2 eme Annei STID: ANAD Corrigée de l'EMD (2021)

Exercice 1 (8 pt)

1/ Tableau des distances Euclidiennes

•		A	1 4 4		-	
d	w	we	ω_3	Wy	ws	Wb
w	0	3	13	H	1	129
War	1 =	0	2	5	4	V26
Wz		(y,	0	113	120'	120
Wu			,	0	187	15'
WC					0	134
Wb						0

2) Methode de liaison moyenne. 5=215 La plus petile distance du tableau est d(w, w) = 1, on forme dw, w, y

La plus petile distance d(w, w,)= v <2,5 La plu petite distance d (we, we)=2 <2,5 on forme Lw2, wzy (D)

	2001, W/	Wa	ω_3	Wy	Wb
Jw, w, 3	0	3,5	2 (41340)	如宝	29+134
Way	1	0	21	5	126
W ₂	-		0	V13	126
Wu				0	15,
W6.					10

form -	- L	, ,,		
d	Lw, w, y	1w2, w3 4	Wu	W6
Ju, wy	0	3,5+4,3	2+15	21
100,003	2	0	1/5+13	126
Wil	015		0	VS.
WG				0

route les distances sont > 5, en avête le regroupement: l= d (w, w, y); (w, w, y); (w, y); (w, y).

 $I_{+} = \frac{1}{6} \sum_{i=1}^{2} d^{2}(2i, 9) = \frac{1}{6} \left(\left[(-2+1/6)^{2} + (2-5/6)^{2} \right] + \left[(-2+1/6)^{2} + (-1-1/6)^{2} \right] + \left[(-1-1/6)^{2} + (-1-1/6)^{2} \right] + \left[(-1-1/6)^{2} + (-1-1/6)^{2} + (-1-1/6)^{2} \right] + \left[(-1-1/6)^{2} + (-1-1/6)^{2} + (-1-1/6)^{2} + (-1-1/6)^{2} \right] + \left[(-1-1/6)^{2} + (-1-1/6)$ [(0+1/6)2+(-1-5/6)2]+[(2+1/6)2+(2-5/6)2]

 $\left[(-2 + \frac{1}{6})^{2} + (3 - \frac{5}{6})^{2} \right] + \left[(3 + \frac{1}{6})^{2} + (0 - \frac{5}{6})^{2} \right]$

 $\frac{2}{1-\frac{1}{6\times36}}\left(\frac{(-11)^2+7^2+(-11)^2+(-$

Inertie inter. classes. $C_1 = \{w_1, w_3\}$ $C_2 = \{w_2, w_3\}$ $C_3 = \{w_4\}$ $C_4 = \{w_3\}$ $C_4 = \{w_3\}$ $C_5 = \{w_4\}$ $C_5 = \{w_3\}$ $C_5 = \{w_4\}$ $C_6 = \{w_3\}$ $C_7 = \{w_4\}$ $C_7 = \{w$

							and the
	21A	NB	ne	260	RE	x	not
2eA	0	٨	3	6	7	1	
ng		0	2	5	6		
nc	[3]	9	0	3	4		
N.	- d	VSAN	g 20	0	1		
NE				l la	0		
N _F		//.		//	//		
NG	/						

La + petili distance est- d (2/4, 2/8) = 1, on forme (2/4, 2/8) = 1

[124, 125] 2/2 2/3 2/4 D La plus petile distance of (2/4, 2/6) = 1

	Jan, ngg	No.	XD	NE	24
JXA,XBY	0	31	6	4	1
No		0	3	4	//
NE			0	1	1
NE	1 4 Fg	768		0	1
ne	11	3	/	17	S
	1.1			0 1	

on forme L My , XEJ							
(282)	Jua, nBy	nc	JRY, NES				
duping y	0	3	7				
· nc	1	0	4				
Jeg in	185 L ?	7 4- 8	0				
04			1 + 1				

La plus petile distance d(1x, no); no) on forme dup, no, re 3 LARAIRAINCY LASINEY りかりれるうたら LAJ , ney くるれより、くれらり、くれらり、くれらり、くれかれららくれのれとり、くれからから 1 24, ng, xc, ng, xey, 4 on coupe le dengrogramme entre 3 et 7: P= \frank, xcy; fx, ne) Exercice 3 (P) 1/ Centres de grante gr= (2) g2= (1) 2/ Fonction discriminante Z=3 1/3 X + 1/3 Y 3) Groupe du 7 eme étudiantes 号=3 13×1+13.2=413. Eg = 3/3 + 2/3 = 5/3 |子-291|=新湯 = 13-291=13 Le 2º étudiant a par de chance d'être du G11. que G2