

## **AU OPTRONICS CORPORATION**

# **Product Specification**

### 12.1" WXGA Color TFT-LCD Module

Model Name: B121EW07 V1

| Approved by                                        | Prepared by |  |  |  |  |
|----------------------------------------------------|-------------|--|--|--|--|
|                                                    |             |  |  |  |  |
|                                                    |             |  |  |  |  |
|                                                    |             |  |  |  |  |
| NBBU Marketing Division / AU Optronics corporation |             |  |  |  |  |

| Customer | Checked & Approved by |
|----------|-----------------------|
|          |                       |
|          |                       |
|          |                       |



12.1" WXGA Color TFT-LCD Module Model Name: B121EW07 V.1

(V) Preliminary Specifications
() Final Specifications

Note: This Specification is subject to change without notice.



# **Contents**

| 1. Handling Precautions                       | 5  |
|-----------------------------------------------|----|
| 2. General Description                        | 6  |
| 2.1 General Specification                     | 6  |
| 2.2 Optical Characteristics                   | 7  |
| 3. Functional Block Diagram                   | 11 |
| 4. Absolute Maximum Ratings                   | 12 |
| 4.1 Absolute Ratings of TFT LCD Module        | 12 |
| 4.2 Absolute Ratings of Backlight Unit        | 12 |
| 4.3 Absolute Ratings of Environment           | 12 |
| 5. Electrical characteristics                 | 13 |
| 5.1 TFT LCD Module                            | 13 |
| 5.2 Backlight Unit                            |    |
| 6. Signal Characteristic                      | 16 |
| 6.1 Pixel Format Image                        | 16 |
| 6.2 The input data format                     | 17 |
| 6.3 Signal Description / PIN Assignment       | 18 |
| 6.4 Interface Timing                          | 20 |
| 6.5 Power ON/OFF Sequence                     |    |
| 7. Connector & Pin Assignment                 | 22 |
| 7.1 TFT LCD Module                            |    |
| 8. LED Driving Specificaton                   | 22 |
| 8.1 Connector Description                     | 23 |
| 8.2 PIN Assignment                            |    |
| 9. Vibration and Shock Test                   | 24 |
| 9.1 Vibration Test                            |    |
| 9.2 Shock Test Spec:                          |    |
| 10. Reliability                               |    |
| 11. Mechanical Characteristics                |    |
| 11.1 LCM Outline Dimension                    |    |
| 11.2 Screw Hole Depth and Center Position     |    |
| 12. Shipping and Package                      | 29 |
| 12.1 Shipping Label Format                    |    |
| 12.2. Carton package                          |    |
| 12.3 Shipping package of palletizing sequence |    |
| 13. Appendix: EDID description                | 31 |





# **Record of Revision**

| Vers | sion and Date | Page  | Old description | New Description                                      | Remark |
|------|---------------|-------|-----------------|------------------------------------------------------|--------|
| 0.1  | 2007/06/22    | All   |                 | First Edition for Customer                           |        |
| 0.2  | 2007/07/10    | 32    |                 | revise EDID for model name                           |        |
| 0.3  | 2007/08/14    | 5     |                 | Add item 13 in handing precautions                   |        |
|      |               | 6     |                 | Update general specification                         |        |
|      |               | 7     |                 | Update optical characteristic                        |        |
|      |               | 11    |                 | Update functional block diagram                      |        |
|      |               | 12    |                 | Update absolute maximum ratings                      |        |
|      |               | 13    |                 | Add condition in Power Specification                 |        |
|      |               | 15    |                 | Update backlight unit                                |        |
|      |               | 19    |                 | Update signal description and PIN assignment drawing |        |
|      |               | 23    |                 | Update PIN Assignment                                |        |
|      |               | 25    |                 | Update reliability                                   |        |
|      |               | 26-28 |                 | Update mechanical characteristics drawing            |        |
|      | 29-30         |       |                 | Update shipping label format and carton package      |        |
|      |               |       |                 |                                                      |        |



### 1. Handling Precautions

- 1.1. Since front polarizer is easily damaged, pay attention not to scratch it.
- 1.2. Be sure to turn off power supply when inserting or disconnecting from input connector.
- 1.3. Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 1.4. When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 1.5. Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 1.6. Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 1.7. Do not open nor modify the Module Assembly.
- 1.8. Do not press the reflector sheet at the back of the module to any directions.
- 1.9. In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED Reflector edge. Instead, press at the far ends of the LED Reflector edge softly. Otherwise the TFT Module may be damaged.
- 1.10. At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 1.11. After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 1.12. Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption,
- 1.13. Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. High voltage is supplied to these parts when power turn on.



