Iterated Prisoner's dilemma

The Prisoners' Dilemma

		Prisoner A Choices		
		Stay Silent	Confess and Betray	
Prisoner B Choices	Stay Silent	Each serves one month in jail	Prisoner A goes free	
			Prisoner B serves full year in jail	
	Confess and Betray	Prisoner A serves full year in jail Prisoner B goes free	Each serves three months in jail	

Iterated Prisoners' dilemma: they play the game again and again

Assignment for the practice

- Iterated Prisoners' dilemma: they play the game again and again
- 200 iterations, history known (h1: yours, h2: opponent's)
- Tournament
 - Winner: who has the most points according to:

	0 = `Stays silent'	1 = `Betrays'	
0 = `Stays silent'	3,3	0,5	U=[[3,0],[5,1]]
1 = `Betrays'	5,0	1,1	

Assignment for the practice

- About the .py file to assign:
 - Create your file in ./strats
 - First row: # + Neptun codes of the team members
- You can run the gamethTournament_p3.py to evaluate the strategies in ./strats (we will do the same with your solutions)

```
# NEPTUN1 NEPTUN2
import numpy as np

def decision(h1, h2):
    if len(h2) == 0:
        r = np.random.randint(2)
        return r
    else:
        avg = 1.0 * sum(h2) / len(h2)
        if avg <= 0.5:
            return 0
        else:
        return 1</pre>
```