Assignment 4 solutions

1. Let $\Sigma = \{0, 1\}$, and assume A and B are Turing-recognizable languages such that $A \cup B = \Sigma^*$. Prove that there exists a decidable language $C \subseteq \Sigma^*$ such that

$$A \cap \overline{B} \subseteq C$$
 and $\overline{A} \cap B \subseteq \overline{C}$.

Solution. Because A and B are Turing-recognizable languages, there must exist DTMs M_A and M_B such that $L(M_A) = A$ and $L(M_B) = B$. Define C = L(K) for a new DTM K having input alphabet Σ that operates in the following way:

On input *x*:

- 1. Set t = 1.
- 2. Simulate M_A on input x for t steps. If M_A accepts x within t steps, then accept.
- 3. Simulate M_B on input x for t steps. If M_B accepts x within t steps, then reject.
- 4. Set t = t + 1 and goto step 2.

We must now prove that *C* has the required properties.

First let us prove that C is decidable. It suffices to prove that K halts on all input strings, for then we will have that K decides C. The fact that K halts on all inputs follows from the assumption $A \cup B = \Sigma^*$, for there must therefore be some positive integer t for which either M_A or M_B accepts x within t steps. (It could be that they both accept x, but this is fine—we just want to be sure that K never runs forever.)

Now let us prove the two set containments above. For any string $x \in A \cap \overline{B}$ we must have that M_A accepts x (because $x \in A$) and M_B does not accept x (because $x \in \overline{B}$). It must therefore be that K accepts x, so $x \in C$. We have just proved that $A \cap \overline{B} \subseteq C$. The other containment is similar. For any string $x \in \overline{A} \cap B$ we must have that M_A does not accept x (because $x \in \overline{A}$) and M_B does accept x (because $x \in B$). It must therefore be that K rejects x, so $x \in \overline{C}$.

2. Let Σ be an alphabet, and assume that we have fixed a scheme for encoding every possible DTM M as a string $\langle M \rangle \in \Sigma^*$ in the usual way, and define a language $A \subseteq \Sigma^*$ as

$$A = \{ \langle M \rangle : M \text{ is a DTM that halts on at least one input string} \}.$$

Prove that *A* is not decidable.

Solution. To prove that A is undecidable, it suffices to prove HALT $\leq_m A$. For any DTM M and any string w over the input alphabet of M, define a new DTM M_w as follows:

On input *x*:

Ignore the input string *x* and run *M* on input *w*.

It is the case that M_w halts on every string if M halts on w, and M_w never halts if M does not halt on w.

Now choose a string $z \in \Sigma^*$ with $z \notin A$, and define a function

$$f(y) = \begin{cases} \langle M_w \rangle & \text{if } y = \langle M, w \rangle \text{ for a DTM } M \text{ and a string } w \text{ over the input alphabet of } M \\ z & \text{otherwise} \end{cases}$$

for all $y \in \Sigma^*$. This is a computable function, and we will now prove that it is a reduction from HALT to A.

Suppose that *M* is a DTM and *w* is a string over the input alphabet of *M*. These implications hold:

$$\langle M, w \rangle \in \text{HALT} \Rightarrow M_w \text{ halts on all input strings} \Rightarrow \langle M_w \rangle \in A \Rightarrow f(\langle M, w \rangle) \in A,$$

 $\langle M, w \rangle \notin \text{HALT} \Rightarrow M_w \text{ never halts} \Rightarrow \langle M_w \rangle \notin A \Rightarrow f(\langle M, w \rangle) \notin A.$

For any string y that does not take the form $y = \langle M, w \rangle$, for some DTM M and a string w over the input alphabet of M, we have $y \notin HALT$ and $f(y) = z \notin A$. We have therefore proved that

$$y \in \text{HALT} \Leftrightarrow f(y) \in A$$

for all $y \in \Sigma^*$. Consequently, HALT $\leq_m A$, which completes the solution.

3. Define two languages as follows:

$$\begin{split} E_{\text{DTM}} &= \{\langle M \rangle : \ M \text{ is a DTM with } L(M) = \varnothing \} \\ \text{DISJ}_{\text{DTM}} &= \{\langle M_1, M_2 \rangle : \ M_1 \text{ and } M_2 \text{ are DTMs with } L(M_1) \cap L(M_2) = \varnothing \} \,. \end{split}$$

We already discussed E_{DTM} in lecture. The language $DISJ_{DTM}$ contains all encodings $\langle M_1, M_2 \rangle$ of pairs of DTMs whose corresponding languages are *disjoint*.

- (a) Prove that $E_{DTM} \leq_m DISJ_{DTM}$.
- (b) Prove that $DISJ_{DTM} \leq_m E_{DTM}$.

(When answering this question you should assume that E_{DTM} and $DISJ_{DTM}$ are languages over the same alphabet Σ .)

Solution. (a) Define function $f: \Sigma^* \to \Sigma^*$ as

$$f(\langle M \rangle) = \langle M, M \rangle$$

for every DTM M. (For any string x that does not encode a DTM, define f(x) to be any fixed string that is not contained in DISJ_{DTM}.) The function f is computable, and for every DTM M we have

$$\langle M \rangle \in \mathcal{E}_{DTM} \Leftrightarrow \langle M, M \rangle \in DISJ_{DTM} \Leftrightarrow f(\langle M \rangle) \in DISJ_{DTM}.$$

It follows that $E_{DTM} \leq_m DISJ_{DTM}$.

