# TFM: Análisis predictivo de incidentes navales en EEUU, 2002 - 2015

Anexo 4.2. Exploración de datos: MergedActivity

Oscar Antón diciembre de 2023

## Carga de librerías y datos

# Librería # Propósito

library(skimr) # Exploración estadística. Resumen

library(PerformanceAnalytics) # Exploración estadística. Análisis de correlaciones

library(tidyverse) # Sintaxis para el manejo de datos. Incluye dplyr, ggplot2, etc.

library(data.table) # Manejo eficiente de conjuntos de datos

library(leaflet) # Representación geográfica

# Cargar el dataframe MergedActivity (solo incidentes)
MergedActivity <- as.data.table(readRDS("../1.DataPreprocess/DataMergedActivity/MergedActivity.rds"))</pre>

# Descripción estadística

# Descripción de datos de incidentes skim(MergedActivity)

Data summary

| Name                   | MergedActivity |
|------------------------|----------------|
| Number of rows         | 68000          |
| Number of columns      | 28             |
| Key                    | NULL           |
|                        |                |
| Column type frequency: |                |
| character              | 15             |
| Date                   | 1              |
| numeric                | 12             |
|                        |                |
| Group variables        | None           |

## Variable type: character

| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------|-----------|---------------|-----|-----|-------|----------|------------|
| hour          | 0         | 1.00          | 5   | 5   | 0     | 1438     | 0          |
| region        | 0         | 1.00          | 6   | 14  | 0     | 6        | 0          |
| watertype     | 0         | 1.00          | 5   | 5   | 0     | 2        | 0          |
| event_type    | 0         | 1.00          | 4   | 30  | 0     | 26       | 0          |
| damage_status | 0         | 1.00          | 7   | 35  | 0     | 5        | 0          |
| imo number    | 0         | 1.00          | 0   | 7   | 46583 | 6013     | 0          |

| skim_variable          | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|------------------------|-----------|---------------|-----|-----|-------|----------|------------|
| vessel_name            | 0         | 1.00          | 1   | 50  | 0     | 23854    | 0          |
| vessel_class           | 0         | 1.00          | 5   | 23  | 0     | 16       | 0          |
| build_year             | 0         | 1.00          | 4   | 4   | 0     | 122      | 0          |
| flag_abbr              | 0         | 1.00          | 0   | 2   | 24    | 106      | 0          |
| classification_society | 0         | 1.00          | 6   | 58  | 0     | 36       | 0          |
| solas_desc             | 0         | 1.00          | 9   | 16  | 0     | 3        | 0          |
| casualty               | 65628     | 0.03          | 4   | 11  | 0     | 4        | 0          |
| pollution              | 55049     | 0.19          | 0   | 3   | 73    | 131      | 0          |
| event_class            | 0         | 1.00          | 15  | 19  | 0     | 5        | 0          |

## Variable type: Date

| skim_variable | n_missing | complete_rate min | max        | median     | n_unique |
|---------------|-----------|-------------------|------------|------------|----------|
| date          | 0         | 1 2002-01-01      | 2015-06-22 | 2008-07-05 | 4693     |

#### Variable type: numeric

| skim_variable     | n_missing | complete_rate | mean       | sd         | p0     | p25        | p50        | p75        | p100         | hist     |
|-------------------|-----------|---------------|------------|------------|--------|------------|------------|------------|--------------|----------|
| activity_id       | 0         | 1.00          | 3271440.45 | 942973.00  | 1838.0 | 2535937.00 | 3275581.00 | 4052092.75 | 5167891.00   |          |
| latitude          | 0         | 1.00          | 37.62      | 7.94       | 15.0   | 32.26      | 37.80      | 41.33      | 69.75        |          |
| longitude         | 0         | 1.00          | -94.41     | 21.47      | -179.8 | -94.87     | -89.55     | -81.91     | -46.26       |          |
| vessel_id         | 0         | 1.00          | 290399.44  | 268497.49  | 18.0   | 90388.00   | 191335.00  | 427193.00  | 1325666.00   | <b></b>  |
| age               | 0         | 1.00          | 25.37      | 16.44      | -7.0   | 12.00      | 26.00      | 34.00      | 138.00       |          |
| gross_ton         | 0         | 1.00          | 4391.51    | 13526.64   | 1.0    | 95.00      | 483.00     | 975.00     | 225282.00    |          |
| length            | 0         | 1.00          | 196.07     | 197.01     | 18.7   | 69.70      | 136.30     | 200.00     | 1203.80      |          |
| air_temp          | 5342      | 0.92          | 149.76     | 95.00      | -230.5 | 82.00      | 153.50     | 230.71     | 350.00       |          |
| wind_speed        | 25494     | 0.63          | 50.58      | 30.65      | 0.0    | 29.00      | 44.14      | 65.17      | 350.00       | <b>_</b> |
| wave_hgt          | 55164     | 0.19          | 2.35       | 2.28       | 0.0    | 1.00       | 2.00       | 3.00       | 99.00        |          |
| visibility        | 63031     | 0.07          | 96.90      | 1.44       | 90.0   | 96.50      | 97.00      | 98.00      | 99.00        |          |
| damage_assessment | 56        | 1.00          | 122959.80  | 3887042.37 | 0.0    | 0.00       | 0.00       | 10000.00   | 410000000.00 |          |

# 1. Características de los barcos

# 1.1. Tipo de barco (vessel\_class)

```
# Gráfico de barras para barcos con incidente
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  group_by(vessel_class) %>%
  summarise(frecuencia = n()) %>%
  ggplot(aes(x = fct_reorder(vessel_class, frecuencia), y = frecuencia)) +
  geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
  labs(title = "Tipo de barco", x = NULL, y = "Número de barcos involucrados en incidentes") +
  theme_minimal() +
  coord_flip()
```



# 1.2. Año de construcción (build\_year)

## 1.2.1. Construcción

```
# Gráfico de barras por año de construcción para barcos con incidentes

MergedActivity %>%

distinct(vessel_id, .keep_all = TRUE) %>%

filter(build_year >= 1800 & build_year <= 2015) %>%

ggplot(aes(x = as.numeric(build_year))) +

geom_histogram(binwidth = 1, fill = "#00bfc4", alpha = 0.9) +

labs(title = "Distribución de año de construcción", x = NULL, y = "Número de barcos involucrados en incidentes") +

theme_minimal()
```



## 1.2.2. Antiguedad en el accidente

```
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  filter(age > 0, age < 120) %>%
  ggplot(aes(x = as.numeric(age))) +
  geom_histogram(binwidth = 1, fill = "#00bfc4", alpha = 0.9) +
  labs(title = "Antiguedad de barcos implicados en indicidentes", x = "Años", y = "Número de barcos") +
  theme_minimal()
```



## 1.2.3. Valores anómalos en las fechas

```
# Barcos con "antigüedad" negativa
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  filter(build_year >= 1800 & build_year <= 2015) %>%
  mutate(antiguedad = year(as.Date(date)) - year(as.Date(paste0(build_year, "-01-01")))) %>%
  filter(antiguedad < 0) %>%
  select(vessel_id, vessel_name, imo_number, event_type, date, build_year, antiguedad) %>%
  knitr::kable("html")%>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| vessel_id | vessel_name      | imo_number | event_type                 | date       | build_year | antiguedad |
|-----------|------------------|------------|----------------------------|------------|------------|------------|
| 370425    | BENNO C. SCHMIDT | 9040546    | Flooding                   | 2002-02-20 | 2009       | -7         |
| 813316    | PEAPICKER        |            | Damage to the Environment  | 2002-07-28 | 2006       | -4         |
| 568186    | MIDNIGHT SUN     | 9232278    | Damage to the Environment  | 2002-09-08 | 2003       | -1         |
| 722960    | ALASKAN EXPLORER | 9244661    | Damage to the Environment  | 2004-10-04 | 2005       | -1         |
| 567313    | DOLPHIN SEAFARI  |            | Material Failure (Vessels) | 2008-03-25 | 2015       | -7         |
| 1052777   | OPTI-EX          |            | Damage to the Environment  | 2010-01-15 | 2011       | -1         |
| 1110524   | FSV6             | 9664988    | Grounding                  | 2012-11-04 | 2013       | -1         |
| 1229111   | PACIFIC SPIRIT   |            | Damage to the Environment  | 2013-02-12 | 2015       | -2         |

Los incidentes con antigüedad -1, pueden darse durante las pruebas de mar o en la fase de construcción. Sin embargo, -7 o -2 son valores anómalos. Tras revisar datos, se comprueba que se trata de errores en build\_year, que se van a corregir:

```
MergedActivity$build_year[MergedActivity$vessel_id == "370425"] <- 1992

MergedActivity$build_year[MergedActivity$vessel_id == "813316"] <- 2001

MergedActivity$build_year[MergedActivity$vessel_id == "567313"] <- 2005

MergedActivity$build_year[MergedActivity$vessel_id == "1229111"] <- 2005

# Verificación

MergedActivity %>%

distinct(vessel_id, .keep_all = TRUE) %>%
filter(build_year >= 1800 & build_year <= 2015) %>%
mutate(antiguedad = year(as.Date(date)) - year(as.Date(paste0(build_year, "-01-01")))) %>%
filter(antiguedad < 0) %>%
select(vessel_id, vessel_name, imo_number, event_type, date, build_year, antiguedad) %>%
knitr::kable("html")%>%
kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| vessel_id | vessel_name      | imo_number | event_type                | date       | build_year | antiguedad |
|-----------|------------------|------------|---------------------------|------------|------------|------------|
| 568186    | MIDNIGHT SUN     | 9232278    | Damage to the Environment | 2002-09-08 | 2003       | -1         |
| 722960    | ALASKAN EXPLORER | 9244661    | Damage to the Environment | 2004-10-04 | 2005       | -1         |
| 1052777   | OPTI-EX          |            | Damage to the Environment | 2010-01-15 | 2011       | -1         |
| 1110524   | FSV6             | 9664988    | Grounding                 | 2012-11-04 | 2013       | -1         |

