Studierendenmitschrift zur Vorlesung: Einführung in die Inferenzstatistik (SoSe 2022)

Original SoSe21 hergestellt von: Jim Feller Aktualisierung SoSe22: Jelena Popadic

The template is based on a free template from Typesetters. The Book icon is a free icon from Icons8.
GNU General Public License v3.0

Inhaltsverzeichnis

1	Parametrische Modelle	. 5
1.1	Parametrische Modelle und Parameterschätzung	7
1.2	Die Momenten-Methode (MM)	9
1.3	Die Maximum-Likelihood Methode (ML)	21
1.4	Zulässigkeit, Effizienz und die Cramér-Rao-Schranke	31
1.5	Das Verhalten von ML-Schätzer in großen Stichproben	42
2	Testen von Hypothesen	47
2.1	Neyman-Pearson Paradigma	47
2.2	Likelihood-Ratio-Tests und das Neyman-Pearson Lemma	55
2.3	L-R-Tests in großen Stichproben	62
3	Zufallsvektoren und Zufallsmatrizen	66
3.1	Erwartungswerte und Varianz/Kovarianz-Matrizen	66
3.2	Die Multivariate Normalverteilung	75
3.3	Der Multivariate Zentrale Grenzwertsatz	84
3.4	Normalverteilungen - stetig und singulär (degeneriert)	84
	Index	87

1. Parametrische Modelle

Siehe für eine Einführung zu diesem Kapitel S. 255-260 in *Rice* (2007).

Beispiel 1.1 (Ein Modell für den radioaktiven Zerfall) Atome eines Elements zerfallen unabhängig voneinander in scheinbar zufälliger Reihenfolge. Im Moment des Zerfalls wird ein α -Teilchen abgegeben. Im Experiment beobachtet man eine enorm große Zahl von Atomen über eine gewisse Zeitspanne. Dabei wird die (relativ kleine) Zahl der α -Teilchen beobachtet.

 $S_{n_0} = \#\alpha$ -Teilchen pro Zeitintervall

Modell 1

$$S_{n_0} \sim B(n_0, p_0)$$

 \leftarrow unpraktisch zum Rechnen (n_0 unbekannt)

Atome (enorm)

Zerfallswkeit (extrem klein)

Modell 2

$$\sqrt{n_0} \left(\frac{1}{n_0} S_{n_0} - p_0 \right) \xrightarrow{w} N \left(0, p_o (1 - p_0) \right) \qquad \leftarrow \text{unsinnig.}$$

$$\xrightarrow[p_0 \text{ fest}]{} \longrightarrow \infty$$

$$\mathbb{E}(S_{n_0}) = n_0 p_0 \longrightarrow \infty$$

 \leftarrow passt nicht zu der Tatsache, dass im Experiment eine relativ kleine Anzahl von α -Teilchen, also ein relativ kleiner Wert von S_{n_0} , beobachtet wird.

Modell 3

$$S_{n_0} \sim P(\underbrace{\lambda_0})$$
 sehr groß sehr klein, sodass λ_0 moderat

 \leftarrow praktikabel und sinnvoll

Begründung: Gesetz der kleinen Zahlen Damit lässt sich Modell 1 durch Modell 3 approximmieren Sei $X \sim B(n, p)$. Dann gilt für jedes $k \in \mathbb{N}_0$:

$$\mathbb{P}(X=k) \xrightarrow{n \to \infty, \atop np = \lambda \text{ fest}} \frac{\lambda^k}{k!} e^{-\lambda}.$$

Nachrechnen.

$$\mathbb{P}(X=k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$k \text{ Faktoren}$$

$$= \underbrace{\frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!}}_{k \text{ Faktoren}} p^{k} (1-p)^{n-k}$$

$$= \underbrace{\frac{np(n-1)p \cdot \dots \cdot (n-k+1)p}{k!}}_{k \text{!}} (1-p)^{n} (1-p)^{-k}$$

$$= \underbrace{\frac{np(n-1)p \cdot \dots \cdot (n-k+1)p}{k!}}_{k \text{!}} \left(1 - \frac{np}{n}\right)^{n} \left(1 - \frac{np}{n}\right)^{-k}$$

$$= \underbrace{\frac{np \cdot np \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot np \cdot \left(1 - \frac{k+1}{n}\right)}_{k \text{!}} \left(1 - \frac{np}{n}\right)^{n} \left(1 - \frac{np}{n}\right)^{-k}}_{k \text{!}}$$

$$\xrightarrow{n \to \infty}_{np = \lambda} \frac{\lambda^{k}}{k!} e^{-\lambda} 1.$$

Bemerke:

$$np = \lambda,$$

$$\left(1 - \frac{1}{n}\right) \to 1,$$

$$e^{-x} = \lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n,$$

$$\left(1 - \frac{pn}{n}\right)^n \approx \left(1 - \frac{\lambda}{n}\right)^n \approx e^{-\lambda}.$$

Beispiel 1.2 (Daten von Berkson (1966)) Daten übernommen aus Rice (2007, S. 256).

 $\#\alpha\text{-Teilchen}$ von Americum 241 innerhalb von 10 Sekunden.

Dieses Experiment wird 1207 mal (unabhängig) wiederholt.

n = 1207 Beobachtung $X_1, ..., X_n$ iid mit $X_i \sim P(\lambda_0)$.

Im Poisson Modell X_i iid $P(\lambda_0)$ ist $\mathbb{E}(X_i) = \lambda_0 \operatorname{Var}(X_i) = \lambda_0$

Für $\bar{X}_n = \sum_{i=1}^n (X_i)$ ist $E(\bar{X}_n) = \lambda_0$, $Var(\bar{X}_n) = \frac{\lambda_0}{n}$.

Schätzer für $\mathbb{E}(X_i) = \lambda_0$: $\hat{\lambda_n} = \bar{X_n} \leftarrow$ unverzerrte und konsistente Schätzer Schätzer für $Var(X_i) = \lambda_0$: $\bar{X_n}$ oder $\frac{1}{n-1}\sum_{i=1}^n (X_i - \hat{\mu})^2 = \hat{\sigma}_n^2$

Man findet aus den Daten: $\hat{\lambda_n} = 8.37$, $(\hat{\sigma_n})^2 = 8.37$, $\tilde{\sigma}_n^2 = 8.53$.

Konfidenzintervall für λ_0 mit nominaler Überdeckungswahrscheinlihkeit $1-\alpha$:

• Normalapproximation:

$$\hat{\lambda}_n \pm \sqrt{\frac{\hat{\sigma}_n^2}{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \dots \text{ für } \alpha = 0.05 : [8.206, 8.533]$$

• Bootstrap:

95% Konfidenzintervall mit der Bootstrap-Methode:

$$\left[\hat{\lambda}_n - \hat{F_n}^{*m-1} (1 - \frac{\alpha}{2}), \hat{\lambda}_n - \hat{F_n}^{*m-1} (\frac{\alpha}{2})\right] =$$
[8.205, 8.531]

1.1 Parametrische Modelle und Parameterschätzung

• Experiment:

Beobachtungen $X_1, ..., X_n$

• Parametrisches Modell:

Angenommen die $X_1, ..., X_n$ sind i.i.d. Beobachtung einer Zufallsvariable X, deren Verteilung von einer bestimmten Form ist:

 $X \sim \text{Verteilung abhängig von einem Parameter } \theta_0 \in \Theta \subseteq \mathbb{R}^p$

Die funktionale Form des Modells ist <u>bekannt</u>, der Parameter θ_0 ist <u>unbekannt!</u>

Beispiel 1.3 Beispiele von parametrischen Modellen:

$$X \sim P(\lambda_0) \qquad \lambda_0 = \theta_0$$

$$\Theta = (0, \infty)$$

$$X \sim B(p_0) \qquad p_0 = \theta_0$$

$$\Theta = (0, 1) \text{ bzw. } [0, 1]$$

$$X \sim \text{Bin}(n, p) \qquad p_0 = \theta_0$$

$$\Theta = (0, 1) \text{ bzw. } [0, 1]$$

$$X \sim N(\mu, \sigma_0^2) \qquad \sigma_0^2 = \theta_0$$

$$\Theta = (0, \infty) \text{ bzw. } [0, \infty)$$

$$X \sim N(\mu_0, \sigma_0^2) \qquad \mu_0 = \theta_0$$

$$\Theta = \mathbb{R}$$

$$X \sim N(\mu_0, \sigma_0^2) \qquad \left(\frac{\mu_0}{\sigma_0^2}\right) = \theta_0 \dots 2\text{-dim.}$$

$$\Theta = \mathbb{R} \times (0, \infty)$$

Betrachte einen Schätzer $\hat{\theta}$ für θ_0 ; das ist eine Größe $\hat{\theta} = \hat{\theta}(X_1,...,X_n)$, die alleine aus den Daten $X_1,...,X_n$ berechenbar ist (oft auch $\hat{\theta}_n$).

Beachte: Für $\theta_0 \in \mathbb{R}^p$ mit p > 1 ist auch $\hat{\theta} \in \mathbb{R}^p$.

Definition 1.1 (Unverzerrtheit) Der Schätzer $\hat{\theta}$ für θ_0 ist unverzerrt (bzw. erwartungstreu), wenn gilt:

$$\forall \theta \in \Theta, \forall i = 1,..., p : \mathbb{E}_{\theta_n} \left((\hat{\theta})_i \right) = (\theta)_i.$$

Erwartungstreu, wenn θ_n
der wahre Parameter ist.

Beachte: Für
$$\hat{\theta} = \begin{pmatrix} \hat{\theta}_1 \\ \vdots \\ \hat{\theta}_p \end{pmatrix}$$
 ist $\mathbb{E}_{\theta_n} (\hat{\theta}) = \begin{pmatrix} \mathbb{E}_{\theta} (\hat{\theta}_1) \\ \vdots \\ \mathbb{E}_{\theta_n} (\hat{\theta}_p) \end{pmatrix}$.

Ist $\hat{\theta}$ unverzerrt, dann ist die *i*-te Komponente von $\hat{\theta}$ ein unverzerrter Schätzer für die *i*-te Komponente von θ_0 .

Definition 1.2 (Konsistenz) Ein Schätzer $\hat{\theta}_n$ für θ_0 heißt konsistent, wenn gilt: $\uparrow \\ \text{Stichprobengröße}$

$$\forall \epsilon > 0, \forall i = 1, ..., p, \forall \theta \in \Theta : \mathbb{P}_{\theta_0} \left(||(\hat{\theta}_n)_i - (\theta)_i|| > \epsilon \right) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Kurz:

$$\hat{\theta}_n \stackrel{p}{\to} \theta_0.$$

Beachte: $\hat{\theta}_n$ ist konsistent für θ_0 genau dann, wenn $(\hat{\theta}_n)_i$ konsistent ist für $(\theta_0)_i$ für alle $i=1,\ldots,p$.

Nachrechnen. Siehe Übung.

Wunschliste für Schätzer:

- Unverzerrtheit ← keinen systematischen Fehler.
- Konsistenz \leftarrow Genauigkeit wächst mit n.
- kleine Varianz
- Verteilung des $\hat{\theta_n} \theta_0$ bekannt oder approximierbar.

Zwei Strategien:

- Momentenmethode
- Maximum-Likelyhood-Methode.

1.2 Die Momenten-Methode (MM)

Siehe zu diesem Kapitel S. 260-267. in Rice (2007).

Betrachte ein parametrisches Modell wie in Abschnitt 1.1: $X_1, ..., X_n$ i.i.d. Kopien von X, wobei $X \sim \text{Verteilung abhängig von } \theta_0 \in \Theta \subseteq \mathbb{R}^p \quad (p \ge 1)$.

In vielen Fällen gibt es eine eindeutige Beziehung zwischen dem Parameter θ_0 und den Momenten der zugrundlegende Verteilung X (1:1Beziehung).

		Parameter	Funktionen von $\mathbb{E}(X)$, $\mathbb{E}(X^2)$,
	$X \sim P_{\lambda_0}$	$\lambda_0 > 0$	$= \mathbb{E}_{\lambda_0}(X) = \lambda_0$
Beispiel 1.4	$X \sim Bin(n, p_0)$	$p_0 \in [0,1]$	$= \frac{1}{n} \mathbb{E}(X)_{p_0} \text{ weil } E_{Bin}(X) = n * p_0$
	$X \sim N(\mu_0, \sigma_0^2)$	$\mu \in \mathbb{R}$	$=\mathbb{E}(X)$
		$\sigma_0^2 > 0$	$= \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = Var(X)$

Bemerkung: (MM) Allgemein:

Für $\theta \le \Theta$ und $k \ge 1$ setzt man $\mathbb{E}_{\theta_0}(X^k) = m_k(\theta_0)$ (Moment=Funktion des Parameters)

Angenommen es gibt eine Funktion $f: \mathbb{R}^p \to \mathbb{R}^p$, sodass $f\left(\begin{pmatrix} m_1(\theta_0) \\ \vdots \\ m_n(\theta_0) \end{pmatrix}\right) = \theta_0$ für jedes $\theta_0 \in \Theta$ die "glatt" ist.

Dann erhält man einen Momenten-Methoden-Schätzer $\hat{\theta}_{MM}$

• durch:

$$\hat{\theta} = \hat{\theta}_{MM} = f\left(\hat{m}_1, \dots, \hat{m}_p\right)$$

• wobei

$$\hat{m}_j = \frac{1}{n} \sum_{i=1}^n X_i^j$$

für $1 \le j \le p$.

Bemerkung: Es gibt im Allgemeinem mehrere MM-Schätzer.

Beispiel 1.5 (Gleichverteilung) $X_1, ..., X_n$ i.i.d. $U([0, \theta]), \theta > 0$.

$$\mathbb{E}(X_1) = \frac{\theta}{2} \qquad \Rightarrow \theta = 2\mathbb{E}(X_1)$$

$$\hat{\theta}_{MM} = 2\frac{1}{n}\sum_{i=1}^{n}X_i.$$

$$E(X_1^2) = \frac{\theta^2}{3} \qquad \Rightarrow \theta = \sqrt{3\mathbb{E}(X_1^2)}$$

$$\hat{\theta}_{MM} = \sqrt{3\frac{1}{n}\sum_{i=1}^{n}X_i^2}.$$

$$E(X_1^3) = \dots \qquad \Rightarrow \dots$$

$$\dots$$

Erinnerung (Stetigkeit):

 $g: \mathbb{R} \to \mathbb{R}$ ist **stetig** im Punkt $m \in \mathbb{R}$, wenn gilt:

$$\forall \epsilon > 0 \ \exists \ \delta > 0 : |m' - m| < \delta \Rightarrow |g(m') - g(m)| < \epsilon.$$

 $g: \mathbb{R}^p \to \mathbb{R}$ ist **stetig** im Punkt $m \in \mathbb{R}^p$, wenn gilt:

$$\forall \epsilon > 0 \ \exists \ \delta > 0 : ||m' - m|| < \delta \Rightarrow |g(m') - g(m)| < \epsilon.$$

 $g: \mathbb{R}^p \to \mathbb{R}^q$ ist **stetig** im Punkt $m \in \mathbb{R}^p$, wenn gilt:

$$\forall j = 1, ..., q \text{ ist } f(\cdot)_i : \mathbb{R}^p \to \mathbb{R} \text{ stetig im Punkt } m.$$

Lemma 1.1 Sind $X_1,...,X_n$ i.i.d. mit $\mathbb{E}(X^k)=m_k$ für k=1,...,p und ist $g:\mathbb{R}^p\to\mathbb{R}$ stetig im Punkt $(m_1,...,m_p)=m$, dann gilt für jedes $\epsilon>0$

$$\mathbb{P}(|g(\hat{m}) - g(m)| > \epsilon) \stackrel{n \to \infty}{\longrightarrow} 0.$$

(Hier ist $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ und $\hat{m} = (\hat{m}_1, \dots, \hat{m}_p)$)

Beweis. Sei $\epsilon > 0$. Weil g stetig ist im Punkt m, gibt es ein $\delta > 0$, sodass gilt:

$$||m'-m|| < \delta \Rightarrow |g(m')-g(m)| < \epsilon.$$

Setze
$$\hat{m} = \begin{pmatrix} \hat{m}_1 \\ \vdots \\ \hat{m}_p \end{pmatrix}$$
. Dann gilt:

$$\{||\hat{m} - m|| < \delta\} \qquad \subseteq \{|g(\hat{m}) - g(m)| < \epsilon\}$$

$$\Rightarrow \{|g(\hat{m}) - g(m)| \ge \epsilon\} \qquad \subseteq \{||\hat{m} - m|| \ge \delta\}$$

Also:

$$\mathbb{P}(|g(\hat{m}) - g(m)| > \epsilon) \leq \mathbb{P}(|g(\hat{m}) - g(m)| \geq \epsilon)$$

$$\leq \mathbb{P}(||\hat{m} - m|| \geq \delta)$$

$$\leq \mathbb{P}(\sqrt{p} * max\{|\hat{m}_k - m_k|, 1 \leq k \leq p\} \geq \delta)$$

$$= \mathbb{P}(\bigcup_{p}^{k=1} |\hat{m}_k - m_k| > \frac{\delta}{\sqrt{p}})$$

$$\leq \sum_{k=1}^{p} \mathbb{P}(|\hat{m}_k - m_k| > \frac{\delta}{\sqrt{p}}) \xrightarrow{n \to \infty} 0$$

Mit dem Gesetz der großen Zahlen gilt:

$$\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{p} m_k \tag{\times}$$

für jedes k = 1, ..., p.

Satz 1.1 Betrachte X_i , $i \ge 1$, i.i.d. wie in (MM).

Ist die Funktion $f: \mathbb{R}^p \to \mathbb{R}^p$ stetig in jedem Punkt der Menge $\{(m_1(\theta_0), \dots, m_p(\theta_0))' = \theta \in \Theta\}$ (\times) , dann ist $\hat{\theta}_{MM}$ konsistent für θ_0 .

alle möglichen Werte der Momente des Parameters

Beweis.

Zz: Jede Komponente von $\hat{\theta}_n$ ist konsistent für die entsprechende Komponente von θ_0 .

Sei $j \in \{1,...,p\}$. Laut Voraussetzung ist $f: \mathbb{R}^p \to \mathbb{R}^p$ stetig im jedem Punkt der Menge (\times) . Dann ist auch $f(\cdot)_j :: \mathbb{R}^p \to \mathbb{R}^p$ stetig im jedem Punkt von (\times) .

Sei $\theta_0 \in \Theta$ sodass $m := (m_1(\theta_0), ..., m_p(\theta_0)) \in (\times)$. Mit dem Lemma 1.1 folgt dass

$$\forall \epsilon > 0 : \mathbb{P}(|f(\hat{m})_j - f(m)_j| > \epsilon) \to 0$$

$$= (\hat{\theta}_n)_j \qquad = (\theta_0)_j$$

Also ist $(\hat{\theta}_n)_i$ konsistenf für $(\theta_0)_i$.

Satz 1.2 Betrachte ein parametrisches Modell wo X Verteilung abh. von $\theta \le \Theta \in \mathbb{R}$. Seien X_1, X_2 i.i.d. Kopien von X falls $\theta_0 = f(m_1(\theta_0))$ (für $\theta \in \Theta$) für eine Funktion f, die auf der Menge $\{m_1(\theta): \theta \in \Theta\}$ stetig ist. Dann ist der MM-Schätzer

$$\hat{\theta}_n = f(\frac{1}{n} \sum_{i=1}^n X_i)$$

kosistent für θ_0 .

Erinnerung aus GZ

Falls $X_n \xrightarrow{p} c$ und falls $f : \mathbb{R} \to \mathbb{R}$ stetig ist im Punkt c, dann folgt aus $f(X_n) \xrightarrow{p} f(c)$. Wissen: $\bar{X}_n = \frac{1}{n}X_i$ ist ein konsistenter Schätzer für $E_{\theta_0}(X) = m_1(\theta_0)$.

D.h. $\bar{X}_n \stackrel{p}{\to} m_1(\theta_0)$. Laut voraussetzung ist die Funktion $f(\cdot)$ stetig im Punkt $m_1(\theta_0) = 0$

$$f(\bar{X}_n) \xrightarrow{p} f(m_1(\theta_0))$$
, also $\hat{\theta}_n \xrightarrow{p} \theta_n$

mit andere Wörten $\hat{\theta}_n$ ist ein konsistenten Schätzer für θ_0 .

Beispiel 1.6 (Poissonverteilung) $X_1, ..., X_n$ i.i.d. $P(\lambda_0), \quad \lambda_0 \in (0, \infty)$. Beachte $\mathbb{E}_{\lambda_0}(X_1) = \lambda_0$, dass gibt dann der MM-Schätzer

$$\hat{\lambda}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Der Schätzer ist unverzerrt und konsistent. ✓

Wissen: $\lambda_0 = \operatorname{Var}_{\lambda_0}(X_1) = \mathbb{E}_{\lambda_0}(X_1^2) - (\mathbb{E}_{\lambda_0}(X_1))^2$ daraus kann man einen witeren MM-Schätzer mit λ_0 erhalten.

Beispiel 1.7 (Normalverteilung) X_1, \ldots, X_n i.i.d. $N(\mu_0, \sigma_0^2)$ mit $\mu_0 \in \mathbb{R}, \sigma_0^2 \in (0, \infty)$.

$$\mathbb{E}_{\mu_0,\sigma_0^2}(X_1) = \mu_0, \mathbb{E}_{\mu_0,\sigma_0^2}(X_1^2) = \sigma_0^2 - \mu_0,$$

$$Var(X_1) = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2 = \sigma_0^2$$

Das gibt den MM-Schätzer:

$$\begin{pmatrix} \hat{\mu}_n \\ \hat{\sigma}_n^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n X_i \\ \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2 \end{pmatrix}.$$

$$\mathbb{E}_{\mu_{0},\sigma_{0}^{2}}(X_{1}) = \mu_{0}$$

$$\mathbb{E}_{\mu_{0},\sigma_{0}^{2}}(\hat{\sigma}_{n}^{2}) = \frac{n-1}{n}\sigma_{0}^{2} \neq \sigma_{0}^{2}...verzerrt$$

$$\hat{\sigma}_{n}^{2} = \frac{1}{n}\sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} \text{ Vo-GZS}$$

Konsistenz:

Die Funktion $f \binom{m_1}{m_2} \mapsto \binom{m_1}{m_2 - m_1^2}$ ist stetig auf ganz \mathbb{R}^2 .

Damit ist $\begin{pmatrix} \hat{\mu} \\ \hat{\sigma}^2 \end{pmatrix}$ konsistent für $\begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix}$.

Beispiel 1.8 (Geometrische Verteilung) X_1, \ldots, X_n i.i.d. $G(p_0), p_0 \in (0,1)$.

Wissen: Für
$$X \sim G(p)$$
 ist $\mathbb{E}_{p_0}(X_1) = \frac{1}{p_0}, \quad \Rightarrow p_0 = \frac{1}{\mathbb{E}_{p_0}(X)}$

Das erzeugt den MM-Schätzer:

$$\hat{p}_0 = \frac{1}{\frac{1}{n} \sum_{i=1}^n X_i}.$$

Dieser Schätzer ist verzerrt! $\mathbb{E}(f(X)) \neq f(\mathbb{E}(X))$!

falls $f(\cdot)$ linear ist, also f(X) = aX + b ist, $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b = f(\mathbb{E}(X))$;

$$\mathbb{E}_p(\hat{p}_n) \neq \frac{1}{\mathbb{E}_p\left(\frac{1}{n}\sum_{i=1}^n X_i\right)} = \frac{1}{\frac{1}{p}} = p.$$

Konsistenz:

Die Funktion $f(t) = \frac{1}{t}$ ist stetig auf $(0, \infty)$.

Die möglichen Werte von $\mathbb{E}_{p_0}(X_1)$ ist die Menge

$$\{\frac{1}{p}\colon p\in(0,1)\}=(1,\infty).(\star)$$

Damit ist die Funktion $f(\cdot)$ stetig in jedem Punkt der Menge (\star) und mit dem letzten Satz ist

$$\hat{p}_n = f(\frac{1}{n} \sum_{i=1}^n X_i)$$

konsistent für p_0 . \checkmark

Beispiel 1.9 X_1, \ldots, X_n i.i.d. $\sim \mathcal{U}([\theta_0, \theta_0 + 1]), \theta_0 \in \mathbb{R}$

Hier ist $\mathbb{E}_{\theta_0}(X_1) = \theta_0 + \frac{1}{2}$. Das gibt dem MM-Schätzer

$$\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{2}.$$

Der Schätzer ist unverzerrt (weil $f(x) = x - \frac{1}{2}$ linear ist) und es ist konsistent (weil f(x) stetig ist auf ganz \mathbb{R}).

Verteilung des Schätzfehlers/Konfidenzintervalls:

Beispiel 1.10 (Normalverteilung) X_1,\ldots,X_n i.i.d. $N(\mu_0,\sigma_0^2),\mu_0\in\mathbb{R},\sigma_0^2>0$.

• Konfidenzintervall (KI) für μ_0 :

Wissen:

$$\sqrt{n}\frac{\bar{X}_n-\mu_0}{\hat{\sigma}_n}\sim t_{n-1},$$

wobei $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}_{MM}$ und $\tilde{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n}{n-1} \hat{\sigma}_{MM}^2$. Gegeben $\alpha \in (0,1)$. Wähle $a = \mathrm{F}_{t_{n-1}}^{-1} \left(\frac{\alpha}{2}\right)$ und $b = \mathrm{F}_{t_{n-1}}^{-1} \left(1 - \frac{\alpha}{2}\right)$ (Quantile der t_{n-1} -Verteilung).

Dann ist

$$(\star) = \mathbb{P}\left(a \le \sqrt{n} \frac{\bar{X}_n - \mu_0}{\hat{\sigma}_n} \le b\right) = \underbrace{\Gamma_{n-1}(b) - \Gamma_{n-1}(a)}_{\text{Verteilungsfunktionen der } t_{n-1}}$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2}$$

$$= 1 - \alpha.$$

$$(\star) = \mathbb{P}\left(a \frac{\hat{\sigma}_n}{\sqrt{n}} \le \bar{X}_n - \mu_0 \le b \frac{\hat{\sigma}_n}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-\bar{X}_n + a \frac{\hat{\sigma}_n}{\sqrt{n}} \le -\mu_0 \le -\bar{X}_n + b \frac{\hat{\sigma}_n}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(\bar{X}_n - b \frac{\hat{\sigma}_n}{\sqrt{n}} \le \mu_0 \le \bar{X}_n - a \frac{\hat{\sigma}_n}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(\mu_0 \in [\bar{X}_n - b \frac{\hat{\sigma}_n}{\sqrt{n}}, \bar{X}_n - a \frac{\hat{\sigma}_n}{\sqrt{n}}]\right).$$

Also: Das KI für μ_0 mit Überdeckungswahrscheinlichkeit $1-\alpha:\left[\bar{X}_n-b\frac{\hat{\sigma}_n}{\sqrt{n}},\bar{X}_n-a\frac{\hat{\sigma}_n}{\sqrt{n}}\right]$ Informell: $\left[\bar{X}_n\pm b\frac{\hat{\sigma}_n}{\sqrt{n}}\right]$, Beobachte: a=-b • KI für σ_0^2 :

Wissen:

$$\sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \sim \sigma_0^2 \chi_{n-1}^2$$

$$\Rightarrow \hat{\sigma}_n^2 \sim \frac{\sigma_0^2 \chi_{n-1}^2}{n-1}$$

$$(n-1) \frac{\hat{\sigma}_n^2}{\sigma_0^2} \sim \chi_{n-1}^2.$$

Gegeben $\alpha \in (0,1)$ wählt man hier $a = F_{\chi_{n-1}^2}^{-1}\left(\frac{\alpha}{2}\right)$ und $b = F_{\chi_{n-1}^2}^{-1}\left(1 - \frac{\alpha}{2}\right)$ (Quantile der χ_{n-1}^2 -Verteilung).

Damit ist

$$(\star) = \mathbb{P}\left(a \le (n-1)\frac{\hat{\sigma}_n^2}{\sigma_0^2} \le b\right) = \mathcal{F}_{\chi_{n-1}^2}(b) - \mathcal{F}_{\chi_{n-1}^2}(a)$$
$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2}$$
$$= 1 - \alpha.$$

$$(\star) = \mathbb{P} \left(\frac{a}{(n-1)\hat{\sigma}_n^2} \le \frac{1}{\sigma_0^2} \le \frac{b}{(n-1)\hat{\sigma}_n^2} \right)$$

$$= \mathbb{P} \left(\frac{(n-1)\hat{\sigma}_n^2}{b} \le \sigma_0^2 \le \frac{(n-1)\hat{\sigma}_n^2}{a} \right)$$

$$= \mathbb{P} \left(\sigma_0^2 \in \left[\frac{(n-1)\hat{\sigma}_n^2}{b}, \frac{(n-1)\hat{\sigma}_n^2}{a} \right] \right).$$

Also KI für σ_0^2 mit Überdeckungswahrscheinlichkeit $1 - \alpha : \left\lceil \frac{(n-1)\hat{\sigma}_n^2}{b}, \frac{(n-1)\hat{\sigma}_n^2}{a} \right\rceil$.

