(1) Numéro de publication : 0 477 049 A1

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 91402269.4

22) Date de dépôt : 20.08.91

(12)

(§) Int. Ct.⁶: C07D 231/14, C07D 231/54, C07D 401/04, C07D 403/06, C07D 403/12, C07D 401/12, C07D 409/12, A61K 31/415, C07D 453/02, C07D 403/04, C07D 417/04

(30) Priorité: 20.08.90 FR 9010486

43 Date de publication de la demande : 25.03.92 Bulletin 92/13

Etats contractants désignés :
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE

71 Demandeur: SANOFI 40, Avenue George V F-75008 Paris (FR) 72 Inventeur: Bolgegrain, Robert
Chemin de Peret
F-34820 Assas (FR)
Inventeur: Gully, Danielle
82 Route des Roquettes
F-31600 Saubens (FR)
Inventeur: Jeanjean, Francis
F-34270 Valifaunes (FR)
Inventeur: Molimard, Jean-Charles
782 rue des Combelles
F-34980 Saint-Gely-du-Fesc (FR)

(3) Mandataire : Gillard, Marie-Louise et al Cabinet Beau de Loménie 55, Rue d'Amsterdam F-75008 Paris (FR)

(I)

(T)

(54) Dérivés d'amido-3 pyrazole, procédé pour leur préparation et compositions pharmaceutiques les contenant

(57) L'invention a pour objet des amido-3 pyrazoles de formule (I) ou (I');

$$\begin{array}{c|c} & & & & & & & \\ \text{RIV} & & & & & & \\ \hline & & & & & \\ \text{RV} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\$$

Elle concerne également un procédé pour leur obtention et les compositions pharmaceutiques contenant lesdits composés à titre de principe actif.

La présente invention concerne de nouveaux dérivés du pyrazole possédant un groupement amide substitué par un aminoacide ou un de ses dérivés en position 3 et diversement substitués dans les positions 1, 2, 4, ou 5 du noyau pyrazole, un procédé pour leur préparation et des compositions pharmaceutiques contenant lesdits dérivés du pyrazole comme ingrédient actif.

Les composés selon l'invention possèdent une activité sur le système nerveux central, sur le système cardiovasculaire ou sur le système dastrointestinal.

De nombreux dérivés du pyrazole sont décrits dans la littérature.

Des diaryl-1,5 pyrazoles substitués en 3 par une chaîne alkyle contenant de 2 à 16 atomes de carbone et diversement substitués, notamment par un amide et répondant à la formule :

sont décrits dans le brevet européen 0 248 594 comme possédant une activité anti-inflammatoire et une activité sur le système cardiovasculaire.

Des dérivés du pyrazole de formule :

10

20

25

30

35

50

où B₂ représente soit un atome d'hydrogène, soit un groupement méthyle, B₃ représente par exemple un alkyle et B₅, B'₅ et B'₅ représentent indépendamment par exemple l'hydrogène, un halogène, un alcoxy en C₁-C₃, soit décrits dans le brevet britannique 2 130 205 comme pouvant être utilisés afin de diminuer le taux sanguin d'adde urique chez les mammifères.

Il est par ailleurs décrit dans Journal of the Chemical Society, 1973, 2532-2534 que des sels de morpholinca phényl-5 phénylazofurane-5 se réarrangent en diphényl- 1,5 pyrazoles substitués en position 3 de formule :

La demande de brevet WO 89/02431 décrit des nouveaux composés N-hétérocycliques, notamment pyrazolyle, de formule :

dans laquelle par exemple :

10

45

20

25

30

35

40

45

50

55

- Ar représente un pyrazolyle,
 - B représente (CH2)m avec m = 0 à 4,
 - Z représente -C = 0, n = 1 à 3,
- D représente COR₃,

R₁ et R₂ représentent un hydrogène, un alkyle en C₁-C₈ ou ensemble complètent une amine cyclique.

Ces dérvés amidopyrazole amide d'acide acylglutamique ou aspartique sont décrits comme possédant des propriétés inhibitrices de la cholécystokinine.

On a maintenant trouvé que des dérivés diversement substitués d'amido-3 pyrazole possèdent une activité sur le système nerveux central et en particulier sur les systèmes de régulation des neuropeptides en déplaçant, par exemple, la neurotensine tritiée ou iodée de son récepteur.

Ainsi, la présente invention a pour objet, selon un de ses aspects, un amido-3 pyrazole de formule (I) ou (I'):

dans laquelle

5

10

15

20

25

30

ΔO

45

50

55

- R. représente :

. un groupe

où R, R', et R', représentent chacun indépendamment un atome d'hydrogène, un atome d'halogène, un hydroxyle, un groupe alkyle droit ou ramifié en C₁-C₄, un groupe alcoxy en C₁-C₄, un groupe trifluorométhyle, un groupe trifluorométhoxy, un groupe nitro, un groupe carboxy, un groupe amino;

- . un groupe carboxyalkyle ou alcoxycarbonylalkyle dans lequel les alkyles sont en C1-C4;
- . un groupe cycloalkyle dans lequel les alkyles sont en C3-C6;
- . un groupe tétrahydronaphtyle ;
- . un groupe pyridyle ;
- . un naphtyle substitué par R₁, R'₁ et R"₁ tels que définis précédemment ;
- . un groupe benzyle substitué par R1, R1 et R1 tels que définis précédemment ;
- . un groupe cinnamyle éventuellement substitué sur le noyau aromatique par un halogène, un hydroxyle, un alcoxy en C₁-C₄;
- . un groupe quinolyle ou isoquinolyle, éventuellement substitué par R_1 , R_1 'et R_1 " tels que définis cidessus :
- . un groupe benzothiazolyle-2;
- , un groupe quinoxalinyldione ;
- . un groupe phtalazinyl-1 :
- . un groupe benzothiadiazolyle ;
- . un groupe méthylène substitué par un groupement hétérocyclique à 5 ou 6 chaînons, tel que notamment un pyridyle et un thiényle ;
- Ria représente un groupe benzyle substitué par R1, R1 et R1 tels que définis ci-dessus ;
- R représente l'hydrogène, un akyle en C1-C4 droit ou ramifié ;
- n représente 0, 1, 2 ou 3;
- soit X représente l'hydrogène et X' représente l'hydrogène; un alkyle droit ou ramifié en C_1-C_4 ; un aryle; un aminoalkyle en C_1-C_4 ; un hydroxyalkyle en C_1-C_4 ; un carboxyalkyle dans lequel le groupe alkyle est en C_1-C_4 ; un guanidinoalkyle dont le groupe alkyle est en C_1-C_4 ; un guanidinoalkyle dont le groupe alkyle est en C_1-C_4 ; un guanidinoalkyle dont le groupe alkyle est en C_1-C_4 ; un cyclalyle en C_2-C_3 ; un arylalyle dans lequel l'alkyle est en C_1-C_4 ; un cyclalyle en C_2-C_3 ; un hétéroaryle est éventuellement substitué par un halogène, un hydroxyle ou par un alkyle en C_1-C_3 ; un hétéroarylalkyle dans lequel l'hétéroaryle représente un lmidazolyle, un indolyle non substitué ou substitué par un alkyle en C_1-C_4 ; par un hydroxy ou par un alcoxy en C_1-C_4 et dans lequel l'alkyle est en C_1-C_4 ; de dans lequel l'alkyle est en C_1-C_4 ; un de l'alkyle en C_1-C_4 ; un carbox en C_1-C_4 ; et dans lequel l'alkyle est en C_1-C_4 ; un carbox en C_1-C_4 ;
- soit lorsque n est égal à zéro, X représente l'hydrogène X' et

considérés ensemble forment un cycle, non substitué ou substitué par un hydroxyle, de formule :

avec m = 2.3 ou 4

ou un cycle de formule :

avec t = 1 on 2

ou un cycle de formule :

10

45

20

25

30

35

50

55

avec t = 1 ou 2

ou un cycle indolinyle ; perhydroindole ; tétrahydro-4,5,6,7 thiéno [2,3,-c] pyridyl-6 ;

- soit X et X' représentent chacun indépendamment un alkyle en C_1 - C_4 ; un cycloalkyle en C_3 - C_6 ; un phényle;
- ou X et X' sont liés et forment ensemble un groupe cycloalkyle de 2 à 12 atomes de carbone, éventuellement substitué par un alkyle en C₁-C₂;
 - ou X. X' et l'atome de carbone auquel ils sont liés forment un groupe adamantyle ; un groupe adamantyle substitué par un ou deux groupes méthyle ou par un hydroxyle ; un alcoxy en C_1 - C_3 , un atome d'halogène ; un groupe exa- 1 adamantyle ; un groupe quinuclidinyle ; un groupe pipéridinyl-4, éventuellement N substitué par un groupe benzyle ; un groupe tétraméthyl-2, 2, 2, 3 pipéridinyle ; un groupe tétrahydronaphtyle ; un groupe tétrahydropyrannyle-4 ou tétrahydropyrannyle-4; un groupe dihydro 2, 3 (4H) benzothiopyrannyl-4; un groupe de formule 3

dans lequel n_1 =0,1, n'_1 =1,2, n_2 =1, n_3 =2,3 et W représente un atome de carbone ou un atome d'oxygène, ce groupe étant lié à

R -N-

et à -C(O)-Z tels que définis ci-dessus, par un atome de carbone de l'un ou l'autre des cycles, ou un groupe de formule b

dans lequel n₄=2, 3, 4, n₅=2,3 et W représente un atome de carbone ou d'oxygène, ce groupe étant lié à

et à -C(O)-Z tels que définis ci-dessus, par un atome de carbone de l'un ou l'autre des cycles, les cycles des groupes a et <u>b</u> ci-dessus pouvant éventuellement être substitués sur l'un et/ou l'autre des cycles par un ou deux groupes alkyles en C₁-C₄ et l'aminoacide ne pouvant pas être en position alpha de W lorsque W représente l'oxygène; un groupe bicyclo [2,2,1] heptène-5-yl-2; un groupe oxa-8 bicyclo [3,2,1]-octèn-6-yl-3; un croupe thia-8 bicyclo [3,2,1] toctèn-6-yl-3; un croupe thia-8 bicyclo [3,2,1] toctèn-6-yl-3; un croupe thia-8 bicyclo [3,2,1] toctèn-6-yl-3; un croupe thia-8 bicyclo [3,2,1] toctanyl-3; un croupe thia-8 bicyclo [3,

– ou X représente l'hydrogène et X' est un groupe adamantyle ; un groupe adamantyle substitué par un ou deux méthyles, par un hydroxyle, un alcoxy en C₁-C₂, un atome d'halogène ; un groupe aza-1 adamantyle ; un groupe de formule a ou b tel que défini ci-dessus, la liaison entre ces cycles et le carbone porteur de -COZ et de -N-R ne pouvant pas être en position alpha de W lorsque celui-ci représente l'oxygène.

- Z représente un groupe hydroxyle, un groupe alcoxy en C_1 - C_0 ; un atome d'oxygène substitué par un groupe protecteur des acides carboxyliques comme un terrilo-butyle, un benzyle, un benzyle substitué par un atome d'halogène, un alkyle en C_1 - C_0 , un tritunorméthyle, un tritunorméthys yo un un groupe carboxy; un groupe amino; un atome d'azote substitué par un carboxyalkyle dans lequel l'alkyle est en C_1 - C_0 , droit ou ramifié, avec la limitation que si Z représente un atome d'azote substitué tel que défini ci-dessus et si n = 0, alors, ouand X = H. X' ne peut pas être un groupe :

dans lequel x = 1 ou 2 et Q est un hydroxyle, un amino libre ou substitué par un dialkyle en C_1 - C_6 , un alcoxy en C_1 - C_6 :

- Ray représente un atome d'hydrogène, un atome d'halogène, un alkyle en C₁-C₆;
- R_v représente :

10

45

20

25

30

35

Δn

45

55

où R_s , R_s et R_s représentent chacun indépendamment un atome d'hydrogène, un atome d'halogène, un allowed droit ou ramifié en C_1 - C_4 , un hydroxyle, un alcoxy en C_1 - C_4 , un nitro, un trifluorométhyle, un trifluorométhyle, un trifluorométhyle, un carboxyalkyle en C_1 - C_4 , un phényle;

- un groupe naphtyle non substitué ou substitué par un akyle en C₁-C₄;
- un groupe pyridyle;
- un groupe styryle non substitué ou substitué par un alkyle en C₁-C₄;
- ou bien R_v et R_v considérés ensemble représentent ;

dans lequel le groupe phényle substitue le pyrazole en position 5 et le grouge $-(CH_2)_{\Gamma}$ dans lequel 1 = 1 à 3 substitue le pyrazole en position 4, W_1 , W_2 et W_3 substituent le cycle benzénique et représentent Indépendamment l'hydrogène, un halogène ou un groupe hydroxyle;

ou un de ses sels éventuels avec des acides organiques ou minéraux ou avec des bases minérales ou organiques.

