MA-111 Calculus II (D1 & D2)

Lecture 4

Saurav Bhaumik

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

February 03, 2022

Existence of Integrals over bounded sets in \mathbb{R}^2

Boundary of a subset Let $D \subseteq \mathbb{R}^2$ be a bounded set. A point $x \in \mathbb{R}^2$ is in the boundary of D if there is a sequence $\{x_n\}_n$ in D and a sequence $\{y_n\}_n$ in $\mathbb{R}^2 - D$, such that $\{x_n\}_n \to x$, $\{y_n\}_n \to x$. The set of boundary points of D is denoted by ∂D .

Example.
$$D = \{(x, y) \mid x^2 + y^2 \le r^2\}$$
. The boundary of D , $\partial D = \{(x, y) \mid x^2 + y^2 = r^2\}$.

Example.
$$R = [a, b] \times [c, d]$$
. The boundary of rectangle R , $\partial R = \{(a, y) \in \mathbb{R}^2 \mid c \leq y \leq d\} \cup \{(b, y) \in \mathbb{R}^2 \mid c \leq y \leq d\} \cup \{(x, c) \in \mathbb{R}^2 \mid a \leq x \leq b\} \cup \{(x, d) \in \mathbb{R}^2 \mid a \leq x \leq b\}$.

Example. Let $S = \{(x, y) \mid x, y \in \mathbb{Q}\}$. Then $\partial S = \mathbb{R}^2$.

Suppose D is a bounded subset contained in a rectangle R, and $f:D\to\mathbb{R}$ is a bounded *continuous* function extended to $f^*:R\to\mathbb{R}$ by defining $f^*=0$ on the complement of D. Then all the discontinuities of

 f^* lie on the boundary ∂D .

Example D = $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Let $f(x,y) = x^2 + y^2$ on disk D. Extend the function f to f^* on the rectangle $R = [-2,2] \times [-2,2]$.

The points of discontinuity of f^* lie on the boundary of D i.e., $\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}.$

Convention : A path γ in \mathbb{R}^2 (or \mathbb{R}^3) will mean a continuous function $\gamma:[a,b]\to\mathbb{R}^2$ (or $\gamma:[a,b]\to\mathbb{R}^3$) for $a,b\in\mathbb{R}$. It is said to be *closed* if $\gamma(a)=\gamma(b)$.

By a *curve* γ we mean the image of a path γ in \mathbb{R}^2 (or \mathbb{R}^3). A "good" curve is always of measure zero (hence content zero).

Theorem

Let $D \subset \mathbb{R}^2$ be a bounded set whose boundary ∂D is given by the finitely many continuous closed curves then any bounded and continuous function $f:D \to \mathbb{R}$ is integrable over D.

We will now discuss two classes of regions as in the theorem. They will be called elementary regions of type I and type II. Continuous functions defined on elementary regions of types I & II are always integrable by the theorem.

Elementary region: Type 1

Let $h_1, h_2 : [a, b] \to \mathbb{R}$ be two continuous functions such that $h_1(x) \le h_2(x)$ for all $x \in [a, b]$. Consider the set of points

$$D_1 = \{(x,y) \mid a \le x \le b \text{ and } h_1(x) \le y \le h_2(x)\}.$$

Such a region is said to be of *Type 1* and for every $x \in \mathbb{R}$ vertical cross-section of D_1 is an interval.

Example. $D_1 = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, \quad x^2 \le y \le 2x\}$. Here for all $x \in [0, 2], \ h_1(x) = x^2 \text{ and } h_2(x) = 2x$. Note $h_1(x) \le h_2(x)$ for $x \in [0, 2]$.

Type 1 contd.

Example. The closed disc D_r of radius r around the origin,

$$D_r := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le r^2\}.$$

Take $h_1(x) = -\sqrt{r^2 - x^2}$ and $h_2(x) = \sqrt{r^2 - x^2}$. We see that D_r is of Type 1.

