Отчет

1 Авторы

Студенты группы М3439:

- Тепляков Валерий
- Плешаков Алексей
- Филипчик Андрей

2 Source code

Исходный код можно посмотреть тут

3 Задание 1

Для сравнения методов одномерного поиска возьмем следующую унимодальную на отрезке [2.2, 2.8] функцию:

$$f(x) = |\sin(x^2)|$$

Сравним метод дихотомии, метод золотого сечения и метод Фибоначчи по количеству итераций и количеству вычислений функции в зависимости от запрашиваемой точности.

На графиках видно, что метод золотого сечения и метод Фибоначчи почти не отличаются по данным характеристикам. Метод Фибонначи на данной функции показывает результат всегда не хуже метода золотого сечения.

Метод дихотомии же использует меньшее количество итераций, но требует в 2 раза больше вычислений функции. Это ожидаемый результат, так как другие два метода переиспользуют уже вычисленные значения.

Также посмотрим как изменяется отрезок при переходе к следующей итерации (правый график приближение левого). Видно, что на первых итерациях метод дихотомии сокращает интервал сильнее и быстро сходится. Другие 2 метода идут примерно наравне, лишь на большом масштабе видна разница (возможно связанная просто с погрешностями вычислений)

4 Задание 2

Используется наискорейший градиентный спуск. В качестве процедур одномерной оптимизации используются методы из задания 1+ метод средней точки (он же просто бинарный поиск) на основе производно функции

Для экспериментов использовались следующие функции:

0.
$$f(x,y) = 3x^2 + 7y^2 + 2yx - x$$

1. $f(x,y) = (14 - x)^2 + 88(y - 4x + 7)^2$
2. $f(x,y) = xe^{-x^2 - y^2}$

Метод запускался из следующих начальных точек:

- 0. (0.5, 0.1)
- 1. (0, 1)
- 2. (-3, 0.4)
- 3. (-1, 1)

Подробные результаты запусков можно изучить в таблице:

[16]:

Function	Optimizer	Start point	Result point	Iterations	Function calls	Gradient calls	Elapsed time
0	Golden ratio	[0.5, 0.1]	(0.1686819, -0.0120458)	12	455	13	0.3s
0	Fibonacci	[0.5, 0.1]	(0.1686819, -0.0120458)	12	455	13	0.4s
0	Dichotomy	[0.5, 0.1]	(0.1686818, -0.0120457)	12	650	13	0.4s
0	Binary search	[0.5, 0.1]	(0.1686819, -0.0120458)	12	0	338	0.5s
0	Golden ratio	[0, 1]	(0.1686744, -0.0120465)	6	245	7	0.3s
0	Fibonacci	[0, 1]	(0.1686744, -0.0120465)	6	245	7	0.3s
0	Dichotomy	[0, 1]	(0.1686745, -0.0120465)	6	350	7	0.3s
0	Binary search	[0, 1]	(0.1686744, -0.0120465)	6	0	182	0.3s
0	Golden ratio	[-3, 0.4]	(0.1686736, -0.0120548)	3	140	4	0.1s
0	$\operatorname{Fibonacci}$	[-3, 0.4]	(0.1686736, -0.0120549)	3	140	4	0.1s
0	Dichotomy	[-3, 0.4]	(0.1686736, -0.0120548)	3	200	4	0.1s
0	Binary search	[-3, 0.4]	(0.1686736, -0.0120548)	3	0	104	0.1s
0	Golden ratio	[-1, 1]	(0.1686655, -0.0120402)	12	455	13	0.5s
0	Fibonacci	[-1, 1]	(0.1686655, -0.0120402)	12	455	13	0.4s
0	Dichotomy	[-1, 1]	(0.1686656, -0.0120402)	12	650	13	0.5s
0	Binary search	[-1, 1]	(0.1686655, -0.0120402)	12	0	338	0.5s
1	Golden ratio	[0.5, 0.1]	(13.9988590, 48.9953925)	174	6125	175	0.68s
1	Fibonacci	[0.5, 0.1]	(13.9781788, 48.9126423)	46535	1628760	46536	18.248s
1	Dichotomy	[0.5, 0.1]	(13.9932726, 48.9730319)	4558	227950	4559	2.95s
1	Binary search	[0.5, 0.1]	(13.9977413, 48.9909183)	606	0	15782	0.298s
1	Golden ratio	[0, 1]	(13.9982797, 48.9930759)	402	14105	403	0.138s
1	Fibonacci	[0, 1]	(13.9781572, 48.9125852)	72526	2538445	72527	$29.783\mathrm{s}$
1	Dichotomy	[0, 1]	(13.9957280, 48.9828597)	1944	97250	1945	0.845s
1	Binary search	[0, 1]	(13.9963823, 48.9854789)	1448	0	37674	$0.723\mathrm{s}$
1	Golden ratio	[-3, 0.4]	(13.9956479, 48.9825392)	2048	71715	2049	0.718s
1	Fibonacci	[-3, 0.4]	(13.9781579, 48.9125879)	76698	2684465	76699	31.416s
1	Dichotomy	[-3, 0.4]	(13.9982071, 48.9927832)	404	20250	405	$0.174 \mathrm{s}$
1	Binary search	[-3, 0.4]	(13.9916443, 48.9665149)	6948	0	180674	$3.173 \mathrm{s}$
1	Golden ratio	[-1, 1]	(13.9971676, 48.9886222)	900	31535	901	0.290s
1	Fibonacci	[-1, 1]	(13.9781658, 48.9126196)	49414	1729525	49415	21.12s
1	Dichotomy	[-1, 1]	(13.9971682, 48.9886251)	940	47050	941	0.398s
1	Binary search	[-1, 1]	(13.9946088, 48.9783802)	3024	0	78650	1.585s
2	Golden ratio	[0.5, 0.1]	(-0.7071046, 0.0000059)	10	385	11	0.3s
2	Fibonacci	[0.5, 0.1]	(-0.7071046, 0.0000059)	10	385	11	0.3s
2	Dichotomy	[0.5, 0.1]	(-0.7071085, 0.0000078)	10	550	11	0.4s
2	Binary search	[0.5, 0.1]	(-0.7071046, 0.0000059)	10	0	286	0.5s
2	Golden ratio	[0, 1]	(-0.7071090, 0.0000027)	11	420	12	0.3s
2	Fibonacci	[0, 1]	(-0.7071090, 0.0000027)	11	420	12	0.4s
2	Dichotomy	[0, 1]	(-0.7071113, 0.0000025)	11	600	12	0.4s
2	Binary search	[0, 1]	(-0.7071090, 0.0000027)	11	0	312	0.6s
2	Golden ratio Fibonacci	[-3, 0.4]	(-0.7071040, 0.0000075)	126	4445	127	0.38s
2		[-3, 0.4]	(-0.7071040, 0.0000075)	126	4445	127	0.44s
2	Dichotomy	[-3, 0.4]	(-0.7071093, 0.0000081)	126	6350	127	0.49s
$\frac{2}{2}$	Binary search	[-3, 0.4]	(-0.7071040, 0.0000075) (-0.7071035, 0.0000059)	126	0 420	3302	0.71s
$\frac{2}{2}$	Golden ratio	[-1, 1]	(-0.7071035, 0.0000059)	11	420	12	0.5s
$\frac{2}{2}$	Fibonacci Dichotomy	[-1, 1]	(-0.7071101, 0.0000096)	11 11	420 600	$\begin{array}{c} 12 \\ 12 \end{array}$	0.4s $0.4s$
$\frac{2}{2}$	•	[-1, 1]	(-0.7071101, 0.0000096) (-0.7071035, 0.0000059)			$\begin{array}{c} 12 \\ 312 \end{array}$	0.4s $0.6s$
2	Binary search	[-1, 1]	(-0.7071055, 0.0000059)	11	0	312	U.US

