ENERGY-EFFICIENT DISTRIBUTED COMPUTING SYSTEMS

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume.

ENERGY-EFFICIENT DISTRIBUTED COMPUTING SYSTEMS

Edited by

Albert Y. Zomaya Young Choon Lee

A JOHN WILEY & SONS, INC., PUBLICATION

Cover Image: Baris Simsek/iStockphoto

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Zomaya, Albert Y.

Energy-efficient distributed computing systems / Albert Y. Zomaya, Young Choon Lee.

p. cm.

ISBN 978-0-470-90875-4 (hardback)

1. Computer networks-Energy efficiency. 2. Electronic data processing—Distributed processing—Energy conservation. 3. Green technology. I. Lee, Young Choon, 1973— II. Title.

TK5105.5.Z66 2012 004'.36-dc23

2011042246

Printed in the United States of America

ISBN: 9780470908754

10 9 8 7 6 5 4 3 2 1

CONTENTS

PR	EFAC	E		xxix			
ACKNOWLEDGMENTS							
CO	NTRII	BUTO	PRS	xxxiii			
1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS WITH ENERGY AND TIME CONSTRAINTS Keqin Li							
	1.1	Introd	uction	1			
		1.1.1	Energy Consumption	1			
		1.1.2	Power Reduction	2			
		1.1.3	Dynamic Power Management	3			
		1.1.4	Task Scheduling with Energy and Time Constraints	4			
		1.1.5	Chapter Outline	5			
	1.2	Prelim	ninaries	5			
		1.2.1	Power Consumption Model	5			
		1.2.2	Problem Definitions	6			
		1.2.3	Task Models	7			
		1.2.4	Processor Models	8			
		1.2.5	Scheduling Models	9			
		1.2.6	Problem Decomposition	9			
				vii			

viii CONTENTS

	1.2.7	Types of Algorithms	10				
1.3	Problem Analysis						
	1.3.1	Schedule Length Minimization	10				
		1.3.1.1 Uniprocessor computers	10				
		1.3.1.2 Multiprocessor computers	11				
	1.3.2	Energy Consumption Minimization	12				
		1.3.2.1 Uniprocessor computers	12				
		1.3.2.2 Multiprocessor computers	13				
	1.3.3	Strong NP-Hardness	14				
	1.3.4	Lower Bounds	14				
	1.3.5	Energy-Delay Trade-off	15				
1.4	Pre-Po	ower-Determination Algorithms	16				
	1.4.1	Overview	16				
	1.4.2	Performance Measures	17				
	1.4.3	Equal-Time Algorithms and Analysis	18				
		1.4.3.1 Schedule length minimization	18				
		1.4.3.2 Energy consumption minimization	19				
	1.4.4	Equal-Energy Algorithms and Analysis	19				
		1.4.4.1 Schedule length minimization	19				
		1.4.4.2 Energy consumption minimization	21				
	1.4.5	Equal-Speed Algorithms and Analysis	22				
		1.4.5.1 Schedule length minimization	22				
		1.4.5.2 Energy consumption minimization	23				
	1.4.6	Numerical Data	24				
	1.4.7	Simulation Results	25				
1.5	Post-F	Power-Determination Algorithms	28				
	1.5.1	Overview	28				
	1.5.2	Analysis of List Scheduling Algorithms	29				
		1.5.2.1 Analysis of algorithm LS	29				
		1.5.2.2 Analysis of algorithm LRF	30				
	1.5.3	Application to Schedule Length Minimization	30				
	1.5.4	Application to Energy Consumption Minimization	31				
	1.5.5	Numerical Data					
	1.5.6	Simulation Results					
1.6	Summ	nary and Further Research	33				
	References						

2			VARE H I Kirk W. (IGH PERFORMANCE COMPUTING Cameron	39
	2.1	Introd	uction		39
	2.2	Backg	round		41
		2.2.1		Hardware Technology and Power	
			Consum		41
			2.2.1.1	Processor power	41
			2.2.1.2	Memory subsystem power	42
		2.2.2	Perform	ance	43
		2.2.3	Energy	Efficiency	44
	2.3	Relate	ed Work		45
		2.3.1	Power I	Profiling	45
			2.3.1.1	Simulator-based power estimation	45
			2.3.1.2	Direct measurements	46
			2.3.1.3	Event-based estimation	46
		2.3.2	Perform Systems	nance Scalability on Power-Aware	46
		2.3.3	•	re Power Allocation for Energy-Efficient	47
	2.4		•	ne-Grain Energy Profiling of HPC	48
		2.4.1	Design	and Implementation of PowerPack	48
			_	Overview	48
			2.4.1.2	Fine-grain systematic power measurement	50
				Automatic power profiling and code synchronization	51
		2.4.2	Power I	Profiles of HPC Applications and Systems	53
				Power distribution over components	53
				Power dynamics of applications	54
				Power bounds on HPC systems	55
			2.4.2.4	Power versus dynamic voltage and	57
	2.5	Dave	. A.z.one C	frequency scaling	
	2.5			Speedup Model	59
		2.5.1		Aware Speedup	59
			2.5.1.1	Sequential execution time for a single workload $T_1(w, f)$	60

			2.5.1.2	Sequential execution time for an	
				ON-chip/OFF-chip workload	60
			2.5.1.3	Parallel execution time on N processors	
				for an ON-/OFF-chip workload with	
				DOP = i	61
			2.5.1.4	Power-aware speedup for DOP and	62
		2.5.2	Model I	ON-/OFF-chip workloads Parametrization and Validation	63
		2.3.2			03
			2.3.2.1	Coarse-grain parametrization and validation	64
			2.5.2.2	Fine-grain parametrization and validation	66
	2.6	Model	Usages	Time 8, and per amen quite a care variation	69
		2.6.1	_	eation of Optimal System Configurations	70
		2.6.2		rected Energy-Driven Runtime Frequency	, 0
			Scaling	and the state of t	71
	2.7	Concl	usion		73
		Refere	ences		75
3		_	_	CY IN HPC SYSTEMS	81
	Ivan F			sh Parashar	
	3.1				81
	3.2	_		d Related Work	83
		3.2.1		wer Management	83
				OS-level CPU power management	83
				Workload-level CPU power management	84
			3.2.1.3	Cluster-level CPU power management	84
		3.2.2	Compor	nent-Based Power Management	85
				Memory subsystem	85
				Storage subsystem	86
		3.2.3		l-Conscious Power Management	87
		3.2.4		Management in Virtualized Datacenters	87
	3.3			ponent-Based Power Management	88
		3.3.1		ocation Policies	88
				nd Profiling	90
	3.4			ergy Saving Possibilities	91
		3.4.1	Methodo		92
		3.4.2		nent-Level Power Requirements	92
		3.4.3	0.	_	94
	3.5			he Proposed Strategies	95
		3.5.1	Methodo	ology	96

				CONTENTS	хi
		3.5.2	Workloads		96
		3.5.3	Metrics		97
	3.6	Result	ts		97
	3.7	Concl	uding Remarks		102
	3.8	Summ	nary		103
		Refere	•		104
4			STIC FRAMEWORK FOR HIERARCHICAL	-	
			EVEL POWER MANAGEMENT and Massoud Pedram		109
	4.1	Introd	luction		109
	4.2	Relate	ed Work		111
	4.3	A Hie	erarchical DPM Architecture		113
	4.4	Mode	ling		114
		4.4.1	Model of the Application Pool		114
		4.4.2	Model of the Service Flow Control		118
		4.4.3	Model of the Simulated Service Provider		119
		4.4.4	Modeling Dependencies between SPs		120
	4.5	Policy	Optimization		122
		4.5.1	Mathematical Formulation		122
		4.5.2			
			Manager		123
		-	imental Results		125
	4.7	Concl	usion		130
		Refere	ences		130
5			FFICIENT RESERVATION INFRASTRUCT	URE	
			S, CLOUDS, AND NETWORKS Orgerie and Laurent Lefèvre		133
	5.1	Introd	luction		133
	5.2	Relate	ed Works		134
		5.2.1	Server and Data Center Power Management		135
		5.2.2	Node Optimizations		135
		5.2.3	Virtualization to Improve Energy Efficiency		136
		5.2.4	Energy Awareness in Wired Networking		
			Equipment		136
		5.2.5	Synthesis		137
	5.3		IS: Energy-Efficient Reservation Infrastructure	for	
		_	-Scale Distributed Systems		138
		5.3.1	ERIDIS Architecture		138

		5.3.2	Management of the Resource Reservations	141
		5.3.3	Resource Management and On/Off Algorithms	145
		5.3.4	Energy-Consumption Estimates	146
		5.3.5	Prediction Algorithms	146
	5.4	EARI	: Energy-Aware Reservation Infrastructure for Data	
		Center	rs and Grids	147
		5.4.1	EARI's Architecture	147
		5.4.2	Validation of EARI on Experimental Grid Traces	147
	5.5	GOC:	Green Open Cloud	149
		5.5.1	GOC's Resource Manager Architecture	150
		5.5.2	Validation of the GOC Framework	152
	5.6	HERN	MES: High Level Energy-Aware Model for Bandwidth	
			vation in End-To-End Networks	152
		5.6.1	HERMES' Architecture	154
		5.6.2	The Reservation Process of HERMES	155
		5.6.3	Discussion	157
	5.7	Summ	ary	158
		Refere	ences	158
_		DOV =	FEIGURNIT IOD DI AGENENIT ON OLUGTEDO	
6	GRIE Damie)S, AN en Borg	FFICIENT JOB PLACEMENT ON CLUSTERS, D CLOUDS etto, Henri Casanova, Georges Da Costa, and	163
6	GRID Damie Jean-	OS, AN en Borg Marc P	D CLOUDS etto, Henri Casanova, Georges Da Costa, and ierson	
6	GRIE Damie	OS, AN en Borg Marc Pa Proble	D CLOUDS letto, Henri Casanova, Georges Da Costa, and lierson lem and Motivation	163
6	GRID Damie Jean-	DS, AN en Borg Marc Pa Proble 6.1.1	D CLOUDS etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context	163 163
6	GRID Damie Jean- 6.1	Proble 6.1.1 6.1.2	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap	163 163 164
6	GRID Damie Jean-	Proble 6.1.1 Energy	D CLOUDS Petto, Henri Casanova, Georges Da Costa, and Pierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures	163 163 164 164
6	GRID Damie Jean- 6.1	Proble 6.1.1 6.1.2 Energ 6.2.1	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings	163 163 164 164 165
6	GRID Damie Jean- 6.1	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings	163 163 164 164 165 165
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling	163 163 164 164 165 165
6	GRID Damie Jean- 6.1	Proble 6.1.1 6.1.2 Energ. 6.2.1 6.2.2 6.2.3 Currer	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling et Resource Management Practices	163 163 164 164 165 165 166
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ent Resource Management Practices Widely Used Resource Management Systems	163 163 164 164 165 165 166 167
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1 6.3.2	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ett Resource Management Practices Widely Used Resource Management Systems Job Requirement Description	163 164 164 165 165 166 167 167
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1 6.3.2	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ent Resource Management Practices Widely Used Resource Management Systems Job Requirement Description effic and Technical Challenges	163 163 164 164 165 165 166 167
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1 6.3.2 Scient	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ett Resource Management Practices Widely Used Resource Management Systems Job Requirement Description	163 163 164 164 165 165 166 167 167 169
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1 6.3.2 Scient 6.4.1	etto, Henri Casanova, Georges Da Costa, and derson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ent Resource Management Practices Widely Used Resource Management Systems Job Requirement Description effic and Technical Challenges Theoretical Difficulties	163 163 164 164 165 165 166 167 167 170
6	GRIE Damie Jean- 6.1 6.2	Proble 6.1.1 6.1.2 Energ 6.2.1 6.2.2 6.2.3 Currer 6.3.1 6.3.2 Scient 6.4.1 6.4.2 6.4.3	etto, Henri Casanova, Georges Da Costa, and ierson em and Motivation Context Chapter Roadmap y-Aware Infrastructures Buildings Context-Aware Buildings Cooling ent Resource Management Practices Widely Used Resource Management Systems Job Requirement Description effic and Technical Challenges Theoretical Difficulties Technical Difficulties	163 164 164 165 165 166 167 167 169 170 170

