EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

11 de fevereiro de 2016

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

- 1. (4 valores) Num sistema de vácuo há duas lâminas metálicas A e B, planas, paralelas e muito extensas, afastadas uma distância d = 15 cm entre si. A diferença de potencial entre as lâminas é de 4 V (maior potencial em A do que em B). Num instante é lançado um eletrão desde a superfície de A, com velocidade inicial de módulo 1.4 Mm/s, formando um ângulo de 45° com a lâmina, como mostra a figura. Determine em qual das duas lâminas, A ou B, bate primeiro o eletrão após ter sido lançado e a que distância desde o ponto inicial (a massa do eletrão é 9.109 × 10⁻³¹ kg).
- **2.** (4 valores) No filtro de frequências representado no diagrama, o sinal de entrada é a tensão V_e de uma fonte de tensão alternada, com frequência angular ω , e o sinal de saída é a tensão V medida no indutor e no condensador, como indica a figura. Encontre a expressão da função resposta de frequência, em função de ω .

PERGUNTAS. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

3. O gráfico mostra as linhas de campo elétrico de um sistema de cargas pontuais sobre o plano xy. Se $E_{\rm P}$, $E_{\rm Q}$ e $E_{\rm R}$ representam o módulo do campo elétrico nos pontos P, Q e R, selecione a afirmação verdadeira.

- (A) $E_{\rm P} > E_{\rm Q}$
- **(D)** $E_{\rm Q} = E_{\rm P}$
- **(B)** $E_{\rm R} > E_{\rm P}$
- (E) $E_{\rm R} = E_{\rm P}$
- (C) $E_{\rm P} < E_{\rm Q}$

Resposta:

4. Um motor elétrico, alimentado por uma fonte com força eletromotriz de 230 V, é usado para realizar um trabalho de 5.34 kJ cada 3 segundos. Admitindo que a energia elétrica é transformada a 100% em energia mecânica, a corrente necessária será:

- (A) 17.03 A
- (**C**) 7.74 A
- **(E)** 25.54 A

- (**B**) 11.61 A
- **(D)** 30.96 A

Resposta:

- 5. Uma bobina circular com 20 espiras, todas de raio 5.0 cm, encontra-se numa região onde existe campo magnético uniforme, de módulo 0.15 T e direção que faz um ângulo de 55° com a perpendicular à bobina. Calcule o módulo do momento do binário sobre a bobina quando esta for percorrida por uma corrente de 6.8 A.
 - (A) 141.47 mN·m
- (C) 131.25 mN·m
- (**E**) 91.9 mN⋅m

- (**B**) 75.22 mN⋅m
- (**D**) 113.29 mN·m

Resposta:

6. Uma fonte de tensão constante foi ligada a um condensador e 3 resistências, como mostra o diagrama. Calcule a intensidade da corrente fornecida pela fonte no instante inicial em que é ligada.

- (A) 0 mA
- (C) 10 mA
- **(E)** 5 mA

- (**B**) 8 mA
- (**D**) 20 mA

Resposta:

	(12) 11)	(3) 3.37 .	(2) 111 .		(4) 2.00 10-18	~	(TD) 110	0 10-5 0		
	(B) 4.75 V	(D) 8.15 V			(A) -2.08×10^{-18} (ن		$9 \times 10^{-5} \text{ C}$		
	Resposta:				(B) $2.08 \times 10^{-18} \text{ C}$		(E) -2.08	10^{-14} C		
	Resposta.				(C) 11.09×10^{-5} C					
8.	Duas cargas pontuais são colocadas sobre o eixo dos x : uma carga de $2 \mu C$ em $x=-1.0$ m e outra carga de $-4 \mu C$ na origem. Calcule o módulo do campo elétrico no ponto $x=1.0$ m, no				Resposta:					
				13	O campo elétrico numa região do espaço é $2\hat{i}+3\hat{j}+5\hat{k}$ (unidades					
	eixo dos x .			13.	SI). Determine o valo					
	(A) $27.0 \text{ mN/}\mu\text{C}$	(C) $4.5 \text{ mN/}\mu\text{C}$	(E) $31.5 \text{ mN/}\mu\text{C}$		vértices na origem e					
	(B) 40.5 mN/μC	(D) $45.0 \text{ mN/}\mu\text{C}$			unidades SI.	1				
	Dogwoods.				(A) 67.2	(C) 53.76		(E) 48.38		
	Resposta:							(E) 40.30		
9.	Uma resistência de 433 Ω , um condensador de 8 μ F e um indutor de indutância L são ligados em série a uma fonte de tensão alternada com frequência angular $\omega=250$ Hz. O gráfico mostra a tensão da fonte, ΔV , e a corrente I no circuito, em função do tempo. Qual dos valores na lista poderá ser o valor da indutância L ?				(B) 134.4	(D) 26.88	1			
					Resposta:					
				14.	14. Dois condensadores com capacidades 8 μF e 16 μF são ligados					
					em série a uma fonte de 18 V. Calcule a carga no condensador de 8 $\mu F.$					
		ΔV			(A) 96 μC	(C) 48 μC	2	(E) 24 μC		
	$v_0 \uparrow \frown$	\bigcap	\		(B) 72 μC	(D) 120 μ		() F		
	I_0				Resposta:	(Σ) 120 μ				
					D	6010 1	5010			
				15.	Duas resistências de $6.0 \text{ k}\Omega$ e $15.0 \text{ k}\Omega$ suportam cada uma potência máxima de 0.5 W sem se queimar. Determine a potência					
					máxima que suporta o sistema dessas duas resistências ligadas					
		(6) 5 77			em paralelo.	o sisteria d	ressus eaus	10010101101010 119	Sudus	
	(A) 1 H	(C) 2 H	(E) 3 H		(A) 1.0 W	(C) 0.7 W	7	(E) 0.6 W		
	(B) ∞	(D) 0						(E) 0.0 W		
	Resposta:				(B) 0.8 W	(D) 0.9 W	,			
10					Resposta:					
10.	pilha e retira-se o dielétrico; como será a diferença de potencial no condensador após ter sido retirado o dielétrico?									
				16.	A expressão do campo elétrico numa região do espaço é $\vec{E}=x^3\hat{\imath}$					
					(unidades SI). Calcule a diferença de potencial $V_B - V_A$, onde a coordenadas dos pontos A e B são A = $(1, 0, 0)$ e B = $(4, 0, 0)$					
					coordenadas dos pon	tos A e B sa	io $A = (1, 0)$	$(0,0) \in \mathbb{B} = (4,0)$), ()).	
	(A) Menor que V_0				(A) -63.75 V	(C) -255.0	0 V	(E) -1020.0 V	7	
	(B) Diminuirá expor	nencialmente			(B) 63.75 V	(D) 255.0	V			
	(C) Igual a V_0 (D) Maior que V_0				D					
					Resposta:					
	(E) Nula				Uma partícula com carga q encontra-se na origem. Qual das					
	Resposta:				seguintes funções representa o potencial produzido por essa partícula ao longo do eixo dos x ? (admitindo potencial nulo no					
	Calcule a impedância equivalente de um indutor de 6 mH em				infinito.		•	•		
	•	idensador de 50 μF, ei	m unidades de ohm e		kq	kq		κq		
	em função da frequêr		F 0		$(\mathbf{A}) - \frac{k q}{ x }$ $(\mathbf{B}) \frac{k q }{x}$	(C) $\frac{1}{ x }$		$(\mathbf{E}) \ \frac{k q}{x}$		
	(A) $\frac{6s}{3s^2}$	(C) $\frac{6s}{3}$	(E) $\frac{50 s}{1000000000000000000000000000000000000$		$(\mathbf{R})^{-k} q $	(\mathbf{D}) $k \mid q$!			
	$0.3 s^2 + 1$	$0.05 s^2 + 1$	$0.3 s^2 + 1$		$\frac{\mathbf{D}}{x}$	$(\mathbf{D}) = \frac{1}{x}$				
	(A) $\frac{6 s}{0.3 s^2 + 1}$ (B) $\frac{50 s}{s^2 + 1}$	(D) $\frac{6.663}{6 s^2 + 1}$			Resposta:					
	Resposta:									

7. Um indutor de $0.5~\mathrm{H}$ e uma resistência de $3.6~\mathrm{k}\Omega$ ligam-se em 12. Uma partícula com carga elétrica desloca-se horizontalmente,

na direção oeste, com velocidade de 7.3×10^6 m/s, numa região

onde existe campo magnético uniforme com direção vertical,

sentido de cima a baixo e módulo 5.2×10^{-4} T. Sabendo que a força magnética sobre a partícula aponta para norte e tem módulo

igual a 7.9×10^{-15} N, calcule a carga da partícula.

série a uma fonte ideal com f.e.m. de 3 V. Em unidades SI,

a expressão da corrente no circuito, em função do tempo, é:

 $0.83 \times 10^{-3} \ \left(1-\mathrm{e}^{-7194\,t}\right)$. Calcule a diferença de potencial no indutor no instante t=0.139 ms.

