This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

41/68 (C) Derwent- image AN - 1995-093893 [13] XA - C1995-042844 TI - Foaming urethane materials for mouldings with large elongation comprise first liq. prepd. by adding foaming agent and catalyst to poly:ol blended with mono:hydric alcohol and sec. liq. of poly:isocyanate DC - A25 AW - HAND-MIXING PA - (TOZA) TOYODA GOSEI KK NP - 1 NC - 1 PN - JP07018045 A 19950120 DW1995-13 C08G-018/00 5p * AP: 1993JP-0163572 19930701 PR - 1993JP-0163572 19930701 AB - JP07018045 A Foaming urethane materials comprise - (1) the 1st liquids. prepd. by adding - (a) foaming agents and - (b) catalysts to - (c) polyol components blended with - (d) monohydric alcohols as chemicals acting as solvent and - (2) the sec. liquids. consisting of

- (e) polyisocyanate components and are applied by hand-mixing (1) and (2).

- USE - The urethane materials provide mouldings having large elongation.

- ADVANTAGE - Since (1) have low viscosities, they are mixed with (2) sufficiently. (d) act as solvents and inhibit appropriately formation of urethanes and thickening during hand-mixing. Then the urethane materials have fine fluidity and improved mould-filling property. (Dwg.0/0)

_ (19)日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平7-18045

(43)公開日 平成7年(1995)1月20日

(51) Int.Cl.6	識別記号	庁内整理番号	FΙ		技術表示箇所	
C 0 8 G 18/00	NGS					
18/65	NET					
C 0 8 J 9/02	CFF	9268-4F				
// (C08G 18/00						
101: 00)						
		審査請求	未請求請求	頃の数1 OL (全 5 頁)	最終頁に続く	
(21)出願番号	特願平5-163572		(71)出願人	000241463		
				豊田合成株式会社		
(22)出願日	平成5年(1993)7月1日			愛知県西春日井郡春日町大	文字落合字長畑1	
				番地		
			(72)発明者	坂井 幸生		
				愛知県西春日井郡春日町大字落合字長畑 1		
				番地 豊田合成株式会社内		
			(74)代理人	、 弁理士 飯田 堅太郎	(外1名)	
			+			

(54) 【発明の名称】 発泡ウレタン材料

(57)【要約】

【目的】 触媒量を増大させても、混合発泡ウレタン材 料に混合不良が発生し難い発泡ウレタン材料を提供する

【構成】 ポリオール成分に発泡剤及び触媒が添加され てなる第一液と、ポリイソシアナート成分からなる第二 液とからなり、第一液と第二液とをハンドミックスして 使用する発泡ウレタン材料。ポリオール成分に、1価ア ルコールが溶媒的作用薬剤として添加されている。

1

【特許請求の範囲】

【請求項1】 ポリオール成分に発泡剤及び触媒が添加 されてなる第一液と、ポリイソシアナート成分からなる 第二液とからなり、前配第一液と前配第二液とをハンド ミックスして使用する発泡ウレタン材料において、

前記ポリオール成分に、1 価アルコールが溶媒的作用薬 剤として添加されている、ことを特徴とする発泡ウレタ ン材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、主として、成形機を使 用せずにウレタン発泡成形品を少量生産する場合に、ハ ンドミックスして使用する発泡ウレタン材料に関する。

【0002】そして、適用成形品としては、自動車用内 装品、例えば、ウレタンハンドル、ホーンパッド、アー ムレスト、ヘッドレスト、インストルメントパネル等の インテグラルスキンフォーム成形品、さらには、クッシ ョン、マットレス、家具類、自動車用パンパ等、各種成 形品を挙げることができる。なお、本発明の発泡ウレタ ン材料は、塗料等への適用も期待できるものである。

【0003】ここでハンドミックスとは、ポリオール成 分に発泡剤及び触媒が添加されてなる第一液と、イソシ アナート成分からなる第二液とを、攪拌羽根を使用して 混合し、金型へ注入する材料を調製することを言う。

[0004]

【従来の技術】ウレタン発泡成形品を少量生産する場 合、成形装置を導入することは、設備費が嵩み、一個当 たりの製造原価が高くつく。

【0005】このため、ウレタン発泡成形品を少量生産 材料を調製し、該材料をクランプ型の成形金型に注入し て成形していた。

[0006]

