Differential Equation Estimations

Colton Williams

September 20, 2017

Part I Function

$$y' = y - 4t^2 + 1$$
$$y(0) = 1.0$$

with t in the interval [0, 1].

The exact solution is then

$$y(t) = 4t^2 + 8t - 6e^t + 7$$

with y(1) = 2.690309.

Part II

Approximations

1 Euler's Method

Given inputs a, b, N, α , we output approximations w of y at (N+1) values of t.

- 1. h = (b a)/N t = a $w = \alpha$ print (t, w)
- 2. For i = 1, 2, ..., N do w = w + hf(t, w) t = a + ih print (t, w)
- 3. end algorithm

2 Modified Euler's Method

Given inputs a, b, N, α , we output approximations w of y at (N+1) values of t.

```
1. h = (b-a)/N

t = a

w_0 = \alpha

print (t, w)

2. For i = 1, 2, ..., N do

w_{i+1} = w_i + \frac{h}{2}[f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))]

t = a + ih

print (t, w)
```

3. end algorithm

3 Runge-Kutta Method

Given inputs a, b, N, α , we output approximations w of y at (N+1) values of t.

```
1. h = (b-a)/N

t = a

w = \alpha

print (t, w)

2. For i = 1, 2, ..., N do

K_1 = hf(t, w)

K_2 = hf(t+h/2, w+K_1/2)

K_3 = hf(t+h/2, w+K_2/2)

K_4 = hf(t+h, w+K_3)

w = w + (K_1 + 2K_2 + 2K_3 + K_4)/6

t = a + ih

print (t, w)
```

3. end algorithm

Part III Values

Euler

t_i	Exact	Estimation	Error
0.00	1.000000	1.000000	0.000000
0.05	1.102373	1.100000	0.002373
0.10	1.208974	1.204500	0.004474
0.15	1.318995	1.312725	0.006270
0.20	1.431583	1.423861	0.007722
0.25	1.545847	1.537045	0.008793
0.30	1.660847	1.651407	0.009440
0.35	1.775595	1.765977	0.009617
0.40	1.889052	1.897776	0.009276
0.45	2.000127	1.991765	0.008362
0.50	2.107672	2.100853	0.006819
0.55	2.210482	2.205896	0.004586
0.60	2.307287	2.305691	0.001596
0.65	2.396755	2.398975	0.002220
0.70	2.477484	2.484424	0.006940
0.75	2.548000	2.560645	0.012645
0.80	2.606754	2.626178	0.019423
0.85	2.652119	2.679486	0.027368
0.90	2.682381	2.718961	0.036579
0.95	2.695742	2.742909	0.47167
1.00	2.690309	2.749554	0.059245

Modified Euler

t_i	Exact	Estimation	Error
0.00	1.000000	1.000000	0.000000
0.05	1.102373	1.102250	0.000123
0.10	1.208974	1.208728	0.000247
0.15	1.318995	1.318625	0.000369
0.20	1.431583	1.431092	0.000491
0.25	1.545847	1.545236	0.000612
0.30	1.660847	1.660116	0.000731
0.35	1.775595	1.774747	0.000847
0.40	1.889052	1.888091	0.000961
0.45	2.000127	1.999055	0.001072
0.50	2.107672	2.106494	0.001178
0.55	2.210482	2.209202	0.001280
0.60	2.307287	2.305911	0.001376
0.65	2.396755	2.395289	0.001466
0.70	2.477484	2.475935	0.001548
0.75	2.548000	2.546377	0.001623
0.80	2.606754	2.605066	0.001688
0.85	2.652119	2.650376	0.001743
0.90	2.682381	2.680595	0.001786
0.95	2.695742	2.693926	0.001816
1.00	2.690309	2.688477	0.001832

