Robit Kulkarni 41346

M	T	W	T	F	S	S	
Page N							
Date:					YO	AVUOY	

DA ASSIGNMENT 2

TITLE: Naive Bayes Classification

PROBLEM STATEMENT:

Download Pinna Indians Diabetes dataset.
Use Naive Bayes Algorithm for classification. Load
the data from CSV file & split it into training &
test datasets. Summarise the properties in training
dataset so that we can calculate probabilities & make
predictions. Classify samples from a test dataset &
a summarized training dataset.

OBJECTIVES: Understand Naive Bayes Algorithm for classification le use it on Pinna Indians d'ataset.

OUTCOME: Predict whether the person has diabetes or not using Naive Bayes Classification based on the parameter in dataset.

Slw AND HIW REQUIREMENTS: 64-Bit OS, python, jupyter notebook, keyboard, monse, monitor.

THEORY:

Probabilistic classifiers are a family of simple,

Probabilistic classifiers.

They are based on Bayes theorem, which describes

the probability of a certain event occurring, based on

the prior knowledge of conditions that might be

	M T W T F S S Page No.: VOUVA Date:
1	Abstractly Naive Bayes is a conditional probability model and can be trained very efficiently between the features
1	Despite its naive design & apparently oversimplified assumptions Naive Bayes classifiers have proven to work quite well in real world settings.
	CONCLUSION: The Naive Bayes Classifier was successfully applied to the Pima dataset, & the outcome Chabetes diagnosis) was fredited successfully.