CSM 165: Discrete Mathematics for Computer Science

Lecture 1: Propositional and first order predicate logic

Isaac Afari Addo <addoisaacafari@gmail.com> National Institute for Mathematical Science (NIMS) -Ghana Department of Mathematics, KNUST Kumasi-Ghana.

Content

Introduction

Course Outline

Propositional and first order predicate logic

What is discrete mathematics?

- ▶ Discrete mathematics is the part of mathematics devoted to study discrete objects.
 - Discrete Means not continuous or unconnected:

Discrete Verses Continuous (examples)

- 1. Natural Numbers are discrete
- Real numbers are continuous

Digital clock

2. Analog clock:

What is discrete mathematics?

- ▶ Discrete mathematics is the part of mathematics devoted to study discrete objects.
 - Discrete Means not continuous or unconnected :

Discrete Verses Continuous (examples)

- 1. Natural Numbers are discrete
- 1. Real numbers are continuous

Digital clock

2. Analog clock:

What is discrete mathematics?

- ▶ Discrete mathematics is the part of mathematics devoted to study discrete objects.
 - Discrete Means not continuous or unconnected :

Discrete Verses Continuous (examples)

- 1. Natural Numbers are discrete
- Real numbers are continuous

Digital clock

2. Analog clock:

What is discrete mathematics?

- ▶ Discrete mathematics is the part of mathematics devoted to study discrete objects.
 - Discrete Means not continuous or unconnected :

Discrete Verses Continuous (examples)

- 1. Natural Numbers are discrete
- 1. Real numbers are continuous

2. Digital clock

2. Analog clock:

- ► Is there a link between two computers in a network?
- ► Sorting a list of integers.
- ► Finding the shortest path from your home to your friend's house.
- ► How many different combinations of passwords are possible with just 9 alphanumeric characters?
- ▶ How can I identify spam e-mail messages?

- ► Is there a link between two computers in a network?
- ► Sorting a list of integers.
- ► Finding the shortest path from your home to your friend's house.
- ► How many different combinations of passwords are possible with just 9 alphanumeric characters?
- ▶ How can I identify spam e-mail messages?

- ► Is there a link between two computers in a network?
- ► Sorting a list of integers.
- ► Finding the shortest path from your home to your friend's house.
- ► How many different combinations of passwords are possible with just 9 alphanumeric characters?
- ▶ How can I identify spam e-mail messages?

- ► Is there a link between two computers in a network?
- ► Sorting a list of integers.
- ► Finding the shortest path from your home to your friend's house.
- ► How many different combinations of passwords are possible with just 9 alphanumeric characters?
- ▶ How can I identify spam e-mail messages?

- ► It develops your mathematical thinking
- ▶ Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ▶ Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ▶ It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ▶ Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ▶ Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- ► Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- ► Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ► It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

- ▶ It develops your mathematical thinking
- ► Improves problem solving ability.
- Many problems can be solved using discrete mathematics.
- ► Foundation for many computer science courses:
 - data structures
 - algorithms
 - database theory
 - automata theory
 - computer security
 - operating systems.

Course Outline

- 1. Propositional and first order predicate logic
- 2. Set Theory.
- 3. Relations and Functions
- 4. First Principle of induction.
- 5. Number Systems and arithmetic (complement number system)

Propositional and first order predicate logic

Definition 1 (Proposition)

A proposition is a **declarative** sentence that is either **true** or **false**, but not both

Example 1

- 1. COVID-19 is a communicable disease
- Wearing of nose mask is the only preventive measure for COVID-19.

$$3.2 + 3 = 5$$

$$4. 1 + 1 = 11$$

Propositional and first order predicate logic

Definition 1 (Proposition)

A proposition is a **declarative** sentence that is either **true** or **false**, but not both

Example 1

- 1. COVID-19 is a communicable disease
- 2. Wearing of nose mask is the only preventive measure for COVID-19.
- 3. 2 + 3 = 5
- 4. 1 + 1 = 11

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.
- 4. x+5=10
- 5. $\sqrt{16} + y = 2$

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.
- 4. x+5=10
- 5. $\sqrt{16} + y = 2$

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.

5.
$$\sqrt{16} + y = 2$$

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.
- 4. x+5=10
- 5. $\sqrt{16} + y = z$

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.
- 4. x+5=10
- 5. $\sqrt{16} + y = z$

Example 2

- 1. Kindly send me the code snippet for the assignment.
- 2. What is your name?
- 3. Remember to observe all the COVID-19 protocols.
- 4. x+5=10
- 5. $\sqrt{16} + y = z$

Definition 2 (Logic)

Logic is the science of reasoning.

It helps in understanding and reasoning about different mathematical statements.

The area of logic that deals with propositions is called the **propositional logic**.

Definition 3 (Propositional Variables)

Propositional Variables are variables used to represent propositions.

