A NEW INVARIANT AND DECOMPOSITIONS OF MANIFOLDS

EIJI OGASA

ABSTRACT. We introduce a new invariant of manifolds associated with a kind of decompositions of manifolds.

1. A PROBLEM

In order to state our problem, we prepare a definition.

Definition 1.1. Let M (resp. N) be an m-dimensional smooth connected compact manifold with boundary. Let $\partial M = \coprod X_i$ and $\partial N = \coprod Y_i$, where \coprod denotes a disjoint union of manifolds. Let X_i (resp. Y_i) be connected. A boundary union $M \cup_{\partial} N$ is an m-manifold which is a union $M \cup N$ with the following properties: Let $p \in M \cap N$. Then we have:

- (1) $p \in \partial M$ and $p \in \partial N$. Hence there is one and only one boundary component X_{σ} (resp. Y_{τ}) of M (resp. N) which includes the point p.
- (2) X_{σ} is diffeomorphic to Y_{τ} . We identify X_{σ} with Y_{τ} when we making $M \cup_{\partial} N$. (Note that, in the oriented manifold case, both M and N are oriented and we let the orientations be compatible.)

Note that we do not assume how many components $M \cap N$ has.

Note that not all unions $M \cup N$ are boundary unions.

Let ρ be an integer ≥ 2 . Suppose that a boundary union L' of ρ manifolds $L_1, ..., L_{\rho}$ is defined. Then a boundary union of a manifold $L_{\rho+1}$ and L' is said to be a boundary union of $(\rho + 1)$ manifolds $L_1, ..., L_{\rho+1}$, be denoted by $(\cup_{\partial})_{i=1}^{\rho+1} L_i$. We say that M is a boundary union of one connected manifold M.

We state our problem.

Problem 1.2. Let m be a nonnegative integer. Is there a finite set S of oriented compact connected manifolds with the following property (\star) ?

Differential Topology .

Keywords: decomposition of manifolds, a new invariant $\nu(M)$, boundary union. MSC2000 57N10, 57N13, 57N15.

(*) An arbitrary compact connected m-manifold M with boundary is a boundary union of finite numbers of manifolds each of which is an element of S.

We can consider the case where M is oriented. We can also do the case where the diffeomorphism type (resp. the homeomorphism type) of ∂M is restricted. We may do other cases.

It is trivial that the answer is affirmative if $m \leq 2$. String theory uses the fact that the m = 2 case has the affirmative answer, discussing the world sheet (see e.g. [1, 3]).

At least, to the author, a motivation of this paper is the following: In QFT, each Feynman diagram is made by the given fundamental parts. In string theory a world sheet (so to say, 2-dimensional Feynman diagram) is decomposed into a finite number of 2-manifolds as stated above. In M-theory we may need high dimensional Feynman diagrams (see P. 607, 608 of [5] and see [1, 3]etc.). Considering high dimensional Feynman diagrams, we need to research a kind of decomposition of manifolds, e.g. in Problem 1.2.

In §6 we prove that the answer to Problem 1.2 is negative if $m \ge 3$ and if each element of S has more than three connected boundary components.

2. A NEW INVARIANT

We introduce a new invariant in order to discuss the $m \ge 3$ case of Problem 1.2.

Definition 2.1. Let M be an m-dimensional smooth connected compact manifold with boundary. Take a handle decomposition $A \times [0,1] \cup \text{(handles)}$ of M. Here, we recall the following. (See [2, 4] for handle decompositions.)

- (1) The manifold A is a closed (m-1)-manifold $\subset \partial M$. The manifold A may be ∂M . The manifold A may not be ∂M . We may have $A = \phi$.
- (2) The manifold A may not be connected.
- (3) There may be no handle (then $M = A \times [0, 1]$). If handles are attached to $A \times [0, 1]$, all handles are attached to $A \times \{1\}$ not to $A \times \{0\}$.

Let $\mathcal{H}(M,A)$ denote this handle decomposition. An ordered handle decomposition $\mathcal{H}_O(M,A)$ consists of

- (1) a handle decomposition $\mathcal{H}(M,A)$ of M, and
- (2) an order of the handles h in $\mathcal{H}(M,A)$: If we give an order to the handles, let handles be called $h(\xi)$ ($\xi = 1, 2, 3, ... \delta$). The order satisfies the following: Let μ be a natural number $\leq \delta$. Let $(M,A)_{\mu} = \bigcup_{j=1}^{j=\mu} h(j) \subset M$. Then $\bigcup_{j=1}^{j=\mu} h(j)$ is a handle decomposition of $(M,A)_{\mu}$. (We sometimes abbreviate $(M,A)_{\mu}$ to M_{μ} .)

(Note: if $\mu = 0$, then suppose $M_{\mu} = A \times [0, 1]$).

Take an ordered handle decomposition $\mathcal{H}_O(M, A)$.

Let $\partial M_{\mu} - A \times \{0\} = E_{\mu 1} \coprod ... \coprod E_{\mu \xi_{\mu}}$, where each $E_{\mu i}$ is a connected closed manifold. Let $e_{\mu}(\mathcal{H}_{O}(M, A))$ be the maximum of $\Sigma_{*=0}^{*=m-1} \dim H_{*}(E_{\mu i}; \mathbb{R})$ for $i \in \{1, ..., \xi_{\mu}\}$. We sometimes abbreviate $e_{\mu}(\mathcal{H}_{O}(M, A))$ to e_{μ} .

Let $\nu(\mathcal{H}_O(M, A))$ be the maximum of $\{e_1, ..., e_{\delta}\}$. Note that $\nu(\mathcal{H}_O(M, A))$ is the maximum of $\sum_{*=0}^{*=m-1} \dim H_*(E_{\mu i}; \mathbb{R})$ for all i, μ .

Let $\nu(M, A)$ be the minimum of $\nu(\mathcal{H}_O(M, A))$ for all ordered handle decompositions $\mathcal{H}_O(M, A)$.

Let $\nu(M)$ be the maximum of $\nu(M, A)$ for all A.

Note. By the definition, $\nu(M)$ is an invariant of diffeomorphism type of M. If we consider $\nu(M)$ for all smooth structures on M, we get an invariant of homeomorphism type of M.

Note. $\Sigma_{*=0}^{*=m-1} \dim H_*(E_{\mu i}; \mathbb{R})$ is not the Euler number of $E_{\mu i}$. Their definitions are different.

Theorem 2.2. Let M and N be m-dimensional compact connected manifolds with boundary. Let $M \cup_{\partial} N$ be a boundary union of M and N. Then we have

$$0 \le \nu(M \cup_{\partial} N) \le \max(\nu(M), \nu(N)).$$

By the induction, we have a corollary.

Corollary 2.3. Let $L_1, ..., L_\rho$ be m-dimensional compact connected manifolds with boundary. Let $\bigcup_{\partial_i=1}^{\rho} L_i$ be a boundary union of $L_1, ..., L_\rho$. Then we have

$$0 \leq \nu((\cup_{\partial})_{i=1}^{\rho} L_i) \leq \max(\nu(L_1), ..., \nu(L_{\rho})).$$

Claim 2.4. The answer to the $m \ge 3$ case of Problem 1.2 is negative if the following Problem 2.5 has the affirmative answer.

Problem 2.5. Let m be an integer ≥ 3 . Suppose that there is an m-dimensional compact connected manifold X. Take any natural number N. Then is there an m-dimensional compact connected manifold M such that $\partial M = \partial X$ and that

$$\nu(M) \ge N$$
?

In particular, consider the $\partial X = \phi$ case.

Note. If we do not fix the diffeomorphism type of ∂M , it is easy to prove that there are manifolds M such that $\nu(M) \geq N$. Because: Examples are manifolds M made from one 0-handle h^0 and N' copies of h^1 , where $N' \geq N$.

3. Proof of Theorem 2.2 and Claim 2.4

Proof of Theorem 2.2. By the definition of $\nu(M \cup_{\partial} N)$, there is an (m-1)-manifold P such that

 $\nu(M \cup_{\partial} N) = \nu(M \cup_{\partial} N, P).$ —-[1]

Let $A = P \cap M$. Let $B = P \cap N$. Let $C = M \cap N$.

Suppose that an ordered handle decomposition $\mathcal{H}_O(M,A)$ gives $\nu(M,A)$. Hence $\nu(M, A) = \nu(\mathcal{H}_O(M, A)).$ —-[2]

Let $\mathcal{H}_O(M,A)$ consist of ordered handles $h(1),...,h(\alpha)$.

Suppose that an ordered handle decomposition $\mathcal{H}_O(N, B \coprod C)$ gives $\nu(N, B \coprod C)$. Hence $\nu(N, B \coprod C) = \nu(\mathcal{H}_O(N, B \coprod C)). - [3]$

Let $\mathcal{H}_O(N, B \coprod C)$ consist of ordered handles $k(1), ..., k(\beta)$.

Let $\mathcal{H}_O(M \cup_{\partial} N, P)$ be an ordered handle decomposition to consist of $l(1), ..., l(\alpha + \beta)$, where the restriction of $\mathcal{H}_O(M \cup_{\partial} N, P)$ to $\left\{ \begin{array}{l} (M, A) \\ (N, B \coprod C) \end{array} \right.$ is $\left\{ \begin{array}{l} \mathcal{H}_O(M, A) \\ \mathcal{H}_O(N, B \coprod C). \end{array} \right.$ is, we have an ordered handle decomposition

Here, note that $l(i) = h(i)(i = 1, ..., \alpha)$, and that $l(j) = k(j + \alpha)(j = 1, ..., \beta)$.

Recall $e_{\mu}(\mathcal{H}_{O}(,))$ in Definition 2.1.

If $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = e_{\mu}(\mathcal{H}_O(M \cup_{\partial} N, P)) \ (\alpha + 1 \leq \mu \leq \beta)$, then

 $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = \nu(\mathcal{H}_O(N, B \coprod C)). \quad ---[4]$

Let $B = B_1 \coprod ... \coprod B_{\zeta}$, where B_i is a closed connected manifold.

If $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = e_{\mu}(\mathcal{H}_O(M \cup_{\partial} N, P)) \ (\mu \leq \alpha),$ $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = \max\{\nu(\mathcal{H}_O(M, A)), \Sigma_{*=0}^{*=m-1} \dim H_*(B_j; \mathbb{R})\} \text{ for all } j.$ Hence

 $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = \nu(\mathcal{H}_O(M, A)) - - [5]$

 $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = \sum_{*=0}^{*=m-1} \dim H_*(B_j; \mathbb{R}) \text{ for an integer } j. \text{ ----}[6]$

Let $C = C_1 \coprod ... \coprod C_{\eta}$, where C_i is a closed connected manifold. Note that

 $e_0(\mathcal{H}_O(N, B \coprod C)) = \max\{\sum_{*=0}^{*=m-1} \dim H_*(B_j; \mathbb{R}), \sum_{*=0}^{*=m-1} \dim H_*(C_i; \mathbb{R})\} \text{ for all } i, j.$ Hence, in the [6] case,

 $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) \leq e_0(\mathcal{H}_O(N, B \coprod C)).$

By the definition of $\nu(\mathcal{H}_O(N, B \coprod C))$,

 $e_0(\mathcal{H}_O(N, B \coprod C)) \leq \nu(\mathcal{H}_O(N, B \coprod C)).$

Hence

 $\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) \leq \nu(\mathcal{H}_O(N, B \coprod C)).$ —-[7]

