International Islamic University Chittagong

Department of Computer Science & Engineering

Course No.: CSE –2303 Course Title: Data Structures
Credit Hours: 3 Session: Spring - 2013

Instructor: Md. Mahiuddin, Assistant Professor, Department of CSE.

Syllabus: Internal data representation; Abstract data types; Elementary data structures: arrays, lists, stacks, queue, trees, graphs; Advanced data structures: heaps, B-trees; Recursion; Sorting; Searching; Hashing; Storage management.

Textbook: I will follow the following book as core textbook. Try to get a personal copy of this book.

1. Seymour Lipschutz: (Schaum's Outline Series) Theory and Problems of Data Structures, Adapted by: G A V Pai, Tata McGraw-Hill, Indian adapted edition - 2006.

Reference Books: There are also some other very standard texts on data structure in our library. We will consult these books from time to time. These are:

- 1. D. Samanta: Classic Data Structures, Prentice Hall of India, 2003.
- 2. Edward M. Reingold, Wilfred J. Hansen: *Data Structures*, CBS Publishers and Distributors.
- 3. Mark Allen Weiss: *Data Structures and Algorithm Analysis in C*, 2/e, Addison Wesley Longman Inc, 2001.
- 4. Robert L. Kruse, Bruce P. Leung, Clovis L. Tondo: *Data Structures and Program Design in C*, Prentice-Hall of India.
- 5. Yedidyah Langsam, Moshe J. Augenstein, Aron M. Tenenbaum: *Data Stuuctures using C and C++*, 2/e, Prentice Hall India.
- 6. Ellis horowitz, Sartaj Sahni, Dinesh Mehta: *Fundamentals of Data Structures in C++*, Galgotia PublicationsPvt. Ltd., 2000.
- 7. N. S. Kutti, P. Y. Padhye: Data Structures in C++, Prentice Hall of India, 2001.
- 8. Nell Dale, Susan C Lilly: *Pascal plus Data Structures, Algorithms and Advanced Programming*, 3/e, Galgotia Publications, India.
- 9. Robert Sedgewick, *Algorithms in C*, 3/e, Pearson Education, Inc, 2001.

Prerequisites: CSE-1201 & 1202 Structured Programming (& Sessional), which was covered in your second semester.

Class Schedule: We will have three lectures each of one hour duration and one sessional of two hours duration in a week.

Grading Policy: *CSE 2303:* Class Attendance & Performance 10, Class Tests & Assignments 10, Mid Term Examination 30 and Final Examination 50.

CSE 2304: Class Attendance & Performance 10, Lab Assignments 30, ACM Programming 10, Mid Term Examination 20 and Final Examination 30.

Homework & Programming Assignments: You have to follow the deadline to submit your homework and assignments. No late submission will be accepted. Copying will be considered as an offence and will be penalized.

8-Stanza Syllabus

1.	Introduction: Elementary Data organization, Information; Data types; Data Structure, Data Structure operations; Algorithm; Time-Space tradeoff of							
	Algorithms							
	b) Mathematical notation & Functions; Algorithmic Notation; Control structures; Sub-algorithms							
	c) String; String operations; Pattern matching algorithms							
2.	7 0 0							
2.	Linear Array: Linear Array & its representation in memory; Traversing Landau Insertion & Deletion in LA, Bubble Sort, Linear Search & binary Search							
	b) 2D Array & its representation in memory; Matrices; Algebra of matrices;							
	Sparse matrices							
3.	Stack - its representation & applications; PUSH and POP operation on stack							
	b) Polish Notation, reverse polish notation; Evaluation of a postfix expression;							
	Transforming infix expression into postfix expression							
4.	Queue – its representation; Insertion & deletion in Queue; Deques; Priority							
	Queues.							
	b) Recursion [Factorial function, Fibonacci sequence, Ackermann function,							
	Towers of Hanoi]							
5.	Linked list - Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists							
6.	Complexity of algorithms, Rate of growth: Big O notation; Complexity of Linear							
	Search, Binary search & Bubble sort algorithm							
	b) Sorting - Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution							
7.	Tree - Tree terminology; representation of binary trees in memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on heap; Heapsort; B trees; General tree							
8.	Graph – graph terminology; representation of graphs – adjacency matrix, path matrix, adjacency list; Traversing a graph – BFS & DFS							

