Les automates à états finis

DR Abdelmoghit Souissi

Les automates déterministes (DFA) et non déterministes (NFA)

1- Les automates à états finis sont des reconnaisseurs; ils disent simplement "oui" ou "non" à propos de chaque chaîne à analyser.

2- Il y'a 2 types d'automates à états finis:

- Les automates à états finis non déterministes (AFN) n'ont aucune restriction sur les étiquettes de leurs arcs. Un caractère peut étiqueter plusieurs arcs partant d'un même état, et la chaîne vide ε est une étiquette possible.
- Les automates à états finis déterministes (AFD), pour lesquels, ne peuvent pas partir plusieurs transitions du même état avec le même caractère et n'acceptent pas d'e-transition

Les automates déterministes (DFA)

sont deux types d'automates finis utilisés pour reconnaître des langages réguliers dans la théorie des langages et des automates.

- 1. Un DFA est un automate fini dans lequel, pour chaque état et chaque symbole de l'alphabet, il existe exactement une transition vers un autre état ou vers le même état.
- 2. Cela signifie qu'à chaque étape de traitement d'une chaîne, il n'y a qu'une seule option à suivre, ce qui rend l'automate déterministe.
- 3. Structure: Un DFA est défini comme un quintuplet (Q,Σ,δ,q_0,F) où :Q: un ensemble fini d'états. $\Sigma:$ un alphabet fini de symboles. $\delta:$ une fonction de transition $\delta:Q\times\Sigma\to Q$, qui donne un état pour chaque couple (état, symbole).
- 4. q_0 : l'état initial, $q_0 \in Q$
- 5. F: un ensemble d'états finaux (ou acceptants), $F \subseteq Q$

Les automates non-déterministes finies (NFA)

- Un NFA est un automate fini dans lequel, pour un état donné et un symbole donné, il peut y avoir plusieurs transitions possibles ou même aucune.
- Peut avoir des transitions "epsilon" (ϵ), c'est-à-dire des transitions qui se produisent sans lire de symbole. Contrairement au DFA, où il n'y a qu'une seule option à suivre à chaque étape, un NFA peut suivre plusieurs chemins possibles simultanément.
- Structure d'un NFA :Un NFA est défini de manière similaire à un DFA, mais avec une différence importante dans la fonction de transition : δ : une fonction de transition $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$, qui donne un ensemble d'états pour chaque couple (état, symbole).
- Un NFA peut aller vers plusieurs états simultanément, ou rester dans le même état avec une transition ϵ .

Les automates non-déterministes finies (NFA)

Un AFN se compose de:

- ✓ Un seul état de début.
- ✓ Un ou plusieurs états de transitions
- ✓ Un ou plusieurs états d'acceptation a
- ✓ Un caractère peut étiqueter 2 transitions partant du même état.

Exemple (NFA)

On cherche à représenter L'AFN qui reconnait le langage défini par l'expression régulière : (a|b)* abb

Nous pouvons représenter un AFN par une table de transition, dont les lignes correspondent aux états et les colonnes aux symboles d'entrée et à ϵ .

Symbole/E tat	а	b	ε
0	{0,1}	{0}	-
1	-	{2}	-
2	-	{3}	-
3	-	-	-

Automates à états finis déterministes (AFD):

Un AFD est un cas particulier d'un AFN où:

- Pas plus d'un arc avec le même symbole sortant du même état.
- Un AFN est une représentation abstraite d'un algorithme de reconnaissance des chaînes d'un langage.
- Un AFD est un algorithme concret de reconnaissance de chaînes.
- Remarque: Toute expression régulière et tout AFN peuvent être convertis en un AFD.

Exemple (AFD):

L'AFD qui reconnait le langage défini par l'expression régulière : (a|b)* abb

- Exemples de chaines valides: "abb", "aaabb", "bbababb", "abbaabb", "abbbbabb"
- Exemples de chaines non valides: "ab", "abab", "abba"

Exercice (AFD):

Exemple 2: L'automate à états finis déterministe d'un commentaire avec le langage C exemple: /* comment */

Exemple 3: L'automate à états finis déterministe d'un commentaire avec le langage C++ exemple: // comment

Solution exercice (AFD):

Exemple 2: L'automate à états finis déterministe d'un commentaire avec le langage C exemple: /* comment */ ^/*[\s\S]*?*/\$

Exemple 3: L'automate à états finis déterministe d'un commentaire avec le langage C++ exemple: // comment

Solution exercice (AFD):

Exemple 4: L'automate à états finis déterministe des 2 commentaires groupés.

Définition d'un grammaire régulier

Une grammaire est régulière si toutes ses productions vérifient une des 2 formes:

 $\begin{array}{cccc} A & \longrightarrow & a & B \\ ou & & & \\ A & \longrightarrow & a \end{array}$

avec:

- A et B des non-terminaux
- a un terminal ou une chaîne vide ε
- Ces grammaires régulières sont appelées des grammaires linéaires droites.

Définition d'un grammaire régulier

Par analogie, il est possible de définir des grammaires linéaires gauches:

Remarque:

Les grammaires régulières sont une sous-classe des grammaires hors contextes. Elles permettent de décrire les langages réguliers.

Définition d'un grammaire régulier

Correspondance entre une grammaire régulière et un automate:

Nous pouvons faire la correspondance entre un automate et une grammaire régulière de la manière suivante:

- Chaque état de l'automate correspond à un non terminal de la grammaire.
- Chaque transition correspond à une production de la grammaire.
- L'état initial de l'automate correspond à l'axiome de la grammaire.
- Un état d'acceptation final correspond à la production de la chaine vide ε.

Exemple1 d'un grammaire régulier

Exemple 1: Soit l'expression régulière : (a|b)*a(a|b)*

- Donner l'automate à états finis déterministe qui accepte les mots de cette expression régulière.
- Donner une grammaire régulière équivalente.

Exemple 2 d'un grammaire régulier

Exemple 2: Soit l'expression régulière : (a|b)*ab(a|b)*

- Donner l'automate à états finis déterministe qui accepte les mots de cette expression régulière.
- Donner une grammaire régulière équivalent.

Grammaire régulière:

$$A \longrightarrow bA|aB$$

$$B \longrightarrow a B | b C$$

$$C \longrightarrow aC|bC|\epsilon$$