1. Post Correspondence Problem: (PCP)

* An instance of post correspondence Problem (PCP) consists of two lists.

 $A = w_1, \dots, w_k$ and

B = x1,, xk

of strings over some alphabet &

* This instance of PCP has a solution if there any sequence of integers

1, iz,..., im with m = 1 such that

Wil, Wiz ? Wim = 21, X12 ... Xim.

* The sequence in in is a solution to this PCP.

Example:

A love strings.

	List A	List B
7	Wi	X;
1	1	11.1
2	10111	10
3	10	0
,	* · · · · · · · · · · · · · · · · · · ·	

* This PCP has a solution M = 4

 $i_1 = 2$, $i_2 = 1$ $i_3 = 1$ and $i_4 = 3$.

Wil Wiz Wi3 Wi4 = 21, Xi2 Xi3 Xi4 101111110 = 101111110.

.. The solution

A modified version of PCP [MPCP]

* The modified version of PCP (MPCP) is the - Admox 3 following.

> Given lists A and B, of k strings each from &* say

> > A = W1, W2, -4. WX. AHAIL

 $B = \mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_K$

* This problem has a solution it there exists sequence of integers

1, ia, ... is such that

willing between the MPCP and PCP is
that in the MPCP, a solution required to
start with the first string on each list

Lemma If PCP were decidable. Then MPCP would be decidable. That is,

MPCP reduces to PCP

Proof

Let

 $A = W_1, W_2, \dots, W_K$ and $B = \chi_1, \chi_2, \dots, \chi_K$

be an instance of the MPCP

* We convert this instance of MPCP to an instance of PCP that has a solution, iff our MPCP instance has a solution.

* If PCP were decidable then MPCP would.

be decidable

* Let symbols in List A and B.

* Let g and \$ not be in \(\xi\).

re. y; → de dotained men a, og noveming me symbol à after each charecter of w;

* Let z; > be obtained from x; by inserting the symbol & ahead of each character =

* Create new words

$$y_0 = 4y_1$$
 $Z_0 = Z_1$
 $y_{k+1} = 4$ $Z_{k+1} = 4$ \$

Example:

Reduce the following MPCP into PCP.

	List A	List B
	wi	Xi
1	1	111
2	10111	10
3	10	0

Solution

* The Lists C and D are constructed from
the Lists A and B

+ Let

$$C = y_0, y_1, \dots, y_{K+1}$$

 $D = z_0, z_1, \dots - z_{K+1}$

	List C	L181-D
	yi	Z;
0	414	414141
1	14	414141
2	1140414141	4 4140
3	1404	40
4	\$	¢\$

* Lists c and D represents an instance of PCP

* This instance of PCP has a solution iff the instance of MPCP represented by Lists A and List B has a solution

Undecidability of PCP

Theorem:

PCP is undecidable

Proof:

It is sufficient to show that if MPCP were decidable, then PCP would be decidable whether a TM accepts a given word.

* We reduce Lu to MPCP, which again can be reduced to PCP.

of MPCP that has a solution iff M accepts

* We do this by constructing an instance of MPCP I that if it has a solution has one starts with

where

* strings between successive #'s due successive ID's in a computation of M with input w.

* 9 n is the final state.

* Formally the pairs of strings forming lists

A and B of the instance of MPCP are
given below.

* The first pair is

* The remaining pairs are grouped ors.

for each x in r

For each q in Q-F, P in Q, and X, Y an Z in T

List A	List-B	
9 x	Yp	if $\delta(q,x) = (P,Y,R)$
ZqX	рХУ	if 8(q,x) = (P, Y, L;
2#	Хр#	if $\delta(2, B) = (P, Y, R)$
Z9#	PZY#	if δ (9, B) = (P17, 2)
11 2		1

Group - 111

For each q in F, and x and Y in to

Granip-9v1 min warm to make in the found of

List A List B

9## # for each q in Films?

* (x,y) is a partial solution to MPCP with lists A and B

> if x is a prefix of y

-> se and y are the concatenation of corresponding strings of lists A and R roshortings.

* If 'xz=y then

z is the remainder of (x, y).

Example:

and δ is given as.

Construct an instance of MPCP with lists A and B.

w = 01.

Solution.

* The remaining pairs are

ancort -	
LIST A	List B
0	D
1	1
#	#
Group II	6
List A	List B
2,0	19_2 from $\delta(9_1,0)=(9_2,1,R)$
02,1	9200 from $S(9/,1)=(92,0,1)$
09,#	$9_{201} \# $ from $\delta(9_{1},B)=(9_{2},1,L)$
0920	9_300 , 3
9.21 9.2#	$09, 3 \text{ from } S(9_2, 1) = (9_1, 0, x)$ $09_2 \# S(9_2, 8) = (9_2, 0, R')$
Troup III List A	Li8t B

93 93

	1000
093 93	1
193	9-6
930 93	9
931 93	6
Group-IV.	17:0
List A List 8.	0). (0
93## #	5
	1
* M accepts input w=01 by the requence of Ip's	+ 1
9,01,19,1,09,,19,01,93101,	2454
9301, 931, 93	1
PRIMITIVE PROMOTE	

* TI .~-