### 2. General Description

B121EW07 V1 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the WXGA (1280(H) x 800(V)) screen and 262k colors (RGB 6-bits data driver) with LED backlight driving circuit. All input signals are LVDS interface compatible.

B121EW07 V1 is designed for a display unit of notebook style personal computer and industrial machine.

#### 2.1. General Specification

The following items are characteristics summary on the table under 25  $^{\circ}$ C condition:

| Items                                                 | Unit                 | Specifications                                                     |
|-------------------------------------------------------|----------------------|--------------------------------------------------------------------|
| Screen Diagonal                                       | [mm]                 | 307.9 (12.1W")                                                     |
| Active Area                                           | [mm]                 | 261.12(H) X 163.2(V)                                               |
| Pixels H x V                                          |                      | 1280x3(RGB) x 800                                                  |
| Pixel Pitch                                           | [mm]                 | 0.204X0.204                                                        |
| Pixel Arrangement                                     |                      | R.G.B. Vertical Stripe                                             |
| Display Mode                                          |                      | Normally White                                                     |
| White Luminance (ILED=20mA) Note: ILED is LED current | [cd/m <sup>2</sup> ] | 200 typ. (5 points average)<br>170 min. (5 points average) (Note1) |
| Luminance Uniformity                                  |                      | 1.25 max. (5 points)                                               |
| Contrast Ratio                                        |                      | 350 min, 400 typ.                                                  |
| Optical Rise Time/Fall Time                           | [msec]               | 25 typ. / 35 max.                                                  |
| Nominal Input Voltage VDD                             | [Volt]               | +3.3 typ.                                                          |
| Typical Power Consumption                             | [Watt]               | 4.5W max. (@85% LED driver efficiency)                             |
| Weight (with LED driver board)                        | [Grams]              | 230g typ. 245g max                                                 |
| Physical Size                                         | [mm]                 | 275.82x 179.4 x 5.1 max.                                           |
| Electrical Interface                                  |                      | 1 channel LVDS                                                     |
| Surface Treatment                                     |                      | Glare                                                              |



| Support Color                                       |      | Native 262K colors ( RGB 6-bit data driver ) |
|-----------------------------------------------------|------|----------------------------------------------|
| Temperature Range Operating Storage (Non-Operating) | [°C] | 0 to +50<br>-20 to +60                       |
| RoHS Compliance                                     |      | RoHS Compliance                              |

# 2.2. Optical Characteristics

The optical characteristics are measured under stable conditions at 25  $^\circ\!\mathbb{C}$  (Room Temperature):

| Item                             | Unit     | Conditions   | ,        | Min.  | Тур.  | Max.  | Note  |
|----------------------------------|----------|--------------|----------|-------|-------|-------|-------|
| White Luminance<br>LED 20.0mA    | [cd/m2]  | 5 points ave | erage    | 170   | 200   | -     | 1,2,3 |
|                                  | [degree] | Horizontal   | (Right)  | -     | 40    | -     |       |
| Viewing Angle                    | [degree] | CR = 10      | (Left)   | -     | 40    | -     | 2.7   |
| Viewing / mgie                   | [degree] | Vertical     | (Upper)  | -     | 20    | -     | 2,7   |
|                                  | [degree] | CR = 10      | (Lower)  | -     | 40    | -     |       |
| Uniformity                       |          | 5 Points     | 5 Points |       | -     | 1.25  | 1     |
| CR: Contrast Ratio               |          |              |          | 350   | 400   | -     | 6     |
| Cross talk                       | %        |              |          |       | -     | 4     | 4     |
| Response Time                    | [msec]   | Raising + F  | alling   | -     | 25    | 35    |       |
|                                  |          | Red x        | Red x    |       | 0.580 | 0.630 |       |
|                                  |          | Red y        |          | 0.280 | 0.330 | 0.380 |       |
|                                  |          | Green x      |          | 0.275 | 0.325 | 0.375 |       |
| Color / Chromaticity Coordinates |          | Green y      |          | 0.515 | 0.565 | 0.615 | 0.7   |
| (CIE 1931)                       |          | Blue x       |          | 0.100 | 0.150 | 0.200 | 2,7   |
|                                  |          | Blue y       |          | 0.070 | 0.120 | 0.170 |       |
|                                  |          | White x      |          | 0.263 | 0.313 | 0.363 |       |
|                                  |          | White y      |          | 0.279 | 0.329 | 0.379 | ]     |