Runge-Kutta

t_i	Exact	Estimation	Error
0.00	1.000000	1.000000	0.000000
0.05	1.102373	1.102373	0.000000
0.10	1.208974	1.208974	0.000000
0.15	1.318995	1.318995	0.000000
0.20	1.431583	1.431583	0.000000
0.25	1.545847	1.545847	0.000000
0.30	1.660847	1.660847	0.000000
0.35	1.775595	1.775595	0.000000
0.40	1.889052	1.889052	0.000000
0.45	2.000127	2.000127	0.000000
0.50	2.107672	2.107672	0.000000
0.55	2.210482	2.210482	0.000000
0.60	2.307287	2.307287	0.000000
0.65	2.396755	2.396755	0.000000
0.70	2.477484	2.477484	0.000000
0.75	2.548000	2.548000	0.000000
0.80	2.606754	2.606754	0.000000
0.85	2.652119	2.652119	0.000000
0.90	2.682381	2.682381	0.000000
0.95	2.695742	2.695742	0.000000
1.00	2.690309	2.690309	0.000000

$\begin{array}{c} {\rm Part\ IV} \\ {\rm Code} \end{array}$

```
1
2
             COLTON WILLIAMS 2017
3
            NUMERICAL ANALYSIS
4
             DIFFERENTIAL ESTIMATIONS
5
   */
7 \ // \ function \ used \ is \ f = y' = y - 4t^2 + 1 \ with \ y(0) =
       1.0, on [0, 1]
   //\ exact\ solution:\ y(t)=4t^2+8t-6e^t+7,\ y(1.0)=
       2.690309
9\ //\ \textit{TODO}\ \textit{allow passing of anonymous functions to}
       estimations\;,\;\;not\;\;just\;\;f\;\;defined\;\;explicitly
10
11 \# include < stdio.h >
12 #include <math.h>
```

```
13
14
   double f (double t, double w)
15
            return w - 4 * t * t + 1;
16
17
18
19
   double exact (double t)
20
            return 4 * t * t + 8 * t - (6 * \exp(t)) + 7;
21
22
23
24
   void euler (double a, double b, int steps, double init)
25
26
            double h = (b-a)/(double) steps;
27
            double t = a;
28
            double w = init;
29
            printf("(\%f, \ \ \%f) \ \ ERROR: \ \ \%f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ fabs(
                exact(t) - w);
30
            for (int i = 1; i \ll steps; ++i)
31
            {
32
                     w = w + h * f(t, w);
33
                     t = a + i * h;
34
                     printf("(\%f, \ \ \%f) \ \ ERROR: \ \ \%f \ \ t \ \ \ w,
                         fabs(exact(t) - w));
35
            }
36
   }
37
38
   void modified euler (double a, double b, int steps, double
        init)
39
            double h = (b-a)/(double) steps;
40
41
            double t = a;
            double w = init;
42
            43
                exact(t) - w);
44
            for (int i = 1; i \ll steps; ++i)
45
                     w = w + h * 0.5 * (f(t, w) + f(a + i * h,
46
                          w + h * f(t, w));
                     t = a + i * h;
47
48
                     printf("(\%f, \ \ \%f) \ \ \ ERROR: \ \ \ \%f \ \ \ t \ \ \ w,
                         fabs(exact(t) - w));
49
            }
50
   }
51
   void runge kutta (double a, double b, int steps, double
```

```
init)
53
54
           double h = (b-a)/(double) steps;
55
           double t = a;
56
           double w = init;
57
           exact(t) - w);
           double k1, k2, k3, k4;
58
59
           for (int i = 1; i \ll steps; ++i)
60
61
                   k1 = h * f(t, w);
62
                   k2 = h * f(t + h / 2, w + k1 / 2);
                   k3 = h * f(t + h / 2, w + k2 / 2);
63
                   k4 = h * f(t + h, w + k3);
64
                   w = w + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
65
                   t = a + i * h;
66
67
                    printf("(\%f, \ \ \%f) \ \ \ ERROR: \ \ \ \%f \ \ \ t \ \ \ w,
                       fabs(exact(t) - w));
68
           }
69
   }
70
71
   int main()
72
           euler (0.0, 1.0, 20, 1.0);
73
74
           modified euler (0.0, 1.0, 20, 1.0);
75
           runge_kutta(0.0, 1.0, 20, 1.0);
76
           return 0;
77
   }
```