(E) 1.1 V

(**C**) 0.67 V

(**A**) 1.9 V

Regente: Jaime Villate

FEUP - MIEIC

Resolução do exame de 11 de fevereiro de 2016

Problemas

Problema 1. Como as lâminas são muito extensas, o campo elétrico é aproximadamente constante e com módulo

$$E = \frac{\Delta V}{\Delta s} = \frac{4}{0.15} = 26.667 \frac{V}{m}$$

na direção perpendicular às lâminas, de A para B. A força elétrica sobre o eletrão, com carga negativa, é também perpendicular às lâminas, mas de B para A, e tem módulo F = |q| E. A aceleração produzida pelo campo sobre o eletrão, de B para A, tem o valor constante:

$$a = \frac{|q|E}{m} = \frac{1.6 \times 10^{-19} \times 26.667}{9.109 \times 10^{-31}} = 4.684 \times 10^{12} \frac{\text{m}}{\text{s}^2}$$

Comparada com essa aceleração, a aceleração da gravidade pode então ser desprezada e admitese que a energia mecânica é unicamente energia cinética mais potencial elétrica. No vácuo a energia mecânica conserva-se porque não há forças dissipativas. Se o eletrão conseguisse chegar até à lâmina B, a conservação da energia mecânica implica:

$$\begin{split} &\frac{m}{2} \left(v_{\rm A}^2 - v_{\rm B}^2 \right) = q \left(V_{\rm B} - V_{\rm A} \right) \\ &\frac{9.109 \times 10^{-31}}{2} \left((1.4 \times 10^6)^2 - v_{\rm B}^2 \right) = -1.6 \times 10^{-19} (-4) \\ &v_{\rm B} = 7.448 \times 10^5 \; \frac{\rm m}{\rm s} \end{split}$$

Mas como a aceleração na direção paralela às lâminas é nula, a componente paralela da velocidade permanece sempre igual a:

$$v_x = 1.4 \times 10^6 \cos(45^\circ) = 9.899 \times 10^5 \frac{\text{m}}{\text{s}}$$

E a velocidade total nunca pode ser menor que este valor. Como a velocidade obtida em B é menor, conlcui-se que o eletrão não chegará até à lâmina B, mas seguirá uma trajetória parabólica que começa e termina na lâmina A. No ponto mais alto dessa parábola, a componente v_y da velocidade será nula, e a equação de movimento no eixo dos y é:

$$a_y = \frac{\Delta v_y}{\Delta t} \implies \Delta t = \frac{v_{0y}}{a_y} = \frac{9.899 \times 10^5}{4.684 \times 10^{12}} = 2.113 \times 10^{-7} \text{ s}$$

O tempo que demora o eletrão a regressar à lâmina A é o dobro e durante esse tempo a distância que se desloca na direção da lâmina A é:

$$\Delta x = 2 \Delta t \, v_x = 2 \times 2.113 \times 10^{-7} \times 9.899 \times 10^5 = 0.418 \text{ m}$$

Problema 2. Como 1 Ω = 1/(F·Hz), então 1 k Ω = 1/(μ F·kHz) e pode usar-se unidades de k Ω para a resistência, μ F para a capacidade e kHz para as frequências s e ω . 1 H = 1 Ω /Hz = 1 k Ω /kHz e então a indutância deve ser dada em H. A resistência, o condensador e o indutor estão em série e a impedância equivalente é:

$$Z = 0.25 + \frac{1}{3s} + 5s = \frac{15s^2 + 0.75s + 1}{3s}$$

A transformada de Laplace da corrente em todos os elementos do circuito é:

$$\tilde{I} = \frac{\tilde{V}_e}{Z} = \frac{3 \, s \, \tilde{V}_e}{15 \, s^2 + 0.75 \, s + 1}$$

onde \tilde{V}_e é a transformada do sinal de entrada. A transformada do sinal de saída é a impedância do condensador em série com o indutor, vezes a corrente:

$$\tilde{V} = \frac{15 s^2 + 1}{3 s} \tilde{I} = \frac{15 s^2 + 1}{15 s^2 + 0.75 s + 1} \tilde{V}_e$$

A função de transferência é:

$$H(s) = \frac{\tilde{V}}{\tilde{V}_e} = \frac{15 \, s^2 + 1}{15 \, s^2 + 0.75 \, s + 1}$$

e a função resposta de frequência é:

$$H(i\omega) = \frac{1 - 15\omega^2}{1 - 15\omega^2 + i0.75\omega}$$

Perguntas

3. A

8. E

13. A

4. C

9. E

14. A

5. C

10. D

15. C

6. C

11. A

16. A

7. E

12. A

17. C