6.2 电池供电单片机系统延长使用时间的几点有效措施

西安交通大学电信学院 杨建国 申忠如 王建校

— 榧 浏

目前,单片机越来越多地应用在电池供电的手持机系统,这种手持机系统面临的最大问题,就是如何通过各种方法。延长整机连续供电时间。归纳起来,总的方法有两种,第一是选择大容量电池,各电池生产厂商相继推出了一系列小体积,大容量的高能电池。由于受到了材料及构成方式的限制,在短期内实现较大的技术突破是比较困难的。第二是降低整机功耗,在电路设计上下功夫,此如,合理地选择低功耗器件,确定合适的低功耗工作模式。适当改造电路结构,合理地对电源进行分别等。本文不涉及电池生产工艺及构造原理,仅在电池选择、降低整机功耗等方面做一些论述。

二、影响单片机系统电池供电时间的几个重要因素

- (1) 电池本身电量大小及放电曲线。
- (2) 单片机最小系统功耗(包含 EPROM 功耗)。
- (3) 液晶显示器功耗。
- (4) 存储器功耗。
- (5) 外围数字电路功耗。
- (6) 外围模拟电路功耗。 (7) 整机供由电源电压的高低。
 - 7) 整机供电电源电压的商体。

三、延长单片机系统电池供电时间的几点措施。

1. 关于电池

目前市售的电池,从体积和容量比考虑,一般来说。5 号电池优于 7 号电池,除非特殊要求,一般都选择 5 号电池作为手持支施片机系统的电视,从购买渠道上考虑,方便选择的有,酸性高能电池,养通电池,Ni-Cd 充电电池,分别使用以上三种电池,对一个大经验功耗处理的单片机系统进行测试,结果如表 6.2-1 所列。电池容量的排序为碱性高能电池,Ni-Cd 充电电池,普通电池,被任高能电池。

如果单纯考虑延长单片机系统电池供电时间,应选择长寿命的碱佐高能电池。但在大多数 情况下应考虑使用国内正规厂家生产的充电电池。这不仅节省了犬蠹的电池成本。而且 Ni-Cd 充电电池良好的电压特性,可以提供在正常供电期内极为平坦的电压曲线和相对较低的电压 值(1,2~1/25 V),有利于系统的可靠工作及进一步降低工作电流。

表 6. 2-1 三种电池的实测工作时间和成本比较

电池类型	产地	实测工作时间	零买单价	每次 4 节,1 000 次成本
碱性高能电池	個产	36~45 小时	2.50元/市	16.000元
Ni-Cd 充电电池	图产	14~20 小时	10 元/节	100元(两套替换,加充电器)
普通电池	国产	7~8 小时	0.40元/节	1 600 元

2. 选择合适的单片机及工作方式

目前,市面出现较多的单片机分为 Intel 的 51 系列, 98 系列, 196 系列, Motorola 的 68 系列, Philips 的 80C51 系列, 以及功能较弱的 ATMEL 公司的 2051, 1051 等,手持机在含有模拟电路的情况下。一般需要 ADC, 满足条件的只有 Intel 的 96 系列, 196 系列, Motorola 的 68 系列, Philips 的 80C51 系列, 在专患功能时, Philips 公司的 80C552 和 80C562 是较好的选择。同时, 80C552 的开发过程与普遍使用的 80C3 较为相似, 为设计者带来了较大的方便。

但值得注意的是,目前随着技术发展单片机本身功耗急剧降低,一些小公司生产的单片机 可能在某一技术指标上有较大突破,我们应随时了解单片机最新动态。随时选择适合自己使用 的机型。

技术要求中如果允许,应该使单片机尽量工作在输电状态或空闲状态。

单片机的工作频率选择,不仅影响单片机最小系统的功能,也直接影响者整机功耗。应在 满足量低工作频率的情况下,选择最小的工作频率。

影响工作频率不能讲一步降低的因素县。

- 串行連信课率:
- 计数器测量频率。
- 实时运算时间;
- 外部由路时序要求

在多数情况下选择 4 MHz 或 6 MHz 作为单片机工作频率。在 6 MHz 情况下。一般单片机 最小系统耗电 10 mA 以下。

3. EPROM 的降低功耗方法

选用 CMOS的 27C64, 本身工作电流就不大、经实侧为 1.8 mA(与不同的厂家、不同质量的芯片有关, 测试数据均率自笔者认为功耗较小的正规芯片, 经低功耗设计后, 在 8 MHz 工作频率下, 工作电流障到 1.0 mA, 这里关键是对 27C64的 6 OE 胸和 CE 胸的处理。有些设计者为了图省事。在只有一户 EPROM 的情况下, 将 CE 胸固定接触。这样, EPROM 一直被选中, 自然功能较大。另一种设计是将高位地址线利用线选方式直接接到 CE 上, EPROM 也是一直被选中, 正确的解功能设计是将 CE 与 GE 接到一起, 用 PSEN 驱动, 这样只在对 EPROM 操作时, 才会选中 EPROM, 平均电流自然破下降了。虽然只减少了 0.8 mA, 但是在研究降低功耗技术时, 胸便是 1 个套管数量级的电流节增 他是不容忽视的。

4. 外離數字申錄器件的洗择及设计原理

全審选择 CMOS 器件 4000 系列或者 74HC 系列,其中 74HC、74HCU 系列的工作电压可以降到 2.0 V、对进一步降低功耗大有益处。

尽量减少器件输出端低电平输出时间。低电平输出时,器件功耗远远大于高电平输出时的 功耗,设计电路时要仔细分析各器件的低电平输出时间。比如对 RD、WR 等大部分为高电平 的信号,在设计电路时尽量不要使它们做"非"的运算。否则这个非行的输出端就会产生一个较 长时间的低电平,该非门的整体功耗就会大大增加。