Beispiel 1.11 (Poisson-Modell) X_1, \ldots, X_n i.i.d. $P(\lambda_0), (\lambda_0 > 0)$.

Hier ist $\mathbb{E}(X_1) = \lambda_0$, $Var(X_1) = \lambda_0$.

(*) Erinnerung aus der Vorlesung Grundzüge der Statistik: Für Z_1, \ldots, Z_n i.i.d. mit $\mathbb{E}(Z_1) =$ μ_0 und $Var(Z_1) = \sigma^2$. Ist ein KI für μ mit **nominaler** Überdeckungswahrscheinlichkeit $1-\alpha$

$$\left[\hat{\mu}_n - \frac{\tilde{\sigma}_n}{\sqrt{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2} \right), \hat{\mu}_n - \frac{\tilde{\sigma}_n}{\sqrt{n}} \Phi^{-1} \left(\frac{\alpha}{2} \right) \right]$$

hierbei ist $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ und $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \hat{\mu}_n)^2$. Damit erhält man das KI für λ_0 nämlich

$$\left[\bar{X}_n - \frac{\hat{\sigma}_n}{\sqrt{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right), \bar{X}_n - \frac{\hat{\sigma}_n}{\sqrt{n}} \Phi^{-1} \left(\frac{\alpha}{2}\right)\right] \leftarrow \text{Generisches Intervall}$$

mit nominaler Überdeckungswahrscheinlichkeit $1-\alpha$ wobei $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$, $\hat{\sigma}_n^2=$ $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X}_n)^2$

Beachte: \bar{X}_n schätzt $\mathbb{E}(X_1) = \lambda_0$, $\hat{\sigma}_n^2$ schätzt $\text{Var}(X_1) = \lambda_0$.

Im Kontext von (\times) gilt (Siehe VO GZ: Beispiel 8.8):

$$\sqrt{n}\frac{\hat{\mu}_n - \mu}{\sigma} \xrightarrow{w} N(0,1),$$

und auch

$$\sqrt{n} \frac{\hat{\mu}_n - \mu}{\hat{\sigma}_n} \xrightarrow{w} N(0,1).$$

Sei $\tilde{\sigma}_n^2$ ein anderer konsistenter Schätzer für σ^2

$$\sqrt{n}\frac{\hat{\mu}_n - \mu}{\tilde{\sigma}_n^2} = \sqrt{n} \underbrace{\frac{\hat{\mu}_n - \mu}{\sigma}}_{\stackrel{w}{\longrightarrow} N(0,1)} \underbrace{\frac{\sigma}{\tilde{\sigma}_n^2}}_{f(\tilde{\sigma}_n^2)} \xrightarrow{p} 1.$$

$$f(\tilde{\sigma}_n^2)$$
 für $f(t) = \sqrt{\frac{\sigma^2}{t}}$:

f ist stetig auf $(0, \infty)$ und inbsbesondere im Punkt σ^2

Der Schätzer $\tilde{\sigma}_n^2$ ist konsistent für $\sigma^2: \tilde{\sigma}_n^2 \xrightarrow{p} \sigma^2$

Rechnenregel: $f(\tilde{\sigma}_n^2) \xrightarrow{p} f(\sigma^2)$

M.a.W. $\frac{\sigma}{\tilde{\sigma}_n} \xrightarrow{p} 1$.

Mit Rechnenregeln aus GZ folgt: $\sqrt{n} \frac{\hat{\mu}_n - \mu}{\tilde{\sigma}_n^2} \xrightarrow{w} N(0,1) \cdot 1 \equiv N(0,1)$.)

Also: Im Poisson-Modell ist \bar{X}_n ein konsistenter Schätzer für $Var(X_1) = \lambda_0$. Damit gilt:

$$\sqrt{n} \frac{\bar{X}_n - \lambda_0}{\sqrt{\bar{X}_n}} \xrightarrow{w} N(0, 1). \tag{\times}$$

Gegeben $\alpha \in (0,1)$ wähle hier $a = \Phi^{-1}\left(\frac{\alpha}{2}\right)$ und $b = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$. Dann ist

$$\mathbb{P}\left(a \leq \sqrt{n} \frac{\bar{X}_n - \lambda_0}{\sqrt{\bar{X}_n}} \leq b\right) \stackrel{(\times, \times)}{=} \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \lambda_0}{\sqrt{\bar{X}_n}} \leq b\right) - \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - \lambda_0}{\sqrt{\bar{X}_n}} \leq a\right) \\
\approx \Phi(b) - \Phi(a) \\
= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} \\
= 1 - \alpha.$$

$$(**) = \mathbb{P}\left(\sqrt{\frac{\bar{X}_n}{n}}a \le \bar{X}_n - \lambda_0 \le \sqrt{\frac{\bar{X}_n}{n}}b\right)$$
$$= \mathbb{P}\left(-\bar{X}_n + \sqrt{\frac{\bar{X}_n}{n}}a \le -\lambda_0 \le -\bar{X}_n + \sqrt{\frac{\bar{X}_n}{n}}b\right)$$
$$= \mathbb{P}\left(\bar{X}_n - b\sqrt{\frac{\bar{X}_n}{n}} \le \lambda_0 \le \bar{X}_n - a\sqrt{\frac{\bar{X}_n}{n}}\right).$$

Also ein KI für λ_0 mit nominaler Überdeckungswahrscheinlichkeit $1-\alpha$ ist $\left[\bar{X}_n-b\sqrt{\frac{\bar{X}_n}{n}},\bar{X}_n-a\sqrt{\frac{\bar{X}_n}{n}}\right]$ — Spezielles Intervall im Poinsson-Modell (Beachte! -a=b)

Beispiel 1.12 (Geometrische Verteilung) $X_1,\dots,X_n\sim G(p_0),\quad p_0\in(0,1).$ Wissen: $\mathbb{E}(X_1)=\frac{1}{p_0}=\mu_0, (p_0=\frac{1}{\mathbb{E}(X_1)})\quad \mathrm{Var}(X_1)=\frac{1-p_0}{p_0^2}, \, \mathrm{MM}\text{-Schätzer für } p_0: \hat{p}_n=\frac{1}{\bar{X}_n}$ (nicht linear!).

Hinweis zur geometrischen Verteilung:

- # Versuche bis zum 1. Erfolg (wird in der Vorlesung verwendet)
- # Misserfolge bis zum 1. Erfolg + 1 (wird in R verwendet).

$$\begin{array}{l} \frac{1-p_0}{p_0^2} = \frac{\frac{1}{p_0}-1}{p_0} = \frac{1}{p_0}(\frac{1}{p_0}-1) = \mu_0(\mu_0-1), \\ \mathbb{E}(X_1) = \mu_0, \ Var(X_1) = \mu_0(\mu_0-1) \end{array}$$

Suche KI für $\mu_0 = \mathbb{E}(X_1) = \frac{1}{p_0}$ Wie im letzten Beispiel erhält man das KI

$$\left[\bar{X}_n - \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \bar{X}_n - \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}\left(\frac{\alpha}{2}\right)\right],$$

mit nominaler Überdeckungswahrscheinlichkeit $1 - \alpha$, wobei

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \text{ und } \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X} - n)^2$$

Im geometrisches Modell ist $\hat{\sigma}_n^2 = \bar{X}_n(\bar{X}_n - 1)$ ein Schätzer für $Var(X_1)$ der konsistent ist.

Das gibt ein witeres KI für μ_0 nämlch:

$$\left[\bar{X}_n - \sqrt{\frac{\tilde{\sigma}_n^2}{n}} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right), \bar{X}_n - \sqrt{\frac{\tilde{\sigma}_n^2}{n}} \Phi^{-1} \left(\frac{\alpha}{2}\right)\right]$$

mit nominaler Überdeckungswahrscheinlichkeit $1 - \alpha$.

Betrachte: $Z_1,...,Z_n$ i.i.d; $\mathbb{E}(Z_1) = \mu$, $Var(Z_1) = \sigma^2$ KI für $\mu: \bar{Z}_n \mp \sqrt{\frac{\hat{\sigma}_n^2}{n}} \Phi^{-1} (1 - \frac{\alpha}{2})$ KI für f(m) = ?

- Fall 1: $f(\cdot)$ linear, f(t) = At + B, A > 0, A und B bekannt; Wissen: $1 - \alpha \approx \mathbb{P}\left(\bar{Z}_n - \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}(1 - \frac{\alpha}{2}) \le \mu \le \bar{Z}_n + \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}(1 - \frac{\alpha}{2})\right)$ $= \mathbb{P}\left(A\left(\bar{Z}_n - \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}(1 - \frac{\alpha}{2})\right) + B \le f(\mu) \le A\left(\bar{Z}_n + \sqrt{\frac{\hat{\sigma}_n^2}{n}}\Phi^{-1}(1 - \frac{\alpha}{2})\right) + B\right)$...gibt KI für $f(\mu)$ mit nominaler Überdeckungswahrscheinlichkeit $1-\alpha$ $f(\cdot)$ linear wie oben, A < 0... analog.
- Fall 2: $f(\cdot)$ nicht linear + Skizze

$$\bar{X}_n \pm \sqrt{\frac{\tilde{\sigma}_n^2}{n}} \Phi^{-1}(1-\frac{\alpha}{2})$$
 KI für $\frac{1}{p_0}$ für X_1 i.i.d. $G(p_0)$

$$\frac{1.\text{Schätzer:}}{2.\text{Schätzer:}} \frac{\frac{1}{n-1} \sum_{i=1}^{n} (X_1 - \bar{X}_n)^2}{\bar{X}_n(\bar{X}_n - 1)}$$

Hinweis:
$$\frac{1-p_0}{p_0^2} = \frac{1}{p_0} (\frac{1}{p_0} - 1)$$

 $Z_1,...,Z_m$ i.i.d. und

- $\mathbb{E}(Z_1) = q...$ Überdeckungswahrscheinlichkeit
- $Var(Z_1) = q(q-1)$

$$\bar{Z}_m$$
: KI für q: $\bar{Z}_m \pm \underbrace{\sqrt{\frac{\cdot}{m}}\Phi^- 1(1-\frac{0.05}{2})}$

Typische Fehler=
$$2 \frac{\text{std. Abweichung}}{\sqrt{m}}$$

$$X_1,...,X_n$$
 i.i.d. $G(p_0)$
? KI für $p_0 = \frac{1}{\mathbb{E}_{p_0}(X_1)}$

• $f(\cdot)$ linear: (f(x) = ax + b)

$$\frac{\sqrt{n}(\bar{X}_n - \mathbb{E}(X_1)) \xrightarrow{w} N(0, Var(X_1))}{\sqrt{n}(f(\bar{X}_n) - f(\mathbb{E}(X_1))) \xrightarrow{w} N(0, a^2 Var(X_1))}$$

$$\frac{\sqrt{n}(a\bar{X}_n + b - (a\mathbb{E}(X_1) + b))}{a\sqrt{n}(\bar{X}_n - \mathbb{E}(X_1)) \xrightarrow{w} N(0, Var(X_1))}$$

$$\xrightarrow{w} N(0, a^2 Var(X_1))$$

• $f(\cdot)$ nicht linear: siehe nächste Satz!

Satz 1.3 (δ -Methode) Es seien Z_i i.i.d. Kopien von Z, mit $\mathbb{E}(Z) = \mu_Z$ und $\text{Var}(Z) = \sigma_Z^2 > 0$.

Ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ im Punkt μ_Z differenzierbar, dann gilt:

$$\sqrt{n}\left(f(\bar{Z}_n) - f(\mu_Z)\right) \xrightarrow{w} N\left(0, (f'(\mu_Z))^2 \sigma_Z^2\right),$$

wobei $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$.

Illustration: Siehe R-script vom 22.04.2021.

Beweis. Erinnerung:

$\sqrt{n}\left(\bar{Z}_n-\mu_z\right)\xrightarrow{w}N(0,\sigma_Z^2)$	Zentraler Grenzwertsatz
$\bar{Z}_n \xrightarrow{p} \mu_Z$	Gesetz der großen Zahlen
$X_n \xrightarrow{p} c, f(\cdot)$ stetig in c	Rechenregeln für \xrightarrow{p} , \xrightarrow{w} , GZS S. 80
$\Rightarrow f(X_n) \xrightarrow{p} f(c)$	
$X_n \xrightarrow{w} X$, $Y_n \xrightarrow{p} c$	
$\Rightarrow X_n + Y_n \xrightarrow{w} X + c$	
$\Rightarrow X_n \cdot Y_n \xrightarrow{w} X \cdot c$	
$f'(\mu_Z) = \lim_{Z \to \mu_Z} \frac{f(Z) - f(\mu_Z)}{Z - \mu_Z}$	VO Analysis

Definiere eine Funktion R(Z) als

$$R(Z) = \begin{cases} f'(\mu_z) - \frac{f(Z) - f(\mu_z)}{Z - \mu_Z} & : Z \neq Z_0, \\ 0 & : Z = \mu_Z. \end{cases}$$

Dann ist $R(\cdot)$ stetig im Punkt μ_Z :

$$\lim_{Z \to \mu_Z} R(Z) = 0 = R(\mu_Z).$$
weil f differenzierbar siehe ist im Punkt μ_Z oben

Ersetze Z durch \bar{Z}_n

$$f'(\mu_Z) = \frac{f(\bar{Z}_n) - f(\mu_Z)}{\bar{Z}_n - \mu_Z} + R(\bar{Z}_n)$$

Multiplizieren mit $\sqrt{n}(\bar{Z}_n - \mu_Z)$

$$f'(\mu_Z)\sqrt{n}(\bar{Z}_n-\mu_Z)=\sqrt{n}(f(\bar{Z}_n)-f(\mu_Z))+\sqrt{n}(\bar{Z}_n-\mu_Z)R(\bar{Z}_n)$$

$$\sqrt{n}\left(f(\bar{Z}_n) - f(\mu_Z)\right) = f'(\mu_Z) \underbrace{\sqrt{n}\left(\bar{Z}_n - \mu_Z\right)}_{\overset{w}{\longrightarrow} N(0,\sigma_Z^2)} - \underbrace{\sqrt{n}(\bar{Z}_n - \mu_Z)}_{\overset{w}{\longrightarrow} N(0,\sigma_Z^2)} \underbrace{\overset{R(\bar{Z}_n)}{\xrightarrow{p}}_{R(\mu_Z)=0}}_{\overset{w}{\longrightarrow} N(0,(f'(\mu_Z))^2\sigma_Z^2)} - \underbrace{\overset{w}{\longrightarrow} N(0,\sigma_Z^2) \cdot 0 = 0}_{\overset{w}{\longrightarrow} N\left(0,(f'(\mu_Z))^2\sigma_Z^2\right)}.$$

Beispiel 1.13 (Fortsetzung des oberen Beispiels - Geometrische Verteilung)

 X_i , $i \ge 1$, i.i.d. $G(p_0)$, $p_0 \in (0,1)$.

Wissen:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} \mathbb{E}_{p_0}(X_1) = \frac{1}{p_0},$$

$$\underbrace{\hat{p}_0}_{\text{MM-Schätzer}} = \frac{1}{\bar{X}_n} \xrightarrow{p} p_0.$$

$$\sqrt{n}\left(\bar{X}_n - \frac{1}{p_0}\right) \xrightarrow{w} N\left(0, \frac{1-p_0}{p_0^2}\right).$$

Betrachte $f(t) = \frac{1}{t}$, sodass $\hat{p}_n = f(\bar{X}_n)$ und $p_0 = f(\frac{1}{p_0})$ $f(\cdot)$ ist stetig an der Stelle $\frac{1}{p_0}$ $f'(t) = -\frac{1}{t^2}$ $f'(\frac{1}{p_0}) = \frac{1}{-(\frac{1}{p_0})^1} = -p_0^2$ $(f'(\frac{1}{p_0}))^2 = p_0^4$

Mit δ -Methode:

$$\sqrt{n}\left(\underbrace{f\left(\bar{X}_{n}\right)}_{\hat{p}_{n}} - \underbrace{f\left(\frac{1}{p_{0}}\right)}_{p_{0}}\right) \xrightarrow{w} N\left(0, \underbrace{\left(f'\left(\frac{1}{p_{0}}\right)\right)^{2} \frac{1 - p_{0}}{p_{0}^{2}}}_{p_{0}^{2} = p_{0}^{2}(1 - p_{0})}\right)$$

Also:
$$\sqrt{n}(\hat{p}_n - p_0) \xrightarrow{w} N(0, p_0^2(1 - p_0)).$$

bzw.
$$\sqrt{n} \frac{\hat{p}_n - p_0}{\sqrt{p_0^2 (1 - p_0)}} \xrightarrow{w} N(0, 1)$$

$$\tilde{\sigma}_n^2 = \hat{p}_n^2 (1 - \hat{p}_n) \xrightarrow{p} p_0^2 (1 - p_0)$$

(weil $\hat{p}_n \xrightarrow{p} p_0$ und weil $g(t) = t^2(1-t)$ stetig ist im Punkt p_0)

Damit gilt auch
$$\sqrt{n} \frac{\hat{p}_n - p_0}{\sqrt{\hat{p}_n^2 (1 - \hat{p}_n)}} \xrightarrow{w} N(0, 1)$$

Konfidenzintervall Für (0,1)ist ein mit nominaler p_0 Überdeckungswahrscheinlichkeit $1 - \alpha$ damit gegeben durch

$$\left[\hat{p}_n \pm \sqrt{\frac{\hat{p}_n^2(1-\hat{p}_n)}{n}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right),\right].$$

Bemerkung: Das letzte Beispiel zeigt die Konstruktion von Konfidenzintervallen mit zentralem Grenzwertsatz und δ -Methode. Eine alternative Konstruktion liefert der Bootstrap.

Bemerkung: Es gibt auch eine multivariate Version der δ -Methode.

Die tatsächliche U-Wkeit dieses Intervalls hängt von n und p_0 ab. Wissen: für jedes $p_0 \in (0, 1)$ gilt

$$\mathbb{P}_{p_0}\left(p_0 \in \hat{p}_n \pm \sqrt{\frac{\hat{p}_n^2(1-\hat{p}_n)}{n}}\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) \xrightarrow{n \leftarrow \infty} 1-\alpha$$

Wie groß muss n sein, damit diese Wahrscheinlichkeit gleich 0.95 ± 0.01 ist. Simulation in R:

						1280	
0.01	√	\checkmark	\checkmark	\checkmark	\checkmark	✓ ✓ ✓ ×	\checkmark
0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.5	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.9	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark
0.99	×	×	×	×	×	×	\checkmark

Die Qualität der Approximation hängt von n und p_0 ab. Beachte: p_0 ist konsistent schätzbar! Betrachte n, \hat{p}_n

Diese Approximation (Überdeckungswahrscheinlichkeit $\approx 1 - \alpha$) ist punktwise:

$$\forall p_0$$
: Fehler $(n, p_0) \xrightarrow{n \to \infty} 0$,

In eigenen Fällen ist auch eine gleichmäßige Approximation verfügbar.

$$\sup_{n,p_0} \quad \text{Fehler } (p_0) \xrightarrow{n \to \infty} 0.$$

In vorliegenden Fall (geom. Modell) gibt es leider keine gleichmäßige Approximation.

1.3 Die Maximum-Likelihood Methode (ML)

Siehe zu diesem Kapitel S. 267-285. in Rice (2007).

Betrachte i.i.d. Zufallsvariablen $X_1, ..., X_n$ deren jeweilige Dichte bzw. Wahrscheinlichkeitsfunktion von folgender Form ist:

$$f(x|\theta_0), \qquad \theta_0 \in \Theta \subseteq \mathbb{R}^p.$$

Die funktionale Form von $f(x|\theta_0)$ ist bekannt, aber der Parameter θ_0 ist unbekannt.

Idee: Gegeben Beobachtungen $x_1, ..., x_n$ von $X_1, ..., X_n$ schätzt man θ_0 durch jenen Wert von $\theta \in \Theta$, für welchen die Beobachtungen "am Wahrscheinlichsten" sind. Man wählt also jenes $\theta \in \Theta$, das die Beobachtungen "am Besten beschreibt".

Diskrete Modelle:

Betrachte i.i.d. Zufallsvariablen $X_1, ..., X_n$, die diskret sind mit Wahrscheinlichkeitsfunktion

$$p(x|\theta_0), \quad \theta_0 \in \Theta \leq \mathbb{R}^p, \quad x \in \mathbb{N}.$$

Betrachte Beobachtungen $x_1, ..., x_n$ von $X_1, ..., X_n$. Ist der wahre Parameter gleich $\theta \in \Theta$, dann ist die Wahrscheinlichkeit, die Werte $x_1, ..., x_n$ zu beobachten, gegeben durch

$$p_{\theta}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) := L(\theta).$$

 $L(\theta)$ nennt man die **Likelihood**.

Beachte $L(\theta) = \mathbb{P}_{\theta}(X_1 = x_1) \cdot \mathbb{P}_{\theta}(X_2 = x_2) \cdot \dots \cdot \mathbb{P}_{\theta}(X_n = x_n) = p(x_1|\theta) \cdot p(x_2|\theta) \cdot \dots \cdot p(x_n|\theta)$. Alternativ dazu betrachtet man oft die sogenannte Log-Likelihood

$$l(\theta) = \log(L(\theta))$$
$$= \sum_{i=1}^{n} \log p(x_i | \theta_0).$$

Beachte: $L(\theta)$ und $l(\theta)$ hängen von den beobachteten Werten x_1, \dots, x_n ab.

Die Maximum-Likelihood Methode maximiert $L(\theta)$ bzw. $l(\theta)$ über $\theta \in \Theta$:

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{argmax}} \ L(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} \ l(\theta),$$

wobei $\hat{\theta}_{ML}$ ein Maximum-Likelihood-Schätzer für θ ist.

- Beachte: Ein Maximierer von $L(\theta)$ ist auch ein Maximierer von $l(\theta)$, und umgekehrt.
- Bemerkung: Manchmal gibt es mehr als einem Maximierer der Likelihood.
- Beachte: $L(\theta)$ und $l(\theta)$ häangen von den beobachteten Werten $X_1,...,X_n$ ab.

Beispiel 1.14 (Bernoulli-Verteilung) X_1, \ldots, X_n i.i.d. $B(\theta_0)$, $\theta_0 \in (0,1)$. Die Wahrscheinlichkeitsfunktion ist hier

$$p(x|\theta_0) = \begin{cases} \theta_0 & : x = 1, \\ 1 - \theta_0 & : x = 0 \end{cases}$$
$$= \theta_0^x (1 - \theta_0)^{1 - x}.$$

Für Beobachtungen $x_1, ..., x_n$ von $X_1, ..., X_n$ ist die Likelihood gegeben durch

$$L(\theta) = p(x_1|\theta) \cdot \dots \cdot p(x_n|\theta)$$

$$= \left(\theta^{x_1}(1-\theta)^{1-x_1}\right) \left(\theta^{x_2}(1-\theta)^{1-x_2}\right) \cdot \dots \cdot \left(\theta^{x_n}(1-\theta)^{1-x_n}\right)$$

n Faktoren. Jeder Faktor ist entweder gleich θ oder $1-\theta$

$$=\theta^{S_n}(1-\theta)^{n-S_n}$$

wobei
$$S_n = \sum_{i=1}^n x_i$$

$$l(\theta) = S_n \cdot \log(\theta) + (n - S_n) \log(1 - \theta).$$

 $l'(\theta) = S_n \frac{1}{\theta} + (n - S_n) \frac{-1}{1 - \theta} = \frac{S_n}{\theta} - \frac{n - S_n}{1 - \theta}.$

$$f'(\theta) \stackrel{!}{=} 0$$

$$\Leftrightarrow \frac{S_n}{\theta} = \frac{n - S_n}{1 - \theta}$$

$$\Leftrightarrow S_n(1 - \theta) = \theta(n - S_n)$$

$$\Leftrightarrow S_n - S_n \theta = n\theta - S_n \theta$$

$$\Leftrightarrow \frac{S_n}{n} = \theta_{\times}.$$

$$f''(\theta) = -\frac{S_n}{\theta^2} - (n - S_n) \frac{-1}{(1 - \theta)^2}$$
$$= -\underbrace{\left(\frac{S_n}{\theta^2} + \frac{n - S_n}{(1 - \theta)^2}\right)}_{\text{Nenner alle} > 0} \le 0.$$

Wissen:

$$0 \leq S_n \leq n$$

$$0 \le n - S_n \le n$$

Weil $n \ge 1$ und $S_n(n - S_n) = n \ge 1$

ist entweder $S_n > 0$ oder $n - S_n > 0$.

Damit ist $f''(\theta) < 0$

Damit ist $\frac{S_n}{n}$ der eindeutige Maximierer von $L(\theta)$!

Also

$$\hat{\theta}_{ML} = \underset{0 < \theta < 1}{\operatorname{argmax}} L(\theta) = \bar{x}_n$$

Vor Durchfuhrung ders Experimentes ist

$$\hat{\theta}_{ML} = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

der ML-Schätzer.

Beachte: $\mathbb{E}_{\theta}(X_1) = \theta$.

Bemerkung: Hier stimmen ML- und MM- Schätzer überein.

Stetige Zufallsvariablen:

Betrachte i.i.d. Zufallsvariablen X_i , $i \ge 1$ mit Dichte

$$f(x|\theta_0), \quad \theta_0 \in \Theta \leq \mathbb{R}^p$$

Gegeben Beobachtungen $x_1,...,x_n$ von $X_1,...,X_n$ ist die **Likelihood** definiert als

$$L(\theta) = f(x_1|\theta) \cdot f(x_2|\theta) \cdot \dots \cdot f(x_n|\theta), \theta \in \Theta.$$

Alternativ zu $L(\theta)$ betrachtet man oft die Log-Likelihood

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta).$$

Bemerkung: $L(\theta)$ und $l(\theta)$ hängen von den Daten x_1, \ldots, x_n ab.

Der Maximum-Likelihood Schätzer $\hat{\theta}_{ML}$ maximiert $L(\theta)$ bzw. $l(\theta)$ über $\theta \in \Theta$:

$$\begin{split} \hat{\theta}_{ML} &= \operatorname*{argmax}_{\theta \in \Theta} L(\theta) \\ &= \operatorname*{argmax}_{\theta \in \Theta} l(\theta). \end{split}$$

Bemerkung: Die Likelihood einer stetigen Zufallsvariable kann als Grenzfall der Likelihoods von diskreten Zufallsvariablen betrachtet werden.

Zur Approximation einer stetigen ZV durch diskrete ZV:

Sei X eine stetige ZV mit Dichte f(x).

Fur $\delta > 0$ definiert man eine diskrete ZV X_{δ} wie folgt:

Der Wertebereich von X_{δ} ist $\{k\delta : k \in \mathbb{Z}\}$, und die Wahrscheinlihkeitsfunktion $p_{\delta}(k\delta)$ ist:

$$p_{\delta}(k\delta) := \mathbb{P}(k\delta \le X < (k+1)\delta)$$
$$= \int_{k\delta}^{(k+1)\delta} f(x) dx.$$

Vergleichen nun die Dichte f(x) mit dem "Histogramm X_{δ} ". Bei diesem "Histogramm" wird über jedem Intervall $[k\delta,(k+1)\delta)$ ein Balken mit Höhe $\frac{1}{\delta}\mathbb{P}_{\delta}(k\delta)$ gezeichnet. Die Fläche eines solcen Balkens ist damit $\mathbb{P}_{\delta}(k\delta)$.

Fixiert man einen Punkt $x \in \mathbb{R}$, dann liegt dieser Punkt im Intervall $[k\delta, (k+1)\delta)$ für $k = \lfloor \frac{x}{\delta} \rfloor$ (da $\lfloor \frac{x}{\delta} \rfloor \leq \frac{x}{\delta} \leq \frac{x}{\delta} + 1$ ist). Im Punkt x hat die Dichte den Wert f(x). Im Punkt x hat das "Histogramm"die Höhe:

$$\frac{1}{\delta} \mathbb{P}_{\delta}(\lfloor \frac{x}{\delta} \rfloor) = \frac{1}{\delta} \int_{\lfloor \frac{x}{\delta} \rfloor}^{(\lfloor \frac{x}{\delta} \rfloor)+1} f(x) dx =$$

$$= \frac{F(\lfloor \frac{x}{\delta} \rfloor \cdot \delta + \delta) - F(\lfloor \frac{x}{\delta} \rfloor \cdot \delta)}{\delta}.$$

...dies ist ein Differentialquotient.

