Chapitre 1 : second degré

1 Fonctions polynômes du second degré

1.1 Forme développée et forme canonique

Définition 1 (Fonction polynôme du second degré)

Une fonction f définie sur \mathbb{R} est appelée **fonction polynôme du second degré** s'il existe $a, b, c \in \mathbb{R}$ des réels avec $a \neq 0$ et tels que, pour tout réel $x \in \mathbb{R}$, on ait

$$f(x) = ax^2 + bx + c.$$

Définition 2 (Forme développée et coefficients)

Soit f une fonction polynôme du second degré définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c,$$

où $a,b,c \in \mathbb{R}$ sont des réels et où $a \neq 0$. Lorsque la fonction f est écrite sous cette forme, on parle de forme développée. Les réels a, b, et c sont appelés les **coefficients** de f.

Exemple 1

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = x^2 + 2x + 1.$$

La fonction f est une fonction polynôme du second degré, donnée sous forme développée. Ses coefficients a, b, et c valent

c =

$$a = b =$$

Le graphe de la fonction f est donné ci-dessous.

Exemple 2

Les fonctions suivantes sont-elles des fonctions polynômes du second degré? Si oui, donner leurs coefficients a, b, c dans l'expression $ax^2 + bx + c$.

1. La fonction f_1 définie sur \mathbb{R} par $f_1(x) = -x^2 - x + 10$.

- 2. La fonction f_2 définie sur \mathbb{R}_+ par $f_2(x) = x^2 + \sqrt{x} 1$.
- 3. La fonction f_3 définie sur \mathbb{R} par $f_3(x) = x^2$.
- 4. La fonction f_4 définie sur \mathbb{R} par $f_4(x) = x + 2$
- 5. La fonction f_5 définie sur \mathbb{R} par $f_5(x) = x(x+1)$.
- 6. La fonction f_6 définie sur \mathbb{R} par $f_6(x) = 0$.

Propriété 1

Soit f une fonction polynôme du second degré définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c.$$

Alors f peut s'écrire sous la forme

$$f(x) = a(x - \alpha)^2 + \beta,$$

et on a $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$. Cette forme s'appelle la **forme canonique** de f.

 $D\acute{e}monstration.$ Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c,$$

avec $a,b,c \in \mathbb{R}$ trois réels et $a \neq 0$. Comme on a $a \neq 0$, on peut écrire, pour tout $x \in \mathbb{R}$, que

$$f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right).$$

Puis on remarque que les termes $x^2 + \frac{b}{a}x$ forment le début du développement de

$$\left(x + \frac{b}{2a}\right)^2 =$$

On peut donc écrire que

$$\left(x^2 + \frac{b}{a}x\right) =$$

puis que

$$f(x) = a\left(\begin{array}{c} \\ \end{array}\right)$$

En mettant sur le même dénominateur, on remarque que

$$-\left(\frac{b}{2a}\right)^2 + \frac{c}{a} =$$

= .

On retrouve alors

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + a \times \frac{-b^2 + 4ac}{4a^2}$$
$$= a\left(x + \frac{b}{2a}\right)^2 + \frac{-b^2 + 4ac}{4a}$$
$$= a\left(x - \alpha\right)^2 + \beta,$$

où $\alpha = \frac{-b}{2a}$ et où $\beta = \frac{-b^2 + 4ac}{4a}$. De plus, on a aussi

$$f(\alpha) = a(\alpha - \alpha)^2 + \beta = a \times 0 + \beta = \beta.$$

Exemple 3

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = x^2 + 2x + 1.$$

La forme canonique de f est

$$f(x) = (x+1)^2.$$

En effet, on a dans ce cas

$$a =$$

$$\alpha =$$

$$\beta =$$

1.2 Variations et représentation graphique

Propriété 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, de forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

x	$-\infty$	α	$+\infty$
f(x)		\searrow_{β}	/

Si a < 0

x	$-\infty$	α	$+\infty$
f(x)		β \	•

La fonction f est strictement décroissante sur $]-\infty,\alpha]$, strictement croissante sur $[\alpha,+\infty[$, et f admet comme minimum β en α .

