ϵ

FMA6500 Mass Flow Controller

OMEGAnet® Online Service www.omega.com

Internet e-mail info@omega.com

Servicing North America:

USA: One Omega Drive, Box 4047 ISO 9001 Certified Stamford CT 06907-0047

Tel: (203) 359-1660 FAX: (203) 359-7700

e-mail: info@omega.com

Canada: 976 Bergar

> Laval (Quebec) H7L 5A1 Tel: (514) 856-6928

e-mail: info@omega.ca

FAX: (514) 856-6886

For immediate technical or application assistance:

USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGA®

> Customer Service: 1-800-622-2378 / 1-800-622-BEST® Engineering Service: 1-800-872-9436 / 1-800-USA-WHEN® TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico: En Españ ol: (001) 203-359-7803 e-mail: espanol@omega.com

> FAX: (001) 203-359-7807 info@omega.com.mx

> > **Servicing Europe:**

Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: +31 (0)20 3472121 FAX: +31 (0)20 6434643

Toll Free in Benelux: 0800 0993344 e-mail: sales@omegaeng.nl

Czech Republic: Rudé arm-dy 1868, 733 01 Karvin- 8

> Tel: +420 (0)59 6311899 FAX: +420 (0)59 6311114

Toll Free: 0800-1-66342 e-mail: info@omegashop.cz

France: 11, rue Jacques Cartier, 78280 Guyancourt, France

> Tel: +33 (0)1 61 37 29 00 FAX: +33 (0)1 30 57 54 27

Toll Free in France: 0800 466 342

e-mail: sales@omega.fr

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany

Tel: +49 (0)7056 9398-0 FAX: +49 (0)7056 9398-29

Toll Free in Germany: 0800 639 7678

e-mail: info@omega.de

United Kingdom: One Omega Drive, River Bend Technology Centre

ISO 9002 Certified Northbank, Irlam, Manchester

M44 5BD United Kingdom Tel: +44 (0)161 777 6611

Toll Free in United Kingdom: 0800-488-48 FAX: +44 (0)161 777 6622

e-mail: sales@omega.co.uk

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct, but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. WARNING: These products are not designed for use in, and should not be used for, patient-connected applications.

TABLE OF CONTENTS

1.	UNPACKING THE FMA6500 SERIES MASS FLOW CONTROLLER 1.1 Inspect Package for External Damage	1 1
2.	INSTALLATION. 2.1 Primary Gas Connections	1
3.	PRINCIPLE OF OPERATION	6
4.	SPECIFICATIONS. 4.1 FMA6500 Mass Flow Controllers. 4.2 CE Compliance.	7
5.	OPERATING INSTRUCTIONS 5.1 Preparation and Warm Up. 5.2 Flow Signal Output Readings. 5.3 Swamping Condition. 5.4 Set Point Reference Signal 5.5 Valve OFF Control 5.6 Valve Open/Purge 5.7 Analog Interface Configuration.	11 11 12 12 12
6.	MAINTENANCE 6.1 Introduction 6.2 Flow Path Cleaning 6.2.1 Restrictor Flow Element (RFE) 6.2.2 FMA6500 up to 10 L/min models 6.2.3 FMA6500 15 L/min and greater models 6.2.4 Valve Maintenance	13 14 14 14 14
7.	7.1 Flow Calibration	15
8.	TROUBLESHOOTING. 8.1 Common Conditions. 8.2 Technical Assistance. 8.3 Troubleshooting Guide.	17 17
a	CALIBRATION CONVERSIONS FROM REFERENCE GASES	20

APPENDIX 1	COMPONENT DIAGRAM	21
APPENDIX 2	GAS FACTOR TABLE ("K" FACTORS)	25
APPENDIX 3	DIMENSIONAL DRAWINGS	29
APPENDIX 4	SENDING COMMANDS TO THE FMA6500	31
APPENDIX 5	EEPROM TABLES: GAS DEPENDENT VARIABLES	37
	GAS INDEPENDENT VARIABLES	39
APPENDIX 6	WARRANTY	42

TRADEN	MARKS
Omega*-is a registered trademark of OMEGA ENGINEERING, INC. Buna*-is a registered trademark of DuPont Dow Elastometers.	Kalree*-is a registered trademark of DuPont Dow Elastomers. Neoprene*-is a registered trademark of DuPont.

1. UNPACKING THE MASS FLOW CONTROLLER

1.1 Inspect Package for External Damage

Your FMA6500 Mass Flow Controller was carefully packed in a sturdy cardboard carton, with anti-static cushioning materials to withstand shipping shock. Upon receipt, inspect the package for possible external damage. In case of external damage to the package contact the shipping company immediately.

1.2 Unpack the Mass Flow Controller

Open the carton carefully from the top and inspect for any sign of concealed shipping damage. In addition to contacting the shipping carrier please forward a copy of any damage report to Omega® directly.

When unpacking the instrument please make sure that you have all the items indicated on the Packing List. Please report any shortages promptly.

1.3 Returning Merchandise for Repair

Please contact an OMEGA® customer service representative and request a Return Authorization Number (AR).

It is mandatory that any equipment returned for servicing be purged and neutralized of any dangerous contents including but not limited to toxic, bacterially infectious, corrosive or radioactive substances.

2. INSTALLATION

2.1 Primary Gas Connections

Please note that the FMA6500 Mass Flow Controller will not operate with liquids. Only clean gases are allowed to be introduced into the instrument. If gases are contaminated they must be filtered to prevent the introduction of impediments into the sensor.

Caution: FMA6500 transducers should not be used for monitoring OXYGEN gas unless specifically cleaned and prepared for such application. For more information, contact Omega®.

Attitude sensitivity of the Mass Flow Controller is ±15°. This means that the gas flow path of the Flow Controller must be horizontal within those stated limits. Should there be need for a different orientation of the meter, re-calibration may be necessary. It is also preferable to install the FMA6500 transducer in a stable environment, free of frequent and sudden temperature changes, high moisture, and drafts.

Prior to connecting gas lines inspect all parts of the piping system including ferrules and fittings for dust or other contaminants. Be sure to observe the direction of gas flow as indicated by the arrow on the front of the meter when connecting the gas system to be monitored.

Insert tubing into the compression fittings until the ends of the properly sized tubings home flush against the shoulders of the fittings. Compression fittings are to be tightened according to the manufacturer's instructions to one and one quarter turns. Avoid over tightening which will seriously damage the Restrictor Flow Elements (RFE's)!

FMA6500 transducers are supplied with standard 1/4 inch (FMA6500 up to 10 L/min) or 3/8 inch (FMA6500 15 L/min and greater), or optional 1/8 inch inlet and outlet compression fittings which should not be removed unless the meter is being cleaned or calibrated for a new flow range.

Using a Helium Leak Detector or other equivalent method perform a thorough leak test of the <u>entire system.</u> (All FMA6500's are checked prior to shipment for leakage within stated limits. See specifications in this manual.)

2.2 Electrical Connections

FMA6500 transducers require a +15VDC and -15VDC power supply to operate. Additionally, a readout panel meter, digital multimeter, or other equivalent device is required to observe the flow signal in analog mode. A variable analog 0-5VDC reference input is required for FMA6500 models to operate in analog mode.

FMA6500 is supplied with a 25 pin "D" connector. Pin diagram is presented in figure b-2.

2.3 Communication Parameters and Connections

Baud rate:9600 baudStop bit:1Data bits:8Parity:NON

RS-232 option: Crossover connection has to be established:

Pin 11 (TX) of the "D" connector has to be connected to RX

(pin 2 on the DB9 connector).

Pin 24 (RX) of the "D" connector has to be connected to TX

(pin 3 on the DB9 connector).

Pin 20 (Common) of the "D" connector has to be connected

to GND (pin 5 on the DB9 connector).

