Contrôle de connaissances ACCQ203a – Algorithmes pour l'algèbre

31 janvier 2024 10h15 – 11h45

Documents autorisés : 1 feuille A4 recto-verso manuscrite, dictionnaire de traduction imprimé. Sont interdits : notes de cours, polycopié et matériel électronique (calculatrice, ordinateur, téléphone, etc.).

Durée : 1h30. Sujet en 9 pages.

Exercice 1. Dans cet exercice, on munit \mathbb{R}^4 du produit scalaire et de la norme usuels. On donne les vecteurs

$$\mathbf{v}_1 = \begin{pmatrix} -2\\4\\-3\\1 \end{pmatrix} \in \mathbb{Z}^4 \qquad \text{et} \qquad \mathbf{v}_2 = \begin{pmatrix} -9\\3\\7\\-1 \end{pmatrix} \in \mathbb{Z}^4.$$

On s'intéresse à l'ensemble Λ des vecteurs de \mathbb{Z}^4 orthogonaux à \mathbf{v}_1 et à \mathbf{v}_2 .

- 1. Exprimer Λ comme le noyau ker $\mathbf{A} = \{\mathbf{x} \in \mathbb{Z}^4; \ \mathbf{A}\mathbf{x} = \mathbf{0}\}$ d'une certaine matrice \mathbf{A} . Donner (1 pt) le nom d'une forme normale de matrice qui permet de calculer un noyau.
- 2. Mettre la matrice $\bf A$ sous forme normale citée à la question précédente et donner une base (3 pts) de $\bf A$.
- 3. Chercher un vecteur $\mathbf{b} \in \mathbb{Z}^4$ non nul et de norme minimale dans Λ . Vérifier que $\|\mathbf{b}\| = 2$. (1,5 pts)
- 4. On souhaite positionner des boules de rayon identique r centrées en chacun des points de Λ (0,5 pt) sans qu'elles s'interpénètrent. Pour quelles valeurs de r est-ce possible?

Solution 1. 1. On peut considérer la matrice

$$\mathbf{X} = \begin{pmatrix} -2 & 4 & -3 & 1 \\ -9 & 3 & 7 & -1 \end{pmatrix} \in \mathbb{Z}^{2 \times 4}$$

dont on cherche la forme normale d'Hermite.

2. On travaille exclusivement sur les colonnes. On effectue les opérations simultanément sur ${\bf X}$ et ${\bf U}$

$$\mathbf{X} = \begin{pmatrix} -2 & 4 & -3 & 1 \\ -9 & 3 & 7 & -1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Comme nous travaillons à la main, nous allons au plus efficace pour obtenir un résultat. Le coefficient -1 placé en dernière ligne et colonne nous tend les bras. Nous commençons par $C_4 \leftarrow -C_4$.

$$\mathbf{X} = \begin{pmatrix} -2 & 4 & -3 & -1 \\ -9 & 3 & 7 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Nous simplifions $C_1 \leftarrow C_1 + 9C_4, C_2 \leftarrow C_2 - 3C_4, C_3 \leftarrow C_3 - 7C_4$:

$$\mathbf{X} = \begin{pmatrix} -11 & 7 & 4 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -9 & 3 & 7 & -1 \end{pmatrix}$$

Nous retranchons $C_2 \leftarrow C_2 - 2C_3$:

$$\mathbf{X} = \begin{pmatrix} -11 & -1 & 4 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ -9 & -11 & 7 & -1 \end{pmatrix}$$

Nous replaçons le -1 obtenu en position de pivot $C_3 \leftrightarrow C_2$:

$$\mathbf{X} = \begin{pmatrix} -11 & 4 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ -9 & 7 & -11 & -1 \end{pmatrix}$$

Nous changeons le signe avec $C_3 \leftarrow -C_3$.

$$\mathbf{X} = \begin{pmatrix} -11 & 4 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ -9 & 7 & 11 & -1 \end{pmatrix}$$

Finalement, nous simplifions $C_1 \leftarrow C_1 + 11C_3$, $C_2 \leftarrow C_2 - 4C_3$, $C_4 \leftarrow C_4 + C_3$:

$$\mathbf{X} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -11 & 4 & -1 & -1 \\ 22 & -7 & 2 & 2 \\ 112 & -37 & 11 & 10 \end{pmatrix}$$

Nous en déduisons finalement une base

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ -11 \\ 22 \\ 112 \end{pmatrix} \in \mathbb{Z}^4 \qquad \text{et} \qquad \mathbf{u}_2 = \begin{pmatrix} 0 \\ 4 \\ -7 \\ -37 \end{pmatrix} \in \mathbb{Z}^4.$$

3. Calculons une base LLL réduite de $\Lambda.$ On a $\|\mathbf{u}_1\|^2=13150>\|\mathbf{u}_2\|^2=1434.$ On notons que

$$\frac{\langle \mathbf{u}_1, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} = \frac{-4342}{1434} \simeq -3.028 \cdots$$

Nous voyons par conséquent que

$$\mathbf{u}_3 = \mathbf{u}_1 - 3\mathbf{u}_2 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

appartient au réseau.

Nous notons ensuite que

$$\frac{\langle \mathbf{u}_2, \mathbf{u}_3 \rangle}{\langle \mathbf{u}_3, \mathbf{u}_3 \rangle} = \frac{-40}{4} = -10$$

Nous calculons

$$\mathbf{u}_4 = \mathbf{u}_2 + 10\mathbf{u}_3 = \begin{pmatrix} 10\\14\\3\\-27 \end{pmatrix}$$

Comme $\|\mathbf{u}_4\|^2 = 1034 > \|\mathbf{u}_3\|^2 = 4$, l'algorithme LLL s'arrête.

Comme nous travaillons avec un réseau de rang 2, le plus court vecteur de Λ apparait dans la réduction est vaut ici \mathbf{u}_3 .

4. Le vecteur \mathbf{u}_3 est de norme $\|\mathbf{u}_3\| = 2$: on peut donc place des boules de rayon r < 1.

Exercice 2. Soit $\mathbf{A} \in \mathbb{Z}^{3 \times 3}$ la matrice suivante et $\mathbf{b} \in \mathbb{Z}^3$ le vecteur suivant

$$\mathbf{A} = \begin{pmatrix} -16 & -21 & -31 \\ 7 & 9 & 13 \\ -8 & -9 & -11 \end{pmatrix} \in \mathbb{Z}^{3 \times 3} \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \in \mathbb{Z}^3$$

- 1. Déterminer la forme normale de Smith X de la matrice A.
- 2. Le système $\mathbf{A}\mathbf{x} = \mathbf{b}$ admet-il une solution dans \mathbb{Z}^3 ? (1 pt)

(3 pts)

Solution 2. 1. Nous partons de

$$\mathbf{X} = \begin{pmatrix} -16 & -21 & -31 \\ 7 & 9 & 13 \\ -8 & -9 & -11 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Nous devinons que le ppcm des coefficients de $\bf A$ vaut 1. Il est intéressant de faire apparaître un coefficient 1. Avec $C_1 \leftarrow C_1 - C_2$

$$\mathbf{X} = \begin{pmatrix} 5 & -21 & -31 \\ -2 & 9 & 13 \\ 1 & -9 & -11 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Nous corrigeons les lignes $L_1 \leftarrow L_1 - 5L_3$ et $L_2 \leftarrow L_2 + 2L_3$

$$\mathbf{X} = \begin{pmatrix} 0 & 24 & 24 \\ 0 & -9 & -9 \\ 1 & -9 & -11 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Nous corrigeons les colonnes $C_2 \leftarrow C_2 + 9C_1$ et $C_3 \leftarrow C_3 + 11C_1$

$$\mathbf{X} = \begin{pmatrix} 0 & 24 & 24 \\ 0 & -9 & -9 \\ 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 11 \\ -1 & -8 & -11 \\ 0 & 0 & 1 \end{pmatrix}$$

