Clase 14 – Análisis de sobrevivencia

Dr. José Gallardo

PLAN DE LA CLASE

1.- Introducción

- ¿Qué son los análisis de sobrevivencia?
- Método de Kaplan-Meier.
- Test estadístico.
- Estudios de caso
- Interpretación pruebas con R

2.- Práctica con R y Rstudio cloud.

- Realizar pruebas de análisis de sobrevivencia
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

INTRODUCCIÓN

Clase 14 – Análisis de sobrevivencia

Análisis de supervivencia

Conjunto de herramientas estadísticas <u>No paramétricas</u> utilizadas para analizar la probabilidad de que un evento (muerte/falla) ocurra en un determinado tiempo.

Ejemplos

Tiempo de falla de un dispositivo (meses).

disp1	disp2	disp3	disp4	disp5	disp6	disp7	disp8	disp9	disp10
11	13	13	8	5	24	4	1	24	24

- Tiempo de sobrevivencia a un patógeno (días).

ind1	ind2	ind3	ind4	ind5	ind6	ind7	ind8	ind9	ind10
15	6	4	8	5	15	4	7	15	3

Conceptos relevantes

Tiempo de supervivencia/falla (variable respuesta): Tiempo entre que se incorpora una observación al estudio y la fecha en la que ocurre el evento en esa observación.

Observaciones censuradas: Observaciones en las que no ha ocurrido el evento o aquellas en las que se pierde el registro del individuo o falla por razones diferentes a las investigadas.

Ejemplo: Sobrevivencia a un patógeno

Ind.	Tiempo	Status 0=censura 1=evento
1	40	1
2		
3		
4	40	0
5		
6		
7		
8		

X = evento

•= Censura

Ejemplo: Sobrevivencia a un patógeno

Ind.	Tiempo	Status 0=censura 1=evento
1	40	1
2	10	1
3	10	1
4	40	0
5	60	0
6	40	0
7	30	1
8	10	1

X = evento

•= Censura

Método de kaplan - Meier.

El método de Kaplan-Meier es un método no paramétrico que estima las probabilidades de supervivencia S(t) en los instantes en los que ha ocurrido el evento.

$$\hat{S}(t) = \prod_{t_i < t} rac{n_i - d_i}{n_i}.$$

d_i, el número de muertes en el momento t_i y n_i, el número de sujetos en riesgo justo antes de t_i.

Probabilidad de sobrevivir

Tiempo	Probabilidad de sobrevivir	Estimador K-M
0	5/5 = 1	1
10	4/6 = 0,66	0,66
20	5/6 = 0,83	0,54
30	4/5 = 0,80	0,43
40		
50		
60		

$$\hat{S}(t) = \prod_{t_i < t} rac{n_i - d_i}{n_i}.$$

Probabilidad de sobrevivir

Tiempo	Probabilidad de sobrevivir	Estimador K-M
0	5/5 = 1	1,00
10	4/6 = 0,66	0,66
20	5/6 = 0,83	0,54
30	4/5 = 0,80	0,43
40	3/4 = 0,75	0,32
50	3/3 = 1	0,32
60	3/3 = 1	0,32

$$\hat{S}(t) = \prod_{t_i < t} rac{n_i - d_i}{n_i}.$$

Gráfica de probabilidad de sobrevivir (predicción)

Test estadístico no paramétrico Log rank test

	Grupo 1	Grupo 2
Muerte	24	8
No muerte	10	32

Hipótesis

$$H_0: S_{g1} = S_{g2}$$

$$H_1: S_{g1} \neq S_{g2}$$

$$G = 2\sum_i O_i \cdot \ln iggl(rac{O_i}{E_i}iggr),$$

Interpretar resultados análisis de sobrevivencia R

Librería survival y funciones clave

Surv() {survival} # Crea un objeto de supervivencia, normalmente las variables stime y status son ambas variables respuesta en una fórmula de modelo lineal.

Survdiff() {survival} # Permite probar si existen o no diferencias entre dos o más curvas de sobrevivencia

Survfit() {survival} # Cálcula probabilidad de sobrevivencia de Kaplan-Meier y otras.

ggsurvplot() {survminer}
Permite graficar curvas de sobrevivencia usando ggplot2.

Objeto data.frame larv

sample_id	antibiotico	stime	status
s1	no	10	1
s2	no	10	1
s3	no	10	1
s4	no	30	1
s5	no	40	1
s6	no	60	0
s7	no	60	0
s8	no	60	0
s9	si	40	1
s10	si	50	1
s11	si	60	0
s12	si	60	0
s13	si	60	0
s14	si	60	0
s15	si	60	0
s16	si	60	0

survfit() - Surv()

```
Call: survfit(formula = Surv(stime, status) ~ strata(antibiotico),
  data = larv, na.action = na.exclude, type = "kaplan-meier")
```

strata(antibiotico)=no

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI 10 8 3 0.625 0.171 0.365 1.000 30 5 1 0.500 0.177 0.250 1.000 40 4 1 0.375 0.171 0.153 0.917
```

strata(antibiotico)=si

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI	
40	8	1	0.875	0.117		0.673		1	
50	7	1	0.750	0.153		0.503		1	

survdiff() - Surv()

```
Call:
```

survdiff(formula = Surv(stime, status) ~ antibiotico, data = larv)

N Observed Expected (0-E)^2/E (0-E)^2/V antibiotico=no 8 5 2.68 2.02 3.86 antibiotico=si 8 2 4.32 1.25 3.86

Chisq= 3.9 on 1 degrees of freedom, p= 0.05

ggsurvplot() - survfit() - Surv()

```
ggsurvplot(survfit(Surv(stime,status) ~ antibiotico, data = larv,
na.action = na.exclude, type="kaplan-meier"),
pval = TRUE, conf.int = FALSE)
```


Resumen de la clase

- Revisión de análisis de supervivencia y tiempos de vida media o falla.
- Cálculo de probabilidad mediante método de Kaplan-Meier.
- Interpretación resultados test de supervivencia con R

