

Chapter 9

Optimum Baseband Receiver

Introduction

Introduction

How to minimise the error bits?

Use an optimum receiver

Optimum receiver consists of a matched filter, a sampler and a threshold device.

Optimum receiver consists of a matched filter, a sampler and a threshold device.

Optimum receiver consists of a matched filter, a sampler and a threshold device.

- Optimum receiver consists of a matched filter, a sampler and a threshold device.
- Optimum receiver recovers the data from the received signal with probability of bit error, P_e

Input to the optimum receiver is a signal :

The pulse sequence s_i(t) is made up of basic pulses, s₂(t) and s₁(t):

$$S_{i}(t) = \begin{cases} s_{2}(t-kT_{b}) = +V, & \text{if } b_{k} = 1 \\ s_{1}(t-kT_{b}) = -V, & \text{if } b_{k} = 0 \end{cases}$$
 for kT_b \leq t \leq (k+1)T_b k = bit number
$$s_{2}(t_{b}) \quad s_{1}(t-T_{b}) \quad s_{1}(t-2T_{b})$$
 Input signal waveform to optimum receiver
$$s_{1}(t) = s_{1}(t) + s_{2}(t) \quad s_{2}(t) \quad s_{3}(t-2T_{b})$$
 Threshold
$$s_{2}(t) = s_{3}(t) + s_{3}(t) + s_{4}(t) \quad s_{5}(t) + s_{5}(t) \quad s_{5}(t) + s_{6}(t) \quad s_{6}(t$$

• The pulse sequence $s_i(t)$ is made up of basic pulses, $s_2(t)$ and $s_1(t)$:

$$s_i(t) = \begin{cases} s_2(t - kT_b) = +V, & \text{if } b_k = 1 \\ s_1(t - kT_b) = -V, & \text{if } b_k = 0 \end{cases}$$
 for $kT_b \le t \le (k+1)T_b$ $k = bit number$

Input signal waveform to optimum receiver

• The pulse sequence $s_i(t)$ is made up of basic pulses, $s_2(t)$ and $s_1(t)$:

b_k:

$$S_i(t) = \begin{cases} s_2(t - kT_b) = +V, & \text{if } b_k = 1 \\ s_1(t - kT_b) = -V, & \text{if } b_k = 0 \end{cases}$$
 for $kT_b \le t \le (k+1)T_b$ $k = bit number$

Input signal waveform to optimum receiver

The output of the matched filter and its spectrum

The output of the matched filter and its spectrum

$$V_o(t) = V_i(t) * h(t)$$

$$V_0(f) = H(f) \times V_i(f)$$

From definition of convolution in Chapter 2: $f(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau$

$$V_o(t) = \int_{-\infty}^{\infty} V_i(t)h(t-\tau)d\tau$$
 where $V_i(t) = s_i(t) + n_i(t)$

V_o(t) also has a signal and noise components due to s_i(t) and n_i(t), respectively:

 $V_o(t)$ also has a signal and noise components due to $s_i(t)$ and $n_i(t)$, respectively:

$$V_o(t) = s_o(t) + n_o(t)$$

Signal

component

Noise

component

As the output $V_o(t)$ is sampled at the end of every T_b , it can be written as:

Sampled Output
$$V_o(T_b) = \int_0^{T_b} V_i(\tau) h(T_b - \tau) d\tau$$

$$= s_o(T_b) + n_o(T_b)$$

$$V_o(t) = \int_{-\infty}^{\infty} V_i(t)h(t-\tau)d\tau$$

• The output is determined by comparing the sampled value $V_o(T_b)$ against the threshold voltage, V_T :

$$V_o(T_b) = \int_0^{T_b} V_i(\tau) h(T_b - \tau) d\tau$$

Sampled Output

Matched Filter

Matched filter impulse response

To minimise the probability of bit error, the matched filter should have an impulse response, h(t), related to s₁(t) and s₂(t) by

