화학 General Chemistry 034.020-005

2018 Spring Semester

Tue/Thr 9:30~10:45 Building 028-302

송윤주 woonjusong@snu.ac.kr

Thermodynamics

Thermodynamics: transformation and transfer of energy : two ways in which energy can be transferred.

- Predicts the "direction" of chemical and physical changes at a given temperature. Ex) $H_2O(s) \rightarrow H_2O(s)$ at room temp?

– What is the most stable state of matter?

Systems, States, and Energy 7.1. Systems

- the region in which we are interested
- everything else
- system + surroundings

- Open system: exchanging both matter and energy with the surroundings
 ex) car engines
- **Closed** system: a fixed amount of matter, but exchanging **energy** with the surroundings ex) ice pack
- Isolated system: no contact with the surroundings ex) thermos bottle

7.2. Work and Energy

Force: changes the state of motion of an object (N, kg·m·s $^{-2}$):

Work: the process of moving an object against an opposing force

Work = force X distance (\mathbf{J} , kg·m²·s⁻²)

Energy: the capacity of a system to do work

Internal Energy (U): the total amount of energy in a system

-Absolute value of U cannot be measured.

Change of the internal energy of a system

$$\Delta U = U_{final} - U_{initial}$$

- -Internal energy
 - = Potential energy
 - + Kinetic energy induced by thermal motion of molecules

Work

Work = force X distance (J, $kg \cdot m^2 \cdot s^{-2}$)

For constant Force,

$$w = F \cdot D$$

$$W = \int F \cdot dI$$
along a path

Types of works (w)

Type of work	w	Comment	Units*
expansion	$-P_{ m ex}\Delta V$	$P_{ m ex}$ is the external pressure ΔV is the change in volume	Pa m ³
extension	$f\Delta l$	f is the tension Δl is the change in length	N m
raising a weight	$mg\Delta h$	m is the mass g is the acceleration of free fall Δh is the change in height	kg m·s ⁻² m
electrical	$\phi \Delta q$	ϕ is the electrical potential Δq is the change in charge	V C
surface expansion	$\gamma\Delta A$	γ is the surface tension ΔA is the change in area	$\frac{\text{N}\cdot\text{m}^{-1}}{\text{m}^2}$

⁻Expansion work: the work arising from a change in the volume of a system ex) piston/cylinder

⁻Non-expansion work ex) battery, human body

7.3 Expansion Work

Work =
$$P_{ex}A \times d$$
 Work = force X distance (J, kg·m²·s-²)

$$A \times d = \Delta V$$

$$w = -P_{\rm ex}\Delta V$$

 $\mathbf{w} = energy \ transferred \ \mathbf{to} \ a \ system \ by \ doing \ work;$

negative value!

- Free expansion: $P_{ex} = 0$ (vacuum) $\rightarrow w = 0$
- Unit: $Pa \cdot m^3 = kg \cdot m \cdot s^{-2} \cdot m = kg \cdot m^2 \cdot s^{-2} = J$
- $1L \cdot 1$ atm = 10^{-3} m⁻³ X 101325 Pa = 101.325 Pa·m³ = 101.325 J

$$P = \frac{F}{A}$$
: 4장 참조

$$F(N) = ma: kg X (m/s^2)$$

Area: m^2
 $P = kg X (m/s^2)/m^2 = kg m^{-1} s^{-2}$

Thermodynamic process: Reversible process vs. Irreversible process

Reversible process: a process whose direction can be "reversed" by inducing infinitesimal changes to some property of the system via its surroundings.

Irreversible processes are a result of straying away from the curve, therefore decreasing the amount of overall work done; an irreversible process can be described as a thermodynamic process that leaves equilibrium

Reversible Process

$$\mathrm{d}w = -P\mathrm{d}V$$
 $\mathrm{d}w = -\frac{nRT}{V}\mathrm{d}V$
 $w = -nRT\int_{V_{\mathrm{initial}}}^{V_{\mathrm{final}}} \frac{\mathrm{d}V}{V} = -nRT\mathrm{ln}\frac{V_{\mathrm{final}}}{V_{\mathrm{initial}}}$

Reversible versus irreversible state:

Reversible process:

intermediate state almost remains on the PVT surface **Irreversible process:**

intermediate state do **not** stay on the PVT surface.

Reversible vs Irreversible work

$$P_{int} = P_{ext}$$

Reversible work

$$P_{int} = P_{ext}$$

Irreversible work

(Example)

 Ar gas at room temperature is expanded from 1 liter to 10 liter against external pressure of 1 atm. What is the w?

> Expansion: w < 0Compression: w > 0

Hydrogen gas is expanded from 0.1 liter to 10 liter in vacuum. What is the work done on the gas?

$$P_{ext} = 0$$
 (No external pressure)
 $w = -P_{ext} DV = 0$

Temperature and Heat

Work, Heat: two ways in which energy can be transferred.

Temperature:

Proportional to the kinetic energy of molecules moving in random directions

For ideal gas, KE = 3/2 RT (thermal energy)

Heat: q

Transfer of thermal energy from one region to another

Heat (transfer), q: Energy transferred as a result of a temperature difference

q: Heat transfer

COLD HOT T_2 T_3 T_3

Heat (thermal energy) is transferred from HOT to COLD region until two regions have the same thermal energy

Temperature difference → heat transfer (from hot to cold regions)

- q = the energy transferred to a system as heat
- Unit: J, cal (1 cal = 4.184 J)
 - * food calorie= Cal= kcal

Work and heat are the different form of energy

Work: energy associated with overall directed motion of molecules.

Heat: energy associated with random motion of molecules.

7.5 The Measurement of Heat

- Exothermic process vs. Endothermic process

$$2AI(s) + Fe_2O_3(s)$$

 $\rightarrow 2Fe(s) + AI_2O_3(s)$

 $Ba(OH)_2 \cdot 8H_2O(s)$

+ 2NH₄SCN(s)

 \rightarrow Ba(SCN)₂(aq)

 $+ 2NH_3(aq) + 10H_2O(l)$

- Adiabatic: q = 0 (Not an isolated system: Δ Internal Energy (Δ U) = w)
- Diathermic: $q \neq 0$
 - Heat capacity (C)

$$C = \frac{heat \ supplied}{temperature \ rise \ produced} = \frac{q}{\Delta T}$$

- Measurement of heat and heat capacity (calorimeter)

IADLL 0.2				
The Specific Heats of Some Common Substances				
Substance	Specific Heat (J/g · °C)			
Al	0.900			
Au	0.129			
C (graphite)	0.720			
C (diamond)	0.502			
Cu	0.385			
Fe	0.444			
Hg	0.139			
H_2O	4.184			
C ₂ H ₅ OH (ethanol)	2.46			

TABLE 6.2

Material	Specific heat capacity (J·(°C) ⁻¹ ·g ⁻¹)	Molar heat capacity (J⋅K ⁻¹ ⋅mol ⁻¹)		
air	1.01	_		
benzene	1.05	136		
brass	0.37	1 		
copper	0.38	33		
ethanol	2.42	111		
glass (Pyrex)	0.78	_		
granite	0.80	, _		
marble	0.84	_		
polyethylene	2.3	_		
stainless steel	0.51	_		
water: solid	2.03	37		
liquid	4.184	75		
vapor	2.01	34		

Specific heat capacity
$$(C_s) = C/m$$

Molar heat capacity $(C_m) = C/n$

$$q = C\Delta T = mC_s\Delta T$$
$$= nC_m\Delta T$$

Calculate the **heat** required to increase 20.0 °C from room temperature of (a) water 100g, (b) water 2.00 mol

7.6 The 1st Law of Thermodynamics

The 1st law of thermodynamics

$$\Delta U (\Delta E) = q + w$$
 where, $U = internal\ energy\ of\ a\ system$

It is applicable to any process that begins and ends in equilibrium state

- Other formal states of the 1st law are:
- Although energy assumes many forms, the total quantity of energy is constant, and when energy disappears in one form it appears simultaneously in other forms.
- 2. All the energies received turned into the energy of the system.
- 3. The total energy of an isolated system is constant.

