

SDK6 AN A12 IQ Tuning

Date: 14 September 2015

Revision: V 1.0

Confidentiality Notice:

Copyright © 2015 Ambarella, Inc.

The contents of this document are proprietary and confidential information of Ambarella, Inc.

The material in this document is for information only. Ambarella assumes no responsibility for errors or omissions and reserves the right to change, without notice, product specifications, operating characteristics, packaging, ordering, etc. Ambarella assumes no liability for damage resulting from the use of information contained in this document. All brands, product names and company names are trademarks of their respective owners.

US

3101 Jay Stree Ste. 110 Santa Clara, CA 95054, USA Tel: +1 (408) 734-8888 Fax: +1 (408) 734-0788

http://www.ambarella.com

Hong Kong

UnitA&B. 18/F. Spectrum Tower 53 Hung To Road Kwun Tong, Kowloon Phone +85.2.2806.8711 Fax +85.2.2806.8722

Korea

6 Floor. Hanwon-Bidg Sunae-Dong, 6-1. Bundang-Gu SeongNam-City. Kyunggi-Do Republic of Korea 463-825 Phone +031.717.2780 Fax +031.717.2782

China - Shanghai

9th Floor. Park Center 1088 Fangdian Road Pudong New District Shanghai 201204. China Phone +86 21 6088 0608 Fax +86.21 6088 0366

Taiwan

C1, 1F, No.1, Li-Hsin 1st Road, Hsin-Chu Science-Based Park Hsin-Chu City 30078, Taiwan ROC +886-3-666-8828

Japan -Yokohama

Shin-Yokohama Business Center Bldg 5th Floor 3-2-6 Shin-Yokohama. Kohoku-ku. Yokohama. Kanagawa. 222-0033. Japan Phone +8145.548.6150 Fax +81.45.548.6151

China - Shenzhen

Unit E. 5th Floor No.2 Finance Base 8 Ke Fa Road Shenzhen. 518057. China Phone +86 755 3301 0366 Fax +86.755 3301 0966

Revision History

Date	Version	Description	
8 September 2015	V 1.0	Initial draft	

Ambarella Proprietary and Confidential III Date: 14 September, 2015

Revision: V 1.0

Table of Content

1. Introduction	1
2. Image Pipeline and i-Tuner Configuration	2
2.1. Image Pipeline and i-Tuner Configuration: Low ISO and Video Flow	2
2.2. Image Pipeline and i-Tuner Configuration: iTuner Parameters Configuration	3
3. Case Study and Examples	6
3.1. Case Study and Examples: Dynamic Bad Pixel Correction	6
3.1.1 Dynamic Bad Pixel Correction: Tuning Example	6
3.2. Case Study and Examples: Anti-Aliasing Filter	7
3.2.1 Anti-Aliasing Filter: Tuning Example	7
3.3. Case Study and Examples: CFA Noise Filter	
3.3.1 CFA Noise Filter: Tuning Flow	
3.3.2 CFA Noise Filter: Tuning Example	
3.4. Case Study and Examples: GbGr Mismatch Correction	16
3.4.1 CFA Noise Filter: GbGr Mismatch Correction: Tuning Flow	16
3.4.2 CFA Noise Filter: GbGr Mismatch Correction: Tuning Example	
3.5. Case Study and Examples: Local Exposure	20
3.5.1 Local Exposure: Tuning Example	
3.6. Case Study and Examples: Demosaic	21
3.6.1 Demosaic: Tuning Example	21
3.7. Case Study and Examples: Chroma Median Filter	23
3.7.1 Chroma Median Filter: Tuning Example	23
3.8. Case Study and Examples: Chroma Noise Filter	25
3.8.1 Chroma Noise Filter: Tuning Flow	25
3.8.2 Chroma Noise Filter: Tuning Example	26
3.9. Case Study and Examples: Advanced Spatial Filter	29
3.9.1 Advanced Spatial Filter: Tuning Flow	29
3.9.2 Advanced Spatial Filter: Tuning Example	29
3.10. Case Study and Examples: Sharpen Noise Filter	37
3.10.1 Sharpen Noise Filter: Tuning Flow	37
3.10.2 Sharpen Noise Filter: Tuning Example	38
3.11. Case Study and Examples: Video Mctf	42
3.11.1 Video Mctf: Tuning Example	42
4. Basic Tuning Flow	44
4.1. Basic Tuning Flow: Preparation	
4.2. Basic Tuning Flow: Tuning Flow	44

5.	Calibration	. 46	6
6	Reference	4	7

1. Introduction

This document provides details on Ambarella's IQ tuning tool, iTuner for DSP cameras. The intent is for users to use the tool more effectively and with more flexibility. The Image Pipeline and iTuner Configuration section shows the image pipeline of A12 at both of Low ISO and Video flow and a list of iTuner configuration parameters corresponding to each of those pipelines. A user can easily find which processing block or parameter should be used in the pipeline. The Case Study and Examples section shows some typical case studies of image quality tuning with A12 and gives examples of how image processing blocks can be used effectively. The basic tuning flow section shows a typical workflow of the image quality tuning. Advanced users may be able to skip this section. For users who would like to know more on the environment and the operation of iTuner, they are requested to review the documents, AMBARELLA_SDK6_UG_iTuner_Still and AMBARELLA_SDK6_UG_iTuner_Video.

Revision: V 1.0

2. Image Pipeline and i-Tuner Configuration

2.1. Image Pipeline and i-Tuner Configuration: Low ISO and Video Flow

Note that MCTF temporal Noise Reduction is only available in Video flow.

Figure 1: Video Flow.

