ANALISI 3 – Schemi Completi

Numeri complessi | Serie di Fourier | Funzioni olomorfe

Preparato da: Antonio Cioffi

Struttura dell'esame (3 esercizi, 10 pt ciascuno):

- Numeri complessi (90%: radici n-esime; a volte equazioni che si riducono a radici).
- Serie di Fourier: costruzione dei coefficienti, serie e studio di convergenza (puntuale e uniforme).
- Funzioni di variabile complessa: dominio, olomorfia (Cauchy–Riemann) \Rightarrow analiticità.

Regola d'oro per il voto pieno: mostra tutti i passaggi con ordine, dichiara le ipotesi e le conclusioni con frase finale esplicita.

Indice

1	Nu	meri complessi: forme, potenze, radici, equazioni	1
	1.1	Forme equivalente di un numero complesso	1
	1.2	Formula di Eulero e di De Moivre	2
	1.3	Radici <i>n</i> -esime di un complesso	2
	1.4	Rationalizzazione coniugata (trucco salva-tempo)	2
	1.5	Equazioni tipiche nel campo complesso	3
2	Ser	ie di Fourier: costruzione e convergenza	3
	2.1	Setup standard su 2π	3
	2.2	Teorema di Dirichlet (convergenza puntuale) e uniforme	3
	2.3	Formule per periodo generale $2L$	4
	2.4	Esempi "a stile compito"	4
	2.5	Mini-tabella integrali rapidi	4
3	Funzioni di variabile complessa: olomorfia \Rightarrow analiticità		4
	3.1	Derivabilità complessa e olomorfia	4
	3.2	Scomposizione $f(x + iy) = u(x, y) + iv(x, y)$ e Cauchy-Riemann	1
	3.3	Esempi "stile compito" (razionali di z)	E
	3.4	Osservazioni rapide	5
1	Che	ocklist finali a trucchetti da 30 a Loda	E

1 Numeri complessi: forme, potenze, radici, equazioni

1.1 Forme equivalente di un numero complesso

Sia $z = a + ib \in \mathbb{C}$. Modulo $|z| = \rho = \sqrt{a^2 + b^2}$, argomento arg $z = \theta$ (non unico), argomento principale Arg $z \in (-\pi, \pi]$. Forme:

$$z = a + ib = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}$$
.

Conversione rapida $a, b \to (\rho, \theta)$: $\rho = \sqrt{a^2 + b^2}$, $\cos \theta = \frac{a}{\rho}$, $\sin \theta = \frac{b}{\rho}$. Usa $\tan \theta = \frac{b}{a}$ solo per il valore grezzo, poi correggi il quadrante.

1.2 Formula di Eulero e di De Moivre

$$e^{i\theta} = \cos\theta + i\sin\theta, \qquad (\rho e^{i\theta})^n = \rho^n e^{in\theta} = \rho^n (\cos(n\theta) + i\sin(n\theta)).$$

1.3 Radici n-esime di un complesso

Teorema 1 (Radici n-esime). Sia $z = \rho e^{i\theta} \neq 0$. Le radici n-esime sono

$$w_k = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} = \sqrt[n]{\rho} \left(\cos\frac{\theta + 2k\pi}{n} + i\sin\frac{\theta + 2k\pi}{n}\right), \quad k = 0, 1, \dots, n - 1.$$

Sono n punti ai vertici di un poligono regolare su cerchio di raggio $\sqrt[n]{\rho}$, equispaziati di $\frac{2\pi}{n}$.

Schema d'esame per radici:

- (1) Porta z in forma trig./esponenziale (ρ , θ con quadrante giusto).
- (2) Scrivi la formula generale w_k e specifica $k = 0, \ldots, n-1$.
- (3) Se richiesto, **ridai** le soluzioni in forma a + ib (arrotonda solo alla fine).
- (4) Disegna velocemente: cerchio di raggio $\sqrt[n]{\rho}$, marca gli n angoli. Punti \checkmark .

Mini-figura pronta (radici quarte)

1.4 Rationalizzazione coniugata (trucco salva-tempo)

Per eliminare complessi al **denominatore**, moltiplica per il *coniugato*:

$$\frac{A + iB}{C + iD} = \frac{(A + iB)(C - iD)}{C^2 + D^2} = \frac{AC + BD}{C^2 + D^2} + i\frac{BC - AD}{C^2 + D^2}.$$

Sempre porta il risultato in a + ib prima di passare alla forma trig./exp.

1.5 Equazioni tipiche nel campo complesso

Template 1 (si riduce a radici): risolvi $z^n = \rho e^{i\theta}$ con formula w_k .

Template 2 $z^m \overline{z}^n = c$ (con $c \in \mathbb{C}$): scrivi $z = \rho e^{i\theta} \Rightarrow \overline{z} = \rho e^{-i\theta}$. Allora $z^m \overline{z}^n = \rho^{m+n} e^{i(m-n)\theta} = c$. Confronta moduli e argomenti:

$$\rho^{m+n} = |c|, \qquad (m-n)\theta \equiv \operatorname{Arg} c \pmod{2\pi}.$$

Poi ricava z.