La fonction f est strictement croissante sur $]-\infty,\alpha]$, strictement décroissante sur $[\alpha,+\infty[$, et f admet comme maximum β en α .

Définition 3 (Parabole)

La courbe représentative d'une fonction polynôme du second degré est appelée une parabole.

Exemple 4

Reprennons l'exemple de la fonction polynôme du second degré définie sur $\mathbb R$ par

$$f(x) = x^2 + 2x + 1.$$

On a

$$a = 1$$

$$b=2$$

$$c = 1$$
.

On peut donc calculer

$$\alpha =$$

puis on retrouve β :

$$\beta =$$

On retombe bien sur la forme canonique

$$f(x) = a(x - \alpha)^2 + \beta =$$

— La fonction est strictement décroissante sur

- La fonction est strictement croissante sur
- Elle admet comme minimum ... en

Propriété 3

Soit f une fonction polynôme du second degré définie sur $\mathbb R$ par sa forme canonique

$$f(x) = a(x - \alpha) + \beta.$$

Alors f est représentée par une parabole dont le sommet a pour coordonnées (α, β) .

Exemple 5

La fonction définie par $f(x) = (x+1)^2$ de l'exemple précédent admet une parabole dont le sommet est le point (-1,0).

2 Équations du second degré

2.1 Définitions

Définition 4 (Équation du second degré)

Une équation du second degré à coefficients réels est une équation de la forme

$$ax^2 + bx + c = 0,$$

avec $a,b,c \in \mathbb{R}$ trois réels et $a \neq 0$.

Définition 5 (Racines d'une équation)

Les solutions de l'équation du second degré $ax^2 + bx + c = 0$ sont appelées les **racines** du trinôme $ax^2 + bx + c$. De la même manière, on parle de racine pour le polynôme défini par $f(x) = ax^2 + bx + c$

Exemple 6

L'équation $2x^2 - x + 3 = 0$ est une équation du second degré avec

$$a =$$

$$b =$$

$$c =$$

Exemple 7

L'équation $x^2 - 2 = 0$ est une équation du second degré avec a = 1, b = 0, c = -2. Cette équation admet deux racines :

Remarque

Les racines de l'équation du second degré $ax^2 + bx + c = 0$ correspondent aux abcisses des points où la courbe représentative de la fonction f définie par $f(x) = ax^2 + bx + c$ passe par l'axe des abcisses. Ci-dessous l'exemple de $x^2 - 1 = 0$.

Définition 6 (Racine d'une fonction polynôme)

Soit f la fonction polynôme définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c.$$

On dit que la valeur x_0 est une **racine** de f si

$$f(x_0) = 0.$$

2.2 Résolution des équations du second degré dans $\mathbb R$

On va maintenant apprendre à résoudre dans \mathbb{R} les équations du second degré, c'est-à-dire à trouver des solutions réelles à nos équations.

Définition 7 (Discriminant)

Le discriminant du trinôme $ax^2 + bx + c$, noté Δ (delta majuscule), est le nombre

$$\Delta = b^2 - 4ac.$$

Propriété 4

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme $ax^2 + bx + c$.

- Si $\Delta < 0$, alors l'équation $ax^2 + bx + c = 0$ n'a pas de solutions dans \mathbb{R} .
- Si $\Delta = 0$, alors l'équation $ax^2 + bx + c = 0$ a une unique solution

$$x_0 = \frac{-b}{2a}.$$

On dit que x_0 est racine double du trinôme.

— Si $\Delta > 0$, alors l'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

 $D\acute{e}monstration$. Soit f la fonction polynôme du second degré définie sur \mathbb{R} par

$$f(x) = ax^2 + bx + c.$$

On a vu au cours de la démonstration concernant la forme canonique que l'on pouvait écrire

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}.$$

En raisonnant par équivalence, on a ainsi

$$f(x) = 0 \iff a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} = 0$$
$$\iff a\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a}$$
$$\iff \left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}.$$

On peut alors différencier plusieurs cas.

Premier cas : $\Delta < 0$. Dans ce cas on a $\frac{\Delta}{4a^2} < 0$. Mais on a aussi $\left(x + \frac{b}{2a}\right)^2 \ge 0$ car un carré est toujours positif ou nul. L'équation n'a donc pas de solution.

