CS201

Mathematics For Computer Science Indian Institute of Technology, Kanpur

Due by: Dec 14, 2020

Assignment

4

Instructions.

- Solutions should be mandatorily LaTeXed using the template shared and submitted through GradeScope before time. Mention Group Numbers and member names in solutions (refer template instructions).
- Clearly express solutions avoiding unnecessary details. Everything discussed in class is not required to be proved again. And anything non-trivial must be proved.
- Write the solutions on your own. Acknowledge the source wherever required.
 Keep in my mind department's Anti-Cheating Policy.
- 1. Let S be a finite set and F be set of all bijections from S to S. Show that F along with the composition operation is a group.
- 2. Let G be a non-commutative group and $e \in G$ be the identity element. The **order** of an element $g \in G$ denoted as ord(g) is the smallest natural number s such that $g^s = e$ where

$$g^i = \underbrace{g.g.g \dots g}_{\text{number of } g \text{ is } i}$$

Let a and b be elements of G such that ord(a) = 7 and $a^3b = ba^3$. Prove that ab = ba.

- 3. Let $\mathbb{Q}[\alpha, \beta]$ denote the smallest subring of \mathbb{C} containing rational numbers \mathbb{Q} and the element $\alpha = \sqrt{2}$ and $\beta = \sqrt{3}$. Let $\gamma = \alpha + \beta$. Is $\mathbb{Q}[\alpha, \beta] = \mathbb{Q}[\gamma]$?
- 4. An element n of a ring R is called **nilpotent** if there exists $j \in \mathbb{N}$ such that $n^j = 0$. An element u of a ring R is called a **unit** if there exists $v \in R$ such that uv = 1. Prove that if $r \in R$ is nilpotent, then 1 r is a unit.

5. Let I and J be ideals of a ring R such that I+J=R. Prove that $IJ=I\cap J$ where $IJ=\{xy|x\in I,y\in J\}$.