CMP_SC 3050: Heaps

Rohit Chadha

September 4, 2014

Heaps

A heap is a nearly complete binary tree:

- The tree is completely filled except at the lowest level
- At the lowest level, the tree must be filled from the left upto a point

In addition, a heap must satisfy one of the following properties

Max-heap property: The value stored at every node must be greater than the value stored in its children

OR

Min-heap property: The value stored at every node must be less than the value stored in its children

Example

 First consider the case that at only one node the value stored is less than its children

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children
- The resulting tree may not be a heap, but the error occurs at a lower level

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children
- The resulting tree may not be a heap, but the error occurs at a lower level
- Continue until you get a proper heap

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children
- The resulting tree may not be a heap, but the error occurs at a lower level
- Continue until you get a proper heap

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children
- The resulting tree may not be a heap, but the error occurs at a lower level
- Continue until you get a proper heap
- This procedure is called MAX-HEAPIFY

- First consider the case that at only one node the value stored is less than its children
- Swap the value at this node with the larger value of its children
- The resulting tree may not be a heap, but the error occurs at a lower level
- Continue until you get a proper heap
- This procedure is called MAX-HEAPIFY
- What is the time complexity of Max-Heapify?
 - At each level the procedure spends a constant amount of time
 - ► Hence the running time is O(h) if h is the height of the error

Now, there might be more than one errors

- Now, there might be more than one errors
- Start at the bottom of the tree

- Now, there might be more than one errors
- Start at the bottom of the tree
- There are no errors there

- Now, there might be more than one errors
- Start at the bottom of the tree
- There are no errors there
- Go one level up, fix the errors at this height starting from right to left

- Now, there might be more than one errors
- Start at the bottom of the tree
- There are no errors there
- Go one level up, fix the errors at this height starting from right to left
- Keep going up..
- This procedure is called Build-Max-Heap

Example: Build-Max-Heap

Example: Build-Max-Heap

• MAX-HEAPIFY takes O(h) times on nodes at height h

- MAX-HEAPIFY takes O(h) times on nodes at height h
- There are $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h

7 / 17

- MAX-HEAPIFY takes O(h) times on nodes at height h
- There are $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h
- Therefore, the total cost of BUILD-MAX-HEAP is

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n) \sum_{h=0}^{\lfloor \log n \rfloor} O(\frac{h}{2^h})$$

*Time complexity of BUILD-MAX-HEAP

- MAX-HEAPIFY takes O(h) times on nodes at height h
- There are $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h
- Therefore, the total cost of Build-Max-Heap is

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n) \sum_{h=0}^{\lfloor \log n \rfloor} O(\frac{h}{2^h})$$

But

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} < 2$$

- MAX-HEAPIFY takes O(h) times on nodes at height h
- There are $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h
- Therefore, the total cost of Build-Max-Heap is

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n) \sum_{h=0}^{\lfloor \log n \rfloor} O(\frac{h}{2^h})$$

But

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} < 2$$

• Thus Max-Heapify takes O(n) time

*Time complexity of BUILD-MAX-HEAP

- MAX-HEAPIFY takes O(h) times on nodes at height h
- There are $\lceil \frac{n}{2^{h+1}} \rceil$ nodes of height h
- Therefore, the total cost of Build-Max-Heap is

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n) \sum_{h=0}^{\lfloor \log n \rfloor} O(\frac{h}{2^h})$$

But

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} < 2$$

- Thus Max-Heapify takes O(n) time
- You should know the result

 A heap of size n can be implemented as an array of size n

- A heap of size n can be implemented as an array of size n
- We will traverse the whole heap from top level to bottom level, going from left to right at each individual level

- A heap of size n can be implemented as an array of size n
- We will traverse the whole heap from top level to bottom level, going from left to right at each individual level
- The node visited at the *i*-th step will be stored at the *i*-th location

- A heap of size *n* can be implemented as an array of size n
- We will traverse the whole heap from top level to bottom level, going from left to right at each individual level
- The node visited at the *i*-th step will be stored at the i-th location

- A heap of size n can be implemented as an array of size n
- We will traverse the whole heap from top level to bottom level, going from left to right at each individual level
- The node visited at the *i*-th step will be stored at the *i*-th location
- We did this for heaps, but we can do the same thing for every nearly complete binary tree

- A heap of size n can be implemented as an array of size n
- We will traverse the whole heap from top level to bottom level, going from left to right at each individual level
- The node visited at the *i*-th step will be stored at the *i*-th location
- We did this for heaps, but we can do the same thing for every nearly complete binary tree
 - Infact, we can consider any array as a nearly complete binary tree!

