

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta elektrotechnická Katedra elektrických pohonů a trakce

Tvorba modelu asynchronního motoru

1. úloha předmětu XP14DES

OBSAH

1	Rovnice asynchronního motoru - využívané pro řízení	1		
1.1	Rovnice pro soustavu spojenou se statorovým vinutím	1		
1.2	Rovnice pro soustavu spojenou s rotorovým vinutím			
1.3	Rovnice pro soustavu spojenou s točivým magnetickým polem			
2	Rovnice asynchronního motoru - využívané pro modelování	3		
3	Simulované závislosti elektromechanického momentu na otáčkách stroje	4		
3.1	Změna rezistivity rotorového vinutí	5		
3.2	Změna rezistivity statorového vinutí	5		
3.3	Změna magnetizační indukčnosti stroje	6		
3.4	Změna rozptylové indukčnosti statorového vinutí stroje			
3.5	Změna rozptylové indukčnosti rotorového vinutí stroje	7		
	Zhodnocení	8		
	Literatura	9		
Příloha	A Seznam symbolů a zkratek	10		
A.1	Seznam zkratek	10		
A.2	Seznam symbolů			

SEZNAM OBRÁZKŮ

3 - 1	Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při	
	změně rezistivity rotorového viutí o $\pm 10\%$.	5
3 - 2	Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při	
	změně rezistivity statorového viutí o $\pm 10\%$.	5
3 - 3	Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při	
	změně magnetizační indukčnosti o $\pm 10\%$.	6
3 - 4	Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při	
	změně rozptylové indukčnosti statorového vinutí o $\pm 10\%$	6
3 - 5	Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při	
	změně rozptylové indukčnosti rotorového vinutí o $\pm 10\%$.	7

SEZNAM TABULEK

3 - 1	Štítkové údaje stroje.	4
3 - 2	Změřené parametry stroje.	4

1 Rovnice asynchronního motoru - využívané pro řízení

Rovnice pro ASM je možné odvodit při uvažování následujících zjednodušení:

- tloušťka vzduchové mezery je po celém obvodu mezi rotorem a statorem konstatní,
- statorová a rotorová vinutí jsou rozložena podél obvodu vzduchové mezery sinusově, vinutí jednotlivých fází jsou proti vůči sobě natočeny o 120°,
- ztráty v železe jsou zanedbány,
- není uvažováno sycení magnetického obvodu,
- aktivní železo stroje má nekonečnou relativní permeabilitu,
- statorová a rotorová vinutí jsou souměrná, tj. činné odpory, indukčnosti a vzájemné indukčnosti jednotlivých fází jsou identické.

Při uvažování uvedených zjednodušení je poté možné vyjádřit rovnice matematického modelu stroje v obecném souřadnicovém systému *k* (s využitím prostorových vektorů).

$$\underline{u_1^k} = R_1 \underline{i_1^k} + \frac{\mathrm{d}\psi_1^k}{\mathrm{d}t} + \mathrm{j}\omega_k \underline{\psi_1^k},\tag{1-1}$$

$$\underline{u_2^k} = R_2 \underline{i_2^k} + \frac{\mathrm{d}\psi_2^k}{\mathrm{d}t} + \mathrm{j}(\omega_k - \omega)\underline{\psi_2^k},\tag{1-2}$$

$$\psi_1^k = L_1 i_1^k + L_m i_2^k, \tag{1-3}$$

$$\psi_2^k = L_2 i_2^k + L_m i_1^k. \tag{1-4}$$

Kde k v horním indexu značí obecný souřadnicový systém, $\underline{u_1^k}$ (V) značí prostorový vektor napětí statorového vinutí, $\underline{u_2^k}$ (V) prostorový vektor napětí rotorového vinutí, $\underline{\psi_1^k}$ (Wb) prostorový vektor spřaženého magnetického toku statorového vinutí, $\underline{\psi_2^k}$ (Wb) prostorový vektor spřaženého magnetického toku rotorového vinutí, R_1 (Ω) rezistivita statorového vinutí, R_2 (Ω) rezistivita rotorového vinutí, $\underline{i_1^k}$ (A) prostorový vektor proudu rotorového vinutí, $\underline{i_2^k}$ (A) prostorový vektor proudu rotorového vinutí, $\underline{u_3^k}$ (S) elektrická skluzová rychlost, ω_k (S⁻¹) obecná elektrická úhlová rychlost, L_1 (H) indukčnost statorového vinutí, L_2 (H) indukčnost rotorového vinutí.

V tomto textu jsou rovnice uvedeny obecně. Ovšem velmi často bývá uvažován ASM s kotvou nakrátko. Pro jeho model je možné uvažovat $u_2^k=0$.

1.1 Rovnice pro soustavu spojenou se statorovým vinutím

V případě uvažování souřadné soustavy spojené se statorovým vinutím stroje, je možné upravit a zjedodušit rovnice popisující systém dle následujících vztahů. Souřadnicový systém spojený se statorovým vinutím se v literatuře často označuje jako systém $\alpha\beta$. Pro obecnou otáčivou rychlost ω_k soustavy platí $\omega_k = 0$. Rovnice popisující model v uvedeném souřadnicovém systému jsou označeny 1 - 5 až 1 - 8.

$$\underline{u_1^{\alpha\beta}} = R_1 \underline{i_1^{\alpha\beta}} + \frac{\mathrm{d}\psi_1^{\alpha\beta}}{\mathrm{d}t},\tag{1-5}$$

$$\underline{u_2^{\alpha\beta}} = R_2 \underline{i_2^{\alpha\beta}} + \frac{\mathrm{d}\psi_2^{\alpha\beta}}{\mathrm{d}t} - \mathrm{j}\omega\underline{\psi_2^{\alpha\beta}},\tag{1-6}$$

$$\psi_1^{\alpha\beta} = L_1 i_1^{\alpha\beta} + L_m i_2^{\alpha\beta}, \tag{1-7}$$

$$\psi_2^{\alpha\beta} = L_2 i_2^{\alpha\beta} + L_{\rm m} i_1^{\alpha\beta}. \tag{1-8}$$

1.2 Rovnice pro soustavu spojenou s rotorovým vinutím

V případě uvažování modelu ASM v souřadnicovém systému spojeném s rotorovým vinutím platí pro obecnou otáčivou rychlost $\omega_k = \omega$, kde ω (s⁻¹) je elektrická úhlová rychlost otáčení rotoru. Souřadnicový systém je možné označit jako kl. Rovnice popisující model v uvedeném souřadnicovém systému jsou označeny 1 - 9 až 1 - 12.

$$\underline{u_1^{kl}} = R_1 \underline{i_1^{kl}} + \frac{\mathrm{d}\psi_1^{kl}}{\mathrm{d}t} + \mathrm{j}\omega\underline{\psi_1^k},\tag{1-9}$$

$$\underline{u_2^{kl}} = R_2 \underline{i_2^{kl}} + \frac{d\psi_2^{kl}}{dt},\tag{1-10}$$

$$\underline{\psi_1^{kl}} = L_1 \underline{i_1^{kl}} + L_{\rm m} \underline{i_2^{kl}},\tag{1-11}$$

$$\underline{\psi_2^{kl}} = L_2 \underline{i_2^{kl}} + L_{\rm m} \underline{i_1^{kl}}.$$
 (1 - 12)

1.3 Rovnice pro soustavu spojenou s točivým magnetickým polem

Souřadnicový systém spojený s točivým magnetickým polem je velmi často označován jako systém dq. Pro obecnou úhlovou rychlost platí $\omega_k = \omega_1$, kde ω_1 (s⁻¹) je elektrická úhlová rychlost točivého magnetického pole statoru, resp. rotoru. Rovnice popisující model v uvedeném souřadnicovém systému jsou označeny 1 - 13 až 1 - 16.

$$\underline{u_1^{dq}} = R_1 \underline{i_1^{dq}} + \frac{d\psi_1^{dq}}{dt} + j\omega_1 \psi_1^{dq}, \qquad (1-13)$$

$$\underline{u_2^{dq}} = R_2 \underline{i_2^{dq}} + \frac{\mathrm{d}\psi_2^{dq}}{\mathrm{d}t} + \mathrm{j}(\omega_1 - \omega)\underline{\psi_2^{dq}},\tag{1-14}$$

$$\underline{\psi_1^{dq}} = L_1 \underline{i_1^{dq}} + L_m \underline{i_2^{dq}}, \tag{1-15}$$

$$\psi_2^{dq} = L_2 i_2^{dq} + L_{\rm m} i_1^{dq}. \tag{1-16}$$

Velmi často se rozdíl $\omega_1 - \omega$ označuje jako skluzuvá rychlost ω_s (s⁻¹).

2 Rovnice asynchronního motoru - využívané pro modelování

Představené rovnice jsou vhodné např. pro modelování stroje při využívání vektorového řízení, orientovaného na rotorový tok (Field Oriented Control, FOC). Existuje mnoho dalších vyjádření představených rovnic podle toho, co je od modelu očekáváno a jaké veličiny je snadné měřit a které je snadnější dopočítávat pomocí modelu.

Velmi často se v literatuře objevuje stavový popis modelu stroje s různými stavovými veličinami. V případě již zmiňovaného FOC se jako stavových proměnných využívá prostorových vektorů proudu statorového vinutí $\underline{i_1}^k$ např. v souřadnicové soustavě spojené se statorovým vinutím $(\underline{i_1^{\alpha\beta}})$ a spřažených magnetických toků rotorového vinutí $\underline{\psi_2^k}$ (opět např. vyjádřených v systému spojeném se statorovým vinutím $\psi_2^{\alpha\beta}$).

V [1] jsou uvedeny stavové popisy pro představený systém v souřadnicích $\alpha\beta$ v poměrných jednotkách. Pokud poměrné jednotky nejsou využívány, je možné modely převést na zjednodušené popisy v absolutních jednotkách, jako je tomu např. v [2].

Model implementovaný v prostředí MATLAB je převzat ze stavového popisu uvedeného v [2]. Tento stavový popis je uveden v rovnici 2 - 1.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} i_{1\alpha} \\ i_{1\beta} \\ \psi_{2\alpha} \\ \psi_{2\beta} \end{bmatrix} = \begin{bmatrix} -\frac{R_2 L_{\mathrm{m}}^2 + L_2^2 R_1}{\sigma L_1 L_2^2} & 0 & \frac{L_{\mathrm{m}} R_2}{\sigma L_1 L_2^2} & \frac{L_{\mathrm{m}}}{\sigma L_1 L_2} \omega \\ 0 & -\frac{R_2 L_{\mathrm{m}}^2 + L_2^2 R_1}{\sigma L_1 L_2^2} & -\frac{L_{\mathrm{m}}}{\sigma L_1 L_2} \omega & \frac{L_{\mathrm{m}} R_2}{\sigma L_1 L_2^2} \\ \frac{L_{\mathrm{m}} R_2}{L_2} & 0 & -\frac{R_2}{L_2} & -\omega \\ 0 & \frac{L_{\mathrm{m}} R_2}{L_2} & \omega - \frac{R_2}{L_2} & \omega \end{bmatrix} \begin{bmatrix} i_{1\alpha} \\ i_{1\beta} \\ \psi_{2\alpha} \\ \psi_{2\beta} \end{bmatrix} + \begin{bmatrix} \frac{1}{\sigma L_1} & 0 \\ 0 & \frac{1}{\sigma L_1} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1\alpha} \\ u_{2\beta} \end{bmatrix}. \tag{2-1}$$

Stavový popis je vhodné doplnit o další rovnice, jež budou v simulaci využity.

$$M = \frac{3}{2} p_{\rm p} \frac{L_{\rm m}}{L_2} (\psi_{2\alpha} i_{1\beta} - \psi_{2\beta} i_{1\alpha}), \tag{2-2}$$

$$M - M_{\rm z} = J \frac{\mathrm{d}\Omega}{\mathrm{d}t},\tag{2-3}$$

$$\omega = p_{\rm p}\Omega,\tag{2-4}$$

kde $\sigma=1-L_{\rm m}^2/(L_1L_2)$ (-) je tzv. rozptyl, $i_{1\alpha}$ (A) a $i_{1\beta}$ (A) jsou složky vektoru statorového proudu $\underline{i_1}$ (A), $\psi_{2\alpha}$ (Wb) a $\psi_{2\beta}$ (Wb) jsou složky vektoru rotorového magnetického toku $\underline{\psi_2}$ (Wb), $u_{1\alpha}$ (V) a $u_{1\beta}$ (V) jsou složky statorového napětí $\underline{u_1}$ (V), $p_{\rm p}$ (-) je počet polpárů stroje, ω (s⁻¹) je elektrická úhlová rychlost hřídele, Ω (s⁻¹) je mechanická úhlová rychlost hřídele, M je vnitřní elektromechanický moment stroje a M (Nm) je moment zátěžný.

