Problems in Linear Algebra

CONTENTS

1	Introduction		
	1.1	Definitions	. 1
	1.2	Points	. 1
	1.3	Loci	. 2
2	The Straight Line		2
	2.1	Definitions	. 2
	2.2	Intercepts	

1 Introduction

1.1 Definitions

1. The inner product of \mathbf{P} and \mathbf{Q} is defined as

$$\mathbf{P}^T \mathbf{Q} = p_1 q_1 + p_2 q_2 \tag{1.1.1}$$

2. The *norm* of a vector

$$\mathbf{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \tag{1.1.2}$$

is defined as

$$\|\mathbf{P}\| = \sqrt{p_1^2 + p_2^2} \tag{1.1.2}$$

3. The *length* of *PQ* is defined as

$$\|\mathbf{P} - \mathbf{Q}\| \tag{1.1.3}$$

4. The *direction vector* of the line PQ is defined as

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} p_1 - q_1 \\ p_2 - q_2 \end{pmatrix} \tag{1.1.4}$$

5. Orthogonality

$$PQ \perp RS \iff (\mathbf{P} - \mathbf{Q})^T (\mathbf{R} - \mathbf{S}) = 0 \ (1.1.5)$$

6. The point dividing PQ in the ratio k:1 is

$$\mathbf{R} = \frac{k\mathbf{P} + \mathbf{Q}}{k+1} \tag{1.1.6}$$

7. The area of $\triangle PQR$ is the determinant

$$\begin{vmatrix} 1 & 1 & 1 \\ \mathbf{P} & \mathbf{Q} & \mathbf{R} \end{vmatrix} \tag{1.1.7}$$

1.2 Points

1. Find the distance between

$$\mathbf{P} = \begin{pmatrix} -2\\4 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 3\\-5 \end{pmatrix} \tag{1.2.1}$$

2. Find the length of PQ for

a)
$$\mathbf{P} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$;

b)
$$\mathbf{P} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$;
c) $\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\mathbf{Q} = \begin{pmatrix} -b \\ a \end{pmatrix}$.

c)
$$\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} -b \\ a \end{pmatrix}$.

- 3. Using direction vectors, show that $\begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ and $\binom{1}{4}$ are the vertices of a parallelogram.
- 4. Using Baudhayana's theorem, show that the points $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -6 \\ 10 \end{pmatrix}$ are the vertices of a right-angled traingle. Repeat using orthogo-
- 5. Plot the points $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and prove that they are the vertices of a rectangle.
- 6. Show that $\mathbf{B} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}, \mathbf{A} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ are the vertices of an isosceles triangle.
- 7. In the last question, find the distance of the vertex A of the triangle from the middle point of the base BC.
- 8. Prove that the points $\begin{pmatrix} -1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\3 \end{pmatrix}$, $\begin{pmatrix} 3\\2 \end{pmatrix}$ and $\begin{pmatrix} 2\\-1 \end{pmatrix}$ are the vertices of a square
- 9. Prove that the points $\mathbf{A} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are the vertices of a parallelogram. Find E, F, G, H, the mid points of AB, BC, CD, AD respectively. Show that EG and FH bisect each other
- 10. Prove that the points $\begin{pmatrix} 21 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 15 \\ 10 \end{pmatrix}$, $\begin{pmatrix} -5 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -12 \end{pmatrix}$ are the vertices of a rectangle, and find

the coordinates of its centre.

- 11. Find the lengths of the medians of the triangle whose vertices are at the points $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$.
- 12. Find the coordinates of the points that divide the line joining the points $\begin{pmatrix} -35 \\ -20 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -10 \end{pmatrix}$ into four equal parts.
- 13. Find the coordinates of the points of trisection of the line joining the points $\begin{pmatrix} -5 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 25 \\ 10 \end{pmatrix}$.
- 14. Prove that the middle point of the line joining the points $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ -2 \end{pmatrix}$ is a point of trisection of the line joining the points $\begin{pmatrix} -8 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ 10 \end{pmatrix}$.
- 15. The points $\binom{8}{5}$, $\binom{-7}{-5}$ and $\binom{-5}{5}$ are three of the vertices of a parallelogram. Find the coordinates of the remaining vertex which is to be taken as opposite to $\binom{-7}{-5}$.
- 16. The point $\binom{2}{6}$ is the intesection of the diagonals of a parallelogram two of whose vertices are at the points $\binom{7}{16}$ and $\binom{10}{2}$. Find the coordinates of the remaining vertices.
- 17. Find the area of the triangle whose vertices are the points $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 7 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$.
- 18. Find the coordinates of points which divide the join of $\binom{2}{3}$, $\binom{-4}{5}$ externally in the ratio 2:3, and also externally in the ratio 3:2.
- 19. Prove the centroid of $\triangle ABC$ is

