Tilastollinen päättely

2. kurssikoe, 2.3.2011, klo 14-17, CK112

Tentissä saa olla mukana kirjoitusvälineet ja laskin.

- 1. Oletetaan, että havaintoja vastaavat satunnaismuuttujat ovat $Y_1, \ldots, Y_n \sim G(\alpha, \beta)$ \perp . Oletetaan edelleen, että $\alpha > 0$ on tunnettu. Etsi parametrille β yksiulotteinen tyhjentävä tunnusluku.
- 2. Olkoot x_1, x_2, \ldots annettuja nollasta eroavia reaalilukuja. Tarkastellaan regressiomallia $Y_1, \ldots, Y_n \perp \!\!\!\perp, Y_i \sim N(\beta x_i, \sigma^2)$, jossa β ja σ^2 ovat tuntemattomia parametreja.
 - a) Näytä, että parametrin β su-estimaattori on

$$\hat{\beta} = \sum_{i=1}^{n} x_i Y_i / \sum_{i=1}^{n} x_i^2,$$

totea, että se on harhaton, ja laske sen varianssi.

b) Totea, että myös estimaattori

$$T = \sum_{i=1}^{n} Y_i / \sum_{i=1}^{n} x_i$$

on harhaton, ja laske sen varianssi.

c) Kumpi estimaattori on tehokkaampi?

Vihje:
$$(\sum_{i=1}^{n} x_i)^2 \le n \sum_{i=1}^{n} x_i^2$$
.

Vihje: Monotoninen uskottavuusosamäärä.

- 4. Toistokokeessa (onnistumistodennäköisyys θ) suoritetaan 8 toistoa ja lasketaan onnistumisten lukumäärä k. Halutaan testata hypoteesia $H_0: \theta = 0.3$ vaihtoehtoa $H_1: \theta > 0.3$ vastaan. Testisuureena on k.
 - a) Millaiset k:n arvot (pienet vai suuret) todistavat H_0 :aa vastaan ja H_1 :n puolesta?
 - b) Päätetään toimia merkitsevyystasolla 0.01. Ilmoita vastaava kriittinen alue (eli ne testisuureen arvot, jotka johtavat H_0 :n hylkäämiseen ja H_1 :n hyväksymiseen). Perustele tarkasti.
 - c) Kuinka suuri on hyväksymisvirheen todennäköisyys pisteessä $\theta = 0.5$.

Käytä hyväksi oheista taulukkoa 1, jossa on lueteltu Bin(8,p)-jakauman pistetodennäköisyydet eräillä onnistumistodennäköisyyksien p arvoilla.

Taulukko 1: Bin(n,p)-jakauman pistetodennäköisyyksiä

n	k	p = 0.1	p = 0.2	p = 0.3	p = 0.4	p = 0.5
8	0	0.4305	0.1678	0.0576	0.0168	0.0039
	1	0.3826	0.3355	0.1977	0.0896	0.0313
	2	0.1488	0.2936	0.2965	0.2090	0.1094
	3	0.0331	0.1468	0.2541	0.2787	0.2188
	4	0.0046	0.0459	0.1361	0.2322	0.2734
	5	0.0004	0.0092	0.0467	0.1239	0.2188
	6	0.0000	0.0011	0.0100	0.0413	0.1094
	7	0.0000	0.0001	0.0012	0.0079	0.0313
	8	0.0000	0.0000	0.0001	0.0007	0.0039

Muistin tueksi

Satunnaismuuttujan $Y \sim G(\kappa, \lambda)$ tiheysfunktio on

$$f(y;\kappa,\lambda) = \frac{\lambda^{\kappa}}{\Gamma(\kappa)} y^{\kappa-1} e^{-\lambda y}, \quad y > 0,$$

jossa $\kappa > 0$ ja $\lambda > 0$. Lisäksi $E(Y) = \frac{\kappa}{\lambda}$ ja $\text{var}(Y) = \frac{\kappa}{\lambda^2}$.