Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2023

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 21 pages./
Hierdie nasienriglyne bestaan uit 21 bladsye.

NOTE:

- If a candidate answers a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt at an answer and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOMETRY • MEETKUNDE			
S	A mark for a correct statement (A statement mark is independent of a reason)		
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)		
D	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)		
R	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)		
S/R	Award a mark if statement AND reason are both correct		
	Ken 'n punt toe as die bewering EN rede beide korrek is		

1.1.1	a = 1730,22	$\checkmark a = 1730,22$
	b = 13.96	$\checkmark b = 13,96$
	$\hat{y} = 1730,22 + 13,96x$	✓ equation
	y=1750,22 + 15,50%	(3)
1.1.2	$\hat{y} = 1730,22 + 13,96x$	
	$\hat{y} = 1730,22 + 13,96(28500)$	✓ substitution
	$\hat{y} = 1730,22 + 13,30(28300)$ $\hat{y} = R399590,22$	✓ answer
	y=R399 390,22	(2)
	ODIOE	(2)
	OR/OF	
	↑ P200 500 64 (cala)	√√ answer
	$\hat{y} = R399 599,64 \text{ (calc)}$	(2)
1.1.3	r = 0.98002	` `
	r = 0.98	✓ answer
		(1)
1.1.4	There is a very strong positive correlation between	
	the amount spent on advertising and sales. /	✓ strong positive
	Daar is 'n baie sterk positiewe korrelasie tussen die	(1)
	bedrag spandeer op advertensie en die verkope.	
1.2.1	$\bar{x} = \frac{1552195}{1}$	$\sqrt{\bar{x}} = \frac{1552195}{9}$
	9	,
	$\bar{x} = 172466,11$	✓ answer
		(2)
1.2.2	$\sigma = 56950,09$	✓ answer
	_	(1)
1.2.3	$\bar{x} + \sigma$	
	=172466,11+56950,09	
	= 229416,20	$\sqrt{\bar{x}} + \sigma$
		√ answer
	2 years/jaar	(2)
		[12]

2.1	$35 < x \le 45$				✓ answer	
						(1)
2.2	320 people/mense				✓ answer	(-)
						(1)
		_	_		,	(1)
2.3	AGE	NUMBER OF PEOPLE	CUMULATIVE FREQUENCY			
	$5 < x \le 15$	20	20			
	$\frac{3 < x \le 15}{15 < x \le 25}$	25	45			
	$25 < x \le 35$	60	105			
	$35 < x \le 45$	90	195			
	$45 < x \le 55$	55	250			
	$55 < x \le 65$	40	290			
	$65 < x \le 75$	30	320			
		OGIVE/OGIE	E F			
	Cumulative frequency/ Kumulative frequency/ Zoo				✓ cumulative frequency✓ grounding✓ plotting at upper limit✓ shape	
	50 0 0 10 Age	20 30 40 of people/Ouderdo	50 60 70 om van mense	80		(4)
2.4	Median = 41				√√ answer	
						(2)
						[8]

5

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

3.1.1	y = -x - 11				
	A(-1; t)				
	t = -(-1) - 11				substitution
	t = -10			√	value of <i>t</i>
					(2)
3.1.2	$\tan \alpha = -1$			✓	$\tan \alpha = -1$
	$ref. \angle = 45^{\circ}$				
	$\alpha = 135^{\circ}$			\checkmark	135°
					(2)
3.1.3	$\tan 63,43^{\circ} = m_{AC}$			✓	$\tan 63,43^{\circ} = m_{\rm AC}$
	$m_{\rm AC} = 2$			✓	answer
					(2)
3.2	$m_{\rm AC} = 2$				
	A(-1;-10)				
	y = 2x + k	OR/OF	$y - y_1 = 2(x - x_1)$		
	-10 = 2(-1) + k		y - (-10) = 2(x - (-1))	✓	substitution of <i>m</i> and A
	k = -8		y = 2x - 8		
	y = 2x - 8			✓	equation
					(2)

2 2 1	2 0		<u> </u>	
3.3.1	y = 2x - 8			
	$0 = 2x - 8$ $x_{\rm R} = 4$		$\sqrt{x_{\rm R}} = 4$	
	$n_{\rm B} - \tau$		Б	
	$\begin{vmatrix} x_0 + (-1) & y_0 + (-1) \end{vmatrix}$	(-10)		
	$\frac{x_{\rm C} + (-1)}{2} = 4$ $\frac{y_{\rm C} + (-1)}{2}$	$\frac{(-10)}{2} = 0$		
	$x_{\rm C} = 9$ $y_{\rm C} = 1$	0	$ \checkmark x_{\rm C} = 9 $	
				(3)
	OR / OF by translation / met transla.	sie		` /
	$A \to B(x; y) \to (x+5; y+10)$		$\checkmark (x+5; y+10)$	
	$B \to C (4;0) \to (4+5;0+10) = (9)$:10)	$\checkmark x_C = 9 \checkmark y_C = 10$	
		, ,		(3)
3.3.2	ABE = 63,43°	[vert. opp \angle 's =]	✓ ABE = 63,43°	\-'\
	$\hat{E}_2 = 63,43^{\circ}$		1101 – 03, 73	
	2	[corres. ∠'s, DE AB]	450	
	$\hat{E}_1 = 45^{\circ}$	[∠s on a str line]	$\checkmark \hat{E}_1 = 45^\circ$	
	FÊD = 108,43°		✓ FÊD = 108,43°	
	OR/OF			(3)
	$\hat{EAB} = 135^{\circ} - 63,43^{\circ}$			
	EÂB = 71,57°		\checkmark EÂB = 71,57°	
	$\hat{DEA} = \hat{EAB} = 71,57^{\circ}$		\checkmark DÊA = EÂB = 71,57	0
	FÊD = 108,43°		✓ FÊD = 108,43°	
	1 ED = 100,43			(3)
	OR/OF			
	$\hat{ABE} = 63,43^{\circ}$	[vert. opp ∠'s]	\checkmark ABE = 63,43°	
	DÊO = 116,57°	[co-int. \angle 's, DE AB]	✓ DÊO = 116,57°	
	· · · · · · · · · · · · · · · · · · ·	[co-mit. \angle s, $DE \parallel AD$]		
	$F\hat{E}D = 360^{\circ} - (116,57^{\circ} + 135^{\circ})$		✓ FÊD = 108,43°	
2.4	=108,43°			(3)
3.4	y = 0		$\sqrt{x} = -11$	
	$x_{\rm E} = -11$		$\checkmark x_{\rm E} = -11$	
	$\frac{x_G + (-11)}{2} = 4$			
	_			
	$x_{\rm G} = 19$		$\checkmark x_{\rm G} = 19$	
	$(r-10)^2 + v^2 - 15^2$			
	$(x-19)^2 + y^2 = 15^2$ $(x-19)^2 + y^2 = 225$		$(x-19)^2 + y^2 \checkmark 225$	
	$(x-19) + y^{-} = 225$		$[\cdot (\lambda - 19) + y + 223]$	(4)
				[18]
L			I	[TO]

4.1	M(-6;-3)	√ -6 √ -3	
			(2)
4.2.1	$x^2 + y^2 + 24x - 10y + 153 = 0$		
	$(x+12)^2 + (y-5)^2 = -153 + 144 + 25$		
	$(x+12)^2 + (y-5)^2 = 16$		
	$r^2 = 16$	$\sqrt{r^2} = -153 + 144 + 25$	
	r = 4 units	✓ length of radius	
			(2)
4.2.2	$NM = \sqrt{(-12 - (-6))^2 + (5 - (-3))^2}$	✓ substitution into	
		distance formula	
	NM = 10 units	\checkmark NM = 10 units	
	SM = 5 units	\checkmark SM = 5 units	
	$\therefore TS = 10 - 5 - 4 = 1 \text{ unit}$	✓ answer	
			(4)
4.3.1		$\checkmark y_R = -8$	
	y = -8	✓ answer	
			(2)

