The Promise, Pitfalls and Process of Al

Stephen J. Mildenhall May 20-21, 2019

Predictive Analytics Representation Deep Learning Data ScienceExpert System Data Visualization Statistics Exploratory Data Analysis Neural Network Big Data p > n Artificial Intelligend Data Represenatation Machine Learning

Facts and Features

Year Built

Heating Radiant

Lot 7,400 saft

INTERIOR FEATURES

Bedrooms

Beds: 3

Bathrooms

Baths: 1 full, 1 half

Heating and Cooling

Heating: Radiant

Heating: Gas

Dishwasher, Dryer, Garbage disposal, Microwave, Range / Oven, Refrigerator,

Appliances

Trash compactor, Washer Flooring

Floor size: 2,346 sqft Flooring: Hardwood

See More Facts and Features V

Home Value

Zestimate @ \$565,863

Nearby Similar Sales

Or call 773-974-9996 for more info

1010 Woodbine Ave, Oak Park,

Contact Agent

SOLD: \$565,000

3 bds, 2 ba, 1,932 sqft 846 Linden Ave, Oak Park, IL 60302

SOLD: \$560,000 Sold on 05/29/18

3 bds, 2.5 ba, 2,660 sqft

SOLD: \$570,000

Sold on 05/23/18

830 Belleforte Ave. Oak Park, IL 60302

Sold on 04/26/19 4 bds, 2.5 ba, 2.332 sqft

913 Linden Ave, Oak Park, IL 60302

SOLD: \$550,000 Sold on 11/13/18

3 bds, 2.5 ba, 1,696 sqft 1047 N Grove Ave. Oak Park, IL 60302

SOLD: \$540,000

Sold on 11/30/18 4 bds, 2.5 ba, 2,204 sqft

1015 Woodbine Ave, Oak Park, IL 60302

See sales similar to 1010 Woodhine Ave.

Facts and Features

Year Built 1928

Heating Radiant

Ra

Lot

7,400 sqft

INTERIOR FEATURES

Bedrooms

Beds: 3

Bathrooms

Baths: 1 full, 1 half

Heating and Cooling

Heating: Radiant

Heating: Gas

ooling: Central

Racem

Appliances

Appliances included:

Dishwasher, Dryer, Garbage disposal, Microwave, Range / Oven, Refrigerator, Trash compactor, Washer

Flooring Floor size: 2,346 sqft

Flooring: Hardwood

Other Interior Features

See More Facts and Features ✓

Home Value

Zestimate **9 \$565,863**

Nearby Similar Sales

Or call 773-974-9996 for more info

1010 Woodbine Ave, Oak Park,

Contact Agent

SOLD: \$565,000

3 bds, 2 ba, 1,932 sqft 846 Linden Ave, Oak Park, IL 60302

SOLD: \$560,000 Sold on 05/29/18

3 bds, 2.5 ba, 2,660 sqft

SOLD: \$570,000

Sold on 05/23/18

830 Belleforte Ave, Oak Park, IL 60302

Sold on 04/26/19 4 bds, 2.5 ba, 2,332 sqft 913 Linden Ave, Oak Park, IL 60302

SOLD: \$550.000

Sold on 11/13/18 3 bds, 2.5 ba, 1,696 sqft

1047 N Grove Ave, Oak Park, IL 60302

SOLD: \$540,000 Sold on 11/30/18

Sold on 11/30/18 4 bds, 2.5 ba, 2,204 sqft

1015 Woodbine Ave, Oak Park, IL 60302

See sales similar to 1010 Woodhine Ave

Comparables

- Descriptive statistics summarize with no interpretation
- Exploratory data analysis (EDA): only makes claims about current sample

Extending Comparables

- Predictive modeling or analytics: estimating value for a new unit
- Buyer's perspective
- Leverage limited data

Understanding Comparables

- Seller's perspective: should I invest to remodel the kitchen or paint or landscape or make life easier for my broker?
- Inferential statistics

Machine Learning (ML)

- Statistics is learning from data
 - Machine learning is an algorithm allowing computer to extract and improve model from raw data

Machine Learning (ML)

- Statistics is learning from data
- Machine learning is an algorithm allowing computer to extract and improve model from raw data
- Predictive and inferential statistics are machine learning
- Logistic regression, decision trees, GLMs...what you use everyday
- Generally an expert system or knowledge base is not ML
- Big question: form of input data?

Machine Learning (ML)

- Statistics is learning from data
- Machine learning is an algorithm allowing computer to extract and improve model from raw data
- Predictive and inferential statistics are machine learning
- Logistic regression, decision trees, GLMs...what you use everyday
- Generally an expert system or knowledge base is **not** ML
- Big question: form of input data?

Examples of ML Problems

- Classification (with missing inputs)
- Regression, prediction
- Transciption (image to text)
- Machine translation
- Anomaly detection (fraud, spam)
- Synthesis (speech, synthetic landscape)
- Impute missing values
- Denoise
- Density estimation

- 1) A < B < C
- 2) B < A < C
- 3) B < C < A
- 4) C < B < A
- 5) None of the above

FYI, values are x:3x:9x

Home Facts by Data Source ALL SOURCES COMBINED COUNTY RECORDS County website Beds: 6 - Baths: 7.5 4.5 Soft: 12.000 7.914 Lot: 39,622 sq ft / 0.91 acres 39,621 sq ft / 0.91 acres Type: Single Family Single Family Year Built: 1929 1929 Last Sold: Aug 2011 for \$2,100,000 - Parking: Attached Garage Garage - Attached Cooling: Central Central Heating: Gas - Fireplace: Yes Yes Days on Zillow: 47 -MLS #: 10322977 - Other facts Additional Features: Air Conditioning: Zoned, Space Pac, Appliances: All Stainless Steel Kitchen Appliances, 2nd Bedroom Level: 2nd Level, Built Before 1978 (Y/N): Yes, Electricity: Circuit Breakers, 400 Amp Service or Greater, Family Room Level: Not Applicable, Heat/Fuel: Hot Water/Steam, 2+ Sep Heating Systems, Zoned, Sewer: Sewer-Public, Listing Type: Exclusive Right To Sell, Master Bedroom Level: 2nd Level, Parking Type: Garage, Water: Lake Michigan, Kitchen Level: Main Level, Living Room Level: Main Level, Exposure: W (West), S (South), E (East), N (North), Sale Terms: Conventional, 3rd Bedroom Level; 2nd Level, Equipment; Sump Pump. Sprinkler-Lawn, Power Generator, Kitchen Type: Pantry-Closet, Eating Area-Table Space, Island, Basement Bathrooms (Y/N): Yes, Addtl Room 2 Level: 2nd Level. Bath Amenities: Double Sink. Steam Shower. Lot Description: Corner, Addtl Room 4 Level: Main Level, Addtl Room 1 Level: 3rd Level, Addtl Room 3 Level: 3rd Level, 4th Bedroom Level: 2nd Level Addtl Room 3 Name: Office Addtl Room 5 Level: 3rd Level Addtl Room 1 Name: 5th Bdrm, Addtl Room 2 Name: 6th Bdrm, Frequency: Not Applicable, Attic: Full, Interior Stair, Finished, Addtl Room 6 Level: Basement, Addtl Room 7 Level: 2nd Level, Addtl Room 9 Level: Main Level Addtl Room 8 Level: 2nd Level Status: New Addtl Room 4 Name: Library, Addtl Room 5 Name: Attic, Addtl Room 9 Name: Gallery, Square Feet Source: Estimated, Master Bedroom Bath (Y/N): Full. Age: 81-90 Years, Area Amenities: Street Lights, Street Paved, Sidewalks, Pool, Garage On-Site: Yes, Additional Rooms: Recreation Room, 5th Bedroom, Sitting Room, 6th Bedroom, Recent Rehab (Y/N): Yes, Additional Sales Information: List Agent Must Accompany, 2nd Floor Laundry, In-Law Arrangement, Heated Floors, Breezeway, Dog Run, Fireplace Location: Other, Is Parking Included in Price: Yes Type of House 2: 2 Stories Garage Ownership: Owned Laundry Level: Not Applicable, Additional Rooms: Terrace, Attic, Office, Gallery, Library, Addtl Room 6 Name: Recreation Rm, Addtl Room 7 Name: Sitting, Addtl Room 10 Level: Main Level, Addtl Room 8 Name: Sitting, Addtl Room 10 Name: Terrace, Aprox. Total Finished Sq Ft: 0. Total Sq Ft: 0, Lot Dimensions: 215 X 184, Tax Year: 2017, Parcel Identification Number: 15013170210000 - Appliances Included: Dishwasher, Dryer, Garbage disposal, Microwave, Range / Oven, Refrigerator, Washer - County Name: Cook County Cook Covered Parking Spaces: 4 4 Exterior Material: Brick, Stone Stone Floor Covering: Carpet, Hardwood - Heating Type: Forced air - Laundry: In Unit - Parcel #: 1501317021 1501317021 Pets: Contact manager -Roof Type: Slate Slate Room Count: - 0 Room Types: Dining room -Stories: 0.0 2.0 Structure Type: Tudor Split level Unit Count: 0 0 Zillow Home ID: 123561615 -

From https://www.zillow.com/homes/for_sale/Oak-Park-IL-60302/123561615_zpid/84453_rid/globalrelevanceex_sort/41.897302, 87.808603, 41.886408, -87.826799_rect/15_zm/?

Home Facts by Data Source ALL SOURCES COMBINED COUNTY RECORDS County website Beds: 5 4 Baths: 4.0 3.5 Soft: 3.360 3.360 Lot: 13,560 sq ft / 0.31 acres 13,562 sq ft / 0.31 acres Type: Single Family Single Family Year Built: 1899 1898 Last Sold: -- Parking: Detached Garage Garage - Detached Cooling: Central - Heating: Gas -Fireplace: Yes Yes Days on Zillow: 117 - MLS #: 10344749 - Other facts Additional Features: Addtl Room 5 Level: Not Applicable. Appliances: Oven Double, All Stainless Steel Kitchen Appliances, 2nd Bedroom Level: 2nd Level, Built Before 1978 (Y/N): Yes, Sewer: Sewer-Public, Listing Type: Exclusive Right To Sell, Master Bedroom Level: 2nd Level, Parking Type: Garage, Space/s, Tax Exemptions: Homeowner, Equipment: Ceiling Fan, CO Detectors, Water: Lake Michigan, Kitchen Type: Eating Area-Breakfast Bar, Eating Area-Table Space Island Kitchen Level: Main Level Living Room Level: Main Level, 3rd Bedroom Level: 2nd Level, Other Information: School Bus Service, Commuter Train, Historical District, Exposure: E (East). Electricity: 200+ Amp Service, Exterior Building Type: Frame, Addtl Room 2 Level: Main Level, Addtl Room 2 Name: Foyer, Addtl Room 3 Level: 2nd Level. Addtl Room 1 Level: 3rd Level. Addtl Room 4 Level: 2nd Level, 4th Bedroom Level: 2nd Level, Driveway: Side Drive. Concrete, Addtl Room 4 Name: Balcony, Addtl Room 1 Name: 5th Bdrm, Family Room Level: 3rd Level, Age: 100+ Years, Addtl Room 10 Level: Not Applicable, Addtl Room 6 Level: Not Applicable, Addtl Room 7 Level: Not Applicable, Addtl Room 8 Level: Not Applicable, Addtl Room 9 Level: Not Applicable, Frequency: Not Applicable, Attic: Full. Interior Stair Finished Foundation: Stone Status: New Souare Feet Source: Assessor, Master Bedroom Bath (Y/N): Full, Bath Amenities: Soaking Tub. Area Amenities: Curbs/Gutters. Street Lights. Street Paved, Sidewalks, Garage On-Site: Yes, Parking On-Site: Yes, Additional Rooms: Balcony, 5th Bedroom, Additional Sales Information: List Agent Must Accompany, Heated Floors, Balcony, Parking Ownership: Owned, Fireplace Location: Other, Is Parking Included in Price: Yes, Parking: Driveway, Type of House 2: 3 Stories, Lot Dimensions: 78X175. Additional Rooms: Fover, Garage Ownership: Owned, Laundry Level: Not Applicable Aprox. Total Finished So Et: 0. Total So Et: 0. Basement Sq Ft: 0, Tax Year: 2017, Parcel Identification Number: 16071030160000 - Appliances Included: Dishwasher, Dryer, Garbage disposal, Microwave, Range / Oven, Refrigerator, Trash compactor, Washer - Assisted Living Community: No - Attic: Yes - Barbecue Area: No - Basement Type: Partial - Basketball Court: No - Cable Ready: No - Ceiling Fan: Yes - Controlled Access: No - County Name: Cook County Cook Covered Parking Spaces: 7 2 Deck: No - Disability Access: No - Dock: No - Doorman: No - Double Pane/Storm Windows: No -Elementary School: Oliver W Holmes Elementary Schoo - Elevator: No - Exterior Material: Stone, Wood Wood Fenced Yard: Yes - Floor Covering: Hardwood, Slate - Garden: Yes - Gated Entry: No -Greenhouse: No - Fitness Center: No - Heating Type: Baseboard. Radiant - High School: Oak Park & River Forest High Sch - Hot Tub/Spa: No - Intercom: No - Jetted Tub: No - Laundry: In Unit -Lawn: No - Legal Description: - (WORWICKS) SUB OF LT1 EX N7FT & ALL OF LT2 IN BLK2 IN KETTLESTRINGS ADD TO HARLEM SUB OF PT OF NW SEC 07-39-13 Middle School: GWENDOLYN BROOKS MIDDLE SCHOOL - Mother-in-Law Apartment: No - Near Transportation: No - Over 55 Active Community: No - Parcel # 1607103016 1607103016 Patio: Yes - Pets: Contact manager - Pond. No - Pool: Yes - Porch: Yes - Roof Type: Asphalt Shake/Shingle Room Count: 9 0 Room Types: Dining room, Family room, Laundry room. Master bath, Walk-in closet - RV Parking: No - Sauna: No - Security System: No - Skylight: Yes - Sports Court: No - Sprinkler System: No - Storage: No - Stories: 3.0 2.0 Structure Type: Victorian Other Tennis Court: No - Unit Count: 0 0 Vaulted Ceiling: No - Waterfront: No -Wet Bar: No - Wired: No - Zillow Home ID: 3803093 -

