Hidden Markov Models

Computational Linguistics

Alexander Koller

5 November 2019

Let's play a game

- I will write a sequence of part-of-speech tags and of words on the board.
- You take turns in giving me POS tags and words, and I will write them down.

Penn Treebank POS tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Hidden Markov Models

- Last week's generative story: generate words at random from n-gram model $P(w_n \mid w_1,...,w_{n-1})$.
- Replace with new generative story:
 - ▶ Language is generated by a two-step process.
 - First, generate sequence of hidden POS tags $t_1, ..., t_T$ tag by tag, left to right from bigram model $P(t_i \mid t_{i-1})$.
 - Independently, generate an observable word w_i from each t_i , at random from model $P(w_i \mid t_i)$.

Question 1: Language modeling

- Given an HMM and a string $w_1, ..., w_T$, what is the likelihood $P(w_1 ... w_T)$?
- We can compute $P(w_1 ... w_T)$ efficiently with the forward algorithm.

```
DT NN VBD NNS IN DT NN
The representative put chairs on the table.

DT JJ NN VBZ IN DT NN
The representative put chairs on the table.

P1
```

$$P(sentence) = p_1 + p_2$$

Question 2: Tagging (aka Decoding)

- Given an HMM and an observed string $w_1, ..., w_T$, what is the most likely sequence of hidden tags $t_1, ..., t_T$?
- We can compute $\underset{t_1,...,t_T}{\operatorname{arg max}} P(t_1,\ldots,t_T \mid w_1,\ldots,w_T)$

efficiently with the Viterbi algorithm.

```
DT NN VBD NNS IN DT NN
The representative put chairs on the table.

DT JJ NN VBZ IN DT NN
The representative put chairs on the table.

p1
```

Question 2: Tagging (aka Decoding)

- Given an HMM and an observed string $w_1, ..., w_T$, what is the most likely sequence of hidden tags $t_1, ..., t_T$?
- We can compute $\underset{t_1,...,t_T}{\operatorname{arg max}} P(t_1,\ldots,t_T \mid w_1,\ldots,w_T)$

efficiently with the Viterbi algorithm.

```
DT NN VBD NNS IN DT NN
The representative put chairs on the table.

DT JJ NN VBZ IN DT NN
The representative put chairs on the table.

p1
```

Question 3a: Supervised learning

- Given a set of POS tags and *annotated* training data $(w_1,t_1), ..., (w_T,t_T)$, compute parameters for HMM that maximize likelihood of training data.
- Can do it with maximum likelihood estimation plus smoothing.

```
DT NN VBD NNS IN DT NN
The representative put chairs on the table.
```

NNP VBZ VBN TO VB NR Secretariat is expected to race tomorrow.

Question 3b: Unsupervised learning

- Given a set of POS tags and *unannotated* training data $w_1, ..., w_T$, compute parameters for HMM that maximize likelihood of training data.
- Do it efficiently with the *forward-backward algorithm* (an instance of *Expectation Maximization*).

The representative put chairs on the table.

Secretariat is expected to race tomorrow.

Hidden Markov Models

- A Hidden Markov Model is 5-tuple consisting of
 - finite set $Q = \{q_1, ..., q_N\}$ of states (= POS tags)
 - finite set O of possible observations (= words)
 - $\blacktriangleright \ \ \textit{transition probabilities} \ a_{ij} = P(X_{t+1} = q_j \ \big| \ X_t = q_i)$
 - initial probabilities $c_i = P(X_1 = q_i)$
 - $\blacktriangleright \ \ \textit{emission probabilities} \ b_i(o) = P(Y_t = o \mid X_t = q_i)$

 $\sum b_i(o) = 1$

- The HMM describes two coupled random processes:
 - event $X_t = q_i$: At time t, HMM is in state q_i .
 - event $Y_t = o$: At time t, HMM emits observation o.

Example: Eisner's Ice Cream

States represent weather on a given day: Hot, Cold Outputs represent number of ice creams Jason eats that day

HMMs as joint models of x, y

- Coupled random processes of HMM directly give us model for *joint* probability P(x, y) where
 - ▶ $y = y_1 ... y_T$ sequence of observations, $y_t \in O$
 - ▶ $x = x_1 ... x_T$ sequence of hidden states, $x_t \in Q$
- Defined as follows:

$$P(x,y) = P(x) \cdot P(y \mid x)$$

$$= P(X_1 = x_1) \cdot \prod_{t=2}^{T} P(X_t = x_t \mid X_1 = x_1, \dots, X_{t-1} = x_{t-1})$$

$$\cdot \prod_{t=1}^{T} P(Y_t = y_t \mid Y_1 = y_1, \dots, Y_{t-1} = y_{t-1}, x)$$

$$= P(X_1 = x_1) \cdot \prod_{t=2}^{T} P(X_t = x_t \mid X_{t-1} = x_{t-1}) \cdot \prod_{t=1}^{T} P(Y_t = y_t \mid X_t = x_t)$$

$$= c_{x_1} \cdot \prod_{t=2}^{T} a_{x_{t-1}x_t} \cdot \prod_{t=1}^{T} b_{x_t}(y_t)$$

Question 2: Tagging

• Given observations $y_1, ..., y_T$ (# ice creams), what is the most probable sequence $x_1, ..., x_T$ of hidden states (temperatures)?

Maximum probability:

$$\max_{x_1,\ldots,x_T} P(x_1,\ldots,x_T \mid y_1,\ldots,y_T)$$

We are primarily interested in arg max:

$$\arg \max_{x_1,...,x_T} P(x_1,...,x_T \mid y_1,...,y_T)
= \arg \max_{x_1,...,x_T} \frac{P(x_1,...,x_T,y_1,...,y_T)}{P(y_1,...,y_T)}
= \arg \max_{x_1,...,x_T} P(x_1,...,x_T,y_1,...,y_T)
= \arg \max_{x_1,...,x_T} P(x_1,...,x_T,y_1,...,y_T)$$

Naive approach

- Let's say Jason ate 3, 1, 3 ice creams. What was the most likely weather on these three days?
- Compute max $P(x_1, 3, x_2, 1, x_3, 3)$ by maximizing over all possible state sequences.

Too expensive

- Naive approach maximizes over exponentially large set of products. This is too slow for practical use.
- Visualize this in *trellis*: unfolding of HMM
 - one column for each time point t, represents X_t
 - each column contains a copy of each state of HMM
 - edges from t to t+1 = transitions of HMM
- Each path through trellis represents one state sequence.
 - So computation of max P(x,y) = max over all paths.

Best paths to trellis nodes

• We are trying to compute the best path through the trellis: $\underset{x_1,...,x_T}{\operatorname{arg\ max}} P(X_1 = x_1, \ldots, X_T = x_T, Y_1 = y_1, \ldots, Y_T = y_T)$

• More general concept: *best path* through the trellis that ends in a certain node $X_t = q$:

$$\underset{x_1,\ldots,x_{t-1}}{\operatorname{arg max}} P(X_1 = x_1,\ldots,X_{t-1} = x_{t-1},X_t = q,Y_1 = y_1,\ldots,Y_t = y_t)$$

• Probability of that best path (abbreviate as $V_t(q)$):

$$V_t(q) = \max_{x_1, \dots, x_{t-1}} P(X_1 = x_1, \dots, X_{t-1} = x_{t-1}, X_t = q, Y_1 = y_1, \dots, Y_t = y_t)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

The Viterbi Algorithm

 Because of statistical independencies, can decompose joint probability:

$$P(x_1, y_1, \dots, x_t, y_t) = P(y_t \mid x_1, \dots, x_t, y_1, \dots, y_{t-1}) \cdot P(x_t \mid x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1})$$

$$\cdot P(x_1, y_1, \dots, x_{t-1}, y_{t-1})$$

$$= P(y_t \mid x_t) \cdot P(x_t \mid x_{t-1}) \cdot P(x_1, y_1, \dots, x_{t-1}, y_{t-1})$$

