Notación asintótica

Clase 16

IIC 1253

Prof. Cristian Riveros

Outline

Notación $\mathcal O$

Notación Ω y Θ

Outline

Notación $\mathcal O$

Notación Ω y Θ

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que existe $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$:

$$f(n) \leq c \cdot g(n)$$

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que existe $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$:

$$f(n) \leq c \cdot g(n)$$

En notación lógica:

$$\mathcal{O}(g) = \{ f: \mathbb{N} \to \mathbb{R} \mid \exists c \in \mathbb{R}. \exists n_0 \in \mathbb{N}. \forall n \geq n_0. f(n) \leq c \cdot g(n) \}$$

Si $f \in \mathcal{O}(g)$, entonces f crece más lento o igual que g.

Definición

$$\mathcal{O}(g) \; = \; \left\{ \; f: \mathbb{N} \to \mathbb{R} \; \mid \; \exists c \in \mathbb{R}. \; \exists n_0 \in \mathbb{N}. \; \forall \, n \geq n_0. \; \; f(n) \leq c \cdot g(n) \; \right\}$$

Ejemplo

Considere las funciones $f(x) = x^3 + 2x + 1$ y $g(x) = x^3$.

$$\downarrow f \in \mathcal{O}(g)$$
?

Para $n \ge 1$ tenemos que:

$$n^3 + 2n + 1 \le n^3 + 2n^3 + n^3 = 4n^3$$

Si tomamos c = 4 y $n_0 = 1$ entonces para todo $n \ge n_0$:

$$f(n) = n^3 + 2n + 1 \le 4n^3 = c \cdot g(n)$$

Por lo tanto, $x^3 + 2x + 1 \in \mathcal{O}(x^3)$.

Definición

$$\mathcal{O}(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ f(n) \leq c \cdot g(n) \ \right\}$$

Ejemplo

Considere las funciones $f(x) = x^3 + 2x + 1$ y $g(x) = x^3$.

$$\downarrow f \in \mathcal{O}(g)?$$

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que **existe** $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tal que **para todo** $n \ge n_0$:

$$f(n) \leq c \cdot g(n)$$

Notación

Cuando $f \in \mathcal{O}(g)$ diremos alternativamente que:

- f es $\mathcal{O}(g)$ (se dice "f es O-grande de g").
- f es de orden g
- $f = \mathcal{O}(g)$ (ojo, esto es solo notación!)

Mas ejemplos de la notación ${\mathcal O}$

Definición

$$\mathcal{O}(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \leq c \cdot g(n) \ \right\}$$

Ejemplo

Considere las funciones $f(x) = a_k x^k + ... + a_1 x + a_0$ y $g(x) = x^k$.

$$\xi f \in \mathcal{O}(g)$$
?

Para $n \ge 1$ tenemos que:

$$a_k n^k + \ldots + a_1 n + a_0 \le |a_k| n^k + \ldots + |a_1| n^k + |a_0| n^k = \left(\sum_{i=0}^k |a_i| \right) \cdot n^k$$

Si tomamos $c = \sum_{i=0}^{k} |a_i|$ y $n_0 = 1$ entonces para todo $n \ge n_0$:

$$f(n) = a_k n^k + \ldots + a_1 n + a_0 \leq c \cdot n^k = c \cdot g(n)$$

Por lo tanto, $f \in \mathcal{O}(g)$.

Notación \mathcal{O} para polinomios

Teorema

1. Sea $f(x) = a_k x^k + ... + a_1 x + a_0$ un polinomio sobre \mathbb{N} , entonces:

$$f \in \mathcal{O}(x^k)$$

2. $x^{k+1} \notin \mathcal{O}(x^k)$ para todo $k \in \mathbb{N}$.

Demostración 2.

Por contradicción, suponga que existe $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tal que:

$$n^{k+1} \le c \cdot n^k$$
 para todo $n \ge n_0$

Si consideramos $n \ge \max\{c+1, n_0\}$, entonces:

$$n^{k+1} = n \cdot n^{k}$$

$$\geq (c+1) \cdot n^{k}$$

$$= c \cdot n^{k} + n^{k} > c \cdot n^{k}$$

Mas ejemplos de la notación ${\mathcal O}$

Definición

$$\mathcal{O}(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \leq c \cdot g(n) \ \right\}$$

Ejemplo

Considere la función $f(n) = \log_a(n)$ y $g(n) = \log_b(n)$.

$$\log_a(n) \in \mathcal{O}(\log_b(n))$$
?

Por propiedad de la función logaritmo sabemos:

$$\log_b(n) = \frac{\log_a(n)}{\log_a(b)}$$

Si consideramos $c = \log_a(b)$ y $n_0 = 1$, entonces:

$$\log_a(n) \le c \cdot \log_b(n)$$
 para todo $n \ge n_0$

Por lo tanto, $\log_a(n) \in \mathcal{O}(\log_b(n))$.