Dans la présente description on désigne par "aryle" les cycles aromatiques, tels que par exemple le phényle.

Lorsque les composés (l) ou (l') incluent un carbone asymétrique, les énantiomères font partie de l'invention.

Lorsque les composés (I) ou (I') contiennent un groupe de formule a) ou b), les aminoacides cycloalipha-

tiques comprennent aussi bien ceux pour lesquels la fonction amine est en position endo par rapport au système cyclique aliphatique que ceux pour lesquels la fonction amine est en position exo par rapport au système cyclique alibhatique.

Les sels éventuels des produits de formule (I) ou (I') selon la présente invention comprennent aussi bien ceux avec des acides minéraux ou organiques qui permettent une séparation ou une cristallisation convenable des composés de formule (I) ou (I') tels que l'acide picíque ou l'acide oxalique, que ceux qui forment des sels pharmaceutiquement acceptables tels que le chlorhydrate, le bromhydrate, le sulfate, l'hydrogénosulfate, le dihydrogénophosphate, le méthanesulfonate, le méthylsulfate, le maléate, le fumarate, le naphtalène-2 sulfonate.

Les sels éventuels des produits de formule (I) ou (I') comprennent également les sels avec des cations, par exemple les sels des métaux alcalins ou alcalino-terreux comme les sels de sodium, de potassium, de calcium, le sel de sodium étant préféré, lorsque ledit produit de formule (I) ou (I') contient un groupe acide carboxviloue.

Une classe particulière des composés de l'invention est constituée par les composés de formule (I) dans laquelle R, est soit un groupe naphtyle, soit un groupe phényle, substitué par R₁, R'₁ et R'₁ tels que définis ci-dessus. les autres substituants étant tels que définis ci-dessus.

Un autre groupe préféré des composés de l'invention est constitué des composés de formule (I) ou (I') dans laquelle Ry représente un goupe naphtyle ou phényle, substitué par R₆, R'₅ et R''₅ tels que définis précédemment, les autres substituants étant tels que définis précedemment. De préférence R₆, R'₅ ou R''₅ est l'hydrogène ou un alcoxy en C₂-C₃.

Un autre groupe préféré des composés de l'invention est constitué des composés de formule (I) ou (I') dans laquelle X, X' et l'atome de carbone auquel ils sont liés forment un groupe adamantyle, un groupe de formule a) ou un de croupe de formule b) tels que définis c'-dessus.

20

35

55

Selon un autre de ses aspects, la présente invention concerne un procédé pour la préparation des composés de formule (i) et (i') caractérisé en ce que l'on traite un dérivé fonctionnel d'un acide pyrazolecarboxylique de formule (ii) ou (ii') :

dans laquelle R_i , R_V , R_V et R_{in} sont tels que définis ci-dessus, avec un aminoacide, éventuellement protégé par les groupements protecteurs habituels en synthèse peptidique, de formule :

dans laquelle R, n, X, X' et Z sont tels que définis ci-dessus ou éventuellement protégés.

Comme dérivé fonctionnel de l'acide pyrazolecarboxylique de formule (II) ou (II'), on peut utiliser le chlorure d'acide, l'anhydride, un anhydride mixte, un ester, un ester activé, par exemple l'ester de p-nitrophényle, ou l'acide libre opportunément activé, par exemple, avec le N,N-dicyclohexylcarbodiimide ou avec l'hexafluorophosphate de benzotriazolyl-N-oxytris-(diméthylamino)-phosphonium. (BOP).

Les composés (I) et (I') ainsi préparés peuvent alors éventuellement être déprotégés pour conduire aux acides libres correspondants.

Les esters (IIa) et (II'a), précurseurs des acides carboxyliques (II) et (II'), définis cl-dessus, sont synthétisés en appliquant la méthode décrite dans Chem. Pharm. Bull, 1984, 32, 4, 1577.

Le procédé de préparation des composés (I) ou (I') via les esters (IIa) et (II'a) est représenté par le schéma suivant :

SCHEMA 1

a) Na b) со, в. сн_лон 10 CO₂Et (111) R, NHNH2 15 N2H4.H20 н* c) c') 20 со,сн, CO2CH3 CO2CH3 25 (IV) (II'a) (IIa) 30 соон соон 35 e) 40 an (II)

45 La première étape a) consiste en la préparation des énolates de sodium d'une cétone de formule 1 dans laquelle Ry et Ry sont tels que définis précédemment, sur lesquels on fait agir une quantité équimolaire d'oxalate d'éthyle (étape b)) dans un alcanol comme par exemple le méthanol, selon L. CLAISEN, Ber., 1909, 42, 59. Après précipitation dans l'éther éthylique, les énolates de sodium (III) sont séparés par filtration.

Les énolates de sodium (III) ainsi préparés et un excès d'hydrazine ou d'un dérivé de l'hydrazine R-NHNH₂ sont alors chauffés au reflux de l'acide acétique (étape c)).

Dans le cas où R_i représente un groupement benzyle substitué ou non substitué R_{in} , on obtient, lors de la condensation de la benzylhydrazine sur les composés (III), un mélange en proportions variables selon la nature et la position des substituants de R_v , des composés (IIa) et de son isomère (II'a) de formule :

dans laquelle R., R., et R., sont tels que définis précédemment.

-

10

20

25

20

Les deux isomères (IIa) et (II'a) peuvent alors être séparés par chromatographie sur colonne. Par saponification des esters, on obtient les acides isomères purs que l'on fait réagir par exemple avec le chlorure de sulfinyle. Les chlorures d'acides sont alors condensés sur les aminoacides de formule (V) pour conduire aux composés (I) et (I') selon l'invention (étape e)).

Une variante au procédé dans le cas où R, est un groupe benzyle ou cinnamyle consiste en la condensation de l'hydrazine non substituée sur le composé (III) (étape c') pour conduire au dérivé (1H) pyrazole (IV) qui est ensuite substitué, en présence de NaH ou de NaNH₂ par un groupement R,E ou R_{ie} E (étape c')) où E représente un groupe éliminable tel qu'un halogène, un p-toluènesulfonyloxy (tosyloxy ou un méthanesulfonyloxy (mésvlow).

Les dérivés d'amido-3 pyrazole (I) et (I'), objets de l'invention, sont alors préparés à partir des pyrazoles acides en transformant les dérivés esters (IIa) et (II'a) en leurs acides correspondants (II) ou (II') par action d'un agent alcalin comme par exemple l'hydroxyde de potassium puis acidification (étape d), puis les composés de formule (I) et (I') correspondants sont alors préparés comme décrit précédemment.

Si l'aminoacide comporte un groupe hydroxyle comme substituant, celui-ci peut être protégé par un groupe O-protecteur habituellement utilisé puis déprotégé selon les méthodes habituelles.

Lorsque le produit de formule (I) ou (I') présente une fonction basique et est obtenu sous forme de base libre, la salification est effectuée par traitement avec l'acide choisi dans un solvant organique. Par traitement de la base libre dissoute par exemple dans un alcool tel que l'isopropanol, avec une solution de l'acide choisi dans le même solvant, on obtient le sel correspondant qui est isolé selon les techniques conventionnelles. Ainsi, on prépare par exemple le chlorhydrate, le bromhydrate, le sulfate, l'hydrogénosulfate, le dihydrogénophosphate, le méthanesulfonate, le méthylsulfate, l'oxalate, le malétale le fumarate, le naphtalène-2 sulfonate,

Lorsque le composé de formule (I) ou (I') présente une fonction basique et est isolé sous forme d'un de ses sels, par exemple le chlorhydrate ou l'oxalate, la base libre peut être préparée par neutralisation dudit sel avec une base minérale ou organique telle que l'hydroxyde de sodium ou la triéthylamine ou avec un carbonate ou bicarbonate alcalin, tel que le carbonate ou bicarbonate de sodium ou de potassium.

Lorsque que le produit de formule (I) ou (I') contient un groupe acide, le composé ansi obtenu peut être transformé en un sel métallique, notamment al icalin, tel que le sel de sodium, ou alcalino-terreux, tel que le sel de calcium, selon les procédés classiques.

Les composés (I) ou (I') selon l'invention ont fait l'objet d'essais biochimiques.

Les mêmes composés (I) ou (I') et leurs sels déplacent, à des concentrations inférieures à la micromole, la neurotensine [iodée Tyr³] de son récepteur, sur des membranes de cerveau de cobaye, selon la méthode décrite par SADOUL J.L. et al., Biochemical and Biophysical Research Communications, 1984, 120, 3, 812-810

Les composés de la présente invention sont peu toxiques : notamment, leur toxicité aigué est compatible avec leur utilisation comme médicament. Pour une telle utilisation, on administre aux mammifères une quantité efficace d'un composé de formule (I) ou (I') ou d'un de leurs sels pharmaceutiquement acceptables.

Les composés (I) ou (I') selon l'invention sont les premiers médicaments potentiels de synthèse, non peptidiques, capables de se lier au récepteur de la neurottensine et pouvant être utiles dans les états patholoiques associés à un dysfonctionnement des systèmes dopaminergiques, par exemple comme antipsychotiques (D.R. HANDRICH et al., Brain Research, 1982, 231, 216-221 et C.B. NEMEROFF, Biological Psychiatry, 1980, 15-2, 283-302), dans les désordres des systèmes cardiovasculaire ou gastrointestina.

Ainsi, la présente invention a pour objet, selon un autre de ses aspects, des compositions pharmaceutiques contenant, comme principes actifs, les composés de formule (I) ou (I') ou leurs sels éventuels pharmaceutiquement acceptables.

Dans les compositions pharmaceutiques de la présente invention pour l'administration orale, sublinguale, sous cutanée, intramusculaire, intraveineuse, transdermique ou rectale, les principes actifs pourt être admnistrés, sous formes unitaires d'administration, en mélange ou avec des supports pharmaceutiques classiques, aux animaux et aux êtres humains. Les formes unitaires d'administration appropriées comprennent les formes pour voie orale telles que les comprimés, les gétules, les poudres, les granules et les solutions ou suspensions

orales, les formes d'administration sublinguale et buccale, les formes d'aministration sous-cutanée, intramusculaire ou intraveineuse et les formes d'aministration rectale.

Afin d'obtenir l'effet désiré, la dose de principe actif peut varier entre 1 et 1000 mg par jour, de préférence entre 2 et 500 mg.

Chaque dose unitaire peut contenir de 1 à 250 mg de principe actif, de préférence de 2 à 125 mg, en combinaison avec un support pharmaceutique. Cette dose unitaire peut être administrée 1 à 4 fois par jour.

Lorsqu'on prépare une composition sollde sous forme de comprimés, on mélange le principe actif avec un véhicule pharmaceutique tel que la gélatine, l'amidon, le lactose, le stéarate de magnésium, le taic, la gomme arabique, ou analogues. On peut enrober les comprimés de saccharose ou d'autres matières appropriées ou encore on peut les traiter de telle sorte qu'ils aient une activité prolongée ou retardée et qu'il libèrent d'une façon continue une quantité prédéterminée de principe actif.

On obtient une préparation en gélules en mélangeant le principe actif avec un diluant et en versant le mélange obtenu dans des gélules molles ou dures.

Une préparation sous forme de sirop ou d'élixir peut contenir le principe actif conjointement avec un édulcorant, acalorique de préférence, du méthylparaben et du propylparaben comme antiseptique, ainsi qu'un agent donnant du goût et un colorant approprié.

Les poudres ou les granules dispersibles dans l'eau peuvent contenir le principe actif en mélange avec des agents de dispersion ou des agents mellants, ou des agents de mise en suspension, tels que la polyvinylorrolidone et similaires, de même qu'avec des édulcorants ou des correcteurs du goût.

