Отговори

І. Вектори и координати

1.1. Линейна зависимост и независимост на вектори в равнината и пространството.......5

1. A) да; Б) да; Г) не; **2.**
$$\overrightarrow{AM} = -\vec{a} + \frac{\vec{b}}{2}$$
; $\overrightarrow{BN} = \frac{\vec{a}}{2} - \vec{b}$; $\overrightarrow{CP} = \frac{1}{2}(\vec{a} + \vec{b})$; $\overrightarrow{CG} = \frac{1}{3}(\vec{a} + \vec{b})$;

3.
$$\overrightarrow{OC} = 2\vec{a} + \frac{2}{3}\vec{b}$$
; $\overrightarrow{MN} = \frac{3}{2}\vec{a} + \frac{1}{3}\vec{b}$; $\overrightarrow{PB} = -\vec{a} + \frac{4}{3}\vec{b}$; **4.** $\overrightarrow{m} = -\frac{3}{2}\vec{a} + 3\vec{b}$, $\overrightarrow{n} = \frac{9}{2}\vec{a} - 4\vec{b}$; **5.** $\lambda = -\frac{2}{3}$;

6.
$$\vec{u} = 2\vec{a} - 3\vec{b}$$
; **7.** $\vec{c} = \vec{f} - \vec{g}$; **8.** $x = 1$; $y = 0$; **9.** $x = 2$, $y = 1$, $z = 3$; **10.** $x = -1$, $y = -1$, $z = 2$;

1.2. Векторна база в равнината и в пространството

1.
$$\overrightarrow{OC} = \frac{1}{3}\vec{a} + \vec{b}$$
; $\overrightarrow{OD} = \frac{4}{3}\vec{a} + \frac{3}{2}\vec{b}$; $\overrightarrow{OF} = \frac{2}{3}\vec{a} + \frac{1}{2}\vec{b}$; $\overrightarrow{OM} = -\vec{a} - \vec{b}$; $\overrightarrow{ON} = -\frac{2}{3}\vec{a} - \frac{1}{2}\vec{b}$; $\overrightarrow{OP} = -\vec{a} + \vec{b}$;

$$\overrightarrow{OQ} = \frac{2}{3}\vec{a} - \vec{b} \; ; \quad \overrightarrow{DN} = 2\vec{a} - \vec{b} \; ; \quad \overrightarrow{MC} = 2\vec{a} + \vec{b} \; ; \quad \overrightarrow{PM} = -\vec{a} - 2\vec{b} \; ; \quad \overrightarrow{BQ} = -2\vec{a} + 2\vec{b} \; ; \quad \overrightarrow{DP} = 2\vec{a} + \vec{b} \; ;$$

$$\overrightarrow{CD} = -3\overrightarrow{a}$$
; $\overrightarrow{BC} = \overrightarrow{b}$; **3.** a) B; б) Нека $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{AA_1} = \overrightarrow{c}$, тогава $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$,

$$\overrightarrow{BD_1} = -\vec{a} + \vec{b} + \vec{c}$$
, $\overrightarrow{DC_1} = \vec{a} + \vec{c}$, $\overrightarrow{C_1C} = -\vec{c}$, $\overrightarrow{BC} = \vec{b}$, $\overrightarrow{AC_1} = \vec{a} + \vec{b} + \vec{c}$, $\overrightarrow{C_1B_1} = -\vec{b}$; **4.** a) $4\vec{a} - \vec{b}$;

6)
$$\frac{1}{6}\vec{a} + 3\vec{b}$$
; B) $-12\vec{a} + 7\vec{b}$; **5.** a) $\vec{m} + \vec{n} = \vec{a} + 2\vec{b} + \vec{c}$; 6) $\vec{m} + \vec{n} = 3\vec{a} - 2\vec{b} - 2\vec{c}$; B) $\vec{m} + \vec{n} = -2\vec{a} + \vec{b} - \vec{c}$;

r)
$$\overrightarrow{m} + \overrightarrow{n} = -\overrightarrow{a} - \overrightarrow{b} - 3\overrightarrow{c}$$
; **6.** $\overrightarrow{CM} = -\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{BM} + \overrightarrow{AC} = 3\overrightarrow{a} - 2\overrightarrow{b}$, $\overrightarrow{MB} + \overrightarrow{MA} - 3\overrightarrow{AC} = -8\overrightarrow{a} + 4\overrightarrow{b}$;

7.
$$\overrightarrow{AB} = 2\vec{a}$$
, $\overrightarrow{BD} = -2\vec{a} + \vec{b}$, $\overrightarrow{AB} - 2\overrightarrow{BC} = 2\vec{a} - 2\vec{b}$, $\overrightarrow{CD} + \overrightarrow{BC} - \overrightarrow{AC} = -4\vec{a}$; 8. $\overrightarrow{AC} = 2\vec{a} + \vec{b}$, $\overrightarrow{AC}_1 = 2\vec{a} + \vec{b} + \vec{c}$, $\overrightarrow{BD} + 2\overrightarrow{BC} = -2\vec{a} + 3\vec{b}$, $\overrightarrow{D_1M} = \vec{a} - \vec{b} - \vec{c}$; 9. B; 10. $\vec{v} = 2\vec{a} - 3\vec{b} - \vec{c}$;

- 1.3. Скаларно произведение на два вектора. Приложение11
- **2.** а) 6; 8; б) 10; в) 36; г) 19; д) -5; е) -17;

6. a)
$$\sqrt{3}$$
; 6) $4\sqrt{2}$; B) 30 ; Г) $-\frac{9}{16}$; **7.** a) 45° ; 6) $\cos\angle(\vec{a},\vec{b}) = -\frac{5}{6}$; **8.** a) $|\vec{u}| = \sqrt{2}$, $|\vec{v}| = \sqrt{10}$, $|\vec{u}| = 2$ и

$$\cos\angle(\vec{u},\vec{v}) = \frac{\sqrt{5}}{5}\;;\quad \text{f)}\;\; |\vec{u}| = \frac{\sqrt{5}}{2}\;,\quad |\vec{v}| = \sqrt{13}\;,\quad \vec{u}\,\vec{v} = -4 \quad \text{if}\;\; \cos\angle(\vec{u},\vec{v}) = \frac{-8\sqrt{65}}{65}\;;\quad \text{b)}\;\; |\vec{u}| = \frac{2}{3}\sqrt{10}\;,$$

$$|\vec{v}| = \frac{\sqrt{37}}{3}$$
, $\vec{u}\vec{v} = \frac{-34}{9}$ u $\cos \angle(\vec{u}, \vec{v}) = \frac{-17\sqrt{370}}{370}$; **9.** a) $|\vec{u}| = \sqrt{11}$, $|\vec{v}| = \sqrt{6}$, $\vec{u}\vec{v} = 6$ u

$$\cos \angle(\vec{u}, \vec{v}) = \frac{\sqrt{66}}{11}$$
; 6) $|\vec{u}| = \sqrt{5}$, $|\vec{v}| = 3$, $|\vec{u}| = 4$ in $\cos \angle(\vec{u}, \vec{v}) = \frac{4\sqrt{5}}{15}$; 10. a) $\cos \angle(\vec{u}, \vec{v}) = \frac{-\sqrt{14}}{7}$;

6)
$$\cos \angle(\vec{u}, \vec{v}) = \frac{6\sqrt{154}}{77}$$
; B) $\cos \angle(\vec{u}, \vec{v}) = -\frac{5\sqrt{2}}{8}$; **11.** 5; **12.** 20; **13.** $\sqrt{41}$; **14.** $2\sqrt{2}$; **15.** $|\vec{m}| = 2\sqrt{3}$; $|\vec{n}| = 2\sqrt{3}$:

1.4. Координати на вектор в равнинна правоъгълна координатна система14

3. a)
$$\overrightarrow{AB}(2,2)$$
; 6) $\overrightarrow{AB}(6,16)$; B) $\overrightarrow{AB}(-7,10)$; r) $\overrightarrow{AB}(-6,-7)$; **4.** $\overrightarrow{AB}(-3,-4)$; $\overrightarrow{CA}(-4,-7)$; $\overrightarrow{BD}(-6,15)$; $\overrightarrow{DB}(6,-15)$; $\overrightarrow{AD}(-9,11)$; $\overrightarrow{DC}(13,-4)$; **5.** a) $B(4,-1)$; 6) $A(3,0)$; **6.** $B(3,2)$; $C(-4,5)$; $\overrightarrow{BC}(-7,3)$;

1.5. Операции с вектори, зададени с координати16

4.
$$(2,-3)$$
, $(-6,9)$, $(-4,16)$, $(-1,-1)$, $(-3,7)$, $(-7,18)$; **5.** a) $(8,3)$; 6) $(3,9)$; B) $(-2,-4)$; **6.** $\vec{u}(8,8)$, $\vec{v}(14,14)$; **7.** $\vec{m}(1-\alpha,-\alpha-3)$, $\vec{n}(\alpha+5,3-2\alpha)$; $\vec{p}(-2x,\alpha x)$; **8.** $\vec{m}(-6,6)$; $\vec{p}=(2,5)$; $\vec{u}(-6,5;10)$;

9. (-21, -42); **10.** $\vec{a} = \vec{b} = \vec{c} = \vec{d} = \sqrt{13}$; **11.** a) $2\sqrt{5}$; 6) $\sqrt{2}$; B) $\sqrt{17}$; **12.** a) 1; 6) 17; B) -5; **13.** a) $-\frac{4}{5}$; 6) 1; B) $-\frac{3}{5}$; 14. $2\sqrt{13}$, $\sqrt{13}$, $\sqrt{82}$; 15. 4; 16. $21\sqrt{10}$; 17. 5; $\sqrt{13}$; $\sqrt{26}$; $\cos \angle A = \frac{6\sqrt{13}}{65}$; 18. $\sqrt{41}$; $\sqrt{26}$: $\sqrt{17}$: 19. A(-2.0): $\sqrt{26}$: $4\sqrt{2}$: 20. C(9.1): D(4.4): $2\sqrt{17}$: $2\sqrt{5}$: Вектори и координати – Тест 1 и Тест 219 **Tecm 1.** 1 Γ ; 2B; 3 Γ ; 4(a(-4); Γ ($\sqrt{14}$); Γ ($\sqrt{2}$); Γ ($-\frac{2\sqrt{7}}{7}$)); 5 Γ ; 6 Γ ; 7(a(26); Γ ($\sqrt{2}$); Γ ($\sqrt{13}$)); **8**(a(0,2); $\delta(-8,12)$; B(-5,0); $\Gamma(6,-2)$). Оценяване. За всеки верен отговор по 2 точки. Оценка в точки =(получените точки.100/34). **Tecm 2.** 15; 2A; $3(a(\sqrt{7-2\sqrt{3}}); 6(8+\frac{\sqrt{3}}{2})); 4\Gamma; 55; 6B; 75; 8(a(10); 6(5); B(\sqrt{5}); \Gamma(\frac{2\sqrt{5}}{5}))$ Оценяване. За всеки верен отговор по 2 точки. Оценка в точки =(получените точки.100/24). II. Аналитична геометрия в равнината **1.** Γ ; **2.** δ) 3x - y = 0; ϵ) x - 2y + 1 = 0; ϵ) y = 1; ϵ) x = 3; **6.** a) 2x+3y-2=0; б) x-6y+11=0; в) y=2; г) x=-1; д) x-2y=0; e) 5x+2y=0; 7. a) 3x + y - 5 = 0; б) 2x - 5y + 9 = 0; в) x = -4; г) y = 3; д) 2x + 5y - 10 = 0; е) x - y - 3 = 0; **8.** a) y = -3x + 5; 6) $y = \frac{x}{2} + 2$; B) $y = -\frac{2x}{3} + 4$; r) y = 5x - 12; д) y = -4x - 5; д) x + y + 1 = 0; e) $\sqrt{3}x + 3y - 3 - \sqrt{3} = 0$; ж) y = -3; 10B; 11Б; 12A; 13Г; 16Г; 17A; 18B; 19Б; 20Б; 21В; 2.2. Взаимно положение на две прави..... **4.** а) Правите се пресичат в $\left(-\frac{4}{3}, \frac{13}{3}\right)$, $\cos \phi = \frac{7\sqrt{85}}{85}$; б) Правите са перпендикулярни, пресичат се в $\left(\frac{2}{15}, \frac{1}{15}\right)$; $\phi = \frac{\pi}{2}$; в) Правите са успоредни; г) Правите се пресичат в (0,1), $\cos \phi = \frac{13\sqrt{17}}{85}$; **5.** a) 3x + 2y - 8 = 0; б) x + y - 4 = 0; в) 5x + 4y - 2 = 0; г) 4x + y - 5 = 0; д) x - 2y - 1 = 0; **6.** a) 3x + 4y - 7 = 0; 6) -4x + 2y + 3 = 0; B) 4x - y - 2 = 0; **7.** a) $\frac{3\sqrt{10}}{10}$; 6) $\frac{3\sqrt{2}}{4}$; B) $\frac{9\sqrt{10}}{10}$; **8**5; **9** a) 5; 6) $2\sqrt{10}$; **10** 6)M(b/a;b); **11.** a) 10x-12y+39=0; Упътване. Търсената права е с уравнение 5x - 6y + C = 0 и минава през точка A; б) 6x-4y+17=0; **12.** а) 21x-15y-191=0; б) 3y+13=0; B) x-6=0;

2.3. Приложение на векторите в аналитичната геометрия за решаване на триъгълник...30

1. a)
$$G(\frac{1}{3};1);$$
 б) $M_a(1;2);$ $M_b(-\frac{3}{2};1);$ $M_c(\frac{3}{2};0);$ в) $a: x+3y-7=0;$ $b: 4x+y+5=0;$ $c: 2x-5y-3=0;$ г) $m_a: 3x-2y+1=0;$ $m_b: y=1;$ $m_c: 6x+7y-9=0;$ д) $h_a: 3x-y+2=0;$ $h_b: x-4y=0;$ $h_c: 5x+2y+4=0;$ е) $H_a(\frac{1}{10};\frac{23}{10});$ $H_b(-\frac{20}{17};-\frac{5}{17});$ $H_c(-\frac{14}{29};-\frac{23}{29});$ ж) $P_{ABC}=\sqrt{29}+2\sqrt{10}+\sqrt{17};$ 3) $S_{ABC}=11;$ 2. a) $G\left(5;1\frac{1}{3}\right);$ б) $M_a(6,5;1,5);$ $M_b(3,5;1,5);$

$$M_c(5;1)$$
; в) $a: x+3y-11=0$; $b: x-3y+1=0$; $c: y=1$; г) $m_a: x-9y+7=0$; $m_b: x+9y-17=0$; $m_c: x=5$; д) $h_a: 3x-y-5=0$; $h_b: 3x+y-25=0$; $h_c: x=5$; е) $H_a\left(\frac{13}{5};\frac{14}{5}\right)$; $H_b\left(\frac{37}{5};\frac{14}{5}\right)$; $H_c(5;1)$; ж) $P=6+2\sqrt{10}$; з) $S=3$; 3. $A(-2;5)$, $B(1;-3)$, $C(8;-17)$, $D(5;-9)$; 4. $x-2y+20=0$ и $x+y-1=0$; 5. $A(9,5)$, $B(3,3)$, $C(1,-3)$, $D(7,-1)$; 6. $A(1,3)$, $B\left(-\frac{56}{13},\frac{81}{13}\right)$, $C(-2,12)$, $D\left(\frac{43}{13},\frac{114}{13}\right)$; 7. $13x-5y+41=0$, $\frac{1681}{130}$; 8. $3x+4y-34=0$, $3x+4y-59=0$; 9. $4\sqrt{2}$;

