PROJECT 2: Test a Perceptual Phenomenon

ABSTRACT

This project aims to understand the Stroop's effect with the help of various aspects of differential statistics, and the different visualisations.

BACKGROUND INFORMATION

Stroop's effect is a phenomenon that was discovered in the 1900's. It's one of the famous and widely used tests in psychology. It aims at understanding the reaction of a person reading the word in two different scenarios.

Scenario 1: Congruent condition

Congruent condition refers to the condition when the colour name of word is same as the color.

Eg: BLUE

RED	YELLOW	BLUE	GREEN	BLACK			
PINK	ORANGE	BROWN	GRAY	PURPLE			
GREEN	GRAY	BLACK BLUE		YELLOW			
GRAY	BROWN	PINK	ORANGE	BLUE			
YELLOW	RED	GREEN	BLACK	GRAY			
BLACK	BROWN	PURPLE	ORANGE	PINK			
PURPLE	BLACK	YELLOW	RED	GREEN			
ORANGE	PINK	BROWN	GRAY	PURPLE			

Figure 1: Representing CONGRUENT condition

Scenario 2: Incongruent condition

Incongruent condition refers to the condition when the colour name of word is different than the colour.

Eg: PINK

RED	YELLOW	BLUE	GREEN	BLACK
PINK	ORANGE	BROWN	GRAY	PURPLE
GREEN	GRAY	BLACK	BLUE	YELLOW
GRAY	BROWN	PINK	ORANGE	BLUE
YELLOW	RED	GREEN	BLACK	GRAY
BLACK	BROWN	PURPLE	ORANGE	PINK
PURPLE	BLACK:	YELLOW	RED	GREEN
ORANGE	PINK	BROWN	GRAY	PURPLE

Figure 2 Representing INCONGRUENT condition

Question 1. What is our independent variable? What is our dependent variable?

Independent variable: The two different conditions for the word:

- 1) Congruent condition
- 2) Incongruent condition

Dependent variable: Response time of a person in seconds.

Question 2a. Establish hypotheses: What is an appropriate set of hypotheses for this task?

Null Hypothesis:

The null hypothesis states that there is no relationship between the two measured phenomena. In this case, the null hypothesis is that the time taken to identify the colour of words in congruent condition and the time taken to identify the words in incongruent condition is same.

Let $\mu_{incongruent}$ be the population mean of the incongruent values and

 $\mu_{congruent}$ be the population mean of the congruent values

Mathematically,

 H_0 :- $\mu_{incongruent} = \mu_{congruent}$

Alternate Hypothesis:

In the alternate hypothesis, it states there is a relationship in the two measured phenomena. In this scenario, the alternate hypothesis is that the time taken to identify the word in incongruent condition is greater than time taken in case of congruent condition.

 H_A :- $\mu_{incongruent} > \mu_{congruent}$

Question 2b. Establish a statistical test: What kind of statistical test do you expect to perform? Justify your choices.

Assumptions for the statistical test:

In this project, the paired t-test will be used keeping the following factors in mind:

- # The sample set consists of less than 30 values.
- ♣ Since the data is for sample, population parameters would not be able to be calculated.

Question 3: Report descriptive statistics: Include at least one measure of central tendency and at least one measure of variability.

The Sample data we have is:

Ħ	stroopdata.csv 🕁 🖿 File Edit View Insert Format Data Tools Add-ons Help										
K	· ~ = 7	100% - \$	% .0_	.00	123 -	Arial	0 7 00	10			
fx											
	Α	В	С			D		E			
1	Congruent	Incongruent									
2	12.079	19.278									
3	16.791	18.741									
4	9.564	21.214									
5	8.63	15.687									
6	14.669	22.803									
7	12.238	20.878									
8	14.692	24.572					10				
9	8.987	17.394									
10	9.401	20.762									
11	14.48	26.282					0.				
12	22.328	24.524									
13	15.298	18.644									
14	15.073	17.51									
15	16.929	20.33									
16	18.2	35.255					0				
17	12.13	22.158									
18	18.495	25.139									
19	10.639	20.429									
20	11.344	17.425					10				
21	12.369	34.288									
22	12.944	23.894									
23	14.233	17.96					0.				
24	19.71	22.058									
25	16.004	21.157									
26											
27	T T T T T T T T T T T T T T T T T T T						0				

➤ Measure of Central Tendency:

• Mean

Using the AVERAGE function, the mean in both the scenarios is calculated as:

$$x(bar)_{congruent} = 14.05$$

 $x(bar)_{incongruent} = 22.02$

• Median

Using the MEDIAN function, the median in both the scenarios is calculated as:

➤ Measure of Central Variability

Now, the standard deviation of the difference between congruent and incongruent will be calculated.

- 1. The difference of the congruent and incongruent is firstly calculated. Further, the mean of differences is calculated as well.
- 2. Then the deviation of the differences from the mean difference is calculated. Along with that, square of deviations is also calculated.