Note 1:5 points position (Display area: 261.12mm x 163.2mm)



Note 2: The luminance uniformity of 5 and 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

 $\delta_{\text{W5}} = \frac{\text{Maximum Brightness of five points}}{\text{Minimum Brightness of five points}}$   $\delta_{\text{W13}} = \frac{\text{Maximum Brightness of thirteen points}}{\text{Minimum Brightness of thirteen points}}$ 

#### Note 3: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.



Note 4: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

#### Where

Y<sub>A</sub> = Luminance of measured location without gray level 0 pattern (cd/m<sub>2</sub>)

Y<sub>B</sub> = Luminance of measured location with gray level 0 pattern (cd/m<sub>2</sub>)



Center of the screen

#### Note 5: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.



Note 6: Definition of viewing angle

Viewing angle is the measurement of contrast ratio  $\geq 10$ , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° ( $\theta$ ) horizontal left and right and 90° ( $\Phi$ ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.





## 3. Functional Block Diagram

The following diagram shows the functional block of the 12.1 inches wide Color TFT/LCD Module:

**Product Specification** 





### 4. Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

### 4.1. Absolute Ratings of TFT LCD Module

| Item                    | Symbol | Min | Max | Unit   | Conditions |
|-------------------------|--------|-----|-----|--------|------------|
| Logic/LCD Drive Voltage | Vin    | 2.8 | 3.8 | [Volt] | Note 1, 2  |

**Product Specification** 

### 4.2. Absolute Ratings of Backlight Unit

| Item                | Symbol | Min | Max  | Unit    | Conditions   |
|---------------------|--------|-----|------|---------|--------------|
| LED Driving Voltage | VLED   | -   | 23.1 | [Volt]  | Note 1, 2, 3 |
| LED Driving Current | ILED   | -   | 20   | [mA]rms | Note 1, 2, 3 |

### 4.3. Absolute Ratings of Environment

| Item                  | Symbol | Min | Max | Unit  | Conditions |
|-----------------------|--------|-----|-----|-------|------------|
| Operating Temperature | TOP    | 0   | +50 | [°C]  | Note 4     |
| Operation Humidity    | HOP    | 10  | 90  | [%RH] | Note 4     |
| Storage Temperature   | TST    | -20 | +60 | [°C]  | Note 4     |
| Storage Humidity      | HST    | 10  | 90  | [%RH] | Note 4     |

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: LED specification refer to section 5.2

Note 4: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).



**Operating Range** 



Storage Range





### 5. Electrical characteristics

#### 5.1. TFT LCD Module

#### 5.1.1. Power Specification

Input power specifications are as follows:

| Symble | Parameter                                   | Min | Тур | Max  | Units       | Condition             |
|--------|---------------------------------------------|-----|-----|------|-------------|-----------------------|
| VDD    | Logic/LCD Drive Voltage                     | 3.0 | 3.3 | 3.6  | [Volt]      | Load Capacitance 20uF |
| PDD    | VDD Power                                   |     | 1.0 | 1.2  | [Watt]      | Note 1, 2             |
| IDD    | IDD Current                                 |     | 300 | 300  | mA          | Note 1, 2             |
| IRush  | Inrush Current                              |     |     | 1500 | mA          | Note 3                |
| VDDrp  | Allowable<br>Logic/LCD Drive Ripple Voltage |     |     | 100  | [mV]<br>p-p |                       |

**Product Specification** 

Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern

Note 3: Measurement conditions





Vin rising time

#### 5.1.2. Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

It is recommended to refer the specifications of THC63LVDF84A (Thine Electronics Inc.) in detail. Signal electrical characteristics are as follows;

| Parameter | Condition                                        | Min  | Max | Unit |
|-----------|--------------------------------------------------|------|-----|------|
| Vth       | Differential Input High<br>Threshold (Vcm=+1.2V) |      | 100 | [mV] |
| VtI       | Differential Input Low<br>Threshold (Vcm=+1.2V)  | -100 |     | [mV] |

Note: LVDS Signal Waveform



# 5.2. Backlight Unit

The backlight system is an edge-lighting type with LED (Light Emitting Diode).

The characteristics of the LED are shown in the following table.

| Symbol           | Parameter               | Min.   | Тур. | Max. | Unit  | Condition             |
|------------------|-------------------------|--------|------|------|-------|-----------------------|
| Iι               | System Input Current    | 160    | 280  | 480  | MA    |                       |
| VL               | System Input Voltage    | 7      | 12   | 21   | Vdc   |                       |
| V <sub>F</sub>   | LED Foward Voltage      | 3.0    | 3.15 | 3.3  | Vdc   | (Ta=25°C)             |
| l <sub>F</sub>   | LED Foward Current      | -      | 20   | 30   | mA    | (Ta=25°C)             |
| P <sub>LED</sub> | Total Power Consumption | 2.5    | 2.7  | 2.8  | W     | (Ta=25°C)             |
| I LED            | Total Tower Consumption | 2.5    | 2.1  | 2.0  |       | Note 1                |
| FL1              | Input PWM frequency     | 17     | 17.5 | 18   | KHz   |                       |
| FL2              | LED dimming frequency   | 190    | 200  | 210  | Hz    |                       |
|                  |                         |        |      |      |       | (Ta=25°C)             |
| N/A              | LED life-time           | 10,000 | -    | -    | hours | I <sub>F</sub> =20 mA |
|                  |                         |        |      |      |       | Note 2                |

Note 1: Calculator value for reference IF×VF =P

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.



# 6. Signal Characteristic

## 6.1. Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

|            |   | 1 |   |   | 2 |   |             | 1 | 27          | 9 | 12 | 28  | 0 |
|------------|---|---|---|---|---|---|-------------|---|-------------|---|----|-----|---|
| 1st Line   | R | G | В | R | G | В |             | R | G           | В | R  | G   | В |
|            |   |   |   |   |   |   |             |   |             |   |    |     |   |
|            |   | • |   |   | • |   | •<br>•      |   | •           |   |    | •   |   |
|            |   | • |   |   | • |   | •<br>•<br>• |   |             |   |    |     |   |
|            |   | • |   |   | 1 |   | 1<br>1      |   | 1<br>1<br>1 |   |    | 1 . |   |
| 800th Line | R | G | В | R | G | В |             | R | G           | В | R  | G   | В |



