Klausur Einführung in Datenbanken (mit Systemanalyse) im WS 2013/14

Musterlösung

Prüfen Sie bitte zuerst, ob sie die für Sie richtige Klausur vorliegen haben.

Beachten Sie bitte auch, dass die Verwendung unerlaubter Hilfsmittel einen Täuschungsversuch darstellt, der entsprechend geahndet wird.

Studiengänge: B_BWL 10.0, 10.1, 10.5; B_Wing 4.0, 11.0

Bearbeitungszeit: 60 Minuten von 120 Minuten

Erlaubte Hilfsmittel: Blatt mit Beispieldatenbank *Firma* auf der letzte Seite darf abgetrennt werden.

Als Schmierpapier stehen Ihnen die Rückseiten zur Verfügung. Die Rückseiten werden **nicht** bewertet In der Regel stehen einige Zeilen / Spalten / Tableau mehr zur Verfügung als benötigt.

Jede Teilaufgabe wird selbständig bewertet. Aufgabenlösungen werden nur korrigiert und gewertet, wenn der Rechen- bzw. Lösungsweg nachvollziehbar ist. Denken Sie an Kurzkommentare oder Kurzbegründungen innerhalb Ihrer Lösungswege! Die Zeitangaben sind nur zur Groborientierung geeignet.

Viel Erfolg!

Aufgabe 1: Definitionen und Begriffe (5 Minuten)

Kreuzen Sie bitte die richtigen Lösungen an:

a) Welche Bestandteile einer Tabelle gehören zum zeit in varianten Teil einer Tabelle?						
	□ Zeilen (Tupel)	□ Tabellenname				
	\boxtimes Spaltenüberschriften	□ Anzahl der Zeilen				
b)	In SQL-Ausdrücken ist s IN m gleichbe	deutend mit				
	\boxtimes s =ANY m	$\ \square \ s$ =ALL m				
	$\ \square \ s \Longleftrightarrow {\tt ANY} \ m$	$\ \square \ s \Longleftrightarrow \mathtt{ALL} \ m$				
c)	Welches sind die Bestandteile eines Dat	enbanksystems?				
	⊠ Datenbank	□ Modell				
	$\ \boxtimes $ Datenbankmanagementsystem	\square SQL-Anfragen				
d)	Grundelemente von ER-Diagrammen si	nd				
	\boxtimes Ovale für Attribute	⊠ Rauten für Beziehungen				
	□ Herzen für Beziehungen	□ Rechtecke für Attribute				
e)	Welches sind Standard-Operationen üb	er einzelnen Relationen?				
	□ Konsternierung	⊠ Selektion				
	□ Projektion	□ Verdichtung				
f)	Welches sind Teilsprachen von SQL —	Structured Query Language?				
	\boxtimes DDL (Data Definition Language)	\boxtimes DML (Data Manipulation Language)				
	$\hfill\Box$ DAL (Data Access Language)	$\hfill\Box$ DEL (Data Extraction Language)				

Aufgabe 2: SQL (30 Minuten)

Wir betrachten die in der Vorlesung behandelte Datenbank Firma mit den Tabellen Maschine, Personal, Gehalt, Kind, Abteilung und Prämie. Beispieltabellen, aus denen sich auch das Datenbankschema ablesen lässt, finden sich auf der letzten Seite dieser Aufgabenstellungen. Sie dürfen dieses Blatt gerne abtrennen.

Schreiben Sie bitte SQL-Anweisungen, um die folgenden "Fragen" zu beantworten. Wo gefragt, geben Sie bitte auch an, welche Antworten das Datenbanksystem auf Ihre Anfrage hin basierend auf den Beispieltabellen geben würde.

a) Wer sind die Mitarbeiter der Firma? Geben Sie bitte die Personalnummer, den Vor- und den Nachnamen der Mitarbeiter aus.

Lösung:

SELECT pnr, vorname, name FROM personal

b) Welches sind die Mitarbeiter der Firma, die in der *Barmer Ersatzkasse* (bek) versichert sind? Bitte geben sie wiederum die Personalnummer, den Vor- und den Nachnamen aus.

