Appendix:

Diffusion Language-Shapelets for Semi-supervised Time-Series Classification

Zhen Liu¹, Wenbin Pei^{2,3}, Disen Lan¹, Qianli Ma^{1*}

¹School of Computer Science and Engineering, South China University of Technology, Guangzhou, China ²School of Computer Science and Technology, Dalian University of Technology, Dalian, China ³Key Laboratory of Social Computing and Cognitive Intelligence (Dalian University of Technology), Ministry of Education cszhenliu@mail.scut.edu.cn, peiwenbin@dlut.edu.cn, 202130480657@mail.scut.edu.cn, qianlima@scut.edu.cn

A Details of Datasets

The UCR time series archive (Dau et al. 2019) is widely utilized in time series classification studies (Ismail Fawaz et al. 2019; Middlehurst, Schäfer, and Bagnall 2023), which collects 128 time series datasets from various real-world scenarios like traffic, medicine, and human actions. Each UCR time series data contains a single training and testing set. However, most UCR time series datasets have a small number of samples in the training set and are even smaller than the test set. Furthermore, the original UCR dataset lacks a dedicated validation set for model training. In such a case, semi-supervised classification is performed directly on the training set of the original UCR dataset, which easily results in obtaining classification test results with a large bias. Following the suggestion given by (Dau et al. 2019; Liu et al. 2023), we initially merged the provided training and test sets for each UCR dataset. Subsequently, following (Liu et al. 2023), we restricted having an average of at least 30 samples per class within each dataset to ensure more stable classification test results. Therefore, we used 106 datasets from the original 128 UCR datasets for experimental analysis, and please refer to Table 1 for specific statistical information. Finally, we used a five-fold cross-validation method to obtain the training-validation-test set for each dataset according to the ratio of 60%-20%-20%. Notably, for UCR time series datasets containing missing values, we employed the mean imputation method for preprocessing.

Regarding the natural language descriptions associated with the 106 UCR time series datasets mentioned in Table 1, we formulated these descriptions by utilizing the original keyword information provided by the respective UCR dataset providers. To generate specific textual descriptions for each time series category, we employed a cross-validation grid search to obtain hard prompt templates tailored to each dataset.

B Details of Baselines

In this study, we have chosen baselines that encompass two main aspects: (i) semi-supervised classification methods mainly for time series data; and (ii) shapelet-based time

*Qianli Ma is the corresponding author. Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. series classification methods. Concerning the existing SSL methods mainly for time series, we have selected 10 baselines as follows:

- Supervised: We solely employ the provided labeled data to train the model for supervised classification, utilizing the cross-entropy loss.
- Pseudo-Label ¹: Lee et al. (2013) used soft labels predicted with high confidence by the classifier during training as pseudo-labels for unlabeled data for semisupervised classification.
- Temporal Ensembling ²: Laine and Aila (2016) form a consensus prediction of the unknown labels (or unlabeled data) using the outputs of the network-in-training on different epochs as a regularization strategy for semisupervised classification.
- LPDeepSSL ³: Iscen et al. (2019) employ a transductive label propagation method on the learned embeddings to obtain the pseudo-labels of unlabeled data for semi-supervised classification.
- MTL ⁴: Jawed, Grabocka, and Schmidt-Thieme (2020) introduce a forecasting task to exploit the unlabeled time series data. Especially, they established multi-task learning approaches by using forecasting as an auxiliary task for time series semi-supervised classification.
- TS-TCC ⁵: Eldele et al. (2021) design an unsupervised temporal and contextual contrastive learning loss for representation learning. Following (Liu et al. 2023), we use TS-TCC as a time series SSL baseline.
- SemiTime ⁶: Fan et al. (2021) design a temporal relation prediction loss that operates on segments from labeled and unlabeled time series, specifically on pastfuture pairs. This mechanism is used to enhance time series semi-supervised classification.
- SSSTC ⁷: Xi et al. (2022) design a temporal relation prediction loss based on the spilt "past-anchor-future" seg-

¹https://github.com/iBelieveCJM/pseudo_label-pytorch

²https://github.com/ferretj/temporal-ensembling

³https://github.com/ahmetius/LP-DeepSSL

⁴https://github.com/super-shayan/semi-super-ts-clf

⁵https://github.com/emadeldeen24/TS-TCC

⁶https://github.com/haoyfan/SemiTime

⁷https://github.com/mrxiliang/sstsc

ments from labeled and unlabeled time series, thus contributing to time series semi-supervised classification.

- MTFC⁸: Wei et al. (2023) propose a time-frequency based multi-task learning method for time series semisupervised classification. Specially, they use a forecasting task based on MTL for learning time-frequencey features from unlabeled data.
- TS-TFC ⁹: Liu et al. (2023) propose a temporal-frequency co-training framework for time series semi-supervised classification. In particular, they employ complementary information from time-domain and frequency-domain views to select high-quality pseudo-labels for unlabeled data learning.

For the shapelet-based time series classification methods, we combined them with the pseudo-labeling strategy in Diff-Shape for time series semi-supervised classification. The specific information on the above baselines is as follows:

- ST 10 : Lines et al. (2012) incorporate a shapelet transformation method to discover k best shapelets for time series classification.
- LTS ¹¹: Grabocka et al. (2014) first propose learning shapelets perspective based on a classification objective function via stochastic gradient learning for time series classification.
- FSS ¹²: Ji et al. (2019) introduce a fast shapelet selection method from original subsequences for time series classification.
- ADSN ¹³: Ma et al. (2020) propose adversarial dynamic shapelet networks to learn shapelets for time series classification.

For the above four methods, we first train them using labeled data. Then, we use the trained model to transform the training set (labeled and unlabeled data), validation set, and test set into the corresponding set of shapelets. Finally, we use the above set of shapelets to input into the same encoder and classifier as DiffShape for semi-supervised learning. The pseudo-code of our proposed DiffShape model is shown in Algorithm 1. For the reproduction source code of the above baselines and the source code of DiffShape, please refer to our GitHub: https://github.com/qianlima-lab/DiffShape.

C Details of Main Results

For specific and detailed test classification results of Diff-Shape and the 10 SSL baselines on the 106 UCR time series datasets, kindly consult Table 2 (10% labeling ratio), Table 3 (20% labeling ratio), and Table 4 (40% labeling ratio). To facilitate the presentation and reading of the test classification accuracy results, we did not provide standard deviations of test classification accuracy for each baseline in Tables 2, 3

and 4. Also, we have included the critical difference diagram comparing DiffShape with the 10 SSL baselines in Figure 1.

D Details of Comparisons with Shapelet-based TSC Methods

For specific test classification results of DiffShape and four shapelet-based time series classification methods for semi-supervised classification on 12 UCR time series datasets, kindly refer to Table 5 (10% labeling ratio), Table 6 (20% labeling ratio), and Table 7 (40% labeling ratio). To enhance the clarity and readability of the results presentation, we have omitted reporting the standard deviation of the test classification results for each baseline in Tables 5, 6 and 7.

E Details of Results on a Few Labeled Time Series

For supervised classification test results of DiffShape and 2 shapelet-based time series classification methods, as well as 6 SSL methods with only a few labeled samples on 12 UCR time series datasets, kindly refer to Table 8 (2 labeled samples per class), Table 9 (5 labeled samples per class), and Table 10 (10 labeled samples per class). To enhance the clarity and readability of the results presentation, we have omitted reporting the standard deviation of the test classification results for each baseline in Tables 8, 9 and 10.

F Details of Ablation Study

For detailed results of the test classification accuracy from the DiffShape ablation experiments on the 12 UCR datasets with a labeling ratio of 10%, please consult Table 11. Additionally, for a comparative analysis of the shapelet visualization achieved by DiffShape and LTS (Grabocka et al. 2014), ADSN (Ma et al. 2020) on the *SonyAIBORobotSurface1* dataset with a labeling ratio of 10%, please refer to Figure 2. Moreover, for t-SNE (Van der Maaten and Hinton 2008) visualization results depicting the embeddings learned by DiffShape, SemiTime (Fan et al. 2021), and TS-TFC (Liu et al. 2023) on the *UWaveGestureLibraryAll* dataset with a labeling ratio of 10%, kindly refer to Figure 3.

