Definition 12.2. Given a Euclidean space E, any two vectors $u, v \in E$ are orthogonal, or perpendicular, if $u \cdot v = 0$. Given a family $(u_i)_{i \in I}$ of vectors in E, we say that $(u_i)_{i \in I}$ is orthogonal if $u_i \cdot u_j = 0$ for all $i, j \in I$, where $i \neq j$. We say that the family $(u_i)_{i \in I}$ is orthonormal if $u_i \cdot u_j = 0$ for all $i, j \in I$, where $i \neq j$, and $||u_i|| = u_i \cdot u_i = 1$, for all $i \in I$. For any subset F of E, the set

$$F^{\perp} = \{ v \in E \mid u \cdot v = 0, \text{ for all } u \in F \},$$

of all vectors orthogonal to all vectors in F, is called the *orthogonal complement of* F.

Since inner products are positive definite, observe that for any vector $u \in E$, we have

$$u \cdot v = 0$$
 for all $v \in E$ iff $u = 0$.

It is immediately verified that the orthogonal complement F^{\perp} of F is a subspace of E.

Example 12.5. Going back to Example 12.3 and to the inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$$

on the vector space $\mathcal{C}[-\pi,\pi]$, it is easily checked that

$$\langle \sin px, \sin qx \rangle = \begin{cases} \pi & \text{if } p = q, \ p, q \ge 1, \\ 0 & \text{if } p \ne q, \ p, q \ge 1, \end{cases}$$

$$\langle \cos px, \cos qx \rangle = \begin{cases} \pi & \text{if } p = q, \ p, q \ge 1, \\ 0 & \text{if } p \ne q, \ p, q \ge 0, \end{cases}$$

and

$$\langle \sin px, \cos qx \rangle = 0,$$

for all $p \ge 1$ and $q \ge 0$, and of course, $\langle 1, 1 \rangle = \int_{-\pi}^{\pi} dx = 2\pi$.

As a consequence, the family $(\sin px)_{p\geq 1} \cup (\cos qx)_{q\geq 0}$ is orthogonal. It is not orthonormal, but becomes so if we divide every trigonometric function by $\sqrt{\pi}$, and 1 by $\sqrt{2\pi}$.

Proposition 12.4. Given a Euclidean space E, for any family $(u_i)_{i \in I}$ of nonnull vectors in E, if $(u_i)_{i \in I}$ is orthogonal, then it is linearly independent.

Proof. Assume there is a linear dependence

$$\sum_{j \in J} \lambda_j u_j = 0$$