遵照上述原则。对于100 内多余门电路的处理原则为:多余的或门、与门在输入端接成高电 平,使输出为高电平,多余的"非"系列门,输入端接成低电平,使输出端为高电平。

在可靠性允许的情况下,尽量加大上拉电阻的阻值,一般可以选在 10~20 kQ。

5. 外围棒拟电路践件的选择及设计原理

选择低功耗、单电源运放,如 LM324 等。ADC 一般用 CPU 片内的 ADC。 片内 ADC 启动 转换时,功耗较大,因此不要亩目地提高 ADC 的采样率。当需要用高采样率再平均滤波时,尽 量使用外部硬件低通滤波代替软件低通滤波。

不能使用普通的稳压管提供 ADC 的基准,因为普通稳压管最小的稳压电流一般大于 2 mA. 应该使用目前较新的微电流稳压器件,如 MAX 公司的产品。

旁路、滤波电容选择漏电流小的电容。

在潘尼抗干扰条件的情况下,尽量将放大电路的输入阻抗做大。

6. 电源电压的选择

(1) 整体降压

征长由池连续供电时间,主要靠减小负载电流完成。在负载电阻一定的情况下,降低电源 电压可以大幅度降低负载电流。

选择充电电池,本身就是降低了电源电压。

在整体电源电压可以大幅度下降时,可以采用降压器件供电,如 MAX 公司的降压型电源 器件。在使用文学器件时,应注意器绘本身的效率。一般可以达到 90%。影响器件效率的因素 有,工作由流和外围器件的选择。外围器件一定要使用原厂规定的标准器件,才能保证效率的 发挥。电源电压与负载电流的关系并不是线性的,应根据器件提供的图表,选择可靠合适的电 源电压。

(2) 电源分割

一个应用系统中,有部分电路只在一小段时间内工作,其余大部分时间不工作,则可以将 这一部分电路的电源从主电源中分割出来,让其大部分时间不消耗电能。

可以由 CPU 对被分割的电源进行控制,常用一个场效应管完成,也可用一个漏电流较小 的三极管来完成,只在需要供电时才使三极管处于饱和导通状态,其余时间处于截止状态。

需要注意的是,被分割的电路部分在上电以后,一般需要经过一段时间才能保证电源电压 的稳定。因此,需要提前上电,同时在软件时序上,需要留出足够的时间裕量。

除去 CPU 等电路外,一般电路的电源分割后,可以增加一个较大容量的电解电容,以平

稳电源电压的上升与下降。

(3) 局部升压

加果系统中大部分电路可以使用低电压供电,而个别电路需采用较高电压,则可以对需要 高压的电路实行电源分割和局部升压。比如多数器件为 74HC 系列,供电电压可以在 2~3 V, 而 CPU 需要较高的供电电压,可以将 CPU 单独供电。在这种设计中,一定要严格分析两种电 源的器件输出与输入的电子匹配问题。由于一般电路在匹配过程中,均存在较大的裕量,保证 正常工作是没有问题的。但是,在相应的匹配过程中的抗干扰能力会有所下降。

当然,如果 CPU 单独供电。一般使用分时供电的可能性就没有了。

目前,有很多种集成升压电路可供选择,效率一般均可达到90%以上。

7. 存储器降低功耗的方法

SRAM 的銀功耗运行,设计机理与 EPROM 一样,要求只在正常读写操作时,才使 SRAM 的 CE 使能,对于一般使用的 SRAM6264 芯片,典型的连接如图 6,2-1 质示。

图 6.2-1 SRAM6264 的降低功耗连接图

DRAM 的低功耗运行, DRAM 与 SRAM 最大的区别就是数据的保持需要由不停的剔新操作来完成。 DRAM 在进行副新操作时,要转费较大的电流,如果使用软件副新,设计的基本思路是进长刷新时间间隔。各一家产品对副新间隔的规定基本上是一致的,但是实际测量数据与参数规定相差很大,设计者可以根据不同的产品进行测试,得出稳定的最大副新时间间隔。目前,一般广家规定的最小副新周期为 64 ms 左右, 而笔者实测的最大副新周期为 2.5 s 左右, 相差 40 倍, 这种实测参数只在不得已的情况下才会被使用, 在对内存可靠性要求极高的情况下, 建议仍采用厂家规定参数。

四、实际改进结果

利用上述措施对基于国外产品改良研制的心电仪 HOLTER (24 小时动态心电仪信号记录仪)进行降低功耗处理,全套设备包括 CPU 及片内 ADC、EPROM、放大电路、液晶显示器 (16×1字存点降)、16M 字节动态存储器 外围数字电路等。原电路繁套到耗为 45~55 mA, 只能用碱性高能电池勉强供电 24 h, 经改进后,整机功耗为 13.5~14 mA, 碱性高能电池可以连续供电 60 h, 以上,普通电池也可以供电 30 h, 以上,使用 Ni-Cd, 充电电池可连续供电 60 h, 以由, 在现外技术技术上已远远超过国外间类产品。

五、结 论

实践证明,对于电池供电的单片系统,在电池容量无突酸性进展的情况下,实行上述降低 功耗的有效措施,可以大幅度延长电池供电时间,配合选择合适的供电电池,一般均能达到满 意的设计效果。

参考文献

- [何为民, 低功耗单片微机系统设计, 北京,北京航空航天大学出版社,1994
- 2 张松春等编. 电子控制设备抗干扰技术及其应用. 北京:机械工业出版社,1995
 - 何立民、MCS-51 系列单片机系统设计、北京,北京航空航天大学出版社,1990