Velmi často dochází k porovnání dynamické a statické charakteristiky elektromechanického momentu stroje. Závislost hnacího momentu na skluzu, resp. úhlové rychlosti točivého magnetického pole je uvedena v rovnici 2 - 5.

$$M = \frac{3p_{\rm p}U_1^2}{s\omega_1} \frac{1}{(R_1 + \frac{R_2}{s})^2 + (\omega_1 L_{1\sigma} + s \,\omega_1 L_{2\sigma})^2},\tag{2-5}$$

kde s (-) je skluz, ω_1 (s⁻¹) je úhlová rychlost točivého magnetického pole, U_1 (V) efektivní hodnota fázového napájecího napětí, v tomto případě je využito jmenovitého napětí motoru $380/\sqrt{3}$ V.

3 Simulované závislosti elektromechanického momentu na otáčkách stroje

Díky matematickému modelu stroje, vytvořeném v prostředí MATLAB Simulink, je možné vynést charakteristiky určitých veličin, které jsou v reálném prostředí neměřitelné. V případě této práce je vynesena závislost elektromechanického (hnacího) momentu stroje na otáčkách stroje při změně vybraných veličin.

Vybrané veličiny jsou následující:

- velikost rezistivity rotorového vinutí/kotvy stroje R_2 (např. při změně oteplení stroje),
- velikost rezistivity statorového vinutí R_1 (např. při změně oteplení stroje),
- velikost magnetizační indukčnosti stroje $L_{\rm m}$,
- velikost rozptylové indukčnosti statorového vinutí $L_{1\sigma}$,
- velikost rozptylové indukčnosti rotorového viutí $L_{2\sigma}$.

Model stoje byl vytvořen na základě reálného stroje, umístěného v laboratoři H-26. Vinutí stroje je spojeno do hvězdy.

Tab. 3 - 1 Štítkové údaje stroje.

P_{n}	12 kW
U_{n}	380 V
$I_{\rm n}$	22 A
n_{n}	1460 min ⁻¹
f_{n}	50 Hz
$\cos(\varphi_n)$	0.8
p_{p}	2

Tab. 3 - 2 Změřené parametry stroje.

R_1	$370~\mathrm{m}\Omega$
R_2	$225 \text{ m}\Omega$
$L_{1\sigma}$	2,27 mH
$L_{2\sigma}$	2,27 mH
L_{m}	82,5 mH
L_1	84,77 mH
L_2	84,77 mH
\overline{J}	$0,4 \text{ kg}\cdot\text{m}^2$

Kde P_n (W) je jmenovitý výkon stroje, I_n (A) je jmenovitý fázový proud stroje (efektivní hodnota), U_n (V) je jmenovité sdružené napájací napětí stroje (efektivní hodnota), f_n (Hz) je jmenovitá napájecí frekvence stroje, $\cos(\varphi_n)$ (—) je jmenovitý účinník stroje, n_n (min⁻¹) jsou jmenovité otáčky stroje, p_p (—) je počet polpárů stroje, R_1 (Ω), resp. R_2 (Ω) je statorový, resp. rotorový odpor, $L_{1\sigma}$ (H), resp. $L_{2\sigma}$ (H) je statorová, resp. rotorová indukčnost stroje, L_m (H) je magnetizační indukčnost stroje, L_1 (H), resp. L_2 (H) je statorová, resp. rotorová indukčnost, L_2 (R) je moment setrvačnosti hřídele.

3.1 Změna rezistivity rotorového vinutí

Obr. 3 - 1 Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při změně rezistivity rotorového viutí o $\pm 10\%$.

3.2 Změna rezistivity statorového vinutí

Obr. 3 - 2 Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při změně rezistivity statorového viutí o $\pm 10\%$.

3.3 Změna magnetizační indukčnosti stroje

Obr. 3 - 3 Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při změně magnetizační indukčnosti o $\pm 10\%$.

3.4 Změna rozptylové indukčnosti statorového vinutí stroje

Obr. 3 - 4 Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při změně rozptylové indukčnosti statorového vinutí o $\pm 10\%$.

3.5 Změna rozptylové indukčnosti rotorového vinutí stroje

Obr. 3 - 5 Závislost elektromechanického hnacího momentu M na otáčkách stroje, vynesená při změně rozptylové indukčnosti rotorového vinutí o $\pm 10\%$.

Zhodnocení

Z představených průběhů závislosti elektromechanického momentu stroje M na otáčkách n je možné vypozorovat, že největší vliv na změnu průběhu má změna rezistivity rotoru R_2 a změna rozptylové indukčnosti statorového vinutí $L_{1\sigma}$ a rotoru $L_{2\sigma}$.

Při zvýšení rezistivity rotoru dochází dle teorie k "pokládání" charakteristiky a zvýšení záběrného momentu stroje. Proto jeden z možných způsobů rozběhu stroje s vinutou kotvou je rozběh se zvýšením rotorového odporu. Zvýšení rezistivity může být také zapříčeněno ohřevem stroje.

Změna velikosti rezistivity statorového vinutí se projevuje opačným způsobem, než změna rezistivity rotoru. Při snížení rezistivity vinutí dochází ke zvýšení velikosti elektromechanického momentu stroje nad hodnotu, než která je pozorována při původní měřené hodnotě rezistivity. Naopak při zvýšení rezistivity vinutí dochází ke snížení vnitřního elektromechanického momentu.

Zvýšení rozptylové indukčnosti statorového vinutí a rotoru se opět projevuje opačným způsobem, než změna rezistivity rotoru. Při snížení indukčnosti dochází ke zvýšení hodnoty elektromechanického momentu při určitých otáčkách stroje. Při zvýšení rozptylové indukčnosti ke snížení momentu. Z teoretických předpokladů je zřejmé, že je vyžadována co nejmenší hodnota rozptylového magnetického toku, který se uzavírá cestami, které jsou odlišné od cesty hlavního magnetizačního toku. Simulace tento předpoklad potvrzuje.

Změna magnetizační indukčnosti $L_{\rm m}$ prakticky nemá vliv na představenou závislost elektromechanického momentu.

Pozorované změny odpovídají teoretickým předpokladům o změně statické charakteristiky vnitřního elektromechanického momentu stroje na otáčkách a je je tudíž možné aplikovat i na dynamickou závislost elektromechanického momentu.

Literatura

- [1] M., Popescu. Induction Motor Modelling for Vector Control Purposes. In: *Helsinki University of Technology, Laboratory of Electromechanics* [online]. 2000 [cit. 2023-10-14]. Dostupné z: https://avys.omu.edu.tr/storage/app/public/mustafa.aktas/110896/induction_motor_modelling.pdf.
- [2] LIPČÁK, Ondřej; BAUER, Jan. Doprovodný materiál k přednáškám. In: *Materiál k přednáškám a cvičení v předmětu B1M14EPT* [online]. [B.r.] [cit. 2023-02-28]. Dostupné z: https://moodle.cvut.cz.

Appendix A: Seznam symbolů a zkratek

A.1 Seznam zkratek ASM Asynchronní Motor **FOC** Field Oriented Control

A.2	Seznam s	ymbolů
f_{n}	(Hz)	jmenovitá napájecí frekvence
I_{n}	(A)	jmenovitý fázový proud stroje
$\underline{i_1^k}$	(A)	prostorový vektor proudu statorového vinutí
$rac{i_1^k}{i_2^k} \ \overline{J}$	(A)	prostorový vektor proudu rotorového vinutí
J	$(kg \cdot m^2)$	moment setrvačnosti
$L_{1\sigma}$	(H)	rozyptylová indukčnost statorového vinutí
L_1	(H)	indukčnost statorového vinutí
$L_{2\sigma}$	(H)	rozyptylová indukčnost rotorového vinutí
L_2	(H)	indukčnost rotorového vinutí
L_{m}	(H)	magnetizační indukčnost
ω_1	(s^{-1})	elektrická úhlová rychlost točivého magnetického
		pole
$\omega_{\mathbf{k}}$	(s^{-1})	obecná elektrická úhlová rychlost
Ω	(s^{-1})	mechanická úhlová rychlost
$\omega_{ m s}$	(s^{-1})	skluzová elektrická úhlová rychlost
ω	(s^{-1})	elektrická úhlová rychlost rotoru
P_{n}	(W)	jmenovitý výkon
$\cos(\varphi_1$	n) (-)	jmenovitý účinník
M	(Nm)	zátěžný moment
M	(Nm)	vnitřní elektromechanický moment stroje
n_{n}	(\min^{-1})	jmenovité otáčky
p_{p}	(-)	počet polpárů stroje
$\underline{\psi_1^k}$	(Wb)	prostorový vektor spřaženého magnetického toku
		statorového vinutí
ψ_2^k	(Wb)	prostorový vektor spřaženého magnetického toku
		rotorového vinutí
R_1	(Ω)	rezistivita statorového vinutí
R_2	(Ω)	rezistivita rotorového vinutí
s	(-)	skluz
U_{n}	(V)	jmenovité sdružené napětí
U_1	(V)	efektivní hodnota fázového napájecího napětí
u_1^k	(V)	prostorový vektor napětí statorového vinutí
$\frac{u_1^k}{u_2^k}$	(V)	prostorový vektor napětí rotorového vinutí
<u> </u>		