图算法篇: 单源最短路径问题之 Bellman-Ford算法

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

算法思想

算法实例

算法分析

算法性质

• 从知春路到其他站点,如何安排路线?

Dijkstra算法可以求解单源最短路径

• 从知春路到其他站点,如何安排路线?

Dijkstra算法适用范围: 边权为正的图

• 图中存在负权边,Dijkstra算法不再适用

执行Dijkstra算法

执行Dijkstra算法

• 图中存在负权边,Dijkstra算法不再适用

Dijkstra算法: 到黑色顶点的最短路应该已经计算出

• 图中存在负权边,Dijkstra算法不再适用

Dijkstra算法: 到黑色顶点的最短路应该已经计算出

• 图中存在负权边,Dijkstra算法不再适用

问题: 图中存在负权边时,是否存在单源最短路径?

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

- 图中存在负权边时,是否存在单源最短路径?
 - 如果源点s可达负环,则难以定义最短路径

若源点s无可达负环,则存在源点s的单源最短路径

问题定义

单源最短路径问题

Single Source Shortest Paths Problem

输人

- 带权图*G* = < *V*, *E*, *W* >
- 源点编号s

问题定义

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图*G* =< *V*, *E*, *W* >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s, ..., t >
- 或存在源点 8 可达的负环

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图G =< V, E, W >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s,...,t >
- 或存在源点 8 可达的负环

挑战1: 图中存在负权边时,如何求解单源最短路径?

单源最短路径问题

Single Source Shortest Paths Problem

输入

- 带权图G =< V, E, W >
- 源点编号s

输出

- 源点s到所有其他顶点t的最短距离 $\delta(s,t)$ 和最短路径< s,...,t >
- · 或存在源点s可达的负环

挑战1: 图中存在负权边时,如何求解单源最短路径?

挑战2: 图中存在负权边时,如何发现源点可达负环?

算法思想

算法实例

算法分析

算法性质

Dijkstra算法通过松弛操作迭代更新最短距离

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

• 存在负权边时,需要比Dijkstra算法更多次数的松弛操作

问题: 图中存在负权边时,如何利用松弛操作求解单源最短路?

算法思想

- Bellman-Ford算法
 - 解决挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 每轮对所有边进行松弛,持续迭代|V| 1轮

算法思想

- Bellman-Ford算法
 - 解决挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 每轮对所有边进行松弛,持续迭代|V| 1轮
 - 解决挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 。 若第|V|轮仍松弛成功,存在源点s可达的负环

松弛失败

算法思想

算法实例

算法分析

算法性质

$oldsymbol{V}$	S	t	x	y	Z
pred	N	N	N	N	N
dist	∞	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	\boldsymbol{z}
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

──── 松弛失败

→ 松弛成功

第1轮:松弛所有边

V	S	t	x	y	Z
pred	N	N	N	N	N
dist	0	∞	∞	∞	∞

── 松弛失败

→ 松弛成功

第1轮:松弛所有边

$oldsymbol{V}$	S	t	x	y	Z
pred	N	S	N	N	N
dist	0	6	∞	∞	∞

───── 松弛失败

→ 松弛成功

$oldsymbol{V}$	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

→ 松弛成功

第1轮:松弛所有边

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	N	S	N
dist	0	6	∞	7	∞

── 松弛失败

→ 松弛成功

$oldsymbol{V}$	S	t	x	y	\boldsymbol{z}
pred	N	S	t	S	N
dist	0	6	11	7	∞

V	S	t	x	y	Z
pred	N	S	t	S	N
dist	0	6	11	7	∞

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	t	S	t
dist	0	6	11	7	2

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	S	y	S	t
dist	0	6	4	7	2

──── 松弛失败

→ 松弛成功

$oldsymbol{V}$	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	2

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

── 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

── 松弛失败

── 松弛成功

第4轮:松弛所有边

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

→ 松弛成功

第4轮:松弛所有边

V	S	t	x	y	Z
pred	N	x	y	S	t
dist	0	2	4	7	-2

──── 松弛失败

── 松弛成功

松弛结束

问题背景

算法思想

算法实例

算法分析

算法性质

伪代码


```
输入: \[ \mathbf{S}G = < V, E, W > \], 源点\[ s \in \mathbb{R} \] 输出: 单源最短路径\[ P \in \mathbb{R} \] 新建一维数组\[ dist[1..|V|] \] ,\[ pred[1..|V|] \] ,\[ dist[u] \leftarrow \infty \] ,\[ pred[u] \leftarrow NULL \] end \[ dist[s] \leftarrow 0 \]
```

