STRT2008/4038/6038 Regression Modelling 2/3/2017 The estimated variance model is detailed in the D Analysis of Variance table (ANOVA table) ANOVA table degrees of freedom mean squares of squares 1 Stree = SSTotal - Strur " (ater Model Regression V-5 22 Even = 26,3 Wenor = 25 Even Error Residual Total n-1 Siy = SS Total $\sqrt{\hat{c}^2}$ est. of e^2 This line is equivalent to the We could calculate $Y = \beta_0 + \xi$ When $X = \frac{SS_{rotal}}{N-1} = J_y^2$ this line is equivalent to the bis lone is equivalent to the SLR model Y= Bo+B, X+E EidN(0,62) Our key estimate of the error variance 62 is the MS Error To calculable this: 1. find $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \mathcal{X}_i$ for all i=1,2,...,n(the sample) 2 find ei = Yi - Yi (the residuals) 3 find Zei2 = SSerrors & average over the df = N-2

(for SLR) to get $s^2 = \hat{6}^2 = \frac{\sum e_i^2}{n-2}$ In our current example Source 1 df SS MS F P
Regression (Vear) 1 10.8685 10.8685 419.53 2.2x10-16
Residuals (Fror) 136 3.5232 0.0259
Total 137 14.3917 0.1050 STAT2008/4038/6038 Regression Modelling

2/3/2017(2)

Type I & Type II emors

Null Hypothesis			
	Ho valid	Ho not valid	-
Outcome réject of test Ho		False negative Type II error	
Réject	False positive Type I error		
P(Type I error) = \alpha (significance level)			
1- 0 is called the confidence level			
P (Type I error) = B			
A powerful test is one in which we are more likely to correctly reject a false null hypothesis			
NB: about the only way we concruse the sample size			
12(2): a one-tailed hypothesis test is more powerful			
Of the same sample sige)			