

Decomposing Large Sparse NLP Matrices Applications in R/Python

Christopher Meaney

4th Year (Flex-Time) PhD Student, DLSPH, Division of Biostatistics, UofT Biostatistician, Department of Family and Community Medicine, UofT Research Student, Vector Institute Research Student, IC/ES

January 14, 2019

Data Science with Biomedical Text Data

Biomedical Text as Data

- Clinical Text (capture salient aspects of a clinical interaction)
 - Text that health care providers write about patients (patient EHR/EMR).
 - Text that organizations/patients write about physicians (CFPC, RateMD, others).
- Scientific Text (convey results of descriptive/analytic research)
 - Text extracted from scientific abstracts or scientific journal articles.
 - Text extracted from patents, trial registration portals, granting agencies, etc.
- Text from Social Media and the Internet
 - Text patients write about their health state (Twitter, FaceBook, Reddit, others).
 - Text patients write about health products (EBay, FDA/HC, others).
 - Text (generally) about health (Wikipedia, WebMD, NLM, CDC, WHO, others).
- Text from Genetic/Genomic Studies
 - Text encoding sequences of DNA base pairs (A.T.C.G).

Application Dataset for Today: The IC/ES Abstract Corpus

- N=3130 full text abstracts published between 1993-2018 by IC/ES scientists/staff/students.
- Data scraped from ICES/Home/Publications/Journal-Articles.

A Data and Modelling Pipeline for This Talk

• Notation: Strings (S), Tokens (T), Arrays (X), Representations (U).

Decomposing Large Sparse NLP Matrices

- Objective: Generate low-dim representation of high-dim, sparse, non-neg, NLP matrices.
- Applications/Interpretations of Low-Dim Distributed Representation ¹
 - Semantic, Topical, Archetypical Discovery.
 - $\bullet \quad {\sf Clustering/Browsing/Exploration}. \\$
 - Representation/Feature Learning.
 Learn Best Latent Variable Approximation.
 - Data Compression.
 - Data Imputation. Recommendation.

Application Dataset: The IC/ES Abstract Corpus

- Simple descriptive stats on meta-data describes organization and research program.
- Low-dim representation provides topical summarization research program.
- Low-dim representation for clustering/browsing based on an archetypical abstract.

¹Udell, M., Boyd, S., et al. (2016). Generalized Low Rank Models.

Computationally Processing Strings to Numeric Arrays

Mapping Character Sequences (S) to Token Sequences (T)

Low Level Computational Operations on Strings

- String splits, substrings, substitution, concatenation, etc.
- Regular expressions, pattern matching, etc.

Methods from Applied Natural Language Processing (NLP) ²

- Tokenization: Convert string sequences to token sequences.
 - Token defined as an arbitrary linguistically meaningful unit of analysis.
 - Word tokenizer, sentence tokenizer, n-gram tokenizer, etc.
- Normalization: Stem/lemmatize, case folding, stop-words, infrequent words, etc.
- Annotation: Part-of-speech tagging, word shapes, etc.

Result $S \to T$ **Pipeline:** Finite dimensional set of tokens/LMUs.

Used as an empirically defined "dictionary" of elements representing input text.

²Bird, S., et al. (2009). Natural Language Processing with Python.

Mapping Token Sequences (\mathcal{T}) to Numeric Arrays (\mathcal{X})

Vector Space Models 345

- Semantics of language captured as frequency counts of NLP matrices.
- Representation allows application math/stat models to text data.
- Representation high dimensional, sparse, non-negative integers.

Document Term Matrix (DTM): $X_{DTM} \in \mathbb{Z}_{+}^{D,V}$

• Element $\{d, v\}$ counts the number of times term/token v occurs in document d.

Term Co-Occurrence Matrix (TCM): $X_{TCM} \in \mathbb{Z}_{+}^{V,V}$

lacktriangle Element $\{i,j\}$ counts number times token j occurs within some context window of token i.

