Linear Algebra I – Final Exam 1

Junwoo Yang

May 10, 2018

- 1. Mark each of the following true or false.
 - (1) If U is a reduced row echelon form of A, then C(A) = C(U) where C(A) and C(U) are column spaces of A and U.
 - (2) If $A \sim B$, then rank(A) = rank(B).
 - (3) There is a 2×3 matrix A such that $A^{T}A$ is invertible.
 - (4) $\dim(\mathcal{L}(R^2, R^4)) = 6$.
 - (5) Let $W = \{(x_1, x_2, x_3, x_4) \mid x_1 2x_2 + 3x_3 = 0\}$, then $\dim(W) = 2$.
- **2.** Let B = PA where P is an invertible matrix and B is a reduced row echelon form of nonzero matrix $A \in \text{Mat}_{m \times n}$. Prove or disprove that P is unique.
- **3.** Let A be a 4×6 matrix with rank(A) = 4. Prove or disprove that AX = B has always infinitely many solutions for any 4×1 matrix B.
- **4.** Prove or disprove that if $A^2 = A$ and $A \neq 0$, then AX = 0 has a unique solution.
- **5.** Let $AB = I_n$ for $n \times n$ matrices A and B. Show that $BA = I_n$.
- **6.** Find a rank of *A* as a function of $x : A = \begin{pmatrix} 2 & 2 & -6 & 8 \\ 3 & 3 & -9 & 8 \\ 1 & 1 & x & 4 \end{pmatrix}$.
- **7.** Let $[T]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 3 & 0 & 0 \end{pmatrix}$ for $T \in \mathcal{L}(V, W)$ where $\alpha = \{v_1, v_2, v_3, v_4\}$ is a basis of V and $\beta = \{w_1, w_2, w_3\}$ is a basis of W. Find a basis of im(T) and ker(T).
- **8.** Let the reduced row echelon form of A be $\begin{pmatrix} 1 & 0 & 3 & 0 & 1 \\ 0 & 1 & -2 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$. Determine A if the first, second, and fourth columns of A are $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$, respectively.
- **9.** Let $\alpha = \{1, x, x^2\}$ be an ordered basis of $P_2(R)$ and $\beta = \{e_1, e_1 + e_2, e_1 + e_2 + e_3\}$ be an ordered basis of R^3 . If $T \in \mathcal{L}(P_2(R), R^3)$ is defined as $T(f) = \left[f + f' + f^{(2)}\right]_{\alpha}$.
 - (1) Show that T is an isomorphism.
 - (2) Find $[T]^{\beta}_{\alpha}$ and $[T^{-1}]^{\alpha}_{\beta}$.
 - (3) Find $[T^{-1}(a, b, c)]_{\alpha}$.
- **10.** Let $v_1 = (1, 3, -2, 2, 3)$, $v_2 = (1, 4, -3, 4, 2)$, $v_3 = (1, 3, 0, 2, 3)$, $w_1 = (2, 3, -1, -2, 9)$, $w_2 = (1, 5, -6, 6, 1)$, $w_3 = (2, 4, 4, 2, 8)$. For $V = \langle v_1, v_2, v_3 \rangle$ and $W = \langle w_1, w_2, w_3 \rangle$, find a basis of $V \cap W$.