Background Material for Initial Meeting

TrpZip: A stable β -hairpin

1LE0 from Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Tryptophan Zippers: Stable, Monomeric β-Hairpins. *PNAS* **2001**, 98, 5578.

 Note: the original catalyst designed and tested turned out to not have indication of β-hairpin conformation from CSD analysis of the NMR, so based catalytic sequences on known TrpZip sequence

- Based on TrpZip type II' β-hairpin
- Install reactive dyads in hydrogen bonding positions 3 & 10
- Explore reactive dyad identity
- Vary the residues in the i+1 and i+2 turn positions to explore the role of β-hairpin conformation
- Eventually investigate effect of dyad positioning in nonHb positions

Peptide sequences probing role of β -hairpin

Name	Sequence												
	1	2	3	4	5	6	7	8	9	10	11	12	predicted conformation
TrpZip control	Ser	Trp	Thr	Trp	Glu	Gly	Asn	Lys	Trp	Thr	Trp	Lys	β-hairpin
H-H dyad GN turn	Ser	Trp	His	Trp	Glu	Gly	Asn	Lys	Trp	His	Trp	Lys	β-hairpin
H-H dyad pG turn	Ser	Trp	His	Trp	Glu	DPro	Gly	Lys	Trp	His	Trp	Lys	β-hairpin
H-H dyad PG linear	Ser	Trp	His	Trp	Glu	Pro	Gly	Lys	Trp	His	Trp	Lys	linear

Catalysis results pNPA hydrolysis

- H-H dyad GN turn
- H-H dyad pG turn
- H-H dyad PG linear
- Histidine
- TrpZip control
- No catalyst

- For these peptides, β-hairpin conformation is detrimental to catalytic activity
- The peptide context does not enhance reactivity compared to histidine, the initial velocity per histidine equivalent is lower for the peptide catalysts regardless of conformation

Sequences probing role of dyad identity

Name	Sequence												
	1	2	3	4	5	6	7	8	9	10	11	12	predicted conformation
H-K dyad pG turn	Ser	Trp	His	Trp	Glu	DPro	Gly	Lys	Trp	Lys	Trp	Lys	β-hairpin
H-K dyad PG linear	Ser	Trp	His	Trp	Glu	Pro	Gly	Lys	Trp	Lys	Trp	Lys	linear
H-A dyad pG turn	Ser	Trp	His	Trp	Glu	DPro	Gly	Lys	Trp	Ala	Trp	Lys	β-hairpin
H-A dyad PG linear	Ser	Trp	His	Trp	Glu	Pro	Gly	Lys	Trp	Ala	Trp	Lys	linear

*Did not do NMR analysis on these analogues, so assuming the conformations are similar to the H-H dyads, i.e. that the **pG**-containing sequences have some β-hairpin character and that the **PG**-containing sequences do not

Catalysis results

pNPA hydrolysis

- H-K dyad pG turn
- H-K dyad PG linear
- H-A dyad pG turn
- H-A dyad PG linear
- Histidine
- No catalyst

Initial velocity per His residue

- Again peptides without a β-hairpin conformation are more active catalysts
- The initial velocity *per histidine equivalent* trends are:
 - Lower activity per His equivalent for the peptide catalysts with β-hairpin conformation regardless of dyad identity
 - His-His dyads are less active catalysts per His equivalent than peptides with a single His residue. Unclear why identity of position 10 should affect position 3 in the 'linear' sequences – may indicate some secondary structure formation
 - The effects observed are not large, but the trends are consistent

Conditions

25 °C

5 mM pNPA

0.1 mM catalyst (2 mol %)

100 mM HEPES buffer pH 7.4, 5% MeCN

9 replicates total in 3 separate experiments

Conformational Sampling

Initial Proposed Structures

I: TrpZip4	Gly-Glu-Trp-Thr-Trp-Asp-Asp-Ala-Thr-Lys-Thr-Trp-Thr-Trp-Thr-Glu
II: 4H13H_pG	Gly-Glu-Trp- <mark>His</mark> -Trp-Asp-Asp-{D-Pro}-Gly-Lys-Thr-Trp- <mark>His</mark> -Trp-Thr-Glu
III: 4H13H_PG	Gly-Glu-Trp- <mark>His</mark> -Trp-Asp-Asp-Pro-Gly-Lys-Thr-Trp- <mark>His-</mark> Trp-Thr-Glu

1. Can we identify the key conformational basins for the three initial peptides?

- Will SPIB likely distinguish between these mutants?
- Can we calculate the histidine dyads in the basins?
- Are there limits (formal or practical) on the numbers and types of OPs to be included?

2. How is the best way to define CVs/OPs for homologous systems?

Do we build a bespoke one for each mutant?

 Can we take the full set of structures and only include conserved OPs?

- Are there elements that might be conserved but not equivalent?
 - i.e. ϕ/ψ angles for different amino acids (particularly proline)