

Identyfikacja nieliniowych systemów dynamicznych z wykorzystaniem rekurencyjnych sieci neuronowych

Mateusz Gwizdak 252945 Maciej Krystyniak 252882 Robert Świerc 254028

Agenda:

- 1. Wstęp teoretyczny:
 - Co to są rekurencyjne sieci neuronowe?
 - Co je wyróżnia?
 - Jak działają?
 - Zastosowania
 - LSTM i GRU
- 2. Opis wykorzystanych narzędzi.
- 3. Przygotowania wstępne:
 - Jak przygotować dane?
 - Jak przebiega uczenie?
 - Wykorzystywany model sieci.
- 4. Wykorzystane dane i modele.
- 5. Przebieg i wyniki badań.
- 6. Podsumowanie

Rekurencyjne sieci neuronowe

Sieć neuronowa

Prosta sieć neuronowa składa się z 3 warstw:

- Wejściowa,
- Ukryta,
- Wyjściowa.

Rekurencyjna sieć neuronowa

Model neuronu:

Model sieci:

Rekurencyjne sieci neuronowe – zastosowania

- Przetwarzanie sekwencyjnych danych danych gdzie poprzednie próbki mają wpływ na teraźniejszość
- Analiza języka naturalnego:
- Chat GPT(Transformer),
- Rozpoznawanie mowy.
- Przetwarzanie sekwencji czasowych:
- Ceny akcji,
- Pogoda.
- Sieci hybrydowe.

LSTM a GRU

LSTM

 Reprezentuje zależności krótko I długotrwałe.

 Na podstawie krótkotrwałych filtruje dane.

- Składa się z trzech bram:
- Bramka wejściowa przyjmuje dane, które dodawane są do stanu długotrwałego.
- Bramka zapomnij decyduje jakie dane z przeszłości mają być zapomniane.
- Bramka wyjściowa filtracja I wyrzucenie nowego stanu krótkoterminowego.

GRU

- Analogicznie reprezentuje zależności krótko I długotrwałe.
- Znacznie prostsza architektura niż w przypadku LSTM

- Składa się z dwóch bram:
- Bramka aktualizacji ile informacji z poprzedniego stanu użyć do aktualizacji obecnego stanu
- Bramka resetowania ile informacji z poprzedniego stanu ma zostać zapomniane
- Generacja wartości [0, 1]

Wykorzystane narzędzia

Język programowania python

Architektura

Klasyczne biblioteki do manipulacji i analizy danych

Preprocessing

- Podział zbiorów na treningowy, walidacyjny i testowy (proporcje 70:20:10)
- Standaryzacja danych
- Podział na batch (batch_size)
- Generacja okien

Uczenie RNN

- Przetwarzanie kolejnych batchy zbioru treningowego
- Sprawdzanie błędu na zbiorze walidacyjnym
- Ewentualne przerwanie uczenia gdy kolejne epoki nie dają lepszego wyniku wybranego pomiaru błędu
- Następuje zapisanie na dysku uzyskanego modelu i jego historii uczenia

Przykład wykorzystywanego modelu RNN

Wykorzystane dane

- Badanie wibracji skrzydeł samolotu F-16
- Pomiary meteorologiczne w latach 2009-2016
- Wygenerowane modele zależne czasowo
- Wygenerowane modele zależne czasowo z zakłóceniami
- Wygenerowany sygnał o zmiennej częstotliwości (chirp)

Przebieg badań

F16

Wygenerowane modele

Wygenerowane modele: sin(x') + cos(x'')

Wygenerowane modele: zaszumione sin(x') + cos(x'')

Epoch

Wygenerowane modele: zaszumione sin(x') + cos(x")

Wygenerowane modele: chirp

Wygenerowane modele: chirp fnc_sin(exp)_Atanh_E10_5700-100_B5128_SS4_U128

Wygenerowane modele: chirp

Wygenerowane modele: chirp

Pogoda

Pogoda

Podsumowanie z realizacji projektu

- RNN to narzędzie z dużym potencjałem,
- Wyniki, które otrzymaliśmy nie są (dla nas) zadowalające,
- Praca nad zwiększeniem dokładności (bez odpowiedniego doświadczenia) wymaga ogromnych nakładów czasu,

Pytania?

Dziękujemy za uwagę.