

CHIP722 & ESP32 认证问题分析

1. 概述

芯片认证问题主要有以下三点:

- RX 3.2 GHz 杂散超标。
- TX 4.8 GHz 杂散超标。
- 高低信道发射的边带问题。

CHIP722 B 在 3.2G 接收杂散和 4.8G 发射杂散上均有改善。

- 3.2G 接收杂散与认证要求有 10dB 余量。
- 4.8G 发射杂散与认证要求有 2dB 余量。

认证要求 dBm 测量值 dBm 与认证要求的余量 **CHIP** 余量小 ESP32-SOLO-1 -47 -48.4 1.4 易超出认证要求 余量不足 CHIP722A -47 -47.1 0.1 易超出认证要求 余量充足 CHIP722B -47 -57.2 10.2 满足认证要求

RX 3.2GHz 杂散

TX 4.8GHz 杂散						
CHIP	认证要求 dBm	测量值 dBm	与认证要求的余量	结论		
ESP32-SOLO-1	54	58.2	-4.2	超出认证要求需要降功率发射		
CHIP722A	54	63.5	-9.5	超出认证要求需要降功率发射		
СНІР722В	54	52.3	1.7	有余量 不需要降功率发射		

2. RX 3.2GHz 杂散

2.1 同耀认证实验室辐射测试结果

从 Peak-dBm 看出, CHIP722 B 的接收杂散最小, 比 ESP32 小 8db 左右, 比 CHIP722 A 小 10db 左右, 与认证要求有 10dB 的 Margin 余量。

		Vco leakage/over/dB				
DUT	Channel	3.2GHz/peak				
		peak_limit-dBm		peak-dBm	peak_margin	
ESP32-SOLO-1	1	-47	46.8	-48.4	1.4	
CHIP722 A	1	-47	48.1	-47.1	0.1	
CHIP722 B	1	-47	38.4	-57.2	9.8	

2.2 公司内部测试

2.2.1 探针接触式测量

Spectrum Analyzer 设置: CF=3216MHz, span=100MHz, RBW=100KHz 探针接触底板 GPIO 管脚, Max Hold 记录 3.2GHz 杂散大小。 使用探针扫描所有 GPIO 上 3.2GHz 杂散, 测量结果如下:

	ESP32-SOLO-1	CHIP722 A	CHIP722 B
3.2 GHz 接收杂散(dBm)	-48	-50	-61

使用探针测量的数据与同耀认证实验测试结果差不多, CHIP722 B 模组耦合到 GPIO 上的 3.2GHz 杂散最小。

2.2.2 RF 传导测量

	ESP32-SOLO-1	CHIP722 A	CHIP722 B
3.2 GHz 接收杂散(dBm)	-60	-53	-61

ESP32-SOLO-1 模组 RF 传导测量的 3.2GHz 杂散比 GPIO 接触测量的小 10dB 左右。

CHIP722 A 模组 RF 传导测量的 3.2GHz 杂散比 GPIO 接触测量的小 3 dB 左右。

CHIP722 B 模组 RF 传导测量的 3.2GHz 杂散 比 GPIO 接触测量的大小一样。

CHIP722 B 与 ESP32-SOLO-1 RF 传导测量的 3.2GHz 杂散大小差不多,而认证实验室辐射测试 CHIP722 B 比 ESP32-SOLO-1 小 8 dB 左右,且两个模组的天线是一样。

所以推断辐射 $3.2 \, \mathrm{GHz}$ 接收杂散主要是从 GPIO 辐射出来的。并且底板上的 GPIO 走线大于 $\lambda/4$ 且悬空,极易形成天线效应将高频 Noise 辐射出去。

2.3 总结与分析

- CHIP722 B 的 3.2G 接收杂散比 CHIP722 A 和 ESP32 有很大改善, 且与认证要求余量很大。
- GPIO 辐射管脚与 VDD_ANA 相关
 CHIP722 A&B 模组 3.2GHz 杂散耦合较大的 GPIO 为: GPIO46、GPIO45、RXD0、
 TXD0。

ESP32-SOLO-1 模组 3.2GHz 杂散耦合较大的 GPIO 为: GPIO23、GPIO22、GPIO21、GPIO19、GPIO18。

这些 GPIO 管脚都是在 VDD_ANA 管脚附近,推测是从芯片内部 VCO 的供电耦合到 GPIO 上的。

CHIP722 B 的 3.2G RX 辐射杂散比 CHIP722 A 小很多,可以对比一下这两款芯片的不同之处。

3. TX 4.8GHz 杂散

3.1 同耀认证实验室辐射测试结果

在默认不降功率情况下,保证芯片输出功率一样,测试 TX 辐射 4.8GHz 杂散.

从下表中红色字体看出,CHIP722 B 比 ESP32 小 6db 左右,比 CHIP722 A 小 11db 左右,与认证要求有 $1.7~\mathrm{dB}$ 的 Margin 余量。

DUT	Channel	Rate	Backoff/ avg_limit Power dBuv/m Vco leakag @ 3.2G 2nd Harmonic		Vco leakag @ 3.2G		iic @4.8G	
			1 ower	abav/iii	avg dBuv/m	avg margin	avg dBuv/m	avg margin
ESP32- SOLO-1	1	CCK 1M	0/	54	43.4	10.6	58.2	-4.2
CHIP722 A	1	CCK 1M	0/	54	53.2	0.8	63.5	-9.5
CHIP722 B	1	CCK 1M	0/	54	49.5	4.5	52.3	1.7

3.2 公司内部测试

3.2.1 探针接触式测量

使用探针接触式测量, 扫描所有 GPIO 上的 4.8G 发射杂散, 结果如下:

	ESP32-SOLO-1	CHIP722 A	CHIP722 B
4.8GHz 发射杂散 (dBm)	-34	-29	-41

探针测量结果与同耀认证实验室测试结果一致, CHIP722 B 比 ESP32 小 7 dB, 比 CHIP722 A 小 12 dB。

3.2.2 RF 传导测量

模组都是采用 CLC 匹配方式, 传导方式测试 RF 链路上 4.8GHz 杂散, 结果如下:

	ESP32-SOLO-1	CHIP722 A	CHIP722 B
4.8GHz 发射杂散 (dBm)	-47	-45	-52

RF 传导测量的结果比 GPIO 接触式测量至少小 10 dB。

所以与 3.2G 接收杂散一样, 4.8G 发射杂散主要是从 GPIO 辐射出来。

3.3 Layout 分析

● CHIP722 A&B 模组 Layout 分析

使用探针接触式测量方式发现 CHIP722 A&B 的 4.8 GHz 杂散较大的几个 GPIO 是:GPIO0、GPIO1、GPIO2。

查看模组 Layout 发现这几个 GPIO 走线**与 PA 电源走线较近且平行**,PA 电源线上的 Noise 很容易耦合到这些 GPIO 走线上。见下图黄色显示。

NTIAL

● ESP32-SOLO-1 模组 Layout 分析

使用探针接触式测量方式发现 ESP32-SOLO-1 模组 4.8GHz Noise 较大的几个 GPIO 是: GPIO36、GPIO39。

查看 Layout,这几个 GPIO 走线**与 PA 电源走线较近且平行**,与 CHIP722 模组一样。见下图白色显示。

● CHIP722 A 电流版 Layout 分析

CHIP722 A 电流版的 PA 电源走线与旁边的 GPIO 走线**没有平行且中间有一层地隔离**,如下图黄色显示部分。与模组的 Layout 有很大的区别。

● CHIP722 A 电流版与模组版的 4.8GHz 杂散比较

探针测量两种不同 layout 方式耦合到 GPIO 上的 4.8GHz Noise 对比:

	CHIP722 A 电流版	CHIP722 A 模组版
4.8GHz 发射杂散 (dBm)	-32	-29

从测试数据看出, 电流版的 4.8GHz 发射杂散比模组版要小 3dB。

所以 PA 电源走线与 GPIO 走线较近且平行会导致耦合到 GPIO 上的 4.8GHz Noise 变差 3dB。

3.4 PA 电源上串联电感

当 PA 电源上串联的电感越大, GPIO 耦合的 Noise 就会越大。

CHIP722 A 模组的 PA 电源上串联 0 Ω、2nH、4.3nH 时 GPIO 上耦合的 Noise 测试结果如

下:

PA 电源串联器件	0Ω	2nH	4.3nH	
GPIO 上的 4.8GHz Noise (dBm)	-35	-29	-23	

PA电源上串联 0 Ω 时,GPIO 上耦合的杂散相对较小,但是可能在电源走线上扩散噪声。

所以目前选择使用串联 2nH 电感的方式。

3.5 总结与分析

- CHIP722 B 的 4.8G 发射杂散与认证要求有 1.7dB 的余量, 在认证的时候不再需要降低发射功率。
- 4.8GHz 杂散 Layout 改善措施 模组上 PA 电源走线附近避免有平行的走线,最好保持 5W 原则。
- 芯片内部走线分析

CHIP722 A & B 模组从 PA 电源出来的 4.8GHz Noise 大小一样,模组 Layout 也一样,而 B 版比 A 版在 GPIO 耦合的 4.8GHz Noise 要小 10dB 左右,可能是芯片内部这几个 GPIO 走线与 PA 电源走线有差别。