目次

1	共通する前提	2
2	確率変数×とAの四則演算	3
2.1	和・足し算	3
2.2	差・引き算	3
2.3	積・掛け算	3
2.4	商・割り算	3
3	確率密度関数が連続値の確率変数 X,Y の四則演算	4
3.1	$Z{=}X{+}Y \ \dots $	4
3.2	Z=X-Y	4
3.3	Z=XY	5
3.4	$Z{=}X/Y \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
4	確率密度関数が離散値の確率変数 X,Y の四則演算	6
4.1	$Z{=}X{+}Y \ \dots $	6
4.2	Z=X-Y	6
4.3	Z=XY	6
4.4	Z=X/Y	6

1 共通する前提

内容の正しさは自信ない。特に数学記号の使い方。

これ以降、共通して用いる変数・関数

f(x), g(y), h(z):確率密度関数

X,Y,Z:確率変数

A:(確率変数ではない) 変数および定数

i, j, k, N, M, L:自然数

X = f(x), Y = g(y), Z = h(z)

特に断りがなければ、X,Y,Z は独立な確率変数

特に断りがなければ、x,y,z は独立な変数

2 確率変数 X と A の四則演算

2.1 和・足し算

$$Y = X + A$$
 のとき。 $g(y) = f(x - A)$ $(y = x - A)$

2.2 差・引き算

2.2.1 X-A

$$Y = X - A$$
 のとき。 $g(y) = f(x + A)$ $(y = x + A)$

2.2.2 A-X

$$Y = A - X$$
 のとき。 $g(y) = f(-x - A)$ $(y = -x - A)$

2.3 積・掛け算

$$Y = AX$$
 のとき。 $g(y) = \frac{f(x/A)}{A} \hspace{0.5cm} (y = x/A)$

2.4 商・割り算

2.4.1 X/A

$$Y = X/A$$
 のとき。 $g(y) = Af(Ax)$ $(y = AX)$

Aで割るのではなく Aの逆数をかけると考えることを推奨。

2.4.2 A/x

$$Y = A/X$$
 のとき。 $g(y) = ???$ ()

この章、何か重大な間違いをしているような気がする。

3 確率密度関数が連続値の確率変数 X,Y の四則演算

3.1 Z = X + Y

足し算だから、x,y,z の単位は共通でなければならないことに留意。

3.1.1 不定積分と-∞から∞までの定積分

不定積分

$$h(z) = \int f(z - y)g(y) \, dy$$

-∞から∞までの定積分

$$h(z) = \int_{-\infty}^{\infty} f(z - y)g(y) \, dy$$

3.1.2 定積分

x の積分区間は $x_0 \le x \le x_1$

y の積分区間は $y_0 \le y \le y_1$

$$h(z) = \begin{cases} \int_{y_0}^{y_1} f(z-y)g(y) \, dy & \text{if } x_0+y \leq z \leq x_1+y \ \, \forall y \in \{y_0 \leq y \leq y_1\}, \\ \text{積分区間を分割するべし} & \text{if } x_0+y \leq z \leq x_1+y \ \, \exists y \in \{y_0 \leq y \leq y_1\}, \\ 0 & \text{otherwise}, \end{cases}$$

(一番上の条件、 $y_0 \le y \le y_1$ を満たすすべての y が $x_0 + y \le z \le x_1 + y$ を満たす場合。と言いたい)

3.2 Z=X-Y

引き算だから、x,y,z の単位は共通でなければならないことに留意。

3.2.1 不定積分と-∞から∞までの定積分

不定積分

$$h(z) = \int f(z+y)g(y) \, dy$$

-∞から∞までの定積分

$$h(z) = \int_{-\infty}^{\infty} f(z+y)g(y) \, dy$$

3.2.2 定積分

x の積分区間は $x_0 \le x \le x_1$

y の積分区間は $y_0 \le y \le y_1$

$$h(z) = \begin{cases} \int_{y_0}^{y_1} f(z+y)g(y) \, dy & \text{if } x_0 - y \leq z \leq x_1 - y \ \, \forall y \in \{y_0 \leq y \leq y_1\} \\ \text{積分区間を分割するべし} & \text{if } x_0 - y \leq z \leq x_1 - y \ \, \exists y \in \{y_0 \leq y \leq y_1\}, \\ 0 & \text{otherwise}, \end{cases}$$

(一番上の条件、 $y_0 \le y \le y_1$ を満たすすべての y が $x_0-y \le z \le x_1-y$ を満たす場合。と言いたい)

3.3 Z=XY

積の計算。

3.3.1 不定積分と-∞から∞までの定積分

不定積分

$$h(z) = \int \frac{1}{|y|} f(z/y) g(y) \, dy$$

-∞から∞までの定積分

$$h(z) = \int_{-\infty}^{\infty} \frac{1}{|y|} f(z/y) g(y) \, dy$$

3.3.2 定積分

x の積分区間は $x_0 \le x \le x_1$ y の積分区間は $y_0 \le y \le y_1$

$$h(z) = \begin{cases} \int_{y_0}^{y_1} f(z+y)g(y) \, dy & \text{if } x_0 y \leq z \leq x_1 y \ \forall y \in \{y_0 \leq y \leq y_1\} \\ \text{積分区間を分割するべし} & \text{if } x_0 y \leq z \leq x_1 y \ \exists y \in \{y_0 \leq y \leq y_1\}, \\ 0 & \text{otherwise}, \end{cases}$$

(一番上の条件、 $y_0 \le y \le y_1$ を満たすすべての y が $x_0 \le z/y \le x_1$ を満たす場合。と言いたい)

$3.4 \ Z=X/Y$

商の計算。

3.4.1 不定積分と-∞から∞までの定積分

不定積分

$$h(z) = \int |y| f(yz)g(y) \, dy$$

-∞から∞までの定積分

$$h(z) = \int_{-\infty}^{\infty} |y| f(yz) g(y) \, dy$$

3.4.2 定積分

 \mathbf{x} の積分区間は $x_0 \le x \le x_1$ \mathbf{y} の積分区間は $y_0 \le y \le y_1$

$$h(z) = \begin{cases} \int_{y_0}^{y_1} f(z+y)g(y) \, dy & \text{if } x_0 \leq yz \leq x_1 \ \forall y \in \{y_0 \leq y \leq y_1\} \\ \text{積分区間を分割するべし} & \text{if } x_0 \leq yz \leq x_1 \ \exists y \in \{y_0 \leq y \leq y_1\}, \\ 0 & \text{otherwise}, \end{cases}$$

(一番上の条件、 $y_0 \le y \le y_1$ を満たすすべての y が $x_0 \le yz \le x_1$ を満たす場合。と言いたい)

4 確率密度関数が離散値の確率変数 X,Y の四則演算

確率変数 X,Y がともに離散値の時を考える章。

この章のそれぞれの節における共通事項の一覧。

$$h(z_k) = \sum_{\{i,j\}_k} f(x_i)g(y_j)$$
 $i = 1, 2, 3 \cdots, N$ $j = 1, 2, 3 \cdots, M$ $k = 1, 2, 3 \cdots, L$ (L は $1 \le L \le N + M$ を満たす自然数。) $x_{i+1} = x_i + d_i$ ($d_i > 0$) $y_{j+1} = y_j + d_j$ ($d_j > 0$) $z_{k+1} = z_k + d_k$ ($d_k > 0$)

4.1 Z = X + Y

和の
$$\{i, j\}_k = \{(i, j) | z_k = x_i + y_j\}$$

4.2 Z=X-Y

差の
$$\{i,j\}_k = \{(i,j)|z_k = x_i - y_j\}$$

4.3 Z=XY

積の
$$\{i, j\}_k = \{(i, j)|z_k = x_i y_j\}$$

$4.4 \quad Z=X/Y$

商の
$$\{i, j\}_k = \{(i, j) | z_k = x_i/y_j\}$$