Gompertz Curve Growth

Nina Chaichi 2017-02-25

"Gompertz Curve" is a growth curve frequantly used to forecast improvements in technological approaches, the share of market, the share of total installations, or the rate of technology adoption. Gompertz curve function is the appropriate function in the case where the progress only depends on distance to go.

Formula

Formula for the Pearl Curve is:

$$y = Le^{-be^{-kt}}$$

- y is the growth variable
- L is the upper limit to the growth of the variable y
- e is the base of the natural logarithms
- t is the time
- k is growth curve coefficient
- b is the growth curve coefficient

Curve Analysis

The curve is not symmetrical. The reflection point is at

 $t = \frac{\ln(b)}{k}$

when

$$y = \frac{L}{e}$$

In this package, b and k coefficient can be provided by user or can be estimated from historical data. The following formula illustrate how to estimate b and k based on historical data:

$$Y = \ln[\ln(\frac{L}{y})] = \ln(b) - kt$$

Analogous Gompertz Curve

Analogous Gompertz Curve can provide growth curve based on provided the upper limit of growth, t the period of estimation, and the b and k coefficient according of analogous case. Following is an example of Analogous Gompertz Curve. Gompertz_AC(0.8, 0.2, 10000, 20) calculates the growth over 20 periods, where the highest growth can be reached is 10000 And, b and k coefficients are 0.8 and 0.2 respectively. Ouput shows the growth for a given period from 1 to 20.

period	growth
1	5195

period	growth
2	5849
3	6446
4	6981
5	7451
6	7859
7	8210
8	8509
9	8761
10	8974
11	9152
12	9300
13	9423
14	9525
15	9610
16	9679
17	9737
18	9784
19	9823
20	9855

 $\label{local_compertz_AC_Plot} Gompertz_AC_Plot \ function \ plots \ the \ result \ of \ Gompertz_AC. \ For \ example, \ Gompertz_AC_Plot(0.8, \ 0.2, \ 10000, \ 20).$

Gompertz_AC_Plot(0.8, 0.2, 10000, 20)

Historical Gompertz Curve

Following illustrates the growth of power plant efficiency from 1920 through 1987. Power plant efficiency measured the amount of kilowatt hours per pound of coal. The equivalent energy of 1kwh is $3.6*10^6$ joules, on the other hand, the equivalent energy of pound of coal is $1.6*10^6$ joules. So, the maximum efficiency can be reached is 2.81 kwh per pound of coal.

data("PE")
pander(PE)

year	kwhperc
1920	0.328
1925	0.493
1930	0.625
1935	0.694
1940	0.743
1945	0.769
1950	0.84
1955	1.053
1960	1.136
1965	1.166
1970	1.1
1975	1.05
1976	1.055
1977	1.032
1978	1.013
1979	1.012
1980	1.024
1981	1.013
1982	1.007
1983	1.013
1984	1.017
1985	1.018
1986	1.02
1987	1.028

Coefficients of Gompertz curve can be estimated based on the historical data. Gompertz_HC function estimates the coefficients from historical data and calculates the growth. Gompertz_HC(PE, 2.81, 20) estimates the b and k from historical cable tv data. Then it calculates the growth from 1920 through 20 years above last available data - in this case 1987. The upper growth limit for power plant efficiency is 2.81 where there is no waste.

pander(Gompertz_HC(PE, 2.81, 20))

growth
0.5467
0.5544
0.5622
0.57
0.5779

. 1	. 1
period	growth
1925	0.5858
1926	0.5937
1927	0.6017
1928	0.6097
1929	0.6178
1930	0.6259
1931	0.634
1932	0.6422
1933	0.6504
1934	0.6586
1935	0.6669
1936	0.6751
1937	0.6835
1938	0.6918
1939	0.7002
1940	0.7086
1941	0.717
1942	0.7255
1943	0.734
1944	0.7425
1945	0.751
1946	0.7596
1947	0.7682
1948	0.7768
1949	0.7854
1950	0.7941
1951	0.8027
1952	0.8114
1953	0.8201
1954	0.8288
1955	0.8376
1956	0.8463
1957	0.8551
1958	0.8639
1959	0.8727
1960	0.8815
1961	0.8903
1962	0.8992
1963	0.908
1964	0.9169
1965	0.9257
1966	0.9346
1967	0.9435
1968	0.9524
1969	0.9613
1970	0.9702
1971	0.9791
1972	0.988
1973	0.9969
1974	1.006
1975	1.015
1976	1.024
	=70 = 1

growth
1.033
1.041
1.05
1.059
1.068
1.077
1.086
1.095
1.104
1.113
1.122
1.131
1.139
1.148
1.157
1.166
1.175
1.184
1.192
1.201
1.21
1.219
1.228
1.236
1.245
1.254
1.263
1.271
1.28
1.289
1.297

Gompertz_HC_Plot function plots the result of Gompertz_HC. For example, Gompertz_HC_Plot(PE, $2.81,\ 250$) plots the result of Gompertz_HC(PE, $2.81,\ 250$). This plot illustrates that almost 250 years will take to get close to 100% efficiency.

Gompertz_HC_plot(PE, 2.81, 250)

