Problems

1. Projector and Measurement Along an Arbitrary Axis

A spin-1/2 system is prepared in the 'up' eigenstate of $\mathbf{S} \cdot \hat{\mathbf{n}}$.

- Write the projector onto the 'up' outcome $(+\hbar/2)$ of a measurement of $\mathbf{S} \cdot \hat{\mathbf{b}}$.
- Hence, compute the probability of measuring ±ħ/2 for the spin component along the b axis.

2. Quick Diagonalization of a 2×2 Hamiltonian Consider the Hermitian Hamiltonian

$$\mathbf{H} = \begin{pmatrix} E_0 + \delta & g \\ g & E_0 - \delta \end{pmatrix},$$

where E_0, δ , and g are real constants.

- Rewrite **H** in the Pauli basis, $\mathbf{H} = a_0 \mathbf{I} + \mathbf{a} \cdot \boldsymbol{\sigma}$, and identify the scalar a_0 and the vector \mathbf{a} .
- Find the eigenvalues and normalized eigenvectors of \mathbf{H} . Express the eigenvectors as spinors aligned with a unit vector $\hat{\mathbf{n}}$ in terms of a mixing angle β .

3. Time Evolution under a Pauli Hamiltonian Let the Hamiltonian of a system be

$$H = E_0 \mathbf{I} + \frac{\hbar \Omega}{2} \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}.$$

- Compute the unitary time-evolution operator $U(t)=e^{-iHt/\hbar}$ in a closed form. You may use the identity $(\hat{\mathbf{n}}\cdot\boldsymbol{\sigma})^2=\mathbf{I}$.
- If the system starts in the state $|+\rangle$ (eigenstate of S_z with eigenvalue $+\hbar/2$) at t=0, find the probability of measuring $S_z=+\hbar/2$ at a later time t, given that $\hat{\bf n}=\hat{\bf x}$.

1. Self-Adjointness Check (Sturm–Liouville Form) Work on the space $L^2([-1,1])$ with the standard inner product $\langle f|g\rangle=\int_{-1}^1 f^*(x)g(x)\,dx$.

- For a general second-order differential operator $L=a(x)\frac{d^2}{dx^2}+b(x)\frac{d}{dx}+c(x)$, state the condition on b(x) that allows L to be written in the formally self-adjoint Sturm–Liouville form.
- For the Legendre operator, where $a(x) = -(1-x^2)$ and c(x) = 0, find the required b(x) and state the minimal boundary condition on functions in the domain of L that ensures it is self-adjoint on [-1,1].

2. Commutators with Functions of Momentum

Using only the canonical commutation relation (CCR) $[x_i, p_j] = i\hbar \delta_{ij}$, evaluate the following commutators:

- (a) $[x_i, e^{\alpha p_i}]$ for a real constant α .
- (b) $[x_i, f(\mathbf{p}^2)]$ where f is an analytic function. Use this general result to find $[x_i, \mathbf{p}^2]$ and $[x_i, e^{-\lambda \mathbf{p}^2}]$.

3. Translations and Expectation Values

The finite translation operator is given by $T(\ell) = \exp\left(-\frac{i}{\hbar}\ell \cdot \mathbf{p}\right)$.

- (a) Compute the commutator $[x_j, T(\ell)]$.
- (b) Show that $T^{\dagger}(\ell) \mathbf{x} T(\ell) = \mathbf{x} + \ell$. Use this to show that for any normalized state $|\alpha\rangle$, the expectation value of position in the translated state $T(\ell)|\alpha\rangle$ is shifted by ℓ .

Finite Square Well — Quantization and Counting States

Consider the symmetric finite square well V(x)=0 for |x|< a and $V(x)=V_0$ for |x|>a, with $V_0>0$. For bound states $(E< V_0)$, define the dimensionless quantities $\xi=a\sqrt{2mE}/\hbar$ and $R=a\sqrt{2mV_0}/\hbar$.

- (a) Write down the transcendental equations that determine the energies of the even and odd parity bound states.
- (b) Show that an odd-parity bound state can only exist if the "strength" of the well satisfies $R>\pi/2$.
- (c) For a well with strength R=4, determine the total number of bound states and specify their parities.

2. SHO Matrix Elements and Ground-State Variance

For the 1D simple harmonic oscillator, the position and momentum operators can be written as:

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger}), \qquad p = i\sqrt{\frac{m\omega\hbar}{2}}(a^{\dagger}-a).$$

- (a) Using the properties of the creation and annihilation operators, derive the matrix elements $\langle n'|x|n\rangle$ and $\langle n'|p|n\rangle$ in the energy eigenbasis. State the selection rules.
- (b) Use this formalism to evaluate the ground-state variance of position, $\langle 0|x^2|0\rangle$.

3. Attractive Delta Potential — Bound State

Consider a particle in a one-dimensional attractive deltafunction potential, $V(x) = -\lambda \delta(x)$ with $\lambda > 0$.

- (a) Solve for the energy E of the bound state and find the corresponding normalized wavefunction $\psi(x)$.
- (b) Compute the expectation values $\langle x \rangle$ and $\langle p \rangle$ for this bound state.

Solutions

- **Solution 1:** The spin operator is $\mathbf{S} = (\hbar/2)\boldsymbol{\sigma}$. The eigenvalues of $\mathbf{S} \cdot \hat{\mathbf{b}}$ are $\pm \hbar/2$, which correspond to eigenvalues of ± 1 for the operator $\boldsymbol{\sigma} \cdot \hat{\mathbf{b}}$.
 - Using the spectral representation $A = \sum_i \omega_i \Lambda_i$, the projector onto an eigenstate is $\Lambda_i = |\omega_i\rangle\langle\omega_i|$. For a two-level system like spin-1/2, the projectors for $\boldsymbol{\sigma}\cdot\hat{\mathbf{b}}$ are $P_{\pm} = \frac{1}{2}(\mathbf{I}\pm\boldsymbol{\sigma}\cdot\hat{\mathbf{b}})$. The projector onto the $+\hbar/2$ outcome is therefore:

$$P_{+\hbar/2} = \frac{1}{2} (\mathbf{I} + \boldsymbol{\sigma} \cdot \hat{\mathbf{b}})$$

• The initial state is the 'up' eigenstate of $\mathbf{S} \cdot \hat{\mathbf{n}}$, which means the expectation value of the spin vector in this state is $\langle \mathbf{S} \rangle = (\hbar/2)\hat{\mathbf{n}}$, or $\langle \boldsymbol{\sigma} \rangle = \hat{\mathbf{n}}$. The probability of an outcome is the expectation value of its projector.

$$P(\pm \hbar/2 \text{ along } \hat{\mathbf{b}}) = \langle P_{\pm \hbar/2} \rangle = \left\langle \frac{1}{2} (\mathbf{I} \pm \boldsymbol{\sigma} \cdot \hat{\mathbf{b}}) \right\rangle = \frac{1}{2} (1 \pm \langle \boldsymbol{\sigma} \rangle \cdot \hat{\mathbf{b}})$$

Substituting $\langle \boldsymbol{\sigma} \rangle = \hat{\mathbf{n}}$, we get:

$$P(\pm \hbar/2 \text{ along } \hat{\mathbf{b}}) = \frac{1}{2}(1 \pm \hat{\mathbf{n}} \cdot \hat{\mathbf{b}})$$

Solution 2: • Any 2×2 matrix can be expanded as $\mathbf{M} = a_0 \mathbf{I} + \mathbf{a} \cdot \boldsymbol{\sigma}$. We find $a_0 = \frac{1}{2} \text{Tr}(\mathbf{M})$ and $a_k = \frac{1}{2} \text{Tr}(\sigma_k \mathbf{M})$. For the given Hamiltonian \mathbf{H} :

$$a_0 = \frac{1}{2} \operatorname{Tr} \begin{pmatrix} E_0 + \delta & g \\ g & E_0 - \delta \end{pmatrix} = \frac{1}{2} (E_0 + \delta + E_0 - \delta) = E_0.$$

