Hands-ON 12 Chapter-17

1. Dynamic Table Behaviour:

- * The table starts with an initial size, let's say m.
- * When inserting an element into the table and it's full, it doubles its size.
- * Doubling the size means creating a new table with double the size, copying all elements over, and then inserting the new element.
- * Let's assume that inserting an element into the table of size m takes O(m) time.

(a) Aggregate method:

In the Aggregate method, we calculate the total time for a sequence of operations and then divide by the number of operation -ns to find the average time per operation.

- 1. No of operations (n): n (insections)
- 2. Total time: Let's consider each insertion:
 - * The first insertion takes O(1) time.
 - * The second insertion takes O(2) time.
 - * The third insertion takes 0(4) time.
 - * And so on, until the table reaches size m', where m' is the smallest power of 2 larger than n.
 - So, m'= 2 [log_(n)].
 - * Jotal time for all insertions would be: 1+2+4+ -.. + m!
 - * This is a geometric suies with the sum $2^{k+1}-1$, where $k = \lfloor \log_2(n) \rfloor$.
 - * So, total time is O (2k+1-1).

