이 름:

2020년 기초통계학2 여름계절학기 중간고사

학 번:

▶ 모든 소수 계산에서 소수점 아래 3자리까지를 사용합니다.(소수점 4째자리에서 반올림)

1. 우리나라 대학생들은 1년에 평균 20권이상의 책을 읽는다고 한다. 이 주장을 증명하고자 70명의 대학생을 대상으로 조사하였다. 단 여기서 $\sigma=5.6$ 으로 주어졌다. 그리고 $\overline{X}~\geq 21.31$ 이면 귀무가설을 기각한다고 할 때

► 풀이 과정을 반드시 자세히 쓸 것. **답만 쓴 경우 점수를 받을 수 없습니다.**

주의사항: 반드시 읽고 나서 시험을 시작하십시오.

다음 물음에 답하시오. 제 1종 오류의 확률을 구하시오.

	서 기업의 의뢰로 2015년 소비자들이 이 기업제품을 사게 된 동기를 조사하여 제품 알아보았다. 400명의 소비자를 임의로 추출하여 조사한 결과, 80명이 광고를 보고 닐을 알았다.	
	구입한 소비자 중 광고를 보고 제품을 구입한 소비자의 모비율에 대한 점추정값과 ⁼ 모비율에 대한 95% 신뢰구간을 구하라.	추정
① 점추정값		
② 추정된 표준오차		
③ 95% 신뢰구간		

(2) 광고를 보고 제품을 구입하는 소비자의 모비율이 0.3미만이라고 할 수 있는지 유의수준 0.05에서 검정하시오.

가설	
검정통계량	
기각역	
결론 (검정결과)	

(3) (2)의 가설검정에서 귀무가설을 기각하고 대립가설을 채택할 수 있는 가장 작은 유의수준은 얼마인가?

(4) 2016년에 광고를 보고 제품을 구입하는 소비자의 비율을 다시 추정할 때, 95% 확신으로 추정의 오차가 0.03을 넘지 않게 하려면 몇 명을 조사해야 하는가? 이 때, 광고를 보고 제품을 구입하는 소비자의 비율은 2015년 결과를 사용한다.

3. 대학 농구팀에서 활약하는 5명의 선수를 임의로 선정하여 경기당 평균득점을 조사해 보니 24, 20, 30, 35, 10 이었다. 대학 농구팀에서 활약하는 모든 선수들의 경기당 평균득점은 정규분포라 한다.

경기당	평균득점
평균	23.8
표준 편차	9.602
분산	92.2
합	119
관측수	5

(1) 대학 농구 선수들의 경기당 평균득점에 대한 모평균의 95% 신뢰구간을 구하라.

가설 				
검정통계량				
기각역				
결론 (검정결과)				
4. 혈액 실험실에서 를 따른다고 가정	서 일하는 남학생 25명의 콜레스 하자.) 	테롤 양을 측정한 결과	는 다음과 같았다.(데이터!	는 정규분포
	표준 된			
	분신	3155.54		
(2) 모분산이 3000)보다 크다고 할 수 있는지 유의	수준 5%로 검정하시오.		
가설				
검정통계량				
기각역				
결론 (검정결과)				

(2) 대학 농구 선수들의 경기당 평균득점이 25점이라고 할 수 있는지 유의수준 5%에서 검정하시오.

5. 높이뛰기 선수들의 점프력을 향상시키기 위해 개발한 프로그램이 실제로 유용한 지를 알아보기 위하여 7쌍의 높이뛰기 선수들을 임의로 추출하였다. 각 쌍 내의 선수들은 점프력이 같다고 할 때, 각 쌍에서 한 선수는 개발된 프로그램으로 훈련을 받았고 다른 선수는 기존의 프로그램으로 훈련을 받았다. 다음은 점프력이 향상된 정도를 점수로 나타낸 것이다.

	1	2	3	4	5	6	7
개발 프로그램(X_i)	0.5	1.0	0.6	0.1	1.3	0.1	1.0
기존 프로그램(Y_i)	0.8	1.1	-0.1	0.2	0.2	1.5	0.8

	-1-1
	차이
	$(D_i = X_i - Y_i)$
평균	0.014
분산	0.635

(1) 개발프로그램과 기존프로그램의 점프력 차이에 대한 95% 신뢰구간을 구하시오.

(2) 개발된 프로그램이 점프력을 향상시킨다고 말할 수 있는가? 유의수준 $\alpha = 0.1$ 에서 검정하시오.

가설	
검정통계량	
기각역	
결론 (검정결과)	

6. 한 대학의 경영학과에서 남학생들이 여학생들보다 주식시장에 대한 지식이 많다는 주장에 대해 논쟁이 일어났다. 논쟁을 가라앉히기 위해 지도강사는 남자는 16명 여자는 16명을 독립적으로 표본 추출하여 주식시장에 대한 지식 측정 검사를 하였다. 그 결과가 다음과 같다.

남자	여자
$\overline{x_1} = 69.8$	$\overline{x_2} = 68.533$
$s_1^2 = 353.029$	$s_2^2 = 329.410$
$n_1 = 16$	$n_2 = 16$

(1) 두 집단의 주식시장에 대한 지식의 분산이 같다고 할 수 있는지 유의수준 0.1에서 검정하시오.

가설	

검정통계량		
기각역		
결론 (검정결과)		

(2) 두 집단의 주식시장에 대한 지식의 분산 비에 대한 90% 신뢰구간을 구하시오.

(3) (1) 검정결과에 따라 남자와 여자의 주식시장에 대한 평균 지식이 차이가 있는 유의수준 5%에서 검정하시오.

가설	
검정통계량	
기각역	
결론 (검정결과)	

7. 다음 자료는 한 범죄학 잡지에 실린 것으로서, 충동적 살인범과 계획적 살인범의 교화에 차이가 있는가를 알아보기 위한 것이다. 일정기간 복역 후에 가석방된 충동적 살인범과 계획적 살인범 중에서 각각 42명과 40 명을 랜덤추출하여 가석방이 성공적인 경우, 즉 재범이 없는 경우와 실패한 경우의 도수를 관측한 결과가 아 래 표와 같다. 살인범의 유형에 따른 가석방 성공률 차이에 대한 95%신뢰구간을 구하고, 차이가 있다고 할 수 있는지 유의수준 5%에서 검정하여라.

	성공	실패	표본크기
충동적 살인범	13	29	42
계획적 살인범	22	18	40
 합계	35	47	82

(1)	삭이번의	유형에	따른	가선방	성공륙	차이에	내하	95%	시리구가음	구하시오

(4) # 4 # 1 3 / 3 / 3 / 4 / 6 / 5 / 5 / 5	(2)	유의수준	5%에서	검정하시오
---	-----	------	------	-------

가설	
검정통계량	
기각역	
P-값 (유의확률)	
결론 (검정결과)	

표준정규분포표

 $Z \sim N(0,1)$

 $\phi(z) = p[Z \le z]$

2	.00	,01	,02	,03	.04	,05	,06	,07	,08	,09
.0	,5000	,5040	,5080	,5120	,5160	,5199	,5239	,5279	,5319	,5359
,1	,5398	,5438	,5478	,5517	,5557	,5596	,5636	,5675	,5714	,5753
,2	,5793	,5832	,5871	,5910	,5948	,5987	,6026	,6064	,6103	,6141
,3	,6179	,6217	,6255	,6293	,6331	,6368	,6406	,6443	,6480	,6517
.4	,6554	,6519	,6628	,6664	,6700	,6736	,6772	,6808	,6844	,6879
,5	,6915	,6950	,6985	,7019	,7054	,7088	,7123	,7157	,7190	,7224
,6	.7257	,7291	,7324	,7357	,7389	,7422	,7454	,7486	,7517	,7549
.7	,7580	,7611	,7642	,7673	,7703	,7734	,7764	,7794	,7823	,7852
.8	,7881	,7910	,7939	,7967	,7995	,8023	,8051	,8078	,8106	,8133
,9	,8159	,8186	,8212	,8238	,8264	,8289	,8315	,8340	,8365	,8389
1.0	,8413	,8438	,8461	,8485	,8508	,8531	,8554	,8577	,8599	,8621
1,1	,8643	,8665	,8686	,8708	,8729	,8749	,8770	,8790	,8810	,8830
1,2	,8849	,8869	,8888	,8907	,8925	,8944	,8962	,8980	,8997	,9015
1,3	,9032	,9049	,9066	,9082	,9099	,9115	,9131	,9147	,9162	,9177
1,4	,9192	,9207	,9222	,9236	,9251	,9265	,9279	,9292	,9306	,9319
1,5	,9332	,9345	,9357	,9370	,9382	,9394	,9406	.9418	,9429	,9441
1,6	,9452	,9463	.9474	,9484	,9495	,9505	,9515	,9525	,9535	,9545
1,7	,9554	,9564	,9573	,9582	,9591	,9599	,9608	,9616	,9625	,9633
1,8	,9641	,9649	,9656	,9664	,9671	,9678	,9686	,9693	,9699	,9706
1,9	.9713	,9719	,9726	,9732	,9738	,9744	,9750	,9756	,9761	,9767
2,0	.9772	.9778	.9783	.9788	,9793	,9798	,9803	,9808	.9812	,9817
2,1	,9821	,9826	,9830	,9834	,9838	,9842	,9846	,9850	,9854	,9857
2,2	,9861	,9864	,9868	,9871	,9875	,9878	,9881	,9884	,9887	,9890
2,3	,9893	,9896	,9898	,9901	,9904	,9906	,9909	,9911	,9913	,9916
2,4	,9918	,9930	,9922	,9925	,9927	,9929	,9931	,9932	,9934	,9936
2,5	,9938	,9940	,9941	,9943	,9945	,9946	,9948	,9949	, 9951	,9952
2,6	,9953	,9955	,9956	,9957	,9959	,9960	,9961	,9962	,9963	,9964
2,7	,9965	,9966	,9967	,9968	,9969	,9970	,9971	,9972	,9973	,9974
2,8	,9974	,9975	,9976	,9977	,9977	,9978	,9979	,9979	,9980	,9981
2,9	,9981	,9982	,9982	,9983	,9984	,9984	,9985	,9985	,9986	,9986
3,0	,9987	,9987	,9987	,9988	,9988	,9989	,9989	,9989	,9990	,9990
3,1	,9990	,9991	,9991	,9991	,9992	,9992	,9992	,9992	,9993	,9993
3,2	,9993	,9993	,9994	,9994	,9994	,9994	,9994	,9995	,9995	,9995
3,3	,9995	,9995	,9995	,9996	,9996	,9996	,9996	,9996	,9996	,9997
3, 4	,9997	,9997	,9997	,9997	,9997	,9997	,9997	,9997	,9997	,9998
3,5	,9998	,9998	,9998	,9998	,9998	,9998	,9998	,9998	,9998	,9998

t분포의 상위 œ의 확률을 주는 값

\ a		725-4731	900-000	2000	(1.02)	11.000
d.f.	,25	,10	,05	,025	.01	,005
1	1,000	3,078	6,314	12,706	31,821	63,657
2	,816	1,886	2,920	4,303	6,965	9,925
3	,765	1,638	2,353	3,182	4,541	5,841
4	.741	1,533	2,132	2,776	3,747	4,604
5	.727	1,476	2,015	2,571	3,365	4,032
6	.718	1,440	1,943	2,447	3,143	3,707
7	,711	1,415	1,895	2,365	2,998	3,499
8	,706	1,397	1,860	2,306	2,896	3,355
9	,703	1,383	1,833	2,262	2,821	3,250
10	,700	1,372	1,812	2,228	2,764	3,169
11	,697	1,363	1,796	2,201	2,718	3,106
12	,695	1,356	1,782	2,179	2,681	3,055
13	,694	1,350	1,771	2,160	2,650	3,012
14	,692	1,345	1,761	2,145	2,624	2,977
15	,691	1,341	1,753	2,131	2,602	2,947
16	,690	1,337	1,746	2,120	2,583	2,921
17	,689	1,333	1,740	2,110	2,567	2,898
18	,688	1,330	1,734	2,101	2,552	2,878
19	,688	1,328	1,729	2,093	2,539	2,861
20	,687	1,325	1,725	2,086	2,528	2,845
21	,686	1,323	1,721	2,080	2,518	2,831
22	,686	1,321	1,717	2,074	2,508	2,819
23	,685	1,319	1,714	2,069	2,500	2,807
24	,685	1,318	1,711	2,064	2,492	2,797
25	,684	1,316	1,708	2,060	2,485	2,787
26	,684	1,315	1,706	2,056	2,479	2,779
27	.684	1,314	1,703	2,052	2,473	2,771
28	,683	1,313	1,701	2,048	2,467	2,763
29	,683	1,311	1,699	2,045	2,462	2,756
30	,683	1,310	1,697	2,042	2,457	2,750
40	,681	1,303	1,684	2,021	2,423	2,704
60	,679	1,296	1,671	2,000	2,390	2,660
120	,677	1,289	1,658	1,980	2,358	2,617
00	,674	1,282	1,645	1,960	2,326	2,576

