Email: soham.chatterjee@tifr.res.in

Course: Mathematical Foundations for Computer Sciences

Dept: STCS October 12, 2024

Problem 1

Let m, n > 0 be given and let S be a subset of $[m] \times [n]$. We say S is downward closed if for all $i \le i' \in [m]$ and $j \le j' \in [n]$, we have $(i', j') \in S$ only if $(i, j) \in S$. How many downward closed sets are there?

Solution:

Problem 2

Call an operator $\theta \in L(V)$ unitary if for all $v \in V$, we have $\|\theta(v)\| = \|v\|$ and positive if it is self-adjoint and for all $v \in V$, we have $\langle \theta(v), v \rangle \geq 0$.

• Polar Decomposition. Show that for all $\theta \in L(V)$, there exists a unitary $\mu \in L(V)$ and positive $\pi \in L(V)$ such that $\theta = \mu \circ \pi$.

Hint: Start by showing $\theta^{\dagger} \circ \theta$ is positive and use the Spectral Theorems.

• Singular Value Decomposition. Let $n = \dim V$. Show that, for all $\theta \in L(V)$, there exists two orthonormal basis $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$ of V and "singular values" s_1, \ldots, s_n such that, for all $v \in V$, we have:

$$\theta(v) = \sum_{i=1}^{n} \langle v, b_i \rangle \cdot s_i \cdot a_i$$

Solution:

• Let dim V = n. We assume that θ is a nonzero operator. Since otherwise we can take μ to be the identity operator and π to be the zero operator. Consider the operator $\theta^{\dagger} \circ \theta \in L(V)$. Now for any $v \in V$,

$$\langle \theta^{\dagger} \circ \theta(v) \rangle = \left\langle \theta(v), \left(\theta^{\dagger} \right)^{\dagger}(v) \right\rangle = \left\langle \theta(v), \theta(v) \right\rangle = \left\langle v, \theta^{\dagger} \circ (\theta(v)) \right\rangle = \left\langle v, \theta^{\dagger} \circ \theta(v) \right\rangle$$

Hence $\theta^{\dagger} \circ \theta$ is self-adjoint. Now for any $v \in V$ we also have

$$\langle \theta^{\dagger} \circ \theta(v), v \rangle = \langle \theta(v), \theta(v) \rangle \ge 0$$

Hence $\theta^{\dagger} \circ \theta$ is also positive. Therefore by spectral theorem there exists an orthonormal eigen basis $B = \{b_1, \ldots, b_n\}$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $\theta^{\dagger} \circ \theta(b_i) = \lambda_i b_i$. Since $\theta^{\dagger} \circ \theta$ is positive all the eigenvalues are non-negative and since θ is nonzero operator not all eigenvalues are zero.

Now take the set of vectors $B' = \left\{ \frac{1}{\sqrt{\lambda_i}} \theta(b_i) : \lambda_i \neq 0 \right\}$. This set is orthonormal since for $i, j \in [n]$ and $i \neq j$ and $\lambda_i, \lambda_j \neq 0$ we have

$$\left\langle \frac{1}{\sqrt{\lambda_i}} \theta(b_i), \frac{1}{\sqrt{\lambda_j}} \theta(b_j) \right\rangle = \frac{1}{\sqrt{\lambda_i \lambda_j}} \langle \theta(b_i), \theta(b_j) \rangle = \frac{1}{\sqrt{\lambda_i \lambda_j}} \langle \theta^{\dagger} \circ \theta(b_i), b_j \rangle = 0$$

and for i = j we have

$$\left\langle \frac{1}{\sqrt{\lambda_i}} \theta(b_i), \frac{1}{\sqrt{\lambda_i}} \theta(b_i) \right\rangle = \frac{1}{\sqrt{\lambda_i \lambda_i}} \langle \theta(b_i), \theta(b_i) \rangle = \frac{1}{\lambda_i} \langle \theta^{\dagger} \circ \theta(b_i), b_i \rangle = \frac{1}{\lambda_i} \lambda_i \langle b_i, b_i \rangle = 1$$