Note that, in the [6] case, by the above discussion,

 $\nu(\mathcal{H}_O(N, B \coprod C)) = \nu(\mathcal{H}_O(M \cup_{\partial} N, P)) = \sum_{*=0}^{*=m-1} \dim H_*(B_j; \mathbb{R}) \text{ for the integer } j.$ Since [4], [5], or [7] holds,

```
\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) \leqq \max\{\nu(\mathcal{H}_O(M, A)), \nu(\mathcal{H}_O(N, B \coprod C))\}. \longrightarrow [8]
By [2], [3], and [8],
\nu(\mathcal{H}_O(M \cup_{\partial} N, P)) \leqq \max\{\nu(M, A), \nu(N, B \coprod C)\}. \longrightarrow [9]
By the definition of \nu(M \cup_{\partial} N, P),
\nu(M \cup_{\partial} N, P) \leqq \nu(\mathcal{H}_O(M \cup_{\partial} N, P)). \longrightarrow [10]
By [9] and [10],
\nu(M \cup_{\partial} N, P) \leqq \max\{\nu(M, A), \nu(N, B \coprod C)\}. \longrightarrow [11]
By [1] and [11]
\nu(M \cup_{\partial} N) \leqq \max\{\nu(M, A), \nu(N, B \coprod C)\}. \longrightarrow [12]
By the definition of \nu(M) and \nu(N), we have
\nu(M, A) \leqq \nu(M), and \nu(N, B \coprod C) \leqq \nu(N).
\longrightarrow [13]
By [12] and [13],
\nu(M \cup_{\partial} N) \leqq \max\{\nu(M), \nu(N)\}.
By the definition of \nu(M), \nu(M).
```

Proof of Claim 2.4. We suppose the following assumption and we deduce a contradiction.

Assumption: we have the affirmative answer to Problem 1.2.

This completes the proof.

By the above assumption there is a finite set $S = \{S_1, ..., S_s\}$ such that an arbitrary compact m-manifold M is a boundary union of some copies of $S_i (i = 1, ..., s)$. By Corollary 2.3, $\nu(M) \leq \max\{\nu(S_1), ..., \nu(S_s)\}$.

If Problem 2.5 has the affirmative answer, then there is a compact m-manifold M such that $\nu(M) > \max\{\nu(S_1), ..., \nu(S_s)\}$.

We arrived at a contradiction. Hence Claim 2.4 is true.

4. Some results on our new invariant

Let $M \neq \phi$. Let $m \geq 3$. Let M be a smooth closed oriented connected m-manifold. By the definition, $\nu(M) \geq 2$. We prove:

Theorem 4.1. Let S^m be diffeomorphic to the standard sphere. Then $\nu(S^m) = 2$.

Proof of Theorem 4.1. There is an ordered handle decomposition $\mathcal{H}_O = h(1) \cup h(2)$ such that $h(1) = h^0$ $h(1) = h^m$. Then $\nu(\mathcal{H}_O) = 2$. Hence $\nu(M) \leq 2$. By the definition, $\nu(M) \geq 2$ for any M. Hence $\nu(S^m) = 2$.

Note. Furthermore, we have the following: if M has a handle decomposition $h^0 \cup h^m$, then $\nu(\mathcal{H}) = 2$.

It is natural to ask the following: Suppose M is a closed oriented manifold. Then does $\nu(M) = 2$ implies that M is PL homeomorphic to S^m ?

We have the following theorems to this question.

Theorem 4.2. Let $m \neq 4k (m \in \mathbb{N}, k \in \mathbb{N})$. Let M be an m-dimensional connected closed oriented manifold. Suppose $\nu(M)=2$. Then M has a handle decomposition $h^0 \cup h^m$.

Theorem 4.3. Let $m = 4k (k \in \mathbb{N})$. Then there is an m-dimensional connected closed oriented manifold M such that $\nu(M) = 2$ and that there is an integer * such that $H_*(M;\mathbb{R})$ is NOT $H_*(S^m; \mathbb{R})$.

Proof of Theorem 4.2. There is an ordered handle decomposition \mathcal{H}_O such that $\nu(\mathcal{H}_O)=2.$

There is an integer μ such that

 $M_{\mu} = (h^0 \cup h^p) \coprod (l\text{-copies of } h^0)$, where $l \in \{0\} \cup \mathbb{N}$. We suppose that $m-1 \geq p \geq 1$ and we deduce a contradiction.

