Sorting

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

Why sorting

Most computational problems involve data processing.

Processing data is typically much simpler if that data is *sorted*.

Example

Finding values: BINARYSEARCH versus LINEARSEARCH.

Why sorting

Most computational problems involve data processing.

Processing data is typically much simpler if that data is *sorted*.

Example

Finding values: BINARYSEARCH versus LINEARSEARCH.

The analysis of *sorting* will require universal tools and techniques. *Sort algorithms* utilize common design strategies for algorithms.

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L:	1	3	7	9	8	4	10	5
----	---	---	---	---	---	---	----	---

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L: 1 3 7 9 8 4 10 5

Target weight: w = 11.

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

Target weight: w = 11.

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

- 1: *result* := empty bag.
- 2: **for** i := 0 **to** N 2 **do**
- B: **for** j := i + 1 **to** N 1 **do**
- 4: **if** L[i] + L[j] = w **then**
- 5: add (L[i], L[j]) to result.
- 6: return result.

Algorithm SIMPLETWOSUM(L, w):

```
Input: List L[0...N) of N distinct weights, target weight w.
```

```
    result := empty bag.
    for i := 0 to N - 2 do
    for j := i + 1 to N - 1 do
    if L[i] + L[j] = w then
    add (L[i], L[j]) to result.
    return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} N-1 \\ j=i+1 \end{cases}

6: return \ result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-1} 1 = N - (i+1) \end{cases}
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-2} (N - (i+1)) \end{cases}
6: return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-2} (N - (i+1)) \end{cases}
6: return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

$$\sum_{i=0}^{N-2} (N - (i+1)) = \sum_{i=0}^{N-2} (N-1) - \sum_{i=0}^{N-2} i$$

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-2} (N - (i+1)) \end{cases}
6: return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

$$\sum_{i=0}^{N-2} (N - (i+1)) = \sum_{i=0}^{N-2} (N-1) - \sum_{i=0}^{N-2} i = (N-1)^2 - \frac{(N-2)(N-1)}{2}$$

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-2} (N - (i+1)) \end{cases}
6: return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

$$\sum_{i=0}^{N-2} (N - (i+1)) = \sum_{i=0}^{N-2} (N-1) - \sum_{i=0}^{N-2} i = (N-1)^2 - \frac{(N-2)(N-1)}{2} = \frac{N(N-1)}{2}$$

Algorithm SIMPLETWOSUM(L, w):

Input: List L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: for j := i + 1 to N - 1 do

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result. \begin{cases} \sum_{j=i+1}^{N-1} 1 = N - (i+1) \\ \sum_{j=i+1}^{N-2} (N - (i+1)) \end{cases}
6: return result.
```

Complexity of SIMPLETWOSUM

For a rough estimate, we can count the number of times Line 4 is executed.

$$\sum_{i=0}^{N-2} (N - (i+1)) = \sum_{i=0}^{N-2} (N-1) - \sum_{i=0}^{N-2} i = (N-1)^2 - \frac{(N-2)(N-1)}{2} = \frac{N(N-1)}{2} = \Theta(N^2).$$

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L (sorted):

:	1	3	4	5	7	8	9	10
---	---	---	---	---	---	---	---	----

Target weight: w = 11.

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L (sorted): 1 3 4 5 7 8 9 10

Target weight: w = 11.

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

- 1: *result* := empty bag.
- 2: **for** i := 0 **to** N 2 **do**
- 3: j := BinarySearch(L, i + 1, N, w L[i]).
- 4: **if** $j \neq$ 'not found' **then**
- 5: add (L[i], L[j]) to result.
- 6: return result.

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]).

4: if j \neq `not found` then

5: add (L[i], L[j]) to result.
```

6: return result.

Complexity of BetterTwoSum

For a rough estimate, we can count the cost of each BinarySearch call.

Algorithm BetterTwoSum(L, w):

Input: *Ordered* list L[0...N) of N distinct weights, target weight w.

Complexity of BetterTwoSum

For a rough estimate, we can count the cost of each BinarySearch call.

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \begin{cases} \log_2(N - (i + 1)) \\ \log_2(N - (i + 1)) \end{cases}

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.
```

Complexity of BetterTwoSum

For a rough estimate, we can count the cost of each BinarySearch call.

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \begin{cases} \log_2(N - (i + 1)) \\ \log_2(N - (i + 1)) \end{cases}

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.
```

Complexity of BetterTwoSum

For a rough *upper bound* estimate, we can count the cost of each BINARYSEARCH call.

$$\sum_{i=0}^{N-2} \log_2(N - (i+1)) \le \sum_{i=0}^{N-2} \log_2(N)$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \left. > log_2(N - (i + 1)) \right.

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.

6: return result.
```

Complexity of BetterTwoSum

For a rough *upper bound* estimate, we can count the cost of each BINARYSEARCH call.

$$\sum_{i=0}^{N-2} \log_2(N - (i+1)) \le \sum_{i=0}^{N-2} \log_2(N) = (N-1) \log_2(N).$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \begin{cases} \log_2(N - (i + 1)) \\ \log_2(N - (i + 1)) \end{cases}

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.
```

Complexity of BetterTwoSum

For a rough lower bound estimate, we can count the cost of each BinarySearch call.

$$\sum_{i=0}^{N-2} \log_2(N - (i+1)) \ge \sum_{i=0}^{\frac{N}{2}-1} \log_2\left(\frac{N}{2}\right)$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \begin{cases} \log_2(N - (i + 1)) \\ \log_2(N - (i + 1)) \end{cases}

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.

6: return result.
```

Complexity of BetterTwoSum

For a rough lower bound estimate, we can count the cost of each BinarySearch call.

$$\sum_{i=0}^{N-2} \log_2(N - (i+1)) \ge \sum_{i=0}^{\frac{N}{2}-1} \log_2\left(\frac{N}{2}\right) = \frac{N}{2} \log_2\left(\frac{N}{2}\right)$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \begin{cases} \log_2(N - (i + 1)) \\ \log_2(N - (i + 1)) \end{cases}

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.
```

Complexity of BetterTwoSum

For a rough lower bound estimate, we can count the cost of each BinarySearch call.

$$\sum_{i=0}^{N-2} \log_2(N - (i+1)) \ge \sum_{i=0}^{\frac{N}{2}-1} \log_2\left(\frac{N}{2}\right) = \frac{N}{2} \log_2\left(\frac{N}{2}\right) = \frac{N}{2} (\log_2(N) - 1).$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \left. > \log_2(N - (i + 1)) \right.

4: if j \neq 'not found' then

5: add (L[i], L[j]) to result.
```

Complexity of BetterTwoSum

For a rough estimate, we can count the cost of each BinarySearch call.

$$\frac{N}{2}(\log_2(N)-1) \le \sum_{i=0}^{N-2} \log_2(N-(i+1)) \le (N-1)\log_2(N).$$

Algorithm BetterTwoSum(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.

2: for i := 0 to N - 2 do

3: j := BINARYSEARCH(L, i + 1, N, w - L[i]). \left. > log_2(N - (i + 1)) \right.

4: if j \neq \text{ 'not found' then}

5: add(L[i], L[j]) to result.

6: return result.
```

Complexity of BetterTwoSum

For a rough estimate, we can count the cost of each BINARYSEARCH call.

$$\frac{N}{2}(\log_2(N)-1) \le \sum_{i=0}^{N-2} \log_2(N-(i+1)) \le (N-1)\log_2(N). \quad \sum_{i=0}^{N-2} \log_2(N-(i+1)) = \Theta(N\log_2(N)).$$

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L (sorted): 1 3 4 5 7 8 9 10

Target weight: w = 11.

Can we do better than $\Theta(N \log_2(N))$ if *L* is ordered?

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

Target weight: w = 11.

Can we do better than $\Theta(N \log_2(N))$ if L is ordered? Assume that (L[i], L[j]) and (L[k], L[m]) are in the output with i < k.

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L (sorted): 1 3 4 5 7 8 9 10

Target weight: w = 11.

Can we do better than $\Theta(N \log_2(N))$ if L is ordered?

Assume that (L[i], L[j]) and (L[k], L[m]) are in the output with i < k.

ightharpoonup L[i] + L[j] = w = L[k] + L[m].

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

L (sorted): 1 3 4 5 7 8 9 10

Target weight: w = 11.

Can we do better than $\Theta(N \log_2(N))$ if *L* is ordered?

Assume that (L[i], L[j]) and (L[k], L[m]) are in the output with i < k.

- ightharpoonup L[i] + L[j] = w = L[k] + L[m].
- ▶ L[i] < L[k] implies L[j] > L[m].

Problem

Given a list L[0...N) of distinct weights and a target weight w, find all distinct values $v_1, v_2 \in L$ with $w = v_1 + v_2$.

Target weight: w = 11.

Can we do better than $\Theta(N \log_2(N))$ if *L* is ordered?

Assume that (L[i], L[j]) and (L[k], L[m]) are in the output with i < k.

- ightharpoonup L[i] + L[j] = w = L[k] + L[m].
- ► L[i] < L[k] implies L[j] > L[m].

We can search from both ends in L: position i as a lower bound and j as an upper bound.

Can we do better than $\Theta(N \log_2(N))$ if *L* is ordered?

We can search from both ends in L: position i as a lower bound and j as an upper bound.

Algorithm BESTTWOSUM(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.
2: i, i := 0, N-1.
3: while i < i do
    if L[i] + L[j] = w then
       add (L[i], L[i]) to result.
5:
6: i, j := i + 1, j - 1.
   else if L[i] + L[i] < w then
7:
       i := i + 1.
8:
     else
9:
    i := i - 1.
10:
```

11: return result.

Can we do better than $\Theta(N \log_2(N))$ if *L* is ordered?

We can search from both ends in L: position i as a lower bound and j as an upper bound.

Algorithm BESTTWOSUM(L, w):

Input: Ordered list L[0...N) of N distinct weights, target weight w.

```
1: result := empty bag.
2: i, i := 0, N-1.
3: while i < i do
    if L[i] + L[j] = w then
   add (L[i], L[j]) to result.
5:
   i, j := i + 1, j - 1.
   else if L[i] + L[j] < w then
7:
     i := i + 1.
8:
     else
9:
     i := i - 1.
10:
11: return result.
```

Intermezzo: Correctness of BestTwoSum

Warning

Proving the correctness of BestTwoSum in all details is *tricky*!

Intermezzo: Correctness of BestTwoSum

High-level proof steps

```
1: result := empty bag.
2: i, j := 0, N - 1.
3: while i < j do
   if L[i] + L[j] = w then
   add (L[i], L[j]) to result.
   i, j := i + 1, j - 1.
   else if L[i] + L[j] < w then
   i := i + 1
   else
9:
   j := j - 1.
10:
11: return result.
```

High-level proof steps

1. Specify what the *result* should be.

```
1: result := empty bag.
2: i, i := 0, N - 1.
3: while i < j do
    if L[i] + L[j] = w then
   add (L[i], L[j]) to result.
   i, j := i + 1, j - 1.
   else if L[i] + L[j] < w then
       i := i + 1
8:
   else
9:
   i := i - 1.
10:
11: return result.
```

High-level proof steps

1. Specify what the *result* should be.

```
Let \mathsf{TS}(\mathsf{start}, \mathsf{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = \mathsf{w}) \land (\mathsf{start} \le i < j \le \mathsf{end})\}.
 1: result := empty bag.
 2: i, i := 0, N - 1.
 3: while i < i do
      if L[i] + L[i] = w then
          add (L[i], L[j]) to result.
     i, j := i + 1, j - 1.
     else if L[i] + L[i] < w then
          i := i + 1
 8:
      else
 9:
          i := i - 1.
 10:
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

1. Specify what the *result* should be. The *invariant* must establish this result! Let $TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.$ 1: result := empty bag. 2: i, i := 0, N - 1. 3: while i < i doif L[i] + L[i] = w then add (L[i], L[j]) to result. i, j := i + 1, j - 1.else if L[i] + L[j] < w then 7: i := i + 18: else 9: j := j - 1. 10: 11: **return** result. /* result = TS(0, N-1). */

High-level proof steps

2. Specify the *invariant*.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
 1: result := empty bag.
 2: i, i := 0, N - 1.
 3: while i < i do
     if L[i] + L[i] = w then
        add (L[i], L[j]) to result.
    i, j := i + 1, j - 1.
    else if L[i] + L[i] < w then
         i := i + 1
 8:
     else
 9:
        i := i - 1.
10:
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

2. Specify the *invariant*. Look at what you need *after* the loop!

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
 1: result := empty bag.
 2: i, i := 0, N - 1.
 3: while i < j do /* inv: result = TS(0, N - 1) \setminus TS(i, j) */
       if L[i] + L[i] = w then
         add (L[i], L[j]) to result.
 5:
         i, j := i + 1, j - 1.
     else if L[i] + L[i] < w then
 7:
         i := i + 1
 8:
      else
 9:
         i := i - 1.
10:
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

3. Prove the *invariant* right *before the loop*.

Let
$$\mathsf{TS}(\mathit{start}, \mathit{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (\mathit{start} \le i < j \le \mathit{end})\}.$$

- 1: *result* := empty bag.
- 2: i, j := 0, N 1.

Base case: prove that the invariant holds before the loop.

3: **while** i < j **do** /* inv: $result = TS(0, N - 1) \setminus TS(i, j) */$

High-level proof steps

3. Prove the *invariant* right *before the loop*. Use facts established *before* the loop.

Let
$$\mathsf{TS}(\mathsf{start}, \mathsf{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (\mathsf{start} \le i < j \le \mathsf{end})\}.$$

- 1: result := empty bag.
- 2: i, j := 0, N 1.

Known: we have i = 0, j = N - 1, and $result = \emptyset$ (due to assignments).

Base case: prove that the invariant holds before the loop.

3: **while** i < j **do** /* inv: $result = TS(0, N - 1) \setminus TS(i, j) */$

High-level proof steps

3. Prove the *invariant* right *before the loop*. Use facts established *before* the loop.

Let
$$\mathsf{TS}(\mathit{start}, \mathit{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (\mathit{start} \le i < j \le \mathit{end})\}.$$

- 1: result := empty bag.
- 2: i, j := 0, N 1.

Known: we have i = 0, j = N - 1, and $result = \emptyset$ (due to assignments).

Hence, $TS(0, N - 1) \setminus TS(i, j) = \emptyset = result$.

Base case: prove that the invariant holds before the loop.

3: **while** i < j **do** /* inv: $result = TS(0, N - 1) \setminus TS(i, j) */$

High-level proof steps

3. Prove the *invariant* right *before the loop*. Use facts established *before* the loop.

Let
$$\mathsf{TS}(\mathit{start}, \mathit{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (\mathit{start} \le i < j \le \mathit{end})\}.$$

- 1: result := empty bag.
- 2: i, j := 0, N 1.

Known: we have i = 0, j = N - 1, and $result = \emptyset$ (due to assignments).

Hence, $TS(0, N - 1) \setminus TS(i, j) = \emptyset = result$.

Base case: the invariant holds before the loop.

3: **while** i < j **do** /* inv: $result = TS(0, N - 1) \setminus TS(i, j) */$

High-level proof steps

4. Prove that the *invariant* is maintaned by the loop.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
    Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
 4: if L[i] + L[i] = w then
 5: add (L[i], L[i]) to result.
 6: i, j := i + 1, j - 1.
 7: else if L[i] + L[j] < w then
 8: i := i + 1
 9: else
10: i := i - 1.
    Induction step: prove that the invariant holds after each step of the loop.
```

High-level proof steps

5. An if-statement introduces a case distinction: prove each branch separately.

Let
$$TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}$$
.
Given: invariant and $i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j)$ and $i < j$.
4: **if** $L[i] + L[j] = w$ **then**
Given: $result = TS(0, N-1) \setminus TS(i, j)$, $i < j$, and $L[i] + L[j] = w$.

- 5: add (L[i], L[j]) to result.
- 6: i, j := i + 1, j 1.

High-level proof steps

6:

5. An if-statement introduces a case distinction: prove each branch separately.

High-level proof steps

6. Carry over all facts obtained via the assignments.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
    Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
 4: if L[i] + L[i] = w then
       Given: result = TS(0, N-1) \setminus TS(i, i), i < i, and L[i] + L[i] = w.
       By L[i] + L[j] = w and the Definition of TS, we have: (L[i], L[j]) \in TS(i, j).
      add (L[i], L[j]) to result.
 5:
```

6:

i, j := i + 1, j - 1.Known: $result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1,$ $result_{old} = TS(0, N-1) \setminus TS(i_{old}, j_{old}), \text{ and } (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).$

High-level proof steps

7. Complete the proof for this case using all provided facts.

Let
$$TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}$$
.
Given: invariant and $i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j)$ and $i < j$.
4: **if** $L[i] + L[j] = w$ **then**
Given: $result = TS(0, N-1) \setminus TS(i, j)$, $i < j$, and $L[i] + L[j] = w$.
By $L[i] + L[j] = w$ and the Definition of TS, we have: $(L[i], L[j]) \in TS(i, j)$.
5: add $(L[i], L[j])$ to $result$.

5: add (L[i], L[j]) to result. 6: i, j := i + 1, j - 1.

Known:
$$result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1, result_{old} = TS(0, N - 1) \setminus TS(i_{old}, j_{old}), and (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).$$
 Need to prove: $result_{new} = TS(0, N - 1) \setminus TS(i_{new}, j_{new}).$

High-level proof steps

7. Complete the proof for this case using all provided facts.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
     Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
 4: if L[i] + L[i] = w then
        Given: result = TS(0, N-1) \setminus TS(i, i), i < i, and L[i] + L[i] = w.
        By L[i] + L[j] = w and the Definition of TS, we have: (L[i], L[j]) \in TS(i, j).
       add (L[i], L[j]) to result.
 5:
       i, j := i + 1, j - 1.
 6:
        Known: result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1,
           result_{old} = TS(0, N-1) \setminus TS(i_{old}, j_{old}), \text{ and } (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).
        Need to prove: result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).
              result_{now} = (TS(0, N-1) \setminus TS(i_{old}, i_{old})) \cup \{(L[i_{old}], L[i_{old}])\}.
        Induction step: prove that the invariant holds after each step of the loop.
```

High-level proof steps

7. Complete the proof for this case using all provided facts.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
     Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
 4: if L[i] + L[i] = w then
        Given: result = TS(0, N-1) \setminus TS(i, i), i < i, and L[i] + L[i] = w.
        By L[i] + L[j] = w and the Definition of TS, we have: (L[i], L[j]) \in TS(i, j).
       add (L[i], L[j]) to result.
 5:
       i, j := i + 1, j - 1.
 6:
        Known: result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1,
           result_{old} = TS(0, N-1) \setminus TS(i_{old}, j_{old}), \text{ and } (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).
        Need to prove: result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).
              result_{now} = TS(0, N-1) \setminus (TS(i_{old}, i_{old}) \setminus \{(L[i_{old}], L[i_{old}])\}).
        Induction step: prove that the invariant holds after each step of the loop.
```

High-level proof steps

7. Complete the proof for this case using all provided facts.

Let
$$TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}$$
.
Given: invariant and $i < j \rightarrow result = TS(0, N - 1) \setminus TS(i, j)$ and $i < j$.
4: **if** $L[i] + L[j] = w$ **then**
Given: $result = TS(0, N - 1) \setminus TS(i, j)$, $i < j$, and $L[i] + L[j] = w$.
By $L[i] + L[j] = w$ and the Definition of TS, we have: $(L[i], L[j]) \in TS(i, j)$.

5: add (L[i], L[j]) to *result*.

6:

$$i,j := i+1, j-1.$$

Known: $result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1, result_{old} = TS(0, N-1) \setminus TS(i_{old}, j_{old}), and (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).$
Need to prove: $result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).$

 $result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).$

High-level proof steps

7. Complete the proof for this case using all provided facts.

Let
$$TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}$$
.
Given: invariant and $i < j \rightarrow result = TS(0, N-1) \setminus TS(i,j)$ and $i < j$.
4: **if** $L[i] + L[j] = w$ **then**
Given: $result = TS(0, N-1) \setminus TS(i,j)$, $i < j$, and $L[i] + L[j] = w$.
By $L[i] + L[j] = w$ and the Definition of TS, we have: $(L[i], L[j]) \in TS(i,j)$.

5: add (L[i], L[j]) to result.

6:

$$i,j := i+1, j-1.$$
 Known: $result_{new} = result_{old} \cup \{(L[i_{old}], L[j_{old}])\}, i_{new} = i_{old} + 1, j_{new} = j_{old} - 1, result_{old} = TS(0, N-1) \setminus TS(i_{old}, j_{old}), and (L[i_{old}], L[j_{old}]) \in TS(i_{old}, j_{old}).$ Need to prove: $result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).$

 $result_{new} = TS(0, N-1) \setminus TS(i_{new}, j_{new}).$

High-level proof steps

8. Next, the *else if* case of the case distinction.

Let
$$\mathsf{TS}(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}$$
.
Given: invariant and $i < j \to result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i,j)$ and $i < j$.
Given: $result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i,j)$, $i < j$, and $L[i] + L[j] = w$.
7: **else if** $L[i] + L[j] < w$ **then**
Given: $result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i,j)$, $i < j$, and $L[i] + L[j] < w$.

8: i := i + 1.

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.

Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.

Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[j] = w.

7: else if L[i] + L[j] < w then

Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[j] < w.

By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i, j), \forall v.

8: i := i + 1.
```

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \leq i < j \leq end)\}.

Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i,j) and i < j.

Given: result = TS(0, N-1) \setminus TS(i,j), i < j, and L[i] + L[j] = w.

7: else if L[i] + L[j] < w then

Given: result = TS(0, N-1) \setminus TS(i,j), i < j, and L[i] + L[j] < w.

By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i,j), \forall v.

8: i := i + 1.

Known: i_{new} = i_{old} + 1,

result = TS(0, N-1) \setminus TS(i_{old}, j), and (L[i_{old}], v) \notin TS(i_{old}, j).
```

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
     Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
     Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[i] = w.
 7: else if L[i] + L[i] < w then
        Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[j] < w.
        By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i, j), \forall v.
      i := i + 1
 8:
        Known: i_{\text{new}} = i_{\text{old}} + 1,
           result = TS(0, N-1) \setminus TS(i_{old}, j), and (L[i_{old}], v) \notin TS(i_{old}, j).
        Need to prove: result = TS(0, N-1) \setminus TS(i_{new}, i).
```

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
    Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
     Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[i] = w.
 7: else if L[i] + L[i] < w then
        Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[j] < w.
        By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i, j), \forall v.
      i := i + 1
 8:
        Known: i_{\text{new}} = i_{\text{old}} + 1,
          result = TS(0, N-1) \setminus TS(i_{old}, i), and (L[i_{old}], v) \notin TS(i_{old}, i).
        Need to prove: result = TS(0, N-1) \setminus TS(i_{new}, i).
             result = TS(0, N-1) \setminus TS(i_{old}, j).
        Induction step: prove that the invariant holds after each step of the loop.
```

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
    Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
     Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[i] = w.
 7: else if L[i] + L[i] < w then
        Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[j] < w.
        By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i, j), \forall v.
      i := i + 1
 8:
        Known: i_{\text{new}} = i_{\text{old}} + 1,
          result = TS(0, N-1) \setminus TS(i_{old}, i), and (L[i_{old}], v) \notin TS(i_{old}, i).
        Need to prove: result = TS(0, N-1) \setminus TS(i_{new}, i).
              result = TS(0, N-1) \setminus TS(i_{new}, j).
        Induction step: prove that the invariant holds after each step of the loop.
```

High-level proof steps

8. Next, the *else if* case of the case distinction.

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
    Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.
     Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[i] = w.
 7: else if L[i] + L[i] < w then
        Given: result = TS(0, N-1) \setminus TS(i, j), i < j, and L[i] + L[i] < w.
        By L[i] + L[j] < w and the Definition of TS, we have: (L[i], v) \notin TS(i, j), \forall v.
       i := i + 1.
 8:
        Known: i_{\text{new}} = i_{\text{old}} + 1,
          result = TS(0, N-1) \setminus TS(i_{old}, i), and (L[i_{old}], v) \notin TS(i_{old}, i).
        Need to prove: result = TS(0, N-1) \setminus TS(i_{new}, i).
              result = TS(0, N-1) \setminus TS(i_{new}, j).
        Induction step: the invariant holds after each step of the loop.
```

High-level proof steps

9. Finally, the *else* case of the case distinction (analogous).

```
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.

Given: invariant and i < j \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i < j.

4: if L[i] + L[j] = w then

5: add (L[i], L[j]) to result.

6: i, j := i + 1, j - 1.

7: else if L[i] + L[j] < w then

8: i := i + 1.

9: else

10: j := j - 1.
```

Induction step: prove that the invariant holds after each step of the loop.

4/:

```
High-level proof steps
 10. The invariant holds!
Let TS(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
 1: result := empty bag.
 2: i, i := 0, N - 1.
 3: while i < j do /* inv: result = TS(0, N-1) \setminus TS(i, j) */
       if L[i] + L[i] = w then
         add (L[i], L[j]) to result.
 5:
         i, j := i + 1, j - 1.
     else if L[i] + L[i] < w then
 7:
          i := i + 1
 8:
       else
 9:
         i := i - 1.
10:
    Known: invariant and \neg (i < j) \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i \ge j.
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

10. The invariant holds! Do not forget termination of the while-loop.

```
Let \mathsf{TS}(\mathsf{start}, \mathsf{end}) = \{(L[i], L[j]) \mid (L[i] + L[j] = \mathsf{w}) \land (\mathsf{start} \le i < j \le \mathsf{end})\}.
 1: result := empty bag.
 2: i, i := 0, N-1.
 3: while i < j do /* inv: result = TS(0, N-1) \setminus TS(i, j); bf: j - i */
       if L[i] + L[i] = w then
          add (L[i], L[j]) to result.
 5:
          i, j := i + 1, j - 1.
     else if L[i] + L[j] < w then
 7:
           i := i + 1
 8:
       else
 9:
          j := j - 1.
 10:
     Known: invariant and \neg (i < j) \rightarrow result = TS(0, N-1) \setminus TS(i, j) and i \ge j.
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

11. Prove the post-condition.

```
Let \mathsf{TS}(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.
Known: invariant and \neg (i < j) \rightarrow result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i, j) and i \ge j.
```

```
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

11. Prove the post-condition.

```
Let \mathsf{TS}(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.

Known: invariant and \neg (i < j) \rightarrow result = \mathsf{TS}(0, N - 1) \setminus \mathsf{TS}(i, j) and i \ge j.

By i \ge j and the Definition of \mathsf{TS}, we have \mathsf{TS}(i, j) = \emptyset.
```

```
11: return result. /* result = TS(0, N-1). */
```

High-level proof steps

11. Prove the post-condition.

```
Let \mathsf{TS}(start, end) = \{(L[i], L[j]) \mid (L[i] + L[j] = w) \land (start \le i < j \le end)\}.

Known: invariant and \neg (i < j) \rightarrow result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i,j) and i \ge j.

By i \ge j and the Definition of \mathsf{TS}, we have \mathsf{TS}(i,j) = \emptyset.

Hence, result = \mathsf{TS}(0, N-1) \setminus \mathsf{TS}(i,j) = \mathsf{TS}(0, N-1) \setminus \emptyset = \mathsf{TS}(0, N-1).

11: return result. /* result = \mathsf{TS}(0, N-1). */
```

Warning

You cannot learn correctness proofs from slides: practice on simple algorithms yourself!

5 3 9 1 7

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

sorted (and smallest values)

1 3 9 5 7

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N).
- 3: Exchange L[pos] and L[p].

Runtime complexity of SelectionSort

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 0 **to** N 2 **do**
- 2: Find the position p of the *minimum value* in L[pos...N). \leftarrow ?
- 3: Exchange L[pos] and L[p].

Runtime complexity of SelectionSort

A good estimate: number of comparisons and changes to list values.

```
Algorithm SELECTIONSORT(L):
Input: List L[0...N) of N values.

1: for pos := 0 to N − 2 do

Find the position p of the minimum value in L[pos...N).

2: p := pos.

3: for i := pos + 1 to N − 1 do

4: if L[i] < L[p] then

5: p := i.

6: Exchange L[pos] and L[p].
```

Runtime complexity of SelectionSort

Algorithm SelectionSort(*L*):

```
Input: List L[0...N) of N values.

1: for pos := 0 to N - 2 do

2: p := pos.

3: for i := pos + 1 to N - 1 do

4: if L[i] < L[p] then

5: p := i.

6: Exchange L[pos] and L[p].
```

Runtime complexity of SelectionSort

Algorithm SelectionSort(*L*):

```
Input: List L[0...N) of N values.

1: for pos := 0 to N - 2 do

2: p := pos.

3: for i := pos + 1 to N - 1 do

4: if L[i] < L[p] then

5: p := i.

Comparisons: \sum_{pos=0}^{N-2} (N - 1).
```

Runtime complexity of SelectionSort

Exchange L[pos] and L[p].

6:

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

```
1: for pos := 0 to N - 2 do
    p := pos.
  for i := pos + 1 to N - 1 do
    if L[i] < L[p] then
         p := i.
5:
    Exchange L[pos] and L[p].
6:
```

Comparisons: $\sum_{pos=0}^{N-2} (N-1-pos).$ Changes: 2(N-1).

Runtime complexity of SelectionSort

Comparisons:
$$\sum_{pos=0}^{N-2} (N-1-pos)$$

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

```
1: for pos := 0 to N - 2 do

2: p := pos.

3: for i := pos + 1 to N - 1 do

4: if L[i] < L[p] then

5: p := i.

6: Exchange L[pos] and L[p].
```

Comparisons: $\sum_{pos=0}^{N-2} (N-1-pos).$ Changes: 2(N-1).

Runtime complexity of SelectionSort

A good estimate: number of comparisons and changes to list values.

Comparisons:
$$\sum_{pos=0}^{N-2} (N-1-pos) = \sum_{j=1}^{N-1} j$$

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

```
    for pos := 0 to N - 2 do
    p := pos.
    for i := pos + 1 to N - 1 do
    if L[i] < L[p] then</li>
    p := i.
    Exchange L[pos] and L[p].
```

Comparisons: $\sum_{pos=0}^{N-2} (N-1-pos).$ Changes: 2(N-1).

Runtime complexity of SelectionSort

A good estimate: number of comparisons and changes to list values.

Comparisons:
$$\sum_{pos=0}^{N-2} (N - 1 - pos) = \sum_{j=1}^{N-1} j = \frac{N(N-1)}{2}$$

Algorithm SelectionSort(*L*):

Input: List L[0...N) of N values.

```
    for pos := 0 to N - 2 do
    p := pos.
    for i := pos + 1 to N - 1 do
    if L[i] < L[p] then</li>
    p := i.
    Exchange L[pos] and L[p].
```

Comparisons:
$$\sum_{pos=0}^{N-2} (N-1-pos) = \Theta(N^2).$$
Changes: $2(N-1) = \Theta(N).$

Runtime complexity of SelectionSort

A good estimate: number of comparisons and changes to list values.

Comparisons:
$$\sum_{pos=0}^{N-2} (N-1-pos) = \sum_{j=1}^{N-1} j = \frac{N(N-1)}{2} = \Theta(N^2).$$

Algorithm SelectionSort(*L*):

```
Input: List L[0...N) of N values.

1: for pos := 0 to N - 2 do

2: p := pos.

3: for i := pos + 1 to N - 1 do

4: if L[i] < L[p] then

5: p := i.

6: Exchange L[pos] and L[p].
```

Correctness of SelectionSort: Some tips

- ► Rework the for-loops into while loops.
- ► The inner loop only changes *p*: prove whatever that loop does separately.
- Include as much information into the invariant of the outer loop. What exactly do we know about the values in L[0...pos).
- ► A complete proof guarantees that list *L* keeps all original values!

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \qquad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right.
- 4: L[p] := v.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

- 1: **for** pos := 1 **to** N 1 **do**
- $2: \quad v := L[pos].$
- 3: Move all values $w \in L[0...pos)$ with v < w one to the right. \leftarrow
- 4: L[p] := v.

Algorithm InsertionSort(L):

```
Input: List L[0...N) of N values.

1: for pos := 1 to N-1 do

2: v := L[pos].

Move all values w \in L[0...pos) with v < w one to the right.

3: p := pos.

4: while p > 0 and v < L[p-1] do

5: L[p] := L[p-1].

6: p := p-1.

7: L[p] := v.
```

Runtime complexity of InsertionSort

Algorithm InsertionSort(*L*):

```
Input: List L[0...N) of N values.

1: for pos := 1 to N-1 do

2: v := L[pos].

3: p := pos.

4: while p > 0 and v < L[p-1] do

5: L[p] := L[p-1].

6: p := p-1.

7: L[p] := v.
```

Runtime complexity of InsertionSort

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
1: for pos := 1 to N-1 do
2: v := L[pos].
3: p := pos.
4: while p > 0 and v < L[p-1] do
5: L[p] := L[p-1].
6: p := p-1.
7: L[p] := v.

Comparisons: \leq \sum_{pos=1}^{N-1} pos.

Changes: \leq \sum_{pos=1}^{N-1} (1+pos).
```

Runtime complexity of InsertionSort

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
1: For pos := 1 to N-1 do

2: v := L[pos].

3: p := pos.

4: while p > 0 and v < L[p-1] do

5: L[p] := L[p-1].

6: p := p-1.

Changes: \leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}.

Changes: \leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N-1.
  1: for pos := 1 to N - 1 do
         L[p] := v.
```

Comparisons:
$$\leq \sum_{pos=1}^{n} pos = \frac{N(N-1)}{2}$$
.
Changes: $\leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - 1$

Runtime complexity of InsertionSort

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
2: v := L[pos].

3: p := pos.

4: while p > 0 and v < L[p-1] do

5: L[p] := L[p-1].

6: p := p-1.

7: L[p] := v.

Comparisons: \leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}.

Changes: \leq \sum_{pos=1}^{N-1} (1 + pos) = \frac{N(N-1)}{2} + N - 1.
   1: for pos := 1 to N - 1 do
```

Comparisons:
$$\leq \sum_{pos=1}^{n} pos = \frac{N(N-1)}{2}$$
.
Changes: $\leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - \frac{N(N-1)}{2}$

Runtime complexity of InsertionSort

A good estimate: number of comparisons and exchanges of list values.

When does InsertionSort have N^2 comparisons and changes?

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
p := pos.
while p > 0 and v < L[p-1] do
L[p] := L[p-1].
p := p-1.
L[p] := v.
Comparisons: \leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}.
Changes: \leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - 1.
1: for pos := 1 to N - 1 do
5: L[p] := L[p-1].
```

Comparisons:
$$\leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}$$
.
Changes: $\leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - \frac{N(N-1)}{2}$

Runtime complexity of InsertionSort

A good estimate: number of comparisons and exchanges of list values.

When does InsertionSort have N^2 comparisons and changes?

Reverse-ordered array: every next array is moved to the start of the list.

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
2: v := L[pos].

3: p := pos.

4: while p > 0 and v < L[p-1] do

5: L[p] := L[p-1].

6: p := p-1.

7: L[p] := v.

Comparisons: \leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}.

Changes: \leq \sum_{pos=1}^{N-1} (1 + pos) = \frac{N(N-1)}{2} + N - 1.
   1: for pos := 1 to N - 1 do
```

Comparisons:
$$\leq \sum_{pos=1} pos = \frac{N(N-1)}{2}$$
.
Changes: $\leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - \frac{N(N-1)}{2}$

Runtime complexity of InsertionSort

A good estimate: number of comparisons and exchanges of list values.

When does InsertionSort have less than N^2 comparisons and changes?

Algorithm InsertionSort(*L*):

Input: List L[0...N) of N values.

```
p := pos.
while p > 0 and v < L[p-1] do
L[p] := L[p-1].
p := p-1.
L[p] := v.
Comparisons: \leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}.
Changes: \leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - 1.
1: for pos := 1 to N - 1 do
5: L[p] := L[p-1].
```

Comparisons:
$$\leq \sum_{pos=1}^{N-1} pos = \frac{N(N-1)}{2}$$
.
Changes: $\leq \sum_{pos=1}^{N-1} (1+pos) = \frac{N(N-1)}{2} + N - \frac{N(N-1)}{2}$

Runtime complexity of InsertionSort

A good estimate: number of comparisons and exchanges of list values.

When does InsertionSort have less than N^2 comparisons and changes?

Ordered array: *N* comparisons and changes as every value stays in place.

Algorithm InsertionSort(*L*): **Input:** List L[0...N) of N values, $L = \mathcal{L}$. 1: pos := 1. 2: while $pos \neq N do$ /* inv: L[0...pos) is ordered and L holds the same values as \mathcal{L} , bf: N - pos. */v := L[pos].3: p := pos.4: 5: while p > 0 and v < L[p-1] do /* inv: F = L[0...p) is ordered, S = L[p + 1...pos + 1) is ordered, all values in Fare smaller than the values in *S*, all values in *S* are larger than *v*, and the values in F, S, [v], and L[pos + 1..., N) are exactly the values in \mathcal{L} , bf: p. */ L[p] := L[p-1].6: p := p - 1. L[p] := v. 8: pos := pos + 1.9:

```
Algorithm InsertionSort(L):
Input: List L[0...N) of N values, L = \mathcal{L}.
 1: pos := 1.
 2: while pos \neq N do
       /* inv: L[0...pos) is ordered and L holds the same values as \mathcal{L}, bf: N-pos. */
      v := L[pos].
 3:
    p := pos.
 4:
 5:
      while p > 0 and v < L[p-1] do
         /* inv: F = L[0...p) is ordered, S = L[p+1...pos+1) is ordered, all values in F
         are smaller than the values in S, all values in S are larger than v, and the values
         in F, S, [v], and L[pos + 1..., N) are exactly the values in \mathcal{L}, bf: p. */
        L[p] := L[p-1].
 6:
       p := p - 1.
 7:
     L[p] := v.
 8:
       pos := pos + 1.
 9:
```

A summary of basic sorting

	Comparisons	Changes	Memory
SELECTIONSORT	$\Theta(N^2)$	$\Theta(N)$	$\Theta(1)$
InsertionSort	$O(N^2)$	$O(N^2)$	$\Theta(1)$

A summary of basic sorting

A summary of basic sorting

Toward faster sorting

The issue with SelectionSort and InsertionSort

- ► The algorithms do not perform "global reorderings".
- ► The algorithms sort one element at a time.

 E.g., small elements at the end of the list are moved to the front one at a time.

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Conquer Solve the smaller subproblems using *recursion*.

Combine Combine the subproblem solutions into a final solution.

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Conquer Solve the smaller subproblems using *recursion*.

Combine Combine the subproblem solutions into a final solution.

 ${\bf Binary Search R}\ is\ a\ divide-and-conquer\ algorithm.$

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Break the list in two halves.

Conquer Solve the smaller subproblems using *recursion*.

Combine Combine the subproblem solutions into a final solution.

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Break the list in two halves.

Conquer Solve the smaller subproblems using *recursion*.

Sort both halves separately: by recursion, we reach lists with one element.

Combine Combine the subproblem solutions into a final solution.

Divide-and-conquer

Divide Turn problem into smaller subproblems.

Break the list in two halves.

Conquer Solve the smaller subproblems using *recursion*.

Sort both halves separately: by recursion, we reach lists with one element.

Combine Combine the subproblem solutions into a final solution.

Merge two sorted halves together to obtain the result.

Algorithm MergeSortR(*L*[*start* . . . *end*)):

2 6 3 5 1 4

Algorithm MergeSortR(*L*[*start* . . . *end*)):

1: **if** end - start > 1 **then**

6: **else return** *L*.

2	6	3	5	1	4
---	---	---	---	---	---

Algorithm MergeSortR(*L*[*start* . . . *end*)):

- 1: **if** end start > 1 **then**
- 2: $mid := (end start) \operatorname{div} 2$.

6: else return L.

Algorithm MergeSortR(*L*[*start* . . . *end*)):

- 1: **if** end start > 1 **then**
- 2: $mid := (end start) \operatorname{div} 2$.
- 3: $L_1 := MergeSortR(L[start...mid)).$
- 4: $L_2 := MergeSortR(L[mid...end)).$
- 6: else return L.

Algorithm MergeSortR(*L*[*start* . . . *end*)):

- 1: **if** end start > 1 **then**
- 2: $mid := (end start) \operatorname{div} 2$.
- 3: $L_1 := MergeSortR(L[start...mid)).$
- 4: $L_2 := MergeSortR(L[mid...end)).$


```
Algorithm MergeSortR(L[start . . . end)):
 1: if end - start > 1 then
      mid := (end - start) div 2.
     L_1 := MergeSortR(L[start...mid)).
 3:
      L_2 := MergeSortR(L[mid...end)).
 4:
      return Merge(L_1, L_2) (maintain sorted order).
 5:
 6: else return L.
                                     6
                                          3
                                               5
      MergeSortR(L[start...mid)
                                                     \mathcal{M}ERGESORTR(L[mid...end))
                                           mid
                                                     5
                              6
                                    3
                                                               4
                    L_1:
                              3
                                   6
                                                L_2:
                                                               5
                                                          4
                                             Merge
                                     2
                                          3
                                                   5
                                              4
                                                        6
```

Proof of correctness: MergeSortR(*L*[*start* . . . *end*)) sorts

Proof of correctness: MergeSortR(L[start...end)) sorts

Base case MergeSortR sorts $0 \le end - start \le 1$ values.

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

start	end

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

start	mid := (end - start) div 2	end

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

Induction step Consider MergeSortR with $2 \le end - start = n$ values.

start	mid := (end - start) div 2	end
\bigvee MERGESORTR($L[startmid)$)	$\bigvee MERGESORTR(\underbrace{L[\mathit{mid}\ldots\mathit{end})})$	

11/2

Proof of correctness: MERGESORTR(L[start...end)) sorts

Base case MergeSortR sorts $0 \le end - start \le 1$ values.

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

Induction step Consider MergeSortR with $2 \le end - start = n$ values.

start	mid := (end - start) div 2	end
$\bigvee MERGESORTR(L[\mathit{start}\ldots \mathit{mid}))$	$\bigvee MERGESORTR(L[mid \dots end))$	start < mid < end

11/

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.

Induction hypothesis MergeSortR sorts $0 \le end - start < n$ values correctly.


```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
```

Algorithm Merge($L_1[0...N_1), L_2[0...N_2)$):

Input: L_1 and L_2 are sorted.

1: R is a new array for $N_1 + N_2$ values.

10: **return** *R*.

2/2:

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
```

Input: L_1 and L_2 are sorted.

1: R is a new array for $N_1 + N_2$ values.

- 2: i_1 , i_2 := 0, 0.
- 3: while $i_1 < N_1$ or $i_2 < N_2$ do

10: **return** *R*.

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
  2: i_1, i_2 := 0, 0.
  3: while i_1 < N_1 or i_2 < N_2 do
     if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
     R[i_1 + i_2] := L_1[i_1].
  5:
    i_1 := i_1 + 1.
     else
  7:
         R[i_1 + i_2] := L_2[i_2].
 8:
     i_2 := i_2 + 1.
 9:
 10: return R.
```

2/2

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
     if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
     R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
     else
 7:
     R[i_1 + i_2] := L_2[i_2].
 8:
     i_2 := i_2 + 1.
 9:
                                             L<sub>1</sub>: 2
                                                                                             5
 10: return R.
```

12/3

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
 6:
      else
 7:
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
                                              L<sub>1</sub>: 2
                                                                                                5
                                                                              L_2: 1
 10: return R.
                                                     R :
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
       R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
                                                         3
                                                                                              5
 10: return R.
                                                     R :
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
       R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
       R[i_1 + i_2] := L_2[i_2].
 8:
       i_2 := i_2 + 1
 9:
                                                                                            5
 10: return R.
                                                    R :
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
                                                                                              5
 10: return R.
                                                    R :
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
                                                                                              5
 10: return R.
                                                    R :
                                                                      3
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
       R[i_1 + i_2] := L_2[i_2].
 8:
       i_2 := i_2 + 1
 9:
                                                        3
                                                                                            5
 10: return R.
                                                   R :
                                                                     3
```

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
       R[i_1 + i_2] := L_2[i_2].
 8:
       i_2 := i_2 + 1
 9:
                                                        3
 10: return R.
                                                   R :
                                                                     3
```

2/2

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1+i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
      else
 7:
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
                                                        3
 10: return R.
                                                                     3
                                                                                5
```

Assumption: Merge is correct

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
     if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
     R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
     else
 7:
     R[i_1 + i_2] := L_2[i_2].
 8:
      i_2 := i_2 + 1.
 9:
                                             L<sub>1</sub>: 2
                                                                            L_2: 1
                                                                                             5
 10: return R.
                                                                     3
                                                                                5
```

Assumption: Merge is correct

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
       /* inv: R[0...i_1+i_2) has all values from L_1[0...i_1) and L_2[0...i_2), sorted. */
       /* bf: (N_1 + N_2) - (i_1 + i_2) . */
     if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
 4:
     R[i_1 + i_2] := L_1[i_1].
 5:
      i_1 := i_1 + 1.
 6:
 7:
       else
         R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
 10: return R.
```


3/2:

3/2:

3/2:

3/2:

3/2

Plan

- 1. First, determine the complexity of a MERGE call.
- 2. Then we can look at MergeSortR.

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
  1: R is a new array for N_1 + N_2 values.
  2: i_1, i_2 := 0, 0.
  3: while i_1 < N_1 or i_2 < N_2 do
       if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
      R[i_1 + i_2] := L_1[i_1].
  5:
     i_1 := i_1 + 1.
  6:
     else
  7:
         R[i_1 + i_2] := L_2[i_2].
  8:
  9:
         i_2 := i_2 + 1.
 10: return R.
```

14/:

```
Algorithm Merge(L_1[0...N_1), L_2[0...N_2)):
Input: L_1 and L_2 are sorted.
 1: R is a new array for N_1 + N_2 values.
 2: i_1, i_2 := 0, 0.
 3: while i_1 < N_1 or i_2 < N_2 do
      if i_2 = N_2 or (i_1 < N_1 \text{ and } L_1[i_1] < L_2[i_2]) then
         R[i_1 + i_2] := L_1[i_1].
 5:
     i_1 := i_1 + 1.
 6:
      else
 7:
          R[i_1 + i_2] := L_2[i_2].
 8:
         i_2 := i_2 + 1.
 9:
 10: return R.
```

Comparisons: $< N_1 + N_2$. Changes: $N_1 + N_2$.

```
Algorithm MERGESORTR(L[start...end)):

1: if end - start > 1 then

2: mid := (end - start) div 2.

3: L_1 := MERGESORTR(L[start...mid)).

4: L_2 := MERGESORTR(L[mid...end)).

5: return MERGE(L_1, L_2). N comparisons and changes.

6: else return L.
```

```
Algorithm MERGESORTR(L[start ... end)):

1: if end - start > 1 then

2: mid := (end - start) div 2.

3: L_1 := MERGESORTR(L[start ... mid)).

4: L_2 := MERGESORTR(L[mid ... end)).

5: return MERGE(L_1, L_2). N comparisons and changes.

6: else return L.

Base case.
```

Algorithm MergeSortR(*L*[*start* . . . *end*)):

```
1: if end - start > 1 then

2: mid := (end - start) div 2.

3: L_1 := \mathsf{MERGESORTR}(L[start \dots mid)).

4: L_2 := \mathsf{MERGESORTR}(L[mid \dots end)).

5: else\ return\ Merge(L_1, L_2). N\ comparisons\ and\ changes.

6: else\ return\ L.

Base case.
```

The runtime complexity of MergeSortR(L, start, end) with N = end - start is

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

14/:

Algorithm MergeSortR(*L*[*start* . . . *end*)):

```
1: if end - start > 1 then

2: mid := (end - start) \text{ div 2.}

3: L_1 := \text{MergeSortR}(L[start ... mid)).

4: L_2 := \text{MergeSortR}(L[mid ... end)).

5: return \text{Merge}(L_1, L_2). N comparisons and changes.

6: else return L. \} Base case.
```

The runtime complexity of MergeSortR(L, start, end) with N = end - start is

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

14/:

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

How can we determine that T(N) = f(N) for a closed-form f(N)?

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

How can we determine that T(N) = f(N) for a closed-form f(N)? We can use induction!

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

How can we determine that T(N) = f(N) for a closed-form f(N)? We can use induction!?

We need to know f(N) to formalize an induction hypothesis!

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Recurrence tree for T(N)

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Recurrence tree for T(N) Number Cost $N = 2^{0} N$

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$

Assumption: N is a power-of-two.

<u>Number</u>	Cost
$1 = 2^0$	N

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$

Assumption: N is a power-of-two.

<u>Number</u>	Cos
$1 = 2^0$	N
$2 = 2^1$	$\frac{N}{2}$

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$

Assumption: N is a power-of-two.

<u>Number</u>	Cost	<u>Total</u>
$1 = 2^0$	N	$1N = \Lambda$
$2 = 2^1$	<u>N</u> 2	$2\frac{N}{2} = \Lambda$

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$

Assumption: N is a power-of-two.

<u>Number</u>	Cost	<u>Total</u>
$1 = 2^0$	N	$1N = \Lambda$
$2 = 2^{1}$	<u>N</u> 2	$2\frac{N}{2} = \Lambda$
$4 = 2^2$	<u>N</u>	$4\frac{N}{4} = \Lambda$

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Recurrence tree for $T(N)$	<u>Number</u>	Cost	<u>Total</u>
\sim	$1 = 2^0$	N	1N = N
$\frac{N}{2}$	$2 = 2^1$	$\frac{N}{2}$	$2\frac{N}{2}=N$
$\frac{N}{4}$ $\frac{N}{4}$ $\frac{N}{4}$ $\frac{N}{4}$	$4 = 2^2$	<u>N</u>	$4\frac{N}{4} = N$
$\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$ $\frac{N}{8}$	$8 = 2^3$	<u>N</u>	$8\frac{N}{8} = N$
	÷	÷	:
	2 ⁱ	$\frac{N}{2^i}$	$2^i \frac{N}{2^i} = N$
	÷	÷	:
1 1			

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

4/2

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$

Assumption: N is a power-of-two.

14/22

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Can do without a power-of-two assumption?

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Can do without a power-of-two assumption? For any N, we have $2^{\lfloor \log_2(N) \rfloor} \le N \le 2^{\lceil \log_2(N) \rceil}$.

14/2

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ 2T\left(\frac{N}{2}\right) + N & \text{if } N > 1. \end{cases}$$
 Assumption: N is a power-of-two.

Can do without a power-of-two assumption? For any N, we have $2^{\lfloor \log_2(N) \rfloor} \le N \le 2^{\lceil \log_2(N) \rceil}$.

The assumption provides lower and upper bounds that are off by a small factor → Typically good enough to understand the complexity of your code.

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly?

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$.

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction is the answer.

14/2

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly?

Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$.

Induction is the answer.

This induction becomes messy due to terms $\lfloor \frac{N}{2} \rfloor$ and $\lceil \frac{N}{2} \rceil$.

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$.

