# Learning hatching for pen-and-ink illustrations of surfaces



Evangelos Kalogerakis<sup>1,2</sup>, Derek Nowrouzehahrai<sup>1,3,4</sup>, Simon Breslav<sup>1,5</sup>, Aaron Hertzmann<sup>1</sup>

<sup>1</sup>University of Toronto, <sup>2</sup>Stanford University, <sup>3</sup>Disney Research Zurich, <sup>4</sup>University of Montreal, <sup>5</sup>Autodesk Research

#### Goal: Synthesis of hatching illustrations



## Goal: Synthesis of hatching illustrations



## Goal: Synthesis of hatching illustrations



# Challenge: understanding hatching styles





Iso-parametric curves

[Saito and Takahashi 1990, Winkenbach and Salesin 1996]



Iso-parametric curves
[Saito and Takahashi 1990, Winkenbach and Salesin 1996]



Smooth curvature directions and shading-based tone [Elber 1998, Hertzmann and Zorin 2000]



Iso-parametric curves
[Saito and Takahashi 1990, Winkenbach and Salesin 1996]



Smooth curvature directions and shading-based tone [Elber 1998, Hertzmann and Zorin 2000]



Shading gradients
[Singh and Schaefer 2010]



Iso-parametric curves
[Saito and Takahashi 1990, Winkenbach and Salesin 1996]



Smooth curvature directions and shading-based tone [Elber 1998, Hertzmann and Zorin 2000]



Shading gradients
[Singh and Schaefer 2010]



Real-time hatching [Praun et al. 2001, Kim et al. 2008]



#### Related work: where do people draw lines?

[Cole et al. 2008]



Average images composed of artists' drawings



**Predicted line drawing** 

# Our approach

Learns a model of hatching style from a single artist's drawing of an input shape

#### Our approach

Learns a model of hatching style from a single artist's drawing of an input shape

Can transfer the hatching style to different views of the exemplar shape as well as different shapes

#### Our approach

Learns a model of hatching style from a single artist's drawing of an input shape

Can transfer the hatching style to different views of the exemplar shape as well as different shapes

The hatching style is determined by hatching properties related to hatching tone and orientations

#### **Hatching level**





- No hatching
- Hatching
- Cross-hatching

Hatching level **Stroke thickness** 



Hatching level
Stroke thickness
Stroke spacing



Hatching level
Stroke thickness
Stroke spacing
Stroke length



Hatching level
Stroke thickness
Stroke spacing
Stroke length
Stroke intensity



Hatching level

Stroke thickness

Stroke spacing

Stroke length

Stroke intensity

**Hatching orientations** 



Hatching level
Stroke thickness
Stroke spacing
Stroke length
Stroke intensity
Hatching orientations



# Learning stage











#### Learning hatching orientations

Linear model expressing hatching orientations as a weighted sum of selected orientation features.

$$f(\boldsymbol{\theta}; \mathbf{w}) = \sum_k w_k \; \mathbf{v}_k$$

$$\mathbf{v} = [\cos(2\theta), \sin(2\theta)]^T$$

#### Learning hatching orientations

Linear model expressing hatching orientations as a weighted sum of selected orientation features.

$$f(\boldsymbol{\theta}; \mathbf{w}) = \sum_k w_k \mathbf{v}_k$$

$$\mathbf{v} = [\cos(2\theta), \sin(2\theta)]^T$$

## Learning hatching orientations



**Artist's illustration** 

Fitting a single model across the illustration

# Learning orientation fields



## Mixture of experts model

Simultaneous segmentation & model fitting for each segment



Map features to thickness, intensity, spacing, length

$$y = \prod_{k} (a_k x_k + b_k)^{\alpha_k}$$

Map features to thickness, intensity, spacing, length

$$y = \prod_{k} (a_k x_k + b_k)^{\alpha_k}$$

#### Map features to thickness

$$y=\prod_k (a_k x_k + b_k)^{\alpha_k}$$
 $1.79$ 
 $3.64$ 
Extracted thickness

#### Map features to **intensity**



#### Map features to **spacing**

$$y=\prod_k (a_k x_k + b_k)^{lpha_k}$$
 $\frac{11.37}{2.71}$ 
Extracted spacing

## Learning stroke properties

### Map features to length

$$y=\prod_k (a_k x_k + b_k)^{lpha_k}$$
 $3.56$ 

Extracted length

Learned length

## Learning hatching level and segment labels

Map features to discrete values with Joint Boosting + CRF



# Synthesis stage



# Synthesis stage



# Synthesis stage





**Artist's illustration** 



**Artist's illustration** 



**Artist's illustration** 







**Artist's illustration** 





**Artist's illustration** 





### **Artist's illustration**





















illustration



Artist's illustration







Artist's illustration



illustration

Orientation features:



### Orientation features:

 Principal curvatures and local symmetry axes dominate



#### Orientation features:

- Principal curvatures and local symmetry axes dominate
- Also orientations aligned with feature lines are also important



**Hatching level:** *image intensity, shading features* 

**Stroke thickness:** shape descriptors, curvature, shading features, image gradients, location of feature lines, depth

**Spacing:** shape descriptors, curvature, derivatives of curvature, shading features

**Intensity:** shape descriptors, image intensity, shading features, depth, location of feature lines

**Length:** shape descriptors, curvature, radial curvature, shading feature, image intensity, image gradient

**Segment label:** shape descriptors

### Summary

• An algorithm that **learns hatching styles** 

### Summary

- An algorithm that learns hatching styles
- Learns from a single drawing

### Summary

- An algorithm that learns hatching styles
- Learns from a single drawing
- Synthesizes hatching illustrations in the input artist's style for novel views and shapes

### Limitations

 We do not always exactly match the artist's illustration aspects of hatching style are lost

#### Limitations

- We do not always exactly match the artist's illustration aspects of hatching style are lost
- Pre-processing stage relies on thresholds to robustly extract hatching properties.

### Limitations

- We do not always exactly match the artist's illustration aspects of hatching style are lost
- Pre-processing stage relies on thresholds to robustly extract hatching properties.
- Computation time is large
   (5h-10h for training, 0.5-1h for synthesis)

### **Future Work**

Analyze larger set of drawings

### **Future Work**

- Analyze larger set of drawings
- Extend our framework to analyze other forms of art

### **Future Work**

- Analyze larger set of drawings
- Extend our framework to analyze other forms of art
- Applications to field design on surfaces

### Thank you!

#### **Acknowledgements:**

Seok-Hyung Bae, Patrick Coleman, Vikramaditya Dasgupta, Mark Hazen, Thomas Hendry, Olga Vesselova, Olga Veksler, Robert Kalnins, Philip Davidson, David Bourguignon, Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser, Andrea Tagliasacchi, Richard Zhang, Aim@Shape, VAKHUN, Cyberware repositories





MINISTRY OF RESEARCH AND INNOVATION

