

Exercise 4D

Question 8:

Given: \triangle ABC is a right angled isosceles triangle in which \angle ACB = 90°

$$AB^2 = AC^2 + BC^2$$

 $\Rightarrow AB^2 = AC^2 + AC^2$
 $[(\cdot \cdot AB = AC) \text{ Given}]$
 $\Rightarrow AB^2 = 2AC^2$

Question 9:

Given: \triangle ABC is an isosceles triangle with AC = BC and AB²=2AC²

$$AB^2 = 2AC^2 \Rightarrow AB^2 = AC^2 + AC^2$$

 $\Rightarrow AB^2 = AC^2 + BC^2$
[:AC = BC]

ΔABC is a right triangle right angled at C. (by converse of Pythagoras theorem)

Question 10:

Given: \triangle ABC is an isosceles triangle with AB = AC = 13cm^2 Const: Draw altitude from A to BC (AL \perp BC).

Now, AL = 5 cm

In ΔALB,

$$\angle ALB = 90^{\circ}$$

:.
$$AB^2 = AL^2 + BL^2$$

(by pythagoras theorem)

$$13^2 = (5)^2 + BL^2$$

BL =
$$\sqrt{144}$$
 cm = 12cm

In ΔALC,

$$AC^{2} = AL^{2} + LC^{2}$$

 $\Rightarrow LC^{2} = (AC^{2} - AL^{2})$
 $= [(13)^{2} - (5)^{2}] cm^{2}$
 $= (169 - 25) cm^{2}$
 $= 144 cm^{2}$
 $= \sqrt{144} = 12 cm$
 $\therefore BC = BL + LC = (12 + 12) cm = 24 cm$

******** FND *******