Predicting the Stocks

By: Anna Kelley and Alejandro Campos

Topics

- The Problem
- The Goal
- Our Approach
- Conclusion

The Problem

- People lose lots of money in stocks
- One of the most difficult jobs is to analyze and predict the trend of a stock
- Market is extremely volatile, nearly everything online can affect its market price
- An algorithm can help people make passive income

The Goal

To program a software capable enough to take existing data from the market and utilize it to train itself and eventually predict future trends for any given stock

Our Approach

We'll be utilizing Long Short-Term Memory method to train the data and accurately predict the future trends

LSTM is a a deep learning artificial recurrent neural network (RNN) architecture.

Unlike traditional feed-forward neural networks, LSTM has feedback connections. It can handle single data points (such as pictures) as well as full data sequences (such as speech or video).

Prepare the data for analysis:

Download using yahoo finance:

[3] !pip install yfinance

Raw Data:

Split the data into training and test:

```
[10] #Creating training and test data using TimeSeriesSplit
    from sklearn.model_selection import TimeSeriesSplit
    timesplit= TimeSeriesSplit(n_splits=10)
    for train_index, test_index in timesplit.split(feature_transform):
        X_train, X_test = feature_transform[:len(train_index)], feature_transform[len(train_index): (len(train_index)+len(test_index))]
        y_train, y_test = output_var[:len(train_index)].ravel(), output_var[len(train_index): (len(train_index)+len(test_index))].ravel()
```

Building first LSTM model with one layer:

Training the data:

```
[18] #Model Training
history=lstm.fit(X_train, y_train, epochs=100, batch_size=8, verbose=1, shuffle=False)
```

Loss

Building second LSTM model with multiple layers:

Training the data for second Model:

```
[31] #compile model
    model.compile(optimizer = 'adam', loss= 'mean_squared_error')
```

Smaller Loss

- #model fit
 model.fit(x_train, y_train, batch_size = 1, epochs =1)

Conclusion

- Over 50% of citizens in the US aren't invested into the stock market
- All billionaires and other financially successful people are
- We want to change that = encourage others to invest in the stock market
- Easy-to-use software that can also help teach you about the market while making you passive income

References

- 1. https://www.analyticsvidhya.com/blog/2021/10/machine-learning-le
- 2. https://youtu.be/QIUxPv5PJOY
- 3. https://en.wikipedia.org/wiki/Long short-term memory
- 4. https://journalofbigdata.springeropen.com/articles/10.1186/s4
 https://journalofbigdata.springeropen.com/articles/10.1186/s4