Oblig 8

Oskar Idland

Problem 8.3 (H)

a)

The two lowest shells are completely filled, which in general means having L=S=0. We therefore only look at the p-shells. They value s=1/2 and l=2

$$S_{\text{tot}} = \{0, 1\}$$
 , $L_{\text{tot}} = \{0, 1, 2\}$

Creating combinations with these values we discard the symmetrical ones, as electrons are fermions. These states (L, S) are therefore:

This gives us three possible total spin $J \in \{0, 1, 2\}$. Using the term symbol notation to describe these states we get:

$${}^{1}S_{0}$$
 , ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}D_{2}$

b)

Hunds rules says the lowest energy state is the one with the highest S value. This is all the P, states. Hunds rule also specifies that for a given degeneracy the lowest energy state belongs to the state with the lowest total angular momentum J. This is the ${}^{3}P_{0}$ state. :

$$^{3}P_{0}$$

Problem 8.4 (H)

 \mathbf{a}

Plotting the equation for a range of z-values to find the values z_0 . Using this we can solve the equation using scipy.

b)

Figur 1

c)

As there is space for 2N electrons in each shell, we know that with 3N electrons the lowest shell is filled, and the one above is half-filled. We find the lowest energy by filling the lowest energy level of the second shell. The fermi wave vectors are therefore $K_f = \pi/2$ and $K_f = 3\pi/2$. which occur at l = 25 and l = 75 respectively. The fermi energy is therefore $E_f \approx 24$

Problem 8.5 (H)

a)

The total energy of a harmonic oscillator is given by:

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right)$$
 , $n = 0, 1, 2, 3...$

With a two-dimensional harmonic oscillator we have:

$$E_n = E_{n_1} + E_{n_2} = \hbar\omega(n_1 + n_2 + 1)$$

Representing a state using $|n_1n_2\rangle$. We obviously see the lowest energy is in the state $|00\rangle$. Next we have $|10\rangle$ and $|01\rangle$, which have the same energy. The two lowest energy states are therefore $\hbar\omega$, $2\hbar\omega$ where the latter has a degeneracy of two. The third-lowest level energy levels belongs to $|11\rangle$, $|20\rangle$ and $|02\rangle$ with energy $3\hbar\omega$ and a degeneracy of three.

b)

n	E_n/n
1	1
2	1
3	4 / 3
4	6 / 4
5	8/5
6	10 / 6
7	13 / 7

c)

Inert elements are defined as an element where adding an electron makes the energy per particle to jump. We see this occurs at $n = 2, 6, 12, \ldots$ which continues to make jumps of 6.

Figur 2: Plot of the energy per number of particles in the two-dimensional harmonic oscillator.