Optimization Algorithms

Most of this material is from Prof. Andrew Ng'and Chang's slides

Introduction

- We will learn the optimization algorithms enable you to train your neural network much faster -> training efficiency!
- Applying machine learning is a highly empirical process (i.e., highly iterative process)
 - You should train a lot of models to find one that works really well
- Deep learning works best in a regime of big data
 - We should train our model on a huge dataset
- So, having fast optimization algorithms can really help the above problems

Vectorization allows you to efficiently compute on m examples.

$$X = \left[x^{(1)} \ x^{(2)} \ x^{(3)} \ \dots \right.$$
 ... $x^{(m)}$

$$Y = [y^{(1)} \ y^{(2)} \ y^{(3)} \ \dots$$

$$\dots \ y^{(m)}]$$

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

$$X = [x^{(1)} x^{(2)} x^{(3)} \dots \dots x^{(m)}]$$
(n, m)

$$Y = [y^{(1)} y^{(2)} y^{(3)} \dots \dots y^{(m)}]$$
(1,m)

What if m = 5,000,000?

Vectorization allows you to efficiently compute on m examples.

$$X = \left[x^{(1)} x^{(2)} x^{(3)} \dots x^{(1000)} \middle| x^{(1001)} \dots x^{(2000)} \middle| \dots x^{(m)} \right]$$

$$X^{\{1\}} \qquad X^{\{2\}} \qquad X^{\{5000\}}$$

$$Y = [y^{(1)} \ y^{(2)} \ y^{(3)} \ \dots$$
 \(\text{...} \ y^{(m)})

What if m = 5,000,000?

5,000 mini-batches of 1,000 samples

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

$$X = \begin{bmatrix} x^{(1)} & x^{(2)} & x^{(3)} & \dots & x^{(1000)} \\ x^{(1001)} & x^{(2000)} & \dots & \dots & x^{(m)} \end{bmatrix}$$

$$X^{\{1\}}_{(n,1000)} & X^{\{2\}}_{(n,1000)} & \dots & \dots & x^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1001)} & \dots & y^{(2000)} \end{bmatrix} & \dots & \dots & y^{(m)} \end{bmatrix}$$

$$Y^{\{1\}}_{(1,1000)} & Y^{\{2\}}_{(1,1000)} & \dots & \dots & y^{(m)} \end{bmatrix}$$

$$Y^{\{5000\}}$$
What if $m = 5,000,0002$

What if m = 5,000,000?

5,000 mini-batches of 1,000 samples

Mini-batch $t : X^{\{t\}}, Y^{\{t\}}$

Vectorization allows you to efficiently compute on m examples.

$$X = \begin{bmatrix} x^{(1)} \ x^{(2)} \ x^{(3)} \ \cdots \ x^{(1000)} \end{bmatrix} x^{(1001)} \ \cdots \ x^{(2000)} \end{bmatrix} \ \cdots \ x^{(5000)}$$

$$Y = \begin{bmatrix} y^{(1)} \ y^{(2)} \ y^{(3)} \ \cdots \ y^{(1000)} \end{bmatrix} y^{(1001)} \ \cdots \ y^{(2000)} \end{bmatrix} \cdots$$

$$Y^{\{1\}}_{(1,1000)} Y^{\{1\}}_{(1,1000)} Y^{\{2\}}_{(1,1000)}$$

$$Y^{\{2\}}_{(1,1000)} Y^{\{5000\}}$$
 What if $m = 5,000,000$?
$$x^{(i)} \ ?$$

$$5,000 \ \text{mini-batches of } 1,000 \ \text{samples}$$

$$z^{[l]} \ ?$$

$$X^{\{t\}}, Y^{\{t\}} \ ?$$

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

$$X = \left[x^{(1)} \ x^{(2)} \ x^{(3)} \ \dots \right.$$

$$\dots \ x^{(m)} \right]$$

$$(n, m)$$

$$Y = \begin{bmatrix} y^{(1)} \ y^{(2)} \ y^{(3)} \ \dots \\ dW^{[i]} = \frac{\partial J}{\partial W^{[i]}} = \frac{\partial \frac{1}{m} \sum_{l=1}^{m} \mathcal{L}(\mathcal{Y}, \mathcal{Y})}{\partial W^{[i]}} = \frac{1}{m} \sum_{l=1}^{m} \frac{\partial \mathcal{L}(\mathcal{Y}, \mathcal{Y})}{\partial W^{[i]}} \\ db^{[i]} = \frac{\partial J}{\partial b^{[i]}} = \frac{\partial \frac{1}{m} \sum_{l=1}^{m} \mathcal{L}(\mathcal{Y}, \mathcal{Y})}{\partial b^{[i]}} = \frac{1}{m} \sum_{l=1}^{m} \frac{\partial \mathcal{L}(\mathcal{Y}, \mathcal{Y})}{\partial b^{[i]}} \\ \dots \ y^{(m)} \end{bmatrix}$$

What if
$$m = 5,000,000$$
? $\chi^{(i)}$? $Z^{[l]}$? Mini-batch $t: X^{\{t\}}, Y^{\{t\}}$ $X^{\{t\}}, Y^{\{t\}}$?

Vectorization allows you to efficiently compute on m examples.

$$X = \begin{bmatrix} x^{(1)} & x^{(2)} & x^{(3)} & \dots & x^{(1000)} \\ x^{(1001)} & \dots & x^{(2000)} \end{bmatrix} & \dots & x^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & \dots & y^{(2000)} \end{bmatrix} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & y^{(1000)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(1000)} \\ y^{(1,1000)} & y^{(1000)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(3)} & \dots & y^{(m)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} \end{bmatrix}$$

$$Y = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)} & y^{(2)$$

Mini-batch gradient descent

```
\label{eq:fort} \text{for t} = 1, ..., 5000 \ \{ \\ \text{Forward prop on } X^{\{t\}} \\ Z^{[1]} = W^{[1]}X^{\{1\}} + b^{[1]} \\ A^{[1]} = g^{[1]}(Z^{[1]}) \\ \vdots \\ A^{[L]} = g^{[L]}(Z^{[L]}) \\ \text{Compute cost} : J^{\{t\}} = \frac{1}{1000} \sum_{l=1}^{1000} \mathcal{L}(\hat{y}^{(l)}, y^{(l)}) + \frac{\lambda}{2 \cdot 1000} \sum_{l} \|W^{[l]}\|_F^2 \\ \}
```

Mini-batch gradient descent

```
one step of gradient descent using X^{\{t\}}, Y^{\{t\}} (as if m=1000)

Forward prop on X^{\{t\}} and X^{\{t\}}
```

Mini-batch gradient descent

```
one step of gradient descent using X^{\{t\}}, Y^{\{t\}} (as if m=1000)

Forward prop on X^{\{t\}} vectorized implementation (1000 examples)

X^{[1]} = W^{[1]}X^{\{1\}} + b^{[1]} vectorized implementation (1000 examples)
X^{[L]} = g^{[L]}(Z^{[L]}) for X^{\{t\}}, Y^{\{t\}}

Compute cost : J^{\{t\}} = \frac{1}{1000} \sum_{i=1}^{1000} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2 \cdot 1000} \sum_{l} \|W^{[l]}\|_F^2

Backprop to compute gradients w.r.t. J^{\{t\}} (using X^{\{t\}} and Y^{\{t\}})

W^{[l]} := W^{[l]} - \alpha \cdot dW^{[l]} b^{[l]} := b^{[l]} - \alpha \cdot db^{[l]}

One Epoch
```

```
Mini-batch gradient descent
repeat {
                                                                   one step of gradient descent
                                                                   using X^{\{\bar{t}\}}, Y^{\{\bar{t}\}} (as if m \neq 1000)
    for t = 1, ..., 5000 {
        Forward prop on X^{\{t\}}
            Z^{[1]} = W^{[1]}X^{\{1\}} + b^{[1]}
                                               vectorized implementation
            A^{[1]} = g^{[1]}(Z^{[1]})
                                               (1000 examples)
           A^{[L]} = g^{[L]}(Z^{[L]})
                                                               for X^{\{t\}}, Y^{\{t\}}
        Compute cost : J^{\{t\}} = \frac{1}{1000} \sum_{i=1}^{1000} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2 \cdot 1000} \sum_{l} ||W^{[l]}||_F^2
        Backprop to compute gradients w.r.t. J^{\{t\}} (using X^{\{t\}} and Y^{\{t\}})
        W^{[l]} \coloneqq W^{[l]} - \alpha \cdot dW^{[l]}
        b^{[l]} \coloneqq b^{[l]} - \alpha \cdot db^{[l]}
                                                                            One Epoch
```

Training with mini-batch gradient descent Batch gradient descent # iterations Mini-batch gradient descent Mini-batch gradient descent # iterations mini batch # (t) Mot J *** up the using Little Action | Mini-batch gradient descent

Choosing your mini-batch size

- If mini-batch size = m
 - \rightarrow Batch gradient descent: $(X^{\{1\}}, Y^{\{1\}}) = (X, Y)$
- If mini-batch size = 1
 - → Stochastic gradient descent:

$$(X^{\{1\}}, Y^{\{1\}}) = (x^{(1)}, y^{(1)}), ..., (X^{\{m\}}, Y^{\{m\}}) = (x^{(m)}, y^{(m)})$$

→ Every example is its own mini-batch

Choosing your mini-batch size

- If mini-batch size = m
 - \rightarrow Batch gradient descent: $(X^{\{1\}}, Y^{\{1\}}) = (X, Y)$
- If mini-batch size = 1
 - → Stochastic gradient descent:

$$(X^{\{1\}}, Y^{\{1\}}) = (x^{(1)}, y^{(1)}), ..., (X^{\{m\}}, Y^{\{m\}}) = (x^{(m)}, y^{(m)})$$

→ Every example is its own mini-batch

high cost per big step

low cost per small step

Choosing your mini-batch size

- If mini-batch size = m
 - \rightarrow Batch gradient descent: $(X^{\{1\}}, Y^{\{1\}}) = (X, Y)$
- If mini-batch size = 1
 - → Stochastic gradient descent:

$$(X^{\{1\}}, Y^{\{1\}}) = (x^{(1)}, y^{(1)}), ..., (X^{\{m\}}, Y^{\{m\}}) = (x^{(m)}, y^{(m)})$$

- → Every example is its own mini-batch
- In practice, somewhere in-between 1 and m

stochastic gradient descent (mini-batch size = 1)	In-between (mini-batch size not too big or small)	batch gradient descent (mini-batch size = m)
Lose speedup from vectorization (=parallelization)	Fastest learning - Vectorization - Make progress without processing entire training set	Too long per iteration(=epoch)

Choosing your mini-batch size

- if small training set : use batch gradient descent (e.g., $m \le 2000$)
- else, typical mini-batch size : \rightarrow 64, 128, 256, 512, 1024, ... 2^{6} 2^{7} 2^{8} 2^{9} 2^{10}

power of 2

• Make sure mini-batch fits in CPU/GPU memory

Exponentially weighted averages for understanding momentum

 We need to use exponentially weighted averages to understand more sophisticated optimization algorithms than gradient descent

Temperature in London

```
\theta_1 = 40^{\circ} \text{F}
\theta_2 = 49^{\circ} \text{F}
\theta_3 = 45^{\circ} \text{F}
\vdots
\theta_{180} = 60^{\circ} \text{F}
\theta_{181} = 56^{\circ} \text{F}
\vdots
```


$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$\beta = 0.9$$

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$\beta = 0.9$$

$$\beta = 0.98$$

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

$$\beta = 0.9$$

$$\beta = 0.98$$

$$\beta = 0.5$$

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 When $\beta = 0.9$, what is v_{100} ?

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$

...

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 When $\beta = 0.9$, what is v_{100} ?

$$\begin{aligned} v_{100} &= 0.9v_{99} + 0.1\theta_{100} \\ v_{99} &= 0.9v_{98} + 0.1\theta_{99} \\ v_{98} &= 0.9v_{97} + 0.1\theta_{98} \\ ... \\ v_{100} &= 0.1\theta_{100} + 0.9v_{99} \\ v_{100} &= 0.1\theta_{100} + 0.9v_{99} \end{aligned}$$

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 When $\beta = 0.9$, what is v_{100} ?

