Introduction to Algebra - Lecture Notes

by Toby Chen - Mathematics at Queen Mary's University of London February 26, 2024

Contents

1 Week Three				1
	1.1	Lectur	re One	1
	1.2	Lectur	re Two	1
		1.2.1	Introduction	1
		1.2.2	Last Monday	2
		1.2.3	Definition	2
		1.2.4	Exercise	2
		1.2.5	Exercise	2
		1.2.6	Theorem 12	2
		1.2.7	Example	3
2	23/	02/202	24	5
-			· ··	ç
	2.2	Rings		
		0	Definition of a Ring	
9	Cno	NIP.G		
J	Gro	oups		1
4	26/	02/202	24	4
	4.1	Last V	Veeks Recap	4
		4.1.1	Definition	
	4.2	New C	Content	
		4.2.1	Proposition 15	
		4.2.2	Proposition 16	
		4.2.3	Definition	
		4.2.4	Theorem 17	11.
		4.2.5	Definition	ć
		426	Definition	r

1 Week Three

1.1 Lecture One

1.2 Lecture Two

1.2.1 Introduction

Example of Modular Arithmetic, choose an integer n=11, such that $12 \equiv 1 \mod n$, and equally the following statement is true, $3 \equiv 25 \mod n$. Lets check the results. $12 \equiv 1 \mod n$ is true because 1-12=(-11), which is divisible by 11. We can also check $3 \equiv 25 \mod n$, and this is true because 25-3=22 which is divisible by n=11.

We can use the counter example of $4 \equiv 25 \mod n$, which is **not** true because 25 - 4 = 21, which is not divisible by n = 11.

We should recall that we have proved that \equiv on \mathbb{Z} is in fact an equivalence relation, i.e., $\equiv = \mathcal{R}$. Recall that an equivalence relation \mathcal{R} on \mathcal{S} can produce equivalence classes $[a]_{\mathcal{R}}$, such that $a \in \{b \in \mathcal{S} : a\mathcal{R}b\}$.

Example of Equiv Classes, let n = 11, therefore $[3]_{11} = \{b \in \mathbb{Z} : 3 \equiv b \mod 11\}$ which produces $\{3+11k : k \in \mathbb{Z}\}$. This is an **equivalence class**.

1.2.2 Last Monday

We defined addition, subtraction and multiplication on the set \mathbb{Z}_n of equivalence classes $[a]_n$, i.e., $[a] + [b] \equiv [a+b]$, and similarly [a][b] = [ab]. Note that $[a] + [b] \neq [a] \cup [b]$. Also note that we cant define division in the same sense, that being that we cant state that $\frac{[a]}{[b]}$ does not exist.

Recall that $a, b \in \mathbb{Z}$ such that $a \mid b \in \mathbb{Z}$. If $\exists c \in \mathbb{Z} : b = ac$, we can see that $c = \frac{a}{b}$.

1.2.3 Definition

Let $[a] \in \mathbb{Z}_n$. If there exists an integer $b \in \mathbb{Z}$, such that [a][b] = [ab] = [1], then we call this equivalence class [b] the multiplicative inverse of [a]. note, [b] plays a role of $\frac{[1]}{[b]}$.

Example, take n = 5. What is the multiplicative inverse of $[2]_5 \in \mathbb{Z}_5$? We need to find $b \in \mathbb{Z}$: [2][b] = [1]. Therefore, since $\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}$, we will solve this via trial and error. Try [b] = [1], therefore $[2][1] = [2] \neq [1]$, hence its not [1]. Try [b] = [3] such that [2][3] = [6] = [1]. So [3] is the multiplicative inverse of [2].

1.2.4 Exercise

Let n = 6, what is the multiplicative inverse of [-1]?

My attempt, we will try trial and error. Try [b] = 1, ...

Answer, Try [-1] such that [-1][-1] = [1], and so [-1] is the multiplicative inverse of $[-1]_6$.

1.2.5 Exercise

What is the multiplicative inverse of $[2]_6$ in \mathbb{Z}_6 ?

Answer, No multiplicative inverse. Why? If it did there would be $b \in \mathbb{Z}$: [2][b] = [1], however we know that, $[2b] \equiv [1] \mod 6$. But, given $r \equiv s \mod n \iff [r] \equiv [s]$, we can say that,

$$\implies 2b \equiv 1 \mod 6,$$

 $\implies 6 \mid 2b - 1,$
 $\implies 6 \mod \mid 2b - 1 \text{ becuase contradiction.}$

1.2.6 Theorem 12

The equivalence class $[a] \in \mathbb{Z}_n$ has a multiplicative inverse iff $\gcd(a, n) = 1$.

Proof of Theorem 12, "Lets prove the if part of the "statement", i.e., if gcd(a, n) = 1, then [a] has a multiplicative inverse in \mathbb{Z}_n . And Since gcd(a, n) = 1, it follows from Bezouts identity that $\exists b, c \in \mathbb{Z} : ab + nc = gcd(a, n) = 1$.

$$\implies 1 \equiv ab \mod n$$
.

This is because ab - 1 = nc, and therefore is divisible by n.

$$\implies [1] = [ab] = [a][b].$$

$$Q.E.D.$$

1.2.7 Example

let n = 2023. What is the multiplicative inverse of $[23]_2023 \in \mathbb{Z}_2023$? One should notice that we simply cant just use a trial and error method here as there are too many possibilities to try. How might we go about this (use theorem 12)?

Solution, we need to work out $r, s \in \mathbb{Z}$: $2023r + 23r = \gcd(2023, 23)$. Therefore we use Euclid's algorithm,

$$2023 = 23 \times 87 = 22,$$

 $23 = 22 + 1$: $gcd(2023, 22) = 1.$

We can now work "back up",

$$1 = 23 - 1 \times 22,$$

= 23 - 1 \times (2023 - 23 \times 88),
$$88 \times 23 + (-1) \times 2023.$$

So [88] is the multiplicative inverse in \mathbb{Z}_2 023.

$2 \quad 23/02/2024$

2.1 Recall

Last week (not here) we defined a group, **Def**: A group (G,), is a set G with operation, satisfying (G_0) if $a,b \in G, ab \in G$, and if (G_1) if $a,b,c \in G, a(bc) = (ab) * c$, and if (G_3) if for every element $a \in G \exists b \in G : ab = b \times a = e...$

!!!REVISE GROUPS!!!

2.2 Rings

2.2.1 Definition of a Ring

A ring is a set R, which comes equipped with two operations, + and \times (these may not be addition and multiplication as we known). These satisfy conditions,

- 1. (R+0) if $a,b \in R$, then $a+b \in R$.
- 2. (R+1) if $a,b,c \in R$, then a+(b+c)=(a+b)+c which is in R.
- 3. (R+2) if there is a element a and 0, "zero", in R, satisfying the condition $a+0=0+a=a \ \forall R$.
- 4. (R+3) if for every element $a \in R$, there exists $b \in R$: a+b=b+a=0.
- 5. (R+4) if $\forall a, b \in R, a+b=b+a$.
- 6. $(R \times 0)$ if $\forall a, b \in R, a \times b \in R$, i.e., its a closed group(?).
- 7. $(R \times 1)$ if $a, b, c \in R : a \times (b \times c) = (a \times b) \times c$.
- 8. $(R \times +)$ if $a, b, c \in R$, then $a \times (b + c) = a \times b + a \times c$.
- 9. $(R + \times)$ if $a, b, c \in R$, then $(b + c) \times a = b \times a + c \times a$.

Remarks:

1. Note that $a \times (b+c)$ is not necessarily then same as $(b+c) \times a$.

- 2. By (R+0) (R+4), (G,) = (R, +), i.e., a ring is a group.
- 3. We write ab for $a \times b$.
- 4. A ring $(R, +, \times)$, is said to be a commutative ring if $\forall a, b \in R, ab = ba$.

Lets consider some example, 0 is the identity element with respect to +, and so needs to be in a ring R. Therefore the smallest ring we know is,

$$0 = \begin{cases} 0 + 0 = 0, \\ 0 \times 0 = 0. \end{cases}$$

This is the smallest possible ring, simply because there is only one element, and this is a requirement for a ring. Secondly consider $\mathbb{Z}, +, \times$. This is a ring.

Now consider $\mathbb{C}[x]$, to be the set of polynomials in one variable x, with coefficients in \mathbb{C} ,

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c, c_i \in \mathbb{C}.$$

Note that all of the above are commutative, the following is not. The set $M_2(\mathbb{C})$ of 2- by- 2 matrices with entries in \mathbb{C} is a ring, i.e.,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}, a, b, c, d \in \mathbb{C}$$

This defines addition for a 2- by- 2 matrix. Multiplication is given by,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}, a, b, c, d \in \mathbb{C}$$

This $M_2(R)$ is not commutative, $A, B \in M_2(R)$ because ???.

Let (G,) be an abelian group by $(\mathbb{Z},+)$, $(M_2(R),+)$. Define + to be. Define,

$$\times = \begin{cases} \forall \ a, b \in G, \\ a \times b = e. \end{cases}$$

where e is the identity element in (G,).

