Loan Default

Big Data & Business Intelligence

Studente: Rocco Persiani

Professore: Gianfranco Lombardo

Anno accademico 2021/2022

Indice

- **1** Data Exploration
 - 2 Data Preprocessing
 - **3** Feature Selection e Feature Scaling

- **4** Model Comparison
 - **5** Gradient Boosting Classifier
 - 6 Ricerca degli Iperparametri
 - 7 Metriche di Valutazione e Conclusioni

Rappresenta il primo passo verso l'analisi dei dati, serve a specificare all'interno del Dataset:

Data Exploration

Il tipo di variabili.

Data	a columns (total 34 columns):							
#	Column	Non-Null Count	Dtype	#	Column	Non-Null Count	Dtype	# Column Non-Null Count D	type
0	ID	148670 non-null	int64	13	Upfront_charges	109028 non-null	float64	26 co-applicant_credit_type 148670 non-null ol	oject
1	year	148670 non-null	int64	14	term	148629 non-null	float64	27 age 148470 non-null ol	oject
2	loan_limit	145326 non-null	object	15	Neg_ammortization	148549 non-null	object	28 submission_of_application 148470 non-null of	oject
3	Gender	148670 non-null	object	16	interest_only	148670 non-null	object	29 LTV 133572 non-null fi	loat64
4	approv_in_adv	147762 non-null	object	17	lump_sum_payment	148670 non-null	object	30 Region 148670 non-null ol	oject
5	loan_type	148670 non-null	object	18	property_value	133572 non-null	float64	31 Security_Type 148670 non-null ol	oject
6	loan_purpose	148536 non-null	object	19	construction_type	148670 non-null	object	32 Status 148670 non-null in	nt64
7	Credit_Worthiness	148670 non-null	object	20	occupancy_type	148670 non-null	object	33 dtir1 124549 non-null fi	loat64
8	open_credit	148670 non-null	object	21	Secured_by	148670 non-null	object	<pre>dtypes: float64(8), int64(5), object(21)</pre>	
9	business_or_commercial	148670 non-null	object	22	total_units	148670 non-null	object	memory usage: 38.6+ MB	
10	loan_amount	148670 non-null	int64	23	income	139520 non-null	float64		
11	rate_of_interest	112231 non-null	float64	24	credit_type	148670 non-null	object		
12	Interest_rate_spread	112031 non-null	float64	25	Credit_Score	148670 non-null	int64		

I valori assumibili.

		ID	year	loan_limit	Gender	approv_in_adv	 LTV	Region	Security_Type	Status	dtir1
ш	0	24890	2019	cf	Sex Not Available	nopre	98.728814	south	direct	1	45.0
П	1	24891	2019	cf	Male	nopre	NaN	North	direct	1	NaN
ш	2	24892	2019	cf	Male	pre	80.019685	south	direct	0	46.0
П	3	24893	2019	cf	Male	nopre	69.376900	North	direct	0	42.0
П	4	24894	2019	cf	Joint	pre	91.886544	North	direct	0	39.0

Come possiamo notare il nostro target è Status e ci troviamo di fronte ad un task di classificazione

I possibili Missing Values

ĪD	0	rate_of_interest	36439	total_units	0
year	ø	Interest_rate_spread	36639	income	9150
loan limit	3344	Upfront_charges	39642	credit_type	0
Gender	0	term	41	Credit_Score	0
approv in adv	908	Neg_ammortization	121	co-applicant_credit_type	0
loan type	0	interest only	0	age	200
loan_purpose	134	lump sum payment	0	submission_of_application	200
Credit_Worthiness	0	property_value	15098	LTV	15098
open_credit	0	construction type	0	Region	0
business_or_commercial	0	occupancy_type	0	Security_Type	0
loan_amount	0	Secured by	0	Status	0
				_dtir1	24121

*********VERIFICA******	***
ID	0
year	0
loan_limit	0
Gender	0
approv_in_adv	0
loan_type	0
loan_purpose	0
Credit_Worthiness	0
open_credit	0
business_or_commercial	0
loan_amount	0
rate_of_interest	0
Interest_rate_spread	0
Upfront_charges	0
term	0
Neg_ammortization	0
interest_only	0
lump_sum_payment	0
property_value	0
construction_type	0
occupancy_type	0
Secured_by	0
total_units	0
income	0
credit_type	0
Credit_Score	0
co-applicant_credit_type	0
age	0
submission_of_application	0
LTV	0
Region	0
Security_Type	0
Status	0
dtir1	0
dtyne: int64	

Data Preprocessing

Missing Values

Per trattare i dati mancanti ho deciso di andare a eliminare completamente i valori con una percentuale bassa , mentre per i rimanenti , nel caso di :

Valori Quantitativi : I valori mancanti sono sostituiti dal valore della mediana della colonna di appartenenza

Valori Qualitativi: I valori mancanti sono sostituiti con il valore della moda della colonna di appartenenza

Data Preprocessing

Outliers

I cosidetti outliers sono **valori anomali** che potrebbero andare ad influire in maniera negativa sull'addestramento del modello.