Il est tentant d'effectuer $C_2 \leftarrow C_2 - C_3$

$$\mathbf{X} = \begin{pmatrix} 0 & 24 & 0 \\ 0 & -9 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 2 \\ -1 & -8 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Avant de continuer, échangeons $L_1 \leftrightarrow L_3$

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 24 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & -5 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 2 \\ -1 & -8 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Puis $L_3 \leftarrow L_3 + 3L_2$

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & -3 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 2 \\ -1 & -8 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Puis $L_2 \leftarrow L_2 - 3L_2$

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -3 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 0 & 0 & 1 \\ -3 & -8 & -1 \\ 1 & 3 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 2 \\ -1 & -8 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

Enfin $L_3 \leftrightarrow L_2$ et $L_2 \leftarrow -L_2$

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -3 & 1 \\ -3 & 8 & -1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 9 & 2 \\ -1 & -8 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

2. Nous effectuons un changement de base dans l'espace des solutions en posant $\mathbf{x} = \mathbf{C}\mathbf{x}'$. Cette transformation est bien valide car \mathbf{C} appartient à $\mathbf{GL}_3(\mathbb{Z})$. L'équation $\mathbf{A}\mathbf{x} = \mathbf{b}$ équivaut à l'équation $\mathbf{ACx}' = \mathbf{b}$. Nous multiplions à gauche par \mathbf{L} , ce qui ne change pas les solutions puisque $\mathbf{L} \in \mathbf{GL}_3(\mathbb{Z})$. Nous obtenons l'équation $\mathbf{LACx}' = \mathbf{Xx}' = \mathbf{Lb}$. Calculons $\mathbf{b}' = \mathbf{Lb}$ explicitement :

$$\mathbf{b}' = \begin{pmatrix} -3 \\ -2 \\ 0 \end{pmatrix}$$

Le système $\mathbf{X}\mathbf{x}' = \mathbf{b}'$ s'écrit comme

$$\begin{cases} x_1' &= -3, \\ 3x_2' &= -2 \\ x_3' &= 0 \end{cases}$$

où $\mathbf{x}' = (x_1', x_2', x_3') \in \mathbb{Z}^3$. Ce système n'a pas de solutions entières puisque -2 n'est pas un multiple de 3.

Exercice 3. Dans tout cet exercice, on se donne un premier $p \geq 3$.

1. Soient ℓ un entier et x un élément de $\mathbb{F}_{p^{\ell}}$. Rappeler un critère d'algèbre linéaire permettant (0,5 pt) de savoir si $x \in \mathbb{F}_p$.

La notation $(\mathbb{F}_{p^2}^{\times},\cdot)$ désigne le groupe des éléments non nuls de \mathbb{F}_{p^2} muni de la loi de multiplication.

2. Vérifier les faits suivants :

(a) L'application
$$\mathcal{N}: \begin{cases} (\mathbb{F}_{p^2}^\times, \cdot) & \to & \mathbb{F}_{p^2}^\times \\ t & \to & t^{p+1} \end{cases}$$

est un homomorphisme (de groupe abélien) à valeur dans \mathbb{F}_n^{\times} .

- (b) L'image $\mathcal{N}(\mathbb{F}_p)$ est le groupe des carrés non nuls de \mathbb{F}_p^{\times} . (0,5 pt)
- 3. Montrer que le polynôme $f(x) = x^{p+1} a \in \mathbb{F}_p[x]$, où a est un élément de \mathbb{F}_p^{\times} , est sans (0,5 pt) facteur carré.
- 4. Compter le nombre de racines du polynôme $x^{p+1} a \in \mathbb{F}_p[x]$ (0,5 pt)
 - (a) dans le corps \mathbb{F}_{p^2} , (0,5 pt)
 - (b) puis dans le corps \mathbb{F}_p . (0,5 pt)
- 5. En déduire les degrés des facteurs irréductibles de $x^{p+1} a \in \mathbb{F}_p[x]$. (0,5 pt)
- 6. Dans cette question, nous supposons que p=5. Écrire la matrice \mathbf{Q} de Petr-Berlekamp du (0,5 pt) polynôme $x^6-2\in \mathbb{F}_5[X]$. Calculer le rang de la matrice $\mathbf{Q}-\mathbf{I}$.
- 7. Peut-on, plus généralement, prévoir le rang de la matrice $\mathbf{Q} \mathbf{I}$ relative au polynôme (0.5 pt) $x^{p+1} a \in \mathbb{F}_p[X]$ lorsque a décrit l'ensemble \mathbb{F}_p^{\times} ?
- 8. Identifier le polynôme (0,5 pt)

$$h(x) = \prod_{a \in \mathbb{F}_p^{\times}} x^p - a$$

c'est-à-dire donner la forme développée de h(x).

9. Nous souhaitons factoriser dans $\mathbb{Z}[z]$ le polynôme

$$k(z) = z^{24} - 1 \in \mathbb{Z}[z].$$

- (a) Nous rappelons qu'il y a autant de facteurs irréductibles du polynôme z^n-1 dans $\mathbb{Z}[z]$ que de diviseurs de n (ce sont les polynômes cyclotomiques). Combien le polynôme (0,5 pt) k(z) possède-t-il de facteurs irréductibles dans $\mathbb{Z}[z]$?
- (b) Nous plongeons k(z) dans $\mathbb{Z}/5^{16}\mathbb{Z}[z]$ et factorisons k(z) modulo 5^{16} . Combien de factorisons obtient-on?

Solution 3. 1. Un élément $x \in \mathbb{F}_{p^k}$ appartient à \mathbb{F}_p si et seulement si $\sigma = \operatorname{Frob}_{\left[\mathbb{F}_{p^k}:\mathbb{F}_p\right]}(x) = x$ c'est-à-dire $x^p = x$.

2. (a) On peut constater que $\varphi(1) = 1$ et $\varphi(ab) = \varphi(a)\varphi(b)$ ce qui montrer que nous avons bien un morphisme.

D'autre part, on sait que $\sigma^2 = \operatorname{Id} \operatorname{dans} \mathbb{F}_{n^2}$. Ainsi, pour tout élément $x \operatorname{de} \mathbb{F}_{n^2}$

$$\sigma(\mathcal{N}(x)) = \sigma(x\sigma(x)) = \sigma(x)\sigma^2(x) = \sigma(x)x = \mathcal{N}(x)$$

ce qui prouve que $\mathcal{N}(x)$ appartient toujours \mathbb{F}_p .

(b) Nous observons que, si $x \in \mathbb{F}_p$, on a

$$\mathcal{N}(x) = x \cdot \sigma(x) = x \cdot x = x^2$$

ce qui prouve notre point.

3. Nous calculons $f'(x) = (p+1)x^p = x^p$. Ainsi, comme a est non nul,

$$f \wedge f' = 1$$

ce qui prouve que f est sans facteur carré.

4. (a) Nous savons que im $\mathcal{N}\subseteq\mathbb{F}_p^{\times}$, donc $|\operatorname{im}\mathcal{N}|\leq p-1$. Par ailleurs, $\ker\mathcal{N}=\{x\in\mathcal{N}\}$ $\mathbb{F}_{p^2}^{\times}; \mathcal{N}(x) = 1$ } possède p+1 éléments au plus (puisqu'on cherche les racines d'un polynôme de degré p+1 dans un corps). Or $|\mathbb{F}_{p^2}^{\times}|=|\ker\mathcal{N}|\cdot|\mathrm{im}\,\mathcal{N}|$. Ceci force les égalités $|\ker \mathcal{N}| = p+1$ et $\operatorname{im} \mathcal{N} = \mathbb{F}_p^{\times}$. Nous en déduisons que $f(x) = x^{p+1} - a$ possède exactement p+1 racines distinctes.

(b) Si a n'est pas un carré, $x^{p+1}-a$ ne peut pas avoir de racine $t\in\mathbb{F}_p,$ car $\mathcal{N}(t)$ est toujours un carré.

Inversement, deux éléments x et x' de \mathbb{F}_p^{\times} satisfont $\mathcal{N}(x) = \mathcal{N}(x')$ si et seulement si $x^{p+1} = x'^{p+1}$ soit encore si et seulement si $x^2 = x'^2$ ce qui équivaut à $x = \pm x'$. Donc un même polynôme $f(x) = x^{p+1} - a$ ne peut avoir qu'au maximum deux racines issues de \mathbb{F}_p . Pour des raisons de cardinalité, nous pouvons conclure que tous les polynômes de la forme $f(x) = x^{p+1} - a$, où a est un carré, possèdent exactement 2 racines distinctes dans \mathbb{F}_p^{\times} .

- 5. Il s'en suit que:
 - si a est un non carré, $f(x) = x^{p+1} a$ possède (p+1)/2 facteurs irréductibles quadratiques.
 - si a est un carré, $f(x) = x^{p+1} a$ possède (p-1)/2 facteurs irréductibles quadratiques et deux facteurs linéaires.
- 6. On effectue les calculs suivants

$$\begin{cases} \sigma(1) &= & 1 \\ \sigma(x) &= & x^5 \\ \sigma(x^2) &= & x^{10} = x^{6+4} &= 2x^4 \\ \sigma(x^3) &= & x^{15} = x^{2\cdot 6+3} &= -x^3 \\ \sigma(x^4) &= & x^{20} = x^{3\cdot 6+2} = 2^3x^2 &= -2x^3 \\ \sigma(x^5) &= & x^{25} = x^{4\cdot 6+1} = 2^{5-1}x &= x \end{cases}$$

On obtient la matrice

On en tire

$$\mathbf{Q} - \mathbf{I}_6 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \end{pmatrix}$$

Il est facile de voir que cette matrice est de rang 3. On regarde le bloc aux lignes [2,3,4] et colonnes [2,3,4]. Le noyau est donc de dimension 6-3=3.

7. Plus généralement, le rang de la matrice $\mathbf{Q} - \mathbf{I}_6$ est 3 ou 4 selon que a est un non carré ou un carré. On a ici

a	carré	rang
1	oui	4
2	non	3
3	non	3
4	oui	4

8. Ce qui précède montre que $h(x) = \prod_{a \in \mathbb{F}_5^{\times}} x^{p+1} - a$ a pour facteur l'ensemble des irréductibles de degré 1 ou 2 avec multiplicité 1 sauf le facteur x. On a donc

$$h(x) = x^{p^2 - 1} - 1$$

- 9. (a) On compte les diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12. Ainsi $z^{24}-z$ se factorise en 8 irréductibles.
 - (b) Dans $\mathbb{F}_5[x]$ on obtient 4+20/2=14 irréductibles, qui se relèvent par le lemme d'Hensel en 14 irréductibles dans $\mathbb{Z}/5^{16}\mathbb{Z}[z]$.

Exercice 4. Une astroïde est une courbe plane \mathscr{A} , que l'on peut obtenir en faisant rouler un cercle de rayon $\frac{1}{4}$ à l'intérieur d'un cercle de rayon 1.

La mise en équation de ce mouvement conduit à la paramétrisation

$$\mathscr{A} = \left\{ (x(t), y(t)) \in \mathbb{R}^2 \, ; \, t \in \mathbb{R} \right\}$$

οù

$$\begin{cases} x(t) &= \sin^3(t) \\ y(t) &= \cos^3(t) \end{cases} \qquad (t \in \mathbb{R})$$

1. Nous nous proposons de retrouver une équation cartésienne f(x,y)=0 de la courbe \mathscr{A} . Nous introduisons quatre variables polynomiales $x,\,y,\,s$ et c.

Proposer trois polynômes $g_1(x, y, s, c)$, $g_2(x, y, s, c)$ et $g_3(x, y, s, c) \in \mathbb{Q}[x, y, s, c]$ tels que (1 pt)

$$\mathscr{A} = \{(x,y) \in \mathbb{R}^2; \exists (s,c) \in \mathbb{R}^2, g_1(x,y,s,c) = g_2(x,y,s,c) = g_3(x,y,s,c) = 0\}.$$

2. Nous notons $\mathfrak I$ l'idéal engendré $\mathfrak I=\langle g_1,g_2,g_3\rangle$. Suggérer un ordre \preceq sur les monômes de $\mathbb Q[x,y,s,c]$ tel que, si on calcule une base de Groebner de $\mathfrak I$, le ou les derniers polynômes de cette base forment une base de Groebner de $\mathfrak I\cap\mathbb Q[x,y]$ (idéal d'élimination des variables s et c).