Evaluating integrals on regions of Type 1

Let D be a region of Type 1 and assume that $f: D \to \mathbb{R}$ is continuous. Let $D \subset R = [\alpha, \beta] \times [\gamma, \delta]$ and let f^* be the corresponding function on R (obtained by extending f by zero).

The region D is bounded by continuous curves (the straight lines x=a and x=b and the graphs of the curves $y=h_1(x)$ and $y=h_2(x)$). Hence we can conclude that f^* is integrable on R. Applying Fubini's theorem on f^* we get,

$$\int \int_D f(x,y) dx dy := \int \int_R f^*(x,y) dx dy = \int_\alpha^\beta \left| \int_\gamma^\delta f^*(x,y) dy \right| dx.$$

In turn, this gives

$$\int_{\alpha}^{\beta} \left[\int_{h_1(x)}^{h_2(x)} f^*(x,y) dy \right] dx = \int_{a}^{b} \left[\int_{h_1(x)}^{h_2(x)} f(x,y) dy \right] dx,$$

since $f^*(x, y) = 0$ if $y < h_1(x)$ or $y > h_2(x)$. Finally, we get

$$\int \int_D f(x,y) dx dy = \int_a^b \left[\int_{h_1(x)}^{h_2(x)} f(x,y) dy \right] dx.$$

Examples

Example Let $D = \{(x, y) \mid 0 \le x \le 2, \quad x^2 \le y \le 2x\}$ and f(x, y) = x + y. Find $\iint_D f(x, y) dx dy$.

Ans Note D is a bounded set in \mathbb{R}^2 enclosed by the graphs of the curves $y=x^2$ and y=2x and hence ∂D is of content zero. Since f is continuous over D and D is bounded with ∂D of content zero, f is integrable over D.

$$\int \int_{D} f(x,y) \, dx dy = \int_{0}^{2} \left(\int_{x^{2}}^{2x} (x+y) \, dy \right) dx = \int_{0}^{2} \left[xy + \frac{y^{2}}{2} \right]_{y=x^{2}}^{y=2x} dx$$
$$= \int_{0}^{2} \left[2x^{2} + 4\frac{x^{2}}{2} - x^{3} - \frac{x^{4}}{2} \right] dx$$

Example Let $D = \{(x, y) \mid x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$ and $f(x, y) = \sqrt{1 - y^2}$. Find $\int \int_D f(x, y) dx dy$.

Ans Type 1, i.e, $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le \sqrt{1 - x^2}\}$. Then

$$\int \int_{\Omega} f(x,y) \, dx dy = \int_{0}^{1} \left(\int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} \, dy \right) dx.$$

Not easy to compute!

Elementary region: Type 2

Similarly, if $k_1, k_2 : [c, d] \to \mathbb{R}$ are two continuous functions such that $k_1(y) \le k_2(y)$, for all $y \in [c, d]$. The set of points

$$D_2 = \{(x,y) \mid c \le y \le d \text{ and } k_1(y) \le x \le k_2(y)\}$$

is called a region of Type 2 and for every $y \in \mathbb{R}$ horizontal cross-section of D_2 is an interval.

Example
$$D_2 = \{(x, y) \mid x^2 + y^2 \le 1\}$$
. If we take $k_1(y) = -\sqrt{1 - y^2}$ and $k_2(y) = \sqrt{1 - y^2}$, we see that D_2 is of Type 2.

Evaluating integrals on regions of type 2

Using exactly the same reasoning as in the previous case (basically, interchanging the roles of x and y) we can obtain a formula for regions of Type 2.

