# Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

## Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

| "Проектування    | • • _    | ·           | . •             | NID           | 199           |
|------------------|----------|-------------|-----------------|---------------|---------------|
| DUURGVTVAAAII    | і ацапіз | 9 TEANHTMID | DUUAIIIIAUU DUU | I N Р_СКПАПИИ | v ganau u i 🗥 |
| IIDUCKI YDAIIIIA | i anama  |             |                 |               | л задан н. г  |

| Виконав(ла) | <u>IП-12 Кириченко Владислав Сергійович</u> |  |
|-------------|---------------------------------------------|--|
| , ,         | (шифр, прізвище, ім'я, по батькові)         |  |
|             |                                             |  |
|             |                                             |  |
|             |                                             |  |
| Перевірив   | Сопов О.О. (прізвище, ім'я, по батькові)    |  |

## 3MICT

| 1 | MET    | А ЛАБОРАТОРНОЇ РОБОТИ                                       | 3  |
|---|--------|-------------------------------------------------------------|----|
| 2 | ЗАВД   | ĮАННЯ                                                       | 4  |
| 3 | вик    | ОНАННЯ                                                      | 10 |
|   | 3.1 Пр | ОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ                                | 10 |
|   | 3.1.1  | Вихідний код                                                | 10 |
|   | 3.1.2  | Приклади роботи                                             | 13 |
|   | 3.2 TE | СТУВАННЯ АЛГОРИТМУ                                          | 13 |
|   | 3.2.1  | Значення цільової функції зі збільшенням кількості ітерацій | 13 |
|   | 3.2.2  | Графіки залежності розв'язку від числа ітерацій             | 14 |
| В | иснон  | ЗОК                                                         | 15 |
| К | РИТЕР  | ІЇ ОПІНЮВАННЯ                                               | 15 |

# 1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

# 2 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

| N₂ | Задача і алгоритм                                                                          |
|----|--------------------------------------------------------------------------------------------|
| 1  | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування одноточковий по 50 генів, мутація з ймовірністю                       |
|    | 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор                           |
|    | локального покращення.                                                                     |
| 2  | Задача комівояжера (100 вершин, відстань між вершинами випадкова                           |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 4$ , $\rho = 0,4$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 30, починають маршрут в                           |
|    | різних випадкових вершинах).                                                               |
| 3  | Задача розфарбовування графу (200 вершин, степінь вершини не більше                        |
|    | 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30 із них 2                       |
|    | розвідники).                                                                               |
| 4  | Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів                      |
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування двоточковий порівну генів, мутація з                                  |
|    | ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити                               |

|    | власний оператор локального покращення.                                                      |
|----|----------------------------------------------------------------------------------------------|
| 5  | Задача комівояжера (150 вершин, відстань між вершинами випадкова                             |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 3$ , $\rho = 0.4$ , Lmin знайти   |
|    | жадібним алгоритмом, кількість мурах М = 35, починають маршрут в                             |
|    | різних випадкових вершинах).                                                                 |
| 6  | Задача розфарбовування графу (250 вершин, степінь вершини не більше                          |
|    | 25, але не менше 2), бджолиний алгоритм АВС (число бджіл 35 із них 3                         |
|    | розвідники).                                                                                 |
| 7  | Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів                        |
|    | від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний                            |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                          |
|    | оператор схрещування рівномірний, мутація з ймовірністю 5% два                               |
|    | випадкові гени міняються місцями). Розробити власний оператор                                |
|    | локального покращення.                                                                       |
| 8  | Задача комівояжера (200 вершин, відстань між вершинами випадкова                             |
|    | від 0(перехід заборонено) до 50), мурашиний алгоритм ( $\alpha = 3$ , $\beta = 2$ , $\rho =$ |
|    | 0,3, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,                                |
|    | починають маршрут в різних випадкових вершинах).                                             |
| 9  | Задача розфарбовування графу (150 вершин, степінь вершини не більше                          |
|    | 30, але не менше 1), бджолиний алгоритм АВС (число бджіл 25 із них 3                         |
|    | розвідники).                                                                                 |
| 10 | Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів                        |
|    | від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний                            |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                          |
|    | оператор схрещування рівномірний, мутація з ймовірністю 10% два                              |
|    | випадкові гени міняються місцями). Розробити власний оператор                                |
|    | локального покращення.                                                                       |
| 11 | Задача комівояжера (250 вершин, відстань між вершинами випадкова                             |
|    | від 0(перехід заборонено) до 50), мурашиний алгоритм ( $\alpha$ = 2, $\beta$ = 4, $\rho$ =   |
|    |                                                                                              |