Lösung:

SELECT pnr, vorname, name FROM personal WHERE krankenkasse='bek'

Welche konkrete Antwort liefert diese Anfrage?

+-		+-		+-		+
1	pnr	1	vorname	1	name	1
+-		+-		+-		+
1	168	I	Egon	1	Hahn	1
1	156	I	Juergen	1	Hartmann	1
+-		-+-		+-		-+

c) Wie hoch ist das jeweilige Monatsgehalt der Mitarbeiter, die in den Abteilungen d12 und d15 arbeiten? Geben Sie bitte den monatlichen Betrag unter der Spaltenüberschrift Monatsgehalt, die Personalnummer, sowie Vorname und Nachname an. Sortieren Sie bitte das Ergebnis absteigend nach Höhe des Gehalts, bei gleichen Gehältern aufsteigend nach Nachname und Vorname des Mitarbeiters. Verwenden Sie bitte den IN-Operator.

Lösung:

```
SELECT betrag "Monatsgehalt", pnr, vorname, name, abt_nr FROM personal join gehalt using (geh_stufe) WHERE abt_nr in ('d12', 'd15')
ORDER BY betrag desc, name asc, vorname asc;
```

Welche konkrete Antwort liefert diese Anfrage?

Lösung:

4		+ -		+-		+-		+-		+
	Monatsgehalt	l	pnr	١	vorname	I	name		abt_nr	
1 1 1 .	3027 2873	 	167 159 127	 	Gustav Petra Siegfried	 	Krause Osswald Ehlert	 	d12 d15 d15	
+		+-		+-		+-		+-		+

d) Unter der Überschrift Gesamtsumme soll der Betrag ausgegeben werden, den unsere Firma insgesamt an Gehalt auszahlen muss.

Lösung:

```
SELECT sum(betrag) "Gesamtsumme" FROM personal p, gehalt g
WHERE p.geh_stufe=g.geh_stufe;
```

e) Für wie viele Maschinen sind die Mitarbeiter verantwortlich? Geben Sie bitte für jeden Mitarbeiter (Personalnummer, Vorname, Nachname) unter der Überschrift Anz-Maschinen an, für wie viele Maschinen er oder sie verantwortlich ist. Für Mitarbeiter, die für keine Maschine verantwortlich sind, soll 0 ausgegeben werden. Sortierung aufsteigend nach Anzahl der Maschinen-Verantwortlichkeiten.

```
SELECT pnr, vorname, personal.name, count(mnr) "Anz-Maschinen" FROM personal left outer join maschine using(pnr) GROUP BY personal.pnr
ORDER BY 4;
```

f) Benutzen Sie bitte Unterabfragen und vermeiden Sie Joins: Welche Mitarbeiter (Personalnummer, Vorname, Nachname) haben die höchste Einzelprämie erhalten?

Lösung:

```
SELECT pnr, vorname, name
FROM personal
WHERE pnr in
(SELECT pnr
FROM praemie
WHERE p_betrag >=ALL (SELECT p_betrag FROM praemie));
```

Welche konkrete Antwort liefert diese Anfrage?

Lösung:

Sind Ihre Unterabfragen korreliert oder unkorrelliert? Bitte begründen Sie Ihre Antwort.

Lösung:

Beide Unterabfragen sind hier unkorreliert, da sie keine Tabellen der äußeren Abfragen ansprechen.

g) Welche Mitarbeiter (Personalnummer, Vorname, Nachname) haben Prämien erhalten? Jeder Mitarbeiter soll nur einmal genannt werden, selbst wenn er mehrere Prämien erhalten hat.

Lösung:

```
SELECT DISTINCT pnr, vorname, name FROM personal NATURAL JOIN praemie oder

SELECT pnr, vorname, name FROM personal NATURAL JOIN praemie GROUP BY pnr, vorname, name
```

Welche konkrete Antwort liefert diese Anfrage?

Lösung:

+-		-+-		+-		+
1	pnr	1	vorname		name	
+-		-+-		+-		+
-	124		Richard	1	Meier	
	127		Siegfried		Ehlert	
	168		Egon		Hahn	
	227		Walter	-	Wagner	-
	234		August	-	Krohn	-
+-		-+-		+-		-+

h) Tragen Sie bitte die Antwort auf die folgenden Anfrage in die Tabelle ein:

```
SELECT DISTINCT pnr, vorname, name FROM personal JOIN kind USING (pnr) WHERE abt_nr='d13';
```

Lösung:

İ	pnr	İ	vorname	1	name	İ
1	123 133	1	Karl Harry	 	Lehmann Schulz	ļ
			Richard 			+

Welche Frage wird mit der oberen Anfrage beantwortet?

Lösung:

Welche Mitarbeiter der Abteilung d13 haben Kinder?

Aufgabe 3: Datenbankentwurf (25 Minuten)

Ein Bootsverleih möchte sein Verleihgeschäft automatisieren und eine Datenbank für die Organisation einsetzen.

Es sollen u.a. Informationen über **Boote** verwaltet werden. Dazu soll der Name des Bootes, sein Baujahr, die Anzahl der Besatzungsmitglieder (Besatzung) gespeichert werden. Keine zwei Boote haben den selben Namen.

Kunden können Boote zu einem bestimmten Datum (Leihbeginn) für eine bestimmte Dauer leihen. Ein Kunde kann mehrere Boote leihen (etwa stellvertretend für eine Ausflugsgruppe). Ein Boot kann zu einer Zeit aber nur von einem einzigen Kunden geliehen werden, oder es ist nicht ausgeliehen.

Von Kunden sollen ihr Vorname, ihr Nachname, ihre Postadresse (PLZ, Ort, Straße, Nr) und ihre E-Mail-Adresse sowie ihre Telefonnummer festgehalten werden. Jeder Kunde erhält zudem eine Kundennummer.

Boote sind nur für bestimmte Routen zugelassen, da etwa Tretboote nicht für Wildwasserfahrten geeignet sind. Ein Boot ist für mehrere Routen zugelassen und auch auf einer Route dürfen viele Boote eingesetzt werden.

Routen werden durch die Ortsbezeichung für ihren Start und für ihre Ende identifiert. Zudem wird ihr Schwierigkeitsgrad (leicht, mittel, schwer) festgehalten.

a) Entity-Relationship-Diagramm

Erstellen Sie bitte ein Entity-Relationship-Diagramm, das die oben skizzierten Sachverhalte wiedergibt. Charakterisieren Sie dabei bitte insbesondere die Beziehung zwischen Booten, Kunden und Routen genau.

b) Entity-Relationship-Modell

Leiten Sie aus dem ER-Diagramm bitte ein Entity-Relationship-Modell ab und geben Sie bitte die zugehörigen Entity- und Relationship-Deklarationen an.

Entity-Deklarationen:

Lösung:

Relationship-Deklarationen:

Lösung:

```
leiht = ( { Boot, Kunde }, { Leihbeginn, Dauer } ) Typ 1:N, PS: Name zugelassen_für = ( { Route, Boot }, { } ) Typ N:M, PS: Start, Ziel, Name
```

c) Relationales Modell

Transformieren Sie bitte das ER-Modell in ein relationales Modell und geben sie bitte entsprechende R-Schema-Definitionen sowie Integritätsbedingungen an.

```
 \begin{split} & Kunde = (\ \{\ KDNR,\ Adresse(PLZ,\ Ort,\ Strasse,\ Nr),\ Telefon,\ E-Mail,\ Vorname,\ Nachname\ \},\ \{\ KDNR\ \}\ ) \\ & Boot = (\ \{\ Name,\ Besatzung,\ Baujahr\ \},\ \{\ Name\ \}\ ) \\ & Route = (\ \{\ Start,\ Ziel,\ Schwierigkeitsgrad\ \},\ \{\ Start,\ Ziel\ \}\ ) \\ & leiht = (\ \{\ Name,\ KDNR,\ Leihbeginn,\ Dauer\ \},\ \{\ Name\ \}\ ) \\ & zugelassen\_für = (\ \{\ Start,\ Ziel,\ Name\ \},\ \{\ Start,\ Ziel,\ Name\ \}\ ) \\ & leiht[Name] \subseteq Boot[Name] \\ & leiht[KDNR] \subseteq Kunde[KDNR] \\ & zugelassen\_für[Start,\ Ziel] \subseteq Route[Start,\ Ziel] \\ & zugelassen\_für[Name] \subseteq Boot[Name] \\ & \end{split}
```

d) SQL-Datendefinitionen

Wie sieht die zugehörige Tabellendefinition (CREATE TABLE) in SQL für die Tabelle **Boot** aus?

Lösung:

```
CREATE TABLE boot (
name VARCHAR(30),
besatzung INTEGER(4),
baujahr INTEGER(4),
PRIMARY KEY (name)
);
```

e) SQL-Anfrage

Wie sieht eine SQL-Anfrage aus, die die Boote ermittelt, die für schwere Routen zugelassen sind?

```
SELECT name FROM boot NATURAL JOIN zugelassen_fuer NATURAL JOIN route WHERE schwierigkeitsgrad='schwer';
```

Beispieldatenbank für Aufgabe 2. Diese Seite darf abgetrennt werden.

PERSONAL:

PNR	NAME	VOR-	GEH_	ABT_NR	KRANKENKASSE
		NAME	STUFE		
167	Krause	Gustav	it3	d12	dak
168	Hahn	Egon	it4	d11	bek
123	Lehmann	Karl	it3	d13	aok
133	Schulz	Harry	it1	d13	aok
124	Meier	Richard	it5	d13	aok
125	Wutschke	Oskar	it3	d13	aok
126	Schroeder	Karl-Heinz	it4	d13	aok
227	Wagner	Walter	it2	d13	dak
234	Krohn	August	it4	d13	aok
135	Tietze	Lutz	it2	d13	tkk
156	Hartmann	Juergen	it1	d14	bek
127	Ehlert	Siegfried	it1	d15	kkh
157	Schultze	Hans	it1	d14	aok
159	Osswald	Petra	it2	d15	dak
137	Haase	Gert	it1	d11	kkh
134	Meier	Gerd	it5	d11	tkk

GEHALT:

3782

GEH_

STUFE

it1 it2

it3

it4

A	\mathbf{R}	$\Gamma E 1$	Π	N	C٠

ADI EILUNG:								
BETRAG	ABT_NR	NAME						
2523	d11	Verwaltung						
2873	d12	Projektierung						
3027	d13	Produktion						
3341	d14	Lagerung						
3782	d15	Verkauf						

it5 Kind:

PNR	K_NAME	K_VORN	K_GEB
167	Krause	Fritz	1997
167	Krause	Ida	1999
123	123 Lehmann		2002
123	Lehmann	Karl	2004
168	Hahn	Hans	1993
133	Wendler	Klaus	1996
124	Meier	Gustav	1999
124 Meier		Susi	2002
124	Meier	Dirk	2004

PRAEMIE:

PNR	P_BETRAG
227	550
227	610
227	250
124	250
234	600
234	500
127	300
168	600
168	700

MASCHINE:

MNR	NAME	PNR	ANSCH_DATUM	NEUWERT	ZEITWERT
1	bohrmaschine	123	1995	30.000	15.000
2	bohrmaschine	123	2002	30.000	18.000
3	fräsmaschine	124	1998	40.000	10.000
11	hobelmaschine	127	2002	29.000	19.000
12	drehbank	126	1999	31.000	21.000
14	hobelmaschine	123	1998	32.000	22.000
16	drehbank	134	2001	32.000	23.000
17	bohrmaschine	127	2003	31.000	25.000