LECTURE 16

Random Variables

Numerical functions of random samples and their properties; sampling variability.

Data 100/Data 200, Spring 2022 @ UC Berkeley

Josh Hug and Lisa Yan

From last time: The Bias-Variance Tradeoff

What is the mathematical underpinning of this plot?

We'll come back to this...

Why Probability?

(today)

Model Selection Basics:

Cross Validation Regularization

Probability I:

Random Variables Estimators

Probability II:

Bias and Variance Inference/Multicollinearity

Our Goal Today

Formalize the notions of sample statistic, population parameter from Data 8.

From Data 8:

- 1. <u>def</u> sample mean the mean of your random sample. np.mean(data)
- 2. The Central Limit Theorem: If you draw a large random sample with replacement, then, regardless of the population distribution, the probability distribution of the sample mean:
 - Is roughly normal
 - Is centered at the population mean
 - Has an SD = $\frac{\text{population SD}}{\sqrt{\text{sample size}}}$

Our Goal Today → One Important Probability Concept

Formalize the notions of **sample statistic, population parameter** from Data 8.

From Data 8:

1. <u>def</u> sample mea

Random Variable

- 2. The Central Limitermedican you araw a large random sample with replacement, then, regardless of the population distribution, the **probability distribution** of the **sample mean**:
 - Is roughly normal
 - Is centered at the population mean

• Has an SD =
$$\frac{\text{population SD}}{\sqrt{\text{sample size}}}$$

We will go over **just enough probability** to help you understand its implications for modeling.

For more probability, take STAT 140, EECS 70, and/or EECS 126.

Today's Roadmap

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions

Expectation and Variance

Sums of Random Variables

- Equality vs Identically Distributed vs. IID
- Properties of Expectation and Variance
- Covariance, Correlation

Bernoulli and Binomial Random Variables

Sample Statistics

- Sample Mean
- Central Limit Theorem

[Extra Slides] Derivations

[Terminology] Random Variable

Suppose we draw a random sample of size n from a population.

A **random variable** is a numerical function of a sample.

sample was drawn at random value depends on how the sample came out

- Often denoted with uppercase "variable-like" letters (e.g. X, Y).
- Also known as a sample statistic, or statistic (next lecture).
- Domain (input): all random samples of size n
- Range (output): number line

[Terminology] Random Variable

Suppose we draw a random sample of size n from a population.

A random variable is a numerical function of a sample.

sample was drawn at random value depends on how the sample came out

- Often denoted with uppercase "variable-like" letters (e.g. X, Y).
- Also known as a sample statistic, or **statistic**. (next lecture).
- Domain (input): all random samples of size n
- Range (output): number line

From Population to Distribution

	X(s)
0	3
1	4
2	4
3	6
4	8
79995	6
79996	6
79997	4
79998	6

X	P(X = X)
3	0.1
4	0.2
6	0.4
8	0.3

Probability Distribution Table

X(s) from all possible samples

[Terminology] Distribution

The **distribution** of a random variable X is a description of how the total probability of 100% is split over all the possible values of X.

A distribution fully defines a random variable.

Assuming (for now) that X is discrete, i.e., has a finite number possible values:

$$P(X=x)$$

The probability that random variable X takes on the value x.

$$\sum_{\text{all } x} P(X = x) = 1$$

Probabilities must sum to 1.

Probabilities are Areas of Histograms

Distribution of **discrete** random variable *X*

The area of the red bars is $P(7 \le X \le 9)$.

Distribution of **continuous** random variable *Y*

The red area under the curve is **P(6.8 <= Y <= 9.5)**.

Take STAT 140 to learn more about discrete vs continuous distributions.

Understanding Random Variables

Compute the following probabilities for the random variable X.

1.
$$P(X = 4) =$$

2.
$$P(X < 6) =$$

3.
$$P(X \le 6) =$$

4.
$$P(X = 7) =$$

5.
$$P(X \le 8) =$$

Understanding Random Variables

Compute the following probabilities for the random variable X.

1.
$$P(X = 4) = 0.2$$

2.
$$P(X < 6) = 0.1 + 0.2 = 0.3$$

3.
$$P(X \le 6) = 0.1 + 0.2 + 0.4 = 0.7$$

4.
$$P(X = 7) = 0$$

5.
$$P(X \le 8) =$$

P(X=x)	X
0.1	3
0.2	4
0.4	6
0.3	8

Common Random Variables

Bernoulli(p)

- Takes on value 1 with probability p, and 0 with probability 1 p
- AKA the "indicator" random variable.