Now B' can be extended to a orthonormal basis $B'' = \{b_i'' : i \in [n]\}$ of V using Gram–Schmidt procedure. For simplicity let first k many vectors of B had nonzero eigenvalues and the vectors b_{k+1}'', \ldots, b_n'' are the new orthonormal added to B' by Gram-Schmidt. Hence for $i \in [k]$ $b_i'' = \frac{1}{\sqrt{\lambda_i}}\theta(b_i)$. So we define the operator $\mu \in L(V)$ such that for any $i \in [n]$

$$\mu(b_i) = b_i''$$

Now also define another operator $\pi \in L(V)$ where $\pi(b_i) = \sqrt{\lambda_i}b_i$ for all $i \in [n]$. Both μ and π are defined on basis so they are unique.

We claim $\theta = \mu \circ \pi$. If we show that for any $i \in [n]$ $\theta(b_i) = \mu \circ \pi(b_i)$ we are done since B is a basis of V. Now if $\lambda_i \neq 0$ then

$$\mu \circ \pi(b_i) = \mu(\sqrt{\lambda_i}b_i) = \sqrt{\lambda_i}\mu(b_i) = \sqrt{\lambda_i}b_i'' = \sqrt{\lambda_i}\frac{1}{\sqrt{\lambda_i}}\theta(b_i) = \theta(b_i)$$

When $\lambda_i = 0$ then we have

$$\mu \circ \pi(b_i) = \mu(\sqrt{\lambda_i}b_i) = \sqrt{\lambda_i}\mu(b_i) = 0 \cdot \mu(b_i) = 0$$

and on the other hand we have

$$\langle \theta(b_i), \theta(b_i) \rangle = \langle \theta^{\dagger} \circ \theta(b_i) \rangle = \langle \lambda_i b_i, b_i r \rangle = 0$$

Hence we have for all $i \in [n]$, $\theta(b_i) = \mu \circ \pi(b_i)$. Hence $\theta = \mu \circ \pi$.

Now we will show that μ is unitary and π is positive. Now π is diagonalizable with respect to an orthonormal eigen basis with all its eigenvalues are non-negative. Hence π is positive. So only thing remains is to show that μ is unitary. Let for any $v \in V$, $v = \sum_{i=1}^{n} a_i b_i$ where $a_i \in \mathbb{C}$. Then we have

$$\left\langle \sum_{i=1}^{n} a_i b_i, \sum_{i=1}^{n} a_i b_i \right\rangle = \sum_{i=1}^{n} |a_i|^2 \langle b_i, b_i \rangle = \sum_{i=1}^{n} |a_i|^2$$

On the other hand we have

$$\left\langle \mu \left(\sum_{i=1}^{n} a_{i} b_{i} \right), \mu \left(\sum_{i=1}^{n} a_{i} b_{i} \right) \right\rangle = \left\langle \sum_{i=1}^{n} a_{i} \mu(b_{i}), \sum_{i=1}^{n} a_{i} \mu(b_{i}) \right\rangle = \sum_{i=1}^{n} |a_{i}|^{2} \langle b_{i}, b_{i} \rangle = \sum_{i=1}^{n} |a_{i}|^{2}$$

Hence μ is unitary. Therefore there exists an unitary operator $\mu \in L(V)$ and a positive operator $\pi \in L(V)$ such that $\theta = \mu \circ \pi$.

