

Ordinary Differential Equations

Topic: Euler Method

Major: General Engineering

Authors: Autar Kaw, Charlie Barker

Euler's Method

$$\frac{dy}{dx} = f(x, y), y(0) = y_0$$

Slope
$$= \frac{Rise}{Run}$$
$$= \frac{y_1 - y_0}{x_1 - x_0}$$
$$= f(x_0, y_0)$$

$$y_1 = y_0 + f(x_0, y_0)(x_1 - x_0)$$
$$= y_0 + f(x_0, y_0)h$$

Figure 1. Graphical interpretation of the first step of Euler's method

Euler's Method

$$y_{i+1} = y_i + f(x_i, y_i)h$$

$$h = x_{i+1} - x_i$$

Figure 2. General graphical interpretation of Euler's method

How to write Ordinary Differential Equation

How does one write a first order differential equation in the form of

$$\frac{dy}{dx} = f(x, y)$$

Example

$$\frac{dy}{dx} + 2y = 1.3e^{-x}, y(0) = 5$$

is rewritten as

$$\frac{dy}{dx} = 1.3e^{-x} - 2y, y(0) = 5$$

In this case

$$f(x, y) = 1.3e^{-x} - 2y$$

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right), \theta(0) = 1200 K$$

Find the temperature at t = 480 seconds using Euler's method. Assume a step size of h = 240 seconds.

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right)$$
$$f(t,\theta) = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right)$$
$$\theta_{i+1} = \theta_i + f(t_i, \theta_i) h$$

Solution

Step 1:
$$\theta_1 = \theta_0 + f(t_0, \theta_0)h$$

$$= 1200 + f(0,1200)240$$

$$= 1200 + (-2.2067 \times 10^{-12} (1200^4 - 81 \times 10^8))240$$

$$= 1200 + (-4.5579)240$$

$$= 106.09K$$

 θ_1 is the approximate temperature at

$$t = t_1 = t_0 + h = 0 + 240 = 240$$

$$\theta_1 = \theta(240) \cong 106.09K$$

Solution Cont

Step 2: For
$$i = 1$$
, $t_1 = 240$, $\theta_1 = 106.09$

$$\theta_2 = \theta_1 + f(t_1, \theta_1)h$$

$$= 106.09 + f(240,106.09)240$$

$$= 106.09 + (-2.2067 \times 10^{-12} (106.09^4 - 81 \times 10^8))240$$

$$= 106.09 + (0.017595)240$$

$$= 110.32K$$

 θ_{2} is the approximate temperature at

$$t = t_2 = t_1 + h = 240 + 240 = 480$$

$$\theta_2 = \theta(480) \cong 110.32K$$

Solution Cont

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1} (0.00333\theta) = -0.22067 \times 10^{-3} t - 2.9282$$

The solution to this nonlinear equation at t=480 seconds is

$$\theta(480) = 647.57K$$

Comparison of Exact and Numerical Solutions

Figure 3. Comparing exact and Euler's method

Effect of step size

Table 1. Temperature at 480 seconds as a function of step size, h

Step h	θ(480)	$oxed{E_t}$	$ \epsilon_t \%$
480	-987.81	1635.4	252.54
240	110.32	537.26	82.964
120	546.78	100.80	15.566
60	614.97	32.607	5.0352
30	632.77	14.806	2.2864

$$\theta(480) = 647.57K$$
 (exact)

Comparison with exact results

Figure 4. Comparison of Euler's method with exact solution for different step sizes

Effects of step size on Euler's Method

Figure 5. Effect of step size in Euler's method.

Errors in Euler's Method

It can be seen that Euler's method has large errors. This can be illustrated using Taylor series.

$$y_{i+1} = y_i + \frac{dy}{dx}\Big|_{x_i, y_i} (x_{i+1} - x_i) + \frac{1}{2!} \frac{d^2y}{dx^2}\Big|_{x_i, y_i} (x_{i+1} - x_i)^2 + \frac{1}{3!} \frac{d^3y}{dx^3}\Big|_{x_i, y_i} (x_{i+1} - x_i)^3 + \dots$$

$$y_{i+1} = y_i + f(x_i, y_i) + \frac{1}{2!} f'(x_i, y_i) (x_{i+1} - x_i)^2 + \frac{1}{3!} f''(x_i, y_i) (x_{i+1} - x_i)^3 + \dots$$

As you can see the first two terms of the Taylor series

$$y_{i+1} = y_i + f(x_i, y_i)h$$
 are the Euler's method.

The true error in the approximation is given by

$$E_t = \frac{f'(x_i, y_i)}{2!}h^2 + \frac{f''(x_i, y_i)}{3!}h^3 + \dots \qquad E_t \propto h^2$$