Binomial(n, p)

- Number of 1s in n independent Bernoulli(p) trials
- Probabilities given by the binomial formula (Lecture 2)

Uniform on a finite set of values

- Probability of each value is 1 / (size of set)
- For example, a standard die

Uniform on the unit interval(0, 1)

Density is flat on (0, 1) and 0 elsewhere

Normal(μ , σ^2)

The numbers in parentheses are the **parameters** of a random variable, which are constants.

Parameters define a random variable's shape (i.e.,

distribution) and its values.

We'll go over these in detail.

The rest are provided for your reference.

From Distribution to (Simulated) Population

Given a random variable's distribution, how could we **generate/simulate** a population?

X	P(X = x)
3	0.1
4	0.2
6	0.4
8	0.3

Probability
Distribution Table

X(s) from all possible samples?

From Distribution to (Simulated) Population

Simulate: Randomly pick values of X according to its distribution np.random.choice or df.sample

X	P(X = x)
3	0.1
4	0.2
6	0.4
8	0.3

Probability Distribution Table

X(s) from many, many (simulated) samples

Expectation and Variance

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions

Expectation and Variance

Sums of Random Variables

- Equality vs Identically Distributed vs. IID
- Properties of Expectation and Variance
- Covariance, Correlation

Bernoulli and Binomial Random Variables
Sample Statistics

- Sample Mean
- Central Limit Theorem

Descriptive Properties of Random Variables

There are several ways to describe a random variable:

The expectation and variance of a random variable are **numerical summaries** of *X*.

They are numbers and are not random!

Don't Panic! You've Seen This Before

The **mean** (Data 100: **expectation**) is the center of gravity or **balance point** of the **histogram** (Data 100: of a random variable). [textbook]

The **variance** is a measure of spread. It is the **expected squared deviation from the mean** (Data 100: of a random variable). [textbook]

In Data 100, we redefine these terms with respect to probability distributions.

(there is a small subtlety here regarding what the histogram represents—we'll revisit this later in lecture)

Definition of Expectation

The **expectation** of a random variable X is the **weighted average** of the values of X, where the weights are the probabilities of the values.

Two equivalent ways to apply the weights:

One sample at a time:

$$\mathbb{E}[X] = \sum_{\text{all samples}} X(s)P(s)$$

One possible value at a time:

$$\mathbb{E}[X] = \sum_{\substack{\text{all possible} \\ x}} xP(X = x)$$
 More common (we are usually given the distribution, not all possible samples)

possible samples)

Expectation is a number, not a random variable!

- It is analogous to the average (same units as the random variable).
- It is the center of gravity of the probability histogram.
- It is the long run average of the random variable, if you simulate the variable many times.

Example

 $\mathbb{E}[X] = \sum_{x} x P(X = x)$

P(X = x)

0.1

3

Consider the random variable X we defined earlier.

$$\mathbb{E}[X] = \sum_{x} x \cdot P(X = x)$$

$$= 3 \cdot 0.1 + 4 \cdot 0.2 + 6 \cdot 0.4 + 8 \cdot 0.3$$

$$= 0.3 + 0.8 + 2.4 + 2.4$$

$$= 5.9$$

Note, E[X] = 5.9 is not a possible value of X! It is an average.

The expectation of X does not need to be a value of X.

Definition of Variance

Variance is the **expected squared deviation from the expectation** of X.

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

- The units of the variance are the square of the units of X.
- ullet To get back to the right scale, use the **standard deviation** of X: $\mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)}$

Variance is a number, not a random variable!

• The main use of variance is to **quantify chance error**. How far away from the expectation could X be, just by chance?

By <u>Chebyshev's inequality</u> (which you saw in Data 8, and which we won't prove here either):

• No matter what the shape of the distribution of X is, the vast majority of the probability lies in the interval "expectation plus or minus a few SDs."

There's a more convenient form of variance:

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

- Proof (involves expanding the square and properties of expectation/summations): <u>link</u>
- Useful in Mean Squared Error calculations
 - If X is centered (i.e. E[X] = 0), then $E[X^2] = Var(X)$
- When computing variance by hand, often used instead of definition.
- See STAT 140/EECS 126 for more on how to interpret this expression.

Dice Is the Plural; Die Is the Singular

Let *X* be the outcome of a single die roll. *X* is a random variable.

