# ORANGE QUALITY CLASSIFICATION

Machine Learning Final Presentation
- Yirong Wang and Helen Yuan

#### INTRODUCTION

#### Orange Quality Dataset

- 10 input features
- 1 output feature(orange quality: 1-5)
- 241 samples
- No Missing data

#### Binary Classification Problem

Consider quality >=4 as good orange(worth to buy)

### DATA PROCESSING

| size | weight | sweetness | ph  | softness | harvest_days | ripeness | color               | variety             | blemishes      | quality |
|------|--------|-----------|-----|----------|--------------|----------|---------------------|---------------------|----------------|---------|
| 7.5  | 180    | 12        | 3.2 | 2        | 10           | 4        | Orange              | Valencia            | N              | 4       |
| 8.2  | 220    | 10.5      | 3.4 | 3        | 14           | 4.5      | Deep Orange         | Navel               | N              | 4.5     |
| 6.8  | 150    | 14        | 3   | 1        | 7            | 5        | Light Orange        | Cara Cara           | N              | 5       |
| 9    | 250    | 8.5       | 3.8 | 4        | 21           | 3.5      | Orange-Red          | Blood Orange        | N              | 3.5     |
| 8.5  | 210    | 11.5      | 3.3 | 2.5      | 12           | 5        | Orange              | Hamlin              | Y (Minor)      | 4.5     |
| 6.7  | 126    | 9.1       | 3   | 2        | 25           | 2        | Orange              | Navel               | N              | 1       |
| 7.2  | 160    | 9         | 3.5 | 3.5      | 9            | 4        | Yellow-Orange       | Tangelo (Hybrid)    | N              | 4       |
| 6.5  | 130    | 13.5      | 2.8 | 1.5      | 5            | 4.5      | Light Orange        | Murcott (Hybrid)    | N              | 4.5     |
| 8.8  | 240    | 7.5       | 4   | 5        | 18           | 3        | Deep Orange         | Moro (Blood)        | Y (Sunburn)    | 3       |
| 7.8  | 190    | 12        | 3.1 | 2        | 11           | 4.5      | Orange              | Jaffa               | N              | 5       |
| 9.5  | 270    | 6         | 4.2 | 4.5      | 24           | 2.5      | Orange-Red          | Cara Cara           | Y (Mold Spot)  | 2.5     |
| 7.8  | 183    | 14.8      | 3.7 | 2        | 12           | 3        | Deep Orange         | Valencia            | Y (Mold Spot)  | 4       |
| 8    | 200    | 10        | 3.5 | 3        | 13           | 4        | Orange              | Clementine          | N              | 4.5     |
| 7    | 140    | 11        | 3.2 | 2.5      | 8            | 4.5      | Deep Orange         | Washington Navel    | N              | 5       |
| 9.2  | 260    | 9.5       | 3.7 | 4.5      | 20           | 4        | Orange-Red          | Star Ruby           | N              | 4       |
| 6.3  | 120    | 14.5      | 2.9 | 1        | 6            | 5        | Light Orange        | Tangerine           | N              | 5       |
| 8.7  | 230    | 8         | 3.9 | 3.5      | 17           | 3.5      | Orange              | Ambiance            | Y (Bruise)     | 3.5     |
| 9.6  | 218    | 14.1      | 4.2 | 4        | 11           | 1        | Deep Orange         | Cara Cara           | Y (Sunburn)    | 4       |
| 7.5  | 247    | 9.1       | 3.3 | 4        | 24           | 5        | <b>Light Orange</b> | Clementine          | N              | 2       |
| 7.4  | 170    | 12.5      | 3   | 2        | 10           | 4        | Yellow-Orange       | Jaffa               | N              | 4.5     |
| 10   | 300    | 7         | 4.1 | 5        | 25           | 3        | Orange-Red          | Blood Orange        | N              | 3       |
| 8.1  | 205    | 11        | 3.4 | 2.5      | 14           | 4.5      | Deep Orange         | Murcott (Hybrid)    | N              | 5       |
| 7.6  | 180    | 9         | 3.3 | 3        | 11           | 4        | Orange              | California Valencia | N              | 4.5     |
| 9.8  | 280    | 6.5       | 4.3 | 5        | 23           | 2.5      | Orange-Red          | Moro (Blood)        | Y (Split Skin) | 2       |
| 7.9  | 190    | 10.5      | 3.1 | 2.5      | 12           | 4        | Orange              | Honey Tangerine     | N              | 4.5     |

#### DATA PROCESSING

- One Hot Encoding (color, variety, blemishes)
  - 0 10 columns to 48 columns
- Output Feature Binarization
- Data splits
  - o 60% train
  - 20% validation
  - o 20% test

## LOGISTIC REGRESSION



#### L2 REGULARIZATION - BEST STRENGTH VALUE 0.5



#### L1 REGULARIZATION - BEST STRENGTH VALUE 5



#### DIFFERENT PROBABILITY THRESHOLD - BEST 0.5



#### FEATURE TRANSFORMATION: SECOND DEGREE

L2 Regularization + strength 0.5 + Threshold 0.5

With transformation 🗸



- Training F1 Score: 0.9946524064171123
- Validation F1 Score: 0.9253731343283582

Without transformation

- Training F1 Score: 0.9206349206349206
- Validation F1 Score: 0.911764705882353

#### TEST WITH BEST PARAMETERS

L2 Regularization

+

strength 0.5

+

**Feature Transformation** 

+

Probability Threshold 0.5

=

Test Set F1 Score: 0.84375

# SVM



#### REGULARIZATION ON LINEAR KERNEL - BEST STRENGTH VALUE 0.1



#### REGULARIZATION ON RBF KERNEL - BEST STRENGTH VALUE 10



#### TEST WITH BEST PARAMETERS

Linear Kernel

+

strength 0.1

Test Set F1 Score: 0.923076923076923



## NEURAL NETWORK

#### 7 LAYER NEURAL NETWORK

- ELU Activation Function for first 6 layers.
- Sigmoid Activation Function for the last layer.
- 144 -> 128 -> 64 -> 32 -> 16 -> 8 -> 1

```
model = tf.keras.Sequential([
    layers.Dense(128, activation='elu', input_shape=(144,), kernel_regularizer=l2(0.001)),
    layers.Dense(64, activation='elu', kernel_regularizer=l2(0.001)),
    layers.Dense(32, activation='elu', kernel_regularizer=l2(0.001)),
    layers.Dense(16, activation='elu', kernel_regularizer=l2(0.001)),
    layers.Dense(8, activation='elu', kernel_regularizer=l2(0.001)),
    layers.Dense(1, activation='sigmoid', kernel_regularizer=l2(0.001)),
])
```

#### BEST LEARNING RATE - 0.001



#### L2 REGULARIZATION - BEST STRENGTH VALUE 0.001



#### L1 REGULARIZATION - BEST STRENGTH VALUE 0.1



#### FEATURE TRANSFORMATION: SECOND DEGREE

#### L1 Regularization + strength 0.1 + Learning Rate 0.001

With transformation

- Training F1 Score: 0.9304812834224598
- Validation F1 Score: 0.8169014084507042

Without transformation 🗸



- Training F1 Score: 0.9247311827956989
- Validation F1 Score: 0.8695652173913043

#### TEST WITH BEST PARAMETERS

```
L1 Regularization
+
strength 0.1
+
Learning Rate 0.001
```

Test Set F1 Score: 0.9253731343283582

#### CONCLUSION

Logistic Regression: 0.84375

**SVM:** 0.923076923076923

Neural Network: 0.9253731343283582



# THANK YOU!!

Machine Learning Final Presentation
- Yirong Wang and Helen Yuan