MEC6215 - Méthodes Numériques en Ingénierie

Numerical Methods for Hyperbolic Equations

Sébastien Leclaire, ing., Ph.D.

Based on the following references:

- Gary A. Sod (1985) Numerical Methods in Fluid Dynamics. [https://doi.org/10.1017/CBO9780511753138]
- Eleuterio F. Toro (1999) Riemann solvers and numerical methods for fluid dynamics. [https://doi.org/10.1007/b79761]
- Randall J. LeVeque (2002) Finite Volume Methods for Hyperbolic Problems. [https://doi.org/10.1017/CBO9780511791253]
- Course notes given by late Prof. Paul Arminjon for MAT6165 (2006) UdeM.

Hyperbolic equations

- Classification
- Scalar Advection Equation
 - Characteristics
 - Finite Difference Scheme
 - Local Truncation Error
 - Stability Analysis
 - Courant-Friedrichs-Lewy condition (CFL condition)
 - Upwind Scheme
 - Donor-Cell Scheme
 - Lax-Friedrichs Scheme
 - Lax-Wendroff Scheme
- Two-Dimensional Scalar Advection Equation
 - Characteristics
 - Donor-Cell Upwind Scheme (2D)
 - Corner-Transport Upwind Scheme (2D)
 - Lax-Wendroff Scheme with dimensional splitting
 - Lax-Wendroff Scheme (2D)
 - Examples:
 - Bump function
 - Square wave
- Linear Hyperbolic Systems
 - Domain of dependence
 - Characteristics
 - Discontinuous Initial Condition
 - Scalar Advection Equation
 - Linear hyperbolic systems

Conservation Law

- Domain of Determinacy and Range of Influence
- Rankine-Hugoniot Conditions
- One-Dimensional Integral Form
- Euler equations
 - One-Dimensional Euler equations
- The Riemann Problem for the Euler equations
 - Problem Description and Form of the Solution
 - Solution for the pressure star and velocity star
 - Solution for all Possible States
 - Complete Solution
 - Godunov Scheme
 - Examples

Hyperbolic equations

- Classification
- Scalar Advection Equation
- Two-Dimensional Scalar Advection Equation
- Linear Hyperbolic Systems
- Conservation Law
- The Riemann Problem for the Euler equations
 - Problem Description and Form of the Solution
 - Solution for the pressure star and velocity star
 - Solution for all Possible States
 - Complete Solution
 - Godunov Scheme
 - Examples

Riemann Problem Description

 The Riemann problem for the Euler equations is an initial value problem:

$$\mathbf{U}_{t} + \mathbf{F}(\mathbf{U})_{x} \equiv \frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ u (E + p) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, -\infty < x < \infty, t > 0$$

The initial value is discontinuous:

$$\mathbf{U}(x,t=0) = \begin{cases} \mathbf{U}_l & x < 0 \\ \mathbf{U}_r & x > 0 \end{cases}$$

Let's define the primitive variable:

$$\mathbf{W} = (\rho, u, p)^{\mathsf{T}}$$

Form of the Solution

- Depending on the initial condition, the wave λ_1 and λ_3 could either be a shock wave or an expansion (rarefaction) wave.
- Between wave #1 and #3 there is the "star" region.
- The wave #2 always exist and is called a contact discontinuity.
- There is a jump in the solution at the contact discontinuity.

Form of the Solution – Principal Wave Patterns

Form of the Solution

 An analysis of the eigenstructure of the Euler equations could prove that the pressure as well as the velocity are continuous across the contact discontinuity:

$$p_{*L} = p_{*R} = p_{*}$$

 $u_{*L} = u_{*R} = u_{*}$

- We thus need to find the values for:
 - $-p_*$;
 - $-u_*$;
 - $-\rho_{*L}$;
 - $-\rho_{*R}$; and if the case present
 - $\mathbf{W}_{\mathrm{LFAN}}$ and/or $\mathbf{W}_{\mathrm{RFAN}}$

