《微积分A1》第五讲

教师 杨利军

清华大学数学科学系

2020年09月27日

回忆 Cauchy 序列和 Cauchy 收敛准则

Definition

定义: 序列 $\{a_n\}$ 称为 Cauchy 序列或基本序列, 如果对任意 $\varepsilon>0$, 存在正整数 N, 使得 $|a_n-a_m|<\varepsilon$, $\forall n,m\geq N$, 或者 $|a_n-a_{n+p}|<\varepsilon$, $\forall n\geq N$, $\forall p\geq 1$.

Theorem

<u>定理</u> [Cauchy 收敛准则]:序列 {a_n}收敛,当且仅当序列 {a_n}为 Cauchy 序列.

Cauchy 收敛准则的优点:判断序列的收敛性,无需事先知道序列的极限值.

关于实数完备性总结

总结: 以下公理和定理反映了实数完备(连续)性.

完备(连续)性公理,确界存在定理,单调有界定理,区间套定理,

B-W 定理, Cauchy 收敛准则, 有限覆盖定理(尚未介绍).

可以证明以上七个定理和公理相互等价. 到目前为止, 我们已证明了如下蕴含关系:

完备(连续)性定理 \iff 确界存在定理 \Rightarrow 单调有界定理 \Rightarrow 区间套定理 \Rightarrow B-W 定理 \Rightarrow Cauchy 收敛准则.

Cauchy 收敛准则的应用, 例一

例一: 记 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, 证明序列 $\{a_n\}$ 不收敛. 证: 反证. 假设序列 $\{a_n\}$ 收敛, 则序列 $\{a_n\}$ 是Cauchy 序列. 于是对于 $\varepsilon = \frac{1}{2}$, 存在正整数 N, 使得 $|a_{n+p} - a_n| < \frac{1}{2}$, $\forall n \geq N$, $\forall p \geq 1$. 取 $p = n \geq N$, 则

$$|a_{2n}-a_n|=rac{1}{n+1}+rac{1}{n+2}+\cdots+rac{1}{2n}>rac{n}{2n}=rac{1}{2}.$$

矛盾. 这说明序列 {a_n} 不收敛. 证毕.

例二

例二: 设序列 $\{a_n\}$ 满足 $\sum_{k=1}^n |a_{k+1} - a_k| \le M$, $\forall n \ge 1$, 其中 M > 0 为一正常数,与 n 无关. 证明序列 $\{a_n\}$ 收敛. 证: 记 $b_n = \sum_{k=1}^n |a_{k+1} - a_k|$,则序列 $\{b_n\}$ 为单调增加,且有 上界 M. 故序列 $\{b_n\}$ 收敛. 从而它是 Cauchy 列,即对 $\forall \varepsilon > 0$,存在正整数 N,使得 $\forall n \ge N$, $\forall p \ge 1$, $|b_{n+p} - b_n| < \varepsilon$,即 $\sum_{k=1}^{n+p} |a_{k+1} - a_k| < \varepsilon.$

$$= |(a_{n+p} - a_{n+p-1}) + (a_{n+p-1} - a_{n+p-2}) + \dots + (a_{n+1} - a_n)|$$

k=n+1

例二续

$$\leq |a_{n+p} - a_{n+p-1}| + |a_{n+p-1} - a_{n+p-2}| + \dots + |a_{n+1} - a_n| < \varepsilon.$$

这说明序列 $\{a_n\}$ 是 Cauchy 序列. 从而序列 $\{a_n\}$ 收敛. 证 毕.

函数

Definition

定义: 一个映射 $f: J \subset IR \to IR$ 称作一个函数, 其中 J 通常为一个区间, 开的, 闭的或半开半闭, 称作函数 f 的定义域.

