ADMISSION TO CANDIDACY EXAMINATION

IN REAL ANALYSIS

and the second section of the second

JANUARY 1985

NOTATION: R - real numbers; m - Lebesque measure on R.

1. Let E be a measurable subset of R with m(E) (∞ . Prove that given E) 0, there exists a compact set F \subseteq E such that

- 2. State and prove the Baire Category Theorem.
- 3. Let 0 (p (q ± ∞ .
 - a) Prove that $L^{0}([0,1],m) \subset L^{0}([0,1],m)$.
 - b) Show that there exists for L^p with for L^q
- 4. Let g be absolutely continuous and monotone on R. Prove that glenthas measure zero for every set E of measure zero.
- 5. Let f(x,y) be continuous on [0,1] X [0,1]. Prove that if

$$\int_{0}^{1} \int_{0}^{1} y^{k} f(x,y) dxdy = 0$$

for all n,k = 0,1,2,..., then f(x,y) = 0 for all $(x,y) \in [0,1] \times [0,1]$.

6. Let $\{f_n\}$ be a sequence of Lebesgue integrable functions on R satisfying

$$\Sigma$$
 $\int |f_n| dm < \infty$ $n=1$ R

- a) Show that $\int_{R}^{\infty} \sum_{n=1}^{\infty} |f_n| dm < \infty$
- b) Show that $\sum_{n=1}^{\infty} |f_n(x)| \in \infty$ almost everywhere (a.e).
- c) Show that $\sum_{n=1}^{\infty} f_n \in L^1(R, \mathbf{z})$.

- 7. Suppose F is absolutely continuous on [0,1], convex, and nonconstant with $F(0) \times F(1) = 0$. Show that there exists an integrable function f on [0,1] and a ε (0,1) such that
 - a) $F(x) = \int_{0}^{x} f dm$,
 - b) $f(x) \le 0$ a.e. on [0,a] and $0 \le f(x)$ a.e. on [a,1],
 - c) $\int_{0}^{1} |f| dm = -2F(a).$
- 8. Let f be a nonnegative integrable function on R and let

$$\xi(t) = m(\{x : f(x) > t\}).$$

Prove that ξ is decreasing and that

$$\int_{R} f(x)dx = \int_{0}^{\infty} \xi(t)dt.$$

9. Let (X,d) be a complete metric space and let $f:X\to X$ be a function satisfying

$$d(f(x),f(y)) \le cd(x,y)$$
 (x,y \(\epsilon\),

where c is a constant with 0 < c < 1. Let $f^1 = f$ and for $n = 2, 3, 4, \ldots$, let $f^n(x) = f(f^{n-1}(x))$.

- a) For any $n = 1, 2, \ldots$, show that $d(f^{n}(x), f^{n}(y)) \le c^{n} d(x, y), (x, y \in X)$
- b) For any n,k = 1,2,..., and $x \in X$ show that. $d(f^{n}(x),f^{n+k}(x)) \le (c^{n} + c^{n+1} + ... + c^{n+k-1})d(f(x),x).$
- c) For any $x \in X$, show that there exists a point $p \in X$ such that $\lim_{n \to \infty} f^{n}(x) = p \text{ and } f(p) = p.$
- d) Show that p is the unique fixed point of f, that is, if f(q)=q, then q=p.