Arrays as nearly complete binary trees


```
Root of the tree =A[1]

Left child of A[i] = A[2i]

Right child of A[i] = A[2i+1]

Parent of A[i] = A[\lfloor \frac{i}{2} \rfloor]
```

Arrays as nearly complete binary trees

Root of the tree =A[1]Left child of A[i] = A[2i]Right child of A[i] = A[2i+1]Parent of $A[i] = A[\lfloor \frac{i}{2} \rfloor]$

Arrays as nearly complete binary trees

Root of the tree
$$=A[1]$$

Left child of $A[i] = A[2i]$
Right child of $A[i] = A[2i+1]$
Parent of $A[i] = A[\lfloor \frac{i}{2} \rfloor]$

$$\begin{array}{lll} \mathrm{LEFT}[i] & = & 2i \\ \mathrm{RIGHT}[i] & = & 2i+1 \\ \mathrm{PARENT}[i] & = & \left\lfloor \frac{i}{2} \right\rfloor \end{array}$$

Pseudocode for MAX-HEAPIFY

```
MAX-HEAPIFY (A, i, n)

l = \text{Left}(i)

r = \text{Right}(i)

if l \le n and A[l] > A[i]

largest = l

else largest = i

if r \le n and A[r] > A[largest]

largest = r

if largest \ne i

exchange A[i] with A[largest]

MAX-HEAPIFY (A, largest, n)
```

Makes the subtree rooted at A[i] a heap if the subtrees rooted at A[LEFT(i)] and A[RIGHT(i)] are heaps

Pseudocode for Build-Max-Heap

BUILD-MAX-HEAP
$$(A, n)$$

for $i = \lfloor n/2 \rfloor$ downto 1
MAX-HEAPIFY (A, i, n)

Makes the nearly complete binary tree stored in A[1...n] a heap

An application of Heaps: Sorting

Given an array, the Heapsort algorithm on an array A of size n acts as follows:

• Convert array A into a heap A (use BUILD-MAX-HEAPIFY)

An application of Heaps: Sorting

Given an array, the Heapsort algorithm on an array A of size n acts as follows:

- Convert array A into a heap A (use Build-Max-Heapify)
- The root is the maximum element. Swap it with the element in the last position in the array.

- Convert array A into a heap A (use Build-Max-Heapify)
- The root is the maximum element. Swap it with the element in the last position in the array.
- The maximum is in the correct place

- Convert array A into a heap A (use Build-Max-Heapify)
- The root is the maximum element. Swap it with the element in the last position in the array.
- The maximum is in the correct place
- The new A[1..n-1] is a nearly complete binary tree

- Convert array A into a heap A (use Build-Max-Heapify)
- The root is the maximum element. Swap it with the element in the last position in the array.
- The maximum is in the correct place
- ullet The new $A[1 \dots n-1]$ is a nearly complete binary tree
- The A[1..n-1] is also almost a heap except that the root may be smaller than its children

- Convert array A into a heap A (use Build-Max-Heapify)
- The root is the maximum element. Swap it with the element in the last position in the array.
- The maximum is in the correct place
- The new A[1...n-1] is a nearly complete binary tree
- The A[1..n-1] is also almost a heap except that the root may be smaller than its children
- ullet Call Max-Heapify to make $A[1 \dots n-1]$ a heap

- Convert array A into a heap A (use BUILD-MAX-HEAPIFY)
- The root is the maximum element. Swap it with the element in the last position in the array.
- The maximum is in the correct place
- ullet The new $A[1 \dots n-1]$ is a nearly complete binary tree
- The A[1..n-1] is also almost a heap except that the root may be smaller than its children
- ullet Call Max-Heapify to make $A[1 \dots n-1]$ a heap
- Repeat until only one node remains remains

