

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Jorge Gonzalez Ayudante: Daniel Acuña León

1. Si $\mathbf{H} : \mathbf{A}\boldsymbol{\beta} = \mathbf{c}$ es cierto, muestre que F puede ser expresado de la forma

$$\frac{n-p}{q} \cdot \frac{\epsilon^t (P - P_H) \epsilon}{\epsilon^t (I_n - P) \epsilon}$$

2. Suponga que $E(Y) = \theta$, $A\theta = 0$ y $Var(Y) = \sigma^2 V$, donde A es una matriz de $q \times n$ de rango q y V es una matriz conocida de $n \times n$, definida positiva. Sea θ^* el estimador de mínimos cuadrados generales de θ ; esto significa que θ^* minimiza $(Y - \theta)^t V^{-1}(Y - \theta)$ sujeto a $A\theta = 0$. Muestre que

$$Y - \theta^* = VA^t\gamma^*$$

donde γ^* es el estimador de mínimos cuadrados generales de γ para el modelo $E[Y] = VA^t\gamma$, $Var[Y] = \sigma^2 V$.

- 3. Dado el modelo de rango completo, suponga que se desea contrastar $H:\beta_j=0,\ j\neq 0.$ Sea R_H^2 el coeficiente de determinación del modelo con $\beta_j=0.$
 - a) Muestre que el estadístico F para contrastar H está dado por

$$F = \frac{R^2 - R_H^2}{1 - R^2} \cdot \frac{n - p}{1}$$

- b) Deduzca que R^2 nunca puede aumentar cuando un coeficiente de β es igual a 0.
- 4. Sean

$$Y_1 = \theta_1 + \theta_2 + \epsilon_1$$
$$Y_2 = 2\theta_2 + \epsilon_2$$
$$Y_3 = -\theta_1 + \theta_2 + \epsilon_3$$

donde los ϵ_i (i=1,2,3) son $N(0,\sigma^2)$ independientes. Derive un estadístico F para contrastar la hipótesis $H:\theta_1=2\theta_2$.

- 5. Sean $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, (i = 1, ..., n), donde los ϵ_i son $N(0, \sigma^2)$ independientes.
 - a) Derive un estadístico F para contrastar la hipótesis $H: \beta_0 = 0$.
 - b) Si $\bar{x} = 0$, derive un estadístico F para constrastar la hipótesis $\beta_0 = \beta_1$. Muestre que es equivalente a un test-t.