### 6.2. The input data format



**Product Specification** 

| 0: 11       |                    |                                                       |
|-------------|--------------------|-------------------------------------------------------|
| Signal Name | Description        |                                                       |
| RED5        | Red Data 5 (MSB)   | Red-pixel Data                                        |
| RED4        | Red Data 4         | Each red pixel's brightness data consists of          |
| RED3        | Red Data 3         | these 6 bits pixel data.                              |
| RED2        | Red Data 2         |                                                       |
| RED1        | Red Data 1         |                                                       |
| RED0        | Red Data 0 (LSB)   |                                                       |
|             |                    |                                                       |
|             | Red-pixel Data     |                                                       |
| GREEN 5     | Green Data 5 (MSB) | Green-pixel Data                                      |
| GREEN 4     | Green Data 4       | Each green pixel's brightness data consists of        |
| GREEN 3     | Green Data 3       | these 6 bits pixel data.                              |
| GREEN 2     | Green Data 2       | ·                                                     |
| GREEN 1     | Green Data 1       |                                                       |
| GREEN 0     | Green Data 0 (LSB) |                                                       |
|             | ,                  |                                                       |
|             | Green-pixel Data   |                                                       |
| BLUE 5      | Blue Data 5 (MSB)  | Blue-pixel Data                                       |
| BLUE 4      | Blue Data 4        | Each blue pixel's brightness data consists of         |
| BLUE 3      | Blue Data 3        | these 6 bits pixel data.                              |
| BLUE 2      | Blue Data 2        | ·                                                     |
| BLUE 1      | Blue Data 1        |                                                       |
| BLUE 0      | Blue Data 0 (LSB)  |                                                       |
|             | ,                  |                                                       |
|             | Blue-pixel Data    |                                                       |
| DTCLK       | Data Clock         | The typical frequency is 68.9 MHZ The signal          |
|             |                    | is used to strobe the pixel data and DSPTMG           |
|             |                    | signals. All pixel data shall be valid at the falling |
|             |                    | edge when the DSPTMG signal is high.                  |
| DSPTMG      | Display Timing     | This signal is strobed at the falling edge of         |
|             |                    | -DTCLK. When the signal is high, the pixel data       |
|             |                    | shall be valid to be displayed.                       |
| VSYNC       | Vertical Sync      | The signal is synchronized to -DTCLK.                 |
| HSYNC       | Horizontal Sync    | The signal is synchronized to -DTCLK.                 |

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.



# 6.3. Signal Description / PIN Assignment

| PIN# | Signal Name          | Description                                     |
|------|----------------------|-------------------------------------------------|
| 1    | GND                  | Ground                                          |
| 2    | VDD                  | +3.3V Power Supply                              |
| 3    | VDD                  | +3.3V Power Supply                              |
| 4    | V <sub>EDID</sub>    | +3.3V EDID Power                                |
| 5    | NC                   | No Connection (Bist Enable)                     |
| 6    | CLK <sub>EDID</sub>  | EDID Clock Input                                |
| 7    | DATA <sub>EDID</sub> | EDID Data Input                                 |
| 8    | RxIN0-               | LVDS differential data input(R0-R5, G0)         |
| 9    | RxIN0+               | LVDS differential data input(R0-R5, G0)         |
| 10   | GND                  | Ground                                          |
| 11   | RxIN1-               | LVDS differential data input(G1-G5, B0-B1)      |
| 12   | RxIN1+               | LVDS differential data input(G1-G5, B0-B1)      |
| 13   | GND                  | Ground                                          |
| 14   | RxIN2-               | LVDS differential data input(B2-B5, HS, VS, DE) |
| 15   | RxIN2+               | LVDS differential data input(B2-B5, HS, VS, DE) |
| 16   | GND                  | Ground                                          |
| 17   | RxCLKIN-             | LVDS differential clock input                   |
| 18   | RxCLKIN+             | LVDS differential clock input                   |
| 19   | GND                  | Ground                                          |
| 20   | NC                   | No connection                                   |



The module uses a 100ohm resistor between positive and negative data lines of each receiver input



### 6.4. Interface Timing

#### 6.4.1. Timing Characteristics

Basically, interface timings should match the 1280x800 /60Hz manufacturing guide line timing.

| Parar                     | neter      | Symbol                | Min. | Тур.  | Max. | Unit               |
|---------------------------|------------|-----------------------|------|-------|------|--------------------|
| Frame Rate                |            | -                     | 50   | 60    | -    | Hz                 |
| Clock fro                 | equency    | 1/ T <sub>Clock</sub> | 62   | 68.94 | 72   | MHz                |
|                           | Period     | T <sub>V</sub>        | 803  | 816   | 832  |                    |
| Vertical                  | Active     | $T_VD$                | 800  | 800   | 800  | $T_{Line}$         |
| Section                   | Blanking   | $T_VB$                | 3    | 16    | 32   |                    |
|                           | Period     | T <sub>H</sub>        | 1302 | 1408  | 1700 |                    |
| Horizontal                | Active     | $T_{HD}$              | -    | 1280  | -    | T <sub>Clock</sub> |
| Section                   | Blanking   | $T_{HB}$              | 22   | 128   | 420  |                    |
| End-frame checking period |            | tEF                   | 2    |       |      | $T_{Line}$         |
| DE check                  | ing period | tDE                   |      | 6400  |      | T <sub>Line</sub>  |

