KNOWLEDGE SHARING SESSION SERIES SLOP FIRED BOILERS

PRESENTED BY
YAMAN

INDEX

I. Fuel Characteristic

- Proximate Analysis
- Ultimate Analysis
- ➤ GCV & LCV-Dulong's formula
- Slop parameters
- Mixed fuels

II. Combustion

- Principle
- > 3 T's of combustion
- Combustion of bagasse, slop and mixture of slop and bagasse

III. Ash Characteristic of slop

- > Ash characteristic from different collection point
- Ash chemicals and their impact on boiler operation.

INDEX

IV. Heat Transfer

- Principle in the context of boiler
- > Heat balance

V. Performance assessment

- Six parameter of performance assessment of slop fired boiler
- Parameter wise assessment-developing tools

VI. Comparative evaluation of 75 & 35 TPH boiler

- ➤ Heat transfer area comparative
- Comparison of performance parameters of both boilers

PROXIMATE ANALYSIS

Moisture

Higher %age in moisture , lower the calorific value.

Volatile matter

- It decides the volume of furnace.
- Higher value cause smoke ,long flames, and decreased the calorific value.

• Ash

- Higher the ash content lower the calorific value.
- Ash characteristics influence design and operational efficiencies

Fixed carbon

Higher the amount of fixed carbon, higher will be calorific value

%FC= 100 – (%M + %VM + %A)

- Quick analysis of fuel at low cost for assessing the potential impact on operations
- Bomb Calorimeter is used to determine GCV

ULTIMATE ANALYSIS

- Chemical composition of fuel are C, O, H, N and S.
- The ultimate analysis is very important to calculate calorific value of fuel.
- For assessment of air required.

Required for
Design of the combustion system of boiler
Assessment of air requirement and
Determination of efficiency by indirect
method

GCV OF SLOP USING DULONG'S FORMULA

@ 51.5% Brix

COMPONENT	% BY WEIGHT
Carbon	19.07
Hydrogen	1.85
Oxygen	12.45
Moisture	1 48.5
Sulphur	0.53
Nitrogen	1.59
Ash	16.02
GCV	1654 Kcal/Kg

$$HCV = \frac{1}{100} \left[8080 C + 34500 \left(H - \frac{O}{8} \right) + 2240 S \right] Kcal/Kg$$

$$HCV = \frac{1}{100} \left[8080 \times 19.07 + 34500 \left(1.85 - \frac{12.45}{8} \right) + 2240 \times 0.53 \right] Kcal/Kg$$

$$HCV = 1654.07 \ Kcal/Kg$$

$$LCV = HCV - 588.76 m_w$$

$$LCV = 1654.07 - 588.76 \times 0.485$$

$$LCV = 1368.52 \, Kcal/Kg$$

@ 51.5% Brix

Component	% by weight		
Carbon	19.07		
Hydrogen	1.85 &		
Oxygen	12.45		
Moisture	48.5		
Sulphur	0.53		
Nitrogen	1.59		
Ash	16.02		
IIIIII GCV	1654 Kcal/Kg		

Component	Heat (Kcal/Kg)
Carbon	8080
Hydrogen	34500
Sulphur	2240

SLOP

Chemical Equation during the combustion.

$$S + O_2 = SO_2 + Heat$$
 $2H_2 + O_2 = 2H_2O + Heat$
 $C + O_2 = CO_2 + Heat_1$ (1)
Or
 $C + \frac{1}{2}O_2 = CO + Heat_2$ (2a)
 $CO + \frac{1}{2}O_2 = CO_2 + Heat_3$ (2b)
 $Heat_1 = Heat_2 + Heat_3$

GCV at about 80% of bagasse at same level of moisture

SLOP AS FED TO BOILER

SLOP PARAMETERS

The characteristics of slop at 51.5% brix.

Parameters	51.5% Brix
рН	3.9
Viscosity	4.5 (Pa S)
Hardness	14400 (ppm)

Implication of each parameters explained in the slides to follow

Low pH-Slop is highly acidic

- Impact on Boiler
 If pH is low, high corrosion.
- High material removal rate.
- Causes tube leakage.

VISCOSITY (μ)

- Viscosity is the property due to which a fluid offer resistance to the movement of one layer to other.
- Effect of Temperature increase on μ

Fluid	μ	Fluidity
Liquid	Decrease	Increase
Gas	Increase	Increase

Impact on Boiler

7/1/2021

13

- μ decreases, fluidity increases.
- Easily flow inside the pipe and passes through the slop gun.

HARDNESS

Temporary Hardness

- Presence of Bicarbonate (HCO_3^-) & Carbonate (CO_3^-) ions of Ca^{2+} & Mg^{2+} Permanent Hardness
- Present of Chlorides Cl^- & Sulphates SO_4^{2-} ions of Ca^{2+} & Mg^{2+} Hardness is expressed in terms of $CaCO_3$.

Impact on Boiler

- Hardness form a scale on the water tubes.
- Decrease the heat transfer rate inside the water.
- Heat loss.

CHARACTERISTICS-MIXED FUEL

Composition(%)	Composition(%) Slop(1.87) + Bagasse(1)		Slop(3.07) + Rice Husk(1)	
Carbon	20.66	23.69	23.54	
Hydrogen	2.35	1.99	2.14	
Oxygen	15.78	11.19	17.20	
Moisture	49.04	39.97	38.75	
Sulphur	0.34	0.50	0.40	
Ash	10.81	21.29	16.52	
Nitrogen	1.02	1.37	1.45	
GCV(kcal/kg)	1841	2087	1993	
			7/1/2021 15	

COMBUSTION

The process of oxidizing (burning) all the caloric matters (C, H, S) in the fuel for producing hot flue gas

- Ignition at the point of injection
- Completion of the burning process in the furnace

The entire combustion process to be completed in the furnace to prevent secondary combustion in the subsequent passes

3 T'S OF COMBUSTION

Temperature

Ignition temperature for initiating the burning process.

Turbulence

- The fuel and air should mix properly.
- The fuel can be burnt with less excess air.

Time

- Time required for complete combustion.
- Slop fired boiler have a very high residence time, >10.0 seconds.
 (Tall furnace)

Early ignition (Temperature) + Turbulence+ Enough residence time = Good combustion

Impact on Boiler

- Temperature above the ignition temp, the fuel burn immediately
- Proper mixing reduces the excess air.
- High residence time, more combustion.

REQUIREMENT OF AIR-STOICHIOMETRIC

Composition	(kg/kg)	Oxygen req. (kg/kg)	Total Oxygen req. (kg/kg)	Stoichiometric Air req. (kg/kg) <i>Slop</i>
Carbon (C)	0.1907	2.67	0.509	
Hydrogen (H)	0.0185	8	0.148	0.5279/0.32
Oxygen (O)	0.1245		-0.1245	0.5378/0.23
Sulphur (S)	0.0053	1	0.0053	02//////
		Total	0.5378	2.34

Composition	(kg/kg)	Oxygen req. (kg/kg)	Total Oxygen req. (kg/kg)	Stoichiometric Air req. (kg/kg) Slop(1.87)+Bagasse(1)
Carbon C	0.206	2.67	0.55002	
Hydrogen H	0.023	8	0.184	0.5002/0.22
Oxygen O	0.1578		-0.1578	0.5802/0.23
Sulphur S	0.0034	1	0.0034	
		Total	0.5802	2.522

Composition	(kg/kg)	Oxygen req. (kg/kg)	Total Oxygen req. (kg/kg)	Stoichiometric Air req. (kg/kg) Slop(3.07)+Rice husk(1)
Carbon C	0.2354	2.67	0.6285	
Hydrogen H	0.021	8	0.168	0 (295/0 22
Oxygen O	0.1720		-0.1720	0.6285/0.23
Sulphur S	0.0040	1	0.0040	
		Total	0.6285	2.73

Composition	(kg/kg)	Oxygen req. (kg/kg)	Total Oxygen req. (kg/kg)	Stoichiometric Air req. (kg/kg) Slop(3.73)+Coal(1)
Carbon C	0.2369	2.67	0.6325	
Hydrogen H	0.019	8	0.152	0 (55 (10 20
Oxygen O	0.1119		-0.1119	0.6776/0.23
Sulphur S	0.0050	1	0.0050	
		Total	0.6776	2.94

COMPARATIVE STOCHIOMETRIC AIR REQUIREMENT

FUEL MIXTURE	STOCHIOMETRIC AIR REQUIREMENT (kg/kg)
Slop + bagasse	2.522
Slop + Rice Husk	2.73
Slop + Coal	2.94

Requirement impacted by available oxygen in the fuel

AIR-SOURCE OF OXYGEN FOR COMBUSTION

- Requires some amount of excess air for completion of combustion
- Compromise between combustion losses (C, CO) and loss through flue gas

ASH COLLECTION FROM DIFFERENT POINT

ASH %				
Collection Point	As per Fives Cail- KCP	As per PG Test (75 TPH)	As per PG Test (35 TPH)	
Bottom Ash	30	20	20	
2 nd Pass	15	5	5	
Eva & Eco	15	5	5	
Bag Filter	40	70	70	
Total	100	100	100	

ASH % as per Fives Cail KCP

Different percentages as per different reports. It would be desirable to carry out actual field test for getting close to the actual amounts

ASH CHEMICALS AND THEIR MELTING POINTS

s. NO	Element	Melting Temperature (⁰ C)		
1	SiO2	1710		
2	A12O3	2072		
3	Fe2O3	1565		
4	CaO	2572		
5	MgO	2852		
6	Na2O	1132		
7	K2O	740		
8	TiO2	1843		
9	P2O5	340		
10	MnO	1945		

Impact on Boiler

The potassium oxide followed by sodium oxide would be creating problems like slagging and clinker due to low melting point and fusion temperature and also due to volatilization. (Data source— SPECTRO LAB REPORT)

Flame-1000-1200 °C FEGT-650 °C

7/1/2021

25

ASH CONSTITUENTS-DIFFERENT COLLECTION POINT

S. No	Test parameters (% by mass)	Furnace	FSH	PSH	Economizer
1	Silica (SiO2)	14.08	28.32	8.00	12.24
2	Alumina (Al2O3)	10.18	6.51	3.35	8.37
3	Iron Oxide (Fe2O3)	3.27	1.86	1.17	3.32
4	Calcium Oxide (CaO)	10.68	10.92	4.61	9.32
5	Magnesium Oxide (MgO)	3.84	11.18	4.98	4.91
6	Sodium Oxide (Na2O)	0.23	1.38	1.20	0.20
7	Potassium Oxide (K2O)	4.50	18.66	12.20	2.88
8	Titanium Oxide (TiO2)	0.70	0.39	0.25	0.45
9	Phosphorus (P2O5)	0.26	1.62	0.53	0.40
10	Manganese Oxide (MnO)	0.03			0.03
11	Loss on ignition, % by mass	47.00	6.85	41.20	56.75

As per test reports from--- dated 4/11/2019 for the 35TPH boiler

ASH CONSTITUENTS (CONTINUED)

Summarising

- Acid oxides are SiO2, Al2O3 and TiO2.
- Basic oxides are Fe2O3,CaO,MgO,Na2O,K2O.
- Base and acid oxides is formed during combustion and their ratio is used to determine the fusion (fusibility) temperature of reaction product.
- Ash exhibit low fusibility temperature with higher slagging potential when its base/acid ratio is in range 0.4 to 0.7.
- The fusibility temperature of ash will be lowered when Fe2O3/CaO ratio is in range of 0.2

```
Base to acid ratio =

(Fe2O3+CaO+MgO+Na2O+K2O)/(SiO2+Al2O3 +TiO2)
=27.8275/23.21
=1.198

Slagging index= (Base to acid ratio) x Dry sulfur content.
= 1.198 x 0.53
=0.635

Fouling index =(Base to acid ratio) x (Na2O +K2O)
= 1.198 x 10.3125
=12.35

Fe2O3/CaO ratio=_0.26
```

<0.6, low stagging inclination **0.6–2.0, medium** 2.0–2.6, high >2.6, extremely high

≤0.6, low fouling indication **0.6–40, high** >40, extremely high

to 1.

Primarily governed by the pick up of chemicals by cane from the soil (variety impact). Improving base ratio by external means unlikely to be cost effective –monitoring regularly for fixing the soot blowing schedule as well as schedule for cleaning. Operational care to maintain the combustion and FO temperatures

HEAT

The overall efficiency of boilers is product of **combustion** and **heat transfer efficiencies**, the later governing the heat loss through the flue gas and some loss through the boiler outer surfaces to the atmosphere (known as radiation & convection losses)

CONDUCTION

- Conduction can take place in solids, liquids, or gases.
- In solids, it is due to the combination of **vibrations of the molecules** in a lattice and the energy transport by **free electrons**.
- In gases and liquids, conduction is due to the **collisions** and **diffusion** of the molecules during their random motion.

$$Q_{Cond} = -KA \frac{dT}{dx}$$

CONVECTION

- **Convection** is the mode of energy transfer between a solid surface and the adjacent liquid or gas that is in motion, and it involves the combined effects of *conduction* and *fluid motion*.
- Convection heat transfer depends on the fluid properties dynamic viscosity (μ), density (ρ), and fluid velocity (ν).

$$Q_{conv} = h A_s (T_s - T_{\infty})$$

This is also know as newton's law of cooling.

RADIATION

- Radiation is the energy emitted by matter in the form of electromagnetic waves as a result of the changes in the electronic configurations of the atoms or molecules.
- Heat transfer by radiation is fastest (at the speed of light).
- All bodies at a temperature above absolute zero (-273.15 °C) emit thermal radiation.

HEAT BALANCE

Heat Exchangers	Economizer	Furnace	PSH	Attemperator	FSH
Dominant Heat Transfer mode	Convection	Radiation	Radiation & Convection	Convection	Radiation & Convection
Types of Heat	Sensible Heat	Latent Heat	Sensible Heat	Sensible cooling	Sensible Heat
Heat gain formulae	$c_{Pl}(T_{out}-T_{inl})$	h_g-h_f	$c_{Pg}(T_{su}-T_s)$	$c_{Pg}(T_{su1}-T_{su2})$	$c_{Pg}(T_{spF}-T_{sp2})$
Calculation	4.18 (232-150) = 342.76 kj/kg	2798.6 - 1115.5 = 1683.1 kj/kg	2.1 (391-256) = 283.5 kj/kg	2.1 (391-354) = 77.7 kj/kg	2.1 (400-354) = 96.6 kj/kg

HEAT TRANSFER IN SCAPH

Heat Exchangers	SCAPH (FD)	SCAPH (SA)	
Dominant Heat Transfer mode	Convection	Convection	
Types of Heat	Latent Heat	Latent Heat	
Heat gain formulae	$h_g - h_f$	h_g-h_f	
Calculation	2743.4-622.5 = 2120.9 kj/kg	2743.4-622.5 = 2120.9 kj/kg	

PERFORMANCE PARAMETERS	DATA
	Rated capacity of the boiler
EVAPORATION CAPACITY	Top 5 Maximum TPH (steam) generation boiler using slop
	Decline graph between stoppage
	Rated capacity of boiler
SLOP BURNING RATE	Top 5 slop burning boiler in the world
	Ton of slop per ton of steam
	Type of supporting fuel
	GCV
SUPPORTING FUEL CONSUMPTION	Minimum consumption of supporting fuel Per ton of steam generation
	Minimum consumption of slop Per ton of steam generation 7/1/2021

PERFORMANCE PARAMETERS	DATA		
	No of days		
MEAN TIME B/W STOPPAGES	No of hours		
WIEAN TIME D/W STOFFAGES	Total steam generation b/w stoppages		
	Reason for stoppage		
AUXILIARY POWER CONSUMPTION	Specific power consumption (kWh per ton)		
	Slop consumption		
	Auxiliary Fuel consumption		
	Ultimate analysis of both fuels		
BOILER EFFICIENCY	Oxygen content in a flue gas		
DOILER EFFICIENCY	Temperature of inlet air and exhaust flue gases		
	Specific heat of flue gas		
	Unburnt carbon data in ash in different zone		
	CO in flue gas		

1) EVAPORATION CAPACITY

FOR DIAGNOSTIC OF EVAPORATION CAPACITY

Data Needed	Possible Source of Data	UOM
a) Draft profile	Manual , Log Book	mmWC
b) Flue gas temperature profile	Manual , Log Book	0C
c) Water and steam temperature profile	Manual, Log Book	⁰ C
d) Heating Surface Area	Manual	m^2
• Furnace	Manual	m^2
• FSH	Manual	m^2
• PSH	Manual	m ²
• EVA	Manual	m^2
• ECO	Manual	m^2

2) SLOP BURNING RATE

FOR DIAGNOSTIC OF SLOP BURNING RATE

Data Needed	Possible Source of Data	UOM
a) BRIX	Manual , Log Book	%
b) Slop Temperature in the tank	Manual , Log Book	⁰ C
c) Furnace temperature Before entering the slop into furnace	Manual , Log Book	⁰ C
d) Steam tracing		
e) Burning Rate	Manual , Log Book	TPH
f) Gun Cleaning History	N/A	Hours

3) SUPPORTING FUEL CONSUMPTION

COMPARISON OF SUPPORTING FUEL				
Data Needed	Possible Source of Data	UOM		
Type of supporting fuel	Manual, Daily Report	Numbers		
GCV of supporting fuel	Manual, SELF	kJ/kg		
Minimum consumption of supporting fuel Per ton of steam generation	Log Book	TON		
Minimum consumption of slop Per ton of steam generation	Log Book	TON		

4) AUXILIARY POWER CONSUMPTION

FOR DIAGNOSTIC OF AUXILIARY POWER CONSUMPTION

Data Needed	Possible Source of Data	UOM
a) All equipment rating	Manual , Log Book	kW
b) Energy meter reading Meter map	Log Book Physical inventory	kWh

5) BOILER EFFICIENCY

FOR DIAGNOSTIC OF BOILER EFFICIENCY

Data Needed	Possible Source of Data	UOM
a) Slop consumption	Manual(25.5TPH) , Log Book	TPH^{\prime
b) Auxiliary Fuel consumption	Daily Report	TPD 001 06
c) Ultimate analysis of both fuels	SELF	
d) Oxygen content in a flue gas	DCS & Log Book	kg
e) Temperature of inlet air and exhaust flue gases	DCS & Log Book	0C
f) Specific heat of flue gas	SELF	kJ/kg
g) Unburnt carbon data in ash in different zone	LAB	kg
h) CO in flue gas	N/A	kg

Heat Transfer Area Comparative

Heat	MANUAL DATA (75TPH)	MANUAL DATA (35TPH)	75TPH	35TPH
Exchanger	Surface Area (m²)	Surface Area (m²)	m ² /TPH	m ² /TPH
Furnace	1862	1106	24.82	31.6
SH	1448	924	19.3	26.4
EVA	472	238	6.29	6.8
ECO	3050	1386	40.67	39.6
TOTAL	6832	3654	91	104.4

With increase in capacity rating, specific heat transfer areas do get reduced. However, reduction in the Furnace and SH areas by over 26% looks very high.

		F	lue gas temp(ºC) d	rop in between	(75 TPH)	\rac{1}{1}
Date	Steam Generation (TPH)	Furnace & 2 pass	2 pass & PSH I/L	PSH I/L & Evap. I/L	Evap. I/L & Eco. I/L	Eco. I/L & Eco. O/L
		Before Maintenanc	e/cleaning		17	
03/3/2020 (15:48:47)	68.33	4	48	139	29	175
19/3/2020 (18:46:33)	69.44	-2	44	143	22	178
23/3/2020 (10:28:34)	70.53	-6	43	145	18	168.5
23/3/2020 (10:55:58)	70.1	-1	45	141	19	170.5
23/3/2020 (16:00:21)	70.46	-14	38	147	22	170.2
		After Maintenance	e/cleaning			
25/5/2020 (08:08:07)	70.53	-7	57	147	31	120.6
25/5/2020 (15:33:07)	70.46	31	51	136	32	116.8
25/5/2020 (17:29:31)	70.1	5	60	141	31	119.8
25/5/2020 (18:52:40)	69.44	-32	66	150	32	119.3
24/5/2020 (22:54:49)	68.33	-22	59	151	33	129.3

Wide fluctuation indicates furnace instability and possible secondary combustion. Temperature drop across eco has gone down Post cleaning

	Steam		Flue gas ten	np(°C) drop in betwe	een (35 TPH)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Date	Generation (TPH)	Furnace & 2 pass	nd 2 pass & PSH I/L	PSH I/L & Evap. I/L	Evap. I/L & Eco. I/L	Eco. I/L & Eco. O/L
		Befo	re Maintenance/clea	aning	170	
16/3/2020	34	116.3	44.8	95	2	142.6
22/3/2020	32.9	117.5	38.1	95.5	4.7	142.6
24/3/2020	32	80.6	42.1	98.1	9.1	143.7
25/3/2020	34.4	114.5	46.2	105.6	1.8	138.7
26/3/2020	34	112.4	60.5	107.7	4.6	148.8
		Afte	er Maintenance/clea	ning		
13-04-20	34.4	128.5	41.4	117.1	17.8	131.6
14-04-20	34	110.4	37.7	121.1	22.7	134.3
16-04-20	32	110.5	33.3	109.2	17.3	127.9
17-04-20	32.9	112.1	33.5	110	18.1	129
20-04-20	34	116.8	35.9	115.1	23.2	141

Shows that there has been Secular improvement Post cleaning. Marginal reduction in Eco drop can be explained. Improved performance of the evaporator post cleaning

COMPARISION OF TEMPERATURE DIFFERENCE B/W FURNACE & 2nd PASS

Temperature Difference B/W Furnace & 2 nd Pass					
Before Ma	intenance	After Ma	intenance		
75 TPH	35 TPH	75 TPH	35 TPH		
-6	116.3	-7	116.8		
-14	117.5	31	112.1		
-1	80.6	5	110.5		
-2	114.5	-32	128.5		
4	112.4	-22	110.4		

Rise in temperature in the 2nd pass indicates either instrument error or secondary Combustions or both

Flue gas temperature at exit comparison "After & Before Maintenance/Shut down".

UNBURNT & O2 AT BEST & WORST EFFICIENCY OF BOILER

FLUE GAS DRAFT PROFILE (BEFORE & AFTER MAINTENANCE)

FLUE GAS TEMPERATURE PROFILE (BEFORE & AFTER MAINTENANCE)

FLUE GAS TEMPERATURE PROFILE (75TPH)

FLUE GAS TEMPERATURE PROFILE (35TPH)

Water & Steam Temperature Profile (Before & After Maintenance)

7/1/2021

55

75 TPH Performance Parameters-summary

Date	Steam Generation (TPH)	Feed water Temp. (⁰ C)	Main Steam Temp. (° C)	Main Steam Pressure (kg/cm2)	Furnace Temp. (⁰ C)	Fuel Consumption (TPD)	Bagasse Moisture	Slop brix	GCV Of Bagasse (kcal/kg)	GCV of slop (kcal/kg)	Efficiency (%)
8/3/20	Max 74.1	148	404.2	40	580.3	Slop _{Min} =579 Bagasse _{Max} =420		56		1800	55.411
17/3/20	73.2	150	407.4	40.3	615.8	Slop = 645 Bagasse=360		57.5		1848	54.336
19/3/20	71.2	148	403.5	41	627	Slop _{Max} =648 Bagasse=360	49.7%	57.4	2272	1845	52.744
25/5/2020	70.53	144	398.6	40	546	Slop =638 Bagasse=336		57		1832	54.556
25/5/2020	Min 70.46	146	387.3	40.2	558	Slop =638 Bagasse _{Min} =336		53		1703	56.157

High rate of generation even under fouled condition indicates inbuilt over capacity. Scope for increasing slop consumption and reducing aux fuel

Calculated by direct method with enthalpy

35 TPH Performance Parameters-summary

Date	Steam Generation (TPH)	Feed water Temp. (⁰ C)	Main Steam Temp. (⁰ C)	Main Steam Pressure (kg/cm2)	Furnace Temp. (⁰ C)	Fuel Consumption (TPD)	Bagasse Moisture	Slop brix	GCV Of Bagasse (kcal/kg)	GCV of slop (kcal/kg)	Efficiency (%)
22/1/20 4:00	35.9	137.6	396.2	42.9	634.2	Slop = 295.2 Bagasse = 228.7		57.33		1840	50.94
01/4/20 21:00	35.4	143	398.8	43.3	635	Slop _{Max} = 299.52 Bagasse _{Max} = 253.2		56		1798.4	47.45
11/4/20 5:00	Max 36.5	136.9	401.8	43.9	636.8	Slop = 296.4 Bagasse =220	47.67%	57.80	2272	1856.29	51.44
12/4/20 6:00	36.1	137.5	401.8	42.3	644	Slop = 299 Bagasse = 225.12		54.70		1756.7	52.58
13/4/20	Min 35.1	146	401	43.1	597	$Slop_{Min} = 288.24$ $Bagasse_{Min} = 210$		56.50		1814.55	52.35

EFFICIENCY COMPARISION OF 75 TPH & 35 TPH BOILER

COMPARISION WITH PG TEST PERFORMANCE

		75	ТРН		35 TPH			
PARAMETERS	PG TEST REPORT	PG TEST η BY INDIRECT METHOD	PG TEST η BY DIRECT METHOD	η BY DIRECT METHOD	PG TEST REPORT	PG TEST η BY INDIRECT METHOD	PG TEST η BY DIRECT METHOD	η BY DIRECT METHOD
LOAD (TPH)	74.6	73.4	73.4	70.46	35.2	35.2	35.2	35.2
FUEL CONSUMPTION (TPD)	942.19	970	970	974	430.1	430.1	430.1	515.28
FLUE GAS TEMPERATURE ECO O/L (0C)	213.2	209	209	191.2	201.5	201.5	201.5	178.5
AUXILARY POWER (kWh)	15480	27390	27390	23960	317.5	317.5	708	708
UNBURNT (%)	9.65	9.65	9.65	9.53	9.2	9.2	9.1	9.1
O ₂ (%)	7.3	7.4	7.4	6.2	6.5	6.5	6.5	6.5
Efficiency (%)	63.57	59.5	58.57	(56.15)	(57.58)	61.5	60.31	52.58

Our initial assessment on lower efficiency is possibly related to bagasse accounting. Would require further study. We would also suggest that we must have two portable instruments-one flue gas analyser and a radiation thermometer. This would help us in better monitoring of the efficiency performance on a regular basis.

METER MAP

AUXILARY POWER CONSUMPTION

75 TPH						
Date	Auxiliary power (kWh/Day)	Steam generated (TPD)	Power/Steam (kWh/Ton)			
8/03/20	27230	1778.4	15.31			
17/03/20	26450	1756.8	15.05			
19/03/20	26770	1708.8	15.66			
25/05/20	23960	1692	14.16			

35 TPH \$ = 1							
Date	Auxiliary power (kWh/Day)	Steam generated (TPD)	Power/Steam (kWh/Ton)				
1/4/2020	17000	821.19	20.70				
2/4/2020	17000	805.79	21.09				
11/4/2020	17000	838.60	20.27				
13/4/2020	17000	804.64	21.12				

FUEL-MCQS

Q1) PH of slop is_____.

- a) 1 b) 3.9 c)7

Q2) Viscosity varies with temperature___

- a) Logarithmically b) Directly c) Inversely

Q3) Higher the moisture content lower will be_____.

- a) Calorific value b) combustion rate c) Both a) & b)

Q4) Impact of hardness on boiler_____.

- a) Form scale on water tubes b)decrease heat transfer rate, heat loss
- c) Both a) & b)

Q5) PH of slop is _____.

- a) Acidic b) Basic c) Neutral

COMBUSTION-MCQS

Q1) the resider	ce time ,	will be combusti	i <mark>on.</mark>				
a) Higher, more	b) higher , less	c) lower	, more				
Q2) Slop fired boiler has	veryreside	ence time,>	secs.				
a)High, 5	b) low , 10	c) high , 10					
Q3) Proper mixing of fue	el and oxygen	rate of con	nbustion.				
a) Increases	b) decreases	c) remains cor	nstant				
Q4) If temperature is	the ignition	n temperature the	e fuel will burn immediately.				
a) Below	b) equal	c) above					
Q5) Turbulence in terms of combustion refers to mixing of							
a) Fuel & fuel	b) fuel & air	c) air & air					

ASH-MCQS

- Q1) Potassium & sodium oxide creates problems like slagging & clinker due to _____ M.P.
- a) Low

b) high

- c) constant
- Q2) High content in ash would help in combating slagging problems.
- a) Mg

b) Ca

- c) Al
- Q3) Ash exhibit low fusibility temperature with higher slagging potential when its base/acid ratio is in range_
- a) 0.4-0.7
- b) 0.7-0.9
- c) 0.2-0.7
- Q4) % of ash is same in _____
- a) Bag filter & 2nd pass b) Eva, Eco & bag filter

c) 2nd pass & Eva, Eco

- Q5) Impact of MgO and CaO on boilers
- a) Prevent corrosion b) decrease heat transfer rate

c) Both a) & b)

MCQ HEAT TRANSFER

Q1) There are methods of heat transfer	r.
a) 4 b) 3 c) 2	
Q2) Conduction can take place in	
a) Solid, Liquid b) Liquid, Gas	c) Solid , Liquid , Gas
Q3) Convection is the mode of energy transfer by that is in motion.	etween solid surface and adjacent
a) Liquid Or Gas b) Solid or Liquid	c) Solid or Gas
Q4) is also known as Newton's Law of	cooling.
a) Convection b) Radiation	c) Conduction
Q5) is energy emitted by matter in form	n of electromagnetic waves.
a) Conduction b) Radiation	c) Convection

PERFORMANCE PARAMETERS-MCQS

- Q1) How many factors are required to determine performance parameters?
- a) 5

b) 6

- c) 4
- Q2) What is the unit of draft?
- a) Kg/cm
- b) MMWC
- c) N
- Q3) GCV of slop as 1654kcal/kg is calculated on what % of brix according to manual?
- a) 55%

b) 51.5%

- c) 52.6%
- Q4) What is the rated capacity of slop consumption as per manual?
- a) 26.5TPH
- b)27.5TPH
- c)25.5TPH

CONCLUSION

- This study has helped us in developing a better understanding of boilers in general and the physics, chemistry, engineering, operation and maintenance of slop fired boilers in particular
- In the process, we have also identified few performance enhancement possibilities
- We would consider it a privilege should we get opportunity to participate in our group's program for improving boiler performance
- We would also look forward to get similar learning opportunities in different technical areas of operation of the sugar, chemical and cogeneration facilities.

We Are Thankful To All Our Seniors And Colleagues For The Help Extended For The Study

YS726507@GMAIL.COM