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T\left(\left\lfloor \frac{i}{2} \right\rfloor\right) + T\left(\left\lceil \frac{i}{2} \right\rceil\right) + i$$

14/22

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T\left(\left\lfloor\frac{i}{2}\right\rfloor\right) + T\left(\left\lceil\frac{i}{2}\right\rceil\right) + i \leq 2T\left(\left\lceil\frac{i}{2}\right\rceil\right) + i$$

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T\left(\left\lfloor \frac{i}{2}\right\rfloor\right) + T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2\left(c_2\left\lceil \frac{i}{2}\right\rceil\log_2\left(\left\lceil \frac{i}{2}\right\rceil\right) + d_2\right) + i$$

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T\left(\left\lfloor \frac{i}{2}\right\rfloor\right) + T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2\left(c_2\left\lceil \frac{i}{2}\right\rceil\log_2\left(\left\lceil \frac{i}{2}\right\rceil\right) + d_2\right) + i$$

$$\le 2\left(c_2\frac{i+1}{2}\log_2\left(\frac{i+1}{2}\right) + d_2\right) + i$$

4/2:

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T\left(\left\lfloor \frac{i}{2}\right\rfloor\right) + T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2T\left(\left\lceil \frac{i}{2}\right\rceil\right) + i \le 2\left(c_2\left\lceil \frac{i}{2}\right\rceil\log_2\left(\left\lceil \frac{i}{2}\right\rceil\right) + d_2\right) + i$$

$$\le 2\left(c_2\frac{i+1}{2}\log_2\left(\frac{i+1}{2}\right) + d_2\right) + i = c_2(i+1)(\log_2(i+1) - 1) + 2d_2 + i$$

4/2:

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) = T(\left\lfloor \frac{i}{2} \right\rfloor) + T(\left\lceil \frac{i}{2} \right\rceil) + i \le 2T(\left\lceil \frac{i}{2} \right\rceil) + i \le 2(c_2 \left\lceil \frac{i}{2} \right\rceil \log_2(\left\lceil \frac{i}{2} \right\rceil) + d_2) + i$$

$$\le 2(c_2 \frac{i+1}{2} \log_2(\frac{i+1}{2}) + d_2) + i = c_2(i+1)(\log_2(i+1) - 1) + 2d_2 + i$$

$$\le c_2(i+1)(\log_2(i) - 0.4) + 2d_2 + i$$

$$\log_2(2+1) - 1 = \log_2(2) + (\log_2(3) - \log_2(2)) - 1 \approx 1 + (1.6-1) - 1) = \log_2(2) - 0.4.$$

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$\begin{split} T(i) &= T\left(\left\lfloor \frac{i}{2} \right\rfloor\right) + T\left(\left\lceil \frac{i}{2} \right\rceil\right) + i \leq 2T\left(\left\lceil \frac{i}{2} \right\rceil\right) + i \leq 2\left(c_2 \left\lceil \frac{i}{2} \right\rceil \log_2\left(\left\lceil \frac{i}{2} \right\rceil\right) + d_2\right) + i \\ &\leq 2\left(c_2 \frac{i+1}{2} \log_2\left(\frac{i+1}{2}\right) + d_2\right) + i = c_2(i+1)(\log_2(i+1)-1) + 2d_2 + i \\ &\leq c_2(i+1)(\log_2(i)-0.4) + 2d_2 + i \\ &= (c_2 i \log_2(i) + d_2) + (c_2 \log_2(i) + d_2 + i) - 0.4c_2(i+1). \end{split}$$

4/2:

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$. Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$. Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) \le (c_2 i \log_2(i) + d_2) + (c_2 \log_2(i) + d_2 + i) - 0.4c_2(i+1).$$

We have
$$T(i) \le (c_2 i \log_2(i) + d_2)$$
 if $(c_2 \log_2(i) + d_2 + i) \le 0.4c_2(i + 1)$.

4/2:

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly?

Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$.

Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$.

Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) \le (c_2 i \log_2(i) + d_2) + (c_2 \log_2(i) + d_2 + i) - 0.4c_2(i+1).$$

We have
$$T(i) \le (c_2 i \log_2(i) + d_2)$$
 if $(c_2 \log_2(i) + d_2 + i) \le 0.4c_2(i + 1)$.

For *big enough* values of *i* and c_2 , i > B, this is certainly true!

$$T(N) = \begin{cases} X & \text{if } N \leq B; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly?

Due to Θ -notation, we need to prove: $c_1 N \log_2(N) + d_1 \le T(N) \le c_2 N \log_2(N) + d_2$.

Induction hypothesis For some c_2 , d_2 , $T(N) \le c_2 N \log_2(N) + d_2$ for all $1 \le N < i$.

Induction step Prove $T(i) \le c_2 i \log_2(i) + d_2$.

$$T(i) \le (c_2 i \log_2(i) + d_2) + (c_2 \log_2(i) + d_2 + i) - 0.4c_2(i+1).$$

We have
$$T(i) \le (c_2 i \log_2(i) + d_2)$$
 if $(c_2 \log_2(i) + d_2 + i) \le 0.4c_2(i + 1)$.

For *big enough* values of *i* and c_2 , i > B, this is certainly true!

Trick: make sure we always have big values of i.

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Yes we can—but is is very tedious!

$$T(N) = \begin{cases} 1 & \text{if } N \leq 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Yes we can—but is is very tedious!

Properly work out recurrence trees when possible: often easier and clearer!

$$T(N) = \begin{cases} 1 & \text{if } N \le 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Can we prove $T(N) = \Theta(N \log_2(N))$ exactly? Yes we can—but is is very tedious!

Properly work out recurrence trees when possible: often easier and clearer!

There are also *standard solutions* that you can use: the Master Theorem.

4/2:

MERGESORTR should be much better than SelectionSort and InsertionSort: *Especially on big lists*.

Concern: MergeSortR has big constants.

- Each Merge makes new arrays.
- ► A lot of recursive calls that only get us to arrays of size one.

MERGESORTR should be much better than SelectionSort and InsertionSort: *Especially on big lists*.

Concern: MERGESORTR has big constants.
Can we finetune MERGESORTR to reduce these constants?

- ► Each Merge makes new arrays.
- ► A lot of recursive calls that only get us to arrays of size one.

MergeSortR should be much better than SelectionSort and InsertionSort: *Especially on big lists*.

Concern: MergeSortR has big constants.

Can we finetune MergeSortR to reduce these constants?

- Each Merge makes new arrays.Idea: make a single target array to merge into.
- ► A lot of recursive calls that only get us to arrays of size one.

 Idea: switch from top-down (big-to-small arrays) to bottom-up (small-to-big arrays),

 we can do so using a loop instead of recursion!

```
Algorithm MergeSort(L[0...N)):
 1: R is a new array for N values.
 2: sl := 1. The current sorted length of blocks in L.
 3: while sl < N do
     i := 0.
     while i < N do
         Conceptually: Merge L[i...i+sl) and L[i+sl...i+2sl) into R[i...i+2sl).
 6:
         i := i + 2sl
 7:
 8:
      sl := 2sl
      Switch the role of L and R.
 9:
```

```
Algorithm MergeSort(L[0...N)):
 1: R is a new array for N values.
 2: sl := 1. The current sorted length of blocks in L.
 3: while sl < N do
     i := 0.
      while i < N do
         Conceptually: Merge L[i...i+sl) and L[i+sl...i+2sl) into R[i...i+2sl).
         Careful: N does not have to be a multiple of 2sl.
 6:
         i := i + 2sl
 7:
 8:
      sl := 2sl
      Switch the role of L and R.
 9:
```

```
Algorithm MergeSort(L[0...N)):
 1: R is a new array for N values.
 2: sl := 1. The current sorted length of blocks in L.
 3: while sl < N do
      i := 0.
      while i < N do
 5:
         Conceptually: Merge L[i...i+sl) and L[i+sl...i+2sl) into R[i...i+2sl).
         Careful: N does not have to be a multiple of 2sl.
         MERGEINTO(L, i, min(i + sl, N), min(i + 2sl, N), R).
 6:
         i := i + 2sl
 7:
 8:
      sl := 2sl
      Switch the role of L and R.
 9:
```

```
Algorithm MerceInto(S[0...N), start, mid, end, T[0...N)):
Input: 0 \le start \le mid \le end \le N and
         S[start...mid) and S[mid...end) are sorted.
  1: i_1, i_2 := start, mid.
 2: while i_1 < mid or i_2 < end do
       if i_2 = end or (i_1 < mid \text{ and } S[i_1] < S[i_2]) then
         T[i_1 + i_2] := S[i_1].
      i_1 := i_1 + 1
 5:
      else
 6:
         T[i_1 + i_2] := S[i_2].
 7:
 8:
     i_2 := i_2 + 1.
```


Conceptually:

1	2	3	4	5	6	7	9
---	---	---	---	---	---	---	---

6/2

8

sl = 16, L:	1	2	3	4	5	6	7	8	9
-------------	---	---	---	---	---	---	---	---	---

- ▶ Runtime complexity: $\Theta(N \log_2(N))$ comparisons and changes;
- Memory complexity: $\Theta(N)$ (for merging).

- ▶ Runtime complexity: $\Theta(N \log_2(N))$ comparisons and changes;
- Memory complexity: $\Theta(N)$ (for merging).

The power of MergeSort

The MergeSort algorithm is at the basis of many large-scale sort algorithms:

- multi-threaded sorting (GiB),
- sorting data on external memory (GiB-TiB),
- ► sorting data in a cluster (TiB-PiB).

- ▶ Runtime complexity: $\Theta(N \log_2(N))$ comparisons and changes;
- Memory complexity: $\Theta(N)$ (for merging).

The power of MergeSort

The MergeSort algorithm is at the basis of many large-scale sort algorithms:

- ► multi-threaded sorting (GiB),
- sorting data on external memory (GiB-TiB),
- ► sorting data in a cluster (TiB-PiB).

The power of MERGE

The Merge algorithm is flexible: you can easily change it to

- compute the union (without duplicates) of two sorted list;
- compute the intersection of two sorted list;
- compute the difference of two sorted list;
- compute a *join* of two tables (if sorted on the join attributes).

	C++	Java
MergeSort	std::stable_sort	<pre>java.util.Arrays.sort (usually)</pre>
Merge	std::merge	
Merge-like	<pre>std::set_union std::set_intersection std::set_difference std::set_symmetric_difference</pre>	
(related)	std::inplace_merge	

Intermezzo: Recurrence trees

In a recurrence tree

- ▶ nodes labeled *N* represent a *function call* with "input size *N*";
- the children of a node represent recursive calls;
- ▶ per node, we can determine *the work* within that call (besides recursion);
- ▶ per depth, we can determine the *total work for that depth*;
- by *summing over all depths*: the total complexity.

Intermezzo: Recurrence trees

In a recurrence tree

- ▶ nodes labeled *N* represent a *function call* with "input size *N*";
- the children of a node represent recursive calls;
- ▶ per node, we can determine *the work* within that call (besides recursion);
- ▶ per depth, we can determine the *total work for that depth*;
- by *summing over all depths*: the total complexity.

We already saw two examples: BINARYSEARCHR and MERGESORTR.

Intermezzo: Recurrence trees

Example: the *Fibonacci numbers*

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 =

8/2

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 =

8/2

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 =
$2 = 2^1$	1	2 · 1 = 1

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 = 1
$2 = 2^{1}$	1	2 · 1 = 2
$4 = 2^2$	1	$4 \cdot 1 = 4$

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication:
$$fib(i-2) \le fib(i-1)$$
.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 = 1
$2 = 2^{1}$	1	2 · 1 = 2
$4 = 2^2$	1	4 · 1 = 4
$8 = 2^3$	1	$8 \cdot 1 = 8$

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication: $fib(i-2) \le fib(i-1)$.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 = 1
$2 = 2^{1}$	1	2 · 1 = 2
$4 = 2^2$	1	4 · 1 = 4
$8 = 2^3$:	1 :	8 · 1 = 8
: 2 ⁱ	1	$2^i \cdot 1 = 2^i$
÷	÷	:

8/2

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

8/2

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication:
$$fib(i-2) \le fib(i-1)$$
.

<u>Number</u>	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 = 1
$2 = 2^{1}$	1	2 · 1 = 2
$4 = 2^2$	1	4 · 1 = 4
$8 = 2^3$	1	8 · 1 = 8

 $\begin{array}{ccc}
\vdots & \vdots \\
1 & 2^{i} \cdot 1 = 2^{i} \\
\vdots & \vdots & \vdots
\end{array}$

 $\sum_{i=0}^{N-2} 2^i$

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $fib(N) \leq 2^N$

Simplication:
$$fib(i-2) \le fib(i-1)$$
.

Number	Cost	<u>Total</u>
$1 = 2^0$	1	1 · 1 = 1
$2 = 2^{1}$	1	2 · 1 = 2
$4 = 2^2$	1	4 · 1 = 4
$8 = 2^3$ \vdots 2^i	1 : 1	$8 \cdot 1 = 8$ \vdots $2^{i} \cdot 1 = 2^{i}$
÷	÷	÷

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Prove that $2^{\lceil \frac{N}{2} \rceil} \le fib(N)$

18/22

Example: the *Fibonacci numbers*

$$fib(N) = \begin{cases} 1 & \text{if } N = 1 \text{ or } N = 2; \\ fib(N-1) + fib(N-2) & \text{if } N > 2. \end{cases}$$

Via recurrence trees, we have proven that:

$$2^{\left\lceil \frac{N}{2} \right\rceil} \le fib(N) \le 2^N$$
.

8/2

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lfloor \frac{N}{b} \right\rfloor$.

9/2:

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Someone else has already proved this—so we can reuse the result!

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of BINARYSEARCHR

$$T(N) = \begin{cases} 4 & \text{if } N = 1; \\ T\left(\frac{N}{2}\right) + 8 & \text{if } N > 1. \end{cases}$$

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of BINARYSEARCHR

$$T(N) = \begin{cases} 4 & \text{if } N = 1; \\ T(\frac{N}{2}) + 8 & \text{if } N > 1. \end{cases} \text{ We have } a = 1, b = 2, f(N) = 8 = \Theta(1) = N^{\log_2(1)}.$$

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of BINARYSEARCHR

$$T(N) = \begin{cases} 4 & \text{if } N = 1; \\ T(\frac{N}{2}) + 8 & \text{if } N > 1. \end{cases}$$
 We have $a = 1, b = 2, f(N) = 8 = \Theta(1) = N^{\log_2(1)}.$

Case 2 yields: $T(N) = \Theta(N^{\log_2(1)} \log^1(N)) = \log(N)$.

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of MergeSortR

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of MergeSortR

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$
 We have $a = 2, b = 2, f(N) = N = \Theta(N) = N^{\log_2(2)}.$

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Example: Runtime complexity of MergeSortR

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + T\left(\left\lceil \frac{N}{2} \right\rceil\right) + N & \text{if } N > 1. \end{cases}$$
 We have $a = 2, b = 2, f(N) = N = \Theta(N) = N^{\log_2(2)}.$

Case 2 yields: $T(N) = \Theta(N^{\log_2(2)} \log^1(N)) = \Theta(N \log(N))$.

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A third example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 7T\left(\left\lfloor \frac{N}{4} \right\rfloor\right) + N & \text{if } N > 1. \end{cases}$$

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A third example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 7T\left(\left\lfloor \frac{N}{4} \right\rfloor\right) + N & \text{if } N > 1. \end{cases}$$
 We have $a = 7, b = 4, f(N) = N = ON^{\log_4(7) - \epsilon}.$

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A third example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 7T\left(\left\lfloor \frac{N}{4} \right\rfloor\right) + N & \text{if } N > 1. \end{cases}$$
 We have $a = 7, b = 4, f(N) = N = ON^{\log_4(7) - \epsilon}.$

Case 1 yields: $T(N) = \Theta(N^{\log_4(7)}) \approx \Theta(N^{1.40367...})$.

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A fourth example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 2T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + N^3 & \text{if } N > 1. \end{cases}$$

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A fourth example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 2T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + N^3 & \text{if } N > 1. \end{cases}$$
 We have $a = 2, b = 2, f(N) = N^3 = \Omega N^{\log_2(2) + \epsilon}.$

Let T(N) be a recurrence of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

A fourth example

$$T(N) = \begin{cases} 1 & \text{if } N = 1; \\ 2T\left(\left\lfloor \frac{N}{2} \right\rfloor\right) + N^3 & \text{if } N > 1. \end{cases}$$
 We have $a = 2, b = 2, f(N) = N^3 = \Omega N^{\log_2(2) + \epsilon}.$

Case 3 yields: $T(N) = \Theta(N^3)$.

Let T(N) be a *recurrence* of the form

$$T(N) = \begin{cases} constant & \text{if base case;} \\ aT\left(\frac{N}{b}\right) + f(N) & \text{if recursive case,} \end{cases}$$

with $a \ge 1$, b > 1, and we can read $\frac{N}{b}$ also as $\left\lceil \frac{N}{b} \right\rceil$ or $\left\lceil \frac{N}{b} \right\rceil$. We have the following

- 1. if $f(N) = O(N^{\log_b(a-\epsilon)})$ with $\epsilon > 0$, then $T(N) = \Theta(N^{\log_b(a)})$. 2. if $f(N) = \Theta(N^{\log_b(a)} \log^k(N))$ with $k \ge 0$, then $T(N) = \Theta(N^{\log_b(a)} \log^{k+1}(N))$.
- 3. if $f(N) = \Omega(N^{\log_b(a+\epsilon)})$ with $\epsilon > 0$ and $af(\frac{N}{b}) \le cf(N)$ for a c < 1 (for large N), then $T(N) = \Theta(f(N))$.

Feel free to use the Master Theorem, we will provide a copy during the final exam.

Algorithm CountSort(L[0...N)):

Input: Each value in *L* is either 0 or 1.

- 1: $count_0 := 0$
- 2: **for all** $v \in L$ **do** Count number of 0's
- $\mathbf{if} \ \mathbf{v} = 0 \ \mathbf{then}$
- 4: $count_0 := count_0 + 1$.
- 5: **for** i := 0 to $count_0 1$ **do** Write the counted number of 0's
- 6: L[i] := 0.
- 7: **for** $i := count_0$ to N 1 **do** Write the remaining 1's
- 8: L[i] := 1.

```
Algorithm CountSort(L[0...N)):
Input: Each value in L is either 0 or 1.
 1: count_0 := 0
 2: for all v \in L do Count number of 0's
    if v = 0 then
         count_0 := count_0 + 1.
 5: for i := 0 to count_0 - 1 do Write the counted number of 0's
      L[i] := 0.
 7: for i := count_0 to N - 1 do Write the remaining 1's
 8: L[i] := 1.
```

Complexity: Linear ($\sim N$ comparisons, $\sim N$ changes)

```
Algorithm CountSort(L[0...N)):
Input: Each value in L is either 0 or 1.
 1: count_0 := 0
 2: for all v \in L do Count number of 0's
    if v = 0 then
         count_0 := count_0 + 1.
 5: for i := 0 to count_0 - 1 do Write the counted number of 0's
    L[i] := 0.
 7: for i := count_0 to N - 1 do Write the remaining 1's
 8: L[i] := 1.
```

Complexity: Linear ($\sim N$ comparisons, $\sim N$ changes)

COUNTSORT does *not* solve general-purpose sorting!

Assume: We have a list L[0...N) of N distinct values

Assume: We have a list L[0...N) of N distinct values

When is Algorithm A general-purpose?

Assume: We have a list L[0...N) of N distinct values

When is Algorithm A general-purpose?

- ► A uses *comparisons* to determine sorted order;
- ► A does *not require assumptions* on the value distribution in *L*.

Assume: We have a list L[0...N) of N distinct values

What do we know about *general-purpose* Algorithm A? Consider lists $L_1 = [1, 3, 2, 4]$ and $L_2 = [1, 2, 3, 4]$.

Assume: We have a list L[0...N) of N distinct values

What do we know about *general-purpose* Algorithm A? Consider lists $L_1 = [1, 3, 2, 4]$ and $L_2 = [1, 2, 3, 4]$.

▶ Algorithm A must perform *different* operations to order L_1 and L_2 .

Assume: We have a list L[0...N) of N distinct values

What do we know about *general-purpose* Algorithm A? Consider lists $L_1 = [1, 3, 2, 4]$ and $L_2 = [1, 2, 3, 4]$.

- ▶ Algorithm A must perform *different* operations to order L_1 and L_2 .
- ▶ Algorithm A uses *comparisons* to decide which operations to perform.

Assume: We have a list L[0...N) of N distinct values

What do we know about *general-purpose* Algorithm A? Consider lists $L_1 = [1, 3, 2, 4]$ and $L_2 = [1, 2, 3, 4]$.

- ▶ Algorithm A must perform *different* operations to order L_1 and L_2 .
- ▶ Algorithm A uses *comparisons* to decide which operations to perform.

