Lecture Notes for

Neural Networks and Machine Learning

One Shot Style Transfer Photo-realistic Transfer Non-image Styling

Logistics and Agenda

- Logistics
 - Next Assignment: Style Transfer
- Agenda
 - A History of Style Transfer (last time)
 - Image Optimization Algorithms (last time)
 - Student Paper Presentation (last time)
 - Model Optimization Algorithms (last time)
 - One Shot Algorithms, Demo (today)
 - Town Hall, Lab Style Transfer (today)
 - Evaluating Style Transfer Performance (today)
 - Extensions in Other Domains (today)

Last Time:

Whitening and Coloring with the Grammian of Activations:

$$A_{f,c} = flatten(A_c) \qquad \qquad A_{f,s} = flatten(A_s) \\ U_c, \Sigma_c, U_c^T = \text{SVD}(A_{f,c} \cdot A_{f,c}^T) \qquad \qquad U_s, \Sigma_s, U_s^T = \text{SVD}(A_{f,s} \cdot A_{f,s}^T) \\ \widehat{A}_{f,c} = U_c \cdot \frac{1}{\sqrt{\Sigma_c}} \cdot U_c^T \cdot A_{f,c} \\ \text{Content} \qquad \widehat{A}_{f,s \leftarrow \approx c} = \underbrace{U_s \cdot \sqrt{\Sigma_s} \cdot U_s^T}_{\text{Desired Cov.}} \cdot \underbrace{\widehat{A}_{f,c}}_{\text{Whitened}} \\ A_{s \leftarrow \approx c} = reshape(\widehat{A}_{f,s \leftarrow \approx c})$$

Multi-Staged WCT (Last Time)

Why not go the other way?

- Start at earlier layers and apply WCT as we progress through the network
- Paper does not have good explanation, but results are subjectively poorer:

L-3 > L-2 > L-1 > L

Removing Style? Only Whitening

One Shot Style Transfer

Li, et. al Universal Style Transfer

justinledford

Justin Ledford •

Yihao Wang

Follow Along: https://github.com/8000net/universal-style-transfer-keras

Or in the master repository: 05c UniversalStyleTransfer.ipynb

Town Hall

François Chollet • @fchollet • 1d • • • • Deep learning isn't a science, but rather an ever-changing set of empirically-derived engineering best practices, woven together by over-claiming, unreliable narratives.

Photo-Realistic Transfer

C. Shannon on keeping science in order: "Authors should submit only their best efforts [...] A few first rate research papers are preferable to a large number that are poorly conceived or half-finished. The latter are no credit to their writers & a waste of time to their readers"

Photo Style Transfer

Photo Realistic WCT

- Use exact WCT architecture as before
 - ...but use max un-pooling in upsample layers, instead of transpose convolutions (meh)
 - ...and a smoothing constraint applied as an optimization on the result
 - Notation is borrowed from graph manifold rankings:

$$\arg\min_{R} \frac{1}{2} \sum_{i,j \in C}^{N,M} e^{-\frac{\|I_{i}^{c} - I_{j}^{c}\|^{2}}{\sigma_{i,j}^{2}}} \left\| \frac{R_{i}}{\sqrt{D_{ii}}} - \frac{R_{j}}{\sqrt{D_{jj}}} \right\|^{2} + \left(\frac{1}{\alpha} - 1\right) \sum_{i}^{N} \sum_{j}^{M} \left\| R_{i,j} - Y_{i,j} \right\|^{2}$$

Smoothing

 \mathbf{I}^c is the content image, \mathbf{Y} is the stylized image in graph structure

R is the desired result in graph structure

$$\arg\min_{R} \frac{1}{2} \underbrace{\sum_{i,j \in 1\Delta}^{N,M} e^{-\frac{\|I_{i}^{c} - I_{j}^{c}\|^{2}}{\sigma_{i,j}^{2}}}_{\text{weighted sum of adjacent pixels } i, j \text{ in } R}_{\text{arg min}} \frac{1}{2} + \underbrace{\left(\frac{1}{\alpha} - 1\right)}_{\text{in }} \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{M} \left\|R_{i,j} - Y_{i,j}\right\|^{2}}_{\text{or }}$$

 $\mathbf{W}_{i,j}$ affinity of content image as graph edges normalized by std of neighboring pixels (1 Δ) known as "Matting Affinity"

$$D_{ii} = \sum_{\forall j} e^{-\frac{\|I_i^c - I_j^c\|^2}{\sigma_{i,j}^2}} = \sum_{\forall j} W_{i,j}$$

D is a diagonal matrix (degree matrix), summed from W

$$\hat{\mathbf{R}} = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}})^{-1} \mathbf{Y}$$

closed form solution for smoothed result (I is identity matrix)

Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz, A Closed-form Solution to Photorealistic Image Stylization, 2018

What is W? Connectivity of pixels as graph

 \mathbf{I}^{c}

What is W, Y, and R?

sum over

each

row

Laplacian of graph

- D is diagonal and easily invertible
- W is sparse and efficiently inverted after multiplications
- Y is the stylized image pixels on a diagonal matrix
- R can be converted to an image by returning the diagonal

How to make this graph?