• By the above proof of polar decomposition there exists an unitary operator $\mu \in L(V)$ and positive operator $\pi \in L(V)$ such that $\theta = \mu \circ \pi$. We also get an orthonormal eigenbasis $B = \{b_1, \ldots, b_n\}$ of $\theta^{\dagger} \circ \theta$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ and another orthonormal basis $B'' = \{b''_1, \ldots, b''_n\}$ where $\mu(b_i) = b''_i$ and $\pi(b_i) = \sqrt{\lambda_i}b_i$. Let $v \in V$. Then $v = \sum_{i=1}^n \langle v, b_i \rangle b_i$. Then

$$\theta(v) = \mu \circ \pi \left(\sum_{i=1}^{n} \langle v, b_i \rangle b_i \right) = \sum_{i=1}^{n} \langle v, b_i \rangle \mu(\sqrt{\lambda_i} b_i) = \sum_{i=1}^{n} \langle v, b_i \rangle \cdot \sqrt{\lambda_i} \cdot \mu(b_i) = \sum_{i=1}^{n} \langle v, b_i \rangle \cdot \sqrt{\lambda_i} \cdot b_i''$$

Hence here A = B'' and the singular values are eigenvalues of vectors in B.

Problem 3

The following pattern is well known:

$$A = \begin{bmatrix} 1 & & & & & & \\ 1 & 1 & & & & & \\ 1 & 2 & 1 & & & & \\ 1 & 3 & 3 & 1 & & & & \\ 1 & 4 & 6 & 4 & 1 & & & \\ 1 & 5 & 10 & 10 & 5 & 1 & & \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 & \\ \vdots & \ddots \end{bmatrix}$$

For all n > 0, consider the *n*-th sub-triangle B_n of A defined as follows:

$$B_1 = \begin{bmatrix} 1 \end{bmatrix} \qquad B_2 = \begin{bmatrix} 1 & 1 \\ & 2 \end{bmatrix} \qquad B_3 = \begin{bmatrix} 1 & 2 & 1 \\ & 3 & 3 \\ & & 6 \end{bmatrix} \qquad B_4 = \begin{bmatrix} 1 & 3 & 3 & 1 \\ & 4 & 6 & 4 \\ & & 10 & 10 \\ & & & 20 \end{bmatrix} \qquad \cdots$$

The triangles B_n have the property that for all $i \leq j < n$, it holds that $(B_n)_{i,j} = (B_n)_{i+1,j+1} - (B_n)_{i,j+1}$. For all n > 0, find the largest number of ones in a matrix of size n that has entries in $\{0,1\}$ and satisfied the foregoing property modulo 2.

Solution: For all n > 0 we have

$$(B_n)_{i,j} = (B_n)_{i+1,j+1} - (B_n)_{i,j+1} \iff (B_n)_{i,j} + (B_n)_{i,j+1} = (B_n)_{i+1,j+1}$$

First we will prove an upper bound on the number of 1's in the triangle. [I got this bound statement from a reddit post¹]

Lemma 1. The number of 1's in the resulting matrix of size n > 0 for any $n \in \mathbb{N}$ is at most $\frac{n^2+n+1}{3}$

Proof: We will prove this inductively. For base case n = 1 we have the number of 1's is 1. and $\frac{1^2+1+1}{3}=1$. Hence the base case follows.

Now suppose this is true for $n=1,\ldots,k$. For n=k+1 we will consider two cases: the first row as either $\leq \frac{2k+2}{3}$ many 1's or $> \frac{2k+2}{3}$ many 1's.

Suppose the first row has $\leq \frac{2k+2}{3}$ many 1's. Then from next row on wards there are k rows and these k rows can have at most $\frac{k^2+k+1}{3}$ many 1's by Induction Hypothesis. Therefore

$$\#1's = \frac{k^2 + k + 1}{3} + \frac{2k + 2}{3} = \frac{k^2 + 3k + 3}{3} = \frac{(k^2 + 2k + 1) + (k + 1) + 1}{3} = \frac{(k + 1)^2 + (k + 1) + 1}{3}$$

