

UNSUPERVISED MACHINE LEARNING WEATHER PREDICTION ANALYSIS

ING. LUIS A. GIL LARES

NOVEMBER 2024

Project Overview

- Objective: Identify critical features of climate data to predict pleasant weather and improve resource allocation.
- ► Tools & Methods: Python, Random Forests, Neural Networks, Hyperparameter Optimization, Visualizations.
- ► **Key Question:** What data features best predict pleasant weather?

Climate refugees are a growing reason for emigration globally, including in Europe. Source: <u>Steve Evans</u> (CC BY-NC 2.0)

Dataset Overview

- Weather Data:
 - ▶ 170 features from multiple weather stations (temperature, humidity, precipitation, etc.).
- Pleasant Weather Labels:
 - ▶ Binary labels for weather conditions by station.
- Data cleaned and structured to ensure balance.

	DATE	MONTH	BASEL_cloud_cover	BASEL_wind_speed	BASEL_humidity	BASEL_pressure	BASEL_global_radiation	BASEL_precipitation	BASEL_S
0	19800101	1	7	2.1	0.85	1.0180	0.32	0.09	
1	19800102	1	6	2.1	0.84	1.0180	0.36	1.05	
2	19800103	1	8	2.1	0.90	1.0180	0.18	0.30	
3	19800104	1	3	2.1	0.92	1.0180	0.58	0.00	
4	19800105	1	6	2.1	0.95	1.0180	0.65	0.14	
***	***	***	***	***	***	***	***		
22945	20221027	10	1	2.1	0.79	1.0248	1.34	0.22	
22946	20221028	10	6	2.1	0.77	1.0244	1.34	0.22	
22947	20221029	10	4	2.1	0.76	1.0227	1.34	0.22	
22948	20221030	10	5	2.1	0.80	1.0212	1.34	0.22	
22949	20221031	10	5	2.1	0.84	1.0193	1.34	0.22	

		DATE	${\bf BASEL_pleasant_weather}$	BELGRADE_pleasant_weather	BUDAPEST_pleasant_weather	DEBILT_pleasant_weather	DUSSELDORF_pleasant_weath
	0	19600101	0	0	0	0	
	1	19600102	0	0	0	0	
	2	19600103	0	0	0	0	
	3	19600104	0	0	0	0	
	4	19600105	0	0	0	0	
229	945	20221027	0	0	0	0	
229	946	20221028	0	0	0	0	
229	947	20221029	0	0	0	0	
229	948	20221030	0	0	0	0	
229	949	20221031	0	0	0	0	

Data Cleaning and RNN Model Development

Overview

- Objective: Classify pleasant weather conditions for European cities using RNNs.
- Dataset:
 - Original: 22,950 samples, 170 features.
 - Cleaned: 134 features, (22,950, 15, 9) shape for the model.

Data Cleaning

1. Removed:

 Columns for Gdansk, Roma, Tours, wind_speed, and snow_depth.

2. Added:

 Data for Kassel, Sonnblick, Oslo, using nearby stations.

3. Final Dataset:

- 1. Features: Temp_mean, cloud_cover, humidity, pressure, etc.
- Data Splits
- **Training Data**: (18,360, 15, 9)
- Testing Data: (4,590, 15, 9)

```
In [8]: # List of cities to be removed
cities_to_remove = ['GOANSK', 'ROMA', 'TOURS']

# Filter out columns that contain the names of the cities to remove
columns_to_keep = [col for col in weather_data.columns if not any(city in col for city in cities_to_remove)]

# Create a new dataframe with the filtered columns
weather_data_filtered = weather_data[columns_to_keep]

# Check the shape to ensure the columns were removed
print(f"Shape of weather_data_filtered: {weather_data_filtered.shape}")

Shape of weather_data_filtered: (22950, 149)
```

```
In [9]: # Assuming X is 2D array or DataFrame with shape (22950*15, 9)

X = X.reshape(-1, 15, 9)
print("Reshaped X:", X.shape) # Should output (22950, 15, 9)

Reshaped X: (22950, 15, 9)
```

RNN Model Reports and Insights

/			1s 5ms/step		
144/144					
Pred True	BASEL	BUDAPEST	MAASTRICHT	MUNCHENB	
BASEL	270	2592	26	21	
BELGRADE	220	681	7	1	
BUDAPEST	14	167	0	0	
DEBILT	12	59	0	0	
DUSSELDORF	1	25	0	0	
HEATHROW	3	83	0	0	
KASSEL	0	6	0	0	
LJUBLJANA	1	48	0	0	
MAASTRICHT	0	4	0	0	
MADRID	8	323	0	0	
MUNCHENB	1	5	0	0	
OSLO	0	7	0	0	
STOCKHOLM	0	2	0	0	
VALENTIA	0	3	0	0	

CNN + tanh (30 epochs, 128 LSTM units

- Validation Accuracy: 9.52% (final).lssue:
- High confusion; BASEL misclassified as BUDAPEST.

CNN + sigmoid (20 epochs, 128 LSTM units)

- Validation Accuracy: 3.70%.
- Issue: Predicted BASEL for most classes.

144/144 — Pred True BASEL	MAASTRICHT 1	OSLO	3s 14ms/step
True BASEL		OSLO	
BASEL			
	4		
	1	2908	
BELGRADE	0	909	
BUDAPEST	0	181	
DEBILT	0	71	
DUSSELDORF	0	26	
HEATHROW	0	86	
KASSEL	0	6	
LJUBLJANA	0	49	
MAASTRICHT	. 0	4	
MADRID	0	331	
MUNCHENB	0	6	
OSLO	0	7	

CNN + tanh (20 epochs, 128 LSTM units)

- Validation Accuracy: 0.15%.
- Issue: Strong bias toward OSLO.

Data Preparation, Feature Selection & Modeling

1. Feature Selection

- **Target Variable:** Binary classification (0 = Non-pleasant, 1 = Pleasant).
- Key Predictors: Temperature-related metrics emerged as the most significant features.

2. Modeling

- Algorithm: Random Forest Classifier for robustness and feature handling.
- Train-Test Split: Data split for unbiased evaluation on unseen data.
- 3. Model Evaluation
- Accuracy: Achieved 57.59%, indicating moderate success with room for improvement.
- Classification Report Highlights:
 - BASEL & BUDAPEST: Strong performance.
 - SONNBLICK & VALENTIA: Struggled due to class imbalance and underrepresentation.

In [25]:	<pre># Train the model rf_model.fit(X_train, y_train)</pre>
	<pre># Predict on the test set y_pred = rf_model.predict(X_test)</pre>
	<pre># Evaluate the model accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy:.4f}') print(classification_report(y_test, y_pred))</pre>

Accuracy:	0.5	/59			
		precision	recall	f1-score	support
	0	0.96	0.91	0.93	190
	1	0.89	0.93	0.91	270
	2	0.87	0.98	0.92	255
	3	0.92	0.90	0.91	155
	4	0.93	0.87	0.90	158
	5	0.88	0.73	0.80	160
	6	0.93	0.78	0.85	147
	7	0.87	0.90	0.88	209
	8	0.97	0.91	0.94	160
	9	0.91	0.99	0.94	348
	10	0.96	0.87	0.91	169
	11	0.93	0.70	0.80	120
	12	0.00	0.00	0.00	0
	13	0.90	0.75	0.82	127
	14	1.00	0.05	0.09	44
micro	avg	0.91	0.87	0.89	2512
macro	avg	0.86	0.75	0.77	2512
weighted	avg	0.91	0.87	0.88	2512
samples	avg	0.55	0.51	0.52	2512

Data Preparation, Feature Selection & Modeling

- ▶ 5. Key Stations with Perfect Accuracy (1.0000):
- DUSSELDORF, MAASTRICHT, BASEL
 - **Top Features:** Precipitation, max temperature, mean temperature, sunshine, global radiation, humidity, and cloud cover.
 - Metrics: Perfect precision, recall, and F1-scores across all classes.
- 6. Challenges & Issues
- Class Imbalance: Limited data for certain stations like SONNBLICK and VALENTIA.
- Performance Variability: Some stations show underwhelming results due to data limitations.