2.2. Image Pipeline and i-Tuner Configuration: iTuner Parameters Configuration

#	Process Name	Domain	LI	Video	ITun er Parameters
					static_black_level.r_black
1 1	Black Level Correction	CFA	0	١ ٥	static_black_level.g_r_black
					static black level.g b black static black level.b black
\vdash					vignette compensation.enable
					vignette_compensation.gain_shift
					vignette_compensation.strength_effect_mode
					vignette compensation.strength vignette compensation.calib version
					vignette compensation.calib table width
					vignette_compensation.calib_table_helght
2	Vignette	CFA	0	0	vignette_compensation.calib_vin_start_x
	_				vignette_compensation.calib_vin_start_y vignette_compensation.calib_vin_width
					vignette compensation calib vin height
					vignette_compensation.callo_vin_h_subsample_factor_num
					vignette compensation calib vin h subsample factor den vignette compensation calib vin v subsample factor num
					vignette compensation galib vin v subsample factor den
					vignette dompensation calib table path
					static bad pixel correction enable
					static bad givel comection callb version static bad givel comection callb vin start x
					static_bad_plxel_correction.callo_vin_start_y
.	-1-1		_		static bad pixel correction.calib vin width
3	Static Bad Pixel	CFA	0	0	static bad pixel comection callo vin height static bad pixel comection callo vin h subsample factor num
				.	static bad pixel contection callo vin h subsample factor den
			C.		static_bad_pixel_correction.calib_vin_v_subsample_factor_num
					static bad pixel correction.calib vin v subsample factor den
\vdash					static_bad_pixel_correction.map_path auto_bad_pixel_correction.enable
١. ١	Dunamia Bad Blook	254			auto bad pixel correction of pixel detection strength
4	Dynamic Bad Pixel	CFA	0	0 4	I auto_bad_pixel_correction.dark_pixel_detection_strength
					I auto bad pixel correction.correction method
					I_cfa_leakage_filter.enable I_cfa_leakage_filter.alpha_rr
5	CEA Lookana Ellitor	CFA	0	0	I cfa leakage filter.alpha rb
"	CFA Leakage Filter	CFA			I_cfa_leakage_filter.alpha_br
					I cfa leakage filter.alpha bb I_cfa_leakage filter.saturation_level
				-	I anti allasing.enable
6	Anti Aliasi ng	CFA	0	0	I anti aliasing thresh
\vdash					I_anti_allasing.log_fractional_correct
7	Digital VVB Gain	CFA	0	0	wb_gains.g_gain
'	Digital Vib Calif	700	ľ	~	wb gains b gain
					I_cfa_noise_filter.enable
					I_cfa_noise_filter.noise_level_red
					I_cfa_noise_filter.noise_level_green
					I cfa noise filter.noise level blue
					I_cfa_noise_filter.original_blend_strength_red
					I_cfa_noise_fliter.original_blend_strength_green
					I_cfa_noise_filter.original_blend_strength_blue
					I_cfa_noise_filter.extent_regular_red
8	CFA Noise Filter	CFA	0	0	I_cfa_noise_fliter.extent_regular_green
			_	-	I_cfa_noise_fliter.extent_regular_blue
					I_cfa_noise_filter.extent_fine_red
					I_cfa_noise_fliter.extent_fine_green
					I_cfa_noise_fliter.extent_fline_blue
					I_cfa_noise_filter.strength_fine_red
					I_cfa_noise_filter.strength_fine_green
					I_cfa_noise_filter.strength_fine_blue
					I_cfa_noise_filter.selectMty_regular
\Box					I_cfa_noise_filter.selectivity_fine

3

	Berner Herry	Dame! -		Medica	Barre Barrendon
#	Process Name	Domain	LI	Video	ITUner Parameters II gb gr_mismatch_correct.narrow_enable
9	Gb/Gr Mismatch	CFA	0		II gb_gr_mismatch_correct.wide_enable
9	GD/Gr M/smatch	CFA	۰	0	II qb qr mismatch correct wide safety
\vdash					II_gb_gr_mis.match_correct.wide_thresh
					local exposure.enable local exposure.radius
					local_exposure.luma_weight_red
10	Local Exposure	CFA	0	0	local exposure.luma weight green
					local_exposure.luma_weight_blue
					local exposure.luma weight shift local exposure.gain_curve[256]
\vdash					II demosaic activity thresh
11	Demosalc	RGB	0	0	II demosaic activity difference thresh
l '''	Delliosalc	1100	ľ	~	II demosalc.grad_clip_thresh
\vdash					II demosaic.grad noise thresh
12	Color Correction	RGB	0	0	color_correction.reg_path color_correction.three_d_path
\Box					rgb to yuv matrix[9]
13	RGB to YUV	RGB	0	0	rgb_to_yuv_matrix.y_offset
			-	-	rgb to yuv matrix u offset
\vdash	Luma Processing				rgb_to_yuv_matrix.v_offset II_processing_select.advanced_features_enable
14	Mode	Luma	0	0	Il processing selectuse 1st sharpen not asf
					II_advanced_spatial_filter.enable
			l		II advanced spatial filter.directional decide t0
			l		II_advanced_spatial_filter.directional_decide_t1 II_advanced_spatial_filter.fir_specify
			l		II advanced spatial filter fir strength iso
			l		II_advanced_spatial_filter.fir_strength_dir
			l		ii advanced spatial filter.fr per dir fir dir amounts[9]
			l		II advanced spatial filter fit per dir fit dir strengths[9] II advanced spatial filter fit per dir fit iso strengths[9]
			l		II advanced spatial filter fir coefs[9][25].
			l		II advanced spatial filter.fir_wide_edge_detect
			l		II advanced spatial filter level sit adjust high
			l		II_advanced_spatial_filter.level_sit_adjust_high_delta
			l		II advanced spatial filter level str adjust high strength II advanced spatial filter level str adjust mid strength
			l		If advanced spatial fiber level stradjust low
			l		ladvanced spatial filterlievel stradjust low delta
15	Advanced Spatial Filter	Luma	0 4	0	II advanced spatial filter level str adjust low strength
					Wadvanced spatial filter.max_change_not_TOT1_alpha II advanced spatial filter.max_change_down
					II advanced spatial filter.max change up
					II aldvanced spatial filter.TO down
					if a dvan ded_spatial_filter.TO_up
				l '	Il_advanced_spatial_filter.T1_down
					II advanced spatial filter.T1 up III advanced spatial filter.alpha min down
					Madvanced spatial filter.alpha min up
					IV advanced_spatial_filter.alpha_max_down
					ii_advanced_spatiai_filter.alpha_max_up
					II advanced spatial filter.TOT1 div high II advanced spatial filter.TOT1_div_high_delta
					II advanced spatial filter.TOT1 div high strength
				l .	II_advanced_spatial_filter.TOT1_dlv_low
		4			II advanced_spatial_filter.TOT1_div_low_delta
					II advanced spatial filter.TOT1 div low strength
$\vdash \vdash$				 	II advanced_spatial_filter.TOT1_div_mid_strength II sharpen noise filter both.enable
					II_sharpen_noise_filter_both.mode
			l		II sharpen noise filter both.edge thresh
			l		Il sharpen noise filter both.wide edge detect
					II_sharpen_noise_filter_both.max_change_up5x5 II_sharpen_noise_filter_both.max_change_down5x5
			l		Il sharpen noise filter noise, fir specify
			l		II_sharpen_noise_fliter_noise.fir_strength_iso
					li sharpen noise filter noise fir strength dir
					II sharpen noise filter noise fir per dir fir dir amounts[9]
			l		II sharpen noise filter noise fir per dir fir dir strengths [9] II sharpen noise filter noise fir per dir fir iso strengths [9]
					II sharpen noise filter noise.fir coefs[9][25]
16	Sharpen Noise Filter	Luma	0	0	ll sharpen noise filter noise.max change down
	_		l		II_sharpen_noise_filter_noise.max_change_up
					II sharpen noise filter noise level stradjust high
					II sharpen noise filter noise level str adjust high delta II sharpen noise filter noise level str adjust high strength
			l		Il sharpen noise filter noise.level str adjust mid strength
					II_sharpen_noise_filter_noise.level_str_adjust_low
					Il sharpen noise filter noise level str adjust low delta
			l		II sharpen noise filter noise level stradjust low strength II sharpen noise filter noise level stradjust not TOT1 level based
					II sharpen noise filter noise.rever sit adjust not for i lever based
					II_sharpen_noise_filter_noise.T1
			ı	l	II sharpen noise filter noise.alpha min
			l	I	II_sharpen_noise_filter_noise.alpha_max

