OpenGeoProver Output for conjecture "geothm_zadatak"

Wu's method used

October 1, 2016

1 Invoking the theorem prover

The used proving method is Wu's method. The input system is:

 $p_1 = 2x_1$ $p_2 = 2x_2$ $p_3 = 2x_4$ $p_4 = 2x_5 - x_1$ $p_5 = 2x_6 - x_2$ $p_6 = 2x_7 - x_3$ $p_7 = x_{11}x_2 + x_9 - x_2$ $p_8 = x_{11}x_3 + x_{10} - x_3$ $= -x_{12}x_5 + x_8$ $p_{10} = -x_{12}x_6 + x_9$ $p_{11} = -x_{12}x_7 + x_{10}$ $p_{12} = 2x_{13} - 2$ $p_{13} = 2x_{14}$ $p_{14} = -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2$ $p_{15} = x_{18}x_3 + x_{17} - x_3$ $p_{16} = -x_{19}x_5 + x_{19} + x_{15}$ $p_{17} = -x_{19}x_6 + x_{19} + x_{16} = -x_{19}x_7 + x_{17}$

1.1 Triangulation, step 1

Choosing variable: Trying the variable with index 18.

Variable x_{18} selected: The number of polynomials with this variable, with indexes from 1 to 18, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{18} from all other polynomials by reducing them with polynomial p_{14} from previous step.

Finished a triangulation step, the current system is:

1.2 Triangulation, step 2

Choosing variable: Trying the variable with index 17.

Variable x_{17} selected: The number of polynomials with this variable, with indexes from 1 to 17, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{17} from all other polynomials by reducing them with polynomial p_{16} from previous step.

$$p_{1} = 2x_{1} - p_{2} = 2x_{2} - p_{3} = 2x_{4} - p_{4} = 2x_{5} - x_{1} - p_{5} = 2x_{6} - x_{2}$$

$$p_{6} = 2x_{7} - x_{3}$$

$$\begin{array}{rcl} p_7 & = & x_{11}x_2 + x_9 - x_2 \\ p_8 & = & x_{11}x_3 + x_{10} - x_3 \\ p_9 & = & -x_{12}x_5 + x_8 \\ p_{10} & = & -x_{12}x_6 + x_9 \\ p_{11} & = & -x_{12}x_7 + x_{10} \\ p_{12} & = & 2x_{13} - 2 \\ p_{13} & = & 2x_{14} - \\ p_{14} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{15} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{16} & = & -x_{19}x_{14}x_7 + x_{19}x_7x_2 - x_{16}x_3 + x_{14}x_3 \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

1.3 Triangulation, step 3

Choosing variable: Trying the variable with index 16.

Variable x_{16} selected: The number of polynomials with this variable, with indexes from 1 to 16, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{16} from all other polynomials by reducing them with polynomial p_{15} from previous step.

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & 2x_7 - x_3 \\ p_7 & = & x_{11}x_2 + x_9 - x_2 \\ p_8 & = & x_{11}x_3 + x_{10} - x_3 \\ p_9 & = & -x_{12}x_5 + x_8 \\ p_{10} & = & -x_{12}x_6 + x_9 \\ p_{11} & = & -x_{12}x_7 + x_{10} \\ p_{12} & = & 2x_{13} - 2 \\ p_{13} & = & 2x_{14} - \\ p_{14} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{15} & = & -x_{19}x_{14}x_7 + x_{19}x_7x_2 - x_{19}x_6x_3 + x_{19}x_3 + x_{14}x_3 - x_3 \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \end{array}$$

$$p_{18} = -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2$$

1.4 Triangulation, step 4

Choosing variable: Trying the variable with index 15.

Variable x_{15} selected: The number of polynomials with this variable, with indexes from 1 to 15, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{14} . No reduction needed.

The triangular system has not been changed.

1.5 Triangulation, step 5

Choosing variable: Trying the variable with index 14.

Variable x_{14} selected: The number of polynomials with this variable, with indexes from 1 to 14, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{14} from all other polynomials by reducing them with polynomial p_{13} from previous step.

