Ridge, Lasso & Elastic Net Regression

Regularization techniques to prevent overfitting and improve model generalization

Download as PDF

Ridge Regression (L2 Regularization)

Cost Function: RSS + $\lambda \sum \beta^2 j$

Key Characteristics:

- Adds the squared magnitude of coefficients as penalty
- Shrinks coefficients towards zero but never exactly to zero
- All features are retained in the model
- Works well when many features have small-to-medium effects

Interview Points:

- Never eliminates features keeps all predictors
- Better when you believe all features contribute to the outcome
- More stable when features are highly correlated (multicollinearity)
- The penalty term helps with numerical stability in matrix inversion
- λ (lambda) controls regularization strength: higher λ = more shrinkage

Lasso Regression (L1 Regularization)

Cost Function: RSS + $\lambda \sum |\beta_j|$

Key Characteristics:

- Adds the absolute value of coefficients as penalty
- Can shrink coefficients exactly to zero
- Performs automatic feature selection
- Creates sparse models

Interview Points:

- Built-in feature selection eliminates irrelevant features
- Useful when you suspect only a subset of features are important
- Interpretable models due to sparsity
- Can struggle when features are highly correlated (may randomly select one)
- Not uniquely defined when features are correlated

Elastic Net

Cost Function: RSS + $\lambda_1 \sum |\beta_j| + \lambda_2 \sum \beta^2_j$

Key Characteristics:

- Combines L1 and L2 penalties
- Balances between Ridge and Lasso
- Controlled by mixing parameter α (alpha)
- Gets benefits of both methods

Interview Points:

- Best of both worlds feature selection + handles multicollinearity
- Preferred when features are correlated AND you want feature selection
- More robust than Lasso in high-dimensional settings
- α parameter: α =1 is pure Lasso, α =0 is pure Ridge, $0<\alpha<1$ is Elastic Net
- Generally performs better than Lasso when multiple features are correlated

Critical Interview Comparisons

Aspect	Ridge	Lasso	Elastic Net
Feature Selection	No	Yes	Yes
Multicollinearity	Handles well	Struggles	Handles well
Sparsity	No	Yes	Yes
Computational	Closed-form solution	Iterative	Iterative

When to Use What?

• Ridge: Many relevant features, multicollinearity present, want to keep all features

- Lasso: Need interpretability, suspect many irrelevant features, want automatic selection
- Elastic Net: High-dimensional data with correlated features, want feature selection with stability

Common Interview Questions

Q: Why does Lasso give exact zeros but Ridge doesn't?

A: Due to the geometry of constraints - L1 constraint (diamond shape) has corners where coefficients can be exactly zero, while L2 constraint (circular) doesn't have sharp corners.

Q: How do you choose λ ?

A: Use cross-validation (GridSearchCV or RandomizedSearchCV). Plot cross-validation error vs. λ to find optimal value.

Q: What's the bias-variance tradeoff?

A: Regularization increases bias but reduces variance, leading to better generalization. Higher λ = more bias, less variance.

Q: Can you use these for classification?

A: Yes! Logistic regression with L1/L2/Elastic Net regularization is common for classification tasks.

Key Takeaway: Elastic Net is often the safest default choice in practice, as it combines the strengths of both Ridge and Lasso while mitigating their individual weaknesses.