Теометрия в компьютерных приложениях

Лекция 2: Геометрия пространственных кривых

Богачев Николай Владимирович

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applications

28 августа 2017 г.

3. Геометрия пространственных

КРИВЫХ

3.1. Касательная, нормальная плоскость, кривизна

Теперь мы рассматриваем кривые $\gamma(t)=(x(t),y(t),z(t))\subset\mathbb{R}^3.$

Определение

Гладкой регулярной пространственной кривой называется гладкое отображение $\gamma=\gamma(t)$ отрезка в трехмерное пространство, причем вектор скорости $\gamma'(t)\neq 0$.

Определение

Пусть t_1 , t_2 – две точки на кривой $\gamma(t)$, $t_1 < t_2$. Длиной дуги кривой, заключенной между точками t_1 и t_2 , называется число

$$L(\gamma) = \int_{t_1}^{t_2} |\gamma'(t)| dt = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt.$$

Натуральный параметр s определяется аналогично плоскости:

$$s(t) = \int_{t_0}^t |\gamma'(\tau)| d\tau$$

Определение

Нормальная плоскость к кривой – плоскость, перпендикулярная касательной.

Определение

Кривизна пространственной кривой: $k(s) = |\ddot{\gamma}(s)|$.

Теорема-задача

Доказать аналогичную теорему про соприкасающуюся с данной кривой в точке s_0 окружность: ее центр лежит в направлении вектора $\ddot{\gamma}(s_0)$, а радиус равен $1/|k(s_0)|$.

3.2. Кручение и формулы Френе.

Изучим кривую в точках, где $\ddot{\gamma}(s) \neq 0$. Единичный вектор скорости: $\nu(s) = \dot{\gamma}(s)$

Определение

Вектор главной нормали: $n(s) = \frac{\ddot{\gamma}(s)}{k(s)}$.

Определение

Вектор b(s) = [v(s), n(s)] – вектор бинормали к кривой.

Определение

Ортонормированная тройка векторов $\{v(s), n(s), b(s)\} \in \mathbb{R}^3$ – репер Френе.

ТЕОРЕМА

Имеют место формулы Френе:

$$\begin{pmatrix} \dot{v}(s) \\ \dot{n}(s) \\ \dot{b}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{pmatrix} \begin{pmatrix} v(s) \\ n(s) \\ b(s) \end{pmatrix},$$

где au(s) — гладкая функция во всех точках ненулевой кривизны, называемая кручением.

Доказательство.

- ullet Пусть $Q(s)=(v(s),n(s),b(s))^T\in \mathit{Mat}_{3 imes3}(\mathbb{R}).$ Ясно, что $Q(s)Q(s)^T=E$
- ullet Отсюда $\dot{Q}(s)Q(s)^T=-Q(s)^T\dot{Q}(s)$, то есть $A(s)=\dot{Q}(s)Q(s)^T-$ кососимметрическая матрица.
- Так как $\dot{v}(s) = k(s)n(s)$, откуда следует, что первая строка матрицы A(s) имеет вид (0,k(s),0).

3.3. Вычисление кривизны и кручения. Восстановление кривой.

Теорема

Пусть кривая $\gamma(t)$ задана произвольным параметром. Тогда

$$k(t) = \frac{|[\gamma'(t), \gamma''(t)]|}{|\gamma'(t)|^3}, \quad \tau(t) = -\frac{\langle \gamma'(t), \gamma''(t), \gamma'''(t) \rangle}{|[\gamma'(t), \gamma''(t)]|^2}.$$

Теорема

Пусть кривая k(s)>0 и au(s) — гладкие функции. Тогда существует единственная с точностью до изометрии кривая $\gamma(s)\subset\mathbb{R}^3$, для которой эти функции являются кривизной и кручением соответственно.

4. Геометрия поверхностей в \mathbb{R}^n

4.1. Задание поверхности. Координаты.

Определение

Гладкой регулярной п-мерной поверхностью в \mathbb{R}^N называется такое гладкое отображение $r\colon U \to \mathbb{R}^N$, где U – некоторая открытая область в \mathbb{R}^n с координатами (u_1,\ldots,u_n) , причем во всех точках канонические (или базисные) векторы $e_1=\frac{\partial r}{\partial u_1},\ldots,e_n=\frac{\partial r}{\partial u_n}$ – линейно независимы.

Обозн.: $M = r(U) = r(u_1, \dots, u_n) = (r_1(u_1, \dots, u_n), \dots, r_N(u_1, \dots, u_n)) \subset \mathbb{R}^N$. Последнее условие можно переформулировать так: ранг матрицы Якоби

$$J(r(u)) = \begin{pmatrix} \frac{\partial r_1}{\partial u_1} & \cdots & \frac{\partial r_N}{\partial u_1} \\ \cdots & \cdots & \cdots \\ \frac{\partial r_1}{\partial u_n} & \cdots & \frac{\partial r_N}{\partial u_n} \end{pmatrix}$$

максимален и равен n.

4.2. Кривые на поверхности. Касательное пространство.

Определение

Гладкой кривой на поверхности M называется гладкое отображение $r \circ \gamma \colon I \to M$ отрезка в поверхность, $t \mapsto (r_1(\gamma_1(t), \ldots, \gamma_n(t)), \ldots, r_N(\gamma_1(t), \ldots, \gamma_n(t))).$

Пусть P – фиксированная точки поверхности с координатам.

Определение

Касательным пространством T_PM к многообразию M в т. P называется пространство, состоящее из касательных векторов к кривым на M, проходящим через точку P, где касательные векторы откладываются от точки P.

Теорема

$$T_P M = \langle e_1(P), \dots, e_n(P) \rangle$$
, то есть dim $T_P M = n$.

ДОКАЗАТЕЛЬСТВО. Пусть $r(\gamma(t))$ – кривая, проходящая при t=0 через точку P. Ее вектор скорости имеет вид:

$$v(0) = \sum_{j=1}^n \frac{\partial r}{\partial \gamma_j} \Big|_P \gamma_j'(0) = \sum_{j=1}^n \gamma_j'(0) \cdot e_j(P) \in \langle e_1(P), \dots, e_n(P) \rangle.$$

Обратно, всякая линейная комбинация векторов $e_1(P), \ldots, e_n(P)$ соответствует вектору скорости какой-то кривой.

Заметим, что при замене координат на поверхности матрица Якоби в точке P будет служить матрицей перехода между каноническими базисами.

4.3. Триангуляции поверхностей. Полигональные сетки.

Определение

 Γ раф (V, E), множество вершин V которого лежит на поверхности, называется ее полигональной сеткой.

Список литературы

- [1] Иванов, Тужилин
- [2] Иванов, Тужилин
- [3] Фоменко
- [4] Тайманов