La **deviazione standard** è un valore che rappresenta la differenza di ogni osservazione dalla media della variabile.

Osservando un grafico di una specifica features ci accorgiamo di come la distribuzione dei vari valori cambi una volta rimossi gli outlier.

Data Preprocessing

One Hot Encoding

Per poter lavorare sulle variabili qualitative, il modello necessita che quest'ultime siano codificate in modo da poter essere comprese.

Il **One Hot Encoding** è una tecnica che consente di codificare le variabili categoriche andando a sostituirle con 0 o 1 a seconda del valore numerico che assumono.

In particolare è utilizzato quando la scelta è binaria.

Feature Selection

Score Model 1: 0.999942321557318

Score Model 2: 0.999971160778659

Score Model 3: 0.8227253064167267

Mutual Information

E' una tecnica di feature selection che va a misurare la **dipendenza fra variabili aleatorie** che va a definire quanto la nostra features è **descrittiva** della nostra target.

Avendo fatto dei test utilizzando tre dataset:

- Il primo ho ritenuto tutto il dataset iniziale valido
- Il secondo dataset ho considerato solo le features con score maggiore di 0.2
- Il terzo dataset ho tenuto in conto delle features con score minore di 0.2.

Come possiamo notare dai risultati abbiamo lo stesso score per i primi due dataset mentre uno score inferiore per il terzo.

Siccome lo score sul dataset completo e quello con feature con score maggiore di 0.2 sono simili ho optato per usare il dataset completo.

Feature Scaling

StandardScaler - Standardization

Questa tecnica di feature scaling va a modificare le feature X andando a sottrarne il valore medio e dividendo per la deviazione standard, in modo da avere tutte le feature intorno all'origine.

$$Z=rac{x-\mu}{\sigma}$$

```
DecisionTreeClassifier
*****Results****
Accuracy: 0.9999759673155492
Log Loss: 0.0008300595144184631
RandomForestClassifier
*****Results****
Accuracy: 0.9999759673155492
Log Loss: 0.008959529595911694
AdaBoostClassifier
*****Results***
Accuracy: 0.9999519346310983
   Loss: 0.0026792871606400475
{\sf GradientBoostingClassifier}
*****Results****
Accuracy: 0.9999519346310983
Log Loss: 0.00012174896550045068
LogisticRegression
*****Results****
Accuracy: 0.7480894015861572
   Loss: 0.5499572766231511
```

Model Comparison

Confrontiamo vari modelli e scegliamo i più performanti in base ai risultati di log loss e accuracy sul training di quest'ultimi:

Accuracy : indice che riassume la capacità del modello di rispondere in maniera corretta

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Log Loss: un valore basso di log loss indica previsioni migliori da parte del modello

Il modello più performante in termini di accuratezza e log loss è il **GradientBoostingClassifier**

Gradient Boosting Classifier

E' un modello che si basa sulla composizione di diversi classificatori addestrati in sequenza.

Ogni predittore cercherà di aumentare l'accuratezza di quello precedente, andando a minimizzare la funzione di Loss utilizzando la discesa del gradiente.

E' un modello di ensemble learning appartenente alla categoria detta "boosting".

Ricerca degli Iperparametri

Random Search

E' una tecnica in cui vengono utilizzate combinazioni casuali degli iperparametri per trovare i migliori per il modello costruito.

E' più efficiente della grid search.

Metriche di valutazione

Precision

E' definita come il rapporto tra i true positive e la somma dei true positive e dei false positive, indica l'accuratezza con cui il modello prevede le classi positive

$$Precision = \frac{True\ Positive(TP)}{True\ Positive(TP) + False\ Positive(FP)}$$

Recall

indica il rapporto di istanze positive correttamente individuate dal modello

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

F1 Score

E' definita come la media armonica tra precision e recall

Conclusioni

Gradient Boosting Final Evaluation

Durante la fase di progettazione sicuramente la parte più delicata e allo stesso tempo più importante a cui prestare attenzione è quella della **pulizia dei dati**, con l'ausilio di tecniche di **data cleaning**, poichè dati puliti fanno arrivare a risultati corretti mentre dati sporchi producono risultati errati.

Una volta ottenuto un dataset appropriato sono passato alla parte di **feature selection** e **feature scaling** che sono tecniche che si occupano di non considerare feature che non hanno contenuto informativo e normalizzazione dei dati di cui abbiamo a disposizione in modo da rendere più efficiente la loro analisi.

Dopo aver confrontato vari modelli e trovato il migliore ho cercato gli **iperparametri** che rendevano il modello più efficiente possibile.

Valutazione finale:

Accuray del modello finale: 0.9999759673155492

Precision del modello finale: 1.0

Recall del modello finale: 0.9999048887198022

F1 Score del modello finale: 0.9999524420982547