Al Challenge

Al Basics

Autonomes Fahren

Bildererkennung (Klassifizierung)

Text, Bilder oder Musik/Sprache generieren

Wie mache ich einen Vortrag über Al

Das Erstellen eines Vortrags über künstliche Intelligenz (KI) erfordert sorgfältige Vorbereitung und Strukturierung, da das Thema sehr breit und komplex ist. Hier sind einige Schritte, die Ihnen bei der Erstellung eines solchen Vortrags helfen können:

1. Wählen Sie ein spezifisches Thema aus:

Entscheiden Sie, welchen Aspekt der KI Sie behandeln möchten. Dies kann von den Grundlagen der KI bis zu fortgeschrittenen Anwendungen wie maschinellem Lernen oder neuronalem Netzwerk reichen. Ein enger Fokus hilft Ihnen, den Inhalt Ihres Vortrags zu organisieren.

2. Verstehen Sie Ihr Publikum:

Berücksichtigen Sie das Wissen und die Interessen Ihres Publikums. Passt Ihr Vortrag besser zu einem technisch versierten Publikum oder sollten Sie grundlegende Konzepte für Nicht-Spezialisten erklären?

Weitere Anwendungen

Arten von Al?

- Regression
- Einen bestimmten Wert möglichst genau vorhersagen

- Classification
- Etwas einer Kategorie zuteilen (Katze / Keine Katze)

Arten von Al?

- Regression
- Einen bestimmten Wert möglichst genau vorhersagen

- Classification
- Etwas einer Kategorie zuteilen (Katze / Keine Katze)

Wo würdet ihr diese Sachen zuordnen?

Wichtige Konzepte

Underfitting

- Zu wenig gelernt
- Schlechte Resultate mit Trainingsdaten und mit neuen Daten

Overfitting

- Die Trainingsdaten "auswendig" gelernt
- Gute Resultate im Training
- Schlechte Resultate mit neuen Daten

Ziel: Good Fit

 Sowohl gute Resultate im Training wie auch mit neuen DAten

Underfitted

Overfitted

Beispiel Classification

Beispiel Classification

Beispiel Classification

Overfitting

Was machen neuronale Netzwerke?

Pro Neuron Formel: **y = w*x + b w** und **b** sind Parameter, welche gelernt werden

Wohnungsgrösse x w +b = Verkaufspreis

 $50m^2 \times 0.02 + 0.1 = 1.1 \text{ mil. CHF}$

Was machen neuronale Netzwerke?

Mehr Inputs / Mehr Neuronen

Wie gehen wir vor?

Machine Learning Workflow

Wie kann eine Al von Bildern lernen?

Convolutional Neural Networks

Daten Sammlung

Daten Aufbereitung

Labelling

Data Augmentation

Wie kann eine Al von Bildern lernen?

Fully Connected / Dense / Linear

Fully Connected / Dense / Linear

Anzahl Parameter = Input * Output + Output

Fully Connected / Dense / Linear

Probleme:

- Bild $320 \times 160 = 51'200$ Inputs
- Bild um 1 Pixel verschoben = teilw.
 komplett anderen Inputs

Anzahl Parameter = Input * Output + Output

Al Demo