Home Facts by Data Source ALL SOURCES COMBINED COUNTY RECORDS County website Beds: 3 3 Baths: 1.0 1.0 Soft: 2.080 1.376 Lot: 4,159 sq ft / 0.10 acres 4,158 sq ft / 0.10 acres Type: Single Family Single Family Year Built: 1914 1913 Last Sold: - - Parking Detached Garage Garage - Detached Cooling: Central Central Heating: Gas - Fireplace: - - Days on Zillow: 104 - MLS #: 10260750 - Other facts Additional Features: Addtl Room 4 Level: Not Applicable. Addtl Room 5 Level: Not Applicable, 4th Redroom Level: Not Applicable Built Before 1978 (Y/N): Yes, Sewer: Sewer-Public, Listing Type: Exclusive Right To Sell. Parking Type: Garage. Tax Exemptions: Homeowner, Senior, Senior Freeze, Addtl Room 1 Level: Main Level. 2nd Bedroom Level: Main Level, Water: Lake Michigan, Kitchen Level: Main Level, Living Room Level: Main Level, Master Bedroom Level: Main Level, Other Information: School Bus Service, Commuter Bus, Addtl Room 3 Level: Main Level, 3rd Bedroom Level: Main Level, Addtl Room 2 Name: Recreation Rm. Addtl Room 1 Name: Breakfast Rm. Family Room Level: Rasement Addtl Room 2 Level: Rasement Age 100+ Years, Addtl Room 10 Level: Not Applicable, Addtl Room 6 Level: Not Applicable, Addtl Room 7 Level: Not Applicable, Addtl Room 8 Level: Not Applicable, Addtl Room 9 Level: Not Applicable, Frequency: Not Applicable, Status: New, Square Feet Source: Plans, Master Bedroom Window Treatments (Y/N): Curtains/Drapes, 3rd Bedroom Window Treatments (Y/N): Shades, Exterior Building Type: Aluminum Siding, Addtl Room 2 Window Treatments (Y/N): Blinds, Family Room Window Treatments (Y/N): Blinds, Area Amenities: Curbs/Gutters, Street Lights Street Paved Sidewalks Park/Playground Addtl Room 3 Window Treatments (Y/N): Curtains/Drapes, Garage On-Site: Yes, 1st Floor Bedroom, 1st Floor Full Bath, Additional Rooms: Recreation Room, Breakfast Room, Sun/Florida Room Heated, Is Parking Included in Price: Yes, Addtl Room 3 Name: Sun/Florida Room Heated, Type of House 2: 1 Story, Lot Dimensions: 125 X 33, Garage Ownership: Owned, Laundry Level: Not Applicable, Aprox. Total Finished Sq Ft: 2080. Main So Ft: 1376. Total So Ft: 1376. Tax Year: 2016. Parcel Identification Number: 16053110300000 - Appliances Included: Dishwasher, Dryer, Range / Oven, Refrigerator, Washer - County Name: Cook County Cook Covered Parking Spaces: 2 2 Elementary School: Whittier Elementary School - Exterior Material: Wood Wood Floor Covering: Carpet, Hardwood, Linoleum / Vinyl - Heating Type: Forced air - High School: Oak Park & River Forest High Sch - Laundry: In Unit - Legal Description: - (HOOKERS) SUB OF NE SW SEC 05.39.13 Middle School: GWENDOLYN BROOKS MIDDLE SCHOOL - Parcel #: 1605311030 1605311030 Pets: Contact manager - Roof Type: Tile Shake/Shingle Room Count: - 0 Room Types: Dining room - Stories: 0.0 1.0 Structure Type: Bungalow Bungalow Unit Count: 0 0 Zillow Home ID: 3799641 -

