Package 'radiant.basics'

May 15, 2024

```
Type Package
Title Basics Menu for Radiant: Business Analytics using R and Shiny
Version 1.6.6
Date 2024-5-14
Description The Radiant Basics menu includes interfaces for probability
     calculation, central limit theorem simulation, comparing means and proportions,
     goodness-of-fit testing, cross-tabs, and correlation. The application extends
     the functionality in 'radiant.data'.
Depends R (>= 4.3.0), radiant.data (>= 1.6.6)
Imports ggplot2 (>= 2.2.1), scales (>= 0.4.0), dplyr (>= 1.0.7), tidyr
     (>= 0.8.2), magrittr (>= 1.5), shiny (>= 1.8.1), psych (>= 1.8.1)
     1.8.3.3), import (>= 1.1.0), lubridate (>= 1.7.4), polycor (>=
     0.7.10), patchwork (>= 1.0.0), rlang (>= 1.0.6)
Suggests testthat (>= 2.0.0), pkgdown (>= 1.1.0), markdown (>= 1.3)
URL https://github.com/radiant-rstats/radiant.basics/,
     https://radiant-rstats.github.io/radiant.basics/,
     https://radiant-rstats.github.io/docs/
BugReports https://github.com/radiant-rstats/radiant.basics/issues/
License AGPL-3 | file LICENSE
LazyData true
Encoding UTF-8
Language en-US
RoxygenNote 7.3.1
NeedsCompilation no
Author Vincent Nijs [aut, cre]
Maintainer Vincent Nijs <radiant@rady.ucsd.edu>
Repository CRAN
Date/Publication 2024-05-15 04:30:07 UTC
```

R topics documented:

clt 3

clt	Central Limit Theorem simulation
Index	55
	summary.single_prop
	summary.single_mean
	summary.prob_unif
	summary.prob_tdist
	summary.prob_pois
	summary.prob_norm
	summary.prob_lnorm
	summary.prob_fdist
	summary.prob_expo
	summary.prob_disc
	summary.prob_chisq
	summary.prob_binom
	summary.goodness
	summary.cross_tabs
	summary.correlation
	summary.compare_props

Description

Central Limit Theorem simulation

Usage

```
clt(
    dist,
    n = 100,
    m = 100,
    norm_mean = 0,
    norm_sd = 1,
    binom_size = 10,
    binom_prob = 0.2,
    unif_min = 0,
    unif_max = 1,
    expo_rate = 1
)
```

Arguments

dist	Distribution to simulate
n	Sample size
m	Number of samples
norm mean	Mean for the normal distribution

4 compare_means

norm_sd	Standard deviation for the normal distribution
binom_size	Size for the binomial distribution
binom_prob	Probability for the binomial distribution
unif_min	Minimum for the uniform distribution
unif_max	Maximum for the uniform distribution
expo_rate	Rate for the exponential distribution

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Value

A list with the name of the Distribution and a matrix of simulated data

Examples

```
clt("Uniform", 10, 10, unif_min = 10, unif_max = 20)
```

compare_means

Compare sample means

Description

Compare sample means

Usage

```
compare_means(
  dataset,
  var1,
  var2,
  samples = "independent",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  test = "t",
  data_filter = "",
  envir = parent.frame()
)
```

compare_means 5

Arguments

dataset	Dataset
var1	A numeric variable or factor selected for comparison
var2	One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of var1
samples	Are samples independent ("independent") or not ("paired")
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
comb	Combinations to evaluate
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
test	t-test ("t") or Wilcox ("wilcox")
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
envir	Environment to extract data from

Details

See $https://radiant-rstats.github.io/docs/basics/compare_means.html \ for \ an \ example in \ Radiant$

Value

A list of all variables defined in the function as an object of class compare_means

See Also

```
summary.compare_means to summarize results
plot.compare_means to plot results
```

```
compare_means(diamonds, "cut", "price") %>% str()
```

6 compare_props

compare_props

Compare sample proportions across groups

Description

Compare sample proportions across groups

Usage

```
compare_props(
  dataset,
  var1,
  var2,
  levs = "",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
var1	A grouping variable to split the data for comparisons
var2	The variable to calculate proportions for
levs	The factor level selected for the proportion comparison
alternative	The alternative hypothesis ("two.sided", "greater" or "less")
conf_lev	Span of the confidence interval
comb	Combinations to evaluate
adjust	Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir	Environment to extract data from

Details

See $https://radiant-rstats.github.io/docs/basics/compare_props.html \ for \ an \ example in \ Radiant$

Value

A list of all variables defined in the function as an object of class compare_props

consider 7

See Also