Detailed Lecture Schedule

Lecture 1	Introduction				
Lecture 2 to 3	Chapter-1: Elementary Data organization, Information; Data types; Data Structure, Data Structure operations; Algorithm; Time-Space tradeoff of Algorithms				
Lecture 4	Chapter-2 [except 2.5]: Mathematical notation & Functions; Algorithmic Notation; Control structures; Sub-algorithms				
Lecture 5 to 7 Chapter-4 [up to 4.8]: Linear Array & its representation in Traversing LA, Insertion & Deletion in LA, Bubble So Search & binary Search					
Lecture 8 to 9	Chapter 3: String; String operations; Pattern matching algorithms				
Lecture 10	Class test-1				
Lecture-11	Chapter-2 [only 2.5]: Complexity of algorithms, Rate of growth: Big O notation; Complexity of Linear Search, Binary search & Bubble sort algorithm				
Lecture 12 to 13	Chapter-4 [4.9 – 4.14]: 2D Array & its representation in memory; Matrices; Algebra of matrices; Sparse matrices				
Lecture 14 to 15	Chapter-6 [6.1-6.3]: Stack - its representation & applications; PUSH and POP operation on stack.				
Lecture 16 to 17	Chapter-6 [6.4]: Polish Notation, reverse polish notation; Evaluation of a postfix expression; Transforming infix expression into postfix expression				
Lecture 18	Class test-2 / Review Class				
Ī	CIMOD COOL # / ITC TIC TO CIMOD				
	Mid Term Examination				
Lecture 19 to 21					
	Mid Term Examination Chapter 6 [6.9-6.11]: Queue – its representation; Insertion &				
Lecture 19 to 21	Mid Term Examination Chapter 6 [6.9-6.11]: Queue – its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence,				
Lecture 19 to 21 Lecture 22 to 23	Mid Term Examination Chapter 6 [6.9-6.11]: Queue – its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header				
Lecture 19 to 21 Lecture 22 to 23 Lecture 24 to 27	Mid Term Examination Chapter 6 [6.9-6.11]: Queue – its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists				
Lecture 19 to 21 Lecture 22 to 23 Lecture 24 to 27 Lecture 28	Mid Term Examination Chapter 6 [6.9-6.11]: Queue — its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists Class test-3 Chapter 9: Sorting- Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function,				
Lecture 19 to 21 Lecture 22 to 23 Lecture 24 to 27 Lecture 28 Lecture 29 to 31	Mid Term Examination Chapter 6 [6.9-6.11]: Queue — its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists Class test-3 Chapter 9: Sorting- Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution Chapter 7: Tree- Tree terminology; representation of binary trees in memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on heap;				
Lecture 19 to 21 Lecture 22 to 23 Lecture 24 to 27 Lecture 28 Lecture 29 to 31 Lecture 32 to 36	Mid Term Examination Chapter 6 [6.9-6.11]: Queue — its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter-6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists Class test-3 Chapter 9: Sorting- Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution Chapter 7: Tree- Tree terminology; representation of binary trees in memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on heap; Heapsort; B trees; General tree Chapter 8: Graph — graph terminology; representation of graphs — adjacency matrix, path matrix, adjacency list; Traversing a graph —				
Lecture 19 to 21 Lecture 22 to 23 Lecture 24 to 27 Lecture 28 Lecture 29 to 31 Lecture 32 to 36 Lecture 37 to 40	Chapter 6 [6.9-6.11]: Queue — its representation; Insertion & deletion in Queue; Deques; Priority Queues. Chapter- 6 [6.6]: Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi] Chapter 5: Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; Two way lists Class test-3 Chapter 9: Sorting- Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution Chapter 7: Tree- Tree terminology; representation of binary trees in memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on heap; Heapsort; B trees; General tree Chapter 8: Graph — graph terminology; representation of graphs — adjacency matrix, path matrix, adjacency list; Traversing a graph — BFS & DFS				

International Islamic University Chittagong Department of Computer Science & Engineering

Course Title: Data Structures Sessional Course No.: CSE -2304

Session: Spring - 2013 **Credit Hours: 1**

Instructor: Md. Mahiuddin, Assistant Professor, Department of CSE.

Detailed Lab Course Outline:

	Detaned Lab Course Outline:				
Lab 1	1. Write a program to create an array of n elements and then display all the elements of the list.				
	2. Write a program to find the largest number from a given list of integers.				
	3. Write a program to calculate the roots of the quadratic equation $ax^2 + bx + c = 0$				
	where a, b and c are known.				
Lab 2	4. Write a program to create an array of n elements and then separately write the				
	odd and even elements of the list.				
	5. Write a program to create an array of n elements and then insert an element to				
	the list.				
	6. Write a program to create an array of n elements and then delete an element				
	from the list.				
T 1 0	7. Write a program to sort n numbers using Bubble Sort algorithm.				
Lab 3	8. Write a program to search an element from a list of n numbers using Linear				
	Search algorithm.				
	9. Write a program to search an element from a list of n numbers using Binary				
	Search algorithm.				
	10. Write a program to determine whether a number n is prime or not where 1< n <				
	2 ¹⁵ by using sieve method. 11. Write a program to write 100 randomly generated integer to a file called				
	RANDIDAL And then read the contents of the file and display them on the				
	RAND.DAT. And then read the contents of the file and display them on the screen.				
	screen.				
Lab 4	screen. Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program				
Lab 4	 screen. Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first 				
Lab 4	 Project: Write a menu driven program to Process a sorted Array. Your program should have the following menu: Insert, Delete, Search, Display, and Exit. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 				
Lab 4	 Project: Write a menu driven program to Process a sorted Array. Your program should have the following menu: Insert, Delete, Search, Display, and Exit. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first 				
Lab 4	 Project: Write a menu driven program to Process a sorted Array. Your program should have the following menu: Insert, Delete, Search, Display, and Exit. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. 				
Lab 4	 Project: Write a menu driven program to Process a sorted Array. Your program should have the following menu: Insert, Delete, Search, Display, and Exit. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 				
	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 e) Reverse a string S. [H] 				
Lab 4	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 e) Reverse a string S. [H] 17. Write a program to interchange the row and column of a matrix. 				
	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 e) Reverse a string S. [H] 				
	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 e) Reverse a string S. [H] 17. Write a program to interchange the row and column of a matrix. 				
	 Project: Write a menu driven program to Process a <i>sorted</i> Array. Your program should have the following menu: <i>Insert, Delete, Search, Display, and Exit</i>. 12. Write a program to insert a string S into a text T so that S begins in position K of T. 13. A text T and a pattern P are in memory. Write a program to delete first occurrence of P in T. 14. Write a program that will read a string (S) and find the index of the first occurrence of a pattern (P) in the string S. 15. Write a program which calculates the no. of occurrence of each letter of an input text. 16. Write a program to implement the following string operation without using any built in functions related to string. a) Find the length of a string S b) Copy string S2 to S1. c) Concatenate string S2 to S1. d) Compare two strings S1 and S2 e) Reverse a string S. [H] 17. Write a program to interchange the row and column of a matrix. 18. Write a program to add two matrices. 				

	21. Write a program that will read a positive integer in base b (2<=b<=16) and convert it into base d (2<=d<=16).					
Lab 6	22. Write a program to implement the push and pop operation of a stack					
20	23. Write a program to evaluate a Postfix expression.					
	24. Write a program to convert an Infix expression into its equivalent Postfix					
	expression. 25. Write a program to implement the <i>Euclidean Algorithm</i> for finding the Greatest					
	Common Divisor (GCD) of two given positive integers.					
Lab 7	Mid Term Examination					
Lab 8	26. Write a program to show the insert and delete operations of a circular queue.					
	27. Write a program to show the insert and delete operations of a priority queue.					
	28. Write a program to calculate the Factorial of a number using recursive and non-recursive method					
	29. Write a program to find the nth term F _n of the Fibonacci sequence using					
	recursive and non-recursive method.					
	30. Write a program to move n disks for Tower of Hanoi problem.					
Lab 9	31. Write a program to create a Linked List of n elements and then display the list.					
	32. Write a program to create a Linked List of n elements and then search an element from the list.					
	33. Write a program to create a Linked List of n elements and then insert an					
	element to the list.					
	34. Write a program to create a Linked List of n elements and then delete an					
	element from the list.					
	35. Write a program to create a Circular Header Linked List of n elements and then					
	display the list.					
	36. Write a program to create a Two way Linked List of n elements and then					
	display the list.					
Lab 10	37. Write a program to sort n numbers using Insertion Sort algorithm.					
	38. Write a program to sort n numbers using Selection Sort algorithm.					
	39. Write a program to sort n numbers using Quick Sort algorithm.					
	40. Write a program to sort n numbers using Merge sort algorithm.					
Lab 11	41. Write a program to create a Binary Search Tree of n elements and then display the elements (preorder, inorder and postorder) of the tree.					
	42. Write a program to create a Binary Search Tree of n elements and then search an element from the tree.					
	43. Write a program to create a Binary Search Tree of n elements and then delete					
	an element from the tree.					
	44. Write a program to create a Maxheap of n elements and then display the					
	elements of the heap.					
	45. Write a program to create a Maxheap of n elements and then delete an element					
	from the heap.					
	46. Write a program to sort n numbers using Heap sort algorithm.					
Lab 12	47. Write a program to display the adjacency matrix of a graph.					
	48. Write a program to display the adjacency list of a graph.					
	49. Write a program to traverse a graph using Breadth First Search.					
	50. Write a program to traverse a graph using Depth First Search.					
Lab 13	51. Write a program to find the 100!					
	52. Write a program to determine the value of the n th Fibonacci number F_n where					
	$Fn = F_{n-1} + F_{n-2}$ and $F_1 = F_2 = 1$ and $n \le 500$.					
Lab 14	Review class					