实验项目一 MATLAB/SIMULINK 建模基础

实验项目目的:

- (1) 熟悉 MATLAB 开发环境:
- (2) 掌握矩阵、变量、表达式的各种基本运算:
- (3) 熟悉和了解 MATLAB 图形绘制程序编辑的基本指令;
- (4) 熟悉 SIMULINK 工作环境及特点:
- (5) 掌握线性系统仿真常用基本模块的用法。

实验项目要求:

学生在学习通信原理相关理论的基础上,在规定时间内,完成仿真及结果分析。

实验项目学时:

4 学时。

[实验项目准备]

1. MATLAB 基础知识

(1) MATLAB 程序设计语言简介

MATLAB(Matrix Laboratory)是由 MathWorks 公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。与大家常用的 Fortran 和 C 等高级语言相比,MATLAB 的语法规则更简单,更贴近人的思维方方式,被称为"草稿纸式的语言"。MATLAB 软件主要由主包、仿真系统(simulink)和工具箱(toolbox)三大部分组成。

(2) MATLAB 界面及帮助

MATLAB 基本界面如图 1 所示,命令窗口包含标题栏、菜单栏、工具栏、命令 行区、 状态栏、垂直和水平波动条等区域。

图 1 MATLAB 基本界面

a) 菜单栏

在 MATLAB 主窗口的菜单栏, 共包含 File、Edit、View、Web、Window 和 Help 6 个菜单项。

b) 工具栏

MATLAB 主窗口的工具栏共提供了 10 个命令按钮。这些命令按钮均有对应的菜单命令,但比菜单命令使用起来更快捷、方便。

(3) MATLAB 常用命令

clc	清除命令窗口中内容
clear	清除工作空间中变量
help	对所选函数的功能、调用格式及相关函数给出说明
lookfor	查找具有某种功能的函数但却不知道该函数的准确名称
who	查询工作空间中的变量信息

(4) MATLAB 的基本运算

数组运算		矩阵运算	
指令	含义	指令	含义
Α. '	非共轭转置	Α'	共轭转置
A=s	把标量s赋给A的每个元素		
s+B	标量s分别与B元素之和		
s-B, B-s	标量s分别与B元素之差		
s. *A	标量s分别与A元素之积	s*A	标量s分别与A每个元 素之积
s./B,B.\s	标量s分别被B的元素除	S*inv(B)	B阵的逆乘s
A. în	A的每个元素自乘n次	A^n	A阵为方阵,自乘n次
A. ^p	对A各元素分别求非整数幂	A^p	方阵A的非整数乘方
A+B	对应元素相加	A+B	矩阵相加

А-В	对应元素相减	А-В	矩阵相 <i>减</i>
A. *B	对应元素相乘	A*B	内维相同矩阵相乘
A. /B	A的元素别B的对应元素除	A/B	A <i>右</i> 除B
B. \A	与上相同	B\A	A <i>左</i> 除B
exp(A)	以自然数e为底,分别以A的元素为 指数,求幂	expm(A)	A的矩阵指数函数
log(A)	对A的各元素求对数	logm(A)	A的矩阵对数函数
sqrt(A)	对A的各元素求平方根	sqrtm(A)	A的矩阵平方根函数

(4) MATLAB 的常用函数

指令	含义	指令	含义
diag	产生对角形数组(对高维不适用)	rand	产生均匀分布随机数组
eye	产生单位数组(对高维不适用)	randn	产生正态分布随机数组
magic	产生魔方数组(对高维不适用)	zeros	产生全0数组
ones	产生全1数组	size()	返回指定矩阵的行数和 列
diag	提取对角线元素,或生成对角阵	reshape	在总元素数不变的前提下,改 变数组的"行数、列数"
flipud	以数组"水平中线"为对称轴,交换上下 对称位置上的数组元素	rot90	矩阵逆时针旋转90度
fliplr	以数组"垂直中线"为对称轴,交换左右 对称位置上的数组元素	det	方阵的行列式值

2. Simulink 基础知识

Simulink 是 Matlab 提供的用于对动态系统进行建模、仿真和分析的工具包。Simulink 提供了专门用于显示输出信号的模块,可以在仿真过程中随时观察仿真结果。同时,通过 Simulink 的存储模块,仿真数据可以方便地以各种形式保存到工作区或文件中,供用户在 仿真结束之后对数据进行分析和处理。另外,Simulink 把具有特定功能的代码组织成模块的方式,并且这些模块可以组织成具有等级结构的子系统,因此具有内在的模块化设计要求。基于上述优点,Simulink 成为一种通用的仿真建模工具,广泛应用于通信仿真、数字信号 处理、模糊逻辑、神经网络. 机械控制和虚拟现实等领域。

(1) Simulink 的方法有很多种,按照 Matlab 的传统方式,只要在 Matlab 的命令窗口

中键入:

>>simulink

Simulink Library Browser 窗口就会弹出,如下图所示:

Simulink Browser 窗口左边子窗口下的各个模块库是按照应用进行分类的。在通信仿真用应用到的模块,除了 Simulink 基本模块库之外,还包括 Communication Blockset、DSP Blockset 等。

在 Simulink Browser 界面下,选择"File"菜单下的"New"中的"Model"选项, 弹出如图所示的模型窗口,用户就可以 Simulink Browser 中选择不同的模块来 建立自己的模型。

在建立完自己的模型后,保存模型,开始仿真。Simulink 的仿真主要就是针对浏览器窗口和模型窗口进行操作的。

(2) SIMULINK 模块库中各子模块基本功能

(3) SIMULINK 建模与仿真方法

- a. 建立数学模型:根据通信系统的基本原理,将整个系统简化到源系统,确定总的系统功能,并将各部分功能模块化,找出各部分之间的关系,画出系统流程框图模型。
- b. 仿真系统:根据建立的模型,从 simulink 通信模型库的各个子库中,将所需要的单元功能模块拷贝到 Untitled 窗口,按系统流程框图模型连接,组建要仿真的通信系统模型。
- c. 设置、调整参数:参数设置包括运行系统参数设置(如系统运行时间、采样速率等)和功能模块运行参数设置(正弦信号的频率、幅度、初相;低通滤波器的截至频率、通带增益、阻带衰减等)。
- d. 分析仿真数据和波形: 在系统模型的关键点处设置观测输出模块, 用于观测 仿真系统。

[实验项目实施]

1. 二维曲线绘图

提示:

t=(0:pi/50:2*pi)'; k=0.4:0.1:1;

 $Y = \cos(t) * k;$

plot(t,Y)

2. 用图形表示连续调制波形 Y=sin(t)*sin(9t)及其包络线

提示:

t=(0:pi/100:pi)';

 $y1=\sin(t)*[1,-1];$

 $y2=\sin(t).*\sin(9*t);$

t3=pi*(0:9)/9;

 $y3=\sin(t3).*\sin(9*t3);$

plot(t,y1,'r:',t,y2,'b',t3,y3,'bo')

axis([0,pi,-1,1])

(3) 用信号发生器产生 0.2Hz, 幅度为 1V 的正弦波和方波信号, 并通过示波器观察波形。

注意设置仿真参数和示波器的扫描参数和幅度显示参数。使得示波器能够显示完整的若干个正弦波周期。

(4) SI MULI NK 仿真实际应用 1

建立一个很小的系统, 用示波器观察正弦信号的平方的波形。

(5) SIMULINK 仿真实际应用 2: 测量正弦信号的最大值,最小值、振幅、功率

产生一个 1Hz, 振幅为 2.5V 的正弦波, 用 Simulink 模块来测试其最大值, 最小值、振幅、功率。这里学习使用 DSP 工具箱中的 Statisitics 工具箱。Statisitics 工具箱如下

图,分别有求离散信号最小值、最大值、平均值,标准差、方差、均方根植(RMS)、自相关、互相 关、中值(Median),直方图、排序等等功能模块。我们学习使用最小值、最大值、平均值 和方差模块来求信号的最小值、最大值、直流分量(平均值)和交流功率(方差)。

建立模型时需要注意将连续信号用零阶保持模块离散化,然后才能使用 DSP 工具箱中的模块。理论上正弦波的功率计算是: P=(A/sqrt(2))^2=(2.5/1.414)^2=3.1259 W。通过如下仿真可以看出,模块输出的结果是动态变化的随机量,数值上逼近理论结果。

其中 Zero-Order Hold 中的 Sample time 可以设置为 0.0001,而 Minimum, Maximum, Mean, Variance 模块的 Mode 设为 Running, Reset Port 设为 None, Display 模块不用设置参数。

[实验项目结果]

1.回答实验内容和步骤上面所有的问题。并总结本次实验遇到了哪些问题?你是怎么解决的?如何避免下次实验再遇到同样的问题?

2.怎么利用 Matlab/Simulink 建模仿真? 有几个步骤?