Lecture 14 -- Laplace Transform in Circuit Analysis

- Find (1) the voltage across the capacitor
- (2) current through the inductor assuming that $v_s(t) = 10u(t)$ V, and assume that at t = 0, -1 A flows through the inductor and +5 V is across the capacitor.

- Find (1) the voltage across the capacitor
 - (2) current through the inductor

assuming that $v_s(t) = 10u(t)$ V, and assume that at t = 0, -1 A flows through the inductor and +5 V is across the capacitor.

• Use Thevenin's equivalent circuit w.r.t. terminals a-b to find current $i_C(t)$ for t>0.

• Find *V_o* (t) for t>0

• Example---Find i_x (S.S.) assuming no initial energy stored Using (1)phasor method (2)Laplace transform method

- There is no initial energy stored in this circuit. Find i(t) if
- $v(t) = e^{-0.6t} \sin 0.8t \text{ V}.$