【発明が解決しようとする課題】しかし、ハンドミック スにより混合発泡ウレタン材料を調製する場合には、下 記のような問題点が発生し易かった。

【0007】(1) 成形サイクルを短縮するために触媒量 を増大させると、重合反応(主としてウレタン生成反 応)が、さらには、発泡剤として水等を使用する場合に は発泡反応が進行して、材料自体が増粘し、混合発泡ウ 40 レタン材料に混合不良が発生する。

【0008】(2)逆に、混合発泡ウレタン材料の混合不 良を避けるために、触媒量を減量すると、金型注入後の ウレタン材料の硬化時間が非常に長くなり、成形サイク ルが長くなる、即ち生産性が低下する。

【0009】本発明は、触媒量を増大させても、混合発 泡ウレタン材料に混合不良が発生し難い発泡ウレタン材 料を提供することを目的とする。

[0010]

【課題を解決するための手段】本発明の発泡ウレタン用 50

材料は、上記課題を、下記構成により解決する。

【0011】ポリオール成分に発泡剤及び触媒が添加さ れてなる第一液と、イソシアナート成分からなる第二液 とからなり、第一液と第二液とをハンドミックスして使 用する発泡ウレタン材料において、前記ポリオール成分 に、1価アルコールが溶媒的作用薬剤として添加されて いる、ことを特徴とする。

[0 0 1 2]

【手段の詳細な説明】次に、上記手段の各構成について 10 詳細な説明をおこなう。なお、配合単位を示す「部」、 「%」は、特に断らない限り重量単位である。

【0013】A. 本発明の発泡ウレタン用材料における 第一液は、ポリオール成分に発泡剤及び触媒が添加さ れ、さらに、一価アルコールが添加されている。そし て、この第一液の最終粘度は、通常、1200~700 mPa·sとする。粘度が高過ぎたり低過ぎたりすると、ポ リイソシアネートとの粘度比が大きくなり、攪拌効率が 低下して混合発泡ウレタン材料に混合不良が発生し易 61-

【0014】(1) 第一液の主要成分たるポリオール成分 20 は、下記ポリエーテル系及び/又はポリエステル系を使 用でき、さらには、必用により、エチレングリコール、 プロパンジオール、プタンジール、ジエチレングリコー ル等の短鎖ポリオールを混合する。

【0015】①ポリエーテルポリオール

エチレオキサイド、プロピレンオキサイド、プチレンオ キサイド、スチレンオキサイド等の環状エーテルにエチ レングリコール、ジエチレングリコール、グリセリン、 トリメチロールプロパン、ピスフエノールA等の低分子 する場合には、上記ハンドミックスで混合発泡ウレタン 30 ポリオールを反応させて得る二官能・三官能・四官能性

> 【0016】さらには、これらにピニルモノマ等をグラ フト重合させたポリマーポリオールを含む。

【0017】②ポリエステルポリオール

コハク酸、グルタル酸、アジピン酸、ピペリン酸等のジ カルポン酸にエチレングリコール、ポリオキシシエチレ ングリコール、ジプロピレングリコール、ポリオキシブ ロピレングリコール等のジオール成分を過剰に反応させ て得られるものがある。

【0018】(2) この第一液に添加する発泡剤として は、通常、水及び/又はフレオン等を使用し、触媒とし ては、アミン系触媒(トリエチレンジアミン等)、有機 金属化合物触媒(ジプチル錫ジラウレート等)などを使 用する。

【0019】ここで、発泡剤の添加量は、ポリオール成 分100部に対して、水の場合、通常、0.5~2部と する。発泡剤の添加量が過少では、所定の発泡倍率が得 難く、過多では、イソシアネート成分の消費が大きく、 物性が低下し易い。

【0020】触媒の添加量は、トリエチレンジアミン3

3

3%の場合、0.3~0.7部とする。過少では、ウレ タン生成・発泡反応が遅く生産性が低下し、過多では、 ウレタン生成・発泡反応が早くなりすぎ、金型注入前の 混合発泡ウレタン材料に混合不良が発生し易い。

