- Demonstre por indução matemática:
 - n³+2n é divisível por 3, para n≥0. 💪 1
 - $2^0 + 2^1 + 2^2 + ... + 2^n = 2^{n+1} 1$, para $n \ge 0$.
 - $2^{-1} + 2^{-2} + 2^{-3} + ... + 2^{-n} < 1$, para n > 0. (03)
 - n² < 2ⁿ, para n > 4. (04)
 - A representação binária de um número n>0 tem lg n + 1 bits. Dica: considere separadamente os casos em que n é ou não uma potência de 2. (♠5)

(04)
$$n^2 < 2^n$$
, para $n > 4$

Para $n = 5$, entro $5^2 < 2^6$ (0K)

Para $n = 6$, entro $6^2 < 2^6$ (0K)

Supende que seja válido até n, vamos verificer parants.

(n+1)² = n²12n+1 < 2ⁿ + 2n+1

$$(1+1)^{n} = 1 + nx + ... + nx^{n-1} + x^{n}$$

$$(1+1)^{n} = 1 + nx + ... + nx^{n-1} + x^{n}$$

$$2n + 1 < 2^{n}$$

$$2n + 1 < 2^{n}$$

(n+1)2 < 2° + (2n+1) < 2°+2° => \frac{(n+1)^2 < 2^n+1}{2^n+1}

Loge, pelo principio da indoção finita a desigueldade o

venda deina.

(05)

- Demonstre por indução matemática:
 - n³ + 2n é divisível por 3, para n ≥ 0.
 - $2^0 + 2^1 + 2^2 + ... + 2^n = 2^{n+1} 1$, para $n \ge 0$.
 - 2⁻¹ + 2⁻² + 2⁻³ + ... + 2⁻ⁿ < 1, para n > 0.
 - n2 < 2n , para n > 4.
 - A representação binária de um número n>0 tem lg n + 1 bits. Dica: considere separadamente os casos em que n é ou não uma potência de 2.