Transformations

VI – Transformée de Fourier (bis)

G. Chênevert

30 novembre 2021

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Filtres

Rappel : Transformée de Fourier

Pour tout signal x(t) convenable, on a une représentation

$$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi i f t} df$$

avec

$$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

(Convenable : x(t) et $\hat{x}(f)$ sont limites de fonctions intégrables)

Exemples de transformées

•
$$x(t) = \Pi_T(t) \implies \widehat{x}(f) = T \operatorname{sinc}(\pi T f)$$

•
$$x(t) = \delta(t)$$
 \Longrightarrow $\widehat{x}(f) = 1$

•
$$x(t) = \delta(t - t_0)$$
 \Longrightarrow $\widehat{x}(f) = e^{-2\pi i t_0 f}$

•
$$x(t) = 1$$
 \Longrightarrow $\widehat{x}(f) = \delta(f)$

•
$$x(t) = e^{2\pi i f_0 t}$$
 \Longrightarrow $\widehat{x}(f) = \delta(f - f_0)$

Propriétés de la transformation de Fourier

Notons $\mathcal{F}(x)$ la transformée de Fourier d'un signal x.

- Linéarité : $\mathcal{F}(a \cdot x + b \cdot y) = a \cdot \mathcal{F}(x) + b \cdot \mathcal{F}(y)$
- Retard : $\mathcal{F}(x(t-a)) = e^{-2\pi i a f} \mathcal{F}(x)$
- Modulation par une onde pure : $\mathcal{F}(e^{2\pi \mathrm{i} a t} x(t)) = \mathcal{F}(x)(f-a)$
- Dérivation temporelle : $\mathcal{F}(x') = 2\pi i f \mathcal{F}(x)$
- Dérivation fréquentielle : $\mathcal{F}(x)' = \mathcal{F}(-2\pi i t x)$
- Parité : $\mathcal{F}(x(-t)) = \mathcal{F}(x)(-f)$
- Transformée inverse : $\mathcal{F}(\mathcal{F}(x(t))) = x(-t)$ i.e. $\mathcal{F}^{-1}(\widehat{x}(f)) = \mathcal{F}(\widehat{x}(-f))$

Fourier et convolution

Comme pour la transformation $\mathcal L$ de Laplace, on a

$$\mathcal{F}(x * y) = \mathcal{F}(x) \cdot \mathcal{F}(y).$$

Par contre, cette fois on peut aussi dire que

$$\mathcal{F}(x) * \mathcal{F}(y) = \mathcal{F}(x \cdot y).$$

Symétrie profonde entre les deux domaines (temporel et fréquentiel)

 $dans\ MATLAB: conv(x,y)\ est\ implément\'e\ via\ ifft(fft(x).*fft(y))\,!$

Exemple : transformée d'une dérivée

On a dit:

$$\widehat{x'}(f) = 2\pi i f \cdot \widehat{x}(f).$$

Mais aussi :

•
$$x' = (\delta * x)' = \delta' * x$$

•
$$\widehat{\delta}'(f) = 2\pi i f \cdot \widehat{\delta}(f) = 2\pi i f$$

• donc
$$\widehat{x'}(f) = \widehat{\delta'}(f) \cdot \widehat{x}(f) = 2\pi i f \cdot \widehat{x}(f)$$
.

C'est tout à fait cohérent!

Exemple : transformée d'une porte (de nouveau)

Exemple : transformée d'une porte (de nouveau)

$$\Pi_T(t) = H(t+T/2) - H(t-T/2)$$
 $\widehat{\Pi_T}(f) = T \operatorname{sinc}(\pi f T)$ \uparrow $\Pi'_T(t) = \delta(t+T/2) - \delta(t-T/2)$ \longrightarrow $\widehat{\Pi'_T}(f) = e^{+\pi i f T} - e^{-\pi i f T}$

 $= 2i\sin(\pi fT) = 2\pi if \widehat{\Pi_T}(f)$

Attention!

Mais où est passée la constante d'intégration ?

Fonctions vs signaux

Nous savons que

$$x(t) \cdot \delta(t-a) = x(a) \cdot \delta(t-a).$$

En particulier :

$$x(a) = 0 \implies x(t) \cdot \delta(t - a) = 0.$$

- Inversement (x étant une fonction et y un signal), si on a $x(t) \cdot y(t) = 0$ alors :
 - il faut que y soit nulle partout où $x(t) \neq 0$;
 - il se peut que y présente des Diracs aux zéros de x.

Exemple

$$x(t) \cdot y(t) = 0 \implies y(t) = k \delta(t+1) + \ell \delta(t-1)$$

Refermons la porte

D'une part,

$$\widehat{\Pi(t) + C} = \widehat{\Pi}(f) + C \delta(f)$$

• D'autre part,

$$\widehat{\Pi}'(f) = 2\pi i f \widehat{\Pi}(f) = 2i \sin(\pi f T)$$

$$\implies \widehat{\Pi}(f) = T\operatorname{sinc}(\pi T f) + C \delta(f).$$

ullet Reste à déterminer la valeur de C : par exemple avec la condition initiale

$$\widehat{\Pi}(0) = A(\Pi) = T.$$

Signaux d'énergie finie

Définition

L'énergie d'un signal x est $E(x) := \int_{-\infty}^{+\infty} |x(t)|^2 dt$.

(Les mathématiciens parlent de « norme L^2 »)

Théorème (Plancherel)

Si x et y sont des signaux d'énergie finie, alors \hat{x} et \hat{y} le sont aussi et

$$\int_{-\infty}^{+\infty} x(u)\,\widehat{y}(u)\,du = \int_{-\infty}^{+\infty} \widehat{x}(v)\,y(v)\,dv.$$

Identité un peu curieuse car on brise la sémantique des variables!

Signaux d'énergie finie

$$\int_{-\infty}^{+\infty} x(u)\,\widehat{y}(u)\,\mathrm{d}u = \int_{-\infty}^{+\infty} \widehat{x}(v)\,y(v)\,\mathrm{d}v$$

Cas particulier : $u=t,\ v=f,\ \widehat{y}=\overline{x},\ {\sf donc}\ y=\overline{\widehat{x}}\ ({\sf v\acute{e}rifier}\,!),\ {\sf alors}\,:$

Corollaire (identité de Parseval)

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{x}(f)|^2 df$$

i.e.
$$E(x) = E(\hat{x})$$

Identité de Parseval : interprétation

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{x}(f)|^2 df$$

 ${\cal F}$ est une transformation unitaire (préservant les normes).

Le spectre n'est qu'une représentation d'un phénomène physique :

- on lit l'énergie aussi bien sur l'axe des t que des f,
- on mesure la quantité d'énergie qui passe à une fréquence précise.
- \implies interprétation de $|\widehat{x}(f)|^2$ en tant que densité d'énergie

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Filtres

Spectre d'un signal périodique

Soit x(t) un signal T-périodique (donc typiquement d'énergie infinie!) :

$$x(t) = x(t+T)$$

alors

$$\widehat{x}(f) = e^{2\pi i fT} \cdot \widehat{x}(f)$$

$$(1 - e^{2\pi i fT}) \cdot \widehat{x}(f) = 0$$

donc $\widehat{x}(f)$:

- est nulle presque partout;
- sauf quand $2\pi ifT$ est multiple entier de $2\pi i$ où elle possède d'éventuels Diracs.

Spectre d'un signal périodique

En d'autres termes :

$$\widehat{x}(f) = \sum_{n=-\infty}^{+\infty} c_n \, \delta(f - f_n)$$

οù

$$f_n := \frac{n}{T} = n f_1$$

$$\implies x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{2\pi i f_n t}$$

On vient de refaire toute la théorie des séries de Fourier en 10 lignes!

Autre point de vue

Détaillons le calcul

Soit x(t) un signal T-périodique et m(t) un motif pour x (restriction à un intervalle de longueur T).

Alors:

$$x(t) = \cdots + m(t+2T) + m(t+T) + m(t) + m(t-T) + m(t-2T) + \cdots$$

$$=\sum_{n\in\mathbb{Z}}m(t-nT)=\sum_{n\in\mathbb{Z}}\delta(t-nT)*m(t)=\left(\underbrace{\sum_{n\in\mathbb{Z}}\delta(t-nT)}_{\text{$\mid 1\mid_{-}$}}\right)*m(t)$$

 \bigsqcup_{T} : **peigne de Dirac** de période T (caractère cyrillique « cha »)

Détaillons le calcul

$$x(t) = \coprod_{T} (t) * m(t)$$

$$\implies \widehat{x}(f) = \widehat{\coprod}_T(f) \cdot \widehat{m}(f).$$

Ne reste plus qu'à expliciter \prod_{T} . Mais le calcul direct ne nous aide pas trop :

$$\widehat{\coprod}_T = \int_{-\infty}^{+\infty} \coprod_T (t) e^{-2\pi i f t} dt = \sum_{n \in \mathbb{Z}} e^{-2\pi i n f T} \quad (??)$$

Par propriétés

- \coprod_T est T-périodique, on aura donc : $\widehat{\coprod}_T(f) = \sum_n c_n \, \delta(f f_n)$;
- \coprod_T est invariante par multiplication par $e^{2\pi i f_1 t}$: $\widehat{\coprod_T}(f)$ est f_1 -périodique

$$\widehat{\coprod}_T(f) = c \sum_n \delta(f - f_n) = c \coprod_{f_1} (f);$$

• En considérant l'aire sous $\Pi_T \cdot \bigsqcup_T$, on vérifie (exercice!) que $c = f_1 = \frac{1}{T}$.

