Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer Ludwig-Maximilians-Universität München Institut für Informatik 18. Oktober 2017

Lösungsvorschlag zur 1. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 1-1 (Grenzwerte) Berechnen Sie folgende Grenzwerte, falls diese existieren. Begründen Sie jeweils Ihre Antwort.

a)
$$\lim_{n \to \infty} \frac{3n}{n+3} = 3$$

d)
$$\lim_{n \to \infty} \frac{2n^3 - 4n^2}{4n^3 + 2} = \frac{1}{2}$$

b)
$$\lim_{n \to \infty} \frac{5+n}{3n+3} = \frac{1}{3}$$

e)
$$\lim_{n \to \infty} \frac{2^n}{n^2} = \infty$$

c)
$$\lim_{n \to \infty} \frac{(-2)^{n-1}}{3^n} = 0$$

f)
$$\lim_{n\to\infty} \frac{n^2}{2^n} = 0$$

Lösungsskizze

a)
$$\lim_{n \to \infty} \frac{3n}{n+3} = 3 \cdot \lim_{n \to \infty} \frac{n}{n+3} = 3 \cdot \lim_{n \to \infty} \frac{n+3-3}{n+3} = 3 \cdot \lim_{n \to \infty} 1 - \frac{3}{n+3} = 3$$

b)
$$\lim_{n \to \infty} \frac{5+n}{3n+3} = \frac{1}{3} \lim_{n \to \infty} \frac{n+1+4}{n+1} = \frac{1}{3} \lim_{n \to \infty} 1 + \frac{4}{n+1} = \frac{1}{3}$$

c)
$$\lim_{n \to \infty} \frac{(-2)^{n-1}}{3^n} = \frac{1}{-2} \lim_{n \to \infty} \frac{(-2)^n}{3^n} = -\frac{1}{2} \lim_{n \to \infty} \left(-\frac{2}{3}\right)^n = 0$$

d)
$$\lim_{n \to \infty} \frac{2n^3 - 4n^2}{4n^3 + 2} = \lim_{n \to \infty} \frac{n^3 - 2n^2}{2n^3 + 1} = \lim_{n \to \infty} \frac{n^3 + 1 - 2n^2 - 1}{2n^3 + 1} = \frac{1}{2} \lim_{n \to \infty} \frac{-2n^2 - 1}{2n^3 + 1} = \frac{1}{2} \lim_{n \to \infty} \frac{n^3 - 2n^2}{2$$

e)
$$\lim_{n\to\infty} \frac{2^n}{n^2} = \infty$$
 (da Kehrwert der nächsten Teilaufgabe)

f) Wir zeigen $0 \le \frac{n^2}{2^n} \le \frac{1}{n}$ für hinreichend große n. Das macht die Aufgabe einfach, da wir schon $\lim_{n\to\infty} \frac{1}{n} = 0$ wissen.

Die Ungleichung $0 \leq \frac{n^2}{2^n}$, da n^2 und 2^n beide stets positiv sind.

Die Ungleichung $\frac{n^2}{2^n} \leq \frac{1}{n}$ ist äquivalent zu $n^3 \leq 2^n$ (beide Seiten mit $n \cdot 2^n$ multiplizieren).

Wir beweisen zuerst mit Induktion, dass das für alle $n \geq 10$ gilt. Induktionsanfang: $10^3 = 1000 \leq 1024 = 2^{10}$. Induktionsschritt: Wir müssen $(n+1)^3 \leq 2^{n+1}$ zeigen. Das ist äquivalent zu $n^3 + 3n^2 + 3n + 1 \leq 2 \cdot 2^n$. Die Induktionsannahme ist $n^3 \leq 2^n$. Es genügt also $n^3 + 3n^2 + 3n + 1 \leq 2 \cdot n^3$ zu zeigen. Das ist äquivalent zu $3n^2 + 3n + 1 \leq n^3$ und weiter zu $3 + \frac{3}{n} + \frac{1}{n^2} \leq n$. Dies ist für n > 10 aber offentsichtlich wahr, da die beiden Brüche bereits kleiner als 1 sind. Somit haben wir die gewünschte Behauptung gezeigt.

Aufgabe 1-2 (Grenzwerte) Beweisen Sie folgende Aussage für jede beliebige Folge (a_n) und jede beliebige Zahl b: Wenn $\lim_{n\to\infty} a_n = a$, dann $\lim_{n\to\infty} b\cdot a_n = b\cdot a$.

