Zkouška

Úvod

- Příklad: Technika důkazu indukcí a sporem
 - věta: Prvočísel je nekonečně mnoho.
 - důkaz sporem
 - kdyby p_1, \ldots, p_n byla všechna prvočísla
 - $\zeta := p_1 \cdot p_2 \cdot \ldots \cdot p_n$
 - $(\zeta+1) mod p_i=1 \implies \zeta+1$ není dělitelné žádným prvočíslem a je větší než všechna $p_i \implies \zeta+1$ by také muselo být prvočíslo $\mbox{\it 1}$
 - ullet věta: $orall n \in \mathbb{N}: 2^0+2^1+2^2+\cdots+2^n=2^{n+1}-1$
 - důkaz indukcí podle n
 - $2^0 = 2^1 1$
 - indukční krok
 - IP: $2^0 + 2^1 + 2^2 + \dots + 2^n = 2^{n+1} 1$
 - chceme: $2^0 + 2^1 + 2^2 + \cdots + 2^n + 2^{n+1} = 2^{n+2} 1$
 - $z \text{ IP: } 2^{n+1} 1 + 2^{n+1} = 2^{n+2} 1 \quad \Box$
- Definice: Operace s čísly: sumy, produkty, horní a dolní celá část
 - prázdná suma se rovná nule, prázdný produkt jedné
 - horní celá část se značí $\lceil x \rceil$, zaokrouhluje nahoru
 - dolní celá část se značí | x |, zaokrouhluje dolů
- Definice: Množinové operace: rovnost, inkluze, sjednocení, průnik, rozdíl, symetrická diference, potence (množina podmnožin), mohutnost (počet prvků)
 - symetrická diference $A \bigtriangleup B = (A \setminus B) \cup (B \setminus A)$
 - potence $2^A := \{B \mid B \subseteq A\}$
- Definice: Uspořádané k-tice a kartézský součin
 - uspořádaná dvojice (x, y)
 - lze zavést pomocí klasických množin jako $\{\{x\},\{x,y\}\}$

- uspořádaná k-tice (x_1, \ldots, x_k)
- kartézský součin $A \times B := \{(a,b) \mid a \in A, b \in B\}$

•
$$A^k := \underbrace{A \times A \times \cdots \times A}_k$$

Relace

- Definice: Relace mezi množinami, relace na množině
 - (binární) relace mezi množinami X,Y je podmnožina $X\times Y$
 - relace na množině X je podmnožina X^2
 - značení pro relaci R mezi $X,Y:xRy\equiv (x,y)\in R$
- Příklad: Příklady relací: prázdná, univerzální, diagonální
 - prázdná Ø
 - univerzální $X \times Y$
 - diagonální $\Delta_X := \{(x,x) \mid x \in X\}$, např. rovnost x=y
- Definice: Operace s relacemi: inverze, skládání
 - inverze
 - k relaci R mezi X,Y lze definovat inverzní relaci R^{-1} mezi Y,X, přičemž $R^{-1}:=\{(y,x)\mid (x,y)\in R\}$
 - skládání
 - pro relaci R mezi X,Y a relaci S mezi Y,Z lze definovat složenou relaci $T=R\circ S$ mezi X,Z
 - $xTz \equiv \exists y \in Y : xRy \land ySz$
 - $ullet R\circ \Delta_Y=R, \quad \Delta_X\circ R=R$
 - značení skládání funkcí: $(f \circ g)(x) = g(f(x))$
- Definice: Funkce (zobrazení) a jejich druhy: prosté (injektivní), na (surjektivní), vzájemně jednoznačné (bijektivní)
 - funkce z množiny X do množiny Y je relace A mezi X a Y t. ž. $(\forall x \in X)(\exists ! y \in Y): xAy$
 - funkce $f: X \rightarrow Y$ je...
 - prostá (injektivní) $\equiv
 ot \exists x, x' \in X : x
 eq x' \land f(x) = f(x')$
 - na Y (surjektivní) $\equiv (\forall y \in Y)(\exists x \in X): f(x) = y$

- vzájemně jednoznačná (bijektivní)
 - $\equiv (orall y \in Y)(\exists ! x \in X): f(x) = y$
 - taková funkce je tedy prostá i "na"
 - k takové funkci existuje inverzní funkce f^{-1} z Y do X
- Definice: Vlastnosti relací: reflexivita, symetrie, antisymetrie, transitivita
 - relace R na X je...
 - reflexivní $\equiv \forall x \in X : xRx$
 - $\Delta_X \subseteq R$
 - symetrická $\equiv \forall x,y \in X: xRy \implies yRx$
 - $R = R^{-1}$
 - antisymetrická $\equiv \forall x,y \in X: xRy \land yRx \implies x=y$
 - ullet $R\cap R^{-1}\subseteq \Delta_X$
 - tranzitivní $\equiv \forall x,y,z \in X: xRy \land yRz \implies xRz$
 - $R \circ R \subseteq R$
- Definice: Ekvivalence, ekvivalenční třída, rozklad množiny
 - relace R na X je ekvivalence = R je reflexivní & symetrická & tranzitivní
 - např. rovnost čísel, rovnost mod K, geometrická podobnost
 - ullet ekvivalenční třída prvku $x \in X : R[x] = \{y \in X \mid xRy\}$
 - množinový systém $\mathcal{S} \subseteq 2^X$ je rozklad množiny $X \equiv$
 - ullet $orall A \in \mathcal{S}: A
 eq \emptyset$
 - $\forall A, B \in \mathcal{S} : A \neq B \implies A \cap B = \emptyset$
 - $\bigcup_{A \in \mathcal{S}} A = X$
- Věta: Vztah mezi ekvivalencemi a rozklady
 - věta
 - (1) $\forall x \in X : R[x] \neq \emptyset$
 - (2) $\forall x,y \in X: \mathsf{bud}' \ R[x] = R[y]$, nebo $R[x] \cap R[y] = \emptyset$
 - (3) $\{R[x] \mid x \in X\}$ (množina všech ekvivalenčních tříd) určuje ekvivalenci R jednoznačně
 - důkaz

- (1) ekvivalence je reflexivní, tedy nutně platí $x \in R[x]$, tudíž je ta ekvivalenční třída neprázdná
- (2) dokážeme, že pokud nejsou disjunktní, tak se rovnají
 - platí $R[x] \cap R[y] \neq \emptyset$
 - dokazujeme R[x]=R[y], stačí nám $R[x]\subseteq R[y]$ (opačnou inkluzi lze dokázat podobným způsobem)
 - víme $\exists t \in R[x] \cap R[y]$
 - tedy platí xRt, tRx, yRt, tRy
 - chceme $\forall a \in R[x] : a \in R[y]$
 - dále aplikujeme tranzitivitu
 - $aRx \wedge xRt \implies aRt$
 - $aRt \wedge tRy \implies aRy$
- (3) na základě ekvivalenčních tříd lze jednoznačně určit, zda jsou prvky x a y ekvivalentní, neboť stačí najít ekvivalenční třídu obsahující y a zjistit, zda je v této třídě také x

Uspořádání

- Definice: Uspořádání částečné a lineární, uspořádaná množina, ostré uspořádání
 - relace R na množině X je (částečné) uspořádání = R je reflexivní
 & antisymetrická & tranzitivní
 - (částečně) uspořádaná množina (X,R)
 - zkráceně ČUM
 - R je (částečné) uspořádání na X
 - prvky $x,y\in X$ jsou porovnatelné $\equiv xRy\vee yRx$
 - uspořádání je lineární $\equiv \forall x,y \in X$ porovnatelné
 - (všechny prvky množiny jsou navzájem porovnatelné)
 - částečné uspořádání (nebo pouze uspořádání) je obecný pojem,
 některá taková uspořádání jsou navíc lineární
 - ostré uspořádání každému uspořádání \leq na X přiřadíme relaci < na X: $a < b \equiv a \leq b \land a \neq b$

