

# Capstone Project 1 Hotel Booking Analysis

**Team: Impact players** 

Rahul Kumar Aparna Khale Anwar Sujata Jadhav Mohammad Aasif Malik

Submitted on 25th September 2022



INPUT

## **Dataset input and problem Statement**

- ✓ The hotel industry is one of the most important components of the wider service industry, catering for customers who require overnight accommodation. It is also closely associated with the travel industry and the hospitality industry,
- For this project we are analyzing hotel booking data of a city hotel and a resort hotel of few years. The information includes the booking time, check in and check out time, room and meal type, customers stay time, the visitors break up, available parking spaces, visitors' origin, cancellation cases.
- The key objective of this project to analyze and explore the given data to conclude the meaningful important factors which can help the hotel management to improve both revenue and quality. Also mainly root cause analysis for the cancellation cases can be scrutinize to take necessary preventive actions.

# Al

# **Objective – key questions**

- 1. Hotel type analysis
- 2. Find peak business season of hotel booking
- 3. Hotel revenue from ADR (Average daily rate)
- 4. Type of rooms
- 5. Meal Consumption Analysis
- 6. Waiting time Analysis
- 7. Customer wise analysis
- 8. Country origin customer analysis
- 9. Distributor Channel Analysis
- 10. Agent wise bookings Analysis
- 11. Company wise bookings Analysis
- 12. Market Segment -Booking Analysis
- 13. Hotel booking cancellation on basis of days\_in\_waiting\_list and required\_car\_parking\_spaces
- 14. Analysis of is\_repeated\_guest column
- 15. Number of weekdays booked by distribution channel
- 16. Number of weekend nights booked by distribution channel





## **Activity Work flow**

✓ Data Collection and understanding the problem.

We will be going through each variable and do a logical analysis about their meaning and importance for this problem.

✓ Data cleaning and manipulation

We'll clean the dataset and handle the missing data, outliers and categorical variables. Test assumptions. We'll check if our data meets the assumptions required by most multivariate techniques.

EDA (Exploratory Data Analysis) and visualization
Univariate analysis

The data we are analyzing is only one variable

**Bivariate analysis** 

We are comparing two variables to study their relationship

Multivariate analysis

Same as Bivariate analysis but only we are comparing more than two variables





# **Data Collection and understanding dataset input**

| Data Input                | Description                                                  |
|---------------------------|--------------------------------------------------------------|
| hotel                     | City and Resort hotel                                        |
| is_canceled               | indicating booking cancelled (1) or not canelled (0)         |
| lead_time                 | the time difference between booking date and actual check in |
| arrival_date_year         | Year of arrival date                                         |
| arrival_date_month        | Month of arrival date                                        |
| arrival_date_week_number  | Week no of year for arrival date                             |
| arrival_date_day_of_month | day of arrival date                                          |
| stays_in_weekend_nights   | no of weekends night                                         |
| stays_in_week_nights      | no of week nights                                            |
| adults                    | no of adults                                                 |
| children                  | no of children                                               |
| babies                    | no of babies                                                 |
| meal                      | type of meal                                                 |
| country                   | customers country of origin                                  |
| market_segment            | Market segment type                                          |
| distribution_channel      | booking description channel                                  |
| is_repeated_guest         | if repeated guest (1) or no(0)                               |



# **Data Collection and understanding dataset input**

| Data Input                     | Description                                                            |
|--------------------------------|------------------------------------------------------------------------|
|                                | no of previous bookings those are cancelled by the customer before the |
| previous_cancellations         | current booking                                                        |
|                                | no of previous bookings not cancelled by the customer before the       |
| previous_bookings_not_canceled | current booking                                                        |
| reserved_room_type             | Type of reserved room                                                  |
| assigned_room_type             | Type of assigned room                                                  |
|                                | no of changes made in the booking from the moment the booking was      |
| booking_changes                | entered till check in or cancellation                                  |
| deposit_type                   | no deposit or refundable or non refundable                             |
| agent                          | ID of travel agent                                                     |
| company                        | ID of the company that made the booking                                |
| days_in_waiting_list           | no of days the booking was in waiting list                             |
| customer_type                  | type of customer contract,group                                        |
| adr                            | Average daily rate                                                     |
| required_car_parking_spaces    | required car parking spaces                                            |
| total_of_special_requests      | no of special request                                                  |
| reservation_status             | reservation last status                                                |
| reservation_status_date        | check out date                                                         |



#### **Dataset Input data summary**

#### Numeric

lead\_time, arrival\_date\_year, arrival\_date\_week\_number, arrival\_date\_day\_of\_month, stays\_in\_weekend\_nights, stays\_in\_week\_nights, adults, children, babies, adr, required\_car\_parking\_spaces, total\_of\_special\_requests,

#### Hotel Booking Dataset

#### **Binary**

is\_canceled, is\_repeated\_guest

#### Categorical

Hotel, arrival\_date\_month, meal, country, market\_segment, distribution\_channel, reserved\_room\_type, assigned\_room\_type, deposit\_type



# **Data Collection and understanding dataset input**



#### **Prerequisites**

- ✓ Import Python libraries.
- ✓ Mount google drive to google colab
- ✓ Authorize notebook to access google drive files

#### **Understanding dataset input**

- ✓ Find out the total columns and rows of dataset
- ✓ Find the data type of each column.
- ✓ Find the continuous and categorical data
- ✓ Find individual distribution for some of the columns
- ✓ Also check the correlation between dependent columns



# Data cleaning and manipulation

✓ Extract the unique values of each column content from the hotel booking dataset.

