Linear Analysis Homework 10

Michael Nelson

Problem 1

Proposition 0.1. Let $\|\cdot\|_{\infty}$: $C[a,b] \times C[a,b] \to \mathbb{R}$ be given by

$$||f||_{\infty} = \sup\{|f(x)| \mid x \in [a, b]\}$$
 (1)

for all $f \in C[a,b]$. Then $\|\cdot\|_{\infty}$ is a norm. Moreover, the pair $(C[a,b],\|\cdot\|_{\infty})$ forms a Banach space.

Proof. Let us first show $\|\cdot\|_{\infty}$ is a norm. First note that the set $\{|f(x)| \mid x \in [a,b]\}$ is non-empty and bounded above (since f is continuous on a compact interval and hence attains a maximum). Therefore the supremum (1) exists.

For positive-definiteness, let $f \in C[a, b]$. Then

$$||f||_{\infty} = \sup\{|f(x)| \mid x \in [a, b]\}$$

 $\geq \sup\{0 \mid x \in [a, b]\}$
 $= 0.$

We have equality if and only if |f(x)| = 0 for all $x \in [a, b]$, and since $|\cdot|$ is positive-definite, this is equivalent to f being the zero function.

For absolute-homogeneity, let $f \in C[a,b]$ and $\alpha \in \mathbb{C}$. Then

$$\|\alpha f\|_{\infty} = \sup\{|\alpha f(x)| \mid x \in [a, b]\}$$

$$= \sup\{|\alpha||f(x)| \mid x \in [a, b]\}$$

$$= |\alpha|\sup\{|f(x)| \mid x \in [a, b]\}$$

$$= |\alpha|\|f\|_{\infty},$$

where the equality at the third line is justified by Proposition (0.10) (stated and proved in the Appendix). For subadditivity, let $f, g \in C[a, b]$. Then

$$||f + g||_{\infty} = \sup\{|f(x) + g(x)| \mid x \in [a, b]\}$$

$$\leq \sup\{|f(x)| + |g(x)| \mid x \in [a, b]\}$$

$$= \sup\{|f(x)| \mid x \in [a, b]\} + \sup\{|g(x)| \mid x \in [a, b]\}$$

$$= ||f||_{\infty} + ||g||_{\infty},$$

where the equality at the third line is justified by Proposition (0.11) (stated and proved in the Appendix).

Finally, to show that $(C[a,b], \|\cdot\|_{\infty})$ forms a Banach space, we need to show that every Cauchy sequence in $(C[a,b], \|\cdot\|_{\infty})$ is convegent. Throughout the rest of the proof, we drop the notation $(C[a,b], \|\cdot\|_{\infty})$ and simply write C[a,b] instead. Let (f_n) be a Cauchy sequence in C[a,b]. We first make the observation that for each $x \in [a,b]$, the sequence $(f_n(x))$ forms a Cauchy sequence of complex numbers. Indeed, let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $m,n \geq N$ implies $\|f_n - f_m\|_{\infty} < \varepsilon$. In other words, $m,n \geq N$ implies

$$\sup\{|f_n(x)-f_m(x)|\mid x\in[a,b]\}<\varepsilon.$$

In particular $m, n \ge N$ implies

$$|f_n(x) - f_m(x)| < \varepsilon \tag{2}$$

for all $x \in [a, b]$. This proves our claim.

Since \mathbb{C} is complete, we are justified in defining $f : [a, b] \to \mathbb{C}$ by

$$f(x) := \lim_{n \to \infty} f_n(x)$$

for all $x \in [a, b]$. By taking $m \to \infty$ in (2), we see that (f_n) converges *uniformly* to f. In particular, this implies f is continuous (by the usual $\varepsilon/3$ trick). Thus $f \in C[a, b]$. Finally, we note that convergence in $\|\cdot\|_{\infty}$ is equivalent to uniform convergence. Thus the Cauchy sequence (f_n) converges in the $\|\cdot\|_{\infty}$ norm to f.

Problem 2

Proposition 0.2. Let $(V, \|\cdot\|)$ be a normed linear space over $\mathbb C$ which satisfies the parallelogram law. Then the map $\langle\cdot,\cdot\rangle\colon V\times V\to\mathbb C$ defined by

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 + i\|x + iy\|^2 - \|x - y\|^2 - i\|x - iy\|^2 \right)$$
(3)

for all $x, y \in V$ is an inner-product. Moreover, the norm induced by this inner-product is precisely $\|\cdot\|$. In other words, we have

$$\langle x, x \rangle = ||x||^2$$

for all $x \in V$.

Proof. The most difficult part of this proof is showing that (3) is linear in the first argument. Before we do this, let us show that (3) is positive-definite and conjugate-symmetric.

For positive-definiteness, let $x \in V$. Then

$$\langle x, x \rangle = \frac{1}{4} \left(\|2x\|^2 + i\|x + ix\|^2 - i\|x - ix\|^2 \right)$$

$$= \frac{1}{4} \left(\|2x\|^2 + i((|1 + i|^2 - |1 - i|^2)\|x\|^2) \right)$$

$$= \|x\|^2$$

$$\geq 0,$$

with equality if and only if x = 0. Note that this also gives us $\langle x, x \rangle = ||x||^2$ for all $x \in V$. For conjugate-symmetry, let $x, y \in V$. Then

$$\overline{\langle y, x \rangle} = \frac{1}{4} \overline{(\|y + x\|^2 + i\|y + ix\|^2 - \|y - x\|^2 - i\|y - ix\|^2)}
= \frac{1}{4} \left(\|y + x\|^2 - i\|y + ix\|^2 - \|y - x\|^2 + i\|y - ix\|^2 \right)
= \frac{1}{4} \left(\|x + y\|^2 - i\|i(x - iy)\|^2 - \|x - y\|^2 + i\|i(x + iy)\|^2 \right)
= \frac{1}{4} \left(\|x + y\|^2 - i\|x - iy\|^2 - \|x - y\|^2 + i\|x + iy\|^2 \right)
= \frac{1}{4} \left(\|x + y\|^2 + i\|x + iy\|^2 - \|x - y\|^2 - i\|x - iy\|^2 \right)
= \langle x, y \rangle$$

Now we come to the difficult part, namely showing that (3) is linear in the first argument. We do this in several steps:

Step 1: We show that (3) is additive in the first argument (i.e. $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$ for all $x,y,z\in V$). Let $x,y,z\in V$. First note that by the parallelogram law, we have

$$\begin{split} \|x+z+y\|^2 - \|x+z-y\|^2 &= 2\|x+y\|^2 + 2\|z\|^2 - \|x+y-z\|^2 - 2\|x-y\|^2 - 2\|z\|^2 + \|x-y-z\|^2 \\ &= 2\|x+y\|^2 - 2\|x-y\|^2 - \|z-y-x\|^2 + \|z+y-x\|^2 \\ &= 2\|x+y\|^2 - 2\|x-y\|^2 - 2\|z-y\|^2 - 2\|x\|^2 + \|z-y+x\|^2 + 2\|z+y\|^2 + 2\|x\|^2 - \|z+y+x\|^2 \\ &= 2\|x+y\|^2 - 2\|x-y\|^2 + 2\|z+y\|^2 - 2\|z-y\|^2 + \|x+z-y\|^2 - \|x+z+y\|^2. \end{split}$$

Adding $||x + z - y||^2 - ||x + z + y||^2$ to both sides gives us

$$2(\|x+z+y\|^2 - \|x+z-y\|^2) = 2(\|x+y\|^2 - \|x-y\|^2 + \|z+y\|^2 - \|z-y\|^2),$$

and after cancelling 2 from both sides, we obtain

$$||x + z + y||^2 - ||x + z - y||^2 = ||x + y||^2 - ||x - y||^2 + ||z + y||^2 - ||z - y||^2.$$

Therefore

$$\begin{split} \langle x+z,y\rangle &= \frac{1}{4} \left(\|x+z+y\|^2 + i\|x+z+iy\|^2 - \|x+z-y\|^2 - i\|x+z-iy\|^2 \right) \\ &= \frac{1}{4} \left(\|x+z+y\|^2 - \|x+z-y\|^2 + i(\|x+z+iy\|^2 - \|x+z-iy\|^2) \right) \\ &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + \|z+y\|^2 - \|z-y\|^2 + i(\|x+iy\|^2 - \|x-iy\|^2 + \|z+iy\|^2 - \|z-iy\|^2) \right) \\ &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + \|z+y\|^2 - \|z-y\|^2 + i(\|x+iy\|^2 - \|x-iy\|^2 + \|z+iy\|^2 - \|z-iy\|^2) \right) \\ &= \frac{1}{4} \left(\|x+y\|^2 + i\|x+iy\|^2 - \|x-y\|^2 - i\|x-iy\|^2 + \|z+y\|^2 + i\|z+iy\|^2 - \|z-y\|^2 - i\|z-iy\|^2 \right) \\ &= \langle x,y\rangle + \langle z,y\rangle. \end{split}$$

Thus we have additivity in the first argument.