From https://www.zillow.com/homes/tor_sale/Qak-Park-IL-60302/3799641_zpid/84453_rid/globalrelevanceex_sort/41.90225: 87.774485.41.89136.-87.792681_rect/15_zm/? ""

Humans Excel at Image Recognition...

- Humans: very fast image processing
 - The three images contain several **megabytes** of data, $n \ll p$
- Computers: very fast text processing
 - The raw text contains a few thousand bytes information
- Which system would you rather try to program?

...and many other problems computers find hard

Artificial Intelligence (AI)

- Artificial Intelligence: solving problems people find easy but computers find hard
 - Image recognition
 - Conversation, spoken words
 - Driving
 - Reading emotions
- Skills shared with other animals having neuron-based brains
- Al is a problem domain

The Premise of Al

People have gotten a long way with a single algorithm

- Studies suggests that much of the mammalian brain uses a single algorithm to solve most tasks
- Before this hypothesis, machine learning research was more fragmented, with different communities of researchers studying natural language processing, vision, motion planning and speech recognition
- Deep learning taps this single, powerful general problem solving paradigm
- Deep learning is inspired by brain function, not simulating brain function

Current Al Assumptions

- Learn model from experience
 - Use machine learning
 - Show don't tell the background needed for everyday life
- Understand the world as a hierarchy of concepts
 - Learn complicated concepts by building out of simpler ones
- Learn what is important
 - Learn the data representation and the model
- Graph of concepts generally has many layers
 - Hence deep learning

Miracle of Al: the same general purpose tool works for a wide range of problems

Current Al Tools...

- Layers built using simple "neuron" on/off nodes
- Neural networks build new covariates from non-linear hinge functions of existing covariates and output of other layers
- Optimize overall fit with least squares

...follow our understanding of brain function

Current Al Tools: The Naïve View

- Neural networks and deep learning are fancy least squares and gradient descent = walking downhill
 - Stochastic gradient descent = probably walking downhill
- Build complex functions from compositions of simple ones
- Built specialized problem solving widgets
 - recognize color
 - recognize car vs truck vs bike vs motorcycle vs person
 - can combine to recognize red car, blue truck, . . .
- Pool, share and feedback information between widgets
- Widgets learn model and appropriate data representation

Deep Learning

Deep learning is an approach to Al. Specifically, it is a **type of machine learning**, a technique that allows computer systems to improve with experience and data.

- ... machine learning is the only viable approach to building AI systems that can operate in complicated, real-world environments
- Deep learning...achieves great power and flexibility by learning to represent the world as a nested hierarchy of concepts

Al has a Long History...

Old Approach	New Approach
Knowledge base: hard code knowledge about world	Machine Learning: extract model from
Expert system : humans decide important features	Representation Learning: determine important factors of variation
Neural networks	Deeper neural networks trained with more data

...but hasn't always performed as expected

Why Is AI Working Now?

- Better algorithms
- More data
- Bigger models

'Godfathers of AI' honored with Turing Award, the Nobel Prize of computing

Yoshua Bengio, Geoffrey Hinton, and Yann LeCun laid the foundations for modern Al By James Vincent | Mar 27, 2019, 6:02am EDT

From left to right: Yann LeCun I Photo: Facebook: Geoffrey Hinton I Photo: Google: Yoshua Bengio I Photo: Botler Al

Why AI Is Working Now: Better Algorithms

Pre-2006 deep networks were believed to be very difficult to train

- Better algorithms devised by Hinton in 2006 allowed deeper models by making them faster to train
- Beginning of the deep learning era
- Tens of thousands of researchers working in AI/ML

A fast learning algorithm for deep belief nets

GE Hinton, S Osindero, YW Teh - Neural computation, 2006 - MIT Press

We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers.

Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed ...

Why AI Is Working Now: Better Algorithms

Pre-2006 deep networks were believed to be very difficult to train

- Better algorithms devised by Hinton in 2006 allowed deeper models by making them faster to train
- Beginning of the deep learning era
- ullet Tens of thousands of researchers working in AI/ML

A fast learning algorithm for deep belief nets

GE Hinton, S Osindero, YW Teh - Neural computation, 2006 - MIT Press

We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed ...

☆ 切り Cited by 10337 Related articles All 61 versions

Premium calculation by transforming the layer premium density

S Wang - ASTIN Bulletin: The Journal of the IAA, 1996 - cambridge.org

This paper examines a class of premium functionals which are (i) comonotonic additive and (ii) stochastic dominance preservative. The representation for this class is a transformation of the decumulative distribution function. It has close connections with the recent developments ...

★ 99 Cited by 706 Related articles All 8 versions

Why AI Is Working Now: More Data

- More data: IOT, Big Data, digitization of society
- More data = less skill required to train model
- Goodfellow data rules of thumb: a supervised deep learning algorithm will generally
 - achieve acceptable performance with around 5,000 labeled examples per category
 - will match or exceed human performance when trained with a dataset containing at least 10 million labeled examples

Why AI Is Working Now: Bigger Models

- Bigger models enabled by greater computational power and better algorithms
- Model size/depth: connections and number of neurons or nodes
- Biological neurons not densely connected
 - Models within order of magnitude of mammal brains connections
- Number of neurons: current models are very small
 - Doubling every 2.4 years
 - Will not match human brain until 2050

Can't expect much from a leech-brain sized network

When does Al Work Well?

Stunning results when

- Static, rules based environment
- Clean, direct observations
- Essentially limitless data
- Definitive right answer
- Classification problems
- Simple dynamic control

For example

- Image, speech recognition
- Pedestrian detection
- Traffic sign classification
- Reinforcement learning, robotics
- GANs

When does Al Work Well?

Stunning results when

- Static, rules based environment
- Clean, direct observations
- Essentially limitless data
- Definitive right answer
- Classification problems
- Simple dynamic control

For example

- Image, speech recognition
- Pedestrian detection
- Traffic sign classification
- Reinforcement learning, robotics
- GANs

Characteristics of insurance

- Behavioral feedbacks
- Dynamic: reacts as we learn
- Proxy data, not direct
- Granularity drives small classes
- Uncertain information: claim development, trend
- Latency: asbestos and environmental
- Most of the time not good enough