Esempio 1 (Stile compito). Risolvi $z^2\overline{z} = -16\overline{z}$ (caso tipico). Sol. Se $\overline{z} = 0$ allora z = 0, che soddisfa l'equazione $(0 = -16 \cdot 0)$. Se $\overline{z} \neq 0$ si può dividere: $z^2 = -16$. In forma exp: $-16 = 16e^{i(\pi + 2k\pi)}$. Radici quadrate:

$$z = \sqrt{16} e^{i\frac{\pi + 2k\pi}{2}} = 4 e^{i(\frac{\pi}{2} + k\pi)} = \begin{cases} 4i, & k = 0\\ -4i, & k = 1. \end{cases}$$

Soluzioni: $z \in \{0, 4i, -4i\}$. (Disegna tre punti sull'asse immaginario.)

2 Serie di Fourier: costruzione e convergenza

2.1 Setup standard su 2π

Per f 2π -periodica, serie di Fourier:

$$S_f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

Scorciatoia parità: f pari $\Rightarrow b_n = 0$; f dispari $\Rightarrow a_0 = a_n = 0$.

Integra su intervalli comodi (qualsiasi di ampiezza 2π). Per tratti costanti/lineari, spezza e usa simmetrie.

2.2 Teorema di Dirichlet (convergenza puntuale) e uniforme

Teorema 2 (Dirichlet, forma operativa). Se f è regolare a tratti su un periodo (numero finito di discontinuità di salto, derivabile a tratti), allora:

- in ogni punto di continuità di f, $S_f(x) \to f(x)$;
- in ogni punto di salto x_0 , $S_f(x_0) \to \frac{f(x_0^-) + f(x_0^+)}{2}$.

Proposizione 1 (Convergenza uniforme: regola pratica). Se l'estensione 2π -periodica di f è continua su \mathbb{R} , la serie S_f converge uniformemente su \mathbb{R} . Se c'è anche un solo salto, la convergenza non è uniforme sull'intero periodo.

Schema d'esame Fourier:

- (1) Disegna il periodo base e individua parità (pari/dispari/nessuna).
- (2) Scrivi esplicitamente che f è **regolare a tratti** sul periodo (vale tipicamente nei compiti).
- (3) Calcola solo i coefficienti non nulli (grazie alla parità).
- (4) Scrivi $S_f(x)$.
- (5) Concludi: **puntuale** via Dirichlet; **uniforme** se e solo se l'estensione periodica è continua.

2.3 Formule per periodo generale 2L

Se $f \in 2L$ -periodica:

$$S_f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right), \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx,$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx.$$

2.4 Esempi "a stile compito"

Esempio 2 (Gradino su
$$[0, 2\pi)$$
). $f(x) = \begin{cases} \frac{4}{\pi^2} - x, & 0 \le x \le \frac{\pi}{2}, \\ 0, & \frac{\pi}{2} < x < \pi, \end{cases}$ e 2π -periodica.

Passi: Disegna; non è pari né dispari; f regolare a tratti \Rightarrow Dirichlet applicabile. Calcola a_0, a_n, b_n spezzando gli integrali su $[0, \pi/2]$ e $(\pi/2, \pi)$, poi usa periodicità per $[-\pi, 0)$. Scrivi la serie e concludi su puntuale e uniforme (non uniforme per via dei salti).

Esempio 3 (Dente di sega centrato (dispari)). $f(x) = \frac{\pi - x}{\pi}$ per $x \in (-\pi, \pi]$, 2π -periodica. $Dispari \Rightarrow a_0 = a_n = 0$. Calcola solo $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\pi - x}{\pi} \sin nx \, dx$. Conclusione: puntuale ovunque, ai salti media dei limiti; non uniforme per via dei salti.

2.5 Mini-tabella integrali rapidi

$$\int \sin nx \, dx = -\frac{\cos nx}{n} + C, \qquad \int \cos nx \, dx = \frac{\sin nx}{n} + C,$$

$$\int x \sin nx \, dx = \frac{\sin nx}{n^2} - \frac{x \cos nx}{n} + C, \qquad \int x \cos nx \, dx = \frac{x \sin nx}{n} + \frac{\cos nx}{n^2} + C.$$

3 Funzioni di variabile complessa: olomorfia \Rightarrow analiticità

3.1 Derivabilità complessa e olomorfia

f è derivabile (olomorfa) in z_0 se esiste finito

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

4

indipendentemente dal percorso nel piano.