Therefore the statement is followed. Suppose the first row has $> \frac{2k+2}{3}$ i.e. $\ge \frac{2k+3}{3}$ many 1's. Now in the second row each 1 is originated from a 0 and a 1 in the first row. Each 0 in the first row gives at most two 1's in the second row. Therefore

$$\#1$$
's in second row $\leq 2 \times \#0$'s in first row

Hence

#1's in first two rows = #1's in first row + #1's in second row
$$\leq \#1'\text{s in first row} + 2 \times \#0'\text{s in first row}$$

$$= 2(k+1) - \#1'\text{s in first row} \leq 2(k+1) - \frac{2k+3}{3} = \frac{4k+3}{3}$$

https://www.reddit.com/r/mathriddles/comments/ojpqgg/binary_pascal_triangle/

Now from third row on wards there are k-1 rows and by inductive hypothesis there can be at most $\frac{(k-1)^2+(k-1)+1}{3}=\frac{k^2-k+1}{3}$ many 1's. Now if $3\mid k$ then from third row on wards there are at most $\frac{k^2-k}{3}$ many 1's are there. Therefore

#1's = #1's from third row on wards + #1's in first two row
$$\leq \frac{k^2 - k}{3} + \frac{4k + 3}{3} = \frac{k^2 - k + 4k + 3}{3}$$
$$= \frac{(k^2 + 2k + 1) + (k + 1) + 1}{3} = \frac{(k + 1)^2 + (k + 1) + 1}{3}$$

If $3 \nmid k$ then from third row on wards we keep the bound on the number of 1's to be $\frac{(k-1)^2 + (k-1) + 1}{3} = \frac{k^2 - k + 1}{3}$. But now $\frac{4k+3}{3}$ is not an integer. So the number of 1' in the first two rows is at most $\frac{4k+2}{3}$. Hence we have

#1's = #1's from third row on wards + #1's in first two row
$$\leq \frac{k^2 - k + 1}{3} + \frac{4k + 2}{3} = \frac{k^2 - k + 1 + 4k + 2}{3}$$

$$= \frac{(k^2 + 2k + 1) + (k + 1) + 1}{3} = \frac{(k + 1)^2 + (k + 1) + 1}{3}$$

Hence for both cases we have the total number of 1's is at most $\frac{(k+1)^2+(k+1)+1}{3}$. Hence by Mathematical Induction the number of 1's in the resulting matrix of size n > 0 for any $n \in \mathbb{N}$ is at most $\frac{n^2+n+1}{3}$.

Having this bound on the number of 1's we will now show an instance to achieve this number for any n > 0. So we will show instances where for any n > 0 from any i^{th} row on wards the bound $\left\lfloor \frac{i^2 + i + 1}{3} \right\rfloor$ is achieved for all $i \in [n]$.

Consider the sequence $\{0,1,1\}$. We put them in that order circularly. i.e.

Starting with 0: $0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ \cdots$ Starting with first 1: $1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ \cdots$ Starting with second 1: $1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \cdots$

Let S_n^0 denote the *n*-length sequence starting with 0, S_n^1 denote *n*-length sequence starting with 1 and S_n^2 denote *n*-length sequence starting with 1. Now for any $j \in \mathbb{F}_3$ and $i \in [n]$, $S_n^j(i)$ denote the i^{th} element in S_n^j . And in general for any i > 0, $i \in \mathbb{N}$ the i^{th} element of the sequence starting with 0 is by $S^0(i)$, for i^{th} element of the sequence starting with first 1 denoted by $S^1(i)$ and for i^{th} element of the sequence starting with second 1 denoted by $S^2(i)$. Now we have the following relation

Lemma 2. Then for any $j \in \mathbb{F}_3$ and for any i > 0 and $i \in \mathbb{N}$

$$S^j(i) + S^j(i+1) \equiv S^{j+2}(i) \pmod 2$$

Since $j \in \mathbb{F}_3$ we take $j + 2 \mod 2$.

Proof: For j = 0 we have

$$S^0(i) = \begin{cases} 0 & \text{If } i \equiv 1 \pmod{3} \\ 1 & \text{Otherwise} \end{cases}, \quad S^1(i) = \begin{cases} 0 & \text{If } i \equiv 0 \pmod{3} \\ 1 & \text{Otherwise} \end{cases}, \quad S^2(i) = \begin{cases} 0 & \text{If } i \equiv 2 \pmod{3} \\ 1 & \text{Otherwise} \end{cases}$$

Now we will analyze case wise:

• Case 1: $i \equiv 0 \pmod{3}$: Then $S^0(i) = 1$, $S^1(i) = 0$ and $S^2(i) = 1$ Therefore $S^0(i+1) = 0$, $S^1(i+1) = 1$, and $S^2(i+1) = 1$. Therefore we have $S^0(i) + S^1(i+1) = 1 + 0 = 1 = S^2(i)$, $S^1(i) + S^1(i+1) = 0 + 1 = 1 = S^0(i)$ and $S^2(i) + S^2(i+1) = 1 + 1 \equiv 0 = S^1(i) \mod 2$.

- Case 2: $i \equiv 1 \pmod{3}$: Then $S^0(i) = 0$, $S^1(i) = 1$ and $S^2(i) = 1$ Therefore $S^0(i+1) = 1$, $S^1(i+1) = 1$, and $S^2(i+1) = 0$. Therefore we have $S^0(i) + S^1(i+1) = 0 + 1 = 1 = S^2(i)$, $S^1(i) + S^1(i+1) = 1 + 1 = 0 = S^0(i) \pmod{2}$ and $S^2(i) + S^2(i+1) = 1 + 0 = 1 = S^1(i)$.
- Case 3: $i \equiv 2 \pmod{3}$: Then $S^0(i) = 1$, $S^1(i) = 1$ and $S^2(i) = 0$ Therefore $S^0(i+1) = 1$, $S^1(i+1) = 0$, and $S^2(i+1) = 1$. Therefore we have $S^0(i) + S^1(i+1) = 1 + 1 \equiv 0 = S^2(i) \pmod{2}$, $S^1(i) + S^1(i+1) = 1 + 0 = 1 = S^0(i)$ and $S^2(i) + S^2(i+1) = 0 + 1 = 0 = S^1(i)$.

Hence we have for all i > 0 and $i \in \mathbb{N}$ and for all $j \in \mathbb{F}_3$ we have $S^j(i) + S^j(i+1) \equiv S^{j+2}(i) \pmod 2$.

Now we will count the number of 1's in S_n^j for any $j \in \mathbb{F}_3$. First we define the following function $f\mathbb{F}_3^2 \to \mathbb{F}_3$ where we give the values of at all possible inputs by the table below:

f(i,j)	j = 0	j=1	j=1
i = 0	0	0	0
i = 1	0	1	1
i=2	1	2	1

Lemma 3. Let n = 3k + i where $i \in \{0, 1, 2\}$ and $k \in \mathbb{N}$. Then number of 1's in S_n^j for any $j \in \mathbb{F}_3$ is 2k + f(i, j).

Proof: For any i > 0, $i \in \mathbb{N}$ and for any $j \in \mathbb{F}_3$ in the block $S^j(i)$, $S^j(i+1)$, $S^j(i+2)$ there is exactly two 1's and one 0 since in the sequence 0, 1, 1 comes circularly again and again and any 3 consecutive element is just one time appearance of the sequence. Therefore for 3-block there are two 1's. Since n = 3k + i, $S^j(3k)$ has 2k many 1's. Now we will analyze case wise:

- Case 1 i = 0: Then n = 3k. Hence we already know we have 2k many 1's. And since f(0, j) = 0 for all $j \in \mathbb{F}_3$ we have 2k + f(i, j) many 1's.
- Case 2 i=1: We have $S^0(n)=0$ and $S^1(n)=S^2(n)=1$. Hence for S^0 we see no extra 1 at n^{th} position. Hence number of 1's in S^0_n is 2k+1=2k+f(1,0). For S^1 we see an extra 1 at n^{th} position. We also have f(1,j)=1 for j=1,2. Therefore number of 1's in S^1_n or S^2_n is 2k+1=2k+f(1,j) for j=1,2. Therefore for i=1 number of 1's in S^j_n is 2k+f(1,j) for $j\in\mathbb{F}_3$.
- Case 3 i=2: We have $S^2(n)=1$ and $S^0(n)=S^1(n)=1$. And by case 2 analysis we have 2k many 1's in S^0_{n-1} and 2k+1 many 1's in both S^1_{n-1} and S^2_{n-1} . For S^0 there is 1 at n^{th} position. Therefore we see an extra 1. Hence there are total 2k+1 many 1's. We also have f(2,0)=1. Hence there are 2k+f(2,0) many 1's in S^0_n . For S^1_n there is 1 at n^{th} position. Therefore we see an extra 1. Therefore there are total (2k+1)+1=2k+2 many 1's in S^1_n . We also have f(2,1)=2. Therefore we have 2k+f(2,1) many 1's in S^1_n . Now for S^2_n there is 0 at n^{th} position. Therefore we have no extra 1. So the number of 1's in S^2_n is same as S^2_{n-1} which is 2k+1. We have f(2,2)=1. So we have 2k+f(2,2) many 1's in S^2_n . Therefore we have for i=2 number of 1's in S^j_n is 2k+f(2,j) for $j\in \mathbb{F}_3$.

Hence by analyzing all possible cases we get that for n = 3k + i where $k \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ then number of 1's in S_n^j is 2k + f(i, j).

With all these setup for any n > 0 and $n \in \mathbb{N}$ we define the 0 - 1 matrix M_n to be the following

$$M_n = \begin{bmatrix} S_n^l & & & & \\ & S_{n-1}^{l-1} & & & & \\ & & & S_{n-2}^{l-2} & & \\ & & & \ddots & \\ & & & & S_1^1 \end{bmatrix}$$

Where $l = n \mod 3$ and we do the subtraction by 1 in modulo 3. So basically in M_n the k^{th} row has k-1 leading 0's then $S_{n-k+1}^{n-k+1 \mod 3}$ for all $k \in [n]$. Also observe that if we remove the first row and first column

from M_n we get M_{n-1} . Now by Lemma 2 M_n follows the rule that $(M_n)_{i,j} + (M_n)_{i,j+1} = (M_n)_{i+1,j+1}$ Now we will show that the total number of 1's in M_n is actually $\left|\frac{n^2+n+1}{3}\right|$.

Lemma 4. The total number of 1's in M_n is $\left\lfloor \frac{n^2+n+1}{3} \right\rfloor$.

Proof: We will prove this inductively on n. For n=1 we have $\left\lfloor \frac{n^2+n+1}{3} \right\rfloor = 1$ which is true since $M_1 = [S_1^1] = [1]$. Hence the base case follows. Let this is true for $n=1,\ldots,l-1$. Now n=l we will analyze case wise. Now we have

$$\left\lfloor \frac{l^2 + l + 1}{3} \right\rfloor = \begin{cases} 3k^2 + k & \text{When } l = 3k \\ 3(k^2 + k) + 1 & \text{When } l = 3k + 1 \\ 3k^2 + 5k + 2 & \text{When } l = 3k + 2 \end{cases}$$

Now if we ignore the first row and first column we have M_{l-1} . By inductive hypothesis M_{l-1} has $\left\lfloor \frac{(l-1)^2 + (l-1) + 1}{3} \right\rfloor$ many 1's

• Case 1 l = 3k: Then l - 1 = 3(k - 1) + 2. Then we have

$$\left| \frac{(l-1)^2 + (l-1) + 1}{3} \right| = 3(k-1)^2 + 5(k-1) + 2 = 3(k^2 - 2k + 1) + 5k - 5 + 2 = 3k^2 - k$$

And by Lemma 3 in S_l^0 there are 2k + f(0,0) = 2k. Hence total number of 1's is

$$3k^2 - k + 2k = 3k^2 + k = \left| \frac{l^2 + l + 1}{3} \right|$$

Hence this case follows.

