

NumProg WS 20/21 : Tutorübung 07

- 1. Quadratur nach Romberg
- 2. Integration mit Gauß Quadratur
- 3. Quadratur nach Archimedes

2

Quadratur nach Romberg

Bei der Quadratur nach Romberg kombinieren wird **schrittweise zwei Trapezsummen** $Q_{TS}(f;h_1)$ und $Q_{TS}(f;h_2)$ mit **unterschiedlichen Schrittweiten** h_i miteinander. Dabei werden die h_i bei jeden Schritt kleiner bzw. die Anzahl der Stücke N größer.

So können wir das exakte Ergebnis I(f) relativ gut approximieren:

$$I(f) = \lim_{h \to 0} Q_{TS}(f; h)$$

Der Algorithmus ähnelt Aitken-Neville bzw. Newton.

gesuchtes Integral: $\int_0^4 x^4 dx$

Aktuelle Berechnung: keine (initiale Tabelle)

h_i	$i\setminus k$	0	-	1	2
$\frac{b-a}{1}$	0	$Q_{TS}\left(f; \frac{b-a}{1}\right) = Q_{00}$			
			7		
$\frac{b-a}{2}$	1	$Q_{TS}\left(f; \frac{b-a}{2}\right) = Q_{10} \cdot$	\rightarrow Q	11	
			7	7	
$\frac{b-a}{4}$	2	$Q_{TS}\left(f; \frac{b-a}{4}\right) = Q_{20} \cdot$	\rightarrow Q	21 →	Q_{22}

gesuchtes Integral: $\int_0^4 x^4 dx$

Aktuelle Berechnung: h_i einsetzen

h_i	$i\setminus k$	0		1		2	
4	0	$Q_{TS}(f; 4) = Q_{00}$					_
			7				
2	1	$Q_{TS}(f; 2) = Q_{10}$	\rightarrow	Q_{11}			
			7		7		
1	2	$Q_{TS}(f; 1) = Q_{20}$	\rightarrow	Q_{21}	\rightarrow	Q_{22}	

gesuchtes Integral:

$$\int_0^4 x^4 dx$$

$$\int_0^4 x^4 dx \qquad \text{mit } N = \frac{H}{h} = \frac{4}{4} = 1$$

$$Q_{00} = Q_{TS}\left(x^4; \frac{4-0}{1}\right) = 4 \cdot \left(\frac{0}{2} + \frac{256}{2}\right) = 512$$

h_i	$i \setminus k$	0		1		2
4	0	$Q_{00} = 512$				
			7			
2	1	$Q_{TS}(f;2) = Q_{10}$	\rightarrow	Q_{11}		
			7		7	
1	2	$Q_{TS}(f;1) = Q_{20}$	\rightarrow	Q_{21}	\rightarrow	Q_{22}

gesuchtes Integral:

$$\int_0^4 x^4 dx$$

$$\int_0^4 x^4 dx \qquad \text{mit } N = \frac{H}{h} = \frac{4}{2} = 2$$

$$Q_{10} = Q_{TS}\left(x^4; \frac{4-0}{2}\right) = 2\cdot\left(\frac{0}{2}+16+\frac{256}{2}\right) = 288$$

h_i	$i\setminus k$	0		1		2
4	0	$Q_{00} = 512$				
			7			
2	1	$Q_{10} = 288$	\rightarrow	Q_{11}		
			7		7	
1	2	$Q_{TS}(f;1) = Q_{20}$	\rightarrow	Q_{21}	\rightarrow	Q_{22}

gesuchtes Integral:

$$\int_0^4 x^4 dx$$

$$\int_0^4 x^4 dx \qquad \text{mit } N = \frac{H}{h} = \frac{4}{1} = 4$$

$$Q_{20} = Q_{TS}\left(x^4; \frac{4-0}{4}\right) = 1 \cdot \left(\frac{0}{2} + 1 + 16 + 81 + \frac{256}{2}\right) = 226$$

h_i	$i\setminus k$	0		1		2	
4	0	$Q_{00} = 512$					
			7				
2	1	$Q_{10} = 288$	\rightarrow	Q_{11}			
			7		7		
1	2	$Q_{20} = 226$	\rightarrow	Q_{21}	\rightarrow	Q_{22}	

gesuchtes Integral: $\int_0^4 x^4 dx$

$$Q_{11} = Q_{10} + \frac{Q_{10} - Q_{00}}{\left(\frac{h_0}{h_1}\right)^2 - 1} = 288 + \frac{288 - 512}{2^2 - 1} = \frac{640}{3} = 213, \overline{3}$$

h_i	$i \setminus k$	0	1		2
4	0	$Q_{00} = 512$			
			7		
2	1	$Q_{10} = 288$	$\rightarrow Q_{11} = 213, \overline{3}$		
			7	7	
1	2	$Q_{20} = 226$	$ ightarrow$ Q_{21}	\rightarrow	Q_{22}

gesuchtes Integral: $\int_0^4 x^4 dx$

$$Q_{21} = Q_{20} + \frac{Q_{20} - Q_{10}}{\left(\frac{h_1}{h_2}\right)^2 - 1} = 226 + \frac{226 - 288}{2^2 - 1} = \frac{616}{3} = 205, \overline{3}$$

h_i	$i \setminus k$	0	1	2
4	0	$Q_{00} = 512$		
			>	
2	1	$Q_{10} = 288$	$\rightarrow Q_{11} = 213, \overline{3}$	
			7	
1	2	$Q_{20} = 226$	$\rightarrow Q_{21} = 205, \overline{3} \rightarrow$	Q_{22}

gesuchtes Integral: $\int_0^4 x^4 dx$

$$Q_{22} = Q_{21} + \frac{Q_{21} - Q_{11}}{\left(\frac{h_0}{h_2}\right)^2 - 1} = 205, \overline{3} + \frac{205, \overline{3} - 213, \overline{3}}{4^2 - 1} = \frac{1024}{5} = 204, 8$$

h_i	$i \setminus k$	0	1	2
4	0	$Q_{00} = 512$		
			7	
2	1	$Q_{10} = 288$	$\rightarrow Q_{11} = 213, \overline{3}$	
			\forall \foral	
1	2	$Q_{20} = 226$	$\rightarrow Q_{21} = 205, \overline{3} \rightarrow$	$Q_{22} = 204.8$

In der Formel zur Quadratur von Aufgabe 1):

$$I_f = \int_a^b f(x)dx \approx \int_a^b g(x)dx = \sum_{i=0}^n w_i f(x_i) = I_g$$

haben wir angenommen, dass die Stützstellen x_i alle den gleichen Abstand zueinander haben.

In der Formel zur Quadratur von Aufgabe 1):

$$I_f = \int_a^b f(x)dx \approx \int_a^b g(x)dx = \sum_{i=0}^n w_i f(x_i) = I_g$$

haben wir angenommen, dass die Stützstellen x_i alle den gleichen Abstand zueinander haben.

Bei der Gauß Quadratur haben wir neben den Gewichten w_i auch noch die Position x_i als zusätzliche Bedingung (also 2 Bedingungen pro Stützpunkt $y_i = f(x_i)$)

 \rightarrow mit Gauß Quadratur maximal korrekt integrierbarer Polynomgrad: 2n-1 bei n Stützstellen

In der Formel zur Quadratur von Aufgabe 1):

$$I_f = \int_a^b f(x)dx \approx \int_a^b g(x)dx = \sum_{i=0}^n w_i f(x_i) = I_g$$

haben wir angenommen, dass die Stützstellen x_i alle den gleichen Abstand zueinander haben.

Bei der Gauß Quadratur haben wir neben den Gewichten w_i auch noch die Position x_i als zusätzliche Bedingung (also 2 Bedingungen pro Stützpunkt $y_i = f(x_i)$)

 \rightarrow mit Gauß Quadratur maximal korrekt integrierbarer Polynomgrad: 2n-1 bei n Stützstellen

Achtung: Integrationsgrenzen bei klassischer Gauß Quadratur sind [-1; 1]! (andere Intervalle können wie bei Hermite auf [-1; 1] gemappt werden)

Wie funktioniert das jetzt?

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad ... exakt integrieren.

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad $2 \cdot 2 - 1 = 3$ exakt integrieren. \rightarrow also stellen wir ... Gleichungen auf

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad $2 \cdot 2 - 1 = 3$ exakt integrieren. \rightarrow also stellen wir 4 Gleichungen auf (Grad 0 bis 3)

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad $2 \cdot 2 - 1 = 3$ exakt integrieren. \rightarrow also stellen wir 4 Gleichungen auf (Grad 0 bis 3)

Bei z.B. 4 Stützstellen, können wir nur bis zum Grad ... exakt integrieren.

