The Laws of Limits

Given a constant c and two functions f(x) and g(x) such that both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then the following conclusions can be drawn:

1.
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 Note: $\lim_{x \to a} g(x) \neq 0$.

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

7.
$$\lim_{x \to a} c = c$$

8.
$$\lim_{x \to a} x = a$$

$$9. \quad \lim_{x \to a} x^n = a^n$$

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 Note: If *n* is even, we assume $a \ge 0$.

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 Note: If *n* is even, we assume $\lim_{x \to a} f(x) \ge 0$.