```
summary.compare_props to summarize results
plot.compare_props to plot results
```

Examples

```
compare_props(titanic, "pclass", "survived") %>% str()
```

consider

Car brand consideration

Description

Car brand consideration

Usage

```
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(consider, "description")

cor2df

Store a correlation matrix as a (long) data.frame

Description

Store a correlation matrix as a (long) data.frame

Usage

```
cor2df(object, labels = c("label1", "label2"), ...)
```

Arguments

object Return value from correlation

labels Column names for the correlation pairs

... further arguments passed to or from other methods

8 correlation

Details

Return the correlation matrix as a (long) data.frame. See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

correlation

Calculate correlations for two or more variables

Description

Calculate correlations for two or more variables

Usage

```
correlation(
  dataset,
  vars = "",
  method = "pearson",
  hcor = FALSE,
  hcor_se = FALSE,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
vars	Variables to include in the analysis. Default is all but character and factor variables with more than two unique values are removed
method	Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
hcor	Use polycor::hetcor to calculate the correlation matrix
hcor_se	Calculate standard errors when using polycor::hetcor
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means

cross_tabs 9

See Also

```
summary.correlation to summarize results
plot.correlation to plot results
```

Examples

```
correlation(diamonds, c("price", "carat")) %>% str()
correlation(diamonds, "x:z") %>% str()
```

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

```
cross_tabs(
  dataset,
  var1,
  var2,
  tab = NULL,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset Dataset (i.e., a data.frame or table)

var1 A categorical variable

var2 A categorical variable

tab Table with frequencies as alternative to dataset

data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs

10 goodness

See Also

```
summary.cross_tabs to summarize results
plot.cross_tabs to plot results
```

Examples

```
cross_tabs(newspaper, "Income", "Newspaper") %>% str()
table(select(newspaper, Income, Newspaper)) %>% cross_tabs(tab = .)
```

demand_uk

Demand in the UK

Description

Demand in the UK

Usage

```
data(demand_uk)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(demand_uk,"description")

goodness

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage

```
goodness(
  dataset,
  var,
  p = NULL,
  tab = NULL,
  data_filter = "",
  envir = parent.frame()
)
```

newspaper 11

Arguments

dataset	Dataset
var	A categorical variable
p	Hypothesized distribution as a number, fraction, or numeric vector. If unspecified, defaults to an even distribution
tab	Table with frequencies as alternative to dataset
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir	Environment to extract data from

Details

 $See \ https://radiant-rstats.github.io/docs/basics/goodness.html \ for \ an \ example \ in \ Radiant$

Value

A list of all variables used in goodness as an object of class goodness

See Also

```
summary.goodness to summarize results
plot.goodness to plot results
```

Examples

```
goodness(newspaper, "Income") %>% str()
goodness(newspaper, "Income", p = c(3 / 4, 1 / 4)) %>% str()
table(select(newspaper, Income)) %>% goodness(tab = .)
```

newspaper

Newspaper readership

Description

Newspaper readership

Usage

```
data(newspaper)
```

Format

A data frame with 580 rows and 2 variables

12 plot.compare_means

Details

Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

plot.clt

Plot method for the Central Limit Theorem simulation

Description

Plot method for the Central Limit Theorem simulation

Usage

```
## S3 method for class 'clt'
plot(x, stat = "sum", bins = 15, ...)
```

Arguments

x Return value from clt

stat Statistic to use (sum or mean)

bins Number of bins to use

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Examples

```
clt("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()
```

plot.compare_means

Plot method for the compare_means function

Description

Plot method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE, custom = FALSE, ...)
```

plot.compare_props 13

Arguments

X	Return value from compare_means
plots	One or more plots ("bar", "density", "box", or "scatter")
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
	further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/compare_means.html \ for \ an \ example in \ Radiant$

See Also

```
compare_means to calculate results
summary.compare_means to summarize results
```

