Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 4 —

Slides Courtesy of Textbook

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Usage
- Data Warehouse Implementation
- Summary

What is a Data Warehouse?

- Defined in many different ways, but not rigorously.
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Constructed for Subjects: Organized around major subjects, such as customer, product
- Constructed for Decision Making: Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing
- Constructed to be Simple and Concise: Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated

- Data Integration: Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data Preprocessing: Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- Historic Perspective: The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Time Related: Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

OLAP : Online Analytic Process

OLTP: Transaction

Data Warehouse—Nonvolatile

- Independence: A physically separate store of data transformed from the operational environment. Keep in high performance for both systems (OLTP vs. OLAP)
- Static Status: Operational update of data does not occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs. OLAP

transactional (OLTP) and analytical (OLAP)

Front

Backend

OLTP vs. OLAP

CS411: Transaction update

cs412: Anal	ysis Read
-------------	-----------

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated
usage	repetitive	ad-hoc
access	read/write index/hash on prim. key	lots of scans
unit of work	short, simple transaction	complex query
# records accessed	tens	millions
DB size	100MB-GB	100GB-TB

Why a Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - <u>data consolidation</u>: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - <u>data quality</u>: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
- Note: There are more and more systems which perform OLAP analysis directly on relational databases

Data Warehouse: A Multi-Tiered Architecture

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP

- Data Warehouse Usage
- Data Warehouse Implementation
- Summary

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube is a multidimensional generalization of data spreadsheet.
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
 - **Dimension tables**, such as item (item_name, brand, type), or time(day, week, month, quarter, year)

Data Cuboid

- A data cuboid is a subset of data cube.
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - <u>Snowflake schema</u>: A refinement of star schema where some dimensional hierarchy is <u>normalized</u> into a set of smaller dimension tables, forming a shape similar to snowflake
 - <u>Fact constellations</u>: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Star Schema

Example of **Snowflake Schema**

Example of Fact Constellation

A Concept Hierarchy: **Dimension** (location)

Data Cube Measures: Three Categories

- <u>Distributive</u>: if the result derived by applying the function to n
 aggregate values is the same as that derived by applying the
 function on all the data without partitioning
 - E.g., Count(), Sum()
- Algebraic: if it can be computed by an algebraic function with M
 arguments (where M is a bounded integer), each of which is
 obtained by applying a distributive aggregate function
 - E.g., Avg(), Min_N()

[3.0,28] [3.2,40]

[GPA, count]

- Holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., Median(), Mode()

3.2

3.1

Median

Data Cube Measures: Three Categories

- Evaluate functions below and tell whether they are distributive, algebraic or holistic.
 - Min(), Max()
- What about this?
 - Standard_Deviation()
- What about this?
 - Rank()

View of Warehouses and Hierarchies

Specification of hierarchies

Schema hierarchy

day

< {month < quarter; week}

< year

Set_grouping hierarchy

{1...10} < inexpensive

Power Pivot

Where can you see such an interface? Excel?

A Sample Data Cube

Cube: A Lattice of Cuboids

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its backend relational tables (using SQL)

OLAP Operations: Roll up

OLAP Operations: Drill down

OLAP Operations: Slice

OLAP Operations: Dice

OLAP Operations: Pivot

Change Perspectives

Browsing a Data Cube

- Visualization
- OLAP capabilities
- Interactive manipulation

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Usage
- Data Warehouse Implementation
- Summary

Data Warehouse Usage

Information processing

 supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs

Analytical processing

- multidimensional analysis of data warehouse data
- supports basic OLAP operations, slice-dice, drilling, pivoting

Data mining

- knowledge discovery from hidden patterns
- supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Design and Usage
- Data Warehouse Implementation

Summary

Efficient Data Cube Computation

Motivation: People expect high efficiency when querying data information

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube with L levels?

$$T = \prod_{i=1}^{n} (L_i + 1)$$

Efficient Data Cube Computation

- How many cuboids are there?
 - Sales volume as a function of product, month, and region

Data Cube Materialization

Materialization of data cube

Materialize <u>every</u> (cuboid) (full materialization), <u>none</u> (no materialization), or <u>some</u> (partial materialization)

- Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.

The "Compute Cube" Operator

Cube definition and computation in DMQL

```
define cube sales [item, city, year]: sum (sales_in_dollars)
compute cube sales
```

• Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.'96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year

Need compute the following Group-Bys

(date, product, customer),
(date, product), (date, customer), (product, customer),
(date), (product), (customer)

Efficient Processing OLAP Queries

- **Determine which operations** should be performed on the available cuboids
- **Determine which materialized cuboid(s)** should be selected for OLAP op.
 - Let the query to be processed be on {brand, province_or_state} with the condition "year = 2004", and there are 4 materialized cuboids available:
 - 1) {year, item_name, city}
 - 2) {year, brand, country}
 - 3) {year, brand, province_or_state}
 - 4) {item_name, province_or_state} where year = 2004

Which should be selected to process the query?

Explore indexing structures and compressed vs. dense array structs in MOLAP

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
- Data Warehouse Modeling: Data Cube and OLAP
- Data Warehouse Usage
- Data Warehouse Implementation

Summary

- Data warehousing: A multi-dimensional model of a data warehouse
 - A data cube consists of dimensions & measures
 - Star schema, snowflake schema, fact constellations
 - OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Data Warehouse Architecture and Usage
 - Multi-tiered architecture
 - Business analysis design framework
 - Information processing, analytical processing, data mining
- Implementation: Efficient computation of data cubes
 - Partial vs. full vs. no materialization
 - Indexing OALP data: Bitmap index and join index
 - OLAP query processing

Chapter 4: Data Warehousing and On-line Analytical Processing

- Data Warehouse: Basic Concepts
 - (a) What Is a Data Warehouse?
 - (b) Data Warehouse: A Multi-Tiered Architecture
- Data Warehouse Modeling: Data Cube and OLAP
 - (a) Cube: A Lattice of Cuboids
 - (b) Conceptual Modeling of Data Warehouses
 - (c) Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Databases
 - (d) Dimensions: The Role of Concept Hierarchy
 - (e) Measures: Their Categorization and Computation
 - (f) Cube Definitions in Database systems
 - (g) Typical OLAP Operations
 - (h) A Starnet Query Model for Querying Multidimensional Databases
- Data Warehouse Usage
 - (a) Design of Data Warehouses: A Business Analysis Framework
 - (b) Data Warehouse Usage
- Data Warehouse Implementation
 - (a) Efficient Data Cube Computation: Cube Operation, Materialization of Data Cubes, and Iceberg Cubes
 - (b) Indexing OLAP Data: Bitmap Index and Join Index
 - (c) Efficient Processing of OLAP Queries
- Summary