NASA Technical Memorandum 101645

AVSCOM Technical Memorandum 89-B-007

Five Year Ground Exposure of Composite Materials Used on The Bell Model 206L Flight Service Evaluation

Donald J. Baker

July 1989

(NASA-TM-101645) FIVE YEAR GROUND EXPOSURE OF COMPOSITE MATERIALS USED ON THE BELL MODEL 206L FLIGHT SERVICE EVALUATION (NASALANG) Research Center) 93 p CSCL 11D

N89-28579

Unclas G3/24 0231755

Langley Research Center Hampton, Virginia 23665

FIVE YEAR GROUND EXPOSURE OF COMPOSITE MATERIALS USED ON THE BELL MODEL 206L FLIGHT SERVICE EVALUATION

Donald J. Baker

Aerostructures Directorate
U.S. Army Aviation Research and Technology Activity(AVSCOM)
Langley Research Center
Hampton.VA.23665-5225

Introduction

During the past ten years, NASA has sponsored programs to build a data base and establish confidence in the long-term durability of advanced composite materials(reference 1). Flight service experience is being obtained on primary and secondary structural components installed on commercial aircraft and from material specimens exposed at different locations. Although commercial aircraft and helicopters may fly in the same environment the behavior of composite materials on each vehicle may differ substantially. Most of the projected usage for composites in helicopter fuselage is Kevlar-49®/epoxy with selective reinforcement of graphite/epoxy using 250°F curing epoxies. Most commercial aircraft are using 350°F cure graphite/epoxy systems with very little use of Kevlar/epoxy. Considering only the effects of moisture, materials in the minimum gage structure in most helicopter fuselage would reach equilibrium moisture content in a short time whereas the heavier gage structure on a commercial aircraft could take months to reach an equilibrium condition.

Therefore, in 1978, NASA and the U.S. Army Research and Technology activity initiated the first major program to evaluate composite helicopter components in flight service. The flight service program includes four components per aircraft. There are three secondary structural components fabricated from Kevlar-49/epoxy and one primary structural structural component fabricated from graphite/epoxy per aircraft. Concurrent with the flight program, specimens from materials used to fabricate the components are being exposed in outdoor ground racks and are being returned for testing at prescribed intervals.

This paper describes the results of tests on specimens that have been exposed for the first five years of a planned ten year ground exposure program

Use of commercial products or names of manufactures in this report does not constitute official endorsement of such products or manufactures, either expressed or implied, by the National Aeronautics and Space Administration or the U.S. Army Research and Technology Activity.

[®] Registered trademark of Dupont Corp.

Exposure Specimens

Composite material systems are being exposed on the North American Continent in areas that have varying environmental conditions. The composite systems are: 1.) Kevlar-49 fabric(style 281) /F-185 epoxy, 2.) Kevlar-49 fabric(style 120) /LRF-277 epoxy, 3.) Kevlar-49 fabric (style 281) /CE-306 epoxy, and 4.) T-300 Graphite tape/ E-788 epoxy. The F-185 epoxy is a 250°F cure system. The LRF-277 is a 250°F cure proprietary resin. The CE-306 is cured at 200°F for five hours. The E-788 is a 350°F cure epoxy. Style 281 Kevlar-49 fabric is a plain weave with 17 ends/inch of 1140 denier yarn in each direction and has a weight of 5.0 ounces per square yard. Style 120 fabric is a plain weave with 34 ends/inch of 195 denier yarn in each direction and has a weight of 1.8 ounces per square yard. The material suppliers, specimen nominal thicknesses, and fiber lay-up patterns are given in Table I.

The materials are exposed outdoors in racks (figure 1) at five locations on the North American Continent as shown in figure 2. The racks at Toronto, Canada and Hampton, VA are installed on the roofs of buildings. Racks at Cameron, LA and Ft. Greely, AK are installed on stands approximately 18 inches above the ground. The remaining rack is on a working oil platform in the Gulf of Mexico. The racks were installed in 1980 and contain five panels each for removal after 1, 3, 5, 7, and 10 years of exposure. A panel contains 24 each of tension, short-beam-shear (SBS), IITRI compression specimens and four 2.0 inch wide specimens to observe the weathering characteristics of each material system. The specimen design is shown in figure 3 and is also given in reference 2. The tension, compression and SBS specimens are painted with a polyurethane paint(IMIRON¹) that is used on the flight service helicopters. The remaining specimens were left unpainted to determine the weathering effect on bare composites.

The specimens used for moisture determination were cut from the tested tension specimens. A 0.5 inch long section was cut from the undamaged area of the tension specimens as soon as possible after completion of testing. The paint was removed by sanding, using caution not to remove an excessive amount of the outer ply. Each specimen was weighed after the paint removal. A 0.5 inch long specimen was also removed from the unpainted exposure specimen and weighed prior to being used for moisture determination. All specimens were stored in sealed plastic bags between different operations.

Test Methods

Each panel was received at Langley Research Center sealed in a plastic bag. The panel remained in the sealed bag until testing was initiated. All tests were performed at room temperature on six replicates for each specimen type. The tests were performed in accordance with the following ASTM standards; 1.) Tension-D3039, 2.) SBS-D2344, 3.) Compression-D3410 using the IITRI test fixture.

The specimens used for moisture determination were placed in a vacuum oven at $140^{\circ}F$. Each specimen was weighed periodically to determine weight loss as a function of drying time.

¹ Manufactured by Dupont Corp., Wilmington, DE

Results and Discussion

In the summer of 1985, the exposure racks (figure 1) located at Cameron, LA and on the Off Shore Oil Platform were destroyed by hurricanes. All the following data for five year exposure will be from the three remaining sites; Hampton, Virginia; Toronto, Canada; and Ft. Greely, Alaska.

Residual Compression Strength - Compression tests were conducted to determine the effect of exposure and exposure site on the residual strength. The baseline strengths for the as-fabricated ground exposure specimens are given in Table II. The actual specimen size, maximum failure load and failure stress for each specimen are given in Table II. The mean strength and standard deviation are also given for each material. The results of tests on compression specimens that have been exposed up to 5 years are tabulated in Tables III-VI. These tables include the specimen size, failure load, and failure stress for each specimen that has been tested. The mean compression strength and standard deviation for each set of replicate specimens (same exposure site and exposure time) are also given in Tables III-VI. A summary of the mean strengths and standard deviations for the baseline and exposed specimens are given in Table VII.

The residual compressive strength for each material as a function of exposure time and exposure location are presented in figures 4-7. The mean failure stress and range of failure stress are presented for each set of six replicate specimens. Also shown in each figure is the scatter in the baseline strength for each material. The residual strength is the ratio of failure stress to the mean baseline compressive strength for the material type.

Residual compressive strength for Kevlar-49/CE-306 is presented in figure 4. The baseline scatter for this material is 5 percent(-2 percent to +3 percent). The minimum mean residual compressive strength was 93 percent for specimens exposed for 5 years at Toronto, Canada. Residual mean strength of specimens exposed at Hampton, VA and in the Gulf of Mexico equalled or exceeded the minimum baseline strength of 98 percent. Residual compressive strength for Kevlar-49/F-185 is presented in figure 5. The baseline scatter for this material is 5 percent(-1 percent to 4 percent). The minimum mean residual compression strength was 90 percent for specimens exposed one year at Ft. Greely, AK. Residual strength of specimens from Cameron, LA, Gulf of Mexico, and Hampton, VA all equalled or exceeded the minimum baseline scatter band of 97 percent. Residual compressive strength for Kevlar-49/LRF-277 is presented in figure 6. The baseline scatter for this material is 11 percent(-4 percent to +7 percent). The minimum mean residual compression strength was 84 percent for specimens exposed for one year at Ft. Greely, AK. The residual strengths for all exposure sites are below the minimum baseline scatter band. A general observation that can be made for all Kevlar-49/epoxy materials is that all residual strengths for specimens from Toronto, Canada and Ft. Greely, AK are below the minimum baseline scatter indicating a possible effect from the cold climate. Residual compression strength for T300/E-788 graphite/epoxy is presented in figure 7. The baseline scatter is 7 percent(-4 percent to +3 percent). The minimum mean residual compressive strength was 91 percent for specimens exposed for 3 years at Cameron, LA. All of the mean residual strength averages are within 3 percent of the baseline scatter band.

The effect of exposure location on the residual compression strength of each material is presented in figures 8-11. The data points represent a comparison of the mean compression strength at each exposure site with the mean baseline compression strength value for that material system. Each data point is the average of six tests. The Kevlar-49/LRF-277 material (figure 9) has lower compression strength retention than the other

materials. The Kevlar-49/LRF-277 varies from 84 to 94 percent after one year of exposure, 84 to 91 percent after three years of exposure, and 87 to 95 percent after five years of exposure. The other material systems (figs. 8,10,11) exceeded 90 percent after one year of exposure, 93 percent after three years and five years of exposure.

The data points shown in figure 12 represent a comparison of the mean baseline compression strength with the mean compression strength data of specimens exposed at the five different locations shown in Fig. 2. Also shown in figure 12 is the scatter band in the baseline strength for all materials tested. Each point shown for 1 or 3 years of exposure is the average of thirty tests(5 racks and 6 replicates of each material) while points at 5 years of exposure are the average of eighteen tests(3 racks and 6 replicates of each material). The residual compression strengths of exposed painted specimens shown in figure 12 vary between 88 and 101 percent of the average baseline strength. The T-300/E-788 graphite is at the upper bound and varies between 98 and 101 percent of the average baseline strength. Kevlar-49/LRF-277 material is at the lower bound and varies between 88 and 90 percent of the average baseline strength. Residual compression strengths for all materials except Kevlar-49/LRF-277 fall within the baseline scatter band.

Residual Short-Beam Shear Strength - Short-beam-shear(SBS) tests were conducted to determine degradation of the fiber-to-matrix bond as a function outdoor exposure time and exposure site. Generally interlaminar failures occured at the mid-plane of the specimens. The baseline strengths for the as-fabricated ground exposure specimens are given in Table VIII. The actual specimen size, maximum failure load and failure stress for each baseline specimen are given in Table VIII. The mean strength and standard deviation are also given for each material. The results of tests on SBS specimens that have been exposed up to 5 years are tabulated in Tables IX-XII. These tables include the specimen size, failure load, and failure stress for each specimen that has been tested. The mean SBS strength and standard deviation for each set of replicate specimens (same exposure site and exposure time) are also given in Tables IX-XII. A summary of the mean strengths and standard deviations for the baseline and exposed specimens are given in Table XIII.

The residual SBS strength for each material as a function of exposure time and exposure location are presented in figures 13-16. The mean failure stress and range of failure stress are presented for each set of six replicate specimens. Also shown in each figure is the scatter in the baseline strength for each material. The residual strength is the ratio of failure stress to the mean baseline SBS strength for the material type.

Residual SBS strength for Kevlar-49/CE-306 is presented in figure 13. The baseline scatter for this material is 11 percent(-7 percent to +4 percent). The minimum mean residual SBS strength was 93 percent for specimens exposed for 1 year at Ft. Greely, AK and 3 years at Cameron, LA. The mean residual SBS strength for all other exposure sites and exposure times exceeded the baseline minimum of 93 percent. Residual SBS strength for Kevlar-49/F-185 is presented in figure 14. The baseline scatter for this material is 10 percent (+ 5 percent). The minimum mean SBS strength was 85 percent for specimens exposed for one year at Ft. Greely, AK. The mean residual SBS strength for all other exposure sites and exposure times exceeded the baseline minimum of 95 percent. Residual SBS strength for Kevlar-49/LRF-277 is presented in figure 15. The baseline scatter for this material is 9 percent(-5 percent to +4 percent). The minimum mean SBS strength was 87 percent for specimens exposed for one year at Cameron, LA and five years at Ft. Greely, AK. Eight of the eleven remaining data points are between 87 percent and 95 percent, the baseline minimum. The Kevlar-49/LRF-277 exhibited poor SBS strength retention when compared to the other

two Kevlar-epoxy systems. Residual SBS strength for T300/E-788 graphite/epoxy is presented in figure 16. The baseline scatter for this material is 7 percent (-4 percent to +3 percent). The minimum mean SBS strength was 96 percent, the baseline minimum, for specimens exposed for five years at Ft. Greely, AK. Specimens exposed at sites other than Ft. Greely exceeded 100 percent strength retention after exposure.

