note that if the real part of the roots is zero, as in this example, then there is no exponential factor in the solution. Figure 3.3.3 shows the graph of two typical solutions of Eq. (28). In each case the solution is a pure oscillation whose amplitude is determined by the initial conditions. Since there is no exponential factor in the solution (29), the amplitude of each oscillation remains constant in time.

PROBLEMS

In each of Problems 1 through 6, use Euler's formula to write the given expression in the form a+ib.

1.
$$\exp(1 + 2i)$$

3.
$$e^{i\pi}$$

5.
$$2^{1-i}$$

2.
$$\exp(2 - 3i)$$

4.
$$e^{2-(\pi/2)i}$$

6.
$$\pi^{-1+2i}$$

In each of Problems 7 through 16, find the general solution of the given differential equation.

7.
$$y'' - 2y' + 2y = 0$$

9.
$$y'' + 2y' - 8y = 0$$

11.
$$y'' + 6y' + 13y = 0$$

13.
$$y'' + 2y' + 1.25y = 0$$

15.
$$y'' + y' + 1.25y = 0$$

8.
$$y'' - 2y' + 6y = 0$$

10.
$$y'' + 2y' + 2y = 0$$

12.
$$4y'' + 9y = 0$$

14.
$$9y'' + 9y' - 4y = 0$$

16.
$$y'' + 4y' + 6.25y = 0$$

In each of Problems 17 through 22, find the solution of the given initial value problem. Sketch the graph of the solution and describe its behavior for increasing t.

17.
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

18.
$$y'' + 4y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$

19.
$$y'' - 2y' + 5y = 0$$
, $y(\pi/2) = 0$, $y'(\pi/2) = 2$

20.
$$y'' + y = 0$$
, $y(\pi/3) = 2$, $y'(\pi/3) = -4$

21.
$$y'' + y' + 1.25y = 0$$
, $y(0) = 3$, $y'(0) = 1$

22.
$$y'' + 2y' + 2y = 0$$
, $y(\pi/4) = 2$, $y'(\pi/4) = -2$

$$3u'' - u' + 2u = 0$$
, $u(0) = 2$, $u'(0) = 0$.

- (a) Find the solution u(t) of this problem.
- (b) For t > 0, find the first time at which |u(t)| = 10.

$$5u'' + 2u' + 7u = 0$$
, $u(0) = 2$, $u'(0) = 1$.

- (a) Find the solution u(t) of this problem.
- (b) Find the smallest T such that |u(t)| < 0.1 for all t > T.

$$y'' + 2y' + 6y = 0$$
, $y(0) = 2$, $y'(0) = \alpha > 0$.

- (a) Find the solution y(t) of this problem.
- (b) Find α such that y = 0 when t = 1.
- (c) Find, as a function of α , the smallest positive value of t for which y = 0.
- (d) Determine the limit of the expression found in part (c) as $\alpha \to \infty$.

26. Consider the initial value problem

$$y'' + 2ay' + (a^2 + 1)y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

- (a) Find the solution y(t) of this problem.
- (b) For a = 1 find the smallest T such that |y(t)| < 0.1 for t > T.
- (c) Repeat part (b) for a = 1/4, 1/2, and 2.
- (d) Using the results of parts (b) and (c), plot T versus a and describe the relation between T and a.
- 27. Show that $W(e^{\lambda t}\cos \mu t, e^{\lambda t}\sin \mu t) = \mu e^{2\lambda t}$.
- 28. In this problem we outline a different derivation of Euler's formula.
 - (a) Show that $y_1(t) = \cos t$ and $y_2(t) = \sin t$ are a fundamental set of solutions of y'' + y = 0; that is, show that they are solutions and that their Wronskian is not zero.
 - (b) Show (formally) that $y = e^{it}$ is also a solution of y'' + y = 0. Therefore,

$$e^{it} = c_1 \cos t + c_2 \sin t \tag{i}$$

for some constants c_1 and c_2 . Why is this so?

- (c) Set t = 0 in Eq. (i) to show that $c_1 = 1$.
- (d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set t = 0 to conclude that $c_2 = i$. Use the values of c_1 and c_2 in Eq. (i) to arrive at Euler's formula.
- 29. Using Euler's formula, show that

$$\cos t = (e^{it} + e^{-it})/2, \quad \sin t = (e^{it} - e^{-it})/2i.$$

- 30. If e^{rt} is given by Eq. (13), show that $e^{(r_1+r_2)t} = e^{r_1t}e^{r_2t}$ for any complex numbers r_1 and r_2 .
- 31. If e^{rt} is given by Eq. (13), show that

$$\frac{d}{dt}e^{rt} = re^{rt}$$

for any complex number r.

32. Consider the differential equation

$$av'' + bv' + cv = 0,$$

where $b^2 - 4ac < 0$ and the characteristic equation has complex roots $\lambda \pm i\mu$. Substitute the functions

$$u(t) = e^{\lambda t} \cos \mu t$$
 and $v(t) = e^{\lambda t} \sin \mu t$

for y in the differential equation and thereby confirm that they are solutions.

33. If the functions y_1 and y_2 are a fundamental set of solutions of y'' + p(t)y' + q(t)y = 0, show that between consecutive zeros of y_1 there is one and only one zero of y_2 . Note that this result is illustrated by the solutions $y_1(t) = \cos t$ and $y_2(t) = \sin t$ of the equation y'' + y = 0.

Hint: Suppose that t_1 and t_2 are two zeros of y_1 between which there are no zeros of y_2 . Apply Rolle's theorem to y_1/y_2 to reach a contradiction.

