PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA A 18 FEBBRAIO 2010

1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{T1} , V_{T2} e dai coefficienti β_1 e β_2 , mentre il diodo può essere descritto da un modello "a soglia" con V_{γ} =0.75 V. Si determinino i margini d'immunità ai disturbi N_{ML} , N_{MH} e N_M della rete.

 $V_{dd} = 3.5 \text{ V}, V_{T1} = 0.4 \text{ V}, V_{T2} = 0.6 \text{ V}, \beta_1 = 5 \text{ mA/V}^2, \beta_2 = 0.05 \text{ mA/V}^2, \text{ R1=4 k}\Omega, \text{ R2=2 k}\Omega.$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{Tn} = |V_{Tp}| = V_T$ e dai coefficienti β_n e β_p . I segnali di ingresso V_a e V_b abbiano l'andamento periodico mostrato in figura. Si determini l'andamento dei segnali V_x , V_y , V_z e V_u , valutando in particolare i tempi di propagazione associati alle transizioni del segnale V_u . A questo scopo, si considerino trascurabili i tempi associati alle commutazioni dei segnali V_x , V_y e V_z . Si assuma inoltre che ogni transitorio si esaurisca prima della successiva variazione degli ingressi.

$$V_{dd} = 3.3 \text{ V}, V_{Tn} = 0.35 \text{ V}, V_{T} = 0.35 \text{ V}, \beta_n = 0.8 \text{ mA/V}^2, \beta_P = 0.6 \text{ mA/V}^2, C_x = C_v = 15 \text{ fF}, C_z = 5 \text{ fF}, C_u = 150 \text{ fF}.$$

[•] Indicare su ciascun foglio nome, cognome, data e numero di matricola

[•] Non usare penne o matite rosse

Oss. Preliminare: M2 quando on (sse vu<vdd- v_{t2}) è sat (0<v $_{t2}$).

Regione 1: $vi < vt_1$, allora M1 OFF. M2 sat e D1 on (se $vu > v_y$)

$idn2sat=\beta_2/2*(vdd-vu-vt_2)^2$	Da cui si ricavano i seguenti valori di vu:
ir1=(vdd-vu)/r1	vu=1.714 V, vu=34.086 V.
ir2=(vu-vy)/r2	Delle due soluzioni la prima è quella accettabile
Ma ir1+idn2sat=ir2	e soddisfa le Hp fatte.

Regione 2: vi>v_{t1} M1 sat (vi<vu+v_{t1} da verificare). Inoltre M2 sat e D on

Cerco se in questa regione esistono punti della caratter cerco i punti tali che dvu/dvi=-1).	istica statica di trasferimento a pendenza –1 (cioè
$\begin{split} & idn1sat=\beta_1/2*(vi-vt_1)^2 \\ & idn2sat=\beta_2/2*(vdd-vu-vt_2)^2 \\ & ir1=(vdd-vu)/r1 \\ & ir2=(vu-v\gamma)/r2 \\ & d(idn1sat)/dvi=\beta_1*(vi-vt_1)*1 \\ & d(idn2sat)/dvi=\beta_2*(vdd-vu-vt_2)*-1*-1 \\ & d(ir1)/dvi=(-1*-1)/r1 \\ & d(ir2)/dvi=(1*-1)/r2 \\ & Ma & ir1+idn2sat=idn1sat+ir2 \\ & e & d(ir1)/dvi+d(idn2sat)/dvi=d(idn1sat)/dvi+d(ir2)/dvi \\ \end{split}$	Risolvendo si ricavano le seguenti coppie di valori (vi, vu): (vi=0.237 V, vu=34.168 V) e, (vi=0.563 V, vu=1.632 V). Delle due soluzioni quella accettabile è la seconda, quindi: V _{0HMIN} =1.632 V, e V _{ILMAX} =0.563 V. Tale coppia di valori soddisfa l'Hp di saturazione di M1 [vu(=1.632)> vi-vt ₁ (=0.163V)], e di accensione di M2 e D1.

Possono ora accadere due cose: 1) o M1 va lin, oppure 2) il diodo D1 si spegne. Devo verificare quale delle due condizioni avviene per prima.

1) M1 va lin, M2 sat, D1 on:	2) M1 sat, M2 sat, e D1va off.
$idn1lin=\beta_1*((vi-vt_1)*vu-1/2*vu^2)$	$idn1sat = \beta_1/2*(vi-vt_1)^2$
$idn2sat = \beta_2/2*(vdd-vu-vt_2)^2$	$idn2sat=\beta_2/2*(vdd-vu-vt_2)^2$
ir1=(vdd-vu)/r1	ir1=(vdd-vu)/r1
$ir2=(vu-v_{\gamma})/r2$	Ma vu= v_{γ} (per vu< v_{γ} D1 diventa off)
Ma vi=vu+vt ₁ (per vi>vu+v _{t1} M1 diventa lin)	e ir1+idn2sat=idn1sat
e ir1+idn2sat=idn1lin+ir2	da cui si ricava che vi=-0.167 V o vi=0.967 V
da cui si ricava che	(Tale soluzione è accettabile e verifica la sat di
vi=-0.570 V,vu=-0.970V	M1: vi (=0.967 V) $<$ vu+v _{t1} (=1.15 V)
oppure vi=1.008 V,vu=0.608 V (Tale soluzione non verifica la	Si verifica allora lo spegnimento del diodo, che
Hp di accensione di D1).	avviene per vi=0.967V.

Regione 3: M1 sat. M2 sat. D1 off.

Cerco se in questa regione esistono punti della cara	atteristica statica di trasferimento a pendenza –1 (cioè cerco i
punti tali che dvu/dvi=-1).	
$idn1sat=\beta_1/2*(vi-v_{t1})^2$	Ma ir1+idn2sat=idn1sat
$idn2sat=\beta_2/2*(vdd-vu-v_{12})^2$	e d(ir1)/dvi+d(idn2sat)/dvi=d(idn1sat)/dvi
ir1=(vdd-vu)/r1	da cui si ricavano le seguenti coppie di valori
$\frac{d(idn1sat)}{dvi} = \beta_1 * (vi - v_{t1}) * 1$	(vi,vu):
$d(idn2sat)/dvi=\beta_2*(vdd-vu-v_{t2})*-1*-1$	(vi=0.444 V, vu=3.519 V) e
d(ir1)/dvi=(-1*-1)/r1	(vi=0.356 V, vu=12.281 V)
#(), # · · · (), - · ·	Nessuna delle soluzioni è accettabile.

Regione 4: M1 lin, M2 sat, D1 off.

Cerco se in questa regione esistono punti della caratteristica statica di trasferimento a pendenza –1 (cioè cerco i punti tali che dvu/dvi=-1).

 $idn1lin=\beta_1*((vi-vt_1)*vu-1/2*vu^2)$

 $idn2sat=\beta_2/2*(vdd-vu-v_{t2})^2$

ir1=(vdd-vu)/r1

 $d(idn1lin)/dvi=\beta_1*((vi-v_{t1})*-1+vu-1/2*2*vu*-1)$

 $d(idn2sat)/dvi=\beta_2*(vdd-vu-v_{t2})*-1*-1$

d(ir1)/dvi=(-1*-1)/r1

Ma ir1+idn2sat=idn1lin

e d(ir1)/dvi+d(idn2sat)/dvi=d(idn1lin)/dvi

da cui si ricavano le seguenti coppie di valori (vi,vu):

(vi=-0.442 V, vu=-0.380V) e

(vi=1.084 V, vu=0.380V)

Delle due soluzioni quella accettabile è la seconda. Tale coppia di valori soddisfa l'Hp di linearità di M1, 1.084 V > 0.780 V, e di accensione di M2. Quindi $V_{\text{IHMIN}} = 1.084 \text{ V}$, e $V_{\text{OLMAX}} = 0.380 \text{ V}$.

Si ricava allora che:

 NM_H =1.632 V- 1.084 V=0.548 V e

 $NM_L = 0.563 \text{ V} - 0.380 \text{ V} = 0.183 \text{ V} (=NM).$

Esercizio 2 – 12.1.2011

Considerando il primo stadio (M_1, M_2, M_3, M_4) si hanno i 4 casi seguenti:

- 1) 0 < t < 1ns, $V_a = V_b = 0$ M_1, M_2 on $\rightarrow V_x = V_z = V_{DD} \rightarrow M_5$ off, M_6 on $\rightarrow V_u = 0$ M_3, M_4 off $\rightarrow V_v$ in alta impedenza (si mantiene al valore precedente- v. (4)) $\rightarrow V_v = 0$
- 2) 1ns < t < 2ns, $V_a = 0$, $V_b = V_{DD}$ M_1 on $\rightarrow V_x = V_{DD}$ M_2 off, M_3 on, M_4 off $\rightarrow V_{y_1} V_z$ in alta impedenza, ridistribuzione di carica:

$$V_{z}^{+} = V_{y}^{+} = \frac{C_{y}V_{y}^{-} + C_{z}V_{z}^{-}}{C_{y} + C_{z}} = \frac{C_{z}V_{DD}}{C_{y} + C_{z}} = 0.825 V$$

$$\rightarrow V_{SG5} = V_{DD} - V_{Z} = 2.545 V > V_{T} \rightarrow M_{5} \text{ on (HP: LIN)}$$

$$\rightarrow V_{GS6} = V_{Z} > V_{T} \rightarrow M_{6} \text{ on (HP: SAT)}$$

$$I_{D5} = I_{D6}$$

$$V_{DD} - V_{U})^{2}$$

$$I_{D5} = I_{D6}$$

$$I_{D5} = \beta_p \left((V_{SG5} - V_T)(V_{DD} - V_U) - \frac{(V_{DD} - V_U)^2}{2} \right)$$

