Fundação Getulio Vargas Escola de Matemática Aplicada

Wellington José

Resumo de EDO

1 Equações Diferenciais de Primeira Ordem (22/02)

Vamos considerar a equação diferencial linear de Primeira ordem com p(x) e g(x) funções contínuas em $I \subset \mathbb{R}$:

$$y' + p(x)y = g(x)$$

Se g(x) = 0, temos uma equação homogênea, de solução:

$$y(x) = e^{-\int p(x)dx} \cdot e^c$$

Para o caso geral a ideia é multiplicar a equação por um fator integrante transformando-a numa forma imediatamente integrável. Seja u(x) este fator integrante, então

$$u(x)y' + u(x)p(x)y = u(x)g(x)$$

Chegamos que:

$$y(x) = \frac{1}{u(x)} \int u(x)g(x)dx + c$$

е

$$u(x) = e^{\int p(x)dx}$$

2 Equação de Bernoulli e Equações separáveis (24/02)

Um exemplo de equação de Primeira ordem que não é linear é a **equação** de Bernoulli:

$$y' + p(x)y = q(x)y^{\alpha}, \ \alpha \in \mathbb{R}$$

Equações separáveis

São equações diferenciais do tipo

$$M(x) + N(x)\frac{dy}{dx} = 0$$

ou

$$M(x)dx + N(y)dy = 0 (*)$$

Suponhamos $H_1 = \int M(x) dx$ e $H_2 = \int N(y) dy$, então (*) tem como solução

$$H_1(x) + H_2(y) = c$$

que geralmente está na forma implícita.

3 Equações Diferenciais Exatas e Equações Diferenciais Não Exatas (01/03)

Equações Diferenciais Exatas

Considere a equação diferencial

$$M(x,y)dx + N(x,y)dy = 0$$

E suponha que existe uma função f(x, y) tal que

$$\frac{\partial f}{\partial x} = M(x, y), \ \frac{\partial f}{\partial y} = N(x, y), e \ f(x, y) = c$$

Então f(x,y) = M(x,y)dx + N(x,y)dy, e a equação diferencial é **exata**.

Teorema 3.1 Suponha que as funções M, N, M_y e N_x são contínuas na região R: a < x < b, c < y < d. Então a equação M(x,y)dx + N(x,y)dy = 0 é uma equação diferencial exata em R se e somente se:

$$M_y(x,y) = N_x(x,y) \ em \ R$$

Isto é, existe uma função f(x,y)=c, tal que

$$\frac{\partial f}{\partial x} = M(x, y) \ e \ \frac{\partial f}{\partial y} = N(x, y)$$

se e somente se $M_y = N_x$

Equações Diferenciais Não Exatas

Em geral a equação M(x,y)dx + N(x,y)dy = 0 não é exata, mas eventualmente é possível transformá-la numa equação diferencial exata multiplicando por um fator integrante.

Se $\frac{M_y - N_x}{N}$ for uma função só de x então podemos encontrar $u(x) = e^{\int \frac{M_y - N_x}{N} dx}$ como fator integrante. Se $\frac{N_x - M_y}{M}$ for uma função só de y então podemos encontrar $u(y) = e^{\int \frac{N_x - M_y}{M} dy}$ como fator integrante.

Exemplo: ydx - xdy = 0

Como

$$\frac{\partial M}{\partial y} = 1$$
 e $\frac{\partial N}{\partial x} = -1$ não é exata

Note que, $\frac{N_x - M_y}{N} = \frac{2}{x}$ depende apenas de x, e

$$u(x) = e^{-\int \frac{2}{x} dx} = \frac{1}{x^2}$$

Logo, a nova equação

$$\frac{y}{x^2}dx - \frac{1}{x}dy = 0 \text{ \'e exata}$$

4 Problemas de diluição, Resfriamento de um corpo e Juros compostos (03/03)

Problemas de diluição

Considere um tanque contendo no estado inicial V_0 litros de salmoura com α kg de sal (pode ser $\alpha = 0$). Uma outra solução de salmoura contendo c kg quilos de sal por litro é derramada nesse tanque a uma taxa a l/min, enquanto simultaneamente a mistura bem agitada deixa o tanque a uma taxa de b l/min. Queremos determinar (Q(t)) a quantidade de sal (em quilos) no tempo t dentro do tanque. Temos que

$$\frac{dQ}{dt} + \frac{b}{V_0 + at - bt}Q = ac$$

Resfriamento de um corpo

Sendo T a temperatura do corpo, T_a a temperatura no ambiente, a taxa de variação da temperatura do corpo é de $\frac{dT}{dt}$ e assim chegamos que a variação da temperatura do corpo é (se a temperatura do ambiente não muda):

$$T = (T_0 - T_a)e^{-kt} + T_a$$

Agora e se a T_a varia com o tempo (perdendo ou ganhando calor):

$$\frac{dT}{dt} + k(1+A)T = k(T_{a,0} + AT_0)$$

onde

$$A = \frac{m_c}{m_a c_a}$$

com solução:

$$T(t) = \left(\frac{T_0 - T_{a,0}}{1+A}\right) e^{k(1+A)t} + \frac{T_{a,0} + AT_0}{1+A}$$