- pozor ostré uspořádání není speciálním případem uspořádání (protože není reflexivní)
- vlastnosti ostrého uspořádání ireflexivní, antisymetrické, tranzitivní
- Příklady uspořádání: dělitelnost, inkluze podmnožin, lexikografické
 - dělitelnost (N⁺, \)
 - 2\4
 - 4,6 neporovnatelné
 - dělitelnost na reálných čísel (bez nuly) není uspořádání, protože $(-1)\setminus 1 \land 1\setminus (-1)$ (není antisymetrické)
 - inkluze $(2^X, \subseteq)$
 - $\{1\} \subseteq \{1,3\}$
 - {1,2}, {2,3} neporovnatelné
 - lexikografické uspořádání
 - abeceda: (X, \leq)
 - Df: (X^2, \leq_{lex})
 - $ullet (a_1,a_2) \leq_{lex} (b_1,b_2) \equiv a_1 < b_1 \lor (a_1=b_1 \land a2 \leq b_2)$
 - (X^k, \leq_{lex})
 - (X^*, \leq_{lex})
 - X* konečné posloupnosti prvků z X
 - pokud je slovo krátké, doplníme ho mezerami ze začátku abecedy
- Definice: Hasseův diagram, relace bezprostředního předchůdce
 - Hasseův diagram graficky zachycuje vztahy mezi prvky ČUM (porovnatelné prvky jsou spojeny, větší prvky jsou výše)
 - x je bezprostředním předchůdcem y v uspořádání \leq $\equiv x < y \land (\not\exists z : x < z \land z < y)$
- Definice: Minimální/maximální a nejmenší/největší prvek
 - prvek $x \in X$ je nejmenší $\equiv \forall y \in X : x \leq y$
 - prvek $x \in X$ je minimální $\equiv
 ot \exists y \in X : y < x$
 - x je nejmenší ⇒ x je minimální
 - v Hassově diagramu

- z minimálního prvku dolů nevede žádná spojnice
- nejmenší prvek je nejníž v diagramu, existuje do něj cesta z libovolného jiného prvku
- Věta: Konečná neprázdná uspořádaná množina má minimální a maximální prvek
 - důkaz
 - zvolíme $x_1 \in X$ libovolně
 - buď je x_1 minimální, nebo $\exists x_2 < x_1$
 - buď je x_2 minimální, nebo $\exists x_3 < x_2$
 - atd.
 - po konečně mnoha krocích nalezneme minimální prvek, protože jinak by X měla nekonečně mnoho různých prvků, což je spor s konečností
- Definice: Řetězec a antiřetězec
 - pro (X, \leq) ČUM:
 - $A\subseteq X$ je řetězec $\equiv orall a,b\in A:a,b$ jsou porovnatelné
 - $A\subseteq X$ je antiřetězec (nezávislá množina) $\equiv \not\exists a,b$ různé & porovnatelné
- Definice: parametry α a ω
 - $\omega(X, \leq)$ je délka nejdelšího řetězce = maximum z délek řetězců (výška uspořádání)
 - $\alpha(X, \leq)$ je délka nejdelšího antiřetězce (šířka uspořádání)
- Věta: O Dlouhém a Širokém
 - věta: pro každou konečnou ČUM (X,\leq) platí $lpha(X,\leq)\cdot\omega(X,\leq)\geq |X|$
 - důkaz: TODO

Kombinatorické počítání

- Věta: Počet funkcí mezi množinami
 - věta: počet $f:N o M=m^n$
 - pro |N| = n, |M| = m; m, n > 0

- důkaz indukcí podle n
 - n = 1 # $f = m = m^1$
 - ullet n o n+1
 - (n+1)-prvková N, m-prvková M
 - zvolíme $x \in N$
 - $ullet f': N\setminus \{x\} o M$
 - podle IP existuje m^n funkcí f'
 - zadat zobrazení f je totéž jako zadat hodnotu $f(x) \in M$ plus zobrazení f'
 - hodnotu f(x) lze zvolit m způsoby
 - celkem tedy $m^n \cdot m = m^{n+1}$
- jiný způsob důkazu pro každé x existuje m možností, počet x je n
- Věta: Počet prostých funkcí mezi množinami
 - věta: počet prostých $f:N o M=m^n$ (viz klesající mocnina níže)
 - důkaz indukcí podle n
 - podobně jako předchozí důkaz
 - ullet n o n+1
 - $f': N \setminus \{x\} \rightarrow M \setminus \{f(x)\}$
 - podle IP existuje $(m-1)^{\underline{n}}$ funkcí f'
 - hodnotu f(x) lze zvolit m způsoby
 - celkem tedy $(m-1)^{\underline{n}} \cdot m = m^{\underline{n+1}}$
 - ullet jiný způsob důkazu pro první x existuje m možností, pro každé další o jednu méně, počet x je n
- Definice: Klesající mocnina

$$ullet m^{\underline{n}} = \underbrace{m \cdot (m-1) \cdot (m-2) \cdot \ldots \cdot (m-n+1)}_n$$

- Definice: Charakteristická funkce podmnožiny
 - ullet pro podmnožinu A množiny X definujeme zobrazení

$$c_A:X o\{0,1\}$$

$$ullet c_A(x) = egin{cases} 1 & ext{pokud } x \in A \ 0 & ext{pokud } x
otin A \end{cases}$$

- Věta: Počet všech podmnožin
 - věta: $|2^N|=2^{|N|}$
 - důkaz: počet podmnožin = počet charakteristických funkcí = $2^{|N|}$
- Věta: Počet podmnožin sudé a liché velikosti
 - věta: Nechť $X \neq \emptyset$ je konečná množina, pak počet podmnožin $\mathcal S$ sudé velikosti se rovná počtu podmnožin $\mathcal L$ liché velikosti, což se rovná 2^{n-1} .
 - důkaz
 - ullet víme, že $\mathcal{S} \cup \mathcal{L} = 2^X$
 - stačí $|\mathcal{S}| = |\mathcal{L}|$
 - ullet sestrojíme $f:\mathcal{S}
 ightarrow\mathcal{L}$ bijekci
 - zvolíme si $a \in X$
 - $f(S) := S \triangle \{a\}$ (prvek a přidáme nebo odebereme, podle toho, zda je prvkem S, nebo není)
 - $ullet f(S) \in \mathcal{L}$
 - f má inverzi $f^{-1} = f$
- Věta: Počet permutací na množině
 - definice: $[n] = \{1, 2, ..., n\}$
 - věta: na množině [n] existuje n! permutací (podobně na každé nprvkové množině)
 - důkaz: počet prostých funkcí $[n] o [n] = n^{\underline{n}} = n!$
- Věta: Počet uspořádaných k-tic bez opakování a k-prvkových podmnožin
 - počet uspořádaných k-tic $|X^k|=|X|^k$, lze jej totiž vyjádřit jako počet funkcí f:[k] o X
 - u uspořádaných k-tic bez opakování hledáme prosté funkce, tedy $|X|^{\underline{k}}$
 - pomocí "počítání dvěma způsoby" odvodíme vzorec pro neuspořádané k-tice (k-prvkové podmnožiny)
 - uspořádaných k-tic bude k!-krát víc než těch neuspořádaných (každou neuspořádanou k-tici lze k! způsoby lineárně uspořádat)

- z toho vyplývá, že k-prvkových podmnožin (neuspořádaných ktic) bude $\frac{|X|^k}{k!}$
- Definice: Notace pro množinu všech k-prvkových podmnožin
 - $\binom{X}{k}$... množina všech k-prvkových podmnožin množiny X
- Definice: Kombinační číslo (binomický koeficient), Pascalův trojúhelník
 - kombinační číslo (binomický koeficient) $\binom{n}{k} := \frac{n^k}{k!} = \frac{n!}{k!(n-k)!}$
 - Pascalův trojúhelník n roste shora dolů, k zleva doprava
- Věta: Základní vlastnosti kombinačních čísel
 - $\binom{n}{k} = \binom{n}{n-k}$... každé k-prvkové podmnožině přiřadíme její doplněk
 - - zvolíme jeden prvek a a rozdělíme všechny k-prvkové podmnožiny podle toho, zda obsahují a, nebo ne
- Binomická věta
 - věta: $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$
 - důkaz
 - jeden člen výsledného součtu součin n věcí, z nichž každá bude x nebo y
 - z každé závorky vyberu x nebo y
 - výsledkem je člen $x^{n-k}y^k$
 - takových členů tam bude $\binom{n}{k}$
- Věta: Princip inkluze a exkluze
 - věta: (pro konečné množiny)

$$|igcup_{i=1}^n A_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{I \in inom{[n]}{k}} |igcap_{i \in I} A_i|$$

