

Проект по "Небесна механика"

2020-2021Γ.

Кристина Попова | Компютърни науки | 3 курс | фак. номер 81933

Съдържание:

1.	Първа задача	3
	1.1. Условие	3
	1.2. Решение	3
	1.3. Код	6
2.	Втора задача	8
	2.1. Условие	
	2.2. Решение	8
	2.3. Код	15

1. Първа задача

1.1. Условие

Да се пресметнат координатите и скоростите на планетите в деня, в който сте родени.

1.2. Решение

В задачата на Кеплер орбитата на всяка планета зависи от шест елемента:

- а дължина на голямата полу-ос
- e ексцентрицитета на орбитата
- і наклонеността на плоскостта на орбитата
- *l* средна аномалия
- $q + \theta$ дължина на перихелия
- θ дължина на възела

Пет от тези елементи са константи, единствено средната аномалия \boldsymbol{l} е линейна функция на времето \boldsymbol{t} .

Допълнителен елемент, който ни е необходим, е ексцентричната аномалия u. За този параметър е в сила уравнението на Кеплер:

$$l = u - e \cdot \sin u$$

Ексцентритетът e характеризира сплеснатостта на елипсата:

$$e = \sqrt{1 - \frac{b^2}{a^2}} \in [0, 1),$$

където b е дължината на малката полуос.

Връзката на елиптичните елементи с декартовите координати в R^3

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_2 \\ z_3 \\ 0 \end{pmatrix}$$

Обръщаме θ , $g + \theta$ в радиани - * $\pi/180$. Обръщаме i в градуси-* $\pi/180$.

Стойностите на μ за планетите са:

Величината n наричаме средно движение. Средното движение е моментът на преминаване през перихелия на планета, тоест начало на епоха. Връзката между средната и ексцентричната аномали

$$l = u - e.sin u$$

наричаме уравнение на Кеплер.

Въвеждаме времето на рожденната дата до 2000г. в години.

Рожденна дата: 5.09.1999г.

Пресмятаме броят дни между 05.09.1999 и 01.01.2000 => 118 дни

Пресмятаме
$$t = \frac{118}{365.25} = 0.32306639$$
.

От решението на задачата на Кеплер в декартови координати:

$$l = \sqrt{\gamma} * a^{-\frac{3}{2}}(t - T_0)$$

$$l = n(t(2\pi) - T_0) = u - e * \sin u$$

$$u = l + e * \sin (l + e * \sin (l + e * \sin l))$$

$$r = {x \choose y} = Q * a(\cos u - e; \sin u; \sqrt{(1 - e^2; 0)})$$

$$v = q * \frac{-\sin u; \cos u * \sqrt{(1 - e^2; 0)} * a * n}{1 - e * \cos u}$$

Където Q е от Основната формула на сферичната тригонометрия.

<u>Теорема</u>: Всяка матрица $Q \in SO(3,R)$ може да се представи аналитично във вида:

$$Q = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos i & -\sin i \\ 0 & \sin i & \cos i \end{pmatrix} \begin{pmatrix} \cos g & -\sin g & 0 \\ \sin g & \cos g & 0 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} \cos\theta * \cos g - \sin\theta * \sin g * \cos i & -\cos\theta * \sin g - \sin\theta * \cos g * \cos i & \sin\theta * \sin i \\ \sin\theta * \cos g + \cos\theta * \sin i * \cos i & -\sin\theta * \sin g + \cos\theta * \cos g * \cos i & -\cos\theta * \sin i \\ \sin g * \sin i & \cos g * \sin i & \cos g * \sin i \end{pmatrix},$$

където θ , $g \in [0,2\pi)$ и $i \in [0,\pi]$.

Описаните процедури се повтарят за всяка планета по отделно и получаваме следната таблица:

		r			v		r	$ \mathbf{v} $
Меркурий	0.046837	0.303515	0.020493	-1.9433	0.3098	0.2036	1.97837	0.30779
Венера	-0.542657	-0.477036	0.024798	0.768857	-0.888252	-0.056508	1.17615	0.722949
Земя	-0.7460	-0.6773	О	0.6567	-0.7440	O	0.992396	1.00763
Марс	-8.0988e- 01	-1.3007e- 00	-7.4858e- 03	0.722723	-0.358375	-0.02261	0.807093	1.52905
Юпитер	-4.9716	2.0933	0.1026	-1.7567e-01	-3.8437e- 01	5.5225e-03	0.422644	5.39532
Сатурн	9.3133	-2.5732	-0.3254	6.8897e- 02	3.1181e-01	-8.1696e-03	0.319434	9.66769
Уран	-12.6375	13.4550	0.2136	-1.6826e- 01	-1.6708e- 01	1.5596e-03	0.237125	18.4605
Нептун	1.7836e+0 1	-2.4251+01	8.8361e- 02	1.4583e-01	1.0902e- 01	-5.6051e-03	0.182162	30.1032
Плутон	-10.3752	-27.7432	5.9698	0.175111	-0.092402	-0.040762	0.202147	30.2154

