Computational Models — Lecture 5¹

Handout Mode

Ronitt Rubinfeld and Iftach Haitner.

Tel Aviv University.

March 28/30, 2016

¹Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University. Also including modifications of Yishay Mansour.

Talk Outline

- Algorithmic issues for CFL
- Chomsky Normal Form
- Pumping Lemma for context free languages
- ► Push Down Automata (PDA)

Next week:

Equivalence of CFGs and PDAs

Sipser's book, 2.1, 2.2 & 2.3

Last time

- context-free languages
- context-free grammars

Formal Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- V is a finite set of variables
- Σ is a finite set of terminals
- R is a finite set of rules: each rule is a variable and a finite string of variables and terminals.
- S is the start symbol.
- If u and v are strings of variables and terminals, and A → w is a rule of the grammar, then uAv yields uwv, written uAv → uwv.
- ▶ $u \xrightarrow{*} v$ if u = v, or $u \to u_1 \to \ldots \to u_k \to v$ for some sequence u_1, u_2, \ldots, u_k

Definition 1

The language of the grammar G, denoted $\mathcal{L}(G)$, is $\{w \in \Sigma^* : S \stackrel{*}{\to} w\}$

where $\stackrel{*}{\rightarrow}$ is determined by G.

Part I

Checking Membership

Checking Membership in a CFL

Challenge

Given a CFG G and a string w, decide whether $w \in \mathcal{L}(G)$?

Initial Idea: Design an algorithm that tries all derivations.

Problem: If G does not generate w, we'll never stop.

Possible solution: Use special grammars that are:

- just as expressive!
- better for checking membership.

Chomsky Normal Form (CNF)

A simplified, canonical form of context free grammars. $G = (V, \Sigma, R, S)$ is in a CNF, if every rule in in R has one of the following forms:

$$\begin{array}{lll} \textbf{A} \rightarrow \textbf{a}, & \textbf{A} \in \textbf{V} & \land & \textbf{a} \in \Sigma \\ \textbf{A} \rightarrow \textbf{BC}, & \textbf{A} \in \textbf{V} & \land & \textbf{B}, \textbf{C} \in \textbf{V} \setminus \{\textbf{S}\} \\ \textbf{S} \rightarrow \varepsilon. & \end{array}$$

Simpler to analyze: each derivation adds (at most) a single terminal, S only appears once, ε appears only at the empty word

What does parse tree look like?

Most internal nodes are degree 2 (except parents of leaves, which are degree 1)

CNF: Theorem

Theorem 2

Any context-free language is generated by a context-free grammar in Chomsky Normal Form.

Proof Idea:

- ► Add new start symbol S₀.
- Convert "long rules" to proper form.
- ▶ Eliminate all ε rules of the form $A \to \varepsilon$.
- ▶ Eliminate all "unit" rules of the form $A \rightarrow B$.
- ▶ Patch up rules so that grammar generates the same language.

Add new start symbol

Add new start symbol S_0 and rule $S_0 \rightarrow S$

(Guarantees that new start symbol is never on right hand side of a rule) e.g.

$$S \rightarrow A \mid ab \mid \varepsilon$$

 $A \rightarrow baA \mid S$

becomes

Convert "long rules": Phase 1 – no mixing of terminals/nonterminals, and no multiple terminals

$$S \rightarrow ccAbA \mid bc \mid b$$

 $A \rightarrow a \mid bb$

becomes

$$egin{array}{lcl} S &
ightarrow & X_c X_c A X_b A \mid X_b X_c \mid b \ A &
ightarrow & a \mid X_b X_b \ X_c &
ightarrow & c \ X_b &
ightarrow & b \end{array}$$

Convert "long rules": Phase 2 – multiple nonterminals

$$S \rightarrow AAAB$$

becomes

$$\begin{array}{ccc} S & \rightarrow & AN_1 \\ N_1 & \rightarrow & AN_2 \\ N_2 & \rightarrow & AB \end{array}$$

Eliminate " ε -rules"

Repeat until all $A \rightarrow \epsilon$ rules are gone:

- ▶ remove $A \rightarrow \varepsilon$
- ▶ for any rule of form $R \rightarrow AB$ or $R \rightarrow BA$, add $R \rightarrow B$.
- ▶ for any rule of form $R \to AA$ add $R \to A$ and $R \to \varepsilon$ (unless $R \to \varepsilon$ has already been removed).
- ▶ for any rule of form $R \to A$ add $R \to \varepsilon$ (unless $R \to \varepsilon$ has already been removed.)

