

Prüfberi Test Rep		50055364 00	4	Auftrags-Nr.: Order No.:	164069058	Seite 1 von 29 Page 1 of 29
	-Referenz-Nr.: eference No.:	N/A		Auftragsdatu Order date:	m: 14.07.2016	
Auftragg Client:	geber:	ContextMedia 330 N. Waba		0, Chicago, Illino	ois United States	
Prüfgeg Test iten	enstand:	Wallboard 32	" Tablet			
	nung / Typ-Nr.: ation / Type No.:	P-WAL-106-Y (ContextMedi	/IT-01, P-WAL-1 a Health)	06-YIT-02, P-W	AL-106-YIT-03	
Auftrags Order co		FCC/IC Certif	ication -			
Prüfgrur Test spe	ndlage: cification:	ANSI/IEEE C IEEE 1528-20 KDB 447498	003	Section 2.1093		
Warenei Date of r	ngangsdatum: eceipt:	25.07.2016				
Prüfmus Test sam		A000395273-	002			
Prüfzeitr Testing p		05.08.2016 -	08.08.2016			
Ort der F		Shenzhen EM	ITEK Co., Ltd.		4	
	ratorium: aboratory:	TÜV Rheinlar	nd (Shenzhen) C	o., Ltd.		
Prüferge Test resu		Pass				
geprüft v	on I tested by:	M	<u></u>	kontrolliert vo	on I reviewed by:	
18.09.201 Datum <i>Date</i>	6 Andy Yan/Pi Name / Stellu Name / Positio	•	Unterschrift Signature	Datum N	Owen Tian/Technical Name / Stellung Name / Position	Certifier Unterschrift Signature
Sonstige	es I Other:	FCC ID: 2AI67 IC: 21722-PW				
	des Prüfgegens of the test item		nlieferung:		lständig und unbescolete and undamage	
Legende:	1 = sehr gut P(ass) = entspricht o.g.	2 = gut Prüfgrundlage(n)	3 = befriedigend F(ail) = entspricht nicl	ht o.g. Prüfgrundlage(n	4 = ausreichend) N/A = nicht anwendbar	5 = mangelhaft N/T = nicht getestet
Legend:	1 = very good	2 = good	3 = satisfactory		4 = sufficient	5 = poor

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 2 von 29

 Test Report No.
 Page 2 of 29

STATEMENT OF COMPLIANCE

TEST ITEM	SPECIFICATION	RESULT
Specific Absorption Rate - Wi-Fi 802.11 b/g/n - 2.4GHz Band	Exposure Rules 47 C.F.R 2.1093;	PASS
Specific Absorption Rate - Wi-Fi 802.11 a/n/ac - 5GHz Band U-NII-1	KDB 447498 D01 General RF Exposure Guidance v06; KDB 248227 D01 802 11 Wi-Fi SAR v02r02; KDB 865664 D01 SAR Measurement 100 MHz to 6GHz v01r04;	PASS
Specific Absorption Rate - Wi-Fi 802.11 a/n/ac - 5GHz Band U-NII-3	KDB 865664 D02 RF Exposure Reporting v01r02; KDB 616217 D04 SAR for laptop and tablets v01r02; FCC Inquiry Tracking Number 351814	PASS
Specific Absorption Rate - Bluetooth BDR/EDR/LE		PASS

This device complies with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4W/kg) specified in CFR Title 47 Part 2 Subpart J Section 2.1093 and ANSI/IEEE C95.1-1992 for extremity SAR.

This device has been testd in accordance with the measurement methods and procedure specified in Published RF exposure KDB procedures

Refer to the maximum results of Specific Absorption Rate (SAR) durning testing as below.

FREQUENCY BAND	EXPOSURE POSITION	EQUIPMENT CLASS	HIGHEST REPORTED EXTREMITY 10G SAR VALUE (W/KG)
802.11 b/g/n - 2.4GHz Band	Body	DTS	0.146
802.11 a/n/ac - 5GHz Band U-NII-1	Body	NII	0.691
802.11 a/n/ac - 5GHz Band U-NII-3	Body	INII	0.807

 Prüfbericht - Nr.:
 50055364 004
 Seite 3 von 29

 Test Report No.
 Page 3 of 29

Contents

1.	GENERAL REMARKS	5
1.1	COMPLEMENTARY MATERIALS	
2.	TEST SITES	E
2. 2.1	TEST FACILITIES	_
2.1	LIST OF TEST AND MEASUREMENT INSTRUMENTS	
3.	GENERAL PRODUCT INFORMATION	
3.1	PRODUCT FUNCTION AND INTENDED USE	
3.2	RATINGS AND SYSTEM DETAILS	
3.3	INDEPENDENT OPERATION MODES	
3.4	SUBMITTED DOCUMENTS	11
4.	SAR MEASUREMENTS SYSTEM CONFIGURATION	12
4.1	SAR MEASUREMENTS SET-UP	12
4.2	DASY5 E-FIELD PROBE SYSTEM	13
4.3	E-FILED PROBE CALIBRATION	14
4.4	OTHER TEST EQUIPMENT	
4.4 4.4	.2 Robot	15
4.4 4.4		
4.4		
4.5	SCANNING PROCEDURE	18
4.6	DATA STORAGE AND EVALUATION	
4.6 4.6		
5.	TEST SET-UP AND OPERATION MODES	24
5. 5.1	PRINCIPLE OF CONFIGURATION SELECTION.	
5.1	TISSUE SIMULATING LIQUID INGREDIENTS	
5.3	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK	
5.4	EXPOSURE POSITIONS CONSIDERATION	
5. 5	TEST OPERATION AND TEST SOFTWARE	
5.6	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	
6.	TEST RESULTS	
6.1	HUAMAN EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC FIELDS	
6.2	MEASUREMENT UNCERTAINTY	_
6.2	.1 Measurement uncertainty evaluation	26

Products

	fbericht - Nr.: 50055364 004 Report No.	Seite 4 von 29 <i>Page 4 of</i> 29
7.	PHOTOGRAPHS OF THE TEST SET-UP	27
8.	LIST OF TABLES	29
9.	LIST OF PHOTOGRAPHS	29

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 5 von 29

 Test Report No.
 Page 5 of 29

1. General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: System Performance Check and Test Plots

Appendix B: Calibration Certificate

2. Test Sites

2.1 Test Facilities

Shenzhen EMTEK Co., Ltd.

Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, P.R. China

The tests at the test site have been conducted under the supervision of a TÜV engineer.

 Prüfbericht - Nr.:
 50055364 004
 Seite 6 von 29

 Test Report No.
 Page 6 of 29

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Equipment	Manufacture r	Model No.	Serial No.	Last Cal.	Cal. Interva
Signal Generator	Agilent	N5181A	MY50145187	2016-05-28	1year
RF Power Meter. Dual Channel	BOONTON	4232A	10539	2016-05-28	1year
Power Sensor	BOONTON	51011EMC	34236/34238	2016-05-28	1year
Wideband Radio Communication Tester	R&S	CMW500	1201.0002K50- 140822zk	2016-05-28	1year
Signal Analyzer	Agilent	N9010A	My53470879	2016-05-28	1year
Network Analyzer	Agilent	E5071C	MY46316645	2016-05-28	1year
E-Field Probe	SPEAG	EX3DV4	3970	2015-08-26	1year
DAE	SPEAG	DAE4	1341	2015-08-25	1year
Validation Kit 2450MHz	SPEAG	D2450V2	927	2014-01-13	3years
Validation Kit 5GHz	SPEAG	D5GHzV2	1169	2014-01-07	3years
Dual Directional Coupler	Agilent	EE393	TW5451008	2016-05-28	1year
10dB Attenuator	Mini-Circuits	15542	3 1344	2016-05-28	1year
10dB Attenuator	Mini-Circuits	15542	3 1415	2016-05-28	1year
30dB Attenuator	Mini-Circuits	15542	3 1420	2016-05-28	1year
Power Amplifier	MILMEGA	80RF1000-175	1059345	2016-05-28	1 Year
Power Amplifier	MILMEGA	AS0102-55	1018770	2016-05-28	1 Year
Power Amplifier	MILMEGA	AS1860-50	1059346	2016-05-28	1 Year
Power Meter	Agilent	N1918A	MY54180006	2016-05-28	1 Year
ELI V5.0	SPEAG	QD 0VA 022 AA	1231	N/A	N/A
Device Holder	SPEAG	N/A	N/A	N/A	N/A
SAR Test System	SPEAG	DASY52 SAR TX60XL	F13/5R4XA1/A/01	2016-05-15	1 Year

 Prüfbericht - Nr.:
 50055364 004
 Seite 7 von 29

 Test Report No.
 Page 7 of 29

3. General Product Information

3.1 Product Function and Intended Use

The EUT is a Wallboard 32" Tablet which supports Bluetooth (dual mode) and Wi-Fi 802.11 a/b/g/n/ac wireless technology. For details refer to the User Manual and Circuit Diagram.

3.2 Ratings and System Details

Table 2: Technical Specification of Wi-Fi

Technical Specification	Value
Kind of Equipment	Wallboard 32" Tablet
Type Designation	P-WAL-106-YIT-01, P-WAL-106-YIT-02, P-WAL-106-YIT-03
FCC ID	2AI6X-PWALYIT
IC	21722-PWALYIT
HVIN	P-WAL-106-YIT-01, P-WAL-106-YIT-02, P-WAL-106-YIT-03
Operating Frequency band	2400-2483.5MHz, 5150-5250MHz, 5725-5850MHz
Extreme Temperature Range	0~+40°C
Operation Voltage	DC 12 V from AC/DC Adapter
Antenna Gain (dBi)	2.52 dBi for 2.4GHz band and 1.98dBi for 5GHz Band
Hardware version	VER1.0
Software version	Android 4.4.4

Table 3: Technical Specification of 2.4GHz, 802.11b/g/n

140	Description					
Item	IEEE 802.11b	IEEE 802.11g	IEEE 802.11n (HT20)	IEEE 802.11n (HT40)		
Operating Frequency band (MHz)	2412 ~ 2462	2412 ~ 2462	2412 ~ 2462	2422 ~ 2452		
Channel Number	11	11	11	7		
Modulation	DSSS (DBPSK, DQPSK), CCK)	OFDM (DBPSK, DQPSK)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)		
Data Rate (Mbps)	1, 2, 5, 11	6, 9, 12, 18, 24, 36, 48, 54	MCS0 ~ MCS7	MCS0 ~ MCS7		
Maximum tune-up conducted average output power (dBm)	14.0	14.0	14.0	14.0		
Maximum tested output power (dBm)	13.95	13.85	13.79	13.64		

 Prüfbericht - Nr.:
 50055364 004
 Seite 8 von 29

 Test Report No.
 Page 8 of 29

Table 4: List of WLAN Channel of 802.11b/g/n

802	2.11b	802	2.11g	802.11n HT20		802.1	1n HT40
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	2412	1	2412	1	2412	3	2422
2	2417	2	2417	2	2417	4	2427
3	2422	3	2422	3	2422	5	2432
4	2427	4	2427	4	2427	6	2437
5	2432	5	2432	5	2432	7	2442
6	2437	6	2437	6	2437	8	2447
7	2442	7	2442	7	2442	9	2452
8	2447	8	2447	8	2447		
9	2452	9	2452	9	2452		
10	2457	10	2457	10	2457		
11	2462	11	2462	11	2462		

Table 5: Technical Specification of 5GHz, 802.11a/n

Operating mode(s) / WiFi	IEEE 802.11a	IEEE 802.11n HT20	IEEE 802.11n HT40
Test modulation	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM)
Transmit Frequency Range (MHz)	5180 - 5240 5845 - 5825	5180 - 5240 5845 - 5825	5180 - 5240 5845 - 5825
Channel Number	9	9	4
Data Rate (Mbps)	6, 9, 12, 18, 24, 36, 48, 54	MCS0 ~ MCS7	MCS0 ~ MCS7
Maximum tune-up conducted average output power (dBm	16.5	16.5	14.5
Maximum tested output power (dBm)	16.43	16.45	14.12

