EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6678

Paper No. M2

1.	Work done = Loss in K.E. $R \times 200 = \frac{1}{2} \times 4 \times 25^{2}$ $R = 6.25$ (a) $T = \frac{P}{V} = \frac{60.000}{30} (= 2000)$	HI AI=AI	<u>4</u>	Ð
2.	(a) $T = \frac{\rho}{1} = \frac{60\ 000}{2000} (=2000)$		<u>4</u>	<u> </u>
2. 6	$T = \frac{1}{1000} = \frac{10000}{1000} = \frac{10000}{1000}$		-	
3	1000	ВІ		
	1500g N2L: 2000-1000-1500×9-8×1		•	
	$a = (-) 0.15 (ms^{-2}) cao$	MI AI AI	4	
((b) 7 $T' = 1000 + 1500 \times 9.8 \times \frac{1}{12} (=2225)$	H1 #-1		* * (
	P=Tv 80 000 = 2225 v	мі		•
	$V \approx 36 \text{ (ms}^{-1})$ accept 36.0	n:	4	
	(c) The resistance is likely to increase with speed	Bi	1	<u>@</u>
3.	(a)	MI AI		
	N2L F = ma = 36 i + 1-8j	MI		
٠,	$ F = \sqrt{(3.6^2 + 1.8^2)} \approx 4.02$ (accept 4.03) cao	HIAI	<u>5</u>	
	(b) $r = (t^3 + c_i)L + (3t^2 - 4t + c_i)I$ ignore construits	HI ALTAI	! -	
	Using $t=0$, $T=(t^3+3)L+(3t^2-4t-4)L$	HI		
	$E=4$, $T=67i_{c}+28i_{c}$ (m)	AI .	<u>5</u>	(fO)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 440 6678

Paper No. 🏧

Question number	Scheme		Marks	
4	(a) ABC WXYZ Template Muss ratio $48a^2$ $4a^2$; $44a^2$ C.M. $8a$ $2a$ \overline{x}	BI; BI/ BI BI		
	$M(AB)$ $44a^2 = 48a^3 = 48a^2 \times \frac{8a}{3}$	HIAI		
	solvey to $\overline{x} = \frac{30}{11}a * cso$	Al	7	
	(b) M(AB) or $M(ZY)K M \times Sa + M \times \frac{30}{11}a = M(1+K)3a K M \times 5a = M(3a - \frac{20}{11}a)$	HI A2(1,	0)	
	solving to $K = \frac{3}{55}$ $K = \frac{3}{55}$ or a with 0.055	AI	4	O
5.	(a) $D = M(A) T \times 2a \sin \theta = Wa + 2W(2a - x)$ $T \times \frac{b}{5}a = 5Wa - 2Wx$	ML A2(,0)	
	$T = \frac{5(5a - 2x)}{6a}W + 4x$	- MI AI	<u>5</u>	
	$W = 2W = (b) H(B) = \frac{7}{6} W \times 2a = Wa + 2W \times 2w$	MI AI		
	$3c = \frac{2}{3}a \qquad 0.\varepsilon.$ (c) $R(\rightarrow) X = T\cos\theta = \frac{5}{6}(5 - \frac{4}{3}) W \times \frac{4}{5}$		3	· . T
		MI AI		
	Alternative to (b) $R(1) \frac{7}{6}W + Tsm\theta = 3W$		- -	
7	$\frac{7}{6}W + \frac{5(5a-2x)W}{6a}X \frac{3}{5} = 3W$	MIAI		
	$x = \frac{2}{3}a$	BI	3	
i.				

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 646 48

Paper No. M2

Question number	Scheme ,		Marks	·
6 .	$ \begin{array}{cccc} $	B MI A I MI A I	<u>5</u>	
	(b) Obtaining $x = \frac{1}{3}(1-2e)u$ allow anywhow Direction unchanged implies $x > 0$	MI BI		
	$e < \frac{1}{2}$ ignore $e \ge 0$	AI	<u> 4</u>	
	(c) $y = \frac{5}{12}u$, $x = \frac{1}{6}u$ Final K.E = $\frac{1}{2}m(\frac{1}{6}u)^2 + \frac{1}{2}2m(\frac{5}{12}u)^2 (=\frac{27}{144}mu^2)$ Loss in K.E = $\frac{1}{2}mu^2 - \frac{27}{144}mu^2 = \frac{5}{16}mu^2$	M AI	<u>1</u>	(Ta)
7	(a) Heat, sound, (work done by) internal forces (a) (1) $U_y = 80 \text{ sm } 60^\circ$, $V_y = 0$	B1, B1	1	(14)
~	$0^{2} = (80 \text{ sm } 60)^{2} - 2 \times 9.8 \times 5$ $5 \approx 244.9$	MI		
	Height is 260 m. Accept 265	Atri	4	₽
	(b) $0 = 80 \text{ sm } 60^{\circ} - 9.8 \text{ t}$ t = 7.1 (s) Accept 7.07	NI Al	2	·
	(c) (\rightarrow) $U_{x} = 80 \cos 60^{\circ} (=40)$	81		
	LM $100 \times 40 = 40 \times V + 60 \times 80$ V = (-) 20 * CSO	#I	3	
	(d) Let N be point on ground vertically below B ON = 80 cos 60° × their (b) (=282.78).	MI		
		1		
	CN = 20 ×7.35 ≈ 147	MI AI		
	OC = 140 (m) accept 136	Al	6	(15)