IPHC Harvest Policy: Background and Evaluation

IPHC Staff – Past and Present

Harvest Policy Framework

- Policy: IPHC circa 2006-2013
- Author/references: Hare and Clark (2006); deeper references Hare and Clark (2004); Clark and Hare (2001, 2003, 2005)
- Population model: sex-specific, core area (2B/2C/3A), coastwide selectivity at length
- Conservation goal: avoidance of dropping below SB_{thresh}
- Reference points: Sb_{unfished}(SB₁₀₀), SB_{thresh} (SB₃₀), SB_{limit} (SB₂₀)
- Control Rules: Target Constant Harvest Rate (HR); linear decrease from SB_{thresh} to HR = 0 at SB_{limit}
- Performance metrics: Ratio of SB_i/SB₁₀₀; Percent of time SB < SB_{thresh}; Realized average harvest rate; Variance of average catch; Fraction of max. yield

Harvest Policy Framework

- Population dynamics
 - Stock unit analyzed: Areas 2B/2C/3A
 - **Growth**: Linear two-stage (ages 7-20, 21-max) with time-varying increments within stages
 - Maturity: logistic fit to 2002-2003 combined Areas 2B/3A data
 - Selectivity: Single, from coastwide assessment model, based on length
 - Recruitment: alternating regime-based recruitment with PDO effect on average levels drawn from U(15,30) distribution; variance based on residuals from closed-area fits of average recruitment model (recruitment regimes: 1968-1976 and 1977-2001)
 - Simulation: current estimates → run 150 years, then performance averaged over next 100 years, over 200 MC simulations

Harvest Policy Framework

Evaluation

■ Harvest rate: Initially recommended HR of 0.20 for core areas (2A-4A); yields $SB > SB_{30} 80\%$ of time

■ Auxiliary analyses:

- SPR analysis showed HR of 0.20 yields SPR of 0.35 SPR₁₀₀
- Examined relative effects of variable fixed migration schedules and balanced/unbalanced harvest rates on areaspecific SB distribution

■ Non-core areas:

■ Harvest rate determined from SPR analysis (4B, 4CDE) and progressive application based on empirical observations of stock performance at higher target rates (4A, 3B)

How the IPHC harvest policy works

Surplus production =

Growth

- + Recruitment
- Natural mortality
- It is the yield that can be taken such that stock biomass remains at the same level from one year to the next.

Biomass Reference Points:

$$Limit = SBio_{20}$$

Threshold =
$$SBio_{30}$$

Age composition of Sbio – all females

2011 Female SBio: 350 million lbs.

Sex/Age composition of Ebio – mostly females

Simulation model parameters

- Recruitment alternating regimes drawn from U(15,30)
 - $R_{low} = 4.13$ M, $R_{high} = 13.00$, $\sigma_{\epsilon} = 0.25$, $\rho = 0.4$, 10% deducted for bycatch $R_6 = \exp(\ln(\mu_i) + \varepsilon_t)$

$$\varepsilon_{t} = \rho \varepsilon_{t-1} + e_{t}$$

■ **Growth** – Annual increments computed from No. age-10+ fish

$$W_a = W6_y + \sum_{7}^{20} GI_y + \sum_{21}^{a} GI2_y$$

■ Length – computed from W_a

$$L_a = \sqrt[3.24]{\frac{w_a}{0.00000692}}$$

- Selectivity Invariant length-specific as estimated in coastwide SA
- Maturity single schedule estimated from 2002-2003 data

$$p = \frac{1}{1 + \exp(-0.563(A - 11.59))}$$

Long-term changes in size at age

Changes in maturity at age and length

Stock-recruit and PDO-recruit plots

Invariant selectivity (at length)

Selectivity at age changes

Min. and Max. growth schedules

Invariant maturity ogive

Determination of SBio limit*

Areas 2B/2C/3A				
High R	13.000	M age-six R		
Low R	4.130	M age-six R		
Low/High	0.32			
SBR _{1970s}	118.49	lbs./R		
B _{unfished}	489	M lbs.		
B ₂₀	98	M lbs.		
B _{min.obs} .	64	M lbs. (~B ₁₃)		
<u>Coastwide</u>				
High R	18.85	M age-six R		
Low R	5.987	M age-six R		
B _{unfished}	709	M lbs.		
B ₂₀	142	M lbs.		
B ₃₀	213	M lbs.		
B _{current}	306	M lbs. (~B ₄₃)		

Simulation model run examples

Density dependent growth

Constant slow growth

Results - density dependent growth

Results – constant slow growth

Biological reference point considerations

	F ₄₀	F ₃₅	F _{0.1}
Current growth rates	0.16	0.20	0.23
Old growth rates	0.14	0.11	0.16

Spawning biomass distribution

Yield

Spawning Biomass

Effect of migration on SBio, equal HRs

Effect of migration on SBio, unequal HRs

Effect of migration on SBio, v. unequal HRs

Harvest rate concerns – 4B and 4CDE

- WPUE trends down sharply (4B improving)
- 4B Recruitment very low relative to habitat: 1/3rd of 4A R and 1/10th of 2B and 2C R
- YPR analysis shows 4B sustainable yield around 1 M lbs.
- 4CDE most similar to 4B
- Recommended HR of 0.15 in 2006

Harvest rate concerns – 4A and 3B

- WPUE trend downward in Area 4A since late 1990s
- WPUE trend continues downward sharply in Area 3B
- Recommended HR of 0.15 since 2007

Existing Harvest Policy Summary

- Based on principles of biological productivity
- Output was a target harvest rate that was evaluated in terms of managing the probability of reaching stock biomass reference points (risk)
- Used similar performance metrics to those being incorporated into the MSE process
- Did not invoke a broad process of assessing and ranking a suite of management objectives or invoke a feedback process
- Did not present or evaluate management objectives and performance metrics in a benefit-risk framework

