

https://spoti.fi/3nOCYMJ

Music for todays challenges!

Scientific Computing

Seminar 3 – Week 3 – Fall 2020

<u>Maja Hanne Kirkeby</u> – Computer Science Ulf Rørbæk Pedersen – Physics

Code-along while loop

- Make the ball move across the screen with the pixel-velocity per timestep and print out the position and the timestep.
- Fill the background with white
- What is the greatest pixel-velocity that does not move the ball?

Goals and To-Do

- Install and run PyCharm
- How does Pygame work:
 - The game loop
 - The coordinate system + Drawing in Pygame
 - User interaction via Pygame
- How to transfer a Scientific Calculation to a Simulation in Pygame?
- How can we ensure "correctness"?

Drawing in Pygames

Normal coordinate system

Challenge - Make the ball move

Open moving_ball.py

- 1. Update the following code so that the current time is updated the the length of the timestep (dt), ball's position (pixels) is updated △ using the velocity (in pixels)
- 2. insert a black background so that it looks like the ball is moving
- 3. what is the greatest velocity that does not move the ball?

Code-along Make the ball jump

- Open moving_ball.py
- 1. The ball's real-world diameter should be converted to pixel the scale.
 - 2. change the convert function to convert from real-world coordinates to pixel coordinates
 - 3. The program should calculate and updates the ball's position, velocity and acceleration in real-world coordinates, # and convert it to a pixel position, such that the ball is drawn on the screen at the correct pixel position.

Events in pygame

Check out

https://www.pygame.org/docs/

https://riptutorial.com/pygame/example/18046/event-loop

Event type	attributes
QUIT	none
KEYDOWN	key, mod, unicode, scancode
KEYUP	key, mod
MOUSEMOTION	pos, rel, buttons
MOUSEBUTTONUP	pos, button
MOUSEBUTTONDOWN	pos, button

if pygame.event == pygame.QUIT :
pyឧស្សារ ក្រុម pygame.KEYDOWN

Pygame constant	Description
K_SPACE	space
K_RETURN	return
K_UP	arrow up
K_DOWN	arrow down
K_a	a

Pair-programming

- 1. Open waiting_ball.py, and change the program so that:
- 2. The program stops when 'q' is pressed
- 3. If spacebar is pressed the ball should stop/start moving, i.e., moving_ball should change between True and False
- 4. user should be able to move the ball up and down using arrows (when it doesn't move)
- 5. if mouse button is pressed, the ball should be moved to the mouse position

Goals and To-Do

- Install and run PyCharm
 - How does Pygame work:
 - The game loop
 - The coordinate system + Drawing in Pygame
 - User interaction via Pygame
 - How to transfer a Scientific Calculation to a Simulation in Pygame?
 - How can we ensure "correctness"?

Goal

```
houncinghall ny 🗴 👙 intro hall gif 🗴 🎜 houncing hall ny 🗡 🚜 hh nygamee2 ny 🗴 🧸 hh nygame
                              pythonProject - bb1_run.py
        bb1_run.py × 🐉 bb_2.py × 🐉 bb_3.py × 🐉 three_balls_gravity.py × 🐉 particle_col
             pygame.draw.line(screen, red, (@ * scl,int(i * y_grid * scl))
         #if (s < steps):</pre>
         # Save durrent time and positions into lists
         tlist[s] = t
         xlist[s] = x
         ylist[s] = y
         vxlist[s] = vx
         vylist[s] = vy
         # draw ball
         #screen.blit(image, convert(x, y))
    # screen.blit(image, convert(0.5, 0.8))
         pygame.draw.circle(screen, red, convert(x, y), 20)
         # test insert a ball
         # Apply gravitational acceleration
         vy = vy - g * dt
      while (run and s < steps)
ing/E2020 Scientific Computing/env/bin/python" "/Users/majaht/Dropbox/2020/l
```