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & 2x_7 - x_3 \\ p_7 & = & x_{11}x_2 + x_9 - x_2 \\ p_8 & = & x_{11}x_3 + x_{10} - x_3 \\ p_9 & = & -x_{12}x_5 + x_8 \\ p_{10} & = & -x_{12}x_6 + x_9 \\ p_{11} & = & -x_{12}x_7 + x_{10} \\ p_{12} & = & 2x_{13} - 2 \\ p_{13} & = & 2x_{19}x_7x_2 - x_{19}x_7 - 2x_{19}x_6x_3 + 2x_{19}x_3 - x_3 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

1.6 Triangulation, step 6

Choosing variable: Trying the variable with index 13.

Variable x_{13} selected: The number of polynomials with this variable, with indexes from 1 to 13, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_{12} . No reduction needed.

The triangular system has not been changed.

1.7 Triangulation, step 7

Choosing variable: Trying the variable with index 12.

Variable x_{12} selected: The number of polynomials with this variable, with indexes from 1 to 12, is 3.

Minimal degrees: 3 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{12} from all other polynomials by reducing them with polynomial p_9 from previous step.

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & 2x_7 - x_3 \\ p_7 & = & x_{11}x_2 + x_9 - x_2 \\ p_8 & = & x_{11}x_3 + x_{10} - x_3 \\ p_9 & = & 2x_{19}x_7x_2 - x_{19}x_7 - 2x_{19}x_6x_3 + 2x_{19}x_3 - x_3 \\ p_{10} & = & -x_9x_5 + x_8x_6 \\ p_{11} & = & -x_{10}x_5 + x_8x_7 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

1.8 Triangulation, step 8

Choosing variable: Trying the variable with index 11.

Variable x_{11} selected: The number of polynomials with this variable, with indexes from 1 to 11, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{11} from all other polynomials by reducing them with polynomial p_7 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & 2x_7 - x_3 \\ p_7 & = & 2x_{19}x_7x_2 - x_{19}x_7 - 2x_{19}x_6x_3 + 2x_{19}x_3 - x_3 \\ p_8 & = & -x_9x_5 + x_8x_6 \\ p_9 & = & -x_{10}x_5 + x_8x_7 \\ p_{10} & = & x_{10}x_2 - x_9x_3 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

1.9 Triangulation, step 9

Choosing variable: Trying the variable with index 10.

Variable x_{10} selected: The number of polynomials with this variable, with indexes from 1 to 10, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_{10} from all other polynomials by reducing them with polynomial p_9 from previous step.

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & 2x_7 - x_3 \\ p_7 & = & 2x_{19}x_7x_2 - x_{19}x_7 - 2x_{19}x_6x_3 + 2x_{19}x_3 - x_3 \\ p_8 & = & -x_9x_5 + x_8x_6 \\ p_9 & = & x_9x_5x_3 - x_8x_7x_2 \\ p_{10} & = & -x_{10}x_5 + x_8x_7 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \end{array}$$

1.10 Triangulation, step 10

Choosing variable: Trying the variable with index 9.

Variable x_9 selected: The number of polynomials with this variable, with indexes from 1 to 9, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_9 from all other polynomials by reducing them with polynomial p_8 from previous step.

$$\begin{array}{llll} p_1 & = & 2x_1 - & & & \\ p_2 & = & 2x_2 - & & & \\ p_3 & = & 2x_4 - & & & \\ p_4 & = & 2x_5 - x_1 - & & & \\ p_5 & = & 2x_6 - x_2 & & & \\ p_6 & = & 2x_7 - x_3 & & & \\ p_7 & = & 2x_{19}x_7x_2 - x_{19}x_7 - 2x_{19}x_6x_3 + 2x_{19}x_3 - x_3 \\ p_8 & = & x_8x_7x_5x_2 - x_8x_6x_5x_3 \\ p_9 & = & -x_9x_5 + x_8x_6 \end{array}$$

$$\begin{array}{lll} p_{10} & = & -x_{10}x_5 + x_8x_7 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \end{array}$$

1.11 Triangulation, step 11

Choosing variable: Trying the variable with index 8.

Variable x_8 selected: The number of polynomials with this variable, with indexes from 1 to 8, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_8 . No reduction needed.

The triangular system has not been changed.

1.12 Triangulation, step 12

Choosing variable: Trying the variable with index 7.

Variable x_7 selected: The number of polynomials with this variable, with indexes from 1 to 7, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_7 from all other polynomials by reducing them with polynomial p_6 from previous step.

$$\begin{array}{rclcrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 2x_6 - x_2 \\ p_6 & = & -4x_{19}x_6x_3 + 2x_{19}x_3x_2 + 3x_{19}x_3 - 2x_3 \\ p_7 & = & 2x_7 - x_3 \\ p_8 & = & x_8x_7x_5x_2 - x_8x_6x_5x_3 \\ p_9 & = & -x_9x_5 + x_8x_6 \\ p_{10} & = & -x_{10}x_5 + x_8x_7 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \end{array}$$

$$\begin{array}{lll} p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \end{array}$$

1.13 Triangulation, step 13

Choosing variable: Trying the variable with index 6.

Variable x_6 selected: The number of polynomials with this variable, with indexes from 1 to 6, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_6 from all other polynomials by reducing them with polynomial p_5 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rclrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 2x_4 - \\ p_4 & = & 2x_5 - x_1 - \\ p_5 & = & 6x_{19}x_3 - 4x_3 \\ p_6 & = & 2x_6 - x_2 \\ p_7 & = & 2x_7 - x_3 \\ p_8 & = & x_8x_7x_5x_2 - x_8x_6x_5x_3 \\ p_9 & = & -x_9x_5 + x_8x_6 \\ p_{10} & = & -x_{10}x_5 + x_8x_7 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

1.14 Triangulation, step 14

Choosing variable: Trying the variable with index 5.

Variable x_5 **selected:** The number of polynomials with this variable, with indexes from 1 to 5, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_4 . No reduction needed.

The triangular system has not been changed.

1.15 Triangulation, step 15

Choosing variable: Trying the variable with index 4.

Variable x_4 selected: The number of polynomials with this variable, with indexes from 1 to 4, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_3 . No reduction needed.

The triangular system has not been changed.

1.16 Triangulation, step 16

Choosing variable: Trying the variable with index 3.

Variable x_3 selected: The number of polynomials with this variable, with indexes from 1 to 3, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_3 . No reduction needed.

The triangular system has not been changed.

1.17 Triangulation, step 17

Choosing variable: Trying the variable with index 2.

Variable x_2 selected: The number of polynomials with this variable, with indexes from 1 to 2, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_2 . No reduction needed.

The triangular system has not been changed.

1.18 Triangulation, step 18

Choosing variable: Trying the variable with index 1.

Variable x_1 selected: The number of polynomials with this variable, with indexes from 1 to 1, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_1 . No reduction needed.

The triangular system has not been changed.

The triangular system is:

$$\begin{array}{rclrcl} p_1 & = & 2x_1 - \\ p_2 & = & 2x_2 - \\ p_3 & = & 6x_{19}x_3 - 4x_3 \\ p_4 & = & 2x_4 - \\ p_5 & = & 2x_5 - x_1 - \\ p_6 & = & 2x_6 - x_2 \\ p_7 & = & 2x_7 - x_3 \\ p_8 & = & x_8x_7x_5x_2 - x_8x_6x_5x_3 \\ p_9 & = & -x_9x_5 + x_8x_6 \\ p_{10} & = & -x_{10}x_5 + x_8x_7 \\ p_{11} & = & x_{11}x_2 + x_9 - x_2 \\ p_{12} & = & -x_{12}x_5 + x_8 \\ p_{13} & = & 2x_{13} - 2 \\ p_{14} & = & 2x_{14} - \\ p_{15} & = & -x_{19}x_5 + x_{19} + x_{15} - \\ p_{16} & = & -x_{19}x_6 + x_{19} + x_{16} - \\ p_{17} & = & -x_{19}x_7 + x_{17} \\ p_{18} & = & -x_{18}x_{14} + x_{18}x_2 + x_{16} - x_2 \\ \end{array}$$

2 Final Remainder

2.1 Final remainder for conjecture geothm_zadatak

Calculating final remainder of the conclusion:

$$g = -x_{18}x_{13} + x_{18}x_1 + x_{15} - x_1$$

with respect to the triangular system.

1. Pseudo remainder with p_{18} over variable x_{18} :

$$g = x_{16}x_{13} - x_{16}x_1 - x_{15}x_{14} + x_{15}x_2 + x_{14}x_1 - x_{13}x_2$$

2. Pseudo remainder with p_{17} over variable x_{17} :

$$g = x_{16}x_{13} - x_{16}x_1 - x_{15}x_{14} + x_{15}x_2 + x_{14}x_1 - x_{13}x_2$$

3. Pseudo remainder with p_{16} over variable x_{16} :

$$g = x_{19}x_{13}x_6 - x_{19}x_{13} - x_{19}x_6x_1 + x_{19}x_1 - x_{15}x_{14} + x_{15}x_2 + x_{14}x_1 - x_{13}x_2 + x_{13} - x_1$$

4. Pseudo remainder with p_{15} over variable x_{15} :

$$g = -x_{19}x_{14}x_5 + x_{19}x_{14} + x_{19}x_{13}x_6 - x_{19}x_{13} - x_{19}x_6x_1 + x_{19}x_5x_2 - x_{19}x_2 + x_{19}x_1 + x_{14}x_1 - x_{14} - x_{13}x_2 + x_{13} + x_2 - x_1$$

5. Pseudo remainder with p_{14} over variable x_{14} :

$$g = 2x_{19}x_{13}x_6 - 2x_{19}x_{13} - 2x_{19}x_6x_1 + 2x_{19}x_5x_2 - x_{19}x_5$$
$$-2x_{19}x_2 + 2x_{19}x_1 + x_{19} - 2x_{13}x_2 + 2x_{13} + 2x_2 - x_1 - x_1 - x_1 - x_2 - x_1 - x_2 - x_1 - x_1 - x_1 - x_2 - x_1 - x_2 - x_1 -$$

6. Pseudo remainder with p_{13} over variable x_{13} :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1$$
$$-2x_{19} - 2x_1 + 2$$

7. Pseudo remainder with p_{12} over variable x_{12} :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1$$
$$-2x_{19} - 2x_1 + 2$$

8. Pseudo remainder with p_{11} over variable x_{11} :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1 - 2x_{19} - 2x_1 + 2$$

9. Pseudo remainder with p_{10} over variable x_{10} :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1 - 2x_{19} - 2x_1 + 2$$

10. Pseudo remainder with p_9 over variable x_9 :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1 - 2x_{19} - 2x_1 + 2$$

11. Pseudo remainder with p_8 over variable x_8 :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1 - 2x_{19} - 2x_1 + 2$$

12. Pseudo remainder with p_7 over variable x_7 :

$$g = -4x_{19}x_6x_1 + 4x_{19}x_6 + 4x_{19}x_5x_2 - 2x_{19}x_5 - 4x_{19}x_2 + 4x_{19}x_1 - 2x_{19} - 2x_1 + 2$$

13. Pseudo remainder with p_6 over variable x_6 :

$$g = 8x_{19}x_5x_2 - 4x_{19}x_5 - 4x_{19}x_2x_1 - 4x_{19}x_2 + 8x_{19}x_1 - 4x_{19} - 4x_1 + 4$$

14. Pseudo remainder with p_5 over variable x_5 :

$$g = 12x_{19}x_1 - 12x_{19} - 8x_1 + 8$$

15. Pseudo remainder with p_4 over variable x_4 :

$$g = 12x_{19}x_1 - 12x_{19} - 8x_1 + 8$$

16. Pseudo remainder with p_3 over variable x_3 :

$$g = 12x_{19}x_1 - 12x_{19} - 8x_1 + 8$$

17. Pseudo remainder with p_2 over variable x_2 :

$$g = 12x_{19}x_1 - 12x_{19} - 8x_1 + 8$$

18. Pseudo remainder with p_1 over variable x_1 :

$$g = -12x_{19} + 8$$

3 Prover results

Status: Theorem has been disproved.

Space Complexity: The biggest polynomial obtained during prover execution contains 14 terms.

Time Complexity: Time spent by the prover is 0.102 seconds.

4 NDG Conditions

NDG Conditions in readable form

• Failed to translate NDG Conditions to readable form