(b) Define function $f: \Sigma^* \to \Sigma^*$ so that for any two DTMs M_1 and M_2 , we have

$$f(\langle M_1, M_2 \rangle) = \langle M_3 \rangle$$
,

where M_3 is a DTM operating as follows:

On input *x*:

- 1. Run M_1 on input x.
- 2. Run M_2 on input x.
- 3. If both M_1 and M_2 accept x, then accept, else reject.

Observe that $L(M_3) = L(M_1) \cap L(M_2)$. (This holds regardless of whether or not M_1 and M_2 halt on all inputs.)

The function f is computable, and we have

$$\langle M_1, M_2 \rangle \in \text{DISJ}_{\text{DTM}} \Leftrightarrow \langle M_3 \rangle \in E_{\text{DTM}} \Leftrightarrow f(\langle M_1, M_2 \rangle) \in E_{\text{DTM}}.$$

Therefore DISJ_{DTM} $\leq_m E_{DTM}$.

- 4. Prove that there does not exist a DTM *M* that simultaneously satisfies both of the following two properties:
 - (i) If *K* is a DTM that halts on all input strings over its alphabet and L(K) is infinite, then *M* accepts $\langle K \rangle$.
 - (ii) If K is a DTM that halts on all input strings over its alphabet and L(K) is finite, then M does not accept $\langle K \rangle$.

Solution. Suppose the contrary: there does exist such a DTM *M*. We will use this assumption to prove that

$$DIAG = \{ \langle T \rangle : T \text{ is a DTM and } \langle T \rangle \notin L(T) \}$$

is Turing-recognizable (which we know is false). First, for an arbitrary DTM T, define a DTM K_T as follows (for an arbitrary choice of an alphabet Σ):

On input $x \in \Sigma^*$:

- 1. Run *T* on $\langle T \rangle$ for |x| steps.
- 2. If *T* accepts $\langle T \rangle$ within |x| steps, then *reject*, otherwise *accept*.

It holds that K_T always halts, and that $L(K_T)$ is infinite if and only if T does not accept $\langle T \rangle$. The function $f(\langle T \rangle) = \langle K_T \rangle$ is a computable function.

Now consider a DTM *D* defined as follows:

On input $\langle T \rangle$:

- 1. Compute $\langle K_T \rangle = f(\langle T \rangle)$.
- 2. Run M on $\langle K_T \rangle$.

Given that K_T always halts, it holds that M accepts $\langle K_T \rangle$ if and only if $L(K_T)$ is infinite, and therefore D accepts $\langle T \rangle$ if and only if T does not accept $\langle T \rangle$. Therefore L(D) = DIAG, which contradicts the fact that DIAG is not Turing-recognizable.

- 5. Let $\Sigma = \{0,1\}$ and let $A, B \subseteq \Sigma^*$ be languages.
 - (a) Prove that if *A* and *B* are both in NP, then the union $A \cup B$ is also in NP.
 - (b) Prove that if *A* is NP-complete, *B* is in P, $A \cap B = \emptyset$, and $A \cup B \neq \Sigma^*$, then $A \cup B$ is NP-complete.

Solution. (a) Under the assumption that A is in NP, there must exist a polynomially bounded time-constructible function $p : \mathbb{N} \to \mathbb{N}$ and a language $C \in P$ such that

$$x \in A \Leftrightarrow \left(\exists y \in \Sigma^{p(|x|)}\right) \left[\langle x, y \rangle \in C\right]$$

for every $x \in \Sigma^*$. Similarly, under the assumption that B is in NP, there must exist a polynomially bounded time-constructible function $q : \mathbb{N} \to \mathbb{N}$ and a language $D \in P$ such that

$$x \in B \Leftrightarrow \left(\exists z \in \Sigma^{q(|x|)}\right) [\langle x, z \rangle \in D]$$

for every $x \in \Sigma^*$.

Define $r : \mathbb{N} \to \mathbb{N}$ as r(n) = p(n) + q(n) for each $n \in \mathbb{N}$, which is a polynomially bounded time-constructible function. Also define a language E as follows:

$$E = \{ \langle x, yz \rangle : y \in \Sigma^{p(|x|)}, z \in \Sigma^{q(|x|)} \text{ and } (\langle x, y \rangle \in C \text{ or } \langle x, z \rangle \in D) \}.$$

Given that C and D are in P, it is straightforward to decide E in polynomial time, so $E \in P$. It holds that

$$x \in A \cup B \Leftrightarrow \left(\exists w \in \Sigma^{r(|x|)}\right) [\langle x, w \rangle \in E],$$

and therefore $A \cup B \in NP$.

(b) Given that A is NP-complete and B is in P, it holds that both A and B are in NP, and thus $A \cup B \in \text{NP}$ by part (a).

It remains to show that $A \cup B$ is NP-hard, which follows if we can prove that $C \leq_m^p A \cup B$ for some NP-hard language C. As A is NP-complete, and therefore NP-hard, it is enough to show that $A \leq_m^p A \cup B$.

Define a function f as

$$f(x) = \begin{cases} y & \text{if } x \in B \\ x & \text{if } x \notin B, \end{cases}$$

where y is any fixed string that is not in $A \cup B$. (Such a string must exist because $A \cup B \neq \Sigma^*$.) Given that $B \in P$, we have that f is polynomial-time computable.

If $x \in A$, then f(x) = x (because $A \cap B = \emptyset$), and therefore $f(x) \in A \cup B$.

If $x \notin A$, then there are two cases: $x \in B$ and $x \notin B$. If $x \in B$, then $f(x) = y \notin A \cup B$. If $x \notin B$, then f(x) = x, and because $x \notin A$ and $x \notin B$ we have $f(x) \notin A \cup B$.

Thus,

$$x \in A \Leftrightarrow f(x) \in A \cup B$$
,

and therefore $A \leq_m^p A \cup B$.