

ANÁLISIS FISICOQUÍMICO DE AGUA

0000	Fecha	2022-12-29 13:08	4	Dirigido a	2022-12-29 13:08
	Empresa	2022-12-29 13:08	\bowtie	Copia a	2022-12-29 13:08
(F)	Sistema	Vapore	\boxtimes	Copia a	2022-12-29 13:08

SUBSISTEMA TRES

	Punto de Muestreo 2	Punto de Muestreo 1	Rango de control Punto de Muestreo 2	Rango de control Punto de Muestreo 1
рН	5	5	MAX 45	MAX 12
ALK FENOL, ppm CaCO3	35	35	MAX 56	MIN 23
ALK TOTAL, ppm CaCO3	15	15	MIN 33	MAX 25
ALK OH, ppm CaCO3	20	20	MAX 67	ENT 12,56
Dureza total, ppm	50	50	MAX 67	MAX 23
Sílice, ppm SiO2	390	390	MIN 66	MIN 35
Conductividad, us/cm	35	35	MAX 67	MIN 56
S.T.D, ppm	2200	200	MAX77	MIN 45
Polímero, ppm	25	25	MIN 56	MAX34
Fosfatos, ppm PO4	25	25	MAX 45	MIN 23
Sulfitos, ppm SO3	270	270	MAX 45	MAX34

	Punto de Muestreo 2	Punto de Muestreo 1	Rango de control Punto de Muestreo 2	Rango de control Punto de Muestreo 1
Hierro total, ppm	20	20	MIN 56	ENT 67,12
Cloruros, ppm Cl	170	170	MAX 45	MAX 45
Temperatura	5	5	MAX 50	MAX 50
Ind. Ryznar	14.1	14.1		

Punto de Muestreo 2

Punto de Muestreo 1

14.1

Rango de control Punto de Muestreo 2

MAX 45

MAX 45

MIN 56

MAX 45

MAX50

рН	5	MAX 45
ALK FENOL, ppm CaCO3	35	MAX 56
ALK TOTAL, ppm CaCO3	15	MIN 33
ALK OH, ppm CaCO3	20	MAX 67
Dureza total, ppm	50	MAX 67
Sílice, ppm SiO2	390	MIN 66
Conductividad, us/cm	35	MIN 56
S.T.D, ppm	200	MAX 77
Polímero, ppm	25	MIN 56

25

270

20

1870

5

14.1

Punto de Muestreo 2

Fosfatos, ppm PO4

Sulfitos, ppm SO3

Hierro total, ppm

Cloruros, ppm Cl

Temperatura

Ind. Ryznar

Conclusiones

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source

Recomendaciones

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

SUBSISTEMA TRES

	producto nuevo	quimico 25
Stock de p roducto (Kg)	5	5
Dosis químico (kg/día)	8	4
Próximo despacho		

SUBSISTEMA CUARTRO

		alcohol 80%	producto 25
Stock de p ro	oducto (Kg)	5	5
Dosis químic	o (kg/día)	6	8
Próximo des	pacho		