Multiplexadores

- Disciplina: Técnicas Digitais
- Aula
- Bibliografia Básica:
 - Sistemas Digitais: Princípios e Aplicações, Ronald
 J. Tocci e Neal S. Widmer

FIGURA 9-21 (a) Diagrama lógico para o multiplexador 74ALS151; (b) Tabela-verdade; (c) Símbolo lógico. (Cortesia de Fairchild, uma companhia Schlumberger)

Inputs				Saída			
Ē	S ₂	S ₁	S ₀		Z	Z	
H L L L L	X L L H H	X L H H L H	X L H L H L H L		H 	L I ₀ I ₁ I ₂ I ₃ I ₄ I ₅ I ₆ I ₇	

(b)

S₂
S₁
T4ALS151
S₀
E
T2
Z
(c)

Sistemas Digitais: Princípios e Aplicaçõ Ronald J. Tocci e Neal S. Widmer

Como obter um MUX 8:1 usando 2 Mux de 4:1?

Multiplexador 4:1 (usando muxes 2:1)

Construído usando 3 multiplexadores 2:1

\mathbf{S}_1	So	X		
0	0	Do		
0	1	D_1		
1	0	D_2		
1	1	D_3		

Entrada de dados Z MUX I₀74HC151 Entrade de dados \mathbf{Z} MUX I₀74HC151

Funcionamento

Este circuito tem, no total, 16 entradas de dados, oito aplicadas em cada multiplexador. As saídas dos dois multiplexadores são combinadas na porta OR para produzir uma única saída X. O circuito funciona como um multiplexador de 16 entradas. As quatro entradas de seleção $S_3S_2S_1S_0$ selecionam uma entre as 16 entradas para passála para X.

A entrada S_3 determina qual multiplexador é habilitado. Quando $S_3 = 0$, o multiplexador superior é habilitado e as entradas $S_2S_1S_0$ determinam qual das suas entradas de dados aparecerá na sua saída e será passada pela porta OR para X. Quando $S_3 = 1$, o multiplexador inferior é habilitado e as entradas $S_2S_1S_0$ selecionam uma das suas entradas de dados para passar para a saída X.

Exercicio:

Como obter um MUX 8:1 usando 2 Mux de 4:1 com Habilitação e uma Porta OR?

Descreva o Funcionamento

Ronald J. Tocci e Neal S. Widmer Ca

Multiplexador 16:1 (usando muxes 4:1)

Construído usando
 5 multiplexadores 4:1

FIGURA 9-23 (a) Diagrama lógico para o multiplexador 74ALS157; (b) Símbolo lógico; (c) Tabela-verdade. (Cortesia da Fairchild, uma companhia Schlumberger)

Multiplexador usado para implementar uma função lógica descrita por uma tabela-verdade.

Ex1: Usando um MUX 8:1 para gerar uma função de 3 Variáveis:

$$Z = A\overline{B}\overline{C} + \overline{A}B\overline{C} + ABC$$

Procedimento:

1 – As entradas de seleção são utilizadas como variaveis e as entradas conectadas permanentementes em nivel lógico alto ou baixo.

Multiplexador usado para implementar uma função lógica descrita por uma tabela-verdade.

Ex2: Usando um MUX 4:1 para gerar uma função de 3 Variáveis:

Procedimento:

- 1 Escolher uma das varíaveis como termo independente
- 2 Represente a função por seus mintermos e em função da variável escolhida
- 3 Colocar os valores obtidos (no item 2) na entrada do MUX

Faça selecionando uma Variável de cada vez.

$$f(A, B, C) = z = \overline{A}C + \overline{A}\overline{B} + AB\overline{C}$$

Código de SELEÇÃO			SAÍDAS							
S ₂	S ₁	S ₀	O ₇	O ₆	O ₅	O ₄	O ₃	02	O ₁	O ₀
0	0	0	0	0	0	0	0	0	0	ı
0	0	1	0	0	0	0	0	0	- 1	0
0	1	0	0	0	0	0	0	- 1	0	0
0	1	1	0	0	0	0	- 1	0	0	0
1	0	0	0	0	0	- 1	0	0	0	0
1	0	1	0	0	- 1	0	0	0	0	0
1	1	0	0		0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Nota: I é a entrada de dados

Exercicio: examine a Figura e descreva sua operação

