Analízis 3. (B és C szakirány)

Szükséges ismeretek a 2. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/03/05 13:27

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Analízis 3. gyakorlatok, 2018 őszi kidolgozás

1. Definiálja a primitív függvényt.

Legyen $I \subset \mathbb{R}$ egy nyílt intervallum. Az $F: I \to \mathbb{R}$ függvény az $f: I \to \mathbb{R}$ egy primitív függvénye, ha $F \in D(I)$ és $F'(x) = f(x) \quad (x \in I)$.

2. Milyen szükséges feltételt ismer primitív függvény létezésére?

Ha $I \subset \mathbb{R}$ nyílt intervallum és az $f: I \to \mathbb{R}$ függvénynek van primitív függvénye, akkor f Darboux-tulajdonságú az I intervallumon.

3. Mit mond ki a primitív függvényekkel kapcsolatos parciális integrálás tétele?

Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel, hogy $f, g \in D(I)$ és f'g-nek létezik primitív függvénye. Ekkor fg'-nek is van primitív függvénye és

$$\int fg' = fg - \int f'g.$$

4. Hogyan szól a primitív függvényekkel kapcsolatos első helyettesítési szabály?

Legyen $I, J \subset \mathbb{R}$ nyílt intervallum, $g \in D(I)$, $\mathcal{R}_g \subset J$ és $t_0 \in I$. Ha az $f : J \to \mathbb{R}$ függvénynek van primitív függvénye, akkor $(f \circ g) \cdot g'$ -nek is van primitív függvénye és

$$\int\limits_{t_0} (f\circ g)\cdot g' = \left(\int\limits_{g(t_0)} f\right)\circ g.$$

5. Mi a Darboux-féle alsó integrál definíciója?

Legyen $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a, b]$ felosztás esetén $s(f, \tau)$ az f függvény τ -hoz tartozó alsó közelítő összege. Jelölje $\mathcal{F}([a, b])$ az [a, b] felosztásainak a halmazát. Ekkor az $\{s(f, \tau) \mid \tau \in \mathcal{F}([a, b])\}$ halmaz felülről korlátos, ezért létezik szuprémuma. Az

$$I_*(f) := \sup\{s(f, \tau) \mid \tau \in \mathcal{F}([a, b])\}$$

számot az f függvény Darboux-féle alsó integráljának nevezzük.

6. Mikor nevezünk egy függvényt (Riemann)-integrálhatónak?

Legyen $a,b \in \mathbb{R}$, a < b és $f:[a,b] \to \mathbb{R}$ egy korlátos függvény, $I_*(f)$, ill. $I^*(f)$ az f függvény Darboux-féle alsó, ill. felső integrálja. Ekkor f Riemann-integrálható az [a,b] intervallumon (jelekkel: $f \in R[a,b]$), ha $I_*(f) = I^*(f)$.

7. Hogyan szól a Newton-Leibniz-tétel?

Ha $f \in R[a, b]$ és f-nek létezik primitív függvénye [a, b]-n, akkor $\int_a^b f = F(b) - F(a)$, ahol F a f függvénye egy primitív függvénye.