Thus, maximum has recursive structure:

$$\begin{split} V_{t}(j) &= \max_{x_{1}, \dots, x_{t-1}} P(y_{1}, \dots, y_{t}, x_{1}, \dots, x_{t-1}, X_{t} = q_{j}) \\ &= \max_{x_{1}, \dots, x_{t-1}} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid x_{t-1}) \cdot P(y_{1}, \dots, y_{t-1}, x_{1}, \dots, x_{t-1}) \\ &= \max_{x_{t-1}} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid x_{t-1}) \cdot (\max_{x_{1}, \dots, x_{t-2}} P(y_{1}, \dots, y_{t-1}, x_{1}, \dots, x_{t-1})) \\ &= \max_{i} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid X_{t-1} = q_{i}) \cdot (\max_{x_{1}, \dots, x_{t-2}} P(y_{1}, \dots, y_{t-1}, x_{1}, \dots, x_{t-1} = q_{i})) \\ &= \max_{i} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid X_{t-1} = q_{i}) \cdot V_{t-1}(i) &= \max_{i=1}^{N} V_{t-1}(i) \cdot a_{ij} \cdot b_{j}(y_{t}) \end{split}$$

The Viterbi Algorithm

 Because of statistical independencies, can decompose joint probability:

$$P(x_1, y_1, \dots, x_t, y_t) = P(y_t \mid x_1, \dots, x_t, y_1, \dots, y_{t-1}) \cdot P(x_t \mid x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1})$$

$$\cdot P(x_1, y_1, \dots, x_{t-1}, y_{t-1})$$

$$= P(y_t \mid x_t) \cdot P(x_t \mid x_{t-1}) \cdot P(x_1, y_1, \dots, x_{t-1}, y_{t-1})$$

Thus, maximum has recursive structure:

$$V_{t}(j) = \max_{x_{1},...,x_{t-1}} P(y_{1},...,y_{t},x_{1},...,x_{t-1},X_{t} = q_{j})$$

$$= \max_{x_{1},...,x_{t-1}} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid x_{t-1}) \cdot P(y_{1},...,y_{t-1},x_{1},...,x_{t-1})$$

$$= \max_{x_{t-1}} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid x_{t-1}) \cdot (\max_{x_{1},...,x_{t-2}} P(y_{1},...,y_{t-1},x_{1},...,x_{t-1}))$$

$$= \max_{i} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid X_{t-1} = q_{i}) \cdot (\max_{x_{1},...,x_{t-2}} P(y_{1},...,y_{t-1},x_{1},...,X_{t-1} = q_{i}))$$

$$= \max_{i} P(y_{t} \mid X_{t} = q_{j}) \cdot P(X_{t} = q_{j} \mid X_{t-1} = q_{i}) \cdot V_{t-1}(i)$$

$$= \max_{i} V_{t-1}(i) \cdot a_{ij} \cdot b_{j}(y_{t})$$

The Viterbi Algorithm

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

• Base case, t = 1:

$$V_1(j) = P(y_1, X_1 = q_j) = b_j(y_1) \cdot c_j$$

• Inductive case, for t = 2, ..., T:

$$V_{t}(j) = \max_{i=1}^{N} V_{t-1}(i) \cdot a_{ij} \cdot b_{j}(y_{t})$$

• Once we have calculated all V values, we can easily calculate prob of best path:

$$\max_{x_1,...,x_T} P(x_1, y_1, ..., x_T, y_T) = \max_{q \in Q} V_T(q)$$

Backpointers

- In the end, we need to reconstruct the sequence of states $x_1, ..., x_T$ with max probability.
- For each t, j: remember the value of i for which the maximum was achieved in *backpointer* bp_t(j).

$$V_t(j) = \max_{i=1}^{N} V_{t-1}(i) \cdot a_{ij} \cdot b_j(y_t)$$

• Then just follow backpointers from right to left.