注:常见的函数均以公式的形式给出.例如多项式,三角函数等.但也有许多重要的函数不能以公式形式给出,也很难画出它们的函数图像.例如 Dirichlet 函数 $D: \mathbb{R} \to \mathbb{R}$ 定义如下

函数的四则运算

Definition

定义: 设 $f,g:J \subset IR \to IR$ 为两个函数, 定义它们的

和差函数
$$(f \pm g)(x) \stackrel{\triangle}{=} f(x) \pm g(x)$$

乘积函数 $(f \cdot g)(x) \stackrel{\triangle}{=} f(x) \cdot g(x)$
商函数 $(f/g)(x) \stackrel{\triangle}{=} f(x)/g(x), g(x) \neq 0.$

函数的复合

Definition

定义: 设 g: J \subset IR \to IR, f: K \subset IR \to IR 为两个函数. 若函数 g 的值域 g(J) $\stackrel{\triangle}{=}$ {g(x), x \in J} 包含在函数 f 的定义域 K 内,即 g(J) \subset K,则函数 f 可与函数 g 复合,且它们的复合函数 f \circ g 定义如下

$$(f \circ g)(x) \stackrel{\triangle}{=} f(g(x)), \quad x \in J.$$

复合函数图示

FIGURE 11

The $f \circ g$ machine is composed of the g machine (first) and then the f machine.

复合函数例子

Example

例: 设 $f(x) = e^x$, $g(x) = \sin x$, 它们的定义域均为 IR, 则 $g \circ f$ 和 $f \circ g$ 均有意义, 且 $(g \circ f)(x) = \sin(e^x)$, $(f \circ g)(x) = e^{\sin x}$.

注: (i) 并非任意两个函数均可复合; (ii) 一个复合函数有意义,并不意味着另一个复合函数有意义; (iii) 当两个复合函数均有意义时,它们一般并不相同. 如上例.

基本初等函数

Definition

定义: 以下六类函数均称作基本初等函数.

- (i) 多项式 $\sum_{k=0}^{n} a_k x^k$;
- (ii) 幂函数 x^p;
- (iii) 指数函数 ax, a > 0;
- (iv) 对数函数 $\log_a x$, a > 0, x > 0;
- (v) 三角函数 sin x, cos x, ···;
- (vi) 反三角函数 arcsin x, arccos x, ···.

初等函数

定义:由基本初等函数经过有限次四则运算,以及有限次复合运算所得到的函数称作初等函数.

初等函数包含了许多常见的函数. 例如函数 |x| 是初等函数, 因为它可以表示为 $|x|=\sqrt{x^2}$. 可以证明 Dirichlet 函数不是初等函数. 再例如, 当 f(x) 和 g(x) 均为初等函数时, 函数 $M(x)=\max\{f(x),g(x)\}$ 和 $m(x)=\min\{f(x),g(x)\}$ 均为初等函数. 因为这两个函数可表为

$$\begin{split} & \max\{f(x),g(x)\} = \frac{1}{2} \Big(f(x) + g(x) + |f(x) - g(x)|\Big), \\ & \min\{f(x),g(x)\} = \frac{1}{2} \Big(f(x) + g(x) - |f(x) - g(x)|\Big). \end{split}$$

函数的有界性

Definition

定义: 称函数 f(x) 在其定义域(区间) J 上有界, 如果存在正常数 M>0, 使得 |f(x)|< M, $\forall x\in J$.

例如函数 $\sin x$ 和 $\cos x$ 在其定义域 \mathbb{R} 上有界. 因为 $|\sin x| \leq 1$, $|\cos x| \leq 1$, $\forall x \in \mathbb{R}$.

函数的有界性与其定义区间有关. 例如函数 $\frac{1}{x}$ 在区间 [1,2] 上有界, 而在区间 [0,1] 上无界.

函数的周期性

Definition

定义:设函数 f(x) 在整个实轴上定义.如果存在常数 T>0,使得 f(x+T)=f(x), $\forall x\in IR$,则称 f(x) 为周期为 T 的周期函数.

Example

例: (i) 常数函数是周期函数, 任意正常数均为它的周期. (ii) 三角函数 sin x, cos x 均为周期函数, 且周期为 2π.

周期函数的最小正周期问题

显然周期函数有无穷个周期.因为若周期函数有周期 T > 0,则 nT 也是周期,这里 n 为任意正整数.

问题: 非常数函数是否有最小正周期?

回答是否定的. 例如 Dirichlet 函数 D(x) 是周期函数, 且以任意正有理数为周期. 由于不存在最小的正有理数,故周期函数 D(x) 不存在最小正周期. (但可以证明,非常数的连续的周期函数有最小正周期.)

