Taller 1 - Teoría de Números

Christian Mauricio Cárdenas Barón 20251167009

Carlos Andres Giraldo Hernandez
Facultad de Ciencias Matemáticas y Naturales
Universidad Distrital Francisco José de Caldas
2025-09-22

1. Taller

1. Demuestre por inducción:

Si
$$a_1 | a_2, a_2 | a_3, ..., a_{n-1} | a_n$$
, entonces $a_1 | a_n$

2. Demuestre por inducción:

Si
$$a|b_1, a|b_2, ..., a|b_n$$
, entonces $a|b_1x_1 + b_2x_2 + ... + b_nx_n$, $x_1, x_2, ..., x_n \in \mathbb{Z}$

- 3. Demostrar por inducción: Sean $a_1, a_2, ..., a_n \in \mathbb{Z}$ no nulos simultáneamente, existen enteros $x_1, x_2, ..., x_n$, tales que $(a_1, a_2, ..., a_n) = a_1x_1 + a_2x_2 + ... a_nx_n$
- 4. Demostrar: Sean $a, b \in \mathbb{Z}$ no nulos simultáneamente,

$$d = (a, b) \Longleftrightarrow \begin{cases} d \mid a \wedge d \mid b \\ m \mid a \wedge m \mid b \Longrightarrow m \mid d \end{cases}$$

- 5. Demostrar: $m > 0 \Longrightarrow (ma, mb) = m(a, b)$
- 6. Demostrar: $d > 0 \land d \mid a \land d \mid b \Longrightarrow \left(\frac{a}{d}, \frac{b}{d}\right) = \frac{1}{d}(a, b)$
- 7. Demostrar: $(a, m) = (b, m) = 1 \Longrightarrow (ab, m) = 1$
- 8. Demostrar: $(a, b) = (b, a) = (-a, b) = (a, -b) = (-a, -b) = (a, b + ax), x \in \mathbb{Z}$
- 9. Demostrar: $c|ab \wedge (c,b) = 1 \Longrightarrow c|a$