Métodos Estatísticos Básicos

Aula 10 - Distribuições de probabilidade

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

31 de agosto de 2020

Conteúdo

Distribuições discretas

Distribuição binomial
Distribuição de Poisson
Distribuição geométrica
Distribuição de Pascal
Distribuição hipergeométrica

Distribuições contínuas

Distribuição uniforme Distribuição exponencial Distribuição normal

Teorema do Limite Central

Distribuição binomial

Variável aleatória: número de sucessos obtidos em n realizações de experimentos de Bernoulli com probabilidade de sucesso p

Distribuição binomial:
$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 para $x = 0, 1, 2, ..., n$

Valor esperado: E(x) = np

Variância: V(x) = np(1-p)

Suponha que haja 10 questões de múltipla escolha em uma prova de estatística. Cada pergunta tem 5 respostas possíveis e apenas uma delas está correta. Encontre a probabilidade de um aluno responder aleatoriamente a todas as perguntas e obter:

1. Exatamente cinco respostas corretas

```
dbinom(5, size = 10, prob = 0.2)
```

[1] 0.02642412

2. Cinco ou mais respostas corretas

```
1 - pbinom(4, size = 10, prob = 0.2)
```

Distribuição de Poisson

Variável aleatória: número de ocorrências de certo evento obtidas em um determinado período de tempo, sendo o parâmetro λ o número esperado de ocorrências

Distribuição de Poisson:
$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 para $x = 0, 1, ..., n$

Valor esperado: $E(x) = \lambda$

Variância: $V(x) = \lambda$

Se a cada 5 minutos chegar em média 50 pacientes em uma UTI de um hospital, qual a probabilidade de:

1. Exatamente 10 pacientes chegarem a UTI no próximo minuto?

```
dpois(10, lambda = 10)
```

[1] 0.12511

2. Cinco pacientes ou mais chegarem a UTI no próximo minuto?

```
1 - ppois(5, lambda = 10)
```

Distribuição geométrica

Variável aleatória: número de repetições necessárias para obter o primeiro sucesso em experimentos de Bernoulli com probabilidade *p*

Distribuição geométrica: $f(x) = q^{x-1}p$ para x = 1, 2...

Valor esperado: $E(x) = \frac{1}{p}$

Variância: $V(x) = \frac{q}{p^2}$

Se 20% dos motores elétricos produzidos em uma empresa apresentam falhas. Se selecionarmos cinco motores ao acaso qual a probabilidade de encontrarmos quatro motores perfeitos antes de encontrarmos um defeituoso?

```
dgeom(4, prob = 0.2)
```

Distribuição de Pascal

Variável aleatória: número de repetições necessárias para obter o r-ésimo sucesso em experimentos de Bernoulli com probabilidade p (generalização da distribuição geométrica)

Distribuição de Pascal (binomial negativa): $f(x) = {x-1 \choose r-1} p^r q^{x-r}$ para x = r, r+1, r+2...

Valor esperado: $E(x) = \frac{r}{\rho}$

Variância: $V(x) = \frac{rq}{p^2}$

Uma empresa de petróleo tem uma chance de 20% de encontrar petróleo ao perfurar um poço. Qual a probabilidade de que a empresa perfure 7 poços e encontre petróleo 3 vezes?

$$dnbinom(7-3, size = 3, prob = 0.2)$$

Distribuição hipergeométrica

Variável aleatória: número de peças defeituosas em uma amostra de n peças retiradas de um total de N peças que continham r defeituosas

Distribuição hipergeométrica:
$$f(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$
 para $x = 0, 1, 2...$

Valor esperado: E(x) = np

Variância: $V(x) = npq \frac{N-n}{N-1}$

Qual é a probabilidade de selecionar 14 bolas vermelhas de uma amostra de 20 retiradas de uma urna contendo 70 bolas vermelhos e 30 verdes?

```
dhyper(14, 70, 30, 20)
```

Distribuição uniforme

Variável aleatória: um ponto em um intervalo de reta dos números reais

Distribuição uniforme: $f(x) = \frac{1}{b-a}$ para $a \le x \le b$ e 0 caso contrário

Valor esperado: $E(x) = \frac{a+b}{2}$

Variância: $V(x) = \frac{(b-a)^2}{12}$

Um ponto é escolhido ao acaso no segmento de reta [1,3]. Qual a probabilidade de que o ponto esteja entre 1,5 e 2?

```
punif(2, min=1, max=3)-punif(1.5, min=1, max=3)
```

Distribuição exponencial

Variável aleatória: tempo ou distância necessária para ocorrências de um processo de Poisson

Distribuição exponencial: $f(x) = \alpha e^{-\alpha x}$ para x > 0 e 0 para $x \le 0$

Valor esperado: $E(x) = \frac{1}{\alpha}$

Variância: $V(x) = \frac{1}{\alpha^2}$

Suponha que o tempo médio de atendimento de um caixa de supermercado seja de três minutos. Encontre a probabilidade de o tempo de atendimento de um cliente ser concluído pelo caixa em menos de dois minutos.

```
pexp(2, rate = 1/3)
```

Distribuição normal

Variável aleatória: valores pertencentes ao conjunto dos números reais obtidos de experimentos aleatórios

Distribuição normal:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{1}{2} \left[\frac{x-\mu}{\sigma}\right]^2\right)$$
 para $-\infty < x < \infty$

Valor esperado: $E(x) = \mu$

Variância: $V(x) = \sigma^2$

Distribuição normal

- Os parâmetros da distribuição normal devem satisfazer as seguintes condições: $-\infty < \mu < \infty$ e $\sigma > 0$
- Se X tem distribuição normal com média μ e variância σ^2 , denotamos $X \sim N(\mu, \sigma^2)$
- Se $X \sim N(0,1)$ dizemos que X tem uma distribuição normal reduzida, de modo que:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Distribuição normal

- Se $X \sim N(\mu, \sigma)$ e Y = aX + b, então $Y \sim N(a\mu + b, a^2\sigma^2)$
- Se $X \sim \mathcal{N}(\mu, \sigma)$ e $Y = (X \mu)/\sigma$, então $Y \sim \mathcal{N}(0, 1)$
- Se $X \sim N(\mu, \sigma)$ então:

$$P(a \le X \le b) = P(\frac{a-\mu}{\sigma} \le Y \le \frac{b-\mu}{\sigma}) = F(\frac{b-\mu}{\sigma}) - F(\frac{a-\mu}{\sigma})$$

onde F é a distribuição acumulada da normal reduzida, N(0,1)

• Temos também vale que F(-x) = 1 - F(x)

Suponha que a altura em centímetros de uma amostra de estudantes de estatística seja distribuída normalmente com E(X)=170 e V(X)=100. Qual a probabilidade de que um aluno escolhido ao acaso tenha altura menor do que 160cm?

$$P(X < 160) = P(\frac{X - 160}{10} < \frac{160 - 170}{10}) = F(-1) = 1 - F(1) = 0,159$$

$$pnorm(160, mean = 170, sd = 10)$$

[1] 0.1586553

Teorema do Limite Central

Seja $X_1, X_2, \ldots, X_n, \ldots$ uma sequência de variáveis aleatórias independentes, com $E(X_i) = \mu_i$ e $V(X_i) = \sigma_i^2$ para $i = 1, 2, \ldots$ Fazendo $X = X_1 + X_2 + \ldots + X_n$, então, sob determinadas condições gerais:

$$Z_n = rac{X - \sum_{i=1}^n \mu_i}{\sqrt{\sum_{i=1}^n \sigma_i^2}} \sim N(0,1)$$