1

GATE 2022 -AE 63

EE23BTECH11057 - Shakunayeti Sai Sri Ram Varun

Question: A two degree of freedom spring-mass system undergoing free vibration with generalized coordinates x_1 and x_2 has natural frequencies $\omega_1 = 233.9$ rad/s and $\omega_2 = 324.5$ rad/s, respectively. The corresponding mode shapes $\phi_1 = \begin{bmatrix} 1 \\ -3.16 \end{bmatrix}$ and $\phi_2 = \begin{bmatrix} 1 \\ 3.16 \end{bmatrix}$. If the system is disturbed with certain deflections and zero initial velocities, then which of the following statement(s) is/are true?

- (A) An initial deflection of $x_1(0) = 6.32$ cm and $x_2(0) = -3.16$ cm would make the system oscillate with only the second natural frequency.
- (B) An initial deflection of $x_1(0) = 2$ cm and $x_2(0) = -6.32$ cm would make the system oscillate with only the first natural frequency.
- (C) An initial deflection of $x_1(0) = 2$ cm and $x_2(0) = -2$ cm would make the system oscillate with linear combination of first and second natural frequency.
- (D) An initial deflection of $x_1(0) = 1$ cm and $x_2(0) = -6.32$ cm would make the system oscillate with only the first natural frequency.

(GATE AE 2021 QUESTION 32)

Solution:

Fig. 1. System with D.O.F =2

The F.B.D for above system is written as:

$$m_1 \frac{d^2 x_1}{dt^2} - k_c (x_2 - x_1) + k_1 x_1 = 0$$
 (1)

$$m_2 \frac{d^2 x_2}{dt^2} + k_c (x_2 - x_1) + k_2 x_2 = 0$$
 (2)

Which can be written in the form of matrices as:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{pmatrix} \frac{d^2 x_1}{dt^2} \\ \frac{d^2 x_2}{dt^2} \end{pmatrix} = \begin{bmatrix} k_1 + k_c & -k_c \\ -k_c & k_2 + k_c \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
(3)

Assuming the solutions to the equations are:

$$x_1(t) = A_1 \sin(\omega t + \lambda) \tag{4}$$

$$x_2(t) = A_2 \sin(\omega t + \lambda) \tag{5}$$

Substituting (4) and (5) in (3), we get:

$$\begin{bmatrix} k_1 + k_c - m_1 \omega^2 & -k_c \\ -k_c & k_2 + k_c - m_2 \omega^2 \end{bmatrix} \begin{cases} A_1 \\ A_2 \end{cases} \sin(\omega t + \phi) = 0$$
(6)

	Parameter	Description	Value	
Ì	m_1, m_2	mass of block attached to springs	m_1	$\det \left(\begin{bmatrix} k_1 + k_c - m_1 \omega^2 & -k_c \\ -k_c & k_2 + k_c - m_2 \omega^2 \end{bmatrix} \right) = 0 $ (7)
	k_1, k_c, k_2	spring constants of springs	$k_1, k_c, \overrightarrow{k_2}$	$ \det $
	λ_1,λ_2	phase angles of solutions to differential equation	k_1, k_c, k_2	
	$x_1(0)$	Initial vibration of first spring	?	$I_{\mathcal{I}}$
ĺ	$x_2(0)$	Initial vibration of second spring	?	
ĺ	A_{11}, A_{12}	Amplitudes of block 1 under natural conditions	?	
	A_{21}, A_{22}	Amplitudes of block 2 under natural conditions	?	
	ω_1	First natural frequency of the system	233.9 rad/s	
	ω_2	Second natural frequency of the system	324.5 rad/s	
	ϕ_1	mode shape for first natural frequency	1 -3.16	
	ϕ_2	mode shape for second natural frequency	3.16	

TABLE I INPUT VALUES Let the roots of this equation be ω_1 and ω_2 . Which are the two modes of the system. Substituting ω_1 in (3): we obtain

$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}_1 = \phi_1 \tag{8}$$

and

Substituting ω_2 in (3): we obtain

These are called mode shapes. So any oscillation can be represented as:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \{\phi\}_1 \sin(\omega_1 t + \lambda_1) + \{\phi\}_2 \sin(\omega_2 t + \lambda_2)$$
 (10)

From Table I:

$$\lambda_1 = \frac{\pi}{2} \text{ rad}, \quad \lambda_2 = \frac{\pi}{2} \text{ rad}$$
 (11)

$$\implies x_1(t) = A_{11}\cos(\omega_1 t) + A_{21}\cos(\omega_1 t)$$
 (12)

$$\implies x_2(t) = A_{12}\cos(\omega_2 t) + A_{22}\cos(\omega_2 t)$$
 (13)

$$\therefore x_1(0) = A_{11} + A_{12} \tag{14}$$

$$\therefore x_2(0) = A_{21} + A_{22} \tag{15}$$

1) For first natural frequency:

$$\frac{x_1(0)}{x_2(0)} = \frac{A_{11}}{A_{21}} \tag{16}$$

$$\implies \frac{x_1(0)}{x_2(0)} = \frac{1}{-3.16} \tag{17}$$

2) For second natural frequency:

$$\frac{x_1(0)}{x_2(0)} = \frac{A_{12}}{A_{22}} \tag{18}$$

$$\implies \frac{x_1(0)}{x_2(0)} = \frac{1}{3.16} \tag{19}$$

So, option (B) is correct.

For linear combination of first and second natural frequencies:

$$x_1(0) = A_{11} + A_{12}x_2(0) = A_{21} + A_{22}$$
 (20)

- a) If $\phi_1 \neq \phi_2$ solution always exists
- b) If $\phi_1 = \phi_2$ solution exists only if $x_1(0) = x_2(0)$

So, option (C) is also correct.