For $\sqrt{-1} = i$, we can have $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}.$

3 Groups

We will now look at groups and look at their properties. We can now see two motivations for the group

$4 \quad 26/02/2024$

4.1 Last Weeks Recap

A ring is a is a set R with +, \times where R_0 if $a, b \in R$ then $a+b \in R$. R_1 if $a, b, c \in R : a+(b+c)=(a+b)+c$. R_2 if $\exists \ 0 \in R : 0+a=a+0=a$. R_3 if $\forall \ a \in R \ \exists \ b \in Ra+b=b+a=0$. R_4 if $a, b \in R : a+b=b+a$. Note that R_0 to R_4 is an abelian group. A ring be definition is an abelian group. This also refers to +. $R_{0\times}$ if $a, b \in R : a\times b=ab \in R$. $R_{1\times}$ if $a, b, c \in R : a\times(b\times c)=(a\times b)\times c$. $R_{\times+}$ if $a, b, c \in R : a\times(b+c)=a\times b+a\times c$. The reverse is also a condition.

Remarks:

1. (R, \times) is not a group. This is because there is no identity element with respect to \times . Note that there is also no inverse.

4.1.1 Definition

 $\forall a, b \in R : ab = ba$, then therefore R is commutative, this is known as a abelian group.

example, $\{0\}$ with addition is 0+0=0 and with multiplication $0\times 0=0$.

example, $(\mathbb{Z}, +, \times)$ is a commutative ring.

example,
$$(\mathbb{Z}_n, +, \times) = \{[0], [1], [2], \dots, [n-1]_n\}.$$

example, If (G,) is an abelian group then $(G, , \times)$ is a ring where $\forall a, b \in G : a \times b = e, e$ is the identity element of G. We can now look at $R_{\times +}$ to see that $a \times (b + c) = a \times b + a \times c$. The LHS gives $a \times (b + c) = e$, therefore $a \times b = e$ and $a \times c = e$, tje identity element. Therefore we have $a \times b + a \times c = e \times e = e$. This is because G, is a group.

$$\begin{split} & \textit{Example}, \text{ If } \mathbb{Z}[i] := \{a+bi: a,b \in \mathbb{Z}\}. \\ & \textit{Example}, \text{ If } M_2[\mathbb{R}] := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a,b,c,d \in \mathbb{R} \right\}. \end{split}$$

Example, the set of all functions from $\mathbb{R} \to \mathbb{R}$ defines a ring. Take for example $f, g : \mathbb{R} \to \mathbb{R} : (f + g) : \mathbb{R} \to \mathbb{R}$, where $x \mapsto f(x) + g(x)$, and also $x \mapsto f(x)g(x)$.

4.2 New Content

Recall that (R, +) is an abelian group.

4.2.1 Proposition 15

Let $(R, +, \times)$ be a ring. The zero element with respect to + is unique. Also, any element in R has a unique inverse with respect to +, i.e., $a \in R$, $\exists ! b \in R : a + b = b + a = 0$. Lastly if a + b = a + c then b = c.

4.2.2 Proposition 16

For every element $a \in R$ we have $a \times 0 = 0 \times a = 0$.

Proof, $\exists \ 0 \in \mathbb{R} : a+0=0+a=a$. Therefore let a=0, therefore 0+0=0. multiply both sides by $a \in \mathbb{R} : 0a+0a=0a \implies a(0+0=0a) \implies a(0+0)=a0+0$. We can now deduce that a0+a0=a0+0, and using Proposition 15 say a0=0.

4.2.3 Definition

Let $(R, +, \times)$ be a ring. If R has an element 1: $a \times 1 = 1 \times a = a \ \forall \ a \in R$, then we say that R is a ring with an identity element. This is known as the multiplicative identity. Note that the additive identity is 0. Some rings may include $(\mathbb{Z}, +, \times), (\mathbb{R}, +, \times), (\mathbb{Q}, +, \times)$. {0} is a ring with the identity 0, because it is defined that $0 \times 0 = 0$.

If R is a ring with identity, then $M_2(\mathbb{R})$ of 2-2 matrices with entires in R is a ring with identity,

$$\left(\begin{array}{cc} 1_R & 0 \\ 0 & 1_R \end{array}\right).$$

4.2.4 Theorem 17

 $\mathbb{Z}_n := \text{the set of equivalence classes } [a]_n \text{ with respect to } \equiv \mod(n), \text{ is a commutative ring with the identity } [1].$ This is because [1][a] = [1a] = [a] and that [a][1] = [a1] = [a].

Some rings indeed have no identities, i.e., $2\mathbb{Z}=\{2z:z\in\mathbb{Z}\}$ of even integers. This is because 1 is not even. Another example is consider $R=\{f:\mathbb{R}\to\mathbb{R}:\int_0^\infty f(x)dx<\infty\}$. This is a ring without identity because for $\mathbb{R}\to\mathbb{R}:x\mapsto 1$, this giving $\int_0^\infty 1dx=\infty$.

4.2.5 Definition

Let $(R, +, \times)$ be a ring with identity. An element $a \in R$ is called a unit if $\exists b \in R : ab = ba = 1$. In other words {units in R} = {elements in R with multiplicative inverse}.

4.2.6 Definition

Let R^x denote a set of units in $(R, +, \times)$ with identity.