

C1 - Introduction

Yann DOUZE VHDL

VHDL = LOGIC DESIGN

- Just Like Building a Circuit on Your Breadboard!!
- Also known as a "Hardware Description Language"

```
LIBRARY ieee:
     USE ieee.std logic 1164.all;
    ENTITY LabExCG4 IS
9
                 u, v, w, x, y : IN BIT;
10
                     : IN STD LOGIC VECTOR(2 DOWNTO 0);
11
                  m : OUT BIT) :
12
     END LabExCG4:
    MARCHITECTURE Behavior OF LabExCG4 IS
    BEGIN
    PROCESS(s)
17
     BEGIN
18
         CASE s is
19
20
              WHEN "001" => m <= v:
21
              WHEN "010" => m <= w;
              WHEN "011" => m <= x;
23
              WHEN "100" => m <= v:
24
              WHEN OTHERS => m <= y;
25
          END CASE:
26
     END PROCESS:
     END Behavior:
```


(NOT Actual equivalent Circuit - For Concept Demo only)

什么是VHDL?

- VHDL: VHSIC Hardware Description Language
- VHSIC : Very High Speed Integrated Circuit
- VHDL:硬件描述语言,描述了数字电路的结构和行为。
- 语言标准描述电路或用于以下方面的数字系统:
 - 电路系统的建模(仿真)
 - 数字电路的综合(自动生成)
 - 测试程序说明(testbench)
 - 层次类型的描述 (netlist)

- 1981 由美国 DoD (国防部) 决物资生命周期危机。
- 1983-85 Intermetrics、IBMVHI和Indiana
- **1986** 所有权利转让给 工程师协会)
- 1987 发布 IEEE 标准 1076-1987
- 1994 修订标准 VHDL-1076-1983 一切,被90%的设计师使用)
- 2002 VHDL标准 IEEE 1076-2002
- 2009 VHDL 2008 标准 IEEE 1076-2008

(国防部)发起,以解 S、IBMVHD和andord 1 2 3 语言 I Ebit Elion El first 电气和电子 VHDL Standard 1987 - 1076-1983 (所需的

https://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl

其他类似语言

- 其他类似语言
- Verilog较旧。 语法接近于C语言, 在美国和亚洲广泛使用
- VHDL-AMS混合数字模拟建模语言 IEEE.1076.1-1999。 它与VHDL 完全兼 容。 仅用于建模。
- System C
- System Verilog

建模还是综合?

- 建模
 - 所有的语言。 逻辑+时间
 - 模型可以是行为,结构或数据流类型。
- 综合
 - 综合VHDL是通用VHDL的子集
 - 综合需要对电路和技术有充分的 了解。

综合(1)

```
entity DECOD1 4 is
      port(INO, IN1: in std_logic;
DO, D1, D2, D3: out std_logic);
end DECOD1 4;
                                                    Synthèse
```


纺

综合(2)

- 综合对于VHDL的编写方式非常敏
- 对于综合,必须遵守某些编码规则。
- 一个好的设计只能来自一个好的 VHDL代码(该工具无法解决奇迹)
- 综合不能替代人类的专业知识。"Le VHDL de synthèse est un sous-ensemble du VHDL généraliste "

专用集成电路ASIC

- ASIC : Application Specific Integrated Circuit
 - 数字、模拟和混合(通信领域)
 - 专用功能
 - 实现复杂 (从高级规范到物理综合)
 - 极高的性能:专用+并行实现+先进技术
 - 电路 = 规格

不同硬件特点

: Programmable Array Logic

: Generic Array Logic = PAL

: Static Random Acess Memory

PAL

GAL

SRAM

ASIC 全定制

ASIC : Application Specific Integrated Circuit

ASIC Full Custom

ASIC 标准单元

ASIC : Application Specific Integrated Circuit

ASIC标准单元

ASIC 门阵列

ASIC : Application Specific Integrated Circuit

ASIC门阵列

: Complex Programmable Logic Device

PAL : Programmable Array Logic GAL : Generic Array Logic = PAL

SRAM : Static Random Acess Memory

可配置电路

FPGA:设计!

FPGA

FPGA 结构

- Logic Fabric
 - Gates and flip-flops
- Embedded Blocks
 - Memory
 - DSP/Multipliers
 - Clock management (PLL)
 - High speed serial I/O
 - Soft/hard processors
- Programmable I/Os
- In-system programmable

逻辑结构

- Logic Cell (Xilinx) / Logic Element (Altera)
 - 查找表Lookup table (LUT)
 - 触发器Flip-Flop
 - 进位逻辑Carry logic
 - 数据选择器 (not shown)
- Slice
 - Two Logic Cells/Element

查找表Look-Up Table (LUTs)

A	В	C	D	Z
0	0	0	0	0
0	0	0 0	1	0 0
0	0	1	0	0
0 0 0 0 0	0 0 0 0 1	1 1 0 0	0 1 0 1 0	0 1 1
0	1	0	0	1
0	1	0	1	1
1	1	0	0 1 0	0
1	1	0 0	1	0 0 0
1 1 1	1 1 1	1	0	0
1	1	1	1	1

存储块

Blocs Memory

Block RAM

- RAM or ROM
- True dual port
 - Separate read and write ports
- Independent port size
 - Data width translation
- Excellent for FIFOs

Multipliers

- Signed or unsigned
- Optional pipeline stage
- Cascadable

可编程Programmable I/Os

- Single ended
- Differential / LVDS
- Programmable I/O standards
 - Multiple I/O banks

	Standard	Output Vcco	Input V _{REF}
Single ended	LVTTL	3.3V	-
	LVCMOS33	3.3V	
	LVCMOS25	2.5V	
	LVCMOS18	1.8V	
	LVCMOS15	1.5V	
	LVCMOS12	1.2V	-
	PCI 32/64 bit 33MHz	3.3V	-
	SSTL2 Class I	2.5V	1.25V
	SSTL2 Class II	2.5V	1.25V
	SSTL18 Class I	1.8V	0.9V
	HSTL Class I	1.5V	0.75V
	HSTL Class III	1.5V	0.9V
	HSTL18 Class I	1.8V	0.9V
	HSTL18 Class II	1.8V	0.9V
	HSTL18 Class III	1.8V	1.1V
	GTL		0.8V
	GTL+	-	1.0V
Differential	LVDS2.5	2.5V	
	Bus LVDS2.5	2.5V	
	Ultra LVDS2.5	2.5V	
	LVDS_ext2.5	2.5V	
	RSDS	2.5V	-
	LDT2.5	2.5V	-

设计周期的持续时间

专用集成电路 ASIC

- 九 优点
 - 高集成度
 - 高性能(速度,低功耗)
 - 批量生产成本低
 - 定制化
 - 工业安全
 - 缺点
 - 第一份副本的价格
 - 没有可能的错误
 - 不灵活
 - 上市时间长
 - 专为专家(创始人)制造

可编程门阵列 FPGA

- 优点
 - 原型制作的可能性
 - 上市时间短
 - 适应未来发展重构
 - 柔韧性
- 缺点
 - 集成受到路径资源的限制
 - 性能
 - 大量生产的单价高

设计方法的演变

- 总是更多集成(SoC)
- FPGA越来越高效,越来越便宜,因此 越来越多地被使用
- FPGA正在慢慢取代ASIC电路.
- 示例...

ASIC: Application Specific Integrated Circuit
 ASSP: Application Specific Standard Product

FPGA: Field Programmable Gate Array

RAM: Random Acess MemoryROM: Read Only Memory

2000: FPGA = ASIC的替代品

(扩展容量)

自2005年以来:FPGA+处理器内核

关于硬件目标的结论

- 优点Avantages
 - 高性能: 功耗和工作频率
 - 并行,流水线......
 - 实时处理的可能性
 - 应用电路专用化
 - 具有灵活组件的可能性: FPGA
 - Choix large de techno, boitier, gamme ...
- 缺点Inconvénients
 - 相对复杂和长期的设计
 - 设计成本可能很高(ASIC et FPGA de taille importante)
 - 需要严格的设计方法
 - 需要更多专业知识

FPGA主要厂商

- Xilinx
- Altera
- Lattice Semiconductor
- Actel (microsemi)
- Cypress
- Atmel
- QuickLogic

区别µC 和 FPGA

- μC微处理器(单片机):
 - ■顺序执行程序的指令。
- FPGA:
 - 系统的硬件描述。
 - FPGA可以包含一个或多个µC或µP,这称 为SoC或SoPC。

什么是IP?

- IP (知识产权)
 - ■虚拟组建
 - HDL语言描述的功能
- 供应商Vendeur d'IPs:
 - ARM
 - www.design-reuse.com
- Ips开源 open source:
 - www.opencores.org

VHDL WWW

- VHDL sur Internet
 - http://vhdl33.free.fr/
 - https://www.doulos.com/knowhow/vhdl_d esigners guide/
 - http://www.opencores.org/
 - Composants RTL open source (IPs)
 - http://www.freemodelfoundry.com/
 - Composants behaviour (modélisation) pour la simulation.