Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

$$3587 = 1819 \cdot 1 + 1768$$

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

$$3587 = 1819 \cdot 1 + 1768$$
$$1819 = 1768 \cdot 1 + 51$$

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

$$3587 = 1819 \cdot 1 + 1768$$

 $1819 = 1768 \cdot 1 + 51$
 $1768 = 51 \cdot 34 + 34$

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

$$3587 = 1819 \cdot 1 + 1768$$

$$1819 = 1768 \cdot 1 + 51$$

$$1768 = 51 \cdot 34 + 34$$

$$51 = 34 \cdot 1 + 17$$

Odredimo $d = \gcd(3587, 1819)$ i prikažimo d kao linearnu kombinaciju brojeva 3587 i 1819.

$$3587 = 1819 \cdot 1 + 1768$$

$$1819 = 1768 \cdot 1 + 51$$

$$1768 = 51 \cdot 34 + 34$$

$$51 = 34 \cdot 1 + 17$$

$$34 = 17 \cdot 2$$

Sjetimo se rekurzije:

$$r_{-1} = b$$
, $r_0 = c$; $r_i = r_{i-2} - q_i r_{i-1}$;
 $x_{-1} = 1$, $x_0 = 0$; $x_i = x_{i-2} - q_i x_{i-1}$;
 $y_{-1} = 0$, $y_0 = 1$; $y_i = y_{i-2} - q_i y_{i-1}$,

Rješenje rekurzijom:

i	-1	0	1	2	3	4
q_i			1	1	34	1
Χį	1	0	1	-1	35	-36
Уi	0	1	-1	2	-69	71

Dakle, d = 17, te $3587 \cdot (-36) + 1819 \cdot 71 = 17$.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n>1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n > 1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

<u>Dokaz:</u> Dokazat ćemo teorem matematičkom indukcijom.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n > 1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

<u>Dokaz:</u> Dokazat ćemo teorem matematičkom indukcijom.

Broj 2 je prost. Pretpostavimo da je n > 2, te da tvrdnja teorema vrijedi za sve m, $2 \le m < n$.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n > 1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

<u>Dokaz:</u> Dokazat ćemo teorem matematičkom indukcijom.

Broj 2 je prost. Pretpostavimo da je n > 2, te da tvrdnja teorema vrijedi za sve m, $2 \le m < n$.

Želimo dokazati da se i n može prikazati kao produkt prostih faktora.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n > 1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

<u>Dokaz:</u> Dokazat ćemo teorem matematičkom indukcijom.

Broj 2 je prost. Pretpostavimo da je n > 2, te da tvrdnja teorema vrijedi za sve m, $2 \le m < n$.

Želimo dokazati da se i n može prikazati kao produkt prostih faktora.

Ako je *n* prost, nemamo što dokazivati.

Prirodan broj p>1 se zove prost ako p nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a>1 nije prost, onda kažemo da je složen.

Teorem

Svaki prirodan broj n > 1 može se prikazati kao produkt prostih brojeva (s jednim ili više faktora).

<u>Dokaz:</u> Dokazat ćemo teorem matematičkom indukcijom.

Broj 2 je prost. Pretpostavimo da je n > 2, te da tvrdnja teorema vrijedi za sve m, $2 \le m < n$.

Želimo dokazati da se i n može prikazati kao produkt prostih faktora.

Ako je n prost, nemamo što dokazivati.

U protivnom je $n=n_1n_2$, gdje je $1< n_1< n$ i $1< n_2< n$. Po pretpostavci indukcije, n_1 i n_2 su produkti prostih brojeva, pa stoga i n ima to svojstvo.

Iz prošlog Teorema slijedi da svaki prirodan broj *n* možemo prikazati u obliku

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r},$$

gdje su p_1, \ldots, p_r različiti prosti brojevi, a $\alpha_1, \ldots, \alpha_r$ prirodni brojevi.

Iz prošlog Teorema slijedi da svaki prirodan broj *n* možemo prikazati u obliku

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_r^{\alpha_r},$$

gdje su p_1, \ldots, p_r različiti prosti brojevi, a $\alpha_1, \ldots, \alpha_r$ prirodni brojevi.

Ovakav prikaz broja n zvat ćemo $kanonski\ rastav$ broja n na proste faktore.

Ako je p prost broj i p|ab, onda p|a ili p|b. Općenitije, ako p $|a_1a_2\cdots a_n$, onda p dijeli barem jedan faktor a_i .

Dokaz:

Ako $p \nmid a$, onda je (p,a)=1, pa postoje cijeli brojevi x i y takvi da je ax+py=1.

Ako je p prost broj i p|ab, onda p|a ili p|b. Općenitije, ako p $|a_1a_2\cdots a_n$, onda p dijeli barem jedan faktor a_i .

<u>Dokaz:</u>

Ako $p \nmid a$, onda je (p, a) = 1, pa postoje cijeli brojevi x i y takvi da je ax + py = 1.

Sada je abx + pby = b, pa pošto p dijeli ab, slijedi da p dijeli lijevu stranu, pa dijeli i b.

Ako je p prost broj i p|ab, onda p|a ili p|b. Općenitije, ako p $|a_1a_2\cdots a_n$, onda p dijeli barem jedan faktor a_i .

<u>Dokaz:</u>

Ako $p \nmid a$, onda je (p, a) = 1, pa postoje cijeli brojevi x i y takvi da je ax + py = 1.

Sada je abx + pby = b, pa pošto p dijeli ab, slijedi da p dijeli lijevu stranu, pa dijeli i b.