Note: DE mode only

#### 6.4.2. Timing diagram





### 6.5. Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

**Product Specification** 



#### **Power Sequence Timing**

| Dawamatan |      | lluita |       |      |
|-----------|------|--------|-------|------|
| Parameter | Min. | Max.   | Units |      |
| T1        | 0.5  | -      | 10    | (ms) |
| T2        | 0    | -      | 50    | (ms) |
| Т3        | 0    | 1      | 50    | (ms) |
| T4        | 500  | -      | -     | (ms) |
| T5        | 200  | -      | -     | (ms) |
| T6        | 200  | -      | -     | (ms) |
| T7        | 0    | -      | 10    | (ms) |

# 7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

#### 7.1. TFT LCD Module

| Connector Name / Designation | For Signal Connector       |
|------------------------------|----------------------------|
| Manufacturer                 | Hirose                     |
| Type / Part Number           | DF19L-20P-1H               |
| Mating Housing/Part Number   | DF19G-20S-1C or compatible |



### 8. LED Driving Specification

### 8.1. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

| Connector Name / Designation | For Lamp Connector |
|------------------------------|--------------------|
| Manufacturer                 | JST                |
| Type / Part Number           | SM07B-SRSS-TB      |
| Mating Type / Part Number    | SHR-07V-S-B        |

### 8.2. PIN Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

| PIN# | Signal Name | Description                                               |
|------|-------------|-----------------------------------------------------------|
| 1    | NC          | NC                                                        |
| 2    | PWM         | high: 3.3V, low: 0V, frequency 100 Hz – 20KHz             |
| 3    | Logic Power | +5V Power Supply for Controller, enable pin of LED driver |
| 4    | GND         | Power Ground                                              |
| 5    | GND         | Power Ground                                              |
| 6    | VIN         | +7~21V Power Supply                                       |
| 7    | VIN         | +7~21V Power Supply                                       |



### 9. Vibration and Shock Test

## 9.1. Vibration Test spec.:

Test method: Non-Operation

Acceleration: 1.5G

• Frequency: 26 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

### 9.2. Shock Test spec.:

Test method: Non-Operation

• Acceleration: 180 G, Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side



### 10. Reliability

| Items                      | Required Condition                   | Note   |
|----------------------------|--------------------------------------|--------|
| Temperature Humidity Bias  | 40°C, 90% RH, 300 hours              |        |
| High Temperature Operation | 50°ℂ, Dry, 300 hours                 |        |
| Low Temperature Operation  | 0°ℂ, 300 hours                       |        |
| Hot Storage                | 60°C, 300 hours                      |        |
| Cold Storage               | -20°C, 300 hours                     |        |
| Thermal Shock Test         | -20°C/30 min, 60°C/30 min, 100cycles |        |
| ESD                        | Contact: ±8KV / operation            |        |
| ESD                        | Air: ±15KV / operation               | Note 1 |

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost . Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90



### 11. Mechanical Characteristics

#### 11.1. LCM Outline Dimension







### 11.2. Screw Hole Depth and Center Position

Screw hole minimum depth, from side surface =2.50mm Min.

