Problem 1

(a).

It is coercive.

By the fundamental inequality we know that $x_1x_2 \ge -(x_1^2 + x_2^2)/2$, as is shown in the Hint. Then by substituting x_1x_2 with $-(x_1^2 + x_2^2)/2$ we know that $f(\mathbf{x}) \ge \frac{3}{2}x_1^2 + \frac{1}{2}x_2^2 - 3x_1 - 5x_2$, which can be simplified as $f(\mathbf{x}) \ge \frac{3}{2}(x_1 - 1)^2 + \frac{1}{2}(x_2 - 5)^2 - 14$. In this form it's obvious that as $||\mathbf{x}|| \to \infty$, $f(\mathbf{x}) \to +\infty$. Thus $f(\mathbf{x})$ is coercive.

(b).

Minimum is -44/7.

Maximum does not exist.

Since $f(\boldsymbol{x})$ is coercive, the maximum does not exist. By the continuity of f we know that minimum must exist. Then we take the $\nabla f(\boldsymbol{x})^T$, in this case $(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2})$. By letting $\nabla f(\boldsymbol{x})^T = \mathbf{0}$ and solving the equation we get $(x_1, x_2) = (1/7, 17/7)$. We still need to calculate the $Hessian\ Matrix$ which in this case is $H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix}$, then by solving the second

derivative we can see that $H = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$, then det(H) = 7 > 0, which tells us that (1/7, 17/7) actually is the minimum point of $f(\boldsymbol{x})$. By substituting (x_1, x_2) with (1/7, 17/7) we get the minimum value -44/7.

Problem 2

(a).

It does not have a global minimum.

We can prove this by contradiction. Assume it does have a global minimum, denoted by $f(\mathbf{w}_*)$, we will discuss it in two cases.

1. \mathbf{w}_* itself satisfies that $y_i \mathbf{x}_i^T \mathbf{w}_* > 0$, $\forall i = 1, 2, ..., m$. In this case simply take $2\mathbf{w}_*$, it's easy to see that $y_i \mathbf{x}_i^T 2\mathbf{w}_* = 2y_i \mathbf{x}_i^T \mathbf{w}_* > y_i \mathbf{x}_i^T \mathbf{w}_* > 0$, $\forall i = 1, 2, ..., m$. Since $log(1 + e^{-z_i})$ where $z_i = y_i \mathbf{x}_i^T \mathbf{w}$ is monotonically decreasing with z_i , $f(2\mathbf{w}_*)$ must be smaller than $f(\mathbf{w}_*)$. This contradicts our assumption that $f(\mathbf{w}_*)$ is the global minimum. 2. $\exists i \text{ such that } y_i \boldsymbol{x_i^T} \boldsymbol{w_*} \leq 0.$

Now we must use $f(\boldsymbol{w_0})$. Since $y_i \boldsymbol{x_i^T w_0} > 0$, $\forall i = 1, 2, ..., m$, for those i such that $y_i \boldsymbol{x_i^T w_*} > 0$, it's easy to find an $\alpha > 0$ which makes $\alpha y_i \boldsymbol{x_i^T w_0} > y_i \boldsymbol{x_i^T w_*} > 0$. And note that this α also satisfies that $\alpha y_i \boldsymbol{x_i^T w_0} > 0 \ge y_i \boldsymbol{x_i^T w_*}$ for those i such that $y_i \boldsymbol{x_i^T w_*} \le 0$. This means that $\alpha y_i \boldsymbol{x_i^T w_0} > y_i \boldsymbol{x_i^T w_*}$, $\forall i = 1, 2, ..., m$. Then by the monotonicity again $f(\alpha \boldsymbol{w_0}) < f(\boldsymbol{w_*})$. This also contradicts our assumption.

To summarize, f does not have a global minimum.

(b).

i)

Since there exists an $i_0 = 1, 2, ..., m$ such that $y_{i_0} \boldsymbol{x}_{i_0}^T \boldsymbol{w} < 0$ for any \boldsymbol{w} and $h(\boldsymbol{w})$ is the maximum of $-y_i \boldsymbol{x}_i^T \boldsymbol{w}$ for $1 \le i \le m$, the definition of $h(\boldsymbol{w})$ itself satisfies that $h(\boldsymbol{w}) > 0$ for any \boldsymbol{w} . And it's obvious that $log(1 + e^z) > log(e^z) = z$ for z > 0. For any \boldsymbol{w} , let z_i denote $\max_{1 \le i \le m} -y_i \boldsymbol{x}_i^T \boldsymbol{w}$. Then $h(\boldsymbol{w}) = z_i > 0$. Then $f(\boldsymbol{w}) > log(1 + e^{z_i}) > z_i = h(\boldsymbol{w})$.

ii)

It's obvious that S is both bounded and closed, thus in our problem it is compact. And this problem allows us to assume that h is continuous. Then by Extreme Value Theorem $h(\boldsymbol{w})$ has a global minimum $\boldsymbol{w_0}$ on S.

iii)

For any \boldsymbol{w} , its obvious that $\frac{\boldsymbol{w}}{||\boldsymbol{w}||} \in S$, where S is the set defined in \boldsymbol{ii}). Then by definition $h(\frac{\boldsymbol{w}}{||\boldsymbol{w}||}) \geq C$. Yet $h(\frac{\boldsymbol{w}}{||\boldsymbol{w}||})$ is simply $\frac{h(\boldsymbol{w})}{||\boldsymbol{w}||}$, thus $h(\boldsymbol{w}) \geq C||\boldsymbol{w}||$ for any \boldsymbol{w} .

iv)

From *i*). and *iii*). we know $f(w) \ge C||w||$ for any w, thus $f(w) \to +\infty$ as $w \to \infty$. Thus f is coercive, which means it has a global minimum.

