HBP D17 2017/2018 Sorting Subsample Experiment

Courtney Meier 19 February 2018

Goal

To determine the efficacy of subsampling various proportions of HBP samples in D17 in order to reduce long sort times associated with removing OSD from current-year clipped biomass. Subsampling is only evaluated in the context of clip harvests that do not require sorting to functional group (i.e., non-peak biomass clips), because the subsample to total mass ratios will not apply to individual herbGroups.

Experimental Setup and Analyses

- Select n=10 plots (10 lowest Morton Order), resulting in n=20 clipID to test, due to both exclosure = Y and N for each plot. Random spatially-balanced plot locations, and locations of clipIDs within plots, will provide an unbiased estimate of biomass throughout the Tower airshed.
- For each clipID harvested in the field, test procedure by creating subsamples (current-year + OSD) with the following percentages of the total freshMass:
 - -10%
 - -25%
 - 50%
 - 100% (no subsampling)
- When subsampling is employed, calculate dryMass as follows: dM = fM * (ssDM/ssFM), where:
 - -dM = dryMass of current-year biomass in the clipID (no OSD)
 - -fM = total freshMass in the clipID (current-year + OSD)
 - -ssDM = subsampleDryMass of current-year biomass in the subsample (no OSD)
 - ssFM = fresh mass of all biomass in the subsample (current-year + OSD)
- Compare dryMass results calculated via subsampling with dryMass obtained with no subsampling, and use paired t-test to analyze results.

Procedure

- 1. Perform clip harvest in the field as normal, and bring clipped biomass back to the laboratory in cold storage as normal.
- 2. Identify n=20 clipIDs (n=10 for exclosure = Y and n=10 for exclosure = N), originating from the 10 plotIDs with the lowest Morton Order numbers.
- 3. Thoroughly mix biomass from each clipID to homogenize as thoroughly as possible.
 - a. For large amounts of biomass, and when there is more than one bag of biomass for a given clipID, use a large bag, box, tray or equivalent vessel to mix the biomass.
- 4. For each clipID, weigh and record to 0.01 g:
 - a. freshMass = total fresh mass in the clipID (current-year + OSD)
- 5. Based on the **freshMass**, calculate the desired subsample fresh masses for testing. For example, assuming **freshMass** = 100 g, the target subsample fresh masses are:

- a. 10% subsample $\rightarrow 10$ g
- b. 25% subsample ->25 g
- c. 50% subsample ->50 g
- 6. Label a coin envelope for each subsample above with the information below. Label an additional coin envelope for the residual clipped biomass that was not subsampled.
 - a. subsampleTest: 10%, 25% or 50%; use subsampleTest = residual for remaining biomass that was not subsampled.
 - b. clipID
 - c. collectDate
 - d. exclosure: Y/N
- 7. Weigh each subsample created above (current-year + OSD), and record the information below. For subsampleTest = residual, leave subsampleFreshMass = NULL.
 - a. subsampleTest: as above
 - b. clipID
 - c. collectDate
 - d. exclosure: Y/N
 - e. subsampleFreshMass: To the nearest 0.01 g; for subsamples < 0.5 g total mass, weigh to the nearest 0.0001 g
- 8. Sort current-year biomass from OSD for each subsample, and place sorted, current-year biomass into the corresponding labeled coin envelope.
 - a. Also sort remaining fresh mass that was not subsampled, and place into the **subsampleTest** = residual envelope.
 - b. Sorted OSD may be discarded at this point.
- 9. Dry subsamples and residual current-year mass until dry; minimum of 48 h @ 65 $^{\circ}$ C, track drying progress as normal.
- 10. Remove dry samples from the oven one at a time, and immediately weigh and record:
 - a. subsampleDryMass: To the nearest 0.01 g; for masses < 0.5 g, weigh to the nearest 0.0001 g; record the dry mass for subsampleTest = residual in this field as well.

Analyses

D17 HBP Clip Strip subsampling

Results: Mixed-Effects model analysis

1. Model accounting for subsampling effect on **dryMass** and using **clipID** as a random effect (no need to use **exclosure** as a fixed effect since random effect accounts for variation across exclosure treatment).

```
m1ML <- lmer(estimatedDryMass ~ treatment + (1|clipID), longDF, REML = FALSE)
summary(m1ML)</pre>
```

```
## Linear mixed model fit by maximum likelihood . t-tests use
##
     Satterthwaite's method [lmerModLmerTest]
  Formula: estimatedDryMass ~ treatment + (1 | clipID)
##
##
      Data: longDF
##
##
        AIC
                 BIC
                        logLik deviance df.resid
      287.6
               301.9
                        -137.8
                                  275.6
                                               74
##
##
##
  Scaled residuals:
##
                  1Q
                        Median
                                     3Q
                                              Max
   -2.72645 -0.44160
                      0.04646
                                0.43571
##
                                         2.38772
##
## Random effects:
##
    Groups
             Name
                          Variance Std.Dev.
                                   6.3173
##
    clipID
             (Intercept) 39.909
   Residual
                           0.414
                                   0.6434
## Number of obs: 80, groups: clipID, 20
```

```
##
## Fixed effects:
##
                    Estimate Std. Error
                                            df t value Pr(>|t|)
                               1.4199 20.3112 7.388 3.54e-07 ***
## (Intercept)
                     10.4905
                                 0.2035 60.0000
                                                 2.523 0.0143 *
## treatmentdryMass10
                     0.5134
## treatmentdryMass25
                     0.1322
                                 0.2035 60.0000 0.650
                                                      0.5184
## treatmentdryMass50
                      0.2125
                                 0.2035 60.0000
                                                1.045 0.3004
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
              (Intr) trtM10 trtM25
## trtmntdrM10 -0.072
## trtmntdrM25 -0.072 0.500
## trtmntdrM50 -0.072 0.500 0.500
anova(m1ML)
## Type III Analysis of Variance Table with Satterthwaite's method
            Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## treatment 2.8422 0.94742
                                  60 2.2883 0.08759 .
                              3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

2. Null model, and using **clipID** as a random effect.

m3ML <- lmer(estimatedDryMass ~ 1 + (1 clipID), longDF, REML = FALSE)

```
summary(m3ML)
## Linear mixed model fit by maximum likelihood . t-tests use
    Satterthwaite's method [lmerModLmerTest]
## Formula: estimatedDryMass ~ 1 + (1 | clipID)
##
     Data: longDF
##
##
       AIC
                BIC
                      logLik deviance df.resid
##
     288.1
              295.3
                      -141.1
                                282.1
##
## Scaled residuals:
##
       Min
                 1Q
                      Median
                                   ЗQ
                                           Max
## -2.70708 -0.45281 -0.08922 0.31257 2.70243
## Random effects:
## Groups
                        Variance Std.Dev.
            Name
             (Intercept) 39.8967 6.3164
## clipID
                         0.4614 0.6793
## Residual
## Number of obs: 80, groups: clipID, 20
## Fixed effects:
              Estimate Std. Error
                                      df t value Pr(>|t|)
## (Intercept) 10.705
                            1.414 20.000
                                          7.568 2.72e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
anova(m1ML, m3ML)
## Data: longDF
## Models:
## m3ML: estimatedDryMass ~ 1 + (1 | clipID)
## m1ML: estimatedDryMass ~ treatment + (1 | clipID)
             AIC
                    BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## m3ML 3 288.13 295.28 -141.06
## m1ML 6 287.63 301.92 -137.81
                                  275.63 6.4998
                                                          0.08967 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3. Linear model, using treatment*exclosure, and no random effect.

m1LM <- lm(estimatedDryMass ~ exclosure*treatment, data = longDF)

```
summary(m1LM)
##
## Call:
## lm(formula = estimatedDryMass ~ exclosure * treatment, data = longDF)
## Residuals:
##
      Min
               1Q Median
                              3Q
## -9.2766 -4.6119 -0.5442 3.3540 14.6367
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                           2.09005
                                                    4.548 2.14e-05 ***
                                9.50600
## exclosureY
                                1.96900
                                           2.95578
                                                    0.666
                                                             0.507
## treatmentdryMass10
                                0.49713
                                           2.95578
                                                   0.168
                                                             0.867
## treatmentdryMass25
                                           2.95578
                                                   0.071
                                0.21117
                                                             0.943
## treatmentdryMass50
                                0.08341
                                           2.95578 0.028
                                                             0.978
## exclosureY:treatmentdryMass10 0.03249
                                           4.18010 0.008
                                                             0.994
                                           4.18010 -0.038
## exclosureY:treatmentdryMass25 -0.15795
                                                             0.970
## exclosureY:treatmentdryMass50 0.25823
                                           4.18010
                                                   0.062
                                                             0.951
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.609 on 72 degrees of freedom
## Multiple R-squared: 0.02585,
                                  Adjusted R-squared:
## F-statistic: 0.2729 on 7 and 72 DF, p-value: 0.9625
anova (m1LM)
## Analysis of Variance Table
## Response: estimatedDryMass
##
                     Df Sum Sq Mean Sq F value Pr(>F)
## exclosure
                      1
                          80.18 80.176 1.8354 0.1797
## treatment
                       3
                           2.84 0.947 0.0217 0.9956
## exclosure:treatment 3
                           0.44
                                  0.147 0.0034 0.9997
## Residuals
                    72 3145.19 43.683
```

Outcomes

- 1. Random effect associated with clipID explains considerable variability in the data. See summary output for model = m1ML.
- 2. Summary output for Mixed Effects model indicates that D17 Clip Strips should be subsampled at the 25% level for all bouts with $\mathbf{herbGroup} = \mathrm{ALL}$.
 - Estimates of dryMass using a 10% subsample are significantly higher than the entire sorted sample, using data from one bout collected late February and just before peak green.
 - Other subsamples are not significantly different than the entire sorted subsample \rightarrow go with 25%
- 3. Effect of exclosure*treatment, as evaluated in standard linear model:
 - Effect of exclosure not significant (m1LM), and effect of treatment also not significant. No detection of exclosure:treatment interaction effect.