CS 310

O-notation (big-Oh)

Upper bounds.

 $O(f(n)) = \{T(n) : \text{there exist positive constants c}$ and n_0 such that $0 \le T(n) \le cf(n)$ for all $n \ge n_0$

Big-Omega notation

Lower bounds.

 $\Omega(f(n)) = \{T(n) : \text{there exist positive constants c}$ and n_0 such that $0 \le cf(n) \le T(n)$ for all $n \ge n_0$

Big-Theta notation

Tight bounds.

 $\Theta(f(n)) = \{T(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 f(n) \le T(n) \le c_2 f(n) \text{ for all } n \ge n_0 \}$

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is?

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n)+g(n) is?

```
If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
```

If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n)+g(n) is O(h(n))

Logarithms

log_an ? log_bn

Logarithms

 $\Theta(\log_a n)$ is $\Theta(\log_b n)$ for any constants a, b > 0.

We say that an algorithm is efficient if has a polynomial running time.

Especially those with small constants and small exponents.

Analyzing recursive programs