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$

 $v_{100} = 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9v_{98})$

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 When $\beta = 0.9$, what is v_{100} ?

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$

 $v_{100} = 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9(0.1\theta_{98} + 0.9v_{97}))$

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 When $\beta = 0.9$, what is v_{100} ?

$$v_{100} = 0.9v_{99} + 0.1\theta_{100}$$

$$v_{99} = 0.9v_{98} + 0.1\theta_{99}$$

$$v_{98} = 0.9v_{97} + 0.1\theta_{98}$$

•••

 $v_{100} = 0.1\theta_{100} + 0.9 \big(0.1\theta_{99} + 0.9 (0.1\theta_{98} + 0.9v_{97}) \big)$

exponentially decaying weight!

 $v_{100} = 0.1\theta_{100} + 0.1 \times 0.9\theta_{99} + 0.1 \times (0.9)^2\theta_{98} + 0.1 \times (0.9)^3\theta_{97} + \dots + 0.1 \times (0.9)^{100}\theta_{0}$

$$\begin{split} v_t &= \beta v_{t-1} + (1-\beta)\theta_t \quad \text{When } \beta = 0.9, \text{ what is } v_n ? \\ v_{100} &= 0.9v_{99} + 0.1\theta_{100} \\ v_{99} &= 0.9v_{98} + 0.1\theta_{99} \\ v_{98} &= 0.9v_{97} + 0.1\theta_{98} \\ & \dots \\ v_{100} &= 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9(0.1\theta_{98} + 0.9v_{97})) \\ v_{100} &= 0.1\theta_{100} + 0.1 \times 0.9\theta_{99} + 0.1 \times (0.9)^2\theta_{98} + 0.1 \times (0.9)^3\theta_{97} + \dots + 0.1 \times (0.9)^{100}\theta_0 \\ & & \downarrow \\ v_n &= 0.1\theta_n + 0.1 \times 0.9\theta_{n-1} + 0.1 \times (0.9)^2\theta_{n-2} + 0.1 \times (0.9)^3\theta_{n-3} + \dots + 0.1 \times (0.9)^n\theta_0 \\ & & \downarrow \\ \text{sum of all weights} \to 1 \text{ if } n \to \infty \end{split}$$

Implementing exponentially weighted averages

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$
...

Implementing exponentially weighted averages

$$v_{0} = 0$$

$$v_{1} = \beta v_{0} + (1 - \beta) \theta_{1}$$

$$v_{2} = \beta v_{1} + (1 - \beta) \theta_{2}$$

$$v_{3} = \beta v_{2} + (1 - \beta) \theta_{3}$$

$$v_{\theta} \coloneqq \beta v_{\theta} + (1 - \beta) \theta_{1}$$

$$v_{\theta} \coloneqq \beta v_{\theta} + (1 - \beta) \theta_{2}$$

$$\vdots$$

$$\begin{aligned} v_{\theta} &\coloneqq 0 \\ v_{\theta} &\coloneqq \beta v_{\theta} + (1 - \beta) \; \theta_1 \\ v_{\theta} &\coloneqq \beta v_{\theta} + (1 - \beta) \; \theta_2 \\ &\vdots \end{aligned}$$

Implementing exponentially weighted averages

$$\begin{split} v_0 &= 0 \\ v_1 &= \beta v_0 + (1 - \beta) \; \theta_1 \\ v_2 &= \beta v_1 + (1 - \beta) \; \theta_2 \\ v_3 &= \beta v_2 + (1 - \beta) \; \theta_3 \\ &\dots \end{split}$$

$$v_{0} = 0$$

$$v_{1} = \beta v_{0} + (1 - \beta) \theta_{1}$$

$$v_{2} = \beta v_{1} + (1 - \beta) \theta_{2}$$

$$v_{3} = \beta v_{2} + (1 - \beta) \theta_{3}$$

$$v_{\theta} \coloneqq \beta v_{\theta} + (1 - \beta) \theta_{1}$$

$$v_{\theta} \coloneqq \beta v_{\theta} + (1 - \beta) \theta_{2}$$

$$\vdots$$

$$v_{\theta} \coloneqq 0$$
Repeat {
 Get next θ_t
 $v_{\theta} \coloneqq \beta v_{\theta} + (1 - \beta) \theta_t$
}

