Chapter V Special cases

March 11, 2023

1 Functions of Eigenvalues

5.2.11 Semidefinite complementarity Suppose matrices X and Y lie in \mathbb{S}^n_+ .

- If Tr(XY) = 0, prove $-Y \in \partial \delta_{\mathbb{S}^n_+}(X)$.
- Hence prove the following properties are equivalent:
 - 1. Tr(XY) = 0.
 - 2. XY = 0.
 - 3. XY + YX = 0.
- Prove for any matrices U and V in \mathbb{S}^n

$$(U^2 + V^2)^{\frac{1}{2}} = U + V \iff U, V \succ 0, \text{Tr}(UV) = 0.$$

Proof:

- Note that $\langle -Y, Z X \rangle = \langle -Y, Z \rangle = -\langle Y, Z \rangle \le 0$ for all $Z \in \mathbb{S}^n_+$. Thus, $-Y \in \partial \delta_{\mathbb{S}^n_+}(X)$.
- Suppose $\operatorname{Tr}(XY)=0$ and hence $-Y\in\partial\delta_{\mathbb{S}^n_+}(X)$. Thus, we have $\lambda(-Y)\in\delta_{\mathbb{R}^n_+}(\lambda(X))$ and so $\langle\lambda(-Y),\lambda(X)\rangle=0$. Thus, $\operatorname{Tr}(X(-Y))=\langle\lambda(-Y),\lambda(X)\rangle=0$. Thus, X and -Y have common spectral decomposition. But, $\lambda(X)\geq 0$ and $\lambda(-Y)\leq 0$ and hence $\langle\lambda(-Y),\lambda(X)\rangle$ along with the fact that X and -Y have common spectral decomposition implies -XY=0. The rest is clear.
- Suppose $(U^2+V^2)^{\frac{1}{2}}=U+V$ then since $U^2+V^2\succeq (U^2)^{\frac{1}{2}}$, we should have $U+V=(U^2+V^2)^{\frac{1}{2}}\succeq (U^2)^{\frac{1}{2}}\succeq U$. Note that if $U=Q\operatorname{Diag}(\lambda)Q^T$ for some $\lambda\in\mathbb{R}^n$ and some $Q\in O(n)$, then $(U^2)^{\frac{1}{2}}=Q\operatorname{Diag}(|\lambda|)Q^T$. Hence, $V\succeq 0$ and similarly $U\succeq 0$. Now since $(U^2+V^2)^{\frac{1}{2}}=U+V$ we have $U^2+V^2=U^2+V^2+UV+VU$ and hence $\operatorname{Tr}(UV)=0$. The other way is clear.