Matematyka

Bartosz Świst

2025-02-25

Rozdział 1

Geometria

Definicja. Symetralna odcinka to prosta prostopadła do odcinka dzieląca go na dwie równe części.

Twierdzenie 1.1. Symetralna odcinka jest zbiorem punków płaszczyzny równoodległych od końców tego odcinka.

Definicja. Dwusieczna kąta to półprosta o początku w wierzchołku kąta dzieląca go na dwa kąty równe.

Twierdzenie 1.2. Dwusieczną kąta wypukłego jest zbiór punktów równoodległych od ramion tego kąta.

$$\alpha_{1} = \gamma_{1}
\beta_{1} = \delta_{1}
\alpha_{2} = \gamma_{2}
\beta_{2} = \delta_{2}$$
kąty
wierzchołkowe

(1.1)

$$\alpha_{1} = \alpha_{2}
\beta_{1} = \beta_{2}
\gamma_{1} = \gamma_{2}
\delta_{1} = \delta_{2}$$
kąty
odpowiadające
$$(1.2)$$

$$\begin{array}{c} \alpha_2 = \gamma_1 \\ \delta_2 = \beta_1 \end{array} \right\} \begin{array}{c} \text{katy naprzemianlegle} \\ \text{wewnetrzne} \end{array}$$

$$\alpha_1 = \gamma_2
\delta_1 = \beta_2$$
 kąty naprzemianiegłe zewnętrzne (1.4)

Twierdzenie 1.3 (Twierdzenie Talesa).

1.1 Geometria trójkatów

Twierdzenie 1.4 (Twierdzenie Pitagorasa). Jeżeli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych.

$$c^2 = a^2 + b^2 (1.5)$$

Twierdzenie 1.5. W dowolnym trójkącie odcinek łączący środki dwóch boków jest równoległy do boku trzeciego i jego długość jest równa połowie długości boku trzeciego.

$$DE \parallel AB$$

$$|DE| = \frac{1}{2}|AB| \tag{1.6}$$

Twierdzenie 1.6 (Twierdzenie sinusów). W dowolnym trójkącie iloraz długości dowolnego boku i sinusa kąta naprzeciw tego boku jest stały i równy długości średnicy okręgu opisanego na tym trójkącie.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R \tag{1.7}$$

Twierdzenie 1.7 (Twierdzenie cosinusów). W dowolnym trójkącie kwadrat długości dowolnego boku jest równy różnicy sum kwadratów długości dwóch pozostałych boków oraz iloczynu tych długości i cosinusa kąta zawartego między tymi bokami.

$$c^2 = a^2 + b^2 - 2ab\cos\gamma (1.8)$$

Definicja. Wysokością trójkąta nazywamy odcinek łączący wierzchołek z prostą zawierającą przeciwległy bok.

Twierdzenie 1.8. W dowolnym trójkącie wysokości lub ich przedłużenia przecinają się w jednym punkcie. Ten punkt to ortocentrum.

Definicja. Środkową trójkąta nazywamy odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku.

Twierdzenie 1.9. W dowolnym trójkącie jego środkowe przecinają się w jednym punkcie, który dzieli każdą z nich w stosunku 1:2. Ten punkt to środek ciężkości trójkąta.

Twierdzenie 1.10. W dowolnym trójkącie dwusieczna kąta dzieli przeciwległy bok na odcinki, których długość jest proporcjonalna do długości pozostałych boków.

$$\frac{|AC|}{|CD|} = \frac{|AB|}{|BD|} \tag{1.9}$$

Twierdzenie 1.11. Środek okręgu opisanego na danym trójkącie jest punktem przecięcia symetralnych boków trójkąta.

Twierdzenie 1.12. Środek okręgu wpisanego w dany trójkąt jest punktem przecięcia dwusiecznych kątów trójkąta.

1.1.1 Wzory na pole trójkąta

$$P = \frac{1}{2}ah\tag{1.10a}$$

$$P = \frac{1}{2}ab\sin\gamma\tag{1.10b}$$

$$P = \frac{abc}{4R} \tag{1.10c}$$

$$P = \frac{1}{2}Lr \tag{1.10d}$$

$$P = \sqrt{p(p-a)(p-b)(p-c)}$$
 gdzie: $p = \frac{a+b+c}{2}$ (1.10e)

1.2 Geometria okręgów

Twierdzenie 1.13. Jeżeli przez punkt P, którego odległość od środka danego okręgu jest większa niż promień, poprowadzimy styczną do okręgu w punkcie A i sieczną przecinającą okrąg w punktach B i C, to:

$$|PA|^2 = |PB| \cdot |PC| \tag{1.11a}$$

Twierdzenie 1.14. Jeżeli dwie proste przetną okrąg odpowiednio w punktach A i B oraz C i D, a także przecinają się w punkcie P, którego odległość od środka danego okręgu jest większa niż promień, to:

$$|PA| \cdot |PB| = |PC| \cdot |PD| \tag{1.11b}$$

Twierdzenie 1.15. *Jeżeli cięciwy AB i CD okręgu przecinają się w punkcie P, to:*

$$|PA| \cdot |PB| = |PC| \cdot |PD| \tag{1.11c}$$

1.3 Geometria czworokątów

Twierdzenie 1.16. Środek okręgu opisanego na czworokącie jest punktem przecięcia się jego symetralnych.

$$\alpha + \gamma = \beta + \delta = 180^{\circ} \tag{1.12}$$

Twierdzenie 1.17. Środek okręgu wpisanego w czworokąt jest punktem przecięcia się dwusiecznych jego kątów.