Effects of different environments on the residual SBS strength for each material is shown in figure 17-20. The data points represent a comparison of the average SBS strength at each exposure site with the average baseline SBS strength for that material system. The Kevlar-49/LRF-277 has lower SBS strength retention than the other materials. The strength retention of Kevlar-49/LRF-277 (figure 18) varies from 87 to 97 percent after one year of exposure, 87 to 95 percent after three years of exposure, and 87 to 96 percent after five years of exposure. The other material systems (figures 17,19,20) strength retention exceed 92 percent after one year of exposure, 93 percent after three years of exposure, and 91 percent after five years of exposure.

Residual SBS strengths of painted specimens with up to five years of exposure are shown in figure 21. The data points represent a comparison of the average baseline SBS strength with the average SBS strength data of specimens exposed at five different locations shown in figure 2. Each point shown for 1 or 3 years of exposure is the average of thirty tests(5 racks and 6 replicates of each material) while points at 5 years of exposure are the average of eighteen tests(3 racks and 6 replicates of each material). The SBS strengths vary between 91 and 103 percent of baseline strength. Like the compression strength, the T-300/E-788 SBS strength is at the upper bound, between 100 and 103 percent of the average baseline strength, while the Kevlar-49/LRF-277 is at the lower bound between 91 and 92 percent of the average baseline strength. Residual short beam shear strengths for all materials except Kevlar-49/LRF-277 fall within the baseline scatter band.

Residual Tension Strength - Tension tests were conducted to determine the effect of environmental exposure and exposure site on the residual strength. The baseline strengths for the as-fabricated ground exposure specimens are given in Table XIV. The actual specimen size, maximum failure load and failure stress for each specimen are given in Table XIV. The mean strength and standard deviation are also given for each material. The results of tests on tension specimens that have been exposed up to 5 years are tabulated in Tables XV-XVIII. These tables include the specimen size, failure load, and failure stress for each specimen that has been tested. The mean tension strength and standard deviation for each set of replicate specimens (same exposure site and exposure time) are also given in Tables XV-XVIII. A summary of the mean strengths and standard deviations for the baseline and exposed specimens are given in Table XIX.

The residual tensile strength for each material as a function of exposure time and exposure location are presented in figures 22-25. The mean failure stress and range of failure stress are presented for each set of six replicate specimens. Also shown in each figure is the scatter in the baseline strength for each material. The residual strength is the ratio of failure stress to the average baseline compressive strength for the material type.

Residual tension strength for Kevlar-49/CE-306 is presented in figure 22. The baseline scatter for this material is 11 percent(-6 percent to +5 percent). The minimum mean residual tension strength was 99 percent for specimens exposed for 3 years at Cameron, LA. The mean residual tension strength for all other exposure sites and exposure times exceeded 100 percent of baseline mean. Residual tension strength for Kevlar-49/F-185 is presented in figure 23. The baseline scatter for this material is 11 percent (-3 percent to +8 percent). The mean tension strength for all

exposure sites exceeded 100 percent of the baseline mean strength. Residual tension strength for Kevlar-49/LRF-277 is presented in figure 24. The baseline scatter for this material is 7 percent(-4 percent to +3 percent). The minimum mean SBS strength was 99 percent for specimens exposed for one year in the Gulf of Mexico. All other exposure sites exceeded 100 percent of the baseline mean strength. Residual tension strength for T300/E-788 graphite/epoxy is presented in figure 25. The baseline scatter for this material is 8 percent (±4 percent). The minimum mean tension strength was 97 percent for specimens exposed for one year at Cameron, LA and in the Gulf of Mexico. All other specimen exposures, except after five years exposure at Toronto, Canada, exceeded 100 percent of baseline mean strength.

Effects of different environments on the residual tension strength for each material is shown in figures 26-29. The data points represent a comparison of the average tension strength at each exposure site with the average baseline tension strength for that material system. All data points are above the baseline minimum strength. The minimum value for all exposures is 97 percent for one year exposure of T-300/E-788 at Cameron, LA. Most of the remaining points exceed 100 percent of baseline mean strength.

The data points shown in figure 30 represent a comparison of the average baseline tension strength with the average tension strength data of specimens exposed at the five different locations shown in Fig. 2. Also shown in figure 30 is the scatter band in the baseline strength for all materials tested. Each point shown for 1 or 3 years of exposure is the average of thirty tests(5 racks and 6 replicates of each material) while points at 5 years of exposure are the average of eighteen tests(3 racks and 6 replicates of each material). The average of all specimens exceed 100 percent of the baseline mean strength.

Moisture Absorption - Temperature, relative humidity, exposure conditions, type of fiber and matrix determine the amount of moisture that a composite material will absorb. The object of these tests is to determine the moisture absorption of composite materials when exposed to various outdoor realtime environments. A summary of moisture absorption as a fraction of composite specimen weight for painted specimens that were exposed for three and five years are tabulated in Table XX and shown in figures 31-34. Each data point for the painted specimens is the average of six replicates. Kevlar-49/epoxy materials absorb four to five times more moisture than graphite/epoxy because the Kevlar fibers absorb moisture. All materials show an increase in moisture absorption from the third to fifth years. average values, for each material, shown in Table XX compare well with published values for other Kevlar/epoxy and graphite/epoxy systems (reference 1). A summary of the weight loss for the unpainted specimens is given in Table XXI and shown in figures 31-34. Each data point for the unpainted specimens is from a single specimen. All values in Table XXI appear reasonable except for the 0.74 percent weight loss for the T-300/E-788 material exposed in the Gulf of Mexico. Since there is only one specimen available it is not possible to determine if this is a valid data Comparing the average weight loss shown in Table XX and XXI indicates the Kevlar-49/F-185 (figure 32) retains approximately 0.6 percent more moisture when painted. The Kevlar-49/LRF-277(figure 33) material retains 0.1 to 0.3 percent less moisture when painted. Paint has little effect on moisture absorption of Kevlar-49/CE-306(figure 31) and T-300/E-788(figure 34) after three years of exposure. After five years of exposure the Kevlar-49/CE-306 and T-300/E-788 retains 0.15 to 0.4 percent more moisture when painted.

<u>Weathering</u> - Effects of weathering on the bare composites that were exposed at Hampton, VA are shown in figures 35-38. Each figure shows the asfabricated, one year, three year and five year specimens exposed at Hampton,

The photographs shown in these figures is a 15X magnification of the exposed surface. Figure 35 indicates the surfaces of Kevlar-49/CE-306 after exposure. The photograph of the specimen after one year of exposure indicates some resin has been washed away by the reduced definition of the pattern of the peel ply used in fabrication. Additional resin is lost on the high spots of the warp fibers after 3 years of exposure as can be seen in the photograph(figure 35). Some resin still exists in the low areas around the fill fibers. After five years of exposure very little resin The as-fabricated and one year exposure views in remains on the surface. figure 36 for Kevlar-49/F-185 material indicate the surface fibers are coated with epoxy. The three year exposure view has the surface fibers exposed due to ultraviolet degradation of the surface layer of epoxy. After five years of exposure of the Kevlar-49/F-185 material all resin has disappeared and it appears some of the fiber on the humps in the fill yarns has also disappeared. The as-fabricated views of Kevlar-49/LRF-277 material in figure 37 indicate most of the surface fibers are coated with epoxy. one year exposure view(figure 37) indicates most of the surface resin is missing. All the resin is missing and some fiber damage is indicated in the three year exposure view shown in figure 37. After five years of exposure only fiber fragments remain of the outer ply and the resin shown is from The T-300/E-788 Graphite/epoxy exposed for three and between the plies. five years, shown in figure 38, has bare surface fibers. Some resin loss is indicated after one year of exposure. The specimens exposed at the other locations had similar resin loss. This emphasizes the need to keep composites protected from ultraviolet exposure.

Concluding Remarks

Results after five years of ground exposure indicates that all material systems exhibit good strength retention in compression and short beam shear. All material systems exceeded 85 percent strength retention after one and three years of exposure and 87 percent after five years of exposure, independent of exposure site. Residual tensile strength of all materials did not show a significant reduction.

The Kevlar-49/F-185 material absorbs approximately 0.6 percent more moisture when painted. Kevlar-49/LRF-277 material absorbs approximately 0.3 percent less moisture when painted. Paint has little effect on moisture absorption of Kevlar-49/CE-306 and T-300/E-788 after three years of exposure. All materials show an increase in moisture absorption from the third to the fifth years of outdoor exposure.

The exposure of unpainted specimens demonstrate the need to protect composites from ultraviolet exposure.

REFERENCES

- Dexter, H.Benson and Baker, Donald J., "Worldwide flight and Ground-Based Exposure of Composite Materials," NASA CP-2321, August 1984, p.17-49.
- 2. Zinberg, Herbert, "Flight Service Evaluation of Composite Components on the Bell Model 206L: Design, Fabrication and Testing," NASA CR-166002, November 1982.

TABLE I.- DESCRIPTION OF EXPOSURE SPECIMENS

Material	Material	Nominal spe	Nominal specimen thickness, in.			
type	supplier	Short-beam shear	Compression	Tension	Fiber lay-up pattern*	
K-49/CE-306 Kevlar-49/ epoxy	Ferro Corp.	.070	.070	.070	[0] fabric	
K-49/F-185 Kevlar-49/ epoxy	Hexcel Corp.	.080	.080	.080	[0/45/0] _s fabric	
K-49/IRF-277 Kevlar/ epoxy	Brunswick Corp.	.070	.070	.070	[0] fabric	
T-300/E-788 Graphite/ epoxy	U.S. Polymeric Co.	•072	.072	.072	[0/45/-45/0] _{2s} tape	

^{*} The O degree fiber direction is oriented along the length of the test specimen

TABLE II. - BASELINE COMPRESSION STRENGTH OF COMPOSITE MATERIALS

Material type	Specimen number	Width in.	Thickness in.	Maximum load lbf.	Failure stress psi
K-49/CE-306 Kevlar/epoxy	313F 314F 315F 316F 317F 318F	.2616 .2667 .2606 .2613 .2570 .2541	.0986 .1002 .0974 .0971 .0987	463. 481. 476. 472. 460. 453.	17950. 17999. 18753. 18603. 18135. 18099.
				Mean S.D.	= 18257. = 337.
K-49/F-185 Kevlar/epoxy	317 318 319 320 321 322	.2594 .2602 .2693 .2581 .2549 .2460	.1013 .1000 .0948 .0987 .0965 .1017	525. 510. 510. 509. 515. 515.	19979. 19600. 19977. 19981. 20937. 20585.
				Mean S.D.	= 20176. = 489.
K-49/LRF-277 Kevlar/epoxy	326B 327B 328B 329B 330B 331B	.2453 .2311 .2403 .2364 .2295 .2450	.0790 .0772 .0772 .0783 .0776	416. 425. 420. 402. 407. 410.	21467. 23822. 22640. 21718. 22853. 21677.
				Mean S.D.	= 22363. = 909.
T300/E-788 Graphite/ epoxy	158V 159V 160V 161V 162V 163V	.2553 .2573 .2526 .2562 .2556 .2552	.0716 .0714 .0684 .0669 .0693 .0701	2210. 2315. 2240. 2215. 2305. 2185.	120901. 126012. 129646. 129232. 130130. 122139.
				Mean = S.D. =	126343. 4025.

S.D. = Standard Deviation

TABLE III. - COMPRESSION STRENGTH OF PAINTED Kevlar-49/CE-306 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, IA

Specimen Number	Exposure Time, yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
319F 320F 321F 322F 323F 324F	1 1 1 1 1	.2606 .2660 .2629 .2551 .2572 .2616	.0988 .0985 .0988 .0965 .1012 .1008	456. 462. 465. 472. 472. 443.	17711. 17633. 17902. 19174. 18134. 16800.
				Mean = S.D =	17892. 774.
325F 326F 327F 328F 329F 330F	3 3 3 3 3 3	.2544 .2602 .2602 .2621 .2563 .2586	.0993 .1017 .0973 .0988 .0973 .0990	405. 448. 463. 500. 410. 459.	16032. 16930. 18288. 19308. 16441. 17929.
				Mean = S.D =	17488. 1239.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
349F 350F 351F 352F 353F 354F	1 1 1 1 1	.2672 .2553 .2667 .2665 .2575 .2578	.0962 .0901 .0967 .0973 .0996	464. 429. 462. 454. 447. 446.	18051. 18650. 17914. 17508. 17429. 17335.
				Mean = S.D. =	17815. 497.
355F 356F 357F 358F 359F 360F	3 3 3 3 3	.2489 .2489 .2551 .2526 .2532 .2627	.0998 .1005 .0997 .0989 .1005 .0947	404. 438. 476. 459. 470. 434.	16264. 17510. 18715. 18373. 18470. 17445.
				Mean = S.D =	17796. 915.

S.D. = Standard deviation

TABLE III.- CONTINUED

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
379F 380F 381F 382F 383F 384F	1 1 1 1 1	.2532 .2565 .2573 .2650 .2523 .2574	.0980 .0973 .0956 .0953 .0972 .0987	515. 482. 471. 462. 463. 468. Mean =	
385F 386F 387F 388F 389F 400F	3 3 3 3 3 3	.2560 .2657 .2656 .2546 .2662 .2624	.0916 .0978 .0950 .0993 .0950	S.D. = 475. 480. 483. 480. 474. 473. Mean =	20256. 18472. 19142. 18986. 18743. 18699.
401F 402F 403F 404F 405F 406F	555555	.2665 .2548 .2629 .2649 .2632 .2535	.0972 .0966 .0834 .0957 .1007 .0962	S.D. = 461. 438. 412. 459. 448. 454. Mean = S.D.	635. 17797. 17795. 18791. 18106. 16903. 18617. 18001. 679.

TABLE III. - CONTINUED

(d.) exposed at Toronto, Ontario, Canada

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
419F 420F 421F 422F 423F 424F	1 1 1 1	.2515 .2446 .2585 .2586 .2521 .2409	.0962 .0862 .1008 .1002 .0893 .0963	439. 379. 447. 415. 423. 404.	18145. 17975. 17155. 16016. 18790. 17415.
				Mean : S.D. :	
425F 426F 427F 428F 429F 430F	33333	.2564 .2625 .2639 .2539 .2664 .2658	.0980 .1009 .0968 .0950 .0960	410. 424. 436. 438. 421. 457.	16317. 16008. 17068. 18159. 16462. 18004.
				Mean = S.D. =	17003. 905.
431F 432F 433F 434F 435F 436F	555555	.2583 .2541 .2577 .2552 .2617 .2577	.0963 .1002 .0942 .0983 .0955 .0980	449. 469. 430. 467. 429. 454.	18051. 18420. 17713. 18616. 17165. 17977.
				S.D. =	517.

TABLE III. - CONCLUDED

(e) exposed at Ft. Greely, AK

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
394F 395F 396F 397F 398F 399F	1 1 1 1 1	.2535 .2521 .2635 .2585 .2652 .0963	.0953 .0908 .1008 .0928 .0971 .2544	441. 407. 424. 386. 444. 435.	18254. 17780. 15963. 16091. 17242. 17756.
				Mean = S.D. =	17181. 950.
467F 468F 390F 391F 392F 393F		.2648 .2646 .2590 .2527 .2645 .2610	.1006 .0964 .0993 .0971 .0883 .1000	472. 427. 463. 440. 420. 439.	17718. 16740. 18002. 17932. 17983. 16820.
				Mean = S.D. =	17533. 592.
461F 462F 463F 464F 465F 466F	555555	.2548 .2680 .2638 .2630 .2507 .2660	.0972 .0934 .0976 .0963 .0954 .0953	431. 455. 433. 474. 385. 458.	17402. 18177. 16818. 18715. 16097. 18067.
				Mean S.D.	= 17546. = 968.

TABLE IV - COMPRESSION STRENGTH OF PAINTED Kevlar-49/F-185 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
323 324 325 326 327 328	1 1 1 1	.2566 .2615 .2481 .2559 .2585 .2573	.0944 .0971 .0963 .0966 .0909	503. 507. 510. 492. 480. 522.	20765. 19967. 21346. 19903. 20428. 20267.
					= 20446. = 542.
329 330 331 332 333 334	3 3 3 3 3 3	.2548 .2580 .2528 .2503 .2582 .2458	.1011 .0980 .0967 .0980 .0949 .0930	491. 492. 454. 466. 487. 458.	19060. 19459. 18572. 18998. 19875. 20036.
					= 19333. = 560.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
353 354 355 356 357 358	1 1 1 1 1	.2478 .2535 .2491 .2517 .2530 .2536	.0988 .0975 .0970 .0992 .0976 .0994	506. 485. 491. 502. 482. 490.	20668. 19623. 20321. 20105. 19520. 19438.
			i		= 19946. = 496.
359 360 361 362 363 364	3 3 3 3 3 3	.2593 .2505 .2559 .2452 .2468 .2492	.0974 .0924 .0949 .0968 .0941 .0950	510. 465. 490. 491. 472. 489.	20193. 20090. 20177. 20686. 20324. 20656.
					= 20354. = 257.

S.D. = Standard deviation

TABLE IV. - CONTINUED

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
383 384 385 386 387 388	1 1 1 1	.2494 .2553 .2521 .2456 .2589 .2560	.0993 .0992 .1008 .0961 .1003 .0920	490. 492. 478. 468. 507. 484.	19786. 19427. 18810. 19829. 19524. 20550.
				Mean S.D.	= 19654. = 571.
389 390 391 392 393 394	3 3 3 3 3 3	.2543 .2538 .2409 .2425 .2514 .2463	.1005 .0938 .0961 .1019 .0996 .0974	508. 479. 495. 505. 503. 495.	19877. 20121. 21382. 20436. 20088. 20634.
					= 20423. = 541.
395 396 397 398 399 400	555555	.2512 .2429 .2393 .2510 .2523 .2541	.1008 .1015 .0976 .1000 .0969 .1014	502. 499. 464. 482. 484. 495.	19825. 20240. 19867. 19203. 19797. 19212.
					= 19691. = 407.

TABLE IV. - CONTINUED

(d) exposed at Toronto, Canada

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
413 414 415 416 417 418	1 1 1 1 1	.2563 .2673 .2429 .2524 .2563 .2530	.0999 .0958 .0945 .1020 .1013 .1005	477. 500. 454. 482. 503. 493.	18630. 19526. 19779. 18722. 19374. 19389.
				1	= 19236. = 459.
419 420 421 422 423 424	3 3 3 3 3 3	.2539 .2507 .2489 .2569 .2597 .2454	.1001 .1009 .1015 .0969 .1006 .0993	483. 495. 492. 467. 500. 485.	19004. 19569. 19475. 18760. 19138. 19903.
				1	= 19308. = 417.
425 426 427 428 429 430	555555	.2437 .2580 .2576 .2527 .2499 .2601	.0978 .0934 .0961 .0935 .1000	482. 461. 463. 471. 487. 486.	20223. 19131. 18703. 19934. 19488. 19047.
					= 19421. = 575.

TABLE IV. - CONCLUDED

(e) exposed at Ft. Greely, AK

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
467 468 469 470 471 472	1 1 1 1	.2476 .2551 .2445 .2600 .2511 .2543	.1000 .1015 .1012 .0979 .0987 .1006	460. 458. 453. 456. 448. 467.	18578. 17688. 18308. 17915. 18076. 18255.
					= 18137. = 314.
461 462 463 464 465 466	3 3 3 3 3 3	.2534 .2616 .2528 .2611 .2488 .2487	.1010 .0939 .1013 .0953 .0950 .0943	463. 461. 486. 481. 453. 447.	18091. 18767. 18978. 19331. 19166. 19060.
					= 18899. = 438.
455 456 457 458 459 460	555555	.2542 .2471 .2585 .2451 .2481 .2563	.0942 .0945 .0995 .0988 .0991 .0969	454. 436. 470. 455. 452. 477.	18960. 18672. 18273. 18789. 18384. 19206.
				Mean = S.D. =	= 18714. = 350.

TABLE V. - COMPRESSION STRENGTH OF PAINTED KEVLAR-49/LRF-277 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
332B 333B 334B 335B 336B 337B	1 1 1 1	.2387 .2539 .2229 .2294 .2510 .2558	.0783 .0773 .0788 .0779 .0785 .0759	370. 423. 382. 395. 397. 407.	19796. 21553. 21748. 22104. 20149. 20963.
					= 21052. = 9 2 1.
338B 339B 340B 341B 342B 343B	33333	.2512 .2364 .2539 .2194 .2513 .2353	.0777 .0778 .0814 .0789 .0781	368. 361. 376. 355. 393. 355.	18854. 19628. 18193. 20508. 20024. 19392.
					= 19433. = 827.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
362B 363B 364B 365B 366B 367B	1 1 1 1	.2263 .2300 .2438 .2365 .2326 .2288	.0769 .0777 .0788 .0774 .0787	359. 372. 396. 366. 382. 385.	20629. 20816. 20613. 19994. 20868. 21939.
					= 20810. = 635.
368B 369B 370B 371B 372B 373B	33333	.2480 .2430 .2248 .2398 .2227 .2319	.0796 .0797 .0790 .0773 .0782	404. 352. 370. 334. 317. 349.	20465. 18175. 20834. 18018. 18203. 19147.
					= 19140. = 1241.

TABLE V. - CONTINUED.

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
392B 393B 394B 395B 396B 397B	1 1 1 1 1	.2517 .2375 .2551 .2524 .2317 .2445	.0769 .0789 .0785 .0799 .0793 .0783	412. 380. 360. 404. 364. 386.	21286. 20279. 17977. 20033. 19811. 20163.
ļ					= 19925. = 1082.
398B 399B 400B 401B 402B 403B	თ თ თ თ თ	.2393 .2461 .2509 .2386 .2683	.0785 .0788 .0837 .0810 .0781	403. 376. 373. 407. 402. 370.	21453. 19389. 17762. 21059. 19185. 21456.
					= 20051. = 1509.
404B 405B 406B 407B 408B 409B	ម ម ម ម ម ម	.2449 .2253 .2483 .2237 .2245 .2377	.0793 .0779 .0797 .0771 .0778	394. 349. 375. 343. 321. 347.	20288. 19885. 18949. 19887. 18378. 18764.
					= 19359. = 762.

TABLE V. - CONTINUED

(d) exposed at Toronto, Canada

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
422B 423B 424B 425B 426B 427B	1 1 1 1 1	.2429 .2243 .2226 .2410 .2200 .2355	.0798 .0772 .0772 .0787 .0790 .0802	1	20481. 19924. 20483. 19192. 19908. 19484. = 19912. = 520.
428B 429B 430B 431B 432B 433B	3 3 3 3 3 3	.2578 .2498 .2508 .2490 .2366 .2276	.0799 .0773 .0775 .0779 .0774 .0788		17574. 19265. 19756. 18972. 18894. 19125. = 18931. = 731.
434B 435B 436B 437B 438B 438B 439B	5 5 5 5 5 5	.2526 .2498 .2407 .2510 .2377 .2385	.0768 .0780 .0795 .0800 .0816 .0787	415. 412. 403. 440. 401. 387. Mean = S.D. =	21392. 21145. 21060. 21912. 20674. 20618.

