

CSC380: Principles of Data Science

Advanced ML algorithms

Kyoungseok Jang

Announcement

- Reading quiz today
 - Already announced quiz questions on Piazza.
- Uploaded Final practice exam.

Outline

- Random Forest (supervised learning, advanced decision tree)
- Recommendation algorithms (unsupervised learning)
- Generative Adversarial Network (generative model)

Disclaimer

- Today's lecture will not be included in your final exam.
- You don't need to study this part too hard.

Random Forest

Review: Decision Tree

Algorithm 1 DECISIONTREETRAIN(data, remaining features)

```
1: guess ← most frequent answer in data
                                                       // default answer for this data
2: if the labels in data are unambiguous then
                                                                    <= i.e., all data points have the same
     return Leaf(guess)
                                                 // base case: no need to split further
                                                                                                          label
4 else if remaining features is empty then
     return Leaf(guess)
                                                    // base case: cannot split further
                                                  // we need to guery more features
6: else
     for all f \in remaining features do
                                                                          <= there is no point in adding a
        NO \leftarrow the subset of data on which f=no
                                                                      feature that appeared in its parent!
        YES \leftarrow the subset of data on which f=yes
        score[f] \leftarrow ( # of majority vote answers in NO
10:
                                                                                             <= answer = label
                    + # of majority vote answers in YES ) /
11:
                    size(data)
     end for
     f \leftarrow the feature with maximal score(f)
     NO \leftarrow the subset of data on which f=no
     YES \leftarrow the subset of data on which f=yes
     left \leftarrow DecisionTreeTrain(NO, remaining features \setminus \{f\})
     right \leftarrow DecisionTreeTrain(YES, remaining features \setminus \{f\})
17:
     return Node(f, left, right)
19: end if
```

Advantages of Decision Tree

Pros

- Interpretability
- Less data preparation (preprocessing)
- Non-parametric: not like Naïve-Bayes, it does not require complicated model assumption.
- Versatility
- Non-linearity

Disadvantages of Decision Tree

- Cons
 - Overfitting: model can be complex = vulnerable to overfitting
 - Optimization: order $O(dm^2 + dm \log m)$
 - especially for the continuous feature → Too many features to consider.

Pruning is usually not enough
+ Additional complicated computation

Bias-Variance Tradeoff

Finding a balanced fit (neither over- nor underfit) is called the **the bias-variance tradeoff**.

Bias-Variance Tradeoff

• Intuition: For i.i.d random variables X_1, \dots, X_n

$$Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = Var(X_{1})$$

- Observation: If we have D independent (and large enough) dataset, then we can train D individual decision trees and do 'majority vote' to decrease variance!
- Problem
 - D datasets should be independent! We usually don't have enough data to split it by D large enough subsets!
 - Alternative: Bootstrapping

Bagging

- Bagging = Bootstrap + Aggregating
- Objective: Create multiple decision trees
- Bootstrapping:

Generate multiple samples of training data via bootstrapping (sampling from your dataset)

training examples										
	#1 #2 #3 #4 #5 #6									
original dataset	1	1	1	1	1	1				
decision tree 1	1	1	0	2	1	1				
decision tree 2	3	0	1	0	2	0				
decision tree 3	0	1	3	1	0	1				

Each tree will be trained based on this sampled dataset.

- Aggregating: For a given input, we output
 - Regression: the averaged outputs of all the models for that input.
 - Classification: the class that is outputted by the majority

Bagging

- This is one example of ensemble method
 - Method of building a single model by training and aggregating multiple models

Out-of-bag evaluation

- How to evaluate generalization errors?
 - Validation set? Yes, it works, but... it would be better if we don't split!
 - Turns out we don't need to split!
 - Traditionally, ~67% of original data is in a sampled dataset.
 - You can use the rest of the data as your validation set for each tree!

