BOLEM NAGA MOHANA VAMSIDHAR

+91 91822 04314 | bolemvamsi@gmail.com | LinkedIn

	- 1						
ь.	а	111	C	2	Ť١	O	m
_	ч	ш	L	a	u	u	ш

Master of Computer Applications Computer Science	GITAM Deemed to be University	6.7 GPA	Aug 2023 – May 2025
Bachelor of Computer Applications Computer Science	GITAM Deemed to be University	7.11 CGPA	May 2020 – May 2023

Software Skills -

- Programming & Scripting Languages: Python, C, MySQL, PySpark, HTML, CSS.
- Software & Tools: Jupyter Notebook, Microsoft Office, Anaconda, Tableau.
- Cloud Services: AWS, Glue, Lambda, Elastic Map Reduce
- Machine Learning Algorithms & Packages: Linear Regression, Logistic Regression, Decision Trees, Classification, Random Forests, Naïve Bayes, CNN, NumPy, Pandas, Matplotlib, SciPy, Scikit Learn, Seaborn, TensorFlow
- Middle Ware: Dell Boomi
- Other Tools: ETL Services, Internet of Things, Data Warehousing, Distributed Deep Learning.

Projects

 Health Monitoring System using IoT and Machine Learning (Internet of Things (IoT), Machine Learning (ML), Python,

TensorFlow, Keras, Git, Web Development)

Objective: To develop a health monitoring system utilizing IoT sensors and machine learning algorithms to provide real-time health status monitoring for individuals, aiding in early detection of health issues and enabling timely intervention.

- Utilized IoT sensors to collect real-time health data such as heart rate, temperature, and activity level from individuals.
- Pre-processed the collected data using Python and Pandas library, handling missing values and outliers to ensure data quality.
- Implemented a convolutional neural network (CNN) model using TensorFlow and Keras to analyze health data and predict potential health issues.
- Constructed the CNN model architecture by defining layers, including convolutional layers, pooling layers, and fully connected layers.
- Compiled the CNN model with appropriate optimizer, loss function, and evaluation metrics to optimize model performance.
- Trained the CNN model using the collected health data, achieving a validation accuracy of 94% after 10 epochs.
- Presented project findings and demonstrations to stakeholders, highlighting the system's effectiveness in early health issue detection and intervention.
- Fraud Detection System using Machine Learning (Python, Scikit-learn, Pandas, NumPy, Git)

Objective: To develop a fraud detection system utilizing machine learning algorithms to identify fraudulent transactions and prevent financial losses.

- Pre-processed transactional data using Python libraries such as Pandas and NumPy, handling missing values, and scaling features to ensure data quality.
- Implemented machine learning models including Random Forest, Logistic Regression, and Gradient Boosting Classifier using Scikit learn to classify transactions as fraudulent or legitimate.
- Tuned hyperparameters of machine learning models using techniques like Grid Search CV and Randomized Search CV to optimize model performance.
- Evaluated model performance using metrics such as accuracy, precision, recall, and F1-score, achieving an average accuracy of 95% on test data.
- Presented project findings and demonstrations to stakeholders, highlighting the system's effectiveness in detecting fraudulent transactions and mitigating financial risks.