МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра вычислительной техники

Отчет по лабораторной работе №8 по дисциплине «Элементарная база цифровых систем»

Тема: ПРОЕКТИРОВАНИЕ КОНЕЧНЫХ АВТОМАТОВ Вариант 5

Соболев М.С.

Дубенков С.А

Степовик В.С.

Ельчанинов М.Н.

Студенты гр. 9308

Преподаватель

Цель работы — получить практические навыки в проектировании автомата на основе логических элементов с использованием триггеров заданного типа.

Задание на работу

Спроектировать автомат, реализующий заданный алгоритм функционирования.

Вариант 5: схема микропрограммы: а, автомат: Мили, триггер: D

Рисунок 1. Схема микропрограммы из 5 варианта **Ход работы**

Комбинационный анализ

Разметка схемы микропрограммы:

Рисунок 2. Разметка схемы микропрограммы Состояния автомата закодированы таким образом: b0=00, b1=01, b2=11. Структурная таблица:

Исходное			Условие	Состояние перехода (t+1)					Функции	
состояние (t)									возбуждения	
Метка	Q1	Q0		Метка	Q1	Q0	y1	y2	D1	D0
b0	0	0	~x1	b1	0	1	1	1	0	1
			x1x2	b2	1	1	0	0	1	1
			x1~x2	b2	1	1	1	0	1	1
b1	0	1	x1	b0	0	0	0	0	0	0
			~x1	b1	0	1	1	1	0	1
b2	1	1	1	b0	0	0	0	1	0	0

Сам комбинационный анализ

Рисунок 3. Комбинационный анализ

Функции возбуждения триггеров:

$$D1 = Q1 \sim Q0 + \sim Q0 x1$$

$$D0 = \sim Q0 + \sim Q1 \sim x1$$

Функции выходов для автомата Мили:

$$y1 = \sim Q0 + \sim Q1 \sim x1$$

$$y2 = Q1 + \sim x1$$

Разработка функциональной схемы алгоритма

Рисунок 4. Функциональная схема

Рисунок 5. Функциональная и временная диаграммы

Описание процесса макетирования

Макетное моделирование для многофункционального регистра на базе Dтриггеров.

Рисунок 6. Распиновка для макетного моделирования

Вывод

В ходе выполнения лабораторной работы были исследованы особенности проектирования регистров конечного автомата Мили на базе D-триггеров, закреплены навыки синтеза и экспериментального исследования узлов в среде Quartus II. В ходе работы были построены функциональные и временные диаграммы, отражающие работу регистров, проведена «распиновка» для макетного моделирования регистров и спроектированы указанные в задании регистры.