Coding Bird

· · · 드론으로 배우는

프로그래밍 교실

Ch7. 드론과 친해지기 - 1

∵ 목차 ∵

01	드론에 대해서	01
	드론이란?	02
	드론의 활용	03
	드론의 구분	05
02	드론은 어떻게 구성되는가	06
	드론의 구조	07
	프레임과 프로펠러	08
	모터와 배터리	09
	베이스보드와 아두이노	10
	자이로센서와 WiFi모듈	11
03	드론의 비행원리	12
	Throttle, Yaw, Pitch, Roll	13
	출력을 담당하는 Throttle ·····	14
	회전을 담당하는 Yaw ····	15
	전진, 후진을 담당하는 Pitch	16
	좌우 이동을 담당하는 Roll	17

. 드론으로 배우는

프로그래밍 교실

초판발행 2016년 9월 23일

지은이 최정애 | 펴낸이 최정애

펴낸곳 WHIT | 주소 안산시 한양대학로55 창업보육센터 B01

전화 010-5125-2139

Published by WHIT. Printed in Korea Copyright ⓒ 2016 최정애 & WHIT

이 책의 저작권은 최정애와 WHIT에 있습니다. 저작권법에 의해 보호를 받는 저작물이므로 무단 복제 및 무단 전재를 금합니다.

01 드론에 대해서

드론은 현재 진행형으로 발전하고 있는 미래형 콘텐츠입니다. 군기관에서 사용이 시작되어서 현재는 산업과 생활 전반에 드론이 사용되어지고 있습니다.

앞으로 드론과 관련된 직업이 무수히 많이 생기게 될 것입니다. 드론 프로그래밍 교실을 통해 드론에 대해 알아가는 시간을 갖도록 합시다.

드론이란?

드론의 정의

드론은 무인 항공기의 일종으로, 사전적인 의미로는 '수벌(꿀벌)','낮게 웅웅거리는 소리'가 있습니다. 보통 사람이 타지 않고 원격 조종으로 움직이는 경우가 대다수이며, 군사용으로 사용되다 최근에는 수송이나 교육 등 그 활용범위가 넓어지고 있는 추세입니다.

<그림1-1> 교육용 드론 '키위'

나만의 드론

여러분이 상상하는 드론은 어떤 모습인가요? 드론을 그려보세요!

드론의 활용

드론의 활용 방안

드론 레이싱

<그림1-2> 드론 레이싱

출처 : https://www.youtube.com/watch?v=ftMSHgUgxHY

드론 실종자 수색

<그림1-3> 드론 실종자 수색

출처: https://www.youtube.com/watch?v=sijr5R0BmdQ

드론 스마트 농업

<그림1-4> 드론 스마트 농업

출처 : https://www.youtube.com/watch?v=SHclAtbfwBc

미래학자 드론 활용

무려 192가지의 드론 활용 방안이 존재한다고 다빈치 연구소의 미래학자Thomas Frey가 주장했습니다.

<그림1-5> Thomas Frey의 192가지 드론 활용 방안

나의 관심은!?

드론 아이디어 24개 카테고리

- 1. 조기경보 시스템(Early Warning Systems)
- 2. 긴급 서비스 (Emergency Services)
- 3. 뉴스 레포팅 (News Reporting)
- 4. 배달(Delivery)
- 5. 사업활동 모니터링 (Business Activity Monitoring)
- 6. 게임용 드론(Gaming Drones)

- 9. 마케팅(Marketing)
- 10. 농업용 드론(Farming and Agriculture)
- 11. 목장용 드론(Ranching Drones)
- 12. 경찰 드론(Police Drones)
- 13. 스마트 홈 드론 (Smart Home Drones)
- 14. 부동산 드론 (Real Estate)
- 15. 도서관 드론 (Library Drones)
- 16. 군대 스파이용도 (Military and Spy Uses)
- 17. 건강관리 드론(Healthcare Drones)
- 18. 교육용 드론 (Educational Drones)
- 20. 여행용 드론 (Travel Drones)

- 24. 머나먼 개념의 드론 (Far Out Concepts)

드론의 구분

형태에 따른 구분

드론은 날개의 개수에 따라 옥토, 헥사, 쿼드콥터로 구분되고,쿼드콥터는 X자형과 +자형으로 구분됩니다.

<그림1-6> 드론의 형태에 따른 구분

왜 하필 쿼드콥터지?

이 중에서 우리는 X자형 쿼드콥터에 대해 배우게 됩니다. 날개의 개수가 4개인 쿼드콥터가 가장 대중적인 이유는 뭘까요?

02 드론은 어떻게 구성되는가

드론은 프레임, 프로펠러, 모터, FC, 자이로센서, 통신 모듈, 배터리 등으로 구성이 되어 있습니다.

드론에 들어가는 구성품들은 서로 유기적으로 연결되어 있어서, 서로 간 영향을 받게 됩니다. 만약 비행 시간을 늘리기 위해 배터리의 용량을 크게 하면 무게가 커져 더 큰 출력의 모터가 필요하게 되고, 프로펠러의 크기도 달라지게 됩니다. 드론을 구성할 떈 이러한 점들을 고려해야 합니다.

드론의 구조

드론의 구성품

드론은 다양한 부품으로 구성됩니다. 여기서는 대표적인 구성품으로 프레임, 프로펠러, 모터, 배터리, 베이스보드, 아두이노, 자이로센서, WiFi모듈을 살펴볼겁니다.

쿼드로터 드론 구조

<그림2-1> 드론의 구성품들

드론을 띄우기 위해서는 아래와 같은 조건의 구성이 되어야 한니다

드론의 몸체를 들어올릴 수 있는 출력을 가진 모터를 사용해야 합니다. 또한, 모터에 연결되는 프로펠러도 모터의 힘을 잘 전달해야 합니다. 모터는 잘 고정되어야 흔들림 없이 날 수 있습니다. 배터리는 큰 전류를 한번에 낼 수 있어야 합니다.

이러한 구성을 갖추어 드론을 만들어야지만 제대로 된 비행을 할 수 있게 됩니다.

프레임과 프로펠러

프레임

프레임은 드론의 몸체를 뜻하며, 드론의 구성품 중 가장 기본이 되는 부분입니다.

재료로는 탄소 섬유, 티타늄, 알루미늄, 플라스틱, 철, 스티로폼 등이 있습니다.

양 끝 모터 간 거리를 기준으로 크기가 450MM, 330MM, 150MM 등의 드론이 있으며, 이보다 작거나 큰 드론 또한 존재합니다.

<그림2-2> 길이 별 드론

프로펠러

프로펠러는 모터에 의해 회전하며 양력을 발생시켜 드론을 날 수 있게 힘을 내 줍니다. 이 때 힘의 세기를 결정하는 요인은 치수와 피치입니다.

치수: 프로펠러의 한 쪽 끝에서 다른 쪽 끝까지의 거리 피치: 프로펠러가 한 번 회전했을 때 전진하는 거리

예를 들어 8060프로펠러의 경우 치수가 8인치, 피치가 6인치 입니다.

<그림2-3> 프로펠러

모터와 배터리

모터

모터는 크게 DC모터와 BLDC모터로 나뉩니다.

BLDC모터는 Brushless – DC모터로 브러쉬가 없어서 내구성이 좋지만 DC모터에 비해 비쌉니다. 또한 부피가 커서 크기가 큰 드론에 적합합니다.

DC모터는 값이 싸고 가벼워서 소형 드론에 사용됩니다.

<그림2-4> DC motor

<그림2-5> BLDC motor

배터리

배터리는 보통 리튬 폴리머(Li-Po) 배터리를 사용합니다.

셀의 수에 따라서 1S~3S로, 3.7v~11.1v이고, 용량에 따라서 600mAh~10000mAh까지 다양합니다.

드론은 다수의 모터를 사용하여 순간에 높은 전류를 소모하기 때문에 한번에 낼 수 있는 전류의 최대치(방전율)가 높은 배터리를 사용해야 합니다.

<그림2-6> 3.7v 600mAh Li-Po Battery

<그림2-7> 11.1v 5000mAh Li-Po Battery

베이스보드와 아두이노

베이스보드

베이스보드는 다음과 같은 기능을 수행합니다.

- 모터의 속도를 제어하는 ESC의 역할을 합니다..
- 모터에 일정한 전류를 전달해주는 BEC의 역할을 합니다.
- 아두이노, 자이로센서, WiFi모듈, 모터, 배터리를 연결합니다.

<그림2-8> 베이스 보드

DIY드론에서는 위처럼 하나의 보드에 넣는게 아닌, ESC와 BEC를 따로 구성하여 사용하게 됩니다.

꿀TIP ESC. BEC

Electronic Speed Controller Battery Eliminator Circuit

아두이노

아두이노는 FC(Flight Controller)로 사용되며 드론의 전체적인 기능을 담당합니다. 사람으로 따지면 뇌에 해당하는 부분입니다. WiFi모듈로부터 받아들인 신호를 모터에 전달하여 상하좌우로 움직일 수 있게 하고, 자이로 센서로부터 값을 받아 수평을 유지할 수 있게 해줍니다.

<그림2-9> 아두이노 프로 마이크로

수업에서는 아두이노 프로 마이크로라는 버전의 아두이노를 사용합니다.

자이로센서와 WiFi모듈

자이로센서

자이로센서는 드론의 수평을 유지할 수 있게 해줍니다.

이 때 MPU6050이라는 센서를 사용하는데, 이 센서는 가속도와 자이로, 온도 값을 측정할 수 있습니다.

우리는 가속도와 자이로 센서값을 이용하여 드론의 기울어진 정도와 회전하는 정도를 알 수 있습니다.

<그림2-10> GY-521 MPU6050

WiFi모듈

드론을 조종하기 위해서는 조종기에서 드론으로 신호를 보내야 합니다.

신호는 무선으로 전달되며 요, 피치, 롤, 스로틀 값을 전달합니다. 무선으로 값을 전달할 때는 블루투스, 와이파이등의 무선통신을 사용합니다.

<그림2-11> ESP8266 WiFi모듈

수업에서는 ESP8266라는 WiFi모듈을 통해서 무선통신을 하게 됩니다.

03 드론의 비행 원리

드론이 제대로 날려면 적당한 조건이 갖춰져야 합니다. 모터의 출력도 드론을 띄울 수 있을 만큼 좋아야 하고, 무게도 적당해야 합니다. 드론을 조종하기 위해선 드론이 어떤식으로 움직이는지를 알아야 합니다. 4개의 프로펠러의 출력을 어떻게 제어함에 따라 드론의 움직이는 방향이 달라지는지 생각해 봅시다.

Throttle, Yaw, Pitch, Roll

드론 비행원리

드론은 어떻게 비행을 하게 될까요?

단순하게 생각하면 **4**개의 프로펠러를 같은 속도로 돌린다면 위로 뜨게 되리라 생각할 수 있습니다.

물론, 모터에 전류가 가해지는 것은 동시가 아닌 순서대로 첫 번째 모터부터 네 번째 모터까지 전달되므로 오차가 발생하여 수평이 어긋나는데, 이 것은 자이로 센서를 통해서 잡아줘야 합니다.

하지만, 이러한 과정은 프로그램이 알아서 해주니까 우리는 실제 비행이 어떻게 이루어지는지를 살펴봅시다.

요피치롤

요, 피치, 롤은 드론의 회전과 관계된 역학의 기본 구성 요소입니다. 각각 x, y, z축 회전을 담당하고 있습니다.

<그림3-1>요, 피치, 롤

요, 피치, 롤을 통해서 드론은 앞, 뒤, 좌, 우, 회전을 할 수 있게 됩니다.

스로틀

스로틀은 모터의 출력을 결정하여 드론을 위아래로 움직입니다.

출력을 담당하는 Throttle

스로틀

상승

네 개의 모터가 전부 다 HIGH인 상태입니다. 드론의 수평을 맞춘 후 시동을 걸고, 스로틀만을 올리면 드론이 수직으로 상승하게 됩니다.

<그림3-2> 상승

만약 드론의 수평이 맞춰지지 않았다면 드론은 한쪽으로 기울어 날게 됩니다.

하강

네 개의 모터가 전부 다 LOW인 상태입니다. 상승 상태에서 스로틀을 천천히 낮추면 모터의 속도가 줄어들게 됩니다.

<그림3-3> 하강

회전을 담당하는 Yaw

兒

좌회전

좌상, 우하 2개의 모터는 HIGH로, 우상, 좌하 2개의 모터는 LOW로 맞춘 상태입니다.

<그림3-4> 좌회전

모터의 출력이 위처럼 될 경우 드론은 제자리에서 좌회전을 하게 됩니다.

우회전

좌상, 우하 2개의 모터는 LOW로, 우상, 좌하 2개의 모터는 HIGH로 맞춘 상태입니다.

<그림3-5> 우회전

모터의 출력이 위처럼 될 경우 드론은 제자리에서 우회전을 하게 됩니다.

전진, 후진을 담당하는 Pitch

피치

전진

앞의 2개의 모터는 LOW로 뒤의 2개의 모터는 HIGH로 맞춘 상태입니다.

<그림3-6> 전진

모터의 출력이 위처럼 될 경우 드론은 전진을 하게 됩니다.

후진

앞의 2개의 모터는 HIGH로 뒤의 2개의 모터는 LOW로 맞춘 상태입니다.

<그림3-7> 후진

모터의 출력이 위처럼 될 경우 드론은 후진을 하게 됩니다.

좌우 이동을 담당하는 Roll

롤

좌로 이동

좌측 2개의 모터는 LOW로 우측 2개의 모터는 HIGH로 맞춘 상태입니다.

<그림3-8> 좌로 이동

모터의 출력이 위처럼 될 경우 드론은 좌로 이동을 하게 됩니다.

우로 이동

좌측 2개의 모터는 HIGH로 우측 2개의 모터는 LOW로 맞춘 상태입니다.

<그림3-9> 우로 이동

모터의 출력이 위처럼 될 경우 드론은 우로 이동을 하게 됩니다.

