

Agenda

- Definición.
- Historia
- Componentes
- Usuarios. Tipos.
- Tipos de BD
- Ventajas
- Arquitectura ANSI/SPARC
- Preguntas, Ejercicios

Autor Hernán Puelman

Definición

BASE DE DATOS (BD): Sistema de software cuyo objetivo es almacenar datos y permitirle a los usuarios realizar operaciones sobre dichos datos.

En el próximo slide veremos una BASE DE DATOS (BD) muy pequeña, de una sola tabla y algunas operaciones que se pueden realizar sobre ella.

Definición

NOTEBOOKS

#ID	MARCA	MODELO	RAM	FECHA FABRICACIÓN	SSD
1	Lenovo	Thinkpad	16	01/04/2022	S
2	Dell	Inspiron	12	04/04/2020	N
5	Lenovo	Yoga	24	10/01/2021	S
33	Samsung	Galaxy	16	01/12/2022	S
11	HP	Pavilion	8	11/05/2022	N
47	Apple	Mac Pro	32	20/12/2022	S

Operaciones

NOTEBOOKS

#ID	MARCA	MODELO	RAM	FECHA FABRICACIÓN	SSD
1	Lenovo	Thinkpad	16	01/04/2022	S
2	Dell	Inspiron	12	04/04/2020	N
5	Lenovo	Yoga	24	10/01/2021	S
11	HP	Pavilion	8	11/05/2022	N
33	Samsung	Galaxy	16	01/12/2022	S
47	Apple	Mac Pro	32	20/12/2022	S
53	Bangho	Bacis	8	06/01/2021	

INSERT INTO Notebooks (#id, marca, modelo, RAM, FechaFabricacion) VALUES (53, 'Bangho', 'Bacis', 8, '2021/01/06')

Operaciones

NOTEBOOKS

#ID	MARCA	MODELO	RAM	FECHA FABRICACIÓN	SSD
1	Lenovo	Thinkpad	16	01/04/2022	S
2	Dell	Inspiron	12	04/04/2020	N
5	Lenovo	Yoga	24	10/01/2021	S
11	HP	Pavilion	8	11/05/2022	N
33	Samsung	Galaxy	16	01/12/2022	S
47	Apple	Mac Pro	32	20/12/2022	S
53	Bangho	Ban Pro	8	06/01/2021	null

UPDATE Notebooks

SET modelo = 'Ban Pro'

WHERE #id = 53;

Operaciones

NOTEBOOKS

#ID	MARCA	MODELO	RAM	FECHA FABRICACIÓN	SSD
1	Lenovo	Thinkpad	16	01/04/2022	S
2	Dell	Inspiron	12	04/04/2020	N
5	Lenovo	Yoga	24	10/01/2021	S
11	HP	Pavilion	8	11/05/2022	N
33	Samsung	Galaxy	16	01/12/2022	S
53	Bangho	Ban Pro	8	06/01/2021	null

DELETE Notebooks WHERE #ID = 47;

Historia

&D. let ardit cost link Stehn Codd - Modelo Relacional Oracle Informit Ban-DB2 60's 1970 1974 1969

1979 1981

1986 1987

2008

2009

CIUDADES VENDEDORES

Key Value AAA,BBB,CCC AAA.BBB AAA,DDD AAA,2,01/01/2015 3,ZZZ,5623

Autor Hernán Puelman

Componentes **SOFTWARE DATOS USUARIOS HARDWARE**

DATOS

- Información consistente (nula o mínima redundancia).
- Información compartida.
- Se percibe a la BD de diferentes formas (vistas).

SOFTWARE

- DBMS: Database Management System
- Interfaz entre la base de datos y los programas o usuarios finales
- Almacenamiento, lectura, actualización y borrado de información
- Accesos y control de la información
- Integridad
- Copias de seguridad

HARDWARE

- Servidores, clusters.
- O Procesadores.
- Memoria
- Unidades de almacenamiento.

USUARIOS

- ☐ Usuarios finales: No saben de BD.
- **□** Programadores.
- ☐ Usuarios especializados: Análisis de datos.
- ☐ Analistas, Diseñadores de sistemas. Requerimientos. Modelos.
- ☐ Administrador de BD (DBA). "Super usuario"

Usuarios - DBA

■ Backup/Recovery

TIPOS DE BASES DE DATOS

- Relacionales
- O No Sql
 - Clave/Valor
 - Documentales
 - Columnares
 - Grafos
- Otros (Time Series, OO, etc.)

Relacional

Oracle, MySql, Sql Server, Postgres, etc.

Relacionales

Se utilizan para un sin número de casos.

Especialmente cuando se requiere manejo de transacciones y consistencia.

Ej. Aplicaciones que manejan dinero, stock en tiempo real, etc.

No Sql

- Datos almacenados que no requieren estructuras fijas
- Normalmente no garantizan consistencia ACID
- Escalan bien horizontalmente.
- Mayor volumen de datos.
- También se las denomina "no solo SQL"

Clave/Valor

Key	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
КЗ	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

KEY	VALUE
User:1	Jorge, Vieytes, 18-05-2013, \$100000, Ingeniero
User:222	Ana, Ferreyra, 03-10-2001, \$900000, Independiente
Prod:43	BAC5673 , A, 56, 19-10-2024, Azul, 467
Cat:A	A, móvil
Prod:97	PET89, B2, 220, , , 3092
User:34	Vera, Torres, 22-08-1999, \$100000

Productos: Redis, MemCache, Riak KV

Clave/Valor

- Buenos tiempos de respuesta
- No implementan integridad.
- Tamaño pequeño
- Utilizadas para Cache y
- o Manejo de sesiones.

Documentales

```
Colección
"id ":"123",
"nombre": "Juan",
                              "id ":"927",
"apellido":"Perez",
                              "nombre": "Ana",
"edad":54,
                              "apellido": "Saenz",
"estado civil":"S",
                              "edad":25,
"domicilio": {
                              "domicilio": {
     "calle":"Olavarria",
                                    "calle":"Guemes".
     "nro":"238" },
                                                             "id ":"333",
                                    "nro":"4321" },
"hobies":[futbol, golf]
                                                             "nombre":"Vera",
                               "hobies":[lectura, tiro]
                                                             "apellido": "Torres",
                                                             "edad":55,
```

Productos: MongoDb, CouchBase, etc.

Documentales

- Almacenan datos en forma de árbol.
- Son "Schemaless"
- Se utilizan para almacenar datos no estructurados (logs, entidades con propiedades diferentes, diferentes categorías).
- No suelen manejar transacciones.

Wide column

ID	Nombre	Edad	Sueldo
1	Juan	45	
10	Ana		2.000
23	Cecilia	54	3.500

ID	Columna	Valor
1	Nombre	Juan
1	Edad	45
10	Nombre	Ana
10	Sueldo	2.000
23	Nombre	Cecilia
23	Edad	54
23	Sueldo	3.500

Productos: Cassandra, Hbase.

Wide column

- Son schemaless
- Solo almacenan las columnas con datos reales.
- Escalan horizontalmente.
- No existe integridad.
- No garantizan la consistencia
- No manejan Transacciones.

Productos: Cassandra, Hbase.

Grafos

Productos: Neo4j ...

Grafos

 Están formadas por nodos y arcos
 Redes sociales, logística, Detección de fraudes, recomendaciones, etc.

Productos: Neo4j ...

RDBMS

Relational Data Base Management System: "BD que almacena datos relacionados entre si, representados por tablas con mínimo o nulo nivel de redundancia."

Entidades, relaciones y Propiedades.

Entidades: Conjunto de objetos distinguibles y agrupados de los cuales se desea registrar información.

Relaciones: Vínculos entre las entidades.

Propiedades: Datos relativos a las entidades. Simples y de un tipo específico.

Entidades, relaciones y Propiedades.

DER CC

Modelo de datos.

Lógico

Físico

RDBMS - Ventajas

- Los datos pueden compartirse
- Control de la redundancia
- Minimizar la inconsistencia de datos
- Manejo de transacciones
- Integridad de datos
- Seguridad
- Independencia de Datos (slide siguiente)
- Lenguaje estándar
- Diferentes "visiones" para diferentes usuarios.

