\text{calculated})} = \frac{\tan \phi'}{\tan \phi'_d}$
1.2	0.0635	15.5	0.966
1.1	0.0693	14.0	1.075
1.0	0.0762	12.5	1.209
0.9	0.0847	11.5	1.317

From the plot, $F_s = 1.09$.

15.24
$$\beta = \tan^{-1}\left(\frac{1}{3}\right) = 18.43^{\circ}$$
; $\phi' = 25^{\circ}$; $c' = 12 \text{ kN/m}^2$; $\gamma = 19 \text{ kN/m}^3$; $r_u = 0.25$; $H = 12.63 \text{ m}$

$F_{s(assumed)}$	$\frac{c'}{\gamma HF_s}$	ϕ'_d (deg)	$F_{s(\text{calculated})} = \frac{\tan \phi'}{\tan \phi'_d}$
1.7	0.0294	15	1.74
1.8	0.0278	16	1.63
1.9	0.0263	17	1.53

From the graph, $F_s \approx 1.72$.

