Class 18: Pertussis Mini-Project

Claire Lua A16922295

Table of contents

Background	1
Examining cases of Pertussis by year	1
Enter the CMI-PB project	2
Focus on IgG levels	1

Background

Pertussis (aka. whooping cough) is a common lung infection caused by the baacteria B. Pertussis.

The CDC tracks cases of Pertusis in the US: https://www.cdc.gov/pertussis/php/surveillance/pertussis-cases-by-year.html

Examining cases of Pertussis by year

Q. Make a plot of pertussis cases per year using ggplot.

```
library(ggplot2)

cases <- ggplot(cdc) +
  aes(year, cases) +
  geom_point() +
  geom_line()</pre>
```

Q2. Add some key time points in our history of interaction with Pertussis. These include wP roll-out (the first vaccine) in 1946 and the switch to aP in 1996.

We can use geom_vline() for this.

```
cases +
  geom_vline(xintercept = 1946, col="pink") +
  geom_vline(xintercept = 1996, col="lightblue") +
  geom_vline(xintercept = 2020, col="yellow")
```


Mounting evidence suggests that the newer \mathbf{aP} vaccine is less effective over the long term than the older \mathbf{wP} vaccine that it replaced. In other words, vaccine protection wanes more rapidly with \mathbf{aP} than with \mathbf{wP} .

Enter the CMI-PB project

CMI-PB (computational models of Immunity - Pertussis boost) major goal is to investigate how the immune responds differently to with aP vs wP vaccinated individuals and be able to predict this at an early stage.

CMI-PB makes all their collected data freely available and they store it in a database composed different tables. Here we will access a few of these

We can use **jsonlite** package to read this data

```
subject_id infancy_vac biological_sex
                                                      ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
2
           2
                      wΡ
                                  Female Not Hispanic or Latino White
3
           3
                      wP
                                  Female
                                                        Unknown White
4
           4
                      wP
                                    Male Not Hispanic or Latino Asian
           5
5
                      wP
                                    Male Not Hispanic or Latino Asian
                                  Female Not Hispanic or Latino White
           6
                      wΡ
  year_of_birth date_of_boost
                                    dataset
1
     1986-01-01
                   2016-09-12 2020_dataset
2
     1968-01-01
                   2019-01-28 2020_dataset
3
     1983-01-01
                   2016-10-10 2020_dataset
4
     1988-01-01
                   2016-08-29 2020_dataset
5
     1991-01-01
                   2016-08-29 2020_dataset
6
     1988-01-01
                   2016-10-10 2020_dataset
```

Q. How many subjects (i.e. enrolled people are there in this dataset?

nrow(subject)

[1] 172

Q. How many "aP" and "wP" subjects are there?

```
table(subject$infancy_vac)
```

aP wP 87 85

Q. How many Male/Female are in the dataset

```
table(subject$biological_sex)
```

```
Female Male 112 60
```

Q. How about gender and race numbers

table(subject\$race, subject\$biological_sex)

	Female	Male
American Indian/Alaska Native	0	1
Asian	32	12
Black or African American	2	3
More Than One Race	15	4
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	14	7
White	48	32

Q. Is this representative of the US population?

NO

Let's read another database table from CMI-PB

We peak at this

head(specimen)

```
specimen_id subject_id actual_day_relative_to_boost
                                                        -3
1
             1
                         1
2
             2
                         1
                                                         1
3
             3
                         1
                                                        3
4
             4
                         1
                                                        7
5
             5
                         1
                                                        11
                         1
                                                        32
```

planned_day_relative_to_boost specimen_type visit

1	0	Blood	1
2	1	Blood	2
3	3	Blood	3
4	7	Blood	4
5	14	Blood	5
6	30	Blood	6

We want to "join" these tables to get all our information together. For this we will use **dplyr** package and the inner_join() function.

library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':
```

```
meta <- inner_join(subject, specimen)</pre>
```

Joining with `by = join_by(subject_id)`

intersect, setdiff, setequal, union

head(meta)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
                                  Female Not Hispanic or Latino White
1
                                  Female Not Hispanic or Latino White
2
                      wP
3
           1
                      wΡ
                                  Female Not Hispanic or Latino White
4
           1
                                  Female Not Hispanic or Latino White
                      wP
5
           1
                      wP
                                  Female Not Hispanic or Latino White
           1
                      wP
                                  Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                    dataset specimen_id
     1986-01-01
                   2016-09-12 2020_dataset
1
                   2016-09-12 2020_dataset
     1986-01-01
                                                       2
2
```

```
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                         3
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                         4
                    2016-09-12 2020_dataset
                                                         5
5
     1986-01-01
6
     1986-01-01
                    2016-09-12 2020_dataset
                                                         6
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                              -3
                                                                          Blood
2
                               1
                                                               1
                                                                          Blood
                               3
                                                               3
                                                                          Blood
3
4
                               7
                                                               7
                                                                          Blood
5
                              11
                                                               14
                                                                          Blood
6
                              32
                                                              30
                                                                          Blood
  visit
1
      1
      2
2
3
      3
4
      4
5
      5
      6
6
```

head(ab_data)

```
specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
1
            1
                   IgE
                                      FALSE
                                               Total 1110.21154
                                                                       2.493425
            1
2
                   IgE
                                      FALSE
                                               Total 2708.91616
                                                                       2.493425
3
            1
                   IgG
                                       TRUE
                                                  PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
5
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
            1
                   IgE
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

One more "join" to get ab_data and meta all together

```
abdata <- inner_join(ab_data, meta)
```

Joining with `by = join_by(specimen_id)`

head(abdata)

```
specimen_id isotype is_antigen_specific antigen
                                                             MFI MFI_normalised
1
             1
                   IgE
                                      FALSE
                                               Total 1110.21154
                                                                       2.493425
2
             1
                                      FALSE
                                               Total 2708.91616
                                                                       2.493425
                   IgE
3
             1
                   IgG
                                       TRUE
                                                  PΤ
                                                       68.56614
                                                                       3.736992
4
             1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
5
                                       TRUE
             1
                   IgG
                                                 FHA 1887.12263
                                                                      34.050956
6
             1
                   IgE
                                       TRUE
                                                 ACT
                                                        0.10000
                                                                       1.000000
   unit lower limit_of_detection subject_id infancy_vac biological_sex
1 UG/ML
                         2.096133
                                             1
                                                        wΡ
                                                                    Female
2 IU/ML
                                             1
                        29.170000
                                                        wΡ
                                                                    Female
3 IU/ML
                                             1
                                                                    Female
                         0.530000
                                                        wP
4 IU/ML
                         6.205949
                                             1
                                                        wΡ
                                                                    Female
5 IU/ML
                         4.679535
                                             1
                                                        wΡ
                                                                    Female
6 IU/ML
                         2.816431
                                             1
                                                        wΡ
                                                                    Female
                ethnicity race year_of_birth date_of_boost
                                                                    dataset
1 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020 dataset
3 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
4 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020 dataset
5 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
6 Not Hispanic or Latino White
                                    1986-01-01
                                                   2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                              -3
                                                               0
                                                                         Blood
1
2
                              -3
                                                               0
                                                                         Blood
                                                               0
3
                              -3
                                                                         Blood
                                                               0
4
                              -3
                                                                         Blood
5
                              -3
                                                               0
                                                                         Blood
6
                              -3
                                                                         Blood
  visit
1
      1
2
      1
3
      1
4
      1
5
      1
      1
```

dim(abdata)

[1] 61956 20

Q. How many AB isotypes are there in the dataset?

table(abdata\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 7265 11993 12000 12000 12000
```

Q. How many different antigens are measured in the dataset?

table(abdata\$antigen)

ACT	BETV1	DT	FELD1	FHA	FIM2/3	LOLP1	LOS	Measles	OVA
1970	1970	6318	1970	6712	6318	1970	1970	1970	6318
PD1	PRN	PT	PTM	Total	TT				
1970	6712	6712	1970	788	6318				

Q. Make a boxplot of antigen levels across the whole dataset

```
ggplot(abdata) +
aes(MFI, antigen) +
geom_boxplot()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Q. Are there obvious differences between aP and wP values

```
ggplot(abdata) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot()
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Or we can "facet" by infancy_vac to get two individual plots one for each value of infancy_vac.

```
ggplot(abdata) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(~infancy_vac)
```

Warning: Removed 1 row containing non-finite outside the scale range (`stat_boxplot()`).

Focus on IgG levels

IgG is the most abundant antibody in blood. With four sub-classes (IgG1 to IgG4) crucial for long-term immunity and responding to bacterial & viral infection

```
igg <- abdata |> filter(isotype == "IgG")
head(igg)
```

	specimen_i	d	isotype	is_antigen_	specific	an	tigen	MFI	MFI_normalised
1		1	IgG		TRUE		PT	68.56614	3.736992
2		1	IgG		TRUE		PRN	332.12718	2.602350
3		1	IgG		TRUE		FHA	1887.12263	34.050956
4	1	9	IgG		TRUE		PT	20.11607	1.096366
5	1	9	IgG		TRUE		PRN	976.67419	7.652635
6	1	9	IgG		TRUE		FHA	60.76626	1.096457
	unit lowe	r_	_limit_o	$f_{detection}$	subject_	id	infanc	y_vac biol	ogical_sex
1	IU/ML			0.530000		1		wP	Female
2	IU/ML			6.205949		1		wP	Female
3	IU/ML			4.679535		1		wP	Female
4	IU/ML			0.530000		3		wP	Female
5	IU/ML			6.205949		3		wP	Female
6	IU/ML			4.679535		3		wP	Female

```
ethnicity race year_of_birth date_of_boost
                                                                   dataset
1 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
2 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
3 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
4
                 Unknown White
                                                  2016-10-10 2020_dataset
                                   1983-01-01
                                                  2016-10-10 2020_dataset
5
                 Unknown White
                                   1983-01-01
6
                 Unknown White
                                   1983-01-01
                                                  2016-10-10 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                             0
                                                                        Blood
2
                             -3
                                                             0
                                                                        Blood
3
                             -3
                                                             0
                                                                        Blood
4
                             -3
                                                             0
                                                                        Blood
5
                             -3
                                                             0
                                                                        Blood
                             -3
6
                                                             0
                                                                        Blood
  visit
1
      1
2
      1
3
      1
4
      1
5
      1
6
      1
```

Same boxplot of antigens as before

```
ggplot(igg) +
  aes(MFI_normalised, antigen, col=infancy_vac) +
  geom_boxplot() +
  facet_wrap(~visit)
```


Focus in further in just one of these antigens - let's pick PT (Pertussis Toxin, one of the main toxins of the bacteria)

```
table(igg$dataset)
```

```
2020_dataset 2021_dataset 2022_dataset 2023_dataset 1182 1617 1456 3010
```

```
dim(pt_igg)
```

[1] 231 20

```
col=infancy_vac,
   group=subject_id) +
geom_point() +
geom_line() +
theme_bw() +
geom_vline(xintercept=0) +
geom_vline(xintercept=14)
```

