Subspaces

Big Idea: Subspace of \mathbb{R}^n include lines, planes and hyperplanes through the origin. A basis of a subspace is a linearly independent set of spanning vectors. The Rank-Nullity Theorem describes the dimensions of the nullspace and range of a matrix

Subspaces

A subset $U \subseteq \mathbb{R}^n$ is a subspace *if*

- 1. U contains the zero vector $\vec{0}$
- 2. $\vec{u_1} + \vec{u_2} \in U \, \forall \vec{u_1}, \vec{u_2} \in U$
- 3. $c \vec{u} \in U \, \forall c \in \mathbb{R}, \vec{u} \in U$

Condition 2 is called closed under addition and condition 3 is called closed under scalar multiplication. Condition 3 with c=0 implies condition 1

Example

- The zero subspace $\{0\}$ and the entire space \mathbb{R}^n are both subspaces of \mathbb{R}^n
- Subspaces of $\ensuremath{\mathbb{R}}^2$ include any line through the origin
- Subspaces of \mathbb{R}^3 include any line or plane through the origin
- In general, subspaces of \mathbb{R}^n are any hyperplanes of any dimension through the origin

:= EXAMPLE _

Consider the set

$$U = \left\{ egin{bmatrix} x \ y \end{bmatrix} : y \geq 0
ight\}$$

Then U contains the zero vector

U is also closed under vector addition since

$$ec{orall} u_1, ec{u_2} \in U \quad ec{u_1} + ec{u_2} = ec{u} \in U ext{ since } ec{u} = [x,y] ext{ where } y \geq 0$$

But U is not closed under scalar multiplication as $[1,1] \in U$ but

$$(-1)[1,1] = [-1,-1] \not\in U$$

Therefore U is not a subset of \mathbb{R}^2

Linear Independence and Span

A linear combination of vectors $\vec{u_1}, \dots, \vec{u_2} \in R^n$ is a vector

$$c_1\vec{u_1} + \cdots + c_m\vec{u_m}$$

where $c_1,\ldots,c_m\in\mathbb{R}$. The **span** of vectors $\vec{u_1},\ldots,\vec{u_m}\in R^n$ is the set of all linear combinations

$$\mathrm{span}\{\vec{u_1},\dots,\vec{u_m}\} = \{c_1\vec{u_1} + \dots + c_m\vec{u_m} \in \mathbb{R}^n : c_1,\dots c_m \in \mathbb{R}\}$$

Let $\vec{u_1}, \dots, \vec{u_m} \in R^n$. Then $\mathrm{span}\{\vec{u_1}, \dots, \vec{u_m}\}$ is a subspace of \mathbb{R}^n

= EXAMPLE _

The span of a single non zero vector \vec{u} is a line with direction \hat{u} . The span of two nonzero vectors \vec{u} and \vec{v} is a plane as long as the two vectors are **not** collinear

DEFINITION

A set of vectors $\{\vec{u_1},\ldots,\vec{u_m}\}\subset\mathbb{R}^n$ forms a linearly independent set if the vectors satisfy the property

$$c_1 \vec{u_1} + \cdots + c_m \vec{u_m} = \vec{0} \iff c_1 = \cdots = c_m = 0$$

In other words $\{\vec{u_1},\ldots,\vec{u_m}\}$ is a linearly independent set if no vector in the set can be expressed as a linear combination of the others

How do we know if a set of vectors is linearly independent? Create a matrix where the columns are the given vectors

$$A = [\vec{u_1} \quad \dots \quad \vec{u_m}]$$

Then the vectors are linearly independent iff the linear system $A\vec{x}=\vec{0}$ has only the trivial solution $\vec{x}=\vec{0}$

Basis and Dimension

Let $U \subseteq \mathbb{R}^n$ be a subspace. A set of vectors forms a **Basis** of U if:

1. $\{\vec{u_1},\ldots,\vec{u_m}\}$ is a linearly independent set

2.
$$\operatorname{span}\{\vec{u_1},\ldots,\vec{u_m}\}=U$$

The dimension of U is the number m of vectors in a basis

Nullspace and Range

The nullspace of a $m \times n$ matrix A is

$$N(A)=\{ec{x}\in\mathbb{R}^n:Aec{x}=ec{0}\}$$

/ THEOREM _

Let A be an $m \times n$ matrix. The nullspace N(A) is a subspace of \mathbb{R}^n

_ // THEOREM __

Let A be an $m \times n$ matrix and let A = LU be the LU Decomposition (if it exists). Then N(A) = N(U).

DEFINITION

The range of an $m \times n$ matrix is:

$$R(A) = \{A ec{x} : ec{x} \in \mathbb{R}^n\}$$

The range is also called the image or column space of A

Matrix multiplication can be written as

$$Aec{x} = egin{bmatrix} ec{a_1} & \dots & ec{a_n} \end{bmatrix} egin{bmatrix} x_1 \ dots \ x_m \end{bmatrix} = x_1ec{a_1} + \dots + x_nec{a_n}$$

Therefore the range of A is equal to the span of the columns

$$R(A) = \operatorname{span}\{\vec{a_1}, \dots, \vec{a_n}\}$$

and that's why R(A) is sometimes called the column space

Let A be an $m \times n$ matrix. The range R(A) is a subspace of \mathbb{R}^m

Let A be an $m \times n$ matrix. Then

$$\dim(R(A)) = \operatorname{rank}(A)$$

/ PROOF

The rank of A is the number of nonzero rows in the row echelon form of A. The dimension of R(A) is the number of linearly independent columns in A which also equal the number of nonzero rows in A.

THEOREM _

Let A=LU be the LU Decomposition of A if it exists and let $r=\mathrm{rank}(A)$. Then

$$R(A) = \operatorname{span}\{\vec{l_1}, \dots, \vec{l_r}\}$$

where $\vec{l_1},\dots,\vec{l_r}$ are the first r columns of L In particular, $\vec{l_1},\dots,\vec{l_r}$ is a basis of R(A)

PROOF

If $\operatorname{rank}(A) = r$ then only the first r entries of the vector $U\vec{x}$ are nonzero

$$U ec{x} = egin{bmatrix} * & * & \cdots & * \ 0 & \ddots & \ddots & dots \ dots & \ddots & * & * \ 0 & \cdots & 0 & 0 \end{bmatrix} ec{x} = egin{bmatrix} * \ dots \ 0 \end{bmatrix}$$

Therefore

$$LUec{x} = egin{bmatrix} ec{l}_1, \dots, ec{l}_n \end{bmatrix} egin{bmatrix} * \ dots \end{bmatrix} = (*)ec{l}_1 + \dots + (*)ec{l}_r \end{pmatrix}$$

Rank Nullity Theorem

Let A be an $m \times n$ matrix. Then

$$\dim(R(A)) + \dim(N(A)) = n$$

PROOF

The dimension of N(A) is equal to the number of columns in row echelon form of A without a leading nonzero entry ${\rm rank}(A)=\dim(R(A))$ is equal to the number of columns of the row echelon

form with a leading non zero entry and there are n total columns