Screw hole center location, from front surface =  $2.8 \pm 0.20$ mm (See drawing)

Screw Torque: Maximum 1.8 kgf-cm







# 12. Shipping and Package

## 12.1. Shipping Label Format





### 12.2. Carton package

The outside dimension of carton is 480 (L)mm x 370 (W)mm x 281 (H)mm



### 12.3. Shipping package of palletizing sequence





# 13. Appendix: EDID description

| Address | FUNCTION                                              | Value | Value    | Value | Note |
|---------|-------------------------------------------------------|-------|----------|-------|------|
| HEX     |                                                       | HEX   | BIN      | DEC   |      |
| 00      | Header                                                | 00    | 00000000 | 0     |      |
| 01      |                                                       | FF    | 11111111 | 255   |      |
| 02      |                                                       | FF    | 11111111 | 255   |      |
| 03      |                                                       | FF    | 11111111 | 255   |      |
| 04      |                                                       | FF    | 11111111 | 255   |      |
| 05      |                                                       | FF    | 11111111 | 255   |      |
| 06      |                                                       | FF    | 11111111 | 255   |      |
| 07      |                                                       | 00    | 00000000 | 0     |      |
| 08      | EISA Manuf. Code LSB                                  | 06    | 00000110 | 6     |      |
| 09      | Compressed ASCII                                      | AF    | 10101111 | 175   |      |
| 0A      | Product Code                                          | 14    | 00010100 | 20    |      |
| 0B      | hex, LSB first                                        | 71    | 01110001 | 113   |      |
| 0C      | 32-bit ser #                                          | 00    | 00000000 | 0     |      |
| 0D      |                                                       | 00    | 00000000 | 0     |      |
| 0E      |                                                       | 00    | 00000000 | 0     |      |
| 0F      |                                                       | 00    | 00000000 | 0     |      |
| 10      | Week of manufacture                                   | 01    | 00000001 | 1     |      |
| 11      | Year of manufacture                                   | 11    | 00010001 | 17    |      |
| 12      | EDID Structure Ver.                                   | 01    | 00000001 | 1     |      |
| 13      | EDID revision #                                       | 03    | 00000011 | 3     |      |
| 14      | Video input def. (digital I/P, non-TMDS, CRGB)        | 80    | 10000000 | 128   |      |
| 15      | Max H image size (rounded to cm)                      | 1A    | 00011010 | 26    |      |
| 16      | Max V image size (rounded to cm)                      | 10    | 00010000 | 16    |      |
| 17      | Display Gamma (=(gamma*100)-100)                      | 78    | 01111000 | 120   |      |
| 18      | Feature support (no DPMS, Active OFF, RGB, tmg Blk#1) | 0A    | 00001010 | 10    |      |
| 19      | Red/green low bits (Lower 2:2:2:2 bits)               | 87    | 10000111 | 135   |      |
| 1A      | Blue/white low bits (Lower 2:2:2:2 bits)              | FE    | 11111110 | 254   |      |
| 1B      | Red x (Upper 8 bits)                                  | 94    | 10010100 | 148   |      |
| 1C      | Red y/ highER 8 bits                                  | 57    | 01010111 | 87    |      |
| 1D      | Green x                                               | 4F    | 01001111 | 79    |      |
| 1E      | Green y                                               | 8C    | 10001100 | 140   |      |
| 1F      | Blue x                                                | 27    | 00100111 | 39    |      |
| 20      | Blue y                                                | 27    | 00100111 | 39    |      |
| 21      | White x                                               | 50    | 01010000 | 80    |      |
| 22      | White y                                               | 54    | 01010100 | 84    |      |
| 23      | Established timing 1                                  | 00    | 00000000 | 0     |      |



#### **Product Specification** Established timing 2 Established timing 3 Standard timing #1 Standard timing #2 2A Standard timing #3 2B 2C Standard timing #4 2D 2E Standard timing #5 2F Standard timing #6 Standard timing #7 Standard timing #8 Pixel Clock/10000 LSB ΕE Pixel Clock/10000 USB 1A Horz active Lower 8bits Horz blanking Lower 8bits HorzAct:HorzBlnk Upper 4:4 bits ЗА Vertical Active Lower 8bits 3B Vertical Blanking Lower 8bits 3C Vert Act : Vertical Blanking (upper 4:4 bit) 3D HorzSync. Offset 3E HorzSync.Width 3F VertSync.Offset: VertSync.Width Horz&Vert Sync Offset/Width Upper 2bits Horizontal Image Size Lower 8bits Vertical Image Size Lower 8bits АЗ Horizontal & Vertical Image Size (upper 4:4 bits) Horizontal Border (zero for internal LCD) Vertical Border (zero for internal LCD) Signal (non-intr, norm, no stero, sep sync, neg pol) Detailed timing/monitor descriptor #2 4A 4B 0F 4C



