MA 1140: Lecture 5 Basis and Dimension of Vector Spaces, and Linear Transformations

Dipankar Ghosh (IIT Hyderabad)

February 19, 2019

Linearly independent set has less vectors than spanning set

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V. Hence

$$u_{n+1} \in V = \operatorname{Span}\{u_1, u_2, \dots, u_n\}.$$

Therefore $\{u_1, u_2, \dots, u_{n+1}\}$ is linearly dependent, which is a contradiction.

Any two bases of V have the same number of elements

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$.

If $\{u_1, \ldots, u_m\}$ is another basis of V, then by the last theorem, $m \leq n$.

By the same argument, $n \le m$. Thus m = n.

Definition

The corollary allows us to define the **dimension** of a finite dimensional vector space as the number of elements in a basis.

We denote the dimension of V by $\dim(V)$.

Consequences of the fact that a linearly independent set has less or equal number of vectors than a spanning set

Corollary

Let V be a finite dimensional vector space, d = dim(V). Then

- any subset of V containing more than d vectors is linearly dependent.
- 2 A subset of V containing fewer than d vectors cannot span V.

A linearly independent set can be extended to a basis

$\mathsf{Theorem}$

Let W be a subspace of a finite dimensional vector space V, and S be a linearly independent subset of W. Then S is finite, and it is part of a (finite) basis of W.

A linearly independent set can be extended to a basis

Theorem

Let W be a subspace of a finite dimensional vector space V, and S be a linearly independent subset of W. Then S is finite, and it is part of a (finite) basis of W.

Proof. Since S is also a linearly independent subset of V, S contains at most $\dim(V)$ elements. So S is finite. If S spans W, then S is a basis of W, and we are done. If $\operatorname{Span}(S) \neq W$, then $\exists \ v_1 \in W \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = W$, then we are done. Otherwise, if $\operatorname{Span}(S_1) \neq W$, there is $v_2 \in W \setminus \operatorname{Span}(S_1)$, and hence $S_2 := S \cup \{v_1, v_2\}$ is linearly independent.

This process stops after some finite steps because at most $\dim(V)$ linearly independent vectors can be there in W.

So finally we obtain a set $S \cup \{v_1, v_2, \dots, v_m\} \subset W$ which is linearly independent and spans W, i.e., it forms a basis of W.

A proper subspace has less dimension

Let V be a finite dimensional vector space.

Corollary

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$, there is a vector $v \in V \setminus \operatorname{Span}(S)$.

Then $S \cup \{v\}$ is a linearly independent subset of V.

Hence $S \cup \{v\}$ can be extended to a basis of V.

Therefore $\dim(W) < \dim(V)$.

Example: Proper subspaces of \mathbb{R}^2

Sum of two subspaces

Definition

Let W_1 and W_2 be two subspaces of V. Then $W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}.$

Sum of two subspaces, and its dimension

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$, it follows that $W_1 \cap W_2$ has a finite basis $\{u_1, \ldots, u_r\}$, which can be extended to a basis

$$\{u_1, \ldots, u_r, v_1, \ldots, v_m\}$$
 of W_1

and a basis

$$\{u_1, \ldots, u_r, w_1, \ldots, w_n\}$$
 of W_2 .

Show that $\{u_1, \ldots, u_r, v_1, \ldots, v_m, w_1, \ldots, w_n\}$ is a basis of $W_1 + W_2$.

Linear Transformations

A 'Linear Transformation' is nothing but a map between vector spaces. Let us start with some well known maps:

Reflection with x-axis as mirror

Projection on the x-axis

Linear transformation, or linear map

Definition

A transformation (or map) between vector spaces which satisfies the rule of linearity is called linear transformation (or linear map).

More precisely, let V and W be vector spaces over \mathbb{R} . A linear transformation $T:V\to W$ is a function such that

$$T(c_1v_1+c_2v_2)=c_1T(v_1)+c_2T(v_2)$$

for all $c_1, c_2 \in \mathbb{R}$ and $v_1, v_2 \in V$.

Example

Let A be an $m \times n$ matrix over \mathbb{R} . Then the map $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by T(X) := AX for all $X \in \mathbb{R}^n$ is a linear transformation.

Proof.
$$T(X + Y) = A(X + Y) = AX + AY = T(X) + T(Y)$$
 and $T(cX) = A(cX) = c(AX) = cT(X)$.

Thank You!