සියලු ම හිමිකම් ඇව්රිණි / ආගුට பதிப்புரிமையுடையது / $All\ Rights\ Reserved$)

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්**ත් වෙනත් මානා විභාග දෙපාර්තික් විභාග දෙපාර්තමේන්තුව ලී** ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் தினைக்களம் இலங்கைப் ப**ரிட்**சைத் தினைக்களும் இலங்கைப் பரிட்சைத் தினைக்களம் Department of Examinations, Sri Lanka Department **இலங்கைய**் **பரிங்கைக்**ற **எனிக்குளா**றை, Sri Lanka Department of Examinations, Sri Lanka ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දේපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கை**ப் சிலாப்பு பூ.பி.பி.ட்.அ.பி.பி.பி.அ.வே.க்களம் இலங்கைப் பரிட்சைத் திணைக்களம்**

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

්රසායන විදූපාව இரசாயனவியல் Ι Chemistry

2018.08.15 / 0830 - 1030

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ තියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🛪 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- st 1 සිට $oldsymbol{50}$ තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් $oldsymbol{50}$ වැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටූපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න.**

සාර්වනු වායු නියතය $R = 8.314 \,\mathrm{J \ K^{-1} \ mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියකය $h^2 = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$

- භූමි අවස්ථාවේ පවතින වායුමය Co³⁺ අයනයක ඇති යුගලනය නොවූ ඉලෙක්ටුෝන සංඛ්‍‍‍ාාව වනුයේ,

- (3) 3 (4) 4
- ${f 2.}$ පරමාණුවක පරමාණුක කාක්ෂිකයක හැඩය හා ආශුිත වන්නේ කුමන ක්වොන්ටම් අංකය/අංක $(n,\,l,\,m_{_l},\,m_{_s})$ ද?
 - (1) l
- (2) m_{i}
- (3) *n* හා *l*
- (4) $n \otimes m$
- (5) l හා m,

3. පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

$$CH_{3}CH_{2}CH-C=CHCO_{2}H$$
Br NO_{2}

- (1) 4-bromo-3-nitro-2-hexenoicacid
- (2) 4-bromo-3-nitro-2-hexenoic acid.
- (3) 3-nitro-4-bromo-2-hexenoicacid
- (4) 3-nitro-4-bromo-2-hexenoic acid
- (5) 3-bromo-4-nitro-4-hexenoic acid
- 4. O_2 , H_2O , H_2O_2 , OF_2 හා O_2F_2 (H_2O_2 වලට සමාන වසුහයක් ඇත.) යන අණු, ඔක්සිජන්හි (O) ඔක්සිකරණ අවස්ථා අඩු වන පිළිවෙළට සැකසූ විට නිවැරදී පිළිතුර වනුයේ,
 - (1) $O_2F_2 > OF_2 > O_2 > H_2O > H_2O_2$
- (2) $H_2O > H_2O_2 > O_2 > O_2F_2 > OF_2$
- (3) $H_2O_2 > O_2F_2 > O_2 > OF_2 > H_2O$
- (4) $OF_2 > O_2F_2 > O_2 > H_2O > H_2O_2$
- (5) $OF_2 > O_2F_2 > O_2 > H_2O_2 > H_2O_3$
- 5. කයෝසයනේට් අයනය SCN සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් ව**ූ**හය වනුයේ,

- 6. ඝනත්වය $1.03~{
 m g~cm}^{-3}$ හා ස්කන්ධය අනුව NaI 3% වන NaI දුාවණයක මවුලිකතාව (mol dm $^{-3}$) වනුයේ, (Na = 23, I = 127)
 - (1) 0.21
- (2) 0.23
- (3) 0.25
- (4) 0.28
- (5) 0.30

7. AgI හා AgBr හි අවක්ෂේප ආසුැත ජලය සුළු පුමාණයකට එකතු කරන ලදී. මෙම මිශුණය $25~^{\circ}C$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. සමතුලිතතාවයේ දී ඝනයන් දෙකම පද්ධතියෙහි තිබෙන බව නිරීක්ෂණය කරන ලදී. පහත සඳහන් කුමන සම්බන්ධතාව මෙම දුාවණය සඳහා යෙදිය හැකි ද?

$$(25 \text{ °C } \otimes \xi \ K_{\text{sp(AgI)}} = 8.0 \times 10^{-17} \,\text{mol}^2 \,\text{dm}^{-6}, \ K_{\text{sp(AgBr)}} = 5.0 \times 10^{-13} \,\text{mol}^2 \,\text{dm}^{-6})$$

(1)
$$[Br^-] = \sqrt{5.0 \times 10^{-13}} \mod dm^{-3} \iff [I^-] = \sqrt{8.0 \times 10^{-17}} \mod dm^{-3}$$

(2)
$$[Br^{-}][I^{-}] = [Ag^{+}]^{2}$$

(3)
$$[Ag^+] = \left(\sqrt{5.0 \times 10^{-13}} + \sqrt{8.0 \times 10^{-17}}\right) \text{mol dm}^{-3}$$

