Topological Algebraic Structures

Ikhan Choi

May 4, 2024

Contents

Ι		2
1	Topological groups	3
2	Topological vector spaces 2.1 Locally convex spaces 2.2 Direct limit	4 4 6 6
3	Topological algebras	7
II 4	Continuous fields	8
II	I Fréchet and Banach spaces	10
5	5.1 Universal properties	11 11 12 12 12
IV	Fréchet and Banach algebras	13
6	Fréchet algebras	14
7	Banach algebras	15

Part I

Topological groups

Topological vector spaces

2.1 Locally convex spaces

categorical aspects, bornology, tensor products,

Generalized Pettis integral

2.1 (Properties of dual pairs). Let (E, E^*) be a dual pair. We say (E, E^*) has the *Krein property* if the closed balanced convex hull of a compact subset of X is compact in the topology $\sigma(E, E^*)$, and say (E, E^*) has the *Goldstine property* if E is $\beta(E, E^*_{\beta})$ -closed in the strong bidual $(E^*_{\beta})^*_{\beta}$.

Let E a Banach space. The weak dual pair (E, E^*) satisfies the Krein property by the Krein-Šmulian theorem, and the Goldstine property by the closedness of E in E^{**} . If there is a predual E_* of E, then the weak* dual pair (E, E_*) satisfies the Krein property by the fact that the closed convex hull of a bounded set is bounded, and the Golstine property because the norm topology and $\beta(E, (E_*)_{\beta})$ coincide by the Goldstine theorem. In particular, a dual pair (E, F) with $F \subset E^*$ has the Goldstine property if and only if the closed unit ball E_* is weakly* dense in the closed ball E_* .

2.2 (Well-definedness of Pettis integral). Let (Ω, μ) be a localizable measure space and (X, F) is a dual pair. Let $x : \Omega \to X$ be a $\sigma(X, F)$ -bounded $\sigma(X, F)$ -measurable function in the sense that it determines a linear operator $F \to L^{\infty}(\mu)$. By the transpose and restriction, we have a linear operator $\phi_x : L^1(\mu) \to F^\#$, which satisfies

$$\langle \phi_x(f), x^* \rangle := \int_{\Omega} \langle x(s), x^* \rangle f(s) \, d\mu(s), \qquad f \in L^1(\mu), \ x^* \in F.$$

We usually write as

$$\phi_x(f) = \int_{\Omega} x(s)f(s) \, d\mu(s).$$

- (a) $\phi_x(L^1(\mu)) \subset (F_\beta)^*$ and ϕ_x is always weak- $\sigma((F_\beta)^*, F)$ -continuous.
- (b) Suppose (X, F) has the Krein property. If X is $\sigma(X, F)$ -compactly valued, then $\phi_X(L^1(\mu)) \subset X$.
- (c) Suppose (X, F) has the Krein and Goldstine property. Suppose Ω is a locally compact Hausdorff space with a Radon measure μ . If x is $\sigma(X, F)$ -continuous, then $\phi_x(L^1(\mu)) \subset X$. (In fact, the continuity of x defines $F \to C_b(\Omega)$, we can prove $\phi_x(M(\beta\Omega)) \subset X$. It does not require the data of μ .)
- (d) Suppose we have $\phi_x(L^1(\mu)) \subset X$. Let Y be another topological vector space and G is a weakly* dense subspace of Y^* . If $T: X \to Y$ is a $\sigma(X, F)$ - $\sigma(Y, G)$ -continuous linear operator, then $T\phi_X = G$

 $\phi_{T \circ x}$. In other words,

$$T\int_{\Omega} f(s)x(s) d\mu(s) = \int_{\Omega} f(s)Tx(s) d\mu(s), \qquad f \in L^{1}(\mu).$$

(e) Suppose we have $\phi_X(L^1(\mu)) \subset X$, (X, F) has the Goldstine property, and X is a Banach space. Then,

$$\| \int f(s)x(s) \, d\mu(s) \| \le \int \|f(s)x(s)\| \, d\mu(s), \qquad f \in L^1(\mu).$$

