Software Project NLP with NNs

Proto-Word Reconstruction with RNNs Project Sketch

Julius Steuer Morgan Wixted

August 11, 2020

Goal of the Project

- Provide a tool to automatically reconstruct proto-words for a given sample of cognate sets
- Initial hypothesis if not much is known about the family
- Allow for integration of linguistic knowledge
 - Alignment between cognate loci in different languages
 - Exclude word parts assumed to be innovations (e. g. spanish nos-otros from latin no:s)
- Examine the influence of input representations on model performance

Baseline

Start from Meloni et al. (2019):

- Romance dataset (not publicly availabe)
- Character-based encoder-decoder architecture with Bahdanau attention
- Characters encoded as 100-bit vectors (localist representation)
- Output one character of the reconstructed word per timestep
- Evaluate impact of individual languages on reconstruction:

Model

Idea:

- Use distributed feature encodings to represent characters, not embeddings
- Use the stem of the Latin word as the proto-form, since nominative inflection is seldom preserved in modern Romance
- Start with ASJP (easily available) transcriptions (Brown et al. (2008)), later switch to IPA (richer annotation).
- Pairwise alignments of sequence chunks (following Ciobanu and Dinu (2018))

Latin acc.	sing	со	rtice	em '	bark	\rightarrow	AS	JP	{kor	tike}
	1	2	3	4	5	6	7	8	9	10
latin	-	k	0	-	r	t	i	k	-	е
italian	-	k	0	-	r	t	е	t	C	а
spanish	-	k	0	-	r	t	е	8	-	а
french	е	k	0	-	r	-	-	-	-	-
romanian	S	k	0	а	r	-	-	С	-	3

Model, feature encoding

ASJP consonant feature encodings																
segment	voiced	labial	dental	alveolar	palatal	velar	uvular	glottal	stop	fricative	affricate	nasal	click	approximant	lateral	rhotic
P	0	1	0	0	0	0	0	0	1	1	0	0	- 0	0	0	0
b	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0
f	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
v	1	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
m	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0
4	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
t	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
d	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
8	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
z	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
c	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
n	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
S	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
Z	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
C	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
j	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
T	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
k	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
g	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
×	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
N	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
Q.	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
G	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
X	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
h	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
L	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
w	1	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0
У	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
r	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
!	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

ASJP vowel features										
segment	high	mid	low	front	central	back	rounded			
i	1	0	0	1	0	0	1			
e	0	1	0	1	0	0	1			
E	0	0	1	1	0	0	1			
3	1	1	0	0	0	1	0			
a	0	0	1	0	1	0	0			
u	1	0	0	0	0	1	1			
0	0	1	1	0	0	1	1			

Model, continued

Input:

One column represents the input at a single timestep:

$$I_{T=t_1} = (-, -, -, e, s)$$

 $I_{T=t_2} = (k, k, k, k, k)$
...
 $I_{T=t_{10}} = (e, a, a, -, 3)$

- Attention: Meloni et al. (2019) attend on different languages in the cognate set.
 - In our case it depends on how whe present the data to the model: Either (as in the paper) perform a pass through the model to reconstruct a single character (each $I_{T=t_i}$ a sequence of inputs), or
- Use the matrix/vector $I_{T=t_i}$ at a single time step, and perform only one pass

Model, limitations

But: The direct precursor of italian *corteccia*, spanish *corteza* etc. is the latin adjective *corticeus*, -a, -um

- We expect the model to reconstruct an a-stem noun instead of a consononat stem cortex, cortices
- Spurious sounds (french e-, romanian s-) should be dropped
- Ambiguous sounds may not indicate a clear rule (latin -k- vs. rom. -c- vs. spanish -8-)

Milestones

Minimal:

- Reconstruction with ASJP encodings, small Swadesh list as data
- Then switch to IPA encodings
- Try different language family (initial guess on unseen data)
- Examinate the influence of different (or absent) alignments on model performance

Great to have:

- Use larger dataset (asked Ciobanu for hers)
- Ensure compatibility with the LingPy ¹ WordList ² class

¹http://lingpy.org/

²http://lingpy.org/reference/lingpy.basic.html#lingpy.basic.wordlist.Wordlist

References

- Brown, C. H., Holman, E. W., Wichmann, S., and Velupillai, V. (2008). Automated classification of the world's languages: a description of the method and preliminary results. *Language Typology and Universals*, 61(4):285–308.
- Ciobanu, A. M. and Dinu, L. P. (2018). Ab Initio: Automatic Latin Proto-word Reconstruction. In *Proceedings of the 27th International Conference on Computational Linguistics*, pages 1604–1614, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
- Meloni, C., Ravfogel, S., and Goldberg, Y. (2019). Ab Antiquo: Proto-language Reconstruction with RNNs. arXiv: 1908.02477.