Examples

```
result <- compare_means(diamonds, "cut", "price")
plot(result, plots = c("bar", "density"))</pre>
```

plot.compare_props

Plot method for the compare_props function

Description

Plot method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```

Arguments

X	Return value from compare_props
plots	One or more plots of proportions ("bar" or "dodge")
shiny	Did the function call originate inside a shiny app

14 plot.correlation

custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.

org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
summary.compare_props to summarize results
```

Examples

```
result <- compare_props(titanic, "pclass", "survived")
plot(result, plots = c("bar", "dodge"))</pre>
```

plot.correlation

Plot method for the correlation function

Description

Plot method for the correlation function

Usage

```
## S3 method for class 'correlation' plot(x, nrobs = -1, jit = c(0, 0), dec = 2, ...)
```

Arguments

Х	Return value from correlation
nrobs	Number of data points to show in scatter plots (-1 for all)
jit	A numeric vector that determines the amount of jittering to apply to the x and y variables in a scatter plot. Default is 0. Use, e.g., 0.3 to add some jittering
dec	Number of decimals to show
	further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

plot.cross_tabs 15

See Also

```
correlation to calculate results summary.correlation to summarize results
```

Examples

```
result <- correlation(diamonds, c("price", "carat", "table"))
plot(result)</pre>
```

plot.cross_tabs

Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, custom = FALSE, ...)
```

Arguments

X	Return value from cross_tabs
check	Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "row_perc", "col_perc", and "perc" for row, column, and table percentages respectively
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

Details

See $https://radiant-rstats.github.io/docs/basics/cross_tabs.html \ for \ an \ example \ in \ Radiant$

further arguments passed to or from other methods

16 plot.goodness

See Also

```
cross_tabs to calculate results
summary.cross_tabs to summarize results
```

Examples

```
result <- cross_tabs(newspaper, "Income", "Newspaper")
plot(result, check = c("observed", "expected", "chi_sq"))</pre>
```

plot.goodness

Plot method for the goodness function

Description

Plot method for the goodness function

Usage

```
## S3 method for class 'goodness'
plot(x, check = "", fillcol = "blue", shiny = FALSE, custom = FALSE, ...)
```

Arguments

V	Peturn	v21114	from	goodness
X	Return	varue	пош	goodness

check Show plots for variable var. "observed" for the observed frequencies table, "ex-

pected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., $(o - e)^2 / e$), and "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e))

/ sqrt(e))

fillcol Color used for bar plots

shiny Did the function call originate inside a shiny app

custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects)

should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.

org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant

plot.prob_binom 17

See Also

```
goodness to calculate results summary.goodness to summarize results
```

Examples

```
result <- goodness(newspaper, "Income")
plot(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income") %>% plot(c("observed", "expected"))
```

plot.prob_binom

Plot method for the probability calculator (binomial)

Description

Plot method for the probability calculator (binomial)

Usage

```
## S3 method for class 'prob_binom'
plot(x, type = "values", ...)
```

Arguments

```
x Return value from prob_binomtype Probabilities ("probs") or values ("values")... further arguments passed to or from other methods
```

Details

```
See \ https://radiant-rstats.github.io/docs/basics/prob\_calc.html \ for \ an \ example \ in \ Radiant
```

See Also

```
prob_binom to calculate results
summary.prob_binom to summarize results
```

```
result <- prob_binom(n = 10, p = 0.3, ub = 3)
plot(result, type = "values")</pre>
```

18 plot.prob_disc

plot.prob_chisq

Plot method for the probability calculator (Chi-squared distribution)

Description

Plot method for the probability calculator (Chi-squared distribution)

Usage

```
## S3 method for class 'prob_chisq'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_chisq

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

See Also

```
prob_chisq to calculate results
summary.prob_chisq to summarize results
```

Examples

```
result <- prob_chisq(df = 1, ub = 3.841)
plot(result, type = "values")</pre>
```

plot.prob_disc

Plot method for the probability calculator (discrete)

Description

Plot method for the probability calculator (discrete)

Usage

```
## S3 method for class 'prob_disc'
plot(x, type = "values", ...)
```

plot.prob_expo

Arguments

x Return value from prob_disc

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_disc to calculate results
summary.prob_disc to summarize results
```

