HTTPS

概述和握手过程

HTTP存在的问题

- 容易被监听
- 数据可能被篡改
- 容易假冒服务器

HTTPS

HTTPS = HTTP over SSL

• SSL vs. TLS

- SSL = Secure Sockets Layer 安全套接层
- TLS = Transport Layer Security 传输层安全协议

SSL 1.0	SSL 2.0	SSL 3.0	TLS 1.0	TLS 1.1	TLS 1.2	TLS 1.3	
1993	1995	1996	1999	2006	2008	2018	

加密算法

- 摘要 MD5 SHA
- 对称加密 DES、3DES、RC-5、IDEA
- 非对称加密 RSA、ECC

非对称加密:

 私钥加密
 --- 公钥解密

 公钥加密
 --- 私钥解密

- ————验证数据未被篡改,不能防偷窥
- ————加密解密密钥相同;加/解密速度快
- ————加密解密密钥不同;加/解密速度慢

数字签名:

对消息做摘要,用私钥加密摘要。密文即签名。签名同消息一起发送。

验证:

- 1、用同样算法对消息做摘要
- 2、用公钥解密密文
- 3、对比1和2的结果

对称加密和非对称加密比较

	加密/解密速度	密钥分发	使用范围
对称加密	快	难	大量数据加/解密
非对称加密	慢	易	极少量数据加解密

非对称加密传输密钥,对称加密传输数据;摘要算法保障数据完整

密码套件 Cipher Suite

密码套件的名称 例: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

- 密钥交换算法,例如ECDHE_RSA,用于决定客户端与服务器之间在握手时如何建立通信,一般用非对称加密算法
- 批量加密算法,例如AES_128_GCM,用于加密消息流。一般是对称加密 算法。
- 消息验证算法,例如SHA256,用于创建消息摘要,验证数据的完整性。

服务器数字证书

- 证书信息(域名、组织单位等)
- 有效期
- 证书公钥
- 证书签名算法
- 签发机构
- 数字签名(用签发机构私钥加密的证书数据摘要)