Für $\delta \downarrow 0$ kovergiet $\lfloor \frac{x}{\delta} \rfloor \cdot \delta + \delta$ von oben gegn x, und $\lfloor \frac{x}{\delta} \rfloor \cdot \delta$ konvergiert von unten gegen x, sodass der Differentialquotient gegen die Ableitung von F an der stelle x konvergiert. M.a.W:

$$\lim_{\delta \downarrow 0} \frac{1}{\delta} \mathbb{P}_{\delta}(\lfloor \frac{x}{\delta} \rfloor) = f(x)$$

Beispiel 1.15 (Exponentialverteilung) X_1,\ldots,X_n i.i.d. $Exp(\lambda_0),\quad \lambda_0>0$. D.h. $\mathbb{E}(X_1)=\frac{1}{\lambda_0},$ und Dichte $f(x|\lambda_0)=\lambda_0e^{-\lambda_0x}\quad (x\geq 0).$ Für Beobachtungen x_1,\ldots,x_n ist

$$L(\lambda) = \prod_{i=1}^{n} f(x_i | \lambda)$$
$$= \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$$
$$= \lambda^n e^{-\lambda S_n}$$

wobei $S_n = \sum_{i=1}^n x_i$.

$$l(\lambda) = n \log \lambda - \lambda S_n.$$

$$l'(\lambda) = \frac{n}{\lambda} - S \quad \stackrel{!}{=} 0$$

$$\Leftrightarrow \frac{n}{\lambda} = S_n$$

$$\Leftrightarrow \lambda = \frac{1}{\frac{n}{S_n}}$$

Setze:

$$\hat{\lambda}_M L = \frac{n}{S_n} = \frac{1}{\frac{1}{n}S_n} = \frac{1}{\bar{X}_n}.$$

$$l''(\lambda) = \frac{d}{d\lambda} \left(\frac{n}{\lambda} - S \right) = -\frac{n}{\lambda^2} < 0.$$

Damit ist der Maximum-Likelihood-Schätzer für λ_0 gegeben durch

$$\hat{\lambda}_{ML} = \frac{1}{\bar{X}_n}.$$

Beachte: Da $\mathbb{E}(X_1) = \frac{1}{\lambda_0}$ ist, also $\lambda_0 = \frac{1}{\mathbb{E}(X_1)}$, ist der Maximum-Likelihood-Schätzer für λ_0 auch ein Momentenmethoden-Schätzer.

Beispiel 1.16 (Gleichverteiltes Skalenmodell) X_i i.i.d. $U([0,\theta_0]), \quad \theta_0 > 0$.

Hier ist

$$f(x_1|\theta_0) = \begin{cases} \frac{1}{\theta_0} &: 0 \le x \le \theta_0, \\ 0 &: \text{sonst.} \end{cases}$$

und

$$\mathbb{E}_{\theta_0}(X_i) = \frac{\theta_0}{2}$$

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta_0) = \begin{cases} \theta^{-n} & : \text{ alle } x_i \text{ zwichen } 0 \text{ und } \theta \\ 0 & \text{ } 0 \leq min(x_i) \land max(x_i) = \theta \\ 0 & : \text{ sonst.} \end{cases}$$

Achtung: $L(\theta)$ ist nicht differenzierbar an der Stelle $\theta = x_{(n)}$.

 $L(\theta)$ wird maximal für $\theta = max\{x_i : 1 \le i \le n\}$.

Damit ist der Max-Likelihood Schätzer $\hat{\theta}_M L$ gegeben durch

$$\hat{\theta}_{ML} = \max\{x_i : 1 \le i \le n\}$$

 $\mathbb{E}(X_1) = \frac{\theta_0}{2}$, also $\theta_0 = 2\mathbb{E}(X_1)$, ist ein MM-Schätzer für θ_0 gegeben durch $\hat{\theta}_{MM} = 2\bar{X}_n$. Hier ist $\hat{\theta}_{ML} \neq \hat{\theta}_{MM}$.

Bemerkungen:

• In dem Fall, wo $2\bar{X}_n < x_{(n)}$ liefert $\hat{\theta}_{MM}$ einen unsinnigen Wert $\hat{\theta}_{MM} < x_{(n)}$, also ist $\hat{\theta}_M M$ mit dem Daten nicht konsistent.

Mit $\hat{\theta}_{ML}$ kann genau das nicht passieren.

• Dagegen ist $\hat{\theta}_{MM}$ unverzerrt, $\hat{\theta}_{ML}$ dagegen nicht.

Definition 1.3 Betrachte ein Parametrisches Modell mit Parameter $\theta_0 \in \Theta \leq \mathbb{R}$. Für einen Schätzer $\hat{\theta}_n$ ist der **mittlere quadratische Fehler (MSE)** definiert als

$$MSE(\hat{\theta}_n,\theta) = \mathbb{E}_{\theta}\left[\left(\hat{\theta}_n - \theta\right)^2\right].$$

Bemerkung:

• Ist $\hat{\theta}_n$ ein unverzerrter Schätzer dann ist::

$$MSE(\hat{\theta}_n, \theta) = Var_{\theta}(\hat{\theta}_n).$$

• Im Allgemeinem ist

$$MSE(\hat{\theta}_n, \theta) = Var_{\theta}(\hat{\theta}_n) + \left(\mathbb{E}_{\theta}\left(\hat{\theta}_n\right) - \theta\right)^2$$

 $MSE = Varianz + Bias^2$.

Nachrechnen.

$$\begin{split} E_{\theta}\left(\left(\hat{\theta}_{n}-\theta\right)^{2}\right) &= \mathbb{E}_{\theta}\left(\left(\left(\hat{\theta}_{n}-\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)\right)+\left(\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta\right)\right)^{2}\right) \\ &= \mathbb{E}_{\theta}\left(\left(\hat{\theta}_{n}-\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)\right)^{2}\right)+2\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)\right)\left(\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\theta\right)\right)+\mathbb{E}_{\theta}\left(\left(\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta\right)^{2}\right) \\ &=\underbrace{Var_{\theta}(\hat{\theta}_{n})}_{\text{Varianz}}+2\left(\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\theta\right)\underbrace{\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)\right)}_{=\mathbb{E}(\hat{\theta})-\mathbb{E}(\hat{\theta})=0}\right)+\underbrace{\left(\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta\right)^{2}}_{\text{Bias}^{2}}. \end{split}$$

Beispiel 1.17 $X_1,...,X_n$ i.i.d. $U([0,\theta_0]), \quad \theta_0 > 0$.

2 Schätzer:

$$\hat{\theta}_{MM} = 2\bar{X}_n \text{ und } \hat{\theta}_{ML} = \max_{1 \le i \le n} X_i = X(n)$$

MSE von $\hat{\theta}_{MM}$: $\hat{\theta}_{MM}$ ist unverzerrt, sodass:

$$\begin{split} MSE(\hat{\theta}_{MM},\theta) &= \mathrm{Var}_{\theta}\left(\hat{\theta}_{MM}\right) = \mathrm{Var}_{\theta}(2\bar{X_n}) \\ &= 4 \, \mathrm{Var}_{\theta}(\bar{X}_n) \\ &= 4 \frac{\mathrm{Var}_{\theta}(X_1)}{n} \\ &= 4 \frac{1}{n} \frac{\theta^2}{12} \\ &= \frac{\theta^2}{3n} \xrightarrow{wie \frac{1}{n}} 0. \end{split}$$

Für $Z \sim U([0,1])$ ist $\mathbb{E}(Z) = \frac{1}{2}$ und $Var(Z) = \frac{1}{12}$. Nun ist $\theta_0 Z \sim U([0,\theta_0])$, sodass

$$\mathbb{E}(X_1) = \mathbb{E}(\theta_0 Z) = \theta_0 \mathbb{E}(Z) = \theta_0 \frac{1}{2}$$

$$\operatorname{Var}(X_1) = \operatorname{Var}(\theta_0 Z) = \theta_0^2 \operatorname{Var}(Z) = \theta_0^2 \frac{1}{12}.$$

MSE von $\hat{\theta}_{ML}$: Die ZV $X_{(n)}$ hat die Vertielingsfunktion

$$F_{\theta}(t) = \mathbb{P}_{\theta} \left(X_{(n)} \le t \right)$$

$$= \mathbb{P}_{\theta} \left(X_{1} \le t, \dots, X_{n} \le t \right)$$

$$= \mathbb{P}_{\theta} \left(X_{1} \le t \right) \cdot \dots \cdot \mathbb{P} \left(X_{n} \le t \right)$$

$$= \left(\frac{t}{\theta} \right)^{n} \text{ für } 0 \le t \le \theta_{0}.$$

 \Rightarrow Dichte von $\hat{\theta}_{ML}$:

$$f_{\theta}(t) = F'(t) = \frac{n \cdot t^{n-1}}{\theta^n}.$$

• $\mathbb{E}_{\theta}(\hat{\theta}_{ML})$

$$\mathbb{E}_{\theta}(\hat{\theta}_{ML}) = \mathbb{E}_{\theta}(X_{(n)}) = \int_{0}^{\theta} t f_{\theta}(t) dt = \int_{0}^{\theta} t \frac{nt^{n-1}}{\theta^{n}} dt = \int_{0}^{\theta} \frac{n}{\theta^{n}} t^{n} dt = \frac{n}{\theta^{n}} \Big|_{0}^{\theta} = \frac{n}{\theta^{n}} \frac{\theta^{n+1}}{n+1} = \frac{n}{n+1} \theta < \theta$$

• $Var_{\theta}(\hat{\theta}_{ML})$

$$Var_{\theta}(\hat{\theta}_{ML}) = \mathbb{E}_{\theta}\left(\left(X_{(n)} - \frac{n}{n+1}\theta\right)^{2}\right) = \mathbb{E}_{\theta}\left(X_{(n)}\right)^{2} - \left(\frac{n}{n+1}\theta\right)^{2} =$$

$$= \int_{0}^{\theta} t^{2} \frac{nt^{n-1}}{\theta^{n}} - \left(\frac{n}{n+1}\theta\right)^{2} = \frac{n}{\theta^{n}} \frac{t^{n+2}}{n+2} \Big|_{0}^{\theta} - \left(\frac{n}{n+1}\theta\right)^{2} = \frac{n}{\theta^{n}} \frac{\theta^{n+2}}{n+2} - \left(\frac{n^{2}}{(n+1)^{2}}\theta^{2}\right) =$$

$$\frac{n}{n+2}\theta^{2} - \left(\frac{n^{2}}{(n+1)^{2}}\theta^{2}\right) = \dots = \theta^{2} \frac{n}{(n+1)^{2}(n+2)}$$

• Also $MSE(\hat{\theta}_{ML}, \theta)$

$$MSE\left(\hat{\theta}_{ML},\theta\right) = \mathbb{E}\left(\left(\hat{\theta}_{ML}-\theta\right)^{2}\right) = \theta^{2} \frac{n}{(n+1)^{2}(n+2)} + \left(\frac{n}{n+1}\theta - \theta\right)^{2}$$
$$= \dots = \frac{2\theta^{2}}{(n+1)(n+2)} \xrightarrow{\text{wie } \frac{1}{n^{2}}} 0.$$

Beispiel 1.18 (Beispiel aus Vorjahr)

$$X_1, ..., X_n \text{ i.i.d. } N(\mu_0, \sigma_0^2), \quad \mu_0 \in \mathbb{R}, \sigma_0^2 > 0.$$

Hier ist der unbekannte Parameter $\theta_0 = \begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix} \in \Theta = \mathbb{R} \times (0, \infty).$

Die Dichte von X_1 an der Stelle x ist

$$\Phi_{\mu_0,\sigma_0^2}(x) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{1}{2}\frac{(x-\mu_0)^2}{\sigma_0^2}}.$$

Für Beobachtungen $x_1, ..., x_n$ von $X_1, ..., X_n$ ist

$$L(\mu, \sigma^{2}) = \prod_{i=1}^{n} \Phi_{\mu, \sigma^{2}}(x_{i})$$

$$= \prod_{i=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e^{-\frac{1}{2} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}}$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}}$$

$$l(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2.$$

Man sieht:

Für jeden festen Wert von σ^2 wird $l(\mu, \sigma^2)$ als Funktion von μ minimiert im Punkt $\mu = \bar{X}_n$. (Alternativ: Berechne $\frac{d}{d\mu}l(\mu, \sigma^2)$, Null setzen, nach μ auflösen.) $\mu = \bar{X}_n$ einsetzen ergibt

$$l(\bar{X}_n, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \bar{X}_n)^2.$$

Um dies in σ^2 zu maximieren, setzt man die 1. Ableitung gleich 0:

$$\frac{dl(\bar{X}_n, \sigma^2)}{d\sigma^2} = 0 - \frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \bar{X}_n)^2$$

$$= -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \bar{X}_n)^2.$$

$$\frac{dl(\bar{X}_n, \sigma^2)}{d\sigma^2} \stackrel{!}{=} 0$$

$$\Leftrightarrow -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \bar{X}_n)^2 = 0$$

$$\Leftrightarrow \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \bar{X}_n)^2 = n$$

$$\Leftrightarrow \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X}_n)^2 = \sigma^2$$

$$\coloneqq \tilde{\sigma}^2.$$

Ist $\tilde{\sigma}^2$ ein Maximierer?

$$\frac{d^2 l\left(\bar{X}_n, \sigma^2\right)}{d\left(\sigma^2\right)^2} = \frac{d}{d\sigma^2} \left(-\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \bar{X}_n)^2 \right)$$

$$= \frac{n}{2} \frac{1}{\left(\sigma^2\right)^2} - \frac{1}{2} 2 \frac{1}{\left(\sigma^2\right)^3} \sum_{i=1}^n (x_i - \bar{X}_n)^2$$

$$= \frac{n}{2} \frac{1}{\left(\sigma^2\right)^2} - \frac{n}{\left(\sigma^2\right)^3} \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X}_n)^2$$

Setzt man hier für σ^2 den Wert $\tilde{\sigma}^2$ ein, dann erhält man

$$\frac{n}{2} \frac{1}{\left(\tilde{\sigma}^2\right)^2} - \frac{n}{\left(\tilde{\sigma}^2\right)^3} \tilde{\sigma}^2 = \frac{n}{2} \frac{1}{\left(\tilde{\sigma}^2\right)^2} - \frac{n}{\left(\tilde{\sigma}^2\right)^2} = \frac{n}{\tilde{\sigma}^4} \left(\frac{1}{2} - 1\right) < 0.$$

Also Maximum bei $\sigma^2 = \tilde{\sigma}^2$.

Damit ist der Maximum-Likelihood-Schätzer für $\binom{\mu_0}{\sigma_0^2}$ gegeben durch

$$\begin{pmatrix} \hat{\mu}_{ML} \\ \hat{\sigma}_{ML}^2 \end{pmatrix} = \begin{pmatrix} \bar{X}_n \\ \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X}_n)^2 \end{pmatrix}.$$

Beachte: Das ist auch ein Momentenmethoden-Schätzer für $\begin{pmatrix} \mu_0 \\ \sigma_0^2 \end{pmatrix}$.

Beispiel 1.19 (Capture/Recapture-Methode) (Beispiel aus Vorjahr)

Schätzung der Populationsgröße mit der Capture/Recapture Methode.

Gegeben eine Population von N Individuen.

Zur Vorbereitung des Experiments werden davon m Individuen markiert (Capture). Im Experiment selbst werden n Individuen zufällig ausgewählt, und die Anzahl der davon markierten Individuen wird ermittelt (Recapture). Modell:

 N_0 ist unbekannt. $N_0 \ge \max\{m, n\}, N_0 \in \mathbb{N}$.

Es ist $\mathbb{E}(X) = \frac{m \cdot n}{N_0}$, also $N_0 = \frac{m \cdot n}{\mathbb{E}(X)}$.

Damit ist ein MM-Schätzer für N_0 gegeben durch

$$\hat{N}_{MM} = \frac{m \cdot n}{X}.$$

Beachte: Im Allgemeinem ist $\hat{N}_{MM} \notin \mathbb{N}$.

Suche nun ML-Schätzer.

Gegeben eine Beobachtung x von X ist

$$L(N) = \mathbb{P}_N(X = x)$$
$$= \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{x}}.$$

$$D(N) = \frac{L(N)}{L(N-1)}$$

$$= \frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}} \cdot \frac{\binom{N-1}{n}}{\binom{m}{x}\binom{N-1-m}{n-x}}$$

$$= \frac{(N-m)!}{(n-x)!(N-m-n+x)!} \frac{n!(N-n)!}{N!} \frac{(N-1)!}{n!(N-1-n)!} \frac{(n-x)!(N-1-m-n+x)!}{(N-1-m)!}$$

$$= \frac{(N-n)(N-m)}{N(N-m-n+x)}.$$

$$D(N) > 1$$

$$\Leftrightarrow \frac{(N-n)(N-m)}{N(N-m-n+x)} > 1$$

$$\Leftrightarrow (N-n)(N-m) > N(N-m-n+x)$$

$$\Leftrightarrow N^2 - nN - mN + mn > N^2 - mN - nN + xN$$

$$\Leftrightarrow N < \frac{m \cdot n}{x}.$$

Also:

- Für $N < \frac{m \cdot n}{x}$ ist D(N) > 1
- Für $N > \frac{m \cdot n}{x}$ ist D(N) > 1
- Für $N = \frac{m \cdot n}{x}$ ist D(N) = 1.

Zwei Fälle:

• Fall 1: $\frac{m \cdot n}{x} \notin \mathbb{N}$.

Wähle $N \in \mathbb{N}$, sodass $\frac{m \cdot n}{x} \in (N, N+1)$.

Damit ist D(N) > 1 und auch $D(\tilde{N}) > 1$ für alle $\tilde{N} < \frac{m \cdot n}{x}$.

Analog ist D(N+1) < 1 und auch $D(\tilde{N}) < 1$ für alle $\tilde{N} > \frac{m \cdot n}{x}$.

Schließlich ist $D(N+1) = \frac{L(N+1)}{L(N)} < 1$, also L(N+1) < L(N).

Damit wird das Maximum von $L(\cdot)$ angenommen an der Stelle $N = \lfloor \frac{m \cdot n}{x} \rfloor$.

• Fall 2: $\frac{m \cdot n}{x} \in \mathbb{N}$.

Setze $N = \frac{m \cdot n}{x}$.

Wie im Fall 1 ist $D(\tilde{N}) > 1$ für $\tilde{N} < N$,

 $D(\tilde{N}) < 1$ für $\tilde{N} > N$.

Schließlich ist $1 = D(N) = \frac{L(N)}{L(N-1)}$.

 $\Rightarrow L(N) = L(N-1).$

Hier wird $L(\cdot)$ maximiert an den Stellen $\frac{mn}{x}$ sowie $\frac{mn}{x} - 1$.

Zusammenfassend:

$$\hat{N}_{ML} = \lfloor \frac{mn}{x} \rfloor,$$

wobei \hat{N}_{ML} nicht eindeutig ist wenn $\frac{mn}{x} \in \mathbb{N}$.

1.4 Zulässigkeit, Effizienz und die Cramér-Rao-Schranke

Siehe zu diesem Kapitel S. 298-306. in Rice (2007).

Betrachte durchwegs ein parametrisches Modell: $X_1, ..., X_n$ i.i.d. mit Dichte $f(x|\theta_0)$ (bzw. Wahrscheinlichkeitsfunktion $p(x|\theta_0)$ für $\theta \in \Theta \in \mathbb{R}^k$).

Gegeben einen Schätzer $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n) \in \mathbb{R}^k$ für θ_0 betrachtet man den **mittleren quadratischen Fehler**

$$MSE\left(\hat{\theta}_{n},\theta_{0}\right) \coloneqq \mathbb{E}_{\theta_{0}}||\hat{\theta}_{n}-\theta_{0}||^{2} = \left(\sum_{i=1}^{k}\mathbb{E}_{\theta_{0}}\left(\hat{\theta}_{n}-\theta_{0}\right)_{i}^{2}\right) = \sum_{i=1}^{k}MSE_{\theta_{0}}\left(\left((\hat{\theta}_{n})_{i},(\theta_{0})_{i}\right)^{2}\right)$$

Beachte: $MSE(\hat{\theta}_n, \theta)$ ist eine Funktion von θ .

Beim Vergleich zweier Schätzer $\hat{\theta}_n$ und $\tilde{\theta}_n$ muss man also die Funktionen $MSE(\hat{\theta}_n,\cdot)$ und $MSE(\tilde{\theta}_n,\cdot)$ vergleichen.

D ist besser als A.

A und B sind nicht vergleichbar.

C ist klassenbeste.

Im Folgenden sei κ eine Klasse von Schätzern für θ_0 , also Funktionen von $X_1,...,X_n$ die Werte in Θ einnehmen. Oft ist κ die Klasse aller Schätzer bzw. die Klasse aller unverzerrter Schätzer.

Definition 1.4 Sei $\hat{\theta}$ ein Schätzer aus der Klasse κ .

- $\hat{\theta}$ heißt **unzulässig** (in der Klasse κ), wenn es einen Schätzer $\tilde{\theta}$ aus κ gibt sodass: $\forall \theta \in \Theta$ ist $MSE(\tilde{\theta}, \theta) \leq MSE(\hat{\theta}, \theta)$, und $\exists \theta \in \Theta$ sodass $MSE(\tilde{\theta}, \theta) < MSE(\hat{\theta}, \theta)$.
- $\hat{\theta}$ heißt **zulässig** (in der Klasse κ), wenn der vorherige Punkt nicht gilt.

Ist $\kappa = \{A, B, C, D\}$ dann ist C zulässig.

Ist $\kappa = \{A, D\}$ dann ist A unzulässig und D ist zulässig.

Ist $\kappa = \{A, B\}$ dann sind A und B beide zulässig.

Definition 1.5 Sei $\hat{\theta}$ ein Schätzer aus der Klasse κ . $\hat{\theta}$ heißt **effzient** (in der Klasse κ), wenn gilt:

$$\forall \theta \in \Theta \text{ ist } MSE\left(\hat{\theta},\theta\right) = \min_{\tilde{\theta} \in \kappa} MSE\left(\tilde{\theta},\theta\right).$$

Ist $\kappa = \{A, B, C, D\}$ dann ist C effizient.

Ist $\kappa = \{A, B, D\}$ dann ist D effizient.

Ist $\kappa = \{A, B\}$ dann sind niemand effizient.

Bemerkung: Effiziente Schätzer sind selten bekannt und müssen nicht unbedingt existieren. Aber es gibt einige Ausnahmen, die Konzeptionell wichtig sind.

Oft kann man aber "asymptotisch effiziente" Schätzer finden.(für $n \to \infty$)

Bemerkung:

- effizient ⇒ zulässig; aber nicht umgekehrt.
- Diese beiden Begriffe hängen von κ und Θ ab.

Betrachte bis auf weiteres die Klasse κ derr unverzerrten Schätzer.

Definition 1.6 Sei X eine Zufallsvariable X mit Dichte $f(x|\theta_0)$, $\theta_0 \in \Theta \subseteq \mathbb{R}^1$. Die Größe

$$I(\theta_0) \coloneqq \mathbb{E}_{\theta_0} \left[\left(\frac{d}{d\theta} \log f(x|\theta_0) \right)^2 \right]$$

ist die <u>Fisher-Information</u> (von X über θ_0), sofern diese wohldefiniert ist.

Satz 1.4 (Cramér-Rao-Schranke) Seien X_1,\ldots,X_n i.i.d mit Dichte $f(x|\theta_0),\ \theta_0\in\Theta\subseteq\mathbb{R}^1$. Weiters sei $\hat{\theta}$ ein unverzerrter Schätzer für θ_0 . Dann gilt:

$$\operatorname{Var}_{\theta_0}(\hat{\theta}) \ge \frac{1}{n_0 I(\theta_0)},$$

unter geeigneten Glattheitsbedingungen an $f(\cdot|\cdot)$, sodass die Schritte (*) und (**) im Beweis gültig sind.

Korollar 1.1 Ist $\hat{\theta}$ ein unverzerrter Schätzer für θ_0 , sodass $\forall \theta \in \Theta$, $\mathrm{Var}_{\theta}(\hat{\theta}) = \frac{1}{nI(\theta)}$, dann ist $\hat{\theta}$ effizient in der Klasse der unverzerrten Schätzer.

Es gibt auch eine multivariate Version der Cramér-Rao-Schranke, also für unverzerrte Schätzer, wo θ_0 hochdimensional sein kann.

$$\begin{split} &\textit{Beweis.} \;\; \text{Setze} \; Z = \sum_{i=1}^n \frac{d}{d\theta} \log f(x_i|\theta_0). \\ &\text{Es gilt} \; |\text{Corr}_{\theta_0}(Z,\hat{\theta})| \leq 1, \, \text{also} \; \frac{\text{Cov}_{\theta_0}(Z,\hat{\theta})^2}{\text{Var}_{\theta_0}(Z) \, \text{Var}_{\theta_0}(\hat{\theta})} \leq 1, \, \text{bzw.} \; \frac{\text{Cov}_{\theta_0}(Z,\hat{\theta})^2}{\text{Var}_{\theta_0}(Z)} \leq \text{Var}_{\theta_0}(\hat{\theta}). \end{split}$$

Zu zeigen:

- (i) $\operatorname{Cov}_{\theta_0}(Z, \hat{\theta}) = 1$
- (ii) $\operatorname{Var}_{\theta_0}(Z) = nI(\theta_0)$.

$$\mathbb{E}_{\theta_0}(Z_i) \stackrel{i.i.d.}{=} n \mathbb{E}_{\theta_0} \left(\frac{d}{d\theta} \log f(x_1 | \theta_0) \right)$$

$$= n \mathbb{E}_{\theta_0} \left(\frac{d}{d\theta} \Big|_{\theta = \theta_0} \log f(x_1 | \theta_0) \right)$$

$$= n \int \frac{d}{d\theta} \Big|_{\theta = \theta_0} \log f(x | \theta) f(x | \theta_0) dx$$

$$= n \int \frac{\frac{d}{d\theta} \Big|_{\theta = \theta_0} f(x | \theta)}{f(x | \theta_0)} f(x | \theta_0) dx$$

$$= n \int \frac{d}{d\theta} \Big|_{\theta = \theta_0} f(x | \theta) dx$$

$$\stackrel{(*)}{=} n \frac{d}{d\theta} \Big|_{\theta = \theta_0} \int f(x | \theta) dx = n \cdot 0 = 0.$$

$$\stackrel{= 0}{= 0}$$

Man sieht damit auch, dass $\mathbb{E}_{\theta_0} \left(\frac{d}{d\theta} \Big|_{\theta = \theta_0} \log f(x_1 | \theta) \right) = 0$ ist.

$$\operatorname{Var}_{\theta_0}(Z) = \sum_{i=1}^n \operatorname{Var}_{\theta_0} \left(\frac{d}{d\theta} \log f(x_1 | \theta_0) \right)$$
$$= n \operatorname{Var}_{\theta_0} \left(\frac{d}{d\theta} \log f(x_1 | \theta_0) \right)$$
$$= n \mathbb{E}_{\theta_0} \left(\left(\frac{d}{d\theta} \log f(x_1 | \theta_0) \right)^2 \right)$$
$$= n I(\theta_0).$$

$$\begin{aligned} \operatorname{Cov}_{\theta_0}(Z, \hat{\theta}) &= \mathbb{E}_{\theta_0}(Z\hat{\theta}) - \widehat{\mathbb{E}_{\theta_0}(Z)} \mathbb{E}_{\theta_0}(\hat{\theta}) \\ &= \underbrace{\int \dots \int}_{n-\text{mal}} \hat{\theta}(x_1 \dots, x_n) \left(\sum_{i=1}^n \frac{d}{d\theta} \log f(x_i | \theta_0) \right) \prod_{j=1}^n f(x_j | \theta_0) dx_1, \dots, dx_n \\ &= \int \dots \int \hat{\theta}(x_1 \dots, x_n) \left(\sum_{i=1}^n \frac{d}{d\theta} f(x_i | \theta_0) \right) \prod_{j=1}^n f(x_j | \theta_0) dx_1, \dots, dx_n \\ &= \int \dots \int \hat{\theta}(x_1 \dots, x_n) \left(\sum_{i=1}^n \frac{d}{d\theta} f(x_i | \theta_0) \right) \prod_{j=1, i \neq i}^n f(x_j | \theta_0) dx_1, \dots, dx_n \\ &= \int \dots \int \hat{\theta}(x_1 \dots, x_n) \frac{d}{d\theta} \Big|_{\theta = \theta_0} \prod_{j=1}^n f(x_j | \theta_0) dx_1, \dots, dx_n \\ &= \underbrace{\frac{d}{d\theta}}_{\theta = \theta_0} \mathbb{E}_{\theta_0}(\hat{\theta}) \\ &= \underbrace{\frac{d}{d\theta}}_{\theta = \theta_0} \mathbb{E}_{\theta_0}(\hat{\theta}) \\ &= \underbrace{\frac{d}{d\theta}}_{\theta = \theta_0} \theta \\ &= 1. \end{aligned}$$

Also gilt auch (i). ✓

Eine alternative Formel für $I(\theta_0)$:

Lemma 1.2 Die Fisher-Information lässt sich auch berechnen als

$$I(\theta) = -\mathbb{E}(\theta) \left(\frac{d^2}{d\theta^2} \log f(x|\theta) \right)$$

unter geeigneten Glattheitsbedingungen, sodass Schritte (a) und (b) im Beweis zulässig sind.

Beweis. Für jedes $\theta \in \Theta$ ist $\int f(x|\theta)dx = 1$.

$$0 = \frac{d}{d\theta} \int f(x|\theta) dx$$

$$\stackrel{(a)}{=} \int \frac{d}{d\theta} f(x|\theta) dx$$

$$= \int \frac{\frac{d}{d\theta} f(x|\theta)}{f(x|\theta)} f(x|\theta) dx$$

$$= \int \left(\frac{d}{d\theta} \log f(x|\theta)\right) f(x|\theta) dx = (c).$$

$$\Rightarrow 0 = \frac{d}{d\theta} (c)$$

$$= \frac{d}{d\theta} \int \left(\frac{d}{d\theta} \log f(x|\theta)\right) f(x|\theta) dx$$

$$\stackrel{(b)}{=} \int \left(\frac{d^2}{d\theta^2} \log f(x|\theta)\right) f(x|\theta) + \left(\frac{d}{d\theta} \log f(x|\theta)\right) \underbrace{\frac{d}{d\theta} f(x|\theta)}_{\stackrel{s,\theta}{=} \left(\frac{d}{d\theta} \log f(x|\theta)\right) f(x|\theta)}_{\stackrel{s,\theta}{=} \left(\frac{d}{d\theta} \log f(x|\theta)\right) f(x|\theta)} dx$$

$$= \int \left(\frac{d^2}{d\theta^2} \log f(x|\theta)\right) f(x|\theta) dx + \int \left(\frac{d}{d\theta} \log f(x|\theta)\right)^2 f(x|\theta) dx$$

$$= \mathbb{E}_{\theta} \left(\frac{d^2}{d\theta^2} \log f(x|\theta)\right) + \mathbb{E}_{\theta} \left(\left(\frac{d}{d\theta} \log f(x|\theta)\right)\right)^2$$

$$= I(\theta)$$

$$\Rightarrow I(\theta) = -\mathbb{E}_{\theta_0} \left(\frac{d^2}{d\theta^2} \log f(x|\theta)\right).$$

Bemerkung: Die Cramér-Rao-Schranke gilt auch für diskrete Zufallsvariablen: Sind X_1, \ldots, X_n i.i.d. diskrete Zufallsvariablen, verteilt wie X, mit Wahrscheinlichkeitsfunktion $p(x|\theta)$, $\theta \in \Theta \subseteq \mathbb{R}$, und ist $\hat{\theta_n} = \hat{\theta_n}(X_1, \ldots, X_n)$ ein unverzerrter Schätzer für θ , dann gilt

$$\operatorname{Var} \hat{\theta_n} \ge \frac{1}{nI(\theta)},$$

unter analogen Glattheitsbedingungen wie im letzten Satz. Details: Siehe Übung.

Beispiel 1.21 (Bernoulli-Verteilung) Seien $X_1, ..., X_n$ i.i.d $B(p_0)$, $0 < p_0 < 1$.

Wissen: $\hat{p}_{ML} = \bar{X}_n = \hat{p}_{MM} = \frac{1}{n} \sum_{i=1}^{n} x_i$

ist unverzerrt für p_0 mit Varianz $\operatorname{Var}_{p_0}(\bar{X}_n) = \frac{\operatorname{Var}_{p_0}(X_1)}{n} = \frac{p_0(1-p_0)}{n}$.

$$p(x|p_0) = \begin{cases} p_0 & : x = 1, \\ 1 - p_0 & : x = 0 \end{cases}$$

$$= p_0^x (1 - p_0)^{1 - x}, x \in \{0, 1\}, 0 < p_0 < 1.$$

$$\frac{d}{dp_0} \log p(x|p_0) = \frac{d}{dp_0} (x \log p_0 + (1 - x) \log(1 - p_0))$$

$$= x \frac{1}{p_0} + (1 - x) \frac{-1}{1 - p_0} = \frac{x}{p_0} + \frac{1 - x}{1 - p_0}$$

$$I(p_0) = \mathbb{E}_{p_0} \left(\left(\frac{X}{p_0} + \frac{1 - X}{1 - p_0} \right) \right)^2 \right)$$

$$= \frac{1}{p_0^2} p_0 + \frac{1}{(1 - p_0)^2} (1 - p_0)$$

$$= \frac{1}{p_0} + \frac{1}{1 - p_0} = \frac{1 - p_0 + p_0}{p_0 (1 - p_0)}$$

$$= \frac{1}{p_0 (1 - p_0)}.$$

Die Cramér-Rao-Schranke in diesem Modell ist also

$$\frac{1}{nI(p_0)} = \frac{p_0(1-p_0)}{n} = Var_{p_0}(\bar{X}_n)$$

Der Schätzer \bar{X}_n für p_0 ist also effizient (in der Klasse der unverzerrten Schätzer)!

Beispiel 1.22 (Exponentialverteilung) $X_1, ..., X_n$ i.i.d. verteilt wie X, wobei X eine stetige Zufallsvariable ist mit $X E_{\lambda}(\lambda_0)$, $\lambda_0 > 0$.

Dichte $f(x|\lambda_0) = \lambda_0 e^{-\lambda_0 x}$, (x > 0).

 $\log f(x|\lambda_0) = \log \lambda_0 - \lambda_0 x.$

 $\frac{d}{d\lambda}\log f(x|\lambda_0) = \frac{1}{\lambda_0} - x.$

Erinnerung: $E_{\lambda_0}(X) = \frac{1}{\lambda_0}$, $Var_{\lambda_0}(X) = \frac{1}{\lambda_0^2}$

$$I(\lambda_0) = \mathbb{E}_{\lambda_0} \left(\left(\frac{d}{d\lambda} \log f(x|\lambda_0) \right)^2 \right)$$
$$= \mathbb{E}_{\lambda_0} \left(\left(\frac{1}{\lambda_0} - X \right)^2 \right) = \operatorname{Var}_{\lambda_0}(X) = \frac{1}{\lambda_0^2}.$$

Cramér-Rao-Schranke:

$$\frac{1}{(nI(\lambda_0))} = \frac{\lambda_0^2}{n}.$$

Wissen: Der Schätzer $\frac{1}{\bar{X_n}} = \frac{1}{\frac{1}{n}\sum_{i=1}^{n}X_i} = \hat{\lambda}_{MM} = \hat{\lambda}_{ML}$

Aber dieser Schätzer ist verzerrt! Cramer-Rao-Schranke nicht anwendbar!

(Umparametrisierung der Exponentialverteilung) X_1, \ldots, X_n i.i.d. $Exp\left(\frac{1}{\theta_0}\right), \ \theta_0 > 0.$

Wissen: $\mathbb{E}_{\theta_0}(X) = \frac{1}{\frac{1}{\theta_0}} = \theta_0$, $\operatorname{Var}_{\theta_0}(X) = \left(\frac{1}{\frac{1}{\theta_0}}\right)^2 = \theta_0^2$.

Dichte: $f(x|\theta_0) = \frac{1}{\theta_0} e^{-\frac{x}{\theta_0}}, (x > 0).$

 $\log f(x|\theta_0) = -\log \theta_0 - \frac{x}{\theta}.$

 $\frac{d}{d\theta_0}\log f(x|\theta_0) = -\frac{1}{\theta_0} + \frac{x}{\theta_0^2}.$

$$I(\theta_0) = \mathbb{E}_{\theta_0} \left(\left(\frac{d}{d\theta_0} \log f(x | \theta_0) \right)^2 \right)$$

$$= \mathbb{E}_{\theta_0} \left(\left(\frac{X - \theta_0}{\theta_0^2} \right)^2 \right)$$

$$= \frac{1}{\theta_0^4} \mathbb{E}_{\theta_0} \left((X - \theta_0)^2 \right)$$

$$= \frac{1}{\theta_0^4} \operatorname{Var}_{\theta_0}(X)$$

$$= \frac{1}{\theta_0^4} \theta_0^2 = \frac{1}{\theta_0^2}.$$

Cramér-Rao-Schranke:

$$\frac{1}{(nI(\theta_0))} = \frac{\theta_0^2}{n}.$$

Beachte \bar{X}_n : $\mathbb{E}_{\theta_0}(\bar{X}_n) = \mathbb{E}_{\theta_0}(X) = \theta_0$, $\mathrm{Var}_{\theta_0}(\bar{X}_n) = \frac{\mathrm{Var}_{\theta_0}(X_1)}{n} = \frac{\theta_0^2}{n}$. Der Schätzer \bar{X}_n für θ_0 ist also unverzerrt und erreicht die Cramer-Rao-Schranke. \bar{X}_n ist effizient (in der Klasse der unverzerrten Schätzer).

Bemerkung: Die Effizienz von Schätzern kann von der Parametrisierung abhängen.

Beispiel 1.24 (Normalverteilung - Varianz bekannt) X_1, \dots, X_n i.i.d. $N(\mu_0, \sigma^2), \mu_0 \in$ \mathbb{R} , $\sigma^2 > 0$ bekannt.

Wissen: $\bar{X}_n = \hat{\mu}_{ML} = \hat{\mu}_{MM}$ ist unverzerrt mit $\operatorname{Var}_{\mu}(\bar{X}_n) = \frac{\sigma^2}{n}$.

Dichte: $f(x|\mu_0) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_0)^2}$.

 $\log f(x|\mu_0) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x - \mu_0)^2.$

 $\frac{d}{d\mu_0}\log f(x|\mu_0) = \frac{1}{2\sigma^2}2(x-\mu_0) = \frac{x-\mu_0}{\sigma^2}.$

$$I(\mu_0) = \mathbb{E}_{\mu_0} \left(\left(\frac{d}{d\mu_0} \log f(X|\mu_0) \right)^2 \right)$$
$$= \mathbb{E}_{\mu_0} \left(\left(\frac{X - \mu_0}{\sigma^2} \right)^2 \right)$$
$$= \frac{1}{\sigma^4} \operatorname{Var}_{\mu_0}(X)$$
$$= \frac{\sigma^2}{\sigma^4} = \frac{1}{\sigma^2}.$$

Cramér-Rao-Schranke:

$$\frac{1}{nI(\mu_0)} = \frac{\sigma^2}{n} = \operatorname{Var}_{\mu_0}(\bar{X}_n).$$

 \bar{X}_n ist damit effizient (in der Klasse der unverzerrten Schätzer).

Bemerkung: \bar{X}_n ist effizient in der Klasse

$$\kappa_{+} = \left\{ {}_{n}\hat{\mu} = \hat{\mu_{n}}(X_{1}, \dots, X_{n}, \sigma^{2}) \colon \hat{\mu_{n}} \text{ unverzerrt} \right\}$$

 \bar{X}_n hängt nicht von σ^2 ab.

Beispiel 1.25 (Normalverteilung - Beide unbekannt) X_1,\ldots,X_n i.i.d. $N(\mu_0,\sigma_0^2),\ \mu_0\in\mathbb{R},\ \sigma_0^2>0.$

Sei κ die Klasse aller unverzerrten Schätzer für μ_0 :

$$\kappa = {\hat{\mu} = \hat{\mu}_n(X_1, \dots, X_n) : \hat{\mu}_n \text{ unverzerrt}}$$

Wissen:

- (1) $\bar{X}_n \in \kappa$ (unverzerrt),
- (2) $\operatorname{Var}_{\mu_0}(\bar{X}_n) = \min_{\hat{\mu} \in \kappa_+} \operatorname{Var}_{\mu_0}(\hat{\mu}_n),$
- (3) $\kappa \subseteq \kappa_+$.

Also:

$$\begin{aligned} \operatorname{Var}_{\mu_0,\sigma_0^2}(\bar{X}_n) &= \min_{(2)} \operatorname{Var}_{\mu_0,\sigma_0^2}(\hat{\mu}_n) \\ &\leq \min_{(3)} \operatorname{Var}_{\mu_0,\sigma_0^2}(\hat{\mu}) \\ &\leq \operatorname{Var}_{\mu_0,\sigma_0^2}(\bar{X}_n). \end{aligned}$$

$$\Rightarrow \operatorname{Var}_{\mu_0,\sigma_0^2}(\bar{X}_n) = \min_{\hat{\mu_n} \in \kappa} \operatorname{Var}_{\mu_0,\sigma_0^2}(\hat{\mu_n})$$

Also ist \bar{X}_n effizient für μ_0 auch im Fall unbekannter Varianz. (in der Klasse κ).

Bemerkung: Es gibt eines Version der Cramér-Rao-Schranke für mehr-dimensionale Parameter θ_0 und für den Fall wo die $X_1,...,X_n$ Zufallsvektoren sind. Insbesondere gilt:

Sei $X_1, ..., X_n$ i.i.d. Zufallsvektoren mit X_1 $N(\mu, \sigma^2 I_p)$ mit $\mu_0 \in \mathbb{R}^p$, $\sigma_0^2 > 0$ (p-dimensional), dann ist \bar{X}_n effizient.(in der Klasse der unverzerrten Schätzer für μ_0).

Betrachte nun auch möglicherweise verzerrte Schätzer.

Proposition 1.1 Betrachte $X \sim N(\mu_0, I_p)$ mit $\mu_0 = \mathbb{R}^p$. Der Maximum-Likelihood-Schätzer $\hat{\mu}_{ML} = X$ für μ_0 ist zulässig in der Klasse aller Schätzer für μ_0 , wenn p = 1, 2.

(Ohne Beweis).

? Was passiert für $p \ge 3$?

Überraschung: (James, Stein, 1961)

Für $X \sim N(\mu_0, I_p)$, $\mu_0 \in \mathbb{R}^p$, $p \ge 3$, gibt es einen Schätzer $\hat{\mu}_{IS}$ für μ_0 , sodass gilt:

$$\forall \mu_0 \in \mathbb{R}^p \colon MSE(\hat{\mu}_{JS}, \mu_0) < MSE(X, \mu_0)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\text{ML-Schätzer} \qquad \text{ML-Schätzer}$$

$$MSE(\hat{\mu}_{IS}, 0) = 2$$
, $MSE(X, 0) = p$.

Dieser Schätzer ist gegeben durch

$$\hat{\mu}_{JS} = \underbrace{\left(1 - \frac{p-2}{X'X}\right)}_{\text{Kontraktionsfaktor } i1} X.$$

Insbesondere ist der Maximum-Likelihood-Schätzer in diesem Modell unzulässig wenn $p \ge 3$.

Bemerkung:

In der Praxis wird der James-Stein-Schätzer fast nie verwendet. Aber als so genannter Shrinkage-Schätzer lieferte $\hat{\mu}_{JS}$ die Inspiration für zahlreiche moderne Methoden wie LASSO, SVM, LARS, Dantzig-Selektor, ...

Zur Motivation des James-Stein-Schätzers:

$$X \sim N(\mu, I_p), \; \hat{\mu}_{JS} = \left(1 - \frac{p-2}{X'X}\right) X, \; (p \geq 3).$$

Betrachte eine Approximation, wo $p \rightarrow \infty$ geht, wobei

Signal
$$||\mu||^2$$
Noise p

$$p \to \infty$$
 $p \to \infty$
 $p \to \infty$

Zerlege X als $X = \mu + \epsilon$ (für $\epsilon = X - \mu$), sodass $\epsilon \sim N(0, I_p)$.

Beachte: Als Schätzer für μ ist X (im Mittel) "zu lang":

Länge von
$$\mu : \|\mu\|^2$$

Länge von $X : \mathbb{E}(\|X\|^2) = \mathbb{E}(X'X)$

$$= \mathbb{E}((\mu + \epsilon)'(\mu + \epsilon))$$

$$= \mathbb{E}(\mu'\mu + 2\mu'\epsilon + \epsilon'\epsilon)$$

$$= \mu'\mu + 0 + \mathbb{E}(\epsilon'\epsilon)$$

$$\mathbb{E}(\sum_{i=1}^p \epsilon_i^2) = p$$

$$= \mu'\mu + p > \mu'\mu!$$

Betrachte das Dreieck $0, \mu, X$ bzw- $0, \frac{1}{\sqrt{p}}\mu, \frac{1}{\sqrt{p}}X$:

Approximatives Dreieck $(p \to \infty)$ (rechtwinklig):

$$\begin{split} &\|\frac{1}{\sqrt{p}}\mu\|^2 = \frac{\mu'\mu}{p} \to \rho^2. \\ &\|\frac{1}{\sqrt{p}}\epsilon\|^2 = \frac{1}{p}\epsilon'\epsilon = \frac{1}{p}\sum_{i=1}^p \epsilon_i^2 \xrightarrow{p} 1 \text{ (LLN)}. \\ &\|\frac{1}{\sqrt{p}}X\|^2 = \frac{1}{p}(\mu+\epsilon)'(\mu+\epsilon) = \underbrace{\frac{1}{p}\mu'\mu + \frac{2}{p}\mu'\epsilon + \frac{1}{p}\epsilon'\epsilon \xrightarrow{p} \rho^2 + 1.}_{(\times)} \\ &(\times) \sim N\left(0, \frac{4}{p^2}\mu'\mu\right), \text{ da } \text{Var}(\mu'\epsilon) = \mu'\text{VC}(\epsilon)\mu = \mu'\mu. \end{split}$$

Damit gilt: Für c > 0 ist

$$\mathbb{P}\left(\left|\frac{2}{p}\mu'\epsilon\right| > c\right) \underset{Chebyshev}{\leq} \frac{1}{c^2} \operatorname{Var}\left(\frac{2}{p}\mu'\epsilon\right)$$

$$= \frac{1}{c^2} \frac{3}{p^2} \mu' \mu$$

$$= \underbrace{\frac{4}{c^2} \frac{\mu' \mu}{p}}_{\rightarrow \frac{4}{c^2} p^2} \underbrace{\frac{1}{p}}_{\rightarrow 0}$$

$$\xrightarrow{\frac{p \to \infty}{c}} 0.$$

Also ist
$$(*) = \frac{2}{p} \mu' \epsilon \xrightarrow{p} 0$$
.

Das legt nahe, dass $\langle \epsilon, \mu \to 0 \text{ strebt.} \rangle$

Nachrechnen: Betrachte den Cosinus des Winkels:
$$\frac{\mu' \epsilon}{\|\mu\| \cdot \|\epsilon\|} = \frac{\frac{1}{p} \mu' \epsilon}{\|\frac{1}{\sqrt{p}} \mu\| \cdot \|\frac{1}{\sqrt{p}} \epsilon\|} = \frac{\frac{1}{p} \mu' \epsilon}{\left(\frac{\mu' \mu}{p}\right)^{\frac{1}{2}} \left(\frac{e' \epsilon}{p}\right)^{\frac{1}{2}}} \rightarrow \frac{0}{(\rho^2)^{\frac{1}{2}} (1)^{\frac{1}{2}}} = 0.$$

$$a^2 - (\alpha c)^2 = b^2 - ((1 - \alpha)c)^2$$

$$a^2 - \alpha^2 c^2 = b^2 - (c^2 - 2\alpha c^2 + \alpha^2 c^2)$$

$$a^2 - \alpha^2 c^2 = b^2 - c^2 + 2\alpha c^2 - \alpha^2 c^2$$

$$\frac{a^2 - b^2 + c^2}{2c^2} = \alpha.$$

$$\Rightarrow \alpha = \frac{a^2 - b^2 + c^2}{2c^2} = \frac{2a^2}{2c^2} = \frac{c^2 - b^2}{c^2} = 1 - \frac{b^2}{c^2}.$$

Im Dreieck $0, \mu, X$ ist

$$\alpha = 1 - \frac{\epsilon' \epsilon}{X'X}$$

$$= 1 - \frac{p}{X'X} \underbrace{\frac{1}{p} \epsilon' \epsilon}_{\stackrel{p}{\longrightarrow} 1}$$

$$\approx 1 - \frac{p}{X'X}.$$

Das legt folgenden Schätzer für μ nahe:

$$\tilde{\mu} = \left(1 - \frac{p}{X'X}\right)X$$

- Das ist (fast) der James-Stein-Schätzer.

Fehler von $X: \|\mu - X\|^2 = \epsilon' \epsilon$. Fehler von $\tilde{\mu}: \|\tilde{\mu} - X\|^2$.

Relativer Fehler:

$$\frac{\|\tilde{\mu} - X\|^2}{\|X - \mu\|^2} = \frac{\frac{1}{p}\|\tilde{\mu} - X\|^2}{\frac{1}{p}\|X - \mu\|^2} \xrightarrow{p} 1 - \frac{1}{1 + \rho^2} < 1$$

... hängt nur von $\rho^2 \approx \frac{\|\mu\|^2}{p}$ ab.

Es gilt sogar:

 $\frac{MSE(\tilde{\mu},\mu)}{MSE(X,\mu)}$ bzw. $\frac{MSE(\hat{\mu}_{JS},\mu)}{MSE(X,\mu)}$ hängen von μ nur über $\|\mu\|^2$ bzw. $\frac{\|\mu\|^2}{p}$ ab.

Das Verhalten von ML-Schätzer in großen Stichproben

Siehe zu diesem Kapitel S. 274-279 in Rice (2007).

Kurz gesagt: Unter geeigneten Voraussetzungen sind Maximum-Likelihood-Schätzer konsistent, asymptotisch normalverteilt, und "asymptotisch effizient".

Betrachte durchwegs X_i , $i \ge 1$, i.i.d. mit Dichte (bzw. Wahrscheinlichkeitsfunktion)

$$f(x|\theta_0), \ \theta_0 \in \Theta \subseteq \mathbb{R}, 1-dim$$

und für die Stichprobe der Größe n den Maximimum-Likelihood-Schätzer

$$\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n).$$

Satz 1.5 (Konsistenz) Unter geeigneten Voraussetzungen an $f(\cdot|\cdot)$ ist der Maximum-Likelihood-Schätzer $\hat{\theta}_n$ konsistent:

$$\hat{\theta}_n \xrightarrow{p} \theta_0$$

für jeden Wert des wahren Parameters $\theta_0 \in \Theta$.

Beweisidee.
$$\hat{\theta}_n$$
 maximiert $l_n(\theta) = \prod_{i=1}^n f(X_i|\theta)$ bzw. $l_n(\theta) = \frac{1}{n} \sum_{i=1}^n \underbrace{\log f(X_i|\theta)}_{iid \ mit \ \mathbb{E}_{\theta_0}(\log f(X_i|\theta))}$ bzw.

 $\frac{1}{n}l_n(\theta)$ für jedes $\theta \in \Theta$.

Mit dem Gesetz der großen Zahlen gilt

$$l_n(\theta) \xrightarrow{p} \mathbb{E}_{\theta_0}(\log f(X_1|\theta)) := l_{\infty}(\theta).$$

für jedes $\theta \in \Theta$.

Idee:

$$\underbrace{\text{Maximierer von } \frac{1}{n} l_n(\theta)}_{\hat{\theta}_n} \approx \underbrace{\text{Maximierer von } l_{\infty}(\theta)}_{\text{?=}\theta_0 \text{ (siehe unten)}}.$$

? Maximierer von $l_{\infty}(\theta) = ?$

$$\frac{d}{d\theta}l_{\infty}(\theta) = \frac{d}{d\theta} \int \log f(x|\theta) \underbrace{f(x|\theta_0)}_{\text{dichte an der Stelle}\theta_0} dx$$

$$= \int \frac{d}{d\theta} \log f(x|\theta) \cdot f(x|\theta_0) dx$$

$$= \int \frac{\frac{d}{d\theta} f(x|\theta)}{f(x|\theta)} \cdot f(x|\theta_0) dx = (\pm).$$

Für $\theta = \theta_0$ ist also

$$\frac{d}{d\theta}l_{\infty}(\theta_{0}) = \frac{d}{d\theta}l_{\infty}(\theta)\Big|_{\theta=\theta_{0}}.$$

$$(*) = \int \frac{\frac{d}{d\theta}f(x|\theta_{0})}{f(x|\theta_{0})}f(x|\theta_{0})dx$$

$$= \int \frac{d}{d\theta}f(x|\theta_{0})dx$$

$$= \frac{d}{d\theta}\int f(x|\theta_{0})dx\Big|_{\theta=\theta_{0}}$$

= 0.

? Ist θ_0 ein Maximierer für $l_{\infty}(\theta)$?

$$\frac{d^2}{d\theta^2} \frac{d}{d\theta} \int \log f(x|\theta) f(x|\theta_0) dx =$$

$$= \int \frac{d^2}{d\theta^2} \log f(x|\theta) \cdot f(x|\theta_0) dx \Big|_{\theta = \theta_0}$$

$$= \int \frac{d^2}{d\theta^2} \log f(x|\theta_0) \cdot f(x|\theta_0) dx$$

$$= \mathbb{E}_{\theta_0} \left(\frac{d^2}{d\theta^2} \log f(X_1|\theta_0) \right)$$

$$= -I(\theta_0) \le 0.$$

Im nicht-trivialen Fall (stetige Zufallsvariablen), wo $I(\theta_0) > 0$ ist also θ_0 ein Maximierer von $l_{\infty}(\theta)$.

Weitere Details zum Beweis folgen im Masterstudium.

Für diskrete Zufallsvariablen funktioniert analog.

Satz 1.6 (Asymptotische Normalität) Unter geeigneten Voraussetzungen an $f(\cdot|\cdot)$, gilt:

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \xrightarrow{w} N\left(0, \frac{1}{I(\theta_0)}\right);$$

Beweisidee. (Für Stetige Zufallsvariablen, diskrete analog) $\hat{\theta}_n$ maximiert $l_n(\theta) = \sum_{i=1}^n \log f(X_i|\theta)$.

$$\Rightarrow 0 = \frac{d}{d\theta} l_n(\theta) \Big|_{\theta = \hat{\theta}_n}$$

$$= \frac{d}{d\theta} l_n(\hat{\theta}_n) = l'_n(\hat{\theta}_n)$$

$$\approx l'_n(\theta_0) + (\hat{\theta}_n - \theta_0) l''_n(\theta_0) + \text{Rest.}$$

Taylor-Entwicklung der Ordnung 1 im Punkt θ_0

$$\Rightarrow \hat{\theta}_n - \theta_0 \approx \frac{l_n'(\theta_0)}{-l_n''(\theta_0)} = \frac{\frac{1}{n}l_n'(\theta_0)}{-\frac{1}{n}l_n''(\theta_0)}$$

$$\Rightarrow \sqrt{n}(\hat{\theta}_n - \theta_0) \approx \frac{\sqrt{n}l_n'(\theta_0)\frac{1}{n}}{-l_n''(\theta_0)\frac{1}{n}} = \frac{\frac{1}{\sqrt{n}}l_n''(\theta_0)}{-\frac{1}{n}l_n''(\theta_0)} \quad (*)$$

$$\frac{1}{\sqrt{n}}l_n'(\theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \underbrace{\frac{d}{d\theta} \log f(X_i|\theta)\Big|_{\theta=\theta_0}}_{\text{i.i.d. mit E-Wert=0 und Varianz}}$$

$$\mathbb{E}_{\theta_0} \left(\left(\frac{d}{d\theta} \log f(X_i|\theta_0) \right)^2 \right) = I(\theta_0)$$

 $\stackrel{w}{\longrightarrow} N(0, I(\theta_0))$ wegen dem zentralen Grenzwertsatz.

$$-\frac{1}{n}l_n''(\theta_0) = \frac{1}{n}l_n''(\theta_0)$$

$$= \frac{1}{n}\sum_{i=1}^n \underbrace{\left(-\frac{d^2}{d\theta^2}\log f(X_i|\theta_0)\right)}_{\text{i.i.d. mit E-Wert}}$$

$$-\mathbb{E}_{\theta_0}\left(\frac{d^2}{d\theta^2}\log f(X_1|\theta_0)\right) = I(\theta_0)$$

 $\stackrel{p}{\longrightarrow} I(\theta_0)$ wegen dem Gesetz der großen Zahlen.

Falls $I(\theta_0)$ folgt auch dass

$$\frac{1}{-\frac{1}{n}l_n''(\theta_0)} \xrightarrow{p} \frac{1}{I(\theta_0)}.$$

Also:

$$\frac{\frac{1}{\sqrt{n}}l'_n(\theta_0)}{-\frac{1}{n}l''_n(\theta_0)} = \underbrace{\frac{1}{\sqrt{n}}l'_n(\theta_0)}_{\stackrel{w}{\longrightarrow} N(0,I(\theta_0))} \cdot \underbrace{\frac{1}{-\frac{1}{n}l''_n(\theta_0)}}_{\stackrel{p}{\longrightarrow} \frac{1}{I(\theta_0)}}$$

Mit den Rechenregeln für \xrightarrow{p} und \xrightarrow{w} ergibt sich, dass

$$\frac{\frac{1}{\sqrt{n}}l'_n(\theta_0)}{-\frac{1}{n}l''_n(\theta_0)} \xrightarrow{w} N\left(0, \frac{1}{I(\theta_0)}\right).$$

Wenn der Approximationsfehler in (*) für $n \to \infty$ vernachlässigbar ist, dann folgt daraus auch, dass

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{w} N\left(0, \frac{1}{I(\theta_0)}\right).$$

Weitere Details folgen im Masterstudium.

