UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica Q1 Q2 ALUNO RA Q4 \(\sum_{\text{Q4}} \)

MS211 - Turma D - 2o. Sem. 2017 - 1a. Prova - 26/09/2017

INSTRUÇÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA RESPOSTAS PURAMENTE NUMÉRICA NÃO SERÃO CONSIDERADAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS Questão 1. (2,5 pontos) Considere o sistema linear Ax = b, em que A e b são dados por:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 4 & 0 & 0 & 4 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 10 \\ -2 \\ 0 \\ 4 \end{bmatrix}$$

- (a) Resolva o sistema linear (como foi apresentado) usando o método da Eliminação de Gauss com estratégia de pivoteamento parcial. Descreva cada estágio do processo de eliminação.
- (b) Usando o item anterior, apresente as matrizes ${\bf L}$ e ${\bf U}$ e a matriz de permutação ${\bf P}$ da fatoração LU decorrentes do processo de eliminação. Justifique sua resposta.

Questão 2. (2,5 pontos) Considere o sistema linear Ax = b em que

$$\mathbf{A} = \begin{bmatrix} 5 & -1 & w \\ 2 & -4 & 1 \\ -1 & 1 & w \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{b} = \begin{bmatrix} 8 \\ 9 \\ 3 \end{bmatrix}$$

- (a) Determine a,b,c e d tais que a < w < b < 0 ou 0 < c < w < d garante a convergência do método de Gauss-Jacobi para a solução do sistema linear para qualquer aproximação inicial.
- (b) Faça w=3 e, usando os valores específicos da matriz ${\bf A}$, apresente fórmulas explícitas para uma iteração do método de Gauss-Seidel.

Questão 3. (2,5 pontos)

(a) Considere a função

$$f(x) = 2x + e^x.$$

Usando o método de Newton com $x^{(0)} = -0.35$ e critério de parada $|x^{(k+1)} - x^{(k)}| \le 0.002$, obtenha uma aproximação para a raiz da equação f(x) = 0. Explicite seus cálculos.

(b) O método de Newton, com aproximação inicial $x^{(0)} = 0.9$, foi usado para encontrar o zero da função $f(x) = x^2 - 2x - 3$. O resultado foi o seguinte:

$x^{(k)}$	0.9	-19.050	-9.1248	-4.2599	-2.0102	-1.1695	-1.006622	-1.0000109
$f(x^{(k)})$	-3.99	398	98.5106	23.6667	5.0612	0.70675	0.026531	4.3703×10^{-5}

Justifique o comportamento da sequência $\{x^{(k)}\}$ utilizando os resultados apresentados em aula.

Questão 4. (2,5 pontos) Considere o sistema não-linear:

$$\begin{cases} x_1^2 + x_2 = 4, \\ x_2 = e^{x_1}. \end{cases}$$

- (a) Encontre uma aproximação para a solução do sistema acima usando o método de Newton com aproximação inicial $\mathbf{x}^{(0)} = [1, 2.9]^T$ e critério de parada $\|\mathbf{x}^{(k+1)} \mathbf{x}^{(k)}\|_{\infty} < 0.07$. Explicite seus cálculos.
- (b) Existe $\mathbf{x} = [x_1, x_2]^T$ para o qual o método de Newton não está definido? Justifique sua resposta.

FOLHA ADICIONAL