(4)
$$\frac{[Br^-]}{[I^-]} = \frac{5.0}{8.0} \times 10^4$$

(5)
$$[Ag^+] = [Br^-] = [I^-]$$

- 8. පහත සඳහන් කුමන පුකාශය අසතෘ වේ ද?
 - (1) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල කාබනේට ජලයේ අදුාවා වුව ද ඒවායේ බයිකාබනේට දුාවාය වේ.
 - (2) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල හයිඩොක්සයිඩ ජලයේ දුාවා වේ.
 - (3) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල නයිටේට ජලයේ දුාවා වේ.
 - (4) Na සහ Mg වල ඔක්සයිඩ සහ හයිඩෙුොක්සයිඩ භාස්මික ගුණ පෙන්වන අතර Al හි ඔක්සයිඩය සහ හයිඩොක්සයිඩය උභයගුණි ලක්ෂණ පෙන්නුම් කරයි.
 - (5) Si සහ S වල හයිඩුයිඩ දුර්වල ආම්ලික ගුණ පෙන්නුම් කරයි.
- 9. පරමාණුක අරයයන් **වැඩි වන** පිළිවෙ<mark>ළට මූලද</mark>වා <mark>දී ඇත්</mark>තේ (වීමේ සිට දකුණට) පහත කුමන ලැයිස්තුවෙහි ද?
 - (1) Li, Na, Mg, S

- (2) C, Si, S, Cl
- (3) B, C, N, P

(4) Li, Na, K, Ca

- (5) B, Be, Na, K
- $oldsymbol{10.}$ A හා $oldsymbol{B}$ දුව පරිපූර්ණ දුාවණයක් සාදයි. නියත උෂ්ණත්වයෙහි ඇති සංවෘත දෘඪ බඳුනක් තුළ වාෂ්පය සමග සමතුලිතතාවයෙහි ඇති ${f A}$ හා ${f B}$ දුවයන්හි මිශුණයක් සලකන්න. ${f P}^o_{f A}$ හා ${f P}^o_{f B}$ යනු පිළිවෙළින් ${f A}$ හා ${f B}$ හි සන්තෘප්ත වාෂ්ප පීඩන වන අතර බඳුනෙහි මුළු පීඩනය P හා වාෂ්ප කලාප<mark>යෙ</mark>හි A හි මවුල භාගය X_{λ}^{\sharp} වේ. මෙම පද්ධතිය සම්බන්ධයෙන් පහත සඳහන් කුමක් නිවැරදි වේ ද?

(1)
$$P = \left(P_A^o - P_B^o\right) X_A^g + P_B^o$$

(1)
$$P = (P_A^o - P_B^o) X_A^g + P_B^o$$
 (2) $\frac{1}{P} = (\frac{1}{P_A^o} - \frac{1}{P_B^o}) X_A^g + \frac{1}{P_B^o}$ (3) $P = (P_A^o + P_B^o) X_A^g - P_B^o$

(3)
$$P = \left(P_A^o + P_B^o\right) X_A^g - P_B^o$$

(4)
$$\frac{1}{P} = \left(\frac{1}{P_B^o} - \frac{1}{P_A^o}\right) \frac{1}{X_A^g}$$
 (5) $\frac{1}{P} = \left(\frac{1}{P_A^o} - \frac{1}{P_B^o}\right) \frac{1}{X_A^g}$

(5)
$$\frac{1}{P} = \left(\frac{1}{P_A^o} - \frac{1}{P_B^o}\right) \frac{1}{X_A^g}$$

11. පහත සඳහන් දුවායන්හි තාපාංක වැඩි වන පිළිවෙළ වනුයේ,

- (5) $\text{He} < \text{CH}_4 < \text{CCl}_4 < \text{SiH}_4 < \text{CBr}_4$
- පහත දැක්වෙන ඒවායින් නිවැරදි පුකාශය හඳුනාගන්න.
 - (1) හයිඩුජන් පරමාණුවක $n=2 \longrightarrow n=1, n=3 \longrightarrow n=2$ සහ $n=4 \longrightarrow n=3$ ඉලෙක්ටුෝන සංකුමණ අතුරෙන් වැඩිම ශක්තියක් පිටකරනුයේ $n=3 \longrightarrow n=2$ වල දී ය.
 - (2) OF_2 , OF_4 සහ SF_4 විශේෂ අතුරෙන් අඩුවෙන්ම ස්ථායි වන්නේ SF_4 ය.
 - (3) $\operatorname{Li}, \overset{4}{\operatorname{C}}, \overset{4}{\operatorname{N}}, \overset{4}{\operatorname{Na}}$ සහ $\overset{4}{\operatorname{P}}$ මූලදුවා අකුරෙන් විදුහුත් සෘණතාව අඩුම මූලදුවාය Li වේ.
 - (4) (Li සහ F), (Li^+ සහ C^2) සහ (C^2 සහ F) යුගල වල, අරයයන්හි වැඩිම වෙනස ඇත්තේ Li^+ සහ O^{2-} අතර ය.
 - (5) CH₂Cl₂ වල දුව කලාපයෙහි පවතින එකම අන්තර් අණුක බල වර්ගය වන්නේ ද්විධුැව-ද්විධුැව බල වේ.

