Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського"

Розрахунково-графічна робота "Виконання кусочно-лінійної апроксимації"

Виконала студентка II курсу групи IO-64 ФІОТ Бровченко Анастасія Варіант №93 Побудуємо графік функції у(x) для діапазону значень $x_{min} <= x <= x_{max}$

$$y(x) := \begin{bmatrix} -(x^2 + 2 \cdot x) & \text{if } x < 0 \\ -\text{asin}(x^2) & \text{if } x \ge 0 \end{bmatrix}$$

$$x_{\text{max}} := 0.5$$

$$x_{\text{max}} := 0.5$$

Визначимо другу похідну функції $\frac{d^2y}{dx^2}$ та побудуємо її графік для діапазону зміни аргументу $x_{min} <= x <= x_{max}$

y1"(x) :=
$$\frac{d^2}{dx^2} - (x^2 + 2 \cdot x) \rightarrow -2$$

y2"(x) :=
$$\frac{d^2}{dx^2}$$
 -asin(x²) $\rightarrow -\frac{4 \cdot x^4}{\left(1 - x^4\right)^{\frac{3}{2}}} - \frac{2}{\sqrt{1 - x^4}}$

$$y''(x) := \begin{bmatrix} y1''(x) & \text{if } x < 0 \\ y2''(x) & \text{if } x \ge 0 \end{bmatrix}$$

Побудуємо графік модулю другої похідної функції

 $\frac{d^2y}{d^2y}$ для діапазону зміни аргументу

 $\chi_{min} <= \chi <= \chi_{max}$

Аналіз функції у(х)

Функція у(х) опукла на двох інтервалах: (-0.5; 0), (0; 0.5) так як її друга похідна на цих інтервалах приймає від'ємні значення. Не має точок перегину та точок розриву.

Підбираємо значення Δf_{max} щоб n = 9, обравши початкову точку апроксимації $x_0 \coloneqq x_{max}$ тому що у обраному напрямку функція спадає і ми знатимемо максимальне значення другої похідної на і-ій частині ломаної лінії, що розраховується для подальших розрахунків.

 $X_9 := X_8 - h_9 = -0.5$

 $A_9 := |y''(X_9)| = 2$

Виходячи з 8-го завдання, шукаємо ординати вершин ломаної лінії:

j := 09	$Yp_{j} \coloneqq y \big(X_{j} \big)$	$Yk_j := Yp_j + \Delta f_{max}$
$X_0 = 0.5$	$Yp_0 = -0.253$	$Yk_0 = -0.251$
$X_1 = 0.396$	$Yp_1 = -0.157$	$\mathbf{Y}\mathbf{k}_1 = -0.156$
$X_2 = 0.287$	$Yp_2 = -0.082$	$Yk_2 = -0.081$
$X_3 = 0.175$	$Yp_3 = -0.031$	$Yk_3 = -0.029$
$X_4 = 0.063$	$Yp_4 = -3.954 \times 10^{-3}$	$Yk_4 = -2.371 \times 10^{-3}$
$X_5 = -0.05$	$Yp_5 = 0.097$	$Yk_5 = 0.098$
$X_6 = -0.162$	$Yp_6 = 0.298$	$Yk_6 = 0.3$
$X_7 = -0.275$	$Yp_7 = 0.474$	$Yk_7 = 0.476$
$X_8 = -0.387$	$Yp_8 = 0.625$	$\mathbf{Yk}_8 = 0.626$
$X_9 = -0.5$	$Yp_9 = 0.75$	$Yk_9 = 0.751$

Знаходимо кутові коефіцієнти шляхом ділення різниці ординат на різницю абсцис:

$$i := 0...8$$
 $k = tg(\alpha)$
 $k_i := \frac{Yp_i - Yp_{i+1}}{X_i - X_{i+1}}$

Виконаємо розкладання апроксим уючої функції (ламаної) на окремі доданки, починаючи з точнки, яка має абсцису ${x_0}^a\!=\!x_2$

Під кожним елементарним нелінійним доданком зазначимо його квадрант (I, II, III, IV) та режим {на відкривання чи на закривання}

ІІ квадрант, на закривання

$$\begin{array}{l} b_3 := k_2 - k_3 = -0.225 \\ \text{ye2(x)} := \left| \begin{array}{l} b_3 \big(x - X_3 \big) & \text{if} \quad b_3 \big(x - X_3 \big) \geq 0 \\ 0 & \text{if} \quad b_3 \big(x - X_3 \big) \leq 0 \end{array} \right. \\ \underbrace{\text{fi}(x)} := \text{fi}(x) + \text{ye2}(x) \end{array}$$

