Math 180 Homework 7

Jiaping Zeng

12/9/2020

- 13.2.4 A square $n \times n$ real matrix M is called *positive definite* if we have $x^T M x > 0$ for each nonzero (column) vector $x \in \mathbf{R}^n$.
 - (a) Why does any positive definite $n \times n$ matrix M have the full rank n?

 Answer: If M is not full rank, i.e. the column are not linearly independent, then there exists a solution to Mx = 0 by definition of linear independence, which means we would have $x^T M x = 0$.
 - (b) Show that the matrix M used in the proof of Fisher's inequality in the text is positive definite (and hence it has rank v, without a calculation of the determinant).

Answer: By construction of M, each entry m_{ij} can only have two possible values: $\lambda \frac{v-1}{k-1}$ on the diagonal and λ elsewhere. Then we have M = D + L where D is a diagonal matrix with positive elements on the diagonal and L is a matrix with all entries $\lambda > 0$. For nonzero $x \in \mathbf{R}^n$, we have $x^T Dx > 0$ and $x^T Lx \ge 0$, so $x^T Mx > 0$ and M is positive definite by definition.

- 13.4.1 Verify the formulas (13.2) and (13.3).
 - 13.2 For a complete graph with n vertices, it can contain cycles of length 3 to n. For each k-cycle, $3 \le k \le n$, we have $\binom{n}{k}$ of choosing its k vertices. We can now reorder the vertices in k! different ways, then divide by 2k to account for rotational symmetry. Therefore we have $|\mathcal{K}_{K_n}| = \sum_{k=3}^{n} \binom{n}{k} \frac{k!}{2k} = \sum_{k=3}^{n} \binom{n}{k} \frac{(k-1)!}{2}$.
 - 13.3 For a complete bipartite graph, we need at least 2 vertices from each side to form a cycle. For each cycle with k vertices on each side (2k vertices in total), we choose k vertices on each side, giving us $\binom{n}{k}^2$ possibilities. Then similar to the previous part, we can reorder the vertices on each side in $(k!)^2$ different ways, then divide by 2k to account for rotational symmetry. Therefore we have $|\mathcal{K}_{K_{n,n}}| = \sum_{k=2}^{n} \binom{n}{k}^2 \frac{(k!)^2}{2k} = \sum_{k=2}^{n} \binom{n}{k}^2 \frac{k!(k-1)!}{2}$.
 - P11 Show that block designs of type 2-(21,6,1) and 2-(25,10,3) satisfy the integrality conditions of Theorem 13.1.3 yet fail Fisher's inequality, so cannot constitute valid block designs.

Answer: For a block design of type 2-(21,6,1), we have t=2, v=21, k=6 and $\lambda=1$. By substitution, we can see that $\lambda \frac{v(v-1)}{k(k-1)} = \frac{21 \cdot 20}{6 \cdot 5} = 14$ and $\lambda \frac{v-1}{k-1} = \frac{20}{5} = 4$ are both integers, therefore the block design satisfies the integrality conditions. However, $|\mathcal{B}| = \lambda \frac{v(v-1)}{k(k-1)} = 14 \le 21 = |V|$, so it fails Fisher's inequality.

Similarly, for a block design of type 2-(25,10,3), we have $t=2,\ v=25,\ k=10$ and $\lambda=3$. By substitution, we can see that $\lambda \frac{v(v-1)}{k(k-1)} = 2 \cdot \frac{25 \cdot 24}{9 \cdot 10} = 20$ and $\lambda \frac{v-1}{k-1} = 3 \cdot \frac{24}{9} = 8$ are both integers, therefore the block design satisfies the integrality conditions. However, $|\mathcal{B}| = \lambda \frac{v(v-1)}{k(k-1)} = 20 \le 25 = |V|$, so it also fails Fisher's inequality.