ECE - 5984 : Homework 2 Instructor: Thinh T. Doan, TA: Amit Dutta Due Date: 09/30/2021

Problem 1

We consider an application of MDP, where there is a car and its state i can be $0, 1, 2, \ldots$ Here the state could be an indicator of how good the car is. The state depends on various factors such as the days of operation, age of the car, etc. Everyday, we want to make a decision whether to bring the car to mechanic shops or not based on its observed states. If we decide to bring it, the car is repaired instantaneously and the state of the car returns to 0. Repairing the car (e.g., tune up) incurs a cost R, while maintaining it causes a cost C(i) per day if the car is in state $i = 0, 1, \ldots$ Moreover, $C(i), i \geq 0$, is assumed to be an increasing bounded function in i, i.e., higher maintenance costs are associated with higher state indices. Given the current state i, let P_{ij} be the transition probability that the car will be at state j the next day.

Question (10 points): Let $\gamma \in (0,1)$ and π is a policy. Write the Markov decision model for this problem, i.e., define the state and action space, the instantaneous reward r(s,a), and the transition probability matrix. Also, formulate the optimization problem to find the best policy. Note that in this case we want to minimize the discounted cumulative cost.

Definitions:

Reward =
$$\Gamma(S(i), \alpha)$$
 =

$$R \quad \text{if } \alpha = \text{repair}$$

$$C(i) \quad \text{if } \alpha = \text{maintain} \quad \text{(for an unspecified maintanu cost function ((t))}$$

Note that the reward is bounded, as ((i) for i),0 is increasing and bounded as given in the problem statement, and R (repour cost) is constant

$$M = \max \left\{ R, ((a),((1), c(2),...) \right\}$$

$$= \max \left\{ M \right\}$$

. The Bellman optimality equation defines the equation for the optimal policy
$$TT^*$$
 and corresponding value function $U\pi^*$

$$V_{\pi^*}(s) = \max_{M(s)} \left(\mathbb{E} \left[r\left(s, M(s) \right] + \chi \sum_{s' \in S} P_{s's'}\left(M(s) \right) V_{\pi^*}(s') \right), s \in S \right)$$

$$M^*(s) = \underset{M(s)}{\operatorname{arg max}} \left(\mathbb{E} \left[\Gamma(S, M(s)) \right] + \chi \underset{s \notin S}{\mathcal{E}} P_{s \, s'}(M(s)) V_{\pi}^*(s') \right), \ s \in S$$

$$\omega: \mathbb{H} \quad \Pi^* = \left\{ M^*(s) \right\}, \ S \in S.$$

Problem 2

We recall here the policy iteration (PI) algorithm for the discounted MDP with discount factor γ . There are two main steps as follows.

1. (Policy evaluation) Given the current policy μ_k , estimate V_{μ_k}

$$(\mathbf{I} - \gamma \mathbf{P}_{\mu_k})V_{\mu_k} = \mathbb{E}[r],$$

or equivalently $V_{\mu_k} = T_{\mu_k} V_{\mu_k}$, where r is the vector of rewards.

2. (Policy improvement) Obtain a new improved policy μ_{k+1}

$$T_{\mu_{k+1}}V_{\mu_k} = TV_{\mu_k}$$

Implementing these two steps exactly in many applications are expensive. We consider here an approximation of these two steps. In particular, given the current policy μ_k , the policy evaluation step only returns a δ -approximate of the value function V_{μ_k} , i.e., a vector V_k satisfies

$$||V_k - V_{\mu_k}|| \le \delta, \quad \forall k.$$

In addition, using this value V_k the policy evaluation problem can only compute an ϵ -approximate of the mapping T, i.e., a new policy μ_{k+1} satisfies

$$||T_{\mu_{k+1}}V_k - TV_k|| \le \epsilon, \quad \forall k.$$

In the sequel let **1** be the vector whose entries are 1. Given a policy μ_k and its value function V_{μ_k} , we have $V_{\mu_k} = T_{\mu_k}V_{\mu_k}$ where T_{μ_k} is given as

$$(T_{\mu_k}V_{\mu_k})(s) = \mathbb{E}[r(s, \mu_k(s))] + \gamma \sum_{s' \in S} P_{ss'}(\mu_k(s))V_{\mu_k}(s').$$