AL/2	8/02/S-I - 3 -
13.	$H_4^-(g) \longrightarrow \mathrm{CH}_3^-(g) + \mathrm{H}(g)$ පුතිකිුයාව සලකන්න.
	හත පුතිකුියාවේ සම්මත එන්තැල්පි වෙනස වනුයේ,) මීතේන්හි පළමු C—H බන්ධනයෙහි විසටනය සඳහා සම්මත එන්තැල්පි වෙනසයි. 2) මීතේන්හි සම්මත පරමාණුකරණ එන්තැල්පි වෙනසයි. 3) මීතේන්හි සම්මත පළමු අයනීකරණ එන්තැල්පි වෙනසයි. 4) මීතේන්හි සම්මත බන්ධන විසටන එන්තැල්පි වෙනසයි. 5) මීතේන්හි මුක්තබණ්ඩක සෑදීමේ සම්මත එන්තැල්පි වෙනසයි.
14.	$A(g)\longrightarrow B(g)$ යන මූලික පුතිකියාව සංවෘත දෘඪ බඳුනක් තුළ නියත උෂ්ණත්වයක දී සිදු වේ. බඳුනේ ආරම්භක ඩනය $P_{ ho}$ සහ පුතිකිුයාවේ ශීඝුතාව ආරම්භක අගයෙන් 50% වන විට පීඩනය $P_{ ho}$ වේ. පහත සඳහන් කුමක් මගින් ා සඳහා නිවැරදි අගය ලැබේ ද?
	$\frac{P_t}{P_o} = \frac{1}{2} \qquad (2) \frac{P_t}{P_o} = \frac{1}{\sqrt{2}} \qquad (3) \frac{P_t}{P_o} = \frac{1+\sqrt{2}}{2\sqrt{2}} \qquad (4) \frac{P_t}{P_o} = \frac{\sqrt{2}}{1+\sqrt{2}} \qquad (5) \frac{P_t}{P_o} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$
15.	${ m K}_{_{_{ m J}}}$ අගයයන් පිළිවෙළින් 4.7 හා 5.0 වන ${ m HA}$ හා ${ m HB}$ දුබල අම්ලවල සමමවුලික ජලීය දාවණයක් (එක් එක්
	2 ම්ලයෙන් $^{1.0}\mathrm{mol}\;\mathrm{dm}^{-3}$ වන) සමතුලිතතාවයේ ඇත.
	$\log\!\left(\!rac{[\mathrm{A}^-]}{[\mathrm{B}^-]}\! ight)$ හි අගය ආසන්න වශයෙන් සමාන වනුයේ,
	1) 23.5 (2) -0.3 (3) 0.3 (4) 0.94 (5) 1.06
16.	හත සඳහන් කුමන වගන්තිය $\mathrm{C_6H_5OH}$ පිළිබඳ ව අසත ෳ වේ ද?
	1) CH ₃ COCl සමග පුතිකියා <mark>කර ෆීනයිල්</mark> එ <mark>ස්ටරයක්</mark> සාදයි.
	2) බෝමීන් දියර සමග පුතිකිුය <mark>ා කර සුදු ප</mark> ැහැ <mark>ති අවක්ෂේපයක්</mark> ලබා ඉද්.
	3) NaHCO ₃ සමග පිරියම් කළ <mark>විට CO</mark> 2 වායුව පිට කරයි.
	4) NaOH හමුවේ $\mathrm{C_6^{}H_5^{}N_2^{\dagger}Cl^{-}}$ සමග පිරියම් කළ විට වර්ණවත් සංයෝගයක් ලබා දේ. 5) උදාසීන $\mathrm{FeCl_3^{}}$ සමග පිරියම් කළ විට වර්ණවත් (දම් පැහැයට හුරු) දුාවණයක් ලබා දේ.
	~ []
17.	තිකිුිිිිිිිිිිිිිිි සිටිිිි සිටිිිිිි සිටිිිිිි සිටිිිිිි සිටිිිිිි සිටිිිිි සිටිිිිි සිටිිිිි සිටිිිිි සිටිි 1) සැමවිටම පිතිකිිිිිිිිිිි සිටිිිිි සිටිිිිිිිිිිිිිි
	4) සැමවිටම උෂ්ණත්වයෙන් ස්වායත්ත වේ. (5) මුළු පුතිකිුිිිියා කාලය මෙන් දෙගුණයකට සමාන වේ.
18	වද <u>ා</u> පුත් රසායනික කෝෂයක විදාුුත්ගාමක බලය රඳා නොපවතින්නේ ,
10.	(1) විදයුත් විච්ඡේදායේ ස්වභාවය මත ය.
	(2) උෂ්ිණත්වය මත ය. (3) විද,පුත් විච්ඡේදා වල සාන්දුණ මත ය.
	(4) ඉලෙක්ටෝඩ වල පෘෂ්ඨික ක්ෂේතුඵල මත ය.
	(5) ඉලෙක්ටුෝඩ සාදන ලෝහ වර්ග මත ය.
19.	ආම්ලික මාධානයේ දී ${ m IO}_3^-$ (අයඩේට් අයනය), ${ m SO}_3^{2-}$ අයනය ${ m SO}_4^{2-}$ බවට ඔක්සිකරණය කරයි. ${ m Na}_2{ m SO}_3$
	$(0.50 \text{ mol dm}^{-3})$ දාවණයක් 25.0 cm^3 හි අඩංගු $\mathrm{Na_2SO_3}$ පුමාණය සම්පූර්ණයෙන් $\mathrm{Na_2SO_4}$ බවට ඔක්සිකරණය
	කිරීමට අවශා වන KIO_3 ස්කන්ධය 1.07 g වේ. $\mathrm{(O=16,K=39,I=127)}$ පුතිකිුයාව සම්පූර්ණ වූ පසු අයඩීන්හි අවසාන ඔක්සිකරණ අවස්ථාව වනුයේ,
	(1) -1 $(2) 0$ $(3) +1$ $(4) +2$ $(5) +3$
1	• •