	Trai	ning	exam	ples		Examples for OOB Evaluation	
	#1	#2	#3	#4	#5	#6	
original dataset	1	1	1	1	1	1	
decision tree 1	1	1	0	2	1	1	#3
decision tree 2	3	0	1	0	2	0	#2, #4, and #6
decision tree 3	0	1	3	1	0	1	#1 and #5

Good, are we done?

- Not yet... are those trees 'truly' independent?
- These ensemble models are meaningless when models are dependent on each other.
 - E.g.) X_1, \dots, X_n : All equal random variable $(X_i = X)$
 - Then $Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = Var(X) = Var(X_1)$: variance does not decrease!
- In practice, these ensembles of trees in Bagging tend to be highly correlated!
 - E.g.) One extremely strong predictor, x_j , in the training set amongst moderate predictors.
 - Then most of your trees will start with x_i , and no big changes.
 - Multiple identical trees!

Random Forest

- How do make trees 'different' from each other?
 - Don't allow your algorithm to use all the features!
- 1. Create separate bootstrap samples (same as bagging)
- For each tree, at each split (node training), we randomly select a set of J' predictors from the full set of predictors.
- 3. Find the best feature among J'

Blue: randomly selected candidate J' Red box: chosen feature for this node

Random Forest - properties

- Parallel training is possible

 Not that heavier optimization than one decision tree
- Three main hyperparameters to tune
 - Number of predictors to randomly select for each split (node)
 - Depth of the tree, or the minimum leaf node size (complexity of tree)
 - Number of trees: turns out, increasing number of trees <u>does not</u> increase variance!
- When the number of predictors is large, but the number of relevant predictors is small, random forests can perform poorly.

Pros and Cons

Pros

- Hard to overfit: "Random Forests do not overfit" Leo Breiman
- Even without worrying about overfitting, one can create a complex model!
- Inherits most of the advantages of decision trees
 - Less data preparation (preprocessing)
 - Non-parametric
 - Versatility
 - Non-linearity
- Can be trained parallel Faster learning relative to its size

Cons

- Lose Interpretability.
- The size of the model can be large. Models with more than 1M nodes are common.
- Random forests cannot learn and reuse internal representations.

Recommendation algorithms

Recommendations are everywhere

Types of recommendations

- Editorial and hand-curated
 - List of 'essential' by XYZ
 - Personal recommendation of critic ABC
- Simple Aggregation
 - Top 100, recent uploads, most popular
- Tailored to individual users
 - Amazon, Youtube, Netflix, etc...

Today's main topic

The task

- Given the information of a user, what should we recommend next?
- Formal model
- X=set of users
- S=set of items
- Utility function $u: X \times S \rightarrow R$
 - R: set of ratings (e.g. 1-5 stars, real numbers in [0,1])
- Want to maximize customer's happiness! (so that the company can earn more)

The task

This model naturally induces 'utility matrix'

		Harry Potter			Twiligh	nt S	Star wars		
		HP1 HP2 HP3		TW	SW1	SW2	SW3		
Anita	\overline{A}	4			5	1			
Beyonce	B	5	5	4					
Calvin	C				2	4	5		
David	D		3		?			3	

- How to fill out the 'empty spaces?'
- If we can 'guess' the numbers in empty spaces, we can recommend best item for the customer?

Two approaches

- Content-Based Filtering
 - Recommend items to customer x similar to previous items rated highly by x.
 - User-Item interaction
- Collaborative Filtering
 - Find a set of other users whose ratings are "similar" to x's ratings
 - 1) User-user interaction (straightforward)
 - 2) Item-item interaction
 - 3) Model-based: google developer version

Content-based filtering

- For each item, create an item profile (vector)
 - E.g.) Movie: genre, director, actor, year, ...

		elissa cCarthy	Actor A			•	Comic Genre	_	
Movie X	X	0	1	1	0	1	1	0	1
Movie Y	7	1	1	0	1	0	1	1	0

- For each user, create a user profile (vector) with same features!
 - E.g.) Average out all movies that user have seen.