G Runtime Analysis

We have chosen the Trace dataset (with a total of 200 samples and a sequence length of 275) and the ChlorineConcentration dataset (with a total of 4307 samples and a sequence length of 166) for the runtime analysis of various baselines, including seven SSL methods and four shapeletbased methods. To conduct this analysis, we computed the overall runtime for semi-supervised classification using fivefold cross-validation for all baselines, employing a 10% labeling ratio. For consistency, we utilized the same encoder and classifier for semi-supervised classification in each baseline, and all baselines were trained and tested on individual NVIDIA GeForce RTX 3090 GPUs. The runtime statistics for DiffShape and the mentioned baselines are provided in Table 12. Notably, we observed that DiffShape's runtime is significantly lower compared to MTL (Jawed, Grabocka, and Schmidt-Thieme 2020), SemiTime (Fan et al. 2021),

⁸https://github.com/Chixuan-Wei/SemiSuperTSC

⁹https://github.com/qianlima-lab/TS-TFC

 $^{^{10}} https://github.com/mlpotter/Shapelet_Transform/tree/main$

¹¹https://github.com/benibaeumle/Learning-Shapelets

¹²https://github.com/benibaeumle/FSS-Algorithm

¹³https://github.com/qianlima-lab/ADSN

```
Input: Convolution layer w_f(\cdot), 1-D U-Net g(\cdot) for diffusion learning, Shapelets transformation encoder w_s(\cdot),
               Frozen Pre-trained T5 language encoder z(\cdot), Text projection head h(\cdot), Classifier w_c(\cdot), Number of
               Shapelets k, Length of a shapelet L = \eta * N, Sampling steps T, Batch size: B, Number of epochs: E_{max},
               Number of iterations: Iter_{max};
 1 Obtain all real subsequences S_{train} from the labeled set \mathcal{D}^L and the unlabeled set \mathcal{D}^U;
2 for e \leftarrow 1 to E_{max} do
        Shuffle training set S_{train};
 3
        for iter \leftarrow 1 to Iter_{max} do
 4
             Fetch real subsequences S \in \mathbf{R}^{\mathbf{B} \times \mathbf{L} \times \mathbf{J}} from shuffled S_{train};
 5
             Obtain shapelets S_0 = w_f(S), where S_0 \in \mathbf{R}^{\mathbf{B} \times \mathbf{L} \times \mathbf{k}};
 6
             Search similar real subsequences shapelets S_r via S_0 from S, where S_r \in \mathbf{R}^{\mathbf{B} \times \mathbf{L} \times \mathbf{k}};
 7
             Obtain shapelets S_t via Eq. (2) added injected noise through a forward diffusion process;
 8
             Training g(\cdot) via \mathcal{L}_{diff} through reverse diffusion process;
 9
             Obtain sampling shapelets S_0 via Eq. (8) and Eq. (9) by g(\cdot) of iteration T steps using only labeled shapelets;
10
             Obtain shapelets transformation embeddings r_s = w_s(\mathbf{S}_0, \hat{\mathbf{S}}_0);
11
             Obtain pseudo-labels of unlabeled data in S_0 via the predicted soft labels with high confidence of w_c(r_s);
12
             Construct natural language descriptions L using the labels and pseudo-labels within S<sub>0</sub>;
13
             Obtain language embeddings r_l = h(z(\mathbf{L}));
14
             Training r_s and r_l via \mathcal{L}_{lan} through contrastive language-shapelets learning;
15
             Update DiffShape (w_f(\cdot), g(\cdot), w_s(\cdot), h(\cdot)) and w_c(\cdot) model via \mathcal{L}_{total};
16
        end
17
18 end
   Output: w_f(\cdot), g(\cdot), w_s(\cdot), h(\cdot) and w_c(\cdot).
```


Figure 1: Critical Difference (CD) diagram (Demšar 2006) showing pairwise statistical difference comparison of 11 SSL methods on 106 UCR time series datasets. The CD diagram provides statistical insight into whether the differences are significant. By comparing the CD value of DiffShape with other 11 SSL methods, we find that the classification performance of DiffShape is significant compared to the other 11 methods.

Figure 2: The visualization of shapelet on the *SonyAIBORobotSurface1* dataset with a 10% labeling ratio. The test accuracy is in parentheses. (a) represents a ground truth shapelet of *walking on carpet* class. The position of shapelet learned by (b) LTS and (c) ADSN is away from the ground truth in (a), while the position of shapelet obtained by (d) DiffShape is closer to the ground truth in (a).

Figure 3: The t-SNE visualization on the *UWaveGestureLibraryAll* dataset with a 10% labeling ratio. The test accuracy is in parentheses. Comparing (a) Raw test set, (b) SemiTime and (c) TS-TFC, we find that the embeddings obtained by DiffShape are more discriminative between classes.

SSSTC (Xi et al. 2022), and MTFC (Wei et al. 2023). Additionally, DiffShape's runtime is also lower than that of the shapelet-based approaches. Furthermore, our analysis unveiled that Shapelet Transform (ST) (Lines et al. 2012), which is employed for time series classification via the identification of k best shapelets, displays a runtime that positively correlates with the sequence length of the samples. However, this correlation is not significantly observed with the total number of samples. On the contrary, the runtimes of other methods (LTS, ADSN, TS-TFC, and DiffShape) exhibit a positive correlation with the total number of samples.

ID	Name	# Total numbers	# Classes	# Length	ID	Name	# Total numbers	# Classes	# Length
1	AllGestureWiimoteX	1000	10	Vary	54	Lightning2	121	2	637
2	AllGestureWiimoteY	1000	10	Vary	55	Mallat	2400	8	1024
3	AllGestureWiimoteZ	1000	10	Vary	56	Meat	120	3	448
4	ArrowHead	211	3	251	57	MedicalImages	1141	10	99
5	BME	180	3	128	58	MelbournePedestrian	3633	10	24
6	Car	120	4	577	59	MiddlePhalanxOutlineAgeGroup	554	3	80
7	CBF	930	3	128	60	MiddlePhalanxOutlineCorrect	891	2	80
8	Chinatown	363	2	24	61	MiddlePhalanxTW	553	6	80
9	ChlorineConcentration	4307	3	166	62	MixedShapesRegularTrain	2925	5	1024
10	CinCECGTorso	1420	4	1639	63	MixedShapesSmallTrain	2525	5	1024
11	Computers	500	2	720	64	MoteStrain	1272	2	84
12	CricketX	780	12	300	65	NonInvasiveFetalECGThorax1	3765	42	750
13	CricketY	780	12	300	66	NonInvasiveFetalECGThorax2	3765	42	750
14	CricketZ	780	12	300	67	OSULeaf	442	6	427
15	Crop	24000	24	46	68	PhalangesOutlinesCorrect	2658	2	80
16	DiatomSizeReduction	322	4	345	69	Phoneme	2110	39	1024
17	DistalPhalanxOutlineAgeGroup	539	3	80	70	PLAID	1074	11	Vary
18	DistalPhalanxOutlineCorrect	876	2	80	71	Plane	210	7	144
19	DistalPhalanxTW	539	6	80	72	PowerCons	360	2	144
20	DodgerLoopGame	158	2	288	73	ProximalPhalanxOutlineAgeGroup	605	3	80
21	DodgerLoopWeekend	158	2	288	74	ProximalPhalanxOutlineCorrect	891	2	80
22	Earthquakes	461	2	512	75	ProximalPhalanxTW	605	6	80
23	ECG200	200	2	96	76	RefrigerationDevices	750	3	720
24	ECG5000	5000	5	140	77	ScreenType	750	3	720
25	ECGFiveDays	884	2	136	78	SemgHandGenderCh2	900	2	1500
26	ElectricDevices	16637	7	96	79	SemgHandMovementCh2	900	6	1500
27	EOGHorizontalSignal	724	12	1250	80	SemgHandSubjectCh2	900	5	1500
28	EOGVerticalSignal	724	12	1250	81	ShapeletSim	200	2	500
29	EthanolLevel	1004	4	1751	82	SmallKitchenAppliances	750	3	720
30	FaceAll	2250	14	131	83	SmoothSubspace	300	3	15
31	FacesUCR	2250	14	131	84	SonyAIBORobotSurface1	621	2	70
32	Fish	350	7	463	85	SonyAIBORobotSurface2	980	2	65
33	FordA	4921	2	500	86	StarLightCurves	9236	3	1024
34	FordB	4446	2	500	87	Strawberry	983	2	235
35	FreezerRegularTrain	3000	2	301	88	SwedishLeaf	1125	15	128
36	FreezerSmallTrain	2878	2	301	89	Symbols	1020	6	398
37	GesturePebbleZ1	304	6	Vary	90	SyntheticControl	600	6	60
38	GesturePebbleZ2	304	6	Vary	91	ToeSegmentation1	268	2	277
39	GunPoint	200	2	150	92	ToeSegmentation2	166	2	343
40	GunPointAgeSpan	451	2	150	93	Trace	200	4	275
41	GunPointMaleVersusFemale	451	2	150	94	TwoLeadECG	1162	2	82
42	GunPointOldVersusYoung	451	2	150	95	TwoPatterns	5000	4	128
43	Ham	214	2	431	96	UMD	180	3	150
44	HandOutlines	1370	2	2709	97	UWaveGestureLibraryAll	4478	8	945
45	Haptics	463	5	1092	98	UWaveGestureLibraryX	4478	8	315
46	Herring	128	2	512	99	UWaveGestureLibraryY	4478	8	315
47	HouseTwenty	159	2	2000	100	UWaveGestureLibraryZ	4478	8	315
48	InlineSkate	650	7	1882	101	Wafer	7164	2	152
49	InsectEPGRegularTrain	311	3	601	102	Wine	111	2	234
50	InsectEPGSmallTrain	266	3	601	103	WordSynonyms	905	25	270
51	InsectWingbeatSound	2200	11	256	104	Worms	258	5	900
52	ItalyPowerDemand	1096	2	24	105	WormsTwoClass	258	2	900
53	LargeKitchenAppliances	750	3	720	106	Yoga	3300	2	426
	- Physical			. 20	1 - 50				

Table 1: The detailed information of the 106 UCR time series datasets. "Total numbers" represent the overall count of samples within the time series dataset. "Classes" indicates the number of classes present within each time series dataset. "Length" refers to the sequence length of individual time series within the corresponding dataset. The presence of "Vary" signifies that the dataset includes instances with missing values.

