

เลขที่นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ข้อสอบกลางภาคการศึกษาที่ 1/2561

วันศุกร์ที่ 5 ตุลาคม 2561	เวลา	13.00 -16.00 น
วิชา CPE 223 Digital Electronics and Logic Design	น.ศ.	วศ.คอมพิวเตอ

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 8 ข้อ จำนวน 10 แผ่น (รวมแผ่นนี้) คะแนนรวม 30 คะแนน
- 2. ให้นักศึกษาทำข้อสอบทุกข้อลงในช่องว่างที่เดรียมไว้ให้ ในตัวข้อสอบชุดนี้
- 3. <u>ไม่อนุญาต</u>ให้ใช้เครื่องคำนวณ
- 4. <u>ไม่อนุญาต</u>ให้นำเอกสารใดๆ เข้าห้องสอบ
- 5. เขียนชื่อ และ รหัสประจำตัว ลงในปกหน้าฉบับนี้

ผศ.สนั่น สระแก้ว ผู้ออกข้อสอบ 0-2470-9083

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศากรรมคอมพิวเตอร์แล้ว

รศ.ดร.พีรพล ศิริพงศ์วุฒิกร ประชานหลักสูตร

ข้อ	1	2	3	4	5	6	7	8	มาม
คะแนนเด็ม	3	2	3	4	4	4	6	4	30
คะแนนที่ได้									

4	• 1 a •
ฑิก	รหัสประจำตัว

Use 16-bit 2's complement binary to represent the following decimal numbers: (3 points)
a) 14,320

b) -12,035

c) 0.12

2.	Perform binary additions or subtractions and de	etermine whether the overflow occurs.
		(2 points

a) 1001 1011 + 1011 0110 b) 0110 1010 -1010 1111

c) 1000 0001 -1011 0110 d) 0110 1010 + 0100 0101

- 3. Simplify the following Boolean functions:
 - a) $F(A,B,C,D) = \Sigma (0,1,4,5,12,13)$

(3 points)

b) $F(W,X,Y,Z) = \Sigma (1,7,11,13) + d(0,5,10,15)$

c) F(A,B,C,D) = ABC + BCD + ACD + ABD

4. Given the following function in sum of products form

(4 points)

$$F(A,B,C,D) = \overline{AB}C + AD + AC$$

a) Determine \overline{F} in minimized sum of products form.

b) Implement \bar{F} using NAND gates only.

5. Implement the following Boolean function using two 4-to-1 multiplexers.

(4 points)

 $F(A,B,C,D) = \Sigma (2,4,6,9,10,11,15)$

6. A combinational circuit is specified by the following three Boolean functions:

$$F_1(A,B,C) = \Sigma (0,3,4)$$

$$F_2(A,B,C) = \Sigma (1,2,7)$$

$$F_3(A,B,C) = \Pi(0,1,2,4)$$

Implement the circuit with two 2-to-4 decoders.

(4 points)

7. Given the circuit shown below(Assume flip-flops are initially in reset state): (6 points)

a) Determine the output (y) waveform

b) Sketch the state diagram

8. Given the circuit below(Similar to the one in the Laboratory section):

Specify the ROM contents so that the dot-matrix displays the letter "B" as shown:

(4 points)

Address (in binary)	ROM contents (in binary)
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	

Supplemental

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4. associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Table 5.1 Flip-Flop Characteristic Tables

JK 1	JK Flip-Flop					
j	K	Q(t+1)				
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
i	l	Q'(t)	Complement			

D Flip-Flop

D	Q(t+1)	
0	0	Reset
ì	i	Set

T Flip-Flop

T	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement