Arithmetique | CM: 4

Par Lorenzo

27 septembre 2024

0.1 Arithmétique élémentaire dans \mathbb{Z}

Définition 0.1. Soient x et y dans \mathbb{Z} . On dit que x divise y s'il existe $k \in \mathbb{Z}$ tel que y = kx. La notation associée est $x \mid y$. x est un diviseur de y ou y est un multiple de x

Remarques 0.1.

- tout entier relatif divise 0.
- 0 divise uniquement 0.
- si x est un diviseur de y alors (-x) est un diviseur de y
- 1 et -1 sont les diviseurs de tout entier relatifs.
- les diviseurs de 1 et -1 sont 1 et -1
- $\forall x, y \in \mathbb{N}^*, \ x \mid y \implies x \leq y$

Définition 0.2. On dit que $p \in \mathbb{N}$, $p \geq 2$ est un nombre premier si les seuls diviseurs positifs de p sont 1 et p.

Remarques 0.2. Une autre définition est tout nombre qui a exactement 2 diviseurs.

Remarques 0.3. Pour vérifier qu'un nombre est premier, on peut regarde pour chaque $\forall k \in \mathbb{N}, k \leq \sqrt{p}$ si k divise p.

Définition 0.3. Soit $n \in \mathbb{Z}^*$, on appelle décomposition en facteurs premiers de n une écriture de la forme

$$n = c \prod_{i=1}^{k} p_i = c(p_1 \times \dots \times p_k)$$

 $où c \in \{\pm 1\}, k \in \mathbb{N}, p_1, ..., p_k \text{ sont premiers}$

Proposition 0.1.

Tout $n \in \mathbb{Z}^*$ admet une décomposition en facteurs premier.

Démonstration 0.1.

Il suffit de le démontrer pour $n \in \mathbb{N}^*$ et c=1 et pour les négatifs on se ramène à \mathbb{N}^* en posant c=-1

Démonstration par récurrence forte.

Initialisation: n = 1, on pose c = 1, k = 0, c'est un produit vide.

Initialisation: Soit $n \in \mathbb{N}^*, \forall d \leq n$, on ait une telle décomposition. Si n+1 est premier, on pose k=1 $P_1=n+1$. Si n+1 n'est pas premier il admet un diviseur $d \in [2,n]$. Par hypothèse de récurrence $d=c \times p_1 \times ... \times p_k$. De même $d'=\frac{n+1}{d} \in [2;n]$ $d'=p'_1 \times ... \times p'_k$.

Donc $n + 1 = d \times d' = p_1 \times ... \times p_k \times p'_1 \times ... \times p'_k$

Corollaire 0.1. Tout entier $n \geq 2$ admet au moins un diviseur premier

Proposition 0.2.

L'ensemble des nombre premiers est infini.

Démonstration 0.2.

Supposons (par l'absurde) qu'il y ait un nombre fini de nombres premiers $p_1, ..., p_m$ On pose $N = p_1 \times ... \times p_m + 1$

Alors N admet un diviseur premier $p_i(i \in [i; m])$ i.e. $N = p_i N' \implies N = \prod p_j + 1 \implies p_i N' - p_i \prod_{i = j} p_j = 1 \implies p_i (N' - multi_{j = i} p_j) = 1$

0.2 Division euclidienne

Théorème 0.1. Soient $a \in \mathbb{Z}, b \in \mathbb{N}*$.

Alors il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{N}, a = bq + r \text{ avec } b > r \geq 0$

Démonstration 0.3.

Existence: Pour $a \in \mathbb{N}$, raisonnement par récurrence.

Initialisation: a = 0: On pose q = 0 et $r = 0 \implies 0 = b \times 0 + 0$

Hérédité: Si a = bq + r avec $(b > r \ge 0)$

Alors a+1 = bq + (r+1), C'est une division euclidienne lorsque $r+1 < b \implies r < l-1$ Lorsque r = b-1

a+1=bq+((b-1)+1)=bq+b=b(q+1)+0, C'est une division euclidienne.

Si a < 0 alors (-a) > 0 Donc $\exists (q, r) \in \mathbb{Z} \times \mathbb{N}, -a = bq + r \implies a = b \times (-q) + (-r)$ avec (b > r > 0)

 $Si \ r = 0$, c'est une division euclidienne.

 $Sinon -b < -r < 0 \implies 0 < -r + b < b$

Donc $a = b \times (-q) + (-r+b) - b = b \times (-q-1) + (-r+b)$ C'est un division euclidienne.

Unicité: Si a = bq + r et a = bq' + r' avec $b > r, r' \ge 0$

Par soustraction: $0 = b(q - q') + r - r' \implies r' - r = b(q - q')$

 $b-1 \ge r'-r \ge -b-1 \ Donc \ r'-r=0 \implies r=r'$

 $Ainsi\ bq + r = bq' + r' \implies bq = bq' \implies q = q'$

0.3 PGCD, PPCM

Définition 0.4. le **pgcd** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus grand diviseur commun à a et b. Il est noté PGCD(a, b) (ou encore $a \wedge b$)

On dit que a et b sont **premiers entre eux** si PGCD(a, b) = 1.

Le **ppcm** de deux nombres $a, b \in \mathbb{Z}^*$ est le plus petit multiple strictement positif commun à a et b. Il est noté PPCM(a, b) (ou encore $a \lor b$)

Proposition 0.3.

$$\forall a, b \in \mathbb{Z}^*, PGCD(a, b) \times PPCM(a, b) = |ab|$$

Démonstration 0.4.

Si on remplace a et b par leurs valeurs absolues: ||a||b|| = |ab|Les multiples et les diviseurs de |a| et de a sont les mêmes. Donc PGCD(a,b) = PGCD(|a|,|b|) et PPCM(a,b) = PPCM(|a|,|b|)Ainsi il suffit de montrer le résultat pour $a,b \in \mathbb{N}^*$ On pose d = PGCD(a,b) $\exists a',b' \in \mathbb{N}^*, a = da'$ et b = db' $\frac{ab}{d} = \frac{da'b}{d} = a'b$ $\frac{ab}{d} = \frac{adb'}{d} = ab'$

Méthode 0.1.

L'algorithme d'Euclide:

Le PGCD peut se calculer avec l'algorithme d'Euclide:

- 1. (Eventuellement) remplacer a et b par |a| et |b|
- 2. De manière récursive:
- **2.1** Calculer la division euclidienne de a par b: a = bq + r
- **2.2** Si $r \neq 0$: recommencer en remplcaçant (a, b) par (b, r) Sinon sortir de la récursion
- 3. Le pgcd est le dernier reste non-nul calculé.

Proposition 0.4.

Si d est un diviseur commun à a et b alors $d \mid PGCD(a, b)$

Corollaire 0.2. Le PGCD est aussi le plus grand diviseur commun au sens de la divisibilité.