1.3. Код

```
Q = Tita*I*G;
   gama = 1 + miu;
   n = sqrt(gama / a^3);
   to = ((w - L) / n) * pi/180;
   1 = n * (-t * 2*pi - to);
   u = 1 + e * sin(1 + e * sin(1 + e * sin(1)));
   r = Q * a * [cos(u) - e; sin(u) * sqrt(1 - e^2); 0]
   v = Q * [-sin(u); cos(u) * sqrt(1 - e^2);0] * a * n / (1 - e*cos(u))
   fprintf('|V|= %d\n',norm(v))
   fprintf('|R|= %d\n',norm(r))
end
dataFromNasa=[0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
             0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
                    0.016 0
                                 100.464 102.937 0
                                                        1/328900.5;
             1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
             5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
             9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
             19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
             30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
             39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
time=daysact('5-sep-1999', '1-jan-2000')/365.25
planets = {'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune',
'Pluto'};
for i=1:length(planets)
   fprintf('%d. %s:\n',i,char(planets(i)))
   solvePlanet(dataFromNasa(i, 1), dataFromNasa(i, 2), dataFromNasa(i, 3),
               dataFromNasa(i, 4), dataFromNasa(i, 5), dataFromNasa(i, 6),
               dataFromNasa(i, 7), time)
end
```

2. Втора задача

2.1. Условие

Да се пресметнат елементите на Делоне и Поанкре от I-ви и II-ри вид в деня, в който сте родени.

2.2. Решение

Елементите ва Делоне – L, G, Θ , l, g, θ , където (l,L), (G, g) и (Θ , θ) са спрегнати канонично променливи, се изразяват чрез орбиталните елементи:

- а дължина на голямата полуос
- е екценрицитет
- і наклонение на плоскостта на орбитата
- 1 средна аномалия
- $g + \theta дължина на перихелия$
- θ дължина на възела

както следва:

$$L = \mu \sqrt{\gamma} \sqrt{a}$$

$$G = \mu \sqrt{\gamma} \sqrt{a} \sqrt{1 - \varepsilon^2} = L * \sqrt{1 - \varepsilon^2}$$

$$\Theta = \mu \sqrt{\gamma} \sqrt{a} \sqrt{1 - \varepsilon^2} \cos i = G * \cos i$$

Като при това l, g и θ съвпадат и в двата случая.

Елементите ва Делоне – L, G, Θ , l, g, θ са константи с хамилтониан:

$$\hat{H} = \frac{\mu^3 \gamma^2}{2L^3}$$

Обръщаме θ в радиани и i в градуси.

$$l = \sqrt{\gamma} a^{-\frac{3}{2}} (t - T_0)$$

$$u = l + e * \sin(l + e * \sin(l + e * \sin(l)))$$

$$n = \sqrt{\frac{\gamma}{a^3}}$$

Въвеждаме времето от рожденната дата до 01.01.2000г. Рождена дата: 05.09.1999г. и получаваме t=0.32306639

$$l = n(t(2\pi) - T_0)$$

Чрез $\lambda = l + g + \theta$ (дължина на епоха) можем да изразим елементите от двете системи на Поанкре.

Първата систем от шест елемента, характеризираща орбитите на планетите:

$$\begin{pmatrix} L & L-G & G-\Theta \\ l+g+\theta & -g-\theta & -\theta \end{pmatrix}$$

И втората:

$$\begin{pmatrix} L & \zeta \coloneqq \sqrt{2(L-G)}\cos(g+\theta) & p \coloneqq \sqrt{2(G-\Theta)}\cos\theta \\ \lambda & \eta \coloneqq -\sqrt{2(L-G)}\sin(g+\theta) & q \coloneqq -\sqrt{2(G-\Theta)}\sin\theta \end{pmatrix}$$

Описаните процедури се повтарят за всяка планета по отделно и така следните таблици:

		Меркурий	
L		1.0328e-07	
\boldsymbol{G}		1.0108e-07	
Θ		1.0033e-07	
1		11.482	
g	0.5084		
θ	0.8435		
Н		-2.1449e-07	
I	1.0328e-07	2.19 3 4e-09	7.5431e-10
	12.834	-1.3519	-0.8435
II	1.0328e-07	1.4384e-05	2.5823e-05
	12.834	-6.4652e-05	-2.9014e-05

Венера

L		2.0814e-06	
\boldsymbol{G}	2.0814e-06		
Θ	2.0777e-06		
1	4.1811		
g	0.9586		
θ	1.3383		
Н	-1.6928e-06		
I	2.0814e-06	3.7465e-11	3.6506e-09
	6.4780	-2.2969	-1.3383
II	2.0814e-06	-57473e-06	1.9688e-05
	6.4780	-6.4729e-06	-8.3148e-05

Земя

L	3.0404e-06		
G	3.0400e-06		
Θ	3.0400e-06		
1	1.9867		
g	1.7966		
θ	0		
Н	-1.5202e-06		
I	3.0404e-06	3.8920e-10	О
	3.7833	-1.7966	0
II	3.0404e-06	-6.2462e-06	О
	3.7833	-2.7192e-05	O

