Contact informations

Victor Trappler

PhD Candidate in Airsea (Inria team) and UGA
Title: Parameter control in the presence of uncertainties
with É. Arnaud, L. Debreu, A. Vidard

Contact:

- victor.trappler@univ-grenoble-alpes.fr
- vtrappler.github.io

Research topics

- Optimisation under Uncertainties
 - Notions of robustness in a calibration context
 - Regret-based family of estimators
- Adaptive Strategies using GP for the estimation
 - GP formulation of the regret
 - SUR (Stepwise Uncertainty Reduction) strategies of design enrichment
 - AK-MCS (Adaptive Kriging Monte Carlo Sampling) for batch selection of points

Computer code and inverse problem

- Input
- θ : Control parameter
- u: Environmental variables, realisations of r.v. U
- Output
- $\mathcal{M}(\theta, u)$: Quantity to be compared to observations

Regret-based formulations

- $(\theta, u) \longmapsto J(\theta, u)$ objective function, *strictly positive*
- Best performance given $u: J^*: u \mapsto \min_{\theta \in \Theta} J(\theta, u)$
- \rightarrow Find $\hat{\theta}$ such that $J(\hat{\theta}, U)$ "close to" $J^*(U) = J(\theta^*(U), U)$ with high enough probability

Regret-based formulations

- $(\theta, u) \longmapsto J(\theta, u)$ objective function, *strictly positive*
- Best performance given $u: J^*: u \mapsto \min_{\theta \in \Theta} J(\theta, u)$
- \rightarrow Find $\hat{\theta}$ such that $J(\hat{\theta}, U)$ "close to" $J^*(U) = J(\theta^*(U), U)$ with high enough probability
 - We define the regret as $r(\theta, u) = J(\theta, u) J^*(u)$ or $r(\theta, u) = \frac{J(\theta, u)}{J^*(u)}$
 - $\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}[r(\theta, U) \leq \alpha]$: Probability that the regret is below a level α

Regret-based family of estimators (Trappler et al., 2020)

$$\left\{ \hat{\theta} \mid \hat{\theta} = \argmax_{\theta \in \Theta} \Gamma_{\alpha}(\theta), \alpha > 1 \right\}$$

Adaptive strategies for the estimation of Γ_{α}

Let $Z \sim \mathrm{GP}(m_Z, \sigma_Z^2)$ be a GP constructed on $\Theta \times \mathbb{U}$ based on J. We use Z to estimate Γ_α

- Reduction of the augmented IMSE of $\Delta = Z \alpha Z^*$
- Improve estimation of the set $\{\Delta \leq 0\}$, using probability of coverage
- Sampling in the margin of uncertainty of $\{\Delta \leq 0\}$, and transformations to get a batch of points (AK-MCS)

Adaptive strategies for the estimation of the quantile of the regret

Under certain conditions, the ratio Z/Z^* is approximately log-normally distributed. Let us define $\Xi = \log Z/Z^*$

- Reduction of the augmented IMSE of Ξ
- Sampling in regions of interest, and transformations (QeAK-MCS (Razaaly, 2019))

Conclusion

Wrapping up

- Problem of a good definition of robustness
- ullet Tuning lpha or η reflects risk-seeking or risk-adverse strategies
- Strategies rely heavily on surrogate models, to embed aleatoric uncertainties directly in the modelling

Perspectives

- ullet Cost of computer evaluations o limited number of runs?
- In low dimension, CROCO very well-behaved.
- Dimensionality of the input space → reduction of the input space?

References i

References

Razaaly, N. (2019). Rare Event Estimation and Robust

Optimization Methods with Application to ORC Turbine

Cascade. These de doctorat, Université Paris-Saclay (ComUE).

Trappler, V., Arnaud, É., Vidard, A., and Debreu, L. (2020). Robust calibration of numerical models based on relative regret. *Journal of Computational Physics*, page 109952.

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\;min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = \mathbb{T}_U [J(\theta, U) = J^*(U)]$$

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\,min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = "\mathbb{P}_U [J(\theta, U) = J^*(U)]"$$

How to take into account values not optimal, but not too far either \longrightarrow relaxation of the equality with $\alpha>1$:

$$\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}\left[J(\theta, U) \leq \alpha J^{*}(U)\right]$$

Why the relative regret ?

- Relative regret
 - α -acceptability regions large for flat and bad situations ($J^*(u)$ large)
 - ullet Conversely, puts high confidence when $J^*(u)$ is small
 - No units → ratio of costs

Notions of regret

Let $J^*(u) = \min_{\theta \in \Theta} J(\theta, u)$ and $\theta^*(u) = \arg \min_{\theta \in \Theta} J(\theta, u)$. The regret r:

$$r(\theta, u) = J(\theta, u) - J^*(u) = -\log\left(\frac{e^{-J(\theta, u)}}{\max_{\theta} \{e^{-J(\theta, u)}\}}\right)$$
(1)
$$= -\log\left(\frac{\mathcal{L}(\theta, u)}{\max_{\theta \in \Theta} \mathcal{L}(\theta, u)}\right)$$
(2)

 \rightarrow linked to misspecified LRT: maximize the probability of keeping \mathcal{H}_0 : θ valid instead of arg max \mathcal{L} .

PEI criterion

$$Y \sim \mathsf{GP}(m_Y(\cdot), C_Y(\cdot, \cdot)) \text{ on } \Theta \times \mathbb{U}$$

$$\mathsf{PEI}(\theta, u) = \mathbb{E}_Y \left[\left[f_{\mathsf{min}}(u) - Y(\theta, u) \right]_+ \right] \tag{3}$$

where $f_{\min}(u) = \max \{ \min_i J(\theta_i, u_i), \min_{\theta \in \Theta} m_Y(\theta, u) \}$