$$a_x = \frac{1}{2} \operatorname{Tr} (\sigma_x \mathbf{H}) = \frac{1}{2} \operatorname{Tr} \begin{pmatrix} g & E_0 - \delta \\ E_0 + \delta & g \end{pmatrix} = g.$$

$$a_y = \frac{1}{2} \operatorname{Tr} (\sigma_y \mathbf{H}) = \frac{1}{2} \operatorname{Tr} \begin{pmatrix} -ig & -i(E_0 - \delta) \\ i(E_0 + \delta) & ig \end{pmatrix} = 0.$$

$$a_z = \frac{1}{2} \operatorname{Tr} (\sigma_z \mathbf{H}) = \frac{1}{2} \operatorname{Tr} \begin{pmatrix} E_0 + \delta & -g \\ g & -(E_0 - \delta) \end{pmatrix} = \delta.$$

So, $\mathbf{H} = E_0 \mathbf{I} + (g\sigma_x + \delta\sigma_z)$, with $a_0 = E_0, \mathbf{a} = (g, 0, \delta)$

• The eigenvalues of $a_0 \mathbf{I} + \mathbf{a} \cdot \boldsymbol{\sigma}$ are $a_0 \pm |\mathbf{a}|$.

$$E_{\pm} = E_0 \pm \sqrt{g^2 + \delta^2}$$

The eigenvectors are the eigenstates of $\boldsymbol{\sigma} \cdot \hat{\mathbf{n}}$, where $\hat{\mathbf{n}} = \mathbf{a}/|\mathbf{a}|$. Let $\hat{\mathbf{n}} = (\sin \beta, 0, \cos \beta)$. Then $\cos \beta = \delta/\sqrt{g^2 + \delta^2}$ and $\sin \beta = g/\sqrt{g^2 + \delta^2}$. The corresponding normalized eigenvectors are:

$$|+\rangle_{\hat{n}} = \begin{pmatrix} \cos(\beta/2) \\ \sin(\beta/2) \end{pmatrix}, \quad |-\rangle_{\hat{n}} = \begin{pmatrix} \sin(\beta/2) \\ -\cos(\beta/2) \end{pmatrix}$$

Solution 3: • First, factor out the identity part: $U(t) = e^{-iE_0t/\hbar} \exp\left(-i\frac{\Omega t}{2}\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}\right)$. Let $\theta = \Omega t/2$. We use the Taylor series expansion and the property $(\hat{\mathbf{n}}\cdot\boldsymbol{\sigma})^{2k} = \mathbf{I}$ and $(\hat{\mathbf{n}}\cdot\boldsymbol{\sigma})^{2k+1} = \hat{\mathbf{n}}\cdot\boldsymbol{\sigma}$.

$$e^{-i\theta \hat{\mathbf{n}}\cdot\boldsymbol{\sigma}} = \sum_{k=0}^{\infty} \frac{(-i\theta)^k}{k!} (\hat{\mathbf{n}}\cdot\boldsymbol{\sigma})^k = \left(\sum_{k \text{ even}} \frac{(-i\theta)^k}{k!}\right) \mathbf{I} + \left(\sum_{k \text{ odd}} \frac{(-i\theta)^k}{k!}\right) \hat{\mathbf{n}}\cdot\boldsymbol{\sigma}$$

This simplifies to $\cos(\theta)\mathbf{I} - i\sin(\theta)\hat{\mathbf{n}} \cdot \boldsymbol{\sigma}$. Therefore:

$$U(t) = e^{-iE_0t/\hbar} \left[\cos\left(\frac{\Omega t}{2}\right) \mathbf{I} - i\sin\left(\frac{\Omega t}{2}\right) \hat{\mathbf{n}} \cdot \boldsymbol{\sigma} \right]$$

• The state at time t is $|\psi(t)\rangle = U(t)|+\rangle$. With $\hat{\mathbf{n}} = \hat{\mathbf{x}}$:

$$|\psi(t)\rangle = e^{-iE_0t/\hbar} \left[\cos\left(\frac{\Omega t}{2}\right)\mathbf{I} - i\sin\left(\frac{\Omega t}{2}\right)\sigma_x\right] |+\rangle$$

Since $\sigma_x|+\rangle=|-\rangle$, we have:

$$|\psi(t)\rangle = e^{-iE_0t/\hbar} \left(\cos\left(\frac{\Omega t}{2}\right)|+\rangle - i\sin\left(\frac{\Omega t}{2}\right)|-\rangle\right)$$

The probability of measuring $S_z = +\hbar/2$ is $|\langle +|\psi(t)\rangle|^2$.

$$\langle +|\psi(t)\rangle = e^{-iE_0t/\hbar}\cos\left(\frac{\Omega t}{2}\right)$$

$$P(S_z = +\hbar/2 \text{ at } t) = \cos^2\left(\frac{\Omega t}{2}\right)$$

- **Solution 4:** For L to be formally self-adjoint, the non-self-adjoint first-derivative term must be absorbable into the second-derivative term. This happens if L can be written as $L = \frac{d}{dx} \left(a(x) \frac{d}{dx} \right) + c(x)$. Expanding this gives $\frac{d}{dx} \left(a(x) \frac{d}{dx} \right) = a(x) \frac{d^2}{dx^2} + a'(x) \frac{d}{dx}$. Comparing this to the original form of L, we find the condition is b(x) = a'(x).
 - With $a(x) = -(1 x^2)$, the condition gives b(x) = a'(x) = 2x. The operator is $L = -(1 x^2)\frac{d^2}{dx^2} + 2x\frac{d}{dx}$. To check for self-adjointness, we examine the boundary terms from integration by parts:

$$\langle f|Lg\rangle - \langle Lf|g\rangle = \left[a(x)(f^*g' - (f^*)'g)\right]_{-1}^{1}$$

Since $a(x) = -(1 - x^2)$, we have $a(\pm 1) = 0$. Therefore, the boundary term vanishes automatically as long as the functions f(x) and g(x) (and their derivatives) are finite at the endpoints $x = \pm 1$. This is the minimal boundary condition.

b(x) = 2x, Boundary Condition: functions must be finite at $x = \pm 1$.

Solution 5: (a) We use the identity $[A, e^B] = [A, B]e^B$ if [A, B] commutes with B. Here, $[x_i, \alpha p_i] = i\hbar\alpha$, which is a c-number and commutes with p_i . So the identity applies.

$$[x_i, e^{\alpha p_i}] = i\hbar \alpha e^{\alpha p_i}$$

Alternatively, expand the exponential: $[x_i, \sum_n \frac{(\alpha p_i)^n}{n!}] = \sum_n \frac{\alpha^n}{n!} [x_i, p_i^n] = \sum_n \frac{\alpha^n}{n!} [i\hbar n p_i^{n-1}] = i\hbar \alpha \sum_n \frac{(\alpha p_i)^{n-1}}{(n-1)!} = i\hbar \alpha e^{\alpha p_i}$.

(b) For an analytic function $G(\mathbf{p})$, one can prove by power series that $[x_i, G(\mathbf{p})] = i\hbar \frac{\partial G}{\partial p_i}$. Let $G(\mathbf{p}) = f(\mathbf{p}^2)$. Using the chain rule:

$$\frac{\partial}{\partial p_i} f(\mathbf{p}^2) = f'(\mathbf{p}^2) \frac{\partial (\mathbf{p}^2)}{\partial p_i} = f'(\mathbf{p}^2)(2p_i).$$

Therefore, $[x_i, f(\mathbf{p}^2)] = 2i\hbar p_i f'(\mathbf{p}^2)$. For f(s) = s, f'(s) = 1, so $[x_i, \mathbf{p}^2] = 2i\hbar p_i$. For $f(s) = e^{-\lambda s}$, $f'(s) = -\lambda e^{-\lambda s}$, so $[x_i, e^{-\lambda \mathbf{p}^2}] = -2i\hbar \lambda p_i e^{-\lambda \mathbf{p}^2}$.

