Appendix

1 PROOF OF THEOREM 1

Theorem 1. For a series of graphs $\mathcal{D} = \{(\mathcal{G}_1, y_1), \dots, (\mathcal{G}_n, y_n)\}$, a pre-trained GNN model $f_{W_0} = (f_1, \dots, f_n)$ with each $f_i(X_i) = \mathbb{1} \cdot S_i X_i W_0$, and an arbitrary pattern graph \mathcal{G}_p , under the non-degeneracy condition [1], a linear projection head θ and a GNN $f_p \in \mathcal{F}$ for prompting, there exists $\mathcal{Y}' = \{y'_1, \dots, y'_n\}$ for which we have

$$l_{p} = \min_{f_{p} \in \mathcal{F}, \theta} \sum_{i=1}^{n} (f_{i}(X_{i} + \mathbb{1}^{T} \cdot f_{p}(X_{p})) \cdot \theta - y_{i})^{2}$$

$$< l_{ft} = \min_{\tilde{f} \in \tilde{\mathcal{F}}, \theta} \sum_{i=1}^{n} (\tilde{f}_{i}(X_{i}) \cdot \theta - y_{i})^{2}$$

$$(1)$$

when $y_1 = y_1', \ldots, y_n = y_n'$. Here $\mathbb{1}$ is a vector with all items equals to 1 and with a proper size that changes from line to line, $\tilde{\mathcal{F}}$ is defined in (4), and \mathcal{F} is defined as

$$\mathcal{F} = \left\{ f_p : f_p = \mathbb{1} \cdot S_p X_p W_p, \text{with } \forall \; (W_p - X_p^T X_p) \right\}.$$

PROOF. Here S_i , $1 \le i \le n$, and S_p is the diffusion matrix [3] of the graph (G_i, y_i) , $1 \le i \le n$ and the graph G_p respectively, i.e.,

$$S_i = \sum_{k=0}^{\infty} \theta_{i,k} T_i^k, \ 1 \le i \le n, \ \text{and} \ S_p = \sum_{k=0}^{\infty} \theta_{p,k} T_p^k,$$
 (2)

for some properly chosen weighting coefficients $\{\theta_{i,k}\}_{1\leq i\leq n,k\geq 1}$ and $\{\theta_{p,k}\}_{k\geq 1}$, and the properly chosen generalized transition matrix $\{T_i\}_{1\leq i\leq n}$ and T_p that are chosen based on the corresponding graph's structure.

Now, recall Lemma 4.3 [2] states that

Lemma 4.3 (Prompt effectiveness Guarantee [2]). For a series of graphs $\mathcal{D} = \{(\mathcal{G}_1, y_1), \dots, (\mathcal{G}_n, y_n)\}$, a pre-trained GNN model $f_{W_0} = (f_1, \dots, f_n)$ with each $f_i(X_i) = \mathbb{1} \cdot S_i X_i W_0$, under the non-degeneracy condition [1], a linear projection head θ , and a learnable vector \mathbf{v} , there exists $\mathbf{y}' = \{y_1', \dots, y_n'\}$ for which we have

$$l_{p} = \min_{\mathbf{v}, \theta} \sum_{i=1}^{n} (f_{i}(X_{i} + \mathbb{1}^{T} \cdot \mathbf{v}) \cdot \theta - y_{i})^{2} < l_{ft} = \min_{\tilde{f} \in \tilde{\mathcal{F}}, \theta} \sum_{i=1}^{n} (\tilde{f}_{i}(X_{i}) \cdot \theta - y_{i})^{2}$$
(3)

when $y_1 = y_1', \ldots, y_n = y_n'$. Here $\mathbb{1}$ is a vector with all items equals to 1 and with a proper size that changes from line to line, and $\tilde{\mathcal{F}}$ is defined as

$$\tilde{\mathcal{F}} = \left\{ \tilde{f} = (\tilde{f}_1, \dots, \tilde{f}_n) : \tilde{f}_i = \mathbb{1} \cdot S_i X_i W, 1 \le i \le n, \text{ with } \forall (W - W_0) \right\}. \tag{4}$$

Therefore, to conclude Theorem 1, we only need to show that for arbitrary given $\mathcal{Y} = \{y_1, \dots, y_n\}$, we have

$$\min_{f_p \in \mathcal{F}, \theta} \sum_{i=1}^{n} (f_i(X_i + \mathbb{1}^T \cdot f_p(X_p)) \cdot \theta - y_i)^2$$

$$= \min_{\mathbf{v}, \theta} \sum_{i=1}^{n} (f_i(X_i + \mathbb{1}^T \cdot \mathbf{v}) \cdot \theta - y_i)^2,$$
(5)

or equivalently, if we assume each X_i has p_0 columns, then, for arbitrary $\mathbf{v} \in \mathbb{R}^{1 \times p_0}$, there exists a matrix $W_p \in \mathbb{R}^{p_0 \times p_0}$ such that

$$\mathbf{v} = \mathbb{1} \cdot S_p X_p W_p \triangleq b_p \cdot W_p. \tag{6}$$

To proof (6), notice that $b_p \in \mathbb{R}^{1 \times p_0}$ and according to Gram-Schmidt orthogonalization process, there exists a base $\{b_1, \cdots, b_{p_0}\}$ such that $b_i = (b_{i1}, \cdots, b_{ip_0}) \in \mathbb{R}^{1 \times p_0}$ for $1 \le i \le n, b_1 = b_p / \|b_p\|_2$ and

$$\tilde{W} = (b_1^T, \cdots, b_{p_0}^T) \tag{7}$$

is a orthonormal matrix. Now, denote $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^{1 \times p_0}$. Apparently,

$$W_p = \frac{1}{\|b_p\|_2} \cdot \left[b_1^T \cdot (\mathbf{v} - e_1) + \tilde{W} \right]$$
 (8)

is one of the solutions of equation (6). Hence, for arbitrary $\mathbf{v} \in \mathbb{R}^{1 \times p_0}$, equation (6) has a solution $W_p \in \mathbb{R}^{p_0 \times p_0}$, and by applying lemma 4.3, further leads to Theorem 1.

REFERENCES

 Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and machine learning. Vol. 4. Springer.

[2] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2024. Universal prompt tuning for graph neural networks. Advances in Neural Information Processing Systems 36 (2024).

[3] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffusion improves graph learning. Advances in neural information processing systems 32 (2019)