Physics-L2 Electromagnetism Approximative program

Chap 1: Electrostatics

Chap 2: Magnetostatics

Chap 3: Time-dependent regime-Induction phenomena

Integrated course: Electro-mechanical conversion

- 1. Principles of DC Motor
- 2. Principle of AC Synchrone Motor
- 3. Principle of a Loud-Speaker

Chap 4: Maxwell equations

Chap 5: Dielectric media and applications

Chap 6: Conducting media and applications

Chap 7: Magnetic media and applications

DC Motor: main principle: Laplace force

DC Motor: Made of many current loops

How to collect the current

Brushes (fixed)

Keep electric contact during rotation

Electromotive force- with collector/brushes: FIRST HALF PERIOD

Electromotive force- with collector/brushes: FIRST HALF PERIOD

Institut de Physique et Ingénierie

Electromotive force- with collector/brushes:

Duringsecond half period, principle is similar we obtain a purely negative signal

Institut de Physique et Ingénierie

Existence of many loops: superposition of signals

Physics-L2 Electromagnetism Approximative program

Chap 1: Electrostatics

Chap 2: Magnetostatics

Chap 3: Time-dependent regime-Induction phenomena

Integrated course: Electro-mechanical conversion

- 1. Principles of DC Motor
- 2. Principle of AC Synchrone Motor
- 3. Principle of a Loud-Speaker

Chap 4: Maxwell equations

Chap 5: Dielectric media and applications

Chap 6: Conducting media and applications

Chap 7: Magnetic media and applications

