

Solusi Tugas Individu: Algoritma Genetika (Reasoning) Genap TA. 2024/2025 CBK2KAB3 – Sistem Cerdas S1 Teknologi Informasi Tim Dosen

PETUNJUK PENGERJAAN

- Tugas dikerjakan secara Individu.
- Berikan jawaban Anda langsung di bawah setiap soal (panjang kotak jawaban bisa disesuaikan).
- Jawaban dapat diketik langsung di file ini, atau dikerjakan terlebih dahulu di kertas dengan menggunakan pulpen/bolpoin kemudian discan/foto lalu disisipkan ke file ini di bawah setiap soal.
- Setelah selesai melengkapi jawaban, ubahlah file ini ke format PDF, beri nama file dengan format CBK2KAB3_ASSGN1_[NIM].pdf lalu submit file ini ke LMS.
- Deadline pengumpulan tugas sesuai dengan yang tertera di LMS. Senin 24 Maret 2025 jam 23.59.

PENTING!

Tidak boleh menggunakan Al-generated text atau semacamnya

NIM:	Nama Mahasiswa:	Kelas:	Tanggal Submit:	
1	1			
		• • • • • • • • • • • • • • • • • • • •	•••••	

Capaian Pembelajaran Program Studi (Program Learning Outcome) yang akan dicapai			
	PLO-04	Mampu mengambil keputusan secara tepat dalam konteks penyelesaian masalah, berdasarkan hasil analisis terhadap informasi/data dan implikasi dari keputusan.	

Capaian Pembelajaran Mata Kuliah (Course Learning Outcome) yang akan dicapai			
CLO-04-2	Mampu merumuskan permasalahan yang perlu diatasi.		
Sub-CLO-04-2-1	Mahasiswa mampu menjelaskan teknik Searching, Reasoning, dan Learning untuk merumuskan permasalahan yang perlu diatasi.		

1. Roulette Wheel selection programming (poin 70%)

Jika diketahui terdapat 4 kromosom yang lengkap dengan nilai fitness dan pi (probabilitasnya)

Chromosome	Fitness	p_i
C1	2	0.25
C2	1	0.125
C3	1	0.125
C4	4	0.5
total	8	

Kemudian terdapat nilai random $\mathbf{r} = \mathbf{0.XX}$. (XX adalah dua angka terakhir dari NIM Anda) Lengkapilah titik-titik pada fungsi roulette wheel selection menggunakan *program python* untuk mendapatkan parent yang terpilih berdasarkan nilai \mathbf{r} sebagai berikut.

def RWselection(populasi, f): # populasi adalah banyaknya kromosom, f adalah nilai fitness

```
total = ... # jumlah total dari f
  # menampilkan nilai probability ke i
  norm_f = [\dots for \dots in \dots]
  # menampilakn nilai cumulative ke i
  cum_fitness = []
  mulai = 0
  for norm v in norm f:
    mulai = ...
    cum fitness.append(...)
  for i in range(4): # 4 adalah jumlah individu/kromosom
    r = ... # nilai random yang dibangkitkan
    ind num = 0
    for x in ...: #indexing nilai cumulative fitness
       # menampilkan nilai r masuk ke interval yang mana?
       if (r \le x):
         n = \dots
         break
       ind_num+=1
  print("Pi (probability ke-i): ", ...)
  print("Cumulative ke- i:", ...)
  return n
if name == " main ":
  populasi =[....] # banyaknya kromosom dalam bentuk type string
  s= .... # nilai fitness berdasarkan tabel diatas
  cetak = ... (populasi, s) # fungsi RW selection
  print(cetak)
```

J	JAWAB:		

2. Fitness function (point 30)

Misalkan algoritma genetika menggunakan kromosom berbentuk x = abcdefgh dengan jumlah gen ada 8 buah. Setiap gen memiliki nilai random antara 0 sampai 9. Asumsi bahwa fitness fungsi fitness untuk x dapat di hitung dengan formula:

$$f(x) = (a+b)+(c+d)-(e+f)+(g+h)$$

Ditentukan inisial setiap kromosom didalam populasi seperti berikut.

$$x_1 = X X 4 1 3 5 3 2$$

 $x_2 = 8712XX01$ $x_3 = 23XX1285$ $x_4 = 734132XX$

- 1. Hitung nilai fitness setiap individu tersebut.
- 2. Urutkan nilai fitness dari yang terbesar ke terkecil.
- 3. Lakukan kawin silang (crossover) dengan single-point crossover yang lokasinya 3 gen dari kiri. (kawin silang berpasangan x_1 dan x_2 , serta x_3 dan x_4)

(Note: X X adalah dua angka terakhir dari NIM anda) JAWAB: