

가천대학교

- 2019학년도 1학기 -

Preview

❖전송 계층 프로토콜

- UDP : 비연결형 서비스를 지원하는 프로토콜.
 - 데이터 신뢰성 문제로 일반 응용 프로그래머가 덜 선호함
 - 작고 가벼워 빠른 전송이 필요한 환경에서 사용
 - 특히, 데이터를 실시간으로 전송하는 환경에서 TCP보다 유리한 점이 많음
- RTP 프로토콜 : 실시간 서비스를 제공하는 프로토콜

Contents

❖ 학습목표

- 비연결형 서비스를 제공하는 UDP의 헤더와 데이터 전송 방법을 이해한다.
- 실시간 데이터 전송 프로토콜을 살펴본다.
- RTP의 헤더와 동작 원리를 이해한다.
- OSI TP의 서비스 프리미티브 종류와 동작을 이해한다.

❖ 내용

- UDP 프로토콜
- RTP 프로토콜
- OSI TP 프로토콜

- UDP^{User Datagram Protocol} : 인터넷 프로토콜 중 구조가 가장 간단
- ■특징
 - 비연결형 서비스를 제공
 - 헤더와 전송 데이터에 대한 체크섬 기능을 제공
 - <u>Best Effort 전달 방식</u>을 지원 빠른 시간내의 전달을 최우선으로 하는 전달 방식. 네트워크는 분실되거나 손상된 패킷을 복구하는 등의 복잡한 기능은 제공하지 않는 것으로 이러한 기능을 제거함으로써 네트워크를 효율적으로 운용할뿐만 아니라 사용자에게 는 신속한 전달을 보장할 수 있게 된다.
- 신뢰성이 떨어지지만 프로토콜을 처리하는 기능이 작아 TCP보다 데이터 처리가 빠르므로 데이터 전송 시간에 민감한 응용 환경에서는 UDP를 사용하는 것이 유리

❖ UDP 헤더 구조

■ 프로토콜의 오버헤드가 작은 편임

C	1	15	
	Source Port	Destination Port	
	Length	Checksum	

그림 10-1 UDP 헤더의 구조

- Source Port/Destination Port(송신 포트/수신 포트): 송수신 프로세스에 할당된 네트워크 포트 번호
- Length(길이) : 프로토콜 헤더를 포함한 UDP 데이터그램의 전체 크기
 - 단위는 바이트. 헤더의 최소 길이가 8바이트이므로 Length의 최소값은 8
 - 이론상 최대 65,535(2¹⁶-1) 바이트까지 가능하나, 응용프로그램 및 다른 계층과의 연관성 문제를 고려하여 일반적으로 8,192바이트를 넘지 않게 사용함
- Checksum(체크섬) : 프로토콜 헤더와 데이터에 대한 체크섬 값을 제공
 - 수신 프로세스는 체크섬 오류가 발견되면 해당 데이터그램을 버림
 - 체크섬 기능은 옵션으로 필드 값이 0이면 송신 프로세스가 체크섬을 계산하지 않았다는 의미

❖ UDP의 데이터그램 전송

- 비연결형 서비스를 이용하여 데이터그램을 전송
- 각 데이터그램은 전송 과정에서 독립적으로 중개됨
- 데이터그램이 목적지까지 도착하는 것을 보장하지 않음
- 흐름 제어 기능이 없어 버퍼 오버플로Buffer Overflow에 의한 데이터 분실 오류 가 발생할 수 있음
- 오류 유형
 - 데이터가 목적지에 도착하지 못하는 데이터그램 분실과
 - 데이터그램의 도착 순서가 바뀌는 도착 순서 변경

■ UDP에서의 데이터그램 분실

그림 10-2 데이터그램 분실

- 분실 오류를 복구하는 기능을 수신하지 않으므로 데이터 분실을 인지하지 못함
- UDP의 데이터그램 분실 오류는 상위 계층 스스로 데이터 분실을 확인해 복구해야 함
- 데이터의 순서 번호 기능이 없으므로 응용 프로그램에서 순서 번호와 유사한 기능을 프로그램 내부에서 구현해야 함

- UDP에서의 데이터그램 도착 순서 변경
 - 데이터의 순서 번호 기능이 없으므로 응용 프로그램에서 순서 번호와 유사한 기능을 프로그램 내부에서 구현해야 함

그림 10-3 도착 순서 변경

❖ 인터넷 멀티미디어 서비스

- 비디오, 오디오 파일 전체를 하나의 단위로 다운로드 하여 재생=> 실시간으로 다운로드하며 재생
- TV, 라디오, 영화 등 동영상 서비스에도 일반화
- 인터넷 음성전화 서비스 보급, 기존 전화망 연동 서비스

❖ 실시간 요구 사항

- 데이터 변형/분실 오류를 복구하는 기능이 상대적으로 덜 중요함
- 데이터그램의 도착 순서, 패킷의 지연 간격 분포의 균일성, 데이터 압축에 의한 정보 전송량의 최소화 등이 중요
- TCP : 패킷의 순서와 신뢰성이 지나치게 강조되어, 재전송 기능, 복잡한 흐름 제어 기능으로 인해 실시간 환경에 부적합
- UDP : 기능이 단순하여 빠른 데이터 전송을 지원하지만, 데이터 그램의 순서를 보장하지 못함
- ▶ 가장 현실적인 방법 중 하나 : UDP에 데이터의 순서 번호 기능 추가

* RTP Real Time Protocol

- 실시간 멀티미디어 데이터의 전송을 지원
- 유니캐스팅뿐 아니라 멀티캐스팅도 지원
- ■특징
 - 불규칙한 데이터의 순서를 정렬하기 위해 타임스탬프Timestamp 방식을 사용
 - 응용 프로그램의 라이브러리 형태로 구현되는 ALFApplication Level Framing 방식으로 응용 환경이 요구하는 알고리즘에 따라 버퍼 크기를 개별적으로 조절 가능
 - 실시간 응용 서비스에 유용하지만, 자원 예약이나 QoS 보장과 같은 기능을 제공하지 못하므로 실시간 동영상 서비스를 지원하기에는 한계가 있음

❖ 실시간 요구사항

- 전송 시간이 중요 : 송신 프로세스가 전송한 데이터의 전송 간격 유지, 대부분 특정 데이터가 정해진 시간 안에 반드시 도착하도록 요구
- 버퍼의 역할
 - 네트워크에서 데이터의 시간 간격이 불규칙적으로 변함
 - 수신 프로세스의 버퍼를 이용하여 시간 간격이 일정하도록 보정

그림 10-4 실시간 전송

■지터

• 지터Jitter 분포 : 데이터그램의 도착 시간을 측정하였을 때 각 데이터그램의 도착 시간이 불규칙적으로 도착하는 정도를 나타냄

그림 10-5 지터 분포

❖ RTP의 데이터 전송

- 실시간 서비스를 위해 작고 빠른 전송 기능을 제공하는 UDP 위에서 구현
 - 데이터그램 분실이나 도착 순서 변경과 같은 전송 오류는 RTP 자체에서 해결
 - 송수신 프로세스 간의 연결을 관리(UDP의 포트 번호 사용)
- 하나의 완전한 프로그램 단위로 구현되지 않고, 기능별로 개별로 구현
- 다수의 사용자가 하나의 세션에 참여, 서로 실시간 데이터 전송을 지원

- 두 종류의 RTP 릴레이RTP Relay를 지원
 - 릴레이는 데이터 전송 과정에서 송수신 프로세스가 데이터를 직접 전송할 수 없는
 는 상황이 발생했을 때, 데이터를 중개하는 기능
 - 예) 송수신 프로세스 사이에 방화벽이 설치되거나 데이터 형식이 다를 경우, 릴레이가 필요한 처리를 수행, 데이터 전송이 가능하도록 지원
 - 믹서Mixer : RTP 데이터그램 스트림을 받아 이들을 적절히 조합하여 새로운 데이터그램 스트림을 생성
 - 데이터 형식이 변하거나 믹싱 기능이 수행될 수 있음
 - 여러 송신 프로세스로부터 수신한 데이터의 시간 관계 조절을 위해 조합된 데이터그램 스트림에 시간 정보 제공 및 시간 정보(Synchronization) 제공여부 표시
 - 트랜슬레이터^{Translator} : 입력된 각 RTP 데이터그램을 하나 이상의 출력용 RTP 데이터그램으로 만들어주는 장치
 - 데이터 형식 변경 가능
 - 예1: 임의의 수신자 그룹에서 특정 수신 프로세스가 고해상도 비디오 신호를 처리할 능력이 없는
 는 경우 트랜슬레이터가 저해상도 신호로 변환하여 수신 프로세스가 처리할 수 있도록 지원
 - 예2: 입력된 멀티캐스트 RTP 데이터그램을 복사하여 다수의 유니캐스트 수신 프로세스에 전송

