- 1. Introduction
 - Variable selection and model-X knockoffs
 - Knockoff sampling is difficult
- 2. Characterizing knockoff distributions
 - The characterization theorem
 - Connection to Markov chain Monte Carlo (MCMC)
- 3. Metropolized knockoff sampling (Metro)
 - How it works
 - Time complexity and graphical structure
- 4. Good proposals inspired by the MCMC literature
 - Covariance-guided proposal
 - Multiple-try Metropolis (MTM)
- 5. Simulation results
- 6. Discussion

Mean absolute correlation (MAC)

For any valid knockoff distribution $\operatorname{corr}(X_i, \tilde{X}_j) = \operatorname{corr}(X_i, X_j)$ if $i \neq j$ $\operatorname{corr}(\tilde{X}_i, \tilde{X}_j) = \operatorname{corr}(X_i, X_j)$

 $\mathbf{corr}(X, \tilde{X}) =$