Optimization algorithms

- Gradient descent with momentum
 - almost always works faster than the standard gradient descent
 - use exponentially weighted average of gradients
- RMSProp
- ADAM

Gradient descent example

On iteration t:

Compute dW, db on current minibatch

$$V_{dW} \coloneqq \beta V_{dW} + (1-\beta)dW$$

$$V_{db} \coloneqq \beta V_{db} + (1 - \beta) db$$

$$W\coloneqq W-\alpha V_{dW},\ b\coloneqq b-\alpha V_{db}$$

Implementation details

On iteration *t*:

Compute *dW*, *db* on the current mini-batch

$$v_{dW} \coloneqq \beta v_{dW} + (1 - \beta)dW$$
 initial v_{dW} =0

$$v_{db} \coloneqq \beta v_{db} + (1 - \beta)db$$
 initial v_{db} =0

$$W\coloneqq W-\alpha v_{dW}$$
, $b\coloneqq b-\alpha v_{db}$

In this case, usually **not use bias correction**, because initial gradients are not important.

Hyperparameters: α , β

 $\beta = 0.9$

RMSProp

: root mean square propagation

oscillation of gradient descent

RMSProp

On iteration t:

Compute
$$dW$$
, db on current minibatch

 $S_{dW} = \beta S_{dW} + (1 - \beta)dW^2$

element-wise squaring initial $S_{dW} = 0$, initial $S_{db} = 0$
 $S_{db} = \beta S_{db} + (1 - \beta)db^2$

element-wise division by squared root

 $W := W - \alpha \frac{dW}{\sqrt{S_{dW}}}$
 $b := b - \alpha \frac{db}{\sqrt{S_{db}}}$

On iteration t:

Compute
$$dW$$
, db on current minibatch

$$S_{dW} = \beta S_{dW} + (1 - \beta)dW^2$$
Suppose it is 'small',

$$S_{db} = \beta S_{db} + (1 - \beta)db^2$$
Suppose it is 'large',

$$W \coloneqq W - \alpha \frac{dW}{\sqrt{S_{dW}}}$$

$$b \coloneqq b - \alpha \frac{db}{\sqrt{S_{db}}}$$
then 'large' (speed-up) then 'small' (slow-down)

Adam optimization algorithm

$$V_{dW} = 0, S_{dW} = 0, V_{db} = 0, S_{db} = 0$$

On iteration t:

Compute dW, db on current minibatch

$$v_{dW} = \beta_1 v_{dW} + (1 - \beta_1)dW, \quad v_{db} = \beta_1 v_{db} + (1 - \beta_1)db$$

$$S_{dW} = \beta_2 S_{dW} + (1-\beta_2) dW^2, \quad S_{db} = \beta_2 S_{db} + (1-\beta_2) db^2$$

Adam optimization algorithm

$$V_{dW} = 0, S_{dW} = 0, V_{db} = 0, S_{db} = 0$$

On iteration t:

Compute dW, db on current minibatch

"momentum" with β_1

$$v_{dW} = \beta_1 v_{dW} + (1 - \beta_1) dW, \quad v_{db} = \beta_1 v_{db} + (1 - \beta_1) db$$

$$S_{dW} = \beta_2 S_{dW} + (1 - \beta_2) dW^2$$
, $S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2$

"RMSProp" with eta_2

Adam optimization algorithm

$$V_{dW} = 0, S_{dW} = 0, V_{db} = 0, S_{db} = 0$$

On iteration t:

Compute dW, db on current minibatch

"momentum" with β_1

$$v_{dW} = \beta_1 v_{dW} + (1 - \beta_1) dW, \quad v_{db} = \beta_1 v_{db} + (1 - \beta_1) db$$

$$S_{dW} = \beta_2 S_{dW} + (1 - \beta_2) dW^2, \quad S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2$$

$$v_{dW}^{\mathrm{corrected}} = v_{dW}/(1-\beta_1^t), \quad v_{db}^{\mathrm{corrected}} = v_{db}/(1-\beta_1^t)$$
 "RMSProp" with β_2

$$S_{dW}^{\text{corrected}} = S_{dW}/(1-\beta_2^t), \quad S_{db}^{\text{corrected}} = S_{db}/(1-\beta_2^t)$$

bias correction

Adam optimization algorithm

$$V_{dW} = 0, S_{dW} = 0, V_{db} = 0, S_{db} = 0$$

On iteration t:

Compute dW, db on current minibatch

"momentum" with β_1

$$v_{dW} = \beta_1 v_{dW} + (1 - \beta_1) dW, \quad v_{db} = \beta_1 v_{db} + (1 - \beta_1) db$$

$$S_{dW} = \beta_2 S_{dW} + (1 - \beta_2) dW^2, \quad S_{db} = \beta_2 S_{db} + (1 - \beta_2) db^2$$

$$v_{dW}^{\text{corrected}} = v_{dW}/(1-\beta_1^t), \quad v_{db}^{\text{corrected}} = v_{db}/(1-\beta_1^t)$$

"RMSProp" with β_2

$$S_{dW}^{\text{corrected}} = S_{dW}/(1-\beta_2^t), \quad S_{db}^{\text{corrected}} = S_{db}/(1-\beta_2^t)$$

$$W \coloneqq W - \alpha \frac{v_{dW}^{\text{corrected}}}{\sqrt{S_{dW}^{\text{corrected}} + \epsilon}} \qquad b \coloneqq b - \alpha \frac{v_{db}^{\text{corrected}}}{\sqrt{S_{db}^{\text{corrected}} + \epsilon}}$$

$$b \coloneqq b - \alpha \frac{v_{db}^{\text{corrected}}}{\sqrt{S_{db}^{\text{corrected}} + \epsilon}}$$

Hyperparameters choice

 α : needs to be tuned

 β_1 : 0.9 (weighted average for dW)

 β_2 : 0.999 (weighted average for dW^2)

 ϵ : 10^{-8}

Adam? Adaptive momentum estimation

Hyperparameters choice

Adam Coates

 α : needs to be tuned

 β_1 : 0.9 (weighted average for dW)

 β_2 : 0.999 (weighted average for dW^2)

 ϵ : 10^{-8}

Adam? Adaptive momentum estimation

Implementing learning rate decay

1 epoch = 1 pass through data

$$\alpha = \frac{1}{1 + \text{decay_rate} \times \text{epoch_num}} \alpha_0$$

Implementing learning rate decay

1 epoch = 1 pass through data

$$\alpha = \frac{1}{1 + \text{decay rate} \times \text{epoch num}} \alpha_0$$

$$\alpha_0 = 0.2$$

α
0.1
0.067
0.05
0.04
:

Other learning rate decay methods
$$\alpha = 0.95^{\rm epoch_num} \cdot \alpha_0 \qquad : {\rm exponentially\ decaying}$$

$$\alpha = \frac{k}{\sqrt{\rm epoch_num}} \cdot \alpha_0 \quad {\rm or} \quad \alpha = \frac{k}{\sqrt{\rm t}} \cdot \alpha_0$$

$${\rm time\ or\ iteration}$$

$$\alpha = \frac{k}{\sqrt{\rm epoch_num}} \cdot \alpha_0 \quad {\rm or\ } \alpha = \frac{k}{\sqrt{\rm t}} \cdot \alpha_0$$

$${\rm time\ or\ iteration}$$

$$\alpha = \frac{k}{\sqrt{\rm time\ or\ iteration}}$$

$$\alpha = \frac{k}{\sqrt{\rm time\ or\ iteration}}$$

- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow
- momentum, rmsprop, adam optimization algorithm may be very helpful

