Odpowiedzi i schematy oceniania

Arkusz 16

Zadania zamknięte

Numer	Poprawna	Wolvonówski do wozowiegowie		
zadania	odpowiedź	Wskazówki do rozwiązania		
1.	B.	f(x) = ax + b – wzór ogólny funkcji liniowej		
		$\int -2 = a \cdot 0 + b$		
		$1 = a \cdot 6 + b$		
		$\begin{cases} a = \frac{1}{2} \end{cases}$		
		b = -2		
		$\begin{cases} -2 = a \cdot 0 + b \\ 1 = a \cdot 6 + b \end{cases}$ $\begin{cases} a = \frac{1}{2} \\ b = -2 \end{cases}$ $f(x) = \frac{1}{2}x - 2$ $\frac{x - 4}{x + 1} = 2$		
2.	C.	$\frac{x-4}{2}$		
		x+1		
		2(x+1) = x-4		
		2x + 2 = x - 4		
		x = -6		
		Odwrotność -6 to $-\frac{1}{6}$.		
3.	A.	$\left(\frac{1}{3}\right)^{-1} \cdot 3^6 \cdot 27^{\frac{1}{3}} = 3 \cdot 3^6 \cdot 3 = 3^8 = \left(3^2\right)^4$		
4.	C.	$a = \log_7 49 - 2\log_2 \sqrt{2} = 2 - 1 = 1$		
5.	B.	Przyprostokątne trójkąta mają długości: 6, 6√3. Przeciwprostokątna ma		
		długość 12.		
		$\cos \alpha = \frac{6}{12} = \frac{1}{2} \Rightarrow \alpha = 60^{\circ} \ (\alpha - \text{kąt ostry})$		
		12 2		
-	D	$\alpha = 2 \cdot 30^{\circ} = 2 \cdot \beta$ $1 + 3 - 3 - 5 = -4$		
6. 7.	D. C.	y = ax + b – równanie ogólne prostej		
,.	C.	a = -5 (z warunku równoległości prostych)		
		Prosta przechodzi przez punkt (1, – 6):		
		y = -5x + b		
		$\begin{vmatrix} -6 & -5 \cdot 1 + b \end{vmatrix}$		
		b = -1		
		y = -5x - 1		
8.	A.	r = 3		

		1
		$r = \frac{1}{3}h$
		$3=\frac{1}{2}h$
		3
		h = 9
9.	A.	x – liczba osób władających trzema językami
		(40-6-9+x)+(50-6-5+x)+(26-9-5+x)=3x+76-liczba osób
		władających jednym językiem
		6+9+5-3x = 20-3x – liczba osób władających dwoma językami
10.	D.	$3x + 76 + 20 - 3x + x = 100 \Leftrightarrow x = 4$
10.	D .	$\frac{2}{6} = \frac{1}{3}, 1 - \frac{1}{3} = \frac{2}{3}$
11.	C.	Otrzymana bryła to stożek.
11.	C.	h = r
		$\int \frac{1}{3}\pi r^2 \cdot h = 72\pi \Leftrightarrow \frac{1}{3}\pi r^3 = 72\pi \implies r = 6, \ d = 2r = 12$
12.	В.	$1 \cdot 2 \cdot \dots \cdot n = 24 \text{ i } n \in \mathbb{N} \iff n = 4$
13.	Α.	1 1
		$\frac{1}{2} \cdot 20 + \frac{1}{4} \cdot 12 + 1 \cdot 15$
		$\frac{2^{\frac{20+4}{12+113}}}{\frac{1}{2}+\frac{1}{4}+1} = 16 \text{ (zf)}$
		$\frac{-+-+1}{2}$
14.	A.	a, a+1, a+2, a+3, a+4 – pięć kolejnych liczb naturalnych, z których
		najmniejszą jest a
		$a+2=7 \Leftrightarrow a=5$
15.	D.	$a_3 + a_1 = 16 + 8 = 24$
		4n+4=24, n=5
16.	A.	$L_{EWA} = 3 + 3 + 3\sqrt{2} = 6 + 3\sqrt{2}$
		$L_{MUR} = 2(6+3\sqrt{2}) = 12+6\sqrt{2} = 6(2+\sqrt{2})$
17	C	MOR.
17.	C.	Suma cyfr tej liczby jest równa 3 – liczba dzieli się przez 3. Jest to liczba parzysta (cyfrą jedności jest 2) – dzieli się przez 2. Liczba podzielna przez
		2 i przez 3 dzieli się przez 6.
18.	A.	Przekątna graniastosłupa, przekątna podstawy graniastosłupa i krawędź
	1	boczna (równa wysokości graniastosłupa) tworzą trójkąt prostokątny, w
		którym naprzeciw kąta α między podstawą a przekątną graniastosłupa leży
		przyprostokątna p dwa razy krótsza od przeciwprostokątnej.
		$a = \frac{p}{r} + \frac{1}{r} \Rightarrow r = \frac{20^{\circ}}{r}$
		$\sin \alpha = \frac{1}{2p} = \frac{1}{2} \Rightarrow \alpha = 30$
19.	C.	$\sin \alpha = \frac{p}{2p} = \frac{1}{2} \Rightarrow \alpha = 30^{\circ}$ $a_4 = a_1 \cdot q^{4-1} = 4$
		$a_7 = a_1 \cdot q^{7-1} = 32$
		$a_7 = a_1 \cdot q^{7-1} = 32$ Stąd: $a_1 = \frac{1}{2}, q = 2$
		$a = a a^{n-1} = \frac{1}{1} \cdot 2^{n-1} = 2^{n-2}$
		$\begin{bmatrix} u_n - u_1 q & -\frac{1}{2} \cdot \lambda & -\lambda \end{bmatrix}$
		$a_n = a_1 q^{n-1} = \frac{1}{2} \cdot 2^{n-1} = 2^{n-2}$

20.	A.	x x 5 $x(x-4)-x(x-5)-5$
		$\frac{x}{x-5} - \frac{x}{x-4} - \frac{5}{(x-4)(x-5)} = \frac{x(x-4) - x(x-5) - 5}{(x-4)(x-5)} =$
		$x^2 - 4x - x^2 + 5x - 5$ _ $x - 5$ _ 1
		$\frac{x^2 - 4x - x^2 + 5x - 5}{(x - 4)(x - 5)} = \frac{x - 5}{(x - 4)(x - 5)} = \frac{1}{x - 4}$
21.	B.	$(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = 1 + 2 \cdot \frac{3}{5} = \frac{11}{5}$
22.	C.	Wierzchołek paraboli $y = -(x-3)^2 + 2$ znajduje się w punkcie $(3, 2)$.
		Ramiona paraboli skierowane są do dołu. Wykres przecina oś <i>OX</i> w dwóch punktach.
23.	B.	$140\% a - 20\% \cdot 140\% a = \frac{140}{100} a - \frac{20}{100} \cdot \frac{140}{100} a = \frac{140}{100} a - \frac{28}{100} a = \frac{112}{100} a = 112\% a$
24.	C.	Kąt środkowy oparty na tym samym łuku co kąt wpisany ma miarę dwa razy
		większą: $2 \cdot 18^\circ = 36^\circ$.
		$\frac{36^{\circ}}{360^{\circ}} \cdot 2\pi r = \frac{1}{10} \cdot 2\pi \cdot 10 = 2\pi$
25.	D.	$ x-1 < 6 \Leftrightarrow -6 < x-1 < 6 \Leftrightarrow -5 < x < 7$ liczby pierwsze spełniające
		nierówność: 2, 3, 5.
		$ x+1 > 2 \Leftrightarrow x+1 > 2$ lub $x+1 < -2 \Leftrightarrow x > 1$ lub $x < -3$ liczby pierwsze
		spełniające nierówność: 2, 3, 5, 7,
		Liczby spełniające obie nierówności: 2, 3, 5.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązania	Liczba punktów
26.	Wyłączenie wspólnego czynnika przed nawias po obu stronach	1
	równania: $x(x^2 + 4) = 2(x^2 + 4)$.	
	Rozwiązanie równania: $x = 2$.	1
27.	Znalezienie pierwszej współrzędnej wierzchołka: $x = 1$ i	1
	stwierdzenie, że liczba ta należy do przedziału $\langle -1, 2 \rangle$.	
	Obliczenie największej wartości (drugiej współrzędnej	1
	wierzchołka): $f(1) = 7$.	
28.	Obliczenie wysokości rombu: $\frac{h}{6} = \frac{1}{3} \Rightarrow h = 2$.	1
	Obliczenie pola rombu: $P = ah = 6 \cdot 2 = 12$.	1
29.	Określenie liczby zdarzeń elementarnych: 1000 ⁵ i określenie liczby zdarzeń sprzyjających: 1000.	1
	Zapisanie prawdopodobieństwa: $P(A) = \frac{1000}{1000^5} = \frac{1}{1000^4}$.	1
30.	Obliczenie współrzędnych środka odcinka:	1
	$S = \left(\frac{-2+6}{2}, \frac{4-6}{2}\right) = (2, -1).$	

	Obliczenie odległości punktu S od punktu $(0,0)$:	1
	$\sqrt{2^2 + (-1)^2} = \sqrt{5} \ .$	
31.	Zapisanie 16 ³⁶ jako 2 ¹⁴⁴ .	1
	Obliczenie sumy ciągu arytmetycznego: $1+3++2n-1=n^2$.	1
	Rozwiązanie równania $n^2 = 144$: $n = 12 \cup n = -12$.	1
	Wskazanie rozwiązania będącego liczbą naturalną: $n = 12$.	1
32.	Obliczenie promienia stożka: $2\pi r = 12, 2 \cdot 3 \cdot r \approx 12, r \approx 2$.	1
	Zapisanie zależności między promieniem a wysokością stożka:	1
	$tg\alpha = \frac{h}{r}, \ 1.5 = \frac{h}{r}, \ h = 1.5r.$	
	r r Obliczenie wysokości stożka: $h = 3$.	1
	Obliczenie objętości stożka: $V = \frac{1}{3} \cdot 3 \cdot 2^2 \cdot 3 = 12 \text{ (m}^3\text{)}.$	1
	Obliczenie liczby kursów ciężarówki: 12:2 = 6.	1
33.	Ułożenie równania opisującego treść zadania:	1
	x – liczba kilometrów, jaką uczniowie przebywali dziennie,	
	$\frac{84}{x} + 2 = \frac{84}{x - 7} .$	
	Sprowadzenie lewej strony równania do wspólnego mianownika i skorzystanie z własności proporcji: $84x = (84 + 2x)(x - 7)$.	1
	Zapisanie równania w postaci: $2x^2 - 14x - 588 = 0$ lub w postaci $x^2 - 7x - 294 = 0$.	1
	Obliczenie wyróżnika: $\Delta = 1225$.	1
	Obliczenie pierwiastków równania: $x_1 = -14$, $x_2 = 21$.	1
	Podanie odpowiedzi: uczniowie przebywali dziennie 21 km.	1