Question	Answer	Marks	Guidance		
(a)	Substitute $x = 4$, equate to zero and attempt solution	M1			
	Obtain $a = -7$	A1			
	Divide by $x-4$ at least as far as the x term	M1	or use of identity or by inspection		
	Obtain $2x^{2} + x + 1$ and conclude $(x - 4)(2x^{2} + x + 1)$	A1			
	Alternative method for question (a)				
	Divide by $x-4$ at least as far as the x term	M1			
	Equate the remainder to zero	M1			
	Obtain $a = -7$	A1			
	Obtain $2x^{2} + x + 1$ and conclude $(x - 4)(2x^{2} + x + 1)$	A1			
		4			

Question	Answer	Marks	Guidance
(b)	Apply logarithms and use power law for $e^{3y} = 4$	M1	
	Obtain $\frac{1}{3} \ln 4$ or exact equivalent	A1	
	Use discriminant $[=1-8=-7]$ or equivalent to show no other roots	B1	AG – necessary detail needed
		3	