中南财经政法大學

本科课程论文

论文题目:基于 ARIMA 及 LSTM 模型的石油期货价格分析及预测

院系名称: 统计与数学学院

专业名称: 应用统计 1701

作者姓名:曹奕涵

作者学号: 201721090024

2019~2020 第二学期 使用 IATEX 撰写于 2020 年 6 月 24 日

摘要

本文主要研究了石油期货价格变化的问题。在石油期货价格极其不稳定的"后疫情"时代,合理的预测石油期货价格的长短期走势,变得非常重要。在中国银行"原油宝"事件之后,石油期货也在国内金融市场上掀起轩然大波。本文主要通过构造组合模型 ARIMA-LSTM,并与长短期的 ARIMA 模型、LSTM 进行对比,选择能够最优地对近 31 天的石油期货价格进行预测的模型。结果表明,单独的 LSTM 在长期以及短期拟合趋势上的结果最好,所有模型在短期预测的精度都不够理想。其主要原因是 ARIMA-LSTM 适用于呈现了较明显非线性趋势的时间序列数据,而石油期货价格数据,在一阶差分后即平稳,其拟合的 ARIMA 模型的残差也是随机序列,故难以再从中提取更多信息。在之后的改进中,应当进一步结合前沿时间序列模型,或者加入更多的有关变量,构建多变量模型。

关键字: ARIMA LSTM 组合时间序列模型

目录

1	. 研究背景及方法	2
	1.1 研究意义	2
	1.2 研究方法	3
	1.3 研究流程	3
2	? 模型原理	4
	2.1 ARIMA 模型原理 ····································	4
	2.2 LSTM 模型原理 ····································	. 5
3	3 实证分析	8
	3.1 描述性统计分析	8
	3.2 单变量独立模型的建立	9
	3.2.1 长期 ARIMA 模型的拟合	9
	3.2.2 短期 ARIMA 模型的拟合	11
	3.3 LSTM 模型的训练	13
	3.4 组合模型 ARIMA-LSTM 的建立	14
4	l 结果及结论 ·····	16
	4.1 实证分析结果	16
	4.2 结论	16
Α	A 附录	18

1 研究背景及方法

1.1 研究意义

原油期货为一种重要的石油期货,其主要受原油价格与原有需求的影响。新冠疫情的影响之下,全球原油需求骤减。路上车辆变少,原油下游产业的工厂全部停工。为了稳定原油价格,就需要减少供应量,然而,在国际形势面前,石油大国却选择了进一步增产石油。在沙特宣布增产的第二天,美股熔断,金融市场崩溃,金融机构砍掉头寸,再次导致了美股的再次熔断。

新冠疫情下,原油价格暴跌,出乎了所有投资者的意料。然而,这却给了一些投机者抄底的希望,国内的部分散户想要在油价暴跌期间购买,并在反弹期间获利。他们通过购买中行的"原油宝"产品,去赌原油价格的变化趋势。中国银行的这一产品,与原油期货直接挂钩,而中行则主要通过对冲的手段,保证散户的多头空头能够相互赔付,从中赚取手续费。当中行代购的原油期货到期时,中行将有两种选择,一种是交割,也就是去取原油;另一种则是以交易价跟交易所交易。新冠期间,原油储存地早已被预购一空,这也就是说,所有的原油期货都只能在最后交易日和交易所交易,这样,才有足够的地方存储原油。于是,中行在4月20日晚10点,停止了原油宝的交易系统,并对持有原油下达了TAS指令,在凌晨2:30,以当时结算价格成交。然而,原油期货在2:08即突破正值,走向了负数。在2:30时,以-37美元每桶的价格成交,导致所有在原油宝购买多头的人,不仅仅亏光了所有本金,还背上了几十倍的负债。

上面的原油宝的案例,说明原油期货与经济形势,常常是相互挂钩的。原油期货价格的变化,不仅仅影响到个体投资者,同时也会对整个金融市场、经济形势产生巨大的影响。原油价格由 0.01 变为-0.01,在数学上可能只是 0.02 的变化,然而,对于市场来说,确实轩然大波。当原油价格变为负数,说明原油储量已经突破极限,储存原油的成本已经超过了将原油送到工厂进行加工。从历史上来看,几乎每一次的经济革命、金融剧变都有着原油期货价格的身影。2003-2004 年期间,世界经济增长,原油价格上升了 70% 以上; 2007 年,美元走强游资,使得油价变化极大,急升骤降,而这次的疫情,使得原油期货价格历史上首次跌破负值,更是给了投资者们一个更大的"惊吓"。

以上案例均说明,研究原油期货的价格是非常有意义的。一个优良的指导模型,应当能够合理地预测原油期货价格的走势,能够丰富市场信息,带动金融市场发展。本文主要使用了 ARIMA 及 LSTM 模型,比较了两种模型的特性以及预测效果,并根据预测效果,对石油市场进行进一步的预测,提出合理建议。

1.2 研究方法

本文从美国能源信息部(Energy Information Administration, EIA)官方网站上收集了自 1986 年 1 月 2 日以来,OK WTI Crude Oil Future 产品上市之后的每个交易日的期货价格。据初步观察结果,该数据集仅有 2020 年 4 月 20 日这一天的价格为负值,这一天之后,价格均反弹回正值。本文将对数据进行描述性统计,对原油期货价格变化进行分析,并进一步结合单变量 LSTM 预测、单变量 ARIMA 预测、联合模型 ARIMA-LSTM 预测来判断模型的拟合效果,并给出进一步的建议。

1.3 研究流程

研究流程如下所示。

图 1.1: 研究流程图

2 模型原理

2.1 ARIMA 模型原理

ARIMA 模型是一种用于分析非平稳时间序列的经典模型,其基于的是 ARMA 模型。ARMA 模型是一种经典的平稳时间序列模型,如果说线性回归模型尝试通过某些解释性变量和随机项,去分析一个变量,那么 ARMA 模型就是时间序列中的线性回归模型。在 ARMA 模型中,时间序列的往期值,就是解释变量(AR),时间序列的噪声(MA),就是随机项。

ARMA(p,q) 模型由自回归 (AR) 模型以及移动平均 (MA) 模型两部分组成。当 q=0 时,该模型为 AR(p) 模型,当 p=0 时,该模型为 MA(q) 模型。ARMA 模型的基本结构如下:

$$\phi(B)X_{t} = \theta(B)Z_{t}$$

$$\phi(z) = 1 - \phi_{1}z - \phi_{2}z^{2} - \dots - \phi_{p}z^{p}$$

$$\theta(z) = 1 + \theta_{1}z + \dots + \theta_{q}z^{q}$$

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t} + \theta_{1}Z_{t-1} + \dots + \theta_{q}Z_{t-q}$$
(2.1)

然而,并不是2.1所有的解都符合 ARMA 模型。ARMA 模型的一个重点,就是根据模型 去做预测,如果解无法满足 ARMA 模型的前提条件,也就是时间序列是平稳的,那么预测结果将难以解释。一个 ARMA 过程平稳的条件为,其作为 AR 跟 MA 过程都应该是平稳的。

AR 过程的平稳性来自于 AR 过程的前后因果关系^[3]。一个具有因果性的时间序列 X_t ,其现值应当取决于过去值跟过去随机项。从数学性质上来说,就是 $\phi(z)$ 的根全部在单位圆外。对于一个 AR(1) 过程:

$$X_t = \phi X_{t-1} + Z_t$$

其对应

$$\phi(z) = 1 - \phi z$$

上式存在单位根 ϕ^{-1} 。当且仅当该根不为 1 时,时间序列平稳。平稳性要求,对 $X_t = \Phi(B)Z_t = \sum_j \Phi_j Z_{t-j}$,对于 $\Phi = \frac{\theta}{\phi}$, $\phi_j = 0$,对每个 j < 0 成立。

那么,从复分析的角度来看,研究洛朗级数 $\Phi(z) = \sum_{j=-\infty}^{\infty} \Phi_j z^j$,这个洛朗级数应当在单位圆 $\{z \in C : |z| \leq 1\}$ 的邻域上解析。那么,既然洛朗展开 $\sum_{j=-\infty}^{\infty} \Phi_j z^j$ 在单位圆内解析,这就说明,z 的负幂次方不出现。所以, ϕ 的根应当在单位员外,因为只有这时, $\Phi = \theta/\phi$ 在单位圆上是解析的。

MA 过程的平稳性来自其可逆性。可逆性的定义为,对于 $Z_t = \pi(B)X_t = \sum_j \pi_j X_{t-j}, \pi = \frac{\phi}{\theta}$

而言, $\pi_j = 0$,对每个 j < 0 都成立。与其对应的数学性质为, $\pi(z)$ 在单位圆上解析,或者 θ 所有的根都在单位圆外。

而 ARIMA 模型,就是基于 ARMA 模型的原理,将原来不平稳的数据,变成平稳的,再拟合。将其变为平稳的方法,就是做差分。这样,就能对非平稳的时间序列,也使用 ARMA 模型进行分析。

2.2 LSTM **模型原理**

LSTM 是一种自然语言处理中经常会使用到的模型,其为递归神经网络 (RNN) 的一种衍生模型。我们首先从 RNN 开始研究。RNN 是一类具有短期记忆能力的神经网络^[1],通过随时间反向传播算法来进行参数的求解,执行学习任务。然而,随时间反向传播在处理长序列问题时,常常存在梯度爆炸和消失的问题,没有长期记忆性。这就好比我们的记忆能力,在处理序列数据时,我们的大脑除了短期记忆外,还会记住数据变化的长期趋势,但 RNN 却无法处理这个问题。正是基于这一点,人们在 RNN 中引入了"门控"这一设置,形成了能够筛选长短期信息的 LSTM 神经网络。

RNN 的工作原理,是通过带自反馈机制的神经元,处理时间序列数据。假设现在有一个序列 $x_{1:T} = \{x_1, x_2, \cdots, x_T\}$,那么数据通过输入层,进入隐藏层,会进入一个延迟器,该延迟器能够输出一个活性值 h_t :

$$h_t = f(h_{t-1}, x_t), h_0 = 0$$
 (2.2)

活性值将作为隐藏层的输出,再进入输出层。

通过 BPTT (随时间反向传播) ^[4] 算法能够对模型进行参数学习。其将 RNN 看作是一个展开的多层前馈网络,每一层对应每一个时刻,这样,RNN 的梯度计算可以之间使用前馈 网络中的 BP 算法,因为,在展开的网络中,这些层的参数都是共享的。

假设给定一个训练样本 (x,y),其中 $x_{1:T}=(x_1,\cdots,x_T)$ 对应 $y_{1:T}=(y_1,\cdots,y_T)$ 。定义损失函数 $L_t=L(y_t,g(h_t))$ 。其中, $g(h_t)$ 为输出。整个序列的损失函数关于参数,设为 U 的梯度为:

$$\frac{\partial L}{\partial U} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial U} \tag{2.3}$$

现在计算偏导 $\frac{\partial L_t}{\partial U}$ 。参数 U 和隐藏层在每个时刻的净输入 $z_k = Uh_{k-1} + Wx_k + b$ 有关,故这里使用链式法则,有:

$$\frac{\partial L_t}{\partial u_{ij}} = \sum_{k=1}^t \frac{\partial z_k}{\partial u_{ij}} \frac{\partial L_t}{\partial z_k}$$
(2.4)

如果我们保持 z_k 中 h_{k-1} 不变,对其求偏导(需要知道,因为当前隐藏层输入 z_k 只跟当前值

 x_k 与前期活性值 h_{k-1} 有关,所以其他维度上,都是 0),计算得到:

$$\frac{\partial z_k}{\partial u_{ij}} = [0, \cdots, [h_{k-1}]_j, \cdots, 0]$$
(2.5)

再求后面一个微分的值:

$$\frac{\partial L_t}{\partial z_k} = \frac{\partial h_k}{\partial z_k} \frac{\partial z_{k+1}}{\partial h_k} \frac{\partial L_t}{\partial z_{k+1}} = diag(f'(z_k)) U^T \frac{\partial L_t}{\partial z_k + 1}$$
(2.6)

