DRAFT - Status of the Pacific Hake (whiting) stock in U.S. and Canadian waters in 2015

Joint Technical Committee of the Pacific Hake/Whiting Agreement Between the Governments of the United States and Canada

January 7, 2016

This document reports the collaborative efforts of the official U.S. and Canadian JTC members.

Authors of this document are (In no particular order):
Allan C. Hicks¹
Aaron Berger¹
Ian G. Taylor¹
Nathan Taylor²
Chris Grandin²
Andrew Edwards²
Sean Cox³

This document should be cited as follows: Taylor, I.G., C. Grandin, A.C. Hicks, N. Taylor, and S. Cox. 2015. Status of the Pacific Hake (whiting) stock in U.S. and Canadian waters in 2015. Prepared by the Joint Technical Committee of the U.S. and Canada Pacific Hake/Whiting Agreement; National Marine Fishery Service; Canada Department of Fisheries and Oceans. 159 p.

¹Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA

²Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada

³School of Resource and Environmental Management, Simon Fraser University, TASC I – Room #8405, 8888 University Drive, Burnaby, B.C. V5A-1S6, Canada

TABLE OF CONTENTS

EXE	CUTIV	VE SUMMARY
	Stock	
	Catche	es
	Data a	and Assessment
	Stock	Biomass
	Recrui	${ m itment}$
	Exploi	Itation Status
	Manag	gement Performance
	Refere	nce Points
	Unrese	olved Problems and Major Uncertainties
	Foreca	st Decision Table
	Resear	rch and Data Needs
1	INTR	ODUCTION
	1.1	Stock structure and life history
	1.2	Ecosystem considerations
	1.3	Management of Pacific Hake
REF	EREN	CES 20

EXECUTIVE SUMMARY

STOCK

This assessment reports the status of the coastal Pacific Hake (or Pacific Whiting, Merluccius Productus) resource off the west coast of the United States and Canada. This stock exhibits seasonal migratory behavior, ranging from offshore and generally southern waters during the winter spawning season to coastal areas between northern California and northern British Columbia during the spring, summer and fall when the fishery is conducted. In years with warmer water temperatures the stock tends to move farther to the North during the summer and older hake tend to migrate farther than younger fish in all years with catches in the Canadian zone typically consisting of fish greater than four years old. Separate, and much smaller, populations of hake occurring in the major inlets of the northeast Pacific Ocean, including the Strait of Georgia, Puget Sound, and the Gulf of California, are not included in this analysis.

CATCHES

Coast-wide fishery Pacific Hake landings averaged 224,364 t from 1966 to 2015, with a low of 89,930 t in 1980 and a peak of 363,135 t in 2005. Prior to 1966, total removals were negligible compared to the modern fishery. Over the early period, 1966–1990, most removals were from foreign or joint-venture fisheries. Over all years, the fishery in U.S. waters averaged 168,983 t, or 75.3% of the average total landings, while catch from Canadian waters averaged 55,381 t. Over the last 10 years, 2006–2015, the total average catch is 265,646 with U.S. and Canadian catches averaging 206,859 t and 58,786 t, respectively.

In this stock assessment, the terms catch and landings are used interchangeably. Estimates of discard within the target fishery are included, but discarding of Pacific Hake in non-target fisheries is not. Discard from all fisheries is estimated to be less than 1% of landings in recent years. Recent coast-wide landings from 2010–2014 have been above the long term average of 224,364 t.

Landings between 2001 and 2008 were predominantly comprised of fish from the very large 1999 year class, with the cumulative removal from that cohort exceeding 1.2 million t.

Figure 1. Total Pacific Hake catch used in the assessment by sector, 1966 - 2015. U.S. tribal catches are included in the sectors where they are represented.

Table 1. Recent commercial fishery catch (1,000's t). Tribal catches are included where applicable.

Year	US Mother- ship	US Catcher- Processor	US Shore- based	US Research	US Total	CAN Joint Venture	CAN Shore- side	CAN Freezer- Trawler	CAN Total	Total
2006	60,926	78,864	127,165	0	266,955	14,319	65,289	$15,\!136$	94,744	361,699
2007	52,977	$73,\!263$	91,441	0	217,682	6,780	55,390	$13,\!537$	75,707	293,389
2008	72,440	108,195	67,760	0	248,395	3,592	57,197	$12,\!517$	73,306	321,701
2009	37,550	$34,\!552$	49,223	0	121,325	0	43,774	12,073	55,847	177,172
2010	52,022	$54,\!284$	64,654	0	170,961	8,081	38,780	$12,\!850$	59,712	230,672
2011	56,394	71,678	102,147	1,042	231,262	9,717	36,632	14,060	60,409	291,671
2012	38,512	$55,\!264$	65,920	448	160,145	0	31,164	14,478	45,642	205,787
2013	52,470	77,950	102,143	1,018	233,581	0	33,451	$18,\!583$	52,033	285,614
2014	62,102	103,203	98,638	197	264,139	0	13,184	$21,\!380$	34,563	298,703
2015	27,658	$68,\!484$	58,009	0	154,152	0	16,364	$19,\!532$	35,896	190,047

DATA AND ASSESSMENT

The biomass estimate from the acoustic survey conducted in 2015 has been added to the model survey time series. The only other new data included in 2015 are the 2015 fishery age compositions and total catch. Various other data types, including data on maturity, have been explored since the 2014 stock assessment, but are not included in the base model for this year.

