Linear Algebra Done Right

Yunwei Ren

Contents

3	Linear Map		2
	3.A	The Vector Space of Linear Maps	2
	3.B	Null Spaces and Ranges	2

3 Linear Map

3.A The Vector Space of Linear Maps

1.

Proof. If T is linear, then T(0,0,0)=0 and therefore b=0. Meanwhile, T(2,2,2)=2T(1,1,1) implies 12+8c=12+2c. Hence, c=0. The proof of the converse part is trivial.

3.

Proof. Let e_i be the *i*-th vector in the standard base of \mathbb{F}^n and suppose that $Te_i = \sum_{i=1}^n A_{1,j}e_j$. Then for $x = (x_1, \dots, x_n)^T \in \mathbb{F}^n$,

$$Tx = T\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i Te_i = \sum_{i=1}^{n} x_i \sum_{j=1}^{n} A_{j,i} e_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A_{j,i} x_i\right) e_j.$$

5.

Proof. Too lengthy to write it down...

7.

Proof. Let $\{x_0\}$ be a basis of V and λ be a scalar such that $Tx_0 = \lambda x_0$. By the linearity of T, for every $x = kx_0$ in V, $Tx = kTx_0 = k\lambda x_0 = \lambda(kx_0) = \lambda x$.

9.

Solution. From the additivity condition we can derive that $\varphi(kz) = k\varphi(z)$ for any $k \in \mathbb{Q}$. Hence we can try some functions where $\varphi(iz) = i\varphi(z)$ fails. It turns out that $\varphi(z) = \operatorname{Im}(z)$ is one of the maps required.

11.

Proof. Let $\{\alpha_1, \ldots, \alpha_p\}$ and $\{\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q\}$ be bases of U and V respectively. Then the linear map which maps α_i to $T\alpha_i$ and maps β to 0. Clear that it is the desired linear map.

13.

Proof. Suppose that v_k is in the span of the other vectors and let $w_i = 0$ for each $i \neq k$ and $w_k \neq 0$. No $T \in \mathcal{L}(V, W)$ can maps v_i to w_i since the linearity of T would force w_k to be 0, leading to a contradiction.

3.B Null Spaces and Ranges

2.

Proof. Since S maps every vector of V into the null space of T, the map TS is the zero map. Hence $(ST)^2 = S(TS)T = 0$.

4	
/	

Proof. Suppose $S, T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$ maps and only maps e_1, e_2, e_3 and e_3, e_4, e_5 to the zero vector respectively. Then $e_1, e_2, e_4, e_5 \notin \text{null}(S + T)$, implying that $\dim \text{null}(S + T) < 2$. Hence $\{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4 : \dim \text{null} T > 2)\}$ is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$.

6.

Proof. It follows immediately from the rank-nullity theorem and the fact that dim null T and dim range T are integers.

8.

Proof. Let $\{w_1, \ldots, w_m\}$ be a basis of W and $S, T \in \mathcal{L}(V, W)$ be two linear maps such that range $S = \operatorname{span}(w_1)$ and range $T = \operatorname{span}(w_2, \ldots, w_n)$. Clear that range $S = \operatorname{span}(w_1)$ Hence, the set described is not a subspace of $\mathcal{L}(V, W)$.

10.

Proof. For every $y \in \text{range } T$ there exists some $x = \sum x_i v_i \in V$ such that

$$y = Ty = T\left(\sum_{i=1}^{n} x_i v_i\right) = \sum_{i=1}^{n} x_i T v_i.$$

Hence, range $T = \operatorname{span}(Tv_1, \dots, Tv_n)$.

12. For readers who familiar with the orbit-stabilizer theorem or just the (group) homomorphism, the proof should be straightforward.

Proof. For every nonzero y in range T, there exists some $x \in V$ such that Tx = y. For each $y \neq 0$, we choose one such x, put them all together and put 0 into them to get U. By the construction, clear that $T(U) = \operatorname{range} T$ and $U \cap \operatorname{null} T = \{0\}$.

14.

Proof. By the rank-nullity theorem,

 $\dim \operatorname{null} T + \dim \operatorname{range} T = 8 \quad \Rightarrow \quad \dim \operatorname{range} T = 5 = \dim \mathbb{R}^5.$

Hence, range $T = \mathbb{R}^5$ and therefore T is surjective.

16. Actually, the cosets of the kernel partition the whole space.

Proof. Let $\{v_1, \ldots, v_n\}$ be a basis of range T and $Tu_i = v_i$ for $i = 1, 2, \ldots, n$. Denote $\operatorname{span}(u_1, \ldots, u_n)$ by U. We now prove that $V = U + \operatorname{null} T$. For every $x \in V$, suppose that $Tx = y = \sum y_i v_i$ and $\tilde{x} = \sum y_i u_i$. Note that $\tilde{x} \in U$ and $T(x - \tilde{x}) = Tx - T\tilde{x} = 0$, i.e., $x - \tilde{x} \in \operatorname{null} T$. Hence, $V = U + \operatorname{null} T$. As both of U and U are finite-dimensional, so is V.

18.

Proof. By the rank-nullity theorem, clear that $\dim V \geq \dim \operatorname{range} T = \dim W$ if there exists some surjective $T \in \mathcal{L}(V, W)$.

Assume that dim $V \ge \dim W$ and let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ be bases of V and W respectively. Then the linear map which maps v_i to w_i for each $1 \le i \le m$ is surjective.

20.

Proof. If T is injective, then for every $y \in \text{range } T$, there exists exactly one $x \in V$ such that y = Tx. Let S be the map which maps y to such x. It is linear since for every $y_1, y_2 \in \text{range } T$ and scalar a, b, supposing $Sy_i = x_i$,

$$T(ax_1 + bx_2) = aTx_1 + bTx_2 = ay_1 + by_2.$$

implying $S(ay_1 + by_2) = ax_1 + bx_2 = aSy_1 + bSy_2$. For every $x \in V$, (ST)x = S(Tx) = x. Suppose there exists some $S \in \mathcal{L}(W, V)$ such that ST = I. Then

$$Tx_1 = Tx_2 \quad \Rightarrow \quad STx_1 = STx_2 \quad \Rightarrow \quad x_1 = x_2.$$

Hence, T is injective.

22.

Proof. Let \tilde{T} be the restriction of T to null ST. It is still a linear map since null ST is a subspace of U. Note that $x \in \text{null } ST$ iff (ST)x = 0 iff $Tx \in \text{null } S$. Hence, range $\tilde{T} \subset \text{null } S$. Thus, by the rank-nullity theorem,

 $\dim \operatorname{range} \tilde{T} \leq \dim \operatorname{null} S \quad \Rightarrow \quad \dim \operatorname{null} ST - \dim \operatorname{null} \tilde{T} \leq \dim \operatorname{null} S.$

Since $\operatorname{null} \tilde{T} \leq \operatorname{null} T$, this implies $\operatorname{dim} \operatorname{null} ST \leq \operatorname{dim} \operatorname{null} S + \operatorname{dim} \operatorname{null} T$.

24.

Proof. If there exists $S \in \mathcal{L}(W, W)$ such that $T_2 = ST_1$, then $\text{null } T_2 = \text{null } ST_1$. Hence for every $x \in \text{null } T_1$, as $S(T_1x) = S0 = 0$, $x \in \text{null } T_2$. Therefore, $\text{null } T_1 \subset \text{null } T_2$.

Now we suppose $\operatorname{null} T_1 \subset \operatorname{null} T_2$ and construct S. Note that all we concerns is its behavior on some basis of range T_1 . Let $\{w_1, \ldots, w_n\}$ be a basis of range T_1 and $T_1v_i = w_i$ for $i = 1, \ldots, n$. For each $x \in V$, let $U_x = \{x + y : y \in \operatorname{null} T_2\}$ and $Sw_k = T_2x$ as long as $v_k \in U_x$. It can be verified that S is well-defined and does satisfy the requirement as long as $\operatorname{null} T_1 \subset \operatorname{null} T_2$.