

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam (Summer 2023)

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: 40

Duration: 2 Hours

Answer all questions. Figures in the right-hand margin indicates full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

1. Consider the following *Context-free grammars (CFG)* and answer according to it:

 3×2

a)	$S \rightarrow S + S \mid S * S \mid A \mid B$ $A \rightarrow aA \mid 1$ $B \rightarrow bB \mid 2$	With the help of <i>Top-Down Parse Trees</i> , find-out if the grammar is <i>Ambiguous</i> or not for the string "bbb2 + aa1 + b2"
b)	$S \rightarrow S + S \mid S - S \mid (S) \mid T$ $T \rightarrow X * X \mid X \% X \mid X$ $X \rightarrow x \mid y \mid z \mid Y$ $Y \rightarrow 0 \mid 1 \mid 2 \mid 3$	With the help of <i>Leftmost derivation</i> , derive the following string " $(x + 2*y) - (3*z + 1)$ "

2. Find *CFG*'s that generates the following languages.

 2×3

- **a)** $L = \{ a^{m+n} c^{3n} d^{2m} \mid n,m >= 2 \}$
- **b)** $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of odd length } \& w \text{ starts and ends with same symbol } \}$
- c) $L = \{ a^i b^j c^k | 2i + 3j >= 6 \text{ and } 4i 8j >= -16 \text{ and } k >= 1 \}$
- **3.** Convert the following *CFG*'s into equivalent *Chomsky Normal Form (CNF)* 4 x 2 [Show all the Steps]
 - a) $S \rightarrow YXZ \mid Y$

$$Y \rightarrow 0Y1 \mid 01$$

$$X \rightarrow aXb \mid \epsilon$$

$$Z \rightarrow Bz$$

b)
$$S \rightarrow ASB$$

$$A \rightarrow aAS \mid a \mid \epsilon$$

$$B \rightarrow SbS \mid A \mid bb$$

4. Draw Push Down Automata (PDA) for the following Languages

5 x 2

a)
$$L = \{ w = w^R \mid w \in \{0, 1\}^* \}$$

b)
$$L = \{ a^m b^{2n} c^n d^{3m} \mid m \ge 0, n \ge 1 \}$$

5. Draw *Turing Machine* for the following Languages and Show the *Tape Traversal* to *validate* the given input:

 $L = \{ \ x^a \ y^b \ z^c \ | \ where \ a = b\text{-}c \ and \ a, \ b, \ c \geq 1 \ \} \quad | \quad Input \ String: \ xxxyyyyyyyyzzzzzz$