Flower Species Classification

Group P

Sharanyu Pillai - 40227794 Shrawan Sai Malyala - 40236492 Visnunathan Chidambaranathan - 40230157 Ashu Kumar - 40221569

Overview

Identifying different flower species is challenging due to the sheer number of variations within a single species. Accurate flower classification systems can aid in understanding and monitoring the diversity of flower species

The Datasets

Dataset 1

Dataset-1 has 7 evenly balanced classes with 1600 images per class (11200 total images). However, we pruned the number of classes to 5 making the total images to **8000**(to maintain a diverse number of classes

Dataset 2

Dataset-2 has 10 evenly distributed classes with 1500 images per class (**15000** total images). A balanced dataset, didn't require manual pruning or trimming.

Dataset 3

Dataset-3 has 16 classes unevenly distributed with a total of **15,740** images. There are 980 images on average per class in Dataset-3 where the number of images per class fell in the range of 737-1054.

Dataset Type	No. of Images	Image Dimension	No. of Classes	Formats available	Avg File Size	Avg Standard Deviation
				.jpg: 7463 .jpeg: 234 .png:		
Dataset1	8k	450x380	5	303	~ 63 kb	67.4
Dataset2	15k	240x215	10	.jpeg: 14996 .png: 4	~ 10 kb	64.2
Dataset3	15.7k	290x280	16	.jpg: 15740	~ 15 kb	64.14

Data Preprocessing

Normalization

Derive code for finding mean and standard deviation values for Flower datasets and then normalize all images based on those values.

Data Augmentation

Resizing, Cropping, Rotating, Converting and Flip to all 3 datasets

Split

Divide datasets of Flower into 3 parts:

Train – 70%, Validate – 10%, Test – 20%

CNN Architecture

VGG 16

Dataset 1,2,3

Resnet 18

Dataset 1,2,3

Mobilenet V2

Dataset 1,2,3

Transfer Learning

Dataset 3

Results

Model	Dataset	F1 score	Recall	Precision	Accuracy
Resnet18	1	83.91	83.81	84.01	83.81
VGG16	1	83.91	83.77	84.05	83.75
MobileNetV2	1	82.97	82.89	83.05	82.88
Resnet18	2	77.18	77.15	77.21	77.11
VGG16	2	72.49	73.26	71.74	72.7
MobileNetV2	2	68.61	69.22	68.02	68.2
Resnet18	3	89.16	88.94	89.37	88.98
VGG16	3	69.11	68.46	69.77	69
MobileNetV2	3	77.13	76.83	77.44	77.54

Transfer Learning VS Default Model

Model	F1 score	Recall	Precision	Accuracy
Resnet18	89.16	88.94	89.37	88.98
Resnet18-TransferLearning	94.68	94.62	94.73	94.73
VGG16	69.11	68.46	69.77	69
VGG16-TransferLearning	93.61	93.56	93.65	93.61
MobileNetV2	77.13	76.83	77.44	77.54
MobileNetV2-TransferLearning	95.93	95.89	95.96	96.06

Model Performance across datasets

Dataset 1 Dataset 2 Dataset 3

Dataset Performance across all models

Transfer Learning

Transfer Learning Results

Performance Comparison With & without Transfer Learning (VGG16)

t-SNE & Gradcam

(t-SNE)
i)VGG16-D3 ii)Resnet18-D2 iii)MobileNetV2-D1 iv)VGG16-

Gradcam

Optimization & Hyperparameter Tuning

Batch size - 128 **Learning rates -** 0.01, 0.001, 0.0001, 0.00005

References

- Z. Ardalan and V. Subbian, "Transfer Learning Approaches for Neuroimaging Analysis: A Scoping Review," Frontiers in Artificial Intelligence, vol. 5, Feb. 2022, doi: https://doi.org/10.3389/frai.2022.780405.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, Jun. 2016, doi: https://doi.org/10.1109/cvpr.2016.90.
- K. Dong, C. Zhou, Y. Ruan, and Y. Li, "MobileNetV2 Model for Image Classification," 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Dec. 2020, doi: https://doi.org/10.1109/itca52113.2020.00106.
- S. Liu and W. Deng, "Very deep convolutional neural network based image classification using small training sample size," IEEE Xplore, Nov. 01, 2015. https://ieeexplore.ieee.org/document/7486599/
- T. Abbas et al., "Deep Neural Networks for Automatic Flower Species Localization and Recognition," Computational Intelligence and Neuroscience, vol. 2022, p. e9359353, Apr. 2022, doi: https://doi.org/10.1155/2022/9359353.