PCA提要

基本思路

假设有伸缩程度不一样的两维(由图中 u1 和 u2 决定):

那么在降维的过程中选择将保留数据方差大(u₁)的那个维度。

方法

假设一组中心化(减掉均值之后)后的数据: $\{x_1,x_2,\dots x_N\}$,其中 x_i 是D维向量;要找到方差最大的维度,由 u_1 表示。

即求: $argmax_{u_1} \sum (x_i^T u_1)^2$

 $\Leftrightarrow f(u_1) = \sum (x_i^T u_1)^2$ 并作如下变形:

 $f(u_1) = \sum (x_i^T u_1)^2 = \sum (x_i^T u_1)^T (x_i^T u_1) = \sum u_1^T x_i x_i^T u_1 = u_1^T \sum x_i x_i^T u_1 = u_1^T X X^T u_1$

其中, $X=[x_1,x_2,\ldots,x_N]$

此外,u1 需满足约束条件: $u_1^T u_1 = 1$ (标准基)

拉格朗日乘子法:

$$f_2(u_1) = u_1^T X X^T u_1 + \lambda (1 - u_1^T u_1)$$

$$\frac{\partial f_2}{\partial u_1} = 2XX^T u_1 - 2\lambda u_1 = 0$$

所以 $XX^Tu_1 = \lambda u_1$, 即:满足最大值条件的 u_1 一定是 XX^T 的特征向量。并且: $f(u_1) = u_1^TXX^Tu_1 = u_1^T\lambda u_1 = \lambda u_1$

因此:最大的特征值对应的特征向量即是方差最大的维度

所以,求得 XX^T 的特征值和特征向量,按特征值大小排序并取前K个对应的特征向量按行排列成矩阵B,那么BX 即为降维后的数据