Let D be a bounded set of Type 2 in \mathbb{R}^2 . Let $f: D \to \mathbb{R}$ be a continuous function on D. We get

$$\int \int_D f(x,y) dx dy = \int_c^d \left[\int_{k_1(y)}^{k_2(y)} f(x,y) dx \right] dy.$$

Example Let $D=\{(x,y)\mid x^2+y^2\leq 1,\quad x\geq 0,\quad y\geq 0\}.$ Evaluate the integral $\int\int_{\mathbb{R}}\sqrt{1-y^2}dxdy.$

Ans.
$$\int \int_{D} \sqrt{1 - y^2} dx dy = \int_{0}^{1} \left(\int_{0}^{\sqrt{1 - y^2}} \sqrt{1 - y^2} dx \right) dy$$
$$= \int_{0}^{1} [x \sqrt{1 - y^2}]_{x=0}^{\sqrt{1 - y^2}} dy = \int_{0}^{1} (1 - y^2) dy = \frac{2}{3}.$$

Remark

There exist bounded subsets of \mathbb{R}^2 which are not elementary regions; for example, *star-shaped subset* of \mathbb{R}^2 or an *annulus*.

Sometime, we can write D as a union of regions of Types 1 and 2 and then we call it a region of *type 3*.

Note the Domain Additivity theorem will then allow us to evaluate integrals which are defined over finite union of such sets.

We could also view the disc as a region of type 3, by dividing it into four quadrants.

Remark contd.

What about the annulus $A = \{(x, y) \in \mathbb{R}^2 \mid s^2 \le x^2 + y^2 \le r^2\}$? Is it a type 3 region? yes

Polar Coordinates

Change of variables from Cartesian coordinate system to polar coordinate system, any $(x,y)\in\mathbb{R}^2$ in Cartesian coordinate can be written as

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad r > 0, \theta \in [0, 2\pi].$$

Transformation of region under change of variables:

Ex. $D:=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq a^2\}$ is transformed in polar coordinate system as a rectangle

$$D^* = \{(r, \theta) \mid 0 \le r \le a, \quad \theta \in [0, 2\pi]\}.$$

The integral in polar coordinates

Let
$$D^* = \{(r, \theta) \in [0, \infty) \times [0, 2\pi) : (r\cos(\theta), r\sin(\theta)) \in D\},$$

$$g(r, \theta) := f(r\cos(\theta), r\sin(\theta)), \quad (r, \theta) \in D^*.$$

To integrate the function g on a domain D^* we need to cut up D^* into small rectangles, but these will be rectangles in the r- θ coordinate system.

What shape does a rectangle $[r, r + \Delta r] \times [\theta, \theta + \Delta \theta]$ represent in the *x-y* plane? A part of a sector of a circle.

Then we will be integrating over this sector instead of rectangle.

What is the area of this part of a sector?

Ans: It is
$$\frac{1}{2} \cdot [(r + \Delta r)^2 \Delta \theta - r^2 \Delta \theta] \sim r^* \Delta r \Delta \theta$$
, $r \leq r^* \leq r + \Delta r$.

Partitioning the region into subrectangles is equivalent to partitioning the region into parts of sectors as shown earlier.

It follows that the integral we want is approximated by a sum of the form

$$\sum_{i}\sum_{j}g(r_{i}^{*},\theta_{j}^{*})r_{i}^{*}\Delta r_{i}\Delta\theta_{j},$$

where $\{(r_i^*, \theta_j^*)\}$ is a tag for the partition of the "rectangle" in polar coordinates and

$$\int \int_{D} f(x, y) \, dxdy = \int \int_{D^{*}} f(r \cos \theta, r \sin \theta) \, rdrd\theta,$$

where D is the image of the region D^* .

This is the change of variable formula for polar coordinates.

Examples

Example1: Integrate $f(x, y) = x^2 + y^2$ on $D = \{(x, y) \mid x^2 + y^2 \le 1\}$.

Solution: Let us use polar coordinates. Let

$$D^* = \{(r, \theta) \mid 0 \le r \le 1, \quad 0 \le \theta \le 2\pi\}.$$

Denoting $x = r \cos \theta$ and $y = r \sin \theta$, the polar coordinates will transform D^* to D and

$$g(r,\theta) = f(r\cos\theta, r\sin\theta) = r^2.$$

$$\int \int_{D} f(x,y) \, dxdy = \int \int_{D^{*}} g(r,\theta) \, r \, drd\theta = \int \int_{[0,1]\times[0,2\pi]} r^{2} \cdot r \, drd\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{1} r^{3} \, drd\theta = \int_{0}^{2\pi} \frac{r^{4}}{4} \Big|_{0}^{1} \, d\theta = \frac{\pi}{2}$$

Examples contd.

Example 2: Integrate $f(x,y) = e^{x^2+y^2}$ on $D = \{(x,y) \mid x^2+y^2 \le 1\}$. Solution: Using the same transformation as above

$$x = r \cos \theta, \quad y = r \sin \theta,$$

we get

$$\int \int_{D} f(x,y) \, dxdy = \int \int_{D^{*}} g(r,\theta) \, r \, drd\theta = \int \int_{[0,1]\times[0,2\pi]} e^{r^{2}} r \, drd\theta$$
$$= \int_{0}^{2\pi} \int_{0}^{1} e^{r^{2}} r \, drd\theta = \int_{0}^{2\pi} \frac{e^{r^{2}}}{2} \Big|_{0}^{1} \, d\theta = \pi(e-1)$$

An Application: The integral of the Gaussian

The following improper integral

$$I=\int_{-\infty}^{\infty}e^{-x^2}dx.$$

can be defined as

$$I = \lim_{T \to \infty} \int_{-T}^{T} e^{-x^2} dx.$$

Consider

$$I^{2} = \int_{-\infty}^{\infty} e^{-x^{2}} dx \cdot \int_{-\infty}^{\infty} e^{-y^{2}} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} dx dy.$$

But this iterated integral can be viewed as a double integral on the whole plane. Now under polar coordinates, the plane is sent to the plane.

Hence, we can write this as

$$\int_0^{2\pi} \left[\int_0^\infty e^{-r^2} r dr \right] d\theta.$$

But we can now evaluate the inner integral. Hence, we get

$$\int_0^{2\pi} \left[-\frac{1}{2} e^{-r^2} \Big|_0^{\infty} \right] d\theta = \int_0^{2\pi} \frac{1}{2} d\theta = \pi$$

Since $I^2 = \pi$, we see that $I = \sqrt{\pi}$.

Using the above result you can easily conclude that

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}.$$

The integral above arises in a number of places in mathematics - in probability, the study of the heat equation, the study of the Gamma function (next semester) and in many other contexts.

Example

Example Evaluate $\int \int_D (3x+4y^2) \, dx dy$, where D is the region in the upper half-plane bounded by the circled $x^2+y^2=1$ and $x^2+y^2=4$. Ans The region

$$D = \{(x, y) \mid y \ge 0, \quad 1 \le x^2 + y^2 \le 4\}.$$

In polar coordinate, after using change of variables $x=r\cos\theta$ and $y=r\sin\theta$, in $r-\theta$ plane, D becomes

$$D^* = \{(r, \theta) \mid 1 \le r \le 2, \quad 0 \le \theta \le \pi\}.$$

$$\int \int_{D} (3x + 4y^{2}) \, dx dy = \int_{\theta=0}^{\pi} \int_{r=1}^{2} (3r \cos \theta + 4r^{2} \sin^{2} \theta) r \, dr d\theta$$
$$= \int_{0}^{\pi} [r^{3} \cos \theta + r^{4} \sin^{2} \theta]_{r=1}^{2} \, d\theta = \int_{0}^{\pi} [7 \cos \theta + 15 \sin^{2} \theta] \, d\theta = \frac{15\pi}{2}.$$

Triple integrals

Suppose we have a bounded function $f: B = [a,b] \times [c,d] \times [e,f] \to \mathbb{R}$. We divide the rectangular cuboid B into smaller ones B_{ijk} , and choose tags $t_{ijk} \in B_{ijk}$. The Riemann sum

$$S(f, P, t) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} f(t_{ijk}) \Delta B_{ijk},$$

where ΔB_{ijk} is the volume of B_{ijk} . We say f is Riemann integrable over B with the value of integral S if for every $\epsilon > 0$ there is $\delta > 0$ such that $|S(f,P,t)-S| < \epsilon$ for any tagged partition P with $||P|| < \delta$. We have similar notions of the Darboux integrals U(f), L(f), etc. Riemann integrability and Darboux integrability are again equivalent.

The triple integral is denoted by

$$\iiint_B f dV, \iiint_B f(x, y, z) dV \quad \text{or} \quad \iiint_B f(x, y, z) dx dy dz.$$

All the theorems for integrals over rectangles go through for integrals over rectangular cuboids.

Fubini's theorem Let f be integrable on the cuboid B. Then any iterated integral that exists is equal to the triple integral. That is,

$$\iiint_B f(x,y,z)dxdydz = \int_a^b \int_c^d \int_e^f f(x,y,z)dzdydx,$$

whenever the right hand side iterated integral exists. Similarly for five other possibilities for the iterated integrals.

Proposition Any continuous $f: B \to \mathbb{R}$ is integrable on B and all iterated integrals exist and their values are equal to the integral of f on B.

Integrating over bounded regions Given a bounded region $B \subset \mathbb{R}^3$ and a bounded function $f: B \to \mathbb{R}$, the notion of triple integral of f (i.e. integrability and value of the integral) is defined similarly as in the 2 dimensional case. That is, first realize B as the subset of a rectangular cuboid R, then extend f to a function $f^*: R \to \mathbb{R}$ (by defining $f^* = 0$ outside B). We say f is integrable over B if and only if f^* is integrable over R.

Elementary regions in \mathbb{R}^3

The triple integrals that are easiest to evaluate are those for which the region W in space can be described by bounding z between the graphs of two functions in x and y with the domain of these functions being an elementary region in two variables.

For example,

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid \gamma_1(x, y) \le z \le \gamma_2(x, y), (x, y) \in D\},\$$

where γ_1 and γ_2 are continuous on $D \subset \mathbb{R}^2$ and D is an elementary region in \mathbb{R}^2 .

Example:

• The region W between the paraboloid $z=x^2+y^2$ and the plane z=4.

• The region bounded by the planes x = 0, y = 0, z = 0, x + y = 4 and x = z - y - 1.

Elementary regions (Example)

Suppose that the region W lies between $z=\gamma_1(x,y)$ and $z=\gamma_2(x,y)$. Suppose that the projection of W on the xy plane is bounded by the curves $y=\phi_1(x)$ and $y=\phi_2(x)$ and the straight lines x=a and x=b, then for a continuous function f defined over W, we have

$$\iiint_W f(x,y,z)dxdydz = \int_a^b \int_{\phi_1(x)}^{\phi_2(x)} \int_{\gamma_1(x,y)}^{\gamma_2(x,y)} f(x,y,z)dzdydx.$$

Example: Let us find the volume of the sphere using the above formula. In other words, let us integrate the function 1 on the region W, where W is the unit sphere, i.e.,

$$\int \int \int_{W} 1 dx dy dz =?, \text{ where } W = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}.$$

The volume of the unit sphere

The sphere can be described as the region lying between $z = -\sqrt{1 - x^2 - y^2}$ and $z = \sqrt{1 - x^2 - y^2}$.

The projection of the sphere onto the xy plane gives a disc of unit radius. This can be described as the set of points lying between the curves $-\sqrt{1-x^2}$ and $\sqrt{1-x^2}$ and the lines $x=\pm 1$. Thus our triple integral reduces to the iterated integral

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} dz dy dx.$$

This yields

$$2\int_{-1}^{1} \left[\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} (1-x^2-y^2)^{1/2} dy \right] dx.$$

After evaluating the inner integral we obtain

$$2\pi \int_{-1}^{1} \frac{1-x^2}{2} dx = \frac{4}{3}\pi.$$