# СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" писмен конкурсен изпит по математика І

18 юни 2016 г.

## Tema №1.

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

**Задача 1.** Нека  $a=\left(\frac{1}{4}\right)^{\frac{1}{2}}$  ,  $b=\left(\sqrt[3]{27}:\sqrt[4]{16}\right)^{-1}$  и с =20% от 2. Посочете вярното твърдение:

A) 
$$c < a < b$$

Б) 
$$b < c < a$$

B) 
$$c < b < a$$

$$\Gamma$$
)  $a < b < c$ 

**Задача 2.** Ако  $a=\sqrt{3}$  и  $b=\sqrt{2}$ , то стойността на израза  $\frac{3a^3-3b^3}{a^2+ab+b^2}-\frac{2a^3+2b^3}{a^2-ab+b^2}$  е равна на:

A) 
$$5\sqrt{3} - \sqrt{2}$$

Б) 
$$3\sqrt{3} - 2\sqrt{2}$$

B) 
$$3\sqrt{2} - 2\sqrt{3}$$

$$\Gamma$$
)  $\sqrt{3}-5\sqrt{2}$ 

**Задача 3.** Допустимите стойности на израза  $\frac{\sqrt[3]{2-x^2}}{\sqrt[4]{x^2-2}}$  са:

A) 
$$x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$
 B)  $x \in \emptyset$ 

$$(B) x \in \emptyset$$

B) 
$$x \in (\sqrt{2}, \infty)$$
  $\Gamma$ )  $x = \pm \sqrt{2}$ 

$$\Gamma$$
)  $x = \pm \sqrt{2}$ 

**Задача 4.** Решенията на неравенството  $\frac{8-x^3}{x^2-x-2} \le 0$  са:

A) 
$$x \in (-\infty, -2) \cup (-2, 1]$$

B) 
$$x \in (-\infty, -1]$$

B) 
$$x \in (-1, 2) \cup (2, \infty)$$

$$\Gamma$$
)  $x \in (-1, \infty)$ 

**Задача 5.** Ако  $a = \lg 3$  и  $b = \lg 5$ , то  $\log_3 5$  е равен на:

A) 
$$\frac{b}{a}$$

$$\mathbf{B}$$
)  $b-a$ 

B) 
$$\frac{a}{b}$$

$$\Gamma$$
)  $a-b$ 

**Задача 6.** Решенията на системата  $\begin{vmatrix} x^2 - y^2 = 7 \\ x + y = 7 \end{vmatrix}$  са:

A) 
$$(-4, -3)$$

B) 
$$(-3, -4), (-4, -3)$$

$$\Gamma$$
)  $(4,3)$ 

Задача 7. Ако  $\alpha$  и  $\beta$  са корени на уравнението  $x^2+5x-3=0$ , то числата  $\frac{1}{\alpha}$  и  $\frac{1}{\beta}$  са корени на уравнението:

A) 
$$3t^2 + 5t - 1 = 0$$

$$E) 3t^2 - 5t - 1 = 0$$

B) 
$$t^2 + 5t - 3 = 0$$
  $\Gamma$ )  $t^2 - 5t - 3 = 0$ 

$$\Gamma$$
)  $t^2 - 5t - 3 = 0$ 

Задача 8. Ако  $\alpha=\frac{\pi}{12}$ , то стойността на израза  $\frac{\operatorname{tg}\alpha+\operatorname{tg}2\alpha}{\operatorname{tg}\alpha\cdot\operatorname{tg}2\alpha-1}$  е равна на:

$$A) - \frac{\sqrt{2}}{2}$$

B) 
$$-1$$

$$\Gamma$$
)  $\frac{\sqrt{3}}{3}$ 

**Задача 9.** Върху сраните AB и AC на  $\Delta ABC$ , с лице  $S_{ABC}=36$ , са избрани съответно точките M и N, така че AM:MB=1:2 и MN||BC. Лицето на  $\Delta AMN$  е равно на:

A) 
$$S_{AMN} = 9$$

Б) 
$$S_{AMN} = 4$$

B) 
$$S_{AMN} = 12$$

$$\Gamma$$
)  $S_{AMN} = 18$ 

**Задача 10.** Даден е  $\Delta ABC$ , за който AC = 5,  $\triangleleft ACB = 90^{\circ}$ ,  $\sphericalangle BAC = 60^\circ$  и CH е височина. Дължината на отсечката BH е равна на:

A) 
$$5\sqrt{3}$$

$$B) \frac{5\sqrt{3}}{2}$$

 $\Gamma$ )7, 5





**Задача 11.** Графиката на квадратната функция y = f(x) пресича координатните оси в точките A(-2,0), B(3,0) и C(0,4), а графиката на линейната функция y=g(x) пресича графиката на функцията y=f(x) в точки A(-2,0) и D(4,-4). Кое твърдение е вярно:



- А) Най-голямата стойност на квадратната функция y = f(x) е по-голяма от 4.
  - Б) Линейната функция y=g(x) е растяща в интервала  $(-\infty,\infty)$ .
  - В) Решенията на неравенството f(x) < g(x) са  $x \in (-2, 4)$ .
  - $\Gamma$ ) Решенията на уравнението f(x) = g(x) са x = -2, x = 3.

**Задача 12.** С коя от формулите се задава числова редица  $a_n, n \in \mathbb{N}$ , всички членове на която са естествени числа?

A) 
$$a_n = \frac{(n-1)n(n+1)}{6}$$
 B)  $a_n = \frac{(n-1)n}{4}$  B)  $a_n = \frac{n(n+1)}{4}$   $\Gamma$ )  $a_n = \frac{n(n+1)(n+2)}{6}$ 

$$\mathbf{E}) \ a_n = \frac{(n-1)n}{4}$$

$$B) a_n = \frac{n(n+1)}{4}$$

$$\Gamma) \ a_n = \frac{n(n+1)(n+2)}{6}$$

**Задача 13.** Дадена е аритметична прогресия  $\div a_1, a_2, \cdots a_n$ , за която  $a_1=1, a_3=13$  и  $S_n=280$ . Броят n на членовете на прогресията и последният ѝ член  $a_n$  са :

A) 
$$n = 10, a_{10} = 56$$

$$E) n = 10, a_{10} = 55$$

B) 
$$n = 11$$
,  $a_{11} = 55$ 

$$\Gamma$$
)  $n = 11, a_{11} = 56$ 

**Задача 14.** Ако  $\operatorname{tg} \frac{x}{2} = \frac{1}{2}$ , то  $\sin x$  и  $\cos x$  са:

A) 
$$\sin x = \frac{3}{5}$$
,  $\cos x = \frac{4}{5}$ 

$$\text{B) } \sin x = \frac{2}{5}, \cos x = \frac{3}{5}$$

B) 
$$\sin x = \frac{4}{5}$$
,  $\cos x = \frac{3}{5}$ 

$$\Gamma)\sin x = \frac{4}{5}, \cos x = \frac{2}{5}$$

Задача 15. Дадени са 48 еднакви карти с формата на квадрат. Броят на различните фигури с формата на правоъгълник, които могат да се съставят от всичките карти е:

$$\Gamma$$
) 3

**∕**45°

Задача 16. Даден е статистическият ред: 1; 2; 2; 3; 4; 4; 4; 5; 6; 6; 6; 7; 8; 8; 9. Кое от твърденията НЕ е вярно?

- А) Медианата и средното аритметично на реда са равни.
- Б) Ако прибавим нов елемент 4 към реда, то модата на новия ред ще бъде по-малка от медианата му.
- В) Ако премахнем един елемент 4 от реда, то модата на новия ред ще бъде по-малка от медианата му.
  - Г) Ако прибавим нов елемент 4 към реда, то медианата на новия ред ще бъде равна на 4, 5.

**Задача 17.** Даден е  $\triangle ABC$ , за който BC = 7,  $\triangleleft ACB = 105^{\circ}$ ,  $\sphericalangle BAC = 45^{\circ}$ . Дължините на радиуса на описаната около триъгълника окръжност и страната AC са равни на:

A) 
$$R = 7\sqrt{2}, AC = \frac{7\sqrt{2}}{2}$$

$$\mathbf{E})R = 7\sqrt{2}, AC = 7\sqrt{2}$$

B) 
$$R = \frac{7\sqrt{2}}{2}$$
,  $AC = 7\sqrt{2}$ 

$$\Gamma) R = \frac{7\sqrt{2}}{2}, AC = \frac{7\sqrt{2}}{2}$$

**Задача 18.** Даден е  $\Delta ABC$ , за който  $AB=2,5;\ BC=3,5;\ \sphericalangle BAC=120^\circ.$  Полупериметърът p на  $\Delta ABC$  e равен на:

A) 
$$p = 7, 5$$

Б) 
$$p = 8$$

B) 
$$p = 3,75$$

$$\Gamma$$
)  $p=4$ 

**Задача 19.** Даден е трапец ABCD, за който AB = 13, AD = 5, BD = 12 и  $S_{ABCD} = 45$ . Дължината на основата CD, височината h и  $S_{\Delta CDB}$  са съответно равни на:



A) 
$$CD = 6, 5; h = 4, 62; S_{\Delta CDB} = 25$$

E) 
$$CD = \frac{13}{2}$$
,  $h = \frac{60}{13}$ ,  $S_{\Delta CDB} = 15$ 

B)
$$CD = \frac{60}{13}, h = \frac{13}{2}, S_{\Delta CDB} = 15$$

$$\Gamma$$
)  $CD = 4,62; h = 6,5; S_{\Delta CDB} = 25$ 

**Задача 20.** Даден е четириъгълник ABCD, за който AC разполовява  $\triangleleft BAD$ , AD = 4,  $\sphericalangle CAD = 30^{\circ}, \ \sphericalangle ACB = 75^{\circ}$  и BO = DO, където O е пресечната точка на диагоналите AC и BD. Лицето на четириъгълника е равно на:

A) 
$$S_{ABCD} = 8$$

Б) 
$$S_{ABCD} = 16$$

B) 
$$S_{ABCD} = 8\sqrt{3}$$

B) 
$$S_{ABCD} = 8\sqrt{3}$$
  $\Gamma$ )  $S_{ABCD} = 16\sqrt{3}$ 

Отговорите на задачите от 21. до 25. включително запишете в листа за отговори!

**Задача 21.** Най-голямата стойност на израза 
$$\sin 2x - \sin^2 3x + \cos \left(\frac{\pi}{3} - 3x\right) \sin \left(3x - \frac{\pi}{6}\right)$$
 е равна на:

**Задача 22.** Решенията на уравнението 
$$\sqrt{3x-2} - \sqrt{2x-3} = 1$$
 са:

Задача 23. През първия месец от съществуването си новоучредената фирма "Възход 2016" имала 4100 лв. разходи, а приходите ѝ били 2450 лв. От всеки следващ месец приходите на фирмата се увеличавали с по 600 лв., а разходите ѝ намалявали с по 500 лв. След колко месеца общата сума на приходите е надминала общата сума на разходите, т.е. фирмата е "излязла на печалба"?

Задача 24. Средният ръст на двамата треньори на детски баскетболен отбор е 205 см. В залата тренират 10 деца със среден ръст от 169 см. С колко сантиметра ще се повиши средният ръст на хората в залата при влизането на двамата треньори?

**Задача 25.** Даден е триъгълник  $\Delta ABC$  със страни AB=24, BC=21, CA=15. Дължината на ъглополовящата CL на ъгъл  $\triangleleft ACB$  е равна на:

Полните решения на задачите от 26. до 28. включително запишете в свитока за решения!

**Задача 26.** Да се реши уравнението 
$$(x^2 + 2x)^2 - 2|x^2 + 2x| - 3 = 0$$
.

Задача 27. С помощта на цифрите  $\{0,1,2,3,4\}$  е съставено четирицифрено число с неповтарящи се цифри. Колко такива числа могат да се образуват? Каква е вероятността съставеното число да е четно?

**Задача 28.** Даден е квадрат ABCD с лице  $S_{ABCD}=2016$ , за който с M е означена средата на страната AB, а O, N и P са съответно пресечните точки на AC и BD, BD и CM и AC и DM. Да се намери лицето на четириъгълника MNOP.

#### Време за работа 4 часа.

Драги кандидат-студенти,

- номерирайте всички страници на беловата си;
- означавайте ясно началото и края на решението на всяка от задачите от 26. до 28. включително;
- решението на всяка от задачите от 26. до 28. включително трябва да започва на нова страница;
- не смесвайте белова и чернова;
- черновата не се проверява и не се оценява.

### Изпитната комисия ви пожелава успешна работа!