ID	Dataset	Supervised I	Pseudo-Label	TE	LPDeepSSL	MTL	TS-TCC	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	AllGestureWiimoteX	0.518	0.559	0.538		0.422	0.156	0.496	0.503	0.415	0.547	0.573
2	AllGestureWiimoteY	0.580	0.562	0.589		0.436	0.181	0.555	0.587	0.409	0.619	0.627
3	AllGestureWiimoteZ	0.537	0.537	0.540		0.346	0.209	0.503	0.541	0.227	0.543	0.549
4	ArrowHead	0.687	0.758	0.744		0.565	0.308	0.765	0.763	0.403	0.711	0.721
5	BME	0.633	0.672	0.694		0.667	0.550	0.678	0.672	0.517	0.694	0.839
6 7	Car CBF	0.658 0.998	0.592 0.998	0.667 0.994		0.558 0.975	0.250 0.975	0.662 0.993	0.575 0.996	0.425 0.985	0.520 0.999	0.683 1.000
8	Chinatown	0.998	0.998	0.994		0.973	0.973	0.993	0.990	0.983	0.999	0.975
9	ChlorineConcentration	0.604	0.722	0.733		0.607	0.537	0.719	0.682	0.575	0.744	0.749
	CinCECGTorso	0.911	0.940	0.925		0.881	0.702	0.915	0.934	0.613	0.998	0.968
	Computers	0.658	0.736	0.742		0.756	0.646	0.761	0.752	0.748	0.764	0.660
	CricketX	0.535	0.535	0.515		0.492		0.524	0.599	0.389	0.590	0.608
13	CricketY	0.527	0.541	0.531	0.451	0.367	0.146	0.524	0.564	0.430	0.540	0.594
14	CricketZ	0.537	0.567	0.560	0.550	0.459	0.156	0.563	0.609	0.460	0.619	0.589
15	Crop	0.674	0.667	0.667	0.656	0.624	0.410	0.628	0.685	0.595	0.685	0.701
16	DiatomSizeReduction	0.876	0.923	0.920	0.929	0.731	0.350	0.885	0.901	0.643	0.975	0.985
	DistalPhalanxOutlineAgeGroup	0.822	0.821	0.824		0.764	0.753	0.790	0.776	0.764	0.826	0.828
	DistalPhalanxOutlineCorrect	0.787	0.765	0.791	0.775	0.713	0.629	0.791	0.814	0.729	0.805	0.797
	DistalPhalanxTW	0.746	0.732	0.741	0.699	0.731	0.691	0.751	0.750	0.655	0.742	0.749
	DodgerLoopGame	0.651	0.676	0.708		0.576	0.481	0.683	0.708	0.620	0.842	0.873
	DodgerLoopWeekend	0.810	0.778	0.760		0.703	0.797	0.852	0.924	0.873	0.849	0.918
	Earthquakes	0.795	0.775	0.796	0.825 0.936	0.595	0.602	0.741	0.785 0.790	0.829 0.785	0.790	0.798 0.835
	ECG200 ECG5000	0.946 0.991	0.942 0.995	0.941 0.997		0.939 0.899	0.896 0.794	0.942 0.992	0.790	0.783	0.950 0.996	0.833
	ECGFiveDays	0.327	0.345	0.378		0.328	0.194	0.424	0.941	0.922	0.459	1.000
	ElectricDevices	0.318	0.318	0.313		0.328	0.152	0.379	0.395	0.265	0.443	0.688
	EOGHorizontalSignal	0.798	0.792	0.798		0.798	0.798	0.770	0.854	0.720	0.801	0.820
	EOGVerticalSignal	0.852	0.838	0.838		0.809	0.663	0.844	0.372	0.296	0.857	0.496
	EthanolLevel	0.547	0.389	0.427		0.263	0.249	0.554	0.570	0.269	0.580	0.589
30	FaceAll	0.864	0.942	0.942	0.919	0.806	0.246	0.921	0.912	0.802	0.933	0.943
31	FacesUCR	0.854	0.935	0.926	0.886	0.862	0.214	0.901	0.897	0.870	0.912	0.947
32	Fish	0.829	0.589	0.569	0.389	0.446	0.143	0.757	0.734	0.334	0.354	0.763
	FordA	0.891	0.900	0.906		0.890	0.800	0.905	0.914	0.629	0.907	0.930
	FordB	0.881	0.877	0.884		0.872	0.805	0.892	0.902	0.774	0.873	0.901
	FreezerRegularTrain	0.998	0.994	0.997		0.638	0.761	0.992	0.998	0.607	0.997	0.998
	FreezerSmallTrain	0.999	0.998	0.999		0.848	0.760	0.997	0.998	0.618	0.999	0.999
	GesturePebbleZ1	0.651 0.622	0.586	0.593		0.591	0.187	0.677 0.629	0.714	0.622	0.434 0.460	0.671 0.726
	GesturePebbleZ2 GunPoint	0.022	0.691 0.955	0.671 0.945	0.538 0.910	0.577 0.765	0.208 0.545	0.029	0.708 0.890	0.655 0.640	0.400	0.720
	GunPointAgeSpan	0.753	0.933	0.920		0.703	0.774	0.969	0.890	0.879	0.910	0.956
	GunPointMaleVersusFemale	0.967	0.992	0.993		0.989	0.956	0.991	0.996	0.971	0.998	0.989
	GunPointOldVersusYoung	0.927	0.820	0.845		0.765	0.601	0.938	0.971	0.697	0.985	0.945
	Ham	0.603	0.575	0.622		0.547		0.654		0.687	0.636	0.702
44	HandOutlines	0.800	0.811	0.832	0.777	0.643	0.639	0.805	0.812	0.736	0.875	0.880
45	Haptics	0.382	0.344	0.363	0.305	0.290	0.203	0.319	0.372	0.283	0.370	0.386
46	Herring	0.617	0.579	0.549	0.579	0.601	0.562	0.616	0.556	0.563	0.618	0.657
	HouseTwenty	0.905	0.899	0.931		0.899		0.932	0.963	0.969	0.928	0.929
	InlineSkate	0.239	0.294	0.362		0.257		0.215	0.251	0.162	0.428	0.315
	InsectEPGRegularTrain	0.910	0.917	0.930		0.911		0.871		0.917	0.962	0.958
	InsectEPGSmallTrain	0.922	0.888	0.888		0.853		0.884	0.922	0.861	0.944	0.899
	InsectWingbeatSound	0.296	0.358	0.361		0.292		0.355		0.272	0.547	0.559
	ItalyPowerDemand LargeKitchenAppliances	0.947 0.857	0.964 0.857	0.955 0.832		0.875	0.886 0.603	0.960 0.868	0.939	0.951	0.965 0.843	0.972 0.788
	Lightning2	0.837	0.837	0.654		0.736	0.603	0.666	0.695	0.397	0.843	0.788 0.754
	Mallat	0.037	0.744	0.034			0.012	0.940	0.890	0.401	0.740	0.754
	Meat	0.767	0.667	0.750		0.617		0.817	0.875	0.508	0.867	0.892
	MedicalImages	0.619	0.674	0.653		0.562		0.608	0.640	0.536	0.637	0.637
	MelbournePedestrian	0.854	0.842	0.846			0.501	0.847	0.854	0.589	0.864	0.867
	MiddlePhalanxOutlineAgeGroup	0.753	0.744	0.737		0.608		0.725	0.758	0.708	0.731	0.746
	MiddlePhalanxOutlineCorrect	0.772	0.764	0.744		0.654		0.764	0.789	0.682	0.817	0.818
60												
	MiddlePhalanxTW	0.595	0.590	0.585	0.579	0.528	0.551	0.586	0.593	0.570	0.579	0.590

