Therefore, $\log_{10} a$ must equal to $\frac{1.8}{2.5752} = 0.69897$ $\log_a b = 2.5752$ and $\log_{10} b = 1.8$

Treating both sides of equation $\log_{10} a = 0.69897$ as exponents of 10 gives $a = 10^{0.69897} = 5$

** An investment of 1, 600 is worth 7, 400 after 8.5 years. What is the continuously compounded rate of return of this investment?

© 18.02%

© 18.01%

O 17.01%

 \odot 20.01

 $\sqrt{\text{correct}}$ $\frac{\ln \frac{7400}{1600}}{8.5} = 0.18017$

¹¹ A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

0 0.02478 0 0.2478 0 0.0002478 © 0.002478

 $x = \frac{1}{(e^{0.24 \times 25})}$ $\begin{array}{c} \checkmark \text{ correct} \\ e^{(0.24\times25)} = \frac{1}{x} \end{array}$ x = 0.002478 $x = \frac{1}{403.4288}$

 12 log₂ z = 6.754. What is $\log_{10}(z)$? 0.1.3508 0.82956 0.49185 0.20316

1/1 paint

 $(\log_{10}z)\times(\log_210)=3.321928$

Therefore, $\log_{10} z = \frac{6.754}{3.321928} = 2.03316$

13. Suppose that $g:\mathbb{R}\to\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is every single value of a.Which of the following could possibly be g(1.5)?

ⓐ g(1.5) = 9.7○ g(1.5) = 10.1○ g(1.5) = 11○ g(1.5) = 103.4