

UNIT 4 关系代数

学完本讲后, 你应该能够了解:

- 1、关系代数分成两种类型:集合操作和专门的关系操作;
- 2、并、交、差、笛卡儿积、投影、选择、连接、 除运算是常用的关系运算;
- 3、并、差、笛卡儿积、选择和投影是基本的关系运算,其它的关系运算可以通过这些基本运算来表达;
 - 4、用关系代数操作表达查询要求;

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

一个学生-课程数据库

S

学号	姓名	性别	年龄	所在系
S#	SN	SE	SA	SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

(

课程号	课程名	先行课	学分
C#	CN	CP#	CC
C1	数据库	C5	4
C2	数学		2
СЗ	信息系统	C1	4
C4	操作系统	С6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	С6	4

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	С3	88
95002	C2	90
95002	С3	80

一、关系代数 (见教村P44)

◆ 关系代数

是一种抽象的查询语言,是一种纯理论语言,它定义了一些操作,运用这些操作可以从一个或多个关系中得到另一个关系,而不改变原关系

◆ 关系代数的特性 — —闭包

- ♦ 操作数和操作结果都是关系
- ◆一个操作的输出可以作为另一个操作的输入

◆ 关系代数的运算分成两种类型:

- ◆集合运算,表实际上是"行"的集合,集合的运算是只涉及"行"的运算;
- ◆专门的关系运算,既涉及到"行",也涉及到 "列"的运算。

一、关系代数 (见教村P44)

集合运算

名称	符号	键盘格式	示例
并	O	UNION	R∪S,或RUNIONS
交	\cap	INTERSECT	R∩S,或RINTERSECTS
差	_	– 或MINUS	R-S, 或RMINUSS
笛卡儿积	×	TIMES	R×S,或RTIMESS

专门的关系运算

名称	符号	键盘格式	示例
投影	$\Pi_{col1,,coln}(R)$	R[]	$R[A_{i1}A_{ik}]$
选择	$\sigma_{c}(R)$	R where C	R where $A_1 = 5$
连接	\bowtie	JOIN	R ⋈ S,或 R JOIN S
除	÷	DIVIDEBY	R÷S, 或R DIVIDEBY S

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

1、集合运算的前提条件

> 关系就是元组的集合

A	В	C
\mathbf{a}_1	b_1	\mathbf{c}_1
\mathbf{a}_2	b_2	\mathbf{c}_2
a_3	b_3	\mathbf{c}_3

$$\{(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)\}$$

- 》 集合运算的前提条件 —— 兼容表 如果R和S具有相同的标题。则R和S是兼容表
 - ◆ 两个关系都有相同的目(笛卡儿积运算例外)
 - 相应的属性取自相同域并具有相同的含义

2、并、交和差运算 (见教村P45)

> 定义

R和S是两个兼容表, $Head(R) = Head(S) = A_1 ... A_n$ 。则R和S的并、交和差具有相同的标题。且:

- ❖ RUS由属于R或属于S的元组组成,并去掉冗余的元组
- ❖ R○S由既属于R又属于S的元组组成
- ❖ R—S由属于R而不属于S的元组组成
- > 大氏图 (Venn Diagram)

, 并、交和差远算示例

A	В	C
\mathbf{a}_1	b_1	\mathbf{c}_1
\mathbf{a}_1	b_1	c_2
\mathbf{a}_1	b_2	\mathbf{c}_3

 $R \cup S$

集合运算

3、笛卡儿积运算 (见教村P45-46)

假定 $Head(R) = A_1...A_n$, $Head(S) = B_1...B_m$, R和S的基 数分别为p和q,表R和S的笛卡儿积是表T。

T的标题是: Head(T)=R. A₁...R. A_nS. B₁...S. B

T的内容是: $T = \{ t_r t_s | t_r \in \mathbb{R} \land t_s \in S \}$

T的基数为pxq

即: T是一个 (n+m) 列的元组的集合。元组的前n 列是关系R的一个元组,后m列是关系S的一个元组。

笛卡儿积运算示例:

