Review Problem 7

- * Sometimes it can be useful to have a program loop infinitely. We can do that, regardless of location, by the instruction:
- * LOOP: BLOOP O
- Convert this instruction to machine code

Conversion example

Compute the sum of the values 0...N-1

ADD X1, X31, X31	100:01011000111110000	X31 X1 X1
ADD X2, X31, X31	100:0101:1000 11111 0000	00 1 1 0 0 0 1 0 XZ
B JEST +3 TOP:	00:010100000000000000000000000000000000	3000000000011
ADD X1, X1, X2	100.0101:1000 60010 6000	30000000000000000000000000000000000000
ADDI X2, X2, #1 TEST:	10:0100:0100 600000 6000	20 1 6 0 0 1 0 0 0 0 10 X2 X2
SUBS X31, X2, X0	758 : XO 0	X2 X31
B.LT TOP -3 END:	0101:01001(1111111111111111111111111111	11/11/01/6:10/11 3 : 08

Assembly & Machine Language

Assembly

Simple instructions
Muenonics for humans
(Almost) 1-to-1 relationship w/machine language

Machine Language

Numeric representations of instructions Fixed Somals) Directly controls CPU hardware

Computer Arithmetic

Readings: 3.1-3.3, A.5

Review binary numbers, 2's complement

Develop Arithmetic Logic Units (ALUs) to perform CPU functions.

Introduce shifters, multipliers, etc.

Binary Numbers

Decimal: $469 = 4*10^2 + 6*10^1 + 9*10^0$

Binary: $01101 = 1^2^3 + 1^2^2 + 0^2^1 + 1^2^0 = (13)_{10}$

Example: $0111010101 = (?)_{10}$

1+4+16+64+128+256

384

2's Complement Numbers

Positive numbers & zero have leading 0, negative have leading 1

Negation: Flip all bits and add 1

Ex:
$$-(01101)_2 = 10010 + 1 = 10011_2$$

To interpret numbers, convert to positive version, then convert:

$$11010 = -(-11010)
= -(00101+1)
= -(6)
= -610$$

$$01100 = +12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}
+12_{10}$$

Sign Extension

Conversion of n-bit to (n+m)-bit 2's complement: replicate the sign bit

Ex - Convert to 8-bit:
$$01101 = (13)_{10}$$

$$11101 = (-3)_{10}$$

$$conved?$$
 = -(-11111101)
= -(000000011)
= -3

Arithmetic Operations

Overflows

Operations can create a number too large for the number of bits n-bit 2's complement can hold -2⁽ⁿ⁻¹⁾ ... 2⁽ⁿ⁻¹⁾-1

Can detect overflow in addition when highest bit has carry-in ≠ carry-out

(carry-in) ⊕ (carry-out) = 1

Overflow

((0)	0(Ô		
-7		0	0	1	
_2 /	1	1	1	0	
7 Vorflow	0	- Chicago	· Constant		

On an overflow the top bit is flipped

Full Adder

	A 0 0 0 0	0 0 1 1	0 1 0 1 0	0 0 0 1	0 1 1 0		AZ BSun Ci
	1 1 1	0 1 1	1 0 1	1 1 1	0 0 1	AB	A TOO SO
C: L	6	(B	C:	B		AC;	B

Multi-Bit Addition

SUSTRACT

O: A+B = = A+B+O

Adder/Subtractor 1: $A-B=A+(-B)=A+\overline{B}+1$

