2/22/24, 12:40 PM ### Network Slicing Recognition The telecom industry is going through a massive digital transformation with the adoption of ML, AI, feedback-based automation and advanced analytics to handle the next generation applications and services. Al concepts are not new; the algorithms used by Machine Learning and Deep Learning are being currently implemented in various industries and technology verticals. With growing data and immense volume of information over 5G, the ability to predict data proactively, swiftly and with accuracy, is critically important. Data-driven decision making will be vital in future communication networks due to the traffic explosion and Artificial Intelligence (AI) will accelerate the 5G network performance. Mobile operators are looking for a programmable solution that will allow them to accommodate multiple independent tenants on the same physical infrastructure and 5G networks allow for end-to-end network resource allocation using the concept of Network Slicing (NS). Network Slicing will play a vital role in enabling a multitude of 5G applications, use cases, and services. Network slicing functions will provide an end-to-end isolation between slices with an ability to customize each slice based on the service demands (bandwidth, coverage, security, latency, reliability, etc). Your Task is to build a Machine Learning model that will be able to to proactively detect and eliminate threats based on incoming connections thereby selecting the most appropriate network slice, even in case of a network failure. LTE/5g - User Equipment categories or classes to define the performance specifications Packet Loss Rate - number of packets not received divided by the total number of packets sent. **Packet Delay** - The time for a packet to be received. **Slice type** - network configuration that allows multiple networks (virtualized and independent) **GBR** - Guaranteed Bit Rate **Healthcare** - Usage in Healthcare (1 or 0)

Industry 4.0 - Usage in Digital Enterprises(1 or 0) **IoT Devices** - Usage **Public Safety** - Usage for public welfare and safety purposes (1 or 0) Smart City & Home - usage in daily household chores Smart Transportation - usage in public transportation

###! pip install neattext

import pandas as pd import numpy as np import neattext.functions as nfx import seaborn as sn

Smartphone - whether used for smartphone cellular data

from sklearn.feature_extraction.text import TfidfVectorizer,CountVectorizer from sklearn.metrics.pairwise import cosine_similarity,linear_kernel

##! pip uninstall numpy ##!pip install numpy==1.20

##!mkdir ~/.kaggle

##!cp /kaggle.json ~/.kaggle/

##! pip install kaggle ##!pip install keras-tuner

##!kaggle datasets download -d gauravduttakiit/network-slicing-recognition

###!unzip /content/network-slicing-recognition.zip

train_dataset = pd.read_csv("/content/train_dataset.csv") test_dataset = pd.read_csv("/content/test_dataset.csv")

print(train_dataset.shape, test_dataset.shape)

(31583, 17) (31584, 16)

test_dataset['slice Type'] = 0

train_dataset = train_dataset.reset_index() test_dataset = test_dataset.reset_index()

train_dataset.rename(columns = { "index" : "ID"}, inplace = True) test_dataset.rename(columns = { "index" : "ID"}, inplace = True) train_dataset.columns

'Industry 4.0', 'IoT Devices', 'Public Safety', 'Smart City & Home', 'Smart Transportation', 'Smartphone', 'slice Type'], dtype='object')

Index(['ID', 'LTE/5g Category', 'Time', 'Packet Loss Rate', 'Packet delay', 'IoT', 'LTE/5G', 'GBR', 'Non-GBR', 'AR/VR/Gaming', 'Healthcare',

train_dataset['slice Type'].value_counts() 1 16799

3 7392 2 7392 Name: slice Type, dtype: int64

from matplotlib_venn import venn2, venn2_circles, venn2_unweighted from matplotlib_venn import venn3, venn3_circles

<matplotlib venn. common.VennDiagram at 0x7e8ab20e9ed0>

set_numbers_test = set(test_dataset[['ID']].drop_duplicates().sort_values(by = 'ID')['ID'].tolist()) venn2((set_numbers_train, set_numbers_test), set_labels = ('Train numbers', 'Test numbers'))

set_numbers_train = set(train_dataset[['ID']].drop_duplicates().sort_values(by = 'ID')['ID'].tolist())

