

뇌영상 인공지능 분석을 통한 알츠하이머 치매 진단 경험

바이오 헬스 융합연구소, 동아대학교 병원

목차

- 연구배경
- 연구방법
- 연구결과
- 결론

연구배경 – 치매

치매 원인 질병의 종류

연구배경 – 치매환자의 증가

2020, 60세 이상 치매환자 10% 치매는 40세 부터 시작? 어떻게 알 수 있나?

트위터@yonhap_graphics, 페이스북tuney,kr/LeYN1

연구배경 – 치매환자의 진단

부산일보 http://news20.busan.com/controller/newsController.jsp?newsl

부산최초 방사성 신약 뉴라첵 이용 아밀로이드 뇌-PET 영상 –치매 조기 지단에 획기적

국제신문

부산 최초 방사성 신약(뉴라체크) 이용 뇌-PET 검사

- 주사 투여 후 10~20분간 촬영 / 치매 조기 진단 획기적 성과

치매를 조기에 진단할 수 있는 새로운 치료 법이 부산에서 처음으로 시행돼 관심을 끌고 있다.

동아대학교병원 분자영상센터와 인지장애 · 치매센터는 치매를 조기에 진단할 수 있는 새로운 방사성의약품 '뉴라체크' (NeuraCeg) 를 이용하는 최신 뇌영상 검사를 이달부터

본격적으로 시행하고 있다.

치매는 아직 완치시킬 수 있는 치료법이 없기 때문에 초기에 발견 하는 것이 중요하지만, 병의 특성상 조기 진단이 어렵다.

이 때문에 뉴라체크라는 신약을 이용한 뇌영상 검사는 중증 환자가 돼야 진단이 되는 대표적인 노인성 질환인 알츠하이머형 치매를 조기에 진단하는데 획기적인 도움을 줄 것으로 기대되고 있다.

뉴라체크 신약은 양전자방출단층영상(PET)을 촬영할 때 사용하는 방사성 의약품이다

◀신약을 이용한 뇌 PET 영상. 왼쪽이 정상인이고 오른쪽이 치매환자의 영상이다.

뉴라체크를 이용한 뇌 PET 검사를 시행할 때 특별한 주의 사항 이나 부작용은 없으며, 주사를 투여하고 90분 후에 10~20분간 촬영하게 된다.

㈜듀켐바이오에서 생산 및 공급을 담당하고 있으며, 동아대학교 병원 신경과와 인지장애·치매센터는 의뢰된 인지장애 및 치매 환자들을 대상으로 분자영상센터에서 매일 검사를 실시하고 있다.

뉴라체크를 이용하면 향후 10년 내에 치매가 발생할지의 여부 까지도 확인이 가능하다. 뉴라체크를 이용한 뇌 PET 검사는 최근 서울지역 일부 대학병원에서만 도입됐고, 부산에서는 동아대학교 병원이 처음으로 시행하게 됐다.

동아대학교병원 분자영상센터장인 강도영 교수는 "알츠하이머형 치매 진단을 위해서 뇌척수액검사 방법도 있지만, 주사바늘의 사용 으로 인한 환자의 불편함으로 거부반응이 심했던 것이 사실인데 뉴라체크는 PET 검사로 조기진단이 쉽고, 편리하다는 이점이 있다"고 밝혔다.

정량분석의 필요성

Figure 1. Amyloid PET images are displayed of healthy control(HC) (A), mild cognitive impairment (MCI) (B) and Alzheimer's disease (AD)(C) by ^{18}F -florbetaben.

정량분석의 필요성

¹⁸F-Florbetaben

- ✓ 최근, 딥러닝을 활용한 이미지 분석의 정밀도가 좋아지고 있으며, 이를 의료 영상 분석에 응용
- ✓ 실제 병원에서 핵의학과, 영상의학과를 중심으로 인공지능을 이용
- ✓ 다양한 치매 환자를 대상으로 아밀로이드 PET 영상을 추출하여 CNN기반의 분석 알고리즘을 연구 중임

정확도

- 현재는 육안 판독 영상판독전문의 능력에 좌우
- 딥러닝 활용 영상 정량분석을 통한 정밀도 상승

신속성

- 영상판독 전문의 수 부족
- 1명당 많은 판독시간소요
- 딥러닝 이용시 단시간(실시간) 판독 가능

연구동향 및 상업화

- 원격진료의 가능성으로 상업화 가능
- 핵의학과, 영상의학과를 중심으로 인공지능을 이용중

연구배경 – 협업 모델

Springer

Medical Image Synt Networks

Dong Nie, Roger Trullo, Caroline P

MICCAI

Virtual PET Images 1 Initial Results

Avi Ben-Cohen, Eyal Klang, Stephe

ive Adversarial

utional Networks:

0 Jul 2017

Fig. 4. Sample results of the predicted PET using FCN and conditional GAN compared to the real PET.