	MixedShapesSmallTrain	0.914	0.921	0.926	0.913	0.795	0.454	0.924	0.917	0.414	0.962	0.933
64	MoteStrain	0.953	0.951	0.947	0.951	0.956	0.911	0.962	0.965	0.947	0.963	0.921
65	NonInvasiveFetalECGThorax1	0.247	0.342	0.316	0.255	0.082	0.028	0.316	0.281	0.079	0.327	0.670
66	NonInvasiveFetalECGThorax2	0.271	0.358	0.410	0.205	0.077	0.027	0.333	0.341	0.094	0.457	0.381
67	OSULeaf	0.862	0.766	0.808	0.815	0.769	0.347	0.849	0.885	0.571	0.899	0.702
68	PhalangesOutlinesCorrect	0.778	0.781	0.779	0.781	0.708	0.639	0.806	0.804	0.702	0.799	0.796
69	Phoneme	0.328	0.304	0.342	0.339	0.282	0.191	0.335	0.329	0.257	0.332	0.343
70		0.289	0.292	0.294	0.291	0.298	0.168	0.303	0.307	0.148	0.290	0.340
71	Plane	0.852	0.886	0.886	0.886	0.781	0.248	0.892	0.905	0.471	0.817	0.886
72		0.811	0.822	0.828	0.764	0.786	0.778	0.832	0.789	0.814	0.811	0.903
73	ProximalPhalanxOutlineAgeGroup	0.822	0.848	0.828	0.845	0.668	0.783	0.817	0.835	0.655	0.826	0.841
74	ProximalPhalanxOutlineCorrect	0.825	0.785	0.811	0.814	0.689	0.681	0.833	0.845	0.731	0.842	0.768
75	ProximalPhalanxTW	0.770	0.785	0.772	0.790	0.676	0.724	0.762	0.797	0.706	0.775	0.762
76	RefrigerationDevices	0.563	0.489	0.512	0.533	0.551	0.547	0.487	0.475	0.567	0.567	0.452
77	ScreenType	0.532	0.551	0.581	0.545	0.552	0.395	0.505	0.575	0.573	0.521	0.563
78	8	0.701	0.742	0.772	0.728	0.646	0.659	0.777	0.781	0.721	0.804	0.809
79	SemgHandMovementCh2	0.390	0.414	0.417	0.389	0.303	0.211	0.400	0.416	0.329	0.423	0.440
80	SemgHandSubjectCh2	0.662	0.601	0.610	0.580	0.567	0.437	0.664	0.688	0.493	0.691	0.712
81	ShapeletSim	0.970	0.965	0.960	0.995	0.730	0.500	0.820	0.880	0.885	0.995	0.950
82	SmallKitchenAppliances	0.724	0.744	0.743	0.741	0.707	0.593	0.733	0.759	0.723	0.740	0.746
83	SmoothSubspace	0.840	0.827	0.843	0.873	0.637	0.543	0.870	0.893	0.679	0.897	0.877
84	SonyAIBORobotSurface1	0.990	0.994	0.992	0.994	0.973	0.971	0.992	0.989	0.968	0.994	0.987
85	SonyAIBORobotSurface2	0.986	0.989	0.984	0.984	0.971	0.964	0.989	0.994	0.932	0.991	0.985
86	StarLightCurves	0.951	0.976	0.976	0.976	0.516	0.847	0.977	0.950	0.868	0.978	0.897
87	Strawberry	0.698	0.927	0.932	0.930	0.755	0.643	0.928	0.938	0.750	0.939	0.940
88	SwedishLeaf	0.701	0.876	0.891	0.877	0.725	0.145	0.727	0.819	0.468	0.877	0.889
89	Symbols	0.989	0.988	0.990	0.992	0.766	0.759	0.993	0.995	0.747	0.989	0.981
90	SyntheticControl	0.955	0.950	0.942	0.930	0.947	0.917	0.965	0.982	0.948	0.980	0.995
91	ToeSegmentation1	0.888	0.855	0.870	0.840	0.866	0.713	0.892	0.914	0.852	0.896	0.914
92	ToeSegmentation2	0.855	0.856	0.830	0.855	0.759	0.752	0.850	0.825	0.856	0.777	0.898
93	Trace	0.875	0.830	0.805	0.885	0.830	0.485	0.860	0.965	0.780	0.935	1.000
94	TwoLeadECG	1.000	1.000	1.000	1.000	1.000	0.787	1.000	1.000	0.993	1.000	1.000
95	TwoPatterns	0.878	0.878	0.878	0.876	0.842	0.683	0.878	0.884	0.869	0.883	0.998
96	UMD	0.844	0.833	0.872	0.828	0.739	0.583	0.889	0.939	0.644	0.900	0.872
97	UWaveGestureLibraryAll	0.773	0.714	0.714	0.690	0.694	0.233	0.788	0.783	0.398	0.892	0.940
98	UWaveGestureLibraryX	0.727	0.728	0.723	0.710	0.552	0.310	0.733	0.746	0.388	0.757	0.763
99	UWaveGestureLibraryY	0.602	0.625	0.623	0.596	0.515	0.312	0.606	0.624	0.323	0.647	0.686
100	UWaveGestureLibraryZ	0.692	0.690	0.684	0.677	0.569	0.299	0.673	0.693	0.399	0.700	0.702
101	Wafer	0.977	0.933	0.952	0.972	0.909	0.894	0.913	0.913	0.894	0.998	0.996
102	Wine	0.583	0.576	0.540	0.667	0.578	0.504	0.667	0.738	0.487	0.583	0.676
103	WordSynonyms	0.348	0.319	0.296	0.274	0.306	0.214	0.371	0.364	0.243	0.372	0.479
	Worms	0.550	0.535	0.570	0.504	0.523	0.437	0.579	0.542	0.446	0.574	0.549
105	WormsTwoClass	0.658	0.737	0.710	0.694	0.667	0.547	0.740	0.710	0.524	0.686	0.717
106	Yoga	0.848	0.856	0.859	0.839	0.701	0.529	0.880	0.851	0.587	0.899	0.794
-	Avg. Rank	5.80	5.14	4.92	6.15	8.57	10.50	5.00	3.92	8.91	3.24	2.92
	Win	4	4	5	4	1	0	8	19	3	25	51

Table 2: The detailed test classification accuracy comparisons on 106 UCR time series datasets with a 10% labeling ratio. Win denotes the number of datasets in which the corresponding baseline achieved the best test accuracy. The best is in **bold**.

ID	Dataset	Supervised 1	Pseudo-Lab	el TE I	LPDeepSS	L MTL	TS-TCC	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	AllGestureWiimoteX	0.597	0.534	0.540	0.369		0.191	0.622	0.630		0.606	0.639
2	AllGestureWiimoteY	0.654	0.661	0.656	0.563	0.534	0.287	0.686	0.692	0.457	0.702	0.711
3	AllGestureWiimoteZ	0.608	0.534	0.575	0.504	0.346	0.250	0.633	0.638	0.129	0.649	0.672
4	ArrowHead	0.825	0.810	0.805	0.796	0.797		0.881	0.858	0.455	0.910	0.893
5	BME	0.683	0.794	0.739	0.722	0.633	0.556	0.728	0.706	0.556	0.806	0.972
6	Car	0.775	0.692	0.750	0.542	0.458	0.258	0.775	0.769	0.333	0.767	0.792
7	CBF	0.999	0.999	0.999	0.998	0.987	0.979	0.996	1.000	1.000	0.999	1.000
8	Chinatown	0.978	0.975	0.973	0.953	0.288	0.858	0.962	0.975	0.975	0.986	0.989
9	ChlorineConcentration	0.858	0.875	0.871	0.874	0.662	0.550	0.882	0.841	0.618	0.892	0.898
10	CinCECGTorso	0.976	0.988	0.985	0.955	0.854	0.675	0.989	0.971	0.655	1.000	0.994
11	Computers	0.794	0.830	0.792	0.776	0.798	0.650	0.802	0.816	0.808	0.796	0.674
12	CricketX	0.685	0.701	0.696	0.686	0.609	0.249	0.671	0.709	0.528	0.709	0.713
13	CricketY	0.635	0.683	0.687	0.654	0.541	0.191	0.667	0.694	0.481	0.714	0.719
14	CricketZ	0.639	0.691	0.672	0.671	0.581	0.185	0.621	0.713	0.545	0.700	0.701
15	Crop	0.716	0.710	0.716	0.711	0.664	0.462	0.716	0.728	0.566	0.726	0.746
16	DiatomSizeReduction	0.950	0.942	0.938	0.953	0.695	0.411	0.898	0.975	0.605	0.991	0.991
17	DistalPhalanxOutlineAgeGroup	0.827	0.818	0.831	0.831	0.764	0.772	0.818	0.815	0.666	0.800	0.811
18	DistalPhalanxOutlineCorrect	0.821	0.791	0.809	0.750	0.727	0.615	0.819	0.821	0.745	0.833	0.838
	DistalPhalanxTW	0.777	0.754	0.787	0.767	0.733	0.698	0.753	0.800	0.605	0.774	0.774
	DodgerLoopGame	0.723	0.793	0.820	0.765	0.581	0.519	0.786	0.741	0.634	0.863	0.924
	DodgerLoopWeekend	0.937	0.943	0.906	0.912	0.673	0.759	0.881	0.912	0.874	0.949	0.981
	Earthquakes	0.785	0.816	0.836	0.760	0.680	0.670	0.806	0.785	0.827	0.845	0.835
	ECG200	0.947	0.944	0.943	0.940	0.942	0.899	0.952	0.820	0.800	0.946	0.907
	ECG5000	0.999	0.997	0.998	0.993	0.983	0.840	0.998	0.947	0.930	1.000	0.969
	ECGFiveDays	0.550	0.557	0.547	0.454	0.460	0.213	0.572	0.999	0.946	0.584	1.000
26	ElectricDevices	0.439	0.414	0.424	0.363	0.399	0.174	0.435	0.477	0.283	0.559	0.832
	EOGHorizontalSignal	0.790	0.790	0.796	0.805	0.794		0.807	0.869	0.762	0.817	0.847
28	EOGVerticalSignal	0.860	0.863	0.862	0.858	0.836	0.769	0.862	0.463	0.324	0.865	0.596
29	EthanolLevel	0.663	0.636	0.625	0.539	0.330	0.763	0.640	0.403	0.254	0.686	0.689
	FaceAll	0.952	0.966	0.963	0.937	0.856	0.233	0.958	0.967	0.893	0.972	0.982
31	FacesUCR	0.932	0.963	0.961	0.931	0.830	0.423	0.950	0.964	0.903	0.968	0.982
	Fish	0.820	0.903	0.849	0.583	0.471	0.370		0.840	0.903	0.908	0.857
								0.789				
	FordA	0.909	0.912	0.913	0.907	0.907	0.866	0.931	0.923	0.774	0.914	0.941
	FordB	0.890	0.895	0.891	0.893	0.883	0.829	0.892	0.906	0.760	0.896	0.917
	FreezerRegularTrain	0.997	0.997	0.997	0.898	0.681	0.758	0.995	0.998	0.820	0.998	0.999
	FreezerSmallTrain	0.999	0.999	0.998	0.999	0.719	0.759	0.999	0.997	0.715	0.999	1.000
37	GesturePebbleZ1	0.829	0.751	0.760	0.711	0.760	0.250	0.793	0.849	0.793	0.796	0.905
38	GesturePebbleZ2	0.799	0.858	0.827	0.740	0.713	0.309	0.810	0.846	0.816	0.826	0.911
39	GunPoint	0.985	0.820	0.985	0.940	0.660	0.630	0.985	0.980	0.800	0.990	0.992
10	GunPointAgeSpan	0.987	0.991	0.978	0.989	0.767	0.857	0.996	0.991	0.872	0.987	0.988
11	GunPointMaleVersusFemale	0.987	0.993	0.991	0.892	0.993	0.982	0.996	1.000	0.682	0.998	0.999
	GunPointOldVersusYoung	0.968	0.985	0.978	0.894	0.902	0.650	0.973	0.980	0.643	0.985	0.983
	Ham	0.622	0.691	0.620	0.690	0.695	0.625	0.628	0.678	0.636	0.682	0.781
	HandOutlines	0.868	0.868	0.848	0.834	0.682	0.639	0.833	0.843	0.708	0.897	0.900
	Haptics	0.456	0.359	0.354	0.334		0.210	0.411	0.411	0.354	0.465	0.480
	Herring	0.617	0.610	0.579	0.580	0.610	0.602	0.587	0.626	0.562	0.601	0.687
	HouseTwenty	0.944	0.962	0.975	0.943	0.962	0.906	0.975	0.962	0.975	0.924	0.928
	InlineSkate	0.366	0.412	0.408	0.441	0.299		0.346	0.369	0.277	0.528	0.365
49	InsectEPGRegularTrain	0.936	0.961	0.961	0.923	0.939	0.870	0.952	0.971		0.962	0.968
50	InsectEPGSmallTrain	0.959	0.981	0.981	0.785	0.970	0.830	0.989	0.981	0.936	0.963	0.949
	InsectWingbeatSound	0.446	0.431	0.441	0.388	0.339	0.149	0.465	0.415	0.294	0.645	0.661
52	ItalyPowerDemand	0.961	0.967	0.964	0.973	0.830	0.929	0.962	0.964	0.908	0.970	0.975
	LargeKitchenAppliances	0.912	0.915	0.901	0.883	0.892	0.620	0.883	0.923	0.615	0.913	0.829
	Lightning2	0.612	0.669	0.678	0.686	0.627	0.636	0.712	0.629	0.645	0.712	0.786
	Mallat	0.987	0.988	0.990	0.816	0.545	0.263	0.990	0.988	0.546	0.991	0.980
	Meat	0.900	0.925	0.933	0.900	0.575	0.333	0.933	0.867	0.408	0.967	0.969
	MedicalImages	0.664	0.708	0.708	0.704	0.557	0.533	0.615	0.692	0.563	0.696	0.701
	MelbournePedestrian	0.893	0.869	0.872	0.869	0.664	0.629	0.893	0.900	0.577	0.899	0.701
	MiddlePhalanxOutlineAgeGroup	0.756	0.309	0.872	0.751	0.497	0.029	0.893	0.746	0.592	0.899	0.766
	MiddlePhalanxOutlineCorrect	0.730	0.757	0.762	0.731	0.497	0.724	0.734	0.740	0.392	0.704	0.700
	MiddlePhalanxTW											
	IVIIUUIETIIAIAIIX I W	0.591	0.612	0.622	0.612	0.420	0.540	0.613	0.598	0.539	0.629	0.635
	MixedShapesRegularTrain	0.958	0.945	0.952	0.944	0.812	0.561	0.961	0.961	0.557	0.972	0.967

62 M	:	0.949	0.947	0.953	0.942	0.716	0.583	0.960	0.955	0.521	0.972	0.959
	lixedShapesSmallTrain loteStrain	0.949	0.947	0.958	0.942	0.716	0.383	0.966	0.933 0.976	0.521	0.972	0.959
	onInvasiveFetalECGThorax1	0.460	0.903	0.938	0.382	0.982	0.921	0.523	0.448	0.972	0.386	0.939 0.802
	onInvasiveFetalECGThorax2	0.490	0.420	0.454	0.382	0.084	0.033	0.523	0.526	0.116	0.515	0.847
	SULeaf	0.490	0.400	0.432	0.886	0.120	0.030	0.303	0.937	0.134	0.935	0.787
	nalangesOutlinesCorrect	0.930	0.923	0.928	0.806	0.694	0.410	0.827	0.937	0.510	0.933	0.787
	noneme	0.337	0.339	0.379	0.308	0.094	0.032	0.327	0.346	0.180	0.338	0.378
	LAID	0.357	0.339	0.347	0.308	0.293	0.192	0.342	0.340	0.180	0.338	0.378
70 F1		1.000	1.000	1.000	1.000	0.929	0.194	1.000	1.000	0.405	1.000	0.378
	owerCons	0.814	0.844	0.831	0.822	0.786	0.761	0.851	0.856	0.403	0.814	0.900
	oximalPhalanxOutlineAgeGroup	0.825	0.840	0.831	0.848	0.783	0.783	0.850	0.858	0.461	0.856	0.859
	oximal halanxOutlineCorrect	0.823	0.850	0.864	0.870	0.763	0.703	0.830	0.865	0.744	0.859	0.814
	oximalPhalanxTW	0.769	0.789	0.304	0.370	0.693	0.703	0.790	0.303	0.450	0.839	0.814
	efrigerationDevices	0.709	0.789	0.789	0.780	0.583	0.727	0.790	0.787	0.430	0.793	0.576
	creenType	0.601	0.648	0.656	0.572	0.601	0.409	0.590	0.629	0.551	0.639	0.570
	emgHandGenderCh2	0.856	0.788	0.804	0.793	0.724	0.409	0.836	0.828	0.822	0.039	0.862
	emgHandMovementCh2	0.501	0.788	0.493	0.793	0.724	0.002	0.830	0.524	0.439	0.516	0.502
	emgHandSubjectCh2	0.759	0.651	0.493	0.431	0.590	0.464	0.477	0.764	0.439	0.796	0.808
	napeletSim	0.739	1.000	0.711	0.075	0.735	0.695	0.778	0.704	0.022	1.000	0.971
	nallKitchenAppliances	0.759	0.764	0.781	0.763	0.739	0.585	0.747	0.765	0.771	0.797	0.749
	moothSubspace	0.757	0.927	0.903	0.703	0.790	0.867	0.937	0.703	0.771	0.883	0.888
	onyAIBORobotSurface1	0.893 0.997	0.927	0.989	0.933	0.790	0.974	0.992	0.897 0.997	0.792	0.883 0.997	0.888
	onyAIBORobotSurface2	0.990	0.995	0.996	0.987	0.981	0.979	0.989	0.994	0.985	0.996	0.992
	carLightCurves	0.977	0.978	0.977	0.837	0.613	0.849	0.979	0.980	0.898	0.980	0.904
	rawberry	0.894	0.947	0.977	0.837	0.646	0.643	0.949	0.958	0.666	0.949	0.960
	wedishLeaf	0.765	0.947	0.932	0.942	0.703	0.203	0.836	0.938	0.468	0.949	0.903
	ymbols	0.703	0.942	0.932	0.907	0.703	0.203	0.830	0.892	0.669	0.996	0.903
	yntheticControl	0.985	0.988	0.985	0.983	0.978	0.885	0.988	0.982	0.965	0.995	0.995
	peSegmentation1	0.953	0.955	0.963	0.952	0.955	0.899	0.963	0.974	0.930	0.963	0.957
	peSegmentation2	0.795	0.886	0.880	0.848	0.807	0.789	0.875	0.934	0.843	0.530	0.934
	race	0.795	0.995	0.995	0.990	0.975	0.700	1.000	1.000	0.955	1.000	1.000
	woLeadECG	1.000	1.000	1.000	1.000	1.000	0.898	1.000	1.000	0.872	1.000	1.000
	woPatterns	0.890	0.876	0.878	0.876	0.868	0.795	0.892	0.907	0.886	0.899	0.999
96 U		0.883	0.917	0.944	0.872	0.900	0.783	0.956	0.817	0.811	0.983	0.950
	WaveGestureLibraryAll	0.832	0.814	0.803	0.748	0.653	0.313	0.844	0.821	0.446	0.935	0.958
	WaveGestureLibraryX	0.768	0.743	0.737	0.730	0.520	0.446	0.761	0.779	0.619	0.779	0.812
	WaveGestureLibraryY	0.664	0.654	0.659	0.650	0.523	0.420	0.666	0.670	0.536	0.680	0.700
	WaveGestureLibraryZ	0.732	0.720	0.723	0.705	0.615	0.433	0.720	0.739	0.511	0.727	0.766
101 W	3	0.998	0.914	0.997	0.996	0.913	0.894	0.998	0.999	0.894	1.000	1.000
102 W		0.738	0.673	0.699	0.638	0.450	0.487	0.749	0.666	0.541	0.738	0.775
	/ordSynonyms	0.411	0.393	0.400	0.366	0.350	0.230	0.456	0.432	0.242	0.448	0.617
104 W	2 2	0.531	0.512	0.492	0.567	0.602	0.481	0.575	0.566	0.492	0.469	0.568
	/ormsTwoClass	0.671	0.683	0.667	0.647	0.768	0.566	0.702	0.733	0.562	0.732	0.735
106 Yo		0.888	0.901	0.899	0.893	0.763	0.562	0.910	0.892	0.661	0.927	0.893
	Avg. Rank	5.54	4.93	5.04	6.92	8.62	10.36	4.46	3.98	9.01	3.00	2.86
	Win	3	6	6	3	3	0	10	17	2	27	58

Table 3: The detailed test classification accuracy comparisons on 106 UCR time series datasets with a 20% labeling ratio. Win denotes the number of datasets in which the corresponding baseline achieved the best test accuracy. The best is in **bold**.

