4) Déterminer la tangente (T_0) en 0 puis tracer la fonction tangente et (T_0) sur $\left] -\frac{\pi}{2} \; ; \; \frac{\pi}{2} \right[.$

Exercice 23

Approximation de π par la méthode d'Archimède.

Dans un texte intitulé « De la mesure du cercle », Archimède imagine la première méthode jamais proposée permettant, en théorie, le calcul de π avec une précision aussi grande qu'on le souhaite.

 Q_1

n = 1 (6 côtés)

Soit \mathscr{C} un cercle de rayon 1 : on construit, pour $n \ge 1$ deux polygones réguliers P_n , et Q_n , ayant 3×2^n côtés, P_n étant inscrit dans \mathscr{C} , et Q_n , exinscrit à \mathscr{C} (voir la figure ci-contre).

Le périmètre du cercle (= 2π) est encadré par ces deux polygones. On note p_n et q_n , les demipérimètres respectifs de P_n et Q_n . Ainsi, $p_n < \pi < q_n$

b) En déduire les relations :
$$p_n = 3 \times 2^n \sin\left(\frac{\pi}{3 \times 2^n}\right)$$
 et $q_n = 3 \times 2^n \tan\left(\frac{\pi}{3 \times 2^n}\right)$.

En pratique, ces expressions ne permettent pas un calcul numérique de p_n et q_n . Dans la suite, nous nous orientons vers un calcul de proche en proche.

3) Relations de récurrence

a) On pose
$$\beta_n = \frac{\pi}{3 \times 2^{n+1}}$$
. Exprimer p_n et q_n , en fonction de n et β_n .

b) On admet que :
$$\sin 2a = 2 \sin a \cos a$$
 et $1 + \cos 2a = 2 \cos^2 a$
En déduire que, $\forall n \ge 1$, $\frac{1}{q_{n+1}} = \frac{1}{2} \left(\frac{1}{p_n} + \frac{1}{q_n} \right)$ et $p_{n+1} = \sqrt{p_n q_{n+1}}$

- c) Calculer q_2 et p_2 à l'aide des relations précédentes. Quelle est la précision sur la valeur approchée de π ?
- 4) Algorithme.
 - a) Proposer un algorithme permettant de calculer les valeurs de p_n et q_n jusqu'à obtenir un encadrement de n d'amplitude 10^{-6} . Donner l'encadrement de π ainsi obtenu.
 - b) Proposer une fonction en Python qui donne le nombre d'itérations nécessaires pour obtenir un encadrement à 10^{-p} du nombre π , $p \in \mathbb{N}$. Quel est le nombre d'itérations nécessaires pour fournir 3 décimales supplémentaire? Cet algorithme est-il efficace pour connaître les décimales de π ?