Методы машинного обучения. Предобработка данных и оценивание моделей

Bоронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-25-26 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 7 октября 2025

Содержание

- 🚺 Предварительная обработка данных
 - Преобразование признаков
 - Обработка пропущенных значений
 - Генерация признаков
- 2 Оценки качества классификации
 - Чувствительность, специфичность, ROC, AUC
 - Правдоподобие вероятностной модели классификации
 - Точность, полнота, AUC-PR
- 3 Анализ ошибок и выбор моделей
 - Обобщающая способность
 - Анализ ошибок
 - Выбор моделей

Практические аспекты машинного обучения

Межотраслевой стандарт интеллектуального анализа данных

CRISP-DM (1999): CRoss Industry Standard Process for Data Mining

Компании-инициаторы:

- SPSS
- Teradata
- Daimler AG
- NCR Corp.
- OHRA

Шаги процесса:

- понимание бизнеса
- понимание данных
- предобработка данных
- моделирование
- оценивание моделей
- внедрение

Шкалы измерения

Измерительная шкала — множество Z допустимых значений, получаемых в результате измерения признака f(x), $f\colon X o Z$

Тип шкалы определяется множествами

- ullet допустимых биективных преобразований $\psi\colon Z o Z'$
- допустимых операций над значениями из шкалы Z

Классификация типов измерительных шкал по Стивенсу:

шкала	Z	$\psi(z)$	операции
логическая (boolean)	0, 1	биективные	V / ¬
номинальная (nominal)	$< \infty$	биективные	$= \neq \in$
порядковая (ordinal)	$< \infty$	монотонные	= \neq < >
интервальная (interval)	\mathbb{R}	az + b	<>+-
отношений (ratio)	\mathbb{R}	az	<>+-×÷
абсолютная (absolute)	\mathbb{R}	Z	любые

S.S. Stevens. On the Theory of Scales of Measurement // Science, 1946.

Примеры величин, измеряемых в различных шкалах

- Логическая наличие/отсутствие свойства, ответ «да/нет»
- **Номинальная** (можно переименовать или перенумеровать) идентификаторы классов, людей, регионов, фирм, товаров
- Порядковая (порядок частичный или линейный)
 уровень образования, тяжесть болезни, степень согласия
- Ранговая (частный случай порядковой: 1, 2, 3, ..., N)
 оценка в баллах, шкалы Рихтера, Бофорта, Мооса, Бека
- Интервальная (можно сдвигать положение нуля)
 время, географическая широта, температура (°C, °F)
- Отношений (можно менять единицы измерения) масса, скорость, объём, сила, давление, заряд, яркость, °К
- Абсолютная число предметов, частота события, оценка вероятности

Ослабление шкалы

Номинальный \rightarrow много бинарных (one-hot-encoding):

- \bullet $f_{v}(x) = [f(x) = v]$, индикатор значения v признака
- \bullet $f_A(x) = [f(x) \in A]$, индикатор подмножества A значений

Числовой или порядковый o бинарный:

$$ullet$$
 $f_{a,b}(x) = igl[a \leqslant f(x) \leqslant b igr]$ для заданного отрезка $[a,b]$

Числовой o ранговый (data binning, quantization):

•
$$f_a(x) = \sum_{k=1}^K \left[f(x) \geqslant \frac{a_k}{a_k} \right]$$
, номер интервала сетки a_1, \dots, a_K

Ослабление шкалы всегда влечёт потерю информации

Усиление шкалы

Номинальный \rightarrow числовой:

• категория заменяется частотой:

$$\tilde{f}(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) = f(x)]$$

• условное среднее числового признака g(x):

$$\tilde{f}(x) = \operatorname{mean} \big(g | f(x) \big) = \frac{\sum_{i=1}^{\ell} g(x_i) \big[f(x_i) = f(x) \big]}{\sum_{i=1}^{\ell} \big[f(x_i) = f(x) \big]},$$

• условное среднее целевой величины y(x):

$$\widetilde{f}(x) = \mathsf{mean} \big(y | f(x) \big)$$
, возможно переобучение!