Solution for the pressure star and velocity star

- It is difficult and long to study in detail the proof of the following statement, so we will take it as granted.
- The solution for p_* with an ideal gas equation of state is given by the root of the following pressure equation [1]:
 - $f(p, \mathbf{W}_{L}, \mathbf{W}_{R}) \equiv f_{L}(p, \mathbf{W}_{L}) + f_{R}(p, \mathbf{W}_{R}) + u_{R} u_{L} = 0$ with:

•
$$f_i(p, \mathbf{W}_i) = \begin{cases} (p - p_i) \left[\frac{A_i}{p + B_i}\right]^{\frac{1}{2}} & p > p_i \text{ (shock)} \\ \frac{2a_i}{\gamma - 1} \left[\left(\frac{p}{p_i}\right)^{\frac{\gamma - 1}{2\gamma}} - 1\right] & p \le p_i \text{ (rarefaction)} \end{cases}$$
, $i = L, R$

- The left and right (i=L,R) speed of sound: $a_i=\sqrt{\frac{\gamma p_i}{\rho_i}}$
- The left and right (i=L,R) coefficients: $A_i=rac{2}{(\gamma+1)
 ho_i}$ and $B_i=rac{(\gamma-1)}{(\gamma+1)}p_i$
- The value for $u_* = \frac{1}{2} \left(u_{\rm L} + u_{\rm R} \right) + \frac{1}{2} \left[f_{\rm R}(p_*, \mathbf{W}_{\rm R}) f_{\rm L}(p_*, \mathbf{W}_{\rm L}) \right]$

Numerical scheme to find the pressure star

• To solve the pressure equation for p_* a Newton-Raphson iterative procedure can be used:

$$p_{(k+1)} = p_{(k)} - \frac{f(p_k, \mathbf{W}_L, \mathbf{W}_R)}{f'(p_k, \mathbf{W}_L, \mathbf{W}_R)}$$

- A possible initial guess could be: $p_{(0)}=(p_{\rm L}+p_{\rm R})/2$
- Numerical difficulty may arise and pressure could become negative after the first iteration if the initial pressure guess is too large.
- If $p_{(k+1)} < 0$, one possibility is to overwrite $p_{(k+1)}$ with another smaller initial guess:

$$p_{(k+1)} \leftarrow \frac{1}{2^k} \left[\frac{a_{\rm L} + a_{\rm R} - (\gamma - 1)(u_{\rm R} - u_{\rm L})/2}{\frac{a_{\rm L}}{(p_{\rm L})^{\frac{\gamma - 1}{2\gamma}}} + \frac{a_{\rm R}}{(p_{\rm R})^{\frac{\gamma - 1}{2\gamma}}}} \right]^{\frac{2\gamma}{\gamma - 1}} \equiv \frac{1}{2^k} p_{\rm FAN}$$

• The pressure $p_{\rm FAN}$ is the exact solution for p_* when wave #1 and wave #3 are rarefaction. A small enough initial guess is sufficient to always converges to the real solution.

Solution for all Possible States – Left Shock Wave

• The left shock speed: $S_{
m L}=u_{
m L}-a_{
m L}\left[rac{(\gamma+1)}{2\gamma}rac{p_*}{p_{
m L}}+rac{(\gamma-1)}{2\gamma}
ight]^{rac{1}{2}}$

• The left density star for a shock: $ho_{*\mathrm{L}}^{\mathrm{sho}} =
ho_{\mathrm{L}} \left| \frac{rac{p_*}{p_{\mathrm{L}}} + rac{(\gamma-1)}{(\gamma+1)}}{rac{(\gamma-1)}{(\gamma+1)}rac{p_*}{p_{\mathrm{L}}} + 1} \right|$

Solution for all Possible States – Left Rarefaction Wave

The left density star for a rarefaction:

$$\rho_{*\mathrm{L}}^{\mathrm{rar}} = \rho_{\mathrm{L}} \left(p_{*}/p_{\mathrm{L}} \right)^{\frac{1}{\gamma}}$$