$$h(t) = s_2(T_b - t) - s_1(T_b - t)$$

s₂(t): binary 1

s₁(t): binary 0

$$V_{i}(t) = S_{i}(t) + n_{i}(t)$$

$$V_{o}(t) = S_{o}(t) + n_{o}(t)$$

$$Matched filter$$

$$H(f)$$

$$V_{o}(f)$$

Matched Filter

The process of obtaining h(t) from $s_2(t)$ and $s_1(t)$

If $s_2(t)$ and $s_1(t)$ have the forms as shown in (a) and $(b)_2$ then h(t) is as shown in (e). **Binary 1** (a) $s_2(t)$ (c) $s_2(t) - s_1(t)$ T_b T_b 2A Binary 0 (b) $s_1(t)$ (d) $s_2(-t) - s_1(-t)$ -T_b Fold about the vertical axis $h(t) = s_2(T_b-t) - s_1(T_b-t)$ Shift to the

right by T_b

Matched Filter

The process of obtaining h(t) from $s_2(t)$ and $s_1(t)$

Matched Filter

• For polar NRZ inputs, where $s_2(t) = +V$ and $s_1(t) = -V$,

Matched filter impulse response

$$h(t) = \begin{cases} 2V \text{ for } 0 \le t \le T_b \\ 0V \text{ for other } t \end{cases}$$

$$V_{i}(t) = S_{i}(t) + n_{i}(t)$$

$$V_{o}(t) = S_{o}(t) + n_{o}(t)$$

$$Matched filter$$

$$H(f)$$

$$V_{o}(f)$$

$$V_{o}(f)$$

$$Output$$

$$Threshold$$

$$Device$$

Probability of bit error for optimum receiver

The probability of bit error, P_e for a matched filter receiver is given by

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\frac{\gamma}{2\sqrt{2}} \right)$$

where
$$\gamma^2 = \frac{2}{\eta} \int_0^{T_b} [s_2(t) - s_1(t)]^2 dt$$

and $\frac{\eta}{2}$ is the double-sided power spectral density of the white channel noise.

η is the single-sided power spectral density of the white channel noise.

Probability of bit error for optimum receiver

For polar NRZ inputs:
$$s_2(t) = +V \cdot 1 \cdot s_1(t) = -V \cdot 0 \cdot s_2(t)$$

$$\gamma^2 = \frac{2}{\eta} \int_0^{T_b} [s_2(t) - s_1(t)]^2 dt$$

$$\gamma^2 = \frac{2}{\eta} \int_0^{T_b} (V - (-V))^2 dt = \frac{2}{\eta} \int_0^{T_b} 4V^2 dt = \frac{2.4V^2}{\eta} \int_0^{T_b} dt$$

$$= \frac{8}{\eta} V^2 [t]_0^{T_b} = \frac{8}{\eta} V^2 T_b$$

Hence,
$$\gamma = V \sqrt{\frac{8T_b}{\eta}}$$

Probability of bit error for optimum receiver

Polar NRZ input

Therefore

$$P_e = \frac{1}{2} \operatorname{erfc} \left(\frac{\gamma}{2\sqrt{2}} \right) \qquad \gamma = V \sqrt{\frac{8T_b}{\eta}}$$

$$=\frac{1}{2}erfc$$

$$\sqrt{8} = 2\sqrt{2}$$

$$P_{e} = \frac{1}{2} \operatorname{erfc} \left\{ V \sqrt{\frac{T_{b}}{\eta}} \right\} = \frac{1}{2} \operatorname{erfc} \left\{ \sqrt{\frac{V^{2} T_{b}}{\eta}} \right\}$$

Probability of bit error for optimum receiver

Example 9.1

A polar NRZ binary signal, s(t), is a +1 V or -1 V pulse during the interval (0, T_b). The transmission rate of the signal is 100 bps. AWGN noise having two-sided power spectral density of 10^{-3} W/Hz is added to the signal. If the received signal is detected with a matched filter, calculate the bit error probability.