Bemerkung: Für Inferenz über θ_0 benötigt man noch einen konsistenten Schätzer für $\frac{1}{I(\theta_0)}$ bzw. $I(\theta_0)$, der für $I(\theta_0)$ (unter geeigneten Voraussetzungen) gegeben ist durch

$$\hat{I} = -\frac{1}{n} \sum_{i=1}^{n} \frac{d^2}{d\theta^2} \log f(X_i | \hat{\theta}_n)$$

oder durch

$$\tilde{I} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{d}{d\theta} \log f(X_i | \hat{\theta}_n) \right)^2.$$

Bemerkung: Falls $\hat{\theta}_n$ ein unverzerrter Maximum-Likelihood-Schätzer für θ_0 ist, dann gilt die Cramér-Rao-Schranke:

$$\begin{split} \operatorname{Var}_{\theta_0}(\hat{\theta}_n) &\geq \frac{1}{nI(\theta_0)} \\ \Rightarrow \operatorname{Var}_{\theta}(\sqrt{n}(\hat{\theta}_n - \theta_0)) &= \operatorname{Var}_{\theta_0}(\sqrt{n}\hat{\theta}_n) \\ &= n\operatorname{Var}_{\theta_0}(\hat{\theta}_n) \\ &\geq n\frac{1}{nI(\theta_0)} = \frac{1}{I(\theta_0)}. \end{split}$$

Für allgemeine Maximum-Likelihood-Schätzer besagt der letzte Satz, dass

$$\operatorname{Var}(\operatorname{Grenzverteilung\ von\ } \sqrt{n}(\hat{\theta}_n-\theta_0))=\frac{1}{I(\theta_0)}.$$

In diesem Sinne ist der Maximum-Likelihood-Schätzer asymptotisch effizient.

2. Testen von Hypothesen

2.1 Neyman-Pearson Paradigma

Siehe zu diesem Kapitel S. 329-341 in Rice (2007).

... ein allgemeines Schema zum Testen von Hypothesen.

Gegeben:

Zufallsvariable (Daten) $X_1, ..., X_n$;

Nullhypothese H_0 (über die Verteilung der X_i);

Alternativ-Hypothese H_1 (über die Verteilung der X_i);

Signifikanzniveau α , $0 < \alpha < 1$.

Wahl:

Test-Statistik $T = T(X_1, ..., X_n)$, sodass die **Verteilung von** T **unter** H_0 **bekannt** ist; Verwerfungsbereich R, sodass $\mathbb{P}(T \in R|H_0) = \alpha$ (bzw. $\leq \alpha$).

Test:

$$\mathcal{H}_0$$
 falls $T \in R$; $\rightsquigarrow H_0$ falls $T \notin R$.

Dieser Test kann zwei Arten von Fehlern begehen:

- \mathcal{H}_{0} , aber H_{0} trifft zu Fehler 1. Art. (gut kontrollierbar)
- \rightsquigarrow H_0 aber H_1 trifft zu Fehler 2. Art. (schwierig zu kontrollieren)

Laut Konstruktion ist die Wahrscheinlichkeit 1. Art gleich

$$\mathbb{P}(\mathcal{H}_0|H_0) = \mathbb{P}(T \in R|H_0) = \alpha$$
,

also das Signifikanzniveau des Tests.

Die Wahrscheinlichkeit eines Fehlers 2. Art wird von der Wahl von T und R beeinflusst.

Bezeichnungen:

• Für einen Test mit Signifikanzniveau α nennt man α auch die "Size" des Tests:

Size =
$$\mathbb{P}(\mathcal{H}_0|H_0) = \alpha$$
 (je kleiner, desto besser).

• Als "Power" des Tests bezeichnet man die Wahrscheinlichkeit, H_0 korrekterweise zu verwerfen:

Power =
$$\mathbb{P}(\mathcal{H}_0|H_1)$$
 (je größer, desto besser).

Bemerkung:

Power = $1 - \mathbb{P}(\rightsquigarrow H_0|H_1) = 1$ – Wahrscheinlichkei eines Fehlers 2. Art.

Bemerkung: Vergrößert man den Ablehnungsbereich R eines Tests, dann ...

- ... steigt die Size ②,
- ... steigt die Power ©.

Power und Size verhalten sich "antagonistisch".

Beispiel 2.1 (Futschik, 2002, Ist der Euro fair?) Kreiselexperiment:

Land	n	T = #Kopf	c	$T-\frac{n}{2}$	
AUT	100	50	11	0	$\rightsquigarrow H_0$
GE	100	52	11	2	$\leadsto H_0$
IT	250	103	16	-22	\mathcal{H}_0
FR	250	158	16	33	\mathcal{H}_0

Für jedes Land ist $X_1, ..., X_n$ i.i.d. B(p).

- H_0 : $p = \frac{1}{2}$,
- $H_1: P \neq \frac{1}{2}$,
- $\alpha = 0.05$.

Wähle $T = \sum_{i=1}^{n} X_i \sim B(n, p)$. (Unter H_0 ist $T \sim B(n, \frac{1}{2})$).

Große Werte von $|T - \frac{n}{2}|$ sprechen gegen $H_0!$

Verwerfe H_0 , wenn $|T - \frac{n}{2}| \ge c$ ist. Also

$$R = \left(-\infty, \frac{n}{2} - c\right] \cup \left[\frac{n}{2} + c, \infty\right),$$

und verwerfe H_0 falls $T \in R$.

Für n = 100 ist c = 11,

für n = 250 ist c = 16.

Bemerkung: Weil T diskret ist, kann das Signifikanzniveau α nicht exakt erreicht werden (im Allgemeinem).

Hier ist c so gewählt, dass die Wahrscheinlichkeit eines Fehlers 1. Art $\leq \alpha$ ist, und so, dass c möglichst klein (also R möglichst groß) ist.

Katapultexperiment:

Land	n	T = #Kopf	c	$T-\frac{n}{2}$	
AUT	400	196	21	-4	$\rightsquigarrow H_0$
IT	150	71	13	-4	$\rightsquigarrow H_0$
FR	150	79	13	4	$\rightsquigarrow H_0$

Man sieht: Die Nullhypothese kann nur verworfen werden aber nicht bestätigt werden.

Was ist die Power dieses Tests:

Power =
$$\mathbb{P}\left(|T - \frac{n}{2}| \ge c|H_1\right)$$
...hängt von $p\left(\ne \frac{1}{2}\right)$ ab.

Setze

$$\Pi(p) = \mathbb{P}\left(|T - \frac{n}{2}| \ge c|p\right) = \mathbb{P}\left(|B(n, p) - \frac{n}{2}| \ge c\right),$$

falls X_i i.i.d. B(p).

Beachte:

- Für $p \neq \frac{1}{2}$ ist $\Pi(p)$ die Power des Tests.
- Für $p = \frac{1}{2}$ ist $\Pi(p)$ die Size des Tests $(\leq \alpha)$.

Bemerkung: Viele Tests sind von der Form \mathbb{W}_0 falls $|S| \ge c$, oder $S \ge c$, oder $S \le c$. Für solche Tests nennt man c den **kritischen Wert** des Tests (zum Signifikanzniveau α des Tests). Beachte: $\mathbb{P}(\mathbb{W}_0|H_0) = \alpha$.

Bezeichnung: Für einen Test der oberen Form ist der **p-Wert** des Signifikanzniveaus jenes Test, bei dem der kritische Wert c ersetzt wird durch den beobachteten Wert der Test-Statistik. Beachte: $0 \le p$ -Wert ≤ 1 .

Test	beobachteter Wert	p-Wert	
$\mathcal{W}_{\mathbb{Q}}$ falls $ S \ge c$	s	$\mathbb{P}(S \ge s H_0)$	fällt in s
$\mathcal{W}_{\mathbb{Q}}$ falls $S \geq c$	S	$\mathbb{P}(S \ge s \mid H_0)$	\dots fällt in s
\mathcal{W}_0 falls $S \leq c$	S	$\mathbb{P}(S \le s \mid H_0)$	\dots steigt in s

Bemerkung: Der p-Wert misst, wie stark die Daten der Nullhypothese wiedersprechen.

Beispiel 2.2 (Futschik, 2002, 1st der Euro fair?) $S = T - \frac{n}{2}$, $\mathcal{W}_{\mathbb{Q}}$ falls $|S| \ge c$. $\alpha = 0.05$. Kreiselexperiment:

Land	n	T = #Kopf	С	s		p-Wert
AUT	100	50	11	0	$\rightsquigarrow H_0$	1
GE	100	52	11	2	$\rightsquigarrow H_0$	0.69
IT	250	103	16	22	\mathcal{H}_0	0.0054
FR	250	158	16	33	\mathcal{W}_0	0.000028

Katapultexperiment:

Land	n n	T = #Kopf	c	s		p-Wert
		196	21	4	$\begin{array}{ c c c } & \leadsto H_0 \\ & \leadsto H_0 \\ & \leadsto H_0 \end{array}$	0.69
IT		71	13	4	$\rightsquigarrow H_0$	0.52
FR	150	79	13	4	$\longrightarrow H_0$	0.52

Berechnung des p-Wertes in diesem Beispiel:

 $T \sim Bin(n, \frac{1}{2})$ unter H_0 .

$$\mathbb{P}(|S| \ge |s| |H_0) = \mathbb{P}\left(|T - \frac{n}{2}| \ge |s| |H_0\right)$$

$$= \mathbb{P}\left(|Bin\left(n, \frac{1}{2}\right) - \frac{n}{2}| \ge |s|\right)$$

$$= \mathbb{P}\left(Bin\left(n, \frac{1}{2}\right) \le \frac{n}{2} - |s|\right) + \mathbb{P}\left(Bin\left(n, \frac{1}{2}\right) \ge \frac{n}{2} + |s|\right).$$

Bemerkung: Liefert ein Test einen p-Wert von $a \in (0,1)$, dann wird in dem Test die Null-Hypothese verworfen auf jedem Signifikanzniveau $\alpha \ge a$.

Nachrechnen. Betrachte Test, wo $\mathcal{W}_{\mathbb{Q}}$ falls $S \geq c$ mit Signifikanzniveau α .

Nach Durchführung des Tests erhält man einen p-Wert von a und einen Wert s der Test-Statistik.

Es gilt:

$$\mathbb{P}(S \geq \tilde{c} \mid H_0) = \tilde{\alpha} \geq a = \mathbb{P}(S \geq s \mid H_0)$$

$$\Leftrightarrow \tilde{c} \leq s$$

$$\equiv s \geq \tilde{c}$$
 Beobachtbarer Wert der Test-Statistik
$$\Leftrightarrow \mathcal{H}_0.$$
 Kritische Wert des Tests
$$\Leftrightarrow \mathcal{H}_0.$$

Bemerkung: Falls die Verteilungsfunktion F der Test-Statistik S (bzw. |S|) invertierbar ist, dann ist

der p-Wert vor der Durchführung des Experiments/Tests eine Zufallsvariable, die U([0,1])-verteilt ist.

Nachrechnen. Betrachte Test, wo $\mathcal{W}_{\mathbb{Q}}$ falls $S \leq c$:

Nach der Durchführung des Experiments ist der p-Wert gegeben durch $\mathbb{P}(S \leq s \mid H_0) = F(s)$. Vor der Durchführung des Experiments ist der p-Wert gegeben durch F(S). Betrachte die Verteilungsfunktion der Zufallsvariable Z = F(S):

$$\mathbb{P}(Z \le x) = \mathbb{P}(F(S) \le x)$$
$$= \mathbb{P}(S \le F^{-1}(x))$$
$$= F(F^{-1}(x)) = x$$

für $0 \le x \le 1$.

Für x < 0 ist $\mathbb{P}(Z \le x) = 0$ da $Z \in [0, 1]$, für x > 1 ist $\mathbb{P}(Z \le x) = 1$ da $Z \in [0, 1]$.

Das heißt die Verteilungsfunktion von Z = F(S), also die Verteilungsfunktion des p-Werts vor der Durchführung, ist gerade die Verteilungsfunktion der U([0,1]); $Z \sim U([0,1])$.

Beispiel 2.3 (Der z-Test) (Testen des Mittelwerts im Gauß'schem Modell mit bekannter Varianz).

Betrachte $X_1, ..., X_n$ i.i.d. $N(\mu_0, \sigma^2)$, $\mu_0 \in \mathbb{R}$, $\sigma^2 > 0$ bekannt.

 H_0 : $\mu = \mu_z$ (Für einen bestimmten Wert μ_0).

Die sogenannte z-Statistik ist gegeben durch

$$Z = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \underbrace{\frac{X_i - \mu_0}{\sigma}}_{\sim \text{ i.i.d. } N(0,1) \text{ unter } H_0}_{\sim N(0,n) \text{ unter } H_0}$$

$$= \sqrt{n} \frac{\bar{X}_n - \mu_0}{\sigma}.$$

Zweiseitige Alternative:

 $H_1: \mu_0 \neq \mu_z.$

$$\mathbb{P}(\mathcal{H}_{0}|H_{0}) = \mathbb{P}(|Z| \ge c \mid H_{0})
= \mathbb{P}(|N(0,1)| \ge c)
= \mathbb{P}(N(0,1) \le -c) + 1 - \mathbb{P}(N(0,1) \le c)
= \Phi(-c) + 1 - \Phi(c)
= 2(1 - \Phi(c))
= 2(1 - 1 + \frac{\alpha}{2}) = \alpha. \checkmark$$

Linksseitige Alternative:

 $H_1: \mu_0 < \mu_z.$

 \mathcal{W}_0 falls Z links von 0 liegt. Für Signifikanzniveau $\alpha \in (0,1)$ wählt man $c = \Phi^{-1}(\alpha)$ und verwirft H_0 , wenn $Z \le c$.

Signifikanzniveau dieses Tests:

$$\mathbb{P}(\mathcal{H}_0|H_0) = \mathbb{P}(Z \le c|H_0)$$

$$= \mathbb{P}(N(0,1) \le c)$$

$$= \Phi(c) = \Phi(\Phi^{-1}(\alpha))$$

$$= \alpha$$

Rechtsseitige Alternative:

 $H_1: \mu_0 > \mu_z.$

 \mathcal{H}_0 falls Z rechts von 0 liegt. Für Signifikanzniveau $\alpha \in (0,1)$ wählt man $c = \Phi^{-1}(1-\alpha)$ und verwirft H_0 , wenn $Z \ge c$ ist.

Signifikanzniveau dieses Tests:

$$\begin{split} \mathbb{P}(\mathcal{W}_0|H_0) &= \mathbb{P}(z \ge c|H_0) \\ &= \mathbb{P}(N(0,1) \ge c) \\ &= 1 - \mathbb{P}(N(0,1) < c) \\ &= 1 - \Phi(c) = 1 - \Phi(\Phi^{-1}(1-\alpha)) \\ &= 1 - (1-\alpha) = \alpha \end{split}$$

Beispiel 2.4 (Der t-Test) (Testen des Mittelwerts im Gauß'schen Modell mit unbekannter Varianz).

Betrachte X_1, \ldots, X_n i.i.d. $N(\mu_0, \sigma_0^2), \ \mu_0 \in \mathbb{R}, \ \sigma_0^2 > 0$.

 H_0 : $\mu_0 = \mu_z$. Setze

 $T = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_i - \mu_z}{\hat{\sigma}_n} = \sqrt{n} \frac{\bar{X} - \mu_z}{\hat{\sigma}_n}$

mit $\sqrt{n}(\bar{x}_n - \mu_z) \sim N(0, \sigma^2)$; $\hat{\sigma}_n \sim \sqrt{\frac{\sigma^2 \chi_{n-1}}{n-1}}$

Beachte: Unter H_0 ist $T \sim t_{n-1}$ denn

$$T \sim \frac{N(0, \sigma^2)}{\sigma \sqrt{\chi_{n-1}^2/(n-1)}}$$
$$\sim \frac{N(0, 1)}{\sqrt{\chi_{n-1}^2/(n-1)}}$$
$$\sim t_{n-1}.$$

Zweiseitige Alternative:

 H_1 : $\mu_0 \neq \mu_z$.

Für ein Signifikanzniveau $\alpha \in (0,1)$ wählt man $c = F_{n-1}^{-1} \left(1 - \frac{\alpha}{2}\right)$ und verwirft, wenn $|T| \ge c$.

Linksseitige Alternative:

 $H_1: \mu_0 < \mu_z$.

Für Signifikanzniveau $\alpha \in (0,1)$ wählt man $c = F_{n-1}^{-1}(\alpha)$ und verwirft, wenn $T \le c$.

Rechtsseitige Alternative:

 $H_1: \mu_0 > \mu_z.$

Für ein Signifikanzniveau $\alpha \in (0,1)$ wählt man $c = F_{n-1}^{-1}(1-\alpha)$ und verwirft, wenn $T \ge c$.

Beispiel 2.5 (2-Stichproben t-Test) Betrachte 2 Stichproben:

- $X_1,...,X_n$ i.i.d. $N(\mu_x,\sigma_0^2)$
- Y_1, \ldots, Y_m i.i.d. $N(\mu_y, \sigma_0^2)$.

Beide Stichproben sind voneinander unabhängig und haben die gleiche Varianz.

 H_0 : $\mu_x = \mu_y$ und $\bar{X}_n = \bar{Y}_n$.

Unter H_0 gilt:

$$\bar{X}_n = N\left(\mu_x, \frac{\sigma_0^2}{n}\right),$$

$$\bar{Y}_m = N\left(\mu_x, \frac{\sigma_0^2}{m}\right),$$

$$\bar{X}_n - \bar{Y}_m \sim N\left(0, \sigma_0^2\left(\frac{1}{n} + \frac{1}{m}\right)\right)$$

$$\frac{\bar{X}_n - \bar{Y}_n}{\sigma_0\sqrt{\frac{1}{n} - \frac{1}{m}}} \sim N(0, 1).$$

 \bar{X}_n und \bar{Y}_m sind unabhängig voneinander. Setze

$$\hat{\mu} = \frac{1}{n+m} \left(\sum_{i=1}^{n} X_i + \sum_{i=1}^{m} Y_i \right)$$

$$\hat{\sigma}^2 = \frac{1}{m+n-1} \left(\sum_{i=1}^n (X_i - \hat{\mu})^2 + \sum_{i=1}^m (Y_i - \hat{\mu})^2 \right)$$
$$\sim \frac{\sigma_0^2 \chi_{n+m-1}^2}{n+m-1} \text{ unter } H_0.$$

Betrachte die Test-Statistik

$$T = \frac{\bar{X}_n - \bar{Y}_m}{\hat{\sigma}\sqrt{\frac{1}{m} + \frac{1}{n}}}.$$

Beachte:

$$T = \underbrace{\frac{\bar{X}_n - \bar{Y}_m}{\sigma_0 \sqrt{\frac{1}{m} + \frac{1}{n}}}}_{\sim N(0,1)} \underbrace{\frac{\frac{1}{\sqrt{\frac{X_{m+n-1}}{M+n-1}}}}{\hat{\sigma}_0}}_{\frac{1}{\hat{\sigma}_0}} \sim t_{m+n-1}.$$

$$\hat{\sigma}^2 \sim \frac{\sigma_0^2}{m+n-1} \chi_{m+n-1}^2, \\ \frac{\hat{\sigma}^2}{\sigma_0^2} \sim \frac{1}{m+n-1} \chi_{m+n-1}^2.$$

Linksseitige Alternative: H_1 : $\mu_x < \mu_v$ (σ_x^2, σ_v^2 egal). $\mathcal{H}_{\mathbb{Q}}$ falls $T \leq c$ für $c = F_{m+n-1}^{-1}(\alpha)$.

Rechtsseitge Alternative: $H_1: \mu_x > \mu_y \quad (\sigma_x^2, \sigma_y^2 \text{ egal}).$ $\mathcal{H}_{\mathbb{Q}} \text{ falls } T \ge c \text{ für } c = F_{m+n-1}^{-1}(1-\alpha)$

Zweiseitige Alternative: $H_1: \mu_x \neq \mu_v \quad (\sigma_x^2, \sigma_v^2 \text{ egal}).$ \mathcal{W}_{0} falls $|T| \ge c$ für $c = F_{m+n-1}^{-1} \left(1 - \frac{\alpha}{2}\right)$.

Beispiel 2.6 (Der F-Test) (Testen auf Gleichheit der Varianzen zweier normalverteilter Populationen).

Betrachte zwei Stichproben:

- X_1, \ldots, X_n i.i.d. $N(\mu_x, \sigma_x^2)$
- Y_1, \ldots, Y_m i.i.d. $N(\mu_v, \sigma_v^2)$.

Beide Stichproben sind unabhängig voneinander.

 H_0 : $\sigma_x^2 = \sigma_y^2$ (μ_x , μ_y egal). Unter H_0 ist

$$\hat{\sigma}_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \sim \frac{\sigma_x^2}{n-1} \chi_{n-1}^2,$$

$$\hat{\sigma}_y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{Y}_m)^2 \sim \frac{\sigma_x^2}{m-1} \chi_{m-1}^2,$$

wobei $\hat{\sigma}_x^2$ und $\hat{\sigma}_y^2$ unabhängig voneinander sind.

Damit gilt unter H_0 :

$$F = \frac{\hat{\sigma}_{x}^{2}}{\hat{\sigma}_{y}^{2}} \sim \frac{\frac{\sigma_{x}^{2}}{n-1} \chi_{n-1}^{2}}{\frac{\sigma_{x}^{2}}{m-1} \chi_{m-1}^{2}}$$
$$\sim \frac{\frac{\chi_{n-1}^{2}}{n-1}}{\frac{\chi_{m-1}^{2}}{m-1}}$$
$$\sim F_{n-1, m-1},$$

wobei $F_{n-1,m-1}$ die F-Verteilung mit n-1 und m-1 Freiheitsgraden ist.

Linksseitige Alternative: $\sigma_x^2 < \sigma_y^2$.

 $\mathcal{H}_{0} \text{ falls } F \leq c \text{ für } c = F_{n-1,m-1}^{-1}(\alpha).$

Rechtsseitige Alternative: $\sigma_x^2 > \sigma_v^2$.

 $\mathcal{H}_{\mathbb{Q}}$ falls $F \ge c$ für $c = F_{n-1,m-1}^{-1} (1 - \alpha)$.

Zweiseitige Alternative: $\sigma_x^2 \neq \sigma_y^2$.

 \mathcal{W}_{0} falls $F \leq c_{1}$ oder $F \geq c_{2}$ für $c_{1} = F_{n-1,m-1}^{-1}\left(\frac{\alpha}{2}\right)$ und $c_{2} = F_{n-1,m-1}^{-1}\left(1 - \frac{\alpha}{2}\right)$.

2.2 Likelihood-Ratio-Tests und das Neyman-Pearson Lemma

Betrachte ein parametrisches Modell $X_1, ..., X_n$ i.i.d. mit Dichte (Wahrscheinlichkeitsfunktion) $f(x|\theta)$, $\theta \in \Theta$.

Testproblem:

 $H_0: \theta \in \Theta_0 \text{ für } \Theta_0 \subseteq \Theta$,

 $H_1: \theta \in \Theta \setminus \Theta_0$.

Bisher hatten wir z.B.:

- $\Theta = \mathbb{R}$, $\Theta_0 = \{\mu_{\star}\}$; $H_0 = \mu = \mu_{\star} \ vs \ H_1 : \mu \neq \mu_{\star} \ (z\text{-Test 2-Seitig})$,
- $\bullet \ \ \Theta = (-\infty, \mu_{\bigstar}) \quad \ \Theta_0 = \{\mu_{\bigstar}\}; \quad \ H_0 = \mu = \mu_{\bigstar} \ vs \ H_1 : \mu \neq \mu_{\bigstar} \ (\text{z-Test 1-Seitig}),$
- $\bullet \ \Theta = \mathbb{R} \times (0,\infty), \quad \Theta_0 = \{\mu_0\} \times (0,\infty); \quad H_0 = \mu = \mu_\star \ vs \ H_1 : \mu \neq \mu_\star \ (\text{t-Test}),$
- $\Theta = \mathbb{R} \times (0, \infty) \times \mathbb{R} \times (0, \infty)$, $\Theta_0 = \{(\mu_x, \sigma_x^2, \mu_y, \sigma_y^2) \in \Theta : \sigma_x^2 = \sigma_y^2\}$; $H_0 = \sigma_x^2 = \sigma_y^2 \ vs \ H_1 : \sigma_x^2 \neq \sigma_v^2 \ (F-Test)$.

Allgemeine Modell: Hier ist die Likelihood-Ratio-Statistik (L-R-Statistik) ist definiert als

$$\Lambda = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})},$$

wobei $\hat{\theta}_0$ der ML-Schätzer für θ unter H_0 ist, also $\hat{\theta}_0 = \operatorname*{argmax} L(\theta)$, und wobei $\hat{\theta}$ der (unrestringierte) ML-Schätzer für θ ist, also $\hat{\theta} = \operatorname*{argmax} L(\theta)$.

Der L-R-Test verwirft H_0 , wenn $\Lambda \le c$ für einen geeigneten kritischen Wert c < 1.

Bemerkung: Λ kann interpretiert werden als

Beste Beschreibung der Beobachtungen durch ein $\theta \in \Theta_0$ Beste Beschreibung der Beobachtungen durch ein $\theta \in \Theta$

Bemerkung: Einige der bisher vorgestellten Tests sind tatsächlich L-R-Tests.

Beispiel 2.7 (z-Test mit zweiseitiger Alternative) X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, σ^2 bekannt.

$$H_0: \mu_0 = \mu_{\star}, H_1: \mu_0 \neq \mu_{\star}.$$

 $\Theta = \mathbb{R}, \Theta_0 = \{\mu_{\star}\}$

Likelihood für $\mu \in \Theta$ ist:

$$L(\mu) = \prod_{i=1}^{n} \Phi_{\mu,\sigma^{2}}(X_{i})$$

$$= \prod_{i=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^{2}}(X_{i}-\mu)^{2}}$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\mu)^{2}}.$$

$$\begin{split} \hat{\theta}_0 &= \underset{\mu \in \{\theta_0\}}{\operatorname{argmax}} \ L(\mu) = \mu_{\bigstar}. \\ \hat{\theta} &= \underset{\mu \in \theta}{\operatorname{argmax}} \ L(\mu) = \bar{X}_n. \end{split}$$

$$\Lambda = \frac{L(\mu_{\star})}{L(\bar{X}_{n})}
= \frac{(2\pi\sigma^{2})^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu_{\star})^{2}}}{(2\pi\sigma^{2})^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}}}
= \exp \left(-\frac{1}{2\sigma^{2}} \underbrace{\left(\sum_{i=1}^{n} (X_{i} - \mu_{\star})^{2} - \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}\right)}_{(*)}\right).$$

L-R-Test verwirft H_0 , wenn Λ klein ist, also wenn (*) groß ist.

$$(*) = \sum_{i=1}^{n} \left(X_{i}^{2} - 2\mu_{\star}X_{i} + \mu_{\star}^{2} - Xi^{2} + 2\bar{X}_{n}X_{i} - \bar{X}_{n}^{2} \right)$$

$$= -2\mu_{\star}\bar{X}_{n} \cdot n + \mu_{\star}^{2} \cdot n + 2\bar{X}_{n}\bar{X}_{n} \cdot n - \bar{X}_{n}^{2} \cdot n$$

$$= n \left(\mu_{\star}^{2} - 2\mu_{\star}\bar{X}_{n} + \bar{X}_{n}^{2} \right)$$

$$= n \left(\bar{X}_{n} - \mu_{\star} \right)^{2}.$$

Damit ist (*) genau dann groß, wenn $|\bar{X}_n - \mu_0|$ groß ist. Das ist dieselbe Entscheidungsregel wie beim z-Test.

Also: L-R-Test ist hier der z-Test (bei zweiseitiger Alternative).

Beispiel 2.8 (z-Test mit linksseitiger Alternative) X_1, \ldots, X_n wie zuvor.

$$H_0: \mu = \mu_{\star} \qquad \Theta_0 = \{\mu_{\star}\}$$

$$\equiv$$

$$H_1: \mu < \mu_{\star} \qquad \Theta = (-\infty, \mu_{\star})$$

Hier ist

$$\begin{aligned} \hat{\theta}_0 &= \mu_{\star} \\ \hat{\theta} &= \min \left\{ \bar{X}_n, \mu_0 \right\} \end{aligned}$$

Hier verwirft der L-R-Test, wenn

$$\frac{L(\mu_{\star})}{L(\min{\{\bar{X}_{n}, \mu_{\star}\}})} \text{ klein ist } (\leq c < 1)$$

$$\Leftrightarrow \text{ Nun ist } \frac{L(\mu_{\star})}{L(\min{\{\bar{X}_{n}, \mu_{\star}\}})} \leq c < 1$$

$$\Leftrightarrow \frac{L(\mu_{\star})}{L(\bar{X}_{n})} \leq c < 1 \quad \text{ und } \bar{X}_{n} < \mu_{\star}$$

$$\Leftrightarrow (\bar{X}_{n} - \mu_{0})^{2} \quad \text{groß und } \bar{X}_{n} < \mu_{\star}$$

$$\Leftrightarrow \bar{X}_{n} - \mu_{\star} \quad \text{Weit links von 0 (klein und negativ)}$$

Der Z-Test verwirft wenn $\frac{\sqrt{n}}{\sigma}(\bar{X}_n-\mu_0)$ klein ist $(\leq \phi^{-1}(\alpha))$. Also ist auch hier der L-R-Test das selbe wie die Z-Test.

