Содержание

1	Лe	кция от 08.02.17. Случайные блуждания	2
	1.1	Понятие случайного блуждания	2
	1.2	Случайные блуждания	3
	1.3	Исследование случайного блуждания с помощью характери-	
		стической функции	5
2	Лекция от 15.02.17. Ветвящиеся процессы и процессы вос-		
	ста	новления	8
	2.1	Модель Гальтона-Ватсона	8
	2.2	Процессы восстановления	12
3	Лекция от 22.02.17. Пуассоновские процессы		13
	3.1	Процессы восстановления (продолжение)	13
	3.2	Сопоставление исходного процесса восстановления со вспомо-	
		гательным	13
	3.3	Элементарная теорема восстановления	15
	3.4	Пуассоновский процесс как процесс восстановления	17
4	Лекция от 01.03.17. Точечные процессы		19
	4.1	Независимость приращений пуассоновского процесса	19
	4.2	Пространственный пуассоновский процесс	20
	4.3	Функционал Лапласа точечного процесса	25
	4.4	Маркирование пуассоновских процессов	26
5	Лекция от 15.03.17. Процессы с независимыми приращени-		
	ямі	1	27
	5.1	Функционал Лапласа точечного процесса (продолжение)	27
	5.2	Теорема Колмогорова о согласованных распределениях	32
	5.3	Процессы с независимыми приращениями	34
	5.4	Модификация процесса	34
6	Лекция от 22.03.17. Винеровский процесс		35
	6.1	Фильтрации. Марковские моменты	35
	6.2	Строго марковское свойство	36
	6.3	Функции Хаара и Шаудера	40
	6.4	Винеровские процессы	41
C.	писс	V THEODOMYNII	12

1 Лекция от 08.02.17

Случайные блуждания

1.1 Понятие случайного блуждания

Определение 1.1. Пусть V — множество, а \mathscr{A} — σ -алгебра его подмножеств. Тогда (V,\mathscr{A}) называется измеримым пространством.

Определение 1.2. Пусть есть (V, \mathscr{A}) и (S, \mathscr{B}) — два измеримых пространства, $f: V \to S$ — отображение. f называется $\mathscr{A}|\mathscr{B}$ -измеримым, если $\forall B \in \mathscr{B}$ $f^{-1}(B) \in \mathscr{A}$. Обозначение: $f \in \mathscr{A}|\mathscr{B}$.

Определение 1.3. Пусть есть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y \colon \Omega \to S$ — отображение. Если $Y \in \mathscr{F}|\mathscr{B}$, то Y называется *случайным элементом*.

Определение 1.4. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Y: \Omega \to S$ —случайный элемент. Pac-пределение вероятностей, индуцированное случайным элементом Y, - это функция на множествах из \mathscr{B} , задаваемая равенством

$$\mathsf{P}_Y(B) := \mathsf{P}(Y^{-1}(B)), \quad B \in \mathscr{B}.$$

Определение 1.5. Пусть $(S_t, \mathscr{B}_t)_{t \in T}$ — семейство измеримых пространств. Случайный процесс, ассоциированный с этим семейством,— это семейство случайных элементов $X = \{X(t), t \in T\}$, где

$$X(t): \Omega \to S_t, \ X(t) \in \mathscr{F}|\mathscr{B}_t \ \forall t \in T.$$

Здесь T — это произвольное параметрическое множество, (S_t, \mathcal{B}_t) — произвольные измеримые пространства.

Замечание. Если $T \subset \mathbb{R}$, то $t \in T$ интерпретируется как время. Если $T = \mathbb{R}$, то время непрерывно; если $T = \mathbb{Z}$ или $T = \mathbb{Z}_+$, то время дискретно; если $T \subset \mathbb{R}^d$, то говорят о случайном поле.

Определение 1.6. Случайные элементы X_1,\ldots,X_n называются *независимыми*, если $P\left(\bigcap_{k=1}^n \{X_k \in B_k\}\right) = \prod_{k=1}^n P(X_k \in B_k) \ \forall B_1 \in \mathscr{B}_1,\ldots,B_n \in \mathscr{B}_n.$

Теорема 1.1 (Ломницкого-Улама). Пусть $(S_t, \mathcal{B}_t, \mathsf{Q}_t)_{t \in T}$ — семейство вероятностных пространств. Тогда на некотором $(\Omega, \mathscr{F}, \mathsf{P})$ существует семейство независимых случайных элементов $X_t \colon \Omega \to S_t, \ X_t \in \mathscr{F}|\mathscr{B}_t$ таких, что $\mathsf{P}_{X_t} = \mathsf{Q}_t, \ t \in T$.

Замечание. Это значит, что на некотором вероятностном пространстве можно задать независимое семейство случайных элементов с наперед указанными распределениеми. При этом T по-прежнему любое, как и $(S_t, \mathcal{B}_t, \mathsf{Q})_{t \in T}$ произвольные вероятностные пространства. Независимость здесь означает независимость в совокупности \forall конечного поднабора.

1.2 Случайные блуждания

Определение 1.7. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные векторы со значениями в \mathbb{R}^d . Случайным блужданием в \mathbb{R}^d называется случайный процесс с дискретным временем $S = \{S_n, n \geq 0\}$ $(n \in \mathbb{Z}_+)$ такой, что

$$S_0 := x \in \mathbb{R}^d$$
 (начальная точка); $S_n := x + X_1 + \ldots + X_n, \quad n \in \mathbb{N}.$

Определение 1.8. Простое случайное блуждание в \mathbb{Z}^d — это такое случайное блуждание, что

$$\mathsf{P}(X=e_k) = \mathsf{P}(X=-e_k) = \frac{1}{2d},$$

где
$$e_k = (0, \dots, 0, \underbrace{1}_k, 0, \dots, 0), \ k = 1, \dots, d.$$

Определение 1.9. Введем $N:=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\}\ (\leqslant\infty)$. Это, по сути, число попаданий нашего процесса в точку 0. Простое случайное блуждание $S==\{S_n,n\geqslant 0\}$ называется возвратным, если $\mathsf{P}(N=\infty)=1;$ невозвратным, если $\mathsf{P}(N<\infty)=1.$

Замечание. Далее считаем, что начальная точка случайного блуждания ноль.

Определение 1.10. Число $\tau := \inf\{n \in \mathbb{N} : S_n = 0\}$ ($\tau := \infty$, если $S_n \neq 0$ $\forall n \in N$) называется моментом первого возвращения в θ .

Замечание. Следует понимать, что хотя определение подразумевает, что $P(N=\infty)$ равно либо 0, либо 1, пока что это является недоказанным фактом. Это свойство будет следовать из следующей леммы.

Лемма 1.2. Для $\forall n \in \mathbb{N}$

$$P(N = n) = P(\tau = \infty) P(\tau < \infty)^{n-1}$$
.

Доказатель ство. При n=1 формула верна: $\{N=1\}=\{\tau=\infty\}$. Докажем по индукции.

$$\begin{split} \mathsf{P}(N = n+1, \tau < \infty) &= \sum_{k=1}^{\infty} \mathsf{P}(N = n+1, \tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\{S_{m+k} - S_k = 0\} = n, \tau = k\right) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}\left(\sum_{m=0}^{\infty} \mathbb{I}\left\{S_m' = 0\right\} = n\right) \mathsf{P}(\tau = k) = \\ &= \sum_{k=1}^{\infty} \mathsf{P}(N' = n) \, \mathsf{P}(\tau = k), \end{split}$$

где N' определяется по последовательности $X_1' = X_{k+1}, \ X_2' = X_{k+2}$ и так далее. Из того, что X_i — независиые одинаково распределенные случайные векторы, следует, что N' и N распределены одинаково. Таким образом, получаем, что

$$P(N = n + 1, \tau < \infty) = P(N = n) P(\tau < \infty).$$

Заметим теперь, что

$$P(N = n + 1) = P(N = n + 1, \tau < \infty) + P(N = n + 1, \tau = \infty),$$

где второе слагаемое обнуляется из-за того, что $n+1\geqslant 2$. Из этого следует, что

$$P(N = n + 1) = P(N = n) P(\tau < \infty).$$

Пользуемся предположением индукции и получаем, что

$$P(N = n + 1) = P(\tau = \infty) P(\tau < \infty)^n,$$

что и завершает доказательство леммы.

Следствие. $P(N=\infty)$ равно θ или 1. $P(N<\infty)=1\Leftrightarrow P(\tau<\infty)<1$.

Доказательство. Пусть $P(\tau < \infty) < 1$. Тогда

$$P(N < \infty) = \sum_{n=1}^{\infty} P(N = n) = \sum_{n=1}^{\infty} P(\tau = \infty) P(\tau < \infty)^{n-1} = \frac{P(\tau = \infty)}{1 - P(\tau < \infty)} = \frac{P(\tau = \infty)}{P(\tau = \infty)} = 1.$$

Это доказывает первое утверждение следствия и импликацию справа налево в формулировке следствия. Докажем импликацию слева направо.

$$\mathsf{P}(\tau < \infty) = 1 \Rightarrow \mathsf{P}\left((\tau = \infty) = 0\right) \Rightarrow \mathsf{P}(N = n) = 0 \; \forall \, n \in \mathbb{N} \Rightarrow \mathsf{P}(N < \infty) = 0.$$

Следствие доказано.

Теорема 1.3. Простое случайное блуждание в \mathbb{Z}^d возвратно \Leftrightarrow $\mathsf{E} N = \infty$ (соответственно, невозвратно \Leftrightarrow $\mathsf{E} N < \infty$).

Доказатель ство. Если $\mathsf{E} N < \infty$, то $\mathsf{P}(N < \infty) = 1$. Пусть теперь $\mathsf{P}(N < \infty) = 1$. Это равносильно тому, что $\mathsf{P}(\tau < \infty) < 1$.

$$\begin{split} \mathsf{E} N &= \sum_{n=1}^\infty n \, \mathsf{P}(N=n) = \sum_{n=1}^\infty n \, \mathsf{P}(\tau=\infty) \, \mathsf{P}(\tau<\infty)^{n-1} = \\ &= \mathsf{P}(\tau=\infty) \sum_{n=1}^\infty n \, \mathsf{P}(\tau<\infty)^{n-1}. \end{split}$$

Заметим, что

$$\sum_{n=1}^{\infty} np^{n-1} = \left(\sum_{n=1}^{\infty} p^n\right)' = \left(\frac{1}{1-p}\right)' = \frac{1}{(1-p)^2}.$$

Тогда, продолжая цепочку равенств, получаем, что

$$\mathsf{P}(\tau = \infty) \sum_{n=1}^{\infty} n \, \mathsf{P}(\tau < \infty)^{n-1} = \frac{\mathsf{P}(\tau = \infty)}{(1 - \mathsf{P}(\tau < \infty))^2} = \frac{1}{1 - \mathsf{P}(\tau < \infty)},$$

что завершает доказательство теоремы.

3амечание. Заметим, что поскольку $N=\sum\limits_{n=0}^{\infty}\mathbb{I}\{S_n=0\},$ то

$$EN = \sum_{n=0}^{\infty} EI\{S_n = 0\} = \sum_{n=0}^{\infty} P(S_n = 0),$$

где перестановка местами знаков матожидания и суммы возможна в силу неотрицательности членов ряда. Таким образом,

$$S$$
 возвратно $\Leftrightarrow \sum_{n=0}^{\infty} \mathsf{P}(S_n=0) = \infty.$

Следствие. S возвратно $npu \ d = 1 \ u \ d = 2.$

Доказательство.
$$P(S_{2n}=0)=(\frac{1}{2d})^{2n}\sum_{\substack{n_1,\ldots,n_d\geqslant 0\\n_1+\ldots+n_d=n}}\frac{(2n)!}{(n_1!)^2\ldots(n_d!)^2}$$

Случай
$$d=1$$
: $P(S_{2n}=0)=\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{2n}$.

Согласно формуле Стирлинга,

$$m! \sim \left(\frac{m}{e}\right)^m \sqrt{2\pi m}, \quad m \to \infty.$$

Соответственно,

$$P(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}} \Rightarrow$$

 \Rightarrow ряд $\sum\limits_{n=0}^{\infty} \frac{1}{\sqrt{\pi n}} = \infty \Rightarrow$ блуждание возвратно. Аналогично рассматривается $cnyua\~u \ d=2$:

$$P(S_{2n} = 0) = \dots = \left\{ \frac{(2n)!}{(n!)^2} \left(\frac{1}{2} \right)^{2n} \right\}^2 \sim \frac{1}{\pi n}$$

 \Rightarrow ряд тоже разойдется \Rightarrow блуждание возвратно (подробнее см. [2], т.1, стр. 354). Теорема доказана. $\hfill\Box$

1.3 Исследование случайного блуждания с помощью характеристической функции

Теорема 1.4. Для простого случайного блуждания в \mathbb{Z}^d

$$\mathsf{E} N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} \; \mathrm{d}t,$$

 $\epsilon \partial e \varphi(t) - x a p a \kappa m e p u c m u ч e c \kappa a я функция <math>X, t \in \mathbb{R}^d$.

Доказатель ство.
$$\int_{[-\pi,\pi]} \frac{e^{inx}}{2\pi} dx = \begin{cases} 1, & n=0\\ 0, & n\neq 0 \end{cases}$$
. Следовательно,

$$\mathbb{I}\{S_n = 0\} = \prod_{k=1}^d \mathbb{I}\{S_n^{(k)} = 0\} = \prod_{k=1}^d \int_{[-\pi,\pi]} \frac{e^{iS_n^{(k)}t_k}}{2\pi} dt_k = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} dt.$$

По теореме Фубини

$$\mathsf{E}\mathbb{I}(S_n = 0) = \mathsf{E}\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} e^{i(S_n,t)} \; \mathrm{d}t = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \mathsf{E}e^{i(S_n,t)} \; \mathrm{d}t.$$

Заметим, что

$$\mathsf{E} e^{i(S_n,t)} = \prod_{k=1}^n \varphi_{X_k}(t) = (\varphi(t))^n.$$

Тогда

$$\mathsf{E}\mathbb{I}(S_n = 0) = \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \left(\varphi\left(t\right)\right)^n \, \mathrm{d}t.$$

Из этого следует, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) = \frac{1}{(2\pi)^d} \int\limits_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n \, \, \mathrm{d}t, \quad \text{где } 0 < c < 1.$$

Поскольку $|c\varphi| \leqslant c < 1$, то

$$\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \sum_{n=0}^{\infty} (c\varphi(t))^n dt = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - c\varphi(t)} dt$$

по формуле для суммы бесконечно убывающей геометрической прогрессии. Осталось только заметить, что

$$\sum_{n=0}^{\infty} c^n \, \mathsf{P}(S_n = 0) \to \sum_{n=0}^{\infty} \mathsf{P}(S_n = 0) = \mathsf{E} N, \quad c \uparrow 1,$$

что и завершает доказательство теоремы.

Следствие. При $d\geqslant 3$ простое случайное блуждание невозвратно.

Доказательство. Запишем характеристическую функцию X в явном виде:

$$\varphi(t) = \mathsf{E} e^{i(t,X)} = \sum_{k=1}^d \left(\frac{1}{2d} e^{it_k} + \frac{1}{2d} e^{-it_k} \right) = \frac{1}{d} \sum_{k=1}^d \cos(t_k).$$

Тогда

$$\mathsf{E}N = \lim_{c \uparrow 1} \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_d))} \, dt.$$

Из вида подынтегрального выражения ясно, что расходимость может происходить только из-за особенности t=0. Введем обозначения

$$B_{\delta} := (-\delta, \delta)^d, \ V_{\delta} := [-\pi, \pi]^d \setminus B_{\delta}.$$

Ясно, что

$$\forall d \in \mathbb{N} \quad \int_{V_c} \frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_d))} \, dt < \infty.$$

Поэтому для того чтобы понять, сходится интеграл или нет, достаточно смотреть на интеграл по замыканию малой окрестности нуля B_{δ} . Воспользуемся разложением косинуса в ряд Тейлора:

$$\frac{1}{1 - \frac{c}{d}(\cos(t_1) + \ldots + \cos(t_k))} \sim \frac{1}{1 - \frac{1}{d}(1 - \frac{1}{t_1^2} + \ldots + 1 - \frac{1}{t_d^2})} \sim \frac{d}{\|t\|^2},$$

где

$$c\uparrow 1,\ t\to 0.$$

Поскольку якобиан перехода к d—мерной сферической системе координат содержит множитель R в степени d-1, то интеграл сойдется $\Leftrightarrow d \geqslant 3$. Теорема доказана.

Доказательство (комбинаторное). Заметим, что

$$\begin{split} \mathsf{P}\left(S_{2n} = 0\right) &= \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{2n!}{(n_1!)^2 \dots (n_d!)^2} \left(\frac{1}{2d}\right)^{2n} = \\ &= \frac{(2n)!}{n!n!} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \left(\frac{n!}{n_1! \dots n_d!}\right)^2 \left(\frac{1}{2d}\right)^{2n} \leqslant \\ &\leqslant \frac{(2n)!}{n!n!} \left(\frac{1}{2d}\right)^{2n} \frac{n!}{\left(\left(n/d\right)!\right)^d} \sum_{\substack{n_1, \dots, n_d \geqslant 0 \\ n_1 + \dots + n_d = n}} \frac{n!}{n_1! \dots n_d!} = \Theta\left(n^{-d/2}\right) \end{split}$$

по формуле Стирлинга. Соответственно, при $d\geqslant 3$ ряд из вероятностей сходится, что и требовалось доказать (подробнее см. [2], т.1, стр. 354). \square

Замечание. Можно говорить и о случайных блужданиях в \mathbb{R}^d , если $X_i:\Omega\to\mathbb{R}^d$. Но тогда о возвратности приходится говорить в терминах бесконечно частого попадания в ε -окрестность точки x.

Определение 1.11. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *множество возвратности* случайного блуждания S—это множество

$$R(S) = \bigcap_{\varepsilon>0} \left\{ x \in \mathbb{R}^d : \text{ блуждание возвратно в } \varepsilon\text{--окрестности точки } x
ight\}$$

Определение 1.12. Пусть есть случайное блуждание S на \mathbb{R}^d . Тогда *точки, достижимые случайным блужданием* S,—это множество P(S) такое,

$$\forall z \in P(S) \ \forall \varepsilon > 0 \ \exists n: \ P(\|S_n - z\| < \varepsilon) > 0.$$

Теорема 1.5 (Чжуна-Фукса). Если $R(S) \neq \emptyset$, то R(S) = P(S).

Следствие. Если $0 \in R(S)$, то R(S) = P(S); если $0 \notin R(S)$, то $R(S) = \emptyset$. Замечание. Подробнее см. [1], стр. 65.

$\mathbf{2}$ Лекция от 15.02.17

Ветвящиеся процессы и процессы восстановления

2.1Модель Гальтона-Ватсона

Описание модели Пусть $\{\xi, \xi_{n,k}, n, k \in \mathbb{N}\}$ — массив независимых одинаково распределенных случайных величин,

$$P(\xi = m) = p_m \geqslant 0, \quad m \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

Такие существуют в силу теоремы Ломницкого-Улама. Положим

$$Z_0(\omega) := 1,$$

$$Z_n(\omega) := \sum_{k=1}^{Z_{n-1}(\omega)} \xi_{n,k}(\omega) \quad \text{для } n \in \mathbb{N}.$$

Здесь подразумевается, что если $Z_{n-1}(\omega)=0$, то и вся сумма равна нулю. Таким образом, рассматривается сумма случайного числа случайных величин. Определим $A=\{\omega\colon \exists\, n=n(\omega),\; Z_n(\omega)=0\}$ — событие вырожедения nonyляции. Заметим, что если $Z_n(\omega)=0$, то $Z_{n+1}(\omega)=0$. Таким образом, $\{Z_n=0\}\subset\{Z_{n+1}=0\}$ и $A=\bigcup_{n=1}^\infty\{Z_n=0\}.$ По свойству непрерывности вероятностной меры,

$$\mathsf{P}(A) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0).$$

Определение 2.1. Пусть дана последовательность $(a_n)_{n=0}^{\infty}$ неотрицательных чисел такая, что $\sum\limits_{n=0}^{\infty}a_n=1$. Производящая функция для этой последовательности — это

$$f(s) := \sum_{k=0}^{\infty} s^k a_k, \quad |s| \leqslant 1$$

(нас в основном будут интересовать $s \in [0, 1]$).

Заметим, что если $a_k = P(Y = k), k = 0, 1, \dots$, то

$$f_Y(s) = \sum_{k=0}^{\infty} s^k P(Y = k) = Es^Y, \quad s \in [0, 1].$$

Пемма 2.1. Вероятность $\mathsf{P}(A)$ является корнем уравнения $\psi(p)=p$, где $\psi = f_{\xi} \ u \ p \in [0, 1].$

Доказательство.

$$\begin{split} f_{Z_n}(s) &= \mathsf{E} s^{Z_n} = \mathsf{E} \left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^{Z_{n-1}} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] = \\ &= \sum_{j=0}^\infty \mathsf{E} \left[\left(s^{\sum_{k=1}^j \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right]. \end{split}$$

Поскольку $\sigma\{Z_r\}\subset\sigma\{\xi_{m,k},\ m=1,\ldots,r,\ k\in\mathbb{N}\}$, которая независима с $\sigma\{\xi_{n,k},\ k\in\mathbb{N}\}$ (строгое и полное обоснование остается в качестве упражнения (на самом деле все тут понятно: первый множитель под матожиданием является борелевской функцией от $\xi_{n,\bullet}$, а второй—от $\xi_{i,\bullet}$, $i=1,\ldots,n-1$, эти два множества случайных величин независимы)), то

$$\begin{split} \sum_{j=0}^{\infty} \mathsf{E} \left[\left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathbb{I} \{ Z_{n-1} = j \} \right] &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{E} \mathbb{I} \{ Z_{n-1} = j \} = \\ &= \sum_{j=0}^{\infty} \mathsf{E} \left(s^{\sum_{k=1}^{j} \xi_{n,k}} \right) \mathsf{P} (Z_{n-1} = j) = \sum_{j=0}^{\infty} \prod_{k=1}^{j} \mathsf{E} s^{\xi_{n,k}} \, \mathsf{P} (Z_{n-1} = j) = \\ &= \sum_{j=0}^{\infty} \psi_{\xi}^{j}(s) \, \mathsf{P} (Z_{n-1} = j) = f_{Z_{n-1}} \left(\psi_{\xi} \left(s \right) \right) \end{split}$$

в силу независимости и одинаковой распределенности $\xi_{n,k}$ и определения производящей функции. Таким образом,

$$f_{Z_n}(s) = f_{Z_{n-1}}(\psi_{\xi}(s)), \quad s \in [0, 1].$$

Подставим s = 0 и получим, что

$$f_{Z_n}(0) = f_{Z_{n-1}}\left(\psi_{\varepsilon}(0)\right)$$

Заметим, что

$$\begin{split} f_{Z_n}(s) &= f_{Z_{n-1}}(\psi_\xi(s)) = f_{Z_{n-2}}\left(\psi_\xi\left(\psi_\xi\left(s\right)\right)\right) = \ldots = \underbrace{\psi_\xi(\psi_\xi\ldots(\psi_\xi))\ldots)}_{n \text{ итераций}} = \\ &= \psi_\xi(f_{Z_{n-1}}(s)). \end{split}$$

Тогда при s=0 имеем, что

$$P(Z_n = 0) = \psi_{\xi} (P(Z_{n-1} = 0)).$$

Но $\mathsf{P}(Z_n=0)\nearrow\mathsf{P}(A)$ при $n\to\infty$ и ψ_ξ непрерывна на [0,1]. Переходим к пределу при $n\to\infty$. Тогда

$$P(A) = \psi_{\varepsilon}(P(A)),$$

то есть P(A) — корень уравнения $p = \psi_{\mathcal{E}}(p), p \in [0, 1]$.

Теорема 2.2. Вероятность р вырождения процесса Гальтона-Ватсона есть **наименьший** корень уравнения

$$\psi(p) = p, \quad p \in [0, 1],$$
 (1)

 $r\partial e \ \psi = \psi_{\mathcal{E}}.$

Доказательство. Пусть $p_0 := P(\xi = 0) = 0$. Тогда

$$\mathsf{P}(\xi\geqslant 1)=1,\quad \mathsf{P}\left(\bigcap_{n,k}\left\{\xi_{n,k}\geqslant 1\right\}\right)=1.$$

Поэтому $Z_n \geqslant 1$ при $\forall n$, то есть $\mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть теперь $p_0 = 1$. Тогда $\mathsf{P}(\xi = 0) = 1 \Rightarrow \mathsf{P}(A)$ — наименьший корень уравнения (1). Пусть, наконец, $0 < p_0 < 1$. Из этого следует, что $\exists m \in \mathbb{N}$: $p_m > 0$, а значит, ψ строго возрастает на [0,1]. Рассмотрим

$$\Delta_n = [\psi_n(0), \psi_{n+1}(0)), n = 0, 1, 2, \dots,$$

где $\psi_n(s)$ — это производящая функция Z_n . Пусть $s\in\Delta_n$. Тогда из монотонности ψ на [0,1] получаем, что

$$\psi(s) - s > \psi(\psi_n(0)) - \psi_{n+1}(0) = \psi_{n+1}(0) - \psi_{n+1}(0) = 0,$$

что означает, что у уравнения (1) нет корней на $\Delta_n \, \forall \, n \in \mathbb{Z}_+$. Заметим, что

$$\bigcup_{n=0}^{\infty} \Delta_n = [0, P(A)), \quad \psi_n(0) \nearrow P(A).$$

По лемме 2.1 P(A) является корнем уравнения (1). Следовательно, показано, что P(A) — наименьший корень, что и требовалось доказать.

Теорема 2.3. 1. Вероятность вырождения P(A) есть нуль $\Leftrightarrow p_0 = 0$. 2. Пусть $p_0 > 0$. Тогда при $E\xi \leqslant 1$ имеем P(A) = 1, при $E\xi > 1$ имеем P(A) < 1.

- Доказательство. 1. Пусть P(A)=0. Тогда $p_0=0$, потому что иначе была бы ненулевая вероятность вымирания $P(A)>P(Z_1=0)=p_0$. В другую сторону, если $p_0=0$, то вымирания не происходит (почти наверное) из-за того, что у каждой частицы есть как минимум один потомок (почти наверное).
 - 2. Знаем, что

$$\psi_{\xi}(s) = \sum_{k=0}^{\infty} s^k p_k, \ \psi_{\xi}(1) = 1, \ \exists \psi'_{\xi}(s), \ s \in (0, 1).$$

Воспользуемся формулой Лагранжа:

$$\forall s \in (0, 1) \ \psi_{\varepsilon}(1) - \psi_{\varepsilon}(s) = \psi_{\varepsilon}'(\theta)(1 - s), \ \theta \in (s, 1).$$

Формулой Лагранжа можно пользоваться, поскольку $\psi_{\xi}(s)$ непрерывна на отрезке [0, 1] и дифференцируема на интервале (0, 1). Тогда

$$\psi_{\xi}(s) - s = 1 - s - \psi'_{\xi}(\theta)(1 - s) = (1 - s)\left(1 - \psi'_{\xi}(\theta)\right).$$

Знаем, что при $s \in (0, 1)$

$$\psi'_{\xi}(s) = \sum_{k=1}^{\infty} k s^{k-1} p_k, \quad \psi''_{\xi}(s) = \sum_{k=2}^{\infty} k(k-1) s^{k-2} p_k.$$

Заметим, что если $\exists p_k > 0, \ k \geqslant 2$, то $\psi_\xi''(s) > 0, \ s \in (0, 1)$, а значит, $\psi_\xi'(s)$ строго возрастает на $s \in (0, 1)$. Будем сначала рассматривать этот случай.

(a) Пусть $\mathsf{E}\xi=\psi_{\xi}'(1)\leqslant 1$. Из этого следует, что $\psi_{\xi}'(\theta)<1$. Тогда получаем, что

$$\psi_{\xi}(s) - s \ = \ 1 - s - \psi_{\xi}'(\theta)(1 - s) \ = \ (1 - s)\left(1 - \psi_{\xi}'\left(\theta\right)\right) > 0 \ \forall s \in (0, 1),$$

причем $\psi_{\xi}(0)-0=p_0>0$ по условию. Из этого следует, что наименьшим корнем уравнения $\psi_{\xi}(s)-s=0$ будет s=1.

(b) Пусть $\mathsf{E}\xi=\psi_\xi'(1)>1.$ Тогда для всех s, достаточно близких к 1,

$$\psi_{\xi}'(\theta) > 1, \ \theta \in (s, 1),$$

в силу непрерывности производящей функции на отрезке [0, 1]. Тогла

$$\psi_{\xi}(s) - s = 1 - s - \psi'_{\xi}(\theta)(1 - s) = (1 - s)\left(1 - \psi'_{\xi}(\theta)\right) < 0,$$

при этом $\psi_{\xi}(0)-0=p_0>0$ по условию. Это значит, что на интервале (0,1) найдется корень уравнения $\psi_{\xi}(s)-s=0$ в силу непрерывности производящей функции.

(c) Рассмотрим теперь случай $p_k = 0 \ \forall k \geqslant 2$. В рамках этого предположения

$$\psi_{\xi}(s) = p_0 + (1 - p_0)s,$$

а значит.

$$\psi_{\xi}(s) - s = p_0 + (1 - p_0)s - s = p_0(1 - s) > 0 \ \forall s < 1.$$

Из этого следует, что у уравнения $\psi_{\xi}(s)-s=0$ наименьший корень на отрезке [0,1]— это s=1. Теорема доказана.

Следствие. Пусть $\mathsf{E}\xi < \infty$. Тогда $\mathsf{E}Z_n = (\mathsf{E}\xi)^n, \ n \in \mathbb{N}$.

Доказательство. Доказательство проводится по индукции.

База индукции: $n = 1 \Rightarrow \mathsf{E} Z_1 = \mathsf{E} \xi$.

Индуктивный переход:

$$\mathsf{E} Z_n = \mathsf{E} \left(\sum_{k=1}^{Z_{n-1}} \xi_{n,k} \right) = \sum_{j=0}^{\infty} j \, \mathsf{E} \xi \, \mathsf{P}(Z_{n-1} = j) = \mathsf{E} \xi \, \mathsf{E} Z_{n-1} = \left(\mathsf{E} \xi \right)^n.$$

Определение 2.2.

При $\mathsf{E}\xi < 1$ процесс называется докритическим.

При $\mathsf{E}\xi=1$ процесс называется критическим.

При $\mathsf{E}\xi > 1$ процесс называется надкритическим.

2.2 Процессы восстановления

Определение 2.3. Пусть $S_n = X_1 + \ldots + X_n, n \in \mathbb{N}, X, X_1, X_2, \ldots$ независимые одинаково распределенные случайные величины, $X \geqslant 0$. Положим

$$Z(0) := 0;$$

 $Z(t) := \sup\{n \in \mathbb{N} : S_n \le t\}, \quad t > 0.$

(здесь считаем, что $\sup \varnothing := \infty$). Таким образом,

$$Z(t,\omega) = \sup \{ n \in \mathbb{N} : S_n(\omega) \leq t \}.$$

Иными словами,

$$\{Z(t) \geqslant n\} = \{S_n \leqslant t\}.$$

Так определенный процесс Z(t) называется процессом восстановления.

Замечание. Полезно заметить, что

$$Z(t) = \sum_{n=1}^{\infty} \mathbb{I}\{S_n \leqslant t\}, \ t > 0.$$

Определение 2.4. Рассмотрим вспомогательный процесс восстановления $\{Z^*(t), t \ge 0\}$, который строится по Y, Y_1, Y_2, \ldots независимым одинаково распределенным случайным величинам, где

$$P(Y = \alpha) = p \in (0, 1); P(Y = 0) = q = 1 - p.$$

Исключаем из рассмотрения случай, когда Y=C=const: если C=0, то $Z(t)=\infty \ \forall \, t>0$; если же C>0, то $Z(t)=\left[\frac{t}{c}\right]$.

Лемма 2.4.

$$\mathsf{P}(Z^{\star}(t) = m) = \begin{cases} C_m^j \, p^{j+1} q^{m-j}, \ \mathrm{ide} \ j = \left[\frac{t}{\alpha}\right] &, \ \mathrm{echu} \ m \geqslant j; \\ 0 &, \ \mathrm{echu} \ m < j, \end{cases}$$

 $r\partial e \ m = 0, 1, 2, \dots$

Определение 2.5. *U* имеет *геометрическое распределение* с параметром $p \in (0,1)$, если $P(U=k) = (1-p)^k p, \ k=0,1,2,\dots$

Замечание. Наглядная иллюстрация этой случайной величины такова: это число неудач до первого успеха, если вероятность успеха равна p, а вероятность неудачи, соответственно, равна 1-p.

Пемма 2.5. Рассмотрим независимые геометрические величины U_0, \ldots, U_{j+m} с параметром $p \in (0,1)$. Тогда $\forall t \geqslant \alpha$ и $m \geqslant j$

$$P(j + U_0 + ... + U_j = m) = P(Z^*(t) = m).$$

3 Лекция от 22.02.17

Пуассоновские процессы

3.1 Процессы восстановления (продолжение)

Доказательство. Заметим, что

$$P(U_0 + \ldots + U_j = m - j) = \sum_{\substack{k_0, \ldots, k_j \geqslant 0 \\ k_0 + \ldots + k_j = m - j}} P(U_0 = k_0, \ldots, U_j = k_j).$$

В силу независимости U_i получаем, что

$$\sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0,\dots,U_j=k_j) = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} \mathsf{P}(U_0=k_0)\dots\mathsf{P}(U_j=k_j) = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p(1-p)^{k_0}\dots p(1-p)^{k_j} = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{k_0+\dots+k_j} = \\ = \sum_{\substack{k_0,\dots,k_j\geqslant 0\\k_0+\dots+k_j=m-j}} p^{j+1}(1-p)^{m-j} = p^{j+1}(1-p)^{m-j}\#M,$$

где M — множество всевозможных упорядоченных наборов целых чисел k_j , удовлетворяющих условию под знаком суммы, а #M — мощность этого множества. Заметим, что задача нахождения #M эквивалентна "задаче о перегородках" из курса теории вероятностей с числом элементов m-j и числом перегородок j. Таким образом,

$$\#M = C_m^j$$

и, соответственно,

$$P(U_0 + ... + U_j = m - j) = C_m^j p^{j+1} (1-p)^{m-j},$$

что и требовалось доказать.

3.2 Сопоставление исходного процесса восстановления со вспомогательным

Лемма 3.1. $\Pi y cmv \ t > \alpha$. $Tor \partial a$

$$\mathsf{E}Z^{\star}(t) \leqslant At, \ \mathsf{E}(Z^{\star}(t))^2 \leqslant Bt^2,$$

$$r\partial e A = A(p,\alpha) > 0, B = B(p,\alpha) > 0.$$

Доказательство. По лемме 2.5

$$EZ^*(t) = E(i + U_0 + ... + U_i) = i + (i + 1)EU$$

где

$$\mathsf{E} U = \sum_{k=0}^{\infty} k(1-p)^k p = a(p) < \infty.$$

Следовательно,

$$j + (j+1)\mathsf{E}U = j + (j+1)a(p) \leqslant (j+1)\left(a(p)+1\right) \leqslant \frac{2t}{\alpha}\left(a(p)+1\right) = At,$$

поскольку $j=\left[\frac{t}{\alpha}\right]\leqslant \frac{t}{\alpha},$ а $t>\alpha;$ здесь $A=\frac{2(a(p)+1)}{\alpha}.$ Рассмотрим теперь $\mathsf{E}\left(Z^\star(t)\right)^2.$

$$\mathsf{E}\left(Z^{\star}(t)\right)^{2} = \mathsf{D}Z^{\star}(t) + \left(\mathsf{E}Z^{\star}(t)\right)^{2} = (j+1)\mathsf{D}U + \left(\mathsf{E}Z^{\star}(t)\right)^{2}.$$

Обозначим через $\sigma^2(p) := \mathsf{D} U$. Используя оценку выше для $\mathsf{E} Z^\star(t)$, получаем, что

$$(j+1)\mathsf{D} U + \left(\mathsf{E} Z^\star(t)\right)^2 \leqslant (j+1)^2 \left(\sigma^2(p) + \left(a(p)+1\right)^2\right) \leqslant Bt^2,$$

так как $(j+1)^2 \geqslant (j+1)$. Лемма доказана.

Замечание. Пусть случайная величина $X\geqslant 0,\ X$ отлична от константы. Тогда

$$\exists \alpha > 0 : \mathsf{P}(X > \alpha) = p \in (0, 1).$$

Определим тогда по X вспомогательный процесс восстановления $Z^{\star} = \{Z^{\star}(t), \ t \geqslant 0\}$: пусть

$$Y_n = \begin{cases} \alpha, & X_n > \alpha \\ 0, & X_n \leqslant \alpha \end{cases}$$

По построению $Y_n \leqslant X_n \ \Rightarrow \ Z(t) \leqslant Z^\star(t) \ \forall t \geqslant 0$. Тогда $\forall \alpha > t$

$$\mathsf{E}Z(t)\leqslant \mathsf{E}Z^{\star}(t)<\infty,\ \mathsf{E}\left(Z(t)\right)^{2}\leqslant \mathsf{E}\left(Z^{\star}(t)\right)^{2}\Rightarrow Z(t)<\infty$$

почти наверное.

Следствие. $P(\forall t \ge 0 \ Z(t) < \infty) = 1.$

Доказательство. Z является неубывающим процессом:

$$s\leqslant t\to Z(s)\leqslant Z(t)\Rightarrow \mathsf{P}\left(Z(n)<\infty\;\forall n\in\mathbb{N}\right)=\mathsf{P}\left(\bigcap_{n=1}^{\infty}\{Z(n)<\infty\}\right).$$

Поскольку счетное пересечение множеств вероятности 1 имеет вероятность 1, то

$$\mathsf{P}\left(\bigcap_{n=1}^{\infty}\{Z(n)<\infty\}\right)=1,$$

что и завершает доказательство.

Следствие. $\mathsf{E} Z(t) \leqslant At; \;\; \mathsf{E} \left(Z(t) \right)^2 < Bt^2, \; t > \alpha.$

3.3 Элементарная теорема восстановления

Лемма 3.2. Пусть X, X_1, X_2, \ldots — независимые одинаково распределенные случайные величины, $X \geqslant 0$. Тогда

$$\frac{S_n}{n} \xrightarrow{n.n.} \mu \in [0, \infty], \ n \to \infty,$$

 $r\partial e \ \mu = \mathsf{E} X.$

Доказатель ство. Если $\mu < \infty$, то утверждение следует из УЗБЧ. Пусть теперь $\mu = \infty$. Положим для c>0

$$V_n(c) := X_n \mathbb{I}\{X_n \leqslant c\}.$$

Тогда по УЗБЧ

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\xrightarrow{\text{\tiny Π.H.}}\mathsf{E} X\mathbb{I}\{X\leqslant c\}.$$

Возьмем $c=m\in\mathbb{N}$. Тогда

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\ \geqslant\ \liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n V_k\ =\ \mathsf{E}X\mathbb{I}\{X\leqslant m\}\ \text{почти наверное}.$$

Тогда по теореме о монотонной сходимости

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k\ \geqslant\ \lim_{m\to\infty}\mathsf{E}X\mathbb{I}\{X\leqslant m\}=\mathsf{E}X=\mu=\infty,$$

что и завершает доказательство леммы.

Теорема 3.3. Пусть $Z = \{Z(t), \ t \geqslant 0\}$ — процесс восстановления, построенный по последовательности независимых одинаково распределенных случайных величин $X, X_1, X_2, \ldots, X \geqslant 0$. Тогда

$$\frac{Z(t)}{t} \xrightarrow{n.n.} \frac{1}{\mu}, \ t \to \infty;$$

$$\frac{\mathsf{E}Z(t)}{t} \xrightarrow[]{n.n.} \frac{1}{\mu}, \ t \to \infty,$$

 $\operatorname{ede}\,\tfrac{1}{0} := \infty,\ \tfrac{1}{\infty} := 0.$

Доказательство. Если $\mu=0$, то $X_n=0$ почти наверное, поэтому утверждение теоремы верно $(Z(t)=\infty \ \forall t)$.

Далее $\mu > 0$. Заметим, что для t > 0

$$S_{Z(t)} \leqslant t < S_{Z(t)+1}. \tag{2}$$

Поскольку $Z(t_n, \omega) = n$, если $t_n = S_n(\omega)$, то $Z(t) \to \infty$ почти наверное (Z монотонна по t). Итак, рассмотрим (t, ω) такие, что

$$0 < Z(t, \omega) < \infty$$
 почти наверное.

Тогда для этих (t, ω) поделим обе части неравенства (2) на Z(t):

$$\frac{S_{Z(t)}}{Z(t)} \, \leqslant \, \frac{t}{Z(t)} \, \leqslant \, \frac{S_{Z(t)+1}}{Z(t)+1} \frac{Z(t)+1}{Z(t)}.$$

Согласно лемме 3.2.

$$\frac{S_{Z(t)}}{Z(t)} \xrightarrow{\text{п.н.}} \mu, \ \frac{S_{Z(t)+1}}{Z(t)+1} \xrightarrow{\text{п.н.}} \mu, \ \frac{Z(t)+1}{Z(t)} \xrightarrow{\text{п.н.}} 1.$$

Следовательно,

$$\frac{t}{Z(t)} \xrightarrow[]{\text{п.н.}} \mu, \ t \to \infty.$$

Таким образом,

$$\frac{Z(t)}{t} \xrightarrow[]{\text{\tiny fi.h.}} \frac{1}{\mu}, \ t \to \infty,$$

что завершает доказательство первого утверждения теоремы.

Следует понимать, что второе утверждение из первого нельзя получить, попросту "навесив" на него сверху матожидание: вообще говоря,

$$\xi_t \xrightarrow{\text{п.н.}} \xi \not\Rightarrow \mathsf{E}\xi_t \xrightarrow{\text{п.н.}} \mathsf{E}\xi, \ t \to \infty$$
:

наглядным примером является последовательность

$$\xi_t(\omega) = \begin{cases} t, & \omega \in [0, 1/t] \\ 0, & \omega \notin [0, 1/t] \end{cases}.$$

Для того чтобы завершить доказательство теоремы, введем следующее понятие.

Определение 3.1. Семейство случайных величин $\{\xi_t, t > \alpha\}$ называется равномерно интегрируемым, если

$$\sup_{t \to \alpha} \mathsf{E}\left(|\xi_t| \, \mathbb{I}\left\{|\xi_t| > c\right\}\right) \to 0, \ c \to \infty.$$

Без доказательства предлагаются следующие утверждения.

Теорема 3.4. Если $\{\xi_t, t > \alpha\}$ равномерно интегрируемо, то $\mathsf{E}\xi_t \to \mathsf{E}\xi$. Для неотрицательных случайных величин это условие является необходимым и достаточным.

