and to the version of (D) given by

minimize
$$y'b - y''b$$

subject to $(y' \ y'') \begin{pmatrix} A \\ -A \end{pmatrix} \ge c$ and $y', y'' \ge 0$,

where $y', y'' \in (\mathbb{R}^m)^*$, since the inequalities $Ax \leq b$ and $-Ax \leq -b$ together imply that Ax = b, we have equality for all these inequality constraints, and so the Conditions $(*_D)$ place no constraints at all on y' and y'', while the Conditions $(*_P)$ assert that

$$x_j = 0$$
 for all j for which $\sum_{i=1}^m (y_i' - y_i'') a_{ij} > c_j$.

If we write y = y' - y'', the above conditions are equivalent to

$$x_j = 0$$
 for all j for which $\sum_{i=1}^m y_i a_{ij} > c_j$.

Thus we have the following version of Theorem 47.11.

Theorem 47.13. (Equilibrium Theorem, Version 2) For any Linear Program (P2) in standard form (with Ax = b where A is an $m \times n$ matrix, $x \ge 0$, and objective function $x \mapsto cx$) and its Dual Linear Program (D), for any feasible solution x of (P) and any feasible solution y of (D), x and y are optimal solutions iff

$$x_j = 0$$
 for all j for which $\sum_{i=1}^m y_i a_{ij} > c_j$. $(*_P)$

Therefore, the slackness conditions applied to a Linear Program (P2) in standard form and to its Dual (D) only impose slackness conditions on the variables x_j of the primal problem.

The above fact plays a crucial role in the primal-dual method.

47.5 The Dual Simplex Algorithm

Given a Linear Program (P2) in standard form

maximize
$$cx$$

subject to $Ax = b$ and $x \ge 0$,

where A is an $m \times n$ matrix of rank m, if no obvious feasible solution is available but if $c \leq 0$, rather than using the method for finding a feasible solution described in Section 46.2 we may use a method known as the dual simplex algorithm. This method uses basic solutions (u, K) where Au = b and $u_j = 0$ for all $u_j \notin K$, but does not require $u \geq 0$, so u may not be feasible. However, $y = c_K A_K^{-1}$ is required to be feasible for the dual program

minimize
$$yb$$

subject to $yA \ge c$,