Općenitiju tvrdnju dokazujemo indukcijom. Pretpostavimo da tvrdnja vrijedi za produkte s manje od n faktora.

Ako je p prost broj i p|ab, onda p|a ili p|b. Općenitije, ako p $|a_1a_2\cdots a_n$, onda p dijeli barem jedan faktor a_i .

<u>Dokaz:</u>

Ako $p \nmid a$, onda je (p, a) = 1, pa postoje cijeli brojevi x i y takvi da je ax + py = 1.

Sada je abx + pby = b, pa pošto p dijeli ab, slijedi da p dijeli lijevu stranu, pa dijeli i b.

Općenitiju tvrdnju dokazujemo indukcijom. Pretpostavimo da tvrdnja vrijedi za produkte s manje od *n* faktora.

Sada ako $p|a_1(a_2\cdots a_n)$, onda $p|a_1$ ili $p|a_2a_3\cdots a_n$.

Ako je p prost broj i p|ab, onda p|a ili p|b. Općenitije, ako p $|a_1a_2\cdots a_n$, onda p dijeli barem jedan faktor a_i .

<u>Dokaz:</u>

Ako $p \nmid a$, onda je (p, a) = 1, pa postoje cijeli brojevi x i y takvi da je ax + py = 1.

Sada je abx + pby = b, pa pošto p dijeli ab, slijedi da p dijeli lijevu stranu, pa dijeli i b.

Općenitiju tvrdnju dokazujemo indukcijom. Pretpostavimo da tvrdnja vrijedi za produkte s manje od n faktora.

Sada ako $p|a_1(a_2\cdots a_n)$, onda $p|a_1$ ili $p|a_2a_3\cdots a_n$.

Ako $p|a_2a_3\cdots a_n$, onda po induktivnoj pretpostavci $p|a_i$ za neki $i=2,\ldots,n$.

Faktorizacija svakog prirodnog broja n>1 na proste faktore je jedinstvena do na poredak prostih faktora.

<u>Dokaz:</u>

Pretpostavimo da n ima dvije različite faktorizacije.

Faktorizacija svakog prirodnog broja n>1 na proste faktore je jedinstvena do na poredak prostih faktora.

<u>Dokaz:</u>

Pretpostavimo da n ima dvije različite faktorizacije.

Dijeleći s prostim brojevima koji su zajednički objema reprezentacijama, dobit ćemo jednakost oblika

$$p_1p_2\cdots p_r=q_1q_2\cdots q_s,$$

gdje su p_i , q_j prosti brojevi, ne nužno različiti, ali takvi da se niti jedan prost broj s lijeve strane ne pojavljuje na desnoj strani, tj. $p_i \neq q_j$ za sve i,j.

Faktorizacija svakog prirodnog broja n>1 na proste faktore je jedinstvena do na poredak prostih faktora.

Dokaz:

Pretpostavimo da n ima dvije različite faktorizacije.

Dijeleći s prostim brojevima koji su zajednički objema reprezentacijama, dobit ćemo jednakost oblika

$$p_1p_2\cdots p_r=q_1q_2\cdots q_s,$$

gdje su p_i , q_j prosti brojevi, ne nužno različiti, ali takvi da se niti jedan prost broj s lijeve strane ne pojavljuje na desnoj strani, tj. $p_i \neq q_j$ za sve i,j.

Međutim, to je nemoguće jer iz $p_1|q_1q_2\cdots q_s$, po prethodnoj Propoziciji, slijedi pa p_1 dijeli barem jedan q_i .

Faktorizacija svakog prirodnog broja n>1 na proste faktore je jedinstvena do na poredak prostih faktora.

Dokaz:

Pretpostavimo da n ima dvije različite faktorizacije.

Dijeleći s prostim brojevima koji su zajednički objema reprezentacijama, dobit ćemo jednakost oblika

$$p_1p_2\cdots p_r=q_1q_2\cdots q_s,$$

gdje su p_i , q_j prosti brojevi, ne nužno različiti, ali takvi da se niti jedan prost broj s lijeve strane ne pojavljuje na desnoj strani, tj. $p_i \neq q_i$ za sve i,j.

Međutim, to je nemoguće jer iz $p_1|q_1q_2\cdots q_s$, po prethodnoj Propoziciji, slijedi pa p_1 dijeli barem jedan q_i .

No, to znači da je $p_1 = q_i$, kontradikcija.

Napomena

Kasnije na kolegiju ćemo vidjeti da analogon Osnovnog teorema aritmetike ne vrijedi za cijele brojeve u (nekim) općenitijim poljima.

Napomena

Kasnije na kolegiju ćemo vidjeti da analogon Osnovnog teorema aritmetike ne vrijedi za cijele brojeve u (nekim) općenitijim poljima.

Za sada, kao primjer nejednoznačne faktorizacije na proste faktore u prstenu $\mathbb{Z}[\sqrt{-6}]=\{a+b\sqrt{-6}:a,b\in\mathbb{Z}\}$ navedimo ove dvije faktorizacije broja 10:

$$10 = 2 \cdot 5 = (2 + \sqrt{-6})(2 - \sqrt{-6}).$$

Napomena

Kasnije na kolegiju ćemo vidjeti da analogon Osnovnog teorema aritmetike ne vrijedi za cijele brojeve u (nekim) općenitijim poljima.