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad $2 \cdot 2 - 1 = 3$ exakt integrieren.

→ also stellen wir 4 Gleichungen auf (Grad 0 bis 3)

Bei z.B. 4 Stützstellen, können wir nur bis zum Grad $2 \cdot 4 - 1 = 7$ exakt integrieren.

→ also stellen wir ... Gleichungen auf

Wie funktioniert das jetzt?

Da wir die Methode der unbestimmten Koeffizienten verwenden (also wir müssen nur so viele w_i bestimmen, sodass wir den Polynomgrad 2n-1 bei n Stützstellen nicht überschreiten, aka n w_i), können wir 2n Gleichungen und damit ein Gleichungssystem aufstellen.

Bei z.B. 2 Stützstellen, können wir nur bis zum Grad $2 \cdot 2 - 1 = 3$ exakt integrieren.

→ also stellen wir 4 Gleichungen auf (Grad 0 bis 3)

Bei z.B. 4 Stützstellen, können wir nur bis zum Grad $2 \cdot 4 - 1 = 7$ exakt integrieren.

→ also stellen wir 8 Gleichungen auf (Grad 0 bis 7)

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir ... Stützstellen.

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir 4 Stützstellen.

 \rightarrow also müssen wir ... Gleichungen aufstellen

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir 4 Stützstellen.

 \rightarrow also müssen wir $2 \cdot 4 = 8$ Gleichungen aufstellen

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir 4 Stützstellen.

 \rightarrow also müssen wir $2 \cdot 4 = 8$ Gleichungen aufstellen

Für ein Polynom von Grad 3 brauchen wir ... Stützstellen

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir 4 Stützstellen.

 \rightarrow also müssen wir $2 \cdot 4 = 8$ Gleichungen aufstellen

Für ein Polynom von Grad 3 brauchen wir 2 Stützstellen

→ also müssen wir ... Gleichungen aufstellen

Wie funktioniert das jetzt?

Anders gedacht: Wenn wir z.B. ein Polynom von Grad 6 mit der Gauß Quadratur exakt integrieren wollen, brauchen wir 4 Stützstellen.

 \rightarrow also müssen wir $2 \cdot 4 = 8$ Gleichungen aufstellen

Für ein Polynom von Grad 3 brauchen wir 2 Stützstellen

 \rightarrow also müssen wir $2 \cdot 2 = 4$ Gleichungen aufstellen

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit $f_0(x) = \dots$:

Grad 1 mit $f_1(x) = \dots$:

Grad 2 mit $f_2(x) = \dots$:

Grad 3 mit $f_3(x) = \dots$:

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit $f_0(x) = 1$:

Grad 1 mit $f_1(x) = x$:

Grad 2 mit $f_2(x) = x^2$:

Grad 3 mit $f_3(x) = x^3$:

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit
$$f_0(x) = 1$$
:

$$f_0(x_0) \cdot w_0 + f_0(x_1) \cdot w_1 = w_0 + w_1 = \int_{-1}^1 1 dx = 2$$

Grad 1 mit $f_1(x) = x$:

Grad 2 mit $f_2(x) = x^2$:

Grad 3 mit $f_3(x) = x^3$:

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit
$$f_0(x) = 1$$
:

$$f_0(x_0) \cdot w_0 + f_0(x_1) \cdot w_1 = w_0 + w_1 = \int_{-1}^1 1 dx = 2$$

Grad 1 mit
$$f_1(x) = x$$
:

$$f_1(x_0) \cdot w_0 + f_1(x_1) \cdot w_1 = w_0 x_0 + w_1 x_1 = \int_{-1}^1 x dx = \mathbf{0}$$

Grad 2 mit $f_2(x) = x^2$:

Grad 3 mit
$$f_3(x) = x^3$$
:

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit
$$f_0(x) = 1$$
: $f_0(x_0) \cdot w_0 + f_0(x_1) \cdot w_1 = w_0 + w_1 = \int_{-1}^1 1 dx = 2$

Grad 1 mit
$$f_1(x) = x$$
: $f_1(x_0) \cdot w_0 + f_1(x_1) \cdot w_1 = w_0 x_0 + w_1 x_1 = \int_{-1}^1 x dx = \mathbf{0}$