Proof. (a) Let $B^* \subset F$ be a $\beta(F, X_{\sigma})$ -bounded set. For $x^* \in F$ we have an inequality

$$|\langle \phi_x(f), x^* \rangle| \le \int_{\Omega} |f(s)\langle x(s), x^* \rangle| \, d\mu(s) \le ||f||_{L^1} \sup_{y \in x(\Omega)} |\langle y, x^* \rangle|,$$

and a bound

$$\sup_{x_* \in B^*} \sup_{y \in x(\Omega)} |\langle y, x^* \rangle| < \infty$$

due to the $\sigma(X, F)$ -boundedness of $x(\Omega)$, so $\phi_x(f) \in (F_\beta)^*$. If $f_\alpha \in L^1(\mu)$ converges weakly to zero, then

$$\langle \phi_x(f_\alpha), x^* \rangle = \int_{\Omega} f(s) \langle x(s), x^* \rangle d\mu(s) \to 0, \qquad x^* \in F$$

because x is $\sigma(X, F)$ -integrable so that $(s \mapsto \langle x(s), x^* \rangle) \in L^{\infty}(\mu)$, so the continuity of ϕ_x .

(b) Fix $p \in L^{\infty}(\mu)$ and let C be the $\sigma(X, F)$ -closed balanced convex hull of $x(\Omega) \subset X$. Then C is $\sigma(X, F)$ -compact by the Krein property. Since for every $x^* \in F$ we have

$$|\langle \phi_x(f), x^* \rangle| \leq \int_{\Omega} |f(s)\langle x(s), x^* \rangle| \, d\mu(s) \leq ||f||_{L^1} \sup_{y \in x(\Omega)} |\langle y, x^* \rangle| \leq ||f||_{L^1} \sup_{y \in C} |\langle y, x^* \rangle|,$$

the linear functional $\phi_x(f)$ on F is continuous with respect to the Mackey topology $\tau(F,X)$, which is a dual topology so that $\phi_x(f)$ can be naturally identified with a vector in $(F_\tau)^* = X$.

(c) Fix $f \in L^1(\mu)$. By the tightness of μ , there is a sequence of compact sets $K_n \subset \Omega$ such that $\int_{\Omega \setminus K_n} |f(s)| d\mu(s) < n^{-1}$. Since for each $x^* \in F$ we have

$$|\langle \phi_x(f) - \phi_{x|_{K_n}}(f), x^* \rangle| \leq \int_{\Omega \setminus K} |f(s)| \, d\mu(s) \cdot \sup_{s \in \Omega} |\langle x(s), x^* \rangle| < n^{-1} \sup_{y \in x(\Omega)} |\langle y, x^* \rangle|$$

so that

$$\sup_{x^* \in B^*} |\langle \phi_x(f) - \phi_{x|_{K_n}}(f), x^* \rangle| \le n^{-1} \sup_{x_* \in B^*} \sup_{y \in x(\Omega)} |\langle y, x^* \rangle| \to 0, \qquad n \to \infty,$$

which means that $\phi_{x|_{K_n}}(f)$ converges to $\phi_x(f)$ in $\beta((F_\beta)^*, F_\beta)$. Since $\phi_{x|_{K_n}}(f) \in X$ by the part (b) and X is closed in $\beta((F_\beta)^*, F_\beta)$ by the Goldstine property, we have $\phi_x(f) \in X$.

(d) By the continuity of T, the adjoint $T^*: G \to F$ is well-defined. The measurability of T and the existence of the adjoint T^* imply that the composition $T \circ x : \Omega \to Y$ is $\sigma(Y,G)$ -bounded and $\sigma(Y,G)$ -measurable, so the operator $\phi_{T \circ x} : L^1(\mu) \to G^{\#}$ is well-defined. Then,

$$\begin{split} \langle T\phi_x(f), y^* \rangle &= \langle \phi_x(f), T^*y^* \rangle = \int_{\Omega} f(s) \langle x(x), T^*y^* \rangle \, d\mu(s) \\ &= \int_{\Omega} f(s) \langle Tx(s), y^* \rangle \, d\mu(s) = \langle \phi_{T \circ x}(f), y^* \rangle, \qquad f \in L^1(\mu), \ y^* \in G. \end{split}$$

In particular, $\phi_{T \circ x} : L^1(\mu) \to Y$.

(e) By the Goldstine property,

$$\| \int f(s)x(s) \, d\mu(s) \| = \sup_{x^* \in F_1} | \int f(s)x(s) \, d\mu(s) | \le \sup_{x^* \in F_1} \int |f(s)x(s)| \, d\mu(s)$$

$$\le \int \sup_{x^* \in F_1} |f(s)x(s)| \, d\mu(s) \le \int \|f(s)x(s)\| \, d\mu(s).$$

2.3 (Topological tensor products). Let X and Y be locally convex spaces. The *projective tensor product* is the completion $X \widehat{\otimes}_{\pi} Y$ of $X \otimes Y$ with the finest locally convex topology such that the canonical bilinear map $X \times Y \to X \otimes Y$ is continuous. We can also describe it with semi-norms. We have

$$B_{\rm int}(X,Y) \cong (X \widehat{\otimes}_{\pi} Y)^*.$$

Note that we have

$$X \otimes Y \cong B_{\text{int}}(X_{\sigma}^*, Y_{\sigma}^*) \subset B_{\text{sep}}(X_{\sigma}^*, Y_{\sigma}^*).$$

The space $B_{\text{sep}}(X_{\sigma}^*, Y_{\sigma}^*)$ of separately continuous bilinear forms, which has a natural topology of uniform convergence on the products of equicontinuous sets in X_{σ}^* and Y_{σ}^* , and this topology is complete if and only if X and Y are complete. The induced topology on $X \otimes Y$ is called the *injective tensor product* topology. We have $C^k(\Omega, E) \cong C^k(\Omega) \otimes_{\varepsilon} E$ if E is complete.

Note that the projective tensor product reflects the original topologies of locally convex spaces, while the injective tensor product only depends on the dual pair structure.

The dual of $X \hat{\otimes}_{\pi} Y \to X \hat{\otimes}_{\varepsilon} Y$ defines an injection $J(X,Y) \to B_{\rm jnt}(X,Y)$. A bilinear form in J(X,Y) is called to be *integral*.

2.4 (Vector-valued continuous functions). Let X be a locally compact Hausdorff space, and (E, E^*) be a dual pair satisfying the two properties.

We claim there is an embedding [Tre 44.1]

$$C_0(X, E) \to C_0(X, E_{\sigma}) \subset L(E_{\sigma}^*, C_0(X)) = L(E_{\sigma}^*, C_0(X)_{\sigma}) = L(M(X)_{\sigma}, E_{\sigma}).$$

How about C_c , C_0 , C_b , C? See [Tre 42.2] for $L(E_{\tau}^*, F) = L(E_{\sigma}^*, F_{\sigma})$. Since $C_0(X) \odot E$ is dense in $C_0(X, E)$ for any locally convex space E, the above embedding gives rise to a dense embedding $C_0(X, E_{\sigma}) \subset C_0(X) \widehat{\otimes}_{\varepsilon} E \subset B_{\text{sep}}(M(X)_{\sigma}, E_{\sigma}^*)$.

2.5 (Vector-valued measurable functions). We need to investigate the natural topology and its weak topology on $L^0_{loc}(\mu)$. I want to do this in measure theory.

Continuous approximations

- 2.6 (Vector-valued differentiable functions). Hölder, Sobolev, etc.
- 2.7 (Vector-valued distributions).
- **2.8** (Relations to Bochner and Pettis integrals). Bochner integral can be justified in terms of projective tensor products.

A weakly measurable function on (Ω, μ) valued in E gives rise to a linear map $E^* \to L^0_{loc}(\mu)$. Is it continuous?

2.2 Direct limit

distribution theory LF,LB spaces

2.3 Differentiable spaces

Topological algebras

Part II

Continuous fields

Part III Fréchet and Banach spaces

5.1 Universal properties

Notation

L(X,Y) the set of bounded linear operators from X to Y

B(X,Y) the set of bounded bilinear forms on $X \times Y$

F(X,Y) the set of continuous finite-rank linear operators from X to Y

 B_X closed unit ball of a normed space X

 S_X unit sphere of a normed space X

 $X \otimes Y$ algebraic tensor product of X and Y

 X^* continuous dual space

 $X^{\#}$ algebraic dual space

5.1 (Algebraic tensor product of vector spaces). Let X and Y be vector spaces. The *algebraic tensor product* is a vector space $X \otimes Y$ with a bilinear map $\otimes : X \times Y \to X \otimes Y$ such that the following universal property: for any vector space Z and any bilinear map $\sigma : X \times Y \to Z$, there exists a unique linear map $\widetilde{\sigma} : X \otimes Y \to Z$ such that the diagram

is commutative.