ID	Dataset	Supervised l	Pseudo-Label	TE	LPDeepSSL	MTL	TS-TCC	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	AllGestureWiimoteX	0.676	0.674	0.702		0.556		0.670	0.653		0.685	0.745
2	AllGestureWiimoteY	0.766	0.677	0.743		0.587	0.272	0.763	0.787	0.468	0.786	0.795
3	AllGestureWiimoteZ	0.725	0.666	0.696		0.376	0.323	0.673	0.641	0.220	0.708	0.737
4	ArrowHead	0.886	0.891	0.853		0.801	0.589	0.896	0.929	0.503	0.914	0.933
5	BME	0.867	0.867	0.889		0.817		0.917	0.917	0.644	0.972	0.989
6 7	Car CBF	0.817 1.000	0.815 1.000	0.833		0.633 0.984	0.250 0.985	0.758 0.999	0.894 1.000	0.483 1.000	0.892 1.000	0.897 1.000
8	Chinatown	0.984	0.986	0.999		0.288	0.983	0.999	0.989	0.987	0.986	0.992
9	ChlorineConcentration	0.961	0.972	0.975		0.658	0.555	0.964	0.949	0.703	0.976	0.978
10	CinCECGTorso	0.994	0.998	0.996		0.890	0.755	0.997	0.982	0.747	1.000	1.000
	Computers	0.876	0.856	0.860		0.846	0.656	0.888	0.879	0.880	0.874	0.788
	CricketX	0.819	0.813	0.814		0.722	0.301	0.790	0.810	0.514	0.824	0.828
13	CricketY	0.729	0.790	0.765	0.787	0.715	0.203	0.791	0.767	0.531	0.808	0.819
14	CricketZ	0.789	0.815	0.804	0.808	0.674	0.228	0.797	0.809	0.663	0.833	0.839
15	Crop	0.780	0.766	0.766	0.764	0.725	0.554	0.778	0.785	0.709	0.771	0.803
16	DiatomSizeReduction	0.994	0.978	0.967	0.988	0.833	0.351	0.957	0.998	0.456	0.997	0.999
	DistalPhalanxOutlineAgeGroup	0.811	0.813	0.837		0.774	0.751	0.827	0.822	0.699	0.848	0.850
	DistalPhalanxOutlineCorrect	0.822	0.837	0.832		0.708	0.615	0.842	0.838	0.743	0.834	0.845
	DistalPhalanxTW	0.752	0.766	0.794		0.708	0.698	0.794	0.764	0.687	0.805	0.810
	DodgerLoopGame	0.861	0.869	0.850		0.612	0.481	0.818	0.855	0.677	0.899	0.936
	DodgerLoopWeekend	0.930	0.956	0.924		0.748	0.854	0.962	0.950	0.949	0.975	0.994
	Earthquakes	0.885	0.891	0.890		0.773	0.670	0.915	0.807	0.859	0.885	0.852
	ECG200 ECG5000	0.932 1.000	0.955 0.999	0.953		0.947 0.987	0.910 0.847	0.950 1.000	0.945 0.958	0.770 0.948	0.957 1.000	0.916 0.976
25	ECG5000 ECGFiveDays	0.645	0.999	0.999		0.603	0.847	0.650	1.000	0.948	0.724	1.000
	ElectricDevices	0.577	0.563	0.533		0.462	0.231	0.460	0.706	0.313	0.724	0.875
	EOGHorizontalSignal	0.798	0.781	0.787		0.814		0.796	0.626	0.313	0.827	0.849
	EOGVerticalSignal	0.881	0.881	0.882		0.864	0.775	0.876	0.885	0.773	0.883	0.664
	EthanolLevel	0.712	0.674	0.708		0.263		0.709	0.623	0.274	0.713	0.753
	FaceAll	0.983	0.985	0.984		0.899	0.559	0.984	0.987	0.940	0.988	0.991
31	FacesUCR	0.987	0.978	0.978	0.973	0.942	0.550	0.978	0.990	0.920	0.986	0.989
32	Fish	0.923	0.919	0.917	0.880	0.477	0.143	0.943	0.960	0.340	0.951	0.923
33	FordA	0.928	0.927	0.928	0.922	0.918	0.898	0.936	0.942	0.767	0.927	0.949
	FordB	0.903	0.900	0.898		0.887	0.878	0.900	0.917	0.751	0.905	0.926
	FreezerRegularTrain	0.998	0.999	0.999		0.774	0.763	0.992	0.998	0.500	0.999	1.000
	FreezerSmallTrain	0.992	0.998	0.998		0.710	0.762	0.998	0.999	0.501	0.999	1.000
37	GesturePebbleZ1	0.865	0.875	0.866		0.816	0.420	0.875	0.891	0.888	0.885	0.957
	GesturePebbleZ2	0.872	0.905	0.878		0.844		0.876	0.911	0.915	0.908	0.954
39 40	GunPoint A coSpon	0.995 0.836	1.000 0.985	1.000 0.985		0.940	0.775 0.978	1.000 0.992	0.990 0.996	0.900 0.907	1.000 0.993	0.980 0.997
41	GunPointAgeSpan GunPointMaleVersusFemale	0.830	0.985	0.983		0.919	0.978	1.000	1.000	0.907	1.000	1.000
	GunPointOldVersusYoung	0.972	0.927	0.907		0.842	0.758	0.983	0.993		0.987	0.989
	Ham	0.678	0.701	0.794			0.519	0.682		0.730		0.855
	HandOutlines	0.887	0.892	0.892		0.713		0.875		0.701	0.931	0.896
	Haptics	0.467	0.465	0.475		0.322	0.214	0.504	0.460	0.337	0.531	0.560
	Herring	0.540	0.650	0.656	0.625	0.563	0.602	0.691	0.624	0.562	0.587	0.705
47	HouseTwenty	0.956	0.994	0.994	0.994	0.956	0.906	0.988	0.969	0.944	0.963	0.948
48	InlineSkate	0.462	0.565	0.557	0.518	0.389	0.168	0.526	0.448	0.223	0.705	0.560
	InsectEPGRegularTrain	0.974	0.994	0.994		0.997		0.990		0.974	0.987	0.981
	InsectEPGSmallTrain	0.974	0.970	0.974		0.966		0.993	0.989		0.996	0.971
	InsectWingbeatSound	0.546	0.544	0.491		0.355		0.574	0.523	0.271	0.746	0.694
	ItalyPowerDemand	0.972	0.973	0.975			0.958	0.974	0.981	0.838	0.979	0.982
	LargeKitchenAppliances	0.919	0.936	0.939		0.937		0.931	0.939	0.843	0.953	0.908
	Lightning2	0.794	0.726	0.605		0.636		0.754	0.811	0.629	0.835	0.818
	Mallat Meat	0.991 0.967	0.990 0.658	0.992 0.975		0.340 0.617		0.993 0.965	0.991	0.579	0.995 0.975	0.992 0.983
	MedicalImages	0.967	0.638	0.973		0.517		0.963	0.908 0.778	0.333 0.521	0.973	0.983
	MelbournePedestrian	0.703	0.777	0.787		0.564		0.790	0.778	0.321	0.798	0.928
	MiddlePhalanxOutlineAgeGroup	0.742	0.753	0.740		0.671		0.746	0.769		0.798	0.778
	MiddlePhalanxOutlineCorrect	0.837	0.798	0.804		0.682		0.845	0.765	0.626	0.853	0.859
	MiddlePhalanxTW	0.609	0.615	0.626		0.584		0.621	0.659		0.657	0.662
	MixedShapesRegularTrain	0.969	0.968	0.962			0.683	0.972	0.977		0.974	0.978
62	MixedShapesRegularTrain	0.969	0.968	0.962	0.966	0.744	0.683	0.972	0.977	0.378	0.974	0