- důkaz
 - pro prvek x ve sjednocení spočítáme příspěvky k levé (vždy
 1) a pravé straně
 - nechť x patří do právě t množin
 - průniky k-tic

- k > t ... přispěje 0
- $k \leq t$... přispěje $(-1)^{k+1} {t \choose k}$
 - vybíráme k-tice množin z t-množin, do kterých prvek patří
 - minus jednička vychází ze vzorce
- cheeme $\sum_{k=1}^{t} (-1)^{k+1} {t \choose k} = 1$
- Ize upravit na $\sum_{k=1}^{t} (-1)^k {t \choose k} = -1$
- z binomické věty $0=(1-1)^t=\sum_{k=0}^t {t \choose k} (-1)^k$
- tedy bez prvního členu se součet rovná -1 \square
- druhý důkaz pomocí charakteristických funkcí
- Příklad: Problém šatnářky: počet permutací bez pevného bodu
 - Šatnářka n pánům vydá náhodně n klobouků (které si předtím odložili v šatně). Jaká je pravděpodobnost, že žádný pán nedostane od šatnářky zpět svůj klobouk?
 - jaká je pravděpodobnost, že náhodně zvolená permutace nebude mít žádný pevný bod
 - každá z n! permutací je stejně pravděpodobná
 - $\check{s}(n)$... počet permutací bez pevného bodu
 - pravděpodobnost je rovna $\check{s}(n)/n!$
 - S_n ... množina všech permutací
 - $\bullet \ \ A_i = \{\pi \in S_n \mid \pi(i) = i\}$
 - $A = \bigcup_{i=1}^n A_i$... (množina všech "špatných" permutací)
 - musíme vyjádřit velikosti průniků
 - permutací s k pevnými body je (n-k)!
 - (protože permutuji všechny prvky kromě těch pevných)
 - dosazením do principu inkluze a exkluze vyjde

$$|A| = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} (n-k)!$$

- (n) vyplývá z počtu prvků druhé sumy
- $\binom{n}{k}(n-k)! = \frac{n!}{k!}$
- $|A| = \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!} = n! \cdot \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}$
- $|A| = n!(\frac{1}{1!} \frac{1}{2!} + \frac{1}{3!} \dots + \frac{(-1)^{n+1}}{n!})$

•
$$\check{s}(n) = n! - |A| = n! \cdot (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!})$$

- závorka konverguje k e^{-1}
- závorka odpovídá pravděpodobnosti v problému šatnářky

•
$$\check{s}(n) = n! \cdot \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

- pravděpodobnost ... $\sum_{k=0}^n rac{(-1)^k}{k!} pprox e^{-1}$
- Věta: Odhad faktoriálu: $n^{n/2} \le n! \le ((n+1)/2)^n$
 - věta: Pro každé $n \geq 1$ platí $n^{\frac{n}{2}} \leq n! \leq (\frac{n+1}{2})^n$.
 - lemma: AG nerovnost $\frac{a+b}{2} \geq \sqrt{ab}$

•
$$(\sqrt{a}-\sqrt{b})^2 \geq 0$$

•
$$a-2\sqrt{ab}+b\geq 0$$

•
$$a+b \geq 2\sqrt{ab}$$

$$ullet rac{a+b}{2} \geq \sqrt{ab}$$

- důkaz
 - $(n!)^2$ lze přerovnat jako $(1\cdot n)(2\cdot (n-1))\dots ((n-1)\cdot 2)(n\cdot 1)$
 - to se rovná $\prod_{i=1}^n i(n+1-i)$
 - ullet zvolíme-li v AG nerovnosti a=i,b=n+1-i, dostáváme

$$ullet$$
 $\sqrt{i(n+1-i)} \leq rac{i+n+1-i}{2} = rac{n+1}{2}$

z toho vyplývá

$$n!=\prod_{i=1}^n\sqrt{i(n+1-i)}\leq\prod_{i=1}^nrac{n+1}{2}=\left(rac{n+1}{2}
ight)^n$$

- pro důkaz druhé nerovnosti uvažme součin i(n+1-i)
- ullet pro i=1 a i=n je roven n
- pro ostatní i máme součin dvou čísel, z nichž větší je alespoň $\frac{n}{2}$ a menší je alespoň 2, tedy součin je také nejméně n
- platí tedy $i(n+1-i) \ge n$
- tudíž

$$(n!)^2 = \prod_{i=1}^n i(n+1-i) \geq \prod_{i=1}^n n = n^n$$

- tedy platí $n! \geq n^{\frac{n}{2}}$
- Věta: Odhad kombinačního čísla: $\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq n^k$
 - horní odhad zřejmý z toho, že kombinační číslo lze zapsat jako $\frac{n^k}{k!}$
 - dolní odhad dokážeme pomocí $\binom{n}{k} = \prod_{i=0}^{k-1} rac{n-i}{k-i}$
 - $\frac{n-i}{k-i} \geq \frac{n}{k}$, což dokážeme:
 - $kn ki \ge kn in$
 - $in \geq ki$
 - $n \ge k$, což platí
- Věta: Odhad prostředního kombinačního čísla:

$$4^n/(2n+1) \leq {2n \choose n} \leq 4^n$$

- věta: $\frac{4^n}{2n+1} \leq {2n \choose n} \leq 4^n$
- ullet kombinačních čísel v jednom řádku Pascalova trojúhelníku je 2n+1
- odhadujeme prostřední tedy největší z nich
- $\frac{4^n}{2n+1}$ je průměr všech kombinačních čísel v řádku
- 4ⁿ je jejich součet

Grafy

- Definice: Graf, vrchol, hrana, V(G), E(G)
 - Graf je (V,E), kde V je konečná neprázdná množina vrcholů a $E\subseteq \binom{V}{2}$ je množina hran.
 - Lze značit jako G=(V,E). Potom V(G) je množina vrcholů a E(G) je množina hran.
- Definice: Standardní grafy: úplný, prázdný, cesta, kružnice
 - úplný graf K_n
 - $V(K_n) := [n]$
 - ullet $E(K_n):=inom{V(K_n)}{2}$
 - prázdný graf E_n
 - $V(E_n) := [n]$
 - $E(E_n) = \emptyset$

- cesta P_n
 - $V(P_n) := \{0, \ldots, n\}$
 - $E(P_n) := \{\{i, i+1\} \mid 0 \le i < n\}$
 - délka cesty se měří v počtu hran
- kružnice/cyklus C_n
 - n > 3
 - $V(C_n) := \{0, \dots, n-1\}$
 - $E(C_n) := \{\{i, (i+1) \bmod n\} \mid 0 \le i < n\}$
- Definice: Bipartitní graf, úplný bipartitní graf
 - bipartitní graf
 - partity grafu jednotlivé "strany"
 - Df: Graf (V, E) je bipartitní $\equiv \exists L, P \subseteq V$ t. ž.:
 - $L \cup P = V$
 - $L \cap P = \emptyset$
 - $\forall e \in E : |e \cap L| = 1 \quad (\land |e \cap P| = 1)$
 - nebo $E(G) \subseteq \{\{x,y\} \mid x \in L, y \in P\}$
 - úplný bipartitní $K_{m,n}$
 - každý prvek nalevo je spojený s každým napravo
 - prvky na jedné straně mezi sebou nejsou spojeny
- Definice: Isomorfismus grafů
 - grafy jsou izomorfní = existuje bijekce, která zachovává vlastnost být spojen hranou
 - v podstatě stačí přejmenovat vrcholy a dostaneme dva stejné grafy
 - značení ≅
 - ≅ je ekvivalence na libovolné množině grafů
 - neexistuje množina všech grafů (protože neexistuje množina všech množin)
- Definice: Stupeň vrcholu, k-regulární graf, skóre grafu
 - stupeň vrcholu počet hran, kterých se účastní daný vrchol
 - graf je k-regulární, pokud je stupeň všech vrcholů grafu roven k

