RO05 - TP no 3A Processus de risque en assurance

Le capital d'une compagnie d'assurance est décrit au cours du temps par le processus de risque de Cramér-Lunberg, $U=(U_t,t\geq 0)$:

$$U_t = u + ct - \sum_{k=1}^{N_t} Y_k, \quad t \ge 0,$$

où u > 0, c > 0, $(N_t, t \ge 0)$ un processus de Poisson homogène de paramètre $\lambda > 0$ et $(Y_k, k \ge 1)$ une suite de v.a. positives i.i.d. de fonction de répartition commune F, indépendante du processus (N_t) .

- 1. Exprimer l'événement A_i = "la ruine de la compagnie ait lieu avant t lors du i-ème sinistre", avec t > 0 fixé, et i = 1, 2, en fonction du processus U et du temps T_1 du premier sinistre.
- 2. Démonter que

$$\mathbb{P}(A_1) = \lambda \int_0^t e^{-\lambda s} \overline{F}(u + cs) ds,$$

où
$$\overline{F} = 1 - F$$
.

- 3. Calculer la probabilité $\mathbb{P}(A_2)$.
- 4. Démontrer, par un calcul de l'espérance $\mathbb{E}[U_t]$, qu'une condition de viabilité de la compagnie est que : $c \lambda \mathbb{E}[Y_1] > 0$.
- 5. Soit $r(t) := \mathbb{P}(U_t < 0)$ la probabilité de ruine dans [0, t]. Démontrer que

$$r(t) := \sum_{n\geq 0} e^{\lambda t} \frac{(\lambda t)^n}{n!} \overline{F^{*n}}(u+ct).$$

6. Démontrer que si

$$\frac{1}{t} \sum_{k=1}^{N_t} Y_k \longrightarrow \rho, \quad t \to \infty,$$

alors $\rho = \lambda \mathbb{E}[Y_1]$. La constante ρ est appelée moyenne des indemnités par unité de temps. La quantité $\eta := (c - \rho)/\rho$ est appelée charge de sécurité.

- 7. SIMULATION STOCHASTIQUE. Soient : $\lambda = 0.01$, F est la f.r. de la loi log-normale de paramètres $\mu = 1$ et $\sigma = 0.5$, u = 100 et c = 1.
 - (a) Réaliser une trajectoire du processus U_t pour $0 \le t \le \min\{1000, T_{\text{ruine}}\}$. Faire une figure.
 - (b) En réalisant N trajectoire de U_t , estimer par Monte Carlo le temps moyen de ruine de la compagnie d'assurance.
 - (c) Calculer N pour que la précision soit $(\alpha, \theta) = (0, 01; 0, 01)$.
 - (d) Partant d'une réalisation sans ruine de U_t , sur un intervalle de temps [0, T], estimer ρ et η .