	MixedShapesSmallTrain	0.962	0.966	0.969	0.955	0.587	0.742	0.972	0.972	0.436	0.977	0.968
64	MoteStrain	0.969	0.973	0.971	0.969	0.967	0.943	0.970	0.976	0.977	0.970	0.975
65	NonInvasiveFetalECGThorax1	0.299	0.395	0.403	0.081	0.109	0.052	0.491	0.300	0.092	0.444	0.908
66	NonInvasiveFetalECGThorax2	0.351	0.440	0.460	0.179	0.109	0.048	0.632	0.396	0.082	0.520	0.929
67	OSULeaf	0.973	0.959	0.955	0.881	0.880	0.479	0.975	0.982	0.668	0.982	0.897
68	PhalangesOutlinesCorrect	0.852	0.858	0.846	0.847	0.661	0.640	0.873	0.860	0.685	0.853	0.865
69	Phoneme	0.420	0.445	0.457	0.437	0.330	0.219	0.443	0.384	0.254	0.477	0.459
70		0.367	0.407	0.405	0.398	0.449	0.212	0.435	0.395	0.372	0.396	0.410
71	Plane	1.000	1.000	1.000	1.000	0.914	0.514	1.000	1.000	0.538	1.000	1.000
72		0.867	0.881	0.869	0.856	0.853	0.800	0.908	0.894	0.850	0.889	0.942
73	ProximalPhalanxOutlineAgeGroup	0.850	0.843	0.840	0.841	0.700	0.787	0.845	0.843	0.734	0.865	0.870
74	ProximalPhalanxOutlineCorrect	0.887	0.877	0.897	0.884	0.668	0.690	0.894	0.907	0.801	0.873	0.878
75	ProximalPhalanxTW	0.759	0.804	0.807	0.804	0.640	0.728	0.814	0.805	0.516	0.840	0.810
76	RefrigerationDevices	0.603	0.689	0.720	0.693	0.731	0.544	0.700	0.600	0.627	0.779	0.637
77	ScreenType	0.693	0.717	0.724	0.720	0.625	0.431	0.687	0.687	0.659	0.720	0.627
78	8	0.891	0.848	0.853	0.859	0.792	0.678	0.890	0.903	0.783	0.912	0.908
79	SemgHandMovementCh2	0.623	0.586	0.600	0.548	0.409	0.271	0.614	0.630	0.444	0.662	0.659
80	SemgHandSubjectCh2	0.828	0.798	0.799	0.732	0.582	0.537	0.846	0.861	0.700	0.858	0.872
81	ShapeletSim	0.995	0.985	0.995	0.995	0.975	0.800	0.990	1.000	0.995	1.000	0.989
82	SmallKitchenAppliances	0.779	0.797	0.789	0.800	0.728	0.589	0.805	0.801	0.753	0.827	0.767
83	SmoothSubspace	0.967	0.960	0.967	0.957	0.723	0.913	0.977	0.967	0.835	0.970	0.967
84	SonyAIBORobotSurface1	0.995	0.997	0.995	0.995	0.998	0.978	0.998	0.995	0.982	0.998	0.999
85	SonyAIBORobotSurface2	0.998	0.994	0.995	0.995	0.992	0.981	0.989	0.997	0.980	0.996	0.998
86	StarLightCurves	0.978	0.979	0.978	0.979	0.979	0.850	0.977	0.980	0.935	0.979	0.981
87	Strawberry	0.963	0.959	0.954	0.954	0.686	0.700	0.967	0.970	0.654	0.977	0.980
88	SwedishLeaf	0.968	0.956	0.948	0.941	0.814	0.553	0.953	0.978	0.473	0.979	0.926
89	Symbols	0.995	0.994	0.996	0.935	0.830	0.929	0.994	0.998	0.749	0.992	0.995
90	SyntheticControl	0.987	0.995	0.990	0.992	0.987	0.988	0.985	0.992	0.978	0.988	0.995
91	ToeSegmentation1	0.971	0.951	0.940	0.952	0.978	0.951	0.974	0.978	0.914	0.978	0.952
92	ToeSegmentation2	0.910	0.885	0.855	0.861	0.880	0.807	0.921	0.940	0.923	0.922	0.940
93	Trace	1.000	1.000	1.000	1.000	0.990	0.635	1.000	1.000	0.920	1.000	1.000
94	TwoLeadECG	1.000	1.000	1.000	1.000	1.000	0.995	1.000	1.000	0.990	1.000	1.000
95	TwoPatterns	0.905	0.906	0.901	0.909	0.886	0.833	0.915	0.918	0.903	0.918	1.000
96	UMD	0.983	0.983	0.983	0.972	0.911	0.750	0.978	0.996	0.833	0.994	0.999
97	UWaveGestureLibraryAll	0.874	0.880	0.874	0.860	0.668	0.478	0.879	0.876	0.535	0.923	0.977
98	UWaveGestureLibraryX	0.806	0.760	0.769	0.745	0.437	0.564	0.793	0.809	0.698	0.795	0.859
99	UWaveGestureLibraryY	0.707	0.721	0.722	0.657	0.530	0.503	0.729	0.726	0.626	0.717	0.795
100	UWaveGestureLibraryZ	0.788	0.784	0.781	0.765	0.480	0.534	0.784	0.800	0.631	0.794	0.812
101	Wafer	0.999	0.999	0.999	0.999	0.913	0.894	0.999	1.000	0.935	1.000	1.000
102	Wine	0.892	0.797	0.813	0.783	0.514	0.495	0.788	0.801	0.550	0.829	0.892
103	WordSynonyms	0.467	0.465	0.427	0.387	0.401	0.223	0.487	0.434	0.244	0.505	0.740
104	Worms	0.721	0.632	0.636	0.648	0.675	0.508	0.750	0.721	0.504	0.658	0.597
105	WormsTwoClass	0.760	0.761	0.768	0.760	0.756	0.670	0.783	0.771	0.562	0.728	0.802
106	Yoga	0.906	0.923	0.924	0.928	0.792	0.596	0.935	0.939	0.735	0.947	0.938
-	Avg. Rank	5.50	5.22	5.21	6.32	8.71	10.29	4.37	3.73	9.26	2.88	2.62
	Win	7	7	6	5	4	0	11	18	2	28	64

Table 4: The detailed test classification accuracy comparisons on 106 UCR time series datasets with a 40% labeling ratio. Win denotes the number of datasets in which the corresponding baseline achieved the best test accuracy. The best is in **bold**.

ID	Dataset	ST	LTS	FFS	ADSN	DiffShape
1	ChlorineConcentration	0.510	0.445	0.536	0.232	0.749
2	DiatomSizeReduction	0.776	0.351	0.636	0.105	0.985
3	ECGFiveDays	0.925	0.727	0.778	0.916	1.000
4	GunPoint	0.725	0.720	0.694	0.760	0.930
5	ItalyPowerDemand	0.876	0.907	0.832	0.938	0.972
6	MedicalImages	0.507	0.521	0.521	0.520	0.637
7	MoteStrain	0.858	0.789	0.728	0.718	0.921
8	SonyAIBORobotSurface1	0.961	0.936	0.842	0.929	0.987
9	Symbols	0.613	0.463	0.433	0.549	0.981
10	SyntheticControl	0.558	0.695	0.475	0.523	0.995
11	Trace	0.320	0.350	0.500	0.455	1.000
12	TwoLeadECG	0.973	0.870	0.775	0.962	1.000
	Avg. Rank	2.92	3.50	3.92	3.58	1.00
	Win	0	0	0	0	12

Table 5: The detailed test classification accuracy comparisons on 12 UCR time series datasets with a 10% labeling ratio.

ID	Dataset	ST	LTS	FFS	ADSN	DiffShape
1	ChlorineConcentration	0.520	0.441	0.538	0.232	0.898
2	DiatomSizeReduction	0.752	0.416	0.646	0.106	0.991
3	ECGFiveDays	0.897	0.901	0.959	0.993	1.000
4	GunPoint	0.790	0.725	0.750	0.660	0.992
5	ItalyPowerDemand	0.901	0.932	0.818	0.938	0.975
6	MedicalImages	0.460	0.526	0.524	0.501	0.701
7	MoteStrain	0.899	0.832	0.839	0.883	0.959
8	SonyAIBORobotSurface1	0.966	0.939	0.824	0.916	0.991
9	Symbols	0.455	0.845	0.350	0.751	0.991
10	SyntheticControl	0.513	0.617	0.555	0.740	0.995
11	Trace	0.535	0.405	0.325	0.690	1.000
12	TwoLeadECG	0.983	0.945	0.829	0.971	1.000
	Avg. Rank	3.25	3.50	3.92	3.33	1.00
	Win	0	0	0	0	12

Table 6: The detailed test classification accuracy comparisons on 12 UCR time series datasets with a 20% labeling ratio.

ID	Dataset	ST	LTS	FFS	ADSN	DiffShape
1	ChlorineConcentration	0.625	0.462	0.541	0.232	0.978
2	DiatomSizeReduction	0.795	0.512	0.533	0.106	0.999
3	ECGFiveDays	0.991	0.940	0.998	0.921	1.000
4	GunPoint	0.880	0.810	0.690	0.905	0.980
5	ItalyPowerDemand	0.912	0.937	0.952	0.935	0.982
6	MedicalImages	0.511	0.522	0.530	0.528	0.802
7	MoteStrain	0.885	0.866	0.861	0.921	0.975
8	SonyAIBORobotSurface1	0.976	0.957	0.745	0.961	0.999
9	Symbols	0.629	0.444	0.573	0.645	0.995
10	SyntheticControl	0.495	0.753	0.575	0.620	0.995
11	Trace	0.580	0.550	0.569	0.735	1.000
12	TwoLeadECG	0.985	0.978	0.969	0.987	1.000
	Avg. Rank	3.25	3.92	3.67	3.17	1.00
	Win	0	0	0	0	12

Table 7: The detailed test classification accuracy comparisons on 12 UCR time series datasets with a 40% labeling ratio.

ID	Dataset	Supervised	LTS	ADSN	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	ChlorineConcentration	0.470	0.234	0.000	0.507	0.509	0.376	0.500	0.516
2	DiatomSizeReduction	0.879	0.304	0.000	0.832	0.838	0.709	0.873	0.966
3	ECGFiveDays	0.748	0.522	0.584	0.751	0.758	0.750	0.810	0.975
4	GunPoint	0.575	0.500	0.565	0.665	0.605	0.550	0.580	0.745
5	ItalyPowerDemand	0.845	0.501	0.791	0.874	0.882	0.834	0.875	0.955
6	MedicalImages	0.446	0.085	0.217	0.416	0.422	0.292	0.378	0.464
7	MoteStrain	0.853	0.462	0.660	0.858	0.859	0.866	0.874	0.868
8	SonyAIBORobotSurface1	0.919	0.438	0.704	0.944	0.936	0.870	0.950	0.879
9	Symbols	0.946	0.137	0.222	0.956	0.961	0.620	0.962	0.962
10	SyntheticControl	0.887	0.168	0.295	0.943	0.938	0.868	0.880	0.967
11	Trace	0.960	0.350	0.275	0.945	0.955	0.565	0.945	0.970
12	TwoLeadECG	0.871	0.508	0.547	0.919	0.927	0.501	0.886	0.930
	Avg. Rank	4.25	7.67	7.08	3.50	2.92	5.92	3.08	1.42
	Win	0	0	0	0	0	0	3	10

Table 8: The detailed test classification accuracy comparisons on 12 UCR time series datasets with 2 label samples per class.

