Appln. No.: 10/038,957

Amendment dated March 5, 2004

Reply to Office Action of December 5, 2003

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended): A method of making a composite three-dimensional object

comprising:

(a) forming a continuous filament comprising a longitudinally extending continuous

fiber and a material-laden composition comprising a thermoplastic polymer and at least about 40

volume % of a ceramic or metallic particulate, wherein the filament includes a green matrix

material from the material-laden composition, and wherein the green matrix material completely

surrounds the fiber:

(b) passing the filament to a movable assembly for guiding placement of the filament

onto an associated working surface;

(c) depositing the filament from the movable assembly without application of a

compression force onto the working surface to form a first filament layer having a predetermined

filament orientation;

(d) depositing the filament from the movable assembly without application of a

compression force onto the working surface to form a second filament layer on top of the first

layer;

(e) heating the deposited filament, a portion of the second filament layer adjacent the

deposited filament and a portion of first filament layer below the deposited filament to a

predetermined temperature effective for softening the green matrix material to provide a heated

portion of deposited filament and filament layers;

Page 2 of 10

Appln. No.: 10/038,957

Amendment dated March 5, 2004

Reply to Office Action of December 5, 2003

(f) compressing the heated portion with a force effective for consolidating and

bonding the green matrix material of the deposited filament and filament layers; and

solidifying the heated portion to provide a composite object of a predetermined

geometry.

(g)

2. (Original): The method of claim 1 further comprising preheating the filament as

it is deposited onto the work surface to a temperature effective for adhering the filament to

previously deposited filament.

3. (Original): The method of claim 1 wherein the filament includes one or more

interface layers between the matrix material and the fiber for enhancing non-brittle failure

characteristics of the composite and oxidation protection.

4. (Currently amended): The method of claim 3 wherein the one or more interface

layer include materials selected from the group consisting of graphite, boron nitride, silicon

carbide, boron carbide, silicon earbide nitride and blends thereof.

5. (Original): The method of claim 1 wherein the filament includes a plurality of

discrete fibers.

6. (Original): The method of claim 1 further comprising immersing the filament in a

composition effective for increasing flexibility of the filament prior to depositing the filament

onto the working surface.

7. (Original): The method of claim 1 further comprising:

creating a drawing of the desired composite three-dimensional object utilizing a

computer-aided design process, wherein the process generates a drawing including a plurality of

segments; and

(a)

Page 3 of 10

Appln. No.: 10/038,957

Amendment dated March 5, 2004

Reply to Office Action of December 5, 2003

(b) generating input signals based on the drawing for directing the movable assembly in the depositing the filament onto the working surface, wherein the movable assembly is guided in response to the signals.

8. (Original): The method of claim 1 further comprising blending a thermoplastic binder with the material-laden composition and heating the composite object to remove thermoplastic binder from the composite object and consolidating the composite object to provide a fully dense fiber reinforced composite object.

9-11. (Canceled)

12. (New) The method of claim 1, wherein the composite object is heated to a temperature and for a time effective for sintering the green material.

13. (New) The method of claim 1, wherein the filament is cut after a length of filament has been deposited on the working surface.

14. (New) The method of claim 1, wherein the compression force is applied using one or more rollers.

15. (New) The method of claim 1, wherein the heated portion is compressed with a force of about 190 newtons.