Math 421, Section 1 Midterm 2 Fall 2024

First name:	Last name:
That hame.	Last name:

Instructions:

- This exam contains 3 problems, and there are a total of 30 points available.
- \bullet Show all your work in the space provided. You may also use the backs of pages.
- $\bullet\,$ No outside resources are allowed, including notes, calculators, textbooks, etc.

Question	Points	Score
1	10	
2	10	
3	10	
Total:	30	

1. (10 points) Suppose that $f:[0,1]\to\mathbb{R}$ is a continuous function that satisfies $f(x)\in[0,1]$ for all $x\in[0,1]$. Prove that there exists a point $x\in[0,1]$ such that $f(x)=x^2$.

2. (10 points) Let $A \subseteq \mathbb{R}$ be nonemepty and bounded, and define the set

$$B = \{2a : a \in A\}.$$

Prove that $\inf B = 2 \cdot \inf A$.

- 3. Prove or disprove the following statements:
 - (a) (5 points) If $f: \mathbb{R} \to \mathbb{R}$ is differentiable, then for any constant $c \in \mathbb{R}$ the function $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) + c has derivative g'(a) = f'(a) for all $a \in \mathbb{R}$.
 - (b) (5 points) If $f: \mathbb{R} \to \mathbb{R}$ is differentiable, then for any constant $c \in \mathbb{R}$ the function $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x+c) has derivative g'(a) = f'(a) for all $a \in \mathbb{R}$.

Extra paper