Теорема 3.5 (де ла Валле Пуссена). $\{\xi_t, t > \alpha\}$ равномерно интегрируемо $\Leftrightarrow \exists$ неубывающая функция g такая, что

$$\frac{g(t)}{t} \to \infty, \quad t \to \infty \quad u \quad \sup_{t} \mathsf{E} g\left(|\xi_t|\right) < \infty.$$

Возьмем $g(t):=t^2,\; \xi_t:=rac{Z(t)}{t},\; t>0.$ Тогда по лемме 3.1

$$\mathsf{E}\left(\xi_{t}\right)^{2} = \frac{\mathsf{E}\left(Z(t)\right)^{2}}{t^{2}} \leqslant \frac{Bt^{2}}{t^{2}} = B < \infty,$$

что позволяет нам использовать теорему 3.5 и получить по теореме 3.4 второе утверждение теоремы 3.3, что и требовалось сделать.

3.4 Пуассоновский процесс как процесс восстановления

Определение 3.2. Пусть X, X_1, X_2, \ldots независимые одинаково распределенные случайные величины такие, что $X \sim \text{Exp}(\lambda), \ \lambda > 0$, то есть

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}.$$

Тогда пуассоновский процесс интенсивности $\lambda N = \{N(t), t \ge 0\}$ есть процесс восстановления, построенный на $\{X_i\}$.

Определение 3.3. Определим для t > 0

$$X_1^t := S_{N(t)+1} - t,$$

 $X_k^t := X_{N(t)+k}, \ k \geqslant 2.$

Пемма 3.6. Для $\forall t>0$ величины $N(t),\ X_1^t,\ X_2^t,\dots$ независимы, причем

$$N(t) \sim \text{Poiss}(\lambda t), \ X_k^t \sim \text{Exp}(\lambda), \ k = 1, 2, \dots$$

Доказательство. Для доказательства независимости достаточно показать, что для $\forall k \in \mathbb{N}, \ \forall n \in \mathbb{Z}_+, \ \forall u_1, \dots, u_k \geqslant 0$

$$P(N(t) = n, X_1^t \geqslant u, \dots, X_k^t \geqslant u_k) =$$

$$= P(N(t) = n) P(X_1^t \geqslant u_1) \dots P(X_k^t \geqslant u_k).$$

Будем доказывать это равенство по индукции по k. Докажем базу индукции: k=1:

$$\begin{split} \mathsf{P}\left(N(t) = n, \; X_1^t \geqslant u_1\right) &= \mathsf{P}\left(S_n \leqslant t, \; S_{n+1} > t, \; S_{N(t)+1} - t \geqslant u_1\right) = \\ &= \mathsf{P}\left(S_n \leqslant t, \; S_{n+1} \geqslant t + u_1\right), \end{split}$$

поскольку

$${S_n \leqslant t, \ S_{n+1} > t} = {N(t) = n}.$$

Из курса теории вероятностей известно, что если

$$S_n = X_1 + \ldots + X_n,$$

где X_i независимы и $X_i \sim \text{Exp}(\lambda)$, то

$$p_{S_n}(x) = \begin{cases} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} , & x \geqslant 0 \\ 0 & , x < 0 \end{cases}.$$

Следовательно,

$$\begin{split} \mathsf{P}\left(S_n\leqslant t,\; S_{n+1}\geqslant t+u_1\right) &= \mathsf{P}\left(S_n\leqslant t,\; S_n+X_{n+1}\geqslant t+u_1\right) = \\ &= \iint\limits_{\substack{0\leqslant x\leqslant t\\ x+y\geqslant t+u_1}} p_{S_n}(x)p_{X_n+1}(y)\,dx\,dy = \\ &= \iint\limits_{\substack{0\leqslant x\leqslant t\\ x+y\geqslant t+u_1\\ y\geqslant 0}} \lambda\frac{(\lambda x)^{n-1}}{(n-1)!}e^{-\lambda x}\lambda ye^{-\lambda y}\,dx\,dy \end{split}$$

в силу независимости S_n и X_{n+1} . Воспользуемся теоремой Фубини, чтобы вычислить этот интеграл:

$$\iint_{\substack{0 \le x \le t \\ x+y \ge t+u_1 \\ y \ge 0}} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \lambda y e^{-\lambda y} \, dx \, dy = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \, dx \int_{t+u_1-x}^{\infty} \lambda y e^{-\lambda y} \, dy = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda (t+u_1-x)} \, dx = e^{-\lambda (t+u_1)} \int_{0}^{t} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} \, dx = \int_{0}^{t} \frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda (t+u_1-x)} \, dx = e^{-\lambda (t+u_1)} \int_{0}^{t} \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} \, dx = \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1}.$$

Таким образом, получаем, что

$$P\left(N(t) = n, \ X_1^t \geqslant u_1\right) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1}.$$
 (3)

Возьмем в равенстве (3) $u_1 = 0$ и получим, что

$$P\left(N(t) = n\right) = \frac{(\lambda t)^n}{n!}e^{-\lambda t},$$

то есть

$$N(t) \sim \text{Poiss}(\lambda t)$$
.

Теперь просуммируем равенство (3) по всем $n \in \mathbb{Z}_+$:

$$\begin{split} \sum_{n=0}^{\infty} \mathsf{P}\left(N(t) = n, \; X_1^t \geqslant u_1\right) &= \mathsf{P}\left(X_1^t \geqslant u_1\right) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} e^{-\lambda u_1} \\ &= e^{-\lambda u_1} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} = e^{-\lambda u_1}, \end{split}$$

то есть

$$X_1^t \sim \text{Exp}(\lambda)$$
.

Таким образом, полностью доказана база индукции. Перейдем к доказательству индуктивного перехода: пусть $k\geqslant 2$:

$$\begin{split} &\mathsf{P}\left(N(t) = n, \ X_{1}^{t} \geqslant u, \dots, \ X_{k}^{t} \geqslant u_{k}\right) = \\ &= \mathsf{P}\left(\underbrace{S_{n} \leqslant t, \ S_{n+1} > t, \ S_{n+1} - t \geqslant u_{1}}_{\mathtt{3abucht of } X_{1}, \dots, X_{n+1}}, \underbrace{X_{n+2} \geqslant u_{2}, \dots, \ X_{n+k} \geqslant u_{k}}_{\mathtt{3abucht of } X_{n+2}, \dots}\right) = \\ &= \mathsf{P}\left(N(t) = n\right)\underbrace{\mathsf{P}\left(X_{1} \geqslant u_{1}\right)}_{=e^{-\lambda u_{1}}} e^{-\lambda u_{2}} \dots e^{-\lambda u_{k}} = \mathsf{P}\left(N(t) = n\right) e^{-\lambda u_{1}} \dots e^{-\lambda u_{k}} \end{split}$$

по предположению индукции. Таким образом, доказано, что

$$X_k^t \sim \text{Exp}(\lambda),$$

а также показана независимость. Теорема доказана.

Замечание (парадокс времени ожидания). Из доказанного следует, что

$$X_1^t \sim \text{Exp}(\lambda), \ X_{N(t)+1} \sim \text{Exp}(\lambda),$$

несмотря на то что отрезок длины $X_{N(t)+1}$ содержит отрезок длины X_1^t по определению. Можно привести следующую иллюстрацию: пусть автобусы подходят на остановку в случайные моменты времени S_n , то есть между последовательными прибытиями автобусов на остановку проходят случайные промежутки времени X_i , а мы пришли на остановку в момент времени t и хотим понять, как распределено время нашего ожидания следующего автобуса; в частности, нам интересно, сколько в среднем мы будем этот автобус ждать. Из достигнутого выше результата следует, что время ожидания нами этого автобуса распределено так же (и имеет то же среднее), как и время между прибытиями автобусов. Разгадка этого "парадокса" заключается в том, что концы отрезков также случайны.

4 Лекция от 01.03.17

Точечные процессы

4.1 Независимость приращений пуассоновского процесca

Определение 4.1. Процесс $\{Y(t), t \geqslant 0\}$ имеет независимые приращения, если

$$\forall \ 0 \leqslant t_0 \le t_1 \le \ldots \le t_n \ \forall n \in \mathbb{N}$$

случайные величины

$$Y(t_0), Y(t_1) - Y(t_0), \dots, Y(t_n) - Y(t_{n-1})$$

независимы в совокупности.

Теорема 4.1. Пуассоновский процесс интенсивности λ имеет независимые приращения.

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$N^t(s) := \sup \left\{ n : \sum_{k=1}^n X_k^t \leqslant s \right\}, \ s \geqslant 0.$$

Из доказанного ранее следует, что $\{N^t(s), s \ge 0\}$ — пуассоновский процесс интенсивности λ . Заметим, что по определению

$$N^{t}(s) \in \sigma \{X_{1}^{t}, X_{2}^{t}, \ldots\},\$$

из чего следует, что N(t) независима с $N^t(s)$ $\forall s.$ Но

$$N^t(s) = N(t+s) - N(t),$$

а значит, для n=1 утверждение доказано: $t_0=t,\,t_1=t+s$. Тем самым получена база индукции. Перейдем к доказательству индуктивного перехода. Зафиксируем t_0 и рассмотрим $N^{t_0}(s)$. Заметим, что

$$\begin{split} N^{t_0}\left(t_k - t_0\right) - N^{t_0}\left(t_{k-1} - t_0\right) &= \\ &= N\left(t_k - t_0 + t_0\right) - N(t_0) - \left(N\left(t_{k-1} - t_0 + t_0\right) - N\left(t_0\right)\right) = \\ &= N(t_k) - N(t_{k-1}). \end{split}$$

Тогда можем заменить последовательность случайных величин

$$N_{t_0}, N(t_1) - N(t_0), \ldots, N(t_n) - N(t_{n-1})$$

на равную ей последовательность

$$N_{t_0}, N^{t_0}(s_1), \ldots, N^{t_0}(s_n) - N^{t_0}(s_{n-1}),$$

где $s_k = t_k - t_0$, $k = 1, \ldots, n$. Но поскольку мы знаем, что N_{t_0} независима с $N^t(s) \ \forall s$, мы можем перейти к предположению индукции для случайных величин

$$N^{t_0}(s_1), \ldots, N^{t_0}(s_n) - N^{t_0}(s_{n-1}),$$

рассматривая их как приращения нововведенного пуассоновского процесса интенсивности λ $N^t(s)$. Таким образом, доказана независимость. Теорема доказана.

4.2 Пространственный пуассоновский процесс

Определение 4.2. Пусть (S,\mathscr{B}) — измеримое пространство, а μ — σ -конечная мера на нем, то есть

$$S = \bigcup_{q=1}^{\infty} S_q, \ S_q \in \mathcal{B}, \ \mu(S_q) < \infty \ \forall q.$$

Тогда процесс $N = \{N(B), B \in \mathcal{B}\}$ называется пространственным пуассоновским процессом с мерой интенсивности μ , если выполнены два условия: во-первых,

$$N(B) \sim \text{Poiss}\left(\mu\left(B\right)\right), \ B \in \mathscr{B};$$

во-вторых,

 $\forall n\in\mathbb{N}$ и $\forall B_1,\ldots,B_n\in\mathscr{B}$ таких, что $B_iB_j=\emptyset$ при $i\neq j,$ $\mu(B_i)<\infty\ \forall i=1,\ldots,n,$ выполнено, что $N(B_1),\ldots,N(B_n)$ независимы.

Замечание. В определении выше сознательно не отбрасывались случаи $\mu(B) = 0$ и $\mu(B) = \infty$. Положим по определению, что если $\xi \sim \text{Poiss}(a)$, то

$$a=0 \ \Rightarrow \ \xi=0$$
 почти наверное;
$$a=\infty \ \Rightarrow \ \xi=\infty \ \text{почти наверноe};$$

$$0< a<\infty \ \Rightarrow \ \mathsf{P}(\xi=k)=\frac{a^k}{k!}e^{-a}, \ k=0,1,2,\dots.$$

Определение 4.3. Пусть (S, \mathcal{B}) — измеримое пространство, а μ — σ -конечная мера на нем. Пусть $\mu(S) < \infty$. Введем независимые случайные величины Y, X_1, X_2, \ldots такие, что

$$Y: \Omega \to \mathbb{Z}_{+}, \ Y \sim \operatorname{Poiss}\left(\mu\left(S\right)\right),$$

$$X_{i}: \Omega \to S, \ X \in \mathscr{F}|\mathscr{B}, \ \mathsf{P}\left(X_{1} \in B\right) = \frac{\mu\left(B\right)}{\mu\left(S\right)}.$$

Возможность введения такого семейства случайных величин объясняется теоремой Ломницкого—Улама. Определим тогда

$$N(B) = \sum_{n=1}^{Y} \mathbb{I}_{B}(X_{n}), B \in \mathcal{B}.$$

Более подробно,

$$N(B, \omega) = \sum_{n=1}^{Y(\omega)} \mathbb{I}_B(X_n(\omega)), B \in \mathcal{B}, \omega \in \Omega.$$

Замечание. $\sum_{1}^{0} := 0$.

Теорема 4.2. В терминах определения **4.3** $\{N(B), B \in \mathcal{B}\}$ есть пространственный пуассоновский процесс с мерой интенсивности μ .

Доказательство. Возьмем

$$\forall n \in \mathbb{N}$$
 и $\forall B_1, \ldots, B_n \in \mathscr{B}$, что $B_i \cap B_j = \emptyset$, если $i \neq j$.

Заметим, что

$$\mu(B_i) < \mu(S) < \infty.$$

Убедимся, что $\forall m_1, \ldots, m_n \in \mathbb{Z}_+$

$$\begin{split} \mathsf{P}\left(N\left(B_{1}\right) = m_{1}, \, \dots, \, N\left(B_{n}\right) = m_{n}\right) = \\ &= \mathsf{P}\left(N\left(B_{1}\right) = m_{1}\right), \, \dots, \, \mathsf{P}\left(N\left(B_{n}\right) = m_{n}\right) = \\ &= \frac{\mu\left(B_{1}\right)^{m_{1}}}{m_{1}!} e^{-\mu\left(B_{1}\right)} \, \dots \, \frac{\mu\left(B_{n}\right)^{m_{n}}}{m_{n}!} e^{-\mu\left(B_{n}\right)}. \end{split}$$

Действительно,

$$\begin{split} \mathsf{P}\left(N\left(B_{1}\right) = m_{1}, \, \dots, \, N\left(B_{n}\right) = m_{n}\right)) = \\ &= \sum_{k=0}^{\infty} \mathsf{P}\left(N\left(B_{1}\right) = m_{1}, \, \dots, \, N\left(B_{n}\right) = m_{n}, \, Y = k\right) = \\ &= \sum_{k=0}^{\infty} \mathsf{P}\left(\sum_{i=1}^{k} \mathbb{I}_{B_{1}}(X_{i}) = m_{1}, \, \dots, \, \sum_{i=1}^{k} \mathbb{I}_{B_{n}}(X_{i}) = m_{n}\right) \mathsf{P}\left(Y = k\right) \end{split}$$

по формуле полной вероятности. Введем следующие обозначения:

$$m := m_1 + \dots + m_n;$$

$$m_0 := k - m;$$

$$B_0 := S \setminus \left(\bigcup_{i=1}^n B_i\right).$$

Заметим, что сейчас фактически происходит следующее: у нас есть случайные величины ("частицы") $X_i, i=1,\ldots,k$, которые нужно расположить в попарно непересекающихся множествах ("ящиках") $B_j, j=0,\ldots,n$; мы хотим узнать, какова вероятность того, что в каждом ящике будет ровно m_j частиц. Такая задача эквивалентна хорошо известной задаче о ящиках из курса теории вероятностей. Воспользуемся ее решением, а также тем, что Y—пуассоновская случайная величина:

$$\begin{split} \sum_{k=0}^{\infty} \mathsf{P} \left(\sum_{i=1}^{k} \mathbb{I}_{B_1}(X_i) = m_1, \, \dots, \, \sum_{i=1}^{k} \mathbb{I}_{B_n}(X_i) = m_n \right) \mathsf{P} \left(Y = k \right) = \\ &= \sum_{k=0}^{\infty} \mathsf{P} \left(\sum_{i=1}^{k} \mathbb{I}_{B_1}(X_i) = m_1, \, \dots, \, \sum_{i=1}^{k} \mathbb{I}_{B_n}(X_i) = m_n \right) \frac{\mu(S)^k}{k!} e^{-\mu(S)} = \\ &= \sum_{k=m}^{\infty} \frac{k!}{m_0! \dots m_n!} \left(\frac{\mu(B_0)}{\mu(S)} \right)^{m_0} \dots \left(\frac{\mu(B_n)}{\mu(S)} \right)^{m_n} \frac{\mu(S)^k}{k!} e^{-\mu(S)} = \\ &= e^{-\mu(S)} \, \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} \, \sum_{k=m}^{\infty} \frac{\mu(B_0)^{k-m}}{(k-m)!}. \end{split}$$

Поскольку ряд в последней строчке — это ряд для экспоненты, а множества B_j попарно не пересекаются, цепочку равенств можно продолжить следующим образом:

$$e^{-\mu(S)} \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} \sum_{k=m}^{\infty} \frac{\mu(B_0)^{k-m}}{(k-m)!} =$$

$$= e^{-\mu(S)} \frac{\mu(B_1)^{m_1}}{m_1!} \dots \frac{\mu(B_n)^{m_n}}{m_n!} e^{\mu(B_0)} =$$

$$= \frac{\mu(B_1)^{m_1}}{m_1!} e^{-\mu(B_1)} \dots \frac{\mu(B_n)^{m_n}}{m_n!} e^{-\mu(B_n)},$$

потому что

$$e^{-\mu(S)}e^{\mu(B_0)} = e^{-(\mu(B_1) + \dots + \mu(B_n))}$$

Теорема доказана.

Лемма 4.3. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, $\xi_k \sim \text{Poiss}(\lambda k), \ k \in \mathbb{N}$. Тогда

$$\sum_{k=1}^{\infty} \xi_k \sim \text{Poiss}\left(\sum_{k=1}^{\infty} \lambda_k\right),\,$$

где ряд может расходиться.

Доказательство. Если некоторое $\lambda_k=\infty,$ то $\xi_k=\infty,$ как и вся левая часть. Далее все $\lambda_k<\infty.$

1. Пусть

$$\sum_{k=1}^{\infty} \lambda_k < \infty.$$

Имеем

$$\mathsf{E}\left(\sum_{k=1}^{\infty}\xi_{k}\right)=\sum_{k=1}^{\infty}\mathsf{E}\xi_{k}=\sum_{k=1}^{\infty}\lambda_{k}<\infty$$

по теореме о монотонной сходимости (здесь важно, что ξ_k неотрицательны). Из этого следует, что

$$\sum_{k=1}^{\infty} \xi_k = \xi < \infty$$

почти наверное. Заметим, что

$$\sum_{k=1}^{n} \xi_k \xrightarrow{\text{\tiny II.H.}} \xi \quad \Rightarrow \quad \sum_{k=1}^{n} \xi_k \xrightarrow{\text{\tiny d}} \xi.$$

Тогда

$$\varphi_{\sum\limits_{k=1}^{n}\xi_{k}}(u) = \prod\limits_{k=1}^{n} \varphi_{\xi_{k}}(u) = \prod\limits_{k=1}^{n} e^{\lambda_{k}\left(e^{iu}-1\right)} =$$

$$= \exp\sum_{k=1}^{n} \lambda_{k}\left(e^{iu}-1\right) \to \exp\sum_{k=1}^{\infty} \lambda_{k}\left(e^{iu}-1\right), \ n \to \infty.$$

Тогда из непрерывного соответствия между характеристическими функциями и функциями распределения заключаем, что

$$\xi = \sum_{k=1}^{\infty} \xi_k \sim \text{Poiss}\left(\sum_{k=1}^{\infty} \lambda_k\right).$$

2. Пусть теперь

$$\sum_{k=1}^{\infty} \lambda_k = \infty.$$

Находим последовательность r_i со свойством

$$\sum_{k=r_j}^{r_{j+1}} \lambda_k \geqslant 1,$$

которая существует в силу расходимости ряда и неотрицательности его членов. Введем обозначение

$$\eta_j := \sum_{k=r_j}^{r_{j+1}} \xi_k;$$

Тогда η_1, η_2, \ldots независимы, к тому же

$$\eta_j \sim \text{Poiss}\left(\sum_{k=r_j}^{r_{j+1}} \lambda_k\right).$$

Отсюда вытекает, что

$$P(\eta_j \ge 1) = 1 - P(\eta_j = 0) \ge 1 - e^{-1} > 0.$$

Тогда по лемме Бореля-Кантелли, поскольку

$$\sum_{j=1}^{\infty} \mathsf{P}(\eta_j \geqslant 1) = \infty,$$

ТО

$$\sum_{j=1}^{\infty} \eta_j = \infty$$

почти наверное. Лемма доказана.

Определение 4.4. Пусть (S,\mathscr{B}) — измеримое пространство, а μ — σ -конечная мера на нем, то есть

$$S = \bigcup_{q=1}^{\infty} S_q, \ S_q \in \mathcal{B}, \ \mu(S_q) < \infty \ \forall q.$$

Пусть теперь $\mu(S) = \infty$. Для каждого S_q вводим множество независимых случайных величин (все как в определении 4.3):

$$\begin{aligned} Y_q: \Omega \to \mathbb{Z}_+, & Y_q \sim \operatorname{Poiss}\left(\mu\left(S_q\right)\right), \\ X_{q_i}: \Omega \to S_q, & X \in \mathscr{F} | \mathscr{B} \cap S_q, & \operatorname{P}\left(X_{q_i} \in C\right) = \frac{\mu\left(C\right)}{\mu\left(S_q\right)}, \end{aligned}$$

где

$$C \in \mathscr{B} \cap S_q \in \mathscr{B}$$
.

Строим процесс

$$N_q(C) := \sum_{n=1}^{Y_q} \mathbb{I}_C\left(X_{q,n}\right).$$

Положим

$$N(B) := \sum_{q=1}^{\infty} N_q (B \cap S_q), \ B \in \mathcal{B}.$$

Заметим, что все члены ряда независимы, а также что

$$N_q (B \cap S_q) \sim \text{Poiss} (\mu(B \cap S_q))$$
.

Тогда по лемме 4.3

$$N(B) \sim \text{Poiss}\left(\sum_{q=1}^{\infty} \mu(B \cap S_q)\right) = \text{Poiss}\left(\mu\left(B\right)\right).$$

4.3 Функционал Лапласа точечного процесса

Определение 4.5. Процесс $\{X(B), B \in \mathscr{B}\}$ называется *(простым)* точечным процессом, если

$$X(B) = \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n), \ B \in \mathcal{B},$$

где

$$Z_n: \Omega \to S, \ Z_n \in \mathscr{F}|\mathscr{B}.$$

Определение 4.6. Пусть $\mu(S) = \infty, \ \mu - \sigma$ -конечная мера на $(S, \mathcal{B}), \$ а также

$$N(B) = \sum_{q=1}^{\infty} \sum_{n=1}^{Y_q} \mathbb{I}_{B \cap S_q} \left(X_{q,n} \right).$$

Пусть

$$V_0 := 0, \ V_k := \sum_{j=1}^k Y_j.$$

Введем $Z_n, n \in \mathbb{N}$. Пусть для $\omega \in \Omega$

$$V_{k-1}(\omega) \leqslant n < V_k(\omega)$$
.

Определим

$$Z_n(\omega) := X_{k,n-V_{k-1}(\omega)}(\omega).$$

Тогда

$$N(B) = \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n).$$

Определение 4.7. Пусть $f: S \to \mathbb{R}_+$, $f \in \mathcal{B}|\mathcal{B}(\mathbb{R}_+)$. Тогда функционал Лапласа $\mathcal{L}(f)$ определяется следующим образом:

$$\mathscr{L}(f) := \mathsf{E}e^{-\sum\limits_{n=1}^{\infty} f(Z_n)},$$

где $e^{-\infty} := 0$.

4.4 Маркирование пуассоновских процессов

Определение 4.8. Рассмотрим T, T_1, T_2, \ldots — независимые одинаково распределенные неотрицательные случайные величины. Пусть $\{T_n\}_{n=1}^{\infty}$ независима с $\{S_n\}_{n=1}^{\infty}$. На следующей лекции будет показано, что процесс, заданный элементами

$$Z_n := (S_n, T_n)_{n \ge 1}$$

является пространственным пуассоновским процессом с мерой

$$\lambda\nu\otimes\mathsf{G}.$$

где ν — мера Лебега на $B(\mathbb{R}_+)$, G — мера, задаваемая распределением T.

Замечание. Наглядно: модель массового обслуживания. Пусть S_n — время начала работы с клиентом, T_n — время работы с клиентом, Y_t — число клиентов, обслуживание которых происходит в момент t. Такая модель называется моделью $M|G|\infty$: M указывает на то, что процесс пуассоновский, G (general) указывает на то, что распределение времени обслуживания клиента произвольно, а ∞ означает, что имеется бесконечное число приборов (в том смысле, что не создается очередей: работа с клиентом начинается в момент его прихода). Тогда

$$\begin{aligned} Y_t &= \# \left\{ n: S_n \leqslant t < S_n + T_n \right\} = \# \left\{ n: (S_n, T_n) \in B_t \right\} = \\ &= \sum_{n=1}^{\infty} \mathbb{I}_{B_t}(S_n, T_n) \sim \operatorname{Poiss} \left(\left(\lambda \nu \otimes \mathsf{G} \right) (B_t) \right), \end{aligned}$$

где

$$B_t := \{(x, y) : 0 \le x \le t < x + y\},\$$

а точка (x, y) задается парой (S_n, T_n) . Вычислим:

$$(\lambda \nu \otimes \mathsf{G}) (B_t) = \iint_{\mathbb{R}^2_+} \mathbb{I}_{B_t}(x, y) \, \lambda \nu(dx) \mathsf{G}(dy) =$$

$$= \int_0^t \mathsf{G}(dy) \int_{t-y}^t \lambda \, dx + \int_t^\infty \mathsf{G}(dy) \int_0^t \lambda \, dx = \int_0^t \lambda y \, \mathsf{G}(dy) + \int_t^\infty \lambda t \, \mathsf{G}(dy) =$$

$$= \lambda \int_0^\infty \min(t, y) \, \mathsf{G}(dy).$$

Итак,

$$Y_t \sim \text{Poiss}\left(\lambda \int_0^\infty \min(t, y) \mathsf{G}(dy)\right) \quad \forall t > 0.$$

Если $ET < \infty$, то

$$\operatorname{Poiss}\left(\lambda\int\limits_0^\infty \min(t,y)\,\mathsf{G}(dy)\right)\,\to\,\operatorname{Poiss}(\lambda\mathsf{E} T),\ t\to\infty.$$

5 Лекция от 15.03.17

Процессы с независимыми приращениями

5.1 Функционал Лапласа точечного процесса (продолжение)

Hanomunanue. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S, \mathscr{B}) — измеримое пространство, $Z_n: \Omega \to S, \ Z_n \in \mathscr{F}|\mathscr{B}$. Пусть также есть точечный процесс

$$N(B, \omega) := \sum_{n=1}^{\infty} \mathbb{I}_B(Z_n(\omega)), B \in \mathscr{B}$$

согласно определению 4.5. Введем для него функционал Лапласа согласно определению 4.7 по следующей формуле:

$$\mathscr{L}(f) := \mathsf{E}e^{-\sum_{n=1}^{\infty} f(Z_n)} < \infty,$$

где $f:S \to \mathbb{R}_+, \ f \in \mathscr{B}|\mathcal{B}_+, \ e^{-\infty}:=0, \ \mathcal{B}_+$ — борелевская σ —алгебра на \mathbb{R}_+ .

Теорема 5.1. $N = \{N(B), B \in \mathcal{B}\}$ является пространственным пуассоновским процессом с σ -конечной мерой интенсивности $\mu \Leftrightarrow$

$$\mathscr{L}(f) = \exp \left[\int_{S} \left(e^{-f(x)} - 1 \right) \mu(dx) \right].$$

Доказательство. Сначала докажем **необходимость** (\Rightarrow). Возьмем простую функцию f. Пусть $N = \{N(B), B \in \mathcal{B}\}$ — пространственный пуассоновский процесс с мерой μ . Сначала положим

$$f(x) := \sum_{k=1}^{m} a_k \mathbb{I}_{B_k(x)}, \quad a_i \geqslant 0, \quad i = 1, \dots, k,$$
(4)

где

$$B_i \cap B_j = \emptyset \ \forall i \neq j; \ B_i \in \mathcal{B}, \ i = 1, \ldots, m; \ \mu(B_i) < \infty, \ i = 1, \ldots, m.$$

Тогда

$$\mathscr{L}(f) = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty}\sum\limits_{k=1}^{m}a_{k}\mathbb{I}_{B_{k}}(Z_{n})} \ = \ \mathsf{E} e^{-\sum\limits_{k=1}^{m}a_{k}\sum\limits_{n=1}^{\infty}\mathbb{I}_{B_{k}}(Z_{n})} \ = \ \mathsf{E} e^{-\sum\limits_{k=1}^{m}a_{k}N(B_{k})}$$

где перестановка знаков суммы возможна в силу неотрицательности членов ряда. Заметим, что если $\xi \sim \text{Poiss}(a)$, то

$$\mathsf{E} e^{-v\xi} \; = \; \sum_{r=0}^{\infty} e^{-vr} \, \mathsf{P}(\xi=r) \; = \; e^{a(e^{-v}-1)}.$$

Воспользуемся также независимостью в совокупности $N(B_k)$ в силу того, что множества B_i попарно не пересекаются. Тогда получим, что

$$\mathsf{E} e^{-\sum\limits_{k=1}^{m} a_k N(B_k)} = \prod\limits_{k=1}^{m} \mathsf{E} e^{-a_k N(B_k)} = \prod\limits_{k=1}^{m} e^{\mu(B_k) \left(e^{-a_k} - 1\right)} = \\ = e^{\sum\limits_{k=1}^{m} \mu(B_k) \left(e^{-a_k} - 1\right)} = e^{\int\limits_{S} \left(e^{-f(x)} - 1\right) \mu(dx)}.$$

Для продолжения доказательства теоремы сформулируем и докажем две леммы.

Лемма 5.2. Пусть (S, \mathscr{B}) — измеримое пространство с σ —конечной мерой μ , $f: S \to \mathbb{R}_+$ — измеримая функция на нем. Тогда существует последовательность $(f_j)_{j=1}^{\infty}$ простых функций вида (4) таких, что

$$f_j \nearrow f$$
 на S npu $j \to \infty$.

Доказательство. Как и на прошлой лекции, разобьем S на множества $S_q,\ \mu(S_q)<\infty,$ что возможно ввиду σ -конечности меры μ . Определим

$$f_{q,j}(x) = \mathbb{I}_{S_q}(x) \left(\sum_{r=0}^{2^{2j}-1} r 2^{-j} \mathbb{I} \left\{ r 2^{-j} \leqslant f(x) < (r+1) 2^{-j} \right\} + 2^j \mathbb{I} \left\{ f(x) \geqslant 2^j \right\} \right).$$

Тогда несложно проверить, что

$$0 \leqslant f_{q,\,j} \leqslant f_{q,\,j+1}, \ \ 0 \leqslant f_j = \sum_{q=1}^j f_{q,\,j} \nearrow f$$
 ha $S.$

Замечание. Про это (с несколько другим построением простых функций) также можно почитать в [3] (страница 189).

Лемма 5.3. Пусть $0 \leqslant a_{n,j} \nearrow a_n$. Тогда

$$\sum_{n=1}^{\infty} a_{n,j} \nearrow \sum_{n=1}^{\infty} a_n, \ j \to \infty.$$

Доказательство. Рассмотрим два случая.

1. Пусть

$$\sum_{n=1}^{\infty} a_n < \infty.$$

Тогда $\forall \epsilon > 0 \; \exists N : \forall m > N$

$$\sum_{n=m}^{\infty} a_n < \frac{\epsilon}{3}.$$

Из монотонной сходимости и предельного перехода в неравенстве получаем, что

$$\sum_{n=1}^{\infty} a_{n,j} < \frac{\epsilon}{3} \ \forall j.$$

Зафиксируем N. Из сходимости следует, что

$$\forall n \ \exists N(n) : \forall m(n) > N(n) \ |a_{n, m(n)} - a_n| < \frac{\epsilon}{3N}.$$

Возьмем

$$M := \max_{n=1,\dots,N} N(n).$$

Тогда для любого j > M

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_{n,j} \right| \leqslant \left| \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} a_{n,j} \right| + \left| \sum_{n=N+1}^{\infty} a_n - \sum_{n=N+1}^{\infty} a_{n,j} \right| \leqslant$$

$$\leqslant \sum_{n=1}^{N} \left| a_n - a_{n,j} \right| + \frac{2\epsilon}{3} \leqslant N \frac{\epsilon}{3N} + \frac{2\epsilon}{3} = \epsilon.$$

Таким образом, показано, что $\forall \epsilon \; \exists M : \forall j > M$

$$\left| \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} a_{n,j} \right| \leqslant \epsilon,$$

то есть показана требуемая сходимость.

2. Пусть

$$\sum_{n=1}^{\infty} a_n = \infty.$$

Тогда $\forall C > 0 \; \exists N : \forall m > N$

$$\sum_{n=1}^{m} a_n > 2C.$$

Снова зафиксируем N. Из сходимости следует, что

$$\forall n \ \exists N(n) : \forall m(n) > N(n) \ |a_{n, m(n)} - a_n| < \frac{C}{N}.$$

Возьмем

$$M := \max_{n=1,\dots,N} N(n).$$

Тогда для любого i > M

$$\sum_{n=1}^{\infty} a_{n,j} \geqslant \sum_{n=1}^{N} a_{n,j} \geqslant \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} |a_n - a_{n,j}| \geqslant 2C - N\frac{C}{N} = C,$$

чем снова показана требуемая сходимость. Лемма доказана.

Вернемся к доказательству теоремы. Возьмем $0\leqslant f_j\nearrow f$ по лемме 5.2. Тогда

$$\sum_{n=1}^{\infty} f_j(Z_n) \to \sum_{n=1}^{\infty} f(Z_n), \ j \to \infty,$$

по лемме 5.3. Тогда

$$\operatorname{Ee}^{-\sum\limits_{n=1}^{\infty}f_{j}(Z_{n})} \to \operatorname{Ee}^{-\sum\limits_{n=1}^{\infty}f(Z_{n})}$$

по теореме Лебега. Итак,

$$\mathscr{L}(f) = \lim_{j \to \infty} \exp\left[\int_{S} \left(e^{-f_{j}(x)} - 1\right) \mu(dx)\right] = \exp\left[\int_{S} \left(e^{-f(x)} - 1\right) \mu(dx)\right],$$

поскольку

$$\int\limits_{S} \left(e^{-f_j(x)} - 1 \right) \, \mu(dx) \to \int\limits_{S} \left(e^{-f(x)} - 1 \right) \, \mu(dx), \ j \to \infty,$$

ввиду неотрицательности подынтегрального выражения. Перейдем к доказательству достаточности (\Leftarrow). Пусть

$$\mathscr{L}(f) = \exp \left[\int_{S} \left(e^{-f(x)} - 1 \right) \mu(dx) \right].$$

Возьмем

$$f = \sum_{k=1}^{m} a_k \mathbb{I}_{B_k}, \ B_i \cap B_j = \emptyset \ \forall i \neq j.$$

Тогда

$$\mathcal{L}(f) = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} f(Z_n)} = \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} \sum\limits_{k=1}^{m} a_k \mathbb{I}_{B_k}(Z_n)} = \mathsf{E} e^{-\sum\limits_{k=1}^{m} a_k N(B_k)}.$$

Если $f = \mathbb{I}_B$, то

$$\mathsf{E} e^{-\sum_{k=1}^m a_k N(B_k)} = \mathsf{E} e^{-aN(B)} = e^{\mu(B)\left(e^{-a}-1\right)},$$

из чего следует, что $\{N(B), B \in \mathcal{B}\}$ — пространственный пуассоновский процесс с мерой интенсивности μ в силу непрерывного соответствия между преобразованием Лапласа и функциями распределения. Теорема доказана.

Приведем доказательство утверждения, которое было дано без доказательства в конце прошлой лекции.

Теорема 5.4. Пусть $(S_n, T_n)_{n=1}^{\infty}$ — точечный процесс, причем (S_n) и (T_n) независимы, где (S_n) — пуассоновский процесс с мерой интенсивности ν , где ν — мера Лебега. Тогда (S_n, T_n) — пространственный пуассоновский процесс с мерой интенсивности $\nu \otimes \mathsf{G}$, где G — распределение T_i .

Доказательство. Вспомним, что

$$\mathscr{L}(f) = \mathsf{E}e^{-\sum_{n=1}^{\infty} f(S_n, T_n)}.$$

Из курса математической статистики известно, что

$$\mathsf{E}\left(g(\xi,\eta)\mid \xi=u\right) = \mathsf{E}g(u,\,\eta),$$

если ξ независима с η . Тогда

$$\mathsf{E}\left(e^{-\sum\limits_{n=1}^{\infty}f(S_{n},T_{n})}\,\Big|\,S_{1}=u_{1},S_{2}=u_{2},\,\ldots\right)=\mathsf{E}e^{-\sum\limits_{n=1}^{\infty}f(u_{n},T_{n})}=\\ =\prod_{n=1}^{\infty}\mathsf{E}e^{-f(u_{n},T_{n})}$$

в силу независимости (T_i) . Введем обозначение

$$g(u) := \mathsf{E} e^{-f(u, T_n)} = \int_{\mathbb{R}_+} e^{-f(u, x)} \, \mathsf{G}(dx).$$

Заметим, что $0 < g(u) \leqslant 1$. Из курса математической статистики известно, что

$$\mathsf{E}\left(g(\xi,\,\eta)\right) = \mathsf{E}\left(\mathsf{E}\left(g(\xi,\,\eta)\,|\,\xi\right)\right).$$

Тогда

$$\mathscr{L}(f) \ = \ \mathsf{E} \prod_{n=1}^{\infty} g\left(S_{n}\right) \ = \ \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} \left(-\log g(S_{n})\right)} \ = \ \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} h(S_{n})},$$

где $h := -\log g \geqslant 0$. Воспользуемся тем, что (S_n) — пуассоновский процесс:

$$\begin{split} \mathsf{E} e^{-\sum\limits_{n=1}^{\infty} h(S_n)} &= \exp\left[\int\limits_{\mathbb{R}_+} (e^{-h(x)} - 1) \, \nu(dx)\right] = \exp\left[\int\limits_{\mathbb{R}_+} (g(x) - 1) \, \nu(dx)\right] = \\ &= \exp\left[\int\limits_{\mathbb{R}_+} \left(\int\limits_{\mathbb{R}_+} e^{-f(x,y)} \mathsf{G}(dy) - 1\right) \, \nu(dx)\right] = \\ &= \exp\left[\int\limits_{\mathbb{R}_+^2} \left(e^{-f(x,y)} - 1\right) \, \mathsf{G}(dy) \nu(dx)\right]. \end{split}$$

Соответственно, в силу теоремы 5.1, процесс (S_n, T_n) является пространственным пуассоновским процессом. Теорема доказана.

5.2 Теорема Колмогорова о согласованных распределениях

Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство, (S_t, \mathscr{B}_t) — семейство измеримых пространств, T — произвольное множество. Введем случайный процесс

$$X := \{X_t, t \in T\}, X_t : \Omega \to S_t, X_t \in \mathcal{F} | \mathcal{B}_t \ \forall t \in T.$$

Рассмотрим упорядоченный набор

$$\tau := (t_1, \ldots, t_n), \ t_i \neq t_i \ \forall i \neq j.$$

Определим тогда

$$S_{\tau} := S_{t_1} \times \ldots \times S_{t_n}, \quad \mathscr{B}_{\tau} := \mathscr{B}_{t_1} \otimes \ldots \otimes \mathscr{B}_{t_n}.$$

Введем прямоугольник

$$(B_{t_1} \times \ldots \times B_{t_n}), B_{t_i} \in \mathcal{B}_{t_i}, i = 1, \ldots, n.$$

Введем также случайный элемент

$$X_{\tau}: \Omega \to S_{\tau}, \ X_{\tau} \in \mathscr{F}|\mathscr{B}_{\tau} \ (\Leftrightarrow X_{t_k} \in \mathscr{F}|\mathscr{B}_{t_k}, \ k = 1, \ldots, n).$$

Распределение X_{τ} обозначим через $\mathsf{P}_{\tau} = \mathsf{P}_{t_1...t_n}$, где набор $t_1, \, \ldots, \, t_n$ упорядочен.

Определение 5.1. Семейство мер $P_{t_1...t_n}$, где

$$t_1, \ldots, t_n \in T, n \in \mathbb{N}, t_i \neq t_i \forall i \neq j,$$

называется семейством конечномерных распределений $X = \{X_t, t \in T\}$.

Рассмотрим прямоугольник $B = B_{t_1} \times \ldots \times B_{t_n}$.

$$\begin{aligned} \mathsf{P}_{t_{1}...t_{n}}\left(B_{t_{1}}\times\ldots\times B_{t_{n}}\right) &= \mathsf{P}\left((X_{t_{1}},\,\ldots,\,X_{t_{n}})\in B\right) = \\ &= \mathsf{P}\left(X_{t_{1}}\in B_{t_{1}},\,\ldots,\,X_{t_{n}}\in B_{t_{n}}\right) &= \mathsf{P}\left(X_{t_{i_{1}}}\in B_{t_{i_{1}}},\,\ldots,\,X_{t_{i_{n}}}\in B_{t_{i_{n}}}\right) = \\ &= \mathsf{P}_{t_{i_{1}},\,\ldots t_{i_{n}}}\left(B_{t_{i_{1}}}\times\ldots\times B_{t_{i_{n}}}\right) \end{aligned}$$

для любой перестановки (i_1, \ldots, i_n) . Таким образом, получили свойство:

Свойство 5.1. $\forall n \ \forall \ \text{перестановки} \ (i_1, \ldots, i_n) \ \text{индексов} \ (1, \ldots, n)$

$$\mathsf{P}_{t_{i_1}...t_{i_n}}\left(B_{t_{i_1}}\times\ldots\times B_{t_{i_n}}\right)=\mathsf{P}_{t_1...t_n}\left(B_{t_1}\times\ldots\times B_{t_n}\right).$$

Рассмотрим теперь

$$\mathsf{P}_{t_{1}...t_{k}...t_{n}} \left(B_{t_{1}} \times ... B_{t_{k-1}} \times S_{t_{k}} \times B_{t_{k+1}} \times ... \times B_{t_{n}} \right) =$$

$$= \mathsf{P}_{t_{1}...t_{k-1}t_{k+1}...t_{n}} \left(B_{t_{1}} \times ... B_{t_{k-1}} \times B_{t_{k+1}} \times ... \times B_{t_{n}} \right),$$

поскольку $\left\{X_{t_k} \in S_{t_k}\right\} = \Omega$. Таким образом, получили еще одно свойство:

Свойство 5.2.

$$\mathsf{P}_{t_1...t_k...t_n} \left(B_{t_1} \times ... B_{t_{k-1}} \times S_{t_k} \times B_{t_{k+1}} \times ... \times B_{t_n} \right) =$$

$$= \mathsf{P}_{t_1...t_{k-1}t_{k+1}...t_n} \left(B_{t_1} \times ... B_{t_{k-1}} \times B_{t_{k+1}} \times ... \times B_{t_n} \right).$$

Определение 5.2. Свойства **5.1** и **5.2** называются условиями согласованности.

Определение 5.3. Измеримые пространства (S, \mathcal{B}) и (V, \mathcal{A}) изоморфны, если

$$\exists h : S \to V, \ h \in \mathcal{B}|\mathcal{A},$$
$$\exists h^{-1} : V \to S, \ h^{-1} \in \mathcal{A}|\mathcal{B}.$$

Определение 5.4. Измеримое пространство (S, \mathcal{B}) называется *борелевским*, если оно изоморфно борелевскому подмножеству отрезка [0, 1].

Определение 5.5. Метрическое пространство (X, ρ) называется *польским*, если оно является полным и сепарабельным.

Замечание. Любое борелевское подмножество польского пространства является борелевским пространством.

Теорема 5.5 (Колмогорова). Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ — семейство борелевских пространств. Пусть $\mathsf{P}_{t_1...t_n}$ — мера на $(S_{t_1} \times \ldots \times S_{t_n}, \mathcal{B}_{t_1} \otimes \ldots \otimes \mathcal{B}_{t_n})$, которая удовлетворяет условиям согласованности 5.1 и 5.2. Тогда на некотором вероятностном пространстве $(\Omega, \mathcal{F}, \mathsf{P})$ существует случайный процесс $X = \{X_t, t \in T\}$ такой, что $X_t : \Omega \to S_t, X_t \in \mathcal{F} | \mathcal{B}_t \ \forall t \in T$ и конечномерные распределения которого — это меры $\mathsf{P}_{t_1...t_n}$.

Доказательство. Теорема предлагается без доказательства.

Замечание. В отличие от теоремы Ломницкого-Улама, в этой теореме накладываются ограничения топологического характера.

Определение 5.6. Пусть Q — мера на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. *Характеристической функцией меры* Q называется

$$\varphi_{\mathsf{Q}}(u) := \int_{\mathbb{R}^n} e^{i(u, x)} \, \mathsf{Q}(dx), \quad u \in \mathbb{R}^n.$$

Замечание. Если $\xi = (\xi_1, ..., \xi_n)$, то

$$\varphi_\xi(u) := \varphi_{\mathsf{P}_\xi}(u) = \int\limits_{\mathbb{R}^n} e^{i(u,\,x)} \; \mathsf{P}_\xi(dx) = \int\limits_{\Omega} e^{i(u,\,\xi)} \, d\, \mathsf{P} = \mathsf{E} e^{i(u,\,\xi)}.$$

Теорема 5.6. Пусть $\varphi_{t_1...t_n}$ — семейство характеристических функций мер на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Тогда существует случайный процесс $X = \{X_t, t \in T\}$, $X_t : \Omega \to \mathbb{R}, t \in T$, для которого $\varphi_{t_1...t_n}$ — характеристические функции конечномерных распределений, в том и только в том случае, когда

1.
$$\varphi_{t_1...t_n}(u_1, \ldots, u_n) = \varphi_{t_{i_1}...t_{i_n}}(u_{i_1}, \ldots, u_{i_n}) \ \forall n \in \mathbb{N} \ \forall (i_1, \ldots, i_n) - nepecmanosku (1, \ldots, n);$$

2.
$$\varphi_{t_1...t_k...t_n}(u_1,\ldots,u_{k-1},0,u_{k+1},\ldots,u_n) = \varphi_{t_1...\hat{t_k}...t_n}(u_1,\ldots,\hat{0},\ldots,u_n).$$

Доказательство. Теорема предлагается без доказательства.

Замечание. Если $X = \{X_t, t \in T\}$, где $T \subset \mathbb{R}$, то достаточно рассмотреть $\mathsf{P}_{t_1 \dots t_n}, \ t_1 < \dots < t_n.$

Замечание. Про эти теоремы почитать подробнее можно в [1].

5.3 Процессы с независимыми приращениями

Теорема 5.7. Для того чтобы существовал процесс $X = \{X_t, t \ge 0\}$ с независимыми приращениями такой, чтобы характеристическая функция случайной величины X(t) - X(s) была равна $\varphi(s, t, \cdot)$, необходимо и достаточно, чтобы

$$\varphi(s,\,t,\,v) = \varphi(s,\,u,\,v)\,\varphi(u,\,t,\,v) \quad \forall \; 0 < s < u < t \;\; \forall v \in \mathbb{R}.$$

При этом начальное распределение процесса P_0 может быть выбрано любым.

Замечание (от наборщика). Судя по всему, знание доказательства этой теоремы является обязательным. Доказательство см. [1], стр. 47.

5.4 Модификация процесса

Определение 5.7. Процесс $Y = \{Y_t, t \in T\}$ называется модификацией процесса $X = \{X_t, t \in T\}$, если

$$P(Y_t = X_t) = 1 \ \forall t \in T.$$

Лемма 5.8. Из теоремы 5.6 следует, что существует процесс с независимыми приращениями $N = \{N_t, t \ge 0\}$ такой, что

$$N_t - N_s \sim \text{Poiss} (\lambda(t - s)) \quad \forall \ 0 < s < t.$$

Доказательство. Вспомним, что если $\xi \sim \mathrm{Poiss}(a)$, то характеристическая функция ξ равна

$$\varphi_{\xi}(v) = e^{a\left(e^{iv} - 1\right)}.$$

Тогда запишем

$$\varphi_{N_t-N_s}(v) = e^{\lambda(t-s)\left(e^{iv}-1\right)} = \varphi(s, t, v).$$

Но тогда

$$\varphi(s, t, v) = \varphi(s, u, v) \varphi(u, t, v),$$

что и требовалось показать.

Замечание. Можно доказать, что у построенного процесса существует такая модификация, что ее траектории обладают следующими свойствами:

- они неубывают;
- они непрерывны справа;
- они имеют предел слева;
- все их скачки имеют величину 1;
- длина промежутков между скачками распределена экспоненциально;
- промежутки между скачками независимы.

Таким образом, этот процесс можно рассматривать как процесс восстановления.

Пример 5.1. Рассмотрим вероятностное пространство ([0, 1], $\mathcal{B}[0, 1], \nu$), где ν — мера Лебега, и измеримое пространство ([0, 1], $\mathcal{B}[0, 1]$). Введем случайные процессы $X = \{X_t, t \in T\}$ и $Y = \{Y_t, t \in T\}$ следующим образом:

$$X(t, \omega) \equiv 0, \quad Y(t, \omega) = \begin{cases} 1, \ t = w \\ 0, \ t \neq w \end{cases}, \quad t, \omega \in [0, 1].$$

Тогда все тра
ектории X непрерывны, а все тра
ектории Y разрывны, но вместе с этим

$$P(X_t \neq Y_t) = \nu(\{t\}) = 0,$$

то есть Y является модификацией X. Таким образом, отношение эквивалентности, порождаемое свойством 'быть модификацией друг друга', не сохраняет непрерывности траекторий.

6 Лекция от 22.03.17

Винеровский процесс

6.1 Фильтрации. Марковские моменты

Определение 6.1. Пусть $(\Omega, \mathscr{F}, \mathsf{P})$ — вероятностное пространство. Семейство σ —алгебр $(\mathscr{F}_t)_{t\in T}$ на этом вероятностном пространстве, где $T\subset \mathbb{R}$, называется ϕ иль трацией, если $\forall \, s< t, \, s, \, t\in T$,

$$\mathscr{F}_{\circ} \subset \mathscr{F}_{+} \subset \mathscr{F}_{-}$$

Определение 6.2. Естественная фильтрация процесса $X = (X_t, t \in T)$, $T \subset \mathbb{R},$ — это семейство

$$\mathscr{F}_t := \sigma \{X_s, s \leqslant t, s \in T\}, t \in T.$$

Определение 6.3. Отображение $\tau:\Omega\to T\cup\{\infty\}$ называется марковским моментом относительно фильтрации $(\mathscr{F}_t)_{t\in T},$ если

$$\forall t \in T \ \{\omega : \tau(\omega) \leq t\} \in \mathscr{F}_t.$$

Марковский момент au называется *моментом остановки*, если $au < \infty$ почти наверное.

 $\it Замечаниe. \, \, {\it Eсли} \, au - {\it mapkobckuй moment}, \, {\it to} \, \, \forall t \in T \, \{ au = t \} \in \mathscr{F}_t, \, {\it mockoльky}$

$$\{\tau = t\} = \{\tau \leqslant t\} \setminus \{\tau < t\}, \ \{\tau < t\} = \bigcup_{k=1}^{\infty} \left\{\tau \leqslant t - \frac{1}{k}\right\}.$$

3амечание. Если $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$, то

$$au$$
 — марковский момент $\Leftrightarrow \forall n \in \mathbb{Z}_+ \{ \tau = n \} \in \mathscr{F}_n$.

Пример 6.1. Рассмотрим действительный процесс с дискретным временем $X = \{X_n, n \in \mathbb{Z}_+\}$. Пусть $B \in \mathcal{B}(\mathbb{R})$. Введем

$$\tau_B(\omega) := \inf_n \{ n : X_n(\omega) \in B \}, \ \mathscr{F}_n = \sigma \{ X_0, X_1, \dots, X_n \}, \ n \in \mathbb{Z}_+$$

(если $X_n \notin B \ \, \forall n=0,\,1,\,2,\ldots$, то $\tau=\infty$). Тогда τ_B — марковский момент относительно $(\mathscr{F}_n)_{n\in\mathbb{Z}_+}$: проверим, что $\{\tau=n\}\in\mathscr{F}_n\ \forall n\in\mathbb{Z}_+$:

- n = 0: $\{\tau = 0\} = \{X_0 \in B\} \in \sigma \{X_0\} = \mathscr{F}_0;$ $n \ge 1$: $\{\tau = 0\} = \{X_0 \notin B, \dots, X_{n-1} \notin B, X_n \in B\} \in \sigma \{X_0, X_1, \dots, X_n\} = \mathscr{F}_n.$

Определение 6.4. Пусть τ — марковский момент относительно фильтрации $(\mathscr{F}_t)_{t\in T}$. Определим σ -алгебру

$$\mathscr{F}_{\tau} := \left\{ A \in \mathscr{F}: \ A \cap \left\{ \tau \leqslant t \right\} \in \mathscr{F}_t \ \forall t \in T \right\}.$$

Эта σ -алгебра называется σ -алгеброй событий, наблюдаемых до момента

Упражнение 6.1. Доказать, что объект из $6.4 - \sigma$ -алгебра.

Строго марковское свойство

Определение 6.5. Процесс $X = \{X_t, t \in T\}, T \subset \mathbb{R}$, имеет стационарные приращения, если $\forall t_0 < t_1 < \ldots < t_n \ \forall n \in \mathbb{Z} \ \forall h: t_0, \ldots, t_n, t_0 + h, \ldots, t_n + t_n < t_n$ $+h \in T$

$$\operatorname{Law}\left(X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right) = \\ = \operatorname{Law}\left(X_{t_{1}+h}-X_{t_{0}+h}, \ldots, X_{t_{n}+h}-X_{t_{n-1}+h}\right) \quad (5)$$

3амечание. Если процесс X имеет еще и независимые приращения, то

$$(5) \Leftrightarrow \operatorname{Law}(X_t - X_s) = \operatorname{Law}(X_{t+h} - X_{s+h}) \ \forall t, s, t+h, s+h \in T, s < t.$$

Замечание. Пуассоновский процесс интенсивности $\lambda > 0$ — процесс со стационарными независимыми приращениями.

Пемма 6.1. Пусть $X = \{X_t, t \geqslant 0\}$ — процесс с независимыми приращениями. Тогда \forall константы a > 0 процесс $Z(t) := X(t+a) - X(a), t \geqslant 0$, имеет независимые приращения и

$$\{Z_t, t \geqslant 0\}$$
 независим с $\mathscr{F}_a = \sigma \{X_s, s \leqslant a\}$.

Доказатель ство. Докажем независимсть приращений по определению: возьмем $0 \le t_0 < t_1 < \ldots < t_n$ и рассмотрим

$$Z(t_0), Z(t_1) - Z(t_0), \ldots, Z(t_n) - Z(t_{n-1}).$$

Заметим, что по определению Z(t)

$$Z(t_0) = X(t_0 + a) - X(a), \ Z(t_k) - Z(t_{k-1}) = X(t_k + a) - X(t_{k-1} + a);$$

из этого получаем, что приращения Z независимы вследствие независимости приращений X, которая есть по условию леммы. Докажем второе утверждение леммы: заметим, что σ -алгебра \mathscr{F}_a порождается системой событий

$$\{X_{s_1} \in B_1, \dots, X_{s_m} \in B_m\}, \ 0 \le s_1 < \dots < s_m \le a.$$

Поэтому достаточно проверить, что независимы векторы

$$\xi = (X_{s_1}, \ldots, X_{s_m})$$
 if $\eta = (Z_{t_1}, \ldots, Z_{t_n}), 0 \leqslant t_1 < \ldots < t_n$.

Заметим, что

$$\xi = \begin{pmatrix} X_{s_1} \\ X_{s_2} \\ \vdots \\ X_{s_m} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} X_{s_1} \\ X_{s_2} - X_{s_1} \\ \vdots \\ X_{s_m} - X_{s_{m-1}} \end{pmatrix}.$$

Введем обозначение $\zeta := (X_{s_1}, X_{s_2} - X_{s_1}, \dots, X_{s_m} - X_{s_{m-1}})$. Тогда ζ и η независимы, поскольку X имеет независимые приращения. Но ξ — это борелевская функция от ζ , следовательно, ξ независим с η .

Теорема 6.2. Пусть $X = \{X_t, t \geqslant 0\}$ — процесс со стационарными независимыми приращениями такой, что его траектории непрерывны справа. Пусть τ — момент остановки относительно естественной фильтрации X. Введем

$$Y(t, \omega) := \begin{cases} X(t + \tau(\omega)) - X(\tau(\omega), \omega) , & \tau(\omega) < \infty, \\ 0 & , \tau(\omega) = \infty. \end{cases}$$

По сути, $Y(t) = X(t+\tau) - X(\tau)$, $t \geqslant 0$. Тогда процесс $Y = \{Y_t, t \geqslant 0\}$ независим с \mathscr{F}_{τ} и имеет те же конечномерные распределения, что и процесс $\{X_t - X_0, t \geqslant 0\}$.

Доказательство. Покажем сначала, что процесс Y корректно задан. Пополним исходное вероятностное пространство $(\Omega, \mathscr{F}, \mathsf{P})$ классом нулевых событий \mathcal{N} и получим $(\Omega, \bar{\mathscr{F}}, \bar{\mathsf{P}})$, то есть

$$\forall A : P(A) = 0 \ \forall C \subset A \ C \in \mathcal{N}, \ \bar{P}(C) := 0,$$

где новая σ -алгебра определяется как

$$\bar{\mathscr{F}} = \sigma \left\{ \mathscr{F}, \mathcal{N} \right\}.$$

Известно, что

$$\bar{\mathscr{F}} = \mathscr{F} \cup \mathcal{N}, \ \bar{\mathsf{P}}(A \cup C) = \mathsf{P}(A) \ \forall A \in \mathscr{F}, C \in \mathcal{N}.$$

Поэтому можно считать, что с самого начала рассматривалось пополненное вероятностное пространство $(\Omega, \bar{\mathscr{F}}, \bar{\mathsf{P}})$, которое и будет дальше обозначаться просто $(\Omega, \mathscr{F}, \mathsf{P})$. Дальше считаем, что все σ –алгебры также пополнены классом нулевых событий.

Если au — марковский момент относительно $(\mathscr{F}_t)_{t\in T}$ и $lpha\leqslant au$ почти наверное, то lpha — тоже марковский момент относительно $(\mathscr{F}_t)_{t\in T}$. Поэтому далее можем считать, что $au<\infty$ на Ω .

Покажем, что Y(t) — случайная величина $\forall t \geqslant 0$. Введем

$$\tau_n := \sum_{k=1}^{\infty} k 2^{-n} \, \mathbb{I}_{A_{n,k}},$$

где

$$A_{n,1} := \left\{ \omega : \tau(\omega) \leqslant 2^{-n} \right\},\$$

$$A_{n,k} := \left\{ \omega : (k-1)2^{-n} < \tau(\omega) \leqslant k2^{-n} \right\},\ k \geqslant 2.$$

Тогда $\tau_n \searrow \tau$ на всем Ω . Заметим, что τ_n — марковские моменты относительно $(\mathscr{F}_t)_{t\geqslant 0}$:

$$\{\tau_n \leqslant t\} = \{\tau \leqslant k2^{-n}\} \in \mathscr{F}_{k2^{-n}} \subset \mathscr{F}_t,$$

где $k := \sup \{r : r2^{-n} \leqslant t\}.$

Поскольку траектории X непрерывны справа почти наверное, то

$$X(t + \tau_n(\omega), \omega) \to X(t + \tau(\omega), \omega), n \to \infty \ \forall t \ge 0.$$

Заметим, что

$$\left\{\omega: X\left(t+\tau(\omega), \omega\right) \leqslant z\right\} = \bigcup_{k=1}^{\infty} \left\{X\left(t+k2^{-n}, \omega\right) \leqslant z, \, \tau_n = k2^{-n}\right\}.$$

Поскольку

$$\left\{X\left(t+k2^{-n},\,\omega\right)\leqslant z\right\}\in\mathscr{F},\,\left\{\tau_n=k2^{-n}\right\}\in\mathscr{F},$$

то $X(t+\tau_n)$ — случайная величина $\forall n$. Поскольку $X(t+\tau_n) \xrightarrow{\text{п.н.}} X(t+\tau)$, то $X(t+\tau)$ — тоже случайная величина из полноты случайного пространства. Таким образом, показали, что $Y(t) = X(t+\tau) - X(\tau)$ — случайная величина $\forall t \geqslant 0$.

Докажем, что Y независим с \mathscr{F}_{τ} . Для этого достаточно проверить, что

$$\mathsf{P}\left(A\cap\left\{\xi\in C\right\}\right)=\mathsf{P}\left(A\right)\mathsf{P}\left(\xi\in C\right)\ \forall A\in\mathscr{F}_{\tau},\,C\in\mathcal{B}\left(\mathbb{R}\right),$$

где

$$\xi := (Y(t_1), \ldots, Y(t_m)), \ 0 \leqslant t_1 < \ldots < t_m.$$

Воспользуемся свойством регулярности вероятностной меры: $\forall \varepsilon>0 \ \forall C\in \mathcal{B}(\mathbb{R}^m) \ \exists \ \text{открытое множество} \ G \ \text{и} \ \text{замкнутое множество} \ F$

такие, что $F \subset C \subset G$ и $\mathsf{P} \left(G \setminus F \right) < \varepsilon$ (доказательство см., например, [4], стр. 4). Соответственно, достаточно рассматривать только замкнутые C. Покажем, что

$$P(A \cap \{\xi \in C\}) = P(A)P(\xi \in C) \Leftrightarrow EI_A f(\xi) = EI_A Ef(\xi)$$

для любой непрерывной ограниченной $f: \mathbb{R}^m \to \mathbb{R}$. Положим

$$\varphi(t) := \begin{cases} 1 & , \ t \leq 0, \\ 1 - t \, , \ t \in [0, 1], \\ 0 & , \ t > 1. \end{cases}$$

Определим $\rho(x,B):=\inf_{y\in B}\rho(x,y)$, где $\rho(x,y)$ — евклидово расстояние между точками. Заметим, что $\rho(x,B)$ — непрерывная функция от x. Положим

$$f_i(x) := \varphi(j\rho(x, B)), j \in \mathbb{N}.$$

Тогда $f_j(x) \searrow \mathbb{I}_B, \ j \to \infty$ (здесь важно, что B—замкнутое множество!). Поэтому по теореме Лебега о мажорируемой сходимости

$$\mathsf{E}\mathbb{I}_A f_j(\xi) \to \mathsf{E}\mathbb{I}_A \mathbb{I}_{\{\xi \in B\}},
\mathsf{E} f_j(\xi) \to \mathsf{E}\mathbb{I}_{\{\xi \in B\}}.$$

Положим

$$\xi_n := \left(X(t_1 + \tau_n) - X(\tau_n), \ldots, X(t_m + \tau_n) - X(\tau_n) \right).$$

Тогда $\xi_n \xrightarrow{\text{п.н.}} \xi$, поскольку $\tau_n \searrow \tau$. Следовательно, $\mathsf{E}\mathbb{I}_A f(\xi) = \lim_{n \to \infty} \mathsf{E}\mathbb{I}_A f(\xi_n)$. Положим

$$\xi_{n,k} := \left(X \left(t_1 + k 2^{-n} \right) - X \left(k 2^{-n} \right), \dots, X \left(t_m + k 2^{-n} \right) - X \left(k 2^{-n} \right) \right).$$

Заметим, что

$$A \cap \{\tau_n = k2^{-n}\} = A \cap A_{n, k} = A \cap \{(k-1)2^{-n} < \tau \leqslant k2^{-n}\} = \{\tau \leqslant k2^{-n}\} \setminus \{\tau \leqslant (k-1)2^{-n}\}.$$

По лемме 6.1 $\xi_{n,\,k}$ независим с $\mathscr{F}_{k2^{-n}}$. Тогда получаем, что

$$\begin{split} \mathbb{E} \mathbb{I}_A f(\xi_n) &= \sum_{k=1}^{\infty} \mathbb{E} \mathbb{I}_A f(\xi_n) \mathbb{I}_{\{\tau_n = k2^{-n}\}} = \sum_{k=1}^{\infty} \mathbb{E} \mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} f(\xi_{n,\,k}) = \\ &= \sum_{k=1}^{\infty} \mathbb{E} \mathbb{I}_{A \cap \{\tau_n = k2^{-n}\}} \mathbb{E} f(\xi_{n,\,k}). \end{split}$$

Заметим, что

$$\xi_{n,k} \stackrel{\text{law}}{=} (X(t_1) - X(0), \dots, X(t_n) - X(0)) =: \gamma.$$

Тогда получаем, что

$$\begin{split} \sum_{k=1}^{\infty} \mathsf{E}\mathbb{I}_{A\cap\{\tau_n=k2^{-n}\}} \mathsf{E}f(\xi_{n,\,k}) &= \mathsf{E}f(\gamma) \sum_{k=1}^{\infty} \mathsf{E}\mathbb{I}_{A\cap\{\tau_n=k2^{-n}\}} = \mathsf{E}f(\gamma) \mathsf{E}\mathbb{I}_A = \\ &= \mathsf{E}f(\gamma) \,\mathsf{P}\left(A\right). \end{split}$$

Таким образом, получили, что $\mathsf{E}\mathbb{I}_A f(\xi) = \mathsf{E}\mathbb{I}_A \mathsf{E} f(\gamma) \ \forall A \in \mathscr{F}_\tau$. Осталось взять $A=\Omega$: тогда получится, что $\mathsf{E} f(\xi) = \mathsf{E} f(\gamma)$ и, как следствие,

$$\mathsf{E}\mathbb{I}_A f(\xi) = \mathsf{E}\mathbb{I}_A \mathsf{E} f(\xi) \ \, \forall A \in \mathscr{F}_\tau.$$

6.3 Функции Хаара и Шаудера

Определение 6.6. Функции Хаара $H_k(x)$ задаются следующими формулами на [0, 1]:

$$\begin{split} H_0(x) &\equiv 1; \\ H_1(x) &= \mathbb{I}_{\left[0, \frac{1}{2}\right]}(x) - \mathbb{I}_{\left(\frac{1}{2}, 1\right]}(x); \\ H_k(x) &= 2^{n/2} \left(\mathbb{I}_{\left(\frac{k-2^n}{2^n}, \frac{1/2+k-2^n}{2^n}\right]}(x) - \mathbb{I}_{\left(\frac{1/2+k-2^n}{2^n}, \frac{1+k-2^n}{2^n}\right]}(x) \right), \ 2^n \leqslant k < 2^{n+1}, \\ n &\in \mathbb{N}; \ H_{2^n}(0) = 1 \ \forall n \in \mathbb{N}. \end{split}$$

3амечание. Известно, что $\big\{H_k(x)\big\}_{k\in\mathbb{N}}$ — полная ортонормированная система в L^2[0, 1].

Определение 6.7. Функции Шаудера $S_k(t)$ задаются следующими формулами на [0, 1]:

$$S_k(t) = \int_{[0,t]} H_k(u) \, \mathrm{d}u = \left\langle H_k, \, \mathbb{I}_{[0,t]} \right\rangle_{L^2}, \quad k \in \mathbb{Z}_+,$$

где $H_k(u)$ — функции Хаара.

3амечание. Известно, что $S_k(t)$ непрерывны $\forall k \in \mathbb{Z}_+$.

Лемма 6.3. Пусть $a_k = O(k^{\varepsilon})$ при $k \to \infty$, где $0 < \varepsilon < 1/2$. Тогда ряд

$$\sum_{k=1}^{\infty} a_k S_k(t)$$

cxodumcя равномерно на [0, 1].

Доказательство будет добавлено позднее (через две недели). \Box

Замечание. Из леммы 6.3 и теоремы Вейерштрасса следует, что этот ряд сходится к непрерывной функции.

Лемма 6.4. Пусть $\xi_1, \xi_2, \ldots - c$ лучайные величины на некотором вероятностном пространстве $(\Omega, \mathscr{F}, \mathsf{P}), \xi_k \sim \mathcal{N}(0, 1), k \in \mathbb{N}$. Тогда $\forall c > \sqrt{2}$ и для почти всех $\omega \in \Omega$ $\exists N_0(c \ \omega)$:

$$|\xi_k| \leqslant c \left(\ln k\right)^{\frac{1}{2}} \quad \forall k \geqslant N_0(c, \omega).$$

Доказательство. Поскольку $\xi_k \sim \mathcal{N}(0, 1)$, то

$$P(\xi \geqslant x) = \frac{1}{\sqrt{2\pi}} \int_{-T}^{\infty} e^{\frac{-u^2}{2}} du \quad \forall x > 0.$$

Оценим этот интеграл:

$$\frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-u^{2}}{2}} du = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \frac{u}{u} e^{\frac{-u^{2}}{2}} du \leqslant \frac{1}{x} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} u e^{\frac{-u^{2}}{2}} du =$$

$$= \frac{1}{x} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} -de^{\frac{-u^{2}}{2}} = \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{\frac{-u^{2}}{2}}.$$

Тогда получаем, что

$$\mathsf{P}\left(|\xi|\geqslant x\right) \;\leqslant\; \frac{1}{x}\sqrt{\frac{2}{\pi}}\,e^{\frac{-u^2}{2}}.$$

Воспользуемся леммой Бореля-Кантелли:

$$\sum_{k=2}^{\infty} \mathsf{P}\left(|\xi_k| \geqslant c \, (\ln k)^{\frac{1}{2}}\right) \; \leqslant \; \sum_{k=2}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{c \, (\ln k)^{\frac{1}{2}}} e^{\frac{-c^2 \ln k}{2}} \; \leqslant \; \widetilde{c} \, \sum_{k=2}^{\infty} k^{\frac{-c^2}{2}} < \infty.$$

Поскольку ряд из вероятностей сошелся почти наверное, то событий происходит конечное число почти наверное. Из этого следует, что для каждого фиксированного ω можно выбрать k, после которого события выполняться перестают. Лемма доказана.

6.4 Винеровские процессы

Определение 6.8. Процесс $W = \{W(t), t \geqslant 0\}$ называется винеровским, если

- 1. W(0) = 0 почти наверное;
- $2. \ W$ имеет независимые приращения;
- 3. $W(t) W(s) \sim \mathcal{N}(0, t s) \ \forall \ 0 \leq s < t;$
- 4. траектории W непрерывны почти наверное.

Теорема 6.5 (явная конструкция винеровского процесса). Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, $\xi_k \sim \mathcal{N}(0, 1), \ k \in \mathbb{N}$. Введем

$$W(t, \omega) := \sum_{k=1}^{\infty} \xi_k(\omega) S_k(t), \ t \in [0, 1],$$

 $\epsilon \partial e S_k(t) - \phi y n \kappa u u U u y \partial e p a.$

Доказательство будет дано позднее.

Следствие (построение W на $[0,\infty)$). Для каждого $j\in\mathbb{N}$ берем $\xi_1^j,\,\xi_2^j,\,\ldots$ независимые одинаково распределенные $\mathcal{N}(0,\,1)$ случайные величины. Определяем

$$W^j(t, \omega) := \sum_{k=1}^{\infty} \xi_k^j(\omega) S_k(t).$$

Дальше склеиваем эти процессы последовательно и непрерывно:

$$W(t) := W^{j}(t) + W(j-1), \ W(0) \equiv 0, \ j \in \mathbb{N}.$$

Tогда W- винеровский процесс.

Доказательство будет дано позднее.

Список литературы

- [1] Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: Φ ИЗ-МАТЛИТ, 2005
- [2] Феллер В. Введение в теорию вероятностей и ее приложения.
- [3] Ширяев А. Н. Вероятность. [4] Шашкин А. П. Слабая сходимость вероятностных мер. МГУ, 2013