Chapitre

Pourcentages et évolutions

11

11.1 Journalisme et mathématiques

Définition 11.1 — Le P%. désigne P centièmes = $\frac{P}{100}$.

■ Définition 11.2 — U de V. désigne $U \times V$.

Définition 11.3 — taux d'évolution et coefficient multiplicateur.

Une évolution de taux TE correspond à un multiplication par CM=1+TE

coefficient multiplicateur = 1 + taux d'évolution

Journalistes	TE	$\mathbf{CM} = 1 + TE$
augmentation de 12%	12% = 0.12	CM = 1,12
diminution de 12%	-12% = -0.12	0,88
pas de changement	0	1

Proposition 11.1 Dans une évolution $V_I \mapsto V_F$ on a :

$$V_F = CM \times V_I$$
 $V_F = (1 + TE) \times V_I$

$$CM = \frac{V_F}{V_I} \qquad TE = CM - 1 = \frac{V_F - V_I}{V_I}$$

$$\times CM = \frac{y}{x}$$

$$V_I = x$$

$$V_F = y$$

$$\times (1 + TE)$$

Figure 11.1 - Evolution, CM et TE

11.1.1 Exercices

Les 12 exercices suivants illustrent les différentes formulations autour d'un problème d'évolution.

Exercice 1

Prix initial est de $80 \in$. Après augmentation le prix est de $125 \in$.

b) Quel est le taux d'augmentation?

 $V_I = V_F = V_F$

$$TE = \nearrow de$$

Exercice 2

Le prix initial est de $16 \in$.

Après réduction le prix est de $12.5 \in$.

Donner le taux de diminution

$$TE = \frac{1}{2} de$$

Exercice 3

Le montant de la redevance audiovisuel en France est passé de 114,49 euros en 2001 à 123 euros en 2011. Quel est le taux d'évolution de cette taxe de 2001 à 2011?

Exercice 4

Le prix initial de $60 \in$ subit une augmentation de 35%.

a) Quel est le montant de l'augmentation?

 $V_{I} = V_{F} = V_{F}$

b) Quel est le prix final?....

$$TE =$$

Exercice 5

Le prix initial de $35 \in$ subit une diminution de 60%.

 $\times (1+TE) = V_F = V_F$

b) Sans calculer la diminution, retrouver le prix final.....

$$TE =$$

Exercice 6

En appliquant une augmentation de 12.5% du prix initial, le prix augmente de 15 \in .

b) Quel est le prix initial.

TE =

Exercice 7

Après augmentation de 12.5%, le prix final est de $45 \in$.

TE =

Exercice 8

Après diminution de 12.5%, le prix final est de $80.5 \in$. Quel était le prix initial?

Exercice 9

En appliquant une diminution de 15%, le prix final est 100€. Quel est le montant de la diminution?

Exercice 10

Le prix d'un appareil ménager a augmenté de 15 % en 2 ans. Il coûte maintenant $460 \in$. Quel est montant de l'augmentation en deux ans?

Exercice 11

Les prix des aliments ont diminué de 20%. Un aliment coûte maintenant 240. Quel est le montant de la diminution?

Exercice 12 — bilan. Compléter le tableau (Variation absolue = Prix final - Prix initial).

Augmentation/diminution	taux d'évolution	Coefficient Multiplicateur	Prix initial	Prix final	Variation absolue
	+100%		98.40€		
	+160%		196.80€		
	+20%		60€		
	-20%		72€		
			72€	54€	
Augmentation de 50%				54€	
Diminution de 50%				54€	
	+20%			54€	
	-20%			54€	
			54€		+54€
		×0,7	40€		
				108€	-27€
		×1,3		91€	
			96€	108€	
	+1,25%		96€		
	+25%			98.40€	
		×1,007	130€		
			98.40€		-19.68€
	+42%		17€		

11.2 Evolutions successives

Théorème 11.2 — Évolutions successives. Plusieurs évolutions successives vont avoir le même effet qu'une seule dont le CM global est le produit des CM des évolutions intermédiaires qui la composent.

Figure 11.2 – Pour deux évolutions successives de CM 3 et 7, vont avoir le même effet qu'une seule dont le CM est 3×7 .

Théorème 11.3 — Cas de 2 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2 \tag{11.1}$$

$$1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2) \tag{11.2}$$

Proposition 11.4 — Cas de 3 évolutions successives.

$$CM_{\text{global}} = CM_1 \times CM_2 \times CM_3 \tag{11.3}$$

$$1 + TE_{\text{global}} = (1 + TE_1) \times (1 + TE_2) \times (1 + TE_3) \quad (11.4)$$

Théorème 11.5 — Évolutions successives de même TE. Pour une succession de n évolutions de même TE, le taux d'évolution global est donné par :

$$CM_{\text{global}} = (CM)^n$$

 $1 + TE_{\text{global}} = (1 + TE)^n$

11.2.1 Exercices évolutions successives

Exercice 1 Compléter le tableau avec le bon coefficient multiplicateur appliqué à x

p	$p \operatorname{de} x$	x augmenté de p	x diminué de p	p	p de x	x augmenté de p	x diminué de p
8%					0,66x		
28%						1,25x	
88%						1,2x	
98%						1,4x	
108%						1,004x	
118%							0.7x
0,2%							0.76x
	0,20x						0,992x
	$0,\!15x$						0.25x

Exercice 2

Pour chaque ligne, on considère une succession de deux évolutions. Complétez le tableau pour trouver les TE globaux dans chaque cas.

Evolution 1	Evolution 2	TE_1	TE_2	$CM_{\mathbf{g}}$	$TE_{\mathbf{g}}$	Evolution globale
augmentation de 200%	augmentation de 300%					augmentation de
augmentation de 10%	augmentation de 5%					augmentation de
diminution de 30%	diminution de 10%					diminution de
diminution de 40%	diminution de 10%					diminution de
diminution de 25%	diminution de 20%					diminution de
augmentation de 25%	diminution de 20%					
augmentation de 25%	diminution de 25%					
diminution de 20%	augmentation de 25%					
augmentation de 22%	diminution de 15%					

Exercice 3 — 3 évolutions successives.

Dans chaque cas, calculer les CM et TE globaux correspondants aux évolutions successives ci-dessous :

- a) une diminution de 30% suivie d'une augmentation de 20% suivie d'une diminution de 10%
- b) une augmentation de 12% suivie de deux baisses successives de 5%
- c) trois augmentations successives de 10%.

Exercice 4

Soit une augmentation de taux d'évolution t suivie d'une diminution de taux d'évolution -t.

- 1) Justifiez que $CM_{\text{global}} = 1 t^2$. Quel est le taux d'évolution global?
- 2) Qu'en pensez vous?

Exercice 5

Une augmentation de 5% suivie d'une augmentation de taux t correspond à une augmentation globale de 17,6%. Montrer que t est solution de l'équation 1,05(1+t)=1,176 et trouver t.

Exercice 6

Une diminution de 15 % suivie d'une diminution de taux t correspond à une diminution globale de 32 %. Trouver t.

Exercice 7 — Ψ .

Après deux augmentations successives de taux t, le prix d'un produit a globalement augmenté de 32,25%. Trouver t.

Exercice 8 — Ψ .

Après une augmentation de taux t suivie d'une baisse de taux t, le prix d'une chemise a diminué de 4%. Trouver t.

Exercice 9 — Ψ .

Un placement de $2000 \in$ rapporte le taux de t d'intérêts composés par an. Après 2 années, le montant total est de $2142.45 \in$. Trouver t.

