Key Takeaways

Special types of Matrices

Orthogonal Matrix

A square matrix A is said to be orthogonal if $AA^T = I = A^TA$

For orthogonal matrix A, $A^T = A^{-1} (|A| = \pm 1)$

Example: If A is orthogonal and $ABA = B^T$, then show that BA is symmetric.

$$ABA = B^T$$

Pre multiply A^T on both sides $A^TABA = A^TB^T$ $AA^T = I$

$$\Rightarrow I \cdot BA = A^T B^T \Rightarrow BA = A^T \cdot B^T$$

$$BA = (BA)^T \Rightarrow BA \text{ is symmetric}.$$