

Gerhard Svolba Data Scientist, SAS Austria Sailor at Lake Neusiedl

- Video in Youtube:
- Hydro English: <u>https://www.youtube.com/watch?v=KFsuxc_3mDo&list=PLdMxv2SumIKs</u> <u>0A2cQLeXg1xb9OVE8e2Yq&index=10&t=0s</u>
- Hydro Deutsch: <u>https://www.youtube.com/watch?v=welhH1x7hdk&list=PLdMxv2SumIKs0</u> A2cQLeXg1xb9OVE8e2Yq&index=2&t=0s
- Home Alone Series Playlist: <u>https://www.youtube.com/playlist?list=PLdMxv2SumIKs0A2cQLeXg1xb90VE8e2Yq</u>

Historical Low-Level at Lake Neusiedl

21. Mai 2020 / BURGENLAND 1 619

Neusiedler See trocknet zunehmend aus

Der mittlere Wasserstand liegt unter dem langjährigen Tiefstwert. Nun wird wieder über eine Wasserzufuhr diskutiert

29. Mai 2020 / NEUSIEDLER SEE T 333

Grüne und WWF gegen Wasserzufuhr in den Neusiedler See

Landtagsabgeordneter Spitzmüller spricht von einer Gefahr für ein sensibles Natursystem, der WWF gar eine ökologische Katastrophe

26. Mai 2020 / KLIMASTATUSBERICHT TI 823

Wie die Klimakrise Österreich erfasst: Dürre, Hitze und Starkregen häufen sich

Hitzesommer und Rekordniederschläge sind längst keine Ausnahme mehr. Künftig werden lange und extreme Wetterperioden laut Klimaforschern zunehmen

How come?

- 80% -90% of the water balance is fed by precipitation
- January May 2020 have been extremely dry
- Karl Maracek (Hydrology Burgenland): precipitation in winter strongly contributes to the creation of water reserves (little evaporation)

Status per Nov, 4th, 2020

How is the author involved?

Analyzing Hydrological Data with my Students at Fachhochschule Burgenland since 2016

Typical Analysis Process

(using SAS Viya)

Load the data from Hydrologie Burgenland

Join, Aggregate, Prepare the Data

Perform descriptive and predictive analysis methods

Scatter Plot of Selected Measures

Why worry? 115.28 (müA) is not too bad.

Really?

Analyse the yearly course of the water level

Build a simple "concatenation" model

What-if ...

Year 2020 continues in the same way as 2019, 2018, 2017, ...

Build predictive model and display the results

- 1. Train a regression model
- 2. Run various scenarios for the input parameters
- 3. Display the results interactively with sliders

Train a (simple) regression model

```
proc glmselect data=monthly_abt_month_sort;
model WaterLevelChange = RainSum Cnt_TmpGT25 /selection=none;
where month in (6,7,8,9);
code file="&path.\Hydro_WaterChange_Mod1.0.sas";
run;
```

- Simple model uses
 - monthly rain sum (mm)
 - number of days with temperature > 25 °C

Parameter Estimates					
Parameter	DF	Estimate	Standard Error	t Value	Pr > t
Intercept	1	-58 153454	7.587593	-7.66	<.0001
RainSum	1	1.096672	0.062758	17.47	<.0001
Cnt_TmpGT25	1	-3.330063	0.338838	-9.83	<.0001

Run various scenarios for the input parameters

```
Data hydro3.PredWaterLevelChange;
 format month 8. P WaterLevelChange 8.2;
 do month = 5 to 10;
  do Cnt TmpGT25 = 0 to 30;
    do RainSum = 0 to 200 by 5;
       %include "&path.\Hydro WaterChange Mod1.0.sas";
       output;
       end;
  end;
 end;
run;
```


Display the results interactively with sliders

Next Steps

- Perform additional feature engineering
 - Average Temperature
 - Number of days > 30°C
 - Number of rain-days per month
 - Number of consecutive days without rain
 - Number of days with water movement > 5 cm (north-south, east-west, ...)
 - Average Water Level
- Train a more complex model
 - What is important? Predictive Power or Interpretability?
 - Train a decision tree

Some considerations from a business interpretation point of view

Use "Days > 25°C" instead of "Average Temperature" Add reference lines with "relevant" dimensions

Select the year based on a bar chart that displays the average water level

Add average values per month to the slider labels