Let $X = h^0 \cup h^p$. Then $H_*(X; \mathbb{R}) \cong H_*(S^p; \mathbb{R})$. By Poincaré duality and the universal coefficient theorem, $H_*(X; \mathbb{R}) \cong H_{m-*}(X, \partial X; \mathbb{R})$.

Since $\nu(\mathcal{H}_O) = 2$, $H_*(\partial X; \mathbb{R}) \cong H_*(S^{m-1}; \mathbb{R})$.

Hence we have the following.

$$H_*(X;\mathbb{R}) \cong \left\{ \begin{array}{l} \mathbb{R} & \text{if } * = 0, p \\ 0 & \text{if } * \neq 0, p. \end{array} \right.$$

$$H_*(X, \partial X; \mathbb{R}) \cong \left\{ \begin{array}{l} \mathbb{R} & \text{if } * = m, m - p \\ 0 & \text{if } * \neq m, m - p. \end{array} \right.$$

$$H_*(\partial X; \mathbb{R}) \cong \left\{ \begin{array}{l} \mathbb{R} & \text{if } * = m - 1, 0 \\ 0 & \text{if } * \neq m - 1, 0. \end{array} \right.$$

Suppose p=1. Then $\partial X=S^1\times S^{m-2}$. Then $\Sigma_{*=0}^{*=m-1}\mathrm{dim}H_*(\partial X;\mathbb{R})=4$. Hence $\nu(M) \neq 2$. We arrived at a contradiction. Hence $p \neq 1$. Hence $H_1(X;\mathbb{R}) \cong 0$.

Consider the Mayer-Vietoris exact sequence:

 $H_*(\partial X; \mathbb{R}) \to H_*(X; \mathbb{R}) \to H_*(X, \partial X; \mathbb{R}).$

By this exact sequence and $H_1(X;\mathbb{R}) \cong 0$, we have $H_1(X,\partial X;\mathbb{R}) \cong 0$. Hence $m-p \neq 1$. Hence $p \neq m-1$. Hence $p \leq m-2$.

By this exact sequence, $H_*(\partial X;\mathbb{R}) \cong H_*(S^{m-1};\mathbb{R})$, and $p \leq m-2$, we have that the homomorphism $H_p(X;\mathbb{R}) \to H_p(X,\partial X;\mathbb{R})$ in the above exact sequence is an isomorphism. Hence we have m - p = p. Hence m = 2p. Hence m is even.

Hence m = 4k + 2. Hence p = 2k + 1. Then, for any p-chain γ , the intersection product $\gamma \cdot \gamma = 0$. Hence we have that the homomorphism $H_p(X;\mathbb{R}) \to H_p(X,\partial X;\mathbb{R})$ in the above exact sequence is the zero map.

We arrived at a contradiction (in the case where m = 4k + 2). Hence p = m.

Since $h^0 \cup h^m$ is a connected closed orientable manifold, l = 0 and $M = h^0 \cup h^m$.

Proof of Theorem 4.3. Take the total space X of $D^{\frac{m}{2}}$ -bundle over $S^{\frac{m}{2}}$ associated with the tangent bundle of $S^{\frac{m}{2}}$. Note X has a handle decomposition $h^0 \cup h^{\frac{m}{2}}$. Then ∂X is a rational homology sphere. Take the double of X, call it M. Then $H_{\frac{m}{2}}(M;\mathbb{R})$ is NOT $H_{\frac{m}{2}}(S^m;\mathbb{R})$. Note there is a handle decomposition of M which is naturally made by taking the double. It is $h^0 \cup h^{\frac{m}{2}} \cup \overline{h}^{\frac{m}{2}} \cup h^m$, where $h^{\frac{m}{2}}$ is in X and where $\overline{h}^{\frac{m}{2}}$ is NOT in X. Give an order: $h(1) = h^0, h(2) = h^{\frac{m}{2}}, h(3) = \overline{h}^{\frac{m}{2}}, h(4) = h^m$. Call this ordered handle decomposition \mathcal{H}_O . Then each ∂M_{μ} as in Definition 2.1 is a rational homology sphere (including S^{m-1}) or an empty set. Hence $\nu(\mathcal{H}_O) = 2$. Hence $\nu(M) = 2$.