Écrire les monômes x, y, s et c par ordre décroissant.

3. Nous voudrions confirmer que la courbe \mathscr{A} est également l'enveloppe de l'ensemble des segments $(S_u)_{u\in\mathbb{R}}$ de longueur 1 dont les extrémités glissent le long des axes (Ox) et (Oy) (on pourra imaginer une échelle qui glisse le long d'un mur). Le rôle du paramètre u sera précisé plus loin.

(a) Donner l'équation de la droite dessinée ci-dessous en fonction de l'angle θ (1 pt)

- (b) En introduisant un paramètre u tel que $\tan \theta = \frac{2u}{1-u^2}$, introduire une famille de (1 pt) fonctions polynomiales h(x, y, u) telle que, pour chaque valeur fixée u_0 , l'équation $h(x, y, u_0) = 0$ soit l'équation cartésienne de l'un des segments S_u dessiné plus haut.
- (c) Décrire une manipulation à l'aide de bases de Groebner qui permettrait de retrouver (0.5 pt) l'équation f(x, y) = 0 qui décrit l'astroïde.

Solution 4. 1. Nous introduisons les trois équations

$$g_1(x, y, c, s) = c^2 + s^2 - 1$$
, $g_2(x, y, c, s) = x - s^3$, $g_3(x, y, c, s) = y - c^3$

2. Nous munissons $\mathbb{Q}[x, y, c, s]$ de l'ordre lexicographique dans lequel

On pourrait aussi utiliser un autre ordre tel que c, s > x, y.

3. (a) L'abscisse à l'origine est $\cos \theta$, l'ordonnée à l'origine est $\sin \theta$. La droite a, par conséquent, pour équation :

$$\frac{x}{\cos\theta} + \frac{y}{\sin\theta} = 1.$$

(b) Avec la paramétrisation

$$\tan \theta = \frac{2u}{1 - u^2},$$

on a, selon les formules classiques de paramétrisation du cercle,

$$\sin \theta = \frac{2u}{1+u^2}$$
 et $\cos \theta = \frac{1-u^2}{1+u^2}$.

On propose donc l'équation

$$h(x, y, u) = 2u(1 + u^{2})x + (1 - u^{2})(1 + u^{2})y - 2u(1 - u^{2}) = 0$$

qui est celle de la question précédente où l'on a chassé les dénominateurs.

(c) Ici encore, on souhaite chasser la variable u de l'ensemble des équations

$$\left\{h(x,y,u)=0\quad \text{et}\quad \frac{\partial h}{\partial u}(x,y,u)=0\right\}$$

On déclare l'idéal $\mathfrak E$ engendré par h et $\frac{\partial h}{\partial u}$ dans $\mathbb Q[x,y,u]$. On munit $\mathbb Q[x,y,u]$ de l'ordre lexicographique. On cherche une base de Groebner de $\mathfrak E$. La dernière équation doit être égale à f(x,y).

Voici le code si on veut vérifier les calculs :

```
Pol.<s,c,x,y> = PolynomialRing(QQ,4, order = 'lex')
g1 = c^2 + s^2 - 1
g2 = x-s^3
g3 = y-c^3
I = Ideal([g1, g2, g3])
f(x,y) = I.groebner_basis()[-1].subs(c=0,s=0)
implicit_plot( f, (x, -2,2), (y, -2,2))

Pol.<u,x,y> = PolynomialRing(QQ,3, order = 'lex')
h = (1+u^2)*2*u*x + (1+u^2)*(1-u^2)*y - 2*u*(1-u^2)
E = Ideal([h, h.derivative(u)])
E.groebner_basis()[-1]
```