#	Process Name	Domain	LI	Video	ITun er Param eters
					II_sharpen_noise_filter_sharpen.fir_specify
					II_sharpen_noise_filter_sharpen.fir_strength_iso
					il sharpen noise fliter sharpen.fir strength dir
					li sharpen noise filter sharpen fir per dir fir dir amounts[9]
					il sharpen noise filter sharpen.fir per dir fir dir strengths[9]
					ii sharpen noise filter sharpen fir per dir fir iso strengths[9]
					ii_sharpen_noise_filter_sharpen.fir_coefs[9][25]
					il sharpen noise filter sharpen coring.coring table[256]
					II sharpen noise filter sharpen coring fractional bits
					il sharpen noise filter sharpen coring index scale.high
					ii sharpen noise filter sharpen coring index scale.high delta
					II sharpen noise filter sharpen coring index scale high strength
					Il sharpen noise filter sharpen coring index scale.mid strength
	Abana Mata Enta				II_sharpen_noise_filter_sharpen_coring_index_scale.low
16	Sharpen Noise Filter (continue.)	Luma	0	0	Il sharpen noise filter sharpen coring index scale.low delta
	(continue.)				II_sharpen_noise_filter_sharpen_coring_index_scale.low_strength
					ii_sharpen_noise_filter_sharpen_min_coring_result.high
					il sharpen noise filter sharpen min coring result.high delta
					II_sharpen_noise_filter_sharpen_min_coring_result.high_strength
					il sharpen noise filter sharpen min coring result.mid strength
					II_sharpen_noise_filter_sharpen_min_coring_result.iow
					ii sharpen noise filter sharpen min coring result.low_delta
					il sharpen noise filter sharpen min coring result.low strength
					II sharpen noise filter sharpen scale coring high
					ll sharpen noise filter sharpen scale coring high delta
					ii_sharpen_noise_filter_sharpen_scale_coring.high_stréngth
					II sharpen noise filter sharpen scale coring mid strength
					II sharpen noise filter sharpen scale coring low
					II sharpen noise filter sharpen scale coring low delta
					Il sharpen noise filter sharpen scale coring low strength
17	Chroma Scale	Chroma	0	0	chroma_scale/enable
					chroma_spale.gain_burve[128]
					II chroma median filter.enable
					II chroma median filter.cb adaptive strength
			_ ا	_ ا	il chroma median filter.cr adaptive strength
18	Chroma Median	Chroma	0	0	II chroma median filter.cb_non_adaptive_strength
					If chroma median filter.or non adaptive strength
					II chroma median filter.cb adaptive amount
					Ni chroma_median_filter.cr_adaptive_amount
					II) chroma filter.ehable
					li chroma filter noise level cb
19	Chroma Filter	Chroma	0	0	II_chro,ma_fiter,noise_level_cr
					il chroma filter.original blend strength cb
					Il chroma filter original blend strength or
<u> </u>					II chroma filter.radius
					Video_mdt/.enable
					video_mctr.y_max_change
	1				video mctf.u max change
			l		Wideo_mctr.v_max_change
	l '				video mctf.weighting based on local motion
0	Video MCTF	Video	X	0	video_mctf.T0
-					video_mctf.T1
			7		video mctf.T2
					video_mctf.T3
				l	video motf.alpha1
				l	video_mctf.alpha2
			_		video_mctr.alpha3
					video mctf temporal adjusts mooth detection
			l	l	video_mctr_temporal_adjust.motion_detection_delay
			l	l	video mctf temporal adjust.frames combine thresh
				l	video_mcti_temporal_adjust.min
			l	l	video_mctf_temporal_adjust.mul
	Video MCTE Tomporti				video moti temporal adjust.sub
21	Video MCTF Temporal Adjust	Video	X	0	video_mctf_temporal_adjust.motion_detect_dc_map_high
	Aujust				video mctf temporal adjust motion detect dc map high delta
			l	l	video_mctr_temporal_adjust.motion_detect_dc_map_high_strength
			l	l	video_mctf_temporal_adjust.motion_detect_dc_map_low
			l	l	video moti temporal adjust motion detect do map low delta
			l	l	video_mctf_temporal_adjust.motion_detect_dc_map_low_strength
					video moti temporal adjust motion detect do map mid strength
				_	

