Lagrange Duality

Yuanming Shi

ShanghaiTech University

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrangian

Consider an optimization problem in standard form (not necessarily convex)

with minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $h_i(m{x}) = 0$ $i=1,\cdots,p$

with variable $x \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^*

The Lagrangian is a function $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with

The Lagrangian is a function
$$L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$$
, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$, defined as $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^p \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x})$

where λ_i is the Lagrange multiplier associated with $f_i(\mathbf{x}) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(x) = 0$.

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Lagrange Dual Function I

The Lagrange dual function is defined as the infimum of the Lagrangian over $x: g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$egin{align} g(oldsymbol{\lambda}, oldsymbol{
u}) &= \inf_{oldsymbol{x} \in \mathcal{D}} L(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}) \ &= \inf_{oldsymbol{x} \in \mathcal{D}} \left(f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(oldsymbol{x}) + \sum_{i=1}^p
u_i h_i(oldsymbol{x})
ight) \end{aligned}$$

- **Observe that:**
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - g is concave regardless of original problem (infimum of affine functions)
 - functions) λ : $g \text{ can be } -\infty \text{ for some } \lambda, \nu$ f(M): point Wise supremum: if <math>|X,y| is convex in |X| $f(X,y) = \{x \in X \mid y \in X \mid y \in X \mid y \in X \text{ is convex}\}$

Lagrange Dual Function II

Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$. A Proof.

Suppose \tilde{x} is feasible and $\lambda \succeq 0$. Then, $f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$ Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^{\star} \geq g(\lambda, \nu)$.

We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Dual Problem

The Lagrange dual problem is defined as

maximize
$$g(\lambda, \nu) \leq p^{\lambda}$$
 Subject to $\lambda \geq 0$

- This problem finds the best lower bound on p^* obtained from the dual function
- It is a convex optimization (maximization of a concave function and linear constraints)
- The optimal value is denoted d^*
 - λ, ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation)

Example: Least-Norm Solution of Linear Equations I

Consider the problem

$$egin{array}{ll} ext{minimize} & m{x}^T m{x} \ ext{subject to} & m{A} m{x} = m{b} \end{array}$$

The Lagrangian is

$$L(\boldsymbol{x}, \boldsymbol{\nu}) = \boldsymbol{x}^T \boldsymbol{x} + \boldsymbol{\nu}^T (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})$$

To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\nu}) = 2\boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{\nu} = \boldsymbol{0} \Longrightarrow \boldsymbol{x} = -\frac{1}{2} \boldsymbol{A}^T \boldsymbol{\nu}$$

Example: Least-Norm Solution of Linear Equations II

dual trus HisM

and we plug the solution in L to obtain g:

$$g(\boldsymbol{\nu}) = L(-\frac{1}{2}\boldsymbol{A}^T\boldsymbol{\nu}, \boldsymbol{\nu}) = -\frac{1}{4}\boldsymbol{\nu}^T\boldsymbol{A}\boldsymbol{A}^T\boldsymbol{\nu} - \boldsymbol{b}^T\boldsymbol{\nu}$$

- The function g is, as expected, a concave function of ν .
 - From the lower bound property, we have

$$p^{\star} \geq -\frac{1}{4} \boldsymbol{\nu}^T \boldsymbol{A} \boldsymbol{A}^T \boldsymbol{\nu} - \boldsymbol{b}^T \boldsymbol{\nu}$$
 for all $\boldsymbol{\nu}$

The dual problem is the QP

maximize
$$-\frac{1}{4}\nu^{T}\overrightarrow{AA^{T}}\nu - b^{T}\nu$$

winimize $\neq v^{T}AA^{T}v + b^{T}v$

winimize $\neq v^{T}AA^{T}v + b^{T}v$

10

Example: Standard Form LP I

Consider the problem

minimize
$$c^T x$$
 subject to $Ax = b$, $x \ge 0$

The Lagrangian is
$$L(x, \lambda, \nu) = c^T x + \underline{\nu}^T (Ax - b) - \lambda^T x$$

$$= (c + A^T \nu - \lambda)^T x - b^T \nu$$

L is a linear function of x and it is unbounded if the term multiplying x is nonzero.

$$a^{T}X = \sum_{i} a_{i}X_{i} = \sum_{i} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \frac{\partial}$$

Example: Standard Form LP II

Hence, the dual function is

$$g(oldsymbol{\lambda}, oldsymbol{
u}) = \inf_{oldsymbol{x}} L(oldsymbol{x}, oldsymbol{\lambda}, oldsymbol{
u}) = \begin{cases} -oldsymbol{b}^T oldsymbol{
u} & c + oldsymbol{A}^T oldsymbol{
u} - oldsymbol{\lambda} = oldsymbol{0} \\ -\infty & \text{otherwise} \end{cases}$$

