CS 440 Introduction to Artificial Intelligence

Lecture 19:

Partially Observable Markov Decision Processes

March 31, 2020

Hidden Markov Model Example 2

- Food at corner of grid
 - Don't know where food is
 - And has .3 probability of moving towards food and .1 probability of moving away

	.1		
.1		3	
	.3		

- Agent cannot directly observe state of environment
 - Observations agent makes are limited and noisy
- Agent's actions can influence state of environment
- Results of actions not deterministic
 - Defined by probability distribution

- State space S
 - Agent does not know what state it is in
- Set of actions A
 - Actions can be noisy
 - Results of actions a probability distribution over other states
- Transition function T(s,a,s')
 - T(s,a) result of taking action a while in state s
 - Noisy actions:
 - T(s,a) is a probability distribution over state space
 - $T(s,a) = \{p(s'_1), p(s'_2), ..., p(s'_n)\}$
 - where p(s',) is the probability that performing action a while in state s
 will result in state s'
 - Defined for all combinations of $s \in S$, $a \in A$
- Reward function R
- Immediate objective: Agent must determine what action to take in order to maximize future expected reward

- Robot (blue) can only see region inside of red circle
 - Needs to localize
 - Needs to find path to goal

environment

What robot sees

Where is the robot located?

- Belief defined as a probability distribution over state space
- $S = \{s_1, s_2, ..., s_n\}$
- $b = \{p(s_1), p(s_2), ..., p(s_n)\}$
 - p(s_i) is the agent's estimate of the likelihood it is in state s_i
- For discrete state space consists of a probability for each state
 - Often times probability of most states will be 0
- For non-discrete problem consist of a probability density function
 - Example: Gaussian

Exploration vs Exploitation

- Exploration
 - Gain information about environment
 - Reduce uncertainty of belief
- Exploitation
 - Find a solution to the problem
 - Reach the goal
 - Get to a high reward state
- A solution to the pomdp needs to balance exploration and exploitation

- Policy
 - For MDPs a policy was a mapping of states to actions
 - For PRMDPs a policy is a mapping of beliefs to actions
 - Belief: Probability distribution over states
 - $\Pi(b) \Rightarrow a$
 - Action the agent should perform given its belief

	Step i-1	Step i	Step i+1
Observation	O _{i-1}	O _i	O _{i+1}
Action	a _{i-1}	a _i	a _{i+1}
Belief	b _{i-1} =	b _i =	b _{i+1}
	$p(x_{i-1,0}), p(x_{i-1,1}),$	$p(x_{i,0}), p(x_{i,1}),$	$p(x_{i+1,0}), p(x_{i+1,1}),$

- If we know what actions the agent will take we can compute in same manner as with hidden Markov model
- Intermediate step
 - $p(x_i') = \sum_{x_{i-1} \in X} p(x_{i-1}) * p(x_i' | x_{i-1}, a_{i-1})$
 - $p(x_i'|x_{i-1},a_{i-1})$ = transition probability given action a
- $p(x_i) = \sum_{x_i \in X} p(x_i') * p(x_i | x_i', o_i) / \sum_{x_i \in X} p(o_i | x_i')$
 - Bayes theorem
- Compute for all combinations of actions to find best action?
 - Computationally infeasible
 - Branching factor Aⁿ where n is the number of steps you need to search
- Use heuristics to decide what action sequences to consider
 - Open problem