Random Forest Optimization and Key Results

- 1. Summary of Results:
- Initial Model (Task 2.3):
 - Accuracy: 0.5759
 - Key Features: Predominantly temperature metrics and precipitation.
- Optimized Model (Task 2.4):
 - Accuracy: 0.5746 (using Randomized Search due to computational constraints).
 - Key Features: Consistent importance of temperature metrics (e.g., MAASTRICHT_temp_max, MUNCHENB_temp_max).

- ▶ 2. Feature Importance Analysis:
- Primary Variables:
 - MAASTRICHT_temp_max, MUNCHENB_temp_max, and DUSSELDORF_temp_mean retained their importance.
- Minor Adjustments:
 - Post-optimization, cloud cover and sunshine metrics gained slightly more relevance.
- 3. Observations:
- **Stability:** Limited changes in feature rankings highlight the robustness of temperature as a key predictor.
- **Performance:** Slight accuracy drop suggests interpretability improvement without significant prediction gains.

Random Forest Optimization and Key Results

Deep Learning Optimization and Iterative Approach

- 1. Bayesian Hyperparameter Optimization:
- Optimized Configuration:
 - Activation: Softsign
 - Batch Size: 460, Epochs: 47, Neurons: 61
 - Kernel Size: 2, Layers: 3 (Dense with Dropout)
 - Optimizer: Adadelta (Learning Rate: 0.7631).
- 2. Performance Results:
- Improved Accuracy: Better classification for BASEL, BELGRADE, and MADRID stations.
 - BASEL: 3,512 correct classifications (significant improvement).

- BELGRADE: 956, MADRID: 369 correct classifications.
- Overfitting Signs: High learning rate and batch size might cause overfitting; further regularization needed.
- Part 3: Iterative Approach1. Data Segmentation:
- Weather station groupings (e.g., urban, coastal).
- Time-based splits (hourly, daily, seasonal).
- Focused critical variables: temperature, wind speed, visibility, and precipitation.

Deep Learning Optimization and Iterative Approach

print(contu	sion_mat	rix(y_tes	t, y_pre	d, sta	ations	5))		
Pred True	BASEL	BELGRADE	BUDAPES	T DE	BILT	DUSSELDORF	HEATHROW	\
BASEL	3512	82		16	4	7	1	
BELGRADE	121	956		4	0	9	1	
BUDAPEST	21	42	14	10	2	2	0	
DEBILT	15	9	- 2	25	28	5	0	
DUSSELDORF	6	2		2	2	8	1	
HEATHROW	13	4		3	9	3	40	
KASSEL	3	2		1	0	2	0	
LJUBLJANA	8	5		5	0	9	9	
MAASTRICHT	6	0		0	1	9	0	
MADRID	39	22	:	2	0	1	7	
MUNCHENB	7	0		0	0	9	0	
OSLO	0	0		0	0	0	0	
STOCKHOLM	2	0		1	0	0	0	
VALENTIA	1	9		0	9	0	0	
Pred	LJUBLJA	NA MAAST	RICHT N	MADRID	OSLO)		
True								
BASEL		8	2	50	6	9		
BELGRADE		2	0	8		9		
BUDAPEST		2	0	5		9		
DEBILT		0	0	0		9		
DUSSELDORF		2	0	6				
HEATHROW		2	0	17				
KASSEL		0	0	2		1		
LJUBLJANA		33	0	9		l		
MAASTRICHT		0	1	1		Э		
MADRID		8	0	369		Э		
MUNCHENB		1	0	9		9		
OSLO		0	0	4		1		
STOCKHOLM VALENTIA		0	0	1	6	9		

Handwriting Recognition Task Results

- ▶ 1. Model Performance:
- Accuracy: 10.00% (2/20 images correctly identified).
- Prediction Behavior: Model predominantly predicted the number 8, indicating overfitting or inadequate training.
- 2. Analysis of Results:
- Correct Predictions: Only images 8 and 18 (actual number 8).
- Misclassification Patterns: Most numbers misclassified as 8 or unrelated digits.

