	Date Page
	CARBON
	Atomic Number - 6 (Exp and Ge) Newtxenl: - 6 Mass Number: - 12 (6p + 6n) Elctrenic Configuration: - 2,4 Valency: - 4 (Tetravalent)
	Impostance of Caxbon
	Main element progent in all buing exganisms Almost all fuel that we use one made of carbon. Other organic substance like carbohydrate, protein,
	Plastics have carbon.
	Uniqueness in Carbon
	Carbon cam form huge number of compounds. Number of carbon compounds are greater from all non-carbon compounds.
	non-coolen Campaunas. Coolen based oxganic chemistry is studied as a separate branch of chemistry.
NAME OF TAXABLE	

Fidaur

	FREE MIND
	Page
+	Why CARBON IS Unique ?
1	1019
+ .	Catenation
1	Tetra-Covalancy
Manager 1	Polymexisation
	Isomexism
	NOUTHEOLS III
	Tetxa-Covalency
1	valency of Caxbon is 4 and it form compounds only
	by shaxing electrons.
	of sharing accidance.
	Covalent Band: The atomic number of caxban is 6.
	1+3 electronic configuration is 2,4. At requires, 4
The same	elections to achieve the inent gas electronic configuration
	But carbon cammot form an ionic bond
	pecanse:
1111111	v Culture .
	At could gain four elections forming cu-cation.
	But it would be difficult for neuclous with six
	protons to hold on to ten electrons.
	At could lose four alocations ?
	At could lose four electrons forming C4+ cations. But it requires a large amount of energy to remove
-	four electrons. amount of energy to semant
经产品股	

Fidaur

Fidaur

Fidaur

Triple Bonds No:N=N Share 3 pais of e' Allotropes of Carbon Allo tray Different forms of an element that has Same physical property but different physical proporties are known as allotropes. There are those allotropes of Carbon - Diamond, Coxaphite and Fullwance. CHOMATO It exists as a three-demensional naturax with carbon strong carbon-carbon covalent bonds. Diamond is hard in nature with high melting points. At shimes in presence of tight and it is a bad conductor of electricity. The most common use of diamend is in making remellexy. It is also used in cutting and drilling tools. * Each Caxbon atom is bonded w to four other caxban atoms to form a regular te trahed son shape. * No free e: Melting point: 3,550 oc 16,4220F) Boiling point: 4,830 oc

	Page —
•	GRAPHTTE In Graphite each Caxbon atom is bonded with other three carbon atoms in oxder to form hexagonal
	At serves as good conductor of heat and electricity.
	at is used as day lubricant for machines ports as well as it is used in lead penals.
•	FULLERENCE Fullexence is the hollow cage which exists o in the form of sphere. At sesembles the structure of fullerence.
	But along with hexagonal xings, sometimes pentagonal ox hoptogonal xings are also present.
	Atis structure looks like a Football.
	ETYPES OF COMPOUNDS
	CARBON COMPOUND - Compounds containing caxbon
	ORGANIC COMPOUND-Compounds containing carbon

Fidaur

	and nitro			Paga Paga
1	HYDRO C	ARBON - C	syspan ou cultural	taing carbon and ly.
		HYDROCE	HOORE	
	Aliphatic Hydrocart Acyclic	oon J	vchic]	Axematic hydrocontanton ox Axemos (Umsaturated) Eg: Benzene
	Alkanes (Saturated)		Alkanos durated)	(Saturated)
	Alipho	tic Hydroncar	Kbans: (Open	chain)
	1 (Meth) 2 (Eth) 3 (Prop) 4 (Bit)	Alkanl (-) Methane Ethane Propone Butane	Alkeme (=) X Ethome Pxapome Buteme	Alkyme (=) X Ethyme Propyme Butyme

Fidaur

5 (pent) Pentane Pentene Pentene Hexame Hexame Heptene Hep	EL MIG
5 (pent) Pentane Pontene Pen 6 (Hex) Hexame Hexene Hep 7 (400f) Heapane Heptene Hep	WHO A
5 (pent) renture Hexene Heptene Hep	
6 (Mex) Hexame Hexame Heptene Hep	trae
T(400f) Hoptone Heptone Hep	xy ne
THEPT I WILLIAM	tyne
2100+7 Octame Octame Oc	tyme
2 (Nomane Nomane Nomene No	onyme
10 (Dec) Decame Deceme De	cyme
[Saturated and Unsaturated hydrocarbons	
Coturated Hudrocoabans	
These have only single bonds between conten	n atoms.
These are alkanes.	
* Each combon is bonded to as many hydrog	and od
possible.	1
* Loss reactive because single bonds are a	atteny
ava as may oscar easily.	
Engdra axbyt betarutospy	
These hydrocarbens centain one or more	10.16/2
0x triple bends between Carbon atoms.	OPPLOT
These are alkerels and alkerels.	
* The carbon atoms aren't fully bonded to	W. Jagom:
They have space to band more hydragons	· C IIac
double or triple bonds one broken.	17 110
* Double and triple bonds are weaker from s	early banks
so they break easily in chamical reactions.	Man Hu
and the contract southers.	UJAVA

Fidaur

touble ex triple bonds breaks, new atoms clike hydragen) can jain, making them mare reactive. Diffe senies Unsaturated Saturated Proposty Simple bends only Double as triple bonds Moxe reactive Less reactive Rodin'ty Ethemes Ethyme Examples, Methane, Ethane ATURATED AND UNISATURATED HYDROCARBONIS Comdended Moleanlan Structural Granus Nome Coxmula Foxmula C74 CHH Moth and H3 CCH3 C276 Ethane H3CCH2 CH3 C3 H8 Propane H3C(CH2)9(H3 C4 HID Butane H3C (CH2)3(H3 (3H12 Pentane Hac(CH2)4 CH3 CGHILL Hexano H3 ((CH2)50t3 CTHIE Hep fame

Fidaur

Fidaur

Fidaur

Fidaur

Fidaur

Fidaur

Fidaur

Fidaur

	THE REAL PROPERTY OF THE PERSON NAMED AND ADDRESS OF THE PERSO
	Date-
1	[E-thamo]
	MOLECULAR FORMULA C2H50H NATURE Newson
*	CHO-CHOOH HOSO4 > CHO=CHO+HOO (Ethamol) (Ethamol)
	2 Na + 2CH3CH2OH - SCHaCHOO-NOTAHO Salt
	ETHANOTC ACTO GROUP CARBOXYTIC Heid Family MOLECULAR FORMULA CH300H NATURE Acidic
*	CH3 - CH3-C-0-C245+420
	(Ethanol) (Ethanoic
*	Esters - Succet smelling substances Ester = Ethyl Acetate
*	

Fidaur

Fidaur

Fidaur

	The cleaning action of soaps works as follows:
1	Spap has two pasts: - Hydrophillic head (mater-laving): sticks to mater. - Hydrophobic tail (mater-hating): sticks to oil or grease.
3	when soop is applied. The hydrophobic tails attach to the grease as dixt, while the hydrophillic head stays in water. This forms timy structures called micelles, where the dixt gets trapped inside. Rinsing with water washes away the micelles, a removing the dixt and grease.
	Soop doesn't work well in hard water? Soop doesn't work well in hard water because the namexals in hard water seart with the soap to form an insoluble substance called soap scum. Domatized Alcahal
	Denatured alcohol is ethyl alcohol (vincina) made unfit for drinking by adding paisonals substances.