In addition, given a scalar c we have T_{μ_k} satisfies

$$T_{\mu_k}(V_{\mu_k} + c\mathbf{1}) = T_{\mu_k}V_{\mu_k} + \gamma c\mathbf{1}.$$

$$\|T_{\mu_{k+1}}V_{\mu_k} - T_{\mu_{k+1}}V_k\| \le \gamma\delta \qquad \text{and} \qquad \|TV_k - TV_{\mu_k}\| \le \gamma\delta$$

$$\| U_R - U_{MR} \|_{\infty} \le \delta \quad \forall R$$

$$-81 \le U_R - U_{MR} \le \delta 1$$

$$= 0 \quad U_{MR} - 81 \le U_R \le U_{MR} + \delta 1$$

$$= T(U_{MR} - 81) \le 1 U_R \le T(U_{MR} + 81)$$

2. (10 points) Show that

$$T_{\mu_{k+1}}V_{\mu_k} \ge TV_{\mu_k} - (\epsilon + 2\gamma\delta)\mathbf{1}$$

$$= (TU_{M_{R}} - T_{M_{RH}}V_{M_{R}}) \leqslant (TU_{M_{R}} - T_{M_{RH}}V_{M_{R}}) + (T_{M_{RH}}U_{R} - TV_{R} + \epsilon 1)$$

$$= (T_{M_{RH}}V_{R} - T_{M_{RH}}V_{M_{R}}) + (TV_{M_{R}} - TV_{R}) + \epsilon 1$$

$$\leqslant \gamma |V_{R} - V_{M_{R}}||_{\infty}1 + \gamma ||_{V_{R}} - V_{M_{R}}||_{\infty}1 + \epsilon 1$$

$$\leqslant \gamma \leqslant 1 + \gamma \leqslant 1 + \epsilon 1 \qquad (by \ error \ definition \ given)$$

$$= (\epsilon + 2\gamma \leqslant) 1$$

$$T_{\mu_{k+1}}V_{\mu_k} \ge V_{\mu_k} - (\epsilon + 2\gamma\delta)\mathbf{1}.$$

$$\begin{array}{l} \geqslant 0 \\ =) \quad \left(\ V_{MR} - T_{MRH} V_{MR} \right) \leqslant \left(\ V_{MR} - T_{MRH} V_{MR} \right) + \left(T_{MRH} V_{R} - T_{MR} V_{R} + \epsilon \, 1 \right) \\ = \quad \left(T_{MRH} V_{R} - T_{MRH} V_{MR} \right) + \left(V_{MR} - T_{MR} V_{R} \right) + \epsilon \, 1 \\ = \quad \left(T_{MRH} V_{R} - T_{MRH} V_{MR} \right) + \left(T_{MR} V_{MR} - T_{MR} V_{R} \right) + \epsilon \, 1 \\ \leqslant \quad \left(\gamma \| V_{R} - V_{MR} \|_{\mathfrak{S}} 1 + \gamma \| V_{R} - V_{MR} \|_{\mathfrak{S}} 1 + \epsilon \, 1 \\ \leqslant \quad \gamma \, \delta \, 1 + \gamma \, \delta \, 1 + \epsilon \, 1 \end{array} \quad \left(\begin{array}{c} \delta V_{R} + \delta \, 1 \\ \delta V_{R} - V_{MR} \|_{\mathfrak{S}} 1 + \epsilon \, 1 \end{array} \right)$$

$$= \quad \left(\varepsilon + 2 \, \gamma \, \delta \, \right) \, 1$$

4. (10 points) Show that given V_k if $T_{\mu_k}V_k \leq V_k + r\mathbf{1}$, then

$$V_{\mu_k} \leq V_k + \frac{r}{1-\gamma} \mathbf{1}.$$

Note that $T^0V_k = V_k$ where $T^0 = \mathbf{I}$, an indentity matrix.

. For some Uk s.f. TukUk & Vk+ r 1

=>
$$T_{M_R}^2 V_R = T_{M_R} (T_{M_R} V_R) \leq T_{M_R} (V_R + r 1) = T_{M_R} V_R + \forall r 1$$

letting m-> 00

Problem 3

We consider here the deterministic version of almost supermartingale convergence theorem study in the class. In particular, let $\{y_k\}$, $\{z_k\}$, and $\{w_k\}$ be nonnegative sequence satisfying

$$y_{k+1} \le y_k - z_k + w_k,$$

where w_k satisfies

$$\sum_{k=0}^{\infty} w_k < \infty.$$

Show that

1. y_k converges. [Hint: Show that the sequence $V_k = y_k + \sum_{t=k}^{\infty} w_t$ is nonincreasing] [15 points]

Defining Uk and Showing that it is nonincreasing

.. Uk is non increasing for all

Showing that Uk converges via monotone convergence theorem

- · additionally Uk bounded below by O as:

 - · yk is non negative, as wt is non negative.
- : UR 3 0.
- · as Uk is non increasing, and bounded below, by the monotone convergence theorem Uk must converge.

