Исследование однородности категориальных рядов с приложением в когнитивной биологии

Андреева Надежда Павловна

Кафедра статистического моделирования Математико-механический факультет Санкт-Петербургский государственный университет

Научный руководитель: к. ф.-м. н., доц. Алексеева Н. П. Рецензент: к. ф.-м. н., мл. науч. сотр. Ананьевская П. В.

15 июня 2015 г.

Цель и задачи

Цель:

• Сравнение категориальных рядов по встречаемости отдельных фрагментов, удовлетворяющих отрицательному биномиальному распределению.

Задачи:

- оценка параметров ОБР;
- проверка согласия с распределением;
- проверка однородности и анализ множественных сравнений.

Прикладная задача:

 Анализ клинических испытаний действия антидепрессантов на поведение животных.

Описание данных и модель

- Данные теста Порсолта о поведении крыс
 - категориальные ряды поведенческих актов
 - группы физраствор, дезипрамин в дозах 5, 10, 20 мг/кг
 - объем выборки n = 42
- ullet Фрагмент, встречаемость $\xi \sim NB(r,p)$ слово

$$P(\xi = j) = \frac{\Gamma(r+j)}{\Gamma(j+1)\Gamma(r)} p^r (1-p)^j, \quad j = 0, 1, \dots$$

• Идентификация слов, по которым наблюдаются различия между группами.

Оценка параметров ОБР методом ОМП и сравнение с лингвистикой

Встречаемость $x_1, \ldots, x_n \sim NB(r, p)$. Пусть $\psi(x) = \ln'(\Gamma(x))$, тогда \hat{r} - решение уравнения

$$\sum_{i=1}^{n} \left(\ln(\frac{r}{r+\bar{x}}) + \psi(r+x_i) - \psi(r) \right) = 0,$$

$$\hat{p} = \frac{\hat{r}}{\hat{r}+\bar{x}}$$

Рис.: Оценки параметров словоупотребления [Alexeyeva, Sotov, 2013]

Проверка адекватности модели

Критерии согласия

- на основе производящей функции [Rueda, O'Reilly, 1999];
- **2** хи-квадрат (χ^2) ;
- Крамера-фон Мизеса [Choulakian, Lockhart, Stephens, 1994];
- Колмогорова-Смирнова;
- 3 Bootstrap [Szücs, 2008].

Критерий согласия на основе производящей функции

$$H_0: F=F_0(\cdot; heta), \qquad \phi(t; heta)=E_ heta(t^x), \quad$$
для $|t|\leq 1$ $x_1,x_2,\dots,x_n\sim F$ - дискретное, $\qquad \phi_n(t)=rac{1}{n}\sum_{i=0}^n t^{x_i}$

Утверждение [Klar B., 1999]

Эмпирический процесс

$$\xi_n(t;\theta) = \sqrt{n} \{\phi_n(t) - \phi(t;\theta)\} \stackrel{\mathscr{D}}{\longrightarrow} \xi(t;\theta),$$

где, $\xi(t;\theta)$ - Гауссовский процесс в ℓ_1 , такой что, для любых $s,t\in[0,1]$ и $\theta\in\Theta,\ E_{\theta}[\xi(t;\theta)]=0$, ковариационная функция

$$\mathcal{L}_{\theta}(s;t) = \phi(st,\theta) - \phi(s;\theta)\phi(t;\theta)$$

Случай с неизвестными параметрами

Утверждение [Klar B., 1999]

Эмпирический процесс

$$\xi_n(t; \hat{\theta}_n) = \sqrt{n} \{ \phi_n(t) - \phi(t; \hat{\theta}_n) \} \xrightarrow{\mathscr{D}} \xi(t; \hat{\theta}_n),$$

где, $\xi(t;\hat{\theta}_n)$ - Гауссовский процесс в ℓ_1 , такой что, для любых $s,t\in[0,1]$ и $\theta\in\Theta,\ E_{\hat{\theta}_n}[\xi(t;\hat{\theta}_n)]=0$, ковариационная функция

$$\hat{\mathcal{L}}_{\theta}(s;t) = \phi(st,\theta) - \phi(s;\theta)\phi(t;\theta) - \frac{\partial}{\partial \theta}\phi(s;\theta)\frac{\partial}{\partial \theta}\phi(t;\theta)\mathcal{I}^{-1}(\theta),$$

где \mathcal{I} - информационное количество Фишера

Ковариационная функция для ОБР:

$$\hat{\mathcal{L}}(s;t) = \left(\frac{p}{1-qst}\right)^r - \left(\frac{p^2}{(1-qs)(1-qt)}\right)^r - \frac{r(1-t)(1-s)p^{2r}q}{(1-qt)^{r+1}(1-qs)^{r+1}}$$

Статистика критерия на основе производящей функции

$$d_n(\hat{\theta}) = \int_0^1 \xi_n^2(t; \hat{\theta}) dt$$
$$d_n(\hat{\theta}) = \frac{1}{n} (\underline{O} - \underline{e}(\hat{\theta}))^T M(\underline{O} - \underline{e}(\hat{\theta})),$$

где \underline{O} - наблюдаемые частоты, $\underline{e}(\hat{\theta})$ - теоретические частоты, M - гильбертова матрица

$$M = \begin{pmatrix} 1 & 1/2 & 1/3 & \cdots \\ 1/2 & 1/3 & 1/4 & \cdots \\ 1/3 & 1/4 & 1/5 & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

Вычисление распределения статистики [Imhof, 1961]

$$x = (x_1,...,x_n)^T \sim N(0,\Sigma)$$
, $\mu = (\mu_1,...,\mu_n)^T$ - вектор констант

$$Q = (x + \mu)^T A(x + \mu) = \sum_{r=1}^{m} \lambda_r \chi_{h_r; \delta_r}^2,$$

где λ_r - не нулевые характеристические корни $A\Sigma$;

m - число не нулевых характеристических корней $A\Sigma$;

 h_r - порядок кратности корней;

 δ_r - некоторая линейная комбинация $\mu_1,...,\mu_n$;

$$\chi_{h,\delta}^2 = (x_1 + \delta) + \sum_{i=2}^h x_i^2$$

Функция в R: $imhof(t, \lambda, h, \delta)$ вычисление $P\{Q > t\}$.

Bootstrap тест

Для каждого слова был проделан следующий алгоритм:

- ullet Получены оценки параметров $\hat{ heta}$;
- Проверена гипотеза о принадлежности распределению с $\hat{\theta}$ (с помощью CVM), получено $p\text{-}value\ P$;
- ullet C оцененными параметрами $\hat{ heta}$ смоделировано 100 выборок;
- Для них оценены параметры $\tilde{\theta}$ и проверена гипотеза согласия. Получены вспомогательные значения $p\text{-}value\ P^*;$
- Вычислен процент вспомогательных P^* , меньших чем исходный P.

Применимость CVM и bootstrap

Рис.: CVM. Моделирование NB(0.5,0.4), проверка на NB с оценкой параметров

Рис.: Bootstrap. Моделирование NB(0.5,0.4), проверка на NB с оценкой параметров

Результаты проверки гипотез согласия с ОБР

Рис.: Оценки параметров распределения для слов дли 2, 3 и 5

Длина фрагментов	1	2	3	4	5
Число фрагментов	8	48	140	282	383
Число не отвергнутых	7	48	139	273	368
гипотез, CVM					
Число не отвергнутых	7	38	106	230	334
гипотез, CVM с bootstrap			4 □ →	4 🗗 →	< <u>₹</u> > . ∢

Дисперсионный анализ по Краскелу-Уоллису

$$H = \frac{12}{n(n+1)} \sum_{i=0}^{r} \frac{R_i^2}{n_i} - 3(n+1),$$

где i — номер группы,

r — номер последней группы,

 n_i — количество наблюдений в группе i,

n — общее число наблюдений,

 R_i — суммы рангов в каждой группе.

Выявлены слова, по частоте появления которых группы крыс статистически значимо различаются:

Длина слов	1	2	3	4	5
Число слов	7	38	106	230	334
Число слов, по которым	1	5	15	20	20
наблюдаются различия					

Иллюстрация разделимости групп при увеличении длины слов

Рис.: Диаграммы рассеяния дискриминантных функций

Основные результаты дискриминантного анализа

- 26562: дрейф->гребля->отряхивание->гребля->дрейф
- 31616: плавание->карабкание->гребля->карабкание->гребля

Рис.: Диаграммы размаха значимых для дискриминации переменных

Критерий Тьюки

5 мг/кг - физраствор

10 мг/кт - физраствор

20 мг/кг - физраствор 10 мг/кг - 5 мг/кг

20 MF/KT - 5 MF/KT

20 мг/кг - 10 мг/кг

X26562	X31616
0.11667	0.99883
0.01099	0.73108
0.04885	0.01247
0.77477	0.83112
0.98068	0.02545
0.93932	0.16509

Рис.: 26562

Рис.: 31616

Основные результаты:

- Разработано ПО на С#, вычисляющее встречаемость всевозможных фрагментов заданной длины в категориальном ряду каждой особи;
- Разработаны на R методы анализа однородности категориальных рядов;
- Проведен анализ полученных результатов на примере поведения животных из разных экспериментальных групп.