31583

Train numbersTest numbers

train_dataset.columns

Index(['ID', 'LTE/5g Category', 'Time', 'Packet Loss Rate', 'Packet delay', 'IoT', 'LTE/5G', 'GBR', 'Non-GBR', 'AR/VR/Gaming', 'Healthcare', 'Industry 4.0', 'IoT Devices', 'Public Safety', 'Smart City & Home', 'Smart Transportation', 'Smartphone', 'slice Type'], dtype='object')

###! pip install klib ###!pip install keras-tuner

import klib

train_dataset = klib.clean_column_names(train_dataset)

train_dataset = klib.convert_datatypes(train_dataset)

test_dataset = klib.clean_column_names(test_dataset)

test_dataset = klib.convert_datatypes(test_dataset) train_dataset.columns

Index(['id', 'lte_5g_category', 'time', 'packet_loss_rate', 'packet_delay',

'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone', 'slice_type'], dtype='object')

Anomaly Detection Using One-Class SVM from sklearn import svm

clf = svm.OneClassSVM(nu=0.05, kernel="rbf", gamma=0.1) clf.fit(train_dataset)

pred = clf.predict(train_dataset)

inliers are labeled 1, outliers are labeled -1 normal = train_dataset[pred == 1] abnormal = train_dataset[pred == -1]

OneClassSVM

OneClassSVM(gamma=0.1, nu=0.05)

print(normal.shape, abnormal.shape)

(18373, 18) (13210, 18) normal.columns

Index(['id', 'lte_5g_category', 'time', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone', 'slice_type'], dtype='object')

2 4294 3 4240 Name: slice_type, dtype: int64

normal['slice_type'].value_counts()

train_dataset = normal

print(train_dataset.shape) print(train_dataset.columns)

(18373, 18)

1 9839

'smart_transportation', 'smartphone', 'slice_type'],

dtype='object') test_dataset['slice_type'] = 0

klib.cat_plot(train_dataset)

No columns with categorical data were detected.

klib.corr_interactive_plot(train_dataset)

https://colab.research.google.com/drive/1YV2kF0QuUZkfhwlGt5o6NupSGUtgG8qj#scrollTo=8mBNyAoOo1dm&printMode=true

Network_Slicing_Recognition_pycaret.ipynb - Colaboratory

2/22/24, 12:40 PM

https://colab.research.google.com/drive/1YV2kF0QuUZkfhwlGt5o6NupSGUtgG8qj#scrollTo=8mBNyAoOo1dm&printMode=true

2/22/24, 12:40 PM Network_Slicing_Recognition_pycaret.ipynb - Colaboratory

Pearson Correlation x_train2.astype(float).corr() 0.019787 -0.075152 lte_5g_category 1.000000 0.022254 -0.015085 0.095605 -0.095605 -0.007156 0.007156 -0.034010 0.018408 0.045106 0.019458 0.019485 0.047347 packet_loss_rate packet_delay -0.015085 0.306436 1.000000 -0.187910 0.187910 0.424124 -0.424124 -0.127614 -0.238384 -0.284384 0.437355 -0.249763 0.200818 -0.241206 0.268831 io_t -0.095605 -0.170858 -0.265817 -0.273314 -0.394585 lte_5g 0.187910 -1.000000 1.000000 0.122402 -0.122402 0.321284 -0.260863 -0.385515 -0.263951 0.807524 gbr -0.045353 -0.281337 -0.035940 0.007156 0.022315 -0.037476 0.213782 0.223986 0.216313 -0.099995 non_gbr 0.018408 -0.174050 -0.087228 -0.060145 -0.061841 -0.089280 healthcare -0.059722 -0.210653 0.045106 industry_4_0 0.019458 -0.063016 -0.090976 0.389878 -0.085403 -0.060145 -0.088885 1.000000 -0.060857 -0.214654 io_t_devices public_safety 0.047347 -0.093542 1.000000 smart_city_and_home 0.578743 -0.126774 -0.089280 -0.131942 -0.090976 -0.090337 -0.318637 smart_transportation smartphone -0.075152 -0.067416 0.268831 -0.807524 0.807524 0.099995 -0.099995 -0.299119 -0.210653 -0.311313 -0.214654 -0.220708 -0.318637 -0.213147 1.000000

def correlation(dataset, threshold): col_corr = set() # Set of all the names of deleted columns corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if (corr_matrix.iloc[i, j] >= threshold) and (corr_matrix.columns[j] not in col_corr): colname = corr_matrix.columns[i] # getting the name of column col_corr.add(colname) if colname in dataset.columns:

del dataset[colname] # deleting the column from the dataset

print(dataset.shape)

print(dataset.columns)

correlation(x_train2, 0.95)