- (a) The tensor product $X \otimes Y$ always exists.
- (b) We have linear maps $L(X,Z) \otimes L(Y,W) \to L(X \otimes Y,Z \otimes W)$ and $B(L(X,Z),L(Y,Z)) \to L(X \otimes Y,Z)$.
- (c) Every element $t \in X \otimes Y$ is represented as $t = \sum_{i=1}^{n} x_i \otimes y_i$ such that $\{x_i\}$ is linearly independent. In this case, if t = 0 then $y_i = 0$ for all i.

Proof. (a) Let T be the set of formal linear combinations of $X \times Y$, that is, an element of T has the form $\sum_{i=1}^{n} a_i \cdot (x_i, y_i)$ for $x_i \in X$, $y_i \in Y$, and scalars a_i . Define $T_0 \subset T$ to be a linear space spanned by the elements of the following four types:

$$(x+x',y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y'),$$

 $(ax,y)-a(x,y), (x,ay)-a(x,y).$

Then, the quotient space T/T_0 satisfies the universal property with the bilinear map $X \times Y \to T/T_0$: $(x,y) \mapsto (x,y) + T_0$.

5.2 (Algebraic tensor product of involutive algebras).

5.2 Banach spaces

5.3 (Subcross norms).

5.4 (Injective tensor products). Let X and Y be Banach spaces. Define the *injective norm* ε on $X \otimes Y$ such that

$$\varepsilon \left(\sum_{i=1}^{n} x_i \otimes y_i \right) := \sup_{\substack{x^* \in B_{X^*} \\ y^* \in R_{x^*}}} \left| \sum_{i=1}^{n} \langle x_i, x^* \rangle \langle y_i, y^* \rangle \right|.$$

We denote by $X \otimes_{\varepsilon} Y$ the algebraic tensor product with the injective norm, and by $X \otimes_{\varepsilon} Y$ its completion.

(a) $X \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to $F((X^*, w^*), (Y, w))$.

(b) $X^* \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to F(X,Y).

5.5 (Projective tensor products). Let *X* and *Y* be Banach spaces. Define the *projective norm* π on $X \otimes Y$ such that

$$\pi(t) := \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : t = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

We denote by $X \otimes_{\pi} Y$ the algebraic tensor product with the projective norm, and by $X \otimes_{\pi} Y$ its completion.

(a) There are natural isometric isomorphisms $(X \otimes_{\pi} Y)^* \cong B(X,Y) \cong L(X,Y^*)$.

(b)

5.6 (Hilbert space tensor product). Let $\varphi: H \otimes K \to L(H^*, K)$. Then, $\lambda(\xi) = \|\varphi(\xi)\|$, $\gamma(\xi) = \operatorname{tr}(|\varphi(\xi)|)$, so $H \hat{\otimes}_{\lambda} K \cong K(H^*, K)$ and $H \hat{\otimes}_{\gamma} K \cong L^1(H^*, K)$.

5.7 (Nuclear operators).

$$X^* \otimes_{\pi} Y \to X^* \otimes_{\varepsilon} Y \xrightarrow{\sim} F(X,Y) \xrightarrow{1} K(X,Y)$$

defines

$$J: X^* \widehat{\otimes}_{\pi} Y \to K(X, Y).$$

Define $N(X, Y) := \operatorname{im} J$.

5.8 (Grothendieck theorem). Let Y^* be an RNP space. Then, there is an isometric isomorphism $(X \hat{\otimes}_{\varepsilon} Y)^* \cong N(X, Y^*)$.

5.3 Approximation property

5.9 (Approximation property of locally convex spaces).

5.10 (Approximation property of Banach spaces).

5.11 (Approximation property of dual Banach spaces).

5.12 (Mazur's goose). (a) If *X* has a Schauder basis, then it has the approximation property.

5.4 Nuclear spaces

Part IV Fréchet and Banach algebras

Fréchet algebras

Banach algebras