Independencia de Datos

Independencia Lógica: Inmunidad de las aplicaciones frente a cambios en las tablas de la aplicación.

Independencia Física: Inmunidad de las aplicaciones frente a cambios en la representación física y acceso a los datos.

En los sistemas de almacenamiento que no son Bases de Datos suelen coincidir los registros lógicos y los físicos.

RDBMS – Transacciones

Conjunto de operaciones que deben (o no) realizarse en su totalidad."

RDBMS – Transacciones

CC Propiedades

A Atomicidad

C Consistencia

Aislamiento (Isolation)

D Durabilidad

RDBMS – Transacciones

Atomicidad: Las transacciones son atómicas

Consistencia: La BD pasa de un estado consistente a otro consistente.

Aislamiento: Concurrencia. Las operaciones de una transacción están ocultas a las demás.

Durabilidad: Las actualizaciones perduran en la BD aunque haya una caida posterior.

Finalmente ... Qué es un sistema relacional?

LL Es aquel que:

- Los datos son percibidos como tablas.
- Los operaciones disponibles generan nuevas tablas a partir de las anteriores.

Definición. Esquema de Base de datos:

Es la visión que tienen los diferentes usuarios de la Base de Datos.

Arquitectura - ANSI-SPARC

RDBMS - Arq. ANSI-SPARC

Externo

Nivel de abstracción más alto. Provee diferentes vistas de la misma BD a diferentes usuarios brindando seguridad escondiendo partes de la DB a usuarios particulares.

Lógico

Describe la estructura de la BD. Explica que datos se almacenan en las tablas de la DB, tipos y relaciones entre las tablas. Hay un solo esquema conceptual por DB.

Nivel Físico

Nivel mas bajo de abstracción. Describe como se almacenan los datos en la BD y provee los métodos para accederlos.

RDBMS - Arq. ANSI-SPARC

Interface entre el nivel Externo y Conceptual

Define la correspodencia entre los datos de la capa Externa y la capa conceptual.

Interface entre el nivel Conceptual e Interno

La interface entre el nivel conceptual e interno identifica como se almacenan y acceden los registros lógicos en el nivel interno.

RDBMS - Funciones

- Definición de datos.
- Consulta y recuperación de datos.
- Manipulación de datos.
- Ejecución.
- Optimización.
- Integridad de datos
- Seguridad
- Catálogo

RDBMS - Funciones

Fig. 2.4 Major DBMS functions and components AUTOT Hernán Puelman

Herramientas y librerías

- Generadores de reportes.
- Herramientas de administración y monitoreo.
- Lenguajes de aplicaciones.
- Reorganización
- Estadísticas
- Carga/descarga (Import/Export)
- Backup/recovery

File System vs RDBMS

- No conoce la estructura interna de los registros.
 - En los sistemas No DBMS coincide la estructura interna de los registros.
- No implementan restricciones de seguridad e integridad.
- No hay soporte de concurrencia.
- No poseen un catálogo.
- No proporcionan independencia de datos.
- No hay integración entre los diferentes archivos.

Ejercicios

- 1. Qué tipos de componentes tiene una BD?
- 2. El DBMS a qué tipo de componente de la BD pertenece?
- 3. Diferencia entre el modelo de datos y su implementación.
- 4. De un ejemplo de Independencia de Datos física
- 5. De un ejemplo de Independencia de Datos lógica
- 6. Qué es la A en ACID y qué significa?
- Las tablas a qué nivel de la arquitectura ANSI-SPARC pertenecen?
- 8. Qué niveles del modelo ANSI SPARC son relacionales?
- 9. Cuántos esquemas tiene cada nivel en el modelo ANSI SPARC?
- 10. Qué es y cuál es la función del Catálogo en un RDBMS?
- 11. Por qué un archivo implementado por File System no proporciona independencia de datos?
- 12. Qué diferencias hay en cómo implementa la seguridad un File System y un DBMS respecto al acceso a los datos?
- 13. De dos ejemplos de utilitarios que comúnmente acompañan a un DBMS