Задача 15

- 1. Покажите, что счетное произведение $\mathbb R$ на себя имеет мощность континуум.
- 2. Докажите, что мощность множества всех непрерывных функций $f: \mathbb{R} \to \mathbb{R}$ равна континууму.
- 3. Найдите мощность множества всех монотонных функций $f: \mathbb{R} \to \mathbb{R}$.

Пункт 1

- 1. $\mathbb{R} \sim \{0,1\}^{\mathbb{N}} \implies$ существует биекция $\varphi : \mathbb{R} \to \{0,1\}^{\mathbb{N}}$.
- 2. Сопоставим последовательности $\overline{x} = (x_1, x_2, x_3 \dots)$ действительных чисел последовательность $\varphi(x_1), \varphi(x_2), \varphi(x_3) \dots$
- 3. Получим биекцию $\alpha: \mathbb{R}^{\mathbb{N}} \to (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ (так как φ биекция).
- 4. Последовательности последовательностей сопоставим таблицу Φ , где $\Phi_{ij} = \varphi(x_i)_j$.
- 5. Получим биекцию $\beta: (\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \to \{0,1\}^{\mathbb{N} \times \mathbb{N}}$.
- 6. $\{0,1\}^{\mathbb{N}\times\mathbb{N}} \sim \{0,1\}^{\mathbb{N}} \implies$ существует биекция $\gamma:\{0,1\}^{\mathbb{N}\times\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$
- 7. Получена биеция: $\mathbb{R}^{\mathbb{N}} \xrightarrow{\alpha} (\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \xrightarrow{\beta} \{0,1\}^{\mathbb{N} \times \mathbb{N}} \xrightarrow{\gamma} \{0,1\}^{\mathbb{N}} \xrightarrow{\varphi^{-1}} \mathbb{R}$.

Пункт 2

- 1. Покажем, что если значения непрерывных функций $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ во всех рациональных точках совпадают, то эти функции тождественно равны.
- 2. Функция f называется непрерывной в точке a, если $\exists \lim_{x \to a} f(x) = f(a)$.
- 3. Определение предела функции по Гейне: значение A является пределом функции при $x \to a$, если для любой последовательности точек, сходящейся к a, но не содержащей a в качестве одного из своих элементов, последовательность значений функции сходится к A.
- 4. $(2) \land (3) \implies (1) \implies$ непрерывная функция однозначно задана значениями в рациональных точках.
- 5. Мощность множества всех функций $f:\mathbb{Q} \to \mathbb{R}$ равна $|\mathbb{R}^\mathbb{Q}| = |\mathbb{R}^\mathbb{N}| = |\mathbb{R}|$, ч.т.д.

Пункт 3

- 1. Рассмотрим все возрастающие функции $f:\mathbb{Q} \to \mathbb{R}$. Мощность множетсва A всех таких функций равна $|\mathbb{R}|$.
- 2. Для произвольной функции $f \in A$ поймем, сколько существует непрерывных функций $g : \mathbb{R} \to \mathbb{R}$ таких, что во всех рациональных точках f(x) = g(x).
- 3. Положим $f^-(x) = \sup_{q \in \mathbb{Q} \cap (-\infty, \ x)} f(q), \ f^+(x) = \inf_{q \in \mathbb{Q} \cap (x, \ +\infty)} f(q). \ f^-(x) \leq g(x) \leq f^+(x).$
- 4. Положим $B = \{x \in \mathbb{I} \mid (f^-(x), f^+(x)) \neq \emptyset\}$. Для разных $x \in B$ соответствующие им интервалы не пересекаются $\Longrightarrow |B| = |\mathbb{N}|$.
- 5. Получим, что для произвольной функции $f \in A$ сущетсвутет не более чем счетное количество непрерывных функций $g: \mathbb{R} \to \mathbb{R}$ таких, что f(x) = g(x) во всех рациональных точках.
- 6. Мощность искомого множества равна $|\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}|.$