LERNZIELE DYNAMIK

Begriff	Lernziele
Trägheit und Inertialsystem	Trägheitsprinzip von Galilei formulieren
	Trägheitsprinzip auf Alltagsbeobachtungen anwenden
	Kriterium für Inertialsystem angeben
	Beispiele für vernünftige Inertialsysteme kennen
Masse	statische Messung der (schweren) Masse mit Balkenwaage
	dynamische Messung der (trägen) Masse mit Luftkissenbahn
	grundsätzlichen Unterschied zwischen träger und schwerer Masse verstehen (obwohl äquivalent)
	Masse und Gewicht unterscheiden (sprachlich und konzeptionell)
Dichte	Dichte eines homogenen Körpers berechnen
	einfache Rechnungen mit tabellierten Dichten (FoTaBe 187)
	mittlere Dichte eines heterogenen Körpers aus den Dichten der Bestandteile berechnen
Impulserhaltung	Impulse für eine "vorher/nachher-Situation" algebraisch sauber formulieren und mit Impulserhaltung auswerten
	Rückstossprinzip erklären und anwenden
Kraft	Kraft als vektorielle Grösse (Richtung und Betrag) verstehen
	Kräfte vektoriell addieren (resultierende Kraft) und in Teilkräfte zerlegen
	Kräfteplan für Teilsystem zeichnen
Aktionsprinzip	Impulsänderung beim Kraftstoss bestimmen
	Grundgleichung der Mechanik in ihren verschiedenen Anwendungen kennen
	Beschleunigung für System mit mehreren Massen berechnen
	Gewichtskraft als Beispiel eines Kraftgesetzes
	Faustregel: 100 g erfahren eine Gewichtskraft von 1 N (auf der Erde)
Hooke'sches Gesetz	Verlängerung einer Feder berechnen
	Grenzen des Hooke'schen Gesetzes erkennen
	Federkraftmesser beschreiben
Kräftegleichgewicht	resultierende Kraft graphisch und rechnerisch bestimmen
	einfache Probleme mit Kräftegleichgewicht lösen
Wechselwirkungsprinzip	Wechselwirkungspaare erkennen, korrekt einzeichnen (greifen an verschiedenen Körpern an)
	Normalkraft ist nicht die Reaktionskraft zur Gewichtskraft!
	zwischen inneren und äusseren Kräften unterscheiden
	erklären, was eine Personenwaage anzeigt

Kräfte am Hang	Hangabtriebskraft und senkrechte Komponente der Gewichtskraft berechnen, einfache Beispiele zum Gleichgewicht am Hang lösen
	Hangbeschleunigung (reibungsfrei) berechnen
Reibungskräfte	Gleitreibungskraft berechnen (Gleitreibungszahl: FoTaBe 189)
	Haftreibungskraft kann beliebigen Wert bis zu einer oberen Grenze annehmen; Maximum berechnen (Haftreibungszahl: FoTaBe 189)
	kritischen Winkel für Rutschen berechnen
	maximal mögliche Beschleunigung eines Fahrzeugs berechnen (Zweirad-/Vierradantrieb, mit/ohne Anhänger)
Luftwiderstand	Luftwiderstandskraft berechnen (Widerstandsbeiwert: FoTaBe 189)
	Geschwindigkeitsverlauf beim Fallen in Luft skizzieren
	Grenzgeschwindigkeit für den vertikalen Fall in Luft berechnen
Kreisbewegung	Kreisbewegung ist nur möglich, wenn eine ins Zentrum gerichtete Kraft vorhanden ist; Zentripetalkraft ist nur ein Name für die resul- tierende Kraft ins Kreiszentrum!
	einfache Berechnungen mit der Zentripetalbedingung
Zehnerpotenzen und Einheitenvorsätze	sicherer Umgang mit Zehnerpotenzen (auch ohne TR) und Einheitenvorsätzen, Umwandlung von einer Form in die andere
Konstante	Wert
Dichte von Wasser und Luft	$ ho_{ m Wasser}$ = 1'000 kg/m³; $ ho_{ m Luft}$ = 1.3 kg/m³ (bei 20°C)

Konstante	Wert
Dichte von Wasser und Luft	$\rho_{\text{Wasser}} = 1$ '000 kg/m³; $\rho_{\text{Luft}} = 1.3$ kg/m³ (bei 20°C)
Winkelfunktionen	Sinus- und Cosinuswerte für 0°, 30°, 45°, 60° und 90°
Reibungszahlen für Pneu auf trockener Asphaltstrasse	$\mu_{\rm G} = {\rm o.6}; \mu_H = {\rm 1.0}$