Even-Numbered Problem Solutions to *Understanding Cryptography*From Established Symmetric and Asymmetric Ciphers to Post-Quantum Algorithms by Christof Paar- Jan Pelzl - Tim Guneysu

Mustapha EL BOUAZAOUI. mustaphaelbouazaoui@gmail.com

July 23, 2025

Abstract

While trying to recall a bit of cryptography to prepare for interviews. I find the masterpiece of lectures by Mr. christophe Paar in youtube. From then, I find out the book and while trying to solve some problems from it, I find out there's book only for odd-numbered problems. I find it intriguing and interesting as if the writer want someone to do the other part. And as far as I am aware, none has done the other part. So, I decided to be the one who gonna do the other one and publish them and try to add bunch of code in python as an example for those ciphers.

keywords: Mathematics, cryptography, problems, solutions.

Contents

1	Introduction to Cryptography and Data Security	2
2	Stream cipher	4

Chapter 1 Introduction to Cryptography and Data Security

1.1 See code 1.1.py.

1.2

We know we are dealing with a shift cipher. Hence, we can perform letter frequency analysis to guess k: the number of positions by which the most frequent letter (usually "e" in English) has been shifted. After deciphering, we found:

"If we all unite, we will cause the rivers to stain the great waters with their blood" — Tecumseh in his speech to the Osages.

See 1.2.py for the code used.

1.3

There's a small mistake in the solution, as the ASIC costs \$50, not \$100.

1.4

- 1. For each letter, there are 128 possible characters. Since we have 8 letters, the size of the key space is 128⁸.
- 2. Each letter uses 7 bits, so the key length is $7 \times 8 = 56$ bits.
- 3. Similarly, if only lowercase letters are used, the size of the key space is 26⁸.
- 4. Representing 26 letters requires $\frac{\log 26}{\log 2} \approx 4.7$ bits, which rounds up to 5 bits per character. Hence, the key length is $5 \times 8 = 40$ bits.
- 5. (a) For 7-bit characters, we need $\frac{128}{7} \approx 18.3$, so we need at least 19-character passwords.
 - (b) For 26 lowercase letters, we need $\frac{128}{5} = 25.6$, so we need 26-character passwords.
- **1.5** Hint: Use the identity $p^n 1 = (p-1) \left(\sum_{i=0}^{n-1} p^i \right)$. Straightforward calculation.

1.6

Attacker	Can read?	Can alter?	Why?
Hacker between Alice	No	No	Sees only y_1 and does
and base station A			not have k_1 .
Mobile operator on A	Yes	Yes	Controls base station A
			and knows k_1 and k_2 .
National law enforce-	Yes	Yes	Same reason as (b) or
ment agency			(e), once access is ob-
			tained.
An intelligence agency	No	No	Only sees y_2 .
of a foreign country			
Mobile operator on B	Yes	Yes	Same reason as (b).
Hacker between Bob	No	No	Only sees y_3 and does
and base station B			not know k_3 .

• None can read or alter the message, since they only see c, which only Alice and Bob can decrypt using their mutual key k_{AB} .

1.7 Easy.

1.8

- $\bullet \ 5 \times 8 = 40 \equiv 1 \mod 13$
- $\bullet \ 5\times 3=15\equiv 1 \ \mathrm{mod}\ 7$
- $\bullet \ \ 3\times 2\times 5^{-1}=6\times 3=-3\equiv 4 \ \ \mathrm{mod}\ 7$
- **1.9** Straightforward.

1.10

- $\bullet \ 5 \times 9 = 45 \equiv 1 \mod 11$
- $\bullet \ 5\times 5=25\equiv 1 \ \mathrm{mod}\ 12$
- $5^{-1} \equiv 8 \mod 13$

Hence, the multiplicative inverse of a number (if it exists) depends on the ring we are working in (e.g., \mathbb{Z}_{11} , \mathbb{Z}_{12} , etc.).

1.11 Straightforward calculation.

1.12

- $\phi(4) = 2$
- $\phi(5) = 4$
- $\phi(9) = 6$
- $\phi(26) = 12$
- 1.13

Chapter 2 Stream cipher