Übungsblatt 4

Aufgabe 1 (Router, Layer-3-Switch, Gateway)

- 1. Welchen Zweck haben **Router** in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.)
- 2. Welchen Zweck haben **Layer-3-Switches** in Computernetzen? (Erklären Sie auch den Unterschied zu Routern.)
- 3. Welchen Zweck haben **Gateways** in Computernetzen?
- 4. Warum sind **Gateways** in der Vermittlungsschicht von Computernetzen heutzutage selten nötig?

Aufgabe 2 (Kollisionsdomäne, Broadcast-Domäne)

1.	Welche Geräte unterteile	n die Kollisionsdomäne?		
	☐ Repeater ☐ Hub	☐ Bridge ☐ Layer-2-Switch	☐ Router ☐ Layer-3-Switch	
2.	2. Welche Geräte unterteilen die Broadcast-Domäne ?			
	☐ Repeater ☐ Hub	\square Bridge \square Layer-2-Switch	\square Router \square Layer-3-Switch	
3.	Zeichnen Sie alle Kollision abgebildete Netzwerktopole		lcast-Domänen in di	

Aufgabe 3 (Adressierung in der Vermittlungsschicht)

- 1. Was ist die Bedeutung von **Unicast** in der Vermittlungsschicht von Computernetzen?
- 2. Was ist die Bedeutung von **Broadcast** in der Vermittlungsschicht von Computernetzen?
- 3. Was ist die Bedeutung von **Anycast** in der Vermittlungsschicht von Computernetzen?
- 4. Was ist die Bedeutung von **Multicast** in der Vermittlungsschicht von Computernetzen?
- 5. Warum enthält der Adressraum von IPv4 nur 4.294.967.296 Adressen?
- 6. Warum wurde das klassenlose Routing Classless Interdomain Routing (CIDR) eingeführt?
- 7. Beschreiben Sie in einfachen Worten die Funktionsweise von CIDR. Legen Sie den Schwerpunkt auf die Art und Weise, wie IP-Adressen behandelt und Subnetze erstellt werden.

Aufgabe 4 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe die erste und letzte Hostadresse, die Netzadresse und die Broadcast-Adresse des Subnetzes.

IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100
Netzmaske:	255.255.254.0	11111111.11111111.11111110.00000000
Netzadresse?		
Erste Hostadresse?		
Letzte Hostadresse?		
Broadcast-Adresse?		
IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100
Netzmaske:	255.255.255.240	11111111.11111111.11111111.11110000
Netzadresse?		
Erste Hostadresse?		
Letzte Hostadresse?		
Broadcast-Adresse?		
IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100
Netzmaske:	255.255.255.128	11111111.11111111.11111111.10000000
Netzadresse?		
Erste Hostadresse?		
Letzte Hostadresse?		
Broadcast-Adresse?		

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Aufgabe 5 (Adressierung in der Vermittlungsschicht)

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die **Subnetznummern von Sender und Empfänger** und geben Sie an, ob das IP-Paket **während der Übertragung das Subnetz verlässt** oder nicht.

Prof. Dr. Christian Baun	FB 2: Informatik und Ingenieurwissenschaften
Computernetze (WS2021)	Frankfurt University of Applied Sciences

Sender:	11001001.00010100.11011110.00001101	201.20.222.13
Netzmaske:	11111111.11111111.11111111.11110000	255.255.255.240

Empfänger: 11001001.00010100.11011110.00010001 201.20.222.17 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender:	10000100.10011000.01010011.11111110	132.152.83.254
Netzmaske:	11111111.11111111.11111100.00000000	255.255.252.0

Empfänger:	10000100.10011000.01010001.00000010	132.152.81.2
Netzmaske:	11111111.11111111.11111100.00000000	255.255.252.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender:	00001111.11001000.01100011.00010111	15.200.99.23
Netzmaske:	11111111.11000000.00000000.00000000	255.192.0.0

Empfänger:	00001111.11101111.00000001.00000001	15.239.1.1
Netzmaske:	11111111.11000000.00000000.00000000	255.192.0.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Aufgabe 6 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe **Netzmaske** und beantworten Sie die **Fragen**.

