Лекция № 3: Непрекъснати оператори

1.3 Непрекъснати оператори

В този раздел ще се запознаем с важното свойство непрекоснатост на оператор. За да го въведем, ще тръгнем от едно понятие, което ви е добре известно от лекциите по ДИС — понятието точна горна граница (супремум). Разликата е, че тук няма да разглеждаме супремум на множество от реални числа, а на множество от функции.

1.3.1 Точна горна граница

<u>Определение 1.9.</u> Нека $\mathcal{F} \subseteq \mathcal{F}_k$ е множество от k-местни функции. Казваме, че функцията g е <u>горна граница (или мажсоранта)</u> на \mathcal{F} , ако за всяка функция $f \in \mathcal{F}$ е вярно, че

$$f \subseteq g$$
.

<u>Определение 1.10</u>. Казваме, че g е <u>точна горна граница</u> на множеството \mathcal{F} , ако:

- 1) g е горна граница на \mathcal{F} ;
- 2) за всяка горна граница h на \mathcal{F} е вярно, че $g \subseteq h$.

По-нататък "точна горна граница" понякога ще съкращаваме до "т.г.г.". Лесно се съобразява, че ако съществува, точната горна граница е единствена: наистина, ако f и g са точни горни граници на множеството \mathcal{F} , то те са и негови горни граници, откъдето съгласно условие 2) ще имаме, че $f \subseteq g$ и $g \subseteq f$, което значи f = g. Точната горна граница на \mathcal{F} ще означаваме с $\bigcup \mathcal{F}$.

Не всяко множество от функции притежава горна граница. Най-простият пример: да вземем две различни тотални функции f и g. Тогава множеството $\mathcal{F} = \{f,g\}$ няма горна граница: наистина, ако допуснем, че h е такава, то $f \subseteq h$ и $g \subseteq h$. Но f и g са тотални, следователно f = h и g = h, т.е. f = g— противоречие.

По-нататък ще се интересуваме основно от мажоранти на изброими редици от функции f_0, f_1, \ldots Тези редици ще записваме по обичайния начин:

$$\{f_n\}_{n=0}^{\infty}$$
 или само $\{f_n\}_n$.

Ако g е (точна) горна граница на множеството $\mathcal{F} = \{f_0, f_1, \dots\}$ от членовете на една такава редица, то g ще наричаме (точна) горна граница на peduuama $\{f_n\}_n$.

Оказва се, че всяка монотонно растяща редица $f_0 \subseteq f_1 \dots$ има точна горна граница, като при това тя се определя по един съвсем естествен начин. Да се убедим:

Твърдение 1.5. Всяка монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ от функции в \mathcal{F}_k притежава точна горна граница g, която се дефинира с еквивалентността

$$g(x_1,\ldots,x_k)\simeq y\iff \exists n\ f_n(x_1,\ldots,x_k)\simeq y$$

за всички естествени x_1, \ldots, x_k, y .

Забележка. От горната еквивалентност се вижда, че за графиката на g е изпълнено:

$$(\bar{x}, y) \in G_g \iff g(\bar{x}) \simeq y \iff \exists n \ f_n(\bar{x}) \simeq y \iff \exists n \ (\bar{x}, y) \in G_{f_n}$$

за произволни \bar{x}, y . Следователно

$$G_g = \bigcup_{n=0}^{\infty} G_{f_n}.$$

Това, че графиката на g се явява обединение на графиките на функциите от редицата $\{f_n\}_n$, обяснява означението $\bigcup \mathcal{F}$ за точна горна граница на \mathcal{F} .

Доказателство. Най-напред да се убедим, че функцията g е еднозначна. Наистина, нека за някои \bar{x}, y и z е изпълнено

$$g(\bar{x}) \simeq y$$
 и $g(\bar{x}) \simeq z$.

Тогава трябва да съществуват индекси l и m, за които

$$f_l(\bar{x}) \simeq y$$
 и $f_m(\bar{x}) \simeq z$.

