2.3.3. Let X be l^{∞} and let Y be the subset of all sequences with only finitely many nonzero terms. We first show that Y is a subspace of l^{∞} . We first note that the zero sequence has no nonzero terms, and thus is in Y. So Y is nonempty. Let $x = (x_i)$ and $y = (y_i)$ be elements of Y. Let x_n be the last nonzero term of x and let y_m be the last nonzero term of y. Then $\alpha x + \beta y$ has a last nonzero term at either n or m (αx_n or βy_m respectively). Thus, $x + y \in Y$. So Y is a subspace.

However consider the sequence $x_n = (1, 1, 0, ...)$ where the first n entries of each tuple is 1 and the rest are zero. Then for $\epsilon > 0$, there exists an N such that when n > N, $||x_n - (1, 1, 1, ...)|| \le \epsilon$. Since $(1, 1, 1, ...) \notin Y$, we see that Y is not closed, and thus is not a closed subspace.

2.3.8. Let X be a normed space where absolute convergence implies convergence. Let $(x_n) \in X$ be a Cauchy sequence. Then for $\epsilon^* > 0$, there exists an N such that when m, n > N, then $||x_n - x_m|| < \epsilon^*$. We then define $s_k = \sum_{i=1}^k ||x_n - x_{i+m}||$. Let $\epsilon^* = \frac{\epsilon}{k}$ where $\epsilon > 0$. Then for some K, when k > K, $||s_k - 0|| = ||\sum_{i=1}^k ||x_n - x_{i+m}||| < ||\sum_{i=1}^k \epsilon^*|| = \epsilon$. So s_k converges to 0. This means that the sequence $\hat{s}_k = \sum_{i=1}^k x_n - x_{i+m}$ converges to some x. This means that for some $\hat{\epsilon} > 0$, there exists M such that when k > M.

$$\|\sum_{i=1}^{k} x_n - x_{i+m} - x\| = \|x_n - x - \sum_{i=1}^{k} x_{i+m}\|$$
 (1)

$$<\hat{\epsilon}.$$
 (2)

2.3.10. Assume that X is a normed space with a Schauder basis. Thus, for all $x \in X$, $x = \sum_{k=1}^{\infty} \alpha_k e_k$ where (e_n) is the Schauder basis for X. Consider the set $X' \subset X$ where each x' can be represented as $\sum_{k=1}^{\infty} \beta_k e_k$ where $\beta_k \in \mathbb{Q}$. Let $x \in X$ such that $x = \sum_{i=1}^{\infty} \alpha_i x_i$. Recall that \mathbb{Q} is dense in \mathbb{R} . Choose $x' = \sum_{i=1}^{\infty} \beta_i e_i \in X'$ such that for every α_i and β_i , $\|\alpha_i - \beta_i\| < \frac{\epsilon_i}{\|\sum_{i=1}^{\infty} e_i\|}$ for every $\epsilon_i > 0$. Let $\epsilon = \max_i \frac{\epsilon_i}{\|\sum_{i=1}^{\infty} e_i\|}$. Then

$$||x' - x|| = ||\sum_{i=1}^{\infty} \beta_i e_i - \sum_{i=1}^{\infty} \alpha_i e_i|| = ||\sum_{i=1}^{\infty} (\beta_i - \alpha_i) e_i|| \le ||\sum_{i=1}^{\infty} ||\beta_i - \alpha_i|| e_i|| < ||\epsilon| \sum_{i=1}^{\infty} e_i|| = \epsilon ||\sum_{i=1}^{\infty} e_i|| = \max_i \epsilon_i.$$

So $x' \in B(x; \max_i \epsilon_i)$. Thus, $x \in \overline{X'}$. Since x was arbitrary, $\overline{X'} = X$. Further, since X' is countable, X is separable.

2.4.2. Let $X = \mathbb{R}^2$ and $x_1 = (1,0)$ and $x_2 = (0,1)$. Note that for α_1 and α_2 ,

$$\|\alpha_1 x_1 + \alpha_2 x_2\| = \|\alpha_1(1,0) + \alpha_2(0,1)\| = \|(\alpha_1, \alpha_2)\| = \sqrt{\alpha_1^2 + \alpha_2^2}.$$

Note that the largest c in equation (1) will bring equality. So we solve for c as follows:

$$\sqrt{\alpha_1^2 + \alpha_2^2} = c|\alpha_1| + c|\alpha_2| \tag{3}$$

$$c = \frac{\sqrt{\alpha_1^2 + \alpha_2^2}}{|\alpha_1| + |\alpha_2|}.\tag{4}$$

So the largest c could be is $c = \frac{\sqrt{\alpha_1^2 + \alpha_2^2}}{|\alpha_1| + |\alpha_2|}$.

Now let $X = \mathbb{R}^3$ and $x_1 = (1,0,0), x_2 = (0,1,0)$ and $x_3 = (0,0,1)$. Following the same procedure as above, we solve for c.

$$\|\alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(0,0,1)\| = \|(\alpha_1,\alpha_2,\alpha_3)\|$$
(5)

$$= \left(\alpha_1^3 + \alpha_2^3 + \alpha_3^3\right)^{1/3} \tag{6}$$

$$= c(|\alpha_1| + |\alpha_2| + |\alpha_3|). \tag{7}$$

So the largest c could be is $c = \frac{\left(\alpha_1^3 + \alpha_2^3 + \alpha_3^3\right)^{1/3}}{|\alpha_1| + |\alpha_2| + |\alpha_3|}$.

2.4.4. Let X be a vector space and let $\|\cdot\|$ and $\|\cdot\|_*$ be equivalent norms on X. This means that there exists positive a and b such that $a\|x\|_* \le \|x\| \le b\|x\|_*$ for all $x \in X$. Define \mathscr{T}_1 as the open subsets of X with respect to $\|\cdot\|_*$. Now let $X_2 \in \mathscr{T}_2$ be an open subset with respect to $\|\cdot\|_*$. We want to show that X_2 is an open subset with respect to $\|\cdot\|_*$. Let $x_0 \in B(x; a\epsilon)$ where this is a ball with respect to $\|\cdot\|_*$, $x \in X_2$ and $x \in X_2$. Then

$$a||x - x_0||_* \le ||x - x_0|| < a\epsilon.$$

So $x_0 \in B^*(x; \epsilon)$. Thus, $B(x; a\epsilon) \subseteq B^*(x; \epsilon)$. So every open ball with respect to $\|\cdot\|$ around $x \in X_2$ is in X_2 since it is a subset of a ball with respect to $\|\cdot\|_*$. So X_2 is an open subset with respect to $\|\cdot\|_*$. Thus, $X_2 \in \mathcal{T}_1$. So $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Now let $X_1 \in \mathscr{T}_1$ be an open subset with respect to $\|\cdot\|$. Recall that since $\|\cdot\|$ and $\|\cdot\|_*$ are equivalent, there exists a' and b' that are positive such that $a'\|x\| \le \|x\|_* \le b'\|x\|$ for all $x \in X$. Let $x \in X_1$, $\epsilon > 0$ and $x_0 \in B^*(x; a\epsilon)$ where B^* is a ball with respect to $\|\cdot\|_*$. Then we see that

$$a'||x - x_0|| < ||x - x_0||_* < a\epsilon.$$

So $x_0 \in B(x; \epsilon)$ where B is a ball with respect to $\|\cdot\|$. So $B^*(x; a\epsilon) \subseteq B(x; \epsilon)$. Thus every open ball with respect to $\|\cdot\|_*$ around $x \in X_1$ is in X_1 . So X_1 is an open subset with respect to $\|\cdot\|_*$. So $X_1 \in \mathscr{T}_2$. Thus, $\mathscr{T}_1 \subseteq \mathscr{T}_2$.

Hence, $\mathcal{T}_1 = \mathcal{T}_2$.

2.4.6. Let X be the vector space of ordered n-tuples of numbers. Let $x=(x_1,...,x_n)\in X$. Then $\|x\|_{\infty}^2=\max_i|x_i|^2\leq \sum_{i=1}^n|x_i|^p=\|x\|_2^2$. Thus,

$$||x||_{\infty}^2 \le ||x||_2^2 \tag{8}$$

$$||x||_{\infty}|| \le ||x||_2. \tag{9}$$

Further, $n^2 \max_i |x_i|^2 \ge n \max_i |x_i|^2 \ge \sum_{i=1}^n |x_i|^2$. Thus,

$$n^2 \|x\|_{\infty}^2 \ge \|x\|_2^2 \tag{10}$$

$$n\|x\|_{\infty} \ge \|x\|_2. \tag{11}$$

So $||x||_{\infty} \le ||x||_2 \le n||x||_{\infty}$. Since 1, n > 0, the $||\cdot||_{\infty}$ and $||\cdot||_2$ are equivalent by definition 2.4-4.