Exercises

Example So Property **Translation** irst

.

Complex Variable,
Laplace & ZTransformation

Lecture 04

Property Exercises

Example Property Translation irst

is Lecture Covers

- 1. Formula of Inverse Laplace Transformation.
- 2. Examples & Exercise of Inverse Laplace Transformation Using Direct Formula.
- 3. First Shifting Property of Inverse Laplace Transformation.
- 4. Examples & Exercises of Inverse Laplace Transformation Using First Shifting Property.

Learning Outcomes

Property Using Exercises

Translation Property & Example First

Direct Formula Using Exercise

Formula

Examples

Important

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} = 1$$
,

$$2. \mathcal{L}^{-1} \left\{ \frac{1}{s^{n+1}} \right\} = \frac{t^n}{n!},$$

$$3. \mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at},$$

$$4. \mathcal{L}^{-1}\left\{\frac{s}{s^2+a^2}\right\} = \cos at,$$

$$5. \mathcal{L}^{-1}\left\{\frac{a}{s^2+a^2}\right\} = \sin at,$$

$$6. \mathcal{L}^{-1}\left\{\frac{s}{s^2-a^2}\right\} = \cosh at,$$

$$7. \mathcal{L}^{-1}\left\{\frac{a}{s^2 - a^2}\right\} = \sinh at.$$

Property Using Exercises

First

Translation Property & Example First

Direct Formula Using Exercise

Examples

1. $\mathcal{L}^{-1}\left\{\frac{s^2+1}{s^3}\right\}$ $= \mathcal{L}^{-1}\left\{\frac{1}{s} + \frac{1}{s^3}\right\} = 1 + \frac{t^2}{2!} = 1 + \frac{t^2}{2}.$ 2. $\mathcal{L}^{-1}\left\{\frac{1}{2s-5}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{2(s-\frac{5}{2})}\right\} = \frac{1}{2}e^{\frac{5}{2}t}$

3.
$$\mathcal{L}^{-1}\left\{\frac{2s}{s^2-9}\right\} = 2\mathcal{L}^{-1}\left\{\frac{s}{s^2-3^2}\right\} = 2\cosh 3t$$

4.
$$\mathcal{L}^{-1} \left\{ \frac{5}{s} - \frac{3s}{s^2 + 16} + \frac{2}{s^2 + 4} \right\}$$

$$= 5\mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - 3\mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 16} \right\} + \mathcal{L}^{-1} \left\{ \frac{2}{s^2 + 2^2} \right\}$$

$$= 5 - 3\cos 4t + \sin 2t.$$

Important Formulae

This Lecture Covers

Inverse Laplace Transformation

Formula

Using

Exercise

$$1. \quad F(s) = \frac{1}{s-5} \ ,$$

2.
$$F(s) = \frac{1}{s^5}$$
,

$$3. F(s) = \frac{s^3 - 5s^2 + 6}{s^4} ,$$

$$4. F(s) = \frac{2+4s}{s^2+25} ,$$

$$5. F(s) = \frac{3}{s^2 + 4},$$

6.
$$F(s) = \frac{3}{s^2 - 4}$$
.

Using] Examples

Important

Inverse Laplace Transformation

Property Exercises

Example Translation Property & First

Example: 01

$$\mathcal{L}^{-1} \left\{ \frac{10}{(s+3)^4} \right\}$$

$$= 10 \mathcal{L}^{-1} \left\{ \frac{1}{(s+3)^4} \right\}$$

$$= 10 e^{-3t} \mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\}$$

$$= 10 e^{-3t} \frac{t^3}{3!} = \frac{10}{6} e^{-3t} t^3.$$

First translation property

If $\mathcal{L}^{-1}{F(s)} = f(t)$ then

 $\mathcal{L}^{-1}{F(s-a)} = e^{at}\mathcal{L}^{-1}{F(s)}.$

Example: 02

$$\mathcal{L}^{-1} \left\{ \frac{1}{(s-2)^2 + 1} \right\}$$

$$= e^{2t} \mathcal{L}^{-1} \left\{ \frac{1}{s^2 + 1} \right\}$$

$$= e^{2t} \sin t.$$

Example 3.

$$\mathcal{L}^{-1}\left\{\frac{2s+1}{s^2+4s+13}\right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2s+1}{s^2+2. s. 2+4+9} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2(s+2) - 3}{(s+2)^2 + 9} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{2(s+2)}{(s+2)^2 + 3^2} - \frac{3}{(s+2)^2 + 3^2} \right\}$$

$$= 2e^{-2t}\cos 3t - e^{-2t}\sin 3t.$$

& Example

Direct Formula Exercise

Direct 1 Using Examples

Important

Inverse Laplace Transformation

Property Using Exercises

Find Inverse Laplace of the following functions:

1.
$$F(s) = \frac{1}{(s-3)^4}$$
,

2.
$$F(s) = \frac{3}{(s+2)^2 + 9}$$
,

3.
$$F(s) = \frac{s-2}{(s-2)^2-16}$$

$$4. F(s) = \frac{s}{s^2 + 4s - 9},$$

$$5. F(s) = \frac{5s-7}{s^2-6s+25} ,$$

6.
$$F(s) = \frac{s}{s^2 - 6s + 10}$$
.

Translation First

Examples Using Direct Formula Direct Formula Exercise

Important Formulae

Phis Lecture Covers

After completing this chapter you can easily evaluate the inverse Laplace transformation of function using direct formula & also using property.

irst les Examp

rans

Formula Exercise

Formul

Direct

Using

Examples

Formulae **Important**

Covers

Laplace

Sample MCQ

$$1. \mathcal{L}^{-1} \left\{ \frac{s^2 + 1}{s^3} \right\} = ?$$

(a)
$$1 + \frac{t}{2}$$

(b)
$$1 + \frac{t^2}{2}$$

(a)
$$1 + \frac{t}{2}$$
 (b) $1 + \frac{t^2}{2}$ (c) $1 - \frac{t^2}{2}$

(d)
$$\frac{t^2}{2}$$

2.
$$\mathcal{L}^{-1}\left\{\frac{4}{s-2} - \frac{s}{s^2 - 16} + \frac{4}{s^2 - 4}\right\} = ?$$

(a)
$$e^{2t} - \cosh 4t + 2 \sinh 2t$$

(b)
$$4e^{2t} + \cosh 4t + 2 \sinh 2t$$

(c)
$$4e^{2t} - \cosh 4t + 2 \sinh 2t$$

(d)
$$4e^{2t} - \cosh 4t$$

3.
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+13}\right\} = ?$$

(a)
$$e^{-2t}\cos 3t - \frac{2}{3}e^{-2t}\sin 3t$$

(b)
$$e^{-2t}\cos 3t + 2e^{-2t}\sin 3t$$

(c)
$$e^{2t}\cos 3t - \frac{2}{3}e^{2t}\sin 3t$$

(d)
$$e^{-2t}\cos 3t - 2e^{-2t}\sin 3t$$

4.
$$\mathcal{L}^{-1}\left\{\frac{s-2}{(s-2)^2-16}\right\}$$
 =?

(a)
$$e^{2t}cosh4t$$
 (b) $e^{2t}sinh4t$ (c) $e^{-2t}cosh4t$

$$(c)e^{-2t}cosh4t$$

$$(d)e^{2t}\frac{\sinh 4t}{2}$$

THE END

Learning Outcomes

roperty irst sing Exercises

Property irst sing les

le Examp roperty tion nS St 1 •

ormula Direct Using Exercise

Formul Direct Using Examples

Important Formulae

This Lecture Covers

aplace