This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

特開平14-305288

(18) 日本国体部庁 (JP)

(12) 公開特許公報(4)

特開2002-305288 (P2002-30528A) (11)特許出願公開番号

(43)公開日 平成14年10月18日(2002.10.18)

H01L ZI/105 (51) Int CL.

H01L 27/10

デーマコート (数数) 444B 5F083 審査請求 未請求 請求項の数7 書面 (全 4 頁)

(21) 出版辞号 (22) 出版日

(71) 出国人 500455205 **停取2000**—301211(P2000—301211)

平成12年8月25日(2000.8.25)

京都府京都市中京区室町通り御池上沙御池 之町314毎地IAピル3F

子技術研究所內

500455490 (71) 出版人

谷典 正日

大阪府大阪市淀川区木川東1-11-19 谷奥 正巳 (72) 発明者

大阪府大阪市淀川区木川東 1 -11-19有馬 パレス西中島601号

職権国に据く

(54) 【発明の名称】 キャパシタ電極構造及び半導体記憶装置

【課題】スタック型メモリセル構造において、強誘電体 キャパシタ及びポリシリコンプラグと強誘電体キャパシ タの接合部が後工程において酸素あるいは水素の拡散な どにより劣化する問題を解決する。

とで形成される逆向きの拡散濃度分布を利用して酸素な 【解決手段】強誘電体電極構造を耐酸化性金属からなる 多層構造とし、積層界面に拡散物質がトラップされるこ どの拡散を阻害する。

【請求項1】モス型電界効果トランジスタのソース/ド パシタの下部電極とを、コンタクトプラグで電気的に接 続させた半導体記憶素子において、上記下部電極が複数 の耐酸化性金属からなる多層構造であって、ひとつ以上 レインの一方と、絶縁膜を介して配置した強誘電体キャ の積層界面を有することを特徴とする電極構造。 【特許請求の範囲】

【請求項2】請求項1において、強務電体キャパシタ下 部電極と接する絶縁層の表層部分を窒化シリコンとした ことを特徴とする、半導体記憶装置。

【請求項3】上記下部電極の材料として、耐酸化性があ り、かつ酸化しても導電性を示す金属としたことを特徴 とする、請求項1に記載の電極構造。

【請求項4】上記下部電極の材料として特に、Pt、1 r、Ru、Re、Rh、Osおよびこれらの合金、のう ち2種類以上の金属あるいは合金を用いたことを特徴と する、請求項1に記載の遺極構造。

部電極構造と同様の構成であることを特徴とする電極構 【請求項5】上記強誘覧体キャパシタ上部電極が、請求 項3または4に記載の材料からなる請求項1に記載の下

【請求項6】 強誘電体キャパシタの側壁部を還元防止膜 で扱い、かつ請求項5に記載の上部電極構造を有するこ とを特徴とする、半導体記憶装置。 【請求項7】 請求項1に記載の下部電極構造と、請求項 2と6に記載のデバイス構造を有することを特徴とす

る、半導体記憶装置。 【発明の詳細な説明】

[0001]

[産業上の利用分野]

モリを組み込んだ半導体集積装置の製造に関するもので 【0002】この発明は強誘電体メモリ及び強誘電体メ

[従来の技術]

ーキテクチャを採り、セルキャパシタ部分を強誘電体材 料に置き換えた不揮発性の半導体記憶装置である。将来 的には、DRAMやFLASHメモリを凌駕するポテン 【0003】強誘電体メモリは、DRAMとほぼ同じア シャルを秘めた新しいメモリデバイスである。

ス構造が可能である。メモリセル面積を最小にするため (平10-223848) において従来技術として記載 【0004】このデバイスはDRAMとほぼ同じデバイ のような構造は良く知られた構造で、例えば特許公開 には第2図のようなスタック構造をとる必要がある。

ングステンシリサイドの積層膜であるポリサイドなどで ある。ソース/ドレイン2の一方はポリサイドあるいは 【0005】第2図のデバイスについて説明する。シリ ド線などのトランスファーゲート4はポリシリコン/タ コン基板1上にLOCOS3で素子分離してある。ワー

タングステンからなるピット線5に接続され、他方はポ リシリコンプラグ7に接続される。

【0006】それらの上部に強誘電体キャパシタ(下部 面極8, 強誘電体9, 上部電極10)が配配される。材 i /TiNは密着及びバリアメタルである。強誘電体キ ャパシタの上部電極10は酸化版12を介してメタル配 料は、Ti/TiN/Pt(8)、P2T(PbTix Zrl-x03) (9)、Pt (10) などである。T 除13と接続する。

としてポリシリコンプラグと強誘電体キャパンタの下部 **電極間のコンタクト抵抗が増大し最終的には導通が失わ** 【発明が解決しようとする課題】強誘電体キャパシタを 形成する時に強誘電体の結晶化のために500から80 0℃という高温酸茶雰囲気のアニールを行う。このとき アメタルであるTi/TiNを酸化させてしまい、結果 ド部電極である白金は酸素を通しやすい性質のためバリ れてしまう。

ぜなら、この地点ではキャパシタが加工された状態なの で酸化膜を通ってキャパンタ横からの酸素の回りこみが 【0008】また、独誘館体形成後のプロセスにおいて 還元雰囲気あるいは歪みストレスのために強誘電体特性 が劣化する問題がある。これに対して、例えば500か ら600℃の酸化雰囲気で回復アニールを行うと特性は 回復する。このときにもバリアメタルは酸化される。な あるからである。 (0009) そして、これらの高温アニール処理をする と強誘電体の構成元素が拡散し、強誘電体の組成ずれを 本発明は、以上のパリアメタルの酸化、遠元雰囲気での 強誘電体の劣化、高温アニールでの相互拡散の問題を解 起こして特性が変化したり悪化したりする問題がある。

[0010]

ルまでに到達する酸素を少なくする、さらには強誘電体 多くトラップされやすい。従って、下部電極をひとつの 材料で構成するよりも、積層界面をたくさん形成するこ を構成する金属元素の拡散も抑える。 均一な材料で構成 した場合、拡散物質の濃度分布は単調に変化し濃度の薄 合、界面に溜まった酸素や金属元素はその界面付近にお いて逆向きの濃度分布を形成する。この逆向き分布が拡 【課題を解決するための手段】下部電極の構成を自金そ る。酸素に限らず拡散してきた物質は多層構造の界面に とで酸素を界面で多くトラップして最下層のバリアメタ の他の耐酸化性のある金属を複数用いて多層構造にす い方へ拡散しようとする。しかし、積層構造にした場

【0011】さらに、多層構造用の材料として酸化して も導電性がある金属材料を用いる。このような材料を用 いると、一般に物質の端面(界面)がもっとも反応性が 高いため積層界面付近で酸素と反応してさらに酸素を吸 散を抑制する方向に働くのである。

3

特開平14-305288

[0012]また、強誘乱体キャパシタ形成前の絶縁層 [0013]上部電極も積層構造にして同様に水素など の還元ガスのストッパーとする。界面にトラップされる 以外にも白金は特に水紫を吸収するので大きな逆向き蟲 として窒化シリコン膜を堆積させておいて回復アニール 時のキャパシタ横からの酸素回り込みも防ぐ。

【実施例1】第1図が一例として本発明を実施した強誘 乱体メモリセルの構造断面図である。 0014

【0015】製造工程を順に述べる。シリコン基板1上 にLOCOS3を形成して崇子分離する。次にワード線 などのトランスファーゲート4を形成する。トランスフ アーゲートはポリシリコンまたはポリシリコン/タング ステンシリサイドの積層膜であるポリサイドである。ソ ーメ/ドワイン2や形成する。

ングステン配線で形成する。酸化膜12で覆った後、エ ッチバックあるいはCMP (chemical mec hanical polishing) などの平坦化プ ロセスを行う。その後、窒化シリコン膜6を500から が、次のポリシリコンプラグ形成時に削られる分やキャ 【0016】さらにピット綴5をポリサイドあるいはタ て、コンタクトホールを開口してポリシリコンプラグつ 1000A堆積させる。実質200A程度でも十分だ パンタ加工時のオーバーエッチ分を含んでいる。そし をエッチバック法などによって形成する。