Za sada, kao primjer nejednoznačne faktorizacije na proste faktore u prstenu $\mathbb{Z}[\sqrt{-6}]=\{a+b\sqrt{-6}:a,b\in\mathbb{Z}\}$ navedimo ove dvije faktorizacije broja 10:

$$10 = 2 \cdot 5 = (2 + \sqrt{-6})(2 - \sqrt{-6}).$$

U primjenama Osnovnog teorema aritmetike često ćemo prirodan broj a pisati u obliku $a=\prod_p p^{\alpha(p)}$, gdje je $\alpha(p)\geq 0$ i podrazumijevamo da je $\alpha(p)=0$ za skoro sve proste brojeve p. Ako je a=1, onda je $\alpha(p)=0$ za sve p.

Ako je $a=\prod_{\rho}p^{\alpha(\rho)},\;b=\prod_{\rho}p^{\beta(\rho)},\;c=\prod_{\rho}p^{\gamma(\rho)}$ i ab=c, onda je $\alpha(\rho)+\beta(\rho)=\gamma(\rho)\;{\rm za\;sve}\;\rho.$

Ako je
$$a=\prod_{\rho}p^{\alpha(\rho)},\;b=\prod_{\rho}p^{\beta(\rho)},\;c=\prod_{\rho}p^{\gamma(\rho)}$$
 i $ab=c$, onda je
$$\alpha(\rho)+\beta(\rho)=\gamma(\rho)\;{\rm za\;sve}\;\rho.$$

Dakle, ako a|c, onda je $\alpha(p) \leq \gamma(p)$.

Ako je
$$a=\prod_{\rho}p^{\alpha(\rho)},\;b=\prod_{\rho}p^{\beta(\rho)},\;c=\prod_{\rho}p^{\gamma(\rho)}$$
 i $ab=c$, onda je
$$\alpha(\rho)+\beta(\rho)=\gamma(\rho)\;{\rm za\;sve}\;\rho.$$

Dakle, ako a|c, onda je $\alpha(p) \leq \gamma(p)$.

Obratno, ako je $\alpha(p) \leq \gamma(p)$, onda možemo definirati prirodan broj $b = \prod_p p^{\beta(p)}$ sa $\beta(p) = \gamma(p) - \alpha(p)$. Tada je ab = c, pa a|c.

Ako je $a=\prod_{p}p^{\alpha(p)},\;b=\prod_{p}p^{\beta(p)},\;c=\prod_{p}p^{\gamma(p)}$ i ab=c, onda je $\alpha(p)+\beta(p)=\gamma(p)\;{\sf za\;sve\;}p.$

Dakle, ako a|c, onda je $\alpha(p) \leq \gamma(p)$.

Obratno, ako je $\alpha(p) \leq \gamma(p)$, onda možemo definirati prirodan broj $b = \prod_p p^{\beta(p)}$ sa $\beta(p) = \gamma(p) - \alpha(p)$. Tada je ab = c, pa a|c.

Prema tome, dobili smo da vrijedi

$$a|c \iff \alpha(p) \le \gamma(p), \quad \forall p.$$
 (1)

Kao posljedicu formule (1) dobivamo formulu

$$(a,b) = \prod_{p} p^{\min(\alpha(p),\beta(p))}.$$
 (2)

Neka su a_1, a_2, \ldots, a_n cijeli brojevi različiti od nule. Najmanji prirodan broj c za koji vrijedi da $a_i \mid c$ za sve $i=1,2,\ldots,n$ zove se najmanji zajednički višekratnik i označava s $[a_1,a_2,\ldots,a_n]$.

$$[a, b] = \prod_{p} p^{\max(\alpha(p), \beta(p))}.$$
 (3)

$$[a,b] = \prod p^{\max(\alpha(p),\beta(p))}. \tag{3}$$

$$(a,b)\cdot [a,b]=|ab|$$

$$[a,b] = \prod_{p} p^{\max(\alpha(p),\beta(p))}.$$
 (3)

$$(a,b)\cdot [a,b]=|ab|$$

Dokaz:

Po Osnovnom teoremu aritmetike i ranije dokazanom, dovoljno je provjeriti da za sve realne brojeve x, y vrijedi:

$$\min(x, y) + \max(x, y) = x + y.$$

$$[a, b] = \prod_{p} p^{\max(\alpha(p), \beta(p))}.$$
 (3)

$$(a,b)\cdot [a,b]=|ab|$$

Dokaz:

Po Osnovnom teoremu aritmetike i ranije dokazanom, dovoljno je provjeriti da za sve realne brojeve x, y vrijedi:

$$\min(x, y) + \max(x, y) = x + y.$$

Zaista, ako je $x \le y$, onda je $\min(x, y) + \max(x, y) = x + y$, a ako je x > y, onda je $\min(x, y) + \max(x, y) = y + x = x + y$. \square

Zadatak

Odredite a) [530,820], b) [720,125].

Odmah vidimo da je a potpun kvadrat ako i samo ako su svi eksponenti $\alpha(p)$ parni.

Odmah vidimo da je a potpun kvadrat ako i samo ako su svi eksponenti $\alpha(p)$ parni.

Kažemo da je *a kvadratno slobodan* ako je 1 najveći kvadrat koji dijeli *a*.

Odmah vidimo da je a potpun kvadrat ako i samo ako su svi eksponenti $\alpha(p)$ parni.

Kažemo da je *a kvadratno slobodan* ako je 1 najveći kvadrat koji dijeli *a*.

Stoga je a kvadratno slobodan ako i samo ako su svi eksponenti $\alpha(p)$ jednaki 0 ili 1.

Odmah vidimo da je a potpun kvadrat ako i samo ako su svi eksponenti $\alpha(p)$ parni.

Kažemo da je *a kvadratno slobodan* ako je 1 najveći kvadrat koji dijeli *a*.

Stoga je a kvadratno slobodan ako i samo ako su svi eksponenti $\alpha(p)$ jednaki 0 ili 1.

Ako je p prost, onda je $p^k || a \iff k = \alpha(p)$.

Dokažite da svaki složen broj n ima prosti faktor $p \leq \sqrt{n}$.

Neka je p najmanji djelitelj od n koji je veći od 1.

Dokažite da svaki složen broj n ima prosti faktor $p \leq \sqrt{n}$.

Neka je p najmanji djelitelj od n koji je veći od 1.

Tada je p očito prost i postoji $m \in \mathbb{N}$ takav da je $n = p \cdot m$.

Dokažite da svaki složen broj n ima prosti faktor $p \leq \sqrt{n}$.

Neka je p najmanji djelitelj od n koji je veći od 1.

Tada je p očito prost i postoji $m \in \mathbb{N}$ takav da je $n = p \cdot m$.

Budući da je $m \ge p$, dobivamo da je $n \ge p^2$, pa je $p \le \sqrt{n}$.

Recimo, na primjer, da želimo napraviti tablicu prostih brojeva < 200.

Recimo, na primjer, da želimo napraviti tablicu prostih brojeva ≤ 200 .

Napišemo sve prirodne brojeve od 2 do 200.

Recimo, na primjer, da želimo napraviti tablicu prostih brojeva ≤ 200 .

Napišemo sve prirodne brojeve od 2 do 200.

Prekrižimo sve prave višekratnike broja 2, pa broja 3, pa broja 5.

Recimo, na primjer, da želimo napraviti tablicu prostih brojeva ≤ 200 .

Napišemo sve prirodne brojeve od 2 do 200.

Prekrižimo sve prave višekratnike broja 2, pa broja 3, pa broja 5.

U svakom koraku, prvi neprekriženi broj je prost, te u idućem koraku križamo njegove prave višekratnike (prvi novoprekriženi broj će biti njegov kvadrat, jer su svi manji višekratnici već ranije prekriženi).

Recimo, na primjer, da želimo napraviti tablicu prostih brojeva ≤ 200 .

Napišemo sve prirodne brojeve od 2 do 200.

Prekrižimo sve prave višekratnike broja 2, pa broja 3, pa broja 5.

U svakom koraku, prvi neprekriženi broj je prost, te u idućem koraku križamo njegove prave višekratnike (prvi novoprekriženi broj će biti njegov kvadrat, jer su svi manji višekratnici već ranije prekriženi).

U našem slučaju, nakon križanja višekratnika od 7, 11 i 13, tablica je gotova (jer je $17>\sqrt{200}$).

Skup svih prostih brojeva je beskonačan.

<u>Dokaz:</u>

Pretpostavimo da su p_1, p_2, \ldots, p_k svi prosti brojevi.

Skup svih prostih brojeva je beskonačan.

<u>Dokaz:</u>

Pretpostavimo da su p_1, p_2, \ldots, p_k svi prosti brojevi.

Promotrimo broj

$$n=1+p_1p_2\cdots p_k.$$

Uočimo da n nije djeljiv ni sa p_1 , ni sa p_2 , ..., ni sa p_k .

Skup svih prostih brojeva je beskonačan.

<u>Dokaz:</u>

Pretpostavimo da su p_1, p_2, \ldots, p_k svi prosti brojevi.

Promotrimo broj

$$n=1+p_1p_2\cdots p_k.$$

Uočimo da n nije djeljiv ni sa p_1 , ni sa p_2 , ..., ni sa p_k .

Dakle, svaki prosti faktor p od n je različit od p_1, \ldots, p_k .

Skup svih prostih brojeva je beskonačan.

<u>Dokaz:</u>

Pretpostavimo da su p_1, p_2, \ldots, p_k svi prosti brojevi.

Promotrimo broj

$$n=1+p_1p_2\cdots p_k.$$

Uočimo da n nije djeljiv ni sa p_1 , ni sa p_2 , ..., ni sa p_k .

Dakle, svaki prosti faktor p od n je različit od p_1, \ldots, p_k .

Budući da je n ili prost ili ima prosti faktor, dobili smo prost broj različit od p_1, \ldots, p_k , što je kontradikcija.

Dokazati da za svaki prirodan broj n postoji n uzastopnih složenih brojeva.

Dokaz: To su npr. brojevi

$$(n+1)!+2$$
, $(n+1)!+3$, ..., $(n+1)!+n$, $(n+1)!+n+1$, jer je $(n+1)!+j$ djeljivo sa j za $j=2,3,\ldots,n+1$.

Dokazati da ne postoji polinom f(x) s cjelobrojnim koeficijentima, stupnja ≥ 1 , takav da je f(n) prost za sve $n \in \mathbb{N}$.

<u>Dokaz:</u> Pretpostavimo suprotno. Neka je f(1) = p, gdje je p prost broj.

Dokazati da ne postoji polinom f(x) s cjelobrojnim koeficijentima, stupnja ≥ 1 , takav da je f(n) prost za sve $n \in \mathbb{N}$.

<u>Dokaz:</u> Pretpostavimo suprotno. Neka je f(1) = p, gdje je p prost broj.

Primjetimo da je f(1+kp)-f(1) djeljivo sa (1+kp)-1=kp. To vrijedi jer x-y dijeli x^m-y^m pa onda x-y dijeli svaki monom od f(x)-f(y), a time i sam f(x)-f(y). Uvrštavanjem x=1+kp i y=1 dobivamo tvrdnju.

Dokazati da ne postoji polinom f(x) s cjelobrojnim koeficijentima, stupnja ≥ 1 , takav da je f(n) prost za sve $n \in \mathbb{N}$.

<u>Dokaz:</u> Pretpostavimo suprotno. Neka je f(1) = p, gdje je p prost broj.

Primjetimo da je f(1+kp)-f(1) djeljivo sa (1+kp)-1=kp. To vrijedi jer x-y dijeli x^m-y^m pa onda x-y dijeli svaki monom od f(x)-f(y), a time i sam f(x)-f(y). Uvrštavanjem x=1+kp i y=1 dobivamo tvrdnju.

Slijedi da p|f(1+kp), za svaki $k \in \mathbb{N}$.

Dokazati da ne postoji polinom f(x) s cjelobrojnim koeficijentima, stupnja ≥ 1 , takav da je f(n) prost za sve $n \in \mathbb{N}$.

<u>Dokaz:</u> Pretpostavimo suprotno. Neka je f(1) = p, gdje je p prost broj.

Primjetimo da je f(1+kp)-f(1) djeljivo sa (1+kp)-1=kp. To vrijedi jer x-y dijeli x^m-y^m pa onda x-y dijeli svaki monom od f(x)-f(y), a time i sam f(x)-f(y). Uvrštavanjem x=1+kp i y=1 dobivamo tvrdnju.

Slijedi da p|f(1+kp), za svaki $k \in \mathbb{N}$.

Međutim, po pretpostavci f(1+kp)je prost, pa mora biti $f(1+kp)=p, \ \forall k\in\mathbb{N}.$

Dokazati da ne postoji polinom f(x) s cjelobrojnim koeficijentima, stupnja ≥ 1 , takav da je f(n) prost za sve $n \in \mathbb{N}$.

<u>Dokaz:</u> Pretpostavimo suprotno. Neka je f(1) = p, gdje je p prost broj.

Primjetimo da je f(1+kp)-f(1) djeljivo sa (1+kp)-1=kp. To vrijedi jer x-y dijeli x^m-y^m pa onda x-y dijeli svaki monom od f(x)-f(y), a time i sam f(x)-f(y). Uvrštavanjem x=1+kp i y=1 dobivamo tvrdnju.

Slijedi da p|f(1+kp), za svaki $k \in \mathbb{N}$.

Međutim, po pretpostavci f(1+kp)je prost, pa mora biti $f(1+kp)=p, \ \forall k\in\mathbb{N}.$

Budući da polinom f(x) - p ima beskonačno mnogo nultočaka, on mora biti nulpolinom, pa je f(x) = p, što je u suprotnosti s pretpostavkom da je st f > 1.

Kongruencije

Teoriju kongruencija uveo je u svom djelu *Disquisitiones* Arithmeticae iz 1801. godine Carl Friedrich Gauss (1777-1855), jedan od najvećih matematičara svih vremena. On je također uveo i oznaku za kongruenciju koju i danas rabimo.

Kongruencije

Teoriju kongruencija uveo je u svom djelu *Disquisitiones Arithmeticae* iz 1801. godine Carl Friedrich Gauss (1777-1855), jedan od najvećih matematičara svih vremena. On je također uveo i oznaku za kongruenciju koju i danas rabimo.

Definicija

Ako cijeli broj $m \neq 0$ dijeli razliku a-b, onda kažemo da je a kongruentan b modulo m i pišemo $a \equiv b \pmod{m}$. U protivnom, kažemo da a nije kongruentan b modulo m i pišemo $a \not\equiv b \pmod{m}$.

Kongruencije

Teoriju kongruencija uveo je u svom djelu *Disquisitiones* Arithmeticae iz 1801. godine Carl Friedrich Gauss (1777-1855), jedan od najvećih matematičara svih vremena. On je također uveo i oznaku za kongruenciju koju i danas rabimo.

Definicija

Ako cijeli broj $m \neq 0$ dijeli razliku a-b, onda kažemo da je a kongruentan b modulo m i pišemo $a \equiv b \pmod{m}$. U protivnom, kažemo da a nije kongruentan b modulo m i pišemo $a \not\equiv b \pmod{m}$.

Budući da je a-b djeljivo sm ako i samo ako je djeljivo s-m, bez smanjenja općenitosti možemo se usredotočiti na pozitivne module i kod nas će ubuduće modulm biti prirodan broj. Kongruencije imaju mnoga svojstva zajednička sjednakostima.

Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Dokaz: Treba provjeriti refleksivnost, simetričnost i tranzitivnost.

Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Dokaz: Treba provjeriti refleksivnost, simetričnost i tranzitivnost.

(1) |z|m|0 slijedi $a \equiv a \pmod{m}$.

Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Dokaz: Treba provjeriti refleksivnost, simetričnost i tranzitivnost.

- (1) Iz m|0 slijedi $a \equiv a \pmod{m}$.
- (2) Ako je $a \equiv b \pmod m$, onda postoji $k \in \mathbb{Z}$ takav a-b=mk. Sada je $b-a=m\cdot (-k)$, pa je $b \equiv a \pmod m$.

Relacija "biti kongruentan modulo m" je relacija ekvivalencije na skupu \mathbb{Z} .

Dokaz: Treba provjeriti refleksivnost, simetričnost i tranzitivnost.

- (1) Iz m|0 slijedi $a \equiv a \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$, onda postoji $k \in \mathbb{Z}$ takav a b = mk. Sada je $b a = m \cdot (-k)$, pa je $b \equiv a \pmod{m}$.
- (3) Iz $a \equiv b \pmod{m}$ i $b \equiv c \pmod{m}$ slijedi da postoje $k, l \in \mathbb{Z}$ takvi da je a b = mk i b c = ml. Zbrajanjem dobivamo a c = m(k + l), što povlači $a \equiv c \pmod{m}$.