Change of Variables. Sometimes a differential equation with variable coefficients,

$$y'' + p(t)y' + q(t)y = 0,$$
(i)

can be put in a more suitable form for finding a solution by making a change of the independent variable. We explore these ideas in Problems 34 through 46. In particular, in Problem 34 we show that a class of equations known as Euler equations can be transformed into equations with constant coefficients by a simple change of the independent variable. Problems 35 through

42 are examples of this type of equation. Problem 43 determines conditions under which the more general Eq. (i) can be transformed into a differential equation with constant coefficients. Problems 44 through 46 give specific applications of this procedure.

34. Euler Equations. An equation of the form

$$t^2 \frac{d^2 y}{dt^2} + \alpha t \frac{dy}{dt} + \beta y = 0, \qquad t > 0,$$
 (ii)

where α and β are real constants, is called an Euler equation.

- (a) Let $x = \ln t$ and calculate dy/dt and d^2y/dt^2 in terms of dy/dx and d^2y/dx^2 .
- (b) Use the results of part (a) to transform Eq. (ii) into

$$\frac{d^2y}{dx^2} + (\alpha - 1)\frac{dy}{dx} + \beta y = 0.$$
 (iii)

Observe that Eq. (iii) has constant coefficients. If $y_1(x)$ and $y_2(x)$ form a fundamental set of solutions of Eq. (iii), then $y_1(\ln t)$ and $y_2(\ln t)$ form a fundamental set of solutions of Eq. (ii).

In each of Problems 35 through 42, use the method of Problem 34 to solve the given equation for t > 0.

35.
$$t^2y'' + ty' + y = 0$$

36.
$$t^2v'' + 4tv' + 2v = 0$$

37.
$$t^2v'' + 3tv' + 1.25v = 0$$

38.
$$t^2v'' - 4tv' - 6v = 0$$

39.
$$t^2v'' - 4tv' + 6v = 0$$

40.
$$t^2y'' - ty' + 5y = 0$$

41.
$$t^2y'' + 3ty' - 3y = 0$$

42.
$$t^2v'' + 7tv' + 10v = 0$$

- 43. In this problem we determine conditions on p and q that enable Eq. (i) to be transformed into an equation with constant coefficients by a change of the independent variable. Let x = u(t) be the new independent variable, with the relation between x and t to be specified later.
 - (a) Show that

$$\frac{dy}{dt} = \frac{dx}{dt}\frac{dy}{dx}, \qquad \frac{d^2y}{dt^2} = \left(\frac{dx}{dt}\right)^2\frac{d^2y}{dx^2} + \frac{d^2x}{dt^2}\frac{dy}{dx}$$

(b) Show that the differential equation (i) becomes

$$\left(\frac{dx}{dt}\right)^2 \frac{d^2y}{dx^2} + \left(\frac{d^2x}{dt^2} + p(t)\frac{dx}{dt}\right)\frac{dy}{dx} + q(t)y = 0.$$
 (iv)

(c) In order for Eq. (iv) to have constant coefficients, the coefficients of d^2y/dx^2 and of y must be proportional. If q(t) > 0, then we can choose the constant of proportionality to be 1; hence

$$x = u(t) = \int [q(t)]^{1/2} dt.$$
 (v)

(d) With x chosen as in part (c), show that the coefficient of dy/dx in Eq. (iv) is also a constant, provided that the expression

$$\frac{q'(t) + 2p(t)q(t)}{2[q(t)]^{3/2}}$$
 (vi)

is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients by a change of the independent variable, provided that the function $(q' + 2pq)/q^{3/2}$ is a constant. How must this result be modified if q(t) < 0?

In each of Problems 44 through 46, try to transform the given equation into one with constant coefficients by the method of Problem 43. If this is possible, find the general solution of the given equation.

44.
$$y'' + ty' + e^{-t^2}y = 0$$
, $-\infty < t < \infty$

45.
$$y'' + 3ty' + t^2y = 0$$
, $-\infty < t < \infty$

46.
$$ty'' + (t^2 - 1)y' + t^3y = 0$$
, $0 < t < \infty$

3.4 Repeated Roots; Reduction of Order

In earlier sections we showed how to solve the equation

$$ay'' + by' + cy = 0 \tag{1}$$

when the roots of the characteristic equation

$$ar^2 + br + c = 0 (2)$$

either are real and different or are complex conjugates. Now we consider the third possibility, namely, that the two roots r_1 and r_2 are equal. This case is transitional between the other two and occurs when the discriminant $b^2 - 4ac$ is zero. Then it follows from the quadratic formula that

$$r_1 = r_2 = -b/2a. (3)$$

The difficulty is immediately apparent; both roots yield the same solution

$$y_1(t) = e^{-bt/2a} \tag{4}$$

of the differential equation (1), and it is not obvious how to find a second solution.

EXAMPLE 1 Solve the differential equation

$$y'' + 4y' + 4y = 0. (5)$$

The characteristic equation is

$$r^2 + 4r + 4 = (r + 2)^2 = 0$$
.

so $r_1 = r_2 = -2$. Therefore, one solution of Eq. (5) is $y_1(t) = e^{-2t}$. To find the general solution of Eq. (5), we need a second solution that is not a constant multiple of y_1 . This second solution can be found in several ways (see Problems 20 through 22); here we use a method originated by D'Alembert⁶ in the eighteenth century. Recall that since $y_1(t)$ is a solution of Eq. (1), so is $cy_1(t)$ for any constant c. The basic idea is to generalize this observation by replacing c by a

⁶Jean d'Alembert (1717–1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli and is known primarily for his work in mechanics and differential equations. D'Alembert's principle in mechanics and d'Alembert's paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper on vibrating strings in 1747. In his later years he devoted himself primarily to philosophy and to his duties as science editor of Diderot's *Encyclopédie*.