Bemerkung: Für den t-Test gelten die Resultate analog zu den letzten beiden Beispielen.

Im folgenden **Neyman-Pearson Lemma** betrachtet man sogenannte **simple Hypothesen**, unter denen die Verteilung der Daten jeweils komplett spezifiziert ist:

 $X_1,...,X_n$ i.i.d. mit Dichte $f_{\theta}(x)$ (bzw. Wahrscheinlichkeitsfunktion $p_{\theta}(x)$), wobei $\theta \in \Theta = \{0,1\}$. Teste:

$$H_0$$
: $\theta = 0$, simple Hypothesen \swarrow H_1 : $\theta = 1$.

Satz 2.1 (Neyman-Pearson Lemma) Unter allen Tests zwischen zwei simplen Hypothesen mit Signifikanzniveau $\alpha \in (0,1)$ hat der entsprechende L-R-Test die größtmögliche Power. (Fehler 2. Art möglichst klein)

Bemerkung: Zwischen 2 einfache Hypothesen ist die entsprechende L-R-Statistik gegeben durch:

$$\Lambda = \frac{L(0)}{\max\{L(0), L(1)\}} (< 1).$$

Also wenn $\frac{L(0)}{L(1)} \le c(<1)$ ist.

Beweis. Zunächst für n = 1.

Betrachte $X = X_1$.

$$L(\theta) = f_{\theta}(x), \quad \theta \in \{0, 1\}.$$

Sei $\alpha \in (0,1)$ und sei c der Kritische Wert der L-R-Test zum Signifikanzniveau α hat:

$$\alpha = \mathbb{P}(\Lambda \le c \mid H_0) = \mathbb{P}\left(\frac{f_0(x)}{f_1(x)} \le c \mid H_0\right).$$

Diesen Test entspricht eine 0-1-wertige Zufallsvariable d_{LR} :

$$d_{LR} = d_{LR}(X_1) = \begin{cases} 0 & : (\frac{f_0(x)}{f_1(x)} > c, \\ 1 & : (\frac{f_0(x)}{f_1(x)} \le c, \end{cases}$$

Beachte c < 1,

Verteilung von d_{LR} unter H_0 :

$$\mathbb{P}(d_{LR} = 1 \mid H_0) = \mathbb{P}(\Lambda \le c \mid H_0) = \mathbb{P}\left(\frac{f_0(x)}{f_1(x)} \le c \mid H_0\right) = \alpha$$

Also: $d_{LR} B(p)$ unter H_0 .

Betrachte nun einen weiteren Test mit Signifikanzniveau α , diesen Test entspricht eine Weitere 0-1-wertige Zufallsvariable d=d(X), wobei

$$d(X) = \begin{cases} 0 & : \text{ Test verwirft nicht} \\ 1 & : \text{ Test verwirft} \end{cases}$$

$$\mathbb{P}(d=1 | H_0) = \mathbb{P}(\text{Test verwirft } | H_0) = \alpha$$

Also: d B(p) unter H_0 .

Zu zeigen:

Power von des neuen Tests $(d) \le$ Power des L-R-Tests (d_{LR}) $\equiv \mathbb{P}(d=1 | H_1) \le \mathbb{P}(d_{LR}=1 | H_1).$

Hilfsmittel:

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^{\complement}); A = d = 1; B = d_{LR} = 1.$$

$$\begin{split} \mathbb{P}(d=1 \mid H_{1}) &= \mathbb{P}(d=1, d_{LR}=1 \mid H_{1}) + \mathbb{P}(d=1, d_{LR}=0 \mid H_{1}) \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}) - \mathbb{P}(d=0, d_{LR}=1 \mid H_{1}) + \mathbb{P}(d=1, d_{LR}=0 \mid H_{1}) \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}) - \int_{x: \ d(x)=0, \ f_{1}(x) dx} f_{1}(x) dx + \int_{x: \ d(x)=1, \ f_{1}(x) dx} f_{1}(x) dx \\ &\leq \mathbb{P}(d_{LR}=1 \mid H_{1}) - \frac{1}{c} \int_{x: \ d(x)=0, \ f_{1}(x) dx} f_{1}(x) dx + \frac{1}{c} \int_{x: \ d(x)=1, \ f_{1}(x) dx} f_{1}(x) dx \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}) - \frac{1}{c} \left(\mathbb{P}(d=0, d_{LR}=1 \mid H_{0}) - \mathbb{P}(d=1, d_{LR}=0 \mid H_{0}) \right) \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}) - \frac{1}{c} \left(\alpha - \mathbb{P}(d=1, d_{LR}=1 \mid H_{0}) - \mathbb{P}(d=1, d_{LR}=0 \mid H_{0}) \right) \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}) - \frac{1}{c} \left(\alpha - \alpha \right) \\ &= \mathbb{P}(d_{LR}=1 \mid H_{1}). \end{split}$$

Also: $\mathbb{P}(d = 1 | H_1) \leq \mathbb{P}(d_{LR} = 1 | H_1) \checkmark$.

Der Fall für diskrete Zufallsvariable (mit W-Fkt) geht analog.

Für den Fall $n \ge 1$ argumentiert man ganz genauso (siehe Übung).

Korollar 2.1 Seien $X_1, ..., X_n$ i.i.d. $N(\mu, \sigma^2)$, $\mu \in (-\infty, \mu_0]$, $\sigma^2 > 0$ bekannt. Teste $H_0: \mu = \mu_0$ gegen $H_1: \mu < \mu_0$, für eine feste Zahl μ . Hier hat die L-R-Test mit Signifikanzniveau α die größtmögliche Power.

Power einen Test wenn $\mu = \mu_1 \le$ Power den L-R-Test wenn $\mu \ne \mu_1$ $\Pi(\mu_1) \le \Pi_{LR}(\mu_1)$

Einen Test mit diesem Eigenschaft nennt man Uniformly Most Powerful (UMP)

Beweis. Sie $\mu_1 < \mu_0$. Zu zeigen: $\Pi(\mu_1) \le \Pi_{LR}(\mu_1)$

Der beiden Tests entsprechen wieder 0-1-Wertige Zufallsvariable d und d_{LR} .

Beachte: $\mathbb{P}(d_{LR} = 1 | H_0) = \mathbb{P}(d = 1 | H_0) = \alpha$.

Beide Tests haben die Signifikanzniveau α .

Betrachte dazu ein neues Testproblem:

$$\tilde{H}_0\colon \mu=\mu_0,$$
 simple Hypothesen $\tilde{H}_1\colon \mu=\mu_1.$

Beachte:

• $\mathbb{P}(d_{LR} = 1 \mid \tilde{H}_0) = \mathbb{P}(d_{LR} = 1 \mid H_0) = \alpha$. $\mathbb{P}(d = 1 \mid \tilde{H}_0) = \mathbb{P}(d = 1 \mid H_0) = \alpha$,

D.h. beim Testen von \tilde{H}_0 gegen \tilde{H}_1 haben d_{LR} und d beide Signifikanzniveau α .

- Der L-R-Test zum Testen von \tilde{H}_0 gegen \tilde{H}_1 , verwirft H_0 , wenn

$$\tilde{\Lambda} = \frac{L(\mu_0)}{L(\mu_1)} \leq \tilde{c} < 1$$

$$\Leftrightarrow \frac{(2\pi\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_0)^2}}{(2\pi\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu_1)^2}} \qquad \text{Soll klein sein}$$

$$\Leftrightarrow \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}((X_i - \mu_0)^2) + \frac{1}{2\sigma^2}\sum_{i=1}^{n}((X_i - \mu_1)^2)\right) \qquad \text{Soll klein sein}$$

$$\Leftrightarrow \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i^2 - 2\mu_0X_i + \mu_0^2 - X_i^2 + 2\mu_1X_i - \mu_1^2)\right) \qquad \text{Soll klein sein}$$

$$\Leftrightarrow \exp\left(-\frac{n}{2\sigma^2}((\mu_0^2 - \mu_1^2) + 2(\mu_1 - \mu_0)\bar{X}_n)\right) \qquad \text{Klein}$$

$$\Leftrightarrow n((\mu_0^2 - \mu_1^2) + 2\bar{X}_n(\mu_1 - \mu_0)) \text{ groß}$$

$$\Leftrightarrow \bar{X}_n \text{ klein}$$

$$\Leftrightarrow \text{Genauer: } \bar{X}_n \text{ sodass } \mathbb{P}(\bar{X}_n \leq c | H_0) = \alpha$$

• Der L-R-Test von H_0 gegen H_1 ist der Z-Test. Dieser Test verwirft H_0 (bzw. \tilde{H}_0) wenn

$$\begin{split} \frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu_0) \text{ klein} \\ \Leftrightarrow & \bar{X}_n - \mu_0 \text{ klein} \\ \Leftrightarrow & \bar{X}_n \text{ klein.} \end{split}$$

Also: Der L-R-Test zwischen H_0 und H_1 , und der L-R-Test zwischen \tilde{H}_0 und \tilde{H}_1 stimmen überein.

Mit N-P-Lemma: Unter allen Tests von \tilde{H}_0 gegen \tilde{H}_1 mit Signifikanzniveau α hat der L-R-Test die Maximale Power.

Also:

$$\mathbb{P}(d=1 \mid \tilde{H}_1) \leq \mathbb{P}(d_{LR}=1 \mid \tilde{H}_1)$$

$$\mathbb{P}(d=1 \mid \mu_1) \leq \mathbb{P}(d_{LR}=1 \mid \mu_1)$$

$$\Pi(\mu_1) \leq \Pi_{LR}(\mu_1)$$

Bemerkung: Die obige Aussage gilt auch für rechtsseitige Alternativen ($\mu > \mu_0$), sowie im Fall unbekannter Varianz, d.h. für den t-Test. Bei 2-Seitige Alternative gibt es keinen UMP.

Beispiel 2.9 Seien X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$ bekannt. Teste H_0 : $\mu = \mu_0$ gegen H_1 : $\mu \neq \mu_0$.

Hierfür existiert kein UMP-Test (Siehe hierzu auch R-Code vom 17.06.21).

Beweisidee. Fixiere $\alpha \in (0,1)$. Angenommen es gibt einen UMP-Test. Sei d_{\times} die diesem entsprechende 0-1-wertige Zufallsvariable.

• Betrachte zunächst dem Fall $\mu_1 < \mu_0$, sowie das asymptotische Testproblem

$$\tilde{H}_0$$
: $\mu < \mu_0$

$$\tilde{H}_1$$
: $\mu < \mu_1$.

Sei \tilde{d} der L-R-Test zum Testen von \tilde{H}_0 gegen \tilde{H}_1 . Mit dem Neyman-Pearson-Lemma ist

$$\mathbb{P}\big(\tilde{d}=1\mid \mu=\mu_1\big)\geq \mathbb{P}(d_{\times}=1\mid \mu=\mu_1).$$

Weil d_{\pm} UMP ist, gilt auch

$$\mathbb{P}\left(\tilde{d}=1 \mid \mu=\mu_1\right) \leq \mathbb{P}\left(d_{\cancel{+}}=1 \mid \mu=\mu_1\right).$$

Die Power von d_{\pm} und von \tilde{d} ist gleich.

 \Rightarrow Die Tests $d_{ imes}$ und d_{LR^-} stimmen überein.

Nun ist \tilde{d} den Z-Test (siehe letzte Beispiel):

$$d_{\mathcal{H}} = \begin{cases} 1 & : \tilde{d} = 1, \\ 0 & : \tilde{d} = 0, \end{cases}$$
$$= \begin{cases} 1 & : \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0) \le \Phi^{-1}(\alpha) \\ 0 & : \text{sonst.} \end{cases}$$

Betrachte nun den Fall μ₁ > μ₀ und argumentiere wie zuvor.
 Syntetisches Testproblem:

$$\tilde{\tilde{H}}_0$$
: $\mu = \mu_0$

$$\tilde{\tilde{H}}_1$$
: $\mu = \mu_1$.

Ist \tilde{d} der entsprechende L-R-Test, dann stimmen wie zuvor die Tests \tilde{d} und $d_{ imes}$ überein. Wieder ist \tilde{d} ein Z-Test:

$$d_{+} = \begin{cases} 1 & : \tilde{d} = 1, \\ 0 & : \tilde{d} = 0, \end{cases}$$
$$= \begin{cases} 1 & : \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0) \ge \Phi^{-1} (1 - \alpha) \\ 0 & : \text{sonst.} \end{cases}$$

Die beiden Formeln für d_{\times} widersprechen einander.

Damit kann d_{\times} nicht einem UMP-Test entsprechen.

Bemerkung: Das oben beobachtete Phänomen tritt auch im Fall unbekannter Varianz (t-Test) auf. Darüber hinaus ist in vielen der hier beobachteten Modellen (B(p), $F_{m-1,n-1}$, etc.) bei einseitigen Alternativen der entsprechende L-R-Test UMP, und für zweiseitige Alternativen existiert kein UMP.

2.3 L-R-Tests in großen Stichproben

Betrachte: $X_1, ..., X_n$ i.i.d. mit Dichte $f(x|\theta)$ (bzw. Wahrscheinlichkeitsfunktion $p(x|\theta)$), $\theta \in \Theta \subseteq \mathbb{R}^p$.

Teste:

$$H_0: \theta \in \Theta_0 \subseteq \Theta_1$$

 $H_1: \theta \in \Theta \setminus \Theta_0$.

Betrachte der L-R-Statistik: $\Lambda = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})}$

wobei: $\hat{\theta}_0 = \underset{\theta \in \Theta_0}{\operatorname{argmax}} L(\theta), \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta),.$

Satz 2.2 (Wilks' Theorem) Unter geeigneten Voraussetzungen gilt unter H_0 :

$$-2\log\Lambda_n \xrightarrow{w} \chi^2_{k-k_0}$$

wobei k (bzw. k_0) die Anzahl der freien Parameter in Θ (bzw. Θ_0) ist. Oft $k = \dim \Theta$, $k_0 = \dim \Theta_0$.

$$H_0: \mu = \mu$$
 , $k_0 = 0$

$$>$$
 $H_1: \mu < \mu_0 \quad , k = 1.$ \neq

(Ohne Beweis)

Damit erhält man einen Test (H_0 gegen H_1) mit nominaler Signifikanzniveu α wie folgt:

$$\mathcal{H}_0$$
 falls $-2\log\Lambda \ge c$

Wähle c sodaß,

$$\alpha \approx \mathbb{P}(-2\log \Lambda_n \ge c|H_0)$$

$$= 1 - \mathbb{P}(-2\log \Lambda_n \le c|H_0)$$

$$\approx 1 - \mathbb{P}(\chi_{k-k_0}^2 < c) = \%$$

$$\uparrow \text{Wilks}$$

Setze $c = \mathcal{F}_{k-k_0}^{-1}(1-\alpha) \rightarrow \text{Quantil der } \chi^2_{k-k_0}$

$$\Rightarrow \% = 1 - \mathbb{P}(\chi_{k-k_0}^2 \le c)$$
$$= 1 - (1 - \alpha) = \alpha$$
$$\Rightarrow \mathbb{P}(\mathcal{H}_0|H_0) \approx \alpha$$

Für $n->\infty$ näher sich das Signifikanzniveu dieses Test dem Wert α an:

$$\lim_{n \to \infty} \mathbb{P}(-2\log \Lambda_n \ge c|H_0)$$

$$= \lim_{n \to \infty} 1 - \mathbb{P}(-2\log \Lambda_n < c|H_0)$$

$$= 1 - \lim_{n \to \infty} \mathbb{P}(-2\log \Lambda_n < c|H_0)$$

$$= 1 - \mathbb{P}(\chi_{k-k_0}^2 < c)$$

$$= \alpha \checkmark$$

Beispiele für $k, k_0 : \lambda_i$, iid, $\mathbb{N}(\mu, \sigma^2)$

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$
 $\Theta = \mathbb{R} \times (0, \infty)...k = 2$
 $\Theta_0 = {\mu_0} \times (0, \infty)...k = 1$

Beispiel 2.10 (Kategoriale Daten, einfache Nullhypothese) Betrachte:

 $X_1,...,X_n$ iid diskret mit Werten in $\{1,..,m\}$.

Wahrscheinlichkeitsfunktion $p(j) = \mathbb{P}(X_i = j), \theta = (p(j))_{j=1}^m$ unbekannt.

Weiters sei $p_0(j)$, $1 \le j \le m$, eine bestimmte Wahrscheinlichkeitsfunktion. Teste:

$$H_0: p(j) = p_0(j)$$
 für alle $j = 1,...,m$
 $H_1: p(j) \neq p_0(j)$ für mindestens ein $j \in \{1,...,m\}$

$$\Theta = \left\{ (p(j))_{j=1}^m \in [0,1]^m : \sum_{j=1}^m p(j) = 1 \right\} ... k = 1$$

$$\Theta_0 = \{(p(j))_{j=1}^m\}...k_0 = 0$$

$$\hat{\theta}_0 = \underset{\theta = \Theta_0}{\operatorname{argmax}} L(\theta) = (p_0(j))_{j=1}^m$$

$$\hat{\theta} = \underset{\theta = \Theta}{\operatorname{argmax}} L(\theta) = \left(\frac{O_j}{n}\right)_{j=1}^m \text{, wobei } = O_j = \#\{i=1,...,n: \ X_i = j\}, \ 1 \leq j \leq m$$

O_j "Observed number of cases in class j "

Allgemein ist:

$$L((p(j))_{j=1}^{m}) = p(x_1) \cdot p(x_2) \cdot \dots \cdot p(x_n) = p(1)^{O_1} \cdot p(2)^{O_2} \cdot \dots \cdot p(m)^{O_m}$$

$$-2\log \Lambda = -2\log \frac{L(\hat{\theta}_0)}{L(\hat{\theta})} = 2\log \frac{L(\hat{\theta})}{L(\hat{\theta}_0)}$$

$$2\log \frac{\prod_{j=1}^{m} (\frac{O_j}{n})^{O_j}}{\prod_{j=1}^{m} (p_0(j))^{O_j}} = 2\log \prod_{j=1}^{m} (\frac{O_j}{n \cdot p_0(j)})^{O_j} =$$

$$2\sum_{j=1}^{m} O_{j} \log \frac{O_{j}}{np_{0}(j)} = 2\sum_{j=1}^{m} O_{j} \log \frac{O_{j}}{E_{j}},$$

Wobei $E_j = n \cdot p_0(j)$, $1 \le j \le m$ "Expected number of cases in class j under H_0 "

Grenzverteilung von $2\sum_{j=1}^m O_j\log\frac{O_j}{E_j}$ ist die χ^2_{m-1} -Verteilung.

Bemerkung: Im Kontext des letzten Beispiels wird oft Pearson's χ^2 -Anpassungstest verwendet. Die Statistik ist: $\chi^2 := \sum_{j=1}^m \frac{(E_j - O_j)^2}{E_j} (\chi^2 \leftarrow \text{nicht eine Verteilung})$.

Unter H_0 gilt $\chi^2 \xrightarrow{w} \chi^2_{m-1}$.

Tatsächlich sind hier der L-R-Test und der χ^2 -Anpassungstest äquivalent.

Bemerkung: Die Approximation $\mathbb{P}(-2\log\Lambda \leq t|H_0) \approx \mathbb{P}(\chi_{m-1}^2 \leq t)$ $\mathbb{P}(\chi^2 \leq t|H_0) \approx \mathbb{P}(\chi_{m-1}^2 \leq t)$ werden klein, wenn für jedes j=1,...,m die größte $E_j=n\cdot p_0(j)$ größ ist. Daumenregel: $E_j\geq S^j$

Falls die Daumenregeln verletzt ist, kann man "Klassen zusammenlegen".

Beispiel 2.11 $\lambda_1,...\lambda_n$ iid $\mathbb{N}(\mu,\sigma^2)$, $\sigma^2 > 0$ bekannt. Teste:

$$H_0: \mu = \mu_0 \quad \Theta_0 = \{\mu_0\}$$

$$H_1: \mu \neq \mu_0 \quad \Theta = \mathbb{R}$$

 $\hat{\mu}_0$...ML Schätzer für μ_0 unter $H_0 = \mu_0$ $\hat{\mu}$...ML Schätzer "unrestringiert" = \bar{X}_n

$$\begin{split} &\Lambda = \frac{\prod_{i=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^{2}}(X_{i} - \mu_{0})^{2}}}{\prod_{i=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^{2}}(X_{i} - \bar{X}_{n})^{2}}} = e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left((X_{i} - \mu_{0})^{2} - (X_{i} - \bar{X}_{n})^{2} \right) \right)} \\ &= -2\log \Lambda = -2 \frac{(-1)}{2\sigma^{2}} \sum_{i=1}^{n} \left(X_{i}^{2} - 2X_{i}\mu_{0} + \mu_{0}^{2} - X_{i}^{2} + 2X_{i}\bar{X}_{n} - \bar{X}_{n}^{2} \right) \\ &= \frac{1}{\sigma^{2}} (-2\mu_{0}n\bar{X}_{n} + n\mu_{0}^{2} + 2\bar{X}_{n}n\bar{X}_{n} - n\bar{X}_{n}^{2}) \\ &= \frac{n}{\sigma^{2}} (\mu_{0}^{2} - 2\mu_{0}\bar{X}_{n} + \bar{X}_{n}^{2}) \\ &= \frac{n}{\sigma^{2}} (\bar{X}_{n} - \mu_{0})^{2} \\ &= \left(\frac{\sqrt{n}(\bar{X}_{n} - \mu_{0})}{\sigma} \right)^{2} = (\times) \end{split}$$

Unter H_0 ist

$$\bar{X}_n \, \mathbb{N}\left(\mu_0, \frac{\sigma^2}{n}\right)$$

$$\bar{X}_n - \mu_0 \, \mathbb{N}\left(0, \frac{\sigma^2}{n}\right)$$

$$\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu_0\right) \, \mathbb{N}(0, 1)$$

$$\Rightarrow -2\log \Lambda = (\times) = \chi^2.$$

3. Zufallsvektoren und Zufallsmatrizen

- Siehe zu diesem Kapitel S. 564-574. in Rice, J. A. (2007). Mathematical statistics and data analysis. Belmont, CA: Thomson/Brooks/Cole.
- Dieses Kapitel haben wir im SS 2022 nicht gemacht, es bleibt aber vom Vorjahr hier!
- Wissen: Für $X_1, ..., X_n$ i.i.d. $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$, ist $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right),$ $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \sim \frac{\sigma^2}{n-1} \chi_{n-1}^2$

und weiters sind \bar{X}_n und $\hat{\sigma}_n^2$ unabhängig. Damit ist insbesondere

$$\frac{\sqrt{n}}{\hat{\sigma}_n}(\bar{X}_n - \mu) \sim t_{n-1}.$$

Erwartungswerte und Varianz/Kovarianz-Matrizen

Definition 3.1 (Erwartungswert) Für zufällige Vektoren bzw. Matrizen wird der Erwartungswert komponentenweise definiert. Also: (i) Ist $\mathbf{X} = (X_1, \dots, X_n)'$ ein Zufallsvektor, dann ist

$$\mathbb{E}(\mathbf{X}) = \begin{pmatrix} \mathbb{E}(X_1) \\ \mathbb{E}(X_2) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix}.$$

(ii) Ist $\mathbf{M}=(M_{ij})_{i=1,j=1}^{n\ m}$ eine zufällige Matrix, dann ist $\mathbb{E}(\mathbf{M})=\mathbb{E}\left((M_{ij})\right)_{i=1}^{n\ m}$

$$\mathbb{E}(\mathbf{M}) = \mathbb{E}\left((M_{ij})\right)_{i=1,j=1}^{n \ m}$$

Bemerkung: (i) ist ein Spezialfall von (ii), da man den n-Vektor \mathbf{X} auch als $n \times 1$ Matrix betrachten

kann.

Für Zufallsvariable Z ist der Erwartungswert linear für $a, b \in \mathbb{R}$,

$$\mathbb{E}(aZ+b)=a\mathbb{E}(Z)+b.$$

Proposition 3.1 (Linearität des Erwartungswertes) (i) Sei $\mathbf{X} = (X_1, ..., X_n)'$ ein Zufallsvektor, \mathbf{A} eine $m \times n$ -Matrix und \mathbf{b} ein m-dimensionaler Vektor, dann ist

$$\mathbb{E}(AX + b) = A\mathbb{E}(X) + b.$$

(ii) Sei \mathbf{M} eine zufällige $(n \times m)$ Matrix, \mathbf{A} eine $k \times n$ Matrix und \mathbf{B} eine $k \times m$ Matrix, dann ist

$$\mathbb{E}(\mathbf{A}\mathbf{M} + \mathbf{B}) = \mathbf{A}\mathbb{E}(\mathbf{M}) + \mathbf{B}.$$

Ist C eine $m \times k$ Matrix und D eine $n \times k$ Matrix, dann ist

$$\mathbb{E}(\mathbf{MC} + \mathbf{D}) = \mathbb{E}(\mathbf{M})\mathbf{C} + \mathbf{D}.$$

Beweis. Es genügt, (ii) zu zeigen, da (i) ein Spezialfall von (ii) ist.

Zeige: $\mathbb{E}(\mathbf{AM} + \mathbf{B}) = \mathbf{A}\mathbb{E}(\mathbf{M}) + \mathbf{B}$.

Vergleiche Eintrag in Zeile *i* und Spalte *j* links und rechts.

$$(\mathbb{E}(AM + B))_{ij} = \mathbb{E}\left((AM + B)_{ij}\right)$$

$$= \mathbb{E}\left((AM)_{ij} + B_{ij}\right)$$

$$= \mathbb{E}\left(\sum_{l=1}^{n} A_{il} M_{lj} + B_{ij}\right)$$

$$= \sum_{l=1}^{n} A_{il} \mathbb{E}\left(M_{lj}\right) + B_{ij}$$

$$= (A\mathbb{E}(M))_{ij} + B_{ij}$$

$$= (A\mathbb{E}(M) + B)_{ij}.$$

Zeige: $\mathbb{E}(MC + D) = \mathbb{E}(M)C + D$.

$$(\mathbb{E}(MC+D))_{ij} = \mathbb{E}\left((MC+D)_{ij}\right)$$

$$= \mathbb{E}\left((MC)_{ij} + D_{ij}\right)$$

$$= \mathbb{E}\left(\sum_{l=1}^{m} M_{il}C_{lj} + D_{ij}\right)$$

$$= \sum_{l=1}^{m} \mathbb{E}(M_{il})C_{lj} + D_{ij}$$

$$= (\mathbb{E}(M)C)_{ij} + D_{ij}$$

$$= (\mathbb{E}(M)C + D)_{ij}.$$

Beispiel 3.1 X_1, \ldots, X_n i.i.d. mit $\mathbb{E}(X_1) = \mu$.

Betrachte
$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$
.

$$\mathbb{E}(\mathbf{X}) = \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix} = \begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix} = \mu \iota$$

für
$$\iota = (1, \ldots, 1)' \in \mathbb{R}^n$$
.

$$\mathbb{E}\left(\frac{1}{n}\iota'\mathbf{X}\right) = \frac{1}{n}\iota'\mathbb{E}(\mathbf{X}) = \frac{1}{n}\iota'\mu\iota = \frac{\mu}{n}\underbrace{\iota'\iota}_{=n} = \mu.$$

$$\mathbf{X} = \iota \bar{X} + (\mathbf{X} - \iota \bar{X})$$
orthogonal!

$$\mathbb{E}(\underbrace{\iota \bar{X}}_{(n \times 1)}) = \mathbb{E}\left(\iota \frac{1}{n}\iota' \mathbf{X}\right)$$

$$= \frac{1}{n}\iota\iota' \mathbb{E}(\mathbf{X})$$

$$= \frac{1}{n}\iota\iota'\mu\iota$$

$$= \mu \frac{1}{n}\iota\iota'\iota$$

$$= \mu.$$

Beispiel 3.3

$$\mathbb{E}(\mathbf{X} - \iota \bar{\mathbf{X}}) = \mathbb{E}\left(\mathbf{X} - \iota \frac{1}{n} \iota' \mathbf{X}\right)$$

$$= \mathbb{E}\left(\left(\mathbf{I}_n - \iota \frac{1}{n} \iota'\right) \mathbf{X}\right)$$

$$= \left(\mathbf{I}_n - \frac{1}{n} \iota \iota'\right) \mathbb{E}(\mathbf{X})$$

$$= \left(\mathbf{I}_n - \frac{1}{n} \iota \iota'\right) \mu \iota$$

$$= \mu \left(\iota - \frac{1}{n} \iota \iota' \iota\right)$$

$$= \mu(\iota - \iota)$$

$$= 0.$$

Definition 3.2 (Varianz/Kovarianz-Matrix) Ist $\mathbf{X}_{(n\times 1)}$ ein Zufallsvektor, dann ist die so genannte Varianz/Kovarianz-Matrix von \mathbf{X} die $n\times n$ Matrix

$$VC(\mathbf{X}) = \left(VC(X)_{ij}\right)_{i=1}^n \quad {n \atop j=1},$$

wobei

$$VC(\mathbf{X}) = \begin{cases} Var(X_i) & : i = j \\ Cov(X_i, X_j) & : i \neq j \end{cases}$$

 $mit \ 1 \le i, j \le n.$

Bemerkung: Weil $Cov(X_i, X_j)$ = $Cov(X_j, X_i)$ ist, ist $VC(\mathbf{X})$ immer symmetrisch:

$$(\mathsf{VC}(\mathbf{X}))' = \mathsf{VC}(\mathbf{X})$$

Bemerkung: Ist **X** ein 1-dimensionaler Vektor, dann ist VC(X) die 1×1 Matrix Var(X).

