1° Teste ALGA—LCC

Nome N^{o} Data- 09/11/2017

Ι

Nas perguntas de escolha múltipla, cada resposta certa vale 1 valor e cada resposta errada vale -0, 2.

1. Se A é uma matriz de ordem n invertível, tal que $A^2 = -I_n$, então

(a)
$$A^{-1} = -A(\checkmark)$$

(b)
$$A^{-1} = A^2$$

(c)
$$A^{-1} = A$$

$$(d) A^{-1} = A^3$$

2. Considere o sistema de equações lineares em \mathbb{R}^3 , dependente dos parâmetros α e β ,

$$\left[\begin{array}{ccc} 1 & 2 & \alpha \\ 1 & \beta & 3 \\ 0 & 1 & 1 \end{array}\right] x = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right].$$

Qual dos seguintes é o valor do par (α, β) tal que o sistema anterior tem uma única solução?

(a) (2,3)

(b) (3, 2)

(c) (1,4)

- $(d) (2,4)(\checkmark)$
- 3. Considere o sistema de equações $\left\{ \begin{array}{ccccc} x_1 & -2x_2 & -x_3 & -5x_4 & = 3 \\ & x_3 & +2x_4 & +2x_5 & = -1 \\ & & x_5 & = 0 \end{array} \right. .$

A solução geral do sistema é:

- (a) $S = \{(2 3\beta + \alpha, -1 \beta \alpha, \beta, 0, \alpha) : \beta, \alpha \in R\}.$
- (b) (\checkmark) $S = \{(2 + 2\beta + 3\alpha, \beta, -1 2\alpha, \alpha, 0) : \beta, \alpha \in R\}.$
- (c) $S = \{(2 2\beta + 3\alpha, -1 \beta + \alpha, \beta, 0, \alpha) : \beta, \alpha \in R\}.$
- (d) $S = \{(2+2\beta, \beta, -1-\alpha, \alpha, 0) : \beta, \alpha \in R\}.$
- 4. Seja $A=\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & -1 & 1 \\ -1 & \alpha & \beta \end{array}\right]$. A caraterística de A é
 - (a) 1
- (b) 2
- $(c) \ 3(\checkmark)$
- (d) depende dos valores de α e β .
- 5. Seja $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -3 \end{bmatrix}$ e considere as seguintes afirmações:
 - (i) As linhas de A formam um conjunto linearmente independente em \mathbb{R}^3 .
 - (ii) As colunas de A formam um conjunto linearmente independente em \mathbb{R}^3 .
 - (iii) A caraterística de A é igual a 3.
 - (iv) O sistema de equações lineares Ax = b tem uma única solução, qualquer que seja $b \in \mathbb{R}^3$. Qual é lista completa de afirmações verdadeiras?
 - (a) (i) e (ii)
- (b) (i)(ii) e (iii)
- (c) (iii)
- (d) todas. (\checkmark)

No seguinte grupo de questões, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F). Cada $resposta\ certa\ vale\ 0.5\ valor\ e\ cada\ resposta\ errada\ vale\ -0, 1.$