The left speed of sound star:

$$a_{*L} = a_{L} (p_{*}/p_{L})^{\frac{\gamma-1}{2\gamma}}$$

The left tail speed:

$$S_{\rm TL} = u_* - a_{*\rm L}$$

The left head speed:

$$S_{\rm HL} = u_{\rm L} - a_{\rm L}$$

The values in the fan:

$$\mathbf{W}_{\mathrm{LFAN}} = \begin{pmatrix} \rho \\ u \\ p \end{pmatrix}_{\mathrm{LFAN}} = \begin{pmatrix} \rho_{\mathrm{L}} \left[\frac{2}{\gamma+1} + \frac{(\gamma-1)}{(\gamma+1)a_{\mathrm{L}}} \left(u_{\mathrm{L}} - \frac{x}{t} \right) \right]^{\frac{2}{\gamma-1}} \\ \frac{2}{\gamma+1} \left[a_{\mathrm{L}} + \frac{(\gamma-1)}{2} u_{\mathrm{L}} + \frac{x}{t} \right] \\ p_{\mathrm{L}} \left[\frac{2}{\gamma+1} + \frac{(\gamma-1)}{(\gamma+1)a_{\mathrm{L}}} \left(u_{\mathrm{L}} - \frac{x}{t} \right) \right]^{\frac{2\gamma}{\gamma-1}} \end{pmatrix}$$

Solution for all Possible States – Right Shock Wave

- Same formula as for the left shock wave but:
 - Need to replace left L with right R .
 - A sign in the right shock speed formula is different:

$$S_{\rm R} = u_{\rm R} + a_{\rm R} \left[\frac{(\gamma + 1)}{2\gamma} \frac{p_*}{p_{\rm R}} + \frac{(\gamma - 1)}{2\gamma} \right]^{\frac{1}{2}}$$

Solution for all Possible States – Right Rarefaction Wave

- Same formula as for the left rarefaction wave but:
 - $-\,$ Need to replace left L with right R .
 - Some signs in the formula are different:
 - The left tail speed: $S_{\rm TR} = u_* + a_{*\rm R}$
 - The left head speed: $S_{\rm HR}=u_{\rm R}+a_{\rm R}$
 - The values in the fan:

$$\mathbf{W}_{\text{RFAN}} = \begin{pmatrix} \rho \\ u \\ p \end{pmatrix}_{\text{RFAN}} = \begin{pmatrix} \rho_{\text{R}} \left[\frac{2}{\gamma+1} - \frac{(\gamma-1)}{(\gamma+1)a_{\text{R}}} \left(u_{\text{R}} - \frac{x}{t} \right) \right]^{\frac{2}{\gamma-1}} \\ \frac{2}{\gamma+1} \left[-a_{\text{R}} + \frac{(\gamma-1)}{2} u_{\text{R}} + \frac{x}{t} \right] \\ p_{\text{R}} \left[\frac{2}{\gamma+1} - \frac{(\gamma-1)}{(\gamma+1)a_{\text{R}}} \left(u_{\text{R}} - \frac{x}{t} \right) \right]^{\frac{2\gamma}{\gamma-1}} \end{pmatrix}$$

Complete Solution

• Let's define:
$$\mathbf{W}^{\mathrm{sho}}_{*\mathrm{i}} = [\rho^{\mathrm{sho}}_{*\mathrm{i}}, u_*, p_*] \ \mathbf{W}^{\mathrm{rar}}_{*\mathrm{i}} = [\rho^{\mathrm{rar}}_{*\mathrm{i}}, u_*, p_*]$$
 , $i = \mathrm{L,R}$

