# AMATH 482 Homework 2 Report: PCA-Based Motion Classification

Mandy Zhang

February 15, 2025

### 1 Introduction

This report applies \*\*Principal Component Analysis (PCA)\*\* for motion classification across three movement types: \*\*walking, jumping, and running\*\*. PCA is used for \*\*dimensionality reduction\*\*, capturing dominant movement patterns while minimizing redundancy. We examine \*\*energy retention\*\*, visualize motion data projections, and classify movements using \*\*Nearest Centroid Classifier (NCC) and k-Nearest Neighbors (k-NN)\*\*. The effectiveness of PCA-reduced data for classification is analyzed through \*\*accuracy comparisons\*\* between these methods.

# 2 Theoretical Background

PCA transforms high-dimensional data into a reduced feature space while preserving the most significant variance.

#### 2.1 PCA Mathematical Formulation

Given a dataset X of size  $m \times n$ , PCA follows:

1. \*\*Mean-Centering:\*\* Subtract the feature-wise mean:

$$X_{\text{centered}} = X - \bar{X}$$

2. \*\*Singular Value Decomposition (SVD):\*\* Decomposing  $X_{\text{centered}}$  as:

$$X_{\text{centered}} = U\Sigma V^T$$

where:

- $\bullet$  U contains \*\*spatial modes\*\* (principal directions).
- $\Sigma$  holds \*\*singular values\*\* (variance explained).
- $V^T$  represents \*\*time-dependent coefficients\*\*.

3. \*\*Energy Retention:\*\* The fraction of total variance retained by the first k components is:

$$E_k = \frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^r \sigma_i^2}$$

PCA enhances \*\*motion classification \*\* by eliminating noise and preserving movement patterns.

## 3 Algorithm Implementation

### 3.1 Preprocessing

Motion data is stored in .npy files. Steps include:

- Loading and stacking samples into  $**X_{\text{train}}**$ .
- Assigning \*\*ground truth labels\*\* based on movement type.
- \*\*Mean-centering\*\* the dataset before PCA.

### 3.2 Classification Methods

- \*\*Nearest Centroid Classifier (NCC):\*\* Assigns each sample to the \*\*closest centroid\*\* in PCA space.
- \*\*k-Nearest Neighbors (k-NN):\*\* Uses \*\*majority voting\*\* among the k=3 nearest neighbors.

# 4 Task 1: PCA Energy Retention

PCA \*\*compresses motion data\*\* while preserving variance. The number of PCA modes required to retain different energy levels is shown in Table 1.

| Energy Retention | PCA Modes Required |
|------------------|--------------------|
| 70%              | 2                  |
| 80%              | 3                  |
| 90%              | 5                  |
| 95%              | 7                  |

Table 1: PCA modes required for different energy levels.



Figure 1: Cumulative energy retention curve.

\*\*Findings:\*\* - \*\*2 modes\*\* retain \*\*70%\*\* variance, while \*\*3 modes\*\* capture \*\*80%\*\*. - \*\*5 and 7 modes\*\* retain \*\*90% and 95%\*\*, balancing \*\*compression and accuracy\*\*.

# 5 Task 2: PCA Projections

Visualizing PCA projections in \*\*2D (PC1, PC2)\*\* and \*\*3D (PC1, PC2, PC3)\*\* reveals movement clustering.



Figure 2: 2D PCA projection with movement categories.



Figure 3: 3D PCA projection with movement categories.

\*\*Observations:\*\* - Clear \*\*cluster separation\*\* suggests PCA effectively distinguishes movement types. - \*\*3D PCA projections\*\* further enhance separation, supporting classification.

# 6 Task 3: Computing Centroids

Centroids represent the \*\*average PCA location\*\* for each movement:

- \*\*Walking:\*\* (-36.88, -253.35, 175.91)
- \*\*Jumping:\*\* (-23.89, -499.37, -72.50)
- \*\*Running:\*\* (60.77, 752.72, -103.41)

### 7 Task 4: Nearest Centroid Classifier

Classification is based on \*\*Euclidean distance\*\* to the closest centroid:

$$\hat{y} = \arg\min_{i} \|\mathbf{x} - \mathbf{C}_{i}\| \tag{1}$$

\*\*Training Accuracy:\*\*

• \*\*NCC Accuracy:\*\* 75.60%

### 8 Task 5: Testing Classifier on New Samples

NCC is applied to \*\*unseen test samples\*\*. \*\*Test Accuracy:\*\*

• \*\*NCC Test Accuracy: \*\* 92.33%

## 9 Task 6: k-NN Classifier Comparison

Unlike NCC, \*\*k-NN incorporates local neighborhood information\*\*, yielding \*\*higher accuracy\*\*.

\*\*k-NN Accuracy Results:\*\*

- \*\*k-NN Training Accuracy:\*\* 99.87%
- \*\*k-NN Test Accuracy:\*\* 100.00%



Figure 4: Comparison of NCC and k-NN classifiers.

### 10 Conclusion

This study highlights \*\*PCA's effectiveness\*\* in \*\*motion classification\*\*:

- \*\*PCA efficiently reduces dimensionality\*\* while preserving motion patterns.
- \*\*2D and 3D PCA projections confirm movement separability\*\*.
- \*\*k-NN outperforms NCC\*\*, achieving \*\*100.00% accuracy\*\*.

#### 10.1 Future Work

- Explore \*\*Support Vector Machines (SVM) and Neural Networks\*\*.
- Optimize \*\*distance metrics\*\* (e.g., Mahalanobis distance).
- Investigate \*\*time-series models\*\* for dynamic motion recognition.

## Acknowledgements

I appreciate discussions with \*\*Sarah Shang, Yolanda Meng, and Rebecca Wang\*\*, and TA \*\*Rohin\*\* for feedback.

### References

- 1. Natalie Frank, 2025. AMATH 482 Course Notes.
- 2. Jolliffe, I. T. (2002). Principal Component Analysis.
- 3. Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning.