MÈTODES NUMÈRICS I

Grau de Matemàtiques, primer semestre, curs 2010-11 Segon examen parcial. 14 de gener de 2011

1.-

a) Volem preparar una taula de la funció $f(x) = \sqrt{x}$ en punts equidistants de l'interval $x \in [1,4]$:

$$x_i = 1 + ih$$
, $i = 0, 1, \dots, n$; $h = \frac{3}{n}$.

Després podrem usar aquesta taula per a aproximar f(x) mitjançant interpolació lineal: $\forall z \in [1,4]$, una aproximació de f(z) serà $P_1(z)$, on $P_1(x)$ és el polinomi interpolador de f(x) en les dues abscisses de la taula més properes a z.

Quin és el mínim valor de n que ens assegura, per a qualsevol $z \in [1,4]$, un error en l'aproximació que sigui menor o igual que $\frac{1}{2}10^{-8}$?

- b) Repetiu l'apartat anterior en el cas que la taula sigui de f(x) i de f'(x), i que, en lloc de $P_1(x)$, s'usa $P_3(x)$: polinomi interpolador d'Hermite en les dues abscisses.
- **2.-** Sigui $f: R \to R$ una funció diferenciable tantes vegades com faci falta.
 - a) Fixem un valor $a \in R$ qualsevol, i sigui h > 0 un pas de discretització. Deduïu els valors adequats de les constants $A, B, C \in R$ que donen una fórmula de derivació numèrica de la forma

$$\frac{Af(a) + Bf(a+h) + Cf(a+3h)}{h} = f'(a) + O(h^2).$$

b) Suposem que una taula de valors de f(x) és:

Trobeu aproximacions de f'(0) usant la fórmula de l'apartat a) per a dos valors diferents del pas h. Feu un pas d'extrapolació per a obtenir una aproximació millor.

- 3.- Considerem l'equació $f(x) = x 3\sin(x) \frac{1}{2} = 0$.
 - a) Demostreu que l'equació té exactament 3 solucions.
 - b) Aproximeu, amb 6 decimals, la solució més gran pel mètode de Newton.
 - c) Considerem les funcions $g_1(x) = 3\sin(x) + \frac{1}{2}$ i $g_2(x) = \frac{3 + 14x + 18\sin(x)}{20}$.
 - 1. Demostreu que els punts fixos de $x = g_1(x)$ i $x = g_2(x)$ coincideixen amb els zeros de f(x) = 0.
 - 2. Quin dels dos esquemes de punt fix $x_{n+1} = g_{1,2}(x_n)$ és el millor per trobar el zero més gran de f(x) = 0?. Justifica la resposta.

ENTREGUEU PROBLEMES DIFERENTS EN FULLS DIFERENTS

Notes: Divendres 21 de gener a les 11h, al Campus Virtual i al tauler del "xalet".

Revisions: Divendres 21 de gener de 12h a 13 h, al "xalet".