■ 카이제곱분포의 상위 œ의 확률을 주는 값

d.f. \ a	,99	,975	,95	,90	,50	,10	,05	,025	,01
1	,0002	,001	,004	,02	, 45	2,71	3,84	5,02	6,63
2	,02	.05	.10	,21	1,39	4,61	5,99	7,38	9, 21
3	.11	.22	,35	,58	2,37	6,25	7,81	9,35	11,34
4	,30	.48	.71	1,06	3,36	7,78	9,49	11,14	13,28
5	,55	.83	1,15	1,61	4,35	9,24	11,07	12,83	15,09
6	,87	1,24	1,64	2,20	5,35	10,64	12,59	14,45	16,81
7	1,24	1,69	2,17	2,83	6,35	12,02	14,07	16,01	18,48
8	1,65	2,18	2,73	3,49	7,34	13,36	15,51	17,53	20,09
9	2,09	2,70	3, 33	4.17	8,34	14,68	16,92	19,02	21,67
10	2,56	3,24	3,94	4,87	9,34	15,99	18,31	20,48	23, 21
11	3,05	3,81	4,57	5,58	10,34	17,28	19,68	21,92	24,72
12	3,57	4,40	5, 23	6,30	11,34	18,55	21,03	23,34	26,22
13	4,11	5,01	5,89	7,04	12,34	19,81	22,36	24,74	27,69
14	4,66	5,62	6,57	7,79	13,34	21,06	23,68	26,12	29,14
15	5,23	6,26	7,26	8,55	14,34	22,31	25,00	27,49	30,58
16	5,81	6,90	7,96	9,31	15,34	23,54	26,30	28,85	32,00
17	6, 41	7,56	8,67	10,09	16,34	24,77	27,59	30,19	33, 41
18	7,01	8,23	9,39	10,86	17,34	25, 99	28,87	31,53	34, 81
19	7,63	8,90	10,12	11,65	18,34	27, 20	30,14	32,85	36,19
20	8,26	9,59	10,85	12,44	19,34	28, 41	31,41	34,17	37,57
21	8,90	10,28	11,59	13,24	20,34	29,62	32,67	35,48	38,93
22	8,54	10,98	12,34	10,04	21,34	30,81	33,92	36,78	40, 29
23	10,20	11,69	13,09	14,85	22,34	32, 01	35,17	38,08	41,64
24	70,86	12,40	13,85	15,66	23,34	33, 20	36,42	39,36	42,98
25	11,52	13,11	14,61	16,47	24,34	34, 38	37,65	40,65	44, 31
26	12,20	13,84	15,38	17,29	25,34	35, 56	38,89	41,92	45,64
27	12,88	14,57	16,15	18,11	26,34	36,74	40,11	43,19	46,96
28	13,56	15,30	16,93	18,94	27,34	37,92	41,34	44,46	48, 28
29	14,26	16,04	17,71	19,77	28,34	39,09	42,56	45,72	49,59
30	14,95	16,78	18,49	20,60	29,34	40, 26	43,77	46,98	50,89
40	22,16	24,42	26,51	29,05	39,34	51,81	55,76	59,34	63,69
50	29,71	32,35	34, 76	37,69	49,33	63,17	67,50	71,42	76,15
60	37,48	40,47	43, 19	46,46	59,33	74,40	79,08	83,30	88, 38
70	45, 44	48,75	51,74	55,33	69,33	85, 53	90,53	95,02	100,43
80	53,54	57,15	60,39	64,28	79,33	96,58	101,88	106,63	112,33
90	61,75	65,64	69,13	73,29	89,33	107,57	113,15	118,14	124,12
100	70,06	74,22	77,93	82,36	99,33	118,50	124,34	129,56	135,81

lacktriangleright F 분포표의 상위 lpha=0.05의 확률을 주는 값

v_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.79	1.65	1.59	1.53	1.47	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.99	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
10000000										1.83	1.75	1.67				1.39	1.43		
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1./5	1.0/	1.57	1.52	1.46	1.39	1.32	1.22	1.00