(Alternative description: Let W be the set of variables A such that $A \stackrel{*}{\to} \epsilon$. For each $A \in W$, (1) remove $A \to \varepsilon$ if present, (2) for any rule of form $B \to AB$ or $B \to BA$, add $B \to B$, even if A = B. Don't need to add $B \to \varepsilon$ since $B \in W$.

Eliminate "unit rules"

Repeat until all unit rules removed

- ▶ remove some $A \rightarrow B$
- ▶ for each $B \to U$ add $A \to U$ (unless $A \to U$ was previously removed unit rule)

(Alternative description: Create a directed graph with nodes corresponding to variables and edge from A to B if $A \to B$ is a rule. For each strong component in the graph, replace all variables by a single variable.)

Cleanup

Delete all "unreachable" rules, e.g.:

- ightharpoonup delete all $A \rightarrow A$ rules
- ▶ for each rule with *A* on LHS, make sure that *A* appears on RHS of some rule that is reachable from start variable.
- for each rule with A on RHS, make sure that A also appears on LHS of a rule.
- ▶ for each variable A, make sure it can reach a terminal.

CNF: Example

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$

Is transformed into:

$$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $U \rightarrow a$
 $B \rightarrow b$

CNF: Bounded Derivation Length

Lemma 3

For a CNF grammar G and $w \in \mathcal{L}(G)$ with $|w| = n \ge 1$, it holds that w has a derivation of length 2n - 1.

Proof? consider the parsing tree for w

Advantage: Easier to check whether $w \in \mathcal{L}(G)$

Checking Membership for Grammars in CNF Form

Given a CNF grammar $G = (V, \Sigma, R, S)$, we build a function Derive(A, x) that returns TRUE iff $A \stackrel{*}{\to} x$.

Algorithm 4 (Derive(A, x))

- ▶ If $x = \varepsilon$: if $A \to \varepsilon \in R$ (i.e., A = S) return TRUE, otherwise return FALSE.
- ▶ If |x| = 1: if $A \rightarrow x \in R$ return TRUE, otherwise return FALSE.
- For each $A \to BC$ and each partition $x = x_L x_R$ (i.e. $x_L = x_1...x_j$ and $x_R = x_{j+1}...x_{|x|}$):
 - ▶ Call Derive(B, x_L) and Derive(C, x_R).
 - Return TRUE if both return TRUE.
- Return FALSE.

Test whether $w \in \mathcal{L}(G)$ by calling Derive(S, w)

Correctness?

- Procedure Derive can also output a parse tree for w
- ► Have we critically used that G is in CNF?

Time Complexity of Derive

What is the time complexity $T: \mathbb{N} \to \mathbb{N}$ of Derive?

- Each recursive call tests |R| rules and n partitions.
- $ightharpoonup T(n) \leq |R| \cdot n \cdot 2T(n-1)$
- ► $T(n) \in O((|R| \cdot n)^n)$.

Still exponential...

Efficient Algorithm

- ▶ Keep in memory the results of Derive(A, x).
 - ▶ Main observation: Number of different inputs is $|V| \cdot n^2$. why????
 - ▶ Only $|V| \cdot n^2$ calls, each takes $O(|R| \cdot n)$.
 - $T(n) \in O(|R| \cdot n^3 \cdot |V|).$
- Polynomial time!
- ► This approach is called Dynamic Programming

Basic idea:

- ▶ If number of different inputs is limited, say *I*(*n*).
- ► Each run (excluding recursive calls) takes at most R(n) time
- ▶ Total running time is bounded by $T(n) \le R(n)I(n)$.

Part II

Non-Context-Free Languages

Proving a Language is not a CFL

- The pumping lemma for finite automata and Myhill-Nerode theorem are our tools for showing that languages are not regular.
- ▶ We will now show a similar pumping lemma for context-free languages.
- ▶ It is slightly more complicated ...