Table 6: Technical Specification of 5GHz, 802.11ac

Operating mode(s) / WiFi	IEEE 802.11ac VHT20	IEEE 802.11ac VHT40	IEEE 802.11ac VHT80
Test modulation	OFDM (BPSK, QPSK, 16-QAM, 64-QAM, 256- QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM)	OFDM (BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM)
Transmit Frequency Range (MHz)	5180 - 5240 5845 - 5825	5180 - 5240 5845 - 5825	5180 - 5240 5845 - 5825
Channel Number	9	4	2
Data Rate (Mbps)	MCS0 ~ MCS8	MCS0 ~ MCS9	MCS0 ~ MCS9
Maximum tune-up conducted average output power (dBm)	16.5	14.5	14.0
Maximum tested output power (dBm)	16.5	14.17	13.51

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 9 von 29

 Test Report No.
 Page 9 of 29

Table 7: List of WLAN Channel of 5GHz 802.11a/n

802.11a		802.11n HT20		802.11n HT40	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Number	(MHz)	Number	(MHz)	Number	(MHz)
36	5180	36	5180	38	5190
40	5200	40	5200	46	5230
44	5220	44	5220	151	5755
48	5240	48	5240	159	5795
149	5745	149	5745		
153	5765	153	5765		
157	5785	157	5785		
161	5805	161	5805		
165	5825	165	5825		

Table 8: List of WLAN Channel of 5GHz 802.11ac

802.11a	802.11ac VHT20		c VHT40	802.11ac VHT80		
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
36	5180	38	5190	42	5210	
40	5200	46	5230	155	5775	
44	5220	151	5755			
48	5240	159	5795			
149	5745					
153	5765					
157	5785					
161	5805					
165	5825					

Table 9: Technical Specification of Bluetooth (BDR & EDR mode)

Technical Specification	Value
Operating Frequency band (MHz)	2400 – 2483.5
Channel separation	1MHz
Extreme Temperature Range	0~+40°C
Modulation	GFSK, 8DPSK, π/4DQPSK
Bluetooth version	4.0, Dual Mode
Antenna Gain (dBi)	2.52
Maximum tune-up conducted	2
average output power (dBm)	2
Maximum tested output power (dBm)	1.87

Prüfbericht - Nr.: 50055364 004

Seite 10 von 29Page 10 of 29

Test Report No.

Table 10: RF channel and frequency of Bluetooth (BDR & EDR mode)

RF Channel	Frequency	RF Channel	Frequency	RF	Frequency	RF	Frequency
Channel	, ,	+	(MHz)	Channel	` ,	Channel	,
0	2402.00	21	2423.00	42	2444.00	63	2465.00
1	2403.00	22	2424.00	43	2445.00	64	2466.00
2	2404.00	23	2425.00	44	2446.00	65	2467.00
3	2405.00	24	2426.00	45	2447.00	66	2468.00
4	2406.00	25	2427.00	46	2448.00	67	2469.00
5	2407.00	26	2428.00	47	2449.00	68	2470.00
6	2408.00	27	2429.00	48	2450.00	69	2471.00
7	2409.00	28	2430.00	49	2451.00	70	2472.00
8	2410.00	29	2431.00	50	2452.00	71	2473.00
9	2411.00	30	2432.00	51	2453.00	72	2474.00
10	2412.00	31	2433.00	52	2454.00	73	2475.00
11	2413.00	32	2434.00	53	2455.00	74	2476.00
12	2414.00	33	2435.00	54	2456.00	75	2477.00
13	2415.00	34	2436.00	55	2457.00	76	2478.00
14	2416.00	35	2437.00	56	2458.00	77	2479.00
15	2417.00	36	2438.00	57	2459.00	78	2480.00
16	2418.00	37	2439.00	58	2460.00		
17	2419.00	38	2440.00	59	2461.00		
18	2420.00	39	2441.00	60	2462.00		
19	2421.00	40	2442.00	61	2463.00		
20	2422.00	41	2443.00	62	2464.00	1	

Table 11: Technical Specification of Bluetooth (Low Energy mode)

Technical Specification	Value
Operating Frequency band	2400 – 2483.5MHz
Channel separation	2MHz
Extreme Temperature Range	0~+40°C
Modulation	GFSK
Bluetooth version	4.0, Dual Mode
Antenna Gain (dBi)	2.52
Maximum tune-up conducted	4
average output power (dBm)	4
Maximum tested output power (dBm)	3.92

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 11 von 29

 Test Report No.
 Page 11 of 29

Table 12: RF channel and frequency of Bluetooth (Low Energy mode)

RF Channel	Frequency (MHz)	RF Channel	Frequency (MHz)		Frequency (MHz)	RF Channel	Frequency (MHz)
0	2402.00	11	2424.00	22	2446.00	33	2468.00
1	2404.00	12	2426.00	23	2448.00	34	2470.00
2	2406.00	13	2428.00	24	2450.00	35	2472.00
3	2408.00	14	2430.00	25	2452.00	36	2474.00
4	2410.00	15	2432.00	26	2454.00	37	2476.00
5	2412.00	16	2434.00	27	2456.00	38	2478.00
6	2414.00	17	2436.00	28	2458.00	39	2480.00
7	2416.00	18	2438.00	29	2460.00		
8	2418.00	19	2440.00	30	2462.00		
9	2420.00	20	2442.00	31	2464.00		
10	2422.00	21	2444.00	32	2466.00		

3.3 Independent Operation Modes

The basic operation modes are:

- A. On, transmitting
 - 1. 802.11b
 - 2. 802.11g
 - 3. 802.11n (HT20)
 - 4. 802.11n (HT40)
 - 5. 802.11a
 - 6. 802.11ac (VHT20)
 - 7. 802.11ac (VHT40)
 - 8. 802.11ac (VHT80)
 - 9. Bluetooth BDR
 - 10. Bluetooth EDR
 - 11. Bluetooth Low Energy
- B. Off

3.4 Submitted Documents

- Application Form
- Block Diagram
- Schematics
- Technical Description

- FCC/IC Label and Location Info
- Photo Document
- User Manual

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 12 von 29

 Test Report No.
 Page 12 of 29

4. SAR Measurements System Configuration

4.1 SAR Measurements Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

Picture 1 SAR Lab Test Measurement Set-up

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 13 von 29

 Test Report No.
 Page 13 of 29

4.2 DASY5 E-Field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection turning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: EX3DV4

Frequency Range: 10MHz - 6.0GHz (EX3DV4)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4

Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 0 Dynamic Range: $\pm 0.8 \text{ dB}$ (30 MHz to 0 mW/kg - 100W/kg)

Probe Length: 330 mm
Probe Tip Length: 20 mm
Body Diameter: 12 mm
Tip Diameter: 2.5 mm
Tip-Center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of mobile phones Dosimetry in strong gradient fields

Picture 2 E-field Probe

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 14 von 29

 Test Report No.
 Page 14 of 29

4.3 E-Filed Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mw/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity.

