

Modelling Roads and Kerbs

Using Revit and Dynamo

The Challenge...

Revit is not great at site modelling But it is capable...

Typically involves complex methods and cross platform operation/massing

Roads/kerbs in particular

The Goal...

Match roads to topography, then model line markings, kerbs and kerb ramps in Revit

Without further ado...

Step One

Creating roads from topography

- 1. Create topography
- 2. Split the topography by road division
- 3. Model the road as floor(s)
- 4. Use Dynamo to drape the floor
- 5. Downset road and/or topography

Step Two

Modelling Kerbs

- 1. Simplify sub-points
- 2. Divide road into pieces
- 3. Make a profile family for the kerb

Optional: Inset the road edges

4. Model in place sweeps, picking road edges

Step Three

Kerb Ramps

- 1. Model kerb ramp profile
- 2. Split topography, delete or lower the piece
- 3. Elevate sub-points of kerb ramp
- 4. Modify kerbs to replace ramp segment of kerb with an infill piece of picked path

Step Four

Linemarking/crossings

- 1. Split face and paint crossings
- 2. Railings for linemarking

Some additional steps...

