Lecture 10

Rigid body kinematics: Kinematics in a rotating CS; Velocity analysis.

1-7 September, 2021

Relative time derivative

I. Vector $\mathbf{u}(t)$ is observed in two CS:

Primary
$$\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$$
; Secondary $\{\mathscr{E}(t), G, \hat{\mathbf{e}}_i(t)\}$

- 1. Secondary rotates w.r.t. primary: $\omega_{\mathscr{E}/\mathscr{E}_0}$
- 2. \mathcal{E}_0 observer measures rate $\dot{\mathbf{u}}(t)$.
- 3. $\mathcal{E}(t)$ observer measures rate $\mathring{\mathbf{u}}(t)$.

Then,
$$\dot{\mathbf{u}}(t) = \dot{\mathbf{u}}(t) + \omega_{\mathscr{C}/\mathscr{C}_0} \times \mathbf{u}(t)$$
.

- II. **Remark 1**: \mathscr{E}_0 could also be <u>rotating</u>. Then $\dot{\mathbf{u}}(t)$ is the rate of change of $\mathbf{u}(t)$ w.r.t. rotating observer in \mathscr{E}_0 .
 - 1. Then $\dot{\mathbf{u}}(t)$ will be <u>different</u> from rate of change of $\mathbf{u}(t)$ w.r.t. to <u>non</u>-rotating CS.
- III. Remark 2: If $\mathcal{E}(t)$ does <u>not</u> rotate w.r.t. \mathcal{E}_0 , then $\omega_{\mathcal{E}/\mathcal{E}_0} = 0$ and $\dot{\mathbf{u}}(t) = \dot{\mathbf{u}}(t)$.

Angular acceleration

 $\{\mathscr{E}(t), G, \hat{\mathbf{e}}_i(t)\}$ rotates $w.r.t.\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$ at $\omega_{\mathscr{E}/\mathscr{E}_0}(t)$ Thus, $\dot{\mathbf{u}}(t) = \mathring{\mathbf{u}}(t) + \omega_{\mathscr{E}/\mathscr{E}_0} \times \mathbf{u}(t)$

I. Angular acceleration of \mathcal{E} w.r.t. \mathcal{E}_0 is

$$\alpha_{\mathscr{E}/\mathscr{E}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\omega_{\mathscr{E}/\mathscr{E}_0} \right) =: \dot{\omega}_{\mathscr{E}/\mathscr{E}_0},$$

with time differentiation w.r.t. \mathcal{E}_0 .

II. Set
$$\mathbf{u}(t) = \boldsymbol{\omega}_{\mathcal{E}/\mathcal{E}_0}$$
 to get $\dot{\boldsymbol{\omega}}_{\mathcal{E}/\mathcal{E}_0} = \dot{\boldsymbol{\omega}}_{\mathcal{E}/\mathcal{E}_0}$

- III. **Application**. Rigid body \mathcal{B} with BFCS $\{\mathcal{E}(t), G, \hat{\mathbf{e}}_i(t)\}$ is rotating with angular velocity $\boldsymbol{\omega}_{\mathcal{E}/\mathcal{E}_0}$ w.r.t. $\{\mathcal{E}_0, O, \hat{\mathbf{E}}_i\}$.
 - 1. Angular acceleration of \mathscr{B} measured by observers in \mathscr{E} and \mathscr{E}_0 is the same!

2.
$$\left[\alpha_{\mathscr{E}/\mathscr{E}_0}(t)\right]_{\mathscr{E}} = \left[\frac{\mathrm{d}}{\mathrm{d}t}\omega_{\mathscr{E}/\mathscr{E}_0}\right]_{\mathscr{E}} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\omega_{\mathscr{E}/\mathscr{E}_0}\right]_{\mathscr{E}}$$

Velocity analysis

Relating velocity of a point *P* in two CS.

- 1. Velocity of P is found to be $\mathbf{v}_{\mathcal{E}}^{P}$ ($=: \mathbf{v}_{rel}^{P}$) by an observer rotating with rigid body \mathscr{B} with BFCS { $\mathscr{E}(t)$, G, $\hat{\mathbf{e}}_{i}(t)$ }.
- 2. \mathscr{B} rotates at $\boldsymbol{\omega}_{\mathscr{B}} := \boldsymbol{\omega}_{\mathscr{E}/\mathscr{E}_0}$ w.r.t. $\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$ Find velocity of P w.r.t. \mathscr{E}_0 , i.e. $\mathbf{v}_{\mathscr{E}_0}^P =: \mathbf{v}^P$.
- Case 1: $O \equiv G$, i.e. \mathscr{E}_0 , \mathscr{E} have <u>same</u> origin: $\mathbf{v}^P = \mathbf{v}_{rel}^P + \boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{r}^{P/G}.$
- Case 2: \mathcal{E}_0 and \mathcal{E} have <u>different</u> origins.
 - a. \mathcal{E}' s origin is at $\mathbf{r}^{G/O}(t)$ w.r.t. O, and
 - b. \mathscr{E}' s origin has velocity $\mathbf{v}_{\mathcal{E}_0}^G =: \mathbf{v}^G$; then $\mathbf{v}^P = \mathbf{v}_{rel}^P + \boldsymbol{\omega}_{\mathcal{B}} \times \mathbf{r}^{P/G} + \mathbf{v}^G.$

Application

I. **Example 1**. Relating velocities of two points on the same rigid body. Let A and B be points on a rigid body \mathcal{B} , which has angular velocity $\boldsymbol{\omega}_{\mathcal{B}}$ w.r.t. $\{\mathcal{E}_0, O, \hat{\mathbf{E}}_i\}$. Let \mathbf{v}^A be velocity of A in \mathcal{E}_0 .

Find \mathbf{v}^B .

Answer: $\mathbf{v}^B = \mathbf{v}^A + \boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{r}^{B/A}$.

II. Example 2. Find velocity of the rod's end.

Answer:

 $\omega_0 L \sin \theta$ towards O.

"On the other hand, if I die next week then this isn't a midlife crisis."

Don't panic, its only the mid-sem.

End-sem is still to come.

Good luck!