Порядковый \rightarrow **числовой** (монотонное преобразование)

• значение заменяется частотой:

$$\tilde{f}(x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [f(x_i) \leqslant f(x)]$$

Нормализация и стандартизация числовых шкал

Многие методы накапливают меньше вычислительных погрешностей, если признаки приведены к одному масштабу

$$ullet$$
 $ilde{f_j}(x)=rac{f_j(x)-f_j^{ ext{min}}}{f_j^{ ext{max}}-f_j^{ ext{min}}}$ — нормализация, приведение к $[0,1]$

$$oldsymbol{ ilde{f}_j(x)}=rac{f_j(x)}{|f_j|^{\sf max}}$$
 — масштабирование с сохранением нуля

$$ilde{f_j}(x) = rac{f_j(x) - \mu_j}{\sigma_j}$$
 — стандартизация

$$f_j^{\mathsf{max}},\;|f_j|^{\mathsf{max}},\;f_j^{\mathsf{min}},\;\mu_j,\;\sigma_j$$
 определяются по обучающей выборке

Для повышения устойчивости к выбросам можно отбрасывать 5% наименьших и наибольших значений признака

Трансформация вида распределения

 F_j — функция распределения (c.d.f.) признака f_j Эмпирическая функция распределения (кусочно-постоянная):

$$\hat{F}_j(z) = \frac{1}{\ell} \sum_{i=1}^{\ell} \left[f_j(x_i) \leqslant z \right]$$

- $ilde{f}_j(x) = F_j(f_j(x))$ преобразование $f_j(x)$ в равномерную на отрезке [0,1] случайную величину
- $\tilde{f}_j(x) = \Phi^{-1}(F_j(f_j(x)))$ преобразование $f_j(x)$ в случайную величину с заданной функцией распределения Φ (например, в нормальную)
- $\tilde{f}_j(x) = \ln(1 + f_j(x))$ преобразование неотрицательной случайной величины «с тяжёлым правым хвостом» (объёмы производства, перевозок, продаж)

Подходы к обработке пропущенных значений

- Игнорировать объекты или признаки с пропусками
 - ведёт к потере информации :(
- Заполнить пропущенные значения признака f:
 - средним или медианным значением $ar{f}$
- ullet Прогнозировать значения признака f по остальным:
 - регрессия для вещественного признака f
 - классификация для дискретного признака f
 - матричные разложения, например, разреженный SVD
- Использовать модели, способные обрабатывать пропуски:
 - решающие деревья
 - голосование низкоразмерных базовых предикторов
- ullet Ввести бинарный признак $ilde{f}(x) = igl[f(x) \$ не известноigr]

Непараметрическая регрессия для заполнения пропусков

Формула Надарая-Ватсона, ядерное сглаживание:

$$\hat{f}_j(x_i) = \frac{\sum_u f_j(u)S(u, x_i)}{\sum_u S(u, x_i)}$$

где \sum_u — сумма по всем объектам $u \in X^\ell$ с известным $f_j(u)$

Возможные конструкции функций сходства S(u,x):

•
$$S(u,x) = K\left(\frac{\rho(u,x)}{h}\right), \quad \rho^2(u,x) = \frac{1}{|J_{ux}|} \sum_{j \in J_{ux}} (f_j(u) - f_j(x))^2$$

$$ullet$$
 $S(u,x)=rac{1}{|J_{ux}|}\sum_{j\in J_{ux}}f_j(u)f_j(x)$ — скалярное произведение

•
$$S(u,x) = \frac{\sum_{j \in J_{ux}} f_j(u) f_j(x)}{\sqrt{\sum_{j \in J_{ux}} f_j^2(u)} \sqrt{\sum_{j \in J_{ux}} f_j^2(x)}}$$
 — косинусная ф.сх.

где J_{ux} — множество признаков j с известными $f_j(x)$ и $f_j(u)$

Разреженное низкоранговое матричное разложение

Дано: матрица
$$F = \left(f_{ij} = f_j(x_i)\right)_{\ell \times n}, \ \Omega \subseteq \{1, \dots, \ell\} \times \{1, \dots, n\}$$
 Найти: матрицы $G = (g_{it})_{\ell \times k}$ и $U = (u_{it})_{n \times k}$ такие, что

$$||F - GU^{\mathsf{T}}|| = \sum_{(i,j) \in \Omega} \left(\underbrace{f_{ij} - \langle g_i, u_j \rangle}_{\varepsilon_{ij}}\right)^2 = \sum_{(i,j) \in \Omega} \left(f_{ij} - \sum_{t=1}^k g_{it} u_{jt}\right)^2 \to \min_{G,U}$$

Классический SVD неприменим для разреженной задачи.