Proposition 3.2

$$VC(\mathbf{X}) = \mathbb{E}\left((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - \mathbb{E}(\mathbf{X}))'\right).$$

Beweis. Sei $i, j \in \{1, ..., n\}$.

$$\begin{split} (\mathbb{E}(X - \mathbb{E}(X))(X - \mathbb{E}(X))')_{ij} &= \left(\mathbb{E}(X - \mathbb{E}(X))_i(X - \mathbb{E}(X))_j\right) \\ &= \left(\mathbb{E}(X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))\right) \\ &= \operatorname{Cov}(X_i, X_j) \\ &= (\operatorname{VC}(X))_{ij}. \end{split}$$

Beachte: Für i = j ist $Cov(X_i, X_j) = Var(X_i)$.

Proposition 3.3 Ist X ein *n*-dimensionaler Zufallsvektor, A eine $m \times n$ Matrix und $\mathbf{b} \in \mathbb{R}^m$, dann ist $VC(\mathbf{AX} + \mathbf{b}) = \mathbf{A}VC(\mathbf{X})\mathbf{A}'$

Beweis.

$$\begin{split} VC(\mathbf{AX} + \mathbf{b}) &= \mathbb{E}((\mathbf{AX} + \mathbf{b} - \mathbb{E}(\mathbf{AX} + \mathbf{b}))(\mathbf{AX} + \mathbf{b} - \mathbb{E}(\mathbf{AX} + \mathbf{b}))')) \\ &= \mathbb{E}((\mathbf{AX} + \mathbf{b} - (\mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b})(\mathbf{AX} + \mathbf{b} - (\mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b})')) \\ &= \mathbb{E}((\mathbf{AX} - \mathbf{A}\mathbb{E}(\mathbf{X}))(\mathbf{AX} - (\mathbf{A}\mathbb{E}(\mathbf{X}))')) \\ &= \mathbb{E}(\mathbf{A}(\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - (\mathbb{E}(\mathbf{X}))')\mathbf{A}') \\ &= \mathbf{A}\mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - (\mathbb{E}(\mathbf{X}))')\mathbf{A}') \\ &= \mathbf{A}\mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - (\mathbb{E}(\mathbf{X}))')\mathbf{A}' \\ &= \mathbf{A}\mathbb{V}C(\mathbf{X})\mathbf{A}'. \end{split}$$

Beispiel 3.4
$$X_1, \dots, X_n$$
 i.i.d., $\mathbb{E}(X_1) = \mu$, $\operatorname{Var}(X_1) = \sigma^2$. $\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$

$$\mathbb{E}(\mathbf{X}) = \begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix} = \mu \iota.$$

$$VC(\mathbf{X}) = \begin{pmatrix} \sigma^2 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & 0 & & \ddots & \\ & & & & \sigma^2 \end{pmatrix} = \sigma^2 \mathbf{I}_n$$

Betrachte \bar{X} , $\mathbf{X} - \iota \bar{X}$.

 $\begin{pmatrix} \bar{\mathbf{X}} \\ \mathbf{X} - \iota \bar{X} \end{pmatrix}$... ein (n+1)-dimensionaler Vektor.

$$\begin{pmatrix} \mathbb{E}\left(\bar{X}\right) \\ \mathbb{E}\left(\mathbf{X} - \iota \bar{X}\right) \end{pmatrix} = \begin{pmatrix} \mu \\ \mathbf{0} \end{pmatrix}.$$

Varianzkovarianzmatrix:

$$VC(\mathbf{Z}) = \mathbb{E}\left[\begin{pmatrix} \bar{X} - \mu \\ \mathbf{X} - \iota \bar{X} - \mathbf{0} \end{pmatrix} (\bar{X} - \mu \quad (\mathbf{X} - \iota \bar{X} - \mathbf{0}))'\right]$$

$$= \mathbb{E}\left[\begin{pmatrix} \bar{X} - \mu \\ \mathbf{X} - \iota \bar{X} \end{pmatrix} ((\bar{X} - \mu) \quad (\mathbf{X} - \iota \bar{X}))'\right]$$

$$= \mathbb{E}\left[\begin{pmatrix} (\bar{X} - \mu)(\bar{X} - \mu) & (\bar{X} - \mu)(\mathbf{X} - \iota \bar{X})' \\ (\mathbf{X} - \iota \bar{X})(\bar{X} - \mu) & (\mathbf{X} - \iota \bar{X})(\mathbf{X} - \iota \bar{X})' \end{pmatrix}\right]$$

$$= \begin{pmatrix} \mathbb{E}(\bar{X} - \mu)^2 & \mathbb{E}((\bar{X} - \mu)(\mathbf{X} - \iota \bar{X})') \\ \mathbb{E}(\mathbf{X} - \iota \bar{X})(\bar{X} - \mu) & \mathbb{E}((\mathbf{X} - \iota \bar{X})(\mathbf{X} - \iota \bar{X})') \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{Var}(\bar{X}) & \mathbb{E}((\bar{X} - \mu)(\mathbf{X} - \iota \bar{X})') \\ \mathbb{E}(\mathbf{X} - \iota \bar{X})(\bar{X} - \mu) & \mathbb{E}((\mathbf{X} - \iota \bar{X})(\mathbf{X} - \iota \bar{X})') \end{pmatrix}.$$

$$\mathbf{Var}(\bar{X}) = \frac{\sigma^2}{n}.$$

$$\mathbb{E}((\bar{X} - \mu)(\mathbf{X} - \iota \bar{X})') = ?$$

Zwei Zwischenschritte:

$$\begin{split} \bar{X} - \mu &= \left(\frac{1}{n}\iota'\mathbf{X}\right) - \left(\frac{1}{n}\iota'\mu\iota\right) \\ &= \left(\frac{1}{n}\iota'\mathbf{X}\right) - \left(\frac{1}{n}\iota'\mathbb{E}(\mathbf{X})\right) \\ &= \frac{1}{n}\iota'(\mathbf{X} - \mathbb{E}(\mathbf{X})), \end{split}$$

und

$$\mathbf{X} - \iota \bar{\mathbf{X}} = \mathbf{X} - \iota \frac{1}{n} \iota' \mathbf{X}$$

$$= \left(\mathbf{I}_n - \iota \frac{1}{n} \iota' \right) \mathbf{X}$$

$$= \left(\mathbf{I}_n - \iota \frac{1}{n} \iota' \right) (\mathbf{X} - \mathbb{E}(\mathbf{X})),$$

da

$$\begin{split} \left(\mathbf{I}_{n} - \iota \frac{1}{n} \iota'\right) \mathbb{E}(\mathbf{X}) &= \left(\mathbf{I}_{n} - \iota \frac{1}{n} \iota'\right) \mu \iota \\ &= \mu \left(\mathbf{I}_{n} \iota - \frac{1}{n} \iota \iota' \iota\right) \\ &= \mu \left(\iota - \frac{n}{n} \iota\right) \\ &= \mu \left(\iota - \iota\right) \\ &= \mathbf{0}. \end{split}$$

$$\mathbb{E}\left(\left(\bar{X}-\mu\right)\left(\mathbf{X}-\iota\bar{X}\right)'\right) = \mathbb{E}\left(\left(\frac{1}{n}\iota'(\mathbf{X}-\mathbb{E}(\mathbf{X}))\right)\left(\left(\mathbf{X}-\mathbb{E}(\mathbf{X})\right)'\left(\mathbf{I}_{n}-\iota\frac{1}{n}\iota'\right)\right)\right)$$

$$= \frac{1}{n}\iota'\mathbb{E}\left(\left((\mathbf{X}-\mathbb{E}(\mathbf{X}))\right)\left(\left(\mathbf{X}-\mathbb{E}(\mathbf{X})\right)'\right)\right)\left(\mathbf{I}_{n}-\iota\frac{1}{n}\iota'\right)$$

$$= \frac{1}{n}\iota'VC(\mathbf{X})\left(\mathbf{I}_{n}-\iota\frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\frac{1}{n}\iota'\left(\mathbf{I}_{n}-\iota\frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\frac{1}{n}\left(\iota'-\iota'\iota\frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\frac{1}{n}\left(\iota'-\iota'\iota\frac{1}{n}\iota'\right)$$

$$= 0.$$

$$\mathbb{E}\left(\left(\mathbf{X} - \iota \bar{\mathbf{X}}\right)\left(\mathbf{X} - \iota \bar{\mathbf{X}}\right)'\right) = VC(\mathbf{X} - \iota \bar{\mathbf{X}})$$

$$= VC(\mathbf{X} - \iota \frac{1}{n}\iota'\mathbf{X})$$

$$= VC\left(\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)\mathbf{X}\right)$$

$$= \left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)VC(\mathbf{X})\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)'$$

$$= \left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)\sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)'$$

$$= \sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right)'$$

$$= \sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota' - \iota \frac{1}{n}\iota' + \iota \frac{1}{n}\iota'\iota \frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota' - \iota \frac{1}{n}\iota' + \iota \frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota' - \iota \frac{1}{n}\iota' + \iota \frac{1}{n}\iota'\right)$$

$$= \sigma^{2}\left(\mathbf{I}_{n} - \iota \frac{1}{n}\iota'\right).$$

Also:

$$VC\begin{pmatrix} \bar{X} \\ \mathbf{X} - \iota \bar{X} \end{pmatrix} = \begin{pmatrix} \frac{\sigma^2}{n} & \mathbf{0}' \\ \mathbf{0}' & \sigma^2 \left(\mathbf{I}_n - \iota \frac{1}{n} \iota' \right) \end{pmatrix}.$$

Man sieht: \bar{X} und $X - \iota \bar{X}$ sind komponentenweise unkorreliert.

Bezeichnung: Für zwei Zufallsvektoren $\mathbf{X} \in \mathbb{R}^n$ und $\mathbf{Y} \in \mathbb{R}^m$ ist die $n \times m$ Matrix Cov(\mathbf{X}, \mathbf{Y}) definiert als Cov(\mathbf{X}, \mathbf{Y}) = $\mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{Y} - \mathbb{E}(\mathbf{Y}))')$.

Weiters ist die $m \times n$ Matrix Cov(\mathbf{Y} , \mathbf{X}) definiert als Cov(\mathbf{Y} , \mathbf{X}) = $\mathbb{E}((\mathbf{Y} - \mathbb{E}(\mathbf{Y}))(\mathbf{X} - \mathbb{E}(\mathbf{X}))')$.

Beachte: Cov(X, Y) = (Cov(Y, X))'

Bemerkung: Zwei Zufallsvektoren **X**, **Y** sind unabhängig, wenn für beliebige Funktionen f(x) und g(y) die Beziehung $\mathbb{E}(f(x)g(y)) = \mathbb{E}(f(x))\mathbb{E}(g(y))$ gilt.

Proposition 3.4 Sind X, Y unabhängige Zufallsvektoren, dann ist Cov(X, Y) = 0.

Beweis. Siehe Übung.

Proposition 3.5 Ist X ein Zufallsvektor mit $VC(X) = \Sigma$, dann gilt

$$\Sigma' = \Sigma$$
, (symetrisch)
 $\Sigma \ge 0$. (positiv semidefinit)

Beweis. Sei X ein *n*-dimensionaler Zufallsvektor.

$$\Sigma' = (VC(\mathbf{X}))'$$

$$= (\mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X})))(\mathbf{X} - \mathbb{E}(\mathbf{X})'))'$$

$$= \mathbb{E}((\mathbf{X} - \mathbb{E}(\mathbf{X}))(\mathbf{X} - \mathbb{E}(\mathbf{X}))')$$

$$= VC(\mathbf{X})$$

$$= \Sigma. \checkmark$$

 $\Sigma \ge 0 \dots$ d.h. für jeden Vektor $\alpha \in \mathbb{R}^n$ ist $\alpha' \Sigma \alpha \ge 0$. Sei also $\alpha \in \mathbb{R}^n \setminus \{0\}$. Betrachte die Zufallsvariable $\alpha' X$:

$$0 \le \operatorname{Var}(\alpha' \mathbf{X}) = \operatorname{VC}(\alpha' \mathbf{X})$$
$$= \alpha' \operatorname{VC}(\mathbf{X})\alpha$$
$$= \alpha' \Sigma \alpha. \checkmark$$

Bemerkung: Ist $\Sigma = VC(\mathbf{X}) > 0$, dann ist für jeden Vektor $\alpha \in \mathbb{R}^n$, $\alpha \neq \mathbf{0}$, die Varianz von $\alpha'\mathbf{X}$ positiv (und umgekehrt): Für $\alpha \in \mathbb{R}^n \setminus \{0\}$ ist $Var(\alpha'\mathbf{X}) = \alpha'\Sigma\alpha$.

Erinnerung: Sei **A** eine symmetrische Matrix $(n \times n)$. Seien $\lambda_1, \ldots, \lambda_n$ die Eigenwerte, und seien $\mathbf{u}_1, \ldots, \mathbf{u}_n$ die entsprechenden Eigenvektoren. Setze $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n)_{(n \times n)}$, sowie

$$\mathbf{\Omega} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}_{(n \times n)}.$$

Dann gilt: $\mathbf{A} = \mathbf{U}\mathbf{\Omega}\mathbf{U}'$.

Mit R-Beispiel vom 08.03.2021 (oder auch ganz allgemein) sieht man: Sind λ_i die Eigenwerte und \mathbf{u}_i die Eigenvektoren von $\mathbf{A}_{(n \times n)}$, dann gilt

$$\mathbf{A}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}, \quad 1 \leq i \leq n.$$

$$\equiv \mathbf{A}\underbrace{(\mathbf{u}_{1}, \dots, \mathbf{u}_{n})}_{\mathbf{U}} = (\lambda_{1}\mathbf{u}_{1}, \dots, \lambda_{n}\mathbf{u}_{n})$$

$$\equiv \mathbf{A}\mathbf{U} = \mathbf{U}\mathbf{\Omega}$$

$$\Rightarrow \mathbf{A}\underbrace{\mathbf{U}\mathbf{U}'}_{\mathbf{I}_{n}} = \mathbf{U}\mathbf{\Omega}\mathbf{U}'$$

Also: $A = U\Omega U'$.

Transformation in neues Koordinatensystem

$$\label{eq:AA} \boldsymbol{A}^2 = \boldsymbol{A}\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Omega}\boldsymbol{U}'\boldsymbol{U}\boldsymbol{\Omega}\boldsymbol{U}' = \boldsymbol{U}\boldsymbol{\Omega}^2\boldsymbol{U}'.$$

$$\mathbf{A}^{\frac{1}{2}} \coloneqq \mathbf{U} \mathbf{\Omega}^{\frac{1}{2}} \mathbf{U}'.$$

$$\operatorname{diag} \left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n} \right)$$

$$\mathbf{A}^{\frac{1}{2}}\mathbf{A}^{\frac{1}{2}} = \mathbf{U}\mathbf{\Omega}^{\frac{1}{2}}\mathbf{U}'\mathbf{U}\mathbf{\Omega}^{\frac{1}{2}}\mathbf{U}' = \mathbf{U}\mathbf{\Omega}^{\frac{1}{2}}\mathbf{\Omega}^{\frac{1}{2}}\mathbf{U}' = \mathbf{A}.$$

Ist **A** invertierbar, dann sind alle $\lambda_i \neq 0$, sodass $\Omega^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}\right)$ wohldefiniert ist. Dann ist aber $\mathbf{A}^{-1} = \mathbf{U}\Omega^{-1}\mathbf{U}'$, denn

$$\mathbf{A}\mathbf{U}\mathbf{\Omega}^{-1}\mathbf{U} = \mathbf{U}\mathbf{\Omega}\underbrace{\mathbf{U}'\mathbf{U}}_{\mathbf{I}_n}\mathbf{\Omega}^{-1}\mathbf{U}' = \mathbf{U}\mathbf{U}' = \mathbf{I}_n.$$

$$\mathbf{U}\mathbf{\Omega}^{-1}\mathbf{U}'\mathbf{A} = \dots = \mathbf{I}_n.$$

Weiters ist dann

$$\mathbf{A}^{-\frac{1}{2}} = \mathbf{U}\mathbf{\Omega}^{-\frac{1}{2}}\mathbf{U}'$$

$$\uparrow$$

$$\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_1}}, \dots, \frac{1}{\sqrt{\lambda_n}}\right)$$

ebenfalls wohldefiniert und erfüllt die Beziehung

$$\mathbf{A}^{-\frac{1}{2}}\mathbf{A}\mathbf{A}^{-\frac{1}{2}} = \mathbf{I}_n$$
 (Details: Übung.)

Bemerkung: Ist \mathbf{X} ein n-dimensionaler Zufallsvektor mit Mittelwert 0 und VC-Matrix $\Sigma > 0$, dann gilt für den Zufallsvektor $\mathbf{Y} = \Sigma^{-\frac{1}{2}} \mathbf{X}$ (n-dim.):

$$\mathbb{E}(\mathbf{Y}) = \mathbf{0}$$
$$VC(\mathbf{Y}) = \mathbf{I}_n.$$

Nachrechnen.

$$\mathbb{E}(\mathbf{Y}) = \mathbb{E}\left(\Sigma^{-\frac{1}{2}}\mathbf{X}\right) = \Sigma^{-\frac{1}{2}}\mathbb{E}(\mathbf{X}) = \Sigma^{-\frac{1}{2}} \cdot \mathbf{0} = \mathbf{0} \in \mathbb{R}^{n}.\checkmark$$

$$VC(\mathbf{Y}) = VC\left(\Sigma^{-\frac{1}{2}}\mathbf{X}\right)$$

$$= \Sigma^{-\frac{1}{2}}VC(\mathbf{X}) \left(\Sigma^{-\frac{1}{2}}\right)'$$
symmetrisch
$$= \Sigma^{-\frac{1}{2}}VC(\mathbf{X})\Sigma^{-\frac{1}{2}}$$

$$= \Sigma^{-\frac{1}{2}}\sum_{\Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}}\Sigma^{-\frac{1}{2}}$$

$$= \Sigma^{-\frac{1}{2}}\sum_{I_{n}}\Sigma^{\frac{1}{2}}\Sigma^{-\frac{1}{2}}$$

$$= \mathbf{I}_{n}.\checkmark$$

Bemerkung: Ist **Y** ein Zufallsvektor der Dimension n mit $\mathbb{E}(\mathbf{Y}) = 0$ und $VC(\mathbf{Y}) = \mathbf{I}_n$. Sei weiters $\Sigma_{(n \times n)}$, sodass $\Sigma' = \Sigma$ und $\Sigma \ge 0$. Für $\mathbf{X} = \Sigma^{\frac{1}{2}} \mathbf{Y}$ gilt dann:

$$\mathbb{E}(\mathbf{X}) = \mathbf{0}$$

und

$$VC(\mathbf{X}) = \Sigma$$
.

Nachrechnen.

$$\mathbb{E}(\mathbf{X}) = \mathbb{E}(\mathbf{\Sigma}^{\frac{1}{2}}\mathbf{Y}) = \mathbf{\Sigma}^{\frac{1}{2}}\mathbb{E}(\mathbf{Y}) = \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{0} = \mathbf{0} \in \mathbb{R}^{n}.\checkmark$$

$$VC(\mathbf{X}) = VC(\mathbf{\Sigma}^{\frac{1}{2}}\mathbf{Y}) = \mathbf{\Sigma}^{\frac{1}{2}}VC(\mathbf{Y})\mathbf{\Sigma}^{\frac{1}{2}} = \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{I}_{n}\mathbf{\Sigma}^{\frac{1}{2}} = \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{\Sigma}^{\frac{1}{2}} = \mathbf{\Sigma}.\checkmark$$

Die Multivariate Normalverteilung

Definition 3.3 Sei **A** eine $n \times k$ Matrix und **b** ein n-dim. Vektor.

Seien weiters Z_1, \dots, Z_k iid. N(0,1)-verteilte reellwertige Zufallsvariablen.

Setze $\mathbf{Z} = (Z_1, \dots, Z_k)'$ und $\mathbf{X} = \mathbf{A} \cdot \mathbf{Z} + \mathbf{b}$ ein n- dim. Zufallsvektor.

Die Verteilung von X nennt man die (multivariate) Normalverteilung mit Mittelwert b und VC Matrix AA'.

Kurz:

$$\mathbf{X} \sim N(\mathbf{b}, \mathbf{A}\mathbf{A}')$$
.

Nomination:

$$\begin{array}{ccc} \text{univariat} & \text{multivariat} \\ \sigma^2 & \Sigma \\ \mu & \mu \text{ (Vektor)} \end{array}$$

Proposition 3.6 Für $X \sim N(\mu, \Sigma)$ gilt:

$$\mathbb{E}(\mathbf{X}) = \mu$$
,

$$VC(\mathbf{X}) = \Sigma$$
.

Beweis. Sei $\mu \in \mathbb{R}^n$ und $\Sigma_{(n \times n)}$.

Wähle **Z** = $(Z_1,...,Z_n)'$, sodass $Z_1,...,Z_n$ i.i.d. N(0,1).

Weiters sei $\Sigma^{\frac{1}{2}}$ die "Wurzel" von Σ .

Betrachte $\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu$.

Laut Definition ist

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu \sim N\left(\mu, \Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}'}\right) \equiv N\left(\mu, \Sigma\right).$$

Damit gilt:

$$\mathbb{E}(\mathbf{X}) = \mathbb{E}\left(\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu\right)$$

$$= \Sigma^{\frac{1}{2}}\underbrace{\mathbb{E}(Z)}_{\mathbf{0} \in \mathbb{R}^n} + \mu$$

$$= \mu.$$

$$VC(\mathbf{X}) = VC\left(\Sigma^{\frac{1}{2}}\mathbf{Z} + \boldsymbol{\mu}\right)$$

$$= \Sigma^{\frac{1}{2}}VC(\mathbf{Z})\left(\Sigma^{\frac{1}{2}}\right)'$$

$$= \Sigma^{\frac{1}{2}}\mathbf{I}_{n}\Sigma^{\frac{1}{2}}$$

$$= \Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}$$

$$= \Sigma.$$

Proposition 3.7 (Reproduktionseigenschaft) Ist X ein n-dim. Zufallsvektor mit $X \sim N(\mu, \Sigma)$, ist A eine $m \times n$ Matrix und b ein m-dim. Vektor, dann ist

$$\mathbf{AX} + \mathbf{b} \sim N(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}').$$

Beweis. Sei $\mathbb{Z} = (Z_1, ..., Z_n)' \in \mathbb{R}^n$ mit $Z_1, ..., Z_n$ iid. N(0,1). Dann gilt:

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu \sim N(\mu, \Sigma).$$

Also:

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu \sim \mathbf{X}.$$

$$\Rightarrow \mathbf{A}\mathbf{X} + \mathbf{b} \sim \mathbf{A}\left(\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu\right) + \mathbf{b}$$

$$= \mathbf{A}\Sigma^{\frac{1}{2}}\mathbf{Z} + \mathbf{A}\mu + \mathbf{b}$$

$$= \left(\mathbf{A}\Sigma^{\frac{1}{2}}\right)\mathbf{Z} + (\mathbf{A}\mu + \mathbf{b}).$$

Laut Definition ist die Verteilung von $(\mathbf{A}\Sigma^{\frac{1}{2}})\mathbf{Z} + (\mathbf{A}\mu + \mathbf{b})$ gegeben durch

$$N\left(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \left(\mathbf{A}\boldsymbol{\Sigma}^{\frac{1}{2}}\right)\left(\mathbf{A}\boldsymbol{\Sigma}^{\frac{1}{2}}\right)'\right) = N\left(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}^{\frac{1}{2}}\left(\boldsymbol{\Sigma}^{\frac{1}{2}}\right)'\mathbf{A}'\right)$$
$$= N\left(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'\right)$$
$$= N\left(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'\right).$$

Also:

$$\mathbf{AX} + \mathbf{b} \sim \mathbf{A} \Sigma^{\frac{1}{2}} \mathbf{Z} + \mathbf{A} \mu + \mathbf{b}$$
$$\sim N \left(\mathbf{A} \mu + \mathbf{b}, \mathbf{A} \Sigma \mathbf{A}' \right).$$

Bemerkung:

Die $N(\mu, \Sigma)$ -Verteilung kann degeneriert sein, nämlich genau dann, wenn Σ nicht vollen Rang hat $(N(\mu, \mathbf{0}) \equiv \mu$ ist ein degenerierter Fall).

Siehe die folgenden Beispiele.

Beispiel 3.5 ($\mathbf{Z} \sim N(\mathbf{0}, \mathbf{1})$, $\mathbf{A} = \mathbf{0}$, $\mathbf{b} \in \mathbb{R}$.) Laut Definition ist

$$X = A_{(1\times1)}Z_{(1\times1)} + b_{(1\times1)} \sim N(b, AA') = N(b, 0).$$

$$X = AZ + b = 0 \cdot Z + b = b.$$

Also: $N(\mathbf{b}, \mathbf{0}) \equiv \mathbf{b}$.

Beispiel 3.6 Seien $X_1,...,X_n$ reellwertige Zufallsvariablen, i.i.d. mit $X_i \sim N\left(\mu,\sigma^2\right),\,\sigma^2>0.$

Setze $\mathbf{X} = (X_1, \dots, X_n)'$.

Beachte:

$$\mathbb{E}(\mathbf{X}) = \begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix} = \mu \iota.$$

$$VC(\mathbf{X}) = \begin{pmatrix} \sigma^2 & 0 \\ & \ddots & \\ 0 & \sigma^2 \end{pmatrix} = \sigma^2 \mathbf{I}_n.$$

Sei $\mathbf{Z} = (Z_1, \dots, Z_n)$ mit Z_i iid. N(0,1). Betrachte

$$\sigma \mathbf{Z} + \mu \iota = \sigma \mathbf{I}_n \mathbf{Z} + \mu \iota$$

$$\sim N \left(\mu \iota, \sigma \mathbf{I}_n \left(\sigma \mathbf{I}_n \right)' \right) \text{ (aus Def.)}$$

$$\equiv N \left(\mu \iota, \sigma^2 \mathbf{I}_n \right).$$

Weiters gilt: $(\sigma \mathbf{Z} + \mu \mathbf{u})_i = \sigma Z_i + \mu \sim N(\mu, \sigma^2) \sim X_i$, und $(\sigma \mathbf{Z} + \mu \mathbf{u})_i$, $1 \le i \le n$, sind unabhängig, und X_i , $1 \le i \le n$, sind unabhängig.

Damit ist $\mathbf{X} \sim \sigma \mathbf{Z} + \mu \iota \sim N(\mu \iota, \sigma^2 \mathbf{I}_n)$.

Also ist $\mathbf{X} \sim N\left(\mu \iota, \sigma^2 \mathbf{I}_n\right)$.

Zerlege **X** in **X** = $\iota \bar{X} + (\mathbf{X} - \iota \bar{X})$.

Wissen:

$$\iota \overline{X} = \iota \frac{1}{n} \iota' \mathbf{X}$$

$$\sim N \left(\iota \frac{1}{n} \iota' \mu \iota, \left(\iota \frac{1}{n} \iota' \right) \sigma^2 \mathbf{I}_n \left(\iota \frac{1}{n} \iota' \right)' \right) \text{ (aufgrund der Reprod. Eigenschaft)}$$

$$= N \left(\mu \iota \frac{1}{n} \iota' \iota, \sigma^2 \iota \frac{1}{n} \iota' \iota \frac{1}{n} \iota' \right)$$

$$= N \left(\mu \iota, \frac{\sigma^2}{n} \iota \iota' \right),$$

eine Normalverteilung die auf eine Gerade $[\iota]$ konzentriert ist. Analog sieht man: $\mathbf{X} - \bar{X}\iota$... eine Normalverteilung in $[\iota]^{\perp}$. Wissen:

$$\mathbb{E}\left(\mathbf{X} - \bar{X}\iota \in \mathbb{R}^n\right)$$

$$VC\left(\mathbf{X} - \bar{X}\iota\right) = \sigma^2\left(\mathbf{I}_n - \iota \frac{1}{n}\iota'\right).$$

Nun ist $\mathbf{X} - \bar{X}\iota = \mathbf{X} - \iota \frac{1}{n}\iota'\mathbf{X} = \left(\mathbf{I}_n - \iota \frac{1}{n}\iota'\right)\mathbf{X}$, sodass

$$\mathbf{X} - \iota \bar{X} \sim N\left(\mathbf{0}, \sigma^2\left(\mathbf{I}_n - \iota \frac{1}{n}\iota'\right)\right)...$$
 eine Normalverteilung in $[\iota]^{\perp}$.