The Joint Technical Committee (JTC) assessment depends primarily on the fishery landings (1966 - 2015), acoustic survey biomass estimates and age-composition (1995 - 2015); Figure 2), as well as fishery age-composition. While the 2011 survey index value was the lowest in the time-series, the index increased steadily over the four surveys conducted in 2011,

2012, 2013, and 2015. Age-composition data from the aggregated fisheries (1975–2014) and the acoustic survey contribute to the assessment model's ability to resolve strong and weak cohorts.

The assessment uses a Bayesian estimation approach, sensitivity analyses, and closed-loop simulations to evaluate the potential consequences of parameter uncertainty, alternative structural models, and management system performance, respectively. The Bayesian approach combines prior knowledge about natural mortality, stock-recruitment steepness (a parameter for stock productivity), and several other parameters with likelihoods for acoustic survey biomass indices and age-composition, as well as fishery age composition data. Integrating the joint posterior distribution over model parameters (via Markov Chain Monte Carlo simulation) provides probabilistic inferences about uncertain model parameters and forecasts derived from those parameters. Sensitivity analyses are used to identify alternative structural models that may also be consistent with the data. Finally, the closed-loop simulations provide an assessment of how alternative combinations of survey frequency, assessment model selectivity assumptions, and harvest control rules affect expected management outcomes given repeated application of these procedures over the long-term.

This 2015 assessment retains the structural form of the base assessment model from 2014. The model retains many of the previous elements as configured in Stock Synthesis (SS). Analyses conducted in 2014 showed that the time-varying selectivity assessment model reduced the magnitude of extreme cohort strength estimates. In closed-loop simulations, management based upon assessment models with time-varying fishery selectivity led to higher median average catch, lower risk of falling below 10% of unfished biomass (B_0), smaller probability of fishery closures, and lower inter-annual variability in catch compared to assessment models with time-invariant fishery selectivity. It was found that even a small degree of flexibility in the assessment model fishery selectivity could reduce the effects of errors caused by assuming selectivity is constant over time.

Figure 2. Acoustic survey biomass index (millions of metric tons). Approximate 95% confidence intervals are based on only sampling variability (1995–2007, 2011–2015) in addition to squid/hake apportionment uncertainty (2009, in blue).

STOCK BIOMASS

The base stock assessment model indicates that since the 1960s, Pacific Hake female spawning biomass has ranged from well below to near unfished equilibrium. The model estimates that it was below the unfished equilibrium in the 1960s and 1970s due to lower than average recruitment. The stock is estimated to have increased rapidly to near unfished equilibrium after two or more large recruitments in the early 1980s, and then declined steadily after a peak in the mid- to late-1980s to a low in 2000. This long period of decline was followed by a brief increase to a peak in 2003 as the large 1999 year class matured. The 1999 year class largely supported the fishery for several years due to relatively small recruitments between 2000 and 2007 entering the fishery to replace catches being removed during this period. With the aging 1999 year class, median female spawning biomass declined throughout the late 2000s, reaching a time-series low of 0.497 million t in 2009. The assessment model estimates that spawning biomass declined from 2014 to 2015 after five years of increases from 2009 to 2014. The estimated increase was the result of a large 2010 and an aboveaverage 2008 cohort. The 2015 median posterior spawning biomass is estimated to be 73.6\% of the unfished equilibrium level (B_0) with 95% posterior credibility intervals ranging from 34.3% to 149.8%. The median estimates of 2014 and 2015 female spawning biomass values are 1.703 and 1.663 million t, respectively.

Figure 3. Median of the posterior distribution for female spawning biomass through 2015 (solid line) with 95% posterior credibility intervals (shaded area).

Table 2. Recent trends in estimated Pacific Hake female spawning biomass (thousand t) and relative spawning biomass level relative to estimated unfished equilibrium.