State function vs. Path function

- → State function: a property that depends only on the current state of the system and is independent of how the state was prepared.
- → Path function: a property depends on the path taken to reach one state from another. ↑ ♠ ♠ ♠ ↑ □

 \rightarrow Although **q** and **w** are path functions, $\Delta U = q + w$ is a state function.

For the **all ideal gases**, $\Delta U = 0$ for isothermal processes including expansion/compression.

- Move at the same average speed; kinetic energy remains the same.
- No interaction between the molecules: no change in potential energy

For gas expansion,

Suppose that 1.00 mol of ideal gas molecules at an initial pressure of 3.00 atm and 292 K expands against a constant external pressure of 1.20 atm from 8.00 L to 20.00 L by two different paths.

- (a) Path A is an isothermal, reversible expansion.
- (b) Path B, a hypothetical alternative to path A, has two steps: In step 1, the gas is cooled at constant volume until its pressure has fallen to 1.20 atm. In step 2, it is heated and allowed to expand against a constant pressure of 1.20 atm until its volume is 20.00 L and T = 292 K. Determine for each path the work done (w), the heat transferred (q), and the change in internal energy (ΔU).

For gas expansion,

$$dw = -PdV$$

$$dw = -\frac{nRT}{V}dV$$

$$w = -nRT \int_{V_{\text{initial}}}^{V_{\text{final}}} \frac{dV}{V} = -nRT \ln \frac{V_{\text{final}}}{V_{\text{initial}}}$$

$$|w_{rev}| > |w_{irrev}|$$

 $|\Delta U_{rev}| = |\Delta U_{irrev}| = 0$
 $|q_{rev}| > |q_{irrev}|$

In Chapter 4: The Kinetic Model of Gases

for 1 mol of ideal gas,

$$\overline{E_k} = \frac{1}{2} \frac{1}{M} \frac{\sqrt{v^2}}{v^2} = \frac{3}{2} RT$$

for each molecule,

$$\overline{E_k} = \frac{1}{2} m \overline{v^2} = \frac{3}{2} k_B T$$
mass of an atom

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{M}}$$

• Physical meaning of temperature:

$$T = (2/3R) (KE)$$
:

"Temperature is a measure of random kinetic energy"

High-temperature → Molecules move faster Low-temperature → Molecules move slower With absolute zero temperature → Molecules do not move at all.

7.7 A Molecular Interlude: The Origin of Internal Energy

(= kinetic energy)

(a)

(c)

Equipartition theorem*

 $k_{\rm B}$: Boltzmann's constant

R: gas constant

N_A: Avogadro's constant

Monatomic ideal gas (translational motion)

$$U = \frac{3}{2} k_B T \times N_A = \frac{3}{2} RT$$

Linear ideal gas (translational + rotational)

$$U = \left(\frac{3}{2} k_B T + \frac{2}{2} k_B T\right) \times N_A = \frac{5}{2} RT$$

Nonlinear ideal gas (translational + rotational)

$$U = \left(\frac{3}{2} k_B T + \frac{3}{2} k_B T\right) \times N_A = 3RT$$

Q. Estimate the contribution of motion to the molar **internal energy** of (a) water vapor (b) acetylene (HCCH, C_2H_2) (c) Ar at 25 °C

- water: nonlinear molecule

- acetylene: linear molecule

- Ar: monatomic gas

Enthalpy

7.8. Heat Transfers at Constant Pressure

- For **isochoric** process (**constant volume**), if no work other than PV work (=non-expansion work) is done,

$$w = \int P \, dV = 0$$

$$\therefore \Delta U = q + w = q$$

- For **isobaric** process (constant **pressure**), if no work other than PV work is

$$\Delta U = q + w = q - P\Delta V$$

$$\therefore q = \Delta U + P\Delta V = \Delta (U + PV)$$

Most of chemical reactions that we are interested in occur at 1 atm (constant pressure).