Solution 6: (a) Using the result from the previous problem, $[x_j, G(\mathbf{p})] = i\hbar \frac{\partial G}{\partial p_i}$, with $G(\mathbf{p}) = T(\boldsymbol{\ell})$:

$$[x_j, T(\ell)] = i\hbar \frac{\partial}{\partial p_j} \exp\left(-\frac{i}{\hbar} \ell \cdot \mathbf{p}\right) = i\hbar \left(-\frac{i}{\hbar} \ell_j\right) T(\ell) = \ell_j T(\ell).$$

$$[x_j, T(\ell)] = \ell_j T(\ell)$$

(b) We use the identity $U^{\dagger}AU = A + U^{\dagger}[A, U]$. Here $T(\ell)$ is unitary, so $T^{\dagger}T = \mathbf{I}$.

$$T^{\dagger}(\boldsymbol{\ell})x_{j}T(\boldsymbol{\ell}) = T^{\dagger}(\boldsymbol{\ell})(T(\boldsymbol{\ell})x_{j} - [T(\boldsymbol{\ell}),x_{j}]) = x_{j} - T^{\dagger}(\boldsymbol{\ell})[T(\boldsymbol{\ell}),x_{j}]$$

Since $[T, x_j] = -[x_j, T] = -\ell_j T$, we get:

$$T^{\dagger}(\boldsymbol{\ell})x_{j}T(\boldsymbol{\ell}) = x_{j} - T^{\dagger}(\boldsymbol{\ell})(-\ell_{j}T(\boldsymbol{\ell})) = x_{j} + \ell_{j}T^{\dagger}(\boldsymbol{\ell})T(\boldsymbol{\ell}) = x_{j} + \ell_{j}.$$

In vector form, $T^{\dagger}(\boldsymbol{\ell}) \mathbf{x} T(\boldsymbol{\ell}) = \mathbf{x} + \boldsymbol{\ell}$. The expectation value in the translated state $|\alpha_{\boldsymbol{\ell}}\rangle = T(\boldsymbol{\ell})|\alpha\rangle$ is:

$$\langle \mathbf{x} \rangle_{\boldsymbol{\ell}} = \langle \alpha_{\boldsymbol{\ell}} | \mathbf{x} | \alpha_{\boldsymbol{\ell}} \rangle = \langle \alpha | T^{\dagger}(\boldsymbol{\ell}) \mathbf{x} T(\boldsymbol{\ell}) | \alpha \rangle = \langle \alpha | (\mathbf{x} + \boldsymbol{\ell}) | \alpha \rangle = \langle \mathbf{x} \rangle + \boldsymbol{\ell}.$$

Solution 7: (a) Let $\eta = a\sqrt{2m(V_0 - E)}/\hbar$. Matching the wavefunctions and their derivatives at x = a for states with definite parity gives the transcendental equations:

Even:
$$\xi \tan \xi = \eta$$
 Odd: $-\xi \cot \xi = \eta$

These must be solved simultaneously with the constraint $\xi^2 + \eta^2 = R^2$.

- (b) For odd states, the equation is $\eta = -\xi \cot \xi$. Since η must be real and positive for a bound state, we must have $-\cot \xi > 0$, which means $\cot \xi < 0$. This condition holds for ξ in the intervals $(\pi/2,\pi),(3\pi/2,2\pi),\ldots$ The lowest possible value for ξ is just above $\pi/2$. For a solution to exist, the circle $\xi^2 + \eta^2 = R^2$ must intersect the curve $\eta = -\xi \cot \xi$. This requires the radius R to be at least as large as the starting value of ξ , so we must have $R > \pi/2$.
- (c) We count the number of intersections graphically. The circle has radius R=4.
 - Even states $(\xi \tan \xi = \eta)$: Solutions exist in intervals $(0, \pi/2), (\pi, 3\pi/2), \ldots$ R = 4 is greater than 0 and $\pi \approx 3.14$. It is less than $2\pi \approx 6.28$. So there are intersections in the first two even-state intervals. \Longrightarrow 2 even states.
 - **Odd states** $(-\xi \cot \xi = \eta)$: Solutions exist in intervals $(\pi/2, \pi), (3\pi/2, 2\pi), \ldots$ R = 4 is greater than $\pi/2 \approx 1.57$. It is less than $3\pi/2 \approx 4.71$. So there is only an intersection in the first odd-state interval. \implies **1 odd state**.