	_	wning bio		Relative	spawning	biomass
	\ \ \	housand	,		$(\mathrm{B_t/B_0})$	
Year	$2.5^{ m th}$	Median	$97.5^{ m th}$	$2.5^{ m th}$	Median	$97.5^{ m th}$
1 cai	$\mathbf{percentile}$	Wiedian	${f percentile}$	${f percentile}$	Wiedian	${f percentile}$
2006	735.7	866.6	1,098.7	30.5%	38.3%	48.8%
2007	561.1	680.5	902.0	23.7%	30.2%	39.5%
2008	478.4	602.0	858.2	20.5%	26.7%	36.3%
2009	370.2	496.8	772.1	16.4%	22%	31.6%
2010	426.9	609.8	1,005.8	19%	26.8%	41.8%
2011	466.3	712.9	1,251.6	20.5%	31.4%	51.3%
2012	638.3	1,161.9	2,221.2	29.3%	50.7%	91.3%
2013	800.9	1,549.2	3,068.4	36.5%	68.9%	129.8%
2014	794.4	1,703.3	3,466.1	36.6%	75.2%	145.6%
2015	749.6	1,663.0	$3,\!550.6$	34.3%	73.6%	149.8%

Figure 4. Median (solid line) of the posterior distribution for relative spawning biomass (B_t/B_0) through 2015 with 95% posterior credibility intervals (shaded area). Dashed horizontal lines show 10%, 40% and 100% levels.

RECRUITMENT

The new data available for this assessment do not significantly change the estimated patterns of recruitment. Pacific Hake appear to have low average recruitment with occasional large year-classes. Very large year classes in 1980, 1984, and 1999 supported much of the commercial catch from the 1980s to the mid-2000s. From 2000 to 2007, estimated recruitment was at some of the lowest values in the time-series followed by a relatively large 2008 year class. The current assessment estimates a very strong 2010 year class comprising 70% of the coast-wide commercial catch in 2013 and 64% of the 2014 catch. Its size is still more uncertain than cohorts that have been observed for more years but the median estimate is the second highest in the time series (after the 1980 recruitment estimate). The model currently estimates a small 2011 year class, and smaller than average 2012 and 2013 year classes. There is little or no information in the data to estimate the sizes of the 2014 and 2015 year classes. Retrospective analyses of year class strength for young fish have shown the estimates of recent recruitment to be unreliable prior to at least age 3.

Figure 5. Medians (solid circles) and means (x) of the posterior distribution for recruitment (billions of age-0) with 95% posterior credibility intervals (blue lines). The median of the posterior distribution for mean unfished equilibrium recruitment (R_0) is shown as the horizontal dashed line with a 95% posterior credibility interval shaded between the dotted lines.

Table 3. Estimates of recent Pacific Hake recruitment (millions of age-0) and recruitment deviations (deviations below zero indicate less than median recruitment and deviations above zero indicate above median recruitment).

		ute recrui (millions)			tment dev	riations	
Year	$2.5^{ m th}$ percentile	Median		$2.5^{ m th}$ percentile	Median	97.5 th percentile	
2005	1,715.5	2,465.3	3,950.7	0.583	0.885	1.209	
2006	$1,\!173.4$	$1,\!852.6$	3,249.5	0.277	0.631	1.018	
2007	8.4	48.2	168.5	-4.652	-2.976	-1.8	
2008	3,696.0	5,987.2	11,245.9	1.476	1.877	2.322	
2009	575.5	1,289.5	2,926.6	-0.311	0.357	0.966	
2010	7,181.6	14,799.4	31,733.8	2.192	2.767	3.355	
2011	85.4	447.3	1,533.2	-2.337	-0.766	0.36	
2012	311.4	1,818.1	7,954.9	-1.117	0.559	1.901	
2013	52.5	833.3	9,911.5	-2.986	-0.225	2.185	
2014	67.0	1,062.1	19,282.9	-2.743	0.041	2.769	

EXPLOITATION STATUS

Median fishing intensity on the stock is estimated to have been consistently below the $F_{40\%}$ target with the exception of the periods in the late 1990s and late 2000s when the spawning biomass was the lowest. In retrospect, the target was exceeded slightly in 2008 and 2010. Exploitation fraction (catch divided by biomass of ages 3 and above) has shown relatively similar patterns. Fishing intensity is estimated to have declined from 100.3% in 2010 to 61.6% in 2014 while exploitation fraction has decreased from about 0.25 in the late 2000s to less than 0.10 in 2013 and 2014. The uncertainty around these estimates is largest in the most recent years due to uncertainty in recruitment and spawning biomass.

Figure 6. Trend in median fishing intensity (relative to the SPR management target) through 2014 with 95% posterior credibility intervals. The management target defined in the Agreement is shown as a horizontal line at 1.0.

Figure 7. Trend in median exploitation fraction through 2014 with 95% posterior credibility intervals.

Table 4. Recent trend in fishing intensity. Relative spawning potential ratio; $(1-SPR)/(1-SPR_{40\%})$ and exploitation rate (catch divided by age 3+ biomass).