 $P(X = x) = \begin{cases} 1/6 & \text{if } x \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise} \end{cases}$

1. What is the expectation, E[X]?

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^{2} \right]$$

$$= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

(definitions/properties)

2. What is the variance, Var(X)?

Dice Is the Plural; Die Is the Singular

Let *X* be the outcome of a single die roll.

$$P(X = x) = \begin{cases} 1/6 & \text{if } x \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise} \end{cases}$$

1. What is the expectation, E[X]?

$$\mathbb{E}[X] = 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)$$
$$= (1/6)(1+2+3+4+5+6) = \frac{7}{2}$$

 $\mathbb{E}[X] = \sum_{x} x P(X = x)$ $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^{2}\right]$ $= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$

2. What is the variance, Var(*X*)?

X is a random variable.

Dice Is the Plural; Die Is the Singular

Let *X* be the outcome of a single die roll. *X* is a random variable.

$$P(X = x) = \begin{cases} 1/6 & \text{if } x \in \{1, 2, 3, 4, 5, 6\} \\ 0 & \text{otherwise} \end{cases}$$

1. What is the expectation, E[X]?

$$\mathbb{E}[X] = 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)$$
$$= (1/6)(1+2+3+4+5+6) = \frac{7}{2}$$

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^{2} \right]$$

$$= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

2. What is the variance,

Var(X)?
Approach 1: Definition

Approach 1: Definition
$$\operatorname{Var}(X) = (1/6) \left((1 - 7/2)^2 + (2 - 7/2)^2 + (3 - 7/2)^2 + (4 - 7/2)^2 + (5 - 7/2)^2 + (6 - 7/2)^2 \right)$$

$$= 35/12$$

Approach 2: Property

$$\mathbb{E}[X^2] = \sum_{x} x^2 P(X = x)$$

$$1^2 * (\%) + 2^2 * (\%) + \dots 6^2 * (\%) = 91/6$$

 $Var(X) = 91/6 - (7/2)^2 = 35/12$

Sums of Random Variables

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions
Expectation and Variance

Sums of Random Variables

- Equality vs Identically Distributed vs. IID
- Properties of Expectation and Variance
- Covariance, Correlation

Bernoulli and Binomial Random Variables Sample Statistics

- Sample Mean
- Central Limit Theorem

Functions of Multiple Random Variables

A function of a random variable is also a random variable!

If you create multiple random variables based on your sample...

...then functions of those random variables are also random variables.

For instance, if X_1, X_2, \dots, X_n are random variables, then so are all of these:

$$X_n^2 \qquad \#\{i: X_i > 10\}$$
 $\max(X_1, X_2, \dots, X_n) \qquad \frac{1}{n} \sum_{i=1}^n (X_i - c)^2$

$$\frac{1}{n} \sum_{i=1}^{n} X_i$$

Many functions of RVs that we care about (**counts**, **means**) involve **sums of RVs**, so we expand on properties of sums of RVs.

Equal vs. Identically Distributed vs. IID

Suppose that we have two random variables *X* and *Y*.

X and Y are **equal** if:

- X(s) = Y(s) for every sample s.
- We write X = Y

X and Y are identically distributed if:

- The distribution of X is the same as the distribution of Y
- We say "X and Y are equal in distribution."
- If X = Y, then X and Y are identically distributed; but the converse is not true.

X and Y are independent and identically distributed (IID) if:

- X and Y are identically distributed, and
- Knowing the outcome of *X* does not influence your belief of the outcome of Y, and vice versa ("X and Y are independent.")
- Independence is covered more in STAT 140/EECS 70.
- In Data 100, you will never be expected to prove that RVs are IID.

Equal RVs

KnowYourMeme

IID RVs

Distributions of Sums

Let X_1 and X_2 be numbers on two rolls of a die.

6.984400

6.984950

- X_1 , X_2 are **IID**, so X_1 , X_2 , have the same distribution.
- But the sums $Y = X_1 + X_2 = 2X_1$ and $Z = X_1 + X_2$ have different distributions!

Let's show this through simulation:

- Same expectation...
- But $Y = 2X_1$ has larger variance!

How can we directly compute E[Y], Var(*Y*), **without** simulating distributions?

Properties of Expectation [1/3]

Instead of simulating full distributions, we often just compute expectation and variance directly.

