Open Command-oriented Geometric Graphics Generator OpenCG³ Specification Version 0.3.3

Dong Nai-Jia 1 Lin Yong-Hsiang 2

¹ National Chiao Tung University Department of Computer Science

 2 National Taiwan University Department of Agricultural Chemistry

August 20, 2017

Command Tokens

Regular Expressions

```
\begin{split} \mathbb{N} &\coloneqq \left\{ \begin{array}{l} \alpha \mid \alpha \in [\text{0-9}] + \right\} \\ \mathbb{R} &\coloneqq \left\{ \begin{array}{l} \alpha \mid \alpha \in [\text{+}\backslash\text{-}]?([\text{0-9}] * [.])?[\text{0-9}] + \right\} \\ \mathbb{S} &\coloneqq \left\{ \begin{array}{l} \alpha \mid \alpha \in '(.*?)' \mid [.\text{0-9A-Za-z+}\backslash\text{-}] + \right\} \\ \mathbb{W} &\coloneqq \left\{ \begin{array}{l} \alpha \mid \alpha \in [\text{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsymbol{\topsy
```

Descriptions

- The matching mechanism abides by the maximal munch rule.
- Each command is whitespace-insensitive except being quoted by a pair of single quotation marks (').

Command Grammars

Context-Free Expansions

$$\begin{array}{c|cccc} \mathbf{C} \to \mathbf{AC} & ; & | & \mathtt{EOL} \\ \mathbf{A} \to \mathbf{T}(\mathbf{A}) & | & \mathbf{V}(\mathbf{A}) & | & \mathbf{S}(\mathbf{A}) & | & \mathbf{L}(\mathbf{A}) & | & \mathbf{L}(\mathbf{A}, \mathbf{A}, \cdots, \mathbf{A}) & | & \mathbb{N} & | & \mathbb{R} & | & \mathbb{S} \\ \mathbf{T}(\Pi) & \equiv \Pi : n) & \to & (& \Sigma(\Pi, n) &) & | & & & \\ \mathbf{V}(\Pi) & \equiv \Pi : n) & \to & < & \Sigma(\Pi, n) & > & | & & \\ \mathbf{S}(\Pi) & \equiv \Pi : n) & \to & (& \Sigma(\Pi, n) &) & | & & & \\ \mathbf{L}(\Pi) & \equiv \mathbb{L} \left[\Pi : n\right] & \to & [& \Sigma(\Pi, n) &] \\ \mathbf{L}(\Pi_1, \Pi_2, \cdots, \Pi_{n-1}, \Pi_n) & \equiv \mathbb{L} \left[\Pi_1 \Pi_2 \cdots \Pi_{n-1} \Pi_n\right] & \to & [& \Pi_1 \cdots \Pi_n &] \end{array}$$

Descriptions

- Each command starts from C and ends with a ; or an EOL.
- Non-terminal symbol expansions are prior than function expansions.

Command Parsing

Escape Sequence

- \x is an escape sequence.
- If x is \, then it is treated as a single backslash.
- If x is EOL which may vary from platforms, then the sequence is omitted.
- Otherwise, the sequence is ignored and triggers a warning by default.

Error Handling

- Physical lines are separated by an EOL.
- Logical lines are separated by either a semicolon or an unescaped EOL.
- If the command cannot be parsed by the grammar, then all the characters on the same logical line will be discarded.

Fields, Classes, Objects and References

Definitions

- The whole system are divided into four fields and several classes:
 - 1 field e-(nviron.): includes class window and class camera.
 - g field p-(rimitive): includes class point, class circle, etc.
 - § field c-(ompound): includes class line, class triangle, class polygon, etc.
 - 4 field a-(uxiliary): includes class attrib and class group.

Notations

- class^x denotes the name of a class in the field x.
- label^x denotes the globally unique name of the object from a class in the field x.

Prototypes

- Argument prototypes are written in a mixture of types and names with underlines.
- Each type with an asterisk indicates that the brackets are used for cross-referencing.
- Cross-reference is a feature for manipulating multitple objects in a single command.
- Each name with a plus/minus/ampersand implies that the given name is used for creating new objects/deleting existed objects/cross-referencing among objects, etc.

