Ecole Nationale d' Ingénieurs de Carthage

Devoir surveillé d'Analyse Numérique

Classes : 1^{ère} année ING-INFO A.U. 2015-2016

Date : Mars 2016 Nbre de pages : 2
Durée : 1h30 Documents non autorisés

Exercice 1 (8 points)

On considère quatre valeurs d'une fonction f définie sur [2,5]

$$f(2) = 0.5878$$
 $f(3) = 0.8090$ $f(4) = 0.9510$ $f(5) = 1$

- 1. Soit P_2 le polynôme d'interpolation de f relatif aux points $x_0=2, x_1=3$ et $x_2=4$. Calculer P_2 en utilisant :
 - (a) La forme de Lagrange.
 - (b) La forme de Newton.
- 2. Calculer P_3 le polynôme d'interpolation de f relatif aux points $x_0 = 2, x_1 = 3, x_2 = 4$ et $x_3 = 5$. Justifier le choix de la méthode utilisée.
- 3. Donner, à l'aide de P_3 , une valeur approchée de f(3.5) à 4 chiffres après la virgule.
- 4. (a) Sachant que $f(x) = \sin(\frac{\pi}{10}x)$, donnez l'expression de l'erreur d'interpolation $E_3(x) = f(x) P_3(x)$ sur [2, 5].
 - (b) Donner une majoration de $|E_3(3.5)|$.

Exercice 2 (12 points)

soit $f:[0,1]\to\mathbb{R}$ une fonction de classe \mathcal{C}^4 et soit P le polynôme d'interpolation d'Hermite (de degré ≤ 3) de f vérifiant :

$$P(0) = f(0)$$
 , $P'(0) = f'(0)$ $P''(0) = f''(0)$ et $P(1) = f(1)$

- 1. Déterminer le polynômes P.
- 2. (a) Soit $x \neq 0$ et $x \neq 1$. On pose

$$F(t) = f(t) - P(t) - \frac{f(x) - P(x)}{x^3(x-1)}t^3(t-1)$$

Montrer que F est de classe C^4 sur [0,1] et qu'il existe $\xi_x \in]0,1[$ tel que $F^{(4)}(\xi_x)=0.$

(b) Déduire l'expression de l'erreur d'interpolation $E(x) = f(x) - P(x), \forall x \in [0, 1].$

3. Déterminer les coefficients α_1 , α_2 , α_3 et α_4 pour que la fomule de quadrature

$$\int_0^1 f(x)dx = \alpha_1 f(0) + \alpha_2 f'(0) + \alpha_3 f''(0) + \alpha_4 f(1) + E(f)$$
 (1)

soit exacte sur $\mathbb{R}_3[X]$. (E(f) désigne le terme d'erreur)

Dans toute la suite α_1 , α_2 , α_3 et α_4 désignent les coefficients ainsi trouvés.

- 4. Déterminer le degré de précision de la formule de quadrature (1).
- 5. (a) Montrer que le terme d'erreur E(f) vérifie : $E(f) = \int_0^1 (f(x) P(x)) dx$.
 - (b) En déduire qu'il existe $\eta \in [0,1]$ tel que $E(f) = -\frac{1}{480} f^{(4)}(\eta)$.
- 6. Soit a < b deux réels donnés et $g : [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^4 .
 - (a) Déduire de la formule (1) une formule de quadrature pour approcher $\int_a^b g(t)dt$, ainsi qu'une expression du terme d'erreur correspondant qu'on notera E(g). (Indication: Effectuer le changement de variable affine t = a + (b a)x)
 - (b) Utilisier le résultat au point précédent pour calculer une valeur approchée de $\int_{-1}^{1} \cos(\frac{\pi}{2}t) dt$, ainsi qu'un encadrement de l'erreur commise.

