Štruktúra činností výrobnej logistiky

Alokačné úlohy

I. Alokácia (výrobných procesov) do jedného miesta:

- 1. Nie sú k dispozícii presné údaje: Pomerovo-indexová metóda
- 2. Sú k dispozícii presné údaje: Optimálne umiestnenie distribučného centra
 - a) Euklidovská vzdialenosť
 - b) Kvadrát euklidovskej vzdialenosti
 - c) Rektilineárna vzdialenosť
 - d) Minimalizácia vzdialenosti najvzdialenejšieho odberateľa

II. Alokácia (výrobných procesov) do viacerých miest

- 1. Priradzovací problém (n objektov do n miest základná verzia)
- 2. Priradzovací problém (väzby len medzi novými a existujúcimi objektmi)
- 3. Kvadratický priradzovací problém (väzby medzi novými objektmi navzájom)
- Zovšeobecnený distribučný problém (vyberáme podmnožinu m miest pre distribučné centrá a optimalizujeme dodávky n zákazníkom)

I. Alokácia do jedného miesta

1. Nie sú k dispozícii presné údaje

Predpoklady (popis úlohy):

- ak sú známe lokality a treba vybrať najvhodnejšiu
- ak je ťažké vyčísliť presné náklady
- ak nie sú presne známi dodávatelia ani odberatelia
- ak existuje veľa faktorov, ktoré je ťažko ohodnotiť,
- ale je možné vyjadriť ich závažnosť voči ostatným faktorom
- a porovnať hodnoty faktorov pre jednotlivé lokality
- Riešenie: pomerovo-indexová metóda
 (anglicky SAW Simple Additive Weighting), na UHI preberané za účelom hodnotovej analýzy

Pomerovo-indexová metóda (1)

- 1. Pre vybrané lokality (L = 1 ... n) a daný výrobný proces najprv stanovíme rozhodujúce **faktory** F_i (i = 1 ... m), resp. kritériá výberu
- 2. Každému faktoru F_i prisúdime **váhu** w_i najlepšie tak, aby suma váh všetkých faktorov bola 1, t.j. $\sum_{i=1}^{m} w_i = 1$
- 3. Pre hodnotenie jednotlivých faktorov F_i zvolíme interval hodnotenia $< KD_i$, $KH_i >$ (definičný obor) alebo tzv. kardinálnu mieru HF_i a spôsob ohodnocovania tohto faktoru
 - KD_i je tzv. dolná kardinálna miera
 - KH_i je tzv. horná kardinálna miera

Pomerovo-indexová metóda (2)

- 4. Experti stanovia **hodnotenie** HF_i^L pre všetky lokality L a pre všetky a faktory F_i (t.j. pre všetky L = 1 ... n, i = 1 ... m)
- 5. Výsledné hodnotenie danej lokality L je dané váženým súčtom: $C^L = \sum_{i=1}^m w_i \cdot HF_i^L$
- 6. Ako najlepšia bude vybraná tá lokalita, pre ktorú je hodnota *C*^L **maximálna**, t.j.

 $L \approx \max C^L$

Príklad (1)

- Úlohou je vybrať najvhodnejšiu lokalitu pre umiestnenie výroby drevených hračiek z troch vytipovaných lokalít:
 - Spišská Nová Ves SNV (Lokalita L = 1)
 - Rožňava RV (Lokalita L = 2)
 - Svidník SK (Lokalita L = 3)

Príklad (2)

- 1. Výber faktorov F_i (i = 8)
- 2. Priradenie váh w_i jednotlivým faktorom
- 3. $KD_i = 0$, $KH_i = 10$ pre všetky faktory F_i (i = 1 až 8)

Faktor <i>F_i</i>	Váha <i>w_i</i>
Suroviny (<i>F</i> ₁)	0,13
Doprava (F ₂)	0,09
Energia (<i>F</i> ₃)	0,09
Voda (<i>F₄</i>)	0,06
Financie (<i>F</i> ₅)	0,18
Odbyt (F_6)	0,20
Spoje (F ₇)	0,11
Pracovné sily (<i>F</i> ₈)	0,14

$$\sum_{i=1}^{3} w_i = 1$$

Príklad (3)

4. Expertmi stanovené hodnoty HF_i^L pre všetky L (1 až 3)

Faktor F _i	HF _i ¹	HF _i ²	HF _i ³
Suroviny (F ₁)	8	6	7
Doprava (F ₂)	8	4	6
Energia (F ₃)	4	4	2
Voda (F₄)	8	5	9
Financie (F ₅)	7	2	6
Odbyt (F ₆)	5	2	4
Spoje (F ₇)	7	7	3
Pracovné sily (F ₈)	5	5	5

Príklad (4)

5. Výpočet hodnôt (w_i, HF_i^L) pre všetky faktory F_i a všetky lokality L

Faktor F _i	W_i . HF_i^1	W_i . HF_i^2	W_i . HF_i^3
Suroviny (F ₁)	1,04	0,78	0,91
Doprava (F ₂)	0,72	0,36	0,54
Energia (F ₃)	0,36	0,36	0,18
Voda (F ₄)	0,48	0,3	0,54
Financie (F ₅)	1,26	0,36	1,08
Odbyt (F ₆)	1	0,4	0,8
Spoje (F ₇)	0,77	0,77	0,33
Pracovné sily (F ₈)	0,7	0,7	0,7
$C^L =$	6,33	4,03	5,08

6. Porovnanie súhrnných hodnotení C^L : $C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \max(C^L) = \sum_{\substack{n = 1 \ n = 1}}^{L} C^1 = \sum_{$

2. Sú k dispozícii presné údaje => Optimálne umiestnenie (jedného) distribučného centra

Predpoklady (popis úlohy):

- V rovine existuje n objektov (odberateľov) ($P_1 ... P_n$) so súradnicami (a_1, b_1), ... (a_n, b_n).
- Treba nájsť súradnice pre umiestnenie nového objektu (distribučného centra) $\overline{x} = (x, y)$ tak, aby celkové náklady na realizáciu väzieb medzi existujúcimi objektmi a novým objektom \overline{x} boli minimálne.
- Intenzitu väzby medzi objektmi P_i a novým objektom vyjadrujú koeficienty w_i (i = 1 ... n).
- Riešenie: závisí od spôsobu merania vzdialenosti
 - Používajú sa 4 rôzne typy vzdialeností

4 rôzne varianty úlohy

P2

 W_1

 W_2

P3

 W_3

12

Kriteriálna funkcia je stále rovnaká

$$f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot d(\overline{x}, P_i)$$

- Pričom sa mení vzdialenosť $d(x, P_i)$
- a) Euklidovská: $\sqrt{(x-a_i)^2+(y-b_i)^2}$
- b) Kvadrát euklidovskej: $(x-a_i)^2 + (y-b_i)^2$
- c) Rektilineárna (Manhattanská): $|x-a_i|+|y-b_i|$
- d) Minimálna (euklidovská) vzdialenosť najvzdialenejšieho objektu: $\min_{x,y} \left[\max_{i} \sqrt{(x-a_i)^2 + (y-b_i)^2} \right]$

Pre každý typ vzdialenosti je iný posťup výpočtu optimálneho umiestnenia nového objektu (distribučného centra).

1. Euklidovská vzdialenosť (1)

- Matematický model: $f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot \sqrt{(x-a_i)^2 + (y-b_i)^2}$
- Riešenie: numerický iteračný postup (hyperbolická aproximácia)
- Hľadáme extrém funkcie dvoch premenných (súradnica x a súradnica y pre umiestnenie distribučného centra),
- preto derivujeme funkciu nákladov parciálne

$$f(\bar{x}) = \sum_{i=1}^{m} w_i \sqrt{(x - a_i)^2 + (y - b_i)^2}$$

• a jednotlivé parciálne derivácie položíme rovné nule,

t.j. pre súradnicu
$$x$$
:
$$\frac{\partial f(x)}{\partial x} = \frac{1}{2} \sum_{i=1}^{m} \frac{2w_i(x-a_i)}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} \stackrel{!}{=} 0$$

$$\sum_{i=1}^{m} \frac{xw_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{m} \frac{w_i a_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

1. Euklidovská vzdialenosť (2)

Po úprave:
$$x \cdot \sum_{i=1}^{m} \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{m} \frac{w_i \cdot a_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

a zavedení substitúcie:
$$g_i(x,y) = \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2 + \xi}}$$

dostávame:
$$x \cdot \sum_{i=1}^{m} g_i(x, y) = \sum_{i=1}^{m} a_i \cdot g_i(x, y) \Rightarrow x = \frac{\sum_{i=1}^{m} a_i \cdot g_i(x, y)}{\sum_{i=1}^{m} g_i(x, y)}$$
čo iteračne znamená:

čo iteračne znamená:

$$x^{(k)} = \frac{\sum_{i=1}^{m} a_i \cdot g_i(x^{(k-1)}, y^{(k-1)})}{\sum_{i=1}^{m} g_i(x^{(k-1)}, y^{(k-1)})}$$
počiatočná hodnota
$$x^{(0)} = \frac{\sum_{i=1}^{m} a_i \cdot w_i}{\sum_{i=1}^{m} w_i}$$

1. Euklidovská vzdialenosť (3)

- Dostávame iteračné vzorce pre výpočet súradníc optimálneho umiestnenia distribučného centra $x^{(k)}$ a $y^{(k)}$.
- 1. Na začiatku stanovíme hodnoty pre ťažisko $(x^{(0)})$ a $y^{(0)}$
- 2. Postupne v každej ďalšej iterácii (k) počítame $x^{(k)}$ a $y^{(k)}$ a následne $f(x^{(k)}, y^{(k)})$, pričom sa aktuálne riešenie ($x^{(k)}, y^{(k)}$) stále priblíži k optimu, t.j. narastie $f(x^{(k)}, y^{(k)})$.
- 3. Po dosiahnutí požadovanej presnosti (napríklad ak sa hodnota kriteriálnej funkcie na druhom ráde za desatinnou čiarkou už nemení) výpočet ukončíme a aktuálne hodnoty $x^{(k)}$ a $y^{(k)}$ určujú odporúčané umiestnenie distribučného centra.

1. Euklidovská vzdialenosť (4)

 Analogicky pre súradnicu y derivujeme funkciu nákladov parciálne podľa y, t.j.

$$f(\bar{x}) = \sum_{i=1}^{m} w_i \sqrt{(x-a_i)^2 + (y-b_i)^2}$$

• a položíme rovnú nule, t.j.

$$\frac{\partial f(\overline{x})}{\partial y} = \frac{1}{2} \sum_{i=1}^{m} \frac{2 \cdot w_i \cdot (y - b_i)}{\sqrt{(x - a_i)^2 + (y - b_i)^2}} \stackrel{!}{=} 0$$

$$\sum_{i=1}^{m} \frac{y \cdot w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{m} \frac{w_i \cdot b_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

1. Euklidovská vzdialenosť (5)

• Po úprave a zavedení substitúcie $g_i(x,y) = \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2 + \xi}}$

dostávame:
$$y \sum_{i=1}^{m} \frac{w_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}} = \sum_{i=1}^{m} \frac{w_i \cdot b_i}{\sqrt{(x-a_i)^2 + (y-b_i)^2}}$$

$$y \sum_{i=1}^{m} g_i(x, y) = \sum_{i=1}^{m} b_i \cdot g_i(x, y) \Rightarrow y = \frac{\sum_{i=1}^{m} b_i \cdot g_i(x, y)}{\sum_{i=1}^{m} g_i(x, y)}$$

$$y^{(k)} = \frac{\sum_{i=1}^{m} b_i \cdot g_i \left(x^{(k-1)}, y^{(k-1)} \right)}{\sum_{i=1}^{m} g_i \left(x^{(k-1)}, y^{(k-1)} \right)} \qquad y^{(0)} = \frac{\sum_{i=1}^{m} b_i \cdot w_i}{\sum_{i=1}^{m} w_i}$$

Príklad (1)

 Nájdite optimálne umiestnenie trafostanice pre 4 stanice s danými súradnicami: A[2,6], B[6,7], C[7,4], D[5,2], káblom s mernými ročnými nákladmi 3 PJ/km. Nová stanica bude napájaná káblom s ročnými nákladmi 5 PJ/km z existujúcej trafostanice E[1,1].

i	Miesto	a_i	b_i	w_i
1	А	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

Príklad (2)

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	E	1	1	5

• Vyjdeme z počiatočných hodnôt súradníc $x^{(0)}$ a $y^{(0)}$ pre ťažisko a vypočítame zodpovedajúcu hodnotu kriteriálnej funkcie $f(x^{(0)}, y^{(0)})$.

$$x^{(0)} = \frac{\sum_{i=1}^{5} a_i \cdot w_i}{\sum_{i=1}^{5} w_i} \qquad x^{(0)} = \frac{2 * 3 + 6 * 3 + 7 * 3 + 5 * 3 + 1 * 5}{3 + 3 + 3 + 3 + 5} = \frac{65}{17} \doteq 3,82$$

$$y^{(0)} = \frac{\sum_{i=1}^{5} b_i \cdot w_i}{\sum_{i=1}^{5} w_i} \qquad y^{(0)} = \frac{6 * 3 + 7 * 3 + 4 * 3 + 2 * 3 + 5 * 1}{3 + 3 + 3 + 3 + 5} = \frac{62}{17} = 3,65$$

$$f(x^{(0)}, y^{(0)}) = \sum_{i=1}^{5} w_i \sqrt{(x^{(0)} - a_i)^2 + (y^{(0)} - b_i)^2}$$

$$f(x^{(0)}, y^{(0)}) = 3.\sqrt{(3.82 - 2)^2 + (3.65 - 6)^2} + ... + 5.\sqrt{(3.82 - 1)^2 + (3.65 - 1)^2} = 55.93$$

Príklad (3)

• Potom vypočítame substitučné koeficienty $g_i(x^{(0)}, y^{(0)})$ a dosadíme ich do iteračných vzorcov pre výpočet $x^{(1)}$, $y^{(1)}$

$$x^{(0)} = 3.82; \ y^{(0)} = 3.65$$

$$g_i(x^{(0)}, y^{(0)}) = \frac{w_i}{\sqrt{(x^{(0)} - a_i)^2 + (y^{(0)} - b_i)^2 + \xi}}$$

$$g_1(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 2)^2 + (3.65 - 6)^2 + 0.001}} = 1,009$$

$$g_2(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 6)^2 + (3.65 - 7)^2 + 0.001}} = 0.751$$

$$g_3(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 7)^2 + (3.65 - 4)^2 + 0.001}} = 0.938$$

$$g_4(x^{(0)}, y^{(0)}) = \frac{3}{\sqrt{(3.82 - 5)^2 + (3.65 - 2)^2 + 0.001}} = 1,479$$

$$g_5(x^{(0)}, y^{(0)}) = \frac{5}{\sqrt{(3.82-1)^2 + (3.65-1)^2 + 0.001}} = 1,292$$

i	Miesto	a_i	\boldsymbol{b}_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

Príklad (4)

• A dosadíme ich do iteračných vzorcov pre výpočet $x^{(1)}$, $y^{(1)}$

$$x^{(1)} = \frac{\sum_{i=1}^{5} a_i \cdot g_i(x^{(0)}, y^{(0)})}{\sum_{i=1}^{5} g_i(x^{(0)}, y^{(0)})} \qquad y^{(1)} = \frac{\sum_{i=1}^{5} b_i \cdot g_i(x^{(0)}, y^{(0)})}{\sum_{i=1}^{5} g_i(x^{(0)}, y^{(0)})}$$

$$x^{(1)} = \frac{2 \cdot 1,009 + 6 \cdot 0,751 + 7 \cdot 0,938 + 5 \cdot 1,478 + 1 \cdot 1,292}{1,009 + 0,759 + 0,938 + 1,478 + 1,292} = 3,98$$

$$y^{(1)} = \frac{6 \cdot 1,009 + 7 \cdot 0,751 + 4 \cdot 0,938 + 2 \cdot 1,479 + 1 \cdot 1,292}{1,009 + 0,751 + 0,938 + 1,479 + 1,292} = 3,53$$

• Opäť vypočítame hodnotu kriteriálnej funkcie pre nové umiestnenie distribučného centra $f(x^{(1)}, y^{(1)})$

$$f(x^{(1)}, y^{(1)}) = 3.\sqrt{(3.98 - 2)^2 + (3.53 - 6)^2} + ... + 5.\sqrt{(3.98 - 1)^2 + (3.53 - 1)^2} = 55.77$$

Príklad (5)

 A celý postup iteratívne opakujeme až do chvíle, kým zmena hodnoty kriteriálnej funkcie v dvoch po sebe nasledujúcich iteráciách klesne pod jednu stotinu PJ.

(k)	$\mathbf{X}^{(k)}$	y ^(k)	$f(\mathbf{x}^{(k)},\ \mathbf{y}^{(k)})$
0	3,82	3,65	55,935
1	3,98	3,53	55,772
2	4,06	3,47	55,730
3	4,10	3,44	55,719
4	4,12	3,42	55,716

2. Kvadrát euklidovskej vzdialenosti

- Matematický model: $f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot [(x a_i)^2 + (y b_i)^2)]$
- Riešenie: optimálne umiestnenie distribučného centra je v ťažisku, t.j. presne v tom bode, z ktorého vychádza iteratívny výpočet v prípade euklidovskej vzdialenosti, t.j.:

$$x^{(0)} = \frac{\sum_{i=1}^{m} a_i \cdot w_i}{\sum_{i=1}^{m} w_i} \qquad y^{(0)} = \frac{\sum_{i=1}^{m} b_i \cdot w_i}{\sum_{i=1}^{m} w_i}$$

3. Rektilineárna vzdialenosť

• Matematický model:
$$f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot (|x - a_i| + |y - b_i|)$$

- Riešenie: v prípade rektilineárnej vzdialenosti sa používa na výpočet optimálneho umiestnenia distribučného centra tzv. mediánové umiestenie.
- Optimálne hodnoty pre súradnicu x aj y totiž musia ležať v x-ovej, resp. y-ovej súradnici niektorého zo vstupných objektov (pre každú súradnicu to samozrejme môže byť iný objekt). Použijeme nasledovný postup:

3. Rektilineárna vzdialenosť – postup riešenia

- 1. V tomto prípade je potrebné najprv jednotlivé objekty usporiadať vzostupne podľa ich súradnice x a tiež podľa y $a_{(1)} \le a_{(2)} \le \ldots \le a_{(n)}$ $b_{(1)} \le b_{(2)} \le \ldots \le b_{(n)}$
- 2. Potom vypočítať jednotlivé čiastkové súčty váh w_i prislúchajúcich týmto objektom: $S_{(k)} = \sum_{i=1}^k w_i$
- 3. Vypočítané čiastkové súčty váh w_i pre x-ovú a y-ovú súradnicu tvoria usporiadanú postupnosť, ktorej medián (s_m) predstavuje optimálne umiestnenie distribučného centra pre danú súradnicu, t.j. $s_{(k-1)} \leq s_m \leq s_{(k)}$
- 4. Potom súradnica optimálneho umiestnenia distribučného centra bude zhodná s príslušnou súradnicou odberateľa s poradovým číslom (k).

Príklad (1)

- Použijeme tie isté vstupné údaje ako v príklade pre prípad Euklidovskej vzdialenosti vyššie.
- Pre x-ovú súradnicu:

$$a_5(1) \le a_1(2) \le a_4(5) \le a_2(6) \le a_3(7)$$

$$s_5 = 5$$

 $s_1 = 5 + 3 = 8$
 $s_4 = 5 + 3 + 3 = 11$
 $s_2 = 5 + 3 + 3 + 3 = 14$
 $s_3 = 5 + 3 + 3 + 3 + 3 = 17$

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	E	1	1	5

 $s_m = 11 (s_4)$, čo zodpovedá x-ovej súradnici v poradí 4.zákazníka $\Rightarrow x = a_4 = 5$

Príklad (2)

• Pre y-ovú súradnicu:

$$b_5(1) \le b_4(2) \le b_3(4) \le b_1(6) \le b_2(7)$$

$$s_5 = 5$$

 $s_4 = 5 + 3 = 8$
 $s_3 = 5 + 3 + 3 = 11$
 $s_1 = 5 + 3 + 3 + 3 = 14$
 $s_2 = 5 + 3 + 3 + 3 + 3 = 17$

i	Miesto	a_i	b_i	w_i
1	Α	2	6	3
2	В	6	7	3
3	С	7	4	3
4	D	5	2	3
5	Е	1	1	5

 $s_m = 11 (s_3)$, čo zodpovedá x-ovej súradnici v poradí 3.zákazníka $\Rightarrow y = b_3 = 4$

 Takže optimálne umiestnenie distribučného centra v prípade použitia rektilineárnej vzdialenosti by bolo (5, 4)

4. Minimalizácia vzdialenosti najvzdialenejšieho bodu

Matematický model:

$$f(\overline{x}) = \sum_{i=1}^{n} w_i \cdot \min_{x,y} \left[\max_i \sqrt{(x - a_i)^2 + (y - b_i)^2} \right]$$

 Riešenie: v prípade minimalizácie vzdialenosti najvzdialenejšieho objektu je optimálnym umiestnením distribučného centra stred kružnice s minimálnym polomerom opísanej tak, že v nej ležia všetci odberatelia.

Úloha z 3. prednášky – skupinová

- Prediskutujte v skupine (veľkosti 3 až 5 členov) medzi sebou prebrané typy úloh alokácie do jedného miesta, overte si pochopenie a rozdiely medzi jednotlivými typmi úloh. Zapíšte z toho kroku stručný sumár.
- Spoločne identifikujte príklady konkrétnych reálnych aplikácií úloh alokácie do jedného miesta (iné než boli uvedené v prednáške).
- Identifikované príklady stručne popíšte a správne zaraďte podľa typu do jednej z preberaných kategórií úloh alokácie do jedného miesta.
- Pre jeden z identifikovaných príkladov napíšte matematický model.

Pozn: Vymyslite spolu minimálne dva príklady.

Do výsledného dokumentu s riešením tejto skupinovej úlohy napíšte mená členov skupiny a odovzdajte každý sám za seba.