4.19 作业

- 1. 设 V 是复数域上有限维线性空间, σ 是 V 上的线性变换。
 - (a) 设 μ , λ 为 σ 的特征值,且 $\mu \neq \lambda$,证明: $\sigma \mu$ I 限制于属于 λ 的根子空间 U_{λ} 上为单射¹;
 - (b) 设 λ 为 σ 的特征值,证明: dim U_{λ} 为 λ 的代数重数。

2. 设
$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & A_s \end{pmatrix}$$
 为分块对角矩阵,其中每个 A_i 都为

方阵。设 $m_{A_i}(x)$ 是 A_i 的极小多项式,证明: $m_A(x)$ 是 $m_{A_i}(x)(i=1,\cdots,s)$ 的最小公倍式。

3. 计算如下矩阵的极小多项式。

(a) Jordan 块
$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}_{m \times m}$$

(b)
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$

4. 设 V 是复数域上的 n 维线性空间, σ 是 V 上的线性变换, 它在基

$$\epsilon_1, \dots, \epsilon_n$$
 下的表示矩阵为 Jordan 块 $J_n(\lambda) = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}_{n \times n}$

证明:

- V 中包含 ϵ_n 的 σ 的不变子空间只有 V 自身;
- V 中任何非零的 σ 的不变子空间都包含 ϵ_1 ;
- V 不能分解成两个非平凡的 σ 的不变子空间的直和。

 $^{^1}$ 注意 U_λ 是 $(\sigma-\mu\mathrm{I})$ -不变子空间,所以 $(\sigma-\mu\mathrm{I})$ 可以看作 U_λ 上的映射。