Recursion tree method

$$T(n) = +(\frac{n}{3}) + +(\frac{2n}{3}) + (n)$$

Find T(n) using recursion tree.

$$T(n) \qquad \qquad T(n) \qquad T(n) \qquad \qquad T(n$$

T(3n)

CN~ 1/3 (27) $|\mathcal{G}_{3}^{n}(n)| \leq |\mathcal{G}_{3}^{n}(n)|$ $\Rightarrow t(n) = 0 (n |\mathcal{G}_{n})$ T(1)

The master method This method applies to the recurrences of the form $T(n) = a T(\frac{n}{b}) + f(n)$ a>1, b>1 and f is asymptotically positive Three Common cases based on companing f(n) and n 96 case 1: $f(n) = O(n^{1}g^{0} - \epsilon)$ for $\epsilon \neq 0$ f(n) grows phynomially slower than $n^{1}g^{0}$ by a factor nSolution: $T(n) = \theta(n^{1}g^{0})$

$$\frac{\text{cone 2}}{f(n)} = f(n)^{1/3} \left(\frac{g^{\kappa} n}{n} \right)$$

Solution:
$$T(n) = f(n)^{\alpha} \cdot g^{\alpha}$$

 $case 3$: $f(n) = \Omega(n^{\beta \alpha} + \epsilon)$

 $\frac{\text{WHM}}{\text{af}(76)} \leq \text{cf(n)}$ for some c < 1Addition condition

Solution: T(n) = D(f(n))

Ex^m i)
$$T(n) = 4T(\frac{n}{2}) + n$$

$$\alpha = 4, b = 2, n^{10}b^{0} = n^{100} = n^{100}$$

$$f(n) = n$$

$$f(n) = 0 \left(n^{2} - 1\right) = 0 \left(n^{100} - 1\right)$$
case 1 of moster method applies hore solution is $T(n) = 0 \left(n^{2}\right)$

$$T(n) = 0 (n^{\nu} lg n)$$

$$n^3 = n \left(n^2 + 1\right)$$

$$af(\frac{n}{b}) \leq cf(n)$$
 for some $e < 1$

$$4 (\frac{1}{2})^{3} \leq c \cdot \frac{1}{3}$$
 $\frac{2}{3} \leq c \cdot \frac{3}{3}$
 $\frac{2}{3} \leq c \cdot \frac{3}{3}$

 $T(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{189n}$ $f(n) = \frac{n^{2}}{(4n)}$ $n^{2}b^{\alpha} = n^{2}$ monter method cannot applied here $f(n) = n^{\gamma}$ \rightarrow upber bound \rightarrow your solution f(n) = n \rightarrow (ower bound. Hese values. H.W. Try enamples

Algorithm derigon techniques Divide and conquer paradym 1. Divide the problem (instance) into subproblems. 2. Conquer recursively solving the subproblems. 3. combine the subbroblems.

Binay Search problem Defn: Given an arroy of n sorted numbers and an number x simple algorithm: Verify whether Kis in the array or not. Traverse the array one by one and compare each element ounning time: - O(n)

can we do better?

check for the middle element Divide: carquer: Reussitely search one embarray Trivial. combine: T(n)=T(2)+0() monter method Binury Search (A, K, low, high) t(n) = O(|qn|)if low > high return no mid = | lonothigh | If K = = A[mid]return yes else if K > A I mid, Binary Search (A, K, mid+1, high) — T(1/2) return no O(1) Binary search (A, K, low, mid -1)