伪代码


```
输入: \[ egin{aligned} & \mathbf{A} \] \otimes G = < V, E, W >, 源点s \\ & \mathbf{A} \] & \mathbf{B} \] \oplus \mathbf{B} \] \otimes \mathbf{B} \] \otimes \mathbf{B} \] & \mathbf{B} \] \oplus \mathbf{B} \] & \mathbf{B} \] \otimes \mathbf{B} \] \otimes \mathbf{B} \] & \mathbf{B} \] \otimes \mathbf{B} \] & \mathbf{B} \] \otimes \mathbf{B} \] & \mathbf{B} \] & \mathbf{B} \] \otimes \mathbf{B} \] & \mathbf{B}
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
                                                      进行|V| - 1轮松弛
  |-\mathbf{for}(u,v)\in E\cdot \mathbf{do} -
        if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
         pred[v] \leftarrow u
        end
     end
 end
 for (u, v) \in E do
     if dist[u] + w(u, v) < dist[v] then
        print 存在负环
        break
     end
 \mathbf{end}
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
  for (u,v) \in E do
                                             对所有边进行松弛操作
    if dist[u] + w(u, v) < dist[v] then
       dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
      end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
      print 存在负环
      break
   end
\mathbf{end}
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
      for (u, v) \in E do
            \begin{array}{c|c} \textbf{if} \ \underline{dist}[u] + w(u,v) < \underline{dist}[v] \ \textbf{then} \\ \\ \underline{dist}[v] \leftarrow \underline{dist}[u] + w(u,v) \\ \\ \underline{pred}[v] \leftarrow u \end{array} 
                                                                                               更新辅助数组
          \operatorname{end}
      end
end
for (u, v) \in E do
      if dist[u] + w(u, v) < dist[v] then
             print 存在负环
             break
       end
\mathbf{end}
```



```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
    for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
         pred[v] \leftarrow u
       end
    end
end
for (u,v) \in E do
                                                  判断是否存在负环
    if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
    end
\mathbf{end}
```

时间复杂度分析


```
输入: 图G=< V, E, W>, 源点s 输出: 单源最短路径P 新建一维数组dist[1..|V|], pred[1..|V|] //初始化 for u\in V do \begin{vmatrix} dist[u]\leftarrow\infty\\ pred[u]\leftarrow NULL \end{vmatrix} end dist[s]\leftarrow 0
```

时间复杂度分析


```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
                                                O(|E|)
      if dist[u] + w(u, v) < dist[v] then
         dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
   end
end
```

时间复杂度分析

Bellman-Ford(G, s)

时间复杂度分析

• Bellman-Ford(G, s)

```
//执行单源最短路径算法
for i \leftarrow 1 to |V| - 1 do
   for (u, v) \in E do
       if dist[u] + w(u, v) < dist[v] then
          dist[v] \leftarrow dist[u] + w(u,v)
        pred[v] \leftarrow u
       end
   end
end
for (u, v) \in E do
   if dist[u] + w(u, v) < dist[v] then
       print 存在负环
       break
                                         时间复杂度O(|E| \cdot |V|)
   end
end
```


问题背景

算法思想

算法实例

算法分析

算法性质

算法思想

Bellman-Ford算法

挑战1: 图中存在负权边时,如何求解单源最短路径?

○ 解决方案:每轮对所有边进行松弛,持续迭代|V| - 1轮

挑战2: 图中存在负权边时,如何发现源点可达负环?

● 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环

- 挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

- 挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第1轮次

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第1轮次

- 挑战1: 图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第1轮次

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V|-1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|}$ >至多经过|V| 1条边

第2轮次 (s) (v₂) (v₃) (v_i) (v

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|} >$ 至多经过|V| 1条边

- 挑战1:图中存在负权边时,如何求解单源最短路径?
 - 解决方案:每轮对所有边进行松弛,持续迭代|V| 1轮
- 最坏情况
 - 非环路的路径< $s, v_2, v_3, ..., v_{|V|} >$ 至多经过|V| 1条边

第|V| - 1轮次

最坏情况下进行|V| - 1轮松弛操作,可以保证求得单源最短路径

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案:若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案:若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2:图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案:若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

第2轮次结束(|V| - 1 = 3 - 1 = 2) 最短路径应已求出

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2: 图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

- 挑战2:图中存在负权边时,如何发现源点可达负环?
 - 解决方案: 若第|V|轮仍松弛成功,存在源点s可达的负环
- 若源点s可达负环,可松弛成功无限次

第|V|轮仍松弛成功的原因:存在源点可达的负环

小结

	广度优先搜索	Dijkstra算法	Bellman-Ford算法
适用范围	无权图	带权图 (所有边权为正)	带权图
松弛次数		<i>E</i> 次	V · E 次
数据结构	队列	优先队列	
运行时间	O(V + E)	$O(E \cdot \log V)$	$O(E \cdot V)$