Bounded-Metric List Decoding

UCLA ECE MS Project Presentation

Layout

- Introduction
- Bounded Distance List Decoding (BDLD)
- Bounded Angle List Decoding (BALD)
- Results
- Application

Introduction

Basics

- BPSK modulation (0->1, 1->-1) and a BI-AWGN Channel
- We use the ELF-TBCC code listed in [1]
- K = 64, m = 12. Puncturing is applied to maintain rate-1/2, i.e., N = 128

[1] R. D. Wesel, A. Antonini, L. Wang, W. Sui, B. Towell, and H. Grissett, "ELF codes: Concatenated codes with an expurgating linear function as the outer code," 2023 12th International Symposium on Topics in Coding (ISTC), pp. 287–291, June 2023.

Term Notations

- Undetected Error Rate (UER) $P_u = P(\hat{x} \neq x)$
- Detected Error Rate (DER) $P_d = P_{\it erasure}$
- Total Error Rate (TER) $P_t = P_u + P_d$
- Correct Probability P_c

Introduction

List Decoding

- If the list single the decoder codeword biting and
- The list siz
 paths that
 given radio

SLVD Performance

List size cap = 2^20

- Average List size is fine at desired SNR, but max list size (max decoding time) can become prohibitively large.
- Higher SNR -> lower complexity

Bounded Distance List Decoding

Motivation

- Problem1: Real systems impose strict decoding time constraint on a single decoding
- Problem2: Even if a codeword is found, how much do we **trust** that to be the right answer?
- Solution: What if we put a smaller cap on Max list size?
- Implication: Sacrifice performance, you start to get erasures
- Question: If so, how to find the value of this smaller cap on list size?
- Possible Answer: What about the distance between Transmitted codeword and received word?

Bounded Distance List Decoding

Squared Distance from the transmitted codeword $\mathbf{c_0}$

•
$$\mathbf{c_0} = [c_0, c_1, c_2, ..., c_{127}]$$
, $\mathbf{n} = [n_0, n_1, n_2, ..., n_{127}]$, and $\mathbf{y} = \mathbf{c_0} + \mathbf{n}$

$$n_i \sim \mathcal{N}(0, N_0/2) \implies \sum_{i=0}^{N-1} n_i^2 \sim \chi_N^2 \implies \sum_{i=0}^{N-1} n_i^2 \sim \Gamma(\alpha = N/2, \theta = N_0)$$

- Simulation result confirms that the pdf of $\|\mathbf{y} \mathbf{c_0}\|^2$ follows a Gamma distribution.
- This allows us to compute the probability that the squared Euclidean distance between noisy word \mathbf{y} and transmitted codeword $\mathbf{c_0}$ is further than some distance d.

Bounded Distance List Decoding

Problems

- Throws away codewords that are pushed far away radially.
- Can we do better?
- Projecting the point back to the codeword sphere

Bounded Angle List Decoding

Motivation

 Bounded Angle List Decoding is the same as Bounded Projected-distance List Decoding.

Figure 2: Illustration of the conical angle geometry underlying our analysis of BA-ML decoding.

Bounded Angle List Decoding

Terminology

•
$$P_{tot}^{>} = P_{u}^{>} + P_{d}$$

$$P_{tot}^{<} = P_c + P_u^{<}$$

• UER:
$$P_u = P_u^{>} + P_u^{<}$$

• TER:
$$P_t = P_u^{<} + P_u^{>} + P_d$$

• If we can compute $P_{tot'}^{>}$ then I have an upper bound on P_d and a lower bound on P_t .

Figure 2: Illustration of the conical angle geometry underlying our analysis of BA-ML decoding.

[2] S. Dolinar, K. Andrews, F. Pollara, and D. Divsalar, "Bounds on error probability of block codes with bounded-angle maximum-likelihood incomplete decoding," in 2008 International Symposium on Information Theory and Its Applications, December 2008, pp. 1–6.

Results BALD vs. BDLD

- Step1: Gamma distribution and Shannon's Sphere Packing Bound provides the threshold values for $P_{tot}^{>} = 10^{-3}$.
- Step2: When BDLD and BALD have the same TER, BALD has a lower UER.
- Sometimes, we can afford higher SNR for lower decoding complexity.

Tradeoff between SNR and complexity

• Idea: Higher complexity if the SNR point is lower

Constraints on TER and UER,

- Certain applications require two constraints, one on TER $\epsilon_T^*=10^{-3}$ and another on UER $\epsilon_U^*=10^{-5}$.
- Using SLVD, we can meet both requirements at SNR wherever $P_{SLVD}=\epsilon_{II}^{*}$.
- We can do better than that by terminating early and therefore convert "unsure" decodings to detected errors.
- Our solution outperforms the (128,64) polar code solution.

CCSDS Requirements

Consultive Committee for Space Data Systems

•
$$\epsilon_T^* = 10^{-3}, \epsilon_U^* = 10^{-9}$$

• Since we cannot fine-tune the $\boldsymbol{\theta}$ values, the SNR value where

 $P_{SLVD} = \epsilon_U^* = 10^{-9}$ provides an upper bound on the SNR needed to meet both TER and UER requirements.

Thank you!