	Fish	ning inten	\mathbf{sity}	_	itation fra	action
Year	$2.5^{ m th}$	Median	$97.5^{ m th}$	$2.5^{ m th}$	Median	$97.5^{ m th}$
1 ear	${f percentile}$	Median	${f percentile}$	${f percentile}$	Median	${f percentile}$
2005	0.624	0.801	0.960	0.142	0.178	0.207
2006	0.751	0.928	1.092	0.166	0.212	0.249
2007	0.792	0.981	1.139	0.190	0.251	0.301
2008	0.858	1.045	1.199	0.180	0.256	0.320
2009	0.643	0.871	1.051	0.102	0.157	0.211
2010	0.731	1.003	1.197	0.159	0.257	0.362
2011	0.661	0.949	1.179	0.104	0.184	0.277
2012	0.451	0.740	1.012	0.075	0.143	0.247
2013	0.380	0.660	0.974	0.037	0.074	0.143
2014	0.342	0.616	0.942	0.039	0.081	0.172

MANAGEMENT PERFORMANCE

Over the last decade, the average coast-wide utilization rate (i.e., utilization = landings/quota) has been 86.3%. From 2010 to 2014, the mean utilization rates differed between the United

States (85%) and Canada (60%). Total landings last exceeded the coast-wide quota in 2002 when utilization was 112%. Exploitation history in terms of joint biomass and F-target reference points shows that before 2007, median fishing intensity was below target and female spawning biomass was near or above target (Figure 5). Between 2007 and 2011, however, fishing intensity ranged from 87% to 105% and relative spawning biomass between 0.22 and 0.31. Biomass has risen recently with the 2008 and 2010 recruitments and correspondingly, fishing intensity has fallen below targets, and relative spawning biomass above targets for 2012 through 2014. While uncertainty in the 2014 fishing intensity estimates and relative spawning biomass is large, the model predicts a 1.4% joint probability of being both above the target fishing intensity in 2014 and below 40% relative spawning biomass at the start of 2015.

Table 5. Recent trends in Pacific Hake landings and management decisions.

Year	Total landings (t)	Coast-wide (US+Canada) catch target (t)	Proportion of catch target removed
2005	363,135	364,197	99.7%
2006	361,699	$364,\!842$	99.1%
2007	291,054	328,358	88.6%
2008	322,144	$364,\!842$	88.3%
2009	177,209	$184,\!000$	96.3%
2010	227,054	$262,\!500$	86.5%
2011	286,892	393,751	72.9%
2012	207,057	251,809	82.2%
2013	287,677	$365{,}112$	78.8%
2014	301,573	428,000	70.5%

Figure 8. Estimated historical path followed by fishing intensity and relative spawning biomass for Pacific Hake with labels on the start and end years. Gray bars span the 95% credibility intervals for 2014 fishing intensity (vertical) and relative spawning biomass (horizontal).

REFERENCE POINTS

We report estimates of the 2015 base model reference points with posterior credibility intervals in Table f. The estimates are slightly different than the estimates in the 2014 assessment with slightly greater yields and biomasses estimated in this assessment.

UNRESOLVED PROBLEMS AND MAJOR UNCERTAINTIES

FORECAST DECISION TABLE

RESEARCH AND DATA NEEDS

Table 6. Summary of median and 95% credibility intervals of equilibrium reference points for the Pacific Hake base assessment model. Equilibrium reference points were computed using 1966-2014 averages for mean size at age and selectivity at age.

0	$2.5^{ m th}$	Median	97.5 th
Quantity	percentile	Median	percentile
Unfished female B (B ₀ , thousand t)	1828	2269	2897
Unfished recruitment $(R_0, millions)$	1932	2923	4812
Reference points (equilibrium) based on F _{40%}			
Female spawning biomass (B _{F40%} thousand t)	613	814	1025
Exploitation fraction corresponding to SPR	18.5	21.6	25.6
Yield at B _{F40%} (thousand t)	270	362	513
Female spawning biomass (B _{40%} thousand t)	731	907	1159
$\mathrm{SPR}_{\mathrm{B40\%}}$	40.7	43.4	50.5
Reference points (equilibrium) based on B _{40%}			
Exploitation fraction resulting in B _{40%}	14.4	18.9	23.2
Yield at B _{40%} (thousand t)	264	352	503
Female spawning biomass (B _{MSY} thousand t)	357	561	895
$\mathrm{SPR}_{\mathrm{MSY}}$	18.5	29	44.7
Reference points (equilibrium) based on estimated MSY			
Exploitation fraction corresponding to SPR _{MSY}	17.6	33.3	59.6
MSY (thousand t)	277	384	563

1 INTRODUCTION

** indicates something that needs to be checked (or cannot be automated).

MISSING REFERENCES

** References needed were in last year's assessment text but not in its bibliography or in the .bib file from Allan:

Alheit and Pitcher 1995

Lloris et al. 2005

Vrooman and Paloma 1977

Dorn 1991 - should this be Dorn and Methot 1991, as in the 2015 bibliography?