 ρ = Tissue density (kg/m³).

4.4 Other Test Equipment

4.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Prüfbericht - Nr.:

50055364 004

Seite 15 von 29 Page 15 of 29

Test Report No.

Picture 3 DAE

4.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

High precision (repeatability 0.02mm)

High reliability (industrial design)

Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) Jerk-free straight movements (brushless synchron motors; no stepper motors)

Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 4 DASY 5

Products

Prüfbericht - Nr.: 50055364 004 Seite 16 von 29
Test Report No. Page 16 of 29

4.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

Picture 4 Server for DASY 5

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

4.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Products

Test Report No.

Prüfbericht - Nr.: 500553

50055364 004

Seite 17 von 29Page 17 of 29

Picture 5 Device Holder

4.4.5 Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 650 mm, Minor axis: 400 mm
Filling volume	approx. 30 liters
Wooden support	SPEAG standard phantom table

Picture 8 ELI4 Phantom

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 18 von 29

 Test Report No.
 Page 18 of 29

4.5 Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 19 von 29

 Test Report No.
 Page 19 of 29

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) (Δxarea, Δyarea)	Maximum Zoom Scan Resolution (mm) (Δxzoom, Δyzoom)	Maximum Zoom Scan Spatial Resolution (mm) Δzzoom(n)	Minimum Zoom Scan Volume (mm) (x,y,z)
≤2 GHz	≤15	≤8	≤5	≥ 30
2-3 GHz	≤12	≤5	≤5	≥30
3-4 GHz	≤12	≤5	≤4	≥28
4-5 GHz	≤10	≤4	≤3	≥25
5-6 GHz	≤10	≤4	≤2	≥22

4.6 Data Storage and Evaluation

4.6.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device set up, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a loss less media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

4.6.2 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

- Conversion factor ConvF_i

Diode compression point Dcp_i

Device parameters: - Frequency f

Crest factor cf
 Media parameters: - Conductivity
 Density

Products

Prüfbericht - Nr.: 50055364 004 Seite 20 von 29 Page 20 of 29

Test Report No.

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / dcp_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

SAR =
$$(E_{tot}) 2 \cdot \sigma / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$ with $P_{pwe} =$ equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m; H_{tot} = total magnetic field strength in A/m

 Prüfbericht - Nr.:
 50055364 004
 Seite 21 von 29

 Test Report No.
 Page 21 of 29

5. Test Set-up and Operation Modes

5.1 Principle of Configuration Selection

The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna and accessories shall be those specified by the manufacturer. The EUT battery must be fully powered and checked periodically during the test to ascertain uniform power output.

Table 13: Configuration of EUT

	Frequency			Test Chan	Power Control	
Operation mode	Range (MHz)	Modulation	Low	Middle	High	Level
802.11b/g/n(HT20)	2412-2462	DSSS, OFDM	CH1	СН6	CH11	
802.11a/n(HT20)/ac(VHT20) (Band U-NII-1)	5180-5240	OFDM	CH36	CH40	CH48	
802.11a/n(HT20)/ac(VHT20) (Band U-NII-3)	5745-5825	OFDM	CH149	CH157	CH165	Test software
802.11n(HT40)/ac(VHT40) (Band U-NII-1)	5180-5240	OFDM	CH38		CH46	was used to configure the
802.11n(HT40)/ac(VHT40) (Band U-NII-3)	5745-5825	OFDM	CH151		CH159	EUT to transmit at maximum
802.11ac(VHT80) (Band U- NII-1)	5180-5240	OFDM		CH42		output power
802.11ac(VHT80) (Band U-NII-3)	5745-5825	OFDM		CH155		
Bluetooth (BDR & EDR)	2402-2480	FHSS	CH0	CH39	CH78	
Bluetooth (Low Energy)	2402-2480	GFSK	CH0	CH19	CH39	

5.2 Tissue Simulating Liquid Ingredients

The liquid is consisted of Water, Salt, Glycol and DGBE. The liquid has previously been proven to be suited for worst-case. The following table shows the detail solution.

Table 14: Composition of Tissue Simulating Liquid

MIXTURE%(Weight)	FREQUENCY (Body) 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHz ε=52.70 σ=1.95

MIXTURE%(Weight)	FREQUENCY (Body) 5GHz					
Water	75.68					
DGBE	4.42					
Triton X-100	19.47					
Salt	0.43					
	f=5200MHz ε=49.00 σ=5.30					
	f=5300MHz ε=48.90 σ=5.42					
Dielectric Parameters Target Value	f=5500MHz ε=48.60 σ=5.65					
	f=5600MHz ε=48.50 σ =5.77					
	f=5800MHz ε=48.20 σ =6.00					

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 22 von 29

 Test Report No.
 Page 22 of 29

5.3 Specific Absorption Rate (SAR) System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in Appendix A. System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %). System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Picture 9 System Check Set-up

Table 15: System Check Results of Tissue Simulating Liquid

Frequenc (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Body	22.6	2.026	52.063	1.95	52.70	3.90	-1.21	1 5	2016-08-05
5200	Body	22.7	5.208	50.972	5.30	49.00	-1.74	4.02	±5	2016-08-08
5800	Body	22.7	6.185	49.782	6.00	48.20	3.08	3.28	±5	2016-08-08

(Liquid depth: 15cm)

Table 16: System Validation

Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)	Date
2450	Body	250	927	3873	1341	12.60	50.40	50.4	0.00	2016-08-05
5200	Body	100	1169	3970	1418	7.48	73.80	74.8	1.36	2016-08-08
5800	Body	100	1169	3970	1418	7.35	74.30	73.5	-1.08	2016-08-08

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 23 von 29

 Test Report No.
 Page 23 of 29

5.4 Exposure Positions Consideration

Front Screen and Top Edge were tested with small area near the antenna according to FCC inquiry with Tracking Number 351814

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 24 von 29

 Test Report No.
 Page 24 of 29

5.5 Test Operation and Test Software

Test operation refers to test setup in chapter 5.

A communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11 a/b/g/n/ac operating modes are tested independently according to the service requirements in each frquency band. 802.11a/b/g/n/ac modes are tested on channel low/middle/high. However, if output power reduction is necessary for channels lowest and/or highest to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 2.4GHz 802.11g/n when

- a) KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
- b) The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

Each channel should be tested at the lowest data rate, and repeated SAR measurement is required only when the measured SAR is \geq 0.8 W/kg.

When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

5.6	Special	Accessories	and Auxiliar	y Equ	ipment
-----	---------	-------------	--------------	-------	--------

None.

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 25 von 29

 Test Report No.
 Page 25 of 29

6. Test Results

6.1 Huaman Exposure to Radiofrequency Electromagnetic Fields

RESULT: Passed

Date of testing : 2016-08-05 to 2016-08-08

Test standard : CFR Title 47 Part 2 Subpart J Section 2.1093

ANSI/IEEE C95.1-1992

FCC KDB Publication : KDB 447498 D01 v06

KDB 248227 D01 v02r02 KDB 865664 D01 v01r04 KDB 616217 D04 v01r02

Limits : 4W/kg for Extremity

Note: Wi-Fi antenna and Bluetooth cannot transmitter simultaneously.

According to the position of antenna and dimension of product, the test was carried out on front face /edge Top per FCC Inquiry with Tracking Number 351814.

The reported SAR of all initial test configurations is ≤ 1.2 W/kg. Adjusted SAR according to the ratio of the specified maximum output power of subsequent test configuration to initial test configuration will result in lower SAR; therefore, subsequent test configuration SAR is not required for this example.

Repeated SAR and other next highest channels are exempted to conduct with all the initial reported SAR $\leq 0.8 \text{ W/kg}$

Table 17: Initial test configurations Test result of SAR Values

Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	configure	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	Date
WLAN2.4G	802.11b	Front Face	0	11	2462	1Mbps	13.95	14.00	1.012	100	1.000	0.1	0.115	0.116	2016-08-05
WLAN2.4G	802.11b	Edge 3	0	11	2462	1Mbps	13.95	14.00	1.012	100	1.000	-0.04	0.144	0.146	2016-08-05
									1.000		1.000			0.000	
WLAN5G Band 1	802.11a	Front Face	0	48	5240	6Mbps	16.41	16.50	1.021	97.32	1.028	-0.02	0.343	0.360	2016-08-08
WLAN5G Band 1	802.11a	Edge 3	0	48	5240	6Mbps	16.41	16.50	1.021	97.32	1.028	-0.02	0.658	0.691	2016-08-08
									1.000		1.000			0.000	
WLAN5G Band 4	802.11a	Front Face	0	149	5745	6Mbps	16.43	16.50	1.016	97.32	1.028	-0.06	0.407	0.425	2016-08-08
WLAN5G Band 4	802.11a	Edge 3	0	149	5745	6Mbps	16.43	16.50	1.016	97.32	1.028	0.07	0.692	0.723	2016-08-08
WLAN5G Band 4	802.11a	Edge 3	0	165	5825	6Mbps	16.06	16.50	1.107	97.32	1.028	0.07	0.709	0.807	2016-08-08

Refer to attached Appendix B for details of test results.

Prüfbericht - Nr.: Test Report No.	50055364 004	Seite 26 von 29 <i>Page 26 of 29</i>
6.2 Measurement	Jncertainty	
6.2.1 Measurement unce	rtainty evaluation	
The measured SAR were	<1.5 W/kg for all frequency bands, therefore SAR measurement uncertainty analysis descri	e per KDB Publication bed in IEEE Std 1528-

Test Report No.

Prüfbericht - Nr.: 50055364 004

Seite 27 von 29Page 27 of 29

7. Photographs of the Test Set-Up

Photograph 1: Test Layout

Photograph 2: Set-up for Front Face

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 28 von 29

 Test Report No.
 Page 28 of 29

Photograph 3: Set-up for Edge 3

Products

 Prüfbericht - Nr.:
 50055364 004
 Seite 29 von 29

 Test Report No.
 Page 29 of 29

8. List of Tables

Table 1: List of Test and Measurement Equipment	6
Table 2: Technical Specification of Wi-Fi	7
Table 3: Technical Specification of 2.4GHz, 802.11b/g/n	
Table 4: List of WLAN Channel of 802.11b/g/n	8
Table 5: Technical Specification of 5GHz, 802.11a/n	8
Table 6: Technical Specification of 5GHz, 802.11ac	8
Table 7: List of WLAN Channel of 5GHz 802.11a/n	
Table 8: List of WLAN Channel of 5GHz 802.11ac	
Table 9: Technical Specification of Bluetooth (BDR & EDR mode)	
Table 10: RF channel and frequency of Bluetooth (BDR & EDR mode)	
Table 11: Technical Specification of Bluetooth (Low Energy mode)	
Table 12: RF channel and frequency of Bluetooth (Low Energy mode)	
Table 13: Configuration of EUT	.21
Table 14: Composition of Tissue Simulating Liquid	
Table 15: System Check Results of Tissue Simulating Liquid	.22
Table 16: System Validation	.22
Table 17: Initial test configurations Test result of SAR Values	.25
9. List of Photographs	
Photograph 1: Test Layout	.27

Photograph 1: Test Layout	27
Photograph 2: Set-up for Front Face	27
Photograph 3: Set-up for Edge 3	
	_

Appendix A 50055364 004

Produkte Products

Page 1 of 13

Appendix A

System Performance Check

Page 2 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd.

Date/Time: 05.08.2016

SystemPerformanceCheck-D2450V2-MSL-160805

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160805

Medium parameters used: f = 2450 MHz; $\sigma = 2.026$ S/m; $\varepsilon_r = 52.063$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3873; ConvF(7.30, 7.30, 7.30); Calibrated: 26.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1341; Calibrated: 25.08.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (41x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 18.6 W/kg

System Performance Check at Frequency at 2450MHz/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 94.496 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.39 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Appendix A 50055364 004

TÜVRheinland®

Products

Page 3 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd.

