[This question paper contains 4 printed pages.]

Your Roll Nominimum

Sr. No. of Question Paper: 4737

H

Unique Paper Code

222600001

Name of the Paper

SEC - Radiation Safety

Name of the Course

: B.Sc. (H) / B.Sc. (Prog.) -

UGCF-NEP (SEC)

Semester

II

The last all apply although a top and the court of

Duration: 1 Hour

Maximum Marks: 30

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt FIVE questions in all.
- 3. Question 1 is compulsory.
- 4. Each question carries SIX marks.
- 5. Use of scientific calculator is allowed.

Camer ally Jesema Ero will verify to merene at

1.	Attempt all parts of the following question:
	$(6\times1=6)$
	(a) radiation consists of high-energy electrons or positrons.
	(b) Which type of radiation meter is sensitive to low levels of radiation?
	(c) Electromagnetic waves with high frequency are characteristic of radiation.
	(d) 1 Roentgen = C/kg.
	(e) Name the particle that results from the electron-positron annihilation process?
	(f) True/False: Semiconductor detectors have greater energy resolution than gas-filled detectors.
2.	(a) Name the various types of radiation sources. (2)
	(b) What are the parameters which govern the interaction of heavy charged particle with matter? (4)

3. (a) Calculate the maximum energy of a photoelectron ejected from AI by UV light with a wavelength of 1500 Å? (2)

the state of the s

(b) How do linear and mass attenuation coefficients play a role in photon interaction with matter.

(4)

4. (a) Give one reason why semiconductors are preferred over metals and insulators for these devices?

(2)

- (b) Explain the principle and working of scintillation detectors? (4)
- 5. (a) How does annual limit of intake (ALI) limit radiation exposure dose? (2)
 - (b) How is Derived air concentration (DAC) used to ensure the safety of workers under radiation environment? (4)
- 6. (a) List the basics of radiation hazards evaluation and control. (2)