문제점

- Data 전처리 과정이 필요
- Data 수가 부족
- Class Inbalance

Deep Convolutional Generative Adversarial Network

ICLR

DATA AUGMENTATION GENERATIVE ADVERSARIAL NETWORKS

Antreas Antoniou, Amos Storkey, Harrison Edwards, 12 Nov 2017

In our experiments we can see over 13% increase in accuracy in the low-data regime experiments in Omniglot (from 69% to 82%), EMNIST (73.9% to 76%) and VGG-Face (4.5% to 12%);

Figure 5: An Interpolated spherical subspace of the GAN generation space using a single real seed image (top left corner). The only real image in each figure is the one in the top-left corner, the rest are generated to augment that example using a DAGAN.

Omniglot DAGAN Augmented Classification							
Experiment ID	Samples Per Class	Test Accuracy					
Omni_5_Standard	5	0.689904					
Omni_5_DAGAN_Augmented	5	0.821314					
Omni_10_Standard	10	0.794071					
Omni_10_DAGAN_Augmented	10	0.862179					
Omni_15_Standard	15	0.819712					
Omni_15_DAGAN_Augmented	15	0.874199					
EMNIST DAGAN A	ugmented Classificat	ion					
Experiment ID	Samples Per Class	Test Accuracy					
EMNIST_Standard	15	0.739353					
EMNIST_DAGAN_Augmented	15	0.760701					
EMNIST_Standard	25	0.783539					
EMNIST_DAGAN_Augmented	25	0.802598					
EMNIST_Standard	50	0.815055					
EMNIST_DAGAN_Augmented	50	0.827832					
EMNIST_Standard	100	0.837787					
EMNIST_DAGAN_Augmented	100	0.848009					
Face DAGAN Aug	mented Classification	1					
Experiment ID	Samples Per Class	Test Accuracy					
VGG-Face_Standard	5	0.0446948					
VGG-Face_DAGAN_Augmented	5	0.125969					
VGG-Face_Standard	15	0.39329					
VGG-Face_DAGAN_Augmented	15	0.429385					
VGG-Face_Standard	25	0.579942					
VGG-Face_DAGAN_Augmented	25	0.584666					

관련 연구 마이다스 아이티 – Inbrain, MRI 분석

Springer

U-Net: Convolutional Networks for Biomedical Image Segmentation

O Ronneberger, P Fischer, T Brox, 18 Nov 2015

연구방법 – 전 처리 과정

Cropping & Normalization

Cropping

Before

After

Normalization

Before

After

Generative Adversarial Networks

Ian J. Goodfellow, 10 Jun 2014

1111555555 7779991111

	Deep directed graphical models	Deep undirected graphical models	Generative autoencoders	Adversarial models
Training	Inference needed during training.	Inference needed during training. MCMC needed to approximate partition function gradient.	Enforced tradeoff between mixing and power of reconstruction generation	Synchronizing the discriminator with the generator. Helvetica.
Inference	Learned approximate inference	Variational inference	MCMC-based inference	Learned approximate inference
Sampling	No difficulties	Requires Markov chain	Requires Markov chain	No difficulties
Evaluating $p(x)$	Intractable, may be approximated with AIS	Intractable, may be approximated with AIS	Not explicitly represented, may be approximated with Parzen density estimation	Not explicitly represented, may be approximated with Parzen density estimation
Model design	Nearly all models incur extreme difficulty	Careful design needed to ensure multiple properties	Any differentiable function is theoretically permitted	Any differentiable function is theoretically permitted

Generative Adversarial Networks

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

ICLR 2016

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL **GENERATIVE ADVERSARIAL NETWORKS**

Alec Radford & Luke Metz, 7 Jan 2016

Strided Convolutional Operation

연구방법 - CNN

Convolution

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Pooling

Convolved feature

Pooled feature

연구방법 - CNN

¹⁸F-Florbetaben – PET brain image CNN Algorithm Learning

연구방법 – CNN : AlexNet

competed in the ImageNet Large Scale Visual Recognition Challenge in 2012.

연구방법 – CNN : AlexNet

JAMA

Deep Learning at Chest Radiography Automated Classification of Pulmonary Tuberculosis by Using convolutional Neural Networks

P Lakhani, B Sundaram - Radiology, 2017

ROC

연구방법 – CNN : AlexNet

GoogleNet 22

cfg=[3,4,6,3]

cfg=[3,4,23,8]

50 layers

101 layers

Convolution Pooling Softmax Other

ResNet 152

실험환경

OS: Ubuntu 16.04 LTS

CPU: Intel® Core™ i7-6800K

RAM : 32GB

GPU: Geforce GTX 1080 X 2

연구결과 - 데이터 확장 & DCGAN

Real Data

DCGAN

연구결과 – 성능 평가 지표

정확도(Accuracy) =
$$\frac{n_{11}+n_{22}}{N}$$
 (N = $n_{11}+n_{12}+n_{21}+n_{22}$)

정확률(Precision) =
$$\frac{n_{11}}{n_{11}+n_{21}}$$
 # Positive 판단 안에서 얼마나 맞췄는가

재현률(Recall) =
$$\frac{n_{11}}{n_{11}+n_{12}}$$
 # 맞춰야 하는 것들 중 얼마나 맞췄는가

PRED LABEL	Class 1	Class 2
Class 1	n_{11}	n_{12}
Class 2	n_{21}	n_{22}

F-measure =
$$\frac{2 \times Precision \times Recall}{Precision + Recall}$$

연구결과 - 실험데이터

Case	Total HC	Total MCI	Total AD	Total Data	설명
Test1	97	26	78	201	전체201명 환자의 45번 슬라이스
Test2	291	78	234	603	전체 201명 환자의 44, 45, 46 슬라이스
Test3	582	156	468	1206	Test2의 영상으로부터 Rotation
Test4	873	234	702	1809	Test2의 영상으로부터 좌우Flip
Test5	1164	312	936	2412	Test2의 영상으로부터 상하 Flip
Test6	850	424	736	2010	Test 3의 영상과 DCGAN영상
Test7	1700	848	1472	4020	Test5의 영상과 DCGAN 영상
Test8	719	719	719	2157	Test3의 영상으로부터 DCGAN영상으로 밸런싱
Test9	847	847	847	4320	Test5의 영상으로부터 DCGAN 영상으로 밸런싱

Epoch: 50, Learning Rate: 0.0001, Batch Size: 20~300

				4.5	Total	Acc(%)	Recall(%)		
Case	Abstract	НС	MCI	AD	Test		НС	MCI	AD
Test1	45 slide	29	8	23	60	86.67	100	12.5	95.65
Test2	(44/45/46)	87	24	69	180	87.78	100	8.33	100
Test3	+deg20	174	48	138	360	88.33	95.98	31.25	98.55
Test4	+flip(L/R)	261	72	207	540	89.07	98.47	25	99.52
Test5	+flip(U/D)	348	96	276	720	90.28	98.85	31.25	100

Epoch: 50, Learning Rate: 0.0001, Batch Size: 20~300

C		LIC N	NACI	4.5	Total	Acc(%)	Recall(%)		
Case	Abstract	HC	MCI	AD	Test		НС	MCI	AD
Test6	+GAN 1	255	127	221	603	84.35	100	25.98	98.64
Test7	+GAN 2	510	254	442	1206	83.77	100	23.23	99.32
Test8	Balance 1	127	127	127	381	72	100	12.60	99.21
Test9	Balance 2	254	254	254	762	75.26	100	24.41	99.61

Test1

	Accuracy (%)	MCI Recall (%)	FP rate(%)	FN rate(%)
Test1	86.67	8.3	5	7.22
Degree20	88.33	31.25	8.05	3.61
Deg+Flip	90.28	31.25	5.83	3.89
Deg+Flip+DC GAN	83.77	23.23	7.96	8.46

요약

- Pretrained AlexNet 모델을 사용하여 ¹⁸F-FBB 아밀로이드 PET brain 영 상에서 HC, MCI, AD를 분류할 수 있었다.
- 인공지능 학습을 위한 인위적인 방법의 Data 증폭이 분석결과에 향상을 가져온다.
- GAN에 의한 Data 증폭 효과는 좋지 않았다.
- HC와 AD의 분석 결과는 임상적으로 만족할 만한 수준이었다.
- MCI의 경우 분석 결과가 좋지 않아서 Data 수를 보완하여야 한다.

결론

 정규화에 의한 전처리 과정을 거친 고품질의 알츠하이 머 영상 Database를 확보하여, CNN 알고리즘으로 학 습 가능하였고, 성능 지표가 향상되었으며 정량분석 사 용의 가능성을 확인하였다.

Q&A

감사합니다