Examples

```
result <- prob_disc(v = 1:6, p = c(2 / 6, 2 / 6, 1 / 12, 1 / 12, 1 / 12), pub = 0.95) plot(result, type = "probs")
```

plot.prob_expo

Plot method for the probability calculator (Exponential distribution)

Description

Plot method for the probability calculator (Exponential distribution)

Usage

```
## S3 method for class 'prob_expo'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_expo

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

20 plot.prob_fdist

See Also

```
prob_expo to calculate results
summary.prob_expo to summarize results
```

Examples

```
result <- prob_expo(rate = 1, ub = 2.996)
plot(result, type = "values")</pre>
```

plot.prob_fdist

Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

```
## S3 method for class 'prob_fdist'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_fdisttype Probabilities ("probs") or values ("values")... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_fdist to calculate results
summary.prob_fdist to summarize results
```

```
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
plot(result, type = "values")</pre>
```

plot.prob_lnorm 21

plot.prob_lnorm

Plot method for the probability calculator (log normal)

Description

Plot method for the probability calculator (log normal)

Usage

```
## S3 method for class 'prob_lnorm'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_norm

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_lnorm to calculate results
plot.prob_lnorm to plot results
```

Examples

```
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
plot(result, type = "values")</pre>
```

plot.prob_norm

Plot method for the probability calculator (normal)

Description

Plot method for the probability calculator (normal)

Usage

```
## S3 method for class 'prob_norm'
plot(x, type = "values", ...)
```

22 plot.prob_pois

Arguments

x Return value from prob_norm

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

See Also

```
prob_norm to calculate results
summary.prob_norm to summarize results
```

Examples

```
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
plot(result)</pre>
```

plot.prob_pois

Plot method for the probability calculator (poisson)

Description

Plot method for the probability calculator (poisson)

Usage

```
## S3 method for class 'prob_pois'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_pois

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

plot.prob_tdist 23

See Also

```
prob_pois to calculate results
summary.prob_pois to summarize results
```

Examples

```
result <- prob_pois(lambda = 1, ub = 3)
plot(result, type = "values")</pre>
```

plot.prob_tdist

Plot method for the probability calculator (t-distribution)

Description

Plot method for the probability calculator (t-distribution)

Usage

```
## S3 method for class 'prob_tdist'
plot(x, type = "values", ...)
```

Arguments

```
x Return value from prob_tdisttype Probabilities ("probs") or values ("values")... further arguments passed to or from other methods
```

Details

```
See \ https://radiant-rstats.github.io/docs/basics/prob\_calc.html \ for \ an \ example \ in \ Radiant
```

See Also

```
prob_tdist to calculate results
summary.prob_tdist to summarize results
```

```
result <- prob_tdist(df = 10, ub = 2.228)
plot(result, type = "values")</pre>
```

24 plot.single_mean

plot.prob_unif

Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```
## S3 method for class 'prob_unif'
plot(x, type = "values", ...)
```

Arguments

x Return value from prob_unif

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_unif to calculate results
summary.prob_unif to summarize results
```

Examples

```
result <- prob_unif(min = 0, max = 1, ub = 0.3)
plot(result, type = "values")</pre>
```

plot.single_mean

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE, custom = FALSE, ...)
```

plot.single_prop 25

Arguments

Χ	Return value from single_mean
plots	Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the result
summary.single_mean to summarize results
```

Examples

```
result <- single_mean(diamonds, "price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))</pre>
```

plot.single_prop

Plot method for the single_prop function

Description

Plot method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```

26 print.rcorr

Arguments

Х	Return value from single_prop
plots	Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny	Did the function call originate inside a shiny app
custom	Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
	further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the result
summary.single_prop to summarize the results
```

Examples

```
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
plot(result, plots = c("bar", "simulate"))</pre>
```

print.rcorr

Print method for the correlation function

Description

Print method for the correlation function

Usage

```
## S3 method for class 'rcorr' print(x, ...)
```

Arguments

x Return value from correlation

... further arguments passed to or from other methods

prob_binom 27

prob_binom	Probability calculator for the binomial distribution

Description

Probability calculator for the binomial distribution

Usage

```
prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

n	Number of trials
p	Probability
1b	Lower bound on the number of successes
ub	Upper bound on the number of successes
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

See Also

```
summary.prob_binom to summarize results
plot.prob_binom to plot results
```

```
prob_binom(n = 10, p = 0.3, ub = 3)
```

prob_chisq

prob_chisq	Probability calculator for the chi-squared distribution

Description

Probability calculator for the chi-squared distribution

Usage

```
prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

df	Degrees of freedom
lb	Lower bound (default is 0)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_chisq to summarize results
plot.prob_chisq to plot results
```

```
prob_chisq(df = 1, ub = 3.841)
```

prob_disc 29

-	ro	L	ᅬ	:	_	_
1)	r ()	(1	(1		5	(.

