Diseño y Análisis de Algoritmos Tarea 1 - Demostraciones de las propiedades de los órdenes asintóticos

Santiago Sinisterra Sierra

27 de octubre de 2020

1. Transitividad

Propiedad 1.1 Si f(n) es O(g(n)) y g(n) es $O(h(n)) \Rightarrow f(n)$ es O(h(n))

El antecedente tiene dos partes. La primera, f(n) es O(g(n)), es verdadera si hay dos constantes n_f y c_f tal que para toda $n \ge n_f$, $c_f g(n) \ge f(n)$.

La segunda, la afirmación de g(n) es O(h(n)) es verdadera si hay dos constantes n_g y c_g tal que para toda $n \ge n_g$, $c_g h(n) \ge g(n)$.

Ambas afirmaciones se realizan a partir de la definición de O.

El consecuente indica que f(n) es O(h(n)) si hay hay dos constantes n_h y c_h tal que para toda $n \ge n_h$, $c_h h(n) \ge f(n)$. c_h debe ser igual a $c_f c_g$ y n_h debe ser igual al valor mayor entre n_f y n_g , o sea máx $\{n_f, n_g\}$.

Propiedad 1.2 Si f(n) es $\Omega(g(n))$ y g(n) es $\Omega(h(n)) \Rightarrow f(n)$ es $\Omega(h(n))$

Propiedad 1.3 Si f(n) es $\Theta(g(n))$ y g(n) es $\Theta(h(n)) \Rightarrow f(n)$ es $\Theta(h(n))$

2. Reflexividad

Propiedad 2.1 f(n) es O(f(n))

Propiedad 2.2 f(n) es $\Omega(f(n))$

Propiedad 2.3 f(n) es $\Theta(f(n))$

3. Simetría

Propiedad 3.1 f(n) es $\Theta(f(n)) \Leftrightarrow g(n)\Theta(f(n))$

4. Simetría Transpuesta

Propiedad 4.1 f(n) es $O(f(n)) \Leftrightarrow g(n)O(f(n))$

5. Aditividad

Propiedad 5.1 f(n) es $\Theta(f(n))$ y g(n) es $\Theta(h(n))$ entonces f(n)+g(n) es $\Theta(h(n))$

Propiedad 5.2 f(n) es O(f(n)) y g(n) es O(h(n)) entonces f(n)+g(n) es O(h(n))

Propiedad 5.3 f(n) es $\Omega(f(n))$ y g(n) es $\Omega(h(n))$ entonces f(n)+g(n) es $\Omega(h(n))$