$$I_{D6} = \beta_n \frac{(V_{GS6} - V_T)^2}{2}$$

- 3) 2ns < t < 3ns, $V_a = V_b = V_{DD}$ M_3, M_4 on $\rightarrow V_y = V_z = 0 \rightarrow M_5$ on, M_6 off $\rightarrow V_u = V_{DD}$ M_1, M_2 off $\rightarrow V_x$ in alta impedenza (si mantiene al valore precedente) $\rightarrow V_x = V_{DD}$
- 4) 3ns < t < 4ns, $V_a = V_{DD}$, $V_b = 0$ M_4 on $\rightarrow V_y = 0$

 M_1 off, M_2 on, M_3 off $\to V_{x_1} V_z$ in alta impedenza, ridistribuzione di carica:

$$V_{Z}^{+} = V_{X}^{+} = \frac{C_{X}V_{X}^{-} + C_{Z}V_{Z}^{-}}{C_{X} + C_{Z}} = \frac{C_{X}V_{DD}}{C_{X} + C_{Z}} = 2.475 V$$

$$\rightarrow V_{SG5} = V_{DD} - V_{Z} = 0.825 V > V_{T} \rightarrow M_{5} \text{ on (HP: SAT)}$$

$$\rightarrow V_{GS6} = V_{Z} > V_{T} \rightarrow M_{6} \text{ on (HP: LIN)}$$

$$I_{D5} = I_{D6}$$

$$I_{D6} = \beta_{n} \left((V_{GS6} - V_{T})V_{U} - \frac{V_{U}^{2}}{2} \right)$$

$$\rightarrow V_{U} = 0.04 V$$

$$I_{D5} = \beta_{p} \frac{(V_{SG5} - V_{T})^{2}}{2}$$

L'andamento complessivo dei segnali di uscita è quindi quello mostrato in figura:

Calcolo dei transitori di V_U : il transitorio di salita (a 1 ns, per esempio), prevede V_U : $0 \rightarrow 3.228V$, con $V_z=0.825V$ e quindi M_5,M_6 entrambi on. Il tempo di propagazione relativo è quindi il tempo necessario a compiere metà dell'escursione (0 \rightarrow 1.614V).

$$M_5$$
 LIN se: $V_{SG5} > (V_{DD} - V_U) + V_T \rightarrow V_U > 1.175V$ M_6 LIN se: $V_{GS6} > V_U + V_T \rightarrow V_U < 0.475V$

Quindi il transitorio si compone di tre parti :

$$V_U: 0 \xrightarrow{M_5 \text{ SAT, } M_6 \text{ LIN}} 0.475V \xrightarrow{M_5 \text{ SAT, } M_6 \text{ SAT}} 1.175V \xrightarrow{M_5 \text{ LIN, } M_6 \text{ SAT}} 1.614V$$

$$C_U \frac{dV_U}{dt} = I_{D6,LIN} - I_{D5,SAT} \rightarrow \int_0^{t_1} dt = \int_0^{0.475V} \frac{C_U}{I_{D6,LIN} - I_{D5,SAT}} dV_U \rightarrow t_1 = 55.06 \ ps$$

Analogamente:
$$t_2 = \int_{0.475V}^{1.175V} \frac{c_U}{I_{D6,SAT} - I_{D5,SAT}} dV_U \rightarrow t_2 = 83.04 \ ps$$

$$t_3 = \int_{1.175V}^{1.614V} \frac{c_U}{I_{D6,LIN} - I_{D5,SAT}} dV_U \rightarrow t_3 = 52.90 \ ps$$

e, complessivamente: $t_{p,HL} = t_1 + t_2 + t_3 = 191 \ ps$.

In maniera duale, il transitorio di discesa (a 3 ns, per esempio), prevede $V_U:V_{DD}
ightarrow 0.04V$, con $V_Z=$ 2.475V e quindi M_5 , M_6 entrambi on. Il tempo di propagazione relativo è quindi il tempo necessario a compiere metà dell'escursione ($V_{DD} \rightarrow 1.63V$). Analogamente al caso precedente, il transitorio si compone di tre parti:

$$V_U \xrightarrow{M_5 \text{ LIN}, M_6 \text{ SAT}} 2.825V \xrightarrow{M_5 \text{ SAT}, M_6 \text{SAT}} 2.125V \xrightarrow{M_5 \text{ SAT}, M_6 \text{ LIN}} 1.63V$$

e, complessivamente: $t_{p,LH} = t_1 + t_2 + t_3 = 40.46 + 60.40 + 43.55 = 144.4 \ ps.$

I transitori residui (V_U : 3.228 $V \rightarrow V_{DD}$, V_U : 0.04 $V \rightarrow 0$) possono essere trascurati.