# 1.3. Volumen (gross\_ton)

```
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  filter(gross_ton >= 1 & gross_ton <= 250000) %>%
  ggplot(aes(x = gross_ton)) +
  geom_density(fill = "#00bfc4", color = "#00bfc4", alpha = 0.9) +
  facet_wrap(~cut(gross_ton, breaks = c(0, 1000, 250000), labels = c("1-1000", "1000-250000")), nrow = 2, scales = "free") +
  labs(title = "Volumen (Gross Tonnage)", x = "Gross Tonnage", y = "Densidad") +
  theme_minimal()
```

#### Volumen (Gross Tonnage)



```
# Barcos con mayor Gross Tonnage
MergedActivity %>%
  select(vessel_id, imo_number, vessel_name, build_year, gross_ton, length) %>%
  arrange(desc(gross_ton)) %>%
  unique() %>%
  head(10) %>%
  knitr::kable("html")%>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| vessel_id | imo_number | vessel_name        | build_year | gross_ton | length |
|-----------|------------|--------------------|------------|-----------|--------|
| 933483    | 9383936    | OASIS OF THE SEAS  | 2009       | 225282    | 1187.0 |
| 933484    | 9383948    | ALLURE OF THE SEAS | 2010       | 225282    | 1181.0 |
| 228358    | 7708314    | BERGE PIONEER      | 1980       | 188728    | 1071.7 |
| 437660    | 9102239    | RAMLAH             | 1996       | 163882    | 1115.5 |
| 617142    | 9241114    | ENERGY R           | 2003       | 161306    | 1092.4 |
| 586555    | 9230880    | OVERSEAS MULAN     | 2002       | 161233    | 1092.0 |
| 938329    | 9315367    | SPYROS             | 2007       | 161175    | 1092.4 |
| 1039985   | 9386964    | DORRA              | 2009       | 160782    | 1092.6 |
| 606521    | 9247182    | ABQAIQ             | 2002       | 159990    | 1093.4 |
| 881630    | 9312494    | MAERSK NAUTILUS    | 2006       | 159911    | 1091.9 |

# 1.4. Eslora (length)

```
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  filter(length >= 1 & length <= 1250) %>%
  ggplot(aes(x = length)) +
  geom_density(fill = "#00bfc4", color = "#00bfc4", alpha = 0.9) +
  facet_wrap(~cut(length, breaks = c(1, 250, 1250), labels = c("1-250", "250-1000")), nrow = 2, scales = "free") +
  labs(title = "Gráficos de densidad para Eslora", x = "") +
  theme_minimal()
```

#### Gráficos de densidad para Eslora



```
# Barcos con mayor eslora
MergedActivity %>%
  select(vessel_id, imo_number, vessel_name, build_year, gross_ton, length) %>%
  arrange(desc(length)) %>%
  unique() %>%
  head(10) %>%
  knitr::kable("html")%>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| vessel_id | imo_number | vessel_name        | build_year | gross_ton | length |  |
|-----------|------------|--------------------|------------|-----------|--------|--|
| 1001188   | 9302889    | GRETE MAERSK       | 2005       | 97933     | 1203.8 |  |
| 998455    | 9302877    | GUDRUN MAERSK      | 2005       | 97933     | 1203.8 |  |
| 1008200   | 9359040    | MARIT MAERSK       | 2009       | 98268     | 1203.7 |  |
| 1028411   | 9359052    | MATHILDE MAERSK    | 2009       | 98268     | 1203.7 |  |
| 999387    | 9359014    | MARCHEN MAERSK     | 2007       | 98268     | 1203.7 |  |
| 933483    | 9383936    | OASIS OF THE SEAS  | 2009       | 225282    | 1187.0 |  |
| 933484    | 9383948    | ALLURE OF THE SEAS | 2010       | 225282    | 1181.0 |  |
| 1026695   | 9365805    | CMA CGM IVANHOE    | 2008       | 111249    | 1148.0 |  |
| 489733    | 9166778    | SVEND MAERSK       | 1999       | 91560     | 1138.3 |  |
| 500247    | 9166780    | SOROE MAERSK       | 1999       | 91560     | 1138.3 |  |

# 1.5. Bandera (flag\_abbr)

```
# Gráfico de barras con top10 banderas
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  group_by(flag_abbr) %>%
  summarise(frecuencia = n()) %>%
  arrange(desc(frecuencia)) %>%
  head(10) %>%
  ggplot(aes(x = fct_reorder(flag_abbr, frecuencia, desc), y = frecuencia)) +
  geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
  labs(title = "Bandera (Todas)", x = "País", y = "Barcos implicados en indicidentes") +
  theme_minimal()
```



```
# Gráfico de barras top10 sin bandera Local (EEUU)
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  filter(flag_abbr != "US") %>%
  group_by(flag_abbr) %>%
  summarise(frecuencia = n()) %>%
  arrange(desc(frecuencia)) %>%
  head(10) %>%
  ggplot(aes(x = fct_reorder(flag_abbr, frecuencia, desc), y = frecuencia)) +
  geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
  labs(title = "Bandera (Extranjeras)", x = "País", y = "Barcos implicados en indicidentes") +
  theme_minimal()
```



## 1.6. Sociedad de clasificación (classification\_society)

```
# Gráfico de barras horizontales para top10 sociedad de clasificación
MergedActivity %>%
    distinct(vessel_id, .keep_all = TRUE) %>%
    filter(classification_society != "UNSPECIFIED") %>%
    group_by(classification_society) %>%
    summarise(frecuencia = n()) %>%
    summarise(frecuencia = n()) %>%
    arrange(desc(frecuencia)) %>%
    head(10) %>%
    mutate(porcentaje = frecuencia / sum(frecuencia) * 100) %>%
    ggplot(aes(x = fct_reorder(classification_society, frecuencia), y = frecuencia)) +
    geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
    geom_text(aes(label = sprintf("%.1f%%", porcentaje)), position = position_stack(vjust = 0.5), color = "white", size = 3) +
    labs(title = "Reparto por sociedad de clasificación", x = NULL, y = "Número de barcos implicados en incidentes") +
    theme_minimal() +
    coord_flip()
```

#### Reparto por sociedad de clasificación



## 1.7. Safety of Life at Sea, SOLAS (solas\_desc)

Adhesión al convenio Internacional para la Seguridad de la Vida Humana en el Mar

```
# Gráfico de barras para SOLAS
MergedActivity %>%
  distinct(vessel_id, .keep_all = TRUE) %>%
  group_by(solas_desc) %>%
  summarise(frecuencia = n()) %>%
  mutate(porcentaje = frecuencia / sum(frecuencia) * 100) %>%
  ggplot(aes(x = solas_desc, y = frecuencia)) +
  geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
  geom_text(aes(label = sprintf("%.1f%%", porcentaje)), position = position_stack(vjust = 0.5), color = "white", size = 3) +
  labs(title = "Adhesión a SOLAS", x = NULL, y = "Número de barcos implicados en incidentes") +
  theme_minimal()
```



## 2. Incidentes

## 2.1 Tipo de incidente (envent type)

```
# Gráfico de barras
MergedActivity %>%
  distinct(activity_id, .keep_all = TRUE) %>%
  group_by(event_type) %>%
  summarise(frecuencia = n()) %>%
  ggplot(aes(x = fct_reorder(event_type, frecuencia), y = frecuencia)) +
  geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
  labs(title = "Frecuencia según tipo de evento", x = NULL, y = "Número de barcos implicados") +
  theme_minimal() +
  coord_flip()
```



# 2.2. Localización de incidentes (event\_type)

```
# Eventos más frecuentes
top5MergedActivity <- MergedActivity %>%
 distinct(activity_id, .keep_all = TRUE) %>%
  group_by(event_type) %>%
  summarise(frecuencia = n()) %>%
  arrange(desc(frecuencia)) %>%
 head(5)
# Paleta de colores
pal <- colorFactor(</pre>
 palette = c('red', 'purple', 'blue', 'orange', 'green'),
  domain = top5MergedActivity$event_type
# Top5 MergedActivity
MergedActivity %>%
  filter(event_type %in% top5MergedActivity$event_type) %>%
  sample_frac(0.25) %>%
  # Representación sobre mapa
 leaflet() %>%
    setView(lng = -112, lat = 48, zoom = 3) %>%
    addTiles() %>%
    addCircleMarkers(lat =~latitude, lng =~longitude,
      radius = 2,
      popup=~paste("activity id:", activity_id, "<br>",
                  "vessel_id:", vessel_id, "<br>",
                  "date:", date, "<br>",
                  "event_type:", event_type, "<br>",
                  "watertype:", watertype, "<br>",
"longitude:", longitude, "<br>",
                  "latitude:", latitude, "<br>"
      fillOpacity = 0.9,
      color = ~pal(event_type),
      stroke = FALSE
    ) %>%
    # Legenda
    addLegend(position = "topright",
             colors = pal(top5MergedActivity$event_type),
labels = top5MergedActivity$event_type,
             opacity = 0.5
  )
```