Image 19: Predicted = 8, Actual = 9

5

```
In [62]: from sklearn.metrics import accuracy score
         # Calculate accuracy
         accuracy = accuracy score(y real test, predicted labels)
         print(f"Model accuracy on handwritten data: {accuracy * 100:.2f}%")
         Model accuracy on handwritten data: 10.00%
In [63]: # Display the predicted and true Labels
         for i, (pred, actual) in enumerate(zip(predicted labels, y real test)):
             print(f"Image {i}: Predicted = {pred}, Actual = {actual}")
         Image 0: Predicted = 8, Actual = 1
         Image 1: Predicted = 8, Actual = 10
         Image 2: Predicted = 8, Actual = 2
         Image 3: Predicted = 8, Actual = 3
         Image 4: Predicted = 0, Actual = 4
         Image 5: Predicted = 8, Actual = 5
         Image 6: Predicted = 0, Actual = 6
         Image 7: Predicted = 5, Actual = 7
         Image 8: Predicted = 8, Actual = 8
         Image 9: Predicted = 8, Actual = 9
         Image 10: Predicted = 8, Actual = 1
         Image 11: Predicted = 8, Actual = 10
         Image 12: Predicted = 7, Actual = 2
         Image 13: Predicted = 2, Actual = 3
         Image 14: Predicted = 3, Actual = 4
         Image 15: Predicted = 4, Actual = 5
         Image 16: Predicted = 3, Actual = 6
         Image 17: Predicted = 8, Actual = 7
         Image 18: Predicted = 8, Actual = 8
```

Radar Recognition Task Results

▶ 1. Model Performance:

- Training Accuracy: 91.67%, Validation Accuracy: 87.50%.
- Training Loss: 0.041, Validation Loss: 0.053.

2. Confusion Matrix Insights:

- Strong performance in predicting "Sunrise" with minimal misclassifications.
- Frequent confusion between "Cloudy" and "Shine."

▶ 3. Observations:

 Model successfully classified weather types in most cases with high confidence for "Sunrise."

Radar Recognition Task Results

Correct Prediction - class: Sunrise - predicted: Sunrise[1.4477209e-13 5.6362812e-09 3.1840572e-10 1.0000000e+00]

Correct Prediction - class: Sunrise - predicted: Sunrise[1.0717241e-35 3.7137514e-22 1.7717912e-30 1.0000000e+00]

Correct Prediction - class: Rain - predicted: Rain[0.03280307 0.9378439 0.01369535 0.01565767]

Correct Prediction - class: Sunrise - predicted: Sunrise[6.56038102e-18 1.09890826e-10 2.66064772e-14 1.00000000e+00]

Correct Prediction - class: Sunrise - predicted: Sunrise[5.7174879e-24 9.1019090e-16 4.7867107e-19 1.0000000e+00]

Summary and Recommendations

- Most Promising Thought Experiment: GAN Applications for Weather Prediction
- Potential: Generate synthetic data for underrepresented weather conditions, visualize forecasts, and detect anomalies, enhancing real-world forecasting and anomaly detection.
- Key Algorithms & Data Needed:
- 1. GAN Applications:
 - 1. Algorithms: GANs, Conditional GANs.
 - 2. Data: Labeled weather images, meteorological data (e.g., temperature, wind speed).
- 2. Handwriting Recognition:
 - 1. Algorithms: CNNs, RNNs.
 - 2. Data: Augmented handwriting datasets, improved preprocessing.

3. Radar Classification:

- 1. Algorithms: CNNs, Transfer Learning.
- 2. Data: Radar images, synthetic data for balancing classes.
- Next Steps:
- Focus on GANs: Develop models to generate synthetic weather data.
- **Enhance Datasets**: Expand with diverse, labeled images and use augmentation.
- **Refine Models:** Conduct hyperparameter tuning and regularization for robustness.

luisgil1989@gmail.com

Thank you for your attention