RS-485 option:

The RS485 converter/adapter has to be configured for: multidrop, 2 wire, half duplex mode. The transmitter circuit has to be enabled by TD or RTS (depending on which is available on the converter/adapter). Settings for the receiver circuit usually should follow the selection made for the transmitter circuit in order to eliminate Echo.

Pin 11 (-) of the "D" connector has to be connected to T- or R- on the RS-485 converter/adapter.

Pin 24 (+) of the "D" connector has to be connected to

T+ or R+ on the RS-485 converter/adapter. Pin 20 (Common) of the "D" connector has to be connected to GND on the RS-485 converter/adapter.

PIN **FUNCTION** 1 +15 VDC Power Supply 13 0-5 VDC Flow Signal (4-20mA Option) 2 25 3 0-5 VDC Set Point Input (4-20mA Option) Θ-12 4 Force Valve Open Control 24 O-11 5 Force Valve Closed Control 23 6 (Reserved) O-10 7 (Reserved) 22 8 Relay No. 1 - Common Contact 0 9 9 Relay No. 1 - Normally Open Contact 21 8 0 10 Relay No. 2 - Normally Closed Contact Ð RS485 (-) (Optional RS232 TX) 20 11 7 0 12 (No Connection) Θ 19 13 Chassis Ground 0 6 -15 VDC Power Supply 14 Ð 18 15 Common, Signal Ground For Pin 2 5 0 Ð Common, Signal Ground For Pin 3 17 16 O-(Optional) RS232 Common 4 17 Ð 16 18 Common. Power Supply 3 G-19 Common Ð 15 20 Common 2 0 21 Relay No. 1 - Normally Closed Contact 14 0 1 22 Relay No. 2 - Common Contact 23 Relay No. 2 - Normally Open Contact 24 RS485 (+) (Optional RS232 RX) Return for Pin 2 (Optional 4-20 mA Only) 25

FIGURE b-2, FMA6500 25 PIN "D" CONNECTOR CONFIGURATION

Important notes:

In general, "D" Connector numbering patterns are standardized. There are, however, some connectors with nonconforming patterns and the numbering sequence on your mating connector may or may not coincide with the numbering sequence shown in our pin configuration table above. It is imperative that you match the appropriate wires in accordance with the correct sequence regardless of the particular numbers displayed on your mating connector.

Make sure power is OFF when connecting or disconnecting any cables in the system.

The (+) and (-) power inputs are each protected by a 500mA M (medium time-lag) resettable fuse. If a shorting condition or polarity reversal occurs, the fuse will cut power to the flow transducer circuit. Disconnect the power to the unit, remove the faulty condition, and reconnect the power. The fuse will reset once the faulty condition has been removed.

Cable length may not exceed 9.5 feet (3 meters).

Use of the FMA6500 flow transducer in a manner other than that specified in this manual or in writing from Omega®, may impair the protection provided by the equipment.

3. PRINCIPLE OF OPERATION

The stream of gas entering the Mass Flow transducer is split by shunting a small portion of the flow through a capillary stainless steel sensor tube. The remainder of the gas flows through the primary flow conduit. The geometry of the primary conduit and the sensor tube are designed to ensure laminar flow in each branch. According to principles of fluid dynamics the flow rates of a gas in the two laminar flow conduits are proportional to one another. Therefore, the flow rates measured in the sensor tube are directly proportional to the total flow through the transducer.

In order to sense the flow in the sensor tube, heat flux is introduced at two sections of the sensor tube by means of precision wound heater sensor coils. Heat is transferred through the thin wall of the sensor tube to the gas flowing inside. As gas flow takes place heat is carried by the gas stream from the upstream coil to the downstream coil windings. The resultant temperature dependent resistance differential is detected by the electronic control circuit. The measured gradient at the sensor windings is linearly proportional to the instantaneous rate of flow taking place.

An output signal is generated that is a function of the amount of heat carried by the gases to indicate mass molecular based flow rates.

Additionally, FMA6500 model Mass Flow Controllers incorporate a microprocessor and non-volatile memory that stores all calibration factors and directly controls a proportionating solenoid valve. The digital closed loop control system of the FMA6500 continuously compares the mass flow output with the selected flow rate. Deviations from the set point are corrected by compensating valve adjustments, thus maintaining the desired flow parameters with a high degree of accuracy.

4. SPECIFICATIONS

FLOW MEDIUM: Please note that FMA6500 Mass Flow Controllers

are designed to work with clean gases only. Never try

to meter or control flow rates of liquids with

any FMA6500.

CALIBRATIONS: Performed at standard conditions [14.7 psia

(1.01 bars) and 70°F (21.1°C)] unless otherwise

requested or stated.

ENVIRONMENTAL (PER IEC 664):

Installation Level II; Pollution Degree II.

4.1 FMA6500 Series Mass Flow Controllers

ACCURACY: +1% of full scale, including linearity for gas temperatures ranging from 59°F to 77°F (15°C to 25°C) and pressures of 10 to 60 psia (0.7 to 4.1 bars).

REPEATABILITY: +0.15% of full scale.

TEMPERATURE COEFFICIENT: 0.1% of full scale/ °C.

PRESSURE COEFFICIENT: 0.01% of full scale/psi (0.07 bar).

RESPONSE TIME: FMA6500 up to 10 L/min: 300ms time constant; approximately

1 second to within ±2% of set flow rate for 25% to 100% of full

scale flow.

FMA6500 15 L/min and greater: 600ms time constant: approximately 2 seconds to within +2% of set flow rate for 25% to

100% of full scale flow.

GAS PRESSURE: 500 psig (34.5 bars) maximum; optimum pressure is 20 psig (1.4 bars); 25 psig (1.7 bars gauge) for FMA6500 80 L/min and greater.

DIFFERENTIAL PRESSURES REQUIRED: 5 to 50 psig (0.35 to 3.34 bars) differential pressures. Optimum differential pressure is 25 psid (1.7 bars). See Table IV for pressure drops associated with various models and flow rates.

MAXIMUM PRESSURE DIFFERENTIAL: 50 psid for FMA6500 up to 60 L/min, 40 psid for FMA6500 80 L/min and greater.

GAS AND AMBIENT TEMPERATURE: 41°F to 122°F (5°C to 50°C).

RELATIVE GAS HUMIDITY: Up to 70%.

LEAK INTEGRITY: 1 x 10⁻⁹ sccs He maximum to the outside environment.

ATTITUDE SENSITIVITY: 1% shift for a 90 degree rotation from horizontal to vertical; standard calibration is in horizontal position.

OUTPUT SIGNALS: Linear 0-5 VDC (2000 Ω minimum load impedance); 4-20 mA optional (50-500 Ω loop resistance); 20 mV peak to peak max noise.

Contact Omega® for optional RS232 or IEEE488 interfaces.

COMMAND SIGNAL: 0-5 VDC (200K Ω input impedance); 4-20 mA optional.

TRANSDUCER INPUT POWER: FMA6500 - +15 +5% VDC, 450 mA max, 6.75 watts max: -15 +5% VDC, 450 mA max: 6.75 watts max:

Power inputs are each protected by a 500mA M (medium time-lag) resettable fuse, and an inverse shunt rectifier diode for polarity protection.

WETTED MATERIALS: 316 stainless steel, 416 stainless steel, VITON® O-rings; BUNA-N®, NEOPRENE® or KALREZ® O-rings are optional.

Omega® makes no expressed or implied guarantees of corrosion resistance of mass flow meters as pertains to different flow media reacting with components of meters. It is the customers' sole responsibility to select the model suitable for a particular gas based on the fluid contacting (wetted) materials offered in the different models.

INLET AND OUTLET CONNECTIONS: 1/4" (FMA6500 up to 50 L/min) or 3/8" (FMA6500 60 L/min and greater) compression fittings standard; 1/8" or 3/8" compression fittings and 1/4" VCR® fittings are optional.

