5.16. Ртуть, находящуюся при 0°С и давлении P=100 атм, расширяют адиабатически и квазистатически до атмосферного давления. Найти изменение температуры ртути в этом процессе, если коэффициент объемного расширения ртути в этих условиях положителен и равен $\alpha=1.81\cdot 10^{-4}\,^{\circ}\text{C}^{-1}$, удельная теплоемкость ртути $c_P=0.033$ кал/($\mathbf{r}\cdot ^{\circ}$ С), плотность $\rho=13.6$ г/см³.

$$d = \frac{1}{V} \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix} p \qquad 1 \end{pmatrix} dS = \begin{pmatrix} \frac{\partial S}{\partial T} \end{pmatrix} dT + \begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix} dP = 0 \geq 0 \end{pmatrix} \frac{dP}{dT} = -\frac{\begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix} r}{\begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix} r} = \frac{CP}{dT}$$

$$Cp = T \begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix} p \qquad 2 \end{pmatrix} - \begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix} r = \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix} p = 0 \geq 0 \end{pmatrix} \frac{dP}{dT} = -\frac{CP}{dT} = -\frac{CP}{dT}$$

5.28. При изотермическом сжатии $(T=293~{\rm K})$ одного моля глицерина от давления $P_1=1$ атм до давления $P_2=11$ атм выделяется теплота $Q=10~{\rm Дж}$. При адиабатическом сжатии этого глицерина на те же $10~{\rm атм}$ затрачивается работа $A=8,76~{\rm мДж}$. Плотность глицерина $\rho=1,26~{\rm r/cm}^3$, молярная масса $\mu=92~{\rm r/mоль}$, $\gamma=C_P/C_V=1,1$. Определить по этим данным температурный коэффициент давления глицерина $(\partial P/\partial T)_V$, а также коэффициент теплового расширения α и изотермическую сжимаемость β_T .