Inspecting terms of UR for convergence.

- · Up converges
- . ∑ wt is non negative and upper bounded (as <∞): converges.

 by monoton convergence throm.
- · yn is non negative.
- for UR to converge as shown, yk must also converge.

2. $\lim_{k\to\infty} w_k = 0$ [15 points]

. Showing convergence of & WR:

. Partial sums:

$$\leq_{R-1} = \sum_{t=0}^{R-1} \omega_t = \omega_{0} + \omega_1 + \omega_2 \dots + \omega_{R-1}$$

$$S_{R} = \sum_{i=0}^{R} \omega_{i} = \omega_{0} + \omega_{1} + \omega_{2} \dots + \omega_{R}$$

· Lefting k > 00:

· as
$$\sum_{k=0}^{\infty} w_k$$
 is convergent, $\{S_k\}_{k=0}^{\infty}$ is also convergent.

. let
$$\lim_{k\to\infty} S_k = S$$

:
$$\lim_{k\to\infty} (W_k) = \lim_{k\to\infty} (S_{R} - S_{R-1}) = \lim_{k\to\infty} S_{R} - \lim_{k\to\infty} S_{R-1} = S - S = 0$$

Problem 4

In this question, you are asked to prove the almost supermartingale convergence theorem. The question is optional, however, if you work on it you'll have extra points. We first introduce the notion of martingale.

Given an increasing sequence of σ -field F_k , a sequence $\{X_k\}$ is said to be adapted to F_k if $X_k \in F_k$. $\{X_k\}$ is said to be a martingale if

- 1. $E|X_k| < \infty$
- 2. X_k is adapted to F_k
- 3. $\mathbb{E}[X_{k+1} \mid F_k] = X_k$ for all k

In (3) if $\mathbb{E}[X_{k+1} | F_k] \leq X_k$ for all k then X_k is said to be a supermartingale. The supermartingale theorem says that if $X_k \geq 0$ and X_k is a supermartingale then

$$\lim_{k \to \infty} X_k = X \text{ a.s.},$$

for some random variable X with $\mathbb{E}[X] \leq \mathbb{E}[X_0]$. Using this result we now prove the "almost" supermartingale theorem given in class. Let $\{y_k\}$, $\{z_k\}$, $\{w_k\}$ and $\{\gamma_k\}$ be nonnegative sequences of random variables satisfying

$$\mathbb{E}[y_{k+1} \mid \mathcal{F}_k] \le (1 + \gamma_k) y_k - z_k + w_k,$$

where γ_k and w_k satisfy

$$\sum_{k=0}^{\infty} \gamma_k < \infty \quad \text{and} \quad \sum_{k=0}^{\infty} w_k < \infty.$$

Here $y_k \in \mathcal{F}_k$ for all k and "almost" because of the extra term $\gamma_k y_k$.

Question (20 points): Show that $\{y_k\}$ is convergent.

Hint: Consider

$$P_k = \prod_{t=k}^{\infty} (1 + \gamma_t) y_k + \sum_{t=k}^{\infty} w_t \prod_{\ell=t+1}^{\infty} (1 + \gamma_{\ell}).$$

Note that since $\sum_{k} \gamma_k < \infty$, we have $\prod_{\ell=k}^{\infty} (1 + \gamma_{\ell})$ converges. Show that P_k is a supermartingale.

Let
$$P_{R} = \prod_{t=R}^{\infty} (1+\gamma_{t}) y_{R} + \sum_{t=R}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t})$$

$$\rightarrow P_{R+1} - P_{R} = \prod_{t=t+1}^{\infty} (1+\gamma_{t}) y_{R+1} - \prod_{t=t}^{\infty} (1+\gamma_{t}) y_{R}$$

$$+ \sum_{t=t+1}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t}) - \sum_{t=t}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t})$$

$$+ \sum_{t=t+1}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t}) - \sum_{t=t+1}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t})$$

$$\frac{\pi}{\prod_{k=1}^{\infty} (1+\chi_{k})} \int_{k=1}^{\infty} (1+\chi_{k}) \int_{k=1}^{\infty} ($$

ς O

..
$$P_{R+1} - P_R = \frac{\pi}{1 + R+1} \left(1 + Y_+ \right) \left(y_{R+1} - \left(1 + Y_R \right) y_R - \omega_R \right)$$

. Since $\sum_{R} Y_R < \infty$, $\frac{\pi}{1 + R+1} \left(1 + Y_+ \right)$ converges (as per hint) and is positive as Y_R non regalive Y_R .

