Metody Numeryczne Projekt 2 - Układy równań liniowych

Informatyka Semestr IV Grupa 2

Hejmanowski, Szymon s184487

10 maja 2022

1 Wstęp

Tematem poniższego sprawozdania jest rozwiązywania ukłdów równań liniowych za pomocą metod numerycznych. Implementacja¹, i analiza dotyczy konkretnie dwóch metod iteracyjnych: **Jacobiego** i **Gaussa-Seidla**, oraz jednej metody bezpośredniej: **faktoryzacji LU**.

2 Zadania

Zadanie A

Dane dla indeksu: 184487: a1=5+e=9 a2=a3=-1 N=9cd=987 n-ty element wektoru $\mathbf{b}=sin(n*(f+1))=sin(n*5)$ $threshold=10^{-9}$

¹W języku Python.

$$\text{Macierz dla powyższych danych: } A = \begin{bmatrix} 9 & -1 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 9 & -1 & -1 & 0 & \cdots & 0 \\ -1 & -1 & 9 & -1 & -1 & \cdots & 0 \\ 0 & -1 & -1 & 9 & -1 & \cdots & 0 \\ 0 & 0 & -1 & -1 & 9 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & -1 & -1 & 9 \end{bmatrix}$$

Zadanie B

	Jacobi	Gauss-Siedle
Liczba iteracji	32	21
Czas wykonania	5 sek 861 ms	4 sek 880 ms

Tabela 1: Porównanie dwóch metod iteracyjnych.

Z porównania (*Tabela 1*) możemy wywnioskować, że dla wprowadzonych danych metoda Gaussa-Seidla potrzebuje mniej iteracji oraz wykonuje się szybciej niż metoda Jacobiego.

Zadanie C

Dla danych a1 = 3, a2 = a3 = -1 i N = 987, metody iteracyjne nie zbiegają się. Wynika to ze zmian normy² z wektora residuum (Tabela 2).

Nr. iteracji	Norma z wektora residuum	
ivi. neracji	Jacobi	Gauss-Seidel
1	4.3 * 10	6.3 * 10
50	$5.5 * 10^7$	$3.4 * 10^{16}$
100	$9.6 * 10^{13}$	$3.6 * 10^{31}$
150	$1.7 * 10^{20}$	$3.9*10^{46}$
200	$2.9*10^{26}$	$4.1 * 10^{61}$

Tabela 2: Norma z wektora residuum w kolejnych iteracjach.

Powyższy układ równań pokazuje, że nie w każdym przypadku możliwe jest wykorzystanie metod iteracyjnych. W takiej sytuacji musimy zastosować metodę bezpośrednią jaką jest faktoryzacja LU.

Zadanie D

Faktoryzacja LU pozwala rozwiązać dowolny układ równań - w przeciwnieństwie do metod iteracyjnych. Jest ona jednak zauważalnie wolniejsza. Dla układu równań z

²Przyjęta została norma euklidesowa.

zadania C: $norm(res) = 8.56 * 10^{-13}$. Jest to bardzo zadowalająca dokładność. Dla porównania, wektor rozwiązań dla metod iteracyjnych przyjmowaliśmy za wystarczająco dokładny, gdy norma z residuum wynosiła 10^{-9} .

Zadanie F

Podsumowując, dla układów równań z wieloma niewiadomymi badane metody iteracyjne są znacząco szybsze od metody bezpośredniej - faktoryzacji LU, jednak można je stosować tylko do odpowiednich układów równań. Metoda Gaussa-Seidla wykorzystując dodatkowo przybliżenia niewiadomych obliczone w danej iteracji zyskuje przewagę nad metodą Jacobiego zarówno pod względem liczby iteracji potrzebnych do obliczenia wyniku, jak i pod względem złożoności czasowej. Metody te mają również inne założenia dotyczące układu równań, więc powinniśmy zwracać uwagę na to, którą z nich wybieramy do danego problemu.

Zadanie E

Rysunek 1: Czas wykonywania obliczeń w zależności od ilości niewiadomych.