Normal (Gaussian) Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

• μ is the mean and σ^2 is the variance

- Exercise: Verify the mean and variance. For e.g.

$$E[X - E(X)]^{2}$$

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^{2}}(x - \mu)^{2}\right) dx \stackrel{?}{=} \mu$$

$$= \int_{-\infty}^{\infty} (x - \mu)^{2} N(x|\mu, \sigma^{2}) dx$$

M

X

1-D Gaussian distribution

Normal (Gaussian) Distribution

It is a popular continuous distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- μ is the mean and σ^2 is the variance
- Exercise: Verify the mean and variance. For e.g.

$$E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx \stackrel{?}{=} \mu$$

 $E[X] = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx \stackrel{?}{=} \mu$ • Multivariate Gaussian (d-dim) $\mu \in \mathbb{R}^d$ $\Sigma \in \mathbb{R}^d$

$$f(x|\mu,\Sigma) = (2\pi)^{-d/2}|\Sigma|^{-1/2}\exp\left\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right\}$$
• x is now a vector, μ is the mean vector and Σ is the co-variance matrix

2-D Gaussian distribution

Properties of Normal Distribution

- All marginals of a Gaussian are again Gaussian
- $p(x_1, x_2) = \mathcal{N}(x_1); [u_1],$
- Any conditional of a Gaussian is Gaussian
- The product of two Gaussians is again Gaussian

 Fig. 1.

 Even the sum of two independent Gaussian r.v.'s is a Gaussian $\sum_{i=1}^{n} \sigma_{i}^{2} \sigma_{i}^{2}$ $\sum_{i=1}^{n} \sigma_{i}^{2} \sigma_{i}^{2}$ $\sum_{i=1}^{n} \sigma_{i}^{2} \sigma_{i}^{2}$ Even the sum of two independent Gaussian r.v.'s is a Gaussian

$$P(x_{1}|x_{2}=c) = \mathcal{N}(x_{1};$$

$$M_{x_{1}|c} = g(c, M_{2}, \sigma_{12})$$

$$\nabla_{x_{1}|c} = h(\sigma_{1}, \sigma_{2}, \sigma_{12})$$

Multinomial distribution

$$\times \sim \text{Multi}(x; p_1, p_2, p_1, p_2) \times = \{1, 2, -- k\}$$
 $P(X = v) = p_v \qquad \sum P(x = v) = 1 \Rightarrow \sum p_n = 1$

Example: volling of a drie-
 $X = \{1, 2, --6\} \qquad \times \sim \text{Mult}(x; 0.1, 0.2, 0.1, 0.5, 0.1)$

Exponential family distributions

* Not in syllabors.

Many of the standard distributions belong to this family

- Bernoulli, binomial/multinomial, Poisson, Normal (Gaussian), Beta/Dirichlet ...
- Share many important properties e.g. They have a conjugate prior.

$$P(x; \eta \in \mathbb{R}^{t}) = h(x) \exp(\eta T(x) - A(\eta))$$

Samples of a Random Variable

Let X be a R.V with probability function $p(x) = f(x; \mathbf{w})$

Samples of X are set of values $\{x^1, \ldots, x^n\}$ assigned to X based on p(x).

Examples:
$$\times \sim Burnoulli(x; q = 0.9) = N = 10$$
 $0, 0, 1, 1, 1, 0, 1, 1, 0$
 $N = 10$
 $N = 10$

Consistent samples

As $N \to \infty$, the fraction of times in the sample that we encounter a sample in an interval $[x, x + \Delta)$ would be proportional to the true probability of that interval in p(x) that is, $F(x + \Delta) - F(x)$

For every interval (k_j, u_j) find $n_j \equiv \#$ of samples in D

whose value is between the superior of the su

How to draw samples?

How do we draw \underline{N} samples $\underline{x^1, \ldots, x^N}$ from the distribution? Assume we can sample a \underline{u} from a uniform distribution $\underline{U}(0,1)$ $\underline{\varepsilon_8}$: $\underline{\eta_1}$ $\underline{\sigma_1}$ $\underline{\sigma_2}$

F

Let F(x) be cumulative distribution of p(x) = f(x; w)

For
$$i = 1 \dots N$$

- 1. Sample $\underline{u_i} \sim U(0,1)$
- 2. Find $x^{i} = F^{-1}(u)$

Find the
$$x$$
 at which
$$F(x) = u_i = 0.3$$

$$= x = F^{-1}(u_i)$$

F(2)

Basics: Sampling from multinomial distributions

Parameter Estimation

Given samples $D = \{x^1, \dots, X^N\}$, form of the distribution $p(x) = f(x; \mathbf{w})$ estimate values of the parameters w.

i.i.d assumption: each instance is independently and identically distributed.

Two methods:

- 1. Maximum likelihood estimation
 - 2. Bayesian estimation

Maximum Likelihood Estimation (MLE)

- Find the value wfor which the probability (likelihood) of the data is maximized.
- Likelihood of data L(w; D)

• Maximizing log-likelihood of data is equivalent to maximizing likelihood.