

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates

Acknowledgement

This slide show is intended for use in class, and is not a complete document. Students need to refer to the book to read more lessons and exercises. Students have the right to download and store lecture slides for reference purposes; Do not redistribute or use for purposes outside of the course.

[1] Morris R. Mano (Author), Michael D. Ciletti, [2019] **Digital Design: With an Introduction to the Verilog HDL**, chapter 2 - Boolean algebra and Logic gates, 5th Edition.

™ trantrungtin.tdtu.edu.vn

Chapter Objectives

- 1. Boolean Algebra
- 2. Precedence of Operators
- 3. Truth Table
- 4. Duality
- 5. Basic Theorems
- 6. Complement of Functions
- 7. Standard Forms
- 8. Minterms and Maxterms
- 9. Canonical Forms

Syllabus

- 2.1 Introduction
- 2.2 Basic Definitions
- 2.3 Axiomatic Def. of Bool. Algebra
- 2.4 Basic Theorems and Properties of Boolean Algebra
- 2.5 Boolean Functions

2.6 Canonical and Standard Forms

- 2.7 Other Logic Operations
- 2.8 Digital Logic Gates
- 2.9 Integrated Circuits
- 2.10 Summary

2.1 Introduction

Analog circuit

Digital circuit

2.1 Digital Circuits

- Advantages of digital circuits over analog circuits
 - More reliable (simpler circuits, less noise-prone)
 - Specified accuracy (determinable)
 - Abstraction can be applied using simple mathematical model
 - Boolean Algebra
 - Ease design, analysis and simplification of digital circuit –
 Digital Logic Design

2.2 Types Of Logic Blocks

- Combinational: no memory, output depends solely on the input
 - Gates
 - Decoders, multiplexers
 - Adders, multipliers
- Sequential: with memory, output depends on both input and current state
 - Counters, registers
 - Memories

Boolean Algebra

- Boolean values:
 - True (1)
 - False (0)
- Connectives
 - Conjunction (AND)
 - A · B; A ∧ B
 - Disjunction (OR)
 - A + B; A ∨ B
 - Negation (NOT)
 - Ā;¬A; A'

Truth tables

Α	В	$A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Α	Α'
0	1
1	0

Logic gates

And (\cdot)

- Do write the AND operator instead of omitting it.
 - Example: Write a·b instead of ab
 - Why? Writing ab could mean it is a 2-bit value.

Laws Of Boolean Algebra

- Identity laws

$$A + 0 = 0 + A = A$$
;

$$A \cdot 1 = 1 \cdot A = A$$

- Inverse/complement laws

$$A + A' = 1$$
;

$$A \cdot A' = 0$$

Commutative laws

$$A + B = B + A$$
;

$$A \cdot B = B \cdot A$$

Associative laws

$$A + (B + C) = (A + B) + C$$
;

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Distributive laws

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$
; $A + (B \cdot C) = (A + B) \cdot (A + B)$

$$A + (B \cdot C) = (A + B) \cdot (A + B)$$

Precedence Of Operators

- Precedence from highest to lowest
 - Not
 - And
 - o Or
- Examples:
 - \circ A \cdot B + C = (A \cdot B) + C
 - $\bigcirc X + Y' = X + (Y')$
 - $\circ P + Q' \cdot R = P + ((Q') \cdot R)$
- Use parenthesis to overwrite precedence. Examples:
 - \circ A \cdot (B + C)
 - \circ (P + Q)' · R

Truth Table

- Provide a listing of every possible combination of inputs and its corresponding outputs.
 - Inputs are usually listed in binary sequence.
- Example
 - Truth table with 3 inputs and 2 outputs

X	у	Z	y + z	$x \cdot (y + z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Proof Using Truth Table

- Prove: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 - Construct truth table for LHS and RHS

х	у	Z	y + z	x · (y + z)	х∙у	x · z	$(x\cdot y)+(x\cdot z)$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Check that column for LHS = column for RHS

Duality

- If the AND/OR operators and identity elements 0/1 in a Boolean equation are interchanged, it remains valid
- Example:
 - The dual equation of $a+(b\cdot c)=(a+b)\cdot(a+c)$ is $a\cdot(b+c)=(a\cdot b)+(a\cdot c)$
- Duality gives free theorems "two for the price of one". You prove one theorem and the other comes for free!
- Examples:
 - o If $(x+y+z)' = x'\cdot y'\cdot z'$ is valid, then its dual is also valid: $(x\cdot y\cdot z)' = x'+y'+z'$
 - If x+1 = 1 is valid, then its dual is also valid: $x \cdot 0 = 0$

Basic Theorems (1/2)

Idempotency

$$X + X = X$$
;

$$X \cdot X = X$$

Zero and One elements

$$X + 1 = 1$$
;

$$X \cdot 0 = 0$$

Involution

$$(X')' = X$$

Absorption

$$X + X \cdot Y = X$$
;

$$X \cdot (X + Y) = X$$

Absorption (variant)

$$X + X' \cdot Y = X + Y$$
;

$$X \cdot (X' + Y) = X \cdot Y$$

Basic Theorems (2/2)