3. Case Study and Examples

3.1. Case Study and Examples: Dynamic Bad Pixel Correction

Dynamic bad pixel is aimed at finding pixels that grossly deviate from their closet same-color neighboring pixels in the current picture. There are two detection modes: first-order detection and second-order detection. First-order detection locates isolated bad pixels while second-order detection is a more aggressive mode which can detect clusters of up to two bad pixels. But, it may have a higher potential for false detection. And, the following sample images in Figure 2 show the different combinations of detection modes.

3.1.1 Dynamic Bad Pixel Correction: Tuning Example

Disable	Hot 1st-order Dark 2nd-order	Hot 2st-order Dark 1nd-order	Hot 2st-order Dark 2nd-order	Hot 1st-order Dark 1nd-order
Enable = 0	Enable = 1	Enable = 2	Enable = 3	Enable = 4
专品品	楼区然	REPORT OF THE PARTY OF THE PART	被上。法	英 医公路

Figure 2: Sample Images at Low ISO.

auto_bad_pixel_correction.enable	0,1,2,3,4
auto_bad_pixel_correction.hot_pixel_detection_strength	10
auto_bad_pixel_correction.dark_pixel_detection_strength	10
auto_bad_pixel_correction.correction_method	0

6

Table 1: Parameters.

3.2. Case Study and Examples: Anti-Aliasing Filter

3.2.1 Anti-Aliasing Filter: Tuning Example

Anti-Aliasing Filter is used to reduce aliasing. This filter can be tuned by strength from 0 to 3. And the following sample images in Figure 3 show the comparison of strength. The more the strength of anti-aliasing, the more the loss will be detailed.

Figure 3: Sample Images at Low ISO.

3.3. Case Study and Examples: CFA Noise Filter

3.3.1 CFA Noise Filter: Tuning Flow

The CFA noise filter tuning flow is shown in Figure 4. Users can refer to this diagram to confirm how to start the CFA noise filter tuning step by step. And, this section details typical tuning parameters and tuning results from Step 1 to Step 4 and options in Figures $5 \sim 9$.

Figure 4: Tuning Flow.

3.3.2 CFA Noise Filter: Tuning Example

Step 1) noise_level R/G/B

Figure 5: Sample Image at Low ISO.

Remarks

Noise_level is set to the average noise level expected for the 14-bit sensor input (which is a function of the sensor settings). This value may be experimentally determined at each ISO level by measuring the noise standard deviation.

cfa_noise_filter.enable	1
cfa_noise_filter.noise_level_red	0, 32, 4096
cfa_noise_filter.noise_level_green	0, 32, 4096
cfa_noise_filter.noise_level_blue	0, 32, 4096
cfa_noise_filter.original_blend_strength_red	10
cfa_noise_filter.original_blend_strength_green	10
cfa_noise_filter.original_blend_strength_blue	10
cfa_noise_filter.extent_regular_red	36
cfa_noise_filter.extent_regular_green	36
cfa_noise_filter.extent_regular_blue	36
cfa_noise_filter.extent_fine_red	6
cfa_noise_filter.extent_fine_green	6
cfa_noise_filter.extent_fine_blue	6
cfa_noise_filter.strength_fine_red	71
cfa_noise_filter.strength_fine_green	71
cfa_noise_filter.strength_fine_blue	71
cfa_noise_filter.selectivity_regular	0
cfa_noise_filter.selectivity_fine	0

Table 2: Parameters.

Step 2) extent_regular R/G/B

Figure 6: Sample Image at Low ISO.

Remarks

Extent regular = 256
Detail of wide area is disappeared by too strong Noise reduction.

Extent_regular determines the size of the support region for the filter. Using a larger region tends to increase the filter strength, therefore reducing the noise at the cost of reduced sharpness. The effect is not as direct as noise_level, because increasing the size of the supported region does not always result in more filtering; pixel values too different from the center value are not used by the filter.

Table 3: Parameters.

Step 3) extent_fine R/G/B & strength_fine R/G/B

Figure 7: Sample Image at Low ISO.

Remarks

Extent fine = 128, Strength fine = 256 Detail of wide area is disappeared by too strong noise reduction.

cfa_noise_filter.enable	1
cfa_noise_filter.noise_level_red	32
cfa_noise_filter.noise_level_green	32
cfa_noise_filter.noise_level_blue	32
cfa_noise_filter.original_blend_strength_red	10
cfa_noise_filter.original_blend_strength_green	10
cfa_noise_filter.original_blend_strength_blue	10
cfa_noise_filter.extent_regular_red	128
cfa_noise_filter.extent_regular_green	128
cfa_noise_filter.extent_regular_blue	128
cfa_noise_filter.extent_fine_red	10, 50, 128
cfa_noise_filter.extent_fine_green	10, 50, 128
cfa_noise_filter.extent_fine_blue	10, 50, 128
cfa_noise_filter.strength_fine_red	50, 128, 256
cfa_noise_filter.strength_fine_green	50, 128, 256
cfa_noise_filter.strength_fine_blue	50, 128, 256
cfa_noise_filter.selectivity_regular	0
cfa_noise_filter.selectivity_fine	0

Table 4: Parameters.