Сравнение скорости сходимости проводилось по затраченному процессорному времени, так как количество итераций и количество вычислений функции не очень репрентативная иноформация. Нас все равно интересует как быстро мы получим численный ответ в реальной жизни.

Агрегированные результаты можно видеть ниже:

Видно, что на 0 и 2 функции методы ведут себя сравнимо. Бинарный поиск проигрывает другим методам скорее всего из-за не самой эффективной реализации вычисления градиента, который он много раз вычисляет

Очень велика разница между методом Фибоначчи и остальными методами на 1 функции. Вероятнее всего это связанно с тем, что данная функция плохо обусловленна (будет видно далее по линиям уровня), из-за чего градиентный спуск в целом сходится плохо. А также из-за того, что из-за операций над большими числами алгоритму не хватает точности на каждом вычислении шага.

5 Задание 3

На графиках ниже можно наблюдать траектории градиентного спуска (точка на графике - стартовое значение, крестик - результат алгоритма)

Также на графиках изображены линии уровня и сетка раскрашена по значениям функции в точках (чем темнее, тем меньше значение)

Правые графики являются приближением левых с концентрацией на последних итерациях

Задание 4 6

Будем генерировать квадратичную задачу следующим образом:

- 1. Возьмем произвольную матрицу $Q_{[n \times n]}^{'}$
- 2. Произведем над ней сингулярное разложение $Q^{'}=US^{'}V^{T}$
- 3. Пусть s_{min} минимальное сингулярное число, а s_{max} максимальное. Отмасштабируем диагональные элементы матрицы S'->S: $[s_{min},s_{max}]->[1,\sqrt{k}]$ 4. Посчитаем матрицу $Q_1=USV^T$ 5. Построим матрицу $Q=Q_1Q_1^T$ обладает числом обусловленности k, так как ее минимальное собственное число
- равно 1, а максимальное k
- 6. Сгенерируем случайный вектор b
- 7. Задача f(x) = (Qx, x) + (b, x) является искомой и обладает числом обусловленности k, так как матрица Q является гессианом и ее минимальное собственное число равно 1, а максимальное — k

Посчитаем количество итераций в зависимости от числа обусловленности при $n \in \{3, 10, 100, 1000\}$:

На графиках виден тренд, что пр диентного спуска также растет	ри увелечении числа	обусловленности и	размерности множест	гва число итераций гра