Example 3

p = My PC runs Linux

Definition 2 (Logic)

Logic is the science of reasoning.

It helps in understanding and reasoning about different mathematical statements.

The area of logic that deals with propositions is called the **propositional logic**.

Definition 3 (Propositional Variables)

Propositional Variables are variables used to represent propositions.

Example 3

p = My PC runs Linux

Definition 2 (Logic)

Logic is the science of reasoning.

It helps in understanding and reasoning about different mathematical statements.

The area of logic that deals with propositions is called the **propositional logic**.

Definition 3 (Propositional Variables)

Propositional Variables are variables used to represent propositions.

Example 3

p = My PC runs Linux

Definition 2 (Logic)

Logic is the science of reasoning.

It helps in understanding and reasoning about different mathematical statements.

The area of logic that deals with propositions is called the **propositional logic**.

Definition 3 (Propositional Variables)

Propositional Variables are variables used to represent propositions.

Example 3

p = My PC runs Linux

Definition 2 (Logic)

Logic is the science of reasoning.

It helps in understanding and reasoning about different mathematical statements.

The area of logic that deals with propositions is called the **propositional logic**.

Definition 3 (Propositional Variables)

Propositional Variables are variables used to represent propositions.

Example 3

 \mathbf{p} = My PC runs Linux

Logical Connectives (operators)

Definition 4 (Negation ¬)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by $\sim p$), is the statement "It is not the case that p.

Table 1: Truth table for $\neg p$

p	$\neg p$
Т	F
F	Т

Example 4

Find the negation of the following propositions.

- 1. Hannah's PC runs linux.
- 2. Data science is the sexiest job of 21st century.
- 3. Africa is the richest continent in the world.

Logical Connectives (operators)

Definition 4 (Negation ¬)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by $\sim p$), is the statement "It is not the case that p.

Table 1: Truth table for $\neg p$

p	eg p
Т	F
F	T

Example 4

Find the negation of the following propositions.

- 1. Hannah's PC runs linux.
- 2. Data science is the sexiest job of 21st century.
 - 3. Africa is the richest continent in the world.

Definition 4 (Negation ¬)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by $\sim p$), is the statement "It is not the case that p.

Table 1: Truth table for $\neg p$

p	eg p
T	F
F	T

Example 4

Find the negation of the following propositions.

- 1. Hannah's PC runs linux.
- 2. Data science is the sexiest job of 21st century.
 - 3. Africa is the richest continent in the world.

Definition 4 (Negation ¬)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by $\sim p$), is the statement "It is not the case that p.

Table 1: Truth table for $\neg p$

p	eg p
T	F
F	T

Example 4

Find the negation of the following propositions.

- 1. Hannah's PC runs linux.
- 2. Data science is the sexiest job of 21st century.
- 3. Africa is the richest continent in the world.

Definition 4 (Negation \neg)

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by $\sim p$), is the statement "It is not the case that p.

Table 1: Truth table for $\neg p$

p	eg p
T	F
F	T

Example 4

Find the negation of the following propositions.

- 1. Hannah's PC runs linux.
- 2. Data science is the sexiest job of 21st century.
- 3. Africa is the richest continent in the world.

Definition 5 (Conjunction △)

Let p and q be propositions. The conjunction of p and q, denoted by p \land *q, is the proposition "p and q".*

The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Table 2: Truth Table for $P \wedge q$

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Example 5

Let p = "Hannah's PC has more than 16 GE free hard disk space"

Definition 5 (Conjunction △)

Let p and q be propositions. The conjunction of p and q, denoted by p \land *q, is the proposition "p and q".*

The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Table 2: Truth Table for $P \wedge q$

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Example 5

has more than 16 GB free hard disk space"

Definition 5 (Conjunction \land)

Let p *and* q *be propositions. The conjunction of* p *and* q*, denoted by* $p \land q$ *, is the proposition "p and q".*

The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Table 2: Truth Table for $P \wedge q$

p	q	$p \wedge q$
Т	Т	T
T	F	F
F	T	F
F	F	F

Example 5

has more than 16 GB free hard disk space"

Definition 5 (Conjunction △)

Let p *and* q *be propositions. The conjunction of* p *and* q*, denoted by* $p \land q$ *, is the proposition "p and q".*

The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Table 2: Truth Table for $P \wedge q$

p	q	$p \wedge q$
Т	Т	T
T	F	F
F	T	F
F	F	F

Example 5

Let p = "Hannah's PC has more than 16 GB free hard disk space"

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3: Truth Table for $P \lor q$

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example 6

Let: *p* = Students who have taken algebra can enroll in this course.

q = students who have taken calculus can enroll in this course.

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3: Truth Table for $P \lor q$

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example 6

Let: *p* = Students who have taken algebra can enroll in this course.

q = students who have taken calculus can enroll in this course.