Метод стохастического градиента: перебираем $(i,j)\in\Omega$ в случайном порядке, делаем градиентные шаги $(arepsilon_{ij})^2 o\min_{g_i,u_j}$:

$$g_{it} := g_{it} + \eta \varepsilon_{ij} u_{jt}, \quad t = 1, \dots, k$$

 $u_{jt} := u_{jt} + \eta \varepsilon_{ij} g_{it}, \quad t = 1, \dots, k$

 $\hat{f}_j(x_i) = \langle g_i, u_j
angle$ — восстановление пропущенных значений g_{it} — новые признаки x_i в пространстве размерности k

Классические подходы к конструированию признаков

Feature Engineering: признаки вычисляются по формулам, которые зависят от задачи, требуют изобретательности и знаний предметной области. Долго, дорого.

Примеры:

- Прогнозирование временных рядов: признаки агрегируются по предыстории различной глубины
- Распознавание лиц:
 признаки размера и формы черт лица
- Классификация и поиск текстов:
 признаки частоты слов, терминов, названий, синонимов
- Распознавание речи:
 спектральные, фонетические, лингвистические признаки

Иногда удачные признаки решают задачу без ML

Copeвнование «Ford Classification Challenge» (2008) Задача детектирования поломок по сигналу датчика

Признаки, генерируемые по исходным временным рядам, слабы:

Среди признаков рядов их производных оказывается идеальный:

https://dyakonov.org/2018/06/28/простые-методы-анализа-данных

Обучаемая векторизация данных

Глубокие нейронные сети объединяют два этапа обработки данных: векторизацию и предсказательное моделирование

- компьютерное зрение
- обработка текстов естественного языка
- анализ сигналов, распознавание и синтез речи
- анализ графов и транзакционных данных
- немного в следующем семестре, много в курсе DL

Krizhevsky A., Sutskever I., Hinton G. ImageNet classification with deep convolutional neural networks. 2012.

Резюме. Предварительная обработка данных

Данные могут быть

- разнородные (признаки измерены в разных шкалах)
- неполные (измерены не все, имеются пропуски)
- неточные (измерены с погрешностями)
- противоречивые (объекты одинаковые, ответы разные)
- избыточные (сверхбольшие, не помещаются в память)
- недостаточные (объектов меньше, чем признаков)
- сложно структурированные (нет признаковых описаний)
- и для всех этих проблем в ML известны решения!

«Грязные» данные — единственная проблема, для которой нет решения кроме «снова улучшать процессы сбора данных»

Анализ ошибок классификации

Задача бинарной классификации: $y_i, \ a(x_i) \in \{-1, +1\}.$

	модель классификации	учитель
TP, True Positive	$a(x_i) = +1$	$y_i = +1$
TN, True Negative	$a(x_i) = -1$	$y_i = -1$
FP, False Positive	$a(x_i) = +1$	$y_i = -1$
FN, False Negative	$a(x_i)=-1$	$y_i = +1$

FP: ложноположительно, ошибка І рода, «ложная тревога» FN: ложноотрицательно, ошибка ІІ рода, «пропуск цели»

Правильность классификации (чем больше, тем лучше):

Accuracy =
$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left[a(x_i) = y_i \right] = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{FP} + \mathsf{FN} + \mathsf{TP} + \mathsf{TN}}$$

Недостаток: не учитывается дисбаланс численности классов, а также различие цены ошибки I и II рода.

ROC-кривая (Receiver Operating Characteristic)

Модель бинарной классификации: $a(x;w,w_0)=\mathrm{sign}\left(g(x,w)-w_0\right)$ Кривая ROC: как меняется качество при варьировании w_0 (чем больше w_0 , тем больше x_i , на которых $a(x_i)=-1$)

• по оси X: доля *ошибочных положительных классификаций* (FPR — false positive rate):

$$\mathsf{FPR}(a) = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}} = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

 $1-\mathsf{FPR}(a)$ называется специфичностью алгоритма a.

• по оси Y: доля правильных положительных классификаций (TPR — true positive rate):

$$\mathsf{TPR}(a) = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

 $\mathsf{TPR}(a)$ называется также чувствительностью алгоритма a.