Probability calculator for a discrete distribution

Description

Probability calculator for a discrete distribution

Usage

```
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

V	Values
р	Probabilities
1b	Lower bound on the number of successes
ub	Upper bound on the number of successes
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
summary.prob_disc to summarize results
plot.prob_disc to plot results
```

```
prob_disc(v = 1:6, p = 1 / 6, pub = 0.95)

prob_disc(v = 1:6, p = c(2 / 6, 2 / 6, 1 / 12, 1 / 12, 1 / 12, 1 / 12), pub = 0.95)
```

prob_expo

prob_expo	Probability calculator for the exponential distribution
	y y

Description

Probability calculator for the exponential distribution

Usage

```
prob_expo(rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

rate	Rate
lb	Lower bound (default is 0)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_expo to summarize results
plot.prob_expo to plot results
```

```
prob_expo(rate = 1, ub = 2.996)
```

prob_fdist 31

prob_fdi	.st	
----------	-----	--

 $Probability\ calculator\ for\ the\ F-distribution$

Description

Probability calculator for the F-distribution

Usage

```
prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

df1	Degrees of freedom
df2	Degrees of freedom
1b	Lower bound (default is 0)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_fdist to summarize results
plot.prob_fdist to plot results
```

```
prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
```

32 prob_lnorm

prob	1n	orm
PI OL		OI III

Probability calculator for the log normal distribution

Description

Probability calculator for the log normal distribution

Usage

```
prob_lnorm(meanlog, sdlog, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

meanlog	Mean of the distribution on the log scale
sdlog	Standard deviation of the distribution on the log scale
1b	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_lnorm to summarize results
plot.prob_lnorm to plot results
```

```
prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
```

prob_norm 33

prob_norm	Probability calculator for the normal distribution
-----------	--

Description

Probability calculator for the normal distribution

Usage

```
prob_norm(mean, stdev, 1b = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

mean	Mean
stdev	Standard deviation
lb	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_norm to summarize results
plot.prob_norm to plot results
```

```
prob_norm(mean = 0, stdev = 1, ub = 0)
```

prob_pois

S

Probability calculator for the poisson distribution

Description

Probability calculator for the poisson distribution

Usage

```
prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

lambda	Rate
1b	Lower bound (default is 0)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_pois to summarize results
plot.prob_pois to plot results
```

```
prob_pois(lambda = 1, ub = 3)
```

prob_tdist 35

prob_tdist	Probability calculator for the t-distribution	
------------	---	--

Description

Probability calculator for the t-distribution

Usage

```
prob_tdist(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

df	Degrees of freedom
1b	Lower bound (default is -Inf)
ub	Upper bound (default is Inf)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html\ for\ an\ example\ in\ Radiant$

See Also

```
summary.prob_tdist to summarize results
plot.prob_tdist to plot results
```

```
prob_tdist(df = 10, ub = 2.228)
```

36 prob_unif

		_
prob_	uni	f
PI OD		

Probability calculator for the uniform distribution

Description

Probability calculator for the uniform distribution

Usage

```
prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

min	Minimum value
max	Maximum value
1b	Lower bound (default = 0)
ub	Upper bound (default = 1)
plb	Lower probability bound
pub	Upper probability bound
dec	Number of decimals to show

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

See Also

```
summary.prob_unif to summarize results
plot.prob_unif to plot results
```

```
prob_unif(min = 0, max = 1, ub = 0.3)
```

radiant.basics 37

radiant.basics

radiant.basics

Description

Launch radiant.basics in the default web browser

Usage

```
radiant.basics(state, ...)
```

Arguments

state Path to state file to load

... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

```
## Not run:
radiant.basics()
## End(Not run)
```

