Esercitazione 5: Carmine D'Angelo, Emanule Vitale, Francesco Aurilio

GPU: Tesla K80

Compute capability: 3.7

Massimo numero di thread per blocco per SM: 2048 Numero massimo di blocchi residenti per SM: 16

Massimo numero di registri a 32 bit per multiprocessor/thread: 131072

Configurazione 1:64

N	Tempo CPU	Tempo GPU	Sp
100000	1	0,193184	2,750538
200000	1,04736	0,294656	3,554518
400000	2,157408	0,232928	9,262124
800000	4,6472	0,322144	14,42585
1600000	8,764704	0,368416	23,79024
3200000	20,225023	0,586592	34,47886

64 thread: 2048/64=32 blocchi per occupare tutto un SM.

Con un massimo di 16 blocchi per SM : 64x16 = 1024 thread per SM su un totale di 2048 disponibili.

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 8.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

8*64*16= 8192< 131K

Configurazione 2 : 128

N	Tempo CPU	Tempo GPU	Sp
100000	0,575776	0,27536	2,090994
200000	1,106144	0,15056	7,346865
400000	2,219488	0,206752	10,73503
800000	4,157088	0,234976	17,69154
1600000	8,39376	0,379104	22,14105
3200000	19,90976	0,6032	33,0069

128 thread: 2048/128 = 16 blocchi per occupare tutto un SM.

Con 16 blocchi: 128x16 = 2048 thread per SM. Piena occupazione dello SM!

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 8.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

8*128*16= 16384< 131K

Configurazione 3:256

N	Tempo CPU	Tempo GPU	Sp
100000	0,521408	0,149664	3,483857
200000	1,061312	0,138432	7,666667
400000	2,179488	0,19936	10,93242
800000	4,6472	0,322144	14,42585
1600000	8,942176	0,349568	25,58065
3200000	21,405004	0,529248	40,44418

256 thread: 2048/256= 8 blocchi per occupare tutto un SM.

Con 8 blocchi: 256x8 = 2048 thread per SM. Piena occupazione dello

SM ma minore parallelismo potenziale

Uso dei registri

Eseguendo l'istruzione "!nvcc -Xptxas -v" ottengo che il numero di registri utilizzato da ogni thread è 8.

Dunque, moltiplicando il numero di registri, per il numero di thread e per il numero di blocchi ottengo:

8*256*8= 16384< 131K