# 2.3. Localización de incidentes (event\_class)

```
# Definir paleta de colores para cada zona
pal <- colorFactor(</pre>
 palette = c('red', 'purple', 'blue', 'orange', 'green', 'yellow'),
  domain = MergedActivity$event_class
# Representación sobre mapa (15% de observaciones para facilitar la visualización)
leaflet(data = MergedActivity %>% sample_frac(0.15)) %>%
 setView(lng = -112, lat = 48, zoom = 3) %>%
 addTiles() %>%
 # Color del área
 addRectangles(-45, 49, -122, 70, fillColor = pal("Canada"), fillOpacity = 0.1, stroke = FALSE) %>% addRectangles(-45, 15, -81.5, 49, fillColor = pal("East Coast"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-100, 15, -180, 49, fillColor = pal("West Coast"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-81.5, 15, -100, 31, fillColor = pal("Gulf of Mexico"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-81.5, 31, -100, 49, fillColor = pal("Mississippi"), fillOpacity = 0.1, stroke = FALSE) %>%
 # Eventos
 addCircleMarkers(lat =~latitude, lng =~longitude,
   radius = 2,
   popup=~paste("activity id:", activity_id, "<br>",
                 "vessel_id:", vessel_id, "<br>",
                "date:", date, "<br>",
                 "event_type:", event_type, "<br>",
                 "watertype:", watertype, "<br>",
                "longitude:", longitude, "<br>",
                "latitude:", latitude, "<br>"
                ),
   fillOpacity = 0.9,
   color = ~pal(event_class),
   stroke = FALSE
 ) %>%
  # Leaenda
 addLegend(position = "topright",
            colors = pal(sort(unique(MergedActivity$event_class))),
            labels = sort(unique(MergedActivity$event_class)),
           title = "Clase de incidente"
 )
## Warning in pal("Mississippi"): Some values were outside the color scale and
## will be treated as NA
## Warning in pal("Gulf of Mexico"): Some values were outside the color scale and
## will be treated as NA
## Warning in pal("West Coast"): Some values were outside the color scale and will
## be treated as NA
## Warning in pal("East Coast"): Some values were outside the color scale and will
## be treated as NA
## Warning in pal("Canada"): Some values were outside the color scale and will be
## treated as NA
## Warning in pal("Alaska"): Some values were outside the color scale and will be
## treated as NA
```



## 2.4. Evolución temporal (envent\_type)

```
# Se añade un alisado tipo Holt-Winters
MergedActivity %>%
  distinct(activity_id, .keep_all = TRUE) %>%
  group_by(año = lubridate::year(date), mes = lubridate::month(date)) %>%
  summarise(incidentes_mes = n()) %>%
  mutate(Fecha = as.Date(paste(año, mes, "01", sep = "-"))) %>%
  mutate(incidentes_alisado = c(NA, HoltWinters(incidentes_mes, beta = FALSE, gamma = FALSE)$fitted[, "level"])) %>%
  arrange(año, mes) %>%
  ungroup() %>%
  ggplot() +
  geom_line(aes(x = Fecha, y = incidentes_alisado, color = "Suavizado Holt-Winters")) +
  geom_line(aes(x = Fecha, y = incidentes_mes, color = "Incidentes mensuales"), size = 1) +
  scale_color_manual(values = c("Incidentes mensuales" = "#00bfc4", "Suavizado Holt-Winters" = "#f8766d"), guide = guide_leg
end(title = "Series:")) +
  labs(title = "Evolución mensual de incidentes", x = NULL, y = NULL) +
  theme_minimal() +
  theme(legend.position = "top", legend.justification = "left")
```

#### Evolución mensual de incidentes



## 2.5. Hora de los incidentes

```
# Representación sencilla pero imprecisa
MergedActivity %>%
  distinct(activity_id, .keep_all = TRUE) %>%
  mutate(hora = round(as.numeric(sub(":.*", "", hour)) + (as.numeric(sub(".*:", "", hour)) / 60), 2)) %>%
  ggplot(aes(x = hora)) +
  geom_density(fill = "#00bfc4", color = "#00bfc4", alpha = 0.9) +
  scale_x_continuous(labels = 0:24, breaks = 0:24) +
  labs(title = "Distribución de incidentes por hora", y = "Densidad") +
  theme_minimal()
```



```
# Teniendo en cuenta la "circularidad" de las horas
# Código basado en el post https://stackoverflow.com/questions/48407745/density-plot-based-on-time-of-the-day
datetimes = MergedActivity$hour %>%
 lubridate::parse_date_time("%h:%M")
times_in_decimal = lubridate::hour(datetimes) + lubridate::minute(datetimes) / 60
times_in_radians = 2 * pi * (times_in_decimal / 24)
# Estimación para ancho de banda
basic_dens = density(times_in_radians, from = 0, to = 2 * pi)
res = circular::density.circular(circular::circular(times_in_radians,
                                                    type = "angle",
                                                    units = "radians"
                                                    rotation = "clock"),
                                 kernel = "wrappednormal",
                                 bw = basic_dens$bw)
time_pdf = data.frame(time = as.numeric(24 * (2 * pi + res$x) / (2 * pi)), # Radianes a 24h
                     likelihood = res$y)
ggplot(time_pdf) +
  geom_area(aes(x = time, y = likelihood), fill = "#00bfc4") +
  scale_x_continuous("Hora", labels = 0:24, breaks = 0:24) +
 scale_y_continuous("Probabilidad") +
 theme_minimal()
```



