

Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Laurea Triennale in Informatica Applicata e Data Analytics

Stato dell'arte sulle tecniche di data augmentation nella rilevazione di falsi di impronta digitale

Relatore Dr. Marco Micheletto

Correlatrice Dr.ssa Giulia Orru

Candidato Gian Maria Alvau

Matricola 60/79/00053

Impronte digitali e sistemi biometrici

- Immutabili
- Individuali
- Collezionabili
- Facilità di confronto

Vulnerabilità dei sistemi biometrici

Consenziente

Alta qualità

Caso non realistico

Non consenziente

Minore qualità Caso realistico

Presentation Attack Detection

Problemi aperti della presentation attack detection

Molteplici problemi dei dataset

- Numero ristretto di campioni
- Materiali limitati
- Dati sensibili

Possibili soluzioni

Data augmentation nei PAD

Limiti della Data Augmentation

	Trasformazioni geometriche	Trasformazioni fotometriche	Iniezione di rumore
Produzione campioni	Alta	Media	Media
Variabilità			
Resistenza al rumore	X		
Nuovi Sensori	X	X	X
Nuovi Campioni	X	X	X
Nuovi Materiali	X	X	X

Generazione sintetica di immagini

Modelli di diffusione di rumore

Rimozione di rumore

Soluzione GenPrint

1. Alta realisticità

2. Molteplici Sensori

3. Sensori non presenti

4. Materiali

Soluzione GAN: Universal Material Generator

- 1. Ottenimento immagine e stile
- 2. Sovrapposizione di stile sull'immagine
- 3. Calcolo di perdita di stile e contenuto
- 4. Classificazione
- 5. Aggiornamento del modello

(a) Falso reale A (silicone)

(b) Falso reale B (lattice Body Paint)

(c) Falso reale misto (falso A + falso B)

(d) Falso sintetico misto (falso A + falso B)

Miglioramenti con UMG

Conclusioni

	Ampliare il dataset	Introdurre variazioni	Introdurre nuovi campioni	Introdurre nuovi sensori	Introdurre nuovi materiali
Data Augmentation					
GenPrint					X
Universal Material Generator					

Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Laurea Triennale in Informatica Applicata e Data Analytics

Grazie per l'attenzione

Relatore Dr. Marco Micheletto

Correlatrice Dr.ssa Giulia Orru

Candidato Gian Maria Alvau

Matricola 60/79/00053