

$\sigma_{0^{-}}^{*1}$ †	$\tau_{0^{+}}^{\#2}$ †	$\tau_{0^{+}}^{#1}$ †	$\sigma_{0^{+}}^{*1}$ †				
0	0	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{1}{(1+2k^2)^2t_3}$	$\sigma_{0^+}^{*1}$			
0	0		$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$ au_0^{\#1}$			
0	0	0	0	$ au_{0}^{\#2}$			
0	0	0	0				
O_2^{\sharp}		. 0					
- <u>'</u> :1 2 # 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +							

$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	$\tau_{2^{+}}^{#1} + \alpha \beta$	$\sigma_{2^+}^{*1} \dagger^{\alpha\beta}$	
0	0	0	$\sigma_{2}^{\#1}{}_{lphaeta}$
0	0	0	$t_{2}^{\#1}_{lpha\beta}$
$\frac{1}{k^2 r_1}$	0	0	$\sigma_{2^{+}\alpha\beta}^{*1} \ \tau_{2^{+}\alpha\beta}^{*1} \ \sigma_{2^{-}\alpha\beta\chi}^{*1}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$f_{2^{+}}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1$

Total #:	$\sigma_{2+}^{\#1\alpha\beta}==0$	$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta} == 0$	$\tau_1^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	5	ω	ω	ω	ω	1	1	1	#	

Quadratic pole

Pole residue: $-\frac{1}{r_1(r_1+r_5)(2r_1+r_5)p^2} > 0$

Polarisations: 2

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)