Pour une administration rectale on recourt à des suppositoires qui sont préparés avec des liants fondant à la température rectale, par exemple du beure de cacao ou des polyéthylèneglycols.

Pour une administration parentérale, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des mouillants pharmacologiquement compatibles, par exemple le propylèneqlycol ou le butylèneqlycol.

Le principe actif peut être formulé également sous forme de microcapsules, éventuellement avec un ou plusieurs supports ou additifs.

Les exemples suivants Illustrent l'invention sans toutefois la limiter.

5

20

25

Les points de fusion instantanés (F) des produits cristallisés ont été pris au banc chauffant Kofler et sont exprimés en degrés Celsius. Dans les tableaux qui suivent, les abréviations suivantes ont été utilisées :

	·····-	
30	СН	cyclohexane
	CH ₂ Cl ₂	dichlorométhane
	EtOH	éthanol
35	Et ₂ O	diéthyléther
	Hx	hexane
	Pn	pentane
40	iPr ₂ O	éther diisopropylique
	iPrOH	isopropanol
	AcOEt	acétate d'éthyle
	MeOH	méthanol
45	C*	signifie configuration du carbone asymétrique.
	Les abrév	iations suivantes sont utilisées dans les spectres de RMN:
	М	multiplet
50	S	singulet
	SE	singulet élargit
	D	doublet
	Har	H aromatique
55	o : ortho ; r	n : méta

PREPARATION DES INTERMEDIAIRES DE SYNTHESE.

A. Préparation des dérivés de l'hydrazine (R. NHNH2).

Un grand nombre de dérivés de l'hydrazine sont des produits commerciaux.

Les autres ont été préparés selon des méthodes connues par diazotation de l'amine aromatique correspondante puis réduction du sel de diazonium. Ainsi, on peut citer à titre d'exemple la préparation de :

- la tétrahydro-5,6,7,8 naphtyl-1 hydrazine, selon R. FUSCO et al., Gazz. Chim. Ital., 1974, 104, 813-817 :
 - l'hydrazino-8 quinoléine, selon A. ALBERT et al., J. Chem. Soc., 1967, 1533-1541 ;
- l'hydrazino-5 quinoléine et l'hydrazino-5 isoquinoléine, selon M.G. FERLIN et al., il Farmaco, 1989, 44 (12), 1141-1155.
- B. Préparation des acides pyrazole carboxyliques (II) :

10

15

20

25

30

35

40

55

Elle est effectuée selon le mode opératoire décrit précédemment. Le tableau A ci-dessous indique, à titre d'exemples et d'une façon non limitative, les caractéristiques d'acides de formule (II).

TABLEAU A

R₅ COOH

RI	R ₅	R'5	F;°C
	осн3	осн ₃	202
	СН3	СН3	>260
	OCH ₃	OCH ₃	211
	OC ₂ H ₅	OC ₂ H ₅	262
	OСН ₃	осн ₃	220

	ОСН3	OCH ₃	241
C _N C _Q	ОСН3	ОСН3	> 260
	осн ₃	осн ₃	> 260 (décomposition)

C. Préparation des aminoacides.

Les produits non commerciaux sont préparés selon la synthèse de STRECKER (Ann., 75, 27, 1850) ou

selon la synthèse de H.T.BUCHERER et al., J. Pract. Chem., 1934, 141, 5, sulvie d'une hydrolyse pour conduire aux aminoacides ; par exemple, l'acide amino-2 adamantane carboxylique-2 est préparé selon H.T. NASANTA et al. J. Med. Chem., 1973, 16 (7), 823.

Les acides α-aminocycloalcane carboxyliques sont préparés selon J.W. TSANG et al., J. Med. Chem., 1984, 27, 1663.

Les cyclopentylglycines R et S sont préparées par résolution de la benzyloxycarbonylcyclopentylglycine.

1) Préparation de la benzyloxycarbonylcyclopentylglycine racémique

Ce composé est préparé en opérant selon le schéma réactionnel ci-après (schéma 2)

SCHEMA 2

10

15

25

ΔO

50

55

2) Chlorhydrate de la cyclopentylglycine R,S.

On dissout du NaH à 80% (1,8 g) dans du THF anhydre (50 ml). On ajoute goutte à goutte en agitant un mélange de cyclopentanone (4,2 g) et d'isocyanoacétate de méthyle (5 g) dans du THF (50 ml). L'addition terminée, on laisse 2 heures . On refroidit à 5°C et on ajoute lentement de l'acide acétique en solution aqueuse à 10% (50 ml). On évapore le THF sous vide. Le résidu aqueux est extrait par du chloroforme (3 x 120 ml). On sèche sur Na₂SO₄ et concentre sous vide.

Le résidu est repris au pentane, filtré et lavé au pentane.

Le solide (7,6 g) est dissout dans de l'acide acétique (100 ml). On ajoute du palladium sur charbon à 10%

(3 g) et on agite à pression atmosphérique et température ambiante sous hydrogène pendant 24 heures (on absorbe 1 litre d'hydrogène). On filtre sur ceilte, lave à l'acide acétique plusieurs fois. On évapore sous vide. Le résidu est repris dans de l'acide chlorhydrique 5,5 N (70 ml). On chauffe à reflux 4 heures. On concentre à sec, on azéotrope plusieurs fois au toluène et on sèche sous vide. On obtient le produit attendu. m = 7,2 q

RMN D_2O : 8 H à 1,6 (M, CH_2 cycle); 1 H à 2,20 (M, CH cycle); 1 H à 3,80 (D, J=7 $CHCO_2H$); 3 H à 8,60 (SE, NH_3)

3) Acviation avec le chloroformiate de benzvie.

On dissout le chlorhydrate de cyclopenty(glycine R,S (7,2 g) dans une solution d'hydroxyde de sodium 2 N (65 ml). On ajoute joutte le chloroformiate de benzyle (8,5 g) dans le THF (30 ml) en refroidissant 5°C. On laisse agiter la nuit à température ambiante. On refroidit dans de la glace. On acidis avec HCl concentré jusqu'à pH=2 (T ≤ 5°C). On extrait au chloroforme, sèche et évapore. Le résidu est repris au pentane. On obtient la benzyloxycarbony/cyclopentylclycine R,S. F= 110°C.

4) Résolution de la benzyloxycarbonylcyclopentylglycine,

On dissout la benzyloxycarbonylcyclopentylglycine (5,54 g) dans de l'éthanol absolu (65 ml). On ajoute la diphényl-1,2 éthanol-1 amine-2 (1 R, 2 S) (-), préparée selon J. WEIJLARD et al., J. Am. Chem. Soc. 1951, 73, 1216. On chauffe jusqu'à dissolution. On laisse précipiter la nuit et on filtre. On obtient 2,8 g du sel (F = 175°C). On garde les eaux mères.

Le sel obtenu est repris par de l'eau (20 m), de l'HCl (30 ml) et de l'éther (100 ml). On agite jusqu'à dissolution. La phase organique est décantée, séchée, évaporée. On obtient la benzyloxycarbonylcyclopentylglycine que l'on traite tout de suite par HCl concentré (15 ml), AcOH (15 ml). On chauffe à reflux 3 heures. On évapore à sec. Le résidu est repris par de l'éther sec filtré et séché. On obtient le chlorhydrate de la (S) cyclopentylglycine.

25 [α]₀25 = + 10°,4 (c=0,5 HCl N)

m = 0.6 a.

10

20

Les eaux mères sont évaporées à sec et reprises par H₂O (50 ml) HCl (60 ml) Et₂O (300 ml). On agite, tout est dissous. On décante la phase éthérée, sèche et évapore. On récupère la benzyloxycarbonylcyclopentylglycine (4,3 g), on la met dans de l'éthanol absolu (50 ml) avec de la diphényl-1,2 éthanol-1 amino-2 (1 S, 2 R) (+) (3,30 g). On chauffe jusqu'à dissolution, on laisse reposer la nuit, on filtre.

On obtient 4.15 a de sel.

F = 175°C.

Ce sel est repris par de l'eau (20 ml), de l'HCl N (40 ml), de l'éther (200 ml). On agite. La phase éthérée est séchée, évaporée, puis on traite le résidu par de l'HCl concentré (10 ml), de l'acide acétique (100 ml). On chauffe le mélange pendant 3 heures à reflux, concentre sous vide, reprend à l'éther anhydre pour obtenir le chlorhydrate de la (R) exclopentylolycine.

m = 1,2 g.

 $[\alpha]_0^{25} = -10.5$ (c=0.85 HCl N)

Pureté optique de la R cyclopentylglycine :

0,10 g du chlorhydrate ci-dessus sont dissous dans du méthanol absolu. On refroidit à -40°C, ajoute 0,5 ml de chlorure de thionyle et laisse le mélange pendant 24 heures à température ambiante. On concentre sous vide, reprend le résidu dans le chloroforme anhydre (20 ml), on ajoute de la triéthylamine (0,2 ml) et le (S) phényl-méthylisocyanate (0,074 ml). On laisse 24 heures puis évapore le chloroforme. Le résidu est chromatographié sur gel de silice, éluant : acétate d'éthyle. La concentration des fractions pures fournit 0,1 g de l'ester méthy-ilque.

Le spectre de RMN dans le CDCl₃ montre, autour de 3,8 ppm, la présence de deux signaux pour le -CO₂CH₃. L'intégration montre que le signal le plus faible réprésente 4%, le signal le plus intense 96%. L'excès énantiomérique est donc de 92%.

On peut aussi préparer les cycloalkyl-α-amino acides de configuration R ou S par hydrolyse enzymatique, stéréospécifique, des dérivés N-acétylés racémiques correspondant, selon J. HILL et al. J. Org. Chem., 1965, 1321.

EXEMPLE 1

55

Ester méthylique de l'acide { [phényl-1 (pyridyl-4)-5 pyrazolyl-3] carbonylamino)-2 méthyl-4 pentanoïque (S)..

I: R = H: n = 0; X' = H; $X = -CH_2-CH_1-(CH_3)_2$; $Z = OCH_3$; $R_1 = C_6H_5$; $R_{1V} = H$;

$$R_V = - N$$

0,35 g d'acide phényl-1 (pyridyl-4)-5 pyrazole carboxylique-3 sont mis en solution dans 5 ml de diméthylformamide en présence de 0,45 ml de discopropyléthylamine (DIPEA) et de 0,59 g d'hexafluorophosphate de benzotriazolyl N-oxytrisdiméthylaminophosphonium (BOP). On ajoute alors 0,23 g (1 équivalent) de chlorhydrate de l'ester méthylique de la (S) leucine en solution dans 0,4 ml de DIPEA et le mélange réactionnel est abandonné pendant une nuit à température ambiante. Les solvants sont concentrés sous vide, l'huile résiduelle est extraite au dichlorométhane, cette solution est lavée à l'eau puis avec une solution et loerbonate de sodium et encore à l'eau. La phase organique est séchée sur sulfate de sodium puls concentrée sous vide. Le résidu est chromatographié sur gel de silice, éluant: acétate d'éthyle.

Spectre de RMN H du composé 1 : 3H à 8,82 (M, H $_{\underline{a}\Gamma}$ o N et CON \underline{H}); 5H à 7,50 (M, \underline{H} ar Phe); 3H à 7,27 (\underline{H} ar m N et H_4 pyrazole); 1H à 4,60 (M, \underline{H} a Leu); 3H à 3,77 (S, CO $_2$ C \underline{H}_3); 1H à 2,00 (M, \underline{H} $_{\gamma}$ Leu); 2H à 1,70 (M, H & Leu); 6H à 1,00 (2D, C \underline{H}_3 Leu).

EXEMPLE 2

5

10

15

20

25

30

ΔO

50

55

Acide ([phényl-1 (naphtyl-2)-5 pyrazolyl-3] carbonylamino}-2 phényl-3 propanoïque (S). (I): R = H; n = 0; X' = H; $X = -CH_2-C_0H_5$; Z = OH; $R_1 = C_0H_5$; $R_{1y} = H$;

Préparation du chlorure de l'acide (naphtyl-2)-5 phényl-1 pyrazole carboxylique-3.

5 g de l'acide (naphtyl-2)-5 phényl-1 pyrazole carboxylique-3 sont mis en solution dans 56 ml de toluène, et 3,5 ml de chlorure de sulfinyle sont ajoutés goutte à goutte à cette solution. Le mélange est chauffé à 90° pendant 2 h 1/2, puis concentré sous vide. L'huile résiduelle est reprise deux fois dans le toluène et concentrée sous vide.

m = 5 g.

Préparation du composé 2.

A 60 ml d'une solution d'hydroxyde de sodium 2N on ajoute 4,9 g de (S) phénylalanine, puis goutte à goutte une solution de 4 g de chlorure d'acide préparé précédemment en solution dans 65 ml de tétrahydrofuranne. Le mélange réactionnel est laissé une nuit à température ambiante puis concentré sous vide. Le résidu est repris dans l'eau et le pH est ajusté à 1 par addition d'acide chlorhydrique. La solution est extraite au dichlorométhane et la phase organique est lavée à l'eau, avec une solution saturée de chlorure de sodium, fischée sur sulfate de sodium. Rivée et concentrée sous vide. Le résidu est recristallisé du pentane.

m=2g. F = 226°C

EXEMPLE 3

N,N-diéthyl([phényl-1 (naphtyl-2)-5 pyrazol-3] carbonylamino} -2 phényl-3 propanamide (S). (I) : R=H; n=0; X'=H; $X=-CH_2-C_6H_5$; $Z=-N-(C_2H_5)_2$;

$$R_{I}=C_{6}H_{5}; R_{IV}=H;$$
 $R_{V}=$

2 g du produit obtenu selon l'exemple 2, 0,88 g de dicyclohexylcarbodiimide (DCCI) et 1,14 g d'hydroxy-1

berzotriazole (HOBT) sont mis en solution dans 68 ml de tétrahydrofuranne et le mélange est agité pendant 3/4 d'heure à température ambiante. On ajoute ensuite 0,4 g de diéthylamine et laisse le mélange réactionnel à température ambiante pendant 24 heures.

La dicyclohexylurée est séparé par filtration et les eaux mères sont concentrées sous vide. Le résidu est chromatographié sur gel de silice, éluant : acétate d'éthyle. Les fractions de produit pur sont concentrées sous vide et le résidu est recristallisé du pentane.

10 EXEMPLE 4

20

25

30

25

40

50

55

Acide ([phényl-1 dihydro-4,5 benz (g) Indazolyl-3] carbonylamino]-2 méthyl-4 pentanoīque (S).

(I):
$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

A) Sel de sodium de β-cétocarbéthoxy α-tétralone.

Cet intermédiaire est préparé selon la méthode décrite par D. RAMESH et al. Indian Journal of Chemistry, 1989, 28B, 76-78.

B) Ester éthylique de l'acide phényl-1 dihydro-4,5 benz (g) indazole carboxylique-3.

8,04 g du sel de sodium obtenu précédemment sont mis en solution dans 100 ml d'acide acétique. On ajoute 3,3 ml de phénylhydrazine et chauffe le mélange réactionnel à reflux pendant 8 heures. Le mélange refroidí est versé dans l'eau glacée, un précipité est séparé par filtration, lavé à l'eau puis au pentane.

C) Acide phényl-1 dihydro-4.5 benz (a) indazole carboxylique-3.

9,5 g du produit obtenu précédemment sont dissous dans 100 ml de méthanol et 100 ml d'eau. On ajoute 4,2 g d'hydroxyde de potassium et chauffe le mélange réactionnel à reflux pendant 5 heures. Le mélange est versé dans l'eau glacée puis on lave à l'acétate d'éthyle. La phase aqueuse est acidifiée à pH = 2 par addition d'acide chlorhydrique et un précipité est séparé par filtration, lavé à l'eau puis au pentane. m = 7.3 a

2.8 g de l'acide obtenu précédemment sont mis en solution dans 100 ml de toluène puis on ajoute 2,2 ml de chiorure de sulfinyle et chauffe à 100°C pendant 5 heures. La solution est concentre sous vide, on ajoute 20 ml de toluène et concentre sous vide. On répète deux fois la même opération.

E) Composé 4

0,88 g de S-leucine sont dissous dans une solution de 1,33 g d'hydroxyde de sodium dans 20 ml d'eau. Cette solution est refroidie, puis on y ajoute 0,99 g du chlorure de l'acide préparé précédemment en solution dans 16 ml de tétrahydrofuranne et laisse le mélange réactionnel sous agitation à température ambiante pendant 18 heures. La solution est concentrée sous vide, le résidu est repris dans la glace et acidifié à pH = 2 par addition d'acide chlorhydrique, puis extrait à l'acétate d'éthyle. La phase organique est séches su sulfate de sodium, filtrée et concentrée sous vide. Le résidu est recristalliés de l'éther isopropvilque.

EXEMPLE 5

Acide{[benzyl-1 (naphtyl-2)-3 pyrazolyl-5] carbonylamino}-2 phényl-3 propanoīque (S). (I'):R = H; n = O; X' = H; X = -CH₂-C₈H₅; Z-OH; R_{Is} = -CH₂-C₈H₅; R_{IV} = H;

A) La réaction du naphtoyle-2 pyruvate de méthyle avec le chlorhydrate de benzylhydrazine foumit un mélange des esters suivants : ester méthylique de l'acide benzyl-1 (naphtyl-2)-5 pyrazole carboxylique-3 et ester méthylique de l'acide benzyl-1 (naphtyl-2)-3 pyrazole carboxylique-6.

Une chromatographie sur gel de silice permet la séparation des deux Isomères. L'ester méthylique de l'acide benzyi-1 (naphtyl-2)-5 pyrazole carboxylique-3 est élué en premier par un mélange acétate d'éthyle/hexane 50/50 (v/v). L'ester méthylique de l'acide benzyl-1 (naphtyl-2)-3 pyrazole carboxylique-5 est élué en deuxième fraction.

- B) Acide benzyl-1 (naphtyl-2)-3 pyrazole carboxylique-5.
- L'acide a été préparé par saponification de l'ester précédemment obtenu.
- C) Chlorure de l'acide benzyl-1 (naphtyl-2)-3 pyrazole carboxylique-5
- Le chlorure d'acide est préparé par action du chlorure de sulfinyle sur l'acide précédent et n'est pas isolé. D) Composé 5.
- 0,28 g de phénylalanine (S) sont dissous dans une solution d'hydroxyde de sodium refroidie. On ejoute alors une solution de 0,3 g du chiorure d'acide préparé précédemment dans 5 m' de THF et on laisse le mélange réactionnel à température ambiante pendant 24 heures. Le THF est concentré sous vide, le résidu est repris dans l'eau, neutralisé par addition d'acide chiorhydrique concentré. On extrait à l'acétate d'éthyle, sèche sur suitate de sodium et concentre sous vide. Le résidu est recristallisé du cyclohexane.

EXEMPLE 6

.

40

15

20

25

เรา

35

50

55

Ester méthylique de l'acide {[(méthoxy-4' cinnamyl)-1 (pyridyl-4)-5 pyrazolyl-3] carbonylamino}-2 méthyl-4 pentanoïque (S).

(I):
$$R = H$$
; $n = O$; $X' = H$; $X = -CH_2-CH-(CH_3)_2$; $Z = OCH_3$;

$$R_{I} = -CH_{2} - CH = CH - CH_{3}$$
; $R_{IV} = H$;

$$R_V = - N$$

A) Ester méthylique de l'acide (méthoxy-4' cinnamyl)-1 (pyridyl-4)-5 pyrazole carboxylique-3.

4.6 g de l'ester méthylique de l'acide (pyridyl-4)-5 (1H) pyrazole carboxylique-3 sont mis en solution dans 60 ml de diméthylformamide puis on ajoute 0,63 g d'hydrure de sodium en suspension dans l'huile à 80 %, et chauffe le métange réactionnel à 40°C pendant 1 heure. On ajoute alors au métange rénotid une solution de 5,2 g de méthoxy-4' bromure de cinnamyl-1 en solution dans 60 ml de diméthylformamide et laisse le métange réactionnel à température ambiante pendant 12 heures. On concentre le diméthylformamide sous vide, reprend le résidu dans l'eau, extrait à l'acétate d'éthyle, sèche la phase organique sur sulfate de sodium, filtre et concentre sous vide. L'huile résiduelle est chromatographiée sur gel de silice, étuant : acétate d'éthyle/cvolohoxans 60/50 (vN). Les fractions de produit pur sont concentrées sous de l'acide de solutions de produit pur sont concentrées sous des de l'acide de solutions de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de produit pur sont concentrées sous de l'acide de solution de l'acide de solution de produit pur sont concentrée sous de l'acide de solution de l'acide d

B) Composé 6

0,4 g de l'acide obtenu précédemment sont mis en solution dans 12 ml de diméthylformamide en présence de 0,63 ml de DIPEA et 0,53 g de BOP. On ajoute alors 0,22 g de chlorhydrate de l'ester méthylique de la (S)-leucine en solution dans 0,63 ml de DIPEA et le mélange réactionnel est abandonné pendant un nuit à températuee ambiante. Le diméthylformamide est concentré sous vide et le résidu est repris dans l'eau. On extrait à l'acétate d'éthyle, sèche la phase organique sur sulfate de sodium, filtre et concentre sous vide. Le résidu est concrétisé dans l'éther disopropylique.

EXEMPLE 7

5

10

15

20

25

30

35

Δn

45

50

Sel de sodium de l'acide { [(méthoxy-4' cinnamyl)-1 (pyridyl-4)-5 pyrazolyl-3] carbonylamino}-2 phényl-3 propanoīque (S).

(I): R=H: n=0; X'=H; X=-CH2-CaH6; Z=O- Na+

$$R_{I} = -CH_{2} - CH = CH$$
 OCH_{3} ; $R_{IV} = H$

En procédant comme pour l'exemple 6 et en remplaçant le chlorhydrate de l'ester méthylique de la (S)leucine par le chlorhydrate de l'ester méthylique de la (S)-phénylalanine, on obtient l'ester méthylique que l'on hydrolyse en sel de sodium avec 0,9 équivalent d'hydroxyde de sodium dans 10 ml d'éthanol 96°. Le mélange est laissé une nuit à température ambiante, concentré sous vide et le résidu est lavé à l'éther. Après filtration, on obtient le composé 7.

F = 137°C.

EXEMPLE 8 Acide [[(isoquinoléinyl-5)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl-3] carbonylamino)2 adamanta-necarboxylique-2.

(I):
$$R=H$$
 ; $n=0$; $X-\stackrel{!}{C}-X'=$;
$$Z=OH \;\;; \;\; R_{IV}=H$$

$$R_V = H_3CO$$
 OCH₃

0,75 g de l'acide amino-2 adamantanecarboxylique-2 sont mis en solution dans 20 ml de pyridine. On ajoute 1,4 g de chlorure de l'acide (isoquinoléinyl-5)-1 (diméthoxy-2,6 phényl)-5 pyrazolecarboxylique-3 en solution dans 20 ml de dichlorométhane et laisse le mélange réactionnel pendant une nuit à température ambiante. On concentre sous vide, reprend le résidu par du tampon pH=2, agite, filtre le précipité et rince à l'éther diisopropylique.

m = 0,4 g F > 260°C

55 EXEMPLE 9

Acide {[(quinoléinyl-5)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl-3] carbonylamino}-2 adamantanecarboxyli-que-2.

0.23 g de l'acide amino-2 adamentanecarboxylique-2, 0,5 g du chlorure de l'acide (quinoléinyl-5)-1 (dimé-20 thoxy-2,6 phényl-5 pyrazolecarboxylique-3, et 0,7 g d'hydroxyde de potassium sont mis en solution dans 25 ml de dichlorométhane en présence de 0,1 g d'Alfquat 3369

Le mélange réactionnel est agité pendant une nuit à température ambiante, on ajoute 0,7 g d'hydroxyde de potassium et agite pendant 4 heures. Le mélange est filtré et on obtient 0,2 g du produit attendu.

