Ćwiczenie laboratoryjne z "Teorii automatów".

TEMAT CWICZENIA: KOMPUTEROWA ANALIZA AUTOMATÓW SKOŃCZONYCH

1. CEL ĆWICZENIA

Celem éwiczenia jest opanowanie umiejętności przeprowadzania analizy automatu skończonego w zakresie identyfikacji grafu automatu przy pomocy mikrokmputera.

2. PROGRAM ĆWICZENIA

- Zapoznanie się z metodą analizy automatu, związaną z określeniem grafu przejść automatu o nieznanym działaniu.
- 2. Testowanie programowego wariantu automatu Moore'a sekwencją sygnałów wejściowych.
- 3. Opracowanie wyników testowania automatu.
- 4. Określenie na podstawie wyników testowania grafu przejść analizowanego automatu.
- 5. Opracowanie sprawozdania z ćwiczenia.

3. PROBLEMATYKA ĆWICZENIA

Analiza automatów w zakresie identyfikacji grafu przejść ma duże praktyczne zastosowanie zarówno na etapie projektowania, jak i eksploatacji dyskretnych przetworników informacji. Najczęściej jednak analize te przeprowadzamy wtedy, kiedy chcemy określić działanie automatu, którego graf przejść nie jest nam znany oraz wtedy, gdy zbudowaliśmy automat i chcemy sprawdzić, czy działa on zgodnie z zadanym algorytmem. W prezentowanym ćwiczeniu obiektem analizy jest automat typu Moore'a, którego graf nie jest określony, znany jest jednak zbiór jego sygnałów wejściowych i wyjściowych. Aby określić graf automatu, należy podać na jego wejście odpowiednią sekwencję sygnałów wejściowych i dla każdego z tych sygnałów należy odnotować sygnał pojawiający się na wyjściu automatu.

Znając sekwencję sygnałów wejściowych i odpowiadającą im sekwencję sygnałów wyjściowych, należy określić stany wewnętrzne automatu i możliwe przejścia między stanami, a więc należy określić graf automatu. Na podstawie pojedyńczego sygnału wyjściowego nie można określić przyporządkowany mu stan wewnętrzny. Problem jest wystarczająco złożony, ponieważ w automacie Moore'a jeden i ten sam sygnał wyjściowy automatu może być przyporządkowany kilku stanom wewnętrznym. Rozwiązanie problemu sprowadza się do określenia związków między elementami sekwencji sygnałów wejściowych i to takich związków, na podstawie których jednoznacznie można by było określić graf automatu. Możliwa do przyjęcia i stosowana w niniejszym ćwiczeniu metoda analizy automatu przedstawiona zostanie niżej. W ćwiczeniu przyjmuje się, że model formalny analizowanego automatu pamiętany jest w pamięci mikrokomputera, a jego działanie realizowane jest programowo. Analiza sprowadza się więc, do wprowadzania do mikrokomputera odpowiedniej sekwencji sygnałów wejściowych i obserwacji na ekranie wyników testowania.

4. WIADOMOŚCI PODSTAWOWE

4.1. Metoda analizy automatu w zakresie identyfikacji grafu automatu.

W celu rozpoznania stanów wewnętrznych automatu o nieznanym grafie przejść powinna być ściśle określona kolejność podawania sygnałów wejściowych na wejście automatu (w rozpatrywanym przypadku na wejście mikrokomputera). Kolejność ta jest określana w trakcie testowania automatu, gdyż każdy wyraz sekwencji sygnałów wejściowych jest funkcją poprzednich wyrazów tej sekwencji, jak również odpowiadających im sygnałów na wyjście automatu.

Formułując więc algorytm analizy automatu w zakresie identyfikacji jego grafu przejść, należy określić dwie podstawowe reguły, tj. regułę, według której będzie tworzona sekwencja sygnałów wejściowych oraz regułę, według której zapisywane będą wyniki testowania automatu w takiej postaci analitycznej, która jedno-

znaczna byłaby z grafem automatu. Pierwszą regułę można uzyskać przekształcając graf automatu do postaci takiego grafu o strukturze drzewiastej, który jednoznacznie wskazywałby na kolejność sygnałów wejściowych w sekwencji testującej automat. Natomiast druga reguła wynika z faktu, że każdy graf automatu możemy przedstawić w postaci odpowiedniego wyrażenia symbolicznego umożliwiającego trasformację odwrotną, tj. przejścia z wyrażenia symbolicznego na graf. Postacią takiego grafu automatu, który zgodnie z regułą pierwszą umożliwiłby wybór odpowiedniej sekwencji sygnałów wejściowych testujących automat, jest "drzewo z pętlami" - charakretyzuje tym, że każda ścieżka drzewa reprezentuje sobą sekwencję składową w sekwencji sygnałów wejściowych testujących automat. Charakterystyczny sposób budowy wyrażenia symbolicznego reprezentującego "drzewo z pętlami" oraz własności struktury takiego grafu, jako odmiennej postaci grafu automatu, umożliwiają zapisywanie wyników testowania automatu bezpośrednio w postaci wyrażenia symbolicznego reprezentującego "drzewo z Mając takie wyrażenie możemy je przekształcić na pętlami". wyrażenie opisujące graf automatu a następnie na jego podstawie narysować graf automatu. Formalna interpretacja tych przekształceń podana zostanie dalej.

4.2. Operacje na wyrażeniach symbolicznych reprezentujących grafy

Aby można byłoby przeprowadzić analizę automatu według scharakteryzowanej wyżej metody, należy znać sposób budowy wyrażenia symbolicznego reprezentującego graf nazywany tutaj "drzewem z pętlami". Z kolei mając takie wyrażenie należy umieć go przekształcić na wyrażenie symboliczne reprezentujące graf automatu. Reguły takiego przekształcenia można określić tylko wtedy gdy się zna transformację odwrotną, tj. przejście z wyrażenia reprezentujące graf automatu na wyrażenie symboliczne reprezentujące drzewo z pętlami". Stąd też w pierwszej kolejności omówiony zostanie sposób przejścia z wyrażenia symbolicznego opisującego graf automatu na odpowiadające mu wyrażenie reprezentujące "drzewo z pętlami".

Przykładowy graf automatu Moore'a przedstawiony został na rys.1.

Rys.1.

Wyrażenie symboliczne reprezentujące ten graf, przy założeniu że stan początkowy jest \mathbf{q}_2 , ma następującą postać:

$$G_{i}^{+} = {}^{0}(q_{2}^{-1}(z_{1}q_{3}^{-2}(z_{1}q_{4}^{-3}(z_{2}q_{3},z_{1}q_{4})^{3},z_{2}q_{1}^{-3}(z_{2}q_{2},z_{1}q_{4})^{3})^{2},z_{2}q_{4})^{1})^{0}$$
 (1)

Dla pełnej reprezentacji grafu automatu Moore'a wyrażeniu (1) przyporządkowana jest tablica \overline{T}_i .

Tablica \overline{T}_i :

-	
q	у
q ₁	у2
9 ₂	у ₁
q ₃	у ₂
g ₄	^у 3

Wyrażenie G_i^+ możemy przekształcić do postaci takiego wyrażenia G_i^{++} , które będzie reprezentować sobą graf d_i o strukturze drzewiastej będący odpowiednikiem danego grafu G_i z rys.1. Przed omówieniem reguł takiego przekształcenia zwróćmy uwagę na pewną cechę charakterystyczną wyrażenia G_i^+ . Cechą tą jest to, że między wyrazami typu q_r tego wyrażenia występuje ściśle określona podległość. Jeżeli na przykład rozpatrujemy człon o postaci

 $\dots q_r^{\ k}(\dots)^k\dots$, to wszystkie elementy q_i , zarówno dla i + r jak i dla i = r, występujące wewnątrz nawiasu są podległe pod element q_r stojący przed nawiasem.

Każdy element q_r ma zawsze przyporządkowane sobie elementy q_i jemu podległe. Szczególnym przypadkiem takiego przyporządkowania jest to, że element q_r sam sobie może podlegać. Mając zadany ciąg typu G_i^+ i dany element q_r , możemy zawsze określić co podlega pod ten element. Szukamy mianowicie w ciągu G_i^+ takiego członu $k(\ldots)^k$, przed którym stoi rozpatrywany przez nas element q_r , gdyż wszystkie elementy wewnątrz znalezionego nawiasu $k(\ldots)^k$ są podległe pod ten element. Powyższe uwagi o relacjach podporządkowania w ciągu G_i^+ jednych elementów drugim ułatwi nam zrozumienie zasady przekształcenia wyrażenia G_i^+ na wyrażenie opisujące graf o innej strukturze, niż graf przedstawiony na rys.1.

Przekształcenie wyrażenia G^{\dagger}_{i} na wyrażenie opisujące dendryt z cyklami d_{i} równoważny grafowi G_{i} sprowadza się do znalezienia w ciągu G^{\dagger}_{i} takich jego wyrazów typu q_{r} , które mogłyby być potraktowane jako wierzchołki końcowe dendrytu d_{i} . Przy określeniu tego typu wyrazów korzystamy z trzech następujących warunków.

<u>Warunek WO</u>. Wierzchołkami końcowymi dendrytu d_i mogą być przy spełnieniu odpowiednich warunków te elementy q_r , za którymi w wyrażeniu G_i^+ stoi przecinek lub nawias zamykający. Fakt, że za danym elementem q_r występuje w wyrażeniu G_i^+ przecinek lub nawias zamykający oznacza, że dany element q_r wystąpił już w wyrażeniu G_i^+ na pozycji wcześniejszej.

 $\frac{\text{Warunek W2}}{\text{podlega}}. \quad \text{Jeśli dany element } q_r \quad \text{wymieniony w warunku W1 nie podlega} \quad \text{pod wyraz oznaczony w ciągu } G_i^+ \quad \text{tym samym symbolem } q_r, \\ \text{wówczas element ten nie może być wierzchołkiem końcowym. W tym przypadku za rozpatrywanym elementem } q_r \quad \text{znajdującym się w członie}$

 $...^k(...q_r...)^k$.. zapisuje się człon $^{k+1}(...)^{k+1}$ zawierający wszystkie te elementy q_i , które podlegają pod dany element q_r . Względem elementów q_i znajdujących się w dopisanym członie.. $^{k+1}(...)^{k+1}$.. stosuje się w dalszym ciągu warunki W0,W1,W2 aż do momentu, dopóki nie zostaną określone te elementy q_i , które reprezentują wierzchołki końcowe dendrytu d $_i$.

Przestrzegając przedstawionych wyżej warunków przy przekształceniu ciągu $G_{\dot{1}}^{\dagger}$ zadanego wyrażeniem (1), otrzymamy następujący ciąg:

$$G_{i}^{++} = {}^{0}(q_{2}^{-1}(z_{1}q_{3}^{-2}(z_{1}q_{4}^{-3}(z_{2}q_{3}^{\prime}, z_{1}q_{4}^{\prime})^{3},$$

$$z_{2}q_{1}^{-3}(z_{2}q_{2}^{\prime}, z_{1}q_{4}^{-4}(z_{2}q_{3}^{\prime}, z_{1}q_{4}^{\prime})^{4})^{3})^{2},$$

$$z_{2}q_{4}^{-2}(z_{2}q_{3}^{-3}(z_{1}q_{4}^{\prime}, z_{2}q_{1}^{-4}(z_{2}q_{2}^{\prime}, z_{1}q_{4}^{\prime})^{4})^{3}, z_{1}q_{4}^{\prime})^{2})^{1})^{0}$$

$$(2)$$

W automacie Moore'a każdemu elementowi $q_r \in Q$ przyporządkowany jest odpowiedni element $y_i \in Y$, w rozpatrywanym przykładzie przyporządkowanie to ma następującą postać: $q_1 \longleftrightarrow y_2$, $q_2 \longleftrightarrow y_1$, $q_3 \longleftrightarrow y_2$, $q_4 \longleftrightarrow y_3$, $q_2 \longleftrightarrow y_1'$, $q_3 \longleftrightarrow y_2'$, $q_4 \longleftrightarrow y_3'$. Elementy q_1' noszą nazwę stanów wewnętrznych pośrednich, a elementy y_1' noszą nazwę sygnałów przejść, gdyż sprowadzają one automat ze stanów wewnętrznych pośrednich do stanów wewnętrznych normalnych. Podstawiając w wyrażeniu G_1^{++} na miejsce elementów q_r odpowiadające im elementy y_i wyrażenie to przyjmuje następującą postać:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{3}^{3}(z_{2}y_{2}', z_{1}y_{3}')^{3},$$

$$z_{2}y_{2}^{3}(z_{2}y_{1}', z_{1}y_{3}^{4}(z_{2}y_{2}', z_{1}y_{3}')^{4})^{3})^{2},$$

$$z_{2}y_{3}^{2}(z_{2}y_{2}^{3}(z_{1}y_{3}', z_{2}y_{2}^{4}(z_{2}y_{1}', z_{1}y_{3}')^{4})^{3}, z_{1}y_{3}')^{2})^{1})^{0}$$
(3)

Na podstawie wyrażenia G_i^{++} można narysować drzewo z pętlami d_i^{-} będące odpowiednikiem grafu G_i^{-} z rys.1. Drzewo d_i^{-} przedstawione zostało na rys.2. Na rysunku tym uwzględniono również przyporzadkowanie $q_r \longleftrightarrow y_i^{-}$ oraz $q_r \longleftrightarrow y_i^{-}$.

Rys.2.

Wyrażenie G_i^{++} można łatwo przekształcić z powrotem na wyrażenie G_i^{+} . Nie znając więc wyrażenia G_i^{+} , a znając wyrażenie G_i^{++} można określić wyrażenie G_i^{+} a tym samym graf automatu G_i . Możliwość przejścia z G_i^{++} na G_i^{+} ma duże znaczenie w analizie automatów gdyż wynikiem analizy automatu o nieznznym grafie G_i^{-} , jest wyrażenie G_i^{++} .

Przy przejściu z wyrażenia G_i^{++} z powrotem na wyrażenie G_i^{+} korzysta się z reguł stosowanych przy budowie wyrażenia G_i^{+} i przy transformacji G_i^{+} na G_i^{++} . Podstawową własnością wynikająca z tych reguł jest to, że dowolny element q_r wyrażenia G_i^{+} (1) znajdować się może przed nawiasem otwierającym tylko wtedy, gdy na wcześniejszych pozycjach wyrażenia G_i^{+} nie znajduje się jego imiennik. Zgodnie z powyższym można określić następujące reguły przekształcenia.

Regula S1. Jeżeli w wyrażeniu G_i^{++} element q_r znajduje się przed nawiasem otwierającym k (i nie wystąpił dotychczas na wcześniejszych pozycjach wyrażenia G_i^{++} , to przy przekształceniu $G_i^{++}\longrightarrow G_i^+$ do wyrażenia G_i^+ , przechodzi zarówno dany element q_r , jak również te elementy z_jq_i ,

które znajdując się wewnątrz nawiasu ${}^{k}(\ldots)^{k}$ podległego pod element ${}^{q}_{r}$ nie znajdują się w nawiasach wewnętrznych ${}^{k+1}(\ldots)^{k+1}$ zawartych w danej parze nawiasów ${}^{k}(\ldots)^{k}$.

- Reguła S2. Jeżeli w członie $^k(\ldots)^k$ wyrażenia G_i^{++} , spełniającym warunki z reguły S_1 na wprowadzenie tego członu do wyrażenia G_i^+ , znajdują się elementy q_r oznaczone górnymi indeksami, tj. elementy typu q_r^s , to przy prześciu do wyrażenia G_i^+ elementy te tracą swoje górne indeksy.
- Regula S3. Jeżeli w wyrażeniu G_i^{++} element q_r znajduje się przed nawiasem otwierającym k (i jeżeli element ten wystąpił już w wyrażeniu G_i^{++} na wcześniejszej pozycji, to przy przekształceniu $G_i^{++} \longrightarrow G_i^+$, do wyrażenia G_i^+ przechodzi tylko rozpatrywany element q_r natomiast podległy mu człon k zostanie pominięty.

4.3. Metoda analizy programowego wariantu automatu Moore'a.

Zgodnie z punktem 4.1, <u>automat powinien być testowany taka sekwencja sygnałów wejściowych z ć Z, aby na podstawie uzyskiwanych wyników testowania, w postaci sekwencji sygnałów wyjściowych y ć Y, można było budować w trakcie analizy automatu wyrażenia d to die i ceprezentujące dendryt z petlami d to bedący odpowiednikiem grafu G_i . Przy budowaniu wyrażeń d to G_i i G_i^{++} reprezentujących wynik testowania automatu – korzystamy z pewnych własności struktury tych wyrażeń wynikających z przyjętego algorytmu budowy tych wyrażeń. Na podstawie tych własności możemy sformułować odpowiednie reguły interpretacji wyników testowania automatu. Reguły te można wyrazić następująco:</u>

Reguła M1. Jeżeli przy testowaniu automatu pojawił się na wyjściu automatu taki element y_i , który nie wystąpił jeszcze w wyrażeniu d_i^{++} , to element ten związany jest z takim

stanem wewnętrznym, który nie wystąpił jeszcze w wyrażeniu G_i^{++} . Jeżeli najwyższy indeks porządkowy posiadał stan b_r , to nowy stan otrzymuje indeks r+1.

