Linear System: Set of Equations

• A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_1, \dots, x_n .

Linear System Example

 Suppose we collected persons' weight, height, and life-span (e.g., how long s/he lived)

Person ID Weight Height Is_smoking Life-span				
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78

• We want to set up the following linear system:

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

$$65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$$

$$55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$$

• Once we solve for x_1 , x_2 , and x_3 , given a new person with his/her weight, height, and is_smoking, we can predict his/her life-span.

Linear System Example

- The essential information of a linear system can be written compact ly using a **matrix**.
- In the following set of equations,

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

$$65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$$

$$55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$$

Let's collect all the coefficients on the left and form a matrix

$$A = \begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix}$$
• Also, let's form two vectors: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$

From Multiple Equations to Single Matrix Equation

Multiple equations can be converted into a single matrix equations

How can we solve for x?

Identity Matrix

• **Definition**: An identity matrix is a square matrix whose diagonal entries are all 1's, and all the other entries are zeros. Often, we denote it as $I_n \in \mathbb{R}^{n \times n}$.

• e.g.,
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• An identity matrix I_n preserves any vector $\mathbf{x} \in \mathbb{R}^n$ after multiplying \mathbf{x} by I_n :

$$\forall \mathbf{x} \in \mathbb{R}^n$$
, $I_n \mathbf{x} = \mathbf{x}$