【0021】(3) また、本発明の特徴的成分である、一 価アルコールとしては、通常、炭素数2~6の第一・第 二・第三アルコールを使用可能である。

【0022】具体的には、エチルアルコール、n-, s -, t-プロピルアルコール、n-, s-, t-プチル アルコール、n-, s-, t-ペンチルアルコール等を 10 挙げることができる。

【0023】これらの一価アルコールは、第一液におい て、溶媒的作用薬剤として存在し、第一液の粘度を低い 方向に調製するとともに、ウレタン生成反応等を適度に 抑制する作用を奏する。

【0024】そして、このアルコールの添加量は、ポリ オール成分100部に対して、1~10部(望ましくは 1.5~6部)とする。該添加量が過少では、上記作用 を奏し難く、過多では、発泡成形品の物性に悪影響を与 えるおそれがある。

【0025】(4) この第一液には、必要により、整泡剤 及び着色剤を添加してもよい。

【0026】B、本発明の発泡ウレタン用材料における 第二液を構成するイソシアナート成分は、慣用のものを 使用でき、例えば、下記のものの内から、成形品に要求 される物性に応じて、適宜種類及び量を選定する。意匠 性が要求され、かつ、成形品に仕上げ塗装をおこなわな い場合は、非黄変タイプである脂肪族系イソシアナート を使用することが望ましい。

分に対する配合比は、NCO/OH=1. 1~0. 9と なるような範囲に設定する。

【0028】(1) 芳香族系イソシアナート

4, 4 ~ - ジフエニルメタンジイソシアナート(以下 「MDI」と略す)、クルードMDI、液状MDI、ト リレンジイソシアナート、及びフエニレンジイソシアナ ート等、さらには取扱上の見地から、これらのを高分子 化させたダイマー、トリマー、トリメチロールプロパ ン、プレポリマーなどを挙げることができる。

【0029】(2) 脂肪族系イソシアナート 本来の脂肪族イソシアナートの他に脂環式イソシアナー トも含み、ヘキサメチレンジイソシアナート(HMD I)、キシレンジイソシアナート(XDI)、水添キシ レンジイソシアナート(水添XDI)、4,4~-メチ レンピスジシクロヘキシルジイソシアナート (H12M DI)、メチルシクロヘキシルジイソシアナート(水添 TDI)、及びイソホロンジイソシアナート(IPD

I) 等、さらには、取扱上の見地から、それらを高分子

化させたダイマー、トリマー、トリメチロールプロパン 付加体、プレポリマーなど、いわゆる非黄変性のものを 挙げることができる。

【0030】C. 成形方法

(1) 第一液と第二液とをハンドミックスにより混合し て、混合発泡ウレタン材料とする。

【0031】このときに使用する攪拌羽根は、プロペラ 型、櫂型、ターピン型、いずれでもよいが、攪拌効率の 見地からプロベラ型が望ましい。

【0032】(2) そして、上記混合発泡ウレタン材料 を、成形金型に注入して成形を行う。

[0033]

【発明の作用・効果】本発明の発泡ウレタン材料は、上 記構成により、下記のような作用効果を奏するものであ

【0034】(1) 一価アルコールの添加により、ポリマ ーポリオールを主成分とする第一液が低粘度化され、ポ リイソシアナートからなる第二液の粘度に近づき、攪拌 効率が増大して、混合発泡ウレタン材料に混合不良が発 20 生し難い。

【0035】(2) ハンドミックス中において、添加され た一価アルコールが溶媒的作用を奏し、溶液反応に近く なり、ウレタン生成反応等が適度に抑制されて、増粘が 適度に抑制される。

【0036】(3) 混合発泡ウレタン材料の初期増粘が抑 制される結果、該材料の金型注入後の流れ性が良好であ り、金型内の高さ方向、及び、細部への材料充填性が改 善される。

【0037】(4) 本発明の発泡ウレタン材料で成形した 【0027】なお、イソシアナート成分のポリオール成 30 成形品には、後述の実施例で示す如く、一価アルコール をしない場合に比して、引張り強さを余り低下させず に、大きな仲びが得られる。

[0038]

