Representation formulae for Bertrand curves in the Minkowski 3-space

Handan Balgetir Öztekin and Mehmet Bektaş

Abstract In this paper, we study the representation formulae for Bertrand curves in the Minkowski 3-space.

Keywords Bertrand curve, Minkowski space, representation formulae.

§1. Introduction

Bertrand curves are one of the important and interesting topic of classical spatial curve theory [4, 6, 10]. A Bertand curve is defined as a spatial curve which shares its principal normals with another spatial curve (called *Bertrand mate*). Note that Bertrand mates are particular examples of offset curves used in computer-aided design CADG, (see [5]).

Bertrand curves are characterised as spatial curves whose curvature and torsion are in linear relation. Thus Bertrand curves may be regraded as one-dimensional analogue of Weingarten surfaces [9]. Application of Weingarten surfaces to CADG, (see [8]).

Bertrand curves and their geodesic imbedding in surfaces are recently rediscovered and studied in the context of modern soliton theory by Schief [7].

Straightforward modification of classical theory to spacelike or timelike curves in Minkowski 3-space is easily obtained, (see [1]). Null Bertrand curves in Minkowski 3-space are studied in [2]. Nonnull Bertrand curves in the n-dimensional Lorentzian space are examined in [3].

However in [1]-[2], representation formulae for Bertrand curves are not obtained.

In this paper, we study representation formulae for Bertrand curves in Minkowski 3-space.

§2. Bertrand curves and Representation Formulae in Minkowski 3-space

In this section, we collect classical results on Bertrand curves in Minkowski 3-space \mathbb{E}^3_1 . Let \mathbb{E}^3_1 be the Minkowski 3-space and γ a regular non-null curve. Then γ can be parametrised by the unit speed parameter s;

$$\langle \gamma'(s), \gamma'(s) \rangle = \varepsilon_1 = \pm 1.$$

If $\gamma(s)$ is spacelike (resp. timelike), s is called the arclength parameter (resp. proper time parameter). Let us denote by T the tangent vector field of γ ;

$$T(s) := \gamma'(s).$$

Hereafter, in case $\varepsilon_1 = 1$ (spacelike curve), we assume that the acceleration vector field T' is nonnull. Then there exist vector fields N and B along γ such that

$$T' = \varepsilon_2 \kappa N, \quad N' = -\varepsilon_1 \kappa T - \varepsilon_3 \tau B, \quad B' = \varepsilon_2 \tau N.$$
 (1)

Here ε_2 and ε_3 are second and third causal characters of γ defined by

$$\varepsilon_2 = \langle N, N \rangle, \ \varepsilon_3 = \langle B, B \rangle.$$

The vector field N and B are called the *principal normal* and *binormal vector field* of γ respectively. The functions κ and τ are called the *curvature* and *torsion* of γ respectively.

If there exists a spatial curve $\bar{\gamma}(\bar{s})$ whose principal normal direction coincides with that of original curve, then γ is said to be a *Bertrand curve*. The pair $(\gamma, \bar{\gamma})$ is said to be a *Bertrand mate*.

There are several possibilities for Bertrand mates denoted by $\{\bar{\varepsilon}_i\}$, the causal characters of the Bertrand mate $\bar{\gamma}$. Then by definition, $\bar{\varepsilon}_2 = \varepsilon_2$.

- 1. γ is spacelike with $\varepsilon_2 = 1$. In this case there are two subcases.
- (a) $(\bar{\varepsilon}_1, \bar{\varepsilon}_2, \bar{\varepsilon}_3) = (+1, +1, -1)$: In this case, the mate is also spacelike. Both the rectifying planes of γ and $\bar{\gamma}$ are timelike. Thus the tangent vector fields are related by

$$\bar{T} = \pm (\cosh \theta T + \sinh \theta B)$$

for some function $\theta = \theta(s)$.

(b) $(\bar{\varepsilon}_1, \bar{\varepsilon}_2, \bar{\varepsilon}_3) = (-1, +1, +1)$: In this case, the mate is timelike. Both the rectifying planes of γ and $\bar{\gamma}$ are timelike. Thus the tangent vector fields are related by

$$\bar{T} = \pm (\sinh \theta T + \cosh \theta B)$$

for some function $\theta = \theta(s)$.

2. γ is spacelike with $\varepsilon_2 = -1$. Then $(\overline{\varepsilon}_1, \overline{\varepsilon}_2, \overline{\varepsilon}_3) = (+1, -1, +1)$. Both the rectifying planes are spacelike. Thus

$$\bar{T} = \cos \theta T + \sin \theta B$$

for some function $\theta = \theta(s)$.

- **3.** γ is timelike. In this case there are two subcases.
- (a) $(\overline{\varepsilon}_1, \overline{\varepsilon}_2, \overline{\varepsilon}_3) = (+1, +1, -1)$: In this case, the mate is timelike. The tangent vector fields are related by

$$\bar{T} = \pm (\sinh \theta T + \cosh \theta B)$$

for some function $\theta = \theta(s)$.

(b) $(\overline{\varepsilon}_1, \overline{\varepsilon}_2, \overline{\varepsilon}_3) = (-1, +1, +1)$: In this case, the mate is timelike. The tangent vector fields are related by

$$\bar{T} = \pm (\cosh \theta T + \sinh \theta B)$$

for some function $\theta = \theta(s)$.

One can see that the case 3 is reduced to case 1. Thus we may restrict our study to case 1 and case 2.

Now let consider case 1-(a):

Let $(\gamma, \bar{\gamma})$ be a Bertrand mate, then

$$\bar{\gamma}(\bar{s}) = \gamma(s) + u(s)N(s) \tag{2}$$

for some function $u(s) \neq 0$. Differentiating this, we get

$$\bar{T}(\bar{s})\frac{d\bar{s}}{ds} = (1 - \varepsilon_1 u(s)\kappa(s))T(s) + u'(s)N(s) + \varepsilon_3 u(s)\tau(s)B(s). \tag{3}$$

Since $\bar{T} \perp N$,

$$\langle \bar{T}, N \rangle \bar{s}_s = u' = 0.$$

Hence u is a nonzero constant. Denote by θ the angle between γ and $\bar{\gamma}$:

$$\bar{T} = \varepsilon(\cosh\theta \, T + \sinh\theta \, B), \ \varepsilon = \pm 1$$
 (4)

Then computing the inner product of (3) and (4), we have

$$\frac{1 - \varepsilon_1 u\kappa}{\cosh \theta} = \frac{\varepsilon_3 u\tau}{\sinh \theta} = \frac{d\bar{s}}{ds}.$$
 (5)

Differentiating (4),

$$\varepsilon_2 \bar{\kappa} \bar{s}_s \bar{N} = (\varepsilon \varepsilon_2 \kappa \cosh \theta + \varepsilon \varepsilon_2 \tau \sinh \theta) N + \varepsilon \theta' (\sinh \theta T + \cosh \theta B).$$

By the assumption,

$$\bar{N} = \pm N$$
.

Hence

$$\theta' = 0, \ \bar{\kappa}\bar{s}_s = \varepsilon(\kappa\cosh\theta + \tau\sinh\theta).$$

Thus θ is a constant. If $\sinh \theta = 0$, then from (5), $\tau = 0$. In this case, γ is a planar curve. Note that planar curves are Bertrand curves. In fact, planar curves together with their parallel curves are Bertrand mates.

Next, if $\sin \theta \neq 0$, then (5) is written in the form:

$$a\kappa + b\tau = 1, (6)$$

for constants a and b.

Conversely, if a spatial curve γ satisfies (6), then define $\bar{\gamma}$ by (2). Then

$$\bar{T} = \varepsilon(\cosh\theta T + \sinh\theta B).$$

Differentiating this by s, we obtain

$$\bar{\kappa}\bar{N}\bar{s}_s = \varepsilon(\kappa\cosh\theta + \tau\sinh\theta)N.$$

Hence γ is a Bertrand curve.

Thus we obatin the following result:

Theorem 1. A spatial curve is a Bertand curve in Minkowski 3-space \mathbb{E}_1^3 if and only if its curvature and torsion satisfy $a\kappa + b\tau = 1$ for some constants a and b.

Theorem 2. Let $(\gamma, \bar{\gamma})$ be a Bertrand mate in Minkowski 3-space \mathbb{E}_1^3 . Then $\tau(s)\bar{\tau}(\bar{s})$ is a constant.

Proof of Theorem 2. From (2)–(6),

$$\tau = -\frac{\sinh \theta}{u} \frac{d\bar{s}}{ds}, \quad \bar{\tau} = -\frac{\sinh \bar{\theta}}{\bar{u}} \frac{ds}{d\bar{s}}, \quad \bar{u} = \pm u.$$

Hence

$$\tau \bar{\tau} = \frac{\sinh \theta \sinh \bar{\theta}}{u\bar{u}} = \text{constant.}$$