Solution

Given:
$$r_b = 100 \text{ bps}, \quad \eta/2 = 10^{-3}$$

therefore
$$T_b = 1/r_b = 1/100$$

and
$$\eta = 2 \times 10^{-3} \text{ W/Hz}$$

Probability of bit error for optimum receiver

For matched filter with polar NRZ inputs

$$P_{e} = \frac{1}{2} erfc \left\{ \sqrt{\frac{V^{2}T_{b}}{\eta}} \right\}$$

$$= \frac{1}{2} erfc \left\{ \sqrt{\frac{1^{2} \times 0.01}{2 \times 10^{-3}}} \right\}$$

$$= \frac{1}{2} erfc (2.236)$$

Probability of bit error for optimum receiver

For matched filter with polar NRZ inputs

$$P_e = \frac{1}{2} \operatorname{erfc} \left\{ \sqrt{\frac{V^2 T_b}{\eta}} \right\}$$

$$= \frac{1}{2} erfc \left\{ \sqrt{\frac{1^2 \times 0.01}{2 \times 10^{-3}}} \right\}$$

$$= \frac{1}{2} erfc(2.236)$$
 Round to 2.23 worst case P_e

 $= 0.5 \times 0.1612 \times 10^{-2}$

 $= 8.1 \times 10^{-4}$

Z eric(Z) 2.21 0.177556D-02 2.22 0.169205D-02 2.23 0.161217D-02 2.24 0.153577D-02 2.25 0.146272D-02 2.26 0.139288D-02

Implementation of optimum receiver

What is the practical circuit for optimum receiver?

Implementation of optimum receiver

Matched filter

The output of the matched filter at the end of each bit frame is $V_o(T_b) = \int_0^{T_b} V_i(\tau)h(T_b - \tau)d\tau$

$$V_o(T_b) = \int_0^{T_b} V_i(\tau) h(T_b - \tau) d\tau$$

For matched filter
$$h(t) = s_2(T_b - t) - s_1(T_b - t)$$

Let
$$t = T_b - \tau$$
, we have $h(T_b - \tau) = s_2 (T_b - (T_b - \tau)) - s_1 (T_b - (T_b - \tau))$

$$h(T_b - \tau) = s_2(\tau) - s_1(\tau)$$

Implementation of optimum receiver

The output of the matched filter at the end of each bit frame is

$$V_o(T_b) = \int_0^{T_b} V_i(t) [s_2(t) - s_1(t)] dt$$

Can be implemented by the Integrate-and-Dump Correlation receiver.

Implementation of optimum receiver

Integrate-and-Dump Correlation Receiver

$$V_o(t) = \int V_i(t)[s_2(t) - s_1(t)]dt$$

Implementation of optimum receiver

Integrate-and-Dump Correlation Receiver

- SW1 and SW2 are closed (and opened) at the end of each bit interval, T_b.
- SW1 is used to sample V_o(T_b)
- SW2 is closed to reset (dump) the integrator to zero initial condition before the occurrence of the next bit.

Example

Received signal in polar NRZ format with no channel noise

$$S_{i}(t) = \begin{cases} s_{2}(t - kT_{b}) = +V, & \text{if } b_{k} = 1 \\ s_{1}(t - kT_{b}) = -V, & \text{if } b_{k} = 0 \end{cases}$$
 for $kT_{b} \le t \le (k+1)T_{b}$.

$$V_o(T_b) = \begin{cases} k \int_0^{T_b} 2V^2 dt = 2kV^2 T_b \text{ for + V input } \mathbf{Binary '1'} \\ k \int_0^{T_b} -2V^2 dt = -2kV^2 T_b \text{ for - V input } \mathbf{Binary '0'} \end{cases}$$

$$V_o(T_b) = K \int_0^{T_b} V_i(t)[s_2(t) - s_1(t)]dt$$
 $K = \text{circuit constant}$

binary 1 is transmitted

$$= K \int_{0}^{T_{b}} V \left[V - (-V) \right] dt$$
 for noise-free channel

$$= K \int_0^{T_b} 2V^2 dt = 2V^2 \, \text{K} \int_0^{T_b} dt = 2V^2 K[t]_0^{T_b}$$

varies linearly with t over $0 \le t \le T_h$

$$=2kV^2T_b$$

$$V_o(T_b) = \begin{cases} k \int_0^{T_b} 2V^2 dt = 2kV^2 T_b \text{ for + V input } \mathbf{Binary '1'} \\ k \int_0^{T_b} -2V^2 dt = -2kV^2 T_b \text{ for - V input } \mathbf{Binary '0'} \end{cases}$$