Description

Launch radiant.basics in the Rstudio viewer

Usage

```
radiant.basics_viewer(state, ...)
```

Arguments

state Path to state file to load

... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

38 salary

Examples

```
## Not run:
radiant.basics_viewer()
## End(Not run)
```

radiant.basics_window Launch radiant.basics in an Rstudio window

Description

Launch radiant.basics in an Rstudio window

Usage

```
radiant.basics_window(state, ...)
```

Arguments

state Path to state file to load

... additional arguments to pass to shiny::runApp (e.g, port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

```
## Not run:
radiant.basics_window()
## End(Not run)
```

salary

Salaries for Professors

Description

Salaries for Professors

Usage

```
data(salary)
```

Format

A data frame with 397 rows and 6 variables

single_mean 39

Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary,description")

single_mean

Compare a sample mean to a population mean

Description

Compare a sample mean to a population mean

Usage

```
single_mean(
  dataset,
  var,
  comp_value = 0,
  alternative = "two.sided",
  conf_lev = 0.95,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
var	The variable selected for the mean comparison
comp_value	Population value to compare to the sample mean
alternative	The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev	Span for the confidence interval
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir	Environment to extract data from

Details

```
See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant
```

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

```
summary.single_mean to summarize results
plot.single_mean to plot results
```

40 single_prop

Examples

```
single_mean(diamonds, "price") %>% str()
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```
single_prop(
  dataset,
  var,
  lev = "",
  comp_value = 0.5,
  alternative = "two.sided",
  conf_lev = 0.95,
  test = "binom",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset	Dataset
var	The variable selected for the proportion comparison
lev	The factor level selected for the proportion comparison
comp_value	Population value to compare to the sample proportion
alternative	The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev	Span of the confidence interval
test	bionomial exact test ("binom") or Z-test ("z")
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")
envir	Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop

See Also

```
summary.single_prop to summarize the results plot.single_prop to plot the results
```

Examples

```
single_prop(titanic, "survived") %>% str()
single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less") %>% str()
```

summary.compare_means Summary method for the compare_means function

Description

Summary method for the compare_means function

Usage

```
## S3 method for class 'compare_means'
summary(object, show = FALSE, dec = 3, ...)
```

Arguments

object Return value from compare_means

show Show additional output (i.e., t.value, df, and confidence interval)

dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

```
compare_means to calculate results
plot.compare_means to plot results
```

```
result <- compare_means(diamonds, "cut", "price")
summary(result)</pre>
```

42 summary.correlation

summary.compare_props Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

```
## S3 method for class 'compare_props'
summary(object, show = FALSE, dec = 3, ...)
```

Arguments

object Return value from compare_props

show Show additional output (i.e., chisq.value, df, and confidence interval)

dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

```
compare_props to calculate results
plot.compare_props to plot results
```

Examples

```
result <- compare_props(titanic, "pclass", "survived")
summary(result)</pre>
```

summary.correlation

Summary method for the correlation function

Description

Summary method for the correlation function

```
## S3 method for class 'correlation'
summary(object, cutoff = 0, covar = FALSE, dec = 2, ...)
```

summary.cross_tabs 43

Arguments

object Return value from correlation

cutoff Show only correlations larger than the cutoff in absolute value. Default is a

cutoff of 0

covar Show the covariance matrix (default is FALSE)

dec Number of decimals to show

... further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

See Also

```
correlation to calculate results plot.correlation to plot results
```

Examples

```
result <- correlation(diamonds, c("price", "carat", "table"))
summary(result, cutoff = .3)</pre>
```

summary.cross_tabs

Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```
## S3 method for class 'cross_tabs'
summary(object, check = "", dec = 2, ...)
```

Arguments

object Return value from cross_tabs

check Show table(s) for variables var1 and var2. "observed" for the observed frequen-

cies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

dec Number of decimals to show

. . . further arguments passed to or from other methods.

44 summary.goodness

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

See Also

```
cross_tabs to calculate results
plot.cross_tabs to plot results
```

Examples

```
result <- cross_tabs(newspaper, "Income", "Newspaper")
summary(result, check = c("observed", "expected", "chi_sq"))</pre>
```

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

```
## S3 method for class 'goodness'
summary(object, check = "", dec = 2, ...)
```

Arguments

object Return value from goodness

check Show table(s) for the selected variable (var). "observed" for the observed fre-

quencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the

observed and expected frequencies (i.e., (o - e) / e)

dec Number of decimals to show

... further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant

summary.prob_binom 45

See Also

```
goodness to calculate results plot.goodness to plot results
```

Examples

```
result <- goodness(newspaper, "Income", c(.3, .7))
summary(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income", c(1 / 3, 2 / 3)) %>% summary("observed")
```

summary.prob_binom

Summary method for the probability calculator (binomial)

Description

Summary method for the probability calculator (binomial)

Usage

```
## S3 method for class 'prob_binom'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_binom
type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

```
See \ https://radiant-rstats.github.io/docs/basics/prob\_calc.html \ for \ an \ example \ in \ Radiant
```

See Also

```
prob_binom to calculate results
plot.prob_binom to plot results
```

```
result <- prob_binom(n = 10, p = 0.3, ub = 3)
summary(result, type = "values")</pre>
```

46 summary.prob_disc

 ${\it summary.prob_chisq} \qquad {\it Summary method for the probability calculator (Chi-squared distribution)}$

Description

Summary method for the probability calculator (Chi-squared distribution)

Usage

```
## S3 method for class 'prob_chisq'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_chisq

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_chisq to calculate results
plot.prob_chisq to plot results
```

Examples

```
result <- prob_chisq(df = 1, ub = 3.841)
summary(result, type = "values")</pre>
```

summary.prob_disc

Summary method for the probability calculator (discrete)

Description

Summary method for the probability calculator (discrete)

```
## S3 method for class 'prob_disc'
summary(object, type = "values", ...)
```

summary.prob_expo 47

Arguments

object Return value from prob_disc

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_disc to calculate results
plot.prob_disc to plot results
```

Examples

```
result <- prob_disc(v = 1:6, p = c(2 / 6, 2 / 6, 1 / 12, 1 / 12, 1 / 12), pub = 0.95) summary(result, type = "probs")
```

summary.prob_expo

Summary method for the probability calculator (exponential)

Description

Summary method for the probability calculator (exponential)

Usage

```
## S3 method for class 'prob_expo'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_expo

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

48 summary.prob_fdist

See Also

```
prob_expo to calculate results
plot.prob_expo to plot results
```

Examples

```
result <- prob_expo(rate = 1, ub = 2.996)
summary(result, type = "values")</pre>
```

 $summary.prob_fdist$

Summary method for the probability calculator (F-distribution)

Description

Summary method for the probability calculator (F-distribution)

Usage

```
## S3 method for class 'prob_fdist'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_fdist

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

```
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
```

See Also

```
prob_fdist to calculate results
plot.prob_fdist to plot results
```

```
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
summary(result, type = "values")</pre>
```

summary.prob_lnorm 49

summary.prob_lnorm

Summary method for the probability calculator (log normal)

Description

Summary method for the probability calculator (log normal)

Usage

```
## S3 method for class 'prob_lnorm'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_norm

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_lnorm to calculate results
plot.prob_lnorm to summarize results
```

Examples

```
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
summary(result, type = "values")</pre>
```

summary.prob_norm

Summary method for the probability calculator (normal)

Description

Summary method for the probability calculator (normal)

```
## S3 method for class 'prob_norm'
summary(object, type = "values", ...)
```

50 summary.prob_pois

Arguments

object Return value from prob_norm

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_norm to calculate results
plot.prob_norm to plot results
```

Examples

```
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
summary(result)</pre>
```

summary.prob_pois

Summary method for the probability calculator (poisson)

Description

Summary method for the probability calculator (poisson)

Usage

```
## S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_pois

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See $https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

summary.prob_tdist 51

See Also

```
prob_pois to calculate results
plot.prob_pois to plot results
```

Examples

```
result <- prob_pois(lambda = 1, ub = 3)
summary(result, type = "values")</pre>
```

summary.prob_tdist

Summary method for the probability calculator (t-distribution)

Description

Summary method for the probability calculator (t-distribution)

Usage

```
## S3 method for class 'prob_tdist'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_tdist

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

```
prob_tdist to calculate results
plot.prob_tdist to plot results
```

```
result <- prob_tdist(df = 10, ub = 2.228)
summary(result, type = "values")</pre>
```

52 summary.single_mean

summary.prob_unif

Summary method for the probability calculator (uniform)

