18) Ridge Regression and Least Absolute Shrinkage and Selection Operator (LASSO)

Vitor Kamada

January 2020

Tables, Graphics, and Figures from:

1) An Introduction to Statistical Learning

James et al. (2017): Ch 6.2

2) The Elements of Statistical Learning

Hastie et al. (2017): Ch 3.3, and 3.4

Vitor Kamada ECO 7100 Econometrics I January 2020

Stamey et al. (1989)

Y: log of Prostate-Specific Antigen

Icavol: log cancer volume

lweight: log prostate weight

lbph: log of the amount of benign prostatic

hyperplasia

svi: seminal vesicle invasion

Icp: log of capsular penetration

gleason: Gleason score

pgg45: Gleason scores 4 or 5

Tenfold Cross-Validation

Term	LS	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
gleason	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164
		4	u	E = 1040

Best-Subset Selection (Prostate Cancer)

Ridge Coefficients for the Prostate Cancer

Ridge Regression

$$\sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij})^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})^{2}}}$$

$$\frac{\|\hat{\beta}_{\lambda}^{R}\|_{2}}{\|\hat{\beta}\|_{2}}$$

$$\|\beta\|_{2} = \sqrt{\sum_{j=1}^{p} \beta_{j}^{2}}$$

Vitor Kamada ECO 7100 Econometrics I January 2020 7 / 17

Ridge Regression - Matrix Form

$$RSS(\lambda) = (y - X\beta)^{T} (y - X\beta)^{T} + \lambda \beta^{T} \beta$$

$$\hat{\beta}^{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

Vitor Kamada ECO 7100 Econometrics I January 2020 8/17

Credit Data Set

Ridge: Squared Bias (Black), Variance (Green), and Test Mean Squared Error (Pink)

Least Absolute Shrinkage and Selection Operator (LASSO)

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\frac{\|\hat{\beta}_{\lambda}^{L}\|_{1}}{\|\hat{\beta}\|_{1}}$$

$$||\beta||_1 = \Sigma |\beta_j|$$

The Standardized Lasso Coefficients

$|eta_1|+|eta_2|\leq s$ and $eta_1^2+eta_2^2\leq s$

Vitor Kamada ECO 7100 Econometrics I January 2020 13 / 1

45 Xs related to Y: Lasso (Solid) vs Ridge (Dotted)

Squared Bias (Black), Variance (Green), and Test MSE (Pink)

Only 2 Xs are related to the Y

Squared Bias (Black), Variance (Green), and Test MSE (Pink)

n = p and X a Diagonal Matrix with 1's

$$\sum_{j=1}^{p} (y_j - \beta_j)^2$$

$$\hat{\beta}_j = y_j$$

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\hat{\beta}_j^L = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2 \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2 \\ 0 & \text{if } |y_j| \le \lambda/2 \end{cases}$$

Vitor Kamada ECO 7100 Econometrics I January 2020 16 / 17

Ridge and Lasso Regression

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$\hat{\beta}_j^R = y_j / (1 + \lambda)$$

