Résolution du Hamiltonien avec la théorie des perturbations

$$H = \underbrace{-\hbar \left(\omega - \omega_0\right) |e\rangle\langle e| - d_{eg}\mathbf{E}_0 |e\rangle\langle g| - d_{eg}^*\mathbf{E}_0^* |g\rangle\langle e|}_{H_0} \underbrace{-d_{eg}^* |e\rangle\langle g| - d_{eg}\mathbf{E}_0^* e^{-2i\omega t} |g\rangle\langle e|}_{V}$$

états propres de H_0

$$|\pm\rangle = (\cos, \sin)\frac{\theta}{2}e^{-i\frac{\varphi}{2}}|e\rangle \pm (\sin, \cos)\frac{\theta}{2}e^{i\frac{\varphi}{2}}$$

L'approximation séculaire (qui consiste à négliger V), reviens à dire que la probabilité de transition $|\pm\rangle \rightarrow |\mp\rangle$ qu'il cause est très faible.

On veut connaître $\mathcal{P}_{|+\rangle \rightarrow |-\rangle}(t)$

$$\mathcal{P}_{|+\rangle \to |-\rangle} = \frac{1}{\hbar} \left| \int_0^t \mathrm{d}t' e^{-i\frac{E_+ - E_-}{\hbar}t} \left\langle + |V| - \right\rangle \right|^2$$

à claculer à $\Delta=0$ et $\Omega\in\mathbb{R}(\varphi=0)$