Задача 6. Размерности

Из письменного экзамена в ШАД 2019 года

Условие. Для квадратной вещественной матрицы A размера $n \times n$ и вектора $v \in \mathbb{R}^n$ положим:

$$U(A) = \{ X \in \operatorname{Mat}_n(\mathbb{R}) \mid AX = XA \}, \quad W(A, v) = \langle v, Av, A^2v, A^3v, \dots \rangle$$

Пусть матрица A такова, что $\dim W(A,v)=n$ для любого $v\neq 0$. Какова максимально возможная размерность U(A)?

Ответ. 2

Решение. Подпространство W(A, v) является инвариантным относительно A, то есть $Aw \in W(A, v)$ для любого $w \in W(A, v)$: в самом деле,

$$A(\lambda_0 v + \lambda_1 A v + \lambda_2 A^2 v) = \lambda_0 A v + \lambda_1 A^2 v + \lambda_2 A^3 v + \dots \in W(A, v)$$

Более того, оно в некотором смысле минимально: если v — некоторый вектор и L — содержащее его инвариантное подпространство, то $L \ni v, Av, A^2v, ..., L \supset W(A, v)$.

Известно, что в вещественном пространстве каждый оператор (и A в том числе) имеет одномерное или двумерное инвариантное подпространство. Для вектора v, лежащего в таком подпространстве, имеем $n = \dim W(A, v) \leq 2$. Теперь мы рассмотрим два случая.

Случай 1. У A есть одномерное инвариантное подпространство. Оно должно иметь вид $\langle v_0 \rangle$ для некоторого вектора v_0 . Так как $Av_0 \in \langle v_0 \rangle$, вектор v_0 является собственным для A. Отсюда сразу следует, что $n = \dim W(A, v_0) = \dim \langle v_0 \rangle = 1$. Поскольку все матрицы 1×1 являются просто числами и, конечно же, коммутируют, мы сразу получаем, что $\dim U(A) = 1$.

Случай 2. У A нет одномерных инвариантных подпространств. Таким образом, у него нет и собственных векторов, но тогда непременно есть двумерное инвариантное подпространство. Возьмём такое подпространство L и некоторый ненулевой $v_0 \in L$. Тогда $n = \dim W(A, v_0) = \dim L = 2$ (напомним, $W(A, v_0)$ не может быть одномерным, так как иначе v_0 был бы собственным), и соответственно, n равно 2.

Характеристический многочлен $\chi_A(t)$ не имеет вещественных корней (ведь собственных значений нет), а потому он имеет два комплексных сопряжённых друг другу корня z и \overline{z} . Комплексной заменой координат A приводится к виду

$$B = \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}$$

Обозначим через $U_{\mathbb{C}}(X)$ множество комплексных матриц 2×2 , коммутирующих с некоторой матрицей X. Тогда нетрудно убедиться, что

$$U_{\mathbb{C}}(B) = \left\{ \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{C} \right\}$$

то есть $\dim U_{\mathbb{C}}(B)=2$ (это размерность $U_{\mathbb{C}}(B)$ как комплексного пространства).

Теперь от $\dim U_{\mathbb{C}}(B)$ мы должны прийти к $\dim U(A)$, и мы сделаем это в два шага.

Шаг 1. От $\dim U_{\mathbb{C}}(B)$ к $\dim U_{\mathbb{C}}(A)$. Матрица B получается из матрицы A заменой координат: $B = C^{-1}AC$, где C — некоторая невырожденная комплексная матрица. Заметим, что если

$$Y \in U_{\mathbb{C}}(B)$$
, то есть $YB = BY$,

то

$$C*|YC^{-1}AC = C^{-1}ACY |*C^{-1}$$

$$\underbrace{CYC^{-1}}_{=:Z} A \underbrace{CC^{-1}}_{=E} = \underbrace{CC^{-1}}_{=:Z} A \underbrace{CYC^{-1}}_{=:Z}$$

$$ZA = AZ$$

То есть если $Y \in U_{\mathbb{C}}(B)$, то $CYC^{-1} \in U_{\mathbb{C}}(A)$. Нетрудно проверить, что аналогичным образом работает и обратное преобразование: если $Z \in U_{\mathbb{C}}(A)$, то $C^{-1}ZC \in U_{\mathbb{C}}(B)$. Таким образом, отображение $Y \mapsto CYC^{-1}$ осуществляет изоморфизм линейных пространств $U_{\mathbb{C}}(B)$ и $U_{\mathbb{C}}(A)$, откуда сразу следует равенство их размерностей.

Шаг 2. От $\dim U_{\mathbb{C}}(A)$ **к** $\dim U(A)$. Заметим, что AX = XA — это однородная система уравнений на элементы X с вещественными коэффициентами, и размерность пространства её решений одна и та же над любым полем, содержащим поле вещественных чисел.

Вывод. Итак, во втором случае максимально возможная размерность U(A) равна 2.