Без ограничение на общността можем да считаме, че $l \leq m$. Тогава $f_l \subseteq f_m$ и щом $f_l(\bar{x}) \simeq y$, то и $f_m(\bar{x}) \simeq y$. Но ние имахме $f_m(\bar{x}) \simeq z$, следователно y = z.

Сега да видим защо g е точната горна граница на редицата $\{f_n\}_n$. Погоре забелязахме, че $G_g = \bigcup_n G_{f_n}$, откъдето за всяко n ще имаме $G_{f_n} \subseteq G_g$, или все едно, $f_n \subseteq g$, което означава, че g е горна граница на редицата $\{f_n\}_n$.

За да убедим, че g е най-малката горна граница, да вземем друга горна граница на редицата — да кажем, h. Трябва да покажем, че $g \subseteq h$. За целта, за произволни \bar{x} и y приемаме, че $g(\bar{x}) \simeq y$. От определението на g имаме, че тогава за някое n трябва да е изпълнено $f_n(\bar{x}) \simeq y$. Но h е горна граница на редицата $\{f_k\}_k$, а f_n е член на тази редица,

следователно $f_n \subseteq h$, откъдето в частност $h(\bar{x}) \simeq y$. Получихме, че за произволните \bar{x} и y е в сила импликацията

$$g(\bar{x}) \simeq y \implies h(\bar{x}) \simeq y,$$

което по дефиниция означава, че $g \subseteq h$. Следователно g е точната горна граница на редицата $\{f_n\}_n$.

Ако съществува, точната горна граница на редицата $\{f_n\}_n$ ще означаваме с $\bigcup_n f_n$ или само с $\bigcup f_n$.

В някои учебници, по аналогия с означението за $\underbrace{cynpemym\ (sup)}_n$ в анализа, точната горна граница на редицата $\{f_n\}_n$ се отбелязва с $\underbrace{lub\ f_n}_n$ (от $\underbrace{least\ upper\ bound}$).

Да напишем още веднъж условието, задаващо точната горна граница $\bigcup f_n$ на редица $\{f_n\}_n$, което изведохме по-горе и което ще използваме многократно по-нататък:

$$(\bigcup f_n)(\bar{x}) \simeq y \iff \exists n \ f_n(\bar{x}) \simeq y.$$
 (1.3)

1.3.2 Непрекъснати оператори

Сега ще въведем важното свойство *непрекъснатост* на оператор, което по-нататък в курса ще обобщим за произволни структури с частична наредба.

Определение 1.11. Операторът $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$ наричаме <u>непрекъснат</u>, ако за всяка монотонно растяща редица $f_0 \subseteq f_1 \subseteq \ldots$ от функции в \mathcal{F}_k е изпълнено:

$$\Gamma(\bigcup_{n} f_n) = \bigcup_{n} \Gamma(f_n).$$

<u>Забележка.</u> В горното равенство имаме предвид, че точната горна граница $\bigcup_n \Gamma(f_n)$ на редицата $\{\Gamma(f_n)\}_n$ съществува и е равна на $\Gamma(\bigcup_n f_n)$. Малко по-надолу ще видим, че ако Γ е непрекъснат, то той е и монотонен, и следователно редицата $\{\Gamma(f_n)\}_n$ е монотонно растяща.

Твърдение 1.6. Всеки непрекъснат оператор е монотонен.

Доказателство. Нека $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е непрекъснат оператор и нека $f,g \in \mathcal{F}_k$ са такива, че $f \subseteq g$. Трябва да покажем, че и $\Gamma(f) \subseteq \Gamma(g)$. Да разгледаме монотонно растящата редица

$$f \subset q \subset q \subset \dots$$

Ясно е, че тази редица клони към g, т.е. нейната точна горна граница е g. Да приложим определението за непрекъснатост на Γ към тази редица. Ще получим, че $\Gamma(g)$ е точна горна граница на редицата

$$\Gamma(f), \Gamma(g), \Gamma(g), \ldots,$$

която има точно два различни елемента — $\Gamma(f)$ и $\Gamma(g)$. Но това означава, че $\Gamma(f) \subseteq \Gamma(g)$, което и трябваше да проверим.