(c).

This question requires us to calculate the gradient of $f(\boldsymbol{w})$, we can calculate it directly. We write

$$\sum_{i=1}^{m} log(1 + e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}})$$

as

$$\sum_{i=1}^{m} log(1 + e^{-y_i \sum_{j=1}^{n} x_{ij} w_j})$$

then we take the partial derivative of $w_k, k = 1, 2, \dots, n$.

$$\frac{\partial f}{\partial w_k} = \sum_{i=1}^m \frac{-y_i x_{ik} e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}}}{1 + e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}}}$$

Finally we get

$$\frac{\partial f}{\partial \boldsymbol{w}} = \sum_{i=1}^{m} \frac{-y_i \boldsymbol{x_i} e^{-y_i \boldsymbol{x_i}^T \boldsymbol{w}}}{1 + e^{-y_i \boldsymbol{x_i}^T \boldsymbol{w}}}$$

or equivalently

$$\nabla f(\boldsymbol{w}) = (\sum_{i=1}^{m} \frac{-y_i \boldsymbol{x_i} e^{-y_i \boldsymbol{x_i}^T \boldsymbol{w}}}{1 + e^{-y_i \boldsymbol{x_i}^T \boldsymbol{w}}})^T$$

Problem 3

(a).

The first-order Taylor Expansion with Lagrange remainder for univariate function g(s) at point a is $g(a+s) = g(a) + g'(a)s + \frac{1}{2}g''(a+ts)s^2$ for some $t \in (0,1)$. If we apply this function at point 0 we get $g(s) = g(0) + g'(0)s + \frac{1}{2}g''(ts)s^2$. Let $f(\boldsymbol{x}+s\boldsymbol{\hat{d}}) = g(s)$ where $\boldsymbol{\hat{d}} = \boldsymbol{d}/||\boldsymbol{d}||$. By applying the univariate Taylor Expansion to it we have $f(\boldsymbol{x}+s\boldsymbol{\hat{d}}) = g(0) + g'(0)s + \frac{1}{2}g''(ts)s^2$. g(0) is simply $f(\boldsymbol{x})$. And by applying the chain rule we derive that $g'(0) = \nabla f(\boldsymbol{x})^T \boldsymbol{\hat{d}}$, $g''(ts) = \boldsymbol{\hat{d}}^T \nabla^2 f(\boldsymbol{x} + ts\boldsymbol{\hat{d}}) \boldsymbol{\hat{d}}$. Thus $f(\boldsymbol{x} + s\boldsymbol{\hat{d}}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{\hat{d}} s + \frac{1}{2}\boldsymbol{\hat{d}}^T \nabla^2 f(\boldsymbol{x} + ts\boldsymbol{\hat{d}}) \boldsymbol{\hat{d}} s^2$. Let $s = ||\boldsymbol{d}||$ we get $f(\boldsymbol{x} + \boldsymbol{d}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{d} + \frac{1}{2}\boldsymbol{d}^T \nabla^2 f(\boldsymbol{x} + ts\boldsymbol{d}) \boldsymbol{d}$ where $t \in (0,1)$.

(b).

If we take the derivative of $\nabla f(\boldsymbol{x}+t\boldsymbol{d})$ treating t as the variable, by Chain rule we get $\nabla^2 f(\boldsymbol{x}+t\boldsymbol{d})\boldsymbol{d}$. Thus the integral $\int_0^1 \nabla^2 f(\boldsymbol{x}+t\boldsymbol{d})\boldsymbol{d}$ dt is simply $\nabla f(\boldsymbol{x}+t\boldsymbol{d})|_0^1 = \nabla f(\boldsymbol{x}+t\boldsymbol{d}) - \nabla f(\boldsymbol{x})$, thus $\nabla f(\boldsymbol{x}+t\boldsymbol{d}) = \nabla f(\boldsymbol{x}) + \int_0^1 \nabla^2 f(\boldsymbol{x}+t\boldsymbol{d})\boldsymbol{d}$ dt.

Problem 4

We solve this problem by calculating the eigenvalues of the matrices.

The eigenvalues of A are $\lambda_1 = 8, \lambda_2 = 2, \lambda_3 = 5$. Thus A is positive definite.

The eigenvalues of B are $\lambda_1=3.656, \lambda_2=-3.233, \lambda_3=-0.423$. Thus B is indefinite.

The eigenvalues of C are $\lambda_1 = 3, \lambda_2 = 3, \lambda_3 = 0$. Thus C is positive semidefinite.