					CONTENTS	xiii
		6.5.1	State of	the Art		172
		6.5.2	Detailin	g One Approach		174
	6.6	Discus	ssion			180
		6.6.1	Open Is	sues and Opportunities		180
		6.6.2	Obstacle	es for Adoption in Production		182
	6.7	Concl	usion			183
		Refere	ences			184
7	FOR Peder Same	RGY-E COMF Lindbe	FFICIEN PUTATIO erg, James	D ANALYSIS OF GREEDY IT SCHEDULING ALGORITHMS DNAL GRIDS Is Leingang, Daniel Lysaker, Kashif Bill Scal Bouvry, Nasir Ghani, Nasro Min-A		189
	7.1	Introd	uction			189
	7.2	Proble	em Formu	ulation		191
		7.2.1	The Sys	stem Model		191
			7.2.1.1	PEs		191
			7.2.1.2	DVS		191
			7.2.1.3	Tasks		192
			7.2.1.4	Preliminaries		192
		7.2.2	Formula Problem	ating the Energy-Makespan Minimiza	ation	192
	7.3	Propo	sed Algor	rithms		193
		7.3.1	Greedy	Heuristics		194
			7.3.1.1	Greedy heuristic scheduling algorith	ım	196
			7.3.1.2	Greedy-min		197
			7.3.1.3	Greedy-deadline		198
			7.3.1.4	Greedy-max		198
			7.3.1.5	MaxMin		199
			7.3.1.6	ObFun		199
			7.3.1.7	MinMin StdDev		202
			7.3.1.8	MinMax StdDev		202
	7.4	Simul	ations, Re	esults, and Discussion		203
		7.4.1	Workloa	ad		203
		7.4.2		rative Results		204
				Small-size problems		204
				Large-size problems		206
	7.5	Relate	ed Works			211

	CONTENTS
XIV	

	7.6	Concl	usion	211
		Refere	ences	212
8	MAC Josep	HINE I	ENERGY-AWARE SCHEDULING USING LEARNING erral, Iñigo Goiri, Ramon Nou, Ferran Julià, Josep O. uitart, Ricard Gavaldá, and Jordi Torres	215
	8.1	Introd	uction	215
		8.1.1	Energetic Impact of the Cloud	216
		8.1.2	An Intelligent Way to Manage Data Centers	216
		8.1.3	Current Autonomic Computing Techniques	217
		8.1.4	Power-Aware Autonomic Computing	217
		8.1.5	State of the Art and Case Study	218
	8.2	Intelli	gent Self-Management	218
		8.2.1	Classical AI Approaches	219
			8.2.1.1 Heuristic algorithms	219
			8.2.1.2 AI planning	219
			8.2.1.3 Semantic techniques	219
			8.2.1.4 Expert systems and genetic algorithms	220
		8.2.2	Machine Learning Approaches	220
			8.2.2.1 Instance-based learning	221
			8.2.2.2 Reinforcement learning	222
			8.2.2.3 Feature and example selection	225
	8.3	Introd	ucing Power-Aware Approaches	225
		8.3.1	Use of Virtualization	226
		8.3.2	Turning On and Off Machines	228
		8.3.3	Dynamic Voltage and Frequency Scaling	229
		8.3.4	Hybrid Nodes and Data Centers	230
	8.4		iences of Applying ML on Power-Aware	•••
			Management	230
		8.4.1	Case Study Approach	231
			Scheduling and Power Trade-Off	231
			Experimenting with Power-Aware Techniques	233
			Applying Machine Learning	236
	0.5	8.4.5		238
	8.5		usions on Intelligent Power-Aware	220
		Self-N Refere	Management	238 240
		Keiere	THUES	240

9			_	ICY METRICS FOR DATA CENTERS t Y. Zomaya	245
	9.1	Introd	uction		245
		9.1.1	Backgro	ound	245
			_	enter Energy Use	246
		9.1.3	Data Ce	enter Characteristics	246
			9.1.3.1	Electric power	247
			9.1.3.2	Heat removal	249
		9.1.4	Energy	Efficiency	250
	9.2	Funda	mentals of	of Metrics	250
		9.2.1	Demand	d and Constraints on Data Center	
			Operato	ors	250
		9.2.2	Metrics		251
			9.2.2.1	Criteria for good metrics	251
			9.2.2.2	Methodology	252
			9.2.2.3	Stability of metrics	252
	9.3	Data (Center Er	nergy Efficiency	252
		9.3.1	Holistic	IT Efficiency Metrics	252
			9.3.1.1	Fixed versus proportional overheads	254
			9.3.1.2	Power versus energy	254
			9.3.1.3	Performance versus productivity	255
		9.3.2	Code of	f Conduct	256
			9.3.2.1	Environmental statement	256
				Problem statement	256
				Scope of the CoC	257
				Aims and objectives of CoC	258
		9.3.3	Power I	Use in Data Centers	259
			9.3.3.1	Data center IT power to utility power relationship	259
			9.3.3.2	Chiller efficiency and external temperature	260
	9.4	Availa	ble Metr	ics	260
		9.4.1	The Gre	een Grid	261
			9.4.1.1	Power usage effectiveness (PUE)	261
				Data center efficiency (DCE)	262
			9.4.1.3	Data center infrastructure efficiency (DCiE)	262
			0111	Data center productivity (DCP)	263