There must be a *distinguishing comparison* after which A behaves *differently*.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

 \mathcal{S} : All possible lists L that are treated the same by Algorithm A up till this point

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

 \mathcal{S} : All possible lists L that are treated the same by Algorithm A up till this point

We can build a comparison tree $\mathcal T$ for Algorithm A that starts with all possible L

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

 \mathcal{S} : All possible lists L that are treated the same by Algorithm A up till this point

We can build a comparison tree $\mathcal T$ for Algorithm A that starts with all possible L.

- ▶ in \mathcal{T} , each leaf of \mathcal{T} must represent *one* list;
- ▶ in \mathcal{T} , there must be a leaf for *every possible* list L.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

 \mathcal{S} : All possible lists L that are treated the same by Algorithm A up till this point

We can build a comparison tree \mathcal{T} for Algorithm A that starts with all possible L:

- ▶ in \mathcal{T} , each leaf of \mathcal{T} must represent *one* list;
- \blacktriangleright in \mathcal{T} , there must be a leaf for *every possible* list L.

Otherwise not all distinct lists *L* are processed in a different way.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

Consider a path π in $\mathcal T$ from *root* to a leaf for a specific list L'

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

Consider a path π in $\mathcal T$ from *root* to a leaf for a specific list L'

▶ This path π specifies *all distinguishing comparisons* made by Algorithm A to sort L'.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

Consider a path π in $\mathcal T$ from *root* to a leaf for a specific list L'

- ▶ This path π specifies *all distinguishing comparisons* made by Algorithm A to sort L'.
- ▶ The length of path π is a *lower bound* for the *complexity* to sort L'!

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0...,N) with values 1,...,N in an unknown order.

Consider a path π in $\mathcal T$ from *root* to a leaf for a specific list L'

- ▶ This path π specifies *all distinguishing comparisons* made by Algorithm A to sort L'.
- ▶ The length of path π is a *lower bound* for the *complexity* to sort L'!

What is the worst-case length of path π ? The lengths of paths in $\mathcal T$ depend on the *height of* $\mathcal T$,

 \rightarrow which depends on the *number of leaves* in \mathcal{T} .

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The number of leaves in ${\mathcal T}$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The number of leaves in \mathcal{T} How many distinct lists of length N exist with values $1, \ldots, N$ in an unknown order?

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The number of leaves in $\mathcal T$

How many distinct lists of length N exist with values 1, ..., N in an unknown order?

- N possible values for the first value,
- \triangleright *N* 1 possible values for the second value,
- ▶ ...
- ▶ 1 possible value for the last value.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The number of leaves in $\mathcal T$

How many distinct lists of length N exist with values 1, ..., N in an unknown order?

- N possible values for the first value,
- \triangleright *N* 1 possible values for the second value,
- **.**..
- ▶ 1 possible value for the last value.

$$\prod_{i=1}^{N} i = N! \text{ leaves} \qquad \text{(all possible permutations)}.$$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0...,N) with values 1,...,N in an unknown order.

Consider a path π in $\mathcal T$ from *root* to a leaf for a specific list L'

- ▶ This path π specifies *all distinguishing comparisons* made by Algorithm A to sort L'.
- ▶ The length of path π is a *lower bound* for the *complexity* to sort L'!

What is the worst-case length of path π ? The lengths of paths in $\mathcal T$ depend on the *height of* $\mathcal T$,

 \rightarrow which depends on the *number of leaves N*! in \mathcal{T} .

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves Consider a node n from which we can reach M leaves. How do we make the distance from n to all its leaves minimal?

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves Consider a node n from which we can reach M leaves. How do we make the distance from n to all its leaves minimal?

The left and right child of n each can reach $\frac{M}{2}$ leaves:

→ minimize the size of the tree rooted at both children.

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $\log_2(N!)$.

$$\log_2(N!) = \log_2(N \cdot (N-1) \cdot \dots \cdot 1)$$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $\log_2(N!)$.

$$\log_2(N!) = \log_2(N \cdot (N-1) \cdot \dots \cdot 1)$$

= \log_2(N) + \log_2(N-1) + \dots + \log_2(1)

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $log_2(N!)$.

$$\begin{split} \log_2(N!) &= \log_2(N \cdot (N-1) \cdot \dots \cdot 1) \\ &= \log_2(N) + \log_2(N-1) + \dots + \log_2(1) \\ &\geq \log_2(N) + \log_2(N-1) + \dots + \log_2(\left\lceil \frac{N}{2} \right\rceil) \end{split}$$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $\log_2(N!)$.

$$\begin{split} \log_2(N!) &= \log_2(N \cdot (N-1) \cdot \dots \cdot 1) \\ &= \log_2(N) + \log_2(N-1) + \dots + \log_2(1) \\ &\geq \log_2(N) + \log_2(N-1) + \dots + \log_2(\left\lceil \frac{N}{2} \right\rceil) \\ &\geq \frac{N}{2} \log_2(\frac{N}{2}) \end{split}$$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $\log_2(N!)$.

$$\begin{split} \log_2(N!) &= \log_2(N \cdot (N-1) \cdot \dots \cdot 1) \\ &= \log_2(N) + \log_2(N-1) + \dots + \log_2(1) \\ &\geq \log_2(N) + \log_2(N-1) + \dots + \log_2(\left\lceil \frac{N}{2} \right\rceil) \\ &\geq \frac{N}{2} \log_2(\frac{N}{2}) \\ &= \frac{N}{2} (\log_2(N) - 1) \end{split}$$

We can represent a distinguishing comparison via a comparison tree node Consider sorting lists L[0..., N) with values 1, ..., N in an unknown order.

The *minimal* height of a tree \mathcal{T} with N! leaves We have to find a lower bound on $\log_2(N!)$.

$$\begin{split} \log_2(N!) &= \log_2(N \cdot (N-1) \cdot \dots \cdot 1) \\ &= \log_2(N) + \log_2(N-1) + \dots + \log_2(1) \\ &\geq \log_2(N) + \log_2(N-1) + \dots + \log_2(\left\lceil \frac{N}{2} \right\rceil) \\ &\geq \frac{N}{2} \log_2(\frac{N}{2}) \\ &= \frac{N}{2} (\log_2(N) - 1) \\ &= \frac{N}{2} \log_2(N) - \frac{N}{2} \sim N \log_2(N). \end{split}$$

Assume: We have a list L[0...N) of N distinct values

If Algorithm A is general-purpose, then A will perform at-least $\sim N \log_2(N)$ comparisons for some inputs of N values.

Assume: We have a list L[0...N) of N distinct values

If Algorithm A is general-purpose, then A will perform at-least $\sim N \log_2(N)$ comparisons for some inputs of N values.

If Algorithm A performs less comparisons for *some* inputs, then A will perform more comparisons for *other* inputs.

Assume: We have a list L[0...N) of N distinct values

General-purpose sorting algorithms such as MergeSort are *optimal*: their worst-case complexity matches the lower bound of $\sim N \log_2(N)$.

Consider a list *enrolled* of enrollment data with schema

enrolled(dept, code, sid, date).

If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem

Group enrolled on (dept, code) and within each group sort enrollments on date.

Consider a list *enrolled* of enrollment data with schema

enrolled(dept, code, sid, date).

If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem

Group enrolled on (dept, code) and within each group sort enrollments on date.

Brute-force solution: Lexicographical sorting on (*dept*, *code*, *date*) Let $(d_1, c_1, s_1, t_1), (d_2, c_2, s_2, t_2) \in \text{enrolled}$. We use the comparison

$$(d_1, c_1, s_1, t_1)$$
 before (d_2, c_2, s_2, t_2) if $(d_1 < d_2) \lor ((d_1 = d_2) \land (c_1 < c_2)) \lor$ $((d_1 = d_2) \land (c_1 = c_2) \land (t_1 < t_2)).$

Consider a list *enrolled* of enrollment data with schema

enrolled(dept, code, sid, date).

If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem

Group enrolled on (dept, code) and within each group sort enrollments on date.

Brute-force solution: Lexicographical sorting on (*dept*, *code*, *date*) Let $(d_1, c_1, s_1, t_1), (d_2, c_2, s_2, t_2) \in \text{enrolled}$. We use the comparison

$$(d_1, c_1, s_1, t_1)$$
 before (d_2, c_2, s_2, t_2) if $(d_1 < d_2) \lor ((d_1 = d_2) \land (c_1 < c_2)) \lor$ $((d_1 = d_2) \land (c_1 = c_2) \land (t_1 < t_2)).$

Downside: During sorting, we end up throwing away the existing ordering on *date*, and then we rebuild that order from scratch!

Consider a list *enrolled* of enrollment data with schema

enrolled(dept, code, sid, date).

If we add enrollment data to the end of the list, then enrolled is always sorted on date.

Problem

Group enrolled on (dept, code) and within each group sort enrollments on date.

Better solution: Use a *stable sort algorithm*

A stable sort algorithm maintains the relative order of "equal values".

Let (d_1, c_1, s_1, t_1) , $(d_2, c_2, s_2, t_2) \in$ enrolled. If we sort enrolled using a *stable sort algorithm* using the comparison

$$(d_1, c_1, s_1, t_1)$$
 before (d_2, c_2, s_2, t_2) if $(d_1 < d_2) \lor ((d_1 = d_2) \land (c_1 < c_2))$

then within each (dept, code)-group, enrollments remain ordered on date for free!

Definition

Let *L* be a list that is already ordered with respect to some attributes a_1, \ldots, a_n . Consider a sort step *S* that re-orders *L* based on other attributes b_1, \ldots, b_m .

We say that the sort step S is *stable* if, for every value $r_1 \in L$ and $r_2 \in L$ such that r_1 originally came before r_2 and r_1 and r_2 agreee on attributes b_1, \ldots, b_m , the resulting re-ordered list will still have r_1 come before r_2 .

Definition

Let L be a list that is already ordered with respect to some attributes a_1, \ldots, a_n . Consider a sort step S that re-orders L based on other attributes b_1, \ldots, b_m .

We say that the sort step S is *stable* if, for every value $r_1 \in L$ and $r_2 \in L$ such that r_1 originally came before r_2 and r_1 and r_2 agreee on attributes b_1, \ldots, b_m , the resulting re-ordered list will still have r_1 come before r_2 .

Question: Have we already seen stable sort algorithms?

Yes: SelectionSort, InsertionSort, and MergeSort.

Note: even minor changes to these algorithms will make them non-stable! (e.g., changing < into \le).