Proposition 3.8 Betrachte einen m+n-dimensionalen Zufallsvektor $\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$, wobei $\mathbf{X} \in \mathbb{R}^m$ und $\mathbf{Y} \in \mathbb{R}^n$, sodass

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$

Ist Cov(X, Y) = 0, dann sind X und Y unabhängig.

Erinnerung: Zufallsvektoren X, Y sind unabhängig, wenn für jede reellwertige Funktion f(x) und für jede reellwertige Funktion g(y) die Beziehung $\mathbb{E}(f(x)g(y)) = \mathbb{E}(f(x))\mathbb{E}(g(y))$ gilt.

Beweis. Partitioniere $\mu = \mathbb{E}\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$ mit m + n Zeilen und m + n Spalten, sodass $\mathbb{E}(\mathbf{X}) = \mu_X$, $\mathbb{E}(\mathbf{Y}) = \mu_Y$, sowie

$$\Sigma_{((m+n)\times(m+n))} = \begin{pmatrix} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{pmatrix}$$

, sodass $VC(\mathbf{X}) = \Sigma_X$, $VC(\mathbf{Y}) = \Sigma_Y$ und $Cov(\mathbf{X}, \mathbf{Y}) = \Sigma_{XY}$.

Laut Voraussetzung ist $\Sigma_{XY} = \mathbf{0} \ (m \times n) \ \text{und} \ \Sigma_{YX} = \mathbf{0} \ (n \times m)$. Seien $Z_1, \dots, Z_{(m+n)}$ i.i.d N(0,1)

und
$$\mathbf{Z} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_{(m+n)} \end{pmatrix}$$
.

Partitioniere $\mathbf{Z} = \begin{pmatrix} \mathbf{Z}_X \\ \mathbf{Z}_Y \end{pmatrix}$ mit m + n Zeilen.

$$oldsymbol{\Sigma}^{rac{1}{2}} = egin{pmatrix} oldsymbol{\Sigma}_X & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Sigma}_Y \end{pmatrix}^{rac{1}{2}} & egin{pmatrix} oldsymbol{\Sigma}_X^{rac{1}{2}} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Sigma}_Y^{rac{1}{2}} \end{pmatrix}$$

Nachrechnen von \times :

$$\begin{pmatrix} \boldsymbol{\Sigma}_{X}^{\frac{1}{2}} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{Y}^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_{X}^{\frac{1}{2}} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{Y}^{\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Sigma}_{X} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{Y} \end{pmatrix}. \checkmark$$

Betrachte den Zufallsvektor

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \boldsymbol{\mu} \sim N\left(\boldsymbol{\mu}, \Sigma^{\frac{1}{2}}\Sigma^{\frac{1}{2}}\right)$$

$$= N\left(\boldsymbol{\mu}, \Sigma\right)$$

$$\sim \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}.$$

Beachte:

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \boldsymbol{\mu} = \begin{pmatrix} \Sigma_X^{\frac{1}{2}} & \mathbf{0} \\ \mathbf{0} & \Sigma_Y^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \mathbf{Z}_X \\ \mathbf{Z}_Y \end{pmatrix} + \begin{pmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\mu}_Y \end{pmatrix}$$
$$= \begin{pmatrix} \Sigma_X^{\frac{1}{2}}\mathbf{Z}_X + \boldsymbol{\mu}_X \\ \Sigma_Y^{\frac{1}{2}}\mathbf{Z}_Y + \boldsymbol{\mu}_Y \end{pmatrix} \sim \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}.$$

Nun sind \mathbf{Z}_X , \mathbf{Z}_Y unabhängig.

$$\Rightarrow \Sigma_X^{\frac{1}{2}} \mathbf{Z}_X + \mu_X, \ \Sigma_Y^{\frac{1}{2}} \mathbf{Z}_Y + \mu_Y \text{ unabhängig.}$$

 \Rightarrow X, Y unabhängig.

Zu zeigen: X,Y unabhängig.

Sei: f(x) eine reellwertige Funtion von X und g(y) eine reellwertige Funktion von Y. Zu zeigen: $\mathbb{E}(f(x)g(y)) = \mathbb{E}(f(x))E(g(y))$.

$$\mathbb{E}(f(x)g(y)) = \mathbb{E}\left(f\left(\Sigma_X^{\frac{1}{2}}\mathbf{Z}_X + \boldsymbol{\mu}_X\right)g\left(\Sigma_Y^{\frac{1}{2}}\mathbf{Z}_Y + \boldsymbol{\mu}_Y\right)\right)$$

$$= \mathbb{E}\left(f\left(\Sigma_X^{\frac{1}{2}}\mathbf{Z}_X + \boldsymbol{\mu}_X\right)\right)\mathbb{E}\left(g\left(\Sigma_Y^{\frac{1}{2}}\mathbf{Z}_Y + \boldsymbol{\mu}_Y\right)\right)$$

$$= \mathbb{E}(f(x))\mathbb{E}(g(y)).$$

Beispiel 3.7 X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2), \mu \in \mathbb{R}, 0 < \sigma^2 < \infty$. Setze $\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu \iota, \sigma^2 \mathbf{I}_n)$.

Wissen:

$$\begin{pmatrix} \bar{X} \\ \mathbf{X} - \iota \bar{X} \end{pmatrix}$$
... eine lineare Funktion von \mathbf{X}

$$= \begin{pmatrix} \frac{1}{n}\iota' \\ \mathbf{I}_n - \iota \frac{1}{n}\iota' \end{pmatrix} \mathbf{X} \sim \text{Normal verteilung.}$$

Siehe Beispiel ?? und 3.4.

 $\Rightarrow \bar{X}$, $\mathbf{X} - \iota \bar{X}$ sind unabhängig!

$$\Rightarrow \bar{X}, \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = ||\mathbf{X} - \iota \bar{X}||^2 \text{ sind unabhängig!}$$

Erinnerung: Für $Z_1, ..., Z_n$ i.i.d. N(0,1), ist

$$\sum_{i=1}^n Z_i^2 \sim \chi_k^2.$$

Lemma 3.1 Ist $P_{(n \times n)}$ die Matrix einer Orthogonalprojektion, dann gilt: $P^2 = P$ und P = P'.

Beweis. Für $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^n$ ist

$$\mathbf{X} = \mathbf{PX} + (\mathbf{I}_n - \mathbf{P})\mathbf{X}$$
 (orthogonale Zerlegung).
 $\mathbf{Y} = \mathbf{PY} + (\mathbf{I}_n - \mathbf{P})\mathbf{Y}$ (orthogonale Zerlegung).
 $\mathbf{X'PY} = (\mathbf{X})'\mathbf{PY}$
 $= (\mathbf{PX} + (\mathbf{I}_n - \mathbf{P})\mathbf{X})'\mathbf{PY}$
 $= (\mathbf{X'P'} + \mathbf{X'}(\mathbf{I}_n - \mathbf{P})')\mathbf{PY}$
 $= \mathbf{X'P'PY} + \mathbf{X'}(\mathbf{I}_n - \mathbf{P})'\mathbf{PY}$
 $= ((\mathbf{I}_n - \mathbf{P})\mathbf{X})'\mathbf{PY}$
 $= ((\mathbf{I}_n - \mathbf{P})\mathbf{X})'\mathbf{PY}$

= X'P'PY.

$$\mathbf{X'P'Y} = (\mathbf{PX})'\mathbf{Y}$$

$$= (\mathbf{PX})'(\mathbf{PY} + (\mathbf{I}_n - \mathbf{P})\mathbf{Y})$$

$$= (\mathbf{X'P'}(\mathbf{PY} + (\mathbf{I}_n - \mathbf{P})\mathbf{Y})$$

$$= \mathbf{X'P'}\mathbf{PY} + \underbrace{\mathbf{X'P'}(\mathbf{I}_n - \mathbf{P})\mathbf{Y}}_{=(\mathbf{PX})'(\mathbf{I}_n - \mathbf{P})\mathbf{Y}}$$

$$= \mathbf{X'P'}\mathbf{PY}.$$

 \Rightarrow X'PY = X'P'Y.

Da dies für beliebige $X, Y \in \mathbb{R}^n$ gilt, folgt P = P'.

Weiters ist X'PY = X'P'PY

$$\Rightarrow \mathbf{P} = \mathbf{P'P} = \mathbf{PP} = \mathbf{P}^2.$$

$$\uparrow \\ \mathbf{P'} = \mathbf{P}$$

Es gilt auch die Umkehrung: Ist $P_{(n \times n)}$ mit $P^2 = P$ und P = P', dann ist P die Matrix einer Orthogonalprojektion (ohne Beweis).

Korollar 3.1 Ist $\mathbf{P}_{(n \times n)}$ die Matrix einer Orthogonalprojektion auf einen kdimensionalen Teilraum $(0 \le k \le n)$, dann sind genau k Eigenwerte von \mathbf{P} gleich 1 und der Rest ist 0.

Beweis. Spektralzerlegung $\mathbf{P} = \mathbf{U}\Omega\mathbf{U}'$ (U orthogonal : $\mathbf{U}'\mathbf{U} = \mathbf{U}\mathbf{U}' = \mathbf{I}_n$, $\Omega = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$). $\mathbf{P}^2 = \mathbf{P}$, d.h.

$$\begin{split} \mathbf{U}\Omega\mathbf{U}'\mathbf{U}\Omega\mathbf{U}' &= \mathbf{U}\Omega\mathbf{U}'\\ \Leftrightarrow & \mathbf{U}\Omega^2\mathbf{U}' &= \mathbf{U}\Omega\mathbf{U}'\\ \Leftrightarrow & \mathbf{U}\Omega^2 &= \mathbf{U}\Omega\\ \Leftrightarrow & \Omega^2 &= \Omega. \end{split}$$

D.h. für i = 1,...,n ist $\lambda_i^2 = \lambda_i$, also $\lambda_i = 0$ oder $\lambda_i = 1$. Weiters ist

$$rang(\mathbf{P}) = k$$

$$= rang(\mathbf{U}\Omega\mathbf{U}')$$

$$= rang(\Omega)$$

$$= \#\{i : 1 \le i \le n, \lambda_i = 1\}.$$

Also sind genau k Eigenwerte gleich 1 und n - k Eigenwerte sind 0.

Proposition 3.9 Ist $P_{(n \times n)}$ die Matrix einer Orthogonalprojektion auf einen k-dimensionalen Teilraum $(1 \le k \le n)$, und ist $\mathbb{Z} \sim N(0,1)$. Dann gilt

$$\mathbf{Z}'\mathbf{PZ} \sim \chi_k^2$$

Beweis.
$$\mathbf{Z'PZ} = \mathbf{Z'U\Omega U'Z}$$
.
Nun ist $\mathbf{U'Z} \sim N(\underbrace{\mathbf{U'0}}_{=0}, \underbrace{\mathbf{U'I}}_{=\mathbf{U}'\mathbf{U}}) \equiv N(0, \mathbf{I}_n)$.

Insbesondere ist $\mathbf{Z} \sim \mathbf{U}'\mathbf{Z}$. Für $\mathbf{\Omega} = \mathrm{diag}(\underbrace{1, \dots, 1, 0, \dots, 0})$ ist damit

$$\mathbf{Z'PZ} = \mathbf{Z'U\Omega U'Z}$$

$$= (\mathbf{U'Z})'\Omega(\mathbf{U'Z})$$

$$\sim \mathbf{Z'\Omega Z}$$

$$= \sum_{i=1}^{k} Z_i^2$$

$$\sim \chi_k^2.$$

Beispiel 3.8 Seien
$$X_1, ..., X_n$$
 i.i.d. $N(\mu, \sigma^2)$, sodass $\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim N(\mu^2.\sigma^2 \mathbf{I}_n)$.

 $\mathbf{X} - \iota \bar{X} = \underbrace{\left(\mathbf{I}_n - \iota \frac{1}{n} \iota'\right)}_{:-\mathbf{P}} \mathbf{X} \dots \text{ Orthogonal projektion von } \mathbf{X} \text{ auf } [\iota]^{\perp}, \text{ ein } (n-1). \text{ dimensional er}$

Teilraum.

Prüfe Eigenschaften:

$$\mathbf{P}^{2} = \left(\mathbf{I}_{n} - \iota \frac{1}{n} \iota'\right) \left(\mathbf{I}_{n} - \iota \frac{1}{n} \iota'\right)$$

$$= \mathbf{I}_{n} - \iota \frac{1}{n} \iota' - \iota \frac{1}{n} \iota' + \iota \frac{1}{n} \iota' \iota \frac{1}{n} \iota'$$

$$= \mathbf{I}_{n} - \iota \frac{1}{n} \iota' - \iota \frac{1}{n} \iota' + \iota \frac{1}{n} \iota'$$

$$= \mathbf{I}_{n} - \iota \frac{1}{n} \iota'$$

$$= \mathbf{P}. \checkmark$$

$$\mathbf{P}' = \left(\mathbf{I}_n - \iota \frac{1}{n} \iota'\right)' = \mathbf{I}_n - \iota \frac{1}{n} \iota' = \mathbf{P}. \checkmark$$
Beachte: dim ([\ell 1]^\perp) = n - 1.

? Verteilung von $\|\mathbf{X} - \iota \bar{X}\|^2$?

(Beachte:
$$\hat{\sigma}_n^2 = \frac{1}{n-1} ||\mathbf{X} - \iota \bar{X}||^2$$
).
Wissen: $\mathbf{X} - \iota \bar{X} \sim N\left(0, \sigma^2\left(\mathbf{I}_n - \iota \frac{1}{n}\iota'\right)\right)$.

Für
$$\mathbf{Z} \sim N(0, \mathbf{I}_n)$$
 ist
$$\sigma\left(\underline{\mathbf{I}_n - \iota \frac{1}{n} \iota'}\right) \mathbf{Z} \sim N(0, \sigma \mathbf{P} \mathbf{I}_n \mathbf{P}' \sigma)$$

$$= \sigma^2 \mathbf{P} \mathbf{P}'$$

$$= \sigma^2 \mathbf{P} \mathbf{P}$$

$$= N(0, \sigma^2 \mathbf{P})$$

$$\sim \mathbf{X} - \iota \bar{\mathbf{X}}.$$

$$\|\mathbf{X} - \iota \bar{\mathbf{X}}\|^2 \sim \|\sigma\left(\underline{\mathbf{I}_n - \iota \frac{1}{n} \iota'}\right) \mathbf{Z}\|^2$$

$$= (\sigma \mathbf{P} \mathbf{Z})'(\sigma \mathbf{P} \mathbf{Z})$$

$$= \sigma^2 \mathbf{Z}' \mathbf{P}' \mathbf{P} \mathbf{Z}$$

$$= \sigma^2 \mathbf{Z}' \mathbf{P} \mathbf{Z}$$

$$\sim \sigma^2 \chi_{n-1}^2.$$

Proposition 3.10 Für $X_1,...,X_n$ i.i.d. $N(\mu,\sigma^2)$ ist

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \frac{\sigma^2}{n-1} \chi_{n-1}^2$$

Proposition

und

$$\frac{\sqrt{n}}{\hat{\sigma}_n}(\bar{X}-\mu)\sim t_{n-1}.$$

Beweis. Erinnerung: Für Zufallsvariablen A,B, die unabhängig voneinander sind und so, dass $A \sim N(0,1)$ und $B \sim \chi_k^2$ ist.

$$\frac{A}{\sqrt{\frac{B}{n}}} \sim t_k$$

$$\frac{\sqrt{n}}{\hat{\sigma}_n}(\bar{X}-\mu) = \frac{\frac{\sqrt{n}}{\sigma}(\bar{X}-\mu)}{\frac{\hat{\sigma}_n}{\sigma}}$$

$$\frac{\sqrt{n}}{\sigma}(\bar{X}-\mu)\sim N(0,1).$$

$$\frac{\hat{\sigma}_n}{\sigma} = \sqrt{\frac{\hat{\sigma}_n^2}{\sigma^2}}$$

$$= \sqrt{\frac{1}{\sigma^2} \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\sim \sqrt{\frac{1}{\sigma^2} \frac{1}{n-1} \sigma^2 \chi_{n-1}^2}$$

$$\sim \sqrt{\frac{\chi_{n-1}^2}{n-1}}.$$

Zähler ist eine Funktion von \bar{X} und Nenner ist eine Funktion von $X - \iota \bar{X}$ \Rightarrow Zähler und Nenner sind unabhängig. Also ist

$$\frac{\frac{\sqrt{n}}{\sigma}(\bar{X}-\mu)}{\frac{\hat{\sigma}_n}{\sigma}} \sim t_{n-1}.$$

3.3 Der Multivariate Zentrale Grenzwertsatz

Satz 3.1 Sind \mathbf{X}_i , $i \ge 1$, k-dimensionale Zufallsvektoren, die i.i.d. sind mit $\mathbb{E}(\mathbf{X}_i) = \mu_{(n \times 1)}$, $\mathrm{VC}(\mathbf{X}_i) = \Sigma_{(n \times n)}$. Damit gilt für $\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$, dass

$$\sqrt{n}(\bar{\mathbf{X}}_n - \boldsymbol{\mu}) \xrightarrow{w} N(0, \boldsymbol{\Sigma})$$

3.4 Normalverteilungen - stetig und singulär (degeneriert)

Betrachte $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \boldsymbol{\mu} \in \mathbb{R}^n$, $\Sigma_{(n \times n)}$. Es gilt rang $(\Sigma) \in \{0, 1, 2, ..., n\}$.

Proposition 3.11 Ist rang(Σ) = n, dann besitzt **X** eine Dichte, die gegeben ist durch

$$\Phi_{\mu,\Sigma}(\mathbf{x}) = (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)}$$

$$f \ddot{\mathbf{u}} \mathbf{r} \mathbf{x} = (x_1, \dots, x_n)' \in \mathbb{R}^n.$$

Beweis. Betrachte Spektralzerlegung (Eigenwertzerlegung) von $\Sigma = \mathbf{U}\mathbf{\Omega}\mathbf{U}'$, wobei $\mathbf{\Omega} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$, wobei alle $\lambda_i > 0$ sind.

$$\Sigma^{\frac{1}{2}} = \mathbf{U}\Omega^{\frac{1}{2}}\mathbf{U}' \text{ mit } \Omega^{\frac{1}{2}} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\right),$$

$$\Sigma^{-\frac{1}{2}} = \mathbf{U}\Omega^{\frac{1}{2}}\mathbf{U}' \text{ mit } \Omega^{-\frac{1}{2}} = \operatorname{diag}\left(\frac{1}{\sqrt{\lambda_1}}, \dots, \frac{1}{\sqrt{\lambda_n}}\right),$$

$$\Sigma^{-1} = \mathbf{U}\Omega^{\frac{1}{2}}\mathbf{U}' \text{ mit } \Omega^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}\right).$$

Seien Z_1, \ldots, Z_n i.i.d. N(0,1) und $\mathbf{Z} = (Z_1, \ldots, Z_n)'$. Dann ist

$$\Sigma^{\frac{1}{2}}\mathbf{Z} + \mu \sim N(\mu, \Sigma)$$
$$\sim \mathbf{X}.$$

Für $\mathbf{B} \in \mathbb{R}^n$ ist

$$\mathbb{P}(x \in \mathbf{B}) = \mathbb{P}\left(\Sigma^{\frac{1}{2}}\mathbf{Z} + \boldsymbol{\mu} \in \mathbf{B}\right)$$

$$= \int \dots \int \Phi(Z_1) \cdot \dots \cdot \Phi(Z_n) \cdot dz_1 \cdots dz_n$$

$$\mathbf{Z} = (Z_1, \dots, Z_n)': \qquad = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Z_1^2}{2}\right) \cdots \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Z_n^2}{2}\right)$$

$$= (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{Z_1^2}{2} - \frac{Z_2^2}{2} - \dots - \frac{Z_n^2}{2}\right)$$

$$= (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\sum_{i=1}^n Z_i^2\right)$$

$$= (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\mathbf{Z}'\mathbf{Z}\right)$$

$$= \int \dots \int (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}\mathbf{Z}'\mathbf{Z}\right) \cdot dz_1 \cdots dz_n = \circledast.$$

$$\mathbf{Z} = (Z_1, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le i \le n} \mathbf{Z} = (Z_n, \dots, Z_n)': \sum_{1 \le n} \mathbf{$$

$$\mathbf{X} := \Sigma^{\frac{1}{2}} \mathbf{Z} + \boldsymbol{\mu}.$$

$$\mathbf{Z} = \Sigma^{-\frac{1}{2}} (\mathbf{X} - \boldsymbol{\mu}).$$

$$dz_1, \dots, dz_n = |\det \Sigma|^{-\frac{1}{2}}.$$

$$\begin{aligned}
& \otimes = \int_{\mathbf{X}=(X_1,\dots,X_n)': \\ \mathbf{x} \in \mathbf{B}} \dots \int (2\pi)^{-\frac{n}{2}} \exp\left(-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-\frac{1}{2}} \Sigma^{-\frac{1}{2}}(\mathbf{X} - \boldsymbol{\mu})\right) |\det \Sigma|^{-\frac{1}{2}} \cdot dx_1 \cdots dx_n \\
& = \int_{\mathbf{X}=(X_1,\dots,X_n)': \\ \mathbf{x} \in \mathbf{B}} \dots \int \underbrace{(2\pi)^{-\frac{n}{2}} |\det \Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu})\right) \cdot dx_1 \cdots dx_n}_{\text{in dies ist also die Dichte von} \mathbf{X}}
\end{aligned}$$

$$\underbrace{ \frac{(2\pi)^{-\frac{n}{2}} |\det \Sigma|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu})\right) \cdot dx_1 \cdots dx_n}_{\text{in dies ist also die Dichte von} \mathbf{X}}$$

Proposition 3.12 Ist $k = \text{rang}(\Sigma)$ so, dass 0 < k < n, dann lässt sich **X** schreiben als

$$X = BW + \mu$$
,

wobei **B** eine $m \times k$ Matrix mit orthogonalen ($\mathbf{B}'\mathbf{B} = \mathbf{I}_k$) Spalten ist und wobei **W** ein k-dimensionaler Zufallsvektor ist mit

$$\mathbf{W} \sim N(0, \mathbf{D})$$
.

mit **D** = diag
$$(d_1, ..., d_k) > 0$$
.

Beweis. Wieder $\Sigma = \mathbf{U}\Omega\mathbf{U}'$. Laut Voraussetzung $(k = \operatorname{rang}(\Sigma) < n)$ kann man Ω schreiben als $\Omega = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_k}_{k \text{ Komponente}}, \underbrace{0, \dots, 0}_{n \text{ Komponente}})$.

Mit anderen Worten:

$$\mathbf{\Omega} = \begin{pmatrix} \lambda_1 & & & & \mathbf{0} \\ & \ddots & & & & \\ & & \lambda_k & & & \\ & & & 0 & & \\ \mathbf{0} & & & \ddots & \\ & & & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{\Omega}_1 & \mathbf{0}_{k,n-k} \\ \mathbf{0}_{n-k,k} & \mathbf{0}_{n-k,n-k} \end{pmatrix},$$

wobei $\Omega_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$.

Partitioniere $\mathbf{U} = (\mathbf{U}_1, \mathbf{U}_2)$.

$$\begin{split} \mathbf{X} - \boldsymbol{\mu} &= \mathbf{U}\mathbf{U}'(\mathbf{X} - \boldsymbol{\mu}) \\ &= (\mathbf{U}_1\mathbf{U}_1' + \mathbf{U}_2\mathbf{U}_2')(\mathbf{X} - \boldsymbol{\mu}) \\ &= \mathbf{U}_1\mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu}) + \mathbf{U}_2\mathbf{U}_2'(\mathbf{X} - \boldsymbol{\mu}). \\ \mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu}) \sim N(\mathbf{0}, \mathbf{U}_1'\boldsymbol{\Sigma}\mathbf{U}_1). \\ \mathbf{U}_1'\boldsymbol{\Sigma}\mathbf{U}_1 &= \mathbf{U}_1'\mathbf{U}\boldsymbol{\Omega}\mathbf{U}'\mathbf{U}_1 \\ &= \mathbf{U}_1'\left(\mathbf{U}_1 \quad \mathbf{U}_2\right)\boldsymbol{\Omega}\begin{pmatrix}\mathbf{U}_1'\\\mathbf{U}_2'\end{pmatrix}\mathbf{U}_1 \\ &= \left(\mathbf{U}_1'\mathbf{U}_1 \quad \mathbf{U}_1'\mathbf{U}_2\right)\boldsymbol{\Omega}\begin{pmatrix}\mathbf{U}_1'\mathbf{U}_1\\\mathbf{U}_2'\mathbf{U}_1\end{pmatrix} \\ &= \left(\mathbf{I}_k \quad \mathbf{0}_{k,n-k}\right)\begin{pmatrix}\boldsymbol{\Omega}_1 & \mathbf{0}_{k,n-k}\\\mathbf{0}_{n-k,k} & \mathbf{0}_{n-k,n-k}\end{pmatrix}\begin{pmatrix}\mathbf{I}_k\\\mathbf{0}_{k,n-k}\end{pmatrix} \\ &= \left(\mathbf{I}_k \quad \mathbf{0}_{k,n-k}\right)\begin{pmatrix}\boldsymbol{\Omega}_1\\\mathbf{0}\\\mathbf{0}\end{pmatrix} \\ &= \boldsymbol{\Omega}_1. \end{split}$$

Also: $\mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu}) \sim N(0, \boldsymbol{\Omega}_1)$. Beachte $\boldsymbol{\Omega}_1 > 0$.

$$\begin{split} \mathbf{U}_{2}' & \boldsymbol{\Sigma} \mathbf{U}_{2} = \mathbf{U}_{2}' \mathbf{U} \boldsymbol{\Omega} \mathbf{U}' \mathbf{U}_{2} \\ & = \mathbf{U}_{2}' \begin{pmatrix} \mathbf{U}_{1} & \mathbf{U}_{2} \end{pmatrix} \boldsymbol{\Omega} \begin{pmatrix} \mathbf{U}_{1}' \\ \mathbf{U}_{2}' \end{pmatrix} \mathbf{U}_{2} \\ & = \begin{pmatrix} \mathbf{U}_{2}' \mathbf{U}_{2} & \mathbf{U}_{2}' \mathbf{U}_{2} \end{pmatrix} \boldsymbol{\Omega} \begin{pmatrix} \mathbf{U}_{1}' \mathbf{U}_{2} \\ \mathbf{U}_{2}' \mathbf{U}_{2} \end{pmatrix} \\ & = \begin{pmatrix} \mathbf{0} & \mathbf{I}_{n-k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Omega}_{1} & \mathbf{0}_{k,n-k} \\ \mathbf{0}_{n-k,k} & \mathbf{0}_{n-k,n-k} \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{I}_{n-k} \end{pmatrix} \\ & = \begin{pmatrix} \mathbf{0} & \mathbf{I}_{n-k} \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \\ & = \mathbf{0}. \end{split}$$

Also:

$$\mathbf{U}_2'(\mathbf{X} - \boldsymbol{\mu}) \sim N(0, 0)$$

 $\sim \mathbf{0} \in \mathbb{R}^{n-k}$

$$\begin{split} \mathbf{X} - \boldsymbol{\mu} &= \mathbf{U}_1 \left(\mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu}) \right) + \mathbf{U}_2 \left(\mathbf{U}_2'(\mathbf{X} - \boldsymbol{\mu}) \right) \\ \Leftrightarrow \mathbf{X} &= \mathbf{U}_1 (\underbrace{\mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu})}_{\sim N(0, \mathbf{\Omega}_1)}) + \underbrace{\mathbf{U}_2 \left(\mathbf{U}_2'(\mathbf{X} - \boldsymbol{\mu}) \right)}_{0} + \boldsymbol{\mu}. \end{split}$$

Setze $\mathbf{B} := \mathbf{U}_1$, $\mathbf{W} = \mathbf{U}_1'(\mathbf{X} - \boldsymbol{\mu})$, und bin fertig.

Bemerkung: Ist rang(Σ) = 0, dann ist $\mathbf{X} \sim 0\mathbf{Z} + \boldsymbol{\mu}$ für Z_1, \dots, Z_n i.i.d. N(0,1), denn hier ist $\Sigma = \mathbf{0}_{(n \times n)}$. Also $\mathbf{X} \sim 0\mathbf{Z} + \boldsymbol{\mu} \equiv \boldsymbol{\mu}$.