我们约定: 称某个连续的周期函数的周期为 T>0, 意思就是 T>0 是最小正周期. 例如我们常说三角函数 $\sin x$ 和 $\cos x$ 的周期为 2π , 意思是它们的最小正周期是 2π .

单调函数

Definition

定义: 设 f(x) 在区间 J 上定义. (i) 若对于任意两点 $x_1 < x_2$ $\forall x_1, x_2 \in J$,均有 $f(x_1) \leq f(x_2)$,则称函数 f(x) 在区间 J 上单调上升,并记作 f(x) 个. 若不等号 \leq 严格成立,则称函数 f(x) 在区间 J 上严格单调上升.

(ii) 类似可定义函数 f(x) 在区间 J 上单调下降,以及严格单调下降,并记作 $f(x) \downarrow$.

单调函数的图像

Fig. 2.24 Two graphs of monotonic functions. Left: increasing, Right: decreasing

反函数

Definition

定义: 若函数 $f: J \to K$ 为一一对应即双射, 则存在唯一的反函

数 $f^{-1}: K \to J$ 满足如下条件

$$\forall y \in K, \quad f^{-1}(y) = x, \quad \sharp \, \forall \quad f(x) = y.$$

<u>注一</u>: (i) 函数 f 称为单射, 如果 $f(x_1) \neq f(x_2)$, $\forall x_1 \neq x_2$. (ii) 函数 f 称为满射, 如果 $\forall y \in K$, 存在 $x \in J$, 使得 f(x) = y. (iii) 函数 f 称为双射, 如果 f 既是单射又是满射.

注二: 双射 bijective, 单射 injective, 满射 surjective

反函数的例子

Example

例: (i) f(x) = x, $(x \in \mathbb{R})$ 的反函数为 $f^{-1}(y) = y$;

(ii)
$$f(x) = 2x + 1 \ (x \in IR)$$
 的反函数为 $f^{-1}(y) = \frac{1}{2}(y - 1)$;

(iii)
$$f(x) = \sin x \ (x \in [\frac{-\pi}{2}, \frac{\pi}{2}])$$
 的反函数为 $f^{-1}(y) = \arcsin y$,

$$\mathbf{y} \in [-1,1].$$

反函数与单调性

Theorem

定理: (i) 若函数 $f: J \to K$ 严格单调, 则存在反函数 $f^{-1}(y)$, 其中 K = f(J);

- (ii) 若 f(x) 严格单调上升,则反函数 $f^{-1}(y)$ 也严格单调上升;
- (iii) 若 f(x) 严格单调下降,则反函数 $f^{-1}(y)$ 也严格单调下降.

证明见课本第36页习题2.1题21.

函数与反函数图像

Fig. 2.25 *Left:* graphs of an increasing function f and its inverse g. *Right:* if you write f(x) = y and x = g(y), then the graph of f(x) = y is also the graph of g(y) = x

函数极限

Definition

定义: 设函数 f(x) 在一点 x_0 的某个去心邻域 $0 < |x - x_0| < \rho$ 上有定义(通常 f 的定义域很大), 如果存在数 L, 使得对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意 $x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$, $|f(x) - L| < \varepsilon$, 则称函数 f(x) 在点 x_0 处有极限, 且极限值为 L, 并记作 $f(x) \to L$, $x \to x_0$, 或 $lim_{x \to x_0}$ f(x) = L.

 \underline{i} : 在考虑函数 f(x) 在点 x_0 处的极限时, f(x) 在点 x_0 处有没有定义, 与极限 $\lim_{x\to x_0} f(x)$ 存在与否无关.

函数极限的几何意义

函数极限 $\lim_{x\to a} f(x) = L$ 可图示如下.

例一

Example

例一: 考虑函数 $f(x)=x\sin\frac{1}{x}$ 在 x=0 处是否有极限. 注意函数 f(x) 除 x=0 点之外处处有定义. 由于 $|\sin\frac{1}{x}|\leq 1$, $\forall x\neq 0$, 故 $|f(x)-0|=|x\sin\frac{1}{x}|\leq |x|$. 因此对任意 $\varepsilon>0$, 存在 $\delta=\varepsilon$, 使得当 $0<|x-0|=|x|<\delta$ 时, $|f(x)-0|\leq |x|<\varepsilon$. 因此函数 f(x) 在点 x=0 处有极限, 且 $\lim_{x\to 0}x\sin\frac{1}{x}=0$.

例二

例二: 考虑函数

$$f(x) = \frac{x^2 - 3x + 2}{x^2 - x}$$

在点x=1处的极限.

解: 注意函数 f(x) 可以化简

$$f(x) = \frac{x^2 - 3x + 2}{x^2 - x} = \frac{(x - 1)(x - 2)}{x(x - 1)} = \frac{x - 2}{x}.$$

由此可见函数 f(x) 在点 x=1 处的极限似乎是 f(1)=-1. 以下来证明. 考虑

$$|f(x)-(-1)| = \left|\frac{x-2}{x}+1\right| = \frac{2|x-1|}{|x|}.$$

例二,续

对任意 $\varepsilon > 0$, 取 $\delta = \min\{\frac{1}{2}, \varepsilon\}$, 则当 $0 < |x-1| < \delta$ 时,

$$|x| = x > 1 - \delta > 1 - \frac{1}{2} = \frac{1}{2}.$$

于是
$$|f(x) - (-1)| = \frac{2|x-1|}{x} \le 4|x-1| < 4\delta \le 4\varepsilon.$$

这表明 $\lim_{x\to 1} f(x) = f(1) = -1$. 解答完毕.

例三

Example

<u>例三</u>: 证明极限 $\lim_{x\to x_0} \sin x = \sin x_0$.

近明: 由于
$$|\sin x - \sin x_0| = 2 \left| \cos \frac{x + x_0}{2} \sin \frac{x - x_0}{2} \right|$$

$$\leq 2 \left| \sin \frac{x - x_0}{2} \right| \leq 2 \left| \frac{x - x_0}{2} \right| = |x - x_0|,$$

故对于任意 $\varepsilon > 0$,存在 $\delta = \varepsilon$,使得当 $|x - x_0| < \delta$ 时,

 $|\sin x - \sin x_0| < \varepsilon$. 命题得证.

 \underline{i} : 上述结论 $\lim_{x \to x_0} \sin x = \sin x_0$ 表明三角函数 $\sin x$ 在任意点 x_0 连续.稍后定义连续.此外,在上述证明中用到了不等式 $\sin x < x$, $\forall x \in (0, \frac{\pi}{2})$.稍后将证明这个结论.

单侧极限

Definition

定义: 设函数 f(x) 的定义域包含开区间 $(a, a + \rho)$. 若存在数 $L \in \mathbb{R}$. 使得对任意 $\varepsilon > 0$. 存在 $\delta > 0$. 使得

$$|\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon, \quad \forall \mathbf{x} \in (\mathbf{a}, \mathbf{a} + \delta),$$

则称 f(x) 在点a 处的右侧极限存在,记作 $\lim_{x\to a^+} f(x) = L$ 或 $f(x) \to L$ $(x \to a^+)$,且极限值 L 常记作 $f(a^+)$,即 $f(a^+) \stackrel{\triangle}{=}$ $\lim_{x\to a^+} f(x)$.类似可定义函数 f(x) 在点a 处的左侧极限,并记左侧极限为 $f(a^-)$,即 $f(a^-) \stackrel{\triangle}{=} \lim_{x\to a^-} f(x)$.

单侧极限图示

单侧极限, 例一

符号函数 sgn(x) 定义如下

$$\text{sgn}(\textbf{x}) = \left\{ \begin{array}{ll} -1, & \textbf{x} < \textbf{0}, \\ & \textbf{0}, & \textbf{x} = \textbf{0}, \; . \\ & \textbf{1}, & \textbf{x} > \textbf{0}. \end{array} \right.$$

显然
$$\lim_{\mathbf{x}\to \mathbf{0}^-} \mathrm{sgn}(\mathbf{x}) = -1$$
, $\lim_{\mathbf{x}\to \mathbf{0}^+} \mathrm{sgn}(\mathbf{x}) = 1$.