Logaritmos y exponenciales en notación ${\mathcal O}$

Teorema

- 1. Para todo a, b > 1, se tiene que $\log_a(n) \in \mathcal{O}(\log_b(n))$.
- 2. Para todo $a < b \text{ con } a, b \in \mathbb{N}$, se tiene que $a^n \in \mathcal{O}(b^n)$ y $b^n \notin \mathcal{O}(a^n)$.
- 3. Para todo $a \in \mathbb{N}$, se tiene que $a^n \in \mathcal{O}(n!)$ y $n! \notin \mathcal{O}(a^n)$.
- 4. $n! \in \mathcal{O}(2^{n \cdot \log(n)})$.

Demuestre 2., 3. y 4..

Jerarquía en notación ${\cal O}$

Jerarquía en notación ${\cal O}$

Nombre
Constante
Logarítmico
Lineal
$n \log n$
Cuadrático
Cúbico
Polinomial
Exponencial
Factorial

Algunas preguntas de la notación ${\mathcal O}$

Definición

$$\mathcal{O}(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ f(n) \leq c \cdot g(n) \ \right\}$$

Preguntas

- 1. ¿Si $f(n) \le g(n)$ para todo $n \in \mathbb{N}$, entonces $f \in \mathcal{O}(g)$?
- 2. ¿Para todo $k \in \mathbb{N} \setminus \{0\}$, si $f \in \mathcal{O}(g)$ entonces $k \cdot f \in \mathcal{O}(g)$?
- 3. ¿Para todo $g: \mathbb{N} \to \mathbb{R}$ y $k \in \mathbb{N}$, si $f \in \mathcal{O}(g)$ entonces $f + k \in \mathcal{O}(g)$?
- 4. ¿Si $f \in \mathcal{O}(g)$ y $g \in \mathcal{O}(h)$, entonces $f \in \mathcal{O}(h)$?
- 5. ¿Si $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$, entonces $f \in O(g)$?

Importante: esta última propiedad NO se puede usar en este curso.

Combinaciones de funciones en notación $\mathcal O$

Teorema

 $\mathsf{Si} \ f_1 \in \mathcal{O}(g_1) \ \mathsf{y} \ f_2 \in \mathcal{O}(g_2), \ \mathsf{entonces} \ f_1 + f_2 \in \mathcal{O}(\mathsf{max}\{g_1,g_2\}).$

Demostración

Suponga que:

- existe $C_1 \in \mathbb{R}$, $n_0^1 \in \mathbb{N}$ tal que $f_1(n) \leq C_1 \cdot g_1(n)$ para todo $n \geq n_0^1$.
- existe $C_2 \in \mathbb{R}$, $n_0^2 \in \mathbb{N}$ tal que $f_2(n) \leq C_2 \cdot g_2(n)$ para todo $n \geq n_0^2$.

Si $n_0 = \max\{n_0^1, n_0^2\}$ y $C = C_1 + C_2$, entonces para todo $n \ge n_0$:

$$f_1(n) + f_2(n) \leq C_1 \cdot g_1(n) + C_2 \cdot g_2(n)$$

$$\leq C_1 \cdot \max\{g_1(n), g_2(n)\} + C_2 \cdot \max\{g_1(n), g_2(n)\}$$

$$\leq (C_1 + C_2) \cdot \max\{g_1(n), g_2(n)\}$$

Notar que $f_1 \in \mathcal{O}(g)$ y $f_2 \in \mathcal{O}(g)$ implica $f_1 + f_2 \in \mathcal{O}(g)$

Combinaciones de funciones en notación ${\mathcal O}$

Teorema

 $\text{Si} \ \ f_1 \in \mathcal{O}(g_1) \ \ \text{y} \ \ f_2 \in \mathcal{O}(g_2), \ \ \text{entonces} \ f_1 \cdot f_2 \in \mathcal{O}(g_1 \cdot g_2).$

Demostración

Suponga que:

- existe $C_1 \in \mathbb{R}$, $n_0^1 \in \mathbb{N}$ tal que $f_1(n) \leq C_1 \cdot g_1(n)$ para todo $n \geq n_0^1$.
- existe $C_2 \in \mathbb{R}$, $n_0^2 \in \mathbb{N}$ tal que $f_2(n) \leq C_2 \cdot g_2(n)$ para todo $n \geq n_0^2$.

Si $n_0 = \max\{n_0^1, n_0^2\}$ y $C = C_1 \cdot C_2$, entonces para todo $n \ge n_0$:

$$f_1(n) \cdot f_2(n) \leq C_1 \cdot g_1(n) \cdot C_2 \cdot g_2(n)$$

$$\leq (C_1 \cdot C_2) \cdot (g_1(n) \cdot g_2(n))$$

Combinaciones de funciones en notación ${\mathcal O}$

Ejemplo

De un buen estimador del orden de la siguientes funciones:

- $(x+1) \cdot \log(x^2+1) + 3 \cdot x^2$
- $3 \cdot x \cdot \log(x!) + (x^2 + 3) \cdot \log(x)$

Outline

Notación O

Notación Ω y Θ

Notación Ω

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\Omega(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que existe $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que para todo $n \ge n_0$:

$$f(n) \geq c \cdot g(n)$$

Notación Ω

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\Omega(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que **existe** $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que **para todo** $n \ge n_0$:

$$f(n) \geq c \cdot g(n)$$

En notación lógica:

$$\Omega(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \geq c \cdot g(n) \ \right\}$$

Notación

Cuando $f \in \Omega(g)$ diremos que f es $\Omega(g)$ o "f es omega-grande de g".

Si $f \in \Omega(g)$, entonces f crece más rápido o igual que g.

Notación Ω

Definición

$$\Omega(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \geq c \cdot g(n) \ \right\}$$

Ejemplo

Considere la función $f(x) = x^4 + 2x^2 + 5$ y $g(x) = 5x^4$.

$$\xi x^4 + 2x^2 + 5 \in \Omega(5x^4)$$
 ?

Para $n \ge 1$ tenemos que:

$$n^4 + 2n^2 + 5 \ge \frac{1}{5} \cdot 5n^4$$

Si tomamos $c = \frac{1}{5}$ y $n_0 = 1$ entonces para todo $n \ge n_0$:

$$f(n) = n^4 + 2n^2 + 5 \ge \frac{1}{5} \cdot 5n^4 = c \cdot g(n)$$

Por lo tanto, $x^4 + 2x^2 + 5 \in \Omega(5x^4)$.

Notación ⊖

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\Theta(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que **existen** $c_1, c_2 \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que **para todo** $n \ge n_0$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

Notación Θ

Sea $g: \mathbb{N} \to \mathbb{R}$ una función cualquiera (también funciona para $g: \mathbb{R} \to \mathbb{R}$).

Definición

Se define el conjunto $\Theta(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que **existen** $c_1, c_2 \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que **para todo** $n \ge n_0$:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

En notación lógica:

$$\Theta(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R} \ \middle| \ \exists c_1, c_2 \in \mathbb{R}. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \ \right\}$$

$$f \in \Theta(g)$$
 si, y solo si, $f \in \Omega(g)$ y $f \in \mathcal{O}(g)$.

(demuestre esta afirmación)

Notación Θ

Ejemplo

Considere la función $g(x) = x^k$ y $f(x) = a_k x^k + ... + a_1 x + a_0$ con $a_k > 0$.

$$i_{k} a_{k} x^{k} + \ldots + a_{1} x + a_{0} \in \Theta(x^{k})$$
 ?

Ya sabemos que $f \in \mathcal{O}(g)$ por lo que queda demostrar que $f \in \Omega(g)$.

Buscamos un c > 0 tal que (desde algún n_0 en adelante):

$$a_k n^k + \ldots + a_1 n + a_0 \geq \frac{1}{c} \cdot n^k$$

Sea cualquier c tal que $c > \frac{1}{a_k}$. Como $(c \cdot a_k - 1)n^k + \ldots + c \cdot a_0 \ge 0$ es un polinomio tal que $c \cdot a_k - 1 > 0$, entonces (por cálculo) sabemos que existe un n_0 tal que para todo $n > n_0$:

$$(c \cdot a_k - 1)n^k + \ldots + c \cdot a_0 \geq 0$$

$$c \cdot a_k n^k + \ldots + c \cdot a_0 \geq n^k$$

$$c \cdot (a_k n^k + \ldots + a_0) \geq n^k$$

$$a_k n^k + \ldots + a_0 \geq \frac{1}{c} n^k$$

Propiedades de notación Θ

Teorema

1. Sea $f(n) = a_k n^k + ... + a_1 n + a_0$ un polinomio sobre \mathbb{N} , entonces:

$$f \in \Theta(n^k)$$

2. $n^k \notin \Omega(n^{k+1})$ para todo k > 0.

Demostración (ejercicio)

Propiedades de notación Θ

Teorema

- 1. Para todo a, b > 1, se tiene que $\log_a(n) \in \Theta(\log_b(n))$.
- 2. Si $f_1 \in \Theta(g)$ y $f_2 \in \Theta(g)$, entonces $f_1 + f_2 \in \Theta(g)$.
- 3. Si $f_1 \in \Theta(g_1)$ y $f_2 \in \Theta(g_2)$, entonces $f_1 \cdot f_2 \in \Theta(g_1 \cdot g_2)$.

Demostración (ejercicio)

Sobre la notación ⊖

Podemos ver Θ como una relación entre funciones:

"
$$(f,g) \in R_{\Theta}$$
" si, y solo si, $f \in \Theta(g)$

¿es Θ una "relación de equivalencia"?

- Refleja?
- Simétrica?
- Transitiva?