Analogue Electronics

Xiping Hu

 $\rm https://hxp.plus/$

June 18, 2020

Contents

1	Bas	sics of Circuits 7
	1.1	The direction of current and voltage
	1.2	How to determine whether a component is consuming or providing energy
	1.3	Eletcronic Components
		1.3.1 Resistors
		1.3.2 Power Sources
	1.4	Kirchhoff's Laws
		1.4.1 Kirchhoff's Current Law
		1.4.2 Kirchhoff's Voltage Law
	1.5	Gain of an Amplifier Circuit
2	Оре	erational Amplifier 9
	2.1^{-2}	Operational Amplifier
	2.2	Ideal Operational Amplifier
	2.3	Closed-looped Amplifier
		2.3.1 Non-inverting Operational Amplifier
		2.3.2 Inverting Operational Amplifier
	2.4	Applications of operational amplifiers
		2.4.1 Subtraction Circuit
		2.4.2 Sum Circuit
		2.4.3 Instrumentation Amplifier
		2.4.4 Integrating Circuit
		2.4.5 Differential Circuit
3	Dio	odes 15
	3.1	Semiconductors
		3.1.1 Intrinsic Semiconductor
		3.1.2 Extrinsic Semiconductor
	3.2	P-N Junction and Diode
		3.2.1 Breakdown of P-N Junction
	3.3	Diode modeling
		3.3.1 Real Diode Modeling
		3.3.2 Mathematically idealized diode
		3.3.3 Ideal diode in series with voltage source
		3.3.4 Diode with voltage source and current-limiting resistor
		3.3.5 Diode in Small Signal Circuits
	3.4	Applications of Diodes
		3.4.1 Rectifier Circuit
		3.4.2 Limiting Circuit
		3.4.3 Switching Circuit
	3.5	Diodes for Special Usage
		3.5.1 Zener diode
		3.5.2 Photodiode
		3.5.3. Light-amitting diode

4 CONTENTS

		3.5.4 Schottky diode	0
4	MO	SFET and Amplifying Circuit 21	1
	4.1	Classification of MOSFET	1
		4.1.1 N-type Enhancement-mode MOSFET	1
		4.1.2 N-type Depletion-mode MOSFET	
		4.1.3 P-type MOSFET	
	4.2	Static Working Point	
	4.3	Early Effect	
	4.4	Three types of Amplifier Circuit	
	4.4	VI I	
		4.4.1 Common Source Amplifier Circuit	
		4.4.2 Common Drain Amplifier Circuit	
		4.4.3 Common Gate Amplifier Circuit	
	4.5	Summary	
		4.5.1 Features of Three Types of MOSFET Amplifing Circuits	
		4.5.2 Small Signal Model of MOSFET	
		4.5.3 Saturation Mode of MOSFET	7
5	Bip	olar Junction Transistor 29	
	5.1	Electronic Symbol	9
	5.2	Control Principle	0
	5.3	Three Types of Amplifier Circuit	0
	5.4	Static Working Point	0
	5.5	Determine the working state of BJT	
	5.6	Model of Small Signal	
	5.7	Compound Transistor	
	9.1	Compound Transistor	_
6	Free	quency Response 33	3
	6.1	Sketch of Gain vs Frequency of All Circuits	3
	6.2	R-C Series Circuit	
	٠	6.2.1 Low-Frequency Response of R-C High Pass Filter	
		6.2.2 Mid-Frequency	
		6.2.3 High-Frequency Response of R-C Low Pass Filter	
	6.3	Frequency Response of Amplifiers	
	0.5	· · · ·	
		<u>.</u>	
		6.3.2 High-Frequency	Э
7	Ans	alogue Integrated Circuits 39	n
'			
	7.1	Differential Amplifier Circuit	_
	7.2	MOSFET Current Source	-
		7.2.1 MOSFET Current Mirror	
		7.2.2 Cascade Current Mirror	J
		7.2.3 Combined Current Mirror	0
		7.2.4 JFET Current Mirror	1
	7.3	BJT Current Source	1
		7.3.1 BJT Current Mirror	1
		7.3.2 Micro Current Source	2
		7.3.3 Current Source with High Output Resistance	2
		7.3.4 Combined Current Source	
	7.4	Differential Amplifier	
		7.4.1 MOSFET	
		7.4.2 BJT	
		1.4.2 рд	±
8	Fee	dback 4'	7
_	8.1	Basic Feedback Structure	
	8.2	Bandwidth and Gain	
	8.3		
	0.0	Stability Problem of Feedback	0

CONTENTS 5

	8.4	Four Basic Feedback Topologies	48
	8.5	Positive or Negative	49
	8.6	Virtual Short and Open Circuit of Amplifier in the State of Deep Negative Feedback	49
9	Pow	ver Amplifiers	51
	9.1	Classfication of Power Amplifiers	51
	9.2	Some Example Circuits	52
	9.3	Power Output	52
	9.4	Crossover Distortion Avoiding	52
10	Filt	ers and Signal Generators	53
	10.1	Four Types of Filters	53
	10.2	Filter with source	53
	10.3	Sallen-Key Filtering Circuit	54
	10.4	Voltage Comparator	54
	10.5	Inverting Schmitt Trigger	54
	10.6	RC Phase Shifting Network	54
	10.7	Stability of RC Oscillator	55
			55
	10.9	Generation of Square Waveforms	56
	10.1	0Generation of Triangle Waveforms	56
11	Stal	bility Problem of DC Source	57
	11.1	The Bridge Rectifier	57
		Single Phase Bridge Rectifier	
		Series Feedback Voltage Regulator	
		Integrated Voltage Regulator	

6 CONTENTS

Chapter 1

Basics of Circuits

1.1 The direction of current and voltage

In complex problems, we can not always know the direction of currents or voltage. The usual solution is to assume a direction, and use it to solve problems. If the solution of current or voltage, is positive, then the position is just what we assumed, and vice versa.

1.2 How to determine whether a component is consuming or providing energy

For resistors, resistors are always consuming energy.

For power sources, if the direction of current is from the positive electrode to the negative electrode, then the power source is consuming energy, and vice versa.

1.3 Eleteronic Components

1.3.1 Resistors

U = -IR

1.3.2 Power Sources

(Controlled) Voltage Source

P = UI

The resistance of an ideal voltage source is: 0

Note that an ideal voltage source must not be short-circuited.

(Controlled) Current Source

The current through a current source is only decided by the source itself.

The resistance of an ideal current source is : ∞

Note that an ideal current source must not be open-circuited.

1.4 Kirchhoff's Laws

- \bullet branch
- \bullet node
- loop
- \bullet mesh

1.4.1 Kirchhoff's Current Law

For each node in the circuit, as the node can not accumulate charges, the sum of current is zero.

$$\sum I = 0$$

1.4.2 Kirchhoff's Voltage Law

For each loop in circuit, the sum of the voltage in of all branches is zero.

$$\sum U=0$$

1.5 Gain of an Amplifier Circuit

	Voltage	Current	Transresistance	Transconductance	Power
Gain	$A_v = \frac{v_o}{v_i}$	$A_i = \frac{i_o}{i_i}$	$A_r = \frac{v_o}{i_i}$	$A_g = \frac{i_o}{v_i}$	$A_p = \frac{P_o}{P_i}$
Gain in dB	$20 \lg A_v $	$20 \lg A_i $	$20\lg A_r $	$20\lg A_g $	$10\lg A_p$

Chapter 2

Operational Amplifier

2.1 Operational Amplifier

We define r_i as the input impedance, r_o as the output impedance. v_p as the non-inverting input, v_n the inverting input.

Usually, we have $v_p \approx v_n$, $r_i \approx \infty$, $r_o \approx 0$.

Note that the output voltage of a operational amplifier has limits, called **Bandwidth**. When the input voltage exceeds the limits, it outputs the maximum or minimum value.

$$A_v = \frac{v_o}{v_i} = A_{vo} \cdot \frac{R_L}{R_o + R_L}$$

The output resistance may infect the gain of amplifier. The larger R_L is, the more A_v approaches A_{vo} , while the ideal case is when $R_o = 0$

2.2 Ideal Operational Amplifier

For ideal operational amplifier:

- $v_p = v_n$, $i_i = 0$, $r_i = \infty$
- $r_o = 0, v_o = A_{vo} (v_p v_n)$
- $bandwidth = \infty$

Here is a model which shows all the feature of an ideal operational comparator:

2.3 Closed-looped Amplifier

Usually operational amplifiers are used with vegetative feedback to ensure its stability. We apply a portion of output voltage to input, reducing the gain of a circuit.

2.3.1 Non-inverting Operational Amplifier

$$A_{vo} = \frac{R_2 + R_1}{R_1} = 1 + \frac{R_2}{R_1}$$

Note that when $R_2 \ll R_1$, $A_{vo} = 1$, $v_i = v_o$.

2.3.2 Inverting Operational Amplifier

2.4 Applications of operational amplifiers

2.4.1 Subtraction Circuit

An subtraction circuit can calculate the difference of inverting input and non-inverting input.

$$\begin{cases} \frac{v_{i2} - v_p}{R_2} = \frac{v_p}{R_3} \\ \frac{v_{i1} - v_n}{R_1} = \frac{v_n - v_o}{R_4} \end{cases}$$

$$\begin{cases} R_3 (v_{i2} - v_p) = R_2 v_p & \Rightarrow v_p = \frac{R_3}{R_2 + R_3} v_{i2} \\ R_4 (v_{i1} - v_n) = R_1 (v_n - v_0) & \Rightarrow v_n = \frac{R_4 v_{i1} + R_1 v_o}{R_4 + R_1} \end{cases}$$

$$\frac{R_3}{R_2 + R_3} v_{i2} = \frac{R_4 v_{i1} + R_1 v_o}{R_4 + R_1}$$

$$\frac{R_3 (R_4 + R_1)}{R_2 + R_3} v_{i2} = R_4 v_{i1} + R_1 v_o$$

 \Rightarrow

$$v_o = \frac{\frac{R_4}{R_1} + 1}{\frac{R_2}{R_3} + 1} v_{i2} - \frac{R_4}{R_1} v_{i1} = \left(1 + \frac{R_4}{R_1}\right) \frac{\frac{R_3}{R_2}}{1 + \frac{R_3}{R_2}} v_{i2} - \frac{R_4}{R_1} v_{i1}$$

If $R_4/R_1 = R_3/R_2 = r$, then

$$v_o = (1+r)\frac{r}{1+r}v_{i2} - rv_{i1} = r(v_{i2} - v_{i1})$$

$$A_v = r = \frac{R_4}{R_1} = \frac{R_3}{R_2}$$

Input Resistance $R_{id} = R_1 + R_2$, When $v_{i2} = 0$, $R_{i1} = R_1$, When $v_{i1} = 0$, $R_{i2} = R_2 + R_3$.

2.4.2 Sum Circuit

An sum circuit adds the inverting input and the non-inverting input.

Similarly, we have

$$\begin{cases} \frac{v_{i1} - v_n}{R_1} + \frac{v_{i2} - v_n}{R_2} = \frac{v_n - v_o}{R_3} \\ v_n = v_p = 0 \end{cases} \Rightarrow \frac{v_{i1}}{R_1} + \frac{v_{i2}}{R_2} = \frac{-v_o}{R_3}$$
$$v_o = -\left(\frac{R_3}{R_1}v_{i1} + \frac{R_3}{R_2}v_{i2}\right)$$

When we set

$$R_1 = R_2 = R_3$$

We have

$$v_o = -(v_{i1} + v_{i2})$$

2.4.3 Instrumentation Amplifier

$$A_{vd} = -\frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) \qquad v_o = A_{vd} \left(v_1 - v_2 \right)$$

2.4.4 Integrating Circuit

Since

 $C = \frac{Q}{U}$

 \Rightarrow

$$U = \frac{Q}{C} = \frac{1}{C} \int I \, dt = \frac{1}{C} \int \frac{v_i}{R} \, dt = \frac{1}{RC} \int v_i \, dt$$

$$0 - v_o = U$$

 \Rightarrow

$$v_o = -\frac{1}{RC} \int v_i \, \mathrm{d}t$$

We define

$$\tau = RC$$

Then

$$-v_o = \frac{1}{\tau} \int v_1 \mathrm{d}t$$

2.4.5 Differential Circuit

$$\begin{cases} i_i = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}v_i}{\mathrm{d}t} \\ i = \frac{v_o}{R} \\ i_i = i \end{cases}$$

 \Rightarrow

$$-v_o = RC \frac{\mathrm{d}v_i}{\mathrm{d}t} = \tau \frac{\mathrm{d}v_i}{\mathrm{d}t}$$

Chapter 3

Diodes

3.1 Semiconductors

3.1.1 Intrinsic Semiconductor

An intrinsic semiconductor, also called as undoped semiconductor, is a pure semiconductor without and significant dopant species present. Two factors are responsible to the current pass through it:

- Excited electrons
- Holes

However, we seldom use intrinsic semiconductors.

3.1.2 Extrinsic Semiconductor

An extrinsic semiconductor is a semiconductor that has been doped, which has more features and provides more charge carriers.

P-type semiconductor

P-type semiconductors are created by doping some electron accepter elements during manufacture. It has more holes, holes are major carriers of the current.

N-type semiconductor

N-type semiconductors are created by doping some electron donor elements during manufacture. It has more electrons, electrons are major carriers of the current.

3.2 P-N Junction and Diode

When we combine the 2 types of extrinsic semiconductor together, we found some interesting features. As p-type semiconductors use holes to transmit currents, n-type semiconductors use electrons to transmit currents, and, to make life easier, we take holes as positive charges. When the two types of semiconductors are put together, at the contact surface, diffusion phenomenon occur.

Some holes traveled into the n-type semiconductor, some electrons traveled into the p-type semiconductor. And after that, an inner electric field formed, which hinders the p-n junction from carrying currents.

To ease the effect above, we need to add some positive voltage at p-type semiconductor, and also add some negative voltage at n-type semiconductor. And if we add negative voltage at n-type semiconductor, positive voltage at p-type semiconductor, the effect will be intensified.

16 CHAPTER 3. DIODES

Figure 3.1: PN Junction at equilibrium state

In conclusion, if we add forward voltage (from p to n), the diode acts as a short circuit. If we add reversed voltage, the diode acts like an open circuit. And if the reversed voltage is big enough, it will cause the diode broken-through, and the current flow through it will increase tremendously.

3.2.1 Breakdown of P-N Junction

There are two types of breakdown

- electricity breakdown, which is invertible
- heat breakdown, which cause permanent damage

3.3 Diode modeling

3.3.1 Real Diode Modeling

$$i_d = I_S \left(e^{v_D/(nV_T)} - 1 \right)$$

3.3.2 Mathematically idealized diode

Firstly, consider a mathematically idealized diode. In such an ideal diode, if the diode is reverse biased, the current flowing through it is zero. This ideal diode starts conducting at 0 V and for any positive voltage an infinite current flows and the diode acts like a short circuit. The I-V characteristics of an ideal diode are shown below:

3.3. DIODE MODELING

3.3.3 Ideal diode in series with voltage source

Now consider the case when we add a voltage source in series with the diode in the form shown below:

When forward biased, the ideal diode is simply a short circuit and when reverse biased, an open circuit.

3.3.4 Diode with voltage source and current-limiting resistor

The last thing needed is a resistor to limit the current, as shown below:

The real diode now can be replaced with the combined ideal diode, voltage source and resistor and the circuit then is modelled using just linear elements. If the sloped-line segment is tangent to the real diode curve at the Q-point, this approximate circuit has the same small-signal circuit at the Q-point as the real diode.

18 CHAPTER 3. DIODES

3.3.5 Diode in Small Signal Circuits

$$r_d = \frac{1}{g_d} = \frac{V_T}{I_{DQ}}$$

Where, in the condition of T = 300 K,

$$V_T = 26 \text{ mV}$$

3.4 Applications of Diodes

3.4.1 Rectifier Circuit

The Half-wave Rectifier

The Bridge Rectifier

$$V_L \approx 0.9 V_S$$

$$I_{DI} = I_{D2} = I_{D3} = I_{D4} = \frac{0.45V_S}{R_L}$$

3.4.2 Limiting Circuit

3.4.3 Switching Circuit

Figure 3.5: A Switching Circuit, $v_o=5~\mathrm{V}$ holds only if all the input voltage is 5 V

20 CHAPTER 3. DIODES

3.5 Diodes for Special Usage

3.5.1 Zener diode

A Zener diode is manufactured to be broken-through. It is used to stabilize voltages. As we can know from the I-V characteristic of an diode, when the diode is broken-through, change in current only cause little change in voltage.

3.5.2 Photodiode

A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed in the photodiode.

3.5.3 Light-emitting diode

A light-emitting diode (LED) is a semiconductor light source that emits light when current flows through it.

3.5.4 Schottky diode

The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action.

Chapter 4

MOSFET and Amplifying Circuit

4.1 Classification of MOSFET

4.1.1 N-type Enhancement-mode MOSFET

Only when $V_{GS} > V_{TN} > 0$, N-Channel will be formed, MOSFET is conductive. V_{TN} is called the Threshold Voltage.

4.1.2 N-type Depletion-mode MOSFET

The only difference between Enhancement-mode and Depletion-mode is the charges in oxide, which made $V_{TN} < 0$

4.1.3 P-type MOSFET

4.2 Static Working Point

To calculate the DC bias point of a MOSFET

$$\begin{cases} V_{GSQ} = V_{GG} \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN} \right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ} R_d \end{cases}$$

Note that $V_{DSQ} > V_{GSQ} - V_{TN}$ must be verified to ensure that MOSFET is working in active mode. Then for small AC signal, the current at drain is

$$i_D = 2K_n \left(V_{GSQ} - V_{TN} \right) v_{GS} = g_m v_{GS}$$

4.3 Early Effect

$$i_D = K_n \left(v_{GS} - V_{TN} \right)^2 \left(1 + \lambda v_{DS} \right)$$

$$r_{ds} = \left. \frac{\partial v_{DS}}{\partial i_D} \right|_{V_{GSQ}} = \frac{1}{\lambda K_n \left(V_{GSQ} - V_{TN} \right)^2} \approx \frac{1}{\lambda I_{DQ}} = \frac{V_A}{I_{DQ}}$$

Where V_A is called the Early Voltage

$$V_A = \frac{1}{\lambda}$$

4.4 Three types of Amplifier Circuit

4.4.1 Common Source Amplifier Circuit

DC bias point:

$$\begin{cases} V_{GSQ} = \left(\frac{R_{g2}}{R_{g1} + R_{g2}}\right) V_{DD} \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN}\right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ} R_t I_d \end{cases}$$

Transconductance:

$$g_m = 2K_n \left(V_{GSO} - V_{TN} \right)$$

Gain:

$$A_{vs} = -g_m \left(r_{ds} \parallel R_d \right) \qquad A_{vs} = \frac{v_o}{v_s} = \frac{v_o}{v_i} \cdot \frac{v_i}{v_s} = \frac{v_i}{v_s} A_v$$

Resistance:

$$R_i = R_{qs1} \parallel R_{qs2}$$
 $R_o = r_{ds} \parallel R_d \approx R_d$

4.4.2 Common Drain Amplifier Circuit

DC bias point:

$$\begin{cases} V_{GSQ} = \frac{R_{g2}}{R_{g1} + R_{g2}} \cdot V_{DD} - I_{DQ}R_s \\ I_{DQ} = K_n \left(V_{GSQ} - V_{TN} \right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ}R_s \end{cases}$$

Transconductance:

$$g_m = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

Gain:

$$A_v = \frac{R_s \parallel r_{ds} \parallel R_L}{\frac{1}{g_m} + R_s \parallel r_{ds} \parallel R_L} \approx 1 \qquad A_{vs} = \frac{v_o}{v_s} = \frac{v_o}{v_i} \cdot \frac{v_i}{v_s} = \frac{v_i}{v_s} A_v$$

Resistance:

$$R_i = R_{g1} \parallel R_{g2} \qquad \qquad R_o = R_s \parallel r_{ds} \parallel \frac{1}{g_m}$$

4.4.3 Common Gate Amplifier Circuit

4.5. SUMMARY 27

DC bias point:

$$\begin{cases} I = I_{DQ} = K_n \left(V_{GSQ} - V_{TN} \right)^2 \\ V_{DSQ} = V_{DD} - I_{DQ} R_d + V_{GSQ} \end{cases}$$

Transconductance:

$$g_m = 2K_n \left(V_{GSQ} - V_{TN} \right)$$

Gain:

$$A_{v} = g_{m} \left(R_{d} \parallel R_{L} \right) \qquad \qquad A_{vs} = \frac{g_{m} \left(R_{d} \parallel R_{L} \right)}{1 + g_{m} R_{si}} \qquad \qquad A_{is} = \left(\frac{R_{d}}{R_{d} + R_{L}} \right) \left(\frac{g_{m} R_{si}}{1 + g_{m} R_{si}} \right)$$

Resistance:

$$R_i = \frac{1}{g_m} \qquad \qquad R_o \approx R_d$$

4.5 Summary

4.5.1 Features of Three Types of MOSFET Amplifing Circuits

Type	A_v	A_i	R_i	R_o
Common Source	high,inverse	-	high	-
Common Drain	1	-	high	low
Common Gate	high,non-inverse	1	low	-

4.5.2 Small Signal Model of MOSFET

$$I_{DQ} = K_n (V_{GSQ} - V_{TN})^2$$
 $g_m = 2K_n (V_{GSQ} - V_{TN})$ $r_{ds} = \frac{1}{\lambda K_n (V_{GSQ} - V_{TN})^2}$

4.5.3 Saturation Mode of MOSFET

MOSFET Type	V_{GS}	V_{DS}
N-type enhancement	$V_{GS} > V_{TN}$	$V_{DS} > V_{GS} - V_{TN}$
N-type depletion	$V_{GS} > V_{PN}$	$V_{DS} > V_{GS} - V_{PN}$
P-type enhancement	$V_{GS} < V_{TP}$	$V_{DS} < V_{GS} - V_{TP}$
P-type depletion	$V_{GS} < V_{PP}$	$V_{DS} < V_{GS} - V_{PP}$

Chapter 5

Bipolar Junction Transistor

5.1 Electronic Symbol

The arrow represents the direction of current.