DeMorgan's

$$(X + Y)' = X' \cdot Y'; \qquad (X \cdot Y)' = X' + Y'$$

 DeMorgan's Theorem can be generalised to more than two variables, example:

$$(A + B + ... + Z)' = A' \cdot B' \cdot ... \cdot Z'$$

Consensus

$$(X+Y)\cdot(X'+Z)\cdot(Y+Z) = (X+Y)\cdot(X'+Z)$$

Proving A Theorem

- Theorems can be proved using truth table, or by algebraic manipulation using other theorems/laws.
- Example: Prove absorption theorem $X + X \cdot Y = X$

• By duality, we have also proved $X \cdot (X+Y) = X$

Boolean Functions

 Examples of Boolean functions (logic equations):

$$F1(x,y,z) = x \cdot y \cdot z'$$

$$F2(x,y,z) = x + y' \cdot z$$

$$F3(x,y,z) = x' \cdot y' \cdot z + x' \cdot y \cdot z + x \cdot y'$$

$$F4(x,y,z) = x \cdot y' + x' \cdot z$$

х	у	Z	F1	F2	F3	F4
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	0			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	0			

Complement

- Given a Boolean function F, the complement of F, denoted as F', is obtained by interchanging 1 with 0 in the function's output values.
- Example: $F1 = x \cdot y \cdot z'$
- What is F1'?

X	у	Z	F1	F1'
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Canonical and Standard Forms (1/2)

- Certain types of Boolean expressions lead to circuits that are desirable from implementation viewpoint.
- Two standard forms:
 - Sum-of-Products
 - Product-of-Sums
- Literals
 - A Boolean variable on its own or in its complemented form
 - Examples: x, x', y, y'
- Product term
 - A single literal or a logical product (AND) of several literals
 - Examples: x, x·y·z', A'·B, A·B, d·g'·v·w

Canonical and Standard Forms (2/2)

- Sum term
 - A single literal or a logical sum (OR) of several literals
 - Examples: x, x+y+z', A'+B, A+B, c+d+h'+j
- Sum-of-Products (SOP) expression
 - A product term or a logical sum (OR) of several product terms
 - Examples: $x, x + y \cdot z', x \cdot y' + x' \cdot y \cdot z, A \cdot B + A' \cdot B',$ $A + B' \cdot C + A \cdot C' + C \cdot D$
- Product-of-Sums (POS) expression
 - A sum term or a logical product (AND) of several sum terms
 - Examples: x, x·(y+z'), (x+y')·(x'+y+z),
 (A+B)·(A'+B'), (A+B+C)·D'·(B'+D+E')
- Every Boolean expression can be expressed in SOP or POS.

Do It Yourself

Put the right ticks in the following table.

Expression	SOP?	POS?
$X'\cdot Y + X\cdot Y' + X\cdot Y\cdot Z$		
$(X+Y')\cdot(X'+Y)\cdot(X'+Z')$		
X' + Y + Z		
$X \cdot (W' + Y \cdot Z)$		
X·Y·Z'		
$W \cdot X' \cdot Y + V \cdot (X \cdot Z + W')$		

Minterms & Maxterms (1/2)

- A minterm of **n** variables is a product term that contains n literals from all the variables.
 - Example: On 2 variables x and y, the minterms are:
 - x'·y', x'·y, x·y' and x·y
- A maxterm of n variables is a sum term that contains n literals from all the variables.
 - Example: On 2 variables x and y, the maxterms are:
 - x'+y', x'+y, x+y' and x+y
- In general, with n variables we have 2ⁿ minterms and
 2ⁿ maxterms.

Minterms & Maxterms (2/2)

 The minterms and maxterms on 2 variables are denoted by m0 to m3 and M0 to M3 respectively.

	Y V	Mint	erms	Maxterms	
X	У	Term	Notation	Term	Notation
0	0	x'·y'	m0	x+y	MO
0	1	x'·y	m1	x+y'	M1
1	0	x·y'	m2	x'+y	M2
1	1	x∙y	m3	x'+y'	М3

- Each minterm is the complement of the corresponding maxterm
 - Example: $m2 = x \cdot y'$ $m2' = (x \cdot y')' = x' + (y')' = x' + y = M2$

Canonical Forms

- Canonical/normal form: a unique form of representation.
 - Sum-of-minterms = Canonical sum-of-products
 - Product-of-maxterms = Canonical product-of-sums

Sum-Of-Minterms

- Given a truth table, example:
- Obtain sum-of-minterms expression by gathering the minterms of the function (where output is 1).

Х	у	Z	F1	F2	F3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	0

Product-Of-Maxterms

- Given a truth table, example:
- Obtain product-of-maxterms expression by gathering the maxterms of the function (where output is 0).

