Justin Baum

Problem 1. Consider the operation a * b = 2a + 5b on the set of real numbers.

a) Is the operation associative? Solution:

$$(a*b)*c = (2a+5b)*c = 4a+10b+5c$$

 $a*(b*c) = a*(2b+5c) = 2a+10b+25c$
This is not an associative operation.

b) Explain why there is no identity element. Solution: Assume there exists a value $I \in \mathbb{R}$ that fulfills for $a \in \mathbb{R}$, a*I = a. For a*I = 2a + 5I, we can solve for I, and $I = -\frac{a}{5}$. Let $b \in \mathbb{R}$, $b \neq a$, when we plug I in for b*I = b, we get b*I = 2b - a. We are left with the statement, 2b - a = b, and when reduced,

Problem 2. Consider the operation a * b = a - b on the set of integers.

a=b, which is a contradiction and there does not exist an identity.

a) Is the operation associative? Solution:

$$(a*b)*c = (a-b)-c$$

 $a*(b*c) = a-(b-c) = (a-b)+c$
Thus this is not an associative operation.

b) Explain why there is no identity element. Solution:

Assume there exists I that fulfills a * I = a for some $a \neq 0$.

$$a * I = a - I = a$$
, thus $I = 0$.

When plugged into I * a = a, we get a = -a. Thus there does not exist an identity.

Problem 3. Let G be the set of all integers that are greater than or equal to 10. Consider the operation $a * b = \max\{a, b\}$ on the set G.

a) Is the operation associative? Solution: $\max\{a, \max\{b, c\}\} \stackrel{?}{=} \max\{\max\{a, b\}, c\}$

(a)
$$a \ge b \ge c$$

 $\max\{a, \max\{b, c\}\} = \max\{a, b\} = a$
 $\max\{\max\{a, b\}, c\} = \max\{a, c\} = a$

(b)
$$a \ge c \ge b$$

 $\max\{a, \max\{b, c\}\} = \max\{a, c\} = a$
 $\max\{\max\{a, b\}, c\} = \max\{a, c\} = a$

(c)
$$b \ge a \ge c$$

 $\max\{a, \max\{b, c\}\} = \max\{a, b\} = b$
 $\max\{\max\{a, b\}, c\} = \max\{b, c\} = b$

(d)
$$b \ge c \ge a$$

 $\max\{a, \max\{b, c\}\} = \max\{a, b\} = b$
 $\max\{\max\{a, b\}, c\} = \max\{b, c\} = b$

(e)
$$c \ge a \ge b$$

 $\max\{a, \max\{b, c\}\} = \max\{a, c\} = c$
 $\max\{\max\{a, b\}, c\} = \max\{a, c\} = c$

(f)
$$c \ge b \ge a$$

 $\max\{a, \max\{b, c\}\} = \max\{a, c\} = c$
 $\max\{\max\{a, b\}, c\} = \max\{b, c\} = c$

Thus this operation is associative.

- b) Is there an identity element? If so, find it. Solution: Because every element $x \in G$, $x \ge 10$, $\max\{10, x\} = \max\{x, 10\} = x$.
- c) Is the "inverse" requirement satisfied? Solution: Assume there exists an inverse. Such that $(a*b)*a^{-1} = b$. Let a > b, Then $\max\{\max\{a,b\},a^{-1}\} = \max\{a,a^{-1}\} = c$, where $c \ge a > b$, thus c > b. There does not exist an inverse.

Problem 4. Let G be the set of all the matrices of the form $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ with a, b nonzero real numbers, and consider the operation given by multiplication of matrices on the set G.

1. Does the "closure" requirement hold? *Solution:* Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, and $B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then $A * B = \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix}$ This does not satisfy closure.

2. Explain why there is no identity element. Solution: Assume there exists an identity I that satisfies the equality A*I=A and I*A=A, where $A=\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$, let $I=\begin{bmatrix} c & 1 \\ 0 & d \end{bmatrix}$. Let $B=\begin{bmatrix} a+1 & 1 \\ 0 & b \end{bmatrix}$ $A*I=\begin{bmatrix} ac & a+d \\ 0 & bd \end{bmatrix}$

$$B*I = \begin{bmatrix} (a+1)c & (a+1)+c \\ 0 & bd \end{bmatrix}$$

We have a contradiction a+1+c=1 and a+c=1, so there does not exist an identity.