		9.4.2	McKins	sey	263
		9.4.3	Uptime	Institute	264
			9.4.3.1	Site infrastructure power overhead multiplier (SI-POM)	265
			9.4.3.2	IT hardware power overhead multiplier (H-POM)	266
			9.4.3.3	DC hardware compute load per unit of computing work done	266
			9.4.3.4	Deployed hardware utilization ratio (DH-UR)	266
			9.4.3.5	Deployed hardware utilization efficiency (DH-UE)	267
	9.5	Harmo	onizing C	Global Metrics for Data Center Energy	
		Efficie	ency		267
		Refere	ences		268
10	DAT	A CEN	TERS	EN COMPUTING IN LARGE-SCALE (hargharia, Salim Hariri, and Youssif Al-Nashif	271
	10.1	Introd	uction		271
	10.2	Relate	ed Techno	ologies and Techniques	272
		10.2.1	Power	Optimization Techniques in Data Centers	272
			Design		273
		10.2.3	Networ	ks	274
		10.2.4	Data Co	enter Power Distribution	275
		10.2.5	Data Co	enter Power-Efficient Metrics	276
		10.2.6	Modeli	ng Prototype and Testbed	277
		10.2.7	Green (Computing	278
		10.2.8	Energy	Proportional Computing	280
		10.2.9	Hardwa	are Virtualization Technology	281
		10.2.1	0 Auton	omic Computing	282
	10.3	Auton	omic Gr	een Computing: A Case Study	283
		10.3.1	Autono	mic Management Platform	285
				l Platform architecture	285
				2 DEVS-based modeling and simulation	
				platform	285
			10.3.1.3	3 Workload generator	287
		10.3.2	Model	Parameter Evaluation	288

		CONTENTS	xvii
		10.3.2.1 State transitioning overhead	288
		10.3.2.2 VM template evaluation	289
		10.3.2.3 Scalability analysis	291
		10.3.3 Autonomic Power Efficiency Management	
		Algorithm (Performance Per Watt)	291
		10.3.4 Simulation Results and Evaluation	293
		10.3.4.1 Analysis of energy and performance	
		trade-offs	296
	10.4	Conclusion and Future Directions	297
		References	298
11	ENE	RGY AND THERMAL AWARE SCHEDULING IN DATA	
• •		TERS	301
		av Dhiman, Raid Ayoub, and Tajana S. Rosing	
	11.1	Introduction	301
	11.2	Related Work	302
	11.3	Intermachine Scheduling	305
		11.3.1 Performance and Power Profile of VMs	305
		11.3.2 Architecture	309
		11.3.2.1 vgnode	309
		11.3.2.2 vgxen	310
		11.3.2.3 vgdom	312
		11.3.2.4 vgserv	312
	11.4	Intramachine Scheduling	315
		11.4.1 Air-Forced Thermal Modeling and Cost	316
		11.4.2 Cooling Aware Dynamic Workload Scheduling	317
		11.4.3 Scheduling Mechanism	318
		11.4.4 Cooling Costs Predictor	319
	11.5	Evaluation	321
		11.5.1 Intermachine Scheduler (vGreen)	321
		11.5.2 Heterogeneous Workloads	323
		11.5.2.1 Comparison with DVFS policies	325
		11.5.2.2 Homogeneous workloads	328
		11.5.3 Intramachine Scheduler (Cool and Save)	328
		11.5.3.1 Results	331
		11.5.3.2 Overhead of CAS	333
	11.6	Conclusion	333
		References	334

12		-AWARE POWER MANAGEMENT IN DATA TERS	339
	Jiayu Gong and Cheng-Zhong Xu		
	12.1	Introduction	339
	12.2	Problem Classification	340
		12.2.1 Objective and Constraint	340
		12.2.2 Scope and Time Granularities	340
		12.2.3 Methodology	341
	12.2.4 Power Management Mechanism		342
	12.3	Energy Efficiency	344
		12.3.1 Energy-Efficiency Metrics	344
		12.3.2 Improving Energy Efficiency	346
		12.3.2.1 Energy minimization with performance guarantee	346
		12.3.2.2 Performance maximization under power budget	348
		12.3.2.3 Trade-off between power and performance	re 348
		12.3.3 Energy-Proportional Computing	350
	12.4	Power Capping	351
	12.5	Conclusion	353
		References	356
13	ENE	RGY-EFFICIENT STORAGE SYSTEMS FOR DATA	
		TERS	361
	Sudh	anva Gurumurthi and Anand Sivasubramaniam	
	13.1	Introduction	361
	13.2	Disk Drive Operation and Disk Power	362
		13.2.1 An Overview of Disk Drives	362
		13.2.2 Sources of Disk Power Consumption	363
		13.2.3 Disk Activity and Power Consumption	365
	13.3	Disk and Storage Power Reduction Techniques	366
		13.3.1 Exploiting the STANDBY State	368
		13.3.2 Reducing Seek Activity	369
		13.3.3 Achieving Energy Proportionality	369
		13.3.3.1 Hardware approaches	369
		13.3.3.2 Software approaches	370
	13.4	Using Nonvolatile Memory and Solid-State Disks	371
	13.5	Conclusions	372
		References	373

14	AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS FOR MEMORY IN SERVERS Bithika Khargharia and Mazin Yousif		377
	14.1	Introduction	378
	14.2	Classifications of Dynamic Power Management Techniques	380
		14.2.1 Heuristic and Predictive Techniques	380
		14.2.2 QoS and Energy Trade-Offs	381
	14.3	Applications of Dynamic Power Management (DPM)	382
		14.3.1 Power Management of System Components in Isolation	382
		14.3.2 Joint Power Management of System Components	383
		14.3.3 Holistic System-Level Power Management	383
	14.4	Autonomic Power and Performance Optimization of	
		Memory Subsystems in Server Platforms	384
		14.4.1 Adaptive Memory Interleaving Technique for Power	
		and Performance Management	384
		14.4.1.1 Formulating the optimization problem	386
		14.4.1.2 Memory appflow	389
		14.4.2 Industry Techniques	389
		14.4.2.1 Enhancements in memory hardware design	390
		14.4.2.2 Adding more operating states	390
		14.4.2.3 Faster transition to and from low power states	390
		14.4.2.4 Memory consolidation	390
	14.5	Conclusion	391
		References	391
15	RELI SYS	: A PRACTICAL APPROACH TO IMPROVING ABILITY OF ENERGY-EFFICIENT PARALLEL DISK IEMS	395
	Shu Y	'in, Xiaojun Ruan, Adam Manzanares, and Xiao Qin	
	15.1	Introduction	395
	15.2	Modeling Reliability of Energy-Efficient Parallel Disks	396
		15.2.1 The MINT Model	396
		15.2.1.1 Disk utilization	398
		15.2.1.2 Temperature	398
		15.2.1.3 Power-state transition frequency	399
		15.2.1.4 Single disk reliability model	399
		15.2.2 MAID, Massive Arrays of Idle Disks	400
	15.3	Improving Reliability of MAID via Disk Swapping	401

		15.3.1 Improving Reliability of Cache Disks in MAID	401
		15.3.2 Swapping Disks Multiple Times	404
	15.4	Experimental Results and Evaluation	405
		15.4.1 Experimental Setup	405
		15.4.2 Disk Utilization	406
		15.4.3 The Single Disk Swapping Strategy	406
		15.4.4 The Multiple Disk Swapping Strategy	409
	15.5	Related Work	411
	15.6	Conclusions	412
		References	413
16	ENE	RACING THE MEMORY AND I/O WALLS FOR RGY-EFFICIENT SCIENTIFIC COMPUTING g-Hsing Hsu and Wu-Chun Feng	417
	16.1	Introduction	417
	16.2	Background and Related Work	420
		16.2.1 DVFS-Enabled Processors	420
		16.2.2 DVFS Scheduling Algorithms	421
		16.2.3 Memory-Aware, Interval-Based Algorithms	422
	16.3	β -Adaptation: A New DVFS Algorithm	423
		16.3.1 The Compute-Boundedness Metric, β	423
		16.3.2 The Frequency Calculating Formula, f^*	424
		16.3.3 The Online β Estimation	425
		16.3.4 Putting It All Together	427
	16.4	Algorithm Effectiveness	429
		16.4.1 A Comparison to Other DVFS Algorithms	429
		16.4.2 Frequency Emulation	432
		16.4.3 The Minimum Dependence to the PMU	436
	16.5	Conclusions and Future Work	438
		References	439
17	PRO Nikza	TIPLE FREQUENCY SELECTION IN DVFS-ENABLED CESSORS TO MINIMIZE ENERGY CONSUMPTION d Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee, Ali Izadeh Boloori, and Javid Taheri	443
	17.1	Introduction	443
	17.2	Energy Efficiency in HPC Systems	444
	17.3	Exploitation of Dynamic Voltage-Frequency Scaling	446
		17.3.1 Independent Slack Reclamation	446

		CONTENTS	XXi
		17.3.2 Integrated Schedule Generation	447
	17.4	Preliminaries	448
		17.4.1 System and Application Models	448
		17.4.2 Energy Model	448
	17.5	Energy-Aware Scheduling via DVFS	450
		17.5.1 Optimum Continuous Frequency	450
		17.5.2 Reference Dynamic Voltage–Frequency Scaling (RDVFS)	451
		17.5.3 Maximum-Minimum-Frequency for Dynamic Voltage-Frequency Scaling (MMF-DVFS)	452
		17.5.4 Multiple Frequency Selection for Dynamic Voltage—Frequency Scaling (MFS-DVFS)	453
		17.5.4.1 Task eligibility	454
	17.6	Experimental Results	456
		17.6.1 Simulation Settings	456
		17.6.2 Results	458
	17.7	Conclusion	461
		References	461
18	COM	PARAMOUNTCY OF RECONFIGURABLE IPUTING or Hartenstein	465
	18.1	Introduction	465
	18.2	Why Computers are Important	466
		18.2.1 Computing for a Sustainable Environment	470
	18.3	Performance Progress Stalled	472
		18.3.1 Unaffordable Energy Consumption of Computing	473
		18.3.2 Crashing into the Programming Wall	475
	18.4	The Tail is Wagging the Dog (Accelerators)	488
		18.4.1 Hardwired Accelerators	489
		18.4.2 Programmable Accelerators	490
	18.5	Reconfigurable Computing	494
		18.5.1 Speedup Factors by FPGAs	498
		18.5.2 The Reconfigurable Computing Paradox	501
		18.5.3 Saving Energy by Reconfigurable Computing	505
		18.5.3.1 Traditional green computing	506
		18.5.3.2 The role of graphics processors	507
		18.5.3.3 Wintel versus ARM	508
		18.5.4 Reconfigurable Computing is the Silver Bullet	511

		18.5.4.1 A new world model of computing	511
		18.5.5 The Twin-Paradigm Approach to Tear Down	
		the Wall	514
		18.5.6 A Mass Movement Needed as Soon as Possible	517
		18.5.6.1 Legacy software from the mainframe	
		age	518
		18.5.7 How to Reinvent Computing	519
	18.6	Conclusions	526
		References	529
19	SAVI	RKLOAD CLUSTERING FOR INCREASING ENERGY NGS ON EMBEDDED MPSOCS Ozturk, Mahmut Kandemir, and Sri Hari Krishna	549
	Naray		
	19.1	Introduction	549
	19.2	Embedded MPSoC Architecture, Execution Model, and Related Work	550
	19.3	Our Approach	551
	17.5	19.3.1 Overview	551
		19.3.2 Technical Details and Problem Formulation	553
		19.3.2.1 System and job model	553 553
		19.3.2.2 Mathematical programing model	554
		19.3.2.3 Example	557
	19.4	Experimental Evaluation	560
	19.4	Conclusions	564
	17.3	References	565
20		RGY-EFFICIENT INTERNET INFRASTRUCTURE ong Jiang and Viktor K. Prasanna	567
	20.1	Introduction	567
		20.1.1 Performance Challenges	568
		20.1.2 Existing Packet Forwarding Approaches	570
		20.1.2.1 Software approaches	570
		20.1.2.2 Hardware approaches	571
	20.2	SRAM-Based Pipelined IP Lookup Architectures:	
		Alternative to TCAMs	571
	20.3	Data Structure Optimization for Power Efficiency	573
		20.3.1 Problem Formulation	574

		CONTENTS	xxiii
		20.3.1.1 Non-pipelined and pipelined engines	574
		20.3.1.2 Power function of SRAM	575
		20.3.2 Special Case: Uniform Stride	576
		20.3.3 Dynamic Programming	576
		20.3.4 Performance Evaluation	577
		20.3.4.1 Results for non-pipelined architecture	578
		20.3.4.2 Results for pipelined architecture	578
	20.4	Architectural Optimization to Reduce Dynamic Power	
		Dissipation	580
		20.4.1 Analysis and Motivation	581
		20.4.1.1 Traffic locality	582
		20.4.1.2 Traffic rate variation	582
		20.4.1.3 Access frequency on different stages	583
		20.4.2 Architecture-Specific Techniques	583
		20.4.2.1 Inherent caching	584
		20.4.2.2 Local clocking	584
		20.4.2.3 Fine-grained memory enabling	585
		20.4.3 Performance Evaluation	585
	20.5	Related Work	588
	20.6	Summary	589
		References	589
21	DIST	AND RESPONSE IN THE SMART GRID: A RIBUTED COMPUTING PERSPECTIVE Wang and Martin De Groot	593
	21.1	Introduction	593
	21.2	Demand Response	595
		21.2.1 Existing Demand Response Programs	595
		21.2.2 Demand Response Supported by the Smart Grid	597
	21.3	Demand Response as a Distributed System	600
		21.3.1 An Overlay Network for Demand Response	600
		21.3.2 Event Driven Demand Response	602
		21.3.3 Cost Driven Demand Response	604
		21.3.4 A Decentralized Demand Response Framework	609
		21.3.5 Accountability of Coordination Decision	
		Making	610
	21.4	Summary	611
		References	611

22	RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING Jong-Kook Kim		615	
	22.1	Introduction		615
	22.2		onstrained Environment	617
	22.2	22.2.1 System Model	instrained Environment	617
		22.2.2 Related Work		620
		22.2.3 Heuristic Descri	rintions	621
		22.2.3.1 Mapp	-	621
		* *	luling communications	621
			rtunistic load balancing and	021
			num energy greedy heuristics	622
		22.2.3.4 ME-N	AC heuristic	622
		22.2.3.5 ME-N	AE heuristic	624
		22.2.3.6 CRM	E heuristic	625
		22.2.3.7 Origi	nator and random	626
		22.2.3.8 Uppe	r bound	626
		22.2.4 Simulation Mo	del	628
		22.2.5 Results		630
		22.2.6 Summary		634
	22.3	Multihop Distributed I Environment	Mobile Computing	635
		22.3.1 The Multihop S	System Model	635
		22.3.2 Energy-Aware		636
		22.3.2.1 Over		636
		22.3.2.1 OVEN		637
			V remaining energy	637
		22.3.2.4 DSD	V-energy consumption per remaining	
		energ		637 638
		22.3.3 Heuristic Description 22.3.3.1 Rand	1	638
				638
			ated minimum total energy (EMTE) reent-speed (KPS) and	038
			cent-speed (KPS) and cent-energy (KPE)	639
		22.3.3.4 Energ	gy ratio and distance (ERD)	639
		22.3.3.5 ETC	and distance (ETCD)	640
		22.3.3.6 Minir	num execution time (MET)	640

		22.3.3.7 Minimum completion time (MCT) and minimum completion time with DVS (MCT-DVS)	640
		22.3.3.8 Switching algorithm (SA)	640
		22.3.4 Simulation Model	641
		22.3.5 Results	643
		22.3.5.1 Distributed resource management	643
		22.3.5.2 Energy-aware protocol	644
		22.3.6 Summary	644
	22.4	Future Work	647
		References	647
23		NERGY-AWARE FRAMEWORK FOR MOBILE DATA	
	MINI Carm	NG ela Comito, Domenico Talia, and Paolo Trunfio	653
	23.1	Introduction	653
	23.2	System Architecture	654
	23.3	Mobile Device Components	657
	23.4	Energy Model	659
	23.5	Clustering Scheme	664
		23.5.1 Clustering the M2M Architecture	666
	23.6	Conclusion	670
		References	670
24	SEN	RGY AWARENESS AND EFFICIENCY IN WIRELESS SOR NETWORKS: FROM PHYSICAL DEVICES TO	
		COMMUNICATION LINK C. Delicato and Paulo F. Pires	673
	24.1	Introduction	673
	24.2	WSN and Power Dissipation Models	676
		24.2.1 Network and Node Architecture	676
		24.2.2 Sources of Power Dissipation in WSNs	679
	24.3	Strategies for Energy Optimization	683
		24.3.1 Intranode Level	684
		24.3.1.1 Duty cycling	685
		24.3.1.2 Adaptive sensing	691
		24.3.1.3 Dynamic voltage scale (DVS)	693
		24.3.1.4 OS task scheduling	694