Всъщност от монотонността на един оператор следва едната половина от условието за непрекъснатост.

<u>Твърдение 1.7.</u> Нека $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е монотонен оператор, а редицата $f_0 \subseteq f_1 \subseteq \dots$ е монотонно растяща в \mathcal{F}_k . Тогава

$$\bigcup_{n} \Gamma(f_n) \subseteq \Gamma(\bigcup_{n} f_n).$$

Доказателство. Като приложим монотонния оператор Γ към всяка от функциите от редицата $f_0 \subseteq f_1 \subseteq \dots$, ще получим отново монотонно растяща редица

$$\Gamma(f_0) \subseteq \Gamma(f_1) \subseteq \dots$$

Тогава тази редица ще има точна горна граница $\bigcup \Gamma(f_n)$, съгласно Tesp- $denue\ 1.5$. От друга страна, тъй като $f_n \subseteq \bigcup f_n$, то отново от монотонността на Γ ще имаме

$$\Gamma(f_n) \subseteq \Gamma(\bigcup f_n).$$

Тъй като последното включване е в сила за всяко n, това означава, че функцията $\Gamma(\bigcup f_n)$ мажорира всеки член на редицата $\{\Gamma(f_n)\}_n$. Но в такъв случай $\Gamma(\bigcup f_n)$ ще мажорира и точната ѝ горна граница $\bigcup \Gamma(f_n)$, с други думи, ще имаме $\bigcup \Gamma(f_n) \subseteq \Gamma(\bigcup f_n)$.

Дали има оператори Γ и монотонно растящи редици $\{f_n\}_n$, за които горното равенство е строго? Би трябвало, защото иначе ще излезе, че понятията монотонност и компактност съвпадат. Опитайте се сами да намерите примери:

Задача. Дайте пример за монотонен оператор $\Gamma \colon \mathcal{F}_1 \longrightarrow \mathcal{F}_1$ и редица от едноместни функции $f_0 \subseteq f_1 \subseteq \ldots$, такива че

$$\bigcup_{n} \Gamma(f_n) \subset \Gamma(\bigcup_{n} f_n).$$

Ето и още една лесна задача, която да се пробвате да решите самостоя-

<u>Задача.</u> Нека множеството $\mathcal{F} \subseteq \mathcal{F}_k$ има горна граница. Вярно ли е, че в такъв случай \mathcal{F} има и точна горна граница? Обосновете се.

1.3.3 Еквивалентност между непрекъснатост и компактност

В оставащата част на този раздел целта ни ще бъде да покажем, че за операторите, които разглеждаме (преработващи аритметични функции), понятията непрекъснатост и компактност съвпадат. Едната половина на това твърдение можем да съобразим още сега.

Твърдение 1.8. Всеки непрекъснат оператор е компактен.

Доказателство. Най-напред да съобразим, че всяка функция $f \in \mathcal{F}_k$ можем да представим като точна горна граница на редица от *крайни* функции. Тези функции се явяват *крайни апроксимации* (приближения) на функцията f.

Да фиксираме $f \in \mathcal{F}_k$ и да означим с f_n рестрикцията на f до крайното множество $\{0,\ldots,n\}^k$, което означавахме така:

$$f_n = f \upharpoonright \{0, \dots, n\}^k.$$

Ясно е, че всяка f_n е крайна подфункция на f. Ще покажем, че редицата f_0, f_1, \ldots е монотонно растяща и нейната точна горна граница е f.

Да фиксираме n и да се убедим, че $f_n \subseteq f_{n+1}$. Наистина, нека $f_n(x_1,\ldots,x_k) \simeq y$ за произволни \bar{x} и y. Тогава и $f(x_1,\ldots,x_k) \simeq y$, и освен това $(x_1,\ldots,x_k) \in \{0,\ldots,n\}^k$. От последното ще имаме, че (x_1,\ldots,x_k) ще е и в хиперкубчето $\{0,\ldots,n+1\}^k$, което заедно с $f(x_1,\ldots,x_k) \simeq y$ ни дава търсеното $f_{n+1}(x_1,\ldots,x_k) \simeq y$.