Date/Time: 08.08.2016

SystemPerformanceCheck-D5GHzV2-5200MHz-MSL-160808

Communication System: UID 0, CW (0); Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G_160808

Medium parameters used: f = 5200 MHz; $\sigma = 5.208 \text{ S/m}$; $\varepsilon_r = 50.972$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.40, 4.40, 4.40); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 5200MHz/d=10mm, Pin=100mW, dist=1.4mm (EX-Probe)/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 17.6 W/kg

System Performance Check at Frequency at 5200MHz/d=10mm, Pin=100mW, dist=1.4mm (EX-Probe)/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 96.402 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Appendix A 50055364 004

Page 4 of 13

Produkte

Products

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 08.08.2016

SystemPerformanceCheck-D5GHzV2-5800MHz-MSL-160808

Communication System: UID 0, CW (0); Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 5G 160808

Medium parameters used: f = 5800 MHz; $\sigma = 6.185$ S/m; $\varepsilon_r = 49.782$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

- Probe: EX3DV4 SN3873; ConvF(4.02, 4.02, 4.02); Calibrated: 26.08.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1341; Calibrated: 25.08.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequency at 5800MHz/d=10mm, Pin=100mW, dist=1.4mm (EX-Probe)/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.1 W/kg

System Performance Check at Frequency at 5800MHz/d=10mm, Pin=100mW, dist=1.4mm (EX-Probe)/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm

Reference Value = 57.214 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 7.35 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

Appendix A 50055364 004

Produkte Products

Page 5 of 13

Appendix A

Test Plots of SAR Measurement

Produkte Products	Appendix A 50055364 004 Page 6 of 13	TÜV Rheinland®

Appendix A 50055364 004

TÜVRheinland®

Products

Page 7 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 05.08.2016

01-WLAN2.4GHz-802.11b 1Mbps-Front Face-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160805

Medium parameters used: f = 2462 MHz; $\sigma = 2.046$ S/m; $\varepsilon_r = 52.782$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3873; ConvF(7.30, 7.30, 7.30); Calibrated: 26.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1341; Calibrated: 25.08.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (161x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.174 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.318 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.115 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.175 W/kg

0 dB = 0.175 W/kg = -7.57 dBW/kg

Products Page 8 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 05.08.2016

02-WLAN2.4GHz-802.11b 1Mbps-Edge 3-0cm-Ch11

Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450_160805

Medium parameters used: f = 2462 MHz; $\sigma = 2.046$ S/m; $\varepsilon_r = 52.782$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY Configuration:

- Probe: EX3DV4 SN3873; ConvF(7.30, 7.30, 7.30); Calibrated: 26.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1341; Calibrated: 25.08.2015
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch11/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.230 W/kg

Configuration/Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.884 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.232 W/kg

0 dB = 0.232 W/kg = -6.35 dBW/kg

Appendix A 50055364 004

TÜVRheinland®

Products

Page 9 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 08.08.2016

03-WLAN5GHz Band 1-802.11a 6Mbps-Front Face-0cm-Ch48

Communication System: UID 0, WIFI (0); Frequency: 5240 MHz; Duty Cycle: 1:1.028

Medium: MSL_5G_160808

Medium parameters used: f = 5240 MHz; $\sigma = 5.271 \text{ S/m}$; $\varepsilon_r = 50.934$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.40, 4.40, 4.40); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch48/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.682 W/kg

Configuration/Ch48/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 3.264 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.343 W/kg; SAR(10 g) = 0.098 W/kg

Maximum value of SAR (measured) = 0.920 W/kg

0 dB = 0.920 W/kg = -0.36 dBW/kg

Page 10 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd.

Date/Time: 08.08.2016

04-WLAN5GHz Band 1-802.11a 6Mbps-Edge 3-0cm-Ch48

Communication System: UID 0, WIFI (0); Frequency: 5240 MHz; Duty Cycle: 1:1.028

Medium: MSL 5G 160808

Medium parameters used: f = 5240 MHz; $\sigma = 5.271$ S/m; $\varepsilon_r = 50.934$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.40, 4.40, 4.40); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch48/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.32 W/kg

Configuration/Ch48/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 1.813 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 0.658 W/kg; SAR(10 g) = 0.223 W/kgMaximum value of SAR (measured) = 1.79 W/kg

0 dB = 1.79 W/kg = 2.53 dBW/kg

Appendix A 50055364 004

TÜVRheinland®

Products

Page 11 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 08.08.2016

05-WLAN5GHz Band 4-802.11a 6Mbps-Front Face-0cm-Ch149

Communication System: UID 0, WIFI (0); Frequency: 5745 MHz; Duty Cycle: 1:1.028

Medium: MSL_5G_160808

Medium parameters used: f = 5745 MHz; $\sigma = 6.105$ S/m; $\varepsilon_r = 49.947$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.02, 4.02, 4.02); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY 52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch149/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.04 W/kg

Configuration/Ch149/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 4.005 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 0.407 W/kg; SAR(10 g) = 0.106 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

Appendix A 50055364 004

TÜVRheinland®

Products

Page 12 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd. Date/Time: 08.08.2016

06-WLAN5GHz Band 4-802.11a 6Mbps-Edge 3-0cm-Ch149

Communication System: UID 0, WIFI (0); Frequency: 5745 MHz; Duty Cycle: 1:1.028

Medium: MSL 5G 160808

Medium parameters used: f = 5745 MHz; $\sigma = 6.105$ S/m; $\varepsilon_r = 49.947$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.02, 4.02, 4.02); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch149/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.06 W/kg

Configuration/Ch149/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 1.818 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 0.692 W/kg; SAR(10 g) = 0.242 W/kg

Maximum value of SAR (measured) = 2.03 W/kg

0 dB = 2.03 W/kg = 3.07 dBW/kg

Page 13 of 13

Test Laboratory: EMTEK (Shenzhen) Co.,Ltd.

