Numerical bootstrap

Jinyuan Wu

Department of Physics, Fudan University

2021

Introduction

What's bootstrap

- A quantum theory = expectations of all Hermitian operators;
 Hamiltonian/Lagrangian ⇔ "probability distribution"
- Constraint on the system \Rightarrow relation between different $\langle O \rangle$'s ("data"); independent $\langle O \rangle$'s \Leftrightarrow parameters in the model
- Inequality constraint (e.g. positivity of $\langle O^{\dagger}O\rangle$) \Rightarrow allowed range of $\langle O\rangle$'s
- Solving a class of problems without mentioning explicitly the wave function/path integral: hence the name bootstrap

Why we need it

Because it doesn't fail with strong non-perturbative effects.¹

¹arXiv 2108.11416

Example: conformal bootstrap

- The most famous example: conformal bootstrap
- Constraints: (spinless) two-point function

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2\Delta_{\mathcal{O}}}},$$
 (1)

three-point function

$$\langle \mathcal{A}(x)\mathcal{B}(y)\mathcal{C}(z)\rangle = \frac{f_{\mathcal{A}\mathcal{B}\mathcal{C}}}{|x-y|^{\Delta\mathcal{A}+\Delta_{\mathcal{B}}-\Delta_{\mathcal{C}}}|y-z|^{\Delta_{\mathcal{B}}+\Delta_{\mathcal{C}}-\Delta\mathcal{A}}|z-x|^{\Delta_{\mathcal{C}}+\Delta_{\mathcal{A}}-\Delta_{\mathcal{B}}}}$$
(2)

Higher order correlation functions: OPEs.

- Independent parameters: $\{\Delta_{\mathcal{O}}, I_{\mathcal{O}}, f_{\mathcal{ABC}}\}$
- Inequality constraints (self-consistent conditions): determining the range of parameters

Example: conformal bootstrap

- Example of conformal bootstrap: verify whether the critical point of 3D Ising model is a CFT and its position in the allowed region²
- Physical picture tells us there are two degrees of freedom: energy density ϵ , spin field σ
- Below is Fig. 3 in the paper: comparing critical exponents of 3D Ising model, and the allowed range from conformal bootstrap

²arXiv 1203.6064

How to perform bootstrap for a generic system?

• Correlation functions cannot be determined by countably infinite parameters: no $\{\Delta_{\mathcal{O}}, I_{\mathcal{O}}, f_{\mathcal{ABC}}\}$.

Solution Store $\langle O_1(x_1)O_2(x_2)\cdots O_n(x_n)\rangle$ separately. Symmetries reduce the size of data: Suppose C is a symmetry,

$$\langle OC \rangle = \langle CO \rangle. \tag{3}$$

Derivation similar to below.

Hard to get OPE
 Solution Density matrix is determined solely by H, then

$$\langle OH \rangle = \operatorname{tr}(\rho(H)OH) = \operatorname{tr}(H\rho(H)O) = \operatorname{tr}(\rho(H)HO) = \langle HO \rangle$$
 (4)

for all operators O. For energy eigenstates (i.e with definite E), we have

$$\langle OH \rangle = E \langle O \rangle, \quad E = \langle H \rangle.$$
 (5)

The equality constraints used together with the positivity constraint

$$\langle O^{\dagger}O\rangle \geq 0$$
 (6)

for every O defines an allowed region - the feasible domain for the following optimization.

- To get ground state information, minimize $\langle H \rangle$ globally.
- To get information about excited states, find local minima of $\langle H \rangle$.

The procedure of numerical bootstrap Input data:

- Determine N operators $\{O_i\}$ as the basis of all operators. Example: normal ordered, with a length cutoff
- Data of equality constraints: Hamiltonian, symmetry, etc.
- Commutation rules, normal ordering rules, etc. so that O_iO_j can be expanded in terms of $\{O_i\}$
- Hamiltonian $H = \sum_i c_i O_i$

Building the optimization problem:

- **1** Declare N variables $\{X_i\}$, $X_i = \langle O_i \rangle$ after optimization
 - ② Impose equality constraints on $\{X_i\}$ according to e.g. $\langle [H,O] \rangle = 0$
 - **1** Imposing semidefinite constraint on $M_{ij} = \langle O_i^{\dagger} O_j \rangle$, so that after optimization $\langle O^{\dagger} O \rangle \geq 0$ for every O
 - **o** Optimize $\sum_i c_i X_i$

Some technical aspects of the problem

When building the optimization problem:

- A little symbolic calculation required
- ullet Auto normal ordering of O_iO_j given the operator algebra
- Auto commutator: [A, B] = normal ordered AB normal ordered BA

For optimization itself

- linear semidefinite programming (linear SDP) when using $\langle [H, O] \rangle = 0 \ (\langle HO \rangle \ \text{and} \ \langle OH \rangle \ \text{being linear combination of} \ \{O_i\})$
 - Convex optimization, mature solvers³
- nonlinear semidefinite programming (nonlinear SDP) when using $\langle HO \rangle = E \langle O \rangle$ because there are optimization variables in E
 - No solver mature enough ⁴

³See Wikipedia

⁴See the discussion before Sec. 1.1 in arXiv 2108.04830. Also, no solver supporting both SDP and nonlinear programming (NLP) is listed in the solver list of JuMP.jl. ≥ ∞

- linear SDP (constraints: $\langle [O, H] \rangle = 0$, thermal states allowed) easy
- nonlinear SDP (constraints: $\langle OH \rangle = E \langle O \rangle$, no thermal states) hard

Example of linear SDP (and why it's easy)

$$\begin{aligned} \max \ & M_{11} + 2M_{12}, \ \text{s.t.} \\ & M = M^\top, \ M \geq 0, \\ & M_{11} + M_{12} + M_{13} = -0.5, \\ & M_{22} = 2M_{11} + 3M_{12} + 1, \\ & M_{23} + 4M_{11} = 0, \\ & M_{33} = 4M_{11} + 5M_{12}. \end{aligned}$$

- Convex feasible domain
- Linear objective ⇒ minimum at the edge

Example: x^4 nonlinear oscillator

Consider the nonlinear oscillator⁵

$$H = x^2 + p^2 + gx^4. (7)$$

- Famous failure of perturbation theory⁶
- Symmetry: $x \to -x \Rightarrow \langle x^n \rangle = 0$ with odd n
- Building the optimization problem:

⁵The example is provided in arXiv 2004.10212

⁶Carl M. Bender and Tai Tsun Wu, Anharmonic Oscillator. Phys. Rev. 184, 1231. ⊃ ◦ ○

Example: x^4 nonlinear oscillator

Numerical bootstrap can be quite precise!