ĐỀ KHỞI ĐỘNG 12

Câu 1: Cho hàm số $y = \frac{ax+b}{cx+d}(a,b,c,d \in \mathbb{R})$ có đồ thị là đường cong trong hình bên.

Đường tiệm cận ngang của đồ thị hàm số đã cho có phương trình là

B.
$$y = 2$$
.

C.
$$x = 2$$
.

D.
$$y = 1$$
.

Câu 2: Trong không gian Oxyz, cho mặt cầu $(S):(x-1)^2+(y-2)^2+(z+1)^2=16$. Tọa độ tâm I và bán kính R của mặt cầu (S) là

A.
$$I(-1;-2;1)$$
 và $R=4$.

B.
$$I(1;2;-1)$$
 và $R=16$.

C.
$$I(-1;-2;1)$$
 và $R=16$.

D.
$$I(1;2;-1)$$
 và $R=4$.

Câu 3: Nguyên hàm của hàm số $f(x) = x^2$ là

A.
$$\frac{1}{2}x^2 + C$$
.

B.
$$2x + C$$
.

B.
$$2x + C$$
. **C.** $\frac{1}{3}x^3 + C$.

D.
$$3x^3 + C$$
.

Câu 4: Cho cấp số cộng (u_n) với $u_1 = 2, u_3 = 10$. Giá trị của u_2 bằng

Câu 5: Hàm số nào sau đây đồng biến trên \mathbb{R} ?

A.
$$y = \left(\frac{1}{2}\right)^{x}$$

B.
$$y = \left(\frac{2}{3}\right)^x$$

C.
$$y = \left(\frac{5}{3}\right)^{x}$$

A.
$$y = \left(\frac{1}{2}\right)^x$$
. **B.** $y = \left(\frac{2}{3}\right)^x$. **C.** $y = \left(\frac{5}{3}\right)^x$. **D.** $y = \left(\frac{2}{5}\right)^x$.

Câu 6: Tập nghiệm của bất phương trình $\left(\frac{1}{2}\right)^2 \ge 2$ là

A.
$$(-\infty, -1)$$
.

B.
$$(-\infty, -1]$$
. **C.** $[-1, +\infty)$.

C.
$$[-1, +\infty)$$
.

D.
$$(-1, +\infty)$$
.

Câu 7: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

B.
$$y = \frac{x+2}{x+1}$$
.

C.
$$y = x^3 - 2x - 1$$
. **D.** $y = -x^4 + 1$.

D.
$$y = -x^4 + 1$$
.

Câu 8: Cho khối chóp có thể tích bằng $6a^3$ và diện tích đáy bằng $2a^2$. Chiều cao của khối chóp đã cho bằng

- **A.** 9a.
- **C.** 3*a*.

Câu 9: Trong không gian Oxyz, cho vecto $\vec{u} = (2;0;-3)$. Mệnh đề nào dưới đây **đúng**?

$$\mathbf{A.} \ \vec{u} = 2\vec{i} - 3\vec{j}.$$

$$\mathbf{B.} \ \overrightarrow{u} = 2\overrightarrow{i} + 3\overrightarrow{k}.$$

A.
$$\vec{u} = 2\vec{i} - 3\vec{j}$$
. **B.** $\vec{u} = 2\vec{i} + 3\vec{k}$. **C.** $\vec{u} = 2\vec{j} - 3\vec{k}$. **D.** $\vec{u} = 2\vec{i} - 3\vec{k}$.

D.
$$\vec{u} = 2\vec{i} - 3\vec{k}$$

Câu 10: Nếu $\int_{-2}^{1} f(x) dx = 3$ và $\int_{-2}^{1} g(x) dx = 7$ thì $\int_{-2}^{1} [2f(x) - g(x)] dx$ bằng

- **A.** 13.

Câu 11: Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:

- **A.** (3;4).
- **B.** $(-\infty; -1)$. **C.** (2; 4).
- **D.** (1;3).

Câu 12: Có bao nhiều cách xếp 8 quyển sách khác nhau thành một hàng ngang trên giá sách?

- **A.** 8^7 .
- **B.** 7!.
- **C.** 8⁸.
- **D.** 8!.

Câu 13: Trong không gian Oxyz, mặt phẳng (P) vuông góc với trục Oy có một vectơ pháp tuyến là

- **A.** $\vec{n} = (1;0;1)$. **B.** $\vec{n} = (1;0;0)$. **C.** $\vec{n} = (0;1;0)$. **D.** $\vec{n} = (0;0;1)$.

Câu 14: Cho hàm số y = f(x) có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng

- A. -4.
- **B.** 3.

C. 0.

D. 2.

Câu 15: Đạo hàm của hàm số $y = \log_2 x$ trên khoảng $(0; +\infty)$ là

- **A.** $y' = \frac{1}{x \ln 2}$. **B.** $y' = \frac{\ln 2}{x}$. **C.** $y' = \frac{1}{x}$. **D.** $y' = \frac{x}{\ln 2}$.

Câu 16: Cho hình nón có bán kính đáy $r = \sqrt{3}$ và độ dài đường sinh l = 4. Diện tích xung quanh S_{xq} của hình nón đã cho là

- **A.** $S_{xq} = 12\pi$. **B.** $S_{xq} = 4\sqrt{3}\pi$. **C.** $S_{xq} = 8\sqrt{3}\pi$. **D.** $S_{xq} = \sqrt{39}\pi$.

Câu 17: Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b], k là hằng số. Khẳng định nào sau đây là sai?

A.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
. **B.** $\int_{a}^{b} k.f(x) dx = k.\int_{a}^{b} f(x) dx$.

C.
$$\int_{a}^{b} \left[f(x) \cdot g(x) \right] dx = \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx.$$

C.
$$\int [f(x).g(x)]dx = \int f(x)dx \cdot \int g(x)dx$$
. **D.** $\int [f(x)-g(x)]dx = \int f(x)dx - \int g(x)dx$.

Câu 18: Cho khối lăng trụ tam giác ABC.A'B'C' biết đáy ABC là tam giác đều cạnh bằng 2a và khoảng cách giữa hai mặt đáy bằng 3a. Thể tích V của khối lăng trụ đã cho là

- **A.** $V = a^3 \sqrt{3}$. **B.** $V = \frac{a^3 \sqrt{3}}{4}$. **C.** $V = \frac{3a^3 \sqrt{3}}{4}$. **D.** $V = 3a^3 \sqrt{3}$.

Câu 19: Tập xác định của hàm số $y = (x-1)^2$ là **19:** Tập xác định của ham so y = (x-1) 1a **A.** $D = [1; +\infty)$. **B.** $D = \mathbb{R}$. **C.** $D = (1; +\infty)$. **D.** $D = \mathbb{R} \setminus \{1\}$.

Câu 20: Tập nghiệm của phương trình $\log_2(x^2 + 2x + 1) = 0$ là

A.
$$\{2;1\}$$
.

B.
$$\{-2;0\}$$

$$C. \{2;0\}.$$

D.
$$\{-1;2\}$$
.

Câu 21: Tập tất cả nguyên hàm của hàm số $f(x) = \frac{1}{3-2x}$ là

A.
$$-\frac{1}{2}\ln(3-2x)+C$$
. **B.** $\frac{1}{\ln 2}\ln|3-2x|+C$. **C.** $-\frac{1}{2}\ln|2x-3|+C$. **D.** $\ln|2x-3|+C$.

Câu 22: Cho lăng trụ đứng ABC.A'B'C' biết tam giác ABC vuông cân tại A, AB = 2AA' = 2a.

Thể tích khối lăng trụ đã cho là:

A.
$$\frac{a^3}{12}$$
.

B.
$$\frac{2a^3}{3}$$
.

C.
$$\frac{a^3}{4}$$
.

D.
$$2a^3$$
.

Câu 23: Hàm số nào sau đây nghịch biến trên \mathbb{R} ?

A.
$$y = -x^3 + 3x^2 - 3x - 1$$
.

B.
$$y = x^4$$
.

C.
$$y = -x^4 + 2x^2 - 2$$
.

D.
$$y = \frac{-x-1}{x+2022}$$
.

Câu 24: Trong hệ trục tọa độ Oxyz, vécto pháp tuyến của mặt phẳng (Oxy) có tọa độ là

D.
$$(1;0;0)$$
.

Câu 25: Với a là số thực dương tùy ý, $\log_3(81a^5)$ bằng

A.
$$4 - 5 \log_3 a$$
.

B.
$$4 + 5a$$
.

C.
$$4 + 5 \log_3 a$$
.

D.
$$4-5a$$
.

Câu 26: Giá trị nhỏ nhất của hàm số $y = -x^3 + 3x - 2$ trên đoạn [0,3] bằng

A.
$$-3$$
.

Câu 27: Cho hàm số y = f(x) có $f'(x) = x(x-1)^2(2-x), \forall x \in \mathbb{R}$. Hàm số đã cho đạt cực đại tại điểm

A.
$$x = -2$$
.

B.
$$x = 0$$
.

$$C \quad x = 2$$

D.
$$x = -1$$
.

Câu 28: Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

B.
$$(-1;0)$$
.

$$C. (-1;1).$$

Câu 29: Họ tất cả các nguyên hàm của hàm số $f(x) = \frac{3x^3 - 2x^2 + 5}{x}$ là

A.
$$x^3 - x^2 - 5 \ln x + C$$
. **B.** $6x - 2 - \frac{5}{x^2}$.

C.
$$x^3 - x^2 + 5 \ln |x| + C$$
. **D.** $x^3 - x^2 - 5 \ln |x| + C$.

Câu 30: Cho khối trụ có bán kính đáy bằng 2a và thể tích bằng $12\pi a^3$. Diện tích xung quanh của khối trụ đã cho là

A. $18\pi a^2$.

B. $12\pi a^2$.

C. $6\pi a^2$.

D. $36\pi a^2$.

Câu 31: Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ.

Có bao nhiều giá trị nguyên dương của m để phương trình f(x) = m có ba nghiệm phân biệt?

A. 3.

B. 4.

C. 2.

D. 5.

Câu 32: Trong không gian Oxyz, cho hai điểm A(-1;2;4), B(3;4;-2). Phương trình mặt cầu có đường kính AB là

A.
$$(x+1)^2 + (y+3)^2 + (z+1)^2 = 14$$
.

A.
$$(x+1)^2 + (y+3)^2 + (z+1)^2 = 14$$
. **B.** $(x-1)^2 + (y-3)^2 + (z-1)^2 = \sqrt{14}$.

C.
$$(x-1)^2 + (y-3)^2 + (z-1)^2 = 14$$

C.
$$(x-1)^2 + (y-3)^2 + (z-1)^2 = 14$$
. **D.** $(x+1)^2 + (y+3)^2 + (z+1)^2 = \sqrt{14}$.

Câu 33: Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm A(1;-2;3) và vuông góc với mặt phẳng tọa độ Oxy là

A.
$$\begin{cases} x = 1 + t \\ y = -2 + t. \\ z = 3 + t \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = -2 + t \end{cases}$$

$$\mathbf{A.} \begin{cases} x = 1+t \\ y = -2+t. \\ z = 3+t \end{cases} \qquad \mathbf{B.} \begin{cases} x = 1+t \\ y = -2+t. \\ z = 3 \end{cases} \qquad \mathbf{C.} \begin{cases} x = 1 \\ y = -2 \\ z = 3+t \end{cases} \qquad \mathbf{D.} \begin{cases} x = -1 \\ y = 2 \\ z = -3-t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = -1 \\ y = 2 \\ z = -3 - t \end{cases}$$

Câu 34: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, $AD = a\sqrt{2}$. Cạnh bên SA vuông góc với mặt phẳng đáy và $SD = a\sqrt{5}$ (tham khảo hình vẽ). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng

B.
$$30^{\circ}$$
.

$$\mathbf{C.}\ 45^{\circ}$$
.

D.
$$90^{\circ}$$
.

Câu 35: Cho hàm số $y = ax^4 + bx^2 + c$ có đồ thị như đường cong trong hình vẽ bên. Mệnh đề nào dưới đây đúng?

A.
$$a < 0, b < 0$$
.

B.
$$a < 0, b > 0$$
.

C.
$$a > 0, b < 0$$
. **D.** $a > 0, b > 0$.

D.
$$a > 0, b > 0$$
.

Câu 36: Có bao nhiều giá trị nguyên của m để bất phương trình $\log_3^2 x + m \log_3 x \ge m$ nghiệm đúng với mọi giá trị của $x \in (0; +\infty)$.

Câu 37: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2a. Cạnh bên SA vuông góc với mặt phẳng đáy và SA = 3a.

Khoảng cách từ trung điểm M của cạnh SA đến mặt phẳng (SBC) là

B.
$$\frac{3\sqrt{13}}{13}a$$
.

C.
$$\frac{3a}{2}$$
.

D.
$$\frac{3a}{4}$$
.

Câu 38: Gọi A là tập hợp các số tự nhiên có 5 chữ số khác nhau được lập từ các số của tập hợp $\{1;2;3;4;5;6;7\}$. Chọn ngẫu nhiên một số từ tập A. Xác suất để số được chọn có mặt chữ số 2 và chữ số 2 đứng ở chính giữa là

A.
$$\frac{2}{7}$$
.

B.
$$\frac{1}{7}$$
.

B.
$$\frac{1}{7}$$
. **C.** $\frac{1}{3}$.

D.
$$\frac{5}{7}$$
.

Câu 39: Có bao nhiều giá trị nguyên dương bé hơn 2024 của tham số m để hàm số $y = \frac{2x^2 + 2x - 1 - 5m}{x - m}$ nghịch biến trên khoảng (1;5)?

Câu 40: Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Khoảng cách từ tâm đáy tới một mặt bên bằng $\frac{a\sqrt{2}}{2}$. Thể tích V của khối chóp S.ABCD là

A.
$$V = \frac{a^3 \sqrt{3}}{6}$$
.

B.
$$V = \frac{a^3 \sqrt{3}}{2}$$

B.
$$V = \frac{a^3 \sqrt{3}}{2}$$
. **C.** $V = \frac{a^3 \sqrt{2}}{3}$.

D.
$$V = \frac{a^3 \sqrt{2}}{9}$$

Câu 41: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình vẽ bên. Số điểm cực trị của hàm số $g(x) = f[f^2(x)]$ là

Câu 42: Có bao nhiều giá trị nguyên của tham số m để phương trình $\log_3(16-x^2) + \log_{\frac{1}{2}}(2x-m+5) = 0$ có 2 nghiệm phân biệt?

Câu 43: Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;0;3) và cắt đường thẳng

 $(d): \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-1}{2}$ tại hai điểm A,B sao cho tam giác IAB vuông. Phương trình mặt cầu (S) là

A.
$$(x+1)^2 + y^2 + (z+3)^2 = \frac{10}{9}$$
.

B.
$$(x+1)^2 + y^2 + (z+3)^2 = \frac{40}{9}$$
.

C.
$$(x-1)^2 + y^2 + (z-3)^2 = \frac{10}{9}$$
.

D.
$$(x-1)^2 + y^2 + (z-3)^2 = \frac{40}{9}$$
.

Câu 44: Cho hàm số f(x) nhận giá trị dương và có đạo hàm liên tục trên [0;4]. Biết f(0)=1 và

 $f(x) f(4-x) = e^{x^2-4x}$ với mọi $x \in [0;4]$. Tính tích phân $I = \int_{0}^{4} \frac{(x^3-6x^2) f'(x)}{f(x)} dx$

A.
$$I = -\frac{16}{5}$$

B.
$$I = -\frac{256}{5}$$

C.
$$I = -\frac{14}{3}$$

A.
$$I = -\frac{16}{5}$$
 B. $I = -\frac{256}{5}$ **C.** $I = -\frac{14}{3}$ **D.** $I = -\frac{128}{3}$

Câu 45: Cho hàm số y = f(x). Đồ thị của hàm số y = f'(x) trên [-5;3] như hình vẽ (phần cong của đồ thị là một phần của parabol $y = ax^2 + bx + c$). Biết f(0) = 0, giá trị của 2f(-5) + 3f(2) bằng

B.
$$\frac{35}{3}$$

D.
$$\frac{109}{3}$$

Câu 46: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x+1)(x-1)^2(x-2)$. Giá trị nhỏ nhất của hàm số

 $y = f(2x+1) + \frac{8}{3}x^3 + 4x^2 - \frac{5}{3}, x \in \left[-1; \frac{1}{2}\right]$ bằng

A.
$$f(0)-1$$

B.
$$f(1) - \frac{5}{3}$$

A.
$$f(0)-1$$
 B. $f(1)-\frac{5}{3}$ **C.** $f(-1)-\frac{1}{3}$

D.
$$f(2) - \frac{1}{3}$$

 $\left[f'(x)\right]^2 = 21x^4 - 12x - 12xf(x) \text{ với } \forall x \in [0;2]. \text{ Diện tích hình phẳng giới hạn bởi các đường } y = f(x), \text{ trục } Ox, Oy \text{ và } x = 2 \text{ bằng}$

A. 2. **B.**
$$\frac{7}{2}$$
. **C.** 3. **D.** $\frac{9}{2}$.

Câu 49: Có bao nhiêu cặp số nguyên dương (x; y) thỏa mãn

A. 41.

$$\log_3(x^2 + y + 3x) + \log_2(x^2 + y) \le \log_3 x + \log_2(x^2 + y + 18x)?$$
B. 36. **C.** 42. **D.** 35.

Câu 50: Trong không gian Oxyz, cho hình nón (\aleph) có đỉnh A(2;3;0), độ dài đường sinh bằng 5 và đường tròn đáy nằm trên mặt phẳng (P): 2x + y + 2z - 1 = 0. Gọi (C) là giao tuyến của mặt xung quanh của (\aleph) với mặt phẳng (Q): x - 4y + z + 4 = 0 và M là một điểm di động trên (C). Hỏi giá trị nhỏ nhất của độ dài đoạn thẳng AM thuộc khoảng nào dưới đây?

-----HÉT-----

A.
$$\left(\frac{3}{2};2\right)$$
 B. $\left(0;1\right)$ **C.** $\left(1;\frac{3}{2}\right)$ **D.** $\left(2;3\right)$

TAILIF TO WHITE THE PARTY OF TH

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.D	2.D	3.C	4.D	5.C	6.B	7.A	8.A	9.D	10.C
11.D	12.D	13.C	14.A	15.A	16.B	17.C	18.D	19.B	20.B
21.C	22.D	23.A	24.B	25.C	26.D	27.C	28.D	29.C	30.B
31.C	32.C	33.C	34.A	35.B	36.D	37.D	38.B	39.C	40.C
41.B	42.C	43.D	44.B	45.B	46.B	47.D	48.B	49.D	50.A

TAILE ON THE PARTY OF THE PARTY