9 SCIENCE 2015

GEOLOGY AND EARTH SCIENCE TEST ONE

Name: ANDWER Veacher: _____ Mark: /49

Percentage: %

SECTION A:

MULTIPLE CHOICE

(15 marks)

Please answer on the multiple choice answer grid below.

1. A (C D 10. A B C (★)

2. A B 🕒 D 11. A B C

3. (% B C D 12. A 6 C D

4. A B C 🕏 13. A 🕼 C D

5. A B C 🚱 14. 🗭 B C D

6. A B D 15. A 😝 C D

7. A B 🔘 D

8. A B 🗑 D

9. A B 🙆 D

ANSWER KET

- 1. Alfred Wegener proposed the theory of continental drift. Which of the following observations did he use to support his theory?
 - (a) Fossils could be found in different countries.
 - Africa and South America seemed to fit together like jigsaw pieces.
 - (c) Rocks had magnetic striping near the ocean ridges.
 - (d) The sea floor seemed to be made at the ridges.
- 2. Harry Hess proposed a mechanism by which Wegener's continental drift could occur. Hess's theory was called:
 - (a) plate tectonics.
 - (b) continental drift.
 - seafloor spreading.
 - (d) subduction.
- 3. Magnetite is a magnetic mineral that can be found in basalt, which is common in oceanic crust. Magnetite enabled scientists to obtain evidence of:
 - seafloor spreading.
 - (b) Earth's magnetic field.
 - (c) subduction.
 - (d) tectonic plates.
- 4. Rifting is the process of:
 - (a) ocean trenches forming by collision of plates.
 - (b) the crust subducting.
 - (c) plates moving by sliding past each other.
 - (は) the crust cracking and subsiding.
- 5. Evidence of spreading of the crust at ocean ridges resulted from:
 - (a) seismic activity in the Earth's crust.
 - (b) differences in density of oceanic and continental crust.
 - (c) subduction of plates at collision boundaries.
 - (a) reversals in the Earth's magnetic field.
- 6. The diagram on the right illustrates:
 - (a) converging boundaries.
 - (b) transform boundaries.
 - diverging boundaries.
 - (d) colliding boundaries.

- 7. Using the map below, choose the **correct** statement:
 - (a) The Pacific and Nazca Plates are converging.
 - (b) The is a transform boundary between the Nazca and Caribbean Plates.
 - The Nazca and South American Plates are converging.
 - (d) All of the above.

- 8. Four of the seven largest tectonic plates are:
 - (a) the African Plate, Eurasian Plate, Antarctic Plate and Nazca Plate.
 - (b) the Eurasian Plate, Pacific Plate, Nazca Plate and Antarctic Plate.
 - the Antarctic Plate, North American Plate, Eurasian Plate and African Plate.
 - (d) the Pacific Plate, Caribbean Plate, Antarctic Plate and Eurasian Plate.
- 9. Iron oxide mineral in rocks that acts as a compass is known as:
 - (a) mineralite.
 - (b) mangetite.
 - magnetite.
 - (d) magnatite.
- 10. Select the **incorrect** statement below.
 - (a) There are nearly 200 species of marsupials in Australia.
 - (b) Around 80% of Western Australia's flora is found no where else.
 - (c) Australia's isolation led to the evolution of unique species of plants and animals in Australia.
 - Australia has the monotremes, which are unique to Australia and South America.

Question 11 and 12 refer to the diagram below.

- 11. The diagram is being used to show that:
 - (a) the Earth is composed of layers.
 - (b) continents are formed by seafloor spreading.
 - (c) plate tectonics can change the Earth's climates.
 - (d) tectonic plates move due to convection currents.
- 12. From the diagram you could conclude that subduction and seafloor spreading together:
 - (a) cause the convection currents.
 - show that the crust is recycled and therefore does not grow larger.
 - (c) explain the formation of North America and Europe.
 - (d) explain why volcanoes form from magma originating in the crust.
- 13. The presence of 'magnetic stripes' recorded in the oceanic crust reflects:
 - (a) the rate of sea floor spreading.
 - reversals in polarity of the Earth's magnetic field.
 - (c) variation in composition of the oceanic crust.
 - (d) the unchanging polarity of the Earth's magnetic field.
- 14. In 1872 when scientists were surveying for an undersea cable they discovered:
 - (a) a large mountain ridge in the middle of the Atlantic Ocean.
 - (b) a large trench in the middle of the Antarctic Ocean.
 - (c) a large mountain ridge in the middle of the Antarctic Ocean.
 - (d) a large trench in the middle of the Atlantic Ocean.
- 15. Measurements from which stations show the rates of plate movement accurate to a few millimetres?
 - (a) Strainmeter stations.
 - (th) GPS stations.
 - (c) Earthquake stations.
 - (d) Tectonic movement stations.

SECTION D.	SHORT	MASWER	(54 marks)
1a. State the	name given to the large landm	ass that all the continents were	once part of. (3 marks
Pangae	a (i)	must be spelt correctly	
b. This lands	mass broke into two major land	dmasses known as:	100
Laurasi	_	rondwana (1) or ondwanaland	
	ng boundaries, seafloor spreac hy the Earth's crust is not getti	ling is occurring as new crust is a	continuously created. (2 marks)
	_	d elsewhere b	
subduction) (1) as fast	as it is heine	created

3. Fill in the table below which compares the characteristics of oceanic crust and continental crust. (3 marks)

Type of crust	Thin or thick	Dark or light coloured	·	Has low density or high density	
Continental crust	Thick (6.5	Light Gloured	(0.3)	Low density	6.2
Oceanic crust	Thin e.	Dark Dark Doured	6.5	High density	(0.2)

4. Label the diagram below.

by seafloor spreading ()

(3 marks)

5.	Use your knowledge of what happens when an oceanic plate collides with a continent to answer the following questions.	al plate
a.	Explain why the oceanic plate is forced under the continental plate.	(2 marks)
The	- oceanic plate is denser than the	
	itinental plate and sinks below it (1)	
		-
b.	Outline the process of subduction.	(2 marks)
Th	e sinking of one plate below on othe	r(i)
	plate melts back into magma (D)	
Y	9,	
c.		(2 marks)
Ris	sing magma from the subduction of	
_a	sing magma from the subduction of plate () is forced up through	
	call areas in the continental crust	<u>(i).</u>
6.	Explain the role of heat and convection in plate movement.	(2 marks)
	mantle (or asthenosphere) is very hot and	is
<u>a</u>	semi-solid that flows ().	 -
Ma	terial flows in a convection current, hot	
ma	igma rises, cools and then sinks. (1)	
As	convection currents flow, plates get	
	agged along by friction. (1)	
•	ANY 2 POINTS MENTIONED	<u> </u>
	MENTIONED)	

7. In the box below, draw and label a diagram showing an oceanic plate and a continental plate converging. (You must also show the direction of plate movement). (5 marks)

Trench	correct direction (1) of plate movement using arrows. Any other labels, one mark each (shown below).
oceanic crust	continental crust
lithosphere (1)	1ithosphere
a sthenosphere () subduction	

8.	Explain why the sedimentary rock layers on the ocean floor are thicker as you move away from the ridges. (2 marks
_5	Ediments have been falling for a longer
	ime over seafloor () furthest
au	vay from the ridges because
	nat part of the crust is older. (1)
-	

- 1. A layer of "plastic like" semi-solid rock in the upper mantle.
- (Transform boundary 2. Where plates are sliding parallel to each other but in the opposite direction.
- <u>Mid ocean + (ench</u> 3. A deep trench in the ocean floor that is much deeper than the rest of the ocean floor.
- Divergent boundary

 (biverging)

 4. Where plates are moving apart from each other in opposite directions.
- Convergent boundaries) Where plates are colliding with each other.
 - A chain of islands formed at the edges of colliding tectonic plates where one plate subducts.
 - Circumpolar Curent 7. An ocean current that extended from the polar region bringing very cold ocean temperatures.
 - Name given to scientist who study the earth, its formation, mineral deposits and rock structures.