5 / 25

KVD, ADL August 20, 2017 OpenCG³ Specification Version 0.3.3

Figure: Projection in Euclidean \mathbb{R}^3 Space

Create a Window

Command

Parameters

• <u>label</u>e : the name of the object from the class window

Examples

create window main

Delete a Window

Command

Parameters

- <u>label</u>^e : the name of the object from the class window
- string : the text printed right after exiting the current session

```
delete window main 'Have a nice day.'
```

Properties of a Window

Property	Value Format	Example
dots-per-cm	\mathbb{R}	128
background-rgb	$\underline{\mathbb{N} \in [0, 255]}:3)$	(0 0 0)

Create a Camera

Command

Parameters

- <u>label</u>^e : the name of the object from the class camera
- center : the world coordinate (c_x, c_y, c_z) of the center of the viewport
- plane : the horizontal and the vertical vertors $(\vec{v_w}, \vec{v_h})$ of the viewport
- $\underline{\mathsf{sight}}$: the reverse line of sight $\vec{v_c}$ from $\underline{\mathsf{center}}$ to the camera

Examples

create camera z-top (0 0 1) (<1 0 0> <0 1 0>) <0 0 1>

Select a Camera

Command

select camera S & label $_1^e$ S & label $_2^e$

(4)

Parameters

- <u>label</u>^e: the name of the object from the class camera
- <u>label</u>^e₂ : the name of the object from the class window

Examples

select camera z-top main

Remove a Camera

Command

remove camera $\underline{\mathbb{S}}$ & label^e₁ $\underline{\mathbb{S}}$ & label^e₂ (5)

Parameters

- <u>label</u>^e: the name of the object from the class camera
- <u>label</u>^e₂ : the name of the object from the class window

Examples

remove camera z-top main

Delete a Camera

Command

 $\texttt{delete camera} \ \underline{\mathbb{S} \ \underline{-} \, \mathsf{label^e}}$

(6)

Parameters

• <u>label</u>e : the name of the object from the class camera

Examples

delete camera z-top

Properties of a Camera

Property	Value Format	Example
axis-enable	$\mathbb{S} \in \{\mathtt{true}, \mathtt{false}\}$	true
axis-xyz	$\mathbb{S} \in \{\mathtt{x}, \mathtt{y}, \mathtt{z}, \mathtt{xy}, \mathtt{xz}, \mathtt{yz}, \mathtt{xyz}\}$	xyz
axis-xyz-rgb	$\mathbb{N} \in [0, 255] : 3) : 3)$	((255 0 0)(0 255 0)(0 0 255))
axis-width	$\mathbb{L}\left[\mathbb{R}>0\ \underline{\mathbb{S}}\in\{\mathtt{px},\mathtt{cm},\mathtt{in}\}\right]$	[2 px]
grid-enable	$\mathbb{S} \in \{\mathtt{true}, \mathtt{false}\}$	true
grid-xyz	$\underline{\mathbb{S} \in \{\mathtt{x},\mathtt{y},\mathtt{z},\mathtt{xy},\mathtt{xz},\mathtt{yz},\mathtt{xyz}\}}$	xy
grid-xyz-rgb	$\mathbb{N} \in [0, 255] : 3) : 3)$	((127 0 0)(0 127 0)(0 0 127))
grid-width	$\mathbb{L}\left[\frac{\mathbb{R}>0}{\mathbb{S}\in\{\texttt{px},\texttt{cm},\texttt{in}\}}\right]$	[1 px]
grid-interval	$\mathbb{R} > 0$	10

Create Points

Command

```
create point \frac{\mathbb{S} + label^p : \}^*}{\mathbb{S} + label^p : \geqslant n}^* \xrightarrow{\mathbb{R} : 3) \text{ coord}} (7)
create point \frac{\mathbb{S} + label^p : \geqslant n}{\mathbb{S} + label^p : \geqslant n}^* \xrightarrow{\mathbb{R} : 3) \text{ coord}} : n)^*
```

Parameters

- <u>label</u>^p : the name of the object from the class point
- coord : the world coordinate (p_x, p_y, p_z) of the object named <u>label</u>

```
create point 'origin' (0 0 0)
create point {X-1 X-2} (1 0 0)
create point (Y-1 Y-2) ((0 1 0))
create point (Z D1 D2) ((0 1 0) (1 1 1))
```

Delete Points

Command

delete point $\underline{\mathbb{S} - \mathsf{label}^p} : \underline{\}^*}$ (9)

Parameters

• <u>label</u>^p : the name of the object from the class point

Examples

delete point 'origin'
delete point {Z D1 D2}

Properties of a Point

Property	Value Format	Example
shape	$\mathbb{S} \in \{\texttt{none}, \texttt{dot}, \texttt{square}\}$	dot
radius		[3 px]
fill-rgb	$\mathbb{N} \in [0, 255] : 3)$	(255 255 255)
border-type	$\mathbb{S} \in \{ \mathtt{none}, \mathtt{inner}, \mathtt{middle}, \mathtt{outer} \}$	outer
border-width		[2 px]
border-rgb	$\mathbb{N} \in [0, 255] : 3)$	(127 127 127)

Create Line Segments

Command

```
create line \frac{\mathbb{S} + |abe|^c : \}^*}{\mathbb{S} + |abe|^c : \geqslant n}^* = \frac{\mathbb{S} & \& |abe|^p : 2}{\mathbb{S} & & |abe|^c : 2}^* : n)^* (10)
```

Parameters

- <u>label^c</u>: the name of the object from the class line
- <u>label</u>^p : the name of the object from the class point

```
create line seg-1 {X-1 Y-1}
create line {seg-2 seg-3} {X-2 Y-2}
```

Delete Line Segments

Command

delete line $\underline{\mathbb{S} - \mathsf{label^c}} : \}^{\star}$ (12)

Parameters

• <u>label</u>^c : the name of the object from the class line

```
delete line seg-1
delete line {seg-2 seg-3}
```

Properties of a Line

Property	Value Format	Example
style	$\underline{\mathbb{S} \in \{ \mathtt{none}, \mathtt{solid}, \mathtt{dotted}, \mathtt{dashed} \}}$	solid
width	$\mathbb{L}\left[\frac{\mathbb{R}>0}{} \;\;\underline{\mathbb{S}\in\{\mathtt{px},\mathtt{cm},\mathtt{in}\}}\right]$	[2 px]
fill-rgb	$\underline{\mathbb{N} \in [0, 255]} : 3)$	(191 191 191)
pattern	$\mathbb{L}\left[\frac{\mathbb{R}>0}:\right)\ \underline{\mathbb{S}\in\{\mathtt{px},\mathtt{cm},\mathtt{in}\}}]$	[(8 8) px]

Create Attributes

Command

Parameters

- <u>label</u>^a : the name of the object from the class attrib
- <u>class^{pc}</u>: the name of a class in the field primitive or compound
- prop : the property of the object from <u>class^{pc}</u>
- value : the value of prop in the designated format

Examples

KVD, ADL

```
create attrib (magenta dashed-and-translucent-line) \
[[point fill-hsv '[300 (1.0 1.0)]'] \
  [line [style dashed] [fill-rgb '(0 255 0)'] [pattern '[(16 8) px]']]]
```

Attach Attributes

Command

```
attach attrib \frac{\mathbb{S} \& label^a : )^*}{\mathbb{S} \& label^a : )^*} \frac{\mathbb{S} \& label^{pc} : )^*}{\mathbb{S} \& label^{pc} : )^*}  (15)
```

Parameters

- <u>label</u>^a : the name of the object from the class attrib
- <u>label^{pc}</u>: the name of the object from a class in the field primitive or compound

```
attach attrib red point-0
attach attrib (red large) point-1
attach attrib blue {point-2 rect-0}
attach attrib (5px black) {point-3 circ-0}
attach attrib (red thick) (point-4 line-0 triangle-0)
```

Detach Attributes

Command

```
detach attrib \frac{\mathbb{S} \ \& label^a : \}^*}{\mathbb{S} \ \& label^a : \}^*} \frac{\mathbb{S} \ \& label^{pc} : \}^*}{\mathbb{S} \ \& label^{pc} : )^*}  (17)
```

Parameters

- label^a : the name of the object from the class attrib
- <u>label^{pc}</u>: the name of the object from a class in the field primitive or compound

```
detach attrib red point-0
detach attrib {red large} point-1
detach attrib blue {point-2 rect-0}
detach attrib {5px black} {point-3 circ-0}
detach attrib (red thick) (point-4 line-0 triangle-0)
```

Delete Attributes

Command

delete attrib $\underline{\mathbb{S} - label^a} : \underline{}^*$ (19)

Parameters

• <u>label</u>^a : the name of the object from the class attrib

Examples

delete attrib red
delete attrib {5px large}

Assign Operations

Command

Parameters

<u>action</u>: the name of the corresponding action of <u>class</u>

class : the name of a class

<u>repeat</u> : the amount of the commands emitting operation names

```
assign operat create point 2
x-axis (1 0 0)
y-axis (0 1 0)
// Back To Normal
```