Laboratorinis darbas nr.5

Tema: Duomenų analizė

Užduotys

- 1. R duomenų rinkinį *mtcars* prijunkite prie R paieškos kelio naudodami *data()*. R duomenų rinkinio *mtcars* kintamuosius prijunkite prie R paieškos kelio naudodami *attach()*.
 - a. Nustatykite *mtcars* kintamojo *am* pradinę klasę ir pakeiskite jo klasę į faktorių *class()*, *factor()*.
 - b. Nustatykite duomenų rinkinio *mtcars* kintamųjų tipus, apskaičiuokite pagrindines skaitines charakteristikas.
 - c. Sudarykite kintamojo *cyl* santykinių dažnių lentelę ir ją pavaizduokite stulpeline diagrama;
 - d. Sudarykite kintamųjų *cyl* ir *am* kryžminę dažnių lentelę ir ją pavaizduokite stulpeline diagrama;
 - e. Nubrėžkite kintamojo carb skritulinę diagramą.
 - f. Tegul visos šio uždavinio diagramos bus viename grafiniame lange išsaugotos pavadinimu *mtcars.pdf*
- 2. Naudodami komandą with() apskaičiuokite duomenų rinkinio mtcars, kintamojo qsec medianą.
- 3. Taikydami komandą *tapply()* apskaičiuokite kiek vidutiniškai mylių/galonui nuvažiuoja automobiliai su automatine ir su mechanine pavarų dėže.
- 4. Išrikiuokite duomenų rinkinį *mtcars* pagal karbiuratorių skaičių *carb* didėjimo tvarka *order()*.
- 5. Taikant komanda *split()* suskirstykite kintamojo *carb* reikšmes pagal faktorių *am*.
- 6. Padalinkite duomenų rinkinio *mtcars*, kintamojo *qsec* reikšmes pagal pavaros tipą į grupes. Gautus duomenų vektorius (grupes) pavaizduokite viename grafike stačiakampių diagramomis. Grafike nurodykite kiekvieno faktoriaus pavadinimą statmenai ašiai (*las* = 2), *split*(), *boxplot*().
- 7. Gauti matematinės statistikos testo rezultatai: 52, 54, 57, 49, 63, 54, 38, 46, 49, 33, 43, 40, 29, 43, 60, 69, 54, 64, 41, 63, 44, 55, 58, 41, 37, 49, 36, 43, 36, 44, 35, 54, 57, 55, 56, 56, 56, 41, 49, 63, 41, 46, 45, 55, 45, 49, 47, 37, 62, 48, 44, 45, 48, 62.
 - a. Nubraižykite santykinių dažnių histogramą.
 - b. Apskaičiuokite formos charakteristikas: asimetrijos koeficientą (angl. *skewness*); eksceso koeficientą (angl. *kurtosis*) ir pakomentuokite gautus rezultatus.
 - c. https://www.spssanalize.lt/dazniu-skirstiniu-formos-charakteristikos/
- 8. Importuokite (nuskaitykite, įkelkite) duomenų rinkinį *Duomenys_lab5* į Rstudio. Atsitiktinių reikšmių generavimui nustatykite *set.seed(1126)*. Naudodami komandą *sample()* iš šio duomenų rinkinio atrinkite atsitiktinę 250 eilučių imtį. Naudodami imties duomenis:
 - a. apskaičiuokite kintamojo *year* padėties charakteristikas *summary()* ir nubrėžkite stačiakampių diagramą *boxplot()*, grafiniam langui uždėkite groteles (31 × 31) *grid()*.
 - b. apskaičiuokite koreliacijos koeficientus visoms nagrinėjamų kintamųjų poroms. Nubrėžkite sklaidos diagramas visoms kintamųjų poroms viename grafiniame lange.
 - c. didžiausią koreliacijos koeficientą turinčiai kintamųjų porai sudarykite tiesinės regresijos lygtį. Regresijos tiesę nupieškite ant sklaidos diagramos.

- d. komentaruose užrašykite determinacijos koeficiento reikšmę.
- e. Patikrinkite hipotezę apie koreliacijos koeficiento $\rho(area, price)$ reikšmingumą, kai reikšmingumo lygmuo 0.05.
- 9. Sugeneruokite 500 kintamojo X reikšmių, jeigu X~N(0.5, 2). Naudodami šios imties duomenis:
 - a. Raskite populiacijos vidurkio pasikliautinąjį intervalą, kai $\sigma=2(\sigma$ žinoma), su pasikliovimo lygmeniu Q=0.99;
 - b. Raskite populiacijos vidurkio pasikliautinąjį intervalą, kai σ nežinomas, su pasikliovimo lygmeniu Q=0.95;
 - c. Esant reikšmingumo lygmeniui $\alpha = 0.05$ patikrinkite parametrines hipotezes:
 - i. $\begin{cases} H_0\colon \mu = 1, \\ H_1\colon \mu \neq 1. \end{cases}$ ii. $\begin{cases} H_0\colon \mu = 1, \\ H_1\colon \mu > 1. \end{cases}$ iii. $\begin{cases} H_0\colon \mu = 1, \\ H_1\colon \mu < 1. \end{cases}$

PASTABA. Violetine spalva pažymėtos užduotys nebūtinos. Jų laboratorinio darbo nr.2 atsiskaityme nebus.