TRANSDUCER INTERFACE CABLE: Flat cable with 25-pin "D" connectors on the ends is standard. Optional shielded cable is available with male/female 25-pin "D" connector ends. [Cable length may not exceed 9.5 feet (3 meters)]

4.2 CE Compliance

Any model FMA6500 bearing a CE marking on it, is in compliance with the below stated test standards currently accepted.

EMC Compliance with 89/336/EEC as amended; Emission Standard: EN 55011:1991, Group 1, Class A

Immunity Standard: EN 55082-1:1992

FLOW RANGES

TABLE I FMA6500 LOW FLOW MASS FLOW CONTROLLERS*

CODE	scc/min [N ₂]	CODE	std liters/min [N ₂]	
02	0 to 10	12	0 to 500	
04	0 to 20	14	0 to 1	
06	0 to 50	16	0 to 2	
08	0 to 100	18	0 to 5	
10	0 to 200	20	0 to 10	

TABLE II FMA6500 MEDIUM FLOW MASS FLOW CONTROLLERS*

CODE	standard liters/min [N ₂]	
23	15	
24	20	
26	30	
28	50	

TABLE III FMA6500 HIGH FLOW MASS FLOW CONTROLLERS*

CODE	standard liters/min [N ₂]	
40	60	
41	80	
42	100	

^{*} Flow rates are stated for Nitrogen at STP conditions [i.e. 70°F (21.1°C) at 1 atm]. For other gases use the K factor as a multiplier from APPENDIX 2.

TABLE IV PRESSURE DROPS

FLOW RATE	MAXIMUM PRESSURE DROP			
[std liters/min]	[mm H ₂ 0]	[psid]	[mbar]	
up to 10	720	1.06	75	
15	2630	3.87	266	
20	1360	2.00	138	
30	2380	3.50	241	
40	3740	5.50	379	
50	5440	8.00	551	
60	7480	11.00	758	
100	12850	18.89	1302	

TABLE V APPROXIMATE WEIGHTS

MODEL	WEIGHT	SHIPPING WEIGHT	
FMA6500 up to 10 L/min transmitter	2.20 lbs (1.00 kg)	3.70 lbs (1.68 kg)	
FMA6500 15 L/min and greater transmitter	2.84 lbs (1.29 kg)	4.34 lbs (1.97 kg)	

5. OPERATING INSTRUCTIONS

5.1 Preparation and Warm Up

It is assumed that the Mass Flow Controller or Controller has been correctly installed and thoroughly leak tested as described in section (2). Make sure the flow source is OFF. Power up the transducer using your own power supply (or switch the POWER switch to the ON position at the front panel of your Process Controller). Allow the Mass Flow Meter or Controller to warm-up for a minimum of 15 minutes.

During initial powering of the FMA6500 transducer, the flow output signal will be indicating a higher than usual output. This is indication that the FMA6500 transducer has not yet attained it's minimum operating temperature. This condition will automatically cancel within a few minutes and the transducer should eventually zero.

Caution: If the valve is left in the AUTO (control) or OPEN mode for an extended period of time, it may become warm or even hot to the touch. Use care in avoiding direct contact with the valve during operation.

5.2 Flow Signal Output Readings

The flow signal output can be viewed on the panel meter, digital multimeter, or other display device used as shown in figure b-1.

Analog output flow signals of 0 to 5 VDC or optional 4 to 20 mA are attained at the appropriate pins the 25-pin "D" connector (see Figure b-2) on the side of the FMA6500 transducer.

Meter signal output is linearly proportional to the mass molecular flow rate of the gas being metered. The full scale range and gas for which your meter has been calibrated are shown on the flow transducer's front label.

For information on the RS485 or optional RS232 interfaces please contact Omega®.

5.3 Swamping Condition

If a flow of more than 10% above the maximum flow rate of the Mass Flow Controller is taking place, a condition known as "swamping" may occur. Readings of a "swamped" meter cannot be assumed to be either accurate or linear. Flow must be restored to below 110% of maximum meter range. Once flow rates are lowered to within calibrated range, the swamping condition will end. Operation of the meter above 110% of maximum calibrated flow may increase recovery time.

5.4 Set Point Reference Signal

FMA6500 flow controllers have a built-in solenoid valve and allow the user to set the flow to any desired flow rate within the range of the particular model installed. This valve is normally closed when no power is applied.

The set point input in analog mode responds to an analog 0 to 5 VDC reference voltage or 4-20mA reference current. This voltage is a linear representation of 0 to 100% of the full scale mass flow rate. Response time to set point changes are 1 second to within 2% of the final flow over 25 to 100% of full scale.

A variable 0 to 5VDC analog signal may be applied directly to the SET POINT and COMMON connections of the FMA6500 transducer (see Figure b-1).

If a potentiometer is used to adjust the set point reference signal its value should be between 5K to 100K ohm and it should be capable of at least 10-turns or more for adjustment.

5.5 Valve OFF Control

It may, at times, be desirable to set the flow and maintain that setting while being able to turn the flow control valve off and on again. This can be accomplished via pin 5 on the 25-pin "D" connector. When 0 VDC (LOW) signal is applied (connection via a relay, switch or NPN open collector transistor is permissible), the solenoid valve is not powered and therefore will remain normally closed. Conversely, when the pin is disconnected from 0 VDC ("floating") the solenoid valve will remain active.

The simplest means for utilizing the VALVE OFF control feature, is to connect a toggle switch between the COMMON and FORCE VALVE CLOSED pins of the FMA6500 transducer. Toggling the switch on and off will allow for activating and deactivating the solenoid valve.

5.6 Valve Open /Purge

At times, it may be necessary to purge the flow system with a neutralizing gas such as pure dry nitrogen. The FMA6500 transducer is capable of a full open condition for the solenoid valve, regardless of set point conditions. Connecting the FORCE VALVE OPEN pin (pin 4 on 25-pin "D" connector) to ground will fully open the valve. This connection can be made with a relay, switch or NPN open collector transistor. Conversely, when the pin is disconnected from 0 VDC ("floating") the solenoid valve will remain active. (Note: in digital mode hardware I/O overrides software command)

The simplest means for utilizing the VALVE OPEN control feature, is to connect a toggle switch between the COMMON and FORCE VALVE OPEN pins of the FMA6500 transducer. Toggling the switch on will cause the valve to open fully and purge the system. Toggling the switch off will allow the solenoid valve to resume normal activity.

Caution: If the valve is left in the AUTO (control) or OPEN mode for an extended period of time, it may become warm or even hot to the touch. Use care in avoiding direct contact with the valve during operation.

5.7 Analog Interface Configuration

The FMA6500 can be configured for the desired range and scaling by selection of analog board (see APPENDIX 1 on page 21) jumpers as follows:

0 to 5 V output: Jumper pins 2 and 3 of JP6.

Jumper pins 2 and 3 of JP3. Jumper pins 2 and 3 of JP5. Jumper pins 1 and 2 of JP12.

0 to 5 V input: Jumper pins 2 and 3 of JP2.

Jumper pins 2 and 3 of JP4. Jumper pins 1 and 2 of JP11.

0 to 10 V output: As for 0 to 5V, but jumper pins 2 and 3 of JP12.

4 to 20 mA output: Jumper pins 1 and 2 of JP6.

Jumper pins 1 and 2 of JP3. Jumper pins 1 and 2 of JP5. Jumper pins 1 and 2 of JP12.

4 to 20 mA input: Jumper pins 1 and 2 of JP2.

Jumper pins 1 and 2 of JP4. Jumper pins 1 and 2 of JP11.

By default the FMA6500 is configured for analog input output ranges set to 0-5V (unless ordered with special configuration).

