Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 3

- 1. (a) $\lim_{n \to \infty} n^{\frac{1}{n}} = 1 \neq 0$.
 - (b) $\lim_{n \to \infty} a_n = e^x \neq 0.$
 - (c) Let $\{s_n\}$ be the sequence of partial sum of the series $\sum_{n=1}^{\infty} a_n$. Then $s_n = \log(n+1) \to \infty$ as $n \to \infty$ and hence diverges.
- 2. If $0 \le a_n \le 1$ $(n \ge 1)$ and $0 \le x < 1$, then $|a_n x^n| \le |x|^n$ for all n. Now use comparison test.
- 3. (a) Take $a_n = \frac{\log n}{n^{3/2}}$ and $b_n = \frac{1}{n^{\alpha}}$ where $1 < \alpha < \frac{3}{2}$. By limit comparison test series converges. (one can also use Cauchy condensation test i.e find the behaviour of the series $\sum 2^n a_{2^n}$.)
 - (b) Take $b_n = \frac{1}{n}$. By limit comparison test series diverges.
 - (c) Take $b_n = \frac{1}{n^2}$. By limit comparison test series converges.
- 4. (a) Take $a_n = \frac{n^{\sqrt{2}}}{2^n}$. Then $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \frac{1}{2} < 1$. Hence series converges.
 - (b) Take $a_n = \frac{n!}{10^n}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty > 1$. Hence series diverges.
 - (c) Take $a_n = \frac{n!}{(2n+1)!}$. Then $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 0 < 1$. Hence series converges.
- 5. (a) Conditionally convergent.
 - (b) Absolutely convergent, as $|a_n| \leq \frac{1}{n^2}$.
 - (c) Conditionally convergent.
- 6. (a) Let $a_n = (n+1+2^n)x^n$. Then $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 2|x|$ and series converges for $|x| < \frac{1}{2}$.
 - (b) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x|}{e}$, series converges if |x| < e.
 - (c) $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n |x-1| = \frac{|x-1|}{e}$, series converges if $\frac{|x-1|}{e} < 1$.
- 7. (a) Converges, $|a_n| \leq \frac{\pi}{2^n}$, use comparison test.
 - (b) Converges, $|a_n| \leq \frac{1}{n^{3/2}}$.