Du fonctionnement d'Internet

Ronan Kervell

rk@enstb.org

Département Informatique, ENSTBr

24 janvier 2006 F2B402A Ingénierie des réseaux Version 1.5

Introduction

- Révolution : télégraphe, téléphone, télévision,... Internet
- Internet : LE réseau DES réseaux, ébauche des autoroutes de l'information
- 10^7 (1997) utilisateurs $\nearrow 10^9$ (2006)
- Outil de travail utile
- Importance stratégique /
- Opportunités de télétravail, dématérialisation...
- Fonctionnement peu connu chez les utilisateurs
- ...ni les professionnels du domaine!
- Constatation que les élèves connaissaient bien les trames Ethernet et Corba ou SOAP mais pas trop entre les 2 @ --ressorti cours de 1997 aux Mines

Internet (F2B402A Ingénierie des réseaux)

Copyright (c)

• Copyright (c) 1986-2037 by Ronan. Keryell@enstb.org. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License. v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

- Si vous améliorez ces cours, merci de m'envoyer vos modifications! ©
- Transparents 100 % à base de logiciels libres (LaT_EX,...)

Internet (F2B402A Ingénierie des réseaux)

Introduction

• Utile pour utilisation correcte et résoudre les problèmes

Plan

4

- Interconnexion de machines (ordinateurs)
- Graphe : nœuds (ordinateurs, routeurs) et arcs (liaisons transportant de l'information)

- Faire communiquer les machines entre elles
- Local (LAN): Ethernet (10 Mbit/s-10 Gbit/s, ATM

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Origine

1957: Création de l'*Advanced Research Project Agency* par le DoD américain (guerre froide...)

1961 : Article de KLEINROCK vantant la commutation de paquets ≠ téléphone

1962: Étude pour l'US Air Force d'un réseau très décentralisé et maillé : pas de point central → résiste à une destruction partielle

1968 : Réseau à commutation de paquets au *National Physical Laboratories*, UK

1969 : Premier échange sur ARPANET entre ordinateur à UCLA and SRI. Création de la documentation, *Request For Comments* (RFC)

1970 : Définition du Network Control Protocol

Internet (F2B402A Ingénierie des réseaux)

- Histoire et réseaux
- Protocoles & services
- Futur

Internet (F2B402A Ingénierie des réseaux) Département Informatique • Introduction

Réseau?

6

155+Mbit/s)

- Distant (WAN): liaisons spécialisées (64 Kbit/s–10 Gbit/s), satellite, ATM (155 Mbit/s, 622 Mbit/s, 2,5 Gbit/s...)
- Multiplexage en longueur d'onde sur fibre optique (DWDM): // débit

Origine

8

Origine

1972 : Création de InterNetwork Working Group pour concevoir des protocoles de communication communs avec tolérance aux pannes et aux pertes. Définition d'une architecture : réseaux autonomes interconnectés par des passerelles. ARPANET. E-mail

1972 Projet Cyclades au CNET de réseau à commutation de paquets avec Louis Pouzin

1972-1974: protocoles telnet, FTP, TCP

1976 : protocole UUCP pour échanger des données entre machines UNIX

1977 : Format des messages électroniques. Création de TheoryNet basé sur UUCP

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Histoire

Origine

FidoNet regroupant des serveurs de BBS (messagerie, échange de fichiers)

1987: Intelmatique pour utilisation du Minitel via Internet

1989: World-Wide-Web développé au CERN pour accéder à des informations hypertextuelles délocalisées

1980: Protocole IP mis dans le domaine public --interconnexion TheoryNet avec ARPANET. Téletel en France avec des terminaux vidéotex

1981 : Création de Because It's Time NETwork (BITNET), 4000 listes de discussions (listserv). Culture plus conservatrice que sur Usenet

1983: Changement NCP → IP sur ARPANET

1986 : Optimisation d'Usenet avec NNTP. Création des groupes alt. pour échapper à la censure. Création de

Internet (F2B402A Ingénierie des réseaux)

Organisation

Internet n'appartient à personne mais...

Internet Society (ISOC): organisation destinée à promouvoir l'interconnexion ouverte des systèmes et Internet. Board of Trustees élus par les membres de l'ISOC dirige plusieurs comités

Internet Architecture Board (IAB): évolution des protocoles de communication

Internet Assigned Number Authority (IANA): gère tous les numéros et codes qui doivent être uniques dans Internet. Délègue à InterNIC/RIPE/NIC France l'allocation des adresses IP

Internet Engineering Task Force (IETF): fédère groupes développant les nouvelles technologies. Dirigé

par l'Internet Engineering Steering Group (IESG)

Internet Research Task Force (IRTF): fédère groupes de recherche à long terme. Dirigé par l'Internet Research Steering Group (IRSG)

Système de développement des standards plus souple et plus rapide qu'ISO & ITU

- Standards disponibles gratuitement sur Internet : Requests For Comments (RFC)
- Spécifications ISO : payantes...
- UNIX arrivait avec IP gratuitement...