Neka su a, b, c, d cijeli brojevi.

(1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a - c \equiv b - d \pmod{m}$, $ac \equiv bd \pmod{m}$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, onda je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, onda je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, onda je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz: (1) Neka je a - b = mk i c - d = ml.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, onda je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz: (1) Neka je a-b=mk i c-d=ml. Tada je (a+c)-(b+d)=m(k+l) i (a-c)-(b-d)=m(k-l), pa je $a+c\equiv b+d\pmod m$ i $a-c\equiv b-d\pmod m$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je $a \equiv b \pmod{m}$, onda je $ac \equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz: (1) Neka je a-b=mk i c-d=ml. Tada je (a+c)-(b+d)=m(k+l) i (a-c)-(b-d)=m(k-l), pa je $a+c\equiv b+d\pmod m$ i $a-c\equiv b-d\pmod m$. Zbog ac-bd=a(c-d)+d(a-b)=m(al+dk) slijedi da je $ac\equiv bd\pmod m$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je a $\equiv b \pmod{m}$, onda je ac $\equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz: (1) Neka je a-b=mk i c-d=ml. Tada je (a+c)-(b+d)=m(k+l) i (a-c)-(b-d)=m(k-l), pa je $a+c\equiv b+d\pmod m$ i $a-c\equiv b-d\pmod m$. Zbog ac-bd=a(c-d)+d(a-b)=m(al+dk) slijedi da je $ac\equiv bd\pmod m$.

(2) Neka je m = de. Tada iz a - b = mk slijedi $a - b = d \cdot (ek)$, pa je $a \equiv b \pmod{d}$.

Neka su a, b, c, d cijeli brojevi.

- (1) Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, onda je $a + c \equiv b + d \pmod{m}$, $a c \equiv b d \pmod{m}$, $ac \equiv bd \pmod{m}$.
- (2) Ako je $a \equiv b \pmod{m}$ i $d \mid m$, onda je $a \equiv b \pmod{d}$.
- (3) Ako je a $\equiv b \pmod{m}$, onda je ac $\equiv bc \pmod{mc}$ za svaki $c \neq 0$.

Dokaz: (1) Neka je a-b=mk i c-d=ml. Tada je (a+c)-(b+d)=m(k+l) i (a-c)-(b-d)=m(k-l), pa je $a+c\equiv b+d\pmod m$ i $a-c\equiv b-d\pmod m$. Zbog ac-bd=a(c-d)+d(a-b)=m(al+dk) slijedi da je $ac\equiv bd\pmod m$.

- (2) Neka je m = de. Tada iz a b = mk slijedi $a b = d \cdot (ek)$, pa je $a \equiv b \pmod{d}$.
- (3) Iz a b = mk slijedi $ac bc = (mc) \cdot k$, pa je $ac \equiv bc \pmod{mc}$.

Neka je f polinom s cjelobrojnim koeficijentima. Ako je $a \equiv b \pmod{m}$, onda je $f(a) \equiv f(b) \pmod{m}$.

Neka je f polinom s cjelobrojnim koeficijentima. Ako je a $\equiv b \pmod{m}$, onda je $f(a) \equiv f(b) \pmod{m}$.

Dokaz: Neka je $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$, gdje su $c_i \in \mathbb{Z}$.

Neka je f polinom s cjelobrojnim koeficijentima. Ako je a $\equiv b \pmod{m}$, onda je $f(a) \equiv f(b) \pmod{m}$.

Dokaz: Neka je $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$, gdje su $c_i \in \mathbb{Z}$.

Budući da je $a \equiv b \pmod m$, uzastopnom primjenom prethodne Propozicije dobivamo: $a^2 \equiv b^2 \pmod m$, $a^3 \equiv b^3 \pmod m$, ..., $a^n \equiv b^n \pmod m$.

Neka je f polinom s cjelobrojnim koeficijentima. Ako je $a \equiv b \pmod{m}$, onda je $f(a) \equiv f(b) \pmod{m}$.

Dokaz: Neka je $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$, gdje su $c_i \in \mathbb{Z}$.

Budući da je $a \equiv b \pmod m$, uzastopnom primjenom prethodne Propozicije dobivamo: $a^2 \equiv b^2 \pmod m$, $a^3 \equiv b^3 \pmod m$, ..., $a^n \equiv b^n \pmod m$.

Tada je $c_i a^i \equiv c_i b^i \pmod{m}$ i konačno:

$$c_n a^n + c_{n-1} a^{n-1} + \dots + c_0 \equiv c_n b^n + c_{n-1} b^{n-1} + \dots + c_0 \pmod{m}.$$

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Dokaz: Ako je $ax \equiv ay \pmod{m}$, onda postoji $z \in \mathbb{Z}$ takav da je ay - ax = mz.

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Dokaz: Ako je $ax \equiv ay \pmod{m}$, onda postoji $z \in \mathbb{Z}$ takav da je ay - ax = mz.

Sada imamo: $\frac{a}{(a,m)}(y-x)=\frac{m}{(a,m)}z$, tj. $\frac{m}{(a,m)}$ dijeli $\frac{a}{(a,m)}(y-x)$.

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Dokaz: Ako je $ax \equiv ay \pmod{m}$, onda postoji $z \in \mathbb{Z}$ takav da je ay - ax = mz.