ROC-кривая и площадь под кривой AUC (Area Under Curve)

ABCDE — положения порога w_0 на оси значений функции g

Алгоритм эффективного построения ROC-кривой

```
Вход: выборка \{x_i\}_{i=1}^{\ell}; дискриминантная функция g(x, w);
Выход: ROC-кривая (X_j, Y_j)_{i=0}^k, k \leqslant \ell и площадь AUC
\ell_{v} := \sum_{i=1}^{\ell} [y_{i} = y], для всех y \in Y;
упорядочить \{x_i\} по убыванию g_i = g(x_i, w): g_1 \geqslant \ldots \geqslant g_\ell;
(X_0, Y_0) := (0, 0); AUC := 0; \Delta X := 0; \Delta Y := 0; j := 1;
для i := 1, \ldots, \ell
                                                                                     \Delta Y = 0
     \Delta X := \Delta X + \frac{1}{\ell} [y_i = -1];
     \Delta Y := \Delta Y + \frac{1}{\ell} [y_i = +1];
    если (g_i \neq g_{i-1}) то
         X_i := X_{i-1} + \Delta X_i
         Y_i := Y_{i-1} + \Delta Y_i
         AUC := AUC + \frac{1}{2}(Y_{i-1} + Y_i)\Delta X;
      j := j + 1; \quad \Delta X := 0; \quad \Delta Y := 0;
```

Чувствительность, специфичность, ROC, AUC Правдоподобие вероятностной модели классификации Точность, полнота, AUC-PR

Задача максимизации площади под кривой ROC-AUC

Модель классификации: $a(x_i, w, w_0) = \operatorname{sign} \left(g(x_i, w) - w_0 \right)$

AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC}(w) &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_{i} = -1 \big] \mathsf{TPR}_{i} = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_{i} < y_{j} \big] \big[g(x_{i}, w) < g(x_{j}, w) \big] \to \max_{w} \end{aligned}$$

Критерий: максимум аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant Q(w) = \sum_{i,j \colon y_i < y_j} L(\underbrace{g(x_j, w) - g(x_i, w)}_{M_{ij}(w)}) \to \min_{w}$$

где L(M) — убывающая функция попарного отступа $M_{ij}(w)$ SG: градиентные шаги по парам объектов (x_i, x_i) : $y_i < y_i$

Алгоритм SG для максимизации AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle, \qquad y_i < y_j.$$

f Bход: выборка X^ℓ , темп обучения h, темп забывания λ ;

 \mathbf{B} ыход: вектор весов w;

инициализировать веса $w_j, \ j=0,\ldots,n;$ инициализировать оценку: $ar{Q}:=rac{1}{\ell+\ell-}\sum\limits_{i,j}[y_i< y_j]\ L(M_{ij}(w));$

повторять

выбрать пару объектов (i,j): $y_i < y_j$, случайным образом; вычислить потерю: $\varepsilon_{ij} := L(M_{ij}(w))$; сделать градиентный шаг: $w := w - h \, L'(M_{ij}(w))(x_j - x_i)$; оценить функционал: $\bar{Q} := (1 - \lambda) \, \bar{Q} + \lambda \varepsilon_{ij}$; пока значение \bar{Q} и/или веса w не сойдутся;

Логарифм правдоподобия, log-loss

Вероятностная модель бинарной классификации, $y_i \in \{-1, +1\}$:

$$a(x, w) = sign(g(x, w) - w_0), \qquad g(x, w) = P(y = +1|x, w).$$

Проблема: ROC и AUC инвариантны относительно монотонных преобразований дискриминантной функции g(x, w).

Критерий логарифма правдоподобия (log-loss):

$$Q(w) = \sum_{i=1}^{\ell} [y_i = +1] \ln g(x, w) + [y_i = -1] \ln (1 - g(x, w)) \to \max_{w}$$

Вероятностная модель многоклассовой классификации:

$$a(x) = rg \max_{y \in Y} \mathsf{P}(y|x,w);$$
 $Q(w) = \sum_{i=1}^{\ell} \mathsf{In} \, \mathsf{P}(y_i|x_i,w) o \max_{w}$

Точность и полнота бинарной классификации

В информационном поиске не важен ТИ:

Точность, Precision =
$$\frac{TP}{TP+FP}$$

Полнота, Recall = $\frac{TP}{TP+FN}$

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

В медицинской диагностике:

Чувствительность, Sensitivity =
$$\frac{TP}{TP+FN}$$
 Специфичность, Specificity = $\frac{TN}{TN+FP}$

Sensitivity — доля верных положительных диагнозов Specificity — доля верных отрицательных диагнозов

Specificity =

V - relevant elements

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$:

 TP_{v} — верные положительные

 FP_y — ложные положительные

 FN_y — ложные отрицательные

Точность и полнота с микроусреднением:

Precision:
$$P = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FP}_{y})};$$

Recall: $R = \frac{\sum_{y} \mathsf{TP}_{y}}{\sum_{y} (\mathsf{TP}_{y} + \mathsf{FN}_{y})};$

Микроусреднение не чувствительно к ошибкам на малочисленных классах

not y

Точность и полнота многоклассовой классификации

Для каждого класса $y \in Y$:

 TP_{v} — верные положительные

 FP_y — ложные положительные

 FN_y — ложные отрицательные

Точность и полнота с макроусреднением:

Precision:
$$P = \frac{1}{|Y|} \sum_{y} \frac{TP_{y}}{TP_{y} + FP_{y}};$$

Recall:
$$R = \frac{1}{|Y|} \sum_{y} \frac{|P_{y}|}{|Y|} = \frac{|P_{y}|}{|Y|}$$

Макроусреднение чувствительно к ошибкам на малочисленных классах

Кривые ROC и Precision-Recall

Модель классификации: $a(x) = \mathrm{sign} \left(\langle x, w \rangle - w_0 \right)$ Каждая точка кривой соответствует значению порога w_0

AUROC — площадь под ROC-кривой AUPRC — площадь под кривой Precision-Recall

Примеры из Python scikit learn: http://scikit-learn.org/dev

Резюме. Оценки качества классификации

- Чувствительность и специфичность лучше подходят для задач с несбалансированными классами
- Логарифм правдоподобия (log-loss) лучше подходит для оценки качества вероятностной модели классификации.
- Точность и полнота лучше подходят для задач поиска, когда доля объектов релевантного класса очень мала.

Агрегированные оценки:

- AUC лучше подходит для оценивания качества, когда соотношение цены ошибок не фиксировано.
- AUPRC площадь под кривой точность-полнота.
- ullet $F_1=rac{2PR}{P+R}-F$ -мера, другой способ агрегирования P и R.
- $F_{eta}=rac{(1+eta^2)PR}{eta^2P+R}-F_{eta}$ -мера: чем больше eta, тем важнее R.

Задачи оценивания и выбора моделей

Дано:

$$X^\ell=(x_1,\ldots,x_\ell)$$
 — обучающая выборка $A_t=\{a\colon X imes W_t o Y\}$ — параметрические модели, $t\in T$ W_t — пространство параметров модели A_t $\mu_t\colon (X imes Y)^\ell o W_t$ — методы обучения, $t\in T$

 $oldsymbol{\mathsf{Haйти:}}$ метод μ_t с наилучшей обобщающей способностью.

Частные случаи:

- ullet выбор лучшей модели A_t (model selection);
- выбор метода обучения μ_t для заданной модели A (в частности, оптимизация *гиперпараметров*);
- отбор признаков (feature selection): $F = \left\{ f_j \colon X \to D_j \colon j = 1, \dots, n \right\}$ множество признаков; метод обучения μ_J использует только признаки $J \subseteq F$.

Внутренние и внешние критерии качества обучения

$$\mathscr{L}(w,x)$$
 — функция потерь модели $a(w,x)$ на объекте x $Q(w,X^\ell)=rac{1}{\ell}\sum_{i=1}^\ell\mathscr{L}(w,x_i)$ — функционал качества $a(w,x)$ на X^ℓ

 $Q(\mu(X^{\ell}), X^{\ell})$ — внутренний критерий, убывает с ростом сложности модели (числа обучаемых параметров), смещенная оценка $\mathsf{E}_{X^{\ell}, x} \mathscr{L}(\mu(X^{\ell}), x)$

 $Q(\mu(X^\ell),X^k)$ — внешний критерий, имеет минимум по сложности модели, несмещённая оценка $\mathsf{E}_{X^\ell,x}\mathscr{L}ig(\mu(X^\ell),xig)$ **Недостаток** оценки hold-out:

она зависит от разбиения $X^\ell \sqcup X^k$

Кросс-проверка (cross-validation, CV)

Усреднение по множеству разбиений $X^L = X^\ell_s \sqcup X^k_s$, $s \in S$:

$$CV(\mu, X^L) = \frac{1}{|S|} \sum_{s \in S} Q(\mu(X_s^{\ell}), X_s^{k})$$

- ullet |S|=1 единственное (случайное) разбиение: hold-out
- S множество случайных разбиений: метод Монте-Карло
- $S = \{(X^L \setminus \{x_i\}) \sqcup \{x_i\}\}_{i=1..L}$, каждый объект становится контролем один раз, *скользящий контроль* (leave one out)
- $S = \{(X^L \backslash B_s) \sqcup B_s\}_{s=1..q}$, где $B_1 \sqcup \cdots \sqcup B_q = X^L$ разбиение *на q блоков* равной ± 1 длины (*q*-fold CV), каждый объект участвует в контроле один раз
- $S = \{(X^L \backslash B_s^r) \sqcup B_s^r\}_{s=1..q}^{r=1..t}$, где $B_1^r \sqcup \cdots \sqcup B_q^r = X^L$ t разбиений на q блоков равной ± 1 длины $(t \times q$ -fold CV), каждый объект участвует в контроле ровно t раз
- S все $C_{\ell+k}^k$ разбиений: complete cross-validation, CCV

