

Universidad Autónoma de Baja California

FACULTAD DE CIENCIAS QUÍMICAS E INGENIERÍA

Reporte de Laboratorio

Lenguaje C

Práctica No. 10

Manejo de matrices

Alumno

Joshua Osorio Osorio - 1293271

Docente

Fernando Elihonai Saucedo Lares

20 de marzo de 2025

J. Osorio 1

ÍNDICE

Objetivo	. 2
Introducción	2
Lista de materiales	
Desarrollo	3
Calcular el perímetro de cualquier tipo de figura o polígono regular	. 3
Identificar si un número es primo	
Identificar si el número capturado es múltiplo de algún número base, definir Cuál es y cuantas veces cabe en dicho número	. 4
Identificar si un número tiene raíz cuadrada exacta	. 4
Conclusiones	. 4
Bibliografía	5

Objetivo

Comprender y aplicar el uso de apuntadores en matrices.

Introducción

Impresión de una matriz de 5 x5

Impresión de números del 1 al 25 de manera ordenada desde cualquier esquina usando la direccion en sentido de las agujas del reloj.

Ejemplo:

Lista de materiales

- Computadora
- software: mingw
- Editor de texto.

Desarrollo

```
C/C++
/*----
-Taller: 7 Matrices y arreglos.
-Nombre: Joshua Osorio
-Materia: LENGUAJE C 531
-Fecha: Marzo/12/2025
----*/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <unistd.h>
#define t 5
#define timeS 0.5
// Cracion de prototipos de funciones y procedimientos.
int aleatorio(void);
void asignarMatriz(int[][t]);
void asignarMatriz2(int[][t]);
void asignarMatriz3(int[][t]);
void asignarMatriz4(int[][t]);
void desplegarMatriz(int[][t]);
int main(void)
{
      // Semilla para la generacion de numeros aleatorios.
      srand(time(NULL));
      int opc = 0;
      // Declaracion de arraglo y matriz iniciando los valores en 0.
      int arreglo[t] = \{0\};
      int matriz[t][t] = \{0\};
      int matriz2[t][t] = \{0\};
      do
      {
            // Menu de la practica.
```

```
printf("\n----");
             printf("\n\t1) Caso 1");
             printf("\n\t2) Caso 2");
             printf("\n\t3) Caso 3");
             printf("\n\t4) Caso 4");
             printf("\n\t5) Salir");
             printf("\nSelecciona una opcion\n/>");
             scanf("%d", &opc);
             switch (opc)
             case 1:
                    asignarMatriz(matriz);
                   break;
             case 2:
                    asignarMatriz2(matriz);
                   break;
             case 3:
                    asignarMatriz3(matriz);
                    break;
             case 4:
                    asignarMatriz4(matriz);
                   break;
             case 5:
                    printf("\nSaliendo del programa");
                    break;
             default:
                    printf("\n0pcion no disponible =(");
                    break;
             printf("\nPresione cualquier tecla para continua");
             fflush(stdin);
             getchar();
             system("cls");
      } while (opc != 0);
      return 0;
}
// Funcion de generacion de numeros aleatorios, regresar el valor aleatorio
para asignar al arreglo o matriz.
int aleatorio(void)
{
      int num;
```

```
num = rand() % 100 + 1;
       return num;
}
// Procedimiento invoca la funcion de numero aleatorio y la almacena en el
espacio de la matriz.
void asignarMatriz(int matriz[][t])
      desplegarMatriz(matriz);
      int num = 1;
      for (int f = 0; f < t; f++)
             for (int c = 0; c < t; c++)
                    system("cls");
                    matriz[f][c] = num;
                    // printf("\nValor asignado %d en la coordenada %d,%d",
matriz[f][c], f, c);
                    num += 1;
                    desplegarMatriz(matriz);
                    sleep(timeS);
             }
       }
}
// Procedimiento para rellenar la matriz 2.
void asignarMatriz2(int matriz[][t])
      int num = t * t;
       desplegarMatriz(matriz);
      for (int c = 0; c < t; c++)
             // printf("\n Si te entra");
             for (int f = t - 1; f >= 0; f - -)
             {
                    system("cls");
                    // printf("\n Si te entra 2");
                    /*matriz[f][c] = aleatorio();*/
                    matriz[f][c] = num;
                    // printf("\nValor asignado %d en la coordenada %d,%d",
matriz[f][c], f, c);
                    num -= 1;
```

```
desplegarMatriz(matriz);
                     sleep(timeS);
       }
}
// Caso 3.
void asignarMatriz3(int matriz[][t])
{
      int num = t * t;
       desplegarMatriz(matriz);
       for (int c = 0; c < t; c++)
             // printf("\n Si te entra");
             for (int f = 0; f < t; f++)</pre>
              {
                    system("cls");
                    // printf("\n Si te entra 2");
                    /*matriz[f][c] = aleatorio();*/
                    matriz[c][f] = num;
                    // printf("\nValor asignado %d en la coordenada %d,%d",
matriz[f][c], f, c);
                    num -= 1;
                    desplegarMatriz(matriz);
                    sleep(timeS);
             }
       }
}
// Caso 4.
void asignarMatriz4(int matriz[][t])
{
      int num = t * t;
       desplegarMatriz(matriz);
       for (int c = t - 1; c >= 0; c--)
             for (int f = 0; f < t; f++)
              {
                    printf("\n Si te entra");
                     system("cls");
                     // printf("\n Si te entra 2");
```

```
/*matriz[f][c] = aleatorio();*/
                    matriz[f][c] = num;
                    // printf("\nValor asignado %d en la coordenada %d,%d",
matriz[f][c], f, c);
                    num -= 1;
                    desplegarMatriz(matriz);
                    sleep(timeS);
             }
       }
}
// Procedimiento para impresion de datos de la matriz.
void desplegarMatriz(int matriz[][t])
{
      for (int f = 0; f < t; f++)
             for (int c = 0; c < t; c++)
                    printf("%d\t", matriz[f][c]);
             printf("\n");
       }
}
```

Menú:

Asignar valores a la matriz, caso 1:

1	2	3	4	5		
6	7	8	9	10		
11	12	13	14	15		
16	17	18	19	20		
21	22	23	24	25		
Presione cualquier tecla para continua						

J. Osorio 8

Asignar valores a la matriz, caso 2:

C:\Windows\System32\cmd.e: × + ~							
21	16	11	6	1			
22	17	12	7	2			
23	18	13	8	3			
24	19	14	9	4			
25	20	15	10	5			
Presione cualquier tecla para continua							

Asignar valores a la matriz, caso 3:

C:\Windows\System32\cmd.e: × + ~						
25	24	23	22	21		
20	19	18	17	16		
15	14	13	12	11		
10	9	8	7	6		
5	4	3	2	1		
Presione cualquier tecla para continua						

J. Osorio 9

Asignar valores a la matriz, caso 4:

Conclusiones

En esta práctica se trabajó con matrices y arreglos en lenguaje C, implementando funciones para rellenar matrices con valores aleatorios, sumar dos matrices, calcular la transpuesta de una matriz y contar números pares e impares. Se utilizó un menú interactivo para que el usuario seleccionara la operación deseada, demostrando el manejo básico de matrices y la modularización del código mediante funciones. Esta práctica reforzó conceptos clave como el uso de bucles, condicionales y la manipulación de arreglos bidimensionales en C.

Bibliografía

Solo se usaron prácticas anteriores. =)