Axisymmetric bubble collapse

Simulation parameters

We chose an axisymmetric flow domain of size $[-10R, 10R] \times [0, 10R]$, where R=0.038 is the radius of the bubble placed at the center r,z=0. The far-field observer point to measure the acoustic wave is placed at $r_o=9R$ and $z_o=0$. The flow domain is discretized using cartesian mesh of spacing 25 nodes/R. We enclose the bubble with a cylindrical Kirchhoff surface of height h=18R and radius r=6R centerd at origin. The speed of sound in the far-field acoustic

Initial conditions	medium	bubble
Density, ρ	1000	1.0
Pressure, P	1.0e6	1.0e5
Specific heat ratio, γ	4.4	1.4
Stiffness constant, P_{∞}	6000	0

medium is given by $\sqrt{\gamma(P+P_{\infty})/\rho} = 66.5$.