2018/5/20 README

数值积分

PB16030899 - 朱河勤 2018-5-20

算法描述

分别用了梯形计算公式,辛普森计算公式,龙贝格计算公式在复化形式(避免龙格现象的出现)

计算积分的值

第一个例子是 [0.6,1.8], 区间间隔为 0.2, 函数值给出, 用了梯形与辛普森去求数值积分, 是书上 p137 习题 6

第二个例子是求 $\int_1^2 sin(x^4)dx$ (我自己举的例子) 利用了龙贝格数值积分公式来求

测试结果

梯形公式							
×	0.6000	0.8000	1.0000	1.2000	1.4000	1.6000	1.8000
x	5.7000	4.6000	3.5000	3.7000	4.9000	5.2000	5.5000
5.499999	999999999						
辛普森公	. t						
x	0.6000	0.8000	1.0000	1.2000	1.4000	1.6000	1.8000
Fx	5.7000	4.6000	3.5000	3.7000	4.9000	5.2000	5.5000
5.466666	666666667						
龙贝格公	_t t						
函数:sin(x^4), 区间:[1,2		间:[1,2]	精度:0.0001				
2.2768							
-0.3313	-0.5340						
0.0069	0.1196	0.1632					
7.0007	0.1708	0.1742	0.1744				
		0.1957	0.1960	0.1961			
1.1298	0.1941		0 1903	0.1893	0.1893		
0.1298 0.1780	0.1941 0.1897	0.1894	0.1893	0.1055			
0.1298 0.1780 0.1868 0.1888		0.1894 0.1895	0.1895	0.1895	0.1895	0.1895	

程序源码

2018/5/20 README

```
from math import sin
import numpy as np
def mypprint(lst):
    for i in 1st:
       print(('%.4f'%i).ljust(10),end='')
    print()
def trapezoidal(a,b,h,fs):
    '''梯形积分公式'''
    xs = [i for i in np.arange(a,b+h,h)]
    print('x'.ljust(10),end='')
    mypprint(xs)
    print('fx'.ljust(10),end='')
    mypprint(fs)
    ret = h*(sum(fs)-fs[0]/2 - fs[-1]/2)
    print(ret)
    return ret
def simpson(a,b,h,fs):
    '''辛普森积分公式'''
    xs = [i for i in np.arange(a,b+h,h)]
    print('x'.ljust(10),end='')
    mypprint(xs)
    print('fx'.ljust(10),end='')
    mypprint(fs)
    ret = h/3*(4* sum(fs[1::2]) + 2*sum(fs[2:-1:2]) + fs[0]+fs[-1])
    print(ret)
    return ret
def romberg(a,b,f,epcilon):
    '''romberg(龙贝格) 数值积分'''
    h = b-a
    lst1=[h*(f(a)+f(b))/2]
    mypprint(lst1)
    delta = epcilon
    k=1
    while delta >= epcilon:
       h/=2
       k+=1
       lst2=[]
       lst2.append((lst1[0]+h*2*sum(f(a+(2*i-1)*h) for i in range(1,2**(k-2)+1)))/2)
       for j in range(0, k-1):
            lst2.append(lst2[j]+(lst2[j]-lst1[j])/(4**(j+1)-1))
       delta = abs(lst2[-1]-lst1[-1])
       lst1=lst2
       mypprint(lst1)
if name ==' main ':
    print("数值积分")
    a,b,h = 0.6,1.8,0.2
```

2018/5/20 README

```
fs=[5.7,4.6,3.5,3.7,4.9,5.2,5.5]
print("\n梯形公式")
trapezoidal(a,b,h,fs)

print("\n辛普森公式")
simpson(a,b,h,fs)

print('\n龙贝格公式')
print("函数:{}, 区间:{} 精度:{}".format('sin(x^4)','[1,2]',1e-4))
romberg(1,2,lambda x:sin(x**4),1e-4)
```