A Machine Learning Method for Prediction of Multipath Channels

Pedro Emílio Gória Silva

National Institute of Telecommunications (Instituto Nacional de Telecomunicações - Inatel)

21 de Junho de 2020

Sumário

- 1 Objetivo
- 2 Canal
- 3 Predição do canal
- 4 Resultados

Objetivo

Um método de aprendizado de máquina para prever a evolução de um canal de comunicação móvel com base em um tipo específico de rede neural convolucional

Modelo do canal de comunicação

Parâmetros de simulação

- 256 espalhadores, cada qual iniciando em uma posição aleatória.64 desses pontos se moveram em uma velocidade, definida inicialmente por uma distribuição normal $\mathcal{N}(0, 100)$ e invariante ao longo do tempo.
- A posição inicial do receptor é (200,0) e ele se move aleatoriamente com modulo contante, 10 m/s, e direção uniformemente distribuídas.
- O transmissor é fixo na posição (-200,0).
- O passo do canal é de $T=500\mu s$, do qual os primeiros $20\mu s$ são dedicados a estimação do canal.

Exemplo Canal

Figura 1: Exemplo de configuração da simulação projetada.

Estimação do Canal

Resposta ao impulso:

$$h(t,\tau) = K \sum_{l=0}^{255} \alpha^{(l)}(t) \exp(i\theta^{(l)}(t) + i2\pi f_D^{(l)}(t)\tau^{(l)}(t))\delta(t - \tau^{(l)}(t)).$$

Estimando a resposta ao inpulso do canal:

- no tempo: $r(t) = h(t, \tau) * s(t);$
- na frequência: H(t;f) = R(f)/S(f)

Rede Neural Convolucional

#	tipo	tamanho do	tamanho do	dilatação	função
		canal	Kernel	parâmetro	ativação
0	CNN dilatada	$2 \rightarrow 6$	(4,5)	(1,1)	tanh()
1	CNN dilatada	$6 \rightarrow 12$	(4,5)	(4,1)	tanh()
2	CNN dilatada	$12 \rightarrow 12$	(4,5)	(16,1)	tanh()
3	CNN dilatada	$12 \rightarrow 6$	(4,5)	(64,1)	tanh()
4	CNN	$6 \rightarrow 2m$	(1,1)	(1,1)	linear

Tabela 1: Layout da CNN 2D para previsão de m passo à frente

Rede Neural Convolucional

Figura 2: Estrutura das camadas convolucionais dilatadas ao longo do eixo t.

Parâmetros para a optimização da rede

- mean squared error (MSE);
- ADAM stochastic gradient descent (SGD) com taxa de aprendizado $\gamma = 0.01$;
- 30 épocas;
- 32 amostras por batch
- 16 canais independentes
- Cada canal contem 4096 amostras temporais em \mathbb{C}^{256} para o treinamento e 512 para o teste;

Resultado por época

Figura 3: Histórico do processo de treinamento para 30 épocas.

Δt	Treinamento	Teste	Validação
1	0.1466	0.1460	0.1424
1	0.9122	0.1010	0.2509
2	0.1579	0.1569	0.1538
2	0.9419	0.1068	0.2499
3	0.1753	0.1735	0.1707
3	0.9739	0.1068	0.2491
4	0.2014	0.1988	0.1962
4	1.0089	0.1070	0.2497
5	0.2357	0.2321	0.2298
5	1.0486	0.1091	0.2515

Tabela 2: MSE para o comprimento da previsão Δt de 1 a 5

Δt	Treinamento	Teste	Validação
6	0.2757	0.2723	0.2704
6	1.0949	0.1138	0.2551
7	0.3249	0.3208	0.3183
7	1.1463	0.1219	0.2614
8	0.3821	0.3763	0.3735
8	1.2093	0.1381	0.2735
9	0.4459	0.4393	0.4354
9	1.2855	0.1653	0.2981
10	0.5133	0.5055	0.5005
10	1.3627	0.1880	0.3227

Tabela 3: MSE para o comprimento da previsão Δt de 6 a 10

Figura 4: Densidade espectral de potência para $\Delta t = 1$.

Figura 5: Densidade espectral de potência para $\Delta t = 3$.

Figura 6: Densidade espectral de potência para $\Delta t = 5$.

Figura 7: Densidade espectral de potência para $\Delta t = 10$.

Obrigado!!