❖ RTP 헤더 구조

- 기본 헤더에 응용 환경과 관련된 가변 크기의 헤더 추가 가능
- CSRC 구분자 목록은 믹서에 의해 추가되는 경우에 사용
- 멀티캐스트 전송 가능
 - RTP 데이터 형식에 송신 구분자Source Identifier 필드 존재 : 멀티캐스트 전송을 위해 멀티캐스트 그룹에서 누가 데이터를 전송했는지 확인
 - Timestamp 필드 지원 : 수신프로세스에서 지연 버퍼를 사용해 타이밍 관계 조절

그림 10-7 RTP 고정 헤더의 구조

- RTP 헤더에 정의된 각 필드의 의미
 - Version(버전): RTP의 버전 번호 현재 2로 지정
 - Padding(패딩) : RTP 페이로드의 마지막에 패딩 데이터가 존재하는지 여부
 - Extension(확장) : 고정 헤더의 마지막에 확장 헤더가 하나 더 이어짐을 의미
 - CSRC Count(CSRC 개수) : CSRC 구분자의 개수를 표시
 - Marker(표식) : 임의의 표식Marking, 페이로드 유형에 따라 값의 의미가 결정됨
 - 보통 데이터 스트림의 경계를 표시하는데 사용. 예) 비디오 페이로드에서 프레임의 마지막을 표시하기 위해 1로 지정
 - Payload Type(페이로드 유형) : 헤더 다음에 이어지는 RTP 페이로드의 유형
 - Sequence Number(순서 번호) : Timestamp 필드 값이 동일한 페이로드에 대해 패킷 손실이나 순서 변경과 같은 오류 검출
 - 일반적으로 동시에 생성된 일련의 연속 패킷들은 동일한 Timestamp 값을 가지며, 순서번호는 RTP 패킷 단위로 1씩 증가
 - Timestamp(타임스탬프): RTP 페이로드에 포함된 데이터의 생성 시기
 - SSRC Identifier(SSRC 구분자) : 임의의 세션 내에서 RTP 페이로드의 발신지가 어디인지를 구분하는 고유 번호. 랜덤하게 생성되는 32비트 숫자

표 10-1 RFC 1890에서 권고한 표준 오디오 · 비디오 인코딩

페이로드	인코딩	페이로드	인코딩	페이로드	인코딩
0	PCMU audio	10	L16 audio	28	nv video
1	1016 audio	11	L16 audio	31	H,261 video
2	G.721 audio	12~13	audio	32	MPV video
3	GSM audio	14	MPA audio	33	MP2T video
4	audio	15	G.728 audio	34~71	
5	DV14 audio	16~23	audio	72~76	Reserved
6	DV14 audio	24	video	77~95	
7	LPC audio	25	CelB video	96~127	Dynamic
8	PCMA audio	26	JPEG video		
9	G.722 audio	27			

❖ RTP 제어 프로토콜(RTCPRTP Control Protocol)

- 주요 기능
 - QoSQuality of Service와 혼잡 제어: 데이터 분배 과정에서 발생하는 서비스 품질에 관한 피드백 기능을 지원. 송수신 보고서에 전송률, 패킷 분실, 지터 등 정보 포함
 - Identification(구분자): RTCP 송신 프로세스에 관한 구분자 정보가 포함, 서로 다른 세션에서 발신된 스트림 정보들을 서로 연관시키는 근거를 제공
 - 세션 크기: 전체 세션 트래픽의 5% 이내로 유지되도록 알고리즘이 동작

표 10-2 패킷의 종류와 역할

	종류	역할
	Sender Report ^{SR} , Receiver Report ^{RR}	데이터 전송 품질을 피드백하기 위한 용도로 사용된다.
	Source Description ^{SDES}	송신 프로세스가 자신에 대한 정보를 더 많이 제공하는 용도로 이용된다.
-	Goodbye ^{BYE}	송신 프로세스가 더 이상 존재하지 않음을 의미하고, 이는 수신 프로세스가 송신 프로 세스를 무한정 기다리지 않도록 한다. 즉, 상대편과의 통신상 문제가 네트워크 오류가 이닌 세션에 더 이상 참가하지 않기 때문임을 알려준다.
SEP? Application defined Packet		응용 환경에 따른 기능을 점검하기 위해 제공된다.

