BU CS 332 – Theory of Computation

Lecture 9: Assignment Project Exampling:

• Turing Machines Sipser Ch 3.1, 3.3

Add WeChat powcoder

Mark Bun February 22, 2021

Turing Machines – Motivation

We've seen finite automata as a restricted model of computation

- Finite Automata / Regular Expressions

 Can do simple pattern matching (e.g., substrings), check parity, addition
 - Can't perform unbtipsie powrender.com
 - Can't recognize palindromes Add WeChat powcoder

Somewhat more powerful (not in this course):

Pushdown Automata / Context-Free Grammars

- Can count and compare, parse math expressions
- Can't recognize $\{a^nb^nc^n \mid n \geq 0\}$

Turing Machines – Motivation

Goal:

Define a model of computation that is

Assignment Project Exam Help

1) General purpose. Captures <u>all</u> algorithms that can be implemented intensy/prograndeniogranguage.

Add WeChat powcoder

2) Mathematically simple. We can hope to prove that things are <u>not</u> computable in this model.

A Brieff HIStory https://powcoder.com

Add WeChat powcoder

1900 - Hilbert's Tenth Problem

Assignment Project Exam Help

https://powcoder.com
Given a Diophantine equation with any
number of unknown quantities and with powcoder
rational integral numerical coefficients: To
devise a process according to which it can
be determined in a finite number of
operations whether the equation is

solvable in rational integers.

David Hilbert 1862-1943

1928 – The Entscheidungsproblem

The "Decision Problem"

Assignment Project Exam Help
Is there an algorithm which

httpkes/psingut after Walin first-order logic) and

derives whether it's wooder logically valid?

David Hilbert 1862-1943

1936 – Solution to the Entscheidungsproblem

ASS

"An unsolvable problem of elementary number theory"

AssignMedelPoforpropletation:Helpalculus (CS 320)

Alonzo Church 1903-1995 https://powcoder.com

Alan Turing 1912-1954

Add WeChat powcoder

"On computable numbers, with an application to the *Entscheidungsproblem*"

Model of computation: Turing Machine

Turing Wasignment Project Exam Help https://powcoder.com

Add WeChat powcoder

The Basic Turing Machine (TM)

- Input is written on an infinitely long tape
- Head can both read and write, and move in both directions
- Computation halts as soon as control reaches "accept" or "reject" state

What does this TM do on input 000?

- a) Halt and accept
- b) Halt and reject
- c) Halt in state q_3
- d) Loop forever without halting

Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Implementation signer out Scrape of Exam Help

Describe (in English) the instructions for a TM

How to move the head
 WeChat powcoder
 What to write on the tape

Low-Level Description

State diagram or formal specification

Determine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$

High-Level Description Assignment Project Exam Help

Repeat the following forever: https://powcoder.com

- If there is exactly one Oliat you accept
- If there is an odd number of 0s in w > 1, reject
- Delete half of the 0s in w

Determine if a string
$$w \in A = \{0^{2^n} \mid n \ge 0\}$$

Implementation-Level Description Assignment Project Exam Help

- 1. While moving the tapped headleft to right:
 - a) Cross off every other 0
 - b) If there is exactly by the pwereads the right end of the tape, accept
 - c) If there is an odd number of 0s when we reach the right end of the tape, reject
- 2. Return the head to the left end of the tape
- Go back to step 1

Determine if a string $w \in A = \{0^{2^n} \mid n \ge 0\}$ $x \rightarrow x, L$ Low-Level Description $0 \rightarrow 0.L$ $\sqcup \to \sqcup, R$ $\sqcup \rightarrow \sqcup, L$ $x \rightarrow x, R$ $x \rightarrow x, R$ Assignment P $q_{
m accept}$ $x \rightarrow x$, R $\sqcup \to \sqcup, R$

TMs vs. Finite Automata

Teacher: "zoom breakout rooms are critically important for online learning"

Zoom breakout rooms:

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Formal Definition of a TM

A TM is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- *Q* is a finite set of states
- Σ is the input alphabet (does not include Δ)
 Assignment Project Exam Help
 Γ is the tape alphabet (contains Δ and Σ)
- δ is the transition the powcoder.com

Add We.Chorpowchiletater

- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state $(q_{\text{reject}} \neq q_{\text{accept}})$

TM Transition Function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

L means "move left" and R means "move right"

$$\delta(p, a) = (q A s R g n Project Exam Help$$

- Replace a with b in current cell
- Transition from states p/postateder.com
- Move tape head right Add WeChat powcoder

$$\delta(p,a) = (q,b,L)$$
 means:

- Replace a with b in current cell
- Transition from state p to state q
- Move tape head left UNLESS we are at left end of tape, in which case don't move

Configuration of a TM

A string with captures the state of a TM together with the contents of the tape

Assignment Project Exam Help

https://powcoder.com

 q_5

Configuration of a TM: Formally

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q

 $\begin{array}{c} \textbf{Assignment Project Exam Help} \\ \bullet \textbf{ Tape head on first symbol of } v \end{array}$

https://powcoder.com

Example: Add ox Odhal powcoder

How a TM Computes

Start configuration: q_0w

One step of computation:

- $ua\ q\ bv\ yields\ uac\ q\ v\ if\ S(q,b) = (q,c,R)$
- $ua \ q \ bv \ yields \ uhttps://pirvs(oder)cem(q', c, L)$
- If we are at the last end of the participation q bv, what configuration do we reach if $\delta(q,b)=(q',c,L)$?

How a TM Computes

Start configuration: q_0w

One step of computation:

- $ua\ q\ bv\ yields\ uac\ q\ v\ if\ S(q,b) = (q,c,R)$
- $ua \ q \ bv \ yields \ uhttps://pp.wooder.com(q', c, L)$
- q bv yields q' cuifd & chat powcoder

Accepting configuration: $q = q_{accept}$

Rejecting configuration: $q = q_{reject}$

How a TM Computes

M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that:

- $C_1 = q_0 w$
- C_i yields C_{i+A} for an Help
- C_k is an accepting configuration https://powcoder.com

L(M) = the set of all strings W Which M^r accepts A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state $q_{\text{reject}} \cap Q$ M runs forever

Recognizers vs. Deciders

L(M) = the set of all strings w which M accepts

A is Turing-recognizable if A = L(M) for some TM M:

- $w \in A \implies MA$ halten on exact i Protect q Example Help
- $w \notin A \implies M$ halts on w in state q_{reject} OR M runs forever

Add WeChat powcoder

A is (Turing-)decidable if A = L(M) for some TM M which halts on every input

- $w \in A \implies M$ halts on w in state q_{accept}
- $w \notin A \implies M$ halts on w in state q_{reject}

Back to Hilbert's Tenth Problem

Computational Problem: Given a Diophantine equation, does it have a solution over the integers?

L =

• L is Turing-recognizable Project Exam Help

https://powcoder.com

Add WeChat powcoder

L is not decidable (1949-70)

