

STAT021 Statistical Methods II

Lecture 10 SLR ANOVA and Transformation

Lu Chen Swarthmore College 10/4/2018

Review - Simple Linear Regression

CHOOSE

Exploratory data analysis; Model $Y = \beta_0 + \beta_1 X + \epsilon$ where $\epsilon \stackrel{iid}{\sim} N(0, \sigma)$

FIT

Maximum likelihood estimation (MLE)

ASSESS model

Inference for the intercept and slope; ANOVA and R^2

ASSESS error

▶ Check conditions and transformations; Outliers and influential points

USE

Predictions

Outline

- ▶ Simple linear regression ANOVA
 - Sum of squares and degree of freedom
 - Mean square, F test and R^2
 - ANOVA table
- ▶ Regression and correlation
 - t test for correlation
- ▶ Three tests for linear relationship?
- Transformation
 - Example 1: Diamond price
 - Example 2: Valentine's Day love level

Simple linear regression ANOVA

Data = Model + Error

$$Y = \mu + \alpha_k + \epsilon, \quad \text{where } k = 1, 2, \dots, K \text{ and } \epsilon \stackrel{iid}{\sim} N(0, \epsilon)$$

$$y = \bar{y} + \bar{y}_k - \bar{y} + y - \bar{y}_k$$

$$y - \bar{y} = \bar{y}_k - \bar{y} + y - \bar{y}_k$$

$$SLR: \quad Y = \beta_0 + \beta_1 X + \epsilon, \quad \text{where } \epsilon \stackrel{iid}{\sim} N(0, \sigma)$$

$$y = b_0 + b_1 x + \epsilon$$

$$y = \hat{y} + y - \hat{y}$$

$$y - \bar{y} = \hat{y} - \bar{y} + y - \hat{y}$$

In simple linear regression, $\hat{y} = b_0 + b_1 x$

Sum of squares and degree of freedom

Total variability = Variability explained + Variability in response Y by the SLR model + variability in residuals

Degrees of freedom: $df_{Total} = df_{Model} + df_{Error}$ n-1 = 1 + n-2

 $\hat{y} = b_0 + b_1 x$, which involves two statistics b_0 and b_1 . Therefore, the degree of freedom for the *Model* term is 2 - 1 = 1 and for the *Error* term n - 2.

Mean square, F test and R-squared

$$MSModel = \frac{SSModel}{df_{Model}} = \frac{\sum (\hat{y} - \bar{y})^2}{1}, \quad MSE = \frac{SSE}{df_{Error}} = \frac{\sum (y - \hat{y})^2}{n - 2}$$

$$F = \frac{MSModel}{MSE} = \frac{\frac{\sum (\hat{y} - \bar{y})^2}{1}}{\frac{\sum (y - \hat{y})^2}{n - 2}} \sim F(1, n - 2)$$

$$R^2 = \frac{SSModel}{SSTotal} = \frac{\sum (\hat{y} - \bar{y})^2}{\sum (y - \bar{y})^2}$$

▶ *MSE* is the estimate to the variance of error. The residual standard error is

$$\hat{\sigma} = \sqrt{MSE} = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}$$

F test indicates the significance of the SLR model. R^2 measures the strength of (the fraction of variability explained by) the SLR model.

SLR ANOVA table

To test the effectiveness of the simple linear model, the hypotheses are

 $H_0: \beta_1 = 0 \text{ and } H_a: \beta_1 \neq 0.$

The **ANOVA** table is

	Degree of Freedom	Sum of Squares	Mean Square	F statistic	P-value
Model	1	SSModel	MSModel	$F = \frac{MSModel}{MSE}$	$P(F_{1,n-2} > F)$
Error	n-2	SSE	MSE		
Total	n - 1	SST			

If the conditions for the simple linear regression model hold, the P-value is obtained from the upper tail of an F-distribution with 1 and n-2 degrees of freedom.

SLR ANOVA in R

```
summary(diaSLR <- lm(Price ~ Carat, data=Diamonds))</pre>
                                                        ▶ Multiple R-squared
## Call:
## lm(formula = Price ~ Carat, data = Diamonds)
                                                          R^2 = 0.8726
##
## Residuals:
                                                        F = 2090
##
           10 Median
      Min
                               30
                                      Max
                                                        Degrees of freedom: 1
## -9278.5 -1341.7 -236.2 1230.9 14991.2
                                                          and n - 2 = 305
##
## Coefficients:
                                                        P < 2.2 \times 10^{-16}
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -7341.7
                            361.1 -20.33 <2e-16 ***
                                                        ▶ Adjusted R-squared will be
                            331.0 45.72 <2e-16 ***
## Carat
         15130.1
                                                          discussed in multiple
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 linear regression.
##
## Residual standard error: 2860 on 305 degrees of freedom
## Multiple R-squared: 0.8726, Adjusted R-squared: 0.8722
## F-statistic: 2090 on 1 and 305 DF, p-value: < 2.2e-16
```