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{1.2.19}$$

1.3 Loci

- 1. A point moves so that its distance from the point $\binom{2}{1}$ is double its distance from the point $\binom{1}{2}$. Find the equation of its locus.
- 2. Find the equation of the perpendicular bisector of the line joining the points $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

Fig. 2.1.1

- 3. Find the equation of the circle of radius 5 with centre at $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$.
- 4. A point moves so that its distance from the y-axis is equal to the distance from the point $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Find the equation of its locus.
- 5. A point moves so that the sum of the squares of its distance from the points $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ is constant. Find the equation of the locus.
- 6. A point moves so that its distance from the axis of x is twice its distance from the point $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Find the equation of the locus.
- 7. A point moves in such a way that with the points $\binom{2}{3}$ and $\binom{-3}{4}$ it forms a triangle of area 8.5. Show that its locus has an equation

$$\{(1 \ 5)\mathbf{x}\}\{(1 \ 5)\mathbf{x} - 34\} = 0$$
 (1.3.7)

2 The Straight Line

2.1 Definitions

1. The points $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ are as shown in Fig. 2.1.1. Find the equation of OA.

Solution: Let $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ be any point on OA. Then, using similar triangles,

$$\frac{x_2}{x_1} = \frac{a_2}{a_1} = m \tag{2.1.1.1}$$

$$\implies x_2 = mx_1 \tag{2.1.1.2}$$

Fig. 2.1.2

where m is known as the slope of the line. Thus, the equation of the line is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ mx_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ m \end{pmatrix} = x_1 \mathbf{m}$$
 (2.1.1.3)

In general, the above equation is written as

$$\mathbf{x} = \lambda \mathbf{m}, \qquad (2.1.1.4)$$

where **m** is the direction vector of the line.

2. Find the equation of *AB* in Fig. 2.1.2 **Solution:** From Fig. 2.1.2,

$$\frac{x_2 - a_2}{x_1 - a_1} = \frac{b_2 - a_2}{b_1 - a_1} = m \tag{2.1.2.1}$$

$$\implies x_2 = mx_1 + a_2 - ma_1$$
 (2.1.2.2)

From (2.1.2.2),

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ mx_1 + a_2 - ma_1 \end{pmatrix}$$
 (2.1.2.3)

$$= \mathbf{A} + (x_1 - a_1) \begin{pmatrix} 1 \\ m \end{pmatrix}$$
 (2.1.2.4)

$$= \mathbf{A} + \lambda \mathbf{m} \tag{2.1.2.5}$$

- 3. *Translation:* If the line shifts from the origin by **A**, (2.1.2.5) is obtained from (2.1.1.4) by adding **A**.
- 4. Find the length of **A** in Fig. 2.1.1 **Solution:** Using Baudhayana's theorem, the length of the vector **A** is defined as

$$\|\mathbf{A}\| = OA = \sqrt{a_1^2 + a_2^2} = \sqrt{\mathbf{A}^T \mathbf{A}}.$$
 (2.1.4.1)

Also, from (2.1.1.4),

$$\|\mathbf{A}\| = \lambda \sqrt{1 + m^2}$$
 (2.1.4.2)

Note that λ is the variable that determines the length of **A**, since *m* is constant for all points

Fig. 2.1.5

on the line.

5. Find A - B.

Solution: See Fig. 2.1.5. From (2.1.2.5), for some λ ,

$$\mathbf{B} = \mathbf{A} + \lambda \begin{pmatrix} 1 \\ m \end{pmatrix} \tag{2.1.5.1}$$

$$\implies \mathbf{A} - \mathbf{B} = -\lambda \begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{2.1.5.2}$$

 $\mathbf{A} - \mathbf{B}$ is marked in Fig. 2.1.5.

