End User Synchronization

Why Do We Need Synchronization?

"Nanosecond-level clock synchronization enables a new spectrum of timing and delay-critical applications"

-- Google, Stanford, Exploiting a Natural Network Effect for Scalable, Fine-grained Clock Synchronization

A Precise Time Axis leaps applications' performance, efficiency and security

Use Case: Mass Online Platforms

- Competitive interactions, like gaming or stock transactions
 - Simulating physical reality, have instantaneous actions occurring in multiple simulations on remote machines
 - Timestamp events occurring on remote machines, and do judgement at central server
 - Generates race conditions but want to be fair regardless of latency to the server
- Benefit:
 - Arbitrate causality between remote inputs

How to sync end users

- UWB (Ultra-Wideband)
 - IEEE802.15.4-2011 / IEEE 802.15.4z-2020
 - Large bandwidth approximates ideal square wave better with sharper edges
 - Sharp edges allow precise timestamping of packet reception and transmission

Traditional UWB application

- Ranging
 - UWB devices have a 40-bit counter running at ~64GHz, one tick ~15 ps
 - Each packet sent or received is timestamped using this counter
 - Range between devices calculated using Time of Flight * Speed of Light
 - Accuracy degrades as response time increases, each end has non-ideal clocks, so time calculations vary with clock frequency variation

Commercial UWB

- Apple Airtags
 - Use UWB and BLE together to find the distance and angle to the tag from your phone

- Samsung SmartTag
 - Similar to Apple, uses UWB and BLE together with phone's camera to show you where the tag is

Galaxy SmartTag+
Tag it. Find it. Simply smart with AR.

User Synchronization

- Synchronize multiple devices to a single "gateway" with GPS
 - Provides GPS synchronization to locations without GPS reception
- Ideally, this "gateway" function would be built into WiFi routers, or standalone device
 - Users could install as needed per household, synchronize every device

GPS Ultra-wideband Gateway (GUG)

UWB Endpoint (M.2 design, Time Drive)

Time Drive

- First prototype of a UWB endpoint, M.2 formfactor
 - Intel I225 NIC chipset as PCle endpoint
 - Decawave DW1000 as UWB chipset
 - Analog Devices AD9546 DPLL
 - Frequency and phase control, timestamping input, 1PPS outputs
 - ATSAMD21 as onboard microcontroller
 - SiT5711 OCXO for stability
- Hardware design to be uploaded soon.
 - Please contact us if interested in assisting in development

Time Drive Operation

Thank You

Control Flow In Holdover

Advanced "GPSDO"

FPGA

How to use it

For PTP Time Server (Grandmaster)

- Via PCle (PHC2SYS)
- Via PPS (TS2PHC)
- Via Reverse PPS (in progress)

For NTP Time Server

Via PCle (Chrony)

For Camera and Audio Systems

- IRIG-B
- PPS

Other Applications

- Bipolar and Multi Channel TDC (Multiple PPS in)
- Over PCle Event Time Stamping

Performance

Performance

Long-Term vs Short-Term Stability

Performance

Previous Versions

Sep 2020

February 2021

October 2020

Apr<u>il</u> 2021

November 2020

March 2021

December 2020

July 2021

Use Case: Network Telemetry

- Constantly pings machines
 - If machine doesn't respond, it must take an action.
- Why not do pings based on Hardware Timestamps
 - SING = Synchronous Pings
 - One way delay measurements
- In-Network Telemetry
 - Improve Congestion recognitions
 - Improve Congestion Control mechanisms
- End-to-End Precision: <100ns
 - Want to measure one way latency

Use Case: Distributed Al

- Resource Intensive to move data to one machine or cluster
- With the right precision, you can train in many places
- Then use the timestamps to merge the results
- Advantages:
 - Reduces data center traffic/congestion
 - Save Resources
- Requires end-to-end precision of <100ns
 - Across the data center
 - Globally

Use Case: Multicore Systems Across the Network

- Data Center Network is the Fabric
 - Ultra-Path Interconnect (UPI) over the network
 - Input-Output Memory Management Unit (IOMMU) over the network
- Can we program a DC like a PC?
 - We know how to program a Personal Computer well.
 - Precise time can help us program the Data Center
 Better
 - All DC equipment follows the same precise time vector
- Benefit:
 - Current data center loads are far from 100%
 - Determinism: If you know when everything happens, the load could be closer to 100%
- Requires End-to-End Precision of <10ns

OPEN POSSIBILITIES

Time Precision Today and Tomorrow

Global – Data Center CPU to another Data Center CPU around the world

[.] P2P - CPU to another CPU in the same rack with minimum latency.

OPEN POSSIBILITIES

Coming Soon...

- Dual GNSS with Rb Clock (SA.53)
- Low Power with Cs Clock (SA.45s)

Can be found on www.timingcard.com

