Algorithm 2021 Spring HW1: solution

(Chapter 1 to Chapter 4)

Give asymptotic tight bound(θ) for question 1-4 by using master theory.

- 1. (2.5pts) $T(n) = 7T\left(\frac{n}{3}\right) + n^2$
 - (a) $\theta(1)$
 - (b) $\theta(n)$
 - (c) $\theta(n^2)$
 - (d) $\theta(n^3)$

Ans: (c)

$$n^{\log_3 7} < n^2$$

Master theorem case 3

- 2. (2.5pts) $T(n) = 7T(\frac{n}{49}) + \sqrt{n}$
 - (a) $\theta(n)$
 - (b) $\theta(\sqrt{n}\log(n))$
 - (c) $\theta(n^{3/2})$
 - (d) $\theta(n^2)$

Ans: (b)

$$n^{\log_{49} 7} = \sqrt{n}$$

Master theorem case 2

- 3. (2.5pts) $T(n) = T\left(\frac{9}{10}n\right) + 100$
 - (a) $\theta(1)$
 - (b) $\theta(n \log(n))$
 - (c) $\theta(\log(n))$
 - (d) $\theta(\log^2(n))$

Ans: (c)

$$n^{\log_{\frac{9}{10}}1} = n^0 = O(1)$$

Master theorem case 2

4. (2.5pts)
$$T(n) = 2T(\frac{n}{4}) + \sqrt{n}\log(n)$$

- (a) $\theta(n^2)$
- (b) $\theta(\sqrt{n}\log(n))$
- (c) $\theta(\sqrt{n}\log^2(n))$
- (d) $\theta(n \log(n))$

Ans: (c)

$$n^{\log_4 2} = \sqrt{n}$$

$$\frac{f(n)}{n^{\log_b a}} = (\log n)^k , k > -1$$

Extended Master Theorem case 3

Give asymptotic tight bound(θ) for question 5-6. (Assume that T(n) is a constant for sufficiently small n.)

5. (15pts)
$$T(n) = T(n-2) + n \log \frac{n}{2}$$
 (Assume *n* is even.)

Ans: $\theta(n^2 \log n)$

We take two parts. One for O, and another for Ω .

(1) Proof *O*:

$$T(n) = T(n-2) + n\log\frac{n}{2}$$

$$= T(n-4) + (n-2)\log\frac{n-2}{2} + n\log\frac{n}{2}$$

$$= c + 2\log\frac{2}{2} + 4\log\frac{4}{2} + \dots + (n-2)\log\frac{n-2}{2} + n\log\frac{n}{2}$$

$$\leq c + n\log\frac{n}{2} + n\log\frac{n}{2} + \dots + n\log\frac{n}{2} + n\log\frac{n}{2}$$

$$= c + \frac{n}{2} * n\log\frac{n}{2} = c + \frac{n^2}{2}\log\frac{n}{2}$$

Therefore, $T(n) = O(n^2 \log n)$

(2) Proof Ω :

$$T(n) = T(n-2) + n\log\frac{n}{2}$$

$$= T(n-4) + (n-2)\log\frac{n-2}{2} + n\log\frac{n}{2}$$

$$= c + 2\log\frac{2}{2} + \dots + (\frac{n}{2} - 2)\log\frac{(\frac{n}{2} - 2)}{2} + \frac{n}{2}\log\frac{n}{4} + \dots + n\log\frac{n}{2}$$

$$\ge c + 0 + \dots + 0 + \frac{n}{2}\log\frac{n}{4} + \dots + n\log\frac{n}{2} \text{ (half of number)}$$

$$= c + \frac{n}{4} * \frac{n}{2}\log\frac{n}{4} = c + \frac{n^2}{8}\log\frac{n}{4}$$

Therefore, $T(n) = \Omega(n^2 \log n)$

By (1)(2),
$$T(n) = \theta(n^2 \log n)$$

6. (15pts)
$$T(n) = 3T(\frac{n}{3}) + \frac{n}{\log^2 n}$$

Ans: $\theta(n)$

Use extended master theorem,

$$f(n) = \frac{n}{\log^2 n} = O(n^{\log_3 3} (\log_3 n)^{-2}) = O(\frac{n}{\log^2 n})$$

Then,
$$T(n) = \theta(n^{\log_3 3}) = \theta(n)$$

7. (15pts)
$$T(n) = T(\frac{n}{3}) + T(\frac{n}{4}) + n$$

Ans: $\Theta(n)$

 $4^a = n, a = \log_4 n \rightarrow \text{rightmost branch peters out after } \log_4 n \text{ levels } 3^b = n, b = \log_3 n \rightarrow \text{lefttmost branch peters out after } \log_3 n \text{ levels } Lower bound:$

Guess: $T(n) \ge dn$ for some positive constant d Substitution:

$$T(n) \ge T\left(\frac{n}{3}\right) + T\left(\frac{n}{4}\right) + cn$$

$$\ge d\left(\frac{n}{3}\right) + d\left(\frac{n}{4}\right) + cn$$

$$=d\left(\frac{7n}{12}\right)+cn$$

 $\geq dn$

$$if - \frac{5d}{12} + c \ge 0, d \le \frac{12}{5c}$$

Therefore, $T(n) = \Omega(n)$

Upper bound:

Guess: $T(n) \le dn$ for some positive constant d

Substitution:

$$T(n) \le T\left(\frac{n}{3}\right) + T\left(\frac{n}{4}\right) + cn$$
$$\le d\left(\frac{n}{3}\right) + d\left(\frac{n}{4}\right) + cn$$
$$= d\left(\frac{7n}{12}\right) + cn$$

 $\leq dn$

$$if - \frac{5d}{12} + c \le 0, d \ge \frac{12}{5c}$$

Therefore, T(n) = O(n)

Since T(n) = O(n) and $T(n) = \Omega(n)$, we conclude that $T(n) = \Theta(n)$

8. (15pts)
$$T(n) = 3T\left(\frac{n}{5}\right) + n^2$$

Ans: $\Theta(n^2)$

$$5^h = n, h = \log_5 n$$

 $w = 3^h = 3^{\log_5 n} = n^{\log_5 3}$

$$\begin{split} T(n) &= cn^2 + \left(\frac{3}{5}\right)cn^2 + \left(\frac{3}{5}\right)^2cn^2 + \dots + \left(\frac{3}{5}\right)^{\log_5 n - 1}cn^2 + \Theta(n^{\log_5 3}) \\ &= \sum_{i=0}^{\log_5 n - 1} \left(\frac{3}{5}\right)^icn^2 + \Theta(n^{\log_5 3}) \\ &= \frac{1 - (\frac{3}{5})^{\log_5 3}}{1 - \frac{3}{5}}cn^2 + \Theta(n^{\log_5 3}) \\ &= \left(\frac{5}{2} - \frac{5}{2} \times 3^{\log_5 \frac{3}{5}}\right)cn^2 + \Theta(n^{\log_5 3}) \\ &= \Theta(n^2) \end{split}$$

- 9. (15pts) Compare the following time complexity and arrange them in increasing order.
 - (1) $4^{\lg n}$
 - $(2) \log(n!)$
 - (3) 2^n
 - (4) n!
 - $(5) \ n^{\frac{1}{\log n}}$
 - (6) $(\log n)^{\log n}$
 - (a) 125634
 - (b) 521634
 - (c) 521364
 - (d) 123465

Ans: (b)

- $(1) n^{\log_2 4} \rightarrow n^2$
- (2) $n \log n$
- (3) 2^n
- (4) n!
- $(5) \ n^{\frac{\log 10}{\log n}} \ \ \Rightarrow \ n^{\log_n 10} \ \ \Rightarrow \ 10^{\log_n n} \ \Rightarrow \ 10 \ \Rightarrow \ O(1)$
- (6) $n^{\log \log n}$
- 10. (15pts) True or False
 - (a) $n\log(2n) = O(n\log n)$
 - (b) $5n^e + 24 \operatorname{nlog} n = O(n^{2.8})$ (e = natural logarithm)
 - (c) $2^{2n} = O(2^n)$

Ans: True, True, False

- (a) $n\log 2 + n\log n \rightarrow n + n\log n \rightarrow O(n\log n)$
- (b) $n^e + n\log n \rightarrow O(n^e) \rightarrow O(n^{2.8})$
- (c) $4^n \rightarrow O(4^n)$