## 2.6. Valoración económica

```
# Top 10 incidentes con mayor perjuicio económico
MergedActivity %>%
  distinct(activity_id, .keep_all = TRUE) %>%
  select(activity_id, vessel_name, event_type, damage_assessment) %>%
  arrange(desc(damage_assessment)) %>%
  mutate(damage_assessment = format(damage_assessment, scientific = FALSE)) %>%
  head(10) %>%
  knitr::kable("html")%>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| activity_id | vessel_name     | event_type                 | damage_assessment |
|-------------|-----------------|----------------------------|-------------------|
| 3960377     | RIVER ELEGANCE  | Evasive Maneuvers          | 350000000         |
| 3964637     | C 533           | Allision                   | 350000000         |
| 3965662     | SUNSET I        | Grounding                  | 350000000         |
| 1966333     | RICHARD A BAKER | Grounding                  | 98000000          |
| 1896064     | JAY LUHR        | Material Failure (Vessels) | 85000000          |
| 1900683     | RUBY RIVER      | Allision                   | 85000000          |
| 1902882     | GILBERT TAYLOR  | Material Failure (Vessels) | 85000000          |
| 2865301     | KIRBY 28037     | Allision                   | 60000000          |
| 2865600     | KIRBY 30026B    | Material Failure (Vessels) | 60000000          |
| 2870902     | HARRY J. BROCK  | Grounding                  | 60000000          |

## 2.7. Daños personales

```
# Frecuencia de daños personales
# Gráfico de barras para barcos con incidente
MergedActivity %>%
    distinct(activity_id, .keep_all = TRUE) %>%
    filter(!is.na(casualty), casualty != "UNSPECIFIED") %>%
    group_by(casualty) %>%
    summarise(frecuencia = n()) %>%
    ggplot(aes(x = fct_reorder(casualty, frecuencia, desc), y = frecuencia)) +
    geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
    labs(title = "Tipo de daño personal", x = NULL, y = "Número de incidentes") +
    theme_minimal()
```



# 3. Geografía

## 3.1. Localización de regiones

```
# Definir paleta de colores para cada zona
pal <- colorFactor(</pre>
 palette = c('red', 'purple', 'blue', 'orange', 'green', 'yellow'),
 domain = MergedActivity$region
# Representación sobre mapa (15% de observaciones para facilitar la visualización)
leaflet(data = MergedActivity %>% sample_frac(0.15)) %>%
 setView(lng = -112, lat = 48, zoom = 3) %>%
 addTiles() %>%
 # Color del área
 addRectangles(-45, 49, -122, 70, fillColor = pal("Canada"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-45, 15, -81.5, 49, fillColor = pal("East Coast"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-100, 15, -180, 49, fillColor = pal("West Coast"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-81.5, 15, -100, 31, fillColor = pal("Gulf of Mexico"), fillOpacity = 0.1, stroke = FALSE) %>%
 addRectangles(-81.5, 31, -100, 49, fillColor = pal("Mississippi"), fillOpacity = 0.1, stroke = FALSE) %>%
 addCircleMarkers(lat =~latitude, lng =~longitude,
   popup=~paste("activity id:", activity_id, "<br>",
                "vessel_id:", vessel_id, "<br>",
               "date:", date, "<br>",
                "event_type:", event_type, "<br>",
                "watertype:", watertype, "<br>",
               "longitude:", longitude, "<br>",
                "latitude:", latitude, "<br>"
   fillOpacity = 0.9,
   color = ~ifelse(watertype == "river", 'limegreen', pal(region)),
   stroke = FALSE
 ) %>%
 # Legenda
 addLegend(position = "topright",
           colors = pal(sort(unique(MergedActivity$region))),
           labels = sort(unique(MergedActivity$region)),
           title = "Región"
 )
```



## 3.2. Eventos por región

```
# Gráfico de barras
MergedActivity %>%
distinct(activity_id, .keep_all = TRUE) %>%
group_by(region) %>%
summarise(frecuencia = n()) %>%
ggplot(aes(x = fct_reorder(region, frecuencia, desc), y = frecuencia)) +
geom_bar(stat = "identity", fill = "#00bfc4", alpha = 0.9) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
labs(title = "Frecuencia de eventos por región", x = NULL, y = "Número de incidentes registrados") +
theme_minimal()
```



# 3.3. Evento más común en cada región

```
# Extracción del evento con mayor frecuencia en cada región
MergedActivity %>%
    distinct(activity_id, .keep_all = TRUE) %>%
    group_by(region) %>%
    mutate(num_sucesos_por_region = n()) %>%
    mutate(suceso_mas_frecuente = event_type[which.max(n())]) %>%
    select(region, suceso_mas_frecuente, num_sucesos_por_region) %>%
    unique() %>%
    arrange(desc(num_sucesos_por_region)) %>%
    knitr::kable("html")%>%
    kableExtra::kable_styling(bootstrap_options = c("striped", "hover"), full_width = F, font_size = 12)
```

| region         | suceso_mas_frecuente       | num_sucesos_por_region |
|----------------|----------------------------|------------------------|
| Mississippi    | Grounding                  | 11374                  |
| East Coast     | Damage to the Environment  | 9630                   |
| Gulf of Mexico | Grounding                  | 7163                   |
| West Coast     | Vessel Maneuverability     | 5900                   |
| Alaska         | Damage to the Environment  | 2692                   |
| Canada         | Material Failure (Vessels) | 1                      |

# 3.4. Bonus: Triángulo de las bermudas