1.3.1 Wzór na pole dla dowolnego czworokąta

$$P = \frac{1}{2}ef\sin\gamma\tag{1.14}$$

1.4 Szczególne figury geometryczne

1.4.1 Trójkąt prostokątny

$$h = \sqrt{c_1 \cdot c_2} \tag{1.15a}$$

$$s = \frac{1}{2}c\tag{1.15b}$$

$$r = \frac{a+b-c}{2} \tag{1.15c}$$

1.4.2 Trójkąt równoboczny

$$h = \frac{a\sqrt{3}}{2} \tag{1.16a}$$

$$s = h \tag{1.16b}$$

$$r = \frac{1}{3}h = \frac{a\sqrt{3}}{6} \tag{1.16c}$$

$$r + R = h \tag{1.16d}$$

1.4.3 Kwadrat

$$P = a^2 = \frac{d^2}{2} \tag{1.17a}$$

$$R = \frac{1}{2}d = \frac{1}{2}a\sqrt{2} \tag{1.17b}$$

$$r = \frac{1}{2}a\tag{1.17c}$$

1.4.4 Prostokąt

$$P = ab = \frac{1}{2}d^2\sin\gamma\tag{1.18}$$

1.4.5 Romb

$$P = ah = a^2 \sin \alpha = \frac{ef}{2} \tag{1.19}$$

1.4.6 Równoległobok

$$P = ah_a = ab\sin\alpha \tag{1.20}$$

1.4.7 Trapez

$$P = \frac{(a+b) \cdot h}{2} \tag{1.21}$$

1.4.8 Trapez równoramienny

1.4.9 Deltoid

Rozdział 2

Trygonometria

$$\sin \alpha = \frac{b}{c} \qquad \qquad \operatorname{tg} \alpha = \frac{b}{a}$$

$$\cos \alpha = \frac{a}{c} \qquad \qquad \operatorname{ctg} \alpha = \frac{a}{b}$$

$$(2.1)$$

	0°	30°	45°	60°	90°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-
$\operatorname{ctg} \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

2.1 Zależności trygonometryczne

$$\sin(90^{\circ} - \alpha) = \cos \alpha$$

$$\cos(90^{\circ} - \alpha) = \sin \alpha$$

$$\tan(90^{\circ} - \alpha) = \cot \alpha$$
(2.2)

$$\operatorname{ctg}(90^{\circ} - \alpha) = \operatorname{tg}\alpha$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$$
(2.3)

$$\sin^2 \alpha + \cos^2 \alpha = 1 \tag{2.4a}$$

$$tg \alpha \cdot ctg \alpha = 1 \tag{2.4b}$$

2.2 Funkcje trygonometryczne dowolnego kąta

Rozdział 3

Analiza matematyczna

- 3.1 Granica funkcji w punkcie
- 3.1.1 Działania na granicach

$$\lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x)$$

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

3.1.2 Granica funkcji wielomianowej

$$\lim_{x \to a} W(x) = W(a)$$

3.1.3 Granice jednostronne

$$\lim_{x \to x_0} f(x) = g \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = g$$

3.1.4 Granice niewłaściwe

$$\lim_{x \to x_0} f(x) = \pm \infty$$

3.2 Ciągłość funkcji

Twierdzenie 3.1. Funkcje wielomianowe, wymierne, potęgowe, wykładnicze, logarytmiczne i trygonometryczne oraz ich sumy, różnice, iloczyny i ilorazy są ciągłe w każdym punkcie, w którym są określone.

Twierdzenie 3.2 (Twierdzenie Darboux). Jeśli funkcja f jest ciągła w przedziale domkniętym $\langle a,b \rangle$ oraz $f(a) \cdot f(b) < 0$, to istnieje taka liczba $c, c \in \langle a,b \rangle$, dla której f(c) = 0.

3.3 Pochodna funkcji

3.3.1 Pochodna funkcji w punkcie

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x)}{h}$$

3.3.2 Wybrane wzory pochodnych

$$(c)' = 0$$

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(x^n)' = n \cdot x^{n-1}$$

3.3.3 Działania na pochodnych

$$[c \cdot f(x)]' = c \cdot f'(x)$$
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$$

3.3.4 Pochodne funkcji złożonych

$$(g \circ f)(x) = g(f(x))$$
$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

3.3.5 Pochodna a monotoniczność funkcji

Twierdzenie 3.3. Niech funkcja f ma pochodną w przedziale (a,b). Jeżeli dla każdego $x \in (a,b)$:

- f'(x) > 0, to f jest rosnąca w(a,b),
- f'(x) < 0, to f jest malejąca w(a, b),
- f'(x) = 0, to f jest stała w(a, b)

Twierdzenie 3.4. Jeżeli funkcja f jest ciągła w przedziale $\langle a,b \rangle$ oraz rosnąca lub malejąca w przedziale (a,b), to jest też rosnąca lub malejąca w przedziale $\langle a,b \rangle$.

3.4 Styczna do wykresu funkcji

$$y = f'(x_0)(x - x_0) + f(x_0)$$
$$tg \alpha = f'(x_0)$$

dla punktu $P(x_0, f(x_0))$