'smart_transportation', 'smartphone'], dtype='object')

(18373, 15)

Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0',

'io_t_devices', 'public_safety', 'smart_city_and_home',

print("The Testing Data :", x_test2.columns)

print("The Training Data :", x_train2.columns)

The Testing Data : Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0',

'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone'], dtype='object') The Training Data : Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g',

'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home',

'smart_transportation', 'smartphone'], dtype='object')

y_test = pd.DataFrame(y_test)

y_train = pd.DataFrame(y_train)

print(y_test.columns, y_train.columns) Index(['slice_type'], dtype='object') Index(['slice_type'], dtype='object')

→ PYCARET AUTOML

###!pip install pycaret

###! pip install jinja2

import pycaret

x_test2.columns

###! pip install markupsafe==2.0.1

from pycaret.classification import *

print(train_dataset.shape, test_dataset.shape)

(18373, 18) (31584, 18)

train_dataset.columns

Index(['id', 'lte_5g_category', 'time', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone', 'slice_type'],

dtype='object') train_dataset2 = train_dataset[['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare',

'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone', 'slice_type']]

test_dataset2 = test_dataset[['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home',

'smart_transportation', 'smartphone', 'slice_type']]

Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g',

'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone'],

dtype='object')

model= setup(data= train_dataset2, target= 'slice_type')

Session id Target type Multiclass Original data shape (18373, 16) **6** Transformed train set shape (12861, 16) Numeric features Imputation type Categorical imputation Fold Number False Use GPU

compare_models()

Experiment Name clf-default-name

Logistic Regression 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9510

1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1240 **nb** Naive Bayes 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0350 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0490 ridge Ridge Classifier 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0350 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.2860 Ada Boost Classifier 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2580 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.3470 Extra Trees Classifier 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.3230 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2480 **lightgbm** Light Gradient Boosting Machine 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Linear Discriminant Analysis 0.8803 0.0000 0.8803 0.8996 0.8777 0.7904 0.8064 0.0420 **qda** Quadratic Discriminant Analysis 0.5355 0.0000 0.5355 0.2868 0.3735 0.0000 0.0000 0.0350 0.5355 0.0000 0.5355 0.2868 0.3735 0.0000 0.0000 0.0290 dummy Dummy Classifier

LogisticRegression LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='12', random_state=906, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

logisticreg= create_model('lr')

1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 **2** 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 **4** 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 **6** 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
 Mean
 1.0000
 0.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

pred_holdout

pred_holdout = predict_model(logisticreg, data= x_test2)

https://colab.research.google.com/drive/1YV2kF0QuUZkfhwIGt5o6NupSGUtgG8qj#scrollTo=8mBNyAoOo1dm&printMode=true

2/22/24, 12:40 PM Network_Slicing_Recognition_pycaret.ipynb - Colaboratory

0.001000 50 1 0 1 11 0.001000 0.9992 0.001000 50 0 1 0 0.9998 31579 0.000001 0 0 0.9998 10 1 0 0 1 31581 0.000001 10 1 0 0 1 0.9993 31583 0.000001 10 1 0 0 1 0.9993

Next steps: Generate code with pred_holdout View recommended plots

pred_holdout.columns

Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone', 'prediction_label', 'prediction_score'], dtype='object')

AUC-ROC plot

plot_model(logisticreg, plot = 'auc')

Decision Boundary plot_model(logisticreg, plot = 'boundary')

##! pip install shap

import shap

Logistic Regression

tune_logisticreg = tune_model(logisticreg)