Pumping Lemma for CFL (also known as, the *uvxyz* Theorem)

Theorem 5

For any CFL \mathcal{L} there exists $\ell \in \mathbb{N}$ ("critical length"), such that for any $w \in \mathcal{L}$ with $|w| \ge \ell$, there exist $u, v, x, y, z \in \Sigma^*$ such that w = uvxyz and

- ► For every $i \ge 0$: $uv^i x y^i z \in \mathcal{L}$
- |vy| > 0, ("non-triviality")
- ▶ $|vxy| \le \ell$ (extra property that is helpful for us later!)

Basic Intuition

Let \mathcal{L} be a CFL and a let w be a "very long" string in \mathcal{L} . Then w must have a "tall" parse tree.

Hence, some root-to-leaf path must repeat a symbol. Why is that so? We have: $T \stackrel{*}{\to} uRz$, $R \stackrel{*}{\to} vRy$, and $R \stackrel{*}{\to} x$. But then the second R could also produce vRy, giving $uv^2xy^2z!$

Proof of Thm 5

Let G be a CFG and let $\mathcal{L} = \mathcal{L}(G)$.

- ▶ Let *b* be the max number of symbols in right-hand-side of any rule (what is *b* for a CNF grammar?).
 - Since no node in a parse tree of G has more than b children, at depth d such tree has at most b^d leaves.
- ▶ Let |V| be the number of variables in G, and set $\ell = b^{|V|+2}$.

Let w be a string with $|w| \ge \ell$, and let T be parse tree for w (with respect to G) with fewest nodes

- ▶ T has height $\geq |V| + 2$
- ▶ Some path in T has length $\geq |V| + 2$
- Such path repeats a variable R

Proof of Thm 5 cont.

Set w = uvxyz

- ► Each occurrence of *R* produces a string
- Upper produces string vxy
- Lower produces string x

Proving $uv^ixy^iz \in \mathcal{L}$ for all i > 1

Replacing smaller by larger yields $uv^i x y^i z$, for i > 0.

Proving $uv^ixy^iz \in \mathcal{L}$ for i = 0

Replacing larger by smaller yields uxz.

Together, they establish:

 $\blacktriangleright uv^i x y^i z \in \mathcal{L} \text{ for all } i \geq 0$

Proving |vy| > 0

If v and y are both ε , then

is a parse tree for w with fewer nodes than T, a contradiction.

Proving $|vxy| \le \ell$

- ▶ Without loss of generality both occurrences of R lie in bottom |V| + 1 variables on the path.
- ▶ The upper occurrence of R (from now on R^1) generates vxy.
- Subtree rooted at R^1 is of height at most |V| + 2. Hence, $|vxy| < b^{|V|+2} = \ell$.

Non CFL Example (1)

Claim 6

 $\mathcal{L}_1 = \{a^n b^n c^n \colon n \in \mathbb{N}\}$ is not a CFL.

Proof: By contradiction. Assume \mathcal{L}_1 is a CFL with grammar G, let ℓ be the critical length of G and consider $w = a^{\ell} b^{\ell} c^{\ell}$. Let u, v, x, y, z be the strings with w = uvxyz guaranteed by Thm 5 for w.

- ▶ Note that neither *v* nor *y* contain
 - both a's and b's, or
 - ▶ both b's and c's,

(otherwise uv^2xy^2z would have out-of-order symbols).

▶ But if v and y contain only one letter, then uv^2xy^2z is imbalanced

Non CFL Example (2)

Claim 7

 $\mathcal{L}_2 = \{a^i b^j c^k : 0 \le i \le j \le k\}$ is not context free.

Proof: By contradiction. Assume \mathcal{L}_2 is a CFL with grammar G, let ℓ be the critical length of G and consider $w = a^{\ell} b^{\ell} c^{\ell}$. Let u, v, x, y, z be the strings with w = uvxyz guaranteed by Thm 5 for w.

