Algorísmia

Lliurament: Resolució del problema 77.

Data: Setmana del 02/06, 2015-2016 Q2.

Nom: Ricard Meyerhofer Parra.

77. La firma Doctors on Call té que resoldre el seüent problema. Per a cadascun dels pròxims n dies, la firma ha determinat el nombre de doctors disponibles que requereix. Així al dia i-èsim, necessiten exactament p_i doctors. Hi han k doctors en total, i cadascú d'ells ha donat una llista amb els dies en que està disposat a treballar. Així el doctor j proporciona un conjunt L_j de dies. Doctors on Call vol, a partir d'aquesta informació, un procediment que permeti tornar a cada doctor j una llista definitiva de dies L'_j amb les propietats següents: (1) el conjunto $\Delta_j = L'_j \setminus L_j$ té com a molt c dies; i (2) quan es considera tot el conjunto de listas L'_1, \ldots, L'_k , per a cada dia $1 \le i \le n$, hi han exactament p_i doctors que tenen el dia i a la seva llista definitiva. El paràmetre c reflecteix la tolerància de l'assignació i pot variar segons las circumstancies. Per suposat, si tal solució no es possible, el sistema ha de (correctament) informar de que aquest és el cas.

Resolución del problema

El problema a resolver hace lo siguiente:

- Construimos un grafo G con toda la información de los diversos médicos, donde por un lado tenemos el origen conectado a todos los médicos (con peso ∞) y por el otro tenemos a los días laborales conectados al destino (con peso p_i).
- Las conexiones entre médicos y días se hacen dadas las listas:
 - L días en los que quiere trabajar, el cual tiene un peso de ∞ . Esta lista se relaciona con los días mediante arcos de peso 1 que indican a qué día se asignan.
 - M el cual hace referencia a los días que el médico no prefiere pero tendrá que trabajar el cual tiene un peso c que es la tolerancia de la asignación.
 Esta lista se relaciona con los días mediante arcos de peso 1 que indican a qué día se asignan.
- ¿Cómo sabemos que nuestro algoritmo será correcto y tiene solución?
 - El problema sabemos que tiene solución si maxflow(N) = Σp_i .
 - Si se cumple la ley de conservación de flujo donde, la capacidad de salida tiene que ser igual a la suma de la capacidad de las salidas, tendremos que los días tienen exactamente p_i doctores y que en ningún caso por lo tanto los L y M correspondientes a cada doctor no exceden la la capacidad (en el caso de M) y L en el caso de los días que quiere trabajar el doctor.
- Para resolver este problema, aplicamos a G un algoritmo de flujo máximo tal que nos generará un grafo residual G', esto se podría hacer con distintos algoritmos como Edmonds Karp, Ford-Fulkerson, Dinics...(donde depende del tipo de red será mejor uno u otro). Como tenemos un grafo definido, podemos saber qué algoritmo nos irá mejor:
 - Sabemos que |V| = 3k + n y |E| = 3k + kn + n y v|f*| es $\sum_{i=1}^{n} p_i \le kn$.

- Como el coste de Edmonds Karp es $\Theta(\left|E^2\right|V)$. y el de Ford-Fulkerson es $\Theta(v|f*(|E|+|V|))$, podemos ver que Ford-Fulkerson tiene un mejor coste $\Theta(k^2n^2)$. Por lo tanto escogeremos este segundo para la resolución de nuestro problema.