TABLE V. - CONCLUDED

(e) exposed at Ft. Greely, AK

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
476B 477B 478B 479B 480B 481B	1 1 1 1 1	.2317 .2581 .2360 .2529 .2526 .2414	.0772 .0767 .0786 .0799 .0812	337. 362. 357. 374. 385. 366.	18840. 18286. 19246. 18509. 18770. 19690.
					= 18890. = 509.
470B 471B 472B 473B 474B 475B	3 3 3 3 3	.2531 .2363 .2339 .2206 .2375 .2279	.0792 .0770 .0759 .0790 .0777	391. 373. 360. 361. 384. 366.	19506. 20500. 20278. 20715. 20809. 20884.
					= 20449. = 512.
464B 465B 466B 467B 468B 469B	555555	.2298 .2527 .2218 .2283 .2469 .2374	.0810 .0785 .0767 .0778 .0788 .0792	360. 349. 360. 361. 376. 382.	19340. 17593. 21161. 20325. 19326. 20317.
					= 19677. = 1234.

TABLE VI. - COMPRESSION STRENGTH OF T-300/E-788 GRAPHITE/EPOXY AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, IA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
164V 165V 166V 167V 168V 169V	1 1 1 1	.2558 .2550 .2567 .2562 .2562 .2555	.0712 .0706 .0709 .0708 .0676 .0689	2320. 2500. 2375. 2485. 2205. 2140.	127382. 138866. 130494. 136998. 127316. 121564.
				Mean = S.D. =	130 437. 6510.
170V 171V 172V 173V 174V 175V	33333	.2575 .2568 .2562 .2584 .2569 .2552	.0700 .0692 .0690 .0714 .0686 .0691	1910. 1970. 1980. 1960. 2280. 2225.	105964. 110858. 112005. 106234. 129374. 126174.
				Mean = S.D. =	115102. 10159.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
194V 195V 196V 197V 198V 199V	1 1 1 1	.2564 .2555 .2552 .2460 .2440 .2543	.0660 .0719 .0708 .0688 .0690 .0708	2250. 2180. 2245. 2365. 2205. 2055.	132960. 118669. 124252. 139736. 130969. 114139.
				Mean = S.D. =	126787. 9546.
200V 201V 202V 203V 204V 205V	3 3 3 3 3	.2578 .2558 .2559 .2560 .2557 .2445	.0668 .0715 .0687 .0714 .0690 .0650	2085. 2345. 2170. 2140. 1950. 1685.	121073. 128214. 123433. 117078. 110524. 106025.
				Mean = S.D. =	117724. 8282.

TABLE VI. - CONTINUED

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
224V 225V 226V 227V 228V 229V	1 1 1 1 1	.2568 .2607 .2560 .2556 .2570 .2559	.0692 .0690 .0703 .0714 .0718 .0680	2470. 2290. 2285. 2270. 2250. 2230.	138994. 127305. 126967. 124385. 121934. 128152.
				1	= 127956. = 5870.
230V 231V 232V 233V 234V 235V	3 3 3 3 3	.2559 .2551 .2552 .2557 .2549 .2548	.0693 .0714 .0688 .0692 .0692 .0706	2195. 2350. 2225. 2085. 2240. 2375.	123774. 129021. 126725. 117834. 126991. 132026.
				Mean = S.D. =	126062. 4870.
236V 237V 238V 239V 240V 241V	5 5 5 5 5 5	.2566 .2582 .2569 .2552 .2543 .2555	.0715 .0712 .0710 .0716 .0713 .0685	2215. 2300. 2345. 2130. 2190. 2440.	120729. 125110. 128564. 116570. 120784. 139415.
				Mean = S.D. =	125195. 8091.

TABLE VI. - CONTINUED

(d) exposed at Toronto, Canada

			<u> </u>	 	<u> </u>
Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
254V 255V 256V 257V 258V 259V	1 1 1 1 1	.2549 .2563 .2550 .2562 .2555 .2559	.0717 .0683 .0693 .0672 .0716 .0709	2340. 2305. 2275. 2140. 2360. 2215. Mean = S.D. =	128034. 131674. 128738. 124298. 129005. 122084.
260V 261V 262V 263V 264V 265V	3 3 3 3 3 3	.2549 .2498 .2553 .2538 .2557 .2569	.0714 .0678 .0680 .0705 .0715 .0689	2085. 2095. 2030. 2385. 2375. 2215. Mean = S.D. =	114561. 123698. 116933. 133293. 129905. 125138.
266V 267V 268V 269V 270V 271V	555555	.2554 .2565 .2515 .2564 .2565 .2549	.0719 .0708 .0696 .0716 .0710 .0709	2180. 2290. 2220. 2460. 2390. 2300. Mean = S.D. =	118715. 126100. 126825. 134000. 131236. 127266.

TABLE VI. - CONCLUDED

(e) exposed at Ft. Greely, AK

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
308V 309V 310V 311V 312V 313V	1 1 1 1 1	.2558 .2563 .2549 .2553 .2553 .2557	.0713 .0688 .0689 .0711 .0695 .0699	2340. 2090. 2270. 2095. 2010. 2200.	128300. 118525. 129252. 115415. 113282. 123088.
302V 303V 304V 305V 306V 307V	3 3 3 3 3 3	.2521 .2557 .2525 .2555 .2650 .2550	.0710 .0695 .0686 .0715 .0694 .0705	S.D. = 2095. 2040. 2265. 2185. 2140. 2150.	117045. 114793. 130762. 119606. 116361. 119594.
				Mean = S.D. =	119694. 5739.
296V 297V 298V 299V 300V 301V	555555	.2575 .2558 .2571 .2560 .2576 .2557	.0676 .0684 .0720 .0710 .0710	2395. 1970. 2080. 2450. 2470. 2550.	137588. 112593. 112364. 134793. 135049. 141456.
				Mean = S.D. =	128974. 13000.

Table VII. - Summary of Compression Strength

					Re	Residual S	Strength		
Material	Location	Baseline	ine	1 Ye	year	3 year	ar	5 ye	year
		Mean*	S.D.**	Mean*	S.D.**	Mean*	S.D.**	Mean*	S.D.**
Kevlar-49/ CE-306	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	18257.	337.	17892. 17815. 19153. 17583. 17181.	774. 497. 887. 958.	17488. 17796. 19050. 17003.	1239. 915. 635. 905.	17990. 17546.	679. 517.
Kevlar-49/ F-185	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	20176.	489.	20446. 19946. 19654. 19236. 18137.	542. 496. 571. 459.	19333. 20354. 20423. 19308. 18899.	560. 257. 541. 417.	19691. 19421. 18714.	407. 575.
Kevlar-49/ LRF-277	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	22363.	•606	21052. 20810. 19925. 19912. 18890.	921. 635. 1082. 520. 509.	19433. 19140. 20051. 18931. 20449.	827. 1241. 1509. 731. 512.	19359. 21134. 19677.	762. 481.
T-300/ E-788	Cameron,LA Gulf of Mexico Hampton,VA Toronto,Canada Ft. Greely,AK	126343.	4025.	130437. 126787. 127956. 127306. 121310.	6510. 9546. 5870. 3489. 6664.	115102. 117724. 126062. 123921. 119694.	10159. 8282. 4870. 7234. 5739.	125195. 127357. 128974.	 8091. 5210.
* Mean of	f 6 replicates	** S.D.	Standard	ard Deviation	ion				

TABLE VIII. - BASELINE SHORT BEAM SHEAR STRENGTH OF COMPOSITE MATERIALS

	·	· · · · · · · · · · · · · · · · · · ·			
Material	Specimen	Width	Thickness	Maximum	Failure
type	number	in.	in.	load	stress
}	}			lbf.	psi
K-49/CE-306	1F	.2542	.0853	145.	5015.
Kevlar/epoxy	2F	.2493	.0833	170.	5406.
revial/cpoxy	3F	.2505	.0877	157.	5360.
	4F	.2575	.0940	178.	5515.
	5F	.2347	.0848	130.	4899.
	6F	.2461	.0946	170.	5477.
				MEAN =	5279.
				S.D. =	
K-49/F-185	1	.2625	.0905	190.	5998.
Kevlar/epoxy	2	.2628	.0965	202.	5974.
	3	.2613	.0991	205.	5937.
	4	.2612	•0908	195.	6166.
	5	.2630	.0950	210.	6304.
	6	.2650	•0963	195.	5731.
				MEAN =	6018.
				S.D. =	
K-49/LRF-277	18	.2425	.0775	95.	3791.
Kevlar/epoxy	2B	.2343	.0776	95.	3919.
	3B	.2467	.0774	103.	4046.
	4B	.2634	.0769	105.	3888.
	5B	.2364	.0773	95.	3899.
	6B	.2474	.0779	95.	3697.
			•	MEAN =	3873.
	'			s.D. =	119.
T300/E-788	1V	.2568	.0720	286.	11601.
Graphite/	2V	.2562	.0723	266.	10770.
eboxy	3V	.2557	.0730	280.	11250.
	4V	.2563	.0734	285.	11362.
	5V	.2564	.0715	270.	11046.
	6V	.2541	.0713	273.	11301.
		Ì		MEAN =	11222.
			i	S.D. =	285.

S.D. = Standard Deviation

TABLE IX. - SHORT BEAM SHEAR STRENGTH OF KEVLAR-49/CE-306 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
7F 8F 9F 10F 11F 12F	1 1 1 1	.2577 .2483 .2595 .2457 .2520 .2524	.0945 .0880 .0939 .0954 .0946 .0849	176. 146. 165. 165. 170.	5420. 5011. 5079. 5279. 5348. 4795.
				Mean = S.D. =	5156. 236.
13F 14F 15F 16F 17F 18F	3 3 3 3 3 3	.2576 .2594 .2594 .2580 .2590 .2426	.0943 .0905 .0893 .0927 .0863 .0891	155. 154. 144. 170. 143. 144.	4786. 4920. 4662. 5331. 4798. 4996.
				Mean = S.D. =	4916. 234.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
37F 38F 39F 40F 41F 42F	1 1 1 1 1	.2449 .2578 .2470 .2511 .2443 .2490	.0905 .0911 .0881 .0942 .0931 .0905	142. 158. 150. 173. 156. 159.	4805. 5046. 5170. 5485. 5144. 5292.
				Mean = S.D. =	5157. 229.
43F 44F 45F 46F 47F 48F	3 3 3 3 3	.2469 .2597 .2564 .2611 .2593 .2475	.0931 .0902 .0851 .0863 .0943 .0951	179. 159. 137. 148. 185. 163.	5840. 5091. 4709. 4926. 5674. 5194.
				Mean = S.D. =	5239. 437.

S.D. = Standard deviation

TABLE IX. - CONTINUED

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
67F 68F 69F 70F 71F 72F	1 1 1 1 1	.2604 .2442 .2586 .2584 .2542 .2572	.0940 .0811 .0961 .0901 .0946 .0904	180. 129. 184. 167. 180. 165.	5515. 4885. 5553. 5380. 5614. 5322.
				Mean = S.D. =	5378. 265.
73F 74F 75F 76F 77F 78F	3 3 3 3 3 3	.2473 .2594 .2563 .2457 .2485 .2595	.0866 .0847 .0932 .0940 .0938 .0975	148. 150. 172. 175. 166. 195.	5183. 5103. 5400. 5683. 5341. 5766.
				Mean = S.D. =	5413. 265.
79F 80F 81F 82F 83F 84F	555555	.2604 .2426 .2549 .2526 .2577 .2564	.0928 .0881 .0901 .0967 .0941 .0847	174. 138. 168. 175. 168. 142.	5400. 4843. 5486. 5373. 5196. 4904.
				Mean = S.D. =	5200. 271.

TABLE IX. - CONTINUED

(d) exposed at Toronto, Canada

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
97F 98F 99F 100F 101F 102F	1 1 1 1	.2501 .2597 .2495 .2431 .2488 .2511	.0928 .0931 .0881 .0898 .0826 .0946	178. 190. 155. 154. 140.	5752. 5894. 5289. 5291. 5109. 5683.
				Mean = S.D. =	5503. 314.
103F 104F 105F 106F 107F 108F	3 3 3 3 3 3	.2576 .2306 .2301 .2577 .2596 .2474	.0944 .0868 .0847 .0913 .0884	190. 123. 126. 175. 168. 148.	5860. 4609. 4849. 5578. 5491. 5075.
				Mean = S.D. =	5244. 478.
109F 110F 111F 112F 113F 114F	5 5 5 5 5 5	.2455 .2528 .2442 .2595 .2558 .2544	.0945 .0831 .0828 .0857 .0951 .0832	170. 133. 132. 156. 170. 130.	5496. 4748. 4896. 5261. 5241. 4606.
				Mean = S.D. =	5041. 344.

TABLE IX. - CONCLUDED

(e) exposed at Ft. Greely, AK

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
151F 152F 153F 154F 155F 156F	1 1 1 1	.2562 .2574 .2595 .2572 .2517 .2498	.0851 .0926 .0900 .0883 .0882 .0886	129. 156. 160. 153. 147. 143.	4438. 4909. 5138. 5053. 4966. 4846.
				Mean = S.D. =	4892. 245.
145F 146F 147F 148F 149F 150F	33333	.2443 .2602 .2586 .2574 .2575 .2592	.0915 .0941 .0912 .0935 .0883 .0968	158. 183. 175. 183. 161. 184.	5284. 5606. 5565. 5703. 5311. 5500.
				Mean = S.D. =	5495. 167.
139F 140F 141F 142F 143F 144F	555555	.2402 .2544 .2510 .2584 .2568 .2529	.0882 .0923 .0833 .0834 .0891 .0940	139. 164. 131. 142. 155. 169.	4921. 5222. 4699. 4942. 5081. 5316.
				Mean = S.D. =	5030. 224.

TABLE X. - SHORT BEAM SHEAR STRENGTH OF KEVLAR-49/F-185 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, IA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
7 8 9 10 11	1 1 1 1	.2600 .2618 .2625 .2614 .2622 .2620	.0942 .0938 .0893 .0946 .0946 .0978	192. 193. 186. 194. 194. 204.	5879. 5894. 5951. 5884. 5866. 5971.
				Mean = S.D. =	5908. 43.
13 14 15 16 17 18	3 3 3 3 3	.2581 .2607 .2598 .2668 .2597 .2592	.0934 .0968 .0898 .1052 .0965 .0947	186. 209. 177. 225. 199. 206.	5787. 6211. 5690. 6012. 5955. 6294.
				Mean = S.D. =	5992. 234.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
37 38 39 40 41 42	1 1 1 1	.2627 .2634 .2618 .2720 .2603 .2622	.0930 .0881 .0901 .0996 .0953 .0927	190. 173. 176. 205. 190.	5833. 5591. 5596. 5675. 5744. 5863.
				Mean = S.D. =	571 7. 116.
43 44 45 46 47 48	3 3 3 3 3	.2623 .2624 .2649 .2458 .2518 .2610	.0977 .0977 .0959 .0893 .0913	201. 220. 192. 172. 190. 196.	5883. 6436. 5668. 5877. 6199. 6004.
				Mean = S.D. =	6011. 271.

S.D. = Standard deviation

TABLE X. - CONTINUED

(c) exposed at Hampton, VA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
67 68 69 70 71 72	1 1 1 1 1	.2469 .2600 .2657 .2455 .2743 .2598	.0894 .0918 .1039 .0923 .1005 .0923	178. 190. 225. 191. 230. 194.	6048. 5970. 6113. 6322. 6257. 6068.
				Mean = S.D. =	6130. 134.
73 74 75 76 77 78	3 3 3 3 3	.2788 .2620 .2606 .2603 .2662 .2581	.1012 .0940 .0909 .0956 .0960	226. 208. 194. 218. 202. 195.	6008. 6334. 6142. 6570. 5928. 6146.
				Mean = S.D. =	6188. 233.
79 80 81 82 83 84	555555	.2534 .2519 .2651 .2636 .2573 .2625	.1015 .0920 .1050 .1019 .1030 .1032	209. 201. 210. 196. 205. 217.	6094. 6505. 5658. 5473. 5801. 6008.
				Mean = S.D. =	5923. 364.

TABLE X. - CONTINUED

(d) exposed at Toronto, Canada

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
97 98 99 100 101 102	1 1 1 1 1	.2571 .2565 .2503 .2643 .2630 .2644	.1020 .0877 .1036 .0971 .0961 .1034	180. 183. 195. 205. 196. 220.	5148. 6101. 5640. 5991. 5816. 6035.
				Mean = S.D. =	5789. 356.
103 104 105 106 107 108	3 3 3 3 3 3	.2622 .2583 .2607 .2533 .2641 .2695	.0961 .0929 .0828 .1019 .0893 .0812	201. 206. 164. 209. 186. 164.	5983. 6439. 5698. 6073. 5915. 5621.
				Mean = S.D. =	5955. 293.
109 110 111 112 113 114	555555	.2602 .2602 .2602 .2593 .2612	.0900 .0927 .0968 .0971 .0971	179. 194. 206. 208. 209. 217.	5733. 6032. 6134. 6196. 6180. 6097.
				Mean = S.D. =	6062. 172.

TABLE X. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
151 152 153 154 155 156	1 1 1 1	.2587 .2674 .2570 .2647 .2612 .2627	.0907 .0996 .1018 .0931 .0927 .0891	176. 207. 192. 177. 188. 163.	5626. 5829. 5504. 5387. 5823. 5223.
				Mean = S.D. =	5565. 242.
145 146 147 148 149 150	3 3 3 3 3 3	.2456 .2612 .2450 .2600 .2648 .2635	.0850 .0922 .0923 .0910 .1050	162. 186. 191. 184. 217. 184.	5820. 5793. 6335. 5833. 5853. 5813.
				Mean = S.D. =	5908. 210.
139 140 141 142 143 144	5 5 5 5 5 5	.2633 .2583 .2610 .2623 .2622 .2638	.0914 .1021 .0970 .0968 .0923 .1040	180. 194. 193. 178. 183. 190.	5610. 5517. 5718. 5258. 5671. 5194.
				Mean = S.D. =	5495. 220.

TABLE XI. - SHORT BEAM SHEAR STRENGTH OF KEVLAR-49/LRF-277 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
7B 8B 9B 10B 11B 12B	1 1 1 1	.2419 .2327 .2476 .2309 .2285 .2607	.0779 .0776 .0774 .0775 .0784 .0780	95. 83. 92. 85. 85. 98.	3781. 3447. 3600. 3562. 3559. 3615.
				Mean = S.D. =	3594. 109.
13B 14B 15B 16B 17B 18B	3 3 3 3 3	.2277 .2409 .2352 .2473 .2325 .2367	.0780 .0772 .0776 .0764 .0780 .0784	82. 85. 79. 81. 87. 83.	3463. 3428. 3246. 3215. 3598. 3354.
				Mean = S.D. =	3384. 143.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
37B 38B 39B 40B 41B 42B	1 1 1 1 1	.2479 .2559 .2414 .2427 .2470 .2339	.0784 .0770 .0810 .0778 .0774 .0768	90. 95. 87. 85. 90. 88.	3473. 3616. 3337. 3376. 3531. 3674.
				S.D. =	3501. 132.
43B 44B 45B 46B 47B 48B	3 3 3 3 3	.2247 .2434 .2417 .2445 .2419 .2514	.0807 .0773 .0762 .0779 .0784 .0780	80. 91. 86. 89. 83. 97.	3309. 3627. 3482. 3505. 3282. 3691.
				Mean = S.D. =	3483. 164.

S.D. = Standard deviation

TABLE XI. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
67B 68B 69B 70B 71B 72B	1 1 1 1 1	.2313 .2429 .2583 .2358 .2468 .2278	.0782 .0784 .0778 .0795 .0789	90. 96. 103. 90. 97. 91.	3732. 3781. 3844. 3601. 3736. 3841.
				Mean = S.D. =	3756. 90.
73B 74B 75B 76B 77B 78B	3 3 3 3 3 3	.2402 .2396 .2470 .2352 .2550 .2410	.0782 .0800 .0774 .0795 .0780 .0770	86. 93. 89. 86. 95.	3434. 3639. 3492. 3449. 3582. 3435.
				Mean = S.D. =	3505. 86.
79B 80B 81B 82B 83B 84B	555555	.2288 .2429 .2528 .2390 .2310 .2398	.0796 .0788 .0773 .0785 .0784 .0790	81. 88. 94. 86. 88.	3336. 3448. 3608. 3438. 3644. 3484.
				Mean = S.D. =	3493. 115.

TABLE XI. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
97B 98B 99B 100B 101B 102B	1 1 1 1 1	.2484 .2398 .2279 .2548 .2242 .2461	.0790 .0779 .0780 .0787 .0782 .0769	100. 90. 85. 96. 85. 94.	3822. 3613. 3586. 3591. 3636. 3725.
				Mean = S.D. =	3662. 93.
103B 104B 105B 106B 107B 108B	3 3 3 3 3 3	.2508 .2273 .2291 .2456 .2488 .2453	.0788 .0804 .0787 .0828 .0776 .0770	89. 84. 87. 95. 93. 86.	3378. 3447. 3619. 3504. 3613. 3415.
				Mean = S.D. =	3496. 102.
109B 110B 111B 112B 113B 114B	ភ ភ ភ ភ ភ ភ ភ	.2437 .2373 .2393 .2303 .2439 .2300	.0793 .0790 .0792 .0802 .0780 .0784	96. 89. 97. 85. 101. 93.	3726. 3561. 3839. 3452. 3982. 3868.
				Mean = S.D. =	3738. 200.

TABLE XI. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
151B 152B 153B 154B 155B 156B	1 1 1 1 1	.2411 .2580 .2338 .2452 .2492 .2454	.0778 .0780 .0766 .0779 .0798	84. 95. 78. 88. 86. 89.	3359. 3541. 3266. 3455. 3243. 3505.
				Mean = S.D. =	3395. 125.
145B 146B 147B 148B 149B 150B	333333	.2343 .2446 .2473 .2333 .2233 .2373	.0777 .0788 .0784 .0786 .0772	93. 100. 86. 94. 87. 89.	3811. 3891. 3327. 3824. 3785. 3623.
				Mean = S.D. =	3710. 208.
139B 140B 141B 142B 143B 144B	555555	.2342 .2372 .2576 .2515 .2322 .2473	.0784 .0762 .0773 .0770 .0779	82. 78. 93. 86. 83. 87.	3349. 3237. 3484. 3331. 3421. 3467.
				Mean = S.D. =	3381. 94.

