## Ising Model & Monte Carlo method

Yingsheng Huang

February 20, 2017

Ising Model:

• Hamiltonian of the system:

$$H(\sigma) = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - h \sum_j \sigma_j$$
$$= -J \sum_{\langle ij \rangle} \sigma_i \sigma_j$$

h is the external magnetic field (for simplicity we now consider h = 0), and J > 0 which means it's ferromagnetic. (And it's reasonable to consider the lowest energy state is when the spins are all +1.)

• Total Energy at configuration  $\{\sigma_i\}$ :

$$E_{\{\sigma_i\}} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - h \sum_j \sigma_j$$

• Spin state  $\sigma_i$  is differed by

$$\sigma_i = \begin{cases} +1 \\ -1 \end{cases}$$

• Configuration probability:

$$P_{\beta}(\sigma) = \frac{e^{-\beta H(\sigma)}}{Z_{\beta}}$$

where  $\beta = (k_B T)^{-1}$  and  $Z_{\beta}$  is the partition function.

• Partition function:

$$Z_{\beta} = \sum_{\sigma} e^{-\beta H(\sigma)}$$

Mento Carlo Method (Metropolis Method):

- Given  $L^d$  lattice point. (For instance d=1, which means 1-d Ising model.)
  - (1) Give a initial state, and calculate its energy. Calculate the magnetic dipole and get the phase transition point.
  - [1.] 随机生成态 s1 随机生成态 s2 计算 s1 与 s2 的权重 p1,p2(p=exp[-H(s)])如果 p2>p1,s2 为第二取样点如果 p2<=p1,生成随机数 r,如果  $r<=\frac{p^2}{p1}$ ,s2 为第二取样点,否则 s1 为第二个取样点。