2.4. Нормално уравнение на окръжност.......33

3. а) $(2x+3)^2+(2y+3)^2=2$; б) $(2x+5)^2+(2y+4)^2=5$; в) $x^2+y^2=8$; **4.** а) нямат общи точки;

б) нямат общи точки; в) $\left(-\frac{1}{2},0\right)$; **5.** а) Уравнението на окръжността е $(x-1)^2+(y-1)^2=1$ с център

(1,1) и радиус R=1 ; б) Ox и Oy са допирателни към окръжността съответно в точките (1,0) и (0,1) ;

6. Упътване. Отделете точен квадрат за x и за y. Уравнението е $(x+1)^2 + \left(y - \frac{3}{2}\right)^2 = \left(\frac{\sqrt{41}}{2}\right)^2$.

Центърът е $\left(-1, \frac{3}{2}\right)$, радиусът е $R = \frac{\sqrt{41}}{2}$. **7.** $(x+2)^2 + (y+1)^2 = 25$; **8.** $(x-3)^2 + (y+2)^2 = 2$;

9. a)
$$x^2 + y^2 + 3x - 4y = 0$$
 или $\left(x + \frac{3}{2}\right)^2 + (y - 2)^2 = \frac{25}{4}$; б) $N(0;0)$, $P(0;4)$;

Оценяване. За всеки верен отговор по 2 точки. Оценка в точки =(получените точки.100/24). **Тест 2.** 1A; **2**(x+y-1=0); **3** (a(x=4); б(y=-3); в(2x+y-3=0)); 4Г; **5**Б; **6**В; **7**A; **8**Б; **9**Г; **10**($\sqrt{37}+3\sqrt{2}+\sqrt{13}$).

Оценяване. За всеки верен отговор по 2 точки. Оценка в точки = (получените точки.100/24).

III. Стереометрия

3.1. Първични понятия и аксиоми в стереометрията. Успоредност в пространството **40 1.** а-9;б-3; в-1; г-11; д-12; е-2; ж-5; з- без твърдение; и-6; к-14; л-13; Твърдения без чертеж: 4; 7; 8; 10; 15:

3.2. Перпендикулярност в пространството44

1. а-5; б-7; в-8; г-6; д-1; Твърдения без чертеж: 2; 3; 4; 10. а) $\frac{20\,a^3}{3}$; $8a^2\sqrt{5}$; б) $\mathrm{tg}\,\frac{\Phi}{2}=\frac{1}{2}$; 11. $V=\frac{b^3}{3}\cos^2\alpha\sqrt{1-2\cos^2\alpha}$;

3.3. Перпендикуляр и наклонена.......48

2. 60°; **3.**
$$\sqrt{5}$$
; **4.** $tg\phi = \frac{2\sqrt{3}}{3}$; **5.** $\sin \phi = \frac{3\sqrt{3}}{10}$; **6.** $V = \frac{a^3 tg\beta \cos \alpha}{48 \sin^2 \alpha}$; **7.** $tg\phi = \frac{7\sqrt{5}}{5}$; **8.** $\frac{a^3\sqrt{6}}{8}$;

9. a) $tg\phi = \sqrt{2}$; 6) 27;

3.4. Двустенен ъгъл. Перпендикулярност на две равнини50
1. 30°; 2. $\frac{4a}{3}$; 3. $\frac{18\sqrt{13}}{13}$; 4. 90°; $\angle CBM$; 5. 90°; $\angle MC_1C$, където $CC_1 \perp AB$, в равнината на
основата; 6. 90° ; $\angle CC_1M$, където $C_1 \in AB$, $CC_1 \perp AB$ в равнината на основата; 7. $\angle ONM$, където
$ON \perp AB$, $N \in AB$; 8. $S_1 = \frac{a^2(1+\cos\alpha)}{\cos\alpha}$;
3.5. Многостен
2. $\frac{\sqrt{2}}{2}$; 3. $\frac{16\sqrt{3}}{3}$; 4. $a^2(3+\sqrt{3})$; 5. 45° ; 6. $\frac{35\sqrt{47}}{6}$ cm ³ ; $\cos \varphi = \frac{\sqrt{141}}{21}$; 7. $96\sqrt{3}$ cm ³ ; $120\sqrt{3}$ cm ² ;
8. $\frac{\sqrt{2}}{8}$; 9. $S = a^2 \sqrt{2 \operatorname{tg}^2 \alpha + 1}$; $V = \frac{a^3 \sqrt{2} \operatorname{tg} \alpha}{6}$; 10. $8a^3$; 11. $\frac{\sqrt{34}}{4}$; 12. $\frac{5}{7}$;
3.6. Сечение на многостен с равнина55
2. a) $h = \sqrt{k^2 - \frac{(a-b)^2}{4}}$; $S_1 = 2(a+b)k + a^2 + b^2$; $V = \frac{1}{3}\sqrt{k^2 - \frac{(a-b)^2}{4}}(a^2 + b^2 + ab)$; 6) 4; 210;
156; в) 1; $12\sqrt{2} + 20$; $\frac{28}{3}$; 4. a) 4 cm; $\frac{19\sqrt{3}}{2}$ cm ³ ; б) $\sqrt{21}$ cm; $21\sqrt{3}$ cm ³ ; 5. 4 cm; 12 cm ³ ;
6. a) $V = \frac{h\sqrt{3}}{12}(a^2 + b^2 + ab)$; б) $V = \frac{h}{3}(a^2 + b^2 + ab)$; 5. a) $\frac{4}{3}$ или $\frac{3}{4}$; б) $\frac{1}{6}$ или $\frac{6}{1}$; 8 A; 9 A; 10 B;
12
2.7. Постионно на основно с полиния
3.7. Построяване на сечение с равнина
10. а) успоредник; б) $V_1 = 12$ cm ³ ; $V_2 = 12(2\sqrt{3}-1)$ cm ³ ; 11. $12\sqrt{39}$ cm ³ ; $5\sqrt{39}$ cm ² ; $3\sqrt{55}$ cm ² ;
12. 21 cm ² ; 13. $V = \frac{ab}{12}\sqrt{a^2 + b^2} \operatorname{tg}\alpha$; 14. $\frac{3\sqrt{2}}{8}Q$; 15. 36 cm ³ ; 16. $\frac{a^2\sqrt{3}}{3}$; 17. $\frac{a^2\sqrt{3}}{4\cos\alpha}$; 18. $\frac{a^2\sqrt{3}}{8}$;
$\frac{45a^2}{8}$; 19. 1:1; 20. правоъгълник; $\frac{\sqrt{13}a^2}{3}$; 21. равнобедрен трапец; $\frac{5\sqrt{19}a^2}{18}$;
3.8. Ос на кръстосани прави
2. а) $d(AA_1,BC_1) = AB = a$; б) $d(AA_1,BD) = AO = \frac{a\sqrt{2}}{2}$, където $O = AC \cap BD$; в) $d(AA_1,BD_1) = AO = \frac{a\sqrt{2}}{2}$
$d(AA_1,BB_1D_1D)=AO=rac{a\sqrt{2}}{2}$ където $O=AC\cap BD$; г) $rac{a\sqrt{6}}{6}$; д) $rac{a\sqrt{3}}{3}$; 4. $rac{a\sqrt{3}b^2-a^2}{2b}$; 5. Оста-
отсечка е OP , където $O=AC\cap BD$ и $OP\perp AM$, $P\in AM$; $OP=a\sin\alpha\cos\alpha$, 6. $a\cos\alpha$;
7. Оста-отсечка е OC , където $O = AC \cap BD$; $OC = \frac{a\sqrt{3}}{2}$; 8. Оста отсечка е OP , където
$O = AC \cap BD$ и P е петата на перпендикуляра от O към AM ; $OP = \frac{\sqrt{2}}{3}$; 9. $\frac{a\sqrt{21}}{7}$;
10. $V = \frac{2m^3\sqrt{3}}{27\cos\alpha\sin^2\alpha}$; 11. $\frac{2\sqrt{5}}{5}$;
3.9. Ротационни тела
2. 48π ; 80π ; 96π или 48π ; 66π ; 72π ; 3. $2\pi r^2(2\sqrt{3}+1)$, $2\pi r^3\sqrt{3}$; б) $6\pi r^2$, $2\pi r^3$; 4. a) $\frac{\sqrt{5}}{2}$;
6) $\frac{\sqrt{3}}{2}$; 5. $A\pi + \frac{8W^2}{A^2\pi}$; 6. $2\sqrt{r^2 - d^2}.h$; 7. 3 cm ² ; 8. a) $\sqrt{4r^2 + h^2}$; 6) $\sqrt{4r^2 - 4d^2 + h^2}$; 9. 30°;

Модул І. Геометрия – ОТГОВОРИ

29.
$$h = \sqrt{7}$$
 cm; $S = 128$ cm²; **30.** $S_1 = \frac{6r^2\sqrt{3}\sin\left(\alpha + \frac{\pi}{6}\right)}{\cos\alpha}$; **31.** $\cos\beta = \cot^2\frac{\alpha}{2}$; **32.** $\frac{4\pi}{9}$; $\frac{2}{3}$ m; 1 m;

33.
$$V = 9,6\pi$$
 cm³; $S = 16,8\pi$ cm²; **34.** $\sqrt{7}$; **35.** $V = \frac{4}{3}l^3 \sin\alpha\sin\frac{\alpha}{2}\sqrt{\cos\frac{3\alpha}{2}\cos\frac{\alpha}{2}}$; **36.** 504 cm²;

37.
$$\frac{64\sqrt{3}h^3\cot^2\alpha}{27}$$
; 38. $\frac{16Q}{3}$; 39. $\frac{a^2\sqrt{3}\sin^2\alpha}{2\sin^2\left(\alpha+\frac{\pi}{6}\right)}$; 40. $V=d^3\sin^2\beta\sqrt{\cos2\beta}$; $tg\phi=\frac{\sin\beta}{\sqrt{2\cos2\beta}}$;

41.
$$\frac{b^3 \operatorname{tg} \alpha \operatorname{cotg} \frac{\beta}{2}}{8 \sin \frac{\beta}{2}}$$
; 42. $\frac{a^3 \sqrt{3}}{384}$; 43. $R = 3\sqrt{\frac{S \sin \alpha}{5\pi}}$; $r = 2\sqrt{\frac{S \sin \alpha}{5\pi}}$; 44. $V = \frac{136\pi}{5}$ cm³; $S = \frac{288\pi}{5}$

cm²; **45.**
$$\sqrt[3]{\frac{6V}{\sin\frac{\alpha}{2}\sqrt{\cos\alpha}}}$$
; **46.** $\frac{6\sqrt{6}h^2\cot\alpha\sin(\alpha+45^\circ)}{\sin\alpha}$; **47.** $V = \frac{a^3}{\sin\alpha}\sqrt{\cos 2\alpha}$;

48.
$$\cot \frac{\alpha}{2} \sqrt[3]{36V^2 \tan \alpha}$$
; **49.** $\frac{\sqrt{2}S r \sin 2\alpha}{4 \cos(45^\circ - \alpha)}$; **50.** $V = \frac{\pi d^3 \sqrt{3}}{32 \sin^2 \frac{\alpha}{2}}$; **51.** 2;

52.
$$\frac{3a^3}{8\sin\frac{\alpha}{2}}\sqrt{\sin\left(\frac{\pi}{3}+\frac{\alpha}{2}\right)\sin\left(\frac{\pi}{3}-\frac{\alpha}{2}\right)}$$
; **53.** $\frac{c^3\sin^2 2\alpha \operatorname{tg}\beta}{24}$; **54.** $\frac{a^2\sqrt{3}}{4\cos\alpha}$; $3\sqrt{3}\,a^2\operatorname{tg}\alpha$; **55.** $4r^3\sqrt{6}$;

Отговори

І. Полиноми на една променлива

27.
$$x \in (-\infty, -2) \cup (-2, 2) \cup (3, +\infty)$$
; **28.** $x \in (-\infty, 1 - \sqrt{5}) \cup (1 - \sqrt{2}, 1) \cup (1 + \sqrt{2}, 1 + \sqrt{5})$; **29.** $x_{1,2} = \frac{1 \pm \sqrt{5}}{2}$, $x_{3,4} = \frac{-3 \pm \sqrt{21}}{2}$;

Полиноми на една променлива – Тест 1 и Тест 2......106

Tecm 1. 1 Γ ; 2(a(2); 6(176); B(-184); Γ (-88)); 3 Γ 5; 4(χ -2)²(χ ² + χ +1); 5(χ ₁ = -3, χ ₂ = -2,

$$x_{3,4} = 1 \pm \sqrt{5}$$
); **6**($x_{1,2} = -1$; $x_{3,4} = \frac{-3 \pm \sqrt{5}}{2}$);

Оценяване. За всеки верен отговор на задачи от 1 до 4 по 2 точки. Задачи 5 и 6 - за всеки вярно намерен корен по 2 точки. Оценка в точки =(получените точки.100/24).

Tecm 2. 1B; **2**(a(5); 6(191); 6(-151); 6(-65); **3**6(-65); **3** $6(2x-1)(x+2)^2(x^2-x+1)$; **5**($6(x_1-x_2)^2(x^2-x+1)$; **5**($6(x_1-x_2)^2(x^2-x+1)$); **6**($6(x_1-x_2)^2(x^2-x+1)$); **7**($6(x_1-x_2)^2(x^2-x+1)$); **8**($6(x_1-x_2)^2(x^2-x+1)$)

$$x_{3,4} = \frac{5 \pm \sqrt{5}}{2}$$
); **6**($x_{1,2} = -1$, $x_{3,4} = 1$);

Оценяване. За всеки верен отговор на задачи от 1 до 4 по 2 точки. Задачи 5 и 6 - за всеки вярно намерен корен по 2 точки. Оценка в точки =(получените точки.100/24).