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x , n_y , n_z =1, mask=None, return_as=<class 'scipy.sparse.coo.coo_matrix'>, dtype=<class 'int'>)

[source]

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters:

n_x : *int*

Dimension in x axis

 $n_y: int$

Dimension in y axis

n_z : int, optional, default 1

Dimension in z axis

mask : ndarray of booleans, optional

An optional mask of the image, to consider only part of the pixels.

return_as : np.ndarray or a sparse matrix class, optional

The class to use to build the returned adjacency matrix.

dtype : dtype, optional, default int

The data of the returned sparse matrix. By default it is int

Similar Architecture as Before

 \mathbf{Y} no unpooling

 \mathbf{R}_{no} unpooling

(a) Style

(b) Content

(c) WCT [10]

(d) PhotoWCT

(e) WCT + smoothing

(f) PhotoWCT + smoothing

(b) Content (a) Style (c) Gatys et al. [8] (e) WCT [10] (d) Huang et al. [22] (f) Reinhard et al. [1] (g) Pitié et al. [2] (h) Luan et al. [9] (i) Ours

Apply Masking to Different Segments of Image

	Paper	Loss	Description	
	Gatys et al. [4]	Gram Loss	The first proposed style loss based on Gram-based style representations.	
	Johnson et al. [43]	Perceptual Loss	Widely adopted content loss based on perceptual similarity.	
۱	Berger and Memisevic [29]	Transformed Gram Loss	Computing <i>Gram Loss</i> over horizontally and vertically translated features. More effective at modelling style with symmetric properties, compared with <i>Gram Loss</i> .	
	Li et al. [51]	Mean-substraction Gram Loss	Subtracting the mean of feature representations before computing <i>Gram Loss</i> . Eliminating large discrepancy in scale. Effective at multi-style transfer with one single network.	
	Zhang and Dana [52]	Multi-scale Gram Loss	Computing Gram Loss over multi-scale features. Eliminating a few artefacts.	Model
	Li et al. [38]	MMD Loss with Different Kernels	Gram Loss is equivalent to MMD Loss with Second Order Polynomial Kernel. MMD Loss with Linear Kernel is capable of comparable quality with Gram Loss, but with lower computational complexity.	storeod spic
CAVE L71 Rose L71	Li et al. [38]	BN Loss	Achieving comparable quality with <i>Gram Loss</i> , but conceptually clearer in theory.	34
	Risser et al. [40]	Histogram Loss	Matching the entire histogram of feature representations. Eliminating instability artefacts, compared with single <i>Gram Loss</i> .	
rtralt CHILCH	Li et al. [41]	Laplacian Loss	Eliminating distorted structures and irregular artefacts.	
-	Li and Wand [42]	MRF Loss	More effective when the content and style are similar in shape and perspective, compared with <i>Gram Loss</i> .	
	Champandard [65]	Semantic Loss	Incorporating a segmentation mask over MRF Lass. Enabling a more accurate match.	
G	Gu et al. [54]	Reshuffle Loss	Connecting both global and local style losses. Capable of preserving global appearance while avoiding distortions in local style patterns.	- 2018 WCT
	Li and Wand [48]	Adversarial Loss	Computed based on PatchGAN. Utilising contextual correspondence between patches. More effective at preserving coherent textures in complex images.	
	Jing et al. [61]	Stroke Loss	Achieving continuous stroke size control while preserving stroke consistency.	
	Wang et al. [62]	Hierarchical Loss	Enabling a coarse-to-fine stylisation procedure. Capable of producing large but also subtle strokes for high-resolution content images.	
	Liu et al. [63]	Depth Loss	Preserving depth maps of content images. Effective at retaining spatial layout and structure of content images, compared with single <i>Gram Loss</i> .	
Y. Ji Con		Temporal Consistency Loss	Designed for video style transfer. Penalising the deviations along point trajectories based on optical flow. Capable of maintaining temporal consistency among stylised frames.	65
Le	Chen et al. [70]	Dispurity Loss	Designed for stereoscopic style transfer. Penalising bidirectional disparity. Capable of consistent strokes for different views.	