Nipun Batra and the teaching staff

IIT Gandhinagar

August 1, 2025

Table of Contents

- 1. Setup
- 2. Normal Equation
- 3. Basis Expansion
- 4. Geometric Interpretation
- 5. Regularization
- 6. Dummy Variables and Multicollinearity
- 7. Practice and Review

Output is continuous in nature.

- · Output is continuous in nature.
- Examples of linear systems:

- Output is continuous in nature.
- · Examples of linear systems:
 - ∘ *F* = ma

- Output is continuous in nature.
- · Examples of linear systems:
 - F = ma
 - v = u + at

Task at hand

TASK: Predict Weight = f(height)

Height	Weight
3	29
4	35
5	39
2	20
6	41
7	?
8	?
1	?

The first part of the dataset is the training points. The latter ones are testing points.

Scatter Plot

• $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 pprox heta_0 + heta_1 \cdot height_2$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

- $weight_1 \approx \theta_0 + \theta_1 \cdot height_1$
- $weight_2 \approx \theta_0 + \theta_1 \cdot height_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

- weight₁ $\approx \theta_0 + \theta_1 \cdot \mathsf{height}_1$
- weight₂ $\approx \theta_0 + \theta_1 \cdot \text{height}_2$
- $weight_N \approx \theta_0 + \theta_1 \cdot height_N$

weight_i $\approx \theta_0 + \theta_1 \cdot \text{height}_i$

$$\begin{bmatrix} \text{weight}_1 \\ \text{weight}_2 \\ \dots \\ \text{weight}_N \end{bmatrix} = \begin{bmatrix} 1 & \text{height}_1 \\ 1 & \text{height}_2 \\ \dots & \dots \\ 1 & \text{height}_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\begin{bmatrix} \text{weight}_1 \\ \text{weight}_2 \\ \dots \\ \text{weight}_N \end{bmatrix} = \begin{bmatrix} 1 & \text{height}_1 \\ 1 & \text{height}_2 \\ \dots & \dots \\ 1 & \text{height}_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
$$\hat{\mathbf{y}}_{n \times 1} = \mathbf{X}_{n \times d} \boldsymbol{\theta}_{d \times 1}$$

$$\begin{bmatrix} weight_1 \\ weight_2 \\ \dots \\ weight_N \end{bmatrix} = \begin{bmatrix} 1 & height_1 \\ 1 & height_2 \\ \dots & \dots \\ 1 & height_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$
$$\hat{\mathbf{y}}_{n \times 1} = \mathbf{X}_{n \times d} \boldsymbol{\theta}_{d \times 1}$$

• θ_0 - Bias Term/Intercept Term

$$\begin{bmatrix} \text{weight}_1 \\ \text{weight}_2 \\ \dots \\ \text{weight}_N \end{bmatrix} = \begin{bmatrix} 1 & \text{height}_1 \\ 1 & \text{height}_2 \\ \dots & \dots \\ 1 & \text{height}_N \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

 $\hat{\mathbf{v}}_{n\times 1} = \mathbf{X}_{n\times d} \boldsymbol{\theta}_{d\times 1}$

- θ_0 Bias Term/Intercept Term
- θ_1 Slope

In the previous example y = f(x), where x is one-dimensional.

In the previous example y = f(x), where x is one-dimensional. Examples in multiple dimensions.

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

In the previous example y = f(x), where x is one-dimensional.

Examples in multiple dimensions.

One example is to predict the water demand of the IITGN campus

Demand = f(# occupants, Temperature)

Demand = Base Demand + K_1 * # occupants + K_2 * Temperature

Intuition

We hope to:

• Learn f: Demand = f(#occupants, Temperature)

Intuition

We hope to:

- Learn *f*: Demand = f(#occupants, Temperature)
- From training dataset

Intuition

We hope to:

- Learn *f*: Demand = f(#occupants, Temperature)
- From training dataset
- · To predict the condition for the testing set

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- $x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$
- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$

- $x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$
- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- demand_i = $x_i^{\prime T} \theta$

- $x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$
- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- $demand_i = x_i^{\prime T} \theta$

• where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- demand_i = $x_i^{\prime T} \theta$

• where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

We have

•
$$x_i = \begin{bmatrix} Temperature_i \\ \#Occupants_i \end{bmatrix}$$

- Estimated demand for i^{th} sample is $demand_i = \theta_0 + \theta_1 Temperature_i + \theta_2 Occupants_i$
- demand_i = $x_i^{\prime T} \theta$
- where $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$

• and
$$x_i' = \begin{bmatrix} 1 \\ Temperature_i \\ \#Occupants_i \end{bmatrix} = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

 Notice the transpose in the equation! This is because x_i is a column vector

We can expect the following

• Demand increases, if # occupants increases, then θ_2 is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- Demand increases, if temperature increases, then θ_1 is likely to be positive

We can expect the following

- Demand increases, if # occupants increases, then θ_2 is likely to be positive
- Demand increases, if temperature increases, then θ_1 is likely to be positive
- Base demand is independent of the temperature and the # occupants, but, likely positive, thus θ_0 is likely positive.

Generalized Linear Regression Format

Assuming N samples for training

Generalized Linear Regression Format

- Assuming N samples for training
- # Features = M

Generalized Linear Regression Format

- Assuming N samples for training
- # Features = M

Generalized Linear Regression Format

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

Generalized Linear Regression Format

- Assuming N samples for training
- # Features = M

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\theta}$$

• There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.

- There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.
- Given multiples values of $\theta_0, \theta_1 \dots \theta_M$ how to choose which is the best?

- There could be different $\theta_0, \theta_1 \dots \theta_M$. Each of them can represents a relationship.
- Given multiples values of $\theta_0, \theta_1 \dots \theta_M$ how to choose which is the best?
- Let us consider an example in 2d

Out of the three fits, which one do we choose?

We have $\hat{y} = 2 + 1x$ as one relationship.

How far is our estimated \hat{y} from ground truth y?

•
$$\mathbf{y_i} = \hat{\mathbf{y}_i} + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\epsilon_i = y_i \hat{y}_i$

- $y_i = \hat{y}_i + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$
- Critical Assumption: ϵ_i are independent and identically distributed (i.i.d.)
- y_i denotes the ground truth for ith sample
- \hat{y}_i denotes the prediction for i^{th} sample, where $\hat{y}_i = \mathbf{x}_i^{\top} \boldsymbol{\theta}$
- ϵ_i denotes the error/residual for i^{th} sample
- θ_0, θ_1 : The parameters of the linear regression
- $\epsilon_i = y_i \hat{y}_i$
- $\epsilon_i = \mathbf{y}_i (\theta_0 + \mathbf{x}_i \cdot \theta_1)$

Good fit

• $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$ L_2 Norm

Good fit

- $|\epsilon_1|$, $|\epsilon_2|$, $|\epsilon_3|$, ... should be small.
- minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$ L_2 Norm
- minimize $|\epsilon_1| + |\epsilon_2| + \cdots + |\epsilon_n|$ L_1 Norm

$$\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{\epsilon}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

To Learn: θ

$$Y = X\theta + \epsilon$$

To Learn: θ

Objective: minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{bmatrix}$$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{bmatrix}$$

Objective: Minimize $\epsilon^T \epsilon$

Derivation of Normal Equation

This is what we wish to minimize

$$\epsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\theta}$$

$$\epsilon^{\top} \epsilon = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$= \mathbf{y}^{\top} \mathbf{y} - 2\mathbf{y}^{\top} \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X}\boldsymbol{\theta}$$

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

•
$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{y}^{\top} \mathbf{y} = 0$$

Substitute the values in the top equation

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

- $\frac{\partial}{\partial \theta} \mathbf{y}^{\top} \mathbf{y} = 0$ $\frac{\partial}{\partial \theta} (-2\mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta}) = -2\mathbf{X}^{\top} \mathbf{y}$

Substitute the values in the top equation

Minimizing the objective function

$$\frac{\partial \boldsymbol{\epsilon}^{\top} \boldsymbol{\epsilon}}{\partial \boldsymbol{\theta}} = 0$$

- $\frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{y}^{\top} \mathbf{y} = 0$
- $\frac{\partial}{\partial \boldsymbol{\theta}} (-2\mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta}) = -2\mathbf{X}^{\top} \mathbf{y}$
- $\frac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{\theta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}) = 2 \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta}$

Substitute the values in the top equation

Normal Equation derivation

$$0 = -2\mathbf{X}^{\top}\mathbf{y} + 2\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$$

$$\hat{\boldsymbol{\theta}}_{\text{OLS}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Х	У
0	0
1	1
2	2
3	3

Given the data above, find θ_0 and θ_1 .

Scatter Plot

$$\mathbf{X} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
$$\mathbf{X}^{\top} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
$$\mathbf{X}^{\top} \mathbf{X} = \begin{bmatrix} 4 & 6 \\ 6 & 14 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix}$$
$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} (X^T y)$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 14 & -6 \\ -6 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 14 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Scatter Plot

Effect of outlier

Χ	У
1	1
2	2
3	3
4	0

Compute the θ_0 and θ_1 .

Scatter Plot

Worked out example

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
$$X^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
$$X^{T}X = \begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix}$$

Given the data above, find θ_0 and θ_1 .

Worked out example

$$(\mathbf{X}^{\top}\mathbf{X})^{-1} = \frac{1}{20} \begin{bmatrix} 30 & -10 \\ -10 & 4 \end{bmatrix}$$
$$\mathbf{X}^{\top}\mathbf{y} = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Worked out example

$$\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{y})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2 \\ (-1/5) \end{bmatrix}$$

Scatter Plot

Transform the data, by including the higher power terms in the feature space.

	t	S
Ī	0	0
	1	6
	3	24
	4	36

The above table represents the data before transformation

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$

Add the higher degree features to the previous table

t	t^2	S
0	0	0
1	1	6
3	9	24
4	16	36

The above table represents the data after transformation Now, we can write $\hat{s} = f(t, t^2)$

Other transformations: $\log(x), x_1 \times x_2$

A big caveat: Linear in what?!1

1.
$$\hat{\mathbf{s}} = \theta_0 + \theta_1 * t$$
 is linear

https://stats.stackexchange.com/questions/8689/
what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- 2. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?

https://stats.stackexchange.com/questions/8689/ what-does-linear-stand-for-in-linear-regression

A big caveat: Linear in what?!1

- 1. $\hat{\mathbf{s}} = \theta_0 + \theta_1 * t$ is linear
- **2.** Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?

https://stats.stackexchange.com/questions/8689/
what-does-linear-stand-for-in-linear-regression

- 1. $\hat{\mathbf{s}} = \theta_0 + \theta_1 * t$ is linear
- **2.** Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- **4.** Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?

¹https://stats.stackexchange.com/questions/8689/
what-does-linear-stand-for-in-linear-regression

- 1. $\hat{s} = \theta_0 + \theta_1 * t$ is linear
- **2.** Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- 4. Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!

¹https://stats.stackexchange.com/questions/8689/
what-does-linear-stand-for-in-linear-regression

- 1. $\hat{\mathbf{s}} = \theta_0 + \theta_1 * t$ is linear
- **2.** Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2$ linear?
- 3. Is $\hat{s} = \theta_0 + \theta_1 * t + \theta_2 * t^2 + \theta_3 * \cos(t^3)$ linear?
- **4.** Is $\hat{s} = \theta_0 + \theta_1 * t + e^{\theta_2} * t$ linear?
- 5. All except #4 are linear models!
- 6. Linear refers to the relationship between the parameters that you are estimating (θ) and the outcome

¹https://stats.stackexchange.com/questions/8689/what-does-linear-stand-for-in-linear-regression

Linear regression only refers to linear in the parameters

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.

- Linear regression only refers to linear in the parameters
- We can perform an arbitrary nonlinear transformation $\phi(x)$ of the inputs x and then linearly combine the components of this transformation.
- $\phi: \mathbb{R}^D \to \mathbb{R}^K$ is called the basis function

Some examples of basis functions:

• Polynomial basis: $\phi(\mathbf{x}) = \{1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3, \dots\}$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, ... \}$
- · Fourier basis:

$$\phi(\mathbf{X}) = \{1, \sin(\mathbf{X}), \cos(\mathbf{X}), \sin(2\mathbf{X}), \cos(2\mathbf{X}), \dots\}$$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, ... \}$
- · Fourier basis:

$$\phi(\mathbf{X}) = \{1, \sin(\mathbf{X}), \cos(\mathbf{X}), \sin(2\mathbf{X}), \cos(2\mathbf{X}), \dots\}$$

· Gaussian basis:

$$\phi(\mathbf{x}) = \{1, \exp(-\frac{(\mathbf{x} - \mu_1)^2}{2\sigma^2}), \exp(-\frac{(\mathbf{x} - \mu_2)^2}{2\sigma^2}), \dots\}$$

Some examples of basis functions:

- Polynomial basis: $\phi(x) = \{1, x, x^2, x^3, ... \}$
- Fourier basis:

$$\phi(\mathbf{X}) = \{1, \sin(\mathbf{X}), \cos(\mathbf{X}), \sin(2\mathbf{X}), \cos(2\mathbf{X}), \dots\}$$

· Gaussian basis:

$$\phi(\mathbf{X}) = \{1, \exp(-\frac{(\mathbf{X} - \mu_1)^2}{2\sigma^2}), \exp(-\frac{(\mathbf{X} - \mu_2)^2}{2\sigma^2}), \dots\}$$

• Sigmoid basis: $\phi(\mathbf{X})=\{1,\sigma(\mathbf{X}-\mu_1),\sigma(\mathbf{X}-\mu_2),\dots\}$ where $\sigma(\mathbf{X})=\frac{1}{1+\mathbf{e}^{-\mathbf{X}}}$

Linear Combination of Vectors

Let $v_1, v_2, v_3, \dots, v_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

Linear Combination of Vectors

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ be vectors in \mathbb{R}^D , where D denotes the dimensions.

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \dots + \alpha_i \mathbf{v}_i$$

where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_i \in \mathbb{R}$

Let v_1, v_2, \dots, v_i be vectors in \mathbb{R}^D , with D dimensions.

```
Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D, with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN\{v_1, v_2, \ldots, v_i\}
```

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \dots, v_i .

Let v_1, v_2, \ldots, v_i be vectors in \mathbb{R}^D , with D dimensions. The span of v_1, v_2, \ldots, v_i is denoted by SPAN $\{v_1, v_2, \ldots, v_i\}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \ldots, v_i . If we stack the vectors v_1, v_2, \ldots, v_i as columns of a matrix V, then the span of v_1, v_2, \ldots, v_i is given as $V\alpha$ where $\alpha \in \mathbb{R}^i$

Example

Example

We have $v_3 = v_1 + v_2$ We have $v_4 = v_1 - v_2$

Example

Simulating the above example in python using different values of α_1 and α_2

$$\mathsf{Span}((\mathsf{v}_1,\mathsf{v}_2))\in\mathcal{R}^2$$

Find the span of (
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix})$$

```
Find the span of \begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix})
Can we obtain a point (x, y) s.t. x = 3y?
```

```
Find the span of ( \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}) Can we obtain a point (x, y) s.t. x = 3y? No
```

Find the span of $\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix}$)
Can we obtain a point (x, y) s.t. x = 3y?
No
Span of the above set is along the line y = 2x

Find the span of (
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 , $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

Find the span of (
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 , $\begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)

• Origin

• $X_1 = [1,1,1]$

• $X_2 = [2,-2,2]$

1.5

1.0

2.0

1.5

0.5

0.0

The span is the plane z = x or $x_3 = x_1$

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

• We are trying to learn heta for $\hat{\mathbf{y}}=\mathbf{X} heta$ such that $||\mathbf{y}-\hat{\mathbf{y}}||_2$ is minimised

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn $m{ heta}$ for $\hat{\mathbf{y}}=\mathbf{X}m{ heta}$ such that $||\mathbf{y}-\hat{\mathbf{y}}||_2$ is minimised
- Consider the two columns of X. Can we write $X\theta$ as the span of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\-2\\2 \end{pmatrix}$)?

Consider X and y as follows.

$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 8.8957 \\ 0.6130 \\ 1.7761 \end{pmatrix}$$

- We are trying to learn $m{ heta}$ for $\hat{\mathbf{y}}=\mathbf{X}m{ heta}$ such that $||\mathbf{y}-\hat{\mathbf{y}}||_2$ is minimised
- Consider the two columns of X. Can we write $X\theta$ as the span of ($\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\2 \end{bmatrix}$)?
- We wish to find \hat{y} such that

$$\operatorname*{arg\,min}_{\hat{\mathbf{y}} \in \textit{SPAN}\{\bar{x_1}, \bar{x_2}, \dots, \bar{x_D}\}} ||\mathbf{y} - \hat{\mathbf{y}}||_2$$

- We seek a $\hat{\mathbf{y}}$ in the span of the columns of \mathbf{X} such that it is closest to \mathbf{y}

- This happens when $\mathbf{y} - \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j \text{ or } \mathbf{x}_j^{\top} (\mathbf{y} - \hat{\mathbf{y}}) = 0$

- This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j \text{ or } \mathbf{x}_i^\top (\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$

- This happens when $\mathbf{y} \hat{\mathbf{y}} \perp \mathbf{x}_j \forall j \text{ or } \mathbf{x}_i^\top (\mathbf{y} \hat{\mathbf{y}}) = 0$
- $\mathbf{X}^{\top}(\mathbf{y} \mathbf{X}\boldsymbol{\theta}) = 0$
- $\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\theta}$ or $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

· Linear regression can overfit with:

- · Linear regression can overfit with:
 - Too many features relative to data points

- · Linear regression can overfit with:
 - Too many features relative to data points
 - Highly correlated features (multicollinearity)

- · Linear regression can overfit with:
 - Too many features relative to data points
 - Highly correlated features (multicollinearity)
 - Noisy data with complex models

- · Linear regression can overfit with:
 - Too many features relative to data points
 - Highly correlated features (multicollinearity)
 - Noisy data with complex models
- Solution: Add penalty term to control model complexity

- · Linear regression can overfit with:
 - Too many features relative to data points
 - Highly correlated features (multicollinearity)
 - Noisy data with complex models
- Solution: Add penalty term to control model complexity
- This prevents coefficients from becoming too large

Objective Function:

$$J(\theta) = \mathsf{MSE} + \lambda \sum_{i=1}^{n} \theta_{j}^{2}$$

• $\lambda \ge 0$ is the **regularization parameter**

$$J(\theta) = \mathsf{MSE} + \lambda \sum_{j=1}^{n} \theta_j^2$$

- $\lambda \ge 0$ is the **regularization parameter**
- Larger $\lambda \rightarrow$ more regularization \rightarrow simpler model

$$J(\theta) = \mathsf{MSE} + \lambda \sum_{j=1}^{n} \theta_j^2$$

- $\lambda \ge 0$ is the **regularization parameter**
- Larger $\lambda \rightarrow$ more regularization \rightarrow simpler model
- Effect: Shrinks coefficients toward zero

$$J(\boldsymbol{\theta}) = \mathsf{MSE} + \lambda \sum_{j=1}^n \theta_j^2$$

- $\lambda \ge 0$ is the **regularization parameter**
- Larger $\lambda \rightarrow$ more regularization \rightarrow simpler model
- Effect: Shrinks coefficients toward zero
- Closed-form solution: $\theta = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$

$$J(\boldsymbol{\theta}) = \mathsf{MSE} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}$$

- $\lambda \ge 0$ is the **regularization parameter**
- Larger λ → more regularization → simpler model
- Effect: Shrinks coefficients toward zero
- Closed-form solution: $\theta = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$
- Note: $(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})$ is always invertible for $\lambda > 0$

Objective Function:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|}$$

Uses absolute value penalty instead of squared penalty

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|}$$

- Uses absolute value penalty instead of squared penalty
- Key Property: Can set coefficients exactly to zero

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|}$$

- Uses absolute value penalty instead of squared penalty
- · Key Property: Can set coefficients exactly to zero
- Automatic Feature Selection: Eliminates irrelevant features

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|}$$

- Uses absolute value penalty instead of squared penalty
- · Key Property: Can set coefficients exactly to zero
- Automatic Feature Selection: Eliminates irrelevant features
- No closed-form solution → requires iterative optimization

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j|}$$

- Uses absolute value penalty instead of squared penalty
- · Key Property: Can set coefficients exactly to zero
- Automatic Feature Selection: Eliminates irrelevant features
- No closed-form solution → requires iterative optimization
- Use Case: When you suspect many features are irrelevant

• Ridge (L2): Constraint region is a circle

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly
 - Rarely sets coefficients exactly to zero

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly
 - Rarely sets coefficients exactly to zero
- Lasso (L1): Constraint region is a diamond

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly
 - Rarely sets coefficients exactly to zero
- Lasso (L1): Constraint region is a diamond
 - Sharp corners at axes → coefficients can become exactly zero

Ridge vs Lasso: Geometric Intuition

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly
 - Rarely sets coefficients exactly to zero
- Lasso (L1): Constraint region is a diamond
 - Sharp corners at axes → coefficients can become exactly zero
 - Performs automatic feature selection

Ridge vs Lasso: Geometric Intuition

- Ridge (L2): Constraint region is a circle
 - Smooth boundary → coefficients shrink smoothly
 - Rarely sets coefficients exactly to zero
- · Lasso (L1): Constraint region is a diamond
 - Sharp corners at axes → coefficients can become exactly zero
 - Performs automatic feature selection
- Elastic Net: Combines both penalties

$$J(\theta) = \mathsf{MSE} + \lambda_1 \sum |\theta_j| + \lambda_2 \sum \theta_j^2$$

• $\lambda = 0$: No regularization (standard linear regression)

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)
- Selection Methods:

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)
- Selection Methods:
 - Cross-validation (most common)

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)
- Selection Methods:
 - Cross-validation (most common)
 - Information criteria (AIC, BIC)

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)
- Selection Methods:
 - Cross-validation (most common)
 - Information criteria (AIC, BIC)
 - Validation curves

- $\lambda = 0$: No regularization (standard linear regression)
- λ very small: Minimal regularization
- λ very large: Heavy regularization (underfitting)
- Selection Methods:
 - Cross-validation (most common)
 - Information criteria (AIC, BIC)
 - Validation curves
- Critical Insight: λ controls bias-variance tradeoff

There can be situations where inverse of X^TX is not computable.

There can be situations where inverse of X^TX is not computable.

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

There can be situations where inverse of X^TX is not computable.

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

The matrix X is not full rank.

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

Regularize

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables

It arises when one or more predictor variables/features in X can be expressed as a linear combination of others

How to tackle it?

