Fuzzy C-Means Clustering

clustering

Hand clustering
Algorithm

data point assigned only a single cluster example.

K-Means., K-Medoid

Soft clustering
Algorithm

each data point belongs
to a cluster with a

certain probability also
known as membership

Value example.

Fuzzy C-Means algorithm

Fuzzy C-Meoms Steps: Step-1: Given data points based on the number of clusters required initialize then membership table with gardom values

Suppose the given data points one { (1,3), (2,5), (6,8), (7,9)}

Cluster	(1,3)	(2.5)	(4.8)	(7,8)
	Di	D2	D3	D4
1	0.8	0.7	0.2	0.1
2	0.2	0.3	0.8	0.9

Step-2: Find out the centroid

the formula for finding out the centroid (V) is

 $V_{ij} = \frac{\sum_{k=1}^{n} Y_{ik} \cdot K_{ik}}{\sum_{k=1}^{n} Y_{ik}}$

Y = Fuzzy number ship value

m = Fuzziness parameter generally taken as 2

XK = is the data point.

$$V_{11} = \frac{(0.8^{2} \times 1 + 0.7^{2} \times 2 + 0.2^{2} \times 4 + 0.1^{2} \times 7)}{(0.8^{2} + 0.7^{2} + 0.2^{2} + 0.1^{2})} = 61.568$$

$$V_{12} = \frac{(0.8^{2} \times 3 + 0.7^{2} \times 5 + 0.2^{2} \times 8 + 0.1^{2} \times 9)}{(0.8^{2} + 0.7^{2} + 0.2^{2} + 0.1^{2})} = 4.051$$

$$V_{21} = \frac{0.2^2 \times 1 + 0.3^2 \times 2 + 0.8^2 \times 4 + 0.9^2 \times 7}{0.2^2 + 0.3^2 + 0.8^2 + 0.9^2} = 5.35$$

$$V_{22} = \frac{0.2^2 \times 3 + 0.3^2 \times 5 + 0.8^2 \times 8 + 0.9^2 \times 9}{0.2^2 + 0.3^2 + 0.8^2 + 0.9^2} = 8.215$$

Hence centroids are (1.568, 4.051) and (5.35, 8.215)

Step-3: Final out the distance of each point from the centroid.

$$D_{11} = \sqrt{(1-1.568)^2 + (3-4.051)^2} = 1.2$$

$$D_{12} = 6.79$$

$$D_{21} = 4.63$$

$$D_{21} = 1.04$$

$$D_{32} = 1.36$$

$$D_{41} = 7.34$$

$$D_{42} = 1.82$$

cluster	D1 (193)	02 (2,5)	D3 (498)	04 (7,9)
15+	0.8	6.7	0.2	0.1
2 nd	0.2	0.3	0.8	0.9
cluster > 1	15+	15+	2 200	2 not

for point 1 new membership values are:

$$Y_{11} = \left\{ \frac{(1.2)^2}{(1.2)^2} + \frac{(1.2)^2}{(6.79)^2} \right\}^{\frac{1}{(2-1)}} = 0.97$$

$$Y_{12} = \left\{ \frac{(6.79)^2}{(1.2)^2} + \frac{(6.79)^2}{(6.79)^2} \right\}^{\frac{1}{(2-1)}} = 0.03$$

$$Y_{21} = 0.95$$
 $Y_{31} = 0.08$ $Y_{41} = 0.06$

$$Y_{32} = 0.92$$
 $Y_{42} = 0.94$

Hence updated membership value

cluster	(1-3)	(295)	(4-8)	(7,9)
1	0.97	0.95	0.08	0.06
2	0.03	0.05	0.92	0.94

Step-5: Repeat the step-2 to step-4 until the constant values are obtained for the membership values or the difference is less than the tolerence value