Reguła M2. Jeżeli przy testowaniu automatu pojawił się na jego wyjściu element y_i , który już wystąpił w wyrażeniu d_i^{++} i zapisany na aktualnej pozycji wyrażenia d_i^{++} podlega pod swój imiennik znajdujący się w przodzie tego wyrażenia, to zachodzi następująca alternatywa: badany element y_i związany jest z takim samym stanem b_r co jego imiennik znajdujący się w przodzie wyrażenia d_i^{++} lub też element ten związany jest z nowym stanem b_i , który jeszcze nie wystąpił w wyrażeniu G_i^{++} . Oznaczmy badany stan symbolem b_i^* , natomiast stan związany z imiennikiem danego elementu y_i symbolem b_r . Możemy sformułować następujący <u>wniosek</u>:

Jeżeli wszystkie elementy z $_{j}$ \in Z podane na wejście automatu przy stanie b * sprowadzają automat do takich samych stanów, do których automat przechodzi, gdy znajduje się w stanie b $_{r}$, to wówczas b * = b $_{r}$, a w przypadku niezgodności wyników b * \downarrow b $_{r}$. Jeżeli powyższa własność jest spełniona i spełniony jest pierwszy składnik alternatywy, to wówczas badany stan b * = b $_{r}$ jest wierzchołkiem końcowym grafu d $_{i}$ i przyjmuje się go oznaczać symbolem b $_{r}$.

Reguła M3. Jeżeli przy testowaniu automatu pojawił się na jego wyjściu element y; który już wystąpił w wyrażeniu d; lecz nie podlega pod swój imiennik występujący w przodzie wyrażenia d; to zachodzi taka sama alternatywa jak w regule M2, z tym, że przy spełnieniu pierwszej części alternatywy wierzchołek b*= b nie może być wierzchołkiem końcowym grafu d;.

Reguly budowania wyrażenia G_i^{++} i d_i^{++} na podstawie wyników testowania można sformułować następująco:

- Reguła M4. Jeżeli w budowanym wyrażeniu G_i^{++} pojawił się w wyniku testowania automatu taki element b $_r$ (bez indeksu górnego), który jeszcze nie wystąpił w wyrażeniu G_i^{++} , bądź też wystąpił lecz nie podlega pod swój imiennik w przodzie, to za tym symbolem w wyrażeniu G_i^{++} stawiamy kolejny nawias otwierający. Reguła ta dotyczy również wyrażenia d_i^{++} .
- Regula M5. Jeżeli w budowanym wyrażeniu G_i^{++} pojawił się w wyniku testowania automatu taki element b;, za którym wystąpił przecinek, to należy wrócić przed nawias otwierający i testować automat przy stanie wewnętrznym b; zapisanym przed tym nawiasem takim elementem $z_r \in \mathbb{Z}$, który dla stanu b; nie był jeszcze rozpatrywany.
- Reguła M6. Jeżeli w budowanym wyrażeniu G⁺⁺ wystąpił w wyniku testowania automatu nawias zamykający)^k z indeksem k>1, wówczas należy zmniejszyć indeks nawiasów k o jeden i wrócić przed nawias otwierający z aktualną wartością indeksu k. Przed nawiasem z aktualną wartością indeksu k stoi symbol b; stanu wewnętrznego.

 Na podstawie częściowo już skompletowanego wyrażenia G⁺⁺ należy określić czy przy stanie b; zostały już rozpatrzone wszystkie elementy z cz; jeżeli "tak" to wówczas w wyrażeniu G⁺⁺ stawiamy nawias zamykający)^k z aktualną wartością indeksu k i powtarzamy czynności określone w regule M6; jeżeli "nie" to wówczas testujemy automat przy stanie b; kolejnym elementem z cz jeszcze nie rozpatrywanym przy tym stanie.

4.4 Przykład analizy automatu.

Zadany jest programowy wariant automatu Moore'a zapamiętany w pamięci mikrokomputera. Znany jest zbiór sygnałów wejściowych Z = $\{z_1, z_2\}$ i zbiór sygnałów wyjściowych Y = $\{y_1, y_2, y_3\}$ badanego automatu. Natomiast nie jest znany graf przejść automatu i jego

tabela wyjść. Celem analizy jest określenie grafu przejść oraz przyporządkowania jego wierzchołkom sygnałów wyjściowych y $_i$ \in Y.

Analize tego automatu oznaczonego dalej symbolem $A_i > przeprowadzono na mikrokomputerze IBM PC-286. Poszczególne kroki tej analizy scharakteryzowane zostaną poniżej.$

W pierwszej kolejności na wejściu automatu podano (z pulpitu mikrokomputera) sekwencję sygnałów $\mathbf{z}_1\mathbf{z}_1$ w wyniku czego na wyjściu automatu (tj. na ekranie monitora) otrzymano sekwencję sygnałów wyjściowych $\mathbf{y}_1\mathbf{y}_2\mathbf{y}_1$. Na podstawie tych dwóch sekwencji zbudowany został początkowy fragment wyrażenia \mathbf{d}_i^{++} :

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}... + (4)$$

Stany wewnętrzne analizowanego automatu przyjęto oznaczać symbolami b $_{j}$ \in B $_{i}$, gdzie j=1,2,... Zgodnie z regułą M $_{1}$ wyrażenie d $_{i}^{++}$ (4) można przekształcić do odpowiadającego mu wyrażenia G $_{i}^{++}$:

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b \dots$$
 (5)

gdzie symbol b (bez indeksu) oznacza nieokreślony jeszcze stan wewnętrzny automatu A_i . Na podstawie wyrażenia $G_i^{++}(5)$ można narysować odpowiadający mu fragment grafu d_i o strukturze drzewiastej. Fragment tego grafu przedstawiony na rys.3. ułatwia podjęcie decyzji dotyczącej określenia stanu oznaczonego w (5) symbolem b.

Rys.3.