Theorem 4.4. In Theorem 2.2, there is a pair of manifolds M, N such that

$$\nu(M \cup_{\partial} N) \neq \max(\nu(M), \nu(N)).$$

Proof of Theorem 4.4. Let $M \cong N$. Let M be the 2-dimensional solid torus $S^1 \times D^2$. Note ∂M is the torus T^2 . Consider all $\mathcal{H}_O(S^1 \times D^2, T^2)$ and $\mathcal{H}_O(S^1 \times D^2, \phi)$. Then all these \mathcal{H}_O have $\partial M_\mu = T^2$ for an integer μ . Hence $\nu(\mathcal{H}) \geq 4$. There is a handle decomposition $h^0 \cup h^1$ such that $\nu(\mathcal{H}_O(S^1 \times D^2, \phi)) = 4$.

There is a handle decomposition $h^0 \cup h^1$ such that $\nu(\mathcal{H}_O(S^1 \times D^2, \phi)) = 4$. There is a handle decomposition $T^2 \times [0, 1] \cup h^2 \cup h^3$ such that $\nu(\mathcal{H}_O(S^1 \times D^2, T^2)) = 4$. Hence $\nu(M) = \nu(N) = 4$.

Note that there is a boundary union $S^3 = M \cup_{\partial} N$. By Theorem 4.1, $\nu(S^3) = 2$. Hence $\nu(M \cup_{\partial} N) = 2 < 4 = \max(\nu(M), \nu(N))$. Hence $\nu(M \cup_{\partial} N) \neq \max(\nu(M), \nu(N))$.

Theorem 4.5. Let $m \in \mathbb{N}$. Let $m \geq 3$. Then there is an m-dimensional connected closed oriented manifold M such that $\nu(M) = 4$

Proof of Theorem 4.5. Let $M = S^{m-1} \times S^1$. Then any handle decomposition includes one 1-handle. Hence any handle decomposition includes a ∂M_{μ} such that $\partial M_{\mu} = S^{m-2} \times S^1$. Hence $\nu(M) \ge 4$.

There is a handle decomposition $M = h^0 \cup h^1 \cup h^{m-1} \cup h^m$. Even if we give this handle decomposition any order and get an ordered handle decomposition \mathcal{H}_O , we have $\nu(\mathcal{H}_O) = 4$. Hence $\nu(M) = 4$.

5. 3-manifolds and our new invariant

Suppose M is a 3-dimensional connected closed oriented manifold. Then, by the definition of $\nu(M)$ and that of the Heegaard genus of M, we have (the Heegaard genus) $\times 2 + 2 \ge \nu(M)$.

Theorem 5.1. Let M be a 3-dimensional connected closed oriented manifold. If Heegaard genus is one, then $\nu(M) = 4$.

Proof of Theorem 5.1. Since the Heggard genus is one, M is not a sphere. By Theorem 4.2, $\nu(M) \neq 2$. Since $E_{\mu i}$ in Definition 2.1 is a closed oriented surface, $\nu(M)$ is even. Hence $\nu(M) \geq 4$.

There is a handle decomposition \mathcal{H} of M such that $M = h^0 \cup h^1 \cup h^2 \cup h^3$. Even if we give \mathcal{H} any order and get an ordered handle decomposition \mathcal{H}_O , we have $\nu(\mathcal{H}_O) = 4$. Hence $\nu(M) = 4$.

The converse of Theorem 5.1 is not true.

Theorem 5.2. Let n be any natural number. Then there is a connected closed oriented 3-dimensional manifold M such that $\nu(M) = 4$ and that Heegaard genus of M is n.

Proof of Theorem 5.2. Consider the connected sum of n copies of $\mathbb{R}P^3$.

It is natural to ask whether $\nu(M) = (\text{Heegaard genus}) \times 2 + 2$ is true if M is prime. It is not true in general.

