Tema Formula lui Taylor

Varianta A

- 1. Dezvoltați polinomul $P(x) = x^3 + 3x + 2$ după puterile lui x + 1.
- 2. Determinați polinomul Taylor de gradul trei asociat funcției $f(x) = xe^{2x}$ în punctul $x_0 = 1$.
- 3. Calculați limita $\lim_{x\to 0} \frac{\sin(x)-x}{x^3}$ folosind formula lui Maclaurin de ordinul trei pentru funcția $\sin(x)$.

Varianta B

- 1. Dezvoltați polinomul $P(x) = 3x^3 + 3x^2 2x + 1$ după puterile lui x 1.
- 2. Determinați polinomul Taylor de gradul trei asociat funcției $f(x) = \ln \sqrt{1+x}$ în punctul $x_0 = 1$.
- 3. Calculați limita $\lim_{x\to 0} \frac{\cos(x)-1}{x^2}$ folosind formula lui Maclaurin de ordinul trei pentru funcția $\cos(x)$.

Varianta C

- 1. Dezvoltați polinomul $P(x) = x^3 + 2$ după puterile lui x 1.
- 2. Determinați polinomul Taylor de gradul trei asociat funcției $f(x) = \sqrt{1+x}$ în punctul $x_0 = 1$
- 3. Calculați limita $\lim_{x\to 0} \frac{\sin^2(x) x^2}{x^2}$ folosind formula lui Maclaurin de ordinul trei pentru funcția $\sin(x)$.

Varianta D

- 1. Dezvoltați polinomul $P(x) = x^3 + 1$ după puterile lui x.
- 2. Determinați polinomul Taylor de gradul trei asociat funcției $f(x) = \frac{1}{2x+3}$ în punctul $x_0 = 1$
- 3. Calculați limita $\lim_{x\to 0} \frac{1-\cos^2(x)}{x^2}$ folosind formula lui Maclaurin de ordinul trei pentru funcția $\cos(x)$.