lecture 03, the formal language PL

phil1012 introductory logic

overview

this lecture

- ullet an introduction to the formal language PL
- the vocabulary and syntax of PL
- how formulas of PL are constructed
- translating propositions from English into PL with the use of a glossary

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \circ explain what the different symbols of PL mean
 - \circ translate PL formulas into English
 - translate propositions from English into PL, providing a glossary for your translation
 - identify well-formed formulas of PL
 - construct construction tables for formulas of PL

required reading

• all of chapter 2

the language of propositional logic (PL)

the language of propositional logic (PL)

- the formal symbolic language of propositional logic (PL)
- \bullet the language of PL consists of a vocabulary and a syntax
- the vocabulary concerns the basic symbols
- the syntax concerns how basic symbols can be put together to form complex symbols

the vocabulary of PL

the vocabulary of PL

- \bullet basic propositions are represented in PL by simple capital letters with or without numerical subscripts
- they are called **sentence letters**
 - \circ $A, A_2, A_3, ...B, B_2, B_3, ..., C, C_2, C_3, ..., Z, Z_2, Z_3$
- suppose you want to use 'A' to represent the proposition expressed by

the sentence 'John is short'

- \bullet in order to do this you would write a ${\tt glossary}$ like this:
 - \circ A: John is short
- we use sentence letters only for basic propositions. so the following is not okay:
 - \circ A: John is short and Jane is tall
- remember that a negation is not a basic proposition. so the following is not okay:
 - \circ A: John is not short
- we have introduced symbols to represent propositions (sentence letters)
- now we introduce symbols to represent the **connectives** \neg , \wedge , \vee , \rightarrow , \leftrightarrow

conjunction

- the connective conjunction is represented in PL by the symbol:
 - 0 \
- the name of the symbol is caret
- \bullet we can use caret to represent the conjunction of A and B as follows: \circ ($A \wedge B)$
- we can use this to represent the proposition that John is short and Jane is tall

disjunction

- ullet the connective disjunction is represented in PL by the symbol:
- the name of the symbol is vel
- \bullet we can use vel to represent the disjunction of A and B as follows: \circ ($A \vee B)$
- we can use this to represent the proposition that John is short or Jane is tall

conditional

- the name of the symbol is **arrow**
- we can use arrow to represent a conditional with A as its antecedent and B as its consequent as follows:
 - $\circ (A \to B)$
- we can use this to represent the proposition that if John is short, then Jane is tall

biconditional

• the connective biconditional is represented in PL by the symbol:

 $\circ \leftrightarrow$

- the name of the symbol is double arrow
- we can use double arrow to represent a biconditional with A as its left-hand side and B as its right-hand side as follows:
 ($A \leftrightarrow B$)
- ullet we can use this to represent the proposition that John is short if and only if Jane is tall

negation

- \bullet the connective negation is represented in PL by the symbol:
- the name of the symbol is neg
- \bullet we can use neg to represent a negation with A as its negand as follows:

 $\circ \neg A$

• we can use this to represent the proposition that John is not tall

the connectives of PL

• here are the symbols for the connectives in PL:

connective	name	symbol
negation	neg	\neg
conjunction	caret	\wedge
disjunction	vel	V
conditional	arrow	\rightarrow
biconditional	double arrow	\leftrightarrow

 \bullet here are some alternative symbols for the connectives

connective	symbol
negation	~
conjunction	&
disjunction	V
conditional	->
biconditional	<->

- note! although the choice of symbols for the connectives is entirely arbitrary, the choice we have made is final, and henceforth we will only use these symbols
- we now have the most important parts of the vocabulary of PL: sentence letters, connective symbols, and punctuation symbols '(' and ')'
- now we need to say how these can be put together

the syntax of PL

the syntax of PL

- we are now ready to precisely state the syntax of PL
- see the handout on the syntax of PL
- \bullet we use lowercase Greek letters like α and β to express general claims about the formulas of PL
- these are called well-formed formula variables
- \bullet well-formed formula variables can stand in for single sentence letters like A or for complex formulas like ($A \land B)$
- they are not part of the language of PL
- wffs of PL are defined as follows:
 - any basic proposition is a wff
 - \circ if α and β are wffs, then so are:
 - $\begin{array}{ll}
 \circ & \neg \alpha \\
 \circ & (\alpha \land \beta) \\
 \circ & (\alpha \lor \beta) \\
 \circ & (\alpha \to \beta) \\
 \circ & (\alpha \leftrightarrow \beta)
 \end{array}$
 - nothing else is a wff
- \bullet the syntax of PL is specified by a $\boldsymbol{recursive}$ $\boldsymbol{definition}$
- \bullet the $base\ clause$ of the definition states certain things are wffs
- the **recursive clause** states that certain other things are wffs in terms of things we already know to be wffs
- the symbols of PL can be divided into the following categories:
 - logical symbols (the connective symbols)
 - nonlogical symbols (sentence letters)
 - auxiliary symbols (parentheses)
- the nonlogical symbols do not have a fixed meaning and need to be specified in a glossary
- this is why you must always provide a glossary for your translations
- given this syntax for PL we can show how any well-formed formula of PL is constructed
- \bullet suppose we want to construct ($\neg P \land (\ Q \lor R)$)
- we might construct it as follows using a construction table

ı

stepwi	ff constructed at t	his step f	from steps/by	clause
1	P		/(2i)	
2	Q		/(2i)	
3	R		/(2i)	
4	$\neg P$		1 /(2ii -	¬)
5	$(Q \lor R)$		2,3 /(2ii	∨)

step	wff constructed at this step	from steps/by clause
1	P	/(2i)
2	Q	/(2i)
3	R	/(2i)
4	$\neg P$	1 /(2ii ¬)
5	$(Q \lor R)$	2,3 /(2ii V)
6	$(\neg P \land (\ Q \lor R)\)$	4, 5 /(2ii ∧)

- the other wffs in the construction are **subformulas** of the formula
- the connective added last in the construction is the main connective
- the main connectives gives its name to the formula it constructs

wrapping up

this lecture

- an introduction to the formal language PL
- the vocabulary and syntax of PL
- how formulas of PL are constructed
- translating propositions from English into PL with the use of a glossary

next lectures

- lecture 4, issues in translation: assertability and implicature
- lecture 5, the semantics of PL