Theorem 5.3. There is a connected closed oriented 3-dimensional prime manifold M such that $\nu(M) \neq (Heegaard\ genus) \times 2 + 2$.

Proof of Theorem 5.3. Let M be $S^1 \times \Sigma_2$, where Σ_g is a closed oriented connected surface with genus g. Note M is prime. Then the Heegaard genus of M is five. Hence (Heegaard genus) $\times 2 + 2 = 12$.

Let N be $S^1 \times (T^2-(\text{an embedded open 2-disc}))$. We can regard M as the double of N. There is an ordered handle decomposition $\mathcal{H}_O(M)$ to consist of h(1), ..., h(6) with the following properties:

- (1) $h(1) = h^0$, $h(2) = h^1$, $h(3) = h^1$, $h(4) = h^1$, $h(5) = h^2$, and $h(6) = h^2$.
- (2) $\partial M_1 = S^2$, $\partial M_2 = T^2$, $\partial M_3 = \Sigma_2$, $\partial M_4 = \Sigma_3$, $\partial M_5 = \Sigma_2$, and $\partial M_6 = T^2$.

Hence $\nu(N,\phi) \leq \sum_{*=0}^{*=m-1} \dim H_*(\Sigma_3;\mathbb{R}) = 8$. Consider the dual handle decomposition of the above one. Hence $\nu(N,\partial N) \leq 8$. By the definition of $\nu(N)$, $\nu(N) \leq 8$. By Theorem 2.2, $\nu(M) \leq \nu(N)$. Hence $\nu(M) \leq 8$. Hence $\nu(M) \neq (\text{Heegaard genus}) \times 2 + 2$.

6. The solution of a special case

We prove that the answer to Problem 1.2 is negative if $m \ge 3$ and if each element of S has more than three connected boundary components.

We suppose that the following assumption is true, and deduce a contradiction.

Assumption. We have $m \geq 3$. Each element of S has more than three connected boundary components. The answer to Problem 1.2 is affirmative.

Let W be an m-dimensional arbitrary compact connected manifold with boundary. Then we can divide W into pieces $W_i \in \mathcal{S}$ and can regard $W = W_1 \cup_{\partial} ... \cup_{\partial} W_w$. Consider the Meyer-Vietoris exact sequence:

 $H_j(\coprod_{i,i'}\{W_i\cap W_{i'}\};\mathbb{Q})\to H_j(\coprod_{i=1}^{i=w}W_i;\mathbb{Q})\to H_j(W;\mathbb{Q}).$ Here, $\coprod_{i,i'}$ means the disjoint union of $W_i\cap W_{i'}$ for all (i,i'). Consider

 $H_1(W;\mathbb{Q}) \to H_0(\coprod_{i,i'} \{W_i \cap W_{i'}\};\mathbb{Q}) \to H_0(\coprod W_i;\mathbb{Q}) \to H_0(W;\mathbb{Q}) \to 0.$ Note $H_0(\coprod W_i;\mathbb{Q}) \cong \mathbb{Q}^w$ and $H_0(W;\mathbb{Q}) \cong \mathbb{Q}$.

Let $H_0(\coprod_{i,i'} \{W_i \cap W_{i'}\}; \mathbb{Q}) \cong \mathbb{Q}^{\rho}$. Suppose that ∂W has z components. Hence $\rho \geq \frac{3w-z}{2}$. We suppose $H_1(W; \mathbb{Q}) \cong \mathbb{Q}^l$. Then we have the exact sequence:

 $\mathbb{Q}^l \to \mathbb{Q}^{\rho} \to \mathbb{Q}^w \to \mathbb{Q} \to 0$. Hence $l \geq \rho - w + 1$. Hence $l \geq \frac{w - z + 2}{2}$. Hence $(2l + z - 2) \geq w$. We define an invariant. Let X be a compact manifold. Take a handle decomposition of X. Consider the numbers of handles in the handle decompositions. Let h(X) be the minimum of such the numbers.

Suppose that S is a finite set $\{M_1, ..., M_{\mu}\}$. Suppose that M' is one of the manifolds M_i and that $h(M') \geq h(M_i)$ for any i. Then we have $w \times h(M') \geq h(W)$. Hence $(2l+z-2) \times h(M') \geq h(W)$. Note that the left side is constant.

