

ЭТИКЕТКА

$\underline{\text{УП3.487.311 ЭТ}}$ Микросхема интегральная 564 ИР1В Функциональное назначение – 18-ти разрядный статический сдвигающий регистр

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход 1-го разряда	8	Выход 17-го разряда
2	Свободный	9	Выход 18-го разряда
3	Тактовый вход	10	Выход 13-го разряда
4	Вход 5-го разряда	11	Выход 8-го разряда
5	Вход 10-го разряда	12	Выход 9-го разряда
6	Вход 14-го разряда	13	Выход 4-го разряда
7	Общий	14	Питание, U _{u.n.}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
типменовиние нириметри, единици измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, 10 B	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B$ $U_{CC} = 10 \; B$	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B	U _{OH min}	4,2 9,0	-
5. Выходной ток низкого уровня, мА, при: $U_{CC} = 5~B,U_{OL} = 0.5~B$ $U_{CC} = 10~B,U_{OL} = 0.5~B$	I_{OL}	0,5 1,0	-
6. Выходной ток высокого уровня, мА, при: $U_{CC}=5~B,~U_{OH}=4,5~B$ $U_{CC}=10~B,~U_{OH}=9,5~B$	І _{ОН}	/-0,5/ /-1,0/	-
7. Входной ток низкого уровня, мкА, при: U_{CC} = 15 В	$I_{\rm IL}$	-	/-0,1/

Продолжение таблицы 1				
1	2	3	4	
8. Входной ток высокого уровня, мкА, при:	т		0.1	
$U_{CC} = 15 B$	I_{IH}	-	0,1	
9. Ток потребления (в статическом режиме), мкА, при:				
$U_{CC} = 5 B$	T	-	0,5	
$U_{CC} = 10 B$	I_{CC}	-	1,0	
$U_{CC} = 15,0 \text{ B}$		-	20,0	
10. Максимальная частота следования импульсов тактового сигнала, МГц, при:				
$U_{CC} = 5 \text{ B}, C_L = 15 \Pi \Phi$		1,5	-	
$U_{CC} = 5 \text{ B}, C_L = 50 \Pi\Phi$	f _{C max}	1,5	-	
$U_{CC} = 10 \text{ B}, C_L = 15 \text{ m}\Phi$		3,0	-	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		3,0	-	
11. Время задержки распространения при включении (выключении), нС, при:				
$U_{CC} = 5 \text{ B}, C_L = 15 \text{ m}\Phi$	t_{PHL}	-	400	
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	(t_{PLH})	-	600	
$U_{CC} = 10 \text{ B}, C_L = 15 \text{ m}\Phi$		-	200	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	300	
12. Время перехода при включении (выключении), нС, при:				
$U_{CC} = 5 B, C_L = 15 \pi \Phi$	t_{THL}	-	160	
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	(t _{TLH})	-	200	
$U_{CC} = 10 \text{ B}, C_L = 50 \Pi\Phi$		-	100	
13. Максимальная длительность фронтов импульсов тактового сигнала, мкС, при:	t _{TLH} , c			
$U_{CC} = 5 B$	t _{THL} , c	15	-	
$U_{CC} = 10 B$	-1112)	5	-	
14. Минимальное время установки, нС, при:				
$U_{CC} = 5 B$	$t_{ m SU\;min}$	-	80	
$U_{CC} = 10 B$		-	40	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ,
в том числе:	
золото	г/мм
на 14 выводах, длиной	MM.
Цветных металлов не солержится.	

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

Гамма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T _{см}) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4	CDET	ЕНИЯ	\sim	TIDIII	MICT
4	СВЕЛ	ниия	()	прин	IVIK F

Микросхемы 564 ИР1В соответствуют техническим условиям бК0.347.064 ТУ26 и признаны годными для эксплуатации.

Приняты по	(извещение, акт и др.)	OT _	(дата)	_	
Место для шт			(дата)	Место для ш	тампа ВП
Место для шт	ампа «Перепроверка і	произв	едена	(дата)	»
Приняты по	(извещение, акт и др.)	_ OT	(дата)	_	
Место для ш	гампа ОТК			Место для ш	тампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.