F > 260°C

EXEMPLE 10

10

15

25

Acide{[chloro-4 naphtyl-1)-1 (dihydroxy-2,6 phényl)-5 pyrazolyl-3] carbonylamino}-2 hexanoïque (S).

$$(I): R=H$$
 ; $n=0$; $X'=H$; $X=(CH_2)_3-CH_3$
$$Z=OH$$
 ; $R_{IV}=H$
$$CI$$

$$R_{V}=HO$$

$$OH$$

0,3 g d'acide [(chloro-4 naphtyl-1)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl)-3 carbonylamino-2 hexanofique sont mis en solution dans 6,7 ml de dichlorométhane et on refroidit à -70°C. On ajoute goutte 5,7 ml de tribromure de bore en solution dans 20 ml de dichlorométhane et laisse le métange réactionnel 2 heures à -70°C. On laisse revenir à température ambiante puis ajoute, en refroidisssant, 12 ml d'eau. On additionne Na°C. On Concentrée jusqu'à pH=14. On lave la phase aqueuse à l'éther, et on l'amène à pH=2, on extrait à l'acétate d'éthyle, sèche sur sulfate de sodium, filtre et évapore. On cristallise le résidu de l'éther diisopropylique.

m = 0,13 g. F > 260°C

EXEMPLE 11

55

Acide {{(naphtyl-1)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl-3} carbonylamino}-2 adamantanecarboxylique-2.

(I):
$$R=H$$
 ; $n=0$; $X-C-X'=$; $Z = OH$; $R_{IV} = H$; $R_{IV} = H$

0,107 g d'hydroxyde de sodium dans 1,36 ml d'eau, et 0,51 ml de tétrahydrofuranne sont refroidis à 0°C. On ajoute en une seule portion 0,52 g d'acide amino-2 adamantane carboxylíque-2 puis goutte à goutte 0,53 g du chlorure de l'acide (naphtyl-1) - 1 (diméthoxy-2,6 phényl)-5 pyrazolecarboxylíque-3 en solution dans 3 ml de tétrahydrofuranne. Le mélange est laissé pendant 10 minutes et on ajoute à nouveau la même quantité du chlorure d'acide précédent dans 3 ml de tétrahydrofuranne : simultanément on ajoute 1,32 ml d'hydroxyde de sodium 2 N. Le mélange réactionnel est abandonné 4 jours à température amblante ; on ajoute successivement de l'eau glacée, de l'acide chlorhydrique concentré jusqu'à pH=1 et filtre le précipité. Les cristaux sont lavés à l'éther diisopropylique.

m = 0,48 g F > 260°C

EXEMPLE 12

5

10

15

20

25

ΔO

45

50

55

([(Naphtyl-1)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl-3] carbonylamino)-2 adamantanecarboxylate-2 de méthyle.

(I):
$$R=H$$
; $n=0$; $X-C-X'=$

$$Z = OCH_3$$
 ; $R_I =$; $R_{IV} = H$

0,5 g du composé préparé à l'exemple 11 sont dissous dans 34,6 ml de tétrahydrofuranne anhydre et 4 ml de diméthylformamide. On ajoute 3,5 ml d'eau et 0,208 g de carbonate de césium et laisse le métange réactionnel à température ambiante pendant 1 heure. On concentre sous vide et azéotrope avec du toluène. Le résidu est repris dans 5 ml de tétrahydrofuranne. On ajoute 0,6 ml d'iodure de méthyle et laisse le métange réactionnel pendant 1 heure à température ambiante. On concentre sous vide, reprend le résidu dans l'eau.

agite et sépare le précipité par filtration. Le précipité est lavé à l'eau et au pentane.

m = 0.38 g

F = 242-244°C

5 EXEMPLE 13

10

20

25

30

40

55

Acide {[(chloro-7 quinoléinyl-4)-1 (diméthoxy-2,6 phényl)-5 pyrazolyl-3] carbonylamino}-2 adamantanecar-boxylique-2.

(I):
$$R=H$$
; $n=0$; $X-C-X'=$;

$$Z = OH$$
 ; $R_{IV} = H$

$$R_V = H_3CO$$
 OCH₃

En procédant seion l'exemple 8 et en rempiaçant le chlorure d'acide par le chlorure de l'acide (chloro-7 quinoléinyi-4)-1 (diméthoxy-2,6 phényi)-5 pyrazolecarboxylique-3, on obtient le composé intermédiaire de formule :

dont le point de fusion est 249°C.

0,1 g de cet intermédiaire est mis en solution dans 5 ml de dichlorométhane; on ajoute 5 ml d'acide trifluoroacétique et laisse le mélange une demi-heure à température ambiante. On concentre sous vide pour obtenir le composé attendu.

m = 0.080 a

F > 260°C

En répétant l'un quelconque des modes opératoires décrits aux exemples 1 à 13 on a préparé les composés indiqués dans les tableaux 1 à 15 ci-après. Dans ces tableaux, R₃ lorsqu'il est utilisé, représente le groupe :

TABLEAU 1

F:°C Exemple C* Solvant de n° cristallisation - NH-CH2-CO2 H 170 14 iPr₂O - NH-CH2-CO2 Et 15 116 iPr₂O - NH-(CH₂)₂-CO₂ H 170 16 iPr20 17 $CH_3 - (CH_2)_3 - CH - CO_2H$ s 70 CH ${\rm (CH_3)_2-CH-CH-CO_2H} \atop {\rm -NH} \atop {\rm C_6H_5-CH_2-CH-CO_2H} \atop {\rm -NH} \atop {\rm -NH}$ 18 s 152 iPr₂O s 214 19 iPr₂O C_6H_5 -(CH₂)₂-CH-CO₂H -NH 79 20 s CH но-сн₂-сн-со₂н -NH 242 21 s iPr₂O NH2-(CH2)4-CH-CO2H S 150 22 iPr₂O (HCl)

55

10

15

20

25

35

40

23	HN C-NH-(CH ₂) ₃ -CH-CO ₂ H -NH	s	125 CH (HCI)
24	но ₂ с-(сн ₂) ₂ -сн-со ₂ н -Nн	S	100 iPr ₂ O
25	N CO₂H	s	212 iPr ₂ O
26	CH ₂ -CH-CO ₂ H	S	207 iPr ₂ O
27	CH ₂ -CH-CO ₂ CH ₃	s	90 iPrOH
28	CH ₂ -CH-CO ₂ H	s	220 EtOH,H ₂ O
29	ну со2н	R,S	84 Pn,Et ₂ O

TABLEAU 2

R's C-N-CH-CH₂
Coz

N° Exemple	R ₁	R'1	R ₅	R'5	R"5	z	F; °C Solvant cristal.
30	Н	Н	4-CH ₃	н	Н	ONa	140 EtOH
31	Н	Н	4-NO ₂	Н	Н	ОСН3	69 Hx
32	Н	Н	4-C ₆ H ₅	н	н	ОН	104 iPr ₂ O
33	H	Н	2-Cl	4-Cl	Н	ОН	108 iPr ₂ O
34	Н	Н	2-CH ₃	4-CH ₃	6-CH ₃	ОН	120 iPr ₂ O
35	Н	н	2-OCH ₃	6-OCH ₃	H	ОН	99 iPr ₂ O
36	4-F	н	2-F	Н	H	ОН	203 iPr ₂ O
37	4-F	Н	4-C1	Н	н	ОН	90 Pn
38	4-F	н	2-CH ₃	н	H	ОН	208 iPr ₂ O
39	4-F	н	4-OCH ₃	Н	Н	ОН	92 iPr ₂ O
40	4-Cl	Н	4-Cl	Н	Н	ОН	98 Pn

5	41	4-CH ₃	Н	4-OCH ₃	н	Н	ОН	94 iPr ₂ O
	42	4-OCH ₃	Н	4-CI	н	Н	ОН	84
10	43	4-0CF ₃	Н	2-F	Н	н	ОН	Pn 86 iPr ₂ O
	44	2-Ci	4-Cl	4-C1	н	н	ОН	110 Pn
15	45	2-C1	5-C1	4-CH ₃	H	Н	ОН	90 Pn
	46	2-CH ₃	5-F	2-C1	Н	Н	ОН	100 Pn
20	47	3-C1	4-C1	Н	Н	Н	ОН	83 Hx
25	48	3-Cl	4-Cl	4-CH ₃	Н	Н	ОН	100 Pn
	49	4-t-Bu	H	н	Н	Н	ОН	88 CH
30	50	4-NO ₂	Н	Н	H	Н	OCH ₃	69 Hx
	51	4-NH ₂	н	н	н	Н	осн ₃	97 Hx
35	52	4-NH ₂	н	н	н	Н	ONa	155 H ₂ O

⁴⁰ Les composés du tableau 2 sont tous de configuration (S).

45

TABLEAU 3

C-N-CH-CH₂

R₆

R₁

N°	R ₁	R ₁ '	R	z	R ₆	Position	C*	F; °C
Exemple			1			du		Solvani
						naphtyle		cristal.
53	Н	Н	Н	ОН	Н	1	S	221 iPr ₂ O
54	н	Н	н	ОН	н	2	. R	224 iPr ₂ O
55	Н	н	СН3	ОН	Н	2	S	84 Hx
56	Н	H	Н	ОН	CI	1	R,S	212 iPr ₂ O
57	Н	Н	Н	ОН	CI	2	R,S	196 iPr ₂ O
58	Н	н	Н	ОН	ОН	2	S	96 Hx
59	Н	н	Н	ОСН3	Н	2	S	69 Pn
60	2-C1	5-Cl	Н	ОН	н	1	S	115 Hx
61	2-Cl	5-C1	Н	ОН	Н	2	S	105 Hx
62	2-Cl	5-C1	Н	ОН	а	1	R,S	139 Hx
63	2-C1	5-Cl	Н	ОН	CI	2	R,S	221 iPr ₂ O

3-Cl 4-C1 Н s 64 ОН н 1 224 iPrO₂ 65 3-C1 4-CI н ONa н 2 s 140 **EtOH**

TABLEAU 4

5

10

15

20

25

30

35

40

45

50

55

Exemple F: °C R₁ R'1 n° z R_V C* Solvant cristal. Н 66 н ОН s 86 Hx 67 н н ОН s 107 Нx осн3 96 68 ОН Н н s CH OCH3 69 н H ОН s 165 Hx (HCI)

70	4-F	Н	OH	- -	S	174 iPr ₂ O
71	4-F	н	ОН	————a	s	92 Hx
72	4-F	Н	ОН		S	96 Hx
73	4-C1	Н	ОН	— ⊘ −a	S	89 Hx
74	4-t-Bu	Н	ОН	\bigcirc	S	88 CH
75	2-C1	5-C1	ОН	-СН3	S	225 iPr ₂ O
76	3-C1	4-CI	ОН		S	72 Hx
77	3-CI	4-C1	ОН	-€СН3	R	98 Hx
78	3-C1	4-C1	ОН	-€	s	94 Pn
79	3-C1	4-Cl	ОН		s	135 Hx
80	2-Cl	5-C1	ОН		S	225 Hx

TABLEAU 5

RV CH₃ CH₃
R₁
R₁

Exemple n°	R ₁	R'1	Rγ	F; °C Solvant cristallisation
81	Н	н	осн3	161 iPr ₂ O
82	Н	Н	н3со осн3	201 AcOEt
83	Н	Н		190 iPr ₂ O
84	4-F	Н	СН3	99 Hx
85	4-C1	н	a———	100 Hx
86	4-t-Bu	Н	\bigcirc	88 Hx
87	3-C1	4-Cl		83 Hx

88	3-Cl	4-Cl	90 Hx
1		l	110

Les composés de 81 à 88 sont de configuration S.

TABLEAU 6

Exemple F;°C Position R3 n° R₅ du C* Solvant cristal. naphtyle 89 н 2 s 170 AcOEt 90 н 1 s 88 Нx 91 н 1 s 206 сн3-сн-сн-со2н iPr₂O СH3-(СН2)2-СН-СО2Н 92 Н 1 s 198 iPr₂O СH₃-(СH₂)₃-СH-СО₂H 93 н 1 R,S 92 CH СH3-(СH2)3-СH-СО2H 94 н 1 R 190 iPr₂O - Çн-со₂н 95 н 1 R,S 226 iPr₂O

55

5

10

15

20

25

30

35

40

45

96	(СН ₃)3-С-СН-СО2Н	н	1	s	230 iPr ₂ O
97	СН3-(СН2)2-СН-СО2Н	6-OCH ₃	2	s	92 Hx
98	СН ₃ -(СН ₂) ₃ -СН-СО ₂ Н	6-OCH ₃	2	s	98 CH
99	(СН ₃) ₂ -СН-СН-СО ₂ Н	6-OCH ₃	2	s	95 Hx
100	(CH ₃) ₂ -CH-CH ₂ -CH-CO ₂ H	6-OCH3	2	s	95 Hx
101	(CH ₃) ₂ -CH-CH ₂ -CH-CO ₂ H	Н	2	s	100 Hx
102	C ₆ H ₅ -(CH ₂) ₂ -CH-CO ₂ H	н	2	s	120 CH
103	С6H5-СН2-СН-СО2Н	6-OCH ₃	2	S	95 Hx
104	HN C-NH-(CH ₂) ₃ -CH-CO ₂ H HN NO ₂	н	2	s	175 AcOEt
105	HN C-NH-(CH ₂) ₃ -CH-CO ₂ CH ₃ HN NO ₂	н	2	s	110 CH
106	CH2-CH-CO2H	Н	2	s	200 AcOEt
107	-CH-CH ₂ -S-CH ₂ -NH CO ₂ Na COCH ₃	Н	2	s	217 EtOH
108	-CH-CH ₂ -CH ₂	н	1	s	100 Hx

TABLEAU 7

R_{IV} O H CH-CH₂ R₆

Exemple n°	R ₁	R ₆	R _{IV}	R ₅	C*	F; °C solvant de cristallisation
109	Н	CI	CI	CI	R,S	120 Hx
110	F	Н	CI	CI	S	110 Hx
111	F	CI	α.	Ç	R,S	100 Hx

TABLEAU 8

Exemple n°	RI	R _{Ia}	-N R 3	R _V	C*	F; °C Solvant cristal.
112	ÇH ₂ -	•	С ₆ H ₅ -СН-СО ₂ № NH		s	158 iPr ₂ O
113	· ·	CH ₂ -	-NH C6H5-CH2-CH CO2Ns		S	130 iPr ₂ O
114	-	ÇH ₂ -	(CH ₃) ₂ -CH ₂ -CH-CÕ ₂ H -NH		s	80 Hx
115	-	ÇH ₂ -	н - N- сн-со ₂ н		R,S	120 CH
116	-	ÇH ₂ -	CO ₂ H		s	60 Hx
117	¢H ₂	-	џ -N-СН-(СН ₂)3-СН3 СО2Н	осн3	s	69 Hx

5 ,	118	-	ÇH ₂	н -N-Сн-(СН ₂) ₃ -СН ₃ СО ₂ Н	OCH ³	s	150 Hx
10	119	-	CH2CC	CO2H ✓	осн3	s	214 CH
15	120	CH ₂ CI	-	H -N-CH-CO ₂ H	осн,	s	94 CH
20	121	ÇH ₂	•	ни-сн- со₂н	осн3	R,S	109 Hx
30	122	- 1	¢H ₂	ни-сн со ₂ н	осн3	R,S	173 Hx

TABLEAU 9

H CON-R₃

Exemple F:°C -R3 Ν° C* Solvant cristallisation (CH₃)₂-CH-CH-CO₂H 123 200 s iPr₂O C6H5-CH2-CH-CO2H 124 s 110 iPr₂O

TABLEAU 10

H₃C

55

50

5

10

15

20

25

127	CH ₃ -(CH ₂) ₂ -CH-CO ₂ H	90 Pn
128	NH- (CH ₃) ₂ -CH-CH ₂ -CH-CO ₂ H	100
120	NH-	Hx
129	СH ₃ -(СH ₂) ₃ -СH-СО ₂ Н	95
	NH-	Pn
130	С6H5-СH2-СH-СО2H	100
	NH-	Pn

Les composés 125 à 130 sont de configuration S.

10

15

20

25

30

40

55

TABLEAU 11

Ex F:°C R"5 R₁ R5 R'5 C* n° Solvant cristal. (СН₃)₂-СН-СН-СО₂Н 131 н н н н s 130 Hх СН3-(СН2)3-СН-СО2Н NH-132 Н н H н s 100 Pn 133 н н н н s 220 Pn С₆H₅-СН₂-СН-СО₂Н 134 н н н H s 110 Pn СH₃-(CH₂)₃-СH-СО₂H NH-6-OCH₃ 135 2-OCH₃ н н s 113

5	136	ны-сн-со₂н	Н	2-OCH3	6-OCH ₃	н	s	250 Pn
10	137	HN-CH-CO₂H	Н	2-OCH3	6-ОСН3	н	R,S	136 Pn
15	138	H-N-CH-CO ₂ H	Н	2-OCH ₃	6-OCH ₃	н	s	125 iPr ₂ O
20	139	H-N-CO ₂ H	н	2-OCH ₃	6-OCH ₃	н	,	122 Hx
25	140	H-N-CO ₂ H	н	2-OCH3	6-OCH ₃	н	-	>260 Hx
	141	H -N-CH-CH ₂ -CO ₂ H	Н	2-OCH ₃	6-OCH ₃	н	s	112 iPr ₂ O
30	142	ү -N-Сн-(Сн ₂) ₃ -со ₂ н со ₂ н	н	2-OCH3	6-OCH ₃	н	s	110 iPr ₂ O
35	143	H CH ₃ -N-C CO ₂ H	н	2-OCH3	6-OCH3	н	R,S	116 iPr ₂ O
40	144	H -N CO ₂ H	н	2-OCH3	6-ОСН3	н	-	>260 Hx
45	145	H-N-CH ₃	н	2-OCH3	6-OCH3	Н	-	>260 Hx
~ [146	H -N-CH- CO ₂ H	н	2-OCH3	6-OCH3	н	R,S	>260 Hx
50	147	H -N-CH-CO ₂ H	н	2-OCH ₃	6-OCH ₃	н	s	>260 Hx

5	148	н - n- сн-со ₂ н	н	2-OCH ₃	5-OCH3	н	R,S	99 iPr ₂ O
10	149	- N- CH-CO ² H	н	2-OCH3	4-OCH3	н	R,S	110 iPr ₂ O
15	150	H -N-CH CO ₂ H	н	2-OCH3	5-OCH ₃	н	s	223 iPr ₂ O
20	151	-N-CH-CO2H	Н	2-OCH3	4-OCH3	н	s	109 iPr ₂ O
25	152	н - м- сн-со ₂ н	н	2-OCH3	6-OCH3	н	R	247 iPr ₂ O
	153	H -N CO ₂ H	н	2-OCH ₃	6-OCH3	н	-	128 Hx
30	154	H CH3	н	2-OCH3	6-OCH3	Н	R,S	132 iPr ₂ O
35	155	H -N CO ₂ H	н	2-OCH3	6-OCH3	Н	-	114 Hx
40	156	H -N-CH-C-(CH ₃) ₃ CO ₂ H	H	2-OCH3	6-OCH3	н	s	149 iPr ₂ O
	157	H CH ₃ -N-C CH ₃ CO ₂ H	H	2-OCH3	6-OCH ₃	н	-	244 iPr ₂ O
45	158	Н -N-СН-(СН ₂) ₅ -СН ₃ СО ₂ Н	н	2-OCH3	6-OCH3	н	R,S	106 Hx
50	159	H -N-CH CO ₂ H	Н	2-OCH3	6-OCH ₃	н	S	>260 Hx

5	160	H -N-CH CO ₂ H	н	2-OCH ₃	6-OCH ₃	н	R	>260 Hx
10	161	H -N CO ₂ H CH ₂) ₁₁	н	2-OCH ₃	6-OCH ₃	Н	-	174 Hx
15	162	H -N CO ₂ H	Н	2-OCH3	6-OCH ₃	Н	R,S	>260 EtOH
20	163	H -N-C CO ₂ H	н	2-OCH3	6-ОСН3	н	-	244 iPr ₂ O
25	164	H -N-CH-CO ₂ H	н	2-OC ₂ H ₅	6-OC ₂ H ₅	н	s	222 Hx
30	165	H-N-CH ₂ -CO ₂ H	Н	2-OCH ₃	6-OCH ₃	Н	- 00	190 Et ₂ O
	166	H -N CO ₂ H	Н	2-OCH3	6-OCH3	н	R.S	170 CH ₂ Cl ₂
35	167	H-N-H N-H CO ₂ H , HCI	н	2-OCH3	6-ОСН3	н	-	280 Et ₂ O
40	168	H-N-CO ₂ H	н	2-OC ₂ H ₅	6-OC ₂ H ₅	Н	,	>260 iPr ₂ O
45	169	CO ₂ H CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	н	2-OCH ₃	6-OCH ₃	н	-	>260 H ₂ O

5	170	H N CO2H	Н	2-OCH ₃	6-OCH ₃	н	R,S	>260 CH ₂ Cl ₂ -Et ₂ O
10	171	H CO2H	н	2-OCH ₃	6-OCH ₃	н	-	>260 iPr ₂ O
15	172	-N CO ₂ H	н	2-OCH ₃	6-ОСН3	н	s	120 Pn
20	173	-N-CH-CO2CH3	Н	2-OCH ₃	6-OCH ₃	H	R,S	81 Pn
	174	-N-CH-CONH2	Н	2-OCH3	6-OCH ₃	Н	R,S	>260 iPr ₂ O
25	175	-N-CH-CO2H	н	2-OCH3	6-OCH ₃	н	R,S	217 Hx
30	176	HO ₂ C N	н	2-OCH ₃	6-OCH ₃	н	R,S	>260 iPr ₂ O
35	177	CO ₂ H S	н	2-OCH3	6-OCH ₃	н	R,S	130 iPr ₂ O
40	178	н - n- сн-со ₂ н	н	2-OCH3	4-OCH ₃	6-OCH3	R,S	229 iPr ₂ O
	179	H -N-CH- CO ₂ H	н	2-OCH3	4-OCH3	6-ОСН3	S	>260 iPr ₂ O
45	180	н -N- СН-СО ₂ Н	4-Cl	2-OCH3	6-OCH ₃	н	R,S	125 Hx
50	181	Н -N-СН-(СН ₂)3-СН3 СО2Н	4-C1	2-OCH ₃	6-OCH ₃	н	s	120 Hx

5	182	-м со ₂ н	4-Cı	2-OCH ₃	6-OCH ₃	н	s	140 CH
10	183	H -N CO ₂ H	н	2-CH ₃	6-CH ₃	Н	-	280 Et ₂ O
15	184	H-N-CC2H	Н	2-OCH3	6-OCH ₃	н	-	225 Hx
20	185	н -n-сн ₂ -со ₂ н	Н	2-OCH3	6-OCH3	н		206 iPr ₂ O
	186	H -N CO ₂ H	4-Ci	2-OCH ₃	6-OCH ₃	Н	-	>260 iPr ₂ O
25	187	H -N CO ₂ H	Н	2-OCH ₃	6-ОСН3	н	-	180 MeoH -H ₂ O
30	188	HŅ COOĢ K⊕	н	2-OCH3	6-ОСН3	н	R,S	>260 Et ₂ O
35	189	н -N-сн-сн ₂ - со ₂ н	н	2-OCH ₃	6-OCH ₃	н	s	109 CH
40	190	CO ₂ H NH-	н	2-OCH3	6-OCH ₃	н	R,S	130 CH

EP 0 477 049 A1

TABLEAU 12

20	Ex.	R ₁	R'1	R"1	R -N-R ₃	R ₅	R'5	R"5	C*	F; °C Solvant
25	191	н	Н	н	CO ₂ H CH ₃ -(CH ₂) ₃ -CH NH-	3-ОСН ₃	4-OCH ₃	н	s	cristal. 79 Hx
30	192	Н	н	н	СО ₂ Н СН ₃ -(СН ₂) ₃ -СН NH-	3-QCH ₃	4-OCH ₃	5-OCH ₃	s	69 Hx
35	193	н	н	н	СО ₂ н Сн ₃ -(сн ₂) ₃ -сн Nн-	2-OCH3	4-OCH ₃	6-OCH ₃	s	90 Hx
40	194	н	н	н	С ₆ H ₅ -СН-СО ₂ Н СН ₂ -NН-	2-OCH ₃	6-ОСН3	Н	R,S	94 Hx
45	195	3-C1	4-Cl	н	СО ₂ Н СН ₃ -(СН ₂) ₃ -СН ИН-	2-OCH ₃	6-OCH ₃	н	s	94 Hx
50	196	3-C1	4-Cl	н	СН-СО2Н ИН-	2-ОСН3	6-ОСН3	н	R,S	100 CH

EP 0 477 049 A1

5	197	2-C1	6-C1	н	CH ₃ -(CH ₂) ₃ -CH	2-OCH ₃	6-OCH ₃	н	s	223 Pn
10	198	2-CI	5-C1	н	CO ₂ I CH ₃ -(CH ₂) ₃ -CH NH-	2-OCH ₃	6-OCH ₃	н	s	90 Pn
15	199	3-C1	4-CI	н	С ₆ H ₅ -(CH ₂) ₂ -CH-NH-	н	н	н	s	85 CH
20	200	3-C1	4-C1	н	СО ₂ н СН ₃ -(СН ₂) ₃ -СН ИН-	Н	н	н	s	78 Hx
25	201	3-Cl	4-C1	Н	СН-со₂н	н	Н	н	R,S	84 Hx
30	202	4- t-Bu	н	н	СН ₃ -(СН ₂) ₃ -СН NH-	H	н	H	S	85 Hx
35	203	н	н	н	(CH ₃) ₂ -CH-CH ₂ H ₂ N-C-CH 0 NH-	Н	н	н	s	66 Hx
40	204	3-C1	4-CI	н	NH- CH ₃ -(CH ₂) ₃ -CH NaOOC	2-OCH ₃	6-ОСН3	н	s	146 H ₂ O
45	205	3-CI	4-CI	н	СО ₂ Н СН ₃ -(СН ₂) ₃ -СН NH-	2-OCH ₃	4-OCH3	6-ОСН3	s	98 CH
**	206	2-Cl	5-C1	н	н -N-CH-(CH ₂) ₃ -CH ₃ CO ₂ CH ₃	2-OCH ₃	6-OCH ₃	н	s	64 Pn
50										

5	20	7 2-	C1 3-C	21 4-C	н - и- си-со ₂ н	2-OCI	f ₃ 6-0CF	I ₃ H	R,	S 120 CH	
10	201	8 2-0	Cl 3-C	1 4-CI	CO ₂ H	3 2-OCI	1 ₃ 6-OCH	3 H	s	219 Pn	_
15	209	2-0	1 4-C	1 6-C1	со ₂ н	3 2-OCH	6-OCH	3 H	s	220 Pn	
	210	2-0	21 4-C	6-C1	-N-CH-CO ₂ H	2-OCH	3 6-OCH	н	R,S	210 CH	
20	211	3-CF	3 5-CF ₃	н	џ -N-СН-(СН ₂) ₃ -СН ₃ СО ₂ Н	2-OCH	6-OCH ₂	Н	s	79 Pn	
25	212	3-CF	3 5-CF3	н	-N-CH-CO ₂ H	2-OCH	6-OCH ₃	н	R,S	181 Hx	
30 ·	213	2-CI	3-C1	н	н - N- CH-CO ₂ H	2-OCH ₃	6-ОСН3	н	R,S	112 Hx	
35	214	2-CI	3-C1	н	ү -и-сн-(сн ₂)₃-сн₃ со ₂ н	2-ОСН3	6-ОСН3	н	s	108 Pn	
	215	2-Cl	5-Cl	н	H -N-GH-GH ₂ -CI CO ₂ H	4-NO ₂	н	н	R,S	115 Hx	
40	216	2-C1	3-C1	н	-N CO₂H	2-OCH ₃	6-ОСН3	Н	s	114 Hx	
45	217	3-CF3	5-CF ₃	н	-N CO ₂ H	2-OCH ₃	6-ОСН3	н	s	94 Hx	
50	218	3-CF3	5-CF ₃	Н	CH ₃	2-OCH ₃	6-ОСН3	Н	S	70 CH	

--

				_						
5	219	9 2-0	1 4-0	1 6-CI	COTH	2-OCH	3 6-ОСН	н	s	110 Hx
10	220	3-0	1 4-C	н	H CH ₃ -N-C CH ₃ CO ₂ H	2-CI	6-Cl	н	-	240 iPr ₂ O
	221	3-0	1 4-CI	н	н -N-Сн-(Сн ₂) ₃ -Сн СО ₂ н	3 2-CI	6-C1	н	s	98 Pn
15	222	3-C	1 4-C1	Н	H -N-CH-CO2H	2-Cl	6-Cl	н	s	120 CH
20	223	3-C	4-C1	н	-и-сн-со ₂ н	2-Cl	6-CI	Н	R,S	212 Pn
25	224	2-Ci	4-Ci	н	н - N- сн-со ₂ н	2-ОСН3	6-OCH ₃	Н	R,S	124 Hx
30	225	2-C1	4-C1	н	ү -N-Сн-(СН ₂) ₃ -СН ₃ СО ₂ Н	2-OCH ₃	6-ОСН3	Н	s	196 Hx
35	226	3-CI	4-F	н	H -N-CH-CO ₂ H	2-OCH ₃	6-OCH ₃	н	R,S	110 CH
40	227	3-C1	4-CI	н	H -N-CH-CO2H	2-F	6-F	н	R,S	86 iPr ₂ O
-	228	3-Cl	4-C1	н	н -N-Сн-(Сн ₂)3-Сн ₃ со ₂ н	2-F	6-F	н	s	76 Hx
45	229	2-CI	5-C1	н	н -N-сн-сн ₂ -	2-OCH ₃	6-OCH ₃	н	s	86 iPr ₂ O
50	230	2-Cl	6-CI	н -	N-CH-CH ₂ -CO ₂ H	2-OCH ₃	6-ОСН3	Н	s	268 iPr ₂ O
•										

231	н	н	н	со2н	3 2-OCH	3 4-OCH	н	s	76 Hx
232	н	Н	н	H -N-CH-CH ₂ CO ₂ H	4-NO:	2 H	Н	s	100 Hx
233	4-C	Н	Н	н -N-сн-со ₂ н	2-OCH	6-OCH ₃	Н	R,S	116 CH
234	4-CI	н	Н	н -N-Сн-(Сн ₂) ₃ -Сн ₃ СО ₂ н	2-OCH ₃	6-ОСН3	H	s	169 Hx
235	2-C1	н	н	-N-CH-CO2H	2-OCH ₃	н	н	R,S	90 CH
236	2-Cl	н	Н	Й -N-СH-(СН ₂) ₃ -СН ₃ СО ₂ Н	2-ОСН3	н	Н	s	87 Hx
237	3-Cl	4-Ci	н	н - н - сн - со ₂ н	2-OCH ₃	н	Н	R,S	100 Hx
238	3-C1	4-Ci	н	н -N-сн-(сн ₂) ₃ -сн ₃ со ₂ н	2-ОСН3	н	н	s	85 Pn
239	2-C1	5-Cl	н	−N CO ₂ H	2-OCH ₃	6-ОСН3	н	s	107 Hx
240	3-C1	4-F	н	ү -N-Сн-(СН ₂) ₃ -СН ₃ СО ₂ Н	2-OCH ₃	6-ОСН3	н	s	96 iPr ₂ O
241	3-Cl	Н	н		2-OCH ₃	6-ОСН3	н	R,S	103 CH
242	3-C1	н	н	н -N-Сн-(СН ₂)3-СН3 СО2Н	2-ОСН3	6-ОСН3	н	s	83 CH

EP 0 477 049 A1

5	243	3-Ci	4-C1	Н	H −N− CH−CO2H	2-CH ₃	н	н	R,S	86 Hx
10	244	3-C1	4-C1	H	и -н-сн-(сн ₂) ₃ -сн ₃ со ₂ н	2-CH ₃	н	н	s	85 Pn
15	245	3-C1	5-C1	н	н - м- сн-со ₂ н	2-OCH3	6-OCH ₃	Н	R,S	109 Hx
	246	3-C1	5-Cl	н	џ -и-сн-(сн ₂) ₃ -сн ₃ со ₂ н	2-ОСН3	6-ОСН3	н	s	97 Pn
20	247	н	н	н	н -N-Сн-(Сн ₂) ₃ -Сн ₃ СО ₂ н	2-OCH ₃	6-OCH ₃	н	s	92 Pn

25

30

45

50

55

TABLEAU 13

Ex. F;°C R_5 ₽ -N-R₃ R'5 R_(I) C* solvant cristallisation 107 2-OCH₃ 6-OCH₃ 248 R,S Pn co2cн3 н - и- сн-со₂н 131 2-OCH₃ 6-OCH₃ 249 iPr₂O R,S

5		250	2-OCH	6-OCH3		-N-CH-CO ₂ CH ₃	R,S	111 Pn
10		251	2-OCH	6-OCH ₃	√°ZQ	H -N-CH-CO ₂ H	R,S	112 iPr ₂ O
15		252	2-OCH ₃	6-ОСН3		H-N-CH-CO ₂ H	s	117 iPr ₂ O
	0	253	2-OCH ₃	6-OCH3		-N-CH-CO ₂ H	s	142 iPr ₂ O
20	5	254	2-OCH ₃	6-OCH3		H -N CO ₂ H	-	200 iPr ₂ O
25		255	2-OCH ₃	6-ОСН3		H -N-CH-CO2H	s	260 iPr ₂ O
30		256	2-OCH ₃	6-OCH ₃		н - N- сн-со ₂ н	R,S	118 Pn
35		257	2-OCH ₃	6-OCH ₃	\bigcirc	-N CO₂H	s	128 Pn
40		258	2-OCH ₃	6-OCH ₃	\Diamond	ӊ -N-СН-(СН ₂)3-СН ₃ СО ₂ Н	s	110 Pn
45		259	2-OCH ₃	6-OCH3		H -N-CH-CO2H	s	> 260 iPr ₂ O
50		260	2-OCH ₃	6-ОСН3		H -N CO ₂ H	-	> 260 iPr ₂ O

261	2-OCH3	6-OCH3	NH NH	-N CO ₂ H	-	> 260 iPr ₂ O
262	2-OCH ₃	6-осн ₃	N's	H -N CO ₂ H	-	> 260 iPr ₂ O

15

55

TABLEAU 14

Exemple n°	R ₃	C*	F; °C Solvant cristallisation
263	С6H5-СH2-СH-СО2H	S	105
			Pn
264	C6H5-CH2-CH-CO2CH3	S	80
	'	1 1	Pn

EP 0 477 049 A1

TABLEAU 15

Exemple n°	$-N \stackrel{R}{\underset{R_3}{{\sim}}}$	C*	F; °C solvant cristallisation
265	н -N-СH-(СН ₂) ₃ -СН ₃ СО ₂ Н	s	110 iPr ₂ O
266	н - N- СН-СО ₂ Н	R,S	120 iPr ₂ O
267	-N CO ₂ H	s	125 CH

45 Revendications

1. Amido-3 pyrazole de formule (I) ou (I') :

dans laquelle

10

15

20

25

20

35

45

50

55

- R. représente :

. un groupe

où R, R', et R', représentent chacun indépendamment un atome d'hydrogène, un atome d'halogène, un hydroxyle, un groupe alkyle droit ou ramillé en C_1 - C_4 , un groupe alcoys en C_1 - C_4 , un groupe y alfluorométhyle, un groupe carboxy, un groupe millourométhyle, un groupe carboxy, un groupe amino C_4

- . un groupe carboxyalkyle ou alcoxycarbonylalkyle dans lequel les alkyles sont en C1-C4;
- . un groupe cycloalkyle dans lequel les alkyles sont en C3-C6;
- . un groupe tétrahydronaphtyle :
- . un groupe pyridyle ;
- . un naphtyle substitué par R₁, R'₁ et R"₁ tels que définis précédemment :
- . un groupe benzyle substitué par R1, R1 et R1, tels que définis précédemment :
- . un groupe cinnamyle éventuellement substitué sur le noyau aromatique par un halogène, un hydroxyle, un alcoxy en C₁-C₄;
- un groupe quinolyle ou isoquinolyle, éventuellement substitué par R₁,R₁ 'et R₁" tels que définis ci-dessus :
- . un groupe benzothiazolyle-2;
- . un groupe quinoxalinyldione ;
- . un groupe phtalazinyl-1;
- . un groupe benzothiadiazolyle :
- . un groupe méthylène substitué par un groupement hétérocyclique à 5 ou 6 chaînons, tel que notamment un pyridyle et un thiényle :
- R_{Is} représente un groupe benzyle substitué par R₁, R'₁ et R''₁ tels que définis ci-dessus ;
- R représente l'hydrogène, un alkyle en C1-C4 droit ou ramifié ;
- n représente 0, 1, 2 ou 3;
- soit X représente l'hydrogène et X'représente l'hydrogène; un alkyle droit ou ramifié en C₁-C₂; un hydroxyalkyle en C₁-C₄; un carboxyalkyle dans lequel le groupe alkyle est en C₁-C₄; un acétamidoalkyleystéine dont le groupe alkyle est en C₁-C₄; un guanidinoalkyle dont le groupe alkyle est en C₁-C₄; un nitroguanidinoalkyle dont le groupe alkyle est en C₁-C₄; un nitroguanidinoalkyle dont le groupe alkyle est en C₁-C₄; un nitroguanidinoalkyle dont le groupe alkyle est en C₁-C₄; un hydroxyle vest en C₁-C₄; un hydroxyle vest en C₁-C₄; un hydroxyle vest en C₁-C₃; un hydroxyle vest en C₁-C₃; un hydroxyle vest en C₁-C₄; un hydroxyle vest en C₁-C₄; un hydroxyle vest en C₁-C₄; et dans lequel l'hydrexyle par un alkyle en C₁-C₄;
- soit lorsque n est égal à zéro, X représente l'hydrogène X' et

considérés ensemble forment un cycle, non substitué ou substitué par un hydroxyle, de formule :

ou un cycle de formule :

