

ANSWER KEY	S ^{///.} Helinango	7%. matthongo	//. mediengo	///. Imadhango	74. Interfrence 7	7. mathongo	77. mamongo 7
. (2)	2. (1)	3. (06.00)	4. (2)	5. (4)	6. (32)	7. (1)	8. (2)
(63) athongo	10. (4) athongo	/11. (3) thongo	12. (575)	/// 13. (14) ongo	/// 14.(1)hongo /	15. (3) ongo	/// 16.(4) ongo /
7. (2)	18. (512)	19. (1)	20. (21)	21. (2)	22. (8)	23. (4)	24. (2)
5. (385)	26. (3)	27. (1) mathongo	28. (2)	29. (5)	30. (34)		
(2)							
Given, $I = \int_0^{\frac{\pi}{2}} \frac{1}{2 + 2\pi i} dx$	<u>dx</u>						
$\Rightarrow I = \int_0^{\frac{\pi}{2}} \frac{1}{1}$ mathon g_{3+}	$2\left(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right) + \frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}$						
$\Rightarrow I = \int_0^{rac{\pi}{2}} rac{\pi}{2\mathrm{t}}$ Put $ anrac{x}{2} = t$	$\frac{\sec^2 \frac{x}{2} \cdot dx}{\tan^2 \frac{x}{2} + 4 \tan \frac{x}{2} + 4}$ $\Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} dx = dt$,,% mathongo					
$\Rightarrow I = \int_0^1 rac{1}{(t-t)^2}$	$\frac{dt}{\left(-1\right)^2+1}$						
$\Rightarrow I = an^{-1}$	$2-rac{\pi}{4}$						
0							
$\Rightarrow I = \int_{rac{\pi}{3}}^{rac{\pi}{6}} \left(- ight)$	$\frac{\cos^{\frac{2}{3}}x\cdot\sin^{\frac{4}{3}}x}{\cos^{\frac{4}{3}}x}$						
$\Rightarrow I = \int_{rac{\pi}{6}}^{rac{\pi}{3}} \left(rac{\epsilon}{\epsilon} ight)$	$\cos^{\frac{3}{4} + \frac{\pi}{3}} x \cdot \sin^{\frac{\pi}{3}} x$						
Using $\int x^n dx$ $\Rightarrow I = \begin{bmatrix} t^{-\frac{4}{3}+} \end{bmatrix}$	$=\frac{x^{n+1}}{\sum_{j=1}^{n+1} \sqrt{3}}$ mathongo						
-	- /5						
$\Rightarrow I = -3 \bigg\{ \bigg($	$\left(\sqrt{3}\right)^{-\frac{1}{3}} - \left(\frac{1}{\sqrt{3}}\right)^{-\frac{1}{3}}$	///. mathongo					
$\Rightarrow I = -3$ mathons	$\left(3^{\frac{1}{2}}\right)^{-\frac{1}{3}} - \left(\frac{1}{3^{\frac{1}{2}}}\right)^{-\frac{1}{3}}$	mathongo					
$=-3\left(\frac{1}{\frac{1}{2}}\right)$	$3^{\frac{1}{6}}$						
$=3^{\frac{36}{6}}-3^{\frac{5}{6}}.$							
	4						
We know that	$x = x + y$ for $1 \le x < 2$, $[x] = 1$ $+ 2\left(\sqrt{3} - \sqrt{2}\right)$	$1{\Rightarrow}\int_0^{2.4}ig[x^2ig]dx=ig]$	$\int_0^1 0 dx + \int_1^{\sqrt{2}} 1 dx$ -	$+\int_{\sqrt{2}}^{\sqrt{3}}2dx+\int_{\sqrt{3}}^23d-\sqrt{5}\Big)$	$x + \int_{2}^{\sqrt{5}} 4dx + \int_{\sqrt{5}}^{2.4} 5dx$	mathongo	
$= 9 - \sqrt{2} - 4$ This is in the	$\sqrt{3} - \sqrt{5}$ form of $\alpha + \beta\sqrt{2} + \gamma$,	, , ,	•			
	$-1, \ \gamma = -1, \ \delta = -1$						

Answer Keys and Solutions			JEE Main Crash Course
4. (2) thongo /// mathongo /// mathongo			
Given $I = \int_0^{\sin x \cdot e^{\cos x}} \frac{\sin x \cdot e^{\cos x}}{(1 + \cos^2 x) (e^{\cos x} + e^{-\cos x})} dx$ (i) Using property of integral $\int_a^b f(a + b - x) = \int_a^b f(x)$			
we get $I = \int_{0}^{\pi} \frac{\sin x \cdot e^{-\cos x}}{(1 + \cos^2 x)(e^{-\cos x} + e^{\cos x})} dx$ (ii) Adding equation (i) & (ii) we get			
$2I=\int\limits_{0}^{\pi}rac{\sin x}{(1+\cos^2 x)}\cdotrac{\left(e^{\cos x}+e^{-\cos x} ight)}{e^{\cos x}+e^{-\cos x}}dx$ mathongo $2I=\int\limits_{0}^{\pi}rac{\sin x}{1+\cos^2 x}dx$ $\Rightarrow 2I=2\int\limits_{0}^{\pi}rac{\sin x}{1+\cos^2 x}dx$			
Let $\cos x = t \Rightarrow -\sin x dx = dt$ $I = -\int_1^0 \frac{dt}{1+t^2} \Rightarrow I = -\left[\tan^{-1} t\right]_1^0 = -\left[0 - \frac{\pi}{4}\right] = \frac{\pi}{4}$			
5. (4) mathons mathons Let $I = \int_0^{20\pi} \left(\left \sin x \right + \left \cos x \right \right)^2 dx$			
We know that the period of $ \sin x + \cos x $ is $\frac{\pi}{2}$ i.e. $I = 40 \int_0^{\frac{\pi}{2}} (\sin x + \cos x)^2 dx$ $I = 40 \int_0^{\frac{\pi}{2}} (1 + \sin 2x) dx$			
$= 40 \left(x - \frac{\cos 2x}{2} \right)_0^{\frac{\pi}{2}} = 40 \left(\frac{\pi}{2} - \frac{\cos \pi}{2} + \frac{\cos 0}{2} \right)$ $I = 20[\pi + 2]$			
6. (32) $\alpha(m,n) = \int_0^2 t^m (1+3t)^n dt$			
$egin{align} ext{If } 11lpha(10,6) + 18lpha(11,5) &= \mathrm{p}(14)^6 ext{ then P} \ &= 11 \int_0^2 rac{\mathrm{t}^{10}}{\Pi} rac{(1+3\mathrm{t})^6}{\mathrm{I}} + 10 \int^2 \mathrm{t}^{11} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 rac{\mathrm{t}^{10}}{\Pi} rac{(1+3\mathrm{t})^6}{\mathrm{I}} + 10 \int_0^2 \mathrm{t}^{11} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 rac{\mathrm{t}^{10}}{\Pi} rac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} rac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^5 \mathrm{dt} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} (1+3\mathrm{t})^6 \mathrm{t} \ &= 10 \int_0^2 \frac{\mathrm{t}^{10}}{\Pi} \frac{(1+3\mathrm{t})^6}{\Pi} + 10 \int_0^2 \mathrm{t}^{10} \frac{\mathrm{t}^{10}}{\Pi} + 10 \int_0^2 \mathrm{t}^{10}$			
$= 11 \left[(1+3t)^6 \cdot \frac{t^{11}}{11} - \int 6(1+3t)^5 \cdot 3\frac{t^{11}}{11} \right]_0^2 + 18$ $= \left(t^{11} (1+3t)^6 \right)_0^2$	$3\int_0^2 t^{11} (1+3t)^5 dt$		
$=2^{11}(7)^6$ $=2^5(14)^6$ $=32(14)^6$ $=32(14)^6$			
7. (1) $I = \int_{-\ln 2}^{\ln 2} e^x \left(\ln \left(e^x + \sqrt{1 + e^{2x}} \right) \right) dx$ Put $e^x = t \Rightarrow e^x dx = dt$			
$I=\int_{1/2}^2 \ln\Bigl(t+\sqrt{1+t^2}\Bigr)dt$ Applying integration by parts. $=\Bigl[t\ln\Bigl(t+\sqrt{1+t^2}\Bigr)\Bigr]_{rac{1}{2}}^2 - \int_{1/2}^2 rac{t}{t+\sqrt{1+t^2}} \Biggl(1+t^2) \Biggr]_{rac{1}{2}}^2 = \int_{1/2}^2 \frac{t}{t^2} \Biggl(1+t^2) \Biggl(1+t^2) \Biggr]_{rac{1}{2}}^2 = \int_{1/2}^2 \frac{t}{t^2} \Biggl(1+t^2) \Biggl(1+t^2) \Biggr(1+t^2) \Biggr($			
$=2\ln(2+\sqrt{5})-rac{1}{2}\ln\left(rac{1+\sqrt{5}}{2} ight)-\int_{1/2}^{2}rac{t}{\sqrt{1+t^{2}}}$			
$r = 2\ln(2+\sqrt{5}) - \frac{1}{2}\ln\left(\frac{1+\sqrt{5}}{2}\right) - \frac{\sqrt{5}}{2}\text{thongo}$			
$I = \ln\left(\frac{(2+\sqrt{5})^2}{\left(\frac{\sqrt{5}+1}{2}\right)^{\frac{1}{2}}}\right) = \frac{\sqrt{5}}{2} \text{ go } \text{ which and } \text{mathongo}$			