Zgodnie z tym grafem symbol y_1 przyporządkowany wierzchołkowi b podlega pod swój imiennik y_1 w przodzie wyrażenia d_i^{++} , któremu przyporządkowany jest stan b_0 . Zachodzi więc alternatywa, zgodnie z regułą M_2 , że stan b jest stanem b_0 lub że stan b jest stanem b_2 , który nie wystąpił jeszcze w wyrażeniu G_i^{++} . Aby upewnić się, która część alternatywy jest spełniona sprawdzono zachowanie się automatu przy stanie b przy podaniu na jego wejście sygnału z_1 . Pod wpływem tego sygnału na wyjściu automatu (na ekranie monitora) pojawił się sygnał y_3 . Stąd też wynika, że symbol b reprezentuje sobą nowy stan b_2 , gdyż przy stanie b_0 i przy sygnale z_1 na wyjściu pojawia się sygnał y_1 . Po wykonaniu tej operacji wyrażenia d_i^{++} i G_i^{++} uzupełnione zostały o nowe elementy. Po uzupełnieniu wyrażenia te otrzymały następującą postać:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}^{3}(z_{1}y_{3}...$$
(6)

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b_{2}^{3}(z_{1}b_{3}...$$
 (7)

Graf narysowany na podstawie wyrażenia G_i^{++} (7) przedstawiony został na rys 4.

Rys.4.

Kontynuując testowanie automatu $<A_i>$ przy stanie b₃ (rys.4) sygnałem z₁, tj. przy słowie wejściowym z₁z₁z₁z₁, na ekranie monitora wyświetlona została sekwencja y₁y₂y₁y₃y₁. Na

podstawie tej sekwencji wyrażenie $d_i^{++}(6)$ uzupełnione zostaje o człon $d_i^{++}(c_1, c_2, c_3)$. i przyjmuje następującą postać:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}^{3}(z_{1}y_{3}^{4}(z_{1}y_{1}...$$

Ponieważ y występujący w członie $^4(z_1y_1...$ podlega pod dwa swoje imienniki y występujące w przodzie wyrażenia $d_i^{++}(8)$. Należy rozpatrzyć warunki określone w regule M_2 w celu określenia stanu wewnętrznego automatu generującego rozpatrywany y Oznaczając poszukiwany stan symbolem b wyrażenie $G_i^{++}(7)$ przyjmuje teraz następującą postać:

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b_{2}^{3}(z_{1}b_{3}^{4}(z_{1}b...$$
 (9)

gdzie symbol b w członie 4 (z $_1$ b oznacza stan podlegający określeniu. Graf reprezentowany przez wyrażenie G_i^{++} , ze wskazaniem linią przerywaną na dalsze kierunki testowania, pokazano na rys.5.

Rys.5.

Testując automat sygnałami z_1 i z_2 zarówno przy stanie b_0 jak i b stwierdzono, że stan b zapisany w termie ${}^4(z_1b$ wyrażenia G_1^{++} jest stanem b_0 . W związku z powyższym wierzchołek b w termie ${}^4(z_1b)$ traktowany jest jako wierzchołek końcowy budowanego drzewa d_1^2 , a

odpowiadający temu wierzchołkowi symbol y_3 w wyrażeniu d_i^{++} traktowany jest jako pośredni sygnał wyjściowy y_3' . Ponieważ wierzchołek b_0 wystąpił już w wyrażeniu G_i^{++} , to zgodnie z regułami budowy wyrażenia symbolicznego, za symbolem b_0' w G_i^{++} stawiamy przecinek i wychodzimy przed nawias otwierający. Znajdujemy się w wierzchołku b_3 stojącym przed nawiasem otwierającym b_0' (Krawędź b_1' wychodząca z tego wierzchołka była już rozpatrzona, należy więc rozpatrzyć teraz drugą krawędź b_1' w tym też celu w omawianym przykładzie analizowany automat b_1' sprowadzony został do stanu początkowego b_1' 0, a następnie na jego wejście podano sekwencję b_1' 1 wyniku czego na wyjściu automatu otrzymano sekwencję b_1' 2 w wyniku czego na wyjściu automatu otrzymano sekwencję b_1' 3 w wyniku czego na wyjściu automatu otrzymano sekwencję b_1' 4 y y y y y z generowane są przez jeden i ten sam stan wewnętrzny b_1' 2. W wyniku powyższego testowania wyrażenia b_1' 4 (8) i b_1' 4 (9) rozwinięte zostały do postaci:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}^{3}(z_{1}y_{3}^{4}(z_{1}y_{1}^{\prime},z_{2}y_{3}^{\prime})^{4}.$$
(10)

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b_{2}^{3}(z_{1}b_{3}^{4}(z_{1}b_{0}^{\prime}, z_{2}b_{3}^{\prime})^{4}.$$
(11)

Graf narysowany na podstawie wyrażenia $G_{\hat{i}}^{++}(11)$ z uwzględnieniem kroków testowania przedstawiony został na rys.6.

Z wyrażenia $G_i^{++}(11)$ wynika, że obydwie krawędzie z_1 i z_2 wychodzące z wierzchołka b_3 zostały rozpatrzone, w związku z czym za nawiasem $)^4$ stawiany jest przecinek i przechodzimy do wierzchołka $b_2^{-3}($ w $G_i^{++}.$ Do rozpatrzenia pozostaje teraz druga krawędź wychodząca z b_2 reprezentująca sygnał wejściowy z_2 . Automat A_i sprowadzony został więc do stanu początkowego b_0 a następnie na jego wejście podano sekwencję $z_1z_1z_2$ w wyniku czego na wyjściu automatu otrzymano sekwencję $y_1y_2y_1y_1$. Ponieważ aktualnie rozpatrywany ostatni symbol y_1 w sekwencji $y_1y_2y_1y_1$ podlega pod swoje imienniki w przodzie wyrażenia d_i^{++} przy testowaniu zastosowano regułę M_2 . W wyniku testowania ustalono, że stan b, przy którym generowany jest y będący ostatnim elementem ciągu $y_1y_2y_1y_1$ jest stanem b_0 , który wystąpił już wcześniej w wyrażeniu G_i^{++} .

Rys.6.

Na podstawie uzyskanych wyników wyrażenia $d_i^{++}(10)$ i $G_i^{++}(11)$ rozszerzone zostały do następującej postaci:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}^{3}(z_{1}y_{3}^{4}(z_{1}y_{1}',z_{2}y_{3}')^{4},z_{2}y_{1}')^{3},..$$
(12)

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b_{2}^{3}(z_{1}b_{3}^{4}(z_{1}b_{0}^{\prime}, z_{2}b_{3}^{\prime})^{4}, z_{2}b_{0}^{\prime})^{3}, .$$
 (13)

Drzewo z pętlami narysowane na podstawie wyrażenia $G_{\hat{1}}^{++}(13)$ przedstawione zostało na rys.7.

Na podstawie grafu dį z rys.7. można określić następny etap testowania automatu 4 . Mianowicie następny etap testowania należy rozpocząć od wierzchołka b przy sygnale z . Zgodnie z powyższym automat 4 sprowadzono (w rozpatrywnym przykładzie) do stanu początkowego b następnie na jego wejście podano sekwencję z z otrzymując na wyjściu automatu sekwencję $z_1 z_2$ otrzymując na wyjściu automatu sekwencję $z_1 z_2$

Rys.7.

Ponieważ w otrzymanej sekwencji $y_1y_2y_2$ ostatni element y_2 podlega pod swój imiennik w przodzie wyrażenia $d_i^{++}(12)$ do ustalenia stanu b generującego rozpatrywany y_2 przeprowadzono operacje wynikające z reguły M_2 . Po przeprowadzeniu tych operacji, jak również po przeprowadzeniu testowania dla wierzchołków będących potomnymi rozpatrywanego stanu b, na podstawie uzyskanych wyników wyrażenia $d_i^{++}(12)$ i $G_i^{++}(13)$ rozwinięte zostają do postaci jak niżej:

$$d_{i}^{++} = {}^{0}(y_{1}^{1}(z_{1}y_{2}^{2}(z_{1}y_{1}^{3}(z_{1}y_{3}^{4}(z_{1}y_{1}^{\prime},z_{2}y_{3}^{\prime})^{4},z_{2}y_{1}^{\prime})^{3},$$

$$z_{2}y_{2}^{3}(z_{1}y_{2}^{\prime},z_{2}y_{1}^{4}(z_{1}y_{3}^{5}(z_{1}y_{1}^{\prime},z_{2}y_{3}^{\prime})^{5},z_{2}y_{2})^{4})^{3})^{2}, .$$

$$(14)$$

$$G_{i}^{++} = {}^{0}(b_{0}^{-1}(z_{1}b_{1}^{-2}(z_{1}b_{2}^{-3}(z_{1}b_{3}^{-4}(z_{1}b_{0}^{\prime}, z_{2}b_{3}^{\prime}), z_{2}b_{0}^{\prime}), z_{2}b_{0}^{\prime}), z_{2}b_{3}^{\prime}), z_{2}b_{0}^{\prime}), z_{2}b_{3}^{\prime}), z_{2}^{\prime}$$

Graf d_i narysowany na podstawie wyrażenia $G_i^{++}(15)$ przedstawiony został na rys.8.

Rys.8.

Z grafu $G_i^{++}(15)$ jednoznacznie wynikało, że dalszy etap testowania automatu A_i należy przeprowadzić wzdłuż krawędzi z wychodzącej z wierzchołka początkowego b_0 .

Po podaniu na wejście automatu sygnału z₂, przy stanie b₀, na wyjściu automatu pojawił się sygnał y_3 . Z wyrażenia $d_i^{++}(14)$ wynika, że symbol y₃ wystąpił już w tym wyrażeniu na wczesniejszych pozycjach. Jednakże analizowany y₃ nie podlega pod swoje imenniki w przodzie wyrażenia $d_i^{++}(14)$. Zachodzi więc alternatywa, że stan wewnętrzny b, który spowodował wygenerowanie rozpatrywanego sygnału y_3 jest stanem nowym, bąd \dot{z} jest to jeden ze stanów już rozpoznanych i przyporządkowanych w wyrażeniu G; (15) imiennikom rozpatrywanego elementu y₃. Zastosowano więc tu regułę M₃. Na wejście automatu, przy stanie początkowym b $_0$, podano sekwencję $\mathbf{z_2}\mathbf{z_1} \quad \text{i otrzymano} \quad \mathbf{y_1}\mathbf{y_3}\mathbf{y_1}. \quad \text{Następnie sprowadzono automat do stanu}$ początkowego i podano sekwencję z_2z_2 , a na wyjściu otrzymano $y_1y_3y_3$. Uzyskane wyniki porównano z pozycjami y_3^4 (i y_3^5 (wyrażenia $d_i^{++}(14)$. Stwierdzono, że w rozpatrywnym przypadku automat zachował się tak samo. Ponieważ elementom y_3^4 (i y_3^5 (przyporządkowny jest stan b $_3$ w wyrażeniu $G_i^{++}(15)$, stan b generujący rozpatrywany y₃ jest stanem b₃. Zwróćmy uwagę na to, że

zachowanie się automatu A_i przy stanie b_3 , zarówno pod wpływem syganłu z_1 jak i z_2 , zostało już określone w wyrażeniu $G_i^{++}(15)$. W związku z powyższym proces testowania automatu należy uważać za zakończony. Wyrażenia $d_i^{++}(14)$ i $G_i^{++}(15)$ uzupełnione o omówione wyżej wyniki ostatniego etapu testowania przyjmują teraz następującą postać:

$$d_{i}^{++} = {}^{0}(y_{1}^{-1}(z_{1}y_{2}^{-2}(z_{1}y_{1}^{-3}(z_{1}y_{3}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-}),z_{2}y_{1}^{-2}),z_{2}y_{2}^{-3}(z_{1}y_{2}^{-},z_{2}y_{1}^{-4}(z_{1}y_{3}^{-},z_{2}y_{2}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{3}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-2},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}),z_{2}y_{1}^{-4}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{2}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^{-},z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}),z_{2}y_{3}^{-2}(z_{1}y_{1}^$$

$$G_{i}^{++} = {}^{0}(b_{0}^{1}(z_{1}b_{1}^{2}(z_{1}b_{2}^{3}(z_{1}b_{3}^{4}(z_{1}b_{0}', z_{2}b_{3}')^{4}, z_{2}b_{0}')^{3}, z_{2}b_{4}^{3}(z_{1}b_{4}', z_{2}b_{2}^{4}(z_{1}b_{2}', z_{2}b_{3}')^{4}, z_{2}b_{3}^{2}(z_{1}b_{0}', z_{2}b_{3}')^{2})^{1})^{0}$$

$$(17)$$

Na podstawie wyrażenia $G_i^{++}(17)$ można narysować drzewo d_i^{\cdot} ilustru jące wyniki uzyskane w procesie analizy przykładowego automatu A_i^{\cdot} typu Moore'a. Graf d_i^{\cdot} (drzewo z pętlami) przedstawiony został na rys.9.