- skóre grafu = posloupnost stupňů vrcholů (až na pořadí) →
 jakmile dvěma grafům vyjde jiné skóre, nemohou být izomorfní
- Věta: Vztah mezi součtem stupňů a počtem hran, princip sudosti
 - věta: Pro každý graf (V,E) platí $\sum_{v \in V} \deg(v) = 2 \cdot |E|$.
 - důkaz: každá hrana spojuje dva vrcholy (do součtu stupňů přispívá 2×)
 - důsledek: princip sudosti
 - součet stupňů je sudý

 počet vrcholů lichého stupně je sudý
- Věta o skóre
 - věta: Posloupnost $D=d_1\leq d_2\leq \cdots \leq d_n$ pro $n\geq 2$ je skóre grafu $\iff D'=d'_1,\ldots,d'_{n-1}$ je skóre grafu $\wedge 0\leq d_n\leq n-1.$
 - ullet přičemž $d_i' = egin{cases} d_i & ext{pro } i < n d_n \ d_i 1 & ext{pro } i \geq n d_n \end{cases}$
 - ullet poznámka: pro n=1 je posloupnost D skóre $\iff d_1=0$
 - důkaz ←
 - předpokládám existenci G'
 - vytvořím G doplněním vrcholu v_n a hran k d_n posledním vrcholům v grafu G'
 - tak vznikne graf G se skórem D
 - důkaz ⇒
 - ullet předpokládejme, že D je skóre grafu
 - uvažme množinu $\mathcal G$ všech grafů se skórem D
 - pomocné tvrzení: v množině \mathcal{G} existuje graf G_0 , v němž je vrchol v_n spojen s posledními d_n vrcholy
 - stačí dokázat pomocné tvrzení
 - pokud $d_n=n-1$ (tedy v_n je spojen se všemi ostatními vrcholy), vyhovuje pomocnému tvrzeni kterýkoliv graf z ${\cal G}$ a jsme hotovi
 - jinak definujeme j(G), což je index toho z vrcholů nespojených s v_n , který má největší index
 - buď G_0 graf, pro něž je j(G) nejmenší možné

- dokážeme, že $j(G_0) = n d_n 1$
- ullet pro spor předpokládejme, že $j>n-d_n-1$
- vrchol v_n je spojen s d_n vrcholy, takže musí existovat i < j takové, že v_i je spojen s v_n
- vzhledem k tomu, že $\deg(v_i) \leq \deg(v_j)$, existuje vrchol v_k , který je spojený hranou s v_j , ale nikoli s v_i
- Ize vytvořit G', kde přepneme hrany
 - v G_0 jsou spojeny vrcholy s indexy j, k; i, n
 - v G' tyto hrany nahradíme hranami j, n; i, k
 - skóre zůstane zachováno, ale j(G') je nižší než $j(G_0)$, což je spor
- Definice: Podgraf, indukovaný podgraf
 - graf G'=(V',E') je podgrafem grafu G=(V,E) (značíme $G'\subseteq G)\equiv V'\subseteq V\wedge E'\subseteq E$
 - graf G'=(V',E') je indukovaným podgrafem grafu G=(V,E) $\equiv V'\subseteq V \wedge E'=E\cap {V'\choose 2}$
 - "podgraf indukovaný množinou vrcholů"
 - ullet $G[A]:=(A,E(G)\cap inom{A}{2})$, kde $A\subseteq V(G)$
- Definice: Cesta, kružnice, sled a tah v grafu
 - cesta v grafu
 - ullet v grafu existuje podgraf izomorfní s P_n pro nějaké n
 - $G' \subseteq G : G' \cong P_n$
 - v grafu existuje určitá posloupnost navzájem různých vrcholů a hran
 - $(v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n)$
 - v_0, \ldots, v_n jsou navzájem různé vrcholy
 - e_1, \ldots, e_n jsou hrany
 - $\bullet \ \ \forall i: e_i = \{v_{i-1}, v_i\}$
 - kružnice v grafu
 - ullet v grafu existuje podgraf izomorfní s C_n pro nějaké n
 - $G' \subseteq G: G' \cong C_n$

- v grafu existuje posloupnost navzájem různých vrcholů a hran
 - $(v_0, e_0, v_1, e_1, \dots, v_{n-1}, e_{n-1}, v_0)$
 - v_0, \ldots, v_{n-1} jsou navzájem různé vrcholy
 - e_0, \ldots, e_{n-1} jsou hrany
 - $\bullet \ \ \forall i: e_i = \{v_i, v_{(i+1) \bmod n}\}$
- sled v grafu (walk) můžou se opakovat vrcholy i hrany
 - $(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$
 - $\bullet \ \ \forall i: e_i = \{v_{i-1}, v_i\}$
- tah v grafu můžou se opakovat vrcholy, hrany ne
- Definice: Souvislý graf, relace dosažitelnosti (ekvivalence), komponenty souvislosti
 - ullet graf G je souvislý $\equiv orall u,v\in V(G):$ existuje cesta v G s krajními vrcholy u,v
 - dosažitelnost v G je relace \sim na V(G) t. ž. $u \sim v \equiv$ existuje cesta v G s krajními vrcholy u,v
 - relace \sim je ekvivalence
 - tranzitivita se dokazuje pomocí dvou posloupností vrcholů ($x\sim y$ a $y\sim z$) a následně zvolení nejzazšího vrcholu z posloupnosti $y\sim z$, který je obsažen v posloupnosti $x\sim y$ a v tomto vrcholu se posloupnosti slepí (přičemž části za ním v první posloupnosti a před ním v druhé posloupnosti se ustřihnou)
 - komponenty souvislosti jsou podgrafy indukované třídami ekvivalence \sim
 - komponenty jsou souvislé
- Věta: Dosažitelnost sledem je totéž jako dosažitelnost cestou
 - lemma: \exists cesta mezi $u, v \iff \exists$ sled mezi u, v
 - důkaz ⇒ triviální
 - důkaz ←
 - uvažme sled S

- kdyby se ve sledu neopakovaly vrcholy, je to cesta
- pokud $v_k = v_l$, kde k < l, vyřízneme část sledu mezi nimi \rightarrow stále máme sled, který je kratší než ten původní
- opakujeme, dokud S není cesta
- Definice: Matice sousednosti
 - matice sousednosti A(G) grafu G
 - matice $n \times n$ nul a jedniček
 - při očíslování vrcholů $v_1,\ldots,v_n\in V(G)$
 - $\bullet \ \ A_{ij}:=[\{v_i,v_j\}\in E]$
 - definice: indikátor $[\psi]$ je 0/1 podle platnosti výroku ψ
 - tzn. $A_{ij}=1$, pokud spolu v_i,v_j tvoří hranu (jinak 0)
 - A je symetrická, součty řádků/sloupců jsou stupně vrcholů
- Věta: Počet sledů délky k lze získat z k-té mocniny matice sousednosti
 - ullet lemma: $A_{ij}^t=$ # sledů délky t z v_i do v_j
 - důkaz: indukcí podle t
 - t=1 ... hrana = sled délky 1
 - $t \rightarrow t+1$
 - ullet $A_{ij}^{t+1}=(A^tA)_{ij}=\sum_k A_{ik}^tA_{kj}$
 - ullet A_{ik}^t ... (z IP) počet sledů délky t z v_i do v_k
 - A_{kj} ... tvoří v_k, v_j hranu?
 - suma se tedy rovná součtu počtu sledů délky t z v_i do v_k pro ta k_i kde v_k, v_i tvoří hranu
 - to se rovná počtu sledů délky t+1 z v_i do v_i
- Definice: Vzdálenost v grafu (grafová metrika)
 - vzdálenost (grafová metrika) v souvislém grafu G
 - $ullet d_G:V^2 o \mathbb{R}$
 - $d_G(u,v) := \mathsf{min.} \ \mathsf{z} \ \mathsf{d\'elek}$ (počtu hran) všech cest mezi u,v
 - vlastnosti metriky (funkce je metrika = chová se jako vzdálenost)
 - $ullet d_G(u,v) \geq 0$
 - $ullet d_G(u,v)=0 \iff u=v$

