



# **Spectral unmixing in Chemometrics**

#### Workshop

#### **DENNIS SEMYALO**

Dept. Smart Agricultural Systems, Chungnam Natl. University









### **Overview**



Introduction

Spectral unmixing technique

■ Applications of spectral unmixing in chemometrics

☐ Spectral unmixing hands-on tutorial in Python

Conclusions

References



### Introduction



- □ Spectral unmixing separates pure spectral signatures of constituents and their distribution in mixture measurements/samples.
- ☐ Useful in remote sensing, chemometrics, & environmental data applications

### **Remote sensing**











#### **Common terms - synonyms**

- ☐ Pure components/ pure analytes/pure constituents
- Pure spectral signatures/endmembers/ constituent spectra/ spectra profile
- Concentration/fractions of endmembers/abundances/ distribution profile



### Introduction



#### Chemometrics

- Application in chemometrics includes the use of spectroscopy, & hyperspectral imaging on chemical mixture samples
- Applicable on variety of spectroscopies such as infrared, ultraviolet-visible (UV-Vis), near-infrared (NIR), mass spectrometry, etc.
- □ Spectral unmixing decomposes hyperspectral images into distribution maps and spectral profiles associated with all the

constituents in the samples (Badaró et al., 2021; De Juan et al., 2014).









# Spectral unmixing technique



### Algorithm: Multivariate Curve Resolution Alternating Regression(MCR-AR)

- ☐ MCR also known as self-modeling mixture analysis (SMMA) enables spectral unmixing in chemometrics
- ☐ Mathematically, MCR methods are based on a bilinear model
- □ Eq. (1) solved using an iterative alternating regression (AR) scheme; fix C, calculate S, and vice versa
- Regressors include OLS (MCR-ALS), NNLS (MCR-NNLS), Lasso (MCR-Lasso), Ridge (MCR-Ridge), etc.

$$\mathbf{D} = CS^{T} + \varepsilon \tag{1}$$

$$\mid \mathbf{D} \in \cup^{m,n} \mid \mathbf{C} \in \cup^{m,p} \mid \mathbf{S} \in \cup^{n,p} \mid \boldsymbol{\varepsilon} \in \cup^{m,n} \mid$$

- D: 2D matrix built by unfolding the original hypercube,
- C: concentration matrix,
- S<sup>T</sup>: matrix containing pure spectra information, or signatures
- E: matrix expressing noise, error, or variance unexplained by the bilinear model (Olmos et al., 2017).
- m: number of independent measurements (rows/observations)
- n: number of elements in single measurements (columns/wavelengths)
- p: pure components/analytes
- U: universal set of numbers (real, imaginary, or complex)

$$C^{[k+1]} = \operatorname{argmin} Q_c(C^{[k]}, S^{[k]}) \qquad (2)$$

$$C^{[k]}$$

$$S^{[k+1]} = \operatorname{argmin} Q_s(C^{[k+1]}, S^{[k]}) \quad (3)$$

$$S^{[k]}$$

$$MSE = \sum \left| D - C^{[k]} \left( S^{[k]} \right)^T \right|^2 \qquad (4)$$

- k: iteration number
- $oldsymbol{Q}_c$  : objective function for C
- $Q_s$ : objective function for S



# Spectral unmixing technique



### Algorithm: Multivariate Curve Resolution Alternating Regression(MCR-AR)

```
Inputs: C^{[0]} or S^{[0]}; D; Q; L_C; L_S; L_B
  1: for k \leftarrow 0 to k_{max} do
               if k > 0 or S^{[0]} inputted then
                       \mathbf{C}^{[k+1]} \leftarrow \operatorname{argmin} \mathcal{Q}(\mathbf{C}^{[k]}, \mathbf{S}^{[k]})
  3:
                       \mathbf{C}^{[k+1]} \leftarrow L_C\{\mathbf{C}^{[k+1]}\}
                       if L_B\left(\mathbf{C}^{[\cdot]},\mathbf{S}^{[\cdot]}\right) is TRUE then
  5:
                               break
  6:
                       end if
  7:
  8:
               else
                       \mathbf{C}^{[k+1]} \leftarrow \mathbf{C}^{[k]}
  9:
               end if
10:
               \mathbf{S}^{[k+1]} \leftarrow \operatorname*{argmin}_{\mathbf{S}^{[k]}} Q(\mathbf{C}^{[k+1]}, \mathbf{S}^{[k]})
11:
               \mathbf{S}^{[k+1]} \leftarrow L_S\{\mathbf{S}^{[k+1]}\}\
12:
               if L_B\left(\mathbf{C}^{[\cdot]},\mathbf{S}^{[\cdot]}\right) is TRUE then
13:
                       break
14:
15:
               end if
```

16: end for

Provide initial estimate for S

Solve for C with S fixed

Apply constraints on C

Stop if the convergence criterion is met

Solve for S with C fixed

Apply constraints on S

Stop if the convergence criterion is met

Repeat loop if convergence not met

D: input data matrix

S: pure spectral profile

C: pure concentration profile

 $S^{[0]}$ : initial estimate for S

 $C^{[0]}$ : initial estimate for C

k: iteration number

Q: objective function for S & C

LS: constraint applied to S

 $L_c$ : constraint applied to C

 $L_B$ : convergence criterion

#### convergence criterion

- ☐ Number of iterations meets preset maximum
- ☐ Error function (e.g. MSE) exceeds a defined value
- ☐ Relative change of MSE after each iteration
- ☐ Etc.



### **Applications of spectral unmixing in chemometrics**



| Purpose                                                                                            | source                       |
|----------------------------------------------------------------------------------------------------|------------------------------|
| Detection of adulterants (starch, urea, and melamine) in milk powder                               | (Forchetti & Poppi, 2017)    |
| Fiber distribution in pasta                                                                        | (Badaró et al., 2021)        |
| Study of vegetal tissues (Lignins, Vesicles, and chlorophylls) in rice leaves                      | (Gómez-Sánchez et al., 2021) |
| Analysis of the constituents (sucrose, lactose, butter, and whey ) of commercial chocolate samples | (Zhang et al., 2015)         |
| Evaluate glucosinolate level to detect postharvest senescence in broccoli                          | (Guo et al., 2022)           |
| Detection of blood in fish muscle                                                                  | (Skjelvareid et al., 2017)   |
| Distribution of tissue cryosections of the zebrafish head, including eyes, brain, and mouth        | (Olmos et al., 2017)         |

<sup>□</sup> Some studies used spectral unmixing for feature extraction purposes (Guo et al., 2022).



### Applications of spectral unmixing in chemometrics



### Detection of adulterants (starch, urea, and melamine) in milk powder (Forchetti & Poppi, 2017): NIR-HSI





### Applications of spectral unmixing in chemometrics



### Fiber distribution in pasta (Badaró et al., 2021): NIR-HSI



Concentration map

Pure and recovered spectra from fiber and flour





# Spectral unmixing hands-on tutorial in Python



Developed software program for spectral unmixing based on pyMCR, an open-source Python library

Open-source software library

Setup and installations

Install additional libraries (Dependencies)

python >= 3.4 up to 3.9

pip install numpy

pip install pyMCR

pip install scipy

Or pip3 install pyMCR

pip install matplotlib

**Verify Installation** 

import pymcr

print(pymcr.\_\_version\_\_)



# Spectral unmixing hands-on tutorial in Python 💮



#### Simulated HSI dataset

- Spectra with 3 unique components concentration maps simulated waveform using Gaussian and functions.
- Spectra and concentration maps are combined to form a hyperspectral image (HSI)
- HSI image unfolded into a data matrix, D
- Spectral unmixing performed MCR-ALS and MCR-NNLS



a: amplitude (height of the peak)

b: center position of the peak

c: standard deviation





# Spectral unmixing hands-on tutorial in Python 💮



### **MCR-ALS** results



Retrieved results using spectral unmixing with MCR-ALS



# Spectral unmixing hands-on tutorial in Python 💮



#### **MCR-NNLS** results







# Spectral unmixing hands-on tutorial in Python 🐠



#### Spectral unmixing of an oil emulsion

- Downloaded hyperspectral Raman image of an oil emulsion, sized (60 x 60 x 253).
- Oil emulsion is a mixture of oil, water, and an emulsifying agent
- Hypercube unfolded into a data matrix, D
- Performed spectral unmixing using a custom-developed software program in Python
- Number of components (4)
- Initial estimates of spectral profile determined using SIMPLISMA, a pure variable selection method.
- Constraints: non-negativity on C and S matrix
- Used 1000 iterations during optimization





# Spectral unmixing hands-on tutorial in Python 🐠



#### **MCR-ALS** results

- Pure spectra and distribution maps reflect the surface pattern of an emulsion
- An oily phase represented by two components (a big drop and the interface around), outer aqueous phase and a small patch, which is an emulsion additive.



**MCR-ALS** 

Retrieved results using spectral unmixing with MCR-ALS



## Spectral unmixing hands-on tutorial in Python 🐠



### **MCR-NNLS** results

### MCR-NNLS





### **Conclusions**



- Spectral unmixing is effective in chemometrics for mixing problems
- Hands-on practice for spectral unmixing in python was explored
- ☐ Research opportunities using spectral unmixing in chemometrics still available
- ☐ Flexibility during implementation of multivariate curve resolution alternating regression (MCR-AR) such
  - as various regressors, and constraints can be applied during the optimization process
- ☐ With this introduction and hands-on workshop, this approach can be adapted to participants' research
- Looking forward to various collaborations on spectral unmixing





# Thank You



### References



- Badaró, A. T., Amigo, J. M., Blasco, J., Aleixos, N., Ferreira, A. R., Clerici, M. T. P. S., & Barbin, D. F. (2021). Near infrared hyperspectral imaging and spectral unmixing methods for evaluation of fiber distribution in enriched pasta. *Food Chemistry*, 343, 128517. <a href="https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128517">https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128517</a>
- De Juan, A., Jaumot, J., & Tauler, R. (2014). Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. *Analytical Methods*, 6(14), 4964–4976. <a href="https://doi.org/10.1039/C4AY00571F">https://doi.org/10.1039/C4AY00571F</a>
- Olmos, V., Benítez, L., Marro, M., Loza-Alvarez, P., Piña, B., Tauler, R., & de Juan, A. (2017). Relevant aspects of unmixing/resolution analysis for the interpretation of biological vibrational hyperspectral images. *TrAC Trends in Analytical Chemistry*, 94, 130–140. https://doi.org/https://doi.org/10.1016/j.trac.2017.07.004



### References



- □ Guo, X., Ahlawat, Y. K., Liu, T., & Zare, A. (2022). Evaluation of postharvest senescence of Broccoli via hyperspectral imaging. Plant Phenomics. <a href="https://doi.org/10.34133/2022/9761095">https://doi.org/10.34133/2022/9761095</a>
- Forchetti, D. A. P., & Poppi, R. J. (2017). Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder. LWT Food Science and Technology, 76, 337–343. <a href="https://doi.org/https://doi.org/10.1016/j.lwt.2016.06.046">https://doi.org/https://doi.org/https://doi.org/10.1016/j.lwt.2016.06.046</a>