单侧极限, 例二

假设g(x) 的函数如图所示,则

(i)
$$\lim_{\mathsf{x}\to 2^-} \mathsf{g}(\mathsf{x}) = \mathsf{3}$$
, $\lim_{\mathsf{x}\to 2^+} \mathsf{g}(\mathsf{x}) = \mathsf{1}$;

(ii)
$$\lim_{x\rightarrow 5^-}g(x)=2=\lim_{x\rightarrow 5^+}g(x).$$

极限存在⇔ 两个单侧极限均存在且相等

Theorem

<u>定理</u>: 极限 $\lim_{x\to a} f(x)$ 存在 \iff 两个单侧极限 $\lim_{x\to a^{\pm}} f(x)$ 均存在且相等.

证明简单. 从略.

单调函数的两个单侧极限处处存在

定理 [课本第40页例2.2.6]: 设函数 f(x) 在开区间 (a,b) 上单 调,则f(x)在(a,b)上每一点处的左右极限均存在. \underline{u} : 不妨设 $f(x) \uparrow$. 设 $x_0 \in (a,b)$. 以下证左极限 $\lim_{x \to x_0^-} f(x)$ 存在. 右极限情形类似, 故略去. 记 $S \stackrel{\triangle}{=} \{f(x), x \in (a, x_0)\}$. 显 然集 S 有上界, 因为 $f(x_0)$ 就是一个上界. 记 L $\stackrel{\triangle}{=}$ sup S. 根据 上确界性质可知对任意 $\varepsilon > 0$. 存在 $s^* \in S$. 使得 $s^* > L - \varepsilon$. 设 $s^* = f(x^*), x^* \in (a, x_0)$. 于是

$$L - \varepsilon < f(x^*) \le f(x) < L + \varepsilon, \quad \forall x \in (x^*, x_0).$$

这表明 $\lim_{x\to x_0^-} f(x)$ 存在且等于 L. 证毕.

无穷远处的极限

Definition

定义: 设 f(x) 在区间 $(a, +\infty)$ 上定义. 若存在数 $L \in \mathbb{R}$, 使得对任意 $\varepsilon > 0$. 存在数 M > a. 使得

$$|f(x) - L| < \varepsilon, \quad \forall x > M,$$

则称函数 f(x) 在无穷远处 $x=+\infty$ 有极限 L, 记作 $f(x)\to L$, $x\to +\infty$, 或 $\lim_{x\to +\infty} f(x)=L$. 当 f(x) 在区间 $(-\infty,b)$ 定义时, 可类似定义 $\lim_{x\to -\infty} f(x)=L$.

例一

Example

例一:证明当 a > 1 时, $a^{-x} \rightarrow 0$, $x \rightarrow +\infty$.

证明: 对任意 $\varepsilon > 0$,

$$|\mathbf{a}^{-\mathsf{x}} - \mathbf{0}| = \mathbf{a}^{-\mathsf{x}} < \varepsilon \ \Leftrightarrow \ -\mathsf{xIna} < \mathsf{In}\varepsilon \ \Leftrightarrow \ \mathsf{x} > \frac{-\mathsf{In}\varepsilon}{\mathsf{In}\,\mathsf{a}}.$$

因此对任意 $\varepsilon > 0$, 存在 $M = \frac{-\ln \varepsilon}{\ln a}$, 使得当 x > M 时,

$$|\mathbf{a}^{-\mathsf{x}} - \mathbf{0}| = \mathbf{a}^{-\mathsf{x}} < \varepsilon$$
. 这就证明了 $\mathbf{a}^{-\mathsf{x}} \to \mathbf{0}$, $\mathbf{x} \to +\infty$. 证

毕.

例二

<u>例二</u>: 求极限 $\lim_{x\to+\infty} [\ln(x+1) - \ln x]$.

