

Lecture 6: Mixed integer linear programming

Overview

- Mixed integer linear programming
 - General
- Formulating
 - Translation of logical constructs
 - Quality of formulations
- Solving
 - Branch & bound
 - Cutting planes

- MILP is an LP with integrality constraints on some decision variables
 - usually, non-negative integers
 - break-up with convex optimization
- more general and more common in real-life
- much harder to solve (NP-hard)
- still subject of research
- there are nonlinear generalizations

Examples

Pure integer linear program

max
$$z=x_1-3x_2$$

 $x_1-x_2 \le 10$
 $x_{1,1}x_2 \ge 0$, $x_{1,1}x_2 \in Z$

Mixed integer linear program

max
$$z=x_1-3x_2$$

 $x_1-x_2 \le 10$
 $x_1, x_2 \ge 0, x_1 \in Z$

Examples

- 0-1 integer linear program
 - Any pure IP can be reformulated as 0-1 IP

max
$$z=x_1-3x_2$$

 $x_1-x_2 \le 10$
 $x_{1,1}x_2 \ge 0$, $x_{1,1}x_2 \in \{0,1\}$

- Knapsack problem
 - IP with one constraint

max
$$z=x_1+3x_2$$

 $x_1+x_2 \le 10$
 $x_{1,1}x_2 \ge 0$, $x_{1,1}x_2 \in Z$

Formulation

- Reformulating logical and other combinatorial concepts to mathematical programs
 - At times, no-intuitive

- binary variables are crucial
 - get comfortable with them

Transformations I – cardinality and implications for variables

Stock broker selects a portfolio of 4 investments. He can invest in at most two investments. If he invests in investment 2, he also must invest in 1. also, if he invests in 2, he can't invest in 4. Write down the constraints.

- x₁,x₂,x₃,x₄∈{0,1}
 : 1 if invested in option i, 0 otherwise
- at most (or at least) elements from a set
 x₁+x₂+x₃+x₄≤2
- 2. Implication $(x_2=1) \Rightarrow (x_1=1)$

$$x_2 \le x_1$$

3. $(x_2=1) \Rightarrow (x_4=0)$; at most 1 out of 2 $x_2+x_4 \le 1$

Transformations II – fixed charges

Clothes manufacturer is capable of manufacturing shirts and pants on rented equipment. Pants can be sold for 12\$ and shirts for 4\$. There is 160m of cloth available for both, where pants take up 4m/piece and shirt 1m/piece. For each type of clothes, fixed charges of 180\$ and 160\$ have to be paid if they are produced. Find the optimal plan.

$$\max 4x_1 + 12x_2 - 160y_1 - 180y_2$$

 $1x_1 + 4x_2 \le 160$
 $x_{1,1}x_2 \in \mathbb{Z}$: produced shirts and pants

- Fixed charges
 - introduce new binary variables and appropriate constraints

$$y_{1,y_2} \in \{0,1\}$$
: 1 if producing any of i, 0 otherwise $x_1 \le M_1 y_1$ $x_2 \le M_2 y_2$

• M_i sufficiently large in order not to constrain solution for $y_i=1$

Transformations III – restricted range of values

Write down the following constraint in IP form
 x∈S={1,5,7,11,23}

- Restricted range of values
 - Introduce |S| new binary variables

$$y_i \in \{0,1\}, i=1,..., |S|$$

 $x=1y_1+5y_2+7y_3+11y_4+23y_5$
 $y_1+y_2+y_3+y_4+y_5=1$

Transformations IV – set covering

- Two sets:
 - Set-to-be-covered S₁
 - Covering set S₂

Each member in S_1 must be covered by an acceptable member of S_2 . Number of used elements from S_2 has to be minimized in some sense.

Example

There are 4 cities in a county. Minimal number of fire stations has to be built in order for each city to have at least one fire station within 15min. The distances are given in the following

table:

From	To				
	City 1	City 2	City 3	City 4	
City 1	0	10	20	30	
City 2	10	0	25	35	
City 3	20	25	0	15	
City 4	30	35	15	0	

Transformations IV – set covering

• In this case, $S_1=S_2$

	To				
From	City 1	City 2	City 3	City 4	
City 1	0	10	20	30	
City 2	10	0	25	35	
City 3	20	25	0	15	
City 4	30	35	15	0	

- $x_i \in \{0,1\}, i=1,..., |S_2|$
 - 1 if station built in i, 0 otherwise

```
min x_1 + x_2 + x_3 + x_4
```

 $x_1+x_2 \ge 1$; for city 1, it has to be built in 1 or 2, likewise for city 2

 $x_3+x_4 \ge 1$; for city 3, it has to be built in 3 or 4, likewise for city 4

Operational research, FER 11/15/17 11/15/17

Transformations V – disjunctive constraints

At least 1 out of 2 constraints has to be satisfied
 Example

Out of two constraints of the form:

$$f(x_1, x_2, ..., x_n) \le 0$$

 $g(x_1, x_2, ..., x_n) \le 0$

At least one has to be satisfied.

• y ∈{0,1} + appropriate constraints

$$f(x_1,x_2,...,x_n) \le My$$

 $g(x_1,x_2,...,x_n) \le M(1-y)$

 M large enough not to constrain the rest of the problem

Transformations VI – implication for constraints

$$f(x_1,x_2,...,x_n) > 0 \Rightarrow g(x_1,x_2,...,x_n) \ge 0$$

- M large enough not to constrain the rest of the problem
- For y=0, f-constr. satisfied, g-constr. satisfied
- For y=1, f-constr. unsatisfied and g-constr. whatever

Operational research, FER 11/15/17 13 /

Solving mixed integer linear programs – "lucky" example

Four jobs A, B, C, D have to be assigned to four machines. Costs of performing each job on each of machines are given in the table:

	1	2	3	4
Α	9	2	1	5
В	4	5	6	7
C	2	1	3	6
D	5	3	9	4

- a) Set the problem as a ILP (don't solve)
- b) Solve the problem using branch&bound

Solving mixed integer linear programs – "lucky" example

	1	2	3	4
Α	9	2	1	5
В	4	5	6	7
С	2	1	3	6
D	5	3	9	4

Let c_{ii} mark costs of doing i-th job on j-th machine.

$$X_{ij} = \begin{cases} 1, & \text{if } i \leftrightarrow \text{jassignment is active} \\ 0, & \text{otherwise} \end{cases}$$

min z=
$$\sum_{i} \sum_{i} c_{ij} \cdot x_{ij}$$
 cost of the assignment

$$\sum_{j} x_{ij} = 1, i = 1, ..., 4$$
 Each job is done on one machine
$$\sum_{i} x_{ij} = 1, j = 1, ..., 4$$
 Each machine does one job

$$\sum_{i} x_{ij} = 1, j = 1, ..., 4$$

Matrix of constraint coefficients A is **unimodular** and vector of constraint RHS is integral. LP relaxation solves the ILP!

Solving mixed integer linear programs

- Explicit enumeration of all feasible points?
 - Inefficient, prohibitive

Branch-and-bound method

Efficient <u>implicit</u> enumeration

- LP relaxation of MILP
 - LP obtained by omitting all integrality constraints
 - If solution of LP relaxation satisfies MILP integrality constraints, it is optimal for MILP as well
 - Upper bound for maximization MILP
- Form a search tree on integral variables
 - Use LP relaxations for implicit enumeration
 - Potentially skipping huge parts of search-space

Solving MILPs – B&B (maximization)

- Set of branched nodes N= { LP relaxation of starting MILP O}
- 2. LB=-∞ (or some known lower bound)
- 3. Repeat until N is empty
 - a) According to **some** rule pickout a node (program) **n** from N
 - b) Solve LP relaxation of n; n' and get solution UB_n
 - a) If n' is infeasible: continue
 - b) If UB_n ≤LB: continue

BOUND

- c) If solution UB_n of n' is integral according to O
 - a) if $UB_n > LB$: $LB = UB_n$
- d) else pick **some** would-be integral variable **v** with fractional value **f**
 - a) create two subprograms based on n: BRANCH
 - a) n₁ with additional constraint v≥[f]
 - b) n₂ with additional constraint v≤[f]
 - c) $N:=NU\{n_1,n_2\}$
- Output solution LB

Solving MILPs - Example

The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor and 9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board feet of wood. Currently, 6 hours of labor and 45 square board feet of wood are available. Each table contributes \$8 to profit, and each chair contributes \$5 to profit. Formulate and solve an IP to maximize Telfa's profit.


```
max z = 8x_1 + 5x_2

x_1 + x_2 \le 6 (Labor constraint)

9x_1 + 5x_2 \le 45 (Wood constraint)

x_1, x_2 \ge 0; x_1, x_2 integer
```

Solving MILPs – Solving subproblem LP1

max
$$z = 8x_1 + 5x_2$$

 $x_1 + x_2 \le 6$
 $9x_1 + 5x_2 \le 45$
 $x_1, x_2 \ge 0$

Let's branch on x_1 ! (arbitrary)

Create **two** subproblems with added constraints:

- x₁≥4 (LP 2)
- $x_1 \le 3$ (LP 3)

Solving MILPs – Branching LP1

Let's branch on x₁!

Create **two** subproblems with added constraints:

- x₁≥4 (LP 2)
- x₁≤3 (LP 3)

LP2:= LP1 +
$$x_1 \ge 4$$

LP3:= LP1 + $x_1 \le 3$

Solving MILPs – Solving and branching on...

x₂ is fractional (but needs to be integral), let's branch on it!

Solving MILPs – Solving and branching on...

LP5

Optimal solution

z = 365/9

 $x_1 = 40/9$

 $x_2 = 1$

x₁ is fractional (but needs to be integral), let's branch on it!

LP6:= LP5 +
$$x_1 \ge 5$$

LP7:= LP5 + $x_1 \le 4$

Solving MILPs – Solving LP7

LP7

Solving MILPs – Solving LP6

LP6

Solving MILPs – Solving LP3

LP6

Solved!

25 feasible points for original MILP. But, we have explicitly checked only 7 nodes!

Solving MILPs – technicalities

- How to pick subproblem to solve?
 - Two common strategies
 - Backtracking (depth-first search)
 - Jumptracking
 - branch on node from N with the best solution of LP relaxation
- How to pick variable to branch on?
 - On variable with the greatest economic importance
- Solving so many LP relaxations!?
 - Very efficient using dual simplex on added constraints

Solving MILPs – technicalities

- When to finish?
 - To the bare end, at all computational costs!?
 - Often, after achieving the pre-chosen gap to the optimal z-value of problem's LP relaxation
- Are all formulation the same (for all practical purposes)?
 - No, some are easier to solve than others

Solving ILPs: 0-1 ILPs

- Easier to solve than other pure IPs
- Implicit enumeration
 - Variant of B&B for 0-1 IPs, with the following differences:
 - Two sets of binary variables: fixed and free
 - all are free at the beginning
 - At picked node n, do fast completion of free variables to achieve greedy optimum UB_n(for max), not necessarily feasible
 - Branching on some free variable v
 - Two branches: for values 0 and 1
 - Below the branch v becomes fixed

Solving mixed integer linear programs – "lucky" example

Four jobs A, B, C, D have to be assigned to four machines. Costs of performing each job on each of machines are given in the table:

	1	2	3	4
Α	9	2	1	5
В	4	5	6	7
C	2	1	3	6
D	5	3	9	4

b) Solve the problem using branch&bound

0-1 ILP: we use implicit enumeration

Cutting planes

- Generate additional constraints to optimally solved LP relaxation of the problem in order to "peel off" non-integrality
- Gomory cuts for general ILP
- Different problem-specific cuts
- Dual simplex deals with added constraints for efficient solving