5

10

15

20

25

30

45

55

avec t = 1 on 2

ou un cycle de formule ;

$$(CH_2)t$$
 avec $t = 1$ ou

ou un cycle indolinyle ; perhydroindole ; tétrahydro-4,5,6,7 thiéno [2,3,-c] pyridyl-6 ;

– soit X et X' représentent chacun indépendamment un alkyle en C_1 - C_4 un cycloalkyle en C_3 - C_6 ; un phényle;

 ou X et X' sont liés et forment ensemble un groupe cycloalkyle de 2 à 12 atomes de carbone, éventuellement substitué par un alkvie en C₁-C₃;

– ou X, X' et l'atome de carbone auquel ils sont liés forment un groupe adamantyle ; un groupe adamantyle substitué par un ou deux groupes méthyle ou par un hydroxyle ; un alcoxy en C_1 - C_3 , un atome d'halogène ;

un groupe aza-1 adamantyle; un groupe quinuclidinyle; un groupe pipéridinyl-4, éventuellement N substitué par un groupe benzyle; un groupe tétramèthyl-2,2, 6,6 pipéridinyle; un groupe tétrahydro-naphtyle; un groupe tétrahydropyrannyl-4 ou tétrahydrothiopyrannyl-4; un groupe dihydro-2,3 (4 H) benzopyrannyl-4; un groupe de formule a

dans lequel n_1 =0,1, n'_1 =1,2, n_2 =1, n_3 =2,3 et W représente un atome de carbone ou un atome d'oxygène, ce groupe étant lié à

et à -C(O)-Z tels que définis ci-dessus, par un atome de carbone de l'un ou l'autre des cycles, ou un groupe de formule b

dans lequel n_4 =2, 3, 4, n_6 =2,3 et W représente un atome de carbone ou d'oxygène, ce groupe étant lié à

et à -C(O)-Z tels que définis ci-dessus, par un atome de carbone de l'un ou l'autre des cycles, les cycles des groupes a et <u>b</u> ci-dessus pouvant éventuellement être substitués sur l'un et/ou l'avre des cycles par un ou deux groupes alkyles en Cr-C₄ et l'aminoacide ne pouvant pas être en position alpha de W lorsque W représente l'oxygène; un groupe bicyclo [2,2,1] heptène-5-yl-2; un groupe bia-8 bicyclo [3,2,1]-octen-6-yl-3; un groupe bia-8 bicyclo [3,2,1]-octen-7-yl-3; un gr

- ou X représente l'hydrogène et X' est un groupe adamantyle; un groupe adamantyle substitué par un ou deux méthyles, par un hydroxyle, un alcoxy en C₁-C₃, un atome d'halogène; un groupe aza-1 adamantyle; un groupe de formule a ou b tel que défini ci-dessus, la liaison entre ces cycles et le carbone porteur de -COZ et de -N-R ne pouvant pas être en position alpha de Wiorsque celui-ci représente l'oxygène;
- Z représente un groupe hydroxyle, un groupe alcoxy en $C_{t^*}C_{t^*}$; un atome d'oxygène substitué par un groupe protecteur des acides carboxyliques comme un tertic-butyle, un benzyle, un benzyle substitué par un atome d'halogène, un alkyle en $C_{t^*}C_{t^*}$, un trifluorométhyle, un trifluorométhyle vous qur groupe carboxy ; un groupe amino ; un atome d'azote substitué par un carboxyalkyle dans lequel l'alkyle est en $C_{t^*}C_{t^*}$, droit ou ramifié, avec la limitation que si Z représente un atome d'azote substitué tel que défini cl-dessus et si n=0, alors, quand X=H, X' ne peut pas être un groupe :

dans lequel x = 1 ou 2 et Q est un hydroxyle, un amino libre ou substitué par un diakyle en C_1 - C_6 , un alcoxy en C_1 - C_6 ;

- R_{IV} représente un atome d'hydrogène, un atome d'halogène, un akyle en C₁-C₆;
- Ry représente :

10

20

25

30

35

40

45

50

55

où R_s , R'_s et R'_s représentent chacun indépendamment un atome d'hydrogène, un atome d'halogène, un alkyle droit ou aramifié en C_r é, un hydroxyle, un alcoxy en C_r - C_s , un hitro, un trilluorométhyle, un trilluorométhoxy, un cyano, un amino, un carboxy, un carboxyalkyle en C_r - C_s , un phényle;

- un groupe naphtyle non substitué ou substitué par un alkyle en C₁-C₄;
- un groupe pyridyle;
- un groupe styryle non substitué ou substitué par un alkyle en C₁-C₄;
- ou bien R_{IV} et R_V considérés ensemble représentent :

20

35

45

50

55

dans lequel le groupe phényle substitue le pyrazole en position 5 et le groupe - $(CH_2)_\Gamma$ dans lequel l = 1 à 3 substitue le pyrazole en position 4, W_1 , W_2 et W_3 abustituent le cycle benzénique et représentent indépendamment l'hydrogène, un halogène ou un groupe hydroxyle;

ou un de ses sels éventuels avec des acides organiques ou minéraux ou avec des bases minérales ou organiques.

- 2. Amido-3 pyrazoles de formula (I) dans laquelle R,X,Y',n, Z,R_V, et R_V sont tels que définis dans la revendication 1, caractérisés en ce que R₁ représente un groupe phényle ou naphtyle, substitué par R₁, R'₁ et R², tels que définis dans la revendication 1, ou un de ses sels éventuels avec des acides organiques ou minérales.
- 3. Amido-3 pyrazoles de formule (i) ou (i') dans lesquelles R, X, X', n, Z, R_i ou R_{is} et R_{iv} sont tels que définis dans la revendication 1, caractérisés en ce que R_v représente un phényle ou un naphtyle substitué par R_s, R'_s et R'_s étant de préférence l'hydrogène ou un alcoxy en C₁-C₄; ou un de ses sels éventuels avec des acides minéraux ou organiques ou avec des bases organiques ou minérales.
 - 4. Amido-3 pyrazoles de formule (i) ou (i') dans lesquelles R, n, R_{IV} et R_V sont tels que définis dans la revendication 1, caractérisés en ce que X, X' et l'atome de carbone auquel un groupe de formule :

dans lequel n₁, n'₁, n₂, n₃ et W sont tels que définis dans la revendication 1 ou un groupe de formule :

dans laquelle n_4 , n_6 et W sont tels que définis dans la revendication 1, les dits groupes \underline{a} et \underline{b} pouvant être rattachés, via le même atome de carbone à

et à C(O)-Z tels que définis ci-dessus par l'un ou l'autre des deux cycles,

les cycles des groupes \underline{a} et \underline{b} ci-dessus pouvant éventuellement être substitués sur l'un et/au l'autre des cycles par un ou deux groupes alkyles en C_1 - C_4 et l'aminoacide ne pouvant pas être en position alpha de W lorsque W représente l'oxygène, ou un de ses sels avec des acides organiques ou minéraux ou avec des bases organiques ou minérales.

 Procédé pour la préparation des composés de formule (I) et (I') caractérisé en ce que l'on traite un dérivé fonctionnel d'un acide pyrazolecarboxylique de formule (II) ou (II') :

10

15

25

30

35

50

55

dans laquelle R_i, R_{iv}, R_v et R_{is} sont tels que définis ci-dessus, avec un aminoacide, éventuellement protégé par les groupements protecteurs habituels en synthèse peptidique, de formule :

dans laquelle R, n, X, X' et Z sont tels que définis ci-dessus et on transforme éventuellement le composé obtenu en un de ses sels.

- Composition pharmaceutique contenant en tant que principe actif un composé selon l'une quelconque des revendications 1 à 4 ou un de ses sels éventuels pharmaceutiquement acceptables.
- Composition pharmaceutique selon la revendication 6 sous forme d'unité de dosage.
 - Composition pharmaceutique selon la revendication 7, caractérisée en ce qu'elle contient de 0,25 à 250 mg de principe actif en mélange avec au moins un excipient pharmaceutique.

RAPPORT PARTIEL
DE RECHERCHE EUROPEENNE
qui selon la rigle 45 de la Convention sur le brevet
européen est consideré, aux fins de la procédure ultérieure
comme le rapport de la recherche européenne

Numero de la demande

EP 91 40 2269

DC	CUMENTS CONSID	ERES COMME PERTI	NENTS	EF 91 40 22
Catégorie		indication, en cas de besoin.	Revendication concernée	CLASSEMENT DE LA DEMANDE (Ist. Cl.5)
A	CHEMISCH-PHARMAZEU			C 07 D 231/14 C 07 D 231/54
Α .	EP-A-0 322 126 (E. NEMOURS AND CO.)	.I. DU PONT DE		C 07 D 401/04 C 07 D 403/06 C 07 D 403/12
A	FR-A-2 597 866 (MECHEMICALS, INC.)	ITSUI TOATSU		C 07 D 401/12 C 07 D 409/12 A 61 K 31/415
A	EP-A-0 289 879 (MI INDUSTRIES LTD)	ITSUBISHI CHEMICAL		C 07 D 453/02 C 07 D 403/04 C 07 D 417/04
A	FR-A-2 337 997 (CC SCIENTIFIC AND INDU ORGANIZATION)	OMMONWEALTH JSTRIAL RESEARCH		0 0/ 8 42//04
A	EP-A-0 277 794 (BC	OC, INC.)		
Α.,	EP-A-0 068 806 (W/	ARNER-LAMBERT CO.)		
D,A	GB-A-3 130 205 (EI	I LILLY AND CO.)		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
				C 07 D A 61 K
RECH	ERCHE INCOMPLE	TE		
de la tech Revendica Revendica Revendica Resendica Raisoa po La re Clair sente qu'ur pour relat B, Cl a été	as de la Convention sur le brevet eur interest april de l'index part de l'index d'april part d'apri	Incompletes erchaes endications n'est rt. 83-84 OEB) et e énorme de produ plète n'est pas r conomie (voir Dir pratique à l'OEE De cette facon 1 5) aux composés,	: pas : repré- its, ossible ectives 3, Partie a recherche qui sont	
ou cl	caracterises par nimiques, c.a.d.	r ses éléments ph les composés des	ysiques examples.	
	Lies de la recherche HAYE	Date d'achivement de la recherche 28-11-1991		UYSER I.A.F.
X : par Y : par aut	CATEGORIE DES DOCUMENTS ticulièrement pertinent à lui seul ticulièrement pertinent en combinais- re document de la même catègorie ère-plan technologique.		u principe à la base de l'i de brevet antérieur, mai lépôt ou après cette date s la demande d'autres raisons	avestion s publié à la

& : membre de la même familie, document correspondant

RAPPORT PARTIEL DE RECHERCHE EUROPEENNE Page

2

EP 91 40 2269

	CUMENTS CONSIDERES COMME PERTIN	CLASSEMENT DE LA DEMANDE (Int. Cl. \$	
P,A	Citation du document avec indication, en eas de besoin, des parties pertinentes	Revendication concernée	
	WO-A-9 014 347 (NIPPON SHINYAKU CO. LTD)		
			DOMAINES TECHNIQUI RECHERCHES (Jal. 21).
= e			*