Détermination de constantes d'équilibre

Niveau: CPGE

Prérequis : thermodynamique, thermochimie, constante d'équilibre, acides-bases, titrages, solubilité,

complexation

Introduction

Durant leurs cursus, les élèves rencontrent plusieurs fois ce genre de données (tableau avec des valeurs de Ka, β , etc) dans un énoncé de DS, concours. Ils se sont peut être demandés comment elles étaient déterminées, et bien ce sera le cœur de la leçon et on tentera de répondre à cette question. Avant tout un peu de rappel sur la constante d'équilibre, et son importance.

Les tables donnent :					
		$CuNH_3^{2+}$	$Cu(NH_3)_2^{2+}$	$Cu(NH_3)_3^{2+}$	$Cu(NH_3)_4^{2+}$
	$\log(\beta_n)$	4,2	7,6	10,6	12,6

Les ta	Les tables donnent :					
		$CuNH_3^{2+}$	$Cu(NH_3)_2^{2+}$	$Cu(NH_3)_3^{2+}$	$Cu(NH_3)_4^{2+}$	
	$\log(\beta_n)$	4,2	7,6	10,6	12,6	

 CO_2 dissout dans l'eau est un diacide de $pK_{a1}=6,4$ et $pK_{a2}=10,3$; produit ionique de l'eau : $pK_e=14$.

Les tables donnent :

	$CuNH_3^{2+}$	$Cu(NH_3)_2^{2+}$	$Cu(NH_3)_3^{2+}$	$Cu(NH_3)_4^{2+}$
$\log(\beta_n)$	4,2	7,6	10,6	12,6

 CO_2 dissout dans l'eau est un diacide de $pK_{a1}=6,4$ et $pK_{a2}=10,3$; produit ionique de l'eau : $pK_e=14$.

DONNEES THERMODYNAMIQUES A 298 K

· Constantes d'acidité :

 pK_{a1} (CO₂, H₂O/HCO₃⁻) = 6,4; pK_{a2} (HCO₃⁻/CO₃²-) = 10,4

Produit de solubilité :

 $K_s(CaCO_{3(s)}) = 3.10^{-9}, K_s(Ca(OH)_{2(s)}) = 5.10^{-6}$

Les tables donnent :

	$CuNH_3^{2+}$	$Cu(NH_3)_2^{2+}$	$Cu(NH_3)_3^{2+}$	$Cu(NH_3)_4^{2+}$
$\log(\beta_n)$	4,2	7,6	10,6	12,6

 CO_2 dissout dans l'eau est un diacide de $pK_{a1}=6,4$ et $pK_{a2}=10,3$; produit ionique de l'eau : $pK_e=14$.

DONNEES THERMODYNAMIQUES A 298 K

Constantes d'acidité :

 pK_{a1} (CO₂, H₂O/HCO₃-) = 6,4; pK_{a2} (HCO₃-/CO₃²-) = 10,4

Produit de solubilité :

 $K_s(CaCO_{3(s)}) = 3.10^{-9}, K_s(Ca(OH)_{2(s)}) = 5.10^{-6}$

<u>Données</u>:

- CH3COOH / CH3COO : pKa = 4,8

- $CH_2CICOOH / CH_2CICOO^-$: $pK_a = 2,9$

- $CHCl_2COOH / CHCl_2COO^-$: $pK_a = 1,3$

 $-CCI_3COOH/CCI_3COO^-$: $pK_a = 0.7$

I Importance de la constante d'équilibre

1) Loi de Guldberg & Waage

Pour rappel, $\Delta_r G = \sum_i \nu_i \mu_i$ (et $\Delta_r G^0 = \sum_i \nu_i \mu_i^0$), et $\mu_i(P,T) = \mu_i^\circ(T) + RT ln(a_i)$

Ainsi, $\Delta_r G = \Delta_r G^0 + RT ln(Q)$

A l'équilibre, $\Delta_r G = 0$ et Q = Q_{eq}

$$ightharpoonup K^{\circ}(T) = \exp\left(-\frac{\Delta_r G^0(T)}{RT}\right)$$
 (loi de Guldberg et Waage)

On voit qu'à l'équilibre, la composition du système dépend uniquement de K°(T), donc en connaissant cette dernière, on peut remonter à la composition du système à l'équilibre (« premier rôle »).

2) Sens d'évolution d'une réaction

La condition d'évolution spontanée s'écrit $\Delta_r G d\xi \leq 0$

Ainsi, le signe de $\Delta_r G$ permet de connaître le sens d'évolution d'une réaction chimique :

- Si $\Delta_r G < 0$, le système évolue dans le sens direct
- Si $\Delta_r G = 0$, le système est à l'équilibre, il n'évolue pas
- Si $\Delta_r G > 0$, le système évolue dans le sens indirect

Connaissant K°(T), il est possible de savoir dans quel sens évolue la réaction considérée (« deuxième rôle »).

3) Détermination d'une constante d'équilibre à l'aide de tables

$$K^{\circ}(T) = \exp\left(-\frac{\Delta_r G^0(T)}{RT}\right)$$

Or,
$$\Delta_r G^0(T) = \Delta_r H^0(T) - T \Delta_r S^0(T)$$

La loi de Hess donne : $\Delta_r H^0(T) = \sum_i \nu_i \Delta_f {H_i}^0(T)$ et par définition : $\Delta_r S^0(T) = \sum_i \nu_i S_{m,i}^0(T)$

Or les valeurs de $\Delta_f H_i^0(T)$ et $S_{m,i}^0(T)$ sont tabulées, on peut donc remonter) $K^{\circ}(T)$.

Ex:

$$4Fe_3O_{4(s)} + O_{2(g)} \rightleftharpoons 6Fe_2O_{3(s)}$$

Données à 300 K:

	$Fe_3O_{4(s)}$	$Fe_2O_{3(s)}$	$O_{2(g)}$
$\Delta_f H^0 (kJ. mol^{-1})$	-1120	-830	
$S_m^0(J.K^{-1}.mol^{-1})$	150	90	200

• Détermination de K°(T) :

On trouve $\Delta_r H^0(300 \text{ K}) = -500 \text{ kJ.mol}^{-1} \text{ et } \Delta_r S^0(300 \text{ K}) = -260 \text{ J.K}^{-1}.\text{mol}^{-1}$, soit $K^0(300 \text{ K}) = 3.10^{73}$

• Détermination de la composition du système :

$$K^{\circ}(T) = \frac{P^{0}}{P(O_{2})_{eq}} \rightarrow P(O_{2})_{eq} = 0.3.10^{-73} \text{ bar}$$

• Sens d'évolution :

Initialement, on a Fe₃O₄ à l'air ambiant, donc on est à pression atmosphérique : $P(O_2) = P^0 = 1$ bar donc $Q = 1 < K^{\circ}(T) \rightarrow sens$ direct.

On vient de montrer que l'équilibre d'une réaction est décrit par une constante thermodynamique K°(T), et qu'elle nous permet de connaître le sens d'évolution de la réaction et la composition du système à l'équilibre. Cependant, cette détermination à l'aide de tables n'est pas toujours faisable, on peut alors procéder à une détermination expérimentale.

Il Détermination d'une constante d'acidité

1) Théorie

On considère la réaction suivante :

.
$$K_A = \frac{[H_3O^+]_{eq}[CH_3COO^-]_{eq}}{[CH_3COOH]_{eq} c^0} = \frac{x^2}{(c_i - x)c^0}$$

Loi de Kohlrausch : $\sigma = (\lambda_{H_3O^+} + \lambda_{CH_3COOH})x$

$$\left(\frac{\sigma}{\lambda_{CH_3COO^-} + \lambda_{H_3O^+}}\right)^2 = K_A c^0 \left(c_i - \frac{\sigma}{\lambda_{CH_3COO^-} + \lambda_{H_3O^+}}\right)$$

$$\left(\underbrace{\frac{\sigma}{\lambda_{CH_3COO^{-}} + \lambda_{H_3O^{+}}}}_{V}\right)^2 = K_A c^0 \left(c_i - \frac{\sigma}{\lambda_{CH_3COO^{-}} + \lambda_{H_3O^{+}}}\right)$$

A 25°C,
$$\lambda_{H_3O^+}=34.9~mS.\,m^2.\,mol^{-1}$$
 et $\lambda_{CH_3COOH}=4.1~mS.\,m^2.\,mol^{-1}$

En faisant varier c_i , et donc σ , on peut remonter à la valeur de Ka en traçant y = f(x)

2) Expérience

Mesure de la conductivité pour différentes concentrations initiales en CH₃COOH

III Constantes d'équilibre de l'aluminium

Titrage par suivi pH-métrique des ions Al³⁺ par NaOH

Données:

- Concentration de la soude, C_b:
 C_b= 2,0 mol/L
- Concentration de Al^{3+} (et H^+) dans le bécher, C_0 : $C_0 = 5.0 \times 10^{-2} \; \mathrm{mol/L}$
- Volume du mélange du bécher, V_0 :

 $V_0 = 20,0 \text{ mL}$

On observe un point anguleux sur la courbe pH = f(V)

Simulation sur Dozzaqueux

Simulation sur Dozzaqueux

Simulation sur Dozzaqueux

Simulation sur Dozzaqueux

1) Produit de solubilité

On a la réaction suivante : $AI^{3+}_{(aq)} + 3HO^{-}_{(aq)} \rightleftharpoons AI(OH)_{3(s)}$

$$K_s = \frac{[Al^{3+}]_{eq}[HO^{-}]_{eq}^3}{(c^0)^4}$$

On introduit le Ke:

$$K_e = \frac{[H_3O^+]_{eq}[HO^-]_{eq}}{(c^0)^2}$$

Ainsi:

$$pK_s = -log\left(\frac{[Al^{3+}]_{eq}}{c^0}\right) + 3pK_e - 3pH$$

Apparition du précipité (1^{er} point anguleux) : $[Al^{3+}]_{eq} = [Al^{3+}]_0$, on lit alors le pH sur la courbe expérimentale. En théorie, pKs = 33,5 à 25°C.

2) Formation du complexe Al(OH)₄-

Réactions chimiques mises en jeu

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_s

Réactions chimiques mises en jeu

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_s

$$Al^{3+}{}_{(aq)}+4~HO^{-}{}_{(aq)}\rightleftharpoons Al(OH)^{-}_{4}{}_{(aq)}$$
 de constante eta_4

Réactions chimiques mises en jeu

$$Al(OH)_{3(s)} \rightleftharpoons Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 de constante K_{S}

$$+ Al^{3+}_{(aq)} + 4HO^{-}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4(aq)}$$
 de constante β_{4}

$$= Al(OH)_{3(s)} + HO^{-}_{(aq)} \rightleftharpoons Al(OH)^{-}_{4(aq)}$$
de constante $\beta_{4}K_{S}$

On a alors :
$$\beta_4 Ks = \frac{[Al(OH)^-]_{eq}}{[HO^-]_{eq}}$$

Ainsi:

$$log\beta_4 = log\left(\frac{[Al(OH)_4^-]_{eq}}{c^0}\right) - pH + pK_e + pK_s$$

Disparition du précipité (2^e point anguleux) : on considère que $n(Al(OH)^-)_{eq} = n(Al^{3+})_0$, il n'y a plus de Al^{3+} et de $Al(OH)_3$, tout s'est transformé en $Al(OH)_4$. Puis, si on néglige la dilution, on peut dire que $[Al(OH)_4]_{eq} = [Al^{3+}]_0$, on lit alors le pH sur la courbe expérimentale. En théorie, $log(\beta_4) = 33.4$.

Simulation sur Dozzaqueux

Simulation sur Dozzaqueux

Sources d'erreurs : température, lecture de la verrerie, point anguleux

Conclusion

Il existe d'autres méthodes de détermination expérimentales. En tout cas, il faut retenir que la constante d'équilibre $K^{\circ}(T)$ est importante pour savoir dans quel sens évolue la réaction et pouvoir caractériser le système à l'équilibre, ce qui est primordial en industrie (par exemple pour savoir comment on peut influencer la réaction pour avoir ce qu'on veut à la fin) \rightarrow ouverture sur la notion d'optimisation/stratégie de synthèse.

Questions

- Démonstration de $\Delta_r G$ d $\xi \le 0$
- Pourquoi on a en général λ(H₃O⁺) >> λ(ions) ?
- → Échange facilité d'ions H⁺ via les molécules d'eau (solvant)
- Comment fonctionne le conductimètre ?

Fonctionnement sonde du conductimètre

- $G = \frac{I}{U}$ en S $\sigma = G \times k$ avec k constante de cellule en cm^{-1}

Schéma d'une cellule conductimétrique.

- Qu'est-ce que la constante de cellule et quelle est son expression ?
- igorup On peut définir $k=rac{L}{S}$ avec S la surface des électrodes et L la distance entre les deux électrodes.