II. Числови редици

- 2.2. Нютонов бином.......109

1.
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
;

$$(a-b)^6 = a^6 - 6a^5b + 15a^4b^2 - 20a^3b^3 + 15a^2b^4 - 6ab^5 + b^6$$

- **2.** 1680; **3.** 270; **4.** 21; **5.** -280; **6**B; **7**B; **8.** а) 8; б) 64; в) 0; г) 1;
- 2.3. Числови редици......112

4. a) не е монотонна; ограничена; б) растяща; ограничена; в) намаляваща; ограничена; г) намаляваща; ограничена;

- 5. а) намаляваща; б) намаляваща; в) растяща; г) намаляваща;
- 2.4. Теореми за граници на редици115

2. a)
$$\frac{7}{3}$$
; 6) $\frac{11}{4}$; B) 12 ; F) $\sqrt{2}-1$; **3.** a) $-\frac{2}{3}$; 6) $\frac{4}{3}$; B) 4 ; F) $\frac{3-\sqrt{6}}{6}$; **4.** a) $\frac{\sqrt{2}}{4}$; 6) $-\sqrt{2}$; B) $\frac{\sqrt{3}}{6}$;

7. a) 0; 6) 2; B) 1; r)
$$\frac{1+\sqrt{13}}{2}$$
; **10.** $-\frac{1}{2}$; **11.** $\frac{5}{3}$; **12.** 0; **13.** $-\infty$; **14.** ∞ ; **15.** 1; **16.** ∞ ; **17.** 2; **18.** $\frac{1}{4}$;

19.
$$-\frac{1}{2}$$
; **20.** $\frac{\sqrt{2}}{2}$; **21.** -1 ; **22.** -4 ; **23.** $-\frac{3}{5}$; **24.** 2; **25.** $\frac{1}{12\sqrt{3}}$; **26.** $\frac{1}{8\sqrt{2}}$; **27.** ∞ ; **28.** 0; **29.** $\frac{\sqrt{5}-2}{\sqrt{7}-2}$;

30. $\frac{13}{9}$

2.5. Сума на безкрайно намаляваща геометрична прогресия123

1. a) 2; б)
$$\frac{9}{4}$$
; **2.** a) $3(\sqrt{3}+1)$; б) $2(\sqrt{2}+1)$; **3.** a) 15; б) $\frac{8}{21}$; в) $\frac{2}{3}$; г) 0,79; **4.** 0,5; **5.** 2; 0,5; **6.** $\frac{1}{3}$; **7.** 2;

Оценяване. За всеки верен отговор на задачи от 1 до 7 по 2 точки. Задача 8 (общо 8 точки) - за рационализиране 2 точки; за изнасяне на най-високата степен на n пред скоби от числителя и знаменателя по 2 точки; за отговор 2 точки. Задача 9 (общо 6 точки) - за изнасяне на най-високата степен на n пред скоби от числителя и знаменателя по 2 точки; за отговор 2 точки. Оценка в точки = (non) = (non)

Tecm 2. 1B; 2A; 3B; 4A; 5B; 6Б; 7B; 8($\frac{3}{2}$); 9($-\sqrt{3}$);

Оценяване. За всеки верен отговор на задачи от 1 до 7 по 2 точки. Задача 8 (общо 6 точки) - за разлагане на числителя и знаменателя по 2 точки; за отговор 2 точки. Задача 9 (общо 4 точки) - за граничен преход 2 точки; за отговор 2 точки. Оценка в точки =(получените точки.100/24).

III. Функции. Непрекъснатост и диференцируемост

3.1.	. Функция.	Начини	на задаване	 	 	127
•	\ _\	· · - · - ·		_\		

3. а) четна; б) четна; в) нито четна, нито нечетна; г) нито четна, нито нечетна;

1. a)
$$g(x) = \sin^2 x$$
, $x \in \mathbb{R}$; 6) $g(x) = \log_a(2^x + \sqrt{x})$, $x \ge 0$; B) $g(x) = \frac{1}{\log_a x}$, $x \in (0,1) \cup (1,+\infty)$; r)

$$g(x) = \sin(2^{x^2})$$
 , $x \in \mathbb{R}$; д) $g(x) = 2^{\sin^2 x}$, $x \in \mathbb{R}$; е) $g(t) = \sqrt{5 \sin t^2}$, за всички t , за които $\sin t^2 \ge 0$;

2. a)
$$g(y) = y^2$$
, $y = 2x + 1$; 6) $g(y) = \operatorname{tg} y$, $y = 7x$; B) $g(y) = y^2$, $y = \cos z$, $z = \sqrt{x}$; r) $g(y) = \sqrt{y}$, $y = \cos z$, $z = 3x$; D) $g(y) = \sqrt[3]{y}$, $y = 1 + z$, $z = \log_a t$, $t = 2x$;

2. да; **3.** не; **4.** 3; **5.** $3-\sqrt{5}$;

1. a)
$$\frac{9}{11}$$
; 6) 4; B) 1; r) $-\frac{1}{4}$; **2.** a) $\frac{2}{3}$; 6) 3; B) $-\frac{12}{7}$; r) $\frac{4}{3}$; д) $\frac{1}{3}$; e) $\frac{1}{8}$; **5.** a) $\frac{2}{3}$; 6) $-\frac{1}{2}$; B) $+\infty$; r) $+\infty$; д) $-\infty$; e) $-\infty$; ж) $+\infty$:

6. a) 0; б) 0; в)
$$+\infty$$
; г) $+\infty$; д) $\frac{1+\sqrt{3}}{1+\sqrt{2}}$; е) $\frac{\sqrt{2}+1}{\sqrt{3}}$; ж) $-\frac{1}{3}$; з) $\frac{\sqrt{3}}{3}$; **7.** a) $-\infty$; б) $+\infty$; в) $-\infty$; г) $-\infty$;

д)
$$+\infty$$
; e) $+\infty$; ж) $-\infty$; **9.** a) -13 ; б) $\frac{7}{4}$; в) $-\frac{9}{20}$; **10.** a) $4+8\sqrt{2}$; б) $3+\frac{\sqrt{3}}{6}$; **11.** a) $\frac{5}{3}$; б) 0; **12.** a) $\frac{5}{6}$:

6)
$$8 + \frac{\sqrt{2}}{8}$$
; **13.** a) $\frac{5}{3}$; 6) $\frac{5}{4}$; B) $-\frac{3}{2}$; **14.** a) $-\frac{3\sqrt{3}}{4}$; 6) 3; B) $\frac{2}{3}$; **15.** a) $-\frac{4+\sqrt{2}}{4}$; 6) $\frac{1}{2}$;

2. a) 2; б) 1; в)
$$\frac{2}{3}$$
; г) 1; **3.** a) 1; б) 6; в) $\frac{1}{10}$; г) $\frac{1}{2}$; **4.** a) $\frac{\alpha}{\beta}$; б) α ; в) $\frac{\alpha}{\beta}$; г) α^2 ; **5.** a) $\frac{1}{2}$; б) 4; в) $\frac{75}{2}$;

r)
$$\frac{1}{2}$$
; **6.** a) 1; 6) 4; B) $\frac{1}{9}$; r) 27; **7.** a) 4; 6) $\frac{\sqrt{2}-4}{2}$; **8.** a) $\frac{1}{4}$; 6) $\frac{27}{2}$; **9.** a) $\frac{1}{10}$; 6) $\frac{1}{32}$; B) 1; **10.** a) $\frac{1}{2}$; 6) $\frac{3}{8}$;

2. a = 3; **3.** $\pm \sqrt{2}$; **4.** а) непрекъсната за всяко x; б) прекъсната при x = 0; в) прекъсната при x = 1;

5. Дефинираме g(2) = 4 и g(x) = f(x) при $x \neq 2$; **6.** няма такива стойности; **7.** f(1) = f(2) = 0;

8. а) При x = 3 е прекъсната; б) Непрекъсната за всяко x; в) При x = 3 е прекъсната; **9.** 0;

3.7. Теореми за непрекъснатост142

2. а) Има корен в (-1,0); б) Има корен в (0,1);**4.** Има корени в (0,1) и (2,3); **6.** Има корени в (1,2) и (2,16); **8.** Има корен в (1,2); **10.** Между 2 и 4; **11**В; **12**Г; **13**А; **14**А;

3.8. Производна на функция.......144

2. a) 0; 1;
$$2x$$
; $3x^2$; $4x^3$; $5x^4$; 6) $\frac{1}{2\sqrt{x}}$; $\frac{1}{3\sqrt[3]{x^2}}$; $\frac{3\sqrt{x}}{2}$; $\frac{3}{5\sqrt[5]{x^2}}$; B) $-\frac{1}{x^2}$; $-\frac{2}{x^3}$; $-\frac{3}{x^4}$; $-\frac{4}{x^5}$;

г)
$$-\frac{1}{2\sqrt{x^3}}$$
; $-\frac{1}{3\sqrt[3]{x^4}}$; $-\frac{3}{2\sqrt{x^5}}$; $-\frac{3}{5\sqrt[5]{x^8}}$; д) 3 ; x ; x^2 ; x^3 ; е) $\frac{1}{\sqrt{x}}$; $\frac{1}{\sqrt[3]{x^2}}$; $\frac{9\sqrt{x}}{4}$; $25\sqrt[3]{x^2}$; ж) $-\frac{1}{2x^2}$;

$$-\frac{2}{x^2}; -\frac{1}{x^3}; -\frac{4}{3x^3}; \mathbf{a}) -\frac{1}{\sqrt{x^3}}; -\frac{2}{9\sqrt[3]{x^4}}; -\frac{1}{\sqrt{x^5}}; -\frac{18}{25\sqrt[5]{x^8}}; \mathbf{u}) \cos x; -\sin x; \frac{1}{\cos^2 x}; -\frac{1}{\sin^2 x};$$

κ)
$$3\cos x$$
; $2\sin x$; $-\frac{1}{\cos^2 x}$; $-\frac{5}{\sin^2 x}$; π) $-\cos x$; $-7\sin x$; $\frac{5}{\cos^2 x}$; $\frac{2}{\sin^2 x}$.

4. a) 2; б)
$$2x + 2$$
; в) $15x^2 + 2$; г) $12x^3 - 6x^2 + 8$; д) $x - \frac{1}{2\sqrt{x}}$; е) $-\frac{1}{3\sqrt[3]{x^2}} - 1$; ж) $\frac{9\sqrt{x}}{2} - \frac{1}{2\sqrt{x}}$;

3)
$$2x + \frac{1}{2\sqrt{x}} + 1$$
; **5.** a) $-\frac{1}{x^2} - 2x$; 6) $9x^2 - \frac{2}{x^3} + 2$; B) $4x + \frac{9}{x^4}$; r) $\frac{1}{2\sqrt{x}} - \frac{4}{x^5}$; **6.** a) $-\frac{1}{2\sqrt{x^3}}$;

6)
$$-\frac{3}{2\sqrt{x^5}} - 4x^3$$
; B) $-\frac{3}{2\sqrt{x^3}} + \frac{1}{2\sqrt{x}}$; r) $\frac{2}{\sqrt{x}} + \frac{3}{2\sqrt[4]{x^7}}$; 7. a) $\cos x + \frac{1}{\cos^2 x}$; 6) $2\cos x - \sin x$;

B)
$$\frac{4}{\sin^2 2x}$$
; r) $-\sin x - 3\cos x$;

9. a)
$$\sin x + x \cos x$$
; 6) $4x \cos x - 2x^2 \sin x$; B) $2x \tan x + \frac{1+x^2}{\cos^2 x}$; r) $\frac{\sin x}{2\sqrt{x}} + (\sqrt{x} + 3) \cos x$;

10. a)
$$\cos 2x$$
; б) $4\cos x$; в) 0 ; г) $\sin x + \frac{\sin x}{\cos^2 x}$; **11.** a) $\frac{3\sqrt{x}}{2}$; б) $4x - 3$; в) $\frac{5\sqrt{x^3}}{2} - \frac{1}{\sqrt{x}}$;

r)
$$8x^3 - 9x^2 - 12x$$
; **12.** a) $15x^2 - tgx - \frac{x}{\cos^2 x}$; 6) $\frac{1}{2\sqrt{x}} - 2x\cos x + x^2\sin x$;

B)
$$-\frac{4}{\sin^2 x} - 2 \operatorname{tg} x - \frac{2x}{\cos^2 x}$$
; r) $3x^2 \cos x - x^3 \sin x + 3 \sin x$; **14.** a) $\frac{\sin x - x \cos x}{\sin^2 x}$; 6) $\frac{x \cos x - \sin x}{x^2}$;

B)
$$\frac{2x\cos x + x^2\sin x}{\cos^2 x}$$
; r) $\frac{\cos x + 2x\sin x}{2\sqrt{x}\cos^2 x}$; **15.** a) $-\sin x$; 6) $-\frac{3}{2\sin^2 x}$; B) $-\frac{1+\cos^2 x}{\sin^3 x}$;

r)
$$-\frac{(1+\sin^2 x)\cos x}{\sin^2 x}$$
; **16.** a) $\frac{3}{2}\sqrt{x}\sin x + \sqrt{x^3}\cos x$; 6) $\frac{\sin x(\sin x\cos x + x\cos^2 x + x)}{\cos^2 x}$;

B)
$$\frac{3x^3 - 4x - 10}{x^3}$$
; r) $\frac{(3x^2 - 6x + 1)\sin x - (x^3 - 3x^2 + x - 3)\cos x}{\sin^2 x}$; **17.** a) $\frac{1}{2}x^2\cos x + \cos x - 2\sin x$;

6)
$$3x^2 + \frac{1}{2\sqrt{x}} + 1$$
; **18.** a) $\frac{4x\cos 2x - \sin 2x}{4x\sqrt{x}}$; 6) $\frac{(-x^4 - x^2 + 2x)\sin x + (x^4 + x^2 + 2x)\cos x}{(x^2 + 1)^2}$;

B)
$$\frac{1+\cos 2x\cos^2 x}{\sin^3 x\cos^2 x}$$
; r) $\frac{(x^2+2x+2)\sin x+(x^2+2x-2)\cos x}{(x+2)^2}$;

20. a)
$$50x+10$$
; 6) $2x+4$; B) $3(x^2+x)^2(2x+1)$; r) $4(4x^3-x^2-2)^3(12x^2-2x)$; **21.** a) $3\sin^2 x \cos x$;

6)
$$-4\cos^3 x \sin x$$
; B) $\frac{2\sin x}{\cos^3 x}$; r) $-\frac{2\cos x}{\sin^3 x}$; **22.** a) $2\cos 2x$; 6) $2x\cos x^2$; B) $-3\sin(3x+1)$;

r)
$$-\frac{\sin\sqrt{x}}{2\sqrt{x}}$$
; **23.** a) $\frac{\cos x}{2\sqrt{\sin x}}$; 6) $\frac{3}{2}\sqrt{\sin x}\cos x$; B) $\frac{1}{2\cos^2 x\sqrt{\tan x}}$; r) $\frac{3\sqrt{\tan x}}{2\cos^2 x}$; **24.** a) $\frac{3x^2-3}{2\sqrt{x^3-3x}}$;

6)
$$-\frac{2x^3}{\sqrt{(x^4-5)^3}}$$
; B) $\frac{3-18x}{(3x^2-x)^4}$; r) $\frac{8x^3}{(x^4+2)^2}$; **26.** a) $15\sin^2 5x\cos 5x$; 6) $3\sin 6x$; B) $-3x^2\sin(2x^3)$;

r)
$$-15(6x-1)\sin(3x^2-x)\cos^2(3x^2-x)$$
; **27.** a) $\frac{3\sin^2\sqrt{x}}{2\sqrt{x}\cos^4\sqrt{x}}$; 6) $\frac{2x\cos x^2}{\cos^2(\sin x^2)}$; B) $\frac{-15\sin(10x-2)}{4\sqrt{\cos(5x-1)}}$;

r)
$$\frac{6\cot^2(\cos^2 2x)\sin 4x}{\sin^2(\cos^2 2x)};$$

28. a)
$$\frac{1}{\sqrt{2x+1}} - 4x$$
; 6) $\frac{x}{\sqrt{x^2+1}} - 9x^2$; B) $\frac{x}{(1+x^2)^2}$; r) $\frac{1}{(2x+1)^2}$; **29.** a) $5x\sqrt{3x} - \frac{3}{2}\sqrt{3x} - 18x^2 + 6x$;

6)
$$\frac{15}{2}x\sqrt{2x} - \frac{3}{2}\sqrt{2x} - 18x^2 + 4x$$
; B) $40x^3 + 7x^2\sqrt{5x} - \frac{\sqrt{5x}}{2x} - 5$; **30.** a) $\cos 2x \cos x$; 6) $2\sin 2x \cos x$;

B) $\sin 5x \sin 3x$; r) $3\cos 6x \sin 3x$; **31.** a) $\sin^2 x \cos^3 x$; 6) $\sin^3 x \cos^3 x$; B) $\cos^3 x$; **32.** a) $\sin 8x$;

6)
$$3 ext{tg}^4(x-1) + ext{tg}^3(x-1) \sin(2x-2)$$
; **33.** a) $\frac{-(2+\sin^2 x)\sqrt{\cos x}}{\sin^2 x}$; 6) $\frac{1+\sin^2 x}{\cos^3 x}$; B) $\frac{\sin x + x}{1+\cos x}$;

34. a)
$$\frac{\sin^3 x}{\sqrt{\cos x}}$$
; 6) $\left(\cos x + \sqrt{\sin x}\right)^2$; **35.** a) $\frac{1}{2}\sin 2x$; 6) $x\sin 2x$; B) $\frac{1}{\cos^4 x}$; **36.** a) $\frac{\cos^4 x}{\sin^8 x}$; 6) $tg^4 x$;

37. a)
$$\frac{1}{(1-x)\sqrt{x^2-1}}$$
; 6) $\frac{1}{(x+1)\sqrt{2x(x+1)}}$; B) $\frac{2\sqrt{x}+1}{4\sqrt{x}\sqrt{x}+\sqrt{x}}$; r) $\frac{3\sqrt[3]{x^2}+1}{6\sqrt[3]{x^2}\sqrt{x}+\sqrt[3]{x}}$;

38. a)
$$(x^2 + 3x + 5)\cos 2x$$
; 6) $4x^3 \sin^2 x$.

1B; **2**G; **3**G; **4**G; **5**\Gamma; **6**\Gamma; **7**\Gamma; **8**\Gamma; **9**(a(
$$\frac{5}{2\sqrt{x}}$$
 - 4x - $\frac{8}{x^3}$); 6(2x sin x + x² cos x); B($-\frac{2x \sin x + 8 \cos x}{x^5}$);

$$\Gamma(\frac{3x^2\sin 2x - 2x^3}{2\sin^2 x})$$
; д $(-6x\sin x^2)$; е $(\frac{3}{2}\sqrt{\sin x}\cos x)$; ж $(\cos 3x\cos 4x)$; **10**(Има корен в интервала $(-2,-1)$).

Оценяване. За всеки верен отговор на задачи от 1 до 8 по 2 точки. Задача 9 (общо 14 точки) – за всяка вярно намерена производна по 2 точки. Задача 10 (общо 6 точки) – за намиране на две стойности на полинома с различни знаци по 2 точки; за извод 2 точки. Оценка в точки =(получените точки.100/36).

Tecm 2

1Б; **2**А; **3**А; **4**Б; **5**А; **6**Г; **7**Г; **8**
$$(\frac{3}{2})$$
; **9** $(a(x^2+3x-5); 6(2\cos x-2x\sin x); 8(6x^2+2x-3);$ $(\frac{tg\sqrt{x}}{2\sqrt{x}}+\frac{1}{2\cos^2\sqrt{x}}); 4(\frac{4}{3}\cos x\cos 3x));$ **10** $(\Pi$ рекъсната при $x=0$, в останалите точки е непрекъсната.).

Оценяване. За всеки верен отговор на задачи от 1 до 7 по 2 точки. Задача 8 (общо 6 точки) — за рационализиране 2 точки; за изнасяне на най-високата степен на x пред скоби 2 точки; за отговор 2 точки. Задача 9 (общо 10 точки) — за всяка вярно намерена производна по 2 точки. Задача 10 (общо 6 точки) — за намиране на лявата и дясната производна в точката 0 по 2 точки; за извод 2 точки. Оценка в точки = (получените точки.100/36).

Годишен преговор159

1.
$$x^3 + x^2 - 2x + 1$$
 u $2x - 1$; **2.** $2x^3 - 3x^2 + x + 1$ u 2 ; **3.** $P(2) = 1$, $P(-1) = 4$, $P(3) = 16$;

4. a) 26; 6) 10783; **5.**
$$x_{1,2} = -1$$
, $x_3 = 2$, $x_4 = -3$; $(x+1)^2(x-2)(x+3)$;

6. a)
$$(x+3)(3x-5)(3x+2)(x-\sqrt{5})(x+\sqrt{5})$$
; 6) $(2x-1)(3x+2)(4x+1)(x-2)$;

в)
$$(x-2)^3(2x+1)(x+2)$$
; г) $(x+3)^2(x+2)^2(x-1)$; д) $(3x+2)(2x-3)(2x+1)(3x-1)$;

e)
$$(2x-5)(2x+1)(2x-3)(5x+2)$$
; ж) $\frac{1}{2}(x+2)(x-3)(2x-2-\sqrt{6})(2x-2+\sqrt{6})$;

3)
$$\frac{1}{3}(x-2)(x+1)(3x-1-\sqrt{7})(3x-1+\sqrt{7})$$
;

7. a)
$$x_1 = 2$$
; $x_{2,3} = 1 \pm \sqrt{3}$; 6) $x = -2$; B) $x = -3$; Г) $x_{1,2} = \pm 2$; $x_{3,4} = \frac{3 \pm \sqrt{33}}{4}$;

д)
$$x_1 = -3$$
; $x_2 = -2$; $x_{3,4} = \frac{2 \pm \sqrt{2}}{2}$; e) $x_1 = -2$; $x_{2,3} = 1$; ж) $x_1 = -1$; $x_{2,3} = 1$; $x_{4,5} = 1 \pm \sqrt{3}$;

3)
$$x_1 = -1; \ x_{2,3} = \pm 2; \ x_{4,5} = \frac{1 \pm \sqrt{7}}{2}; \text{ i.i.} \ x_{1,2} = \pm 2; \ x_3 = -1; \ x_{4,5} = 1 \pm \sqrt{2}; \text{ i.i.} \ x_1 = -2; \ x_{2,3} = 1; \ x_{2,3} = 1;$$

8. a)
$$x_1 = -1$$
; $x_{2,3} = 1 \pm \sqrt{3}$; 6) $x_1 = 3$; $x_{2,3} = -1 \pm \sqrt{3}$; B) $x_1 = -3$; $x_{2,3} = \frac{-3 \pm \sqrt{21}}{2}$; r) $x_1 = 2$; $x_{2,3} = 1 \pm \sqrt{6}$;

9. a)
$$x_{1,2} = \pm \sqrt{2}$$
; $x_{3,4} = \frac{1 \pm \sqrt{5}}{2}$; 6) $x_{1,2} = \pm \sqrt{3}$; $x_{3,4} = 1 \pm \sqrt{3}$; B) $x_1 = -1$; $x_{2,3} = \pm \sqrt{2}$; $x_{4,5} = \frac{5 \pm \sqrt{13}}{6}$;

10. a)
$$x_{1,2} = \frac{-5 \pm \sqrt{2}}{2}$$
; $x_{3,4} = \frac{3 \pm \sqrt{5}}{2}$; 6) $x_{1,2} = \frac{3 \pm \sqrt{5}}{2}$; B) $x_1 = -1$; $x_{2,3} = \frac{7 \pm 3\sqrt{5}}{2}$; r) $x_{1,2,3,4} = 1$;

11. a)
$$x_1 = -2$$
; $x_{2,3} = \frac{7 \pm \sqrt{33}}{4}$; $x_{4,5} = \frac{4 \pm \sqrt{7}}{3}$; 6) $x_1 = 2$; $x_{2,3} = \frac{3 \pm \sqrt{5}}{2}$; $x_{4,5} = \frac{5 \pm \sqrt{21}}{2}$; B) $x_1 = \frac{3}{2}$;

$$x_{2,3} = \frac{-3 \pm \sqrt{5}}{2}$$
; $x_{4,5} = 3 \pm 2\sqrt{2}$;

12. a)
$$x \in (-\infty; -4] \cup \left[\frac{-3 - \sqrt{5}}{2}; \frac{-3 + \sqrt{5}}{2} \right] \cup \{1\}; 6) \ x \in (-\infty; -3) \cup (-3; -2) \cup (2; +\infty);$$

B)
$$x \in \left(-1; \frac{5-\sqrt{21}}{2}\right) \cup (2-\sqrt{3};1) \cup \left(2+\sqrt{3}; \frac{5+\sqrt{21}}{2}\right);$$

13. a)
$$x \in [-2, -1] \cup [3, +\infty)$$
; б) $x \in (-2, -\sqrt{2}) \cup (\sqrt{2}, 3) \cup (3, +\infty)$;

B)
$$x \in \left(-\infty, -\frac{2}{3}\right) \cup \left(-\frac{1}{3}, 1\right) \cup (5, +\infty);$$

14. a)
$$x \in (-1 - \sqrt{3}, 1 - \sqrt{3}) \cup (-1 + \sqrt{3}, 2) \cup (1 + \sqrt{3}, +\infty)$$
;

б)
$$x \in (-\infty, -1 - \sqrt{3}) \cup (-1, 1 - \sqrt{3}) \cup (-1 + \sqrt{3}, 1 + \sqrt{3})$$
;

15. a)
$$x \in (-\infty, 1 - \sqrt{3}) \cup (2, 1 + \sqrt{3})$$
; 6) $x \in (-1 - \sqrt{3}, -1 + \sqrt{3}) \cup (2, +\infty)$;

17. a)
$$10x^2y^6$$
; б) $\frac{224a^5}{3}$; в) $210.\frac{\sqrt[3]{x}}{x^2}$; г) 45; **18.** $35x^3a^8$; **19.** $x_1 = 3$, $x_n = \frac{3x_{n-1}}{n}$;

20. a)
$$\sqrt{2}$$
; 6) 0 ; B) $-\infty$; r) -1 ; $д$) ∞ ; e) 0 ; **21.** a) $\frac{\sqrt{2}+3}{8}$; 6) $\frac{1-\sqrt{3}}{8}$; B) $\frac{5}{9}$;

22. a)
$$5 + 2\sqrt{5}$$
; б) 36 ; в) $\frac{25}{12}$; г) $\frac{2}{3}$; **23.** $\frac{1}{4}$; **24.** $a_1 = \frac{16}{3}$, $q = \frac{1}{2}$; $a_1 = 16$, $q = -\frac{1}{2}$;

ОТГОВОРИ – Модул II. Елементи на математическия анализ

25. а) 3,5; б) 1; в)
$$\frac{\sqrt{5}}{40}$$
; г) $-\frac{1}{2}$; д) $-\frac{1}{6}$; е) $\frac{1}{4}$; ж) $\frac{1}{2}$; з) 2;

26. а)
$$0;$$
 б) $\frac{1+\sqrt{3}}{\sqrt{5}};$ в) $0;$ г) $\infty;$ д) $3;$ е) $-\infty;$ ж) $-\infty;$ з) $-2;$

27. а)
$$\frac{1}{4}$$
 ; б) 2; в) $\frac{1}{4}$; г) $4\sqrt{3}$; д) $\frac{1}{2}$;

28. a)
$$\cos a$$
; б) $-\frac{\sin a}{2}$; в) $\frac{1}{\cos^2 a}$;

29.
$$b = 0$$
, $a = -3$;

30. прекъсната при
$$x = 0$$
;

31.
$$a = -3$$
;

32. a)
$$\frac{16x^3}{(x^4-1)^2}$$
; б) $\frac{2x+2}{\sqrt[3]{(3x^2+6x+1)^2}}$; в) $9\sin^2 3x\cos 3x$; г) $\sqrt{2}\cos x$; д) $\frac{6\sin x}{\cos^7 x}$;

33. а)
$$-\frac{61}{40}$$
; б) -6 ; в) 5 ; г) 5 ; д) -2 ; е) $-\frac{1}{2}$; ж) $0,8$; з) 0 ; и) 2 ;

Математика за 11. клас, профилирана подготовка

Донка Георгиева Гълъбова, Мая Пламенова Сидерова

Графичен дизайн Донка Гълъбова и Мая Сидерова Корица Кирил Чохаджиев и Диляна Чохаджиева

> Българска Първо издание, 2020 г. Формат 60х84/8, Печатни коли 19

> Издателство "Веди.БГ ЕООД" Тел. 02-971-47-82; 0888-95-98-13 e-mail: info@vedi.bg www.vedi.bg

> > ISBN 978-954-8857-54-3

Печат "СИМОЛИНИ 94"

София 2020 година