Deuxième cas : $\Delta = 0$. Dans ce cas l'équation devient

$$f(x) = 0 \iff \left(x + \frac{b}{2a}\right)^2 = 0$$
$$\iff \left(x + \frac{b}{2a}\right) = 0$$
$$\iff x = \frac{-b}{2a}.$$

L'équation a donc une unique solution, donnée par $x_0 = \frac{-b}{2a}$.

Troisième cas : $\Delta > 0$. Cette fois-ci on a

$$f(x) = 0 \iff \left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$

$$\iff \left(x + \frac{b}{2a}\right)^2 = \left(\frac{\sqrt{\Delta}}{2a}\right)^2$$

$$\iff x + \frac{b}{2a} = \frac{\sqrt{\Delta}}{2a} \text{ ou } x + \frac{b}{2a} = -\frac{\sqrt{\Delta}}{2a}$$

$$\iff x = -\frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \text{ ou } x = -\frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}.$$

Et on obtient finalement deux solutions distinctes, données par

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exemple 8

Considérons l'équation du second degré

$$x^2 + 2x - 3 = 0$$
.

On a ici a = 1, b = 2, c = -3. On commence par calculer le discriminant de cette équation, on

obtient

$$\Delta =$$

On est dans le cas où $\Delta > 0$ et on sait qu'on a ainsi deux solutions distinctes :

$$x_1 =$$

et

$$x_2 =$$

L'ensemble des solutions de l'équation est donc $\mathscr{S} =$

3 Propriétés d'un trinôme $ax^2 + bx + c$

3.1 Factorisation

Propriété 5 (admise)

Soit f une fonction polynôme du second degré définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c.$$

- Si $\Delta > 0$, alors $f(x) = a(x x_1)(x x_2)$ où x_1 et x_2 sont les racines de f.
- Si $\Delta = 0$, alors $f(x) = a(x x_0)^2$ où x_0 est la racine double de f.
- Si $\Delta < 0$, alors la fonction f ne peut pas s'écrire comme un produit de deux polynômes de degré 1.

Exemple 9

On a vu précédemment que la fonction f définie par

$$f(x) = x^2 + 2x - 3$$

avait pour discriminant $\Delta = 16$ et pour racines $x_1 = -3$ et $x_2 = 1$. Cela signifie que l'on peut aussi écrire f sous la forme factorisée

$$f(x) =$$

3.2 Somme et produit de racines

Propriété 6 (admise)

Soit $a,b,c \in \mathbb{R}$ et soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par

$$f(x) = ax^2 + bx + c,$$

dont le discriminant est strictement positif. La fonction f a alors deux racines distinctes x_1 et x_2 et on a

$$x_1 + x_2 = \frac{-b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$.

3.3 Signe d'une fonction polynôme du second degré

Propriété 7 (admise)

Soit f une fonction polynôme du second degré définie sur $\mathbb R$ par

$$f(x) = ax^2 + bx + c,$$

de déterminant Δ .

- Si $\Delta < 0$, alors pour tout réel $x \in \mathbb{R}$, f(x) est du signe de a. Si $\Delta = 0$, alors pour tout réel $x \neq \frac{-b}{2a}$, f(x) est du signe de a, et $f(\frac{-b}{2a}) = 0$. Si $\Delta > 0$, alors on a les tableaux de signe suivants.

Si a > 0

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		+	0	_	0	+	

 $Si\ a < 0$

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		_	0	+	0	_	

On peut retenir que dans ce cas, f est du signe de a, sauf entre ses racines.

Exemple 10

On peut reprendre la fonction f définie sur \mathbb{R} par

$$f(x) = x^2 + 2x - 3.$$

On a vu que le déterminant de f vaut 16 et que les deux racines de f sont données par $x_1 = -3$ et $x_2 = 1$. On a ainsi le tableau de signe suivant.

x	$-\infty$		-3		1		$+\infty$
f(x)		+	0	_	0	+	

Et, en effet, cela concorde avec la représentation graphique de f donnée ci-dessous.

