Université Abou Bekr Belkaid – Tlemcen. Faculté des Sciences. Département de Mathématiques.

Année Universitaire 2021/2022 2^{ère} année Master. Semestre 3.

Examen Finale "Statistiques des Processus".

Aucun document n'est autorisé.

Durée: 1h30mn. 16 Janvier 2022.

Exercice 1.

Soit $X_1, ..., X_n$ une suite de variables aléatoires i.i.d de loi de Bernoulli de paramètre p, $p \in]0,1[$.

- 1. Proposer un estimateur \hat{p} de p.
- 2. En utilisant l'inégalité de Tchébychef, construire un intervalle de confiance pour p de niveau $1-\alpha$ pour $0<\alpha<1$.
- 3. Déduire de l'inégalité de Hoeffding, un intervalle de confiance pour p de niveau $1-\alpha$.
- 4. Comparer la précision de ces intervalles de confiances pour n=100 et $\alpha=5\%$.
- ▶ Rappel : Soit $\alpha \in]0,1[$, un intervalle de confiance pour un paramètre θ de niveau $1-\alpha$ est un couple d'estimateurs $(\underline{\theta}_n,\bar{\theta}_n)$ tel que $\mathbb{P}\left(\theta \in [\underline{\theta}_n,\bar{\theta}_n]\right) \geq 1-\alpha$.
- ▶ Indication : Pour tout $x \in]0,1[, x(1-x) \le \frac{1}{4}.$

Exercice 2.

On observe un n-échantillon $(X_1,Y_1),...,(X_n,Y_n)$ de même loi qu'un couple de variables aléatoires réelles (X,Y). On suppose que le vecteur (X,Y) admet pour densité la fonction f telle que pour tout $(x,y)\in\mathbb{R}^2$, f(x,y)>0. On considère \hat{f}_h l'estimateur de f défini pour tout $(x,y)\in\mathbb{R}^2$ par :

$$\hat{f}_h(x,y) = \frac{1}{nh_1h_2} \sum_{i=1}^n K\left(\frac{x - X_i}{h_1}, \frac{y - Y_i}{h_2}\right)$$

où $h=(h_1,h_2)$ avec $h_1>0$ et $h_2>0$. $K:\mathbb{R}^2 \to \mathbb{R}$ est un noyau tel que :

$$\iint |v| |K(u,v)| \, du dv < \infty, \quad \iint |u|^{1/2} |K(u,v)| \, du dv < \infty \quad et \quad ||K||_2^2 < \infty$$

On pose pour tout $(x,y) \in \mathbb{R}^2$: $K_h(x,y) = \frac{1}{h_1h_2}K\left(\frac{x}{h_1},\frac{y}{h_2}\right)$

1. Montrer que pour $x \in \mathbb{R}$ et $y \in \mathbb{R}$,

$$\mathbb{E}[\hat{f}_h(x,y)] = (K_h * f)(x,y).$$

- 2. Calculer pour $x \in \mathbb{R}$ et $y \in \mathbb{R}$, $Var\left(\hat{f}_h(x,y)\right)$ en fonction de n, $K_h * f$ et $K_h^2 * f$.
- 3. Montrer que si f est bornée par M, alors

$$Var\left(\hat{f}_h(x,y)\right) \leqslant \frac{M\|K\|_2^2}{nh_1h_2}.$$

4. Montrer que si f vérifie de plus la propriété suivante : pour tous $(u,v)\in\mathbb{R}^2$ et $(u',v')\in\mathbb{R}^2$

$$|f(u,v) - f(u',v')| \le |u - u'|^{1/2} + |v - v'|,$$

alors le biais de $\hat{f}_h(x,y)$ vérifie pour tout $(x,y)\in\mathbb{R}^2$

$$\left| Biais \left(\hat{f}_h(x, y) \right) \right| \leqslant C_K(h_1^{1/2} + h_2)$$

où ${\cal C}_K$ est une constante ne dépendant que de K .

- 5. Déduire une borne pour le risque quadratique ponctuel.
- 6. On note à présent f_X la densité de X. En utilisant \hat{f}_h , proposer un estimateur de f_X . Donner son expression si on suppose qu'il existe deux noyaux F et G telles que pour tous $x \in \mathbb{R}$ et $y \in \mathbb{R}$

$$K(x,y) = F(x)G(y).$$

▶ Rappel : Le produit de convolution des fonctions f_1 et f_2 de deux variables est défini par :

$$\forall (x,y) \in \mathbb{R}^2, (f_1 * f_2)(x,y) = \iint f_1(x-u,y-v)f_2(u,v)dudv$$

"" Corrige Epreuve finale"
Statisti que des Processió

Exercice nº 1:
X: SB(P), i=Tin ovec X; i.i.d. PEJOIL.
17 $X: SB(p)$ due $E[X:]=p$ $\forall i=\overline{1,n}$ O) Alors, $\widehat{p}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$
12/ Inégalité de Tchébychef: DE P([Xn - E(Xn)] > n) < Var(Xn) pour bout neix*!
$E(\overline{x}) = 0$
$Var(X_n) = \frac{1}{n^2} \sum_{i=1}^n V(X_i) = \frac{\varrho(\Lambda - \varrho)}{\eta}$ $\int_{\Omega} Duc_i$
$\frac{1}{12}\left(\frac{1}{12}-\frac{1}{12}\right) \leq \frac{1}{12}$
$\frac{1P(X_n-P \leq n) \leq P(N-P)}{1P(X_n-P \leq n)} \leq \frac{1}{4nn^2}$ $\frac{1P(X_n-P \leq n)}{1P(X_n-P \leq n)} \leq \frac{1}{4nn^2}$
$\frac{ P \hat{p} - \chi \langle P \langle P^1 + \chi \rangle}{4 n n^2} = 1 - \chi$ $\frac{ P \hat{p} - \chi \langle P \langle P^1 + \chi \rangle}{4 n n^2} = 1 - \chi$ $\frac{ P \hat{p} - \chi \langle P \langle P^1 + \chi \rangle}{4 n n^2} = 1 - \chi$ $\frac{ P \hat{p} - \chi \langle P \langle P^1 + \chi \rangle}{4 n n^2} = 1 - \chi$
$\left(\left P \left(\hat{p} - \frac{1}{2\sqrt{m_{A}}} \right) \right \right) \left P \left(\hat{p} + \frac{1}{2\sqrt{m_{A}}} \right) \right \right) \left P \left(\hat{p} + \frac{1}{2\sqrt{m_{A}}} \right) \right \right)$
3º/ Inégalité de Hoeffding: Sy-ZX:
Inegalité de Hoeffding: $S_n = \frac{\pi}{2} X$: $f $
Nonce (P) alors of X: (1.
$\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
Alors pour $\alpha = 2 \exp\left(-\frac{2n^2}{n}\right)$ = $n = n \ln \left(\frac{2}{n}\right)$
P(p- la (1/4))) 1-a
$4^{\circ}/$ $N=loo$ et $\alpha=5^{\circ}/$.