Transformations: dampen/smooth impact large frequencies in matrix.

Result $\mathcal{T} \to \mathcal{X}$ **Pipeline:** High-dim, sparse, non-negative NLP matrices.

³Turney, P., Pantel, P. (2010). From Frequency to Meaning: Vector Space Models of Semantics.

⁴Lenci, A. (2018). Distributional Models of Word Meaning.

⁵Manning, C., Shutze, H. (1999). Statistical Natural Language Processing.

COMPUTATIONAL DEMONSTRATION $S \to T \to X$ PIPELINE

Decomposing/Factorizing Large Sparse NLP Matrices

Decomposing/Factorizing Large Sparse NLP Matrices

- Processing text data yields high dimensional NLP matrices (DTM/TCM).
- Frequency counts from these matrices embody semantic structure text.
- Unsupervised learning on NLP matrices yields useful low-dim representation.

Review: Methods for (Low Rank) Reconstruction of DTM/TCM

- Multivariate Statistical Models
 - Principal Components Analysis (PCA).
 - Factor Analysis
- Low Rank Matrix Factorization/Approximation
 - Singular Value Decomposition (SVD), Latent Semantic Analysis (LSA).
 - Non-Negative Matrix Factorization (NMF).
 - Generalized Low Rank Matrix Approximations
- Bayesian Probabilistic Graphical Models
 - Latent Dirichlet Allocation (LDA) Topic Models.
 - Hierarchical Dirichlet Process (HDP) Topic Models.
 - Bayesian PCA. Bayesian Matrix Factorization.
- Neural Network Models
 - Word Vector Embedding (word2vec, GloVE), Could compose doc rep from word rep.
 - Neural Language Models. Auto-encoding documents. Neural matrix factorization.

Low Rank Matrix Approximations

Singular Value Decomposition (SVD): $X \approx U \Sigma V^T$

SVD: Best Rank-K Linear Approximation ⁶

- Rank-k SVD approximation minimizes Frobenius norm $|X U\Sigma V^T|_F^2$.
- U is D*K orthogonal matrix. Eigenvectors of XX^T.
- V is V*K orthogonal matrix. Eigenvectors of X^TX .
- Σ is K*K diagonal matrix of singular values. Square roots of eigenvalues XX^T or X^TX .

Latent Semantic Analysis: Popular model in IR/NLP/CogSci, etc. ⁷

- Rows of U are K-dim representation of document.
- Rows of V^T are V-dim semantic basis for words.

⁶Eckhart, C., Young, G. (1936). The approximation of one matrix by another of lower rank.

⁷Deerwester et al. (1991). Indexing by Latent Semantic Analysis.

Non Negative Matrix Factorization (NMF): $X \approx WH$

$$\begin{bmatrix} x_{1,1} & \cdots & \cdots & x_{1,V} \\ \vdots & \vdots & \ddots & \vdots \\ x_{D,1} & \cdots & \cdots & x_{D,V} \end{bmatrix} \approx \begin{bmatrix} \sum_{W_{1,1}} & \cdots & W_{1,K} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ w_{D,1} & \cdots & w_{D,K} \end{bmatrix} \begin{bmatrix} K \times V \text{matrix} \\ H_{1,1} & \cdots & \cdots & H_{1,V} \\ \vdots & \vdots & \vdots \\ H_{K,1} & \cdots & \cdots & H_{K,V} \end{bmatrix}$$

NMF: A Different Idea on the Low Rank Approximation

- Enforce non-negativity constraints on both W and H (difference from SVD). 89
- Neither W nor H are orthogonal matrices (difference from SVD).
- Can constrain rows W to be non-negative, sum to one ("decomposition of parts").
- Can apply regularization (L1, L2). Yields sparse solutions. ¹⁰

NMF: Popular model in vision/text, signal processing, time series, etc.

- Rows of W are K-dim representation of document.
- Rows of H are V-dim semantic basis for words.

⁸Lee, D., Seung, S. (1999). Learning Parts of Objects by Non-Negative Matrix Factorization.

 $^{^{9}}$ Lee, D., Seung, S. (2001). Algorithms for Non-Negative Matrix Factorization.

¹⁰Hoyer, P. (2004). Non-Negative Matrix Factorization with Sparseness Constraints.

Bayesian Probabilistic Graphical Models

Topic Models:

- Describe thematic structure of corpora via latent topics.
 - A topics is a discrete/categorical distribution over vocabulary.
- Useful for organizing, summarizing large text corpora.
- Example mixed membership model, admixture model, etc.

Mixed Membership Models (MMMs): Mixture Models for Grouped Data 11

- Data naturally grouped $(w_{d,n})$. For d=1...D and $n=1...N_d$.
- Each group represented as mixture model.
- Mixture components shared across groups.
- Mixture proportions vary between groups.

Generative Process for Mixed Membership Models

- ① Draw shared components $\phi_k \sim f(\cdot|\beta)$
- 2 For each group d = 1...D:
 - ① Draw proportions $\theta_d \sim \text{Dir}(\alpha)$
 - ② For each data point, $w_{d,n}$, $n = 1...N_d$:
 - ① Draw a mixture assignment $z_{d,n} \sim Cat(\theta_i)$
 - ② Draw the data point $w_{d,n} \sim g(\cdot | \phi_{z_{d,n}})$

¹¹Airoldi, E. (2014). Introduction to Mixed Membership Models and Methods.

Latent Dirichlet Allocation (LDA): a MMM for discrete/text data. 12

- **1** Draw shared components $\phi_k \sim \text{Dir}_V(\cdot|\beta)$
- ② For each group d = 1...D:
 - **1** Draw proportions $\theta_d \sim \text{Dir}_K(\alpha)$
 - ② For each data point, $w_{d,n}$, $n = 1...N_d$:
 - **1** Draw a mixture assignment $z_{d,n} \sim \mathsf{Cat}_K(\theta_i)$
 - **2** Draw the data point $w_{d,n} \sim \mathsf{Cat}_V(\cdot|\phi_{\mathsf{z}_{d,n}})$

Latent Dirichlet Allocation (LDA): a graphical model perspective.

¹²Blei, D., Ng, A., Jordan, M. (2003). Latent Dirichlet Allocation.

Latent Dirichlet Allocation (LDA): Joint/posterior Distribution

- Generative-process/graphical-model imply joint distribution
- Posterior distribution from joint distribution, by conditional probability.

$$\begin{split} P(z,\theta,\phi|w,\alpha,\beta) &= \frac{P(w,z,\theta,\phi|\alpha,\beta)}{P(w)} \\ &\propto P(w,z,\theta,\phi|\alpha,\beta) \\ &= \prod_{k} P(\phi_{k};\beta) \prod_{d} P(\theta_{d};\alpha) \prod_{n} P(z_{d,n}|\theta_{d}) P(w_{d,n}|\phi_{z_{d,n}}) \\ &= \prod_{k} \mathsf{Dir}(\phi_{k};\beta) \prod_{d} \mathsf{Dir}(\theta_{d};\alpha) \prod_{n} \mathsf{Cat}(z_{d,n}|\theta_{d}) \mathsf{Cat}(w_{d,n}|\phi_{z_{d,n}}) \end{split}$$

Latent Dirichlet Allocation: Posterior Inference

• Gibbs Sampling ¹³. Collapsed Gibbs Sampling ¹⁴. Variational Inference ¹⁵.

¹³Pritchard, J. et al. (2000). Inference of Population Structure using Multilocus Genotype Data.

 $^{^{14}}$ Griffiths, T. (2002). Gibbs Sampling in the Model of Generative LDA.

¹⁵Blei, D. et al. (2016). Variational Inference: A Review for Statisticians.

Neural Network Models

Vector Embedding Models

- Embed/represent words using a Euclidean vector space \mathbb{R}^p .
- Dimension of p typically small: p=50-1000.

Goal Vector Embeddings: Distributional Hypothesis in NLP

- Semantically related words are close in vector space.
- Semantically dissimilar words are far apart in vector space.

Other interesting Properties Vector Embedding Models

- Ability to learn interesting linear latent sub-structures.
- E.g. Vector arithmetic captures analogical reasoning.
- E.g. Vector difference capture tense, pluralization, etc.
- E.g. Vector difference captures verb/adjective forms.

Algorithms for Estimating Word Vectors:

- word2vec ¹⁶¹⁷
- GloVe ¹⁸

 16 Mikolov, T. et al. (2013a). Efficient Estimation of Word Representations in Vector Space.

Mikolov, T. et al. (2013b). Distributed Representations of Words and their Compositionality.

 $^{^{18}\}mbox{Pennington, J., et al. (2014)}.$ GloVe: Global Vectors for Word Representation.

word2vec: Comp. Graph Continuous Bag of Words (CBOW) model

Figure Courtesy: Rong, X. (2014). word2vec Parameter Learning Explained.

word2vec: Computational Graph Skipgram Model

Figure Courtesy: Rong, X. (2014). word2vec Parameter Learning Explained.

GloVe: Global Vectors model

- Similar objective word2vec. Embed words v = 1...V in vector space \mathbb{R}^p .
- Direct model elements TCM. word2vec implicit via collocation probability.
- Count vs. predict methods. ¹⁹²

GloVe Optimization

• Objective Function: $J = \sum_{i,j=1}^{V} f(X_{i,j}) (w_i^T w_j + b_i + b_j - \log(X_{i,j}))$

$$f(x) = \begin{cases} \left(\frac{x}{x_{max}}\right)^{\alpha}, & \text{if } x < x_{max}.\\ 1, & \text{if } x \ge x_{max}. \end{cases}$$
 (1)

- Typical choices: $\alpha = \frac{3}{4}$, $x_{\text{max}} = 100$.
- Train model via stochastic gradient descent (or variant).
 - AdaGrad popular SGD optimizer.
 - Typicaly AdaGrad learning rate $\eta = 0.05$.
 - Stochastically sample non-zero elements TCM.

¹⁹Baroni, M., et al. (2014). Dont Count Predict: Systematic Comparison Semantic Vectors.

²⁰Levy, O., Goldberg, Y. (2014). Neural Word Embedding as Implicit Matrix Factorization.

Computational Demonstration with R/Python

Computational Demonstration with R/Python

Application Dataset: The ICES Abstract Corpus.

- N=3130 unique article titles from ICES scientists/staff/students from 1993-2018.
- Text data from scientific abstract (5.6Mb of plain text data).
- Min/max abstract length: (min=57 tokens, max=483 tokens).
- Unique words/tkens in vocabulary (cleaned): 6369.
- Total number of words/tokens in corpus (cleaned): 431,390.
- DTM dimensions and sparsity: 3130 rows, 6369 cols, 98.71% sparse.
- TCM dimensions and sparsity: 6369 rows, 6369 cols, 99.86% sparse.

Recall Goals of ICES Abstract Corpus Linguistic Analysis:

- Simple descriptive stats on meta-data describes organization and research program.
- Low-dim representation provides topical summarization research program.
- Low-dim representation for clustering/browsing based on an archetypical abstract.

R Packages and Python Modules:

- Singular Value Decomposition (SVD)
 - R Packages: svd(). irlba.
 - Python Modules: scipy.sparse.linalg.svds.
- Non-Negative Matrix Factorization
 - R Packages: NNLM. NMF.
 - Python Modules: Nimfa.
- Latent Dirichlet Allocation
 - R Packages: text2vec. lda. topicmodels.
 - Python Modules: gensim. 1da.
- Word Vector Embeddings (word2vec, GloVe, etc.)
 - R Packages: text2vec.
 - Python Modules: gensim.