TABLE XII. - SHORT BEAM SHEAR STRENGTH OF T-300/E-788 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
7V 8V 9V 10V 11V 12V	1 1 1 1	.2570 .2570 .2579 .2562 .2569 .2570	.0708 .0729 .0724 .0733 .0728 .0730	277. 268. 303. 287. 295. 258.	11418. 10728. 12171. 11462. 11830. 10314.
				Mean = S.D. =	11320. 689.
13V 14V 15V 16V 17V 18V	3 3 3 3 3 3	.2569 .2565 .2571 .2565 .2573 .2562	.0731 .0726 .0714 .0732 .0730 .0721	284. 284. 293. 254. 303. 279.	11342. 11438. 11971. 10146. 12099. 11328.
				Mean = S.D. =	11387. 692.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
37V 38V 39V 40V 41V 42V	1 1 1 1 1	.2563 .2564 .2576 .2579 .2572 .2571	.0720 .0724 .0726 .0727 .0701 .0723	270. 286. 302. 298. 281. 258.	10973. 11555. 12111. 11920. 11689. 10410.
				Mean = S.D. =	11443. 638.
43V 44V 45V 46V 47V 48V	3 3 3 3 3	.2570 .2560 .2569 .2567 .2563 .2554	.0715 .0719 .0720 .0710 .0722 .0718	289. 280. 289. 286. 295. 274.	11796. 11409. 11718. 11769. 11956. 11206.
				Mean = S.D. =	11642. 279.

S.D. = Standard deviation

TABLE XII. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
67V 68V 69V 70V 71V 72V	1 1 1 1 1	.2555 .2562 .2558 .2576 .2535 .2563	.0730 .0713 .0725 .0726 .0726 .0730	281. 265. 282. 280. 301. 284. Mean = S.D. =	11299. 10880. 11412. 11229. 12266. 11384. 11412. 460.
73V 74V 75V 76V 77V 78V	3 3 3 3 3 3	.2569 .2569 .2570 .2558 .2570 .2562	.0728 .0728 .0731 .0735 .0723	271. 294. 295. 311. 284. 293.	10868. 11790. 11777. 12406. 11463. 11814.
				Mean = S.D. =	11686. 505.
79V 80V 81V 82V 83V 84V	555555	.2563 .2564 .2585 .2576 .2564 .2568	.0733 .0709 .0729 .0710 .0731 .0725	281. 299. 316. 284. 282. 256.	11218. 12336. 12577. 11646. 11284. 10313.
				Mean = S.D. =	11562. 824.

TABLE XII. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
97V 98V 99V 100V 101V 102V	1 1 1 1	.2563 .2571 .2566 .2579 .2562 .2570	.0725 .0714 .0728 .0727 .0734 .0723	260. 292. 275. 285. 305. 260.	10494. 11930. 11041. 11400. 12164. 10495.
			,	Mean = S.D. =	11254. 708.
103V 104V 105V 106V 107V 108V	3 3 3 3 3 3	.2575 .2562 .2580 .2562 .2567 .2535	.0725 .0728 .0723 .0705 .0725 .0729	300. 263. 308. 291. 302. 309.	12052. 10576. 12384. 12083. 12170. 12540.
				Mean = S.D. =	11968. 707.
109V 110V 111V 112V 113V 114V	5 5 5 5 5 5	.2563 .2580 .2572 .2564 .2563 .2573	.0732 .0733 .0765 .0725 .0724 .0740	309. 296. 258. 290. 306. 302.	12353. 11739. 9834. 11700. 12368. 11896.
				Mean = S.D. =	11648. 936.

TABLE XII. - CONCLUDED

Specimen Number	Exposure Time, yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
151V 152V 153V 154V 155V 156V	1 1 1 1 1	.2564 .2570 .2564 .2570 .2569 .2563	.0731 .0712 .0712 .0726 .0722 .0727	265. 272. 268. 271. 255. 275.	10604. 11149. 11010. 10893. 10311. 11069.
		: 		Mean = S.D. =	10839. 321.
145V 146V 147V 148V 149V 150V	3 3 3 3 3 3	.2557 .2569 .2563 .2569 .2570 .2560	.0718 .0727 .0722 .0727 .0723 .0724	251. 264. 304. 273. 275. 271.	10254. 10601. 12321. 10963. 11100. 10966.
				Mean = S.D. =	11034. 702.
139V 140V 141V 142V 143V 144V	ភ ភ ភ ភ ភ ភ	.2563 .2569 .2559 .2570 .2583 .2566	.0736 .0718 .0712 .0722 .0730 .0722	265. 265. 251. 258. 269. 293.	10536. 10775. 10332. 10428. 10700. 11861.
				Mean = S.D. =	10772. 558.

Table XIII. - Summary of Short Beam Shear Strength

					Re	Residual Str	Strength		
Material	Location	Baseline	ine) ¥	year	3 year		5 уе	year
		Mean*	S.D.**	Mean*	S.D. **	Mean*	S.D. **	Mean*	S.D.**
Kevlar-49/ CE-306	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	5279.	258.	5156. 5157. 5378. 5503. 4892.	236. 229. 265. 314. 245.	4916. 5239. 5413. 5244.	234. 437. 265. 478. 167.	5200. 5201. 5041.	271. 344.
Kevlar-49/ F-185	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	6018.	197.	5908. 5717. 6130. 5789. 5565.	43. 116. 134. 356.	5992. 6011. 6188. 5955.	234. 271. 233. 293. 210.	5923. 6062. 5495.	364. 172. 220.
Kevlar-49/ LRF-277	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	3783.	119.	3594. 3501. 3756. 3662.	109. 132. 90. 93.	3384. 3483. 3505. 3496.	143. 164. 86. 102. 208.	3493. 3738. 3738.	
T-300/ E-788	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	11222.	285.	11320. 11443. 11412. 11254. 10389.	689. 638. 460. 708.	11387. 11642. 11686. 11968.	692. 279. 505. 707.	 11562. 11648. 10772.	824. 936. 558.
* Mean of	f 6 replicates	** S.D.	Standard	ird Deviation	ion				

TABLE XIV. - BASELINE TENSION STRENGTH OF COMPOSITE MATERIALS

Material type	Specimen number	Width in.	Thickness in.	Maximum load	Failure stress
				lbf.	psi
K-49/CE-306 Kevlar/epoxy	157F 158F 159F 160F 161F 162F	.9868 .9752 .9827 .9952 .9960 .9895	.0969 .0897 .0967 .0979 .0994 .0966	5520. 5460. 6120. 5790. 5790. 6125.	57728. 62418. 64403. 59427. 58483. 64079.
				Mean = S.D. =	
K-49/F-185 Kevlar/epoxy	160 161 162 163 164 165	1.0075 1.0070 1.0046 1.0058 .9966 1.0053	.1063 .1042 .1042 .1045 .0969 .1004	6020. 5890. 5870. 6080. 6000. 5630.	56211. 56133. 56076. 57846. 62131. 55780.
				Mean = S.D. =	
K-49/LRF-277 Kevlar/epoxy	157B 158B 159B 160B 161B 162B	.9857 .9842 .9710 1.0002 .9955 .9728	.0865 .0884 .0868 .0868 .0863 .0872	7100. 7150. 7140. 6970. 7320. 7320.	83272. 82181. 84715. 80283. 85204. 86292.
				Mean = S.D. =	
T300/E-788 Graphite/ epoxy	325V 326V 327V 328V 329V 330V	1.0032 1.0030 1.0047 1.0090 1.0048 1.0057	.0700 .0696 .0702 .0705 .0684 .0722	9210. 8710. 8580. 9180. 8950. 8860.	131152. 124769. 121650. 129051. 130223. 122019.
				Mean = S.D. =	,

S.D. = Standard Deviation

TABLE XV. - TENSION STRENGTH OF KEVLAR-49/CE-306 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
163F 164F 165F 166F 167F 168F	1 1 1 1 1	.9756 .9915 .9949 .9896 .9937	.0894 .0982 .0972 .0958 .0980	5080. 5900. 6030. 5780. 6030. 6260.	58244. 60597. 62355. 60968. 61921. 63163.
				Mean = S.D. =	61208. 1724.
169F 170F 171F 172F 173F 174F	3 3 3 3 3	.9932 .9807 .9943 1.0020 .9968 .9864	.0969 .0922 .0980 .0930 .0973 .0973	5955. 5425. 5820. 5780. 5800. 5690.	61876. 59997. 59728. 62026. 59801. 59285.
				Mean = S.D. =	60452. 1185.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
193F 194F 195F 196F 197F 198F	1 1 1 1 1	.9971 .9978 .9812 .9800 1.0027 .9970	.0975 .0995 .0988 .0974 .0966 .0974	5890. 6160. 6090. 5800. 5760. 6080.	60586. 62046. 62821. 60764. 59467. 62611.
				Mean = S.D. =	61382. 1319.
199F 200F 201F 202F 203F 204F	3 3 3 3 3	.9952 .9994 .9963 .9944 .9963 .9948	.0966 .0976 .0909 .0998 .0985 .0962	5950. 5650. 5700. 6000. 6000. 6150.	61891. 57924. 62939. 60459. 61140. 64263.
				Mean = S.D. =	61436. 2183.

S.D. = Standard deviation

TABLE XV. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
223F 224F 225F 226F 227F 228F	1 1 1 1 1	.9934 .9461 .9750 .9848 .9848	.0987 .0979 .0988 .0962 .0973 .0978	6350. 5760. 6080. 6150. 6240. 6060.	64764. 62187. 63116. 64916. 65121. 63048.
				Mean = S.D. =	63859. 1227.
229F 230F 231F 232F 233F 234F	თ თ თ თ თ თ	.9904 .9833 .9771 .9850 .9798 .9863	.0982 .0969 .0964 .0970 .0961 .0994	6170. 6080. 6010. 6150. 5960. 6150.	63440. 63811. 63806. 64368. 63297. 62731.
				Mean = S.D. =	63575. 556.
235F 236F 237F 238F 239F 240F	555555	.9973 1.0102 .9854 .9980 .9958 .9801	.0977 .0971 .0974 .0923 .0915 .0982	6055. 6200. 5700. 5830. 5525. 5900.	62143. 63207. 59389. 63290. 60637. 61301.
				Mean = S.D. =	61661. 1524.

TABLE XV. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load 1bf.	Failure Stress,psi
253F 254F 255F 256F 257F 258F	1 1 1 1 1	.9857 .9960 .9865 .9870 .9844 .9892	.0975 .0965 .0978 .0989 .0970 .0967	6000. 6300. 6000. 6100. 6250. 6000.	62431. 65547. 62189. 62491. 65454. 62725.
				Mean = S.D. =	63473. 1580.
259F 260F 261F 262F 263F 264F	3 3 3 3 3 3	.9964 .9970 .9929 .9877 .9903 .9852	.0963 .0950 .0982 .0973 .1000	6290. 6050. 6100. 6200. 6150. 6250.	65553. 63876. 62562. 64514. 62102. 64015.
				Mean = S.D. =	63770. 1268.
265F 266F 267F 268F 269F 270F	555555	.9828 .9941 .9945 .9833 .9931	.0944 .0967 .0981 .0974 .0995 .0982	5600. 6150. 5925. 6080. 5990. 6200.	60360. 63976. 60732. 63483. 60619. 63652.
				Mean = S.D. =	62137. 1728.

TABLE XV. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
307F 308F 309F 310F 311F 312F	1 1 1 1 1	.9941 .9905 .9926 .9795 1.0008 .9931	.0895 .0961 .0978 .0901 .0989 .0978	5580. 5870. 6090. 5720. 6280. 5900.	62716. 61668. 62734. 64814. 63448. 60746.
				Mean = S.D. =	62688. 1408.
301F 302F 303F 304F 305F 306F	3 3 3 3 3 3	.9890 .9932 .9928 .9933 .9947 .9966	.0903 .0983 .0962 .0992 .0992 .0972	5750. 6300. 6110. 6060. 6010. 6050.	64385. 64528. 63974. 61501. 60907. 62455.
				Mean = S.D. =	62958. 1557.
295F 296F 297F 298F 299F 300F	555555	.9961 1.0015 .9882 .9837 .9995 .9880	.0997 .0982 .0937 .0942 .0984 .0974	5920. 6050. 5300. 5500. 6080. 6300.	59611. 61517. 57239. 59354. 61820. 65467.
				Mean = S.D. =	60834. 2811.