- 6. Show that $AB = ||\mathbf{A} \mathbf{B}||$
- 7. Show that the equation of AB is

$$\mathbf{x} = \mathbf{A} + \lambda \left(\mathbf{B} - \mathbf{A} \right) \tag{2.1.7.1}$$

8. The *normal* to the vector **m** is defined as

$$\mathbf{n}^T \mathbf{m} = 0 \tag{2.1.8.1}$$

$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m} \tag{2.1.8.2}$$

9. From (2.1.7.1), the equation of a line can also be expressed as

$$\mathbf{n}^{T}\mathbf{x} = \mathbf{n}^{T}\mathbf{A} + \lambda \mathbf{n}^{T} (\mathbf{B} - \mathbf{A}) \qquad (2.1.9.1)$$

$$\implies \mathbf{n}^T \mathbf{x} = c \tag{2.1.9.2}$$

10. The unit vectors on the *x* and *y* axis are defined as

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{2.1.10.1}$$

$$\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{2.1.10.2}$$

11. If a be the *intercept* of the line

$$\mathbf{n}^T \mathbf{x} = c \tag{2.1.11.1}$$

on the x-axis, then $\begin{pmatrix} a \\ 0 \end{pmatrix}$ is a point on the line. Thus,

$$\mathbf{n}^{T} \begin{pmatrix} a \\ 0 \end{pmatrix} = c \qquad (2.1.11.2)$$

$$\implies a = \frac{c}{\mathbf{n}^{T} \mathbf{e}_{1}} \qquad (2.1.11.3)$$

$$\implies a = \frac{c}{\mathbf{n}^T \mathbf{e}_1} \tag{2.1.11.3}$$

2.2 Intercepts

1. Find the intercepts made on the axes by the straight lines whose equations are

a)
$$(2 \ 3) \mathbf{x} = 2$$

a)
$$(2 \ 3)\mathbf{x} = 2$$

b) $(1 \ -3)\mathbf{x} = -5$
c) $(1 \ -1)\mathbf{x} = 0$
d) $(\frac{1}{a+b} \ \frac{1}{a-b})\mathbf{x} = \frac{1}{a^2-b^2}$
e) $(1 \ -m)\mathbf{x} = -c$

b)
$$(1 -3)x = -5$$

e)
$$(1 -m)\mathbf{x} = -c$$

c)
$$(1 -1)\mathbf{x} = 0$$

2. Write down the equations of straight lines which make the following pairs of intercepts on the axes:

c)
$$\frac{1}{a}, \frac{1}{b}$$

c)
$$\frac{1}{a}, \frac{1}{b}$$

d) $2a, -2a$

3. A straight line passes through a fixed point $\begin{pmatrix} h \\ k \end{pmatrix}$ and cuts the axes in **A**, **B**. Parallels to the axes through A and B intersect in P. Find the equation of the locus of **P**.

2.3 Line Equation

- 1. Find the equations of two straight lines at a distance 3 from the origin and making an angle of 120° with OX.
- 2. Find the equation of a straight line making an angle of 60° with OX and passing through the point (2, -2). Transform the equation to the form

$$x\cos\alpha + y\sin\alpha = p$$

- 3. Find the equation of the straight line that passes through the points (2,3) and (3,2). What is its inclination to *OX*?
- 4. Find the equation of the straight line through the point (5,7) that makes equal intercepts on the axes.
- 5. Find the equations of the sides of a triangle whose corners are (2,4), (-4,1) and (2,-3).
- 6. For the same triangle find the equations of the lines joining the corners to the middle points of the opposite sides.

- 7. Find the equation of a straight line passing through the point (2, -3) parallel to the line 4x - y + 7 = 0.
- 8. Find the intercepts on the axes made by a straight line which passes through the point (3, -1) and makes an angle of 30° with OX.
- 9. Find the equation of the straight line through the points (3, -4), (2, 3) and of the parallel line through (5, 2).
- 10. What is the distance from the origin of the line 4x-y-7? Write down the equation of a parallel line at double the distance.
- 11. Find the equation of the straight line through the point (3, -4) parallel to the line joining the origin to the point (2, -1).
- 12. Write down the equation of the straight line which makes intercepts 2 and -7 on the axes, and of the parallel line through the point (3, -1).
- 13. Find the equations of the straight line joining the points (3,4), (-2,1) and of the parallel line through the origin.
- 14. ABC is a triangle and A, B and C are the points (2,3), (5,-1) and (-4,2). Find the equation of the straight line through A parallel to BC.
- 15. Find the equation of a line parallel to 2x+5y=11 passing through the middle point of the join of the points (-7, 3), (5, -11).
- 16. The base of a triangle passes through a fixed point (f,g) and the sides are bisected at right angles by the axes. Prove that the locus of the vertex is the line

$$gx + fy = 0$$