1

Challenge Problem

Priya Bhatia

 $c_n = 0.$

Abstract—This document show that Orthogonal vectors are linearly independent

Download latex-tikz codes from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ ChallengeProblem

1 Problem

Show that the set of Orthogonal vectors is Linear independent.

2 Proof

$$c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_n \mathbf{v_n} = 0$$
 (2.0.1)

We have to show that in (2.0.1), $c_1 = 0$, $c_2 = 0$ and so on upto $c_n = 0$. We begin by taking only two orthogonal vectors say $\mathbf{v_1}$ and $\mathbf{v_2}$ are the two orthogonal vectors.

And we know that $\mathbf{v_1}$ and $\mathbf{v_2}$ are Linearly Independent if and only if the value of $c_1 = 0$, $c_2 = 0$ in below equation:

$$c_1 \mathbf{v_1} + c_2 \mathbf{v_2} = 0 \tag{2.0.2}$$

To prove this, we can take the dot product of v_1 on both side in v_1

$$c_1 \mathbf{v_1} \mathbf{v_1} + c_2 \mathbf{v_1} \mathbf{v_2} = 0 \tag{2.0.3}$$

Now as $\mathbf{v_1}$ and $\mathbf{v_2}$ are orthogonal vectors so dot product $\mathbf{v_1}$ and $\mathbf{v_2}$ is 0. Therefore we get from (2.0.3)

$$c_1 \mathbf{v_1} \mathbf{v_1} = 0 \tag{2.0.4}$$

Now $\mathbf{v_1}$ cannot be zero as $\mathbf{v_1}$ is from a set of non-zero orthogonal vectors. Therefore we get $c_1 = 0$, from (2.0.4). And similarly we can proof that the value of $c_2 = 0$, by taking dot product of vector $\mathbf{v_2}$ in equation (2.0.2)

Thus, orthogonal vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ satisfy the condition of linear independence.

Similarly, we can proof that if $\mathbf{v_1}$, $\mathbf{v_2}$ upto $\mathbf{v_n}$ are Orthogonal vectors that forms an equation (2.0.1). Then, the value of $c_1 = 0$, $c_2 = 0$ and so on upto