//// =

Internet (F2B402A Ingénierie des réseaux) Département Informatique • Histoire

RENATER (1997)

14

RÉseau NATional de l'Enseignement et de la Recherche http://www.renater.fr

Internet (F2B402A Ingénierie des réseaux)
Département Informatique

France
 RENATER

RENATER (1997)

1

Internet (F2B402A Ingénierie des réseaux) Département Informatique

http://www.renater.fr/international/interaccueil.html

• France ► RENATER

18

16

Connexion internationale (1997)

RENATER 4 (2006)

Angleterre Janet Suède EBONE / NordUnet Belgique BelNet Angleterre Pipex Transpac Suède 2 M Allemagne (Industrie) Angleterre BT Irlande ' EBONE / CERN Moscou 3.5 M Noeud internationa EBONE / Autriche de Renater Etats Unis Italie (CINECA) GIX TMI Italie Renater Autres réseaux FORTH Grèce EUN Egypte RCCN Portugal Renater Univ. Lisbonne CYNET Chypre

RENATER ≠ Internet en France → politique de communication entre les réseaux français

SFINX: service payant d'interconnexion (85kF/an connexion Ethernet + LS)

- Sockets UNIX : tuyau (≈ file descriptor) sur lequel on peut envoyer et recevoir une suite d'octets
- socket() crée un tuyau. IP si domaine PF_INET. Type SOCK_STREAM, SOCK_DGRAM, SOCK_RAW,...
- connect() connecte une socket à une autre machine (appel)
- bind() associe une adresse à une socket (pour permettre à quelqu'un d'autre de la nommer)
- listen() déclare une socket comme attendant des connexions
- accept() traite une connexion en attente
- getpeername() donne l'adresse du connecté à l'autre bout

Internet (F2B402A Ingénierie des réseaux)

20

Protocole IP

- Internet Protocol
- Niveaux 3 (réseau) dans le monde OSI (ultérieur)
- Assure le routage de datagrammes (petits paquets de données)
- Contient adresse de source (envoyeur) et de destination
- Type de protocole
- Longueur
- Gestion de la fragmentation des paquets en morceaux
- Durée de vie
- Somme de vérification
- Pas de garantie de l'ordre d'arrivée, du chemin, ni de... l'arrivée!

Internet (F2B402A Ingénierie des réseaux)

Protocole IP

• Rangement des octets : grand indien

Numéros de machines sur 32 bits séparés en classes, les « réseaux », de différente importance

Classe A	0	Ré	sea	ıu (7	bits)	Machine (24 bits)			
Classe B	1	0	Réseau (14 bits)				Machine (16 bits)		
Classe C	1	1	0	0 Réseau (21 bits) Machin				Machine (8 bits)	
Classe D	1	1	1	0		Mu	ltica	st (28 bits)	

Classe E 11111 pour extensions futures

Surcharge du réseau ~>>

- ► Apparition du CIDR (Classless Inter-Domain Routing)
- ► Notion de numéros locaux (privés) style 10.x.y.z
- ► Fontainebleau : 2 classes C sur le même support physique 192.54.148 & 192.54.172

Internet (F2B402A Ingénierie des réseaux)

24

Transmission Control Protocol (TCP)

• Niveau OSI 4: transport

- Transmission + robuste de données (retransmission si nécessaire)
- Notion de connexion
- UDP + numéro de séquence + accusé de réception + taille de fenêtre + urgence... : protocole 6
- Numéro de séquence pour remettre les octets dans l'ordre (sécurité : numéro de séquence initial choisi au hasard à la connexion)
- Fenêtre d'accusé de réception pour pipeliner le temps de transfert (autorise l'émetteur à prendre de l'avance)
- Protocole d'établissement, de resynchronisation et de fin de connexion

• Niveau OSI 4: transport

- Transmission de datagrammes
- Pas de connexion
- IP + port d'émission & port de réception pour avoir plusieurs services + somme de vérification : protocole 17
- Pas de gestion d'erreur...
- Certains numéros de port sont standardisés par IANA pour des services précis
- \bullet Pour des raisons de sécurité l'ouverture des ports < 1024nécessitent d'être root

Internet (F2B402A Ingénierie des réseaux)

Transmission Control Protocol (TCP)

Utilisation des ports semblable à UDP (/etc/services)

Notions de service :

- Fonctionnement asymétrique
- Demande une page WWW
- Demander un affichage à l'écran
- Recherche dans une base de donnée
- Se connecter à distance
- Écrire sur un serveur disque NFS