【実施例】以下、本発明をよりよく理解するために、実 施例を比較例・従来例とともに説明をする。

【0039】(1) 下記基本配合処方において、表1に示 す一価アルコール及び触媒をそれぞれを表示量添加した 第一液に、第二液であるポリイソシアネートを配合し て、混合用カップ(300g用)内でハンドミックス

(機拌羽根:50㎜φプロペラ型)により混合して各実 施例・比較例の混合発泡ウレタン材料を調製した。ハン ドミックスの条件は、室温×1000~1200rpm ×30秒とした。

【0040】なお、表1に示す粘度は、株式会社東京計 器製の「BH型粘度計」を使用し、ロータ:No. 3、回 転数:20 rpm. 、室温:25℃の条件で測定をしたも のである。

[0041]

発泡ウレタン材料配合処方

ポリエーテルポリオール (OH価:32) 100部 エチレングリコール 4部 1部 発泡剤 (水) 変量 一価アルコール 触 媒(トリエチレンジアミン33%) 変量

<第二液>

クルードMD I

(2) フリー発泡成形:上記で調製した各混合発泡ウレタ ン材料を、発泡用カップ (100mm o×120mm h) に 注入してフリー発泡させて、表示の各項目について計測 10 【0046】(3) 金型注入成形:60℃の金型内へ材料

【0042】なお、表1中の材料歩留は、混合用カップ から有効に利用できる材料比率である。

【0043】表1に示す結果から、各実施例におけるク リームタイム(発泡開始時間)、ライズタイム(発泡終 了時間)、タックフリータイム(ウレタン生成反応時 間)が、いずれも、触媒量の多い比較例1と余り変わら ず、また、触媒量が少ない比較例2に比して格段に短 く、発泡ウレタン成形品の生産性が良好であることが分 かる。

【0044】また、各実施例は、比較例1に比して、材 料歩留りが高く、金型注入前の混合成形用材料の粘度が 低いことが伺える。

【0045】さらに、各実施例は、比較例1・2に比し

て、発泡高さが高く、即ち、密度が小さく、発泡材料の 流れ性が良好であることが分かる。

変量

6

を注入し30分経過後、80℃×30分の条件で後硬化 させて、335m×100m×5mtの試験片を成形し

【0047】そして、各試験片について、表1に示す各 項目の物性試験を行った。

【0048】表1に示す結果から、各実施例は、比較例 2と略同等の引張り強さを維持しながら、引張り伸び が、比較例1・2に比して大幅に増大していることが分 かる。

20 【0049】なお、引張り強さ、引張り伸びは、いずれ も、JIS K 6301に準じて測定したものである。

[0050]

【表1】

_		実施例1	実施例2	実施例3	実施例4	比較例1	比較例2
		50/m// 1		7 44	70.57.1		
2	2-プロバノール	2	3	5	_		
2	2 – ブタノール	_	_		5	_	—
D A	ABCO 33LV	0. 5	0.5	0. 5	0.5	0.5	0.2
	粘度 (mPa·s)	1100	1000	860	900	1300	1300
クルードMDI (粘度=200mPa·s)		43. 7	44.1	44.8	44.1	42.9	43.0
(=	粘 度 比 注剤) / (硬化剤)	5. 5	5. 0	4. 2	4.5	6. 5	6. 5
	クリームタイム	52秒	55秒	1分00秒	1分10秒	50秒	1分25秒
	フライズタイム	3分50秒	4分00秒	4分20秒	4分30秒	3分30秒	7分30秒
19	タックフリータイム	16分30秒	17分00秒	18分30秒	19分00秒	15分00秒	40分00秒
	歩留り (%)	79	80	8 2	82	77	81
発	フォーム高さ (㎜)	100	103	105	103	82	81
泡	密度 (g/ml)	0.16	0.15	0.14	0.15	0.18	0.20
樹	試験片密度 (g/ml)	0.36	0.35	0.35	0.37	0.37	0.33
胎物性	引張り強さ(MPa)	0.70	0.64	0.65	0.72	1.00	0.70
	引張り伸び (%)	155	161	165	160	86	7 6

(5)

特開平7-18045

フロントページの続き

(51) Int. Cl. 6 C 0 8 L 75:04

識別記号 庁内整理番号 FI

技術表示箇所