

AT90CAN32/64/128

Reminder (1)

- ISP: In System Programming
 - Programming an AVR device using CAN medium.
 - «Hardware» point to point communication.

Reminder (2)

- IAP: In Application Programming
 - IAP is not "Institute of Applied Physics".
 - **↓** IAP is not API ("Application Programming Interface").
 - Using CAN medium to program one AVR CAN device of CAN (complex) network while the application is running.
 - «Software» point to point communication

CAN Bootloader (1)

Features

- CRIS:

CAN **R**e-locatable **I**D **S**egment: 7 **I**D's – Default = 0x00

Node NumBer: From 0x00 up to 0xFE – Default = 0xFF (full acceptance)

- Bit rate:
 - Initialization (ISP): Auto bit rate
 - In application (IAP): Fixed bit rate
- Programming / Reading/ Erasing / Blank checking
 - Flash
 - E²Prom
 - Bootloader configuration
- Only reading
 - Bootloader version, device ID
 - All device registers, especially bit rate configuration registers
- "void flash_api_wr_block (char* src, int dest, int byte_nb)"

CAN Bootloader (2)

Version

- Compiled with GCC
 - ≈ 5.5 Kbytes of Flash
 - ≈ 320 bytes of SRAM
- Available for AT90CAN128, 64 & 32
- Documented: GCC_CAN_bootloader-rev-1.1.0.pdf '

Ready to use

- «main» + libraries
- Sources are available & free

Device configuration

- Set Boot size to 8 Kbytes
- Enable Reset vector to Bootloader Reset
- External Crystal (from 2 up to 16 MHz)

IAP Enabling

- A preliminary «hardware» point-to-point connection is necessary to set:
 - CRIS (depends on application ID range),
 - NNB (1 by node),
 - BSB (Boot Status Byte),
 - BTC[1..3] (application bit rate),
 - EB (Extra Byte).

- On the recognition of a key-code, a " jump_to (bootloader)"
 must be done.
- Example: enter in IAP mode on the recognition of a frame in the range defined by CRIS.

CAN Tools - IAP

"Illustration by example"

Develop an application on an AVR CAN is:

- easy,
- fast &
- powerful.

IAP - Demonstration

Principal

In the set of examples:

"can sensor network example"

"can_sensor_iap_node_example"

Sensor - IAP:

- IAP: In Application Programming
- The application behavior it the same that "Sensor".
- Sensor node have to laod on board a CAN Bootloader.
- The node can be re-programmed while the network is working
- Flip3 is dedicated to allow this task, ex: changing the attributed ID_{11} .

Collector:

- Resquest frames are periodically send (ID_{11} 0x80 up to 0x89).
- If a response exits, it is re- sent to the Terminal.
- The Terminal displays sensor data of the requested board:
 - ¤ Local temperature
 - ¤ Local luminosity
 - ¤ Local power-supplying

IAP - Application (1)

Terminal display (2 nodes)

IAP - Application (2)

Goal for board 1

- Current setting
 - **NNB** = 0x01
 - **CRIS** = 0x00
 - Bitrate: 250 kBd
 - Application: "can sensor iap node 0x81 example gcc.hex"
- Changing ID 0x081 by ID 0x082
 - Download " can sensor iap node 0x82 example gcc.hex "
- Goal for
- Goal for board 7
 - Current setting
 - **NNB** = 0x07
 - **CRIS** = 0x00
 - Bitrate: 250 kBd
 - Application: " can_sensor_iap_node_0x87_example_gcc.hex"
 - Changing ID 0x087 by ID 0x088
 - Download " can_sensor_iap_node_0x88 example gcc.hex "

IAP - Flip 3 (1)

- Flip 3
 - Targeted device

IAP - Flip 3 (2)

Communication medium

IAP - Flip 3 (3)

Download the new program

IAP - Flip 3 (4)

Program the targeted device

IAP - New Application

New terminal display (2 nodes)

Atmel contact

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131, USA

TEL: (1)(408) 441-0311 FAX: (1)(408) 487-2600

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL: (852) 2721-9778

TEL: (852) 2721-9778 FAX: (852) 2722-1369

Product Contact

La Chantrerie BP 70602 44306 Nantes Cedex 3 France

TEL: (33) 2 40 18 18 18 FAX: (33) 2 40 18 19 60

Atmel customer support

E-mail

avr@atmel.com

Atmel products

Web site

www.atmel.com

