Assignment 2: Pattern Recognition

IIT Jammu

February 7, 2025

Submission Guidelines

- The assignment is due on February 20, 2025, at 11:59 PM.
- Ensure that your code is well-commented and structured.
- Visualizations should be properly labeled and explained.
- Plagiarism will result in deduction of marks.

Question 1: Generating Gaussian Distributed Data

- 1. Consider three Gaussian distributions, namely $N(\mu_1, \Sigma_1)$, $N(\mu_2, \Sigma_2)$, and $N(\mu_3, \Sigma_3)$, where μ_1, μ_2, μ_3 are the mean vectors, and $\Sigma_1, \Sigma_2, \Sigma_3$ are the covariance matrices of the distributions.
- 2. Generate 50 random data points from $N(\mu_1, \Sigma_1)$, 40 data points from $N(\mu_2, \Sigma_2)$, and 60 data points from $N(\mu_3, \Sigma_3)$. Label them as D_1, D_2, D_3 , belonging to class 1, class 2, and class 3, respectively.
- 3. Shuffle the dataset and remove the class labels.
- 4. Visualize the dataset using scatter plots.

Question 2: Implementing Clustering Algorithms

- 1. Using the dataset generated in Question 1, apply the following clustering algorithms to group the data into three clusters:
 - (a) Gaussian Mixture Model (GMM) Implement and visualize the clusters.
 - (b) **K-Means Clustering** Apply K-means with k=3 and analyze the results.
 - (c) **Agglomerative Hierarchical Clustering** Perform hierarchical clustering and display the dendrogram.

Question 3: Discriminant Function and Multivariate Normal Distribution

1. Given the following dataset with feature vectors $X = (x_1, x_2)$ belonging to three classes $\omega_1, \omega_2, \omega_3$:

- 2. Compute the mean vector μ over all samples, and class means μ_1, μ_2, μ_3 .
- 3. Use numpy.cov() to compute the covariance matrices $\Sigma_1, \Sigma_2, \Sigma_3$ for each class.
- 4. Out of the three cases, determine which case applies for computing the discriminant function of the Multivariate Normal Density Function (NDF).
- 5. Let $P(\omega_1) = 0.4$, $P(\omega_2) = 0.35$, and $P(\omega_3) = 0.25$. Write a Python function to compute the discriminant functions defined in part (c).
- 6. Compute and plot the discriminant functions $g_1(X), g_2(X), g_3(X)$ along with the sample points in 2D space.