令2.6为 $\delta_{t,k}$,那么就可以得到参数梯度。

这就揭示了一个问题,如果我们把2.6展开的话,我们应该能够得到如下形式一个式子:

$$\delta_{t,k} = \gamma^{t-k} \delta_{t,t}. \tag{2.7}$$

那么,如果 $\gamma > 1$,当 $t - k \to \infty$ 时,梯度就会爆炸。当 $\gamma < 1$,梯度就会消失,所以这实际上是一个非常不稳定的模型,简单的神经网络难以建设这种长程依赖关系。我们需要对其进行改善,于是,就加入了"门控机制",门控机制能够在模型中有选择的加入新信息,并且遗忘之前的信息,这类网络被称为 Gated RNN(GRNN)。通过这种方法,能够控制信息的累积速度。

本文中主要使用的是 LSTM,长短期记忆网络[2]。LSTM 在 RNN 的基础上,引入了一个新的内部状态 c_t ,进行线性的递归信息传递,同时非线性地导出信息给外部状态 h_t :

$$c_t = f_t c_{t-1} + i_t \hat{c}_t$$

$$h_t = o_t \times tanh(c_t)$$
(2.8)

其中, f_t 、 i_t 、 o_t 为三个门,来控制信息的传递。门是一个二值变量 [0,1],当为 0 时关闭,1 时打开。LSTM 中,门的取值在 (0.1) 之间,以一定的比例允许信息通过。

上面的三个门分别定义为:

- 1. 遗忘门: f_t 控制上一个时刻的内部状态, c_{t-1} , 需要遗忘的信息;
- 2. 输入门: i_t 控制当前时刻的候选状态 \hat{c}_t 需要保存多少信息;
- 3. 输出门: o_t 控制当前内部状态 c_t 有多少信息需要输出给外部状态。

这些值均为 $\sigma(z_t)$ 。

在递归神经网络中,隐状态 h 存储了所有的历史信息,在简单递归网络中,h 的每个时刻都会更新一次。在 LSTM 中,记忆单元 c 可以在某个时刻捕捉到关键信息,并且将关键信息保存一定的时间间隔,且这个时间间隔总要长于短期记忆 h。这就减少了每次计算需要存

储的短期信息量,当时间序列变长,或者文本变长时,LSTM 能够筛选出长期序列的趋势,避免梯度消失、梯度爆炸的问题。

3 实证分析

3.1 描述性统计分析

对数据进行简单的探索性分析。首先对期货价格数据作时间序列图如下:

图 3.1: 石油期货价格 (每加仑) 1986-2020

本数据集收集了自 1986 年 1 月 2 日开始的 OK WTC Crude Oil Future 的交易日价格,到 2020 年 5 月 20 日为止。5 月 20 日之后的数据将作为测试数据,在模型结果与建议中进一步分析。根据上图3.1可以看出,石油期货价格变化幅度较大,并没有明显的显性趋势,说明需要进行进一步的差分处理。总体趋势是上升的,但并不稳定,在 2008 年、2015 年、2020年出现了较大的变化。对其做箱线图如下:

图 3.2: 石油期货价格 (每加仑) 1986-2020 箱线图

根据图3.2,平均价格为 30 美元左右,存在较多的高价格的离群值。对数据进行均值、方差计算:

	表 3.1: 描述性统计结果表							
样本量	标准差	均值	中位数	最小值	最大值			
8652	29.13	44.1	31.12	-36.98	145.31			

平均价格为 44.1 美元,标准差较高,说明数据的总体变化程度较大,中位数为 31.12 美元,说明整个数据的价格水平位于 30 美元左右。在正常状态下,每加仑的石油期货价格为 30 美元。

3.2 单变量独立模型的建立

3.2.1 长期 ARIMA 模型的拟合

长期 ARIMA 模型选择了数据集中的所有数据,用这些数据一起来进行模型拟合与分析。 对数据进行 ADF 单位根检验,检查序列平稳性,结果显示,滞后期数为 20 期,p 值为 0.5656,接受原假设,认为序列不平稳。此时,需要对数据进行差分处理,使其成为平稳的时 间序列。做一阶差分后,对数据重新作图如下:

图 3.3: 一阶差分后石油期货时间序列图

如图所示,序列前部分已经趋近平稳,后部分仍然呈现不平稳的趋势。对差分后的数据进行 ADF 单位根检验。根据检验结果,滞后期为 21 期,p 值小于 0.01,为平稳的时间序列。故原数据适合进行 ARIMA(p,1,q) 模型的拟合。

计算一阶差分后的时间序列的 ACF 以及 PACF,并作图,以确定 ARIMA 模型的阶数。作图如下:

图 3.4: ACF 与 PACF 图 (一阶差分)

根据图3.4, ACF 于 2 阶截尾, PACF 拖尾, 故拟合 ARIMA(0,1,2), 计算得到 AIC 值为

30139.15。模型的估计值如下:

表 3 2	ARIMA	(0.1.2)	模型拟合结果
10 0.4.	7 7 T () T T V T 7 T 1	0,1,41	

	- (-))	•==•
变量	估计值	标准误
ma1 ma2	-0.1723 0.0108	-0.0259 0.0107

根据上述模型,对接下来30天的值进行预测,预测结果如图3.7所示。

3.2.2 短期 ARIMA 模型的拟合

考虑到数据信息的有效性,选择近 1000 天的数据进行 ARIMA 模型的拟合。首先对近期的 1000 条数据进行 ADF 单位根检验,检验结果显示,滞后期为 6, p 值为 0.9562,接受原假设,认为序列不平稳。对其做一阶差分后,作图如下:

图 3.5: 每加仑石油期货价格(一阶差分后)

除了某些离群点,数据以及基本接近平稳。对数据进行 ADF 单位根检验,p 值小于 0.01, 认为已经为平稳序列。计算差分后数据的 ACF 以及 PACF,作图如下:

图 3.6: PACF 以及 ACF 值

根据上图,确定模型阶数为 ARIMA(0,1,1)。移动平均项 ma1 的估计值为-0.4352,标准误为 0.0294,AIC 值为 4593.08。

对后 30 期进行预测,结果如下:

图 3.7: 石油期货价格 (每加仑) 30 天 ARIMA 预测值

对上面的 ARIMA 水平建模模型进行进一步的探索,对残差序列进行纯随机性检验,检查是否需要进一步拟合 GARCH 模型。检验结果 p 值均大于 0.995,说明并不需要再进一步进行 GARCH 模型的拟合。对残差序列及残差平方项作图如下:

图 3.8: 长期 ARIMA 模型残差值

3.3 LSTM 模型的训练

对单变量的时间序列进行 LSTM 拟合,需要假设单变量时间序列的现值受多少期滞后值的影响。本文中设置滞后期为 30 期,即现值主要受前近一个月的值的影响。在训练时,首先分离前期数据与后 300 期数据,将 300 期数据作为待测数据对其进行预测,以便于查看模型的拟合情况。

设置隐含层为 1 层全连接层,同样也可以设置两层的全连接层,没有太大影响。鉴于训练时间与硬件设备上的不足,本文只能将训练次数限制在 10 次,学习率设置在 0.0001。优化器选择 AdamOptimizer,损失函数选择 MSE 损失。对模型进行训练,模型收敛速度较快,在第 9 次时损失达到最小。对后面的 300 期进行预测,结果如下:

图 3.9: LSTM 模型的拟合效果

图中,蓝色为原数据,橙色为用于训练的数据集,绿色为用于测试的数据集,可以看到,拟合的效果非常好,精确预测了未来数据的发展态势。对其预测的31期结果进行平方和计算,结果为6525.786。

3.4 组合模型 ARIMA-LSTM 的建立

正如模型原理中所提到的,ARMA 模型是时间序列模型中的线性模型,其拟合的主要为数据集的线性趋势,而很多时候,模型中还存在着非线性趋势。这种非线性趋势就需要使用其他方法来对数据进行拟合。本文建立了 ARIMA-LSTM 模型,主要通过 ARIMA 模型来拟合数据中的线性趋势,再对模型残差,使用 LSTM 拟合数据中的非线性趋势。

