Exercice 1 Soit I intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. Montrer que f est lipschitzienne sur I ssi f' bornée sur I.

Exercice 2 Justifier que l'application qui à une matrice inversible associe son inverse est continue sur $GL_n(\mathbb{K})$.

Exercice 3 Continuité sur
$$\mathbb{R}^2$$
 de $f:(x,y)\mapsto\begin{cases} \left(\frac{\sin(xy)}{x^2+y^2},\sqrt{|x|+|y|}\right) & \text{si }(x,y)\neq(0,0)\\ (0,0) & \text{si }(x,y)=(0,0) \end{cases}$.

Exercice 4 Soit (E, ||||) un evn et $f: x \mapsto \frac{x}{||x||+1}$. Montrer que f est continue sur E, bijective de E sur B(0,1), de réciproque continue.

Exercice 5 Soit $u \in L(E, F)$, on rappelle qu'en utilisant la définition quantifiée de la continuité en 0 on peut montrer que u est continue sur E ssi il existe K > 0 tel que :

$$\forall x \in E, \|u(x)\|_F \leqslant K \|x\|_E$$

- 1. Déterminer la limite de la suite $\left(\frac{X^n}{n}\right)_n$ dans $(\mathbb{R}[X], \|\|_{\infty})$. (Rappel : si $P = \sum_{k=0}^N a_k X^k$ alors $\|P\|_{\infty} = \sum_{k=0}^N |a_k|$). $D: P \mapsto P'$ est-elle continue sur $(\mathbb{R}[X], \|\|_{\infty})$?
- 2. Pour $P = \sum_k a_k X^k : N(P) = \sum_k k! |a_k|$. (On admet que N est une norme sur $\mathbb{R}[X]$). Montrer que D est continue sur $(\mathbb{R}[X], N)$.
- 3. Ici $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et on note pour λ réel $e_{\lambda} : x \mapsto \exp(\lambda x)$. Soit N une norme sur E, comparer $N(e_{\lambda})$ et $N(D(e_{\lambda}))$. Existe-t-il une norme sur E pour laquelle D soit continue?
- 4. Soit $c \in \mathbb{R}$ et n > 0. Montrer que $u : P \mapsto P(c)$ est continue sur $\mathbb{R}_n[X]$.
- 5. On munit $\mathbb{R}[X]$ de sa norme ∞ . On fixe $c \in]-1,1[$, montrer que $v:P\mapsto P(c)$ est continue sur $\mathbb{R}[X]$.
- 6. On note $w: P \mapsto P(1)$. Calculer $w(P_n)$ avec $P_n = \frac{1}{n+1}(1+X+X^2+...+X^n)$. Quelle est la limite de $(P_n)_n$ pour $\|\cdot\|_{\infty}$? w est-elle continue sur $\mathbb{R}[X]$ muni de la norme ∞ ?

Exercice 6 Soit A une partie fermée et bornée d'un evn (E, || ||) de dimension finie et f une application de A dans A vérifiant :

$$\forall x, y \in A, x \neq y \implies ||f(x) - f(y)|| < ||x - y|| \ (*)$$

- 1. A l'aide de l'application $h: x \mapsto \|x f(x)\|$ montrer qu'il existe a dans A tel que pour tout x de $A: \|a f(a)\| \leq \|x f(x)\|$.
- 2. En déduire que f possède un unique point fixe qui est a.

Exercice 7 Soit A un fermé de \mathbb{R} et $f:A\to A$ contractante, c'est à dire qu'il existe $k\in[0,1[$ tel que f soit k-lipschitzienne sur A.

- 1. Montrer que f admet au plus un point fixe dans A. Soit a dans A et $(x_n)_n$ définie par $x_0 = a$ et $\forall n \in \mathbb{N} : x_{n+1} = f(x_n)$.
- 2. Montrer que pour tout entier $n: |x_{n+1} x_n| \leq k^n |x_1 x_0|$.
- 3. En déduire que $\sum_{n} (x_{n+1} x_n)$ converge absolument.
- 4. En déduire que $(x_n)_n$ converge et que f a un unique point fixe dans A.

Exercice 8

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ continue T périodique. Montrer qu'il existe $c \in \mathbb{R}$ tel que $f(\mathbb{R}) = f([c, c + T/2])$.
- 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ continue et C le cercle de centre 0 et de rayon r > 0. Montrer qu'il existe deux points de C diamétralement opposés en lesquels f coïncide.