Seminar 4 Ecuații și sisteme autonome. Stabilitate. Integrale prime

1 Ecuații autonome (nu conțin pe x)

În cazul acestor ecuații, putem micșora ordinul cu o unitate dacă notăm y' = p și luăm pe y variabilă independentă.

Observație 1.1: Există posibilitatea să pierdem soluții de forma y = c prin această metodă, deci trebuie verificat ulterior dacă a fost cazul.

Exemplu 1: $1 + y'^2 = 2yy''$.

Soluție: Luăm y' = p drept funcție și pe y drept variabilă independentă. Obținem:

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = p \frac{dp}{du}.$$

Atunci ecuația devine $\frac{2p\,dp}{1+p^2}=\frac{dy}{y}$, ce are drept soluție $y=c_1(1+p^2)$.

Acum trebuie să obținem pe x ca funcție de p și c_1 . Deoarece $dx = \frac{1}{p}dy$, iar $dy = 2c_1pdp$, rezultă $dx = 2c_1dp$. Așadar, $x = 2c_1p + c_2$, iar soluția generală este $x(p) = 2c_1p + c_2$. Cum $y(p) = c_1(1+p^2)$, rezultă:

$$y = c_1 + \frac{(x - c_2)^2}{4c_1}.$$

Exemplu 2: $y'' + y'^2 = 2e^{-y}$.

Soluție: Notăm y' = p și luăm ca necunoscută p = p(y), de unde obținem:

$$y'' = \frac{dy'}{dx} = p'p \Rightarrow p'p + p^2 = 2e^{-y}.$$

Dacă notăm $p^2 = z$, obținem o ecuație liniară neomogenă:

$$z' + 2z = 4e^{-y},$$

ce are ca soluție generală $z(y)=c_1e^{-2y}+4e^{-y}$. Revenind la y, avem:

$$z = p^2 = y'^2 \Rightarrow y' = \pm \sqrt{c_1 e^{-2y} + 4e^{-y}},$$

adică ecuația:

$$\frac{\mathrm{d}y}{\pm\sqrt{c_1e^{2y}+4e^{-y}}}=\mathrm{d}x,$$

ce are ca soluție: $x+c_2=\pm\frac{1}{2}\sqrt{c_1+4e^y}$. Echivalent, în forma implicită:

$$e^{y} + \frac{c_1}{4} = (x + c_2)^2.$$

Similar putem proceda și în cazul:

$$y''' + y'' = \sin x.$$

Indicație: Putem nota y'' = z și atunci ecuația devine:

$$z' + z = \sin x$$

care este o ecuație liniară neomogenă, cu soluția:

$$z(x) = e^{-x}(c_1 + \frac{e^x}{2}(\sin x - \cos x)).$$

Mai departe, integrăm succesiv:

$$\begin{split} y'(x) &= \int z(x) dx + c_2 = -c_1 e^{-x} - \frac{1}{2} \cos x - \frac{1}{2} \sin x + c_2 \\ y(x) &= \int y'(x) dx + c_3 = c_1 e^{-x} - \frac{1}{2} \sin x + \frac{1}{2} \cos x + c_2 x + c_3. \end{split}$$

2 Sisteme diferentiale autonome. Integrale prime

Definiție 2.1: Un sistem diferențial de forma:

$$x'_{j} = v_{j}(x_{1},...,x_{n}), \quad j = 1,2,...,n,$$

unde $v = (v_1, ..., v_n) : U \to \mathbb{R}^n$ este un cîmp de vectori de clasă \mathbb{C}^r , $r \ge 1$, definit într-un domeniu $U \subseteq \mathbb{R}^n$ se numește *sistem diferențial autonom*.