ID	Dataset	Supervised	LTS	ADSN	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	ChlorineConcentration	0.491	0.232	0.000	0.522	0.527	0.478	0.474	0.536
2	DiatomSizeReduction	0.981	0.304	0.000	0.969	0.978	0.608	0.985	0.988
3	ECGFiveDays	0.852	0.500	0.655	0.843	0.866	0.791	0.941	0.994
4	GunPoint	0.885	0.500	0.665	0.935	0.865	0.635	0.910	0.950
5	ItalyPowerDemand	0.910	0.501	0.792	0.942	0.931	0.854	0.922	0.966
6	MedicalImages	0.546	0.073	0.318	0.590	0.564	0.440	0.587	0.596
7	MoteStrain	0.862	0.462	0.622	0.868	0.874	0.872	0.887	0.882
8	SonyAIBORobotSurface1	0.952	0.438	0.578	0.952	0.952	0.886	0.961	0.931
9	Symbols	0.956	0.178	0.323	0.961	0.961	0.600	0.978	0.960
10	SyntheticControl	0.957	0.187	0.263	0.963	0.967	0.862	0.958	0.990
11	Trace	0.960	0.110	0.355	0.985	0.990	0.975	0.995	1.000
12	TwoLeadECG	0.950	0.471	0.548	0.966	0.972	0.501	0.978	0.985
	Avg. Rank	4.50	7.83	7.00	3.25	3.00	5.83	2.58	1.67
	Win	0	0	0	0	0	0	3	9

Table 9: The detailed test classification accuracy comparisons on 12 UCR time series datasets with 5 label samples per class.

ID	Dataset	Supervised	LTS	ADSN	SemiTime	SSSTC	MTFC	TS-TFC	DiffShape
1	ChlorineConcentration	0.512	0.235	0.000	0.533	0.537	0.544	0.509	0.542
2	DiatomSizeReduction	0.982	0.304	0.000	0.988	0.988	0.528	0.985	0.991
3	ECGFiveDays	0.973	0.499	0.647	0.951	0.930	0.867	0.988	0.999
4	GunPoint	0.950	0.500	0.650	0.975	0.955	0.605	0.979	0.980
5	ItalyPowerDemand	0.954	0.501	0.553	0.965	0.956	0.935	0.957	0.971
6	MedicalImages	0.627	0.065	0.337	0.632	0.637	0.366	0.627	0.639
7	MoteStrain	0.880	0.462	0.596	0.889	0.896	0.893	0.892	0.892
8	SonyAIBORobotSurface1	0.968	0.438	0.752	0.977	0.973	0.921	0.979	0.974
9	Symbols	0.966	0.132	0.306	0.969	0.971	0.809	0.978	0.968
10	SyntheticControl	0.983	0.220	0.297	0.975	0.982	0.917	0.980	0.993
11	Trace	0.980	0.080	0.450	1.000	1.000	0.960	1.000	1.000
12	TwoLeadECG	0.969	0.500	0.565	0.976	0.983	0.682	0.990	0.993
	Avg. Rank	4.58	7.83	7.08	3.17	2.83	5.33	2.75	1.75
	Win	0	0	0	1	2	1	3	8

Table 10: The detailed test classification accuracy comparisons on 12 UCR time series datasets with 10 label samples per class.

ID	Dataset	DiffShape	w/o Diff	real subsequence	random shape	w/o Language	w/o Diff & Language
1	ChlorineConcentration	0.749	0.614	0.613	0.577	0.581	0.571
2	DiatomSizeReduction	0.985	0.971	0.972	0.963	0.960	0.955
3	ECGFiveDays	1.000	1.000	1.000	1.000	1.000	0.981
4	GunPoint	0.930	0.920	0.920	0.925	0.925	0.915
5	ItalyPowerDemand	0.972	0.966	0.969	0.961	0.953	0.947
6	MedicalImages	0.637	0.615	0.618	0.616	0.589	0.543
7	MoteStrain	0.921	0.917	0.910	0.914	0.921	0.913
8	SonyAIBORobotSurface1	0.987	0.972	0.979	0.978	0.963	0.962
9	Symbols	0.981	0.979	0.978	0.971	0.977	0.961
10	SyntheticControl	0.995	0.992	0.992	0.992	0.992	0.992
11	Trace	1.000	0.950	0.970	0.953	0.975	0.975
12	TwoLeadECG	1.000	0.993	0.994	0.992	0.989	0.991
-	Avg. Rank	1.00	3.08	2.75	3.50	3.58	5.17
	Win	12	1	1	1	1	0

Table 11: The detailed test classification accuracy of ablation study on 12 UCR time series datasets with a 10% labeling ratio.

	Method	Dataset			
	Without	Trace	ChlorineConcentration		
	Supervised (Cross entropy)	16.22	161.15		
	Pseudo-Label (Lee et al. 2013)	26.35	902.30		
	MTL (Jawed et al. 2020)	167.50	2671.55		
SSL baselines	SemiTime (Fan et al. 2021)	898.40	3263.68		
	SSSTC (Xi et al. 2022)	1030.06	4872.84		
	MTFC (Wei et al. 2023)	217.27	4325.12		
	TS-TFC (Liu et al. 2023)	30.19	986.95		
	ST (Lines et al. 2012)	21487.61	11190.28		
Shapelet-based baselines	LTS (Grabocka et al. 2014)	772.95	7343.92		
Shapelet-based basefilles	FSS (Ji et al. 2019),	129.70	4532.16		
	ADSN (Ma et al. 2020)	1991.99	42826.91		
DiffS	Shape (Ours)	92.16	2855.10		

Table 12: Analysis of runtime (in seconds) on the *Trace* and *ChlorineConcentration* time series datasets with a 10% labeling ratio for semi-supervised classification. The best is in **bold**, and the second best is in <u>underlined</u>.

References

- Dau, H. A.; Bagnall, A.; Kamgar, K.; Yeh, C.-C. M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C. A.; and Keogh, E. 2019. The UCR time series archive. *IEEE/CAA Journal of Automatica Sinica*, 6(6): 1293–1305.
- Demšar, J. 2006. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine learning research*, 7: 1–30.
- Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Kwoh, C. K.; Li, X.; and Guan, C. 2021. Time-series representation learning via temporal and contextual contrasting. *arXiv preprint arXiv:2106.14112*.
- Fan, H.; Zhang, F.; Wang, R.; Huang, X.; and Li, Z. 2021. Semi-supervised time series classification by temporal relation prediction. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 3545–3549. IEEE.
- Grabocka, J.; Schilling, N.; Wistuba, M.; and Schmidt-Thieme, L. 2014. Learning time-series shapelets. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, 392–401.
- Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label propagation for deep semi-supervised learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 5070–5079.
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; and Muller, P.-A. 2019. Deep learning for time series classification: a review. *Data mining and knowledge discovery*, 33(4): 917–963.
- Jawed, S.; Grabocka, J.; and Schmidt-Thieme, L. 2020. Self-supervised learning for semi-supervised time series classification. In *Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part I 24*, 499–511. Springer.
- Ji, C.; Zhao, C.; Liu, S.; Yang, C.; Pan, L.; Wu, L.; and Meng, X. 2019. A fast shapelet selection algorithm for time series classification. *Computer networks*, 148: 231–240.
- Laine, S.; and Aila, T. 2016. Temporal ensembling for semi-supervised learning. *arXiv preprint arXiv:1610.02242*.
- Lee, D.-H.; et al. 2013. Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3, 896. Atlanta.
- Lines, J.; Davis, L. M.; Hills, J.; and Bagnall, A. 2012. A shapelet transform for time series classification. In *Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining*, 289–297.
- Liu, Z.; Ma, Q.; Ma, P.; and Wang, L. 2023. Temporal-Frequency Cotraining for Time Series Semi-supervised Learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, 8923–8931.
- Ma, Q.; Zhuang, W.; Li, S.; Huang, D.; and Cottrell, G. 2020. Adversarial dynamic shapelet networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, 5069–5076.
- Middlehurst, M.; Schäfer, P.; and Bagnall, A. 2023. Bake off redux: a review and experimental evaluation of recent time series classification algorithms. *arXiv preprint arXiv:2304.13029*.
- Van der Maaten, L.; and Hinton, G. 2008. Visualizing data using t-SNE. *Journal of machine learning research*, 9(11).
- Wei, C.; Wang, Z.; Yuan, J.; Li, C.; and Chen, S. 2023. Time-frequency based multi-task learning for semi-supervised time series classification. *Information Sciences*, 619: 762–780.
- Xi, L.; Yun, Z.; Liu, H.; Wang, R.; Huang, X.; and Fan, H. 2022. Semisupervised time series classification model with self-supervised learning. *Engineering Applications of Artificial Intelligence*, 116: 105331.