BAYESIAN STATISTICS - LECTURE 11

LECTURE 11: COMPUTATIONS. VARIABLE SELECTION.

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

OVERVIEW

- **■** Computing the marginal likelihood
- **■** Bayesian variable selection
- **■** Model averaging

1 | 14

MARGINAL LIKELIHOOD IN CONJUGATE MODELS

- Marginal likelihood: $\int p(\mathbf{y}|\theta)p(\theta)d\theta$. Integration!
- Short cut for **conjugate models**:

$$p(\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\theta|\mathbf{y})}$$

■ Bernoulli model example

$$\begin{split} p(\theta) &= \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} \\ p(\mathbf{y}|\theta) &= \theta^{s} (1-\theta)^{f} \\ p(\theta|\mathbf{y}) &= \frac{1}{B(\alpha+s,\beta+f)} \theta^{\alpha+s-1} (1-\theta)^{\beta+f-1} \end{split}$$

■ Marginal likelihood

$$p(\mathbf{y}) = \frac{\theta^{\mathrm{S}} (1-\theta)^f \frac{1}{B(\alpha,\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}}{\frac{1}{B(\alpha+\mathrm{S},\beta+f)} \theta^{\alpha+\mathrm{S}-1} (1-\theta)^{\beta+f-1}} = \frac{B(\alpha+\mathrm{S},\beta+f)}{B(\alpha,\beta)}$$

COMPUTING THE MARGINAL LIKELIHOOD

Usually difficult to evaluate the integral

$$p(\mathbf{y}) = \int p(\mathbf{y}|\theta) p(\theta) d\theta = \mathrm{E}_{p(\theta)}[p(\mathbf{y}|\theta)].$$

■ Monte Carlo estimate. Draw from the prior $\theta^{(1)}$, ..., $\theta^{(N)}$ and

$$\hat{p}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{y} | \theta^{(i)}).$$

Unstable when posterior is different from prior.

■ Importance sampling. Let $\theta^{(1)}$, ..., $\theta^{(N)}$ be iid draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx \mathit{N}^{-1}\sum_{i=1}^{\mathit{N}}\frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

■ Modified Harmonic mean: $g(\theta) = N(\tilde{\theta}, \tilde{\Sigma}) \cdot I_c(\theta)$, where $\tilde{\theta}$ and $\tilde{\Sigma}$ is the posterior mean and covariance matrix estimated from an MCMC chain, and $I_c(\theta) = 1$ if $(\theta - \tilde{\theta})'\tilde{\Sigma}^{-1}(\theta - \tilde{\theta}) \leq c$.

COMPUTING THE MARGINAL LIKELIHOOD, CONT.

- To use $p(\mathbf{y}) = p(\mathbf{y}|\theta)p(\theta)/p(\theta|\mathbf{y})$ we need $p(\theta|\mathbf{y})$.
- But we only need to know $p(\theta|\mathbf{y})$ in a single point θ_0 .
- Kernel density estimator to approximate $p(\theta_0|\mathbf{y})$. Unstable.
- Chib's method (1995, JASA). Great, but only applied to Gibbs sampling.
- Chib-Jeliazkov (2001, JASA) generalizes to MH algorithm (good for IndepMH, terrible for RWM).
- Reversible Jump MCMC (RJMCMC) for model inference.
 - MCMC methods that moves in model space.
 - Proportion of iterations spent in model k estimates $Pr(M_k|\mathbf{y})$.
 - Usually hard to find efficient proposals. Slow convergence.
- Bayesian nonparametrics (e.g. Dirichlet process priors).

LAPLACE APPROXIMATION

Taylor approximation of the log likelihood

$$\ln p(\mathbf{y}|\theta) \approx \ln p(\mathbf{y}|\hat{\theta}) - \frac{1}{2} J_{\hat{\theta},\mathbf{y}}(\theta - \hat{\theta})^2$$
,

SO

$$\begin{split} p(\mathbf{y}|\theta)p(\theta) &\approx p(\mathbf{y}|\hat{\theta}) \exp\left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta-\hat{\theta})^{2}\right]p(\hat{\theta}) \\ &= p(\mathbf{y}|\hat{\theta})p(\hat{\theta})(2\pi)^{p/2}\left|J_{\hat{\theta},\mathbf{y}}^{-1}\right|^{1/2} \\ &\times \underbrace{(2\pi)^{-p/2}\left|J_{\hat{\theta},\mathbf{y}}^{-1}\right|^{-1/2} \exp\left[-\frac{1}{2}J_{\hat{\theta},\mathbf{y}}(\theta-\hat{\theta})^{2}\right]} \end{split}$$

multivariate normal density - integrates to one

■ The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},\mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$
 where p is the number of unrestricted parameters.

