Rilevamento di curve ad S in immagini satellitari

Tesi di Laurea in Ingegneria Informatica

Candidato

Luca Ostinelli

Relatore

Prof. Marco Cococcioni

Introduzione e Problema

- La trasformata di Hough è un algoritmo per individuare linee o forme geometriche in immagini tramite analisi matematica.
- Problema
 - Identificare in modo affidabile la presenza di sigmoidi all'interno di un'immagine satellitare;
 - ⇒ Parametrizzazione della curva;
 - ⇒ Visualizzazione del risultato in modo comprensibile;
 - ⇒ Avere una struttura su cui eseguire semplici calcoli al fine di trovare i massimi relativi;
 - ⇒ Presenza di forte rumore nelle immagini.

Soluzioni

- Trasposizione dei principi di Hough
 - Generiamo ogni curva in un range di parametri;
 - La testiamo in ogni pixel dell'immagine e prendiamo i dati;
 - ⇒ Li raccogliamo in un tensore in quattro dimensioni.
- Fissiamo un parametro
 - Facciamo lo stesso, ma fissiamo l'ampiezza della curva:
 - ⇒ Eliminiamo una dimensione del tensore;
 - ⇒ Riusciamo a rappresentare il risultato.
- Metodo ideato
 - Torniamo al primo funzionamento:
 - ⇒ Prendiamo, per ogni pixel, solo i dati della curva migliore;
 - ⇒ Riusciamo a rappresentarla in modo semplice;
 - ⇒ Non serve intervento umano per identificare le curve;
 - ⇒ Le strutture sono le più semplici possibili: matrici.

Soluzioni

Punti a favore

- Tramite le immagini sottostanti possiamo vedere come è semplice rilevare la curva, basta impostare una soglia critica;
- Il grafico sotto, visto da diversi punti di vista, ci da molte informazioni sulla curva;

 - ⇒ Centro della curva.

Punti contro

- Presenza di altre parametrizzazioni possono creare del rumore;
- Presenza di più curve può segnalare a falsi positivi.

Trasposizione dei principi di Hough

- Si utilizza un tensore di 4 indici:
 - ⇒ Difficile comprensione delle 5 dimensioni;
 - ⇒ Enorme ammontare di dati.

Fissiamo un parametro

- Si utilizza un tensore a 3 indici:
 - Utilizziamo, per la visualizzazione, un grafico volumetrico che fa uso dei colori;
 - ⇒ Abbiamo ridotto notevolmente il numero di valori.

Metodo ideato

- Si utilizza una matrice:
 - ⇒ Non abbiamo problemi a visualizzare i dati;
 - ⇒ Uniamo, in un unico grafico, tutte le famiglie di curve;
 - Abbiamo ulteriormente ridotto il numero di valori senza perdere informazioni essenziali.

Luca Ostinelli 5