R

A	В	С
a ₁	b_1	\mathbf{c}_1
a ₁	b_2	\mathbf{c}_3
a_2	b_1	c_2

S

В	С	D
b_1	\mathbf{c}_1	d_1
b_1	\mathbf{c}_1	d_3
b ₂	\mathbf{c}_2	d_2
b ₁	c_2	d_4

$R \times S$

R.A	R.B	R.C	S.B	S.C	S.D
a_1	b ₁	\mathbf{c}_1	b ₁	\mathbf{c}_1	d_1
\mathbf{a}_1	b ₁	\mathbf{c}_1	b_1	\mathbf{c}_1	d_3
a_1	b ₁	\mathbf{c}_1	b_2	\mathbf{c}_2	d_2
\mathbf{a}_1	b ₁	\mathbf{c}_1	b_1	\mathbf{c}_2	d_4
a_1	b ₂	c ₃	b_1	\mathbf{c}_1	d_1
a_1	b ₂	c ₃	b ₁	\mathbf{c}_1	d_3
a_1	b ₂	c ₃	b_2	\mathbf{c}_2	d_2
\mathbf{a}_1	b_2	c ₃	b_1	\mathbf{c}_2	d_4
a_2	b ₁	\mathbf{c}_2	b_1	\mathbf{c}_1	d_1
a_2	b_1	\mathbf{c}_2	b_1	\mathbf{c}_1	d_3
a_2	b ₁	\mathbf{c}_2	\mathbf{b}_2	\mathbf{c}_2	d_2
a_2	b ₁	c_2	b ₁	\mathbf{c}_2	d_4

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

1、投影运算 (Projection) (见教村P48)

——作用于单个关系R,从R中选择若干属性列 coll, •••, coln的值,并去掉重复元组得到新的关系。

$$\Pi_{\text{coll},...,\text{coln}}(R) = \{t[\text{coll}, \dots, \text{coln}] | t \in R \}$$

例1. 查询关系5中学生的学号、姓名和所在系。

$$S1 := \prod_{S\#, SN, SD}(S)$$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

S1

学号 S#	姓名 SN	所在系 SD
95001	李勇	CS
95002	刘晨	IS
95003	王敏	MA
95004	张立	IS

例2. 查询学生关系5中都有哪些系。

 $S2 := \Pi_{SD}(S)$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

所在系 SD CS IS MA

S2

S2

2、选择运算(Selection) (见教村P46)

—— 作用于单个关系R, 得到一个新关系, 它由R中 满足特定条件(谓词)(的元组组成。

$$\sigma_{c}(R)=\{t \mid t \in R \land C(t)='$$
真'}

例3 查询信息系(IS)的全体学生 S

$$\sigma_{\text{SD='IS'}}(S)$$

例4 查询年龄小于20岁的学生

$$\sigma_{\text{SA}<20}(S)$$

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

*

三、专门的关系运算

σc (R)中的谓词(可以是简单逻辑表达式, 也可以 是复合逻辑表达式

例5 查询信息系的且年龄小于20岁全体学生信息。

$$\sigma_{\text{SD='IS'}} \wedge \sigma_{\text{SA} \leq 20}(S)$$

例6 查询信息系或者年龄小于20岁的全体学生信息。

$$\sigma_{\text{SD='IS'}} \vee SA \leq 20(S)$$

例7 查询非信息系的全体学生信息。

$$\sigma_{\neg (SD=`IS')}(S)$$

例9 查询课程 "门"的间接先修课

C' := C

 $P := \sigma_{C.C\# = 'C1' \land C.CP\# = C'.C\#}(C \times C')$

 $Q:=\Pi_{C'.CP\#}(P)$

Q:= $\Pi_{C'. CP\#}$ ($\sigma_{C. C\#} = C'. C\# = C'. C\#$ ($C \times C'$)

课程号	课程名	先行课	学分
C #	CN	CP#	CC
C1	数据库	C5	4
C2	数学		2
C3	信息系统	C1	4
C4	操作系统	C6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	C6	4

 \mathbf{C}'

课程号	课程名	先行课	学分
C #	CN	CP#	CC
C1	数据库	C5	4
C2	数学		2
C3	信息系统	C1	4
C4	操作系统	C6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	C6	4

关系代数优先级:

优势		运第	符号
	1	投影	Π_{coll} , , $_{\text{coln}}$ (R)
		选择	$\sigma_{\rm c}$ (R)
		笛卡儿积	×
		连接、除法	⋈ , ÷
		交	\cap
1 E	E	并、差	∪, -

单目运算

双目运算

3、连接运算(Join) (见教村P49)

—— R⋈S是从两个关系的笛卡尔积中选取同名属性上 满足等值条件的元组,并在结果关系中去掉重复的列

 b_2

注: 这里的连接运算就是自然连接 (natural join) 运算

例10 查询选修了课程 "C2"的学生的姓名和成绩

 $\Pi_{SN, G}(\sigma_{C.C\#} = \prime_{C2}, G \bowtie SC))$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	C3	88
95002	C2	90
95002	С3	80

例11 查询选修了课程名"数学"的学生的姓名和成绩

$\Pi_{SN, G}(\sigma_{CN} = (x, y))$ (S \bowtie SC \bowtie C))

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	С3	88
95002	C2	90
95002	C3	80

 \mathbf{C}

课程号	课程名	先行课	学分
C #	CN	CP#	CC
C1	数据库	C5	4
C2	数学		2
C3	信息系统	C1	4
C4	操作系统	C6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	C6	4

T中包含所有在R但不在S 中的属性

4、除运算(Division)

—— 假定 $Head(R) = A_1 ... A_n B_1 ... B_m$ 并且 $Head(S) = B_1 ... B_m$,表 $T oldsymbol{id}$ 和果 $Head(T) = A_1 ... A_n$ 并且T 中恰好包含的是这样的行t: 对于S 中每一个行s,t 和s 串接的结果的行可以在表R 中找到。

T中元组与S中每一元组的 组合都在R中

除运算示例1: 若R和S分别如下,求R+S

除运算示例2: 若R和S分别如下,求R÷S

R

A	В	C	D
a	b	c	d
a	b	e	f
b	c	e	f
e	d	c	d
e	d	e	f
a	b	d	e
a	D	a	е

S

C	D
c	d
e	f

R÷S

A	В
a	ь
e	d

除运算示例3: 若R和S分别如下, 求R÷S(除运算

的扩展定义)

S中可以包含不在R中的属性

R

В	C	D
b	c	d
ь	e	f
c	e	f
d	c	d
d	e	f
b	d	e
	b b c d	b c b e c e d c d e

S

C	D	E
c	d	3
e	f	5
e	f	6

R÷S

A	В
a	ь
e	d

例12 求选修了开设的全部课程的学生的学号

 $\Pi_{S\#,C\#}$ (SC) ÷ $\Pi_{C\#}$ (C)

或者

 $\Pi_{S\#,C\#}$ (SC) ÷ C

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	С3	88
95002	C2	90
95002	С3	80

课程 号	课程名 先行 CN 课		学分 CC
€#	数据库	CB#	4
C2	数学		2
C3	信息系统	信息系统 C1	
C4	操作系统	操作系统 C6	
C5	数据结构	数据结构 C7	
C6	数据处理		2
C7	PASCAL语言	С6	4

Q 学⁵ 9#

例13 求选修了"95002"所选修的全部课程的学生的学号

1) "95002"选修的全部课程

$$P := \Pi_{C\#}(\sigma_{S\#} = 695002, (SC))$$

2) 选修了P中所有课程的学生的学号

$$Q:=\Pi_{S\#,C\#}(SC) \div P$$

Q:=
$$\Pi_{S\#,C\#}(SC) \div \Pi_{C\#}(\sigma_{S\#} = 695002)$$
, (SC))

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	C3	88
95002	C2	90
95002	C3	80

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

1、运算依赖的概念

- > 运算依赖指某些运算可以用其它的运算表达
- 》 关系代数的全部功能可以由较小的运算子集 完成
- 及基本关系运算集 {并,差,笛卡儿积,选择, 投影} 是最小集合
- 》 其他三种运算, 即交、连接和除, 可以用基本运算表达

2、定理 交可以用差表达

$$A \cap B = A - (A-B)$$

用文氏图说明:

3、定理

连接可以用笛卡儿积、选择和投影表达

给定两个表R和S, Head(R) = AB, Head(S) = BC, 其中, A, B, C是属性或属性组

$$R \bowtie S = \prod_{A,R,B,C} (\sigma_{R,B=S,B} (R \times S))$$

4、定理

除法可以用投影、笛卡儿积和差表达

给定两个表R和S, Head(R) = A, Head(S) = B, C = A - B, 其中, A, B, C是属性或属性组

$$\mathbf{R} \div \mathbf{S} = \Pi_{\mathbf{C}}(\mathbf{R}) - \Pi_{\mathbf{C}}(\Pi_{\mathbf{C}}(\mathbf{R}) \times \mathbf{S} - \mathbf{R})$$

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

五、综合例子

- 1、求计科系(CS)年龄大于18岁的学生的学号和姓名。
- 2、求选修'Cl'课程且成绩高于80分的学生的学号和 姓名。
 - 3、求选修了课程名为'数学'的学生的学号和姓名。
 - 4至少选修了其直接先行课为'(5)'课程的学生的姓名。
- 5、查询没选修"95001"所选修的任何课程的学生的 学号。
 - 6、查询选修了全部课程的学生号码和姓名。

五、综合例子

1、求计科系年龄大于18岁的学生的学号和姓名。

$\Pi_{S\#, SN}(\sigma_{SA>18 \land SD='CS'}(S))$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

五、综合例子

2、求选修 "C1"课程且成绩高于80分的学生的 学号和姓名。

$\Pi_{S\#, SN}(\sigma_{C\#='C1'} \land_{G>80}(S\bowtie SC))$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	C3	88
95002	C2	90
95002	С3	80

五、综合例子

3、求选修了课程名为"数学"的学生的学号和姓名。

$\Pi_{S\#,SN}(S\bowtie SC\bowtie \sigma_{CN}=\iota_{\&\&\&}, (C))$

S

学号 S#	姓名 SN	性别 SE	年龄 SA	所在系 SD
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

