Module 1: AI for Channel Decoding

TA: 林冠宇、李冠達、余主恩、邵政允

- You will learn:
 - How to use colab
 - Implement the whole communication system
 - Basics of channel coding
 - Support vector machine
 - Deep learning
- Grading:
 - Uncoded system 10%
 - Syndrome Decoding, 10% ML decoding 10%
 - Classification with support vector machine 20%
 - Deep Learning 20%
 - Mini project 20%
 - Report (no more than 10 pages) 10%

林冠宇: <u>casperlin.ee09@nycu.edu.tw</u>

李冠達:<u>oliver58972.ee12@nycu.edu.tw</u>

余主恩: yxq0628. ee13@nycu. edu. tw

邵政允: keeevin. ee13@nycu. edu. tw

Error Correction Codes

Terminology

- Message: Sequence of bits representing your date (link to the website)
- Codeword: Sequence of bits forming your QR code

- Example:
 - Message = 1 1 0 1
 - Codeword = 1 1 0 1 0 1 0

These bits are added for error correction

It is everywhere!!! Even in string theory!!!

A digital communication system over wireless channel

Channel enc/dec allows error correction by adding redundancy

How it works? How to create those bits?

Index: 1234567 Codeword: 1101100

The last 3 bits are added such that inside every circle the number of 1s are even

Suppose 1 bit is erased, we can fix it by checking the parity of each circle

Index: 1234567 Codeword: 0101???

It's your turn

What if 2 bits are erased?

Index: 1234567 Codeword: 1101100

It can also correct 1 bit flip

Suppose 1 bit is flipped, we can fix it by flipping 1 bit to meet all constraints

(n,k)-Linear Block Codes

- k-bit message m, n-bit codeword c
- Relationship: c = mG
- The code C contains all (2^k in total) such codewords
 - C is the row space of $G(k \times n)$
 - Call it a generator matrix
- There exists $H(n-k\times n)$ such that $cH^T=Hc^T=0$
 - Rows of *H* span the nullspace of *G*
 - Call it a parity check matrix

(7,4)-Hamming Codes

- 4-bit message m, 7-bit codeword c
- Relationship: c = mG

$$\mathbf{G} := egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} := egin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Lab for Today – Uncoded system

System Model

- When transmit, we map coded bits to baseband signal
- ullet Binary phase shift keying (BPSK) for sending the bit c_i

$$x_i = \sqrt{P}(2c_i - 1), \qquad x = [x_1, ..., x_n]$$

Additive white Gaussian noise (AWGN) channel

$$y_i = x_i + w_i$$
, $w_i \sim N(0, N_0/2)$, $y = [y_1, ..., y_n]$

BER in Uncoded System

• Detection of x_i from y_i

$$\hat{x}_i = sign(y_i)$$
 and $\hat{r}_i = (\hat{x}_i + 1)/2$

- Demodulate \hat{x}_i to \hat{m}_i
- Error if $\widehat{m}_i \neq m_i$
- Bit error rate (BER): $p_e = \sum 1(\{\widehat{m}_i \neq m_i\})/n$
- Plot BER as a function of E_b/N_0 where E_b is energy per bit