> Fractional Knapsack problem:

Objects (0)		2	3	4-	5	6	7	W=15
Profit (P)	5	10	15	7	8	9	4	w=15 $n=7$
weight (w)	í	3	5	4	1	3	2	1

Approach 1 Profit 47.25

Approach 2 Profit 46

APProach-1 To Choose objects in random manner.

Approach-2 To choose objects in minimum weight first.

Attroach-3 To choose Pi based in decreasing order.

Objects(0)	1	2	3	4	5		I	1
Profit (P)	5	10	15	7	0	9	4	Many St
weight(W)	1	3	5	4	1	3	2	Max Pi Ratio
<u>Pi</u> Wi	5	3•3	3	1.75	8	3	2	

Objects	Problet	weight	Remaining weight		
5	8	E I	15-1=14		
1	5		14-1 = 13		
2	10	3	13-3 = 10		
3	15	5	10-5 = 5		
6	9	3	5-3 = 2		
7	4	2	2-2=0		
	51		A Part of the second		

$$Tc = o(n) + o(n \log n) + o(n) + o(1)$$

$$\Rightarrow o(n \log n)$$

> Applications

- 1 Postbalio optimization.
- (2) Power allocation management.
- 3 Resource management in s/w inclustry.
- 1 Home energy management.