The complete solution is:

$$\operatorname{RP}(\mathbf{W}_{\mathrm{L}}, \mathbf{W}_{\mathrm{R}}, x/t) = \left\{ \begin{array}{ccc} \mathbf{W}_{*\mathrm{L}}^{\mathrm{sho}} & S_{\mathrm{L}} \leq \frac{x}{t} \leq u_{*} \\ \mathbf{W}_{\mathrm{L}} & \frac{x}{t} \leq S_{\mathrm{L}} \\ \mathbf{W}_{\mathrm{L}} & \frac{x}{t} \leq S_{\mathrm{HL}} \\ \mathbf{W}_{\mathrm{LFAN}} & S_{\mathrm{HL}} \leq \frac{x}{t} \leq S_{\mathrm{TL}} \\ \mathbf{W}_{*\mathrm{L}}^{\mathrm{rar}} & S_{\mathrm{TL}} \leq \frac{x}{t} \leq u_{*} \\ \mathbf{W}_{*\mathrm{R}}^{\mathrm{sho}} & u_{*} \leq \frac{x}{t} \leq S_{\mathrm{R}} \\ \mathbf{W}_{\mathrm{R}} & \frac{x}{t} \geq S_{\mathrm{R}} \\ \mathbf{W}_{\mathrm{R}} & \frac{x}{t} \geq S_{\mathrm{HR}} \\ \mathbf{W}_{\mathrm{RFAN}} & S_{\mathrm{TR}} \leq \frac{x}{t} \leq S_{\mathrm{HR}} \\ \mathbf{W}_{\mathrm{RFAN}} & S_{\mathrm{TR}} \leq \frac{x}{t} \leq S_{\mathrm{HR}} \\ \mathbf{W}_{\mathrm{RFAN}} & u_{*} \leq \frac{x}{t} \leq S_{\mathrm{TR}} \end{array} \right\} \quad p_{*} \leq p_{\mathrm{R}}$$

• Note that this solution assumed no vacuum (i.e. $\rho > 0$) and extended solution may be found for that case.

• Initial-Boundary Value Problem (IBVP) over $[0,t_{
m final}] imes [0,L]$:

PDE:
$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x = \mathbf{0}$$

$$IC: \mathbf{U}(x,0) = \mathring{\mathbf{U}}(x)$$

$$BC: \mathbf{U}(0,t) = \mathbf{U}_l(t)$$

$$BC: \mathbf{U}(L,t) = \mathbf{U}_r(t)$$

• Discretization of [0,L] with cells centered in x_j for j=1,...,m

 The initial condition is approximated with a constant piecewise function such that:

$$\mathring{\mathbf{U}}(x) = \mathring{\mathbf{U}}(x_j), x_{j-1/2} < x < x_{j+1/2}, j = 1, ..., m$$

We recall the one-dimensional integral form:

$$\int_{x_l}^{x_r} \mathbf{U}(x, t_2) dx = \int_{x_l}^{x_r} \mathbf{U}(x, t_1) dx + \int_{t_1}^{t_2} \mathbf{F}(\mathbf{U}(x_l, t)) dt - \int_{t_1}^{t_2} \mathbf{F}(\mathbf{U}(x_r, t)) dt$$

• We apply this form to each control volume j = 1, ..., m:

$$\int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^{n+1}) dx =
\int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^n) dx + \int_{t^n}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j-1/2}, t)\right) dt - \int_{t^n}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j+1/2}, t)\right) dt$$

$$\int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^{n+1}) dx = \int_{x_{j+1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^n) dx + \int_{t^n}^{t^{n+1}} \mathbf{F} \left(\mathbf{U}(x_{j-1/2}, t) \right) dt - \int_{t^n}^{t^{n+1}} \mathbf{F} \left(\mathbf{U}(x_{j+1/2}, t) \right) dt$$

Let's define the cell averages:

$$\mathbf{U}_{j}^{n} = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^{n}) dx$$

$$\mathbf{U}_{j}^{n+1} = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \mathbf{U}(x, t^{n+1}) dx$$

Assuming a piecewise constant solution:

$$\mathbf{U}_{j}^{n+1}\Delta x = \mathbf{U}_{j}^{n}\Delta x + \int_{t^{n}}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j-1/2},t)\right) dt - \int_{t^{n}}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j+1/2},t)\right) dt$$

$$\mathbf{U}_j^{n+1} \Delta x = \mathbf{U}_j^n \Delta x + \int_{t^n}^{t^{n+1}} \mathbf{F} \left(\mathbf{U}(x_{j-1/2}, t) \right) dt - \int_{t^n}^{t^{n+1}} \mathbf{F} \left(\mathbf{U}(x_{j+1/2}, t) \right) dt$$

- Assuming no wave interaction at $x_{j-1/2}$ for $t \in [t^n, t^{n+1}]$ imply:
 - $-\mathbf{U}(x_{i-1/2},t) = \text{RP}(\mathbf{U}_{i-1},\mathbf{U}_{i},x/t=0) = \text{RP}(\mathbf{U}_{i-1},\mathbf{U}_{i})$
 - $-\mathbf{U}(x_{j+1/2},t) = \text{RP}(\mathbf{U}_j, \mathbf{U}_{j+1}, x/t = 0) = \text{RP}(\mathbf{U}_j, \mathbf{U}_{j+1})$

Change of coordinates

$$\mathbf{U}_{j}^{n+1}\Delta x = \mathbf{U}_{j}^{n}\Delta x + \int_{t^{n}}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j-1/2}, t)\right) dt - \int_{t^{n}}^{t^{n+1}} \mathbf{F}\left(\mathbf{U}(x_{j+1/2}, t)\right) dt$$

$$\mathbf{U}_{i}^{n+1}\Delta x =$$

$$\mathbf{U}_{j}^{n+1} \Delta x = \mathbf{U}_{j}^{n+1} \Delta x + \int_{t^{n}}^{t^{n+1}} \mathbf{F} \left(\text{RP}(\mathbf{U}_{j-1}^{n}, \mathbf{U}_{j}^{n}) \right) dt - \int_{t^{n}}^{t^{n+1}} \mathbf{F} \left(\text{RP}(\mathbf{U}_{j}^{n}, \mathbf{U}_{j+1}^{n}) \right) dt$$

The integrant is piecewise constant:

$$\mathbf{U}_{j}^{n+1} \Delta x = \mathbf{U}_{j}^{n} \Delta x + \mathbf{F} \left(\text{RP}(\mathbf{U}_{j-1}^{n}, \mathbf{U}_{j}^{n}) \right) \Delta t - \mathbf{F} \left(\text{RP}(\mathbf{U}_{j}^{n}, \mathbf{U}_{j+1}^{n}) \right) \Delta t$$

Godunov scheme:
$$\mathbf{U}_{j}^{n+1} = \mathbf{U}_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{j-1/2}^{n} - \mathbf{F}_{j+1/2}^{n} \right)$$

- with:
$$\mathbf{F}_{j-1/2}^n = \mathbf{F}\left(\mathrm{RP}(\mathbf{U}_{j-1}^n, \mathbf{U}_j^n)\right)$$

$$\mathbf{F}_{j+1/2}^n = \mathbf{F}\left(\mathrm{RP}(\mathbf{U}_j^n, \mathbf{U}_{j+1}^n)\right)$$

The CFL condition for this Godunov scheme is:

$$\Delta t \le \frac{\Delta x}{S_{\max}^n}$$

- where S_{\max}^n is the fastest wave at time t^n on the whole computational domain.

For the Euler equations, a good estimate for the fastest wave is:

$$S_{\max}^n \approx \max_{1 \le i \le m} \left\{ |u_j^n| + a_j^n \right\}$$

Stability may be improved by using a CFL number lower than 1:

$$\Delta t \le \text{CFL} \frac{\Delta x}{S_{\text{max}}^n}$$

– Typically $\mathrm{CFL}=0.9$ is a practical choice.

Example

Exact Riemann solution and Godunov method:

- Domain: $0 \le x \le 1$
- Diaphragm at $x_0 = 0.3$
- 100 cells
- $\gamma = 1.4$
- CFL = 0.9
- Left initial condition:

Right initial condition:

$$\mathbf{W}_{R} = (\rho_{R}, u_{R}, p_{R})^{\mathsf{T}}$$

= $(0.125, 0, 0.1)^{\mathsf{T}}$

