1. Să se calculeze:

a)
$$\sqrt{98} - \sqrt{44} - \sqrt{50} + \sqrt{99}$$

b)
$$(7\sqrt{2} - 8\sqrt{3}) - (5\sqrt{2} - 6\sqrt{3}) + (-\sqrt{2} + 2\sqrt{3}).$$

c)
$$(\sqrt{20} - \sqrt{18}) \cdot (\sqrt{45} + \sqrt{50}) - \sqrt{10}$$
.

d)
$$(5^{20} + |3^{30} - 5^{20}|) : 9^{14}$$
.

e)
$$(|2^{87}-3^{58}|-3^{58}):16^{20}$$
.

$$(2 -3 -3).10$$

$$f) \quad \left| \frac{3}{2\sqrt{3}} - \frac{2}{3\sqrt{2}} \right| \cdot \frac{12}{3\sqrt{3} - 2\sqrt{2}}.$$

g)
$$5\sqrt{2} + 3 \cdot \left\{ -8\sqrt{3} + 4 \cdot \left[3\sqrt{2} + 2 \cdot \left(\sqrt{3} - 2\sqrt{2} \right) \right] \right\} : 2^2$$
.

h)
$$\frac{12-2\sqrt{3}}{2\sqrt{3}}-\frac{12+3\sqrt{2}}{3\sqrt{2}}+\frac{2\sqrt{6}-6}{\sqrt{6}}$$
.

$$i) \quad \left(\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{20}}\right) : \left(\frac{1}{2\sqrt{5}}\right)^{-1}.$$

6. Arătați că numărul

$$a = \left| 1,41 - \sqrt{2} \right| + \left| 2^{51} - 3^{34} \right| + 2^{51}$$
: $3^{2^5} + 1,41 - \sqrt{2}$ e pătrat perfect.

7. Să se arate că expresia

$$E = \frac{2a - b}{a + 2b} \in Q \quad stiind \quad ca \quad a = \sqrt{3 - \sqrt{5} + \sqrt{9 - 4\sqrt{5}}}$$

$$b = \sqrt{\sqrt{7} - 1 - \sqrt{11 - 4\sqrt{7}}}$$

Să se arate că:
$$a)\sqrt{3^{2n+2} \cdot 4^{2n+3} - 2^{2n+1} \cdot 6^{2n+3}} \in Q, \forall n \in N$$

$$b)\sqrt{2^{2n} \cdot 9^{n+1} + 4^{n+2} \cdot 3^{2n}} \in N, \forall n \in N$$

$$(b)\sqrt{2^{2n}\cdot 9^{n+1}+4^{n+2}\cdot 3^{2n}}\in N, \forall n\in N$$

12. Stabiliți valoarea de adevăr a propoziției:
$$\sqrt{1\cdot 2\cdot 3\cdot\cdot 31+32}\in Q$$
.

13. Să se afle x știind că
$$\sqrt{2^x} = 1 + 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^{999}$$
.

14. Să se afle numerele întregi x pentru care
$$\sqrt{\frac{2x-4}{x+5}} \in Z$$
.

a)
$$\sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7} = 2$$

15. Să se verifice egalitățile:
b)
$$\sqrt[3]{9+4\sqrt{5}} + \sqrt[3]{9-4\sqrt{5}} = 3$$

16. Să se ordoneze crescător numerele:
$$\sqrt{2}$$
, $\sqrt[3]{3}$, $\sqrt[6]{6}$.

18. Să se determine rădăcina pătrată a numărului
$$a=6+2\sqrt{3}-2\sqrt{2}-2\sqrt{6}$$

1. Să se scrie primii patru termeni ai progresiei aritmetice
$$(a_n)_n$$
 dacă :

a)
$$a_1 = -3$$
; r=5 b) $a_1 = 7$; r=2 c) $a_1 = 1,3$; r= 0,3

2. Să se găsească primii doi termeni ai progresiei aritmetice
$$(a_n)_n$$
:

a)
$$a_1, a_2, 15, 21, 27, \dots$$
 b) $a_1, a_2, -9, -2, 5, \dots$

3. Să se calculeze primii cinci termeni ai șirului cu termenul general
$$a_n$$

a)
$$a_n = 3n+1$$
; b) $a_n = 3 + (-1)^n$ c) $a_n = n^2 + n + 1$

a)
$$1+7+13+....+x=280$$
;

b)
$$1+3+5+....+x = 169$$
;

c)
$$(x+1)+(x+4)+(x+7)+....+(x+28) = 155$$
;
d) $(x+1)+(x+3)+(x+5)+....+(x+25) = 338$;

e)
$$x+(x+5)+(x+10)+....+(x+100) = 2100$$
.

a)
$$1 + x + x^2 + x^3 + \dots + x^{2007} = 0, x \ne 1$$

b)
$$1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^{2007} = 0, x \neq 0$$