|    | 0,6, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,                              |
|----|--------------------------------------------------------------------------------------------|
|    | починають маршрут в різних випадкових вершинах).                                           |
| 12 | Задача розфарбовування графу (300 вершин, степінь вершини не більше                        |
|    | 30, але не менше 1), бджолиний алгоритм АВС (число бджіл 60 із них 5                       |
|    | розвідники).                                                                               |
| 13 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування одноточковий 30% і 70%, мутація з ймовірністю                         |
|    | 5% два випадкові гени міняються місцями). Розробити власний                                |
|    | оператор локального покращення.                                                            |
| 14 | Задача комівояжера (250 вершин, відстань між вершинами випадкова                           |
|    | від 1 до 40), мурашиний алгоритм ( $\alpha = 4$ , $\beta = 2$ , $\rho = 0,3$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 45 (10 з них дикі, обирають                       |
|    | випадкові напрямки), починають маршрут в різних випадкових                                 |
|    | вершинах).                                                                                 |
| 15 | Задача розфарбовування графу (100 вершин, степінь вершини не більше                        |
|    | 20, але не менше 1), класичний бджолиний алгоритм (число бджіл 30 із                       |
|    | них 3 розвідники).                                                                         |
| 16 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування двоточковий 30%, 40% і 30%, мутація з                                 |
|    | ймовірністю 10% два випадкові гени міняються місцями). Розробити                           |
|    | власний оператор локального покращення.                                                    |
| 17 | Задача комівояжера (200 вершин, відстань між вершинами випадкова                           |
|    | від 1 до 40), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 4$ , $\rho = 0.7$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 45 (15 з них дикі, обирають                       |
|    | випадкові напрямки), починають маршрут в різних випадкових                                 |

|    | вершинах).                                                                                 |
|----|--------------------------------------------------------------------------------------------|
| 18 | Задача розфарбовування графу (300 вершин, степінь вершини не більше                        |
|    | 50, але не менше 1), класичний бджолиний алгоритм (число бджіл 60 із                       |
|    | них 5 розвідники).                                                                         |
| 19 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування триточковий 25%, мутація з ймовірністю 5% два                         |
|    | випадкові гени міняються місцями). Розробити власний оператор                              |
|    | локального покращення.                                                                     |
| 20 | Задача комівояжера (200 вершин, відстань між вершинами випадкова                           |
|    | від 1 до 40), мурашиний алгоритм ( $\alpha = 3$ , $\beta = 2$ , $\rho = 0.7$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні,                              |
|    | подвійний феромон), починають маршрут в різних випадкових                                  |
|    | вершинах).                                                                                 |
| 21 | Задача розфарбовування графу (200 вершин, степінь вершини не більше                        |
|    | 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із                       |
|    | них 2 розвідники).                                                                         |
| 22 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування триточковий 25%, мутація з ймовірністю 5%                             |
|    | змінюємо тільки 1 випадковий ген). Розробити власний оператор                              |
|    | локального покращення.                                                                     |
| 23 | Задача комівояжера (300 вершин, відстань між вершинами випадкова                           |
|    | від 1 до 60), мурашиний алгоритм ( $\alpha = 3$ , $\beta = 2$ , $\rho = 0.6$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 45 (15 з них елітні,                              |
|    | подвійний феромон), починають маршрут в різних випадкових                                  |
|    | вершинах).                                                                                 |