Sada imamo: $\frac{a}{(a,m)}(y-x) = \frac{m}{(a,m)}z$, tj. $\frac{m}{(a,m)}$ dijeli $\frac{a}{(a,m)}(y-x)$.

No, brojevi $\frac{a}{(a,m)}$ i $\frac{m}{(a,m)}$ su relativno prosti, pa zaključujemo da $\frac{m}{(a,m)}$ dijeli y-x, tj. da je $x\equiv y\pmod{\frac{m}{(a,m)}}$.

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Dokaz: Ako je $ax \equiv ay \pmod{m}$, onda postoji $z \in \mathbb{Z}$ takav da je ay - ax = mz.

Sada imamo: $\frac{a}{(a,m)}(y-x) = \frac{m}{(a,m)}z$, tj. $\frac{m}{(a,m)}$ dijeli $\frac{a}{(a,m)}(y-x)$.

No, brojevi $\frac{a}{(a,m)}$ i $\frac{m}{(a,m)}$ su relativno prosti, pa zaključujemo da $\frac{m}{(a,m)}$ dijeli y-x, tj. da je $x\equiv y\pmod{\frac{m}{(a,m)}}$.

Obrnuto, ako je $x \equiv y \pmod{\frac{m}{(a,m)}}$, onda po prethodno dokazanoj Propoziciji dobivamo $ax \equiv ay \pmod{\frac{am}{(a,m)}}$.

Vrijedi: $ax \equiv ay \pmod{m}$ ako i samo ako $x \equiv y \pmod{\frac{m}{(a,m)}}$. Specijalno, ako je $ax \equiv ay \pmod{m}$ i (a,m) = 1, onda je $x \equiv y \pmod{m}$.

Dokaz: Ako je $ax \equiv ay \pmod{m}$, onda postoji $z \in \mathbb{Z}$ takav da je ay - ax = mz.

Sada imamo: $\frac{a}{(a,m)}(y-x) = \frac{m}{(a,m)}z$, tj. $\frac{m}{(a,m)}$ dijeli $\frac{a}{(a,m)}(y-x)$.

No, brojevi $\frac{a}{(a,m)}$ i $\frac{m}{(a,m)}$ su relativno prosti, pa zaključujemo da $\frac{m}{(a,m)}$ dijeli y-x, tj. da je $x\equiv y\pmod{\frac{m}{(a,m)}}$.

Obrnuto, ako je $x \equiv y \pmod{\frac{m}{(a,m)}}$, onda po prethodno dokazanoj Propoziciji dobivamo $ax \equiv ay \pmod{\frac{am}{(a,m)}}$.

No, (a, m) je djelitelj od a, pa dobivamo $ax \equiv ay \pmod{m}$.

Definicija

Skup $\{x_1, \dots, x_m\}$ se zove potpuni sustav ostataka modulo m ako za svaki $y \in \mathbb{Z}$ postoji točno jedan x_j takav da je $y \equiv x_j \pmod{m}$. Drugim riječima, potpuni sustav ostataka dobivamo tako da iz svake klase ekvivalencije modulo m uzmemo po jedan član.

Definicija

Skup $\{x_1, \dots, x_m\}$ se zove potpuni sustav ostataka modulo m ako za svaki $y \in \mathbb{Z}$ postoji točno jedan x_j takav da je $y \equiv x_j \pmod{m}$. Drugim riječima, potpuni sustav ostataka dobivamo tako da iz svake klase ekvivalencije modulo m uzmemo po jedan član.

Očito je da postoji beskonačno mnogo potpunih sustava ostataka modulo *m*. Jedan od njih je tzv. sustav najmanjih nenegativnih ostataka:

$$\{0, 1, \ldots, m-1\}.$$

Definicija

Skup $\{x_1, \dots, x_m\}$ se zove potpuni sustav ostataka modulo m ako za svaki $y \in \mathbb{Z}$ postoji točno jedan x_j takav da je $y \equiv x_j \pmod{m}$. Drugim riječima, potpuni sustav ostataka dobivamo tako da iz svake klase ekvivalencije modulo m uzmemo po jedan član.

Očito je da postoji beskonačno mnogo potpunih sustava ostataka modulo *m*. Jedan od njih je tzv. sustav najmanjih nenegativnih ostataka:

$$\{0, 1, \ldots, m-1\}.$$

Pored njega, često se koristi i sustav apsolutno najmanjih ostataka. Ako je m neparan broj, apsolutno najmanji ostatci su

$$-\frac{m-1}{2}$$
, $-\frac{m-3}{2}$, ..., -1 , 0, 1, ..., $\frac{m-3}{2}$, $\frac{m-1}{2}$,

a ako je *m* paran, onda su to

$$-\frac{m-2}{2}$$
, $-\frac{m-4}{2}$, ..., -1 , 0, 1, ..., $\frac{m-2}{2}$, $\frac{m}{2}$.

Neka je $\{x_1, \ldots, x_m\}$ potpuni sustav ostataka modulo m, te neka je (a, m) = 1. Tada je $\{ax_1, \ldots, ax_m\}$ također potpuni sustav ostataka modulo m.

Dokaz: Dovoljno je dokazati da je $ax_i \not\equiv ax_i \pmod{m}$ za $i \neq j$.

Neka je $\{x_1,\ldots,x_m\}$ potpuni sustav ostataka modulo m, te neka je (a,m)=1. Tada je $\{ax_1,\ldots,ax_m\}$ također potpuni sustav ostataka modulo m.

Dokaz: Dovoljno je dokazati da je $ax_i \not\equiv ax_j \pmod{m}$ za $i \neq j$.

