

A Framework to Construct Financial Causality Knowledge Graph from Text

Author: Ziwei Xu, Hiroya Takamura, Ryutaro Ichise

Presenter: Ziwei XU

Date: Feb 5th 2024

Content

- 1. Introduction
- 2. Background
- 3. FinCaKG Construction Framework

Steps

Datasets

Experiments

4. Evaluation

Presentation of Variant FinCaKGs from diff. resources

Variant FinCaKGs v.s. ConceptNet-Cause

- 5. Future Work
- 6. Conclusion

1. Introduction

Motivation:

- Causality analysis holds a prominent role in finance
- The presentation of causality could offer valuable insights for risk mitigation, investment decisions, and portfolio optimization.

Gaps:

- Recent research has extensively investigated the identification of causality from text
- yet there is still a significant deficiency in providing a comprehensive causality presentation from those textual discoveries

2. Background

ConceptNet-Cause [1]

- Causality here is scattered, common-sense and action-based
- Causality is contextless, thus prone to be doubtable

Cause Effect Graph [2]

- Information is redundant (not only nouns, but adj., adv., verbs)
- hard to detect the semantic meaningful causality from massive pairs(89.1 M), here is the simplest and most meaningful example

3. FinCaKG Construction Framework - Steps

Description of constructive steps:

- Step1: extract causal sentences
- Step2: identify cause-effect textual spans from causal Sentences
- Step3: predict financial keywords of cause-effect spans
- **Step4**: formulate the keyword causality dependency from cause-effect spans
- **Step5**: generate and visualize FinCaKG

3. FinCaKG Construction Framework - Datasets

Financial 10-k Reports(R0)

The financial report in S.E.C of the top 3000 company in the last 5 years.

Labeled Data (R1)

The causal labels for sentences in financial reports.

Cause Effect Graph - CEG (R2)

Cause Effect Graph contains 89.1 million causal pairs.

Financial Keywords (R3)

We consider Investopdia's vocabulary are financial Keywords.

3. FinCaKG Construction Framework - Experiment Settings

TABLE I: The statistics of resources applied in relative steps.

Steps	Units	Train	Prediction
Step1	#sents (#causal sents)	14k(1k)	10m(525k)
Stop?	#sents	2.7k	525k
Step2	#sents after postprocessing	-	497k
	#sents	$497k \times \frac{9}{10}$	$497k \times \frac{1}{10}$
Step3	#unique investopedia NPs	1317	1317
	#unique new financial NPs	-	1623

TABLE II: The parameters of models in each step.

Steps	labels	models	ep.	bt.	lr.	opt.
Step1	0, 1	BERT	10	8	2e-5	
Step2	B-C, I-C, B-E, I-E, O	ilab-FinCau [24]	5	4	5e-5	epsilon =1e-8
Step3	B-F, I-F,	XLM-Roberta	5	8	2e-5	

3. FinCaKG Construction Framework - Experiment Results

Fig. 2: The performance of cause-effect span identification model in Step2.

TABLE III: The performance of causal sentences extraction model in Step1

	Dataset	Precision	Recall	F1-score
Validation	Labeld Data (R1)	96.31%	96.07%	96.19%
Prediction	Financial Reports (R0)	95.93%	95.89%	95.91%

TABLE IV: The performance of financial keywords prediction model in Step3

10-folds	Precision	Recall	F1-score
avg.	98.72%	98.68%	98.70%
min.	98.10%	98.14%	98.12%
max.	99.07%	99.05%	99.06%

4. Presentation of Variant FinCaKGs from different resources

- FinCaKG-FR: The Financial Reports, the original input = R0
- FinCaKG-ECT: The Earning Call Transcripts are textual records of conference calls, including questions from analysts and answers from company representatives.
- FinCaKG-AR: The Analyst Reports refer to documents produced by financial analysts who study and analyze publicly traded companies.

TABLE V: The statistical comparison between distinct versions of FinCaKGs.

	FinCaKG- FR	FinCaKG- ECT	FinCaKG- AR
# nodes	1,717	546	199
# rels	11,633	1,802	283
# docs	5,093	5,547	10,057

4. Presentation of Variant FinCaKGs from different resources

- Anchor Term: bad debt

	FinCaKG- FR	FinCaKG- ECT	FinCaKG- AR
# nodes	1,717	546	199
# rels	11,633	1,802	283
# docs	5,093	5,547	10,057

FinCaKG-FR (Financial Reports)

FinCaKG-ECT (Earning Call Transcripts)

FinCaKG-AR (Analyst Reports)

4. Variant FinCaKGs v.s. ConceptNet-Cause

TABLE V: The statistical comparison between distinct versions of FinCaKGs.

	FinCaKG- FR	I	FinCaKG- AR	ConceptNet- Cause ^[1]
# nodes # rels # docs	1,717 11,633 5,093	546 1,802 5,547	199 283 10,057	12,832 16,801

TABLE VI: The investigation on connectivity and domain coverage of FinCaKGs and ConceptNet-Cause.

Causal KGs	Density	Node Degree	Domain Coverage
ConceptNet-Cause	0.01%	2.62	0.72%
FinCaKG-FR FinCaKG-ECT FinCaKG-AR	0.39% 0.61% 0.72%	13.55 6.60 2.84	60.51% 83.88% 83.42%

ConceptNet-Cause

5. Future Work

Downstream Tasks of FinCaKGs

- Finance domain research questions
 - o Causal analysis generation of financial reports
 - o Managers' characteristic depiction according to its causal chains

Temporal FinCaKG Generation

- Technical research questions
 - o temporal link prediction
 - o temporal node prediction

6. Conclusion

☐ We presented a framework to automatically construct the causality knowledge graph from financine reports. The results showed this framework can capture in-dense and domain-related causality .	al
☐ This framework is capable to generate distinct versions of FinCaKGs with different resources and uncover the different inner logics.	
☐ FinCaKG could support the expertise discovery directly from the visualization of FinCaKGs.	
Limitations:	
☐ We only focus on the finance-related concepts in FinCaKGs, it could not cover some news events i.e. Covid eases, energy shock	,
☐ The causal chains might be less informative along with larger hops in causality	

Thanks for your listening and welcome for any questions!