Introduction to Cryptography

(交大資工系 2014 Fall)

Midterm (A 卷)

(請按順序作答,並列出演算過程)

Time: 10:10-12:00 11/12/2014

Place: ED 027

(9 problems and 110 points in total)

- [1] (a) List the powers of 16 (mod 19) to show 16 is a generator of Z_{19}^* . (5 points)
 - (b) Find all generators in Z_{19}^* . (Don't use brute force method.) (5 points)
 - (c) How many generators for Z_{101}^* ? (5 points)
 - (d) In Diffie-Hellman key exchange, let $\alpha = 16$ be a generator in Z_{19}^* . Suppose You are an eavesdropper and get $\alpha^a = 10$ from Alice and $\alpha^b = 4$ from Bob, then what the shared secret key α^{ab} is. (5 points)
- [2] Solve the following modular equations: (10 points)

$$\begin{cases} 9X \equiv 12 \pmod{51} \\ 4X \equiv 6 \pmod{10} \end{cases}$$

- [3] (a) $GF(2^4)$ is the finite field with 2^4 elements, which can be expressed as $\{a_0+a_1x+a_2x^2+a_3x^3 \mid a_i=0,1\}$ with an irreducible polynomial $1+x+x^4$. Prove that x is a generator of $GF^*(2^4)$ by calculating x^i for $i=1,\ldots,15$. (7 points)
 - (b) Prove that $(X-1)(X-2) \dots (X-(p-1)) = X^{p-1}-1 \mod p$. (8 points)
- [4] The operation MixColumns(State) in AES is described below.

If the first column of the State A is

 $[a_{00}, a_{10}, a_{20}, a_{30}] = [00101001, 01100011, 00000111, 00101100],$ calculate the first column $[b_{00}, b_{10}, b_{20}, b_{30}]$ of B = MixColumns(A). (10 points)

[5] In DES, the round function g: $g(L^{i-1}, R^{i-1}, K^i)=(L^i, R^i)$, where

$$L' = R^{i-1}$$

 $R^{i} = L^{i-1} \oplus f(R^{i-1}, K^{i}).$

Express Lⁱ⁻¹, Rⁱ⁻¹ with Lⁱ, Rⁱ, f, and Kⁱ and thus show the algorithm is invertible. (10 points)

- [6] Factoring Algorithms
 - (a) Let n = pq = 351467. We have $2^{10!} \equiv 56160 \pmod{351467}$. Use Pollard's p-1 algorithm to factor n. (7 points)
 - (b) Let n = pq = 3837523. We also have the following relations $9398^2 \equiv 5^5 \times 19 \pmod{3837523}$ $19095^2 \equiv 2^5 \times 5 \times 11 \times 13 \times 19 \pmod{3837523}$

$$1964^2 \equiv 3^2 \times 13^3 \pmod{3837523}$$

 $17078^2 \equiv 2^6 \times 3^2 \times 11 \pmod{3837523}$ By multiplying these together, we obtain the congruence

$$2230387^2 \equiv 2586705^2 \pmod{3837523}$$

Factor n. (7 points)

- [7] Alice uses the RSA cryptosystem with primes p = 13 and q = 23 and public exponent e = 5.
 - (a) What is Alice's public modulus n? What is her private key d?
 - (b) Bob would like to encrypt M = 100 to Alice. What is the ciphertext? (12 points)
- [8] In Baby-step Giant-step algorithm, suppose p = 29, and we wish to find $\log_3 2$. So we have $\alpha = 3$, $\beta = 2$, and $m = \lceil \sqrt{28} \rceil = 6$. Then, $\alpha^{-6} \equiv 22 \pmod{p}$. Assume we have two lists L_1 and L_2 . L_1 is the list of ordered pairs $(j, 3^j \mod p)$ for $0 \le j \le 5$:
 - (0,1) (1,3) (2,9) (3,27) (4,23) (5,11)

and L₂ is the list of ordered pairs $(i, 2 \times 3^{-6i} \mod p)$ for $0 \le i \le 5$:

$$(0,2)$$
 $(1,15)$ $(2,11)$ $(3,10)$ $(4,17)$ $(5,26)$

Use these two lists L_1 and L_2 to calculate $log_3 2$. (8 points)

- [9] Alice and Bob are communicating using the ElGamal cryptosystem with prime q = 23 and generator $\alpha = 7$.
 - (a) Bob creates his public key by choosing the exponent $X_B=5$. What is Bob's public key Y_B ? (3 points)
 - (b) Alice wants to send M=3 to Bob. Demonstrate how Alice encrypts M if the random number k she chooses is k=2. (4 points)
 - (c) If Bob receives the encrypted message $(C_1, C_2) = (9, 6)$, what is the plaintext M? (4 points)