Recall definitions of expectation: $\mathbb{E}[X] = \sum xP(X=x)$

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\mathbb{E}[X] = \sum_{\substack{\text{all samples} \\ s}} X(s)P(s)$$

Properties:

1. Expectation is linear.

Intuition: summations are linear. Proof

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Properties of Expectation [2/3]

Instead of simulating full distributions, we often just compute expectation and variance directly.

Recall definitions of expectation:

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\mathbb{E}[X] = \sum_{\substack{\text{all samples} \\ s}} X(s)P(s)$$

Properties:

1. Expectation is linear.

Intuition: summations are linear. Proof

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

2. Expectation is linear in sums of RVs, for any relationship between X and Y. <u>Proof</u>

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Properties of Expectation [3/3]

Instead of simulating full distributions, we often just compute expectation and variance directly.

Recall definitions of expectation:

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\mathbb{E}[X] = \sum_{\substack{\text{all samples} \\ s}} X(s)P(s)$$

Properties:

1. Expectation is linear.

Intuition: summations are linear. Proof

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

2. Expectation is linear in sums of RVs, for any relationship between X and Y. Proof

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

- 3. If g is a non-linear function, then in general $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$.
 - Example: if X is -1 or 1 with equal probability, then E[X] = 0 but $E[X^2] = 1 \neq 0$.

Properties of Variance [1/2]

Recall definition of variance:

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

Properties:

1. Variance is non-linear:

 $Var(aX + b) = a^2 Var(X)$

Intuition (<u>full proof</u>): Consider the Standard Deviation for Y = -3X + 2:

$$SD(aX + b) = |a|SD(X)$$

Properties of Variance [2/2]

Recall definition of variance:

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

Properties:

1. Variance is non-linear:

$$Var(aX + b) = a^2 Var(X)$$

SD(aX + b) = |a|SD(X)

Covariance of X and Y (next slide).

35

Intuition (full proof): Consider the Standard Deviation for Y = -3X + 2:

2. Variance of sums of RVs is affected by the (in)dependence of the RVs (derivation):

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X, Y)$$

If X, Y independent, then Cov(X, Y) = 0.

Covariance and Correlation: The Basics

Covariance is the expected product of deviations from expectation.

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- A generalization of variance. Note $Cov(X, X) = \mathbb{E}[(X \mathbb{E}[X])^2] = Var(X)$.
- Interpret by defining correlation (yes, that correlation!):

$$r(X,Y) = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X]}{\mathrm{SD}(X)}\right) \left(\frac{Y - \mathbb{E}[Y]}{\mathrm{SD}(Y)}\right)\right] = \frac{\mathrm{Cov}(X,Y)}{\mathrm{SD}(X)\mathrm{SD}(Y)}$$
standard units of $X(\underline{\mathrm{link}})$

Correlation (and therefore covariance) measures a linear relationship between X and Y.

Covariance and Correlation: The Basics

Covariance is the expected product of deviations from expectation.

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- A generalization of variance. Note $Cov(X,X) = \mathbb{E}[(X \mathbb{E}[X])^2] = Var(X)$.
- Interpret by defining **correlation** (yes, *that* correlation!):

$$r(X,Y) = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X]}{\mathrm{SD}(X)}\right)\left(\frac{Y - \mathbb{E}[Y]}{\mathrm{SD}(Y)}\right)\right] = \frac{\mathrm{Cov}(X,Y)}{\mathrm{SD}(X)\mathrm{SD}(Y)}$$

standard units of $X(\underline{link})$

Correlation (and therefore covariance) measures a linear relationship between X and Y.

- If X and Y are correlated, then knowing X tells you something about Y.
- "X and Y are uncorrelated" is the same as "Correlation and covariance equal to 0"
- Independent X, Y are uncorrelated, because knowing X tells you nothing about Y.
- The converse is not necessarily true: **X, Y could be uncorrelated but not independent**.
- For more info, see extra slides + take STAT 140/EECS 70.

Dice, Our Old Friends: Expectation

Let X_i and X_j be numbers on two rolls of a die.

- X_1 , X_2 are **IID**, so X_1 , X_2 have the same distribution.
- Therefore $E[X_1] = \hat{E}[X_2] = 7/2$ $Var(X_1) = Var(X_2) = 35/12$

$$Y = 2X_I$$

$$E[Y] = E[2X_I] = 2E[X_I] = 7$$

$$Z = X_1 + X_2$$

$$E[Z] = E[X_1] + E[X_2] = (7/2) + (7/2) = 7$$

Dice, Our Old Friends: Variance

Let X_1 and X_2 be numbers on two rolls of a die.