Strength_fine determines how the filter operates for pixels classified as "fine detail". When strength_fine is zero, all pixels are treated the same way. This results in less filtering for pixels that are different from the surrounding pixels. As this value is increased, fine features or details are filtered more strongly. When this parameter is being fine-tuned, it may be necessary to go back and re-tune noise_level and iterate.

Extent_fine determines the size of the support region for the filter. Using a larger region tends to increase the filter strength, therefore reducing noise at the cost of reduced sharpness. The effect is not as direct as strength_fine and noise_level, because increasing the size of the support region does not always result in more filtering; pixel values too different from the center value are not used by the filter.

Step 4) original_blend_strength R/G/B

Figure 8: Sample Image at Low ISO.

Original blend strength determines the weight of the center (original) pixel. Higher values increase the weight of the center pixel. It also means that it will increase the details but with more noise.

cfa_noise_filter.enable	1
cfa_noise_filter.noise_level_red	32
cfa_noise_filter.noise_level_green	32
cfa_noise_filter.noise_level_blue	32
cfa_noise_filter.original_blend_strength_red	10, 64, 128
cfa_noise_filter.original_blend_strength_green	10, 64, 128
cfa_noise_filter.original_blend_strength_blue	10, 64, 128
cfa_noise_filter.extent_regular_red	36
cfa_noise_filter.extent_regular_green	36
cfa_noise_filter.extent_regular_blue	36
cfa_noise_filter.extent_fine_red	6
cfa_noise_filter.extent_fine_green	6
cfa_noise_filter.extent_fine_blue	6
cfa_noise_filter.strength_fine_red	71
cfa_noise_filter.strength_fine_green	71
cfa_noise_filter.strength_fine_blue	71
cfa_noise_filter.selectivity_regular	0
cfa_noise_filter.selectivity_fine	0

Table 5: Parameters.

Optional) selectivity_fine/regular

Selectivity_fine/regular determines the frequency response of the filter. Higher values keep details of images instead of reducing noise. The following images show effects of this parameter. When selectivity_fine/regular = 250, it is noticed that the image and characters are more clear. It is recommended to tune this parameter after the other parameters have been tuned as fine tuning.

Figure 9: Sample Image at Low ISO.

3.4. Case Study and Examples: GbGr Mismatch Correction

Some image sensors have a characteristic showing a mismatch between the sensitivity of Gb pixels and that of Gr pixels. It is known that the mismatch causes maze noise (See Figure 10) after advanced demosaicing. Gb/Gr Mismatch Correction can smooth out this kind of noise.

Figure 10: Maze Noise Caused by Strong Gb/Gr Mismatch.

3.4.1 CFA Noise Filter: GbGr Mismatch Correction: Tuning Flow

GbGr Mismatch correction flow is shown in Figure 11. First, it detects whether there is a consistent mismatch in a small area or in a wide area. If either condition occurs, the center pixels are averaged with the average of the neighboring four green pixels.

Figure 11: Gb/Gr Mismatch Correction.

Since the user has the narrow detection of mismatch followed by the wide detection, the recommended tuning flow should be in the same order.

Step A

Enable narrow detection to see if the maze noise could be reduced nicely

Step B)

If Step A is not enough, go to step B to enable wide detection. There are two parameters, one is *wide_safety* and the other is *wide_thresh*. Users can tune the *wide_thresh* first while keeping *wide_safety* to be maximum (=256).

Step C)

Then, users can reduce *wide_safety* to keep the best balance between maze noise and sharpness. Sometimes it is necessary to go back to Step B to tune *wide_thresh*.

3.4.2 CFA Noise Filter: GbGr Mismatch Correction: Tuning Example

Step A)

Figure 12: Enable Narrow Detection.

In this case, it seems not enough. Go to the next step.

Step B)

Not enough

wide_safety = 256, wide_thresh = 2

Not enough

wide_safety = 256, wide_thresh = 1

Figure 13: change wide_thresh.

Slightly too blurred but good for de-noising, choose this one

wide_safety = 256, wide_thresh = 0

Step C)

Enough effect

wide_safety = 16, wide_thresh = 0

Can see the maze noise, not good

wide_safety = 8, wide_thresh = 0

The results of wide_safty= 16 can erase the maze noise and not be too blurred.

3.5. Case Study and Examples: Local Exposure

Local exposure can dynamically adjust the gain of the current pixel based on the average luma value around it. The visibility of shadow detail can be improved by increasing the local gain. A gain factor is applied on the pixels as a function of the local brightness value; this is controlled by programming a gain curve. And the following sample images at Figure 14 show the different gain curves to achieve the local exposure.

3.5.1 Local Exposure: Tuning Example

Figure 14: Sample Images at Low ISO.

3.6. Case Study and Examples: Demosaic

Demosaic contains Gradient registers and Activity registers. The Gradient registers are used to select between isotropic and directional interpolation of the green channel. Interpolations for the red and blue components are dependent on the green channel's interpolation. When directional interpolation has been selected, the Activity registers are used to select the directional interpolation type: constant-hue or straight-average. Therefore, the possible combination of interpolations are: (1) directional, constant-hue (2) directional, straight-average (3) isotropic, always straight-average.

3.6.1 Demosaic: Tuning Example

Gradient - grad_noise_thresh

This value is used to select between directional interpolation and isotropical interpolation based on a Gradient measure. When the Gradient measure falls below grad_noise_thresh, isotropic interpolation is chosen to reduce noise. When the Gradient measure rises above grad_noise_thresh, directional interpolation is chosen to avoid zipper artifacts in edge areas.

Figure 15: Sample Images at Low ISO.

li_demosaic.activity_thresh	31
li_demosaic.activity_difference_thresh	1365
li_demosaic.grad_clip_thresh	512
li_demosaic.grad_noise_thresh	16, 64

Table 6: Parameters.