• Case 2 l = 3k + 1: Then l - 1 = 3k. Then we have

$$\left| \frac{(l-1)^2 + (l-1) + 1}{3} \right| = 3k^2 + k$$

And by Lemma 3 in S_l^1 there are 2k + f(1,1) = 2k + 1 many 1's. Hence total number of 1's is

$$3k^{2} + k + 2k + 1 = 3k^{2} + 3k + 1 = \left| \frac{l^{2} + l + 1}{3} \right|$$

Hence this case follows.

• Case 3 l = 3k + 2: Then l - 1 = 3k + 1. Then we have

$$\left| \frac{(l-1)^2 + (l-1) + 1}{3} \right| = 3k^2 + 3k + 1$$

And by Lemma 3 in S_l^2 there are 2k + f(2,2) = 2k + 1 many 1's. Hence total number of 1's is

$$3k^{2} + 3k + 1 + 2k + 1 = 3k^{2} + 5k + 2 = \left\lfloor \frac{l^{2} + l + 1}{3} \right\rfloor$$

Hence this case follows.

Therefore in all cases M_l has in total $\left\lfloor \frac{l^2+l+1}{3} \right\rfloor$ many 1's. Therefore by mathematical induction we have that for all n > 0, $n \in \mathbb{N}$ the total number of 1's in M_n is $\left\lfloor \frac{n^2+n+1}{3} \right\rfloor$.

Since by Lemma 1 the maximum number of 1's we can achieve is $\left\lfloor \frac{n^2+n+1}{3} \right\rfloor$ for n size matrix this sequence of matrices has the maximum number of 1's.

Let n > 0 be an integer. Count the number of subsets $S \subseteq [n]$ that: (a) satisfy $|S| \in S$. (b) satisfy $|S| \in S$ and that for all $S' \subsetneq S$, we have $|S'| \notin S$.

Solution:

(a) Let |S| = k. Therefore $k \in S$. Now rest of the k-1 elements are from $[n] \setminus \{k\}$. So the rest k-1elements can be chosen from $[n] \setminus \{k\}$ in $\binom{n-1}{k-1}$ ways. Therefore total number of sets $S \subseteq [n]$ that satisfy $|S| \in S$ is

$$\sum_{k=1}^{n} {n-1 \choose k-1} = \sum_{k=0}^{n-1} {n-1 \choose k} = 2^{n-1}$$

Hence there are 2^{n-1} such sets are possible

(b) Let |S| = k. Now for all $S' \subsetneq S$, we have $|S'| \notin S$. Hence for all m < k, $m \notin S$. Therefore the rest of the k-1 elements of S are from $[n] \setminus [k]$. For this to satisfy we should have $n-k \geq k-1 \implies \frac{n+1}{2} \geq k$. For such k the rest k-1 elements can be chosen from $[n] \setminus [k]$ in $\binom{n-k}{k-1}$ ways. Hence total number of sets $S \subseteq [n]$ that satisfy the given property is

$$\sum_{k=1}^{\left\lfloor \frac{n+1}{2} \right\rfloor} \binom{n-k}{k-1}$$

A triangulation of a polygon is a partition of its area into (disjoint) triangles with the same vertex

- Consider a regular polygon with n sides. Show that any triangulation of this polygon has n-2triangles. How many such triangulations are there?
- For what values of n is there a triangulation into isosceles triangles? How many such triangulations are there?

Use the ideas above to show that a d-dimensional polytope that is the intersection of n-halfspaces can be partitioned into at most n^d simplices.

Solution: