IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A method of manufacturing an active matrix pixel device comprising a thin film transistor (10) which includes a polycrystalline silicon channel (15) and doped source/drain regions (16,17), and a PIN diode (12) which includes a p-type doped region (26) and an n-type doped region (24) separated by an amorphous silicon intrinsic region (25), the method including the steps of:
- (a) forming a plurality of polycrystalline silicon islands on a substrate (14), one of which providing the transistor channel (15), and source/drain regions (16,17); and then,
- (b) depositing and patterning a layer of amorphous silicon to provide the intrinsic region (25) of the PIN diode (12) such that the intrinsic region overlies and contacts at least a part of one of the polycrystalline silicon islands which provides one of the p-type or n-type doped regions.
- 2. (original) A method according to Claim 1, wherein the source/drain regions (16,17) and said one of the p-type or n-type doped regions (26,24) of the PIN diode are provided by the same polycrystalline silicon island.

- 3. (currently amended) A method according to claims 1 or 2claim 1, wherein the source/drain regions are doped n-type, and wherein the method further comprises the steps of:
- (c) depositing and patterning a layer of aluminium to define a top PIN diode contact (40) on the intrinsic region (25) of the PIN diode;
- (d) annealing the top PIN diode contact to cause aluminium ions to diffuse into the underlying intrinsic region to form the ptype doped region (26).
- 4. (original) A method according to claim 3, further comprising the step of:
- (e) etching away part of the top PIN diode contact (40) so as to expose the PIN diode to input light (100).
- 5. (original) An active matrix pixel device comprising a plurality of polycrystalline silicon islands supported by a substrate (14), one of the islands providing a channel (15) and doped source/drain regions (16,17) of a thin film transistor (10), the device further comprising a PIN diode (12) which includes a ptype doped region (26) and an n-type doped region (24) separated by an amorphous silicon intrinsic region (25), wherein the intrinsic

region overlies and contacts at least a part of one of the polycrystalline silicon islands which provides one of the p-type or n-type doped regions.

- 6. (original) An active matrix pixel device according to Claim 5, wherein the source/drain regions (16,17) and said one of the p-type or n-type doped regions (26,24) of the PIN diode are provided by the same polycrystalline silicon island.
- 7. (currently amended) An active matrix pixel device according to Claim 5—or—6, wherein both the p-type and n-type doped regions of the PIN diode are provided by respective ones of the polycrystalline silicon islands.
- 8. (original) An active matrix pixel device according to Claim 7, further comprising a second thin film transistor (10b) having doped source/drain regions (16b,17b) provided by one of the islands, the doped source/drain regions (16b,17b) being of an opposite conductivity type to those of the first transistor (16a,17a), wherein the n-type doped region (24) of the PIN diode is provided by a doped source/drain region (17a) of one transistor and the p-type doped region (26) of the PIN diode is provided by a doped source/drain region (16b) of the other transistor.

- 9. (currently amended) An active matrix pixel device according to Claim 7—or 8, wherein a transparent conductive gate (30) overlies the intrinsic region (25) of the PIN diode separated therefrom by an insulating layer (18), the gate serving to apply a voltage to the intrinsic region so as to control the conductivity between the n-type and p-type doped regions.
- 10. (currently amended) An active matrix pixel device according to any one of Claims 5 to 7claim 5, wherein the transistor further comprises a gate electrode (20) which serves to control the current through the channel, and wherein the amorphous silicon intrinsic region of the PIN diode overlies the gate electrode.
- 11. (currently amended) An active matrix electroluminescent display device according to any preceding claim 1, wherein the PIN diode serves to measure the light intensity output (100) from an associated display element and supply a signal to drive circuitry connected thereto to enable modulation of the light output in accordance with the measured light intensity.