| 24 | Задача розфарбовування графу (400 вершин, степінь вершини не більше                        |
|----|--------------------------------------------------------------------------------------------|
|    | 50, але не менше 1), класичний бджолиний алгоритм (число бджіл 70 із                       |
|    | них 10 розвідники).                                                                        |
| 25 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування одноточковий по 50 генів, мутація з ймовірністю                       |
|    | 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор                           |
|    | локального покращення.                                                                     |
| 26 | Задача комівояжера (100 вершин, відстань між вершинами випадкова                           |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 4$ , $\rho = 0,4$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 30, починають маршрут в                           |
|    | різних випадкових вершинах).                                                               |
| 27 | Задача розфарбовування графу (200 вершин, степінь вершини не більше                        |
|    | 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30 із них 2                       |
|    | розвідники).                                                                               |
| 28 | Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів                      |
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування двоточковий порівну генів, мутація з                                  |
|    | ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити                               |
|    | власний оператор локального покращення.                                                    |
| 29 | Задача комівояжера (150 вершин, відстань між вершинами випадкова                           |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 3$ , $\rho = 0.4$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 35, починають маршрут в                           |
|    | різних випадкових вершинах).                                                               |
| 30 | Задача розфарбовування графу (250 вершин, степінь вершини не більше                        |
|    | 25, але не менше 2), бджолиний алгоритм АВС (число бджіл 35 із них 3                       |
|    | розвідники).                                                                               |
|    |                                                                                            |

| 31 | Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів                      |
|----|--------------------------------------------------------------------------------------------|
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування одноточковий по 50 генів, мутація з ймовірністю                       |
|    | 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор                           |
|    | локального покращення.                                                                     |
| 32 | Задача комівояжера (100 вершин, відстань між вершинами випадкова                           |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 4$ , $\rho = 0,4$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 30, починають маршрут в                           |
|    | різних випадкових вершинах).                                                               |
| 33 | Задача розфарбовування графу (200 вершин, степінь вершини не більше                        |
|    | 20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30 із них 2                       |
|    | розвідники).                                                                               |
| 34 | Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів                      |
|    | від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний                         |
|    | алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,                        |
|    | оператор схрещування двоточковий порівну генів, мутація з                                  |
|    | ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити                               |
|    | власний оператор локального покращення.                                                    |
| 35 | Задача комівояжера (150 вершин, відстань між вершинами випадкова                           |
|    | від 5 до 50), мурашиний алгоритм ( $\alpha = 2$ , $\beta = 3$ , $\rho = 0,4$ , Lmin знайти |
|    | жадібним алгоритмом, кількість мурах М = 35, починають маршрут в                           |
|    | різних випадкових вершинах).                                                               |
|    |                                                                                            |

#### 3 ВИКОНАННЯ

#### 3.1 Програмна реалізація алгоритму

#### 3.1.1 Вихідний код

```
import random

def find_greedy_solution(distances):
```

```
start_node = random.randint(0, N-1)
path = [start_node]
visited = [False for _ in range(N)]
visited[start_node] = True
total_distance = 0
while len(path) < N:
    next_node = None
    min_distance = float('inf')
    for i in range(N):
        if not visited[i]:
            if distances[path[-1]][i] < min_distance:</pre>
                min_distance = distances[path[-1]][i]
                next_node = i
    path.append(next_node)
    visited[next_node] = True
    total_distance += min_distance
```

return total\_distance

```
def choose_next_random_node(start_node, visited, distances, ):
    next_node = random.randint(0,249)

while distances[start_node][next_node] == float('inf') or visited[next_node] :
    next_node = random.randint(0,249)
    return next_node
```

```
def choose_next_node_with_pheromone(start_node, visited, distances, pheromones, alpha, beta):
    next_nodes = []
    probs = []
    total_prob = 0
    for i in range(len(distances)):
        if not visited[i]:
            next_nodes.append(i)
            p = pheromones[start_node][i] ** alpha * ((1/distances[start_node][i]) ** beta)
            if p == 0:
                 p = 1.5e-323
            probs.append(p)
            total_prob += p
```

```
# Normalize probabilities
for i in range(len(probs)):
    probs[i] = probs[i] / total_prob
```

```
# choose next node based on the probabilities
next_node = None
r = random.random()
```