- **20.** ආවර්තිතා වගුවේ s-ගොනුවේ මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත**ෂ වන්නේ ද?
 - (1) I කාණ්ඩයේ සියලු ම මූලදුවා ජලය සමග පුතිකිුයා කර H_2 වායුව නිදහස් කරයි. (2) Li හැර I කාණ්ඩයේ අනිකුත් සියලු ම මූලදවා N_2 වායුව සමග පුතිකිුයා කරයි. (3) II කාණ්ඩයේ සියලු ම මූලදවා N_2 වායුව සමග පුතිකිුයා කරයි. (4) වැඩිපුර O_2 සමග N_2 පිතිකිුයා කර N_2 O_2 ලබා දෙන අතර K, KO_2 ලබා දෙයි. (5) s-ගොනුවේ සියලු ම මූලදවා හොඳ ඔක්සිහාරක වේ.

21. පරිපූර්ණ වායුවක් අඩංගු දෘඪ බඳුන් දෙකකින් සමන්විත පද්ධතියක් රූපසටහනෙහි දක්වා ඇත. කපාටය විවෘත කිරීමෙන් බඳුන් එකිනෙක හා සම්බන්ධ කළ හැකි වේ. කපාටය විවෘත කළ විට පද්ධතිය ${f A}$ සැකසුමේ සිට ${f B}$ සැකසුම දක්වා වෙනස් වේ. සාමානායෙන් $n,\,P,\,V$ සහ T මගින් පිළිවෙළින් මවුල සංඛාාව, පීඩනය, පරිමාව හා උෂ්ණත්වය නිරූපණය කෙරේ.

සැකසුම 🗛 (කපාටය වසා ඇත)

සැකසුම B (කපාටය විවෘතව ඇත)

මෙම පද්ධතිය පිළිබඳ ව පහත දැක්වෙන කුමන සම්බන්ධය **නිවැරදි** වේ ද?

$$(1) \quad P_1 V_1 = P_2 V_2$$

(2)
$$\frac{P_3 T_1}{P_1} + \frac{P_3 T_2}{P_2} = 2T_3$$

(3)
$$\frac{T_1}{P_1} = \frac{T_2}{P_2}$$

(4)
$$P_1T_1 = P_2T_2$$

(5)
$$P_1V_1 + P_2V_2 = P_3(V_1 + V_2)$$

- **22.** ආවර්තිතා වගුවේ 3d-මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත** වන්නේ ද?
 - (1) පරමාණුක අරයයන්, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවෳයන්හි පරමාණුක අරයයන්ට වඩා කුඩා වේ.
 - (2) ඝනත්වය, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවාsයන්හි ඝනත්වයට වඩා වැඩි වේ.
 - (3) ${
 m V_2O_5}$, ${
 m CrO_3}$ හා ${
 m Mn_2O_7}$ ආම්ලික ඔක්සයිඩ වේ.
 - (4) පළමු අයනීකරණ ශක්ති, එම ආවර්තයේ ඇති <mark>s-ගොනු</mark>වේ මූලදුවාසයන්හි පළමු අයනීකරණ ශක්තිවලට වඩා අඩු
 - (5) කොබෝල්ට් සංයෝගවල කො<mark>බෝ</mark>ල්<mark>ට් හි</mark> වඩාත්ම සුලභ ඔක්සිකරණ අවස්ථා වනුයේ +2 හා +3 ය.
- $m{23.}$ එකිනෙකට වෙනස් උෂ්ණත්ව දෙකක දී $m{MO}(s) \longrightarrow m{M}(s) + rac{1}{2} m{O}_2(g)$ පුතිකිුයාව සඳහා සම්මත ගිබ්ස් ශක්ති වෙනස පහත දී ඇත.

T/K	ΔG°/kJ mo
1000	-100.2
2000	-148.6

පුතිකිුයාවෙහි සම්මත එන්ටෙුාපි වෙනස වනුයේ,

- (1) $248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (2) $-248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$

- (4) $348.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- (5) 48.4 J K⁻¹ mol⁻¹
- **24.** සාන්දු HNO_3 / සාන්දු $\mathrm{H}_2\mathrm{SO}_4$ මගින් බෙන්සීන් නයිටුෝකරණ යන්තුණයේ දී **නිවැරදි** පියවරක් දක්වන්නේ පහත සඳහන් කුමකින් ද?

$$(1) \bigcirc \stackrel{+}{\bigcap}^{NO_2} \longrightarrow \bigcirc \stackrel{H}{\longrightarrow}^{NO_2}$$

$$(2) \quad \bigcirc^{\uparrow}_{\text{NO}_2} \quad \longrightarrow \quad \bigcirc^{\uparrow}_{\text{H}}^{\text{NO}_2}$$

$$(3) \bigcirc^{NO_2} \longrightarrow \bigcirc^{H}_{+} NO_2$$

$$(4) \qquad \begin{array}{c} \text{H} & \text{HSO}_{4}^{\searrow} \\ \text{NO}_{2} & \longrightarrow & \begin{array}{c} \text{NO}_{2} \\ \text{+} & \text{H}_{2}\text{SO}_{4} \end{array}$$

$$(5) \qquad \begin{array}{c} + \text{NO}_2 \\ \text{H} \\ \text{HSO}_4 \end{array} \qquad + \text{H}_2\text{SO}_4$$

СН,СН,СОСН,

ඉහත සඳහන් පුතිකිුයා අනුපිළිවෙළෙහි X සහ Y හි වසුහ පිළිවෙළින් වනුයේ,

- ÒMgBr

- CH₂OMgBr
- CO₂MgBr CH₂CH₂CHCH₃ ÒΗ
- H₂CH₂CHCH₃ ÓΗ
- -OMgBr CH, CH_CH_CHCH_
- СН,СН,СНСН **OMgBr**

 ${
m 26.} \ \ ({
m NH_4})_2{
m CO}_3({
m s}), ({
m NH_4})_2{
m Cr}_2{
m O}_7({
m s})$ හා ${
m NH_4NO}_3({
m s})$ රත් කළ විට ලැබෙන නයිටුජන් අඩංගු සංයෝග පිළිවෙළින්

- (1) NH₃, N₂ to NO₂ (4) N₂, N₂O to NH₃
- $\begin{array}{lll} \text{(2)} & \text{N$_2$O}, \text{N$_2$ to NH$_3$} \\ \text{(5)} & \text{N$_2$}, \text{NH$_3$ to N$_2$O} \end{array}$
- (3) NH₃, N₂ to N₂O

 ${f 27.}$ සන්තෘප්ත ${f AgCl}$ දුාවණයක් හා ${f AgCl(s)}$ අඩංගු බීකරයක ${f Zn}$ කූරක් හා ${f Ag}$ කූරක් රූපයේ දැක්වෙන පරිදි ගිල්වා ලෝහ කුරු දෙක සන්නායකයක් මගින් සම්බන්ධ කළ විගස පහත සඳහන් කුමක් සිදු වේ ද?

 $Zn^{2+}(aq) + e \longrightarrow Zn(s) \quad E^{\circ} = -0.76 \text{ V}$

 $Ag^{+}(aq) + e \longrightarrow Ag(s) E^{\circ} = 0.80 V$

- (1) Zn දිය වේ,
- Ag තැන්පත් වේ, AgCl(s) දිය වේ.
- (2) Zn දිය වේ,
- AgCl(s) දිය වේ.

- (3) Zn දිය වේ,
- Ag දිය වේ, Ag දිය වේ,
- AgCl(s) තැන්පත් වේ.
- (4) Zn තැන්පත් වේ, Ag දිය වේ,
- AgCl(s) දිය වේ.
- (5) දුාවණයෙහි ක්ලෝරයිඩ සාන්දුණය අඩු වේ.

· ගයවැනි පිටුව බලන්න.