- Regularize
- Drop variables
- Avoid dummy variable trap

Say Pollution in Delhi = P

Say Pollution in Delhi = P $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$

Say Pollution in Delhi = P

 $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$

But, wind direction is a categorical variable.

```
Say Pollution in Delhi = P  P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}
```

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

Say Pollution in Delhi = P

 $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?

Say Pollution in Delhi = P

 $P = \theta_0 + \theta_1 * \#Vehicles + \theta_1 * Wind speed + \theta_3 * Wind Direction$

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding? Then this implies that S>W>E>N

N-1 Variable encoding

	Is it N?	Is it E?	Is it W?
Ν	1	0	0
Е	0	1	0
W	0	0	1
S	0	0	0

N Variable encoding

	Is it N?	Is it E?	Is it W?	Is it S?
N	1	0	0	0
E	0	1	0	0
W	0	0	1	0
S	0	0	0	1

Which is better N variable encoding or N-1 variable encoding?

Which is better N variable encoding or N-1 variable encoding?

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Which is better N variable encoding or N-1 variable encoding?

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

Is it S = 1 - (Is it N + Is it W + Is it E)

Binary Encoding

Ν	00
Ε	01
W	10
S	11

Binary Encoding

Ν	00
Ε	01
W	10
S	11

W and S are related by one bit.

Binary Encoding

Ν	00
Ε	01
W	10
S	11

W and S are related by one bit. This introduces dependencies between them, and this can cause confusion in classifiers.

Interpreting Dummy variables

Gender	height
F	•••
F	•••
F	•••
M	•••
M	

Interpreting Dummy variables

height
•••
•••
•••
•••
•••

Encoding

Interpreting Dummy variables

Gender	height
F	•••
F	•••
F	•••
M	•••
M	•••

Encoding

Is Female	height
1	•••
1	•••
1	•••
0	•••
0	•••

Interpreting Dummy Variables

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

Interpreting Dummy Variables

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

 $height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get
$$\theta_0$$
 = 5.9 and θ_1 = -0.7

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get θ_0 = 5.9 and θ_1 = -0.7 θ_0 = Avg height of Male = 5.9

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get θ_0 = 5.9 and θ_1 = -0.7 θ_0 = Avg height of Male = 5.9 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get θ_0 = 5.9 and θ_1 = -0.7

 θ_0 = Avg height of Male = 5.9

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

$$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$$

We get θ_0 = 5.9 and θ_1 = -0.7

 θ_0 = Avg height of Male = 5.9

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 θ_1 = Avg. female height (5+5.2+5.4)/3 - Avg. male height (5.9)

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Alternatively, instead of a 0/1 coding scheme, we could create a dummy variable

$$x_i = \begin{cases} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{cases}$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i = \begin{cases} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{cases}$$

Now, θ_0 can be interpreted as average person height. θ_1 as the amount that female height is above average and male height is below average.

1. What is the geometric interpretation of least squares?

1. What is the geometric interpretation of least squares?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?
- 3. How do polynomial features help with non-linear relationships?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?
- 3. How do polynomial features help with non-linear relationships?

- 1. What is the geometric interpretation of least squares?
- 2. When does the normal equation have a unique solution?
- 3. How do polynomial features help with non-linear relationships?
- 4. What are the assumptions behind linear regression?

Before using linear regression, verify these assumptions:

• Linearity: Relationship between x and y is linear

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Before using linear regression, verify these assumptions:

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

Biased coefficient estimates

Before using linear regression, verify these assumptions:

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

- Biased coefficient estimates
- Invalid confidence intervals

Before using linear regression, verify these assumptions:

- Linearity: Relationship between x and y is linear
- Independence: Observations are independent of each other
- Homoscedasticity: Error variance is constant across all values of x
- Normality: Errors are normally distributed (for inference)
- No Multicollinearity: Features are not highly correlated

Violation Consequences:

- Biased coefficient estimates
- Invalid confidence intervals
- Poor prediction performance

 Linear Model: Assumes linear relationship between features and target

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling
- Foundation: Building block for more complex models