Homework 5

John Carlyle

February 23, 2014

1

1.1 1MB direct cache, 16 byte line

 $16 = 2^4$ so 4 bits are needed to index into the cache bytes. $\frac{2^{20}}{2^4} = 2^{16}$ lines in the cache, so we need 16 bits to index into cache lines. Bits remaining for the tag 32 - 16 - 4 = 12.

1.2 2MB 8 way associative cache, 8 byte line

 $8=2^3$ so 3 bits are needed to index into the cache bytes. $\frac{2^{21}}{2^3 \cdot 8} = \frac{2^21}{2^3 \cdot 2^3} = \frac{2^{21}}{2^6} = 2^{15}$ so, 15 bits are need to index into the sets. That leaves 32-15-3=14 bits for the tag.

1.3 3MB 32 way associative cache, 16 byte line

 $16=2^4$ so 4 bits are needed to index into the cache bytes. $\frac{2^{22}}{2^4 \cdot 2^5}=\frac{2^{22}}{2^9}=13$ so, 13 bits are needed to index into the sets. That leaves 32-13-4=15 bits for the tag.

 $\mathbf{2}$

2.1

 $16 = 2^4$ so 4 bits are needed to index into the cache bytes. $\frac{2^{19}}{2^4} = 2^{15}$ lines in the cache, so we need 15 bits to index into the cache lines. Bits remaining for tag 32 - 15 - 4 = 13

Memory Address	Tag	Index	Byte	Hit/Miss
0x1234AB22	$0001_0010_0011_0 = 0x246$	$100_1010_1010_0010 = 0x4AB2$	0010 = 0x2	Miss
0x1234AB20	$0001_0010_0011_0 = 0x246$	$100_1010_1010_0010 = 0x4AB2$	0000 = 0x0	Hit
0x1234D020	$0001_0010_0011_0 = 0x246$	$100_{-}1101_{-}0000_{-}0010 = 0x4D02$	0000 = 0x0	Miss
0x1234D02F	$0001_0010_0011_0 = 0x246$	$100_{-}1101_{-}0000_{-}0010 = 0x4D02$	1111 = 0xF	Hit
0x1234AB26	$0001_0010_0011_0 = 0x246$	$100_1010_1011_0010 = 0x4AB2$	0110 = 0x6	Hit
0x1234AB333	$0001_0010_0011_0 = 0x246$	$100_{-}1101_{-}1011_{-}0011 = 0x4AB3$	0011 = 0x3	Hit
0x1234D023	$0001_0010_0011_0 = 0x246$	$100_{-}1101_{-}0000_{-}0010 = 0x4D02$	0011 = 0x3	Hit
0x1234D02B	$0001_0010_0011_0 = 0x246$	$100_1010_1011_0010 = 0x4AB2$	1011 = 0xB	Hit
0x1234AB22	$0001_0010_0011_0 = 0x246$	$100_1010_1011_0010 = 0x4AB2$	0010 = 0x2	Hit
0x1234AB28	$0001_0010_0011_0 = 0x246$	$100_1010_1011_0010 = 0x4AB2$	0010 = 0x8	Hit

Hit rate = $\frac{8}{10} = .8$

2.2

 $16=2^4$ so 4 bits are needed to index into the cache bytes. $\frac{2^{19}}{2^4\cdot 2}=2^{14}$ lines in the cache, so we need 14 bits to index into the cache lines. Bits remaining for tag 32-14-4=14

Memory Address	Tag	Index	Byte	Hit/Miss
0x1234AB22	$0001_{-}0010_{-}0011_{-}01 = 0x44C$	$00_{-}1011_{-}1010_{-}0010 = 0xAB2$	0010 = 0x2	Miss