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3: Truth Table for $P \lor q$

p	q	$p \lor q$
T	Т	T
T	F	T
F	Т	T
F	F	F

Example 6

Let: *p* = Students who have taken algebra can enroll in this course.

q = students who have taken calculus can enroll in this course.

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3: Truth Table for $P \lor q$

p	q	$p \lor q$
T	Т	T
T	F	T
F	Т	T
F	F	F

Example 6

Let: *p* = Students who have taken algebra can enroll in this course.

q = students who have taken calculus can enroll in this course.

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q".

The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Table 3: Truth Table for $P \lor q$

p	q	$p \lor q$
Т	Т	T
T	F	T
F	Т	T
F	F	F

Example 6

Let: p = Students who have taken algebra can enroll in this course.

q = students who have taken calculus can enroll in this course.

Definition 7 (Exclusive OR (XOR))

Let p and q be two propositions. The exclusive OR of p and q (denoted by $p \oplus q$) is the proposition that is true when exactly one of p and q is true and is false otherwise.

Table 4: Truth table for $n \oplus a$

р	q	p ⊕q
T	T	F
Т	F	Т
F	Т	Т
F	F	F

- Coffee or Tea comes with dinner
- 2. Students who have taken calculus or computer science, but not both, can enroll in this class.

Definition 7 (Exclusive OR (XOR))

Let p and q be two propositions. The exclusive OR of p and q (denoted by $p \oplus q$) is the proposition that is true when exactly one of p and q is true and is false otherwise.

Table 4: Truth table for $p \oplus q$

p	q	$\mathbf{p}\oplus\mathbf{q}$
T	Т	F
T	F	T
F	Т	T
F	F	F

- Coffee or Tea comes with dinner
- 2. Students who have taken calculus or computer science, but not both, can enroll in this class.

Definition 7 (Exclusive OR (XOR))

Let p and q be two propositions. The exclusive OR of p and q (denoted by $p \oplus q$) is the proposition that is true when exactly one of p and q is true and is false otherwise.

Table 4: Truth table for $p \oplus q$

p	q	$\mathbf{p}\oplus\mathbf{q}$
T	Т	F
T	F	T
F	Т	T
F	F	F

- 1. Coffee or Tea comes with dinner
- 2. Students who have taken calculus or computer science, but not both, can enroll in this class.

Definition 7 (Exclusive OR (XOR))

Let p and q be two propositions. The exclusive OR of p and q (denoted by $p \oplus q$) is the proposition that is true when exactly one of p and q is true and is false otherwise.

Table 4: Truth table for $p \oplus q$

p	q	$\mathbf{p}\oplus\mathbf{q}$
T	Т	F
T	F	T
F	Т	T
F	F	F

- 1. Coffee or Tea comes with dinner
- 2. Students who have taken calculus or computer science, but not both, can enroll in this class.

Conditional Statements

Definition 8

For proposition p and q, the conditional sentence $p \Rightarrow q$ is the proposition "If p, then q". Proposition p is called the **antecedent** and q is the **consequence**.

Table 5: Truth table for $p \Rightarrow q$

p	q	$p \Rightarrow q$
Т	T	T
Т	F	F
F	Т	Т
F	F	Т

- (a) If you try hard for your exams, then you will pass.
- (b) If you score 90% in CSM 165, then you will get free accommodation.

Conditional Statements

Definition 8

For proposition p and q, the conditional sentence $p \Rightarrow q$ is the proposition "If p, then q". Proposition p is called the **antecedent** and q is the **consequence**.

Table 5: Truth table for $p \Rightarrow q$

p	q	$p \Rightarrow q$
Т	T	T
T	F	F
F	T	T
F	F	T

- (a) If you try hard for your exams, then you will pass.
- (b) If you score 90% in CSM 165, then you will get free accommodation.

Conditional Statements

Definition 8

For proposition p and q, the conditional sentence $p \Rightarrow q$ is the proposition "If p, then q". Proposition p is called the **antecedent** and q is the **consequence**.

Table 5: Truth table for $p \Rightarrow q$

p	q	$p \Rightarrow q$
T	T	T
Т	F	F
F	T	T
F	F	T

- (a) If you try hard for your exams, then you will pass.
- (b) If you score 90% in CSM 165, then you will get free accommodation.

Exercise A:

1. Let p be the statement "Hannah learns discrete mathematics" and q the statement "Hannah will find a good job". Express the statement $p \Rightarrow q$ as a statement in English.

2. What is the value of the variable *x* after the statement:

"if
$$5 + 7 = 12$$
 then $x := x + 1$ ", if $x = 0$ before this statement

Assignment

To be posted on the class Telegram Channel: CSM 165 B

End of Lecture

Questions...???

Thanks

End of Lecture

Questions...???

Thanks