Date/Time: 08.08.2016

07-WLAN5GHz Band 4-802.11a 6Mbps-Edge 3-0cm-Ch165

Communication System: UID 0, WIFI (0); Frequency: 5825 MHz; Duty Cycle: 1:1.028

Medium: MSL 5G 160808

Medium parameters used: f = 5825 MHz; $\sigma = 6.228$ S/m; $\varepsilon_r = 49.742$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C

DASY Configuration:

• Probe: EX3DV4 - SN3873; ConvF(4.02, 4.02, 4.02); Calibrated: 26.08.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1341; Calibrated: 25.08.2015

• Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1231

• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Configuration/Ch165/Area Scan (91x91x1): Interpolated grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.08 W/kg

Configuration/Ch165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 1.822 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 0.709 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 2.17 W/kg

0 dB = 2.17 W/kg = 3.36 dBW/kg

50055364 004

Produkte

Products

Page 1 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

MRT-CERT (Auden)

Certificate No: D5GHzV2-1169_Jan14

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1169

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 07, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name Jeton Kastrati Function

Signature

Approved by:

Katja Pokovic

Technical Manager

Laboratory Technicia

Issued: January 8, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D5GHzV2-1169_Jan14

Page 1 of 16

50055364 004

Produkte

Products

Page 2 of 41

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service
Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1169 Jan14

Page 2 of 16

50055364 004

Produkte

Products

Page 3 of 41

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	732.0.7
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	1.1- (2 direction)

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.43 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 4 of 41

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.0 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 5 of 41

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 6 of 41

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		an 60 th 40

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 7 of 41

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR tor nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.92 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 8 of 41

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

50055364 004

Produkte

Products

Page 9 of 41

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.7 Ω - 8.2 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.5 Ω - 5.8 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.7 Ω - 3.3 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.7 Ω - 2.7 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.7 Ω - 4.4 jΩ	
Return Loss	- 23.4 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.6 Ω - 7.5 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.7 Ω - 4.7 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	53.2 Ω - 2.2 jΩ
Return Loss	- 28.5 dB

50055364 004Page 10 of 41

Produkte

Products

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	55.2 Ω - 1.6 jΩ
Return Loss	- 25.8 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 2.9 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,207 ns
	1.20, 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 09, 2013

50055364 004

Produkte

Products

Page 11 of 41

DASY5 Validation Report for Head TSL

Date: 07.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1169

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.43$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.54$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 1000$ kg/m³ 4.75 S/m; ε_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.84 S/m; ε_r = 35; ρ = 1000 kg/m^3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.05 \text{ S/m}$; $\epsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.584 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.034 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.164 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.5 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Certificate No: D5GHzV2-1169_Jan14

Page 11 of 16

50055364 004

Produkte

Products

Page 12 of 41

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.543 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.43 W/kgMaximum value of SAR (measured) = 20.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.517 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

50055364 004

Produkte

Products

Page 13 of 41

Impedance Measurement Plot for Head TSL

50055364 004

Produkte

Products

Page 14 of 41

DASY5 Validation Report for Body TSL

Date: 07.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1169

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz; $\sigma=5.38$ S/m; $\epsilon_r=47.2;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5300 MHz; $\sigma=5.52$ S/m; $\epsilon_r=47;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5600 MHz; $\sigma=5.92$ S/m; $\epsilon_r=46.6;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5500 MHz; $\sigma=5.8$ S/m; $\epsilon_r=46.7;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5800 MHz; $\sigma=5.8$ S/m; $\epsilon_r=46.7;$ $\rho=1000$ kg/m³ , Medium parameters used: f=5800 MHz; $\sigma=6.2$ S/m; $\epsilon_r=46.2;$ $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.646 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.747 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.868 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

50055364 004

Produkte

Products

Page 15 of 41

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.036 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kgMaximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.673 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.07 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 18.7 W/kg = 12.72 dBW/kg

50055364 004

Produkte

Products

Page 16 of 41

Impedance Measurement Plot for Body TSL

50055364 004

Produkte

Products

Page 17 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client MRT-CERT (Auden)

Accreditation No.: SCS 108

S

C

Certificate No: D2450V2-927_Jan14

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 927

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 13, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14	
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14	
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14	
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14	
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14	
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14	

Name

Function

Signatur

Calibrated by:

Israe El-Naouq

Laboratory Technician

Gran Charen

Approved by:

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Technical Manager

Issued: January 13, 2014

Certificate No: D2450V2-927_Jan14

Page 1 of 8

50055364 004

Produkte

Products

Page 18 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Accreditation No.: SCS 108

Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates Glossary:

TSL

tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

50055364 004

Produkte

Products

Page 19 of 41

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

50055364 004

Produkte

Products

Page 20 of 41

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.2 Ω + 2.9 jΩ
Return Loss	• 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 4.7 jΩ	
Return Loss	- 26.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2013

50055364 004

Produkte Products

Page 21 of 41

DASY5 Validation Report for Head TSL

Date: 13.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 927

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12,2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kgMaximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

50055364 004

Produkte

Products

Page 22 of 41

Impedance Measurement Plot for Head TSL

50055364 004

Produkte Products

Page 23 of 41

DASY5 Validation Report for Body TSL

Date: 13.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 927

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/JEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.560 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.89 W/kgMaximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

50055364 004

Produkte

Products

Page 24 of 41

Impedance Measurement Plot for Body TSL

50055364 004

Produkte

Products

Page 25 of 41

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

1341

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be maifunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

50055364 004

Produkte

Products

Page 26 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client BV ADT - CN (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1341_Aug15

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1341

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

August 25, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Kelthley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
İ			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	06-Jan-15 (in house check)	In house check: Jan-16
Calibrator Box V2.1	SE UMS 006 AA 1002	06-Jan-15 (in house check)	In house check: Jan-16

Calibrated by:

Name Eric Hainfeld Function Technician Sig

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: August 25, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1341_Aug15

Page 1 of 5

50055364 004

Produkte

Products

Page 27 of 41

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

50055364 004

Produkte

Products

Page 28 of 41

DC Voltage Measurement A/D - Converter Resolution nominal

6.1μV , 61nV , High Range: 1LSB = full range = -100...+300 mV full range = -1.....+3mV Low Range: 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z	
High Range	403.750 ± 0.02% (k=2)	403.984 ± 0.02% (k=2)	403.695 ± 0.02% (k=2)	
Low Range	3.98648 ± 1.50% (k=2)	4.00128 ± 1.50% (k=2)	3.99767 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	168.5°±1°

Certificate No: DAE4-1341_Aug15

Page 3 of 5

50055364 004

Produkte

Products

Page 29 of 41

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199996.78	-0.32	-0.00
Channel X	+ Input	20004.32	2.72	0.01
Channel X	- input	-19999.36	1.12	-0.01
Channel Y	+ Input	199996.05	-0.88	-0.00
Channel Y	+ Input	20004.21	2.74	0.01
Channel Y	- Input	-20000.92	-0.38	0.00
Channel Z	+ Input	199996.11	-1,18	-0.00
Channel Z	+ Input	20000.24	-1.29	-0.01
Channel Z	- Input	-20001.93	-1.38	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2001.20	-0.19	-0.01
Channel X + Input	202.19	0.35	0.17
Channel X - Input	-197.68	0.39	-0.20
Channel Y + Input	2001,41	0.15	0.01
Channel Y + Input	200.48	-1.23	-0.61
Channel Y - Input	-199.37	-1.25	0.63
Channel Z + Input	2001.30	-0.03	-0.00
Channel Z + Input	200.84	-0.88	-0.44
Channel Z - Input	-199.71	-1.51	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.36	10.62
	- 200	-9.82	-11.33
Channel Y	200	-6.16	-6.57
	- 200	3.88	3.83
Channel Z	200	-22.22	-22.16
	- 200	20.49	20.34

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)	
Channel X	200	-	-4.48	-2.32	
Channel Y	200	5.21	•	-1.81	
Channel Z	200	9.82	2.20	-	

Certificate No: DAE4-1341_Aug15

Page 4 of 5

50055364 004

Produkte

Products

Page 30 of 41

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15976	16314
Channel Y	15918	17210
Channel Z	16256	16914

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV) max. Offset (μV)		Std. Deviation (µV)
Channel X	1.14	0.22	2.05	0.42
Channel Y	-0.70	-1.88	0.32	0.44
Channel Z	-2.05	-2.92	-1.09	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

t Office Collocalliption (Typica	values for information,		
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

50055364 004

Produkte

Products

Page 31 of 41

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client BV ADT-CN (Auden)

Certificate No: EX3-3873_Aug15

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3873

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

August 26, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013 Dec14) Dec-15	
DAE4	SN: 660 14-Jan-15 (No. DAE4-660_Jan15)		Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function

Calibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: August 27, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3873_Aug15

Page 1 of 11

50055364 004

Produkte

Products

Page 32 of 41

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage C

Accreditation No.: SCS 0108

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters СF A, B, C, D

Polarization φ φ rotation around probe axis

Polarization 8 $\boldsymbol{\vartheta}$ rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx.y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3873_Aug15

Appendix B 50055364 004

Produkte

Products

Page 33 of 41

EX3DV4 - SN:3873

August 26, 2015

Probe EX3DV4

SN:3873

Manufactured: Calibrated:

March 13, 2012 August 26, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

50055364 004

Produkte

Products

Page 34 of 41

EX3DV4- SN:3873

August 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.37	0.46	0.48	± 10.1 %
DCP (mV) ^B	100.8	98.5	100.1	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dΒ	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	158.3	±2.2 %
		Y	0.0	0.0	1.0		149.1	
		Z	0.0	0.0	1.0]	152.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

50055364 004

Produkte Products

Page 35 of 41

EX3DV4- \$N:3873

August 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.01	10.01	10.01	0.36	0.93	± 12.0 %
835	41.5	0.90	9.53	9.53	9.53	0.30	1.07	± 12.0 %
900	41.5	0.97	9.41	9.41	9.41	0.35	0.93	± 12.0 %
1750	40.1	1.37	8.21	8.21	8.21	0.36	0.80	± 12.0 %
1900	40.0	1.40	7.98	7.98	7.98	0.31	0.80	± 12.0 %
2300	39.5	1.67	7.63	7.63	7.63	0.37	0.80	± 12.0 %
2450	39.2	1.80	7.24	7.24	7.24	0.31	0.88	± 12.0 %
2600	39.0	1.96	7.05	7.05	7.05	0.35	0.80	± 12.0 %
5250	35.9	4.71	4.95	4.95	4.95	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.64	4.64	4.64	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

50055364 004

Produkte Products

Page 36 of 41

EX3DV4- SN:3873

August 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9,77	9.77	9.77	0.46	0.80	± 12.0 %
835	55.2	0.97	9.72	9.72	9.72	0.50	0.81	± 12.0 %
900	55.0	1.05	9.41	9.41	9.41	0.42	0.86	± 12.0 %
1750	53.4	1.49	7.86	7.86	7.86	0.37	0.82	± 12.0 %
1900	53.3	1.52	7.62	7.62	7.62	0.41	0.80	± 12.0 %
2300	52.9	1.81	7.50	7.50	7.50	0.38	0.80	± 12.0 %
2450	52.7	1.95	7.30	7.30	7.30	0.31	0.80	± 12.0 %
2600	52.5	2.16	7.03	7.03	7.03	0.21	0.80	± 12.0 %
5250	48.9	5.36	4.40	4.40	4.40	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.90	3.90	3.90	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.02	4.02	4.02	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

50055364 004

Produkte

Products

Page 37 of 41

EX3DV4-SN:3873

August 26, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

1.3 Frequency response (normalized) 1.1 1.0-0.9 8.0 0.7 0.6 0.5 1500 f [MHz] 500 1000 2000 2500 TEM R22

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Produkte

Products

Page 38 of 41

EX3DV4- SN:3873

August 26, 2015

Receiving Pattern (ϕ), $9 = 0^{\circ}$

18C 27 04 06 08 0

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Produkte Products

Page 39 of 41

EX3DV4-- SN:3873

August 26, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

50055364 004

Produkte Products

Page 40 of 41

EX3DV4-SN:3873

August 26, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\text{9}\$), f = 900 MHz

50055364 004

Produkte

Products

Page 41 of 41

EX3DV4- SN:3873

August 26, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	19.6		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	1.4 mm		