Internet (F2B402A Ingénierie des réseaux)

28

Service de nom

200.172.54.192.in-addr.arpa name = chailly.ensmp.fr

- Décorrélation entre hiérarchie des noms et des numéros
- Échange d'information sur le port domain (53, TCP ou UDP)
- Serveur primaire secondé par des serveurs secondaires
- Système de cache : garder dans un coin les informations récentes
- Système de cache de non-existence aussi (cache négatif) : répondre à des erreurs de configuration
- Géré en UNIX souvent par named (BIND)

- Trop de machines \rightsquigarrow hiérarchisation des noms et délégation:
 - ➤ Serveur racine (.)
 - ► Serveurs pour zones .fr, .edu, .com, .org, .gov, .net,... Problème : des millions d'entrées dans .com!
 - ▶ Délégation : envoyer vers un autre serveur qui sert une zone
 - ► Serveurs pour .enst-bretagne.fr, .ensmp.fr, .univ-rennes1.fr, .gouv.fr, .asso.fr,...
- Traduction de numéros vers noms : faux domaine hiérarchique sur les numéros inversés in-addr.arpa:

Internet (F2B402A Ingénierie des réseaux)

Service de nom

- Informations SOA (description de la zone), NS (serveur de nom pour délégation), A (adresse), PTR (nom), CNAME (donne un alias), MX (échangeur de mail),...
- Problèmes de saturation et de marques déposées...
- Déclaration des noms auprès des responsables : NIC France pour .fr

dig pour demander des informations :

dig enstb.org any				
enstb.org.	3600	IN	MX	1 minou.info.enstb.org.
enstb.org.	3600	IN	A	193.50.97.146
enstb.org.	3600	IN	AAAA	2001:660:7302:e771:201:2ff:fefa:64ee
enstb.org.	3600	IN	A6	0 2001:660:7302:e771:201:2ff:fefa:64ee
enstb.org.	3600	IN	SOA	dns2.enstb.org. keryell.cri.ensmp.fr. 2006011300 7200 3600 60480
enstb.org.	3600	IN	NS	dns-cri.ensmp.fr.
enstb.org.	3600	IN	NS	rsm.rennes.enst-bretagne.fr.
enstb.org.	3600	IN	NS	dns2.enstb.org.
enstb.org.	3600	IN	NS	dns3.enstb.org.

Service de nom

World Wide Web

minou.info.enstb.org.	3600	IN	A	193.50.97.146
minou.info.enstb.org.	3600	IN	AAAA	2001:660:7302:e771:201:2ff:fefa:64ee
rsm.rennes.enst-bretagn	e.fr. 34	75 IN	A	192.44.77.1
dns2.enstb.org.	3600	IN	A	193.50.97.146
dns2.enstb.org.	3600	IN	AAAA	2001:660:7302:e771:201:2ff:fefa:64ee
dns3.enstb.org.	3600	IN	A	193.50.97.139
dna omi onamn fm	100672	TM	Α.	102 40 171 015

- Service extrêmement sensible
 - ▶ Si comportement faux : détournements de services ☺
 - ► Cible d'attaques, de dénis de service
- ~> DNSSEC sécurisé avec cryptographie à clé publique

Internet (F2B402A Ingénierie des réseaux) Département Informatique

navigateur (AJAX avec du XML RPC)

Protocole

32

World Wide Web

ECMAScript/JavaScript rajoute de la programmation côté

 Langage JAVA permettant de télécharger et d'exécuter des applications

- Le succès d'Internet → confusion... ②
- TCP port 80
- « Document » référencé par Universal Resource Locator (URL)

proto://nom@machine:port/CheminFichier#fragment

- HTTP gère le transport (GET demande une page, HEAD méta-information, POST envoie une requête, PUT envoie une page ,...)
- HTML décrit la structure des documents. Langage de marquage (≈ LETEX) avec des balises SGML/XML
- Possibilité de lancer d'autres applications (plug-in) via MIME

Internet (F2B402A Ingénierie des réseaux) Département Informatique • Protocole

Connexion à distance

- Accéder à des machines puissantes (supercalculateurs...)
- Émulation de terminal
- Protocoles de connexion indépendant du système
- Pas de graphisme
- telnet TCP port 23, Émulation VT-100 et IBM 3270
 - ► Mot de passe en clair sur le réseau... 🍄

- ▶ telnet accepte un numéro de port : utile pour tester d'autres ports TCP/IP
 - Debug de serveur de mail telnet enstb.org 25
- ▶ ∃ Version sécurisée avec Kerberos et TLS