学号 S#	课程号 C#	成绩 G
95001	C1	92
95001	C2	85
95001	C3	88
95002	C2	90
95002	C3	80

(

课程号 C#	课程名 CN	先行课 CP#	学分 CC
C1	数据库	C5	4
C2	数学		2
С3	信息系统	C1	4
C4	操作系统	C6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	С6	4

38

五、综合例子

4、求至少选修了其直接先行课为'C5'课程的学生的 姓名。

$\Pi_{SN}(\sigma_{CP\#} = C_5, (S\bowtie SC\bowtie C))$

S

学号	姓名	性别	年龄	所在系
S# 95001	SN 李勇	SE 男	SA 20	SD CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

学号 S#	课程号 C#	成绩
95001	C1	92
95001	C2	85
95001	C3	88
95002	C2	90
95002	C3	80

课程	课程名	先行	学分 CC
号 €#	CN 数据库	课 CF #	4
C2	数学		2
С3	信息系统	C1	4
C4	操作系统	C6	3
C5	数据结构	C7	4
C6	数据处理		2
C7	PASCAL语言	C6	4

*

五、综合例子

5、查询没选修 "95001"所选修的任何课程的 学生的学号。

- (1) "95001"选修的所有课程K **K:=**Π_{C#}(σ_{S#='95001},(SC))
- (2) 至少选修了K中的任何一门课程的学生的学号 $M:=\Pi_{S\#}(K\bowtie SC)$
- (3) 没选修 "95001"所选修的任何课程的学生的学号 N:= $\Pi_{S\#}(S)$ M
 - $N:=\Pi_{S\#}(S) \Pi_{S\#}(\Pi_{C\#}(\sigma_{S\#=`95001},(SC)) \bowtie SC)$

*

五、综合例子

- 6、查询选修了全部课程的学生号码和姓名。
- (1) 查询全部课程K K:= ∏_{C#}(C)
- (2) 查询选修了全部课程K的学生的学号PP:=∏_{S#,C#}(C) ÷ K
- (3) 查询学号P的学号和姓名T

$$T:=\Pi_{S\#,SN}(S\bowtie P)$$

$$T:=\Pi_{S\#,SN}$$
 ($S\bowtie$ ($\Pi_{S\#,C\#}$ (C) \div $\Pi_{C\#}$ (C))

本讲主要内容

- 一、关系代数
- 二、集合运算
- 三. 专门的关系运算
- 四、运算依赖
- 五. 综合例子
- 六. 其它关系运算

1、其它关系运算

名称	符号	键盘格式	示例
外连接	\bowtie_{O}	OUTERJ	R ⋈ _O S,或 R OUTERJ S
左外连接	\bowtie_{LO}	LOUTERJ	R ⋈ _{LO} S,或 R LOUTERJ S
右外连接	\bowtie_{RO}	ROUTERJ	R ⋈ _{RO} S,或 R ROUTERJ S
θ连接	M _{Ai θ Bj}	JN(Ai θ Bj)	R 网 _{Aiθ Bj} S,或 R JN(Aiθ Bj) S

这里, 0是比较运算符, 可以是〉, 〈, 〉=, 〈=, =, 〈〉

2、外连接

连接只保留匹配的行: 外连接还保留未匹配的行

 d_4

 \mathbf{c}_2

 b_1

 b_1

》 外连接相当于在参加连接的表R和S中分别加了一个万能匹配行。与未匹配的行进行匹配

R

3、左外连接

> 左外连接保留在操作符左边的未匹配行

 A
 B
 C

 a_1 b_1 c_1
 a_1 b_2 c_3
 a_2 b_1 c_2

D

R

4、右外连接

> 右外连接保留在操作符右边的未匹配行

 A
 B
 C

 a_1 b_1 c_1
 a_1 b_2 c_3
 a_2 b_1 c_2

 S

 B
 C
 D

 d_1

5、θ连接

—— 是从两个关系R和S的笛卡尔积中选取属性间满足一定条件的元组,该条件是 A_i θ B_j , 其中, A_i 是R的属性, B_j 是S的属性, A_i 和 B_j 具有相同的域

Questions?

- 1、关系代数分成两种类型:集合操作和专门的关系操作;
- 2、并、交、差、笛卡儿积、投影、选择、连接、 除运算是常用的关系运算;
- 3、并、差、笛卡儿积、选择和投影是基本的关系运算,其它的关系运算可以通过这些基本运算来表达;
 - 4、用关系代数操作表达查询要求;

- 1. 关系代数的基本运算有哪些?
- 2. 关系代数语言的非过程化程度如何?
- 3. 对于一个查询请求, 可能关系运算表达式不 唯一。
- 4. 自然连接和等值连接有何区别?

*-

练习

教村P63

5,

7、 用关系代数完成 (1) - (5) 操作