For example,

Heating: Heat transfer to the system (q) When gas is generated,

- -the gas pushes the air above the liquid
- -work by expansion (even without the piston): w < 0
- -internal energy: $\Delta U = q + w$

We need a new state function!

Enthalpy

$$q = \Delta U + P\Delta V = \Delta (\boldsymbol{U} + \boldsymbol{P}\boldsymbol{V})$$

Most chemical reactions are done under **constant (usually 1 atm) pressure.** We define <u>another state function</u>, H, enthalpy:

$$H = U + PV$$

Physical meaning of enthalpy:

the work done is entirely PV-work (expansion), the external pressure is constant (isobaric), mechanical equilibrium with internal pressure,

$$\Delta H = \Delta (U + PV) = \Delta U + \Delta (PV)$$

$$= \Delta U + \Delta PV + P\Delta V$$

$$= (q_p - P_{ext} \Delta V) + 0 + P\Delta V$$

$$= +q_p + (P - P_{ext}) \Delta V = +q_p$$

$$q_p = \Delta H = nC_p \Delta T$$

* The enthalpy change under constant p is the q_p

- Most chemical reactions take place at a constant pressure at about 1 atm.

Exothermic reaction ($\Delta H < 0$)

$$Zn(s) + I_2(s) \rightarrow ZnI_2(s)$$
 $\Delta H = -208 \, kJ/mol$

Endothermic reaction ($\Delta H > 0$)

$$NH_4NO_3(s) \rightarrow NH_4NO_3(aq)$$
 $\Delta H = +100 \, kJ/mol$

$$q_p = \Delta H = nC_p \Delta T$$

7.9. Heat Capacities at const V and const P

$$C \equiv \frac{q}{\Delta T}$$

$$C_V = \frac{\Delta U}{\Delta T} = \left(\frac{\partial U}{\partial T}\right)_V$$

$$\Delta U = q + w = q$$

$$C_P = \frac{\Delta H}{\Delta T} = \left(\frac{\partial H}{\partial T}\right)_P$$

$$\Delta H = q$$

C_P vs C_V for *ideal gases*

$$C_P = \frac{\Delta H}{\Lambda T} = \frac{\Delta (U + PV)}{\Lambda T} = \frac{\Delta (U + nRT)}{\Lambda T} = C_V + nR$$

$$\therefore C_{P,m} = C_{V,m} + R$$

At constant pressure, not all the heat supplied is used to raise the temperature: some returns to the surroundings as expansion work. In contrast, at constant volume, all the heat energy is used to increase the temperature of the system: lower heat capacity!

7.10. A Molecular Interlude: The Origin of the Heat Capacities of Gases

	Atoms	Linear molecules	Nonlinear molecules
$C_{v,\mathfrak{m}}$	$\frac{3}{2}R$	$\frac{5}{2}R$	3 <i>R</i>
$C_{P,\mathfrak{m}}$	$\frac{5}{2}R$	$\frac{7}{2}R$	4R

Example

Calculate the final temperature and the change in internal energy when 500 J of energy is transferred as heat to 0.900 mol O_2 (g) at 298 K and 1.00 atm at (a) constant volume; (b) constant pressure. Treat the gas as ideal

1) O₂: atoms? **Linear molecules**? Nonlinear molecules?

