

## Department of Mathametical and Phycal Scienecs East West University, Dhaka, Bangladesh.

Course Instructor: Md. Nazmul Abedin khan Student name: B M Shahria Alam

Course Code: 109 ID: 2021-3-60-016

Course Title: CHE Section: 5

Experiment-3: Standardization of a strong base (NaOH) with a standard weak acid, potassium hydrogen phthalate (KHP)

## Theory:

Potassium hydrogen phthalate (KHP) is a monophonic acidic salt (monopotassium salt of phthalic acid, weak acid) with the formula, KHC 8 H 4 O 4. It is often used as a primary standard for acid-base titrations because it is solid and air-stable, making it easy to weigh accurately and not hygroscopic. KHP dissociates completely in water, giving the potassium cation (K + ) and hydrogen phthalate anion (HP – or Hphthalate –).

## **Equation:**

And then as a weak acid hydrogen phthalate reacts reversibly with water to give hydronium (H 3 O + ) and phthalate ions.

$$HP - + H 2 O \rightleftharpoons P 2 - + H 3 O +$$

As KHP is monophonic, 1 mol of NaOH reacts with 1 mol of KHP according to the following equation:

Or, NaOH 
$$(aq)$$
 + KHP  $(aq)$  KNaP  $(aq)$  + H 2 O  $(I)$ 

Therefore, the concentration of standardized NaOH can be determined from reaction (1):

$$(M NaOH \times V NaOH) = (M KHP \times V KHP)....(2)$$

Where,

Mb = Molarity of NaOH

Va = Volume of KHP

Vb = Volume of NaOH

Ma = Molarity of KHP

## Data:

| Volume of NaOH, ml | рН   | of |
|--------------------|------|----|
|                    | acid |    |
| 0                  | 2.76 |    |
| 0.1                | 3.5  |    |
| 0.2                | 3.8  |    |
| 0.3                | 3.98 |    |
| 0.4                | 4.11 |    |
| 0.5                | 4.22 |    |
| 0.6                | 4.31 |    |

| 0.7        | 4.38  |
|------------|-------|
| 0.8        | 4.45  |
| 0.9        | 4.51  |
| 1          | 4.57  |
| 1.1        | 4.62  |
| 1.2        | 4.66  |
| 1.3        | 4.71  |
| 1.4        | 4.75  |
| 1.5        | 4.79  |
| 1.6        | 4.83  |
| 1.7        | 4.87  |
| 1.8        | 4.91  |
| 1.9        | 4.95  |
| 2          | 4.98  |
| 2.1        | 5.02  |
| 2.2        | 5.05  |
| 2.3        | 5.08  |
| 2.4        | 5.12  |
| 2.5        | 5.15  |
| 2.6        | 5.18  |
| 2.7        | 5.21  |
| 2.8        | 5.25  |
| 2.9        | 5.28  |
| 3          | 5.31  |
| 3.1        | 5.35  |
| 3.2        | 5.38  |
| 3.3        | 5.42  |
| 3.4        | 5.45  |
| 3.5        | 5.49  |
| 3.6        | 5.53  |
| 3.7        | 5.56  |
| 3.8        | 5.6   |
| 3.9        | 5.64  |
| 4          | 5.69  |
| 4.1        | 5.73  |
| 4.2        | 5.78  |
| 4.3        | 5.83  |
| 4.4        | 5.89  |
| 4.5        | 5.95  |
| 4.6        | 6.02  |
| 4.7        | 6.1   |
| 4.8        | 6.19  |
| 4.9        | 6.29  |
| 5          | 6.43  |
| 5.1        | 6.62  |
| 5.2        | 6.94  |
| 5.2<br>5.3 | 10.57 |
| 5.4        | 11.8  |
| 5.5        | 12.09 |
| ٥.٥        | 12.03 |

| 5.6 | 12.26 |
|-----|-------|
| 5.7 | 12.38 |
| 5.8 | 12.47 |

| Va x Ma = Vb x Mb    |                     |  |
|----------------------|---------------------|--|
|                      |                     |  |
| Va, Volume of KHP    | 10 ml               |  |
| Ma, Molarity of KHP  | 0.5 M               |  |
| Vb, Volume of NaOH   | 5.3 ml              |  |
| Mb, Molarity of NaOH | ??                  |  |
|                      |                     |  |
| Mb=Va*Ma/Vb          | <mark>0.94 M</mark> |  |

$$\frac{\text{Percentage of error:}}{\text{Error} = \left| \frac{\textit{Theo.value-Exp.value}}{\textit{Theo.value}} \right| \times 100\%$$