In total, for R = 4, there are 3 bound states (even, odd, even).

Solution 8: (a) We use $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.

$$\langle n'|x|n\rangle = \sqrt{\frac{\hbar}{2m\omega}}\langle n'|a+a^{\dagger}|n\rangle = \sqrt{\frac{\hbar}{2m\omega}}(\sqrt{n}\delta_{n',n-1} + \sqrt{n+1}\delta_{n',n+1})$$

$$\langle n'|p|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}}\langle n'|a^{\dagger} - a|n\rangle = i\sqrt{\frac{m\omega\hbar}{2}}(\sqrt{n+1}\delta_{n',n+1} - \sqrt{n}\delta_{n',n-1})$$

The selection rule for both operators is that matrix elements are non-zero only if $\Delta n = n' - n = \pm 1$.

(b) The variance is $\langle (\Delta x)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$. In the ground state, $\langle x \rangle = 0$ by parity.

$$\langle 0|x^{2}|0\rangle = \langle 0|\left(\sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger})\right)\left(\sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger})\right)|0\rangle$$
$$= \frac{\hbar}{2m\omega}\langle 0|(a^{2}+aa^{\dagger}+a^{\dagger}a+(a^{\dagger})^{2})|0\rangle$$

The terms $a^2|0\rangle$, $a^{\dagger}a|0\rangle$, and $\langle 0|(a^{\dagger})^2$ are all zero. The only non-zero term is from aa^{\dagger} :

$$\langle 0|aa^{\dagger}|0\rangle = \langle 0|[a,a^{\dagger}]|0\rangle + \langle 0|a^{\dagger}a|0\rangle = \langle 0|1|0\rangle + 0 = 1.$$

Therefore, $\sqrt{\langle 0|x^2|0\rangle = \frac{\hbar}{2m\omega}}$.

Solution 9: (a) For a bound state, E < 0. Let $\kappa = \sqrt{-2mE}/\hbar$. The TISE is $\psi''(x) = \kappa^2 \psi(x)$ for $x \neq 0$. The normalizable solution must have the form $\psi(x) = Ae^{-\kappa|x|}$. Integrating the TISE around x = 0 gives the derivative jump condition: $\psi'(0^+) - \psi'(0^-) = -\frac{2m\lambda}{\hbar^2}\psi(0)$. For our solution, $\psi'(0^+) = -A\kappa$ and $\psi'(0^-) = A\kappa$. The condition becomes $-A\kappa - A\kappa = -\frac{2m\lambda}{\hbar^2}A$.

which simplifies to $2\kappa = \frac{2m\lambda}{\hbar^2}$, so $\kappa = \frac{m\lambda}{\hbar^2}$. The energy is $E = -\frac{\hbar^2\kappa^2}{2m}$, so $E = -\frac{m\lambda^2}{2\hbar^2}$.

To normalize, $1 = \int_{-\infty}^{\infty} |A|^2 e^{-2\kappa |x|} dx = 2|A|^2 \int_{0}^{\infty} e^{-2\kappa x} dx = |A|^2 / \kappa$. So, $A = \sqrt{\kappa}$.

$$\psi(x) = \sqrt{\frac{m\lambda}{\hbar^2}} \exp\left(-\frac{m\lambda}{\hbar^2}|x|\right)$$

(b) The wavefunction $\psi(x)$ is a real and even function of x. The expectation value of position is $\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx$. Since the integrand $x |\psi(x)|^2$ is an odd function, the integral over a symmetric domain is zero. The expectation value of momentum is $\langle p \rangle = \int_{-\infty}^{\infty} \psi^*(x) (-i\hbar \frac{d}{dx}) \psi(x) dx$. Since $\psi(x)$ is real, this is $-i\hbar \int \psi(x) \psi'(x) dx$. The integrand is the product of an even function (ψ) and an odd function (ψ') , which is odd. Thus, the integral is zero.

 $\boxed{\langle x \rangle = 0, \quad \langle p \rangle = 0}$