WHAT IS CLAIMED IS:

	1
(2) >	2
17	3
1	4

A method of detecting a disc defect comprising the steps of:
writing a first data track to the disc with a write head including a write element and a thermal asperity detector;

detecting magnetic defects on the first data track with a certification

5 head; and

6

· 7

1

2

3

4

1

2

3

4

5

scanning the first data track for thermal asperities with the thermal asperity detector.

- 2. The method of claim 1, further including the steps of: writing a second data track to the disc; detecting magnetic defects on the second data track; and scanning the second data track for thermal asperities.
- 3. The method of claim 1, further including the step of:
 upon locating a thermal asperity during the step of scanning, writing a
 burst pattern to the disc in a location where a thermal asperity is detected wherein the
 burst pattern is detectable in further analysis of the disc.

3	
4	
5	
6	
7	
8	
1	
2	
3	
4	
5	
6	
7	

5		
1	4,	A method of detecting magnetic and thermal asperities on a disc
2	comprising th	he steps of:
3	\	writing a first data stream to a first wide track on the disc with a write
4	head located	on a write head;
5		reading the first data stream on a first portion of the first wide track for
6	magnetic def	ects with a read element located on a certifier head; and
7		scanning the first wide track for thermal asperities with a thermal
8	asperity dete	ctor located on the write head.
1	5.	The method of claim 4, further including the steps of:
2		writing a second data stream to a second wide track on the disc with
3	the write eler	ment;
4		reading the second data stream on a second portion of the second wide
5	track for mag	gnetic defects with the certifier head; and
6		scanning the second wide track for thermal asperities with the thermal
7	asperity dete	ctor.
1	6.	The method of claim 4, further including the step of:
2		upon locating a thermal asperity during the step of scanning, writing a
3	burst pattern	to the disc in a location where a thermal asperity is detected wherein the
4	burst pattern	is detectable in further analysis of the disc.
		\ \
1	7.	The method of claim 4, further including the step of:
2		stopping writing of the first data stream on the first wide track while
3	reading the f	irst data stream on a portion of first wide write track.
4		\

2

3

l	8.	A testing system comprising:
2		a disc drive having a spindle on which a disc can be mounted and
3	motor for ro	tating the disc; and
1		means for detecting thermal asperities and magnetic defects.
l	9.	The testing system of claim 8, wherein the means for detecting thermal
2	asperities is	fabricated from magnetic material.
1	10	The beging system of claim 8 wherein the means for detecting thermal

- 1 10. The testing system of claim 8, wherein the means for detecting thermal 2 asperities is fabricated from nickel.
- 1 11. The testing system of claim 8, wherein the means for detecting thermal 2 asperities is fabricated from a material picked from a group consisting of nickel, 3 beryllium and nickel-iron.
 - 12. The testing system of claim 8, wherein the means for detecting thermal asperities has a width ranging from 10 microns to 100 microns.

10

l	13. A testing system for detecting thermal asperities and magnetic defects
2	on a disc comprising:
3	a write head including a write element, the write head located on a first
1	support arm wherein the write element is activated to write a track onto the disc
5	during a first period;
5	a thermal asperity detector, wherein the asperity detector is activated to
7	detect asperities during a second period; and
3	a read head located on a second support arm wherein the read head is
)	positioned to read the track written by the write element.

20.

about 75 microns.

1

2

3

10			
1	\14 .	A testing system for detecting thermal asperities and magnetic defects	
2	on a disc comprising:		
3	\	a write head including a write element and a thermal asperity detector,	
4	the write head	d located on a first support arm wherein the write element is activated to	
5	write a track	onto the disc during a first period and the asperity detector is activated	
6	to detect aspe	erities during a second period; and	
7		a read head located on a second support arm wherein the read head is	
8	positioned to	read the track written by the write element.	
1	15.	The testing system of claim 14 wherein the thermal asperity detector is	
2	fabricated fro	om a non-magnetic material.	
1	16.	The testing system of claim 14 wherein the thermal asperity detector is	
2	fabricated fro	om a material picked from a group consisting of nickel, beryllium and	
3	nickel-iron.		
1	17.	The testing system of claim 14 wherein the thermal asperity detector	
2	has a width ra	anging from about 10 microns to 100 microns.	
1	18.	The testing system of claim 14, wherein the thermal asperity detector is	
2	fabricated fro	om nickel.	
	40		
1	19.	The testing system of claim 14, wherein the width of the write head is	
2	from about 20	0 microns to 100 microns.	
		\	

The testing system of claim 17, wherein the width of the write head is

1

2

3

21. The testing system of claim 14, wherein the write element has a first width and the read element has a second width and a ratio of the first width to the second width is from 2 to 11.