Spring 2018 MAE3134: Midterm Exam

8 March 2018

Resources allowed:	One sided note sheet,	calculator, ruler.	No computers or	r mobile devices
Name:		GWID:		

	Prob. 1	Prob. 2	Prob. 3	Prob. 4	Prob. 5	Total
ŀ	20	20	20	20	20	100
	20	20	20	20	20	100

Problem 1 Elon Musk, CEO of SpaceX and Tesla Motors, is developing his newest spacecraft. The output response of a critical subsystem can be defined by the following function, X(s).

$$X(s) = \frac{30}{s(s^2 + 2s + 10)}$$

Find the output response in the time domain, i.e. find x(t). Ensure you show all of your work, as Elon believes in the maxim "trust but verify".

Problem 2 Elon Musk, CEO of SpaceX and Tesla Motors, has a background in physics but unfortunately has never passed a Linear Dynamics course. His newest space vehicle must satisfy the following second order time response specifications for a unit step input:

- Percent Overshoot must be less than 9%,
- Peak time greater than 2s,
- Settling Time greater than 7s but less than 10s.

Elon needs your help to choose a set of poles which will satisfy the specifications and save humanity from impending disaster.

- 1. On the s-plane, or complex plane, map out the acceptable regions where you could locate poles and meet the requirements.
- 2. Label the specifications lines and show your work.
- 3. Choose a set of poles that will meet the requirements.
- 4. Determine the transfer function representation for this sytem.
- 5. Use the initial and final value theorems to determine the initial and final values of the output response assuming a step input.
- 6. Describe the effect of moving the poles to the LEFT, i.e. more negative, on the system response specifications.

Problem 3 Elon has read the Wikipedia page on "State Space Control" and is intrigued. However, he is having difficulty with converting the state space representation to the equivalent transfer function.

$$\dot{x} = Ax + Bu,$$

$$y = Cx + Du,$$

Starting with the standard state space form, **DERIVE** the expression for the transfer function $\frac{Y(s)}{U(s)}$. Remember to show all of your work.

Problem 3.1 "Modern! Sch-Modern!, transfer functions are fine..." exlaims Elon during a particular heated engineering review meeting. List at least two advantages of state-space or "modern control" techniques as compared to "classical control" approaches to convince Elon of your superior knowledge.

Problem 4 For the electrical system in Fig. 1:

- 1. Find the differential equations of motion for the system.
- 2. Find the state space representation of the system with your state vector defined as

$$\boldsymbol{x} = \begin{bmatrix} q_1 & i_1 & q_2 & i_2 \end{bmatrix}^T,$$

where q_1, i_1 represent the charge and current in the left loop while q_2, i_2 represent the charge and current in the right loop, respectively. The output is defined as

$$y = \begin{bmatrix} q_1 & q_2 \end{bmatrix}^T.$$

Figure 1: Electrical Circuit

Problem 5 Given the following differential equation

$$\ddot{\theta} + 3\dot{\theta} + 2\theta = 12\dot{u}(t) + 24u(t).$$

- 1. Find the transfer function $G(s) = \frac{\theta(s)}{U(s)}$.
- 2. Find the state space representation assuming the state is defined as $x = \begin{bmatrix} \theta & \dot{\theta} \end{bmatrix}^T$.
- 3. Find the matrix $\Phi(s) = (sI A)^{-1}$.

LAPLACE TRANSFORM TABLE

Time Function	LaPlace Transform
	1
δ (t)	· -
	1
u(t)	$\frac{1}{2}$
	S
t	1
	s ²
2	1
t ²	
t ² / ₂ t ^{k-1}	$ \frac{\frac{1}{s^2}}{\frac{1}{s^3}} $ $ \frac{(k-1)!}{s^k} $
_k−1	(k-1)!
, ·	- k
	1
e ^{-at}	
	1 s+a 1
te ^{-at}	
	$(s+a)^2$
	$\frac{(s+a)^2}{\frac{(k-1)!}{(s+a)^k}}$
t ^{k-1} e-at	(K-1):
	(s + a) ^k
1-e ^{-at}	a
1-6	${s(s+a)}$
$t-\frac{1-e^{-at}}{}$	<u>a</u>
t	$\frac{1}{s^2(s+a)}$
	a ²
$1-(1+at)e^{-at}$	
	$s(s+a)^2$
e ^{-at} -e ^{-bt}	b-a
e ** -e **	$\overline{(s+a)(s+b)}$
sin bt	<u>b</u>
	$\frac{\overline{s^2+b^2}}{}$
cos bt	s
	$\overline{s^2+b^2}$
	S TU
t sin bt	<u> </u>
	$\frac{2bs}{(s^2+b^2)^2}$
t cos bt	s^2-b^2
1 000 01	
*	$\sqrt{(s^2+b^2)^2}$
-at	b
e ^{-at} sin bt	$\frac{(s+a)^2+b^2}{(s+a)^2+b^2}$
	(s+a)2+b2
e ^{-at} cos bt	s+a
e COS DI	$\frac{s+a}{(s+a)^2+b^2}$
·	(S+a) +U