Viterbi Algorithm: Example

$$V_t(j) = \max_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, x_1, \dots, x_{t-1}, X_t = q_j)$$

$$V_t(j) = \max_{i=1}^{N} V_{t-1}(i) \cdot a_{ij} \cdot b_j(y_t)$$

Question 1: Likelihood, P(y)

- How likely is it that Jason Eisner ate 3 ice creams on day 1, 1 ice cream on day 2, 3 ice creams on day 3?
- Want to compute: P(3, 1, 3).
- Same problem as with max:
 - Output 3, 1, 3 can be emitted by many different state sequences.
 - ▶ Obtain by marginalization:

$$P(3,1,3) = \sum_{x_1,x_2,x_3 \in Q} P(x_1,3,x_2,1,x_3,3)$$

Naive computation is far too slow.

The Forward Algorithm

• Key idea: Forward probability $\alpha_t(j)$ that HMM outputs $y_1, ..., y_t$ and then ends in $X_t = q_j$.

$$\alpha_t(j) = P(y_1, \dots, y_t, X_t = q_j)$$

$$= \sum_{x_1, \dots, x_{t-1}} P(y_1, \dots, y_t, X_1 = x_1, \dots, X_{t-1} = x_{t-1}, X_t = q_j)$$

• From this, can compute easily

$$P(y_1, \dots, y_T) = \sum_{q \in Q} \alpha_T(q)$$

The Forward Algorithm

$$\alpha_t(j) = P(y_1, \dots, y_t, X_t = q_j)$$

• Base case, t = 1:

$$\alpha_1(j) = P(y_1, X_1 = q_j) = b_j(y_1) \cdot c_j$$

• Inductive case, compute for t = 2, ..., T:

$$\alpha_{t}(j) = P(y_{1}, \dots, y_{t}, X_{t} = q_{j})$$

$$= \sum_{i=1}^{N} P(y_{1}, \dots, y_{t-1}, X_{t-1} = q_{i}) \cdot P(X_{t} = q_{j} \mid X_{t-1} = q_{i}) \cdot P(y_{t} \mid X_{t} = q_{j})$$

$$= \sum_{i=1}^{N} \alpha_{t-1}(i) \cdot a_{ij} \cdot b_{j}(y_{t})$$

$$\alpha_{t-1}(i) \cdot \alpha_{ij} \cdot b_{j}(y_{t})$$

$$\alpha_{t-1}(1) \qquad q_1 \qquad a_{1j}$$

$$\alpha_{t-1}(2) \qquad q_2 \qquad a_{2j} \qquad q_j$$

$$\alpha_{3j} \qquad b_j(y_t)$$

$$\alpha_{t-1}(3) \qquad q_3 \qquad y_t$$

P(3,1,3) with Forward

$$\alpha_t(j) = P(y_1, \dots, y_t, X_t = q_j)$$

$$\alpha_1(j) = b_j(y_1) \cdot a_{0j}$$

Runtime

• Forward and Viterbi have the same runtime, dominated by inductive step:

$$V_t(j) = \max_{i=1}^{N} V_{t-1}(i) \cdot a_{ij} \cdot b_j(y_t)$$

- Compute $N \cdot T$ values for $V_t(j)$. Each computation step requires iteration over N predecessor states.
- Total runtime is $O(N^2 \cdot T)$, i.e.
 - linear in sentence length
 - quadratic in size of tag set

Summary

- Hidden Markov Models popular model for POS tagging (and other applications, see later).
- Two coupled random processes:
 - bigram model for hidden states ("Markov Chain")
 - model for producing observable output from each state
- Efficient algorithms for common problems:
 - Likelihood computation: Forward algorithm
 - ▶ Best state sequence: Viterbi algorithm.