

SC2001/CE2101/ CZ2101: Algorithm Design and Analysis

Greedy Algorithms;

Dijkstra's Algorithm; Prim's Algorithm

Instructor: Assoc. Prof. ZHANG Hanwang

Courtesy of Dr. Ke Yiping, Kelly's slides

Greedy Algorithms

Local optimality generally does NOT imply global optimality!!

Learning Objectives

At the end of this lecture, students should be able to:

- Explain the strategy of Greedy algorithms
- Solve single-source shortest paths problem using Dijkstra's algorithm
- Prove the correctness of Dijkstra's algorithm
- Describe Prim's algorithm for finding minimum spanning trees (MSTs)
- Prove the correctness of Prim's algorithm

Greedy Algorithms

- In optimization problems, the algorithm needs to make a series of choices whose overall effect is to minimize the total cost, or maximize the total benefit, of some system.
- There is a class of algorithms, called the greedy algorithms, in which we can find a solution by using only knowledge available at the time when the next choice (or guess) must be made.
- Each individual choice is the best within the knowledge available at the time.

Greedy Algorithms

- Each individual choice is not very expensive to compute.
- A choice cannot be undone, even if it is found to be a bad choice later.
- Greedy algorithms cannot guarantee to produce the optimal solution for a problem.

Dijkstra's Algorithm

Dijkstra's Algorithm

Shortest Path Problem:

The problem of finding the **shortest path** from one vertex in a graph G to another vertex. "Shortest" may be the least number of edges, or the least total weight, etc.

Dijkstra's Algorithm:

This is an algorithm to find the shortest paths from a single source vertex to all other vertices in a **weighted**, **directed** graph. All weights must be **nonnegative**.

Dijkstra's Algorithm

Dijkstra's algorithm keeps two sets of vertices:

- S: the set of vertices whose shortest paths from the source node have already been determined
 - they form the tree
- V S: the remaining vertices

The other data structures needed are:

- d: an array of size |V| to store the estimated lengths of shortest paths from the source node to all vertices
- pi: an array of size |V| to store the predecessors for each vertex

Basic Steps

The basic steps are:

- 1. Initialise d and pi
- 2. Set S to empty
- 3. While there are still vertices in **V S**
 - i. Move **u**, the vertex in **V S** that has the shortest path estimate from source, to **S**
 - ii. For all the vertices in **V S** that are connected to **u**, update their estimates of shortest distances to the source

A Toy Example

Shortest paths from **s** to other vertices

pi	S	X	u	V	У

Pseudocode of Dijkstra's Algorithm

```
Dijkstra_ShortestPath ( Graph G, Node source ) {
  for each vertex v {
        d[v] = infinity;
        pi[v] = null pointer;
        S[v] = 0; // S[v] is 1 if v is in S
                    // S[v] is 0 if v is not in S
  d[source] = 0;
  put all vertices in priority queue, Q, in d[v]'s increasing order;
  while not Empty(Q) {
     u = ExtractCheapest(Q);
     S[u] = 1; /* Add u to S */
```


Pseudocode of Dijkstra's Algorithm

```
for each vertex v adjacent to u
    if (S[v] \neq 1 \text{ and } d[v] > d[u] + w[u, v]) {
        remove v from Q;
        d[v] = d[u] + w[u, v];
        pi[v] = u;
        insert v into Q according to its d[v];
} // end of while loop
```


Worst case time complexity of Dijkstra's algorithm is $O(|V|^2)$ (analysis not required).

Proof of Correctness

Property of Shortest Path

Lemma 1: In a weighted graph G, suppose that a shortest path from x to z consists of a path P from x to y followed by a path Q from y to z. Then P is a shortest path from x to y and Q is a shortest path from y to z.

Proof (By Contradiction):

Assume that P is not the shortest path from x to y. Then there will be another path from x to y, P' which is shorter than P. As a result P' followed by Q will be a path **shorter** than P followed by Q. But it was known that P followed by Q is the **shortest** path. Contradiction. Same can be said about Q.