. $E(y_{R+1} | F_R) \le (1 + Y_R) y_R - Z_R + \omega_R$
 $\le (1 + Y_R) y_R + \omega_R$ (as Z_R non regalive)

 $= \sum_{R} \left(y_{R+1} | F_R \right) - \left(1 + Y_R \right) y_R - \omega_R \le 0$
 $E(y_{R+1} - P_R | F_R) = \frac{\pi}{1 + R+1} \left(1 + Y_+ \right) \left[E(y_{R+1} | F_R) - \left(1 + Y_R \right) y_R - \omega_R \right]$
 $= \sum_{R} \left(y_{R+1} - P_R | F_R \right) = \frac{\pi}{1 + R+1} \left(1 + Y_+ \right) \left[E(y_{R+1} | F_R) - \left(1 + Y_R \right) y_R - \omega_R \right]$

- . PR is therefore a supermartingale as:
 - 1) $P_{R} = \prod_{t=R}^{\infty} (1+\gamma_{t}) g_{R} + \sum_{t=0}^{\infty} \omega_{t} \prod_{t=t+1}^{\infty} (1+\gamma_{t})$
 - . IT (I + V+) converges and is possitive as showen above
 - · yk non negative
 - . E W+ < 00 .. bounded above, and non decreasing : converges.
 - . IT (I+ XX) converges as IT (I+ Xk) converges.
 - $\mathbb{E}\left(P_{R+1} P_{R} \mid F_{R}\right) \leq 0$
 - :. $E|P_R| < \infty$ (condition #1)
 - 2) PR is adapted to FR (condition #2)
 - 3) E(PR+1 | FR) & Pk (as show above) (condition #3)
 - · additionally note that PR is bounded below by O, as ye, uk and # (1+7+) are non regative. .. PR > 0.
 - .. as PR 7,0 and PR is a supermortingale, we can apply the supermartingale convergence throm:

 $\lim_{R\to\infty} P_R = P \text{ a.s.}$, for some random variable P with $\mathbb{E}(p) \leqslant \mathbb{E}(P_0)$

Inspecting terms of PR with respect to convergence.

$$P_{R} = \prod_{t=R}^{\infty} (1+\gamma_{t}) y_{R} + \sum_{t=R}^{\infty} \omega_{t} \prod_{t=H}^{\infty} (1+\gamma_{t})$$

$$\cdot \sum_{t=R}^{\infty} \omega_{t} \prod_{t=H}^{\infty} (1+\gamma_{t}) \quad \text{converges (shown below):}$$

$$\cdot \text{ as } \sum_{t=R}^{\infty} \omega_{t} \quad \text{converges (a) is (∞ and non decreasing)}$$

$$\cdot \text{ and } \prod_{t=R+1}^{\infty} (1+\gamma_{t}) \quad \text{converges (a) stated in hint)}$$

$$\cdot \text{ and both } \sum_{t=R}^{\infty} \omega_{t} \quad \text{and } \prod_{t=R+1}^{\infty} (1+\gamma_{t}) \Rightarrow 0 \quad \forall R.$$

$$=) : \sum_{t=R}^{\infty} \omega_{t} \prod_{t=H+1}^{\infty} (1+\gamma_{t}) \quad \text{converges.}$$

- · lim Pk = P a.s. (shown previously)
- . .. IT (1+ X+) y R must converge.

Inspecting II (1+8+) yk with respect to convergence.

•
$$T$$
 (1+ Y +)•converges (as shown in hint, as $\sum_{k=0}^{\infty} Y_k < 0$)

+= k

• non regalive (as Y_k is non regative)

=> T

+= k

(1+ Y +) >> | Y_k

- · yr is non regalive : yr > 0 Ur.
- : since $\prod_{t=k}^{\infty} (1+V_t) y_k$ converges as $k \to \infty$, y_k must converge.

:. Yk converges.