Dorn 1992

** References that were in last year's assessment but not its bibliography, but I'm taking from the .bib file:

Iwamoto et al. (2004)

King et al. (2012)

(Dorn, 1995) - there are two Dorn (1995) references in the .bib file, I assume the one referenced next to Agostini et al. is the CalCOFI report, not the stock assessment.

(Agostini et al., 2006)

The Joint US-Canada Agreement for Pacific Hake (called the Agreement) was signed in 2003 and went into force in 2008 but could not be implemented until 2010. This is the fifth annual stock assessment conducted under the treaty process. Under the Agreement, Pacific Hake or Pacific Whiting (Merluccius Productus) stock assessments are to be prepared by the Joint Technical Committee (JTC) comprised of both U.S. and Canadian scientists, and reviewed by the Scientific Review Group (SRG), consisting of representatives from both nations. Additionally, the Agreement calls for both of these bodies to include scientists nominated by an Advisory Panel (AP) of fishery stakeholders.

The data sources for this assessment are an acoustic survey as well as fishery and survey age-composition data. The assessment depends primarily upon the acoustic survey biomass

index time-series for information on the scale of the current hake stock. Age-composition data from the aggregated fishery and the acoustic survey provide additional information allowing the model to resolve strong and weak cohorts. **Both sources show a very strong 2010 cohort dominating the age compositions in recent years. Annual fishery catch is not considered data in the sense that it does not contribute to the likelihood. However, the catch is an important source of information in contributing to changes in abundance and providing a lower bound on the available population biomass in each year.

This assessment is fully Bayesian, with the base model incorporating prior information on several key parameters (including natural mortality, M, and steepness of the stock-recruit relationship, h) and integrating over parameter uncertainty to provide results that can be probabilistically interpreted. From a range of alternate models investigated by the JTC, a subset of sensitivity analyses are also reported in order to provide a broad qualitative comparison of structural uncertainty with respect to the base case. These sensitivity analyses are thoroughly described in this assessment document. The structural assumptions of this 2015 base model are effectively the same as the 2014 base model. These models differ from the 2013 base model primarily through the addition of time-varying selectivity in the fishery.

1.1 STOCK STRUCTURE AND LIFE HISTORY

Pacific Hake, also referred to as Pacific whiting, is a semi-pelagic schooling species distributed along the west coast of North America generally ranging from 25° N. to 55° N. latitude (see Figure **1 for an overview map). It is among 18 species of hake from four genera (being the majority of the family *Merluccidae*), which are found in both hemispheres of the Atlantic and Pacific oceans (**Alheit and Pitcher 1995, **Lloris et al. 2005). The coastal stock of Pacific Hake is currently the most abundant groundfish population in the California Current system. Smaller populations of this species occur in the major inlets of the Northeast Pacific Ocean, including the Strait of Georgia, Puget Sound, and the Gulf of California. Genetic studies indicate that the Strait of Georgia and the Puget Sound populations are genetically distinct from the coastal population (Iwamoto et al., 2004; King et al., 2012). Genetic differences have also been found between the coastal population and hake off the west coast of Baja California (**Vrooman and Paloma 1977). The coastal stock is also distinguished from the inshore populations by larger body size and seasonal migratory behavior.

The coastal stock of Pacific Hake typically ranges from the waters off southern California to northern British Columbia and in some years to southern Alaska, with the northern boundary related to fluctuations in annual migration. In spring, adult Pacific Hake migrate onshore and northward to feed along the continental shelf and slope from northern California to Vancouver Island. In summer, Pacific Hake often form extensive mid-water aggregations in association with the continental shelf break, with highest densities located over bottom depths of 200-300 m (**Dorn 1991, 1992).

Older Pacific Hake exhibit the greatest northern migration each season, with two- and three-

year old fish rarely observed in Canadian waters north of southern Vancouver Island. During El Niño events (warm ocean conditions, such as 1998), a larger proportion of the stock migrates into Canadian waters, apparently due to intensified northward transport during the period of active migration (Dorn, 1995; Agostini et al., 2006). In contrast, La Niña conditions (colder water, such as in 2001) result in a southward shift in the stock's distribution, with a much smaller proportion of the population found in Canadian waters, as seen in the 2001 survey (Figure **2). The research on links between migration of different age classes and environmental variables is anticipated to be updated in the years ahead to take advantage of the data that have been collected in the years since the previous analyses were conducted.

Additional information on the stock structure for Pacific Hake is available in the 2013 Pacific Hake Stock Assessment document JTC, Joint Technical Committee (2013).

1.2 ECOSYSTEM CONSIDERATIONS

Pacific Hake are important to ecosystem dynamics in the Eastern Pacific due to their relatively large total biomass and potentially large role as both prey and predator in the Eastern Pacific Ocean. A more detailed description of ecosystem considerations is given in the 2013 Pacific Hake stock assessment JTC, Joint Technical Committee (2013). Recent research has developed an index of abundance for Humboldt Squid and suggested links between squid and hake abundance (Stewart et al., 2014).

**Last year's assessment: This document includes a sensitivity analysis where hake mortality was linked to the Humboldt Squid index (Section 3.5 below) although further research on this topic is needed.

1.3 MANAGEMENT OF PACIFIC HAKE

Since implementation of the Magnuson-Stevens Fishery Conservation and Management Act in the United States and the declaration of a 200 mile fishery conservation zone in both countries in the late 1970s, annual quotas (or catch targets) have been used to limit the catch of Pacific Hake in both zones. Scientists from both countries historically collaborated through the Technical Subcommittee of the Canada-U.S. Groundfish Committee (TSC), and there were informal agreements on the adoption of annual fishing policies. During the 1990s, however, disagreements between the U.S. and Canada on the allotment of the catch limits between U.S. and Canadian fisheries led to quota overruns; 1991-1992 national quotas summed to 128% of the coast-wide limit, while the 1993-1999 combined quotas were 107% of the limit, on average. The Agreement between the U.S. and Canada, establishes U.S. and Canadian shares of the coast-wide allowable biological catch at 73.88% and 26.12%, respectively, and this distribution has been adhered to since ratification of the Agreement.

Throughout the last decade, the total coast-wide catch has tracked harvest targets reason-

ably well (**Table 4). Since 1999, catch targets have been determined using an $F_{\rm SPR=40\%}$ default harvest rate with a 40:10 adjustment that decreases the catch linearly from the catch target at a relative spawning biomass of 40% and above, to zero catch at relative spawning biomass values of 10% or less (called the default harvest policy in the Agreement). Further considerations have often resulted in catch targets to be set lower than the recommended catch limit. In the last decade, total catch has never exceeded the quota, but harvest rates have approached the $F_{\rm SPR=40\%}$ target and, in retrospect, may have exceeded the target as estimated from this assessment [**true for this year??]. Overall, management appears to be effective at maintaining a sustainable stock size, in spite of uncertain stock assessments. However, management has been precautionary in years when very large quotas were predicted by the stock assessment.

Table 7. Annual catches of Pacific Hake (t) in U.S. waters by sector, 1966-2015. Tribal catches are included in the sector totals.

Year	Foreign	JV	Mothership	Catcher-Processor	Shore-based	Research	Total
1966	137,000	0	0	0	0	0	137,000
1967	168,700	0	0	0	$8,\!960$	0	$177,\!660$
1968	$60,\!660$	0	0	0	160	0	$60,\!820$
1969	$86,\!190$	0	0	0	90	0	$86,\!280$
1970	$159,\!510$	0	0	0	70	0	$159,\!580$
1971	$126,\!490$	0	0	0	1,430	0	$127,\!920$
1972	74,090	0	0	0	40	0	74,130
1973	$147,\!440$	0	0	0	70	0	$147,\!510$
1974	$194,\!110$	0	0	0	0	0	$194,\!110$
1975	$205,\!650$	0	0	0	0	0	$205,\!650$
1976	$231,\!330$	0	0	0	220	0	$231,\!550$
1977	$127,\!010$	0	0	0	490	0	$127,\!500$
1978	$96,\!827$	860	0	0	690	0	$98,\!377$
1979	$114,\!910$	8,830	0	0	940	0	$124,\!680$
1980	44,023	$27,\!537$	0	0	790	0	$72,\!350$
1981	70,365	$43,\!557$	0	0	838	0	114,760
1982	7,089	$67,\!465$	0	0	1,027	0	$75,\!581$
1983	0	72,100	0	0	1,051	0	73,151
1984	14,772	78,889	0	0	2,721	0	96,382
1985	49,853	31,692	0	0	3,894	0	85,439
1986	69,861	81,640	0	0	3,465	0	154,966
1987	49,656	105,997	0	0	4,795	0	$160,\!448$
1988	18,041	135,781	0	0	6,867	0	160,690
1989	0	195,636	0	0	$7,\!414$	0	203,050
1990	0	170,972	0	4,537	9,632	0	185,142
1991	0	0	86,408	119,411	23,970	0	229,789
1992	0	0	36,721	117,981	56,127	0	210,829
1993	0	0	$14,\!558$	83,466	42,108	0	140,132
1994	0	0	93,610	86,251	73,616	0	253,477
1995	0	0	40,805	61,357	74,962	0	177,124
1996	0	0	62,098	65,933	85,128	0	213,159
1997	0	0	75,128	70,832	87,416	0	233,376
1998	0	0	74,686	70,377	87,856	0	232,920
1999	0	0	73,440	67,655	83,470	0	$224,\!565$
2000	0	0	$53,\!110$	$67,\!805$	85,854	0	206,770
2001	0	0	41,901	58,628	73,412	0	173,940
2002	0	0	48,404	36,342	45,708	0	$130,\!453$
2003	0	0	45,396	41,214	55,335	0	141,945
2004	0	0	$47,\!561$	73,176	96,504	0	217,240
2005	0	0	72,178	78,890	$109,\!052$	0	260,120
2006	0	0	60,926	78,864	$127,\!165$	0	266,955
2007	0	0	52,977	73,263	91,441	0	217,682
2008	0	0	72,440	108,195	67,760	0	248,395
2009	0	0	$37,\!550$	$34,\!552$	49,223	0	$121,\!325$
2010	0	0	$52,\!022$	54,284	64,654	0	170,961
2011	0	0	56,394	71,678	$102,\!147$	1,042	231,262
2012	0	0	38,512	$55,\!264$	65,920	448	$160,\!145$
2013	0	0	$52,\!470$	77,950	102,143	1,018	233,581
2014	0	0	$62,\!102$	103,203	98,638	197	264,139
2015	0	0	27,658	68,484	58,009	0	$154,\!152$

Table 8. Annual catches of Pacific Hake (t) in Canadian waters by sector, 1966-2015.

Year	Foreign	JV	Shoreside	Freezer-trawl	Total
1966	700	0	0	0	700
1967	36,710	0	0	0	36,710
1968	61,360	0	0	0	$61,\!360$
1969	93,850	0	0	0	93,850
1970	75,010	0	0	0	75,010
1971	26,700	0	0	0	26,700
1972	43,410	0	0	0	43,410
1973	15,130	0	0	0	15,130
1974	17,150	0	0	0	17,150
1975	15,700	0	0	0	15,700
1976	5,970	0	0	0	5,970
1977	5,190	0	0	0	$5,\!190$
1978	3,450	1,810	0	0	$5,\!260$
1979	7,900	4,230	300	0	12,430
1980	5,270	12,210	100	0	$17,\!580$
1981	3,920	17,160	3,280	0	$24,\!$
1982	$12,\!480$	19,680	0	0	32,160
1983	13,120	27,660	0	0	40,780
1984	13,200	28,910	0	0	42,110
1985	$10,\!530$	$13,\!240$	1,190	0	24,960
1986	23,740	30,140	1,770	0	$55,\!$
1987	$21,\!450$	48,080	4,170	0	73,700
1988	38,080	49,240	830	0	88,150
1989	29,750	62,718	$2,\!562$	0	95,029
1990	3,810	68,314	4,021	0	76,144
1991	5,610	68,133	16,174	0	89,917
1992	0	68,779	20,043	0	88,822
1993	0	46,422	12,352	0	58,773
1994	0	85,154	23,776	0	108,930
1995	0	26,191	46,181	0	72,372
1996	0	66,779	26,360	0	93,139
1997	0	42,544	49,227	0	91,771
1998	0	39,728	48,074	0	87,802
1999	0	17,201	70,121	0	87,322
2000	0	15,625	6,382	0	22,007
2001	0	21,650	31,935	0	53,585
2002	0	0	50,244	0	50,244
2003	0	0	63,217	0	63,217
2004	0	58,892	66,175	0	125,067
2005	0	15,695	77,335	9,985	103,014
2006	0	14,319	$65,\!289$	15,136	94,744
2007	0	6,780	55,390	13,537	75,707
2008	0	3,592	57,197	12,517	73,306
2009	0	0,552	43,774	12,073	55,847
2009 2010	0	8,081	38,780	12,850	59,712
2010 2011	0	9,717	36,632	12,060 $14,060$	60,409
2011 2012	0	9,111	$31{,}164$	14,478	45,642
$\frac{2012}{2013}$	0	0	31,104 $33,451$	18,583	52,042
$\frac{2013}{2014}$	0	0	13,184	21,380	34,563
$\frac{2014}{2015}$	0	0	16,364	19,532	
Z010	U	U	10,304	19,002	$35,\!896$

Table 9. Total U.S., Canadian and coastwide catches of Pacific Hake (t) from 1966-2015. The percentage of the total catch from each country's waters is also given.