#### Dataset size: 119390 rows x 32 columns

✓ Identify duplicated rows and remove the same.

#### Dataset size: 87396 rows x 32 columns

- ✓ Calculate percentage values of null values of each column.
- ✓ Combine the null\_value and null\_value\_percentage series in the data frame using 'concat' method.
- ✓ Replace NaN values with 0 for heading Agent & company
- ✓ Replace NaN values with their mean values for heading children
- ✓ Replace NaN values with 'others' for heading Country
- ✓ Modify datatype from float to int64 for heading Agent, Company, Children



#### 1. Hotel type analysis

Q1.Find type of hotel

**Output**: array(['Resort Hotel', 'City Hotel'], dtype=object)

Q2. Find count of booking as per type of hotel

#### **Output:**

Sr Hotel type Number of booking

City Hotel 53428
 Resort Hotel 33968



#### **Conclusion:**

Booking of city hotel[61.1%] is more than compared to resort hotel[38.9%]



#### 2. Find peak business season of hotel booking

Q1. Display the number of cumulative booking months wise



#### **Conclusion:**

As per bar plot shows, May: August month is a peak season for the hotel business whereas November and December is slack seasons.



#### 2. Find peak business season of hotel booking

Q2. Display no. of booking as per month and year.





#### 3. ADR (Average daily rate)

- Q1. Find total no. of guests on basis of adults, children and babies.
- Q2. Find ADR per person.
- Q3. Find total no. of stay on basis of week nights and weekend nights.
- Q4. Find hotel revenue=ADR per person \* no. of days



Conclusion: Resort hotel is getting more revenue in the month of August.



#### 4. Type of rooms

Q1.How many types of rooms are provided through Hotels? Output: array(['C', 'A', 'D', 'E', 'G', 'F', 'H', 'L', 'P', 'B']

Q2.Which is the most preferred room by the guest?



Conclusion:" A" type room is more preferred by the guests.



#### 5. Meal Consumption Analysis

Q1. Which type of meal offer by hotel?

Output: array(['BB', 'FB', 'HB', 'SC', 'Undefined'], dtype=object)

Q2. Which is the most preferred meal consumption by guests?

Output:

|   | Meal_type | number_of_preference |
|---|-----------|----------------------|
| 0 | BB        | 67978                |
| 1 | SC        | 9481                 |
| 2 | HB        | 9085                 |
| 3 | Undefined | 492                  |
| 4 | FB        | 360                  |
|   |           |                      |



Conclusion: "BB" meal type is mostly preferred by the guests.

# Al

## **EDA (Exploratory Data Analysis)**

#### 6. Waiting time Analysis

Q1. Analyze in which type of hotel there is more waiting time

#### Output:

Sr. Hotel Max\_Waiting\_Time
O City Hotel 391

1 Resort Hotel 185



Conclusion: City Hotel having overall more waiting time which interprets that it is more crowded than Resort.

# Al

#### **EDA (Exploratory Data Analysis)**

#### 6. Waiting time Analysis

Q2. Analyze the average of type of hotel there is more waiting time

#### Output:

Sr Hotel Avg\_Waiting\_Time

O City Hotel 1.020233

Resort Hotel 0.323834



Conclusion :As city hotels are preferred most by guests, it's having more waiting period.



#### 7. Customer wise analysis

Q1. Find out count of customers on basis of customer type.

#### Output:

Sr Customer type number\_of\_customers

0 Transient 71986

1 Transient-Party 11727

2 Contract 3139

3 Group 544



Conclusion: The maximum number of guest are from transient category which is near about 75.1%.



#### 8. Country origin customer analysis

Q1. Analyze the data from which country guests are visiting most. Output:

| Sr | country_name | number_of_guests |
|----|--------------|------------------|
| 0  | PRT          | 27453            |
| 1  | GBR          | 10433            |
| 2  | FRA          | 8837             |
| 3  | ESP          | 7252             |
| 4  | DEU          | 5387             |
| 5  | ITA          | 3066             |
| 6  | IRL          | 3016             |
| 7  | BEL          | 2081             |
| 8  | BRA          | 1995             |
| 9  | NLD          | 1911             |





Below top 5 countries from which most guests are visiting

- 1.PORTUGAL(PRT)-->38.4%
- 2.GREAT BRITAIN(GBR)-->14.6%
- 3.FRANCE(FRA)---->12.4%
- 4.SPAIN (ESP)--->10.2%
- 5.GERMANY (DEU)---->7.5%