リジウムを500A程度重ね、さらに白金を500A程 度重ねる。このイリジウム/白金層を繰り返し堆積させ り厚くするとエッチングが困難になるので一回の繰り返 しのみにしてトータルで2000人強にとどめる。各金 風層はその材料の特性にもよるが、200から500Å である。薄いほど界面を多く形成できるが、あまり薄い してルテニウム、ロジウム、レニウムなどたくさん存在 0)を形成する。下部電極8は、まず最下層に密着度向 上とバリアメタルを目的としてTi/TiN、Ta/T aSiNなどを200から500A堆積し、その上にイ て積層界面をたくさん形成するほど効果があるが、あま と酸素を通し過ぎてしまう。イリジウムと同等な材料と [0017] 次に、強誘電体キャパシタ (8, 9, 1 する。これらの金属はいずれもスパッタ法で形成でき

(A, B: Ir, Ru, Rh, Re, Osなど) という Ir/Ptという構成を一倒として示した。強誘質体は Pt上でもっとも結晶化しやすいため、例えば最上層を 【0018】下部電極は、パリアメタル/1 r /P t / Ptに固定して、パリアメタル/A/B/A/Pt

tという構成も可能である。

【0019】強誘電体はPbLayZrxTil-x0

度分布を作る。キャパシタを還元防止膜で覆うことと組

み合わせて強誘電体に到達する還元種を抑える。

[0020] そして、避元防止膜11を100から50 のあとは、2 層目以降のメタル配線層を形成し、パッシ **0 Å程度堆積する。還元防止膜としてはアルミナなどで** 後、AISiCuなどのメタル配線13を形成する。こ ある。酸化膜12を堆積し再び回復アニールを行った ベーション膜 (蜜化膜)を最後に形成する。

[0021]

てトラップされ、さらには界面で電極材料と反応して最 終的にバリアメタルまで到達する酸素は極めて少なくな が、単にそのような性質を利用するだけでなく、多層構 【発明の効果】強誘電体結晶化アニールのときはウェハ 全面に多層構造の下部電極が存在し、酸素は界面におい る。イリジウム自体でも酸素を通しにくい性質がある 造にすることでより酸素を通しにくい電極構造にでき、 しかも強誘電体構成元素の拡散も抑える。

【0022】また、回復アニール時も強誘電体キャパシ タ下に敷いた窒化シリコンの存在によりポリシリコンプ ラグにまで回り込んで到達する酸素は極めて少なくな 【0023】 遠元防止については、キャパシタ横からの 還元種の侵入には還元防止膜が、メタル電極を通しての で、スタック型の小さなメモリセルを実現できビットコ ストの安い強誘電体メモリあるいはメモリ組み込みチッ [0024] このようにして、プラグコンタクトの酸 化、還元による強誘電体劣化、金属拡散を抑えること 侵入には上部電極の積層構造が、抑制する。

[図2] 従来例である強誘電体メモリセルの断面図。 【図1】本発明による強務電体メモリセルの断面図。

[符号の説明]

- ソーメ/ドフィン

ような構成にすればさらによくなる。また、1r自体バ

リアメタルとしても機能するので1ェ/A/B/A/P

誘電体と電極間の界面準位を減らしてきれいなショット キー壁を形成するためである。その後、キャパシタ形状 うに書いているが、この技術は必ずしも簡単でない。実 極と同じくPt/1r/Pt/1rといった積層構造で **雰にはテーパーがついているか、あるいは離垣のように** 段々構造にすることもある。加工により強誘電体の劣化 3、あるいはSrBi2Nb×Zr2ー×09などであ 5。スパッタ法やゾルゲル法で積層したところで強誘電 体の結晶化アニールを行う。そして、上部電極を下部電 に加工する。図ではまっすぐに一括エッチングされたよ 堆積して500℃程度のアニールを行う。 アニールは強 が生じているので回復アニールを行う。

【図面の簡単な説明】

プを製造することが出来る。

シリコン基板

トランスファーゲート

11 還元防止膜 酸化絕祿膜 メタル配線 10 上部電極 1 2 ポリシリコンプラグ **釜化シリコン膜** アット袋 下部電極 強誘配体

[図2]

[図]

レロントページの統計

JA38 JA39 JA40 JA53 JA56 MA06 MA17 PR33 PR39 PR40 Fターム(参考) 5F083 FR02 GA25 JA15 JA17 JA35