```
# Definir coordenadas de la zona
triang_bermuda <- data.frame(</pre>
 lng = c(-64, -80, -66),
  lat = c(33, 26, 18)
# Representación sobre mapa (15% de observaciones para facilitar la visualización)
leaflet(data = MergedActivity %>% sample_frac(0.15)) %>%
  setView(lng = -70, lat = 25, zoom = 4) %>%
  addTiles() %>%
  add Polygons (data = triang\_bermuda, lat = \sim lat, lng = \sim lng, fillColor = "orangered", stroke = FALSE) \% > \% \\
  addCircleMarkers(lat =~latitude, lng =~longitude,
    radius = 2,
    popup=~paste("activity id:", activity_id, "<br>",
                   "vessel_id:", vessel_id, "<br>",
                  "date:", date, "<br>",
                  "event_type:", event_type, "<br>",
                  "watertype:", watertype, "<br/>"longitude:", longitude, "<br/>br>", "latitude:", latitude, "<br/>"
    fillOpacity = 0.9,
    color = ~ifelse(watertype == "river", 'limegreen', pal(region)),
    stroke = FALSE
  ) %>%
  # Legenda
  addLegend(position = "topright",
             colors = "orangered",
             labels = "",
             title = "Triángulo de las Bermudas"
  )
```



Nota: No se aprecia una mayor concentración de incidentes que otras zonas con distancias similares a la costa

# 4. Metereología

# 4.1. Temperatura

Мара

```
# Definir paleta de colores por intensidad
pal <- colorFactor(</pre>
 palette = c('blue', 'yellow','red'),
  domain = sort(MergedActivity$air_temp)
# Representación sobre mapa (15% de observaciones para facilitar la visualización)
leaflet(data = MergedActivity %>% sample_frac(0.15)) %>%
  setView(lng = -112, lat = 48, zoom = 3) %>%
  addTiles() %>%
 # Eventos
 addCircleMarkers(lat =~latitude, lng =~longitude,
    radius = 4.
    popup=~paste("activity id:", activity_id, "<br>",
                  "vessel_id:", vessel_id, "<br>",
                 "date:", date, "<br>",
                  "event_type:", event_type, "<br>",
                  "watertype:", watertype, "<br>",
                 "air_temp:", air_temp, "<br>",
                  "longitude:", longitude, "<br>",
                  "latitude:", latitude, "<br>"
    fillOpacity = 0.4,
    color = ~pal(air_temp),
    stroke = FALSE
  ) %>%
  # Legenda
 addLegend(position = "topright",
            colors = c('blue', 'yellow','red'),
labels = c("Baja", "Media", "Calida"),
            title = "Temperatura"
  )
```



#### Temperatura durante el año

```
# Grafico de serie temporal de temperatura media mensual
MergedActivity %>%
  distinct(activity_id, .keep_all = TRUE) %>%
  group_by(año = lubridate::year(date), mes = lubridate::month(date)) %>%
  summarise(temperatura_mes = mean(air_temp, na.rm = TRUE)) %>%
  mutate(Fecha = as.Date(paste(año, mes, "01", sep = "-"))) %>%
  arrange(año, mes) %>%
  ungroup() %>%
  ggplot() +
  geom_line(aes(x = Fecha, y = temperatura_mes, color = "temperatura mensual (ºFahrenheit)"), size = 1) +
  scale_color_manual(values = c("temperatura mensual (ºFahrenheit)" = "#00bfc4"), guide = guide_legend(title = "Serie:")) +
  labs(title = "Evolución mensual de temperatura", x = NULL, y = NULL) +
  theme_minimal() +
  theme(legend.position = "top", legend.justification = "left")
```

18 de 25

```
## `summarise()` has grouped output by 'año'. You can override using the `.groups`
## argument.
```

#### Evolución mensual de temperatura



## 4.2. Mapa de viento

```
# Definir paleta de colores para cada zona
pal <- colorFactor(</pre>
 palette = c('blue', 'yellow','red'),
  domain = sort(MergedActivity$wind_speed)
# Representación sobre mapa (15% de observaciones para facilitar la visualización)
leaflet(data = MergedActivity %>% sample_frac(0.15)) %>%
 setView(lng = -112, lat = 48, zoom = 3) %>%
  addTiles() %>%
  # Eventos
  addCircleMarkers(lat =~latitude, lng =~longitude,
    radius = 4,
    popup=~paste("activity id:", activity_id, "<br>",
                   "vessel_id:", vessel_id, "<br>",
                   "date:", date, "<br>",
                  "event_type:", event_type, "<br>",
                  "watertype:", watertype, "<br>",
"longitude:", longitude, "<br>",
                  "latitude:", latitude, "<br>"
    fillOpacity = 0.4,
    color = ~pal(wind_speed),
    stroke = FALSE
  ) %>%
  # Legenda
  addLegend(position = "topright",
             colors = c('blue', 'yellow','red'),
labels = c("Bajo", "Medio", "Alto"),
             title = "Temperatura"
  )
```



# 5. event\_class / Variables explicativas

## 5.1. Variables cuantitativas de características de los barcos

```
# Boxplot de estas variables en un solo gráfico para una salida compacta
MergedActivity %>%
mutate(build_year = as.numeric(build_year)) %>%
mutate(antiguedad = year(as.Date(date)) - year(as.Date(paste0(build_year, "-01-01")))) %>%
filter(gross_ton < 1000, length < 250, antiguedad > 0, antiguedad < 50) %>%
select(event_class, gross_ton, length, antiguedad) %>%
pivot_longer(cols = -event_class, names_to = "variable", values_to = "valor") %>%
ggplot(aes(y = valor, x = event_class, fill = variable)) +
geom_boxplot(varwidth = TRUE, color = "#00bfc4", alpha = 0.5) +
stat_summary(fun = mean, geom = "point", color = "#00bfc4", size = 3, alpha = 0.3) +
facet_wrap(~variable, scales = "free") +
theme(legend.position="none") +
labs(title = "Boxplots de características de los barcos") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

#### Boxplots de características de los barcos



## 5.2. Variables meteorológicas

```
# Boxplot de estas variables en un solo gráfico para una salida compacta
MergedActivity %>%
mutate(build_year = as.numeric(build_year)) %>%
select(event_class, air_temp, wind_speed, wave_hgt, visibility) %>%
filter(air_temp > 0, wind_speed < 100, wave_hgt < 10, visibility > 96) %>%
pivot_longer(cols = -event_class, names_to = "variable", values_to = "valor") %>%
ggplot(aes(y = valor, x = event_class, fill = variable)) +
geom_boxplot(varwidth = TRUE, color = "#00bfc4", alpha = 0.5) +
stat_summary(fun = mean, geom = "point", color = "#00bfc4", size = 3, alpha = 0.3) +
facet_wrap(~variable, scales = "free") +
theme(legend.position="none") +
labs(title = "Boxplots de variables meteorológicas", y = NULL) +
coord_flip()
```

#### Boxplots de variables meteorológicas



## 5.3. Clase de incidentes por región

```
# Gráfico de barras apiladas
MergedActivity %%
group_by(region, event_class) %>%
summarise(frecuencia = n()) %>%
ggplot(aes(x = fct_reorder(region, frecuencia), y = frecuencia, fill = event_class)) +
geom_bar(stat = "identity", alpha = 0.9) +
labs(title = "Clase de incidentes por región", x = NULL, y = NULL) +
theme_minimal()
```

```
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
```



## 5.X. Daños / Variables meteorológicas

```
# Boxplots de variables meteorológicas
# Filtrados para encuadrar los valores centrales
MergedActivity %>%
  select(damage_status, air_temp, wind_speed, wave_hgt, visibility) %>%
  filter(damage_status == "Damaged" | damage_status == "Undamaged") %>%
  filter(air_temp > 0 & air_temp < 300) %>%
  filter(visibility > 95 & visibility < 98) %>%
  filter(wave_hgt > 0 & wave_hgt < 10) %>%
  filter(wind_speed > 15 & wind_speed < 85) %>%
  pivot_longer(cols = -damage_status, names_to = "variable", values_to = "valor") %>%
  ggplot(aes(y = valor, x = damage_status, fill = variable)) +
  geom_boxplot(varwidth = TRUE, color = "#00bfc4", alpha = 0.3) +
  stat_summary(fun = mean, geom = "point", color = "#00bfc4", size = 3, alpha = 0.3) +
  facet_wrap(~variable, scales = "free") +
  theme(legend.position="none") +
  labs(title = "Boxplots de variables metereológicas")
```

## Boxplots de variables metereológicas



## 6. Correlaciones



#### Más en detalle:

```
# Variables de localización y meteorología
MergedActivity %>%
  sample_frac(0.5) %>%
  select(event_class, region, latitude, longitude, watertype, air_temp, wind_speed, wave_hgt, visibility) %>%
  mutate_at(vars(region, watertype, event_class), factor ) %>%
  mutate_all(~as.integer(.)) %>%
  chart.Correlation(histogram = T, pch = 19)
```



```
# Características de barco
MergedActivity %>%
  sample_frac(0.5) %>%
  mutate(antiguedad = year(as.Date(date)) - year(as.Date(paste0(build_year, "-01-01")))) %>%
  select(event_class, antiguedad, event_type, vessel_class, gross_ton, length, damage_status, flag_abbr, classification_soci
ety, solas_desc) %>%
  mutate_at(vars(event_type, damage_status, vessel_class, flag_abbr, classification_society, solas_desc, event_class), facto
r ) %>%
  mutate_all(~as.integer(.)) %>%
  chart.Correlation(histogram = T, pch = 19)
```



```
# Incidentes
MergedActivity %>%
  sample_frac(0.5) %>%
  mutate(hour = round(as.numeric(sub(":.*", "", hour)) + (as.numeric(sub(".*:", "", hour)) / 60), 2)) %>%
  select(event_class, event_type, hour, damage_status, damage_assessment, casualty, pollution) %>%
  mutate_at(vars(event_type, damage_status, casualty, pollution, event_class), factor ) %>%
  mutate_all(~as.integer(.)) %>%
  chart.Correlation(histogram = T, pch = 19)
```