Connexion à distance

Connexion à distance 36

- ► Terminal plus complet (passe la taille du terminal local)
- ▶ ♠ Mot de passe en clair aussi mais .rhosts & /etc/hosts.equiv préférable...
- ➤ ∃ Version sécurisée avec Kerberos et TLS.
- ssh
 - ▶ Utilisation cryptographie forte
 - Chiffrement des communications et authentifications
 - ► Authentification par mot de passe ou clé publique
 - ► Agent d'authentification pour éviter de retaper sans arrêt des mots de passe

Internet (F2B402A Ingénierie des réseaux)

- Lancer des commandes à distance
- Autorisation avec .rhosts & /etc/hosts.equiv
- rsh nom@machine TCP port 514
- on TCP port 512. Passe l'environnement et le répertoire courant. Problèmes de sécurité connus...
- → Utiliser encore ssh!

- ▶ Permet aussi de recopier des fichiers à distance ou lancer des commandes à distance
- → Solution moderne conseillée

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Transferts de fichier

File Transfer Protocole (FTP)

- Ancêtre des protocoles → concepts repris souvent par d'autre protocoles
 - ► Commandes courtes + arguments textuels
 - ► Réponse à 3 chiffres + commentaires textuels pour humains
- FTP anonymous pour transférer des fichiers dans "ftp sans avoir besoin de compte
- FTP guest idem mais avec mot de passe
- ∃ Versions sécurisées, mais pourquoi pas ssh plutôt?
- Trivial FTP tftp: simplifié, pas de mot de passe. Utilisé pour initialiser des machines et terminaux X sur le réseau.

à bien restreindre l'accessibilité des fichiers avec -s

- Échange asynchrone de messages entre plusieurs utilisateurs
- Simple Mail Transfer Protocol, proche de FTP
- nom@machine, nom%machine3%machine2@machine (test)
- Spam (pourriel)...
- Entêtes standard : From:, To:, Subject:,...
- Démon sendmail TCP port 25
- Algorithme : envoyer à l'échangeur de mail de la destination sauf si c'est soi-même (distribué en local). Plein de paramétrages...
- Déclaration des échangeurs de mail : MX dans le DNS

Internet (F2B402A Ingénierie des réseaux)

40

MIME

• Protocole qui décrit le codage et le type de document

MTME-Version: 1.0

Content-Type: text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: 8bit

Content-Length: 104411

- Son, images, texte enrichi
- Gestion de plusieurs parties
- Problème si le récepteur ne comprend pas MIME =?ISO-8859-1?Q?Re:_e-038_-_...
- Utilisé pour le mail, les news, WWW,...

• Problèmes d'authentification (faux mails faciles à faire).

- Confidentialité faible si pas de chiffrement (root...)
- Métaprotocole : les *smileys* :-) ©

Accès par des machines qui n'ont pas de démon SMTP

- ▶ Démons POP3 (TCP port 110) & IMAP4 (plus récent) qui tournent sur le serveur
- ► Possibilité de télécharger des messages sur un poste. gérer des dossiers...

Internet (F2B402A Ingénierie des réseaux)

Nouvelles

- Diffusion de messages sur toute la planète, classés par newsgroup
- Network News Transfer Protocol, TCP port 119
- Démons qui parlent entre eux
- Path: contient la liste des machines traversées et est utilisé pour empêcher de repasser par une machine
- Mode serveur interrogé par les interfaces utilisateurs des news
- Souvent inn sous UNIX

- Exécuter des procédures à distance (mode client/serveur)
- rpcbind/portmap UDP/TCP port 111 transforme un service en un port temporaire vers le serveur. \approx annuaire
- rpcinfo -p donne la liste des services disponibles
- Services: NFS, bootparam, rstatd, walld, sprayd,...

Internet (F2B402A Ingénierie des réseaux)

XWindow System 11

- Affichage à distance
- Extensions graphiques génériques
- Contrôle la souris, le clavier, le fond d'écran, etc.
- TCP port 6000 + d
- Protocole LBX comprimant les ordres graphiques si limité en bande passante
- Authentification
 - ► Par machine via xhost
 - Toutes les personnes d'une machine peuvent se connecter
 - ► Par fichier de secret (MIT-MAGIC-COOKIE)

- Utilisation transparente d'un fichier résidant sur le disque d'une autre machine
- Utilise les RPC
- mountd sert les demandes de montage
- nfsd sert les transferts de données
- Dans NFS 2 écritures synchrones seulement. Performances \
- Version 4 : modèle plus asynchrone, sécurité plus fine des sessions

Autres systèmes : DCE DFS, CIFS (Samba met protocole MicroSoft dans UNIX), Coda, AFS,...

