Time will explain.

Jane Austen, Persuasion

Neural Language Models

RNN

Dr. Uzair Ahmad

Program

- Previously
 - N-Gram Language Modeling
 - FFNN
- Neural Sequence Models
 - Design Criteria
 - Recurrent Neural Network
 - Capabilities
 - Limitations

Sequence Models

- N-Gram Language Models
 - "This morning I had Pizza for _______"
 - P(? | context words)
 - Limited History: Long-term dependencies
 - "Stop, do not let go". Vs "Do not stop, let go".
 - Bag-of-words Representation
 - Counts do not preserve order
- Feedforward Neural Networks
 - "a b c d e" Vs "d e a b c"
 - Weights are tied to word positions
 - Cannot be shared

Jurafsky, SLP, Ch 9, P174

Sequence Models

- Design criteria
 - Variable length sequences
 - Track long-term dependencies
 - Maintain information about "order of appearance"
 - Share parameters

Sequence Models

- Alternate to direct estimation of $p(x_{t+1}|x_1, x_2, x_3 \cdots x_t)$
 - Word prediction as discriminative task
 - $p(x_m|h_m)$
- Reparameterization of $p(w \mid \mu)$

•
$$p(x_m|h_m) = \frac{e^{(\beta_x \cdot v_\mu)}}{\sum_{x' \in v} e^{(\beta_{x'} \cdot v_\mu)}}$$

Sequence Models: RNN

$$w_t \triangleq \phi x_t$$

$$h_t = RNN(w_t, h_{t-1})$$

$$p(x_{t+1}|x_1, x_2, x_3 \cdots x_t) = \frac{e^{(\beta_{x_{t+1}} \cdot h_t)}}{\sum_{w' \in v} e^{(\beta_{x} \cdot h_t)}}$$

Sequence Models: RNN

function FORWARDRNN(*x*, *network*) **returns** output sequence *y*

```
h_0 \leftarrow 0

for i \leftarrow 1 to LENGTH(x) do

h_i \leftarrow g(U \ h_{i-1} + W \ x_i)

y_i \leftarrow f(V \ h_i)

return y
```

Recurrent Neural Networks

RNN

$$x_t \triangleq \phi w_t$$

$$h_t = tanh(Uh_{t-1} + w_{hx}x_t)$$

$$\hat{y}_t = V h_t$$

RNN

Training

Recurrent Neural Networks

Recurrent Neural Networks

- Vanishing Gradients
 - Activation functions
 - Sigmoid
 - Tanh
 - Relu
 - Gated cells
 - GRU
 - LSTM

Evaluation of Language Models

- Extrinsic
- Intrinsic
 - Held-out data: $\ell(w) = \sum_{m=1}^{M} \log p(w_m | w_{m-1}, ..., w_1)$
 - $Perplexity(w) = 2^{-\frac{\ell(w)}{M}}$

Summary

Sequential Language Models

- RNN
 - Variable length computation graph