ZverevYA 11102024-182728

Даны значения s-параметров:

Freq	s ₁₁		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
2.6	0.471	-164.0	10.854	77.7	0.041	51.7	0.288	-83.6
2.7	0.472	-166.0	10.453	76.4	0.042	51.8	0.282	-85.3
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
2.9	0.474	-169.7	9.714	73.8	0.044	51.9	0.274	-88.7
3.0	0.475	-171.3	9.374	72.5	0.046	51.9	0.271	-90.3
3.1	0.476	-172.8	9.096	71.5	0.047	51.9	0.268	-91.4
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.3	0.477	-175.9	8.549	69.3	0.049	52.0	0.263	-93.8
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2

и частоты $f_{\scriptscriptstyle \rm H}=2.9$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=3.2$ $\Gamma\Gamma$ ц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\;$.

Варианты ОТВЕТА:

- 1) -27.0 дБ
- 2) -6.5 дБ
- 3) -11.2 дБ
- 4) 19.7 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
8.6	0.597	125.7	3.137	14.6	0.122	33.5	0.142	154.5

Найти точку (см. рисунок 1), соответствующую s_{22} на частоте 3.2 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.547	155.7	4.597	67.2	0.063	55.9	0.261	-46.7
1.7	0.567	142.5	3.523	56.9	0.079	54.1	0.250	-52.6
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.239	-60.3
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.9	0.646	111.8	2.021	29.6	0.122	43.7	0.219	-80.3
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.5	0.749	84.6	1.221	-0.8	0.169	28.9	0.225	-131.4

и частоты $f_{\scriptscriptstyle \rm H}=1.3$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=4.1$ $\Gamma\Gamma$ ц.

Найти усиление на $f_{\scriptscriptstyle \mathrm{B}}$.

Варианты ОТВЕТА:

1) 6.6 дБ 2) 13.2 дБ 3) 2.7 дБ 4) 5.5 дБ

Задан двухполюсник на рисунке 2, причём R1 = 16.4 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса z=0.6-0.27i .

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.323	-159.5	11.379	88.9	0.043	67.1	0.320	-61.2
1.3	0.326	-162.8	10.531	86.9	0.046	67.0	0.302	-62.9
1.4	0.331	-165.9	9.800	85.0	0.049	66.9	0.285	-65.0
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
1.6	0.335	-171.5	8.475	81.1	0.055	66.3	0.256	-68.8
1.7	0.338	-173.9	7.988	79.7	0.058	66.1	0.243	-70.7
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.072	64.5	0.200	-81.3
2.4	0.350	172.9	5.544	69.8	0.079	63.5	0.190	-85.2

и частоты $f_{\mbox{\tiny H}}=1.5$ $\Gamma\Gamma\mbox{ц},\,f_{\mbox{\tiny B}}=1.9$ $\Gamma\Gamma\mbox{ц}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 6.2 дБ 2) 2.1 дБ 3) 2.2 дБ 4) 1.1 дБ