

AOD4184A 40V N-Channel MOSFET

General Description

The AOD4184A combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\rm DS(ON)}$. This device is well suited for high current load applications.

Product Summary

 $\begin{array}{ll} V_{DS} & 40V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 50A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 7m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 9.5m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _C =25°C		50		
Current ^G	T _C =100°C	ID	40	A	
Pulsed Drain Current ^C		I _{DM}	120		
Continuous Drain	T _A =25°C		13	Δ.	
Current	T _A =70°C	IDSM	10	— A	
Avalanche Current ^C		I _{AS} , I _{AR}	35	A	
Avalanche energy L=0.1mH ^C		E _{AS} , E _{AR}	61	mJ	
	T _C =25°C	В	50	W	
Power Dissipation ^B	T _C =100°C	P _D	25	VV	
	T _A =25°C	В	2.3	W	
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.5	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	18	22	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	$\kappa_{\theta JA}$	44	55	°C/W			
Maximum Junction-to-Case Steady-State		$R_{\theta JC}$	2.4	3	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	40			V			
I _{DSS}	Zana Oata Waltana Busin Oumant	V_{DS} =40V, V_{GS} =0V			1	μА			
	Zero Gate Voltage Drain Current	T _J =58	5°C		5				
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$	1.7	2.1	2.6	V			
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	120			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A		5.8	7	mΩ			
		T _J =128	5°C	9.6	12	1112.2			
		V _{GS} =4.5V, I _D =15A		7.6	9.5	mΩ			
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =5A		37		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V			
I _S	Maximum Body-Diode Continuous Curre			20	Α				
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance		1200	1500	1800	pF			
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=1MHz	150	215	280	pF			
C_{rss}	Reverse Transfer Capacitance	1	80	135	190	pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	2	3.5	5	Ω			
SWITCHIN	NG PARAMETERS								
Q _g (10V)	Total Gate Charge		21	27	33	nC			
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, I _D =20A	10	14	17	nC			
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -20V, I _D -20A	3	5	6	nC			
Q_{gd}	Gate Drain Charge		3	6	9	nC			
t _{D(on)}	Turn-On DelayTime			6		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_L =1 Ω ,		17		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		30		ns			
t _f	Turn-Off Fall Time]		17		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs	20	29	38	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs	18	26	34	nC			

A. The value of R_{0JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- B. The power dissipation P_D is based on T_{J(MAX)}=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev0: Sep 2009 www.aosmd.com Page 2 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature
(Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

