Lab 3. Shared-memory Segments

Most UNIX and Linux systems provide the **ipcs** command. This command lists the status of various POSIX inter-process communication mechanisms, including shared-memory segments. Much of the information for the command comes from the data structure **struct shmid ds**, which is available in the

/usr/include/sys/shm.h file. Some of the fields in this structure include:

```
    int shm_segsz — size of the shared-memory segment
    short shm_nattch — number of attaches to the shared-memory segment
    struct ipc_perm shm_perm — permission structure of the shared-memory segment
```

The struct <code>ipc_perm</code> data structure (which is available in the file /usr/include/sys/ipc.h) contains the fields:

```
    unsigned short uid —identifier of the user of the shared-memory segment
    unsigned short mode —permission modes
    key_t key (on Linux systems, __key) —user-specified key identifier
    (For more information, read http://linux.die.net/man/2/shmctl)
```

The permission modes are set according to how the shared-memory segment is established with the shmget () system call. Permissions (https://en.wikipedia.org/wiki/File_system_permissions) are identified according to the following:

mode	meaning
0400	Read permission of owner.
0200	Write permission of owner.
0100	Execute permission of owner.
0040	Read permission of group.
0020	Write permission of group.
0010	Execute permission of group.
0004	Read permission of world.
0002	Write permission of world.
0001	Execute permission of world.

Permissions can be accessed by using the bitwise AND operator &. For example, if the statement mode & 0400 evaluates to "true," the permission mode gives read permission to the owner of the shared-memory segment.

A shared-memory segment can be identified according to a user-specified key or according to the integer value returned from the shmget() system call, which represents the integer identifier of the shared-memory segment created. The shmid_ds structure for a given integer segment identifier can be obtained with the shmctl() system call. If successful, shmctl() returns 0; otherwise, it returns -1 indicating an error condition (the global variable error can be accessed to determine the error condition.)

```
#include <stdio.h>
#include <unistd.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
int main(int argc, char *argv[]) {
       int segment id;
                                      // identifier of the shared memory segment
        unsigned short mode;
                                     // permissions of the segment
        struct shmid ds shmbuffer; // the shared memory segment
// Step 1: Create a new shared memory segment using shmget
       [Your code goes here. Check course slides to see how to use shmget.]
// Step 2: Retrieve the information of the segment
       if (shmctl(segment id, IPC STAT, &shmbuffer) == -1) {
               printf("Unable to access segment %d\n", segment id);
               return 0;
// Step 3: output information about the segment in the required format
        [Your code that outputs Segment ID, Key, Owner UID, size, Number of
        Attaches goes here.]
       // Output mode in the right format
       mode = shmbuffer.shm perm.mode;
        /** OWNER */
        if (mode & 0400)
                printf("r");
        else
                printf("-");
        if (mode & 0200)
                printf("w");
        else
                printf("-");
        if (mode & 0100)
                printf("a");
        else
                printf("-");
        /** GROUP */
        if (mode & 0040)
                printf("r");
        else
                printf("-");
        if (mode & 0020)
                printf("w");
        else
                printf("-");
        if (mode & 0010)
                printf("a");
        else
                printf("-");
        /** WORLD */
        if (mode & 0004)
```

```
printf("r");
        else
                printf("-");
        if (mode & 0002)
                printf("w");
        else
                printf("-");
        if (mode & 0001)
               printf("a");
        else
               printf("-");
// Step 4: Create a new process using fork
       [Your code goes here.]
// Step 5: The child process sends a message to the parent process via the
//
           shared memory segment created in Step 1 and the parent prints out
//
           the message it received from the child process
       [Your code goes here.]
```

Complete the above C program to create a shared-memory segment and use it for inter-process communication. Your code will also call <code>shmctl()</code> to obtain its <code>shmid_ds</code> structure and output the following values of the shared-memory segment in the format shown in Sample Output:

- Segment ID
- Key
- Mode
- Owner UID
- Size
- Number of attaches

Submissions

- (80%) Well-commented source code
- (20%) Write a report that
 - o describes how to compile and run your program
 - o includes screenshots of your running program

Sample Output:

```
Desktop — -bash — 86×48
dhcp-10-10-100-195:Desktop jinzhugao$ ipcs
IPC status from <running system> as of Wed Sep 18 12:58:00 PDT 2019
                      MODE
            KEY
                                 OWNER
                                          GROUP
Message Queues:
                       MODE
                                 OWNER
                                          GROUP
     ID
Shared Memory:
m 65536 0x00000000 --rw---- jinzhugao
                                           staff
m 327681 0x00000000 --rw---- jinzhugao
                                           staff
m 65538 0x00000000 --rw---- jinzhugao
                                           staff
m 131075 0x00000000 --rw---- jinzhugao
                                           staff
m 65540 0x00000000 --rw---- jinzhugao
                                           staff
m 65541 0x00000000 --rw---- jinzhugao
                                          staff
m 65542 0x00000000 --rw---- jinzhugao
                                           staff
                       MODE
                                 OWNER
                                          GROUP
     TD
            KEY
Semaphores:
dhcp-10-10-100-195:Desktop jinzhugao$ CC -o lab3 lab3_sms2.c
dhcp-10-10-100-195:Desktop jinzhugao$ ./lab3
New shared memory segment is created: 65543
                KEY
                       MODE
                                       OWNER
                                               SIZE
                                                       ATTTACHES
65543
                                       507
                                               400
Parent received message from Child: Hello parent process!
dhcp-10-10-100-195:Desktop jinzhugao$ ipcs
IPC status from <running system> as of Wed Sep 18 12:58:09 PDT 2019
T ID
         KEY
                      MODE
                                 OWNER
                                          GROUP
Message Queues:
                       MODE
                                          GROUP
     ID
            KEY
                                 OWNER
Shared Memory:
m 65536 0x00000000 --rw---- jinzhugao
m 327681 0x00000000 --rw---- jinzhugao
                                           staff
m 65538 0x00000000 --rw---- jinzhugao
                                           staff
m 131075 0x00000000 --rw---- jinzhugao
                                           staff
m 65540 0x00000000 --rw----- jinzhugao
                                           staff
  65541 0x00000000 --rw---- jinzhugao
                                           staff
m 65542 0x00000000 --rw---- jinzhugao
                                           staff
m 65543 0x00000000 --rw---- jinzhugao
                                           staff
                                          GROUP
     ID
            KEY
                       MODE
                                 OWNER
Semaphores:
dhcp-10-10-100-195:Desktop jinzhugao$ ☐
```