Text Classification & Naive Bayes

Chapter 13 - IIR

Quick Intro

A text classification task: Email spam filtering

How would you proceed to decide whether this text is spam or ham?

Text Classification: a (more) formal definition

Given:

- A document space X
 - Documents are represented in this space typically some type of high-dimensional space.
- A fixed set of classes $C = \{c_1, c_2, \dots, c_1\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. nonspam).
- A training set D of labeled documents.
 - Each labeled document $(d, c) \in X \times C$

Using a learning method or **learning algorithm**, we then wish to learn a **classifier f** that maps documents to classes:

Text Classification: Inference

- Given a representation for a document $d \in X$, determine the most appropriate class using the learnt function f
- In other words C = f(d)

An example: Topic Classification

An example: Sentiment Analysis

An example: Misinformation Classification

An example: Automatic Summarization

An example: Language Detection

An example: Question Detection

An example: Vertical Selection

VS.

Some Text Classification Methods

Rule Based

- E.g., Google Alerts is rule-based classification.
- There are IDE-type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is cumbersome and expensive.

Statistical Modeling

- This was our definition of the classification problem text classification as a learning problem
 - (i) Supervised learning of a classification function f and
 - o (ii) application of **f** to classifying new documents
- We will look at two methods for doing this: Naive Bayes and SVMs
- No free lunch: requires hand-classified training data
 - But this manual classification can be done by non-experts.

Naïve Bayes

What is a Naïve Bayes Classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- n_d is the length of the document. (number of tokens)
- P(t_k | c) is the conditional probability of term t_k occurring in a document of class c
- P(t_k | c) as a measure of how much evidence tk contributes that c is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the c with highest P(c).

Maximum A Posteriori (MAP) Classifier

- Our goal in Naive Bayes classification is to find the "best" class.
- The best class is the most likely or Maximum A Posteriori (MAP) class c_{map}:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \hat{P}(c|d) = rg \max_{c \in \mathbb{C}} \hat{P}(c) \prod_{1 \le k \le n_d} \hat{P}(t_k|c)$$

Actually...

- Multiplying lots of small probabilities can result in floating point underflow.
- Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying probabilities.
- Since log is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \ [\log \hat{P}(c) + \sum_{1 \le k \le n_d} \log \hat{P}(t_k|c)]$$

Summarizing: Naïve Bayes Classifier

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c) \right]$$

- Each conditional parameter log P(t, | c) is a weight that
- indicates how good an indicator t_k is for c.
- The prior log P(c) is a weight that indicates the relative frequency of c.
- The sum of log prior and term weights is then a measure of
- how much evidence there is for the document being in the class.
- We select the class with the most evidence.

Parameter Estimation: MLE

- Estimate parameters P(c) and P(t_k | c) from train data: How?
- Prior: $P(c) = N_c / N$
 - N_c: number of docs in class c; N: total number of docs
- Conditional probabilities:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

- T_{ct} is the number of tokens of t in training documents from class c (includes multiple occurrences)
- We've made a Naive Bayes independence assumption here: $P(t_k \mid c) = P(t_k \mid c)$, independent of position.

How to deal with zeros?

$$P(China|d) \propto P(China) \cdot P(Beijing|China) \cdot P(And|China) \cdot P(Taipei|China) \cdot P(Join|China) \cdot P(WTO|China)$$

We will get P(China|d) = 0 for any document that contains WTO!

er occurs in class China in the train set:

$$\hat{P}(\text{WTO}|\textit{China}) = \frac{T_{\textit{China}}, \text{WTO}}{\sum_{t' \in \textit{V}} T_{\textit{China},t'}} = \frac{0}{\sum_{t' \in \textit{V}} T_{\textit{China},t'}} = 0$$

Add Smoothing

Before:

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T_{ct'}}$$

Now: Add one to each count to avoid zeros:

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

B is the number of bins – in this case the number of different words or the size
 of the vocabulary |V | = M

SAPIEN

Naïve Bayes: Summary

- Estimate parameters from the training corpus using add-one smoothing
- For a new document, for each class, compute sum of (i) log of prior and (ii) logs of conditional probabilities of the terms
- Assign the document to the class with the largest score

Naïve Bayes: Training

```
TRAINMULTINOMIALNB(\mathbb{C}, \mathbb{D})
  1 V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
       do N_c \leftarrow \text{CountDocsInClass}(\mathbb{D}, c)
            prior[c] \leftarrow N_c/N
            text_c \leftarrow \text{ConcatenateTextOfAllDocsInClass}(\mathbb{D}, c)
            for each t \in V
            do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
            for each t \in V
            do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
 10
       return V, prior, condprob
```

Naïve Bayes: Testing

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)
   W \leftarrow \text{ExtractTokensFromDoc}(V, d)
2 for each c \in \mathbb{C}
3 do score[c] \leftarrow log prior[c]
         for each t \in W
        do score[c] + = log condprob[t][c]
    return arg max_{c \in \mathbb{C}} score[c]
6
```


Exercise: Parameter Estimation

	docID	words in document	in $c = China$?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B}$$

(B is the number of bins – in this case the number of different words or the size of the vocabulary |V| = M)

$$c_{\mathsf{map}} = rg \max_{c \in \mathbb{C}} \ [\hat{P}(c) \cdot \prod_{1 \leq k \leq n_d} \hat{P}(t_k | c)]$$

Solution

Priors: $\hat{P}(c) = 3/4$ and $\hat{P}(\overline{c}) = 1/4$ Conditional probabilities:

$$\hat{P}(\text{Chinese}|c) = (5+1)/(8+6) = 6/14 = 3/7$$
 $\hat{P}(\text{Tokyo}|c) = \hat{P}(\text{Japan}|c) = (0+1)/(8+6) = 1/14$
 $\hat{P}(\text{Chinese}|\overline{c}) = (1+1)/(3+6) = 2/9$
 $\hat{P}(\text{Tokyo}|\overline{c}) = \hat{P}(\text{Japan}|\overline{c}) = (1+1)/(3+6) = 2/9$

The denominators are (8+6) and (3+6) because the lengths of $text_c$ and $text_{\overline{c}}$ are 8 and 3, respectively, and because the constant B is 6 as the vocabulary consists of six terms.

Solution

$$\hat{P}(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003$$

 $\hat{P}(\overline{c}|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001$

Thus, the classifier assigns the test document to c = China. The reason for this classification decision is that the three occurrences of the positive indicator Chinese in d_5 outweigh the occurrences of the two negative indicators Japan and Tokyo.

Implementing NB

- NB from scratch
- Using scikit-learn

Naïve Bayes: Computational Complexity

mode	time complexity
training	$\Theta(\mathbb{D} L_{ave} + \mathbb{C} V)$
testing	$\Theta(L_{a} + \mathbb{C} M_{a}) = \Theta(\mathbb{C} M_{a})$

- L_{ave}: average length of a training doc, L_a: length of the test doc, M_a: number of distinct terms in the test doc, D: training set, V: vocabulary, C: set of classes
- $\Theta(|\mathbf{D}|\mathbf{L}_{ave})$ is the time it takes to compute all counts.
- $\Theta(|C||V|)$ is the time it takes to compute the parameters from the counts.
- Generally: $|C||V| < |D|L_{ave}$
- Test time is also linear (in the length of the test document).
- Thus: Naive Bayes is linear in the size of the training set
- (training) and the test document (testing). This is optimal.

Theoretical Analysis of Naïve Bayes

Properties of NB

- Now we want to gain a better understanding of the properties of Naive Bayes.
- We will formally derive the classification rule . . .
- . . . and make our assumptions explicit.

Derivation of NB

We want to find the class that is most likely given the document:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} P(c|d)$$

Apply Bayes rule P(c|d) = (1/P(d)) * P(d|c)P(c)

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg\,max}} \ \frac{P(d|c)P(c)}{P(d)}$$

Drop denominator since P(d) is the same for all classes:

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg \, max}} \ P(d|c)P(c)$$

Data sparsity

$$c_{\mathsf{map}} = \underset{c \in \mathbb{C}}{\mathsf{arg \, max}} \ P(d|c)P(c)$$

$$= \underset{c \in \mathbb{C}}{\mathsf{arg \, max}} \ P(\langle t_1, \dots, t_k, \dots, t_{n_d} \rangle | c)P(c)$$

- There are too many parameters $P(\langle t_1, ..., t_k, ..., t_n \rangle | c)$, one for each unique combination of a class and a sequence of words.
- We would need a very, very large number of training examples to estimate that many parameters.
- This is the problem of data sparseness.

NB: conditional independence assumption

 To reduce the number of parameters to a manageable size, we make the Naive Bayes conditional independence assumption:

$$P(d|c) = P(\langle t_1, \ldots, t_{n_d} \rangle | c) = \prod_{1 \leq k \leq n_d} P(X_k = t_k | c)$$

• We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_k = t_k | c)$. Recall from earlier the estimates for these conditional probabilities:

$$\hat{P}(t|c) = rac{T_{ct}+1}{(\sum_{t'\in V} T_{ct'})+B}$$

NB as a Generative Model

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- Generate a class with probability P(c)