- ► Neither *v* nor *y* contains two distinct symbols, because otherwise uv^2xy^2z would have out-of-order symbols.
- vxy cannot be all the same letter (if a or b, can pump "up", if c can pump "down").
- ▶ $|vxy| \le \ell$, so either
 - ▶ v contains only a's and y contains only b's, but then uv^2xy^2z has too few c's.
 - ▶ v contains only b's and y contains only c's, but then uv^0xy^0z has too many a's.

Non CFL Example (3)

Claim 8

 $\mathcal{L}_3 = \{ww \colon w \in \{0,1\}^*\}$ is not context-free.

Proof:

By contradiction. Assume \mathcal{L}_3 is a CFL with grammar G, let ℓ be the critical length of G and consider $w = 0^{\ell} 1^{\ell} 0^{\ell} 1^{\ell}$. Let u, v, x, y, z be the strings with w = uvxyz guaranteed by Thm 5 for w.

- ► Recall that |vxy| ≤ ℓ
- Assuming vxy is in the first half of w, then uv²xy²z "moves" a 1 into the first position of second half.
- ► Assuming *vxy* is in the second half, then *uv*²*xy*²*z* "moves" a 0 into the last position of first half.
- Assuming vxy straddles the midpoint, then pumping down to uxz yields $0^{\ell}1^{i}0^{j}1^{\ell}$ where i and j cannot both be ℓ .

Note that $\{ww^R : w \in \{0,1\}^*\}$ is a CFL.

Part III

Push-Down Automata

String Generators and String Acceptors

- ▶ Regular expressions are string generators they tell us how to generate all strings in a language \mathcal{L}
- ► Finite Automata (DFA, NFA) are string acceptors they tell us if a specific string w is in £
- CFGs are string generators
- Are there string acceptors for CFLs?
- YES! Push-down automata

A Finite Automaton

A PushDown Automaton

(ignore the '\$' sign)

Example 1 — **PDA for** $\mathcal{L}_1 = \{0^n 1^n : n \ge 0\}$

Informally:

- 1. Read input symbols
 - 1.1 Push each read 0 on the stack
 - 1.2 Pop a 0 for each read 1
- 2. Accept if stack is empty after last symbol read, and no 0 appears after 1

Recall that \mathcal{L}_1 is not regular

Example 2 — PDA for $\mathcal{L}_2 = \{a^i b^j c^k : i = j \lor i = k\}$

Informally:

Read and push a's

Either pop and match with b's or pop and match with c's

A non-deterministic choice

Pushdown Automaton (PDA) — Formal Definition

A PDA is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the stack alphabet,
- ▶ $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,²
- ▶ $q_0 \in Q$ is the starting state, and
- ▶ $F \subseteq Q$ is the set of accepting states.

 $^{{}^{2}}X_{\varepsilon} := X \cup \{\varepsilon\}.$

The language accepted by a PDA

- ► A pushdown automaton (PDA) *M* accepts a string *w*, if there is a "computation" of *M* on *w* (see next slide) that leads to an accepting state.
- ► The language accepted by M, denoted $\mathcal{L}(M)$, is the set of all strings $w \in \Sigma^*$ accepted by M.
- ▶ A (non-deterministic) PDA may have many computations on a single string

Model of Computation

The following is with respect to $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$.

Definition 9 (δ^*)

For $w \in \Sigma^*$ let $\widehat{\delta}(q, w, s)$ be all pairs $(q', s') \in Q \times \Gamma^*$ for which exist $w'_1, \ldots, w'_m \in \Sigma_\varepsilon$, states $r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots s_m \in \Gamma^*$ s.t.:

- **1.** $w = w'_1, \dots, w'_m, r_0 = q, r_m = q', s_0 = s \text{ and } s_m = s'$
- **2.** For every $i \in \{0, \dots, m-1\}$ exist $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$ s.t.:
 - **2.1** $(r_{i+1}, b) \in \delta(r_i, w'_{i+1}, a)$
 - **2.2** $s_i = at$ and $s_{i+1} = bt$

Namely, $(q', s') \in \widehat{\delta}(q_0, w, \varepsilon)$ if after reading w (possibly with in-between ε moves), M can find itself in state q' and stack value s'.

▶ *M* accepts $w \in \Sigma^*$ if $\exists q' \in \mathcal{F}$ such that $(q', t) \in \widehat{\delta}(q_0, w, \varepsilon)$ for some t.