Dans un plan d'épargne, les intérêts sont dit **composés** lorsqu'ils sont calculés chaque année sur la base de la **somme totale accumulée l'année précédente**. De manière générale, les gains ou pertes d'un placement sont exprimés en pourcentage par rapport à l'année écoulée.

- Exemple 11.6 Calculer le montant à la clôture des placements suivants et le taux d'évolution global.

Exercice 10

	Réponse A	Réponse B	Réponse C
1/ Un placement de 1000€ se déprécie de 7%	$1000\times0.07\times5$	1000×0.07^5	1000×0.93^5
par an. Le montant après 5 ans est			
2/ Un placement de 2000€ rapporte 4% par an.	$2000 \times 1.04 \times 5$	2000×1.04^5	2000×4^{5}
Le montant après 5 ans est			
3/ Un placement de 100€ rapporte 8% par an.	$100 \times 1.8 \times 10$	100×1.08^{10}	100×0.8^{10}
Le montant après 10 ans est			
4/ Un placement de 100 € rapporte 3.5% par an.	100×0.07	100×1.07^2	107.25
Le montant après 2 ans est			
5/ Un placement de 1000€ se déprécie de 9%	1000×0.91^{10}	1000×0.9^{10}	1000×1.09^{10}
par an. Le montant après 10 ans est			
6/ Un placement de 11000€ rapporte 4% par	≈12700 €	≈1700 €	≈1865€
an. Le total des intérêts après 4 ans est			
7/ Un placement de 1000€ rapporte 10% par	6 ans	8 ans	10 ans
an. Le placement initial est doublé au bout de			
8/ Un placement de 1000 € se déprécie de 5% par	13 ans	14 ans	15 ans
an. Le placement initial est diminuée de moitié			
au bout de			

11.3 Compléments 7

11.3 Compléments

Figure 11.3 – L'évolution $3\mapsto 15$ et l'évolution $15\mapsto 3$ sont réciproques.

Définition 11.4 — Évolution réciproque. de l'évolution $V_D \mapsto V_A$ est l'évolution $V_A \mapsto V_D$.

Les CM multiplicateurs sont inverses l'un de l'autre. Les formules 11.1 et 11.2 donnent :

$$1 = CM \times CM_{\text{reciproque}} \tag{11.5}$$

$$1 = (1 + TE) \times (1 + TE_{\text{reciproque}}) \tag{11.6}$$

Définition 11.5 — CM et TE moyens. Deux évolutions successives de taux d'évolutions TE_1 et TE_2 .

On appelle **coefficient multiplicateur moyen** et **taux d'évolution moyen** les nombres :

$$CM_{\text{moyen}}^2 = CM_1 \times CM_2$$
$$\left(1 + TE_{\text{moyen}}\right)^2 = (1 + TE_1) \times (1 + TE_2)$$

Donc 2 évolutions successives de même taux $TE_{\rm moyen}$ conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

11.3.1 Exercices complémentaires

- Exemple 11.7 Taux d'évolution réciproque. Pour chacune des évolutions suivantes, donner le taux d'évolution réciproque. Arrondir à 10^{-4} près si nécsssaire.
- a) augmentation de 25%

b) dimunution de 25%

Exercice 1 Même consignes

- a) augmentation de 50%
- b) diminution de 20%
- c) diminution de 90%
- d) augmentation de 200%
- e) augmentation de 300%

- f) augmentation de 10%
- g) diminution de 10%
- h) augmentation de 33%
- i) augmentation de 13%
- j) diminution de 27,2%

Exercice 2

Le prix TTC est 20% du prix HT. Quelle évolution appliquer au prix TTC pour obtenir le prix HT? Exercice 3

```
1
  def mafonction(t1, t2) :
                                               def cm(t) :
      cm1 = 1 + t1 / 100
2
      cm2 = 1 + t2 / 100
                                            10
                                                    return ...
3
      cmg = cm1 * cm2
                                               def reciproque(t) :
      tg = (cmg - 1) * 100
5
                                            12
6
      return tg
                                            13
7
                                            14
                                                    return ...
```

- 1) Que retourne l'instruction mafonction(100,-29)?
- 2) Quel est l'objet de la fonction mafonction()?
- 3) Complétez les lignes 9 et 10 afin que la fonction d'appel cm() et d'argument t retourne le coefficient multiplicateur de l'évolution de taux t donné en %.
- 4) Complétez les lignes 12, 13 et 14 afin que la fonction d'appel reciproque() et d'argument t retourne le taux reciproque de l'évolution de taux t donné en %.

