Analyse non paramétrique

Table of Contents

1
1
1
2
5
10
10
14

Introduction

Les variables d'analyse

On a un échantillon aléatoire de *n* individus avec:

- Des indicateurs de fin d'épisode e_1, e_2, \ldots, e_k avec $e_i = 0$ si censure à droite et $e_i = 1$ si évènement observé pendant la période d'observation.
- Des durées d'exposition au risque t_1, t_2, \ldots, t_k jusqu'à l'évènement ou la censure.
- En théorie, il ne peut pas y avoir d'évènement en t = 0.

Exemple (temps continu, pas d'évènement simultané):

t_i	d_i	Commentaires
1	0	Censure
2	1	Evènement
5	1	Evènement
10	0	Censure
11	1	Evènement

Calculer le Risk set pour t = 2, t = 5 et t = 11. En t = 0, R = 5.

Calcul de la fonction de survie

Rappel: La fonction de survie donne la probabilité que l'évènement survienne après t_i , soit $S(t_i) = P(T > t_i)$.

Pour survivre en t_i , il faut avoir survécu en t_{i-1} , t_{i-2} , ..., t_1 .

La fonction de survie rapporte donc des probabilités conditionnelles: survivre en t_i conditionnellement au fait d'y avoir survécu avant. Il s'agit donc d'un produit de probabilités:

Soit $d_i = \sum e_i$ le nombre d'évènements observé en t_i et r_i la population encore soumise au risque en i. On peut mesurer l'intensité de l'évènement en t_i en calculant le quotient $q(t_i) = \frac{d_i}{r_i}$. Si le temps est strictement continu on devrait toujours avoir $q(t_i) = \frac{1}{r_i}$.

$$S(t_i) = (1 - \frac{d_i}{r_i}) \times S(t_{i-1}) = S(t_i) = (1 - q(t_i)) \times S(t_{i-1})$$

En remplaçant $S(t_{i-1})$ par sa valeur: $S(t_i) = (1 - \frac{d_i}{r_i}) \times (1 - \frac{d_{i-1}}{r_{i-1}}) \times S(t_{i-2})$. Puis en remplaçant toutes les expressions de la survie jusqu'en t_0 (S(0) = 1):

$$S(t_i) = \prod_{t_i \le k} (1 - q(t_i))$$

Application pour la suite du cours (et jusqu'à la dernière section)

On va analyser le risque de décéder (la survie) de personnes souffrant d'une insuffisance cardiaque. Le début de l'exposition est leur inscription dans un registre d'attente pour une greffe du coeur.

Les covariables sont dans un premier temps toutes fixes: l'année (year), l'âge à l'entrée dans le registre (age), et le fait d'avoir été opéré pour un pontage aorto-coronarien avant l'inscription (surgery).

Le début de l'exposition au risque est l'entrée dans le registre, la durée est mesurée en jour (*stime*). La variable évènement est le décès (*died*).

La méthode actuarielle

- Estimation sur des intervalles définies par l'utilisateur.
- Approche dite «continue», estimation en milieu d'intevalle.
- Méthode apropriée lorsque la durée est mesurée de manière discrète.

Echelle temporelle

La durée est divisée en J intervalles, en choisissant J points: $t_0 < t_1 < ... < t_J$ avec $t_{J+1} = \infty$.

Calcul du Risk set

- A $t_{min} = 0$, $n_0 = n$ individus soumis au risque: $r_0 = n_0$.
- Le nombre d'exposés au risque sur un intervalle est calculé en soustrayant la moitié des cas censurés sur la longueur de l'intervalle: $r_i = n_i 0.5 \times c_i$, avec n_i le nombre de personnes soumises au risque au début de l'intervalle et c_i le nombre d'observations censurées sur la longueur de l'intervalle. On suppose donc que les observations

censurées c_i sont sorties de l'observation uniformément sur l'intervalle. Les cas censurés le sont en moyenne au millieu de l'intervalle.

Calcul de $S(t_i)$

On applique la méthode de la section précédente avec $q(t_i) = \frac{d_i}{n_i - 0.5 \times r_i}$

Calcul de la durée médiane (ou autre quantiles)

Rappel: compte tenu des censures à droite, le dernier intervalle étant ouvert, il n'est pas conseillé de calculer des durées moyennes. On préfère utiliser la médiane ou tout autre quantile lorsqu'ils sont définissables.

Définition: il s'agit de la durée telle que $S(t_i) = 0.5$.

Calcul: Comme on applique une méthode continue et monotone à l'intérieur dintervalles, on ne peut pas calculer directement un point de coupure qui correspond à 50% de survivants. On doit donc trouver ce point par interpolation linéaire dans l'intervalle[t_i ; t_{i+1} [avec $S(t_{i+1}) \le 0.5$ et $S(t_i) > 0.5$.

Logiciels

- **SAS**: incluse dans proc lifetest.
- **Stata**: commande ltable. Voir la commande externe qlt (MT) qui calcule les durées médianes (+ quartiles) et qui cale la définition des intervalles avec celle de Sas.
- R: une fonction programmée par un utilisateur (package discSurv => fonction lifeTable), mais pas convaincante car pas d'estimation sur les quantiles, et estimation avec des intervalles toujours fixés à dt = 1.
- **Python**: à l'heure actuelle, aucune fonction à ma connaissance.

Exemple

Into	erval	Beg. Total	Deaths	Lost	Survival	Std. Error	[95% Con	f. Int.]
0	10	103	13	0	0.8738	0.0327	0.7926	0.9247
10	20	90	6	1	0.8152	0.0383	0.7257	0.8779
20	30	83	3	0	0.7857	0.0405	0.6931	0.8533
30	40	80	6	2	0.7261	0.0441	0.6284	0.8020
40	50	72	4	0	0.6857	0.0461	0.5857	0.7664
50	60	68	4	0	0.6454	0.0476	0.5439	0.7299
60	70	64	5	0	0.5950	0.0489	0.4926	0.6834
70	80	59	4	0	0.5546	0.0496	0.4523	0.6454
80	90	55	3	0	0.5244	0.0499	0.4225	0.6165
90	100	52	2	0	0.5042	0.0499	0.4029	0.5971
100	110	50	2	1	0.4838	0.0500	0.3831	0.5773
110	120	47	1	0	0.4735	0.0499	0.3732	0.5673
130	140	46	0	1	0.4735	0.0499	0.3732	0.5673
140	150	45	1	0	0.4630	0.0499	0.3631	0.5570
150	160	44	1	0	0.4525	0.0499	0.3530	0.5467
160	170	43	1	0	0.4420	0.0498	0.3429	0.5364
180	190	42	2	1	0.4207	0.0496	0.3227	0.5154
200	210	39	1	0	0.4099	0.0495	0.3125	0.5047
210	220	38	1	0	0.3991	0.0494	0.3024	0.4939
260	270	37	1	1	0.3882	0.0492	0.2921	0.4830

280	290	35	2	0	0.3660	0.0489	0.2714	0.4608
300	310	33	1	0	0.3549	0.0486	0.2612	0.4496
330	340	32	1	0	0.3438	0.0483	0.2510	0.4383
340	350	31	2	1	0.3213	0.0477	0.2305	0.4153
370	380	28	0	1	0.3213	0.0477	0.2305	0.4153
390	400	27	0	1	0.3213	0.0477	0.2305	0.4153
420	430	26	0	1	0.3213	0.0477	0.2305	0.4153
440	450	25	0	1	0.3213	0.0477	0.2305	0.4153
480	490	24	0	1	0.3213	0.0477	0.2305	0.4153
510	520	23	0	1	0.3213	0.0477	0.2305	0.4153
540	550	22	0	1	0.3213	0.0477	0.2305	0.4153
580	590	21	1	0	0.3060	0.0478	0.2156	0.4008
590	600	20	0	1	0.3060	0.0478	0.2156	0.4008
620	630	19	0	1	0.3060	0.0478	0.2156	0.4008
670	680	18	1	1	0.2885	0.0482	0.1983	0.3847
730	740	16	1	0	0.2705	0.0484	0.1808	0.3680
840	850	15	0	1	0.2705	0.0484	0.1808	0.3680
850	860	14	1	0	0.2511	0.0487	0.1622	0.3501
910	920	13	0	1	0.2511	0.0487	0.1622	0.3501
940	950	12	0	1	0.2511	0.0487	0.1622	0.3501
970	980	11	1	0	0.2283	0.0493	0.1398	0.3299
990	1000	10	1	0	0.2055	0.0494	0.1187	0.3088
1030	1040	9	1	0	0.1826	0.0489	0.0988	0.2869
1140	1150	8	0	1	0.1826	0.0489	0.0988	0.2869
1320	1330	7	0	1	0.1826	0.0489	0.0988	0.2869
1380	1390	6	1	0	0.1522	0.0493	0.0715	0.2609
1400	1410	5	0	2	0.1522	0.0493	0.0715	0.2609
1570	1580	3	0	1	0.1522	0.0493	0.0715	0.2609
1580	1590	2	0	1	0.1522	0.0493	0.0715	0.2609
1790	1800	1	0	1	0.1522	0.0493	0.0715	0.2609