Step 2: We show that (3) respects \mathbb{Z} -scaling in the first argument (i.e. $m\langle x,y\rangle = \langle mx,y\rangle$ for all integers $m\in\mathbb{Z}$ and for all $x,y\in V$). It suffices to show that (3) respects \mathbb{N} -scaling in the first argument since additivity implies

$$0 = \langle 0, y \rangle$$

= $\langle x - x, y \rangle$
= $\langle x, y \rangle + \langle -x, y \rangle$,

which implies $\langle -x,y\rangle = -\langle x,y\rangle$ for all $x,y\in V$. We prove (3) respects $\mathbb N$ -scaling in the first argument using induction on $m\geq 2$. The base case m=2 follows from Step 1. Now assume that for some $m\geq 2$ and for all $x,y\in V$, we have $\langle mx,y\rangle = m\langle x,y\rangle$. Then we have

$$\langle (m+1)x, y \rangle = \langle mx + x, y \rangle$$

$$= \langle mx, y \rangle + \langle x, y \rangle$$

$$= m\langle x, y \rangle + \langle x, y \rangle$$

$$= (m+1)\langle x, y \rangle,$$

where we applied the induction step at the third line.

Step 3: We show that (3) respects Q-scaling in the first argument. Let $\frac{m}{n} \in \mathbb{Q}$ and let $x, y \in V$. Then since (3) is additive in the first argument and since V is a \mathbb{C} -vector space, we have

$$\frac{m}{n}\langle x, y \rangle = \frac{m}{n} \left\langle \frac{n}{n} x, y \right\rangle$$
$$= \frac{mn}{n} \left\langle \frac{1}{n} x, y \right\rangle$$
$$= m \left\langle \frac{1}{n} x, y \right\rangle$$
$$= \left\langle \frac{m}{n} x, y \right\rangle.$$

Therefore (3) respects Q-scaling in the first argument.

Step 4: We show that (3) respects \mathbb{R} -scaling in the first argument. First note that for each $y \in V$, the map $\langle \cdot, y \rangle \colon V \to \mathbb{C}$ is continuous since the norm is continuous. Let $x, y \in V$ and let $r \in \mathbb{R}$. Choose a sequence (r_n) of rational numbers such that $r_n \to r$ (we can do this since \mathbb{Q} is dense in \mathbb{R}). Then we have

$$\langle rx, y \rangle = \lim_{n \to \infty} \langle r_n x, y \rangle$$

= $\lim_{n \to \infty} r_n \langle x, y \rangle$
= $r \langle x, y \rangle$.

Therefore (3) respects \mathbb{R} -scaling in the first component.

Step 5: We show that (3) respects \mathbb{C} -scaling in the first component. We first show that $\langle ix, y \rangle = i \langle x, y \rangle$ for all $x, y \in V$.

Let $x, y \in V$. Then we have

$$\langle ix, y \rangle = \frac{1}{4} \left(\|ix + y\|^2 + i\|ix + iy\|^2 - \|ix - y\|^2 - i\|ix - iy\|^2 \right)$$

$$= \frac{1}{4} \left(\|x - iy\|^2 + i\|x + y\|^2 - \|x + iy\|^2 - i\|x - y\|^2 \right)$$

$$= \frac{1}{4} \left(i\|x + y\|^2 - \|x + iy\|^2 - i\|x - y\|^2 + \|x - iy\|^2 \right)$$

$$= \frac{i}{4} \left(\|x + y\|^2 + i\|x + iy\|^2 - \|x - y\|^2 - i\|x - iy\|^2 \right)$$

$$= i\langle x, y \rangle.$$

Now let $\lambda = r + is \in \mathbb{C}$. Then we have

$$\langle \lambda x, y \rangle = \langle (r+is)x, y \rangle$$

$$= \langle rx + isx, y \rangle$$

$$= \langle rx, y \rangle + \langle isx, y \rangle$$

$$= r\langle x, y \rangle + s\langle ix, y \rangle$$

$$= r\langle x, y \rangle + is\langle x, y \rangle$$

$$= (r+is)\langle x, y \rangle$$

$$= \lambda \langle x, y \rangle$$

for all $x, y \in V$. Therefore (3) respects C-scaling in the first component.

Problem 3

Proposition 0.3. Consider C[0,1] equipped with the supremum norm. Let $T: C[0,1] \to C[0,1]$ be the linear operator defined by

 $(Tf)(x) = \int_0^x f(y) \mathrm{d}y$

for all $x \in [0,1]$. Then T is bounded with ||T|| = 1.