Internet (F2B402A Ingénierie des réseaux)

XWindow System 11

- Connexion autorisée si le client et le serveur arrivent à lire le même fichier
- Protégé en lecture des regards indiscrets

48

- Nécessaire de synchroniser les machines (NFS, makefile, corrélation d'événements (logs)...)
- rdate resynchronise sur un serveur. Problème du temps de propagation...
- Network Time Protocol : resynchronise sur un serveur en corrigeant avec des statistiques sur le temps de réponse

 Abaille legent le legen

chairiy-keryeri >	nrbd-b								
remote	refid	st	t	when	poll	reach	delay	offset	disp
		==:	:						
+resone.univ-ren	.PPS.	1	u	80	1024	377	32.94	9.737	4.32
+canon.inria.fr	. TDF .	1	u	25	1024	377	23.82	9.917	26.87

1 u 868 1024 377

Internet (F2B402A Ingénierie des réseaux)
Département Informatique

Protocole

481.43

59.655

*yseult.sis.past .TDF.

 Connexion entre ordinateurs par liaisons séries ou ADSL (PPPoE, PPTP)

- Coder IP pour le faire passer
- Point to Point Protocol (PPP)
- Multiprotocoles (IP cas particulier)
- Compression des entêtes et du contenu
- Typiquement accès à la maison
- Possibilité de lancer PPP dans une fenêtre de login...
- Authentification par PAP (envoi d'un mot de passe) ou CHAP (échange de preuves de secret)
- Utilisation aussi pour tunnels

 De plus en plus de systèmes sur Internet → contrôle à distance

- Définition d'un protocole de commande standard : Simple Network Management Protocol
- Contrôle de routeurs, imprimantes, ordinateurs,...

 chailly-keryell > hpnpadmin -v strasbourg

 strasbourg is a network peripheral

 ready to print

 chailly is allowed access to strasbourg

 Frontpanel message : 00 PRET
- Protéger les accès...

Internet (F2B402A Ingénierie des réseaux) Département Informatique Protocol

Divers 51

Identification Protocol: identification de l'utilisateur au bout d'une socket. Information à titre informatif sur utilisateur de WWW

talk: Discussion à 2

Chiffrement

52

Chiffrement

- Interdit à l'exportation aux USA au départ
- Usage cryptographie forte interdit en France pendant longtemps (arme de guerre)
- PGP Pretty Good Privacy/GnuPG: chiffrement à clé publique
 - ► Exploite relation chiffrement par une clé TRÈS secrète et déchiffrement par une clé publique ou réciproque
 - ► Signature : chiffrement par clé privée & tout destinataire peut déchiffrer en utilisant la clé publique de l'envoyeur
 - ► Chiffrement : chiffrement par clé publique du destinataire & décodage par la clé secrète du destinataire

Internet (F2B402A Ingénierie des réseaux)

- ► Combinaison avec algorithmes symétriques pour aller plus vite
 - Chiffre avec algorithme symétrique rapide
 - Joint la clé de session chiffrée avec algorithme à clé publique

Internet (F2B402A Ingénierie des réseaux)

Ethernet

Protocole ARP

- Address Resolution Protocol
- Traduit une adresse IP en adresse Ethernet
- Envoie un message de diffusion demandant la traduction
- Quelqu'un (en principe la machine destination) répond la traduction
- tcpdump arp:

05:26:44.046284 arp who-has node07 tell node06 05:28:07.252011 arp who-has akanthos tell cmm02

Niveau liaison

- Carrier Sence Multiple Access with Collision Detection (CSMA/CD)
- Paquet Ethernet avec source et destination (adresses Ethernet)
- Encapsulation d'un paquet IP dans un paquet Ethernet (tcpdump -e)
- Nécessité de traduire les adresses IP en adresse Ethernet avant de pouvoir envoyer un paquet IP : ARP

Protocole RARP

56

- Machines sans disque : pas de quoi stocker leur numéro IP lors du démarrage...
- Nécessiter de le retrouver à partir du numéro Ethernet (qui est unique, assigné par le constructeur)
- Reverse Address Resolution Protocol
- rarpd sur un serveur avec /etc/ethers
- Lorsque la machine a son adresse IP, envoie d'une demande de chargeur de noyau pour son adresse IP a tous les serveurs TFTP
- tcpdump rarp 05:34:38.479046 rarp who-is 0:0:c9:10:c3:ef tell 0:0:c9:10:c3:ef
- Plutôt remplacé par DHCP plus complet

Internet (F2B402A Ingénierie des réseaux)

• Niveau physique – MAC

DHCP

58

- ► Nom de domaine et liste de domaines à essayer
- ► Serveurs d'impression
- ► Serveurs de journaux de fonctionnement (*log*)
- ► Serveur de boot et fichier d'image, fichier de swap
- **.**..
- Pas (encore) sécurisé → difficile de faire une installation système automatisée et sécurisée...

- Permet d'attribuer automatiquement paramètres réseau pour simplifier administration/configuration
 - ▶ Statique
 - ▶ Dynamique (visiteurs, réseaux WiFi publics...)
- Paramètres
 - Netmask
 - ▶ Adresse
 - ▶ Routeur
 - Serveurs DNS

Internet (F2B402A Ingénierie des réseaux)
Département Informatique

• Niveau physique – MAC

Zeroconf 59

- Protocoles utilisés pour mettre en place un réseau local privé
 - ► En IPv4 beaucoup moins d'adresses privées que de MAC → besoin d'allouer des adresses IPv4 aux dispositifs ©
 - ► Sans infrastructure particulière (serveur DHCP...)
 - ► Ressources limitées (téléviseur, réveil, cafetière...)
 - ► En IPv6, contraire → possible de générer adresse privée unique à partir adresse MAC → pas de problème ©
- RFC 3927

60

- Comment faire transiter des paquets d'un bout à l'autre de la planète ?
- Utiliser des routes de destination : « pour aller là-bas, passer par là »...
- Comment trouver les routes?
 - Déclarées statiquement :

roazhon-keryell > netstat -r

Routing tables Destination Gateway Refcnt Use Interfa Flags localhost localhost UH 488704 100 ecuelles roazhon UH 3 17090 ppp0 default routeur-172 37036 1e0 ensmp-private roazhon IJ 0 le0 ensmp-fbleau2 roazhon 106 7848007 le0

▶ Utiliser un protocole de routage qui va les calculer

Internet (F2B402A Ingénierie des réseaux)
Département Informatique

Routage

Protocole ICMP

• Durée de vie excédée : base de traceroute (envoi de

roazhon-keryell > traceroute cactus.insead.fr traceroute to cactus.insead.fr (193.105.56.2), 30 hops max, 40 byte packets

1 chailly-qe0 (192.54.172.201) 1 ms 1 ms 1 ms 2 routeur-148 (192.54.148.101) 4 ms 4 ms 5 ms

paquets avec des TTL croissants à partir de 0)

- 3 194.214.157.1 (194.214.157.1) 6 ms 4 ms 4 m
- 5 134.214.157.1 (134.214.157.1) 0 ms 4 ms 4 ms
- 4 evry.rerif.ft.net (193.48.56.9) 15 ms 20 ms 18 ms 5 insead-fontainebleau.rerif.ft.net (193.48.56.50) 39 ms 39 m
- 6 194.57.233.1 (194.57.233.1) 41 ms 39 ms 41 ms
- 7 insead.fr (193.105.56.2) 40 ms 53 ms 40 ms

- Écho (base de ping)
- Messages d'erreur : destination non atteignable
- Suspension de la transmission
- Message de redirection : rajoute une route vers la machine destination
- Distribution de route

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Route par défaut

- Simplification du routage sur les machines λ
- Si on ne sait pas : on envoie à la route par défaut, censée tomber sur un routeur intelligent...
- Définition des machines (non) locales par un netmask
- Adresse a locale si $a \wedge \text{netmask} = \lambda \wedge \text{netmask}$
- Dans notre cas, si numéro commence par 192.54.172

roazhon-keryell > ifconfig -a
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 192.54.172.226 netmask ffffff00 broadcast 192.54.172.0

Diffusion

64

Routage interne

Nécessité d'envoyer des messages à tout le monde (questions, charge, routage,...) \leadsto utilisation d'adresses spéciales :

255.255.255 : diffusion limitée, ne passe pas les routeurs

réseau.255 : envoie à toutes les machines du réseau

réseau.x.255: à tout un sous réseau contrôlé par netmask (ici 255.255.255.0)

réseau.255.255: tous les sous-réseaux contrôlés par netmask (ici 255.255.255.0)

Internet (F2B402A Ingénierie des réseaux)

Routage

66

- Rôle de médiateur
- Exemple du Border Gateway Protocol (BGP 4) RFC 1467, gated
- Échange information sur la connectivité avec les autres systèmes BGP avec les chemins d'AS à traverser pour atteindre ces réseaux
- Construction d'une carte de connexion
- Politique : notion d'AS qui ne fait que du transfert local, connecté à d'autres AS mais avec transit interdit ou transit autorisé → définition des connectivités entre fournisseurs, pays, etc...

