Electrostatics

Question: What are the fundamental postulates of Electrostatic Model?

In constructing the electrostatic model we defined an electric field intensity vector, **E**, and an electric flux density (electric displacement) vector, **D**. The fundamental governing differential equations are

$$\nabla \times \mathbf{E} = 0$$
,

$$\nabla \cdot \mathbf{D} = \rho$$
.

For linear and isotropic (not necessarily homogeneous) media, E and D are related by the constitutive relation

$$\mathbf{D} = \epsilon \mathbf{E}$$
.

Magnetostatics

Question: What are the fundamental postulates of Magnetostatics Mode

For the magnetostatic model we defined a magnetic flux density vector, **B**, and a magnetic field intensity vector, **H**. The fundamental governing differential equations are

$$\nabla \cdot \mathbf{B} = 0$$
,

$$\nabla \times \mathbf{H} = \mathbf{J}$$
.

The constitutive relation for B and H in linear and isotropic media is

$$\mathbf{H} = \frac{1}{\mu} \, \mathbf{B}.$$

Maxwell's Equations

Differential Form	Integral Form	Significance
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_C \mathbf{E} \cdot d\ell = -\frac{d\Phi}{dt}$	Faraday's law
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_C \mathbf{H} \cdot d\ell = I + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s}$	Ampère's circuital law
$\nabla \cdot \mathbf{D} = \rho$	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	Gauss's law
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	No isolated magnetic charge

Question: Are these equations sufficient?

Question: Are the four Maxwell's equations independent? (Hint: Conservation of Charge -> Continuity Equation)

$$\nabla \cdot (\nabla \times \mathbf{H}) = \nabla \cdot \mathbf{J} + \nabla \cdot \frac{\partial \mathbf{D}}{\partial t}$$

$$0 = \nabla \cdot \mathbf{J} + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{D})$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho_v}{\partial t} \rightarrow 0 = -\frac{\partial \rho_v}{\partial t} + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{D})$$

$$\nabla \cdot \mathbf{D} = \rho_v$$

ilarly, we can obtain last of the Maxwell's equations by taking the diverger of the first Maxwell's equations.

Number of unknownsE, D, H, B (4 vectors, 12 scalar components)

Number of equations 2 vector equations, 6 scalar equations

Other two equations Constitutive vector equations (D = ε E, B = μ H) 2 vector equations, 6 scalar equations

What about Lorentz force equation? Is it possible to obtain the Lorentz force equation from Maxwell's Equations?

Complete EM Model

Maxwell's equations	Differential form		Integral form
(Faraday's law)	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	(11.24)	$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt}$
(Ampere's law)	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{L}}{\partial t}$	(11.25)	$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_s \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{s}$
(Gauss' law)	$\nabla \cdot \mathbf{D} = \rho$	(11.26)	$\oint_{s} \mathbf{D} \cdot d\mathbf{s} = Q$
(No monopoles)	$\nabla \cdot \mathbf{B} = 0$	(11.27)	$\oint_{s} \mathbf{B} \cdot d\mathbf{s} = 0$
Constitutive relations	$\mathbf{B} = \mu \mathbf{H}$		$= \mu \mathbf{H}$
	$\mathbf{D} = \varepsilon \mathbf{E}$		
The Lorentz force equation	$\mathbf{F} = Q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$		

Boundary Conditions

	Electric field	Magnetic field
Tangential components:	$E_{1t}=E_{2t}$	$H_{1t}-H_{2t}=\mathcal{J}$
	$\frac{D_{1t}}{\varepsilon_1} = \frac{D_{2t}}{\varepsilon_2}$	$\frac{B_{1t}}{\mu_1} = \frac{B_{2t}}{\mu_2} = \mathcal{J}$
Normal components:	$D_{1n}-D_{2n}=\rho_s$	$B_{1n}=B_{2n}$
	$\varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$	$\mu_1 H_{1n} = \mu_2 H_{2n}$

Time Harmonic Maxwell's Equations

Phasors
$$\mathbf{E}(x, y, z, t) = \Re e[\mathbf{E}(x, y, z)e^{j\omega t}],$$

Maxwell's equations	Differential form	Integral Form	
	$\nabla \times \mathbf{E} = -j\omega \mathbf{B} (11.68)$	$\oint_C \mathbf{E} \cdot d\mathbf{l} = -j\omega \int_s \mathbf{B} \cdot d\mathbf{s}$	
	$\nabla \times \mathbf{H} = \mathbf{J} + j\omega \mathbf{D} (11.69)$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_s (\mathbf{J} + j\omega \mathbf{D}) \cdot ds$	
	$\nabla \cdot \mathbf{D} = \rho \qquad (11.70)$	$\int_{s} \mathbf{D} \cdot d\mathbf{s} = Q$	
	$\nabla \cdot \mathbf{B} = 0 \qquad (11.71)$	$\int_{s} \mathbf{B} \cdot d\mathbf{s} = 0$	
Constitutive relations	$\mathbf{B} = \mu \mathbf{H}$ $\mathbf{D} = \varepsilon \mathbf{E}$		
The Lorentz force equation	$\mathbf{F} = Q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$		

Thank You