xxvi CONTENTS

		24.3.2 Internode Level	695
		24.3.2.1 Transmission power control	695
		24.3.2.2 Dynamic modulation scaling	696
		24.3.2.3 Link layer optimizations	698
	24.4	Final Remarks	701
		References	702
25	EFFI	WORK-WIDE STRATEGIES FOR ENERGY CIENCY IN WIRELESS SENSOR NETWORKS C. Delicato and Paulo F. Pires	709
	25.1	Introduction	709
	25.2	Data Link Layer	711
		25.2.1 Topology Control Protocols	712
		25.2.2 Energy-Efficient MAC Protocols	714
		25.2.2.1 Scheduled MAC protocols in WSNs	716
		25.2.2.2 Contention-based MAC protocols	717
	25.3	Network Layer	719
		25.3.1 Flat and Hierarchical Protocols	722
	25.4	Transport Layer	725
	25.5	Application Layer	729
		25.5.1 Task Scheduling	729
		25.5.2 Data Aggregation and Data Fusion in WSNs	733
		25.5.2.1 Approaches of data fusion for energy efficiency	735
		25.5.2.2 Data aggregation strategies	736
	25.6	Final Remarks	740
		References	741
26	WIRI	RGY MANAGEMENT IN HETEROGENEOUS ELESS HEALTH CARE NETWORKS Nikzad, Priti Aghera, Piero Zappi, and Tajana S. Rosing	751
	26.1	Introduction	751
	26.2	System Model	753
		26.2.1 Health Monitoring Task Model	753
	26.3	Collaborative Distributed Environmental Sensing	755
		26.3.1 Node Neighborhood and Localization Rate	757
		26.3.2 Energy Ratio and Sensing Rate	758
		26.3.3 Duty Cycling and Prediction	759
	26.4	Task Assignment in a Body Area Network	760

		CONTENTS	xxvii	
	26.4.1 Optimal Task Assignment		760	
	26.4.2 Dynamic Task Assignment		762	
	26.4.2.1 DynAGreen algorithm		763	
	26.4.2.2 DynAGreenLife algorithm		768	
26.5	Results		771	
	26.5.1 Collaborative Sensing		771	
	26.5.1.1 Results		772	
	26.5.2 Dynamic Task Assignment		776	
	26.5.2.1 Performance in static conditions		777	
	26.5.2.2 Dynamic adaptability		780	
26.6	Conclusion		784	
	References		785	
INDEX			787	

PREFACE

The scope of energy-efficient computing is not limited to main computing components (e.g., processors, storage devices, and visualization facilities), but it can expand to a much larger range of resources associated with computing facilities, including auxiliary equipment, water used for cooling, and even physical and floor space that these resources occupy. Energy consumption in computing facilities raises various monetary, environmental, and system performance concerns.

Recent advances in hardware technologies have improved the energy consumption issue to a certain degree. However, it still remains a serious concern for energy-efficient computing because the amount of energy consumed by computing and auxiliary hardware resources is affected substantially by their usage patterns. In other words, resource underutilization or overloading incurs a higher volume of energy consumption when compared with efficiently utilized resources. This calls for the development of various software energy-saving techniques and new algorithms that are more energy efficient.

This book, *Energy-Efficient Distributed Computing Systems*, seeks to provide an opportunity for researchers to explore different energy consumption issues and their impact on the design of new computing systems. The book is quite timely since the field of distributed computing as a whole is undergoing many changes. Vast literature exists today on such energy consumption paradigms and frameworks and their implications for a wide range of distributed platforms.

The book is intended to be a virtual roundtable of several outstanding researchers, which one might invite to attend a conference on energy-efficient computing systems. Of course, the list of topics that is explored here is by no means exhaustive, but most of the conclusions provided here should be extended to other computing platforms that are not covered here. There was a decision to limit the number of chapters while providing more pages for contributing

authors to express their ideas, so that the book remains manageable within a single volume.

We also hope that the topics covered in this book will get the readers to think of the implications of such new ideas on the developments in their own fields. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem-solving techniques for a range of distributed platforms. The book is intended to be a repository of paradigms, technologies, and applications that target the different facets of energy consumption in computing systems.

The 26 chapters were carefully selected to provide a wide scope with minimal overlap between the chapters to reduce duplications. Each contributor was asked that his/her chapter should cover review material as well as current developments. In addition, the choice of authors was made so as to select authors who are leaders in their respective disciplines.

ALBERT Y. ZOMAYA YOUNG CHOON LEE

ACKNOWLEDGMENTS

First and foremost, we would like to thank and acknowledge the contributors to this volume for their support and patience, and the reviewers for their useful comments and suggestions that helped in improving the earlier outline of the book and presentation of the material. Also, I should extend my deepest thanks to Simone Taylor and Diana Gialo from Wiley (USA) for their collaboration, guidance, and most importantly, patience in finalizing this handbook. Finally, I would like to acknowledge the efforts of the team from Wiley's production department for their extensive efforts during the many phases of this project and the timely manner in which the book was produced.

ALBERT Y. ZOMAYA YOUNG CHOON LEE

CONTRIBUTORS

PRITI, AGHERA, University of California, San Diego, CA, USA.

AL-NASHIF, YOUSSIF, NSF Center for Autonomic Computing, The University of Arizona, USA.

Ayoub, Raid, University of California, San Diego, CA, USA.

BERRAL, JOSEP LL., Computer Architecture Dept. and Department of Software, UPC-Barcelona Tech., Catalonia, Spain.

BILAL, KASHIF, Department of Computer Science, North Dakota State University, Fargo, ND, USA.

BOLOORI, ALI JAVADZADEH, Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW, Australia.

BORGETTO, DAMIEN, University Paul Sabatier, Toulouse, France.

BOUVRY, PASCAL, Faculty of Sciences, Technology, and Communications, University of Luxembourg, Luxembourg.