- Generate each of the words (in their respective positions), conditional on the class, but independent of each other, with probability $P(t_k|c)$
- To classify docs, we "reengineer" this process and find the class that is most likely to have generated the doc.

Naïve Bayes: The Second Independence Assumption

- $\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$
- For example, for a document in the class UK, the probability of generating queen in the first position of the document is the same as generating it in the last position.
- The two independence assumptions amount to the bag of words model.

Bernoulli NB

Gaussian NB

$$P(c|d) \propto P(c) \prod_{1 \leq k \leq n_d} P(t_k|c)$$

- Each $P(t_k|c) \sim N(m, s)$
 - Normally distributed with parameter m and s estimated on the training set

Violations of the Independence Assumptions

Conditional independence:

$$\bigcap P(\langle t_1,\ldots,t_{n_d}\rangle|c) = \prod_{1\leq k\leq n} P(X_k = t_k|c)$$

Positional independence:

$$\hat{P}(X_{k_1} = t|c) = \hat{P}(X_{k_2} = t|c)$$

- The independence assumptions do not really hold of documents written in natural language.
- Exercise
 - Examples for why conditional independence assumption is not really true?
 - Examples for why positional independence assumption is not really true?
- How can Naive Bayes work if it makes such inappropriate assumptions?

Why does NB work?

- Naive Bayes can work well even though conditional independence assumptions are badly violated.
- Example:

	c_1	<i>c</i> ₂	class selected	
true probability $P(c d)$		0.4	<i>c</i> ₁	
$\hat{P}(c)\prod_{1\leq k\leq n_{d_k}}\hat{P}(t_k c)$	0.00099	0.00001		
NB estimate $\hat{P}(c d)$	0.99	0.01	<i>c</i> ₁	

- Double counting of evidence causes underestimation (0.01) and overestimation (0.99).
- Classification is about predicting the correct class and not about accurately estimating probabilities.
- Naive Bayes is terrible for correct estimation . . .
 - o but if often performs well at accurate prediction (choosing the correct class).

NB is it so Naive?

- Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)
- More robust to nonrelevant features than some more complex learning methods
- More robust to concept drift (changing of definition of class over time) than some more complex learning methods
- Better than methods like decision trees when we have many equally important features
- A good dependable baseline for text classification (but not the best)
- Optimal if independence assumptions hold (never true for text, but true for some domains)
- Very fast
- Low storage requirements

Evaluation

Reuters Collection

The Reuters Collection

symbol	statistic	value
N	documents	800,000
L	avg. $\#$ word tokens per document	200
М	word types	400,000

type of class	number	examples
region	366	UK, China
industry	870	poultry, coffee
subject area	126	elections, sports

An example of a Reuters Document

Evaluating Classification

- Evaluation must be done on test data that are independent of the training data, i.e., training and test sets are disjoint.
- It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
- Measures: Precision, recall, F₁, classification accuracy

The Conf

Type I error (false positive)

Type II error (false negative)

Acti

F₁ Measure

• F1 allows us to trade off precision against recall.

$$F_1 = \frac{1}{\frac{1}{2}\frac{1}{P} + \frac{1}{2}\frac{1}{R}} = \frac{2PR}{P + R}$$

• This is the harmonic mean of P and R: $\frac{1}{F} = \frac{1}{2}(\frac{1}{P} + \frac{1}{R})$

Averaging: Micro vs. Macro

- We now have an evaluation measure (F₁) for one class.
- But we also want a single number that measures the aggregate performance over all classes in the collection.
- Macroaveraging
 - Compute F₁ for each of the C classes
 - Average these C numbers
- Microaveraging
 - o Compute TP, FP, FN for each of the C classes
 - Sum these C numbers (e.g., all TP to get aggregate TP)
 - Compute F1 for aggregate TP, FP, FN

Takeaway Messages

- Text classification: definition & relevance to information retrieval
- Naive Bayes: simple baseline text classifier
- Theory: derivation of Naive Bayes classification rule & analysis
- Evaluation of text classification: how do we know it worked / didn't work?