Rys.9.

Porównując wyrażenia d_i^{++} i G_i^{++} na pozycjach stojących przed nawiasami otwierającymi można określić przyporządkowanie stanom wewnętrznym b_j sygnalów wyjściowych y_i analizowanego automatu. W wyniku tego porównania otrzymano następującą tablice wyjść T_i :

Tablica T ₂	stan wewn.	sygnał na wyjściu
	ь ₀	y 1
	b ₂	^у 2 ^у 1
	b ₃	у ₃

W celu otrzymania grafu automatu A_i , wyrażenie $G_i^{++}(17)$ reprezentujące drzewo z pętlami z rys.9 należy przekształcić na wyrażenie symboliczne G_i^+ reprezentujące graf automatu. Przekształcenie to dokonuje się na podstawie podanych wyżej reguł S_1, S_2 i S_3 . Wyrażenie G_i^+ wyprowadzone z $G_i^{++}(17)$ ma następującą postać:

$$G_{i}^{++} = {}^{0}(b_{0}{}^{1}(z_{1}b_{1}{}^{2}(z_{1}b_{2}{}^{3}(z_{1}b_{3}{}^{4}(z_{1}b_{0}, z_{2}b_{3}){}^{4}, z_{2}b_{0}){}^{3}, z_{2}b_{4}{}^{3}(z_{1}b_{4}, z_{2}b_{2}){}^{3}){}^{2}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}){}^{1}, z_{2}b_{3}{}^{3}, z_{2}b_{3}{}^{3}$$

Wyrażenie $G_i^+(18)$ i Tablica T_i jednoznacznie określają graf G_i analizowanego automatu A_i . Graf ten przedstawiony został na rys. 10.

Rys.10.

Załóżmy teraz, że studenci wykonujący opisany wyżej przykład analizy automatu otrzymane wyniki w postaci Tablicy T_i , wyrażenia $G_i^{++}(18)$ i grafu G_i^+ z rys.10 przedstawili prowadzącemu ćwiczenia laboratoryjne. Prowadzący ćwiczenie laboratoryjne zna wyrażenie symboliczne G_i^+ zapamiętane w pamięci komputera i reprezentujące graf analizowanego A_i , ma ten graf narysowany na papierze ,zna również tablicę wyjść automatu.

Załóżmy również, że graf automatu który znajduje się w dyspozycji prowadzącego ćwiczenia laboratoryjne ma postać przedstawioną na rys.11.

Rys.11.

Wyrażenie symboliczne reprezentujące ten graf, będące również w dyspozycji prowadzącego ćwiczenie laboratoryjne, ma postać jak niżej:

Prowadzący ćwiczenie laboratoryjne powinien sprawdzić czy wyniki uzyskane przez studentów odzwierciedlają rzeczywisty graf przejść badanego automatu <A $_i>$. W tym też celu prowadzący ćwiczenie porównuje wyrażenie $\overset{}{G}^+_i(19)$ z wyrażeniem $\overset{}{G}^+_i(18)$ na odpowiadających sobie pozycjach $q_{_{\bf T}}^{k}($ i b $_i^{k}($ w obydwu wyrażeniach. W rozpatrywanym

przykładzie w wyniku porównania otrzymano następującą równoważność symboli reprezentujących stany wewnętrzne automatu A_i :

$$q_2 = b_0$$
, $q_3 = b_1$, $q_4 = b_4$, $q_5 = b_4$, $q_1 = b_3$

Podstawiając symbole q_r pod odpowiadające im symbole b_i w wyrażeniu $G_i^+(18)$ otrzymujemy wyrażenie $G_i^+(19)$ co świadczy o tym, że uzyskane wyniki analizy są poprawne.

5. Opis programu wspomagającego komputerową analizę automatów skończonych

W poprzednich punktach rozważono możliwość analizy automatów skończonych przy wykorzystaniu komputera. Przedstawiono również algorytm umożliwiający taką analizę. W celu jego weryfikacji powstał program, którego komputerową implementację zrealizowano na mikrokomputerze IBM PC. Program ten zapewnia realizację przez komputer następujących funkcji:

- przechowanie struktury badanego automatu w pamięci komputera,
- testowanie działania automatu (po wprowadzeniu ciągu sygnałów wejściowych program generuje odpowiadający mu ciąg sygnałów wyjściowych),
- wspomaganie procesu odtworzenia grafu automatu na podstawie otrzymanych wyników (wizualizacja wyników i ich wstępne przetworzenie),

W następnym punkcie zostanie opisany sposób korzystania z tego programu. Punkt ten stanowi rozszerzenie informacji zawartych w instrukcji laboratoryjnej "Programowa realizacja automatów skończonych" i dotyczących opisu opcji ANALIZA.

5.1. Opis rozszerzonej wersji opcji ANALIZA

Jedną z opcji programowego wariantu automatu skończonego jest opcja ANALIZA. Po jej wybraniu z menu głównego programu istnieje możliwość realizacji jednej z funkcji:

- wybór automatu,
- testowanie automatu.

