Formal Languages Context-Sensitive Languages

Hinrich Schütze

IMS, Uni Stuttgart, WS 2006/07

With slides borrowed from:

C. Busch, E. Rich, R. Sproat, G. Taylor and M. Volk

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space the machine is allowed to use

A linear bounded automaton is a nondeterministic Turing machine $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$, subject to the restriction that Σ must contain two special symbols [and], such that δ (qi ,[) can contain only elements of the form (qj , [,R), and δ (qi ,]) can contain only elements of the form (qj ,],L).

$$q_0[w] \stackrel{*}{\vdash} [x_1q_fx_2]$$

for some $qf \in F$, x1, $x2 \in \Gamma^*$.

Linear Bounded Automaton (LBA)

All computation is done between end markers

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

LBA for L=
$$\{a^nb^n \mid n>=1\}$$

Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
 - Semi-Infinite Tape
 - · Off-Line
 - Multitape
 - Multidimensional
 - Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power as the Standard Model

Same Power of two classes means:

The two classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

<u>First Class</u> Original Machine

 M_1

Second Class
Simulation Machine

 M_2 M_1

Turing Machines with Stay-Option

The head can stay in the same position

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

Left, Right, Stay

L,R,S: moves

Example:

Time 1

Time 2

Theorem:

Stay-Option Machines have the same power as Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines are at least as powerful as Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2}$$

Similar for Right moves

Stay-Option Machine

Simulation in Standard Machine

$$\underbrace{q_1} \xrightarrow{a \to b, L} \underbrace{q_2} \xrightarrow{x \to x, R} \underbrace{q_3}$$

For every symbol X

Example

Stay-Option Machine:

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

\Diamond	\Diamond	a	b	a	b	\Diamond	track 1
\Diamond	\Diamond	b	a	С	d	\Diamond	track 2

Proof of equivalence?

Standard Machine--Multiple Track Tape

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

Proof of equivalence?

Standard Turing machines simulate Semi-infinite tape machines:

Trivial

Semi-infinite tape machines simulate Standard Turing machines:

Semi-infinite tape machine with two tracks

Standard machine

Semi-infinite tape machine

Standard machine

$$\underbrace{q_1} \quad a \to g, R \quad q_2$$

Semi-infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\underbrace{q_1^L} (x,a) \to (x,g), L \underbrace{q_2^L}$$

For all symbols x

Time 1

Semi-infinite tape machine

Time 2

Semi-infinite tape machine

At the border:

Semi-infinite tape machine

Right part

$$\overbrace{q_1^R} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^L}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \underbrace{q_1^R}$$

Semi-infinite tape machine

Theorem:

Semi-infinite tape machines have the same power as Standard Turing machines

The Off-Line Machine

Proof of equivalence?

Off-line machines simulate Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Standard machine

Off-line machine

1. Copy input file to tape

Standard machine

Off-line machine

2. Do computations as in Turing machine

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Four track tape -- Standard Machine

#	α	b	C	1	Input File
11				α	<u> </u>
#	U	0		U	head position
	e	f	8		Tape
	0	1	0		head position
 	↑			•	

Reference point

Input File
head position
Tape
head position

Repeat for each state transition:

- Return to reference point
- Find current input file symbol
- · Find current tape symbol
- Make transition

Theorem:

Off-line machines have the same power as Standard machines

Multitape Turing Machines

$$\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$$

$$\delta(q_0, a, e) = (q_1, x, y, L, R)$$

Time 2

$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Proof of equivalence?

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

· Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

Multitape Machine

Standard machine with four track tape

a	b	C		Tape 1
0	1	0		head position
e	f	g	h	Tape 2
0	0	1	0	head position
1	1			

Reference point

Repeat for each state transition:

- ·Return to reference point
- ·Find current symbol in Tape 1
- ·Find current symbol in Tape 2
- Make transition

Theorem:

Multi-tape machines have the same power as Standard Turing Machines

Multidimensional Turing Machines

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\},\$$

C. Busch, E. Rich, R. Sproat, G. Taylor and M. Volk

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- · Reprogrammable machine
- · Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

Description of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L) \qquad \delta(q_2, b) = (q_3, c, R)$$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine $\,M\,$ as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
     00100100101111,
                          (Turing Machine 2)
     111010011110010101,
     .....}
```