

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

1. Dois equipamentos comunicam usando uma ligação de dados que usa mecanismos ARQ. Assuma que a capacidade do canal (em cada sentido) é de 1 Mbit/s, que o comprimento das tramas de informação é de 100 Bytes, que informação se propaga à velocidade da luz (3*10⁸ m/s) e que queremos usar no máximo 2 bits de para numerar as tramas que informação.

a) (1,5 valor) Para as variantes Stop and Wait, Go Back N e Selective Repeat, calcule a distância mínima e máxima entre os dois equipamentos por forma a obtermos uma eficiência da ligação superior a 80%.

	Stop and Wait	Go Back N	Selective Repeat
Distância mínima (km)	0	0	0
Distância máxima (km)	30	336	180

b) (*1 valor*) Suponha que os dois equipamentos distam de 30 km e que emissor tem um bloco de 100 kBytes de dados para transmitir. Desprezando os *overheads* introduzidos pelo protocolo de ligação lógica, calcule para as duas variantes ARQ indicadas o tempo necessário para o envio do bloco de dados (até ser recebida a última confirmação pelo emissor) e o débito observado pela camada superior. Se necessário recorra a diagramas temporais.

	Stop and Wait	Selective Repeat
Tempo de envio do bloco (ms)	1000	800
Débito observado (kbit/s)	800	1000

c) (1,5 valor) Admita que, para a mesma distância de 30 km, a ligação se efetua sob condições de transmissão que conduzem a uma situação de erro caracterizada por um **BER=10**⁻³. Considere que é utilizado o mecanismo ARQ **Stop and Wait.** Assumindo que o tamanho de trama (L) pode variar entre 100 e 1000 Bytes, que tamanho escolheria por forma a obter a eficiência máxima (S_{max})? Qual o valor essa eficiência? Qual é o débito máximo (Deb_{max}) obtido nessa situação?

L	S_{max} (%)	Deb_{max} ($kbit/s$)
100	36	360

- 2. Um router é constituído por um conjunto de portas *full duplex*, sendo a capacidade de cada porta 100 Mbit/s (em cada sentido). Admita que num dado período o número médio de pacotes comutados para uma determinada porta de saída é 10 000 pacote/s, sendo o tamanho médio dos pacotes 1000 Bytes. Considere que o comportamento dessa porta de saída pode ser modelizado por uma fila de espera M/M/1.
 - a) (1 valor) Calcule a intensidade de tráfego na porta de saída (taxa de utilização), a ocupação média da fila de espera (em pacotes) e o tempo médio de atraso dos pacotes (incluindo as componentes de espera e de serviço).

Intensidade de tráfego, ρ	0,8
Ocupação média da fila de espera, $N_{\rm w}$	3,2
Tempo médio de atraso dos pacotes, T, (μs)	400 (T _w =320)

b) (1 valor) Considerando o mesmo débito (bit/s) na porta de saída, como variariam os parâmetros calculados em a) se o tamanho médio dos pacotes fosse, respetivamente, 500 e 2000 Bytes? Conclua sobre as vantagens e desvantagens de reduzir o tamanho dos pacotes, tendo em atenção vários fatores (tempo de atraso, número e tamanho de buffers, overheads, etc.).

	L = 500 Bytes	L = 2000 Bytes
Intensidade de tráfego, ρ	0,8	0,8
Ocupação média da fila de espera, N _w	3,2	3,2
Tempo médio de atraso dos pacotes, Τ, (μs)	200	800

c) (1 valor) Considere que na situação descrita na alínea a) o tráfego de 10 000 pacote/s é proveniente de 2 portas de entrada do router. Considere que os pacotes têm um comprimento constante de 500 Bytes, que o intervalo entre chegada de pacotes através de cada uma das portas do router também é constante e que os pacotes chegam ao router sempre ao mesmo tempo. Nestas condições determine o valor mínimo, médio e máximo do tempo de espera dos pacotes até estes serem transmitidos.

Tempo de espera mínimo (μs)
0

Tempo de espera médio (μs)
20

Tempo atraso máximo (μs)
80 $(T_{Wmax} = 40)$

3. À Empresa A foi atribuído o bloco de endereços IP **66.66.64.26**. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por 4 *routers* (R1, R2, R3, R4) e 2 *switches* Ethernet (S1 e S2). O *switch* S1 tem 1 VLAN que serve 22 computadores (C). O *switch* S2 tem 2 VLANs (VLAN2 e VLAN3). A VLAN2 é usada para interligar os routers R1, R3 e R4. A VLAN3 é usada para servir 11 computadores. Os *routers* R2 e R3 estão interligados por uma ligação ponto-a-ponto que usa o endereço de rede indicado na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)	Endereço de <i>broadcast</i> da subrede	N° de endereços de interfaces
VLAN1	66.66.66.64/27	66.66.66.95	30
VLAN2	66.66.66.120/29	66.66.66.64/127	6
VLAN3	66.66.66.96/28	66.66.66.64/111	14

b) (1 valor) Atribua endereços IP às interfaces de rede indicadas na tabela. Use os endereços mais baixos de cada subrede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R2.eth1 deverá ser inferior ao endereço R3.eth0.

Router.interface	Endereço(s) IP
R1.eth0	66.66.621
R3.eth0	66.66.66.114
R3.eth1	66.66.622
R2.eth0	66.66.66
R2.eth1	66.66.66.113

c) (1 valor). Escreva a tabela de encaminhamento do **router R3.** Este router deverá ser capaz enviar pacotes para todos os endereços IP unicast. Use o menor número possível de entradas na tabela.

Destino (endereço/máscara)	Gateway	Interface
66.66.66.112/30	-	eth0
66.66.66.120/29	-	eth1
66.66.64/27	66.66.66.113	eth0
66.66.66.96/28	66.66.66.123	eth1
0/0	66.66.66.121	eth1