6. MAINTENANCE

6.1 Introduction

It is important that the Mass Flow Controller is used with clean, filtered gases only. Liquids may not be metered. Since the RTD sensor consists, in part, of a small capillary stainless steel tube, it is prone to occlusion due to impediments or gas crystallization. Other flow passages are also easily obstructed. Therefore, great care must be exercised to avoid the introduction of any potential flow impediment. To protect the instrument a 50 micron (FMA6500 up to 10 L/min) or 60 micron (FMA6500 15 L/min and greater) filter is built into the inlet of the flow transducer. The filter screen and the flow paths may require occasional cleaning as described below. There is no other recommended maintenance required. It is good practice, however, to keep the meter away from vibration, hot or corrosive environments and excessive RF or magnetic interference.

If periodic calibrations are required they should be performed by qualified personnel and calibrating instruments, as described in section (7). It is recommended that units are returned to Omega® for repair service and calibration.

CAUTION: TO PROTECT SERVICING PERSONNEL IT IS MANDATORY THAT ANY INSTRUMENT BEING SERVICED IS COMPLETELY PURGED AND NEUTRALIZED OF TOXIC, BACTERIOLOGICALLY INFECTED, CORROSIVE OR RADIOACTIVE CONTENTS.

6.2 Flow Path Cleaning

Before attempting any disassembly of the unit for cleaning, try inspecting the flow paths by looking into the inlet and outlet ends of the meter for any debris that may be clogging the flow through the meter. Remove debris as necessary. If the flow path is not unclogged, then proceed with steps below.

Do not attempt to disassemble the sensor. If blockage of the sensor tube is not alleviated by flushing through with cleaning fluids, please return meter to Omega® for servicing.

6.2.1 Restrictor Flow Element (RFE)

The Restrictor Flow Element (RFE) is a precision flow divider inside the transducer, which splits the inlet gas flow by a preset amount to the sensor and main flow paths. The particular RFE used in a given Mass Flow Controller depends on the gas and flow range of the instrument.

6.2.2 FMA6500 up to 10 L/min models

Unscrew the inlet compression fitting of meter. Note that the Restrictor Flow Element (RFE) is connected to the inlet fitting.

Carefully disassemble the RFE from the inlet connection. The 50 micron filter screen will now become visible. Push the screen out through the inlet fitting. Clean or replace each of the removed parts as necessary. If alcohol is used for cleaning, allow time for drying.

Inspect the flow path inside the transducer for any visible signs of contaminants. If necessary, flush the flow path through with alcohol. Thoroughly dry the flow paths by flowing clean dry gas through.

Carefully re-install the RFE and inlet fitting, avoiding any twisting and deforming the RFE. Be sure that no dust has collected on the O-ring seal.

Note: Overtightening will deform and render the RFE defective.

It is advisable that at least one calibration point be checked after re installing the inlet fitting - see section (7).

6.2.3 FMA6500 15 L/min and greater

Unscrew the four socket head cap screws (two 10-24 and two 6-32) at the inlet side of the meter. This will release the short square block containing the inlet compression fitting.

The 60 micron filter screen will now become visible. Remove the screen. DO NOT remove the RFE inside the flow transducer! Clean or replace each of the removed parts as necessary. If alcohol is used for cleaning, allow time for drying.

Inspect the flow path inside the transducer for any visible signs of contaminants. If necessary, flush the flow path through with alcohol. Thoroughly dry the flow paths by flowing clean dry gas through.

Re-install the inlet parts and filter screen. Be sure that no dust has collected on the O-ring seal.

It is advisable that at least one calibration point be checked after re installing the inlet fitting - see section (7).

6.2.4 Valve Maintenance (FMA6500)

The solenoid valve consists of 316 and 416 stainless steel, and VITON® (or optional NEOPRENE® or KALREZ®) O-rings and seals. No regular maintenance is required except for periodic cleaning.

Various corrosive gases may demand more frequent replacement of VITON® O- rings and seals inside the valve. Be sure to use an elastomer material, appropriate for your specific gas application.

Set the FMA6500 into PURGE mode, and attempt to flush through with a clean, filtered, and neutral gas such as nitrogen. [Another option for fully opening the valve is to remove the plastic cap on top of the valve, and turn the set screw counterclockwise until it stops. Set valve for the closed position. Apply an inlet pressure of 5 psig and atmospheric pressure at the outlet. If a small flow occurs, turn the set screw on top of the solenoid valve clockwise until the flow through the FMA6500 just stops.

Note: Removal of the factory installed calibration seals and/or any adjustments made to the meter, as described in this section, will void any calibration warranty applicable.

7. CALIBRATION PROCEDURES

7.1 Flow Calibration

Omega® Engineering' Flow Calibration Laboratory offers professional calibration support for Mass Flow meterss and Controllers, using precision calibrators under strictly controlled conditions. NIST traceable calibrations are available. Calibrations can also be performed at customers' site using available standards.

Factory calibrations are performed using NIST traceable precision volumetric calibrators incorporating liquid sealed frictionless actuators.

Generally, calibrations are performed using dry nitrogen gas. The calibration can then be corrected to the appropriate gas desired based on relative correction [K] factors shown in the gas factor table see Appendix 2. A reference gas, other than nitrogen, may be used to closer approximate the flow characteristics of certain gases. This practice is recommended when a reference gas is found with thermodynamic properties similar to the actual gas under consideration. The appro-

priate relative correction factor should be recalculated see section (9). It is standard practice to calibrate Mass Flow meters/Controllers with dry nitrogen gas at 70°F (21.1EC), 20 psig (1.4 bars) [25 psig (1.7 bars) for FMA6540, 41] inlet pressure and 0 psig (0 bar) outlet pressure. It is best to calibrate the FMA6500 transducers to actual operating conditions. Specific gas calibrations of non-toxic and non-corrosive gases are available at specific conditions. Please contact Omega® for a price quotation.

It is recommended that a flow calibrator of at least four times better collective accuracy than that of the Mass Flow Controller to be calibrated be used. Equipment required for calibration includes a flow calibration standard and a certified high sensitivity multimeter (which together have a collective accuracy of $\pm 0.25\%$ or better), an insulated (plastic) screwdriver, a flow regulator (example: metering needle valve) installed upstream from the Mass Flow Controller and a pressure regulated source of dry filtered nitrogen gas (or other suitable reference gas).

The gas and ambient temperature, as well as inlet and outlet pressure conditions should be set up in accordance with actual operating conditions.

7.2 Calibration of FMA6500 Mass Flow Controllers

All adjustments to the FMA6500 calibration and control loop tuning are accomplished using the RS485 (or optional RS232) interface in conjunction with setup and calibration software available from Omega®. The sensor zero is automatically adjusted internally whenever the control valve is fully closed (set point less than 2% of full scale) and the unit is warmed up.

FMA6500 Mass Flow meters may be field recalibrated/checked using the setup and calibration program for the same range they were originally factory calibrated for. Flow range changes may require a different Restrictor Flow Element (RFE). Additionally, a different Solenoid Valve Orifice for the FMA6500 Mass Flow Controller (see Table VI) may also be required. Consult Omega® for more information.

TABLE VI FMA6500 SOLENOID VALVE ORIFICE SELECTION TABLE

ORIFICE PART NUMBER	FLOW RATE [N ₂]	
OR.010 Under 10 sccm		
OR.020	10 to 1000 sccm	
OR.040	1 to 5 slpm	
OR.055 5 to 10 slpm		
OR.063 10 to 15 slpm		
OR.073	15 to 20 slpm	
OR.094	20 to 50 slpm	
OR.125	50 to 100 slpm	

8. TROUBLESHOOTING

8.1 Common Conditions

Your Mass Flow Controller was thoroughly checked at numerous quality control points during and after manufacturing and assembly operations. It was calibrated in accordance to your desired flow and pressure conditions for a given gas or a mixture of gases.

It was carefully packed to prevent damage during shipment. Should you feel that the instrument is not functioning properly please check for the following common conditions first:

Are all cables connected correctly?

Are there any leaks in the installation?

Is the power supply correctly selected according to requirements? When several meters are used a power supply with appropriate current rating should be selected.

Were the connector pinouts matched properly? When interchanging with other manufacturers' equipment, cables and connectors must be carefully wired for correct pin configurations.

Is the pressure differential across the instrument sufficient?

For best results it is recommended that instruments are returned to the factory for servicing. See section 1.3 for return procedures.

8.2 Technical Assistance

OMEGA® Engineering will provide technical assistance over the phone to qualified repair personnel. Please call our Flow Department at 800-872-9436 Ext. 2298.

8.3 Troubleshooting Guide

Indication	Likely Reason	Remedy	
lack of	power supply off	check connection of power supply	
reading or output	fuse blown (FMA6500)	disconnect FMA6500 transducer from power supply; remove the shorting condition or check polarities; fuse resets automatically	
		REMOVE CAUSE OF SHORT CIRCUIT!	
	filter screen obstructed at inlet	flush clean or disassemble to remove impediments or replace	
	occluded sensor tube	flush clean or disassemble to remove impediments or return to factory for replacement	
	pc board defect	return to factory for replacement	
	valve adjustment wrong	re-adjust valve (section 6.2.4)	
output reads at (+) or (-) saturation only	fuse blown (FMA6500)	disconnect FMA6500 transducer from power supply; remove the shorting condition or check polarities; fuse resets automatically	
		REMOVE CAUSE OF SHORT CIRCUIT!	
flow reading does not	inadequate gas pressure	apply appropriate gas pressure	
coincide with the set point (FMA6500	filter screen obstructed at inlet	flush clean or disassemble to remove impediments or replace	
models only)	ground loop	signal and power supply commons a different	
no response to set point	inadequate gas pressure	apply appropriate gas pressure	
(FMA6500 models only)	cable or connector malfunction	check cables and all connections or replace	
	set point is too low (<2% of full scale)	re-adjust set point	
	valve adjustment wrong	re-adjust valve (section 6.2.4)	
unstable or no zero reading	gas leak	locate and correct	
2010 Toduling	pc board defective	return to factory for replacement	

Indication	Likely Reason	Remedy	
full scale	defective sensor	return to factory for replacement	
output at "no flow" condition or with valve closed	gas Leak	locate and repair	
calibration off	gas metered is not the same as what meter was calibrated for	use matched calibration	
	composition of gas changed	see K factor tables in APPENDIX 2	
	gas leak	locate and correct	
	pc board defective	return to factory for replacement	
	RFE dirty	flush clean or disassemble to remove impediments	
	occluded sensor tube	flush clean or disassemble to removimpediments or return to factory for replacement	
	filter screen obstructed at inlet	flush clean or disassemble to remove impediments or replace	
	transducer is not mounted properly	check for any tilt or change in the mounting of the transducer; generally units are calibrated for horizontal installation (relative to the sensor tub	
FMA6500	incorrect valve adjustment	re-adjust valve (section 6.2.4)	
valve does not work in open position	pc board defect	return to factory for replacement	
position	cable or connectors malfunction	check cable and connectors or replace	
	differential pressure too high	decrease pressure to correct level	
	insufficient inlet pressure	adjust appropriately	
FMA6500 valve does not	incorrect valve adjustment	re-adjust valve (section 6.2.4)	
work in close position	pc board defect	return to factory for replacement	
	cable or connectors malfunction	check cable and connectors or replace	
	orifice obstructed	disassemble to remove impediments or return to factory	

9. CALIBRATION CONVERSIONS FROM REFERENCE GASES

The calibration conversion incorporates the K factor. The K factor is derived from gas density and coefficient of specific heat. For diatomic gases:

$$K_{gas} = \frac{1}{d \times C_p}$$

where d = gas density (gram/liter)
 C_p = coefficient of specific heat (cal/gram)

Note in the above relationship that d and C_P are usually chosen at standard conditions of one atmosphere and 25° C.

If the flow range of a Mass Flow Controller or Controller remains unchanged, a relative K factor is used to relate the calibration of the actual gas to the reference gas.

$$K = \frac{Q_a}{Q_r} = \frac{K_a}{K_r}$$

where Q_a = mass flow rate of an actual gas (sccm)

Q_r = mass flow rate of a reference gas (sccm)

 K_a = K factor of an actual gas K_r = K factor of a reference gas

For example, if we want to know the flow rate of oxygen and wish to calibrate with nitrogen at 1000 SCCM, the flow rate of oxygen is:

$$Q_{O_2} = Q_a = Q_r \times K = 1000 \times 0.9926 = 992.6 \text{ sccm}$$

where K = relative K factor to reference gas (oxygen to nitrogen)

COMPONENTS DIAGRAMS

FMA6500 DIGITAL PC BOARD (Primary Side)

(CONTINUED)

FMA6500 DIGITAL PC BOARD (SECONDARY SIDE)

(CONTINUED)

FMA6500 ANALOG PC BOARD

(Primary Side)

(CONTINUED)

FMA6500 ANALOG PC BOARD (SECONDARY SIDE)

APPENDIX 2 GAS FACTOR TABLE ("K" FACTORS)

ACTUAL GAS	K FACTOR Relative to N ₂	Cp [Cal/g]	Density [g/l]
Acetylene C ₂ H ₂	.5829	.4036	1.162
Air	1.0000	.240	1.293
Allene (Propadiene) C ₃ H ₄	.4346	.352	1.787
Ammonia NH ₃	.7310	.492	.760
Argon Ar	1.4573	.1244	1.782
Arsine AsH ₃	.6735	.1167	3.478
Boron Trichloride BCl ₃	.4089	.1279	5.227
Boron Trifluoride BF ₃	.5082	.1778	3.025
Bromine Br ₂	.8083	.0539	7.130
Boron Tribromide Br ₃	.38	.0647	11.18
Bromine Pentaflouride BrF ₅	.26	.1369	7.803
Bromine Trifluoride BrF ₃	.3855	.1161	6.108
Bromotrifluoromethane (Freon-13 B1) CBrF ₃	.3697	.1113	6.644
1,3-Butadiene C ₄ H ₆	.3224	.3514	2.413
Butane C ₄ H ₁₀	.2631	.4007	2.593
1-Butane C ₄ H ₈	.2994	.3648	2.503
2-Butane C ₄ H ₈ CIS	.324	.336	2.503
2-Butane C ₄ H ₈ TRANS	.291	.374	2.503
Carbon Dioxide CO ₂	.7382	.2016	1.964
Carbon Disulfide CS ₂	.6026	.1428	3.397
Carbon Monoxide C ₀	1.00	.2488	1.250
Carbon Tetrachloride CCI ₄	.31	.1655	6.860
Carbon Tetrafluoride (Freon-14)CF ₄	.42	.1654	3.926
Carbonyl Fluoride COF ₂	.5428	.1710	2.945
Carbonyl Sulfide COS	.6606	.1651	2.680
Chlorine Cl ₂	.86	.114	3.163
Chlorine Trifluoride CIF ₃	.4016	.1650	4.125
Chlorodifluoromethane (Freon-22)CHCIF ₂	.4589	.1544	3.858
Chloroform CHCl ₃	.3912	.1309	5.326
Chloropentafluoroethane(Freon-115)C ₂ CIF ₅	.2418	.164	6.892
Chlorotrifluromethane (Freon-13) CCIF ₃	.3834	.153	4.660
CyanogenC ₂ N ₂	.61	.2613	2.322
CyanogenChloride CICN	.6130	.1739	2.742
Cyclopropane C ₃ H ₅	.4584	.3177	1.877
Deuterium D ₂	1.00	1.722	1.799
Diborane B ₂ H ₆	.4357	.508	1.235

ACTUAL GAS	K Factor Relative to N ₂	Cp [Cal/g]	Density [g/l]
Dibromodifluoromethane CBr ₂ F ₂	.1947	.15	9.362
Dichlorodifluoromethane (Freon-12) CCl ₂ F ₂	.3538	.1432	5.395
Dichlofluoromethane (Freon-21) CHCl ₂ F	.4252	.140	4.592
Dichloromethylsilane (CH ₃) ₂ SiCl ₂	.2522	.1882	5.758
Dichlorosilane SiH ₂ Cl ₂	.4044	.150	4.506
Dichlorotetrafluoroethane (Freon-114) C ₂ Cl ₂ F ₄	.2235	.1604	7.626
1,1-Difluoroethylene (Freon-1132A) C ₂ H ₂ F ₂	.4271	.224	2.857
Dimethylamine (CH ₃) ₂ NH	.3714	.366	2.011
Dimethyl Ether (CH ₃) ₂ O	.3896	.3414	2.055
2,2-Dimethylpropane C ₃ H ₁₂	.2170	.3914	3.219
Ethane C ₂ H ₆	.50	.420	1.342
Ethanol C ₂ H ₆ O	.3918	.3395	2.055
Ethyl Acetylene C ₄ H ₆	.3225	.3513	2.413
Ethyl Chloride C ₂ H ₅ Cl	.3891	.244	2.879
Ethylene C ₂ H ₄	.60	.365	1.251
Ethylene Oxide C ₂ H ₄ O	.5191	.268	1.965
Fluorine F ₂	.9784	.1873	1.695
Fluoroform (Freon-23) CHF ₃	.4967	.176	3.127
Freon-11 CCI ₃ F	.3287	.1357	6.129
Freon-12 CCI ₂ F ₂	.3538	.1432	5.395
Freon-13 CCIF ₃	.3834	.153	4.660
Freon-13B1 CBrF ₃	.3697	.1113	6.644
Freon-14 CF ₄	.4210	.1654	3.926
Freon-21 CHCl ₂ F	.4252	.140	4.592
Freon-22 CHCIF ₂	.4589	.1544	3.858
Freon-113 CCI ₂ FCCIF ₂	.2031	.161	8.360
Freon-114 C ₂ Cl ₂ F ₄	.2240	.160	7.626
Freon-115 C ₂ CIF ₅	.2418	.164	6.892
Freon-C318 C ₄ F ₈	.1760	.185	8.397
Germane GeH ₄	.5696	.1404	3.418
Germanium Tetrachloride GeCl ₄	.2668	.1071	9.565
Helium He	1.454	1.241	.1786
Hexafluoroethane C ₂ F ₆ (Freon-116)	.2421	.1834	6.157
Hexane C ₆ H ₁₄	.1792	.3968	3.845
Hydrogen H ₂	1.0106	3.419	.0899
Hydrogen Bromide HBr	1.000	.0861	3.610
Hydrogen Chloride HCI	1.000	.1912	1.627
Hydrogen Cyanide HCN	1.070	.3171	1.206

Actual Gas	K Factor Relative to N ₂	Cp [Cal/g]	Density [g/l]
Hydrogen Fluoride HF	.9998	.3479	.893
Hydrogen Iodide HI	.9987	.0545	5.707
Hydrogen Selenide H₂Se	.7893	.1025	3.613
Hydrogen Sulfide H ₂ S	.80	.2397	1.520
Iodine Pentafluoride IF ₅	.2492	.1108	9.90
Isobutane CH(CH ₃) ₃	.27	.3872	3.593
Isobutylene C ₄ H ₆	.2951	.3701	2.503
Krypton Kr	1.453	.0593	3.739
Methane CH ₄	.7175	.5328	.715
Methanol CH ₃	.5843	.3274	1.429
Methyl Acetylene C ₃ H ₄	.4313	.3547	1.787
Methyl Bromide CH ₂ Br	.5835	.1106	4.236
Methyl Chloride CH ₃ Cl	.6299	.1926	2.253
Methyl Fluoride CH ₃ F	.68	.3221	1.518
Methyl Mercaptan CH ₃ SH	.5180	.2459	2.146
Methyl Trichlorosilane (CH ₃)SiCl ₃	.2499	.164	6.669
Molybdenum Hexafluoride MoF ₆	.2126	.1373	9.366
Monoethylamine C ₂ H ₅ NH ₂	.3512	.387	2.011
Monomethylamine CH ₃ NH ₂	.51	.4343	1.386
Neon NE	1.46	.246	.900
Nitric Oxide NO	.990	.2328	1.339
Nitrogen N ₂	1.000	.2485	1.25
Nitrogen Dioxide NO ₂	.737	.1933	2.052
Nitrogen Trifluoride NF ₃	.4802	.1797	3.168
Nitrosyl Chloride NOCI	.6134	.1632	2.920
Nitrous Oxide N ₂ O	.7128	.2088	1.964
Octafluorocyclobutane (Freon-C318) C ₄ F ₈	.176	.185	8.397
Oxygen O ₂	.9926	.2193	1.427
Oxygen Difluoride OF ₂	.6337	.1917	2.406
Ozone	.446	.195	2.144
Pentaborane B ₅ H ₉	.2554	.38	2.816
Pentane C ₅ H ₁₂	.2134	.398	3.219
Perchloryl Fluoride CIO ₃ F	.3950	.1514	4.571
Perfluoropropane C ₃ F ₈	.174	.197	8.388
Phosgene COCI ₂	.4438	.1394	4.418
Phosphine PH ₃	1.070	.2374	1.517
Phosphorous Oxychloride POCl ₃	.36	.1324	6.843
Phosphorous Pentafluoride PH ₅	.3021	.1610	5.620

Actual Gas	K Factor Relative to N ₂	Cp [Cal/g]	Density [g/l]
Phosphorous Trichloride PCl ₃	.30	.1250	6.127
Propane C ₃ H ₈	.35	.399	1.967
Propylene C ₃ H ₆	.40	.366	1.877
Silane SiH ₄	.5982	.3189	1.433
Silicon Tetrachloride SiCl ₄	.284	.1270	7.580
Silicon Tetrafluoride SiF ₄	.3482	.1691	4.643
Sulfur Dioxide SO ₂	.69	.1488	2.858
Sulfur Hexafluoride SF ₆	.2635	.1592	6.516
Sulfuryl Fluoride SO ₂ F ₂	.3883	.1543	4.562
Tetrafluoroethane (Forane 134A) CF ₃ CH ₂ F	.5096	.127	4.224
Tetrafluorohydrazine N ₂ F ₄	.3237	.182	4.64
Trichlorofluoromethane (Freon-11) CCI ₃ F	.3287	.1357	6.129
Trichlorosilane SiHCl ₃	.3278	.1380	6.043
1,1,2-Trichloro-1,2,2 Trifluoroethane (Freon-113) CCl ₂ FCClF ₂	.2031	.161	8.36
Triisobutyl Aluminum (C ₄ H ₉)AL	.0608	.508	8.848
Titanium Tetrachloride TiCl ₄	.2691	.120	8.465
Trichloro Ethylene C ₂ HCl ₃	.32	.163	5.95
Trimethylamine (CH ₃) ₃ N	.2792	.3710	2.639
Tungsten Hexafluoride WF ₆	.2541	.0810	13.28
Uranium Hexafluoride UF ₆	.1961	.0888	15.70
Vinyl Bromide CH ₂ CHBr	.4616	.1241	4.772
Vinyl Chloride CH ₂ CHCl	.48	.12054	2.788
Xenon Xe	1.44	.0378	5.858

DIMENSIONAL DRAWINGS

FMA6500 UP TO 10 L/MIN MASS FLOW CONTROLLER

NOTES: Omega7 reserves the right to change designs and dimensions at its sole discretion at any time without notice. For certified dimensions please contact Omega7.