Corollary 1. Let γ be a Bertrand curve with $a\kappa + b\tau = 1$ and $\bar{\gamma}$ a Bertrand mate. Then the fundamental quantities of the Bertrand mate are given by

$$\bar{T} = \varepsilon \frac{-bT + aB}{\sqrt{b^2 - a^2}}, \quad \bar{N} = \pm N, \quad \bar{B} = \varepsilon \frac{aT - bB}{\sqrt{b^2 - a^2}},$$

$$\bar{\kappa} = -\varepsilon \frac{(-b\kappa + a\tau)}{(b^2 - a^2)\tau}, \quad \bar{\tau} = -\varepsilon \frac{a\kappa - b\tau}{(b^2 - a^2)\tau}, \quad d\bar{s} = -\sqrt{b^2 - a^2}\tau(s)ds.$$

Similarly, if we consider **case 1-(b)** we have following:

Theorem 3. A spatial curve is a Bertand curve in Minkowski 3-space \mathbb{E}_1^3 if and only if its curvature and torsion satisfy $a\kappa + b\tau = 1$ for some constants a and b.

Theorem 4. Let $(\gamma, \bar{\gamma})$ be a Bertrand mate in Minkowski 3-space \mathbb{E}^3_1 . Then $\tau(s)\bar{\tau}(\bar{s})$ is a constant

Corollary 2. Let γ be a Bertrand curve with $a\kappa + b\tau = 1$ and $\bar{\gamma}$ a Bertrand mate. Then the fundamental quantities of the Bertrand mate are given by

$$\bar{T} = \varepsilon \frac{-bT + aB}{\sqrt{a^2 - b^2}}, \quad \bar{N} = \pm N, \quad \bar{B} = \varepsilon \frac{aT - bB}{\sqrt{a^2 - b^2}},$$

$$\bar{\kappa} = -\varepsilon \frac{(-b\kappa + a\tau)}{(a^2 - b^2)\tau}, \quad \bar{\tau} = -\varepsilon \frac{a\kappa - b\tau}{(a^2 - b^2)\tau}, \quad d\bar{s} = -\sqrt{a^2 - b^2}\tau(s)ds.$$

In case 2, We obtained the classical results in Euclidean space.

Lemma 1. Let e(t) be a unit vector field which is not parallel to a fixed plane. Take a nonzero constant a. Then

$$\alpha(t) := -\varepsilon_2 a \int e(t) \times \dot{e}(t) dt$$

is a spatial curve of constant torsion $-\varepsilon_2/a$ and binormal vector field $\pm e(t)$.

Proof of Lemma 1. Direct computations show

$$\dot{\alpha} \times \ddot{\alpha} = a^2((e \times \dot{e}) \times (e \times \ddot{e})) = a^2\{\det(e, e, \ddot{e})\dot{e} - \det(\dot{e}, e, \ddot{e})e\} = a^2\det(e, \dot{e}, \ddot{e})e.$$

Here we used the following formula in Minkowski 3-space \mathbb{E}_1^3 :

$$(x \times y) \times (z \times w) = \det(x, z, w)y - \det(y, z, w)x$$

By the assumption, $det(e, \dot{e}, \ddot{e}) \neq 0$, the binormal vector field of α is $B_{\alpha} = \pm e$.

Next, since $\det(\dot{\alpha}, \ddot{\alpha}, \ddot{\alpha}) = -\varepsilon_2 a^3 \det(e, \dot{e}, \ddot{e})^2$. Hence the torsion of α is

$$\tau_{\alpha} = \frac{\det(\dot{\alpha}, \ddot{\alpha}, \ddot{\alpha})}{|\dot{\alpha} \times \ddot{\alpha}|^2} = \frac{-\varepsilon_2 a^3 \det(e, \dot{e}, \ddot{e})^2}{a^4 \det(e, \dot{e}, \ddot{e})^2} = \frac{-\varepsilon_2}{a}.$$

Conversely, let $\alpha(s)$ be a curve of constant torsion $-\varepsilon_2/a$. Here s is the arclength parameter. Then put e(s) = B(s). Then the Frenet-Serret formula implies

$$e \times \dot{e} = \varepsilon_2 \tau B \times N = \frac{-\varepsilon_2}{a} \alpha'.$$

Hence $\alpha(s) = -\varepsilon_2 a \int_0^s e \times \dot{e} ds$.

Lemma 2. If a spatial curve α is of constant nonzero torsion τ_{α} , then the curve

$$\beta(s) = -\frac{1}{\tau_{\alpha}}N(s) - \varepsilon_3 \int B(s)ds$$

has constant curvature $|\tau_{\alpha}|$.

Proof of Lemma 2. We use the subscript \cdot_{α} for expressing geometric objects of α . By the Frenet-Serret formula for α , we have

$$\frac{d\beta}{ds} = -\frac{1}{\tau_{\alpha}}(-\varepsilon_{1}\kappa_{\alpha}T_{\alpha} - \varepsilon_{3}\tau_{\alpha}B_{\alpha}) - \varepsilon_{3}B_{\alpha} = \varepsilon_{1}\frac{\kappa_{\alpha}}{\tau_{\alpha}}T_{\alpha}.$$

Hence the unit tangent vector field of β is $T_{\beta} = \varepsilon T$, $\varepsilon = \operatorname{sgn}(\tau)$. Hence the arclength parameter s_{β} of β is

$$s_{\beta} = \int^{s} \varepsilon_{1} \frac{\kappa_{\alpha}}{|\tau_{\alpha}|} ds.$$

Thus

$$\frac{dT_{\beta}}{ds_{\beta}} = \varepsilon \frac{dT}{ds} \frac{ds}{ds_{\beta}} = \varepsilon \varepsilon_1 \varepsilon_2 |\tau_{\alpha}|N, \quad N_{\beta} = \varepsilon N, \quad \kappa_{\beta} = |\tau_{\alpha}| = \text{constant}.$$

Lemma 3. If a spatial curve α is of constant nonzero torsion τ_{α} , then the curve

$$\beta(s) = a\alpha(s) + b\left(-\frac{1}{\tau_{\alpha}}N(s) - \varepsilon_3 \int B(s)ds\right)$$

is a Bertand curve.

Proof of Lemma 3. Direct computations show that

$$\beta' = \left(a + \frac{\varepsilon_1 b \kappa_\alpha}{\tau_\alpha}\right) T, \quad \beta'' = \frac{\varepsilon_1 b \kappa'_\alpha}{\tau_\alpha} T + \left(a\varepsilon_2 \kappa_\alpha + \frac{\varepsilon_1 \varepsilon_2 b \kappa_\alpha^2}{\tau_\alpha}\right) N,$$

$$\beta''' = (b\varepsilon_1 \frac{\kappa''_{\alpha}}{\tau_{\alpha}} - a\varepsilon_1 \varepsilon_2 \kappa_{\alpha}^2 - b\varepsilon_2 \frac{\kappa_{\alpha}^3}{\tau_{\alpha}})T + (a\varepsilon_2 \kappa'_{\alpha} + \frac{3\varepsilon_1 \varepsilon_2 b\kappa'_{\alpha} \kappa_{\alpha}}{\tau_{\alpha}})N + (-a\varepsilon_2 \varepsilon_3 \kappa_{\alpha} \tau_{\alpha} - b\varepsilon_1 \varepsilon_2 \varepsilon_3 \kappa_{\alpha}^2)B.$$

From these

$$\kappa_{\beta} = \frac{|\beta' \times \beta''|}{|\beta'|^{3/2}} = \frac{-\varepsilon_2 \kappa_{\alpha}}{\left|a + \varepsilon_1 b \frac{\kappa_{\alpha}}{\tau_{\alpha}}\right|},$$

$$\tau_{\beta} = \frac{\det(\beta', \beta'', \beta''')}{|\beta' \times \beta''|^2} = \frac{-\varepsilon_3 \tau_{\alpha}}{a + \varepsilon_1 b \frac{\kappa_{\alpha}}{\tau_{\alpha}}}.$$

Put $\varepsilon = \operatorname{sgn}\{\varepsilon_1\varepsilon_2\varepsilon_3(a + (b\varepsilon_1\kappa_\alpha/\tau_\alpha))\}$. Then $\varepsilon b\kappa_\beta + a\tau_\beta = -\varepsilon_3\tau_\alpha = \text{constant}$.

From these Lemma, one can deduce the following:

Theorem 5. (Representation formula) Let $u(\sigma)$ be a curve in the H^2 parametrised by arclength. Then define three spatial curves α, β and γ by

$$\alpha := a \int u(\sigma) d\sigma, \quad \beta := a \tanh \theta \int u(\sigma) \times du,$$

$$\gamma := \alpha - \beta.$$

Then α is a constant curvature curve, β is a constant torsion curve and γ is a Bertrand curve. Conversely, every Bertrand curve can be represented in this form.

Proof of Theorem 5. Here we give a detailed proof.

