WEEK 10 REPORT

Group Name:

	Member 1	Member 2
Name	Keilor Fallas Prado Ky Dang	
Email	kfallasprado@gmail.com Keith.dang1610@gmail.com	
Country	Costa Rica	Vietnam
College/ Company		
Specialization	NLP	NLP

Problem description:

The dataset consists of two distinct subsets: a **Train** dataset and a **Test** dataset. The **Train** dataset includes three features along with a label column. The **Test** dataset, however, does not contain the label column, as its purpose is to evaluate the model's performance once trained.

The task at hand is to build a deep learning model capable of accurately detecting **hate speech** from textual data. Given the nature of the task, it is crucial to select an appropriate model for processing and analyzing textual information.

There are a variety of deep learning models available, each with its strengths and weaknesses, including but not limited to:

- Long Short-Term Memory (LSTM): LSTMs are recurrent neural networks (RNNs) designed to capture long-range dependencies in sequential data. They are often used for tasks like text classification, sentiment analysis, and speech recognition.
- Gated Recurrent Units (GRU): GRUs are a variant of LSTMs that also handle sequential data. While they are computationally more efficient than LSTMs, they offer similar performance for many natural language processing (NLP) tasks.
- Convolutional Neural Networks (CNN): CNNs are primarily known for image processing but have also been shown to perform well for text classification tasks, where they can extract features from sequences of words.
- Transformers (e.g., BERT, RoBERTa): Transformers, particularly models like BERT (Bidirectional Encoder Representations from Transformers) and RoBERTa (Robustly optimized BERT approach), have revolutionized NLP. These models are based on the transformer architecture, which uses self-attention mechanisms to capture complex relationships within the data. BERT and RoBERTa, in particular, have been pre-trained on large corpora and have shown

remarkable results across various NLP tasks, including sentiment analysis, named entity recognition, and hate speech detection.

In the context of **hate speech detection**, the use of a **transformer-based model** such as **BERT or RoBERTa** may be highly beneficial. These models have demonstrated superior performance on a wide range of NLP tasks due to their ability to understand the nuances of language, including sarcasm, context, and subtle linguistic features often present in hate speech.

Project lifecycle

Weeks	Due date	Plan
Week 8	11/26/2024	Review data source and ensure it is
		representative of hate speech contexts.
Week 9	12/02/2024	Remove duplicates, nulls, and irrelevant
		data.
Week 10	12/09/2024	Evaluate and select models such as
		Logistic Regression, SVM, or
		Transformers (e.g., BERT).
Week 11	12/16/2024	Tokenization - Identify relevant
		linguistic and contextual features
Week 12	12/23/2024	Training and evaluation model
Week 13	12/30/2024	Document the challenge

Github Repo link:

- Individual GitHub links:
 - o KyDang: https://github.com/KeithDang1610/NLP HateSpeech-Detection
 - o Keilor: