Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inforonc

Strategies

Advanced Topic

Case Studie

Deferences

Deep Latent-Variable Models of Natural Language

Yoon Kim, Sam Wiseman, Alexander Rush

Tutorial 2018

 $\verb|https://github.com/harvardnlp/DeepLatentNLP|\\$

Tutorial: Deep Latent NLP (bit.ly/2qonXVb) Introduction Variational Objective **Advanced Topics**

1 Introduction2 Models

Conclusion

4 Inference Strategies

Tutorial: Deep Latent NLP (bit.ly/2qonXVb) Models Variational Objective **Advanced Topics**

1 Introduction

2 Models

3 Variational Objective

4 Inference Strategies

6 Advanced Topics

6 Case Studies

. .

Tutorial: Deep Latent NLP (bit.ly/2qonXVb) Variational **Objective Advanced Topics**

1 Introduction

2 Models

3 Variational Objective

4 Inference Strategies

6 Advanced Topics

6 Case Studies

Conclusion

Tutorial: Deep Latent NLP (bit.ly/2gonXVb) Variational

• Introduction

Models

Variational Objective

Inference **Strategies**

Sampling Conjugacy

Exact Gradient

Advanced Topics

4 Inference Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inference

Strategies

Exact Gradient

Exact Grac

Sampling Conjugacy

.

Case Studies

Conclusion

References

Maximizing the Evidence Lower Bound

Central quantity of interest: almost all methods are maximizing the ELBO

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda)$$

Aggregate ELBO objective,

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda) = \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \operatorname{ELBO}(\theta,\lambda; \, x^{(n)})$$
$$= \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \mathbb{E}_{q} \Big[\log \frac{p(x^{(n)}, z^{(n)}; \, \theta)}{q(z^{(n)} \mid x^{(n)}; \, \lambda)} \Big]$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Maximizing the Evidence Lower Bound

Central quantity of interest: almost all methods are maximizing the ELBO

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda)$$

Aggregate ELBO objective,

$$\underset{\theta,\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta,\lambda) = \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \operatorname{ELBO}(\theta,\lambda;\,x^{(n)})$$
$$= \underset{\theta,\lambda}{\operatorname{arg\,max}} \sum_{n=1}^{N} \mathbb{E}_{q} \Big[\log \frac{p(x^{(n)},z^{(n)};\,\theta)}{q(z^{(n)}\,|\,x^{(n)};\,\lambda)} \Big]$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Maximizing ELBO: Model Parameters

$$\arg\max_{\theta} \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right] = \arg\max_{\theta} \mathbb{E}_{q} [\log p(x, z; \theta)]$$

Intuition: Maximum likelihood problem under variables drawn from $q(z \mid x; \lambda)$.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inference Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Model Estimation: Gradient Ascent on Model Parameters

Easy: Gradient respect to θ

$$\nabla_{\theta} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\theta} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$
$$= \mathbb{E}_{q} \Big[\nabla_{\theta} \log p(x, z; \theta) \Big]$$

- Since q not dependent on θ , ∇ moves inside expectation.
- Estimate with samples from q. Term $\log p(x,z;\theta)$ is easy to evaluate. (In practice single sample is often sufficient).
- In special cases, can exactly evaluate expectation.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variation Objective

Inference Strategies

Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topics

Cara Charlin

Conclusion

References

Model Estimation: Gradient Ascent on Model Parameters

Easy: Gradient respect to θ

$$\nabla_{\theta} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\theta} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$
$$= \mathbb{E}_{q} \Big[\nabla_{\theta} \log p(x, z; \theta) \Big]$$

- Since q not dependent on θ , ∇ moves inside expectation.
- Estimate with samples from q. Term $\log p(x, z; \theta)$ is easy to evaluate. (In practice single sample is often sufficient).
- In special cases, can exactly evaluate expectation.

Maximizing ELBO: Variational Distribution

 $\arg \max ELBO(\theta, \lambda)$

Inference

Strategies

Exact Gradient Sampling Conjugacy

Advanced Topics

Intuition: q should approximate the posterior p(z|x). However, may be difficult if q or p is a deep model. 9/82

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

IVIOGEIS

Variationa Objective

Inference Strategies

Evact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Model Inference: Gradient Ascent on λ ?

Hard: Gradient respect to λ

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$

$$\neq \mathbb{E}_{q} \Big[\nabla_{\lambda} \log p(x, z; \theta) \Big]$$

- Cannot naively move ∇ inside the expectation, since q depends on λ .
- This section: Inference in practice
 - Exact gradient
 - 2 Sampling: score function, reparameterization
 - Conjugacy: closed-form, coordinate ascent

Deep Latent NLP (bit.ly/2gonXVb)

Inference

Strategies

Evact Gradient

Sampling

Conjugacy

Model Inference: Gradient Ascent on λ ?

Hard: Gradient respect to λ

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big]$$

$$\neq \mathbb{E}_{q} \Big[\nabla_{\lambda} \log p(x, z; \theta) \Big]$$

- Cannot naively move ∇ inside the expectation, since q depends on λ .
- This section: Inference in practice:
 - Exact gradient
 - 2 Sampling: score function, reparameterization
 - 3 Conjugacy: closed-form, coordinate ascent

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics Case Studies Conclusion References	 Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics 	
	6 Case Studies	1/82

Deep Latent NLP (bit.ly/2qonXVb)

Introductio

Models

Variationa

Inference Strategies

Exact Gradient

Sampling Conjugacy

Case Studies

Conclusion

References

Strategy 1: Exact Gradient

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$

- Naive enumeration: Linear in $|\mathcal{Z}|$.
- Depending on structure of q and p, potentially faster with dynamic programming.
- Applicable mainly to Model 1 and 3 (Discrete and Structured), or Model 2 with point estimate.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa

Inference Strategies

Exact Gradient

Sampling Conjugacy

Case Studie

Conclusion

References

Strategy 1: Exact Gradient

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$

- Naive enumeration: Linear in $|\mathcal{Z}|$.
- Depending on structure of q and p, potentially faster with dynamic programming.
- Applicable mainly to Model 1 and 3 (Discrete and Structured), or Model 2 with point estimate.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa Objective

Exact Gradient

Sampling Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 1 - Naive Bayes

Let
$$q(z \,|\, x;\, \lambda) = \mathsf{Cat}(\nu)$$
 where $\nu = \mathrm{enc}(x;\lambda)$

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} \nu_{z} \log \frac{p(x, z; \theta)}{\nu_{z}} \right)$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa Objective

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 1 - Naive Bayes

Let
$$q(z\,|\,x;\,\lambda) = \mathsf{Cat}(\nu)$$
 where $\nu = \mathrm{enc}(x;\lambda)$

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q(z \mid x; \lambda)} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} q(z \mid x; \lambda) \log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right)$$
$$= \nabla_{\lambda} \left(\sum_{z \in \mathcal{Z}} \nu_{z} \log \frac{p(x, z; \theta)}{\nu_{z}} \right)$$

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics Case Studies Conclusion References	 Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics 	
	6 Case Studies	2

Strategy 2: Sampling

 $= \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] - \nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \theta) \Big]$

How can we approximate this gradient with sampling? Naive algorithm fails

 $\nabla_{\lambda} \frac{1}{J} \sum_{j=1}^{J} \left[\log p(x, z^{(j)}; \theta) \right] = 0$

15/82

 $\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{\log p(x, z; \theta)}{\log q(z \mid x; \lambda)} \right]$

Exact Gradient Sampling

Conjugacy

Tutorial: Deep Latent NLP

Strategy 2: Sampling (bit.ly/2gonXVb)

Exact Gradient Sampling

Conjugacy

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \Big[\log \frac{\log p(x, z; \theta)}{\log q(z \mid x; \lambda)} \Big]$$
$$= \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] - \nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \theta) \Big]$$

 How can we approximate this gradient with sampling? Naive algorithm fails to provide non-zero gradient.

$$z^{(1)}, \dots, z^{(J)} \sim q(z \mid x; \lambda)$$

$$\nabla_{\lambda} \frac{1}{J} \sum_{i=1}^{J} \left[\log p(x, z^{(j)}; \theta) \right] = 0$$

Manipulate expression so we can move ∇_{λ} inside \mathbb{E}_{a} before sampling.

IIItroductio

Models

Variationa Objective

Inference Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] = \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta)$$

Introductio

....

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \left[\log p(x, z; \theta) \right] = \sum_{z} \underbrace{\nabla_{\lambda} q(z \mid x; \lambda)}_{q \nabla \log q} \log p(x, z; \theta)$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Variationa Objective

Inference

Event Con

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] = \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta)$$
$$= \sum_{z} q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) \log p(x, z; \theta)$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

....

Variation

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Tonio

Case Studie

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

First term. Use basic identity:

$$\nabla \log q = \frac{\nabla q}{q} \Rightarrow \nabla q = q \nabla \log q$$

$$\begin{split} \nabla_{\lambda} \mathbb{E}_{q} \Big[\log p(x, z; \theta) \Big] &= \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda) \log p(x, z; \theta) \\ &= \sum_{z} q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) \log p(x, z; \theta) \\ &= \mathbb{E}_{q} \Big[\log p(x, z; \theta) \nabla_{\lambda} \log q(z \mid x; \lambda) \Big] \end{split}$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

Introduction

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \Big(\underbrace{\nabla_{\lambda} q(z \,|\, x;\, \lambda)}_{q \nabla \log q} \Big) \log q(z \,|\, x;\, \lambda) + q(z \,|\, x;\, \lambda) \Big(\underbrace{\nabla_{\lambda} \log q(z \,|\, x;\, \lambda)}_{\frac{\nabla q}{q}} \Big)$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

ivioueis

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \,|\, x;\, \lambda) \nabla_{\lambda} \log q(z \,|\, x;\, \lambda) + \sum_{z} \nabla_{\lambda} q(z \,|\, x;\, \lambda)$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

ivioueis

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) + \underbrace{\sum_{z} \nabla_{\lambda} q(z \mid x; \lambda)}_{z}$$

$$=\nabla \sum q = \nabla 1 = 0$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

ivioucis

Variational Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

$$\sum \nabla q = \nabla \sum q = \nabla 1 = 0$$

$$\nabla_{\lambda} \mathbb{E}_{q} \Big[\log q(z \mid x; \lambda) \Big] = \sum_{z} \nabla_{\lambda} \Big(q(z \mid x; \lambda) \log q(z \mid x; \lambda) \Big)$$

$$= \sum_{z} \log q(z \mid x; \lambda) \nabla_{\lambda} \log q(z \mid x; \lambda) + \sum_{z} \nabla_{\lambda} q(z \mid x; \lambda)$$

$$= \mathbb{E}_q[\log q(z \mid x; \lambda) \nabla_{\lambda} q(z \mid x; \lambda)]$$

Introduction

Models

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

Putting these together,

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \nabla_{\lambda} \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \right]$$

$$= \mathbb{E}_{q} \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

$$= \mathbb{E}_{q} \left[R_{\theta, \lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

Introduction

Model

Variation Objective

Inference

Face Cont

Exact Gradient
Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Strategy 2a: Sampling — Score Function Gradient Estimator

Estimate with samples,

$$z^{(1)},\ldots,z^{(J)}\sim q(z\,|\,x;\,\lambda)$$

$$\mathbb{E}_{q} \left[R_{\theta,\lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$$

$$\approx \frac{1}{J} \sum_{i=1}^{J} R_{\theta,\lambda}(z^{(j)}) \nabla_{\lambda} \log q(z^{(j)} \mid x; \lambda)$$

Intuition: if a sample $z^{(j)}$ is has high reward $R_{\theta,\lambda}(z^{(j)})$, increase the probability of $z^{(j)}$ by moving along the gradient $\nabla_{\lambda} \log q(z^{(j)} \,|\, x;\, \lambda)$.

Introduction

Model

Variational Objective

Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topics

Case Studies

Conclusion

Reference

Strategy 2a: Sampling — Score Function Gradient Estimator

- Essentially reinforcement learning with reward $R_{\theta,\lambda}(z)$
- Score function gradient is generally applicable regardless of what distribution q takes (only need to evaluate $\nabla_{\lambda} \log q$).
- This generality comes at a cost, since the reward is "black-box": unbiased estimator, but high variance.
- In practice, need variance-reducing **control variate** B. (More on this later).

Example: Model 1 - Naive Bayes

Let $q(z \mid x; \lambda) = \mathsf{Cat}(\nu)$ where $\nu = \mathrm{enc}(x; \lambda)$

Exact Gradient Sampling Conjugacy

$$\approx \frac{1}{J} \sum_{i=1}^{J} \nu_{z(j)} \log \frac{p(x, z^{(j)}; \theta)}{\nu_{z(j)}} \nabla_{\lambda} \log \nu_{z(j)}$$

Example: Model 1 - Naive Bayes

Let $q(z \mid x; \lambda) = \mathsf{Cat}(\nu)$ where $\nu = \mathsf{enc}(x; \lambda)$

 $\approx \frac{1}{J} \sum_{i=1}^{J} \nu_{z^{(j)}} \log \frac{p(x, z^{(j)}; \theta)}{\nu_{z^{(j)}}} \nabla_{\lambda} \log \nu_{z^{(j)}}$

Exact Gradient

Sampling Conjugacy

Sample $z^{(1)}, \ldots, z^{(J)} \sim q(z \mid x; \lambda)$

 $\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_q \left[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)} \nabla_{\lambda} \log q(z \mid x; \lambda) \right]$

Computational complexity: O(J) vs $O(|\mathcal{Z}|)$

28/82

Strategy 2b: Sampling — Reparameterization

Exact Gradient
Sampling

Conjugacy

Advanced Topics

Conclusion

References

Suppose we can sample from q by applying a deterministic, differentiable transformation g to a base noise density,

$$\epsilon \sim \mathcal{U}$$
 $z = g(\epsilon, \lambda)$

Gradient calculation (first term):

$$\nabla_{\lambda} \mathbb{E}_{z \sim q(z \mid x; \lambda)} \Big[\log p(x, z; \theta) \Big] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$= \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\nabla_{\lambda} \log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$\approx \frac{1}{J} \sum_{i=1}^{J} \nabla_{\lambda} \log p(x, g(\epsilon^{(j)}, \lambda); \theta)$$

where

$$\epsilon^{(1)}, \dots \epsilon^{(J)} \sim \mathcal{U}$$

Deep Latent NLP (bit.ly/2qonXVb)

Tutorial:

Strategy 2b: Sampling — Reparameterization

Suppose we can sample from q by applying a deterministic, differentiable transformation g to a base noise density,

$$\epsilon \sim \mathcal{U}$$
 $z = g(\epsilon, \lambda)$

1odel:

riationa

Objective

Inference Strategies

Exact Gradient

Conjugacy

Advanced Topic

Conclusion

References

References

Gradient calculation (first term):

$$\nabla_{\lambda} \mathbb{E}_{z \sim q(z \mid x; \lambda)} \Big[\log p(x, z; \theta) \Big] = \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$= \mathbb{E}_{\epsilon \sim \mathcal{U}} \Big[\nabla_{\lambda} \log p(x, g(\epsilon, \lambda); \theta) \Big]$$
$$\approx \frac{1}{J} \sum_{j=1}^{J} \nabla_{\lambda} \log p(x, g(\epsilon^{(j)}, \lambda); \theta)$$

where

 $\epsilon^{(1)}, \dots \epsilon^{(J)} \sim \mathcal{U}$

29/82

Introduction

Models

Variation Objective

Inference Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Tonic

Case Studies

Conclusion

References

Strategy 2b: Sampling — Reparameterization

- Unbiased-like score function gradient estimator, but empirically lower variance.
- In practice, single sample is often sufficient.
- Cannot be used out-of-the-box for discrete z.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Strategy 2: Continuous Latent Variable RNN

Choose variational family to be an amortized diagonal Gaussian

$$q(z \mid x; \lambda) = \mathcal{N}(\mu, \sigma^2)$$

$$\mu, \sigma^2 = \mathrm{enc}(x; \lambda)$$

Strategy 2b: Sampling — Reparameterization

Introduction

Mode

Variation Objective

Inference Strategies

Exact Gradient

Sampling Conjugacy

Advanced Topic

Case Studie

Conclusion

References

(Recall
$$R_{\theta,\lambda}(z) = \log \frac{p(x,z;\theta)}{q(z\,|\,x;\lambda)}$$
)

Score function:

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_{z \sim q}[R_{\theta, \lambda}(z) \nabla_{\lambda} \log q(z \mid x; \lambda)]$$

Reparameterization:

$$\nabla_{\lambda} \operatorname{ELBO}(\theta, \lambda; x) = \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\nabla_{\lambda} R_{\theta, \lambda}(g(\epsilon, \lambda; x))]$$

where $g(\epsilon, \lambda; x) = \mu + \sigma \epsilon$.

Informally, reparameterization gradients differentiate through $R_{\theta,\lambda}()$ and thus has "more knowledge" about the structure of the objective function.

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics Case Studies Conclusion References	 Inference Strategies Exact Gradient Sampling Conjugacy Advanced Topics 	
	6 Case Studies	82

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variational Objective

Inference

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 3: Conjugacy

For certain choices for p and q, we can compute parts of

$$\underset{\lambda}{\operatorname{arg\,max}}\operatorname{ELBO}(\theta,\lambda;x)$$

exactly in closed-form.

Recall that

$$\arg\max_{\lambda} \text{ELBO}(\theta, \lambda; x) = \arg\min_{\lambda} \text{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$$

Tutorial: Deep Latent NLP

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa Objective

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 3: Conjugacy

For certain choices for p and q, we can compute parts of

$$\underset{\lambda}{\operatorname{arg\,max}} \operatorname{ELBO}(\theta, \lambda; x)$$

exactly in closed-form.

Recall that

$$\mathop{\arg\max}_{\lambda} \mathrm{ELBO}(\theta, \lambda; x) = \mathop{\arg\min}_{\lambda} \mathrm{KL}[q(z \,|\, x; \, \lambda) \| p(z \,|\, x; \, \theta)]$$

Introduction

Model

Variationa Objective

Inference Strategies

Exact Gradient

Conjugacy

Advanced Tonio

Case Studie

Conclusion

References

Strategy 3a: Conjugacy — Tractable Posterior Inference

Suppose we can tractably calculate $p(z \mid x; \theta)$ /. Then $\mathrm{KL}[q(z \mid x; \lambda) || p(z \mid x; \theta)]$ is minimized when.

$$q(z \mid x; \lambda) = p(z \mid x; \theta)$$

• The E-step in Expectation Maximization algorithm [Dempster et al. 1977]

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa

Informed

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 2 - Dirichlet-Multinomial

- $q(z; x; \lambda) = Dir(\lambda)$
- $p(x, z; \theta)$ is given by

$$z \sim \mathsf{Dir}(\alpha)$$

$$x_t \mid z \sim \mathsf{Cat}(z) \ \text{ for } t = 1, \dots, T$$

$$p(z \mid x; \theta) = \text{Dir}(z; \alpha + \sum_{t=1}^{T} x_t) \Rightarrow \lambda = \alpha + \sum_{t=1}^{T} x_t$$

Deep Latent NLP (bit.ly/2qonXVb)

