VV156 RC2 Limits and Derivatives

Yucheng Huang

University of Michigan Shanghai Jiao Tong University Joint Institute

September 28, 2021

- Introduction
- 2 Limits

Introduction

•000

- 3 Continuity
- 4 Derivatives
- 5 Appendix
- 6 Q&A

About Homework 1

Ex 1.1 f $f \cdot g$ f + gg even even even even depends odd odd even odd depends odd even odd odd odd even

About Homework 1

Greek alphabet

Greek alphabet

Command	Cap	Low	Command	Cap	Low
alpha	Α	α	beta	В	β
gamma	Γ	γ	delta	Δ	δ
epsilon	Ε	$\epsilon, arepsilon$	zeta	Ζ	ζ
eta	Η	η	theta	Θ	θ, ϑ
iota	1	ι	kappa	K	κ
lambda	Λ	λ	mu	Μ	μ
nu	Ν	ν	omicron	0	0
xi	Ξ	ξ	pi	П	π, ϖ
rho	Ρ	$ ho, \varrho$	sigma	Σ	σ, ς
tau	Τ	au	upsilon	Υ	v
phi	Φ	ϕ, φ	chi	X	χ
psi	Ψ	ψ	omega	Ω	ω

- Introduction
- 2 Limits
- Continuity
- 4 Derivatives
- 6 Appendix
- 6 Q&A

Q&A

Limits

$\varepsilon - \delta$ definition

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

$$\lim_{x\to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

Limits

Left-Hand Limit

$$\lim_{x\to a^-}f(x)=L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that if $a - \delta < x < a$ then $|f(x) - L| < \varepsilon$

Right-Hand Limit

$$\lim_{x\to a^+} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that if $a < x < a + \delta$ then $|f(x) - L| < \varepsilon$

$\varepsilon - \delta$ definition

Prove the statement using the ε,δ definition of a limit.

1.

$$\lim_{x\to a}c=c$$

2.

$$\lim_{x\to 0} x^3 = 0$$

Solutions

- 1. Given $\varepsilon>0$, we need $\delta>0$ such that if $0<|x-a|<\delta$, then $|c-c|<\varepsilon$. But |c-c|=0, so this will be true no matter what δ we pick.
- 2. Given $\varepsilon > 0$, we need $\delta > 0$ such that if $0 < |x 0| < \delta$, then $|x^3 0| < \varepsilon \Leftrightarrow |x|^3 < \varepsilon \Leftrightarrow |x| < \sqrt[3]{\varepsilon}$. Take $\delta = \sqrt[3]{\varepsilon}$ Then $0 < |x 0| < \delta \Rightarrow |x^3 0| < \delta^3 = \varepsilon$. Thus, $\lim_{x \to 0} x^3 = 0$ by the definition of a limit.

Limit laws

Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then

1.
$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

2.
$$\lim_{x\to a} [f(x) - g(x)] = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$$

3.
$$\lim_{x\to a}[cf(x)]=c\lim_{x\to a}f(x)$$

4.
$$\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

5.
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$
 if $\lim_{x\to a} g(x) \neq 0$

Limit laws

- 6. $\lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n$ where n is a positive integer
- 7. $\lim_{x\to a} c = c$
- 8. $\lim_{x\to a} x = a$
- 9. $\lim_{x\to a} x^n = a^n$ where n is a positive integer
- 10. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer (If n is even, we assume that a > 0.)
- 11. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ where n is a positive integer
- [If n is even, we assume that $\lim_{x\to a} f(x) > 0$.]

Other Important Theorems

Left and Right Limits Theorem

$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)$

$\mathsf{Theorem}$

If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x\to a}f(x)\leqslant \lim_{x\to a}g(x)$$

Sandwich Theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x\to a}g(x)=L$$

Calculate the Limit

1

$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

2.

$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

3.

$$\lim_{h\to 0}\frac{(2+h)^3-8}{h}$$

4.

$$\lim_{x\to 0} \frac{\sqrt[n]{x+1}-1}{x}$$

Solutions

1.
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4} = \lim_{x \to 4} \frac{x(x - 4)}{(x - 4)(x + 1)} = \lim_{x \to 4} \frac{x}{x + 1} = \frac{4}{4 + 1} = \frac{4}{5}$$

2. $\lim_{x\to -1} \frac{x^2-4x}{x^2-3x-4}$ does not exist since $x^2-3x-4\to 0$ but

$$x^2 - 4x \rightarrow 5 \text{ as } x \rightarrow -1.$$

3.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h} =$$

$$\lim_{h \to 0} \frac{\left(8+12h+6h^2+h^3\right)-8}{h} = \lim_{h \to 0} \frac{12h+6h^2+h^3}{h}$$

$$= \lim_{h \to 0} \left(12+6h+h^2\right) = 12+0+0=12$$

Solutions

4. Setting $t = \sqrt[n]{1+x}$ then your term is equivalent to

$$\frac{t-1}{t^n-1}$$

and then use that

$$t^{n}-1=(t-1)(t^{n-1}+t^{n-2}+\cdots+t^{2}+t+1)$$

you get

$$rac{t-1}{(t-1)\left(t^{n-1}+t^{n-2}+\cdots+t^2+t+1
ight)}= rac{1}{t^{n-1}+t^{n-2}+\cdots+t^2+t+1}$$

for t tends to 1 and the last term tends to $\frac{1}{n}$

Calculate the Limit

1.

$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h}$$

2.

$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$$

3.

$$\lim_{h\to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

Solutions

1.

$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h} = \lim_{h \to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h} = \lim_{h \to 0} \frac{3 - (3+h)}{h(3+h)3}$$

$$= \lim_{h \to 0} \frac{-h}{h(3+h)3} = \lim_{h \to 0} \left[-\frac{1}{3(3+h)} \right]$$

$$= -\frac{1}{\lim_{h \to 0} [3(3+h)]} = -\frac{1}{3(3+0)} = -\frac{1}{9}$$

Solutions

2

$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4} = \lim_{x \to -4} \frac{\left(\sqrt{x^2 + 9} - 5\right)\left(\sqrt{x^2 + 9} + 5\right)}{\left(x + 4\right)\left(\sqrt{x^2 + 9} + 5\right)}$$

$$= \lim_{x \to -4} \frac{\left(x^2 + 9\right) - 25}{\left(x + 4\right)\left(\sqrt{x^2 + 9} + 5\right)}$$

$$= \lim_{x \to -4} \frac{x^2 - 16}{\left(x + 4\right)\left(\sqrt{x^2 + 9} + 5\right)} = \lim_{x \to -4} \frac{\left(x + 4\right)\left(x - 4\right)}{\left(x + 4\right)\left(\sqrt{x^2 + 9} + 5\right)}$$

$$= \lim_{x \to -4} \frac{x - 4}{\sqrt{x^2 + 9} + 5} = \frac{-4 - 4}{\sqrt{16 + 9} + 5} = \frac{-8}{5 + 5} = -\frac{4}{5}$$

Solutions

3.

$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{\frac{x^2 - (x+h)^2}{(x+h)^2 x^2}}{h} = \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{hx^2 (x+h)^2}$$
$$= \lim_{h \to 0} \frac{-h(2x+h)}{hx^2 (x+h)^2} = \lim_{h \to 0} \frac{-(2x+h)}{x^2 (x+h)^2} = \frac{-2x}{x^2 \cdot x^2} = -\frac{2}{x^3}$$

Prove the statement

Prove that
$$\lim_{x\to 0} x^4 \cos \frac{2}{x} = 0$$

Solution

 $-1 \le \cos(2/x) \le 1 \Rightarrow -x^4 \le x^4 \cos(2/x) \le x^4$. Since $\lim_{x\to 0} (-x^4) = 0$ and $\lim_{x\to 0} x^4 = 0$, we have $\lim_{x\to 0} \left[x^4 \cos(2/x)\right] = 0$ by the Squeeze Theorem.

- Introduction
- 2 Limits
- 3 Continuity
- 4 Derivatives
- 6 Appendix
- 6 Q&A

Continuity

Definition

A function f is continuous at a number a if

$$\lim_{x\to a}f(x)=f(a)$$

Notice that Definition 1 implicitly requires three things if f is continuous at a:

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x\to a} f(x)$ exists
- 3. $\lim_{x\to a} f(x) = f(a)$

Continuity

Important Theorems

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

- 1. f + g
- 2. f g
- 3. *cf*
- 4. fg
- 5. $\frac{f}{g}$ if $g(a) \neq 0$

Important Theorems

The following types of functions are continuous at every number in their domains:

polynomials rational functions root functions trigonometric functions

Discontinuity

Category

- 1. Removable
- 2. Infinite discontinuity
- 3. Jump discontinuities

The Intermediate Value Theorem

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

The Intermediate Value Theorem

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

$$\sqrt[3]{x} = 1 - x$$
, $(0, 1)$

Solution

 $f(x) = \sqrt[3]{x} + x - 1$ is continuous on the interval [0,1], f(0) = -1, and f(1) = 1. Since -1 < 0 < 1, there is a number c in (0,1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation $\sqrt[3]{x} + x - 1 = 0$, or $\sqrt[3]{x} = 1 - x$, in the interval (0,1)

Discontinuity

Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Sketch the graph of f.

$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ e^x & \text{if } 0 \leqslant x \leqslant 1 \\ 2-x & \text{if } x > 1 \end{cases}$$

Solution

f is continuous on $(-\infty,0)$ and $(1,\infty)$ since on each of these intervals it is a polynomial; it is continuous on (0,1) since it is an exponential. Now $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (x+2) = 2$ and $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^x = 1$, so f is discontinuous at 0. Since f(0)=1,f is continuous from the right at 0. Also $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} e^x = e$ and $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (2-x) = 1$, so f is discontinuous at 1. Since f(1)=e,f is continuous from the left at 1.

Figure: Ex 6

- 1 Introduction
- 2 Limits
- Continuity
- 4 Derivatives
- 5 Appendix
- 6 Q&A

Derivatives

Tangent Line

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists.

Definition

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

instantaneous rate of change $=\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Derivatives

Tangent Line

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists.

Definition

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

instantaneous rate of change $=\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Derivatives

Position Velocity Acceleration Jerk Snap Crackle Pop

Derivatives

Notations

Newton:

ġ

Leibniz:

 $\frac{dy}{dy}$

Lagrange:

f'(x)

Jacobi: (Partial Derivatives)

 $\frac{\partial f}{\partial x}$

Derivatives

Differentiable

A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a,b) [or (a,∞) or $(-\infty,a)$ or $(-\infty,\infty)$] if it is differentiable at every number in the interval.

Differentiable and Continuity

If f is differentiable at a, then f is continuous at a. NOTE The converse of Theorem is false; that is, there are functions that are continuous but not differentiable. For instance, the function f(x) = |x| is continuous at 0 because

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0 = f(0)$$

Not Differentiable

Weierstraß-Function

Fractal

Fractal

Fractal

Differentiation Formulas

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$(cf)' = cf'$$

$$(f+g)' = f' + g'$$

$$(f-g)' = f' - g'$$

$$(fg)' = fg' + gf'$$

$$(\frac{f}{g})' = \frac{gf' - fg'}{g^2}$$

2 Limits

3 Continuity

4 Derivatives

6 Appendix

6 Q&A

List of Limits

$$\lim_{x\to a} x^n = a^n$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{1-\cos x}{x} = 0$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$0 \lim_{x\to 0^+} x^x = 1$$

$$\lim_{x\to 0^+} x \ln x = 0$$

$$\lim_{x\to\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x\to\infty} x^{\frac{1}{x}} = 1$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}} = e$$

$$\lim_{x\to\infty} \left(x - \sqrt{x^2 - a^2} \right) = 0$$

- Introduction
- 2 Limits
- 3 Continuity
- 4 Derivatives
- 5 Appendix
- 6 Q&A

Q&A

Q&A