- The function g is a concave function of (λ, ν) as it is linear on an affine domain.
- From the lower bound property, we have

$$p^* \ge -\boldsymbol{b}^T \boldsymbol{\nu}$$
 if $\boldsymbol{c} + \boldsymbol{A}^T \boldsymbol{\nu} \succeq \boldsymbol{0}$

The dual problem is the LP

$$egin{array}{ll} ext{maximize} & -oldsymbol{b}^T oldsymbol{
u} \ ext{subject to} & oldsymbol{c} + oldsymbol{A}^T oldsymbol{
u} \succeq oldsymbol{0} \ \end{aligned}$$

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Weak and Strong Duality I

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- Hence, weak duality always holds (even for nonconvex problems):

- The difference $p^* d^*$ is called **duality gap**.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
- Even more interesting is when equality is achieved in weak duality. This is called **strong duality**:

$$d^{\star} = p^{\star} \quad \triangle$$

Weak and Strong Duality II

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

mu-convex problem also holds sometimes?

Slater's Constraint Qualification I

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality holds for a convex problem

minimize
$$f_0(m{x})$$
 formex subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

if it is strictly feasible, i.e.,

$$\exists \boldsymbol{x} \in \operatorname{int} \mathcal{D}: [f_i(\boldsymbol{x}) < 0] i = 1, \dots, m, \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$$

There exist many other types of constraint qualifications.

Example: Inequality Form LP

Consider the problem

$$egin{array}{ll} ext{minimize} & oldsymbol{c}^T oldsymbol{x} \ ext{subject to} & oldsymbol{A} oldsymbol{x} \preceq oldsymbol{b} \ \end{array}$$

The dual problem is

maximize
$$-m{b}^T m{\lambda}$$
 subject to $m{A}^T m{\lambda} + m{c} = m{0}, \quad m{\lambda} \succeq m{0}$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ except when primal and dual are infeasible.

Example: Convex QP

ightharpoonup Consider the problem (assume $P \succeq 0$)

minimize
$$x^T P x$$
 subject to $Ax \leq b$

The dual problem is

maximize
$$-\frac{1}{4} \boldsymbol{\lambda}^T \boldsymbol{A} \boldsymbol{P}^{-1} \boldsymbol{A}^T \boldsymbol{\lambda} - \boldsymbol{b}^T \boldsymbol{\lambda}$$
 subject to
$$\boldsymbol{\lambda} \succeq \mathbf{0}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} \prec b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ always.

Complementary Slackness

Assume strong duality holds, x^* is primal optimal and (λ^*, ν^*) is dual optimal. Then

$$f_0(\boldsymbol{x}^\star) = g(\boldsymbol{\lambda}^\star, \boldsymbol{\nu}^\star) = \inf_{\boldsymbol{x}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^\star f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i^\star h_i(\boldsymbol{x}) \right)$$

$$\leq f_0(\boldsymbol{x}^\star) + \sum_{i=1}^m \lambda_i^\star f_i(\boldsymbol{x}^\star) + \sum_{i=1}^p \nu_i^\star h_i(\boldsymbol{x}^\star)$$

$$\leq f_0(\boldsymbol{x}^\star)$$

- Hence, the two inequalities must hold with equality. Implications:

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(\boldsymbol{x}^{\star}) = 0, \quad f_i(\boldsymbol{x}^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Outline

- 1 Lagrangian
- 2 Dual Function
- 3 Dual Problem
- 4 Weak and Strong Duality
- 5 KKT conditions

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i, h_i):

primal feasibility:

$$f_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p$$

dual feasibility: $\lambda \succeq 0$

3 complementary slackness: $\lambda_i f_i(\boldsymbol{x}) = 0$ for $i = 1, \dots, m$

4 zero gradient of Lagrangian with respect to x: (Not here stary lowery)

$$abla f_0(x)$$

Squality gap =
$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = \mathbf{0}$$

KKT condition

What about the opposite statement?

If x, λ, ν satisfy the KKT conditions for a convex problem, then they are optimal.

are optimal.
$$L(X; \lambda, \nu) = f_0(X) + \frac{M}{2} \lambda_i f_i(X) + \frac{1}{2} \nu_i h_i(X)$$
of.

Proof.

From complementary slackness, $f_0(\hat{x}) = L(\hat{x}, \lambda, \nu)$ and, from 4th KKT condition and convexity, $g(\lambda, \nu) = L(\hat{x}, \lambda, \nu)$. Hence, $f_0(x) = g(\lambda, \nu)$.

$$\Re L(X;\lambda,\nu)=0$$
, $g(\lambda,\nu)=\inf_{X}L(X;\lambda,\nu)$

Theorem

If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ , ν that satisfy the KKT conditions.

CONVEX optimisation Subject to $fi(x) \le 0$, i=1,..., M $fi(x) \le 0$, i=1,..., M $fi(x) \le 0$, i=1,..., M $fi(x) \le 0$, $fi(x) \le$

Conic optimization (primal-dual problem)

minimize C^TX minimize C^TX subject to $-A^Ty+Y=C$ full felt to AX+S=b $(Y,Y) \in \{0\}^TXK^*$ And come of K

Proof: minimize C^TX $(X,s) \in D$ Subject to AX+S = b

$$g(y) = \inf C^{T}X + \langle Y, AX + S - b \rangle$$

$$(X, S) \in D$$

$$= -b^{T}Y + \inf \{ (C, X) + \langle Y, AX + S \rangle \}$$

$$(X, S) \in D$$

$$= -b^{T}Y + \inf \{ (C + A^{T}Y, X) + \inf \{ (Y, S) \}$$

$$S \in X$$

$$X \in \mathbb{R}^{n}$$

$$CD = CfA^{T}Y = D$$

(definition) convex come
$$k$$
: for all $X \in X$

$$\frac{\lambda k \in K, \ \forall \lambda \neq 0}{\text{dual whe } \chi^{\dagger}: \ \chi^{\star} = \begin{cases} \exists \in \mathbb{R}^{n}: \ \angle z \cdot x_{2} \neq 0, \\ \forall x \in K \end{cases}$$

 $||y \in \chi^* = \rangle \langle y, s_2 \gamma_0, \forall s \in \chi$ $||\chi s \in \chi, \forall \lambda > 0$ $||\chi s \in \chi, \forall \lambda > 0$

KKT Conditions

1)- primal feasible: Axts=b. XERM, SEX

2)-dual feasible: ATY+C=Y, Y=O, YEK*

2)-complementary slockness: CTX+bT/=0

(strong duality)

1

KKT SYSEEM

ATY+C7 = Y

homogeous self-dual $-A \times f b z = S$ embedding system $C^{T}X + b^{T}Y + K = 0$

(X, S, 2, Y, Y, K) \in R^MXXXRt X $\stackrel{?}{>}03$ X K $\stackrel{?}{>}$ R_t

| Solver: SDPT3, MOSEK, Schrim

Any solution of the self-dual enbedding

(X, S, 2, Y, Y, K) talls into one of three cases:

(X, S, 2, Y, Y, K) talls into one of three cases:

($\stackrel{?}{x}$, $\stackrel{?}{y}$, $\stackrel{?}{s}$) = ($\stackrel{?}{z}$, $\stackrel{?}{z}$, $\stackrel{?}{z}$)

catisfies the KKT conditions =)

a primal-dual optimal solution

2.200, K20 => CTX+by/(D=) either pinn or dual inteasible? Theorem: certificates of infeasibility (sect. 5.8) If strong mulity holds, then exactly one of the sets OP= {(X,5): AX+s=b, SEx}: enodes primal @ 0 = { y: ATY = 0, YEX*, 67/ < 03 is non-empty.

The overn of strong alternatives:

Any dual variable ytD serves as a proof or

certificate that the set P is empty, i.e.,

the problem is primal intensible

Similarly, exactly one of the fillowing two sass is non-empty:

 $\mathfrak{O}\widetilde{p} = \{X: -AXEY, C^TX < 0\}$

 $\Theta \widetilde{p} = \{y: A^{T}y = -C, y \in X^{*}\}: dual feasible claim: any primal vaniable <math>\underline{\gamma} \in \widetilde{p}$ is a contitione of dual infeasibility

2.250, K70 => CTX + bT/ < D =>
either pinn or dual infeasible?

1) it $b^{-}y < 0$, then $\hat{y} = \frac{y}{b^{-}y}$ is a fortificate of primal infeasibility (i.e., D is non-empty), since $A^{-}\hat{y} = \frac{y}{b^{-}y} = 0$, $\hat{y} \in \mathcal{X}^{*}$, $\hat{b}^{-}\hat{y} = -\frac{1}{20}$

2) if $C^TX < 0$, then $\hat{X} = \frac{X}{-C^TX}$ is a constitute of dual infeasibility (i.e., pis non-empty) sine $-A\hat{X} = \frac{S}{-C^TX} + K, \quad C^T\hat{X} = \frac{1}{20}$ 3) CTX < 0, bTy < 0 => both primal and dual inteasible Strong duality assumption is violated! 3. 2= K=0, nothing can be concluded, can be avoided.

Reference

Chapter 5 of:

Stephen Boyd and Lieven Vandenberghe, *Convex Optimization*. Cambridge, U.K.: Cambridge University Press, 2004.