Proof. Let $f \in C[0,1]$ such that $||f||_{\infty} \leq 1$. Then

$$||Tf||_{\infty} = \sup\{|(Tf)(x)| \mid x \in [0,1]\}$$

$$= \sup\{\left|\int_{0}^{x} f(y) dy\right| \mid x \in [0,1]\}$$

$$\leq \sup\{\int_{0}^{x} |f(y)| dy \mid x \in [0,1]\}$$

$$\leq \sup\{\int_{0}^{x} dy \mid x \in [0,1]\}$$

$$= \sup\{x \mid x \in [0,1]\}$$

$$= 1.$$

Thus $||T|| \le 1$. To see that ||T|| = 1, let $f: [0,1] \to \mathbb{C}$ be the constant function f = 1. Then $||f||_{\infty} = 1$ and

$$||Tf||_{\infty} = \sup\{|(Tf)(x)| \mid x \in [0,1]\}$$

$$= \sup\{\left|\int_{0}^{x} dy\right| \mid x \in [0,1]\}$$

$$= \sup\{|x| \mid x \in [0,1]\}$$

$$= \sup\{x \mid x \in [0,1]\}$$

$$= 1.$$

Problem 4

Proposition o.4. Consider C[a,b] equipped with the supremum norm. Define a linear functional $\ell \colon C[a,b] \to \mathbb{R}$ by

$$\ell(f) := f(a) - f(b).$$

for all $f \in C[a,b]$. Then ℓ is bounded. Moreover the set

$$\{f \in C[a,b] \mid f(a) = f(b)\}$$

is a closed subspace of C[a,b].

Proof. Let $f \in C[a,b]$ such that $||f||_{\infty} \leq 1$. Then

$$|\ell(f)| = |f(a) - f(b)|$$

$$\leq |f(a)| + |f(b)|$$

$$\leq 1 + 1$$

$$= 2.$$

Thus $\|\ell\| \le 2$. To see that $\|\ell\| = 2$, let $f: [a, b] \to \mathbb{C}$ be given by

$$f(x) = \frac{2}{b-a}(x-a) - 1$$

for all $x \in [a, b]$. So the graph of f is just the line segment from (a, -1) to (b, 1). In particular, $||f||_{\infty} = 1$ and

$$|\ell(f)| = |f(a) - f(b)|$$

= $|-1 - 1|$
= 2.

The last part of the proposition follows from

$$\ker \ell = \{ f \in C[a, b] \mid f(a) = f(b) \},$$

and $\ker \ell$ is a closed subspace since ℓ is a bounded linear operator.

Problem 5

Lemma o.1. Consider C[a,b] equipped with the supremum norm. Let $[c,d] \subseteq [a,b]$ and define $\ell_{c,d} : C[a,b] \to \mathbb{C}$ by

$$\ell_{c,d}(f) = \int_{c}^{d} f(t) dt$$

for all $f \in C[a,b]$. Then $\ell_{c,d}$ is a bounded linear functional with $\|\ell_{c,d}\| = d - c$.

Proof. Linearity of $\ell_{c,d}$ follows from linearity of integration. So it suffices to check that $\ell_{c,d}$ is bounded. Let $f \in C[a,b]$ such that $||f||_{\infty} \leq 1$. Then

$$|\ell_{c,d}(f)| = \left| \int_{c}^{d} f(t) dt \right|$$

$$\leq \int_{c}^{d} |f(t)| dt$$

$$\leq \int_{c}^{d} dt$$

$$= d - c.$$

Thus $\|\ell\| \le d - c$. To see that $\|\ell\| = d - c$, let $f: [a, b] \to \mathbb{C}$ be the constant function f = 1. Then $\|f\|_{\infty} = 1$ and

$$|\ell_{c,d}(f)| = \left| \int_{c}^{d} f(t) dt \right|$$
$$= \left| \int_{c}^{d} dt \right|$$
$$= |d - c|$$
$$= d - c.$$

Proposition 0.5. Consider C[-1,1] equipped with the supremum norm. Let \mathcal{Y} be the subset of C[-1,1] consisting of all functions $g \in C[-1,1]$ such that

$$\int_{-1}^{0} g(x) dx = \int_{0}^{1} g(x) dx = 0.$$

Then \mathcal{Y} is a closed subspace.

Proof. Note that $\mathcal{Y} = \ker \ell_{-1,0} \cap \ker \ell_{0,1}$ is an intersection of two closed subspaces (since $\ell_{-1,0}$ and $\ell_{0,1}$ are bounded linear functionals by Lemma (0.1)). Thus \mathcal{Y} is a closed subspace.

Proposition o.6. With the notation as in Proposition (0.5) above, let $h \in C[-1,1]$ be given by

$$h(x) = 2x$$

for all $x \in [-1,1]$. Then there does not exist a $g \in \mathcal{Y}$ such that $||g-h||_{\infty} = d(h,\mathcal{Y})$. *Proof.*

Step 1: We will first show that $d(h, \mathcal{Y}) = 1$. To prove $d(h, \mathcal{Y}) \geq 1$, assume for a contradiction that $d(h, \mathcal{Y}) < 1$. Choose $\varepsilon > 0$ and $g \in \mathcal{Y}$ such that

$$\|g-h\|_{\infty} < 1-\varepsilon$$
.

Write *g* in terms of its real and imaginary parts, say g = u + iv. Then

$$0 = \int_{-1}^{0} g(x) dx$$

= $\int_{-1}^{0} u(x) dx + i \int_{-1}^{0} v(x) dx$

implies $\int_{-1}^{0} u(x) dx = 0$ and $\int_{-1}^{0} v(x) dx = 0$. Similarly,

$$0 = \int_0^1 g(x) dx$$
$$= \int_0^1 u(x) dx + i \int_0^1 v(x) dx$$

implies $\int_0^1 u(x) dx = 0$ and $\int_0^1 v(x) dx = 0$. Moreover, we have

$$1 - \varepsilon > \|g - h\|_{\infty}$$

$$= \sup_{x \in [-1,1]} \sqrt{(u(x) - h(x))^2 + v(x)^2}$$

$$\geq \sup_{x \in [-1,1]} \sqrt{(u(x) - h(x))^2}$$

$$= \|u - h\|_{\infty}.$$

Therefore $u \in \mathcal{Y}$, $||u - h||_{\infty} < 1 - \varepsilon$, and u is a real-valued function. Since $||u - h||_{\infty} < 1 - \varepsilon$, h(x) = 2x for all $x \in [-1, 0]$, and both u and h are real-valued functions, we have

$$u(x) \leq 2x + 1 - \varepsilon$$

for all $x \in [-1,0]$. This implies

$$0 = \int_{-1}^{0} u(x) dx$$

$$\leq \int_{-1}^{0} (2x + 1 - \varepsilon) dx$$

$$= (x^{2} + x - \varepsilon x)|_{-1}^{0}$$

$$= \varepsilon$$

$$> 0,$$

which gives us our desired contradiction. Therefore $d(h, \mathcal{Y}) \geq 1$.

Now we will show that $d(h, \mathcal{Y}) \leq 1$. Let $t \in (0,1]$ and define $g_t : [-1,0] \to \mathbb{R}$ by the formula

$$g_t(x) = \begin{cases} 2x + 1 + t & \text{if } -1 \le x \le \frac{-2t}{1+t} \\ -\frac{(t-1)^2}{2t}x & \text{if } \frac{-2t}{1+t} \le x \le 0. \end{cases}$$

Extend g_t to all of [-1,1] by the formula

$$g_t(x) = g_t(-x)$$

for all $x \in [0,1]$. So g_t is an odd function. Moreover g_t is continous since each segment of g_t is linear and since they agree on their boundaries:

$$2\left(\frac{-2t}{1+t}\right) + 1 + t = \frac{-4t}{1+t} + \frac{(1+t)^2}{1+t}$$

$$= \frac{t^2 - 2t + 1}{1+t}$$

$$= \frac{(t-1)^2}{1+t}$$

$$= -\frac{(t-1)^2}{2t} \left(\frac{-2t}{1+t}\right)$$

and

$$-\frac{(t-1)^2}{2t} \cdot 0 = 0$$
$$= \frac{(t-1)^2}{2t} \cdot 0.$$

The image below gives the graphs for h, $g_{1/2}$, and $g_{1/10}$:

Now observe that

$$\begin{split} \int_{-1}^{0} g_{t}(x) \mathrm{d}x &= \int_{-1}^{\frac{-2t}{1+t}} (2x+1+t) \mathrm{d}x + \int_{\frac{-2t}{1+t}}^{0} -\frac{(t-1)^{2}}{2t} x \mathrm{d}x \\ &= (x^{2}+x+tx)|_{-1}^{\frac{-2t}{1+t}} + \left(\frac{-(t-1)^{2}}{4t}x^{2}\right)|_{\frac{-2t}{1+t}}^{0} \\ &= \left(\frac{2t}{1+t}\right)^{2} + \left(\frac{-2t}{1+t}\right) + t\left(\frac{-2t}{1+t}\right) - (1-1-t) + \frac{(t-1)^{2}}{4t} \left(\frac{2t}{1+t}\right)^{2} \\ &= \left(\frac{(t-1)^{2}}{4t} + 1\right) \left(\frac{2t}{1+t}\right)^{2} + (1+t) \left(\frac{-2t}{1+t}\right) + t \\ &= \frac{(t+1)^{2}}{4t} \frac{4t^{2}}{(1+t)^{2}} - t \\ &= t - t \\ &= 0. \end{split}$$

Therefore $g_t \in \mathcal{Y}$ for all $t \in (0,1]$. Moreover, by construction we have

$$\|g_t - h\|_{\infty} = 1 + t$$

for all $t \in (0,1]$. This implies $d(h, \mathcal{Y}) \leq 1$.

Step 2: We claim that there does not exist a $g \in \mathcal{Y}$ such that $\|g - h\|_{\infty} = 1$. Indeed, assume for a contradiction there does exist a $g \in \mathcal{Y}$ such that $\|g - h\|_{\infty} = 1$. Choose such a $g \in \mathcal{Y}$. We may assume that g is real-valued: if g is not real-valued, then we pass to its real-valued part u and as argued above we obtain $u \in \mathcal{Y}$ and

$$1 = ||g - h||_{\infty}$$
$$= ||u - h||_{\infty}$$
$$> 1.$$

Since *g* is real-valued and $||g - h||_{\infty} = 1$, we have

$$2x - 1 \le g(x) \le 2x + 1$$

for all $x \in [-1,1]$. Since g is continous, we cannot have

$$g(x) = \begin{cases} 2x + 1 & \text{for all } x \in (-1, 0) \\ 2x - 1 & \text{for all } x \in (0, 1). \end{cases}$$

Assume $g(x) \neq 2x - 1$ on the interval (0,1). Choose $c \in (0,1)$ such that $g(c) \neq 2c - 1$. Since g is continuous and since g(c) > 2c - 1, there exists $\varepsilon > 0$ and $\delta > 0$ such that

$$g(x) > 2x - 1 + \varepsilon$$

for all $x \in (c - \delta, c + \delta)$. Choose such ε and δ so that $(c - \delta, c + \delta) \subset (0, 1)$. Then

$$0 = \int_0^1 g(x) dx$$

$$= \int_0^1 g(x) dx + \int_{c-\delta}^{c+\delta} g(x) dx + \int_{c+\delta}^1 g(x) dx$$

$$\geq \int_0^1 (2x - 1 + \varepsilon) dx + \int_{c-\delta}^{c+\delta} g(x) dx + \int_{c+\delta}^1 (2x - 1 + \varepsilon) dx$$

$$> \int_0^1 (2x - 1 + \varepsilon) dx + \int_{c-\delta}^{c+\delta} (2x - 1 + \varepsilon) dx + \int_{c+\delta}^1 (2x - 1 + \varepsilon) dx$$

$$= \int_0^1 (2x - 1 + \varepsilon) dx$$

$$= (x^2 - x + \varepsilon x)|_0^1$$

$$= \varepsilon$$

$$> 0$$

gives us a contradiction.

Thus $g(x) \neq 2x + 1$ on the interval (-1,0). Choose $c \in (-1,0)$ such that $g(c) \neq 2c + 1$. Then by the same argument as above, we have

$$0 = \int_{-1}^{0} g(x) dx$$

$$< \int_{-1}^{0} (2x - 1 + \varepsilon) dx$$

$$= \varepsilon$$

$$> 0.$$

which also gives us a contradiction. Therefore there does not exist a $g \in \mathcal{Y}$ such that $||g - h||_{\infty} = 1$.

Problem 6

Definition 0.1. Let \mathcal{X} be a normed linear space. For a set $A \subseteq \mathcal{X}$ we define A^{\perp} to be the subset of \mathcal{X}^* consisting of all $\ell \in \mathcal{X}^*$ such that $\ell(a) = 0$ for all $a \in A$. Similarly, for a set $M \subseteq \mathcal{X}^*$ we define M_{\perp} to be the subset of \mathcal{X} consisting of all vectors $x \in \mathcal{X}$ such that $\ell(x) = 0$ for all $\ell \in M$.

Proposition 0.7. Let \mathcal{X} be a normed linear space, let A be a subset of \mathcal{X} , and let M be a subset of \mathcal{X}^* . Then A^{\perp} and M_{\perp} are closed subspaces of \mathcal{X}^* and \mathcal{X} respectively.

Proof. Let $x \in \mathcal{X}$. Define $\widehat{x} \colon \mathcal{X}^* \to \mathbb{C}$ by

$$\widehat{x}(\ell) = \ell(x)$$

for all $\ell \in \mathcal{X}^*$. We claim that \widehat{x} is a bounded linear functional. To see that \widehat{x} is linear, let $\ell, \ell' \in \mathcal{X}^*$ and let $\lambda, \lambda' \in \mathbb{C}$. Then

$$\widehat{x}(\lambda \ell + \lambda' \ell') = (\lambda \ell + \lambda' \ell')(x)$$

$$= \lambda \ell(x) + \lambda' \ell'(x)$$

$$= \lambda \widehat{x}(\ell) + \lambda' \widehat{x}(\ell').$$

To see that \hat{x} is bounded, let $\ell \in \mathcal{X}^*$. Then

$$|\widehat{x}(\ell)| = |\ell(x)|$$

$$\leq ||x|| ||\ell||.$$

Therefore \hat{x} is a bounded linear functional. In particular $\ker \hat{x}$ is a closed subspace. Thus

$$A^{\perp} = \bigcap_{a \in A} \ker \widehat{a}$$
 and $M_{\perp} = \bigcap_{\ell \in M} \ker \ell$

are closed subspaces since an arbitrary intersection of closed subspaces is a closed subspace.

Proposition o.8. Let \mathcal{X} be a normed linear space, let A be a subset of \mathcal{X} , and let M be a subset of \mathcal{X}^* . Then $\overline{span}(A) \subseteq (A^{\perp})_{\perp}$ and $\overline{span}(M) \subseteq (M_{\perp})^{\perp}$.

Proof. Proposition (0.7) implies $(A^{\perp})_{\perp}$ and $(M_{\perp})^{\perp}$ are closed subspace. Thus, it suffices to show

$$\operatorname{span}(A) \subseteq (A^{\perp})_{\perp}$$
 and $\operatorname{span}(M) \subseteq (M_{\perp})^{\perp}$.

First we show the former. Let $\lambda_1 a_1 + \cdots + \lambda_n a_n \in \operatorname{span}(A)$ and let $\ell \in A^{\perp}$. Then since $\ell(a) = 0$ for all $a \in A$, we have

$$\ell(\lambda_1 a_1 + \dots + \lambda_n a_n) = \lambda_1 \ell(a_1) + \dots + \lambda_n \ell(a_n)$$

= $\lambda_1 \cdot 0 + \dots + \lambda_n \cdot 0$
= 0.

Since ℓ was arbitrary, this implies $\lambda_1 a_1 + \cdots + \lambda_n a_n \in (A^{\perp})_{\perp}$, and hence span $(A) \subseteq (A^{\perp})_{\perp}$.

Now we show the latter. Let $\lambda_1 \ell_1 + \cdots + \lambda_n \ell_n \in \text{span}(M)$ and let $x \in M_{\perp}$. Then since $\ell(x) = 0$ for all $\ell \in M$, we have

$$(\lambda_1 \ell_1 + \dots + \lambda_n \ell_n)(x) = \lambda_1 \ell_1(x) + \dots + \lambda_n \ell_n(x)$$

= $\lambda_1 \cdot 0 + \dots + \lambda_n \cdot 0$
= 0.

Since x was arbitrary, this implies $\lambda_1 \ell_1 + \cdots + \lambda_n \ell_n \in (M_+)^{\perp}$, and hence $\mathrm{span}(M) \subseteq (M_+)^{\perp}$.

Problem 7

Proposition 0.9. $(\ell^1)^*$ is isometrically isomorphic to ℓ^{∞} .

Proof. For each $n \in \mathbb{N}$, let e^n denote the sequence with entry 1 in the nth component and entry 0 everywhere else. Define $\Phi \colon (\ell^1)^* \to \ell^{\infty}$ by

$$\Phi(\psi) = (\psi(e^n))$$

for all $\psi \in (\ell^1)^*$. Note that for any $\psi \in (\ell^1)^*$, we have $|(\psi(e^n))| \leq ||\psi||$, and therefore $(\psi(e^n)) \in \ell^{\infty}$. We claim that $||\psi|| = ||\Phi(\psi)||_{\infty}$. Indeed,

$$\|\Phi(\psi)\|_{\infty} = \sup\{|\psi(e^n)| \mid n \in \mathbb{N}\}$$

$$\leq \sup\left\{\left|\psi\left(\sum_{n=1}^{\infty} a_n e^n\right)\right| \mid \sum_{n=1}^{\infty} |a_n| \leq 1\right\}$$

$$= \|\psi\|.$$

To prove the reverse inequality assume for a contradiction that $\|\psi\| > \|\Phi(\psi)\|_{\infty}$. Choose $\varepsilon > 0$ and $\sum_{n=1}^{\infty} a_n e^n \in \ell^1$ such that $\sum_{n=1}^{\infty} |a_n| \le 1$ and

$$\left|\psi\left(\sum_{n=1}^{\infty}a_{n}e^{n}\right)\right|>\|\Phi(\psi)\|_{\infty}+\varepsilon. \tag{4}$$

Choose $N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty} |a_n| < \varepsilon/\|\psi\|$ (we can find such an N since $\sum_{n=1}^{\infty} |a_n| < \infty$). Then

$$\left| \psi \left(\sum_{n=1}^{\infty} a_n e^n \right) \right| = \left| \psi \left(\sum_{n=1}^{N} a_n e^n + \sum_{n=N+1}^{\infty} a_n e^n \right) \right|$$

$$= \left| \psi \left(\sum_{n=1}^{N} a_n e^n \right) + \psi \left(\sum_{n=N+1}^{\infty} a_n e^n \right) \right|$$

$$= \left| \sum_{n=1}^{N} a_n \psi(e^n) + \psi \left(\sum_{n=N+1}^{\infty} a_n e^n \right) \right|$$

$$\leq \left| \sum_{n=1}^{N} a_n \psi(e^n) \right| + \left| \psi \left(\sum_{n=N+1}^{\infty} a_n e^n \right) \right|$$

$$\leq \sum_{n=1}^{N} |a_n| |\psi(e^n)| + ||\psi|| \sum_{n=N+1}^{\infty} |a_n|$$

$$\leq ||\Phi(\psi)||_{\infty} \sum_{n=1}^{N} |a_n| + ||\psi|| \cdot \frac{\varepsilon}{||\psi||}$$

$$\leq ||\Phi(\psi)||_{\infty} + \varepsilon.$$

This contradicts (??).

Next we show Φ is linear. Let $\varphi, \psi \in (\ell^1)^*$ and let $\lambda, \mu \in \mathbb{C}$. Then

$$\Phi(\lambda \varphi + \mu \psi) = ((\lambda \varphi + \mu \psi)(e^n))
= \lambda(\varphi(e^n)) + \mu(\psi(e^n))
= \lambda \Phi(\varphi) + \mu \Phi(\psi).$$

Therefore Φ is an isometric embedding.

Now show that Φ is surjective, and hence an isometric isomorphism. Let $(a_n) \in \ell^{\infty}$, let $M = \sup\{|a_n|\}$, and let $E = \operatorname{span}\{e^n \mid n \in \mathbb{N}\}$. Define $\varphi \colon E \to \mathbb{C}$ to be the unique linear map such that

$$\varphi(e^n) = a_n$$

for all $n \in \mathbb{N}$. Let $x = x_{n_1}e^{n_1} + \cdots + x_{n_k}e^{n_k} \in E$ such that $|x_{n_1}| + \cdots + |x_{n_k}| \leq 1$. Then

$$|\varphi(x_{n_1}e^{n_1} + \dots + x_{n_k}e^{n_k})| = |x_{n_1}\varphi(e^{n_1}) + \dots + x_{n_k}\varphi(e^{n_k})|$$

$$= |x_{n_1}a_{n_1} + \dots + x_{n_k}a_{n_k}|$$

$$\leq |x_{n_1}||a_{n_1}| + \dots + |x_{n_k}||a_{n_k}|$$

$$\leq |x_{n_1}|M + \dots + |x_{n_k}||M$$

$$= (|x_{n_1}| + \dots + |x_{n_k}||)M$$

$$\leq M$$

It follows that φ is bounded. By the Hahn-Banach Theorem, there exists a bounded linear functional $\widetilde{\varphi}$ defined on all of ℓ^1 such that $\widetilde{\varphi}|_E = \varphi$ and $\|\widetilde{\varphi}\| = \|\varphi\|$. Choose such a $\widetilde{\varphi} \in (\ell^1)^*$. Then clearly $\Phi(\widetilde{\varphi}) = (a_n)$. Therefore Φ is surjective, and hence an isometric isomorphism.

Appendix

Problem 1

Proposition 0.10. Let A be a non-emtpy set of real numbers which is bounded above and let λ be any non-negative real number. Then

$$\sup(\lambda A) = \lambda \sup(A). \tag{5}$$

Proof. If $\lambda = 0$, then (5) is obvious, so assume $\lambda > 0$. Let α denote $\sup(A)$. Choose any element in λA , say λa where $a \in A$. Then since $a \le \alpha$ and λ is non-negative, we have $\lambda a \le \lambda \alpha$. This implies

$$\sup(\lambda A) \le \lambda \sup(A)$$
.

For the reverse direction, observe that

$$\sup(A) = \sup(\lambda^{-1}\lambda A)$$

$$\leq \lambda^{-1} \sup(\lambda A),$$

and this implies

$$\sup(\lambda A) \ge \lambda \sup(A)$$
.

Proposition 0.11. Let A and B be non-empty sets of non-negative real numbers both of which are bounded above. Then

$$\sup(A+B) = \sup(A) + \sup(B). \tag{6}$$

Proof. Let α denote $\sup(A)$, let β denote $\sup(B)$, and let a+b be an arbitrary element in A+B. Then $a \leq \alpha$ and $b \leq \beta$ implies $a+b \leq \alpha+\beta$. Therefore

$$\sup(A+B) \le \sup(A) + \sup(B). \tag{7}$$

To show the reverse inequality, we assume (for a contradiction) that the inequality (7) is strict

$$\sup(A+B) < \sup(A) + \sup(B).$$

Choose $\varepsilon > 0$ such that

$$\sup(A+B) < \sup(A) + \sup(B) - \varepsilon. \tag{8}$$

Choose $a \in A$ and $b \in B$ such that $a > \alpha - \varepsilon/2$ and $b > \beta - \varepsilon/2$. Then

$$a + b > \alpha - \frac{\varepsilon}{2} + \beta - \frac{\varepsilon}{2}$$

= $\alpha + \beta - \varepsilon$.

But this contradicts (8). Therefore

$$\sup(A+B) \ge \sup(A) + \sup(B).$$