INF587 Exercise sheet 4

Exercise 1 (Inverting quantum circuits). Given a quantum circuit implementing a unitary U, how is the quantum circuit implementing the inverse of U, namely U⁻¹? Give the circuit implementing the inverse of the unitary represented by the following circuit

Exercise 2. Let $f: \{0,1\}^n \to \{0,1\}$. Show that the output of the following circuit

is

Exercise 3 (Deutsch-Jozsa and Bernstein-Vazirani algorithms).

- 1. Give the quantum circuit performing the Deutsch-Jozsa algorithm (over n-qubits register).
- 2. Let $|\psi\rangle$ the quantum state just before the final measurements. Prove that

$$|\psi\rangle = \frac{1}{2^n} \sum_{\mathbf{y} \in \{0,1\}^n} \left(\sum_{\mathbf{x} \in \{0,1\}^n} (-1)^{f(\mathbf{x}) + \mathbf{x} \cdot \mathbf{y}} \right) |\mathbf{y}\rangle |-\rangle.$$

where recall that $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \mod 2$ for $\mathbf{x} = x_1 \dots x_n$ and $\mathbf{y} = y_1 \dots y_n$.

3. Assume our function f satisfies the following property: $\exists \mathbf{s} \in \{0,1\}^n$, $f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{s}$. Show that the above algorithm always outputs $\mathbf{y} = \mathbf{s}$. This algorithm is known as the Bernstein-Vazirani algorithm, if we have the promise that the function f satisfies the property above, then this algorithm finds \mathbf{s} with a single query to \mathbf{U}_f .

Exercise 4 (Clean your workspace!).

Let $\mathbf{x} = (x_0, x_1)$. Suppose that we can implement the following 1-qubit unitary

$$\mathbf{O}_{\mathbf{x},\pm}:|b\rangle\longmapsto(-1)^{x_b}|b\rangle$$

- 1. Suppose that we run the 1-qubit circuit $\mathbf{HO}_{\mathbf{x},\pm}\mathbf{H}$ on initial state $|0\rangle$ and then measure. What is the probability distribution on the output bit, as a function of \mathbf{x} ?
- 2. Now suppose the query leaves some workspace in a second qubit, which is initially $|0\rangle$:

$$\mathbf{O}'_{\mathbf{x},\pm}:|b\rangle\,|0\rangle\longmapsto(-1)^{x_b}\,|b\rangle\,|b\rangle$$

Suppose we just ignore the workspace and run the algorithm of 2. on the first qubit with $O'_{\mathbf{x},\pm}$, instead of $O_{\mathbf{x},\pm}$ (and $\mathbf{H}\otimes\mathbf{I}$ instead of \mathbf{H} , and initial state $|00\rangle$). What is now the probability distribution on the output bit (i.e., if we measure the first of the two bits)?

Comment: this exercise illustrates why it's important to "clean up" (i.e., set back to $|0\rangle$) workspace qubits of some subroutine before running it on a superposition of inputs: the unintended entanglement between the address and workspace registers can thwart the intended interference effects.

Exercise 5 (Quantum unitary that mimics a permutation). Consider a permutation π acting on $\{0,1\}^n$ such that π and π^{-1} are efficiently computable, which means we can efficiently construct the quantum unitaries

$$\mathbf{U}_{\pi} | \mathbf{x} \rangle | \mathbf{y} \rangle = | \mathbf{x} \rangle | \mathbf{y} \oplus \pi(\mathbf{x}) \rangle$$
 and $\mathbf{U}_{\pi^{-1}} | \mathbf{x} \rangle | \mathbf{y} \rangle = | \mathbf{x} \rangle | \mathbf{y} \oplus \pi^{-1}(\mathbf{x}) \rangle$.

Show how to construct the unitary $U|\mathbf{x}\rangle = |\pi(\mathbf{x})\rangle$, using auxiliary qubits. You can use the above unitaries as well as any elementary operations.

Hint: here is a construction that builds U with a single call to $U_{\pi,}$ a single call to $U_{\pi^{-1}}$ and n two qubits swap gates - not necessarily in this order

Exercise 6.

1. Write the unitary acting on 2 qubits corresponding to the following circuit in matrix form (in the $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ basis):

2. Write the unitary acting on 2 qubits corresponding to the following circuit in matrix form (in the $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ basis):

Exercise 7 (* Constructing reflexions over a quantum state *). Consider a n qubit state $|\psi\rangle$ and assume we have an efficiently computable unitary \mathbf{U} such that

$$\mathbf{U}|0^n\rangle = |\psi\rangle$$
.

Our goal is to show we can efficient compute the reflexion $\mathbf{R}_{|\psi\rangle}$ i.e., the unitary satisfying

$$\mathbf{R}_{|\psi\rangle}(|\psi\rangle) = |\psi\rangle, \ \forall |\varphi\rangle \ such that \ |\psi\rangle \perp |\varphi\rangle \quad \mathbf{R}_{|\psi\rangle}(|\varphi\rangle) = -|\varphi\rangle$$

with one call to U, one call to U^{\dagger} and O(n)-calls to some 2-qubits unitaries.

1. Show that for all $|\varphi\rangle$ such that $|\varphi\rangle \perp |\psi\rangle$, we can write

$$\mathbf{U}^{\dagger}(|\varphi\rangle) = \sum_{\substack{\mathbf{i} \in \{0,1\}^n \\ \mathbf{i} \neq 0^n}} \alpha_{\mathbf{i}} |\mathbf{i}\rangle.$$

2. Argue, without writing the circuit, that one can efficiently compute the unitary \mathbf{V} on n+1 qubits that satisfies

$$\mathbf{V}(|\mathbf{x}\rangle|y\rangle) \to |\mathbf{x}\rangle|y \oplus g(\mathbf{x})\rangle$$

where $g(\mathbf{x}) = 0$ if and only if $\mathbf{x} = 0^n$ and $g(\mathbf{x}) = 1$ otherwise.

3. Construct using the previous unitaries and elementary gates the unitary \mathbf{W} on n qubits with an extra auxiliary qubit such that

$$\mathbf{W} |\mathbf{x}\rangle |0\rangle = (-1)^{g(\mathbf{x})} |\mathbf{x}\rangle |0\rangle.$$

There is a construction that uses only 2 calls to V or V^{\dagger} and a phase flip gate Z. There is another construction that uses a single call to V and 2 calls to H or H^{\dagger} and 2 calls to the bit flip X. Find at least one construction, can you find both?

4. Show how to build $\mathbf{R}_{|\psi\rangle}$ (with an auxiliary qubit) with 2 calls to \mathbf{U} or \mathbf{U}^{\dagger} and 1 call to \mathbf{W} .

Exercise 8 (One-time pad). For $\mathbf{k} \in \{0,1\}^n$, consider the one-time pad function,

$$E_{\mathbf{k}}: \mathbf{x} \in \{0,1\}^n \longrightarrow \mathbf{k} \oplus \mathbf{x} \in \{0,1\}^n$$

1. Show that there is a quantum polynomial time algorithm querying U_{E_k} just once that distinguishes E_k from a random function P of $\{0,1\}^n$.

You can admit that for a random function P of $\{0,1\}^n$ we have for any $\mathbf{y} \in \{0,1\}^n$,

$$\frac{1}{2^{2n}} \sharp \left\{ \mathbf{x} \in \{0,1\}^n : P(\mathbf{x}) \oplus \mathbf{x} = \mathbf{y} \right\}^2 \approx \frac{1}{2^{n-1}}$$

where the \approx stands for the expectation.

2. What property did you crucially used?