#### 9. Distributor Channel Analysis

Q1. Find out which distribution channel is giving the most booking business.

| Output | :                 |                 |       |      |                  |
|--------|-------------------|-----------------|-------|------|------------------|
| Sr     | Distribution Type | NumberofBooking |       |      | TA/TO            |
| 0      | TA/TO             | 69141           |       |      | Direct Corporate |
| 1      | Direct            | 12988           | 79.1% |      | GDS Undefined    |
| 2      | Corporate         | 5081            |       |      |                  |
| 3      | GDS               | 181             |       |      |                  |
| 4      | Undefined         | 5               |       | 5.8% |                  |

Conclusion: Distributor Channel Analysis TA/TO is giving the most booking business



#### 9. Distributor Channel Analysis

Q2.Which distribution channel is giving more business to respective hotels?

Output:

- 1.TA/TO -->69141 i.e. 79.1%
- 2.Direct -->12988 i.e. 14.9%
- 3.corporate -->5081 i.e. 5.8%
- 4.GDS -->181 i.e. 0.2%
- 5.undefined -->5 i.e. close to 0.001%



Conclusion: Distributor channel TA/TO is giving the most booking business



#### 10. Agent wise bookings Analysis

Q1. Which agent giving more business to respective hotels?

Output:



Conclusion :Agent ID 531 is giving maximum hotel bookings so this data can be utilized to decide commission % for the agent





#### 11. Company wise bookings Analysis

Q1.Which company owning how many hotels?

#### Output:

|    | =       |                |         |
|----|---------|----------------|---------|
| Sr | Company | Company_Owned_ | _Hotels |
| Ο  | 40.0    | 927            |         |
| 1  | 223.0   | 784            |         |
| 2  | 67.0    | 267            |         |
| 3  | 45.0    | 250            |         |
| 4  | 153.0   | 215            |         |
| 5  | 174.0   | 149            |         |
| 6  | 219.0   | 141            |         |
| 7  | 281.0   | 138            |         |
| 8  | 154.0   | 133            |         |
| 9  | 405.0   | 119            |         |
|    |         |                |         |



Conclusion: Above graph shows company wise owning maximum no of hotels





#### 12. Market Segment -Booking Analysis

Q1.Which market segment is giving more business? Output:

| Sr | MarketSegment | MarketSegment_Wise_Count |
|----|---------------|--------------------------|
| 0  | Online TA     | 51288                    |
| 1  | Offline TA/TO | 13728                    |
| 2  | Direct        | 6199                     |
| 3  | Groups        | 3340                     |
| 4  | Corporate     | 525                      |
| 5  | Complementary | 99                       |
| 6  | Aviation      | 24                       |



Conclusion: Online TA is most commonly used market segment for the booking purpose.



# 13. Hotel booking cancellation on basis of days\_in\_waiting\_list and required\_car\_parking\_spaces

Q1. Waiting List Vs Cancellations Output:



Conclusion: There are high chances of cancellation when the waiting period is high.



# 13. Hotel booking cancellation on basis of days\_in\_waiting\_list and required\_car\_parking\_spaces

Q2. Car Parking Vs Cancellation Output:



Conclusion: There is no impact on cancellation due to car parking space



#### 14. Analysis of is\_repeated\_guest column

Q1. Volume flow of repeated guest

Output:



Conclusion: Above data shows that most of the guests are visiting first time.



#### 15. Number of weekdays booked by distribution channel



#### **Conclusions:**

1. Visitors from direct and corporate distribution channel are staying almost in same range numbers of week nights.

- 2.TA/TO distribution channel has some deviation over stays week-nights between Resort and City hotels.
- 3. Undefined and GDS distribution channel visitors had not shown interest in the Resort Hotel.





#### 16. Number of weekend nights booked by distribution channel



#### **Conclusion:**

1.Direct distribution channel visitors prefer to stay more weekend nights in the Resort Hotel type. 2.Visitors through Corporate and TA/TO distribution channel are equally preferring between Resort and City hotels.



Mainly performed using Matplotlib and Seaborn library and the following graph and plots had been used:

- Bar Plot
- Pie Chart
- Line Plot
- Box Plot



#### **Conclusions**

- 1.City hotel[61.1%] having more booking as compared to resort hotel[38.9%]."
- 2.Overall from May: August month is a peak season for the hotel business whereas November and December is slack seasons.
- 3.Resort hotel is getting more revenue in the month of August."
- 4.City Hotel having overall more waiting time which interpret it is more crowded than Resort
- 5. Here we can see the maximum number of customers are from transient category which is near about 75.1%.
- 6.Distributor channel TA/TO is giving the most booking business
- 7.Agent ID 531 is giving maximum hotel bookings so this data can be utilized to decide commission % for agent
- 8.There are high chances of cancellation when waiting period is high.



# Challenges

- Dataset contains a lot of duplications.
- Against few columns having a lot of Null values.
- Few dataset columns with wrong datatype format.



# **Thank You**