- Au sein d'une même entité (École des Mines)
- Par exemple Routing Information Protocol (RIP), RFC 1058, démon routed, gated, xorp, quagga...
- Messages de diffusion des routes disponibles par chaque routeur avec métrique
- Construction d'une table de destination à partir des messages reçus des autres routeurs
- Choix de la route de destination avec plus petite métrique

Internet (F2B402A Ingénierie des réseaux)
Département Informatique

Routage

Routage externe

67

- Recalcule l'état en fonction des routeurs en panne
- Classless Inter-Domain Routing permet de diminuer le nombre de routes : agrégation

MBone

68

- Besoin de diffuser de l'information au lieu d'envoyer n copies → meilleure utilisation de la bande passante
- Pas prévu dans IP de base, ni dans les routeurs
- extensions des News (application) vers niveau paquet IP
 (transport)
- \rightsquigarrow Multidifusion au dessus d'Internet entre mrouters
- Encapsulation dans du protocole standard (IP dans IP, RFC)
- 1988 entre BBN & Stanford, « répandu » à partir de 1992
- Pas encore accessible au grand public ③
- Choix d'une topologie efficace pour éviter de saturer des liens physiques

Internet (F2B402A Ingénierie des réseaux)

- Diffusion de son et d'images (navette spatiale)
- Téléconférence & télé-enseignement (thèses, conférences)
- Tableau blanc distribué avec distribution de transparents
- Éditeur de texte distribué
- Extension du WWW commandé à distance
- Magnétoscopes virtuels

Outil d'annonce d'application : sdr

MBone

http://www.univ-rennes1.fr/CRU/Multicast/presentation mcast mbone.art

Internet (F2B402A Ingénierie des réseaux)

Annonce des sessions

- Consultation avec calendrier des événements (sdr)
- Lancement des applications nécessaires
- Création et annonce de ses propres événements
- Envoie chaque annonce SAP toutes les 8 minutes via... MBone! Gestion distribuée
- Restriction de certaines sessions par chiffrement
- Protocoles à la base de la téléphonie sur IP et autres visio-conférences (SAP, SDP, RTP...)

- RFC 1112
- Utilisation d'une plage d'adresse plutôt que d'ajouter directement un protocole
- Adresses 1110 224.0.0.0 à 239.255.255.255 : 2²⁸ adresses de groupes avec protocole spécial
- Extension des sockets : paquet diffusé vers toutes les autres sur le même adresse/port
- Fonction joindre et quitter groupe
- Utilisation du TTL pour restreindre la diffusion : 31 site. 127 l'univers
- 224.0.0.1 : machines du réseau local

Internet (F2B402A Ingénierie des réseaux)

Multi-diffusion

MBone sur Ethernet

- Utilisation du broadcast d'Ethernet
- Adresse IP D (28 bits) → Ethernet 01-00-5E-xy-zt-uv (23 bits), recouvrement non gênant
- Messages IGMP pour joindre/quitter envoyés en local

- Gestion du transit dans MBone
- Messages d'abonnement et de désabonnement à un groupe
- Envoie information aux routeurs du voisinage pour savoir si intéressé par un groupe
- Demande si participation à un groupe

Internet (F2B402A Ingénierie des réseaux)

Multi-diffusion

Routage sur MBone

- Comment atteindre les membres d'un groupe sur tout Internet?
- Comment économiser la bande passante ? Ne transmettre que si des abonnés
- Optimisation des échanges entre routeurs : dire ce qu'on veut recevoir ou au contraire ce qu'on ne veut pas recevoir?
- ► Mode dense : suppose plein de machines intéressées & absence de membre = exception (DVMRP, PIM-DM)
- ► Mode clairsemé : suppose peu de machines intéressées & absence de membre = règle (PIM-SM). Mécanisme de rendez-vous

Internet (F2B402A Ingénierie des réseaux)

Routage sur MBone

DVMRP

• RFC 1075, implémentation sous UNIX mrouted, IGMP type

76

Version multicast de RIP

3

• Réseau virtuel de tunnels IP-IP entre routeurs

• Adresses 224.0.0.0 à 224.0.0.255 réservées pour protocoles de routage

• Métrique : « distance » pour prendre le plus court chemin

• Barrières de TTL pour délimiter des zones de propagation

• TTL décrémenté de 1 à chaque routeur

• Limitations possible du débit réservé à MBone

• Propagation de routes avec métriques

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Multi-diffusion

DVMRP

Multi-diffusion

Département Informatique

Problèmes de sécurité

- Internet basé sur la confiance (1960...)
- Beaucoup de changements avec le commerce
- Faire confiance aux machines
- Création du Computer Emergency Response Team (CERT) en 1988
- Listes de points faibles qui traînent sur le réseau. À double tranchant...
- Logiciels qui testent des points de sécurité (SATAN, ISS, Crack,...)

PIM (Protocol Independent Multicast) développé par CISCO

Internet (F2B402A Ingénierie des réseaux)

• Choix des routes avec métrique minimale

• Élagage sur les transmissions inutiles (prunning)

- Restriction des possibilités dangereuses par logiciel et/ou matériel
- Interdiction de certains protocoles (rlogin depuis l'extérieur, connexion X11 depuis l'extérieur) depuis certaines machines/réseaux
- N'empêche pas les chevaux de Troie (virus apporté par un utilisateur interne ou récupéré sur le réseau)

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Sécurité

Faites votre fournisseur Internet

- Acheter un PC sans produit MicroSoft
- Acheter des modems
- Installer un UNIX du domaine publique
- Gérer les modems avec PPP
- Prendre un accès IP auprès d'un gros fournisseur avec un liaison spécialisé rapide
- Gérer le routage avec gated

- Approche haut → bas :
 - 1. Niveau application (ps)
 - 2. Niveau système (ps)
 - 3. Niveau routage (netstat -r)
 - 4. Niveau transport (tcpdump)
 - 5. Niveau matériel (analyseur réseau)

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Problèmes

• Croissance anarchique du réseau

- Renumérotation en attendant pour simplifier les tables de routage
- Baisse des performances : évolution du nombre d'utilisateurs trop rapide
- Nécessité d'injecter des capitaux privés → autoroutes de l'information (1997 ⑤)
- Serveurs miroirs, compression, caches WWW
- Augmentation du bruit par les nouveaux « qui ne savent pas », spam...

- Adresses sur 128 bits, place pour plus de hiérarchie
- Réservation des ressources possibles (téléconférence)
- Prend en compte des contraintes de temps réel
- Chiffrement et authentification
- Multidiffusion plus hiérarchisée
- Optimisation des entêtes (plus de sommes de contrôles superflues
- Pas de fragmentation dans les routeurs
- Entêtes d'extension

1 Titre

2 Copyright (c)

5 Réseau?

7 Organisation

8 RENATER (1997)

10 Connexion internationale (1997)

11 RENATER 4 (2006)

4 Histoire

France

7 **RENATER** 9 **GIX RENATER** (1997)

• Étiquette de flot sur 24 bits (simplifie le routage)

Internet (F2B402A Ingénierie des réseaux) Département Informatique

Sécurité basée d'abord sur la confiance...

• Nécessité d'avoir des protocoles sécurisés

• Futur

Conclusion

(télépaiement...)

Q

- Comprendre comment cela fonctionne
- Beaucoup de mécanismes « transparents » peuvent ralentir le réseau s'ils sont mal utilisés
- Résoudre les problèmes quand il n'y a personne pour les résoudre...
- Faire des choix techniques (applications, fournisseurs)
- Gagner des sous, télétravail, téléconférence
- Transférer expérience Minitel française dans Internet? (1997 ⑤)
- Importance socio-économico-politique capitale : disparition des frontières physiques et culturelles...

Internet (F2B402A Ingénierie des réseaux) Département Informatique

• Futui

Table des matières 87

0	11	Protocole 19
1	13	Protocole IP
2	14	Espace d'adressage 24
1	15	User Datagramm Protocol (UDP) 25
4	16	Transmission Control Protocol (TCP) 26
5	17	Clients & serveurs
4		
4	18	Service de nom 29
7	19	World Wide Web
11	20	Connexion à distance
13	21	Exécution à distance
12	22	Transferts de fichier
12	23	Messagerie électronique 40
17	24	MIME
18	25	Nouvelles
19	26	Remote Procedure Call 44
20	27	Partage de fichiers
4∩2∆ Ingén	ierie de	es réseaux)• Conclusion

Table des matières 87

28	XWindow System 11 46	40	Protocole ICMP 61
29	Distribution du temps 48	41	Route par défaut 63
30	Contrôle SNMP 49	42	Diffusion
31	Encapsulation pour accès modem 50	43	Routage interne 65
32	Divers	44	Routage externe 66
33	Chiffrement	45	MBone 68
34	Ethernet	44	Multi-diffusion 67
33	Niveau physique	46	Application de MBone 70
55	- MAC	47	Annonce des sessions 71
		48	Espace d'adressage de MBone 72
35	Protocole ARP	49	Protocole IGMP
36	Protocole RARP 56	50	MBone sur Ethernet
37	DHCP	51	Routage sur MBone
38	Zeroconf	52	DVMRP77
39	Le routage 60	53	Problèmes de sécurité 79
38	Routage 59	52	Sécurité
1	////	ierie de	es réseaux)• Conclusion

Département Informatique

Table des matières 87

54	Pare-feu	58	IPv6
55	Résoudre les problèmes 81		Futur
54	Production 80	59	
56	Faites votre fournisseur Internet 82	2	
55	Futur 81	58	Conclusion
57	Problèmes	60	Table des matières

Internet (F2B402A Ingénierie des réseaux) Département Informatique

