Problema de Repertorio de Instrucciones

Considérese un computador hipotético que cuenta con una memoria principal de 2ⁿ⁻¹ palabras de n bits. La CPU contiene un acumulador (AC) de n bits y tiene una sola instrucción de proceso: SUBS X (resta y almacena). Esta instrucción se comporta de la siguiente forma:

SUBS X
$$\begin{cases} AC \leftarrow AC - M(X) \\ M(X) \leftarrow AC \end{cases}$$

Una palabra en memoria puede ser una instrucción o un dato en complemento a dos. Al comenzar cualquier programa, la posición de memoria o siempre contendrá el valor o (M(o) = o). Para que tus instrucciones funcionen correctamente, si modifican en valor de M(o), al final deberían dejarlo otra vez con valor o para que las siguientes instrucciones puedan tenerlo también de referencia.

Probar que con esta única instrucción pueden realizarse las siguientes operaciones:

• CLA Borra el acumulador (AC \leftarrow 0)

• NEG Cambia el signo del acumulador (AC \leftarrow -AC)

• LOAD X Carga valor de posición X en AC (AC \leftarrow M(X))

• STORE X Almacena el valor de AC en posición $X(M(X)) \leftarrow AC$

• ADD X Suma la posición X a AC (AC \leftarrow AC + M(X))

CLA

SUBS
$$o \rightarrow AC \leftarrow AC. - M(o) = AC.$$

 $M(o) \leftarrow AC.$
SUBS $o \rightarrow AC \leftarrow AC. - M(o) = AC. - AC. = o$
 $M(o) \leftarrow o$

NEG

SUBS
$$0
ightharpoonup AC \leftarrow AC. - M(0) = AC.$$

$$M(0) \leftarrow AC.$$
SUBS T1 $ightharpoonup AC \leftarrow AC. - M.(T1)$

$$M(T1) \leftarrow AC. - M.(T1)$$
SUBS T1 $ightharpoonup AC \leftarrow AC. - M.(T1) - (AC. - M.(T1)) = 0$

$$M(T1) \leftarrow 0$$
SUBS $0 \rightarrow AC \leftarrow 0 - M(0) = 0 - AC. = -AC.$

$$M(0) \leftarrow -AC.$$
SUBS T1 $\rightarrow AC \leftarrow -AC. - 0 = -AC.$

$$M(T1) \leftarrow -AC.$$
SUBS $0 \rightarrow AC \leftarrow -AC. - (-AC.) = 0$

$$M(0) \leftarrow 0$$
SUBS T1 $\rightarrow AC \leftarrow 0 - (-AC.) = AC.$

$$M(T1) \leftarrow AC.$$
CLA $\rightarrow AC \leftarrow 0$
SUBS T1 $\rightarrow AC \leftarrow 0 - M(T1) = 0 - AC. = -AC.$

$$M(T1) \leftarrow -AC.$$

LOAD X

CLA
$$\rightarrow$$
 AC \leftarrow 0
SUBS X \rightarrow AC \leftarrow 0 - M.(X) = -M.(X)
M(X) \leftarrow -M.(X)
CLA \rightarrow AC \leftarrow 0
SUBS X \rightarrow AC \leftarrow 0 - (-M.(X)) = M.(X)
M(X) \leftarrow M.(X)

STORE X

NEG
$$\Rightarrow$$
 AC \leftarrow -AC.
SUBS 0 \Rightarrow AC \leftarrow -AC. – M(0) = -AC.
M(0) \leftarrow -AC.
SUBS X
SUBS X \Rightarrow AC \leftarrow 0
M(X) \leftarrow 0
SUBS 0 \Rightarrow AC \leftarrow 0 – (-AC.) = AC.
M(0) \leftarrow AC.
SUBS X \Rightarrow AC \leftarrow AC. – M(X) = AC. – 0 = AC.
M(X) \leftarrow AC.
SUBS 0
SUBS 0 \Rightarrow AC \leftarrow 0
M(0) \leftarrow 0
LOAD X \Rightarrow AC <- AC.

ADD X

```
NEG \rightarrow AC \leftarrow -AC.

STORE T1 \rightarrow M(T1) \leftarrow -AC.

LOAD X \rightarrow AC \leftarrow M.(X)

SUBS T1 \rightarrow AC \leftarrow M.(X) – M(T1) = M.(X) – (-AC.) = M.(X) + AC.

M(T1) \leftarrow M.(X) + AC.
```