$\phi: I \to \mathbb{R}$ is convex (where I is an interval) if for every tetoin, x, y = I we have $\phi(t_2 + (1-t)y) \in t\phi(x) + (1-t)\phi(y)$

let $\phi: I \longrightarrow P$ be convex and 3 a, b real numbers m & Irt(I) then st. Yxe I ax+b < olx) and $am+b = \phi(m)$

toke xcmcy x,y &I

then by convexity as $m = \frac{y-m}{y-x} \times + \frac{m-x}{y-x} y = \frac{x(y-m) + y(m-x)}{y-x}$

(y-x) p(m) = (y-m) p(x) + (m-x) p(y)

 $(y-m+m-x)\phi(m) \in (y-m)\phi(x)+(m-x)\phi(y)$ >101.1 - 01.m)

(y-m + m-x, + 1000) = 1 $(y-m)(\phi(m)-\phi(\infty)) \leq (m-x)(\phi(y)-\phi(m))$ $\frac{\phi(m)-\phi(x)}{m-x} \leq \frac{\phi(y)-\phi(m)}{y-m}$ only depends only depends مر در This is true for any occm<y $\sup_{x \in \mathbb{N}} \frac{\phi(n) - \phi(x)}{m - x} \leq \inf_{y > n} \frac{\phi(y) - \phi(n)}{y - n}$ so there exists an a s.t. If >c < m < y $\frac{\phi(m)-\phi(x)}{m-x} \leq a \leq \frac{\phi(y)-\phi(m)}{y-m}$ \$(m) - d(x) ≤ am -ax for all 2 < M $\phi(x) = ax - am + \phi(m)$ $\phi(y) - \phi(m) > ay - am$ for all y > m þly) ≥ ay -am +¢(m) $\forall x \in I \quad \phi(x) \geq ax - am + \phi(m)$ when st=m you have equality Suppose (EIE, n) is a measure space f: E-3 PR Prop 1 Jensen

neasurable, p(t)=1, ϕ a convex measurable function R > R hum u(O(f)) makes sense $u(\phi(\xi)) > \phi(u(\xi))$ Example $\phi(z) = z^2$ $E = to_1 1$ ω Lebesgue + Borel σ -algebra $\frac{1}{4} = \left(\int_0^1 x dx\right)^2 \leqslant \int_0^1 x^2 dx = \frac{1}{3}$ Pf/ NB. As M(E)=1 Mlf) is the average value of f. In particular sulf) e interior (Range (f)) By our lemma with m= mlf) I a, b c.t. $-ax+b \leq \phi(x) \forall x$, $an(e)+b = \phi(n(e))$ $af(\infty) + b = \phi(f(x))$ anle)+ bult) < u(4(P)) integrating gives ang) +6 \leq $m(\phi(g))$ $\phi(u(k)) \leq u(\phi(k))$