1

ASSIGNMENT 2

Gayathri S

1 Linear forms 2.11

Which of the following pairs of linear equations has a unique solution, no solution, or infinitely many solutions?

1)
$$\binom{3}{-5}$$
 x=20 and $\binom{6}{-10}$ **x**=40
2) $\binom{1}{-3}$ **x**=7 and $\binom{3}{-3}$ **x**=15

2 Solution

1) Given $\binom{3}{-5}\mathbf{x}=20$ and $\binom{6}{-10}\mathbf{x}=40$. The above equations can be expressed as a matrix equation.

$$\begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 20 \\ 40 \end{pmatrix} \tag{1}$$

The augmented matrix for the above equation is row reduced as follows

$$\begin{pmatrix} 3 & -5 & 20 \\ 6 & -10 & 40 \end{pmatrix} \underbrace{R_2 \leftarrow R_2 - 2R_1}_{(2)} \begin{pmatrix} 3 & -5 & 20 \\ 0 & 0 & 0 \end{pmatrix}$$
 (2)

The rank of

$$\begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} = 1 \tag{3}$$

and the rank of

$$\begin{pmatrix} 3 & -5 & 20 \\ 6 & -10 & 40 \end{pmatrix} = 1 \tag{4}$$

from 2.

$$\therefore rank \begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} = rank \begin{pmatrix} 3 & -5 & 20 \\ 6 & -10 & 40 \end{pmatrix}$$
 (5)

$$= 1 < dim \begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} = 2 (6)$$

 \implies 1 has infinitely many solutions. Fig2.1 shows that the lines are the same.

2) Given $\begin{pmatrix} 1 \\ -3 \end{pmatrix} \mathbf{x} = 7$ and $\begin{pmatrix} 3 \\ -3 \end{pmatrix} \mathbf{x} = 15$. The above equations can be expressed as a matrix equa-

Fig. 2.1. Lines coincide:infinitely many solutions

tion.

$$\begin{pmatrix} 1 & -3 \\ 3 & -3 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 7 \\ 15 \end{pmatrix} \tag{7}$$

The augmented matrix for the above equation is row reduced as follows

$$\begin{pmatrix} 1 & -3 & 7 \\ 3 & -3 & 15 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - R_1} \begin{pmatrix} 1 & -3 & 7 \\ 2 & 0 & 8 \end{pmatrix}$$
 (8)

$$\begin{pmatrix} 1 & -3 & 7 \\ 2 & 0 & 8 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{pmatrix} 1 & -3 & 7 \\ 0 & 6 & -6 \end{pmatrix}$$
 (9)

$$\begin{pmatrix} 1 & -3 & 7 \\ 0 & 6 & -6 \end{pmatrix} R_1 \leftarrow R_1 + \frac{R_2}{2} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 6 & -6 \end{pmatrix}$$
 (10)

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 6 & -6 \end{pmatrix} R_2 \leftarrow \frac{R_2}{6} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -1 \end{pmatrix} \tag{11}$$

$$\Longrightarrow \mathbf{x} = \begin{pmatrix} 4 \\ -1 \end{pmatrix} \tag{12}$$

is a solution of 7. The rank of

$$\begin{pmatrix} 1 & -3 \\ 3 & -3 \end{pmatrix} = 2 \tag{13}$$

and the rank of

$$\begin{pmatrix} 1 & -3 & 7 \\ 3 & -3 & 15 \end{pmatrix} = 2 \tag{14}$$

from 11.

$$\therefore rank \begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} = rank \begin{pmatrix} 3 & -5 & 20 \\ 6 & -10 & 40 \end{pmatrix}$$
 (15)
= $dim \begin{pmatrix} 3 & -5 \\ 6 & -10 \end{pmatrix} = 2$ (16)

 \implies 7 has a unique solution, $\mathbf{x} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ Fig2.2 shows that the lines intersect only at one point.

Fig. 2.2. Lines intersecting only at one point:unique solution