本科生《计算机视觉》 基于深度学习的视觉理解与生成

黄雷

人工智能研究院

huangleiAl@buaa.edu.cn

2023年10月12日

主要内容

- 深度学习基础
 - -神经网络及反向传播算法
 - 卷积神经网络中的视觉表示思想
- 视觉理解任务
 - 目标检测
 - 分割
- 视觉生成
 - 深度生成模型
 - 图像翻译任务详解
- 深度神经网络训练技巧

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution like template
 - Filters
 - Convolution module
- Pooling layer (module)

Feature extraction

- Feature extraction
 - Pixel-wise input
 - Correlation between features

 $(1, 0, 0)^T$

 (x_1, x_2, x_3)

Convolution Neural Network

Lenet-5

Convolution related layers

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution like template
 - Filters
 - Convolution module
- Pooling layer (module)

Module-wise architecture

➤ PyTorch 平台

Model construction

```
# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits
```


Module-wise architecture

➤ PyTorch 平台

```
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
```

Training per iteration:

```
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
```


Convolution Neural Network

Lenet-5

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution like template
 - Filters
 - Why convolution for vision
- Pooling layer (module)

Convolution

Match like template

pattern (3 x 3 x channel).

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Consider channel = 1 (black and white image)

1	-1	-1	
-1	1	-1	
-1	-1	1	

Filter 1

Filter 2

: :

(The values in the filters are unknown parameters.)

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Filter 2

Do the same process for every filter

Receptive Field(感受野)

Convolution Layer (卷积层)

Input: $x \in R^{d_{in}}$

weight: W $\in R^{d_{out} \times d_{in}}$

output: $y \in R^{d_{out}}$

Feature detection (特征检测)

Learning filters (weights)

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution like template
 - Filters
 - Why convolution for vision
- Pooling layer (module)

Practice with linear filters(线性滤波器)

Original

Filter

Filtered (no change)

Source: D. Lowe

Practice with linear filters

Original

Filter

Shifted *left*By 1 pixel

Practice with linear filters

Original

Filter

Blur (with a box filter)

Practice with linear filters

0	1	0	
1	-4	1	
0	1	0	

Filter

Output Image

Edge detect (边缘检测)

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution like template
 - Filters
 - Why convolution for vision
- Pooling layer (module)

Image Classification

Vision model

How MLP to CNN?

- Model locality
- > Parameter Efficiency

Observation 1

Observation 1

Some patterns are much smaller than the whole image.

Simplification 1

Simplification 1

Simplification 1 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Vision model

How MLP to CNN?

- Model locality
- Parameter Efficiency

Observation 2

The same patterns appear in different regions.

Simplification 2

Simplification 2

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

POOLING Layer

- In ConvNet architectures, Conv layers are often followed by Pooling layers
 - makes the representations smaller and more manageable without losing too much information.
 - Invariant in region.

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

Average POOLING

Single depth slice

average pool with 2x2 filters and stride 2

4.25	5.25
2	2

У

Source: Andrej Karpathy & Fei-

Intuitive example

Source: Andrej Karpathy & Fei-Fei Li

The characteristics of CNN

- Equivalent (等变性)----object detection
- Invariant (不变性)----Image Classification

receptive field (感受野)

Activation on Feature map

Deep neural networks visualization

• 对抗样例(Adversarial example)

Deep neural networks visualization

Neural Style Transfer

- > Style
- Content

Reconstructing an image from a convolutional layer

- Representation function: $\Phi: \Re^{H \times W \times C} \to \Re^d$ (image space to feature space)
- Target Representation: $\Phi_0 = \Phi(x_0)$ (x0 is the original image)
- We need to find: $x \in \Re^{H \times W \times C}$ by minimizing:

$$x^* = \arg\min_{x \in \Re^{H \times W \times C}} l(\Phi(x), \Phi_0) + \lambda R(x)$$

"Understanding Deep Image Representations by Inverting Them", by Aravindh Mahendran and Andrea Vedaldi.

Content Loss Function

- ullet Filters (Depths) at layer I: N_I
- ullet The height times the width of the feature map at layer I: $M_{_{I}}$
- ullet Response at layer I: $F_l \in \Re^{N_l imes M_l}$

 $F^l_{\ ij}$ represents the ith filter at position j in layer I

- ullet Original image: $ec{p}$
- We generate image: \vec{x} (randomly initialized)
- Squared-error loss:

$$L_{content} = \frac{1}{2} \sum_{i,j} (F^l_{ij} - P^l_{ij})^2$$

Style Loss Function

Filter correlations are given by the Gram matrix:

$$G^l \in \mathfrak{R}^{N_l \times N_l}$$

ullet G^l_{ij} is the inner product between the filters i and j in layer I:

$$G^l_{ij} = \sum_k F^l_{ik} F^l_{jk}$$

The loss at layer I:

$$E_l = \frac{1}{4N^2_l M^2_l} \sum_{i,j} (G^l_{ij} - A^l_{ij})^2$$
A <-> original image
G <-> generated image

• The total style loss:

$$L_{style} = \sum_{l=0}^{L} w_l E_l$$

Content Reconstruction

Image reconstructed from layers

(a)'conv1_1',

(b)'conv2_1',

(c)'conv3_1',

(d)'conv4_1' and

(e)'conv5_1'

of the original VGG-Network

$$L_{content} = \frac{1}{2} \sum_{i,j} (F^{l}_{ij} - P^{l}_{ij})^{2}$$

Style Reconstruction

$$E_{l} = \frac{1}{4N^{2}_{l}M^{2}_{l}} \sum_{i,j} (G^{l}_{ij} - A^{l}_{ij})^{2}$$

The Total Loss Function

Results

for initialization show image every 10 iterations

using white noise

谢谢!

