Smart Agriculture System Using AI and IoT

Objective:

To optimize crop productivity and resource usage through an Al-powered smart agriculture system that collects real-time farm data using IoT sensors and predicts crop yields.

1. Key IoT Sensors Needed:

Sensor Type	Purpose
	-
Soil Moisture Sensor	Monitor water levels in soil
Temperature Sensor	Track ambient conditions
Humidity Sensor	Monitor air moisture levels
Light (LUX) Sensor	Measure sunlight intensity
pH Sensor	Assess soil acidity/alkalinity
Rainfall Sensor	Track precipitation
Wind Speed Sensor	Detect wind patterns affecting crops
GPS Module	Geotag data for precision farming
Camera (Optional)	Image-based health and growth analysis

2. Al Model for Crop Yield Prediction:

Model Type: Random Forest Regression (or LSTM if using time-series data)

Inputs:

- Historical crop yield data
- Real-time sensor readings (moisture, temperature, light, pH, etc.)
- Weather forecast data

Output:

- Predicted crop yield (e.g., kg/hectare)
- Recommendations on irrigation, fertilization, and planting schedules

Justification:

Random Forest is robust, handles nonlinear data, and works well with environmental features. LSTM is ideal if you use time-based data sequences (daily/weekly logs).

Smart Agriculture System Using AI and IoT

3. Data Flow Diagram:

```
IoT Sensors | IoT Gateway | Cloud Storage |
| (Moisture, Temp, |-----> | (Edge device / |----> | (Historical + |
| pH, Light, etc.) | Raspberry Pi) | real-time data) |
                  +----+
+----+
                                       +----+
                                           AI Model (RF/LSTM)
                                 - Data Preprocessing
                                 - Feature Engineering
                                  - Yield Prediction
                                           v
                              Farmer Dashboard / Mobile App
                              - Predictions
                              - Alerts (irrigation, pest)
```

Conclusion:

This smart agriculture system leverages AI and IoT to predict crop yields and guide farming decisions with real-time insights, ultimately increasing productivity, conserving resources, and supporting sustainable agriculture.