DEPT of ECE, NSU, CSE/CSC 326 SPRING Semester 2015 Midterm Exam

ID TIME: 1 hour 15 minutes

NAME Total Points : 30

Answer the following questions.

1.[8 points] Write a grammar that generates C like variable declaration statements. Assume variables can have data types int, float, char, or double. Also no initialization of variables are allowed during declaration, i.e., int a=0; is not a valid statement. Following is valid variable declaration:

```
int a;
float d,f;
```

Give a parse tree for the above string using your grammar.

We can have a list of declaration statements and each statement is followed by a;

So we add productions

```
Decl_list -> Decl_stmt; | Decl_list Dec_stmt;
```

Now Decl_stmt s should start with a type and then followed by a list of IDs.

So, we add productions

```
Id_list -> ID | Id_list, ID
Type -> int | float | char | double
```

Now, instead of the parse tree I'm giving the rightmost derivation

```
Dec_list => Dec_list Dec_stmt; => Dec_list Type ID_list; => Dec_list Type ID_list, ID; => Dec_list Type ID, ID; => Dec_list float ID, ID; => Dec_stmt; float ID, ID; => Type ID_list; float ID, ID; => Type ID, float ID, ID; => int ID; float ID, ID;
```

2. [6 points] Find the First and Follow of the non-terminal S, A, B, C, and D for the following grammar

 $S \rightarrow \textbf{0}S \mid A\textbf{1}, A \rightarrow BCD \mid \epsilon, B \rightarrow \textbf{2}S \mid \textbf{1}S \mid \epsilon, C \rightarrow \textbf{3}S \mid \epsilon, D \rightarrow \textbf{4}S$

First(S) = $\{0, 1, 2, 3, 4\}$, First(A) = $\{1, 2, 3, 4, \epsilon\}$, First(B) = $\{1, 2, \epsilon\}$, First(C) = $\{3, \epsilon\}$, First(D) = $\{4\}$

Follow(S) <- \$

Follow(S) <- Follow(B), Follow(C), Follow(D)

Follow(A) <- First(1)

Follow(B) <- First(CD)- ε

Follow(B) <- Follow(A)

Follow(C) <- First(D)

Follow(D) <- Follow(A)

So, $Follow(S) = \{\$, 1, 3, 4\}$, $Follow(A) = \{1\}$, $Follow(B) = \{3, 4, 1\}$, $Follow(C) = \{4\}$, $Follow(D) = \{1\}$

3. [4 points] Show that the following grammar is ambiguous

 $A \rightarrow BC \mid B, B \rightarrow aB \mid b, C \rightarrow a \mid \epsilon$

A=>BC=>bC=>b and we also have A=>B=>b. Therefore, the given grammar is ambiguous.

4. [6 points] Using subset construction algorithm convert the following NFA to an equivalent DFA. The NFA states are $\{1,2,3,4\}$, start state = 1, final states = $\{2,4\}$

States/input	а	b	€
1	1,2	1	
2	3	3	
3	4	4	4
4			

Start state of the DFA, $A = \epsilon\text{-closure}(\{1\}) = \{1\}$ Now, move(A, a) = $\epsilon\text{-closure}(move_{NFA}(\{1\},a\})) = \{1,2\} = B$ move(B, a) = $\epsilon\text{-closure}(move_{NFA}(\{1\},b\})) = \{1\} = A$ move(B, a) = $\epsilon\text{-closure}(move_{NFA}(\{1,2\},a\})) = \{1,2,3,4\} = C$ move(C, a) = $\epsilon\text{-closure}(move_{NFA}(\{1,2\},a\})) = \{1,3,4\} = D$ move(C, b) = $\epsilon\text{-closure}(move_{NFA}(\{1,2,3,4\},a\})) = \{1,2,3,4\} = C$ move(D, a) = $\epsilon\text{-closure}(move_{NFA}(\{1,2,3,4\},a\})) = \{1,2,4\} = E$ move(D, b) = $\epsilon\text{-closure}(move_{NFA}(\{1,3,4\},a\})) = \{1,2,4\} = E$ move(E, a) = $\epsilon\text{-closure}(move_{NFA}(\{1,2,4\},a\})) = \{1,2,3,4\} = C$ move(E, b) = $\epsilon\text{-closure}(move_{NFA}(\{1,2,4\},a\})) = \{1,3,4\} = D$ move(F, a) = $\epsilon\text{-closure}(move_{NFA}(\{1,4\},a\})) = \{1,2\} = B$ move(F, b) = $\epsilon\text{-closure}(move_{NFA}(\{1,4\},a\})) = \{1,2\} = B$

States B, C, D, E, and F are final states of the DFA.

5.[6 points] Given the following LL(1) parsing table show how parsing of the string int*int would look like. Here, E is the start symbol of the grammar.

	int	*	+	()	\$
E	E → TX			E → TX		
Х			X → +E		X→€	Х→€
T	$T \rightarrow int Y$			$T \rightarrow (E)$		
Y		Y→ *T	Y→ ∈		Y→ ∈	Y→ ∈

<u>stack</u>	input	output	
E\$ ▲	(int*int)\$		
T stack_top			
E\$	(int * int)\$		
TX\$	(int*int)\$	E-> TX	
(E)X\$	(int*int)\$	T -> (E)	
E)X\$	int * int)\$		
TX)X\$	int * int)\$	E -> TX	
int YX)X\$	int * int)\$	T -> int Y	
YX)X\$	* int)\$		
*TX)X\$	* int)\$	Y -> *T	
TX)X\$	int)\$		
int YX)X\$	int)\$	T -> int Y	
YX)X\$)\$		
X)X\$)\$	Υ -> ε	
)X\$)\$	X -> ε	
X\$	\$		
\$	\$	X -> ε	