15 октября 2023 г.

Задача 1.

Вычислите производную функции.

a)
$$y = \frac{1+x-x^2}{1-x+x^2}$$
;

a)
$$y = \frac{1+x-x^2}{1-x+x^2}$$
;
b) $y = \frac{1}{x} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}$;
c) $y = \sqrt[3]{\frac{1+x^3}{1-x^3}}$;

c)
$$y = \sqrt[3]{\frac{1+x^3}{1-x^3}};$$

d)
$$y = \sin[\sin(\sin x)];$$

e)
$$y = \arctan \frac{x^2}{a}$$
;

e)
$$y = \operatorname{arctg} \frac{x^2}{a}$$
;
f) $y = \arcsin \frac{1-x^2}{1+x^2}$;

g)
$$y = \ln\left(e^x + \sqrt{1 + e^{2x}}\right);$$

g)
$$y = \ln \left(e^x + \sqrt{1 + e^{2x}} \right);$$

h) $y = (x - a_1)^{\alpha_1} (x - a_2)^{\alpha_1} \dots (x - a_n)^{\alpha_n};$

Задача 2.

а) Пусть

$$f(x) = \begin{cases} x^2 & \text{если } x \leqslant x_0 \\ ax + b, & \text{если } x > x_0. \end{cases}$$

Как следует подобрать коэффициенты a и b, чтобы функция f(x) была непрерывной и дифференцируемой в точке $x = x_0$?

b) Пусть

$$F(x) = \begin{cases} f(x) & \text{если } x \leqslant x_0 \\ ax + b, & \text{если } x > x_0. \end{cases}$$

где функция f(x) дифференцируема слева при $x=x_0$. При каком выборе коэффициентов a и b функция F(x) будет непрерывной и дифференцируемой в точке x_n ?

Задача 3.

Пусть $f(u,v)=e^{\cos(u-v)}$. Найдите разложение этой функции в ряд Тейлора около точки $(u,v)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)$ до второго порядка (включительно).

Задача 4.

Найдите предел функции или докажите, что он не существует.

a)

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 y^3}{x^2 + y^2}$$

b)

$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x^2 y}{x^4 + y^2}$$

Задача 5.

- Вычислите интегралы: a) $\int_0^2 \int_0^{4-x^2} xy \, dy dx$; b) $\int_0^1 \int_{1-x}^{\sqrt{1-x^2}} x^2y \, dy dx$; c) $\iint x dy dx$ по региону, ограниченному графиками функций y=x and $y=3-x^2$; d) $\int_0^1 \int_y^1 x^2 \sin(xy) \, dx dy$.