FMA6500 15 L/MIN AND GREATER MASS FLOW CONTROLLER

NOTES: Omega® reserves the right to change designs and dimensions at its sole discretion at any time without notice. For certified dimensions please contact Omega®.

SENDING COMMANDS TO THE FMA6500

RS485

The standard FMA6500 comes with an RS485 interface. The protocol described below allows for the unit using either a custom software program or a "dumb terminal". All values are sent as printable ASCII characters. The start character is always !and the command string is terminated with a carriage return (line feeds are automatically stripped out by the FMA6500:

!<Addr>, <Cmd>,Arg1,Arg2,Arg3,Arg4<CR>

WHERE:

! Start character

Addr RS485 device address in the ASCII representation of

hexadecimal (00 through FF are valid). **

Cmd The one or two character command from the table above.

Arg1 to Arg4 The command arguments from the table above.

Multiple arguments are comma delimited.

CR Carriage return character.

** Default address for all units is 11.

Several examples of commands follow. All assume that the FMA6500 has been configured for address 15 (0F hex) on the RS485 bus:

1. To put the unit in digital mode: !0F,M,D<CR>
The FMA6500 will reply: !0FMD<CR>

2. To set the flow of 50% of FS: !0F,S,50.0<CR>
The FMA6500 will reply: !0FS50.0<CR>

3. To get a flow reading: !0F,F<CR>
The FMA6500 will reply: !0F50.0<CR>

(Assuming the flow is at 50% FS)

4. Set the high alarm limit to 5% above Set point: !0F,A,H,5.0<CR>

The FMA6500 will reply: !0FA5.0<CR>

OMEGA® FMA6500 SOFTWARE INTERFACE COMMANDS

NOTE: An "*" INDICATES POWER UP DEFAULT SETTINGS.

COMMAND	DESCRIPTION		COMMAND SYNTAX					
NAME		NO.	COMMAND	ARGUMENT 1	ARGUMENT 2	ARGUMENT 3	ARGUMENT 4	RESPONSE
Mode	Selects Analog or Digital mode for set point and feed back signals.	1	М	A (sets analog mode)*				MA
				D (sets digital mode)				MD
				S (Returns Status)				MA or MD
Set Point	Sends the desired flow setting to the unit in digital mode	2	S <value> (Desired flow in current engineering units)</value>					S <value></value>
Flow	Requests the current sensor reading	3	F	F				<value> (Actual flow in current engineering units)</value>
Valve	Sets or reads the operating mode of the control valve.	4	٧	A (Automatic Mode)*				VA
	Note: Hardware I/O overrides soft			O (Force Open)				VO
	ware command)			C (Force Closed)				VC
				S (Return Status)				VA, VO or VC
Gas Select	Selects one of the ten primary gas calibration tables to use. Tables are entered via the MEM commands at time of calibration	5	G	0 (gas 0)* to 9 (gas 9)				G1 through G10

COMMAND	DEGODIDATION		COMMAND SYNTAX							
NAME	DESCRIPTION	NO.	COMMAND	ARGUMENT 1	ARGUMENT 2	ARGUMENT 3	ARGUMENT 4	RESPONSE		
Auto Zero	Sets/reads the status of	6	Z	E (enable, do when SP<2% FS)*				ZE		
	the auto zero feature			D (disable, never do it)				ZD		
	(Note: The Z,N command			N (do it now)				ZN		
	can take several minutes to complete. Unit will			W (Write Zero to FMA141P)				ZW(when done)		
	not respond to other commands when this is in progress)			S (status)				ZE, ZD or ZIN, <value> while Z,N is in progress.</value>		
Flow Alarms	Set/reads the status of	7	А	H (high deviation)	<value></value>			AH <value></value>		
	the gas flow alarms.			L (low deviation)	<value></value>			AL <valve></valve>		
				D (disable)*				AD		
				S (status)				N (no alarm) H (high alarm) L (low alarm)		
Relay Action	Assigns action of the two SPDT relays. The coil is	8	R	1 (relay 1) 2 (relay 2)	N (no action, relay disabled)*			RN		
	energized when the con- dition specified by				T (totalizer >limit)			RT		
	"Argument 2" becomes true.				H (high flow alarm)			RH		
					L (low flow alarm)			RL		
					R (Range between high & low flow alarm)			RR		

COMMAND				COMMAND SYNTAX						
NAME	DESCRIPTION	NO.	COMMAND	ARGUMENT 1	ARGUMENT 2	ARGUMENT 3	ARGUMENT 4	RESPONSE		
					S (status)			RN, RT, RH, RL, RR		
Totalizer	Controls action of the flow totalizer.	9	Т	Z (set to zero)				TZ		
	totalizer.			S (start the totalizer)	N (now)			TSN		
					F (at flow)	<value> (gas flow)</value>		TS <value></value>		
				P (stop the totalizer)	N (now)			TPN		
					T (at total)	<value> (gas volume)</value>	N (no action C (valve closed)	TPT {N/C} <valve></valve>		
				R (read the totalizer)				<value>(total gas volume)</value>		
				D (disable)*				TD		
K Factors	Applies a gas correction factor to the currently	10	К	D (disable, sets K=1)*				KD		
	selected primary gas calibration table.			I (internal K factor table)	<index> (index to K factor)</index>			KI <index><name> <value></value></name></index>		
	(NOTE: Does not work with %F.S. engineering unit. Changes take affect after next set point command).			E (user specified factor)	<value> (decimal correction factor)</value>			KE <value></value>		
Units	Set the units of measure for the digital flow set point,	11	U	% (%full scale)*				U%		
	flow signal and totalizer. Note: The units of the			SLPM (standard liters per min.)				USLPM		
	totalizer output are not per unit time.			SLPH (standard liters per hr.)				USLPH		

COMMAND				COMMAND SYNTAX						
NAME	I DESCRIPTION INC I		COMMAND	ARGUMENT 1	ARGUMENT 2	ARGUMENT 3	ARGUMENT 4	RESPONSE		
				MLPH (standard milliliters per min.)				UMLPM		
				MLPH (standard milliliters per hour)				UMLPH		
				SCFH (standard cubic feet per hour)				USCFH		
				SCFM (standard cubic feet per min.)				USCFM		
				LBPH (pounds per hour)				ULBPH		
				LBPM (pounds per min.)				ULBPM		
				UD (user defined)	<value>(conversion factor from SLPM)</value>			UUD <value></value>		
Maintenance Timer	Hours since last time unit was calibrated.	12	С	R (read timer)				<value></value>		
Tilliei	was camprated.			C (set timer to zero)				CC		
Full Scale	Returns the full scale rated flow in SLPM. (Note: This term is not multiplied by the current K factor)	13	Е					<value></value>		
Read Mem.	Reads the value in the specified memory location.	14	MR	0000 to 999 (Table Index)				<value></value>		
Write Mem.	Writes the specified value to the specified memory location. Use CAREFULLY, can cause unit to malfunction.	15	MW	0000 to 999 (Table Index)	<value></value>			MWXXX <value> XXX=Table Index</value>		

COMMAND			COMMAND SYNTAX						
NAME	DESCRIPTION	NO.	COMMAND	ARGUMENT 1	ARGUMENT 2	ARGUMENT 3	ARGUMENT 4	RESPONSE	
Auto Tune (Available for units with maximum flow up to 80L/min)	Performs Auto Tune	16	AT	<value> (Desired flow in current engineering units, use 80-90% F.S. for best results)</value>				AT <value> (when auto tune starts)</value>	
			S (Status)					ATSI <kp, kd="" ki,=""> (in progress) ATSD<kp, kd="" ki,=""> (done)</kp,></kp,>	

