

BIOBANCOS

2° Encontro

• BLAST - Parte 2

Mulheres em
Bioinformática
& Data Science LA
Promovendo a colaboração entre mulheres

PERGUNTA # 1: BLAST

Qual a diferença entre o Max score, o Total score, o query cover, o E-value, a Identidade?

O que significa cada parâmetro?

PERGUNTA # 2: BLAST

O que precisamos olhar no resultado?

Qual característica é a mais relevante?

O Max score? O Total score? O query cover?

O E-value? A Identidade? Ou todos eles?

Seq	uences producing significant alignments	Download ~	New	Selec	ct colu	mns	∨ Sho	w 1	00 🗸
~	select all 100 sequences selected	GenBank G	<u>araphi</u>	cs <u>C</u>	Distanc	e tree c	of results	Nev	MSA Viewe
	Description	Scientific Name	Max Score		Query Cover	E value	Per. Ident	Acc. Len	Accession
~	Shigella dysenteriae strain ATCC 13313 16S ribosomal RNA, partial sequence	Shigella dysente	2747	2747	100%	0.0	100.00%	1487	NR_026332.1
~	Shigella flexneri strain ATCC 29903 16S ribosomal RNA, partial sequence	Shigella flexneri	2669	2669	100%	0.0	99.06%	1488	NR_026331.1
~	Escherichia fergusonii ATCC 35469 16S ribosomal RNA, complete sequence	Escherichia ferg	2658	2658	100%	0.0	98.92%	1542	NR_074902.1
~	Shigella sonnei strain CECT 4887 16S ribosomal RNA, partial sequence	Shigella sonnei	2656	2656	99%	0.0	98.92%	1530	NR_104826.1
~	Escherichia marmotae strain HT073016 16S ribosomal RNA, partial sequence	Escherichia mar	2652	2652	100%	0.0	98.86%	1504	NR_136472.1
~	Escherichia fergusonii ATCC 35469 16S ribosomal RNA, partial sequence	Escherichia ferg	2627	2627	98%	0.0	98.85%	1473	NR_027549.1
~	Shigella boydii strain P288 16S ribosomal RNA, partial sequence	Shigella boydii	2615	2615	99%	0.0	98.58%	1515	NR_104901.1
~	Escherichia coli strain NBRC 102203 16S ribosomal RNA, partial sequence	Escherichia coli	2614	2614	98%	0.0	98.77%	1467	NR_114042.1
~	Escherichia fergusonii strain NBRC 102419 16S ribosomal RNA, partial sequence	Escherichia ferg	2612	2612	98%	0.0	98.70%	1467	NR_114079.1
~	Escherichia albertii strain Albert 19982 16S ribosomal RNA, partial sequence	Escherichia albertii	2593	2593	99%	0.0	98.31%	1494	NR_025569.1
~	Citrobacter amalonaticus strain CECT 863 16S ribosomal RNA, partial sequence	Citrobacter amal	2542	2542	100%	0.0	97.52%	1504	NR_104823.1
~	Escherichia coli strain U 5/41 16S ribosomal RNA, partial sequence	Escherichia coli	2538	2538	96%	0.0	98.40%	1450	NR_024570.1
~	Kosakonia quasisacchari strain WCHEs120001 16S ribosomal RNA, partial sequence	Kosakonia quasi	2534	2534	100%	0.0	97.44%	1536	NR_169476.1
~	Kosakonia sacchari strain SP1 16S ribosomal RNA, partial sequence	Kosakonia sacch	2529	2529	100%	0.0	97.38%	1500	NR_118333.1
~	Citrobacter koseri strain LMG 5519 16S ribosomal RNA, partial sequence	Citrobacter koseri	2525	2525	99%	0.0	97.37%	1494	NR_118105.1
~	Metakosakonia massiliensis JC163 16S ribosomal RNA, partial sequence	Metakosakonia	2525	2525	100%	0.0	97.31%	1499	NR_125600.1

Example: BLAST - Pho4p (S. cerevisiae)

Results (output) of BLAST

https://www.quora.com/What-exactly-is-the-E-value-obtained-during-sequence-alignment-while-performing-BLAST-What-does-it-signify

Max Score x Total Score:

- Max Score: Pontuação de alinhamento mais alta calculada a partir da soma dos matchs por nucleotídeos ou aminoácidos correspondentes e penalidades por incompatibilidades e gaps.

- Total Score: A soma das pontuações de alinhamento de todos os segmentos da mesma sequência.

Query Cover:

- É um número que descreve quanto da sequência de consulta é coberta pela sequência de destino;

- Se a sequência de destino no banco de dados abranger toda a sequência de consulta, a cobertura da consulta será 100%.

Identity:

- A porcentagem de identidade é um número que descreve a semelhança da sequência de consulta com a sequência de destino (quantos caracteres em cada sequência são idênticos);
 - Quanto maior a porcentagem de identidade, mais significativa é a correspondência.

E-Value (Expeted Value = Valor Esperado):

- É um número que descreve quantas vezes esperaríamos um match por acaso em um banco de dados desse tamanho;
 - Quanto menor o E-value, mais significativa é a correspondência.

E-value x P-Value:

$$P(S > s) = 1 - \exp[-KMNe^{-\lambda s}]$$

$$E(S > s) = KMNe^{-\lambda s}$$

M: Tamanho da query

N: Tamanho do subject

x: Score

K e Lambda: Parâmetros positivos que dependem da composição da matriz e das sequências

E-value x P-Value:

$$P(S > s) = 1 - \exp[-KMNe^{-\lambda s}]$$

$$E(S > s) = KMNe^{-\lambda s}$$

O BLAST mostra o valor E em vez de P porque é mais fácil entender a diferença entre, por exemplo, um valor E de 5 e 10 do que valores de P de 0,993 e 0,99995.

No entanto, quando E < 0,01, os valores P e o valor E são quase idênticos.

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/video-lectures/lecture-2-local-alignment-blast-and-statistics/

Posição	Classificação	Score	Score acumulado	
0	Nenhuma	0	0	
1	Mismatch	-1	-1	
2	Match	1	0	
3	Mismatch	-1	-1	
4	Mismatch	-1	-2	Score_min
5	Match	1	-1	
6	Match	1	0	
7	Match	1	1	Score_max
8	Mismatch	-1	0	
9	Mismatch	-1	-1	
10	Mismatch	-1	-2	

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/video-lectures/lecture-2-local-alignment-blast-and-statistics/

Autoria própria

Posição	Classificação	Score	Score acumulado	
0	Nenhuma	0	0	
1	Mismatch	0	0	
2	Match	1	1	
3	Mismatch	0	1	
4	Mismatch	0	1	Score_min
5	Match	1	2	
6	Match	1	3	
7	Match	1	4	Score_max
8	Mismatch	0	4	
9	Mismatch	0	4	
10	Mismatch	0	4	

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/video-lectures/lecture-2-local-alignment-blast-and-statistics/

Autoria própria

