

GENETIC PROGRAMMING-BASED EVOLUTIONARY FEATURE CONSTRUCTION FOR HETEROGENEOUS ENSEMBLE LEARNING (IEEE TEVC)

HENGZHE ZHANG

SUPERVISOR: MENGJIE ZHANG, BING XUE, QI CHEN

VICTORIA UNIVERSITY OF WELLINGTON

29/06/2023

TABLE OF CONTENTS

1 Background

2 Algorithm Framework

3 Experimental Results

BACKGROUND

EVOLUTIONARY FEATURE CONSTRUCTION

- The general idea of feature construction is to construct a set of new features $\{\phi_1, \ldots, \phi_m\}$ that improve the learning performance on a given dataset $\{\{x_1, y_1\}, \ldots, \{x_n, y_n\}\}$ compared to learning on the original features $\{x^1, \ldots, x^p\}$.
- Genetic programming (GP) has been widely used for automatic feature construction due to its flexible representation and gradient-free search mechanism.

(a) Feature Construction on Linear Regression

(b) New Feature Space

GP FOR ENSEMBLE LEARNING

- Motivation: An ensemble of multiple simple/weak GP trees is better than a single complex/strong GP tree.
- GP is naturally suited for ensemble learning because it can generate a diverse set of candidate solutions (models) through genetic operations in a single run.

Multi-modal Landscape on Training Data

RESEARCH OBJECTIVES

Key Questions:

- How to define a base learner?
- How to select base learners?
- How to learn efficiently?

ALGORITHM FRAMEWORK

Motivation:

- Decision trees are good at fitting piecewise data.
- Linear regression is good at fitting continuous data.
- Genetic programming is good at constructing features.

How to combine them?

- Combine decision tree and linear regression using gradient boosting.
- Use GP for feature construction.

Feature construction on a mixed base learner.

15

Gradient boosting:

- Train a linear regression model first.
- Learn the residual using a decision tree.

Illustration of the heterogeneous base learner.

GREEDY ENSEMBLE SELECTION

Why select a subset?

■ Not all learners in an ensemble model are accurate and diverse.

How to select a subset:

- Select Top-5 models.
- Select a model that minimizes training error on top of selected models.
- Repeat step 2 until reaching a termination criterion.

Ensemble Selection

7 | 15

VARIABLE SELECTION

Why need terminal variable selection?

■ Not all variables in training data are useful!

How to select?

- Calculate the importance of each constructed feature.
- Calculate the relative frequency of all variables.
- Weight frequency by feature importance values.

Variable Selection

EXPERIMENTAL RESULTS

SR-Forest is the best on 120 datasets on average in terms of R^2 scores.

Average R^2 scores on 120 regression datasets.

10

The cost of running time for SR-Forest ranks in the middle among algorithms.

Average training time on 120 regression datasets.

HETEROGENEOUS BASE LEARNER

- Feature construction on SR-Tree (DT+LR) is better than construction on Ridge (LR) in 22 out of 106 datasets.
- Feature construction on SR-Tree (DT+LR) is better than construction on RDT in 82 out of 106 datasets.

	Random-DT	DT
Random-DT	_	5(+)/89(~)/12(-)
DT	$12(+)/89(\sim)/5(-)$	_
Ridge	$78(+)/20(\sim)/8(-)$	78(+)/21(~)/7(-)
SR-Tree	82(+)/23(~)/1(-)	84(+)/22(~)/0(-)
	Ridge	SR-Tree
Random-DT	8(+)/20(~)/78(-)	1(+)/23(~)/82(-)
DT	$7(+)/21(\sim)/78(-)$	$0(+)/22(\sim)/84(-)$
Ridge	_	$0(+)/84(\sim)/22(-)$
SR-Tree	$22(+)/84(\sim)/0(-)$	_

Statistical Comparison on 106 regression datasets.

- Ensemble selection can reduce ensemble size from 100 to 30 on average.
- Ensemble selection delivers better performance in 37 datasets.

(a) Ensemble Size

(b) Statistical Comparison on 106 datasets

VARIABLE SELECTION

- Importance-based Terminal selection (GM) delivers better performance in 30 datasets.
- Selecting only terminal variables is sufficient.

	GM	GM (F)
GM	-	15(+)/48(~)/1(-)
GM (F)	$1(+)/48(\sim)/15(-)$	_
GM (P+T)	$1(+)/61(\sim)/2(-)$	20(+)/44(~)/0(-)
Random	0(+)/34(~)/30(-)	6(+)/38(~)/20(-)
	GM (P+T)	Random
GM	2(+)/61(~)/1(-)	30(+)/34(~)/0(-)
GM (F)	$0(+)/44(\sim)/20(-)$	$20(+)/38(\sim)/6(-)$
GM (P+T)	_	33(+)/31(~)/0(-)
Random	0(+)/31(~)/33(-)	-

(a) Importance-based GM outperforms frequency-based GM in 15 datasets.

(b) GM outperforms Random in 30 datasets.

CONSTRUCTED FEATURES

- Feature construction on heterogeneous ensemble can make it outperform other machine learning algorithms.
- Thanks to base learners providing feature importance values, we can visualize which constructed features are important.

(a) Performance Comparison

(b) Feature Importance

CONCLUSIONS

- Feature construction on a heterogeneous ensemble outperforms that on a homogeneous ensemble.
- Ensemble selection effectively reduces ensemble size while enhancing prediction performance.
- Utilizing feature importance-based variable selection (guided mutation) improves search effectiveness.

THANKS FOR LISTENING!

EMAIL: HENGZHE.ZHANG@ECS.VUW.AC.NZ

GITHUB PROJECT: HTTPS://GITHUB.COM/HENGZHE-ZHANG/EVOLUTIONARYFOREST/