| M  | Product Spec            | cification |          |     |   |
|----|-------------------------|------------|----------|-----|---|
| 4D |                         | 00         | 00000000 | 0   |   |
| 4E |                         | 00         | 00000000 | 0   |   |
| 4F |                         | 00         | 00000000 | 0   |   |
| 50 |                         | 00         | 00000000 | 0   |   |
| 51 |                         | 00         | 00000000 | 0   |   |
| 52 |                         | 00         | 00000000 | 0   |   |
| 53 |                         | 00         | 00000000 | 0   |   |
| 54 |                         | 00         | 00000000 | 0   |   |
| 55 |                         | 00         | 00000000 | 0   |   |
| 56 |                         | 00         | 00000000 | 0   |   |
| 57 |                         | 00         | 00000000 | 0   |   |
| 58 |                         | 00         | 00000000 | 0   |   |
| 59 |                         | 20         | 00100000 | 32  |   |
| 5A | Detailed timing/monitor | 00         | 00000000 | 0   |   |
| 5B | descriptor #3           | 00         | 00000000 | 0   |   |
| 5C |                         | 00         | 00000000 | 0   |   |
| 5D |                         | FE         | 11111110 | 254 |   |
| 5E |                         | 00         | 00000000 | 0   |   |
| 5F | Manufacture             | 41         | 01000001 | 65  | Α |
| 60 | Manufacture             | 55         | 01010101 | 85  | U |
| 61 | Manufacture             | 4F         | 01001111 | 79  | 0 |
| 62 |                         | 0A         | 00001010 | 10  |   |
| 63 |                         | 20         | 00100000 | 32  |   |
| 64 |                         | 20         | 00100000 | 32  |   |
| 65 |                         | 20         | 00100000 | 32  |   |
| 66 |                         | 20         | 00100000 | 32  |   |
| 67 |                         | 20         | 00100000 | 32  |   |
| 68 |                         | 20         | 00100000 | 32  |   |
| 69 |                         | 20         | 00100000 | 32  |   |
| 6A |                         | 20         | 00100000 | 32  |   |
| 6B |                         | 20         | 00100000 | 32  |   |
| 6C | Detailed timing/monitor | 00         | 00000000 | 0   |   |
| 6D | descriptor #4           | 00         | 00000000 | 0   |   |
| 6E |                         | 00         | 00000000 | 0   |   |
| 6F |                         | FE         | 11111110 | 254 |   |
| 70 |                         | 00         | 00000000 | 0   |   |
| 71 | Manufacture P/N         | 42         | 01000010 | 66  | В |
| 72 | Manufacture P/N         | 31         | 00110001 | 49  | 1 |
| 73 | Manufacture P/N         | 32         | 00110010 | 50  | 2 |
| 74 | Manufacture P/N         | 31         | 00110001 | 49  | 1 |
| 75 | Manufacture P/N         | 45         | 01000101 | 69  | E |



| Product Specification |                 |    |          |     |   |
|-----------------------|-----------------|----|----------|-----|---|
| 76                    | Manufacture P/N | 57 | 01010111 | 87  | W |
| 77                    | Manufacture P/N | 30 | 00110000 | 48  | 0 |
| 78                    | Manufacture P/N | 37 | 00110111 | 55  | 7 |
| 79                    | Manufacture P/N | 20 | 00100000 | 32  |   |
| 7A                    | Manufacture P/N | 56 | 01010110 | 86  | V |
| 7B                    | Manufacture P/N | 31 | 00110001 | 49  | 1 |
| 7C                    |                 | 20 | 00100000 | 32  |   |
| 7D                    |                 | 0A | 00001010 | 10  |   |
| 7E                    | Extension Flag  | 00 | 00000000 | 0   |   |
| 7F                    | Checksum        | СВ | 11001011 | 203 |   |