Introductio

Models

Variationa

Informed

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 2 - Dirichlet-Multinomial

- $q(z; x; \lambda) = Dir(\lambda)$
- $p(x, z; \theta)$ is given by

$$z \sim \mathsf{Dir}(\alpha)$$

$$x_t \mid z \sim \mathsf{Cat}(z) \ \text{ for } t = 1, \dots, T$$

$$p(z \mid x; \theta) = \text{Dir}(z; \alpha + \sum_{t=1}^{T} x_t) \Rightarrow \lambda = \alpha + \sum_{t=1}^{T} x_t$$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variational

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Reminder: Model 3 — HMM

$$p(x, z; \theta) = p(z_0) \prod_{t=1}^{I} p(z_t | z_{t-1}; \mu) p(x_t | z_t; \pi)$$

Introductio

Models

Variational Objective

Inference

Exact Gradient

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 3 — HMM

 $Run\ forward/backward\ dynamic\ programming\ to\ calculate\ posterior\ marginals,$

$$p(z_t, z_{t+1} \mid x; \theta)$$

variational parameters $\lambda \in \mathbb{R}^{TK^2}$ store edge marginals. These are enough to calculate

$$q(z; \lambda) = p(z \mid x; \theta)$$

(i.e. the exact posterior) over any sequence

Introductio

Models

Variationa

Lufanana

Strategies

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 3 — HMM

Run forward/backward dynamic programming to calculate posterior marginals,

$$p(z_t, z_{t+1} \mid x; \theta)$$

variational parameters $\lambda \in \mathbb{R}^{TK^2}$ store edge marginals. These are enough to calculate

$$q(z; \lambda) = p(z \mid x; \theta)$$

(i.e. the exact posterior) over any sequence z.

Deep Latent NLP (bit.ly/2qonXVb)

Connection: Gradient Ascent on Log Marginal Likelihood

Introductio

ivioucis

Variationa

Inference

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Why not perform gradient ascent directly on log marginal likelihood?

$$\log p(x; \theta) = \log \sum_{z} p(x, z; \theta)$$

Same as optimizing ELBO with posterior inference (i.e EM). Gradients of model parameters given by (where $q(z \mid x; \lambda) = p(z \mid x; \theta)$):

$$\nabla_{\theta} \log p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} [\nabla_{\theta} \log p(x, z; \theta)]$$

Connection: Gradient Ascent on Log Marginal Likelihood

Introduction

Models

Variationa Objective

Strategies

Exact Gradient

Conjugacy

Advanced Topic

Case Studie

Conclusion

References

Why not perform gradient ascent directly on log marginal likelihood?

$$\log p(x; \theta) = \log \sum_{z} p(x, z; \theta)$$

Same as optimizing ELBO with posterior inference (i.e EM). Gradients of model parameters given by (where $q(z \mid x; \lambda) = p(z \mid x; \theta)$):

$$\nabla_{\theta} \log p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} [\nabla_{\theta} \log p(x, z; \theta)]$$

Introduction

Models

Variationa Objective

Inference Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Connection: Gradient Ascent on Log Marginal Likelihood

- Practically, this means we don't have to manually perform posterior inference in the E-step. Can just calculate $\log p(x; \theta)$ and call backpropagation.
- Example: in deep HMM, just implement forward algorithm to calculate $\log p(x;\,\theta)$ and backpropagate using autodiff. No need to implement backward algorithm. (Or vice versa).

(See Eisner [2016]: "Inside-Outside and Forward-Backward Algorithms Are Just Backprop")

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa Objective

Inference Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Strategy 3b: Conditional Conjugacy

- Let $p(z \mid x; \theta)$ be intractable, but suppose $p(x, z; \theta)$ is conditionally conjugate, meaning $p(z_t \mid x, z_{-t}; \theta)$ is exponential family.
- Restrict the family of distributions q so that it factorizes over z_t , i.e.

$$q(z; \lambda) = \prod_{t=1}^{T} q(z_t; \lambda_t)$$

(mean field family)

• Further choose $q(z_t;\,x\lambda_t)$ so that it is in the same family as $p(z_t\,|\,x,z_{-t};\,\theta)$.

Deep Latent NLP (bit.ly/2gonXVb)

Introduction

Models

Variational

Inference

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studie

Conclusion

References

Strategy 3b: Conditional Conjugacy

$$q(z; \lambda) = \prod_{t=1}^{T} q(z_t; \lambda_t)$$

Mean Field Family

Introduct

Models

Variationa Objective

Strategies

Exact Gradient

Conjugacy

Advanced Topics

Conclusion

D. C.

References

ullet Optimize ELBO via coordinate ascent, i.e. iterate for $\lambda_1,\dots,\lambda_T$

$$\underset{\lambda_t}{\operatorname{arg\,max}} \operatorname{KL}\left[\prod_{t=1}^{T} q(z_t; \, \lambda_t) \| p(z \, | \, x; \, \theta)\right]$$

Coordinate ascent updates will take the form

$$q(z_t; \lambda_t) \propto \exp\left(\mathbb{E}_{q(z_{-t}; \lambda_{-t})}[\log p(x, z; \theta)]\right)$$

where

$$\mathbb{E}_{q(z_{-t}; \lambda_{-t})}[\log p(x, z; \theta)] = \sum_{j \neq t} \prod_{j \neq t} q(z_j; \lambda_j) \log p(x, z; \theta)$$

• Since $p(z_t \mid x, z_{-t})$ was assumed to be in the exponential family, above updates can be derived in closed form.

Deep Latent NLP (bit.ly/2gonXVb)

Introduction

Models

Variational

Inferenc

Strategie

Exact Gradient

Sampling

Conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 3 — Factorial HMM

$$p(x, z; \theta) = \prod_{l=1}^{L} \prod_{t=1}^{L} p(z_{l,t} | z_{l,t-1}; \theta) p(x_t | z_{l,t}; \theta)$$

Introduction

ivioueis

Variationa Objective

Inference Strategies

Exact Gradient Sampling

Conjugacy

Advanced Topic

Case Studies

Conclusion

References

Example: Model 3 — Factorial HMM

Exact Inference:

ullet Naive: K states, L levels \Longrightarrow HMM with K^L states \Longrightarrow $O(TK^{2L})$

• Smarter: $O(TLK^{L+1})$

Mean Field

- ullet Gaussian emissions: $O(TLK^2)$ [Ghahramani and Jordan 1996].
- • Categorical emission: need more variational approximations, but ultimately O(LKVT) [Nepal and Yates 2013].

Introduction

Objective

Inference Strategies

Exact Gradient

Sampling Conjugacy

conjugacy

Advanced Topics

Case Studies

Conclusion

References

Example: Model 3 — Factorial HMM

Exact Inference:

ullet Naive: K states, L levels \Longrightarrow HMM with K^L states \Longrightarrow $O(TK^{2L})$

• Smarter: $O(TLK^{L+1})$

Mean Field:

- ullet Gaussian emissions: $O(TLK^2)$ [Ghahramani and Jordan 1996].
- Categorical emission: need more variational approximations, but ultimately O(LKVT) [Nepal and Yates 2013].

Tutorial: Deep Latent NLP (bit.ly/2qonXVb) Variational Objective **Advanced Topics**

Introduction Models Variational Objective 4 Inference Strategies

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction
Introduction	2 Models
Models	
Variational Objective	3 Variational Objective
Inference Strategies	4 Inference Strategies
Advanced Topics	
Case Studies Sentence VAE Encoder/Decoder	Advanced Topics
with Latent Variables Latent Summaries	Case Studies
and Topics Conclusion	Sentence VAE
References	Encoder/Decoder with Latent Variables
	Latent Summaries and Topics

Tutorial: Deep Latent NLP Introduction (bit.ly/2gonXVb) Models Variational Objective 4 Inference Strategies **6** Advanced Topics Sentence VAE Encoder/Decoder with Latent Variables **6** Case Studies Latent Summaries and Topics Sentence VAE 48/82

Deep Latent NLP
(bit.ly/2qonXVb)

Introduction

Mode

Variational Objective

Strategies Strategies

Advanced Topics

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Sentence VAE Example [Bowman et al. 2016]

Generative Model (Model 2):

- Draw $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Draw $x_t \mid \mathbf{z} \sim \text{CRNNLM}(\theta, \mathbf{z})$

Variational Model (Amortized): Deep Diagonal Gaussians,

$$q(\mathbf{z} \mid x; \lambda) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma^2})$$

$$\tilde{\boldsymbol{h}}_T = \text{RNN}(x; \psi)$$

$$\mu = \mathbf{W}_1 \tilde{h}_T$$
 $\sigma^2 = \exp(\mathbf{W}_2 \tilde{h}_T)$ $\lambda = {\mathbf{W}_1, \mathbf{W}_2, \psi}$

Tutorial: eep Latent NL

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variational Objective

Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Sentence VAE Example [Bowman et al. 2016]

(from Bowman et al. [2016])

Issue 1: Posterior Collapse

Introduction

Models

Variational Objective

Strategies Strategies

Advanced Topics

Case Studies

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

ELBO
$$(\theta, \lambda)$$
 = $\mathbb{E}_{q(z \mid x; \lambda)}[\log \frac{p(x, z; \theta)}{q(z \mid x; \lambda)}]$

$$= \underbrace{\mathbb{E}_{q(z \, | \, x; \, \lambda)}[\log p(x \, | \, z; \, \theta)]}_{\text{Reconstruction likelihood}} - \underbrace{\text{KL}[q(z \, | \, x; \, \lambda) \| p(z)]}_{\text{Regularizer}}$$

Model	L/ELBO	Reconstruction	KL
RNN LM	-329.10	-	-
RNN VAE	-330.20	-330.19	0.01

(On Yahoo Corpus from Yang et al. [2017])

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variationa

Inference

Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries

and Topics

Conclusion

References

Issue 1: Posterior Collapse

- x and z become independent, and $p(x,z;\,\theta)$ reduces to a non-LV language model.
- Chen et al. [2017]: If it's possible to model $p_{\star}(x)$ without making use of z, then ELBO optimum is at:

$$p_{\star}(x) = p(x \mid z; \theta) = p(x; \theta) \quad q(z \mid x; \lambda) = p(z)$$

$$\mathrm{KL}[q(z \mid x; \, \lambda) || p(z)] = 0$$

Introduction

Model

Variation Objective

Inference

case Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Mitigating Posterior Collapse

Use less powerful likelihood models [Miao et al. 2016; Yang et al. 2017], or "word dropout" [Bowman et al. 2016].

Model	LL/ELBO	Reconstruction	KL
RNN LM	-329.1	-	-
RNN VAE	-330.2	-330.2	0.01
+ Word Drop	-334.2	-332.8	1.44
CNN VAE	-332.1	-322.1	10.0

(On Yahoo Corpus from Yang et al. [2017])

Tutorial: Deep Latent NLP

Deep Latent NLP (bit.ly/2qonXVb)

Introductio

Models

Variationa

Inferenc

Strategies

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Mitigating Posterior Collapse

Gradually anneal multiplier on KL term, i.e.

$$\mathbb{E}_{q(z \mid x; \lambda)}[\log p(x \mid z; \theta)] - \beta \operatorname{KL}[q(z \mid x; \lambda) || p(z)]$$

eta goes from 0 to 1 as training progresses

(from Bowman et al. [2016])

Introduction

iviodeis

Variation: Objective

Strategies

Advanced Topic

ase Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

Reference

Mitigating Posterior Collapse

Other approaches:

- Use auxiliary losses (e.g. train z as part of a topic model) [Dieng et al. 2017; Wang et al. 2018]
- Use von Mises-Fisher distribution with a fixed concentration parameter [Guu et al. 2017; Xu and Durrett 2018]
- Combine stochastic/amortized variational inference [Kim et al. 2018]
- Add skip connections [Dieng et al. 2018]

In practice, often necessary to combine various methods.

Deep Latent NLP (bit.ly/2qonXVb)

Introductio

Model

Variationa

Strategies Strategies

Advanced Topic

ase Studio

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Issue 2: Evaluation

- ELBO always lower bounds $\log p(x; \theta)$, so can calculate an upper bound on PPL efficiently.
- When reporting ELBO, should also separately report,

$$\mathrm{KL}[q(z \mid x; \lambda) || p(z)]$$

to give an indication of how much the latent variable is being "used".

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Variationa Objective

Inference

Strategie

Advanced Topic

ase Studie

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries

and Topics

References

Issue 2: Evaluation

Also can evaluate $\log p(x; \theta)$ with importance sampling

$$p(x; \theta) = \mathbb{E}_{q(z \mid x; \lambda)} \left[\frac{p(x \mid z; \theta)p(z)}{q(z \mid x; \lambda)} \right]$$
$$\approx \frac{1}{K} \sum_{k=1}^{K} \frac{p(x \mid z^{(k)}; \theta)p(z^{(k)})}{q(z^{(k)} \mid x; \lambda)}$$

So

$$\implies \log p(x; \theta) \approx \log \frac{1}{K} \sum_{k=1}^{K} \frac{p(x|z^{(k)}; \theta)p(z^{(k)})}{q(z^{(k)}|x; \lambda)}$$

Introduction

Models

Variationa

Inference Strategie

Advanced Topic

Case Studi

Sentence VAE

Encoder/Decoder with Latent Variables Latent Summaries and Topics

Conclusion

References

Evaluation

Qualitative evaluation

- Evaluate samples from prior/variational posterior.
- Interpolation in latent space.

i went to the store to buy some groceries .
i store to buy some groceries .
i were to buy any groceries .
horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

(from Bowman et al. [2016])

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies	4 Inference Strategies	
Advanced Topics		
Case Studies	Advanced Topics	
Sentence VAE Encoder/Decoder with Latent Variables	6 Case Studies	
Latent Summaries and Topics		
Conclusion	Sentence VAE	
References	Encoder/Decoder with Latent Variables	
	Latent Summaries and Topics	32

Deep Latent NLP
(bit.ly/2qonXVb)

Introduction

Mode

Variation

Inferenc

Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Encoder | Sutskever et al. 2014; Cho et al. 2014]

Given: Source information $s = s_1, \ldots, s_M$.

Generative process:

• Draw $x_{1:T} \mid s \sim \text{CRNNLM}(\theta, \mathbf{enc}(s))$.

Latent, Per-token Experts [Yang et al. 2018]

Sentence VAE

Encoder/Decoder

with Latent Variables Latent Summaries and Topics

Generative process: For t = 1, ..., T.

- Draw $z_t \mid x_{\leq t}, s \sim \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h}_{t-1})$.
- Draw $x_t | z_t, x_{\leq t}, s \sim \operatorname{softmax}(\boldsymbol{W} \tanh(\boldsymbol{Q}_{z_t} \boldsymbol{h}_{t-1}); \theta)$

If $U \in \mathbb{R}^{K \times d}$, used K experts; increases the flexibility of per-token distribution. $_{61/82}$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa Objective

Strategie:

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

References

Case-Study: Latent Per-token Experts [Yang et al. 2018]

Learning: z_t are independent given $x_{< t}$, so we can marginalize at each time-step (Method 3: Conjugacy).

$$\underset{\theta}{\operatorname{arg \, max} \log p(x \mid s; \, \theta)} = \underset{\theta}{\operatorname{arg \, max} \log \prod_{t=1}^{T} \sum_{k=1}^{K} p(z_{t}=k \mid s, x_{< t}; \, \theta) \, p(x_{t} \mid z_{t}=k, x_{< t}, s; \, \theta)}.$$

Test-time:

$$\underset{x_{1:T}}{\operatorname{arg \, max}} \prod_{t=1}^{T} \sum_{k=1}^{K} p(z_{t} = k \mid s, x_{< t}; \, \theta) \, p(x_{t} \mid z_{t} = k, x_{< t}, s; \, \theta).$$

Case-Study: Latent, Per-token Experts [Yang et al. 2018]

PTB language modeling results (s is constant):

Model	PPL
Merity et al. [2018]	57.30
Softmax-mixture [Yang et al. 2018]	54.44

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries

and Topics

Dialogue generation results (s is context):

Model	BLEU	
	Prec	Rec
No mixture	14.1	11.1
Softmax-mixture [Yang et al. 2018]	15.7	12.3

Deep Latent NLP (bit.ly/2gonXVb)

Introductio

Models

Variationa

Strategie Strategie

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Attention [Bahdanau et al. 2015]

Decoding with an attention mechanism:

$$x_t \mid x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_t, \sum_{m=1}^{M} \alpha_{t,m} \operatorname{enc}(s)_m]).$$

Deep Latent NLP (bit.ly/2qonXVb)

Introductio

14104015

Objective

Inference Strategies

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Copy Attention [Gu et al. 2016; Gulcehre et al. 2016]

Copy attention models copying words directly from s.

Generative process: For t = 1, ..., T,

- Set α_t to be attention weights.
- Draw $z_t \mid x_{< t}, s \sim \text{Bern}(\text{MLP}([\boldsymbol{h}_t, \mathbf{enc}(s)])).$
- If $z_t = 0$
 - Draw $x_t | z_t, x_{\leq t}, s \sim \operatorname{softmax}(\boldsymbol{W}\boldsymbol{h}_t)$.
- Else
 - Draw $x_t \in \{s_1, \ldots, s_M\} \mid z_t, x_{< t}, s \sim \operatorname{Cat}(\boldsymbol{\alpha}_t)$.

Introduction

Model

Variation Objective

Strategies Strategies

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

References

Copy Attention

Learning: Can maximize the log per-token marginal [Gu et al. 2016], as with per-token experts:

$$\max_{\theta} \log p(x_1, \dots, x_T \mid s; \theta)$$

$$= \max_{\theta} \log \prod_{t=1}^{T} \sum_{z' \in \{0,1\}} p(z_t = z' \mid s, x_{< t}; \theta) p(x_t \mid z', x_{< t}, x; \theta).$$

Test-time:

$$\underset{x_{1:T}}{\operatorname{arg \, max}} \prod_{t=1}^{T} \sum_{z' \in \{0,1\}} p(z_t = z' \mid s, x_{< t}; \, \theta) \, p(x_t \mid z', x_{< t}, s; \, \theta).$$

Introduction

IVIOGEIS

Variationa Objective

Strategies Strategies

Advanced Topics

Caso Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Attention as a Latent Variable [Deng et al. 2018]

Generative process: For t = 1, ..., T,

- Set α_t to be attention weights.
- Draw $z_t \mid x_{\leq t}, s \sim \operatorname{Cat}(\boldsymbol{\alpha}_t)$.
- Draw $x_t \mid z_t, x_{< t}, s \sim \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_{t-1}, \operatorname{enc}(s_{z_t})]; \theta).$

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Variationa Objective

Strategies

Advanced Topic

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

References

Attention as a Latent Variable [Deng et al. 2018]

Marginal likelihood under latent attention model:

$$p(x_{1:T} \mid s; \theta) = \prod_{t=1}^{T} \sum_{m=1}^{M} \alpha_{t,m} \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_{t-1}, \mathbf{enc}(s_m)]; \theta)_{x_t}.$$

Standard attention likelihood:

$$p(x_{1:T} \mid s; \theta) = \prod_{t=1}^{T} \operatorname{softmax}(\boldsymbol{W}[\boldsymbol{h}_{t-1}, \sum_{m=1}^{M} \alpha_{t,m} \operatorname{enc}(s_{m})]; \theta)_{x_{t}}.$$

Introduction

Mode

Variational Objective

Inference Strategies

Advanced Topic

Case Studi

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Attention as a Latent Variable [Deng et al. 2018]

Learning Strategy #1: Maximize the log marginal via enumeration as above.