Интуитивно е съвсем ясно, че т.г.г. на редицата $f_0 \subseteq f_1 \subseteq \ldots$ трябва да е f, но да го докажем все пак. Наистина, по дефиниция $f_n \subseteq f$ за всяко n, което означава, че f е горна граница на редицата $\{f_n\}_n$.

Нека g е друга горна граница на тази редица. Трябва да покажем, че $f\subseteq g$. За целта да приемем, че за произволни x_1,\ldots,x_k,y е изпълнено $f(x_1,\ldots,x_k)\simeq y$. Нека $n=\max\{x_1,\ldots,x_k\}$. Тогава очевидно $(x_1,\ldots,x_k)\in\{0,\ldots,n\}^k$, откъдето $(x_1,\ldots,x_k)\in Dom(f_n)$ и значи $f_n(\bar{x})\simeq y$. Но $f_n\subseteq g$ и следователно $g(\bar{x})\simeq y$. Понеже \bar{x} и y бяха произволни, това означава, че $f\subseteq g$. Така доказахме, че т.г.г. на редицата $f_0\subseteq f_1\subseteq\ldots$ от крайните приближения на f е самата f.

Сега се насочваме към доказателството на компактността на оператора $\Gamma \colon \mathcal{F}_k \longrightarrow \mathcal{F}_m$. За целта да вземем произволна функция $f \in \mathcal{F}_k$, както и произволни $\bar{x} \in \mathbb{N}^m$ и y. Понеже Γ е непрекъснат, за монотонно растящата редица $f_0 \subseteq f_1 \subseteq \ldots$ от крайните приближения на f ще имаме

$$\Gamma(\bigcup f_n) = \bigcup \Gamma(f_n).$$

Но $\bigcup f_n$ е точно f, както вече се убедихме. С други думи, имаме, че $\Gamma(f)$ е точната горна граница на редицата $\{\Gamma(f_n)\}_n$, която е монотонно растяща. Тогава за избраните по-горе \bar{x} и y ще имаме, съгласно (1.3), че

$$\Gamma(f)(\bar{x}) \simeq y \iff \exists n \ \Gamma(f_n)(\bar{x}) \simeq y.$$

Тази еквивалентност можем да препишем още така:

$$\Gamma(f)(\bar{x}) \simeq y \iff \exists n \ (f_n \subseteq f \ \& \ f_n \ \text{е крайна} \ \& \ \Gamma(f_n)(\bar{x}) \simeq y).$$

Оттук, в частност, получаваме импликацията

$$\Gamma(f)(\bar{x}) \simeq y \implies \exists \theta (\theta \subseteq f \& \theta \text{ в крайна } \& \Gamma(\theta)(\bar{x}) \simeq y).$$

И тъй като f, \bar{x} и y бяха произволни, така всъщност показахме правата посока на условието за компактност (1.2). Това, заедно с монотонността на Γ и Tespdenue 1.3 ни дават общо, че Γ е компактен.

Да обърнем внимание, че горната апроксимация на f с $\kappa pa\ddot{u}nu$ функции беше възможна само защото множеството \mathbb{N}^k е изброимо. Функциите над реалните числа, например, не могат да се апроксимират с изброими редици от крайни функции.

За да докажем обратното на *Твърдение* 1.8 ще ни е нужна следната спомагателна лема.

<u>Лема 1.1.</u> Нека $f_0 \subseteq f_1 \subseteq \dots$ е монотонно растяща редица от функции в \mathcal{F}_k и нека за крайната функция θ е изпълнено

$$\theta \subseteq \bigcup_n f_n$$
.

Тогава $\theta \subseteq f_n$ за някое n.

Доказателство. Нека $Dom(\theta) = \{\bar{x}^1, \dots \bar{x}^l\}$. Можем да предполагаме, че $l \geq 1$, защото ако l = 0, т.е. $\theta = \emptyset^{(k)}$, то със сигурност $\theta \subseteq f_0$.

Да фиксираме $1 \le i \le l$ и нека

$$\theta(\bar{x}^i) \simeq y_i.$$

Понеже $\theta \subseteq \bigcup f_n$, значи и $(\bigcup f_n)(\bar{x}^i) \simeq y_i$. От последното, като използваме дефиницията за т.г.г. (1.3) получаваме, че съществува n_i , за което

$$f_{n_i}(\bar{x}^i) \simeq y_i$$
.

Нека $n = max\{n_1, \ldots, n_l\}$. Тогава очевидно $n_i \le n$ и следователно $f_{n_i} \subseteq f_n$. Сега от $f_{n_i}(\bar{x}^i) \simeq y_i$ ще имаме, че и

$$f_n(\bar{x}^i) \simeq y_i$$
.

Финално, получихме, че за всяко $\bar{x}^i \in Dom(\theta)$ е изпълнено $\theta(\bar{x}^i) = f_n(\bar{x}^i)$, което означава, че $\theta \subseteq f_n$.

Вече може да се заемем с обратната посока на Твърдение 1.8.

Твърдение 1.9. Всеки компактен оператор е непрекъснат.

Доказателство. Нека $\Gamma: \mathcal{F}_k \longrightarrow \mathcal{F}_m$ е компактен. Да фиксираме монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ в \mathcal{F}_k . Трябва да покажем, че $\Gamma(\bigcup f_n) = \bigcup \Gamma(f_n)$. Но това е равенство между две функции и значи е достатъчно да покажем двете включвания

$$\Gamma(\bigcup f_n) \supseteq \bigcup \Gamma(f_n)$$
 by $\Gamma(\bigcup f_n) \subseteq \bigcup \Gamma(f_n)$.

От Следствие 1.1 имаме, че всеки компактен оператор е монотонен. Тогава първото включване $\Gamma(\bigcup f_n) \supseteq \bigcup \Gamma(f_n)$ ще следва от Твърдение 1.7. Да се насочим към проверката на второто включване $\Gamma(\bigcup f_n) \subseteq \bigcup \Gamma(f_n)$. За целта да вземем произволни $\bar{x} \in \mathbb{N}^m$ и y и да приемем, че за лявата функция $\Gamma(\bigcup f_n)$ е изпълнено

$$\Gamma(\bigcup f_n)(\bar{x}) \simeq y.$$

Трябва да видим, че и $(\bigcup \Gamma(f_n))(\bar{x}) \simeq y$. Наистина, от $\Gamma(\bigcup f_n)(\bar{x}) \simeq y$ и компактността на Γ следва, че съществува крайна функция θ , такава че

$$\theta \subseteq \bigcup f_n \& \Gamma(\theta)(\bar{x}) \simeq y.$$

Понеже $\theta \subseteq \bigcup f_n$, съгласно горната \mathcal{I} ема 1.1 ще съществува n, за което $\theta \subseteq f_n$. Тогава $\Gamma(\theta) \subseteq \Gamma(f_n)$, понеже Γ е и монотонен. От дефиницията на точна горна граница имаме $\Gamma(f_n) \subseteq \bigcup \Gamma(f_n)$, или общо

$$\Gamma(\theta) \subseteq \Gamma(f_n) \subseteq \bigcup \Gamma(f_n).$$

Следователно $\Gamma(\theta) \subseteq \bigcup \Gamma(f_n)$, и понеже $\Gamma(\theta)(\bar{x}) \simeq y$, то значи и

$$(\bigcup \Gamma(f_n))(\bar{x}) \simeq y,$$

което и трябваше да покажем.

От последните две твърдения получаваме общо, че

<u>Следствие 1.2.</u> Един оператор е компактен точно тогава, когато е непрекъснат.