Juros Compostos

(Análogo aos casos anteriores), com solução

$$S(t) = S_0 e^{rt} + \frac{k}{r} (e^{rt} - 1)$$

5 Equações autônomas (08/03)

Uma classe de EDO importante são as quais não aparece a variável independente explicitamente. São as **equações autônomas**:

$$\frac{dy}{dt} = f(y)$$

Tais equações tem solução análoga as que já vimos.

6 Existência e Unicidade (10/03)

Uma EDO sempre possui solução e ela é única (não é necessário provar aqui). Video explicativo

7 Equações diferenciais lineares de segunda ordem (17/03)

Uma equação diferencial linear de segunda ordem, com condições iniciais é um equação do tipo

$$y'' + p(t)y' + q(t)y = g(t), \ y(t_0) = y_0, \ y'(t_0) = y'_0$$
 (1)

Se g(t) = 0 a equação 1 é dita homogênea.

Teorema 7.1 Quando a equação é homogênea onde p(t) e q(t) são funções contínuas em um intervalo I, possui uma solução única y(t) em I.

Teorema 7.2 Se $y_1(t)$ e $y_2(t)$ são soluções, então a combinação linear $c_1y_1(t) + c_2y_2(t)$ também é solução.

Definição 1 Considere as funções diferenciáveis f(t) e g(t) o determinante $\left\| \begin{array}{ccc} f(t) & g(t) \\ f'(t) & g'(t) \end{array} \right\| = W(f,g)(t)$ é chamado de Wronskiano das funções f(t) e g(t).

Definição 2 Duas funções f(t), g(t) são ditas linearmente dependentes em um intervalo I se existem constantes k_1 e k_2 , com pelo menos uma delas não nulas tal que

$$k_1 f(t) + k_2 g(t) = 0 \ \forall t \in I$$

Definição 3 As funções f(t) e g(t) são L.I. se $k_1 f(t) + k_2 g(t) = 0 \ \forall t \in I$ se e só se $k_1 = k_2 = 0$.

Teorema 7.3 Sejam f(t) e g(t) funções diferenciáveis em I, e suponhamos que $W(f,g)(t_0) \neq 0$ para algum $t_0 \in I$. Então f(t) e g(t) são L.I.

Teorema 7.4 Suponhamos que $y_1(t)$ e $y_2(t)$ são duas soluções da equação diferencial de segunda ordem y'' + p(t)y' + q(t)y = 0, e que para $t_0 \in I$ temos que $W(y_1, y_2) \neq 0$ e as condições iniciais $y(t_0) = y_0$ e $y'(t_0) = y'_0$. Então podemos encontrar constantes c_1 e c_2 para os quais $y(t) = c_1y_1(t) + c_2y_2(t)$ satisfazem a equação 1 (Ou seja, data duas soluções particulares L.I. podemos achar a geral).

Definição 4 A equação característica de ay'' + by' + cy = 0 é a equação $ak^2 + bk + c = 0$.

Uma equação do tipo ay'' + by' + cy = 0 possui solução de acordo com as raízes da equação característica $ak^2 + bk + c = 0$. Vamos dividir em casos.

- 1. $b^2-4ac>0$, então temos duas raízes reais distintas k_1 e k_2 são L.I. e temos solução geral: $y(t)=c_1e^{k_1t}+c_2e^{k_2T}$
- 2. $b^2-4ac=0$, nesse caso raízes iguais $k_1=k_2=k$, e temos as 2 soluções $y_1(t)=e^{kt}$ e $y_2(y)=te^{kt}$, onde $k=-\frac{b}{2a}$.
- 3. $b^2-4ac < 0$, neste caso as raízes k_1 e k_2 são complexas. Seja $k_1 = \alpha + i\beta$ e $k_2 = \alpha i\beta$, com $\alpha, \beta \in \mathbb{R}$. Temos solução:

$$y_1(t) = e^{\alpha t}(\cos \beta t + i \sin \beta t)$$
 e $y_2(t) = e^{\alpha t}(\cos \beta t - i \sin \beta t)$

Com solução real:

$$y(t) = e^{\alpha t}(c_1 \cos \beta t + c_2 \sin \beta t)$$

8 Equações diferenciais de segunda ordem não homogêneas (24/03)

Considerando equações diferenciais de segunda ordem, não homogêneas e com coeficientes constantes:

$$ay'' + by' + cy = g(t) \tag{2}$$

, com a, b e c constantes e g(t) continua. Seja $y_h(t)$ a solução de ay'' + by' + cy = 0.

