Paper 2, Section II, K

- (a) Let (X_i, \mathcal{A}_i) for i = 1, 2 be two measurable spaces. Define the product σ -algebra $\mathcal{A}_1 \otimes \mathcal{A}_2$ on the Cartesian product $X_1 \times X_2$. Given a probability measure μ_i on (X_i, \mathcal{A}_i) for each i = 1, 2, define the product measure $\mu_1 \otimes \mu_2$. Assuming the existence of a product measure, explain why it is unique. [You may use standard results from the course if clearly stated.]
- (b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space on which the real random variables U and V are defined. Explain what is meant when one says that U has law μ . On what measurable space is the measure μ defined? Explain what it means for U and V to be independent random variables.
- (c) Now let $X = \left[-\frac{1}{2}, \frac{1}{2}\right]$, let \mathcal{A} be its Borel σ -algebra and let μ be Lebesgue measure. Give an example of a measure η on the product $(X \times X, \mathcal{A} \otimes \mathcal{A})$ such that $\eta(X \times A) = \mu(A) = \eta(A \times X)$ for every Borel set A, but such that η is not Lebesgue measure on $X \times X$.
- (d) Let η be as in part (c) and let $I,J\subset X$ be intervals of length x and y respectively. Show that

$$x + y - 1 \le \eta(I \times J) \le \min\{x, y\}$$

(e) Let X be as in part (c). Fix $d \geq 2$ and let Π_i denote the projection $\Pi_i\left(x_1,\ldots,x_d\right)=(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_d)$ from X^d to X^{d-1} . Construct a probability measure η on X^d , such that the image under each Π_i coincides with the (d-1)-dimensional Lebesgue measure, while η itself is not the d-dimensional Lebesgue measure. [Hint: Consider the following collection of 2d-1 independent random variables: U_1,\ldots,U_d uniformly distributed on $\left[0,\frac{1}{2}\right]$, and $\varepsilon_1,\ldots,\varepsilon_{d-1}$ such that $\mathbb{P}\left(\varepsilon_i=1\right)=\mathbb{P}\left(\varepsilon_i=-1\right)=\frac{1}{2}$ for each i.]