Learning Strategy #2: Maximize the ELBO with AVI:

$$\max_{\lambda, \theta} \mathbb{E}_{q(z_t; \lambda)} \left[\log p(x_t \, | \, x_{< t}, z_t, s) \right] - \text{KL}[q(z_t; \, \lambda) \| p(z_t \, | \, x_{< t}, s)].$$

- $q(z_t \mid x; \lambda)$ approximates $p(z_t \mid x_{1:T}, s; \theta)$; implemented with a BLSTM.
- ullet q isn't reparameterizable, so gradients obtained using REINFORCE + baseline.

Introduction

1110000

Variational Objective

Strategies

Advanced Topics

Case Studio

Sentence VAE

Encoder/Decoder with Latent Variables

and Topics

Conclusio

Reference

Attention as a Latent Variable [Deng et al. 2018]

Test-time: Calculate $p(x_t | x_{< t}, s; \theta)$ by summing out z_t .

MT Results on IWSLT-2014:

Model	PPL	BLEU
Standard Attn	7.03	32.31
Latent Attn (marginal)	6.33	33.08
Latent Attn (ELBO)	6.13	33.09

Introductio

Model

Variational Objective

Inference Strategies

Advanced Topic

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusio

Reference

Encoder/Decoder with Structured Latent Variables

At least two EMNLP 2018 papers augment encoder/decoder text generation models with *structured* latent variables:

- **1** Lee et al. [2018] generate $x_{1:T}$ by iteratively refining sequences of words $z_{1:T}$.
- 2 Wiseman et al. [2018] generate $x_{1:T}$ conditioned on a latent template or plan $z_{1:S}$.

Tutorial: Deep Latent NLP (bit.ly/2qonXVb)	1 Introduction	
Introduction	2 Models	
Models		
Variational Objective	3 Variational Objective	
Inference Strategies	4 Inference Strategies	
Advanced Topics		
Case Studies Sentence VAE Encoder/Decoder with Latent Variables	Advanced Topics	
Latent Summaries and Topics	6 Case Studies	
Conclusion	Sentence VAE	
References	Encoder/Decoder with Latent Variables	
	Latent Summaries and Topics	72/82

Deep Latent NLP (bit.ly/2gonXVb)

Sentence VAE Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Summary as a Latent Variable [Miao and Blunsom 2016]

Generative process for a document $x = x_1, \dots, x_T$:

- Draw a latent summary $z_1, \ldots, z_M \sim \text{RNNLM}(\theta)$
- Draw $x_1, \ldots, x_T \mid z_{1:M} \sim \text{CRNNLM}(\theta, z)$

$$p(z_{1:M} \mid x_{1:T}; \theta) = p(\mathsf{summary} \mid \mathsf{document}; \theta).$$

Introductio

Models

Variationa

Inference Strategies

Advanced Topics

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables
Latent Summaries

and Topics

Conclusion

References

Summary as a Latent Variable [Miao and Blunsom 2016]

Generative process for a document $x = x_1, \dots, x_T$:

- Draw a latent summary $z_1, \ldots, z_M \sim \mathrm{RNNLM}(\theta)$
- Draw $x_1, \ldots, x_T \mid z_{1:M} \sim \text{CRNNLM}(\theta, z)$

Posterior Inference:

$$p(z_{1:M} \mid x_{1:T}; \theta) = p(\text{summary} \mid \text{document}; \theta).$$

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topic

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Summary as a Latent Variable [Miao and Blunsom 2016]

Learning: Maximize the ELBO with amortized family:

$$\max_{\lambda,\theta} \mathbb{E}_{q(z_{1:M};\,\lambda)} \left[\log p(x_{1:T} \,|\, z_{1:M};\,\theta) \right] - \text{KL}[q(z_{1:M};\,\lambda) \| p(z_{1:M};\,\theta) \right]$$

- $q(z_{1:M}; \lambda)$ approximates $p(z_{1:M} | x_{1:T}; \theta)$; also implemented with encoder/decoder RNNs.
- $q(z_{1:M}; \lambda)$ not reparameterizable, so gradients use REINFORCE + baselines.

Introduction

Models

Variationa Objective

Inference Strategies

Advanced Topic

Case Studio

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

Reference

Summary as a Latent Variable [Miao and Blunsom 2016]

Semi-supervised Training: Can also use documents *without* corresponding summaries in training.

- Train $q(z_{1:M}; \lambda) \approx p(z_{1:M} | x_{1:T}; \theta)$ with labeled examples.
- Infer summary z for an unlabeled document with q.
- Use inferred z to improve model $p(x_{1:T} | z_{1:M}; \theta)$.
- Allows for outperforming strictly supervised models!

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Models

Variation

Interence

ŭ

Advanced Topi

Case Studi

Sentence VAE

Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Conclusion

References

Topic Models [Blei et al. 2003]

Generative process: for each document $x^{(n)} = x_1^{(n)}, \dots, x_T^{(n)}$,

- Draw topic distribution $\mathbf{z}_{top}^{(n)} \sim Dir(oldsymbol{lpha})$
- For t = 1, ..., T:
 - Draw topic $z_t^{(n)} \sim Cat(\mathbf{z}_{top}^{(n)})$
 - Draw $x_t \sim Cat(\pmb{\beta}_{z_t^{(n)}})$

Deep Latent NLP (bit.ly/2gonXVb)

Sentence VAE Encoder/Decoder with Latent Variables

Latent Summaries and Topics

Simple. Deep Topic Models [Miao et al. 2017]

Motivation: easy to learn deep topic models with VI if $q(\mathbf{z}_{ton}^{(n)}; \lambda)$ is reparameterizable.

Idea: draw $\mathbf{z}_{ton}^{(n)}$ from a transformation of a Gaussian.

- Draw $\mathbf{z}_0^{(n)} \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\sigma}_0^2)$
- Set $\mathbf{z}_{top}^{(n)} = \operatorname{softmax}(\boldsymbol{W}\mathbf{z}_0^{(n)}).$
- Use analogous transformation when drawing from $q(\mathbf{z}_{ton}^{(n)}; \lambda)$.

Deep Latent NLP (bit.ly/2qonXVb)

Introduction

Model

Variationa Objective

Inference Strategies

Advanced Topic

Case Studie

Sentence VAE
Encoder/Decoder
with Latent Variables

Latent Summaries and Topics

Conclusion

References

Simple, Deep Topic Models [Miao et al. 2017]

Learning Step #1: Marginalize out per-word latents $z_t^{(n)}$.

$$p(\{x^{(n)}\}_{n=1}^{N}, \{\mathbf{z}_{top}^{(n)}\}_{n=1}^{N}; \theta) = \prod_{n=1}^{N} p(\mathbf{z}_{top}^{(n)} | \theta) \prod_{t=1}^{T} \sum_{k=1}^{K} z_{top,k}^{(n)} \beta_{k,x_{t}^{(n)}}$$

Learning Step #2: Use AVI to optimize resulting ELBO.

$$\max_{\lambda, \theta} \mathbb{E}_{q(\mathbf{z}_{top}^{(n)}; \lambda)} \left[\log p(x^{(n)} | \mathbf{z}_{top}^{(n)}; \theta) \right] - \text{KL}[\mathcal{N}(\mathbf{z}_0^{(n)}; \lambda) || \mathcal{N}(\mathbf{z}_0^{(n)}; \boldsymbol{\mu}_0, \boldsymbol{\sigma}_0^2)]$$

Introductio

Model

Variational Objective

Inference Strategies

Advanced Topics

Case Studie

Sentence VAE

Encoder/Decoder with Latent Variables

and Topics

Conclusion

Reference

Simple, Deep Topic Models [Miao et al. 2017]

Perplexities on held-out documents, for three datasets:

Model	MXM	20News	RCV1
OnlineLDA [Hoffman et al. 2010]	342	1015	1058
AVI-LDA [Miao et al. 2017]	272	830	602

Tutorial: Deep Latent NLP (bit.ly/2qonXVb) Variational Objective **Advanced Topics**

• Introduction

2 Models

3 Variational Objective

80/82

4 Inference Strategies

6 Advanced Topics

6 Case Studies

Conclusion

Conclusion

Introduction

Models

Variational Objective

Inference Strategies

Advanced Topics

e Studie

Conclusion

References

Introduction

Models

Variational Objective

Inference Strategies

Advanced Topics

e Studie

Conclusion

References

Tutorial:	Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by
Deep Latent NLP (bit.ly/2qonXVb)	Jointly Learning to Align and Translate. In Proceedings of ICLR.
(,	David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. <i>Journal of machine Learning research</i> , 3(Jan):993–1022.
Introduction	machine Learning research, 3(Jan).995-1022.
Models	Samuel R. Bowman, Luke Vilnis, Oriol Vinyal, Andrew M. Dai, Rafal Jozefowicz, and Samy
Variational	Bengio. 2016. Generating Sentences from a Continuous Space. In Proceedings of CoNLL.
Objective	Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya
Inference Strategies	Sutskever, and Pieter Abbeel. 2017. Variational Lossy Autoencoder. In <i>Proceedings of ICLR</i> .
Advanced Topics	Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the
Case Studies	Properties of Neural Machine Translation: Encoder-Decoder Approaches. In <i>Proceedings of</i>
Conclusion	the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation.
	Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum Likelihood from
References	Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B,

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. 1977. Maximum Likelihood fro Incomplete Data via the EM Algorithm. *Journal of the Royal Statistical Society, Series* 39(1):1–38.

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M. Rush. 2018. Latent Alignment and Variational Attention. In *Proceedings of NIPS*.

Tutorial:	Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei. 2018. Avoiding Latent
Deep Latent NLP	Variable Collapse with Generative Skip Models. In Proceedings of the ICML Workshop on
(bit.ly/2qonXVb)	Theoretical Foundations and Applications of Deep Generative Models.
	Adji B. Dieng, Chong Wang, Jianfeng Gao, and John Paisley. 2017. TopicRNN: A Recurrent
Introduction	Neural Network With Long-Range Semantic Dependency. In Proceedings of ICLR.
Models	Jason Eisner. 2016. Inside-Outside and Forward-Backward Algorithms Are Just Backprop
Variational Objective	(tutorial paper). In Proceedings of the Workshop on Structured Prediction for NLP.
	Zoubin Ghahramani and Michael I. Jordan. 1996. Factorial Hidden Markov Models. In
Inference Strategies	Proceedings of NIPS.
Advanced Topics	Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying mechanism
Case Studies	in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the
Case Studies	Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
Conclusion	1631–1640.
References	Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016.
	Pointing the unknown words. In Proceedings of the 54th Annual Meeting of the Association
	for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 140–149.
	Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. 2017. Generating
	Sentences by Editing Prototypes. arXiv:1709.08878.

Tutorial:	Matthew Hoffman, Francis R Bach, and David M Blei. 2010. Online learning for latent dirichlet
Deep Latent NLP	allocation. In advances in neural information processing systems, pages 856-864.
(bit.ly/2qonXVb)	Yoon Kim, Sam Wiseman, Andrew C. Miller, David Sontag, and Alexander M. Rush. 2018.
	Semi-Amortized Variational Autoencoders. In Proceedings of ICML.
Introduction	Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic Non-Autoregressive
Models	Neural Sequence Modeling by Iterative Refinement. In Proceedings of EMNLP.
Variational Objective	Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2018. Regularizing and optimizing
	LSTM language models. In International Conference on Learning Representations.
Inference Strategies	Yishu Miao and Phil Blunsom. 2016. Language as a Latent Variable: Discrete Generative
Advanced Topics	Models for Sentence Compression. In Proceedings of EMNLP.
Case Studies	Yishu Miao, Edward Grefenstette, and Phil Blunsom. 2017. Discovering Discrete Latent Topics
	with Neural Variational Inference. In Proceedings of ICML.
Conclusion	Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural Variational Inference for Text Processing.
References	In Proceedings of ICML.
	Anjan Nepal and Alexander Yates. 2013. Factorial Hidden Markov Models for Learning
	Representations of Natural Language. arXiv:arXiv:1312.6168.
	Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Sequence to Sequence Learning with Neural
	Networks. In <i>Proceedings of NIPS</i> . 82/82

.....

Variation

Objective

Inference Strategies

Advanced Topic

Case Studie

References

Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, and Lawrence Carin. 2018. Topic Compositional Neural Language Model. In *Proceedings of AISTATS*.

Ronald J. Williams. 1992. Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement Learning. *Machine Learning*, 8.

Sam Wiseman, Stuart M Shieber, and Alexander M Rush. 2018. Learning neural templates for text generation. In *Proceedings of EMNLP*.

Jiacheng Xu and Greg Durrett. 2018. Spherical Latent Spaces for Stable Variational Autoencoders. In *Proceedings of EMNLP*.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. 2018. Breaking the Softmax Bottleneck: A High-Rank RNN Language Model. In *Proceedings of ICLR*.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017. Improved Variational Autoencoders for Text Modeling using Dilated Convolutions. In *Proceedings of ICML*.