chem580 exam 1

Binding Energy

$$B = 15.56A - 17.23A^{2/3} - 0.72Z^{2}A^{-1/3} - 23.285(A - 2Z)^{2}A^{-1} + 11A^{-1/2}$$
$$B = 931(1.00783Z + 1.00867N - M)$$

Nuclear Radius

$$R(cm) = 1.4 \times 10^{-13} A^{1/3}$$

Magic Numbers

2, 8, 20, 28, 50, 82, 126 (also 118 for p^+)

\mathbf{AMU}

 $1\,\mathrm{u}{=}931\,\mathrm{MeV}$

Coulomb Barrier

$$E_C = 1.11 \frac{(A+A')}{A} \frac{ZZ'}{(A^{1/3} + A'^{1/3})}$$

Specific Activity

A is mass number, T is half-life in days

mCi mg

 $\frac{1.3 \times 10^8}{AT}$

 $\underline{\mathrm{MBq}}$

 $\frac{4.8 \times 10^6}{AT}$

Equilibrium

Secular

$$\lambda_d N_d = \lambda_p N_p \left(1 - e^{-\lambda dt} \right)$$

Beta Recoil

$$E_{Max} = E_m \frac{m_e}{m_e + M_D}$$

Alpha Range

$$R_{air} = 0.31 E_{\alpha}^{1.5}$$

$$R_? = R_{air} * \rho_{Air}/\rho_?$$

$$E_{\alpha} = E_{decay} \frac{m_{Daughter}}{m_{\alpha} + m_{Daughter}}$$

 α produces $30\,000$ ion pairs per cm in air

Beta Ranges

$$E_{max}^{daughter} = E_{\beta} \frac{E_{avg} \approx E_{max}/3}{m_{\beta}}$$

$$R(mg/cm^2) = \begin{cases} 543E_m - 133 & E_m \ge 0.8 \text{ MeV} \\ 407E_m^{1.38} & E_m < 0.8 \text{ MeV} \end{cases}$$

Scattering increases with Z and surface density up to about 1/5 of the range

Compton

$$E_s = \frac{E_{tot}}{1 + \frac{E_{tot}}{m_e} \left(1 - \cos \theta_{\gamma} \right)}$$