Activity - activity_thresh

The value is used to determine if constant-hue interpolation or straight-average interpolation is to be used based on an Activity measure. If activity count is >= activity_thresh, constant-hue interpolation is used. If activity count is < activity_thresh, straight-average interpolation is used.

Figure 16: Sample Images at Low ISO.

li_demosaic.activity_thresh	0, 31
li_demosaic.activity_difference_thresh	1365
li_demosaic.grad_clip_thresh	512
li_demosaic.grad_noise_thresh	5

Table 7: Parameters.

3.7. Case Study and Examples: Chroma Median Filter

Chroma Median Filter is used to reduce false color artifacts on the edge and is also effective for chromatic aberration. This filter has Cb and Cr strength parameters. Users can tune the strengths respectively.

The following sample images describe the effect of this filter.

3.7.1 Chroma Median Filter: Tuning Example

Figure 17: Sample Image at Low ISO.

Remarks

Strength = 256 Chroma saturation will decrease by too strong median filter.

chroma_median_filter.enable	1
chroma_median_filter.cb_adaptive_strength	0, 128, 256
chroma_median_filter.cr_adaptive_strength	0, 128, 256
chroma_median_filter.cb_non_adaptive_strength	0
chroma_median_filter.cb_non_adaptive_strength	0
chroma_median_filter.cb_adaptive_amount	256
chroma_median_filter.cb_adaptive_amount	256

Table 8: Parameters.

3.8. Case Study and Examples: Chroma Noise Filter

Chroma noise filter tuning flow is shown in Figure 18. Users can refer to this diagram to confirm how to start Chroma noise filter tuning step by step. Typical tuning parameters and tuning results are shown in Tables 9~11 and Figures 19~21.

3.8.1 Chroma Noise Filter: Tuning Flow

Figure 18: Chroma Noise Filter Tuning Flow.

3.8.2 Chroma Noise Filter: Tuning Example

Step1) noise_level Cb/Cr

Figure 19: Sample Image at Low ISO.

Remarks

chroma_filt.enable	1
chroma_filt.noise_level_cb	0, 8, 64
chroma_filt.noise_level_cr	0, 8, 64
chroma_filt.original_blend_strength_cb	0
chroma_filt.original_blend_strength_cr	0
chroma_filt.radius	64

Table 9: Parameters.

Step 2) radius

Figure 20: Sample Image at Low ISO.

Remarks

Radius = 128
Sharpness are blurred and color of flowers is paled.

chroma_filter.enable	1
chroma_filter.noise_level_cb	8
chroma_filter.noise_level_cr	8
chroma_filter.original_blend_strength_cb	0
chroma_filter.original_blend_strength_cr	0
chroma_filter.radius	32, 64, 128

Table 10: Parameters.

Step 3) original_blend_strength Cb/Cr

Figure 21: Sample Image at Low ISO.

Remarks

Original blend strngth = 256
The higher value of original blend
strenght will keep the the original
picture and less filter effect.

chroma_filter.enable	1
chroma_filter.noise_level_cb	64
chroma_filter.noise_level_cr	64
chroma_filter.original_blend_strength_cb	10, 128, 256
chroma_filter.original_blend_strength_cr	10, 128, 256
chroma_filter.radius	128

Table 11: Parameters.

3.9. Case Study and Examples: Advanced Spatial Filter

The advanced spatial filter is a luma noise filter. However, there is only one sharpen noise filter in A12, see Figure 1. Therefore, either the advanced spatial filter or the sharpen noise filter can be used. It can be set by "processing_select.use1st_sharpen_not_asf"=0 for advanced spatial filter or 1 for sharpen noise filter. It is not recommended to use only the advanced spatial filter. It will cause the image to be too blurred.

3.9.1 Advanced Spatial Filter: Tuning Flow

Step A) To tune advanced_spatial_filter.directional_decide_t0/t1 which configures the threshold.

The threshold is defined as follows:

- non-edge area < directional decide t0</p>
- directional_decide_t0 < interpolation < directional_decide_t1</p>
- directional_decide_t1 < edge area</p>

Step B) To tune advanced_spatial_filter.fir_strength_iso which is applied for non-edge areas

Step C) To tune advanced spatial filter fir strength dir which is applied for edge areas

Step D) To tune the maximum change value of filters which are used to restrict the effect of filters. The maximum change in other filters have the same meaning. Hence, tuning can be performed in the same way.

3.9.2 Advanced Spatial Filter: Tuning Example

Step A) directional decide t0/t1

directional_decide_t0 and directional_decide_t1 determines the pixel filtered isotropically or directionally. Therefore, it should be tuned fist. The values of T0 and T1 may be determined by using a high value of strenght_dir with a low value of strenght_iso to get the optimized value of T1, then a high value of strenght_iso with a low value of strenght_dir to get the optimized value of T0. In the Figure 22 example, strenght_dir = 256 and strenght_iso = 1 are used to verify T1 values. The users can get T0 values using the same method, a high value of strength_iso and a low value of strength_dir.

.

directional_decide_t0/t1			
	9/10	19/20	39/40
Non-edge area	1		
Edge area			
Figure 22: Sample Imag	ges at low ISO.		

Figure 22: Sample Images at low ISO.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
0	0	0	0	0	0	0	0	0		
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
0	0	0	0	0	0	0	0	0		
[0]	[1]	[2]	[3]		[5]	[6]	[7]	[8]		
0	0	0	0		0	0	0	0		
				256						
				1						
			1	0, 20,	40					
				3						
				5						
	•	V.		64						
	1			64						
				110						
5										
64										
	2									
	0 [0] 0 [0]	0 0 [0] [1] 0 0 [0] [1]	0 0 0 [0] [1] [2] 0 0 0 [0] [1] [2]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[0] [1] [2] [3] [4] [5] 0	[0] [1] [2] [3] [4] [5] [6] 0 0 0 0 0 0 0 0 0 [0] [1] [2] [3] [4] [5] [6] 0 0 0 0 0 0 0 0 0 [0] [1] [2] [3] [4] [5] [6] 0 0 0 0 0 0 0 0 0 256 1 5 9, 19, 39 10, 20, 40 3 5 64 64 64 110 5	[0] [1] [2] [3] [4] [5] [6] [7] 0 0 0 0 0 0 0 0 0 0 [0] [1] [2] [3] [4] [5] [6] [7] 0 0 0 0 0 0 0 0 0 0 [0] [1] [2] [3] [4] [5] [6] [7] 0 0 0 0 0 0 0 0 0 0 256 1 5 5 9, 19, 39 10, 20, 40 3 5 64 64 64 110 5		

Table 12: Parameters.

Step B) strength_ iso

Figure 23: Sample images at low ISO.

Remarks

specify					2						
dir amounts	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
dii_aiilodiits	0	0	0	0	0	0	0	0	0		
dir strongths	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
dir_strengths	0	0	0	0	0	0	0	0	0		
iso_strengths	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
ISO_Strengtris	0	0	0	0	0	0	0	0	0		
strength_dir					50						
strength_iso				10,	128,	256					
max_change_not_T0T1_alpha	5										
max_change_donw	5										
max_change_up	5										
directional_decide_t0					5						
directional_decide_t1					10						
wide_edge_detect					3						
level_str_adjust_low					5						
level_str_adjust_low_delta					5	3					
level_str_adjust_low_strength	64						_				
level_str_adjust_mid_strength	64										
level_str_adjust_high	110										
level_str_adjust_high_delta	5										
level_str_adjust_high_strength	64										

Table 13: Parameters.

Step C) strength_dir

Figure 24: Sample Images at Low ISO.

strength_dir = 256 Detail of characters is blurred.

specify_firs	2									
dir amounta	[0] [1] [2] [3] [4] [5] [6] [7] [8]									
dir_amounts	0 0 0 0 0 0 0 0 0									
dir_strengths	[0] [1] [2] [3] [4] [5] [6] [7] [8]									
dii_strengtris	0 0 0 0 0 0 0 0 0									
iso_strengths	[0] [1] [2] [3] [4] [5] [6] [7] [8]									
strength_dir	10, 128, 256									
strength_iso	128									
max_change_not_T0T1_alpha	5									
max_change_down	5									
max_change_up	5									
directional_decide_t0	5									
directional_decide_t1	10									
wide_edge_detect	3									
level_str_adjust_low	5									
level_str_adjust_low_delta	5									
level_str_adjust_low_strength	64									
level_str_adjust_mid_strength	64									
level_str_adjust_high	110									
level_str_adjust_high_delta	5									
level_str_adjust_high_strength	64									

Table 14: Parameters.

In the advanced spatial filter, the value of max_change_not_T0T1_alpha decides max_change controlled by max_change_down/up or T0/T1/alpha_down/up. max_change_not_T0T1_alpha = 1 means it is controlled by max_change_down/up. max_change_not_T0T1_alpha = 0 means that it is controlled by T0/T1/alpha change.

Figure 25: Sample Images at Low ISO.

max_change_up/donw = 1
The effect of filter was
restricted by the max change.

specify_firs					2						
dir amounto	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
dir_amounts	0	0	0	0	0	0	0	0	0		
dir_strengths	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
dii_strengtris	0	0	0	0	0	0	0	0	0		
iso_strengths	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]		
	0	0	0	0	0	0	0	0	0		
strength_dir					256						
strength_iso					128						
max_change_not_T0T1_alpha					1						
max_change_down					1, 5, °						
max_change_up					1, 5, °	10					
T0_down					5						
T0_up	5										
T1_down	5										
T1_up	5										
alpha_min_down	5										
alpha_min_up	5										
alpha_max_down	5										
alpha_max_up	5										
directional_decide_t0	2										
directional_decide_t1	40										
wide_edge_detect	3										
level_str_adjust_low	5										
level_str_adjust_low_delta	5										
level_str_adjust_low_strength	64										
level_str_adjust_mid_strength	64										
level_str_adjust_high	110										
level_str_adjust_high_delta	5										
level_str_adjust_high_strength	64										

Table 15: Parameters.

3.10. Case Study and Examples: Sharpen Noise Filter

Sharpen Noise Filter has two modes for noise reduction as shown below in Figure 26. When the user selects mode 0, Sharpening is applied after Spatial Noise Filter and FIR kernel is 5x5. When the user selects mode 2, Sharpening and Spatial Noise Filters are applied in parallel and FIR kernel is 7x7. Usually, it would not recommended that users use mode 0 as performing sharpening after de-noising is not meaningful. The image would have already lost details in the noise filter. Therefore, Mode 2 is usually used.

Figure 26: Difference of Mode Selection.

3.10.1 Sharpen Noise Filter: Tuning Flow

Step A) Tune spatial_filter.edge_threshold which configures the threshold between the non-edge area and the edge area. If users change the value of the edge_threshold, the noise level is changed for both non-edge and edge areas.

Step B) Tune sharpen_noise_filter_noise, this filter is a luma noise filter. The tuning methods are the same as mentioned for the advanced spatial filter.

Step C) Tune sharpening_fir.fir_strength_iso/dir which can tune strength of FIR. Higher value gives higher sharpness.

Step D) Tune sharpening_coring_table which configures the coring table of the Sharpen filter. This

table multiplied by the FIR output.

3.10.2 Sharpen Noise Filter: Tuning Example

Figure 27: Sample Images at Low ISO.

Remarks

both.mode	2
both.edge_thresh	10, 32, 64
both.wide_edge_detect	1
spatial_filter.specify	2
spatial_filter.fir_strength_iso	109
spatial_filter.fir_strength_dir	20

Table 16: Parameters.