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4.3.2	5-(-3)	✓ substitution
	$m_{\rm NM} = \frac{5 - (-3)}{-12 - (-6)}$	Substitution
	$m_{\rm NM} = -\frac{4}{3}$	$\checkmark m_{\text{NM}} = -\frac{4}{3}$
	$m_{\text{tangent}} = \frac{3}{4}$	$\checkmark m_{\text{tangent}} = \frac{3}{4}$
	$-5 = \frac{3}{4}(-17) + c \qquad \mathbf{OR/OF} \qquad y - y_1 = \frac{3}{4}(x - x_1)$	✓ substitution of m and N
	$c = \frac{31}{4}$ $y - (-5) = \frac{3}{4}(x - (-17))$ $y = \frac{3}{4}x + \frac{31}{4}$ $y = \frac{3}{4}x + \frac{31}{4}$	
	$y = \frac{3}{4}x + \frac{31}{4}$ $y = \frac{3}{4}x + \frac{31}{4}$	✓ equation (5)
	OR/OF	
	NS = SM = 5	✓ S midpoint
	$S\left(\frac{-12-6}{2} \; ; \; \frac{5-3}{2}\right)$ $S(-9 \; ; \; 1)$	✓ coordinates of S
	$m_{\rm SK} = \frac{1 - (-5)}{-9 + 17}$	
	$=\frac{6}{8}=\frac{3}{4}$	$\checkmark m_{\text{tangent}} = \frac{3}{4}$
	$y + 5 = \frac{3}{4}(x + 17)$	✓ substitution of m and $K(-17; -5)$ or S
	$y = \frac{3}{4}x + \frac{31}{4}$ or $y = \frac{3}{4}x + 7\frac{3}{4}$	✓ equation (5)
4.4.1	$-8 = \frac{3}{4}x + \frac{31}{4}$	$\sqrt{-8} = \frac{3}{4}x + \frac{31}{4}$
	-32 = 3x + 31 $3x = -63$	
	x = -21	$\checkmark x = -21$
	P(-21; -8) R(-6; -8)	
	PR = PS = 15 units [tangents from same point] MS = MR = 5 units	✓ PR = PS = 15 units ✓ MS = MR = 5 units
	Perimeter PSMR = $15 + 15 + 5 + 5$	
	= 40 units	✓ answer (5)

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4.4.2	area of ΔNPS		
ļ.	area of quadrilateral PSMR		
	$\frac{1}{2}$ NS.SP		
	$\frac{1}{2}$ SP.MS + $\frac{1}{2}$ MR.PR		
	$=\frac{\frac{1}{2}(5)(15)}{(5)(15)}$	✓ substitution	
	$= \frac{2}{2\left(\frac{1}{2}\right)(5)(15)}$		
	$=\frac{1}{2}$	✓ answer	(2)
	OR		(2)
	$\Delta NPS \equiv \Delta SPM \equiv \Delta MPR$ area of ΔNPS	✓ congruent	
	area of quadrilateral PSMR		
	$=\frac{1}{2}$	✓ answer	
	2		(2)
			[22]

5.1	$1 - \sin(-\theta)\cos(90^\circ + \theta)$		
3.1	$\frac{1 \sin(\theta)\cos(\theta + \theta)}{\cos(\theta - 360^{\circ})}$		
	$=\frac{1-(-\sin\theta)(-\sin\theta)}{\cos\theta}$		$\sqrt{-\sin\theta} \sqrt{-\sin\theta}$
	$1-\sin^2\theta$		$\sqrt{\cos\theta}$
	$=\frac{1-\sin^{2}\theta}{\cos\theta}$		
	$-\frac{\cos\theta}{\theta}$		
			$\sqrt{\cos^2\theta}$
	$\cos \theta \\ = \cos \theta$		✓ answer
	- 6030		(5)
5.2.1	cos 200°		
	$=-\cos 20^{\circ}$		✓ reduction
	=-p		✓ answer
5.0.0	. (500)		(2)
5.2.2	$\sin(-70^\circ)$		
	$=-\sin 70^{\circ}$		reduction
	$=-\cos 20^{\circ}$		✓ answer
	=-p		
	OR/OF	<i>y</i>	(2)
	ONO		
	$\sin(-70^{\circ})$	$1\sqrt{70^{\circ}}\sqrt{1-p^2}$	
	$=-\sin 70^{\circ}$	200	✓ reduction
		p	✓ answer
	=-p	\downarrow	
			(2)
5.2.3	sin 10°		/ double ands
	$\cos(2(10^\circ)) = 1 - 2\sin^2 10^\circ$		✓ double angle
	$2\sin^2 10^\circ = 1 - \cos 20^\circ$		
	$\sin 10^\circ = \sqrt{\frac{1 - \cos 20^\circ}{2}}$		/ sim 100 as subject
	$\sin 10^{\circ} = \sqrt{\frac{2}{2}}$		✓ sin10° as subject
	1-p		
	$\sin 10^\circ = \sqrt{\frac{1-p}{2}}$		✓ answer
	1 2		(3)
	OR/OF		
	sin10°		
	$\sin(30^{\circ} - 20^{\circ})$		✓ using special angle
	$= \sin 30^{\circ} \cos 20^{\circ} - \cos 30^{\circ}$	✓ expanding	
			· Capanumg
	$=\frac{1}{2}p-\frac{\sqrt{3}}{2}\sqrt{1-p^2}=\frac{p}{2}$	$-\sqrt{3}\sqrt{1-p^2}$	✓ answer
	$=\frac{1}{2}p-\frac{1}{2}\sqrt{1-p}=-$	2	(3)
	OR/OF		

11 DBE/May/June/Mei/Junie 2023

 $SC/SS/NSC/NSS-Marking\ Guidelines/Nasienriglyne$

	sin10°	
	$\sin(70^\circ - 60^\circ)$ $= \sin 70^\circ \cos 60^\circ - \cos 70^\circ \sin 60^\circ$	✓ using special angle ✓ expanding
	$= \sin 70 \cos 60 - \cos 70 \sin 60$ $= p \cdot \frac{1}{2} - \sqrt{1 - p^2} \times \frac{\sqrt{3}}{2} = \frac{p - \sqrt{3}\sqrt{1 - p^2}}{2}$	✓ answer
		(3)
	OR/OF	
	$ sin 10^{\circ} = cos 80^{\circ} $	
	$\cos(60^{\circ} + 20^{\circ})$	✓ using special angle
	$=\cos 60^{\circ}\cos 20^{\circ} - \sin 60^{\circ}\sin 20^{\circ}$	✓ expanding
	$= \frac{1}{2} p - \frac{\sqrt{3}}{2} \cdot \sqrt{1 - p^2}$	✓ answer (3)
5.3	$\cos(A + 55^{\circ})\cos(A + 10^{\circ}) + \sin(A + 55^{\circ})\sin(A + 10^{\circ})$	
	$=\cos\left[A+55^{\circ}-\left(A+10^{\circ}\right)\right]$	√√ compound
	$=\cos 45^{\circ}$	identity
	$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$	√ answer
	V2 2	(3)
5.4.1	LHS = $\frac{\cos 2x + \sin 2x - \cos^2 x}{\sin x - 2\cos x}$ RHS = $-\sin x$	
	$= \frac{\cos^2 x - \sin^2 x + 2\sin x \cos x - \cos^2 x}{\cos^2 x + \cos^2 x}$	$\sqrt{\cos^2 x - \sin^2 x}$
	$\sin x - 2\cos x$ $-\sin^2 x + 2\sin x \cos x$	$\checkmark 2\sin x \cos x$
	$=\frac{\sin x + 2\sin x \cos x}{\sin x - 2\cos x}$	
	$= \frac{-\sin x(\sin x - 2\cos x)}{\sin x + \cos x}$	✓ common factor of
	$\sin x - 2\cos x$ $= -\sin x$	$-\sin x$
	$\therefore LHS = RHS$	
5.4.2	$\cos 2x + \sin 2x - \cos^2 x$	(3)
	$\frac{\cos 2x + \sin 2x - \cos x}{-3\sin^2 x + 6\sin x \cos x}$	
	$\cos 2x + \sin 2x - \cos^2 x$	
	$= \frac{1}{-3\sin x(\sin x - 2\cos x)}$	✓ common factor of
	$\cos 2x + \sin 2x - \cos^2 x \qquad 1$	$-3\sin x$
	$= \frac{\cos 2x + \sin 2x - \cos^2 x}{\left(\sin x - 2\cos x\right)} \times \frac{1}{-3\sin x}$	
	$= \left(-\sin x\right) \times \frac{1}{-3\sin x}$	✓ substitution
	$=\frac{1}{2}$	✓ answer
	5	(3)

DBE/May/June/Mei/Junie 2023

12 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

5.5.1	$3\tan 4x = -2\cos 4x$	
	$3\left(\frac{\sin 4x}{\cos 4x}\right) = -2\cos 4x$	✓ identity
	$3\sin 4x + 2\cos^2 4x = 0$	
	$3\sin 4x + 2(1-\sin^2 4x) = 0$	$\sqrt{1-\sin^2 4x}$
	$-2\sin^2 4x + 3\sin 4x + 2 = 0$	
	$2\sin^2 4x - 3\sin 4x - 2 = 0$	✓ standard form
	$(2\sin 4x + 1)(\sin 4x - 2) = 0$	✓ factors
	$\sin 4x = -\frac{1}{2} \text{or} \sin 4x \neq 2$	(4)
5.5.2	$\sin 4x = -\frac{1}{2}$	
	ref. $\angle = 30^{\circ}$	
	reg. Z = 30	
	$4x = 210^{\circ} + k.360^{\circ}$ or $4x = 330^{\circ} + k.360^{\circ}$	✓ 210°; 330°
	$x = 52.5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$ $x = 82.5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$	\checkmark 52,5°; 82,5° \checkmark k.90°; k ∈ Z
		(3)
		[28]

6.1	Period = 180°	✓ answer
6.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ✓ x-intercepts ✓ turning points ✓ end points
6.3	$y \in [-1;1] \mathbf{OR}/\mathbf{OF} -1 \le y \le 1$	(3) ✓ answer
		(1)
6.4	$g(x) = -\cos 2x$ $g(x+45^\circ) = -\cos 2(x+45^\circ)$ $= -\cos(2x+90^\circ)$ $= \sin 2x$	$-\cos 2(x+45^{\circ})$ $\sin 2x + \sin 2x = -\cos 2(x+45^{\circ})$
6.5.1	$x \in (-90^\circ; -45^\circ)$ OR/OF $-90^\circ < x < -45^\circ$	(2) $\checkmark \checkmark x \in (-90^{\circ}; -45^{\circ})$ (2)
6.5.2	$2\cos 2x - 1 > 0$ $\cos 2x > \frac{1}{2}$ $-\cos 2x < -\frac{1}{2}$ $x \in (-30^{\circ}; 30^{\circ}) \qquad \mathbf{OR/OF} \qquad -30^{\circ} < x < 30^{\circ}$	$ \begin{array}{c} \checkmark \cos 2x > \frac{1}{2} \\ \checkmark -\cos 2x < -\frac{1}{2} \\ \checkmark x = \pm 30^{\circ} \checkmark \text{ interval} \end{array} $ (4)
		[13]

7.1.1	$\frac{AC}{20} = \cos 30^{\circ}$	✓ trig ratio
	$AC = 20 \cos 30^{\circ}$ $AC = 10\sqrt{3} = 17,32$ units	✓ answer (2)
	OR/OF	(2)
	$\frac{AC}{\sin 60^{\circ}} = \frac{20}{\sin 90^{\circ}}$	✓ trig ratio
	\therefore AC = $20\sin 60 = 17,32$	✓ answer (2)
7.1.2	$AB^2 = AC^2 + BC^2 - 2AC.BC\cos A\hat{C}B$	✓ cosine formula
	$AB^{2} = (10\sqrt{3})^{2} + 8^{2} - 2(10\sqrt{3})(8)\cos 100^{\circ}$	✓ substitution into cosine formula
	AB = 20,30 units	✓ answer (3)
7.2	$\frac{\sin A\hat{D}B}{AB} = \frac{\sin A\hat{B}D}{AD}$	✓ sine formula in ∆ABD
	$\frac{\sin A\hat{D}B}{20,3} = \frac{\sin 73,4^{\circ}}{20}$	✓ substitution into sine formula
	$\sin A\hat{D}B = \frac{20,3\sin 73,4^{\circ}}{20}$	
	$\hat{ADB} = 76,58^{\circ}$	✓ answer
		(3)
		[8]

1

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 8

8.1.1(a)	$\hat{T}_2 = 54^{\circ}$	[tan ⊥rad]	✓ S ✓R	(2)
8.1.1(b)	L=36°	[tan-chord theorem]	✓ S ✓R	(2)
8.1.1(c)	KÔT=72°	$[\angle$ at centre = $2 \times \angle$ at circumference]	✓ S ✓R	(2)
	OR/OF			
	$\hat{OKT} = \hat{T}_2 = 54^{\circ}$	[∠s opposite = radii]	✓ S/R	
		[sum of int \angle 's of Δ]	✓ S	(2)
8.1.2	$\hat{KMO} = 180^{\circ} - (18^{\circ} + 72^{\circ})$		✓ S	
	=90°	[sum of int \angle 's of Δ]	✓ S	
	\therefore KM = ML	[line from centre \bot to chord]	✓ R	(3)
	OR/OF			
	OĥT = 54°	[∠s opposite = radii]		
	$\hat{K}_1 = 54^{\circ} - 18^{\circ} = 36^{\circ}$		✓ S	
	TMK = 90°	[sum of int \angle 's of Δ]	✓ S	
	∴ KM = ML	[line from centre \(\perp\) to chord]	✓ R	(3)

8.2.1	$\frac{DC}{CS} = \frac{20}{12} = \frac{5}{3}$	✓ S
	$\therefore \frac{DC}{RB} = \frac{RB}{RB}$	✓ S
	CS BS ∴ BC DR [converse line one side of Δ OR sides in the ∴ BC AD same proportion]	✓ R (3)
8.2.2	$\frac{AR}{AD} = \frac{RB}{BS} \text{ [line one side of } \Delta \text{] } \mathbf{OR} \text{[Prop Theorem AB DS]}$ $\frac{AR}{AD} = \frac{5}{3}$ $\frac{48 - AD}{AD} = \frac{5}{3}$	$\checkmark \frac{AR}{AD} = \frac{5}{3}$
	$\therefore 5AD = 144 - 3AD$ $AD = 18$ $AB = 20 [opp sides of parm]$	✓ AD = 18
	\therefore AD : AB = 18 : 20 = 9 : 10	✓ ratio (3)

17 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

OR/OF	
$\frac{AR}{RD} = \frac{5}{8}$ prop thm AB DS	
$\frac{AR}{48} = \frac{5}{8}$	$\checkmark \frac{AR}{RD} = \frac{5}{8}$
\therefore AR = 30 and AD = 18 AR AB	✓ AD = 18
$\therefore \frac{AR}{RD} = \frac{AB}{DS} \dots \Delta' s$ $\therefore AB = 20$	
∴ AB = 20 ∴ AB : AD = $18:20=9:10$	✓ ratio
	(3) [15]

18

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG9

9.1	Constr: Draw radii OA and OC.	✓ Construction
	Proof:	
	$\hat{O}_1 = 2\hat{B}$ [\angle at centre = $2 \times \angle$ at circumference]	✓ S ✓ R
	$\hat{O}_2 = 2\hat{D}$ [\angle at centre = $2 \times \angle$ at circumference]	V S V K
	$\hat{O}_1 + \hat{O}_2 = 360^{\circ}$ [revolution]	✓ S/R
	$2\hat{B} + 2\hat{D} = 360^{\circ}$ [revolution]	✓ S
	$\therefore \hat{\mathbf{B}} + \hat{\mathbf{D}} = 180^{\circ}$	(5)
		(5)

.

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

$ \hat{EFG} = 180^{\circ} - \hat{D}_{1} $ $ \therefore \hat{EFG} = 180^{\circ} - x $	[opp ∠'s of cyclic quad]	✓S ✓ R
$\hat{G} = 180^{\circ} - \hat{G}$ $\hat{G} = x$	[co-int \angle 's; EF \parallel DG]	✓S / R
But $\hat{G} = \hat{D}_2$	[alt ∠'s; DH FG]	✓ S / R
$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2 = x$		(4)
		[9]

QUESTION/VRAAG 10

10.1.1	TPR=90°	[∠ in semi-circle]	✓S ✓R	
	SPR =90°	[∠'s on a straight line]	✓S	
	∴ SR is a diameter	[converse ∠ in semi-circle]	✓R	
				(4)
	OR			
	TKR=90°	[∠ in semi-circle]	✓S ✓R	
	SPR =90°	[ext \angle of cyclic quad]	✓S	
	∴ SR is a diameter	[converse ∠ in semi-circle]	✓R	
		OR [chord subtends a right angle]		(4)

21 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

10.1.2	A -A		
10.1.2	$\hat{R}_1 = P\hat{T}K$	[ext \angle of cyclic quad]	✓S ✓R
	$\hat{P}_1 = P\hat{T}K = \hat{R}_1$	[∠s opp equal sides]	✓S /R
	$\hat{\mathbf{S}} + \hat{\mathbf{R}}_1 = \hat{\mathbf{P}}_1 + \mathbf{P}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓S ✓R
	$\therefore \hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	$[\hat{\mathbf{R}}_1 = \hat{\mathbf{P}}_1]$	
10.1.2	Y ACDY 1 ADDY		(5)
10.1.3	In \triangle SPK and \triangle PRK	France 41	✓S
	$\hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	[proved]	√S
	$\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	V 3
	ΔSPK ΔPRK	$[\angle, \angle, \angle]$	✓S/R
		[,,]	(3)
	OR/OF		
	In \triangle SPK and \triangle PRK		
	$\hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	[proved]	✓S
	$\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	√S
	SPK =PRK	[sum of \angle s in Δ]	✓S/R
	ΔSPK ΔPRK		
10.2	DK SK		(3)
10.2	$\frac{PK}{RK} = \frac{SK}{PK} [\Delta SPK \parallel]$	ΔPRK]	✓S
	$PK^2 = SK.RK$		
	$ST^2 = SK^2 + TK^2$	[Pythagoras]	✓S
	TK = PK	[Given]	
	$ST^2 = SK^2 + PK^2$		
	$ST^2 = SK^2 + SK.RK$		$\checkmark PK^2 = SK.RK$
	$ST^2 = (2RK)^2 + 2RK.$	RK	✓SK = 2RK
	$ST^2 = 6RK^2$		
	$ST = \sqrt{6}RK$		\checkmark ST ² = 6RK ²
	DI – VOICIX		(5)
			[17]

TOTAL/TOTAAL: 150