Pretpostavimo da je $ax_i \equiv ax_j \pmod m$. Tada ranije dokazani Teorem povlači da je $x_i \equiv x_j \pmod m$, tj. i=j.

Neka je f(x) polinom s cjelobrojnim koeficijentima. Rješenje kongruencije $f(x) \equiv 0 \pmod{m}$ je svaki cijeli broj x koji je zadovoljava.

Neka je f(x) polinom s cjelobrojnim koeficijentima. Rješenje kongruencije $f(x) \equiv 0 \pmod{m}$ je svaki cijeli broj x koji je zadovoljava.

Ako je x_1 neko rješenje ove kongruencije, a $x_2 \equiv x_1 \pmod m$, onda je x_2 također rješenje.

Neka je f(x) polinom s cjelobrojnim koeficijentima. Rješenje kongruencije $f(x) \equiv 0 \pmod{m}$ je svaki cijeli broj x koji je zadovoljava.

Ako je x_1 neko rješenje ove kongruencije, a $x_2 \equiv x_1 \pmod m$, onda je x_2 također rješenje.

Dva rješenja x i x' smatramo ekvivalentnim ako je $x \equiv x' \pmod{m}$. Broj rješenja kongruencije je broj neekvivalentnih rješenja.

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Dokaz: Ako kongruencija $ax \equiv b \pmod{m}$ ima rješenja, onda postoji $y \in \mathbb{Z}$ takav da je ax - my = b.

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Dokaz: Ako kongruencija $ax \equiv b \pmod m$ ima rješenja, onda postoji $y \in \mathbb{Z}$ takav da je ax - my = b.

Odavde je očito da (a, m)|b.

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Dokaz: Ako kongruencija $ax \equiv b \pmod{m}$ ima rješenja, onda postoji $y \in \mathbb{Z}$ takav da je ax - my = b.

Odavde je očito da (a, m)|b.

Pretpostavimo sada da d = (a, m) dijeli b.

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Dokaz: Ako kongruencija $ax \equiv b \pmod{m}$ ima rješenja, onda postoji $y \in \mathbb{Z}$ takav da je ax - my = b.

Odavde je očito da (a, m)|b.

Pretpostavimo sada da d = (a, m) dijeli b.

Stavimo $a' = \frac{a}{d}$, $b' = \frac{b}{d}$, $m' = \frac{m}{d}$. Sada trebamo riješiti kongruenciju $a'x \equiv b' \pmod{m'}$.

Neka su a i m prirodni, te b cijeli broj. Kongruencija ax \equiv b (mod m) ima rješenja ako i samo ako d = (a, m) dijeli b. Ako je ovaj uvjet zadovoljen, onda gornja kongruencija ima točno d rješenja modulo m.

Dokaz: Ako kongruencija $ax \equiv b \pmod{m}$ ima rješenja, onda postoji $y \in \mathbb{Z}$ takav da je ax - my = b.

Odavde je očito da (a, m)|b.

Pretpostavimo sada da d = (a, m) dijeli b.

Stavimo $a' = \frac{a}{d}$, $b' = \frac{b}{d}$, $m' = \frac{m}{d}$. Sada trebamo riješiti kongruenciju $a'x \equiv b' \pmod{m'}$.

No, ona ima točno jedno rješenje modulo m'. Zaista, budući da je (a', m') = 1 kad x prolazi potpunim sustavom ostataka modulo m' i a'x prolazi tim istim sustavom, tj. svaki ostatak modulo m' (pa tako i b') se dobiva točno za jedan x iz potpunog sustava ostataka modulo m'.

Jasno je da ako je x' neko rješenje od $a'x' \equiv b' \pmod{m'}$, onda su sva rješenja od $ax \equiv b \pmod{m}$ u cijelim brojevima dana sa x = x' + nm', za $n \in \mathbb{Z}$, a sva međusobno neekvivalentna rješenja sa x = x' + nm', gdje je $n = 0, 1, \ldots, d-1$.

Jasno je da ako je x' neko rješenje od $a'x' \equiv b' \pmod{m'}$, onda su sva rješenja od $ax \equiv b \pmod{m}$ u cijelim brojevima dana sa x = x' + nm', za $n \in \mathbb{Z}$, a sva međusobno neekvivalentna rješenja sa x = x' + nm', gdje je $n = 0, 1, \ldots, d-1$.

Dakle, ako d dijeli b, onda kongruencija $ax \equiv b \pmod{m}$ ima točno d rješenja modulo m.

Iz prethodnog Teorema slijedi da ako je p prost broj i a nije djeljiv s p, onda kongruencija $ax \equiv b \pmod{p}$ uvijek ima rješenje i to rješenje je jedinstveno.

Iz prethodnog Teorema slijedi da ako je p prost broj i a nije djeljiv s p, onda kongruencija $ax \equiv b \pmod{p}$ uvijek ima rješenje i to rješenje je jedinstveno.

Ovo pak povlači da skup ostataka $\{0,1,\ldots,p-1\}$ pri dijeljenju sa p, uz zbrajanje i množenje \pmod{p} , čini polje.

Iz prethodnog Teorema slijedi da ako je p prost broj i a nije djeljiv s p, onda kongruencija $ax \equiv b \pmod{p}$ uvijek ima rješenje i to rješenje je jedinstveno.

Ovo pak povlači da skup ostataka $\{0, 1, ..., p-1\}$ pri dijeljenju sa p, uz zbrajanje i množenje \pmod{p} , čini polje.

To polje se obično označava sa \mathbb{Z}_p ili \mathbb{F}_p .