Sistemul de mai sus poate fi scris și într-o formă simetrică:

$$\frac{\mathrm{d}x_1}{v_1} = \cdots = \frac{\mathrm{d}x_n}{v_n}.$$

Dacă f : U $\to \mathbb{R}$ este o funcție de clasă $\mathcal{C}^1(U)$, atunci pentru orice $x \in U$ se poate considera *derivata* lui f în x și în direcția vectorului v(x), notată $\frac{df}{dv}(x)$, definită prin formula cunoscută:

$$\frac{\mathrm{df}}{\mathrm{d}\nu}(x) = \sum_{i=1}^{n} \frac{\mathrm{\partial f}}{\mathrm{\partial x_i}} \nu_i(x).$$

Definiție 2.2: Fie $v:U\to\mathbb{R}^n$ un cîmp de vectori și $f:U\to\mathbb{R}$ o funcție de clasă $\mathcal{C}^1(U)$. Funcția se numește o *integrală primă* a sistemului diferențial autonom $x'=v(x), x\in U$ dacă derivata sa în direcția cîmpului de vectori v este nulă în fiecare punct din U, adică $\frac{df}{dv}=0$.

Echivalent, putem formula definiția astfel: $f:U\to\mathbb{R}$ este o integrală primă pentru sistemul diferențial autonom $x'=\nu(x)$ dacă și numai dacă oricare ar fi soluția $x=\phi(t),\phi:I\to U$, funcția $f\circ\phi$ este constantă pe I. Uneori, mai putem scrie pe scurt $f(x_1,\ldots,x_n)=c$, constant. De aceea, putem spune că integralele prime reprezintă *legi de conservare*.

Tehnic, pentru a găsi integralele prime asociate unui sistem autonom, se scrie sistemul în forma simetrică, iar apoi, folosind proprietățile rapoartelor egale, se ajunge la un raport de forma $\frac{df}{0}$, egal cu rapoartele precedente. Atunci f va fi integrală primă, deoarece va rezulta df = 0, adică f constantă în lungul curbelor integrale.

Exemplu: Să se găsească integralele prime ale sistemului simetric:

$$\frac{\mathrm{d}x}{z-\mathsf{u}} = \frac{\mathrm{d}y}{\mathsf{x}-\mathsf{z}} = \frac{\mathrm{d}z}{\mathsf{u}-\mathsf{x}}.$$

Soluție: Folosind proprietățile proporțiilor, putem scrie sistemul:

$$\frac{\mathrm{d}x}{z-y} = \frac{\mathrm{d}y}{x-z} = \frac{\mathrm{d}z}{y-x} = \frac{\mathrm{d}x + \mathrm{d}y + \mathrm{d}z}{z-x+x-z+y-x} = \frac{\mathrm{d}x + \mathrm{d}y + \mathrm{d}z}{0}$$

De asemenea, mai putem obține o integrală primă astfel:

$$\frac{\mathrm{d}x}{z-y} = \frac{\mathrm{d}y}{x-z} = \frac{\mathrm{d}z}{y-x} = \frac{x\mathrm{d}x + y\mathrm{d}y + z\mathrm{d}z}{x(z-x) + y(x-z) + z(y-x)} = \frac{x\mathrm{d}x + y\mathrm{d}y + z\mathrm{d}z}{0}.$$

Aşadar, avem:

$$dx + dy + dz = 0$$
$$xdx + ydy + zdz = 0,$$

de unde obținem două integrale prime:

$$x + y + z = c_1$$
, $x^2 + y^2 + z^2 = c_2$.

Observație 2.1: Dacă avem un sistem diferențial neautonom, adică x' = v(x, t), cu $t \in \mathbb{R}$ și $x \in U$, atunci o integrală primă a sistemului va fi o funcție $f: U \times \mathbb{R} \to \mathbb{R}$, diferențiabilă și *dependentă de timp*. Ea se obține din sistemul anterior, adăugînd ecuația t' = 1.

3 Stabilitatea soluțiilor sistemelor diferențiale

Considerăm un sistem diferențial $x' = \nu(t,x)$. Presupunem că sînt îndeplinite condițiile teoremei fundamentale de existență și unicitate a soluției problemei Cauchy pentru $t \in [t_0,\infty)$ și $x \in U,U \subseteq \mathbb{R}^n$ este un deschis. Așadar, pentru orice $x_0 \in U$, există și este unică o soluție $x = \phi(t)$, cu $\phi: [t_0,\infty) \to U$, astfel încît $\phi(t_0) = x_0$.

Definiție 3.1: O soluție $x = \varphi(t)$, $\varphi: [t_0, \infty) \to U$ se numește *stabilă spre* ∞ *în sens Poincaré-Liapunov* sau, echivalent, $x_0 = \varphi(t_0)$ se numește *poziție de echilibru* dacă la variații mici ale lui x_0 obținem variații mici ale soluției. Formal, pentru orice $\varepsilon > 0$, există $\delta(\varepsilon) > 0$ astfel încît pentru $\widetilde{x_0} \in \mathbb{R}^n$ cu $\|\widetilde{x_0} - x_0\| < \delta(\varepsilon)$, soluțiile $\widetilde{\varphi}(t)$ și $\varphi(t)$ satisfac inegalitatea $|\widetilde{\varphi}(t) - \varphi(t)| < \varepsilon$, pentru orice $t \in [t_0, \infty)$.

Definiție 3.2: Poziția de echilibru x=0 se numește *stabilă în sens Poincaré-Liapunov* dacă pentru orice $\varepsilon>0$, există $\delta>0$, care depinde doar de ε astfel încît pentru orice $x_0\in U$ pentru care $\|x_0\|<\delta$, soluția φ a sistemului cu condiția inițială $\varphi(0)=x_0$ se prelungește pe întreaga semiaxă t>0 și satisface inegalitatea $\|\varphi(t)\|<\varepsilon$ pentru orice t>0.

Definiție 3.3: Poziția de echilibru x = 0 a sistemului diferențial autonom se numește *asimptotic stabilă* dacă este stabilă și, în plus, pentru soluția $\varphi(t)$ din definiția de mai sus, avem:

$$\lim_{t\to\infty}\phi(t)=0.$$

În cazul sistemelor diferențiale liniare și omogene, de forma:

$$x' = Ax$$
, $A : \mathbb{R}^n \to \mathbb{R}^n$, $x \in \mathbb{R}^n$

presupunem că A este izomorfism (echivalent, matricea A este inversabilă). Atunci x=0 este singurul punct singular al cîmpului v(x)=Ax, deci x=0 este singura poziție de echilibru a sistemului. În exerciții, stabilitatea se va studia folosind următoarea:

Teoremă 3.1 (Poincaré-Liapunov): Păstrînd contextul și notațiile de mai sus, dacă toate valorile proprii ale matricei A au partea reală negativă, atunci pozitia de echilibru x=0 este asimptotic stabilă.

Dacă există $\lambda \in \sigma(A)$ *cu* $\text{Re}\lambda > 0$, *atunci* x = 0 *este instabilă*.

4 Exercitii

1. Studiați stabilitatea poziției de echilibru x = 0 pentru sistemele diferențiale:

(a)
$$\begin{cases} x' &= -4x + y \\ y' &= -x - 2y \end{cases}$$

(b)
$$\begin{cases} x' &= -x + z \\ y' &= -2y - z; \\ z' &= y - z \end{cases}$$

(c)
$$\begin{cases} x' = 2y \\ y' = x + \alpha \end{cases}, \alpha \in \mathbb{R}.$$

2. Să se afle pentru ce valori ale lui a ∈ ℝ soluția nulă a sistemului de mai jos este asimptotic stabilă:

$$\begin{cases} x' = ax + y + z^2 \\ y' = (2+a)x + ay + \cos y - 1, \\ z' = x + y - z \end{cases}$$

unde derivatele sînt considerate în raport cu variabila t.

Indicatie: Considerăm sistemul liniarizat:

$$\begin{cases} x' = ax + y \\ y' = (2+a)x + ay \\ z' = x + y - z \end{cases}$$

3. Să se determine liniile de cîmp pentru cîmpurile vectoriale de pe \mathbb{R}^3 :

(a)
$$\vec{v} = x\vec{i} + y\vec{j} + xyz\vec{k}$$
;

(b)
$$\vec{v} = (2z - 3y)\vec{i} + (6x - 2z)\vec{j} + (3y - 6x)\vec{k}$$

(c)
$$\vec{v} = (xz + y)\vec{i} + (x + yz)\vec{j} + (1 - z^2)\vec{k};$$

(d)
$$\vec{v} = (x^2 + y^2)\vec{i} + 2xy\vec{j} - z^2\vec{k}$$
.

Indicație (a): Scriem sistemul autonom asociat cîmpului vectorial \vec{v} sub forma:

$$\frac{\mathrm{d}x}{x} = \frac{\mathrm{d}y}{y} = \frac{\mathrm{d}z}{xyz}.$$

Din prima egalitate, rezultă $x = c_1y$, deci a doua egalitate devine:

$$c_1 y dy = \frac{dz}{z} \Rightarrow c_1 \frac{y^2}{2} = \ln|z| + c_2.$$

Așadar, obținem $\frac{x}{y} \cdot \frac{y^2}{2} = \ln|z| + c_2$. Rezultă că liniile de cîmp pentru \vec{v} sînt curbele:

$$\begin{cases} \frac{x}{y} &= c_1 \\ xy - \ln|z| &= c_2. \end{cases}$$

(b) Sistemul poate fi scris sub forma:

$$\frac{dx}{2z - 3y} = \frac{dy}{6x - 2z} = \frac{dz}{3y - 6x} = \frac{dx + dy + dz}{0}.$$

Aşadar, dx + dy + dz = 0, $deci x + y + z = c_1$.

Din forma inițială obținem și:

$$\frac{3xdx}{3x(2z-3y)} = \frac{\frac{3}{2}ydy}{\frac{3}{2}y(3x-z)} = \frac{zdz}{z(y-2x)} = \frac{3xdx + \frac{3}{2}ydy + zdz}{0},$$

deci $3xdx + \frac{3}{2}ydy + zdz = 0$, adică $3\frac{x^2}{2} + \frac{3}{4}y^2 + \frac{z^2}{22} = c_2$.

(c) Obținem:

$$\frac{\mathrm{d}x+\mathrm{d}y}{(x+y)(z+1)} = \frac{\mathrm{d}z}{1-z^2} \Rightarrow \frac{\mathrm{d}(x+y)}{x+y} = -\frac{\mathrm{d}z}{z-1}.$$

Rezultă $\ln |x + y| + \ln |z - 1| = \ln c_1$, adică $(x + y)(z - 1) = c_1$.

Apoi:

$$\frac{\mathrm{d}y-\mathrm{d}x}{x+zy-xz-y} = \frac{\mathrm{d}y-\mathrm{d}x}{(x-y)(1-z)} = \frac{\mathrm{d}z}{1-z^2}.$$

Rezultă $-\frac{d(x-y)}{x-y} = \frac{dz}{z+1}$, de unde $(x-y)(z+1) = c_2$. Așadar, liniile de cîmp sînt curbele:

$$\begin{cases} (x+y)(z-1) &= c_1 \\ (x-y)(z+1) &= c_2 \end{cases}$$

(d) Sistemul simetric rezultat este:

$$\frac{\mathrm{d}x}{x^2 + y^2} = \frac{\mathrm{d}y}{2xy} = \frac{\mathrm{d}z}{-z^2}.$$

Prin adunarea primelor două rapoarte, obținem:

$$\frac{\mathrm{d}(x+y)}{(x+y)^2} = \frac{\mathrm{d}z}{-z^2},$$

adică $\frac{1}{x+y} + \frac{1}{z} = c_1$.

Prin scădere, avem $\frac{d(x-y)}{(x-y)^2}=\frac{dz}{-z^2}$, deci $\frac{1}{x-y}+\frac{1}{z}=c_2$. Liniile de cîmp se obțin:

$$\begin{cases} \frac{1}{x+y} + \frac{1}{z} &= c_1\\ \frac{1}{x-y} + \frac{1}{z} &= c_2 \end{cases}$$