03_OSI TP 프로토콜

- OSI에서 정의한 TP 프로토콜이 제공하는 서비스
 - 클래스 0이 구조가 가장 단순, 클래스 번호가 커질수록 기능이 추가

표 10-3 OSI TP 프로토콜이 제공하는 서비스

클래스	제공하는 서비스	
클래스 ()	기본 기능	
클래스 1	기본 오류 복구 기능	
클래스 2	멀티플렉싱 기능	
클래스 3	오류 복구, 멀티플렉싱 기능	
클래스 4	오류 검출, 오류 복구, 멀티플렉싱 기능	

03_OSI TP 프로토콜

❖ OSI TP의 서비스 프리미티브

- 연결형 서비스 : 연결 설정(T-CONNECT), 연결 해제(T-DISCONNECT) 일반 데이터(T-DATA), 긴급 데이터(T-EXPEDITED-DATA)
- 비연결형 서비스 : 데이터 전송을 위한 T-UNITDATA 프리미티브만 존재

표 10-4 OSI TP의 서비스 프리미티브

프리미티브	제공 서비스	프리미티브	제공 서비스
T-CONNECT.request	연결 설정	T-DATA,request	데이터 전송
T-CONNECT.indication	연결 설정	T-DATA.indication	데이터 전송
T-CONNECT.response	연결 설정	T-EXPEDITED-DATA.request	긴급 데이터 전송
T-CONNECT.confirm	연결 설정	T-EXPEDITED-DATA,indication	긴급 데이터 전송
T-DISCONNECT.request	연결 해제	T-UNITDATA.request	비연결형 데이터 전송
T-DISCONNECT.indication	연결 해제	T-UNITDATA.indication	비연결형 데이터 전송

[참고]계층구조의 개념

❖ 서비스 프리미티브

- 계층 구조 프로토콜에서 하위 계층이 상위 계층에 제공하는 서비스의 종류에는 연결형과 비연결형이 있으며 프리미티브 형태로 구현됨
- 연결형 서비스
 - 연결형Connection-oriented 서비스를 이용하는 3단계

표 2-1 연결형 서비스의 프리미티브 종류

종류	용도
CONNECT	연결 설정
DATA	데이터 전송
DISCONNECT	연결 해제

- 비연결형 서비스
 - 전송할 데이터가 있으면 각 데이터를 독립적으로 목적지 호스트로 전송

[참고]계층구조의 개념

서비스 프리미티브의 기능

표 2-2 서비스 프리미티브의 기능

가능	설명
Request	클라이언트가 서버에 서비스를 요청함
Indication	서버에 서비스 요청이 도착했 음을 통지함
Response	서버가 클라이언트에 서비스 응답을 회신함
Confirm	클라이언트에 응답이 도착했음을 통지함

- 서비스 프리미티브의 동작 원리 [그림 2-5]
 - Request : 연결 설정 요청CONNECT.Request, 데이터 전송 요청DATA.Request,
 연결 해제 요청DISCONNECT.Request 등
 - Indication : 연결 설정, 데이터 전송, 연결 해제에 대해 CONNECT.Indication,
 DATA.Indication, DISCONNECT.Indication 순으로 사용
 - Response : 연결 설정 요청은 CONNECT.Response, 데이터는 DATA.Response,
 연결 해제는 DISCONNECT.Response로 전달

[참고]계층구조의 개념

Confirm : 연결 설정은 CONNECT.Confirm, 데이터는 DATA.Confirm,
 연결 해제는 DISCONNECT.Confirm로 전달

그림 2-5 서비스 프리미티브의 동작 원리

03_OSI TP 프로토콜

❖ OSI TP의 데이터 전송

- T-DISCONNECT(연결 해제)
 - 어느 한쪽이라도 연결 해제를 원하면 해제
 - 네트워크 내부에 특별한 상황이 발생시 해제

그림 10-8 OSI 프리미티브

Thank You