「次世代AI人材育成訓練プログラム」研修講座 ビジネスへの応用(2)

ワークショップ

ワークショップ | AI活用アイデアの検討

ワークショップ

A I 活用アイデアの実現に向けて各自検討

- 「AI活用アイデア」を実現するために各自で検討
 - 以下の観点で検討
 - AI活用の目的の確認
 - データ、手法
 - 評価基準

グループで実現性を検討

- 各自自己紹介、検討したアイデアを共有
- 「AI活用アイデア」のプロジェクト化を想定し、 グループ内で「AI活用アイデア」を決める。
- プロジェクト化における課題を議論・共有

• 発表 + 質疑応答

AI活用プロジェクトの実現性を検討する

プロジェクト名

・ AI手法の目的

- AIの入出力を意識し、何のためにAIを使うか具体化する。
- 目標が複合的、抽象的である場合は、具体化する。

使用するデータ

- データの種類
- データの項目、粒度、性質

・ データ入手・整備方法

- どのように入手できるか?量は?
- どのような前処理が必要か?

使用するAI手法

目的・使用データをふまえて選択

評価基準

- 充たすべき精度
- ・コスト
 - 計算リソース、データ収集、人的コスト

運用

- ・メンテナンス
 - モデルの更新の必要性、周期
 - データ収集の継続性
- ・ 例外・異常出力への対応

農業×AI

~「Bee Sensing」広島県廿日市市~

■「蜜蜂の健康管理を効率化」

- ・蜜蜂の巣箱をIoT化し、温度や湿度をスマートデバイス上で確認可能。
- ・各データと蜜蜂の作業効率をAI(人工知能)が学習。
 - →従来熟練の技が必須であり、かつ非常に負担の重たい作業であった蜜蜂の 健康管理が効率化

Bee Sensingで解決!

仮想AIプロジェクト | Bee Sensing

業務課題・現状

- ・蜂蜜の生産量が安定しない(重要性 大)
- 熟練者しかできない(属人的)

・ AI導入の目的

- 蜂蜜生産量の安定化
- アルバイトでもできるようにする(人件費)

システムの使用者

養蜂家(管理者)

・ システムの機能・使用するAI手法

- IoTセンサー(温度、湿度)
- 機械学習(回帰)

必要となるデータ

- 巣箱の温度、湿度
- 蜂蜜の生産量
- ・ 蜜蜂の数、天気、気温、…

期待される効果

- 巣箱の数を増やす
- 効率的な巣箱設定(形状、蜜蜂の数)

仮想AIプロジェクト | Bee Sensing

・ AI手法の目的

巣箱の温度・湿度等からの蜂蜜生産量の回帰

使用するデータ/入手・整備

- 巣箱の温度、湿度
 - 分単位
 - IoTセンサー利用
- 蜂蜜の生産量
 - 年数回、巣箱単位
 - 採蜜時確認
- 天気、気温
 - 時間単位
 - 外部の天気データ、気温は計測可能

・ 使用するAI手法

• 回帰

評価基準

- 量よりも最大になる条件が重要
 - | 厳密にコントロールは難しい
 - 数度の範囲で検討
- ミツバチの安全
- ・コスト
 - センサーの設置、

運用

- 外部環境の変化に応じて更新
- 出力時に専門家による確認