Theorem D1: Let G = (V, E, W) be a weighted graph with nonnegative weights. Let S be a subset of V and let s be a member of S. Assume that d[y] is the shortest distance in G from s to y, for each y in S. Let z be the next vertex chosen to go into S. If edge (y, z) is chosen to minimise d[y] + W(y, z) over all edges with one vertex in S and one vertex in V - S, then the path consisting of a shortest path from s to y followed by the edge (y, z) is the shortest path from s to z.

Proof:

We will show that there is no other path from s to z that is shorter.

 $s \longrightarrow * y \longrightarrow z$: shortest path from s to z

Proof of Theorem D1 (continued)

P: $s \rightarrow y \rightarrow z$ (shortest path for z)

$$W(P) = d[y] + W(y, z)$$

P': $s \rightarrow y \rightarrow u \rightarrow ... \rightarrow z$ (an alternative shortest path)

$$W(P') = d[y] + W(y, u)$$

+ distance from u to z

Because $d[y] + W(y, u) \ge d[y] + W(y, z)$, and distance from u to z is nonnegative, therefore $W(P) \le W(P')$.

Edge (y, z) is chosen to minimise d[y] + W(y, z) over all edges with one vertex in S and one vertex in V – S

Proof of Theorem D1 (continued)

Let P be a shortest path from **s** to **y** followed by edge (y, z)

Let W(P) = the distance travelled along P

Let P' = any shortest path <u>different</u> from P, i.e., P' = s, $z_1, ..., z_k, ..., z_n$

Assume that z_k is the first vertex in P' not in set S.

$$W(P) = d[y] + W(y, z)$$

$$W(P') = d[z_{k-1}] + W(z_{k-1}, z_k) + distance from z_k to z$$

Note that:
$$d[z_{k-1}] + W(z_{k-1}, z_k) \ge d[y] + W(y, z)$$

Since distance from z_k to z is non-negative, therefore, $W(P) \leftarrow W(P')$.

Theorem D2 and Proof

Theorem D2: Given a directed weighted graph G with nonnegative weights and a source vertex s, Dijkstra's algorithm computes the shortest distance from s to each vertex of G that is reachable from s.

Proof (By induction):

We will show by induction that as each vertex v is added into set S, d[v] is the shortest distance from s to v.

Basis:

The algorithm assigns d[s] to zero when the source vertex s is added to S. So d[s] is the shortest distance from s to s when S has the first vertex in it.

Theorem D2 and Proof (Continued)

Inductive Hypothesis:

Assume the theorem is true when S has \mathbf{k} vertices. That is, assume $v_0, v_1, v_2, ..., v_{k-1}$ are added where $d[v_1], d[v_2]...$ are the shortest distances.

When v_k is chosen by Dijkstra's algorithm, it means an edge (v_i, v_k) , where $i \in \{0, 1, 2, ..., k-1\}$, is chosen to minimise $d[v_i] + W(v_i, v_k)$ among all edges with one vertex in S and one vertex not in S.

By Theorem D1, $d[v_k]$ is the shortest distance from source to v_k . So the theorem is true when S has k + 1 vertices.

Minimum Spanning Tree

Minimum Spanning Tree

Definition of Subgraph

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that $V' \subseteq V$ and $E' \subseteq E$ and $E' \subseteq V' \times V'$

Definition of Spanning Tree

A connected, acyclic subgraph containing all the vertices of a graph.

Definition of Minimum Spanning Tree

A minimum-weight spanning tree in a weighted graph.

Spanning Tree

Minimum Spanning Tree

Minimum Spanning Tree

Main Idea of Prim's Algorithm

Prim's Algorithm

It works on undirected graph.

- It builds upon a single partial minimum spanning tree, at each step adding an edge connecting the vertex nearest to but not already in the current partial minimum spanning tree.
- At first a vertex is chosen, this vertex will be the first node in *T*.
- Set P is initialised: P = set of vertices not in tree T but are adjacent to some vertices in T.