2)
$$C_V = \frac{\Delta U}{\Delta T} = 5/2 \text{R} = 20.79 \text{ J K}^{-1} \text{ mol}^{-1}$$
 $C_p = \frac{\Delta H}{\Delta T} = 7/2 \text{R} = 29.10 \text{ J K}^{-1} \text{ mol}^{-1}$

3)
$$C = \frac{q}{\Delta T}$$
; $\Delta T = \frac{q}{C}$

7.11. The Enthalpy of Physical Change

7.12. Heating Curves

Enthalpy of vaporization

$$\Delta H_{vap} = H(vapor) - H(liquid)$$

Enthalpy of fusion

$$\Delta H_{fus} = H(liquid) - H(solid)$$

Enthalpy of sublimation

$$\Delta H_{sub} = H(vapor) - H(solid)$$

State function

$$\Delta H_{reverse\ process} = -\Delta H_{forward\ process}$$

$$\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap}$$

Usually at constant pressure:

heat transfer

= change in enthalpy

Heating Curve (constant P, heating at constant velocity)

- 1. The slope → heat capacity
- 2. No temp change during melting/vaporizing

Enthalpy of Chemical Change 7.13. Reaction Enthalpies

Thermochemical equation

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) + 890kJ$$

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = -890kJ$

Reverse reaction

$$CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(l) \qquad \Delta H = +890kJ$$

For reactions in liquids and solids only, $\Delta H \approx \Delta U$ (almost no expansion) For reactions in which gases are generated, H = U + PV

$$\Delta H = H_f - H_i = \Delta U + (n_f - n_i)RT$$

Some of the energy is used for expansion when $n_f-n_i > 0$.

The difference between H and U. How do they differ in numbers?

Solids:

 $CaCO_3(calcite) \rightarrow CaCO_3 (aragonite)$

 DU_m =+0.21 kJ/mole, density of calcite = 2.71 g/mL, density of aragonite = 2.93 g/mL,

$$\Delta H_m = \Delta (U_m + PV) = \Delta U_m + \Delta (PV)$$
$$= \Delta U_m + P\Delta V_m = \Delta U_m + P(V_m(c) - V_m(a))$$

 $V_m(c)$ = molar volume of calcite = (molar mass of calcite) / density of calcite $V_m(a)$ = molar volume of aragonite = (molar mass of aragonite) / density of aragonite

$$\Delta H_m = \Delta (U_m + PV) = \Delta U_m + \Delta (PV) = 0.21 kJ / mole + (-0.3J / mole) \cong 0.21 kJ / mole$$

U and H are almost the same for solids !!!!

7.14. Standard Reaction Enthalpies

Physical states of the reactants and products

$$CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(g)$$
 $\Delta H = -802 \ kJ$
 $-CH_{4}(g) + 2O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(l)$ $\Delta H = -890 \ kJ$
 $2H_{2}O(l) \rightarrow 2H_{2}O(g)$ $\Delta H = 88 \ kJ$
 $2H_{2}O(g) \rightarrow 2H_{2}O(l)$ $\Delta H = -88 \ kJ$

Standard state: pure form at exactly 1 bar (1bar = 10⁵ Pa) (for solute in a liquid solution: 1 M)

Standard reaction enthalpy

$$(\Delta H^o) = H^o(product) - H^o(reactant)$$
 (generally at 298.15 K=25 °C)

Hess's Law

- For a given reaction, A → D, reaction enthalpy, ΔH, can be obtained by:
- a. Express the chemical reaction as a multiple steps of reactions with known DH's:
- b. Reaction enthalpy of the given reaction is the sum of the reaction enthalpies of these steps of reactions:

In other words, enthalpy is a state function.

