FIGURAS Y TABLAS PRIMER INFORME ESTATUS Y CBA 2022 SARDINA AUSTRAL LOS LAGOS

PRIMER PARTE: CORRE CÓDIGOS Y FUNCIONES

```
library(knitr) # para generar reporte Rmarkdown
library(stringr)
library(reshape)
library(dplyr)
library(ggplot2)
library(ggthemes) # para ggplot
library(patchwork) # para unir gráficos de ggplot
library(strucchange) # libreria utilizada para análisis de quiebres
dir.Fig
            <-"Figuras/" # carpeta de las figuras utilizadas y generadas en este estudio
            <-c("pdf") # formato de figuras generadas por este código
fig
dir.0
            <-getwd() # directorio de trabajo
dir.1
           <-paste(dir.0, "/codigos_admb", sep="") # carpeta de códigos ADMB
dir.2
           <-paste(dir.0,"/Retrospectivobase",sep="") # carpeta de códigos ADMB</pre>
dir.3
            <-paste(dir.0,"/Retrospectivoalternativo",sep="") # carpeta de códigos ADMB
            <-paste(dir.0,"/Verosimilitudalternativo",sep="") # carpeta de códigos ADMB</pre>
dir.4
dir.5
            <-paste(dir.0,"/Verosimilitudbase", sep="") # carpeta de códigos ADMB
            <-paste(dir.0, "/funciones/", sep="") # carpeta de funciones utilizadas en este informe
source(paste(dir.fun, "functions.R", sep="")) # functiones para leer .dat y .rep
source(paste(dir.fun, "Fn_PBRs.R", sep="")) # functiones para leer .dat y .rep
setwd(dir.1)
#Asesoría septiembre 2021 MODELO BASE NUEVO
data.0 <- lisread(paste(dir.1,"MAT0921.dat", sep='/'));</pre>
names(data.0)<-str trim(names(data.0), side="right")</pre>
rep0 <- reptoRlist("MAT0921.rep")</pre>
         <- read.table("MAT0921.std",header=T,sep="",na="NA",fill=T)</pre>
std0
```

FUNCIÓN DE RETROSPECTIVO FUNCIÓN DE VEROSIMILITUD FUNCIÓN DE CBA CÁLCULO DE TAMAÑO DE MUESTRA

SEGUNDA PARTE: GENERA GRÁFICAS Y TABLAS

1. Antecedentes

year	desemb	cuota
2006	39146	40522
2007	50506	50872
2008	45078	41904
2009	49225	58481
2010	20123	30966
2011	16429	17693
2012	19763	14500
2013	21888	21670
2014	22951	18276
2015	23643	23848
2016	18495	18380
2017	14134	20000
2018	8366	18897
2019	12565	11137
2020	14194	15471
2021	NA	15765

3. RESULTADOS OBJETIVO 1

3.1. Descripción de los datos de entrada al modelo de evaluación de stock

year	desemb	cuota	comun_austral	supuesto
2002	NA	NA	38974	NA
2003	NA	NA	32843	NA
2004	NA	NA	36545	NA
2005	NA	NA	52569	NA
2006	39146	40522	NA	NA
2007	50506	50872	NA	NA
2008	45078	41904	NA	NA
2009	49225	58481	NA	NA
2010	20123	30966	NA	NA
2011	16429	17693	NA	NA
2012	19763	14500	NA	NA
2013	21888	21670	NA	NA
2014	22951	18276	NA	NA
2015	23643	23848	NA	NA
2016	18495	18380	NA	NA
2017	14134	20000	NA	NA
2018	8366	18897	NA	NA
2019	12565	11137	NA	NA
2020	14194	15471	NA	NA
2021	NA	15765	NA	15765

	X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	X11	X12
$\overline{d2006}$	NA	8384	7485	2008	3410	2760	3286	723	367	2885	2822	1831
d2007	5740	5101	4181	4651	7430	4694	3027	3718	17	1822	4093	NA
d2008	NA	10122	6489	4329	4823	951	282	13	34	7046	5954	5035
d2009	NA	5	9488	13247	9750	6553	4407	1514	88	NA	1814	2356
d2010	164	1445	6826	3397	4686	1564	180	56	143	NA	758	1006
d2011	623	279	2887	2785	3744	700	53	111	21	14	2027	3549
d2012	NA	3855	3190	2151	1193	2160	6521	NA	NA	3	4	642
d2013	826	6454	5252	1976	300	637	618	737	240	220	1776	2715
d2014	1087	3299	4284	756	1822	1877	2678	354	43	175	2722	3681
d2015	9088	5533	4603	8	116	665	365	65	42	59	66	3100
d2016	2523	6362	739	1715	569	1698	871	134	37	62	86	3664
d2017	531	1280	2858	61	2425	1858	947	609	91	103	913	2456
d2018	126	22	48	74	495	870	955	651	688	61	1122	3244
d2019	2456	1524	1218	145	483	770	1431	520	20	182	1056	1464
d2020	1899	2101	1027	15	326	110	465	337	87	80	3064	4683
d2021	705	3446	1959	93	222	631	327	123	NA	NA	NA	NA

year	tweedie	tweedie_	inter
2007	26.4		23.6
2008	25.9		21.6
2009	30.5		28.1
2010	20.2		19.1
2011	19.2		16.3
2012	13.6		13.7
2013	21.6		35.6
2014	29.5		27.7
2015	26.4		23.1
2016	21.6		24.0
2017	14.6		10.8
2018	10.1		10.2
2019	14.1		8.6
2020	28.9		41.4

Año	BioCrucero
2006	194.719
2007	134.713 NA
2008	114.640
2009	NA
2010	NA
2011	88.116
2012	NA
2013	124.729
2014	113.855
2015	60.498
2016	106.245
2017	66.882
2018	20.361
2019	43.788
2020	160.742
2021	70.259

ESTRUCTURA DE TALLAS DE LA FLOTA

ESTRUCTURA DE TALLAS DEL CRUCERO

3.2. Ajustes del modelo a los datos de índices

${\bf Biomasa}_{_}$	_Crucero	CPUE	Desembarques
	NA	NA	38974
	NA	NA	32843
	NA	NA	36545
	NA	NA	52569
	194719	NA	39146
	NA	23.9	50506
	114640	21.6	45078
	NA	28.1	49225
	NA	19.1	20123
	88116	16.3	16429
	NA	13.7	19763
	124729	35.6	21888
	113855	27.7	22951
	60498	23.1	23643
	106245	24.0	18495
	66882	10.8	14134
	20361	10.2	8355
	43788	8.6	11278
	160742	41.4	14523
	70259	NA	16136

Biomasa_Crucero	CPUE	Desembarques
167930	35	35321
155823	32	31748
189203	35	35480
267075	56	50430
91519	63	38772
115782	31	52198
95534	24	45094
78710	19	48029
55092	16	20484
70932	16	16953
68793	16	20486
95509	36	22263
92110	22	23569
89951	28	24199
57119	16	18930
45988	9	15356
47088	13	8628
87143	15	11233
94272	36	14159
64676	19	16062

3.2. Análisis de Residuales de los índices

3.3. Ajustes del modelo a los datos de Composiciones de tallas

CRUCERO

3.4. Análisis de Residuales de Composiciones de tallas

6.5. Análisis retrospectivo modelo alternativo

3.7. Perfil de verosimilitud

4. RESULTADOS OBJETIVO 2

"Establecer el estatus actualizado de sardina austral, sobre la base de sus principales indicadores estandarizados de estado y flujo, propagando para estos efectos todas las fuentes de incertidumbre subyacente a la pesquería."

4.1. Indicadores del stock

	Edades	Selbloque1	Selbloque2	Selbloque3
$\overline{\mathrm{V1}}$	1	0.119454	0.119454	0.119454
V2	2	1.000000	1.000000	1.000000
V3	3	1.000000	1.000000	1.000000
V4	4	1.000000	1.000000	1.000000
V5	5	1.000000	1.000000	1.000000
V6	6	1.000000	1.000000	1.000000

	Edades	SelCrubloque1	SelCrubloque2
$\overline{V1}$	1	0.451657	0.944104
V2	2	1.000000	1.000000
V3	3	1.000000	1.000000
V4	4	1.000000	1.000000
V5	5	1.000000	1.000000
V6	6	1.000000	1.000000

Tabla 13. Indicadores poblacionales de sardina austral en aguas interiores de Chiloé. Tabla comparativa entre los resultados de la evaluación de septiembre (primer hito) y junio (segundo hito).

anos	$BD_{\rm sep}$	BT_{sep}	R_{sep}	F_sep
2002	50601	190360	8640	0.42
2003	48577	184050	10340	0.42
2004	48928	250890	21144	0.43
2005	78464	314560	17443	0.38
2006	93433	261370	6109	0.28
2007	56697	207580	9841	0.62
2008	39044	180350	10611	0.68
2009	33769	143800	4942	0.82
2010	24923	97913	5256	0.52
2011	23855	90444	4602	0.44
2012	22261	143960	14439	0.52
2013	49736	146610	2583	0.28
2014	35706	145810	10685	0.45
2015	41806	128490	2952	0.36
2016	28767	83865	2322	0.47
2017	15499	68675	4535	0.63
2018	18422	65570	3237	0.29
2019	19679	121050	12751	0.33
2020	47528	127870	1465	0.19
2021	34123	91946	3040	0.36

4.2. Estados de explotación

	Septiembre 2021
$\overline{\mathrm{BD}_0}$	58.529
$\mathrm{BD}_{\mathrm{RMS}}$	32.191
$\mathrm{BD}_{\mathrm{LIM}}$	16.096
F_{RMS}	0.300
$p(BD_{2021} < BD_{RMS)}$	0.370
$p(F_{2021} > F_{RMS})$	0.740
$p(sobre explotaci\'on)$	0.190
p(agotado/colapsado)	0.000
p(sobrepesca)	0.620

Tabla 15. Variación interanual de F respecto de FRMS (F/F RMS), BD respecto de BDRMS (BD/BD RMS), y de las tasas de explotación referidos a la biomasa total (Y/BT) en la pesquería de sardina austral.

anos	$F/F_{\rm RMS} \mathbf{S}$	$\mathrm{BD}/\mathrm{BD}_{\mathrm{RMS}}\mathbf{S}$	Y/BT_S
2002	1.403	1.572	0.186
2003	1.403	1.509	0.172
2004	1.435	1.520	0.141
2005	1.279	2.437	0.160
2006	0.928	2.902	0.148
2007	2.078	1.761	0.251
2008	2.280	1.213	0.250
2009	2.734	1.049	0.334
2010	1.736	0.774	0.209
2011	1.484	0.741	0.187
2012	1.727	0.692	0.142
2013	0.919	1.545	0.152
2014	1.510	1.109	0.162
2015	1.217	1.299	0.188
2016	1.560	0.894	0.226
2017	2.108	0.481	0.224
2018	0.972	0.572	0.132
2019	1.115	0.611	0.093
2020	0.625	1.476	0.111
2021	1.194	1.060	0.175

Diagramas de Fase

5. RESULTADOS OBJETIVO 3

"Determinar niveles de Captura Biológicamente Aceptable (CBA) que lleven y/o mantenga la pesquería en torno al Rendimiento Máximo Sostenible (RMS), a partir de un análisis de riesgo en condiciones de incertidumbre de no alcanzar los objetivos de conservación y sostenibilidad conforme lo establece la LGPA y contenidos en el Plan de Manejo y/o en el Programa de Recuperación respectivo, según corresponda."

1. Escenarios de reclutamiento para proyección

${\bf 2.}\,$ Tablas de decisión CBA para cada escenario de reclutamiento, percentil de captura y resguardo

percentil	CBA_Rmed	CBA_Ralto	CBA_Rbajo
10	6873	7879	6525
20	7972	9035	7609
30	8764	9868	8390
40	9441	10580	9058
50	10074	11245	9682

percentil	Resguardo_Rmed	Resguardo_Ralto	Resguardo_Rbajo
10	0.32	0.30	0.33
20	0.21	0.20	0.21
30	0.13	0.12	0.13
40	0.06	0.06	0.06
50	0.00	0.00	0.00

percentil	Aporte_Rmed	Aporte_Ralto	Aporte_Rbajo
10	0.11	0.22	0.06
20	0.10	0.20	0.05
30	0.09	0.19	0.05
40	0.09	0.19	0.05
50	0.08	0.18	0.05

ESCENARIOS DE CAPTURA 2021 Y ESTRUCTURA DE TALLAS 2021 ALTERNATIVOS PARA EVALUAR EL EFECTO EN EL ESTATUS 2021, SOBREVIVENCIA 2022 Y CBA 2022.