Main Idea of Prim's Algorithm

Prim's Algorithm (Cont.)

- In every iteration in the Prim's Algorithm, a new vertex u from set P will be connected to the tree T. The vertex u will be deleted from the set P. The vertices adjacent to u and not already in P will be added to P.
- When all vertices are connected into T, P will be empty. This means the end of the algorithm.
- The new vertex in every iteration will be chosen by using greedy method, i.e. among all vertices in P which are connected to some vertices already inserted in the tree T but themselves are not in T, we choose one with the minimum cost.

An Example of Prim's Algorithm

Prim's MST

Black vertices: unseen vertices

Pink vertices: tree vertices

Blue vertices: fringe vertices

3 subsets of vertices

Prim's Algorithm classifies vertices into three disjoint categories:

- Tree vertices in the tree being constructed so far
- Fringe vertices not in the tree but adjacent to some vertices in the tree
- Unseen vertices all others

Greedy choice of Prim's Algo

- Key step in the algorithm is the selection of a vertex from the fringe (which, of course, depends on the weights on incident edges).
- Prim's Algorithm always chooses a minimum weight edge from tree vertex to fringe vertex.

Main Idea of Prim's Algorithm

Choose min(w, x, y, z)

Pseudocode of Prim's Algo

```
primMST(G, s, n) // outline of Prim's algorithm
    Initialise all vertices as unseen.
    Reclassify s as tree vertex.
    Reclassify all vertices adjacent to s as fringe.
    While (there are fringe vertices)
        Select an edge of minimum weight between a tree
             vertex t and a fringe vertex v;
        Reclassify v as tree; add edge tv to the tree;
        Reclassify all unseen vertices adjacent to v as fringe.
```


Implementing Prim's Algo

Data Structures Used:

- Array d: distance of a fringe vertex from the tree
- Array pi: vertex connecting a fringe vertex to a tree vertex
- Array S: whether a vertex is in the minimum spanning tree being built
- Priority queue pq: queue of fringe vertices in the order of the distances from the tree

At the end of the algorithm, array pi has the minimum spanning tree.

Implementing Prim's Algo

```
primMST(G, s, n) {
    initialise priority queue pq as empty;
    for each vertex v {
        d[v] = infinity; S[v] = 0;
        pi[v] = null pointer; }
    d[s] = 0; S[s] = 1;
    insert(pq, s, 0);
    while (pq is not empty) {
        u = getMin(pq); deleteMin(pq);
        S[u] = 1;
        updateFringe(pq, G, u); }
```


Update Fringe Set of Vertices

```
updateFringe(pq, G, v) {
  for all vertices w adjacent to v {
    if (S[w] != 1) { //if w is not a tree vertex
        newWgt = weight of edge vw;
        if (d[w] == infinity) {
             d[w] = newWgt; pi[w] = v;
             insert(pq, w, newWgt);
        } else if (newWgt < d[w]) {</pre>
             d[w] = newWgt; pi[w] = v;
             decreaseKey(pq, w, newWgt);}
    } // if w is not a tree vertex
  } // for all vertices
                                                                             35
```


MST Property

Minimum Spanning Tree Property

Let T be a spanning tree of G, where G = (V, E, W) is a connected, weighted graph. Suppose that for every edge (u, v) of G that is not in T, if (u, v) is added to T it creates a cycle such that (u, v) is a maximum-weight edge on that cycle. Then T has the **Minimum Spanning Tree Property** (or **MST Property**, in short).

Lemma 1 and Proof

Lemma 1: In a connected weighted graph G = (V, E, W), if T_1 and T_2 are two spanning trees that have the MST property, then they have the same total weight.

Proof by induction on k, the number of edges in T_1 but not T_2 (there are also k edges in T_2 but not in T_1).

Basis:

k = 0; i.e. $T_1 = T_2$. Therefore, they have the same weight.

Proof of Lemma 1 (continued)

Inductive hypothesis: For k > 0, assume the lemma holds when there are j differing edges where $0 \le j < k$.

Let uv be the minimum weight edge among the differing edges (assume uv is in T_2 but not T_1).

Look at unique path in T_1 from u to v.

Suppose it is made up of $w_0, w_1, ..., w_p$ where

$$W_0 = U, ..., W_p = V.$$

This path must contain some edge different from T_2 's.

Let $w_i w_{i+1}$ be this differing edge.

By MST property of T_1 , $w_i w_{i+1}$ cannot be > uv's weight.

Proof of Lemma 1 (continued)

But since uv was chosen to be the minimum weight among differing edges, w_iw_{i+1} cannot have weight less than uv.

Therefore, $W(w_i w_{i+1}) = W(uv)$.

Add uv to T_1 (creating a cycle). Remove w_iw_{i+1} leaving tree T'_1 (which has the same weight as T_1).

But T_1 and T_2 differ only on k-1 edges.

So by inductive hypothesis, T_1 and T_2 have the same total weight. Therefore, T_1 and T_2 have same weight.

Page 392 Baase & Van Gelder

Theorem 1 and Proof

Theorem 1: In a connected weighted graph G = (V, E, W), a tree T is a minimum spanning tree if and only if T has the MST property.

Proof (**Only if**): Assume *T* is an MST for graph G.

Suppose T does not satisfy the MST property, i.e. there is some edge uv that is not in T such that adding uv creates a cycle, in which some other edge xy has weight W(xy) > W(uv).

Then, by removing xy and adding uv, we create a new spanning tree whose total weight is < W(T); This contradicts the assumption that T is an MST.

Proof of Theorem 1 (continued)

Theorem 1: In a connected weighted graph G = (V, E, W), a tree T is a minimum spanning tree if and only if T has the MST property.

Proof (**Only if**): Assume *T* is an MST for graph G.

(Cont.)

(If) Assume T has MST property.

If T_{\min} is an MST, then T_{\min} has MST property by the first half of the proof.

By Lemma 1, $W(T) = W(T_{min})$, so T is also an MST.

Prim's Algorithm is Optimal

Lemma 2: Let G = (V, E, W) be a connected weighted graph; Let T_k be the tree with k vertices constructed by Prim's Algorithm, for k = 1, 2, ..., n; and let G_k be the subgraph induced by the vertices of T_k . Then T_k has the MST property in G_k . (**Proof is not required**)

Theorem 2: Prim's Algorithm outputs a minimum spanning tree.

Proof:

- From Lemma 2, T_n has the MST property.
- By Theorem 1, T_n is a minimum spanning tree.

Priority Queue for MST (Optional)

- Inserted by order of priority (not chronological, as in 'normal' queues – FIFO)
- Elements to be inserted have a 'key' contains the priority; element with highest priority will be selected first. [priority can be largest value (e.g. if we're computing max profit) or smallest value (e.g. if we're interested in min cost)]
- Think of pq as a sequence of pairs: (id₁,w₁), (id₂,w₂),..., (id_k,w_k). The order is in increasing w_i and id is a unique identifier for an element

Methods of Priority Queue (Optional)

The Priority Queue consists of:

Create: Constructor to set up PQ

isEmpty; getMin; getPriority: Access functions

insert; deleteMin; decreaseKey: Manipulation procedures

Insert(pq, id, w): Inserts (id, w) into an existing pq - position
depends on w

decreaseKey(pq, id, neww): Rearranges pq based on new wt of element id

getMin(pq): Returns id₁;

getPriorty(pq): Returns weight of min element

Summary

- Greedy algorithm is a general strategy to solve optimization problems
- Dijkstra's algorithm finds single-source shortest paths in a weighted graph of nonnegative edge weights
- Prim's algorithm finds the minimum spanning trees in weighted graphs
- Both are greedy algorithms, and use priority queue