Tests of Lepton Flavor Universality in Semileptonic $b \to c \ell \nu$ Decays: current results and prospects

Zishuo Yang *University of Maryland / LHCb Collaboration*

Lepton Flavor Universality (LFU)

- In Standard Model (SM), charged leptons (e, μ, τ) are identical in terms of their electroweak couplings to gauge bosons
 - only different in their couplings to the Higgs boson (their masses)
- Therefore, difference between decays involving $e/\mu/\tau$ is only due to lepton mass
 - For example: $Z \to l \ l$, $W \to l \ \nu$, $K \to l \ \nu$, etc.
- New physics may not necessarily respect LFU
 - Many new physics models (e.g. charged Higgs, leptoquarks) may involve LFU violation in the 3rd generation

LFU in Semileptonic $b \to c \ell \nu$ Decays

- B hadron decays to lepton, neutrino, and recoiling hadron
- Theoretically well-understood in SM
 - Tree-level virtual W emission
 - Hadronic (nonperturbative) effects described by form factors

- LFU \Rightarrow branching fractions for semileptonic decays to $e/\mu/\tau$ differ only due to lepton mass (phase space and helicity suppression)
- Test LFU with ratio of branching fractions: $R(H_c) \equiv \frac{Br(B \to H_c \tau \nu)}{Br(B \to H_c \mu \nu)}$
 - ✓ Precise theory predictions due to cancellation of most hadronic uncertainties
 - ✓ Precise experimental results due to cancellation of some systematic uncertainties.

LHCb Detector

- Designed to primarily study heavy flavor physics and CP violation
- Beauty and charm dominantly produced in highly-boosted center-of-mass frame
- Detector accepts 25% of $b\bar{b}$ pairs by covering ~4% of the solid angle (2 < η < 5)

$$R(D^*) \equiv \frac{Br(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{Br(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} \text{ with } \tau \to \mu \bar{\nu} \nu$$

- Reconstruct and measure p_l , p_{D^*} , and B flight direction
- Approximate the boost of B system from visible system
- Disentangle signal from normalization using kinematic variables in the rest frame of B:
 - invariant mass of invisible system m_{miss}^2
 - lepton energy E_l^st
 - momentum transfer $q^2 = m^2_{W^*}$

PRL 115, 111803 (2015)

- Determine $R(D^*)$ from 3-dimensional fit (m_{miss}^2, E_l^*, q^2)
 - using templates derived from simulation and data control samples

• $R(D^*) = 0.336 \pm 0.027_{stat} \pm 0.030_{syst}$ (about 2.1 σ above SM prediction)

PRL 120, 121801 (2018)

- Similar to $R(D^*)$, but with additional B-candidate decay-time info
 - utilizing $3 \times$ difference between lifetimes of B_c and light B hadrons
- Using templates derived from simulation and data control samples
- $R(J/\psi) = 0.71 \pm 0.17_{stat} \pm 0.18_{syst}$ (about 2 σ above SM prediction)

$$R(D^*)$$
 with $\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu$

PRD 97, 072013 (2018)

- Reconstruct and measure $p_{ au}$, p_{D^*} , B vertex and 3π vertex
- Suppress background by requiring B and 3π vertices separation

• Normalize by
$$\frac{Br(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau)}{Br(\bar{B}^0 \to D^{*+} 3\pi)} \times \frac{Br(\bar{B}^0 \to D^{*+} 3\pi)}{Br(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu)}$$

- $R(D^*) = 0.291 \pm 0.019_{stat} \pm 0.026_{syst} \pm 0.013_{external}$
 - (1σ above SM prediction)

The Global Look

• The tension between world average and SM prediction is at 3.1σ

$R(D^*)$ vs $R(D^0)$ with $\tau \to \mu \bar{\nu} \nu$

- LHCb is working to simultaneously measure $R(D^0)$ and $R(D^*)$, "turning band into ellipse" $O(A^0)$
- Made possible by selecting D^0 + lepton
 - selection includes $B^- \to D^0 \ l^- \ \nu, B^0 \to D^{*+} \ l^- \ \nu,$ and $B^- \to D^{*0} [\to D^0 (\pi^0/\gamma)] \ l^- \ \nu$
- Significantly improve the statistical power of the measurement
- Hope to complete the analysis this summer

Prospects of LHCb Run-2

- Expect Run-2 to have 4 times the Run-1 b-hadron statistics
 - \sim 2 × integrated luminosity, and 2 × production cross section
- Added triggers for $D^0\mu$, $D^+\mu$, $D_S\mu$, and $\Lambda_c^+\mu$
- Many analyses are ongoing: $R(D^0)$, $R(D^*)$, $R(D^+)$, $R(D_S)$, $R(\Lambda_c^+)$, $R(\Lambda_c^{*+})$ and $R(J/\psi)$

Summary

• Current measurements of semileptonic B decays indicate hints of τ/μ non-universality

- Many new measurements to come soon
- LHCb has a comprehensive program to perform precise LFU tests, with current data as well as anticipated (much larger) dataset from the upgraded LHCb detector

Backup slides

Systematic Uncertainties: $R(D^*)$ Muonic

TABLE I. Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\bar{B}^0 \to D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
$\bar{B} \to D^{*+} H_c (\to \mu \nu X') X$ shape corrections	s 0.5
$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^{**} \mu^- \bar{\nu}_{\mu})$	0.5
$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form factors	0.2
$\mathcal{B}(au^- o \mu^- ar{ u}_\mu u_ au)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

PRL 115, 111803 (2015)

Systematic Uncertainties: $R(J/\psi)$ Muonic

TABLE I. Systematic uncertainties in the determination of $\mathcal{R}(J/\psi)$.

Source of uncertainty	Size $(\times 10^{-2})$
Finite simulation size	8.0
$B_c^+ \to J/\psi$ form factors	12.1
$B_c^+ \to \psi(2S)$ form factors	3.2
Fit bias correction	5.4
Z binning strategy	5.6
Mis-ID background strategy	5.6
combinatorial background cocktail	4.5
combinatorial J/ψ background scaling	0.9
$B_c^+ \to J/\psi H_c X$ contribution	3.6
$\psi(2S)$ and χ_c feed-down	0.9
Weighting of simulation samples	1.6
Efficiency ratio	0.6
$\mathcal{B}(au^+ o \mu^+ u_\mu ar{ u}_ au)$	0.2
Systematic uncertainty	17.7
Statistical uncertainty	17.3

PRL 120, 121801 (2018)

Systematic Uncertainties: $R(D^*)$ Hadronic

TABLE VII. List of the individual systematic uncertainties for the measurement of the ratio $\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)/\mathcal{B}(B^0 \to D^{*-}3\pi)$.

Contribution	Value in %
$\frac{1}{\mathcal{B}(\tau^+ \to 3\pi\bar{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\bar{\nu}_{\tau})}$	0.7
Form factors (template shapes)	0.7
Form factors (efficiency)	1.0
au polarization effects	0.4
Other τ decays	1.0
$B o D^{**} au^+ u_ au$	2.3
$B_s^0 \to D_s^{**} \tau^+ \nu_{\tau}$ feed-down	1.5
$D_s^+ \to 3\pi X$ decay model	2.5
D_s^+ , D^0 and D^+ template shape	2.9
$B \to D^{*-}D_s^+(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Particle identification	1.3
Normalization channel	1.0
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency	1.6
(size of simulation samples)	• •
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Total uncertainty	9.1

PRD 97, 072013 (2018)