Projet 5 : Suggestion de tags

Ali-higo Ebo Adou

Outline

- Introduction
- 2 Nettoyage et préparation des données
- 3 Approches Machine Learning
- Approches Deep Learning
- 6 Conclusion

Introduction •000

- Introduction
- Nettoyage et préparation des données
- Approches Machine Learning
- Approches Deep Learning
- 6 Conclusion

Problématique

Natural Language Processing (NLP)

- Traduction
- Analyse de sentiment (classification)
- Analyse sémantique
- etc...

Classification multi-label en NLP

- Classification de commentaires toxiques et/ou haineux et/ou criminels etc..
- Tagging pour la classification de CV

Approches pour le NLP

En NLP, les *mots* sont encodés au format numérique (ou vectorisés) pour qu'ils puissent être interprété par l'ordinateur, par exemple à l'aide d'un encodage *One-hot*, *Bag-of-Word* ou *Embedding*.

Machine Learning

- Classification
- Topic Modelling

Deep Learning: State-of-the-art

- Recurrent neural network
- Transformers

Introduction 0000

- Forte Précision / Fort Rappel :
 - \rightarrow Situation idéale!
- Forte Précision / Faible Rappel :
 - → Le modèle prédit globalement peu et bien.
- Faible Précision / Fort Rappel
 - → Le modèle prédit globalement beaucoup et mal.
- Faible Précision / Faible Rappel :
 - \rightarrow Le modèle peu et mal.

Introduction

Outline

- Introduction
- 2 Nettoyage et préparation des données
- Approches Machine Learning
- Approches Deep Learning
- 6 Conclusion

 Nettoyage et préparation des données
 Approches Machine Learning
 Approches Deep Learning
 Concl

 ○●○○○
 ○○○○
 ○○○○
 ○○○○

Le jeu de données original 1/2

Critères de selection :

• plus de vues • plus de réponses • ayant au plus 5 tags

Nombre de tags pour chaque question

Le jeu de données original 2/2

- environ 50 000 lignes
- plus de 11 700 tags uniques

Ali-higo Ebo Adou Projet 5 : Suggestion de tags September 19, 2022

Pre-Cleansing

Retrait des balises HTML, adresses url, etc...

Tokenization & Lemmatization

Réduction/troncature de la taille du corps du texte à 128 caractères maximum.

Dataset final

- Réduction du nombre de tags à 35.
- Réduction du dataset original d'environ 25%.

Nombre de tags pour chaque question dans le dataframe final.

4 ≣ ▶ ≣ ♥ Q (~ ptember 19, 2022 9/18

Outline

- Introduction
- Nettoyage et préparation des données
- 3 Approches Machine Learning
- Approches Deep Learning
- Conclusion

Latent Dirichlet Allocation

- Entraînement: Actualisation des
 - distributions de probabilités des topics pour chaque document du corpus,
 - distributions de probabilités des mots du vocabulaire pour chaque topic.

 \implies Embedding des documents dans l'espace des topics.

Nombre de topics optimal

Apprentissage suppervisé "customisé"

 \bullet Paramètre α de la LDA

Fonction score

$$s = \prod_{i=1}^{N} p(w_i/t) p(t/d)$$

- $p(w_i/t)$: probabilité du mot w_i pour le topic dominant t
- p(t/d): probabilité du topic dominant t pour le document d

OACI ITOAA

Ali-higo Ebo Adou Projet 5 : Suggestion de tags September 19, 2022 12/18

"Inférence" du système customisé

	precision	recall	f1-score	support
git	0.826923	0.811321	0.819048	53.0
C++	0.436782	0.413043	0.424581	92.0
css	0.260870	0.807692	0.394366	52.0
html	0.285714	0.426667	0.342246	75.0
asp.net	0.319149	0.348837	0.333333	43.0
python	0.224274	0.469613	0.303571	181.0
С	0.235955	0.411765	0.300000	51.0
php	0.339286	0.267606	0.299213	71.0

- Introduction
- Nettoyage et préparation des données
- Approches Machine Learning
- Approches Deep Learning
- Conclusion

Word2Vec

• *Embedding* : Initialisation aléatoires des poids, puis ajustement par rétropropagation du gradient.

'Combiaison linéaire' entre mots sémantiquement proches

- (King Man) + (Queen Woman) = $0 + \epsilon$
- Le nombre de dimensions est un hyperparamètre ajustable.

⇒ Utilisation du corpus/vocabulaire d'entraînement.

Transfer Learning

BERT

- Transformers avec 12 couches d'encodeurs.
- Vecteur de sortie de dimension 768.

USE

- Sentence Embdedding
- Vecteur de sortie de dimension 512.

Résultat: weighted average

		Precision	Recall	F1-Score	Support
-	W2C	0.8483	0.5867	0.6650	1989
	BERT	0.8209	0.6515	0.7158	1989
	USE	0.6549	0.5057	0.5408	1989

Ali-higo Ebo Adou Projet 5 : Suggestion de tags September 19, 2022 16/18

Outline

- Introduction
- Nettoyage et préparation des données
- Approches Machine Learning
- 4 Approches Deep Learning
- 6 Conclusion

Résultats

- Word2Vec est le meilleur compromis temps de calcul / espace mémoire.
- Nombre de tags uniques suggérés différents selon les modèles.
- Explicabilité du système customisé.

Merci de votre attention.

