	Remarks
	te numpy from library
2 np.array(l) array([1, 2, 3, 4, 5, 6]) To conve	rt list I to array
	onverting list with all
	kinds of values, array
np.array(l1) dtype=' <u12') chan<="" td="" will=""><td>ge all values to string</td></u12')>	ge all values to string
format.	U12 in internal
represent	tation for numpy array.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	de a list will give 2
4 [4, 5, 6]]) dimensio	nal array
np.array([[[1,2,3], [4,5,6], array([[[1, 2, 3], List inside	de a list will give 3
5 [7,8,9]]]) [4,5,6], alray([[1, 2, 3], list lists	•
[7, 8, 9]]])	ilai airay
a3 ndim 3' Will indic	cate dimension of the
6 array.	
a3.size 9 Will giv	e the number of
7 elements	s in an array. A 3x3
array will	yield value 9.
8 a1.shape (2, 3) Will indic	cate matrix size of the
array. (2,	3) means 2x3 matrix.
l 9 '	we have 1 nos 3x3
matrix.	
np.random.randint(2,50) 11 Will indic	cate a random integer
	erate a 3x4 matrix with
	values ranging from 2-
[9, 8, 25, 9]]) 50	values ranging from 2
	es data with random
12 mean a	nd random standard
deviation	l.
a4 = np.random.randn(3,4) Generate	es random data of
	istribution with mean =
	andard deviation = 1.
	ch of the column in the
matrix wi	
	op or reshape the 3x4
14	o 2x6 matrix and to the command total no
	nts should be same.
	vill auto calcutate value
	ce based on matrix size
	ital elements. Any
	value can be used.

24 re	eshape(2,3,2)	Will convert 2 dim array to 3
a4.16	ενιαρε(2,3,2)	dim provided total no of
1.0		· '
16		elemnts are same in both cases
		i.e 2 nos of 3x2 matrix.
		(2*3*2=12)
a4.re	eshape(1,1,1,1,1,1,2,3,2)	The no of 1's within the bracket
		will increase the dimensions of
17		the arrary i.e it will add the
		same no of square brackets as
		the no of 1's. Rest is 2*3x2
		matrix
a1[2	:6]	Slicing operation : It will extract
18		data between index 2 to 6
10		(excluding upper limit) from the
		array.
19 a1[::	-1]	It will reveerse the entire array.
19		
a2[:,	1:] or a2[:,[1,2]] or	To extract rows and columns in
a2[[0	0,1] , 1:]	a matrix array. The first part
20		indicates rows and then the
		columns.
a5[al	5>40]	Will give array data of all
21		elements greater than 40
a5[0	,1] = 99	Will change array element at
22		0,1 to 99
a6 *	a7	Will execute multiplication
23		element wise based on the
		coordinates.
24 a6 @) a7	Matrix multiplication
25 a6 +	100	It will add 100 to each and
23		every element of a6
26 a6 *	2	It will multiply 2 to each and
20		every element of a6
a6/0		It will divide 0 to each and every
27		element of a7. It will give
21		warning but still give the inf as
		ans.
a6**	3	It will give power of 3 to each
28		and every element of a6
29 np.ze	eros((4,4))	It will give array with all
23		elements 0
30 np.o	nes((4,4))	It will give array with all
30		elements 1
-0.	np.array([1,2,3,4])	Broadcasting Operation: Will
a9 +		
31		add the array row wise to the

	np.array([[1,2,3,4]]).T + a9		T - transpose will switch the
	inp.array([[1,2,3,1]]).1 · a3		array vertically or horizontally
			provided you give it two
32			dimension i.e additional
			brackets. And will carry out
			addition operation column wise
			now. (Broadcasting operation)
33	a6.T		Will interchange rows to
			columns and columns to rows.
34	np.sqrt(a5)		Will give square root of each
			and every element of a5
35	np.exp(a5)		Will give exponential of each
			and every element of a5
36	np.log10(a5)		Will give log value of each and
			every element of a5
	list (range(0,10 ,2))	[0, 2, 4, 6, 8]	Perform list operation indicating
			values between 0 to 10 with a
37			jump of 2. Decimal values
			cannot be used for range
			function
	np.arange(10)	array([0, 1, 2, 3, 4, 5, 6,	Similar to range function except
38		7, 8, 9])	that arange returns an array of
			range values
39	np.arange(0,10,2.5)	array([0. , 2.5, 5. , 7.5])	Used when jump size or values
39			are in decimals.
40	np.linspace(2,3,num=50)		Will give array of 50 elements
40			with values between range 2-3
	np.linspace(2,3,num=50,retstep	array([sample], step)	Retstep command: If True,
44	=True)		return (`samples`, `step`), where
41			`step` is the spacing
			between samples.
	np.logspace(2,3,num=4,base=1	array([100. ,	Will give log values to the base
	0)	215.443469 ,	10 between numbers 2 -3
42	,	464.15888336, 1000.	
])	
	np.eye(5)	array([[1., 0., 0., 0., 0.],	Will give identity matrix of size
		[0., 1., 0., 0., 0.],	5x5 with diagonal elements as
43		[0., 0., 1., 0., 0.],	one and all other elements zero
'		[0., 0., 0., 1., 0.],	one and an other elements zero
		[0., 0., 0., 1., 0.],	
	a = np.array([3,4,5,6] , ndmin=	array([[[3, 4, 5, 6]]])	It will return 3 dimensional
43	3)	array([[[5, 4, 5, 6]]])	
-	arr.ndim	2	array It will return dimension of the
43	arr.num		
	nn random randint/1 10 /4 / 2\\		array
42	np.random.randint(1,10,(4,4,2))		It will generate 4 nos 4*2 array
43			with random values between 1-
42	print/pp ::==:		Chapting Num Du Version
43	print(npversion)		Checking NumPy Version

	c =	array([34, 44, 5, 23])	We can use the list as an
	np.array([34,44,5,23,11,89,9])	array([34, 44, 3, 23])	argument in the brackets. The
43	select = [0,1,2,3]		output is the elements
	d = c[select]		corresponding to the particular
	d		indexes:
	c =		It will take select list as
			argument and replace those
43	np.array([34,44,5,23,11,89,9]) select = range(4)		indexes with number 1000.
43	c[select] = 1000		indexes with humber 1000.
	u = np.array([1, 0])	array([1, 1])	Array addition
	v = np.array([0, 1])	anay([1, 1])	Array addition
43	z = np.add(u, v)		
	a = np.array([10, 20, 30])	array([5, 10, 15])	Array subtraction
	b = np.array([5, 10, 15])	array([3, 10, 13])	Array subtraction
43	c = np.subtract(a, b)		
	C		
	x = np.array([1, 2])	array([2, 2])	Array multiplication
	y = np.array([2, 1])	a.r.ay([2, 2])	/ main pineasion
43	z = np.multiply(x, y)		
	7		
	a = np.array([10, 20, 30])	array([5., 2., 6.])	Array division
	b = np.array([2, 10, 5])		,
43	c = np.divide(a, b)		
	c		
	X = np.array([1, 2])	7	Dot product = 1*3+2*2=7
43	Y = np.array([3, 2])		·
	np.dot(X, Y)		
42	u = np.array([1, 2, 3, -1])	array([2, 3, 4, 0])	Adding Constant to a Numpy
43	u + 1		Array
	np.pi	array([0.0000000e+00,	Using pie values in numpy
	x = np.array([0, np.pi/2, np.pi])	1.0000000e+00,	
43	y = np.sin(x)	1.2246468e-16])	
	у		
43	np.linspace(-2, 2, num=5)	array([-2., -1., 0., 1.,	A numpy array within [-2, 2] and
45		2.])	5 elements
	arr1 = np.array([1, 2, 3])	[1 2 3]	Iterating 1-D Arrays
	print(arr1)	1	
43	for x in arr1:	2	
	print(x)	3	
43	A[1, 2]	Same ans	Extracting values from the array
43	A[1][2]		
	X = np.array([[1, 0], [0, 1]])	array([[3, 1],	Matrix addition
43	Y = np.array([[2, 1], [1, 2]])	[1, 3]])	
	Z = X + Y		
	Z		

	Y = np.array([[2, 1], [1, 2]])	array([[4, 2],	Multiplying a matrix by a scaler
43	Z = 2 * Y	[2, 4]])	
	Z		
	Y = np.array([[2, 1], [1, 2]])	array([[2, 0],	Element-wise product of the
43	X = np.array([[1, 0], [0, 1]])	[0, 2]])	array X and Y
45	Z = X * Y		
	Z		
43	C.T		Transposed of C
	A = np.array([[0, 1, 1], [1, 0, 1]])	array([[0, 2],	Matrix multiplication with the
	B = np.array([[1, 1], [1, 1], [-1,	[0, 2]])	numpy arrays A and B
42	[1]])		
43	Z = np.dot(A,B)		
	z		