 ${f 28.}$ පහත දැක්වෙන පුතිකිුයා අනුපිළිවෙළෙහි ${f P}$ සහ ${f Q}$ හි වූ3හ පිළිවෙළින් වනුයේ,

$$C_6H_5C\equiv CH \xrightarrow{Hg^{2+}/m$$
නුක $H_2SO_4 \rightarrow P \xrightarrow{En/Hg} Q$

- (5) $C_6H_5C=CH_2$, $C_6H_5CHCH_3$
- **29.** පහත සඳහන් කුමන වගන්තිය බහුඅවයවක පිළිබඳ ව **වැරදී** ද?
 - (1) බේක්ලයිට් තාප ස්ථාපන බහුඅවයවයකි.
 - (2) ටෙෆ්ලෝන් තාප සුවිකාර්ය බහුඅවයවයකි.
 - (3) නයිලෝන් 6,6 සෑදී ඇත්තේ 1, 6-ඩයිඇමයිනොහෙක්සේන් සහ හෙක්සේන්ඩයිඔයික් අම්ලය අතර ආකලන බහුඅවයවීකරණය මගිනි.
 - (4) ටෙරිලීන් සෑදී ඇත්තේ එතිලීන් ග්ලයිකෝල් සහ ටෙරිතැලික් අම්ලය අතර සංඝනන බහුඅවයවීකරණය
 - (5) ස්වාභාවික රබර් cis-පොලිඅ<mark>යිසොපීන්</mark> දා<mark>මවලින්</mark> සමන්විත ය.
- **30.** $S_2^{O_3^{2-}}(aq) + 2H^+(aq) \longrightarrow H_2^{O(l)} + SO_2(g) + S(s)$ යන පුතිකියාවෙහි $S_2^{O_3^{2-}}$ අනුබද්ධයෙන් පෙළ (m) ෙසවීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. අම්ල දාවණයකට $0.01~{
 m mol~dm}^{-3}~{
 m S_2O_3^{2-}}$ විවිධ පරිමාවන් $({
 m v})$ එකතු කරමින් පුතිකිුයාවෙහි ආරම්භක ශීඝුතාව (R) මනින ලදී. පුතිකිුයා මිශුණයෙහි H^+ සාන්දුණය නියතව පවත්වා ගත් නමුත් මුළු පරිමාව (V) වෙනස් වීමට ඉඩ හරින ලදී. පුතිකිුයා<mark>වෙ</mark>හි ආරම්භක ශීසුතාව පිළිබඳ ව පහත සඳහන් කුමන සම්බන්ධය නිවැරදි වේ ද? කුමන සමබනයය නවැරද මව ද? $(1) \quad R \propto \left(\frac{\mathbf{v}}{\mathbf{V}}\right)^{\mathbf{m}} \qquad (2) \quad R \propto \mathbf{v}^{\mathbf{m}} \qquad (3) \quad R \propto \mathbf{v}^{\frac{1}{\mathbf{m}}} \qquad (4) \quad R \propto \left(\frac{\mathbf{v}}{\mathbf{V}}\right)^{\frac{1}{\mathbf{m}}} \qquad (5) \quad R \propto \mathbf{V}^{\mathbf{m}}$

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ්යාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාහවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)									
(a) සහ (b) පමණක් නිවැරදියි	(<i>b</i>) සහ (<i>c</i>) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(<i>d</i>) සහ (<i>a</i>) පමණක් නිවැරදියි	වෙනත් පුතිචාර සංබ ා වක් තෝ සංයෝජනයක් හෝ නිවැරදියි									

- 31. දූබල අම්ලයක් (නියත පරිමාවක්) හා පුබල භස්මයක් අතර අනුමාපනයක් සලකන්න. පහත සඳහන් කුමක්/කුමන ඒවා දුබල අම්ලයෙහි සාන්දුණයෙන් ස්වායක්ත වේ ද?
 - (a) සමකතා ලක්ෂායේ දී pH අගය
 - (b) අන්ත ලක්ෂාය කරා ළඟා වීමට අවශා පුබල භස්මයෙහි පරිමාව
 - (c) දුබල අම්ලයෙහි විඝටන නියතය
 - (d) අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයේ $[\operatorname{H}^+] imes [\operatorname{OH}^-]$ අගය

32. පහත දී ඇති අණුව පිළිබඳ ව පහත කුමන වගන්තිය/වගන්ති **සත**ෂ වේ ද?

$$CH_3$$
 $-C \equiv C - CHO$
 a b c d

- (a) කාබන් පරමාණු හතරම එකම තලයේ පිහිටයි.
- (b) C_d –H සහ C_d – C_c බන්ධන අතර කෝණය දළ වශයෙන් 120° වේ.
- (c) $\operatorname{C}_{\mathbf{b}}$ සහ $\operatorname{C}_{\mathbf{c}}$ අතර σ -බන්ධන දෙකක් සහ π බන්ධනයක් ඇත.
- (d) $\mathrm{C}_{\mathbf{b}}$ සහ $\mathrm{C}_{\mathbf{c}}$ අතර σ -බන්ධනයක් සහ π -බන්ධන දෙකක් ඇත.
- **33.** Na $_{
 m 2}$ CO $_{
 m 3}$ නිෂ්පාදනය පිළිබඳ ව **සහ**න වන්නේ පහත සඳහන් කුමන වගන්තිය/වගන්ති ද?
 - (a) භාවිත කරන එක අමුදුවාංගක් CO_2 වේ.
 - (b) $\mathrm{NH_{3}}$ වලින් සන්තෘප්ත ජලීය NaCl හා $\mathrm{CO_{2}}$ අතර පුතිකිුයාව තාපාවශෝෂක වේ.
 - (c) නිෂ්පාදන කිුියාවලිය අදියර පහකින් සමන්විත වේ.
 - (d) කිුයාවලියේ දී භාවිත වන NH_{2} වැඩි පුමාණයක් නැවත ලබාගත හැක.
- 34. මූලික පුතිකිුයාවක පෙළ පරීක්ෂණාත්මකව නිර්ණය කිරීමේ දී උෂ්ණත්වය නියත අගයක පවත්වා ගත යුතු වන්නේ,
 - (a) පුතිකුියාවෙහි පෙළ උෂ්ණත්වය මත රඳාපවතින නිසා ය.
 - (b) සකුියන ශක්තිය උෂ්ණක්වය සමග වෙනස් වන නිසා ය.
 - (c) ප්‍රතිකියාවෙහි යන්තුණය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
 - (d) ශීඝුතා නියතය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
- 35. පහත සඳහන් කුමන වගන්තිය/වගන්ති එතීන් සහ එකයින් පිළිබඳ ව යත්‍‍ වේ ද?
 - (a) CaC ු ජලය සමග පුතිකිුයා කර එකයින් සාද<mark>යි.</mark>
 - (b) CaC₂ ජලය සමග පුතිකිුයා ක<mark>ර එතීන් ස</mark>ාද<mark>යි.</mark>
 - (c) ඇමෝනිකෘත $\operatorname{AgNO}_{\mathfrak{q}}$ සමග <mark>එතීන් පුති</mark>කිුයා කර අවක්ෂේපයක් ලබා දේ.
 - (d) ඇමෝනිකෘත $\mathrm{Cu_2Cl_2}$ සමග එතයින් පුතිකිුයා කර අවක්ෂේපයක් ලබා දේ.
- 36. හැලජන පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සත‍‍‍ වන්නේ ද?
 - (a) කාණ්ඩයේ පහළට හැලජනවල තාපාංක වැඩි වේ.
 - (b) අනෙකුත් හැලජන මෙන් නොව, ෆ්ලුවොරීන්ට F_γ හි හැර, අන් සැමවිටම (-1) ඔක්සිකරණ අවස්ථාව ඇත.
 - (c) සියලු ම හැලජන හොඳ ඔක්සිහාරක වේ.
 - (d) ආවර්තිතා වගුවේ සියලු ම මූලදවා අතරින් ෆ්ලුවොරීන් වඩාත්ම පුතිකිුයාශීලි වන නමුත් එය <mark>නිෂ්කි</mark>ය වායු සමග පුතිකිුියා නොකරයි.
- 37. සංවෘත දෘඪ බඳුනක් තුළ සිදුවන $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ පුතිකිුයාව සඳහා $700~^{\circ}C$ හා $800~^{\circ}C$ හි දී CO(g) ඵල පුතිශත අනුපිළිවෙළින් 60% හා 80% වේ. පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදි** වේ ද?
 - (a) පුතිකියාව තාපාවශෝෂක වේ.
 - (b) පුතිකිුියාව තාපදායක වේ.
 - (c) උෂ්ණත්වය අඩු කිරීම ආපසු පුතිකිුිිිියාවට හිතකර වේ.
 - (d) C(s) ඉවත් කිරීම මගින් සමතුලිතතාව පුතිකියක දෙසට නැඹුරු කළ හැක.
- **38.** සයික්ලොපොපේන් → පොපීන් මූලික පුතිකිුයාවකි.

පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදි** වේ ද?

- (a) පුතිකිුයාවෙහි අර්ධ ආයු කාලය සයික්ලොපොපේන් සාන්දුණය මත රඳා පවතී.
- (b) ප්‍රතිකියාවෙහි ශීඝ්‍රතාව ප්‍රොජින් සාන්ද්‍රණය මත රඳා නොපවතී.
- (c) සකුියන ශක්තියට වඩා වැඩි ශක්තියක් ඇති සයික්ලොපොපේන් අණුවල භාගය, උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වේ.
- (d) පුතිකිුිිියාව ද්විඅණුක ගැටුමක් හරහා සිදු වේ. (අණුකතාව =2)
- 39. පහත සඳහන් කුමන වගන්තිය/වගන්ති 3-හෙක්සීන් පිළිබඳ ව සත්‍‍‍ වේ ද?
 - (a) ජාහමිතික සමාවයවිකතාව තොපෙන්වයි.
 - (b) පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (c) $m H_2/Pd$ සමග පුතිකිුිිිියා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව නොපෙන්වයි.
 - (d) m Har Br සමග පුතිකිුයා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව පෙන්වයි.

