ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ

2° ΚΕΦΑΛΑΙΟ

- 1. Έστω f μια παραγωγίσιμη συνάρτηση στο ${f R}$ για την οποία ισχύει: $f'(x) < x^2$ για κάθε $x \in {f R}$. Να δείξετε ότι:
 - 1.η $g(x) = 3f(x) x^3$ είναι γνησίως φθίνουσα στο ${f R}$
 - 2. f(2) f(1) < 3
 - 3.υπάρχει τουλάχιστον ένα $\xi \in (1,2)$ τέτοιο ώστε $f'(\xi) < 3$.
- **2.** i. Να μελετήσετε ως προς τη μονοτονία τα ακρότατα και να βρείτε το σύνολο τιμών της συνάρτησης $g\left(x\right)=x-\ln x$.
 - ii. Να βρείτε τις ασύμπτωτες της $\,f(x)=e^{rac{1}{x}}\cdot \ln x\,.$
 - iii.Να μελετήσετε την f ως προς τη μονοτονία και να βρείτε το σύνολο τιμών της.
- **3.** Αν για τη συνάρτηση f ισχύουν ότι η f είναι ορισμένη και παραγωγίσιμη στο $(-\frac{\pi}{2}, \frac{\pi}{2})$ με f(0) = 2 και $f'(x) \cdot \sigma vvx = f(x) \cdot (\eta \mu x + \sigma vvx)$, για κάθε $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, τότε να βρείτε τον τύπο της.
- **4.** Δίνεται συνάρτηση $f(x) = \frac{e^{\lambda \cdot x}}{x+1}$, x>-1 και $\lambda>0$
- i. Να δείξετε ότι η f έχει ένα ελάχιστο
- ii. Να βρείτε για ποιά τιμή του λ το προηγούμενο ελάχιστο παίρνει τη μέγιστη τιμή του
- **5.** i. Να αποδείξετε ότι: $e^x \le 1 + x \cdot e^x$, $x \in \mathbb{R}$
- ii. Nα λυθεί η εξίσωση: $e^x = 1 + x \cdot e^x$
- iii. Να βρείτε το σύνολο τιμών της συνάρτησης: $h(x)=2\cdot(1+x\cdot e^x)$
- **6.** α. Να λύσετε την εξίσωση: $3^x + 2^x = 5^x$
 - β. Δίνεται η παραγωγίσιμη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ με $f'(x) = -2 \cdot f(x)$ για κάθε $x \in \mathbb{R}$
 - i. Να δείξετε ότι η συνάρτηση $g(x)=e^{2x}\cdot f(x)$ είναι σταθερή στο $\mathbb R$
 - ii. Να βρείτε τον τύπο της f , αν f(0)=1

iii. Αν h , φ παραγωγίσιμες συναρτήσεις στο $\mathbb R$, με $h'(x)+2\cdot h(x)=\varphi'(x)+2\cdot \varphi(x)$ για κάθε $x\in \mathbb R$ και $h(0)=\varphi(0)$, τότε να δείξετε ότι: $h=\varphi$

- **7.** Έστω η συνάρτηση $f(x)=e^x-\ln(x+1)-1$.
- i. Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα
- ii. Να βρείτε το σύνολο τιμών της
- iii. Να λύσετε την εξίσωση f(x)=0
- iv. Αν για τους αριθμούς α , $\beta \in \mathbb{R}$ με $2 \cdot \alpha + \beta > 0$ και $\alpha + 2 \cdot \beta 1 > 0$, ισχύει:

$$e^{2\cdot\alpha+\beta-1}-\ln(2\cdot\alpha+\beta)+e^{\alpha+2\cdot\beta-2}-\ln(\alpha+2\cdot\beta-1)\leq 2$$
 , να υπολογίσεις τους α, β

- **8.** Δίνεται η συνάρτηση $f(x)=x^{\frac{1}{2\cdot x}}$, x>0
- i. Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα
- ii. Να δείξετε ότι: $\sqrt[12]{6} < \sqrt[10]{5} < \sqrt[6]{3}$

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

33999. Έστω η συνεχής συνάρτηση $f:(0,+\infty)\to R$ για την οποία ισχύει:

$$\frac{1}{x} \le f(x) \le 1 + \frac{1}{x}$$
, yia ká $\theta \in x \in (0, +\infty)$.

- α) Να αποδείξετε ότι $\lim_{x \to 0^+} f(x) = +\infty$
- β) Αν επιπλέον ισχύει $(x+1)f^{'}(x)\cdot \ln(x+1)=-f(x)$, για κάθε $x\in (0,+\infty)$, τότε:
 - i. Να αποδείξετε ότι η συνάρτηση $g(x)=f(x)\cdot \ln(x+1)$, x>0 είναι σταθερή.

Να αποδείξετε ότι για κάθε $x \in (0,+\infty)$ ισχύει $\frac{\ln(x+1)}{x} \le g(x) \le \ln(x+1) + \frac{\ln(x+1)}{x}$ και έπειτα να βρείτε τον τύπο της f.

33995. Δίνεται η συνάρτηση
$$f(x) = x - \frac{x-1}{x^2+1}$$
.

- α) Να αποδείξετε ότι η ευθεία (ε): y = x, είναι ασύμπτωτη της C_f στο $+\infty$
- β) Να προσδιορίσετε τα κοινά σημεία της C_f , με την ευθεία ε
- γ) Να αποδείξετε ότι η συνάρτηση f δεν είναι "1-1"

_		,					_	- /		
\cup	\cap	Tλ	0	0		0	- 1	TON	VVI	
т.	U	U	U	U	U	ς,	т.	LUL 1	V V I	I 🤇