Pierwsza z tych funkcji umożliwia wybranie jednego z pięciu automatów, których struktura przechowywana jest w pamięci komputera. Po podaniu numeru wybranego automatu na ekranie wyświetlony zostaje odpowiadający mu zbiór sygnałów wejściowych i wyjściowych. Po tej czynności można przystąpić do testowania automatu,

wybierając drugą z wymienionych wcześniej funkcji.

przed podaniem pierwszego sygnału wejściowego z ciągu.

Testowanie automatu rozpoczyna się od podania ciągu sygnałów wejściowych. W tym celu należy nacisnąć klawisz >SPACJA<. Na ekranie pojawi się okno przedstawione na rys.12. Można wówczas podać ciąg sygnałów wejściowych oddzielając poszczególne elemanty tego ciągu przecinkami. Po wciśnięciu klawisza >ENTER< program wygeneruje odpowiadający danym wejściowym ciąg sygnałów wyjściowych. Należy zwrócić uwagę, że ciąg ten jest zawsze o jeden element dłuższy od ciągu wejściowego, ponieważ zawiera dodatkowo informację o stanie początkowy (aktualnym) automatu

Rys.12.

W trakcie testowania powinna być możliwość powrotu badanego automatu do jednego z wcześniejszych stanów. Można to osiągnąć sprowadzając automat do stanu początkowego (klawisz >TAB< zerowanie), a następnie podając odpowiedni ciąg wejściowy. O ile nie zostanie naciśnięty klawisz >TAB< kolejne testowanie odbywa się od stanu, w którym automat znalazł się po poprzednim kroku. W celu ułatwienia procesu analizy automatu program na podstawie otrzymywanych danych (ciąg wejściowy i wyjściowy) po każdym kroku testowania buduje wyrażenie $d_{\hat{i}}^{++}$. Można je wyświetlić na ekranie naciskając klawisz >F1< (patrz rys.13). Odpowiadający temu wyrażeniu dendryt można otrzymać na ekranie wciskając klawisz >F2< (patrz rys.14). W przypadku gdy dendryt nie mieści się w całości na ekranie komputera za pomocą klawiszy kierunkowych (strzałek) można wybrać dowolny jego fragment. Do szybszego przewijania ekranu należy dodatkowo wcisnąć klawisz >SHIFT<.

ne திழ்ந்த இறைப்படிக்கு — Definici Analiza — — — — — — — — — — — — — — — — — — —		
Murazen ie	F.w. :	
		^ر يع3 ² (2 ₁ 4 ₁ 3(
	49razenie 4 (z 1917z 293)4, z	F.w.: Hyrazenie dipp: 4(z ₁ y ₁ ,z ₂ y ₃) ⁴ ,z ₂ y ₂ ⁴ (z ₁ y ₂ ,z ₂ y ₃) ⁴) ³) ² .

Rys.13

Rys. 14

6. Przebieg ćwiczenia

Przed przystąpieniem do ćwiczenia studenci sprawdzani są ze znajomości metody analizy automatów w zakresie identyfikacji grafu automatu przedstawionej w punktach 4.1, 4.2, 4.3.

Po sprawdzeniu studenci zapoznają się z podstawowymi opcjami oprogramowania mikrokomputera użytego do analizy programowego wariantu automatu. W następnej kolejności prowadzący ćwiczenie podaje numer programowego wariantu automatu podlegającego analizie. Po zapoznaniu się ze sposobem podawania sygnałów wejściowych automatu z pulpitu komputera i odczytem wyników studenci przystępują do testowania automatu zgodnie z przykładem podanym w punkcie 4.4. Przy podawaniu dowolnego sygnału na wejście automatu studenci obserwują reakcję automatu i odnotowują sygnał pojawiający się na wyjściu automatu. Wyniki testowania automatu zapisywane są w

postaci kolejnych fragmentów wyrażeń symbolicznych G_i^{++} i d_i^{++} tak jak w punkcie 4.4. Jednocześnie z kompletowaniem wyników testowania budowany jest na podstawie kolejnych fragmentów wyrażeń G_{i}^{++} i d_i^{++} graf o strukturze drzewiastej anlizowanego automatu A_i . Ćwiczenia uważa się za zakończone, kiedy budowane na podstawie wyników testowania wyrażenia G_i^{++} , d_i^{++} staną się kompletne, tj. osiągną pozycję z nawiasem zamykającym o indeksie zero.

W sprawozdaniu należy:

- Umieścić temat ćwiczenia, cel i program ćwiczenia,
- Przedstawić wyniki testowania automatu w postaci kolejnych fragmentów wyrażeń d_i^{++} i G_i^{++} i odpowiadających im kolejnych obrazów drzewa d;,
- Przedstawić kompletne wyrażenie G_i^{++}, d_i^{++} uzyskane na podstawie wyników testowania automatu,
- Zestawić na postawie G⁺⁺_i i d⁺⁺_i przyporządkowania sygnałów wyjściowych automatu stanom wewnętrznym automatu,
 Przekształcić wyrażenie G⁺⁺_i do postaci wyrażenia G⁺_i i przedsta-
- wić uzyskane wyrażenie G_{i}^{+1} ,
- Narysować na postawie wyrażenia G_i graf G_i analizowanego automatu <A; >,
- Podać wnioski z przeprowadzonego ćwiczenia.

LITERATURA

- 1. Bromirski J., Teoria automatów, WNT, Wyd.II., Warszawa 1970.
- 2. Kazimierczak J., System cybernetyczny, Wiedza Powszechna /seria Omega/, Warszawa 1978.
- 3. Kazimierczak J., Elementy syntezy formalnej systemów operacyjnych, Bibl. WASC, Wyd. Politechniki Wrocławskiej, Wrocław 1979.
- 4. Kazimierczak J., Automaty rozgrywające parametryczne Synteza i zastosowanie, Prace Naukowe Inst. Cybern. Techn. P.W., Monografie, Wydawnictwo Politechniki Wrocławskiej, Wrocław 1974.
- 5. Kazimierczak J., Kluska J., Kaczmarek A., Podstawy teorii automatów - Laboratorium (skrypt), Wydawnictwo Politechniki Rzeszowskiej, Rzeszów 1984.