Grad 2 mit
$$f_2(x) = x^2$$
: $f_2(x_0) \cdot w_0 + f_2(x_1) \cdot w_1 = w_0 x_0^2 + w_1 x_1^2 = \int_{-1}^1 x^2 dx = \frac{2}{3}$

Grad 3 mit $f_3(x) = x^3$:

Allgemeine Formel für die Gleichungen:

$$\sum_{i=0}^{n-1} f_k(x_i) \cdot w_i = \int_{-1}^1 f_k(x)$$

Wobei k für den Grad der Funktion $f_k(x)$ steht. Wir sagen hier: $f_k(x) = x^k$

Beispiel mit 2 Stützstellen (x_0 und x_1), aka Aufgabe 2a):

Grad 0 mit
$$f_0(x) = 1$$
: $f_0(x_0) \cdot w_0 + f_0(x_1) \cdot w_1 = w_0 + w_1 = \int_{-1}^1 1 dx = 2$

Grad 1 mit
$$f_1(x) = x$$
: $f_1(x_0) \cdot w_0 + f_1(x_1) \cdot w_1 = w_0 x_0 + w_1 x_1 = \int_{-1}^1 x dx = \mathbf{0}$

Grad 2 mit
$$f_2(x) = x^2$$
: $f_2(x_0) \cdot w_0 + f_2(x_1) \cdot w_1 = w_0 x_0^2 + w_1 x_1^2 = \int_{-1}^1 x^2 dx = \frac{2}{3}$

Grad 3 mit
$$f_3(x) = x^3$$
: $f_3(x_0) \cdot w_0 + f_3(x_1) \cdot w_1 = w_0 x_0^3 + w_1 x_1^3 = \int_{-1}^1 x^3 dx = \mathbf{0}$

Dann noch Gleichungssystem auflösen:

$$w_0 + w_1 = 2$$

$$w_0 x_0 + w_1 x_1 = 0$$

$$w_0 x_0^2 + w_1 x_1^2 = \frac{2}{3}$$

$$w_0 x_0^3 + w_1 x_1^3 = 0$$

Dann noch Gleichungssystem auflösen:

$$w_0 + w_1$$
 = 2 $\rightarrow w_0 = 2 - w_1$
 $w_0 x_0 + w_1 x_1$ = 0 $\rightarrow \text{mit } x_0 = -x_1$: $0 = x_0 (w_0 - w_1) = x_0 (2 - 2w_1)$
 $w_0 x_0^2 + w_1 x_1^2$ = $\frac{2}{3}$ $\rightarrow \text{mit } w_0 = w_1 = 1 \text{ und } x_0 = -x_1$: $x_0^2 = \frac{1}{3}$
 $w_0 x_0^3 + w_1 x_1^3$ = 0

$$\Rightarrow w_0 = 1$$

$$w_1 = 1$$

$$x_0 = -\frac{1}{\sqrt{3}}$$

$$x_1 = \frac{1}{\sqrt{3}}$$

Dann noch Gleichungssystem auflösen:

$$w_{0} + w_{1} = 2$$

$$w_{0}x_{0} + w_{1}x_{1} = 0$$

$$w_{0}x_{0}^{2} + w_{1}x_{1}^{2} = \frac{2}{3}$$

$$w_{0}x_{0}^{3} + w_{1}x_{1}^{3} = 0$$

$$\rightarrow w_0 = 2 - w_1$$

$$\rightarrow \text{mit } x_0 = -x_1 : 0 = x_0(w_0 - w_1) = x_0(2 - 2w_1)$$

$$\rightarrow \text{mit } w_0 = w_1 = 1 \text{ und } x_0 = -x_1 : x_0^2 = \frac{1}{3}$$

$$\Rightarrow \qquad w_0 = 1$$

$$w_1 = 1$$

$$x_0 = -\frac{1}{\sqrt{3}}$$

$$x_1 = \frac{1}{\sqrt{3}}$$

⇒ Template für Gauß Quadratur bei 2 Stützstellen:

$$Q_G(f) = w_0 \cdot f(x_0) + w_1 \cdot f(x_1)$$
$$= 1 \cdot f\left(-\frac{1}{\sqrt{3}}\right) + 1 \cdot f\left(\frac{1}{\sqrt{3}}\right)$$

Quadratur nach Archimedes