- X_1 , X_2 are **IID**, so X_1 , X_2 have the same distribution.
- Therefore $E[X_1] = \hat{E}[X_2] = 7/2$ $Var(X_1) = Var(X_2) = 35/12$

$$Y = 2X_I$$

$$E[Y] = E[2X_1] = 2E[X_1] = 7$$

$$Var(Y) = Var(2X_1) = 4Var(X_1)$$
$$= 4(35/12)$$
$$\approx 11.67$$

$$E[Z] = E[X_1] + E[X_2] = (7/2) + (7/2) = 7$$

[Summary] Expectation and Variance for Linear Functions of Random Variables

a random variable with distribution P(X = x).

Let X be

 $Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$

(easier computation)

Let a and b be scalar values.

another random variable.

 $Var(aX + b) = a^2 Var(X)$ $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

 $Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X, Y)$

Let Y be

 $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$

 $\mathbb{E}[X] = \sum x P(X = x)$

 $= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

Interlude

While we enjoy the **Break (3 min)** ...

Suppose you win cash based on the number of heads you get in a series of 20 coin flips.

Let $X_i = 1$ if the i-th coin is heads, θ otherwise

Which payout strategy would you choose? Hint: Compare expectations and variances.

A.
$$Y_A = 10 \cdot X_1 + 10 \cdot X_2$$

$$\mathbf{B.} \ \mathbf{Y}_{B} = \left(\sum_{i=1}^{20} X_{i}\right)$$

C.
$$Y_c = 20 \cdot X_1$$

Bernoulli and Binomial Random Variables

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions

Expectation and Variance

Sums of Random Variables

- Equality vs Identically Distributed vs. IID
- Properties of Expectation and Variance
- Covariance, Correlation

Bernoulli and Binomial Random Variables

Sample Statistics

- Sample Mean
- Central Limit Theorem

Common Random Variables

Bernoulli(p)

- Takes on value 1 with probability p, and 0 with probability 1 p
- AKA the "indicator" random variable.

Binomial(n, p)

- Number of 1s in n independent Bernoulli(p) trials
- Probabilities given by the binomial formula (Lecture 2)

Uniform on a finite set of values

- Probability of each value is 1 / (size of set)
- For example, a standard die

Uniform on the unit interval(0, 1)

Density is flat on (0, 1) and 0 elsewhere

Normal(μ , σ^2)

We'll now revisit these to solidify our understanding of expectation/variance.

Properties of Bernoulli Random Variables

Let X be a **Bernoulli(p)** random variable.

- Takes on value 1 with probability p,
- and 0 with probability 1 p
- AKA the "indicator" random variable.

Expectation

 $\mathbb{E}[X] = 1 \cdot p + 0 \cdot (1 - p) = p$

variance.
$$\mathbb{E}[X^2] = 1^2 \cdot p + 0 \cdot (1-p) = p$$

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

$$= p - p^2 = p(1-p)$$

Lower Var: p = 0.1 or 0.9Higher Var: p close to 0.5

We will get an average

value of p across many, many samples

More info: google("plot x(1 - x)")

 $Var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$ $= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

 $\mathbb{E}[X] = \sum x P(X = x)$

Definitions

Properties of Binomial Random Variables

Let Y be a **Binomial**(n, p) random variable.

- Y is the number (i.e., count) of 1s in n independent Bernoulli(p) trials.
- Distribution of *Y* given by the binomial formula (Lecture 2).

We can write:
$$Y = \sum_{i=1}^{n} X_i$$

A count is a **sum** of 0's and 1's.

- X_i is the indicator of success on trial i. $X_i = 1$ if trial i is a success, else 0.
- All X_i s are **IID** (independent and identically distributed) and **Bernoulli**(p).

Properties of Binomial Random Variables

Let Y be a **Binomial**(n, p) random variable.

- Y is the number (i.e., count) of 1s in n independent Bernoulli(p) trials.
- Distribution of *Y* given by the binomial formula (Lecture 2).

We can write:
$$Y = \sum_{i=1}^{n} X_i$$

A count is a sum of 0's and 1's.

- X_i is the indicator of success on trial i. $X_i = 1$ if trial i is a success, else 0.
- All X_i s are **IID** (independent and identically distributed) and **Bernoulli**(p).