APPENDIX 5

CALIBRATION TABLE: GAS DEPENDENT VARIABLES

INDEX	NAME	DATA TYPE	NOTES
0	BlankEEPROM	char[10]	Do not modify. For internal use only.
1	SerialNumber	char[20]	
2	ModelNumber	char[20]	
3	SoftwareVer	char[10]	
4	TimeSinceCalHr	float	Time since last calibration in hours.
5	Options	uint	Misc. Options.
6	AOutOffset_mA	int	
7	AddressRS485	char[3]	Two character address for RS485 only.
8	AlnScaleV	float	
9	AlnOffsetV	float	
10	AInScale_mA	float	
11	AInOffset_mA	float	
12	AoutScaleV	float	
13	AoutScale_mA	float	
14	SensorZero	uint	
15	Klag[0]	float	
16	Klag[1]	float	
17	Klag[2]	float	
18	Klag[3]	float	
19	Klag[4]	float	
20	Klag[5]	float	
21	Reserved	float	
22	Reserved	float	
23	Reserved	float	
24	Reserved	float	
25	Reserved	float	
26	Reserved	float	
27	Kgain[0]	float	
28	Kgain[1]	float	

INDEX	NAME	DATA TYPE	NOTES
29	Kgain[2]	float	
30	Kgain[3]	float	
31	Kgain[4]	float	
32	Kgain[5]	float	
33	Reserved	float	
34	Reserved	float	
35	Reserved	float	
36	Reserved	float	
37	Reserved	float	
38	Reserved	float	
39	ValveTbl[0][open]	float	Index 0: Valve actuation. Must be 0.0 Do Not Alter
40	ValveTbl[0][valve value]	uint	Index 0: Valve: D/A value - Do Not Alter
41	ValveTbl[1][flow]	float	Index 1: Actual valve opening in % FS. Do Not Alter
42	ValveTbl[1][valve value]	uint	Index 1: Valve D/A counts corresponding to flow. Do Not Alter
43	ValveTbl[2][flow]	float	Do Not Alter
44	ValveTbl[2][valve value]	uint	Do Not Alter
45	ValveTbl[3][flow]	float	Do Not Alter
46	ValveTbl[3][valve value]	uint	Do Not Alter
47	ValveTbl[4][flow]	float	Do Not Alter
48	ValveTbl[4][valve value]	uint	Do Not Alter
49	ValveTbl[5][flow]	float	Do Not Alter
50	ValveTbl[5][valve value]	uint	Do Not Alter
51	ValveTbl[6][flow]	float	Do Not Alter
52	ValveTbl[6][valve value]	uint	Do Not Alter
53	ValveTbl[7][flow]	float	Do Not Alter
54	ValveTbl[7][valve value]	uint	Do Not Alter
55	ValveTbl[8][flow]	float	Do Not Alter
56	ValveTbl[8][valve value]	uint	Do Not Alter
57	ValveTbl[9][flow]	float	Index 9: Valve fully open. Must be 1.0- Do Not Alter
58	ValveTbl[9][valve value]	uint	Index 9: D/A count for a fully open valve. Must be 4095 Do Not Alter
59	AutoTune Time Constant	uint	Do Not Alter

CALIBRATION TABLE: GAS INDEPENDENT VARIABLES

INDEX	NAME	DATA Type	NOTES
100	Gasldentifer	char[27]	
101	FullScaleRange	float	
102	StdTemp	float	
103	StdPressure	float	
104	StdDensity	float	
105	CalibrationGas	char[27]	
106	CalibratedBy	char[20]	
107	CalibratedAt	char[20]	
108	DateCalibrated	char[10]	
109	DateCalibrationDue	char[10]	
110	PID_Kp	float	
111	PID_Ki	float	
112	PID_Kd	float	
113	SensorTbl[0][Sensor Value]	uint	Index 0: Must be 120 (zero value)
114	SensorTbl[0][Flow]	float	Index 0: Must be 0.0 (zero PFS)
115	SensorTbl[1][Sensor Value]	uint	A/D value from sensor.
116	SensorTbl[1][Flow]	float	Actual Flow in PFS.
117	SensorTbl[2][Sensor Value]	uint	
118	SensorTbl[2][Flow]	float	
119	SensorTbl[3][Sensor Value]	uint	
120	SensorTbl[3][Flow]	float	
121	SensorTbl[4][Sensor Value]	uint	
122	SensorTbl[4][Flow]	float	
123	SensorTbl[5][Sensor Value]	uint	
124	SensorTbl[5][Flow]	float	
125	SensorTbl[6][Sensor Value]	uint	
126	SensorTbl[6][Flow]	float	
127	SensorTbl[7][Sensor Value]	unit	
128	SensorTbl[7][Flow]	float	

INDEX	NAME	DATA Type	NOTES
129	SensorTbl[8][Sensor Value]	uint	
130	SensorTbl[8][Flow]	float	
131	SensorTbl[9][Sensor Value]	uint	
132	SensorTbl[9][Flow]	float	
133	SensorTbl[10][Sensor Value]	uint	
134	SensorTbl[10][Flow]	float	Flow in PFS. Should be 1.0
135			
136			
137			

Note: Values will be available for selected gas only.

NOTES:

WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a period of **13 months** from date of purchase. OMEGA's Warranty adds an additional one (1) month grace period to the normal one **(1) year product warranty** to cover handling and shipping time. This ensures that OMEGA's customers receive maximum coverage on each product.

If the unit malfunctions, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective, it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of having been damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESS OR IMPLIED, EXCEPTTHAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive, and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and, additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR <u>WARRANTY</u> RETURNS, please have the following information available BEFORE contacting OMEGA:

- Purchase Order number under which the product was PURCHASED,
- 2. Model and serial number of the product under warranty, and
- Repair instructions and/or specific problems relative to the product.

FOR <u>NON-WARRANTY</u> REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

- Purchase Order number to cover the COST of the repair,
- 2. Model and serial number of the product, and
- Repair instructions and/or specific problems relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 2001 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior written consent of OMEGA ENGINEERING, INC.

Where Do I Find Everything I Need for Process Measurement and Control? OMEGA...Of Course!

Shop online at www.omega.com

TEMPERATURE

- ☑ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
- ☑ Wire: Thermocouple, RTD & Thermistor
- ☑ Calibrators & Ice Point References
- ☑ Recorders, Controllers & Process Monitors
- ☑ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE

- ☑ Transducers & Strain Gages
- ☑ Load Cells & Pressure Gages
- ☑ Displacement Transducers
- ✓ Instrumentation & Accessories

FLOW/LEVEL

- ☑ Rotameters, Gas Mass Flow meter & Flow Computers
- Air Velocity Indicators
- ☑ Turbine/Paddlewheel Systems
- ☑ Totalizers & Batch Controllers

pH/CONDUCTIVITY

- ☑ pH Electrodes, Testers & Accessories
- ☑ Benchtop/Laboratory Meters
- ☑ Controllers, Calibrators, Simulators & Pumps
- ☑ Industrial pH & Conductivity Equipment

DATA ACQUISITION

- ☑ Data Acquisition & Engineering Software
- ☑ Communications-Based Acquisition Systems
- ☑ Plug-in Cards for Apple, IBM & Compatibles
- ☑ Datalogging Systems
- ☑ Recorders, Printers & Plotters

HEATERS

- Heating Cable
- ☑ Cartridge & Strip Heaters
- ☑ Immersion & Band Heaters
- ☑ Flexible Heaters
- ☑ Laboratory Heaters

ENVIRONMENTAL MONITORING AND CONTROL

- ☑ Metering & Control Instrumentation
- ☑ Refractometers
- ☑ Pumps & Tubing
- ☑ Air, Soil & Water Monitors
- ☑ Industrial Water & Wastewater Treatment
- ☑ pH, Conductivity & Dissolved Oxygen Instruments