ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ Informally, for continuity of f at c, we want f(x) to be close to f(c), whenever x is in A and is sufficiently close to c.

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- Informally, for continuity of f at c, we want f(x) to be close to f(c), whenever x is in A and is sufficiently close to c.
- **Example 22.2**: Let $f:[0,1] \to \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- Informally, for continuity of f at c, we want f(x) to be close to f(c), whenever x is in A and is sufficiently close to c.
- **Example 22.2**: Let $f:[0,1] \to \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

Fix $c \in [0,1]$. We want to show that f is continuous at c. For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- Informally, for continuity of f at c, we want f(x) to be close to f(c), whenever x is in A and is sufficiently close to c.
- **Example 22.2**: Let $f:[0,1] \to \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

- ▶ Fix $c \in [0,1]$. We want to show that f is continuous at c. For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.
- Now for $x \in (c \delta, c + \delta) \cap [0, 1]$, note that $|x c| < \delta = \frac{\epsilon}{2}$. Hence

$$|f(x)-f(c)| \le |x^2-c^2| = |x-c||x+c| < \frac{\epsilon}{2}.(|x|+|c|) \le \frac{\epsilon}{2}.2 = \epsilon.$$

▶ Definition 22.1: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is said to be continuous at c, if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

- Informally, for continuity of f at c, we want f(x) to be close to f(c), whenever x is in A and is sufficiently close to c.
- **Example 22.2**: Let $f:[0,1] \to \mathbb{R}$ be the function,

$$f(x) = x^2, \quad \forall x \in [0, 1].$$

- ▶ Fix $c \in [0,1]$. We want to show that f is continuous at c. For $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}$.
- Now for $x \in (c \delta, c + \delta) \cap [0, 1]$, note that $|x c| < \delta = \frac{\epsilon}{2}$. Hence

$$|f(x)-f(c)| \le |x^2-c^2| = |x-c||x+c| < \frac{\epsilon}{2}.(|x|+|c|) \le \frac{\epsilon}{2}.2 = \epsilon.$$

▶ Therefore *f* is continuous at *c*.

Discontinuous functions

Example 22.3: Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

Discontinuous functions

Example 22.3: Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

▶ Then f is not continuous at 1.

Discontinuous functions

Example 22.3: Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 5 & \text{if } x = 1. \end{cases}$$

- ▶ Then f is not continuous at 1.
- ▶ For any ϵ < 5, there is no δ > 0 such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap [0,1].$$

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

Proof: Suppose f is continuous at c.

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- Proof: Suppose f is continuous at c.
- ▶ Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in A, converging to c.

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- Proof: Suppose *f* is continuous at *c*.
- ▶ Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in A, converging to c.
- ▶ For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- Proof: Suppose f is continuous at c.
- ▶ Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in A, converging to c.
- ▶ For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ As $\{x_n\}$ is converging to c, there exists $K \in \mathbb{N}$ such that

$$|x_n-c|<\delta, \ \forall n\geq K.$$

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f: A \to \mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- **Proof**: Suppose f is continuous at c.
- ▶ Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in A, converging to c.
- ▶ For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

▶ As $\{x_n\}$ is converging to c, there exists $K \in \mathbb{N}$ such that

$$|x_n-c|<\delta, \ \forall n\geq K.$$

▶ Hence for $n \ge K$, $x_n \in (c - \delta, c + \delta) \cap A$. Hence

$$|f(x_n) - f(c)| < \epsilon, \quad \forall n \ge K.$$

▶ Theorem 22.4: Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then a function $f:A\to\mathbb{R}$ is continuous at c, if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in A, converging to c,

$$\lim_{n\to\infty}f(x_n)=f(c).$$

- Proof: Suppose f is continuous at c.
- ▶ Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in A, converging to c.
- For $\epsilon > 0$, choose $\delta > 0$ such that

$$|f(x)-f(c)|<\epsilon, \quad \forall x\in (c-\delta,c+\delta)\bigcap A.$$

As $\{x_n\}$ is converging to c, there exists $K \in \mathbb{N}$ such that

$$|x_n-c|<\delta, \ \forall n\geq K.$$

▶ Hence for $n \ge K$, $x_n \in (c - \delta, c + \delta) \cap A$. Hence

$$|f(x_n) - f(c)| < \epsilon, \quad \forall n \ge K.$$

▶ This shows that $\{f(x_n)\}_{n\in\mathbb{N}}$ converges to f(c).

Now to prove the only if part, suppose that *f* is not continuous at *c*.

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\delta,c+\delta)\bigcap A$$

is not true for any $\delta > 0$.

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \bigcap A$$

is not true for any $\delta > 0$.

▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\frac{1}{n},c+\frac{1}{n})\bigcap A$$

is not true.

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \bigcap A$$

is not true for any $\delta > 0$.

▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\frac{1}{n},c+\frac{1}{n})\bigcap A$$

is not true.

► This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n)-f(c)|\geq \epsilon_0.$$

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \bigcap A$$

is not true for any $\delta > 0$.

▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\frac{1}{n},c+\frac{1}{n})\bigcap A$$

is not true.

► This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n)-f(c)|\geq \epsilon_0.$$

As $c - \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n, $\lim_{n \to \infty} x_n = c$.

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \cap A$$

is not true for any $\delta > 0$.

▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\frac{1}{n},c+\frac{1}{n})\bigcap A$$

is not true.

This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n)-f(c)|\geq \epsilon_0.$$

- As $c \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n, $\lim_{n \to \infty} x_n = c$.
- ▶ However, as $|f(x_n) f(c)| \ge \epsilon_0$, for every n, $\{f(x_n)\}$ does not converge to f(c).

- Now to prove the only if part, suppose that *f* is not continuous at *c*.
- ▶ Then for some $\epsilon_0 > 0$

$$|f(x) - f(c)| < \epsilon_0, \quad \forall x \in (c - \delta, c + \delta) \bigcap A$$

is not true for any $\delta > 0$.

▶ In particular, for all $n \in \mathbb{N}$,

$$|f(x)-f(c)|<\epsilon_0, \quad \forall x\in (c-\frac{1}{n},c+\frac{1}{n})\bigcap A$$

is not true.

This means that for every $n \in \mathbb{N}$ we can choose $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap A$ such that

$$|f(x_n)-f(c)| \geq \epsilon_0.$$

- As $c \frac{1}{n} < x_n < c + \frac{1}{n}$, for every n, $\lim_{n \to \infty} x_n = c$.
- ▶ However, as $|f(x_n) f(c)| \ge \epsilon_0$, for every n, $\{f(x_n)\}$ does not converge to f(c).
- This completes the proof

▶ Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

► Is g continuous at 1?

Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ► Is g continuous at 1?
- Ans: Yes.

Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ▶ Is g continuous at 1?
- Ans: Yes.
- ► This is because there are no 'non-trivial' sequences in A converging to 1.

Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- Is g continuous at 1?
- Ans: Yes.
- ► This is because there are no 'non-trivial' sequences in A converging to 1.
- ▶ Definition 22.6: Let A be a subset of \mathbb{R} and suppose $c \in A$. Then c is said to be isolated in A, if there exists $\delta > 0$ such that

$$(c-\delta,c+\delta)\bigcap A=\{c\}.$$

Example 22.5: Suppose $A = \{1\} \bigcup [2,3]$ and $g: A \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} 0 & \text{if } x = 1; \\ 7 & \text{if } x \in [2, 3]. \end{cases}$$

- ► Is g continuous at 1?
- Ans: Yes.
- ► This is because there are no 'non-trivial' sequences in A converging to 1.
- ▶ Definition 22.6: Let A be a subset of \mathbb{R} and suppose $c \in A$. Then c is said to be isolated in A, if there exists $\delta > 0$ such that

$$(c-\delta,c+\delta)\bigcap A=\{c\}.$$

▶ Remark 22.6: Suppose $A \subset \mathbb{R}$ and $c \in A$ is isolated in A. Then every function $f : A \to \mathbb{R}$ is continuous at c.

▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.

- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- **Example 22.8:** The function $f(x) = x^2$, defined on [0,1] is continuous.

- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- **Example 22.8:** The function $f(x) = x^2$, defined on [0,1] is continuous.
- Exmaple 22.9: Any function on $\mathbb N$ is continuous as every point of $\mathbb N$ is isolated.

- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- **Example 22.8:** The function $f(x) = x^2$, defined on [0,1] is continuous.
- Exmaple 22.9: Any function on \mathbb{N} is continuous as every point of \mathbb{N} is isolated.
- ► Exercise 22.10: Give an example of a function on [0,1] which is discontinuous at every point of [0,1].

- ▶ Definition 22.7: Let $A \subseteq \mathbb{R}$. Then a function $f : A \to \mathbb{R}$ is said to be continuous if f is continuous at every $c \in A$.
- **Example 22.8:** The function $f(x) = x^2$, defined on [0,1] is continuous.
- Exmaple 22.9: Any function on $\mathbb N$ is continuous as every point of $\mathbb N$ is isolated.
- ► Exercise 22.10: Give an example of a function on [0,1] which is discontinuous at every point of [0,1].
- ► END OF LECTURE 22