# Linear Regression with One Variable

MOHAN M J



### Correlation

- Measures the relative strength of the *linear* relationship between two variables
- Unit-less
- Ranges between –1 and 1
- The closer to –1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

# Scatter Plots of Data with Various Correlation Coefficients Y T = -1 X T = -1 X





### **Linear Correlation**



## Model Representation

Predict real-valued output

In regression problems, we are taking input variables and trying to fit the output onto a continuous expected result function

Linear regression with one variable or 'univariate linear regression'

$$\hat{y} = h_{ heta}(x) = heta_0 + heta_1 x$$
 Training Set Learning Algorithm Size of house price



## Modeling

How to fit best possible model to our given data?

### **Cost Function**

$$J( heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 = rac{1}{2m} \sum_{i=1}^m (h_ heta(x_i) - y_i)^2$$

The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset.



### **Cost Function**

$$J( heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left( \hat{y}_i - y_i 
ight)^2 = rac{1}{2m} \sum_{i=1}^m \left( h_{ heta}(x_i) - y_i 
ight)^2$$

We can measure the accuracy of model by using a cost function

This takes an average of all the results of the model with inputs from x's compared to the actual output y's

Difference between the predicted value and the actual value

"Squared error function" or "Mean squared error"

We will be able to concretely measure the accuracy of our predictor function against the correct results using 'Cost Function'

Training data set is scattered on the x-y plane. We are trying to make straight line which passes through this scattered set of data. The objective is to get the best possible line => **Minimize the cost function** 





### Cost Function - Intuition

### Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

### **Cost Function:**

$$J( heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left( \hat{y}_i - y_i 
ight)^2 = rac{1}{2m} \sum_{i=1}^m \left( h_{ heta}(x_i) - y_i 
ight)^2$$

Goal:  $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$ 



### Cost Function - Intuition





### **Gradient Descent**

The gradient descent algorithm is:

repeat until convergence:

$$heta_j := heta_j - lpha \, rac{\partial}{\partial heta_j} J( heta_0, heta_1)$$

where

j=0,1 represents the feature index number



### Gradient Descent for Linear Regression

Gradient descent algorithm

repeat until convergence { 
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for  $j = 1$  and  $j = 0$ ) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

### **Gradient Descent Algorithm**





### Gradient Descent for Linear Regression

$$heta_j := heta_j - lpha \, rac{\partial}{\partial heta_j} \, J( heta_0, heta_1)$$

Substituting actual cost function and model function

Repeat until convergence:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$

$$heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m ((h_ heta(x_i) - y_i) x_i)$$







# Linear Regression with Multiple Variables

### Living area (feet<sup>2</sup>) | Price (1000\$s) 2104 400 1600 330 Intro 369 2400 1416 232 3000 540 In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane. Training set Learning algorithm predicted y

### Intro

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

$$\begin{split} \theta_j &:= \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta). \\ \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} \left( h_{\theta}(x) - y \right)^2 \\ &= 2 \cdot \frac{1}{2} \left( h_{\theta}(x) - y \right) \cdot \frac{\partial}{\partial \theta_j} \left( h_{\theta}(x) - y \right) \\ &= \left( h_{\theta}(x) - y \right) \cdot \frac{\partial}{\partial \theta_j} \left( \sum_{i=0}^n \theta_i x_i - y \right) \\ &= \left( h_{\theta}(x) - y \right) x_j \end{split}$$

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}.$$

|   | Living area (feet <sup>2</sup> ) | #bedrooms | Price (1000\$s) |  |
|---|----------------------------------|-----------|-----------------|--|
|   | 2104                             | 3         | 400             |  |
|   | 1600                             | 3         | 330             |  |
|   | 2400                             | 3         | 369             |  |
| - | 1416                             | 2         | 232             |  |
|   | 3000                             | 4         | 540             |  |
|   | :                                | :         | :               |  |

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

Repeat until convergence {

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)} \quad \text{(for every } j\text{)}.$$

### **EXERCISE 1:**

The effect of temperature and reaction time affects the %yield. The data collected is given in the Mult-Reg\_yield file. Develop a model for %yield in terms of temperature and time

}

STEP1: Read Data

```
import pandas as mypanda
from scipy import stats as mystats
import matplotlib.pyplot as myplot
from pandas.tools.plotting import scatter_matrix
from statsmodels.formula.api import ols as myols
myData=mypanda.read_csv('.\datasets\Mult_Reg_Yield.csv')
myData
tmp=myData.Temperature
yld =myData.Yield
time=myData.Time
scatter_matrix(myData) # Correlation analysis
myplot.show()
```

### **Correlation Analysis**



## STEP 2: Regression Output

 $\label{eq:mymodel} \mbox{mymodel=myols("yld~~time~+~tmp",myData)}$ 

mymodel =mymodel.fit()
mymodel.summary()

| Dep. Variable:       | yld                 | R-squared:          | 0.806    |
|----------------------|---------------------|---------------------|----------|
| Model:               | OLS                 | Adj. R-squared:     | 0.777    |
| Method:              | Least Squares       | F-statistic:        | 27.07    |
| Date:                | Wed, 21 Mar<br>2018 | Prob (F-statistic): | 2.32e-05 |
| Time:                | 12:06:08            | Log-Likelihood:     | -59.703  |
| No.<br>Observations: | 16                  | AIC:                | 125.4    |
| Df Residuals:        | 13                  | BIC:                | 127.7    |
| Df Model:            | 2                   |                     |          |
| Covariance Type:     | nonrobust           |                     |          |

|           | coef     | std err | t      | P> t  | [0.025   | 0.975] |
|-----------|----------|---------|--------|-------|----------|--------|
| Intercept | -67.8844 | 40.587  | -1.673 | 0.118 | -155.566 | 19.797 |
| time      | 0.9061   | 0.123   | 7.344  | 0.000 | 0.640    | 1.173  |
| tmp       | -0.0642  | 0.164   | -0.392 | 0.702 | -0.418   | 0.290  |

| Omnibus:       | 1.984  | Durbin-Watson:    | 1.957    |
|----------------|--------|-------------------|----------|
| Prob(Omnibus): | 0.371  | Jarque-Bera (JB): | 0.970    |
| Skew:          | -0.078 | Prob(JB):         | 0.616    |
| Kurtosis:      | 1.804  | Cond. No.         | 3.91e+03 |

# **Regression Output**

mymodel =myols("yld ~ time ", myData).fit()
mymodel.summary()

| Dep. Variable:    | yld              | R-squared:          | 0.804    |
|-------------------|------------------|---------------------|----------|
| Model:            | OLS              | Adj. R-squared:     | 0.790    |
| Method:           | Least Squares    | F-statistic:        | 57.46    |
| Date:             | Thu, 14 Sep 2017 | Prob (F-statistic): | 2.55e-06 |
| Time:             | 10:12:02         | Log-Likelihood:     | -59.797  |
| No. Observations: | 16               | AIC:                | 123.6    |
| Df Residuals:     | 14               | BIC:                | 125.1    |
| Df Model:         | 1                |                     |          |
| Covariance Type:  | nonrobust        |                     |          |

|               | coef     | std err | t      | P> t  | [0.025   | 0.975]  |
|---------------|----------|---------|--------|-------|----------|---------|
| Intercep<br>t | -81.6205 | 19.791  | -4.124 | 0.001 | -124.067 | -39.174 |
| time          | 0.9065   | 0.120   | 7.580  | 0.000 | 0.650    | 1.163   |

| Omnibus:       | 1.894  | Durbin-Watson:    | 2.055    |
|----------------|--------|-------------------|----------|
| Prob(Omnibus): | 0.388  | Jarque-Bera (JB): | 0.969    |
| Skew:          | -0.127 | Prob(JB):         | 0.616    |
| Kurtosis:      | 1.822  | Cond. No.         | 1.21e+03 |

### STEP 3:

pred=mymodel.predict()

res=yl d-pred

res

mypl ot. scatter(yld, pred)

mypl ot. show()

# There need to be strong positive correlation between actual and fitted response

90 -80 -70 -60 -40 -40 50 60 70 80 90 100

### Residual Analysis



## Model Adequacy Check

There should not be any pattern or trend, the points should be distributed randomly



#Residual vs independent variables
myplot.scatter(time, res)

myplot.show()



#Residual vs fitted

mypl ot. scatter(pred, res)

myplot.show()

# THANK YOU