Exaciles:

$$\frac{1}{2} (n) \quad L_{2}(n) = \frac{1}{2} (n-3)(n-4) + \frac{1}{2} (n) + \frac{1}{2} (n) + \frac{1}{2} (n-2)(n-4) = \frac{1}{2} (n-2)(n-4) = \frac{1}{2} (n-2)(n-3)$$
avec $L_{0}(n) = \frac{1}{2} (n-3)(n-4) + \frac{1}{2} (n-2)(n-4) = \frac{1}{2} (n-2)(n-3)$

Forme de Newton: P2(n) = 0,5878 + 0,2212(n-2) - 0,0396(x-2)(n-3)

$$\frac{2}{3} \left(\frac{1}{3.5} \right) = 0.5878 + 0.2212 (1.5) - 0.0396 \times 1.5 \times 0.5 + 0.0023 \times 1.5 \times 0.5 \times 0.$$

$$f(3,5) \sim P_3(3,5) \approx 0.8908$$

$$f(3,5) \sim P_3(3,5) \approx 0.8908$$

$$h/(a) E_3(n) = f(n) - P_3(n) = \frac{f'(4)}{4!} (n-2)(n-3)(n-4)(n-5) \text{ ava } \eta \in [2,5]$$

$$= \frac{11}{10} (n-2)(n-3)(n-4)(n-5) \approx i(\frac{\pi}{10}\eta)$$

$$= \frac{11}{10} (n-2)(n-3)(n-4)(n-5) \approx i(\frac{\pi}{10}\eta)$$

(b)
$$|E_{3}(3,5)| \leq \left(\frac{\pi}{10}\right)^{4} \frac{1}{4!} (1/5) (0/5) (0/5) (1/5) \approx 2,28 10^{-4}$$

Exercile&

encile &

1) on pose
$$f(n) = a_{0} + a_{1} n + a_{2} n^{2} + a_{3} n^{3}$$
 and $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$.

1) on pose $f(n) = a_{0} + a_{1} n + a_{2} n^{2} + a_{3} n^{3}$ and $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$.

1) $f(n) = f(n)$

2) $f(n) = f(n)$

2) $f(n) = f(n)$

2) $f(n) = f(n)$

3) $f(n) = f(n)$

4) $f(n) = f(n)$

3) $f(n) = f(n)$

4) $f(n) = f(n)$

3) $f(n) = f(n)$

4) $f(n) = f(n)$

4) $f(n) = f(n)$

4) $f(n) = f(n)$

of declasse C', P declasse C' et to t3(t-1) C' > Fet C'our[0] 1 08 ap 7 $F(0) = F(1) = F(n) = 0 \implies \exists n, m_2 \notin \{0, 1, n\} \text{ to } F(n_1) = f(n_2) = 0$ $F'(0) = F'(n_1) = F'(n_2) \implies \exists n_3, n_4 \notin \{0, 1, n\} \text{ to } F'(n_3) = F'(n_4) = 0$ $F'(0) = F'(n_1) = F'(n_2) \implies \exists n_3, n_4 \notin \{0, 1, n\} \text{ to } F'(n_3) = F'(n_4) = 0$ 2) (a) $F''(0) = F''(n_3) = F''(n_4) = 0$ $F''(0) = F''(n_4) = 0$ F''(0) = F''(0) = 0 F''(0) = F''(0) = 0 F''(0) = F''(0) = 0 1 (t) = 0 Car del < 3.

 $\frac{d^{4}}{dt^{4}}(t^{3}(t-1)) = 4!$ $d^{6}n = f^{(4)}(t) = f^{(4)}(t) - \frac{f^{(4)} - f^{(4)}}{n^{3}(n-1)} = f^{(4)}(t)$ $f^{(4)} = f^{(4)}(t) - \frac{f^{(4)} - f^{(4)}}{n^{3}(n-1)} = f^{(4)}(t)$ $f^{(4)} = f^{(4)}(t) - \frac{f^{(4)} - f^{(4)}}{n^{3}(n-1)} = f^{(4)}(t)$ $f^{(4)} = f^{(4)}(t) - \frac{f^{(4)}(t)}{n^{3}(n-1)} = f^{(4)}(t)$

lour ne 90,1), of (n) - L(n) = 0. Conclusion: Yne (01), 35/2 E) 011(to E (u) = f(4/(4u) n3/(u-1))

3) Ectivos la formele (1) pour 1, x, x2 et x3

 $\begin{cases} \alpha_1 + \alpha_4 = 1 \\ \alpha_2 + \alpha_4 = \frac{1}{2} \\ 2\alpha_3 + \alpha_4 = \frac{1}{3} \\ \alpha_4 = \frac{1}{4} \end{cases}$ ~ 3 f(0) + 2 f(0) + 2 f(0) + 2 f(1). \ f(n) dn

4) Soit in le degré de précision de la formle (1) on a my 3 (formle exacte sur iR; [x])

Calcula E (ny): S'ny du = 1 => E(n") +0 Ainsi [m = 3]