platí trojúhelníková nerovnost

$$d_G(u,w) \leq d_G(u,w) + d_G(w,v)$$

- $\bullet \ \ d_G(v,u)=d_G(u,v)$
- Věta: Trojúhelníková nerovnost pro vzdálenost
 - $\bullet \ \ \forall u,v,w \in V(G): d(u,v) \leq d(u,w) + d(w,v)$
- Definice: Grafové operace: přidání/odebrání vrcholu/hrany, dělení hrany, kontrakce hrany
 - přidání vrcholu, přidání hrany, smazání hrany vždy pouze úprava odpovídající množiny
 - odebrání vrcholu musím odebrat odpovídající hrany
 - výsledný graf je podgraf indukovaný množinou všech vrcholů bez toho odebíraného
 - $G-v=G[V\setminus \{v\}]$
 - dělení hrany (pomocí nového vrcholu): G % e
 - $G\%e = (V \cup \{x\}, E \setminus \{\{u,v\}\} \cup \{\{u,x\}, \{v,x\}\})$
 - kontrakce hrany: G.e
 - z vrcholů odebereme u, v, přidáme x
 - z hran odebereme hranu u,v, v hranách s u nebo v nahradíme daný vrchol vrcholem x
- Definice: Otevřený a uzavřený eulerovský tah
 - eulerovský tah obsahuje všechny vrcholy a hrany grafu
 - tah může být uzavřený (končí, kde začal), nebo otevřený
 - graf je eulerovský \equiv existuje v něm uzavřený eulerovský tah
- Věta o existenci uzavřeného eulerovského tahu
 - věta: graf G je eulerovský $\iff G$ je souvislý a každý jeho vrchol má sudý stupeň
 - důkaz ⇒
 - souvislost plyne z dosažitelnosti libovolných dvou vrcholů po eulerovském tahu (tah je speciální případ sledu – když někde vede sled, tak tam vede i cesta)
 - kdykoliv jsme vrchol navštívili, vstupujeme a vystupujeme do něj po jiných hranách (hrany incidentní s v rozdělíme do

disjunktních dvojic \implies deg(v) je sudý)

- důkaz ⇐
 - uvážíme nejdelší tah T (respektive jeden z nejdelších tahů)
 - sporem dokážeme, že T je uzavřený
 - ullet kdyby nebyl uzavřený, obsahuje lichý počet hran incidentních s počátečním vrcholem v
 - $m{v}$ má sudý stupeň \implies existuje nepoužitá hrana incidentní s $m{v}$
 - T lze prodloužit o nepoužitou hranu \implies existuje delší tah au
 - sporem dokážeme, že T obsahuje všechny hrany
 - kdyby pro nějaké u tah T neobsahoval hranu $\{u,v\}$
 - (vrchol v nemusí být na tahu T)
 - při nějakém průchodu vrcholem u lze uzavřený tah rozpojit a na jeho konec přidat hranu $\{u,v\}$, čímž vznikne delší tah $\mbox{\em 4}$
 - sporem dokážeme, že T obsahuje všechny vrcholy
 - mějme vrchol $v \notin T$
 - zvolíme $u \in T$ libovolně
 - ullet graf je souvislý \Longrightarrow existuje cesta P mezi u,v
 - tedy musí existovat "nenakreslená" hrana spojující "nakreslený" a "nenakreslený" vrchol
 - formálně $\exists r,s \in P: r \in T, s
 otin T, \{r,s\} \in E(G)$
 - ullet to je stejná situace jako v předchozím sporu ${m 4}$
- Definice: Orientovaný graf, podkladový graf, vstupní a výstupní stupeň, vyváženost vrcholu
 - orientovaný graf ... $(V,E): E \subseteq V^2 \setminus \{(x,x) \mid x \in V\}$
 - nepovolíme smyčky (v podstatě zakážeme diagonálu na relaci)
 - podkladový graf je neorientovaný graf založený na tom původním orientovaném

- ullet pro orientovaný G=(V,E) existuje podkladový $G^0=(V,E^0)$, kde $\{u,v\}\in E^0\equiv (u,v)\in Eee (v,u)\in E$
- vstupní a výstupní stupeň $\deg^{\rm in}, \deg^{\rm out}$ (hrany vedoucí do vrcholu / z vrcholu)
- vrchol je vyvážený $\equiv \deg^{\mathrm{in}}(v) = \deg^{\mathrm{out}}(v)$
- graf je vyvážený ≡ všechny vrcholy jsou vyvážené
- součet vstupních stupňů = součet výstupních stupňů = počet hran
- Definice: Silná a slabá souvislost orientovaných grafů
 - orientovaný graf je slabě souvislý = jeho podkladový graf je souvislý
 - ullet o. graf je silně souvislý \equiv existuje orientovaná cesta mezi každými dvěma vrcholy
 - silná souvislost ⇒ slabá souvislost
- Věta: Uzavřené eulerovské tahy v orientovaných grafech
 - věta: pro orientovaný graf G platí: (1) G je vyvážený a slabě souvislý \iff (2) G je eulerovský \iff (3) G je vyvážený a silně souvislý
 - důkaz
 - $3 \Longrightarrow 1 \checkmark$
 - ullet 2 \Longrightarrow 3
 - vyváženost hran dovnitř je v každém vrcholu stejně jako hran ven
 - silná souvislost pro každou dvojici vrcholů existuje orientovaný tah $u \to v \implies$ existuje orientovaná cesta $u \to v$
 - \bullet 1 \Longrightarrow 2
 - stejný princip jako u věty o existenci uzavřeného eulerovského tahu v neorientovaném grafu
 - sudý stupeň vrcholu v podstatě odpovídá vyváženosti vrcholu

Stromy

- Definice: Strom, les, list
 - strom je souvislý graf bez kružnic (= acyklický)
 - les je acyklický graf
 - list je vrchol stupně 1
 - strom o jednom vrcholu nemá žádný list
- Lemma o koncovém vrcholu
 - lemma: Každý strom s aspoň 2 vrcholy má aspoň 1 list (respektive aspoň dva listy).
 - důkaz
 - nechť P je nejdelší cesta ve stromu
 - dokážeme, že koncové vrcholy cesty P jsou listy
 - kdyby z koncového vrcholu v vedla hrana do vrcholu, který neleží na cestě P, dala by se cesta P o tuto hranu prodloužit, což by byl spor s tím, že jde o nejdelší cestu
 - kdyby z koncového vrcholu v vedle hrana do vrcholu, který leží na cestě P, byla by v grafu kružnice, což by byl spor s acykličností stromu
 - tudíž musí být oba koncové vrcholy listy
- Lemma o trhání listů
 - lemma: Je-li v list grafu G, pak G je strom, právě když G-v je strom.
 - důkaz ⇒
 - G-v je souvislý, protože pokud mezi dvěma vrcholy existovala cesta v G, tak existuje i v G-v, neboť list nikdy není vnitřním vrcholem cesty
 - G-v je acyklický, protože odstraněním vrcholu a hrany nemůže vzniknout kružnice
 - jiná formulace: kdyby $C\subseteq G-v\subseteq G$, pak $C\subseteq G$ (kružnice by existovala v původním grafu, což by byl spor)
 - důkaz ←

- G je souvislý, protože přidáním listu nerozbiju cestu a díky tranzitivitě dosažitelnosti je nový list v dosažitelný ze všech vrcholů grafu stejně jako jeho soused s, ke kterému jsme v připojili
- G je acyklický, protože list se nemůže účastnit kružnice, takže pokud G-v neměl kružnici, tak ani G nemá kružnici
- Věta: Pět ekvivalentních charakteristik stromu
 - pro graf G jsou následující tvrzení ekvivalentní:
 - 1. G je souvislý a acyklický (strom)
 - 2. mezi vrcholy u, v existuje právě jedna cesta (jednoznačně souvislý)
 - 3. G je souvislý a po smazání libovolné jedné hrany už nebude souvislý (minimální souvislý)
 - 4. G je acyklický a po přidání libovolné jedné hrany vznikne cyklus (maximální acyklický)
 - 5. G je souvislý a platí pro něj Eulerova formule |E(G)| = |V(G)| 1
 - důkaz
 - \bullet 1 \Longrightarrow 2
 - indukcí otrháváním listů
 - IP: G-l je strom $\implies G-l$ je jednoznačně souvislý
 - dokážeme, že G je jednoznačně souvislý
 - ullet přidání listu nevytvoří nové cesty mezi vrcholy, které byly už vG-l, protože list nemůže být vnitřním vrcholem cesty
 - ullet každá cesta do l vede přes souseda s
 - jelikož v původním grafu do souseda existovala právě jedna cesta mezi libovolným v a sousedem s, musí existovat právě jedna cesta mezi libovolným v a listem l
 - existuje bijekce mezi l,v-cestami v G a s,v-cestami v G-l

- podobná indukce
- G-l je mimimální souvislý
- minimální souvislost je zachována
 - když zruším hranu s, l, tak se to rozpadne
 - když zruším jinou hranu, tak se to rozpadne taky, protože G-l by se rozpadlo a (nově přidaný) list není vrcholem žádné cesty

\bullet 1 \Longrightarrow 4

- opět indukce
- když přidám hranu mezi vrcholy vG-l, tak to řeší IP
- když přidám hranu mezi l a vrcholem v G-l, tak vzniká cyklus
 - protože G je souvislý, tudíž mezi l a libovolným jiným vrcholem už nějaká cesta existuje

\bullet 1 \Longrightarrow 5

- indukcí podle n := |V(T)|
- n = 1 0 = |E(T)| = |V(T)| 1 = 1 1
- $n \rightarrow n+1$
 - T je strom na n+1 vrcholech
 - T má list
 - ullet T':=T-l je strom na n vrcholech
 - z |E(T')| = n 1
 - vrácení l zvýší počet hran i vrcholů o 1
 - takže |E(T)| = |E(T')| + 1 = n = (n+1) 1

\bullet 2 \Longrightarrow 1

- ullet obměnou, tedy $\neg 1 \implies \neg 2$
- když graf není souvislý, tak není jednoznačně souvislý
- když graf není acyklický, tak má kružnici, přičemž mezi vrcholy na kružnici neexistuje jednoznačná cesta

\bullet 3 \Longrightarrow 1

- obměnou, tedy $\neg 1 \implies \neg 3$
- když graf není souvislý, tak není minimální souvislý

 když má kružnici, tak není minimální souvislý, protože můžu odstranit hranu na kružnici a souvislost se zachová

\bullet 4 \Longrightarrow 1

- obměnou, tedy $\neg 1 \implies \neg 4$
- když není acyklický, není maximální acyklický
- když není souvislý, můžu přidat hranu (most) a nevytvořím kružnici, takže graf nemohl být maximální acyklický
- $5 \implies 1$
 - dokážeme, že souvislý graf splňující Eulerovu formuli má list
 - součet stupňů je roven dvojnásobku počtu hran
 - $\sum \deg(v_i) = 2|E| = 2n-2$ (z Eulerovy formule)
 - průměrný stupeň $= rac{2n-2}{n} < 2$
 - graf je souvislý a netriviální, takže alespoň jeden vrchol musí mít stupeň 1 ⇒ graf má list
 - důkaz indukcí podle n := |V(G)|
 - n=1 platí triviálně (graf je strom, takže implikace platí)
 - $n \rightarrow n+1$
 - mějme graf G, který splňuje (5) a má list v viz výše
 - G-v pořád splňuje (5)
 - podle IP je G-v strom
 - \implies *G* je strom
- Definice: Kostra grafu
 - kostra grafu je podgraf, který obsahuje všechny vrcholy původního grafu a je to strom
- Věta: Graf má kostru, právě když je souvislý.
 - lemma: G má kostru $\iff G$ je souvislý
 - $\bullet \implies$

- kostra je strom, strom je souvislý, každé dva vrcholy jsou spojené cestou
- kostra je podgrafem G, takže tyto cesty existují i v G, tudíž i
 G je souvislý
- ==
 - G je souvislý
 - když je acyklický, tak mám kostru
 - když není acyklický, tak odebírám hrany na cyklech tak dlouho, dokud není acyklický, čímž dostanu kostru

Rovinné kreslení grafů

- Definice: Rovinné nakreslení grafu a jeho stěny (neformálně)
 - (nakreslení grafu, aby se hrany nekřížily)
 - vrcholy = body v rovině (navzájem různé)
 - hrany = křivky, které se neprotínají a jejich společnými body jsou jejich společné vrcholy
 - definice křivky
 - $ullet f:[0,1] o \mathbb{R}$
 - spojitá, prostá
 - = oblouk
 - stěny nakreslení
 - části, na které nakreslení grafu rozděluje rovinu
 - stěnou je i vnější stěna (zbytek roviny)
 - hranice stěny skládá se z hran
 - hranice stěny je nakreslení uzavřeného sledu
- Definice: Rovinný graf, topologický graf
 - graf je rovinný, pokud má alespoň jedno rovinné nakreslení
 - topologický graf je uspořádaná dvojice (graf, nakreslení)
- Příklad: K_5 a $K_{3,3}$ nejsou rovinné.
 - K_5 nakreslíme K_4 (jeden vrchol doprostřed, ostatní kolem něj) a hledáme, kam umístit pátý vrchol (zjistíme, že to nejde)

- podobně $K_{3,3}$
- Ize dokázat pomocí vět o maximálních počtech hran
- Věta: Hranice stěny je nakreslením uzavřeného sledu (bez důkazu).
- Definice: Stereografická projekce
 - máme rovinu, na ní je položená sféra (koule) tak, že se jí dotýká právě v jednom bodě (ten označím jako jižní pól)
 - vedu polopřímku ze severního pólu skrz promítaný bod, průsečík s rovinou dává obraz daného bodu
 - tak dostávám spojitou bijekci mezi sférou (bez severního pólu) a \mathbb{R}^2
- Věta: Graf jde nakreslit do roviny, právě když jde nakreslit na sféru.
 - důkaz: stereografická projekce je bijekce mezi sférou bez severního pólu a rovinou
- Příklad: Vnější stěnu lze zvolit.
 - vnější stěna se pozná podle toho, že obsahuje severní pól
 - když sféru pootočím, tak vnější stěnu můžu zvolit
- Kuratowského věta (bez důkazu): Graf je nerovinný, právě když obsahuje podgraf izomorfní s dělením K_5 nebo $K_{3,3}$.
- Věta: Eulerova formule pro souvislé rovinné grafy (v+f=e+2)
 - věta: Nechť G je souvislý graf nakreslený do roviny, $v:=|V(G)|, e:=|E(G)|, f:={\sf počet stěn nakreslení, potom} \\ v+f=e+2.$
 - ullet důkaz: indukcí podle e
 - e = v 1 (G je strom)
 - f = 1
 - v+1=v-1+2 \checkmark
 - $e-1 \rightarrow e$
 - ullet mějme graf G s e hranami
 - zvolím si libovolnou hranu x na kružnici
 - G' := G x
 - v' = v, e' = e 1, f' = f 1
 - z IP: v' + f' = e' + 2

- po dosazení: v + f 1 = e 1 + 2
- k oběma stranám přičteme jedničku
- v+f=e+2
- Věta: Maximální rovinný graf je triangulace.
 - (pokud má aspoň 3 vrcholy)
 - definice: maximální rovinný graf je rovinný graf, který přidáním libovolné hrany přestane být rovinný
 - G musí být souvislý kdyby nebyl, tak můžu spojit komponenty (pomocí vrcholů na hranici stěny, v níž leží komponenta) a graf nepřestane být rovinný, což je spor s maximální rovinností
 - hranicí stěny je kružnice \implies je to \triangle
 - kdyby nebyl, tak na kružnici jsou nesousední vrcholy, které můžu spojit a graf nepřestane být rovinný
 - hranicí stěny není kružnice
 - nějaký vrchol na hranici se opakuje
 - tento vrchol můžu odstranit → hranice se rozpadne na komponenty → vrcholy v různých komponentách můžu spojit bez ztráty rovinnosti
- Věta: Maximální počet hran rovinného grafu
 - počet hran maximálního rovinného grafu
 - každá stěna přispěje třemi hranami
 - každá hrana patří ke dvěma stěnám
 - počítáme "strany hran": 3f=2e
 - $f = \frac{2}{3}e$
 - $\bullet \ v + \frac{2}{3}e = e + 2$
 - e = 3v 6
 - věta: V každém rovinném grafu s aspoň 3 vrcholy je $|E| \leq 3|V| 6$.
 - důkaz
 - ullet doplníme do G hrany, až získáme maximální rovinný G'
 - e' = 3v 6 (vrcholy nepřidáváme)
 - $e \le e' = 3v 6$

- důsledek
 - průměrný stupeň vrcholu v rovinném grafu je menší než 6

•
$$\sum \deg(\xi) = 2e \le 6v - 12$$

- průměrný stupeň $\leq rac{6v-12}{v} < 6$
- Věta: V rovinném grafu existuje vrchol stupně nejvýše 5.
 - viz věta a důsledek výše
 - kdyby měly všechny vrcholy stupeň alespoň šest, tak by průměrný stupeň nemohl být ostře menší než 6
- Věta: Počet hran a vrchol nízkého stupně v rovinných grafech bez trojúhelníků
 - maximální rovinné grafy bez trojúhelníků mají stěny čtvercové, pětiúhelníkové, nebo to může být strom ve tvaru hvězdy
 - ullet pro čtvercově stěny platí 4f=2e, pro pětiúhelníkové 5f=2e
 - obecně $4f \leq 2e
 ightarrow f \leq rac{1}{2}e$
 - $v + \frac{1}{2}e \ge e + 2$
 - $ullet e \leq 2v-4$
 - průměrný stupeň $\leq \frac{4v-8}{v} < 4$
 - existuje vrchol stupně max. 3

Barvení grafů

- Definice: Obarvení grafu k barvami, barevnost
 - obarvení grafu G k barvami (k-obarvení) je $c:V(G) \to [k]$ t. ž. kdykoli $\{x,y\} \in E(G)$, pak $c(x) \neq c(y)$
 - barevnost $\chi(G)$ grafu $G:=\min k:\exists$ k-obarvení grafu G
 - pozorování: kdykoli $H\subseteq G$, pak $\chi(H)\leq \chi(G)$
- Příklad: Barevnost úplných grafů, cest a kružnic
 - úplné grafy ... $\chi(K_n) = n$
 - cesty ... $\chi(P_n)=2$ pro $n\geq 1$
 - sudé kružnice ... $\chi(C_{2k})=2$
 - liché kružnice ... $\chi(C_{2k+1})=3$

- Věta: Ekvivalentní tvrzení: graf má barevnost nejvýše 2, graf je bipartitní, graf neobsahuje lichou kružnici.
 - věta: $\chi(G) \leq 2 \iff G$ je bipartitní $\iff G$ neobsahuje lichou kružnici
 - důkaz barevnosti bipartitních grafů
 - jednu partitu obarvím jednou barvou, druhou druhou barvou
 - barvy určují partity
 - důkaz barevnost ← lichá kružnice
 - máme dokázáno obměnou (když má lichou kružnici, nejde obarvit dvěma barvami)
 - =
 - kdyby G byl nesouvislý: obarvíme po komponentách
 - jinak: nechť T je kostra grafu G, pak existuje obarvení kostry (dvěma barvami)
 - sporem: kdyby existovala hrana, které tohle obarvení přiřklo stejné barvy koncových vrcholů, pak v grafu existuje lichá kružnice (spor)
 - mezi stejnobarevnými vrcholy bude cesta sudé délky, protože mají stejnou barvu a jsou ve stromě
 - tedy spojením stejnobarevných vrcholů vznikne lichá kružnice
- Věta: Barevnost ≥ klikovost
 - definice: klikovost grafu $\kappa(G)$ je maximální k takové, že v grafu jako podgraf existuje úplný graf K_k
 - $\chi(G) \geq \kappa(G)$
 - zjevně platí
- Příklad: Princip barvení indukcí: stromy jsou 2-obarvitelné, rovinné grafy 6-obarvitelné
 - barvení stromu
 - ullet strom rozdělíme do vrstev podle vzdálenosti od kořenu v
 - $c(x) = (d(v, x) \mod 2) + 1$

- tvrzení: každý strom je 2-obarvitelný
- důkaz: indukcí podle počtu vrcholů (základní případ pro 1 vrchol), postupně přidáváme (odebrané) listy, listu dáváme opačnou barvu než má vrchol, kam ho připojujeme, tedy $c(l)=3-c^\prime(s)$
- barvení rovinného grafu viz následující věta
- Věta: Barevnost ≤ maximální stupeň + 1
 - definice: graf G je k-degenerovaný $\equiv \exists \leq$ lineární uspořádání na V(G) t. ž. $\forall v \in V(G): |\{u < v \mid \{u,v\} \in E(G)\}| \leq k$
 - vrcholy lze uspořádat tak, že z každého vrcholu doleva vede nejvýše k hran
 - vrcholy skládám zprava doleva tak, jak je odtrhávám
 - stromy 1-deg., rovinné 5-deg., rovinné bez trojúhelníků 3deg.
 - $\Delta := \max \deg(v)$... graf je Δ -degenerovaný
 - graf je k-degenerovaný $\implies \chi \le k+1$
 - barvím zleva, nejvýše k barev může být zakázáno
- Věta o 5 barvách
 - věta: Pro každý rovinný graf G platí $\chi(G) \leq 5$.
 - první důkaz: indukcí podle |V|
 - pro $|V| \leq 5$ triviální
 - ullet n-1
 ightarrow n
 - nechť v je vrchol s minimálním stupněm (nejvýše pět)
 - ullet G':=G-v, podle IP existuje 5-obarvení c' grafu G'
 - ullet pokud na sousedech v v obarvení c' jsou použity max. 4 barvy, tak tu pátou můžeme použít na vrchol v
 - co když má každý soused jinou barvu
 - A je maximální souvislý podgraf indukovaný vrcholy áčkové a céčkové barvy, do kterých existuje cesta ze souseda a přes vrcholy áčkové a céčkové barvy
 - pokud soused $c \notin A$

- prohodíme barvy v A
- ullet tím pádem áčková barva se uvolní pro v
- pokud soused $c \in A$
 - použiju stejný trik pro b a d
 - soused b je obalený kružnicí mezi a a c, takže nehrozí, že by byl spojený s d
- tzv. Kempeho řetězce
- druhý důkaz: indukcí podle |V|
 - máme vrchol stupně 5
 - musí existovat dva sousedi toho grafu, kteří nejsou spojeni hranou (jinak bychom dostali K_5)
 - můžu vytvořit rovinný $G'=G-v+\{x,y\}$ (nahradím vrchol hranou bez ztráty rovinnosti)
 - můžu vytvořit rovinný G''=G'. $\{x,y\}$ (kontrakce hrany zachovává rovinnost)
 - G'' obarvíme indukcí \to dostaneme obarvení $c'' \to c$ obarvení G-v (v němž se barvy x a y rovnají) \to existuje volná barva pro v
- Věta o 4 barvách (bez důkazu): Pro každý rovinný graf G platí $\chi(G) \leq 4$.