5.2 Control Principle

5.3 Three Types of Amplifier Circuit

5.4 Static Working Point

$$\begin{split} I_{BQ} &= \frac{V_{BB} - V_{BEQ}}{R_b} \\ V_{BEQ} &= 0.7 \text{ V} \\ I_{CQ} &= \beta I_{BQ} \\ V_{CEQ} &= V_{CC} - I_{CQ} R_C \end{split}$$

Note that the static working point is not associated with small signals discussed below.

5.5 Determine the working state of BJT

$$\beta = 80, V_{BE} = 0.6 \text{ V}$$

 $S \to A$

$$I_B = \frac{(12-0.6 \text{ V})}{40 \text{ k}\Omega} = 0.3 \text{ mA} \qquad I_{CS} = \frac{V_{CC}}{R_C} = 0.038 \text{ mA} \qquad I_{BS} = \frac{I_{CS}}{\beta} = 3 \text{ mA}$$

Since

$$I_B > I_{BS}$$

BJT works in **saturation** mode.

$$S \to B$$

$$I_B = \frac{(12-0.6 \text{ V})}{500 \text{ k}\Omega} = 0.023 \text{ mA} \qquad I_{CS} = \frac{V_{CC}}{R_C} = 0.038 \text{ mA} \qquad I_{BS} = \frac{I_{CS}}{\beta} = 3 \text{ mA}$$

Since

$$I_B < I_{BS}$$

BJT works in active mode.

 $S \to C$, since

$$V_B < V_E$$

The Emitter-Base Junction is reverse biased, BJT works in **cutoff** mode.

5.6 Model of Small Signal

When $T=300~\mathrm{K}$

$$r_{be} = 200 \ \Omega + (1 + \beta) \frac{26 \ \text{mV}}{I_{EQ} \ (\text{mA})}$$

5.7 Compound Transistor

Noted that the emitter and base of compound transistor is exactly the same as the first transister's.

Chapter 6

Frequency Response

6.1 Sketch of Gain vs Frequency of All Circuits

6.2 R-C Series Circuit

6.2.1 Low-Frequency Response of R-C High Pass Filter

6.2.2 Mid-Frequency

In mid-frequency, capacitors are equal to open circuit while only resistors remain in the circuit. Where

$$A_{vM} = 1$$
 $\varphi = 0$

6.2.3 High-Frequency Response of R-C Low Pass Filter

$$f_H = \frac{1}{2\pi R_1 C_1}$$
 $|A_{vH}| = \frac{1}{\sqrt{1 + (f_H/f)^2}}$ $\varphi_H = -\arctan(f_H/f)$

6.3 Frequency Response of Amplifiers

6.3.1 Low-Frequency

Common-Source Amplifier

$$\begin{split} A_{M} &= -\frac{R_{G}}{R_{G} + R_{sig}} \left[g_{m} \left(R_{D} \parallel R_{L} \right) \right] \\ & \omega_{p1} = \frac{1}{C_{C1} \left(R_{G} + R_{sig} \right)} \\ & \omega_{p2} = \frac{g_{m}}{C_{S}} \\ & \omega_{p3} = \frac{1}{C_{C2} \left(R_{D} + R_{L} \right)} \end{split}$$

$$\frac{V_o}{V_{sig}} = A_M \left(\frac{s}{s + \omega_{p1}}\right) \left(\frac{s}{s + \omega_{p2}}\right) \left(\frac{s}{s + \omega_{p3}}\right)$$

$$f_L \approx f_{p2} = \frac{\omega_{p2}}{2\pi} = \frac{1}{2\pi \left(C_S/g_m\right)}$$

Common-Emitter Amplifier

$$A_{M} = -\frac{\left(R_{B} \parallel r_{\pi}\right)}{\left(R_{B} \parallel r_{\pi}\right) R_{sig}} g_{m} \left(R_{C} \parallel R_{L}\right)$$

$$\omega_{p1} = \frac{1}{C_{C1} \left[\left(R_B \parallel r_\pi \right) + R_{sig} \right]}$$

$$\omega_{p2} = \frac{1}{C_E \left[r_e + \frac{R_B \parallel R_{sig}}{\beta + 1} \right]}$$

$$\omega_{p3} = \frac{1}{C_{C2} \left(R_C + R_L \right)}$$

$$f_L \approx f_{p2}$$

6.3.2 High-Frequency

Unity-Gain Frequency

MOSFET

$$\frac{I_o}{I_i} = \frac{g_m}{s\left(C_{gs} + C_{gd}\right)} \qquad \omega_T = \frac{g_m}{\left(C_{gs} + C_{gd}\right)} \qquad f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd}\right)}$$

BJT

$$\frac{I_c}{I_b} = \frac{g_m r_\pi}{1 + s \left(C_\pi + C_\mu \right) r_\pi} = \frac{\beta_0}{1 + s \left(C_\pi + C_\mu \right) r_\pi} \qquad \omega_\beta = \frac{1}{\left(C_\pi + C_\mu \right) r_\pi} \qquad \omega_T = \beta_0 \omega_\beta = \frac{g_m}{C_\pi + C_\mu}$$

Common-Source Amplifier

$$\omega_H = \frac{1}{C_{in}R'_{sig}} \qquad A_M = -\frac{R_G}{R_G + R_{sig}}g_mR'_L \qquad f_H = \frac{\omega_H}{2\pi} = \frac{1}{2\pi C_{in}R'_{sig}}$$

Common-Emitter Amplifier

$$\begin{split} V_{\text{sig}}' &= V_{\text{sig}} \, \frac{R_B}{R_B + R_{\text{sig}}} \, \frac{r_\pi}{r_\pi + r_x + (R_{\text{sig}} \| R_B)} \\ R_L' &= r_o \| R_C \| R_L \\ R_{\text{sig}}' &= r_\pi \| [r_x + (R_B \| R_{\text{sig}})] \end{split}$$

$$A_{M} = -\frac{R_{B}}{R_{B} + R_{sig}} \frac{r_{\pi}}{r_{\pi} + r_{x} + (R_{sig} \parallel R_{B})} (g_{m}R'_{L}) \qquad f_{H} = \frac{\omega_{H}}{2\pi} = \frac{1}{2\pi C_{in}R'_{sig}}$$

Analogue Integrated Circuits

7.1 Differential Amplifier Circuit

$$v_{i1} = v_{ic} + \frac{v_{id}}{2}$$
 $v_{i2} = v_{ic} - \frac{v_{id}}{2}$

7.2 MOSFET Current Source

7.2.1 MOSFET Current Mirror

$$I_o = I_{D2} = K_n \left(V_{GS} - V_{TN} \right)^2$$

7.2.2 Cascade Current Mirror

The larger output resistance, the more stability of output current.

$$r_o = r_{ds4} + r_{ds2} (1 + g_m r_{ds4}) \approx g_m r_{ds4} r_{ds2}$$

7.2.3 Combined Current Mirror

$$I_2 = \frac{(W/L)_2}{(W/L)_1} I_{REF}$$
 $I_3 = \frac{(W/L)_3}{(W/L)_1} I_{REF}$ $I_4 = I_3$ $I_5 = \frac{(W/L)_5}{(W/L)_4} I_4$

7.2.4 JFET Current Mirror

$$i_D = I_o = I_{DSS} \left(1 + \lambda v_{DS} \right) \qquad r_o = \frac{1}{\lambda I_{DSS}}$$

7.3 BJT Current Source

7.3.1 BJT Current Mirror

$$I_{C2} = I_{C1} \approx I_{REF} \approx \frac{V_{CC}}{R} \qquad r_o = r_{ce}$$

7.3.2 Micro Current Source

$$I_o = \frac{\Delta V_{BE}}{R_{e2}} \qquad r_o \approx r_{ce2} + \left(1 + \frac{\beta R_{e2}}{r_{be2} + R_{e2}}\right)$$

7.3.3 Current Source with High Output Resistance

$$I_{REF} = \frac{V_{CC} - V_{BE3} - V_{BE2} + V_{EE}}{R} \qquad I_o \approx I_{C2} = \frac{A_3}{A_1} \cdot I_{REF}$$

7.3.4 Combined Current Source

$$I_{REF} = \frac{V_{CC} + V_{EE} - V_{BE1} + V_{EB4}}{R_1}$$

7.4 Differential Amplifier

7.4.1 MOSFET

Two Output Terminals

$$i_{d1}=i_{d2}=I_D=\frac{1}{2}I_o \qquad g_m=\sqrt{2K_nI_o} \qquad A_{vd}=-g_m\left(r_{ds}\parallel R_d\parallel \frac{R_L}{2}\right) \qquad K_{CMR}=\infty \qquad R_o=2R_d$$

One Output Terminal

$$g_{m} = \sqrt{2K_{n}I_{o}} \qquad A_{vd1} = -A_{vd2} = -\frac{g_{m}\left(r_{ds} \parallel R_{d} \parallel R_{L}\right)}{2} \qquad K_{CMR} \approx g_{m}r_{o} \qquad R_{o} = R_{d}$$

7.4.2 BJT

Two Output Terminals

$$A_{vd} = -\frac{\beta \left(R_c \parallel \frac{R_L}{2}\right)}{r_{be}} \qquad K_{CMR} = \infty \qquad R_{id} = 2r_{be} \qquad R_{ic} = \frac{1}{2} \left[r_{be} + (1+\beta) \, 2r_o\right] \qquad R_o = 2R_c$$

One Output Terminal

$$A_{vd1} = -A_{vd2} = -\frac{\beta \left(R_c \parallel R_L \right)}{2r_{be}} \qquad K_{CMR} \approx \frac{\beta r_o}{r_{be}} \qquad R_{id} = 2r_{be} \qquad R_{ic} = \frac{1}{2} \left[r_{be} + (1+\beta) \, 2r_o \right] \qquad R_o = R_c$$

Feedback

8.1 Basic Feedback Structure

$$x_o = Ax_i$$
 $x_f = \beta x_o$ $x_i = x_s - x_f$

$$A_f = \frac{x_0}{x_s} = \frac{Ax_i}{x_i + \beta Ax_i} = \frac{A}{1 + A\beta} \approx \frac{1}{\beta} \qquad (A\beta \gg 1)$$

8.2 Bandwidth and Gain

$$\omega_{Hf} = \omega_H \cdot (1 + A_M \beta)$$
 $\omega_{Lf} = \omega_L / (1 + A_M \beta)$

8.3 Stability Problem of Feedback

$$\varphi_a = -135^{\circ} \qquad AF < 1$$

8.4 Four Basic Feedback Topologies

Feedback Type	Usage	Gain	Input Resistance	Output Resistance	
Series-Shunt	$\text{Voltage} \rightarrow \text{Voltage}$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = (1 + A\beta) R_i$	$R_{of} = \frac{R_o}{1 + A\beta}$	
Shunt-Series	$Current \rightarrow Current$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = \frac{R_i}{1 + A\beta}$	$R_{of} = (1 + A\beta) R_o$	
Series-Series	$Voltage \rightarrow Current$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = (1 + A\beta) R_i$	$R_{of} = (1 + A\beta) R_o$	
Shunt-Shunt	$\text{Current} \to \text{Voltage}$	$A_f = \frac{A}{1 + A\beta}$	$R_{if} = \frac{R_i}{1 + A\beta} R_i$	$R_{of} = \frac{R_o}{1 + A\beta}$	

8.5 Positive or Negative

Amplifier Type	Common S	Common G	Common D	Common E	Common B	Common C
Sign of A_v	_	+	+	_	+	_

8.6 Virtual Short and Open Circuit of Amplifier in the State of Deep Negative Feedback

Power Amplifiers

9.1 Classification of Power Amplifiers

Output stages are classified according to the collector current waveform that results when an input signal is applied.

9.2 Some Example Circuits

(a) Class A Output Stage

(b) Class B Output Stage

9.3 Power Output

$$V_{om} = \frac{V_{om+} + V_{om-}}{2}$$
$$P_{om} = \left(\frac{V_{om}}{\sqrt{2}}\right)^2 \cdot \frac{1}{R_L}$$

9.4 Crossover Distortion Avoiding

(a) Class AB Output Stage with Double Source

(b) Class AB Output Stage with Single Source

Filters and Signal Generators

10.1 Four Types of Filters

10.2 Filter with source

10.3 Sallen-Key Filtering Circuit

10.4 Voltage Comparator

10.5 Inverting Schmitt Trigger

10.6 RC Phase Shifting Network

There are 3 this kind of network below, each may generate up to 90° phase shift.

10.7 Stability of RC Oscillator

$$A_V = 1 + \frac{R_2 + R_3}{R_1} > 3$$

10.8 RC Phase Selecting Network

$$f = \frac{1}{2\pi RC}$$

10.9 Generation of Square Waveforms

10.10 Generation of Triangle Waveforms

Stability Problem of DC Source

11.1 The Bridge Rectifier

11.2 Single Phase Bridge Rectifier

11.3 Series Feedback Voltage Regulator

$$V_O = V_{REF} \left(1 + \frac{R_1}{R_2} \right)$$

11.4 Integrated Voltage Regulator