CAMERON, KIRK W., Virginia Tech, VA, USA.

CASANOVA, HENRI, University of Hawai'i at Manoa, Hawai'i, USA.

COMITO, CARMELA, DEIS, University of Calabria, Rende (CS), Italy.

DA COSTA, GEORGES, University Paul Sabatier, Toulouse, France.

Delicato, Flavia C., Computer Science Department, Federal University of Rio de Janeiro—RN, Brazil.

- DHIMAN, GAURAV, University of California, San Diego, CA, USA.
- FENG, Wu-CHUN, Virginia Tech, Blacksburg, Virginia, USA.
- JOSEPH. O. FITO, Computer Architecture Dept. and Barcelona Supercomputing Center, UPC-Barcelona Tech., Catalonia, Spain.
- GAVALDA, RICARD, Department of Software, UPC-Barcelona Tech., Catalonia, Spain.
- GE, RONG, The Department of Mathematics, Statistics, and Computer Science, Marquette University, WI, USA.
- GHANI, NASIR, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA.
- GOIRI, INIGO, Computer Architecture Dept. and Barcelona Supercomputing Center, UPC-Barcelona Tech., Catalonia, Spain.
- GONG, JIAYU, Department of Electrical and Computer Engineering, Wayne State University, MI, USA.
- DE GROOT, MARTIN, CSIRO ICT Center, Epping, NSW, Australia.
- GUITART, JORDI, Computer Architecture Dept. and Barcelona Supercomputing Center, UPC-Barcelona Tech., Catalonia, Spain.
- GURUMURTHI, SUDHANVA, Dept. of Computer Science, University of Virginia, Charlottesville, VA, USA.
- HARIRI, SALIM, NSF Center for Autonomic Computing, The University of Arizona, USA.
- HARTENSTEIN, REINER, Department of Computer Science, Kaiserslautern University of Technology, Kaiserslautern, Germany.
- Hsu, Chung-Hsing, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- JIANG, WEIRONG, Juniper Networks, Inc., Sunnyvale, CA, USA.
- Julia, Ferran, Computer Architecture Dept., UPC-Barcelona Tech., Catalonia, Spain.
- KANDEMIR, MAHMUT, Pennsylvania State University, PA, USA.
- KHAN, SAMEE ULLAH, Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA.
- KHARGHARIA, BITHIKA, Cisco Systems, Inc., Durham, NC, USA.
- KIM, JONG-KOOK, School of Electrical Engineering, Korea University, Korea.
- LEE, YOUNG CHOON, Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW, Australia.

- Lefevre, Laurent, INRIA, Ecole Normale Superieure de Lyon, University of Lyon, France.
- Leingang, James, Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA.
- LI, JUAN, Department of Computer Science, North Dakota State University, Fargo, ND, USA.
- LI, KEQIN, State University of New York, New Paltz, NY, USA.
- LINDBERG, PEDER, Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA.
- Luo, Haoting, NSF Center for Autonomic Computing, The University of Arizona, AZ, USA.
- Lysaker, Daniel, Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA.
- MANZANARES, ADAM, Los Alamos National Laboratory, Los Alamos, NM, USA.
- MIN-ALLAH, NASRO, Department of Computer Science, COMSATS Institute of Information Technology, Pakistan.
- NARAYANAN, SRI HARI KRISHNA, Argonne National Laboratory, IL, USA.
- NIKZAD, NIMA, University of California, San Diego, CA, USA.
- Nou, Ramon, Computer Architecture Dept. and Barcelona Supercomputing Center, UPC-Barcelona Tech., Catalonia, Spain.
- ORGERIE, ANNE-CECILE, Ecole Normale Superieure de Lyon, Lyon, France.
- OZTURK, OZCAN, Bilkent University, Turkey.
- PARASHAR, MANISH, NSF Cloud and Autonomic Computing Center and Rutgers Discovery Informatics Institute, Rutgers University, NJ, USA.
- PEDRAM, MASSOUD, University of Southern California, Los Angeles, CA, USA.
- PIERSON, JEAN-MARC, University Paul Sabatier, Toulouse, France.
- PIRES, PAULO F., Computer Science Department, Federal University of Rio de Janeiro RN, Brazil.
- PRASANNA, VIKTOR K., University of Southern California, Los Angeles, CA, USA.
- QIN, XIAO, Auburn University, Auburn, AL, USA.
- RIZVANDI, NIKZAD BABAII, Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW, Australia.

XXXVI CONTRIBUTORS

RODERO, IVAN, NSF Cloud and Autonomic Computing Center and Rutgers Discovery Informatics Institute, Rutgers University, NJ, USA.

RONG, PENG, Brocade Communications Systems, San Jose, CA, USA.

ROSING, TAJANA SIMUNIC, University of California, San Diego, CA, USA.

RUAN, XIAOJUN, Auburn University, Auburn, AL, USA.

SIVASUBRAMANIAM, ANAND, Dept. of Computer Science and Engineering, The Pennsylvania State University, PA, USA.

TAHERI, JAVID, Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW, Australia.

TALIA, DOMENICO, DEIS, University of Calabria, Rende (CS), Italy.

TORRES, JORDI, Computer Architecture Dept. and Barcelona Supercomputing Center, UPC-Barcelona Tech., Catalonia, Spain.

TRUNFIO, PAOLO, DEIS, University of Calabria, Rende (CS), Italy.

WANG, CHEN, CSIRO ICT Center, Epping, NSW, Australia.

Xu, Cheng-Zhong, Department of Electrical and Computer Engineering, Wayne State University, MI, USA.

YIN, SHU, Auburn University, Auburn, AL, USA.

Yousif, Mazin, T-Systems International, Inc., Portland, OR, USA.

ZAPPI, PIERO, University of California, San Diego, CA, USA.

ZOMAYA, ALBERT Y., Centre for Distributed and High Performance Computing, School of Information Technologies, University of Sydney, NSW, Australia.