(Heart transplant data)

Duree pour differents quantiles de la fonction de survie Definition des bornes Sas-lifetest

S(t)=0.90: t= 7.923 S(t)=0.75: t= 35.989 S(t)=0.50: t= 102.068 S(t)=0.25: t= 913.968

S(t)=0.10: t= .

La méthode de Kaplan-Meier

- L'approche qui exploite toute l'information disponible est celle dite de **Kaplan-Meier** (*KM*).
- Il y a autant d'intervalles que de durées où l'on observe au moins un évènement.
- Au lieu d'utiliser des intervalles prédéterminés, l'estimateur KM va définir un intervalle pour chaque évènement enregistré.
- La fonction de survie estimée par la méthode KM est une fonction en escalier (stairstep), d'où une méthode dite "discrete".
- Pour chaque intervalle, on compte le nombe d'évènements et le nombre de censures.
- Méthode adaptée pour une mesure de la durée de type continue.

Définition du Risk Set (r_i)

S'il y a à la fois des évènements et des censures à une durée t_i , les observations censurées sont considérées comme exposées au risque à ce moment, comme si elles étaient censurées très rapidement après:

$$r_i = r_{i-1} - d_{i-1} - c_{i-1}$$

Calcul de q_i

$$q_i = \frac{d_i}{r_{i-1} - d_{i-1} - c_{i-1}}$$

La fonction de survie est ensuite calculée avec la formule vu précédemment.

Récupération de la médiane

Il n'y a pas de méthode pour calculer directement la durée médiane (ou tout autre quantile). On va prendre la valeur de la durée qui se situe juste "en dessous" de 50% de survivant.e.s. Elle est donc définie tel que $S(t) \leq 0.5$.

Exemple

On reprend l'exemple précédent.

analy	failure sis time	_	ied :ime				
	Beg.		Net	Survivor	Std.		
Time	Total	Fail	Lost	Function	Error	[95% Con	f. Int.]
1	103	1	0	0.9903	0.0097	0.9331	0.9986
2	102	3	0	0.9612	0.0190	0.8998	0.9852
3	99	3	0	0.9320	0.0248	0.8627	0.9670
5	96	2	0	0.9126	0.0278	0.8388	0.9535
6	94	2	0	0.8932	0.0304	0.8155	0.9394
8	92	1	0	0.8835	0.0316	0.8040	0.9321
9	91	1	0	0.8738	0.0327	0.7926	0.9247
11	90	0	1	0.8738	0.0327	0.7926	0.9247
12	89	1	0	0.8640	0.0338	0.7811	0.9171
16	88	3	0	0.8345	0.0367	0.7474	0.8937
17	85	1	0	0.8247	0.0375	0.7363	0.8857
18	84	1	0	0.8149	0.0383	0.7253	0.8777
21	83	2	0	0.7952	0.0399	0.7034	0.8614
28	81	1	0	0.7854	0.0406	0.6926	0.8531
30	80	1	0	0.7756	0.0412	0.6819	0.8448
31	79	0	1	0.7756	0.0412	0.6819	0.8448
32	78	1	0	0.7657	0.0419	0.6710	0.8363
35	77	1	0	0.7557	0.0425	0.6603	0.8278
36	76	1	0	0.7458	0.0431	0.6495	0.8192
37	75	1	0	0.7358	0.0436	0.6388	0.8106
39	74	1	1	0.7259	0.0442	0.6282	0.8019
40	72	2	0	0.7057	0.0452	0.6068	0.7842
43	70	1	0	0.6956	0.0457	0.5961	0.7752
45	69	1	0	0.6856	0.0461	0.5855	0.7662
50	68	1	0	0.6755	0.0465	0.5750	0.7572
51	67	1	0	0.6654	0.0469	0.5645	0.7481
53	66	1	0	0.6553	0.0472	0.5541	0.7390
58	65	1	0	0.6452	0.0476	0.5437	0.7298
61	64	1	0	0.6352	0.0479	0.5333	0.7206
66	63	1	0	0.6251	0.0482	0.5230	0.7113
68	62	2	0	0.6049	0.0487	0.5026	0.6926
69	60	1	0	0.5948	0.0489	0.4924	0.6832
72	59	2	0	0.5747	0.0493	0.4722	0.6643
77	57	1	0	0.5646	0.0494	0.4621	0.6548
78	56	1	0	0.5545	0.0496	0.4521	0.6453

80	55	1	0	0.5444	0.0497	0.4422	0.6357	
81	54	1	0	0.5343	0.0498	0.4323	0.6261	
85	53	1	0	0.5243	0.0499	0.4224	0.6164	
90	52	1	0	0.5142	0.0499	0.4125	0.6067	
96	51	1	0	0.5041	0.0499	0.4027	0.5969	
100	50	1	0	0.4940	0.0499	0.3930	0.5872	
102	49	1	0	0.4839	0.0499	0.3833	0.5773	
109	48	0	1	0.4839	0.0499	0.3833	0.5773	
110	47	1	0	0.4736	0.0499	0.3733	0.5673	
131	46	0	1	0.4736	0.0499	0.3733	0.5673	
149	45	1	0	0.4631	0.0499	0.3632	0.5571	
153	44	1	0	0.4526	0.0499	0.3531	0.5468	
165	43	1	0	0.4421	0.0498	0.3430	0.5364	
180	42	0	1	0.4421	0.0498	0.3430	0.5364	
186	41	1	0	0.4313	0.0497	0.3327	0.5258	
188	40	1	0	0.4205	0.0497	0.3225	0.5152	
207	39	1	0	0.4097	0.0495	0.3123	0.5045	
219	38	1	0	0.3989	0.0494	0.3022	0.4938	
263	37	1	0	0.3881	0.0492	0.2921	0.4830	
265	36	0	1	0.3881	0.0492	0.2921	0.4830	
285	35	2	0	0.3660	0.0488	0.2714	0.4608	
308	33	1	0	0.3549	0.0486	0.2612	0.4496	
334	32	1	0	0.3438	0.0483	0.2510	0.4383	
340	31	1	1	0.3327	0.0480	0.2409	0.4270	
342	29	1	0	0.3212	0.0477	0.2305	0.4153	
370	28	0	1	0.3212	0.0477	0.2305	0.4153	
397	27	0	1	0.3212	0.0477	0.2305	0.4153	
427	26	0	1	0.3212	0.0477	0.2305	0.4153	
445	25	0	1	0.3212	0.0477	0.2305	0.4153	
482	24	0	1	0.3212	0.0477	0.2305	0.4153	
515	23	0	1	0.3212	0.0477	0.2305	0.4153	
545	22	0	1	0.3212	0.0477	0.2305	0.4153	
583	21	1	0	0.3059	0.0478	0.2156	0.4008	
596	20	0	1	0.3059	0.0478	0.2156	0.4008	
620	19	0	1	0.3059	0.0478	0.2156	0.4008	
670	18	0	1	0.3059	0.0478	0.2156	0.4008	
675	17	1	0	0.2879	0.0483	0.1976	0.3844	
733	16	1	0	0.2699	0.0485	0.1802	0.3676	
841	15	0	1	0.2699	0.0485	0.1802	0.3676	
852	14	1	0	0.2507	0.0487	0.1616	0.3497	
915	13	0	1	0.2507	0.0487	0.1616	0.3497	
941	12	0	1	0.2507	0.0487	0.1616	0.3497	
979	11	1	0	0.2279	0.0493	0.1394	0.3295	
995	10	1	0	0.2051	0.0494	0.1183	0.3085	
1032	9	1	0	0.1823	0.0489	0.0985	0.2865	
1141	8	0	1	0.1823	0.0489	0.0985	0.2865	
1321	7	0	1	0.1823	0.0489	0.0985	0.2865	
1386	6	1	0	0.1519	0.0493	0.0713	0.2606	
1400	5	0	1	0.1519	0.0493	0.0713	0.2606	
1407	4	0	1	0.1519	0.0493	0.0713	0.2606	
1571	3	0	1	0.1519	0.0493	0.0713	0.2606	
1586	2	0	1	0.1519	0.0493	0.0713	0.2606	
1799	1	0	1	0.1519	0.0493	0.0713	0.2606	

Durée médiane: t=100 (correspond à S(t)=0.4940).

Exercice

Calculer la fonction de survie *S* avec un tableur.

running D:\Marc\SMS\FORMATIONS\2020\analyse duree Ined\analyse durees\profil> o ...

t	d	С	r	q	S
0	0	0			
6	1	0			
19	1	0			
32	1	0			
42	2	0			
43	0	1			
94	1	0			
126	0	2			
207	1	0			
227	0	2			
253	1	0			
255	0	1			

Quantités associées

Le risque cumulé: estimateur de Nelson AAlen Il est simplément égal à:

$$H(t) = \sum_{t_i \le k} q(t_i)$$

Le risque instantané

Nécessite l'estimateur de Nelson-Aalen. Le risque est obtenu en lissant les différences - toujours positive - entre H(t) par la méthode dite du **kernel**. Elle permet d'obtenir une fonction de risque continue avec la durée. D'autres méthodes de lissage sont possibles, et de plus en plus utilisées, en particulier celles utilisant des splines restreintes.

Tester l'égalité des courbes de survie (méthode KM)

Les tests d'égalités des fonctions de survie entre différentes valeurs d'une covariable sont calculés à partir de la méthode de Kaplan Meier.

L'utilisation du test correspond à la nécessité de déterminer si une même distribution gouverne les évènements observés dans les différentes strates ou les différents échantillons.

Attention: pas de test possibles sur des variables continues. Prévoir des regroupements pour les transformer en variable ordinale.

Deux méthodes sont utilisées:

- La plus ancienne et la plus diffusée: test sur les rangs (tests dits du log-rank).
- Plus récente et moins difusée: comparaison des RMST (Restricted Mean of Survival Time).

Tests du log-rank

Il s'agit d'une série de tests qui répondent à la même logique, la seule différence réside dans le poids accordé au début ou à la fin de la période d'observation. Par ailleurs ces différents tests sont plus ou moins sensibles à la distribution des censures à droites entre les sous échantillons.

Ces tests entrent dans le cadre des tests d'ajustement dits du Chi2, même si formellement ils relèvent des techniques dites de rang.

Il s'agira donc de comparer des effectifs observés à des effectifs espérés à chaque temps

d'évènement. La différence réside dans le calcul de la variance de la statistique du test qui, ici, suit une loi hypergéométrique.