F1=
F2 =
$$(x+y+z) \cdot (x+y'+z) \cdot (x+y'+z')$$

= M0 · M2 · M3 = Π M(0,2,3)
F3 =

Х	у	Z	F1	F2	F3
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	0

Conversion

- We can convert between sum-of-minterms and product-of-maxterms easily
- Example: $F2 = \Sigma m(1,4,5,6,7) = \Pi M(0,2,3)$
- Why? See F2' in truth table.
- F2' = m0 + m2 + m3

```
Therefore,

F2 = (m0 + m2 + m3)'

= m0' \cdot m2' \cdot m3' (by DeMorgan's)

= M0 \cdot M2 \cdot M3 (mx' = Mx)
```

Х	у	Z	F2	F2'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

2.7 Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables.
- 2^{2ⁿ} functions for n binary variables.
- 16 functions of two binary variables.

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	<i>F</i> ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F 10	F ₁₁	F ₁₂	F 13	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0 0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

 All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

Table 2.8Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$\overline{F_1} = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	•	Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15}=1$, -	Identity	Binary constant 1

2.8 Digital Logic Gates

- Boolean expression: AND, OR and NOT operations
- Constructing gates of other logic operations
 - The feasibility and economy;
 - The possibility of extending gate's inputs;
 - The basic properties of the binary operations (commutative and associative);
 - The ability of the gate to implement Boolean functions.

Standard Gates

- Consider the 16 functions in Table 2.8 (slide 33)
 - $_{\circ}$ Two are equal to a constant (F_0 and F_{15}).
 - Four are repeated twice (F_4 , F_5 , F_{10} and F_{11}).
 - Inhibition (F_2) and implication (F_{13}) are not commutative or associative.
 - The other eight: complement (F_{12}), transfer (F_3), AND (F_1), OR (F_7), NAND (F_{14}), NOR (F_8), XOR (F_6), and equivalence (XNOR) (F_9) are used as standard gates.
 - Complement: inverter.
 - Transfer: buffer (increasing drive strength).
 - Equivalence: XNOR.

Summary of Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i>	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	<i>x</i> — <i>F</i>	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Figure 2.5 Digital logic gates

Summary of Logic Gates

Figure 2.5 Digital logic gates

- Extension to multiple inputs
 - A gate can be extended to multiple inputs.
 - If its binary operation is commutative and associative.
 - AND and OR are commutative and associative.
 - OR
 - x+y=y+x
 - (x+y)+z = x+(y+z) = x+y+z
 - AND
 - xy = yx
 - $\bullet \quad (x y)z = x(y z) = x y z$

 \circ NAND and NOR are commutative but not associative \rightarrow they are not extendable.

Figure 2.6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

- Multiple NOR = a complement of OR gate, Multiple NAND = a complement of AND.
- The cascaded NAND operations = sum of products.
- The cascaded NOR operations = product of sums.

Figure 2.7 Multiple-input and cascated NOR and NAND gates

- The XOR and XNOR gates are commutative and associative.
- Multiple-input XOR gates are uncommon?
- XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's.

(b) 3-input gate

х	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Figure 2.8 3-input XOR gate

Positive and Negative Logic

- Positive and Negative Logic
 - Two signal values <=> two logic values
 - Positive logic: H=1; L=0
 - Negative logic: H=0; L=1
- Consider a TTL gate
 - A positive logic AND gate
 - A negative logic OR gate
 - The positive logic is used in this book

Figure 2.9 Signal assignment and logic polarity

Positive and Negative Logic

Figure 2.10 Demonstration of positive and negative logic

2.9 Integrated Circuits

- Level of Integration
- An IC (a chip)
- Examples:
 - Small-scale Integration (SSI): < 10 gates</p>
 - Medium-scale Integration (MSI): 10 ~ 100 gates
 - Large-scale Integration (LSI): 100 ~ xk gates
 - Very Large-scale Integration (VLSI): > xk gates

VLSI

- Small size (compact size)
- Low cost
- Low power consumption
- High reliability
- High speed

Digital Logic Families

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic (dying?)
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

Digital Logic Families

- The characteristics of digital logic families
 - Fan-out: the number of standard loads that the output of a typical gate can drive.
 - Power dissipation.
 - Propagation delay: the average transition delay time for the signal to propagate from input to output.
 - Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output.

CAD

- CAD Computer-Aided Design
 - Millions of transistors
 - Computer-based representation and aid
 - Automatic the design process
 - Design entry
 - Schematic capture
 - HDL Hardware Description Language
 - Verilog, VHDL
 - Simulation
 - Physical realization
 - ASIC, FPGA, PLD

Chip Design

- Why is it better to have more gates on a single chip?
 - Easier to build systems
 - Lower power consumption
 - Higher clock frequencies
- What are the drawbacks of large circuits?
 - Complex to design
 - Chips have design constraints
 - Hard to test
- Need tools to help develop integrated circuits
 - o Computer Aided Design (CAD) tools
 - Automate tedious steps of design process
 - Hardware description language (HDL) describe circuits
 - VHDL (see the lab) is one such system