3.2 Scomposizione f(x+iy) = u(x,y) + iv(x,y) e Cauchy-Riemann

Teorema 3 (Equazioni di Cauchy–Riemann (CR)). Se u,v sono differenziabili in un punto, f è olomorfa in quel punto \iff

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Schema d'esame Olomorfia:

- (1) **Dominio**: vincoli dove f non è definita (denominatori $\neq 0$, log rami, radici).
- (2) Scrivi z = x + iy e separa u, v (rationalizza se serve).
- (3) Afferma che u, v sono differenziabili nel dominio (combinazioni di funzioni elementari).
- (4) Calcola $\partial u/\partial x$, $\partial u/\partial y$, $\partial v/\partial x$, $\partial v/\partial y$ e verifica CR.
- (5) Conclusione: insieme di olomorfia = (punti del dominio dove CR valgono). Frase finale: $Olomorfa \Rightarrow infinitamente derivabile \Rightarrow analitica nello stesso insieme.$

3.3 Esempi "stile compito" (razionali di z)

Esempio 4. $f(z) = \frac{1 - \mathrm{i} z}{1 + \mathrm{i} z}$. Dominio: $1 + \mathrm{i} z \neq 0 \Rightarrow z \neq \mathrm{i}(-1) = -\mathrm{i}$. Scrivi $z = x + \mathrm{i} y$, calcola u, v e verifica CR su $\mathbb{C} \setminus \{-\mathrm{i}\}$. Conclusione: olomorfa e quindi analitica su $\mathbb{C} \setminus \{-\mathrm{i}\}$.

Esempio 5. $f(z) = \frac{1+z}{1-z}$. Dominio: $z \neq 1$. Stesso schema: separa u, v, verifica CR su $\mathbb{C} \setminus \{1\}$, quindi analitica lì.

3.4 Osservazioni rapide

- Se f è polinomio in z, allora f è olomorfa su tutto \mathbb{C} .
- Se compaiono \overline{z} in modo non banale, tipicamente non olomorfa (CR non reggono).
- Funzioni razionali in z: olomorfe su \mathbb{C} escluse le poli (zeri del denominatore).

4 Checklist finali e trucchetti da 30 e Lode

Numeri Complessi

- Porta sempre in a + ib prima di passare a forma trig./exp.
- Argomento principale: correggi il quadrante; ricordati che non è unico $(\theta + 2k\pi)$.

5

- Radici: stesso modulo $\sqrt[n]{\rho}$; angoli $\frac{\theta + 2k\pi}{n}$, $k = 0, \dots, n-1$; disegno veloce.
- Equazioni coniugate: passa a ρ, θ e confronta moduli/argomenti.

Serie di Fourier

- Subito parità: $\mathbf{pari} \Rightarrow b_n = 0$; $\mathbf{dispari} \Rightarrow a_0 = a_n = 0$.
- Spezza gli integrali dove la funzione cambia espressione e usa simmetrie.
- Scrivi sempre la **frase Dirichlet** (puntuale) e la riga su **uniforme**.

Olomorfia

- Dominio prima di tutto (evita di "dimostrare CR" fuori dominio).
- CR sono $necessarie\ e\ sufficienti\ se\ u,v$ sono differenziabili.
- Conclusione testuale: "olomorfa \Rightarrow analitica nello stesso insieme".

Errori da evitare: (i) Argomento col segno/quadrante sbagliato; (ii) dimenticare $k=0,\ldots,n-1$ nelle radici; (iii) saltare la frase finale su convergenza/olomorfia; (iv) integrali Fourier senza spezzare ai punti di salto; (v) non razionalizzare il denominatore quando serve.

Appendice A: Esempi-lampo pronti

Radici: $w^4 = 3 + 3i$

$$z = 3 + 3i = \rho e^{i\theta}; \ \rho = \sqrt{18} = 3\sqrt{2}; \ \theta = \pi/4.$$

$$w_k = \sqrt[4]{3\sqrt{2}} e^{i\frac{\pi/4 + 2k\pi}{4}}, \quad k = 0, 1, 2, 3.$$

Fourier: funzione dispari f(x) = x su $(-\pi, \pi]$

$$a_0 = a_n = 0$$
; $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx = \frac{2(-1)^{n+1}}{n}$.

$$S(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin nx$$
, puntuale ovunque, ai salti media; non uniforme (salti).

Olomorfia: $f(z) = \frac{z^2 + 1}{z - 1}$

Dominio $\mathbb{C} \setminus \{1\}$; razionale in $z \Rightarrow$ olomorfa su $\mathbb{C} \setminus \{1\}$, quindi analitica lì.

Appendice B: Mini-modulistica "frasi d'esame"

Dirichlet (da scrivere) "Si verifica che f è regolare a tratti sul periodo. Per il teorema di Dirichlet, la serie di Fourier converge puntualmente a f nei punti di continuità e alla media dei limiti nei punti di discontinuità."

Uniforme (continua periodica) "L'estensione 2π -periodica di f è continua su \mathbb{R} , dunque la serie converge uniformemente su \mathbb{R} ."

Uniforme (salti) "Poiché l'estensione periodica presenta punti di discontinuità, la convergenza non è uniforme sull'intero periodo."

Analiticità "Nei punti in cui f è olomorfa, per la teoria delle funzioni olomorfe, f è infinitamente derivabile e analitica."

Queste pagine sono pensate per riprodurre il taglio dei compiti passati: radici n-esime / Fourier / olomorfia. Mostra i passaggi, usa le frasi standard, e marca i disegni.