Методология анализа ошибок (или потерь)

 $\mathscr{L}(w,x_i)$ — функция потерь (чем меньше, тем лучше). Среднее потерь на выборке U и эмпирическое распределение:

$$Q(w, U) = \frac{1}{|U|} \sum_{x_i \in U} \mathcal{L}(w, x_i)$$
$$F(\lambda; w, U) = \frac{1}{|U|} \sum_{x_i \in U} \left[\mathcal{L}(w, x_i) \leqslant \lambda \right]$$

Анализ потерь на обучающей выборке:

- ullet Ранжировать объекты по убыванию потерь $\mathscr{L}_i = \mathscr{L}(w,x_i)$
- Объекты со сверхбольшими потерями выбросы?
- Если нет, то как улучшить модель на этих объектах?

Сравнительный анализ потерь на обучении и тесте:

- Сильно ли отличаются распределения потерь?
- Если сильно, то как устранить переобучение?

Анализ распределения отступов в задаче классификации

Вместо потерь $\mathcal{L}_i = L(M_i)$ можно ранжировать отступы M_i Видно: переобучение, зону неуверенной классификации

Задача UCI:australian, метод JRip

Анализ ROC-кривых

ROC-кривые можно строить отдельно для каждого класса Видно: переобучение, устойчивость, различия классов

ММО: предобработка и постобработка

A/В тестирование (A/B testing, Split Testing)

Две модели, «базовая А» и «улучшенная В», построенные по историческим данным X^ℓ , тестируются по метрике качества Q на новых данных X^k

В чём отличия A/B тестирования от обычного hold-out?

- X^k это именно будущие данные (out-of-time), а не часть прошлых данных, исключённых из обучения (out-of-sample)
- больше реализма: за это время могут измениться свойства потока данных, реальные данные не обязаны быть i.i.d.
- однократный выбор модели почти не переобучается
- ullet накопление данных X^k может потребовать много времени
- работа модели может влиять на формирование потока данных (например, в рекомендательных системах)

Мета-обучение (meta-learning, learning to learn)

Проблема: слишком много методов, слишком долго запускать

extstyleetaано: выборка «задача, метод» extstyleeta критерии качества

Найти: модель многоклассовой классификации, предсказывающую, каким методом решать задачу

Критерий: точность предсказания оптимального метода

Признаки:

- размерные характеристики задачи
- характеристики пространства признаков: типы, выбросы, пропуски, корреляции
- результаты быстрых низкоразмерных методов

Joaquin Vanschoren. Meta-learning Architectures: Collecting, Organizing and Exploiting Meta-knowledge. 2009.

Joaquin Vanschoren. Meta-Learning: A Survey. 2018.

Обобщающая способность Выбор моделей

Автоматический выбор моделей и гиперпараметров (AutoML)

Проблема:

подбор структуры модели (архитектуры нейросети) и гиперпараметров требует слишком много ресурсов

 \Box ано: выборка «задача, структура» \rightarrow критерии качества

Найти: какой следующий эксперимент провести с моделью

Критерий:

минимизация затрат ресурсов на автоматический поиск оптимальной модели, сопоставимой по качеству с моделями, построенными профессиональными исследователями

Близкая классическая задача — планирование экспериментов

Xin He et al. AutoML: A Survey of the State-of-the-Art. 2019 https://github.com/sberbank-ai-lab/LightAutoML — AutoML от Сбербанка

Резюме. Анализ ошибок и выбор моделей

- Культура анализа данных:
 - смотреть на данные глазами
 - пробовать нетривиальные идеи предобработки, основанные на знаниях предметной области
 - использовать анализ ошибок и визуализацию
 - креативно порождать и оценивать больше гипотез
 - знать и учитывать сильные и слабые стороны методов
- Автоматизация распространяется по схеме CRISP-DM,
 в перспективе нас ожидает бесшовная интеграция этапов
 - предобработки данных
 - моделирования
 - оценивания и выбора моделей
 - внедрения