	Марс				
L	3.9826e-07				
G	3.9654e-07				
Θ		3.9633e-07			
1		1.4184			
g	-1.2829				
θ	0.8650				
Н	-1.0595e-07				
I	3.9826e-07	1.7260e-09	2.0646e-09		
	1.0005	0.4179	-0.8650		
II	3.9826e-07	5.3698e-05	1.3181e-05		
	1.0005	2.3844e-05	-1.5466e-05		
-					

		Юпитер	
L		2.1787e-03	
G	2.1762e-03		
Θ		2.1757e-03	
1		0.5144	
g	-1.4965		
θ	1.7536		
Н	-9.1860e-05		
I	2.1787e-03	2.5114e-06	5.6359e-07
	0.7714	-0.2571	-1.7536
II	2.1787e-03	2.1675e-03	-1.9299e-04
	0.7714	-5.6977e-04	-1.0440e-03

	Сатурн				
L		8.8298e-04			
\boldsymbol{G}	8.8 ₁₇₄ e-0 ₄				
Θ	8.8091e-04				
1		-0.6753			
g		-0.3676			
θ	1.9838				
Н		-1.4995e-05			
I	8.8298e-04	1.2410e-06	8.2918e-07		
	0.9408	-1.6161	-1.9838		
II	8.8298e-04	-7.1412e-05	-5.1684e-04		
	0.9408	-1.5739e-03	-1.1795e-03		

	Уран				
L		1.9127e-04			
G	1.9106e-04				
Θ		1.9104e-04			
1		2.5075			
g		1.6919			
θ	1.2918				
Н	-1.1377e-06				
I	1.9127e-04	2.1137e-07	1.7343e-08		
	5.4912	-2.9837	-1.2918		
II	1.9127e-04	-6.4210e-05	5.1285e-05		
	5.4912	-1.0223e-04	-1.7904e-04		
1					

	Нептун				
L		2.8263e-04			
G	2.8262e-04				
Θ		2.8249e-04			
1		-1.7345			
g	-1.5153				
θ	2.3001				
Н	-8.5709e-07				
I	2.8263e-04	9.0444e-09	1.3485e-07		
	-0.9497	-0.7848	-2.3001		
II	2.8263e-04	9.5162e-05	-3.4604e-04		
	-0.9497	-9.5042e-05	-3.8724e-04		

	Плуто			
L	4.6544e-08			
G	4.5090e-08			
Θ		4.3088e-08		
1		0.2676		
g	1.9859			
θ	1.9252			
Н		-9.3807e-11		
I	4.6544e-08	1.4540e-09	2.0026e-09	
	4.1783	-3.9107	-1.9252	
II	4.6544e-08	-3.8747e-05	-2.1959e-05	
	4.1783	3.7507e-05	-5.9354e-05	

2.3. Код

```
function findElements(a, e, i, L, w, Omega, miu, t)
  i = i * pi/180;
  n = sqrt(1 / a^3);
  to = ((w - L) / n) * pi/180;
  gamma = 1 + miu;
  L = miu * sqrt(gamma*a)
  G = L * sqrt(1 - e^2)
  capTheta = G*cos(i)
  1 = n * (t*2*pi - to)
  g = (w - Omega) * pi/180
  theta = Omega * pi/180
  H = -miu*gamma / (2*a)
  FirstPoincare11 = L
  FirstPoincare12 = L - G
  FirstPoincare13 = G - capTheta
  FirstPoincare21 = 1 + g + theta
  FirstPoincare22 = -g - theta
  FirstPoincare23 = -theta
  SecondPoincare11 = FirstPoincare11
  SecondPoincare12 = sqrt(2 * (L - G)) * cos(g + theta)
  SecondPoincare13 = sqrt(2 * (G - capTheta)) * cos(theta)
  SecondPoincare21 = FirstPoincare21
  SecondPoincare22 = -sqrt(2 * (L - G)) * sin(g + theta)
  SecondPoincare23 = -sqrt(2 * (G - capTheta)) * sin(theta)
end
dataFromNasa=[0.387 0.205 7.004 252.250 77.457 48.330 1/6023600;
```

```
0.723 0.006 3.394 181.979 131.602 76.679 1/408523;
                    0.016 0
                                 100.464 102.937 0
                                                        1/328900.5;
             1.523 0.093 1.849 -4.553 -23.943 49.559 1/3098708;
             5.202 0.048 1.304 34.396 14.728 100.473 1/1047.34;
             9.536 0.053 2.485 49.954 92.598 113.662 1/3497.8;
             19.189 0.047 0.772 313.238 170.954 74.016 1/22902.9;
             30.069 0.008 1.770 -55.120 44.964 131.784 1/19402;
             39.482 0.248 17.140 238.929 224.068 110.303 1/135000000];
time=daysact('5-sep-1999', '1-jan-2000')/365.25
planets = {'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus', 'Neptune',
'Pluto'};
for i=1:length(planets)
    fprintf('%d. %s:\n',i,char(planets(i)))
    findElements(dataFromNasa(i, 1), dataFromNasa(i, 2), dataFromNasa(i, 3),
                dataFromNasa(i, 4), dataFromNasa(i, 5), dataFromNasa(i, 6),
                dataFromNasa(i, 7), time)
end
```