- **40.** නයිටුජන් චකුය පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති **නිවැරදි** වන්නේ ද?
 - (a) වායුගෝලයේ ඇති N_2 තිර වන්නේ වායුගෝලීය හා කාර්මික තිර කිරීමෙන් පමණි.
 - (b) වායුගෝලීය තිර කිරීමේ දී N_2 ඔක්සිහරණය වේ.
 - (c) කාර්මික තිර කිරීමේ දී N_2 ඔක්සිකරණය වේ.
 - (d) වායුගෝලීය තිර කිරීමේ දී සෑදෙන නයිවේට හා නයිටුයිට වර්ෂාපතනය නිසා පොළොව මත නැන්පත් වූ විට ඒවා පුෝටීන් සෑදීමට ශාක මගින් යොදා ගනී.
- අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය							
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.							
(2)	සතා වේ.	සකා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .							
(3)	සතා3 වේ.	අසතා මේ.							
(4)	අසතා වේ.	සතා වේ.							
(5)	අසතා වේ.	අසතා වේ.							

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	MgCO ₃ වලට වඩා BaCO ₃ තාපස්ථායි වේ.	දෙවන කාණ්ඩයේ කැටායනවල ධැවීකරණ බලය කාණ්ඩයේ පහළට යන විට අඩු වේ.
42.	ඇමීනයක නයිටුජන් මත ඇති එකසර ඉලෙ <mark>ක්ටුෝන</mark> යුගලය H [†] සමග බන්ධනයක් සෑ <mark>දීමට ඇති</mark> පුව <mark>ණතාව</mark> ඇල්කොහොලයක ඔක්සිජන් <mark>මත ඇති</mark> එකසර ඉලෙක්ටුෝන යුගලයට වඩා අඩු ය.	අඩු ය.
43.	උත්පේරකයක් යෙදීමෙන් සමතුලිතතාවයේ ඇති පුතිකිුිිිියාවක් ඉදිරියට (එනම් සමතුලිත ලක්ෂාය දකුණට විස්ථාපනය කිරීම) පෙළඹවීම කළ හැක.	උත් <mark>පේුරක</mark> ය මගින් ඉදිරි පුතිකිුයාව සඳහා පමණක් අඩු සකිුයන ශක්තියක් ඇති මාර්ගයක් සපයයි.
44.	CO_3^{2-} හා SO_3^{2-} අයනවලට සමාන හැඩයන් ඇත.	CO_3^{2-} හා SO_3^{2-} යන දෙකෙහිම මධා පරමාණුවේ එකසර ඉලෙක්ටුෝන යුගල් ඇත.
45.	$\mathrm{CH_3CH_2CH_2OH}$ හි තාපාංකය $\mathrm{CH_3CH_2CHO}$ හා $\mathrm{CH_3COCH_3}$ හි තාපාංකවලට වඩා වැඩි ය.	කාබන් ඔක්සිජන් ද්විත්ව බන්ධනය, කාබන් ඔක්සිජන් තනි බන්ධනයට වඩා ශක්තිමත් ය.
46.	ඒකලිත පද්ධතියක් තුළ ස්වයංසිද්ධව සිදු වන පුතිකිුයාවක් සඳහා සැමවිටම සෑණ ගිබ්ස් ශක්ති වෙනසක් ඇත.	
47.	තෙල් හා මේද සමග NaOH හෝ KOH පුතිකියාවෙන් සැදෙන මේද අම්ලවල සෝඩියම් හෝ පොටෑසියම් ලවණ, බහුල ලෙස භාවිත වන සබන් වල අඩංගු වේ.	ජලීය NaOH හෝ KOH සමග එස්ටරයක් පුතිකිුිිිියාවෙන් කාබොක්සිලික් අම්ලයේ සෝඩියම් හෝ පොටෑසිිිියම් ලවණය හා මදාාසාරය ලැබේ.
48.	$\mathrm{C_6^H}_5\mathrm{OH}$ සැදීමට NaOH සමග $\mathrm{C_6^H}_5\mathrm{Br}$ පහසුවෙන් පුතිකියා නොකරයි.	ෆීනයිල් කාබොකැටායනය ඉතා ස්ථායි වේ.
49.	දුබල අම්ලයක ජලීය දුාවණයක් තනුක කරන විට විඝටනය වූ අම්ල අණුවල භාගය හා මාධායේ pH අගය යන දෙකම වැඩි වේ.	දුබල අම්ල අණුවල විඝටනය සිදු වන්නේ අම්ල විඝටන නියතය $K_{f a}$ නියතව පවතින පරිදි ය.
50.	සූර්යාලෝකය ඇති විට හරිත ශාක තුළ CO ₂ තිර වේ.	වායුගෝලයේ CO ₂ මට්ටම ඉහළ යාම හරිත ශාක මගින් පාලනය කළ නොහැක.

ආවර්තිතා වගුව

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu_	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn_	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pŧ	Au	Hg	Ti	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut]				

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