 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
 Mean
 1.0000
 0.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

print(tune_logisticreg)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000,
multi_class='auto', n_jobs=None, penalty='l2',
random_state=906, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

plot_model(tune_logisticreg)

predict_model(tune_logisticreg)

0 Logistic R				Prec.		Карра	MCC												
	Regression	1.0000	1.0000 1.0000	1.0000	1.0000	1.0000	1.0000												
lte_	_5g_category	packet_	_loss_rate pac	cket_dela	y io_t	lte_5g	gbr no	on_gbr a	r_vr_gaming	healthcare	industry_4_0	io_t_devices	<pre>public_safety</pre>	smart_city_and_home	smart_transportation	n smartphone sl	ice_type p	orediction_label	prediction_score
23556	13		0.001000	100	0 0	1	1	0	0	0	0	C	0	(() 1	1	1	0.9994
4680			0.010000	300	0 1	0		0	0	0	0	C	0			0	2	2	0.9997
3904	8		0.001000	100	0 0	1	1	0	1	0	0	C	0	((0	1	1	0.9989
20321	18		0.010000	30	0 1	0		0	0	0	0		0			0	2		0.9990
4096	4		0.010000	7	5 0	1	0	1	0	0	0	C	0	(() 1	1	1	0.9999
29236	17		0.010000	7	5 0	1	0	1	0	0	0	C	0	(() 1	1	1	0.9999
7150	16		0.001000	10	0 0	1	1	0	1	0	0	C	0	((0	1	1	0.9988
10559	11		0.000001	300	0 0	1	1	0	0	0	0	C	0	(() 1	1	1	0.9992
9212	11		0.000001	61	0 0	1	1	0	0	0	0	C	0	(() 1	1	1	0.9995
13969	19		0.000001	300	0 0	1	1	0	0	0	0	C	0	(() 1	1	1	0.9990

final_logisticreg = finalize_model(tune_logisticreg)

print(final_logisticreg) Pipeline(memory=Memory(location=None),
steps=[('label_encoding',
TransformerWrapperWithInverse(exclude=None, include=None, transformer=LabelEncoder())), ('numerical_imputer', TransformerWrapper(exclude=None, include=['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices... fill_value=None, keep_empty_features=False,
missing_values=nan,
strategy='most_frequent'))), ('actual_estimator', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='12', random_state=906, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False))],

print(x_test2.columns, y_test.shape)

(18373, 15) (18373, 1)

verbose=False)

print(x_train2.shape, y_train.shape) Index(['lte_5g_category', 'packet_loss_rate', 'packet_delay', 'io_t', 'lte_5g', 'gbr', 'non_gbr', 'ar_vr_gaming', 'healthcare', 'industry_4_0', 'io_t_devices', 'public_safety', 'smart_city_and_home', 'smart_transportation', 'smartphone'],
dtype='object') (31584, 1)

https://colab.research.google.com/drive/1YV2kF0QuUZkfhwlGt5o6NupSGUtgG8qj#scrollTo=8mBNyAoOo1dm&printMode=true

2/22/24, 12:40 PM Network_Slicing_Recognition_pycaret.ipynb - Colaboratory

Pipeline

Pipeline

Iabel_encoding: TransformerWrapperWithInverse

Inumerical_imputer: TransformerWrapper

Inumerical_imputer: TransformerWrapper

Inumerical_imputer: SimpleImputer

Inumerical_imputer: TransformerWrapper

Inumerical_imputer:

y_pred = final_logisticreg.predict(x_test2)

y_pred = pd.DataFrame(y_pred)

y_pred.shape (31584, 1)

test_data2 = pd.read_csv("/content/test_dataset.csv")

test_data2.shape (31584, 16)

resultdetails = pd.concat([test_data2, y_pred], axis=1, join="inner")

resultdetails.shape

(31584, 17)

resultdetails['target'].value_counts()

1 16800 3 7392 2 7392 Name: target, dtype: int64

from sklearn.metrics import classification_report

Trom skiedi irimeel ies iimpol

y_pred.value_counts()

target 1 16800 2 7392 3 7392 dtype: int64

resultdetails.to_csv("/content/final.csv")

Start coding or <u>generate</u> with AI