Transformée de \bigsqcup

On a donc montré :

$$\widehat{\coprod_T(t)} = \frac{1}{T} \underline{\coprod}_{\frac{1}{T}}(f) = f_1 \underline{\coprod}_{f_1}(f).$$

En particulier, pour T=1:

$$\widehat{\coprod(t)} = \coprod(f) \quad (!)$$

Retour au calcul

Retour au calcul

$$x(t) = \coprod_{T} (t) * m(t)$$

$$\widehat{x}(f) = f_1 \coprod_{f_1} (f) \cdot \widehat{m}(f)$$

$$\widehat{x}(f) = f_1 \sum_{n} \delta(f - f_n) \cdot \widehat{m}(f)$$

$$\widehat{x}(f) = f_1 \sum_{n} \widehat{m}(f_n) \delta(f - f_n)$$

Coefficients de Fourier

En comparant cette dernière expression avec

$$\widehat{x}(f) = \sum_{n} c_n \, \delta(f - f_n),$$

on trouve

$$c_n = f_1 \, \widehat{m}(f_n) = \frac{1}{T} \widehat{m}(\frac{n}{T}) = \frac{1}{T} \int_{2}^{a+T} m(t) \, e^{-\frac{2\pi i n t}{T}} \, \mathrm{d}t$$

C'est précisément la définition qu'on avait donné des coefficients de Fourier!

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Filtres

L'ubiquité de la convolution

On a vu que plusieurs opérations peuvent être vues comme des convolutions :

- dilatation des valeurs avec $a \cdot \delta(t)$
- retard avec $\delta(t-a)$
- primitive avec H(t)
- dérivée avec $\delta'(t)$
- périodisation avec $\coprod_T(t)$
- ... avec ...

Filtres

On peut voir un filtre comme un opérateur $S: x \mapsto S(x)$ sur l'espace des signaux.

Ceux qui nous intéressent le plus en pratique sont

- linéaires : $S(a \cdot x + b \cdot y) = a \cdot S(x) + b \cdot S(y)$
- continus : $\mathcal{S}(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}\mathcal{S}(x_n)$
- invariants : $S(x(t-t_0)) = S(x)(t-t_0)$

Exemple

Pour h donné, l'opérateur S(x) := x * h satisfait ces trois propriétés.

Résultat fondamental

Théorème

Tout opérateur linéaire continu invariant S est de la forme S(x) = x * h.

Démonstration.

1. Par linéarité, continuité et invariance, on a pour tous signaux x et y:

$$S(x*y) = S\left(\int_{-\infty}^{+\infty} x(u) y(t-u) du\right) = \int_{-\infty}^{+\infty} x(u) S(y)(t-u) du = x*S(y)$$

2. En posant $h := \mathcal{S}(\delta)$ la **réponse impulsionnelle** de \mathcal{S} , on a donc

$$S(x) = S(x * \delta) = x * S(\delta) = x * h.$$

All is convolution!

Théorème

Tout opérateur linéaire continu invariant S est de la forme S(x) = x * h.

La sortie y = S(x) du filtre est obtenue par convolution avec la réponse impulsionnelle

$$y = x * h$$
.

D'où l'importance des transformées transformant * en \cdot (comme \mathcal{L} et \mathcal{F})!

Côté fréquentiel, on observe une multiplication par la fonction de transfert du filtre :

$$\widehat{y} = \widehat{x} \cdot \widehat{h}.$$

À ce propos

Supposons que ${\mathcal T}$ est une transformation sur les signaux avec la propriété que

$$\mathcal{T}(x * y) = \mathcal{T}(x) \cdot \mathcal{T}(y).$$

Les exponentielles jouent un rôle particulier pour la convolution :

$$(x * e^{\lambda t})(t) = \int_{-\infty}^{+\infty} x(u) e^{\lambda(t-u)} du = \left(\int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \right) e^{\lambda t}$$

$$\implies \mathcal{T}(x * e^{\lambda t}) = \left(\int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \right) \mathcal{T}(e^{\lambda t})$$

Ce qui ne laisse pas beaucoup d'autres choix que de prendre

$$\mathcal{T}(x) = \int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \qquad \text{pour certaines valeurs de } \lambda !$$

Transformée de Fourier-Laplace

$$\mathcal{T}(x) = \int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du$$

- ullet pour x causal, $\lambda=p$ on a la transformée de Laplace classique
- x d'énergie finie, $\lambda=2\pi\mathrm{i} f$ on a la transformée de Fourier
- $x = \coprod_{T} \cdot m$ périodique, $\lambda = 2\pi i f_n$ on retrouve les coefficients de Fourier

... mais est-ce bien la fin?...