Lösungsskizze

Für b=0 ist die Aussage sofort klar, da die Folge $(b \cdot a_n)$ dann konstant gleich 0 ist. Wir brauchen also nur noch den Fall $b \neq 0$ zu betrachten.

Wir nehmen $\lim_{n\to\infty}a_n=a$ an und müssen $\lim_{n\to\infty}b\cdot a_n=b\cdot a$ zeigen. Die Annahme besagt nach Definition, dass es für jedes $\varepsilon'>0$ es ein N' gibt, so dass $|a_n-a|<\varepsilon'$ für alle n>N' gilt. Wir müssen zeigen: Für jedes $\varepsilon>0$ gibt es ein N, so dass $|b\cdot a_n-b\cdot a|<\varepsilon$ für alle n>N gilt.

Sei $\varepsilon > 0$ beliebig gegeben. Setze $\varepsilon' := \frac{\varepsilon}{|b|}$. Nach Annahme gibt es dann ein N', so dass $|a_n - a| < \varepsilon'$ für alle n > N' gilt. Aus $|a_n - a| < \varepsilon'$ folgt $|b \cdot a_n - b \cdot a| < \varepsilon$ wie folgt:

$$|a_n - a| < \varepsilon' \implies |a_n - a| < \frac{\varepsilon}{|b|}$$
 (Wahl von ε')
$$\implies |b| \cdot |a_n - a| < \varepsilon$$
 (Multiplizieren beider Seiten mit $|b|$)
$$\implies |b \cdot (a_n - a)| < \varepsilon$$

$$\implies |b \cdot a_n - b \cdot a| < \varepsilon$$

Somit haben wir gezeigt, dass $|b \cdot a_n - b \cdot a| < \varepsilon$ für alle n > N' gilt. Also können wir einfach N := N' wählen und haben dann $|b \cdot a_n - b \cdot a| < \varepsilon$ für alle n > N, was zu zeigen war.

Aufgabe 1-3 (Reihen) Welche der folgenden Reihen konvergiert? Begründen Sie jeweils Ihre Antwort!

a)
$$\sum_{k=0}^{\infty} \frac{(1+k^2)^2}{(1+k^3)^2}$$
 c) $\sum_{k=1}^{\infty} \frac{k^4}{3^k}$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$
 d) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$

Lösungsskizze

- a) $\sum_{k=0}^{\infty} \frac{(1+k^2)^2}{(1+k^3)^2}$: konvergiert, Beweis mit Majoranten-Kriterium, denn es gilt: $\frac{(1+k^2)^2}{(1+k^3)^2} < \frac{(1+k^2)^2}{(k^3)^2} < \frac{(k^2+k^2)^2}{k^6} = \frac{4k^4}{k^6} = \frac{4}{k^2}$
- b) $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$ konvergiert, Leibniz-Kriterium
- c) $\sum_{k=1}^{\infty}\frac{k^4}{3^k}$ konvergiert, Quotienten-Kriterium
- d) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ konvergiert, Quotienten-Kriterium

Aufgabe 1-4 (Der kleine Gauß) Beweisen Sie mit Induktion den "kleinen Gauß":

$$\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$$

Lösungsskizze

Induktionsanfang: Für n=1 rechnen wir es einfach nach. $\sum_{i=1}^{1} i = 1 = \frac{2}{2} = \frac{1 \cdot (1+1)}{2}$.

Induktionsschritt: Wir müssen beweisen, dass $\sum_{i=1}^{n+1} i = \frac{(n+1)\cdot(n+2)}{2}$ gilt. Dabei dürfen wir $\sum_{i=1}^{n} i = \frac{n\cdot(n+1)}{2}$ als Induktionshypothese voraussetzen.

Wir rechnen

$$\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i = (n+1) + \frac{n \cdot (n+1)}{2} = \frac{2(n+1) + n \cdot (n+1)}{2} = \frac{(2+n) \cdot (n+1)}{2}$$

Die zweite Gleichung verwendet hier die Induktionshypothese für n.

Abgabe: Sie können Ihre Lösung bis zum Mittwoch, den 25.10. um 12 Uhr über Uni-WorX abgeben. Auf dieses Übungsblatt gibt es keine Bonuspunkte. Die Korrektur dient Ihrem Verständnis des Stoffes.