Prof. F. Bottacin, N. Rodinò

1º Appello — 19 giugno 2012

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 dato dalle soluzioni delle equazioni $2x_1-x_3=0, x_1+x_2+x_4=0, 2x_2+x_3+tx_4=0,$ ove $t\in\mathbb{R}$ è un parametro. Sia $W\subset\mathbb{R}^4$ il sottospazio di equazione $2x_1+x_3-2x_4=0.$

- (a) Al variare di $t \in \mathbb{R}$, si determini la dimensione e una base di U.
- (b) Si determini la dimensione e una base di W.
- (c) Per il valore di t per cui U ha dimensione 2, si determini una base di $U \cap W$ e una base di U + W.
- (d) Per il valore di t per cui U ha dimensione 2, si determini una base di un sottospazio $U' \subset \mathbb{R}^4$ tale che $U \oplus U' = \mathbb{R}^4$. Si dica inoltre se tale sottospazio U' è unico oppure no.

Esercizio 2. Siano $v_1 = (-2, 1, -1), v_2 = (1, 0, 1), v_3 = (1, 0, -1), v_4 = (1, 1, 3), w_2 = (-1, 1, 0), w_3 = (5, -3, 2), w_4 = (t, 5, -1)$ vettori di \mathbb{R}^3 .

- (a) Si dica per quale valore di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $v_1 \in \text{Ker}(f)$ e $f(v_i) = w_i$, per i = 2, 3, 4.
- (b) Per il valore di t trovato nel punto (a) si scriva la matrice di f rispetto alle basi canoniche.
- (c) Si determini l'antiimmagine del vettore (0,1,1) e l'antiimmagine del vettore (2,2,-1).
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $g \circ f$ sia l'identità.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni $2x_1 - x_3 + 3x_4 = 0$ e $x_1 + x_2 - 2x_4 = 0$.

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Dato il vettore v = (4, 2, 4, 2), si determini un vettore w di norma minima tale che $v + w \in U$.
- (c) Esiste un sottospazio $L \subset \mathbb{R}^4$ tale che $L \oplus U = \mathbb{R}^4$ e $L \oplus U^{\perp} = \mathbb{R}^4$? In caso di risposta affermativa si determini una base di L.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che associa ad un vettore di \mathbb{R}^4 la sua proiezione ortogonale su U. Si determinino gli autovalori e gli autospazi di f e si dica se f è diagonalizzabile.

Esercizio 4. Nello spazio affine euclideo tridimensionale, sia r la retta di equazioni 2x - y - 2 = 0 e x - z + 1 = 0 e sia s la retta passante per il punto P = (2, 1, -1) e parallela al vettore $v = (t^2, 1, 7t + 4)$.

- (a) Si determini l'equazione cartesiana del piano σ passante per il punto P e contenente la retta r.
- (b) Si determini la proiezione ortogonale del punto P sulla retta r.
- (c) Al variare di $t \in \mathbb{R}$, si dica se le rette r e s sono incidenti, parallele oppure sghembe.
- (d) Per t=1 si determini l'equazione cartesiana del piano π contenente la retta r e parallelo a s.

Prof. F. Bottacin, N. Rodinò

1º Appello — 19 giugno 2012

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 dato dalle soluzioni delle equazioni $x_2-2x_4=0, x_1+2x_2-x_3=0, x_1-x_3+tx_4=0,$ ove $t\in\mathbb{R}$ è un parametro. Sia $W\subset\mathbb{R}^4$ il sottospazio di equazione $2x_1+x_2+2x_4=0.$

- (a) Al variare di $t \in \mathbb{R}$, si determini la dimensione e una base di U.
- (b) Si determini la dimensione e una base di W.
- (c) Per il valore di t per cui U ha dimensione 2, si determini una base di $U \cap W$ e una base di U + W.
- (d) Per il valore di t per cui U ha dimensione 2, si determini una base di un sottospazio $U' \subset \mathbb{R}^4$ tale che $U \oplus U' = \mathbb{R}^4$. Si dica inoltre se tale sottospazio U' è unico oppure no.

Esercizio 2. Siano $v_1 = (-1, 2, -3), v_2 = (0, 1, 1), v_3 = (0, 1, -1), v_4 = (1, 1, 4), w_2 = (3, -1, 2), w_3 = (1, -1, 0), w_4 = (t, -3, 4)$ vettori di \mathbb{R}^3 .

- (a) Si dica per quale valore di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $v_1 \in \text{Ker}(f)$ e $f(v_i) = w_i$, per i = 2, 3, 4.
- (b) Per il valore di t trovato nel punto (a) si scriva la matrice di f rispetto alle basi canoniche.
- (c) Si determini l'antiimmagine del vettore (0,3,3) e l'antiimmagine del vettore (2,-2,3).
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $g \circ f$ sia l'identità.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni $3x_1 - x_2 - 2x_3 = 0$ e $2x_1 + x_3 + x_4 = 0$.

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Dato il vettore v = (3, 3, -2, -6), si determini un vettore w di norma minima tale che $v + w \in U$.
- (c) Esiste un sottospazio $L \subset \mathbb{R}^4$ tale che $L \oplus U = \mathbb{R}^4$ e $L \oplus U^{\perp} = \mathbb{R}^4$? In caso di risposta affermativa si determini una base di L.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che associa ad un vettore di \mathbb{R}^4 la sua proiezione ortogonale su U. Si determinino gli autovalori e gli autospazi di f e si dica se f è diagonalizzabile.

Esercizio 4. Nello spazio affine euclideo tridimensionale, sia r la retta di equazioni x + z - 4 = 0 e y - 3z + 3 = 0 e sia s la retta passante per il punto P = (1, 2, 1) e parallela al vettore $v = (2t - 1, 1, t^2)$.

- (a) Si determini l'equazione cartesiana del piano σ passante per il punto P e contenente la retta r.
- (b) Si determini la proiezione ortogonale del punto P sulla retta r.
- (c) Al variare di $t \in \mathbb{R}$, si dica se le rette $r \in s$ sono incidenti, parallele oppure sghembe.
- (d) Per t=2 si determini l'equazione cartesiana del piano π contenente la retta r e parallelo a s.

Prof. F. Bottacin, N. Rodinò

1º Appello — 19 giugno 2012

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 dato dalle soluzioni delle equazioni $3x_2+x_3=0, x_1-x_2+2x_4=0, 3x_1+x_3+tx_4=0,$ ove $t\in\mathbb{R}$ è un parametro.

Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 + x_2 + 6x_4 = 0$.

- (a) Al variare di $t \in \mathbb{R}$, si determini la dimensione e una base di U.
- (b) Si determini la dimensione e una base di W.
- (c) Per il valore di t per cui U ha dimensione 2, si determini una base di $U \cap W$ e una base di U + W.
- (d) Per il valore di t per cui U ha dimensione 2, si determini una base di un sottospazio $U' \subset \mathbb{R}^4$ tale che $U \oplus U' = \mathbb{R}^4$. Si dica inoltre se tale sottospazio U' è unico oppure no.

Esercizio 2. Siano $v_1 = (5,1,2), v_2 = (1,0,-1), v_3 = (1,0,1), v_4 = (2,1,1), w_2 = (-2,-1,-3), w_3 = (0,1,1), w_4 = (t,-1,1)$ vettori di \mathbb{R}^3 .

- (a) Si dica per quale valore di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $v_1 \in \text{Ker}(f)$ e $f(v_i) = w_i$, per i = 2, 3, 4.
- (b) Per il valore di t trovato nel punto (a) si scriva la matrice di f rispetto alle basi canoniche.
- (c) Si determini l'antiimmagine del vettore (-1, 1, 0) e l'antiimmagine del vettore (1, 1, -3).
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $g \circ f$ sia l'identità.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni $x_1 - 3x_2 + 2x_3 = 0$ e $2x_2 + 3x_3 + x_4 = 0$.

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Dato il vettore v = (1, -5, 6, 6), si determini un vettore w di norma minima tale che $v + w \in U$.
- (c) Esiste un sottospazio $L \subset \mathbb{R}^4$ tale che $L \oplus U = \mathbb{R}^4$ e $L \oplus U^{\perp} = \mathbb{R}^4$? In caso di risposta affermativa si determini una base di L.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che associa ad un vettore di \mathbb{R}^4 la sua proiezione ortogonale su U. Si determinino gli autovalori e gli autospazi di f e si dica se f è diagonalizzabile.

Esercizio 4. Nello spazio affine euclideo tridimensionale, sia r la retta di equazioni 2x - y - 7 = 0 e x - y - z = 0 e sia s la retta passante per il punto P = (1, -1, 3) e parallela al vettore $v = (3t - 2, t^2, -1)$.

- (a) Si determini l'equazione cartesiana del piano σ passante per il punto P e contenente la retta r.
- (b) Si determini la proiezione ortogonale del punto P sulla retta r.
- (c) Al variare di $t \in \mathbb{R}$, si dica se le rette $r \in s$ sono incidenti, parallele oppure sghembe.
- (d) Per t=1 si determini l'equazione cartesiana del piano π contenente la retta r e parallelo a s.

Prof. F. Bottacin, N. Rodinò

1º Appello — 19 giugno 2012

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 dato dalle soluzioni delle equazioni $3x_1+x_4=0, x_2-2x_3-3x_4=0, tx_1+x_2-2x_3=0, \text{ ove } t\in\mathbb{R}$ è un parametro. Sia $W\subset\mathbb{R}^4$ il sottospazio di equazione $3x_1-x_2+2x_4=0.$

- (a) Al variare di $t \in \mathbb{R}$, si determini la dimensione e una base di U.
- (b) Si determini la dimensione e una base di W.
- (c) Per il valore di t per cui U ha dimensione 2, si determini una base di $U \cap W$ e una base di U + W.
- (d) Per il valore di t per cui U ha dimensione 2, si determini una base di un sottospazio $U' \subset \mathbb{R}^4$ tale che $U \oplus U' = \mathbb{R}^4$. Si dica inoltre se tale sottospazio U' è unico oppure no.

Esercizio 2. Siano $v_1 = (3,7,-1), v_2 = (1,1,0), v_3 = (1,-1,0), v_4 = (0,2,-1), w_2 = (1,1,2), w_3 = (1,3,4), w_4 = (t,-1,-4)$ vettori di \mathbb{R}^3 .

- (a) Si dica per quale valore di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $v_1 \in \text{Ker}(f)$ e $f(v_i) = w_i$, per i = 2, 3, 4.
- (b) Per il valore di t trovato nel punto (a) si scriva la matrice di f rispetto alle basi canoniche.
- (c) Si determini l'antiimmagine del vettore (1, -1, 0) e l'antiimmagine del vettore (2, 2, -1).
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $g \circ f$ sia l'identità.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni $x_1 - 3x_2 + 3x_4 = 0$ e $x_2 - x_3 + 2x_4 = 0$.

- (a) Si determini una base di U e una base di U^{\perp} .
- (b) Dato il vettore v = (1, -3, -8, 5), si determini un vettore w di norma minima tale che $v + w \in U$.
- (c) Esiste un sottospazio $L \subset \mathbb{R}^4$ tale che $L \oplus U = \mathbb{R}^4$ e $L \oplus U^{\perp} = \mathbb{R}^4$? In caso di risposta affermativa si determini una base di L.
- (d) Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare che associa ad un vettore di \mathbb{R}^4 la sua proiezione ortogonale su U. Si determinino gli autovalori e gli autospazi di f e si dica se f è diagonalizzabile.

Esercizio 4. Nello spazio affine euclideo tridimensionale, sia r la retta di equazioni x - y + 3 = 0 e 2y - z + 1 = 0 e sia s la retta passante per il punto P = (-2, 3, 1) e parallela al vettore $v = (1, 2t + 3, t^2)$.

- (a) Si determini l'equazione cartesiana del piano σ passante per il punto P e contenente la retta r.
- (b) Si determini la proiezione ortogonale del punto P sulla retta r.
- (c) Al variare di $t \in \mathbb{R}$, si dica se le rette $r \in s$ sono incidenti, parallele oppure sghembe.
- (d) Per t=1 si determini l'equazione cartesiana del piano π contenente la retta r e parallelo a s.