Real World Data

- No Free Lunch Theorem for ML
 Averaged over all possible data generating distributions, every classification algorithm has the same error rate on new data
- No machine learning algorithm is universally any better than any other
- The most sophisticated algorithm has the same average performance as predicting every point belongs to the same class
- Despite grim prognosis ML finds rules that are probably correct most of the time

ML builds tools that work well on real data

Al Assumptions About Real Data

- Real data often appears very high dimensional (p ≫ n) but really contains hidden structure
- Photographs do not look like random images
 - Continuous: get an image near an image
 - No jumps or cliffs

Real images occupy a negligible proportion of the volume of image space

Al Assumptions About Real Data

Helpful **general purpose priors** or data rules of thumb

Representation learning: A review and new perspectives

Y Bengio, A Courville, P Vincent - IEEE transactions on pattern ..., 2013 - ieeexplore.ieee.org
The success of machine learning algorithms generally depends on data representation, and
we hypothesize that this is because different representations can entangle and hide more or
less the different explanatory factors of variation behind the data. Although specific domain
knowledge can be used to help design representations, learning with generic priors can
also be used, and the quest for AI is motivating the design of more powerful representationlearning algorithms implementing such priors. This paper reviews recent work in the area of ...

☆ 99 Cited by 4662 Related articles All 40 versions

Al Assumptions About Real Data

Assumption	Concerns
Smoothness: functions are smooth	Weather, butterfly effect; singularities
Multiple explanatory factors	Sudden change in relationship
Common material drivers	Market crash
Shared factors across tasks	
Hierarchical organization of factors	
Simple factor dependencies, linear	Log-linear: earthquakes
Manifolds: real data is low d	
Natural clustering	
Sparsity, 80/20 explanatory rule	
Temporal and spatial coherence	
Causal factors	State dependent causality
Most of the time	there are no claims

 $[&]quot;color_scheme": "Packages/Color Scheme - Default/Twilight.tmTheme",$

Applications: Everything

Insurance-Related Applications

Good Fit—Already Live

- Marketing
- Customer service
- Underwriting homogeneous classes = predictive modeling
- Fraud detection
- Claims processing: identify complex claims
- Healthcare

Potentially Good Fit

- Claims reserving, see Brian...
- Loss reserving
- Data quality
- Anomaly detection
- Data completion
- Underwriting accounts = detecting risk-aware management
- Risk management in high frequency lines

More Challenging for AI

Challenge Data Rules of Thumb

- Discontinuities
- State change, sentiment change
- Singularities: tornados, black holes
- Weather model
- Cat model
- Identify next mass tort

The Limits of Predictability

- Frequency = Trials × Probability
- Materiality race between Trials and Probability
- More trials lowers observable probability threshold = Big Data helping
- r/CatastrophicFailure, r/IdiotsInCars, r/nononono, r/OSHA, r/Roadcam

Al Compared to Catastrophe and Weather Models

- Frequency = Trials ×
 Probability again...given enough data...
- Weather and catastrophe models are physics-based models
- Al works most effectively in conjunction with physics-based models to avoid re-learning physics: a physical model is better than a learned phenomenological model
- Al already being applied to high impact weather forecasting

"Raw data is both an oxymoron and a bad idea; to the contrary, data should be cooked with care."

Geoffrey Bowker

5-12- net westbucknessen to H LINE 2 HER MINE IN TISHUS MAIL INS, FRINTS, 41 · come steems starts bound The was money had some value \$50 hours stances and applif which we mes made project former was find of years. BOHAM PROME IS LOTHY Elland of and an evicte and I wind up for your old! Then Topons Ptyle! triang works designer-Mark hady at Short- Lagen Attal Street was a mentioned at the aid and and present sous the perform in squares ME AND DAGS ell-wheel Date is equal, people gathery which cocoping of Buzz of constraint place (may sully or choice topice to culosa space for the egos. whereast to size who would as the pope was a simplified as 14 of Shady text late i handons. they private you restron ?" Rob Main person has standed being 3:44- we clean shows reds my have hadden 2 Flows . = q stage + tops Gias was to Comme Lot as inted Collecture over tal

Message so Far

- Show don't tell
- Give data and results
- Derive data representation
- Derive model relationships

Al Bias and Sources of Modeling Failure

- Computers do not see images with semantic understanding
- Computers "see" things we cannot detect, lighting, type of camera and are not attuned to
- Computers don't filter "irrelevant" information, background
- Basic statistics: Training data must include random cross section of population
 - Extended to include non-human characteristic picked up by ML

Solutions

- Methodological rigor in the collection and management of the training data
- 2. Technical tools to analyze and diagnose the behavior of the model
- 3. Training, education and caution in the deployment of ML in products

Al Bias and Sources of Modeling Failure

- Problem domain
 - Technical problem inherent with algorithm?
 - Problem with implementation?
 - Institutional failure by large bureaucracy?
- Understanding decisions in big organization very complex
 - Like evaluating ML models "people are black boxes too"
- Al is just a machine—think washing machine not HAL9000—powerful but limited

Cheat Sheet

Term	Definition
Statistics	Learning from Data
Descriptive Statistics	Facts, no interpretation
EDA	Current sample only, not generalization
Predictive modeling	Estimate value for a new unit, (MAS I and II)
Inferential statistics	Understand importance of explanatory data over population
Artificial Intelligence	Problem domain; solving problems people find easy but computers find hard
Machine Learning	Algorithm allowing computer to extract and improve model from raw data
Knowledge base	Human curated explanation of complex real-world system
Expert System	Rules based explanation of complex real-world system
Neural network	Multi-layered, inter-connected hinge function regression model, loosely modeled on brain function
Deep learning	Approach to AI; type of ML; learn complicated concepts by
Deep learning	building out of many simpler ones
Representation Learning	Use ML to process figure data representation

References

'p > n'. 'Statistics']

- https://www.zillow.com
- Godfathers of Al, The Verge 2019, https://www.theverge.com/2019/3/27/18280665/ai-godfathers-turing-award-2018-yoshua-bengio-geoffrey-hinton-yann-lecun
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, (2016). https://deeplearningbook.org
 Bengio, Yoshua, Aaron Courville, and Pascal Vincent. "Representation learning: A review and new perspectives." IEEE
- transactions on pattern analysis and machine intelligence 35.8 (2013): 1798-1828. https://arxiv.org/pdf/1206.5538.pdf
- $\bullet \quad \text{Ben Evans, Notes on Al Bias (2019) https://www.ben-evans.com/benedictevans/2019/4/15/notes-on-ai-bias} \\$
- Anna Munster, Raw data, pure data, databodies, and data worlds (2017) https://prezi.com/ktz-4hw2qbly/raw-data-pure-data-databodies-and-data-worlds/
- McGovern, Amy, et al. "Using artificial intelligence to improve real-time decision-making for high-impact weather." Bulletin of the American Meteorological Society 98.10 (2017): 2073-2090. https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-16-0123.1

```
## May 2019 for CAS talk AI buzzword bingo image
                                                                                  word freqs = { w: (0.4 + 0.6 * np.random.rand()) for w in words}
from imageio import imread
                                                                                  word_freqs['Artificial Intelligence'] = 2.5
import matplotlib.pyplot as plt
                                                                                  word freqs['Deep Learning'] = 1.5
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
                                                                                  word_freqs['Neural Network'] = 1.5
import numpy as np
                                                                                  wordcloud = WordCloud(colormap=plt.cm.magma, **args)
args = {'width':3600, 'height':2400, 'max_words': 200,
        'max font size':240, 'relative scaling': 0.4.
                                                                                  for i in range(30):
        'background_color' : 'white', 'prefer_horizontal':0.75}
                                                                                         wordcloud.generate from frequencies(word freqs)
                                                                                         plt.figure(figsize=(11,8.5))
words =['Artificial Intelligence', 'Big Data',
                                                                                         plt.imshow(wordcloud)
 'Causal Analysis', 'Data Representation', 'Data Visualization',
                                                                                         nlt.axis("off")
 'Deep Learning', 'Data Representation', 'Data Science'
                                                                                         plt.savefig(f'word cloud fil.png', dpi=300)
 'Expert System', 'Exploratory Data Analysis', 'Inference',
                                                                                         nlt.show()
 'Machine Learning', 'Neural Network', 'Predictive Analytics',
```