

RAPPORT DE PROJET

Classification de conseils médicaux

Enseignant: Naima Oubenali

Nene sidibe BAKARY
Imane ELMISSAOUI
Ezéchiel DJOHI

APERÇU DU PROJET

ÉTAPES

O

Collecte de données et preprocessing

Fine tuning du modèle Bert

DONNÉES UTILISÉES

	instruction	output	input	label
0	Question: is this a 2) strong advice, 1) weak	This is no advice	As we have previously shown an additional effe	0
1	Question: is this a 2) strong advice, 1) weak	This is no advice	Furthermore, gut microbiota analysis in mice t	0
2	Question: is this a 2) strong advice, 1) weak	This is no advice	Further research is recommended that may be he	0
3	Question: is this a 2) strong advice, 1) weak	This is no advice	Further study will be necessary to test if pos	0
4	Question: is this a 2) strong advice, 1) weak	This is no advice	On the other hand, rheumatoid factor and Epste	0
5	Question: is this a 2) strong advice, 1) weak	This is no advice	Interestingly, within this context, it has bee	0

Etapes du Prétraitement

- Suppression des liens
- Suppression des emojis
- Remplacement de certains caractères

ANALYSE EXPLORATOIRE DES DONNÉES:

Données entraînés :

medical_meadow_health_advice de Hugging face

Indicateurs	Valeurs	
nb_ligne	8676	
nb_class	3	
nb_token_total	199711	
nbtoken_unique	26111	
short_token_len	1	
long_token_len	55	
long_text_len	135	
short_text_len	1	

MODÈLE DE CLASSIFICATION:

Il existe différents types de classification multiclass

- Support Vector Machines (SVM)
- Long Short-Term Memory (LSTM)
- Random Forest
- Logistic Regression
- Transformers :Bert,Roberta,etc

Architecture de notre modèle de classification

Implémentation du modèle Hybride Bert-SVM(Transfer-Learning)

Prétraitement des données

Extraction des embeddings de Bert

Entraînement d'un classificateur SVM

Évaluation du modèle

Tokénization des données textuelles à l'aide d'un tokenizer BERT

Utilisation d'un modèle BERT pré-entraîné pour extraire les embeddings.

Utilisation de ces embeddings comme caractéristiques d'entrée pour le classificateur SVM.

Test du modèle sur un ensemble de données de test et évaluez ses performances.

ENVIRONNEMENT

12.4

```
Projet NLP /
  Data /
     medical_meadow_health_advice.json
     Tain.csv
     Test.csv
     Validation.csv
  Documentation/
     Models_description.txt
     SVM/
  Models/
     BERT/
     SVM/
  Function_utiles/
     exploration.py
     preprocessing.py
  App.py
  example.py
  README.md
```

FINE TUNING DU MODELE BERT

Entrainement avec le modèle Bert_base_uncased

🙎 google-bert/bert-base-uncased

A Nécessité des ressources de calcul très importantes

Modèle prajjwal1/bert-tiny de Hugging face

Choix de ce modèle qui a pu tourner sur le GPU disponible

RÉSULTATS

EVALUATION DU MODELE:

Test set clas	sification	report:			
	precision	recall	f1-score	support	
0	0.80	0.98	0.88	644	
1	0.67	0.32	0.44	145	
2	0.75	0.08	0.14	79	
accuracy			0.79	868	
macro avg	0.74	0.46	0.48	868	
weighted avg	0.77	0.79	0.74	868	
Validation set classification report:					
	precision		f1-score	support	
	-				
0	0.78	0.98	0.86	629	
1	0.64	0.29	0.40	146	
2	0.70	0.08	0.14	93	
accuracy			0.76	868	
macro avg	0.70	0.45	0.47	868	
weighted avg	0.74	0.76	0.71	868	

nepochs=5

Test set class	ification	report:		
	precision	recall	f1-score	support
0	0.81	0.96	0.88	644
1	0.68	0.33	0.44	145
2	0.44	0.19	0.27	79
accuracy			0.78	868
macro avg	0.64	0.49	0.53	868
weighted avg	0.75	0.78	0.75	868
Validation set	classitic			
	precision	recall	f1-score	support
0	0.81	0.96	0.88	629
1	0.64	0.35	0.45	146
2	0.55	0.24	0.33	93
accuracy			0.78	868
macro avg	0.67	0.52	0.55	868
weighted avg	0.75	0.78	0.75	868

DÉPLOIEMENT DU MODÈLE:

Classification of medical advice

This application allows for the classification of medical advice as weak, strong, or no advice.

Enter the medical advice

Such a program should integrate referral to an eye care professional for confirmation and management of vision disorders of at-risk children found on screening.

Classify

Classification: This is a weak advice

Streamlit de python

DISCUSSION

Performance du modèle à améliorer

Distribution déséquilibrée des classes des labels

Nombre d'épochs, batch_size, et autres paramètres à changer pour optimizer le modèle

Re-sampling

Répétition des exemples existants (dans les classes minoritaires) ou l'utilisation de techniques comme SMOTE (Synthetic Minority Over-sampling Technique)

Class Weights

Ajustement des poids des classes dans la fonction de perte du modèle

MERCI!