Komandos

Komanda	Paaiškinimas
factor(x)	Vektorius <i>x</i> koduojamas faktoriumi. Iš diskretaus kiekybinio kintamojo padaromas faktorius (kokybinis kintamasis)
	Pvz.: $factor(am, labels = c("automatic", "manual"))$
class(x)	Objekto x klasei nustatyti
tapply(vector, index, function)	Apskaičiuojamos <i>funkcijos</i> reikšmės <i>vektoriaus</i> duomenims, kiekvieno <i>indekso</i> atveju.
	Pvz.: tapply(alga, lytis, vidurkis)
order(x,decreasing=FALSE)	Pateikia vektoriaus x elementų indeksų vektorių, jeigu vektoriaus x elementai būtų rikiuojami didėjimo tvarka. Duomenų rinkinio <i>mtears</i> rikiavimo pagal cilindrų skaičių <i>cyl</i> didėjimo tvarka.
	Pvz.: mtcars[order(cyl,decreasing=FALSE),]
split(x,f)	Padalija vektoriaus x reikšmes į faktoriaus f grupes.
	Pvz.: split(alga, lytis)
$boxplot(x_1, x_2,, x_n)$	Brėžiama kintamųjų $x_1, x_2,, x_n$ stačiakampių diagrama.
<pre>axis(side=1,at=c(),label=c(),las=2)</pre>	Jau sukurtam grafikui leidžia pridėti stulpelių pavadinimus vienoje iš 4-ių grafiko pusių ($side$), nurodant kokiu eiliškumu bus surašyti pavadinimai (at), su $label$ nurodant pavadinimus. Parametras las nurodo kintamųjų vardų padėtį ašies atžvilgiu: $las = 0$ (rašoma lygiagračiai ašiai); $las = 2$ (rašoma statmenai ašiai).
	Pvz.: axis(side=1,at=c(1,2),labels=c("Automatine","Rankine"),las=2)

grid(n)	Grafiniam langui uždeda groteles iš $n \times n$ langelių.
with(data,f(x))	Apskaičiuojama duomenų rinkinio data , kintamojo x , funkcijos f reikšmė.
	Pvz.: with(mtcars,mean(mpg))
install.packages("e1071")	Asimetrijos koeficientas
<i>library</i> (e1071)	$g_1 = \frac{m_3}{s^3}$ $m_k = \frac{1}{s^3} \sum_{(x_i - \bar{x})^k}^{n}$
skewness(x)	$g_1 = \frac{m_3}{s^3} \qquad m_k = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^k$
install.packages("e1071")	Eksceso koeficientas
<i>library</i> (e1071)	$g_2 = \frac{m_4}{s^4} - 3$
kurtosis(x)	§ .
sample(x, n, replace = FALSE,	Komanda <i>sample</i> () atsitiktine tvarka, iš vektoriaus <i>x</i> atrenka <i>n</i>
prob = NULL)	elementų be grąžinimo. Galima nurodyti tikimybės reikšmę <i>prob</i> .
cor(x,y)	Apskaičiuojamas kintamųjų x ir y koreliacijos koeficientas
cor.test(x,y)	Apskaičiuojamas kintamųjų x ir y koreliacijos koeficientas ir patikrinama hipotezė apie jo lygybę nuliui.
lm (y~x)	Apskaičiuojami tiesinės regresijos lygties koeficientai.
$abline(lm(y\sim x))$	Brėžiama regresijos tiesė.
t.test(x, mu = 5, alternative = c("two.sided", "less", "greater"),	Tikrinama parametrinė hipotezė jog populiacijos vidurkis = 5; < 5; > 5.
conf.level = 0.95)	Kai pasikliovimo lygmuo Q = 0,95.
t.test(x, y, alternative = "two.sided", paired = FALSE, var.equal = TRUE, conf.level = 0.95)	Tikrinama parametrinė hipotezė apie kintamųjų x ir y vidurkių lygybę, nepriklausomoms imtims, kai dispersijos lygios, esant pasikliovimo lygmeniui Q = 0,95.
density(x)	neparametrinis histogramos glodinimas
boxplot()	Brėžiama stačiakamių (dėžučių) diagrama
attach()	Duomenų sistema (kintamieji, jų struktūra rinkinyje) prijungiama prie R paieškos kelio
data()	R duomenų rinkiniui prijungti, bei R duomenų rinkinius pristatyti.
data(<i>dat</i>)	Prie R paieškos kelio prijungiamas R duomenų rinkinys dat
table(cut(d3,int))	