Problem Set 2. Due 9/18

- 1. Prove that for all positive integers n, the number $\binom{2n}{n}$ is even.
- 2. Prove that for all positive integers n,

$$n\binom{2n-1}{n-1} = \sum_{k=1}^{n} k \binom{n}{k}^{2}.$$

3. Find a closed formula for

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} t^{k+1},$$

where n is a positive integer and t is a real number.

- 4. What digits are immediately on the left and right of the decimal point in $(\sqrt{11} + \sqrt{10})^{2018}$? (You should not use any computer/calculator for this problem. Hint: also consider $(\sqrt{11} \sqrt{10})^{2018}$)
- 5. Prove that the number of partitions of the integer n is equal to the number of partitions of the integer 2n with no odd parts.
- 6. Let a_n be the number of compositions of n into parts that are larger than 1. Determine a formula for a_n in terms of the Fibonacci numbers. (The Fibonacci numbers F_n are defined by $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 3$.)
- 7. Let a_n denote the number of partitions of [n] so that no two consecutive integers belong to the same block. Prove that $a_n = B(n-1)$, the (n-1)-th Bell number.
- 8. Let $\lambda = (\lambda_1, \lambda_2, \dots)$ be a partition of n and $\lambda' = (\lambda'_1, \lambda'_2, \dots)$ be its conjugate. Prove that

$$\sum_{i\geq 1} \left\lfloor \frac{\lambda_{2i-1}}{2} \right\rfloor = \sum_{i\geq 1} \left\lceil \frac{\lambda'_{2i}}{2} \right\rceil.$$

Here, for $x \in \mathbb{R}$, $\lfloor x \rfloor$ is the greatest integer less than or equal x, and $\lceil x \rceil$ is the least integer greater than or equal to x.