

MITx: 14.310x Data Analysis for Social Scientists

Heli

- Module 1: The Basics of R and Introduction to the Course
- ► Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing > Assessing and Deriving Estimators > Unbiased Estimators - Quiz

Unbiased Estimators - Quiz

☐ Bookmark this page

Question 1

1.0/1.0 point (graded)

Which estimators $\hat{m{ heta}}$ are unbiased? These graphs show PDFs of $\hat{m{ heta}}$. (Select all that apply.)

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 <u>Distributions, the</u>
 <u>Sample Mean, the</u>
 <u>Central Limit Theorem,</u>
 <u>and Estimation</u>
- Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing

<u>Assessing and Deriving</u> <u>Estimators</u>

Finger Exercises due Nov 14, 2016 at 05:00 IST

<u>Confidence Intervals and</u> <u>Hypothesis Testing</u>

Finger Exercises due Nov 14, 2016 at 05:00 IST

Module 7: Homework

<u>Homework due Nov 07, 2016 at 05:00 IST</u>

Exit Survey

Explanation

Recall the definition of an unbiased estimator: an estimator $\hat{\theta}$ is unbiased if, in expectation, it is equal to the parameter it is trying to estimate. (In other words, an estimator is unbiased for θ if $E[\hat{\theta}] = \theta$ for all θ in Φ .) Therefore, the estimators in a. and b. are both unbiased, because the expectation of $\hat{\theta}$ is the center of the distribution.

Submit

You have used 1 of 2 attempts

Question 2

1.0/1.0 point (graded)

Suppose we are trying to estimate the mean μ of a $N(\mu, \theta)$ distribution. Which of the following estimators would be unbiased? (Select all that apply)

$$otin a. \, \hat{\mu} = rac{1}{n} \sum_{i=1}^n X_i
otag$$

- lacksquare b. $\hat{\mu}=rac{1}{2}{
 m max}\{X_1,X_2,\dots X_n\}$
- lacksquare c. $\hat{\mu}=n\mathrm{min}\{X_1,X_2,\ldots,X_n\}$
- \square d. $\hat{\mu} = rac{2}{n} \sum_{i=1}^n X_i$

Explanation

We can calculate the expectation of any of these estimators to determine whether they are biased. The estimator in (a) is unbiased: $E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{n\mu}{n} = \mu$. The estimator in (b) is biased because, as we saw in lecture, the n^{th} order statistic is a biased estimator for μ . Intuitively, the estimator will always be less than or equal to θ , and equal θ with 0 probability. The estimator in (c) can be shown to be a biased estimator for μ , in the same way the n^{th} order statistic is a biased estimator. The estimator in (d) would estimate θ , not μ .

Submit

You have used 1 of 2 attempts

Discussion

Topic: Module 7 / Unbiased Estimators - Quiz

Show Discussion

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