解: 由于 $\ln(x+1) - \ln x = \ln \frac{x+1}{x} = \ln(1+\frac{1}{x})$, 且 $\frac{1}{x} \to 0$, 故可猜测所求极限为零. 现证明如下. 对任意 $\varepsilon > 0$ 以及 x > 0.

$$|\ln (\mathsf{x} + 1) - \ln \mathsf{x} - 0| < \varepsilon \quad \Leftrightarrow \quad \ln \Big(1 + \frac{1}{\mathsf{x}} \Big) < \varepsilon$$

$$\Leftrightarrow \quad 1 + \frac{1}{\mathsf{x}} < \mathsf{e}^{\varepsilon} \quad \Leftrightarrow \quad \frac{1}{\mathsf{x}} < \mathsf{e}^{\varepsilon} - 1 \quad \Leftrightarrow \quad \mathsf{x} > \frac{1}{\mathsf{e}^{\varepsilon} - 1}.$$

于是对于任意 $\varepsilon > 0$,存在 $M = \frac{1}{e^{\varepsilon} - 1}$,使得当 x > M时,

$$|\ln(\mathsf{x}+1)-\ln\mathsf{x}-0| 故 $\lim_{\mathsf{x}\to+\infty}[\ln(\mathsf{x}+1)-\ln\mathsf{x}]=0.$ 解答完毕.$$

肝合无十.

函数极限的性质

以下各函数极限性质的证明, 同相应的序列极限的性质的证明类似, 故从略.

性质一 (极限唯一性): 若极限 $\lim_{x\to a} f(x)$ 存在, 则极限值唯一.

性质二 (有界性): 若极限 $\lim_{x\to a} f(x)$ 存在, 则函数 f(x) 在点 a

附近有界, 即存在 $\delta > 0$, 以及 M > 0, 使得 $|f(x)| \le M$, $\forall x \in$

 $(\mathsf{a}-\delta,\mathsf{a}+\delta)\setminus\{\mathsf{a}\}.$

性质三 (保序性): 设 $\lim_{x\to a} f(x) = A$ 且 $\lim_{x\to a} g(x) = B$.

- (i) 若 A < B, 则存在 δ > 0, 使得对 \forall x \in $(a \delta, a + \delta) \setminus \{a\}$, f(x) < g(x).
- (ii) 若存在 $\rho > 0$, 使得 $f(x) \le g(x)$, $\forall x \in (a \rho, a + \rho) \setminus \{a\}$, 则 $A \le B$.

性质四, 两边夹法则

性质四: 设 $f(x) \leq g(x) \leq h(x)$, $\forall x \in (a-\rho,a+\rho) \setminus \{a\}$, 若两个极限 $\lim_{x\to a} f(x)$ 和 $\lim_{x\to a} h(x)$ 均存在且相等. 它们共同的极限记作 L, 则极限 $\lim_{x\to a} g(x)$ 存在且等于 L.

函数极限的四则运算

Theorem

定理: 设 $\lim_{x\to a} f(x) = A$ 且 $\lim_{x\to a} g(x) = B$, 则和差极限

 $\lim_{x\to a}[f(x)\pm g(x)]$, 乘积极限 $\lim_{x\to a}[f(x)g(x)]$, 以及商极限

 $\lim_{x\to a} \frac{f(x)}{g(x)}$ (补充假设 B \neq 0) 均存在, 并且

- (i) $\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)=A\pm B$;
- (ii) $\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$ (= AB);
- (iii) $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} \ (=\frac{A}{B}).$

例子

Example

例: 显然 $\lim_{x\to x_0} x = x_0$. 于是根据函数极限的四则运算可知,

 $\lim_{x \to x_0} x^n = x_0^n$. 进而对多项式 P(x) 有 $\lim_{x \to x_0} P(x) = P(x_0)$,

对于分式函数 $\frac{P(x)}{Q(x)}$, 假设 $Q(x_0) \neq 0$, 有 $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$.

 \underline{i} : 若 $\lim_{x \to x_0} f(x) = f(x_0)$, 我们称函数 f(x) 在点 x_0 处连续. (稍后正式定义). 上述结论表明, 多项式函数 P(x) 处处连续, 有理分式函数 $\frac{P(x)}{Q(x)}$ 在其定义域上处处连续.

作业

课本习题2.1 (pp. 35-37):

3, 4, 5, 8, 9(1)(2)(3)(4), 10, 15, 16.

课本习题2.2 (pp. 42-43):

1, 2, 3(1)(3)(5)(7).