Ħ	File Edit	View Insert F	ormat Data T	ools Add-ons	Help	All chan	g <u>es sav</u>	ed in	Drive	9			
2	マラア	100% - \$	% .000_ 1	23 - Arial	(30)	10	В	I	ક	Α	۵.	H	<u>-</u>
x													
	A	В	С	D			E			F			
1	Congruent	Incongruent	Difference	Mean_of_diff	Devia	tion from n	nean dif	feren	ce	Squared Deviation			ons
2	12.079	19.278	-7.199	-7.964791667			0.7	6579	1667		0.5	8643	687
3	16.791	18.741	-1.95				6.0	1479	1667			36.17	771
4	9.564	21.214	-11.65				-3.6	8520	8333		1	3.580	760
5	8.63	15.687	-7.057				0.9	0779	1667		0.8	2408	35710
6	14.669	22.803	-8.134				-0.1	6920	8333		0.02	8631	4599
7	12.238	20.878	-8.64				-0.6	7520	8333		0	4559	10629
8	14.692	24.572	-9.88				-1.9	1520	8333		3	6680	229
9	8.987	17.394	-8.407				-0.4	4220	8333		0.1	9554	18209
0	9.401	20.762	-11.361				-3.3	9620	8333		1	1.534	12310
1	14.48	26.282	-11.802				-3.8	3720	8333	6	1	4.724	167
12	22.328	24.524	-2.196				5.7	6879	1667			33.27	8957
13	15.298	18.644	-3.346				4.6	1879	1667		2	1.333	32364
14	15.073	17.51	-2.437				5.5	2779	1667		3	0.556	3480
15	16.929	20.33	-3.401				4.5	6379	1667		2	0.828	1943
16	18.2	35.255	-17.055				-9.0	9020	8333		8	2.631	887
17	12.13	22.158	-10.028				-2.0	6320	8333		4	2568	32862
18	18.495	25.139	-6.644				1.3	2079	1667		1	7444	19062
19	10.639	20.429	-9.79				-1.8	2520	8333		3	3313	854
20	11.344	17.425	-6.081				1.8	8379	1667		3	5486	7104
21	12.369	34.288	-21.919				-13	9542	0833		1	94.71	9930
22	12.944	23.894	-10.95				-2.9	8520	8333		8	9114	6879
23	14.233	17.96	-3.727				4.2	3779	1667		1	7.958	878
24	19.71	22.058	-2.348				5.6	1679	1667		3	1.548	3486
25	16.004	21.157	-5.153				2.8	1179	1667		7	9061	723
26													
27													

3. After squared deviations have been calculated, we then divide the sum of squared deviations by n-1 because it is the case of tailed test.

As a result, we have found the standard deviation of differences, which is the measure of variability.

S=4.85

Question 4: Plot the data:

Visualization: Using Google Spreadsheet

Figure 3: Line chart

Figure 4: Bar graph

From analyzing the above plots, i.e. the line chart, and the bar graph, we can evidently note that the time taken by the person to read the words in incongruent condition is always higher than in the congruent condition.

Question 5. Perform the statistical test and interpret your results:

To calculate the t-statistic:

We have the formula: T-statistic
$$\rightarrow \frac{(x_congruent-x_incongruent)}{s/\sqrt{n}}$$

where x_congruent and x_incongruent represent the mean of congruent and incongruent respectively.

Now, we know that (x_congruent-x_incongruent) is basically the mean of differences: -7.96

n = 24

s=std.deviation of differences was found out to be: 4.865

Substituting these values in equation, we get:

T-statistic: -8.015

Now, since we have the T-statistic value, we can compare with the T-critical value to determine whether we should accept or reject the null hypothesis.

n = 24

This implies that the df(i.e. degree of freedom-> n-1) = 23.

Now, we are calculating this at 99% confidence level. Thus, the value for α =0.01.

From the t-table, we can see that at 99% confidence level, the value is 2.50. In our observations, we found the t-statistic as -8.015, this leads us to reject the null hypothesis.

Thus, it's is evident that the reaction time in case of incongruent conditions is much greater than that of the congruent conditions.

Question 6: Digging deeper and extending the investigation :

Alongside the stroop's effect, throughout the research, I found out about the different variations in the stroop's effect, which primilarily are: Warped words, emotional, spatial, numerical, and reverse. In all, everything sums up in the psychological aspects of the human brain. It's all variant of the processing powers of the brain. An example that comes very handy is: if you conduct an experiment of reading normal text (i.e. this is me) vs. reversed text (i.e. em is siht), you can see the difference in the reaction/response time of the population.

Apart from stroop's experiment, there may be different experiments that account for the effect of colour on various events that take place.

BIBLIOGRAPHY

- 1. https://en.wikipedia.org/wiki/Stroop effect
- 2. https://www.psytoolkit.org/lessons/stroop.html
- 3. https://www.psychologytoday.com/blog/habits-not-hacks/201408/color-psychology-how-colors-influence-the-mind
- 4. https://www.analyticsvidhya.com/blog/2015/09/hypothesis-testing-explained/