Year	Total U.S.	Total Canada	Total coastwide	Percent U.S.	Percent Canada
1966	137,000	700	137,700	99.5	0.5
1967	177,660	36,710	214,370	82.9	17.1
1968	60,820	61,360	122,180	49.8	50.2
1969	86,280	93,850	180,130	47.9	52.1
1970	159,580	75,010	$234,\!590$	68.0	32.0
1971	127,920	26,700	154,620	82.7	17.3
1972	74,130	43,410	117,540	63.1	36.9
1973	$147,\!510$	15,130	162,640	90.7	9.3
1974	194,110	17,150	211,260	91.9	8.1
1975	205,650	15,700	221,350	92.9	7.1
1976	231,550	5,970	237,520	97.5	2.5
1977	$127,\!500$	$5,\!190$	132,690	96.1	3.9
1978	98,377	$5,\!260$	103,637	94.9	5.1
1979	124,680	$12,\!430$	137,110	90.9	9.1
1980	72,350	17,580	89,930	80.5	19.5
1981	114,760	$24,\!360$	139,120	82.5	17.5
1982	75,581	32,160	107,741	70.2	29.8
1983	73,151	40,780	113,931	64.2	35.8
1984	$96,\!382$	42,110	138,492	69.6	30.4
1985	85,439	24,960	110,399	77.4	22.6
1986	154,966	55,650	210,616	73.6	26.4
1987	160,448	73,700	234,148	68.5	31.5
1988	160,690	88,150	248,840	64.6	35.4
1989	203,050	95,029	298,079	68.1	31.9
1990	185,142	76,144	261,286	70.9	29.1
1991	229,789	89,917	319,705	71.9	28.1
1992	210,829	88,822	299,650	70.4	29.6
1993	140,132	58,773	198,905	70.5	$\frac{29.5}{29.5}$
1994	253,477	108,930	362,407	69.9	30.1
1995	177,124	72,372	249,496	71.0	29.0
1996	213,159	93,139	306,299	69.6	30.4
1997	$233,\!376$	91,771	325,147	71.8	28.2
1998	232,920	87,802	320,722	72.6	27.4
1999	224,565	87,322	311,887	72.0	28.0
2000	206,770	22,007	228,777	90.4	9.6
2001	173,940	53,585	227,525	76.4	23.6
2002	130,453	$50,\!244$	180,697	72.2	27.8
2002	141,945	63,217	205,162	69.2	30.8
2004	217,240	125,067	342,307	63.5	36.5
2005	260,120	103,014	363,135	71.6	28.4
2006	266,955	94,744	361,699	73.8	$\frac{26.1}{26.2}$
2007	217,682	75,707	293,389	74.2	$\frac{25.2}{25.8}$
2008	248,395	73,306	321,701	77.2	$\frac{23.8}{22.8}$
2009	121,325	55,847	177,172	68.5	31.5
2010	170,961	59,712	230,672	74.1	25.9
2010	231,262	60,409	291,671	79.3	$\frac{29.9}{20.7}$
2011 2012	160,145	45,642	205,787	77.8	22.2
2012	233,581	52,033	285,614	81.8	18.2
$\frac{2013}{2014}$	264,139	34,563	298,703	88.4	11.6
$\frac{2014}{2015}$	154,159 $154,152$	35,896	190,047	81.1	18.9
7010	194,192	55,090	190,047	01.1	10.9

REFERENCES

- Agostini, V.N., Francis, R.C., Hollowed, A., Pierce, S.D., Wilson, C.D. and Hendrix, A.N. 2006. The relationship between Pacific hake (*Merluccius productus*) distribution and poleward subsurface flow in the California Current system. Canadian Journal of Fisheries and Aquatic Sciences **63**: 2648–2659.
- Dorn, M.W. 1995. The effects of age composition and oceanographic conditions on the annual migration of Pacific whiting, *Merluccius productus*. CalCOFI Reports **36**: 97–105.
- Iwamoto, E., Ford, M.J. and Gustafson, R.G. 2004. Genetic population structure of Pacific hake, *Merluccius productus*, in the Pacific Northwest. Environmental Biology of Fishes **69**: 187–199.
- JTC, Joint Technical Committee. 2013. Status of the Pacific hake (whiting) stock in U.S. and Canadian Waters in 2013. Prepared for the Joint U.S.-Canada Pacific hake treaty process.
- King, J.R., McFarlane, G.A., Jones, S.R.M., Gilmore, S.R. and Abbott, C.L. 2012. Stock delineation of migratory and resident Pacific hake in Canadian waters. Fisheries Research 114: 19–30.
- Stewart, J.S., Hazen, E., Bograd, S.J., Byrnes, J.E.K., Foley, D.G., Gilly, W.F., Robison, B.H. and Field, J.C. 2014. Combined climate- and prey-mediated range expansion of Humboldt squid (*Dosidicus gigas*), a large marine predator in the California Current System. Glob. Chang. Biol. **20**: 1832–1843.