 $min_p = 0$ 

```
for i in range(len(probs)):
       if r <= min_p + probs[i]:</pre>
           next_node = next_nodes[i]
           min_p += probs[i]
  return next_node
def spread_pheromone(path, min_path_length, path_length, pheromones):
   delta_pheromones = min_path_length / path_length
    for i in range(len(path) - 1):
       a = path[i]
       b = path[i+1]
       pheromones[a][b] += delta_pheromones
       pheromones[b][a] += delta_pheromones
   return pheromones
def evaporate_pheromone(pheromones,p):
   for i in range(len(pheromones)):
       for j in range(len(pheromones[i])):
           pheromones[i][j] = pheromones[i][j] * (1 - p)
   return pheromones
def calculate_path_length(path, distances):
    for i in range(len(path)-1):
       1 += distances[path[i]][path[i+1]]
  return l
def aco_solution(M,N,alpha, beta, p, distances, iterations):
   best_solution = None
   best_solution_length = float('inf')
   min_path_length = find_greedy_solution(distances)
  print("Greedy slotution length: ", min_path_length)
   pheromones = [[1 for j in range(N)] for i in range(N)]
    for j in range(0, iterations):
       all_path = []
       for i in range(M):
           start_node = random.randint(0, N-1)
           path = [start_node]
           visited = [False for _ in range(N)]
           visited[start_node] = True
           while len(path) < N:
                   next_node = choose_next_random_node(path[-1], visited, distances)
```

```
next_node = choose_next_node_with_pheromone(path[-1], visited, distances, pheromones,
alpha, beta)
               visited[next_node] = True
               path.append(next_node)
           path_length = calculate_path_length(path, distances)
           pheromones = spread_pheromone(path, min_path_length, path_length, pheromones)
     all_path.append(path)
           if path_length < best_solution_length:</pre>
               best_solution = path
               best_solution_length = path_length
       pheromones = evaporate_pheromone(pheromones, p)
  return (best_solution, best_solution_length)
M = 45
# Number of nodes
N = 250
# Random distance between nodes (1-40)
distances= [[random.randint(1,40) if i != j else float('inf') for i in range(N)] for j in range(N)]
alpha = 4
beta = 2
p = 0.3
solved = aco_solution(M,N,alpha,beta, p,distances,5 )
print('ACO solution length: ',solved[1])
print('Solution: ',solved[0])
```

## 3.1.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.



Рисунок 3.1 – Результат роботи алгоритму з 1 ітерацією



Рисунок 3.2 – Результат роботи алгоритму з 5 ітераціями

### Тестування алгоритму

## 3.1.3 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

| Кількість Ітерацій | Довжина шляху |
|--------------------|---------------|
| 1                  | 712           |
| 5                  | 606           |
| 15                 | 352           |
| 20                 | 344           |
|                    |               |
| 1000               | 344           |

# 3.1.4 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.



Рисунок 3.3 – Графіки залежності розв'язку від числа ітерацій(менще - краще)

#### ВИСНОВОК

При виконанні даної лабораторної роботи було вивчено основні підходи формалізації метаєврестичних алгоритмів і вирішення типових задач з їхньою допомогою. Розглянуто та досліджено мурашиний алгоритм (АСО). Проведено аналіз ефективності використання алгоритма. Викоритсано евристичну функцію. Було помічено, що мурашиний алгоритм знаходить найкраще рішення на раннії ітераціях - у проведеному тесті на 20й, і подальші ітерації не можуть знайти кращого рішення, аж до 1000 ітерацій.

# КРИТЕРІЇ ОЦІНЮВАННЯ

При здачі лабораторної роботи до 27.11.2021 включно максимальний бал дорівнює – 5. Після 27.11.2021 максимальний бал дорівнює – 1.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 75%;
- тестування алгоритму– 20%;
- висновок -5%.