Content-based filtering

- Measure the 'similarity score'
 - Various types of scores: dot product, cosine similarity, Pearson similarity, Euclidean distance
- Recommend an item with the highest similarity score

Pros and Cons

Pros

- No need for data from other users
- Able to recommend to users with unique tastes
 - No first-rater problem: if the movie is well featured
- Able to provide an explanation: 'Since you liked ...'

Cons

- How to determine features appropriately?
- Frequently involves hand-engineering
- Overspecialization hard to introduce or expand new content
 - Never recommend content outside the user's profile

Collaborative Filtering

- Instead of somewhat hand-engineered features, we will use the utility matrix directly!
 - Since it uses a real dataset, it will reflect reality better.
- But how?
 - 1) User-to-user interaction: directly compute using rows!
 - 2) Item-to-item interaction: directly compute using columns!
 - 3) Model-based interaction: create a content-based filtering model latently!

 Harry Potter Twilight Star Wars

		HP1	HP2	HP3	TW	SW1	SW2	SW3
Anita	\overline{A}	4			5	1		
Beyonce	B	5	5	4				
Calvin	C				2	4	5	
David	D		3					3

Collaborative Filtering – User-user based

- Basic concept: Find similar users and recommend items that they like!
- How to define similarity?
 - Use the i-th row of the utility table (items that user i has used) as the feature vector of user i
 - Use the similarity measure we explained before!
 - Cosine measure, dot product, Pearson similarity, ...
 - There are lots of details added for this process, but I will skip them.
- The importance of the user is proportional to the similarity.
 - Because it is highly probable that similar people with input user x will tell you more about the taste of x.

Collaborative Filtering – User-to-user based

- There are lots of variants for this user-user based CF, but here's one example:
- r_x : the vector of the user x's ratings
- N: be the set of k 'neighborhoods' (k most similar to x)
- Prediction for the item i of user x (can be vary):

•
$$r_{xi} = \frac{\sum_{n \in \mathbb{N}} sim(x,n) r_n}{\sum_{n \in \mathbb{N}} sim(x,n)}$$

• Recommended item $i^* = \arg \max_i r_{xi}$

(a) User-based filtering

(b) Item-based filtering

Collaborative Filtering: Model-based

- Imagine that we already have hidden 'embedding' feature vectors that affects utility.
- Then our prediction will be easy as we did in Content-based filtering. E.g.) Inner product between user vec and item vec!

Collaborative Filtering: Model-based

- It will be great if we can determine the features 'automatically'
- But how? Using matrix factorization...
- Suppose that there exists a matrix $U \in \mathbb{R}^{m \times d}$ (features of users) and $V \in \mathbb{R}^{n \times d}$ (features of items) such that UV^{\top} represents the true utility matrix.

Collaborative Filtering: Model-based

- If this model is true, then it should satisfy
 - If the actual rating of user i for item j is A_{ij} , then this model should predict similar rating for this user-item pair, which means
 - $(A_{ij} \langle U_i, V_j \rangle)^2$ should be small for all observed i and j.
 - For unobserved items, it might 'implicitly' mean that the user is not interested in that items.
 - So, it would be great $(0 \langle U_i, V_i \rangle)^2$ is also small for unobserved
- You need to optimize

$$\underset{U \in \mathbb{R}^{m \times d}, V \in \mathbb{R}^{n \times d}}{\operatorname{arg \, min}} ||A - UV^{\top}||_F^2$$

Where $||B||_F^2 = \sum b_{ij}^2$, sum of squares of all entries in matrix.

Turns out, it can be done efficiently!

Pros and Cons

Pros

- No domain knowledge: everything can be done automatically and mathematically. Only needs the feedback matrix!
- **Serendipity:** The model will help you discover your new interests based on the interest of other users.
- Relatively robust and performs well in practice.

Cons

- Cold-start problem: new user or new item no similarity to use!
- Interpretability: all the features are created 'automatically', so it is hard to understand what each feature means.
- Popularity bias: tend to recommend popular one someone with unique taste will not like it.
- Sometimes ethical issues...