Н	EAPSORT (A, n)	cost	times
1	Build-Max-Heap (A, n)		
2	for $i = n$ downto 2		
3	exchange $A[1]$ with $A[i]$		
4	Max-Heapify $(A, 1, i - 1)$		

H	EAPSORT (A, n)	cost	times
1	Build-Max-Heap (A, n)	O(n)	1
2	for $i = n$ downto 2		
3	exchange $A[1]$ with $A[i]$		
4	MAX-HEAPIFY $(A, 1, i - 1)$		

Н	EAPSORT (A, n)	cost	times
1	Build-Max-Heap (A, n)	O(n)	1
2	for $i = n$ downto 2	O(1)	n-1
3	exchange $A[1]$ with $A[i]$		
4	MAX-HEAPIFY $(A, 1, i - 1)$		

H	EAPSORT (A, n)	cost	times
1	Build-Max-Heap (A, n)	O(n)	1
2	for $i = n$ downto 2	O(1)	n-1
3	exchange $A[1]$ with $A[i]$	O(1)	n-1
4	Max-Heapify $(A, 1, i - 1)$		

HEAPSORT(A, n)		cost	times
1	Build-Max-Heap (A, n)	O(n)	1
2	for $i = n$ downto 2	O(1)	n-1
3	exchange $A[1]$ with $A[i]$	O(1)	n-1
4	Max-Heapify $(A, 1, i-1)$	$O(\log n)$	n-1

Н	EAPSORT (A, n)	cost	times
1	Build-Max-Heap (A, n)	O(n)	1
2	for $i = n$ downto 2	O(1)	n-1
3	exchange $A[1]$ with $A[i]$	O(1)	n-1
4	MAX-HEAPIFY $(A, 1, i-1)$	$O(\log n)$	n-1

Heapsort takes $O(n \log n)$ time

A new data structure: Max Priority Queues

- Like stacks, queues and lists, maintains a dynamic set
- Each element has a key. May have other data

Operations

INSERT (A, x): inserts element x into priority queue A

MAXIMUM(A): returns element of A with largest key

EXTRACT-MAX(A): removes and returns element of A with

largest key

INCREASE-KEY(A, x, k): increases value of element x's key to k

A new data structure: Max Priority Queues

- Like stacks, queues and lists, maintains a dynamic set
- Each element has a key. May have other data

Operations

INSERT(A, x): inserts element x into priority queue A

MAXIMUM(A): returns element of A with largest key

EXTRACT-MAX(A): removes and returns element of A with

largest key

INCREASE-KEY(A, x, k): increases value of element x's key to k

Can be implemented using heaps

14 / 17

Example Increase Key(A, x, k): Increase key 4 to 15

INCREASE-KEY(S, x, k)

```
HEAP-INCREASE-KEY (A, i, key)

if key < A[i]

error "new key is smaller than current key"

A[i] = key

while i > 1 and A[PARENT(i)] < A[i]

exchange A[i] with A[PARENT(i)]

i = PARENT(i)
```

- Make sure k is bigger than x's current key
- Update x's key value to k
- Traverse the heap upward comparing x to its parent and swapping keys until x's key is smaller than its parent's key

INCREASE-KEY(S, x, k)

```
HEAP-INCREASE-KEY (A, i, key)

if key < A[i]

error "new key is smaller than current key"

A[i] = key

while i > 1 and A[PARENT(i)] < A[i]

exchange A[i] with A[PARENT(i)]

i = PARENT(i)
```

- Make sure k is bigger than x's current key
- Update x's key value to k
- Traverse the heap upward comparing x to its parent and swapping keys until x's key is smaller than its parent's key
- Time complexity is $O(\log n)$

Conclusion

- We learnt a new useful data structure: Heaps
- Heaps can be used to sort in $O(n \log n)$ time
- Heaps can implement Priority Queues with insertion, deletion and changing keys operations all taking $O(\log n)$ time
- We just finished Chapter 6 of the book

Next class: We start with graph algorithms (Chapter 22)