

Height and distance

1. A boat is sailing towards a lighthouse of height $20\sqrt{3}$ m at a certain speed. The angle of elevation of the top of the lighthouse changes from 30° to 60° in 10 seconds. What is the time taken (in seconds) by the boat to reach the lighthouse from its initial

> position? **(A)** 10

(B) 15

(C) 20

(D) 60

2. A tower is broken at a point P above the ground. The top of the tower makes an angle 60° with the ground at Q. From another point R on the opposite side of Q angle of elevation of point P is 30°. If QR = 180 m, then what is the total height (in metres) of the tower?

(A) 90

(B) $45\sqrt{3}$

(C) $45(\sqrt{3}+1)$

(D) $45(\sqrt{3}+2)$

3. Two points P and Q are at the distance of x and y (where y > x) respectively from the base of a building and on a straight line. If the angles of elevation of the top of the building from points P and Q are complementary, then what is the height of the building?

(A) xy

(B) $\sqrt{(y/x)}$

(C) $\sqrt{(x/y)}$

(D) \sqrt{xy}

4. The tops of two poles of height 60 metres and 35 metres are connected by a rope. If the rope makes an angle with the horizontal whose tangent is 5/9 metres, then what is the distance (in metres) between the two poles?

(A) 63

(B) 30

(C) 25

(D) 45

5. A Navy captain going away from a lighthouse at the speed of $4[(\sqrt{3}) - 1]$ m/s. He observes that it takes him 1 minute to change the angle of elevation of the top of the lighthouse from 60° to 45°. What is the height (in metres) of the lighthouse?

(A) $240\sqrt{3}$

(B) $480[(\sqrt{3}) - 1]$

(C) $360\sqrt{3}$

(D) $280\sqrt{2}$

6. Two trees are standing along the opposite sides of a road. Distance between the two trees is 400 metres. There is a point on the road between the trees. The angle of depressions of the point from the top of the trees are 45° and 60°. If the height of the tree which makes 45° angle is 200 metres, then what will be theheight (in metres) of the other tree?

(A) 200

(B) $200\sqrt{3}$

(C) $100\sqrt{3}$

(D) 250

A tower stands on the top of a building 7. which is 40 metres high. The angle of depression of a point situated on the ground from the top and bottom of thetower are found to be 60° and 45° respectively. What is the height (in metres) of tower?

(A) $20\sqrt{3}$

(B) $30(\sqrt{3} + 1)$

(C) $40(\sqrt{3}-1)$

(D) $50(\sqrt{3}-1)$

8. From a point P, the angle of elevation of a tower is such that its tangent is 3/4. On walking 560 metres towards the tower the tangent of the angle of elevation of the tower becomes 4/3. What is the height (in metres) of the tower?

(A) 720

(B) 960

(C) 840

(D) 1030

ISO Certified

9. The angle of elevation of an aeroplane from a point on the ground is 60°. After flying for 30 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a height of 4500 m, then what is the speed (in m/s) of aeroplane?

(A) $50\sqrt{3}$

(B) $100\sqrt{3}$

(C) $200\sqrt{3}$

(D) $300\sqrt{3}$

10. A kite is flying in the sky. The length of string between a point on the ground and kite is 420 m. The angle of elevation of string with the ground is 30°. Assuming that there is no slack in the string, then what is the height (in metres) of the kite?

(A) 210

(B) $140\sqrt{3}$

(C) $210\sqrt{3}$

(D) 150

11. A balloon leaves from a point P rises at a uniform speed. After 6 minutes, an observer situated at a distance of $450\sqrt{3}$ metres from point P observes that angle of elevation of the balloon is 60°. Assume that point of observation and point P are on the same level. What is the speed (in m/s) of the balloon?

(A) 4.25

(B) 3.75

(C) 4.5

(D) 3.45

12. The distance between the tops of two building 38 metres and 58 metres high is 52 metres. What will be the distance (in metres) between two buildings?

(A) 46

(B) 42

(C) 44

(D) 48

13. The angles of elevation of the top of a tree 220 meters high from two points lie on the same plane are 30° and 45°. What is the distance (in metres) between the two points?

(A) 193.22

(B) 144.04

(C) 176.12

(D) 161.05

14. The angles of elevation of the top of a tower 72 metre high from the top and bottom of a

Keep in touch:

www.mockopedia.com

building are 30° and 60° respectively. What is the height (in metres) of building?

(A) 42

(B) $20\sqrt{3}$

(C) $24\sqrt{3}$

(D) 48

15. A pole is standing on the top of a house. Height of house is 25 metres. The angle of elevation of the top of house from point P is 45° and the angle of elevation of the top of pole from P is 60°. Point P is on the ground level. What is the height (in metres) of pole?

(A) $10(\sqrt{3+1})$

(B) 15 ($\sqrt{(3+1)}$)

(C) 25 $(\sqrt{3}-1)$

(D) 20 $(\sqrt{3}-1)$

16. A ladder is placed against a wall such that it just reaches the top of the wall. The foot of the ladder is at a distance of 5 metres from the wall. The angle of elevation of the top of the wall from the base of the ladder is 15°. What is the length (in metres) of the ladder?

(A) $5\sqrt{6} - 5\sqrt{3}$

(B) $5\sqrt{6} - 5\sqrt{2}$

(C) $5\sqrt{2} - 1$

(D) $5\sqrt{3} + 5\sqrt{2}$

An aeroplane is flying horizontally at a height of 1.8 km above the ground. The angle of elevation of plane from point X is 60° and after 20 seconds, its angle of elevation from X is become 30°. If point X is on ground, then what is the speed (in km/hr) of aeroplane?

(A) $216\sqrt{3}$

(B) $105\sqrt{3}$

(C) $201\sqrt{3}$

(D) $305\sqrt{3}$

18. A flag of height 4 metres is standing on the top of a building. The angle of elevation of the top of the flag from a point X is 45° and the angle of elevation of the top of building from X is 30°. Point X is on the ground level. What is the height (in metres) of the building?

(A) $\sqrt{3+2}$

(B) $2(\sqrt{3} + 1)$

(C) $4(\sqrt{3}+1)$

(D) $(\sqrt{3} + 1)$

ISO Certified

19. The height of a tower is 120 meters. The elevation angle of the top of the tower at point-B is 75 °. Point-B is on the ground surface. What is the distance (in meters) of point-B from the base of the tower?

(A) $120(2-\sqrt{3})$

(B) $180 (3 - \sqrt{3})$

(C) $180(\sqrt{3}-1)$

(D) $180 (\sqrt{3} + 1)$

Keep in touch:

www.mockopedia.com

20. Mohit is standing at some distance from a 60 meters tall building. Mohit is 1.8 meters tall. When Mohit walks towards the building, then the angle of elevation from his head becomes 60° from 45°. How much distance (in metres) Mohit covered towards the building?

(A) 18.6 $(4 - \sqrt{3})$

(B) $58.2 - 24.6\sqrt{3}$

(C) 19.4 ($\sqrt{3}$ + 1)

(D) 19.4 $(3 - \sqrt{3})$