TABLE XVI. - TENSION STRENGTH OF KEVLAR-49/F-185 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, IA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
166 167 168 169 170	1 1 1 1	1.0023 .9928 1.0066 1.0048 1.0034 1.0095	.1073 .1020 .1014 .1051 .0960 .0967	6080. 6000. 5940. 6010. 5850. 5825.	56534. 59250. 58196. 56910. 60731. 59671.
				Mean = S.D. =	58 549. 1636.
172 173 174 175 176 177	33333	1.0041 1.0047 1.0040 1.0043 .9971 .9924	.1040 .0967 .1032 .1000 .0947 .0993	5860. 5900. 5830. 6030. 5750. 6025.	56116. 60728. 56267. 60042. 60895. 61139.
				Mean = S.D. =	59198. 2357.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
196 197 198 199 200 201	1 1 1 1 1	1.0013 1.0063 .9859 1.0040 .9983 1.0034	.1058 .1029 .0978 .1042 .1085 .1029	6240. 6030. 5840. 5950. 5880. 6000.	58903. 58234. 60568. 56874. 54286. 58111.
				Mean = S.D. =	57829. 2115.
202 203 204 205 206 207	3 3 3 3 3 3	.9942 1.0079 1.0049 1.0027 1.0011 .9942	.0932 .0964 .1021 .1024 .1000	5630. 5950. 6010. 5810. 5960. 5780.	60760. 61238. 58577. 56586. 59535. 58665.
				Mean = S.D. =	59227. 1686.

TABLE XVI. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
226 227 228 229 230 231	1 1 1 1 1	1.0040 .9999 1.0041 1.0000 .9998 1.0003	.0946 .1003 .1000 .1004 .1001	6190. 6060. 6020. 5810. 5730. 6000.	65173. 60425. 59954. 57869. 57254. 59624.
				Mean = S.D. =	60050. 2798.
232 233 234 235 236 237	3 3 3 3 3	1.0006 .9998 1.0000 1.0007 1.0050 1.0020	.1008 .1022 .0999 .1003 .1001 .1006	6250. 6180. 6100. 5990. 5990. 6240.	61967. 60482. 61061. 59679. 59542. 61904.
				Mean = S.D. =	60773. 1057.
238 239 240 241 242 243	ច ច ច ច ច ច	1.0030 1.0050 1.0055 1.0020 1.0070 1.0025	.0992 .1008 .1000 .0997 .0899 .0992	6100. 6025. 5930. 6000. 5500. 5880.	61308. 59474. 58976. 60060. 60754. 59126.
				Mean = S.D. =	59950. 933.

TABLE XVI. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
256 257 258 259 260 261	1 1 1 1 1	1.0000 1.0000 1.0040 1.0040 1.0035 1.0000	.1005 .1004 .1005 .0999 .0999	6100. 6150. 6250. 5950. 5950. 5500.	60697. 61255. 61941. 59322. 59352. 54835.
				Mean = S.D. =	59567. 2540.
262 263 264 265 266 267	3 3 3 3 3 3	1.0035 1.0000 1.0010 1.0040 1.0055 1.0080	.0998 .1005 .1004 .1000 .1005 .0998	6250. 6020. 6090. 5850. 6050. 6080.	62407. 59900. 60597. 58267. 59870. 60438.
				Mean = S.D. =	60247. 1342.
268 269 270 271 272 273	555555	1.0015 .9998 1.0011 1.0035 1.0055	.1000 .0991 .1003 .1004 .1004 .0989	6075. 5900. 5800. 6125. 5890. 5975.	60659. 59548. 57763. 60793. 58344. 60174.
				Mean = S.D. =	59547. 1250.

TABLE XVI. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
310 311 312 313 314 315	1 1 1 1 1	1.0002 1.0004 1.0005 1.0005 1.0004 1.0001	.1004 .1003 .1003 .1003 .1001 .1006	6050. 4880. 6120. 6220. 6150. 6075.	60247. 48635. 60986. 61983. 61414. 60382.
				Mean = S.D. =	58941. 5090.
304 305 306 307 308 309	3 3 3 3 3 3	1.0003 1.0002 1.0000 1.0007 1.0000	.1008 .0997 .0994 .1004 .1004	6080. 5790. 5850. 6150. 6140.	60299. 58063. 58853. 61212. 61155. 60790.
				Mean = S.D. =	60062. 1309.
298 299 300 301 302 303	555555	1.0002 1.0000 1.0007 1.0002 1.0003 1.0001	.1007 .1001 .1008 .0998 .1005 .1001	6190. 6060. 6055. 6120. 6155. 5990.	61457. 60539. 60027. 61310. 61225. 59834.
				Mean = S.D. =	60732. 699.

TABLE XVII. - TENSION STRENGTH OF KEVLAR-49/LRF-277 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
163B 164B 165B 166B 167B 168B	1 1 1 1 1	.9813 1.0060 .9813 .9925 .9905	.0887 .0873 .0874 .0870 .0855 .0859	7780. 7210. 7650. 6910. 7480. 7600.	89383. 82096. 89197. 80025. 88324. 90014.
				Mean = S.D. =	86507. 4303.
169B 170B 171B 172B 173B 174B	3 3 3 3 3	.9792 .9902 .9965 1.0052 .9820 .9678	.0870 .0886 .0857 .0874 .0883 .0864	7320. 7450. 7740. 7760. 7590. 7090.	85925. 84918. 90632. 88328. 87533. 84790.
				Mean = S.D. =	87021. 2263.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
193B 194B 195B 196B 197B 198B	1 1 1 1 1	.9948 1.0094 .9980 .9808 .9791 1.0024	.0880 .0882 .0881 .0894 .0869 .0885	7360. 6290. 8025. 7580. 7410. 6990.	84074. 70651. 91272. 86447. 87091. 78794.
				Mean = S.D. =	83055. 7 32 6.
199B 200B 201B 202B 203B 204B	3 3 3 3 3 3	.9813 .9926 .9967 1.0046 .9838 1.0119	.0853 .0879 .0882 .0856 .0875 .0865	7020. 7600. 7790. 7000. 7790. 7250.	83866. 87106. 88614. 81401. 90495. 82829.
				Mean = S.D. =	85719. 3565.

TABLE XVII. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
223B 224B 225B 226B 227B 228B	1 1 1 1 1	.9892 .9841 .9875 1.0054 1.0011 .9935	.0891 .0922 .0874 .0847 .0864 .0880	7810. 7850. 6950. 7260. 7300. 6870.	88611. 86517. 80526. 85254. 84398. 78579.
				Mean = S.D. =	83981. 3763.
229B 230B 231B 232B 233B 234B	3 3 3 3 3 3	.9810 .9776 .9803 .9834 .9907	.0883 .0892 .0872 .0895 .0867 .0866	7820. 6630. 7700. 7390. 7980. 7150.	90277. 76030. 90077. 83964. 92906. 83079.
				Mean = S.D. =	86055. 6240.
235B 236B 237B 238B 239B 240B	555555	.9740 .9898 .9798 .9866 .9992 .9942	.0868 .0868 .0871 .0871 .0875 .0861	7520. 7700. 7260. 7600. 7975. 7490.	88949. 89624. 85071. 88441. 91216. 87499.
				Mean = S.D. =	88467. 2078.

TABLE XVII. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
253B 254B 255B 256B 257B 258B	1 1 1 1 1	.9871 .9972 .9952 .9812 .9916 .9682	.0882 .0880 .0871 .0893 .0861 .0875	7500. 7650. 7700. 7600. 7100. 7500. Mean = S.D. =	86145. 87176. 88831. 86737. 83161. 88530.
259B 260B 261B 262B 263B 264B	3 3 3 3 3	.9823 .9833 .9835 .9900 .9853 .9949	.0894 .0866 .0893 .0872 .0880 .0894	7800. 7300. 7675. 7730. 7190. 8080.	88820. 85727. 87388. 89542. 82924. 90844.
265B 266B 267B 268B 269B 270B	5 5 5 5 5 5	.9866 1.0022 .9843 .9730 .9785 .9793	.0857 .0862 .0885 .0853 .0873	6930. 7110. 7575. 7110. 7490. 7395.	81962. 81962. 82302. 86958. 85666. 87681. 85908.
				Mean = S.D. =	85079. 2399.

TABLE XVII. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
307B 308B 309B 310B 311B 312B	1 1 1 1	.9862 1.0124 .9880 .9922 .9968 .9762	.0867 .0851 .0901 .0887 .0873 .0887	6450. 7570. 8020. 7830. 7750. 7070.	75435. 87865. 90093. 88969. 89059. 81650.
				Mean = S.D. =	85512. 5788.
301B 302B 303B 304B 305B 306B	3 3 3 3 3 3	.9910 .9960 .9940 .9986 .9916	.0877 .0875 .0866 .0895 .0889	7650. 7340. 7610. 7060. 7560. 6290.	88021. 84223. 88406. 78993. 85760. 76199.
				Mean = S.D. =	83600. 4974.
295B 296B 297B 298B 299B 300B	555555	.9665 1.0005 .9842 .9902 .9842 .9895	.0885 .0882 .0885 .0870 .0867 .0893	7830. 8015. 7480. 7850. 7450. 7660.	91541. 90828. 85877. 91123. 87308. 86689.
				Mean = S.D. =	88894. 2538.

TABLE XVIII. - TENSION STRENGTH OF T-300/E-788 AFTER ENVIRONMENTAL EXPOSURE

(a) exposed at Cameron, LA

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
331V 332V 333V 334V 335V 336V	1 1 1 1 1	1.0030 .9999 .9998 1.0079 1.0021 .9999	.0710 .0703 .0726 .0742 .0708 .0718	8530. 8900. 8990. 9420. 8460. 8700.	119782. 126613. 123854. 125959. 119241. 121182.
				Mean = S.D. =	122772. 3163.
337V 338V 339V 340V 341V 342V	3 3 3 3 3	.9998 1.0048 1.0095 1.0058 1.0039 .9997	.0716 .0712 .0702 .0707 .0705 .0680	9380. 8230. 9770. 9610. 8440. 8660.	131032. 115038. 137864. 135143. 119251. 127391.
				Mean = S.D. =	127620. 8962.

(b.) exposed in the Gulf of Mexico

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
361V 362V 363V 364V 365V 366V	1 1 1 1 1	1.0023 1.0010 .9998 .9997 1.0000 1.0010	.0701 .0713 .0690 .0722 .0718 .0717	9080. 8130. 9300. 8540. 8980. 8410.	129232. 113911. 134810. 118318. 125070. 117177.
				Mean = S.D. =	123086. 8012.
367V 368V 369V 370V 371V 372V	3 3 3 3 3 3	1.0053 1.0030 1.0030 1.0015 1.0058 1.0068	.0728 .0716 .0713 .0691 .0706 .0723	9660. 8420. 9250. 9390. 9400. 8650.	131993. 117246. 129345. 135686. 132377. 118832.
				Mean = S.D. =	127580. 7676.

TABLE XVIII. - CONTINUED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
391V 392V 393V 394V 395V 396V	1 1 1 1 1	1.0010 1.0037 1.0018 1.0080 1.0016 1.0010	.0691 .0699 .0723 .0697 .0709	9090. 8840. 8840. 9150. 9060. 9220.	131417. 126000. 122049. 130235. 127581. 130280.
				Mean = S.D. =	127927. 3505.
397V 398V 399V 400V 401V 402V	3 3 3 3 3 3	.9994 .9999 1.0043 1.0020 1.0060 .9992	.0726 .0703 .0714 .0692 .0705 .0703	8650. 9270. 8660. 9600. 8810. 9490.	119218. 131877. 120769. 138451. 124219. 135101.
				Mean = S.D. =	128272. 7974.
403V 404V 405V 406V 407V 408V	555555	1.0025 1.0053 .9987 1.0033 1.0042 1.0042	.0714 .0724 .0713 .0694 .0711	9550. 9230. 9650. 9210. 9270. 9210.	133420. 126814. 135520. 132272. 129834. 127029.
				Mean = S.D. =	130815. 3531.

TABLE XVIII. - CONTINUED

Specimen Number	Exposure Time, yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
421V 422V 423V 424V 425V 426V	1 1 1 1 1	.9995 1.0062 1.0000 .9999 1.0045 .9992	.0689 .0695 .0707 .0692 .0697 .0692	9550. 9450. 9775. 9725. 9570. 8850. Mean = S.D. =	138676. 135133. 138260. 140549. 136688. 127993.
427V 428V 429V 430V 431V 432V	3 3 3 3 3	.9990 1.0065 1.0000 1.0060 1.0070 1.0018	.0687 .0727 .0719 .0716 .0693 .0722	9420. 9490. 9560. 9140. 8640. 8730.	137255. 129693. 132962. 126892. 123809. 120697.
433V 434V 435V 436V 437V 438V	5 5 5 5 5 5	1.0072 1.0070 1.0040 1.0061 1.0043 1.0080	.0719 .0690 .0706 .0703 .0702	8525. 8840. 8525. 8980. 8710. 9100.	128531. 6057. 117720. 127225. 120270. 126964. 123543. 125038.
				Mean = S.D. =	123460. 3797.

TABLE XVIII. - CONCLUDED

Specimen Number	Exposure Time,yr	Width in.	Thickness in.	Load lbf.	Failure Stress,psi
475V 476V 477V 478V 479V 480V	1 1 1 1 1	1.0035 1.0040 1.0065 .9992 1.0003 1.0030	.0725 .0713 .0721 .0698 .0698 .0704	8160. 9000. 10625. 7990. 9080. 9350.	112159. 125724. 146413. 114562. 130047. 132415.
				Mean = S.D. =	126887. 12586.
469V 470V 471V 472V 473V 474V	3 3 3 3 3 3	.9997 1.0031 1.0010 .9997 1.0062 .9995	.0697 .0686 .0694 .0685 .0705	9450. 9060. 9390. 9420. 9060. 9560.	135622. 131662. 135167. 137560. 127719. 140041.
				Mean = S.D. =	134628. 4375.
463V 464V 465V 466V 467V 468V	555555	1.0050 1.0030 1.0060 1.0027 1.0000 1.0053	.0690 .0715 .0714 .0706 .0712 .0722	9360. 9625. 9790. 9100. 9780. 10580.	134977. 134213. 136297. 128548. 137360. 145765.
				Mean = S.D. =	136193. 5601.

Table XIX. - Summary of Tension Strength

					Re	Residual St	Strength		
Material	Location	Baseline	ine	1 ye	year	3 year		5 76	year
		Mean*	S.D.**	Mean*	S.D.**	Mean*	S.D. **	Mean*	S.D.**
Kevlar-49/ CE-306	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	61090.	2917.	61208. 61382. 63859. 63473. 62688.	1724. 1319. 1227. 1580. 1408.	60452. 61436. 63575. 63770.	1185. 2183. 556. 1268. 1557.	62137. 60384.	1524. 1728. 2811.
Kevlar-49/ F-185	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	57363.	2448.	58549. 57829. 60050. 59567. 58941.	1636. 2115. 2798. 2540. 5090.	59198. 59227. 60773. 60062.	2357. 1686. 1057. 1342. 1309.	59950. 59547. 60732.	933. 1250. 699.
Kevlar-49/ LRF-277	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	83658.	2198.	86507. 83055. 83981. 86763.	4303. 7326. 3763. 2046. 5788.	87021. 85719. 86055. 87541.	2263. 3565. 6240. 2870. 4974.	88467. 80579. 88894.	2078. 2399. 2538.
T-300/ E-788	Cameron, LA Gulf of Mexico Hampton, VA Toronto, Canada Ft. Greely, AK	126477.	4209.	122772. 123086. 127927. 136216. 126887.	3163. 8012. 3505. 4428. 12586.	127620. 127580. 128272. 128551. 134628.	8962. 7676. 7974. 6057. 4375.	 130815. 123460. 136193.	3531. 3797. 5601.

* Mean of 6 replicates

** S.D.- Standard Deviation

TABLE XX. - WEIGHT LOSS OF PAINTED SPECIMENS AFTER 3 AND 5 YEARS OF EXPOSURE

		ar-49/ 185		ar-49/ -277		ar-49/ 306		00/ 788
	3 yr	5 yr	3 yr	5 yr	3 yr	5 yr	3 yr	5 yr
Ontario, Canada	2.23	2.60	2.03	2.20	2.07	2.20	0.54	0.71
Hampton, VA	2.42	2.76	1.81	2.24	1.74	2.29	0.51	0.76
Gulf of Mexico	2.61	_	1.92	-	1.81	-	0.49	-
Cameron, LA	2.57	-	1.96	-	1.95	-	0.51	-
Ft. Greely, AK	2.18	2.30	1.94	2.10	2.20	2.20	0.67	0.75
Average	2.40	2.55	1.93	2.18	1.95	2.23	0.56	0.74

All values are average of 6 replicates

TABLE XXI. - WEIGHT LOSS OF UNPAINTED SPECIMENS AFTER 3 AND 5 YEARS OF EXPOSURE TIME

		ar-49/ 185		ar-49/ -277		ar-49/ 306		300/ 788
	3 yr	5 yr	3 yr	5 yr	3 yr	5 yr	3 yr	5 yr
Ontario, Canada	1.60	1.90	2.01	2.40	1.85	1.90	0.51	0.62
Hampton, VA	1.69	2.05	2.71	2.11	1.62	1.96	0.47	0.60
Gulf of Mexico	2.03	-	2.36	-	2.03	-	0.74	-
Cameron, LA	1.87	-	2.11	-	1.97	-	0.50	-
Ft. Greely, AK	1.79	1.80	2.09	2.30	1.59	1.70	0.54	0.61
Average	1.80	1.92	2.23	2.27	1.81	1.85	0.55	0.61

All values are from a single data point

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 1. - Environmental Exposure Rack with Specimens installed

Figure 2. - Location of Environmental Exposure Racks

All dimensions shown in inches

Figure 3. - Specimen Geometry

Figure 4 .-Residual Compressive Strength of Kevlar-49/CE-306 Epoxy Specimens Exposed at Locations Shown

Figure 5 .-Residual Compressive Strength of Kevlar-49/F-185 Epoxy Specimens Exposed at Locations Shown

Figure 6 .-Residual Compressive Strength of Kevlar-49/LRF-277 Epoxy Specimens Exposed at Locations Shown

Figure 7 .-Residual Compressive Strength of T-300 Graphite/E-788 Epoxy Specimens Exposed at Locations Shown

Figure 8 .-Effect of Exposure Location on the Residual Compression Strength of Kevlar-49/F-185

Figure 10 .-Effect of Exposure Location on the Residual Compression Strength of Kevalr-49/CE-306

Figure 9 .-Effect of Exposure Location on the Residual Compression Strength of Kevlar-49/LRF-277

Figure 11 .-Effect of Exposure Location on the Residual Compression Strength of T-300/E-788

Figure 12.-Residual Compressive Strength of Composite Materials after Exposure

Figure 13.-Residual Short Beam Shear Strength of Kevlar-49/CE-306 Epoxy Specimens Exposed at Locations Shown

Figure 14.—Residual Short Beam Shear Strength of Kevlar-49/F-185 Epoxy Specimens Exposed at Locations Shown

Figure 15.-Residual Short Beam Shear Strength of Kevlar-49/LRF-277 Epoxy Specimens Exposed at Locations Shown

Figure 16.-Residual Short Beam Shear Strength of T-300 Graphite/E-788 Epoxy Specimens Exposed at Locations Shown

Figure 17.-Effect of Exposure Location on the Residual Short Beam Shear Strength of Kevlar-49/F-185

Figure 19 .-Effect of Exposure Location on the Residual Short Beam Shear Strength of Kevalr-49/CE-306

Figure 18.-Effect of Exposure Location on the Residual Short Beam Shear Strength of Kevlar-49/LRF-277

Figure 20 .-Effect of Exposure Location on the Residual Short Beam Shear Strength of T-300/E-788

Figure 21.-Residual Short Beam Shear Strength of Composite Materials after Exposure

Figure 22.-Residual Tensile Strength of Kevlar-49/CE-306 Epoxy Specimens Exposed at Locations Shown

Figure 23.-Residual Tensile Strength of Kevlar-49/F-185 Epoxy Specimens Exposed at Locations Shown

Figure 24.-Residual Tensile Strength of Kevlar-49/LRF-277 Epoxy Specimens Exposed at Locations Shown

Figure 25.-Residual Tensile Strength of T-300 Graphite/E-788 Epoxy Specimens Exposed at Locations Shown

Figure 26 .-Effect of Exposure Location on the Residual Tension Strength of Kevlar-49/F-185

Figure 28 - Effect of Exposure Location on the Residual Tension Strength of Kevalr-49/CE-306

Figure 27 .-Effect of Exposure Location on the Residual Tension Strength of Kevlar-49/LRF-277

Figure 29 .-Effect of Exposure Location on the Residual Tension Strength of T-300/E-788

Figure 30.-Residual Tensile Strength of Composite Materials after Exposure

Figure 33. - Moisture absorption of Kevlar-49/LRF-277 Composite Material

Figure 34. - Moisture absorption of T-300/E-788 Graphite/epoxy Composite Material

Figure 31. - Moisture absorption of Kevlar-49/CE-306 Composite Material

Figure 32. - Moisture absorption of Kevlar-49/F-185 Composite Material

Figure 35. - Effects of Outdoor Exposure on Unpainted Kevlar-49/CE-306 Composite Material Exposed at Hampton, Va

ORIGINAL PAGE BLACK AND WRITE PHOTOGRAPH

Figure 36. - Effects of Outdoor Exposure on Unpainted Kevlar-49/F-185 Composite Material Exposed at Hampton, Va

Figure 37. - Effects of Outdoor Exposure on Unpainted Kevlar-49/IRF-277 Composite Material Exposed at Hampton, Va

BLACK AND WHILE PROTUGRAPH

Figure 38. - Effects of Outdoor Exposure on Unpainted T300/E-788 Graphite/epoxy Composite Material Exposed at Hampton, Va

National Aeronaulics and Space Administration	Report Documentation Page			
1. Report No. NASA TM-101645 AVSCOM TM 89-B-007	2. Government Accession	No.	3. Recipient's Ca	talog No.
4. Title and Subtitle			5. Report Date	- · · · · · · ·
FIVE YEAR GROUND EXPOSURE OF COMPOSITE MATERIALS USED ON THE BELL MODEL 206L FLIGHT SERVICE EVALUATION			July 1989	
			6. Performing Or	ganization Code
7. Author(s) DONALD J. BAKER			8. Performing Organization Report No.	
9. Performing Organization Name and Address Aerostructures Directorate			10. Work Unit N	o.
U.S.Army Aviation Research and Technology Activity(AVSCOM)			505-63-01-06	
NASA-Langley Research Center Hampton, Va 23665-5225			11. Contract or C	Grant No.
12. Sponsoring Agency Name and Addre				
National Aeronautics and Space Administration			13. Type of Report and Period Covered Technical Memorandum	
Washington, DC 20546-0001 and				
U.S. Army Aviation Systems Command St. Louis, MO 63166			14. Army Project	, 140.
This report presents part of the establish the long term-term eff. Residual strengths and moistureported for four different comp. American Continent.	fects of realistic ground le re absorption as a func	oased exposure ion of exposur	on advanced core time and exp	omposite materials.
17. Key Words (Suggested by Authors(s Composite Materials Environmental Effects))	8. Distribution S Unclassified-U	nlimited	04
	Too 9 11 51 14/5 1		Subject Category 24	
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of th Unclassified	s page)	21. No. of Pages 92	22. Price A05