Expectation:
$$\mathbb{E}[Y] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np$$

Variance: Because all X_i s are independent, $Cov(X_i, X_j) = 0$ for all i, j.

$$Var(Y) = \sum_{i=1}^{n} Var(X_i) = \frac{np(1-p)}{n}$$

Which would you pick?

 $\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X)$ $\operatorname{Var}(X_{1} + X_{2}) = \operatorname{Var}(X_{1}) + \operatorname{Var}(X_{2}) + 2\operatorname{Cov}(X, Y)$

Expectation of a linear function is linear

Suppose you win cash based on the number of heads you get in a series of 20 coin flips.

Let X_1 , X_2 , ..., X_{20} be 20 **IID** Bernoulli(0.5) random variables.

- Since X_i s are independent: $Cov(X_i, X_j) = 0$ for all i, j.
- Since X_i is Bernoulli(p = 0.5): $E[X_i] = p = 0.5$, $Var(X_i) = p(1-p) = 0.25$.

Which payout strategy would you choose?

	A. $Y_A = 10 \cdot X_1 + 10 \cdot X_2$	$\mathbf{B.}\; \mathbf{Y}_{B} = \left(\sum_{i=1}^{20} X_{i}\right)$	C. $Y_C = 20 \cdot X_1$
Expectation			
Variance			
Std. Deviation			

Which would you pick?

Expectation of a linear function is linear $Var(aX+b) = a^2 Var(X)$ $Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X,Y)$

Suppose you win cash based on the number of heads you get in a series of 20 coin flips.

Let X_1 , X_2 , ..., X_{20} be 20 **IID** Bernoulli(0.5) random variables.

- Since X_i s are independent: $Cov(X_i, X_j) = 0$ for all i, j.
- Since X_i is Bernoulli(p = 0.5): $E[X_i] = p = 0.5$, $Var(X_i) = p(1-p) = 0.25$.

Which payout strategy would you choose?

	A. $Y_A = \$10 \bullet X_1 + \$10 \bullet X_2$	$\mathbf{B.}\; \mathbf{Y}_{B} = \$ \left(\sum_{i=1}^{20} X_{i} \right)$	C. $Y_c = \$20 \bullet X_1$
Expectation	$E[Y_A] = 10(0.5) + 10(0.5) = 10$	$E[Y_B] = 0.5 + \dots + 0.5 = 10$	E[Yc] = 20(0.5) = 10
Variance	$Var(Y_A) = 10^2(0.25) + 10^2(0.25)$ $= 50$	$Var(Y_B) = 0.25 + + 0.25$ = 20(0.25) = 5	$Var(Yc) = 20^2(0.25)$ = 100
Std. Deviation	$SD(Y_A) \approx 7.07$	$SD(Y_B) \approx 2.24$	SD(Yc) = 10

Binomial(n, p) for large n

For p = 0.5, n = 50 (i.e. number of heads in 50 fair coin flips):

This is where we stopped for lecture Tuesday 3/15. We'll continue from here on Thursday 3/17

(extended pause)

(to be covered 3/17)

Sample Statistics

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions

Expectation and Variance

Sums of Random Variables

- Equality vs Identically Distributed vs. IID
- Properties of Expectation and Variance
- Covariance, Correlation

Bernoulli and Binomial Random Variables

Sample Statistics

- Sample Mean
- Central Limit Theorem

From Populations to Samples

Today, we've talked extensively about **populations**:

 If we know the distribution of a random variable, we can reliably compute expectation, variance, functions of the random variable, etc.

However, in Data Science, we often collect samples.

- We don't know the distribution of our population.
- We'd like to use the distribution of your sample to estimate/infer properties of the population.

The **big assumption** we make in modeling/inference:

The Sample is a Set of IID Random Variables

79998

79999

6

99 8

Each observation in our sample is a **Random Variable** drawn **IID** from our population distribution.

Sample $(n \lt\lt N)$ $X_1, X_2, ..., X_n$

⊚0\$0

Population

(really large N)

53

The Sample is a Set of IID Random Variables

X(s)			P(X = x)	X
3	0		0.1	3
4	1		0.2	4
4	2	or	0.4	6
6	3		0.3	8
8	4			

$$E[X] = 5.9$$

Population Mean A number, i.e., fixed value

3	6
4	8

79995	6
79996	6
79997	4
79998	6
79999	6

Sample at Random with Replacement

df.sample(n,
replace=True)
[documentation]

X

0 6

1	8
2	6
3	6
4	3
	See
95	8
96	6
97	6
98	3

99 8

Sample Mean

A **random variable**!

Depends on our randomly drawn sample!!

$$np.mean(...) = 5.71$$

Sample X_1 , X_2 , ..., X_n

[Terminology] Sample Mean

Consider an IID sample X_1 , X_2 , ..., X_n drawn from a numerical population with mean μ and SD σ .

Define the **sample mean**:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Expectation:

$$\mathbb{E}[\bar{X}_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i]$$
$$= \frac{1}{n} (n\mu) = \mu$$

Variance/Standard Deviation:

$$\operatorname{Var}(\bar{X}_n) = \frac{1}{n^2} \operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \left(\sum_{i=1}^n \operatorname{Var}(X_i)\right)$$
$$= \frac{1}{n^2} \left(n\sigma^2\right) = \frac{\sigma^2}{n}$$

$$SD(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

Distribution?

 \bar{X}_n is normally distributed by the Central Limit Theorem.

Central Limit Theorem

No matter what population you are drawing from:

If an IID sample of size n is large, the probability distribution of the **sample mean** is **roughly normal** with mean μ and SD σ/\sqrt{n} . (STAT 140/EECS 126) (previous slide)

Any theorem that provides the rough distribution of a statistic and **doesn't need the distribution of the population** is valuable to data scientists.

Because we rarely know a lot about the population!

For a more in-depth demo: https://onlinestatbook.com/stat_sim/sampling_dist/

How Large Is "Large"?

No matter what population you are drawing from:

If an IID **sample of size** n **is large**, the probability distribution of the sample mean is **roughly normal** with mean μ and SD σ/\sqrt{n} .

How large does n have to be for the normal approximation to be good?

- ...It depends on the shape of the distribution of the population...
- If population is roughly symmetric and unimodal/uniform, could need as few as n = 20.
 If population is very skewed, you will need bigger n.
- If in doubt, you can bootstrap the sample mean and see if the bootstrapped distribution is bell-shaped.

Accuracy and Spread of the Sample Mean

Our goal is often to **estimate** some characteristic of a population.

- Example: average height of Cal undergraduates.
- We typically can collect a single sample. It has just one average.
- Since that sample was random, it *could have* come out differently.

We should consider the **average value and spread** of all possible sample means, and what this means for how big n should be.

$$\mathbb{E}[\bar{X}_n] = \mu$$

$$SD(\bar{X}_n) = \frac{o}{\sqrt{n}}$$

Accuracy and Spread of the Sample Mean

Our goal is often to **estimate** some characteristic of a population.

- Example: average height of Cal undergraduates.
- We typically can collect a **single sample**. It has just one average.
- Since that sample was random, it *could have* come out differently.

We should consider the **average value and spread** of all possible sample means, and what this means for how big n should be.

$$\mathbb{E}[\bar{X}_n] = \mu$$

$$SD(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

For every sample size, the expected value of the sample mean is the population mean.

We call the sample mean an **unbiased estimator** of the population mean. (more in next lecture)

Accuracy and Spread of the Sample Mean

Our goal is often to **estimate** some characteristic of a population.

- Example: average height of Cal undergraduates.
- We typically can collect a **single sample**. It has just one average.
- Since that sample was random, it *could have* come out differently.

We should consider the **average value and spread** of all possible sample means, and what this means for how big n should be.

$$\mathbb{E}[\bar{X}_n] = \mu$$

For every sample size, the expected value of the sample mean is the population mean.

We call the sample mean an **unbiased estimator** of the population mean. (more in next lecture)

$$SD(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$$

Square root law (<u>Data 8</u>): If you increase the sample size by a factor, the SD decreases by the square root of the factor.

The sample mean is more likely to be close to the population mean if we have a larger sample size.

Have a Normal Tuesday!

[Extra Slides] Derivations

Lecture 16, Data 100 Spring 2022

Random Variables and Distributions

- Expectation and Variance
- Equality vs Identically Distributed
- Common RVs: Bernoulli, Binomial

Functions of Random Variables

- Distributions through Simulation, I.I.D.
- Properties of Expectation and Variance
- Covariance, Correlation
- Standard Units

Sample Statistics

- Sample Mean
- Central Limit Theorem

X in **standard units** is the random variable

$$X_{su} = \frac{X - \mathbb{E}(X)}{\mathbb{SD}(X)}$$

 X_{su} measures X on the scale "number of SDs from expectation."

• It is a linear transformation of X. By the linear transformation rules for expectation and variance:

$$\mathbb{E}(X_{su}) = 0, \quad \mathbb{SD}(X_{su}) = 1$$

• Since X_{su} is centered (has expectation 0):

$$\mathbb{E}(X_{su}^2) = \mathbb{V}ar(X_{su}) = 1$$

You should prove these facts yourself.

There's a more convenient form of variance for use in calculations.

$$\mathbb{V}ar(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

To derive this, we make repeated use of the linearity of expectation.

$$egin{aligned} Var(X) &= E((X-E(X))^2) \ &= Eig(X^2-2XE(X)+(E(X)^2)ig) \ &= E(X^2)-2E(X)E(X)+(E(X))^2 \ &= E(X^2)-(E(X))^2 \end{aligned}$$

Properties of Expectation #1

Jump back: link

Recall definition of expectation:

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\mathbb{E}[X] = \sum_{\text{all samples}} X(s)P(s)$$

1 Expectation is linear:

(intuition: summations are linear)

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Proof:

$$\mathbb{E}[aX + b] = \sum_{x} (ax + b)P(X = x) = \sum_{x} (axP(X = x) + bP(X = x))$$
$$= a\sum_{x} xP(X = x) + b\sum_{x} P(X = x)$$
$$= a\mathbb{E}[X] + b \cdot 1$$

Recall definitions of expectation:

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

$$\mathbb{E}[X] = \sum_{\text{all samples}} X(s)P(s)$$

3. Expectation is linear in sums of RVs:

For any relationship between X and Y.

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

Proof:
$$\mathbb{E}[X+Y] = \sum_{s} (X+Y)(s)P(s) = \sum_{s} (X(s)+Y(s))P(s)$$
$$= \sum_{s} (X(s)P(s)+Y(s)P(s))$$
$$= \sum_{s} X(s)P(s) + \sum_{s} Y(s)P(s)$$
$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

We know that $\mathbb{E}(aX+b)=a\mathbb{E}(X)+b$

In order to compute Var(aX + b), consider:

- A shift by **b** units **does not** affect spread. Thus, Var(aX + b) = Var(aX).
- The multiplication by a does affect spread!

Then,

$$egin{aligned} Var(aX+b) &= Var(aX) = E((aX)^2) - (E(aX))^2 \ &= E(a^2X^2) - (aE(X))^2 \ &= a^2ig(E(X^2) - (E(X))^2ig) \ &= a^2Var(X) \end{aligned}$$

In summary:

$$\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$$

$$Var(aX + b) = a^{2}Var(X)$$

$$SD(aX + b) = |a|SD(X)$$

Don't forget the absolute values and squares!

The variance of a sum is affected by the dependence between the two random variables that are being added. Let's expand out the definition of Var(X + Y) to see what's going on.

Let
$$\mu_x = E[X], \mu_y = E[Y]$$

$$Var(X+Y)=Eig[(X+Y-E(X+Y))^2ig]$$
 By the linearity of expectation, and the substitution.
$$=Eig[((X-\mu_x)+(Y-\mu_y))^2ig]$$

$$=Eig[(X-\mu_x)^2+2(X-\mu_x)(Y-\mu_y)+(Y-\mu_y)^2ig]$$

$$=Eig[(X-\mu_x)^2ig]+Eig[(Y-\mu_y)^2ig]+2Eig[(X-\mu_x)(Y-\mu_y)ig]$$

$$=Var(X)+Var(Y)+2Eig[(X-E(X))(Y-E(Y))ig]$$

We see

Addition rule for variance

If X and Y are **uncorrelated** (in particular, if they are **independent**), then

$$\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y)$$

Therefore, under the same conditions,

$$\mathbb{SD}(X+Y) \ = \ \sqrt{\mathbb{V}ar(X) + \mathbb{V}ar(Y)} \ = \ \sqrt{(\mathbb{SD}(X))^2 + (\mathbb{SD}(Y))^2}$$

- Think of this as "Pythagorean theorem" for random variables.
- Uncorrelated random variables are like orthogonal vectors.

LECTURE 16

Random Variables

Content credit: Lisa Yan, Anthony D. Joseph, Suraj Rampure, Ani Adhikari