Characteristics of enthalpy changes

1. If a reaction is reversed, ΔH is also reversed.

$$N_2(g) + O_2(g) \rightarrow 2NO(g) DH = 180 kJ$$

 $2NO(g) \rightarrow N_2(g) + O_2(g) DH = -180 kJ$

2. If the coefficients of a reaction are multiplied by an integer, Δ H is multiplied by that same integer.

$$Xe(g) + 2 F_2(g) \longrightarrow XeF_4(s)$$
 $H = -251 \text{ kJ}$
 $XeF_4(s) \longrightarrow Xe(g) + 2 F_2(g)$ $H = +251 \text{ kJ}$
 $2 Xe(g) + 4 F_2(g) \longrightarrow 2 XeF_4(s)$

7.15. Combining Reaction Enthalpies: Hess's Law

$$C(gr) + \frac{1}{2} O_2(g) \to CO(g) \qquad \Delta H^o = -101.5 \ kJ$$

$$+ CO(g) + \frac{1}{2} O_2(g) \to CO_2(g) \qquad \Delta H^o = -283.0 \ kJ$$

$$C(gr) + O_2(g) \to CO_2(g) \qquad \Delta H^o = ? \ kJ$$

Example

Calculate the standard enthalpy change of the following reaction,

$$3C(gr) + 4H_2(g) \rightarrow C_3H_8(g)$$

Using

$$C_3H_8(g) + 5O_2(g) \to 3CO_2(g) + 4H_2O(l)$$
 $\Delta H^o = -2220 \ kJ$ $C(gr) + O_2(g) \to CO_2(g)$ $\Delta H^o = -394 \ kJ$ $H_2(g) + \frac{1}{2}O_2 \to H_2O(l)$ $\Delta H^o = -286 \ kJ$

7.16. Standard Enthalpies of Formation

- Standard enthalpy of formation, ΔH_f^o

: ΔH per mole of product formed from its elements in their most stable forms

-Examples

(1)
$$2C(gr) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l)$$
 $\Delta H^o = -278 \ kJ$
 $\rightarrow \Delta H_f^o(C_2H_5OH(l)) = -278 \ kJ/mol$

(2)
$$C(gr) \to C(dia)$$
 $\Delta H^o = 1.9 \ kJ$ $\Rightarrow \Delta H_f^o(C(gr)) = 0 \frac{kJ}{mol}, \Delta H_f^o(C(dia)) = 1.9 \ kJ/mol$

Substance	Formula	$\Delta H_{ m f}^{ m o}$	Substance	Formula	$\Delta H_{ m f}^{\circ}$
Inorganic compounds			Organic comp	oounds	
ammonia carbon dioxide carbon monoxide dinitrogen tetroxide hydrogen chloride hydrogen fluoride nitrogen dioxide nitric oxide sodium chloride water	NH ₃ (g) CO ₂ (g) CO(g) N ₂ O ₄ (g) HCl(g) HF(g) NO ₂ (g) NO(g) NaCl(s) H ₂ O(l) H ₂ O(g)	-46.11 -393.51 -110.53 +9.16 -92.31 -271.1 +33.18 +90.25 -411.15 -285.83 -241.82	benzene ethanol ethyne (acetylene) glucose methane	$C_6H_6(l)$ $C_2H_5OH(l)$ $C_2H_2(g)$ $C_6H_{12}O_6(s)$ $CH_4(g)$	+49.0 -277.69 +226.73 -1268 -74.81
	2 - (8)				Enthalpy

- According to the Hess's Law

$$\Delta H^{o} = \sum_{products} n \Delta H_{f}^{o} - \sum_{reactants} n \Delta H_{f}^{o}$$

Review of Thermodynamics: System and Surrounding

1st law of thermodynamics: total energy, U is a STATE FUNCTION.

Review of Thermodynamics: Enthalpy

$$H = U + PV$$

Consider a chemical reaction occurring at constant external pressure, P_{ext}.

$$\Delta H_{sys} = \Delta (U + PV)$$

$$= \Delta U + P\Delta V$$

$$= q + w + P\Delta V$$

$$= q - P_{ext}\Delta V + P\Delta V$$

$$= q + (P - P_{ext})\Delta V$$

If the system is mechanically in equilibrium, $P = P_{ext}$,

$$\Delta H_{sys} = q$$