Pravděpodobnost

- Definice: Pravděpodobnostní prostor diskrétní, konečný, klasický
 - pravděpodobnostní prostor
 - Ω = množina elementárních jevů
 - $\mathcal{F} \subseteq 2^\Omega$ = množina jevů
 - $P: \mathcal{F} \rightarrow [0,1]$ = pravděpodobnost
 - náš pravděpodobnostní prostor je diskrétní, konečný a klasický
 - diskrétní pravděpodobnostní prostor
 - Ω je konečná nebo spočetná (tedy spočetně nekonečná, existuje bijekce do \mathbb{N})

- ullet ${\cal F}=2^\Omega$
- $P(J) = \sum_{x \in J} P(\lbrace x \rbrace)$
 - stačí určit pravděpodobnosti elementárních jevů
 - tedy jev nastává, když nastane kterýkoli z jeho elementárních jevů
- $P(\emptyset) = 0$, $P(\Omega) = 1$
- klasický pravděpodobnostní prostor ... $P(J) = \frac{|J|}{|\Omega|}$
 - všechny elementární jevy mají stejnou pravděpodobnost
- konečný pravděpodobnostní prostor ... Ω je konečná
- Definice: Jev elementární, jev složený, pravděpodobnost jevu
 - elementární jev = výsledek náhodného pokusu
 - složený jev = množina elementárních jevů
 - pravděpodobnost jevu ... $P(J) = \sum_{x \in J} P(\{x\})$
- Příklad: Jev se také dá popsat logickou formulí.
 - např. P[padlo sudé číslo]
- Příklad: Bertrandův paradox s kartičkami
 - tři kartičky, jedna je z obou stran červená, druhá modrá, třetí má jednu stranu červenou a druhou modrou
 - vybereme náhodnou kartičku
 - otočíme ji náhodnou stranou nahoru
 - horní strana je červená
 - jaká je pravděpodobnost toho, že dolní strana je také červená
 - pravděpodobnostní prostor: ČČ, ČČ, MM, MM, ČM, MČ
 - tři možnosti, z nich dvě chceme, takže $\frac{2}{3}$
- Definice: Podmíněná pravděpodobnost
 - podmíněná pravděpodobnost jevu $A\subseteq \Omega$ za podmínky $B\subseteq \Omega$, přičemž $P(B)\neq 0$
 - $P[A|B] := \frac{P(A \cap B)}{P(B)}$
 - počítání s pravděpodobností
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$

- $P(A \cup B) \leq P(A) + P(B)$
- doplněk do množiny elementárních jevů ... $ar{B}$
- $P[A|B] \cdot P(B) = P(A \cap B)$
- $P[A|\bar{B}] \cdot P(\bar{B}) = P(A \cap \bar{B})$
- $P(A \cap B) + P(A \cap \overline{B}) = P(A)$
- pozorování:

$$P[A|B] \cdot P(B) = P(A \cap B) = P(B \cap A) = P[B|A] \cdot P(A)$$

- Věta o úplné pravděpodobnosti (věta o rozboru případů)
 - věta: Pro $A\in\Omega,\ B_1,\ldots,B_k$ rozklad Ω t. ž. $orall i:P(B_i)
 eq 0$ platí $P(A)=\sum_i P[A|B_i]\cdot P(B_i).$
 - důsledek: řetězové pravidlo $P(A\cap B\cap C)=P[A|B\cap C]\cdot P(B\cap C)=P[A|B\cap C]\cdot P[B|C]\cdot P(C)$
- Bayesova věta
 - věta: Nechť A je jev s $P(A) \neq 0$, B_1, \ldots, B_k rozklad Ω na jevy s $P(B_i) \neq 0$ pro všechna i. Potom $P[B_i|A] = \frac{P[A|B_i] \cdot P(B_i)}{\sum_j P[A|B_j] \cdot P(B_j)}$.
- Definice: Jevy nezávislé a po dvou nezávislé
 - nezávislost dvou jevů
 - jevy A, B jsou nezávislé \equiv
 - $P(A \cap B) = P(A) \cdot P(B)$
 - $P[A|B] \cdot P(B) = P(A) \cdot P(B)$
 - $\iff P(B) = 0 \lor P[A|B] = P(A)$
 - jevy jsou po 2 nezávislé, pokud pro libovolnou dvojici z množiny jevů platí, že se pravděpodobnost průniku rovná součinu pravděpodobností
 - Ize zobecnit na jevy po k nezávislé
 - jevy jsou nezávislé \equiv pro každé $k \geq 2$ jsou po k nezávislé
- Definice: Součin pravděpodobnostních prostorů, projekce
 - součin pravděpodobnostních prostorů $(\Omega_1,2^{\Omega_1},P_1)$ a $(\Omega_2,2^{\Omega_2},P_2)$ je $(\Omega_1 imes\Omega_2,2^{\Omega_1 imes\Omega_2},P)$, kde $P(A):=\sum_{(a_1,a_2)\in A}P_1(a_1)\cdot P_2(a_2)$, přičemž $A\subseteq\Omega_1 imes\Omega_2$
 - jev lze promítnout na jednu z os dostaneme hodnotu jednoho prvku z n-tice jevů

- jevy v různých prostorech jsou navzájem nezávislé
- Definice: Náhodná veličina
 - náhodná veličina je funkce z Ω do $\mathbb R$
 - každému elementárnímu jevu přiřadí číselnou hodnotu
- Příklad: Logické formule s náhodnými veličinami dávají jevy.
 - např. P[X < 3], kde X je počet jedniček v n hodech mincí
- Definice: Střední hodnota
 - střední hodnota náhodné veličiny X je $\mathbb{E}[X] := \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$
 - v klasickém pravděpodobnostním prostoru je to aritmetický průměr $\mathbb{E}[X] = \frac{\sum X(\omega)}{|\Omega|}$
- Věta o linearitě střední hodnoty
 - věta: Nechť X,Y jsou náhodné věličiny a $\alpha\in\mathbb{R}$. Potom $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$ a $\mathbb{E}[\alpha X]=\alpha\mathbb{E}[X]$.
 - důkaz

$$\begin{split} \bullet \quad \mathbb{E}[X+Y] &= \sum_{\omega \in \Omega} (X+Y)(\omega) \cdot P(\omega) \\ &= \sum (X(\omega) \cdot P(\omega) + Y(\omega) \cdot P(\omega)) \\ &= \sum X(\omega) \cdot P(\omega) + \sum Y(\omega) \cdot P(\omega) \end{split}$$

- násobení konstantou se dokáže podobně (dosazením do sumy)
- Definice: Indikátor náhodného jevu
 - indikátor jevu = náhodná veličina, která nabývá hodnoty 0, nebo
 1, podle toho, zda daný jev nastal
- Příklad: Použití indikátorů k výpočtu střední hodnoty
 - n hodů mincí
 - $X=\operatorname{celkov\acute{y}}$ počet jedniček, chceme $\mathbb{E}[X]$
 - $X_i = \text{kolikrát je na i-té pozici jednička } (1 \times /0 \times)$
 - $X = \sum_i X_i \to \mathbb{E}[X] = \sum_i \mathbb{E}[X_i]$
 - $\mathbb{E}[X_i] = \frac{1}{2} \to \mathbb{E}[X] = \frac{n}{2}$

Různé

- Věta: Erdősovo-Szekeresovo lemma o monotónních podposloupnostech
- Příklad: Existence de Bruijnovy posloupnosti (konstrukce pomocí orientovaných eulerovských tahů)
- Příklad: Klasifikace platónských těles pomocí rovinných grafů