For any natural number N, there are countably infinitely many compact oriented connected m-manifolds W' with boundaries such that $\partial W' = \partial W$ that

 $H_1(W;\mathbb{Q}) \cong \mathbb{Q}^l$, and that $h(W) \geq N$. Because: There is an *n*-dimensional manifold P such that $H_1(P;\mathbb{Q}) \cong \mathbb{Q}^l$. There is an *n*-dimensional rational homology sphere Q which is not an integral homology sphere. Make a connected sum which is made from one copy of P and Q copies of Q ($Q \in \mathbb{N} \cup \{0\}$).

We arrived at a contradiction. This completes the proof.

Furthermore, [?] pointed out the following.

- (1) There is a piece of n-dimensional Feynman diagram with three outlines with the following properties. Two copies of the piece is made into countably infinitely many kinds of tree diagrams with four outlines.
- (The idea of the proof: Let the piece be {(the solid torus)—two open 3-balls}. Use the fact that all lens spaces, S^3 , and $S^1 \times S^2$ are made from two solid torus.)
- (2) There is an infnite set S with the following properties.
- (i) All m-dimensional Fyenman diagrams (compact manifolds) are boundary sums of finite elements of S.
- (ii) Each element of S is what is made by attaching a handle to ((m-1)-dimensional closed manifold)×[0, 1]. Note it has one, two or three boundary components. (The idea of the proof: Use handle decompositions.)

7. Discussion

Take a group $G = \{g_1, ..., g_N | g_1 \cdot g_2 ... \cdot g_{N-1} \cdot g_N \cdot g_2^{-1} ... \cdot g_{N-1}^{-1} = 1, g_2 \cdot g_3 ... \cdot g_N \cdot g_1 \cdot g_3^{-1} ... \cdot g_N^{-1} \cdot g_1^{-1} = 1, ..., g_N \cdot g_1 ... \cdot g_{N-2} \cdot g_{N-1} \cdot g_1^{-1} ... \cdot g_{N-1}^{-1} = 1.\}$

In the $m \ge 4$ case, we can make a compact connected oriented manifold Z such that $(1) \pi_1(Z) = G$.

(2) Z is made of one 0-handle, N copies of 1-handles, and N copies of 2-handles.

Take the double of Z. Call it W. Note $\pi_1(W) = G$.

Thus we submit the following problem.

Problem 7.1. Do you prove $\nu(W) \geq N$?

If the answer to Problem 7.1 is affirmative, then the answer to Problem 2.5 is affirmative (in the closed manifolds case, which would be extended in all cases).

By using a manifold whose fundamental group is so complicated as above, we may solve Problem 1.2, 2.5.

Use Z_p coefficient homology groups instead in the definition of ν . Use the order of $\text{Tor} H_*(\ ;\mathbb{Z})$ instead in the definition of ν . Can we solve Problem 1.2?

Calculate ν of the knot complement. (In particular, in the case of 1-dimensional prime knots. In this case, what kind of connection with the Heegaard genus?)

References

- [1] M. B. Green, J. H. Schwarz, and E. Witten: Superstring theory Vol. 1, 2. Cambridge, Uk: Univ. Pr. (Cambridge Monographs On Mathematical Physics). 1987.
- [2] J. W. Milnor: Lectures on the h-Cobordism Theorem Princeton University Press 1965.
- [3] J. Polchinski: String theory. Vol. 1, 2. Cambridge, UK: Univ. Pr. 1998.
- [4] S. Smale: Generalized Poincaré Conjecture in Dimensions Greater Than Four Annals of Math. 74(2) 391–406 1961.
- [5] C. Vafa etc. edit.: Mirror Symmetry CMI/AMS publication 2003.

Computer Science, Meijigakuin University, Yokohama, Kanagawa, 244-8539, Japan pqr100pqr100@vahoo.co.jp, ogasa@mai1.meijigkauin.ac.jp