POWER ELECTRONICS

(Open Elective)

Preamble:

The usage of power electronics in day to day life has increased in recent years. It is important for student to understand the fundamental principles behind all these converters. This course covers characteristics of semiconductor devices, ac/dc, dc/dc, ac/ac and dc/ac converters. The importance of using pulse width modulated techniques to obtain high quality power supply (dc/ac converter) is also discussed in detail in this course.

Learning Objectives:

- To study the characteristics of various power semiconductor devices and to design firing circuits for SCR.
- To understand the operation of single phase half wave and full—wave converters
- To understand the operation of different types of DC-DC converters.
- To understand the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.
- To understand the operation of AC-AC converters and switch mode power supplies operation.

UNIT-I

Power Semi-Conductor Devices

Thyristors—Silicon controlled rectifiers (SCR's) – Characteristics of power MOSFET and power IGBT – Basic theory of operation of SCR—Static characteristics – Turn on and turn off methods—Dynamic characteristics of SCR – Snubber circuit design – Firing circuits for SCR

UNIT-II

AC-DC Single-Phase Converters

Single phase half wave controlled rectifiers – R load and RL load with and without freewheeling diode – Single Phase full wave controlled rectifiers – center tapped configuration and bridge configuration – R load and RL load with and without freewheeling diode – Effect of source inductance in 1-phase fully controlled bridge rectifier.

UNIT-III

DC-DC Converters

Buck Converter operation – Time ratio control and current limit control strategies–Voltage and current waveforms–Derivation of output voltage –Boost converter operation –Voltage and current waveforms–Derivation of output voltage – Buck-Boost converter operation –Voltage and current waveforms – Principle operation of forward and fly back converters

UNIT - IV

DC-AC Converters

Single phase inverters—Unipolar and bipolar switching – Single phase half bridge and full bridge inverters with R and RL loads – PWM techniques— Sine triangular PWM technique— amplitude and frequency modulation Indices – Harmonic analysis.

UNIT - V

AC – AC Single-Phase Converters

Static V-I characteristics of TRIAC and modes of operation – Single phase AC-AC regulator phase angle control and integrated cycle control with R and RL load – For continuous and discontinuous conduction – Principle of operation of Cyclo-Converters

UNIT – VI

Switch Mode Power Supplies

Overview of Switching Power Supplies – Linear Power Supplies – DC to DC converters with electrical isolation – Control of Switch Mode DC Supplies – PWM duty ratio control – Current mode control – Power Supply Protection

Learning Outcomes:

Student should be able to

- Explain the characteristics of various power semiconductor devices and analyse the static and dynamic characteristics of SCR's.
- Design firing circuits for SCR.
- Able to explain the operation of single phase half wave and full–wave converters
- Analyse the operation of different types of DC-DC converters.
- Explain the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.
- Analyse the operation of AC-AC converters.
- Able to explain switch mode power supplies operation and control

Text Books:

- 1. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hall of India, 2nd edition, 1998
- 2. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India, 2009

Reference Books:

- 1. Power Electronics: converters, applications & design -by Nedmohan, Tore M. Undeland, Robbins by Wiley India Pvt. Ltd.
- 2. Elements of Power Electronics-Philip T.Krein.oxford.
- 3. Power Electronics by P.S.Bhimbra, Khanna Publishers.
- 4. Power Electronics handbook by Muhammad H.Rashid, Elsevier.
- 5. Power Converter Circuits -by William Shepherd, Li zhang, CRC Taylor & Francis Group.