Teorema 8.1 A solução geral para a equação 2 é

$$y(t) = y_p(t) + y_h(t)$$

onde $y_p(t)$ é uma solução particular da equação não homogênea.

Precisamos encontrar uma solução particular temos 2 métodos para isso "método dos coeficientes a determinar" que infelizmente não funciona para todos os casos e o método de "Variação de parâmetros" que pode ser aplicado em todos os casos, mas é mais complexo. Começamos com o "método dos coeficientes a determinar".

Vamos pensar como uma solução particular: $y_p(t) = \text{polinômio}$, e^{kt} ou $A\cos\alpha t + B\sin t$, dai podemos substituir na equação inicial, encontrando as constantes. Temos a $y_p(t)$. E então também temos y(t).

9 Método de variação de parâmetros (29/03)

Tome ay'' + by' + cy = g(x), onde a, b e c são constantes e g(x) é continua. Sejam $y_1(x), y_2(x)$ soluções linearmente independentes da equação diferencial homogênea. Este sugere encontrar funções $u_1(x), u_2(x)$ tais que $y(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ seja uma solução da equação diferencial. Adicionando condições a $u_1(x), u_2(x)$:

$$u_1'(x)y_1(x) + u_2'(x)y_2(x) = 0 (3)$$

Com isso temos que

$$y'(x) = u_1(x)y_1'(x) + u_2(x)y_2'(x)$$

$$a(u_1'(x)y_1'(x) + u_2'(x)y_2'(x)) = g(x)$$
(4)

E resolvendo o sistema 3 4 temos que

$$u_1 = \int \frac{-\frac{g}{a}y_2}{y_1y_2' - y_2y_1} dx$$

$$u_2 = \int \frac{\frac{g}{a}y_1}{y_1y_2' - y_2y_1} dx$$

A solução destas integrais, nos dará uma solução particular da equação diferencial não homogênea de segunda ordem.

10 A Transformada de Laplace (14/04)

Uma Transformada de Laplace é da forma

$$F(s) = \int_{\alpha}^{\beta} K(s, t) dt$$

onde K(s,t) é uma função dada.

Aqui vamos usar a Transformada de Laplace definida como

$$\mathscr{L}(f(t)) = F(s) = \int_0^\infty e^{-st} f(t) dt$$

 $com t \ge 0 e K(s,t) = e^{-st}$

Em particular se

$$\mathscr{L}(f(t)) = \int_0^\infty e^{ct} dt$$

onde se $c \ge 0$ a integral diverge e caso contrario a integral converge.

Definição 5 Uma função f(t) é dita **seccionalmente contínua** em um intervalo $I \in \mathbb{R}$ se for contínua exceto em um número finito de pontos: t_1, t_2, \dots, t_n além disso $\lim_{t \to t_i} f(t) < M$.

Teorema 10.1

- 1. Se f(t) é seccionalmente contínua para $t \geq a$, se $||f(t)|| \leq g(t)$ quando $t \geq M$ para alguma constante positiva M e se $\int_M^\infty g(t)dt$ converge então $\int_a^\infty f(t)dt$ também converge.
- 2. Por outro lado se $f(t) \geq g(t) \geq 0$, $t \geq M$ e se $\int_{M}^{\infty} g(t)dt$ divergente então $\int_{a}^{\infty} f(t)dt$ também diverge.

Teorema 10.2

- 1. Suponha que f seja seccionalmente contínua no intervalo $0 \le t \le A$, para qualquer valor de A > 0.
- 2. Se $||f(t)|| \leq Ke^{at}$, para $t \geq M$, $a \in \mathbb{R}$, com K e M necessariamente positivos e constantes reais, neste caso dizemos que f(t) é de ordem exponencial. Então a Transformada de Laplace $\mathcal{L}(f(t)) = F(s)$ para s > a.

11 A Transformada de Laplace como uma aplicação linear (19/04)

Seja U = conjunto das funções seccionalmente contínuas em $[0, \infty)$ e de ordem exponencial, U é um espaço vetorial real com as operações de adição e produto por um escalar. V = conjunto das funções definidas em intervalos da forma (s_0, ∞) ou $[s_0, \infty)$, $s_0 \ge -\infty$, V também é um espaço vetorial real cujas operações são adição e produto por um escalar.

Seja $\mathcal{L}:\ U\to V, \mathcal{L}$ é linear pela definição de Transformada de Laplace. Vale que:

1.
$$\mathcal{L}(f+g) = \mathcal{L}(f) + \mathcal{L}(g)$$

2.
$$\mathcal{L}(\lambda f) = \lambda \mathcal{L}(f)$$

Teorema 11.1 (Teorema de Lerch) Sejam f e g seccionalmente contínuas e de ordem exponencial e suponhamos que exista um número real s_0 tal que $\mathcal{L}(f)(s) = \mathcal{L}(g)(s) \ \forall s > s_0$. Então exceto em pontos de descontinuidade temos que $f(t) = g(t), \ \forall t > 0$

Corolário 11.1.1 Se $\mathcal{L}(y) = \varphi(s)$ a solução é essencialmente única, com isto $\mathcal{L}^{-1}(\varphi) = y$ se e só se $\mathcal{L}(y) = \varphi$

Solução de Problemas de Valores Iniciais

Teorema 11.2 Seja f contínua em $(0, \infty)$ e suponhamos que f' seja seccionalmente contínua e de ordem exponencial em $[0, \infty)$, então

$$\mathcal{L}(f') = s(\mathcal{L}(f) - f(0^+), \text{ onde } f(0^+) = \lim_{t \to 0^+} f(t)$$

Caso Geral: ay'' + by' + cy = f(t), temos $y(s) - \frac{(as+b)y(0) + ay'(0) + F(s)}{as^2 + bs + c}$, e simplificando $y(t) = \mathcal{L}^{-1}(y(s))$

Corolário 11.2.1 Se f é uma função contínua cuja transformada de laplace é F(s), não existe outra função contínua tendo a mesma transformada.

12 Funções Degrau (26/04)

Uma função degrau é do tipo $u_c(t) = 0$ se t < c e $u_c(t) = 1$ se $t \ge c$. A transformada de Laplace de $u_c(t)$ é

$$\mathscr{L}(u_c(t)) = \int_0^\infty e^{-st} u_c(t) dt = \frac{e^{-cs}}{s}, \ s > 0$$

A função g(t) é definida como uma translação de f
 por uma distancia c
 no sentido de t
 positivo isto é

$$g(t) = u_c(t)f(t-c)$$

Teorema 12.1 Se $\mathcal{L}(f(t))$ existe para $s>a\geq 0$ e se c é uma constante positiva então

$$\mathscr{L}(u_c(t)f(t-c)) = e^{-cs}\mathscr{L}(f(t)) = e^{-cs}F(s), \ s > a$$

Analogamente, se $f(t) = \mathcal{L}^{-1}(F(s))$, então $u_c(t)f(t-c) = \mathcal{L}^{-1}(e^{-cs}F(s))$.

Teorema 12.2 Se $F(s) = \mathcal{L}(f(t))$ existe para s > a, $a \ge 0$ e se c é uma constante, então

$$\mathcal{L}(e^{ct}f(t)) = F(s-c), \ s > a+c$$

Analogamente, se $f(t) = \mathcal{L}^{-1}(F(s))$, então

$$e^{ct}f(t) = \mathcal{L}^{-1}(F(s-c))$$

13 Equações Diferenciais sob a ação de funções descontínuas (28/04)

Aula de exercícios.

14 Funções impulso (03/05)

Queremos representar forças que agem por um período de tempo muito curto. Por exemplo ay'' + by' + cy = g(t) onde g(t) é grande em um intervalo pequeno $t_0 - t < t < t_0 + t$, e é zero fora deste.

Definição 6 Vamos usar a função $d_{\tau}(t)$ para definir uma "função" impulso unitário δ , que funciona como um impulso de tamanho 1 em t=0, mas é zero para todos os valores de t diferentes de zero.

$$\delta(t) = 0, \ t \neq 0$$
$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

obs.: A "função" δ definida acima é chamada de função δ de Dirac.