Let $u = u(\sigma)$ be a timelike curve in H^2 parametrised by the arclength σ . Then $\{\xi = u', \eta = u \times u', u\}$ is a positive orthonormal frame field along u. Hence,

$$u'' = u + \lambda \eta, \quad u \times u'' = -\lambda \xi.$$

for some function λ . From the definition of γ , we get

$$\gamma' = a(u + \tanh \theta \eta), \quad \gamma'' = a(1 - \lambda \tanh \theta)\xi, \quad \gamma''' = a(1 - \lambda \tanh \theta)(u + \lambda \eta)$$

The arclength parameter s of γ is determined by

$$\langle \gamma', \gamma' \rangle = -\frac{a^2}{\cosh^2 \theta} \left(\frac{ds}{d\sigma} \right)^2.$$

Moreover we have

$$\gamma' \times \gamma'' = a^2 (1 - \lambda \tanh \theta) (\eta + \tanh \theta u),$$
$$\det(\gamma', \gamma'', \gamma''') = -\langle \gamma' \times \gamma'', \gamma''' \rangle = a^3 (1 - \lambda \tanh \theta)^2 (\tanh \theta - \lambda).$$

Using these,

$$\kappa = \frac{|\gamma' \times \gamma''|}{|\gamma'|^3} = \frac{(1 - \lambda \tanh \theta) \cosh^2 \theta}{a},$$
$$\tau = \frac{\det(\gamma', \gamma'', \gamma''')}{|\gamma' \times \gamma''|^2} = \frac{\cosh^2 \theta (\tanh \theta - \lambda)}{a}.$$

Hence we have

$$a(\kappa - \tanh \theta \tau) = 1.$$

Thus γ is a Bertrand curve.

Next, we compute the curvature of α and torsion of β .

Direct computation shows that

$$\alpha' = au, \quad \alpha'' = a\xi, \quad \alpha' \times \alpha'' = a^2\eta,$$

$$\beta' = a \tanh \eta, \quad \beta'' = -a\lambda \tanh \xi, \quad \beta' \times \beta'' = -a^2\lambda \tanh^2 \theta u,$$

 $\det(\beta', \beta'', \beta''') = a^3 \lambda^2 \tanh^3 \theta.$

Hence

$$\kappa_{\alpha} = \frac{1}{a}, \quad \tau_{\beta} = \frac{1}{a \tanh \theta}.$$

Conversely. let $\gamma(s)$ be a timelike Bertrand curve with relation:

$$a(\kappa - \tanh \theta \tau) = 1.$$

Denote by σ the arclength parameter of the spherical curve:

$$u = \cosh \theta T - \sinh \theta B.$$

Then

$$u_{\sigma} = \frac{\cosh \theta}{a} N.$$

Hence $d\sigma/ds = \cosh \theta/a$. Thus

$$au\sigma_s = \cosh\theta(\cosh\theta T - \sinh\theta B),$$

$$a \tanh \theta u \times u_{\sigma} \sigma_s = -\sinh \theta (\cosh \theta B - \sinh \theta T).$$

Henceforth,

$$a \int u d\sigma - a \tanh \theta \int u \times \frac{du}{d\sigma} d\sigma = \int T(s) ds = \gamma(s).$$

Acknowledgements

The authors would like to thank professor Jun-ichi Inoguchi for suggesting us the present study and his invaluable comments.

Conclusion

In this paper, we gave some characterizations for Bertrand curves and spatial curves in Minkowski 3-space We obtained representation formulae for Bertrand curves in \mathbb{E}^3_1 . We hope these results will be helpful to mathematicians who are specialized on mathematical modeling.

References

- [1] H. Balgetir, M. Bektaş and M. Ergüt, Bertrand curves for nonnull curves in 3-dimensional Lorentzian space, Hadronic Journal, **27**(2004), 229-236.
- [2] H. Balgetir, M. Bektaş and J. Inoguchi, Null Bertrand curves in Minkowski 3-space, Note di Mat., **23**(2004/2005), No. 1, 7-13.
- [3] N. Ekmekçi and K. Ilarslan, On Bertrand curves and their characterization, Differential Geometry–Dynamical Systems, **3**(2001), 17–24.

- [4] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, Boston, 1909.
- [5] A. W. Nutbourne and R. R. Martin, Differential Geometry Applied to the Design of Curves and Surfaces, ellis Horwood, Chichester, UK, 1988.
 - [6] T. Otsuki, Differential Geometry (in Japanese), Asakuara, Tokyo, 1961.
- [7] W. K. Schief, On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom. Phys., 45(2003), 130-150.
- [8] B. van-Brunt and K. Grant, Potential application of Weingarten surfaces in CADG, Part I: Weingarten surfaces and surface shape investigation, Computer Aided Geometric Design, 13(1996), 569–582.
- [9] B. van-Brunt, Congruent characteristics on linear Weingarten surfaces in Euclidean 3-space, New Zealand J. Math., **27**(1998), 269–276.
- [10] C. E. Weatherburn, Differential Geometry of Three Dimensions I, Cambridge Univ. Press, 1927.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissio	n.