K = circuit constant

for noise-free channel

$$=K\int_{0}^{T_{b}}(-2V^{2})dt=-2V^{2} K \int_{0}^{T_{b}}dt=-2V^{2}K[t]_{0}^{T_{b}}$$

varies linearly with t over $0 \le t \le T_b$

$$=-2kV^2T_b$$

Example

Received signal in polar NRZ format with no channel noise

The output V_o(t) for a received signal, 1 0 1.

Example 9.2

An integrate and dump correlation receiver is shown.

If its input is a Manchester code waveform of amplitude V volt, sketch the waveforms at A to E for a 1101 sequence. Explain the operations of SW1 and SW2.

9.1 Optimum Receiver for Binary Baseband Transmission **Solution**

For binary sequence {1 1 0 1}, Manchester code waveform at A is:

Waveform at B is:

Waveform C is the multiplication of Waveform A and Waveform B:

Waveform C is the multiplication of Waveform A and Waveform B:

Waveform D is the integration of Waveform C.

$$V_{i(c)}(t) = \begin{cases} 2V^2 \\ or \\ -2V^2 \end{cases}$$
 for each bit frame

$$V_o(t) = K \int_0^{T_b} V_{i(c)}(t) dt$$

$$V_{o}(t) = \begin{cases} K \int_{0}^{T_{b}} 2V^{2} dt = 2V^{2} K[t]_{0}^{T_{b}} = 2KV^{2} T_{b} & \text{for } V_{i(c)}(t) = 2V^{2} \\ or \\ K \int_{0}^{T_{b}} (-2V^{2}) dt = -2V^{2} K[t]_{0}^{T_{b}} = -2KV^{2} T_{b} & \text{for } V_{i(c)}(t) = -2V^{2} \end{cases}$$

varies linearly with t over $0 \le t \le T_b$

$$V_{i(c)}(t) = \begin{cases} 2V^2 \\ or \\ -2V^2 \end{cases}$$
 for each bit frame

$$V_o(t) = K \int_0^{T_b} V_{i(c)}(t) dt$$

$$V_{o}(t) = \begin{cases} K \int_{0}^{T_{b}} 2V^{2} dt = 2V^{2} K[t]_{0}^{T_{b}} = 2KV^{2} T_{b} & \text{for } V_{i(c)}(t) = 2V^{2} \\ or \\ K \int_{0}^{T_{b}} (-2V^{2}) dt = -2V^{2} K[t]_{0}^{T_{b}} = -2KV^{2} T_{b} & \text{for } V_{i(c)}(t) = -2V^{2} \end{cases}$$

varies linearly with t over $0 \le t \le T_b$

Waveform D is the integration of Waveform C.

$$V_{i(c)}(t) = \begin{cases} 2V^2 \\ or \\ -2V^2 \end{cases}$$
 for each bit frame

$$V_o(t) = \begin{cases} 2KV^2T_b & \text{for } V_{i(c)}(t) = 2V^2 \\ -2KV^2T_b & \text{for } V_{i(c)}(t) = -2V^2 \end{cases}$$

Value of D at $t = T_b$

varies linearly with t over $0 \le t \le T_b$

SW1 is closed at the end of each bit duration for a very short duration to sample the D waveform.

After sampling waveform at D, SW1 is opened again followed by the short closure of SW2 to discharge the capacitor so that D waveform drops to zero to initialize the start of the next bit-frame waveform of D.

Ε

Recovered output

Waveform A to E:

End

Chapter 9

