Multiplexeur

- 1. On se propose de réaliser un circuit électronique, appelé multiplexeur 2 vers 1, comportant :
 - 2 entrées a et b.
 - 1 entrée auxiliaire ou signal de contrôle s.
 - 1 sortie v.

Avec la définition suivante :

Si le signal de contrôle s vaut 0 alors le multiplexeur transmet le signal d'entrée a vers la sortie y. (y vaut a)

Sinon le multiplexeur transmet le signal d'entrée b vers la sortie y.

Déterminer la table de vérité de la sortie y et en déduire une expression simplifiée de y en fonction des entrées a et b et du signal de contrôle s.

(Les variables a, b s et y sont des signaux électroniques donc des variables binaires valant 0 ou 1)

2. Généralisons à n entrées a_0 , a_1 ,... a_{n-1} et t signaux de contrôle s_0 , s_1 , ... s_{t-1} . $s_{t-1}s_{t-2}..s_0$ représente un nombre en base 2, soit r ce nombre en base 10, alors a_r se présente à la sortie y.

- *Quelle relation existe-t-il entre n et t?*
- Compléter cette ligne de la table de vérité de v pour n entrées et t signaux :

		<u> </u>						· · · / I · ·						
a_{I}	a_2	a_3	a_4	<i>a</i> ₅		a_n	S_{t-1}		S4	S3	S2	SI	S0	y
1	0	1	0	1	00	0	0	00	0	0	1	0	1	

- *Pour t=2 combien de lignes comporte la table de vérité de y ?*
- Convertir 57 en base 2
- Pour n=57 combien de signaux de contrôle sont nécessaires ?