The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left|J_{\hat{\theta},\mathbf{y}}^{-1}\right| + \frac{p}{2} \ln(2\pi).$$

- \blacksquare $\hat{\theta}$ and $J_{\hat{\theta},\mathbf{v}}$ can be obtained with **numerical optimization**.
- The BIC approximation assumes that $J_{\hat{\theta}, \mathbf{v}}$ behaves like $n \cdot I_p$ in large samples and the small term $+\frac{p}{2}\ln(2\pi)$ is ignored

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

BAYESIAN VARIABLE SELECTION

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

■ Which variables have **non-zero** coefficient?

$$H_0$$
 : $\beta_0 = \beta_1 = ... = \beta_p = 0$

$$H_1 : \beta_1 = 0$$

$$H_2$$
 : $\beta_1 = \beta_2 = 0$

- Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- Example: $\mathcal{I} = (1, 1, 0)$ means that $\beta_1 \neq 0$ and $\beta_2 \neq 0$, but $\beta_3 = 0$, so x_3 drops out of the model.

BAYESIAN VARIABLE SELECTION, CONT.

■ Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathcal{I}) \cdot p(\mathcal{I})$$

■ The prior $p(\mathcal{I})$ is typically taken to be

$$I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$$

- \blacksquare θ is the prior inclusion probability.
- Challenge: Computing the **marginal likelihood** for each model (\mathcal{I})

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) = \int p(\mathbf{y}|\mathbf{X},\mathcal{I},\beta)p(\beta|\mathbf{X},\mathcal{I})d\beta$$

BAYESIAN VARIABLE SELECTION, CONT.

- Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$eta_{\mathcal{I}} | \sigma^2 \sim N\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right)$$

$$\sigma^2 \sim Inv - \chi^2\left(v_0, \sigma_0^2\right)$$

■ Marginal likelihood

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},o}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},o}\right|^{1/2} \left(\nu_{o}\sigma_{o}^{2} + RSS_{\mathcal{I}}\right)^{-(\nu_{o}+n-1)/2}$$
 where $\mathbf{X}_{\mathcal{I}}$ is the covariate matrix for the subset selected by \mathcal{I} .

 \blacksquare RSS\$_{\mathcal{I}}\$ is (almost) the residual sum of squares under model implied by \$\mathcal{I}\$

$$RSS_{\mathcal{I}} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}_{\mathcal{I}} \left(\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}\right)^{-1} \mathbf{X}_{\mathcal{I}}'\mathbf{y}$$

1.

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- But there are 2^p model combinations to go through! Ouch!
- ... but most have essentially zero posterior probability. Phew!
- **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2|\mathcal{I}, \mathbf{y}, \mathbf{X})p(\mathcal{I}|\mathbf{y}, \mathbf{X}).$$

- Simulate from $p(\mathcal{I}|\mathbf{y}, \mathbf{X})$ using **Gibbs sampling**:
 - Draw $I_1|\mathcal{I}_{-1}, \mathbf{y}, \mathbf{X}$
 - Draw $I_2 | \mathcal{I}_{-2}, \mathbf{y}, \mathbf{X}$
 - ٠..
 - Draw $I_p|\mathcal{I}_{-p}$, **y**, **X**
- Only need to compute $Pr(I_i = o | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$ and $Pr(I_i = 1 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$.
- Automatic model averaging, all in one simulation run.
- If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X})$ for each draw of \mathcal{I} .

PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION

- o Initialize $\mathcal{I}^{(0)} = (I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})$
- 1 Simulate σ^2 and β from $[\nu_n, \sigma_n^2, \mu_n, \Omega_n$ all depend on $\mathcal{I}^{(0)}]$
 - $\sigma^2 | \mathcal{I}^{(\mathsf{O})}$, **y**, **X** \sim Inv $-\chi^2 \left(\nu_n, \sigma_n^2 \right)$
 - $eta | \sigma^2$, $\mathcal{I}^{(0)}$, \mathbf{y} , $\mathbf{X} \sim N \left[\mu_n$, $\sigma^2 \Omega_n^{-1} \right]$
- 2.1 Simulate $I_1|\mathcal{I}_{-1}$, **y**, **X** by [define $\mathcal{I}_{prop}^{(0)} = (1 I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})]$
 - compute marginal likelihoods: $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)})$ and $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{prop})$
 - Simulate $I_1^{(1)} \sim Bernoulli(\kappa)$ where

$$\kappa = \frac{p(\boldsymbol{y}|\boldsymbol{X}, \mathcal{I}^{(O)}) \cdot p(\mathcal{I}^{(O)})}{p(\boldsymbol{y}|\boldsymbol{X}, \mathcal{I}^{(O)}) \cdot p(\mathcal{I}^{(O)}) + p(\boldsymbol{y}|\boldsymbol{X}, \mathcal{I}^{(O)}_{prop}) \cdot p(\mathcal{I}^{(O)}_{prop})}$$

- 2.2 Simulate $I_2|\mathcal{I}_{-2}$, **y**, **X** as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(0)},...,I_p^{(0)})$
- 2.p Simulate $I_p|\mathcal{I}_{-p}$, **y**, **X** as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(1)},...,I_p^{(0)})$ 3 Repeat Steps 1-2 many times.

SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

■ The previous algorithm only works when we can integrate out all the model parameters to obtain

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) = \int p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) d\beta d\sigma$$

■ MH - **propose** β and \mathcal{I} jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - Approximate posterior with all variables in the model: $\beta | \mathbf{y}, \mathbf{X} \overset{approx}{\sim} N \left[\hat{\beta}, J_{\mathbf{v}}^{-1}(\hat{\beta}) \right]$
 - Propose β_p from $N\left[\hat{\beta}, J_{\mathbf{y}}^{-1}(\hat{\beta})\right]$, conditional on the zero restrictions implied by \mathcal{I}_p . Formulas are available.

12

VARIABLE SELECTION IN MORE COMPLEX MODELS

Posterior summary of the one-component split-t model.^a

Parameters	Mean	Stdev	Post.Incl.
Location μ			
Const	0.084	0.019	-
Scale φ			
Const	0.402	0.035	-
LastDay	-0.190	0.120	0.036
LastWeek	-0.738	0.193	0.985
LastMonth	-0.444	0.086	0.999
CloseAbs95	0.194	0.233	0.035
CloseSqr95	0.107	0.226	0.023
MaxMin95	1.124	0.086	1.000
CloseAbs80	0.097	0.153	0.013
CloseSqr80	0.143	0.143	0.021
MaxMin80	-0.022	0.200	0.017
Degrees of freedom v			
Const	2.482	0.238	_
LastDay	0.504	0.997	0.112
LastWeek	-2.158	0.926	0.638
LastMonth	0.307	0.833	0.089
CloseAbs95	0.718	1.437	0.229
CloseSqr95	1.350	1.280	0.279
MaxMin95	1.130	1.488	0.222
CloseAbs80	0.035	1.205	0.101
CloseSqr80	0.363	1.211	0.112
MaxMin80	-1.672	1.172	0.254
Skewness λ			
Const	-0.104	0.033	-
LastDay	-0.159	0.140	0.027
LastWeek	-0.341	0.170	0.135
LastMonth	-0.076	0.112	0.016
CloseAbs95	-0.021	0.096	0.008
CloseSqr95	-0.003	0.108	0.006
MaxMin95	0.016	0.075	0.008
CloseAbs80	0.060	0.115	0.009
CloseSqr80	0.059	0.111	0.010
MaxMin80	0.093	0.096	0.013

MODEL AVERAGING

- Let γ be a quantity with an interpretation which stays the same across the two models.
- Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- The marginal posterior distribution of γ reads

$$p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$$

where $p_k(\gamma|\mathbf{y})$ is the marginal posterior of γ conditional on model k.

- Predictive distribution includes three sources of uncertainty:
 - **Future errors**/disturbances (e.g. the ε 's in a regression)
 - Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)