组合模型的建立,分成两部分进行检验。模型 1 为根据上文中的长期 ARIMA 模型 (3.2.1),对 1000 期进行拟合预测,记为 L_t ,为线性项。根据真实值,可以得到 $Y_t - L_t$,记为 Σ_t ,为非线性项。使用 LSTM,保持上面的参数设置(一层全连接,Adam 优化,20 次循环训练,MSE 损失),对 1000 项的 Σ_t 进行拟合,预测 31 期,记为 $\Sigma_{1:31}$ 。再根据3.2.1,再次预测 31 期,记为 $\Sigma_{1:31}$ 。那么, $\hat{Y}_{1:31} = L_{1:31} + \Sigma_{1:31}$ 。

对拟合的时间序列, 计算拟合值, 做出图像如下:

图 3.10: ARIMA(0,1,2) 拟合值

上图为对差分后序列的拟合情况,实际上已经拟合的较好,此时的残差序列中不一定仍含有非线性信息。实际上,对于这样的数据集而言,并不一定需要继续对残差进行 LSTM 的拟合。对于含有明显的非线性趋势的模型,可以进一步使用该方法,在模型的拟合过程中,也没有很明显的收敛趋势,说明该序列的随机性很强。对残差进行 LSTM 的拟合,并预测 31期,与预测值相加,计算得到长期 ARIMA 的总误差平方为 6739.684,长期组合 ARIMA 的总误差平方为 6831.304。短期 ARIMA 的总误差平方为 7873.18,组合模型的总误差平方为 7977.044。总体来说,模型拟合的结果并不够好,这主要是因为序列中并不存在着明显的非线性趋势。

4 结果及结论

实证分析结果 4.1

本文一共拟合了 4 种主要的模型,对应的 31 期预测的误差平方和如下:

表 4.1: 模型预测误差平方和(31 期)	
模型	误差
长期 ARIMA(0,1,2) 短期 ARIMA(0,1,1) 长期组合模型 (ARIMA(0,1,2) + LSTM) 短期组合模型 (ARIMA(0,1,1) + LSTM) LSTM 模型	6739.684 7873.18 6831.304 7977.044 6525.785

根据 31 期的预测误差结果,认为单独的 LSTM 模型预测效果最佳。

4.2 结论

本文主要通过 ARIMA 模型与 LSTM 模型的结合分析,对石油期货价格的变化进行了预 测分析。根据分析的结果,单独的 LSTM 模型预测效果最佳。实际上,这个结果并不一定是 一个稳定的结果。从数据量上来看,预测 31 期的值较少。并且,ARIMA 模型并不具有长期预 测的能力,相比之下,LSTM 的长期趋势预测更为精确。从短期趋势上来看,长期的 ARIMA 模型获取的信息更为全面,虽然模型比短期的 ARIMA 模型稍微复杂一些,但是精度却比短 期的 ARIMA 模型高很多。

本文的主要研究对象为组合的 ARIMA-LSTM 模型,但是实际上, ARIMA-LSTM 在石油 期货数据上的表现能力并不够好。这主要是因为 ARIMA 适用于线性趋势的分析, 而石油期货 的数据具有线性趋势的基本特征,排除线性趋势后,除个别异常点外,残差序列呈随机游走状 态,这说明数据并没有明显的非线性趋势。对于呈现了非线性趋势的模型而言,ARIMA-LSTM 的表现更好,因为去掉线性趋势后,LSTM 能够拟合出优秀的非线性变化。

当然,这并不意味着模型没有可以改进的地方。对于单独的 LSTM 模型,可以增加网络 的训练次数、隐藏层网络的层数。通过引入注意力 (Attention) 机制,可以合理地对变量(前 30 天的时间序列值)进行赋权,从而进一步改进模型。一般来说,增加了 Attention 机制的 网络, 其预测的精度往往更加准确。

参考文献

- [1] Jeffrey Elman. Finding structure in time, pages 289–312. 02 2020.
- [2] Klaus Greff, Rupesh Srivastava, Jan Koutník, Bas Steunebrink, and Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems, 28, 03 2015.
- [3] A.W. van der Vaart. Time series lecture notes. pages 117–125, 2010.
- [4] Paul Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78:1550 1560, 11 1990.

附录 A 附录

代码文件与原始数据,详见'代码'、'数据'文件夹。