Analysez les ventes de la librairie

I) Nettoyage des données

II) Analyse univariée :

indicateurs statistiques et graphiques

III) Analyse bivariée :

graphiques et tests

Nettoyage des données : Table clients

- **→Import du fichier customers.csv**
- **→**Informations sur la table()
 - ⇒Pas de valeurs manquantes
- ⇒Pas de doublons

```
len(data_customers['client_id'].unique())
8623
```

Nettoyage des données : Table transactions

- ⇒Import du fichier transactions.csv
- ⇒Informations sur la table()
- ⇒Pas de valeurs manquantes

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 337016 entries, 0 to 337015
Data columns (total 4 columns):
    Column
                Non-Null Count
                                 Dtype
    id prod
                337016 non-null
                                 object
    date
                                 object
                337016 non-null
    session id 337016 non-null
                                 object
    client id
                337016 non-null
                                 object
dtypes: object(4)
memory usage: 10.3+ MB
```

Modification de type de variable :

La variable 'date' : d'object en datetime

Nettoyage des données : Table produits

- ⇒Import du fichier products.csv
- ⇒Informations sur la table()
- ⇒Pas de valeurs manquantes
- ⇒Pas de doublons

```
len(data_products['id_prod'].unique())
3287
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3287 entries, 0 to 3286
Data columns (total 3 columns):
    # Column Non-Null Count Dtype
--- 0 id_prod 3287 non-null object
    1 price 3287 non-null float64
    2 categ 3287 non-null int64
dtypes: float64(1), int64(1), object(1)
memory usage: 77.2+ KB
```

Rechercher les valeurs aberrantes :

Dans la table produits :

```
data_products['price'].min()
-1.0
```

```
id_prod price categ
731 T_0 -1.0 0
```

Dans la table transactions

	id_prod	date	session_id	client_id	
1431	T_0	test_2021-03-01 02:30:02.237420	s_0	ct_1	
2365	T_0	test_2021-03-01 02:30:02.237446	s_0	ct_1	
2895	T_0	test_2021-03-01 02:30:02.237414	s_0	ct_1	
5955	T_0	test_2021-03-01 02:30:02.237441	s_0	ct_0	
7283	T_0	test_2021-03-01 02:30:02.237434	s_0	ct_1	
332594	T_0	test_2021-03-01 02:30:02.237445	s_0	ct_0	
332705	T_0	test_2021-03-01 02:30:02.237423	s_0	ct_1	
332730	T_0	test_2021-03-01 02:30:02.237421	s_0	ct_1	
333442	T_0	test_2021-03-01 02:30:02.237431	s_0	ct_1	
335279	T_0	test_2021-03-01 02:30:02.237430	s_0	ct_0	
200 rows × 4 columns					

Supprimer ces valeurs (test) dans toutes les tables

Vérifier les tables entre elles : par jointure

Rechercher les valeurs manquantes :

```
data_trans_prod1['price'].isnull().sum()
103
```

data trans prod1.loc[data trans prod1['price'].isnull()] id prod date session id client id 0 2245 2021-06-17 03:03:12.668129 6231 s 49705 c 1533 NaN 10797 0 2245 2021-06-16 05:53:01.627491 s 49323 c 7954 NaN 14045 0 2245 2021-11-24 17:35:59.911427 s 124474 c 5120 NaN 17480 0 2245 2022-02-28 18:08:49.875709 s 172304 c 4964 NaN 21071 c 580 0 2245 2021-03-01 00:09:29.301897 s 3 NaN 1/2

Le produit 0_2245 de catégorie 0 :

 Attribuer le prix médian de la catégorie 0, corriger dans la table transaction et introduire dans la table produits

```
data trans prod.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 336816 entries, 0 to 336815
Data columns (total 6 columns):
    Column
               Non-Null Count
                               Dtype
0 id_prod 336816 non-null object
    date 336816 non-null
                               datetime64[ns]
    session id 336816 non-null object
    client_id 336816 non-null object
    price 336816 non-null float64
    categ
               336816 non-null int64
dtypes: datetime64[ns](1), float64(1), int64(1), object(3)
memory usage: 18.0+ MB
```

Analyse uni-variée:

Mesures de tendance centrale:

La moyenne

La médiane

Le mode

• Mesures de dispersion¶:

La variance empirique :

Écart type empirique :

1^{er} quartile et 3ème quartile

Age clients:

Mesures	Valeurs	
Moyenne	42,9	
médiane	42	
mode	17	
min	17	
max	93	
1 ^{er} quartile	29	
3ème quartile	55	
Écart type	16,91	
variance	286,04	

Age: 17ans à 93ans

Pourcentage de la clientèle par sexe

Analyse de concentration Montant d'achats et nombre de clients

Courbe de Lorenz

Indice de Gini =0,44

	client_id montant total achat1	
7918	c_8140	4.15
7889	c_8114	4.99
750	c_1675	5.57
8480	c_890	6.08
8151	c_8351	6.31 montant total achat1
7715	c_7959	2564.25
2724	c_3454	54463.56
6337	c_6714	73217.98
4388	c_4958	144257.21
677	c_1609	162007.34

Sans les montants d'achats importants

Indice de Gini:0,395

Analyse bivariée Chiffre d'affaires par mois

Répartition clientèle par âge et sexe

Étude des corrélations Âge et montant total achats Deux variables quantitatives

Indicateurs numériques

Le coefficient de corrélation linéaire :

$$r_{X,Y} = rac{s_{X,Y}}{s_X s_Y}$$

$$s_{X,Y} = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$$

$$s_X^2 = \frac{1}{n} \sum_{i=1}^n (x - \overline{x})^2$$

r_{X,Y} proche de 1 ou de -1 : forte corrélation linéaire
 rx/y< 0 les deux variables ont des sens de variation inversé
 rX/Y>0 les deux variables sont de même sens de variation
 r_{X,Y} proche de 0 la corrélation n'est pas linéaire

Coefficient de corrélation linéaire : $r_{X,Y} = -0.86$

Il y'a une forte corrélation linéaire négative entre l'âge et le montant des achats

Par tranche d'âge

Âge client et fréquence d'achat Deux variables quantitatives

• Coefficient de corrélation linéaire : $r_{X,Y} = -0.27$

Une faible corrélation linéaire entre l'âge et la fréquence des achats

Par tranche d'age : Une variable quantitative : Fréquence d'achat Une variable qualitative : tranche d'age

Analyse de la variance : d'ANOVA

Rapport de corrélation :

$$\eta_{Y/X}^2 = \frac{V_{interclasses}}{V_{totale}}$$

Variation totale:

$$SCT = \sum_{j=1}^n (y_j - \overline{y})^2$$

Variation interclasse:

$$\sum_{i=1}^k n_i (\overline{y_i} - \overline{y})^2$$

- Si $\eta^2_{Y/X}$ proche de 0 II n'y a pas de relation entre les variables X et Y,
- Si $\eta^2_{Y/X}$ proche de 1 il y'a une relation entre les variables X et Y

Rapport de corrélation : $\eta^2_{Y/X} = 0.86$

Par tranche d'âge, il y'a une corrélation avec la fréquence d'achat

Age client et la taille du panier moyen **Deux variables quantitatives**

Coefficient de corrélation linéaire : r_{x,y} = -0,6

Les deux variables sont moyennement corrélées linéairement et négativement

Par tranche d'âge

Une variable quantitative : Taille du panier moyen Une variable qualitative : tranche d'âge

Rapport de corrélation : $\eta^2_{Y/X} = 0,90$

Par tranche d'âge et la taille du panier moyen sont fortement corrélés

Âge et catégories produits Une variable quantitative et une variable qualitative

Rapport de corrélation : $\eta^2_{Y/X} = 0,11$

η²_{Y/X} est très faible, les deux variables ne sont pas corrélées

Sexe et catégorie produits Deux variables qualitatives Test de CHI2

Tableau de contingence : Chaque case contient un effectif conjoint nij (i ligne, et j colonne)

dans notre cas i: sexe(femme,masculin)

J :catégorie produit(0,1,2)

à chaque case du tableau un ξij

La contribution :ξij /ξn

$$\xi_{ij} = rac{(n_{ij} - rac{n_i.n_j}{n})^2}{rac{n_i.n_j}{n}}$$

$$\xi_n = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{ij} - \frac{n_i \cdot n_j}{n})^2}{\frac{n_i \cdot n_j}{n}}$$

⇒ Plus la contribution est grande et plus l'hypothèse d'indépendance est rejetée ;

categ	0	1	2	Total
sex				
f	0.110333	0.308298	0.061358	0.0
m	0.119533	0.334005	0.066474	0.0
Total	0.000000	0.000000	0.000000	0.0

La contribution varie entre 0,06 et 0,33,
elle est plus élevée entre la catégorie1 et masculin
et plus faible entre catégorie 2 et féminin

Conclusion

Pas de valeurs manquantes dans les tables importées

Des valeurs manquantes par jointure : un produit manquant dans la table des produits

Valeurs aberrantes : prix =-1 dans la table produit

Des données test du logiciel à supprimer

Le nombre de clients :age <55 ans est plus importants

Le chiffre d'affaires augmente : le mois d'octobre à vérifier

- ⇒Âge et montant des achats corrélation linéaire négative,
- Par tranche d'âge, il y'a une corrélation avec la fréquence des achats,
- ⇒Âge et la taille du panier moyen sont moyennement corrélées linéairement et négativement,
- ⇒Par tranche d'âge et la taille du panier moyen sont fortement corrélés,
- ⇒Âge et catégories produits ne sont pas corrélés,
- ⇒Catégories produits et sexes des clients très faiblement corrélés