Diagram Notation

When drawing the automata diagram, we use the following notation

- ► Transition $a, b \rightarrow c$ from state q to q' means $(q', c) \in \delta(q, a, b)$, and informally means the automata
 - read a from input
 - pop b from stack
 - push c onto stack
- ▶ Meaning of ε transitions ((informally):
 - ightharpoonup $a = \varepsilon$: don't read input
 - ▶ $b = \varepsilon$: don't pop any symbol
 - $c = \varepsilon$: don't push any symbol

A PDA for $\mathcal{L}_1 = \{0^n 1^n : n \ge 0\}$

Claim 10

 $0011 \in L(P)$.

$$w_1' = \varepsilon$$
 $w_2' = 0$ $w_3' = 0$ $w_4' = 1$ $w_5' = 1$ $w_6' = \varepsilon$
 $s_0 = \varepsilon$ $s_1 =$ $s_2 = 0$ $s_3 = 00$ $s_4 = 0$ $s_5 =$ $s_6 = \varepsilon$
 $r_0 = q_1$ $r_1 = q_2$ $r_2 = q_2$ $r_3 = q_2$ $r_4 = q_3$ $r_5 = q_3$ $r_6 = q_4$

A PDA for $\mathcal{L}_1 = \{0^n 1^n : n \ge 0\}$

We want to show that $L(P) = \mathcal{L}_1 = \{0^n 1^n : n \ge 0\}$ What do we need to prove?

Claim 11

- $\widehat{\delta}(q_1,\varepsilon,\varepsilon) = \{(q_1,\varepsilon),(q_2,\$)\}.$
- $\hat{\delta}(q_1, 0^k, \varepsilon) = \{(q_2, 0^k \$)\}, \text{ for } k \ge 1.$
- $\hat{\delta}(q_1, 0^k 1^i, \varepsilon) = \{(q_3, 0^{k-i}\$)\}, \text{ for } k > i \ge 1.$
- $\hat{\delta}(q_1, 0^k 1^k, \varepsilon) = \{(q_3, \$), (q_4, \varepsilon)\}, \text{ for } k \ge 1.$
- $\widehat{\delta}(q_1, w, \varepsilon) = \emptyset, \text{ for } w \notin \{0^k 1^i | k \ge i \ge 0\}.$

Knowing when stack is empty

It is convenient to be able to know when the stack is empty, but there is no built-in mechanism to do that.

Solution

- 1. Start by pushing \$ onto stack.
- 2. When you see it again, stack is empty.

A PDA for $\mathcal{L}_2 = \{a^i b^j c^k : i = j \lor i = k\}$

A PDA for $\mathcal{L}_2 = \{a^i b^j c^k : i = j \lor i = k\}$, cont.

- Non-determinism is essential here!
- Unlike finite automata, non-determinism does add power.
- ▶ But we saw deterministic algorithm to deicide any CFL (and as we see later, CFLs are exactly the languages decided by PDAs)!
- ▶ How to prove that non-determinism adds power?

ı

- Does not seem trivial or immediate.
- ▶ Another example: $\mathcal{L} = \{x^n y^n : n \ge 0\} \cup \{x^n y^{2n} : n \ge 0\}$ is accepted by a non-deterministic PDA, but not by a deterministic one. (Proof? Book!)

PDA Languages

The Push-Down Automata Languages, \mathcal{L}_{PDA} , is the set of all languages that can be described by some PDA:

►
$$\mathcal{L}_{PDA} = \{\mathcal{L}(M) : M \text{ is a PDA}\}$$

It is immediate that $\mathcal{L}_{PDA} \supsetneq \mathcal{L}_{DFA}$: every DFA is just a PDA that ignores the stack.

- $ightharpoonup \mathcal{L}_{\mathsf{CFG}} \subseteq \mathcal{L}_{\mathsf{PDA}}$?
- $ightharpoonup \mathcal{L}_{\mathsf{PDA}} \subseteq \mathcal{L}_{\mathsf{CFG}}$?
- $ightharpoonup \mathcal{L}_{PDA} = \mathcal{L}_{CFG} !!!$