Step C) To tune sharpening_fir.fir_strength_iso/dir

Figure 28: Sample Images at Low ISO.

both.mode	2
both.edge_thresh	23
both.wide_edge_detect	1
spatial_filter.specify	2
spatial_filter.fir_strength_iso	128, 180, 256
spatial_filter.fir_strength_dir	128, 180, 256

Table 17: Parameters.

Step D) To tune sharpening_coring.coring_table

Figure 29: Sample Images at Low ISO.

Parameters

	li_sharpen_noise_filter_sharpen_coring.coring_table[256] sample1															
[0]~[119]	[120]	[120]	[122]	[123]	[124]	[125]	[126]	[127]	[128]	[129]	[130]	[131]	[132]	[133]	[134]	[135]~[255]
28	28	28	28	24	20	16	12	8	12	16	20	24	28	28	28	28
	li_sharpen_noise_filter_sharpen_coring.coring_table[256] sample2															
[0]~[119]	[120]	[121]	[122]	[123]	[124]	[125]	[126]	[127]	[128]	[129]	[130]	[131]	[132]	[133]	[134]	[135]~[255]
28	28	28	24	20	16	12	8	8	8	12	16	20	24	28	28	28
	li_sharpen_noise_filter_sharpen_coring.coring_table[256] sample3															
[0]~[120]	[120]	[121]	[122]	[123]	[124]	[125]	[126]	[127]	[128]	[129]	[130]	[131]	[132]	[133]	[134]	[135]~[255]
28	24	20	16	12	8	8	8	8	8	8	8	12	16	20	24	28

Figure 30: Parameters.

Optional) Wide Edge Detection

Figure 31: Sample Images of Wide Edge Detect.

A12 edge-detection is controlled by wide_edge_detect. Increasing this parameter enhances sensitivity and increases edge-direction decisions for wide high-contrast edges, regardless of proximity to an edge. Smaller values enhance the sensitivity and increase edge-direction decisions for closely spaced lines and finer details. The effect of this parameter is generally subtle in nature; however, note that the following issues can occur.

When the value of wide_edge_detect is small, there may be an increase in artifacts a few pixels away from high-contrast edges.

When the value of wide edge detect is large, there may be an increase in the blurring of closely spacial

lines or a reduction in fine-detail.

3.11. Case Study and Examples: Video MCTF

Motion-compensated temporal filtering (MCTF). Each sample is combined with a sample from the previous picture in a three-step process. In Step 1, a weight W is computed using the following parameters: T0-T3, alpha1-alpha3. Typically the curve is non-decreasing, so that the weight only increases as temporal differences increase. In Step 2, a preliminary filtered sample is computed as preliminary = ((256-W) * previous + W * current)/256. In Step 3, the final filtered sample is computed as the preliminary filtered sample.

3.11.1 Video MCTF: Tuning Example

The case on the right of Figure 32 is that it keeps too much of the previous. Therefore, it shows ghosts in moving parts, but less noise in still parts. Its the opposite in the left of Figure 32.

Figure 32: Sample Images at high ISO.

4. Basic Tuning Flow

4.1. Basic Tuning Flow: Preparation

Before starting the IQ tuning, the following steps need to be performed:

- > Target board, either real camera sets or development boards like BuB are usable if A12 is on board.
- Windows PC
 - ♦ Teraterm (<u>http://hp.vector.co.jp/authors/VA002416/teraterm.html</u>) installed
 - ♦ Has USB port
 - ♦ Has Serial port
- Firmware (Ambarella SDK + Customer APP)
- > Raw image data if it is necessary to see the result from external raw data
- > iTuner configuration file if it is necessary

Raw image data and iTuner configuration file are produced by "Raw Capture" command while tuning flow. If it is required to use external raw data that is captured from another camera, this is also achievable using ituner.

More details are described in AMBARELLA_SDK6_UG_iTuner_Still and AMBARELLA_SDK6_UG_iTuner_Video.

Furthermore, IQ tuning supports graphic user interface. Amage is a tool that is used for IQ tuning. It has the following requirements:

- Libusb
- Microsoft.Net Framework 4.0
- Ambarella Amage

More details are provided in AMBARELLA SDK6 UG A12 Amage.

4.2. Basic Tuning Flow: Tuning Flow

After the above preparation steps are accomplished, the following IQ tuning flow is recommended:

Figure 33: IQ Tuning flow.

The above flow shown in Figure 33 is the most basic unit of tuning, and it is likely that this flow is repeated many times along the development phases.

It is important to have calibration data to see the finest image quality expected as a product. iTuner has a flexible functionality to enable/disable to use calibration data and data is easily replaced in it. As development proceeds, calibration process will be more stable and accurate. User can apply the latest calibration data to any raw image captured by the **Raw Capture** command.

More details are provided in AMBARELLA_SDK6_UG_iTuner_Still and AMBARELLA_SDK6_UG_iTuner_Video.

5. Calibration

There are several calibration processes associated with IQ tuning supported in Ambarella SDK. Note that not every user needs to perform calibration, often, IQ tuning will be spent in the loop around the raw encode of Figure 33.

- Bad pixel calibration sensor oriented
- Vignette (lens shading) compensation calibration lens oriented
- Chromatic aberration calibration lens oriented
- WARP (lens distortion) calibration lens oriented

Each process produces calibration data to be used. Binary data usable in the ituner raw encode is provided by **Raw Capture** command after the calibration process.

More details on the calibration is provided in AMBARELLA_SDK6_UG_Calibration.

6. Reference

The table below shows a list of documents that have more details on IQ tuning. Please refer to them when necessary.

SDK6-UG-003	AMBARELLA_SDK6_UG_iTuner_Still	
SDK6-UG-004	AMBARELLA_SDK6_UG_iTuner_Video	
SDK6-UG-005	AMBARELLA_SDK6_UG_Calibration	
SDK6-UG-008	AMBARELLA_SDK6_UG_A12_Amage	

Table 18: List of IQ Related Documents.