Um impulso unitário em um ponto arbitrário $t=t_0$ é dado por $\delta(t-t_0)$, então

$$\delta(t - t_0) = 0, \ t \neq t_0$$
$$\int_{-\infty}^{+\infty} \delta(t - t_0) dt = 1$$

Sua transformada de Laplace:

$$\mathscr{L}(\delta(t-t_0)) = \lim_{\tau \to 0} \mathscr{L}(d_{\tau}(t-t)) = e^{-st_0}$$

E o produto de δ por uma função f contínua é

$$\int_{-\infty}^{+\infty} \delta(t - t_0) f(t) dt = \lim_{t \to t_0} \int_{-\infty}^{+\infty} d_{\tau}(t - t_0) f(t) dt = f(t_0)$$

15 Convolução (05/05)

Pôde-se pensar em certas circunstancias a transformada de Laplace como produto de 2 outras transformadas.

Teorema 15.1 Seja $F(s) = \mathcal{L}(f(t))$ e $G(s) = \mathcal{L}(g(t))$, para $s > a \ge 0$, então

$$H(s) = F(s)\dot{G}(s) = \mathcal{L}(h(t))$$

onde

$$h(t) = \int_0^t f(t-\tau)g(\tau)d\tau = \int_0^t f(\tau)g(t-\tau)d\tau$$

obs.: a função h(s) é conhecida como a convolução de f e g; também denotamos h(t) = f * g

Corolário 15.1.1 Propriedades de f * g:

1.
$$f * g = g * f$$

2.
$$f * (g_1 + g_2) = f * g_1 + f * g_2$$

3.
$$(f * g) * h = f * (g * h)$$

4.
$$f * 0 = 0$$
, $0 * f = 0$

Pelo teorema, vale que

$$F(s)G(s) = \int_0^\infty e^{-st} h(t)dt = \mathcal{L}(h(t))$$

16 Sistemas Lineares (10/05)

Definição 7 Definimos como a exponencial da matriz A

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Definição 8 Definimos como norma do operador A

 $||A|| = max\{|Ax|, |x| \le 1\} \subset I$, onde $I \subset \mathbb{R}$ é um intervalo compacto. $e ||A^k|| \le ||A||^k$, $k \in \mathbb{N}$

Corolário 16.0.1 Sejam P, S, A operadores em \mathbb{R}^n

1. Se
$$Q = PAP^{-1}$$
, então $e^Q = Pe^AP^{-1}$

2. Se
$$SA = AS$$
, então $e^{S+A} = e^S \cdot e^A$

3.
$$e^{-S} = (e^S)^{-1}$$

4. Para
$$n=2$$
 temos que $A=\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, então
$$e^A=e^a\begin{bmatrix} \cos b & -\sin b \\ \sin b & \cos b \end{bmatrix}$$

17 Teorema importante (12/05)

Lema 17.1

$$\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}.A$$

Teorema 17.2 Seja A um operador em \mathbb{R}^n . A única solução do problema do problema X' = AX, $X(0) = X_0 \in \mathbb{R}^n$ é $X(t) = e^{tA}X_0$, ou $X(t) = e^{t(PBP^{-1})}X(0)$, onde $A = PBP^{-1}$ (B é a matriz com os autovalores e P dos autovetores).

18 Autovalores repetidos (17/05)

Quando os autovalores são repetidos devemos escrever B, como (no caso n=2):

$$\left[\begin{array}{cc} \lambda_1 & 1 \\ 0 & \lambda_2 \end{array}\right]$$

podendo trocar o 1 por outro número diferente de 0.

E para encontrar o outro autovetor respectivo podemos tomas um genérico $v_2 = \begin{bmatrix} a \\ b \end{bmatrix}$, e usamos que $v_1 + v_2$ é um autovetor. Para encontrar valores para a e b.

19 Autovalores complexos e Plano Traço-Determinante (19/05)

Se A tem autovalores complexos, segue um exemplo:

Exemplo:

Seja
$$x' = -\frac{1}{2}x + y$$

 $y' = -x - \frac{1}{2}y$

Então,

$$X' = \begin{bmatrix} -\frac{1}{2} & 1\\ -1 & -\frac{1}{2} \end{bmatrix} X$$

Possui autovalores: $u=-\frac{1}{2}+i, \, \overline{u}=-\frac{1}{2}-i$ Resolvendo

$$\begin{bmatrix} -\frac{1}{2} & 1 \\ -1 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \left(-\frac{1}{2} + i \right) \begin{bmatrix} x \\ y \end{bmatrix}$$

Chegamos em y = ix

Uma opção de autovetor é (com x = 1):

$$\varphi = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] + i \left[\begin{array}{c} 0 \\ 1 \end{array} \right]$$

Então temos

$$P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

Tem solução

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = e^{-\frac{t}{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

Plano Traço-Determinante

Dado $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$, podemos determinar como vai ser a solução do sistema olhando para o plano formado pelo traço de A e o determinante de A (imagem feita em aula):

Figura 1: edo1