ІІ квадрант, на закривання

$$\begin{array}{l} b_4 := k_3 - k_4 = 0.658 \\ \text{ye3(x)} := \left| \begin{array}{l} b_4 \big(x - X_4 \big) & \text{if} \quad b_4 \big(x - X_4 \big) \leq 0 \\ 0 & \text{if} \quad b_4 \big(x - X_4 \big) \geq 0 \end{array} \right. \\ \text{fij(x)} := \text{fi(x)} + \text{ye3(x)} \end{array}$$

III квадрант, на відкривання

$$\begin{array}{lll} b_5 := k_4 - k_5 = 0.892 \\ \text{ye4(x)} := & b_5 \big(x - X_5 \big) & \text{if} & b_5 \big(x - X_5 \big) \leq 0 \\ 0 & \text{if} & b_5 \big(x - X_5 \big) \geq 0 \\ & \text{fi(x)} := \text{fi(x)} + \text{ye4(x)} \end{array}$$

Ш квадрант, на відкривання

$$\begin{array}{ll} b_6 := k_5 - k_6 \\ \\ \text{ye5(x)} := & \left| \begin{array}{ll} b_6 \cdot \left(x - X_6 \right) & \text{if} & b_6 \cdot \left(x - X_6 \right) \geq 0 \\ \\ 0 & \text{if} & b_6 \cdot \left(x - X_6 \right) \leq 0 \end{array} \right. \\ \\ \underbrace{\text{fij}(x)} := \text{fi}(x) + \text{ye5(x)} \end{array}$$

II квадрант, на відкривання

II квадрант, на відкривання

Χ

0.2

0.4

- 0.2

$$\begin{array}{lll} b_8 := k_7 - k_8 \\ \text{ye7(x)} := & b_8 \cdot \left(x - X_8 \right) & \text{if} & b_8 \cdot \left(x - X_8 \right) \geq 0 \\ 0 & \text{if} & b_8 \cdot \left(x - X_8 \right) \leq 0 \\ & \text{fii}(x) := \text{fi}(x) + \text{ye7(x)} \end{array}$$

II квадрант, на відкривання

$$\begin{array}{ll} b_1 := k_1 - k_2 \\ \text{ye8(x)} := & b_1 \cdot \big(x - X_2\big) & \text{if} & b_1 \cdot \big(x - X_2\big) \leq 0 \\ 0 & \text{if} & b_1 \cdot \big(x - X_2\big) \geq 0 \\ & \text{fij(x)} := \text{fi(x)} + \text{ye8(x)} \end{array}$$

IV квадрант, на закривання

$$\begin{array}{lll} b_0 := k_0 - k_1 = -0.228 \\ \text{ye9(x)} := & b_0 \cdot \big(x - X_1 \big) & \text{if} & b_0 \cdot \big(x - X_1 \big) \leq 0 \\ 0 & \text{if} & b_0 \cdot \big(x - X_1 \big) \geq 0 \\ & \text{fil}(x) := \text{fi}(x) + \text{ye9}(x) \end{array}$$

IV квадрант, на закривання

Виконаємо розрахунок наступних значень:

- значення $\phi(x_0^{\ a})$ для першого лінійного доданку

$$\mathsf{fi}(\mathsf{X}_2) = -0.081$$

- значення b_0 = k_0 та x_0 для другого лінійного доданку (у23)

$$b_2 = -0.463$$
 $k_2 = -0.463$ $X_2 = 0.287$

$$\mathbf{k}_2 = -0.463$$

$$X_2 = 0.28$$

- значення b_i = k_i - k_{i-1} та $X_{\mathsf{REF}i}$ для кожного елементарного нелінійного доданку

i := 1 9	$Xref_i := X_i - \frac{Yk_i}{k_{i-1}}$
$b_0 = -0.228$	$Xref_1 = 0.226$
$b_1 = -0.225$	$Xref_2 = 0.169$
$b_2 = -0.463$	$Xref_3 = 0.112$
$b_3 = -0.225$	$Xref_4 = 0.053$
$b_4 = 0.658$	$Xref_5 = 0.06$
$b_5 = 0.892$	$Xref_6 = 5.389 \times 10^{-3}$
$b_6 = -0.225$	$Xref_7 = 0.03$
$b_7 = -0.225$	$Xref_8 = 0.081$
$b_8 = -0.225$	$Xref_9 = 0.175$