Lista 3

Prof^a. Márcia Barbian Disciplina: Inferência B

1. Seja X_1, \ldots, X_n variáveis aleatórias da distribuição Weibull (α, β) ,

$$f(x/\alpha, \beta) = \beta \alpha x^{\alpha-1} \exp(-\beta x^{\alpha}), \quad \alpha > 0, \beta > 0.$$

A função de log-verossimilhança é dada por

$$L(\alpha, \beta/x) = n \log \beta + n \log \alpha + (\alpha - 1) \sum_{i=1}^{n} \log X_i - \beta \sum_{i=1}^{n} X_i^{\alpha}.$$

Essa distribuição é alguma vezes parametrizada em termo de α . Depois de substituir β por seu estimador de máxima verossimilhança $\hat{\beta} = n/\sum_{i=1}^{n} X_i^{\alpha}$ o profile da log-verossimilhança pode ser escrito como

$$L(\alpha, \hat{\beta}(\alpha)/x) = n \log n - n \log(\sum_{i=1}^{n} X_i^{\alpha}) + (\alpha - 1) \sum_{i=1}^{n} \log X_i + n \log \alpha - n.$$

Gere artificialmente, no software R, uma amostra de n=25 observações da distribuição Weibull com $\alpha=1.5$ e $1/\beta^{\alpha}=2$. Utilizando o método de Newton-Raphson com valor inicial $\alpha^{(0)}=0.5$, indique os cálculos e valores encontrados nas primeiras 5 iterações. Quais os valores de $\alpha^{(5)}$ e $\hat{\beta}(\alpha^{(5)})$?

Utilize a função optim do R para estimar α e β .

2. Considere a equação

$$q(\theta) = \theta^2 - 4$$

Dado o ponto inicial $\theta^{(0)} = 3$, utilize o método de Newton-Raphson para encontrar a raiz. Mostre os cálculos e indique os valores até o 4 passo.

- 3. Seja X_1, \ldots, X_6 uma amostra aleatória de uma distribuição Exponencial de parâmetro λ . Dado que os valores observados na amostra foram $\mathbf{x} = \{0.031; 0.05; 0.029; 0.318; 0.754; 0.327\}.$
 - a) Através do método de Newton-Raphson calcule o estimador λ , faça 5 iterações e utilize como ponto inicial o valor 3.
 - b) Calcule o estimador de máxima verossimilhança.
 - c) Utilize o software R para gerar uma amostra de tamanho 250 de uma distribuição Exponencial de parâmetro $\lambda = 5$. Refaça as letras (a) e (b) para essa nova amostra.
- 4. Suponha que X_1, \ldots, X_n é uma amostra aleatória tal que $X_i \sim \text{Bernoulli}(\theta)$. Calcule $\lambda(X)$ e determine o critério de rejeição para o TRV (Teste da Razão de Verossimilhanças) considerando as hipóteses $H_0: \theta \leq \theta_0$ versus $H_0: \theta > \theta_0$, em que θ_0 é um valor conhecido especificado pelo pesquisador.
- 5. Seja X_1, \ldots, X_n uma amostra obtida a partir da distribuição Exponencial com parâmetro θ .
 - a) Encontre o TRV para testar $H_0: \theta = 1$ versus $H_1: \theta \neq 1$.
 - b) Se uma amostra de tamanho n = 5 observasse os seguintes valores $\mathbf{x} = \{0.8; 1.3; 1.8; 0.9; 1\}$, qual seria a sua conclusão se escolhermos a constante c = 0.5.
- 6. Seja X_1, \ldots, X_n uma amostra aleatória da distribuição $N(\mu_x, 9)$ e considere Y_1, \ldots, Y_m uma amostra aleatória da distribuição $N(\mu_y, 25)$. Assuma que essas duas amostras são independentes.

1

a) Encontre o TRV para $H_0: \mu_x = \mu_y$ versus $H_1: \mu_x \neq \mu_y$. Dica: Determine a distribuição de $\overline{X} - \overline{Y}$.

- b) Se você observar $n=9, \sum_{i=1}^9 x_i=3.4, m=16, \sum_{i=1}^{16} y_i=4.3.$ Qual seria a sua decisão considerando c=0.5.
- 7. Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Gama $(3, \lambda)$. Encontre o TRV para as hipóteses $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$, onde λ_0 é um valor positivo e especificado pelo pesquisador.
- 8. Seja X_1,\dots,X_n uma amostra aleatória da densidade

$$f(x/\theta) = \frac{2x}{\theta} I_{(0,\theta]}(x),$$

onde $\theta > 0$. Encontre o TRV para as hipóteses $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$, onde θ_0 é um valor positivo e especificado pelo pesquisador.