Description

Summary method for the probability calculator (uniform)

Usage

```
## S3 method for class 'prob_unif'
summary(object, type = "values", ...)
```

Arguments

object Return value from prob_unif

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

 $See \ https://radiant-rstats.github.io/docs/basics/prob_calc.html \ for \ an \ example \ in \ Radiant$

See Also

```
prob_unif to calculate results
plot.prob_unif to plot results
```

Examples

```
result <- prob_unif(min = 0, max = 1, ub = 0.3)
summary(result, type = "values")</pre>
```

summary.single_mean

Summary method for the single_mean function

Description

Summary method for the single_mean function

```
## S3 method for class 'single_mean'
summary(object, dec = 3, ...)
```

summary.single_prop 53

Arguments

object Return value from single_mean dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

```
single_mean to generate the results plot.single_mean to plot results
```

Examples

```
result <- single_mean(diamonds, "price")
summary(result)
diamonds %>%
  single_mean("price") %>%
summary()
```

summary.single_prop

Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```
## S3 method for class 'single_prop'
summary(object, dec = 3, ...)
```

Arguments

object Return value from single_prop
dec Number of decimals to show

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

See Also

```
single_prop to generate the results
plot.single_prop to plot the results
```

```
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
summary(result)</pre>
```

Index

* datasets	prob_disc, <i>19</i> , 29, <i>47</i>
consider, 7	prob_expo, 19, 20, 30, 47, 48
$demand_uk, 10$	prob_fdist, 20, 31, 48
newspaper, 11	prob_lnorm, 21, 32, 49
salary, 38	prob_norm, 21, 22, 33, 49, 50
	prob_pois, 22, 23, 34, 50, 51
clt, 3, <i>12</i>	prob_tdist, 23, 35, 51
compare_means, 4, 13, 41	prob_unif, 24, 36, 52
compare_props, 6, <i>13</i> , <i>14</i> , <i>42</i>	, , , , , , , , , , , , , , , , , , , ,
consider, 7	radiant.basics, 37
cor2df, 7	radiant.basics_viewer,37
correlation, 7, 8, 14, 15, 26, 43	radiant.basics_window, 38
cross_tabs, 9, 15, 16, 43, 44	_ ,
_ , , , ,	salary, 38
demand_uk, 10	single_mean, 25, 39, 53
	single_prop, 26, 40, 53, 54
goodness, 10, 16, 17, 44, 45	summary.compare_means, 5, 13, 41
11	summary.compare_props, 7, 14, 42
newspaper, 11	summary.correlation, 9, 15, 42
plot.clt, 12	summary.cross_tabs, <i>10</i> , <i>16</i> , 43
plot.compare_means, 5, 12, 41	summary.goodness, <i>11</i> , <i>17</i> , 44
plot.compare_props, 7, 13, 42	summary.prob_binom, <i>17</i> , <i>27</i> , 45
plot.compare_props, 7, 13, 42 plot.correlation, 9, 14, 43	summary.prob_chisq, 18, 28, 46
	summary.prob_disc, 19, 29, 46
plot.cross_tabs, 10, 15, 44	summary.prob_expo, 20, 30, 47
plot.goodness, 11, 16, 45	summary.prob_fdist, 20, 31, 48
plot.prob_binom, 17, 27, 45	summary.prob_lnorm, 32, 49
plot.prob_chisq, 18, 28, 46	summary.prob_norm, 22, 33, 49
plot.prob_disc, 18, 29, 47	summary.prob_pois, 23, 34, 50
plot.prob_expo, 19, 30, 48	summary.prob_tdist, 23, 35, 51
plot.prob_fdist, 20, 31, 48	summary.prob_unif, 24, 36, 52
plot.prob_lnorm, 21, 21, 32, 49	summary.single_mean, 25, 39, 52
plot.prob_norm, 21, 33, 50	summary.single_prop, 26, 41, 53
plot.prob_pois, 22, 34, 51	Suillilar y . STrigte_pr op, 20, 41, 33
plot.prob_tdist, 23, 35, 51	
plot.prob_unif, 24, 36, 52	
plot.single_mean, 24, 39, 53	
plot.single_prop, 25, 41, 54	
print.rcorr, 26	
prob_binom, 17, 27, 45	
prob_chisq, 18, 28, 46	