Exercice 4 — Indice de base 100. Le tableau ci-dessous donne le chiffre d'affaire annuel d'une entreprise pour les années comprises entre 2015 et 2021.

Année	2015	2016	2017	2018	2019	2020	2021
Chiffre d'affaire en miliers d'euros	134	138	138.3	135.6	133.2	138.2	140.4
Indice (base 100)	97.1	100					

- 1) Complétez la ligne des indices sachant qu'elle est proportionnelle à celle des chiffre d'affaire.
- 2) Sans aucun calculs supplémentaires donner le taux d'augmentation en % qui permet de passer du chiffre d'affaire de 2016 à celui de 2021.
- 3) Même question avec le taux de diminution du chiffre d'affaire de 2016 à 2019.

11.4 Club de Maths : Problèmes

Deux évolutions successives de taux d'évolutions TE_1 et TE_2 . On appelle **taux d'évolution** moyen le nombre vérifiant :

$$(1 + TE_{\text{moyen}})^2 = (1 + TE_1) \times (1 + TE_2)$$

Donc 2 évolutions successives de même taux TE_{moyen} conduisent à une même évolution globale que les deux évolutions successives de TE_1 et TE_2 .

Exercice 1 Calculer le taux d'évolution moyen correspondant à une augmentation de 20% suivie d'une diminution de 4%.

Exercice 2 Le nombre de nouvelles inscriptions Netflix à augmenté de 21% durant le moi d'octobre, puis de 36% durant le mois de novembre. Calculer le taux évolution moyen.

Exercice 3 Deux offres sont proposées pour une bouteille de lessive : 15% de produit en plus, ou 15% de réduction sur le prix. Laquelle choisissez-vous et pourquoi?

Exercice 4

Soit un carré de côté c. On augmente deux côtés opposés d'un taux t_1 , et les deux autres d'un taux t_2 .

- 1) Exprimer l'aire du rectangle obtenu en fonction de c.
- 2) En déduire que le taux d'évolution de l'aire par cette transformation est $t_1 + t_2 + t_1t_2$.
- 3) Si $t_1 = 25\%$ et $t_2 = -22\%$, l'aire a-t-elle augmenté ou diminué?
- 4) Si $t_1 = 15\%$. Comment choisir t_2 pour que l'aire soit conservée?

Problème 1

Le coût du pétrole représente 24% du coût de production de l'essence, qui représente lui-même 35% du prix de l'essence. Si le coût du pétrole augmente de 10%, et que les autres composants du prix de l'essence ne subissent aucun changement, quel sera le pourcentage d'augmentation du prix de l'essence.

Problème 2

Après une année d'entrainement, Minnie augmente sa vitesse moyenne au Marathon de Londres de 25%. Quel est le taux de diminution de son temps total?

Problème 3

Coincée dans le trafic, Emilie's met 25% de plus que d'habitude pour arriver chez elle. Quel est le pourcentage de réduction de sa vitesse par rapport à un trajet sans embouteillage.

Problème 4

Si un tapis roulant avançait 10% plus rapidement, alors le trajet prendrait 5 s de moins. Quelle est la durée du trajet?

indication pour le problème 1. x = prix de l'essence. Quel est le coût du pétrole?

indication pour le problème 4. Traduire l'énoncé en une équation utilisant l et t la longueur du tapis roulant et le temps normal de trajet.