Principe de calcul des effectifs - évènements - observés et espérés pour deux groupes

- **Effectifs observés en** t_i : o_{i1} et o_{i2} sont égaux à d_{i1} et d_{i2} , et leur somme pour tous les temps d'évènement à o_1 et o_2 .
- **Effectifs expérés** (hypothèse nulle H_0): comme pour une statistique du χ^2 on se base sur les marges, avec le risque set (R_i) en t_i pour dénombrer les effectifs, soit $e_{i1} = R_{i1} \times \frac{d_i}{R_i}$ et $e_{i2} = R_{i2} \times \frac{d_2}{R_2}$. Leur somme pour tous les temps d'évènement est égale à E_1 et E_2 . Le principe de calcul des effectifs observés reposent donc sur l'hypothèse d'un rapport des risques toujours égal à 1 au cours du temps (hypothèse fondamentale de risque proportionnel).
- Statistique du log-rank: $(O_1 E_1) = -(O_2 E_2)$.
- **Statistique de test**: sous H_0 , $\frac{(o_1-E_1)^2}{\sum v_i}$, avec v_i la variance de $(o_{i1}-e_{i2})$, suis un $\chi^2(1)$. Si on teste la différence de g fonctions de survie, la statistique de test suis un $\chi^2(g-1)$.

Les principaux tests de type log-rank

Le principe de construction des effectifs observés et espérés reste le même dans chaque test, les différences résident dans les pondérations (w_i) qui prennent en compte, de manière différente, la taille de la population soumise au risque à chaque durée où au moins un évènement est observé.

- Test du log-rank: $w_i = 1$
 - Il accorde le même poids à toutes les durées d'évènement. C'est le test standard, le plus utilisé.

sensible aux différences de distributions entre les strates des observations censurées.

- Test de Wilconxon-Breslow-Grehan: $w_i = R_i$ Les écarts entre effectifs observés et espérés sont pondérés par la population soumise à risque en t_i . Le test accorde plus de poids au début de la période analysée, et il est
- **Test de Tarone-Ware**: $w_i = \sqrt{R_i}$ Variante du test précédent, il atténue le poids accordé aux évènements au début de la période d'observation. Il est par ailleurs moins sensible au problème de la distribution des censures entre les strates.
- **Test de Peto-Peto** : $w_i = S_i$ La pondération est une variante de la fonction de survie KM (avec $R_i = R_i + 1$). Le test n'est pas sensible au problème de distribution des censures.
- **Test de Feming-Harington**: $w_i = (S_i)^p \times (1 S_i)^q$ avec $0 \le p \le 1$ Il permet de paramétrer le poids accordé au début où à la fin de temps d'observation. Si p = q = 0 on retrouve le test du log-rank.

Exemple On compare ici l'effet du pontage sur le risque de décéder depuis l'inscription

dans le registre de greffe.

failure _d: died
analysis time _t: stime

Log-rank test for equality of survivor functions

surgery	Events observed	Events expected
0 1	69 6	60.34 14.66
Total	75	75.00
	chi2(1) = Pr>chi2 =	6.59 0.0103

Wilcoxon (Breslow) test for equality of survivor functions

0 69	60.34	623
1 6	14.66	-623

Total | 75 75.00 6

chi2(1) = 8.99

Pr>chi2 = 0.0027

failure _d: died
analysis time _t: stime

Tarone-Ware test for equality of survivor functions

surgery	Events	Events	Sum of
	observed	expected	ranks
0	69	60.34	73.111827
1	6	14.66	-73.111827
Total	75	75.00	0

chi2(1) = 8.46 Pr>chi2 = 0.0036

failure _d: died
analysis time _t: stime

Peto-Peto test for equality of survivor functions

surgery	Events	Events	Sum of
	observed	expected	ranks
0	69	60.34	6.0529913
1	6	14.66	-6.0529913
Total	75	75.00	0
	chi2(1) = Pr>chi2 =		

Remarques:

- Les tests du log-rank sont sensibles à l'hypothèse de risque proportionnel (voir modèle **Semi-paramétrique de Cox**).
- Effectuer un test global (multiple/omnibus) sur un nombre important de groupes peut rendre le test très facilement significatif. Il peut être intéressant de tester des courbes deux à deux (idem qu'une regression avec covariable discrète).
- Des méthodes de correction du test multiple sont possibles (cf survminer avec *R*)

Comparaison des RMST

RMST: Restricted Mean of Survival Time

- L'aire sous la fonction de survie représente la durée moyenne d'attente de l'évènement, soit l'espérance de survie à l'évènement. On est proche d'une mesure démographique type "espérance de vie partielle".
- En présence de censure à droite, il faut borner la durée maximale $t^* < \infty$. L'espérance de survie s'interprète donc sur un horizon fini.
- $RMST = \int_0^{t^*} S(t)dt$.
- On peut facilement comparer les RMST de deux groupes, sous forme de différence de moyenne ou de ratio.
- Par défaut on définit généralement t * à partir le temps du dernier évènement observé. Il est néanmoins possible de calculer le RMST sur des intervalles plus court. **Avantage**
- N'est pas sensible au distribution des censures à droite.
- N'est pas sensible à l'hypothèse de proportionalité des risques.
- Permet une lecture en terme de différence des durées moyennes de séjour (survie).
 Logiciels

Implémentée dans Stata, R et SAS (fin 2018 maj 15.1). Implémentée encore plus recemment dans python, mais pas (encore) possibilité de tester les différences. Lorsqu'on compare plusieurs caractéristiques, les logiciels n'optent pas, par défaut, pour la même durée maximale.

Restricted	Mean Surviva	l Time (RMST)	by arm		
Group	Estimate	Std. Err.	[95% Conf.	Interval]	
			473.145 225.581		
Between-gro	up contrast	(arm 1 versus	arm 0)		
		Estimate	arm 0) [95% Conf.	Interval]	P> z

Ici t^* est égal à 995 jours, soit la durée qui correspond au dernier décès observé lorsqu'une personne a été opérée pour un pontage (surgery=1).

Sur un horizon de 995 jours, les personnes qui ont été opéré pour un pontage peuvent espérer vivre 735 jours en moyenne, contre 310 jours pour les autres. La durée moyenne de

survie est donc deux fois plus importante (rapport des rmst = 2.3), soit une différence de 424 jours.

Rmst et différences de Rmst à tous les points d'évènement jusqu'à tmax

time	_rmst1	_rmst0	_diff	_1	_u	_p
1	1	1	0	0	0	
2	2	1.989011	.010989	.010989	.010989	
3	3	2.945055	.0549451	0196757	.1295658	.1489731
5	5	4.791209	.2087912	.0256584	.3919241	.0254456
5.1	5.1	4.882418	.2175824	.0240373	.4111275	.0275679
6	6	5.693407	.3065934	.0643487	.5488381	.0131162
8	8	7.451648	.5483516	.1860869	.9106163	.0030096
9	9	8.31978	.6802198	.2523926	1.108047	.0018318
11	11	10.03407	.965934	.4072903	1.524578	.0007017
12 	12	10.89121	1.108791 	.4836155	1.733967 	.0005087
16	16	14.27525	1.724747	.8259398	2.623554	.0001692
17	17	15.08787	1.912131	.9277063	2.896555	.0001407
18	18	15.88935	2.110646	1.05301	3.168283	.0000918
21	21	18.26041	2.739589	1.458002	4.021176	.0000279
28 	28	23.63703	4.362966 	2.526501	6.199431 	3.22e-06
30	30	25.15095	4.849051	2.842812	6.85529	2.17e-06
31	31	25.89677	5.103226	3.014868	7.191583	1.67e-06
32	32	26.6426	5.3574	3.186886	7.527915	1.31e-06
35	35	28.84618	6.153824	3.736433	8.571216	6.06e-07
36	36	29.5694	6.4306	3.929635	8.931564	4.67e-07
37	37	30.28132	6.718675	4.135427	9.301923	3.44e-07
39	39	31.68257	7.317427	4.569757	10.0651	1.79e-07
40	40	32.37189	7.628103	4.797789	10.45842	1.28e-07
43	43	34.37207	8.627934	5.552385	11.70349	3.83e-08
45	45	35.68291	9.31709	6.07508	12.5591	1.77e-08
50	50	38.90352	11.09648	7.431942	14.76102	2.94e-09
51	51	39.53634	11.46366	7.711818	15.2155	2.12e-09
53	53	40.77938	12.22061	8.298259	16.14297	1.02e-09
58	58	43.83049	14.16951	9.81571	18.52331	1.79e-10
61	61	45.62725	15.37275 	10.75502	19.99047	6.81e-11
66	66	48.56535	17.43465	12.37503	22.49426	1.44e-11
68	68	49.71799	18.28201	13.04371	23.5203	7.90e-12
69	69	50.27171	18.72829	13.40325	24.05333	5.45e-12
72	72	51.89897	20.10103	14.51838	25.68369	1.70e-12
77 	77	54.49805	22.50194	16.49285	28.51104	2.14e-13
78	78	55.00657	22.99343	16.89797	29.08889	1.43e-13
80	80	56.00101	23.99899	17.73478	30.26321	5.97e-14
81	81	56.48692	24.51307	18.16526	30.86089	3.77e-14
85	85	58.38539	26.61461	19.93458	33.29464	5.77e-15
90	90	60.70197	29.29803	22.1984	36.39766	6.66e-16
96	96	63.41406	32.58594	24.97681	40.19506	0
	-					

100	100	65.17693	34.82308	26.87198	42.77418	0
102	102	66.03575	35.96425	27.84368	44.08482	0
109	109	68.96255	40.03745	31.32724	48.74766	0
110	110	69.38067	40.61933	31.82339	49.41528	0
131	131	77.91717	53.08283	42.46146	63.7042	0
149	149	85.23417	63.76583	51.49939	76.03227	0
153		86.81235	66.18765	53.54893	78.82638	0
	153					
165	165	91.4034	73.5966	59.87845	87.31474	0
180	178.6364	97.14223	81.49413	51.34782	111.6404	1.17e-07
186	184.0909	99.43776	84.65315	53.34505	115.9613	1.16e-07
188	185.7273	100.2029	85.52434	53.56977	117.4789	1.56e-07
j 207	201.2727	107.2376	94.0351	58.18815	129.8821	2.73e-07
j 219	211.0909	111.5325	99.55843	61.16676	137.9501	3.72e-07
263	247.0909	126.7373	120.3536	72.25138	168.4559	9.40e-07
265	248.7273	127.4037	121.3235	72.75741	169.8897	9.77e-07
285	265.0909	134.0682	131.0227	77.89536	184.1501	1.34e-06
308	283.9091	141.1427	142.7664	84.36629	201.1664	1.66e-06
334	305.1818	148.8068	156.375	91.96277	220.7872	1.95e-06
340	310.0909	150.4986	159.5923	93.78695	225.3977	2.00e-06
342	311.7273	151.0369	160.6904	94.42397	226.9568	2.01e-06
370	332.0909	158.5728	173.5181	93.67896	253.3572	.0000205
397	351.7273	165.8396	185.8876	98.91358	272.8617	.000028
427	373.5454	173.9138	199.6316	104.6545	294.6087	.0000379
445	386.6364	173.9136	207.878	104.0545	307.6874	
445	360.0304	1/0./504	207.070	100.0000	307.0674	.0000446
482	413.5454	188.7166	224.8289	115.0297	334.6281	.0000599
515	437.5454	197.5982	239.9472	121.1866	358.7078	.000075
545	459.3636	205.6725	253.6912	126.7507	380.6316	.0000897
j 583	487	215.8998	271.1002	133.7623	408.438	.0001093
596	494.8788	219.3987	275.4801	134.5264	416.4339	.0001279
		225 050	202 5662	126 4602	420 6622	0001570
620	509.4243	225.858	283.5662	136.4692	430.6632	.0001579
670	539.7273	239.3151	300.4122	140.0713	460.7531	.0002405
675	542.7576	240.6608	302.0968	140.4026	463.7909	.0002504
733	577.9091	254.9701	322.939	145.3689	500.509	.0003645
841	643.3636	279.1928	364.1708	155.9437	572.3979	.0006085
852	650.0303	281.6599	368.3704	156.9483	579.7925	.000638
915	688.2121	294.2198	393.9923	164.2457	623.7389	.0007762
941	703.9697	299.4033	404.5664	167.1596	641.9732	.0008378
979	703.3037	306.9791	420.0209	171.3309	668.7109	.0009321
995	734.7576	310.1689	424.5887	149.6407	699.5366	.0024726
. ,	,54.7570	510.1005	727.3007	147.0407	000.000	.0024720