1. Teilen Sie das Klasse C-Netz 195.1.31.0 so auf, das 30 Subnetze realisierba sind.
Netzadresse: 11000011.00000001.00011111.00000000 195.1.31.0 Anzahl Bits für Subnetznummern? Netzmaske:
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?
2. Teilen Sie das Klasse A-Netz 15.0.0.0 so auf, das 333 Subnetze realisierba sind.
Netzadresse: 00001111.00000000.00000000.00000000 15.0.0.0 Anzahl Bits für Subnetznummern?
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?
3. Teilen Sie das Klasse B-Netz 189.23.0.0 so auf, das 20 Subnetze realisierba sind.
Netzadresse: 10111101.00010111.00000000.00000000 189.23.0.0 Anzahl Bits für Subnetznummern? Netzmaske:
Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?
4. Teilen Sie das Klasse C-Netz 195.3.128.0 in Subnetze mit je 17 Hosts auf.
Netzadresse: 11000011.00000011.10000000.00000000 195.3.128.0 Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze? Netzmaske:
5 Teilen Sie das Klasse R-Netz 129 15 0 0 in Subnetze mit ie 10 Hosts auf

Netzadresse: 10000001.00001111.00000000.00000000 129.15.0.0 Anzahl Bits für Hostadressen?

Anzahl Bits für Subnetznummern? Anzahl möglicher Subnetze?

Netzmaske:

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Aufgabe 7 (Kollisionsdomäne, Domäne)

Broadcast-

1. Zeichnen Sie alle **Kollisionsdomänen** und alle **Broadcast-Domänen** in die abgebildete Netzwerktopologie.

2. Zeichnen Sie alle **Kollisionsdomänen** und alle **Broadcast-Domänen** in die abgebildete Netzwerktopologie.

Aufgabe 8 (Broadcast-Domäne)

- 1. Zeichnen Sie alle ${\bf Broadcast\text{-}Dom\"{a}nen}$ in die abgebildete Netzwerktopologie.
- 2. Wie viele Subnetze sind für die abgebildete Netzwerktopologie nötig?

Aufgabe 9 (Private IP-Adressbereiche)

Nennen Sie die drei privaten IPv4-Adressbereiche.

Aufgabe 10 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Netzwerkkonfiguration in der Tabelle, ob ein IP-Paket, das von der angegebenen IP-Adresse zur angegebenen Ziel-Adresse gesendet wird, während der Übertragung das Subnetz verlässt oder nicht.

IP-Adresse	Netzmaske	Ziel-Adresse	Verlässt das Subnetz [ja/nein]
201.20.222.13	255.255.255.240	201.20.222.17	
15.200.99.23	255.192.0.0	15.239.1.1	
172.21.23.14	255.255.255.0	172.21.24.14	
210.5.16.198	255.255.255.252	210.5.16.197	
210.5.16.198	255.255.255.252	210.5.16.201	
5.5.5.5	255.254.0.0	5.6.6.6	

(Teil der Lösung sind die durchgeführten Berechnungen. Wo keine Berechnung nötig ist, müssen Sie Ihre Antwort begründen. Die Frage einfach nur mit "ja" oder "nein" beantworten, ist als Lösung nicht ausreichend!)

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 11 (Adressierung in der Vermittlungsschicht)

Geben Sie für jede Teilaufgabe die korrekte **Netzmaske** an.

- 1. Maximal viele Subnetze mit je 5 Hosts in einem Klasse B-Netz.
- 2. 50 Subnetze mit je 999 Hosts in einem Klasse B-Netz.
- 3. 12 Subnetze mit je 12 Hosts in einem Klasse C-Netz.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 12 (IP-Pakete fragmentieren)

Es sollen 4.000 Bytes Nutzdaten via IP-Protokoll übertragen werden. Die Nutzdaten müssen fragmentiert werden, weil es über mehrere physische Netzwerke transportiert wird, deren MTU < 4.000 Bytes ist.

	LAN A	LAN B	LAN C	LAN D	LAN E
Vernetzungstechnologie	Ethernet	PPPoE	ISDN	Ethernet	WLAN
MTU [Bytes]	1,500	1,492	576	1,400	2,312
IP-Header [Bytes]	20	20	20	20	20
maximale Bytes Nutzdaten	1,480	1,472	556	1,380	2,292

Zeigen Sie grafisch den Weg, wie das Paket fragmentiert wird und wie viele Bytes Nutzdaten jedes Fragment enthält.

Aufgabe 13 (Weiterleitung und Wegbestimmung)

1. Welche zwei 2 Hauptklassen von Routing-Protokollen existieren?

- 2. Welche **Algorithmen zur Berechnung des besten Weges** implementieren die Klassen von Routing-Protokollen aus Teilaufgabe 1?
- 3. Was ist ein autonomes System?
- 4. Das Border Gateway Protocol (BGP) ist ein Protokoll für...

☐ Intra-AS-Routing ☐ Inter-AS-Routing

- 5. Zu welcher Klasse Routing-Protokolle aus Teilaufgabe 1 gehört das BGP?
- 6. Das Open Shortest Path First (OSPF) ist ein Protokoll für...

☐ Intra-AS-Routing ☐ Inter-AS-Routing

- 7. Zu welcher Klasse Routing-Protokolle aus Teilaufgabe 1 gehört OSPF?
- 8. Das Routing Information Protocol (RIP) ist ein Protokoll für...

☐ Intra-AS-Routing ☐ Inter-AS-Routing

- 9. Zu welcher Klasse Routing-Protokolle aus Teilaufgabe 1 gehört das RIP?
- 10. Bei RIP kommuniziert jeder Router nur mit seinen direkten Nachbarn. Was sind die Vorteile und Nachteile dieser Vorgehensweise?
- 11. Bei RIP hängen die Wegkosten (Metrik) ausschließlich von der Anzahl der Router (**Hops**) ab, die auf dem Weg zum Zielnetz hängen, passiert werden müssen. Was sind die **Vorteile** und **Nachteile** dieser Vorgehensweise?
- 12. Bei OSPF kommunizieren **alle Router** miteinander. Was sind die **Vorteile** und **Nachteile** dieser Vorgehensweise?

Aufgabe 14 (Dijkstra-Algorithmus)

1. Berechnen Sie mit dem Dijkstra-Algorithmus den kürzesten Pfad von Knoten A zu allen anderen Knoten.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 15 (Internet Control Message Protocol)

- 1. Was ist die **Funktion** des Internet Control Message Protocol (ICMP)?
- 2. Nennen Sie zwei Beispiele für **Kommandozeilenwerkzeuge**, die das ICMP verwenden.

Aufgabe 16 (IPv6)

]	l. '	Vereintac	chen Sie	die to	olgende	IPv6-	Adressen:
-					-0		0 0.0.0 0

• 1080:0000:0000:0000:0007:0700:0003:316b

Lösung:

• 2001:0db8:0000:0000:f065:00ff:0000:03ec

Lösung:

• 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d

Lösung: ____

	• 2001:0060:10a1:0000:0000:0000:0001
	Lösung:
	• 2111:00ab:0000:0004:0000:0000:0000:1234
	Lösung:
2.	Geben Sie alle Stellen der folgenden vereinfachten IPv6-Adressen an
	• 2001::2:0:0:1
	Lösung:::::::
	• 2001:db8:0:c::1c
	Lösung:::::::
	• 1080::9956:0:0:234
	Lösung:::::::
	• 2001:638:208:ef34::91ff:0:5424
	Lösung::::::::
	• 2001:0:85a4::4a1e:370:7112
	Lösung::::::::