1.	Seja V um espaço vectorial real, $u, v \in V$ e F um subespaço de V .		
	(a) Se $u, v \in F$, então $u - v \in F$.	$V(\checkmark)$	F
	(b) Se $u + v \in F$, então $u \in F$ e $v \in F$.	V	F(✓
	(c) Se $u + v \in F$ e $u \in F$, então $v \in F$.	$V(\checkmark)$	I
	(d) Se existe $\alpha \in \mathbb{R}$, tal que $\alpha u \in F$, então $u \in F$.	V	F(\langle)
2.	(a) A soma das duas matrizes invertíveis é invertível.	V	F(√)
	(b) Seja A uma matriz ortogonal, então a sua inversa também é ortogonal.	$V(\checkmark)$	F
	(c) A soma das duas matrizes simétricas é simétrica.	$V(\checkmark)$	Ι
	(d) A inversa de uma matriz simétrica também é simétrica.	$V(\checkmark)$	F
3.	(a) Se $dimU = dimW$, então $U = W$.	V	F(✓)
	(b) \mathbb{R}^2 é um subespaço de \mathbb{R}^3	V	$F(\checkmark)$
	(c) A dimensão do espaço gerado por as colunas de A é igual a dimensão do espa linhas de A .	aço gerado V(√)	por as
	(d) O espaço gerado por as colunas de A é igual a o espaço gerado por as linhas de A^T .		
		$V(\checkmark)$	F
4.	Seja $F = \{(a, b, c, d, e) \in \mathbb{R}^5 : b - c = 0 \land a = b + d\}$		
	(a) $F = \langle (2, 1, 1, 1, 1), (0, 1, 1, -1, 0) \rangle$	V	$F(\checkmark)$
	(b) $F = \langle (2, 1, 1, 1, 1), (0, 1, 1, -1, 0), (0, 0, 0, 0, 1) \rangle$.	$V(\checkmark)$	I
	(c) $F = \langle (1, 1, 1, 0, 0), (1, 0, 0, 1, 0), (0, 0, 0, 0, 5) \rangle$.	$V(\checkmark)$	I
	(d) $F = \langle (2, 1, 1, 1, 1), (1, 0, 0, 1, 0), (1, 0, 0, 1, 1), (0, 0, 0, 0, 1) \rangle$.	$V(\checkmark)$	F
5.	Considere em \mathbb{R}^3 os vetores		
	$v_1 = (1, 2, 1), v_2 = (1, 4, 2), v_3 = (2, 4, 2), v_4 = (2, 6, 3),$		
	e os eguintes subconjuntos de ${\rm I\!R}^3$		
	$S_1 = \{v_1, v_2, v_3\}, S_2 = \{v_2, v_3, v_4\}, S_3 = \{v_1, v_2, v_4\}.$		
	(a) S_1 e S_2 são linearmente independentes.	V	F(\sqrt)
	(b) S_1 e S_3 são linearmente independentes.	V	$F(\checkmark)$
	(c) S_1 é linearmente independentes e S_3 é linearmente dependentes.	V	$F(\checkmark$
	(d) S_2 e S_3 são linearmente dependentes.	$V(\checkmark)$	I

A questão que se segue deverá ser resolvida integralmente e devidamente justificada.

 $(5 \ valores)$ Sejam U o subespaço do espaço vectorial real \mathbb{R}^4 gerado pelos vectores

$$u_1 = (-2, 0, 0, 1), \ u_2 = (0, 1, 0, 0), \ u_3 = (0, 0, 1, 0) \ e \ u_4 = (-2, 3, 4, 1)$$

e W o subconjunto

$$W = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + d = 0\} \text{ de } \mathbb{R}^4.$$

- (a) Determine uma base e a dimensão de U.
- (b) Determine o subespaço U + W.
- (c) Justifique se $\mathbb{R}^4 = U \oplus W$.
- (d) Determine o valor de α de modo que o vector $(1, -1, 0, \alpha)$ pertença a U.
- (a). (u_1, u_2, u_3, u_4) gere U, ou seja $U = \langle u_1, u_2, u_3, u_4 \rangle$, vamos verificar se u_1, u_2, u_3, u_4 são linearmente independentes. Faça a combinação linear dos u_1, u_2, u_3, u_4 e igual a 0, tem-se

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \alpha_4 u_4 = 0 \tag{*}$$

 \iff

$$\begin{bmatrix} -2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ -0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \tag{**}$$

Use eliminação Gaussiana, reduze a matriz de coeficiente em $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ com } C(A) = 3 < n = 4,$

então o sistema (**) é possível e indeterminado, ou seja há $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ não são zeros e (*) vale $\Longrightarrow u_1, u_2, u_3, u_4$ são linearmente dependentes. Por outra lado, como C(A) = 3, o muméro maximo dos vetores que são LI é 3, como os primeiros 3 colunas dá caraterística 3, então os primeiros 3 vetores são LI. Por isso, uma base de U pode ser (u_1, u_2, u_3) .

(b).
$$W = \{(a,b,c,d) \in \mathbbm{R}^4 : a+b+d=0\} = \{(-b-d,b,c,d) \in \mathbbm{R}^4, b,c,d \in \mathbbm{R}\} = <(-1,1,0,0), (0,0,1,0), (-1,0,0,1) > .$$
 $U+W = <(-2,0,0,1), (0,1,0,0), (-1,1,0,0), (0,0,1,0), (-1,0,0,1) > .$

- (c). Não, nota se que $(0,0,1,0) \in U$ e $(0,0,1,0) \in W \Rightarrow U \cap W \neq \emptyset$.
- (d). $(1, -1, 0, \alpha)$ pertença a $U \Rightarrow$, $(1, -1, 0, \alpha)$ pode ser escrito como combinação linear de base de U. $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = (1, -1, 0, \alpha)$, o sistema é possivel se $\alpha = 1/2$.