SLR ANOVA in R

anova(diaSLR) # obtain the ANOVA table for the SLR model

```
## Analysis of Variance Table
##
## Response: Price
## Df Sum Sq Mean Sq F value Pr(>F)
## Carat 1 1.7091e+10 1.7091e+10 2089.9 < 2.2e-16 ***
## Residuals 305 2.4943e+09 8.1779e+06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

- We reject the null hypothesis that $\beta_1 = 0$ at level 0.05. The *Carat* variable in the linear regression model has a significant effect in explaining the response variable *Price*.
- $R^2 = 0.8726$. About 87% of the variability in *Price* is explained by the SLR model that involves *Carat*.

Regression and correlation

Parameters of a simple linear regression model: β_0 , β_1 and σ . Their estimates are

$$b_1 = r \frac{s_y}{s_x}, \quad b_0 = \bar{y} - b_1 \bar{x}, \quad \hat{\sigma} = \sqrt{\frac{\sum (y - \hat{y})^2}{n - 2}}.$$

- r: correlation coefficient
 - It is an estimate to the population correlation ρ .
 - It measures of the strength of the linear association between two quantitative variables.
 - $-1 \le r \le 1$; r = 0 means no linear association.
- Correlation coefficient r is related to the regression slope b_1 $r = 0 \iff b_1 = 0$. Testing $\beta_1 = 0$ is equivalent to testing $\rho = 0$.
- Correlation coefficient r is also related to the regression R^2 , $R^2 = r^2$.

Regression and correlation

```
cor(Diamonds$Price, Diamonds$Carat)
## [1] 0.9341552
cor(Diamonds$Carat, Diamonds$Price)
## [1] 0.9341552
lm(Price ~ Carat, data=Diamonds)$coefficients
## (Intercept)
                    Carat
##
    -7341.712 15130.142
lm(Carat ~ Price, data=Diamonds)$coefficients
## (Intercept) Price
## 5.473680e-01 5.767599e-05
summary(diaSLR)$r.squared; 0.9341552^2
## [1] 0.8726459
## [1] 0.8726459
```

- r = 0.934, strong positive correlation.
- Correlation of *Y* and *X* is the same as correlation of *X* and *Y*.
- Regression of *Y* on *X* is different from regression of *X* on *Y*

In SLR, ANOVA R^2 is exactly correlation squared.

t test for correlation

Let ρ denote the population correlation, the hypotheses are

 $H_0: \rho = 0$ and $H_a: \rho \neq 0$ and the test statistic is

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t(n-2)$$

If the conditions for the simple linear model hold, we find the *P*-value using the *t*distribution with n-2 degrees of freedom.

t test for correlation

```
cor.test(~ Price + Carat, data=Diamonds)
```

```
##
## Pearson's product-moment correlation
##
## data: Price and Carat
## t = 45.715, df = 305, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9182342 0.9470616
## sample estimates:
## cor
## 0.9341552</pre>
```

- t = 45.72, df = n 2 = 305, $P < 2.2 \times 10^{-16} < 0.05$.
- We reject H_0 that $\rho = 0$ at level 0.05. There is a highly significant linear association between *Price* and *Carat*.
- ▶ 95% C.I.: [0.918, 0.947]

Three tests for linear relationship?

Response variable: Price; Explanatory variable: Carat

	t test for slope	F test for model	t test for correlation
H_0	$\beta_1 = 0$	$\beta_1 = 0$	$\rho = 0$
Test statistic	t = 45.72	F = 2090	t = 45.72
Distribution	t(n-2) = t(305)	F(1, n - 2) = F(1, 305)	t(n-2) = t(305)
P-value	$< 2.2 \times 10^{-16}$	$< 2.2 \times 10^{-16}$	$< 2.2 \times 10^{-16}$

$$\beta_1 = 0 \iff \rho = 0$$

$$F = 2090 = t^2 = 45.72^2$$

- If $t \sim t(df)$, $F = t^2 \sim F(1, df)$
- ▶ The three tests are equivalent in the simple linear regression setting.

Three tests for linear relationship?

Why do we need three equivalent tests for a linear relationship?

While the results are equivalent in the simple linear regression case, we will see that these tests take on different roles in multiple linear regression model.

In multiple linear regression

- t test for the slope: relationship between the response and the explanatory considering other explanatory variables are in the model.
- ANOVA F test for the model: relationship between the response and all the explanatory variables $(H_0: \beta_1 = \beta_2 = \cdots = \beta_K = 0)$.
- t test for the correlation: relationship between the response and the explanatory without considering other explanatory variables.

Transformation: Diamond price

Transformation: Diamond price

- ▶ BP test for constant variance is highly significant (BP = 102, $P < 2.2 \times 10^{-16}$).
- ▶ The linearity and constant variance assumptions are strongly violated; the Normality assumption may be slightly violated.
- Since the distribution of *Price* and the residuals are skewed to the right, let's try natural logarithm transformation.
- ightharpoonup Denote log(Price) as Y,

$$Y = \beta_0 + \beta_1 X + \epsilon$$
, where $\epsilon \stackrel{iid}{\sim} N(0, \sigma)$

Note: in the new model, the relationship being evaluated is between *log(Price)* and *Carat*.

Transformation: log(Price) ~ Carat

```
diaSLR2 <- lm(log(Price) ~ Carat, data=Diamonds)</pre>
summary(diaSLR2)$coefficients
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.91729 0.04174 165.72 <2e-16 ***
         1.63724 0.03826 42.79 <2e-16 ***
## Carat
summary(diaSLR2)$r.squared
## [1] 0.8572019
library(lmtest); bptest(diaSLR2) # BP test
##
                                            log(Price) = 6.9 + 1.6 \times Carat
##
   studentized Breusch-Pagan test
##
                                            t = 42.9, P \ll 0.05
## data: diaSLR2
## BP = 39.487, df = 1, p-value = 3.303e-10
                                            R^2 = 0.86
                                            P = 39.5, P = 3.3 \times 10^{-10}
```

Transformation: log(Price) ~ Carat

Transformation: log(Price) ~ log(Carat)

```
# Let's also transform the explanatory variable Carat
diaSLR3 <- lm(log(Price) ~ log(Carat), data=Diamonds)</pre>
summary(diaSLR3)$coefficients
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.76116 0.01311 668.49 <2e-16 ***
## log(Carat) 1.79331 0.02669 67.18 <2e-16 ***
summary(diaSLR3)$r.squared
## [1] 0.9366962
bptest(diaSLR3) # BP test
##
                                            \log(Price) = 8.8 + 1.8 \times \log(Carat)
##
   studentized Breusch-Pagan test
                                            t = 67.2, P \ll 0.05
##
## data: diaSLR3
                                            R^2 = 0.94
## BP = 0.010945, df = 1, p-value = 0.9167
                                            P = 0.01, P = 0.912 > 0.05
```

Transformation: log(Price) ~ log(Carat)

Best model: log(Price) ~ log(Carat)

	Price ~ Carat	log(Price) ~ Carat	log(Price) ~ log(Carat)
t test for slope	t = 45.7, tiny <i>P</i>	t = 42.9, tiny P	t = 67.2, tiny P
R^2	0.873	0.857	0.937
BP test	BP = 102, tiny P	BP = 39, tiny P	BP = 0.01, P = 0.917

Transformation: Valentine's Day love level

Transformation: Vlevel ~ log(GDPpc)

Transformation: Vlevel^2 ~ log(GDPpc)

Best model: Vlevel^2 ~ log(GDPpc)

	Vlevel ~ GDPpc	Vlevel ~ log(GDPpc)	Vlevel ² ~ log(GDPpc)
t test for slope	t = 2.8, P = .0055	t = 3.1, P = .0026	t = 3.1, P = .0026
R^2	0.058	0.068	0.068
BP test	BP = 5.0, P = .025	BP = 2.4, P = .121	BP = 1.7, P = 0.194

- ▶ The second and the third model are very similar.
- The third one is slightly better in terms of the t test P value and R^2 .
- ▶ The third model is the best while the second one is also very good.

Some notes

- Recall the ANOVA model for *Vlevel* and *GDPpc*, where the latter is categorized as a categorical variable with 4 categories, *VeryLow*, *Low*, *Medium* and *High*.
- That ANOVA model has $R^2 = 0.087$.
- Our SLR model for *Vlevel*² versus log(GDPpc) has $R^2 = 0.068$.
- ▶ Categorization usually causes loss of information. But why the SLR model explains even less variability than the ANOVA model?
- Linear relationship between any two variables is in fact a very strong assumption while categorization allows more flexibility.
- There is NO perfect model. There is no guarantee that transformation will eliminate all problems.
- Consider the following when you choose a model: are model assumptions violated? How significant is the t or F test for $\beta_1 = 0$? Is R^2 large?

Summary

- Simple linear regression ANOVA
 - Sum of squares and degree of freedom
 - Mean square, F test and R^2
 - ANOVA table
- ▶ Regression and correlation
 - t test for correlation
- ▶ Three tests for linear relationship?
- Transformation
 - Example 1: Diamonds price
 - Example 2: Valentine's Day love level