From Principal Subspaces to Principal Components with Linear Autoencoders

翁婉庭

PCA

(Principal Component Analysis)

- Linear transformation:
 - a set of observations _____ coordinate system
- ■Unsupervised
- □ Dimensionality reduction:

n dimentions the first m principal components

(m<n)

PCA

(Principal Component Analysis)

$$X = W^T Y$$

Y:觀測向量(input vector)

W: orthogonal matrix $(w_i \perp w_j \cdot i \neq j)$

X:投影出的純量

N : 觀測向量個數

n :每個觀測向量的維度

m :預降維到m個向量投影

 w_i : loading vector

PCA

(Principal Component Analysis)

□目標:

找一個 W_i 向量組成的W,經過投影後,使Var(X)愈大愈好,其中 $W_i \perp W_j$, $i \neq j$

$$Var(x_1) = \sum (x_{1i} - \overline{x_1})^2 = \dots = w_1^T Y_0 Y_0^T w_1 = w_1^T \text{cov}(Y) w_1$$

Dimensionality reduction: $(n \rightarrow m)$

- : losing information
- \therefore minimize the loss of information = maxmux variance
- $\Rightarrow \max_{w_1} Var(x_1) = \max_{w_1} w_1^T cov(Y) w_1$, s.t. $w_1^T w_1 = 1$.

 w_1 is eigenvector of cov(Y), corresponding to the largest eigenvalue

SVD

(Singular-value decomposition)

• 找 $Y_0Y_0^T$ 的eigenvectors: w_1, w_2, w_3 w_m

∵high dimensional data 不好做 ⇒做SVD分解

$$\mathbf{Y}_0 \mathbf{Y}_0^T = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T = \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma}^T \mathbf{U}^{-1} = \mathbf{U} \mathbf{\Sigma}^2 \mathbf{U}^{-1}$$

 \therefore m columns of U = the loading vectors of Y: $(w_1, w_2, w_3, \dots, w_m)$

Autoencorder

- unsupervised learning
- □ A single fully-connected hidden layer
- □ numbers of input layer = numbers of output layer
- □ Dimensionality reducation
- First layer

$$x_i = a(W_1y_i + b_1)$$
, $a =$ activation function

second layer

$$\widehat{y}_i = a(W_2x_i + b_2) = a(W_2 a(W_1y_i + b_1) + b_2)$$

Linear autoencoders

- □把activation function 改成線性
- □ Project data onto the principal subspace
- ☐ The optimization algorithm used to train the neural network
- No orthonormality constraint
- •find W_1 , b_1 , W_2 , b_2 by

minimum the total squared difference between output and input

$$\min_{\mathbf{W}_1,\mathbf{b}_1,\mathbf{W}_2,\mathbf{b}_2} \ \left\| \mathbf{Y} - \left(\mathbf{W}_2 \left(\mathbf{W}_1 \mathbf{Y} + \mathbf{b}_1 \mathbb{1}_N^T \right) + \mathbf{b}_2 \mathbb{1}_N^T \right) \right\|_F^2.$$

Linear autoencoder → PCA

□Advantage:

- *Process high-dimensional data
- *Process datasets with large numbers of observations
- *avoid the need to center the data to element-wise zero mean

PCA v.s. Linear autoencoder

	PCA	Linear Autoencoder
Eigenvector比較	Eigenvector彼此是正交的,在 新空間裡的每個軸彼此垂直	找出的W不一定正交,做SVD後 才與PCA相等
在不同維度下的運行情況	在高維度時,要切割運算 (Local PCA)	維度較無限制(可作高維度)
優缺點	 若data有分組,做PCA會混在一起(因為無label) 無法做non-linear 	 可自行加深hidden layer 在linear下,PCA運行較快